Решения на задачите от писмения изпит по ЕАИ на специалност "Компютърни науки", проведен на 18 юни 2024 г.

Задача 1 (10 точки). За една дума $\omega = a_0 a_1 \cdots a_{n-1}$ над азбуката $\{a,b\}$ да означим за $i < n, \omega$ [i:] $= a_i \cdots a_{n-1}$ и ω [i:] = \$ за $i \ge n$, където $\$ \notin \{a,b\}$. Нека L и M са регулярни езици над азбуката $\{a,b\}$. Докажете, че езикът

$$K = \{ \omega \in \{a, b\}^* \mid (\exists i) [\omega \texttt{[2i:]} \in L \& \omega \texttt{[2i+1:]} \in M] \}$$

е регулярен.

Забележка. Няма как ω [i:] = ε . Доста хора бяха изпуснали това в решенията си, но не сме им отнемали точки.

Решение. Ще покажем, че:

$$K = \underbrace{(\{a,b\}^2)^* \cdot \left[L \cap \left(\{a,b\} \cdot (M \setminus \{\varepsilon\})\right)\right]}_{K'}$$

- (\subseteq) Нека $\omega \in K$. Тогава има i, за което ω [2i:] $\in L$ и ω [2i+1:] $\in M$. Нека $\omega = a_0 \cdots a_{n-1}$. Ако положим $\alpha = a_0 \cdots a_{2i-1}, x = a_{2i}$ и $\beta = a_{2i+1} \dots a_{n-1}$, то тогава:
 - $-\alpha \in (\{a,b\}^2)^*$, понеже $|\alpha| = 2i$ е четно;
 - $-x\beta = \omega[2i:] \in L;$
 - $-\beta = \omega[2i+1:] \in M \setminus \{\varepsilon\}.$

Така $\omega \in K'$.

- (\supseteq) Обратно, нека $\omega \in K'$. Тогава има $\alpha \in (\{a,b\}^2)^*, \gamma \in L \cap \left(\{a,b\} \cdot (M \setminus \{\varepsilon\})\right)$, за които $\omega = \alpha \gamma$, откъдето $\gamma \in L$ и $\gamma = x\beta$ за някои $x \in \{a,b\}$ и $\beta \in M \setminus \{\varepsilon\}$. Ако положим $i = \frac{|\alpha|}{2}$ (това е добре дефинирано, защото $|\alpha|$ е четно по допускане), то тогава ω [2i:] = ω [$|\alpha|$:] = γ и ω [2i+1:] = ω [$|\alpha|$ +1:] = β (понеже $\omega = \alpha \gamma = \alpha x \beta$). Следователно:
 - $-\omega[2i:] \in L;$
 - $-\omega$ [2i+1:] $\in M \setminus \{\varepsilon\} \subseteq M$.

Така $\omega \in K$.

 Γ ъй като изразихме K, използвайки само регулярни езици и операции, които запазват регулярност, получаваме, че K е регулярен.

Задача 2 (**25 точки**). За произволна дума ω , да означим с $|\omega|_a$ броя на срещанията на буквата a в думата ω . За произволен език L над азбуката $\{a,b\}$ дефинираме:

$$Count(L) = \{ \omega \sharp a^{|\omega|_a} \mid \omega \in L \}.$$

Вярно ли следното:

- а) Ако L е регулярен, то Count(L) е регулярен? (7 т.)
- б) Ако L е регулярен, то Count(L) е безконтекстен? (10 т.)
- в) Ако L е безконтекстен, то Count(L) е безконтекстен? (8 т.)

Обосновете отговорите си като приложите доказателства!

Решение.

а) Ако $L = \{a\}^*$, то тогава:

$$\operatorname{Count}(L) = \{ \omega \sharp a^{|\omega|_a} \mid \omega \in L \} = \{ a^n \sharp a^{|a^n|_a} \mid n \in \mathbb{N} \} = \{ a^n \sharp a^n \mid n \in \mathbb{N} \}.$$

От тук нататък трябва да се докаже, че Count(L) не е регулярен, но тук ще бъде спестено, понеже подобни на Count(L) езици сме доказвали на упражнения, че не са регулярни.

б) Нека $\overline{a}=a$ и $\overline{b}=\varepsilon$. Можем да забележим, че за всяко $\omega\in\{a,b\}^*$ и $x\in\{a,b\}$:

$$a^{|\omega|_a}\overline{x} = a^{|x\omega|_a}$$

Нека $\mathcal{A}=\langle\{a,\,b\},\,Q,\,s,\,\delta,\,F\,\rangle$ е ДКА за езика L. Строим граматика $G=\langle\{a,\,b\},\,V,\,S,\,R\,\rangle$ за Count(L):

- на всяко $q \in Q$ съответства променлива $X_q \in V$;
- началната променлива е X_s ;
- на всеки преход $\delta(p,x)=q$ съответства правилото $X_p\to xX_q\overline{x};$
- на всяко $f \in F$ съответства прехода $X_f \to \sharp$.

