COMS W4701: Artificial Intelligence

Lecture 12: Intro to Machine Learning

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

- Decision trees
- Entropy and information gain

Linear classifiers and perceptrons

Neural networks

Review: Supervised Learning

- Many ML tasks involve classification or regression problems
- Classification: Given data input, predict an output label or class (discrete)
- Regression: Given data input, predict an output value (continuous)
- Supervised learning: Given training data with input-output pairs $(x_1, y_1), ..., (x_N, y_N)$ generated by an unknown function f, find a hypothesis to best approximate f
- Naïve Bayes solved this using a specific probabilistic model
- We can use other (non-probabilistic) models as well...

Learning a General Model

- Acquire labeled (classes and features) data and split into three categories
- Build a model that minimizes an error rate or maximizes a likelihood on training data
- Regularize model (tune hyperparameters) by maximizing performance on validation data
- Evaluate on test data: use different accuracy metrics to qualify performance

Training Data

Validation Data

> Test Data

Decision Tree Representation

- Classification is an episodic decision-making problem
- Make decisions given fixed information, instead of over time/space

- Suppose information is broken down by features
- Different feature values or combinations of values lead to a decision

- The decision function has a tree structure over the features
- "If f1=a then check if f2=x, elif f1=b then check if f3=y, elif..."

Example: Restaurant Wait Decision

- Input features: Attributes of restaurant, time/day, personal emotions
- Output decision: To wait or not to wait?

Nodes: Test of feature values

Branches: Possible feature values

Leaves: Decision value of function

Learning Decision Trees

- Decision tree classification is linear in number of features
- How do we learn one in the first place?

- We generally want a shallower tree with fewer tests and shorter paths
- Make decisions by checking as few features as possible

- Idea: Recursively identify "most significant" attribute in training data and build tree from the root
- Each feature splits to a separate path down the tree

Choosing Attributes

- A shallow decision tree should drive toward a decision as quickly as possible
- The "purer" the remaining classes of training examples in a tree leaf, the more informative the parent attribute
- Which attribute below gives us more information?

Entropy

- Entropy measures uncertainty: the "closeness" of a dataset to a uniform split
- Let d_c be proportion of dataset D that belong to class c

$$H(D) = -\sum_{c \in C} d_c \log_2(d_c)$$

- If D contains only one class c, then $d_c = 1$ and $H(D) = -\log_2(1) = 0$
- If D contains n data, k classes, and $\frac{n}{k}$ data per class, then $d_c = \frac{1}{k}$ and

$$H(D) = -k\left(\frac{1}{k}\right)\log_2\left(\frac{1}{k}\right) = \log_2(k)$$

More classes -> higher entropy

Entropy

$$H(D) = -\sum_{c \in C} d_c \log_2(d_c)$$

Information Gain

- We want to build a tree that *lowers* entropy with each attribute split
- Choose the attribute A at the current level to be the one that maximizes expected **information gain**, or expected entropy reduction

$$Gain(A) = H(D \text{ before splitting}) - E(H(D \text{ after splitting on } A))$$

Can also compute Gain(Type?) = 0, hence making *Patrons* a more informative attribute at this level of the tree!

Example: Hiring CS Students

Degree	Experience	Fav. Language	Needs Visa?	Hire?
Bachelors	Mobile Dev	Objective C	yes	yes
Masters	Web Dev	Java	no	yes
Masters	Web Dev	Java	yes	yes
PhD	Mobile Dev	Objective C	yes	yes
PhD	Web Dev	Objective C	yes	no
Bachelors	UX Design	Objective C	yes	no
Bachelors	Mobile Dev	Java	no	yes
PhD	Web Dev	Objective C	no	no
Bachelors	UX Design	Java	no	yes
Masters	UX Design	Objective C	yes	no
Masters	UX Design	Java	no	yes
PhD	Mobile Dev	Java	no	no
Masters	Mobile Dev	Java	yes	yes
Bachelors	Web Dev	Objective C	no	no

