Colle 25 • INDICATIONS Séries numériques

Exercice 25.1

1. Déterminer $a, b \in \mathbb{R}$ tels que la série

$$\sum_{n\geqslant 1} \Bigl(\ln(n) + a \ln(n+1) + b \ln(n+2) \Bigr)$$

converge.

2. Calculer dans ce cas sa somme.

indication

1. Utiliser les propriétés du logarithme pour établir l'existence de $\alpha, \beta \in \mathbb{R}$ tels que

$$\ln(n) + a\ln(n+1) + b\ln(n+2) = \alpha\ln(n) + \frac{\beta}{n} + O\left(\frac{1}{n^2}\right).$$

2. Procéder par télescopage ou changement d'indice.

résultat -

1.
$$\ln(n) + a \ln(n+1) + b \ln(n+2) = (1+a+b) \ln(n) + \frac{a+2b}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$
 d'où $a = -2$ et $b = 1$.

2.
$$\sum_{n=1}^{+\infty} \left(\ln(n) + a \ln(n+1) + b \ln(n+2) \right) = -\ln(2).$$

Exercice 25.2

Soit $(a_n)_n$ une suite de réels positifs.

On considère les assertions suivantes :

(i)
$$\sum a_n$$
 converge

(i)
$$\sum_{n} a_n$$
 converge;
(ii) $\sum_{n}^{n} \sqrt{a_n a_{n+1}}$ converge.

1. A-t-on (i)
$$\Longrightarrow$$
 (ii)?

2. A-t-on (ii)
$$\Longrightarrow$$
 (i)?

indication

- **1.** Penser à l'inégalité arithmético-géométrique $\sqrt{xy} \leqslant \frac{x+y}{2}$.
- 2. C'est faux. On peut par exemple considérer une série dont tous les termes d'ordre impair sont nuls.

Exercice 25.3

Justifier l'existence et calculer

$$\lim_{a\to+\infty}\sum_{n=1}^{+\infty}\frac{a}{a^2+n^2}.$$

— indication –

Procéder par comparaison série-intégrale pour établir une formule du type

$$\forall N \ in\mathbb{N}^*, \quad \int_1^{n+1} \frac{a}{a^2 + x^2} \, \mathrm{d}x \leqslant \sum_{n=1}^N \frac{a}{a^2 + n^2} \leqslant \int_0^N \frac{a}{a^2 + x^2} \, \mathrm{d}x.$$

– résultat -

$$\lim_{a\to +\infty}\sum_{n=1}^{+\infty}\frac{a}{a^2+n^2}=\frac{\pi}{2}.$$

Exercice 25.4

Montrer que

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \underset{\alpha \to 1^{+}}{\sim} \frac{1}{\alpha - 1}.$$

indication -

Procéder par comparaison série intégrale avec la fonction $x \longmapsto \frac{1}{x^{\alpha}}$.

Exercice 25.5

Déterminer un équivalent de $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$.

—— indication —

Utiliser une comparaison série intégrale avec la fonction $x \longmapsto \frac{1}{\sqrt{x}}$.

résultat –

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sim 2\sqrt{n}.$$

Exercice 25.6

Pour $n \in \mathbb{N}^*$, on pose $H_n \coloneqq \sum_{k=1}^n \frac{1}{k}$.

Montrer que

$$H_n = \ln(n) + \gamma + \mathcal{O}\left(\frac{1}{n}\right).$$

indication

lack Utiliser le théorème des accroissements finis sur le segment [x,x+1] pour montrer que

$$\forall x<0, \quad \frac{1}{x+1}<\ln(x+1)-\ln(x)<\frac{1}{x}.$$

- Utiliser une comparaison série intégrale pour montrer que $H_n \sim \ln(n)$.
- ♦ En posant $u_n := H_n \ln(n)$, montrer que $(u_n)_n$ est bornée et monotone, en exploitant ce qui précède, puis en déduire que

$$\exists \gamma \in \mathbb{R} :: H_n = \ln(n) + \gamma + o(1).$$

- lacklach Pour $k \in \mathbb{N}^*$, on pose $a_k := \int_k^{k+1} \frac{1}{t} dt$. Pour $n \in \mathbb{N}^*$, on pose $v_n := H_n \ln(n) \gamma$.
 - $\lozenge \text{ Utiliser que } \mathsf{H}_n = \frac{1}{n} + \mathsf{H}_{n-1}, \ \frac{1}{k} = \int_k^{k+1} \frac{1}{k} \, \mathrm{d}t \ \text{et } \mathsf{ln}(n) = \int_1^n \frac{1}{t} \, \mathrm{d}t \ \text{pour montrer que}$ $v_n = \frac{1}{n} \sum_{k=n}^{+\infty} a_k.$
 - \Diamond Montrer que $0 < a_k < \frac{1}{k(k+1)}$ puis que $0 \leqslant v_n \leqslant \frac{1}{n}$.

