Supplementary Materials for "A Change-Point Based Control Chart for Detecting Sparse Changes in High-Dimensional (Heteroscedastic) Data"

1 The SS_W Method Based on the Studentized Statistic

Based on the change-poiny model, the studentized statistic (SS) proposed by [1] with n observations and split point k are as follows,

$$T_{n,k}^{SS} = \max_{1 \le r \le p} \frac{\sqrt{k(n-k)}|\bar{X}_{k,r} - \bar{X}_{n-k,r}|}{\sqrt{k\hat{\sigma}_{k,r}^2 + (n-k)\hat{\sigma}_{n-k,r}^2}},\tag{1}$$

where $\bar{X}_{k,r}$ and $\bar{X}_{n-k,r}$ are the means of the rth variable (X_r) in the pre-shift sample and post-shift sample respectively. $\hat{\sigma}_{k,r}^2 = \sum_{i=1}^k (X_{i,r} - \bar{X}_{k,r})^2/k$, and $\hat{\sigma}_{n-k,r}^2 = \sum_{i=k+1}^n (X_{i,r} - \bar{X}_{n-k,r})^2/(n-k)$ are the pre-shift sample variance and the post-shift sample variance of variable $r(X_r)$.

The monitoring statistic in SS version at time point n, referred as U_n^{SS} , is the maximum value of $T_{n,k}^{SS}$ over all split points k,

$$U_n^{SS} = \max_{3 \le k \le n-3} T_{n,k}^{SS}. \tag{2}$$

The change-point τ can be estimated directly by the corresponding k when U_n^{SS} exceeds the control limits.

$$\hat{\tau}_n^{SS} = \arg_k \max_{3 \le k \le n-3} (T_{n,k}^{SS}). \tag{3}$$

The window based SS statistic is

$$T_{n,W,k^*}^{SS} = \max_{1 \le r \le p} \frac{\sqrt{k^*(W-k^*)} |\bar{X}_{k^*,r} - \bar{X}_{W-k^*,r}|}{\sqrt{k^* \hat{\sigma}_{k^*,r}^2 + (W-k^*) \hat{\sigma}_{W-k^*,r}^2}},\tag{4}$$

where k^* ($3 \le k^* \le W - 3$) is the split point inside the current window, and $\hat{\sigma}_{k^*,r}^2$ is the variance of observation $1 - k^*$ in window W_n . The corresponding charting statistic based on this window is

$$U_{n,W}^{SS} = \max_{3 \le k^* \le W - 3} T_{n,W,k^*}^{SS}. \tag{5}$$

If the control chart signals at time point n, the corresponding change-point estimate is

$$\hat{\tau}_{n,W}^{SS} = n - W + \arg_{k^*} \max_{3 \le k^* \le W - 3} T_{n,W,k^*}^{SS}. \tag{6}$$

2 Additional Simulation Results

Table 1 to Table 3 show the DR, CED of the proposed NS_W and SS_W methods in signal detection, and the CPE in signal diagnosis under Model I with $\tau = 10, 25, 50$ respectively. It is the baseline model.

Table 4 to Table 6 show the DR, CED of the proposed NS_W and SS_W methods in signal detection, and the CPE in signal diagnosis under Model II, which simulates the heteroscedasticity, with $\tau = 10, 25, 50$ respectively.

Table 7 to Table 9 show the DR, CED of the proposed NS_W and SS_W methods in signal detection, and the CPE in signal diagnosis under Model III, which considers the dependency among variables, with $\tau = 10, 25, 50$ respectively.

Table 10 to Table 12 show the DR, CED of the proposed NS_W and SS_W methods in signal detection, and the CPE in signal diagnosis under Model IV, an nonnormal distribution, with $\tau = 10, 25, 50$ respectively.

Table 1: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model I with $\tau=10$.

\overline{M}	lodel	II		D	\overline{R}			CI	ED			CI	\overline{PE}	
au	= 10	0	v =	10%	v =	25%	v =	10%	v = 1	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
		0.5	0.02	0.005	0.018	0.014	49.57	43.0	52.5	45.0	49.8	44.8	52.2	46.1
	20	1	0.078	0.018	0.114	0.028	23.8	36.9	17.7	25.4	23.7	37.7	16.3	23.3
	20	1.5	0.326	0.07	0.587	0.126	12.5	16.9	11.1	13.9	11.8	16.6	10.6	13.3
		2	0.772	0.222	0.984	0.412	10.5	12.3	10.1	11.3	10.3	11.7	10.0	10.7
		0.5	0.018	0.012	0.016	0.013	47.2	59.2	49.1	48.1	40.7	53.5	42.3	41.4
20	9.0	1	0.064	0.024	0.168	0.058	27.7	30.2	22.5	26.5	18.3	22.2	12.8	18.0
20	30	1.5	0.46	0.19	0.815	0.391	20.9	21.8	20.2	20.9	11.0	12.0	10.2	10.8
		2	0.934	0.568	0.998	0.886	20.1	20.1	20.0	20.1	10.2	10.1	10.1	10.1
		0.5	0.009	0.021	0.011	0.022	60.0	50.7	46.8	53.6	46.7	40.5	35.5	38.2
		1	0.074	0.068	0.167	0.125	32.4	37.6	32.4	34.9	13.4	19.4	13.9	16.6
	40	1.5	0.523	0.316	0.841	0.61	30.3	31.0	30.0	30.3	10.6	11.3	10.2	10.5
		2	0.964	0.811	1	0.989	30.0	30.2	30.0	30.0	10.1	10.1	10.1	10.2
		0.5	0.019	0.004	0.023	0.006	39.2	55.0	41.1	33.3	39.6	50.3	41.6	31.2
	20	1	0.076	0.005	0.157	0.014	22.4	37.0	13.2	25.7	22.5	38.4	12.7	26.1
	20	1.5	0.467	0.037	0.791	0.104	11.2	14.5	10.3	12.2	10.9	13.2	10.1	11.4
		2	0.961	0.205	0.999	0.459	10.2	11.1	10.0	11.1	10.0	10.2	10.0	10.5
		0.5	0.024	0.015	0.021	0.011	50.0	53.0	40.7	48.2	46.0	44.6	33.2	42.5
50	30	1	0.107	0.041	0.248	0.075	25.0	44.1	22.8	24.5	15.4	36.1	12.9	15.0
	30	1.5	0.718	0.287	0.94	0.504	20.3	21.0	20.0	20.6	10.4	10.9	10.1	10.5
		2	0.995	0.796	1	0.967	20.0	20.3	20.0	20.0	10.1	10.3	10.0	10.1
		0.5	0.014	0.024	0.016	0.022	53.2	60.4	43.4	53.2	40.6	47.0	24.1	40.7
	40	1	0.111	0.069	0.238	0.136	31.6	33.9	31.6	32.5	12.2	16.4	12.5	14.2
	40	1.5	0.751	0.457	0.968	0.776	30.1	30.6	30.0	30.3	10.2	10.7	10.2	10.4
		2	1	0.946	1	1	30.0	30.0	30.0	30.0	10.1	10.1	10.0	10.0
		0.5	0.011	0.017	0.011	0.017	44.5	56.5	45.5	54.7	44.8	57.5	45.1	53.2
	20	1	0.031	0.025	0.112	0.046	16.5	33.6	11.7	28.5	15.0	32.4	10.7	27.8
	20	1.5	0.42	0.093	0.738	0.235	10.6	16.3	10.4	13.0	10.0	15.0	10.0	11.8
		2	0.973	0.433	1	0.716	10.1	11.7	10.0	11.3	10.0	10.9	10.0	10.8
		0.5	0.013	0.01	0.019	0.015	43.5	45.0	48.7	44.7	37.4	40.1	40.3	36.8
100	30	1	0.128	0.031	0.275	0.081	22.0	30.6	21.5	23.3	12.1	22.7	11.8	14.5
	30	1.5	0.795	0.266	0.981	0.548	20.2	21.3	20.0	20.6	10.2	11.2	10.0	10.5
		2	1	0.848	1	0.994	20.0	20.1	20.0	20.0	10.0	10.0	10.1	10.0
		0.5	0.007	0.005	0.011	0.013	42.1	63.0	45.0	60.8	30.6	53.2	28.9	52.2
	40	1	0.165	0.066	0.343	0.137	31.6	35.4	30.6	32.6	12.8	16.7	11.1	13.2
	40	1.5	0.903	0.502	0.996	0.836	30.1	30.5	30.0	30.1	10.2	10.5	10.2	10.2
		2	1	0.98	1	1	30.0	30.0	30.0	30.0	10.1	10.0	10.1	10.1

Table 2: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model I with $\tau=25$

