Załączniki

A. Parametry modeli obiektów cieplnych

A.1. Wartości parametrów fizycznych i wskaźników energetycznych

A.1.1 Przybliżone wartości własności materiałów na potrzeby analizowanych obiektów

Tab. IV-1. Własności substancji

	gęstość ρ[kg/m³]	ciepło właściwe c_p [J/kgK]	wsp.przewodności cieplnej λ [W/mK]
Powietrze	1.2	1 000	1 000.0
Woda	960.0	4 175	4 175.0
Olej	1 200.0	2 400	2 400.0
Materialy budowlane			
- drewno (sosna)	550.0	2510	0.16
- beton komórkowy	800.0	840	0.29
- cegła dziurawka	1 400.0	880	0.62
- cegła pełna	1 800.0	880	0.77
Izolacja			
- wełna mineralna	70.0	750	0.05
- styropian	12.0	1460	0.043

A.1.2 Klasyfikacja energetyczna budynków

W przypadku budynków w praktyce najłatwiej jest uzyskać takie informacje jak:

1. **Wskaźnik jednostkowego zużycia ciepła E**, oznaczający całoroczne zapotrzebowanie budynku na ciepło (ogrzewanie i c.w.u.) odniesione do powierzchni budynku [kWh/(m²·rok)] lub do kubatury [kWh/(m³·a)]. Wskaźnik decyduje o klasie energetycznej budynku.

Klasyfikacja energetyczna według Stowarzyszenia na Rzecz Zrównoważonego Rozwoju

Klasa	Ocena energetyczna	Wskaźnik E	Okres budowy
energetyczna		$[kWh/(m^2 \cdot rok)]$	-
A+	Pasywny	< 15	
A	Niskoenergetyczny	15÷ 45	aktualnie
В	Energooszczędny	45÷ 80	aktuaiiiic
С	Średnio energooszczędny	80÷100	
D	Średnio energochłonny	100÷150	od 1999 r.
E	Energochłonny	150÷250	do 1998 r.
F	Wysoko energochłonny	> 250	do 1982 r.

[źródło: Źurawski J., Energochłonność budynków mieszkalnych, www.cieplej.pl , dostęp 07.02.2011r)]

2. Roczne zapotrzebowanie na ciepło E_{suma} danego budynku o powierzchni A_{bud} :

$$E_{suma} = EA_{bud} = E_{bud} + E_{cwu} \tag{IV-1}$$

Zapotrzebowanie obejmuje całkowite zużycie ciepła w budynku:

 E_{bud} – sezonowe zapotrzebowanie na ciepło (obciążenie cieplne) budynku,

 E_{cwu} – roczne zapotrzebowanie na cwu.

- 3. **Sezonowe (roczne) zapotrzebowanie na cieplo** danego budynku (obciążenie cieplne) E_{bud} [kWh], uwzględniające wszystkie straty ciepła przez ściany, okna i wentylację.
- 4. **Nominalna moc cieplna na ogrzewanie** budynku, *q_{budN}* [kW]:

$$q_{budN} = E_{bud} / t_u \tag{IV-2}$$

gdzie t_u - czas użytkowania mocy nominalnej (wyznaczany empirycznie; ok. 1 800-2 200 godzin).

5. Współczynnik zapotrzebowania budynku na ciepło, k_q [W/m²]:

$$q_{budN} = k_a A_{bud} \tag{IV-3}$$

gdzie A_{bud} - powierzchnia ogrzewanego budynku (całkowita).

Przyjmuje się średnie wartości k_q na następującym poziomie:

- 1. stare budynki bez ocieplenia > 80,
- 2. budynki stare/nowe słabo ocieplone (5cm izolacji) 60 70,
- 3. budynki stare/nowe średnio ocieplone (10cm izolacji) 45 55,
- 4. budynki stare/nowe dobrze ocieplone (>20cm izolacji) 35 45,
- 5. budynki energooszczędne 10÷25.