Entropy of data:
$$H = -\left(\frac{8}{14}\log_2\frac{8}{14}\right) - \left(\frac{6}{14}\log_2\frac{6}{14}\right) = 0.985$$

Root Attribute: Favorite Language

- Need to choose an attribute for the root of the decision tree
- If we choose Favorite Language:

Fav. Language	Hire?
Objective C	yes
Java	yes
Java	yes
Objective C	yes
Objective C	no
Objective C	no
Java	yes
Objective C	no
Java	yes
Objective C	no
Java	yes
Java	no
Java	yes
Objective C	no

$$H = -\left(\frac{2}{7}\log_2\frac{2}{7} + \frac{5}{7}\log_2\frac{5}{7}\right) = 0.863 \qquad H = -\left(\frac{6}{7}\log_2\frac{6}{7} + \frac{1}{7}\log_2\frac{1}{7}\right) = 0.592$$

$$Gain = 0.985 - \left(\frac{7}{14}(0.863) + \frac{7}{14}(0.592)\right) = 0.258$$

Determining Attributes of Subtrees

- Favorite Language provides greatest information gain, so it becomes the tree root
- Self-exercise: Compute information gain for other attributes

Fav. Language	Hire?
Objective C	yes
Java	yes
Java	yes
Objective C	yes
Objective C	no
Objective C	no
Java	yes
Objective C	no
Java	yes
Objective C	no
Java	yes
Java	no
Java	yes
Objective C	no

Experience Attribute Following "Objective C"

- Let's try Experience after Objective C value of Favorite Language
- Pure split—max entropy gain!

Experience	Fav. Language	Hire?
Mobile Dev	Objective C	yes
Web Dev	Java	yes
Web Dev	Java	yes
Mobile Dev	Objective C	yes
Web Dev	Objective C	no
UX Design	Objective C	no
Mobile Dev	Java	yes
Web Dev	Objective C	no
UX Design	Java	yes
UX Design	Objective C	no
UX Design	Java	yes
Mobile Dev	Java	no
Mobile Dev	Java	yes
Web Dev	Objective C	no

Degree Attribute Following "Java"

- Let's try Degree after Java value of Favorite Language
- Pure split—max entropy gain!

Degree	Fav. Language	Hire?
Bachelors	Objective C	yes
Masters	Java	yes
Masters	Java	yes
PhD	Objective C	yes
PhD	Objective C	no
Bachelors	Objective C	no
Bachelors	Java	yes
PhD	Objective C	no
Bachelors	Java	yes
Masters	Objective C	no
Masters	Java	yes
PhD	Java	no
Masters	Java	yes
Bachelors	Objective C	no

Learned Decision Tree

- Our learned decision tree correctly classifies all of our training data
- Smallest size possible—note that some attributes are unused!

Degree	Experience	Fav. Language	Needs Visa?	Hire?
Bachelors	Mobile Dev	Objective C	yes	yes
Masters	Web Dev	Java	no	yes
Masters	Web Dev	Java	yes	yes
PhD	Mobile Dev	Objective C	yes	yes
PhD	Web Dev	Objective C	yes	no
Bachelors	UX Design	Objective C	yes	no
Bachelors	Mobile Dev	Java	no	yes
PhD	Web Dev	Objective C	no	no
Bachelors	UX Design	Java	no	yes
Masters	UX Design	Objective C	yes	no
Masters	UX Design	Java	no	yes
PhD	Mobile Dev	Java	no	no
Masters	Mobile Dev	Java	yes	yes
Bachelors	Web Dev	Objective C	no	no

CS Hiring Decision Tree

Degree	Experience	Fav. Language	Needs Visa?	Hire?
Bachelors	Mobile Dev	Objective C	yes	yes
Masters	Web Dev	Java	no	yes
Masters	Web Dev	Java	yes	yes
PhD	Mobile Dev	Objective C	yes	yes
PhD	Web Dev	Objective C	yes	no
Bachelors	UX Design	Objective C	yes	no
Bachelors	Mobile Dev	Java	no	yes
PhD	Web Dev	Objective C	no	no
Bachelors	UX Design	Java	no	yes
Masters	UX Design	Objective C	yes	no
Masters	UX Design	Java	no	yes
PhD	Mobile Dev	Java	no	no
Masters	Mobile Dev	Java	yes	yes
Bachelors	Web Dev	Objective C	no	no

Hire (PhD, mobile, Java)?

