ACM Programming Challenges Lab

Exercise 1 – *One cycle*

Description You are given a connected graph on n vertices with *only one* cycle, where vertices are labelled with numbers from 0 to n-1. Cycle is defined as a sequence of *distinct* vertices v_1, v_2, \ldots, v_k , where k > 2, such that each two consecutive vertices are connected with an edge, as well as the vertices v_k and v_1 . The *length* of a cycle v_1, \ldots, v_k is k. Your task is to calculate the length of the cycle in a given graph.

Input The first line of the input contains an integer $T \leq 10$, giving the number of test cases to follow.

Each test case starts with a line containing a single integer, the number of vertices n. Next n lines will each contain a pair of different numbers $u,v\in\{0,\ldots,n-1\}$. A line consisting of numbers u,v mean that vertices u and v are connected with an edge.

Output For each test case output a single line containing a single integer, the length of the cycle.

Test Sets

- **Small 50 points -** All test cases in this testset will have the constraint that the number of vertices n is smaller than 10^3 .
- Large 50 points All test cases in this testset will have the constraint that the number of vertices n is smaller than 10^5 .

Sample input	Sample output
2	3
3	4
0 1	
1 2	
2 0	
8	
4 1	
1 5	
2 1	
3 7	
7 6	
7 0	
2 0	
2 6	