Ще покажем, че за всяко $q \in Q$ е изпълнено, че $\mathcal{L}_G(X_q) = \underbrace{\{\omega \# a^{|\omega|_a} \mid \delta^*(q,\omega) \in F\}}_{L_q}$. След това ако приложим твърдението за q = s, сме готови.

(\subseteq) Ще покажем с индукция по $n \in \mathbb{N}$, че ако $\alpha \in \mathcal{L}_G(X_q)$, тоест $X_q \stackrel{n}{\lhd}_G \alpha$ и $\alpha \in \{a,b,\sharp\}^*$, то тогава $\alpha = \omega \sharp a^{|\omega|_a}$ за някое $\omega \in \{a,b\}^*$, където $\delta^*(q,\omega) \in F$, тоест $\alpha \in L_q$.

В базата n=0, следователно $\alpha \notin \{a,b,\sharp\}^*$, с което базата е тривиално изпълнена.

Нека сега n>0. Тогава в този извод прилагаме някое правило. Разглеждаме двата възможни случая за първото приложено правило:

- 1 сл. правило от вида $X_q \to \sharp$ тогава по конструкция $q \in F$, откъдето $\delta^*(q,\varepsilon) \in F$. Тъй като това е първото приложено правило в извода, то $\alpha = \sharp = \varepsilon \sharp \varepsilon = \varepsilon \sharp a^0 = \varepsilon \sharp a^{|\varepsilon|_a} \in L_q$.
- 2 сл. правило от вида $X_q o x X_{q'} \overline{x}$ тогава по конструкция $\delta(q,x) = q'$. Тъй като това е първото приложено правило в извода, то $\alpha = x \alpha' \overline{x}$, където $X_{q'} \overset{n-1}{\lhd} \alpha'$. Тогава от индуктивното предположение за n-1 и q' получаваме, че $\alpha' = \omega \sharp a^{|\omega|_a}$ за някое $\omega \in \{a,b\}^*$, където $\delta^*(q',\omega) \in F$. Тъй като $\delta(q,x) = q'$ и $\delta^*(q',\omega) \in F$, то тогава $\delta^*(q,x\omega) \in F$, откъдето $\alpha = x \omega \sharp a^{|\omega|_a} \overline{x} = x \omega \sharp a^{|x\omega|_a} \in L_q$.
- (\supseteq) Ще покажем с индукция по $|\omega|$, че ако $\delta^*(q,\omega) \in F$, то $X_q \stackrel{*}{\lhd}_G \omega \sharp a^{|\omega|_a}$. В базата ако $\omega = \varepsilon$ и $\delta^*(q,\omega) \in F$, то $q \in F$, откъдето имаме правилото $X_q \to \sharp$, следователно:

$$X_q \stackrel{*}{\triangleleft}_G \sharp = \varepsilon \sharp \varepsilon = \varepsilon \sharp a^0 = \varepsilon \sharp a^{|\varepsilon|_a}.$$

Нека сега $\omega=x\omega'$, където $\delta^*(q,x\omega')\in F$ и $x\in\{a,b\}$. Тогава за $q'=\delta(q,x)$ е изпълнено, че $\delta^*(q',\omega')\in F$. Тогава от индуктивното предположение за ω' и q' получаваме, че $X_{q'}\stackrel{*}{\lhd}\omega'\sharp a^{|\omega'|_a}$. Тъй като $\delta(q,x)=q'$, то по конструкция имаме правилото $X_q\to xX_q'\overline{x}$, откъдето

$$X_q \stackrel{*}{\lhd}_G x\omega' \sharp a^{|\omega|_a} \overline{x} = x\omega' \sharp a^{|x\omega'|_a} = \omega \sharp a^{|\omega|_a}.$$

Ако $\alpha \in L_q$, то $\alpha = \omega \sharp a^{|\omega|_a}$ за някое $\omega \in \{a,b\}^*$, където $\delta^*(q,\omega) \in F$. Прилагайки сегашното твърдение получаваме, че $X_q \stackrel{*}{\lhd}_G \alpha$, откъдето $\alpha \in \mathcal{L}_G(X_q)$.

в) Ако $L=\{a^nb^n\mid n\in\mathbb{N}\},$ то тогава:

$$\operatorname{Count}(L) = \{\omega \sharp a^{|\omega|_a} \mid \omega \in L\} = \{a^n b^n \sharp a^{|a^n b^n|_a} \mid n \in \mathbb{N}\} = \{a^n b^n \sharp a^n \mid n \in \mathbb{N}\}.$$

От тук нататък трябва да се докаже, че Count(L) не е безконтекстен, но тук ще бъде спестено, понеже подобни на Count(L) езици сме доказвали на упражнения, че не са безконтекстни.