A.2. Weryfikacja parametrów modelu na podstawie zużycia ciepła i własności materiałów

Poniższa weryfikacja polega na oszacowaniu parametrów przegród (ścian) na podstawie typowych wskaźników energetycznych typowych budynków. Dopisać

A.2.1 Przenikanie ciepła – opis transportu ciepła przez przegrody

Transport ciepła przez przegrodę nazywa się przenikaniem ciepła i jest opisywany zależnością:

$$q = K(T_1 - T_2) = K_A(T_1 - T_2)A = \frac{T_1 - T_2}{R}A$$
 (IV-4)

gdzie: q – strumień (natężenie przepływu) ciepła (W), T_1 - T_2 – różnica temperatur po obu stronach przegrody (°C), K – współczynnik przenikania całej przegrody (W/K), K_A – powierzchniowy współczynnik przenikania przegrody (W/(m^2 -K)), R - opór przenikania ciepła (m^2 -K/W).

Aby ocenić dokładność powyższego opisu przenikania ciepła przez przegrodę, rozważmy podstawowe elementy tego zjawiska (Rys. IV-1), które niezależnie od grubości przegrody obejmują:

- wnikanie ciepła z cieplejszego otoczenia do przegrody,
- przewodzenie ciepła przez przegrodę,
- przejmowanie ciepła z przegrody przez chłodniejsze otoczenie.

Rys. IV-1. Przenikanie ciepła przez przegrodę (stan ustalony)

Wśród tych zjawisk podstawowym mechanizmem jest **przewodzenie ciepła**, opisywane przez prawo Fouriera w postaci:

$$q_{p} = \frac{\lambda A}{a_{g}} \left(T_{w1} - T_{w2} \right) = \frac{T_{w1} - T_{w2}}{R_{p}} A \tag{IV-5}$$

gdzie: q - strumień ciepła (W), λ - współczynnik przewodności cieplnej materiału (W/(m·K)), a_g - grubość przegrody (m), A - powierzchnia przegrody (m²), R_p - opór przewodzenia ciepła (m²K/W). **Wnikanie i przejmowanie ciepła** do/z przegrody, czyli przenoszenie ciepła w warstwie granicznej pomiędzy ośrodkiem płynnym/gazowym a stałą przegrodą nosi nazwę **konwekcji**, a przenoszony strumień ciepła q (W) opisuje wzór Newtona:

$$q_w = \alpha (T_w - T)A = \frac{T_w - T}{R_w} A, \qquad (IV-6)$$

gdzie: α – współczynnik wnikania/przejmowania (W/(m²·K)), T_w – temperatura powierzchni przegrody (°C), T – temperatura otoczenia przegrody (°C), A – powierzchnia przegrody (m²), R_w – opór wnikania/przejmowania ciepła (m²·K/W). Współczynnik α zależy w pewien sposób od współczynnika przewodzenia materiału przegrody λ , ale znaczny wpływ mają także warunki jakie panują w otoczeniu przegrody, takie jak ruch i wielkość otoczenia.

Wartość współczynnika przenikania K i oporu przenikania R jest wypadkową parametrów przewodzenia i konwekcji ciepła. Aby wyznaczyć tą zależność w stanie ustalonym podzielimy całkowitą różnicę temperatur po obu stronach przegrody na poszczególne zjawiska:

$$T_1 - T_2 = (T_1 - T_{w1}) + (T_{w1} - T_{w2}) + (T_{w2} - T_2)$$
 uzgodnić znaki (IV-7)

Wykorzystując wzory na przenikanie (IV-4), przewodzenie (IV-5) i konwekcję (IV-6) otrzymujemy:

$$\frac{qR}{A} = \frac{q_{w1}R_{w1}}{A} + \frac{q_pR_p}{A} + \frac{q_{w2}R_{w2}}{A}$$
 (IV-8)

