Luke Collins Irene Sciriha

DEPARTMENT OF MATHEMATICS
Faculty of Science
University of Malta

Combinatorics and Graph Theory Day 31st January, 2019

Outline

- Introduction
 - Spectrum and Seidel Switching
 - Defining Two-Graphs
- Regular Two-Graphs
 - The Involution M
 - Descendant Form of a Regular Two-Graph
 - Results about Descendants of Regular Two-Graphs
- Strongly Regular Graphs
 - Definition
 - Structure of Descendants of Regular Two-Graphs
- Conference Graphs

Definition (Graph)

A graph G is a pair (V, E) where V is a non-empty finite set of vertices, and $E \subseteq \binom{V}{2}$ is a set of **edges**, i.e. unordered pairs of the elements of V.

Definition (Graph)

A graph G is a pair (V, E) where V is a non-empty finite set of vertices, and $E \subseteq \binom{V}{2}$ is a set of edges, i.e. unordered pairs of the elements of V.

We usually use the letter n for the number of vertices, that is, n = |V|.

Definition (Graph)

A graph G is a pair (V, E) where V is a non-empty finite set of vertices, and $E \subseteq \binom{V}{2}$ is a set of edges, i.e. unordered pairs of the elements of V.

We usually use the letter n for the number of vertices, that is, n = |V|.

To encode graphs algebraically, we can use an adjacency matrix:

Definition (Graph)

A graph G is a pair (V, E) where V is a non-empty finite set of vertices, and $E \subseteq \binom{V}{2}$ is a set of edges, i.e. unordered pairs of the elements of V.

We usually use the letter n for the number of vertices, that is, n = |V|.

To encode graphs algebraically, we can use an adjacency matrix:

Definition (Adjacency matrix)

The adjacency matrix of a graph G = (V, E) is the $n \times n$ matrix (a_{ij}) where

$$a_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ is adjacent to vertex } j, \text{ i.e. } \{v_i, v_j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

4日 → 4 個 → 4 重 → 4 重 → 9 Q (

Strongly Regular Graphs

4/25

Another way of encoding graphs is the Seidel matrix.

Another way of encoding graphs is the Seidel matrix.

Definition (Seidel matrix)

The **Seidel matrix** of a graph G = (V, E) is the $n \times n$ matrix (s_{ij}) where

Strongly Regular Graphs

Seidel Matrix

Another way of encoding graphs is the Seidel matrix.

Definition (Seidel matrix)

The **Seidel matrix** of a graph G = (V, E) is the $n \times n$ matrix (s_{ij}) where

$$s_{ij} = \begin{cases} 0 & \text{if i = j} \\ -1 & \text{if vertex } i \text{ and vertex } j \text{ are adjacent} \\ 1 & \text{otherwise.} \end{cases}$$

Another way of encoding graphs is the Seidel matrix.

Definition (Seidel matrix)

The **Seidel matrix** of a graph G = (V, E) is the $n \times n$ matrix (s_{ij}) where

$$s_{ij} = \begin{cases} 0 & \text{if i = j} \\ -1 & \text{if vertex } i \text{ and vertex } j \text{ are adjacent} \\ 1 & \text{otherwise.} \end{cases}$$

Eventually we will work with a variant of the Seidel matrix, which we will introduce later.

Example (A simple Seidel matrix)

Example (A simple Seidel matrix)

Consider the following graph.

Example (A simple Seidel matrix)

Consider the following graph. It has the following Seidel matrix.

Strongly Regular Graphs

Introduction

Example (A simple Seidel matrix)

Consider the following graph. It has the following Seidel matrix.

Note that if **A** and **S** are the adjacency and Seidel matrices of G respectively,

$$S = J - I - 2A$$

where **J** is the matrix consisting entirely of 1's and **I** is the identity matrix.

4 D F 4 B F 4 B F

The distinct eigenvalues $\mu_1, \mu_2, \ldots, \mu_s$ of a given matrix **X** together with their multiplicities m_1, m_2, \ldots, m_s form the **spectrum** of **X**, denoted $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$.

6/25

The distinct eigenvalues $\mu_1, \mu_2, \ldots, \mu_s$ of a given matrix **X** together with their multiplicities m_1, m_2, \ldots, m_s form the **spectrum** of **X**, denoted $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$.

Definition (Graph Spectra)

The distinct eigenvalues $\mu_1, \mu_2, \ldots, \mu_s$ of a given matrix **X** together with their multiplicities m_1, m_2, \ldots, m_s form the **spectrum** of **X**, denoted $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$.

