AN ACTOR-CRITIC ALGORITHM FOR SEQUENCE PREDICTION

Dzmitry Bahdanau Philemon Brakel Kelvin Xu Anirudh Goyal Université de Montréal

Aaron Courville[†] Université de Montréal Ryan Lowe Joelle Pineau* McGill University

Yoshua Bengio* Université de Montréal

Motivation

$$y_t \sim g(s_{t-1}, c_{t-1})$$
 $s_t = f(s_{t-1}, c_{t-1}, e(y_t))$
 $\alpha_t = \beta(s_t, (h_1, \dots, h_L))$

$$c_t = \sum_{j=1}^{L} \alpha_{t,j} h_j$$

- teacher forcing
- discrepancy between training and testing conditions
- directly improve the test time metrics (Reward)

$$R(\hat{Y}, Y) = \sum_{t=1}^{T} r_t(\hat{y}; \hat{Y}_{1...t-1}, Y)$$

Reward shaping

$$\left(R\left(\hat{Y}_{1...1}\right), R\left(\hat{Y}_{1...2}\right), \ldots, R\left(\hat{Y}_{1...T}\right)\right)$$

$$r_t\left(\hat{y}_t; \hat{Y}_{1...t-1}\right) = R\left(\hat{Y}_{1...t}\right) - R\left(\hat{Y}_{1...t-1}\right)$$

Value Functions

We define the value of an unfinished prediction $\hat{Y}_{1...t}$ as follows:

$$V(\hat{Y}_{1...t}; X, Y) = \mathbb{E}_{\hat{Y}_{t+1...T} \sim p(.|\hat{Y}_{1...t}, X)} \sum_{\tau=t+1}^{T} r_{\tau}(\hat{y}_{\tau}; \hat{Y}_{1...\tau-1}, Y).$$

We define the value of a candidate next token a for an unfinished prediction $\hat{Y}_{1...t-1}$ as the expected future return after generating token a:

$$Q(a; \hat{Y}_{1...t-1}, X, Y) = \mathbb{E}_{\hat{Y}_{t+1...T} \sim p(.|\hat{Y}_{1...t-1}a, X)} \left(r_t(a; \hat{Y}_{1...t-1}, Y) + \sum_{\tau=t+1}^T r_\tau(\hat{y}_\tau; \hat{Y}_{1...t-1}a\hat{Y}_{t+1...\tau}, Y) \right)$$

$$\begin{split} \frac{dV}{d\theta} &= \frac{d}{d\theta} \mathop{\mathbb{E}}_{\hat{Y} \sim p(\hat{Y})} R(\hat{Y}) = \sum_{\hat{Y}} \frac{d}{d\theta} \left[p(\hat{y}_1) p(\hat{y}_2 | \hat{y}_1) \dots p(\hat{y}_T | \hat{y}_1 \dots \hat{y}_{T-1}) \right] R(\hat{Y}) = \\ & \sum_{t=1}^T \sum_{\hat{Y}} p(\hat{Y}_{1\dots t-1}) \frac{dp(\hat{y}_t | \hat{Y}_{1\dots t-1})}{d\theta} p(\hat{Y}_{t+1\dots T} | \hat{Y}_{1\dots t}) R(\hat{Y}) = \\ & \sum_{t=1}^T \sum_{\hat{Y}_{1\dots t}} p(\hat{Y}_{1\dots t-1}) \frac{dp(\hat{y}_t | \hat{Y}_{1\dots t-1})}{d\theta} \sum_{\hat{Y}_{t+1\dots T}} p(\hat{Y}_{t+1\dots T} | \hat{Y}_{1\dots t}) \sum_{\tau=1}^T r_{\tau}(\hat{y}_{\tau}; \hat{Y}_{1\dots \tau-1}) = \\ & \sum_{t=1}^T \sum_{\hat{Y}_{1\dots t}} p(\hat{Y}_{1\dots t-1}) \frac{dp(\hat{y}_t | \hat{Y}_{1\dots t-1})}{d\theta} \\ & \left[r_t(\hat{y}_t; \hat{Y}_{1\dots t-1}) + \sum_{\hat{Y}_{t+1\dots T}} p(\hat{Y}_{t+1\dots T} | \hat{Y}_{1\dots t}) \sum_{\tau=t+1}^T r_{\tau}(\hat{y}_{\tau}; \hat{Y}_{1\dots \tau-1}) \right] = \\ & \sum_{t=1}^T \sum_{\hat{Y}_{1\dots t-1} \sim p(\hat{Y}_{1\dots t-1})} \sum_{a \in A} \frac{dp(a|\hat{Y}_{1\dots t-1})}{d\theta} Q(a; \hat{Y}_{1\dots t-1}) = \\ & \mathbb{E}_{\hat{Y} \sim p(\hat{Y})} \sum_{t=1}^T \sum_{a \in \mathcal{A}} \frac{dp(a|\hat{Y}_{1\dots t-1})}{d\theta} Q(a; \hat{Y}_{1\dots t-1}) \end{split}$$

