2019年5月高中一年级周练

高一数学

—, j	选择题:本大题共 12 小	题,每小题5分,共60	分。在每小题给出的四·	个选项中,只有一项是符
É	合题目要求的 。			
1.	与 -765° 终边相同的角	角为()		
	A. 405°	B. 665°	C. −215°	D. 275°
2.	已知等比数列 {an} 满足	$ \exists a_1 = 3, a_1 + a_3 + a_5 = 3 $	21, $\mathbb{M} a_3 + a_5 + a_7 = ($)
	A. 42	B. 84	C. 21	D. 6
3.	己知等差数列 {an} 一封	共有 12 项, 其中奇数项之	之和为 10, 偶数项之和为	22, 则公差为 ()
	A. 1	B. 5	C. 12	D. 2
4.	函数 $f(x) = \cos(2x - \frac{2}{x})$	$\left(\frac{\pi}{7}\right)$ 的最小正周期为()	
	A. $\frac{\pi}{2}$	Β. 2π	C. <i>π</i>	D. 4π
5.	己知 $\triangle ABC$ 中, $a = 1, b$	$p = \sqrt{3}, A = \frac{\pi}{6}, \bigcirc B \cong \exists$	F ()	
	A. $\frac{\pi}{2}$	B. $\frac{\pi}{6}$ $\stackrel{\circ}{=}$ $\frac{5\pi}{6}$	C. $\frac{\pi}{2}$ 或 $\frac{2\pi}{3}$	D. $\frac{\pi}{6}$
6.	5	6 6 = sin <i>x</i> 为增函数的是()	O .
	A. $[\pi, 0]$	B. $[0, \pi]$	C. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	D. $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$
7.	在 $\triangle ABC$ 中,角 A,B,C 所对应的边分别为 a,b,c , 若角 A,B,C 依次成等差数列, 且 $a=1,b=\sqrt{3}$,			
	则 $S_{\triangle ABC} = ()$			
	A. $\frac{\sqrt{3}}{2}$	B. $\sqrt{2}$	C. $\sqrt{3}$	D. 2
8.	函数 $y = \tan(x + \frac{\pi}{5})$ 的	一个对称中心是()		
	A. (0,0)	B. $(\frac{4\pi}{5}, 0)$	3	D. $(\pi, 0)$
9.	9. 已知数列 $\{a_n\}$ 满足递推关系: $a_{n+1} = \frac{a_n}{a_n+1}, a_1 = \frac{1}{2}, 则 a_{2017} = ()$			
	A. $\frac{1}{2017}$	B. $\frac{1}{2019}$	$C = \frac{1}{C}$	D. $\frac{1}{2018}$
10	2017	2019	2010	- 2018 三斜求积公式", 设 △ <i>ABC</i>
10.				$S = \sqrt{\frac{1}{4} \left[a^2 c^2 - \left(\frac{a^2 + c^2 - b^2}{2} \right)^2 \right]}$
	若 $a^2 \sin C = 24 \sin A$, $a(\sin C - \sin B)(c + b) = (27 - a^2) \sin A$, 则用" 三斜求积公式" 求得的 $S = ($)			
	A. $\frac{15\sqrt{5}}{4}$	B. $\frac{15\sqrt{6}}{4}$	C. $\frac{15\sqrt{7}}{4}$	D. $\frac{3\sqrt{165}}{4}$
11.		$c = 0.4^{0.4}$,则 a,b,c 的大	4 二小关系为 ()	4
				D. $b < c < a$
12.	在数列 $\{a_n\}$ 中, $a_1=1$,当 $n \ge 2$ 时, 其前 n 项 ⁵	和为 S_n 满足 $S_n^2 = a_n(S_n -$	(-1) , 设 $b_n = \log_2 \frac{S_n}{S_{n+2}}$, 数

C. 12

D. 10

列 $\{b_n\}$ 的前 n 项和为 T_n , 则满足 $T_n \ge 6$ 的最小正整数 n 是()

B. 9

A. 11

二、填空题:本题共4小题,每小题5分,共20分。

- 13. 在 $\triangle ABC$ 中, $a = \sqrt{3}b$, $A = 120^{\circ}$,则角 B 的大小为
- 14. 在一个塔底的水平面上某点测得塔顶的仰角为 θ ,由此点向塔底沿直线行走了 30m,测得塔顶的仰角为 2θ ,再向塔底前进 10m,又测得塔顶的仰角为 4θ ,则塔的高度为 m.
- 16. 定义在 \mathbb{R} 上的运算: $a \oplus b = ab + 2a + b$, 则关于 x 的不等式 $x \oplus (x-2) < 0$ 的解集为_____

三、解答题: 共70分。解答应写出文字说明、证明过程或演算步骤。

17. (10分)

求解下列不等式的解集.

- (1) $-2x_1^4 x^2 + 3 > 0$
- (2) $x + \frac{1}{x} > 2$
- (3) $(x+1)(x^2-2x-3)(x^2+3x-10) \le 0$

18. (12分)

设全集为 $U = \mathbb{R}$, 集合 $A = \{x | -5 < x \le 1\}, B = \{x | \frac{x+4}{x-7} < 0\}.$ [U

19. (12分)

设 S_n 为正项数列 $\{a_n\}$ 的前 n 项和,满足 $2S_n = a_n^2 + n$.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 在等比数列 $\{b_n\}$ 中, $b_1 = a_2, b_2 = a_4, c_n = a_n b_n$, 求数列 $\{C_n\}$ 的前 n 项和 T_n .

20. (12分)

人工智能(Artificial Intelligence),英文缩写为 AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。科大讯飞信息科技股份有限公司是一家专业从事智能语音及语音技术研究、软件及芯片产品开发、语音信息服务的国家级骨干软件企业。讯飞公司现研发了一种新产品,固定成本 7500 元,每生产一台产品须增加投入 100元,鉴于市场等多因素有总收入满足函数: $F(x) = \begin{cases} 400x - x^2, & 0 \leq x \leq 200 \\ 40000, & x > 200 \end{cases}$,其中 y 为产品的每月产量,利润 = 总收入-总成本.

- (1) 求利润表示为月产量的函数;
- (2) 求月产量为何值时,车间所获利润最大?并求出最大利润值.

21. (12分)

已知 $f(x) = \vec{m} \cdot \vec{n}$, 其中 $\vec{m} = (2\cos x, 1), \vec{n} = (\cos x, \sqrt{3}\sin 2x)(x \in \mathbb{R})$.

- (1) 求 f(x) 的最小正周期及单调递增区间;
- (2) 在 $\triangle ABC$ 中, a,b,c 分别是角 A,B,C 的对边, 若 $f(A)=2,b=1,\triangle ABC$ 面积为 $\frac{3\sqrt{3}}{2}$, 求边 a 的长及 $\triangle ABC$ 的外接圆半径 R.

22. (12分)

已知正项数列 $\{a_n\}$ 的前 n 项和为 S_n , 首项 $a_1=1$, 点 $P(a_n,a_{n+1}^2)$ 在曲线 $y=x^2+4x+4$ 上.

- (1) 求 a_n 和 S_n ;
- (2) 若数列 $\{b_n\}$ 满足 $b_1 = 17, b_{n+1} b_n = 2n$, 求 $\frac{b_n}{\sqrt{S_n}}$ 最小时的 n 值.