Definition (Graph Spectra)

lacktriangle The **spectrum** of a graph G is the spectrum of its adjacency matrix

6/25

The distinct eigenvalues $\mu_1, \mu_2, \ldots, \mu_s$ of a given matrix **X** together with their multiplicities m_1, m_2, \ldots, m_s form the **spectrum** of **X**, denoted $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$.

Definition (Graph Spectra)

- \bullet The **spectrum** of a graph G is the spectrum of its adjacency matrix
- 2 The **Seidel spectrum** of a graph *G* is the spectrum of its Seidel matrix

Given a graph G=(V,E) and a subset of the vertices $U\subseteq V$, the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and $V\setminus U$ to obtain the graph $\mathrm{SS}_U(G)$.

7/25

Regular Two-Graphs

We can assume that the vertices of the set $U \subseteq V$ are labelled first (otherwise simply relabel the vertices).

We can assume that the vertices of the set $U \subseteq V$ are labelled first (otherwise simply relabel the vertices). In our example, we had the following:

G

 $SS_U(G)$, where $U = \{1, 3\}$

We can assume that the vertices of the set $U \subseteq V$ are labelled first (otherwise simply relabel the vertices). In our example, we had the following:

G

Strongly Regular Graphs

We can assume that the vertices of the set $U \subseteq V$ are labelled first (otherwise simply relabel the vertices). In our example, we had the following:

G

In general, if **S** and $S_{SS_U(G)}$ are the Seidel matrices of G and $SS_U(G)$, then

$$\mathbf{S} = \left(\begin{array}{c|c} \mathbf{S}_U & \mathbf{R} \\ \hline \mathbf{R}^\top & \mathbf{S}_{V \setminus U} \end{array} \right) \iff$$

9/25

The Effect of Seidel Switching on the Seidel Matrix

In general, if **S** and $S_{SS_U(G)}$ are the Seidel matrices of G and $SS_U(G)$, then

$$\mathbf{S} = \left(\begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & \mathbf{R} \\ \hline \mathbf{R}^\top & \mathbf{S}_{\mathcal{V} \setminus \mathcal{U}} \end{array} \right) \iff \mathbf{S}_{\mathrm{SS}_{\mathcal{U}}(G)} = \left(\begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & -\mathbf{R} \\ \hline -\mathbf{R}^\top & \mathbf{S}_{\mathcal{V} \setminus \mathcal{U}} \end{array} \right).$$

The Effect of Seidel Switching on the Seidel Matrix

In general, if **S** and $S_{SS_U(G)}$ are the Seidel matrices of G and $SS_U(G)$, then

$$\mathbf{S} = \left(\begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & \mathbf{R} \\ \hline \mathbf{R}^\top & \mathbf{S}_{\mathcal{V} \setminus \mathcal{U}} \end{array} \right) \iff \mathbf{S}_{\mathrm{SS}_{\mathcal{U}}(G)} = \left(\begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & -\mathbf{R} \\ \hline -\mathbf{R}^\top & \mathbf{S}_{\mathcal{V} \setminus \mathcal{U}} \end{array} \right).$$

In other words, $\mathbf{S}_{SS_U(G)} = \mathbf{D}^{-1}\mathbf{S}\mathbf{D}$, where $\mathbf{D}^{-1} = \mathbf{D}$ is the diagonal matrix with $d_{ii} = +1$ if $i \in U$ and $d_{ii} = -1$ otherwise.

The Effect of Seidel Switching on the Seidel Matrix

In general, if **S** and $\mathbf{S}_{\mathrm{SS}_U(G)}$ are the Seidel matrices of G and $\mathrm{SS}_U(G)$, then

$$S = \begin{pmatrix} S_{U} & R \\ \hline R^{\top} & S_{V \setminus U} \end{pmatrix} \iff S_{SS_{U}(G)} = \begin{pmatrix} S_{U} & -R \\ \hline -R^{\top} & S_{V \setminus U} \end{pmatrix}.$$

In other words, $\mathbf{S}_{SS_U(G)} = \mathbf{D}^{-1}\mathbf{S}\mathbf{D}$, where $\mathbf{D}^{-1} = \mathbf{D}$ is the diagonal matrix with $d_{ii} = +1$ if $i \in U$ and $d_{ii} = -1$ otherwise.

It follows that **S** and $\mathbf{S}_{SS_U(G)}$ are similar, and therefore G and $SS_U(G)$ have the same Seidel spectrum.

