

Aufbau DC-Motor

- Besteht aus einem Stator (Permanentmagnet), Rotor (Fremderregt) und einem Kommutator
- Es gibt lediglich zwei Pole zur Steuerung des Motors (+/-)
- Einfach und Kostengünstig auf dem Markt erhältlich
- Einfache Drehzahlregelung via PWM-Signal

Steuerung/Schaltung DC-Motor

- Ein DC-Motor lässt sich entweder mittels Relais oder Halbleiter schalten.
- Da es sich um eine Spule handelt, die Ihrer Änderung entgegen wirkt, müssen ggf. Dioden verbaut werden (flyback/Freilaufdioden)

Steuerung/Schaltung DC-Motor

- Flyback Dioden sind als Schutzeinrichtung für den Leistungshalbleiter zu verstehen
- Induktive Lasten führen zu Transienten beim Schalten, welche durch diese Diode "gelöscht" werden.

H-Brücke

a) Linkslauf

b) Rechtslauf

- Für Die Änderung der Drehrichtung wird eine H-Brücke benötigt.
- Aufbau aus 2 Halbbrücken (Push-Pull-Stufe)
- Freilaufdioden im Bild sind zur besseren Übersicht entfernt.

H-Brücke

- Ein Bremsen kann über einen aktiven Kurzschluss der Motorpole erzielt werden.
- Dies führt zum aktiven Schluss des magnetischen Flusses im Motor und bremst ihn
- Achtung, hier wird Energie im Motor über die Wicklung und über die Halbleiter umgeladen.

H-Brücken ansteuern

- In der Regel hat eine H-Brücke ein Enable-Signal sowie ein PWM-Eingang
- Manche H-Brücken haben dies auch pro Halbbrücke.
- Optional kann ein Fehlerausgang oder ein Strommessausgang als Analogsignal vorhanden sein.
- Die Ansteuerung und Auswertung erfolgt in der Regel durch einen Controller

BTS7960 H-Brückenboard

DC Motor Drehzahl

- In der Regel nicht mehr über Analoge Spannungsregelung
- Ein PWM-Spannungssignal stellt einen mittleren Stromfluss im Motor ein
- Ein mittlerer Strom führt zu einem Drehmoment im Motor, sodass sich in Abhängigkeit der Last und der Reibung bzw. des Trägheitsmoments des Rotors eine mittlere Drehzahl einstellt

PWM für H-Brücke mit STM32

- Die Schaltfrequenz sollte für einen DC-Motor fest gewählt werden.
- Höhere Schaltfrequenz hat kaum einen Einfluss bei DC-Motoren und erhöht Schaltverluste des Stellglieds. Wenige kHz für DC-Motor ausreichend.
- Frequenz ergibt sich aus ARR- und PSC-Register unter Beachtung der Peripheriefrequenz
- Mehrere PWM-Kanäle möglich

HAL-Funktionen

- Der PWM-Generator kann mit *Start- und *Stop-Funktionen aktiviert oder deaktiviert werden.
- HAL* Definitionen sind Makrofunktionen um den Registerzugriff zu kapseln (wird im Win32Simulator anstelle der Registerzugriffe genutzt)
- *ConfigChannel kann genutzt werden, um das Tastverhältnis (DutyCycle) eines Kanals zu ändern.

- HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef* htim, uint32_t Channel);
- HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef* htim, uint32_t Channel);
- <u>HAL_TIM_SET_AUTORELOAD(__</u>HANDLE___, _AUTORELOAD__);
 - htimX.Instance->ARR = X;
- __HAL_TIM_SET_PRESCALER(__HANDLE__, __PRESC__);
 - htimX.Instance->PSC = X;
- HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef* htim, const TIM_OC_InitTypeDef* sConfig, uint32_t Channel);

Berechnungen zum PWM

$$F_{PWM} = \frac{F_{CLK}}{(ARR + 1) \times (PSC + 1)}$$

$$DutyCycle_{PWM}[\%] = \frac{CCRx}{ARRx}[\%]$$

- Beim STM32 (meist bei anderen Herstellern/Timer auch) ergibt sich die Frequenz aus der ersten Formel.
- Die Duty Cycle variiert in der Auflösung mit dem ARR-Register und lässt sich nach der 2. Formel einstellen.
- Einstellbar über die HAL oder über direkte Registerzugriffe auf den Timer

2025

Schrittmotoren

Hauptaugenmerk auf den Hybridschrittmotor

Schematischer Aufbau

- In der einfachsten Form besteht der Schrittmotor aus zwei Phasen und einem Festmagnet
- Von außen werden die Phasen passend bestromt
- Ein Vollschritt wäre 90°
- Diese schematische Darstellung entspricht nur geringfügig der Realität

Aufbau Schrittmotor (Hybrid)

- Besteht aus Stator und Rotor, der Rotor ist zweigeteilt.
- Rotormagnetisierung ist axial (Rotor1 bspw. N-Pol und Rotor2 bspw. S-Pol)
- Der Rotor ist ein Permanentmagnet mit Weicheisenzähnen (Reluktanzanteil/magn. Widerstand als Effekt)
- Die Wicklungen liegen radial im Stator um den Rotor gewickelt

