Parameter priors for Ising models

research notes

Y. Roudi <yasser.roudi@ntnu.no>

25 June 2018; updated 26 June 2018

Study of uniform priors in parameter space and in constraint space for Ising models

'Flat priors do not exist' (anonymous)

1 A two-unit model with sufficient statistics

Consider a population of two binary units $s := (s_1, s_2)$ with values in $\{0, 1\}$. One observation of this population can thus give four results: $s \in \{00, 01, 10, 11\}$.

Assume that we have N observations $(s^{(1)}, \ldots, s^{(N)})$ of this or other populations prepared in similar conditions, so that knowledge of these observations is relevant for our forecast of a new observation s, again in similar conditions. Also assume that only the number, the mean, and the second moments of these past observations are relevant to forecast the new one; that is,

$$N, \qquad \frac{1}{N}(s^{(1)} + \dots + s^{(N)}) =: a, \qquad \frac{1}{N}(s_1^{(1)}s_2^{(1)} + \dots + s_1^{(N)}s_2^{(N)}) =: c$$
 (1)

are sufficient statistics; note that the second sum contains the first as its diagonal. These assumptions are collectively denoted *I*. Then the Koopman-Pitman theorem says that our probabilistic forecasts must assume this general form:

$$p(s^{(1)},...,s^{(n)}|I) = \int \left[\prod_{i=1}^{n} g(s^{(i)}) \frac{\exp(\mu_{1}s_{1}^{(i)} + \mu_{2}s_{2}^{(i)} + \lambda s_{1}^{(i)}s_{2}^{(i)})}{Z(\mu_{1},\mu_{2},\lambda)} \right] p(\mu_{1},\mu_{2},\lambda|I) d\mu_{1} d\mu_{2} d\lambda,$$

with
$$Z(\mu_1, \mu_2, \lambda) := 1 + \exp(\mu_1) + \exp(\mu_2) + \exp(\mu_1 + \mu_2 + \lambda)$$
. (2)

Let's denote $\theta := (\mu_1, \mu_2, \lambda) \in \mathbb{R}^3$.

The distribution g(s) and the density $p(\mu_1, \mu_2, \lambda | I)$ in the formula above are not determined by the theorem: they need to be determined by additional assumptions. The distribution g is often determined by symmetry or combinatorial properties of the system. In the present study we assume it to be unity: g(s) = 1. The density $p(\theta | I)$ is called *prior parameter density*.

Geometrically, the formula above says that our probability distribution is the convex combination of probability distributions from a three-dimensional family parameterized by θ , with weights $p(\theta|I) d\theta$. The parameters θ are just coordinates of this three-dimensional manifold, and we can choose other coordinates t, the weights then being given by p(t|I) dt, with the densities for θ and for t related by a Jacobian determinant:

$$p(\theta | I) = p[t(\theta) | I] \det\left(\frac{\partial t}{\partial \theta}\right).$$
 (3)

Using Bayes's theorem with the probabilities (2) we find our forecast for a new observation s conditional on observations ($s^{(1)}, \ldots, s^{(N)}$):

$$p(s|s^{(1)},...,s^{(N)},I) = \int \frac{\exp(\mu_1 s_1 + \mu_2 s_2 + \lambda s_1 s_2)}{Z(\theta)} p(\theta|s^{(1)},...,s^{(N)}I) d\theta$$
(4a)

with

$$p(\theta | s^{(1)}, ..., s^{(N)}I) \propto \left[\prod_{i=1}^{N} \frac{\exp(\mu_{1}s_{1}^{(i)} + \mu_{2}s_{2}^{(i)} + \lambda s_{1}^{(i)}s_{2}^{(i)})}{Z(\theta)} \right] p(\theta | I) = \exp\{N \left[\mu_{1}a_{1} + \mu_{2}a_{2} + \lambda c - \ln Z(\theta) \right]\} p(\theta | I).$$
(4b)

The density $p(\theta | s^{(1)}, \dots, s^{(N)}I)$ is called *posterior parameter density*.

The last expression shows that the N observations affect our forecast only through the averages a and c, eq. (1), as we assumed.

