Geostatistical Data

Recall the model $\{Z(\mathbf{s}) : \mathbf{s} \in D\}$, where

- **s** = (x, y) denotes the coordinates of the sample site. Here (x, y) may be Euclidean coordinates or latitude and longitude.
- ► *Z*(**s**) denotes the variable of interest at the location **s**. Note that this is written as a function of the location **s**.
- ▶ D denotes the region of interest, which contains an (uncountably) infinite number of sites.
- ▶ Observations can only be taken on a finite collection of sample sites $\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_n$.
- ▶ Geostatistical data are continuous spatial data; i.e., between any two sites in *D*, we can find another site in *D*.

Model & Assumptions

Consider the simple model $Z(\mathbf{s}) = \mu + \varepsilon(\mathbf{s})$

- $\blacktriangleright \mu$ is the population mean.
- \triangleright $\varepsilon(\mathbf{s})$ is a zero-mean random error the spatial location \mathbf{s} .
 - $E\{\varepsilon(\mathbf{s})\} = 0; \ \mathbf{s} \in D.$
 - $var \{ \varepsilon (\mathbf{s}) \} = \sigma^2; \ \mathbf{s} \in D.$
 - ▶ $C(\mathbf{s} \mathbf{u}) = cov \{ \varepsilon(\mathbf{s}), \varepsilon(\mathbf{u}) \}$; $\mathbf{s}, \mathbf{u} \in D$ only depends on the difference in the locations (distance and direction) of the pair of sites $\mathbf{s}, \mathbf{u} \in D$.
- ▶ $Z(\mathbf{s})$ has the same variance and covariance. $\{Z(\mathbf{s}) : \mathbf{s} \in D\}$ is said to be *second-order stationary*.
- ▶ $\{Z(\mathbf{s}) : \mathbf{s} \in D\}$ is isotropic if $C(\mathbf{s} \mathbf{u}) = C(||\mathbf{s} \mathbf{u}||)$

Features of the Covariance Function

- ▶ **Range:** r_0 is the range if C(r) = 0 for all $r \ge r_0$.
- ▶ Pairs of sites further than r₀ apart are uncorrected.
- ▶ Nugget Effect: $\sigma^2 \lim_{r \to 0} C(r)$, which may be attributed to:
 - Microscale variation: Variation at spatial scales shorter than that separating the sample sites;
 - Measurement error: Variation due to errors in measuring the variable.

A Typical Plot of Covariance Function

Effect of Spatial Dependence on Estimation

Consider a stationary time series Z_1, \dots, Z_n with mean μ and covariance function $C(h) = cov(Z_i, Z_{i+h}) = \sigma^2 \rho(h)$.

- $ightharpoonup \bar{Z}$ is an unbiased estimator for μ .
- ▶ If data were independent, $var(\bar{Z}) = \sigma^2/n$.
- ▶ If the data are not independent, then

$$var(\bar{Z}) = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} cov(Z_i, Z_j) = \frac{\sigma^2}{n} \left\{ 1 + \frac{2}{n} \sum_{h=1}^{n-1} (n-h) \rho(h) \right\}$$

- ▶ As $n \to \infty$, $n \times var(\bar{Z}) \to \sigma^2 \sum_{h=-\infty}^{\infty} \rho(h) \gg \sigma^2$.
- ► Correlation is bad for estimation and inference, but as we will see, it is (not so surprisingly) good for prediction!

Variogram

▶ The variogram is defined to be

$$2\gamma(\mathbf{s} - \mathbf{u}) = var\{Z(\mathbf{s}) - Z(\mathbf{u})\}.$$

- ▶ Range: Range of spatial correlation.
- ► Nugget Effect: The nugget effect is due to microscale variation (variation between locations closer together than the sample sites) and/or measurement error.
- ▶ **Sill:** The sill is equal to $2\sigma^2$, and so measures the variability in the data.

