Prova tipo A. Respostas

- 1) Considere os vetores $\bar{v} = (1, 0, 1)$ e $\bar{w} = (1, 1, -1)$.
- a) Determine um vetor \bar{a} de módulo igual a $\sqrt{6}$ tal que $\bar{a} \times \bar{v} = \bar{w}$.
- b) Determine o valor de c para que se verifique a igualdade

$$(1, c, 2) \cdot ((1, 0, 1) \times (1, 1, -1)) = 5.$$

 \mathbf{c}) Determine o valor de d para que se verifique a igualdade

$$(1,d,2)\cdot ((1,0,1)\times (1,1,-1))=(1,d,2)\cdot ((1,1,-1)\times (1,0,1)).$$

Respostas:

a)
$$\bar{a} = (-2, 1, -1)$$
 ou $\bar{a} = (1, 1, 2)$

$$\mathbf{b)} \qquad c = 2$$

c)
$$d = -1/2$$

2) Considere o ponto P=(1,0,1) e a reta r e o plano π de equações

$$r: (1+t, 2-t, t) \quad t \in \mathbb{R}, \qquad \pi: x+y-z = 1.$$

- a) Determine o ponto Q da reta r mais próximo de P.
- b) Determine a distância d entre o ponto P e a reta r.
- c) Determine um ponto A de r tal que a distância entre P e A seja $\sqrt{14}$.
- d) Determine o ponto B da reta r tal que B, P e o ponto (1,2,0) da reta r sejam os vértices de um triângulo de área $\sqrt{6}$.
- e) Determine o ponto C do plano π mais próximo de P.
- f) Determine a distância d' entre o ponto P e o plano π .

Respostas:

- a) Q = (2, 1, 1)
- $\mathbf{b)} \qquad d = \sqrt{2}$
- c) A = (4, -1, 3) ou A = (0, 3, -1)
- d) B = (3, 0, 2) ou B = (-1, 4, -2)
- e) C = (4/3, 1/3, 2/3)
- $\mathbf{f)} \qquad d' = \sqrt{3}/3$

- 3) Considere o ponto P=(2,1,1) e as retas r_1 e r_2 de equações paramétricas $r_1:(1+t,2t,1-t),\quad t\in\mathbb{R},\qquad r_2:(5+2t,3-t,1+2t),\quad t\in\mathbb{R}.$
- a) Escreva a reta r_1 como interseção de dois planos (escritos de forma cartesiana) π e ρ , onde π é paralelo ao eixo \mathbb{X} e ρ é paralelo ao plano

$$\tau$$
: $x + y + 3z = 0$.

- b) Determine a equação cartesiana do plano β que contém o ponto P e a reta r_1 .
- c) As retas r_1 e r_2 são concorrentes. Determine o ponto C de interseção destas duas retas.
- d) Determine as equações paramétricas da reta r_3 perpendicular comum a r_1 e r_2 (isto é, r_3 intercepta as retas r_1 e r_2 e é perpendicular a ambas retas).

Respostas:

a)
$$\pi: y + 2z = 2, \quad \rho: x + y + 3z = 4$$

$$\beta \colon x - y - z = 0$$

c)
$$C = (3, 4, -1)$$

d)
$$r_3 = (3+3t, 4-4t, -1-5t), t \in \mathbb{R}$$