(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平8-55919

(43) 公開日 平成8年(1996) 2月27日

(51) Int.Cl.⁶

說別記号

庁内整理番号

FΙ

技術表示箇所

HO1L 21/8247

29/788 29/792

H01L 29/78

371

7735-4M

27/ 10

651

審査請求 未請求 請求項の数8 OL (全8頁) 最終頁に続く

(21)出願番号

特顯平6-190409

(71)出願人 000005049

シャープ株式会社

(22)出顧日 平成6年(1994)8月12日 大阪府大阪市阿倍野区長池町22番22号

(72)発明者 荻本 泰史

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72) 発明者 長田 昌也

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 弁理士 川口 義雄 (外1名)

(54) 【発明の名称】 強誘電体記憶素子

(57)【要約】

(修正有)

【目的】 フッ化物系強誘電体を使用する構造的に安定 な強誘電体記憶素子の提供。

【構成】 強誘電体記憶素子において、

BaMF, [但し、MはMg、Zn、Mn、Fe、Co 及びNiからなる元素]で表されるファ化物系強誘電体 3と半導体単結晶基板1の間にバッファ層2を形成し、 バッファ層2としては

(A, B_{1-x}) F₂ (0≤x≤1) [但し、A及びBは それぞれCa、Sr、Ba及びMgからなるアルカリ土 類金属群の元素]で表されるフッ化物絶縁体層か、

 $(A, B_{1-x}) F_{x} / (C_{y} D_{1-y}) F_{y}$

 $(0 \le x \le 1) \quad (0 \le y \le 1)$

[但し、A、B、C及びDはそれぞれCa、Sr、Ba 及びMgからなるアルカリ土類金属群の元素]で表され る2層からなるフッ化物絶縁体層を用いる。また、

AF、「但し、AはLa、Nd、Ce及びErからなる 稀土類金属群から選択される元素〕で表されるフッ化物 絶縁体層も、配向性バッファ層として用いられる。

1

【特許請求の範囲】

【請求項1】 下記式(1)

BaMF.

(1)

[但し、MはMg、Zn、Mn、Fe、Co及びNiか らなる群から選択される元素」で表されるフッ化物系強 誘電体と半導体単結晶基板の間にバッファ層を形成して なることを特徴とする強誘電体記憶素子。

【請求項2】 バッファ層が下記式(II)

 $(A, B_{1}, F_{1}) F_{1} (0 \le x \le 1)$

(II)

[但し、A及びBはそれぞれCa、Sr、Ba及びMg 10 からなるアルカリ土類金属群から選択される元素]で表 されるフッ化物絶縁体層であることを特徴とする請求項 1 に記載の強誘電体記憶素子。

【請求項3】 フッ化物絶縁体層がBaF, からなると とを特徴とする請求項2に記載の強誘電体記憶素子。

【請求項4】 バッファ層が下記式 (III)

 $(A_x B_{1-x}) F_1 / (C_y D_{1-y}) F_1$ (II) I)

 $(0 \le x \le 1, 0 \le y \le 1)$

【但し、A、B、C及びDはそれぞれCa、Sr、Ba 20 及びMgからなるアルカリ土類金属群から選択される元 素]で表される2層からなるフッ化物絶縁体層であると とを特徴とする請求項1に記載の強誘電体記憶素子。

【請求項5】 フッ化物絶縁体層がBaF、/CaF、 からなることを特徴とする請求項4に記載の強誘電体記 憶素子。

【請求項6】 バッファ層が下記式(IV)

(IV)

【但し、AはLa、Nd、Ce及びErからなる稀土類 金属群から選択される元素]で表されるフッ化物絶縁体 層であることを特徴とする請求項1に記載の強誘電体記 憶素子。

【請求項7】 フッ化物絶縁体層がLaF, であること を特徴とする請求項6に記載の強誘電体記憶素子。

【請求項8】 半導体単結晶基板がシリコンであること を特徴とする請求項1に記載の強誘電体記憶素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は強誘電体記憶素子に関す る。更に詳しくは強誘電体薄膜の自発分極による静電誘 40 導を介して不純物ドーブ領域中のキャリアの移動量を変 化させる強誘電体記憶素子に関する。

[0002]

【従来の技術】従来、コンピュータなどに利用される不 揮発性の半導体記憶素子としては、ROM (Read Only Memory), PROM (Programmable ROM), EPROM (Erasable PROM) EEPROM (Electrically Erasa ble PROM) などがあり、特にEEPROMは電気的に記 憶内容を書き換えることができるので有望視されてい

