Report: Hybrid vigor in response to Eimeria in the HMHZ

Alice

27 June 2018

Contents

To be fixed before all
General informations on HMHZ
Comparison of prevalences based on detection method Improving Eimeria oocysts detection
Testing hybrid vigor along HMHZ Oocyst shedding proxy
qPCR proxy
Bonus part: genotyping of mice case/control

To be fixed before all

• Some information regarding latitude and longitude are missing for the following mice:

SK 3174

• We still miss info (HI) on the following mice (ask Jarda):

```
AA_0411, AA_0412, AA_0420, AA_0464, SK_2668, SK_2669, SK_2671, SK_2674, SK_2675, SK_2676, SK_2677, SK_2677, SK_2678, SK_2681, SK_2682, SK_2684, SK_2685, SK_2687, SK_2688, SK_2690, SK_2692, SK_2693, SK_2695, SK_2696, SK_2699, SK_2700, SK_2701, SK_2702, SK_2703, SK_2704, SK_2705, SK_2710, SK_2713, SK_2715, SK_2724, SK_2727, SK_2729, SK_2733, SK_2734, SK_2736, SK_2737, SK_2738, SK_2739, SK_2745, SK_2750, SK_2751, SK_2751, SK_2752, SK_2754, SK_2755, SK_2756, SK_2758, SK_2759, SK_2760, SK_2761, SK_2775, SK_2778, SK_2780, SK_2782, SK_2789, SK_2792, SK_2793, SK_2794, SK_2795, SK_2795, SK_2799, SK_2800, SK_2801, SK_2802, SK_2803, SK_2804, SK_2805, SK_2851, SK_2852, SK_2853, SK_2854, SK_2855, SK_2856, SK_2857, SK_2858, SK_2859, SK_2860, SK_2861, SK_2862, SK_2863, SK_2864, SK_2865, SK_2866, SK_2868, SK_2869, SK_2871, SK_2873, SK_2874, SK_2875, SK_2876, SK_2877, SK_2878, SK_2879, SK_2880, SK_2881, SK_2884, SK_2885, SK_2886, SK_2886, SK_2886, SK_2886, SK_2881, SK_2884, SK_2885, SK_2886, SK_2886, SK_2887, SK_2884, SK_2885, SK_2886, SK_2886, SK_2886, SK_2881, SK_2884, SK_2885, SK_2886, SK_2886, SK_2886, SK_2881, SK_2884, SK_2885, SK_2886, SK_2886, SK_2887, SK_2884, SK_2885, SK_2886, SK_2887, SK_2888, SK_2889, SK_2958, SK_2959, SK_2960, SK_2961, SK_3174, SK_3333, SK_3417, SK_3461, SK_3462, SK_3469, SK_3470, SK_3471
```

General informations on HMHZ

Figure 1: Map of the mice with OPG, PCR or qPCR status, caught in the Brandenburg-MVP transect in 2015, 2016 and 2017. Each point corresponds to one location, a less pronounced transparency indicating more animals sampled at this location. Hybrid index is represented by a gradient from blue (M.m.d) to red (M.m.m)

- 655 mice were captured over three years, from 157 farms
- From these mice:
- 485 mice had Eimeria detected by feces flotation,
- 653 mice had Eimeria detected by colon content PCR (cf paper Victor),
- 160 mice had Eimeria detected by qPCR on intestinal tissues
- On average, 4.04 mice were caught per farm (95% CI 0.34)
- Hybrid indexes were calculated as ratio of M.m.d/M.m.m alleles (between 4 and 14, on average 13 loci)

Figure 2: Number of animals caught along the hybrid index

Comparison of prevalences based on detection method

Table 1: Prevalence of Eimeria per year, based on oocyst flotation

	2014	2015	2016	2017
FALSE	0	92.0	126	167.00
TRUE	0	10.0	24	66.00
$\operatorname{prevalence}(\%)$	NaN	9.8	16	28.33

Table 2: Prevalence of Eimeria per year, based on PCR detection. A mouse was considered infected by Eimeria ifone of the 3 markers (COI, 18S or ORF470) gave a sequence

	2014	2015	2016	2017
negative	53.00	110.00	146.00	226.0
positive	23.00	12.00	20.00	63.0
$\operatorname{prevalence}(\%)$	30.26	9.84	12.05	21.8

Table 3: Prevalence of Eimeria per year, based on qPCR

	2014	2015	2016	2017
negative	0	0	129.00	0
positive	0	0	31.00	0
$\operatorname{prevalence}(\%)$	NaN	NaN	19.38	NaN

Table 4: Prevalence of Eimeria per year, based on PCR detection. A mouse was considered infected by Eimeria ifone of the 3 markers (COI, 18S or ORF470) gave a sequence, OR if it had a positive count of oocysts in its feces, OR if it was qPCR positive

	2014	2015	2016	2017
negative	0	0	112	0
positive	23	17	48	87
prevalence(%)	100	100	30	100
ERROR TO FIX THE	RE			

Improving Eimeria oocysts detection

22 new samples were detected while diluting by $0.1 \mathrm{mL}$ PBS instead of $1 \mathrm{mL}$ before counting in Neubauer chamber.

Adjusted R-squared = 0.81 represents the amount of variation in y explained by x.

https://www.r-bloggers.com/correlation-and-linear-regression/ (for Lorenzo)

Figure 3: Comparison of OPG depending on dilution level. Red line represents linear relationship between both axis, dotted line represents the function y = x

Comparison oocysts flotation, PCR, qPCR

Figure 4: Comparison of detection: PCR vs flotation

(polygon[GRID.polygon.196], polygon[GRID.polygon.197], polygon[GRID.polygon.198], polygon[GRID.polyg

Figure 5: Comparison of positive values of OPG and qPCR for year 2016

Figure 6: Comparison of detection: PCR vs flotation vs qPCŔ

(polygon[GRID.polygon.286], polygon[GRID.polygon.287], polygon[GRID.polygon.288], polygon[GRID.polyg

Testing hybrid vigor along HMHZ

Oocyst shedding proxy

First approximation:

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

Figure 7: OPG along HI, colored per year. Blue line represent a smooth function (method = loess)

Statistical model (dvp...)

qPCR proxy

tbc

BCI proxy

First approximation:

Figure 8: BCI along HI, colored per level of OPG

Bonus part: genotyping of mice case/control

Discussed with Stuart:

- Test distributions 0 or counts. Test all vs only infected ("intensity") distribution. We should be able to fit the distribution of infected on all. Zeros are data. Stochastic move.
- Separation of the zero class. balanced design case/control ~ 400 +/-70infectés SNPchip.
- H0: no differences are observed
- Separate < 0.5 and > 0.5 to see the species effect
- timing: WHEN (for my thesis?)