CS 440 Introduction to Artificial Intelligence

Lecture 11:

Logic and Planning

20 February 2020

Logistics

Meetings after class

- Out of consideration for next class we should move discussion into lobby
- · I will always stay around until all questions are answered

Moved due date of project back 1 day

Sunday 23rd

RUTGERS

Backtracking: Intelligent Backjumping

- Iteratively set each variable to valid value
 - Valid given constraints and values of other variables
- Set variables that have only one valid value
 - All variables set ⇒ solution found
- If any variable has no valid values
 - Current setting cannot produce solution
 - Backtrack
 - Roll back variable settings


```
Backtracking(X, C, S)
```

Input: A set of variables X, a set of constraints C and a partial setting S While $\exists x \in X$ that has only one valid value, V

Set x to v in S

If all variables have been set

Return S

If $\exists x \in X$ with no valid values return **FAIL**

Let x = an unset value in X

For all valid settings of **x** as **v**

$$S' = S$$

Set x to v in S'

result = Backtracking(X, C, S')

if(result ≠ **FAIL**)

Return result

Return FAIL

RUTGERS

Backtracking:Example

- Order: Q, NS, V, T, SA
- Failure when trying to assign SA
- SA's conflict set {Q, NS, V}
- Backjump to the latest node in the conflict set: V
- Skip Tasmania

Assume WA=red and NSW =red, then assign T, NT, Q, SA

SA will cause a conflict, whatever we do...

• Where should the algorithm backjump?

Constraint satisfaction problem

Variables can be set to **true** or **false**

Denote variables as $\mathbf{X} = \{x_1, x_2, ...\}$

Constraints introduced by set of logical statements

Examples:

- $f(X) = \neg x_1$
- $g(X) = X_1 \vee X_2$
- $h(X) = f(X) \wedge g(X)$
 - $h(\mathbf{X}) = \neg x_1 \wedge (x_1 \vee x_2)$
- $j(X) = X_1 \rightarrow X_2$
- $k(X) = I(X) \leftrightarrow m(X)$

Hint: Think about what sets of variable settings satisfy a statement

Axioms

- Statements that are always true
- True for all possible settings of variables

$$\mathbf{X_{1}} \vee \neg \ \mathbf{X_{1}}$$

Commutativity:

- $f(X) \vee g(X) \Leftrightarrow g(X) \vee f(X)$
- $f(X) \wedge g(X) \Leftrightarrow g(X) \wedge g(X)$

Transitivity:

• $(f(X) \rightarrow g(X) \land g(X) \rightarrow h(X)) \rightarrow (f(X) \rightarrow h(X))$

Distributive:

- $f(X) \lor (g(X) \land h(X)) \Leftrightarrow (f(X) \lor g(X)) \land (f(X) \lor h(X))$
- $f(X) \wedge (g(X) \vee h(X)) \Leftrightarrow (f(X) \wedge g(X)) \vee (f(X) \wedge h(X))$

How would you prove something is an axiom?

How would you prove something isn't an axiom?

- $f(X) \vee \neg f(X) \Leftrightarrow \text{true}$
- $f(X) \land \neg f(X) \Leftrightarrow false$
- $f(X) \vee true \Leftrightarrow true$
- $f(X) \wedge false \Leftrightarrow false$
- $f(X) \vee false \Leftrightarrow f(X)$
- $f(X) \wedge true \Leftrightarrow f(X)$
- $\neg (f(X) \land g(X)) \Leftrightarrow \neg f(X) \lor \neg g(X)$
- $f(X) \wedge g(X) \rightarrow g(X)$
- $g(X) \rightarrow f(X) \vee g(X)$

How would you prove something is an axiom?

- Reduction
 - Reduce to a statement that is trivially true
- Contradiction
 - Assume axiom if false and show contradiction
 - Variable that can neither be true of false

How would you prove something isn't an axiom?

Setting of variables for which statement is false

How would an AI agent prove something is an axiom?

 $- f(X) \wedge g(X) \rightarrow g(X)$

• $\beta(X) \rightarrow \beta(X)$

• $\neg \alpha(X) \land (\alpha(X) \lor \beta(X)) \rightarrow \beta(X)$ $- f(X) \wedge (g(X) \vee h(X)) \Leftrightarrow (f(X) \wedge g(X)) \vee (f(X) \wedge h(X))$ • $(\neg \alpha(X) \land \alpha(X)) \lor (\neg \alpha(X) \land \beta(X)) \rightarrow \beta(X)$ - $f(X) \wedge \neg f(X) \Leftrightarrow false$ • false $\vee (\neg \alpha(X) \land \beta(X)) \rightarrow \beta(X)$ - $f(X) \vee g(X) \Leftrightarrow g(X) \vee f(X)$ • $(\neg \alpha(X) \land \beta(X)) \lor false \rightarrow \beta(X)$ - $f(X) \vee false \Leftrightarrow f(X)$ • $\neg \alpha(X) \wedge \beta(X) \rightarrow \beta(X)$

Given list of rules could an AI agent make such a reduction?

