Sources laser: vue d'ensemble

A. Oscillation laser

Amplificateur rebouclé
Condition sur le gain: seuil
Condition sur la phase:
modes longitudinaux
Modes actifs possibles

B. Gain laser

Section efficace laser Equations cinétiques

C. Milieux laser: exemples

Système « à 3 niveaux »
Système « à 4 niveaux »
Lasers à semi-conducteurs

D. Modes longitudinaux

Modes possibles
Fonctionnement monomode
Largeur de raie technique

E. Modes transverses

Pertes par diffraction Modes transverses Exemple: Hermite -Gauss

F. Laser: lumière concentrée

Concentration dans l'espace Concentration dans le spectre Laser: tous les photons dans 1 seul mode

Source laser (ex. rubis)

Émetteur de

lumière

comportant un

amplificateur

laser et des

miroirs

Sources laser: vue d'ensemble

- A. Oscillation laser

 Amplificateur rebouclé

 Condition sur le gain: seuil

 Condition sur la phase:

 modes longitudinaux

 Modes actifs possibles
- B. Gain laserSection efficace laserEquations cinétiques
- C. Milieux laser: exemples
 Système « à 3 niveaux »
 Système « à 4 niveaux »
 Lasers à semi-conducteurs

- D. Modes longitudinauxModes possiblesFonctionnement monomodeLargeur de raie technique
- E. Modes transversesPertes par diffractionModes transversesExemple: Hermite -Gauss
- F. Laser: lumière concentrée
 Concentration dans l'espace
 Concentration dans le spectre
 Laser: tous les photons dans 1
 seul mode

Oscillateur laser: amplificateur rebouclé

Conditions d'oscillation:

- le gain doit être suffisant pour compenser les pertes
- l'onde doit être rebouclée en phase

Condition sur le gain : seuil

Condition sur la phase : modes longitudinaux

Longueur optique 1 tour cavité

$$L_{\rm cav} = \oint n(r) \, dr$$

Déphasage pour 1 tour

$$\phi = \frac{\omega}{c} L_{\text{cav}}$$

Rebouclage en phase

$$\phi = \frac{\omega}{c} L_{\text{cav}} = p \, 2\pi$$

$$\omega_p = p 2\pi \frac{c}{L_{\text{cav}}}$$
Mode
longitudinal entier

Condition sur la phase : modes longitudinaux

-- modes longitudinaux cavité $\frac{2\pi c}{L_{\text{cav}}}$ ω_{M}

Mode = solution stationnaire des équations de propagation, compte tenu des conditions aux limites

Condition globale: modes possibles

Condition sur le gain

$$\omega' \leq \omega \leq \omega''$$

Rebouclage en phase

$$\omega_p = p \, 2\pi \frac{c}{L_{\text{cav}}}$$
 p entier

Exemple de valeurs (laser Hélium-Néon)

$$L_{cav} = 0.6 \,\text{m} \Rightarrow \frac{c}{L_{cav}} = 5 \times 10^8 \,\text{Hz}$$
$$\left(\omega' - \omega''\right) / 2\pi \approx 2.5 \,\text{GHz}$$
$$\Rightarrow 4 \,\text{à} \, 5 \,\text{modes actifs}$$

$$\frac{\omega}{2\pi} \approx 5 \times 10^{14} \,\mathrm{Hz} \Rightarrow p \approx 10^6$$

Laser à cavité linéaire

Principe identique au laser en anneau

On peut appliquer les résultats du laser en anneau en faisant la correspondance

$$L_{\text{cav}} = 2L_0$$
 longueur 1 tour de cavité (rebouclage)

$$G = (G_{\text{ampli}})^2$$
 gain sur 1 tour de cavité (rebouclage)

Sources laser: vue d'ensemble

- A. Oscillation laser
 Amplificateur rebouclé
 Condition sur le gain: seuil
 Condition sur la phase: modes longitudinaux
 Modes actifs possibles
- B. Gain laser
 Section efficace laser
 Equations cinétiques
- C. Milieux laser: exemples
 Système « à 3 niveaux »
 Système « à 4 niveaux »
 Lasers à semi-conducteurs

