ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В.ЛОМОНОСОВА»

Физический факультет

Отчет по практическому заданию №4 (2.7(3)) Численные методы в физике.

> студента 427 группы Шилина Максима Александровича

Оглавление

1.	Постановка задачи	2
2.	Дисперсия точного уравнения	2
3.	Исследование явной схемы	2
	3.1. Условие устойчивости	3
	3.2. Дисперсионное соотношение	į
4.	Схема Кранка-Николсона	4
	4.1. Устойчивость схемы	4
	4.2. Дисперсионное соотношение	Ę
	4.3. Решение системы арифметических уравнений	Ę
5.	Численное решение	Ę

1. Постановка задачи

Численно решить, представленное ниже, уравнение теплопроводности на отрезке x = [0, 10] и интервале времени t = [0, 1] по явной схеме и по схеме Кранка-Николсона.

$$\begin{cases} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} \\ T(x=0,t) = T(x=10,t) = 0 \\ T(x,t=0) = \frac{41}{15}(x-5)^2 e^{-(x-5)^2} \end{cases}$$

Необходимо рассмотреть два варианта шагов интегрирования:

- 1) dx = 0.1, dt = 0.01
- 2) dx = 0.1, dt = 0.005

Необходимо построить графики T(x) для шести моментов времени, а также графики сеточной диффузии.

2. Дисперсия точного уравнения

Для нахождения дисперсионного соотношения необходимо подставить в исходное уравнение решение в виде плоской гармонической волны:

$$T(x,t) = T_0 e^{i(\omega t - \kappa x)}$$

После подстановки в уравнение получим чисто мнимое дисперсионное соотношение:

$$i\omega = -\kappa^2$$

Это означает, что в задаче присутствует диффузия и полностью отсутствует дисперсия. Чтобы получить действительное дисперсионное соотношение введём замену переменных: $i\omega=\delta$. Тогда вид решения и дисперсионное соотношение примут следующий вид:

$$T(x,t) = T_0 e^{-\delta t - i\kappa x}$$

$$\delta = -\kappa^2$$

3. Исследование явной схемы

Ниже представлена явная схема для решения уравнения теплопроводности:

$$\frac{T_j^{n+1} - T_j^n}{\Delta t} = \chi \frac{T_{j+1}^n - 2T_j^n + T_{j-1}^n}{\Delta x^2}$$

Данная схема имеет первый порядок аппроксимации по t и второй порядок по координате х. Разностное уравнение можно переписать в более удобном виде, введя коэффициент $\alpha = \frac{\chi \Delta t}{\Delta x^2}$:

$$T_j^{n+1} = T_j^n + \alpha (T_{j+1}^n - 2T_j^n + T_{j-1}^n)$$

Рис. 1: Шаблон явной схемы. Красная точка - неизвестное значение функции в заданной точке.

3.1. Условие устойчивости

Для исследования устойчивости явной схемы рассмотрим пространственную Фурье-моду: $\hat{T}_{\kappa}^{n}e^{i\kappa x_{j}}$. Множитель перехода определяется следующим выражением: $\hat{T}_{\kappa}^{n+1}e^{i\kappa x_{j}}=\lambda\hat{T}_{\kappa}^{n}e^{i\kappa x_{j}}$. Подставим данные уравнения в разностную схему:

$$\lambda \hat{T}_{\kappa}^{n} e^{i\kappa x_{j}} = \hat{T}_{\kappa}^{n} e^{i\kappa x_{j}} + \alpha (\hat{T}_{\kappa}^{n} e^{i\kappa(x_{j} + \Delta x)} - 2\hat{T}_{\kappa}^{n} e^{i\kappa x_{j}} + \hat{T}_{\kappa}^{n} e^{i\kappa(x_{j} - \Delta x)})$$

После преоброзований окончательно получим выражение для множителя перехода:

$$\lambda = 1 - 2\alpha(1 - \cos(\kappa \Delta x)) = 1 - 4\alpha \sin^2 \frac{\kappa \Delta x}{2}$$

