

目录

- 一 任务背景
- 二任务描述
 - 1. 任务一
 - 2. 任务二
- 三算法流程
- 四 验收流程

一任务背景

一 任务背景

- 计算机科学与技术学院 school of computer science & Technology, Host
- 1、学习pagerank算法并熟悉其推导过程;
- 2、实现pagerank算法,理解阻尼系数β的作用;
- 3、将pagerank算法运用于实际,并对结果进行分析

5/9/2025

1

二任务描述

二 任务描述

◆ 任务一

- 实验数据:提供的数据集包含邮件内容(emails.csv),人名与id映射(persons.csv),别名信息(aliases.csv),emails文件中只考虑MetadataTo和MetadataFrom两列,分别表示收件人和寄件人姓名,但这些姓名包含许多别名,提供预处理代码preprocess.py以供参考。
- 由寄件人和收件人为节点构造有向图,不考虑重复边,编写pagerank算法的代码,根据每个节点的入度计算其pagerank值,迭代直到误差小于10e-8。
- 输出: 人名id及其对应的pagerank值。

5/9/2025

二任务描述

学术科技大学 计算机科学与技术学院 school of Computer Science & Technology,HUST

◆任务二

• 加入teleport β=0.8, 用以对概率转移矩阵进行修正, 解决dead ends和spider trap的问题。

5/9/2025

1

◆ PageRank算法流程:

5/9/2025

- ◆ 概率转移矩阵计算与迭代:
 - Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
 - Rank vector r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_{i} r_{i} = 1$
 - The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{\mathbf{d}_i}$$

等中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

- ◆ 概率转移矩阵计算与迭代:
 - Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
 - Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,....,1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_{1} < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the **L**₁ norm Can use any other vector norm, e.g., Euclidean

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

d_i out-degree of po

◆上述方法中的问题1 Spider Traps

Power Iteration:

- Set $r_j = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

m is a spider trap

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_{\rm m} = r_{\rm a}/2 + r_{\rm m}$$

Example:

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

◆上述方法中的问题2 Dead Ends

Power Iteration:

- Set $r_j = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

Iteration 0, 1, 2, ...

Here the PageRank "leaks" out since the matrix is not stochastic.

- ◆对概率转移矩阵进行修正
 - PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

[1/N]_{NxN}...N by N matrix where all entries are 1/N

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: $r = A \cdot r$ And the Power method still works!
- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg Jur β)

四验收流程

四 验收流程

- title及其对应的pagerank值;
- 验收时对代码的大致解释;
- 验收时的提问与回答。

