

Adaptive Indexing for Vector Search

Jason Mohoney, Devesh Sarda, Mengze Tang, Anil Pacaci*, Shihab Chowdhury*, Ihab Ilyas*, Theodoros Rekatsinas*, Shivaram Venkataraman

Retrieval Augmented Generation

Retrieval Augmented Generation

Multi-modal Search

Retrieval Augmented Generation

Recommendation

Multi-modal Search

Vector Search

Get top-k nearest vectors to query vector by a similarity metric

Brute-force computationally infesible for large sets of vectors

Partitioned Vector Search Index (e.g. Faiss-IVF)

Approximate indexes allow for scalable vector search

Partitioned Index

Partitioned Index: Search

Queries scan a subset of partitions based on the nearest centroids

NProbe := # of partitions scanned = 1

NProbe controls recall vs. query latency trade-off

Partitioned Index: Insert

Inserted vectors are appended to nearest partitions

Index updates cause imbalance

Skew in Partitioned Indexes

Workload: Wikipedia-12M

Certain partitions are scanned more frequently by searches

Certain partitions are updated more frequently, causing imbalance

(a) Read (top) and write skew.

Partitioned Index: Maintenance

Splitting and merging resolves imbalance

Partitioned Index: Maintenance

Splitting and merging resolves imbalance

NProbe needs to be tuned as the number of partitions changes

Challenge: Handling Updates

Updates degrade the latency and recall of partitioned vector search indexes

Why?

1. Partitions grow and become imbalanced. E.g. Faiss-IVF

2. Applying maintenance (split/merge) requires retuning the system to maintain recall after maintenance. E.g. SCANN

Challenge: Index imbalance and workload skew

Contribution: Skew-aware cost-driven maintenance

Challenge: Recall degradation due to maintenance

Contribution: Adaptive setting of NProbe

Challenge: Index imbalance and workload skew

Contribution: Skew-aware cost-driven maintenance

Challenge: Recall degradation due to maintenance

Contribution: Adaptive setting of NProbe

Challenge: Index imbalance and workload skew

Contribution: Skew-aware cost-driven maintenance

Result: 1.25x-28x lower query latency than DiskANN, SCANN without costly tuning of NProbe

Open-source: github.com/marius-team/quake

Cost-Driven Maintenance

Use a cost-model for query latency to determine which partitions to split/merge

$$C = \sum_{i} C_{i}$$
 Total cost (query latency)

$$C_i = O_c + A_i \lambda(s_i)$$
 Per-partition cost

- A_i Access frequency of partition in (collected online)
- $\lambda(s_i)$ Latency to scan partition with size s_i (obtain offline via profiling)
- O_c Latency to scan centroid

Cost-Driven Maintenance

Use a cost-model for query latency to determine which partitions to split/merge

$$C = \sum_{i} C_{i}$$
 Total cost (query latency)

$$C_i = O_c + A_i \lambda(s_i)$$
 Per-partition cost

- A_i Access frequency of partition in (collected online)
- $\lambda(s_i)$ Latency to scan partition with size s_i (obtain offline via profiling)
- O_c Latency to scan centroid

Estimate the change in cost of a split/merge, take action if expected to reduce cost

$$\Delta C_i = C_i + \Delta_{split_i}$$

If $\Delta C_i < \tau$ then split partition i

Minimize the cost through maintenance

Cost is determined by partition access frequency, size and centroid overhead

$$O_c = .1 \mu s$$

Centroid

Latency to scan centroid

$$A_i = .1$$

$$\lambda(s_i) = 20\mu$$

Cost is determined by partition access frequency, size and centroid overhead

Before Split

$$O_c = .1 \mu s$$

Centroid

Latency to scan centroid

$$C_i = O_c + A_i \lambda(s_i) = 2.1 \mu s$$

Splitting reduces cost since not all queries will scan each partition

Before Split

$$O_c = .1 \mu s$$

Centroid

Latency to scan centroid

$$C_i = O_c + A_i \lambda(s_i) = 2.1 \mu s$$

After Split

Centroid

Centroid

$$\lambda(s_L) = 8\mu s$$

$$A_R = .08$$
$$\lambda(s_R) = 12\mu s$$

$$\lambda(s_R) = 12\mu s$$

Splitting reduces cost since not all queries will scan each partition

Before Split

$$O_c = .1 \mu s$$

Latency to scan centroid

$$C_i = O_c + A_i \lambda(s_i) = 2.1 \mu s$$

After Split

$$A_L = .05$$

$$\lambda(s_L) = 8\mu s$$

The catch: The access patterns after splitting are unknown so we must estimate them

