Chap 27: Espaces vectoriels euclidiens

Dans ce chapitre, $\mathbb{K} = \mathbb{R}$, et E est un $\mathbb{K} - ev$

I. Produit scalaire

Une forme bilinéaire sur E est une application $\varphi \begin{cases} E \times E \to \mathbb{R} \\ (x,y) \mapsto \varphi(x,y) \end{cases}$ linéaire p/r à chacune des 2 variables

 φ forme bilinéaire sur E est

- symétrique si $\forall (x, y) \in E^2$, $\varphi(x, y) = \varphi(y, x)$
- antisymétrique si $\forall (x, y) \in E^2$, $\varphi(x, y) = -\varphi(y, x)$
- positive si $\forall x \in E$, $\varphi(x,x) \ge 0$
- $\text{ définie positive si } \forall x \in E \qquad \begin{cases} \varphi(x,x) \geq 0 \\ \varphi(x,x) = 0 \Longleftrightarrow x = 0_E \end{cases}$

 φ forme bilinéaire sur E. $\forall x_0 \in E$, on définit $\varphi_{x_0} \begin{cases} E \to \mathbb{R} \\ y \mapsto \varphi(x_0, y) \end{cases} \in E^*$ On définit alors $\tilde{\varphi} \begin{cases} E \to E^* \\ x_0 \mapsto \varphi_{x_0} \end{cases}$

On dit que la forme bilinéaire φ est non dégénérée si $\tilde{\varphi}$ est injective

 φ bilinéaire sur E On a équivalence entre

- $-\varphi$ non dégénérée
- $-\forall x \in E$ $(\forall y \in E, \varphi(x, y) = 0) \Rightarrow x = 0_E$
- $-\forall x \in E \setminus \{0_E\}, \exists y \in E, \varphi(x,y) \neq 0$

Si on suppose E de dimension finie, φ non dégénérée, alors $\tilde{\varphi}$ est bijective de E dans E^*

$$\Rightarrow \forall \psi \in E^*, \exists x_0 \in E \text{ tel que } \psi = \varphi_{x_0}$$

Un produit scalaire sur E est une application φ

- bilinéaire
- symétrique
- positive
- non dégénérée

 φ forme bilinéaire symétrique et positive $\Rightarrow \varphi$ est non dégénérée $ssi \varphi$ est définie positive

$$\textbf{Preuve}: \Leftarrow \phi(x_0, x_0) + def_+ \rightarrow \ker \tilde{\phi} = 0_E \ \Rightarrow f(t) = \phi(tx_0 + y, tx_0 + y) \geq 0 + bilin \rightarrow poly \deg 2 \geq 0$$

Un produit scalaire est une forme bilinéaire symétrique définie positive

On le note
$$\varphi(u,v)$$
 $(u \mid v) < u \mid v > (u,v) < u,v > \text{ou } u.v$

 φ sera désormais un produit scalaire sur E

La norme associée à
$$\varphi$$
 est $\|.\| \begin{cases} E \to \mathbb{R}_+ \\ x \mapsto \sqrt{\varphi(x,x)} \end{cases}$

Identités de polarisation : $||x + y||^2 = ||x||^2 + ||y||^2 + 2\varphi(x, y)$ $||x + y||^2 - ||x - y||^2 = 4\varphi(x, y)$ Identité du parallélogramme : $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$

Inégalité de Cauchy-Schwartz : $\forall (x, y) \in E^2 \mid \varphi(x, y) \mid \leq ||x|| ||y||$

Egalité ssi (x, y) liée

Preuve: $\varphi(\lambda x + y, \lambda x + y) \ge 0 \rightarrow p$ yide $g \ge 0 \Rightarrow \Delta_0 \le 0...$ Egalité $\Leftrightarrow \Delta_0 = 0 \Leftrightarrow \exists \lambda \in \mathbb{R}, \lambda x + y = 0_E$

Une norme sur E est une application $N: E \to \mathbb{R}_+$ vérifiant :

