The brain is dynamic

Neural plasticity

Changing the synapse strength

Loosen connection:

Long-term depression (LTD)

Changing the synapse strength

Perceptrons

Frank Rosenblatt

Multilayer perceptrons

NEAT

Evolving neural networks through augmenting topologies

KO Stanley, R Milkkulainen - Evolutionary computation, 2002 - MIT Press

An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies,(2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure ...

☆ 99 Zitiert von: 3254 Ähnliche Artikel Alle 23 Versionen

Genome (Genotype)									
Node Genes	nead I nead I nead I nead I nead I								
Connect. In 1 Out 4 Weight 0.7 Enabled Innov 1		Out Wei	Out 4 Out 4 Weight-0.5 Weight 0.5 DISABLED Enabled		In 2 In 5 Out 5 Out 4 Weight 0.2 Weight 0.4 Enabled Enabled Innov 4 Innov 5		Out 5 Company of the Second Se	In 4 Out 5 Weight 0.6 Enabled Innov 11	

Crossovers: [A,B,A] [C,B,C] (both are missing information)

Applied NEAT

"Marl/O is a program made of neural networks and genetic algorithms that kicks butt at Super Mario World."

© Seth Bling, YouTube

https://www.youtube.com/watch?v=qv6UVOQ0F44

How to change weights?

Hebb's rule:

"Neurons that fire together, wire together."

$$w_{ij} = x_i x_j$$

Xi	$\mathbf{x}_{\mathbf{j}}$	$\mathbf{W_{ij}}$
0	0	0 1
1	0	0
0	1	0
1	1	1

Hebb's rule

Spike timing dependent plasticity (STDP)

Structural plasticity

Synaptic plasticity

Hebb's rule – cntd.

Synaptic
$$\mathbf{w} \uparrow \rightarrow \mathbf{LTP}$$

Synaptic
$$\mathbf{w} \downarrow \rightarrow \mathbf{LTD}$$

Spike timing dependent plasticity

Recent Research

Spike-timing-dependent plasticity rewards synchrony rather than causality

Margarita Anisimova¹, Bas van Bommel¹, Marina Mikhaylova^{1,2}, J. Simon Wiegert, Thomas G.

Oertner1*, Christine E. Gee1,3*

"Our results confirm that neurons wire together if they fire together, but suggest that synaptic depression after anticausal activation (tLTD) is a transient phenomenon."

https://doi.org/10.1101/863365

biorxiv, 2021

Synaptic plasticity rules

$$v = w \cdot u$$

$$v = \mathbf{w} \cdot \mathbf{u}^T$$

The basic Hebb's rule:

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot \mathbf{u}$$

$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{w} \cdot \mathbf{u} \cdot \mathbf{u}^T$$
 Correlation matrix
$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{Q} \cdot \mathbf{w}^T$$

Correlation-based plasticity rule

$$\boldsymbol{w} \to \boldsymbol{w} + \epsilon \boldsymbol{Q} \cdot \boldsymbol{w}^T \qquad \epsilon = \frac{1}{\tau_w}$$

Synaptic plasticity rules

Correlation-based plasticity rule

$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{Q} \cdot \mathbf{w}^T$$

→ Basic Hebb only allows LTP

Postsynaptic LTD/LTP switch

$$\tau_w \frac{d\mathbf{w}}{dt} = (\mathbf{v} + \mathbf{\theta}_v) \mathbf{u}$$

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot (\mathbf{u} + \boldsymbol{\theta_u})$$

Presynaptic LTD/LTP switch

Covariance matrix

$$v = \mathbf{w} \cdot \mathbf{u}^T$$

$$v = \mathbf{w} \cdot \mathbf{u}^T \qquad \tau_w \frac{d\mathbf{w}}{dt} = \mathbf{w} \cdot \mathbf{u} \cdot (\mathbf{u} - \boldsymbol{\theta}_u)^T \qquad \tau_w \frac{d\mathbf{w}}{dt} = \mathbf{C} \cdot \mathbf{w}^T$$

$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{C} \cdot \mathbf{w}^T$$

Covariance-based plasticity rule

BCM rule

Hebbian learning suffers from instability

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot \mathbf{u} \cdot (v - \theta_v) \quad \text{If constant } \rightarrow \text{unstable}$$

→ Threshold of postsynaptic activity that determins if synapse is strengthened or weakened.