- D. Modes longitudinauxModes possiblesFonctionnement monomodeLargeur de raie technique
- E. Modes transversesPertes par diffractionModes transversesExemple: Hermite -Gauss
- F. Laser: lumière concentrée
 Concentration dans l'espace
 Concentration dans le spectre
 Laser: tous les photons dans 1
 seul mode

15

Section efficace laser

Formule "agréable" (dimensions)

$$g = \frac{1}{I} \frac{dI}{dz} = \sigma(\omega) (n_{\rm b} - n_{\rm a})$$

$$\delta = \omega - \omega_{\text{M}}$$

section efficace laser
$$\delta = \omega - \omega_{_{\rm M}} \quad \sigma(\omega) = \frac{\sigma(\omega_{_{\rm M}})}{1 + \delta^2 / \Gamma_{_{\rm D}}^{^2}}$$

Section efficace utilisée pour écrire des équations cinétiques (équations de bilan, rate equations) pour les photons et les atomes

Pour un système à deux niveaux $\sigma(\omega_{\rm M}) = \frac{\omega}{\Gamma_{\rm D}} \frac{d^2}{\varepsilon_0 c \hbar}$

En pratique $o(\omega_{\rm M})$ est une donnée mesurée, que l'on trouve dans les tables pour les raies laser connues (Ex.: 2 x 10⁻²⁰ cm² pour Cr³⁺ dans le rubis, ou Nd³⁺ dans le verre)

Équations cinétiques pour les photons

Interprétation par équation cinétiques : surface σ soumise à un flux de photons

nombre de photons par unités de temps et de surface

Nombre de « collisions » $\sigma \frac{I}{\hbar \omega}$

Absorption dans la tranche $S \times dz$:

$$d\left(S\frac{I}{\hbar\omega}\right) = -\sigma \frac{I}{\hbar\omega} n_{a} S dz$$

$$\Rightarrow \frac{1}{I} \left[\frac{dI}{dz} \right]_{\text{abs}} = -n_{\text{a}} \sigma$$

Généralisation à l'émission stimulée en admettant que les photons stimulés s'ajoutent au faisceau

$$\frac{1}{I} \left[\frac{dI}{dz} \right]_{\text{sti}} = n_{\text{b}} \sigma$$

$$\frac{1}{I}\frac{dI}{dz} = (n_{\rm b} - n_{\rm a})\sigma$$

Équations cinétiques pour les populations atomiques

On modélise les processus d'absorption et d'émission stimulée par des taux de transfert pour les populations atomiques égaux aux taux pour les photons, et on prend en compte la relaxation et l'alimentation

On peut alors écrire des équations cinétiques pour les pop. atomiques:

$$\frac{dn_{a}}{dt} = \lambda_{a} - n_{a}\sigma \frac{I}{\hbar\omega} + n_{b}\sigma \frac{I}{\hbar\omega} - \Gamma_{D}n_{a}$$

$$\frac{dn_{b}}{dt} = \lambda_{b} + n_{a}\sigma \frac{I}{\hbar\omega} - n_{b}\sigma \frac{I}{\hbar\omega} - \Gamma_{D}n_{b}$$

$$\frac{d(n_{a} + n_{b})}{dt} = \lambda_{b} + n_{a}\sigma \frac{I}{\hbar\omega} - n_{b}\sigma \frac{I}{\hbar\omega} - \Gamma_{D}n_{b}$$

$$\frac{Régime stationnaire}{dt} \frac{d(n_{a} + n_{b})}{dt} = 0$$

$$\frac{d(n_{b} - n_{a})}{dt} = \lambda_{b} - \lambda_{a} - \left(\Gamma_{D} + 2\sigma \frac{I}{\hbar\omega}\right)(n_{b} - n_{a})$$

Inversion de population stationnaire

$$\frac{d(n_{b} - n_{a})}{dt} = \lambda_{b} - \lambda_{a} - \left(\Gamma_{D} + 2\sigma \frac{I}{\hbar \omega}\right)(n_{b} - n_{a})$$