 $-\forall x \in E, \forall \lambda \in \mathbb{R}, \qquad N(\lambda x) = |\lambda| N(x)$

 $-\forall x \in E$

 $N(x) = 0 \Leftrightarrow x = 0_E$

 $-\forall (x, y) \in E^2$ $N(x+y) \le N(x) + N(y)$

 $\|.\|$ est une norme sur E

Preuve: 3^e point: $||x + y||^2 = ||x||^2 + ||y||^2 + 2\varphi(x, y) \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2$

Produit scalaire \rightarrow Norme \rightarrow Distance

MAIS certaines distances ne proviennent pas de norme et certaines normes de produit scalaire

Une norme provient d'un produit scalaire si $(x, y) \mapsto \frac{1}{4}(N(x+y)^2 - N(x-y)^2)$ est un produit scalaire

 $(x, y) \in E^2$ x et y sont orthogonaux si $\varphi(x, y) = 0$

On dit qu'une famille $(x_y)_{x \in J} \in E^J$ est orthogonale si $\forall (i, j) \in J^2, i \neq j \Rightarrow \varphi(x_i, x_j) = 0$

Théorème de Pythagore : $(x, y) \in E^2$ x et y sont orthogonaux $ssi ||x + y||^2 = ||x||^2 + ||y||^2$

 $(x_1...x_n) \in E^n$ famille orthogonale $\Rightarrow \left\| \sum_{j=1}^n x_j \right\|^2 = \sum_{j=1}^n \left\| x_j \right\|^2$

Preuve: Développer le produit scalaire (/!\ double somme), enlever les termes nuls (←orthogonalité)

Une famille orthogonale $(v_j)_{j\in J}\in E^J$ ne contenant pas le vecteur nul est libre

 $\mathbf{Preuve}: (j_1...j_n) \in J^n \quad 0 = \varphi(\sum_{k=1}^n \alpha_k v_{j_k}, v_{j_l}) = \sum_{k=0}^n \alpha_k \varphi(v_{j_k}, v_{j_l}) = \alpha_l \underbrace{\varphi(v_{j_l}, v_{j_l})} \Rightarrow \alpha_l = 0$

F et G sev de E sont orthogonaux si $\forall (x, y) \in F \times G$, $\varphi(x, y) = 0$

2 sev orthogonaux sont en somme directe : $F \cap G = \{0_E\}$ On note $F \oplus G$ (ou $F \oplus G$)

L'orthogonal de $F: F^{\perp} = \{v \in E, \forall u \in F, \varphi(u, v) = 0\} = \bigcap \ker(\varphi_u)$ F sev de E

C'est un sev de E orthogonal à F

 $F \subset (F^{\perp})^{\perp}$

II. Espace vectoriel euclidien

Un espace vectoriel euclidien est un \mathbb{R} – espace vectoriel de dimension finie, muni d'un produit scalaire

Dans cette partie, E sera un espace vectoriel euclidien, son produit scalaire sera noté φ ou <.|.>

 $(v_j)_{j\in \llbracket 1,n\rrbracket}\in E^n$ base de E est :

- orthogonale si la famille est orthogonale
- normée si $\forall j \in \llbracket 1, n \rrbracket$, $\lVert v_j \rVert^2 = 1$
- orthonormée si elle est orthogonale et normée

 $(v_i)_i \in E^n$ est normée si $\forall (j,k) \in [1,n]^2$ $\varphi(v_i, v_i) = \delta_{ii}$

Si dim E = n $(v_1...v_n) \in (E \setminus \{0_E\})^n$ base orthogonale de E ssi famille orthogonale de E

 $(e_1...e_n)$ base orthonormée de $E: \forall (u,v) \in E^2, v = \sum_{j=1}^n x_j e_j, u = \sum_{j=1}^n u_j e_j$