Exercice 25.7

Soit $p \in \mathbb{N}^*$.

Montrer que $\sum_{n} \frac{1}{(pn)!}$ converge et calculer sa somme.

indication

- ♦ L'inégalité de Taylor-Lagrange permet de montrer que $\sum_{n=0}^{+\infty} \frac{(tz)^n}{n!} = e^{tz}$ pour $t \in \mathbb{R}$ et $z \in \mathbb{C}$.
- ♦ Utiliser les racines *p*-ièmes de l'unité.

résultat

$$\sum_{n=0}^{+\infty} \frac{1}{(pn)!} = \frac{1}{p} \sum_{k=0}^{p-1} \exp(\omega^k) \text{ avec } \omega = e^{\frac{2i\pi}{p}}.$$

Exercice 25.8

On admet que
$$\sum_{n\geqslant 1}\frac{1}{n^2}$$
 converge et que $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.

Montrer que la série $\sum_{n\geq 1} \frac{1}{n^2(n+1)^2}$ converge et calculer sa somme.

—— indication

Pour la convergence, un équivalent suffit. Pour le calcul, on commencera par décomposer en éléments simples et on pourra s'aider de la décomposition $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

résultat -

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)^2} = \frac{\pi^2}{3} - 3.$$

Exercice 25.9

Soit $\alpha \in \mathbb{R}$. Soit $f : [0,1] \longrightarrow \mathbb{R}$ continue, telle que $f(0) \neq 0$.

- **1.** Montrer que $\int_0^{\frac{1}{n}} f(t^n) dt \sim \frac{f(0)}{n}$.
- **2.** En déduire la nature de la série $\sum_{n\geq 1}\frac{1}{n^{\alpha}}\int_{0}^{\frac{1}{n}}f(t^{n})\,\mathrm{d}t.$

— indication –

1. On utilise l'inégalité triangulaire intégrale et le fait que $t^n \in \left[0, \frac{1}{n}\right]$ lorsque $t \in \left[0, \frac{1}{n}\right]$ pour montrer que

$$\left| \int_0^{\frac{1}{n}} f(t^n) dt - \frac{f(0)}{n} \right| \leqslant \frac{1}{n} \sup_{t \in [0, \frac{1}{n}]} |f(t) - f(0)|,$$

- où $\sup_{t\in \left[0,\frac{1}{n}\right]}\left|f(t)-f(0)\right|\longrightarrow 0$ par continuité.
- 2. On utilise les équivalents.

résultat

$$\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}\int_{0}^{\frac{1}{n}}f(t^{n})\,\mathrm{d}t \ \mathrm{converge} \quad \iff \quad \alpha>0.$$

Exercice 25.10 Suite décroissante sommable.

Soit $(u_n)_{n\in\mathbb{N}}\in (\mathbb{R}_+)^{\mathbb{N}}$ une suite décroissante.

- **1.** On suppose que $\sum u_n$ converge.
 - (a) Montrer que

$$\forall n \in \mathbb{N}^*, \quad nu_n \leqslant 2 \sum_{k=\lfloor n/2 \rfloor+1}^n u_k.$$

(b) En déduire que

$$u_n = \mathcal{O}\left(\frac{1}{n}\right).$$

2. On pose, pour $n \in \mathbb{N}$, $v_n := \frac{1}{1 + n^2 u_n}$. Montrer que

$$\sum v_n$$
 converge \Longrightarrow $\sum u_n$ diverge.

- indication ——

- **1.** (a) Distinguer deux cas suivant la parité de n et minorer $\sum_{k=\lfloor n/2\rfloor+1}^n u_k$ par le plus petit terme (utiliser la décroissance de $(u_n)_n$) que l'on multiplie par le nombre de termes.
 - (b) Par encadrement en utilisant la question précédente.
- **2.** Raisonner par contraposée et montrer que $\frac{1}{n} = \mathcal{O}(v_n)$.