[0005]

lator Semiconductor) 電界効果型トランジスタのゲー ト絶縁膜中のトラップ領域あるいはフローティングゲー トを、シリコン基板からの電荷注入によって帯電させ、 その静電誘導によって基板の表面伝導度を変調する方法 が知られている。しかしながら、電子のトンネル効果を 利用した素子においては、シリコン基板からの電荷注入 の際に大きな電界が必要であったり、SiO,絶縁膜中 にトラップが発生して書換回数が制限されるという問題 があった。

【0003】一方、EEPROMとは全く異なった方法 の不揮発性メモリとして、強誘電体薄膜の自発分極を利 用した方法も考えられている。この強誘電体薄膜を利用 した方法には2通りの構造があり、それぞれ、キャパシ タ構造、MFS(Metal Ferroelectric Semiconductor) - FET (Field Effect Transistor) 構造と呼ば れている。キャパシタ構造は、強誘電体薄膜を電極で挟 んだ構造をしており、強誘電体薄膜の自発分極の分極反 転による反転電流の有無を検出してメモリ内容の読み出 しをするものである。キャバシタ構造では読み出し時に 蓄積されたメモリ内容を破壊してしまうので読み出し後 にもう一度メモリ内容を書き直すという動作(リライト 動作)を行わなければならないという欠点があるが、白 金電極などの上に強誘電体薄膜を形成するため、比較的 良質の膜が得られ易く、現在、製品化に向けて精力的に 開発が進められている。とのキャバシタ構造には例え は、PZT (チタン酸ジルコン酸鉛)、PbTiO 、(チタン酸鉛)、BaTiO、(チタン酸パリウ ム)、Bi、Ti、O12 (チタン酸ビスマス) などのい わゆる酸化物ペロブスカイトあるいは酸化物層状ペロブ スカイト強誘電体が検討されている。この理由は、酸化 物ペロブスカイト強誘電体は自発分極の値が大きく抗電 界が小さいため、LSIで用いられる動作電圧で分極反 転が十分可能であり、メモリ内容の判別に十分な信号量 が確保できるからである。

【0004】一方、MFS~FET構造は、MIS-F ETのゲート絶縁膜を強誘電体薄膜としたもので、強誘 電体薄膜の自発分極の向き、大きさに応じてその自発分 極を補償するように半導体表面に誘起される電荷によっ て半導体表面の伝導度が変調されることを利用してメモ リ内容の読み出しをするものである。MFS-FET構 造では読み出し時にメモリ内容を破壊しない非破壊読み 出しが可能であるばかりか、現在高集積化が進むDRA Mなどのトランジスタ1個及びキャパシタ1個で構成さ れるメモリ素子が直面しているスケーリング則(scalin q law) の問題を回避することが可能であり、今後更に 1ギガビット(G bit)以上の高集積化が進展すると予 想されるメモリ素子として優れた可能性を有していると 考えられている。

る。とのEEPROMにおいては、MIS(Metal Insu 50 【発明が解決しようとする課題】ところが、このMFS

- FET構造で安定な素子を作製するには次のような困 難がある。

【0006】(1)半導体に直接強誘電体薄膜を形成す るため、界面準位密度が大きくなる。

【0007】(2)強誘電体薄膜を形成するプロセス中 に、半導体表面に酸化膜が形成されるため、強誘電体薄 膜の結晶性、表面形態(表面モフォロジー:morpholog y) が劣化し、強誘電特性が損なわれる。

【0008】(3)強誘電体が高い比誘電率(200~100 0) を有するために、酸化シリコンなどの低誘電率層が 形成された場合、強誘電体キャパシタ部分にかかる実効 的な電圧が非常に小さくなる。

【0009】(4)強誘電体キャパシタ部分にかかる電 圧を大きくすると、酸化シリコンなどの低誘電率層が形 成するキャパシタに大きな電圧がかかり、絶縁破壊が発

【0010】(5)強誘電体キャパシタ部分にかかる電 圧を大きくすると動作電圧が大きくなる。

【0011】 これら(2)~(5)の問題は、酸化シリ 0) 強誘電体を用いることで回避できると考えられる。 すなわち、非酸化物強誘電体で、比誘電率の小さい強誘 電体を採用すればよい。