 $\forall j \in [1, n], x_i = \langle v | e_i \rangle$

 $||u||^2 = \sum_{j=1}^n x_j^2 = \sum_{j=1}^n \langle v | e_j \rangle^2$

 $< u \mid v > = \sum_{j=1}^{n} x_{j} y_{j} = \sum_{j=1}^{n} < u \mid e_{j} > < v \mid e_{j} >$

Preuves: Développement par linéarité + orthogonalité

 $\dim E = n$ F sev de E de dim k $\dim(F^{\perp}) = n - k$

 $\forall F \text{ sev de } E, \qquad F \overset{\perp}{\oplus} F^{\perp} = E$

 $(F^{\perp})^{\perp} = F$

 $(e_{\!_1}...e_{\!_k})\;\mathrm{BO(N)}\;\mathrm{de}\,F\,\mathrm{,}\;(f_{\!_1}...f_{\!_{n-k}})\;\mathrm{de}\,F^\perp\Longrightarrow(e_{\!_1}...e_{\!_k},f_{\!_1}...f_{\!_{n-k}})\;\mathrm{BO(N)}\;\mathrm{de}\,E$

E espace euclidien non réduit à $\{0_F\}$

E admet une base orthonormée

Preuve: Récurrence sur la dimension de E (utiliser l'orthogonal d'un sous-espace de dim n-1)

Procédé d'orthonormalisation de Gram-Schmidt : $(v_1...v_n)$ base de E

Il existe une base orthonormée $(e_1...e_n)$ de E telle que, $\forall k \in [\![1,n]\!]$, $Vect(e_1...e_k) = Vect(v_1...v_k)$

Si de plus, $\forall k \in [1, n]$, $\varphi(e_k, v_k) > 0$, cette base est unique

Preuve: Constructive: $e_1 = \pm v_1 / ||v_1|| \quad w \in l'$ orth de F_k dans $F_{k+1} = \pm w / ||w|| \dots$

En pratique, pour trouver e_{k+1} : On cherche $w = v_{k+1} + \sum_{j=1}^{n} \alpha_j v_j = v_{k+1} - \sum_{j=1}^{n} \beta_j e_j$

 $w \perp F_k \Longrightarrow \forall l \in \llbracket 1, k \rrbracket, < w \mid e_l >= 0 \Longrightarrow \beta_1 = < v_{k+1} \mid e_l >$

E euclidien, F sev de E La projection orthogonale sur F est la projection sur F parallèlement à F^{\perp}

$$p \begin{cases} E = F \stackrel{\perp}{\oplus} F^{\perp} \to E \\ u = v + w & \mapsto v \end{cases}$$
 $p(v)$ est l'unique vecteur tel que $(v - p(v)) \in F^{\perp}$

$$F$$
 sev de E $\qquad (e_1...e_p)$ BON de F , $(e_{p+1}...e_n)$ de $F^\perp \quad p$ proj \perp sur F , q sur F^\perp

$$\forall v \in E$$
 $p(v) = \sum_{j=1}^{p} \langle v | e_j \rangle e_j$ $q(v) = \sum_{j=p+1}^{n} \langle v | e_j \rangle e_j$

$$F \text{ sev de } E. \qquad p \text{ proj } \perp \text{ sur } F \text{ , } q \text{ sur } F^{\perp} \qquad dit(v,F) = \inf\{\left\|v - u\right\|, u \in F\} = \left\|v - p(v)\right\| = \left\|q(v)\right\|$$
 Si $(e_1...e_p)$ BON de F , $d^2 = \left\|v\right\|^2 - \sum_{i=1}^p \langle v | e_j \rangle^2$

Preuve:
$$u \in F$$
 $\|v - u\|^2 = \|\underbrace{(u - p(v))}_{\in F^{\perp}} + \underbrace{(p(v) - u)}_{\in F}\|^2 \ge \|v - p(v)\|^2 + \le \operatorname{car} p(v) \in F$

Si E de dimension infinie mais F de dim finie, on se restreint à F + Vect(v)

