16 O(24 Mg, α n γ) **2004Ek01,2005Ek01**

2004Ek01,2005Ek01: a 60-MeV 24 Mg beam was produced at the Legnaro National Laboratory, Italy. The target was 0.5-mg/cm² enriched 40 Ca with a 7-mg/cm² tantalum backing. Oxygen was present in the target, giving rise to the fusion evaporation reactions of 16 O(24 Mg, α n γ)³⁵Ar and 16 O(24 Mg, α p γ)³⁵Cl. Detectors were the GASP array of Ge detectors, the ISIS charged-particle array of 40 Si Δ E-E telescopes, a Neutron Ring at the most forward angles, and 74 BGO detectors. Measured E γ , I γ , $\gamma\gamma$, α n γ -coin, and α p γ -coin. Deduced levels, J, π from the measured ratios of yields R(γ (θ)) and comparisons with the mirror nucleus 35 Cl.

35 Ar Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0	3/2+
1750.8 <i>3</i>	5/2+
2603.2 4	$(7/2^+)$
3197.0 <i>4</i>	$7/2^{(-)}$
4359.2 7	$(9/2^{-})$
5384.4 5	$11/2^{(-)}$
5766.0 <i>5</i>	$13/2^{(-)}$

[†] From a least-squares fit to γ -ray energies.

$$\gamma$$
(35Ar)

The ratios of yields $R(\gamma(\theta))$ were measured at 35° and 81° with respect to the beam axis. $R(\gamma(\theta)) \approx 1.2$ for stretched quadrupole and $R(\gamma(\theta)) \approx 0.7$ for stretched dipole ($\Delta J=1$).

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	Comments
381.6 <i>I</i>	26 <i>3</i>	5766.0	13/2 ⁽⁻⁾	5384.4 11/2	(-)	$R(\gamma(\theta))=0.69 \ 18.$
593 <i>1</i>	12 6	3197.0	$7/2^{(-)}$	2603.2 (7/2	+)	
852 [†] 1	4 2	2603.2	$(7/2^+)$	1750.8 5/2+		
1025 [†] <i>1</i>	5 2	5384.4	$11/2^{(-)}$	4359.2 (9/2	-)	
1162 <i>I</i>	11 <i>3</i>	4359.2	$(9/2^{-})$	3197.0 7/2 ⁽⁻	-)	
1446.2 2	76 <i>7</i>	3197.0	$7/2^{(-)}$	1750.8 5/2+	E1	$R(\gamma(\theta))=0.71 9.$
1750.7 <i>4</i>	100 7	1750.8	$5/2^{+}$	$0.0 \ 3/2^{+}$		$R(\gamma(\theta))=1.41 \ 14.$
1756 [†] <i>1</i>	27 4	4359.2	$(9/2^{-})$	2603.2 (7/2	+)	
2187.4 <i>4</i>	24 3	5384.4	$11/2^{(-)}$	3197.0 7/2 ⁽⁻	-)	$R(\gamma(\theta))=1.6 4.$
2603.0 5	41 9	2603.2	$(7/2^+)$	$0.0 \ 3/2^{+}$		$R(\gamma(\theta))=1.01 \ 17.$
3197.0 7	14 4	3197.0	$7/2^{(-)}$	$0.0 \ 3/2^{+}$	M2	$R(\gamma(\theta))=1.5 5.$

[†] Placement of transition in the level scheme is uncertain.

[‡] From mirror levels in ³⁵Cl and from the measured ratios of yields $R(\gamma(\theta))$ in 2004Ek01.

