0 CBC-MAC

Write the basic construction of CBC-MAC.

Note: this comes from Construction 4.11 in Katz/Lindell.

CBC-MAC Construction

Let F be a pseudorandom function, and fix a length function $\ell > 0$. Then basic CBC-MAC construction is as follows:

- 1. $\mathsf{Mac}_k(m)$: On input key $k \in \{0,1\}^n$, message m such that $len(m) = \ell(n) \cdot n$
 - (a) Parse $m = m_1, \ldots, m_\ell$ where $len(m_i) = n$.
 - (b) Set $t_0 := 0^n$. Then for $i \in 1, \ldots, \ell$: set $t_i := F_k(t_{i-1} \oplus m_i)$

Output t_{ℓ} as the tag.

- 2. $\mathsf{Vrfy}_k(m,t)$: On input key $k \in \{0,1\}^n$, message m, tag t:
 - (a) Check $len(m) = \ell(n) \cdot n$. If not output 0.
 - (b) Output 1 iff $t \stackrel{?}{=} \mathsf{Mac}_k(m)$.

1 Merkle-Damgård

Let $h: \{0,1\}^{n+t} \to \{0,1\}^n$ be a fixed-length compression function. Suppose we forgot a few features of Merkle-Damgård and construct H as follows:

- Value x is input.
- Split x into y_0, x_1, \ldots, x_k . Where y_0 is n bits and x_i (for $i = 1, \ldots, k$) is t bits. The last piece x_k may be padded with zeroes.
- For i = 1, ..., k, set $y_i = h(y_{i-1}||x_i)$.
- Output y_k .

It's similar to Merkle-Damgård except no IV and the final padding block is missing.

- 1. Describe an easy way to find two messages that are broken up into the same number of pieces, which have the same hash value under H.
- 2. Describe an easy way to find two messages that are broken up into a different number of pieces, which have the same hash value under H. Hint: Pick any string of length n+2t, and find a shorter string that collides with it.

Neither of your collisions above should involve finding a collision in h!

1. Same number of blocks

We denote this transform as MD_{bad} . Suppose x is of length N = n + kt - (t - 1). Then we parse x as y_0, x_1, \ldots, x_k where $x_k = x[N]||0^{t-1}$. That is, x has only one bit in the final block, so we pad with t - 1 0s. Then say $x' = x||0^{k-1}$.

There is no length checking, so it is clear that $\mathsf{MD}_{bad}(x) = \mathsf{MD}_{bad}(x')$ although $x \neq x'$. Also, x, x' break up into the same number of blocks.

2. Different number of blocks

First, run MD_{bad} on $w = \boxed{t_0 \ w_1}$. This yields $\boxed{t_1} = h(\boxed{t_0 \ || \ w_1})$ Then:

$$x = t_1 x_1$$

$$x' = t_0 w_1 x_1$$

Now note that for x:

$$y_0 = t_1$$
$$y_1 = h(t_1 || x_1)$$

For x':

$$y_0' = \boxed{t_0}$$

$$y_1' = h(y_0'||x_1') = h(\boxed{t_0}||\boxed{w_1}) = \boxed{t_1}$$

$$y_2' = h(y_1'||x_2') = h(\boxed{t_1}||\boxed{x_1})$$

Note that y_1 is the output for H(x), and y_2' is the output for H(x'). We see:

$$y_2' = h(|t_1||x_1|)$$

 $y_1 = h(|t_1||x_1|)$

Then although $x \neq x'$, H(x) = H(x').

2 Hash Functions

I designed $H: \{0,1\}^* \to \{0,1\}^n$. I make H(x) = x if x is n-bit string – but assume H's behavior is more complicated on strings of other lengths. This way we know there are no collisions among n-bit strings. Is this a good design decision?

A function H is collision-resistant if it is infeasible for any PPT algorithm to find a collision in H. This means it should be hard to compute any collision x = x' such that H(x) = H(x'). We show that H as described above is not collision-resistant using the following attack.

Attack

$\mathcal{A}_{cr}()$

- 1. Pick $x \leftarrow \{0,1\}^{n'}$ (where n' > n).
- 2. Calculate y := H(x).
- 3. Output (y, x) as the collision pair.

Analysis of \mathcal{A}_{cr} 's success

Note that len(y) = n because H's range is $\{0,1\}^n$. Then H is defined on y as H(y) = y. Also, H itself takes polynomial time to calculate, so it is feasible for \mathcal{A}_{cr} to calculate H(x) = y. Because len(x) > n, we know $x \neq y$ but H(x) = y = H(y). Thus \mathcal{A}_{cr} has found a collision with probability 1, which is clearly non-negligible.

3 MAC

Prove that the following modifications of basic CBC-MAC do not yield a secure MAC (even for fixed-length messages).