W stanie ustalonym strumień ciepła przenikający przez przegrodę (q) jest równy strumieniowi, który wnika do przegrody (q_{w1}) , jest przewodzony przez przegrodę (q_p) i przejmowany przez otoczenie (q_{w2}) , czyli $q=q_{w1}=q_p=q_{w2}$, a to oznacza, że opór przenikania ciepła jest sumą oporów wnikania/przejmowania oraz oporu przewodzenia ciepła przez przegrodę:

$$R = R_{w1} + R_p + R_{w2} (IV-9)$$

natomiast związek współczynnika przenikania, wnikania/przejmowania i przewodzenia ma postać:

$$\frac{1}{K_A} = \frac{1}{\alpha_1} + \frac{a_g}{\lambda} + \frac{1}{\alpha_2} \tag{IV-10}$$

Powyższe rozważanie można rozszerzyć na przypadek przegrody wielowarstwowej - opór przenikania *R* przegrody wielowarstwowej:

R KOPIS!

Metodologia symulacyjnych bada dynamiki obiektów z zastosowaniem pakietów Matlab i Scilab

$$R = R_{w1} + \sum_{i} R_{pi} + R_{w2}$$
 (IV-11)

i współczynnik przenikania K przegrody wielowartstwowej:

$$\frac{1}{K_A} = \frac{1}{\alpha_1} + \sum_i \frac{a_{gi}}{\lambda_i} + \frac{1}{\alpha_2}$$
 (IV-12)

gdzie *i* wskazuje na parametry materiału poszczególnych warstw przegrody. W normach budowlanyh współczynnik K_A (W/(m²·K)) jest oznaczany literą U.

Wnioski:

- 1. Wypadkowy współczynnik przenikania *K* wielowarstwowej ściany może być wyznaczony na podstawie zależności (IV-1) oraz wartości strumienia ciepła i różnicy temperatur znanych na przykład z projektu budowlanego
- 2. Transport ciepła przez "grube" przegrody opisany jako przenikanie z otoczenia do ściany oraz ze ściany do otoczenia (Rys. II-2) to zabieg pozwalający na uwzględnienie akumulacji ciepła w ścianach. Formalnie przepływ ciepła z otoczenia do ściany oraz ze ściany do otoczenia to zjawiska wnikania/przejmowania (konwekcji), które występują łącznie z przewodzeniem ciepła przez przegrodę (przenikanie ciepła przez przegrodę opisuje cały proces niezależnie od grubości przegrody).
- 3. Stosowanie zależności pomiędzy współczynnikiem przenikania K a wymiarami i konstrukcją przegrody, to znaczy powierzchnią A_w (m²), grubością a_g (m) i jednostkowym współczynnikiem przenikania k (W/(mK)) w postaci:

$$K = kA_w / a_g (IV-13)$$

nawiązuje do podstawowego elementu przenikania, czyli zjawiska przewodzenia (IV-5), które zależy od grubości przegrody. Natomiast zjawisko wnikania/przejmowania ciepła, które jest również elementem przenikania, nie zalezy od grubości przegrody (zazwyczaj ma jednak mniejsze znaczenie niż przewodzenie). pisać kiedy?

Analogia układów cieplnych i elektrycznych

Na podstawie wzorów (IV-9) \div (IV-12) można sformułować analogię pomiędzy przenikaniem ciepła przez wielowarstwową przegrodę a szeregowym łączeniem rezystancji w układach elektrycznych: opór przenikania/wnikania/przewodzenia \leftrightarrow opór (rezystancja) opornika, współczynnik przenikania/wnikania/przewodzenia \leftrightarrow przewodność (konduktancja) opornika. Natomiast cieplną analogią równoległego połączenia oporników jest przegroda złożona z różnych elementów ustawionych obok siebie – opór cieplny R takiej przegrody to:

$$\frac{1}{R} = \sum_{i} \frac{1}{R_1} \tag{IV-14}$$

a współczynnik przenikania:

$$K = \sum_{i} K_{i} \tag{IV-15}$$

Takie ustawienie elementów przy znacznej różnicy współczynników przenikania nazywa się mostkiem cieplnym. Dodać/zamienić na rysunki do analogii, oraz przykład (ściana z izolacją, ściana z oknem)?

