

Lecture 9 Boundary Value Problems

Ye Ding (丁烨)

Email: y.ding@sjtu.edu.cn

School of Mechanical Engineering Shanghai Jiao Tong University

$$\begin{cases}
\ddot{\boldsymbol{p}}(t) = \boldsymbol{f}(t, \boldsymbol{p}, \dot{\boldsymbol{p}}), \\
\boldsymbol{p}(t_1) = \boldsymbol{p}_1 \in \mathbb{R}^n, \ \boldsymbol{p}(t_2) = \boldsymbol{p}_2 \in \mathbb{R}^n, \ t_1 < t_2 \in \mathbb{R}
\end{cases}$$

- References for Boundary Value Problems
 - [1] Timothy Sauer, Numerical analysis (2nd ed.), Pearson Education, 2012. Chapter 7
 - [2] Richard L. Burden, J. Douglas Faires, Numerical analysis (9th ed.), Brooks/Cole, 2011. Chapter 11

Boundary Value Problems (BVP)

A general second-order boundary value problem on a specific interval $a \le t \le b$:

$$\begin{cases} y'' = f(t, y, y') \\ y(a) = y_a \\ y(b) = y_b \end{cases}$$

- **□** Symbolic Computation
- **☐** Shooting Method
- **☐** Finite Difference Methods
 - > Linear boundary value problems
 - > Nonlinear boundary value problems
- **☐** Finite Element Method

Ordinary Differential Equations

dsolve(eqn,cond)

to solve the ordinary
differential equation eqn
with the initial or boundary
condition cond

Ordinary Differential Equations: Example 1

$$y'' = -y + 2\cos t$$

```
>> syms t y(t)
>> y1 = dsolve(diff(y, 2) == -y + 2 * cos(t))
```

Ordinary Differential Equations: Example 1

$$\begin{cases} y'' = -y + 2\cos t \\ y(0) = 0 \\ y(\pi) = 0 \end{cases}$$

```
>> syms t y(t)
>> y2 = dsolve(diff(y, 2) == -y + 2 * cos(t),
y(0)==0,y(pi) == 0)
```


Ordinary Differential Equations: Example 2

$$\begin{cases} y'' = -y \\ y(0) = 0 \\ y(\pi) = 1 \end{cases}$$

Warning: Explicit solution could not be found.

Ordinary Differential Equations: Example 2

$$\begin{cases} y'' = -y \\ y(0) = 0 \\ y(\pi) = 0 \end{cases}$$

```
>> syms t y(t)
>> S = dsolve(diff(y, 2) == -y,y(0) == 0,y(pi) ==0)
```


- **☐** Shooting Method
- **☐** Finite Difference Methods
 - > Linear boundary value problems
 - > Nonlinear boundary value problems
- **☐** Finite Element Method

The Shooting Method: Basic Idea

- The Shooting Method: Implementation
- The BVP is reduced to solving the equation:

$$F(s) = 0$$

$$F(s) = \begin{cases} \text{difference between } y_b \text{ and} \\ y(b), \text{ where } y(t) \text{ is the} \\ \text{solution of the IVP with} \\ y(a) = y_a \text{ and } y'(a) = s. \end{cases}$$

The Bisection Method can be used to solve it.

Bisection Method: Review

Step 1: the sign of $f(c_0)$ is checked. Since $f(c_0)f(b_0)<0$, set

 $a_1 = c_0, b_1 = b_0 \cdot [a_0, b_0] \rightarrow [a_1, b_1]$

Step 2: $[a_1, b_1] \rightarrow [a_2, b_2]$

Step 3: ...

The Shooting Method: Example 3

Apply the Shooting Method to the boundary value

problem:

$$\begin{cases} y'' = 4y \\ y(0) = 1 \\ y(1) = 3 \end{cases}$$

- The Shooting Method: Example 3
- Apply the Shooting Method to the boundary value problem:

$$\begin{cases} y'' = 4y \\ y(0) = 1 \\ y(1) = 3 \end{cases}$$

$$s^* = y'(0) \approx -0.4203$$

- **☐** Shooting Method
- **☐** Finite Difference Methods
 - > Linear boundary value problems
 - > Nonlinear boundary value problems
- Finite Element Method

Finite Difference Methods: Basic Idea

A general second-order boundary value problem on a specific interval $a \le t \le b$:

$$\begin{cases} y'' = f(t, y, y') \\ y(a) = y_a \\ y(b) = y_b \end{cases}$$

How to replace derivatives in the differential equation by discrete approximations?