Условием устойчивости является выполнение неравенства $|\lambda| \le 1$. Для явной схемы это условие можно переписать в следующем виде:

$$4\alpha \sin^2 \frac{\kappa \Delta x}{2} \le 2$$

 $\alpha \le \frac{1}{2}$

Таким образом явная схема является условно устойчивой с условием на шаг: $\Delta t \leq \frac{\Delta x^2}{2\chi}$. Получив данное условие устойчивости можно сделать вывод, что в исследуемой задаче для шагов сетки dx=0.1, dt=0.01 ожидается быстро нарастающая экспоненциальная неустойчивость решения, т.к. $\alpha=1$, что довольно сильно больше 0,5. Шаги сетки dx=0.1, dt=0.005 лежат на границе устойчивости, а это значит, что можно ожидать устойчивого решения.

3.2. Дисперсионное соотношение

Можно довольно просто получить связь между множителем перехода и дисперсией:

$$T(x,t) = T_0 e^{-\delta t - i\kappa x}$$

$$\hat{T}_{\kappa}^{n+1} = \lambda \hat{T}_{\kappa}^{n}$$

Тогда получим, что

$$T_0 e^{-\delta(t_n + \Delta t) - i\kappa x_n} = \lambda T_0 e^{-\delta t_n - i\kappa x_n}$$

Откуда получаем искомое соотношение: $\delta \Delta t = -ln\lambda$.

В общем случае δ - комплексное число, а значит, его можно представить в следующем виде: $\delta = \Gamma - i\Omega$.

$$\delta \Delta t = -\ln|1 - 4\alpha \sin^2 \frac{\kappa \Delta x}{2}| - i\pi = (\Gamma - i\Omega)\Delta t$$

$$\Gamma \Delta t = -ln|1 - 4\alpha \sin^2 \frac{\kappa \Delta x}{2}| = -ln|1 - 4\alpha \sin^2 \frac{\kappa \pi}{2\kappa_N}|$$

Где $\kappa_N = \frac{\pi}{\Delta x}$ - волновой вектор Найквиста. Вводя безразмерный параметр y можно записать соотношение в следующем виде:

$$\Gamma \Delta t = -\ln|1 - 4\alpha \sin^2 \frac{\pi y}{2}|$$

 $\Gamma \Delta t$ - интересующая нас диффузия сеточного решения.

4. Схема Кранка-Николсона

Данная схема является симметричной схемой с весами второго порядка точности по времени и координатам. Рассмотрим её схему:

$$T_j^{n+1} = T_j^n + \frac{\alpha}{2} (T_{j+1}^n - 2T_j^n + T_{j-1}^n) + \frac{\alpha}{2} (T_{j+1}^{n+1} - 2T_j^{n+1} + T_{j-1}^{n+1})$$

Видно, что данная схема является неявной.

4.1. Устойчивость схемы

Для исследования устойчивости явной схемы рассмотрим пространственную Фурье-моду: $\hat{T}_{\kappa}^{n}e^{i\kappa x_{j}}$. Множитель перехода определяется следующим выражением: $\hat{T}_{\kappa}^{n+1}e^{i\kappa x_{j}}=\lambda\hat{T}_{\kappa}^{n}e^{i\kappa x_{j}}$. Подставим данные уравнения в разностную схему:

$$\lambda \hat{T}_{\kappa}^{n} e^{i\kappa x_{j}} = \hat{T}_{\kappa}^{n} e^{i\kappa x_{j}} \left(1 + \frac{\alpha}{2} \left(e^{i\kappa \Delta x} - 2 + e^{-i\kappa \Delta x} \right) + \lambda \frac{\alpha}{2} \left(e^{i\kappa \Delta x} - 2 + e^{-i\kappa \Delta x} \right) \right)$$

После преобразований получим следующее выражение для множителя перехода:

$$\lambda = \frac{1 - 2\alpha \sin^2 \frac{\kappa \Delta x}{2}}{1 + 2\alpha \sin^2 \frac{\kappa \Delta x}{2}}$$

Видно, что для любого $\alpha \geq 0 \ |\lambda| \leq 1$, это означает, что схема является абсолютно устойчивой.

