UNIAVAN - Centro Universitário Avantis Curso: Engenharia Elétrica Disciplina: Análise de Sistemas Lineares

Revisão Senoides, e Sinais e Sistemas

Prof. Luiz Fernando M. Arruda, Me. Eng.

Sumário

- Senoides
- Sinais e Sistemas
- 3 Tempo Contínuo e Tempo Discreto
- 4 Escalamento Temporal
- Reversão Temporal
- 6 Deslocamento Temporal

Senoides

 $x(t) = C \sin(2 \cdot \pi \cdot f_0 \cdot t + \phi)$

Uma senoide é composta por uma amplitude (C), frequência (f_0) e uma defasagem angular ϕ , conforme a figura acima.

Observe que a cada período T_0 ela se repete, e uma vez que o período é o inverso da frequência (quantas vezes se repete em 1 seg.) podemos obter o valor da frequência a partir da equação.

$$f_0 = \frac{1}{T_0}$$

Toda via, na engenharia, é bastante conveniente utilizarmos os termos em radianos por segundo substituindo o tempo t pelo angulo ϕ e a frequência em Hertz para frequência angular ω_0 .

$$\omega_0 = 2 \cdot \pi \cdot f_0$$

Senoides

Há dois casos excepcionais das senoides $x(t) = C \cdot sin(2 \cdot \pi \cdot f_0 \cdot t + \phi)$:

•
$$x(t) = C \cdot sin(2 \cdot \pi \cdot f_0 \cdot t)$$

para
$$(\phi = 0)$$

•
$$x(t) = C \cdot cos(2 \cdot \pi \cdot f_0 \cdot t)$$
 para $\left(\phi = -\frac{\pi}{2}\right)$

$$\left(\phi = -\frac{\pi}{2}\right)$$

Uma vez que podemos reescrever a função x(t). temos:

$$x(t) = C \cdot sin(w_o \cdot t + \phi)$$
 onde : $T_0 = \frac{1}{w_0/2\pi}$

A figura ao lado plota duas senoides sobrepostas. uma cossenoide (um sendo com 90° adiantado) e uma senoide com $\phi = 0^{\circ}$.

Senoides

A figura acima demonstra duas senoides sobrepostas, uma cossenoide (um sendo com 90° adiantado) e uma senoide com $\phi=30^{\circ}$.

Uma senoide pode ser constituida da soma de outras duas senoides de fases (ϕ) diferentes mas de mesma frequência.

$$C \cdot cos(\omega_0 t + \phi) = C \cdot cos(\phi) cos(\omega_0 t) - C \cdot sin(\phi) sin(\omega_0 t)$$

No qual:
$$a = C \cdot cos(\phi)$$
 e $b = -C \cdot sin(\phi)$
Portanto: $C = \sqrt{a^2 + b^2}$ e $\phi = tan^{-1}\left(\frac{-b}{a}\right)$.
Logo, C e ϕ são o módulo e o ângulo, respectivamente, de um número complexo $a - jb = C \cdot e^{j\phi}$, ao qual, $a \cdot cos(\omega_0 t) + b \cdot sin(\omega_0 t) = C \cdot (\omega_0 t + \phi)$.

Nos caos a seguir, expresse x(t) como uma única senoide:

• $x(t) = cos(\omega_0 t) - \sqrt{3} \cdot sin(\omega_0 t)$

Nos caos a seguir, expresse x(t) como uma única senoide:

•
$$x(t) = cos(\omega_0 t) - \sqrt{3} \cdot sin(\omega_0 t)$$

$$a=1$$
 $b=-\sqrt{3}$

$$C = \sqrt{a^2 + b^2} = \sqrt{1^2 + (-\sqrt{3})^2}$$

$$C = \sqrt{1+3} = \sqrt{4}$$

$$C = 2$$

$$\phi = tan^{-1} \left(\frac{-b}{a} \right) = tan^{-1} \left(\frac{-(-\sqrt{3})}{1} \right)$$

$$\phi = 60^{\circ}$$

$$x(t) = 2 \cdot cos(\omega_0 t + 60^\circ)$$

Nos caos a seguir, expresse x(t) como uma única senoide:

• $x(t) = -3 \cdot cos(\omega_0 t) + 4 \cdot sin(\omega_0 t)$

Nos caos a seguir, expresse x(t) como uma única senoide:

