On R-models

Daniel Rogozin^{1,2}

¹Lomonosov Moscow State University ²Serokell OÜ

Definition 1.

$$\overline{A \to A} \stackrel{ax}{\longrightarrow} \frac{\Gamma \to A \qquad \Delta, B, \Theta \to C}{\Delta, \Gamma, A \setminus B, \Theta \to C} \setminus \to \qquad \qquad \frac{A, \Pi \to B}{\Pi \to A \setminus B} \to \setminus \\
\frac{\Gamma \to A \qquad \Delta, B, \Theta \to C}{\Delta, B \setminus A, \Gamma, \Theta \to C} / \to \qquad \qquad \frac{\Pi, A \to B}{\Pi \to B \setminus A} \to / \\
\frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \bullet B, \Delta \to C} \bullet \to \qquad \qquad \frac{\Gamma \to A \qquad \Delta \to B}{\Gamma, \Delta \to A \bullet B} \to \bullet$$

Definition 2.

R-model is a pair $\mathcal{M} = \langle W, R, v \rangle$, where R is a transitive relation on W and $v : Tp \to 2^R$ is a valuation, such that:

- 1. $\mathcal{M}, w \Vdash p_i \Leftrightarrow w \in v(p_i);$
- 2. $\mathcal{M}, \langle a, b \rangle \Vdash A \bullet B \Leftrightarrow there \ exists \ c \in W, \ \mathcal{M}, a \Vdash A \ and \ \mathcal{M}, b \Vdash B;$
- 3. $\mathcal{M}, \langle a, b \rangle \Vdash A \backslash B \Leftrightarrow \text{for all } c \in R^{-1}(a), \ \mathcal{M}, \langle c, a \rangle \Vdash A \text{ implies } \mathcal{M}, \langle c, b \rangle \Vdash B;$
- 4. $\mathcal{M}, \langle a, b \rangle \Vdash B/A \Leftrightarrow for \ all \ c \in R(a), \ \mathcal{M}, \langle a, c \rangle \Vdash A \ implies \ \mathcal{M}, \langle b, c \rangle \Vdash B;$
- 5. $\mathcal{M}, \langle a, b \rangle \Vdash \Gamma \to A \Leftrightarrow \mathcal{M}, \langle a, b \rangle \Vdash \Gamma \text{ implies } \mathcal{M}, \langle a, b \rangle \Vdash A$

where $\mathcal{M}, \langle a, b \rangle \Vdash \Gamma$ denotes $\mathcal{M}, \langle a, b \rangle \Vdash A_1 \bullet \cdots \bullet A_n$, or, equivalently, there exist c_1, \ldots, c_{n-1} , such that $\mathcal{M}, \langle a, c_1 \rangle \Vdash A_1, \mathcal{M}, \langle c_1, c_2 \rangle \Vdash A_2, \ldots, \mathcal{M}, \langle c_{n-1}, b \rangle \Vdash A_n$ implies that $\mathcal{M}, \langle a, b \rangle \Vdash B$.

Theorem 1. Let \mathbb{F} be a R-frame, then $\mathbb{F} \models L$.

Definition 3.

Let \mathcal{F}_1 , \mathcal{F}_2 be R-frames and $\mathcal{M}_1 = \langle \mathcal{F}_1, v_1 \rangle$, $\mathcal{M}_2 = \langle \mathcal{F}_2, v_2 \rangle$ be R-models. A map $f: W_1 \to W_2$ is said to be a R-frame p-morphism if the following conditions hold:

- 1. f is onto;
- 2. $\forall a, b \in W_1(aR_1b \Rightarrow f(a)R_2f(b))$ (monotonicity);

- 3. $\forall d \in W_1, c \in W_2, f(d)R_2c \Rightarrow \exists c' \in W_1, f(c') = c \& dR_1c' \text{ (left lift property)};$
- 4. $\forall d \in W_1, c \in W_2, cR_2f(d) \Rightarrow \exists c' \in W_1, f(c') = c \& c'R_1d \text{ (right lift property)};$

A map $f: \mathcal{F}_1 \to \mathcal{F}_2$ is R-model p-moprhism, iff:

$$\mathcal{M}_1, \langle a, b \rangle \Vdash p_i \Leftrightarrow \mathcal{M}_2, \langle f(a), f(b) \rangle \Vdash p_i$$

Lemma 1. Let $f: \mathcal{M}_1 \twoheadrightarrow \mathcal{M}_2$, then $\mathcal{M}_1, \langle a, b \rangle \Vdash A \Leftrightarrow \mathcal{M}_2, \langle f(a), f(b) \rangle \Vdash A$, for all $a, b \in W_1$ and for all $A \in Fm$

Proof.

