# 281 Live Session

Week 2 - 23/1/18

### Agenda

Review — Perspective Projection

Applications Example

Overview of Assignment 2

Group Exercise — Transformations in 2D

1: Perspective Projection 2: Image Formation 3: Image Artifacts 4: Convolution 5: Fourier 6: Pyramids, Edges, and Features 7: Image Analysis 8: Least-Squares 9: Total and Iterative Least-Squares

9: Total and Iterative Least-Squant10: Clustering11: Dimensionality Reduction12: Linear Classifiers

13: Nonlinear Classifiers

1.2 Image Formation

1.3 Camera Obscura

1.4 Perspective Projection, 2-D (With Exercise)

1.5 Perspective Projection, Inverted

1.6 Perspective Projection, Generalized

1.7 Perspective Projection, 3-D (With Exercise)

#### **Discussion Questions**

- Why is the image on the sensor inverted?
- How does the size of the aperture change the image?
- What is the focal length?
- How does the focal length change the image?
- What ambiguities arise from a projective image?
- What additional information is needed to overcome those ambiguities?





Sign change is for convenience, the two configurations are equivalent



### Understanding 's'

Homogeneous coordinates are ambiguous up to an unknown scale factor



Same object but closer?
Or larger object farther away?
There is no way to know

### Understanding 's'

Homogeneous coordinates are ambiguous up to an unknown scale factor

$$\begin{pmatrix} x_s \\ s \end{pmatrix} = \begin{pmatrix} \lambda f & c_x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & t_X \\ \sin(\theta) & \cos(\theta) & t_Z \end{pmatrix} \begin{pmatrix} X_w \\ Z_w \\ 1 \end{pmatrix}$$

After transforming a point from world to sensor, we divide by 's' to rescale our transformed coordinates to the normalized scale of the sensor

### Triangulation Cues

Ambiguity is solved by 2+ observations



Source: Held, Cooper, & Banks (2012)

1: Perspective Projection 2: Image Formation 3: Image Artifacts 4: Convolution 5: Fourier 6: Pyramids, Edges, and Features 7: Image Analysis 8: Least-Squares 9: Total and Iterative Least-Squares

9: Total and Iterative Least-Squant10: Clustering11: Dimensionality Reduction12: Linear Classifiers

13: Nonlinear Classifiers

1.2 Image Formation

1.3 Camera Obscura

1.4 Perspective Projection, 2-D (With Exercise)

1.5 Perspective Projection, Inverted

1.6 Perspective Projection, Generalized

1.7 Perspective Projection, 3-D (With Exercise)

#### **Discussion Questions**

- Why is the image on the sensor inverted?
- How does the size of the aperture change the image?
- What is the focal length?
- How does the focal length change the image?
- What ambiguities arise from a projective image?
- What additional information is needed to overcome those ambiguities?

### NeRFs — Neural Radiance Fields

Multi-view geometry allows reconstruction of complex scenes





Source: www.matthewtancik.com

### NeRFs — Neural Radiance Fields



# Assignment 2 — Imaging Pipeline









## Part 1 — Demosaicing







### Part 1 — Demosaicing

Notice Bayer pattern offsets



red offset = (0,0) blue offset = (1,1) green offset = 1



red offset = (1,1) blue offset = (0,0) green offset = 1

### Part 2 — Denoising

Align all images to the first image
Alignment error == RMS error
Once aligned, average pixels to
reduce noise



offsets



### Part 3 — White Balance

#### Gray World

- Get average of each color channel
- Calculate proportional difference of green vs red & blue
- Multiply inverse proportion by red and blue channels

#### White Patch

- Choose a point
- Calculate average color of region around point
- Multiply inverse proportion of region average by each channel





# Group Exercise



### Upcoming ToDo's

Assignment 1 due January 30<sup>th</sup>

Watch async lectures for Unit 2

Accept Assignment 2 on GitHub (due February 6<sup>th</sup>)

NOTE: Turn in assignments by posting the link to your github repository on the digital campus interface