III. Applications linéaires orthogonales

 $(E, <\cdot |\cdot >)$ espace vectoriel euclidien

 $f \in \mathcal{Z}(E)$ est orthogonale si elle préserve le produit scalaire : $\forall (u,v) \in E^2, < f(u) \mid f(v) > = < u \mid v > f$ est orthogonale ssi elle préserve la norme $(\forall v \in E, \|f(v)\| = \|v\|)$ (à utiliser dans toutes les preuves) $f \in \mathcal{F}(E,E)$ préserve le produit scalaire $\Rightarrow f$ est une application linéaire orthogonale

Preuve : Ecrire le produit scalaire $\|f(\alpha u + \beta v)\|^2$, tout développer, remplacer par (u,v), tout factoriser+def.

Un projecteur orthogonal n'est pas une application linéaire orthogonale

$$\begin{split} f \in \mathfrak{L}(E) & \quad \mathfrak{B}_0 \text{ BON de } E \quad A = \mathfrak{Nat}_{\mathfrak{B}_0}(f) = (C_1...C_n) & \quad \text{On a \'equivalence entre:} \\ & \quad - f \in \mathfrak{O}(E) \\ & \quad - (C_1...C_n) \text{ BON de } (\mathbb{R}^n, ps \text{ canonique}) & \quad \Leftrightarrow \quad \forall (i,j) \in \mathbb{N}_n^{-2}, \quad {}^tC_iC_j = \delta_{ij} \\ & \quad - {}^tAA = I_n & \quad \Leftrightarrow \quad A \in Gl_n(\mathbb{K}) \quad A^{-1} = {}^tA \end{split}$$

Preuve: Utiliser $f(\mathfrak{B}_0)$ BON de E, jouer sur les indices, montrer $=\delta_{k,i}$ à chaque fois

 $\mathfrak{O}_n(\mathbb{R}) = \{ M \in \mathfrak{M}_n(\mathbb{R}), {}^t MM = I_n \}$ $(\mathfrak{O}_n(\mathbb{R}), \times)$ est un sous groupe de $(\mathfrak{M}_n(\mathbb{R}), \times)$

 $M = \mathfrak{Nal}_{\mathfrak{B}}(f) \in \mathfrak{O}_{n}(\mathbb{R}) \ ssif \in \mathfrak{O}(E)$

 $f \in \mathcal{O}(E) \Longrightarrow |\det(f)| = 1$ $A \in \mathcal{O}_n(\mathbb{R}) \Longrightarrow |\det(A)| = 1$ (utiliser ${}^tAA = I_n \Longrightarrow \det(A)^2 = 1$)

P matrice de changement de $BON \Rightarrow P \in \mathfrak{O}(n)$ ${}^{t}P = P^{-1}$

E est maintenant un \mathbb{R} – espace vectoriel

 \mathfrak{G}_0 et \mathfrak{G} deux bases de E

On dit que \mathfrak{B} a la même orientation que \mathfrak{B}_0 si $\det_{\mathfrak{B}_0}(B) > 0$ C'est une relation d'équivalence

On a deux classes d'équivalence : Soit \mathfrak{B}_0 fixée : $\mathcal{C}_1 = \{\mathfrak{B} \, / \, \det_{\mathfrak{B}_n}(\mathfrak{B}) > 0\}$ $\mathcal{C}_2 = \{\mathfrak{B} \, / \, \det_{\mathfrak{B}_n}(\mathfrak{B}) < 0\}$

 $f \in Gl(E)$ Si d $t \notin f > 0$, alors pour toute base \mathfrak{B}_0 , d $t \notin_{\mathfrak{h}_0} (f(\mathfrak{B}_0)) = \det(f) > 0$ $\Rightarrow f(\mathfrak{B}_0)$ a la même orientation que $\mathfrak{B}_0 : f$ préserve l'orientation

E est à nouveau espace vectoriel euclidien

S (E) \mathcal{G} $\{f \in \mathcal{O}(E) \text{ préserve l'orientation}\} = \{f \in \mathcal{O}(E), \text{d } \text{te}(f) = 1\} \text{ est un sous groupe de } \mathcal{O}(E)$

