SMT lectures and labs

Content of the SMT lectures and labs, references

These lectures are following the following lectures:

- Lecture 1 "Machine translation introduction" (Dr. Anil Kumar Singh)
- Lecture 2: "Computational Paninian Grammar" (Pr. Rajeev Sangal)
- Lecture 3: RBMT (Dr. Anil Kumar Singh)

Lecture 4: SMT introduction (Bruno Pouliquen)

- Part 1: Statistical machine translation, different approaches:
 - Syntax-based (also called tree-based)
 - o (deprecated: example based)
 - o Phrase-based
 - Neural networks
- Which method to choose?
- Various corpora of parallel texts (JRC Acquis, Europarl, UN corpus, Indic corpora...)
- Part 2: Phrase-based SMT (with slides borrowed from Philipp Koehn)
 - History
 - How does it work?
 - First publication Koehn/Och/Marcu (2002)
 - Translation model
 - Language model
 - o Different open-sources: Moses / Joshua / Cdec / ...
- Part 3: Learning lexical translations (slides borrowed from Philipp Koehn)
 - o IBM model 1
 - Preparation for the lab session
- Part 4: Improved SMT
 - How to improve the "basic" PBSMT
 - Tokenization
 - Normalization
 - Byte pair encoding: reduce vocabulary space
 - Factors in Moses
 - Tree-based (syntax-based) models

References

- ✓ Syntax based MT : http://homepages.inf.ed.ac.uk/pkoehn/publications/esslli-slides-day5.pdf
- ✓ List of MT open-source tools: http://fosmt.org/
- ✓ http://ufal.mff.cuni.cz/mtm16/files/14-phrase-based-smt-ulrich-germann.pdf
- ✓ [Koehn et al 2002] Statistical Phrase-Based Translation (2002) Philipp Koehn , Franz Josef Och , Daniel Marcu
- ✓ Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, Evan Herbst. (2007) "Moses: Open Source Toolkit for Statistical Machine Translation". Annual Meeting of the Association for Computational Linguistics (ACL), demonstration session, Prague, Czech Republic, June 2007

Lab 4: Implement an IBM model 1 model / Introduction to Unix (Bruno Pouliquen)

In this lab, you can choose between two labs:

1) Follow a basic introduction to Unix for NLP and MT, with corresponding assignments

Read the "<u>Unix in a nutshell</u>" documentation (lists some common Unix commands, with particular focus on those used in NLP or MT) and use it as a reference to achieve the assignments

2) Or develop a IBM model1 program

IBM model 1: A nice example of machine learning: from bilingual texts, learn automatically word translations (using expectation maximization algorithm). In python/Java/Perl (or other language) develop a program to output lexical probabilities out of parallel sentences

See lecture:

http://www.statmt.org/book/slides/04-word-based-models.pdf (slides 12-30)

Lecture 5: Components of the PBSMT process (with slides borrowed to U Germann)

- Part 1: Various steps in PBSMT
 - Noisy channel model
 - Model estimation
 - Word translation probability
 - Word alignment probability
 - o IBM model 1
 - o IBM models 1 to 5
 - Alignment grow-diag final-and
 - Scoring phrase table
 - Distortion model

References

✓ References: original slides by Ulrich Germann: http://ufal.mff.cuni.cz/mtm16/files/14-phrase-based-smt-ulrich-germann.pdf (p 1-60)

- Part 2: Language models (with slides borrowed from Philipp Koehn)
 - Language models: How likely is a string of English words good English?
 - N-gram models (Markov assumption)
 - Perplexity
 - Count smoothing
 - Interpolation and backoff
 - Introduction to Neural LM

References:

- Introduction to language models: http://mt-class.org/jhu/slides/lecture-lm.pdf
- Neural network language models http://mt-class.org/jhu/slides/lecture-nn-lm.pdf
- A complete tutorial from Kenneth Heathfield <u>http://ufal.mff.cuni.cz/mtm16/files/08-n-gram-language-modeling-including-feed-forward-kenneth-heafield.pdf</u>
- A tutorial about LNN and word embeddings http://ufal.mff.cuni.cz/mtm16/files/09-nn-language-models-david-vilar.pdf

- Part 3: Decoding algorithm (Ulrich Germann, University of Edinburgh)
 - Overview of the decoding (translation)
 - Hypothesis expansion / recombination
 - o Beam search
 - Future cost estimation
 - Word lattices & n-best lists

Reference:

 Original tutorial by Ulrich Germann, Philipp Koehn & Mattias Huck http://ufal.mff.cuni.cz/mtm16/files/14-phrase-based-smt-ulrich-germann.pdf (p. 61-)

• Part 4: MT Preparation steps

- Preparation steps (cleaning, sentence aligners, tokenizer)
- Post-processing steps (e.g. recaser)
- Introduction to CAT tools

Lab 5: Creating a real SMT model

 Build a "toy" model out of existing bitexts (sentence aligned corpus, tokenized) (e.g. English-Hindi) on a Unix-like system with an SMT tool installed

References:

- ✓ Indic corpora : http://homepages.inf.ed.ac.uk/miles/babel.html
- ✓ Moses: http://www.statmt.org/moses/
- ✓ Joshua: http://joshua.incubator.apache.org
- ✓ Cdec: http://www.cdec-decoder.org/
- ✓ Sentence alignment: http://www.statmt.org/survey/Topic/SentenceAlignment
- ✓ Singh A.K., S Husain, 2005, Comparison, selection and use of sentence alignment algorithms for new language pairs, Proc. of the ACL Workshop on Building and Using Parallel Texts, 2005

Lecture 6: Evaluation / Quality (Bruno Pouliquen)

- Part 1: MT Evaluation
 - Human vs Automatic evaluation
 - Evaluating an SMT model with automatic metrics (BLEU, METEOR, other metrics)
- Part 2: Automatic Evaluation
 - Presentation of various metrics
 - Tuning a system (using Minimum Error Rate Training or MERT)
- Part 3: Quality estimation
 - Quality estimation: the process to learn a priori probabilities of machine translation

• Part 4: MT framework

• Further general discussion on how to create your own MT, prepare texts, launch evaluation etc.

Lab 6: Evaluation of MT quality

- Evaluating a MT system. Use previously trained system, get a BLEU score. Compare various outputs from different systems.
- Optimizing a system (MERT)

References:

- Asiya (online MT evaluation tool) http://asiya.cs.upc.edu/demo/asiya_online.php
- M.R. Costa-jussà, M. Farrús, J.B. Mariño, J.A.R. Fonollosa. <u>Study and comparison of rule-based and statistical Catalan-Spanish machine translation systems</u>. Computing and Informatics, volume 31, issue 2, pages 245--270. February 2012. ISSN 1335-9150.
- [lucia 2016] Lucia Specia "Translation quality assessment: Evaluation and Estimation", presentation at MTM 2016, Prague, "http://ufal.mff.cuni.cz/mtm16/files/01-mt-evaluation-and-quality-estimation-lucia-specia.pdf

Lecture 7: Neural Machine Translation (NMT) (Bruno Pouliquen & Marcin Junczys-Dowmunt)

- Part 1: Introduction to NMT
 - History
 - Recent developments (Google translate / Systran / WIPO etc.)
 - Overview of the method
 - Examples and comparison with PBSMT
- Part 2: How does it work
 - What are artificial neural networks?
 - Simple cases
 - Perceptron / Feed forward / Recurrent Neural networks (RNN)
- Part 3: Application to MT
 - RNN as a way to "learn" full translation process

References:

Tutorials:

Luong, Cho, Manning: https://sites.google.com/site/acl16nmt/ Rico Sennrich tutorial in MTM (Prag 2016): Also highly recommended Mentions the BPE algorithm

http://ufal.mff.cuni.cz/mtm16/files/11-neural-machine-translation-rico-sennrich.pdf A very nice bibliography at the end, please read!

Very good tutorial on NMT (highly recommended!):

http://nlp.stanford.edu/projects/nmt/Luong-Cho-Manning-NMT-ACL2016-v4.pdf

Very good tutorial about Neural Networks in general:

http://neuralnetworksanddeeplearning.com/

A video lecture about RNN (incl. image capture)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

https://www.youtube.com/watch?v=iX5V1WpxxkY

Tensorflow playground:

https://github.com/tensorflow/playground

Lab 7: NMT (Bruno Pouliquen)

Use/modify a simple perceptron (language guessing)

Use an existing NMT model, compare output with PBSMT corresponding model (Using Amun decoder, translate using a pre-trained NMT model)

References:

- https://github.com/rsennrich/nematus
- https://github.com/emjotde/amunmt

Items not covered

Transliteration:

"Improving Machine Translation via Triangulation and Transliteration" <u>Durrani and Koehn (2014)</u>

 $\underline{http://www.statmt.org/moses/?n=}Advanced.OOVs$