$1. \Rightarrow$

- (a) Basic case: follows from the definition.
- (b) Let $A = B \bullet C$ and $\mathcal{M}_1, \langle a, b \rangle \Vdash B \bullet C$, then there exists $c \in W_1$, such that $\mathcal{M}_1, \langle a, c \rangle \Vdash B$ and $\mathcal{M}_1, \langle c, b \rangle \Vdash C$. Then, aR_1c and cR_1b , so $f(a)R_2f(c)$ and $f(c)R_2f(b)$.
 - Thus, by IH, $\mathcal{M}_2, \langle f(a), f(c) \rangle \Vdash B$ and $\mathcal{M}_2, \langle f(c), f(b) \rangle \Vdash C$, so $\mathcal{M}_2, \langle f(a), f(b) \rangle \Vdash B \bullet C$.
- (c) Let $A = B \setminus C$ and $\mathcal{M}_1, \langle a, b \rangle \Vdash B \setminus C$. Let $c \in W_2$, such that $cR_2f(a)$. Then, by left lift property, there exist $d \in W_1$, such that f(d) = c and dR_1a . Thus, $\mathcal{M}_1, \langle d, a \rangle \Vdash A$ implies $\mathcal{M}_1, \langle d, b \rangle \Vdash B$. By IH, $\mathcal{M}_2, \langle c, f(a) \rangle \Vdash A$ implies $\mathcal{M}_2, \langle c, f(b) \rangle \Vdash B$, then $\mathcal{M}_2, \langle f(a), f(b) \rangle \Vdash A \setminus B$.
- (d) Similarly to (c), but via right lift property.

2. ←

- (a) Basic case: follows from the definition.
- (b) Let $A = B \bullet C$. Let $\mathcal{M}_2, \langle f(a), f(b) \rangle \Vdash B \bullet C$. Then there exists $c \in W_2$, such that $\mathcal{M}_2, \langle f(a), c \rangle \Vdash B$ and $\mathcal{M}_2, \langle c, f(b) \rangle \Vdash C$. So far as f is surjection, then there exists $d \in W_1$, such that c = f(d), then $\mathcal{M}_2, \langle f(a), f(d) \rangle \Vdash B$ and $\mathcal{M}_2, \langle f(d), f(b) \rangle \Vdash C$, and, by IH, $\mathcal{M}_1, \langle a, d \rangle \Vdash B$ and $\mathcal{M}_1, \langle d, b \rangle \Vdash C$, then $\mathcal{M}_1, \langle a, b \rangle \Vdash B \bullet C$.
- (c) Let $A = B \setminus C$ and $\mathcal{M}_2, \langle f(a), f(b) \rangle \Vdash B \setminus C$. Let $c \in W_1$ and cR_1a , then $f(c)R_1f(a)$ by monotonicity, so $\mathcal{M}_2, \langle f(c), f(a) \rangle \Vdash A$ implies $\mathcal{M}_2, \langle f(c), f(b) \rangle \Vdash B$. By IH, $\mathcal{M}_1, \langle c, a \rangle \Vdash A$ implies $\mathcal{M}_1, \langle c, b \rangle \Vdash B$. Thus, $\mathcal{M}_1, \langle c, a \rangle \Vdash A \setminus B$.
- (d) Similarly to (c).

Lemma 2.

- 1. Let \mathcal{M}_1 and \mathcal{M}_2 be R-models and $f: \mathcal{M}_1 \twoheadrightarrow \mathcal{M}_2$. Then $\mathcal{M}_1 \models A$ iff $\mathcal{M}_2 \models A$.
- 2. Let \mathcal{F}_1 and \mathcal{F}_2 be R-frames and $f: \mathcal{F}_1 \to \mathcal{F}_2$, then $\mathcal{F}_1 \models A$ implies $\mathcal{F}_2 \models A$.

Proof.

1. • Only if:

Let $\mathcal{M}_1 \models A$. Let $c, d \in W_2$. So far as f is onto, then there exists $a, b \in W_1$, such that f(a) = c and f(b) = d.

Then $\mathcal{M}_1, \langle a, b \rangle \Vdash A$, thus $\mathcal{M}_2 \langle f(a), f(b) \rangle \Vdash A$. That is, $\mathcal{M}_2 \langle c, d \rangle \Vdash A$

• If:

Follows from the previous lemma.

2. Let $f: \mathcal{F}_1 \twoheadrightarrow \mathcal{F}_2$ and $\mathcal{F}_1 \models A$.

Let $\mathcal{M}_1 = \langle \mathcal{F}_1, v_1 \rangle$ and $\mathcal{M}_2 = \langle \mathcal{F}_2, v_2 \rangle$, such that for all $p \in Tp$, $\mathcal{M}_1, \langle a, b \rangle \Vdash p \Leftrightarrow_{def} \mathcal{M}_1, \langle f(a), f(b) \rangle \Vdash p$. Thus, $\mathcal{M}_1 \twoheadrightarrow \mathcal{M}_2$ and $\mathcal{M}_1 \models A$. Thus, $\mathcal{M}_2 \models A$.