 $\mathfrak{O}^{-1}(E) = \mathfrak{O}(E) \setminus SO(E) = \{ f \in \mathfrak{O}(E) / d \ \text{te} f \} = -1 \}$

SO(E) est un sous-groupe distingué : $\forall h \in \mathfrak{O}(E), \quad h \circ SO(E) \circ h^{-1} = SO(E)$

Ecriture matricielle : $\forall (X,Y) \in (\mathbb{R}^n)^2 < X \mid Y > = {}^t XY$

 $\mathfrak{B} = (e_1...e_n) \text{ base quelconque } A = (\langle e_i \mid e_j \rangle)_{(i,j) \in \llbracket 1,n \rrbracket^2} \quad \forall X = \mathfrak{Nal}_{\mathfrak{B}}(x), \ Y = \mathfrak{Nal}_{\mathfrak{B}}(y) \qquad \langle x \mid y \rangle = {}^t XAY$

 $A = (\langle e_i \mid e_j \rangle)_{(i,j) \in \mathbb{N}_n^2} \in \mathbb{S}_n \text{ et } \forall k \in [\![1,n]\!], a_{kk} > 0 \qquad \qquad A = I_n \text{ $ssi } \mathfrak{B} \text{ BON}$

Théorème de représentation : (E,φ) eve $\Rightarrow \tilde{\varphi} \begin{cases} E \to E^* \\ x \mapsto \varphi_x \end{cases}$ est un isomorphisme

 $\Rightarrow \forall \, \psi \in \mathcal{L}(E, \mathbb{R}) = E^*, \qquad \exists ! x \in E, \psi = \varphi_x$

 $\mathsf{Repr\'esentation\ matricielle}: \mathfrak{B}_0\ \mathsf{BON}\ \ \forall x \in E, X = \mathfrak{M}at_{\mathfrak{B}_0}(x) \in \mathfrak{M}_{n1}(\mathbb{R}) \Longrightarrow \quad \mathfrak{M}at_{\mathfrak{B}_0}(\varphi_x) = {}^tX \in \mathfrak{M}_{1n}(\mathbb{R})$

On appelle réflexion une symétrie orthogonale par rapport à un hyperplan

IV. Où l'on rencontre pour la première fois les adjoints

Cette partie est au programme de spé

$$(E, <\cdot|\cdot>)$$
 eve $f\in \mathcal{Z}(E)$ $\exists !f^*\in \mathcal{F}(E,E)$ tq $\forall (x,y)\in E^2$ $< f(x) \mid y>=< x\mid f^*(y)>$ De plus, $f^*\in \mathcal{Z}(E)$ est appelée l'adjoint de f

Preuve: $\psi_y : x \mapsto \langle f(x) | y \rangle$, thm représentation : $\exists ! z_y \in E, \psi_y = \varphi_{z_y} \Rightarrow f^*(y) = z_y$ Mq lin en dvt

$$\sigma \begin{cases} \mathcal{Z}(E) \to \mathcal{Z}(E) \\ f \mapsto f^* \end{cases} \text{ est linéaire. } \forall f \in \mathcal{Z}(E), (f^*)^* = f \Rightarrow \sigma \in Gl(\mathcal{Z}(E)), \sigma^2 = Id_{\mathcal{Z}(E)}$$

Preuve : $\langle x | (\alpha f + \beta g)^*(y) \rangle = \langle (\alpha f + \beta g)(x) | y \rangle$ Développement + * + factorisation + unicité

$$(E, <\cdot|\cdot>)$$
 euclidien, \mathfrak{B}_0 BON $\forall f \in \mathfrak{L}(E), A = \mathfrak{Mal}_{\mathfrak{B}_0}(f), B = \mathfrak{Mal}_{\mathfrak{B}_0}(f^*)$ $A = {}^tB$