CS Hiring Naïve Bayes

Pr(bachelors | + h) = 0.375 Pr(masters | + h) = 0.5 Pr(PhD | + h) = 0.125 Pr(bachelors | - h) = 0.333 Pr(masters | - h) = 0.167Pr(PhD | - h) = 0.5


```
Pr(visa \mid hire) = 0.5

Pr(no \ visa \mid hire) = 0.5

Pr(visa \mid no \ hire) = 0.5

Pr(no \ visa \mid no \ hire) = 0.5
```

```
Pr(mobile | + h) = 0.5

Pr(web | + h) = 0.25

Pr(UX | + h) = 0.25

Pr(mobile | - h) = 0.167

Pr(web | - h) = 0.5

Pr(UX | - h) = 0.333
```

```
Pr(Java \mid hire) = 0.75

Pr(ObjC \mid hire) = 0.25

Pr(Java \mid no \ hire) = 0.167

Pr(ObjC \mid no \ hire) = 0.833
```

```
Hire (PhD, mobile, Java)?

Yes: 0.571 \times 0.125 \times 0.5 \times 0.75 = 0.027

No: 0.429 \times 0.5 \times 0.167 \times 0.167 = 0.006
```

Decision Tree Considerations

- Many ways of choosing attributes (e.g., gain ratio, Gini index)
- Learning can be unstable: small differences in data can lead to very different trees
- Overfitting can occur when we have too many attributes
- Can split on rare or irrelevant attributes to obtain purer splittings
- Allow us to better classify training data, but vulnerable to noise in data
- Early stopping or pruning can help—simply pretend non-leaves are leaves
- Allow for non-pure splits and classification errors in training data
- In such cases, classify based on class plurality of remaining data

Linear Classifiers

- Idea: Feature inputs live in a high-dimensional vector space
- Distinct areas of the space correspond to distinct classes
- A weight vector w determines an activation score for a set of features

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

Output label depends on score

Binary Decision Boundary

- For a binary-class problem, score is compared to a threshold (e.g., 0) to classify an input
- The two classes correspond to two *linearly* separated regions of the feature space!
- Weight vector generates a linear separator
- Feature scores on boundary equal to 0
- Weight vector itself is *orthogonal* to the decision boundary

Score > 0: Predict class +1

Score < 0: Predict class -1

Score = 0: Tiebreaker choice

Example: Linear Classifier

Degree	Experience	Fav. Language	Needs Visa?	Hire?
Bachelors	Mobile Dev	Objective C	yes	yes
Masters	Web Dev	Java	no	yes
Masters	Web Dev	Java	yes	yes
PhD	Mobile Dev	Objective C	yes	yes
PhD	Web Dev	Objective C	yes	no
Bachelors	UX Design	Objective C	yes	no
Bachelors	Mobile Dev	Java	no	yes
PhD	Web Dev	Objective C	no	no
Bachelors	UX Design	Java	no	yes
Masters	UX Design	Objective C	yes	no
Masters	UX Design	Java	no	yes
PhD	Mobile Dev	Java	no	no
Masters	Mobile Dev	Java	yes	yes
Bachelors	Web Dev	Objective C	no	no

Deg	Exp	Lang	Visa?	Hire?
0	0	-1	1	1
1	1	1	-1	1
1	1	1	1	1
-1	0	-1	1	1
-1	1	-1	1	-1
0	-1	-1	1	-1
0	0	1	-1	1
-1	1	-1	-1	-1
0	-1	1	-1	1
1	-1	-1	1	-1
1	-1	1	-1	1
-1	0	1	-1	-1
1	0	1	1	1
0	1	-1	-1	-1

