Introducción a la Inteligencia Artificial

Yván Jesús Túpac Valdivia, PhD

Ciencias de la Computación

March 11, 2012

• ¿Qué es Inteligencia Artificial?

- ¿Qué es Inteligencia Artificial?
- Áreas de aplicación

- ¿Qué es Inteligencia Artificial?
- Áreas de aplicación
- Técnicas Inteligentes

- ¿Qué es Inteligencia Artificial?
- Áreas de aplicación
- Técnicas Inteligentes
 - Sistemas Expertos (SE)

- ¿Qué es Inteligencia Artificial?
- Areas de aplicación
- Técnicas Inteligentes
 - Sistemas Expertos (SE)
 - Lógica Difusa (Fuzzy Logic FL)

- ¿Qué es Inteligencia Artificial?
- Áreas de aplicación
- Técnicas Inteligentes
 - Sistemas Expertos (SE)
 - Lógica Difusa (Fuzzy Logic FL)
 - Redes Neuronales (Neural Networks NN)

- ¿Qué es Inteligencia Artificial?
- Áreas de aplicación
- Técnicas Inteligentes
 - Sistemas Expertos (SE)
 - Lógica Difusa (Fuzzy Logic FL)
 - Redes Neuronales (Neural Networks NN)
 - Computación Evolutiva (Evolutionary Computation EC)

- ¿Qué es Inteligencia Artificial?
- Áreas de aplicación
- Técnicas Inteligentes
 - Sistemas Expertos (SE)
 - Lógica Difusa (Fuzzy Logic FL)
 - Redes Neuronales (Neural Networks NN)
 - Computación Evolutiva (Evolutionary Computation EC)

- ¿Qué es Inteligencia Artificial?
- Areas de aplicación
- Técnicas Inteligentes
 - Sistemas Expertos (SE)
 - Lógica Difusa (Fuzzy Logic FL)
 - Redes Neuronales (Neural Networks NN)
 - Computación Evolutiva (Evolutionary Computation EC)
- Sistemas Inteligentes Aplicados

Son las técnicas y sistemas computacionales cuya inspiración se basa en imitar ciertos aspectos humanos como:

• percepción,

- percepción,
- razonamiento,

- percepción,
- razonamiento,
- aprendizaje,

- percepción,
- razonamiento,
- aprendizaje,
- evolución y

- percepción,
- razonamiento,
- aprendizaje,
- evolución y
- adaptabilidad.

Sistemas Computacionales de Apoyo a la Decisión

Sistemas expertos

Lógica Difusa

Redes Neuronales

Algoritmos Evolutivos

Sistemas Híbridos

Adquisición de Conocimiento

Optimización

Control

Planificación

Data Mining

Análisis de Riesgo

Educación.

- Educación.
- Energía.

- Educación.
- Energía.
- Finanzas.

- Educación.
- Energía.
- Finanzas.
- Telecomunicaciones.

- Educación.
- Energía.
- Finanzas.
- Telecomunicaciones
- Medicina

- Educación.
- Energía.
- Finanzas.
- Telecomunicaciones
- Medicina
- Medio ambiente.

- Educación.
- Energía.
- Finanzas.
- Telecomunicaciones
- Medicina
- Medio ambiente.
- Comercio.

- Educación.
- Energía.
- Finanzas.
- Telecomunicaciones.
- Medicina
- Medio ambiente.
- Comercio.
- Industria.

Sector	Tema						
Educación	Software	educacional	para	enseñanza	de	sistemas	in-
	teligentes						

Sector	Tema			
Educación	Software educacional para enseñanza de sistemas in-			
Energía	teligentes Previsión de Carga Eléctrica Horaria, Diaria, Mensual, us- ando Redes Neuronales			

Sector	Tema
Educación	Software educacional para enseñanza de sistemas inteligentes
Energía	Previsión de Carga Eléctrica Horaria, Diaria, Mensual, usando Redes Neuronales
Energía	Optimización del Despacho usando Algoritmos Genéticos

Sector	Tema
Educación	Software educacional para enseñanza de sistemas in-
	teligentes
Energía	Previsión de Carga Eléctrica Horaria, Diaria, Mensual, us-
	ando Redes Neuronales
Energía	Optimización del Despacho usando Algoritmos Genéticos
Energía	Optimización del posicionamiento de condensadores en Sis-
	temas Eléctricos

Sector	Tema			
Educación	Software educacional para enseñanza de sistemas in-			
	teligentes			
Energía	Previsión de Carga Eléctrica Horaria, Diaria, Mensual, us-			
	ando Redes Neuronales			
Energía	Optimización del Despacho usando Algoritmos Genéticos			
Energía	Optimización del posicionamiento de condensadores en Sis-			
Č	temas Eléctricos			
Energía	Control de nivel de embalses en generadoras eléctricas			
	control de inver de embaises en generadoras electricas			

Sector	Tema				
Educación	Software educacional para enseñanza de sistemas in-				
	teligentes				
Energía	Previsión de Carga Eléctrica Horaria, Diaria, Mensual, us-				
	ando Redes Neuronales				
Energía	Optimización del Despacho usando Algoritmos Genéticos				
Energía	Optimización del posicionamiento de condensadores en Sis-				
	temas Eléctricos				
Energía	Control de nivel de embalses en generadoras eléctricas				
Energía	Reconocimiento de Descargas Parciales en equipos eléctri-				
Ŭ	cos				

Sector	Tema			
Educación	Software educacional para enseñanza de sistemas in-			
	teligentes			
Energía	Previsión de Carga Eléctrica Horaria, Diaria, Mensual, us-			
	ando Redes Neuronales			
Energía	Optimización del Despacho usando Algoritmos Genéticos			
Energía	Optimización del posicionamiento de condensadores en Sis-			
	temas Eléctricos			
Energía	Control de nivel de embalses en generadoras eléctricas			
Energía	Reconocimiento de Descargas Parciales en equipos eléctri-			
	cos			
Petróleo	Optimización de la distribución de combustible usando com-			
	putación evolutiva			
Petróleo	Optimización de la distribución de combustible usando com			

