Fully-connected Neural Network

Hongchang Gao Spring 2024

Overview

- Fully connected neural network
 - Multi-layer perceptron (MLP)

Overview

Convolutional Neural Network

Overview

Recurrent Neural network

Logistic Regression

- Logistic regression
 - Linear model
 - Single layer

Given
$$n$$
 samples: $\{(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\}$
$$z_i = \mathbf{w}^T \mathbf{x}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + w_3 x_{i,3} + w_4 x_{i,4}$$

$$\sigma(z_i) = \frac{1}{1 + \exp(-z_i)}$$

From Single Layer to Multiple Layers

Stack multiple layers together

From Single Layer to Multiple Layers

Multiple Linear Layers

Layer 1:
$$\mathbf{z}_i^{(1)} = W^{(0)} \mathbf{x}_i$$

Layer 2: $\mathbf{z}_i^{(2)} = W^{(1)} \mathbf{z}_i^{(1)}$
Layer 3: $\mathbf{z}_i^{(3)} = W^{(2)} \mathbf{z}_i^{(2)}$
...

Layer L: $\mathbf{z}_i^{(L)} = W^{(L-1)} \mathbf{z}_i^{(L-1)}$

From Single Layer to Multiple Layers

Regression task

$$f(\mathbf{x}_i) = \mathbf{z}_i^{(L)}$$

Classification task

$$f(\mathbf{x}_i) = \sigma(\mathbf{z}_i^{(L)})$$

Layer 1:
$$\mathbf{z}_i^{(1)} = W^{(0)} \mathbf{x}_i$$

Layer 2: $\mathbf{z}_i^{(2)} = W^{(1)} \mathbf{z}_i^{(1)}$
Layer 3: $\mathbf{z}_i^{(3)} = W^{(2)} \mathbf{z}_i^{(2)}$
...

Layer L: $\mathbf{z}_i^{(L)} = W^{(L-1)} \mathbf{z}_i^{(L-1)}$

From Linear Model to Non-linear Model

Stack multiple linear model is still a LINEAR model

$$\mathbf{z}_{i}^{(L)} = \mathbf{W}^{(L-1)} \cdots \mathbf{W}^{(2)} \mathbf{W}^{(1)} \mathbf{W}^{(0)} \mathbf{x}_{i}$$

Linear model

Deep linear networks are no more expressive than linear model!

From Linear Model to Non-linear Model

Activation function

- Add (non-linear) activation functions to hidden layers
- Multilayer fully-connected neural nets with nonlinear activation functions are universal approximators: they can approximate any function arbitrarily well.

• Examples:

- Sigmoid function
- Tanh function
- ReLu function
- LeakyReLu function
- •

• Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

• Sigmoid

Linear model

Non-linear model

• Tanh function

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

Tanh function

Linear model

Layer 1:
$$\mathbf{z}_{i}^{(1)} = \mathbf{W}^{(0)} \mathbf{x}_{i}$$

Layer 2:
$$\mathbf{z}_i^{(2)} = W^{(1)} \mathbf{z}_i^{(1)}$$

Layer 3:
$$\mathbf{z}_{i}^{(3)} = \mathbf{W}^{(2)} \mathbf{z}_{i}^{(2)}$$

. . .

Layer L:
$$\mathbf{z}_i^{(L)} = W^{(L-1)} \mathbf{z}_i^{(L-1)}$$

Non-linear activation function

Non-linear model

Layer 1:
$$\mathbf{z}_{i}^{(1)} = W^{(0)}\mathbf{x}_{i}$$
, $\mathbf{h}_{i}^{(1)} = \tanh(\mathbf{z}_{i}^{(1)})$

Layer 2:
$$\mathbf{z}_i^{(2)} = W^{(1)}\mathbf{h}_i^{(1)}, \, \mathbf{h}_i^{(2)} = \tanh(\mathbf{z}_i^{(2)})$$

Layer 3:
$$\mathbf{z}_{i}^{(3)} = W^{(2)}\mathbf{h}_{i}^{(2)}, \, \mathbf{h}_{i}^{(3)} = \tanh(\mathbf{z}_{i}^{(3)})$$

•••

Layer L:
$$\mathbf{z}_i^{(L)} = W^{(L-1)}\mathbf{h}_i^{(L-1)}$$
, $\mathbf{h}_i^{(L)} = \mathrm{tanh}(\mathbf{z}_i^{(L)})$