$\overline{}$	Todei	lI		D	\overline{R}			CI	ED			CI	PE	
au	= 2	5	v =	10%	v = 1	25%	v =	10%	v = 1	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
		0.5	0.028	0.017	0.021	0.016	24.3	35.0	24.0	45.0	38.5	49.2	37.9	59.9
	20	1	0.063	0.013	0.119	0.035	13.8	21.5	11.1	15.9	29.1	36.1	26.2	31.9
	20	1.5	0.322	0.072	0.652	0.164	9.2	13.9	8.6	11.2	25.3	29.1	25.2	26.8
		2	0.82	0.253	0.993	0.481	7.3	9.7	6.0	8.9	25.0	25.6	24.8	25.3
		0.5	0.023	0.013	0.035	0.025	31.5	33.8	23.7	30.6	41.5	44.3	34.6	42.0
20	20	1	0.192	0.068	0.324	0.132	15.9	17.8	12.9	16.4	28.0	29.3	25.6	27.7
	30	1.5	0.728	0.324	0.953	0.65	11.2	13.7	9.4	12.3	25.1	25.4	25.0	25.0
		2	0.99	0.81	1	0.983	7.5	10.7	5.6	8.5	24.9	25.0	24.9	25.0
		0.5	0.012	0.026	0.04	0.046	31.3	33.1	24.3	28.7	34.6	34.8	30.3	33.6
	40	1	0.236	0.178	0.495	0.35	19.0	20.8	18.5	19.7	25.7	26.0	25.1	25.6
	40	1.5	0.892	0.736	0.996	0.965	16.3	17.7	15.2	16.0	25.0	25.1	24.9	25.0
		2	1	0.983	1	1	15.0	15.5	15.0	15.0	24.9	25.1	25.0	25.0
		0.5	0.026	0.008	0.026	0.008	32.5	22.5	22.7	27.5	47.4	38.9	39.2	43.4
	20	1	0.098	0.011	0.178	0.016	13.8	33.2	12.0	15.6	28.7	46.5	27.3	31.1
	20	1.5	0.537	0.057	0.825	0.099	9.0	11.0	8.0	10.5	25.4	25.6	25.1	25.6
		2	0.96	0.238	1	0.458	6.4	9.5	5.3	9.2	25.0	25.5	24.8	25.2
		0.5	0.024	0.017	0.029	0.026	24.2	27.9	24.3	36.0	32.1	36.6	33.4	45.3
50	30	1	0.231	0.066	0.493	0.151	15.3	16.4	13.1	14.4	26.2	26.4	25.6	26.1
	30	1.5	0.921	0.482	0.997	0.764	10.2	13.4	7.9	11.6	25.0	25.7	24.9	25.1
		2	1	0.948	1	0.998	6.1	9.7	5.1	7.5	24.9	25.1	24.9	25.0
		0.5	0.021	0.025	0.048	0.042	28.8	32.0	27.3	30.5	32.1	35.4	32.9	33.4
	40	1	0.364	0.245	0.684	0.458	19.5	20.9	18.2	20.0	25.3	25.8	25.2	25.4
	40	1.5	0.987	0.881	1	0.996	15.4	16.6	15.0	15.4	24.9	25.0	24.9	24.9
		2	1	1	1	1	15.0	15.0	15.0	15.0	24.9	24.9	25.0	25.0
		0.5	0.006	0.019	0.011	0.021	25.8	28.2	18.6	29.5	39.7	41.5	34.6	43.8
	20	1	0.042	0.036	0.105	0.044	11.3	24.2	9.5	19.1	26.5	38.8	25.3	33.1
		1.5	0.439	0.121	0.782	0.272	8.8	11.0	8.2	10.2	25.2	26.5	25.0	25.6
		2	0.982	0.466	1	0.798	6.5	9.8	5.3	8.4	24.9	25.6	24.9	25.2
		0.5	0.018	0.012	0.034	0.022	20.8	26.3	20.1	29.3	29.9	35.5	32.6	38.8
100	30	1	0.243	0.066	0.533	0.16	14.2	18.2	13.3	15.6	25.4	29.3	25.3	26.0
	30	1.5	0.962	0.549	0.999	0.858	9.8	12.8	7.4	11.5	24.9	25.1	24.8	25.0
		2	1	0.987	1	1	5.7	9.3	5.0	7.2	24.9	25.0	24.8	24.9
		0.5	0.025	0.013	0.052	0.029	27.4	32.7	25.1	26.6	32.3	36.2	29.8	29.7
	40	1	0.508	0.234	0.822	0.484	18.7	19.8	17.3	19.5	25.4	25.6	25.1	25.2
	40	1.5	1	0.939	1	0.999	15.1	16.4	15.0	15.1	24.9	25.0	24.9	24.9
		2	1	1	1	1	15.0	15.0	15.0	15.0	24.9	25.0	24.9	24.9

Table 3: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model I with $\tau=50$

$\overline{}$	Tode	lI		D	\overline{R}			CI	ED			CI	\overline{E}	
au	=5	0	v =	10%	v = 1	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W			SS_W		SS_W	NS_W	SS_W	NS_W	SS_W
	20	0.5 1 1.5 2	$0.016 \\ 0.073 \\ 0.347 \\ 0.831$	$\begin{array}{c} 0.014 \\ 0.026 \\ 0.066 \\ 0.254 \end{array}$	0.022 0.13 0.636 0.979	$0.011 \\ 0.036 \\ 0.151 \\ 0.466$	17.8 9.2 8.1 7.3	26.8 9.0 8.6 9.5	7.0 9.9 8.1 5.8	2.7 10.3 9.3 8.8	58.8 49.8 49.5 49.9	66.3 48.5 49.0 50.5	47.9 50.9 49.8 49.6	42.5 50.4 49.5 50.0
20	30	0.5 1 1.5 2	0.023 0.161 0.715 0.991	0.025 0.072 0.311 0.801	0.034 0.35 0.952 1	0.017 0.154 0.63 0.979	14.8 13.4 11.2 7.5	19.4 12.9 13.0 10.5	12.2 13.4 9.2 5.6	12.6 14.3 12.5 8.3	51.2 50.2 49.9 49.8	58.2 48.2 49.9 49.9	47.3 50.2 49.8 49.8	50.1 49.6 49.8 49.8
	40	0.5 1 1.5 2	0.014 0.273 0.902 1	0.027 0.206 0.739 0.988	0.025 0.514 0.996 1	0.036 0.392 0.961 1	28.2 17.5 12.4 7.6	23.3 18.2 14.5 9.5	21.8 16.4 9.7 5.9	20.7 17.2 11.8 7.1	55.6 50.2 49.8 49.9	52.5 49.9 50.0 49.8	52.3 49.8 49.8 49.9	49.2 49.6 49.9 49.9
	20	0.5 1 1.5 2	0.014 0.09 0.506 0.962	0.006 0.019 0.055 0.222	0.023 0.166 0.807 0.999	0.005 0.029 0.128 0.501	14.3 9.3 8.5 6.4	5.0 2.9 9.6 9.3	6.1 10.0 7.5 5.2	6.0 11.9 9.7 8.9	54.4 49.8 49.7 49.8	48.0 42.2 49.8 49.8	47.3 50.4 49.6 49.8	47.6 51.9 50.2 49.9
50	30	0.5 1 1.5 2	0.028 0.249 0.918 1	0.013 0.087 0.457 0.956	0.044 0.489 0.998 1	0.025 0.152 0.752 0.999	17.7 13.5 10.1 6.3	11.9 14.6 12.7 9.9	13.0 12.9 8.0 5.1	13.0 14.5 11.6 7.6	54.1 50.1 49.9 49.9	52.8 51.4 49.8 49.8	51.2 49.8 49.9 49.8	46.8 49.7 49.8 49.9
	40	0.5 1 1.5 2	0.016 0.385 0.992 1	0.019 0.242 0.903 1	0.051 0.705 1 1	0.035 0.487 0.995 1	21.9 16.9 10.5 6.2	19.2 17.6 13.4 7.9	17.5 15.3 8.2 5.2	18.1 17.1 10.6 6.4	50.8 50.1 49.8 49.8	49.2 50.2 49.9 49.9	47.9 50.0 49.8 49.9	49.4 49.9 49.9 49.9
	20	0.5 1 1.5 2	$0.008 \\ 0.052 \\ 0.431 \\ 0.977$	0.021 0.033 0.13 0.453	0.008 0.114 0.781 1	$0.017 \\ 0.058 \\ 0.271 \\ 0.784$	20.6 11.6 8.8 6.5	4.3 7.6 9.6 8.8	3.1 9.3 8.3 5.2	-1.8 7.2 9.2 8.1	59.5 52.0 49.9 49.9	44.7 47.6 50.3 49.6	43.8 49.5 49.9 49.9	39.4 47.1 50.1 49.7
100	30	0.5 1 1.5 2	0.019 0.263 0.966 1	0.015 0.08 0.509 0.978	0.033 0.518 0.999 1	0.022 0.175 0.879 1	11.8 13.5 9.6 5.6	12.0 14.8 12.6 9.2	14.4 12.7 7.5 5.0	16.6 13.5 11.5 7.1	47.6 50.1 49.9 49.8	45.4 50.1 49.8 49.8	50.1 49.9 49.7 49.8	49.2 49.8 49.8 49.9
	40	0.5 1 1.5 2	0.024 0.531 1 1	0.017 0.249 0.952 1	0.051 0.848 1 1	0.027 0.493 0.999 1	20.4 16.3 9.1 5.4	18.5 17.7 12.9 7.7	20.2 14.9 6.9 5.0	15.7 17.3 9.8 5.9	54.3 49.9 49.8 49.7	46.5 50.0 49.9 49.8	54.1 50.1 49.7 49.8	45.0 49.8 49.8 49.8

