

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

Курсовой проект

по дисциплине «Вычислительная математика»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студе	нт гр.		
Б9121-01.03.02с	П		
_Держапольский	и́ Ю.В.		
(Ф.И.О.)		(подпись)	
Проверил доцент, к.ф-м.н. $\frac{\text{Колобов A.Г.}}{(\Phi.\text{И.О.})} {}$			
	2024 5		

г. Владивосток

Содержание

1	Вве	дение		3
2	Осн	овная ч	часть	4
	2.1	Тести	рование	5
3	Зак	лючени	ie	7
4 Список использованных источников5 Приложения				
	6.1	Задан	ие 1	10
		6.1.1	Постановка задачи	10
		6.1.2	Решение	10
6.2 Задание 2				11
		6.2.1	Постановка задачи	11
		6.2.2	Решение	11

1. Введение

В этой лабораторной работе будет проведена работа по программированию и тестированию алгоритма выбора главного элемента для решения системы линейных алгебраических уравнений.

2. Основная часть

Дана матрица A и столбец b и система Ax = b. Суть метода выбора главного элемента в том, что на каждом шаге находится максимальный элемент матрицы, после чего из всех строк вычитается главная строка, умноженная на коэффициент для того чтобы получить нули в главном столбце.

Далее, на k-том шаге в необработанных до этого строках системы находится максимальный по модулю элемент. Пусть это будет элемент a_{ij} . Из каждой другой необработанной l-той строки вычитается данная строка, умноженная на $\frac{a_{lj}}{a_{ij}}$, тем самым получая нули в j-том столбце данных строк.

В итоге, после n-1 шага получается матрица, которую можно решить путём исключения переменных.

2.1. Тестирование

Для тестирования будут сгенерированы случайные матрицы и столбцы размерностью 10 в количестве 10000. (код алгоритма см. в приложении)

Рис. 1: Log10 максимальной разницы решения алгоритма и встроенной функции numpy, округлённый до десятых при генерации 10000 случайных матриц.

На рисунке 1 можно увидеть распределения точностей решения. Большинство решений по точности не превышает 10^{-10} . Решения с меньшей точностью определяются большим числом обусловленности сгенерированной матрицы — от 2000 до 31000. Однако, количество таких решений — 29, что составляет всего 0.29% от всех решений.

```
-9.5 3534.9413553374156
-9.2 27303.80682425332
-9.6 4831.541312804075
-9.6 8152.530089450168
-9.7 6343.536681509656
-9.4 5478.057441536083
-8.7 5825.808822026051
-9.5 6896.806373102329
-8.7 19100.07164206536
-9.7 7019.068926592585
-9.7 3703.485370576964
-9.7 6288.156392907357
-9.3 5724.979382134973
-8.0 24578.85820338723
-8.3 23680.815022595347
-9.9 13771.008251275467
-9.9 3048.1671775012364
-9.2 4127.141556212409
-9.5 5376.633244655705
-8.8 7023.143689348826
-9.0 31643.532806429073
-7.8 24502.16421115876
-9.3 3153.6765079033908
-9.8 1812.0256026814645
-7.5 27605.11681942663
-8.4 12140.716899280469
-8.6 13772.456853689588
-9.4 6964.29943810372
-9.9 2482.710546876706
```

Рис. 2: Log10 разности и число обусловленности решений, которые не превысили точность 10^{-10} .

3. Заключение

В этой лабораторной работе была проведена работа по программированию и тестированию алгоритма выбора главного элемента для решения системы линейных алгебраических уравнений.

4			
4.	Список	использованных	к источников

ист

5. Приложения

Приложения

6. Решение теоретических задач

6.1. Задание 1

6.1.1. Постановка задачи

Найдите соотношение эквивалентности, связывающее норму $M(A) = n \max_{1 \leq i,j \leq n} |a_{ij}| \ {\rm c} \ ||A||_{\infty}. \ \Pi {\rm posepste} \ {\rm экспериментально}.$

6.1.2. Решение

$$||Ax||_{\infty} = \max_{i} \left| \sum_{j} a_{ij} x_{j} \right| \le \max_{i,j} |a_{ij}| \sum_{j} |x_{j}| = \max_{i,j} |a_{ij}| \cdot ||x||_{1}$$

Отсюда получаем: $\max_{i,j} |a_{ij}| \geq \frac{||Ax||_{\infty}}{||x||_{1}}$. Равенство достигается, когда все элементы матрицы одинаковые. Имеем: $\max_{i,j} |a_{ij}| = \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{1}}$. Далее будем использовать неравенство: $||x||_{\infty} \leq ||x||_{1} \leq n||x||_{\infty}$. Полу-

Далее будем использовать неравенство: $||x||_{\infty} \le ||x||_1 \le n||x||_{\infty}$. Получим оценку снизу:

$$M(A) = n \max_{i,j} |a_{ij}| = n \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{1}} \ge \sup_{x \neq 0} \frac{n||Ax||_{\infty}}{n||x||_{\infty}} = ||A||_{\infty}.$$

Теперь получим оценку сверху:

$$M(A) = n \max_{i,j} |a_{ij}| = n \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{1}} \le n \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = n||A||_{\infty}.$$

Таким образом, получили следующее соотношение эквивалентности:

$$||A||_{\infty} \le M(A) \le n||A||_{\infty}$$

Проверим его экспериментально:

6.2. Задание 2

6.2.1. Постановка задачи

Докажите теоретически и проверьте экспериментально, что число обусловленности $\mu(A)=\mu(\alpha A)$, где число $\alpha \neq 0$.

6.2.2. Решение

Для доказательства по определению распишем число обусловленности.

$$\mu(\alpha A) = ||\alpha A|| \cdot ||(\alpha A)^{-1}|| = |\alpha| \cdot ||A|| \cdot |\alpha^{-1}| \cdot ||A^{-1}|| = 1 \cdot ||A|| \cdot ||A^{-1}|| = \mu(A)$$

Равенство доказано.

100

100

7

nn.

Проверим его экспериментально. Для этого используется код в листинге

№	Размер матриц	Кол-во матриц	α	\log_{10} макс. разности
1	5	10000	4	$-\infty$
2	5	10000	10	-6
3	5	100000	Rand(0.1, 100)	-5
4	10	10000	4	$-\infty$
5	10	10000	10	-6

4

10

 $-\infty$

-5

1000

1000