Stat 462/862 Assignment 3

(Due on Nov 20, 2015)

- 1. Consider the data in Problem 3 in the 2nd assignment. Randomly partition the data into two parts (with equal sample size), one as a training set, and the other as the test set. Compare the performance of logistic regression, LDA, and QDA in terms of the test error. Interpret your results.
- 2. Let X be a random variable normally distributed with mean $\mu = 2$ and variance $\sigma^2 = 5$. The follow simulation studies the property of certain confidence interval of μ .
 - (a) Let n be the sample size and nsim be the number of simulations. Let α be significance level. Write a function in which the inputs are $\mu, \sigma, n, nsim, \alpha$, the output is $(1 \alpha)100$ percent confidence interval for μ at in each simulation.
 - (b) Consider the function in part (a). Let w be the coverage of the $(1-\alpha)100$ percent confidence interval. Define

 $w = (\text{the frequency that the confidence interval contains the true mean } \mu)/nsim.$

Compute the coverage for the following setting (i) $n = 10, nsim = 1000, \alpha = 0.05$; (ii) $n = 10, nsim = 1000, \alpha = 0.025$; (iii) $n = 100, nsim = 1000, \alpha = 0.05$; (iv) $n = 100, nsim = 1000, \alpha = 0.025$. Compare these four coverage.

- (c) Suppose that σ^2 is unknown but can be estimated based on the sample. Repeat parts (a) and (b).
- 3. Let X_1, \ldots, X_n be n i.i.d. random variables with mean zero and unknown variance σ^2 . Suppose the prior distribution of σ^2 is inverse gamma distribution with parameters α and β , that is, $\pi(\sigma^2) \propto (\sigma^2)^{-(\alpha+1)} \exp\{-\frac{\beta}{\sigma^2}\}$. Derive the posterior distribution of σ^2 .
- 4. Consider the problem of generating sample from a Beta distribution $Be(\alpha, \beta)$.
 - (a) One result is, if two Gamma random variables are $X_1 \sim Ga(\alpha, 1)$ and $X_2 \sim Ga(\beta, 1)$, then

$$X = \frac{X_1}{X_1 + X_2} \sim Be(\alpha, \beta).$$

Use this result to construct an algorithm to generate a Beta random sample. Provide a density histogram to emulate the performance.

- (b) Compare the algorithm in (a) with the rejection method based on (i) the uniform distribution; (ii) the truncated normal distribution.
- 5. Consider estimating the integral

$$\theta = \int_0^\infty \exp(-(\sqrt{x} + 0.5x)) \sin^2(x) dx$$

where the pdf of x is $f(x) = \exp(-0.5x)$.

- (a) Conduct the Monte Carlo (MC) integration for estimating θ .
- (b) Conduct MC integration using importance sampling with the following proposal functions

$$g_1(x) = \frac{1}{2} \exp(-|x|),$$

 $g_2(x) = \frac{1}{2\pi} \frac{1}{1 + x^2/4},$
 $g_3(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$

For sample size M = 100, 500, 1000, 2000, compare the mean and standard deviations of the estimates.

(c) (For graduate students 862 only) Implement MC integration using self-normalized importance sampling with g(x) from a mixture normal density. Explain the procedure and integrate your results clearly.