- 1. Mac outputs all blocks t_1, \ldots, t_ℓ rather than just t_ℓ . Verification only checks if t_ℓ is correct.
- 2. A random initial block is used each time a message is authenticated. That is, choose a uniform $t_0 \in \{0,1\}^n$, run basic CBC-MAC over the "message" t_0, m_1, \ldots, m_ℓ and output tag $\langle t_0, t_\ell \rangle$. Verification is done in a natural way.

Recall the message authentication experiment (rewritten from Katz/Lindell section 4.2) where $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$

$\mathsf{Macforge}_{\mathcal{A},\Pi}(n)$

- 1. A key k is generated from $Gen(1^n)$.
- 2. \mathcal{A} is given 1^n and oracle access to $\mathsf{Mac}_k(\cdot)$. Let $\mathcal{Q} = \{m | \mathcal{A} \text{ queries } \mathsf{Mac}_k(m)\}$.
- 3. \mathcal{A} outputs (m, t).
- 4. \mathcal{A} succeeds iff:

$$\mathsf{Vrfy}_k(m,t) = 1 \text{ and } m \notin \mathcal{Q}$$

Attack 1

Algorithm $\mathcal{A}_{\mathsf{Mac}}$

- $\mathcal{A}_{\mathsf{Mac}}$ queries on $m = m_1 || m_2$ where $m_1 = m_2 = \vec{0}$. He receives $\langle t_1, t_2 \rangle$.
- $\mathcal{A}_{\mathsf{Mac}}$ produces $m^* = m_1^* || m_2^*$ where $m_1^* = t_1$ and $m_2^* = t_2$. The tag is $\langle t_1^*, t_2^* \rangle = \langle t_2, t_1 \rangle$

Analysis of $\mathcal{A}_{\mathsf{Mac}}$'s success In the query, we have $m = \vec{0}||\vec{0}|$. Then we know:

$$t_0 = \vec{0}$$

$$t_1 = F_k(t_0 \oplus \vec{0}) = F_k(\vec{0})$$

$$t_2 = F_k(t_1 \oplus \vec{0}) = F_k(t_1)$$

And $\mathcal{A}_{\mathsf{Mac}}$ is given t_1 and t_2 . Now by setting $m^* = t_1 || t_2$ we see that

$$t_0^* = \vec{0}$$

$$t_1^* = F_k(t_0^* \oplus t_1) = F_k(t_1) = t_2$$

$$t_2^* = F_k(t_1^* \oplus t_2) = F_k(t_2 \oplus t_2) = F_k(\vec{0}) = t_1$$

We conclude that $\mathcal{A}_{\mathsf{Mac}}$ is able to break this scheme using only one query. Thus the scheme is not secure.

Attack 2

Algorithm $\mathcal{A}_{\mathsf{Mac}}$

- Queries on message $m_1 = \vec{0}$, receives $\langle t_0, t_1 \rangle = \langle r_0, F_k(r_0) \rangle$.
- Queries on message $m_2 = \vec{0}$, receives $\langle t'_0, t'_1 \rangle = \langle r'_0, F_k(r'_0) \rangle$.
- Produces $m^* = r_0 \oplus r'_0$, $\langle t_0, t'_1 \rangle$.

Analysis of $\mathcal{A}_{\mathsf{Mac}}$'s success The choice is $\langle t_0, t_1' \rangle = \langle r_0, F_k(r_0') \rangle$. $\mathcal{A}_{\mathsf{Mac}}$ can choose any input they like for t_0 . In the Mac,

$$t'_1 = F_k(t_0 \oplus m^*) \implies$$

$$t'_1 = F_k(r_0 \oplus (r_0 \oplus r'_0) \implies$$

$$t'_1 = F_k(r'_0)$$

This means t_1' was chosen correctly. $\mathcal{A}_{\mathsf{Mac}}$ wins with non-negligible probability and we conclude that the scheme is not secure.

4 Digital Signature

Let (G, S, V) be a secure signature scheme with message space $\{0, 1\}^n$, and security parameter λ . Let $(pk_0, sk_0) \leftarrow_{\$} G(1^{\lambda})$ and $(pk_1, sk_1) \leftarrow_{\$} G(1^{\lambda})$ be two pairs of signing/verification keys. Which of the following are secure signature schemes? Show an attack or prove security.

- 1. (S_1, V_1) :
 - Sign. $S_1((sk_0, sk_1), m)$: Output $(S(sk_0, m), S(sk_1, m))$.
 - Verify. $V_1((pk_0, pk_1), m, (\sigma_0, \sigma_1))$: Output 1 if $(V(pk_0, m, \sigma_0) \vee V(pk_1, m, \sigma_1))$, 0 otherwise.

I.e., the verification accepts if one of the two signatures accepts.

- 2. (S_2, V_2)
 - Sign. $S_2((sk_0, sk_1), (m_L, m_R))$: Output $(S(sk_0, m_L), S(sk_1, m_R))$.
 - Verify. $V_2((pk_0, pk_1), (m_L, m_R), (\sigma_0, \sigma_1))$: Output 1 if $(V(pk_0, m_L, \sigma_0) \wedge V(pk_1, m_R, \sigma_1))$, 0 otherwise. I.e., both verifications must accept.

