Emotion-Aware, Agentic Healthcare Chatbot Proposal

Prepared by: Rishabh Gupta — July 2025

1 Problem Statement

Modern tele-health interactions lack two critical capabilities:

- 1) **Emotional Intelligence:** Traditional chatbots "hear" what patients say but ignore how they say it—anxiety and distress go unnoticed.
- 2) Modular Expertise & Memory: Monolithic dialogue models struggle with medical accuracy and conversational empathy, and lack persistent memory across sessions.

Goal: Build a real-time, multi-agent healthcare chatbot that:

- Detects and adapts to patient emotion in real time.
- Maintains a multimodal memory of content and affective state.
- Extracts symptoms, performs RAG-powered medical lookups, suggests diagnoses.
- Recommends and books appointments with nearby doctors based on location and specialty.

2 Solution Overview

Our design combines **LangGraph** orchestration, specialized LLM agents (OpenAI/Anthropic), speech modules (VAD, STT, TTS), and a high-performance vector memory store.

- 1. **Emotion Detection Agent**: Monitors voice cues (tone, pitch, pauses) via STT and paralinguistic analysis; tags each snippet with valence/arousal labels.
- 2. Multimodal Memory Agent: Streams transcripts and emotion metadata into a vector DB (e.g. FAISS); supports short-term and long-term recall.

3. Specialized LLM Agents:

- Symptoms Extraction Agent
- Medical Retrieval Agent (RAG over curated medical knowledge)
- Empathy Response Agent (modulates tone based on emotional state)
- Orchestrator Agent (task routing, parallel execution, error handling)
- 4. **Output & Action**: Presents top-3 differential diagnoses and suggests/book appointments with specialists via integrated scheduling APIs.

3 System Architecture

Figure 1: Agentic Chatbot System Architecture (Rotated)

3.1 High-Level Flow

- 1. User speaks or types input.
- 2. Emotion Detection Agent: VAD \rightarrow STT \rightarrow paralinguistic analysis.
- 3. Memory Agent: Ingests transcript + emotion tags into vector DB.
- 4. LangGraph Orchestration: Decomposes request, dispatches sub-agents in parallel.
- 5. Symptoms Extraction \rightarrow Medical Retrieval (RAG lookup).
- 6. Empathy Response Generation with iterative sentiment loop.
- 7. Diagnosis presentation + doctor recommendation + booking.
- 8. Feedback loop: Next user utterance rescored for sentiment drift.

3.2 Key Modules

Module		Responsibility
STT & VAD		Convert speech to text; detect voice activity, pitch, tone, and pauses.
Emotion Agent	Detection	Classify valence/arousal; trigger empathy refinement if distress persists.
Memory Agent		Store multimodal embeddings in vector DB; support retrieval-augmented prompts.
LangGraph tor	Orchestra-	Define agent graph; handle task decomposition, parallelism, context sharing, and fallbacks.
Symptoms Agent	Extraction	Normalize free-form input into structured symptom lists.
Medical Agent	Retrieval	Query curated clinical guidelines and disease ontologies via RAG.
Empathy Agent	Response	Generate responses modulated by real-time emotion checks.
Appointment	Booking	Suggest specialists (geolocation + doctor dataset); integrate scheduling APIs.

4 Core Features & User Experience

- Emotion-Adaptive UX: On-screen emotion meter, seamless shifting between technical and empathetic modes.
- Persistent Medical History & Emotions: Recall past diagnoses, medications, and emotional context for tailored follow-ups.
- Symptom-to-Diagnosis Pipeline: NL symptom extraction \rightarrow RAG lookup \rightarrow top-N differential diagnoses with confidence scores.
- **Doctor Recommendation & Booking:** From symptom report to scheduled appointment in three conversational turns.

5 Technology Stack

Layer	Technology
Orchestration	LangGraph
LLM APIs	OpenAI GPT-4, Anthropic Claude
Speech Modules	WebRTC VAD, Whisper STT, Amazon Polly / Azure TTS
Vector Memory	FAISS or Pinecone
Backend Framework	Python, FastAPI, Docker, Kubernetes
Databases	PostgreSQL, Redis, Vector DB
Frontend	React (Web), Native Mobile SDKs
Monitoring & Logging	Prometheus, Grafana, ELK
Scheduling API	Calendly; Hospital Scheduling Services

6 Scalability, Security & Privacy

- Horizontal Scaling: Containerized LangGraph workflows, Kubernetes HPA.
- Failover & Redundancy: Multi-region LLM endpoints; fallback to local models.
- Data Privacy: HIPAA/GDPR compliance; end-to-end encryption; user controls for memory management.

7 Next Steps & Prototype Plan

- 1. MVP (6 weeks): Core STT \rightarrow Emotion tagging \rightarrow LangGraph orchestration \rightarrow symptom extraction \rightarrow RAG \rightarrow simple empathy loop; basic UI.
- 2. Pilot Testing (4 weeks): 20-user trial; validate emotion accuracy (target 80% human agreement); appointment flow usability.
- 3. **Iteration (8 weeks):** Add parallel multi-model generation, advanced empathy refinements, admin memory dashboard, full scheduling integration.

8 Conclusion

Our proposed architecture—combining multimodal emotion memory, a LangGraph agent pipeline, and RAG-powered medical retrieval—yields an empathetic, accurate, and action-oriented health-care chatbot. We look forward to prototyping and demonstrating its impact on patient engagement and care efficiency.