Sector	Tema
Educación	Software educacional para enseñanza de sistemas inteligentes
Energía	Previsión de Carga Eléctrica Horaria, Diaria, Mensual, usando Redes Neuronales
Energía	Optimización del Despacho usando Algoritmos Genéticos
Energía	Optimización del posicionamiento de condensadores en Sistemas Eléctricos
Energía	Control de nivel de embalses en generadoras eléctricas
Energía	Reconocimiento de Descargas Parciales en equipos eléctricos
Petróleo	Optimización de la distribución de combustible usando computación evolutiva
Petróleo	Planeamiento de producción óptimo mediante computación evolutiva

Proyectos Realizados

Empresa	Sistema Inteligente	Técnica
PUC-Rio	Alocação ótima de salas de aula (2001)	EC

Proyectos Realizados

Empresa	Sistema Inteligente	Técnica
PUC-Rio	Alocação ótima de salas de aula (2001)	EC
CVRD	S4: Shipment Scheduler & Simulator System (2000)	EC

Proyectos Realizados

Empresa	Sistema Inteligente	Técnica
PUC-Rio	Alocação ótima de salas de aula (2001)	EC
CVRD	S4: Shipment Scheduler & Simulator System (2000)	EC
ONS	PPTec: Evolução metodológica dos modelos de gestão hidrotérmica (2005-2006)	EC, RN, FL

Empresa	Sistema Inteligente	Técnica
PUC-Rio	Alocação ótima de salas de aula (2001)	EC
CVRD	S4: Shipment Scheduler & Simulator System (2000)	EC
ONS	PPTec: Evolução metodológica dos modelos de gestão hidrotérmica (2005-2006)	EC, RN, FL
Petrobras	ANEPI: Análise Econômica de Projetos de E&P sob Incerteza I, II, III, CI (2000-2007)	EC, NN, FL

Empresa	Sistema Inteligente	Técnica
PUC-Rio	Alocação ótima de salas de aula (2001)	EC
CVRD	S4: Shipment Scheduler & Simulator System (2000)	EC
ONS	PPTec: Evolução metodológica dos modelos	EC,
	de gestão hidrotérmica (2005-2006)	RN, FL
Petrobras	ANEPI: Análise Econômica de Projetos de	EC,
	E&P sob Incerteza I, II, III, CI (2000-2007)	NN,
		FL
Petrobras	CONFPETRO – Confiabilidad Humana en Industria del petróleo (2005-2007)	FL

Empresa	Sistema Inteligente	Técnica
PUC-Rio	Alocação ótima de salas de aula (2001)	EC
CVRD	S4: Shipment Scheduler & Simulator System (2000)	EC
ONS	PPTec: Evolução metodológica dos modelos	EC,
	de gestão hidrotérmica (2005-2006)	RN, FL
Petrobras	ANEPI: Análise Econômica de Projetos de	EC,
	E&P sob Incerteza I, II, III, CI (2000-2007)	NN,
		FL
Petrobras	CONFPETRO – Confiabilidad Humana en	FL
	Industria del petróleo (2005-2007)	
Petrobras	SMART-E&P – Sistemas e Modelos In-	EC,
	teligentes Aplicados a Reservatórios com	NN,
	Tecnologia de Malha Fechada para a E&P de Petróleo e Gás (2008-2010)	RL

Empresa	Sistema Inteligente	Técnica
Eletropaulo	Desenvolvimento de um Sistema de Previsão	RN
	de Carga da ELETROPAULO (2006)	

Empresa	Sistema Inteligente	Técnica
Eletropaulo	Desenvolvimento de um Sistema de Previsão	RN
	de Carga da ELETROPAULO (2006)	
Light	SIGESE – Sistema de Apoio à Decisão à	NN, FL
	Gestão de Demanda e Consumo de Energia	
	(2000-2010)	

Empresa	Sistema Inteligente	Técnica
Eletropaulo	Desenvolvimento de um Sistema de Previsão de Carga da ELETROPAULO (2006)	RN
Light	SIGESE – Sistema de Apoio à Decisão à Gestão de Demanda e Consumo de Energia (2000-2010)	NN, FL
UNSA- Concytec	Sistema Inteligente de Gestión Integrada del Recurso Hídrico para la Cuenca del Pacífico: Caso Cuenca del Río Chili - Arequipa (2009- 2010)	EC

Empresa	Sistema Inteligente	Técnica
Eletropaulo	Desenvolvimento de um Sistema de Previsão	RN
	de Carga da ELETROPAULO (2006)	
Light	SIGESE – Sistema de Apoio à Decisão à	NN, FL
	Gestão de Demanda e Consumo de Energia	
	(2000-2010)	
UNSA-	Sistema Inteligente de Gestión Integrada del	EC
Concytec	Recurso Hídrico para la Cuenca del Pacífico:	
	Caso Cuenca del Río Chili - Arequipa (2009-	
	2010)	
EletroNuclea	r Aplicativo de Simulação de Estratégias Op-	EC
	eracionais e Alternativas de Investimento	
	(2010)	

Empresa	Sistema Inteligente	Técnica
Eletropaulo	Desenvolvimento de um Sistema de Previsão	RN
	de Carga da ELETROPAULO (2006)	
Light	SIGESE – Sistema de Apoio à Decisão à	NN, FL
	Gestão de Demanda e Consumo de Energia	
	(2000-2010)	
UNSA-	Sistema Inteligente de Gestión Integrada del	EC
Concytec	Recurso Hídrico para la Cuenca del Pacífico:	
	Caso Cuenca del Río Chili - Arequipa (2009-	
	2010)	
EletroNuclea	r Aplicativo de Simulação de Estratégias Op-	EC
	eracionais e Alternativas de Investimento	
	(2010)	
SEDIMED	Plataforma de diagnóstico por contenido de	NN
	Imágenes para preseleccion de normalidad de	
	estudios cerebrales (2011-2013)	

• Optimización de Flujos de Caja.