[źródło: Txt.skrypt/SkryptCiepłownictwo/8_Przenikanie_ciepła, Txt.skrypt/SkryptCiepłownictwo/TMiC-NS-S-konwekcja-i-przenikanie NS]

źródło: http://pneumatyka.info.pl/index.php/Wymiana_ciep%C5%82a (dostęp 01.08.2019)

A.2.2 Pojemność cieplna jednorodnych ścian

W prostych obliczeniach przedstawionych poniżej, przy założeniu, że przegrody zawierają okna ale poza tym są wykonane z jednorodnego materiału, tzn.:

$$q_{pom} = (K_{cws} + K_{cwo})\Delta T = \left(\lambda_s \frac{A_{ws}}{a_{1 crub}} + U_{wokno} A_{wo}\right)\Delta T$$
 uzgodnić oznaczenia z A2.1

Kolejno zakładamy i obliczamy:

- 1) powierzchnię mieszkalną A_{bud} 100 m² (mały)
- 2) ilość użytkowników n_u od tego zależy ilość cwu
- 3) zapotrzebowanie na m2E- 100kWh/m²rok (lata 80), 70-80 kWh/m²rok (współcześnie) podgrzanie cwu E_{cwu} =0 m.in. zależy od ilości osób; na razie=0 obciążenie cieplne $E_{bud} = E A_{bud} E_{cwu}$
- 4) czas użytkowania mocy szczytowej $t_{ms} = 2000 \text{ godz} (1 800-2 200 \text{ godzin})$

©PWr

- 5) okna U_{wokno} 1,6 W/(m²·K), 1.3 (oszczędne), 0.6 (b.oszczędne)
- 6) różnica temperatur wew-zew w warunkach obliczeniowyh ΔT =40°C = T_{wewN} - T_{zewN}
- 7) całkowite straty (moc cieplna) $q_{budN} = E_{bud} / t_{ms}$, w tym: straty przez ściany $q_{pomN} = 0.7 q_{budN}$ straty na wentylację $q_{wenN} = 0.3 q_{budN} (30\% \text{ ciepła na wentylację})$
- 8) szerokość a_{1s} , więc długość $a_{1d} = A_{bud} / a_{1s}$
- 9) wysokość a_{1w} 2.5
- 10) powierzchnia przegród zewnętrznych budynek wolnostojący $A_w = 2 (a_{Is} + a_{Id}) a_{Iw}$, w tym: powierzchnia okien $A_{wo} = 0.2 A_w$, powierzchnia ścian $A_{ws} = 0.8 A_w$, $q_{oknoN} = U_{wokno} A_{wo} \Delta T$ (25-40% ciepła przez okna) $q_{scianaN} = q_{pomN} q_{oknoN}$
- 11) grubość ścian $a_{1grub} = \lambda_s A_{ws} \Delta T / q_{scianaN}$
- 12) pojemności cieplne $C_{vs} = (A_{ws} \ a_{1grub}) \ c_p \ \rho \ / \ skala$

Tab. IV-2. Przykładowe obliczenia grubości i pojemności cieplnej jednorodnych ścian

