

Hierarchical Clustering

Instructions:

Please share your answers filled in-line in the word document. Submit code separately wherever applicable.

Please ensure you update all the details:	
Name: KAVALI RAKESH YADAV	Batch ID: _
DSWDMCON 180122	
Tonic: Hierarchical Clustering	

Grading Guidelines:

- 1. An assignment submission is considered complete only when correct and executable code(s) are submitted along with the documentation explaining the method and results. Failing to submit either of those will be considered an invalid submission and will not be considered for evaluation.
- 2. Assignments submitted after the deadline will affect your grades.

Grading:

Ans	Date			Ans	Date
Correct	On time	Α	100		
80% & above	On time	В	85	Correct	Late
50% & above	On time	С	75	80% & above	Late
50% & below	On time	D	65	50% & above	Late
		Е	55	50% & below	
Copied/No Submission		F	45		

- Grade A: (>= 90): When all assignments are submitted on or before the given deadline.
- Grade B: (>= 80 and < 90):
 - When assignments are submitted on time but less than 80% of problems are completed.
 (OR)
 - o All assignments are submitted after the deadline.
- Grade C: (>= 70 and < 80):
 - When assignments are submitted on time but less than 50% of the problems are completed.

(OR)

o Less than 80% of problems in the assignments are submitted after the deadline.

- Grade D: (>= 60 and < 70):
 - o Assignments submitted after the deadline and with 50% or less problems.
- Grade E: (>= 50 and < 60):
 - Less than 30% of problems in the assignments are submitted after the deadline.
 (OR)
 - o Less than 30% of problems in the assignments are submitted before the deadline.
- Grade F: (< 50): No submission (or) malpractice.

Hints:

- 1. Business Problem
 - 1.1. What is the business objective?
 - 1.2. Are there any constraints?
- 2. Work on each feature of the dataset to create a data dictionary as displayed in the below image:

Name of Feature	Description	Туре	Relevance
ID	Customer ID	Quantitative, Nominal	Irrelevant, ID does not provide useful information
	5		
8	8		
0	3		

- 3. Data Pre-processing
 - 3.1 Data Cleaning, Feature Engineering, etc.
- 4. Exploratory Data Analysis (EDA):
 - 4.1. Summary.
 - 4.2. Univariate analysis.
 - 4.3. Bivariate analysis.
- 5. Model Building
 - 5.1 Build the model on the scaled data (try multiple options).
 - 5.2 Perform the hierarchical clustering and visualize the clusters using dendrogram.
 - 5.3 Validate the clusters (try with different number of clusters) label the clusters and derive insights (compare the results from multiple approaches).
- 6. Write about the benefits/impact of the solution in what way does the business (client) benefit from the solution provided?

Problem Statements:

1. Perform clustering for the airlines data to obtain optimum number of clusters. Draw the inferences from the clusters obtained. Refer to EastWestAirlines.xlsx dataset.

•	ID. [‡]	Balance	Qual_miles [‡]	cc1_miles [‡]	cc2_miles [‡]	cc3_miles [‡]	Bonus_miles [‡]	Bonus_trans	Flight_miles_12mo	Flight_trans_12	Days_since_enroll [‡]	Award.
1	1	28143	0	1	1	1	174	1	0	0	7000	0
2	2	19244	0	1	1	1	215	2	0	0	6968	0
3	3	41354	0	1	1	1	4123	4	0	0	7034	0
4	4	14776	0	1	1	1	500	1	0	0	6952	0
5	5	97752	0	4	1	1	43300	26	2077	4	6935	1
6	6	16420	0	1	1	1	0	0	0	0	6942	0
7	7	84914	0	3	1	1	27482	25	0	0	6994	0
В	8	20856	0	1	1	1	5250	4	250	1	6938	1
9	9	443003	0	3	2	1	1753	43	3850	12	6948	1
0	10	104860	0	3	1	1	28426	28	1150	3	6931	1
1	11	40091	0	2	1	1	7278	10	0	0	6959	0
2	12	96522	0	5	1	1	61105	19	0	0	6924	1
3	13	43382	0	2	1	1	11150	20	0	0	6924	0
4	14	43097	0	1	1	1	3258	6	0	0	6918	0
5	15	17648	0	1	1	1	0	0	0	0	6912	0

Ans: 1. Business Objective: It is to maximize the usage of offers provided by airlines to the customer.