Table 4: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model II with $\tau=10$

$\overline{}$	Tode	lI		\overline{D}	\overline{R}			CI	ED			CI	\overline{PE}	
au	=2	5	v =	10%	v = 1	25%	v =	10%	v = 1	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
	20	0.5 1 1.5 2	0 0.028 0.287 0.788	$\begin{array}{c} 0.014 \\ 0.022 \\ 0.102 \\ 0.295 \end{array}$	0.005 0.062 0.507 0.973	0.022 0.05 0.185 0.57	NaN 11.4 10.7 10.2	55.4 38.0 17.7 12.1	27.0 11.1 10.5 10.1	41.1 20.2 13.5 11.5	NaN 9.8 9.8 9.8	54.3 36.3 16.0 10.9	21.6 9.5 9.8 9.9	37.9 17.6 11.7 10.4
20	30	0.5 1 1.5 2	0.004 0.048 0.43 0.935	0.016 0.053 0.318 0.763	0.004 0.133 0.778 0.998	0.026 0.119 0.564 0.96	41.3 20.7 20.1 20.0	42.2 26.1 21.0 20.3	22.5 21.0 20.1 20.0	45.8 25.2 20.9 20.1	32.5 9.7 9.8 9.9	36.2 16.0 10.2 10.0	7.5 10.1 9.8 9.9	37.9 14.7 10.1 10.0
	40	0.5 1 1.5 2	0.003 0.048 0.442 0.959	0.019 0.112 0.491 0.941	0.003 0.116 0.793 1	0.035 0.22 0.83 0.999	43.3 30.6 30.1 30.0	57.4 36.3 30.8 30.1	31.7 30.3 30.1 30.0	46.3 31.5 30.2 30.0	18.7 10.1 9.8 10.0	49.3 17.7 10.6 9.9	8.7 9.7 9.8 9.9	30.1 11.0 10.0 9.9
	20	0.5 1 1.5 2	0.005 0.037 0.389 0.946	0.005 0.011 0.077 0.326	0.004 0.095 0.695 1	$0.004 \\ 0.028 \\ 0.161 \\ 0.618$	47.0 11.4 10.6 10.1	49.0 22.7 14.8 11.4	13.8 10.7 10.4 10.0	46.3 21.3 12.1 11.4	42.8 10.3 9.8 9.8	49.8 20.2 12.6 10.1	10.0 9.9 9.8 9.9	41.0 19.0 10.0 10.2
50	30	0.5 1 1.5 2	0.006 0.085 0.647 0.997	0.015 0.07 0.401 0.91	0.006 0.179 0.933 1	0.019 0.143 0.726 0.998	26.7 20.5 20.3 20.0	37.3 28.2 21.2 20.1	21.7 20.6 20.1 20.0	33.2 23.1 20.5 20.0	17.5 9.8 9.9 9.9	31.3 18.4 10.6 9.9	7.5 9.7 9.8 9.8	20.5 11.8 9.9 9.8
	40	0.5 1 1.5 2	0.001 0.082 0.705 0.999	0.026 0.125 0.7 0.997	0.002 0.177 0.95 1	0.027 0.278 0.956 1	30.0 30.4 30.1 30.0	54.6 33.5 30.5 30.0	30.0 30.4 30.0 30.0	43.5 32.7 30.2 30.0	11.0 9.6 9.8 9.9	44.7 13.6 10.2 9.8	10.0 9.7 9.8 9.9	23.6 12.2 9.9 9.9
	20	0.5 1 1.5 2	$0 \\ 0.026 \\ 0.33 \\ 0.95$	0.019 0.037 0.149 0.593	0.003 0.043 0.615 1	$0.021 \\ 0.056 \\ 0.331 \\ 0.882$	NaN 10.8 10.8 10.1	53.4 32.7 16.8 11.7	26.7 10.6 10.4 10.0	43.1 18.9 13.2 10.8	NaN 9.5 9.9 9.8	54.6 31.8 15.0 10.3	25.7 9.9 9.8 9.8	42.8 17.4 11.5 10.0
100	30	0.5 1 1.5 2	0.002 0.079 0.717 1	0.016 0.066 0.44 0.962	0.006 0.178 0.976 1	0.024 0.135 0.807 1	20.0 20.8 20.1 20.0	36.6 26.4 20.6 20.1	20.8 20.3 20.0 20.0	35.6 23.6 20.4 20.0	5.0 9.6 9.9 9.8	26.4 15.5 9.8 9.8	9.3 9.7 9.8 9.8	25.3 12.5 9.9 9.8
	40	0.5 1 1.5 2	0.003 0.112 0.871 1	0.017 0.146 0.812 1	0.009 0.236 0.987 1	0.034 0.324 0.974 1	31.7 30.3 30.1 30.0	57.9 32.0 30.3 30.0	31.1 30.4 30.0 30.0	48.2 31.6 30.0 30.0	10.0 9.7 9.8 9.9	43.9 11.9 9.9 9.9	11.7 10.4 9.8 9.9	34.0 11.1 9.8 9.9

Table 5: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model II with $\tau=25$.

$\overline{}$	Tode	lI		D	\overline{R}			CI	ED			CI	\overline{PE}	
au	=2	5	v =	10%	v = 1	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W		SS_W	NS_W	SS_W	NS_W	SS_W
	20	0.5 1 1.5 2	$0.002 \\ 0.044 \\ 0.251 \\ 0.795$	0.019 0.029 0.082 0.309	0.006 0.07 0.523 0.979	$\begin{array}{c} 0.013 \\ 0.037 \\ 0.186 \\ 0.603 \end{array}$	7.5 10.0 8.6 7.6	32.6 25.9 13.1 10.2	7.5 9.1 9.1 6.3	40.4 15.7 11.1 9.6	18.5 24.8 24.6 24.7	45.9 40.6 28.1 25.3	22.2 24.1 24.9 24.7	54.9 29.0 25.7 25.0
20	30	0.5 1 1.5 2	0.007 0.102 0.683 0.994	0.017 0.092 0.455 0.902	0.013 0.241 0.927 1	0.033 0.207 0.749 0.995	17.1 14.7 11.7 7.7	35.6 21.4 14.0 10.6	15.4 13.4 10.0 5.9	28.9 17.1 13.1 8.6	23.7 24.5 24.6 24.7	42.0 30.3 25.2 24.8	22.2 24.4 24.6 24.7	36.4 25.9 25.1 24.8
	40	0.5 1 1.5 2	0.001 0.176 0.863 0.997	0.031 0.247 0.85 0.996	0.012 0.386 0.991 1	0.047 0.499 0.986 1	30.0 19.1 16.4 15.0	36.1 21.4 17.6 15.2	23.8 19.3 15.2 15.0	30.0 20.9 15.5 15.0	19.0 24.7 24.6 24.8	36.8 25.5 24.9 24.8	22.6 24.3 24.6 24.8	31.7 25.1 24.6 24.8
	20	0.5 1 1.5 2	0.005 0.052 0.406 0.941	0.008 0.02 0.075 0.302	0.009 0.095 0.744 0.999	0.011 0.034 0.181 0.631	8.0 11.9 9.2 6.8	32.5 22.8 12.1 10.4	23.3 10.8 8.6 5.5	37.3 17.8 11.7 9.8	$ \begin{array}{c} 20.0 \\ 26.2 \\ 24.7 \\ 24.7 \end{array} $	45.0 35.4 25.5 25.2	38.7 25.5 24.6 24.7	53.0 32.0 26.2 24.9
50	30	0.5 1 1.5 2	0.006 0.167 0.874 1	0.017 0.112 0.581 0.98	0.009 0.332 0.994 1	0.03 0.245 0.9 1	12.5 14.4 11.1 6.5	27.6 17.8 13.9 9.9	12.2 14.1 9.1 5.3	26.8 17.4 12.6 7.8	16.8 24.2 24.7 24.8	32.4 26.1 24.8 24.9	19.9 24.6 24.6 24.7	35.0 26.2 24.7 24.8
	40	0.5 1 1.5 2	0.009 0.314 0.989 1	0.032 0.358 0.974 1	0.016 0.551 1	0.06 0.613 0.998 1	21.1 19.2 15.5 15.0	31.6 21.6 16.6 15.0	23.1 18.9 15.0 15.0	29.2 20.2 15.1 15.0	19.8 24.4 24.5 24.7	36.7 24.7 24.5 24.8	22.4 24.1 24.7 24.8	29.5 24.6 24.6 24.8
	20	0.5 1 1.5 2	0.001 0.025 0.358 0.953	0.017 0.039 0.196 0.601	0.003 0.044 0.654 1	$0.02 \\ 0.082 \\ 0.374 \\ 0.893$	0.0 11.2 9.4 7.2	31.5 15.9 13.0 10.3	15.0 9.2 9.3 5.6	32.3 14.1 11.3 8.6	10.0 25.6 24.7 24.8	44.7 29.9 26.8 25.4	29.3 24.4 24.7 24.8	47.2 27.1 25.4 24.9
100	30	0.5 1 1.5 2	0.006 0.149 0.946 1	0.01 0.108 0.679 0.998	$0.007 \\ 0.36 \\ 1 \\ 1$	0.024 0.25 0.95 1	13.3 14.6 10.6 6.0	36.0 18.0 14.1 9.3	16.4 14.1 8.6 5.1	27.5 16.8 12.1 7.4	24.7 24.2 24.6 24.8	42.5 26.2 24.8 24.8	22.3 24.3 24.6 24.8	$34.1 \\ 25.0 \\ 24.7 \\ 24.8$
	40	0.5 1 1.5 2	0.006 0.408 0.999 1	0.026 0.385 0.988 1	0.012 0.712 1 1	0.046 0.69 1 1	32.5 19.7 15.1 15.0	29.8 21.4 15.8 15.0	20.4 18.6 15.0 15.0	31.4 20.6 15.0 15.0	34.0 24.3 24.6 24.8	33.3 24.7 24.7 24.8	22.3 24.2 24.6 24.8	30.4 24.3 24.7 24.8