Preuve:
$$\forall (i,j) \in \mathbb{N}_n^2, a_{ij} = \langle f(e_i) | e_i \rangle$$
 $b_{ij} = \langle f^*(e_j) | e_i \rangle = \langle e_j | f(e_i) \rangle = a_{ji}$

$$\forall (f,g) \in \mathfrak{L}(E), (f \circ g)^* = g^* \circ f^*$$

$$f \in \mathcal{L}(E)$$
 $f \in \mathcal{D}(E)$ ssi $f * \circ f = f \circ f * = Id_E$

Preuve: $f \in \mathcal{O}(E) \Leftrightarrow \langle x | f * \circ f(y) \rangle = \langle x | y \rangle \Leftrightarrow f * \circ f(y) = y$ par non dégénérescence du ps

 $s \in \mathcal{Z}(E)$ symétrie $(s \circ s = Id_E)$. On a équivalence entre :

- $-s \in \mathfrak{O}(E)$
- s symétrie orthogonale
- -s*=s

Preuve:
$$f \text{ sym } \perp : \|s(u)\|^2 = \|u\|^2$$
 $s \in \mathfrak{O}(E) \Rightarrow \|s(\underbrace{x} + \underbrace{y})\|^2 = \|x + y\|^2 \Rightarrow < x | y >= 0 \text{ (Id.parall)+dim}$

$$(E, <\cdot|\cdot>)$$
 eve $f\in\mathcal{Z}(E)$ est autoadjoint si $f^*=f$ $c\grave{a}d$ $\forall (x,y)\in E^2, < f(x)\mid y>=< x\mid f(y)>$ \mathfrak{B}_0 BON, $f\in\mathcal{Z}(E)$ autoadjoint ssi $\mathfrak{Mat}_{\mathfrak{B}_0}(f)\in\mathfrak{S}_n(\mathbb{R})$

 $p \in \mathcal{Z}(E)$ projecteur $(p \circ p = p)$. On a équivalence entre :

- − p projecteur orthogonal
- $\forall x \in E, \|p(x)\| \le \|x\|$
- $-p^*=p$

Preuve:
$$(ii) \Rightarrow (i)u = tx + y, ||p(u)|| \le ||u|| \Leftrightarrow ||tx||^2 \le ||tx||^2 + ||y||^2 + 2t < x ||y> \Rightarrow 2t < x ||y> \Rightarrow + ||y||^2 \ge 0$$

$$E \text{ eve, } f \in \mathcal{Z}(E)$$
 $\ker(f^*) = (\operatorname{Im} f)^{\perp}$ $\operatorname{Im}(f^*) = (\ker f)^{\perp}$

 $E \text{ eve, } f \in \mathcal{Z}(E)$ $F \text{ sev de } E \text{ stable par } f \Rightarrow F^{\perp} \text{ est stable par } f^*$ $\text{Si } f \in \mathcal{D}(E), F^{\perp} \text{ est stable par } f$

V. Dimension 2 (retour au programme de sup')

E est un espace vectoriel euclidien de dimension 2, $\mathfrak{A}_0 = (e_1, e_2)$ BON de E (fixant l'orientation)

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{O}_{2}(\mathbb{R}) \iff M = \begin{pmatrix} a & -\varepsilon c \\ c & \varepsilon a \end{pmatrix} \qquad (\varepsilon \in \{-1, +1\}, a^{2} + b^{2} = 1)$$
$$\Leftrightarrow \exists \theta \in \mathbb{R} / M = \begin{pmatrix} \cos \theta & -\varepsilon \sin \theta \\ \sin \theta & \varepsilon \cos \theta \end{pmatrix} \quad (\varepsilon \in \{-1, +1\})$$

Preuve:
$${}^{t}MM = I_{n} \Leftrightarrow ad - bc = \varepsilon \in \{-1, +1\}, {}^{t}M = M^{-1} = \frac{1}{\varepsilon} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \dots$$

$$SO_2(\mathbb{R}) = \left\{ R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \theta \in \mathbb{R} \right\}$$

$$O_2^{-}(\mathbb{R}) = \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}, \theta \in \mathbb{R} \right\}$$

$$\Re \left\{ \begin{split} &(\mathbb{R},+) \to (SO_2(\mathbb{R}),\times) \\ &\theta \quad \mapsto R_\theta = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \text{ est un morphisme de groupe surjectif de noyau } 2\pi\mathbb{Z} \end{split} \right.$$

