Stereometria

- W graniastosłupie prawidłowym trójkątnym pole powierzchni bocznej jest równe sumie pól obu podstaw. Wykaż, że tangens kąta nachylenia przekątnej ściany bocznej do sąsiedniej ściany jest równy 3 2/2
- Krawędź podstawy ostrosłupa prawidłowego sześciokątnego ma długość 12, a jego wysokość jest równa 24. Wykaż, że pole przekroju ostrosłupa płaszczyzną zawierającą krawędź boczną i krótszą podstawę jest równe 36√51.
- 3. Podstawą ostrosłupa jest trójkąt równoramienny o ramieniu długości 10cm i podstawie o długości 16cm. Wszystkie krawędzie boczne są równe 10cm. Wykaż, że objętość tego ostrosłupa jest równa $V = \frac{80\sqrt{11}}{3} \text{cm}^2$.
- **4.** Przekątna prostopadłościanu tworzy ze ścianami o wspólnym wierzchołku kąty α , β , γ . Wykaż, że $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 2$.
- 5. W graniastosłupie prawidłowym trójkątnym o krawędzi długości a poprowadzono płaszczyznę przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej. Kąt nachylenia płaszczyzny jest równy α , $\alpha \in (0^{\circ}, 90^{\circ})$. Udowodnij, że objętość tego graniastosłupa jest równa $V = \frac{3a^3 \operatorname{tg}\alpha}{4}$.
- **6.** W graniastosłupie prawidłowym czworokątnym pole powierzchni bocznej jest równe sumie pól obu podstaw. Uzasadnij, że cosinus kąta nachylenia przekątnej graniastosłupa do płaszczyzny podstawy jest równy $\cos\alpha = \frac{2\sqrt{2}}{3}$.
- 7. Podstawą prostopadłościanu jest kwadrat. Suma długości wszystkich krawędzi prostopadłościanu jest równa 120. Uzasadnij, że pole powierzchni całkowitej tego prostopadłościanu jest największe, gdy prostopadłościan jest sześcianem o krawędzi długości 10.
- 8. Podstawa ABC i ściana boczna BCD trójkątnego ostrosłupa są trójkątami równobocznymi o boku a. Krawędź DA jest nachylona do podstawy ostrosłupa pod kątem α . Wykaż, że objętość tego ostrosłupa wynosi $V = \frac{a^3 \operatorname{tg}\alpha}{12}$.
- 9. Podstawą ostrosłupa jest trójkąt prostokątny, w którym r jest długością promienia okręgu wpisanego oraz R jest długością promienia okręgu opisanego na tym trójkącie. Wszystkie ściany boczne nachylone są do płaszczyzny podstawy pod tym samym kątem α . Wykaż, że objętość tego ostrosłupa jest równa $V=\frac{1}{3}r^2 \text{tg}\alpha(2R+r)$.