- Optimización de Flujos de Caja.
- Optimización de Portafolios de Inversión.

- Optimización de Flujos de Caja.
- Optimización de Portafolios de Inversión.
- Optimización de Asignación de espacio físico.

- Optimización de Flujos de Caja.
- Optimización de Portafolios de Inversión.
- Optimización de Asignación de espacio físico.
- Planificacion del Mantenimiento de equipos.

- Optimización de Flujos de Caja.
- Optimización de Portafolios de Inversión.
- Optimización de Asignación de espacio físico.
- Planificacion del Mantenimiento de equipos.
- Planificacion de Sistemas de Transporte.

- Optimización de Flujos de Caja.
- Optimización de Portafolios de Inversión.
- Optimización de Asignación de espacio físico.
- Planificacion del Mantenimiento de equipos.
- Planificacion de Sistemas de Transporte.
- Optimización de Planes de explotación de recursos.

- Optimización de Flujos de Caja.
- Optimización de Portafolios de Inversión.
- Optimización de Asignación de espacio físico.
- Planificacion del Mantenimiento de equipos.
- Planificacion de Sistemas de Transporte.
- Optimización de Planes de explotación de recursos.
- Optimización de Costos operativos.

• Previsión de Demanda de Electricidad (diversos horizontes).

- Previsión de Demanda de Electricidad (diversos horizontes).
- Previsión de Demanda de Combustibles.

- Previsión de Demanda de Electricidad (diversos horizontes).
- Previsión de Demanda de Combustibles.
- Previsión de Índices financieros.

- Previsión de Demanda de Electricidad (diversos horizontes).
- Previsión de Demanda de Combustibles.
- Previsión de Índices financieros.
- Previsión de Precios de commodities.

- Previsión de Demanda de Electricidad (diversos horizontes).
- Previsión de Demanda de Combustibles.
- Previsión de Índices financieros.
- Previsión de Precios de commodities.
- Previsión de Variables Climáticas.

• Caracterización de negocios: extraer reglas a partir de las Bases de Datos

- Caracterización de negocios: extraer reglas a partir de las Bases de Datos
- Enriquecimiento de Bases de datos: inferir información a partir de un levantamiento parcial

- Caracterización de negocios: extraer reglas a partir de las Bases de Datos
- Enriquecimiento de Bases de datos: inferir información a partir de un levantamiento parcial
- Segmentación de bases de datos: agrupar entradas parecidas en clusters

- Caracterización de negocios: extraer reglas a partir de las Bases de Datos
- Enriquecimiento de Bases de datos: inferir información a partir de un levantamiento parcial
- Segmentación de bases de datos: agrupar entradas parecidas en clusters
- Clasificación de entradas: clasificación provisionalde cualquier nueva entrada en un cluster

- Caracterización de negocios: extraer reglas a partir de las Bases de Datos
- Enriquecimiento de Bases de datos: inferir información a partir de un levantamiento parcial
- Segmentación de bases de datos: agrupar entradas parecidas en clusters
- Clasificación de entradas: clasificación provisionalde cualquier nueva entrada en un cluster
- Analisis de riesgo: identificación de reglas de inversión

Aplicación: Procesos en Industria

 Detección y diagnóstico de anomalías: Una red neuronal detecta una falla en una red eléctrica, un experto da el diagnóstico

Aplicación: Procesos en Industria

- Detección y diagnóstico de anomalías: Una red neuronal detecta una falla en una red eléctrica, un experto da el diagnóstico
- Mantenimiento Predictivo: Una red neuronal puede determinar el mejor momento para realizar el mantenimiento de un determinado equipo

Aplicación: Procesos en Industria

- Detección y diagnóstico de anomalías: Una red neuronal detecta una falla en una red eléctrica, un experto da el diagnóstico
- Mantenimiento Predictivo: Una red neuronal puede determinar el mejor momento para realizar el mantenimiento de un determinado equipo
- Predicción de Propiedades: Una red neuronal interpola las propiedades de un material (soft-sensoring)

Sistemas Expertos Conceptos Básicos

Son programas que guardan y manejan el conocimiento adquirido de un experto

Sistemas Expertos Conceptos Básicos

Son programas que guardan y manejan el conocimiento adquirido de un experto

 Se necesitan entrevistas y observaciones para extraer el conocimiento

Sistemas Expertos Conceptos Básicos

Son programas que guardan y manejan el conocimiento adquirido de un experto

- Se necesitan entrevistas y observaciones para extraer el conocimiento
- El conocimiento se representa de una forma manejable por la computadora

El conocimiento se representa a través de reglas del tipo IF – THEN (Reglas de Producción)

```
if <condición 1> AND <condición 2> then
  <acción A> AND <acción B>
end if
```

Ejemplo 1

Ejemplo 1

```
 \begin{tabular}{ll} \begin{tabular}{ll} \textbf{if} auto &= BMW \begin{tabular}{ll} AND \end{tabular} ciudad &= Arequipa \begin{tabular}{ll} then \\ seguro &= 10\% \begin{tabular}{ll} valor \del \end{tabular} auto \\ \begin{tabular}{ll} end \end{tabular} if \end{tabular}
```



```
Ejemplo 1
```

```
\begin{array}{l} \mbox{if auto} = \mbox{BMW AND} \mbox{ ciudad} = \mbox{Arequipa then} \\ \mbox{seguro} = \mbox{10\% valor del auto} \\ \mbox{end if} \\ \mbox{if auto} = \mbox{tico amarillo AND} \mbox{ ciudad} = \mbox{Ilo then} \\ \mbox{seguro} = \mbox{4\% valor del auto} \\ \mbox{end if} \end{array}
```


El conocimiento se representa a través de reglas del tipo IF – THEN (Reglas de Producción)

Ejemplo 2

Sistemas Expertos Representación del Conocimiento

El conocimiento se representa a través de reglas del tipo IF – THEN (Reglas de Producción)

```
Ejemplo 2
```

```
if edad = 65 años then seguro = s/. 600.00 end if
```