 $(SO_2(\mathbb{R}),\times)$ est commutatif

 $R_{\scriptscriptstyle{ heta}}$ est la matrice de rotation d'angle heta

 $r \in SO(E) \Rightarrow \exists \theta \in \mathbb{R} \ / \ \forall \mathfrak{B}$ BON directe de E, $\mathfrak{Mak}_{\mathfrak{B}}(r) = R_{\theta}$ r est appelée rotation d'angle θ (unique mod 2π)

$$s \in \mathbb{O}^{-}(E), S_0 = \mathfrak{Mal}_{\mathbb{B}_0}(s) \in \mathbb{O}_2^{-}(\mathbb{R}) \qquad S_0 = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

 $S_0^2 = I_2 \Rightarrow$ C'est une symétrie orthogonale par rapport à une droite D (donc une réflexion)

Preuve:
$$\begin{pmatrix} x \\ y \end{pmatrix} \in D \Leftrightarrow S_0 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \dots \Leftrightarrow (\cos \theta - 1)x + \sin \theta y = 0\dots + \text{trigo}$$

$$sym/\{0_E\}: r_\pi \in SO(E)$$
 $sym/E: Id_E \in SO(E)$

Pour tout $r \in SO(E)$, $s \in \mathfrak{O}^{-}(E)$ $s \circ r \circ s^{-1} = s \circ r \circ s = r^{-1}$

 $\forall \mathfrak{B}$ BON indirecte de E, $\mathfrak{Mat}_{\mathfrak{A}}(r) = R_{-\theta}$

$\mathfrak{O}(E)$ n'est pas commutatif

$$u_0 \in E, \ \left\|u_0\right\| = 1 \qquad \qquad \varphi_{u_0} \begin{cases} SO(E) \to \mathbb{U} = \{v \in E, \left\|v\right\| = 1\} \\ r_\theta \qquad \mapsto r_\theta(u_0) \end{cases} \text{ est une bijection de } SO(E) \text{ dans } \mathbb{U}$$

 $(u_0,v)\in E^2, \left\|u_0\right\|=\left\|v\right\|=1 \qquad \text{ L'angle } (u_0,v) \text{ est l'unique } \theta \text{ mod } 2\pi \text{ tel que } v=r_\theta(u_0)$

$$\forall (u, v) \in (E \setminus \{0_E\})^2$$
, l'angle $(u, v) = \left(\frac{u}{\|u\|}, \frac{v}{\|v\|}\right) \in \mathbb{R}/2\pi\mathbb{Z}$

 $\forall (u, v, x) \in (E \setminus \{0_{E}\})^{3} \qquad (u, u) \equiv 0[2\pi] \qquad (u, v) + (v, w) \equiv (u, w)[2\pi] \qquad (v, u) \equiv -(u, v)[2\pi]$

L'angle entre deux droite est l'angle entre leurs vecteurs directeurs respectifs (mod π)

 D_1 et D_2 2 droites de E, s_{D_i} est la réflexion p/r D_i $s_{D_2} \circ s_{D_1}$ est la rotation d'angle $2\theta = 2(\widehat{D_1}, \widehat{D_2})$

Les réflexions engendrent $\mathfrak{O}(E)$

VI. Dimension 3

E sera un espace vectoriel euclidien de dimension 3, $\Re_0 = (e_1, e_2, e_3)$ BON de E (fixant l'orientation)

 $r \in SO(E) \setminus \{Id_E\}$ $D = \ker(r - Id_E)$ est de dimension 1 : c'est l'axe de r

