CS & IT ENGINEERING

Compiler Design

Lexical Analysis & Syntax Analysis

Lecture No. 6

DEVA Sir

TOPICS TO BE COVERED


```
FOILOW SET

LL(1) Parset

LL(1) CFG

LL(1) Table

LL(1) Algorikm
```

FOLLOW SET:

$$\bigcirc$$
 $S \rightarrow a$

Special end terminal

(3)
$$S \rightarrow SQc |SQd|e$$
FOllow(S)= $\{\$, a, b\}e$

$$S \rightarrow a A$$

FOILOW (A) = We Should Compute FOLLOW(S)

If X-> XY then Follow(Y) = Follow(X)

$$A \rightarrow a$$

$$\beta \rightarrow b$$

$$(7) S \rightarrow B$$

$$A \rightarrow bc$$

$$B \rightarrow bc$$

Compute FIRST & FOLLOW Sets

$$FIRST(S) = {\alpha, (}$$

FOLLOW(S) =
$$\{\$,(a,)\}$$

Follow (S) = ?

O S
$$\rightarrow$$
 [S]

Follow (S):

 $S \rightarrow S$

Follow (S):

 $S \rightarrow S$
 $S \rightarrow S$

-> X Follow (LHS) John (CHS)

$$\begin{array}{c|c}
\hline
3 & E \rightarrow E + T & a \\
\hline
T \rightarrow F * T & b \\
\hline
F \rightarrow (E) & c
\end{array}$$

$$FIRST(E) = \{a\}$$

$$FIRST(T) = \{b,c,(\}\}$$

$$FIRST(F) = \{(,c\}\}$$

$$A \rightarrow ab \epsilon$$

$$C \rightarrow gh \mid \varepsilon$$

First (B) =
$$\{e, \epsilon\}$$

First (B) = $\{e, \epsilon\}$

LL(1) parser Configuration:

I) LL(1) CFG

II) LL(1) Table

III) LL(1) Algorikm

How to write LL(1) CFG 9

Step 1: Take Unambiguous CFG

J Eliminate Left Recursion

Step 2: Unambiguous & Non Left Rec CFG

[Apply Left Factoring

Strp3: Unambiguous, Nonleyt Rec, and Lest Factored

(FG

(Using Fixst & Follow sets, construct

(Luci) Table

Stopy: If no multiple productions in the same entry of table then cfg is LL(1).

How to construct LL(1) Table 9 Step 1: Compute FIRST set for every non-terminal FIRST(S) = {a, b} A -> 6/6 Step3: construct table If any FIRST Set contain & Iken Compute Follow Set only for that non-terminal S-Aa S-Ao Follow (A) = da }

Short cut:

i)
$$X \rightarrow \alpha_1 | \alpha_2$$

If $Fi(\alpha_1) \cap Fi(\alpha_2) \neq \phi_{not_1 \cup not_2}$

ii) $X \rightarrow \alpha | \epsilon$

If $F_i(\alpha) \cap F_0(x) \neq \emptyset$ then Not I(1)

5	WC Will	Lave	only	5	Productions
A	1	1	1, -	A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3		1,		B	

when you c Fill Itis entry wilk an productions of S_ they derive a as 1st symbol

.

When Kollow cox

A->ade

what is First teaminal? = 0

 $A \rightarrow E$

= FOllow(A)

_ b

asb E Fi(aSb)()Fo(S) (2) far n & b, \$} = \$ First(S)= {a, E} FOILOW (S) = 9 \$ 163 Every entry of table has

Pw

coekod3: First (S) = 16}

more than one production in some entry. So, not LL(1).

Melkud 1:

Given CFG is having

Left Recursion

So, not LL(1).

Meltod 2:
Fi(Sa) () Fi(6) # \$
(1)

Note 1: Every LL(1) CFG is

I) Unambiguous

II) Non Left Rocursive

III) Lest Factored

Note 2: If CFG is unambiguous, Mon lest Rec, and Lest factored then CFG need Not be LL(1)

Fi(aSa) 1 Fo(S) far (a, \$) + 0 a is common

Identify CFG is LL(1) or not.

$$\bigcirc S \rightarrow a \quad LL()$$

$$3) S \rightarrow 0 | 0b Not UU'$$

(4)
$$S \rightarrow Sab \mid E_{pot} \mid \mathcal{E}_{pot} \mid$$

Follow Set

Fully Table

LL(1) Table

What is LL(1) (FG?.

How to identify CFG?.

Next: Ll(1) Algo

