Extra Exercises for Week 6

MH2500

September 15, 2024

Most questions are taken from the textbook: A First Course in Probability (9th edition) by Sheldon Ross.

Problem 1. If X is Bin(n, p), then prove that as k goes from 0 to n, P(X = k) increases monotonically, reaching its largest value when $k = \lfloor (n+1)p \rfloor$. You may start by considering the ratio P(X = k)/P(X = k-1).

Problem 2. Let $X \sim Po(\lambda)$. What value of λ maximizes P(X = k), k > 0?

Problem 3. A casino patron will continue to make \$5 bets on red in roulette until she has won 4 of these bets. On each bet, she will either win \$5 with probability 18/38 or lose \$5 with probability 20/38.

- (a) What is the probability that she places a total of 9 bets?
- (b) Let X be the number of bets made until she stops. Let W be the total winnings until she stops. Compute $\mathbb{E}(X)$ and $\mathbb{E}(W)$. Here, X is a negative binomial random variable.

Problem 4. People enter a casino at a rate of 1 every 2 minutes.

- (a) What is the probability that no one enters between 12:00 and 12:05?
- (b) What is the probability that at least 4 people enter the casino during that time?

Problem 5. Let $X \sim Po(\lambda)$. Show that

$$\mathbb{E}(X^n) = \lambda \mathbb{E}((X+1)^{n-1}).$$

Problem 6. Let $X \sim Po(\lambda)$. Let a > 0 be a constant. Is aX a Poisson random variable?

Problem 7. A 0-truncated Poisson(λ) random variable X_T has the probability mass function

$$P(X_T = x) = \frac{P(X = x)}{P(X > 0)}, \qquad x = 1, 2, 3, \dots,$$

where $X \sim Po(\lambda)$. Find $\mathbb{E}(X_T)$.

Problem 8. The probability of being dealt a full house in a hand of poker is approximately 0.0014. Find the exact probability that in 1000 hands of poker, you will be dealt at least 2 full houses. Use a Poisson approximation to find the probability.

Problem 9. Let X and Y be two independent geometric random variables with parameter p, i.e. they have the probability mass function

$$P(X = k) = (1 - p)^{k-1}p,$$
 $k = 1, 2, \dots$

- (a) For $n \ge 1$, compute, $P(X \ge n)$.
- (b) Let $Z = \min\{X, Y\}$. Compute $P(Z \ge n)$, and work out the probability mass function of Z.
- (c) Compute P(Y = 2|X + Y = 4).

Problem 10. Let X be a Poisson(λ) random variable. Show that

$$P(X \text{ is even}) = \frac{1}{2}(1 + e^{-2\lambda}).$$

It may be useful to consider the Taylor series expansion of e^{λ} and $e^{-\lambda}$.

Problem 11. An urn has n white and m black balls. Balls are randomly withdrawn one at a time, without replacement, until a total of k white balls have been withdrawn, $k \le n$. The random variable X is equal to the total number of balls that are withdrawn. We say that X follows a negative hypergeometric random variable. Find P(X = r), the probability mass function of X.

Answers (Let me know if there are any discrepancies):

- 2. *k*
- 3(a). $\binom{8}{3} \left(\frac{20}{38}\right)^5 \left(\frac{18}{38}\right)^4$
- 3(b). $\frac{76}{9}$, $-\frac{20}{9}$
- $4(a). e^{-2.5}$

4(b).
$$1 - e^{-2.5} \left(1 + 2.5 + \frac{2.5^2}{2!} + \frac{2.5^3}{3!} \right)$$

- 6. No, if $a \neq 1$.
- 7. $\frac{\lambda}{1-e^{-\lambda}}$
- 8. 0.4083264, 0.408167

9(a).
$$(1-p)^{n-1}$$

9(b).
$$(1-p)^{2n-2}$$
, $P(Z=k) = p(2-p)(1-p)^{2k-2}$, $k = 1, 2, ...$

$$9(c)$$
. $\frac{1}{3}$

11.
$$\frac{\binom{n}{k-1}\binom{m}{r-k}}{\binom{n+m}{r-1}} \cdot \frac{n-k+1}{n+m-r+1}$$
, where $r = k, k+1, \ldots, k+m$.