Preuve: Mq $\ker(r - Id_E) \neq 0_E$: P_A poly caractéristique de $A = \Re at_{\Re_0}(r) \deg 3 \Rightarrow 1$ racine réelle λ min r préserve la norme \Rightarrow $|\lambda|=1$ Si $\lambda=-1$: $G=\ker(r+Id_E)$ dim G=3 impossible : $(-Id_E)\in \mathbb{O}^-(E)$ $\dim G = 2 \Rightarrow G^{\perp} = vect(v_1)$ stable par $r, v_1 \notin G \Rightarrow r(v_1) = v_1$ $\dim G = 1 \Rightarrow r_{G^{\perp}}$ réflexion $\Rightarrow w \in G^{\perp} \setminus \{0_E\}, r(w) = w$ (on est en vrai dans le 2e cas) $\dim(\ker(r-Id_E)) \neq 3 \ (r \neq Id_E), \ \dim G \neq 2 \ \text{par l'absurde}, \ r(w_3) = -w_3 \Rightarrow \text{une BON où } Mat(r) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Une fois w_1 fixé, l'orientation de $F = D^{\perp}$ est définie par $w_1 \Rightarrow \theta$ indépendant de (w_2, w_3) BON directe Mais si on prend – w_1 , on doit considérer $(-w_1, w_3, w_2)$ pour avoir une BON directe $\Rightarrow \theta$ remplacé par – θ

 $r \in SO(E)\{Id_F\}$ $D = Vect(w_1) = \ker(r - Id_F)$

Il existe $\theta \in \mathbb{R}$ (unique $\mod 2\pi$) tel que pour tout $\mathfrak{B} = (w_1, w_2, w_3)$ BON directe, $\mathfrak{Mat}_{\mathfrak{B}}(r) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & R_{\theta} \end{pmatrix}$

Si on veut $\mathfrak{N}_{\mathrm{al}_{\mathfrak{P}_0}}(r)$, on écrit P la matrice de changement de base de \mathfrak{P}_0 à \mathfrak{P} , et $P^{-1}={}^tP$

 $r \in SO(E)$ rotation d'axe $\mathbb{R}w_1$ ($||w_1|| = 1$) et d'angle $\theta : \forall v \in E, r(v) = (1 - \cos\theta)(v \mid w_1)w_1 + \cos\theta v + \sin\theta(w_1 \wedge v)$

Pour identifier un élément de SO(E) de matrice dans \mathfrak{B}_0 A:

- on vérifie $A \in \mathcal{O}_3(\mathbb{R})$: ^t $AA = I_3$ ou (C_1, C_2, C_3) BON de \mathbb{R}_3
- on vérifie $A \in SO_3(\mathbb{R})$: d t(A) = 1 ou $C_1 \wedge C_2 = C_3$ (− C_3 si $A \in \mathcal{O}^-(\mathbb{R})$) (une coord non nulle suffit)
- $-\sin^t A = A$, f est une symétrie orthogonale p/r à une droite D
- sinon, on cherche l'axe de rotation en résolvant $AX = X \Leftrightarrow (A I_3)X = 0_F$
- on détermine $|\theta|$ en utilisant $tr(A) = 1 + 2\cos\theta$
- on détermine le signe de θ avec $(r(v)|< w_1 \land v>)$ (v ∈ E)

si ${}^tA = A \Rightarrow A = -I_3$ ou f est une réflexion \Rightarrow on trouve P en résolvant AX = X $A \in \mathcal{O}_{3}^{-}(\mathbb{R})$ sinon, -A = R est la matrice d'une rotation. f est la composée d'une rotation et de la sym centrale

 P_1 et P_2 deux plans, $P_1 \cap P_2 = \mathbb{R}w_1$ θ l'angle entre P_1 et P_2 (mesuré dans $(\mathbb{R}w_1)^{\perp}$, mod π) \Rightarrow $s_{P_1} \circ s_{P_1}$ est la rotation d'axe $\mathbb{R}w_1$ et d'angle 2θ (mod 2π)

Les réflexions engendrent $\mathcal{O}_3(\mathbb{R})$