CSE 521 HW1

Rohan Mukherjee

October 5, 2023

1. Let G = (V, E) be an undirected graph with n = |V| vertices, let $k = \min_{S \subset V} |E(S, V \setminus S)|$ be the size of the min cut, and let α be fixed and sufficiently small (i.e., $k\alpha \le |E|$, note that this forces $\alpha \le n/2$ by the hand-shake lemma). Let $(S, V \setminus S)$ be an arbitrary α -approximate min cut. We show that

$$\mathbb{P}[\text{Karger's algorithm finds } (S,V\setminus S)]\geqslant \frac{\Theta(\alpha!)}{n^{2\alpha-1}}$$

First, notice that

$$\mathbb{P}[e \in \mathsf{E}(\mathsf{S},\mathsf{V} \setminus \mathsf{S})] = \frac{|\mathsf{E}(\mathsf{S},\mathsf{V} \setminus \mathsf{S})|}{|\mathsf{E}|} \leqslant \frac{\alpha \mathsf{k}}{|\mathsf{E}|} \leqslant \frac{\alpha \mathsf{k}}{\mathsf{n}\mathsf{k}/2} = \frac{2\alpha}{\mathsf{n}}$$

Letting A_i denote the event that the uniformly random edge chosen by Krager's algorithm is not in $E(S, V \setminus S)$, we see that

$$\begin{split} \mathbb{P}[\text{alg finds } (\mathsf{S},\mathsf{V}\setminus\mathsf{S})] &= \mathbb{P}[\mathsf{A}_1\mid\mathsf{A}_2]\cdot\mathbb{P}[\mathsf{A}_2\mid\mathsf{A}_1]\cdots\mathbb{P}[\mathsf{A}_{n-3}\mid\mathsf{A}_1,\mathsf{A}_2,\ldots,\mathsf{A}_{n-3}] \\ &= \left(1-\frac{2\alpha}{n}\right)\cdot\left(1-\frac{2\alpha-1}{n-1}\right)\cdots\left(1-\frac{2\alpha}{4}\right)\left(1-\frac{2\alpha}{3}\right) \\ &= \frac{n-2\alpha}{n}\cdot\frac{n-2\alpha-1}{n-1}\cdots\frac{4-2\alpha}{4}\cdot\frac{3-2\alpha}{3} \end{split}$$

Extracting the first $2\alpha-1$ factors from the bottom, we can cancel $\mathfrak{n}-2-(2\alpha-1)$ factors that become $\geqslant 1$, and we have the remaining $2\alpha-1$ factors on top that equate to something $\Theta(\alpha!)$. We get that this probability is $\geqslant \Theta(\alpha!)/\mathfrak{n}^{2\alpha-1}$. We see there must be at most $\leqslant \mathfrak{n}^{2\alpha-1}/\Theta(\alpha!) \leqslant \mathfrak{n}^{2\alpha}$ α -approximate min cuts.

More detail:

$$\begin{split} &= \prod_{i=0}^{n-3} \frac{n - 2\alpha - i}{n - i} \\ &= \prod_{0 \leqslant i < 2\alpha} \frac{1}{n - i} \cdot \prod_{0 \leqslant i \leqslant n - 3 - 2\alpha} \frac{n - 2\alpha - i}{n - \lfloor 2\alpha \rfloor - i} \prod_{0 \leqslant i < 2\alpha} (i + 3 - 2\alpha) \\ &\geqslant \frac{\Theta(\alpha!)}{n^{2\alpha - 1}} \end{split}$$

Basically, we have around $2\alpha-1$ factors on the bottom at the start that don't cancel, we have $n-2-2\alpha$ factors in the top/bottom that cancel to something $\geqslant 1$, and we have the remaining $2\alpha-1$ factors on top that turn into $\Theta(\alpha!)$. Since probabilities are $\leqslant 1$ we must have $\leqslant \frac{n^{2\alpha}}{\Theta(\alpha!)} \leqslant n^{2\alpha}$ α -approximate min cuts for large enough α . For the reader/grader, does the first level of detail work? This was sort of a pain to work through the algebra.

2. We shall construct a graph where, if the algorithm cuts one particular edge, the algorithm fails to find the min s-t cut. The first type of graph that came to my mind is the following:

We could have any number of the ν_n 's. The crucial part to the proof is that if we contract an edge of the form $t\nu_i$, 2 new edges go from s to the new supernode $t\nu_i$. This is a contradiction however as you could've broken the path by simply cutting the $t\nu_i$ edge, not contracting it (which would result in 1 less edge). We see that the algorithm fails in this case iff it contracts an edge of the form $t\nu_i$, of which there are n/3 of those (if the number of edges in the graph is n). So, defining A_i to be the event that the algorithm doesn't contract any of the $t\nu_\alpha$ edges in step i, for i=1 to n/3, we would get that $\mathbb{P}[A_1]=1-\frac{n/3}{n}$, $\mathbb{P}[A_2\mid A_1]=1-\frac{n/3}{n-i+1}$, and in general $\mathbb{P}[A_i\mid A_1,\dots,A_{i-1}]=1-\frac{n/3}{n-i+1}=\frac{2n/3-i+1}{n-i+1}$. Putting

this together gives us

$$\begin{split} \mathbb{P}[\text{alg doesn't fail}] &= \mathbb{P}[A_1] \cdot \mathbb{P}[A_2 \mid A_1] \cdots \mathbb{P}\left[A_{n/3} \mid A_1, \dots, A_{n/3-1}\right] \\ &= \frac{2n/3}{n} \cdot \frac{2n/3-1}{n-1} \cdot \cdots \frac{n/3+1}{2n/3+1} \\ &= \frac{(2n/3)!}{n!} \cdot \frac{(2n/3)!}{(n/3)!} \approx \frac{(2n/3e)^{4n/3}}{(n/e)^n (n/3e)^{n/3}} \\ &= \frac{(2n)^{4n/3} \cdot (1/3e)^{4n/3}}{n^{4n/3} \cdot e^n \cdot (1/3e)^{n/3}} \\ &= \frac{2^{4n/3}}{3^n} \approx 0.839947665^n \end{split}$$

Indeed, a quite small exponential decay. Also, by utilizing the following graph:

We can show that the probability this algorithm finds a specific s-t cut is very small. For this graph, an s-t cut can be found by cutting 1 edge on the 1st path, 1 on the second, and one on the third. If we let $\mathfrak n$ be the number of edges, we can do this in $(\mathfrak n/3)^3$ ways. In general, for any $\mathfrak n$ and any k, we could get at least $(\mathfrak n/k)^k = \Theta(\mathfrak n^k)$ (the only important variable being $\mathfrak n$) s-t cuts for the generalized version of this graph. Thus the probability our algorithm finds one specific s-t cut is no more than $1/\Theta(\mathfrak n^k)$ for every k. Although I am not sure, I believe this tells us that the probability it finds a specific s-t cut is necessarily exponential since it is below all polynomials.