Recall the signature experiment scheme (from Katz/Lindell 12.2) where $\Pi=(\mathsf{Gen},\mathsf{Sign},\mathsf{Vrfy})$ Sigforge_ A,Π (n)

о о удлу /

1. $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$

- 2. \mathcal{A} gets pk and access to $\mathsf{Sign}_{sk}(\cdot)$ oracle.
- 3. \mathcal{A} outputs (m, σ) . Let $\mathcal{Q} = \{m | \mathcal{A} \text{ asked Sign}_{sk}(m)\}$.
- 4. \mathcal{A} succeeds iff

$$\begin{aligned} \mathsf{Vrfy}_{pk}(m,\sigma) &= 1 \\ m \not\in \mathcal{Q} \end{aligned}$$

We say that a signature scheme is existentially unforgeable under an adaptive chosenmessage attack (or secure) if for all PPT adversaries \mathcal{A} , there is a negligible function negl such that:

$$Pr[\mathsf{Sigforge}_{\mathcal{A},\Pi}(n)] \leq \mathsf{negl}(n)$$

Signature Scheme 1 is secure: Proof by Contradiction

Theorem. If $\Pi = (G, S, V)$ is a secure signature scheme then so is $\Sigma = (S_1, V_1)$. *Proof.* By contradiction. We will prove the following statement.

If Σ is not existentially unforgeable under an adaptive chosen-message attack (EUF-CMA) then Π is not EUF-CMA.

<u>Step 1.</u> Let \mathcal{F}_{Σ} be an adversary for Π who can win the EUF-CMA experiment with non-negligible probability p(n). We construct \mathcal{F}_{Π} .

 $\mathcal{F}_{\Pi}(1^{\lambda})$ Obtain in input the public key pk.

Reduction

- 1. \mathcal{F}_{Π} flips a bit $b \in \{0,1\}$. He sets $pk = pk_b$.
- 2. \mathcal{F}_{Π} has pk_b . He calculates $(pk_{1-b}, sk_{1-b}) \leftarrow_{\$} G(1^{\lambda})$.
- 3. \mathcal{F}_{Π} actives \mathcal{F}_{Σ} . He forwards pk_0, pk_1 to \mathcal{F}_{Σ} .
- 4. On each query of m, \mathcal{F}_{Π} forwards m to his challenger to get σ_0 . He calculates σ_1 himself using sk_1 . He returns σ_0, σ_1 to \mathcal{F}_{Σ} .
- 5. When \mathcal{F}_{Σ} produces a forgery on m^* (σ_0^*, σ_1^*) .
- 6. If $V(pk_b, m^*, \sigma_b^*) = 1$ \mathcal{F}_{Π} outputs m^*, σ_b^* . Else, output \perp .

analysis of \mathcal{F}_{Π} 's success

If \mathcal{F}_{Σ} is has a successful forgery, then it must be the case that at least one of $V(pk_0, m^*, \sigma_0)$ and $V(pk_1, m^*, \sigma_1)$ verified.

Since \mathcal{F}_{Σ} picks the bit b at random, probability that b corresponds to the bit of the signature that is verified is at least $\frac{1}{2}$.

Thus \mathcal{F}_{Σ} outputs a valid forgery for the scheme $\Sigma = (S, V)$ with probability $\frac{1}{2}p$

Signature Scheme 2 is not secure. Forgery

Idea of the attack: "Sign Halves"

We define \mathcal{F} as a forger for the Signature scheme $\Sigma_2 = (S_2, V_2)$.

 $\mathcal{F}(1^{\lambda})$ Obtain in input the public key pk.

Training Phase

- 1. Query the signing oracle with $m^0=m_L^0||m_R^0$, and $m^1=m_L^1||m_R^1$, where $m_L^0\neq m_R^0\neq m_L^1\neq m_R^1$.
- 2. Receive $\sigma^0 = \sigma_0^0 || \sigma_1^0$ and $\sigma^0 = \sigma_0^1 || \sigma_1^1$, respectively.

Challenge Phase

Output message $m^* = m_L^0 || m_R^1$ and signature $\sigma^* = \sigma_0^0 || \sigma_1^1$.

Analysis of \mathcal{F} 's success

We know $\sigma_0^0 = S(sk_0, m_L^0)$ and $\sigma_1^1 = S(sk_1, m_R^1)$ (which \mathcal{F} received from the sign oracle). Then $V(pk_0, m_L^0, \sigma_0^0) = 1$ and $V(pk_1, m_R^1, \sigma_1^1) = 1$. Thus the signature verifies. Furthermore, $m^* \neq m^0$ and $m^* \neq m^1$ so $m^* \notin \mathcal{Q}$. So \mathcal{F} produces a successful forgery with probability 1.