4□ > 4個 > 4 = > 4 = > = 900

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

Definition (Two-graph)

A **two-graph** or **switching class** is an equivalence class of the Seidel switching equivalence relation.

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

Definition (Two-graph)

A **two-graph** or **switching class** is an equivalence class of the Seidel switching equivalence relation.

• A two-graph on *n* vertices consists of all the *n*-vertex graphs with the same Seidel spectrum.

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

Definition (Two-graph)

A **two-graph** or **switching class** is an equivalence class of the Seidel switching equivalence relation.

- A two-graph on *n* vertices consists of all the *n*-vertex graphs with the same Seidel spectrum.
- The term 'two-graph' originally arose in a combinatorial context, and actually refers to a couple (V, Δ) where $\Delta \subseteq \binom{V}{3}$ is a collection of triples $\{v_1, v_2, v_3\}$ with the property that any 4-subset of V contains an even number of triples of Δ . This is known to be equivalent to our definition.

Definition (Regular two-graph)

A two-graph is said to be regular if the Seidel matrix of any representative has precisely two distinct eigenvalues.

Definition (Regular two-graph)

A two-graph is said to be **regular** if the Seidel matrix of any representative has precisely two distinct eigenvalues.

 This is a valid definition because the Seidel spectrum of any member of a two-graph is the same.

Definition (Regular two-graph)

A two-graph is said to be **regular** if the Seidel matrix of any representative has precisely two distinct eigenvalues.

- This is a valid definition because the Seidel spectrum of any member of a two-graph is the same.
- Reverting to the combinatorial definition of 'two-graph', (V, Δ) is said to be regular if every pair of vertices lies in the same number of triples of Δ . This is known to be equivalent to our definition.

Suppose **M** is a symmetric matrix which is involutionary, that is, $\mathbf{M}^2 = \mathbf{I}$. Then

Suppose **M** is a symmetric matrix which is involutionary, that is, $\mathbf{M}^2 = \mathbf{I}$. Then

• By spectral decomposition, **M** has eigenvalues 1 and -1.

Suppose ${\bf M}$ is a symmetric matrix which is involutionary, that is, ${\bf M}^2={\bf I}$. Then

- By spectral decomposition, **M** has eigenvalues 1 and -1.
- If M is written as

$$\mathbf{M} = \left(\begin{array}{c|c} \mathbf{B} & \mathbf{v} \\ \hline \mathbf{v}^\top & -\lambda \end{array} \right),$$

then $\mathbf{B}v = \lambda v$ and $|\lambda| < 1$.

Suppose ${\bf M}$ is a symmetric matrix which is involutionary, that is, ${\bf M}^2={\bf I}$. Then

- By spectral decomposition, **M** has eigenvalues 1 and -1.
- If M is written as

$$\mathbf{M} = \left(\begin{array}{c|c} \mathbf{B} & \mathbf{v} \\ \hline \mathbf{v}^\top & -\lambda \end{array} \right),$$

then $\mathbf{B}v = \lambda v$ and $|\lambda| < 1$.

Furthermore, if the spectrum of **M** is $1^{(n-k)}(-1)^{(k)}$, then it follows by Cauchy's interlacing inequalities that the spectrum of **B** is

$$1^{(n-k-1)}(-1)^{(k-1)}\lambda^{(1)}$$
.

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

If **S** is the Seidel matrix of a regular two-graph on n vertices with eigenvalues μ_1, μ_2 , then

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Strongly Regular Graphs

where

$$\alpha = \frac{2}{\mu_1 - \mu_2}$$
 and $\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2}$

is an involution.

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

If **S** is the Seidel matrix of a regular two-graph on *n* vertices with eigenvalues μ_1, μ_2 , then

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Strongly Regular Graphs

where

$$\alpha = \frac{2}{\mu_1 - \mu_2}$$
 and $\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2}$

is an involution.

• This matrix still gives us an encoding of the graph.

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

If **S** is the Seidel matrix of a regular two-graph on *n* vertices with eigenvalues μ_1, μ_2 , then

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Strongly Regular Graphs

where

$$\alpha = \frac{2}{\mu_1 - \mu_2} \quad \text{and} \quad \lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2}$$

is an involution.