ACTOR-CRITIC FOR SEQUENCE PREDICTION

$$\frac{dV}{d\theta} = \mathbb{E}_{\hat{Y} \sim p(\hat{Y}|X)} \sum_{t=1}^{T} \sum_{a \in A} \frac{dp(a|\hat{Y}_{1...t-1})}{d\theta} Q(a; \hat{Y}_{1...t-1}).$$

$$\widehat{\frac{dV}{d\theta}} = \sum_{k=1}^{M} \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \frac{dp(a|\hat{Y}_{1...t-1}^k)}{d\theta} Q(a; \hat{Y}_{1...t-1}^k)$$

$$\frac{\widehat{dV}}{d\theta} = \sum_{k=1}^{M} \sum_{t=1}^{T} \frac{d \log p(\hat{y}_{t}^{k} | \hat{Y}_{1...t-1}^{k})}{d\theta} \left[\sum_{\tau=t}^{T} r_{\tau}(\hat{y}_{\tau}^{k}; \hat{Y}_{1...\tau-1}^{k}) - b_{t}(X) \right]$$

ACTOR-CRITIC FOR SEQUENCE PREDICTION

Temporal-difference learning

$$\hat{Q}\left(\hat{y}_t; \hat{Y}_{1...t-1}\right)$$

naïve Monte-Carlo

$$\sum_{\tau=t}^{T} r_{\tau} \left(\hat{y}_{\tau}; \hat{Y}_{1,\dots,\tau-1} \right)$$

temporal difference (TD)

$$q_t = r_t \left(\hat{y}_t; \hat{Y}_{1...t-1} \right) + \sum_{a \in A} p \left(a \mid \hat{Y}_{1...t} \right) \hat{Q} \left(a; \hat{Y}_{1...t} \right)$$

Applying deep RL techniques

- When critic \hat{Q} is non linear, the TD policy evaluation might diverge.
- Using a target network \hat{Q}' to compute q_t, which is updated more slowly than \hat{Q}.
- Sample from a delayed actor, whose weights are slowly updated to follow the actor that is actually trained.

Dealing with large action spaces

$$C_{t} = \sum_{a} \left(\hat{Q}(a; \hat{Y}_{1...t-1}) - \frac{1}{|\mathcal{A}|} \sum_{b} \hat{Q}(b; \hat{Y}_{1...t-1}) \right)^{2}$$

Algorithm 1 Actor-Critic Training for Sequence Prediction

Require: A critic $\hat{Q}(a; \hat{Y}_{1...t}, Y)$ and an actor $p(a|\hat{Y}_{1...t}, X)$ with weights ϕ and θ respectively.