Sistemas Expertos

Representación del Conocimiento

El conocimiento se representa a través de reglas del tipo IF – THEN (Reglas de Producción)

```
Ejemplo 2
```

```
if edad = 65 años then seguro = s/. 600.00 end if if edad \geq 50 años AND presión = 14/10 then seguro = s/. 600.00 end if
```

Sistemas Expertos Representación del Conocimiento

El conocimiento se representa a través de reglas del tipo IF – THEN (Reglas de Producción)

```
Ejemplo 2

if edad = 65 años then

seguro = s/. 600.00

end if

if edad \geq 50 años AND presión = 14/10 then

seguro = s/. 600.00

end if

if edad \leq 40 años AND presión = 12/8 \pm 10\% then

seguro = s/. 200.00
```

end if

Sistemas Expertos Organización de Sistemas Expertos

Sistemas Expertos

Sistemas adecuados en aplicaciones donde:

- El conocimiento (del experto) es accesible
- Las reglas son conocidas y fáciles de formular por el experto
- Cuando hay necesidad de explicaciones

Ventajas

 Usa representación explícita del conocimiento

Ventajas

- Usa representación explícita del conocimiento
- Capaces de generar justificaciones (mediante explicaciones)

Ventajas

- Usa representación explícita del conocimiento
- Capaces de generar justificaciones (mediante explicaciones)

Ventajas

- Usa representación explícita del conocimiento
- Capaces de generar justificaciones (mediante explicaciones)

Desventajas

 No hay un mecanismo automático de aprendizaje

Ventajas

- Usa representación explícita del conocimiento
- Capaces de generar justificaciones (mediante explicaciones)

Desventajas

- No hay un mecanismo automático de aprendizaje
- El proceso de extracción de conocimiento es largo y costoso

Ventajas

- Usa representación explícita del conocimiento
- Capaces de generar justificaciones (mediante explicaciones)

Desventajas

- No hay un mecanismo automático de aprendizaje
- El proceso de extracción de conocimiento es largo y costoso
- Necesidad de declaraciones exactas de los expertos

Sistemas Expertos Ejemplos de Aplicaciones Comerciales

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

Sistemas Expertos

Ejemplos de Aplicaciones Comerciales

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

American Express

Sistema de Auxilio a la autorización de crédito (CC)

Sistemas Expertos

Midland Bank

Ejemplos de Aplicaciones Comerciales

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

American Express Sistema de Auxilio a la autorización de

crédito (CC)

Citibank, National Análisis de préstamos personales, gestión

Westminster, de portfolios de inversión

Es una técnica inteligente que tiene como objetivo:

Es una técnica inteligente que tiene como objetivo:

• Modelar el modo aproximado del razonamiento humano

Es una técnica inteligente que tiene como objetivo:

- Modelar el modo aproximado del razonamiento humano
- Usar variables "fuzzy" que modelan el razonamiento lingüístico para poder imitar la habilidad humana de tomar decisiones en un ambiente con incertidumbre e imprecisión

Es una técnica inteligente que tiene como objetivo:

- Modelar el modo aproximado del razonamiento humano
- Usar variables "fuzzy" que modelan el razonamiento lingüístico para poder imitar la habilidad humana de tomar decisiones en un ambiente con incertidumbre e imprecisión

Con lógica difusa se permite que los sistemas inteligentes de Control y soporte a la decisión traten con información imprecisa o difusa

Con lógica difusa se permite que los sistemas inteligentes de Control y soporte a la decisión traten con información imprecisa o difusa

Ejemplos

Inversiones de alto riesgo

Con lógica difusa se permite que los sistemas inteligentes de Control y soporte a la decisión traten con información imprecisa o difusa

- Inversiones de alto riesgo
- Presion arterial

Con lógica difusa se permite que los sistemas inteligentes de Control y soporte a la decisión traten con información imprecisa o difusa

- Inversiones de alto riesgo
- Presion arterial
- Flujos intensos

Con lógica difusa se permite que los sistemas inteligentes de Control y soporte a la decisión traten con información imprecisa o difusa

- Inversiones de alto riesgo
- Presion arterial
- Flujos intensos
- Edad (joven, adulto, anciano, de media edad)

Con lógica difusa se permite que los sistemas inteligentes de Control y soporte a la decisión traten con información imprecisa o difusa

- Inversiones de alto riesgo
- Presion arterial
- Flujos intensos
- Edad (joven, adulto, anciano, de media edad)
- Sensación térmica (calor, frío, mucho calor, templado)

Con lógica difusa se permite que los sistemas inteligentes de Control y soporte a la decisión traten con información imprecisa o difusa

- Inversiones de alto riesgo
- Presion arterial
- Flujos intensos
- Edad (joven, adulto, anciano, de media edad)
- Sensación térmica (calor, frío, mucho calor, templado)
- Razas (blanco, negro, aymara, quechua, asháninka)

Con lógica difusa se permite que los sistemas inteligentes de Control y soporte a la decisión traten con información imprecisa o difusa

Ejemplos

- Inversiones de alto riesgo
- Presion arterial
- Flujos intensos
- Edad (joven, adulto, anciano, de media edad)
- Sensación térmica (calor, frío, mucho calor, templado)
- Razas (blanco, negro, aymara, quechua, asháninka)

Son necesarios algunos nuevos conceptos

Para comprender el mecanismo de la lógica difusa, es necesario conocer algunos conceptos como:

Conjuntos difusos (fuzzy sets)

- Conjuntos difusos (fuzzy sets)
- Grado de Pertenencia a un conjunto

- Conjuntos difusos (fuzzy sets)
- Grado de Pertenencia a un conjunto
- Reglas difusas (fuzzy rules)

- Conjuntos difusos (fuzzy sets)
- Grado de Pertenencia a un conjunto
- Reglas difusas (fuzzy rules)
- Inferencia difusa

Lógica Difusa (Fuzzy Logic) Conjuntos y reglas rígidos

Dado el siguiente conjunto de categorías:

Lógica Difusa (Fuzzy Logic) Conjuntos y reglas rígidos

Dado el siguiente conjunto de categorías:

Podemos generar las siguientes reglas

```
if edad = 40 then
  la persona es VIEJA
end if
```


Lógica Difusa (Fuzzy Logic) Conjuntos y reglas rígidos

Dado el siguiente conjunto de categorías:

Podemos generar las siguientes reglas

```
if edad = 40 then
    la persona es VIEJA
end if
if edad = 39 then
    la persona es JOVEN
end if
```


Lógica Difusa (Fuzzy Logic) Conjuntos Difusos

Lógica Difusa (Fuzzy Logic) Conjuntos Difusos

Si Pedro tiene 40 años ¿Pedro es joven o viejo?