•
$$x(t) = -3 \cdot cos(\omega_0 t) + 4 \cdot sin(\omega_0 t)$$

$$a = -3$$
 $b = 4$

$$C = \sqrt{a^2 + b^2} = \sqrt{(-3)^2 + 4^2}$$

$$C = \sqrt{9+16} = \sqrt{25}$$

$$C = 5$$

$$\phi = tan^{-1} \left(\frac{-b}{a} \right) = tan^{-1} \left(\frac{-4}{-3} \right)$$

$$\phi = 53,13^{\circ}$$

$$x(t) = 5 \cdot cos(\omega_0 t + 53, 13^\circ)$$

Porém, devido ao termo a ser negativo:

$$x(t) = 5 \cdot \cos(\omega_0 t + 53, 13^\circ - 180^\circ)$$

$$x(t) = 5 \cdot \cos(\omega_0 t - 126.87^\circ)$$

Senoides em Termos Exponenciais

As senóides também podem ser expressas em termos de exponenciais utilizando a fórmula de Euler.

$$cos(\phi) = \frac{1}{2} \left(e^{j\phi} + e^{-j\phi} \right)$$
$$sin(\phi) = \frac{1}{2} \left(e^{j\phi} - e^{-j\phi} \right)$$

e a inversão pode ser definida por:

$$e^{j\phi} = cos(\phi) + j \cdot sin(\phi)$$

 $e^{-j\phi} = cos(\phi) - j \cdot sin(\phi)$

Sinais

Segundo (HSU, 2019), "Um sinal é uma função que representa uma quantidade ou variável física e, tipicamente, contém informações sobre o comportamento ou a natureza do fenômeno. Por exemplo, em um circuito RC, o sinal pode representar a tensão através do capacitor ou a corrente fluindo no resistor. Matematicamente, um sinal é representado como uma função de uma variável independente t. Geralmente, t representa o tempo. Assim, um sinal é denotado por x(t)".

Sinal

é uma variavel dependente com uma ou mais variaveis independentes.

Por exemplo o valor de tensão alternada é considerado um sinal, pois ele tem uma variavel indepente t que muda com o tempo. Já o valor de tensão em corrente continua de uma fonte não é considerado um sinal pois não tem uma variavel que muda com o tempo.

Sinais

Sinal de variavel simples

Um sinal de variável única é uma função que depende de uma única variável independente. Este tipo de sinal é o mais comum em muitas aplicações e geralmente representa como uma quantidade varia em relação ao tempo.

Exemplo:

- Sinal de áudio;
- Sinal de tensão em um circuito;
- Sinal de temperatura em um ambiente;

x(t)

Sinal de diversas variaveis

Um sinal de múltiplas variáveis é uma função que depende de duas ou mais variáveis independentes. Esses sinais são usados para descrever fenômenos que variam em mais de uma dimensão.

Exemplo:

- imagens (duas coordenadas espaciais);
- vídeos (duas coordenadas espaciais e uma coordenada de tempo);
- campo eletromagnético (pode depender de coordenadas espaciais e temporais);

x(t, y, ...)

Sistema

De acordo com (HSU, 2019), "Um sistema é o modelo matemático de um processo físico que relaciona um sinal de entrada (ou excitacao) e um sinal de saída (resposta)."

Sistema

Modelo matemático que representa um processo físico.

Fig. 1-14 System with single or multiple input and output signals.

Exemplo: Um sistema de artilharia anti-aérea, através do **sinal do radar**, sabe a posição passada e a velocidade do alvo. E através do processamento do sinal do radar (a entrada), ele pode estimar a posição futura do alvo.

Sistemas

Há basicamente 2 tipos de problemas:

Problema de Análise

O problema de análise envolve entender e caracterizar o comportamento de um sistema existente. O objetivo é determinar como o sistema responde a várias entradas e quais são suas propriedades intrínsecas.

- Modelagem e Simulação
- Estabilidade
- Resposta a Entrada
- Frequência e Tempo

Problema de Síntese

O problema de síntese envolve projetar um sistema que atenda a especificações desejadas. O objetivo é criar ou configurar um sistema para alcançar um comportamento específico.

- Especificação
- Projeto
- Otimização
- Implementação

Enquanto o objetivo da análise é compreender e prever o comportamento de um sistema existente, a síntese busca projetar um novo sistema ou modificar um existente a atender requisitos específicos.