$A_{bud} = 100 \text{ m}^2$		rzebowa				E = 100		E = 140	$q_{budN} =$	E = 260	$q_{budN} =$
$a_{1w} = 2.5 \text{ m}$	i straty budynku →			4 kW	kWh	5 kW	kWh	7 kW	<u>kWh</u>	13 kW	
$U_{wokno} = 1.6 \text{ W/(m}^2 \cdot \text{K)}$	Parametry mater. \		$m^2 rok$		$\overline{m^2 rok}$		$\overline{m^2 rok}$		$\overline{m^2 rok}$		
$t_{ms} = 2000 \text{ godz}$	ρ , kg/m ³	c_p , J/(kg·K)	λ, W/(m·K)	a_{lgrub}	C_{vs} Wh/K	a_{lgrub}	***	a_{lgrub}		a_{1grub}	C_{vs} Wh/K
36	Kg/III	J/(Kg·K)	W/(III ⁻ K)	111	WII/K	m	VV 11/ IX.	m	VV 11/ IX.	m	W II/ K
Materiał budowlany:											
1) drewno (sosna)	550	2510	0.16	0.53	20 452	0.34	12 917	0.19	7 437	0.08	3 272
2) beton komórkowy	800	840	0.29	0.97	18 044	0.61	11 396	0.35	6 561	0.15	2 887
3) dziurawka	1400	880	0.62	2.07	70 726	1.31	44 669	0.75	25 719	0.33	11 316
4) cegła pełna	1800	880	0.77	2.57	112 930	1.62	71 326	0.93	41 067	0.41	18 069
Izolacja:											
5) wełna mineralna	70	750	0.05	0.17	243	0.11	154	0.06	88	0.03	39
6) styropian	12	1460	0.043	0.14	70	0.09	44	0.05	25	0.02	11

Uwaga: Pojemność cieplna jest wyrażona Wh/K (Wh/K * skala = J/K), skala=3600 sek/godz,

A.2.3 Pojemność cieplna ścian z izolacją (ścian wielowarstowowych)

W dokładniejszych obliczeniach należy założyć, że przegrody zawierają okna i są wykonane z materiału budowlanego i określonej warstwy materiału izolacyjnego, tzn.: uzgodnić oznaczenia z A2.1

$$q_{pom} = \left(K_{cws}^* + K_{cwo}\right) \Delta T = \left(\frac{1}{\frac{a_{1grub}}{\lambda_s} + \frac{a_{1izo}}{\lambda_{izo}}} A_{ws} + U_{wokno} A_{wo}\right) \Delta T$$

Wówczas punkt 11 obliczeń przyjmuje postać:

11) grubość ścian $a_{Igrub} = \lambda_s \left(A_{ws} \Delta T / q_{scianaN} - a_{Iizo} / \lambda_s \right)$

Tab. IV-3. Przykładowe obliczenia grubości i pojemności cieplnej ścian z izolacja styropianiowa

140. 17 3. 112 ykladowe obliczenia grubości i pojenniości ciepniej ścian z izotacją styropianiową											
$A_{bud} = 100 \text{ m}^2$	Zapot	rzebow	anie	E= 80	$q_{budN} =$	E = 100	$q_{budN} =$	E = 140	$q_{budN} =$	E = 260	$q_{budN} =$
$a_{Iw} = 2.5 \text{ m}$	i straty budynku →			4 kW	kWh	5 kW	kWh_	7 kW	<u>kWh</u>	13 kW	
	Parametry mater. ↓		$m^2 rok$		$\overline{m^2 rok}$		$m^2 rok$		$m^2 rok$		
$t_{ms} = 2000 \text{ godz}$	ρ ,	c_p ,	λ,	a_{1grub}	C_{vs}	a_{lgrub}	C_{vs}	a_{1grub}	C_{vs}	a_{1grub}	C_{vs}
$a_{1izo} = 5$ cm styropian	kg/m ³	J/kgK	W/mK	m	XX 71 (XZ		XX 71 /X 7		***	m	Wh/K
Materiał budowlany:											
1) drewno (sosna)	550	2510	0.16	0.347	13 317	0.151	5 783	0.008	302	<0	-
2) beton komórkowy	800	840	0.29	0.630	11 750	0.273	5 102	0.014	267	<0	_
3) dziurawka	1400	880	0.62	1.346	46 054	0.584	19 997	0.031	1 047	<0	_
4) cegła pełna	1800	880	0.77	1.671	73 538	0.726	31 931	0.038	1 671	<0	