Lógica Difusa (Fuzzy Logic) Conjuntos Difusos

Si Pedro tiene 40 años ¿Pedro es joven o viejo?

Lógica Difusa (Fuzzy Logic) Conjuntos Difusos

Si Pedro tiene 40 años ¿Pedro es joven o viejo?

- En realidad, Pedro es joven y viejo al mismo tiempo
- Los grados de pertenencia indican que Pedro no es tan jou ni es tan viejo.

Lógica Difusa (Fuzzy Logic) Reglas Difusas

Lógica Difusa (Fuzzy Logic) Reglas Difusas

if edad es MEDIA-EDAD Y presión es BAJO then valor del seguro es BAJOend if

Lógica Difusa (Fuzzy Logic) Reglas Difusas

```
    if edad es MEDIA-EDAD Y presión es BAJO then valor del seguro es BAJO end if
    if edad es JOVEN Y presión es ALTO then valor del seguro es ALTO end if
```


Sean los universos Edad, Presión y Seguro con sus respectivos conjuntos difusos:

Sean los universos Edad, Presión y Seguro con sus respectivos conjuntos difusos:

Edad	20	25	30	35	40	45	50	55	60	65
Media edad	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Joven	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Presión máx	95	100	110	120	130	140	150	160	170	175
Presión mín	50	55	60	65	70	75	80	85	90	100
Alta	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ваја	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1
bajo	1	0.9	0.6	0.5	0.8	0.1	0.1

SI edad es media edad Y presión es baja, ENTONCES seguro es bajo

Edad	20	25	30	35	40	45	50	55	60	65
Media edad	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Joven	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Presión máx	95	100	110	120	130	140	150	160	170	175
Presión mín	50	55	60	65	70	75	80	85	90	100
Alta	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ваја	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1
bajo	1	0.9	0.6	0.5	0.8	0.1	0.1

SI edad es media edad Y presión es baja, ENTONCES seguro es bajo

Edad	20	25	30	35	40	45	50	55	60	65
Media edad	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Joven	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Presión máx	95	100	110	120		140	150	160	170	175
Presión mín	50	55	60	65		75	80	85	90	100
Alta	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ваја	1.0	0.9	0.8	0.7		0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1
bajo	1	0.9	0.6	0.5	0.8	0.1	0.1

SI edad es media edad Y presión es baja, ENTONCES seguro es bajo

Edad	20	25	30	35	40	45	50	55	60	65
Media edad	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Joven	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Presión máx	95	100	110	120		140	150	160	170	175
Presión mín	50	55	60	65		75	80	85	90	100
Alta	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ваја	1.0	0.9	0.8	0.7		0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1
bajo	1	0.9	0.6	0.5	0.8	0.1	0.1

SI edad es joven Y presión es alta, ENTONCES seguro es alto

Edad					40					
Media edad	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Joven	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Presión máx	95	100	110	120	130	140	150	160	170	175
Presión mín	50	55	60	65	70	75	80	85	90	100
Alta	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ваја	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1
bajo	1	0.9	0.6	0.5	0.8	0.1	0.1

SI edad es joven Y presión es alta, ENTONCES seguro es alto

				35						
Media edad	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Joven	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Presión máx	95	100	110	120		140	150	160	170	175
Presión mín	50	55	60	65		75	80	85	90	100
Alta	0.1	0.2	0.3	0.4		0.6	0.7	0.8	0.9	1.0
Ваја	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1
bajo	1	0.9	0.6	0.5	0.8	0.1	0.1

SI edad es joven Y presión es alta, ENTONCES seguro es alto

Edad	20	25	30	35	40	45	50	55	60	65
Media edad	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Joven	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Presión máx	95	100	110	120		140	150	160	170	175
Presión mín	50	55	60	65		75	80	85	90	100
Alta	0.1	0.2	0.3	0.4		0.6	0.7	0.8	0.9	1.0
Ваја	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1
bajo	1	0.9	0.6	0.5	0.8	0.1	0.1

SI edad es joven Y presión es alta, ENTONCES seguro es alto

Edad	20	25	30	35	40	45	50	55	60	65
Media edad	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Joven	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Presión máx	95	100	110	120		140	150	160	170	175
Presión mín	50	55	60	65		75	80	85	90	100
Alta	0.1	0.2	0.3	0.4		0.6	0.7	0.8	0.9	1.0
Ваја	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1
bajo	1	0.9	0.6	0.5	0.8	0.1	0.1

Seguro = $(700 \times 0.6 + 800 \times 0.5)/(0.6 + 0.5) = s/.745.45$

Lógica Difusa (Fuzzy Logic) Evaluación

Lógica Difusa es una técnica usada en aplicaciones donde:

- El conocimiento incluye conceptos subjetivos e intrínsecamente imprecisos
- Donde se desea obtener explicaciones con respecto al resultado del problema

Ventajas

 Facilidad de tratar datos imprecisos

- Facilidad de tratar datos imprecisos
- Facilita la descripción de reglas dadas por los expertos

- Facilidad de tratar datos imprecisos
- Facilita la descripción de reglas dadas por los expertos
- Número menor de reglas

- Facilidad de tratar datos imprecisos
- Facilita la descripción de reglas dadas por los expertos
- Número menor de reglas
- Explicación del raciocinio del experto

- Facilidad de tratar datos imprecisos
- Facilita la descripción de reglas dadas por los expertos
- Número menor de reglas
- Explicación del raciocinio del experto