The proportionality relation of the last formula reminds us that we must perform an integral over θ to calculate the posterior parameter density. We must also perform an integral over θ to calculate the conditional probability for s. These integrals are difficult when we consider populations with many units. When the number N of known observations is large, the posterior parameter density is often approximated by

a Dirac delta centred on the maximum of the posterior,

$$\theta_{\mathrm{m}} \coloneqq \arg \sup_{\theta} \{ N \left[\mu_1 a_1 + \mu_2 a_2 + \lambda c - \ln Z(\theta) \right] + \ln p(\theta \mid I) \}. \tag{5}$$

The probability for s then equals the exponential calculated at $\theta_{\rm m}$. If the prior parameter density p($\theta | I$) is constant or very broad, it can be dropped in the calculation of the maximum, as an approximation.

2 Other prior parameter densities

The literature often assumes a prior parameter density $p(\theta|I)$ that is constant in θ . This is an 'improper', non-normalizable prior; we are really considering a sequence of normalizable priors of increasing width – for example, normal distributions with increasing variance – and the resulting limit if it exists.

As noted before, the parameters θ are just coordinates in a manifold of distributions for s. A constant density in these coordinates corresponds to an non-constant density in other coordinates. But are these coordinates 'special' in any way, to consider a constant density in them? Are there other coordinates in which it makes more sense to consider a constant density? How does a different choice affect our inference about s?

To consider other coordinates it is useful to give the predictive formula (2) a particular interpretation.

First of all it must be noted that each choice of parameters θ gives a distribution

$$p(s|\theta, I) = \frac{\exp(\mu_1 s_1^{(i)} + \mu_2 s_2^{(i)} + \lambda s_1^{(i)} s_2^{(i)})}{Z(\theta)}$$
(6)

with different first and second moments

$$E(s|\theta, I) := \sum_{s} s p(s|\theta, I),$$

$$E(s_1 s_2|\theta, I) := \sum_{s} s_1 s_2 p(s|\theta, I).$$
(7)

In other words the set $\theta \in \mathbb{R}^3$ is in one-one correspondence with the possible values of the three expectations above. We can therefore

introduce coordinates $t := (m_1, m_2, l)$ that identify the distributions above via the equations

$$m_{1} = E(s_{1} | \boldsymbol{\theta}, I) \equiv \frac{\exp(\mu_{1}) + \exp(\mu_{1} + \mu_{2} + \lambda)}{Z(\mu_{1}, \mu_{2}, \lambda)},$$

$$m_{2} = E(s_{2} | \boldsymbol{\theta}, I) \equiv \frac{\exp(\mu_{2}) + \exp(\mu_{1} + \mu_{2} + \lambda)}{Z(\mu_{1}, \mu_{2}, \lambda)},$$

$$l = E(s_{1}s_{2} | \boldsymbol{\theta}, I) \equiv \frac{\exp(\mu_{1} + \mu_{2} + \lambda)}{Z(\mu_{1}, \mu_{2}, \lambda)},$$
(8)

which are coordinate transformations with the inverse

$$\mu_{1} = \ln \frac{m_{1} - l}{1 + l - m_{1} - m_{2}}, \qquad \mu_{2} = \ln \frac{m_{2} - l}{1 + l - m_{1} - m_{2}},$$

$$\lambda = \ln \frac{(1 + l - m_{1} - m_{2})l}{(m_{1} - l)(m_{2} - l)}.$$
(9)

In terms of the coordinates t the family of probability distributions for s has the form

$$p(s|t, I) = (1 + l - m_1 - m_2) \times \left(\frac{m_1 - l}{1 + l - m_1 - m_2}\right)^{s_1} \left(\frac{m_2 - l}{1 + l - m_1 - m_2}\right)^{s_2} \left[\frac{(1 + l - m_1 - m_2) l}{(m_1 - l)(m_2 - l)}\right]^{s_1 s_2}$$

$$\equiv l^{s_1 s_2} (m_1 - l)^{s_1 - s_1 s_2} (m_2 - l)^{s_2 - s_1 s_2} (1 + l - m_1 - m_2)^{1 - s_1 - s_2 + s_1 s_2}. \quad (10)$$