Table 6: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model II with $\tau=50$.

\overline{N}	Iodei	lI		D	\overline{R}			CI	ED			CI	\overline{PE}	
au	= 2	5	v =	10%	v =	25%	v =	10%	v = 3	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
	20	0.5 1 1.5 2	0.005 0.035 0.275 0.816	0.013 0.028 0.097 0.308	$0.009 \\ 0.074 \\ 0.545 \\ 0.982$	$0.012 \\ 0.049 \\ 0.202 \\ 0.61$	-11.0 8.3 8.3 7.5	6.9 12.3 10.9 10.3	-11.1 8.6 8.7 6.0	15.4 12.6 10.6 9.2	27.6 47.1 48.8 49.6	45.4 50.9 50.3 49.8	27.1 48.1 49.4 49.5	57.0 50.4 49.8 49.6
20	30	0.5 1 1.5 2	0.01 0.109 0.657 0.988	$\begin{array}{c} 0.021 \\ 0.081 \\ 0.452 \\ 0.896 \end{array}$	0.021 0.238 0.941 1	0.033 0.196 0.762 0.997	1.5 13.6 11.4 7.8	14.3 15.7 13.6 10.7	8.1 13.4 9.9 5.9	11.4 16.0 12.6 8.5	32.8 48.6 49.5 49.7	47.4 48.8 49.6 49.7	40.3 49.1 49.5 49.6	43.8 49.3 49.5 49.6
	40	0.5 1 1.5 2	0.006 0.202 0.878 0.999	$\begin{array}{c} 0.031 \\ 0.262 \\ 0.835 \\ 0.996 \end{array}$	0.012 0.423 0.995 1	0.062 0.505 0.993 1	13.3 17.4 13.1 7.9	24.5 19.3 14.9 9.5	15.8 17.0 10.3 5.9	21.9 19.0 11.8 7.1	41.5 49.7 49.6 49.6	50.6 49.2 49.5 49.7	45.2 49.3 49.5 49.5	47.4 49.3 49.5 49.5
	20	0.5 1 1.5 2	0.011 0.067 0.401 0.95	0.006 0.016 0.085 0.33	0.012 0.104 0.734 1	0.006 0.038 0.193 0.615	-8.6 5.1 8.4 6.6	13.3 15.6 9.6 10.4	-12.9 8.2 8.5 5.3	16.7 8.2 10.6 9.8	32.7 44.5 49.1 49.6	54.2 53.6 48.9 50.1	27.3 47.1 49.5 49.5	54.3 47.1 49.4 49.8
50	30	0.5 1 1.5 2	0.011 0.17 0.857 1	0.016 0.125 0.62 0.979	0.015 0.331 0.993 1	0.027 0.225 0.902 1	1.8 12.9 10.8 6.4	14.4 16.2 13.8 9.6	11.3 13.4 9.0 5.2	17.2 15.8 12.3 7.6	35.5 48.5 49.5 49.6	44.4 49.3 49.5 49.8	45.7 49.0 49.5 49.6	50.4 49.7 49.6 49.6
	40	0.5 1 1.5 2	0.011 0.289 0.983 1	0.042 0.337 0.971 1	0.022 0.567 1 1	0.054 0.639 1 1	13.6 17.5 11.5 6.7	20.6 19.4 13.6 8.3	10.9 17.0 9.1 5.4	23.7 18.7 10.5 6.5	40.1 49.4 49.6 49.7	46.5 49.1 49.6 49.6	39.0 49.2 49.6 49.7	47.8 49.1 49.5 49.7
	20	0.5 1 1.5 2	$0.001 \\ 0.027 \\ 0.342 \\ 0.964$	$\begin{array}{c} 0.015 \\ 0.039 \\ 0.162 \\ 0.58 \end{array}$	0.006 0.055 0.674 1	0.02 0.087 0.386 0.907	-5.0 11.1 9.2 7.0	6.7 14.6 11.9 9.3	-7.5 9.5 8.9 5.5	12.0 11.9 10.0 8.6	33.0 49.5 49.4 49.7	45.0 52.2 50.7 49.7	28.7 48.7 49.7 49.6	51.0 50.8 49.4 49.6
100	30	0.5 1 1.5 2	0.004 0.173 0.943	0.011 0.115 0.682 0.995	0.019 0.378 0.998 1	0.022 0.25 0.938 1	17.5 13.4 10.5 6.0	15.5 15.7 13.8 9.3	8.9 13.5 8.5 5.0	13.6 16.1 11.9 7.3	60.3 48.8 49.5 49.8	46.6 48.9 49.6 49.8	43.3 49.2 49.6 49.6	49.8 49.4 49.5 49.7
	40	0.5 1 1.5 2	$0.015 \\ 0.427 \\ 1 \\ 1$	0.035 0.368 0.976 1	0.018 0.741 1 1	0.039 0.701 1 1	18.0 17.3 10.3 5.9	23.3 19.5 13.4 8.0	15.8 16.8 8.3 5.1	24.2 19.4 10.3 6.2	39.9 48.9 49.4 49.7	47.9 49.0 49.6 49.7	46.7 49.2 49.4 49.6	48.9 49.4 49.7 49.7

Table 7: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model III with $\tau=10$.