Before Split

$$O_c = .1 \mu s$$

Centroid

Latency to scan centroid

$$C_i = O_c + A_i \lambda(s_i) = 2.1 \mu s$$

After Split

Centroid

Centroid

$$A_L = ???, A_R = ???$$

$$\lambda(s_R) = 12\mu s$$

The catch: The access patterns after splitting are unknown so we must estimate them

Before Split

$$O_c = .1 \mu s$$

Centroid

Latency to scan centroid

$$C_i = O_c + A_i \lambda(s_i) = 2.1 \mu s$$

After Split

Centroid

Centroid

 $A_L = A_R = \alpha A_i$

$$\alpha :=$$

Expected decrease in access frequency

 $\lambda(s_R) = 12\mu s$

Conduct split if estimated cost is lower than prior cost

Before Split

$$O_c = .1 \mu s$$

Centroid

Latency to scan centroid

$$C_i = O_c + A_i \lambda(s_i) = 2.1 \mu s$$

After Split

Centroid

Centroid

$$\lambda(s_L) = 8\mu s$$

$$\lambda(s_R) = 12\mu s$$

$$A_L = A_R = \alpha A_i$$

$$\alpha :=$$

Expected decrease in access frequency

$$C'_{split} = 2O_c + \alpha A_i(\lambda(s_L) + \lambda(s_R))$$

$$\alpha = .8$$

$$C'_{split} = 1.8\mu s$$

Adaptive Partition Scanning (APS)

Determines the number of partitions to scan (NProbe) per query online

Geometric Model

Estimate the volume of overlap between the *query* hypersphere $B(q, \rho_k)$ and neighboring partitions/clusters.

 ρ_k = Distance to k-th nearest neighbor

The amount of overlap is proportional to the amount of recall obtained from scanning the cluster

$$Recall_i = \frac{Vol(B(q, \rho_k) \cap P_i)}{Vol(B(q, \rho_k))}$$

Query hypersphere overlapping with partitions: P_0, P_1, P_2

Evaluation

First: Comparison of indexes on Wikipedia-12M workload

Second: Comparison of Adaptive Partition Scanning with tuning-based methods

More in paper!

- NUMA-aware query processing and parallelism
- Multi-level indexing
- Batch processing
- Ablation studies
- Three additional workloads

Workload: Wikipedia-12M:

- Index grows from 1 million to 12 million vectors
- 128 dimensional vectors, k=100, recall = 90%
- Queries sampled from wikipedia page access counts
- Queries executed one-by-one

Total Search, Update, and Maintenance Time (hours)

Method	Туре	Search	Update	Maint.

Workload: Wikipedia-12M:

- Index grows from 1 million to 12 million vectors
- 128 dimensional vectors, k=100, recall = 90%
- Queries sampled from wikipedia page access counts
- Queries executed one-by-one

Total Search, Update, and Maintenance Time (hours)

Method	Туре	Search	Update	Maint.
Quake (parallel)	Partitioned	1.53	0.01	0.44
Quake (single thread)	Partitioned	<u>9.48</u>	0.01	0.44
Faiss-IVF	Partitioned	165.8	0.005	0
SCANN	Partitioned	50.2	1.7	5
DiskANN	Graph	12.1	0.32	0

Baselines: Do not support intra-query parallelism for queries

Hardware: 4 NUMA nodes with 20 CPUs each.

Workload: Wikipedia-12M:

- Index grows from 1 million to 12 million vectors
- 128 dimensional vectors, k=100, recall = 90%
- Queries sampled from wikipedia page access counts
- Queries executed one-by-one

Takeaways:

1. Quake: 28x (parallel) and 5x (single-thread) lower search latency than partitioned indexes

Total Search, Update, and Maintenance Time (hours)

Method	Туре	Search	Update	Maint.
Quake (parallel)	Partitioned	1.53	0.01	0.44
Quake (single thread)	Partitioned	<u>9.48</u>	0.01	0.44
Faiss-IVF	Partitioned	165.8	0.005	O
SCANN	Partitioned	50.2	1.75	
DiskANN	Graph	12.1	0.32	0

Baselines: Do not support intra-query parallelism for queries

Hardware: 4 NUMA nodes with 20 CPUs each.