- This matrix still gives us an encoding of the graph.
- $\bullet \ \mu_1 \mu_2 = 1 n.$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Example (
$$K_{2,4}$$
)

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Example $(K_{2,4})$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Example $(K_{2,4})$ Seidel spectrum: $(-1)^5(5)^1$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Example $(K_{2,4})$

Seidel spectrum: $(-1)^5(5)^1$

$$\alpha = \frac{2}{\mu_1 - \mu_2} = -\frac{1}{3}$$

$$\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} = -\frac{2}{3}$$

$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$

Example $(K_{2,4})$

Seidel spectrum: $(-1)^5(5)^1$

$$\alpha = \frac{2}{\mu_1 - \mu_2} = -\frac{1}{3}$$

$$\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} = -\frac{2}{3}$$

$$\mathbf{S} = \begin{pmatrix} 0 & -1 & 1 & 1 & -1 & 1 \\ -1 & 0 & -1 & -1 & 1 & -1 \\ 1 & -1 & 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 & -1 & 1 \\ -1 & 1 & -1 & -1 & 0 & -1 \\ 1 & -1 & 1 & 1 & -1 & 0 \end{pmatrix}$$

$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$

Example $(K_{2,4})$

Seidel spectrum: $(-1)^5(5)^1$

Strongly Regular Graphs

$$\alpha = \frac{2}{\mu_1 - \mu_2} = -\frac{1}{3}$$

$$\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} = -\frac{2}{3}$$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I} = \begin{pmatrix} 2/3 & 1/3 & -1/3 & -1/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 & 1/3 & -1/3 & 1/3 \\ -1/3 & 1/3 & 2/3 & -1/3 & 1/3 & -1/3 \\ -1/3 & 1/3 & -1/3 & 2/3 & 1/3 & -1/3 \\ 1/3 & -1/3 & 1/3 & 1/3 & 2/3 & 1/3 \\ -1/3 & 1/3 & -1/3 & -1/3 & 1/3 & 2/3 \end{pmatrix}$$

Every two-graph on *n* vertices has a class representative of the form $D \cup K_1$ where D is a graph on n-1 vertices.

Every two-graph on n vertices has a class representative of the form $D \stackrel{.}{\cup} K_1$ where D is a graph on n-1 vertices.

Definition (Descendant)

Any two-graph representative of the form $D \cup K_1$ is said to be in **descendant form**, and the component D is said to be a **descendant** of the two-graph.

Every two-graph on n vertices has a class representative of the form $D \cup K_1$ where D is a graph on n-1 vertices.

Definition (Descendant)

Any two-graph representative of the form $D \dot{\cup} K_1$ is said to be in **descendant form**, and the component *D* is said to be a **descendant** of the two-graph.

Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

Every two-graph on n vertices has a class representative of the form $D \stackrel{.}{\cup} K_1$ where D is a graph on n-1 vertices.

Definition (Descendant)

Any two-graph representative of the form $D \dot{\cup} K_1$ is said to be in **descendant form**, and the component D is said to be a **descendant** of the two-graph.

Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

• Pick any vertex $v \in V$.

Every two-graph on n vertices has a class representative of the form $D \stackrel{.}{\cup} K_1$ where D is a graph on n-1 vertices.

Definition (Descendant)

Any two-graph representative of the form $D \cup K_1$ is said to be in **descendant form**, and the component D is said to be a **descendant** of the two-graph.

Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

- **1** Pick any vertex $v \in V$.
- 2 Let U be the set of all neighbours of v.

Every two-graph on n vertices has a class representative of the form $D \dot{\cup} K_1$ where D is a graph on n-1 vertices.

Definition (Descendant)

Any two-graph representative of the form $D \dot{\cup} K_1$ is said to be in **descendant form**, and the component *D* is said to be a **descendant** of the two-graph.

Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

- Pick any vertex $v \in V$.
- 2 Let U be the set of all neighbours of v.
- **3** Then the vertex v is isolated in $SS_U(G)$.

Example (The Petersen Graph)

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$. And the non-edges.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$. And the non-edges. Switch edges and non-edges.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$. And the non-edges. Switch edges and non-edges. Obtain $SS_U(G)$.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$. And the non-edges. Switch edges and non-edges. Obtain $SS_U(G)$. Move vertices around to look nicer.

Using the fact that $\mathbf{M}^2 = \mathbf{I}$, we easily obtain the following known results for descendants of regular two-graphs.

Using the fact that $\mathbf{M}^2 = \mathbf{I}$, we easily obtain the following known results for descendants of regular two-graphs.

Strongly Regular Graphs

1 D is a ρ -regular subgraph, each vertex having degree

$$\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1.$$

Using the fact that $\mathbf{M}^2 = \mathbf{I}$, we easily obtain the following known results for descendants of regular two-graphs.