【0012】 とのような理由から、フッ化物系強誘電体 rababamf, (M=Mg, Zn, Mn, Fe, C o、Ni)がMFS-FET用材料として有望である (BaMF、の比誘電率は、 ϵ 、<10である)。しか し、BaMF、強誘電体をシリコン(Si)上に、特に メモリ素子として用いられるSi(100) 単結晶基板上に 形成する際に次のような問題があることがわかってきて 30

【0013】(6) Si(100) 基板上に、BaMF、強 誘電体薄膜の分極方向の配向が得られない。

【0014】(7) BaMF、強誘電体の熱膨張率が20 ppm/℃とシリコンの熱膨張率(約3ppm/℃)に 比べて大きいために、熱ひずみによるストレスがたま り、クラックが発生する。

【0015】BaMF、の分極軸は[100]であり、 結晶系は斜方晶系である。ところが、Si(100)基板上 にエピタキシャル成長させた場合(011)配向となる 40 ため、分極方向が膜面に対して大きく傾くととになり、 利用できる分極電荷密度が小さくなるため、半導体表面 の伝導度を変調することが難しくなる。また、Si(10 0) 基板上に自然配向したBaMF、膜はb軸配向を示 すため、同様な問題がある。更に、熱ひずみによるクラ ックが発生し易く薄膜の作製条件が難しいという問題が ある。

【0016】本発明は上記の課題に鑑みてなされたもの であり、ファ化物系強誘電体を使用する構造的に安定な 強誘電体記憶素子を提供することを目的としている。

 $\{0017\}$

【課題を解決するための手段】本発明では、上記目的を 達成するために、強誘電体記憶素子において、下記式 (1)

BaMF. (1)

[但し、MはMg、Zn、Mn、Fe、Co及びNiか らなる群から選択される元素]で表されるフッ化物系強 誘電体と半導体単結晶基板の間にバッファ層を形成し

10 【0018】フッ化物系強誘電体としては、上記式 (1) に挙げた材料があるが、中でも、共に構成元素が アルカリ土類金属元素であるBaMgF、、また、自発 分極値が最も大きいBaZnF、を使用することが望ま

【0019】半導体基板としては、Si(100) 又はSi (111) が好適に使用される。

【0020】また、バッファ層としては下記式(II)

 $(A_x B_{1.x}) F_x (0 \le x \le 1)$ 【但し、A及びBはそれぞれCa、Sr、Ba及びMg コンの形成をさけ、比誘電率(ϵ ,)の小さな(ϵ , <1 20 からなるアルカリ土類金属群から選択される元素] で表

されるフッ化物絶縁体層であるか、あるいは、下記式 (III)

 $(A_x B_{1-x}) F_2 / (C_y D_{1-y}) F_2$ (II

 $(0 \le x \le 1, 0 \le y \le 1)$

[但し、A、B、C及びDはそれぞれCa、Sr、Ba 及びMgからなるアルカリ土類金属群から選択される元 素]で表される2層からなるフッ化物絶縁体層を用い

【0021】式 (III)で、「/」は積層構造を表して おり、「/」の右側が基板側で、左側が強誘電体膜側と なる。すなわち、構造としては、強誘電体膜/(A、B ı-x) F, / (C, D,-,) F, /基板となる。

【0022】との場合、フッ化物絶縁体層と基板との間 の格子定数のマッチングを勘案して層形成を行うことが 望ましく、その結果格子定数のミスマッチによる歪を緩 和することが可能となり、上部の強誘電体膜は良好な表 面形態(表面モフォロジー)を有することを実現でき

【0023】例えば、 Si (100) と最も格子定数のマ ッチングが良いのはCaF, であり、CaF, →SrF 、→BaF、と言う順に格子定数のマッチングは離れて いく。したがって、基板側から見て、CaFz→SrF 、→BaF、の順に2層バッファ層を形成することによ り格子定数のミスマッチによる歪を緩和することが可能 となる。

【0024】更に、バッファ層と接する強誘電体膜から の、膜中成分元素の拡散などを考えた場合、膜と接する バッファ層は強誘電体膜の構成元素からなることが望ま 50 しい。

【0025】2層からなるフッ化物絶縁体層の例を次に 示す。

[0026] BaF, /CaF, BaF, / (Sr, Ca_{1-x}) F_1 , $(Ba_x Sr_{1-x}) F_1$ / CaF_2 , $(Ba_x Sr_{1-x}) F_z / (Sr_x Ca_{1-x}) F_z$, M gF, / (Ba, Ca,-x) F,