Tempo Contínuo e Tempo Discreto

Sinal de Tempo Contínuo: possui um valor para cara instante de tempo t.

As funções em tempo contínuo são expressas por "(t)", onde t é o tempo.

x(t)

Sinal Discreto: possui um valor a cada intervalo definido, tempo discreto.

x[n]

As funções de tempo discreto são expressas em "[n]", onde n é um número inteiro no intervalo de aquisições.

x[n] = [0.0, 0.59, 0.95, 0.95, 0.59, 0.0, -0.59, -0.95, -0.95, -0.59];

O gráfico ao lado representa um sinal de tempo discreto x[n] com n variando de 0 a 9. O sinal é uma função seno discretizada, especificamente x[n] = $sin(0,2 \cdot \pi n)$ Os valores do sinal para os primeiros dez instantes de tempo são aproximadamente [0.0, 0.59, 0.95, 0.95, 0.59, 0.0, -0.59, -0.95, -0.95, -0.59]. Esses valores mostram a oscilação característica da função seno, alternando entre valores positivos e negativos, com um período determinado pela frequência angular de 0.2π . Ele ilustra claramente esses valores discretos, destacando os pontos individuais do sinal no tempo.

Escalamento Temporal

Escalamento temporal é a compressão ou expansão de um sinal ao longo do eixo do tempo. Isso significa que a forma do sinal é mantida, mas a maneira como ele se estende ou se contrai ao longo do tempo é alterada. Se um sinal é comprimido, ele se tornará mais rápido.

$$\phi\left(\frac{t}{\alpha}\right) = x(t)$$
$$\phi(t) = \alpha \cdot x(t)$$

Ao analisar a figura ao lado considere $\alpha = 2$.

Escalamento Temporal

Em contrapartida, se um sinal é expandido com fator α ele irá se tornar mais lento, conforme figura ao lado.

$$\phi(\alpha \cdot t) = x(t)$$
$$\phi(t) = x\left(\frac{t}{\alpha}\right)$$

Considere um fator $\alpha = \frac{1}{2}$ ao analisar a figura.

Considere uma compressão de $\alpha=3$ e expansão de $\alpha=2$ do sinal x(t) abaixo.

$$x(t) = \begin{cases} 2 & \text{se } -1,5 \le t < 0 \\ 2e^{-t/2} & \text{se } 0 \le t < 3 \\ 0 & \text{caso contrário} \end{cases}$$

Considere uma compressão de $\alpha=3$ e expansão de $\alpha=2$ do sinal x(t) abaixo.

$$x(t) = \begin{cases} 2 & \text{se } -1.5 \le t < 0 \\ 2e^{-t/2} & \text{se } 0 \le t < 3 \\ 0 & \text{caso contrário} \end{cases}$$

$$x_c(t) = x(3t) = \begin{cases} 2 & \text{se } -1,5 \le 3t < 0 & \text{ou } -0,5 \le t < 0 \\ 2e^{-3t/2} & \text{se } 0 \le 3t < 3 & \text{ou } 0 \le t < 1 \\ 0 & \text{caso contrário} \end{cases}$$

Considere uma compressão de $\alpha=3$ e expansão de $\alpha=2$ do sinal x(t) abaixo.

$$x(t) = \begin{cases} 2 & \text{se } -1,5 \le t < 0 \\ 2e^{-t/2} & \text{se } 0 \le t < 3 \\ 0 & \text{caso contrário} \end{cases}$$

$$x_c(t) = x(3t) = \begin{cases} 2 & \text{se } -1,5 \le 3t < 0 & \text{ou } -0,5 \le t < 0 \\ 2e^{-3t/2} & \text{se } 0 \le 3t < 3 & \text{ou } 0 \le t < 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$x_e(t) = x(t/2) = \begin{cases} 2 & \text{se } -1,5 \le t/2 < 0 & \text{ou } -3 \le t < 0 \\ 2e^{-t/4} & \text{se } 0 \le t/2 < 3 & \text{ou } 0 \le t < 6 \\ 0 & \text{caso contrário} \end{cases}$$

Exercício: Escalonamento temporal

Demonstre que o escalonamento temporal, quando aplicado a uma senoide, resulta em outra senoide com a mesma amplitude e fase, mas com a frequência alterada. Valide para fatores $\alpha > 1$ e $\alpha < 1$. Explique sua conclusão e plote os gráficos para comprovar sua análise.