Régime stationnaire:
$$[n_b - n_a]_{stat} = \frac{\lambda_b - \lambda_a}{\Gamma_D + 2\sigma \frac{I}{\hbar \omega}}$$

On retrouve un résultat de la forme

$$\left[n_{b} - n_{a}\right]_{\text{stat}} = \frac{\left[n_{b} - n_{a}\right]^{(0)}}{1+s}$$

$$= \frac{\left[n_{\rm b} - n_{\rm a}\right]^{(0)}}{1+s} \quad \text{avec} \quad \left[n_{\rm b} - n_{\rm a}\right]^{(0)} = \frac{\lambda_{\rm b} - \lambda_{\rm a}}{\Gamma_{\rm D}} \quad \text{et } s = \frac{2\sigma I}{\hbar\omega\,\Gamma_{\rm D}}$$

saturation

et on pose $I_{\text{sat}} = \frac{\hbar \omega \Gamma_{\text{D}}}{2\sigma_{\text{o}}}$ Si système à deux niveaux: $\sigma = \frac{\sigma_0}{1 + \delta^2 / \Gamma_D^2}$

$$s = \frac{I/I_{\text{sat}}}{1 + \delta^2/\Gamma_{\text{p}}^2}$$

Peut-être retrouvé par traitement quantique de l'interaction matière-rayonnement

Description de l'amplification laser par équations cinétiques

On a donc supposé que l'on peut rendre compte quantitativement de l'interaction entre le milieu laser et le rayonnement en introduisant des équations cinétiques pour les populations atomiques et les photons.

Ce résultat n'avait rien d'évident a priori : l'atome est un objet quantique, décrit par un vecteur d'état, ce qui est plus complet que les simples probabilités d'être dans tel ou tel niveau*: dipôle oscillant lié à la cohérence entre |a> et |b>. Démonstration générale délicate : prise en compte des relaxations.

Dans la majorité des cas, l'amplification laser peut effectivement se décrire par des équations cinétiques conduisant à des formules analogues à celles vues pour notre modèle simple: très commode.

^{*} de même qu'une onde électromagnétique est plus qu'un simple flux de photons!

Sources laser: vue d'ensemble

- A. Oscillation laser
 Amplificateur rebouclé
 Condition sur le gain: seuil
 Condition sur la phase:
 modes longitudinaux
 Modes actifs possibles
- B. Gain laserSection efficace laserEquations cinétiques
- C. Milieux laser: exemples
 Système « à 3 niveaux »
 Système « à 4 niveaux »
 Lasers à semi-conducteurs

- D. Modes longitudinauxModes possiblesFonctionnement monomodeLargeur de raie technique
- E. Modes transversesPertes par diffractionModes transversesExemple: Hermite -Gauss
- F. Laser: lumière concentrée
 Concentration dans l'espace
 Concentration dans le spectre
 Laser: tous les photons dans 1
 seul mode

25

Milieu amplificateur « à 3 niveaux »

Laser à rubis (0.694 µm)

Fibre optique dopée Erbium (1.5 μm)

Laser à 3 niveaux: inversion de population Modélisation par équations cinétiques

Equations cinétiques (sans émission laser)

$$\frac{dN_{e}}{dt} = W_{p}(N_{a} - N_{e}) - \Gamma_{eb}N_{e} = 0$$

$$\frac{dN_{b}}{dt} = \Gamma_{eb}N_{e} - \Gamma_{ba}N_{b} = 0$$
régime stationnaire
$$N = N_{a} + N_{b} + N_{e}$$

$$\Gamma_{\rm eb} \gg W_{\rm p} \implies N_{\rm e} \simeq \frac{W_{\rm p}}{\Gamma_{\rm eb}} N_{\rm a}$$

$$\Rightarrow N_{\rm b} = \frac{W_{\rm p}}{\Gamma_{\rm ba}} N_{\rm a}$$

Inversion de population si $W_{\rm p} > \Gamma_{\rm ba}$

Système à 3 niveaux: le milieu doit être rendu transparent!

