	그리스 하는 항상 없다. 경기 방송 프랑스 내내 그는 사람들이 되었다.					
Name:						
Roll No. :						
Invigilate	r's Signature:					
	CS/B.TECH (ECÉ-NEW)/SEM-8/EC-802/2010					
AD	VANCED COMMUNICATION ENGINEERING					
Time All	otted: 3 Hours Full Marks: 70					
	The figures in the margin indicate full marks.					
Candid	ates are required to give their answers in their own words as far as practicable.					
	CROUP - A					
	(Multiple Choice Type Questions)					
1. Cho	pose the correct alternatives for any ten of the following:					
	$10 \times 1 = 10$					
(t	i) A step index fibre in air has a numerical aperture of 0.16, core refractive index 1.45 and core diameter 60 µm. The normalized frequency for the fibre is					
	a) 60-28 b) 62-26					
	c) 64.2 d) 63.42.					
ii)	The number of modes that can propagate along the fibre is finite because of					
	a) interference in the wave fronts/					
	b) existence of cut-off wavelength					
	c) finite group delay					
	d) phase velocity is greater than velocity of light.					
0.05	[Turn over					

iii)	Which of the	following	multimode	fibre	core	sizes	is
				1977	7	A 18	
	NOT a standa	rd commer	cial fibre siz	e ?			

a) 50 µm

b) 5 µm

c) 76 µm

d) 100 µm.

iv) For long haul high speed link design the source-fibre combination of choice should be

a) LASER — single mode fibre

b) LED — single mode fibre

c) LED — multimode fibre

d) LASER — multimode fibre.

v) Which of the following detectors gives amplified output?

a) P-N photodiode

b) P-I-N photodiode

c) Avalanche photodiode

d) Photovoltaic detector.

vi) Rayleigh scattering coefficient T depends on the wavelength λ of the light as

a) $T \propto \log \lambda$

b) $T \propto \lambda^4$

c) $T \propto \lambda$

d) $T \propto \lambda^{-4}$.

vii)	The	scheme WDM is sim	ilar to	in the state of th					
	a)	FDM for RF transm	ission						
	b)	TDM							
	c)	OFDM							
	d)	OTDM.							
viii)		etooth is a type nsmission system tha	1. A		nformation				
	a)	30 feet	b)	30 years					
	c)	30 miles	d)	300 miles.					
ix)	A te	erm relating to sendin	ig data	to a satellite	is				
	a)	uplink	b)	downlink					
*	c)	modulate	d)	demodulate					
x)	and	A laser diode has a relative spectral width of 2×10^{-3} and is emitting a mean wavelength of 1 µm. What is its spectral half-width?							
	a)	1 μm	b)	0·2 µm					
	c)	20 nm	d)	2 nm.					
xd)	sui	table for achieving the tingle mode fibre?							
	a)	Matched cladding		/ · ·					
	b)	Triangular profile							
	c)	W-profile							
	d)	Depressed claddin	g.						
5					[Turn ove				

- xii) Which of the following fibres is suitable for wavelength division multiplexing of signal?
 - a) Dispersion optimized
 - b) Dispersion shifted
 - c) Dispersion flattened
 - d) Any fibre.
- xiii) For hexagon geometry the number of cells per cluster is given by

a)
$$i^2 + i \cdot j + j^2$$

b)
$$i^2 + i^2 \cdot j^2 + j^2$$

c)
$$i^2 + i \cdot j + j$$

d)
$$j^2 + i \cdot j + i$$

where i and j are non-negative integers,

- xiv) Frequency reuse factor of a cellular system is given by
 - a) 1/2N

b) $1/N^2$

c) 1/N

d) 2N,

where N is the cluster size.

- xv) Increase in cluster size
 - a) increases the capacity
 - b) decreases the capacity
 - c) capacity remains same
 - d) none of these.

8105

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. a) What do you mean by CDMA?
 - b) What is the difference between GSM and CDMA?

2 + 3

- What do you mean by handoff in the cellular system?
 Explain the handoff process in mobile cellular system. 2 + 3
- 4. Write down the three laws of Kepler governing the motion of the satellites. What is the difference between the geostationary and geosynchronous orbits?

 3 + 2
- 5. Write short notes on PCM or AMPS.
- 6. Explain the roles played by VLR, HLR and AUC during call setup.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Explain in brief the key roles played by BSC and MSC in call setup procedure in mobile communication.
 - b) Differentiate between control channels and data channels. How are channels assigned in a mobile communication system? 8 + 2 + 5

[Turn over

- 8. a) A city having area of 1300 sq.km 7 cell reuse pattern is used to cover the region. Each cell has a radius of 4 miles and 40 MHz of spectrum with a full duplex channel BW 60 kHz is allotted to the city for cellular communication Assume GOS of 2% for an Erlang B system as specified. Offered traffic per user is 0.03 Erlang. Given traffic intensity per cell A = 84 Erlangs at a GOS of 2%. Compute
 - i) the number of cells in the service area
 - ti) the number of channels per cell
 - iii) theoretically maximum number of user that can be served at one time by the system.
 - b) Define Doppler spread, coherence bandwidth and fading margin. 3+3+2+2+2
- 9. a) Draw and explain GPRS Network architecture. What are GPRS radio interfaces?
 - b) Draw the GSM frame structure.
 - c) How is the location update taken place in GSM system?
 - d) What is 'near and far' problem in CDMA based system? (4+2)+3+4+2

8105

- 10. a) The dispersion for a standard SMF is 17 ps/nm-km. To compensate the dispersion of 80 km long such fibre what would be the dispersion of DCF of length 1.5 metre? What is the meaning of dispersion shifted fibre?
 - b) Discuss the attenuation characteristics of SMF. Why is 1550 nm wavelength suitable for optical communication system?
 - c) What is optical power budgeting? Why is system margin provided? (2+2)+(5+2)+4
- 11. Write short notes on any three of the following: 3×5
 - a) Forward and Reverse link in CDMA based IS 95 system
 - b) Transponder and polarization hopping
 - c) Software Defined Radio
 - d) GSM call set-up procedure
 - e) Noise sources in optical fibre communication.

7