Ventajas

- Facilidad de tratar datos imprecisos
- Facilita la descripción de reglas dadas por los expertos
- Número menor de reglas
- Explicación del raciocinio del experto

Desventajas

 Necesidad de especificar las funciones de pertenencia

Ventajas

- Facilidad de tratar datos imprecisos
- Facilita la descripción de reglas dadas por los expertos
- Número menor de reglas
- Explicación del raciocinio del experto

Desventajas

- Necesidad de especificar las funciones de pertenencia
- Necesidad de un experto o de información histórica

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

Yamaichi Securi- Sistema de gestión de fondos de inversión ties

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

Yamaichi Securi- Sistema de gestión de fondos de inversión

ties

Fuji Bank Sistema de negociación en Bolsa de Val-

ores

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

Yamaichi Securi- Sistema de gestión de fondos de inversión

ties

Fuji Bank Sistema de negociación en Bolsa de Val-

ores

World Bank Sistema de inversiones

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

Yamaichi Securi- Sistema de gestión de fondos de inversión

ties

Fuji Bank Sistema de negociación en Bolsa de Val-

ores

World Bank Sistema de inversiones

Metus Systems Sistema Fuzzy de detección de fraudes

en el sistema de salud

Se muestran unos ejemplos de aplicaciones comerciales y exitosas de este tipo de sistemas:

Yamaichi Securi- ties	Sistema de gestión de fondos de inversión
Fuji Bank	Sistema de negociación en Bolsa de Val-
	ores
World Bank	Sistema de inversiones
Metus Systems	Sistema Fuzzy de detección de fraudes
	en el sistema de salud
Samsung, LG	, Control de procesos de lavado, estabi-
Panasonic	lización de imagen en cámaras de video

CCD

Son modelos computacionales inspirados en las neuronas biológicas y en la estructura del cerebro con capacidad de:

Adquirir conocimiento experimental

- Adquirir conocimiento experimental
- Almacenar conocimiento experimental

- Adquirir conocimiento experimental
- Almacenar conocimiento experimental
- Utilizar el conocimiento experimental adquirido

- Adquirir conocimiento experimental
- Almacenar conocimiento experimental
- Utilizar el conocimiento experimental adquirido

Redes Neuronales (Neural Networks) Relación con la Naturaleza

Cerebro

- Neuronas biológicas
- Red de neuronas
- $\bullet \sim 1 \times 10^{10}$ neuronas
- Proceso de aprendizaje
- Generalización
- Asociación
- Reconocimiento de Patrones

Redes Neuronales (Neural Networks) Relación con la Naturaleza

Cerebro

- Neuronas biológicas
- Red de neuronas
- $\bullet \sim 1 \times 10^{10}$ neuronas
- Proceso de aprendizaje
- Generalización
- Asociación
- Reconocimiento de Patrones

Redes Neuronales Artificiales

- Neurona artificial
- Estructura en *layers*
- $1 \times 10^2 \sim 1 \times 10^3$ unidades
- Ajuste a los datos
- Generalización
- Asociación
- Reconocimiento de Patrones

Redes Neuronales (Neural Networks) Relación con la Naturaleza

Redes Neuronales (Neural Networks) Estructura Básica

Redes Neuronales (Neural Networks) Estructura Básica

Redes Neuronales (Neural Networks) Estructura Básica

Los pesos w_{ij} almacenan la información aprendida.

Redes Neuronales (Neural Networks)

Las Redes Neuronales son una técnica usada en aplicaciones donde se requiera:

- Reconocer patrones cuyas muestras puedan ser ruidosas o incompletas
- Donde no sea fácil formular reglas claras
- Además, este modelo no requiere de una explicación del resultado

Ventajas

 Facilidad de modelar sistemas no lineales

- Facilidad de modelar sistemas no lineales
- Aprendizaje automatizado

- Facilidad de modelar sistemas no lineales
- Aprendizaje automatizado
- Soporta datos ruidosos e incompletos

- Facilidad de modelar sistemas no lineales
- Aprendizaje automatizado
- Soporta datos ruidosos e incompletos
- Respuesta rápida y precisa

- Facilidad de modelar sistemas no lineales
- Aprendizaje automatizado
- Soporta datos ruidosos e incompletos
- Respuesta rápida y precisa
- Modelos compactos

- Facilidad de modelar sistemas no lineales
- Aprendizaje automatizado
- Soporta datos ruidosos e incompletos
- Respuesta rápida y precisa
- Modelos compactos

Ventajas

- Facilidad de modelar sistemas no lineales
- Aprendizaje automatizado
- Soporta datos ruidosos e incompletos
- Respuesta rápida y precisa
- Modelos compactos

Desventajas

Ausencia de explicaciones

Ventajas

- Facilidad de modelar sistemas no lineales
- Aprendizaje automatizado
- Soporta datos ruidosos e incompletos
- Respuesta rápida y precisa
- Modelos compactos

Desventajas

- Ausencia de explicaciones
- Sensible a la cantidad de datos disponible

Ventajas

- Facilidad de modelar sistemas no lineales
- Aprendizaje automatizado
- Soporta datos ruidosos e incompletos
- Respuesta rápida y precisa
- Modelos compactos

Desventajas

- Ausencia de explicaciones
- Sensible a la cantidad de datos disponible
- El tiempo de ajuste (entrenamiento) puede ser largo

Redes Neuronales (*Neural Networks*) Ejemplos de Aplicaciones Industriales

Se muestran unos ejemplos de aplicaciones industriales:

Redes Neuronales (*Neural Networks*) Ejemplos de Aplicaciones Industriales

Se muestran unos ejemplos de aplicaciones industriales:

Racal

Identificación de placas de vehículos

Redes Neuronales (*Neural Networks*) Ejemplos de Aplicaciones Industriales

Se muestran unos ejemplos de aplicaciones industriales:

Racal Identificación de placas de vehículos

Thomson Sistemas OCR

Se muestran unos ejemplos de aplicaciones industriales:

Racal Identificación de placas de vehículos

Thomson Sistemas OCR

St. George's Hos- Sistema de Clasificación de Tumores

pital

Se muestran unos ejemplos de aplicaciones industriales:

Racal Identificación de placas de vehículos

Thomson Sistemas OCR

St. George's Hos- Sistema de Clasificación de Tumores

pital

CRAM Sistema de selección de naranjas

Se muestran unos ejemplos de aplicaciones industriales:

Racal Identificación de placas de vehículos

Thomson Sistemas OCR

St. George's Hos- Sistema de Clasificación de Tumores

pital

CRAM Sistema de selección de naranjas

Eletropaulo Sistema de previsión de demanda eléc-

trica

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

Fidelity Invest- Gestión de fondos de inversión (US\$ 2 ments 000 millones)

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

Fidelity Invest- Gestión de fondos de inversión (US\$ 2 ments 000 millones)

Chase Manhattan Detección de fraude en tarjeas de crédito

Bank

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

Fidelity Invest- Gestión de fondos de inversión (US\$ 2

ments 000 millones)

Chase Manhattan Detección de fraude en tarjeas de crédito

Bank

Citibank (USA) Evaluación de Crédito

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

Fidelity Invest- Gestión de fondos de inversión (US\$ 2

ments 000 millones)

Chase Manhattan Detección de fraude en tarjeas de crédito

Bank

Citibank (USA) Evaluación de Crédito

Nikko Securities Sistema de negociación de Índice de

bolsa

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

Fidelity Invest- Gestión de fondos de inversión (US\$ 2

ments 000 millones)

Chase Manhattan Detección de fraude en tarjeas de crédito

Bank

Citibank (USA) Evaluación de Crédito

Nikko Securities Sistema de negociación de Índice de

bolsa

Hill Samuel/UCL Sistema de previsión de fondos de inver-

sión

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

Fidelity Invest- Gestión de fondos de inversión (US\$ 2

ments 000 millones)

Chase Manhattan Detección de fraude en tarjeas de crédito

Bank

Citibank (USA) Evaluación de Crédito

Nikko Securities Sistema de negociación de Índice de

bolsa

Hill Samuel/UCL Sistema de previsión de fondos de inver-

sión

Thorn EMI/UCL Perfil de consumidores

Son algoritmos de busqueda/optimización que emplean un proceso adaptativo y paralelo en búsqueda de soluciones a problemas complejos, con las siguientes características:

Son algoritmos de busqueda/optimización que emplean un proceso adaptativo y paralelo en búsqueda de soluciones a problemas complejos, con las siguientes características:

Inspirados en la selección natural y en la reproducción genética

Son algoritmos de busqueda/optimización que emplean un proceso adaptativo y paralelo en búsqueda de soluciones a problemas complejos, con las siguientes características:

- Inspirados en la selección natural y en la reproducción genética
- Realizan la búsqueda bajo un contexto poblacional (en esta característica se basa la búsqueda paralela)

Son algoritmos de busqueda/optimización que emplean un proceso adaptativo y paralelo en búsqueda de soluciones a problemas complejos, con las siguientes características:

- Inspirados en la selección natural y en la reproducción genética
- Realizan la búsqueda bajo un contexto poblacional (en esta característica se basa la búsqueda paralela)
- Combinan los principios de sobrevivencia de los más aptos más la recombinación de información

Algoritmos Evolutivos (Evolutionary Computation) Relación con la Naturaleza

Evolución Natural

- Individuo
- Cromosoma
- Reproducción sexual
- Mutación
- Población
- Generaciones
- Ambiente

Algoritmos Evolutivos (Evolutionary Computation) Relación con la Naturaleza

Evolución Natural

- Individuo
- Cromosoma
- Reproducción sexual
- Mutación
- Población
- Generaciones
- Ambiente

Algoritmos Evolutivos

- Solución
- Representación (codificación)
- Operación de cruce
- Operación de mutación
- Conjunto de soluciones
- Ciclos
- Problema

Estor algoritmos, que inspirados en la selección natural y en la reproducción genética buscan ser:

Estor algoritmos, que inspirados en la selección natural y en la reproducción genética buscan ser:

 Adaptativos: La información actual tiene impacto en las búsquedas futuras

Estor algoritmos, que inspirados en la selección natural y en la reproducción genética buscan ser:

- Adaptativos: La información actual tiene impacto en las búsquedas futuras
- Paralelos: Varias soluciones son tomadas en cuenta en cada momento

Estor algoritmos, que inspirados en la selección natural y en la reproducción genética buscan ser:

- Adaptativos: La información actual tiene impacto en las búsquedas futuras
- Paralelos: Varias soluciones son tomadas en cuenta en cada momento
- Problemas Complejos: Muchos de los problemas a tratar son de difícil formulación matemática, o tienen un gran espacio de búsqueda (muchas soluciones posibles)

Algoritmos Evolutivos (Evolutionary Computation) Problemas Complejos

- Se desea maximizar $f(x) = x^2$, donde $0 \le x \le 2^L 1$, para $f(x) = \max$
- \bullet Se pueden procesar 10^9 instrucciones por segundo (1 GFlop)

Algoritmos Evolutivos (Evolutionary Computation) Problemas Complejos

- Se desea maximizar $f(x) = x^2$, donde $0 \le x \le 2^L 1$, para $f(x) = \max$
- ullet Se pueden procesar 10^9 instrucciones por segundo (1 GFlop)

2^L	Cantidad de puntos	Tiempo de búsqueda
L=3	8	10^{-8} seg.
L = 10	1024	10^{-6} seg.
L = 30	$\sim 10^9$	1 seg.
L = 90	10^{37}	$\sim 1.5 imes 10^{10}$ años

• Selección: Les da privilegio a los individuos más aptos

- Selección: Les da privilegio a los individuos más aptos
- Reproducción: Los individuos se reproducen de acuerdo a su aptitud