Example: Contradiction

- Negate statement
- Show contradiction
 - Negation unconditionally false
 - No setting of variables will satisfy it
 - Could apply backtracking algorithm and show that returns false
 - Complexity may make it inflatable
 - Could reduce to statement that is unconditionally false

f(X) entails g(X)

- $f(X) \mid = g(X)$
- For all variable settings where f(X) is true, g(X) is also true
 - $g(X) \vee \neg f(X)$
- f(X) is sufficient to show g(X)
- f(X) implies g(X)

Examples:

Entailment vs implies

$$\blacksquare$$
 \mid = vs \rightarrow

• If x implies y and x is true then you can entail that y must also be true

$$- x \rightarrow y, y = y$$

- Example
 - If you don't study then you will fail the exam
 - You did not study
 - Therefore, you will fail the exam

Binary CSP example: Wumpus World

- Variables
 - Defined for each cell
 - $\quad \boldsymbol{S_{i,j'}} \; \boldsymbol{B_{i,j'}} \; \boldsymbol{P_{i,j'}} \; \boldsymbol{W_{i,j'}} \; \; \boldsymbol{G_{i,j}}$
- Define problem in terms of logical statements

$$- S_{i,j} \rightarrow (W_{i-1,j} \lor W_{i+1,j} \lor W_{i,j-1} \lor W_{i,j+1})$$

$$- B_{i,i} \rightarrow (P_{i-1,i} \lor P_{i+1,i} \lor P_{i,i-1} \lor P_{i,i+1})$$

Gold/Pit/Wumpus cannot be in same cell

$$- W_{i-,j} \rightarrow (\neg G_{i-,j} \land \neg P_{i-,j})$$

$$- G_{i-,i} \rightarrow (\neg W_{i-,i} \land \neg P_{i-,i})$$

$$- P_{i-,j} \rightarrow (\neg W_{i-,j} \land \neg G_{i-,j})$$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

- Agent in 1,1
 - No breeze and no smell
- Use Entailment

$$- B_{i,j} \rightarrow (P_{i-1,j} \lor P_{i+1,j} \lor P_{i,j-1} \lor P_{i,j+1}), \neg B_{1,1} \mid = \neg P_{1,2}, \neg P_{2,1}$$

$$-S_{i,j} \to (W_{i-1,j} \lor W_{i+1,j} \lor W_{i,j-1} \lor W_{i,j+1}), \neg S_{1,1} = \neg W_{1,2}, \neg W_{2,1}$$

Cells 1,2 and 2,1 are safe

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- Agent in 2,1
 - Breeze and no smell
- Use Entailment

-
$$B_{i,j} \rightarrow (P_{i-1,j} \lor P_{i+1,j} \lor P_{i,j-1} \lor P_{i,j+1}), B_{2,1} \mid = P_{2,2} \lor P_{3,1}$$

- $S_{i,j} \rightarrow (W_{i-1,j} \lor W_{i+1,j} \lor W_{i,j-1} \lor W_{i,j+1}), \neg S_{2,1} \mid = \neg W_{2,2}, \neg W_{3,1}$

- Don't move to 2, 2 or 3, 1
 - Go back and explore 1,2 instead

1,4	2,4	3,4	4,4
1,3 w!	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

- Agent in 2,1
 - Smell and no breeze

•
$$B_{i,j} \rightarrow (P_{i-1,j} \lor P_{i+1,j} \lor P_{i,j-1} \lor P_{i,j+1}), \neg B_{2,1} \mid = \neg P_{1,3}, \neg P_{2,2}$$

•
$$P_{2,2} \vee P_{3,1}$$
, $\neg P_{2,2} \mid = P_{3,1}$

•
$$S_{i,j} \rightarrow (W_{i-1,j} \lor W_{i+1,j} \lor W_{i,j-1} \lor W_{i,j+1}), S_{1,2}, \neg W_{2,2}, \neg W_{1,1} = W_{1,3}$$

Cell 2,2 is safe, move there

1,4	2,4 P?	3,4	4,4
^{1,3} w!	2,3 S G B	3,3 _{P?}	4,3
1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

- Agent visits 2,2
 - No smell and no breeze

•
$$B_{i,j} \rightarrow (P_{i-1,j} \lor P_{i+1'j} \lor P_{i,j-1} \lor P_{i,j+1}), \neg B_{2,2} \mid = \neg P_{2,3}, \neg P_{3,2}$$

- $S_{i,j} \rightarrow (W_{i-1,j} \lor W_{i+1,j} \lor W_{i,j-1} \lor W_{i,j+1}), \neg S_{2,2} \mid = \neg W_{2,3}, \neg W_{3,2}$
- Cell 3,2 and 2,3 are safe
 - Move to 2,3
 - Find the gold there!!!!!

Wumpus World

Wumpus

Agent

Pit

Gold

+1000 for gold
-1000 falling into pit
-1 for each action
-10 for using arrow

Discussion

- How would you automate planning in environment like Wumpus World?
- What is the major difficulty?

Rutgers

Summary of First Third of Class

- End of section on deterministic reasoning
 - Problem Formalization
 - State/Action/Transition/Observation/ect.
 - Local Search
 - Hill Climbing
 - Gradient descent
 - Search
 - BFS/DFS/SPF
 - Heuristics
 - A* Search
 - Adversarial Search
 - Minimax Search
 - Alpha-Beta Pruning
 - Decision Trees
 - Constructing Decision Trees
 - Constraint Satisfaction
 - Backtracking Algorithm
 - Logic