De 3 à 4 niveaux

Système à 3 niveaux

Inversion de population difficile car il faut non seulement peupler b mais aussi vider a

Système à 4 niveaux

Inversion de population facile car a priori a est vide. Il se vide très vite pendant le fonctionnement : seuil plus bas.

Equations cinétiques (de pompage)

Milieux laser « à 4 niveaux »

Lasers à décharges électriques

- Hélium-Néon,
- Argon ionisé, Krypton ionisé...

Assez grande variété de longueurs d'onde, mais valeurs très précises, non accordables

etc... Très nombreux systèmes

Lasers à 4 niveaux accordables (colorant, saphir dopé au titane)

La plage d'émission est égale à la largeur de la bande inférieure

- colorant : [565 nm , 595 nm] (25 x 10¹² Hz)
- Ti-Saphir : [700 nm , 1100 nm]

Laser à semi-conducteurs (diode-laser)

Dans une jonction p-n entre 2 semi-conducteurs

- déficit des porteurs majoritaires (el. trous)
- un photon d'énergie supérieure au gap peut être absorbé, avec création d'une paire e-T: photodétection
- une paire électron-trou injectée peut s'annihiler: photoémission

Densité de courant injecté élevée: émission stimulée domine (4 niveaux) Courant confiné dans des hétérostructures

Cavité laser linéaire:

Faces avant et arrière clivées : parallèles

Nombreuses longueurs d'onde accessibles

- de 1.3 ou 1.5 μm (télécoms) jusqu'à 0.32 μm
- investissement industriel très élevé mais production de masse

Sources laser: vue d'ensemble

- A. Oscillation laser
 Amplificateur rebouclé
 Condition sur le gain: seuil
 Condition sur la phase:
 modes longitudinaux
 Modes actifs possibles
- B. Gain laserSection efficace laserEquations cinétiques
- C. Milieux laser: exemples
 Système « à 3 niveaux »
 Système « à 4 niveaux »
 Lasers à semi-conducteurs

- D. Modes longitudinauxModes possiblesFonctionnement monomodeLargeur de raie technique
- E. Modes transversesPertes par diffractionModes transversesExemple: Hermite -Gauss
- F. Laser: lumière concentrée
 Concentration dans l'espace
 Concentration dans le spectre
 Laser: tous les photons dans 1
 seul mode

Modes longitudinaux d'une source laser

	Largeur gain	$L_{ m cav}$	$c/L_{\rm cav}$	Nombre modes possibles
He-Ne	$10^9\mathrm{Hz}$	0.6 m	0.5 x 10 ⁹ Hz	3
Ti: Saphir	$10^{14}\mathrm{Hz}$	1.5 m	0.2 x 10 ⁹ Hz	5 x 10 ⁴
diode laser	$10^{12}\mathrm{Hz}$	3 mm	$10^{11}\mathrm{Hz}$	10

Raies fines, distantes de $\frac{\Delta \omega}{2\pi} = \frac{c}{L_{\text{cav}}}$

Nombre
$$N = \frac{\text{largeur gain}}{\Delta \omega}$$

- Souvent, tous les modes n'oscillent pas simultanément: compétition entre modes.
- On peut forcer le fonctionnement monomode

Fonctionnement monomode longitudinal

Sélectivité extrême requise: filtres en cascade; fréquences des filtres à aligner (asservissements). Technologie complexe

Largeur de raie technique (gigue ou jitter)

Mode longitudinal unique
$$\omega_p = p 2\pi \frac{c}{L_{\text{cav}}}$$
; $p \in \mathbb{N}$ $p = \frac{L_{\text{cav}}}{\lambda_p} \approx 10^6$

Fluctuations de L_{cav} : $\rightarrow \omega_p$ fluctue : jitter

- Vibrations, température: longueur
- Pression (indice de réfraction)

$$\delta L_{\rm cav} = \lambda_p \Rightarrow \delta \omega_p = 2\pi c / L_{\rm cav}$$

Il suffit que L_{cav} varie de λ (moins de 1 micron) pour qu'un mode soit remplacé par son voisin

• Difficile de faire mieux par des méthodes passives (température à 10⁻⁴ °C, pression à 10⁻⁵ atm)