Adapt threshold
$$\theta_v$$
: $\tau_\theta \frac{d\theta_v}{dt} = v^2 - \theta_v$

Synaptic Normalization

$$\tau_{\theta} \frac{d\theta_{v}}{dt} = v^{2} - \theta_{v}$$

 $\tau_{\theta} \frac{d\theta_{v}}{dt} = v^{2} - \theta_{v}$ \rightarrow Stabilize weights through postsynaptic activity

Can we use penalty terms directly on the weight vector?

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot \mathbf{u} \left(\frac{v(\mathbf{n} \cdot \mathbf{u}^T)\mathbf{n}}{N_u} \right)$$

Normalize by subtracting the same quantity

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot \mathbf{u} \left(-\alpha \cdot v^2 \cdot \mathbf{w} \right) \qquad \alpha > 0$$

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot (\mathbf{u} - \alpha \cdot v \cdot \mathbf{w})$$

Unsupervised learning

PRINCIPAL COMPONENT ANALYSIS (PCA)

Simulation

Steps:

- 1. Data generation
- 2. Variable initialization
- 3. Iterate through data
 - 1. Compute pre-synaptic input
 - 2. Compute post-synaptic activation
 - 3. Compute Δw and update
- 4. Plot result

```
# That you see the same what I see
np.random.seed(42)
N = 1000

# Generate random data
x = np.linspace(-.3, .3, N)
np.random.shuffle(x)
y = -.7 * x

x += np.random.randn(x.size) / 10
y += np.random.randn(y.size) / 10
```

```
# Initialize some random weights
w = np.array([0.1, 0.4])
# # Training iterations
N = 1000
eta = 0.1
ws = []
```

```
8  # Training
9  for i in range(N):
10     rPre = np.asarray([x[ix], y[ix]])
11     rPost = w @ rPre
12     w = w + eta * rPost * (rPre - rPost * w)
```


Simulation

Steps:

- 1. Data generation
- 2. Variable initialization
- 3. Iterate through data
 - 1. Compute pre-synaptic input
 - 2. Compute post-synaptic activation
 - 3. Compute Δw and update
- 4. Plot result

Simulation

Supervised Learning

Unsupervised learning → no target emposed Supervised learning → target emposed

Supervised Learning

Delta rule

$$\Delta w_i = \alpha \cdot (y - \hat{y}) \cdot x_i$$

Simulation Delta Rule

Steps:

- 1. Data generation
- 2. Variable initialization
- 3. Iterating
 - 1. Compute prediction
 - 2. Update weights
- 4. Plotting

```
1    np.random.seed(42)
2    N = 100
4    xs = []
6    for _ in range(N):
        x0 = np.random.randn()-1
        xs.append((x0, x1))
11        x0 = np.random.randn()+2
        x1 = np.random.randn()+1
        xs.append((x0, x1))
14        xs.append((x0, x1))
15        xs = np.asarray(xs)
```

```
1 w = np.random.randn(2)
2 eta = 0.01
```

```
for i in range(2*N):
    # Determine class/target
    t = -1 if i % 2 == 0 else 1

# Compute prediction
pred = w @ xs[i]

# Update weights
w = w + eta * (t-pred) * xs[i]
```


Simulation over time

The brain

How does it emerge?

Back in the days...

© Pauline Breijer

What is happening there?

Principles of Neural Sciences 27

What is happening there?

Principles of Neural Sciences 28

Signaling pathways define neural development

Hox genes determines motor neurons

Positional development is highly conserved

Mammals have very similar development

Human Pig

Brain cells have a common ancestor

Neuron maturation

Pruning over lifetime

Experience Shapes Brain Architecture by Over-Production Followed by Pruning

Source: Shonkoff, J. P. (2008) **

From Huttenlocher and Dabholkar, 1997. Reprinted with permission of John Wiley & Sons Inc.

