In our ML.NET pipeline, we are using the **SDCA (Stochastic Dual Coordinate Ascent) Maximum Entropy** classifier, which is a **multiclass classification algorithm**. Here's a breakdown of what this means:

1. The Model: SdcaMaximumEntropy

- Type: Linear multiclass classifier
- Algorithm: Stochastic Dual Coordinate Ascent (SDCA) with Maximum Entropy (softmax) loss
- Best For:
 - o Text classification (like your banking query categorization)
 - Medium-sized datasets
 - Scenarios where you need probabilistic outputs (confidence scores)

2. Why This Model Was Chosen for Your Pipeline

Your pipeline:

Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy(

labelColumnName: "RequestType",

featureColumnName: "Features"))

- Text Features: You first featurize text (FeaturizeText) into numerical vectors.
- **Multiclass Need**: Since RequestType has multiple categories (Account Services, Loans, Cards, etc.), a multiclass classifier is required.
- SDCA Strengths:
 - o Efficient for medium-sized datasets
 - Supports L1/L2 regularization (helps prevent overfitting)
 - Outputs probabilities (confidence scores) for each class

3. Alternatives in ML.NET

If you wanted to experiment with other models:

Model (Trainers.*)	Best For	Pros	Cons
LbfgsMaximumEntrop y	Small datasets	Precise, good for low- dimensional data	Slower on large data
NaiveBayes	Simple text classification	Fast training	Assumes feature independence
LightGbm	Large datasets	Handles non-linear patterns	Less interpretable
OneVersusAll	Pair with binary classifiers	Flexible	More complex setup

4. Key Parameters You Could Tune

```
var options = new SdcaMaximumEntropyMulticlassTrainer.Options
{
    LabelColumnName = "RequestType",
    FeatureColumnName = "Features",
    L1Regularization = 0.01f, // Sparsity (feature selection)
    L2Regularization = 0.01f, // Prevents overfitting
    NumberOfThreads = 4 // Parallelism
};
```

.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy(options))

5. How It Works in Your Pipeline

- 1. Text → Features: FeaturizeText converts words to numerical vectors (e.g., TF-IDF).
- 2. Labels \rightarrow Keys: MapValueToKey encodes categories (e.g., "Cards" \rightarrow 1, "Loans" \rightarrow 2).
- 3. SDCA Training: Learns weights to separate classes in feature space.
- 4. **Keys** → **Labels**: MapKeyToValue converts predicted keys back to original labels.

6. When to Consider Switching Models

- If accuracy is low: Try LightGbm or deeper featurization (e.g., TextFeaturizingEstimator with n-grams).
- If training is slow: Use LbfgsMaximumEntropy for smaller data.
- If you need probabilities: Stick with SdcaMaximumEntropy or LbfgsMaximumEntropy.

For your banking query classification task, SdcaMaximumEntropy is a solid default choice! >