Notas Curso Álgebra Moderna III Una Introducción a la Teoría de Galois Finita

Cristo Daniel Alvarado

25 de junio de 2024

Índice general

1. Extensiones de Campos															2														
	1.1.	Fundamentos																											6

Capítulo 1

Extensiones de Campos

1.1. Fundamentos

Observación 1.1.1

El símbolo X significa para casi todo salvo una cantidad finita de elementos.

Definición 1.1.1

Sean E y F campos. Decimos que E/F es una **extensión de campos** si se cumple que $F \subseteq E$. Se denomina como **grado de la extensión** E/F a la dimensión de E como espacio vectorial sobre F, denotado por [E:F], esto es

$$[E:F] = \dim_F(E)$$

Definición 1.1.2

Decimos que una extensión de campos E/F es una **extensión finita**, si $[E:F]<\infty$. En caso contrario, decimos que es una **extensión infinita**, y lo escribimos como $[E:F]=\infty$.

Teorema 1.1.1

Sea $K \subseteq F \subseteq E$ una torre de campos (también llamada cadena de campos). Entonces,

$$[E:K] = [E:F] \cdot [F:K]$$

Demostración:

Sea $\{\alpha_i\}_{i\in I}$ y $\{\beta_j\}_{i\in J}$ bases de F sobre K y E sobre F, respectivamente.

$$E$$

$$| \leftarrow \{\beta_j\}_{j \in J}$$

$$F$$

$$| \leftarrow \{\alpha_i\}_{i \in I}$$

$$K$$

Afirmamos que $\{\alpha_i\beta_j\}_{(i,j)\in I\times J}$ es base de E sobre K. En efecto, claramente $\alpha_i\beta_j\in E$ para todo $(i,j)\in I\times J$. Notemos que necesariamente

$$\left|\left\{\alpha_i\middle|i\in I\right\}\right|=|I|\quad\text{y}\quad\left|\left\{\beta_j\middle|j\in J\right\}\right|=|J|$$

por ser ambas bases. Sea $u \in E$, entonces u se expresa de forma única como combinación lineal de elementos de la base $\{\beta_j\}_{j\in J}$ con coeficientes en F, digamos

$$u = \sum_{j \in J} f_j \beta_j$$

donde $f_j \in F$ para todo $j \in J$ y $f_j = 0 \, \, \forall \, j \in J$. Por otro lado, cada $f_j \in F$ se expresa de forma única como una combinación lineal de elementos de la base $\{\alpha_i\}_{i \in I}$ sobre K:

$$f_j = \sum_{i \in I} k_{i,j} \alpha_i$$

donde $k_{i,j} \in K$ para todo $i \in I$ siendo $k_{i,j} = 0 \, \, \forall i \in I$, para cada $j \in J$. Luego,

$$u = \sum_{j \in J} f_j \beta_j$$

$$= \sum_{j \in J} \left(\sum_{i \in I} k_{i,j} \alpha_i \right) \beta_j$$

$$= \sum_{(i,j) \in I \times J} k_{i,j} \alpha_i \beta_j$$

donde $k_{i,j} \in K$ y $k_{i,j} = 0 \bowtie (i,j) \in I \times J$. Luego

$$E = \mathcal{L}\left(\left\{\alpha_i \beta_j \middle| (i, j) \in I \times J\right\}\right)$$

Probemos que $\{\alpha_i\beta_j\}_{(i,j)\in I\times J}$ es l.i. sobre K