$\overline{}$	Tode	lI		D	\overline{R}			CI	ED			CI	\overline{E}	
au	=2	5	v =	10%	v = 1	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
	20	0.5 1 1.5 2	$0.006 \\ 0.048 \\ 0.265 \\ 0.712$	$\begin{array}{c} 0.003 \\ 0.009 \\ 0.037 \\ 0.169 \end{array}$	0.008 0.09 0.456 0.907	$0.004 \\ 0.023 \\ 0.087 \\ 0.336$	45.0 12.4 10.8 10.3	30.0 19.4 11.2 11.1	28.8 11.0 10.5 10.3	23.8 17.6 10.9 10.9	43.3 11.8 10.2 10.0	30.3 19.9 9.9 10.2	27.8 10.2 10.0 9.9	22.5 16.3 10.0 10.2
20	30	0.5 1 1.5 2	0.007 0.065 0.452 0.898	0.005 0.018 0.157 0.526	0.007 0.142 0.666 0.983	0.005 0.054 0.274 0.721	22.9 22.4 20.4 20.0	44.0 30.8 20.6 20.4	28.6 21.1 20.3 20.0	31.0 21.0 20.3 20.2	11.3 12.2 10.5 10.0	40.0 21.0 10.4 10.3	20.9 11.2 10.1 10.0	30.4 10.7 10.1 10.1
	40	0.5 1 1.5 2	0.002 0.056 0.469 0.937	0.003 0.044 0.285 0.738	0.009 0.14 0.737 0.992	0.008 0.113 0.466 0.921	30.0 30.7 30.1 30.0	50.0 30.7 30.2 30.0	36.7 30.3 30.1 30.0	52.5 31.8 30.2 30.0	19.0 10.6 10.2 10.0	38.0 10.2 10.3 10.1	16.1 10.3 10.1 10.0	36.6 12.4 10.2 10.0
	20	0.5 1 1.5 2	0.005 0.054 0.369 0.839	0.003 0.001 0.036 0.157	0.008 0.086 0.53 0.941	0.001 0.01 0.07 0.274	24.0 11.4 10.8 10.3	28.3 10.0 11.1 10.8	24.4 12.3 10.9 10.2	85.0 17.5 11.0 10.5	24.8 9.8 10.1 10.0	31.7 7.0 10.0 10.1	23.3 11.4 10.1 9.9	82.0 15.2 9.9 10.0
50	30	0.5 1 1.5 2	0.006 0.114 0.567 0.967	0.004 0.031 0.179 0.581	0.01 0.2 0.818 0.994	0.006 0.05 0.307 0.757	20.8 21.4 20.2 20.0	28.8 22.6 21.4 20.3	27.5 20.6 20.2 20.0	43.3 23.3 20.5 20.1	10.7 11.1 10.0 10.0	22.5 12.6 10.8 10.1	16.1 10.3 10.0 10.0	37.3 13.2 10.2 10.1
	40	0.5 1 1.5 2	0.002 0.092 0.648 0.986	0.003 0.053 0.365 0.837	0.01 0.18 0.854 0.999	0.007 0.094 0.528 0.931	30.0 31.1 30.2 30.0	41.7 31.6 30.1 30.1	31.5 30.3 30.0 30.0	30.7 30.5 30.2 30.0	13.0 11.4 10.1 10.1	26.3 11.2 9.9 10.1	11.6 10.4 10.0 10.0	10.6 10.7 10.1 10.0
	20	0.5 1 1.5 2	$0.001 \\ 0.026 \\ 0.286 \\ 0.827$	$\begin{array}{c} 0.004 \\ 0.012 \\ 0.091 \\ 0.316 \end{array}$	0.003 0.075 0.471 0.931	0.005 0.034 0.137 0.436	15.0 12.5 10.7 10.3	32.5 12.5 11.8 10.8	11.7 10.8 11.1 10.3	38.0 13.7 12.1 10.4	17.0 11.4 10.0 9.9	29.8 10.2 10.6 10.2	14.0 9.7 10.0 9.9	37.2 12.2 11.0 10.0
100	30	0.5 1 1.5 2	0.007 0.078 0.608 0.983	0.011 0.025 0.167 0.603	0.009 0.166 0.827	0.006 0.044 0.31 0.797	43.6 21.1 20.2 20.0	32.7 20.8 21.1 20.1	20.0 20.5 20.1 20.0	28.3 24.0 20.2 20.1	38.6 10.5 9.9 10.0	24.2 11.0 10.8 10.0	9.3 10.0 9.9 9.9	21.7 14.0 10.1 10.0
	40	0.5 1 1.5 2	0.002 0.11 0.768 1	0.003 0.035 0.366 0.864	0.006 0.245 0.924 1	0.003 0.095 0.544 0.949	30.0 30.5 30.1 30.0	45.0 30.3 30.1 30.0	33.3 30.3 30.0 30.0	61.7 30.6 30.1 30.0	16.0 10.3 10.0 10.0	26.3 10.2 10.0 10.0	16.5 10.2 9.9 10.0	57.0 10.9 10.0 10.0

Table 8: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model III with $\tau=25$.

$\overline{}$	Todei	II		D	\overline{R}			CI	ED			CI	PE	
au	= 2	5	v =	10%	v = 1	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
		0.5	0.011	0.007	0.01	0.005	11.8	22.1	11.5	41.0	28.8	35.0	25.7	56.6
	20	1	0.055	0.017	0.1	0.025	12.2	17.4	9.9	9.6	27.9	34.3	25.1	24.9
	20	1.5	0.304	0.049	0.452	0.095	9.1	9.2	8.7	9.4	25.0	25.9	24.7	25.3
		2	0.76	0.207	0.912	0.344	7.7	9.4	7.4	8.9	24.9	25.2	24.8	24.9
		0.5	0.014	0.008	0.03	0.016	15.7	33.1	18.5	16.3	22.6	44.9	28.8	27.0
20	20	1	0.134	0.049	0.253	0.113	14.4	15.2	13.1	12.9	25.0	26.4	24.5	24.3
	30	1.5	0.638	0.289	0.838	0.492	11.7	12.8	11.1	12.2	25.1	25.1	24.8	24.9
		2	0.966	0.741	0.995	0.88	8.5	10.8	7.6	9.6	24.9	24.9	24.7	24.9
		0.5	0.006	0.014	0.014	0.024	24.2	24.6	20.7	25.0	32.0	30.9	27.4	29.2
	40	1	0.216	0.162	0.397	0.258	18.9	20.0	19.3	19.8	24.6	25.5	24.6	24.7
	40	1.5	0.824	0.652	0.943	0.795	16.7	17.6	16.2	16.6	24.9	25.1	24.7	24.8
		2	0.995	0.966	1	0.994	15.1	15.6	15.1	15.3	24.9	25.0	24.9	25.0
		0.5	0.01	0.002	0.025	0.006	6.0	37.5	10.8	10.0	19.8	52.5	25.9	25.7
	20	1	0.072	0.009	0.103	0.013	9.3	17.8	10.0	10.4	23.9	34.8	24.6	27.2
	20	1.5	0.39	0.04	0.572	0.078	8.8	9.4	9.1	9.9	24.9	25.2	24.8	25.5
		2	0.839	0.196	0.944	0.295	7.6	9.3	7.3	8.9	24.8	25.0	24.8	24.9
		0.5	0.016	0.007	0.021	0.01	14.7	14.3	16.0	16.0	24.4	25.0	24.2	23.6
50	30	1	0.21	0.051	0.308	0.102	14.0	18.0	14.1	12.6	25.1	27.2	24.7	24.9
	30	1.5	0.748	0.375	0.89	0.505	11.6	13.1	11.1	11.8	24.9	25.1	24.6	24.9
		2	0.997	0.809	0.999	0.93	8.0	10.5	7.2	9.4	24.7	25.0	24.5	25.0
		0.5	0.014	0.006	0.023	0.022	26.8	22.5	20.2	23.6	27.7	23.5	23.4	25.1
	40	1	0.298	0.16	0.464	0.31	19.3	19.0	18.7	19.1	24.8	24.7	24.7	25.1
	40	1.5	0.903	0.729	0.973	0.85	16.4	17.2	15.9	16.7	24.8	24.8	24.5	24.8
		2	1	0.984	1	0.998	15.0	15.3	15.0	15.1	24.9	25.0	24.8	24.9
		0.5	0.004	0.006	0.004	0.016	1.3	8.3	12.5	12.5	17.5	22.8	26.5	27.7
	20	1	0.029	0.019	0.078	0.053	10.0	12.4	9.9	9.9	24.3	27.4	24.4	25.1
	_ ~	1.5	0.317	0.092	0.47	0.182	9.4	10.3	9.3	9.7	24.9	25.5	24.8	25.6
		2	0.812	0.333	0.933	0.495	8.1	9.3	7.7	8.3	24.9	25.4	24.8	25.0
		0.5	0.009	0.004	0.015	0.004	20.6	8.8	15.7	13.8	33.3	22.0	24.7	25.8
100	30	1	0.188	0.061	0.312	0.125	13.8	14.8	13.5	13.6	25.1	25.0	24.8	24.9
	30	1.5	0.8	0.356	0.91	0.553	11.9	12.9	11.0	12.2	24.9	25.0	24.6	24.8
		2	0.998	0.851	1	0.916	8.0	10.6	7.2	9.2	24.8	24.9	24.7	24.9
		0.5	0.021	0.01	0.02	0.011	22.9	27.0	21.3	20.9	28.0	30.0	24.7	24.5
	40	1	0.348	0.187	0.539	0.291	19.2	19.2	19.5	19.6	25.2	24.9	24.7	24.9
	40	1.5	0.968	0.748	0.992	0.886	16.3	17.3	15.6	16.5	24.9	25.1	24.7	24.9
		2	1	0.986	1	0.997	15.0	15.3	15.0	15.1	24.8	24.9	24.8	24.9

Table 9: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model III with $\tau=50$.