Uwaga: Pojemność cieplna jest wyrażona Wh/K (Wh/K * skala = J/K), skala=3600 sek/godz,

A.2.4 Pojemność cieplna jako poprawka

dopisać, pokazać przykład

B. Wyniki działania i rozszerzenia skryptów

B.1. Wykaz plików do symulacji

	o/Simulink/Control	Scilab/Xcos			
Pliki	Bloki i główne funkcje	Pliki	Bloki i główne funkcje	Opis	
obl_skryptl.m obl.mdl	Integrator, Step, To Workspace, Gain, Sum, Product, sim, figure, plot	ob1_skrypt1sce ob1.xcos	INTEGRAL_f, CLOC_c STEP_FUNCTION, TOWS_C, GAINBLK_f, BIGSOM_f, PRODUCT, loadXcosLibs, importXcosDiagram, scicos simulate, figure, plot	2.2.2 2.2.3	
ob2_skrypt1.m ob2.mdl	State-Space, Step, To Workspace Mux, Demux sim, figure, plot	ob2_skrypt1.sce ob2.xcos	CLSS, CLOC_c STEP_FUNCTION, TOWS_C, MUX, loadXcosLibs, importXcosDiagram, scicos_simulate, figure, plot	2.3.2 2.3.3	
ob2_skrypt2.m	ss, sim, figure, plot	ob2_skrypt2.sce		2.4.2	
ob3_skrypt1.m ob3.mdl	Transfer Fcn, Step, To Workspace Sum, Constant sim, figure, plot	ob3_skrypt1.sce ob3.xcos	CLR, CLOC_c STEP_FUNCTION, TOWS_C, BIGSOM_f, CONST_m, loadXcosLibs, importXcosDiagram, scicos_simulate, figure, plot	2.3.4 2.3.5	
ob3_skrypt2a.m	tf, sim, figure, plot			0	
ob3_skrypt2b.m	tf, sim, figure, plot	ob3_skrypt2b.sce		0	
ob1_skrypt0.m			plik funkcyjny	2.5.2	

55

B.2. Prosta analiza czasowa obiektu (I-2) i charakterystyki statyczne

Rys. IV-2 przedstawia reakcje na wymuszenia skokowe (dQ=5%QgN, dTzew=1, dFp=20%FpN) w 3 punkach pracy:

Rys. IV-2. Reakcje obiektu na wymuszenia w różnych punktach pracy (ob1 skrypt.m, wykresy po sformatowaniu)

Rys. IV-3 przedstawia wykresy przesunięte, tak aby ułatwić porównania reakcji obiektu na takie samo zakłócenie w różnych punktach pracy.

Rys. IV-3. Porównanie reakcji obiektu na wymuszenia w różnych punktach pracy

Rys. IV-4 zawiera rodziny charakterystyk statycznych obiektu, przy następujących parametrach:

	Tzew0=	Fp0=	Qg0=	Fp0=	Qg0=	Tzew0=
czerwony	TzewN	FpN	QgN	FpN	QgN	TzewN
zielony	-5	FpN	QgN*0.4	FpN	QgN*0.4	-5
niebieski	-5	FpN*0.3	QgN*0.4	FpN*0.3	QgN*0.4	-5

Dla kontroli zaznaczono punkt nominalny (obliczeniowy) – znajduje się na charakterystyce z parametrami nominalnymi

Rys. IV-4. Charakterystyki statyczne i punkt obliczeniowy (wykresy po sformatowaniu)

B.3. Formatowanie wykresów (Matlab)