1 D is a ρ -regular subgraph, each vertex having degree

$$\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1.$$

② Substituting for α and λ , we also get that n and $\mu_1 + \mu_2$ have the same parity (even/odd).

We prove the first result, that *D* is ρ -regular with $\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1$.

We prove the first result, that D is ρ -regular with $\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1$.

Proof.

Let the Seidel eigenvalues of G be μ_1 and μ_2 , where G is in descendant form. Using the values of α and λ , the first and last rows of the involution \mathbf{M} are of the form

Row 1
$$\begin{pmatrix} -\lambda & \pm \alpha & \pm \alpha & \cdots & \pm \alpha & \alpha \\ & & \vdots & & & \\ \alpha & \alpha & \alpha & \cdots & \alpha & -\lambda \end{pmatrix}$$

where we are assuming that the last row corresponds to the isolated vertex. The number of $-\alpha$'s in row 1 is the degree of vertex 1. Since $\mathbf{M}^2 = \mathbf{I}$, the inner product $\langle \text{Row } \mathbf{1}, \text{Row } n \rangle = 0$.

We prove the first result, that D is ρ -regular with $\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1$.

Proof. (continued...)

Row 1
$$\begin{pmatrix} -\lambda & \pm \alpha & \pm \alpha & \cdots & \pm \alpha & \alpha \\ & & \vdots & & & \\ \alpha & \alpha & \alpha & \cdots & \alpha & -\lambda \end{pmatrix}$$

$$\langle \text{Row 1}, \text{Row } n \rangle = 0 \implies -\alpha \lambda + (n-2)\alpha^2 - 2\rho_1 \alpha^2 - \alpha \lambda = 0$$

where ρ_1 denotes the degree of vertex 1.

Note that ρ_1 is independent of the vertex label 1, since $\langle \text{Row 1}, \text{Row } i \rangle = 0$ for all $1 \leq i \leq n-1$. Thus D is ρ -regular.

◆□▶◆□▶◆■▶◆■▶ ■ 900

Recall: A graph is called *regular* if all the vertices are of the same degree.

Recall: A graph is called *regular* if all the vertices are of the same degree.

Definition (Strongly regular graph)

Recall: A graph is called regular if all the vertices are of the same degree.

Definition (Strongly regular graph)

Recall: A graph is called *regular* if all the vertices are of the same degree.

Definition (Strongly regular graph)

A graph G is said to be a strongly regular graph or an $srg(n, \rho, e, f)$ if:

1 it has *n* vertices,

Recall: A graph is called *regular* if all the vertices are of the same degree.

Definition (Strongly regular graph)

- 1 it has *n* vertices,
- 2 each vertex has degree ρ ,

Recall: A graph is called *regular* if all the vertices are of the same degree.

Definition (Strongly regular graph)

- 1 it has *n* vertices,
- 2 each vertex has degree ρ ,
- 3 every two adjacent vertices have e common neighbours, and

Recall: A graph is called *regular* if all the vertices are of the same degree.

Definition (Strongly regular graph)

- 1 it has *n* vertices,
- 2 each vertex has degree ρ ,
- every two adjacent vertices have e common neighbours, and
- every two non-adjacent vertices have f common neighbours.

Example (Descendant of Petersen Graph)

Example (Descendant of Petersen Graph)

The descendant from the last example is an srg(9, 4, 1, 2).

Consider a descendant form $D \dot{\cup} K_1$ of a regular two-graph and the following notations for pairs of vertices.

	# of common	# of common
	neighbours	non-neighbours
Adjacent vertices	ẽ	ě
Non-adjacent vertices	$ ilde{f}$	$\widetilde{\widetilde{f}}$

Consider a descendant form $D \cup K_1$ of a regular two-graph and the following notations for pairs of vertices.

	# of common	# of common
	neighbours	non-neighbours
Adjacent vertices	ẽ	ě
Non-adjacent vertices	\tilde{f}	$\widetilde{\widetilde{f}}$

Strongly Regular Graphs

By considering the rows of **M** we obtain the following formulæ:

$$\tilde{e} + \tilde{e} = \frac{1}{2}(n-2) - \frac{\lambda}{\alpha}$$
 $\tilde{f} + \tilde{f} = \frac{1}{2}(n-2) + \frac{\lambda}{\alpha}$
 $\tilde{e} - \tilde{e} = 2\rho - n$ $\tilde{f} - \tilde{f} = 2\rho - (n-2)$

Consider a descendant form $D \dot{\cup} K_1$ of a regular two-graph and the following notations for pairs of vertices.

