Goal: various forms of a plane in \mathbb{R}^3 , parametric form of a line in \mathbb{R}^3

The collection of points (x, y, z) in \mathbb{R}^3 satisfying an equation of the form

$$ax + by + cz = d$$
, 2D and $ax + by + cz = d$, is a

where at least one of a, b, or c is non-zero, is a **plane** in \mathbb{R}^3 . This is called the *equational form* of a plane. There are three other forms of expressing a plane:

1. (three points on a plane) Three points, that do not all lie on a single line (not collinear), determine a plane. You can think of the triangle formed by the points, and the plane is an "extension" of the triangle.

Example 1. Graph the plane x + 2y + 3z = 6 in the xyz-coordinate system.

We need three points on the plane. Commonly used points are the intercepts.

$$x-int: (6,0,0)$$

2. (point and normal vector form) You can also determine a plane by a point P the plane passes through and a normal vector \mathbf{n} (called the *normal vector*) that the plane is perpendicular to.

It actually turns out that if the normal vector is
$$\mathbf{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$
, then the equational form of the plane is given by $n_1x + n_2y + n_3z = C$, where the constant C depends on the point P .

Example 2. Find the point and normal vector form to the plane in Example 1.

Reading off the coefficients of
$$z+2y+3z=6$$
, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ is normal to P. One point on P is (1,1,1).

Example 3. Find the equation form of the plane that passes through
$$(1, -2, 3)$$
 and is normal to $\begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$.

Since the plane has
$$\begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$$
 as a normal vector, its equational form is

In order to find C, we plug in (1,-2,3) to get C=3(1)+(-2)-2(3)=-5. Thus, an equation for the plane is 3x+y-2z=-5.

3. (parametric form) Given two *displacement vectors* \mathbf{e} and \mathbf{e}' , that are not scalar multiples of each other, and a point P, we can also define a plane by

$$P + t\mathbf{e} + t'\mathbf{e}'$$
,

where t and t' are scalars. You can think of \mathbf{e} and \mathbf{e}' being the directions of the "t-axis" and "t'-axis", respectively, and the plane is formed by these axes.

Example 4. Find a parametric form of the plane in Examples 1 and 2.

From Example 1, (6,0,0), (0,3,0), and (0,0,2) are on P.

Taking (0,0,2) as P, we get
$$\vec{e} = \begin{bmatrix} 6 \\ 0 \\ -2 \end{bmatrix}$$
 and $\vec{e}' = \begin{bmatrix} 0 \\ 3 \\ -2 \end{bmatrix}$. So,

a parametric form for P is

$$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + t \begin{bmatrix} 6 \\ 0 \\ -2 \end{bmatrix} + t' \begin{bmatrix} 0 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 6t \\ 3t' \\ 2 - 2t - 2t' \end{bmatrix}$$

We can think of this plane with "center" P and grid formed by 2 and 2. I think of this as a "skewed graph bacer."

Note Depending on your choice of P, \vec{e} , \vec{e}' , the parametrization will be different. **Example 5.** Do the points (1,1,2) and (-2,1,3) line on the same side of x + 2y + 3z = 4? How about (1,1,2) and (1,1,0)?

$$(1,1,2) \qquad 9 \qquad \text{Both are greater than 4,} \qquad (1,1,2) \qquad 9 \qquad \text{One is greater than 4.} \\ (-2,1,3) \qquad 9 \qquad \text{side of the plane.} \qquad (1,1,0) \qquad 3 \qquad \text{So, they lie on apposite sides.}$$

We can also use parameters to define a line – we actually only need one. We can think of a plane needing two parameters t and t' to keep track of where you are on the plane with respect to the "t-axis" and "t'-axis". For the line, we only need one parameter t to keep track of how far down the line you are from a starting point.

Consider a line l that passes through \mathbf{p} in the direction of \mathbf{v} . A way to look at this is, if a \mathbf{x} is on l, then $\mathbf{x} - \mathbf{p}$ should be a scalar multiple of \mathbf{v} . In other words, $\mathbf{x} - \mathbf{p} = t\mathbf{v}$, or equivalently,

$$\mathbf{x} = \mathbf{p} + t\mathbf{v}.$$

Note that if t is positive, you are along the line in the **v**-direction from **p**, and if t is negative, you are along the line in the $-\mathbf{v}$ -direction from **p**.