$\overline{}$	Todei	lI		D	\overline{R}			CE	ED			CI	PE	
au	=2	5	v =	10%	v =	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
		0.5	0.008	0.018	0.027	0.009	-2.5	-5.8	7.2	0.0	36.3	33.5	47.3	40.4
	20	1	0.038	0.014	0.087	0.022	5.3	3.2	8.9	7.3	46.6	42.2	49.4	48.1
	20	1.5	0.292	0.063	0.488	0.12	8.4	8.6	8.1	8.8	49.5	49.1	49.4	50.1
		2	0.769	0.227	0.902	0.379	7.8	7.8	7.1	8.2	49.8	48.6	49.6	49.7
		0.5	0.014	0.011	0.02	0.017	9.3	7.3	10.5	5.3	$\begin{vmatrix} 44.4 \end{vmatrix}$	41.4	43.9	41.8
20		1	0.138	0.058	0.247	0.081	12.2	13.4	13.3	13.1	48.2	47.5	49.2	49.5
20	30	1.5	0.644	0.294	0.813	0.473	11.7	13.2	10.7	11.6	49.7	49.8	49.6	49.7
		2	0.968	0.717	0.998	0.911	8.4	10.7	7.8	9.6	49.8	49.9	49.5	49.7
		0.5	0.021	0.023	0.016	0.028	17.4	14.6	14.7	20.7	45.6	45.2	43.4	50.8
		1	0.227	0.156	0.38	0.31	17.6	17.1	17.1	16.4	49.7	49.4	49.7	49.3
	40	1.5	0.848	0.687	0.945	0.844	13.7	15.1	12.5	13.7	49.9	49.9	49.7	49.8
		2	0.997	0.965	1	0.996	8.8	10.5	7.9	8.8	49.8	49.9	49.6	49.9
		0.5	0.023	0.002	0.012	0.006	-2.0	-10.0	-0.4	1.7	37.7	33.0	38.3	39.2
		1	0.071	0.013	0.117	0.019	9.2	7.3	9.3	5.3	48.9	49.4	48.7	45.9
	20	1.5	0.377	0.034	0.573	0.092	8.9	9.0	8.5	8.9	49.4	48.8	49.2	49.2
		2	0.876	0.193	0.947	0.33	7.6	9.0	7.2	8.3	49.8	49.7	49.7	49.7
		0.5	0.015	0.008	0.032	0.025	1.7	5.6	13.6	10.6	38.4	38.9	45.8	45.1
FO		1	0.013 0.181	0.063	0.032 0.276	0.025 0.124	12.9	14.1	13.0	13.9	48.9	49.6	49.2	49.5
50	30	1.5	0.748	0.351	0.270	0.124 0.497	11.4	12.4	10.6	13.3 12.4	49.6	49.6	49.5	50.0
		2	$0.748 \\ 0.989$	0.331 0.812	0.894 0.998	0.497 0.912	8.0	$12.4 \\ 10.3$	7.3	9.3	49.6	49.6	$49.5 \\ 49.5$	49.9
		0.5	0.014	0.015	0.025	0.027	15.4	12.3	20.0	18.5	46.6	40.9	50.4	48.0
	40	1	0.293	0.191	0.453	0.304	17.5	18.0	17.5	16.8	49.6	49.8	49.4	48.9
		1.5	0.921	0.734	0.977	0.878	13.2	14.4	11.8	13.0	49.6	50.0	49.5	49.6
		2	0.999	0.989	1	0.998	8.3	9.8	7.6	8.4	49.7	49.8	49.6	49.6
		0.5	0.004	0.015	0.005	0.011	1.3	-4.0	2.0	5.5	41.0	34.6	43.0	45.5
	20	1	0.036	0.009	0.078	0.043	8.3	10.6	9.3	5.9	47.6	50.1	49.1	47.3
		1.5	0.309	0.108	0.459	0.176	9.1	7.7	9.2	8.6	49.7	48.7	49.7	49.4
		2	0.815	0.315	0.928	0.498	8.1	8.4	7.7	8.2	49.8	49.3	49.8	49.9
		0.5	0.009	0.009	0.019	0.013	7.2	3.3	13.4	3.8	40.7	39.3	49.3	37.5
100	20	1	0.178	0.055	0.309	0.125	12.8	12.8	13.6	12.6	49.4	48.6	49.3	49.3
	30	1.5	0.791	0.35	0.901	0.558	11.6	12.7	10.8	11.8	49.7	50.0	49.5	49.7
		2	1	0.83	1	0.945	7.7	10.3	7.3	9.3	49.5	49.8	49.6	49.9
		0.5	0.018	0.015	0.046	0.033	18.3	22.3	16.8	18.0	47.4	52.1	45.5	48.3
	40	1	0.384	0.192	0.546	0.318	17.5	17.7	17.0	17.7	49.3	49.7	49.3	49.4
	40	1.5	0.958	0.76	0.99	0.902	12.8	14.4	11.2	12.9	49.7	49.9	49.3	49.7
		2	1	0.994	1	0.999	7.7	9.6	7.3	8.6	49.6	49.9	49.5	49.8

Table 10: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model IV with $\tau=10$.

$\overline{}$	Tode	lI		D	\overline{R}			CI	ED			CI	\overline{E}	
au	=2	5	v =	10%	v =	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
	20	0.5 1 1.5 2	$0.007 \\ 0.044 \\ 0.275 \\ 0.716$	0.005 0.011 0.043 0.171	0.024 0.092 0.463 0.887	$0.007 \\ 0.018 \\ 0.081 \\ 0.294$	34.3 16.4 11.6 10.4	46.0 20.5 11.6 10.8	34.6 14.5 11.1 10.2	22.1 21.4 11.9 11.0	34.6 16.0 10.9 10.2	47.2 21.3 10.7 10.2	33.9 14.2 10.4 10.0	21.6 20.4 10.9 10.5
20	30	0.5 1 1.5 2	0.013 0.067 0.467 0.904	0.003 0.021 0.128 0.492	0.013 0.164 0.681 0.983	0.006 0.045 0.244 0.697	47.7 24.0 20.5 20.1	55.0 26.4 21.3 20.2	25.0 22.7 20.2 20.0	45.0 22.1 20.6 20.1	41.6 14.7 10.5 10.1	52.3 17.7 11.0 10.1	13.5 12.7 10.0 10.0	38.2 11.6 10.3 10.0
	40	0.5 1 1.5 2	0.009 0.07 0.481 0.943	0.006 0.031 0.246 0.703	0.007 0.169 0.726 0.993	0.004 0.076 0.428 0.848	45.6 32.0 30.3 30.0	46.7 30.2 30.6 30.0	36.4 30.5 30.1 30.0	46.3 30.2 30.1 30.0	33.1 12.6 10.6 10.2	32.2 10.9 10.9 10.1	23.4 11.1 10.3 10.0	22.3 11.0 10.2 10.1
	20	0.5 1 1.5 2	0.01 0.069 0.383 0.83	0.002 0.007 0.029 0.152	0.011 0.124 0.545 0.949	0 0.011 0.075 0.243	26.0 12.3 11.5 10.4	10.0 25.7 14.0 11.0	21.4 12.7 10.8 10.2	NaN 15.0 10.8 10.6	25.3 11.8 10.9 9.9	9.5 23.0 13.3 10.4	21.5 12.0 9.9 9.9	NaN 13.5 9.9 10.1
50	30	0.5 1 1.5 2	0.015 0.098 0.586 0.978	0.005 0.039 0.165 0.546	0.016 0.205 0.789 0.994	$0.007 \\ 0.041 \\ 0.256 \\ 0.695$	47.7 21.0 20.2 20.0	21.0 21.7 20.7 20.2	24.7 21.1 20.1 20.0	30.7 21.7 20.4 20.1	43.6 10.8 10.1 10.0	9.2 11.9 10.4 10.1	17.1 10.8 10.0 9.9	21.1 11.9 10.1 10.0
	40	0.5 1 1.5 2	0.011 0.102 0.636 0.982	0.007 0.043 0.288 0.769	0.005 0.217 0.854 1	0.002 0.093 0.478 0.895	42.7 31.6 30.1 30.0	35.7 32.9 30.3 30.0	31.0 30.2 30.1 30.0	30.0 30.3 30.2 30.0	27.9 12.7 10.1 10.1	19.0 13.2 10.3 10.1	9.2 10.1 10.0 10.0	14.5 10.3 10.0 10.0
	20	0.5 1 1.5 2	0.004 0.046 0.327 0.818	0.006 0.028 0.083 0.247	0.005 0.071 0.462 0.913	$0.008 \\ 0.025 \\ 0.139 \\ 0.424$	12.5 11.1 10.8 10.5	45.8 18.0 11.3 11.2	21.0 12.1 11.1 10.3	18.1 14.4 12.6 10.6	8.5 10.2 10.1 10.0	47.0 16.9 10.5 10.5	19.8 10.6 10.1 9.9	16.6 13.0 11.5 10.0
100	30	0.5 1 1.5 2	0.011 0.108 0.669 0.986	0.003 0.021 0.168 0.572	0.011 0.208 0.82 0.997	0.004 0.054 0.279 0.742	23.6 20.8 20.2 20.0	21.7 24.8 21.1 20.1	29.5 21.6 20.2 20.0	21.3 20.4 20.4 20.1	16.7 10.8 10.0 10.0	14.0 16.1 10.9 10.0	21.5 11.3 10.2 10.0	12.5 9.9 10.2 10.1
	40	0.5 1 1.5 2	0.008 0.153 0.782 0.997	0.003 0.04 0.338 0.838	0.013 0.258 0.931 1	0.002 0.072 0.499 0.918	45.0 30.3 30.1 30.0	46.7 30.5 30.2 30.0	35.0 30.3 30.0 30.0	32.5 32.0 30.1 30.0	28.9 10.0 10.1 10.0	33.0 10.7 10.1 10.1	15.7 10.5 10.1 10.0	14.0 12.4 10.1 10.0

Table 11: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model IV with $\tau=25$.