Variogram Plot

Intrinsic Stationarity

▶ A random field is *intrinsic* if

$$E\left\{ Z\left(\mathbf{s}\right) -Z\left(\mathbf{u}\right) \right\} =0;$$

$$var\{Z(\mathbf{s}) - Z(\mathbf{u})\} = 2\gamma(\mathbf{s} - \mathbf{u}) \ \mathbf{s}, \mathbf{u} \in D.$$

- Intrinsic stationarity allows for the possibility that $\sigma^2 = \infty$. In this case, the covariance function is undefined.
- ▶ All second-order stationary random fields are intrinsic, but intrinsic random fields need not be second-order stationary.
- ▶ If Z is second-order stationary, then $2\gamma(\mathbf{h}) = 2\sigma^2 2C(\mathbf{h})$.
- ▶ If Z is isotropic, then $2\gamma(\|\mathbf{s} \mathbf{u}\|) = var\{Z(\mathbf{s}) Z(\mathbf{u})\}$.

Conditions for Valid Variogram

Consider linear combinations of the form

$$Y = \sum_{i=1}^{m} a_i Z(\mathbf{u}_i),$$

where $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_m$ is any finite collection of sites, and a_1, a_2, \cdots, a_n is any finite collection of constants.

▶ The variance of Y is given by

$$var(Y) = var\left(\sum_{i=1}^{m} a_i Z(\mathbf{u}_i)\right) = \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j C(\mathbf{u}_i - \mathbf{u}_j)$$

▶ For a valid model, we require $var(Y) \ge 0$.

Definition: A function $C(\cdot)$ is *positive definite* if

$$\sum_{i=1}^m \sum_{j=1}^m a_i a_j C(\mathbf{u}_i - \mathbf{u}_j) \geq 0.$$

Bochner's Theorem: The function $C(\cdot)$ is positive definite if

$$C(\mathbf{h}) = \sigma^2 \int \cos(\mathbf{h}'\omega) f(\omega) d\omega$$

- where $f(\cdot)$ is a probability density function (called the *spectral density function*).
- ▶ **Definition:** A function $C(\cdot)$ is a *valid* covariance function if and only if it is positive definite, i.e. we can find a density function $f(\cdot)$ such that $C(\cdot)$ satisfies the above expression.

▶ **Definition:** A function $2\gamma(\cdot)$ is a *valid* variogram if an only if it is conditionally negative definite; that is,

$$\sum_{i=1}^{m}\sum_{j=1}^{m}a_{i}a_{j}\gamma\left(\mathbf{u}_{i}-\mathbf{u}_{j}\right)\leq0,$$

given that $\sum_{i=1}^{m} a_i = 0$.

- ▶ If $C(\cdot)$ is a valid covariance function, then $2\gamma(\mathbf{h}) = 2\sigma^2 2C(\mathbf{h})$ is a valid variogram.
- ▶ Bochner's Theorem has been used to verify the validity of many covariance and variogram models.

Variogram Models

- Power variogram. $2\gamma(r) = c_0 + ar^{\alpha}$.
 - ▶ *c*₀ is the nugget effect.
 - ► The power variogram has no sill, and so the variance of the process is infinite.
 - ▶ Often due to existence of trend.
- Spherical variogram

$$2\gamma(r) = \begin{cases} c_0 + c_s \left\{ \frac{3}{2} \left(\frac{r}{a_s} \right) - \frac{1}{2} \left(\frac{r}{a_s} \right)^3 \right\} & ; \quad 0 < r \le a_s \\ c_0 + c_s & ; \quad r \ge a_s \end{cases}$$

- ► c₀ is the nugget effect.
- $ightharpoonup a_s$ is the range of spatial correlation
- $ightharpoonup c_0 + c_s$ is the sill.

Matérn Class of Variograms

$$2\gamma\left(r\right) = c_0 + c_1 \left(1 - \frac{\left(r/2\alpha\right)^{\nu}}{2\Gamma\left(\nu\right)} K_{\nu}\left(r/\alpha\right)\right)$$

- $ightharpoonup K_{\nu}\left(\cdot\right)$ is a modified Bessel function of the second kind.
- ▶ The nugget effect is c_0 , and the sill is $c_0 + c_1$.
- \triangleright ν controls the smoothness of the random field.
- Exponential variogram ($\nu = .5$)

$$2\gamma(r) = c_0 + c_1(1 - \exp\{-r/\alpha\})$$

• Gaussian variogram $(\nu = \infty)$

$$2\gamma(r) = c_0 + c_1(1 - \exp\{-(r/\alpha)^2\})$$

▶ The (practical) range are 3α and $\sqrt{3}\alpha$, respectively.