Funkcja Matlab do formatowania okna z wykresami: białe tło, zadane wymiary, mniejsze czcionki

```
function formatF(szer, wys)
set(gcf(), 'Color',[1,1,1]);
                                 %biały kolor tła
                               %odczytaj pozycję i wielkość
pos=get(gcf(),'Position');
pos(3)=szer; pos(4)=wys;
                                %pos(3)-szerokość, pos(4)-wysokość
set(gcf(), 'Position', pos); %ustaw pozycję i wielkość
tabaxis = get(gcf(), 'Children');
                                     %odczyt identyfikatorów wykresów (axis)
for i=1:size(tabaxis,1)
  if strcmp (get(tabaxis(i), 'Type'), 'axes')
     set(tabaxis(i), 'FontSize', 7)
                                                         %opis siatki (skali)
     set(get(tabaxis(i),'Title'), 'FontSize', 7)
                                                        %tytuł okna
     set(get(tabaxis(i),'XLabel'),'FontSize', 7)
set(get(tabaxis(i),'YLabel'),'FontSize', 7)
                                                         %tytuł osi x
                                                         %tytuł osi y
  end
end
end
```

B.4. Przesuwanie i skalowanie odpowiedzi skokowych

B.4.1 W środowisku Matlab

Funkcja step () generuje odpowiedź skokową badanego modelu, czyli odpowiedź na skok jednostkowy pojawiający się w chwili zero. Aby uzyskać odpowiedź na dowolne wymuszenie skokowe (Rys. IV.5) można wykorzystać wektory wartości generowane przez funkcję step () i narysować **odpowiedź skokową przeskalowaną i przesuniętą** do punktu pracy (stanu równowagi), Jeśli model jest typu SISO, to realizacja zadania jest bardzo prosta, bo dotyczy tylko jednego wykresu:

```
ObiektG11 = ... %definicja modelu SISO
u0=1; du=2; %parametry wymuszenia skokowego
x0=3; %punkt równowagi dla u0=1
[y, t] = step(ObiektG11);
plot(t, x0+y*du);

Rys.
```


W przypadku modelu MIMO funkcja step () realizuje pełne badanie modelu, czyli wygenerowanie reakcji na skok kolejno na każdym z wejść, co oznacza odpowiednio większy wymiar generowanych macierzy wartości y:

W nowszych wersjach Matlaba można zdefiniować parametry wymuszenia skokowego (wartość początkową i wartość skoku) wykorzystywane przez funkcję step() - funkcja stepDataOptions(). Można zdefiniować takie same parametrów skoku do wszystkich wejść modelu MIMO:

lub zróżnicować parametry dla poszczególnych wejść podając wektory odpowiednich wartości:

```
u0 = [1,3]; %wartości początkowe na wejściach
du = [2, 0.1]; %wielkość skoku na poszczególnych wejściach
stepDataOptions(); %odczytanie parametrów
opcje = stepDataOptions('InputOffset',u0, StepAmplitude',du);
step(ObiektG11);
```

B.4.2 W środowisku Scilab

Funkcja csim() również umożliwia zapamiętanie wygenerowanych wartości i narysowanie wykresu przeskalowanego i przesuniętego (Rys. IV.5), analogicznie jak powyżej:

Metodologia symulacyjnych bada dynamiki obiektów z zastosowaniem pakietów Matlab i Scilab

Funkcja csim() obsługuje modele SISO i SIMO. W przypadku modelu MIMO można go przekonwertować na transmitancje i generować wykresy dla każdej z transmitancji oddzielnie lub grupami względem kolejnych wejść (jako model SIMO):

C. Projekt dydaktyczny ("miniprojekt")

Celem projektu jest wykonanie podstawowych badań dynamiki obiektu:

- różnymi metodami symulacyjnymi (w trybie graficznym i tekstowym),
- za pomocą skryptów, które automatycznie realizują zadany program badań.

Przygotowanie (operacje mają być wykonane na symbolach):

- Przygotować komplet równań dynamicznych i statycznych.
- Wyprowadzić wzory do identyfikacji współczynników i obliczania punktów równowagi.
- Wyprowadzić wzory na równania stanu (macierze) i transmitancje.