Longueur de cavité asservie

- Miroir sur céramique piezo-électrique
- Signal d'erreur sur fréquence

Sources laser: vue d'ensemble

- A. Oscillation laser
 Amplificateur rebouclé
 Condition sur le gain: seuil
 Condition sur la phase:
 modes longitudinaux
 Modes actifs possibles
- B. Gain laser
 Section efficace laser
 Equations cinétiques
- C. Milieux laser: exemples
 Système « à 3 niveaux »
 Système « à 4 niveaux »
 Lasers à semi-conducteurs

- D. Modes longitudinauxModes possiblesFonctionnement monomodeLargeur de raie technique
- E. Modes transverses
 Pertes par diffraction
 Modes transverses
 Exemple: Hermite -Gauss
- F. Laser: lumière concentrée
 Concentration dans l'espace
 Concentration dans le spectre
 Laser: tous les photons dans 1
 seul mode

60 27

Pertes par diffraction dans une cavité laser

Pertes négligeables si

$$\frac{\lambda}{a}L_{\rm cav} \ll a$$

Généralement pas le cas

(milieux amplificateurs confinés)
$$a = 1 \,\text{mm} \implies \frac{a^2}{\lambda} = 1 \,\text{m}$$

Une solution : cavité stable à miroirs concaves

Le miroir concave compense la divergence due à la diffraction

NB. Laser à semi-conducteur: propagation guidée

Modes transverses d'une cavité stable

Modes: solutions stationnaires de l'équation de propagation à 3D, avec conditions aux limites (miroirs)

Suite $u_{m,n,p}(x,y,z)e^{-i\omega_p t}$ de solutions, dépendant de 3 indices entiers (3D)

$$p$$
: indice longitudinal $\omega_p = p \ 2\pi \frac{c}{L_{\text{cav}}} + \varepsilon_{m,n,p}$

m, n : indices transverses : nombre de nœuds (zéros) dans le profil transverse

Exemple: modes de Hermite-Gauss

$$u_{m,n,p}(x,y,z) = A \exp\left\{-\frac{x^2 + y^2}{w(z)^2}\right\} H_m\left(\frac{x\sqrt{2}}{w(z)}\right) H_n\left(\frac{y\sqrt{2}}{w(z)}\right) \cos\left(\frac{\omega_p}{c}z + \phi(z)\right)$$

$$H_0(u) = 1$$

$$H_1(u) = 2u$$

$$H_2(u) = 4u^2 - 2$$

Polynômes de Hermite

Mode transverse: solution auto- cohérente après propagation avec diffraction

Intégrale de Fresnel (diffraction)

$$\mathcal{E}'(x,y) = \iint \mathcal{E}(x_0, y_0) \mathcal{P}(x - x_0, y - y_0) dx_0 dy_0$$
propagateur 1 tour

Chaque point du profil est couplé à tous les autres (diffraction au bout d'un tour)

Mise en phase du champ sur une section transverse : cohérence transverse.

Sources laser: vue d'ensemble

- A. Oscillation laser
 Amplificateur rebouclé
 Condition sur le gain: seuil
 Condition sur la phase:
 modes longitudinaux
 Modes actifs possibles
- B. Gain laserSection efficace laserEquations cinétiques
- C. Milieux laser: exemples
 Système « à 3 niveaux »
 Système « à 4 niveaux »
 Lasers à semi-conducteurs

- D. Modes longitudinauxModes possiblesFonctionnement monomodeLargeur de raie technique
- E. Modes transversesPertes par diffractionModes transversesExemple: Hermite -Gauss
- F. Laser: lumière concentrée
 Concentration dans l'espace
 Concentration dans le spectre
 Laser: tous les photons dans 1
 seul mode

75 32

Pourquoi la lumière laser?

Sources laser

He-Ne	5 mW	100 €	20 k€ / W
Ar ⁺	2 W	40 k€	20 k€ / W
CO_2	1 kW	150 k€	0.15 k€ / W
Diode laser	1 mW	1 €	1 k€ / W
Diode laser	500 mW	500 €	1 k€ / W

?