Aufbau Schrittmotor

- Man unterscheidet zwischen 2und 5- Phasen Motoren
- Es gibt auch Motoren mit zusätzlichen parallelen oder seriellen Wicklungen
- Der Rotor sowie der Stator weisen Verzahnungen für den magnetischen Fluss auf.
- Die Zahnteilung entspricht der Schrittweite

Aufbau eines 0,72° Schrittmotors (5-Phasen) Querschnitt senkrecht zur Welle

Aufbau eines 1,8° Schrittmotors (2-Phasen)
Querschnitt senkrecht zur Welle

Aufbau Schrittmotor

- Die Position erfolgt durch die Bestromung der jeweiligen Phasen.
- Eine Position stellt

Nochmal schematisch

- Zuvor dargestellte Struktur nochmals schematisch vereinfacht
- Wird auch Hybridmotor genannt, wegen des Permanentmagneten im Rotor und den Weicheisenzahnkränzen (wie bei Reluktanzmaschinen)
- Nahezu alle technisch eingesetzte Schrittmotoren sind heutzutage Hybridmotoren, da hohe Genauigkeit und geringes äußeres Magnetfeld erforderlich

Schrittmotortreiber bspw. L6474

- Übernehmen die Aufgabe der Phasenansteuerung und der Stromregelung
- Erlauben feinere Schrittauflösung (Microschritte) durch Spannungsvariation der Phasenausgänge
- Haben im Allgemeinen ein Kontrollinterface und Schrittpulseingänge für das einfache weiterschalten zum nächsten Schritt

Aufbau Schrittmotortreiber

- H-Brücken Treiber, Current Sensing und PWM Logic sind der Kernbestandteil eines Treibers
- Ein MCU oder Host steuert die Bewegung über einen Step Pulse sowie einem Direction Eingang
- Ein Registerinterface erlaubt das Fine-Tuning und die Einstellung der Schrittauflösung

Aufbau Schrittmotortreiber

- Die Regelung erfolgt pro Spule, das Prinzip ist ähnlich zum D-Motor.
- Der Strom regelt in direkter
 Beziehung das Drehmoment pro Phase
- Ein Schrittmotor regelt auf einen mittleren Konstantstrom um ein Haltemoment zu erzeugen.

Beziehung zwischen Spannung und Strom bei Konstantstrom-Antrieben

Schrittmotortreiber

- Microstepping führt zu kleineren Drehwinkeln durch Zwischenschritte in der Phasenansteuerung.
- Das Drehmoment sowie das Haltemoment fällt dadurch allerdings!
- Erlaubt unter gegebenen Bedingungen eine genauere Position und eine höhere Laufruhe

Microschritte zur Verdeutlichung

- Microschritte lassen sich in vielfachen von 2er Potenzen realisieren
- Der Vollschritt ist der klassische Betrieb. Er schwingt mehr hat aber das volle Drehmoment
- Je höher die Microschritte, desto weniger Schwingung aber auch weniger Drehmoment.
- Teils auch 128er Microschritte möglich

Drehmoment Schrittmotor

$$M_{INC} = M_{HFS} \cdot sin\left(\frac{90}{\mu_{PFS}}\right)$$

Dabei gilt:

μ_{PFS} = Anzahl der Mikroschritte pro Vollschritt [Ganzzahl]

N = Anzahl der erfolgten Mikroschritte [Ganzzahl] hierbei muss N kleiner oder gleich μ_{PFS} sein

M_{HFS}= Haltemoment im Vollschrittbetrieb [Nm]

M_{INC} = Inkrementalmoment pro Mikroschritt [Nm]

M_N = Inkrementalmoment für N Mikroschritte [Nm]

auchhierbei muss N kleiner oder gleich µPFS sein

$$M_N = M_{HFS} \cdot sin\left(\frac{(90 \cdot N)}{\mu_{PFS}}\right)$$

Drehmoment Schrittmotor

Mikroschritte/Vollschritt	% Haltemoment/Mikroschritt
1	100,00%
2	70,71%
4	38,27%
8	19,51%
16	9,80%
32	4,91%
64	2,45%
128	1,23%
256	0,61%

Eckdaten für einen Schrittmotor

- Anzahl Wicklungen: 2 Haltemoment: 180 Phasen
 - N.cm Min
- 200 Vollschritte/U
- Schrittwinkel: 1,8° => Kabel: AWG22 UL1007
 - 3200 Microschritte/U bei 16 Microschritten
- Rotorträgheit: 480 g.cm2
- Nennspannung: 2,52 V Limitierung der Pulse pro Sekunde ~ 1000/s
- Nennstrom: 4,2 A/Phase
- Widerstand: 0,6 Ohm
- Induktivität 1.8 mH/Phase

Closed Loop und Open Loop

- Begriffe der Regelungstechnik
- Eine Regelung ist Closed loop, da die IST-Größe erfasst wird und einem Regler Rückgeführt wird. Eine Korrektur eines Fehlers kann erfolgen, indem IST- und SOLL-Größe verglichen wird.
- Eine Steuerung ist open Loop, da keine IST-Größe erfasst wird und somit keine Fehlerkorrektur erfolgen kann.