Chapter 2:

Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Section 2.1: Sets

Set

Sets are used to group objects together. Often the objects in a set have similar properties.

A set is an unordered collection of objects.

Example:

Z is the set of integers.

Set membership

The objects in a set are called the elements, or members, of the set.

- a is an element of the set A, denoted by $a \in A$.
- a is not an element of the set A, denoted by $\alpha \notin A$.

Example:

Set D: all students taking Discrete Mathematics course. Assume Bill is taking Discrete Mathematics course and George is not taking Discrete Mathematics course.

Bill ∈ D

George ∉ D

Expressing set

There are many ways to express the sets

- 1. Listing all the elements
- 2. Set builder notation
- 3. Venn diagrams

Listing all elements

```
S = \{e1, e2, e3,...,en\}
where e_i is element in the set
```

Example

{1, 2, 3, ..., 99}

All vowels in the English alphabet.

Set builder notation

Describe the properties the elements must have to be members

$$S = \{x \mid P(x)\}$$

S contains all the elements which make the predicate P true

Example:

- R = { x | x is integer < 100 and > 40}
- Z+ = { x | x is a positive integer}
- $O = \{1,3,5,7,9\}$ write set builder notation.

Important Sets

- $N = \{0,1,2,3,...\}$, Set of natural numbers
- $Z = \{..., -2, -1, 0, 1, 2, ...\}$, Set of integers
- $Z + = \{1,2,3,...\}$, Set of positive integers
- $Q = \{p/q \mid p \in Z, q \in Z, and q = 0\}$, Set of rational numbers
- R , Set of real numbers
- Sets can have other sets as members
 Example: The set {N, Z, Q, R} is a set containing four elements, each of which is a set.

Venn diagrams

Sets can be represented graphically using Venn diagram.

- Universal set U contains all objects under consideration say English alphabets is represented by a rectangle
- Other geometric figures are used to represent sets. Say set of vowels
- Points are used to represent particular elements of sets. i.e. a, e, i, o, u

Show set A={a,b,c} using Venn diagram

Set equality

Two sets are equal if and only if they contain exactly the same elements.

denoted by A = B.

Mathematically: $A = B \text{ iff } \forall x \ (x \in A \longleftrightarrow x \in B)$

Example: Are the following sets equal? Why &why not?

- 1. {1, 2, 3, 4} and {1, 2, 3, 4}
- 2. {1, 2, 3, 4} and {4, 1, 3, 2}
- 3. {a, b, c, d, e} and {a, a, c, b, e, d}
- 4. {a, e, i, o} and {a, e, i, o, u}

Set equality

Two sets are equal if and only if they contain exactly the same elements.

denoted by A = B.

Mathematically: $A = B \text{ iff } \forall x \ (x \in A \longleftrightarrow x \in B)$

Example: Are the following sets equal? Why &why not?

- 1. {1, 2, 3, 4} and {1, 2, 3, 4} yes
- 2. {1, 2, 3, 4} and {4, 1, 3, 2} yes
- 3. {a, b, c, d, e} and {a, a, c, b, e, d} yes
- 4. {a, e, i, o} and {a, e, i, o, u} } no

Empty set, Singleton Set

A set that has no elements called empty set, or null set.

Denoted by $\{\}$, \emptyset .

Example:

The set of all positive integers that are less than and equal to 0.

$$S = \{x \mid x \in Z + \text{ and } x \le 0 \} = \{\} = \emptyset$$

Singleton set: a set with one element

- are Ø and {Ø} equal?No
- Φ: an empty set. Think of this as an empty folder
- $\{\phi\}$: a set with one element. The element is an empty set. Think of this as a folder with an empty folder in it.

Subset

Let A and B be sets.

- A is a subset of B if and only if every element of A is also an element of B, denoted by A ⊆ B.
- A \subseteq B if and only if $\forall x(x \in A \rightarrow x \in B)$

Subset equality:

$$A \subseteq B = \forall x(x \in A \rightarrow x \in B)$$
 and $B \subseteq A = \forall x(x \in B \rightarrow x \in A)$ then $A = B, \forall x(x \in A \leftrightarrow x \in B)$

Proper subset

Let A and B be sets.

- A is a subset of a set B but that A ≠ B, we write
 A ⊂ B and say that A is a proper subset of B
- For A ⊂ B to be true, it must be the case that A ⊆ B and there must exist an element x of B that is not an element of A, i.e.

 $\forall x(x \in A \rightarrow x \in B) \land \exists x(x \in B \land x \notin A)$

Cardinality of Set

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, then S is a finite set.

n is the cardinality of S, denoted by |S|.

A set is said to be infinite if it is not finite.

Example:

- 1. A be the set of odd positive integers less than 10, |A| = 5
- S be the set of letters in the English alphabet, |S| =?

The power set

Let S be a set.

The power set of S is the set of all subsets of S, denoted by P(S).
 If a set has n elements, then its power set has
 2ⁿ elements

Example:

$$P({a,b}) = {\emptyset,{a},{b},{a,b}}$$

Practice

How many elements do they have?

- 1. What is $P(\{1,2,3\})$?
- 2. What is P({a, b, c, d})?

Ordered n-tuple

```
The order of elements in a collection is often
important
Ordered n-tuple (a1, a2, ..., an) is the ordered
collection that has:
   a1 as its first element
   a2 as its second element
   an as its nth element
Example: (a,b) is an ordered 2-tuple (ordered pair).
```

Ordered n-tuple

Let A=(a1, a2, ..., an) and B=(b1, b2, ..., bn) be ordered n-tuples.

A and B are equal if and only if each corresponding pair of their elements are equal, denoted by A=B.

A=B if and only $a_i = b_i$ and for $i = \{1,2,...,n\}$

Example: Assume c ≠ b.

Are ordered 3-tuples (a ,b ,c) and (a ,c ,b) equal?

Cartesian product

Let A and B be sets.

The Cartesian product of A and B, denoted by A × B, is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B. Hence,

 $A \times B = \{(a, b) \mid a \in A \land b \in B\}.$

Example:

Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$? $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

Practice

Given A = $\{1, 2\}$ and B = $\{a, b, c\}$ What are A x B and B x A? $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

 $B \times A = \{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\}$

- Are A x B and B x A equal?
- A x B and B x A are equal if A = Ø or B = Ø (so that A x B = Ø) or A = B

Cartesian product

The Cartesian product of sets A_1 , A_2 , ..., A_n , denoted by $A_1 \times A_2 \times ... \times A_n$ is the set of ordered n-tuples (a_1 , a_2 , ..., a_n), where a_i belongs to A_i for i = 1, 2, ..., n.

In other words,

$$A_1 \times A_2 \times ... \times A_n = \{(a1, a2, ..., an) \mid a_i \in A_i \text{ for } i = 1, 2, ..., n\}.$$

Cartesian Products (example)

Example:

What is the Cartesian product of $A \times B \times C$ where $A=\{0,1\}$, $B=\{1,2\}$, and $C=\{0,1,2\}$? Solution:

$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (), (1,2,0), (1,2,1), (1,2,2)\}1,1,2$$

Relation

Let A and B be sets.

A subset R of the Cartesian product A x B is called a relation from the set A to the set B.

The elements of R are ordered pairs, where the first element belongs to A and the second to B

Example

What are the ordered pairs in the less than or equal to relation, which contains (a, b) if $a \le b$, on the set $\{0, 1, 2, 3\}$?

Solution:

 $R = \{ (0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) \}.$

Practice questions

2.1: 2,3,5,7,13,15,17,19,23,29,33,35