- 1: Initialize delayed actor p' and target critic \hat{Q}' with same weights: $\theta' = \theta$, $\phi' = \phi$.
- 2: while Not Converged do
- 3: Receive a random example (X, Y).
- 4: Generate a sequence of actions \hat{Y} from p'.
- 5: Compute targets for the critic

$$q_{t} = r_{t}(\hat{y}_{t}; \hat{Y}_{1...t-1}, Y) + \sum_{a \in \mathcal{A}} p'(a|\hat{Y}_{1...t}, X) \hat{Q}'(a; \hat{Y}_{1...t}, Y)$$

6: Update the critic weights ϕ using the gradient

$$\frac{d}{d\phi} \left(\sum_{t=1}^{T} \left(\hat{Q}(\hat{y}_t; \hat{Y}_{1...t-1}, Y) - q_t \right)^2 + \lambda_C C_t \right)$$
where $C_t = \sum_{a} \left(\hat{Q}(a; \hat{Y}_{1...t-1}) - \frac{1}{|\mathcal{A}|} \sum_{b} \hat{Q}(b; \hat{Y}_{1...t-1}) \right)^2$

7: Update actor weights θ using the following gradient estimate

$$\frac{d\widehat{V(X,Y)}}{d\theta} = \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \frac{dp(a|\widehat{Y}_{1...t-1}, X)}{d\theta} \widehat{Q}(a; \widehat{Y}_{1...t-1}, Y) + \lambda_{LL} \sum_{t=1}^{T} \frac{dp(y_t|Y_{1...t-1}, X)}{d\theta}$$

8: Update delayed actor and target critic, with constants $\gamma_{\theta} \ll 1$, $\gamma_{\phi} \ll 1$

$$\theta' = \gamma_{\theta}\theta + (1 - \gamma_{\theta})\theta', \ \phi' = \gamma_{\phi}\phi + (1 - \gamma_{\phi})\phi'$$

9: end while

Algorithm 2 Complete Actor-Critic Algorithm for Sequence Prediction

- 1: Initialize critic $\hat{Q}(a; \hat{Y}_{1...t}, Y)$ and actor $p(a|\hat{Y}_{1...t}, X)$ with random weights ϕ and θ respectively.
- 2: Pre-train the actor to predict y_{t+1} given $Y_{1...t}$ by maximizing $\log p(y_{t+1}|Y_{1...t},X)$. 3: Pre-train the critic to estimate Q by running Algorithm 1 with fixed actor.
- 4: Run Algorithm 1.

SPELLING CORRECTION

Table 1: Character error rate of different methods on the spelling correction task. In the table L is the length of input strings, η is the probability of replacing a character with a random one. LL stands for the log-likelihood training, AC and RF-C and for the actor-critic and the REINFORCE-critic respectively, AC+LL and RF-C+LL for the combinations of AC and RF-C with LL.

Setup	Character Error Rate						
	LL	AC	RF-C	AC+LL	RF-C+LL		
$L = 10, \eta = 0.3$	17.81	17.24	17.82	16.65	16.97		
$L = 30, \eta = 0.3$	18.4	17.31	18.16	17.1	17.47		
$L = 10, \eta = 0.5$	38.12	35.89	35.84	34.6	35		
$L = 30, \eta = 0.5$	40.87	37.0	37.6	36.36	36.6		

Table 2: Our IWSLT 2014 machine translation results with a convolutional encoder compared to the previous work by Ranzato et al. Please see $\boxed{1}$ for an explanation of abbreviations. The asterisk identifies results from (Ranzato et al., $\boxed{2015}$). The numbers reported with \le were approximately read from Figure 6 of (Ranzato et al., $\boxed{2015}$)

Decoding method	Model							
	LL*	MIXER*	LL	RF	RF-C	AC		
greedy search	17.74	20.73	19.33	20.92	22.24	21.66		
beam search	≤ 20.3	≤ 21.9	21.46	21.35	22.58	22.45		

MACHINE TRANSLATION

