and the second	
[6.1]	Antidorivatives, Rules of Integration
	U
	A function F is an antiderivative of f g on.
	on interval I if F'(x) = f(x) for all x & I.
[e.g.	$F(x) = x^3 + 1$ is an antiderivative of $f(x) = 3x^2$
	as $f'(x) = 3x^2 = f(x)$
	V
	However, note that $F(x) = x^3 + C$ (Cisarbithary h constant)
	however, now out (h) constant)
	is also an antiderivative of f(x)?
	V
,	
Theon	em 9f F(x) is an anti-derivative of f(x),
	- J
	then all anti-derivatives of f(x) must bok
	like 6/x)=F(x) + C (C-anbitmany constant)
	whe april () 1 C (C and)
	and no others,

The process of finding all anti-designatives	P
a function is called anti-differentiation	
on "integration" (we will use this term	inology)
Thus, from our discussion, we have.	
$\int f(x) dx = F(x) + C'' : Read as . The$	
indefinite integral of f(x) is the family	f.
functions F(x)+C.".	į.
· S: integnal sign.	
· If(x)dx between, ond specificale. I and	dx';
- The end nesult is called the integral of f. Warning: Do not omit dr. (f/2) makes	no sewe)

	Note: If the function is of t' instead of x'.
	i.e. f(t), then we write (f(t) dt
	(detuolly, + & neide the integral are just dummy variables").
p. 9	$\int dx = x + C. (Why? because.$
V	1) if F(n)= x+c.
	$\int 1 dx \qquad \text{then } F'(x) = 1 $
Qia.	entating again as agli
	egnating again, we get
	$\int (x+C)dy = \frac{x^2}{2} + Cx + C_1 \left(\frac{2}{2} \right)$ Check!

· Basic Integnation Rules.	A _a
- Jkdn = kn + C (k constant)	3.
$-\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad (n \text{ is any constant} \\ ox cept n = -1$)
[x-1 dx = [1 dx = ln (1x1) + C. (x. =0)	
$\int e^{\gamma} d\chi = e^{\gamma} + C$	
$-\int \left[f(x) \pm g(x) \right] dx = \int f(x) dx \pm \int g(x) dx.$	
• $\int k f(x) dx = k \int f(x) dx$ (where k is any co	nstant)
1 30 0 1 9(7)	2,
∫ f (g(x))dx.,	

Supplies	
State T/F	
$\int (\pi^2 + 1)^2 d\pi = \frac{1}{3} (\pi^2 + 1)^3 + C.$	
Soln: False. Let F(x) = \frac{1}{3} (x2+1) + C.	
$F'(\pi) = (x^2+1)2\pi + (x^2+1)^2.$	
So, don't always rush and integrate differen	biation
is still your friend!	

Initial Volue Problem
You will be given a repectific condition for the anti-derivative to satisfy; we have to
involving derivatives) with some (initial) condition
satisfied.
[P.9] Let f(n) = 3n2-2n , Find the onti-derivative T/x)
which also satisfies $F(z)=3$.
$\int \frac{ f(x) }{ f(x) } \frac{ f(x) }{ f(x) } \frac{ f(x) }{ f(x) } = \int \frac{ f(x) }{ f(x) } f(x$
$S_{2} = \frac{1}{F(x)} = \frac{1}{x^{3} - x^{2} - 1}$
[09] Kook at worksheet.