

Laura Jacoby, Xiaofeng Xiang, Robert Biegaj

Goal: Use DFT data to train ML models that predict the formation energy and charge transition levels of any atomic impurity at any site in any group II-VI, III-V or IV-IV semiconductor.

Techniques: Neural Network, Random Forest Regression, Kernel Ridge Regression

Original descriptors and properties of interest

- 8 properties of interest
 - Formation energy for dopant in (A-rich) and (B-rich site)
 - Transition energy levels: (+3/+2), (+2/+1), (+1/0), (0/-1), (-1/-2), (-2/-3)
- 94 original descriptors
 - 5 properties of AB compound
 - 27 elemental properties of atom A
 - 27 elemental properties of atom B
 - 27 elemental properties of atom impurity atom
 - 8 descriptors to characterize the defect coordination environment using Coulomb matrix elements

Predicting dataset (~12,500 points).

- 32 semiconductors (AB)
 - 3 types
- 63 impurity dopants
- 5 dopant defect sites

Descriptor Selection

Pearson Correlation

SISSO/LASSO

- SISSO Feature Expansion and selection[1].
- Operator: "(+)(-)(*)(/)(exp)(log)(^-1)(^2)(^3)(sqrt)(cbrt)(|-|)"
- Lasso filters top 1200 SISSO features (80 ~ 130 features left)

[1]Ouyang, Ruhai, et al. *Phys. Rev. Mat.* 2.8 (2018): 083802

Model exploration, optimization, and training

Outlier Detection

Primary Component Analysis (PCA)

K Nearest Neighbors (KNN)

Hyperparameter Tuning

- Random Search CV
- Grid Search CV
- Bayesian Optimization
- Minimize loss for test RMSE and difference between test/train rmse

Balancing bias/variance and underfitting/overfitting

Model performance

Kernel Ridge Regression

Neural Network

Prediction Tool

Test how models predict on alloys

Prepare work for publication!

Special thanks to...

Argonne National Lab:

- Dr. Maria Chan
- Dr. Arun Mannodi Kanakkithodi

UW DIRECT:

- Dr. Dave Beck
- Dr. Dan Schwartz
- Kelly Thornton

https://github.com/lmjacoby/ai_semiconductors