Matern models with equivalent "practical range"

MOM Variogram Estimator

Recall: Definition of the variogram of a random field

$$2\gamma (\mathbf{s} - \mathbf{u}) = var \{Z(\mathbf{s}) - Z(\mathbf{u})\}; \ \mathbf{s}, \mathbf{u} \in D.$$

Note that if $\{Z(\mathbf{s}) : \mathbf{s} \in D\}$ is an intrinsic stationary random field, then

$$2\gamma\left(\mathbf{s}-\mathbf{u}\right)=E\left\{ \left|Z\left(\mathbf{s}\right)-Z\left(\mathbf{u}\right)\right|^{2}\right\}$$

This suggests the following estimator for the variogram:

$$2\widehat{\gamma}(\mathbf{h}) = \frac{1}{N_{\mathbf{h}}} \sum |Z(\mathbf{s}_i) - Z(\mathbf{s}_j)|^2,$$

where

- ▶ the sum is over all pairs of sites **h** apart;
- N_h is the number of such pairs of sites.

Equivalently, we may write

$$2\widehat{\gamma}(\mathbf{h}) = \frac{\sum_{i < j} |Z(\mathbf{s}_i) - Z(\mathbf{s}_j)|^2 I(\mathbf{s}_i - \mathbf{s}_j = \mathbf{h})}{\sum_{i < j} I(\mathbf{s}_i - \mathbf{s}_j = \mathbf{h})},$$

where

$$I\left(\mathbf{s}_{i}-\mathbf{s}_{j}=\mathbf{h}\right)=\left\{\begin{array}{ll}1; & \text{if } \mathbf{s}_{i}-\mathbf{s}_{j}=\mathbf{h}\\0; & \text{if } \mathbf{s}_{i}-\mathbf{s}_{j}\neq\mathbf{h}\end{array}\right.$$

For isotropic random fields, estimate

$$2\widehat{\gamma}(r) = \frac{1}{N_r} \sum |Z(\mathbf{s}_i) - Z(\mathbf{s}_j)|^2$$

$$= \frac{\sum_{i < j} |Z(\mathbf{s}_i) - Z(\mathbf{s}_j)|^2 I(\|\mathbf{s}_i - \mathbf{s}_j\| = r)}{\sum_{i < j} I(\|\mathbf{s}_i - \mathbf{s}_j\| = r)}$$

where the sum is over all pairs of sites distance r apart and N_r is the number of such pairs of sites.

Properties of MOM Variogram Estimator

Assume that $\{Z(\mathbf{s}) : \mathbf{s} \in D\}$ is intrinsically stationary.

- 1. Unbiasedness: $E\left\{2\widehat{\gamma}(\mathbf{h})\right\} = 2\gamma(\mathbf{h})$.
- 2. Consistency: if $\{Z(\mathbf{s}) : \mathbf{s} \in D\}$ is ergodic, then $2\widehat{\gamma}(\mathbf{h}) \to 2\gamma(\mathbf{h})$ almost surely as $n \to \infty$ and $D \uparrow \mathbb{R}^d$.
- 3. Asymptotic normality: $2\widehat{\gamma}(\mathbf{h})$ converges to a normal distribution as $n \to \infty$ and $D \uparrow \mathbb{R}^d$.
 - For Gaussian processes, Cressie (1985, *Mathematical Geology* **17**, 563) gives the variance-covariance matrix of $\{2\widehat{\gamma}(\mathbf{h})\}$.
 - ► For non-Gaussian processes, resampling methods can be used (Guan, Sherman and Calvin, 2004) to estimate asymptotic the variance/covariance.

Some Notes

- ▶ If data are on an irregular lattice, then the variogram can be estimated by a smoothing method, in which case the estimator will be asymptotically unbiased.
- Covariance can be estimated analogously.
- ▶ Robust variogram estimators are available for Gaussian data.
- ▶ The form of asymptotics is called increasing-domain asymptotics, i.e., the study region becomes increasingly large, in contrast to the infill asymptotics, i.e., increasingly dense samples are taken from a fixed study region.