また、下記式 (IV)

AF, (\mathbf{W})

[但し、AはLa、Nd、Ce及びErからなる稀土類 金属群から選択される元素]で表されるフッ化物絶縁体 10 層も配向性バッファ層として用いることが可能である。 特に、Si(111) 基板に対しては、このフッ化物絶縁体 層の使用は好適である。

[0027]

【作用】本発明の強誘電体記憶素子は、フッ化物系強誘 電体と半導体単結晶基板の間にフッ化物絶縁体のバッフ ァ層を形成することにより、熱ひずみによるストレスを 緩和し、クラックの発生を防ぎ、緻密な強誘電体膜を形 成することが可能になる。なおかつ、バッファ層を用い ることにより、強誘電体薄膜の配向をa軸配向、あるい 20 はランダム配向に制御し、半導体表面の伝導度を変調す るのに十分な分極電荷密度を得ることが可能となる。

【0028】上記式 (III) で表される2層からなるフ ッ化物絶縁体層を用いることにより、強誘電体薄膜とシ リコン基板との間の格子定数のミスマッチの影響を緩和 することができ、かつまた、強誘電体薄膜の配向方向を 制御することができる。

【0029】また、通常 Si (100)上に直接BaF, やSェF、を成膜した場合、多結晶膜が得られるが、S iとの間にCaF、を挿入することでBaF、やSrF 30 、のバッファ自体の結晶性を向上させることができる。 [0030]

【実施例】

実施例1

本発明であるフッ化物強誘電体BaMgF、及びフッ化 物バッファ層BaF、を用いたMFIS (Metal Ferroe lectric Insulator Semiconductor) 構造、いわゆるバ ラクタ (varactor) 構造の製造例及びこの構造を調べた 例を図1及び図2に従い説明する。

【0031】p型で抵抗率が50Qcmの単結晶Si(100) 基板1を、BHF (緩衝フッ素酸溶液) により処理し、 表面の自然酸化膜を除去した。その後、この基板をでき るだけ速やかにEB蒸着装置の真空チェンバー内基板ホ ルダーに装着し、真空排気を開始する。 1×10°Pa以 下の真空度に到達した後、基板加熱を開始した。基板温 度は600 ℃とした。蒸着源にBaF。(純度4N-グラ ニュール) 及びMg F, (純度4N-グラニュール) を 用いてそれぞれ2元独立に制御を行なうことにより、再 現性良くBaMgF、膜を作製することが可能である。

の膜厚に作製した。蒸着速度は2A/sec である。その 後、強誘電体膜3として、同一真空中でBaF,とMg F,を、それぞれ蒸着速度を1.8Å/sec、1.0Å/sec で同時に蒸着することで膜厚140nmのBaMgF、を 作製した。それぞれの蒸着速度は、BaF、とMgF、 の供給モル比が1:1となるように設定している。その 後室温まで放冷した後取り出して、膜の表面形態(モフ ォロジー)と配向性を調べた。

【0033】走査型電子顕微鏡により膜表面を観察した ところ、従来、シリコン基板上に直接BaMgF、を形 成した場合にはクラックが発生していたにもかかわら ず、BaF、層を介して成膜したBaMgF、膜は緻密 な形態であることがわかった。これはBaF、層によっ て、シリコン基板とBaMgF、間の大きな熱膨張係数 の差に起因するストレスを緩和することが実現されたか らにほかならない。

【0034】また、X線回折法 (XRD) により強誘電 体膜の配向性を調べたところ、従来、Si(100)上では b軸優先配向を示す回折パターンが得られていたにもか かわらず、BaF、層を介して成膜したBaMgF、膜 はランダム配向の膜が得られた。これは、BaF、層が シリコン基板とは異なる配向パターンを得ることを可能 にする下地として有効であることを示している。この、 ランダム配向膜によって、半導体表面の伝導度を変調す るのに十分な分極電荷密度が得られると期待される。

【0035】とのようにして作製した膜に、膜厚 100n mのアルミニウムを蒸着し、 100μm角の上部電極4を 形成し、基板1の裏面に電極5を配置することで図1に 示す概略断面を有するMFIS構造を作製した。このM FIS構造においてC-V特性を測定し、誘電率 ϵ 、誘 電損失 $tan \delta$ 、しきい値電圧のシフト ΔV thをそれぞれ 求めた。