4.2. Дисперсионное соотношение

Для нахождения дисперсии воспользуемся полученной ранее формулой: $\delta \Delta t = -ln\lambda$.

$$\delta \Delta t = \ln \left(\frac{1 + 2\alpha \sin^2 \frac{\kappa \Delta x}{2}}{1 - 2\alpha \sin^2 \frac{\kappa \Delta x}{2}} \right)$$

Выделяя действительную часть выражения, получим диффузию сеточного решения:

$$\Gamma \Delta t = \ln \left(\frac{1 + 2\alpha \sin^2 \frac{\kappa \Delta x}{2}}{|1 - 2\alpha \sin^2 \frac{\kappa \Delta x}{2}|} \right)$$

Важной особенностью обеих схем является то, что при определённом значении параметра α появляется дисперсия решения, что не наблюдается в точном решении.

4.3. Решение системы арифметических уравнений

Преобразование схемы сводит исходную задачу к решению следующей системы уравнений:

$$a_j u_{j+1} + b_j u_j + c_j u_{j-1} = f_j$$

Где $a_j=c_j=1$, кроме двух значений $a_N=c_1=0,$ $b_j=-2(1+1/\alpha)$, а правая часть равна: $f_j=-T_{j+1}^n+2(1-1/\alpha)T_j^n-T_{j-1}^n$.

Ищем решение в виде: $u_{j+1} = x_j u_j + y_j$. Подставляя решения в исходное уравнение, получаем рекуррентные формулы для определения прогоночных коэффициентов:

$$x_{j-1} = -\frac{c_j}{b_j + a_j x_j}, \ j = 2, ..., N$$

$$y_{j-1} = \frac{f_j - a_j y_j}{a_j x_j + b_j}, \ j = 2, ..., N$$

Из рекуррентных формул находим (прямая прогонка) x_j, y_j . Далее производим обратную прогонку: $u_{j+1} = x_j u_j + y_j$ и находим все u_j решения линейной системы уравнений на данном временном слое.

Этот метод уникален тем, что арифметическая сложность данного алгоритма пропорциональна количеству неизвестных O(N), в то время, как арифметическая сложность метода Гаусса пропорциональна квадрату количества неизвестных $O(N^2)$.

5. Численное решение

Языком для реализации численного метода выбран Python и библиотеки numpy и matplotlib. Для наглядности графики сделаны для 6 различных времён времени t и в 3D. Также была создана анимация решения.

На графиках, изображённых на рисунке 2 видна теоретически предсказанная экспоненциальная неустойчивость для первого выбора шагов, а так же сходимость для второго набора шагов. Также на рисунке 3 видно, что решение ведёт себя устойчиво на отрезке времени 0-0.2 секунды.

Решение же по схеме Кранка-Николсона является абсолютно устойчивой схемой, что подтверждает графики на рисунке 4.

Рис. 2: Численное решение по явной схеме при двух разных шагах сетки.

Рис. 3: Динамика развития неустойчивости.

Рис. 4: Численное решение по схеме Кранка-Николсона при двух разных шагах сетки.

Диффузия для обеих схем была также рассчитана для двух схем в теоретической части работы. Результаты представлены на рисунке 5. Синим изображены диффузии непрерывного уравнения теплопроводности. Оранжевым построены сеточные диффузии явной схемы и схемы Кларка-Николсона.

Сеточная диффузия у схемы Кларка-Николсона имеет разрыв при частоте Найквиста, что сходится с теоретическим выражением. Действительно, при данных условиях на шаги при этом значении частоты знаменатель принимает нулевое значение, что и приводит к разрыву. Для всех остальных случаев расположение разрывов также соответствуют уравнениям, выведенным в теории.

Рис. 5: Диффузии разностных уравнений при разных шагах для разных схем в сравнении с диффузией точного уравнения.