FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2015.

Løsningsforslag til øving 7

Oppgave 1

a) Med gass, og arbeid pdv, har vi $df = du - Td\sigma - \sigma dT = -pdv - \sigma dT$, som betyr at $\sigma = -(\partial f/\partial T)_p = +k\partial(T\ln z)/\partial T$. Konstant p i gass-systemet er analogt til konstant magnetfelt h i et magnetisk system, men temperaturen T opptrer på samme vis uansett type system, så uttrykket for entropien σ blir det samme.

b) Den deriverte av $\cosh x$ er $\sinh x$, og $\tanh x = \sinh x/\cosh x$. Dermed:

$$\sigma = k \frac{\partial}{\partial T} \left[T \ln \left(2 \cosh \beta h \right) \right]$$

$$= k \left[\ln 2 + \ln \cosh \beta h + T \frac{1}{2 \cosh \beta h} \cdot 2 \sinh \beta h \cdot (-h/kT^2) \right]$$

$$= k \left[\ln 2 + \ln \cosh \beta h - \beta h \tanh \beta h \right].$$

Dvs, en funksjon av produktet βh , som antydet i oppgaveteksten. Hvis vi nå spør "hva er σ som funksjon av m og T?" (analogt til $\sigma(V,T)$ i gass-system), innser vi at σ blir en funksjon av kun m, dvs uavhengig av T, siden $m = m(\beta h)$. For å bestemme funksjonen $\sigma(m)$ må vi invertere $m(\beta h)$, dvs bestemme funksjonen y(m), med $y \equiv \beta h$. Vi har tanh $x = (z - 1/z)/(z + 1/z) = (z^2 - 1)/(z^2 + 1)$, der vi har innført $z = e^x$. Dermed:

$$m = \frac{z^2 - 1}{z^2 + 1}$$

$$(z^2 + 1)m = z^2 - 1$$

$$z^2 = \frac{1 + m}{1 - m}$$

$$x = \beta h = \ln \sqrt{\frac{1 + m}{1 - m}} = \frac{1}{2} \ln \frac{1 + m}{1 - m}.$$

Vi trenger også $\cosh x$ uttrykt ved m:

$$m = \tanh x = \frac{\sinh x}{\cosh x} = \frac{\sqrt{\cosh^2 x - 1}}{\cosh x}$$
$$\Rightarrow m^2 \cosh^2 x = \cosh^2 x - 1$$
$$\Rightarrow \cosh x = \frac{1}{\sqrt{1 - m^2}}.$$

Dermed:

$$\sigma = k \left[\ln 2 - \frac{1}{2} \ln(1+m) - \frac{1}{2} \ln(1-m) - \frac{1}{2} m \ln(1+m) + \frac{1}{2} m \ln(1-m) \right]$$
$$= k \left[\ln 2 - \frac{1}{2} (1+m) \ln(1+m) - \frac{1}{2} (1-m) \ln(1-m) \right],$$

som vi skulle vise.

c) Antall mikrotilstander W i et system med i alt N spinn og et antall N_+ spinn som peker med magnetfeltet og et antall N_- spinn som peker mot magnetfeltet, må være bestemt ved hvor mange ulike måter vi kan "trekke" N_+ med spinn "opp" og N_- med spinn "ned", dvs

$$W = \frac{N!}{N_{+}!N_{-}!}.$$

Og vi har sammenhengene $N = N_{+} + N_{-}$ og $Nm = N_{+} - N_{-}$, som gir

$$N_{+} = \frac{1}{2}(1+m)N$$
 og $N_{-} = \frac{1}{2}(1-m)N$.

Med Boltzmanns prinsipp blir entropien følgelig

$$\begin{split} S &= k \ln W = k (\ln N! - \ln N_+! - \ln N_-!) \\ &= k (N \ln N - N - (N_+ \ln N_+ - N_+) - (N_- \ln N_- - N_-)) \\ &= k (-N_+ \ln \frac{N_+}{N} - N_- \ln \frac{N_-}{N}) \\ &= k N (-\frac{1}{2} (1+m) \ln((1+m)/2) - \frac{1}{2} (1-m) \ln((1-m)/2)) \\ &= Nk \left[\ln 2 - \frac{1}{2} (1+m) \ln(1+m) - \frac{1}{2} (1-m) \ln(1-m) \right], \end{split}$$

dvs det samme som funnet i punkt b.

[Spesialtilfeller: Hvis T er forskjellig fra null, vil h=0 gi m=0, som er rimelig: Like stor sjanse for spinn opp og spinn ned, og i middel null magnetisk moment pr spinn. Uttrykket for σ gir $\sigma(0)=k\ln 2$, som er rimelig: Med h=0 er det W=2 like sannsynlige mikrotilstander pr spinn. Den andre ytterlighet er at $\beta h \gg 1$ (evt $\beta h \ll -1$), dvs magnetfeltet er så sterkt at alle spinn foretrekker å ligge i samme retning som det påtrykte feltet. Da blir $m=\tanh\beta h\simeq 1$ (evt $m\simeq -1$ hvis h<0), og entropien blir $\sigma(1)=k(\ln 2-(1/2)\cdot 2\ln 2-(1/2)\cdot 0)=0$. (Det siste leddet i parentesen blir null fordi x går raskere mot null enn $\ln x$ går mot minus uendelig når x går mot null.) Igjen et rimelig resultat: Med alle spinn i samme retning er det kun W=1 mikrotilstand som er mulig.]

d) Når magnetfeltet h skrus på isotermt, vil magnetiseringen $m = \tanh \beta h$ øke. Når så magnetfeltet slås av igjen, uten termisk kobling til omgivelsene, vil systemets entropi ikke endre seg, ettersom σ bare avhenger av m. Uendret magnetisering, $m_1 = m_2$ betyr $\tanh \beta_1 h_1 = \tanh \beta_2 h_2$, og dermed $\beta_1 h_1 = \beta_2 h_2$, eller

$$T_1 = T_2 h_1 / h_2 < T_2$$
.

For en ideell paramagnet (dvs ingen vekselvirkning mellom nabospinn) vil $T_1 \to 0$ når $h_1 \to 0$. I praksis vil det være en viss vekselvirkning mellom nabospinn, slik at et gitt spinn vil erfare et magnetfelt $B \neq 0$ selv om det ytre feltet skrus helt av.