Workload: Wikipedia-12M:

- Index grows from 1 million to 12 million vectors
- 128 dimensional vectors, k=100, recall = 90%
- Queries sampled from wikipedia page access counts
- Queries executed one-by-one

Takeaways:

- 1. Quake: 28x (parallel) and 5x (single-thread) lower search latency than partitioned indexes
- 2. Quake achieves 8x (parallel) and 1.25x (single-thread) lower search latency than DiskANN

Baselines: Do not support intra-query parallelism for queries

Total Search, Update, and Maintenance Time (hours)

Method	Туре	Search	Update	Maint.
Quake (parallel)	Partitioned	1.53	0.01	0.44
Quake (single thread)	Partitioned	<u>9.48</u>	0.01	0.44
Faiss-IVF	Partitioned	165.8	0.005	0
SCANN	Partitioned	50.2	1.7	5
DiskANN	Graph	12.1	0.32	0

Hardware: 4 NUMA nodes with 20 CPUs each.

Dataset: Sift1M, 1M 128-d vectors, 10,000 queries

Index: 1,000 partitions

LAET (Sigmod '20) is a machine-learning method for setting NProbe and is trained offline

Oracle sets the optimal NProbe per query

<u>Target = 80%</u>

Method	Recall	Latency	Tuning Time
APS			
LAET			
Oracle			

<u>Target = 90%</u>

APS		
LAET		
Oracle		

<u>Target = 99%</u>

APS		
LAET		
Oracle		

Dataset: Sift1M, 1M 128-d vectors, 10,000 queries

Index: 1,000 partitions

LAET (Sigmod '20) is a machine-learning method for setting NProbe and is trained offline

Oracle sets the optimal NProbe per query

1. Accurate: APS achieves the recall targets

<u>Target = 80%</u>

Method	Recall	Latency	Tuning Time
APS	82.1%		
LAET	81.3%		
Oracle	83.3%		

<u>Target = 90%</u>

APS	91.2%	
LAET	90.5%	
Oracle	92.4%	

<u>Target = 99%</u>

APS	98.9%	
LAET	99.0%	
Oracle	99.2%	

Dataset: Sift1M, 1M 128-d vectors, 10,000 queries

Index: 1,000 partitions

LAET (Sigmod '20) is a machine-learning method for setting NProbe and is trained offline

Oracle sets the optimal NProbe per query

- 1. Accurate: APS achieves the recall targets
- 2. Low overhead: 10-30% increase in latency over Oracle

<u>Target = 80%</u>

Method	Recall	Latency	Tuning Time
APS	82.1%	.34ms	
LAET	81.3%	.29ms	
Oracle	83.3%	.29ms	

<u>Target = 90%</u>

APS	91.2%	.48ms	
LAET	90.5%	.42ms	
Oracle	92.4%	.41ms	

Target = 99%

APS	98.9%	.96ms	
LAET	99.0%	1.04ms	
Oracle	99.2%	.74ms	

Dataset: Sift1M, 1M 128-d vectors, 10,000 queries

Index: 1,000 partitions

LAET (Sigmod '20) is a machine-learning method for setting NProbe and is trained offline

Oracle sets the optimal NProbe per query

- 1. Accurate: APS achieves the recall targets
- 2. Low overhead: 10-30% increase in latency over Oracle
- 3. No offline tuning

<u>Target = 80%</u>

Method	Recall	Latency	Tuning Time
APS	82.1%	.34ms	0
LAET	81.3%	.29ms	81s
Oracle	83.3%	.29ms	320s

<u>Target = 90%</u>

APS	91.2%	.48ms	0
LAET	90.5%	.42ms	104s
Oracle	92.4%	.41ms	331s

<u>Target = 99%</u>

	<u> </u>		
APS	98.9%	.96ms	0
LAET	99.0%	1.04ms	232s
Oracle	99.2%	.74ms	368s

Adaptive Indexing for Vector Search

ARTIFACT EVALUATED

USENIX
ASSOCIATION

AVAILABLE

Jason Mohoney, Devesh Sarda, Mengze Tang, Anil Pacaci, Shihab Chowdhury, Ihab Ilyas, Theodoros Rekatsinas, Shivaram Venkataraman

Challenge: Recall degradation due to maintenance

Contribution: Adaptive setting of NProbe

Challenge: Index imbalance and workload skew

Contribution: Skew-aware cost-driven maintenance

Result: 1.25x-28x lower query latency than DiskANN, SCANN without costly tuning of NProbe

Open-source: github.com/marius-team/quake

Contact: jasonmohoney@gmail.com