Reversão Temporal

A reversão temporal de um sinal é o processo pelo qual a variável de tempo t é substituída por seu negativo -t, resultando em um sinal que é espelhado em relação ao eixo vertical. Esta operação inverte a direção do tempo, fazendo com que os eventos que ocorriam no passado apareçam no futuro e vice-versa. A reversão temporal não altera a amplitude do sinal, mas modifica sua fase de maneira que, se o sinal original tem uma certa periodicidade ou comportamento temporal. o sinal reverso exibirá essa periodicidade de forma espelhada. Este conceito é útil em diversas áreas. como processamento de sinais, análise de sistemas e comunicações

$$\phi(t) = x(-t)$$

$$x(t) = \begin{cases} e^{t/2} & \text{se } -1 \ge t > -5 \\ 0 & \text{caso contrário} \end{cases}$$

$$x(t) = \begin{cases} e^{t/2} & \text{se } -1 \ge t > -5 \\ 0 & \text{caso contrário} \end{cases}$$

$$x(-t) = \begin{cases} e^{-t/2} & \text{se } -1 \ge -t > -5 & \text{ou} \quad 1 \le t < 5 \\ 0 & \text{caso contrário} \end{cases}$$

Exercício: Reversão Temporal

Considere o sinal $x(t) = e^{-t}$ para $t \ge 0$.

- 1. Plote o sinal original x(t) no intervalo $-2 \le t \le 2$.
- 2. Plote o sinal invertido no tempo, ou seja, x(-t).
- 3. Explique como a reversão temporal afeta a forma e a posição do sinal.

Deslocamento Temporal

O deslocamento temporal altera a posição de um sinal ao longo do eixo do tempo sem modificar sua forma. Representado matematicamente como x(t-T), onde T é a quantidade de deslocamento, essa operação move o sinal para a direita (atraso) se T for positivo, ou para a esquerda (adiantamento) se T for negativo. Esse conceito é essencial no processamento de sinais e controle de sistemas para ajustar o momento de ocorrência de um sinal.

$$\phi(t+T) = x(t)$$

$$\phi(t-T) = x(t)$$

$$\phi(t) = x(t-T)$$

$$\phi(t) = x(t+T)$$

Exercício: Deslocamento temporal

Considere o sinal $x(t) = \cos(t)$.

- 1. Plote o sinal original x(t) no intervalo $-2\pi \le t \le 2\pi$.
- 2. Plote o sinal deslocado para a direita por π , ou seja, $x(t-\pi)$.
- 3. Plote o sinal deslocado para a esquerda por $\frac{\pi}{2}$, ou seja, $x(t+\frac{\pi}{2})$.
- 4. Explique como o deslocamento temporal afeta a posição do sinal ao longo do eixo do tempo.

Exercício: Análise de Operações em Sinais

Considere o sinal $x(t) = \sin(2t)$.

- 1. Plote o sinal original x(t) no intervalo $-2\pi \le t \le 2\pi$.
- 2. Plote o sinal invertido no tempo, ou seja, x(-t).
- 3. Plote o sinal deslocado para a direita por $\pi/2$, ou seja, $x(t-\pi/2)$.
- 4. Plote o sinal expandido no tempo por um fator de 2, ou seja, x(t/2).
- 5. Plote o sinal comprimido no tempo por um fator de 2, ou seja, x(2t).
- 6. Explique como cada operação (reversão temporal, deslocamento, expansão e compressão) afeta a forma e a posição do sinal.

Próxima Aula Classificação de Sinais

Obrigado!!!

Referencial Bibliográfico I

DISTEFANO, Joseph J; STUBBERUD, Allen J; WILLIAMS, Ivan J. Schaum's outline of feedback and control systems. New York: McGraw-Hill Professional, 2013.

HAYES, Monson H. Schaum's outlines Digital Signal Processing. New York: McGraw-Hill Professional, 2011.

HSU, Hwei P. Schaum's outlines signals and systems, 4th Edition. New York: McGraw-Hill Professional, 2019. v. 4.

LATHI, Bhagwandas Pannalal; GREEN, Roger A. Linear systems and signals. New York: Oxford University Press, 2004. v. 2.