	# of common	# of common
	neighbours	non-neighbours
Adjacent vertices	ẽ	ě
Non-adjacent vertices	\tilde{f}	$\widetilde{\widetilde{f}}$

By considering the rows of **M** we obtain the following formulæ:

$$\tilde{e} + \tilde{e} = \frac{1}{2}(n-2) - \frac{\lambda}{\alpha}$$
 $\tilde{f} + \tilde{f} = \frac{1}{2}(n-2) + \frac{\lambda}{\alpha}$
 $\tilde{e} - \tilde{e} = 2\rho - n$ $\tilde{f} - \tilde{f} = 2\rho - (n-2)$

From these it follows that \tilde{e} , \tilde{e} , \tilde{f} and \tilde{f} are invariant for any pair of adjacent/non-adjacent vertices.

From the formulæ obtained previously, we get the following results. Given a descendant form $D \dot{\cup} K_1$ of a regular two-graph on n vertices, then

From the formulæ obtained previously, we get the following results. Given a descendant form $D \dot{\cup} K_1$ of a regular two-graph on n vertices, then

Strongly Regular Graphs

• D is an $srg(n-1, \rho, e, f)$ where $e = \tilde{e}$ and $f = \tilde{f} = \frac{\rho}{2}$.

From the formulæ obtained previously, we get the following results. Given a descendant form $D \dot{\cup} K_1$ of a regular two-graph on n vertices, then

- D is an $srg(n-1, \rho, e, f)$ where $e = \tilde{e}$ and $f = \tilde{f} = \frac{\rho}{2}$.
- $\rho = -\frac{1}{2}(1 + \mu_1\mu_2 + (\mu_1 + \mu_2))$ and $e = -\frac{1}{2}(5 + \mu_1\mu_2 + 3(\mu_1 + \mu_2))$.

From the formulæ obtained previously, we get the following results. Given a descendant form $D \dot{\cup} K_1$ of a regular two-graph on n vertices, then

- D is an $srg(n-1, \rho, e, f)$ where $e = \tilde{e}$ and $f = \tilde{f} = \frac{\rho}{2}$.
- $\rho = -\frac{1}{2}(1 + \mu_1\mu_2 + (\mu_1 + \mu_2))$ and $e = -\frac{1}{2}(5 + \mu_1\mu_2 + 3(\mu_1 + \mu_2))$.
- n must be even.

From the formulæ obtained previously, we get the following results. Given a descendant form $D \dot{\cup} K_1$ of a regular two-graph on n vertices, then

- D is an $srg(n-1, \rho, e, f)$ where $e = \tilde{e}$ and $f = \tilde{f} = \frac{\rho}{2}$.
- $\rho = -\frac{1}{2}(1 + \mu_1\mu_2 + (\mu_1 + \mu_2))$ and $e = -\frac{1}{2}(5 + \mu_1\mu_2 + 3(\mu_1 + \mu_2))$.
- *n* must be even.
- $\frac{\lambda}{\alpha}$ is an integer.

We conclude by mentioning an application of two-graphs. In the paper, we continue to use the theory of NSSD's to study **conference graphs**. These are regular two-graphs which have $\mu_1 = -\mu_2$.

We conclude by mentioning an application of two-graphs. In the paper, we continue to use the theory of NSSD's to study **conference graphs**. These are regular two-graphs which have $\mu_1 = -\mu_2$.

Their Seidel matrices are precisely the so-called **conference matrices**, i.e. (0,1,-1)-matrices with zero on the diagonal and which satisfy $\mathbf{SS}^{\top}=k\mathbf{I}$ for some k.

An Application: Conference Graphs

We conclude by mentioning an application of two-graphs. In the paper, we continue to use the theory of NSSD's to study conference graphs. These are regular two-graphs which have $\mu_1 = -\mu_2$.

Their Seidel matrices are precisely the so-called **conference matrices**, i.e. (0,1,-1)-matrices with zero on the diagonal and which satisfy $\mathbf{SS}^{\top}=k\mathbf{I}$ for some k.

These have applications in telephone networks. A necessary condition for setting up a conference with n telephone ports and ideal signal loss is the existence of an $n \times n$ conference matrix.

An Application: Conference Graphs

Regular Two-Graphs

Figure: Implementation of 6-port conference matrix, corresponds to the smallest existing conference graph on n=6 vertices with Seidel eigenvalues $\pm\sqrt{5}$.

Thank you!

Strongly Regular Graphs

DEPARTMENT OF MATHEMATICS

Faculty of Science University of Malta

25/25