1º Teste de Instrumentação

Nome: Salomé Carneiro Neto de Nóbrega Luís

Número:a83616 MIEBIOM

1-Na medição de luz ou radiação usam-se sensores óticos. Coloque uma cruz se o sensor tem a performance indicada ou se usa esse parâmetro. Responda no quadro (atenção resposta errada desconta uma resposta certa): 3 valores 0,2 certa

	Maior	Alta	Sem	T	Linear	Usa um	1550	Rede
	Resolução	tensão	alimentação	influencia		cintilador	nm	Bragg
Fotodíodo								
Term. Radiação								
Fotomultiplicador								
FBG em FO								
Raios-x - CMOS								

2-Considere os vários tipos de ADC estudados. Coloque uma cruz se o ADC tem a performance indicada ou se usa esse parâmetro. Responda no quadro (atenção: resposta errada desconta uma resposta certa): 3 valores, certa 0,3

	Mais lento	Usa DAC	1 ciclo clock	8 ciclos de clock	Mais rápido	Menor ruído quantização	Usa modulação
FLASH 6 bits					•	,	3
Aprox. Sucessivas 8 bits							
Dupla-Rampa 8 bits							
Sigma-Delta 15 bits							
Sigma-Delta 17 bits							

3-Nos 3 circuitos apresentados na Figura 1 indique os que podem ser utilizados como DAC de 3 bits R-2R e em que V_0 é o LSB. Justifique. Ladder antes de amplificadoer, circuito 3 0.5 valores

Figura 1 4-Na Figura 2 temos um filtro variável de estado.

- a) Calcule a função de transferência para V_a/Vi e V_b/Vi, de modo a identificar os filtros V_a(jf) e V_b(jf)? Sugestão: use a lei dos nós. 1,5 VALORES
- b) Porque é que o filtro tem 3 amplificadores, para implementar 2 saídas apenas? Pode usar apenas 2 amplificadores? Justifique. 1 VALOR
- c) Determine $V_a(t)$ para um sinal $V_i(t)=1+sen(2\pi t)$, se $R_2=2R_1=200$ Ohms e $R=1/2\pi$ Ohms, C=1 F e Q= R_2/R e $f_0=1/(2\pi RC)$. Se não conseguiu fazer a alínea a) considere:

1 VALOR

$$\frac{V_a(jf)}{V_i(jf)} = -\frac{R_2}{R_1} \times \frac{(\frac{j}{Q}) \times (\frac{f}{f_0})}{1 - (\frac{f}{f_0})^2 + (\frac{j}{Q}) \times (\frac{f}{f_0})}$$