Sources traditionnelles

incandescence	100 W	1 €	0.01 € / W
décharge	40 W (lumière)	4 €	0.1 € / W

Concentration dans l'espace

Source traditionnelle (incohérente):

$$S' \cdot \sin^2 u' \ge S \cdot \sin^2 u \implies S'_{\min} \approx S \cdot \sin^2 u$$

Conservation de l'énergie:

L'éclairement E (W / m²) dans

l'image ne peut dépasser π x L

$$E \le 500 \text{ W/cm}^2 \text{ (fil tungstène)}$$

$$E \le 5 \text{ kW} / \text{cm}^2 \text{ (arc xénon)}$$

Limite fondamentale (2nd principe thermodynamique)

Faisceau laser (cohérent) : addition des amplitudes

$$S'_{\text{mini}} \approx \lambda^2 \qquad \Rightarrow \quad E_{\text{max}} \approx \frac{\phi}{\lambda^2}$$

$$\phi = 10 \text{ mW}$$

 $\lambda = 0.6 \mu \text{m}$ $\Rightarrow E \approx 3 \times 10^6 \text{ W/cm}^2$

 $\frac{1}{2w}$ $\frac{1}{2w_0}$ $\frac{1}{f}$

Concentration à la limite de diffraction

Concentration en direction

Position et angle sont des variables complémentaires (conjuguées)

plus exactement
$$x$$
 et $k_x = \frac{2\pi}{\lambda} \sin \theta_x$

Concentration en direction possible si dimension grande

La divergence d'un faisceau laser de diamètre D est

$$\theta \simeq \frac{\lambda}{D} = 10^{-6}$$
 pour $D = 0.6$ m Tache de 300 m sur la lune

Concentration dans le spectre (ou le temps)

Lampe à incandescence (3500 K)

Puissance émise répartie sur tout le visible

$$\frac{\Delta\omega}{2\pi} \simeq 10^{14} \text{ Hz}$$

Eclairement maximal par unité de bande spectrale

$$\frac{dE}{dv} \approx 5 \times 10^{-12} \text{ W cm}^{-2} \text{ Hz}^{-1}$$

Laser de 10 mW Largeur de raie :

$$\frac{\Delta\omega}{2\pi} \simeq 10^6 \text{ Hz}$$

Eclairement maximal par unité de bande spectrale

$$\frac{dE}{dv} \approx 3 \text{ W cm}^{-2} \text{ Hz}^{-1}$$

12 ordres de grandeur!

Variable conjuguée : temps. Lasers ultra courts (< 10⁻¹⁵ s). Energie concentrée dans le temps (puissance crête gigantesque)

Concentration spectrale

Evolution en précision relative des mesures spectroscopiques de l'atome d'hydrogène [depuis T. W. Hänsch, Rev. Mod. Phys. **78**, 1297 (2006)].

Le laser: un « concentré de lumière »

- Concentration dans l'espace (position / direction)
- Concentration dans le spectre (fréquence / temps)

Laser: énergie concentré dans 1 seul mode du rayonnement $\Delta x \cdot \Delta k_r = 1$ ≠ Source incohérente: énergie « diluée » dans beaucoup de modes

Nombre de photons par mode

Laser:
$$\mathcal{N} \approx 10^{10}$$
 à 10^{20} photons / mode

Source thermique (corps noir)

0.1 photon / mode
à
$$\lambda = 0.6 \mu \text{m}$$
 à 3000 K

$$\mathcal{N} = \frac{1}{\exp\left\{\frac{\hbar\omega}{k_{\rm B}T}\right\} - 1} \simeq \exp\left\{-\frac{\hbar\omega}{k_{\rm B}T}\right\}$$

Le laser: tous les photons dans le même mode du champ électromagnétique

Tous les photons dans le même mode du champ:

- même direction
- même fréquence
- même phase
- même polarisation

indiscernables : cohérence

Les photons sont des bosons : il est possible d'en accumuler autant que l'on veut dans un même état quantique.

Un faisceau laser est une sorte de Condensat de Bose-Einstein de photons (à température nulle)