

# Taxis Again (Only Once, Promised)

Let's consider one last time our taxi problem:



# **Spotting the Problem**

# The sequence-based estimator we built learns from all the training data

This means it will learn from both these series, for example:

```
In [2]: plt.figure(figsize=figsize)
         plt.plot(wdata.iloc[0], label='first window')
         plt.plot(wdata.iloc[1], label='second window')
         plt.legend()
         plt.tight layout()
                                                                                                             first window
                                                                                                             second window
          25000
          20000
          15000
          10000
           5000
                                                           20
```

# **Spotting the Problem**

#### Let us consider the first two window applications

- In the first window, the observations are  $x_0, x_1$  and so on
- In the second window, the observations are  $x_1, x_2$  and so on
- $x_0$  is number of taxis as 00:00,  $x_1$  at 00:30, and so on
- Hence, the first observation in the first window corresponds to 00:00
- ...But in the second window corresponds to 00:30

#### Our estimator learns a distribution for the observations:

- Moving the window forward changes "who is who"
- lacktriangle We learn the distribution of  $x_0$  (and its correlations) multiple times!

The learning problem is still well defined, but also very complex

# This is the reason for (most of) the noise in the alarm signal

# **Rewind a Little**

# Remember why we introduced the sequence based estimator?



■ We wanted to take advantage of correlation between nearby points

# ...Then Forward Again

# But there is more! Let's look just a little bit further



- There is recurring pattern!
- I.e. the series is approximately periodic

# **Determine the Period**

# This is even clearer in the autocorrelation plot



#### **Determine the Period**

# This is even clearer in the autocorrelation plot



- There is strong peak at 48 time steps (a time step is 30 minutes)
- This is consistent with a period of 24 hours

#### Reevaluate

# Let's recap our situation

Our sequence-based estimator

- ...Is solving a uselessly complicated problem
- ...And it's not using all the available knowledge

# These are both very serious drawbacks

#### In any problem:

- Never introduce complications unless they are worth it
- Never willingly throw away information

| Can we do something to tackle both problems |
|---------------------------------------------|
|                                             |

# Time as an Additional Input

#### One way to look at that:

- The distribution depends on the time of the day
- Equivalently: our observed variable has two components, i.e. y = (t, x)
  - $\blacksquare$  The first component t is the time of the day
  - lacktriangle The second component x is the number of called taxis

### Let us extract (from the index) this new information:

```
In [6]: dayhour = (data.index.hour + data.index.minute / 60)
```

We can then add it as a separate column to the data:

```
In [7]: data2 = data.copy()
  data2['dayhour'] = dayhour
```

# **Multivariate Distribution**

# Let us examine the resulting multivariate distribution

We can use a 2D histogram:



x = time, y = value, color = frequency of occurrence

# **Anomaly Detection with Controlled Variables**

#### We can use this information to build a time-dependent estimator

...But we need to be careful when we use it!

# Assume we flag an anomaly when $f(t, x) \leq \theta$

- $\blacksquare$  This may happen when x (the number of cars) takes an unlikely value
- $\blacksquare$  ...Or when t (the time) does

#### **Except that the time is completely predictable**

- Any different in its estimated density is only due to sampling choices
- In practice, it's a controlled variable

# **Anomaly Detection with Controlled Variables**

What we really care about is the conditional density, i.e.

$$f(x \mid t)$$

- lacksquare I.e. the density value of the observed value of  $oldsymbol{x}$
- Assuming that the time t is known

This kind of problem occurs whenever controlled variables are involved

Our true anomaly detection conditions should then be:

$$f(x \mid t) \le \theta$$

...We know how to approximate only to the joint density function f(t,x)

How to handle the conditioning variable?

# **Anomaly Detection with Controlled Variables**

#### There's more than one way, actually

...Our approach starts with the definition of conditional probability:

$$f(t, x) = f(x \mid t)f(t)$$

Meaning that we can detect anomalies by evaluating:

$$\frac{f(t,x)}{f(t)} \le \theta$$

#### In order to pull this off, we need

- $\blacksquare$  An estimator for f(t, x), which we already have
- lacksquare An estimator for f(t), which we can easily obtain (e.g. using KDE again)

In our specific case, things are even simpler

# **Time Distribution**

In our case, the distribution of time values is uniform:



# **Our Time-Dependent Estimator**

#### We can always write:

$$f(t, x) \le \theta f(t)$$

- lacktriangle But since f(t) is constant this is equivalent to checking the joint probability
- ...With a modified threshold

$$f(t, x) \le \theta'$$

- The threshold  $\theta'$  now represents  $\theta f(t)$
- ...But since we still need to choose it value, it make little difference to us

# **Choosing a Bandwidth**

#### We now need to pick a deadline

- We can use grid search and cross-validation again
- ...But first we need to make sure to normalize the data

# In fact, the KDE implementation in scikit-learn works with a scalar bandwidth

- This is suboptimal, since data may be spread differently along each dimension
- ...And this is almost always the case for unnormalized data

On the upside, the implementation is very efficient

# Apart from this detail normalization is especially useful in KDE

- If we could specify individual bandwidth along each dimension
- ...We could calibrate them without any normalization

```
In [10]: scaler = MinMaxScaler()
  data2_n_tr = data2[data2.index < train_end].copy()
  data2_n_tr[:] = scaler.fit_transform(data2_n_tr)</pre>
```

# **Choosing a Bandwidth**

#### We can separate the training set and normalize as usual

```
In [11]: scaler = MinMaxScaler()
    data2_n_tr = data2[data2.index < train_end].copy()
    data2_n_tr[:] = scaler.fit_transform(data2_n_tr)
    data2_n = data2.copy()
    data2_n[:] = scaler.transform(data2)</pre>
```

#### We can then optimize the bandwidth as usual

```
In [12]: from sklearn.model_selection import GridSearchCV
    params = {'bandwidth': np.linspace(0.001, 0.01, 10)}
    opt = GridSearchCV(KernelDensity(kernel='gaussian'), params, cv=5)
    opt.fit(data2_n_tr);
    opt.best_params_
Out[12]: {'bandwidth': 0.006}
```

- As another small advantage of normalization
- ...Choosing the grid search range becomes a bit easier

# **Alarm Signal**

# Let us obtain the alarm signal



# **Threshold Optimization**

#### Now, let us optimize our threshold:

```
In [14]: signal2_opt = signal2[signal2.index < val_end]
    labels_opt = labels[labels < val_end]
    windows_opt = windows[windows['end'] < val_end]
    thr2_range = np.linspace(10, 100, 100)
    best_thr2, best_cost2 = util.opt_thr(signal2_opt, labels_opt, windows_opt, cmodel, thr2_range)
    print(f'Best threshold: {best_thr2}, corresponding cost: {best_cost2}')</pre>
Best threshold: 27.272727272727273, corresponding cost: 9
```

#### On the whole dataset:

```
In [15]: c2tst = cmodel.cost(signal2, labels, windows, best_thr2)
print(f'Cost on the whole dataset {c2tst}')
Cost on the whole dataset 18
```

■ It was 45 for the first approach and 30 for the second

# There is a second period in the data! Can you guess which one?