TRIGONOMETRY VOLUME VIII

1st SECONDARY

FEEDBACK

Del gráfico, determine | Resolución el signo de cosβ.

Recuerda:

Del gráfico, $\beta \in IIIC$:

$$\therefore$$
 $\cos\beta = (-)$

Del gráfico, determine Resolución el signo de

 $F = sec\theta. sen\beta. cot\alpha$

$$F = \underline{\sec\theta} \cdot \underline{\sec\beta} \cdot \underline{\cot\alpha}$$

$$\in IIC \in IC \in IIIC$$

$$F = (-) (+) (+)$$
 Recuerda:

$$\mathbf{F} = (-) (+)$$

$$F = (-)$$

Del gráfico, determine el signo Resolución de $\csc\left(\frac{\beta}{2}\right)$.

$$\beta \in IIIC: 180^{\circ} < \beta < 270^{\circ} \dots \div 2$$

$$90^{\circ} < \frac{\beta}{2} < 135^{\circ}$$

$$\rightarrow \frac{\beta}{2} \in IIC$$

Recuerda:

Determine el valor numérico | Resolución de

$$E = (20\cos 180^{\circ} + 8\csc 90^{\circ})^{2}$$

Recuerda

RT	0°;360°	90°	180°	270°
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	Ν	1	N.D	-1

Reemplazamos en:

$$E = (20(-1) + 8(1))^2$$

$$E = (-20 + 8)^2$$

$$E = (-12)^2$$

$$E = 144$$

Si
$$\alpha = 10^{\circ}$$
, calcule el valor numérico de $A = 10 \csc 9\alpha - 3 \cos 36\alpha - 8 \tan 18\alpha$

Resolución

Reemplazamos $\alpha = 10^{\circ}$, en:

$$A = 10 \csc 90^{\circ} - 3 \cos 360^{\circ} - 8 \tan 180^{\circ}$$

$$A = 10(1) - 3(1) - 8(0)$$

$$A = 10 - 3$$

$$A = 7$$

Determine el valor numérico de x si:

$$\mathbf{sen270}^{\circ} = \frac{7x + 13}{5 - x}$$

Recuerda

RT	0°;360°	90°	180°	270°
SEN	0	1	0	-]
cos	1	0	-1	0
TAN	0	N.D	0	N.D
COT	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	Ν	1	N.D	-1

Resolución

$$-1 = \frac{7x + 13}{5 - x}$$

$$-5 + x = 7x + 13$$

$$-5 - 13 = 6x$$

$$-18 = 6x$$

HELICO | FEEDBACK

Indique cuáles de los siguientes ángulos son coterminales.

- I. 340° y -200°
- II. 490° y –230°
- III. 710° y 10°

Recuerda:

 α y β son ángulos coterminales, entonces:

$$\alpha$$
 - β =360°n; $n \in \mathbb{Z}$

Resolución

1. 340° - (-200°) = 540° (no es múltiplo)

II. 490° - (-230°) = 720° (sí es múltiplo)

•

490° y -230° son ángulos coterminales

Del gráfico

Reduzca

$$M = \frac{18\cos\beta}{\cos\alpha} - \frac{5\cot\alpha}{\cot\beta}$$

Resolución

 α y β son COTERMINALES

$$M = \frac{18\cos\beta}{\cos\alpha} - \frac{5\cot\alpha}{\cot\beta}$$

Reemplazamos

$$M = \frac{18\cos\beta}{\cos\beta} - \frac{5\cot\alpha}{\cot\alpha}$$

$$M = 18(1) - 5(1)$$

$$\cos\alpha = \cos\beta$$

$$\cot \alpha = \cot \beta$$

HELICO | FEEDBACK

Si α y θ son ángulos coterminales, | Resolución tal que $\cot \alpha = 1$; efectúe

$$N = 5\cot\alpha - \frac{\cot\theta}{5}$$

Recuerda:

$$\cot \alpha = \cot \theta = 1$$

$$N = 5\cot\alpha - \frac{\cot\theta}{5}$$

$$N = 5\cot\alpha - \frac{\cot\alpha}{5}$$

$$N = 5(1) - \frac{(1)}{5}$$

$$\therefore \mathbf{M} = \frac{24}{5}$$

HELICO | FEEDBACK

10

Lucía compró un terreno en forma la Resolución de rectángulo, tal como se muestra la Resolución en la figura.

$$b = (30 \text{ sen}\alpha) \text{ m}$$

Si ángulos 30° son coterminales, ¿cuál es el área de dicho terreno?

Por propiedad de ángulos coterminales:

$$RT(\alpha) = RT (30^{\circ})$$

Entonces:

$$b=30$$
sen α

$$b=30(1/2)$$

$$h=12\sqrt{3}\tan\alpha$$

$$h=12\sqrt{3}tan30^{\circ}$$

h=
$$12\sqrt{3}$$
. $\frac{1}{\sqrt{3}}$

Reemplazamos:

$$S = (15 \text{ m})(12 \text{ m})$$

El área del terreno es 180 m².

