

Short introduction to LATEX

Michael Riesch Technische Universität München Department of Electrical and Computer Engineering Professorship of Computational Photonics München, November 15, 2016

Overview

In this presentation, I would like to

- Present the LATEX typesetting system to newbies
 - What LATEX is (not)
 - Advantages and disadvantages
 - Basic LATEX elements
 - How to get started
- Give advice to the experienced users among you
 - Build automation and tools
 - Version control with git
 - TUM templates and style

Figure: LATEX – A document preparation system. Source:

https://www.latex-project.org

What LATEX is (not)

- It is a typesetting system for various document types
 - Journal articles
 - Books
 - Theses (Master's, Bachelor's, PhD, ...)
 - Presentation slides
- It is an open-source and platform independent software package
- It is a generator for PDF files
- It is **not** a word processor
- It is **not** a WYSIWYG editor (although there are certain LaTeX editors with such a feature)

Advantages and disadvantages

Advantages:

- Produces nice looking documents, the user can focus on the content
- Takes care of automatic generation of
 - Cross-references (tables, figures, ...) and citations
 - Table of contents, list of figures, ...
 - Glossaries and bibliography
- Excellent typesetting of mathematical formulas
- Automatic placement of tables, figures, ... with captions
- Provides a multitude of extension packages

Disadvantages:

- The user has to learn LaTEX commands (similar to learning a programming language)
- Adapting the design is difficult (but there are many existing templates you can use)

Basic LaTEX elements – Text formatting

```
\documentclass { article }
\usepackage[a5paper,landscape]{geometry}
\title{Cartesian closed categories
  and the price of eggs}
\author{Jane Doe}
\date{September 1994}
\begin { document }
\maketitle
\huge
Hello world!
\textbf{Bold text}
\textit{italic text}
\begin{itemize}
\item First item
\item Second item
\item Third item
\end{itemize}
\end{document}
```


Basic LATEX elements – Document structure

```
\documentclass { article }
\usepackage[a5paper, landscape, top=1cm,
  bottom=1cm]{geometry}
\title{Cartesian closed categories
  and the price of eggs}
\author{Jane Doe}
\date{September 1994}
\begin{document}
\tableofcontents
\section{Introduction}
\section{Mathematical Model}
\subsection{Resonator cavity}
\subsubsection{Fabry-Per\'{o}t cavity}
\subsubsection { Ring cavity }
\subsection{Carrier transport}
\section { Conclusion }
\end{document}
```

1 Introduction	1
2 Mathematical Model 2.1 Resonator cavity 2.1.1 Fabry-Perót cavity 2.1.2 Ring cavity 2.2 Carrier transport	1 1 1 1
3 Conclusion	1
1 Introduction	
2 Mathematical Model	
2.1 Resonator cavity 2.1.1 Fabry-Perót cavity 2.1.2 Ring cavity	
2.2 Carrier transport	
3 Conclusion	

Basic LATEX elements – Figures and tables

```
\documentclass { article }
\usepackage[a5paper, landscape, top=1cm,
  bottom=1cm]{geometry}
\usepackage { graphicx }
\title{Cartesian closed categories
  and the price of eggs}
\author{Jane Doe}
\date{September 1994}
\begin { document }
\huge
This is my large text. As shown in Fig.
\ref{fig:geometry}, the metal-metal waveguide
quantum cascade laser ...
\begin{figure}
  \centering
  \includegraphics[width=10cm]{../svg/geometry}
  \caption{Typical geometry of a QCL.}
  \label{fig:geometry}
\end{figure}
\end{document}
```


Basic LaTEX elements – Mathematical equations

```
\documentclass { article }
\usepackage[a5paper, landscape, top=1cm,
  bottom=1cm]{geometry}
\title{Cartesian closed categories
 and the price of eggs}
\author{Jane Doe}
\date{September 1994}
\begin{document}
\huge
Equations in text are marked with dollar
signs around the expression, for example
a^2 + b^2 = c^2.
However, von Neumann's equation
\begin{equation}
  \label { eq : neumann }
  \left[ \hat H, \hat \rho \right]
\end{equation}
can be referenced to (see Eq. \ref{eq:neumann}).
\end{document}
```

Equations in text are marked with dollar signs around the expression, for example $a^2 + b^2 = c^2$. However, von Neumann's equation

$$\partial_t \hat{\rho} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right] \tag{1}$$

can be referenced to (see Eq. 1).

How to get started

Installation

- Windows
 - MIKTeX is a T_EX distribution, TeXnicCenter and Texmaker are editors
 - http://www.howtotex.com/howto/installing-latex-on-windows/
- Mac OS X
 - For example, there is MacTeX and Texmaker
 - http://www.howtotex.com/howto/installing-latex-on-mac-os-x/
- Linux
 - Multitude of distributions and flavors
 - For Debian one can install texlive and texmaker via the packet manager
 - Sometimes it makes sense to download and install TeXLive directly

Tutorials

- Enter "latex tutorial" into the search engine of your choice
- Search for issues and error messages (the links to http://stackoverflow.com are generally a good choice)

Build automation and tools

Build automation

- For Latexmk command available?
- For LATEX or complete project with extra tools: make

Tools

- Create plots of data
 - gnuplot (open-source)
 - MATLAB (proprietary)
- Vector graphics
 - inkscape (open-source)
 - tikz/pgf (LATEX package)

Figure: The inkscape vector graphics editor.

Version control with git

Is version control really necessary?

- Do you want to make backups?
- Are you working in a group?
- Do you want to keep track of the changes you and your co-workers made?

The git version control system

- open-source, distributed, scales from small projects to e.g. the Linux Kernel
- Private repositories available bitbucket.com, public repositories github.com
- Steep learning curve, but mostly a small subset of commands will do for you

TUM templates and style

TUM Corporate Design (tum.de/cd) provides LATEX templates for

- Presentation slides (based on beamer)
- Theses (based on scrbook)
- Letters and office papers

Additionally, there is a design guide (see TUM CD homepage).

There is work in progress. We will keep you posted and provide you with templates for your theses and presentation slides.

Thank you for your attention!

Contact me (michael.riesch@tum.de) if you have questions about the templates.