From Cowan, 1979. @ 1979 by Scientific American, Inc. All rights reserved.

Pruning in deep neural networks

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla AT&T Bell Laboratories, Holmdel, N. J. 07733

ABSTRACT

We have used information-theoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved speed of learning and/or classification. The basic idea is to use second-derivative information to make a tradeoff between network complexity and training set error. Experiments confirm the usefulness of the methods on a real-world application.

Pruning synapses: making network sparse Pruning neurons: Making network dense

Le Cun et al., 1990

■Remaining Parameters ■Pruned Parameters

Layer	Weights	FLOP	Act%	Weights%	FLOP%
conv1	35K	211M	88%	84%	84%
conv2	307K	448M	52%	38%	33%
conv3	885K	299M	37%	35%	18%
conv4	663K	224M	40%	37%	14%
conv5	442K	150M	34%	37%	14%
fc1	38M	75M	36%	9%	3%
fc2	17M	34M	40%	9%	3%
fc3	4M	8M	100%	25%	10%
Total	61M	1.5B	54%	11%	30%

Layer

15M -		
M -	T, Oleg Oleg Oleg	× ტ
Veights%	FLOP%	
8%	58%	
2%	12%	
4%	30%	
6%	29%	
3%	43%	
4%	16%	
2%	29%	
2%	21%	
7%	14%	
4%	15%	
5%	12%	
0%	0%	

45M 30M

CONVI_I	2K	0.2B	33%	38%	38%
conv1_2	37K	3.7B	89%	22%	12%
conv2_1	74K	1.8B	80%	34%	30%
conv2_2	148K	3.7B	81%	36%	29%
conv3_1	295K	1.8B	68%	53%	43%
conv3_2	590K	3.7B	70%	24%	16%
conv3_3	590K	3.7B	64%	42%	29%
conv4_1	1M	1.8B	51%	32%	21%
conv4_2	2M	3.7B	45%	27%	14%
conv4_3	2M	3.7B	34%	34%	15%
conv5_1	2M	925M	32%	35%	12%
conv5_2	2M	925M	29%	29%	9%
conv5_3	2M	925M	19%	36%	11%
fc6	103M	206M	38%	4%	1%
fc7	17M	34M	42%	4%	2%
fc8	4M	8M	100%	23%	9%
total	138M	30.9B	64%	7.5%	21%

Weights FLOP Act%

Han et al., NeurIPS 2015

Pruning in deep neural networks

Han et al., Deep Compression ICLR 2016

Bruteforce NVIDIA study

2.1 Oracle pruning

Minimizing the difference in accuracy between the full and pruned models depends on the criterion for identifying the "least important" parameters, called *saliency*, at each step. The best criterion would be an exact empirical evaluation of each parameter, which we denote the *oracle* criterion, accomplished by ablating each non-zero parameter $w \in \mathcal{W}'$ in turn and recording the cost's difference.

To compute the oracle, we evaluate the change in loss caused by removing each individual feature map from the fine-tuned VGG-16 network. (See Appendix A.3 for additional analysis.) We rank

Figure 4: Pruning of feature maps in VGG-16 fine-tuned on the Birds-200 dataset.

Molchanov et al., ICLR 2017

Cortical networks

FIGURE 6. Relation between cell-planes and hypercolumns within a layer.

Deep Belief Networks

Geoffrey Hinton, © WIRED

Restricted Boltzmann Machines

First: unsupervised → pre-training Second: supervised → classification

Cortical Algorithms

Table 9 Classification results.

		DBN		CA	
Dataset	Net. size	Acc. (%)	Connec. (%)	Acc. (%)	Connec. (%)
MNIST	N1	38.8	88.1	96.2	89.8
	N2 D	84.1	91.8	97.1	85.2
	N3 E	84.2	98.8	98.5	79.1
	N4	89.0	47.2	98.5	58.7
	N5	88.3	54.9	99.2	43,5
	N6	89.4	53.9	99.8	37.6
	N7 H	86.5	40.8	99.8	28.5

Neurodevelopment happens during our lifetime