Example: Linear Classifier

Activation score is

$$w \cdot f(x) = (w_{deg}, w_{exp}, w_{lang}, w_{visa}) \cdot f(x)$$

- Suppose we have weights w = (3,2,2,0)
- Equation of a hyperplane in 4D space:

$$y = 3f_{deg}(x) + 2f_{exp}(x) + 2f_{lang}(x) + 0f_{visa}(x)$$

- $w \cdot f(x_1) = 3(0) + 2(0) + 2(-1) = -2 ->$ No hire
- $w \cdot f(x_2) = 3(1) + 2(1) + 2(1) = 7 -> Hire$
- $w \cdot f(x_{14}) = 3(0) + 2(1) + 2(-1) = 0 \rightarrow \text{Tie}$

f(x)	Deg	Exp	Lang	Visa?
x_1	0	0	-1	1
x_2	1	1	1	-1
x_3	1	1	1	1
x_4	-1	0	-1	1
x_5	-1	1	-1	1
<i>x</i> ₆	0	-1	-1	1
<i>x</i> ₇	0	0	1	-1
<i>x</i> ₈	-1	1	-1	-1
<i>x</i> ₉	0	-1	1	-1
<i>x</i> ₁₀	1	-1	-1	1
<i>x</i> ₁₁	1	-1	1	-1
<i>x</i> ₁₂	-1	0	1	-1
<i>x</i> ₁₃	1	0	1	1
<i>x</i> ₁₄	0	1	-1	-1

Binary Perceptron Learning Rule

- We've assumed a linear model. How to learn the weights?
- Error-driven learning: Use current model (weights) to classify training data; update model if results are incorrect

Initialize weights w (e.g., all 0) and learning rate α

While not converged:

For each training instance f(x):

Predict class y using current weights w

If incorrect $(y \neq y^*)$:

Update weights: $w \leftarrow w + \alpha(y^* \times f(x))$

Example: CS Hiring

- Initialize w = (0,0,0,0), $\alpha = 1$; ties predict hire (1)
- $f(x_1)$ to $f(x_4)$: Predict **hire (1)**, no update to w
- $w \cdot f(x_5) = 0$: incorrectly predict **hire (1)**
 - $w \leftarrow w f(x_5) = (1, -1, 1, -1)$
- $w \cdot f(x_6) = -1$; correctly predict **no hire (-1)**
- $w \cdot f(x_7) = 2$; correctly predict **hire (1)**
- $w \cdot f(x_8) = -2$; correctly predict **no hire (-1)**
- ..
- What's the next update to w?

Sample	Deg	Ехр	Lang	Visa?	Hire?
1	0	0	-1	1	1
2	1	1	1	-1	1
3	1	1	1	1	1
4	-1	0	-1	1	1
5	-1	1	-1	1	-1
6	0	-1	-1	1	-1
7	0	0	1	-1	1
8	-1	1	-1	-1	-1
9	0	-1	1	-1	1
10	1	-1	-1	1	-1
11	1	-1	1	-1	1
12	-1	0	1	-1	-1
13	1	0	1	1	1
14	0	1	-1	-1	-1

Multiclass Perceptron

- What if we have more than two classes?
- Feature space is split into multiple regions!

- Multiple weight vectors, one for each class
- Compute activation score for each class: $w_y \cdot f(x)$
- Predicted class is the one with largest score:

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$

Multiclass Perceptron Learning Rule

- Error-driven learning can also learn a multiclass perceptron
- We perform weight updates for both the correct and incorrect classes!

Initialize weights w_c for each class c and learning rate α **While** not converged:

For each training instance f(x):

Obtain predicted class y using argmax rule

$$y = \operatorname{arg\,max}_y w_y \cdot f(x)$$

If incorrect $(y \neq y^*)$: Update weights for classes y and y^*

$$w_y \leftarrow w_y - \alpha f(x)$$
 Wrongly predicted class $w_y^* \leftarrow w_y^* + \alpha f(x)$ Correct class