Finite Difference Formulas: Review

Three-point centered-difference formula

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(c)$$

where x - h < c < x + h.

Three-point centered-difference formula for second derivative

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} - \frac{h^2}{12}f^{(iv)}(c)$$

for some c between x - h and x + h.

Solving the algebraic equations for approximations w_i to the correct values y_i :

Finite Difference Methods: Basic Idea

$$\begin{cases} y'' = f(t, y, y') \\ y(a) = y_a \\ y(b) = y_b \end{cases}$$

Step 1: dividing the interval [a,b] into n+1 equally spaced subintervals, i.e., $t_i=a+ih$, i=0,1,...,n+1.

Step 2: replacing the derivatives with finite difference approximations.

Step 3: solving the system of algebraic equations.

Finite Difference Methods: Implementation

$$\begin{cases} y'' = f(t, y, y') \\ y(a) = y_a \\ y(b) = y_b \end{cases}$$

$$t_i = a + ih, i = 0, 1, ..., n+1.$$

$$y'(t_i) \approx \frac{y_{i+1} - y_{i-1}}{2h}$$
 and $y''(t_i) \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$

$$y_{i+1} - 2y_i + y_{i-1} - h^2 f\left(t_i, y_i, \frac{y_{i+1} - y_{i-1}}{2h}\right) = 0$$

for
$$i = 1, ..., n$$
.

- The Finite Difference Method: Example 4
- Apply the Finite Difference Method to the boundary value problem:

$$\begin{cases} y'' = 4y \\ y(0) = 1 \\ y(1) = 3 \end{cases}$$

Step 1: n = 3, h = 1/4; $t_i = a + ih$, i = 0, 1, ..., 4

The Finite Difference Method: Example 4

$$y'' = 4y$$

$$\frac{w_{i+1} - 2w_i + w_{i-1}}{h^2} - 4w_i = 0$$

$$w_{i-1} + (-4h^2 - 2)w_i + w_{i+1} = 0$$

for
$$i = 1, ..., n$$
. $w_0 = 1$ and $w_4 = 3$

The Finite Difference Method: Example 4

Step 3: algebraic equations

$$1 + (-4h^{2} - 2)w_{1} + w_{2} = 0$$

$$w_{1} + (-4h^{2} - 2)w_{2} + w_{3} = 0$$

$$w_{2} + (-4h^{2} - 2)w_{3} + 3 = 0$$

$$h = 1/4$$

$$\begin{bmatrix} -\frac{9}{4} & 1 & 0 \\ 1 & -\frac{9}{4} & 1 \\ 0 & 1 & -\frac{9}{4} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -3 \end{bmatrix}$$

The Finite Difference Method: Example 4

Result:

$$n = 3, h = 1/4$$

i	t_i	w_i	y_i
0	0.00	1.0000	1.0000
1	0.25	1.0249	1.0181
2	0.50	1.3061	1.2961
3	0.75	1.9138	1.9049
4	1.00	3.0000	3.0000

The Finite Difference Method: Example 4

Result: n = 7, h = 1/8

The Finite Difference Method: Example 4

Comparison: h = 1/4, h = 1/8, h = 1/16

t_i	$e_i(h=1/4)$	$e_i(h=1/8)$	$e_i(h=1/16)$
0.25	0.00683	0.00174	1.0e-03 * 0.43737
0.50	0.01001	0.00255	1.0e-03 * 0.64156
0.75	0.00889	0.00227	1.0e-03 * 0.57051

- ☐ Shooting Method
- **☐** Finite Difference Methods
 - Linear boundary value problems
 - > Nonlinear boundary value problems
- Finite Element Method

- The Finite Difference Method: Example 5
- Apply the Finite Difference Method to the nonlinear boundary value problem:

$$\begin{cases} y'' = y - y^2 \\ y(0) = 1 \\ y(1) = 4 \end{cases}$$

Step 1: n = 3, h = 1/4; $t_i = a + ih$, i = 0, 1, ..., 4

The Finite Difference Method: Example 5

Step 2:
$$y'' = y - y^2$$

$$\frac{for i = 1,..., n.}{w_{i+1} - 2w_i + w_{i-1}} - w_i + w_i^2 = 0$$

$$w_{i-1} - (2 + h^2)w_i + h^2w_i^2 + w_{i+1} = 0, i = 1,..., n.$$

with $w_0 = y_a = 1$ and $w_{n+1} = y_b = 4$

The Finite Difference Method: Example 5

Step 3: algebraic equations

$$y_a - (2 + h^2)w_1 + h^2w_1^2 + w_2 = 0$$

$$w_{i-1} - (2 + h^2)w_i + h^2w_i^2 + w_{i+1} = 0, i = 2,...,n-1.$$

$$w_{n-1} - (2 + h^2)w_n + h^2w_n^2 + y_b = 0$$

Newton's Method for Nonlinear Equations: Review

Systems of Equations:

$$\mathbf{f}(\mathbf{x}) = \mathbf{0}$$

Taylor Expansion:

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{x}_i) + \mathbf{f}'(\mathbf{x}_i)(\mathbf{x} - \mathbf{x}_i) = \mathbf{0}$$

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \left[\mathbf{f}'(\mathbf{x}_i)\right]^{-1} \mathbf{f}(\mathbf{x}_i)$$

Multivariate Newton's Method

The Finite Difference Method: Example 5

Step 3: algebraic equations. The function F(w) is

$$F\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_{n-1} \\ w_n \end{bmatrix} = \begin{bmatrix} y_a - (2+h^2)w_1 + h^2w_1^2 + w_2 \\ w_1 - (2+h^2)w_2 + h^2w_2^2 + w_3 \\ \vdots \\ w_{n-2} - (2+h^2)w_{n-1} + h^2w_{n-1}^2 + w_n \\ w_{n-1} - (2+h^2)w_n + h^2w_n^2 + y_b \end{bmatrix}$$

The Jacobian DF(w) of F is

$$\begin{bmatrix} 2h^2w_1 - (2+h^2) & 1 & 0 & \cdots & 0 \\ 1 & 2h^2w_2 - (2+h^2) & \ddots & \ddots & \vdots \\ 0 & 1 & \ddots & 1 & 0 \\ \vdots & \ddots & \ddots & 2h^2w_{n-1} - (2+h^2) & 1 \\ 0 & \cdots & 0 & 1 & 2h^2w_n - (2+h^2) \end{bmatrix}$$

The Finite Difference Method: Example 5

Result:

$$n = 15, h = 1/16$$

$$\begin{cases} y'' = y - y^2 \\ y(0) = 1 \\ y(1) = 4 \end{cases}$$

- ☐ Shooting Method
- **☐** Finite Difference Methods
 - Linear boundary value problems
 - > Nonlinear boundary value problems
- **☐** Finite Element Method

Finite Element Method: Basic Idea

The finite element approach to the BVP:

$$\begin{cases} y'' = f(t, y, y') \\ y(a) = y_a \\ y(b) = y_b. \end{cases}$$

to choose the approximate solution y so that the residual r = y'' - f is as small as possible.

Linear Least Squares: Review

The Normal Equation: Basic Idea

Combinations of two three-dimensional vectors v_1 and v_2

Linear Least Squares: Review

The Normal Equation: Basic Idea

Search for a formula for \bar{x}

$$(b - A\overline{x}) \perp \{Ax | x \in R^n\}$$

- Finite Element Method: Basic Idea
 In analogy with the least squares methods, this is
 accomplished by choosing y to make the residual
 orthogonal to the vector space of potential solutions.
- (1) How to characterize "orthogonal"?
- (2) How to express "the vector space of potential solutions"?

- **Finite Element Method:**
- (1) How to characterize "orthogonal"?

For an interval [a,b], define the vector space of square integrable functions:

$$L^{2}[a,b] = \left\{ \text{functions } y(t) \text{ on } [a,b] \mid \int_{a}^{b} y(t)^{2} dt \text{ exists and is finite} \right\}$$

The L^2 function space has an inner product:

$$\langle y_1, y_2 \rangle = \int_a^b y_1(t) y_2(t) dt$$

- **Finite Element Method:**
- (1) How to characterize "orthogonal"?

The L^2 function space has an inner product:

$$\langle y_1, y_2 \rangle = \int_a^b y_1(t) y_2(t) dt$$

The usual properties:

- 1. $\langle y_1, y_1 \rangle \ge 0$;
- 2. $\langle \alpha y_1 + \beta y_2, z \rangle = \alpha \langle y_1, z \rangle + \beta \langle y_2, z \rangle$ for scalars α, β ;
- 3. $\langle y_1, y_2 \rangle = \langle y_2, y_1 \rangle$.

- **Finite Element Method:**
- (1) How to characterize "orthogonal"? Two functions $y_1(t)$ and $y_2(t)$ are orthogonal in $L^2[a,b]$, if

$$\langle y_1, y_2 \rangle = 0$$

- Finite Element Method:
- (2) How to express "the infinite-dimensional vector space of potential solutions"?