• ReLu function

$$ReLu(x) = max(0, x)$$

ReLu function

Layer 1:
$$\mathbf{z}_{i}^{(1)} = W^{(0)}\mathbf{x}_{i}$$

Layer 2:
$$\mathbf{z}_{i}^{(2)} = W^{(1)}\mathbf{z}_{i}^{(1)}$$

Layer 3:
$$\mathbf{z}_{i}^{(3)} = W^{(2)}\mathbf{z}_{i}^{(2)}$$

Layer L:
$$\mathbf{z}_{i}^{(L)} = W^{(L-1)}\mathbf{z}_{i}^{(L-1)}$$

Non-linear activation function

Layer 1:
$$\mathbf{z}_{i}^{(1)} = W^{(0)}\mathbf{x}_{i}, \mathbf{h}_{i}^{(1)} = \text{relu}(\mathbf{z}_{i}^{(1)})$$

Layer 2:
$$\mathbf{z}_i^{(2)} = W^{(1)} \mathbf{h}_i^{(1)}, \mathbf{h}_i^{(2)} = \text{relu}(\mathbf{z}_i^{(2)})$$

Layer 3:
$$\mathbf{z}_{i}^{(3)} = W^{(2)}\mathbf{h}_{i}^{(2)}, \mathbf{h}_{i}^{(3)} = \text{relu}(\mathbf{z}_{i}^{(3)})$$

Layer L:
$$\mathbf{z}_i^{(L)} = W^{(L-1)} \mathbf{h}_i^{(L-1)}$$
, $\mathbf{h}_i^{(L)} = \text{relu}(\mathbf{z}_i^{(L)})$

Image classification

MNIST

- 60,000 training samples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{60,000}$
- Each image \mathbf{x}_i has 28×28 pixels
- Each label y_i is a 10-dim vector (one-hot encoding)

Image classification with logistic regression

Linear Model: multi-class logistic regression

- Vectorize each 28×28 image to a 784-dim vector, $\mathbf{x}_i \in \mathbb{R}^{784}$
- Add the constant 1 to \mathbf{x}_i (Introduce the bias term). Then, $\mathbf{x}_i \in \mathbb{R}^{785}$
- Denote the model parameter $W \in \mathbb{R}^{10 \times 785}$
- Then, $\mathbf{z}_i = W\mathbf{x}_i$
- Output the prediction using the softmax function

$$f(\mathbf{x}_i) = \text{Softmax}(\mathbf{z}_i)$$

Image classification with MLP

• Input image $\mathbf{x}_i \in \mathbb{R}^{785}$

$$\bullet \ \mathbf{z}_i^{(1)} = \mathbf{W}^{(0)} \mathbf{x}_i \in \mathbb{R}^{256}$$

•
$$\mathbf{h}_i^{(1)} = \text{relu}(\mathbf{z}_i^{(1)}) \in \mathbb{R}^{256}$$

•
$$\mathbf{z}_{i}^{(2)} = \mathbf{W}^{(1)} \mathbf{h}_{i}^{(1)} \in \mathbb{R}^{128}$$

•
$$\mathbf{h}_i^{(2)} = \text{relu}(\mathbf{z}_i^{(2)}) \in \mathbb{R}^{128}$$

$$\bullet \mathbf{z}_i^{(3)} = W^{(2)} \mathbf{h}_i^{(2)} \in \mathbb{R}^{10}$$

•
$$\hat{\mathbf{y}}_i = \text{Softmax}(\mathbf{z}_i^{(3)}) \in \mathbb{R}^{10}$$

Hidden Layer 1

Hidden Layer 2

Output Layer

- Image classification with MLP
 - Input image $\mathbf{x}_i \in \mathbb{R}^{785}$

$$\bullet \ \mathbf{z}_i^{(1)} = W^{(0)} \mathbf{x}_i \in \mathbb{R}^{256}$$

•
$$\mathbf{h}_i^{(1)} = \text{relu}(\mathbf{z}_i^{(1)}) \in \mathbb{R}^{256}$$

•
$$\mathbf{z}_{i}^{(2)} = \mathbf{W}^{(1)} \mathbf{h}_{i}^{(1)} \in \mathbb{R}^{128}$$