Badania symulacyjne:

- charakterystyki statyczne,
- w dziedzinie czasu zbadać (i porównać) reakcje obiektu w różnych punktach pracy (równowagi) na zmianę na każdym z wejść (oddzielnie),
- w dziedzinie częstotliwości wykonać wykresy Bodego i porównać z wykresami asymptotami rysowanymi ręcznie.

Wariant I: Realizacja badań w trybie graficznym (schemat z blokami całkującymi)

```
a) Punkty pracy, jeśli zmiennymi wejściowymi są (zależnie od zadania):
```

```
o moc P, temperatura na zewnątrz T_{zew}, przepływ F: pkt1) P_0 = P_N pkt2) P_0 = P_N * d_{x\%} pkt3) P_0 = P_N * d_{x\%} T_{zew0} = T_{zewN} T_{zew0} = T_{zewN} + d_y T_{zew0} = T_{zewN} + d_y F_0 = F_N F_0 = F_N * d_{z\%} o temperatura zasilania T_{\#z}, temperatura na zewnątrz T_{zew}, przepływ F: pkt1) T_{z0} = T_{zN} pkt2) T_{z0} = T_{zN} + d_x pkt3) T_{z0} = T_{zN} + d_x T_{zew0} = T_{zewN} T_{zew0} = T_{zewN} + d_y T_{zew0} = T_{zewN} + d_y T_{zew0} = T_{zewN} + d_y gdzie: d_x, d_y, d_z – przesunięcie punktu pracy (dla mocy i przepływu procentowe, dla temperatur
```

bezwzględne)

b)Zmiany na wejściach (skok P, F, T_{zew}, T_z) rzędu 10% wartości nominalnych w przypadku mocy i

przepływu oraz 1-2 stopnie dla temperatur.
c) Zarejestrować zmienne wyjściowe obiektu. Porównać reakcje.

Wariant II: Realizacja badań w trybie graficznym (schemat z blokami State-space i Transfer Fcn)

a) Punkty równowagi jeśli zmiennymi wejściowymi są (zależnie od zadania):

Metodologia symulacyjnych bada dynamiki obiektów z zastosowaniem pakietów Matlab i Scilab

o moc P, temperatura na zewnątrz T_{zew}, przepływ F:

$$pkt1) P_0 = P_N pkt2) P_0 = P_N *d_{x\%}$$

$$T_{zew0} = T_{zewN}$$
 $T_{zew0} = T_{zewN} + d_y$

o temperatura zasilania T_{#z}, temperatura na zewnątrz T_{zew}, przepływ F:

we1)
$$T_{z0}=T_{zN}$$
 we2) $T_{z0}=T_{zN}+d_x$

$$T_{zew0}=T_{zewN}$$
 $T_{zew0}=T_{zewN}+d_y$

gdzie: d_x , d_y , d_z – przesunięcie punktu pracy (dla mocy i przepływu procentowe, dla temperatur bezwzględne)

- b)Zmiany na wejściach jw. Jeśli w układzie występuje przepływ to przyjąć, że jest to parametr modelu i zbadać model dla dwóch wartości F_N i F_N *d_{z%}
- c) Zarejestrować zmienne wyjściowe obiektu. Porównać reakcje.
- Powtórzyć te same badania (a÷c) dla modelu z blokami Transfer Fcn.

Wariant III: Realizacja badań w trybie tekstowym – przygotowanie i zakres jak wyżej.

Sprawozdanie:

- <u>krótkie</u> ale kompletne (założenia, warunki badań, wykresy, wnioski), tak aby odbiorca mógł powtórzyć (zweryfikować) przedstawione badania,
- wykresy muszą być uporządkowane (skale), opisane (tytuły, osie), ponumerowane (numer i podpis), mieć zwartą formę (pogrupowane), tak żeby można porównać wyniki i wyciągnąć wnioski.
- wnioski <u>w punktach</u> (np. co i dlaczego jest takie samo/różne) z odwołaniem do wykresów (lub tabel), które je ilustrują