Nomenclature

Set

Set		Numbers in set
$c \in C$	Commodity	7
$y \in Y$	Year	30
$t \in T$	Technology	4
$e \in E$	Emission	1

Parameters

Parame	eters	Unit	Non-zero value range	
	Cumulative discount			
df_period	factor over period		0.06	
	duration			
duration nariod	Duration of multi-year	V	5-30	
duration_period	period	У	3-30	
resource_cost	Extraction costs for	CNY/t	400-16685	
resource_cost	resources	CIVIT		
inv_cost	Investment cost	CNY/t	2578-15495	
fix_cost	Fixed o&m cost	CNY/t	76.3-774.75	
var_cost	Variable o&m cost	CNY/t	2701-8491	
input	Consumption amount of	t/t	0.0004-12.03	
ιπραι	input commodity	ι, ι	0.0004-12.03	
output	Production amount of	t/t	0.0011-1	
σαιραι	output commodity	ι, ι	0.0011-1	
technologica_lifetime	Technology lifetime	Year	20	
remain_capacity	Factors account for		1	
remain_capacity	remaining capacity		1	
emission_factor	Emission factor	tC02/t	0.05-4.75	
capacity_factor	Technology utilization rate		0.5-1	
$demand_fixed$	Demand	t	$2.66-4.16(\times 10^8)$	
historical_new_capacity	Historical data on new capacity	t	0.01 - $2.38(\times 10^8)$	

Variables

Variables		
EXT	Resources extraction amount	t
CAP	Installed capacity	t
totaCost	Total cost	CNY
investmentCost	Total investment cost	CNY
materialCost	Total raw material cost	CNY
OMCost	Total operation and maintenance cost	CNY
COMMODIT DALANCE	Auxiliary variable for right-hand side of Auxiliary	+
COMMODIT_BALANCE	COMMODITY_BALANCE constraint	ι

Decision variables

CAP_NEW	Newly installed capacity	t	
ACT	Activity of technology	t	
EMISS	Auxiliary variable for aggregate emissions by	t	
	technology type		
STOCK_CHG	Input or output quantity into intertemporal	t	
	commodity stock (storage)		

One criteria of our model analysis are the accumulative total cost of the liquid fuel supply system for China's transportation sector from 2020 to 2060. The mathematical expression of total cost is defined by Eq (1)

$$tatalCost = materialCost + investmentCost + OMCost$$
 (1)

Total cost in our model consists of three parts, which includes:

1) Total raw material cost is defined by Eq (2)

$$Marterial cost is defined symmetrically resource_cost_{c,y} \cdot EXT_{c,y}$$

$$Marterial cost is defined symmetrically resource_cost_{c,y} \cdot EXT_{c,y}$$
(2)

2) Total investment cost, which refers to the cost of building production capacities (i.e., plants) of different technologies and is defined by Eq (3)

$$Investmentcost = \sum_{y \in Y} \sum_{t \in T} df_period_y \cdot inv_cost_{t,y} \cdot CAP_NEW_{t,y}$$
 (3)

3) Total operation and maintenance cost, which donates the cost to maintain the well function of the plant. All costs are occurring in the future, so they are all discounted into the present value of the base year. The mathematical expression is defined by Eq (4)

$$OMcost = \sum_{y \in Y} \sum_{t \in T} df_period_y \cdot \left(fix_cost_{t,y^V,y} \cdot CAP_{t,y^V,y} + var_cost_{t,y^V,y} \cdot ACT_{t,y^V,y}\right) (4)$$

Where y is time period (year), df_period_y denote the cumulative discount factor over period duration of y years, t is technology, $resource_cost_{c,y}$ is the extraction costs for resources commodity c at year y, while $EXT_{c,y}$ is the resources commodity c extraction amount at time y. $inv_cost_{t,y}$ is the capital investment cost for technology t at time t0. Similarly, $fix_cost_{t,y}v_{,y}$ and $fix_cost_{t,y}v_{,y}$ denote fixed and variable operation and maintenance cost of technology t in year t0 of vintage t0. $fix_cost_{t,y}v_{,y}v_{,y}$ 0 denotes the activity of technology t1 in year t2 of vintage t3. $fix_cost_{t,y}v_{$

Other environmental outcomes or criteria including emissions. Detailed mathematical expressions in Eq. (5).