•
$$\mathbf{h}_i^{(2)} = \text{relu}(\mathbf{z}_i^{(2)}) \in \mathbb{R}^{128}$$

$$\bullet \mathbf{z}_i^{(3)} = W^{(2)} \mathbf{h}_i^{(2)} \in \mathbb{R}^{10}$$

•
$$\mathbf{z}_i^{(3)} = W^{(2)} \mathbf{h}_i^{(2)} \in \mathbb{R}^{10}$$

• $\hat{\mathbf{y}}_i = \operatorname{Softmax}(\mathbf{z}_i^{(3)}) \in \mathbb{R}^{10}$

• Training set
$$\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{60,000}$$

• Loss function:
$$L = -\sum_{i=1}^{60000} \sum_{j=1}^{10} \mathbf{y}_{ij} \log(\hat{\mathbf{y}}_{ij})$$

How many model parameters?

• Input image $\mathbf{x}_i \in \mathbb{R}^{785}$

$$\bullet \ \mathbf{z}_i^{(1)} = W^{(0)} \mathbf{x}_i \in \mathbb{R}^{256}$$

•
$$\mathbf{h}_{i}^{(1)} = \text{relu}(\mathbf{z}_{i}^{(1)}) \in \mathbb{R}^{256}$$

•
$$\mathbf{z}_{i}^{(2)} = W^{(1)}\mathbf{h}_{i}^{(1)} \in \mathbb{R}^{128}$$

• $\mathbf{h}_{i}^{(2)} = \text{relu}(\mathbf{z}_{i}^{(2)}) \in \mathbb{R}^{128}$

•
$$\mathbf{h}_i^{(2)} = \text{relu}(\mathbf{z}_i^{(2)}) \in \mathbb{R}^{128}$$

•
$$\mathbf{z}_i^{(3)} = W^{(2)} \mathbf{h}_i^{(2)} \in \mathbb{R}^{10}$$

• $\hat{\mathbf{y}}_i = \text{Softmax}(\mathbf{z}_i^{(3)}) \in \mathbb{R}^{10}$

•
$$\hat{\mathbf{y}}_i = \text{Softmax}(\mathbf{z}_i^{(3)}) \in \mathbb{R}^{10}$$

Linear Model: multi-class logistic regression

- Vectorize each 28×28 image to a 784-dim vector, $\mathbf{x}_i \in \mathbb{R}^{784}$
- Add the constant 1 to \mathbf{x}_i (Introduce the bias term). Then, $\mathbf{x}_i \in \mathbb{R}^{785}$
- Denote the model parameter $W \in \mathbb{R}^{10 \times 785}$
- Then, $\mathbf{z}_i = W\mathbf{x}_i$
- Output the prediction using the softmax function

Optimization

- Use Stochastic Gradient Descent method to learn model parameters
 - Single layer

Optimization

Input layer

- Use Stochastic Gradient Descent method to learn model parameters
 - Multiple layer: how to compute gradients?

Optimization

- Chain rule
 - For the composite function

$$h(x) = f(g(x))$$

• The gradient is

$$\frac{\partial h(x)}{\partial x} = \frac{\partial f(g)}{\partial g} \frac{\partial g(x)}{\partial x}$$

•
$$f(y) = y^2$$
 • $\frac{\partial f(g)}{\partial g} = 2g$
• $g(x) = 3x + 5$ • $\frac{\partial g(x)}{\partial x} = 3$
• $h(x) = f(g(x))$ • $\frac{\partial h(x)}{\partial x} = \frac{\partial f(g)}{\partial g} \frac{\partial g(x)}{\partial x} = (2 * (3x + 5)) * 3$

Backpropagation

• 1. Compute gradients of the last layer

Loss function is the function of $W^{(1)}$ and $\mathbf{z}^{(1)}$

Compute their gradients as regular models

$$\frac{\partial L}{\partial W^{(1)}} \qquad \frac{\partial L}{\partial \mathbf{z}^{(1)}}$$

Backpropagation

• 2. Compute gradients of hidden layers based on the chain rule

How to compute
$$\frac{\partial L}{\partial W^{(0)}}$$

$$\mathbf{z}^{(1)}$$
 is a function of $\mathbf{W}^{(0)}$: $\mathbf{z}^{(1)} = \mathbf{W}^{(0)}\mathbf{x}$

