CEL332

2008

Answer the Short Questions First, before doing the Numerical Problems. Always Assume fy = 250 Mpa. Submit the Part 1 answer sheet to get the book.

1) What are the following	3
a) Allowable Tensile Stress in Uniaxial Teusion	
b) Allowable Tensile Stress in Bending	
e) Allowable Average Shear Stress	
d) Allowable Maximum Shear Stress	
e) Allowable Stress in Bearing	
f) Allowable Stress in Compression in Bending	
2) Explain the possible failure phenomena of the following beam under two point loading that the	
beam has to be designed for. a) I Girder steel beam (like in the problem in 19.4) b) Under	
reinforced Concrete beam. Explain with appropriate diagram. For concrete beam, draw	
appropriate load-deflection diagram for the two modes of failure.	8
3) A Simply Supported Beam of 20 m Length. It has a Uniaxial Compression P_{av} , a UDL of $\ w$	
including self weight and three Concentrated Vertical Load P1 at equal interval of 1/4. Draw the	
Mending Moment, Shear Force Diagram.	3
4) Name different type of support conditions (beam to column) and plot their behavior in the	
moment curvature graph.	5
5) Under the following d/tw conditions, mention the number of stiffeners required: a)d/tw = 75	
b) $d/tw = 200$ c) $d/tw = 500$	3
6) Compare the differences between a joint with rivets and welding.	3
Once Book Overslave	
Open Book Question:	
7) Calculate the Maximum deflection for Problem 2.	5
8) Design the web-splice for the following condition using moment and shear plates. M=1400 kNm,	7
$V = 150 \text{ kN. Diagram shown. } 1xx = 635,000 \text{ cm}^3.$,
9) A Column transmits a load of 450 kN to an ISMB 450 beam through a bearing plate of 140 mm	10
(same as its flange width). Determine the length of bearing plate so that the web is safe.	10
10) Design the rivets connecting the augles of a bracket with the flange of a column as shown in Fig.	0
below for hot driven shop rivel using 22nım dia @ 75 mm pitch.	8
11) A beam of 20 m span consists of ISMB 600 and two flanges of 300 x 15 mm. Determine the	

maximum moment this beam could carry, if the compression flange is torsionally restrained at the ends only and if

- a) the cover plates are provided one on each flange
- b) both the cover plates are provided on the compression side and one of them is curtailed at 2 m from either end.

The Flange Plates are connected to the beam by 22 mm dia rivets, 2 rivets on a section in each case.

(2) In both the cases above, what are the maximum width of cover plate that would be allowed for plate thickness of 15 mm.

Fig. 6-20 Bracket Connection

15

5