Constraints: Lack of analyzing the previous data of the customer usage of offers provided by the airlines

Name of feature	Description	Types	Relevance
id	Unique ID	Numeric	Irrelevant since it is
			only id it is not useful
			for analyzing the data
Balance	Number of miles eligible for award travel	Numeric	Relevant
Qual_miles	Number of miles counted as qualifying for Topflight status	Numeric	Relevant
cc1_miles	Number of miles earned with freq. flyer credit card in the past 12 months:	Categorical	Relevant
cc2_miles	Number of miles earned with Rewards credit card in the past 12 months:	Categorical	Relevant
cc3_miles	Number of miles earned with Small Business credit card in the past 12 months:	Categorical	Relevant

Bonus_miles	Number of miles earned from non-flight bonus transactions in the past 12 months	Numeric	Relevant
Bonus_trans	Number of non-flight bonus transactions in the past 12 months	Numeric	Relevant
flight_miles_12mo	Number of flight miles in the past 12 months	Numeric	Relevant
Flight_trans_12mo	Number of flight transactions in the past 12 months	Numeric	Relevant
Days_since_enroll	Number of days since Enroll_date	Numeric	Relevant
Award?	variable for Last_award	Numeric	Relevant

- 1. Data is cleaned by removing the columns which are not required for the analysis.
- 2. Since the data contains different quantities it is unable to do the visualization properly, so Normalization of the data is done in order to cover the whole data in the range of (0,1) so that the data can be visualized easily.
- 3. The given data is clustered by using Hierarchical clustering in python and the Dendrogram is plotted and observed the complete data in categories and then decided to convert the data into 3 clusters to identify the customers easily belonging to the particular cluster.
- 4. After Clustering the data it is easy to identify the which customer belongs to which category.

2. Perform clustering for the crime data and identify the number of clusters formed and draw inferences. Refer to crime_data.csv dataset.

_	x	Murder [‡]	Assault [‡]	UrbanPop [‡]	Rape
1	Alabama	13.2	236	58	21.2
2	Alaska	10.0	263	48	44.5
3	Arizona	8.1	294	80	31.0
4	Arkansas	8.8	190	50	19.5
5	California	9.0	276	91	40.6
6	Colorado	7.9	204	78	38.7
7	Connecticut	3.3	110	77	11.1
8	Delaware	5.9	238	72	15.8
9	Florida	15.4	335	80	31.9
10	Georgia	17.4	211	60	25.8
11	Hawaii	5.3	46	83	20.2
12	Idaho	2.6	120	54	14.2
13	Illinois	10.4	249	83	24.0

Ans: (i) **Business Objective**: Identify the Murderer who has done more number of murders etc. to minimize the man work in identifying the murderer.

Constraints: Lack of Analyzing the persons previous data

(ii) Data type and its relevance

Name of feature Description		Datatype	Relevance
Х	Murdered name	Non numeric	Relevant
Murder	murder rate	Numeric	Relevant
Assault	assault rate	Numeric	Relevant
UrbanPop	urbanpop rate	Numeric	Relevant
Rape	rape rate	Numeric	Relevant

- (iii) Since the complete data is required, there no requirement of cleaning the data
- (iv) The quantities of the variable are different so in order to visualize it will be difficult so the given data is standardized in order to visualize.
- (v) The given data is clustered by using Hierarchical clustering in R and python and the Dendrogram is plotted and observed the complete data in categories and then decided to convert the data into 4 clusters, so that it will be easy to identify the murderer easily.
- (vi) After Clustering the data it is easy to identify the murderer who belongs to the particular category.

3. Perform clustering analysis on the telecom data set. The data is a mixture of both categorical and numerical data. It consists of the number of customers who churn out. Derive insights and get possible information on factors that may affect the churn decision. Refer to Telco_customer_churn.xlsx dataset.

4. Perform clustering on mixed data. Convert the categorical variables to numeric by using dummies or label encoding and perform normalization techniques. The data set consists of details of customers related to their auto insurance. Refer to Autoinsurance.csv dataset.

