Geometria e Algebra - MIS-Z

Secondo Esonero

22/06/2022

Nome e Cognome:		
Corso di Laurea:		
Matricola:		

Informazioni

Questo esonero contiene 4 esercizi per un totale di 35 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- $\bullet\,$ se 30 < $x \leq$ 35, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio

TOTALE

ESERCIZIO 1 [8 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) Si consideri \mathbb{R}^3 munito del prodotto scalare standard. Esiste $k \in \mathbb{R}$ per cui i vettori (k, 1, -1) e (k, k, -2)

sono ortogonali.

- \square VERO
- \square FALSO

Giustificazione

(b) Esiste un'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che

$$f(1,2,3) = (1,2),$$
 $f(3,2,1) = (3,4),$ e $f(4,4,4) = (5,6).$

$$f(4,4,4) = (5,6)$$

- \square VERO
- \square FALSO

Giustificazione

(c) Sia f un endormorfismo di uno spazio vettoriale V . Se 0 è un autovalore di f allora $\ker(f) \neq \{\underline{0}\}.$
\Box VERO
\Box FALSO
Giustificazione
(d) Sia V uno spazio euclideo con prodotto scalare \langle , \rangle . Siano $v,w \in V$ entrambi non nulli. Se v e w sono linearmente dipendenti allora $\langle v,w \rangle \neq 0$.
\Box VERO
\Box FALSO
Giustificazione

ESERCIZIO 2 [9 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e un'equazione cartesiana del piano π_1 passante per i punti A(0,1,1), B(2,0,-2) e C(2,1,-1) di \mathbb{E}^3 .

(b) Sia $h \in \mathbb{R}.$ Nella famiglia di rette di \mathbb{E}^3 definite dalle equazioni cartesiane

$$\begin{cases} X + (h+1)Y + Z = 2h \\ hX - Z = 2 \end{cases}$$

si determini la retta r passante per il punto (1, 1, 0).

(c) Si mostri che la retta r non è contenuta nel piano π_1 .

(d) Si determinino i valori di k tali che il piano definito dalle equazioni parametriche

$$\begin{cases} x = 2ks - 2t + k \\ y = 2s + kt \\ z = 3t + 3 \end{cases}, \quad s, t \in \mathbb{R}$$

sia parallelo a π_1 .

(e) Per i valori di k trovati in (d) si calcoli la distanza del piano corrispondente dal piano π_1 .

ESERCIZIO 3 [10 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

Per $k \in \mathbb{R}$, si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (2x + 2y, kx + kz, 2y + kz).$

(a) Si determinino i valori di k per cui f_k $\underline{\mathrm{non}}$ è un automorfismo.

(b) Per uno dei valori di k trovati in (a) si determini una base di $\ker(f_k)$ e di $\operatorname{Im}(f_k)$.

(c) Si richiami la definizione di autovettore e di autovalore di un endomorfismo di uno spazio vettoriale.

(d) Si determinio i valori di k per cui il vettore (2,3,3) è un autovettore di f_k . Per tali valori di k si determini l'autovalore corrispondente.

(e) Per k=2 si spieghi perché l'operatore f_2 è diagonalizzabile (richiamando l'enunciato dell'opportuno teorema) e si determini una base diagonalizzante per f_2 e ortornomale rispetto al prodotto scalare standard di \mathbb{R}^3 .

ESERCIZIO 4 [8 punti]. Matrici associate.

(a) Sia V uno spazio vettoriale su un campo K di dimensione n. Sia $f:V\to V$ un endomorfismo di V e siano \mathcal{B} e \mathcal{B}' due basi di V. Si definisca la matrice $M_{\mathcal{B}',\mathcal{B}}(f)$ associata a f rispetto alle basi \mathcal{B} e \mathcal{B}' .

(b) Si consideri l'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ la cui matrice rispetto alla base canonica \mathcal{B} è

$$A = \begin{pmatrix} -3 & -2 & -4 \\ 4 & 3 & 4 \\ 0 & 0 & 1 \end{pmatrix}.$$

Si mostri che $\mathcal{B}' = \{(1,0,-1),(0,2,-1),(-1,1,0)\}$ è una base diagonalizzante per f e si scriva la matrice $M_{\mathcal{B}'}(f)$.

(c) Si scrivano le matrici $M_{\mathcal{B},\mathcal{B}'}(id_{\mathbb{R}^3})$ e $M_{\mathcal{B}',\mathcal{B}}(id_{\mathbb{R}^3})$ del cambiamento di base rispettivamente dalla base \mathcal{B}' alla base \mathcal{B} e dalla base \mathcal{B} alla base \mathcal{B}' e si verifichi che

$$M_{\mathcal{B}'}(f) = M_{\mathcal{B}',\mathcal{B}}(id_{\mathbb{R}^3}) \cdot A \cdot M_{\mathcal{B},\mathcal{B}'}(id_{\mathbb{R}^3}).$$

(d) Si calcoli A^{101} e se ne deduca l'espressione di $f^{101}(x,y,z)$, dove $(x,y,z) \in \mathbb{R}^3$. (Si richiama la notazione $f^n := \underbrace{f \circ \cdots \circ f}_{n \ volte}$.)