Based on the chain rule:

$$\frac{\partial L}{\partial W^{(0)}} = \frac{\partial L}{\partial \mathbf{z}^{(1)}} \frac{\partial \mathbf{z}^{(1)}}{\partial W^{(0)}}$$
known

Backpropagation

$$\bullet \ \mathbf{z}_i^{(1)} = \mathbf{W}^{(0)} \mathbf{x}_i \in \mathbb{R}^{256}$$

•
$$\mathbf{z}_{i}^{(2)} = W^{(1)} \text{relu}(\mathbf{z}_{i}^{(1)}) \in \mathbb{R}^{128}$$

•
$$\mathbf{z}_{i}^{(1)} = W^{(0)}\mathbf{x}_{i} \in \mathbb{R}^{256}$$
• $\mathbf{z}_{i}^{(2)} = W^{(1)}\text{relu}(\mathbf{z}_{i}^{(1)}) \in \mathbb{R}^{128}$
• $\mathbf{z}_{i}^{(3)} = W^{(2)}\text{relu}(\mathbf{z}_{i}^{(2)}) \in \mathbb{R}^{10}$
• $\hat{\mathbf{y}}_{i} = \text{Softmax}(\mathbf{z}_{i}^{(3)}) \in \mathbb{R}^{10}$

•
$$\hat{\mathbf{y}}_i = \text{Softmax}(\mathbf{z}_i^{(3)}) \in \mathbb{R}^{10}$$

$$\bullet \ \frac{\partial L}{\partial W^{(0)}} = \frac{\partial L}{\partial \mathbf{z}^{(1)}} \frac{\partial \mathbf{z}^{(1)}}{\partial W^{(0)}}$$

$$\bullet \ \frac{\partial L}{\partial W^{(1)}} = \frac{\partial L}{\partial \mathbf{z}^{(2)}} \frac{\partial \mathbf{z}^{(2)}}{\partial W^{(1)}}$$

$$\bullet \ \frac{\partial L}{\partial \mathbf{z}^{(1)}} = \frac{\partial L}{\partial \mathbf{z}^{(2)}} \frac{\partial \mathbf{z}^{(2)}}{\partial \mathbf{z}^{(1)}}$$

•
$$\frac{\partial L}{\partial W^{(2)}}$$

•
$$\frac{\partial L}{\partial \mathbf{z}^{(2)}}$$

- Deep Learning Toolbox
 - Tensorflow
 - PyTorch

- GPU resources:
 - Google Colab (free)

Google Colab

Build an MLP with PyTorch

```
# build an mlp
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(28*28, 256) # linear layer (784 -> 256)
        self.fc2 = nn.Linear(256,128) # linear layer (256 -> 128)
        self.fc3 = nn.Linear(128,10) # linear layer (128 -> 10)
    def forward(self, x):
        h0 = x.view(-1,28*28) #input layer
        h1 = F.relu(self.fc1(h0)) # hidden layer 1
        h2 = F.relu(self.fc2(h1)) # hidden layer 2
        h3 = self.fc3(h2) # output layer
        return h3
```

Loss function and optimizer

```
# loss function
criterion = nn.CrossEntropyLoss()
# optimizer
optimizer = torch.optim.SGD(model.parameters(), lr = args['lr'])
```

- Training set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{60,000}$ Loss function: $L = -\sum_{i=1}^{60000} \sum_{j=1}^{10} \mathbf{y}_{ij} \log(\hat{\mathbf{y}}_{ij})$

Train the model

```
for batch_idx, (data, target) in enumerate(train_loader):
   data, target = data.cuda(), target.cuda()
   loss = criterion(output, target) Compute the loss function value
   # compute gradients
   optimizer.zero_grad()
   loss.backward()
   #to do a one-step update on our parameter.
   optimizer.step()
   #Print out the loss periodically.
   if batch_idx % args['log_interval'] == 0:
       print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
           epoch, batch_idx * len(data), len(train_loader.dataset),
           100. * batch_idx / len(train_loader), loss.item()))
```

Test the model

```
test_loss = 0
correct = 0
for data, target in test_loader:
    data, target = data.cuda(), target.cuda()
    output = model(data)
    test_loss += criterion(output, target).item() # sum up batch loss
    pred = output.data.max(1, keepdim=True)[1]
    correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)))
```