

Non-Stationary Markov Decision Processes a Worst-Case Approach using Model-Based Reinforcement Learning

Erwan Lecarpentier

Université de Toulouse ONERA - The French Aerospace Lab erwan.lecarpentier@isae-supaero.fr

Emmanuel Rachelson

Université de Toulouse ISAE-SUPAERO

emmanuel.rachelson@isae-supaero.fr

We study MDPs evolving over time (Definition 1) and consider planning in this setting. We make two hypotheses:

- 1. Continuous, bounded, evolution (Definition 2);
- 2. Snapshot model (Definition 3) known at each decision epoch.

Our contribution can be presented in three points:

- 1. Proposal of a planning method robust to the environment's evolution;
- 2. Introduction of a zero-shot model-based algorithm, Risk-Averse Tree-Search (RATS), computing the best worst-case action;
- 3. Illustration of the benefits of the approach in experiments.

Non-Stationary Markov Decision Processes

Definition

An **NSMDP** is an MDP whose transition and reward functions depend on the decision epoch. It is defined by a 5-tuple $\{\mathcal{S}, \mathcal{T}, \mathcal{A}, (p_t)_{t \in \mathcal{T}}, (r_t)_{t \in \mathcal{T}}\}$ where \mathcal{S} is a state space; $\mathcal{T} \equiv \{1, 2, \dots, N\}$ is the set of decision epochs, $N \leq +\infty$; \mathcal{A} is an action space; $p_t(s' \mid s, a)$ is the probability of reaching state s' with action a at decision epoch t in state s; $r_t(s, a, s')$ is the reward associated to the transition from s to s' with action a at decision epoch t.

Definition

An (L_p, L_r) -**LC-NSMDP** is an NSMDP whose transition and reward functions are respectively L_p -LC and L_r -LC w.r.t. time, i.e.,

$$orall (t,\hat{t},s,s',a) \in \mathcal{T}^2 imes \mathcal{S}^2 imes \mathcal{A}, egin{cases} W_1(p_t(\cdot\mid s,a),p_{\hat{t}}(\cdot\mid s,a)) & \leq L_p|t-\hat{t}| \ |r_t(s,a,s')-r_{\hat{t}}(s,a,s')| & \leq L_r|t-\hat{t}|. \end{cases}$$

Risk-Averse Tree-Search algorithm

Definition

The snapshot of an NSMDP $\{S, \mathcal{T}, \mathcal{A}, (p_t)_{t \in \mathcal{T}}, (r_t)_{t \in \mathcal{T}}\}$ at decision epoch t_0 , denoted by MDP_{t_0}, is the stationary MDP defined by the 4-tuple $\{S, \mathcal{A}, p_{t_0}, r_{t_0}\}$ where $p_{t_0}(s' \mid s, a)$ and $r_{t_0}(s, a, s')$ are the transition and reward functions of the NSMDP at t_0 .

Property

Set of admissible snapshot models. Consider an (L_p, L_r) -LC-NSMDP, $s, t, a \in S \times T \times A$. The transition and expected reward functions (p_t, R_t) of the snapshot MDP_t respect

$$(p_t, R_t) \in \Delta_t := \mathcal{B}_{W_1}(p_{t-1}(\cdot \mid s, a), L_p) \times \mathcal{B}_{|\cdot|}(R_{t-1}(s, a), L_p + L_r)$$
 where $\mathcal{B}_d(c, r)$ is the ball of centre c , defined with metric d and radius r .

Figure: Tree structure: alternation between **decision nodes** labelled by a unique state and **chance nodes** labelled by a state-action pair. Maximum depth $d_{\text{max}} = 2$, action space $\mathcal{A} = \{a_1, a_2\}$. The tree is entirely developed until d_{max} which makes the per-time-step complexity of the RATS algorithm $\mathcal{O}(|\mathcal{S}|^{3.5}|\mathcal{A}|^2)^{d_{\text{max}}}$.

Algorithm 1 RATS algorithm

RATS (s_0 , t_0 , maxDepth) $\nu_0 = \text{rootNode}(s_0, t_0)$ Minimax(ν_0)

 $u^* = \arg \max_{\nu' \text{ in } \nu.\text{children}} \nu'.\text{value}$ return $u^*.\text{action}$

Minimax (ν , maxDepth)

if ν is DecisionNode then

if ν .state is terminal or ν .depth = maxDepth then

return ν .value = heuristicValue(ν .state)

else

return ν .value = $\max_{\nu' \in \nu. \text{children}} \text{Minimax}(\nu', \text{maxDepth})$

end if

else

return ν .value = $\min_{(p,R) \in \Delta_{t_0}^t} R(\nu)$

 $+\gamma \sum_{\nu' \in \nu \text{ children}} p(\nu' \mid \nu) \text{Minimax}(\nu', \text{maxDepth})$

end if

Experiments

Figure: Non-Stationary bridge MDP.

The value of $\epsilon \in [0,1]$ defines different possible evolutions:

- $\epsilon = 0$ left cells are slippery;
- $ightharpoonup \epsilon = 1$ right cells are slippery;
- $\epsilon \in (0,1)$ linear balance between extreme cases.

Figure: Discounted return vs ϵ , 50% of standard deviation.

Figure: Discounted return distributions $\epsilon \in \{0, 0.5, 1\}$.