$\overline{}$	Tode	lI		D	\overline{R}			CI	ED			CI	\overline{E}	
au	=2	5	v =	10%	v = 1	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
	20	0.5 1 1.5 2	$0.011 \\ 0.063 \\ 0.32 \\ 0.744$	$0.004 \\ 0.011 \\ 0.043 \\ 0.203$	0.017 0.113 0.469 0.913	$0.005 \\ 0.019 \\ 0.082 \\ 0.356$	22.3 11.7 9.0 7.7	28.8 20.0 11.4 8.8	14.7 10.1 8.8 7.5	31.0 13.4 9.6 8.4	37.6 27.7 25.0 25.0	42.0 35.6 26.2 24.8	31.2 25.9 24.9 24.9	47.2 27.7 25.5 25.1
20	30	0.5 1 1.5 2	0.015 0.159 0.651 0.97	0.005 0.04 0.264 0.725	0.03 0.284 0.81 0.994	0.013 0.079 0.444 0.863	29.7 14.0 11.7 8.4	11.0 15.3 13.0 10.7	22.2 13.9 11.1 7.8	21.2 13.2 12.2 9.9	39.5 25.3 25.3 24.8	23.6 26.6 24.9 24.9	34.2 25.4 24.7 24.8	33.8 24.8 25.0 25.0
	40	0.5 1 1.5 2	0.013 0.211 0.842 0.995	0.014 0.13 0.623 0.941	0.033 0.424 0.943 1	0.022 0.288 0.803 0.988	31.9 19.5 16.6 15.2	25.4 19.8 17.4 15.6	22.3 19.2 16.1 15.0	20.2 18.9 16.9 15.2	32.8 25.2 25.1 24.9	28.4 25.0 25.2 24.9	27.3 25.0 24.9 24.8	$26.5 \\ 25.1 \\ 25.0 \\ 24.9$
	20	0.5 1 1.5 2	0.01 0.077 0.397 0.875	0.003 0.009 0.044 0.184	0.018 0.127 0.575 0.953	0.01 0.016 0.069 0.294	17.0 12.5 8.7 7.9	3.3 21.1 11.1 8.7	20.8 10.3 9.1 7.2	8.0 8.8 10.2 8.3	$egin{array}{c} 30.4 \\ 28.0 \\ 25.1 \\ 25.0 \\ \end{array}$	23.7 34.7 26.4 24.8	36.9 25.7 25.0 24.8	24.3 25.1 25.6 24.9
50	30	0.5 1 1.5 2	0.017 0.196 0.761 0.992	0.008 0.044 0.352 0.781	0.033 0.333 0.89 0.996	0.009 0.11 0.473 0.907	15.3 13.9 11.7 8.4	17.5 14.4 12.6 10.6	15.9 13.9 10.9 7.3	12.8 14.0 11.5 9.4	24.3 25.1 25.1 24.8	30.5 25.2 25.1 24.9	28.0 24.9 24.7 24.6	26.0 25.3 25.0 24.9
	40	0.5 1 1.5 2	0.013 0.317 0.911 1	0.01 0.173 0.688 0.976	0.035 0.476 0.968 1	0.02 0.279 0.813 0.994	21.2 19.4 16.2 15.1	20.0 20.2 16.9 15.4	26.4 19.4 15.9 15.0	20.3 19.4 16.7 15.2	28.2 25.3 24.9 24.9	25.6 25.9 25.1 25.0	28.8 24.9 24.7 24.8	26.9 25.0 24.9 24.9
	20	0.5 1 1.5 2	0.003 0.036 0.317 0.826	$0.009 \\ 0.015 \\ 0.079 \\ 0.315$	0.009 0.095 0.492 0.931	$\begin{array}{c} 0.012 \\ 0.034 \\ 0.158 \\ 0.444 \end{array}$	21.7 8.9 9.0 8.0	8.3 11.7 9.5 8.8	5.0 10.4 9.1 7.6	22.5 9.0 9.6 8.2	39.7 25.0 25.0 24.9	25.2 26.8 24.8 24.9	19.1 25.0 24.9 24.8	35.8 24.6 25.6 25.0
100	30	0.5 1 1.5 2	0.015 0.206 0.775 0.992	0.005 0.06 0.331 0.781	0.022 0.317 0.899 1	0.013 0.094 0.502 0.901	19.0 14.3 11.5 8.0	13.0 14.9 12.8 10.4	17.0 14.1 11.1 7.3	12.3 14.4 12.2 9.3	28.4 25.8 24.9 24.8	23.0 26.5 24.9 25.0	25.7 24.4 24.8 24.7	22.5 25.2 24.8 25.0
	40	0.5 1 1.5 2	0.019 0.404 0.955 1	0.009 0.16 0.698 0.981	0.043 0.547 0.989 1	0.021 0.265 0.832 0.993	24.5 18.9 16.3 15.0	26.1 19.4 17.4 15.4	22.3 19.2 15.7 15.0	23.1 19.5 16.9 15.1	29.9 24.8 24.7 24.8	29.9 25.2 24.9 24.9	25.2 24.8 24.7 24.8	26.8 24.7 24.9 24.9

Table 12: The DR, CED, and CPE of the proposed NS_W and SS_W methods under Model IV with $\tau=50$.

