Trabalho ML - Extra Trees Classifier

Alunos: Felipe Barroso e Arthur Torquato

1. Introdução

1. Introdução ao Algoritmo

O ExtraTreesClassifier foi utilizado para classificar o conjunto de dados de vinhos, separando as instâncias em vinhos de boa e má qualidade. Esse modelo, parte da família de métodos de árvores, seleciona divisões de maneira aleatória, o que o torna menos propenso ao sobreajuste e mais robusto em comparação a métodos tradicionais de Árvores de Decisão. O algoritmo é eficiente tanto para tarefas de classificação quanto de regressão.

Principais Hiperparâmetros

- n estimators: Número de árvores a serem treinadas no modelo.
- max_depth: Define a profundidade máxima da árvore para controlar o ajuste excessivo.
- min samples split: Determina o número mínimo de amostras exigido para dividir um nó.
- min samples leaf: Número mínimo de amostras exigido para formar uma folha.
- max features: Define o número de características a serem consideradas para cada divisão.

2. Metodologia

Três abordagens principais de otimização de hiperparâmetros foram utilizadas para maximizar o desempenho do ExtraTreesClassifier: RandomizedSearchCV, GridSearchCV, e BayesSearchCV.

Técnicas de Otimização Utilizadas

- Randomized Search: Primeiramente, uma busca aleatória foi conduzida para explorar amplamente o espaço de hiperparâmetros. Isso permitiu identificar rapidamente as regiões mais promissoras.
- **Grid Search**: Em seguida, uma busca exaustiva com Grid Search foi realizada, focando nos hiperparâmetros mais relevantes identificados na etapa anterior.
- Bayes Search: Por fim, utilizamos a Otimização Bayesiana para explorar de forma eficiente os melhores hiperparâmetros, utilizando uma abordagem probabilística para refinar ainda mais os parâmetros.

Hiperparâmetros Testados

- **n_estimators**: Testamos valores de 100 a 1000. O objetivo era encontrar o equilíbrio entre o número de árvores e o tempo de treinamento.
- max_depth: Variamos de None até profundidades de 10, 20 e 30, para balancear a capacidade de ajuste e evitar overfitting.
- min_samples_split e min_samples_leaf: Esses parâmetros foram ajustados para controlar o tamanho das divisões e folhas, reduzindo a variabilidade e garantindo previsões estáveis.

Métricas

- Acurácia: Mede a proporção de predições corretas no conjunto de dados.
- **F1-score**: Uma métrica que combina precisão e recall, ideal para conjuntos de dados desbalanceados.
- Curva ROC e AUC: Avalia o desempenho do modelo na separação entre classes.

3. Resultados

Resultados para Cada Técnica de Otimização

- Randomized Search: Identificou rapidamente parâmetros promissores, resultando em uma acurácia de 82%. Os melhores hiperparâmetros foram:
 - o n_estimators: 200
 - o min samples split: 2
 - o min samples leaf: 1
 - o max features: 'log2'
 - o max depth: None
- **Grid Search**: Refinou os resultados, alcançando uma acurácia de **83%**. Os parâmetros encontrados foram:
 - o bootstrap: False
 - o max depth: None
 - o max features: 'log2'
 - o min samples leaf: 1
 - o min samples split: 2
 - o n estimators: 200
- **Bayes Search**: A Otimização Bayesiana elevou a acurácia para **89%**. Os melhores parâmetros foram:
 - o max depth: None
 - o max_features: 'log2'
 - o min samples leaf: 1
 - o min samples split: 2
 - o n estimators: 200

Resultados Adicionais:

 Curva ROC: A AUC foi de 0.94, indicando um excelente desempenho na separação das classes.

Matriz de Confusão:

[[131 122]

[22 1025]]

Calculando e exibindo a matriz de confusão. A orientação padrão é a seguinte:

[0,0]: Verdadeiros Negativos (VN) - Previsões corretamente identificadas como negativas.

[0,1]: Falsos Positivos (FP) - Previsões incorretamente identificadas como positivas.

[1,0]: Falsos Negativos (FN) - Previsões incorretamente identificadas como negativas.

[1,1]: Verdadeiros Positivos (VP) - Previsões corretamente identificadas como positivas.

• Relatório de Classificação:

	precision	recall	f1-score	support
0	0.86	0.52	0.65	253
1	0.89	0.98	0.93	1047

accuracy	0.89	1300		
macro avg	0.87	0.75	0.79	1300
weighted avg	0.89	0.89	0.88	1300

4. Discussão

Melhoria no Processo de Otimização

O uso sequencial de **Randomized Search**, **Grid Search**, e **Bayes Search** provou ser uma estratégia eficiente para otimizar o desempenho do modelo. No entanto, melhorias podem ser feitas com o uso de **Early Stopping** para evitar gastar tempo computacional em treinos desnecessários.

Impacto dos Hiperparâmetros no Desempenho

- **max_depth**: Manter a profundidade ilimitada ajudou a evitar o sobreajuste sem sacrificar a performance.
- min_samples_split e min_samples_leaf: Valores maiores resultaram em predições mais estáveis e menos suscetíveis a ruídos nos dados.