【0036】測定は、振幅10 mVrms、1 MHzの正弦波 にDCバイアスを-2.5 から2.5 Vまで印加して、行っ た。バイアスの掃引は Δ V = 0.1 V、 Δ t = 100msec.の 条件とした。初めに、ゲートに-5 Vの電圧を印加し、 十分に蓄積層が形成されている状態で、誘電率、誘電損 失を測定したととろ $\varepsilon = 7.7$ 、 tan $\delta = 0.01$ 、という値 が得られた。次に、上記の測定条件の下でC-V測定を 行ったところ、強誘電体の分極によるD-Eヒステリシ スループに対応するC-Vヒステリシスループが観測さ れた。測定バイアス=±2.5 Vのとき、このC-Vヒス テリシスからしきい値電圧のシフトを求めるとΔVth= 1.6 Vであった(図2)。

【0037】とのようにフッ化物強誘電体BaMgF。 及びフッ化物バッファ層BaF、を用いることで、熱ひ ずみによるストレスを緩和し、クラックの発生を防ぎ、 緻密な強誘電体膜を形成することが可能となる。また、 多結晶BaF、膜をバッファ層として用いることにより 【0032】まずバッファ層2としてBaF、を10nm 50 強誘電体薄膜の配向をランダム配向にし、半導体表面の 伝導度を変調するのに十分な分極電荷密度を得ることが可能となる。そして、バッファ層として良好な界面を形成するフッ化物絶縁体膜を用いたことで、良好なC-V特性を得られた。なおかつ、強誘電体層、バッファ層共に誘電率が小さいため、低電圧でMFIS構造での動作を可能とした。

【0038】本実施例はEB蒸着法による作製例であるが、成膜方法としては、蒸着法を更に高度に発展させたMBE法であっても勿論構わない。また、スパッタ法やレーザーアブレーション法などその他の物理的成膜方法 10や、MOCVD法や、ゾルーゲル法などに代表される化学的成膜方法であってもよい。

【0039】実施例2

本発明であるフッ化物強誘電体BaMgF.及びフッ化物パッファ層(Ba_xCa_{1-x})F,を用いたMFIS 構造の製造例及びこの構造を調べた一実施例を説明する。

【0040】Si(100) 基板を用い、基板の調製は実施例1と同様な手順で行った。蒸着源にBaF, (純度4Nーグラニュー 20ル)、MgF, (純度4Nーグラニュール)を用いてそれぞれ2元独立に制御を行なうことにより、(Bax Ca_{1-x})F, 膜及びBaMgF, 膜を作製した。基板温度は600 ℃とした。ここでは、BaF, とCaF, それぞれの蒸着速度を変えることにより、X = 0.2、0.5、0.8 の3種類の(Bax Ca_{1-x})F, バッファ膜を作製した。

【0041】まずバッファ層として(Bax Ca_{1-x}) F, 膜を20nmの膜厚に作製し、その後、強誘電体膜として同一真空中でBaF,とMgF,を、それぞれ蒸着 30 速度を1.8 A/sec、1.0 A/sec で同時に蒸着することで膜厚 130nmのBaMgF,を(Bax Ca_{1-x}) F, 膜上に作製した。その後室温まで放冷し、取り出して膜の表面モフォロジーと配向性を調べた。

【0042】 走査型電子顕微鏡により膜表面を観察したところ、X = 0.2、0.5、0.8いずれの場合も実施例1で示したBaF, バッファ層を介して成膜したBaMgF, 膜よりも更に緻密な形態を示していた。X = 0.2の場合が最も緻密であり、X = 0.5、0.8 の場合はそれに準ずる緻密さであった。これは、($Ba_X Ca_{1-X}$) F_I バッファ層が、熱膨張係数の差に起因するストレスを緩和しただけではなく、更に、シリコン基板との格子定数のミスマッチが約0.6%と小さい CaF_I 層との混晶になっているため、 $BaMgF_I$ ーシリコン基板間の格子定数のミスマッチの影響を緩和できたことによると考えられる

【0043】また、XRDにより強誘電体膜の配向性を調べたところ、BaF、層を介して成膜したBaMgF、膜と同様にランダム配向の膜が得られていた。このようにして作製した腹を用いて、実施例1で示したと同様

のMFIS構造を作製し、同様の測定条件で、C-V特性を測定し、誘電率 ε 、誘電損失 $\tan\delta$ 、しきい値電圧のシフト ΔV thをそれぞれ求めた。