Outcome 2:

$$EMISS_{e,t,y} = \sum_{t,y^{V} \le y} emission_factor_{t,y^{V},y,e} \cdot ACT_{t,y^{V},y}$$
 (5)

Where $emission_factor_{t,y}v_{,y,e}$ is the emission factor

These objects also satisfying with a series of relations and constraints.

Let $EXT_{c,y}$ represent the quantity of the raw material commodity c used by technology t

at time y, the $EXT_{c,v}$ is defined by Eq. (6)

$$EXT_{c,y} = \sum_{\substack{t \\ v^{V} \le v}} input_{t,y^{V},y,c} \cdot ACT_{t,y^{V},y}$$
 (6)

Where $input_{t,y^Vy,c}$ is the input amount of resources commodity c by technology t in year y at vintage year y^V .

Besides, the actual activity of a technology cannot exceed available (maintained) capacity, including the technology capacity factor, which is denoted by Eq. (7)

$$ACT_{t,y^{V},y} \le capacity_factor_{t,y^{V},y} \cdot CAP_{t,y^{V},y}$$
 (7)

Where $capacity_factor_{t,y}$ is the capacity factor of technology t ant year y.

Let $CAP_{t,y}$ denote the installed capacity of technology t at year y, then $CAP_{t,y}$ must satisfied with following constrict and relations:

The first constraint ensures that historical capacity (built prior to the model horizon) is available as installed capacity in the first model period.

$$CAP_{t,y}v_{,first_{period}}$$

 $\leq remain_capacity_{t,y^v,first\ period} \cdot duration_period_{y^v}$ $\cdot historical_new_capacity_{t,y^v}$

If

$$y^{V} <' first_period' and |y| - |y^{V}| < technologica_lifetime_{t,y^{V}}$$
 (7)

The second constraint ensures that capacity is fully maintained throughout the model period in which it was constructed (no early retirement in the period of construction).

$$CAP_{t,y^{V},y^{V}} = remain_capacity_{t,y^{V},y} \cdot duration_{period_{y^{V}}} \cdot CAPACITY_NEW_{t,y^{V},y-1} \quad (8)$$

The third constraint implements the dynamics of capacity maintenance throughout the model horizon. Installed capacity can be maintained over time until decommissioning, which is irreversible.

$$CAP_{t,y^{V},y} = remain_capacity_{t,y^{V},y} \cdot CAPACITY_NEW_{t,y^{V},y-1}$$

if

$$y > y^V$$
 and $y^V >'$ first_period' and $|y| - |y^V| <$ technologica_lifetime_{t,y} (9)
Let *COMMODITY_BALANCE* to be the auxiliary variable to represent commodity balance, which can be denote in Eq. (10)

$$\sum_{t} output_{t,y^{V},y,c} \cdot ACT_{t,y^{V},y} - \sum_{t} input_{t,y^{V},y,c} \cdot ACT_{t,y} + STOCK_CHG_{c,y}$$

$$-demand_fixed_{c,y} = COMMODIT_BALANCE_{c,y}$$

$$(10)$$

COMMODITY_BALANCE is subjected to two constraints Eq. (11) and Eq. (12). Eq. (11) ensures that supply is greater or equal than demand for every commodity, while Eq. (12) denote that the supply is smaller than or equal to the demand for all commodity. These two constraints work together to ensure that supply is exactly equal to demand.

$$COMMODIT_BALANCE_{c,v} \ge 0 \tag{11}$$

$$COMMODIT_BALANCE_{c,y} \le 0 \tag{11}$$