PL. A is tinite
B is countably infinite
To show AUB is countably infinite
Seln-> Let A has 'n' elements
$A = \{ \chi_1, \chi_2, \chi_3, \dots, \chi_n \}$
B is countably infinite so it can be written as sequence of distinct terms
Say $3 = \{b_1, b_2,\}$
Then AUB = { x1, x2, x, xn, 5, 152
3
Therefore AUB is countably infinite
Oz. Given each An gnEIN is countably
Q2. Given each An 9 n EIN is countably infinite. To show $\overset{\circ}{U}$ An countably infinite
Solution -> Since each An is countably infinit
we may write its elements as a sequence
we may write its elements as a sequence of distinct term
A, 2/1 2/2 2/3)
Az 2/2/22 23
A3 (23) N32 N33

we will move along the tollowing way and we will not take supeating elements.

$$\bigcirc 3. \qquad \boxed{1} \qquad \boxed{2} \qquad \boxed{10}$$

'at rondom'

$$\Omega = \begin{cases} (i,j): & i,j \in \{1,2,3,... 10\} \\ & i \neq j \end{cases}$$

$$P(\omega) = \frac{1}{10} \times \frac{1}{9} = \frac{1}{40}$$

$$P(4) = 0.7, P(8) = 0.6, P(1) = 0.5$$

$$P(A \cup B) = P(A) + P(B) (A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= P(A \cup B) + P(C)$$

$$-P(A \cup B) \cap P(A \cap B) + P(C)$$

$$-P(A \cap C) \cup (B \cap C)$$

$$P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$

$$-P(B \cap C) + P(A \cap C)$$

$$= P(C) - P(A \cap C)$$

$$= P(C) - P(A \cap C)$$

$$= P(C) - P(A \cap C)$$

$$Q_5 \cdot Claim \rightarrow The statement is folso
$$let \Omega = [C_1, 1]$$

$$P = bright of subsets of -2.$$$$

$$A = [0, \frac{1}{2}] B = [\frac{1}{2}, \frac{1}{2}]$$

$$P(A) = \frac{1}{2} = P(B)$$

$$P(AOB) = P(\{\frac{1}{2}\}) = 0$$

$$P(A) = 0.6$$
, $P(B) = 0.8$, $P(C) = 0.7$
 $P(A \cap B) = 0.5$, $P(A \cap C) = 0.4$, $P(B \cap C) = 0.5$
 $P(A \cap B \cap C) = 0.1$.

it cloesn't settle the Questian P(AUBUC) = 1 P((AOB)UC)=P(AOB)+PC) - P(An Boc) = 6.5 + 0.7 - 6.1 $P(A_1 \cap A_2 \dots \cap A_n) \geq \sum_{i=1}^{n} P(A_i) - n+1$ $Selution \rightarrow CA, (A_2) > P(A_1) + P(A_2)$ -2+1Proof P(A, UA,)= P(A,) + P(A,)-P(A, OA,) P (A, OA,) = P(A,) + P(A,)-P(A, UA,) > P(A,)+P(A,)-1 (: PCH, VA,) < 1) Now suppose inequality is true for n=m Now for event A, , Az --- Am, Ame, P(A, OA, O. -- OAm) () Am+1) > P(A, O--- OAm)

$$F(A_{mn})-1$$

$$F(A_{i}) - m+1 + P(A_{mn})-1$$

$$F(A_{i}) - (m+1) + 1$$

• After
$$\rightarrow$$
 Take $A = \{2, 4, 6, ---\}$
 $B = \{1, 3, 5, ...\}$
 $P(A) = 1 = P(B)$
 $A \cap B = \emptyset$
 $P(A \cup B) = P(D) = 1$
 $f(A) + P(B)$
 $P(A) + P(B)$

Then show that

 $P(U A_n) \leq \sum_{n=1}^{\infty} P(A_n)$

Solution \rightarrow

If $A_1, A_2, ..., A_n$ are events

then by fixite subadditivity.

 $P(U A_k) \leq \sum_{k=1}^{\infty} P(A_k)$
 $P(U A_k) \leq \sum_{k=1}^{\infty} P(A_k)$
 $P(U A_k) \leq \sum_{k=1}^{\infty} P(A_k)$

Define
$$B_1 = A_1$$
 $B_2 = A_1 \cup A_2$
 $B_3 = A_1 \cup A_3 \cup A_3$
 $B_1 \subset B_2 \subset B_3 \ldots$
 $B_n = \bigcup_{n=1}^n A_{1k}$
 $\bigcup_{n=1}^n B_{1k} = \bigcup_{n=1}^n A_{2k}$
 $P(\bigcup_{k=1}^n B_k) = P(\bigcup_{k=1}^n A_k)$
 $F(\bigcup_{k=1}^n B_k) = \lim_{n \to \infty} P(\bigcup_{n=1}^n B_n)$
 $F(\bigcup_{n=1}^n B_n) \cap B_n \subset P(\bigcup_{n=1}^n B_n)$
 $F(\bigcup_{n=1}^n B_n) \cap B_n \subset P(\bigcup_{n=1}^n A_n)$
 $F(\bigcup_{n=1}^n B_n) \cap B_n \subset P(\bigcup_{n=1}^n A_n)$
 $F(\bigcup_{n=1}^n A_n) \cap B_n \subset P(\bigcup_{n=1}^n A_n)$