【0044】誘電率、誘電損失を測定したところ、 $X=0.2,\ 0.5,\ 0.8$ いずれの場合も、 $\varepsilon=7\sim8,\ \tan\delta=0.01$ という値が得られた。次に、上記の測定条件の下で C-V測定を行ったところ、測定パイアス= $\pm2.5\ V$ のとき、このC-Vヒステリシスからしきい値電圧のシフトを求めると ΔV th= $1.4\sim1.5\ V$ であった。

【0045】このようにフッ化物強誘電体BaMgF. 及びフッ化物バッファ層(Bax Ca_{1-x})F. を用いるととで、熱ひずみによるストレスを緩和するだけでなく、更に、格子定数のミスマッチの影響を緩和することにより、より緻密な強誘電体膜を形成することが可能になる。

【0046】とこでは、BaF、とCaF、の組み合わせ(X = 0.2、0.5、0.8)の場合を示したが、SrF、やMgF、などとの組み合わせであっても構わない。また、組成範囲は、基板温度や蒸着速度などの成膜条件によって作製しやすい範囲を選択することが可能である。【0047】実施例3

本発明であるフッ化物強誘電体BaMgF,及びフッ化物バッファ層BaF,/CaF,を用いたMFIS構造の製造例及びこの構造を調べた一実施例を説明する。

【0048】Si(100) 基板を用い、基板の調製は実施例1と同様な手順で行った。蒸着源にBaF。(純度4Nーグラニュール)を用いてそれぞれ2元独立に制御を行なうととにより、再現性良くバッファ層BaF。/CaF。を同一真空中で作製することが可能である。

【0049】まずバッファ層としてCaF,を10nmの膜厚に作製した。蒸着速度は1人/secである。その後、連続して同一真空中でバッファ層としてBaF,を10nmの膜厚に作製した。蒸着速度は1.0人/secである。その後、強誘電体膜として同一真空中でBaF,とMgF,を、それぞれ蒸着速度を1.8人/sec、1.0人/secで同時に蒸着することで膜厚 130nmのBaMgF,を作製した。その他の作製条件は実施例1で述べたものと同様である。

【0050】走査型電子顕微鏡により膜表面を観察したところ、BaF、/CaF、層を介して成膜したBaMgF、膜は緻密な形態を示していた。これは、バッファ層により、熱膨張係数の差に起因するストレスを緩和しただけではなく、更に、シリコンとの格子定数のミスマッチが約0.6%と小さいCaF、層をBaF、層とシリコン基板間に用いることでBaMgF、一シリコン基板間の格子定数のミスマッチの影響を緩和できたことによると考えられる。

・膜と同様にランダム配向の膜が得られていた。とのよ 【0051】また、XRDにより強誘電体膜の配向性を うにして作製した膜を用いて、実施例1で示したと同様 50 調べたところ、BaF.層を介して成膜したBaMgF 、膜と同様にランダム配向の膜が得られたが、バッファ 層としてBaF、/CaF、層を用いた膜では、更に (120) ピーク強度が増加していた。これは、CaF , 層によりBaF、層自体の結晶性が向上したため、そ の上に堆積されたBaMgF、膜の結晶性が向上したた めと考えられる。よって、半導体表面の伝導度を変調す るのに用いられる分極電荷密度の増加が期待される。 【0052】とのようにして作製した膜を用いて、実施 例1で示したと同様のMFIS構造を作製し、同様の測 定条件で、C-V特性を測定し、誘電率ε、誘電損失 t 10 $an\delta$ 、しきい値電圧のシフト Δ V thをそれぞれ求めた。 【0053】誘電率、誘電損失を測定したところ、ε= 7.5、 $tan \delta = 0.01$ という値が得られた。次に、上記の 測定条件の下でC-V測定を行ったところ、測定バイア ス=±2.5 Vのとき、このC-Vヒステリシスからしき い値電圧のシフトを求めると△V th=1.58V であった。 【0054】このようにフッ化物強誘電体BaMgF。 及びフッ化物バッファ層BaF、/CaF、を用いるこ とで、熱ひずみによるストレスを緩和し、クラックの発 生を防ぎ、緻密な強誘電体膜を形成することが可能にな 20 る。また、Si(100)上でも単結晶膜が得られるCaF 、層をBaF、層とシリコン基板間に用いて格子定数の ミスマッチを緩和し、BaF、膜の結晶性を向上すると とにより、強誘電体薄膜の結晶性を向上し、分極電荷密 度の増加が実現された。