Choose a set of basis functions $\phi_0(t), \ldots, \phi_{n+1}(t)$, (finite-dimensional):

$$y(t) = \sum_{i=0}^{n+1} c_i \phi_i(t)$$

where the basis functions may be polynomials, trigonometric functions, splines, or other simple functions.

- Finite Element Method:
- (2) How to express "the vector space of potential solutions"?

With a grid $t_0 < t_1 < \cdots < t_n < t_{n+1}$ for i = 1,...,n, define

$$\phi_{i}(t) = \begin{cases} \frac{t - t_{i-1}}{t_{i} - t_{i-1}} & \text{for } t_{i-1} < t \le t_{i} \\ \frac{t_{i+1} - t}{t_{i+1} - t_{i}} & \text{for } t_{i} < t < t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

- Finite Element Method:
- (2) How to express "the vector space of potential solutions"?

for i = 0:

$$\phi_0(t) = \begin{cases} \frac{t_1 - t}{t_1 - t_0} & \text{for } t_0 \le t < t_1 \\ 0 & \text{otherwise} \end{cases}$$

for i = n+1:

$$\phi_{n+1}(t) = \begin{cases} \frac{t - t_n}{t_{n+1} - t_n} & \text{for } t_n < t \le t_{n+1} \\ 0 & \text{otherwise} \end{cases}$$

Finite Element Method:

For a set of data points (t_i, c_i) , the piecewise-linear B-splines:

Finite Element Method: Implementation The finite element approach to the BVP

$$\begin{cases} y'' = f(t, y, y') \\ y(a) = y_a \\ y(b) = y_b. \end{cases}$$
 the residual $r = y'' - f$

To minimize r by forcing it to be orthogonal to the basis functions

$$\int_a^b (y'' - f)\phi_i \, dt = 0$$

for each $0 \le i \le n + 1$.

Finite Element Method: Implementation

$$\int_a^b (y'' - f)\phi_i dt = 0 \quad \text{for each } 0 \le i \le n + 1.$$

$$\int_a^b y''(t)\phi_i(t) dt = \int_a^b f(t, y, y')\phi_i(t) dt$$

$$\int_{a}^{b} y''(t)\phi_{i}(t) dt = \phi_{i}(t)y'(t)|_{a}^{b} - \int_{a}^{b} y'(t)\phi_{i}'(t) dt$$

$$= \phi_i(b)y'(b) - \phi_i(a)y'(a) - \int_a^b y'(t)\phi_i'(t) dt$$

Finite Element Method: Implementation

$$\int_a^b (y'' - f)\phi_i dt = 0 \quad \text{for each } 0 \le i \le n + 1.$$

$$\int_{a}^{b} f(t, y, y')\phi_{i}(t) dt = \phi_{i}(b)y'(b) - \phi_{i}(a)y'(a) - \int_{a}^{b} y'(t)\phi'_{i}(t) dt$$

$$\int_{a}^{b} f(t, y, y')\phi_{i}(t) dt + \int_{a}^{b} y'(t)\phi'_{i}(t) dt = 0, \text{ for } i = 1,...,n$$

Finite Element Method: Implementation

$$y(a) = \sum_{i=0}^{n+1} c_i \phi_i(a) = c_0 \phi_0(a) = c_0$$

$$y(b) = \sum_{i=0}^{n+1} c_i \phi_i(b) = c_{n+1} \phi_{n+1}(b) = c_{n+1}$$

$$\int_{a}^{b} f(t, y, y')\phi_{i}(t) dt + \int_{a}^{b} y'(t)\phi'_{i}(t) dt = 0, \text{ for } i = 1,...,n$$

$$\int_{a}^{b} \phi_{i}(t) f(t, \sum c_{j} \phi_{j}(t), \sum c_{j} \phi'_{j}(t)) dt + \int_{a}^{b} \phi'_{i}(t) \sum c_{j} \phi'_{j}(t) dt = 0$$

Finite Element Method: Implementation

Assume that the grid is evenly spaced with step size h.