$\overline{}$	Iode	lI		D	\overline{R}			CE	ED			CI	PE	
au	= 2	5	v =	10%	v = 1	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W	NS_W	SS_W
		0.5	0.01	0.009	0.021	0.01	0.0	3.9	4.3	6.0	39.5	43.0	44.4	47.8
	20	1	0.062	0.013	0.1	0.028	6.7	5.8	8.9	3.4	46.7	44.9	49.8	44.1
	20	1.5	0.316	0.06	0.499	0.12	8.5	7.8	8.4	8.1	49.6	48.7	49.6	48.4
		2	0.762	0.217	0.899	0.336	7.7	8.2	7.4	8.8	49.9	49.4	49.9	49.8
		0.5	0.018	0.011	0.027	0.017	5.6	5.5	10.9	10.9	40.9	39.7	46.0	45.8
20	20	1	0.156	0.051	0.282	0.095	12.5	8.8	13.7	13.9	49.2	46.1	50.1	50.2
	30	1.5	0.649	0.283	0.83	0.462	11.5	12.6	10.8	11.8	49.9	50.0	49.6	49.7
		2	0.971	0.711	0.993	0.867	8.6	10.6	7.4	9.5	49.8	50.0	49.7	49.9
		0.5	0.026	0.023	0.034	0.022	11.3	13.3	15.4	16.1	41.8	43.7	50.1	50.0
	40	1	0.231	0.157	0.386	0.271	16.7	16.6	17.3	16.4	49.9	48.7	49.7	49.4
	40	1.5	0.844	0.639	0.943	0.806	13.5	14.3	12.5	13.5	49.8	50.0	49.7	49.8
		2	0.994	0.969	1	0.993	9.0	10.8	7.9	9.1	49.8	49.9	49.6	49.7
		0.5	0.01	0.004	0.022	0.006	-11.5	16.3	5.9	2.5	28.9	56.5	46.6	40.0
	20	1	0.095	0.008	0.131	0.012	7.7	8.8	9.0	5.8	47.5	48.8	49.6	47.1
	20	1.5	0.427	0.057	0.584	0.091	8.9	8.4	8.6	9.8	49.8	49.7	49.4	50.2
		2	0.855	0.189	0.96	0.308	7.2	8.3	6.9	8.4	49.5	49.7	49.6	49.7
		0.5	0.018	0.008	0.023	0.012	5.0	13.1	13.7	9.6	41.2	46.0	48.9	45.6
50	30	1	0.213	0.059	0.352	0.104	13.2	12.3	13.1	11.8	49.8	48.7	49.2	47.6
	3 0	1.5	0.751	0.337	0.89	0.506	11.3	12.2	10.5	11.7	49.7	49.7	49.5	49.8
		2	0.989	0.793	1	0.889	8.0	10.1	7.3	9.4	49.8	49.7	49.6	49.9
		0.5	0.017	0.013	0.037	0.018	17.4	15.4	18.0	12.8	49.1	43.1	44.6	45.3
	40	1	0.318	0.19	0.458	0.288	17.1	17.2	17.1	16.6	49.6	49.8	49.8	50.1
	40	1.5	0.908	0.689	0.973	0.857	13.3	14.5	11.9	13.3	49.9	50.0	49.3	49.6
		2	1	0.979	1	0.993	8.2	9.7	7.4	8.5	49.7	49.8	49.4	49.8
		0.5	0.005	0.015	0.006	0.014	-6.0	-7.3	8.3	-0.4	34.4	31.1	50.3	39.6
	20	1	0.046	0.017	0.071	0.035	9.1	2.1	10.1	3.6	49.7	41.6	50.0	43.0
	20	1.5	0.336	0.096	0.499	0.168	9.1	7.7	9.0	7.6	49.8	47.5	49.8	49.1
		2	0.842	0.341	0.925	0.442	7.9	8.2	7.7	8.3	49.9	49.4	49.7	49.9
		0.5	0.013	0.011	0.027	0.008	14.6	13.2	12.8	5.6	50.7	49.1	46.8	40.6
100	30	1	0.199	0.061	0.35	0.086	14.1	13.6	13.8	13.6	50.3	49.5	49.6	48.9
	3 0	1.5	0.799	0.337	0.921	0.525	11.3	12.5	10.7	11.4	49.7	49.8	49.6	49.9
		2	0.995	0.821	0.999	0.898	8.0	10.5	7.1	9.5	49.7	49.8	49.6	49.9
		0.5	0.023	0.014	0.04	0.017	17.2	14.6	19.3	12.1	50.2	44.6	50.0	44.1
	40	1	0.396	0.189	0.571	0.303	17.0	17.4	17.0	16.8	49.9	49.7	49.7	49.4
	40	1.5	0.963	0.748	0.992	0.845	12.5	14.5	11.5	13.1	49.8	50.0	49.5	49.8
		2	1	0.984	1	0.995	7.8	9.8	7.0	8.4	49.7	49.9	49.4	49.7

3 Additional Diagnostic Results

Table 13 is the change-point estimates and detection rate of variables of the NS_W and SS_W method unde Model I to IV with various setting of parameters.

Table 13: Post-signal diagnosis under Model I to Model IV with various setting of v. When $p=100,\,\tau=25,\,W=40.$

			CPE		D	$\overline{R_v}$
Model	v	δ	NS_W	SS_W	NS_W	SS_W
_	10%	1 1.5 2	25.4 24.9 24.9	25.6 25.0 25.0	$0.105 \\ 0.261 \\ 0.805$	$0.099 \\ 0.134 \\ 0.414$
I	25%	$1\\1.5\\2$	25.1 24.9 24.9	25.2 24.9 24.9	0.045 0.263 0.814	0.042 0.089 0.423
II	10%	1 1.5 2	24.3 24.6 24.8	24.7 24.7 24.8	0.103 0.263 0.843	0.102 0.153 0.547
11	25%	1 1.5 2	24.2 24.6 24.8	24.3 24.7 24.8	0.043 0.241 0.836	$0.041 \\ 0.114 \\ 0.535$
III	10%	$1\\1.5\\2$	25.2 24.9 24.8	24.9 25.1 24.9	0.179 0.405 0.828	0.138 0.228 0.518
	25%	1 1.5 2	24.7 24.7 24.8	24.9 24.9 24.9	0.090 0.338 0.807	0.060 0.168 0.486
IV	10%	1 1.5 2	24.8 24.7 24.8	25.2 24.9 24.9	0.200 0.396 0.818	$0.156 \\ 0.227 \\ 0.501$
1 V	25%	1 1.5 2	24.8 24.7 24.8	24.7 24.9 24.9	0.121 0.350 0.821	0.072 0.165 0.479

4 Additional Comparison Results

Table 14 is the detection rate and detection delay of the DFEWMA chart under Model I with various setting of parameters. For the reference sample, m_0 is set to 100.

Table 14: The DR and CED of the DFEWMA chart under ModelI with various setting of p, W, δ, τ , and v.

		$\tau = 10$				au=25				$\tau = 50$				
			v =	10%	v =	25%	v =	10%	v =	25%	v =	10%	v =	25%
p	W	δ	DR	CED	DR	CED	DR	CED	DR	CED	DR	CED	DR	CED
20		1	0.89	24.4	1	9.5	0.893	22.1	1	9.1	0.87	18.3	1	8.3
	20	1.5	1	12.1	1	6.1	1	11.4	1	6.1	1	11.0	1	5.7
		2	1	9.1	1	5.0	1	8.6	1	4.9	1	8.1	1	4.4
		1	0.944	23.8	1	9.5	0.944	23.3	1	9.2	0.942	19.7	1	8.5
20	30	1.5	1	12.3	1	6.1	1	11.8	1	6.0	1	11.2	1	5.2
		2	1	9.1	1	4.9	1	9.0	1	4.8	1	8.2	1	4.2
		1	0.949	24.3	1	9.6	0.95	22.8	1	9.6	0.94	19.6	1	8.9
	40	1.5	1	12.0	1	6.2	1	11.7	1	6.1	1	10.5	1	5.3
		2	1	8.9	1	5.0	1	8.7	1	4.9	1	8.0	1	4.5
		1	1	13.5	1	6.4	1	12.6	1	6.3	1	11.9	1	6.0
	20	1.5	1	7.8	1	4.4	1	7.7	1	4.4	1	7.2	1	3.7
		2	1	6.3	1	3.7	1	6.0	1	3.6	1	5.4	1	3.2
		1	1	13.1	1	6.3	1	13.0	1	6.4	1	12.3	1	5.6
50	30	1.5	1	7.8	1	4.4	1	7.7	1	4.2	1	7.2	1	3.9
		2	1	6.2	1	3.7	1	6.1	1	3.7	1	5.3	1	2.8
		1	1	13.6	1	6.3	1	12.9	1	6.2	1	12.0	1	5.7
	40	1.5	1	7.8	1	4.4	1	7.6	1	4.3	1	7.1	1	3.6
		2	1	6.2	1	3.7	1	6.0	1	3.6	1	5.6	1	3.2
100		1	1	9.3	1	5.1	1	9.0	1	5.1	1	8.5	1	4.2
	20	1.5	1	6.1	1	3.7	1	5.9	1	3.6	1	5.3	1	3.1
		2	1	4.9	1	3.1	1	4.8	1	3.0	1	4.3	1	2.5
		1	1	9.3	1	5.1	1	9.4	1	5.1	1	8.5	1	4.6
	30	1.5	1	6.0	1	3.7	1	6.0	1	3.6	1	5.3	1	3.1
		2	1	5.0	1	3.2	1	4.8	1	3.1	1	4.2	1	2.6
		1	1	9.3	1	5.1	1	9.2	1	5.1	1	9.0	1	4.5
	40	1.5	1	6.1	1	3.7	1	6.0	1	3.6	1	5.5	1	2.9
		2	1	4.9	1	3.1	1	4.9	1	3.0	1	4.4	1	2.8

5 Additional Case Study Results

Table 15 is the detection rate, detection delay and change-point estimates of the proposed NS_W and SS_W charts in the case study of scemiconductor data.

Table 15: The DR and CED of the proposed NS_W and SS_W methods in signal detection, and the CPE in post-signal diagnosis with various setting of W and τ .

			NS_W			SS_W				
W	au	DR	CED	CPE	DI	CED	CPE			
	10	1	10.00	14.15	0.0	29 48.79	50.00			
20	25	1	4.99	26.24	0.0	39 26.67	44.95			
	50	1	4.92	51.19	0.0	36 17.22	60.97			
	10	1	20.00	20.05	0.0	4 49.75	45.38			
30	25	1	5.02	26.35	0.0	83 18.31	36.01			
	50	1	4.95	51.22	0.0	71 12.75	54.49			
	10	1	30.00	25.96	0.0	96 62.19	53.81			
40	25	1	15.00	31.94	0.1	14 30.22	45.69			
	50	1	4.93	51.12	0.3	3 10.64	55.95			

References

[1] Chang, J., Zheng, C., Zhou, W. X., and Zhou, W. (2017). Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity. Biometrics, 73(4), 1300-1310.