【0055】実施例4

本発明であるフッ化物強誘電体BaMgF,及び2 層フッ化物バッファ層(Ba_x Sr_{1-x})F, \angle (Sr_x Ca_{1-x}) F, を用いたMFIS 構造の製造例及びこの構造を調べた一実施例を説明する。

【0056】Si(100) 基板を用い、基板の調製は実施 例1と同様な手順で行った。蒸着源にCaF, (純度4 N-グラニュール)、SrF, (純度3N-グラニュー ル)、BaF, (純度4N-グラニュール)、MgF, (純度4N-グラニュール)を用いてそれぞれ2元独立 に制御を行なうととにより、バッファ層(Bax Sr1x) F, / (Sr, Ca,,) F, 膜及びBaMgF, 膜を同一真空中で作製した。基板温度は600 °Cとした。 CCCtt, CaF, &SrF, &SrF, &BaF, & れぞれの蒸着速度を変えることにより、(1) BaF, $/(Sr_{0.1} Ca_{0.9}) F_1 (x = 1.0, y = 0.1)$ (2) $(Ba_{0.}, Sr_{0.1}) F_{1} / CaF_{1} (x = 0.$ 9, y = 0), (3) (Ba_{0.9} Sr_{0.1}) F₂ / (S $r_{0.1}$ Ca_{0.9}) F_{1} (x = 0.9, y = 0.1) 、 O3類の(Bax Sr_{1-x})F₁/(Sr₂Ca_{1-y})F₂ バッファ膜を作製した。

【0057】まず、最下層のバッファ層を10nmの膜厚に作製し、引き続き、2層目のバッファ層を同一真空中で同様に10nmの膜厚に作製した。その後、強誘電体膜として同一直空中でRaF、とMaF、を、それぞれ表

着速度を1.8 A/sec 、1.0A/sec で同時に蒸着する ことで膜厚 130n mのBaMgF, を作製した。作製条 件は実施例1で述べたものと同様である。

【0058】走査型電子顕微鏡により膜表面を観察したところ、上記(1)、(2)、(3)いずれの場合も、実施例1で示したBaF、バッファ層を介して成膜したBaMgF、膜よりも更に緻密な形態を示していた。いずれの場合も、シリコン基板との格子定数のミスマッチが約0.6%と小さいCaF、あるいは(Sr。、Ca。、)F、を最下層に配置し、CaF、→SrF、→BaF、の順で構成されるバッファ層を用いたことでBaMgF、ーシリコン基板間の格子定数のミスマッチの影響を緩和できたことによると考えられる。

【0059】また、XRDにより強誘電体膜の配向性を調べたところ、BaF、層を介して成膜したBaMgF、膜と同様にランダム配向の膜が得られたが、本バッファ層を用いた膜では、更に(120)ピーク強度が増加していた。(120)ピーク強度は、(2)のバッファ構造において最も強く、次いで(1)、(3)の順であった。これは、CaF、を含む最下層のバッファ層により、BaF、を主とする2層目のバッファ層自体の結晶性が向上したため、その上に堆積されたBaMgF、膜の結晶性が向上したためと考えられる。よって、半導体表面の伝導度を変調するのに用いられる分極電荷密度の増加が期待される。

【0062】このようにフッ化物強誘電体 BaMgF、及びフッ化物バッファ層($BaxSr_{1-x}$)F、/(Sr_vCa_{1-v}) F、を用いることで、熱ひずみによるストレスを緩和し、クラックの発生を防ぎ、緻密な強誘電体膜を形成することが可能になる。また、Si(100) 上でも単結晶膜が得られるCaF、あるいは、それに準ずる($Sr_{0.1}$ $Ca_{0.1}$) F、を最下層とした2層フッ化物バッファ層構造により、シリコン基板間の格子定数のミスマッチの影響を緩和し得る2層目のバッファ層自体の結晶性を向上することにより、強誘電体薄膜の結晶性を向上し、分極電荷密度の増加が実現され、十分なしきい値電圧のシフトを得ることができた。

で同様に10nmの膜厚に作製した。その後、強誘電体膜 【0063】ここでは、BaF,とSェF,、SェF, として同一真空中でBaF,とMgF,を、それぞれ蒸 50 とCaF,の組み合わせの場合を示したが、MgF,な どとの組み合わせであっても勿論構わない。また、組成 範囲は基板温度や蒸着速度などの成膜条件によって作製 しやすい範囲を選択することが可能である。