Example: Multiclass CS Hiring

- Weights so far: $w_{-1} = (0,0,0,0)$, $w_0 = (1,1,1,-1)$, $w_1 = (0,0,-1,1)$, $\alpha = 1$; ties predict -1
- $f(x_1), ..., f(x_4)$ all correct
- $\operatorname{argmax} w_i \cdot f(x_5) = 1$; incorrect
 - $w_1 \leftarrow w_1 f(x_5) = (1, -1, 0, 0)$
 - $w_{-1} \leftarrow w_{-1} + f(x_5) = (-1,1,-1,1)$
- $\operatorname{argmax} w_i \cdot f(x_6) = -1$; incorrect
 - $w_{-1} \leftarrow w_{-1} f(x_6) = (-1,2,0,0)$
 - $w_0 \leftarrow w_0 + f(x_6) = (1,0,0,0)$
- $\operatorname{argmax} w_i \cdot f(x_7) = -1$; **incorrect**...

Sample	Deg	Exp	Lang	Visa?	Hire?
1	0	0	-1	1	1
2	1	1	1	-1	0
3	1	1	1	1	0
4	-1	0	-1	1	1
5	-1	1	-1	1	-1
6	0	-1	-1	1	0
7	0	0	1	-1	1
8	-1	1	-1	-1	-1
9	0	-1	1	-1	0
10	1	-1	-1	1	-1
11	1	-1	1	-1	1
12	-1	0	1	-1	-1
13	1	0	1	1	1
14	0	1	-1	-1	-1

Perceptron Properties and Issues

- Weights will thrash if data is not linearly separable!
- Use adaptive learning rate that decreases over time
- Forego perfect accuracy on training data

- Otherwise, perceptron will eventually converge with finite number of updates
- (See perceptron convergence theorem)
- But may overfit and not generalize very well
- Also mediocre solutions, such as barely separating margins

Perceptrons as Neurons

- Perceptron uses a hard threshold to find output from linear combination of inputs
 - Not limited to linear functions (e.g. kernels)

• We can use other activation functions and combine multiple outputs together!

■ Neural network: Set of nodes N, links and weights $w_{i,j}$, activation function g

$$a_j = g(in_j) = g\left(\sum_i w_{i,j}a_i\right)$$

Example: XOR Function

- No linear separator exists for these 4 points
- Need some kind of nonlinear decision boundary

How about multiple perceptrons?

Example: XOR Function

•
$$x = (a_1, a_2) = (0,0) \rightarrow a_3 = 0, a_4 = 1 \rightarrow a_5 = 0$$

•
$$x = (a_1, a_2) = (1,1) \rightarrow a_3 = 1, a_4 = 0 \rightarrow a_5 = 0$$

•
$$x = (a_1, a_2) = (0,1) \rightarrow a_3 = 1, a_4 = 1 \rightarrow a_5 = 1$$

•
$$x = (a_1, a_2) = (1,0) \rightarrow a_3 = 1, a_4 = 1 \rightarrow a_5 = 1$$

$$a_3 = \text{sgn}(a_1 + a_2 - 0.5)$$

$$a_4 = \operatorname{sgn}(-a_1 - a_2 + 1.5)$$

Multilayer Perceptrons

- Universal approximation theorem: Any continuous (including nonlinear!)
 function can be approximated with a two-layer network*
 - *With certain requirements on activation function

Activation Functions

We aren't limited to the step threshold as our activation function

• Sigmoid:
$$S(z) = \frac{1}{1 + \exp(-z)}$$

■ Tanh:
$$tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$$

• Rectified linear unit: ReLU(z) = max(0, z)

Example: Combining Sigmoids

Training Network Weights

- How to find the network weights? We generally want to minimize some loss function
- E.g., quadratic loss: $E(x) = \sum_{i=1}^{\infty} (y_i \hat{y}_i)^2$
- Or any other functions that are "easy" to optimize over
- Idea: Make a prediction on a training data instance
- If incorrect, find error contribution from each network unit

Weights can then be updated according to gradient descent

Many Other ML Tasks...

Regression (linear and otherwise) for continuous data

- Unsupervised learning and clustering
- How to detect patterns in unlabeled data?

 Reinforcement learning: Using neural networks to represent Q-functions instead of explicit Q-values

Learning probabilistic model structure and parameters