ТФКП, М3238-39

15 февраля 2019 г.

1 Комлексные числа

- 1.1 Решить уравнение $\overline{z} = z^{n-1}$ $(n \neq 2)$.
- $1.2\,$ Доказать, что оба значения $\sqrt{z^2-1}$ лежат на прямой, проходящей через начало координат и параллельной биссектрисе внутреннего угла треугольника с вершинами в точках -1, 1 и z, проведённой из вершины z.
- 1.3 Доказать, что $(\sqrt[n]{z})^m$ $(n,\ m-$ целые числа) имеет $\frac{n}{(n,m)}$ различных значений ((n,m)- наибольший общий делитель).
- 1.4 Доказать, что $|1 \overline{z_1}z_2|^2 |z_1 z_2|^2 = (1 |z_1|^2)(1 |z_2|^2)$.
- 1.5 Доказать, что если $|z_1+z_2+z_3|=0$ и $|z_1|=|z_2|=|z_3|=1$, то точки $z_1,\,z_2,\,z_3$ являются вершинами правильного треугольника.
- 1.6 Изобразить область или прямую:
 - $|z-2|^2 |z+2|^2 > 3$;
 - $\log_{\frac{1}{2}} \frac{|z-1|+4}{3|z-1|-2} > 1;$
 - $\operatorname{Im} \overline{z^2 z} = 2 \operatorname{Im} z;$
 - $\bullet |z| 3\operatorname{Im} z = 6.$