【0064】実施例5

本発明であるフッ化物強誘電体BaMgF,及びフッ化物バッファ層LaF,を用いたMFIS構造の製造例及びとの構造を調べた一実施例を説明する。

【0065】Si(111)基板を用い、基板の調製は実施例1と同様な手順で行った。蒸着源にLaF,(純度4Nーグラニュール)を用いて、バッファ層としてLaF 10,膜を10nmの膜厚に作製した。蒸着速度は1A/secである。その後、同一真空中でBaF,とMgF,をそれぞれ蒸着速度1.8A/sec、1.0A/secで同時に蒸着することで膜厚 140nmのBaMgF,を作製した。その他の作製条件は実施例1で述べたものと同様である。【0066】走査型電子顕微鏡により膜表面を観察したところ、LaF,層を介して成膜したBaMgF,膜は緻密な形態を示していた。これは、バッファ層により、熱膨脹係数の差に起因するストレスを緩和したことによると考えられる。

【0067】また、XRDにより強誘電体膜の配向性を調べたところ、LaF,層を介して成膜したBaMgF,膜は、(120)エピタキシャル配向膜であった。従来、BaMgF,膜はSi(111)基板上では、MBE等の超高真空成膜により(120)エピタキシャル成長するが、蒸着などにより自然配向させた膜では、b軸配向を示すことが知られている。従って、蒸着法によっても、本発明におけるLaF,層によりBaMgF,膜の配向を制御することが可能であることを示している。

【0068】 このようにして作製した膜を用いて、実施 30 る。例1で示したと同様のMFIS構造を作製し、同様の測定条件で、C-V特性を測定し、誘電率 ϵ 、誘電損失 ϵ 性を ϵ にない値電圧のシフト ΔV thをそれぞれ求めた。 【 ϵ (ϵ 0069】 誘電率、誘電損失を測定したところ ϵ 1 ϵ 7.8、 ϵ 1 ϵ 2 の測定条件の下で ϵ 2 ϵ 2 の測定条件の下で ϵ 2 ϵ 2 ϵ 3 ϵ 4 ϵ 4 ϵ 4 ϵ 5 ϵ 6 ϵ 6 ϵ 7 ϵ 8 ϵ 7 ϵ 8 ϵ 9 ϵ 9

12

及びフッ化物バッファ層LaF、を用いることで、熱ひずみによるストレスを緩和し、クラックの発生を防ぎ、 級密な強誘電体膜を形成することが可能になる。また、 Si(111)上でBaMgF₄(120)配向膜を得ることが 可能となり、分極電荷密度の増加が実現された。 【0071】

【発明の効果】本発明により、熱ひずみによるストレス を緩和し、クラックの発生を防ぎ、緻密な強誘電体膜を 形成することが可能になる。また、バッファ層を用いる ことにより、強誘電体薄膜の配向をa軸配向、あるいは ランダム配向に制御し、半導体表面の伝導度を変調する のに十分な分極電荷密度を得ることが可能となる。更 に、バッファ層として良好な界面を形成するフッ化物絶 縁体膜を用いたことで、良好なC-V特性及びトランジ スタ特性が得られる。BaMF、/バッファのバンドギ ャップが大きいので、電荷注入が少なく、リーク電流密 度が小さく耐圧の大きい構造が得られ、優れた素子の動 作速度、信頼性、消費電力が実現される。なおかつ、強 誘電体層、バッファ層ともに誘電率が小さく、メモリデ 20 バイスとして要求される5Vp-pという電源電圧に対 応する非破壊読み出しが可能な電界効果型強誘電体記憶 素子を実現できる。

【0072】本発明は、デバイスの観点からは非破壊読み出しという原理的に優れており、かつ、プロセスの観点からは高集積可能という強誘電体記憶素子を実現可能とするものであり、工業上極めて大きな価値を有するものである。

【図面の簡単な説明】

【図1】本発明によるMFIS構造の断面概略図である

【図2】本発明によるMFIS構造で得られたC-V特性を示す図である。

【符号の説明】

- 1 半導体基板 (p型シリコン基板)
- 2 バッファ層(BaF、膜)
- 3 強誘電体膜(BaMgF,膜)
- 4 電極 (アルミニウム)
- 5 裏面電極

フロントページの続き

(51)Int.Cl. 能別記号 庁内整理番号

C 3 0 B 29/12 9261-4G H 0 1 L 27/10 4 5 1

HOIL 27/10 27/108 21/8242 F I

技術表示箇所