Example 6. Find the equation of a line that passes through the points (1, 3, -2) and (2, 0, 1).

Picking
$$(1, 3, -2)$$
 as \vec{p} , a direction vector is $\vec{V} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix}$.

$$\begin{array}{c}
1 \\
3 \\
-2
\end{array} + t \begin{bmatrix} 1 \\
-3 \\
3 \end{bmatrix} = \begin{bmatrix} 1+t \\
3-3t \\
-2+3t \end{bmatrix}$$

Example 7. Find the equation of a plane \mathcal{P} given by the parametric form

$$\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + t' \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}.$$

Since
$$\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$
 and $\begin{bmatrix} -1\\0\\-1 \end{bmatrix}$ both lie on P ,

the normal vector $\vec{n} = \begin{bmatrix} a\\b\\c \end{bmatrix}$ has to be

orthogonal to both.

 $0 = 0 \cdot a + 1 \cdot b - 1 \cdot c = b - c \Rightarrow b = c$
 $0 = -1 \cdot a + 0 \cdot b - 1 \cdot c = -a - c \Rightarrow a = -c$

Picking $c = 1$, we get $a = -1$, $b = 1$, and

so, $\begin{bmatrix} -1\\1\\1 \end{bmatrix}$ is normal to P . Hence,

 $-x + y + z = C$

is an equational form of P. Since
$$(3,0,0)$$

lies on P, $C=-3$.

Example 8. Find a parametric form for the plane in \mathbb{R}^3 given by the equation x - 2y + 5z = 40.

The intercepts of P are (40,0,0), (0,-20,0), and (0,0,8). Picking (0,-20,0) as P, we get displacement vectors $\vec{e} = \begin{bmatrix} 40 \\ 20 \\ 0 \end{bmatrix}$ and $\vec{e}' = \begin{bmatrix} 0 \\ 20 \\ 8 \end{bmatrix}$ on P. Hence,

$$\begin{bmatrix} 0 \\ -20 \\ 0 \end{bmatrix} + t \begin{bmatrix} 40 \\ 20 \\ 0 \end{bmatrix} + t' \begin{bmatrix} 0 \\ 20 \\ 8 \end{bmatrix} = \begin{bmatrix} 40t \\ -20 + 20t + 20t' \\ 8t' \end{bmatrix}$$

is a parametric form of P

Example 9. Find an equation for the plane parallel to 2x - 3y + 5z = -3 and passing through the point (1, 0, -4).

The plane has equational form
$$2x - 3y + 5 \ge = C.$$
Since $(1, 0, -4)$ lies on the plane,
$$C = 2(1) - 3(0) + 5(-4) = -18.$$
Thus, an equation for the plane is

 $2x - 34 + 5 \ge = -18$

Example 10. Consider the plane \mathcal{P} defined by x-2y+z=-4; this is also described by the parametric form

$$\begin{bmatrix} 1 \\ 0 \\ -5 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t' \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}.$$

Using whichever of the two descriptions you find more convenient in each case, answer the following.

(a) Is the point (5,3,-2) on the plane \mathcal{P} ?

Plugging (5, 3, -2) into the equation for P, we see that it is inconsistent:

$$(5)-2(3)+(-2)=-3\neq -4$$
.

Hence, (5, 3, -2) is NOT on P.

(b) Do the points (5,3,-2) and (-3,0,1) lie on the same side of the plane \mathcal{P} ?

$$\begin{array}{c|c} & x-2y+2 \\ \hline (5,3,-2) & -3 \\ \hline (-3,0,1) & -2 \\ \end{array}$$

(5,3,-2) Since both values are greater than -A, the points lie on the same side of P.

(c) Give an example of a parametric form of some line contained in the plane \mathcal{P} (this has many possible answers), and as a safety check, verify that all points on this parametric line satisfy the equation for $\mathcal{P}.$

Since
$$(1,0,-5)$$
 is on P and $\begin{bmatrix} 2\\1\\0 \end{bmatrix}$ lies on P ,

$$\begin{bmatrix} 1 \\ 0 \\ -5 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1+2t \\ t \\ -5 \end{bmatrix}$$

We can check by plugging this into the equation for P:

$$x-2y+z=(1+2t)-2(t)+(-5)$$

= $1+2t-2t-5=-4$.