$$\int_{a}^{b} \phi_{i}(t)\phi_{i+1}(t) dt = \int_{0}^{h} \frac{t}{h} \left(1 - \frac{t}{h}\right) dt = \int_{0}^{h} \left(\frac{t}{h} - \frac{t^{2}}{h^{2}}\right) dt$$

$$= \frac{t^{2}}{2h} - \frac{t^{3}}{3h^{2}} \Big|_{0}^{h} = \frac{h}{6}$$

$$\int_{a}^{b} (\phi_{i}(t))^{2} dt = 2 \int_{0}^{h} \left(\frac{t}{h}\right)^{2} dt = \frac{2}{3}h$$

$$\int_{a}^{b} \phi'_{i}(t)\phi'_{i+1}(t) dt = \int_{0}^{h} \frac{1}{h} \left(-\frac{1}{h}\right) dt = -\frac{1}{h}$$

$$\int_{a}^{b} (\phi'_{i}(t))^{2} dt = 2 \int_{0}^{h} \left(\frac{1}{h}\right)^{2} dt = \frac{2}{h}$$

- Finite Element Method: Example 6
- Apply the Finite Element Method to the boundary value problem:

$$\begin{cases} y'' = 4y \\ y(0) = 1 \\ y(1) = 3 \end{cases}$$

$$0 = \int_0^1 \left(4\phi_i(t) \sum_{j=0}^{n+1} c_j \phi_j(t) + \sum_{j=0}^{n+1} c_j \phi'_j(t) \phi'_i(t) \right) dt$$

$$= \sum_{i=0}^{n+1} c_j \left[4 \int_0^1 \phi_i(t) \phi_j(t) dt + \int_0^1 \phi_j'(t) \phi_i'(t) dt \right]$$

- Finite Element Method: Example 6
- The first and last of the c_i are found by:

$$c_0 = f(a) \quad c_{n+1} = f(b)$$

• for i = 1,...,n:

$$\left[\frac{2}{3}h - \frac{1}{h}\right]c_0 + \left[\frac{8}{3}h + \frac{2}{h}\right]c_1 + \left[\frac{2}{3}h - \frac{1}{h}\right]c_2 = 0$$

$$\left[\frac{2}{3}h - \frac{1}{h}\right]c_1 + \left[\frac{8}{3}h + \frac{2}{h}\right]c_2 + \left[\frac{2}{3}h - \frac{1}{h}\right]c_3 = 0$$

$$\left[\frac{2}{3}h - \frac{1}{h}\right]c_{n-1} + \left[\frac{8}{3}h + \frac{2}{h}\right]c_n + \left[\frac{2}{3}h - \frac{1}{h}\right]c_{n+1} = 0$$

- Finite Element Method: Example 6
- The matrix form of the equations is

$$\begin{bmatrix} \alpha & \beta & 0 & \cdots & 0 \\ \beta & \alpha & \ddots & \ddots & \vdots \\ 0 & \beta & \ddots & \beta & 0 \\ \vdots & \ddots & \ddots & \alpha & \beta \\ 0 & \cdots & 0 & \beta & \alpha \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix} = \begin{bmatrix} -y_a \beta \\ 0 \\ \vdots \\ 0 \\ -y_b \beta \end{bmatrix}$$

where
$$\alpha = \frac{8}{3}h + \frac{2}{h}$$
 and $\beta = \frac{2}{3}h - \frac{1}{h}$

- Finite Element Method: Example 6
- Result with n = 7, h = 1/8

MATLAB Built-in Functions

MATLAB Built-in Functions for ODEs

bvp4c	Solve boundary value problems for ordinary
Бур 4С	differential equations.
bvp5c	Solve boundary value problems for ordinary differential equations.

bvpinit Form initial guess for BVP solvers.

Summary

- **☐** Symbolic Computation
- **☐** Shooting Method
- **☐** Finite Difference Methods
 - > Linear boundary value problems
 - > Nonlinear boundary value problems
- **☐** Finite Element Method

Thank You!

Second-order Boundary Value Problem

Theorem 11.1. cf. Ref. [2], P. 672

Suppose the function f in the boundary-value problem

$$y'' = f(x, y, y')$$
, for $a \le x \le b$, with $y(a) = \alpha$ and $y(b) = \beta$,

is continuous on the set

$$D = \{ (x, y, y') \mid \text{ for } a \le x \le b, \text{ with } -\infty < y < \infty \text{ and } -\infty < y' < \infty \},$$

and that the partial derivatives f_y and $f_{y'}$ are also continuous on D. If

- (i) $f_y(x, y, y') > 0$, for all $(x, y, y') \in D$, and
- (ii) a constant M exists, with

$$|f_{y'}(x, y, y')| \le M$$
, for all $(x, y, y') \in D$,

then the boundary-value problem has a unique solution.