- Selección: Les da privilegio a los individuos más aptos
- Reproducción: Los individuos se reproducen de acuerdo a su aptitud
- Cruce: recombinación de información (partes de los individuos se intercambian)

- Selección: Les da privilegio a los individuos más aptos
- Reproducción: Los individuos se reproducen de acuerdo a su aptitud
- Cruce: recombinación de información (partes de los individuos se intercambian)
- Mutación: cambio aleatorio de un parámetro de una solución (un gen de un cromosoma de la población)

Sea el problema:

Encontrar el máximo de $f(x) = x^2$, donde el dominio es $x \in [0, 63]$

Sea el problema:

Encontrar el máximo de $f(x) = x^2$, donde el dominio es $x \in [0, 63]$

Representación de la solución

Palabras binarias representando potencias sucesivas de 2

```
011100 representa a 28
```

```
110101 representa a 53
```

000000 representa a 0 (individuo mínimo)

111111 representa a 63 (el indivíduo máximo)

Ind. Cromosoma *x* Aptitud
A 100100 36 1296

Ind.	Cromosoma	x	Aptitud
	100100	36	1296
В	010010	18	324

Ind.	Cromosoma	\boldsymbol{x}	Aptitud
	100100	36	1296
В	010010	18	324
C	010110	22	484

Ind.	Cromosoma	\boldsymbol{x}	Aptitud
	100100	36	1296
В	010010	18	324
C	010110	22	484
D	000001	1	1

Ind.	Cromosoma	x	Aptitud
	100100	36	1296
В	010010	18	324
C	010110	22	484
D	000001	1	1

Ind.	Cromosoma	x	Aptitud
	100100	36	1296
В	010010	18	324
C	010110	22	484
D	000001	1	1

La probabilidad de selección está asociada a la Aptitud del cromosoma

Algoritmos Evolutivos (Evolutionary Computation) Operadores

Cruce:

Algoritmos Evolutivos (Evolutionary Computation) Operadores

Cruce:

Mutación:

Algoritmos Evolutivos (Evolutionary Computation) Ciclo del Algoritmo

Algoritmos Evolutivos (Evolutionary Computation) Evaluación

Algoritmos Evolutivos se usan en aplicaciones donde ocurra:

- Problemas complejos de optimización
- Problemas de difícil modelación
- Problemas con gran espacio de búsqueda

Ventajas

Técnica de búsqueda global

Ventajas

- Técnica de búsqueda global
- Optimización de poblemas mal estructurados

Ventajas

- Técnica de búsqueda global
- Optimización de poblemas mal estructurados
- No se necesita una formulación matemática precisa del problema

Ventajas

- Técnica de búsqueda global
- Optimización de poblemas mal estructurados
- No se necesita una formulación matemática precisa del problema

Ventajas

- Técnica de búsqueda global
- Optimización de poblemas mal estructurados
- No se necesita una formulación matemática precisa del problema

Desventajas

 Puede ser difícil representar las soluciones en un cromosoma

Ventajas

- Técnica de búsqueda global
- Optimización de poblemas mal estructurados
- No se necesita una formulación matemática precisa del problema

Desventajas

- Puede ser difícil representar las soluciones en un cromosoma
- La evolución puede ser demorosa en algunos casos

Ventajas

- Técnica de búsqueda global
- Optimización de poblemas mal estructurados
- No se necesita una formulación matemática precisa del problema

Desventajas

- Puede ser difícil representar las soluciones en un cromosoma
- La evolución puede ser demorosa en algunos casos
- La calidad del modelo depende del experto

Se muestran unos ejemplos de aplicaciones industriales:

Se muestran unos ejemplos de aplicaciones industriales:

GENERAL ELEC- Identificación de placas de vehículos **TRIC**

Se muestran unos ejemplos de aplicaciones industriales:

GENERAL ELEC- Identificación de placas de vehículos

TRIC

BRITISH GAS Optimización de proyecto de motores DC

Se muestran unos ejemplos de aplicaciones industriales:

GENERAL ELEC- Identificación de placas de vehículos

TRIC

BRITISH GAS Optimización de proyecto de motores DC

BBN Optimización de la distribución de gas

Se muestran unos ejemplos de aplicaciones industriales:

GENERAL ELEC- Identificación de placas de vehículos

TRIC

BRITISH GAS Optimización de proyecto de motores DC

BBN Optimización de la distribución de gas

ATTAR Ruteamiento de telecomunicaciones

Se muestran unos ejemplos de aplicaciones industriales:

GENERAL ELEC- Identificación de placas de vehículos

TRIC

BRITISH GAS Optimización de proyecto de motores DC

BBN Optimización de la distribución de gas

ATTAR Ruteamiento de telecomunicaciones

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

CAP VOLMAC

Evaluación de Crédito y análisis de riesgo

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

CAP VOLMAC SEARCHSPACE

Evaluación de Crédito y análisis de riesgo Detección de fraude en bolsa (Londres)

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

CAP VOLMAC SEARCHSPACE IOC Evaluación de Crédito y análisis de riesgo Detección de fraude en bolsa (Londres) Planificación de Juegos Olímpicos

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

CAP VOLMAC SEARCHSPACE IOC CAP Gemini Evaluación de Crédito y análisis de riesgo Detección de fraude en bolsa (Londres) Planificación de Juegos Olímpicos Evaluación de préstamos y financiamientos

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

CAP VOLMAC Evaluación de Crédito y análisis de riesgo **SEARCHSPACE** Detección de fraude en bolsa (Londres)

IOC Planificación de Juegos Olímpicos

CAP Gemini Evaluación de préstamos y financiamien-

tos

GWI Ajuste de modelos económicos

Se muestran unos ejemplos de aplicaciones comerciales exitosas para este tipo de sistemas:

CAP VOLMAC Evaluación de Crédito y análisis de riesgo SEARCHSPACE Detección de fraude en bolsa (Londres)

IOC Planificación de Juegos Olímpicos

CAP Gemini Evaluación de préstamos y financiamien-

tos

GWI Ajuste de modelos económicos

World Bank Generación de reglas de negociación en

bolsa

