DeepFool: a simple and accurate method to fool deep neural networks

ZIAN WANG BINGZHAO SHAN SONGLIN LIU

- 1. Background
- 2. Introduction
- 3. Methods
- 4. Experiments Results
- 5. Demo

Background

Background: Neural Networks

Deep neural networks are powerful learning models that achieve state-of-the-art pattern recognition performance in many research areas.

Background: Problems with Neural Networks

However, previous research (Szegedy, Zaremba et al., 2014) has shown that the high complexity of neural networks might be a reason explaining the presence of adversarial examples.

Terminology: Minimal adversarial perturbation

(1) The minimal adversarial perturbation

The minimal perturbation r that is sufficient to change the estimate label $\hat{k}(x)$:

$$\Delta(\boldsymbol{x}; \hat{k}) := \min_{\boldsymbol{r}} \|\boldsymbol{r}\|_2 \text{ subject to } \hat{k}(\boldsymbol{x} + \boldsymbol{r}) \neq \hat{k}(\boldsymbol{x}), \quad (1)$$

where x is an image and $\hat{k}(x)$ is the estimated label.

We call $\Delta(x; \hat{k})$ the robustness of \hat{k} at point x.

Terminology: Robustness of a classifier

(2) The robustness of classifier \hat{k} is then defined as

$$\rho_{\text{adv}}(\hat{k}) = \mathbb{E}_{\boldsymbol{x}} \frac{\Delta(\boldsymbol{x}; \hat{k})}{\|\boldsymbol{x}\|_2},$$
(2)

where E_x is the expectation over the distribution of data

Introduction

Introduction: DeepFool

DeepFool: a simple and accurate method to fool deep neural networks

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard École Polytechnique Fédérale de Lausanne

{seyed.moosavi,alhussein.fawzi,pascal.frossard} at epfl.ch

Introduction: DeepFool

DeepFool: a simple and accurate method to fool deep neural networks

Original image (whale)

Fast Gradient Sign (turtle)

Attacked by DeepFool (turtle)

Main contributions

- Proposed a simple yet accurate method for computing and comparing the robustness of different classifiers to adversarial perturbations.
- Provided a more efficient approach to obtain a coarse approximation of the minimal perturbation.
- Provided a guidance for data augmentation
- Showed that **imprecise approaches** could lead to different and sometimes misleading conclusions about the robustness. Proposed a better understanding of this intriguing phenomenon and of its influence factors.

Methods

Affine Binary Classifiers

• Minimal Perturbation for Affine Binary Classifiers: $f(x) = w^T x + b$

$$r_*(\boldsymbol{x}_0) := \arg\min \|\boldsymbol{r}\|_2$$

subject to $\operatorname{sign} (f(\boldsymbol{x}_0 + \boldsymbol{r})) \neq \operatorname{sign} (f(\boldsymbol{x}_0))$

 $\hat{k}(\boldsymbol{x}) = \operatorname{sign}(f(\boldsymbol{x})),$

Closed-form solution:

 $r_*(x_0)$ equals to the projection of x_0 onto decision boundary f(x)=0

$$\mathbf{r}_*(\mathbf{x}_0) := -rac{f(\mathbf{x}_0)}{||\mathbf{w}||_2^2} \mathbf{w}$$

Binary Differential Classifiers

Iteratively "linearizes" model output at intermediate points to obtain an optimal update direction, and applies perturbation until change classes.

- At each iteration
 - Linearize classifier

$$f_{\text{approx}} = f(x_i) + \nabla f(x_i)^T (x - x_i)$$

• Compute minimal perturbation for zero level set $f_{approx} = 0$

$$rg \min_{m{r}_i} \|m{r}_i\|_2$$
 subject to $f(m{x}_i) +
abla f(m{x}_i)^T m{r}_i = 0$ $r_i = -rac{f(x_i)}{\left|\left|
abla f(x_i)
ight|\right|_2^2}
abla f(x_i)$

Binary Classifier Pseudocode

Algorithm 1 DeepFool for binary classifiers

- 1: **input:** Image x, classifier f.
- 2: **output:** Perturbation \hat{r} .
- 3: Initialize $x_0 \leftarrow x$, $i \leftarrow 0$.
- 4: while $sign(f(\boldsymbol{x}_i)) = sign(f(\boldsymbol{x}_0))$ do

5:
$$\boldsymbol{r}_i \leftarrow -\frac{f(\boldsymbol{x}_i)}{\|\nabla f(\boldsymbol{x}_i)\|_2^2} \nabla f(\boldsymbol{x}_i),$$

6:
$$\boldsymbol{x}_{i+1} \leftarrow \boldsymbol{x}_i + \boldsymbol{r}_i$$

7:
$$i \leftarrow i + 1$$
.

- 8: end while
- 9: return $\hat{\boldsymbol{r}} = \sum_{i} \boldsymbol{r}_{i}$.

One vs All MultiClass Classifiers

DeepFool targets one vs all multiclass classifiers

$$f: \mathbb{R}^n \to \mathbb{R}^c$$
 $\hat{k}(\boldsymbol{x}) = \argmax_{k} f_k(\boldsymbol{x})$

Affine Multiclass Classifiers Hyperplanes

Affine Multiclass Classifiers

$$f(x) = W^T x + b$$

Decision boundaries are hyperplanes

$$\mathscr{F}_k = \left\{ x : f_k(x) - f_{k(x_0)}(x) = 0 \right\}$$
where $k(x_0)$ is the true class of x_0

Hyperplanes form a polyhedron P

$$P = \bigcap_{k=1}^{c} \{ oldsymbol{x} : f_{\hat{k}(oldsymbol{x}_0)}(oldsymbol{x}) \geq f_k(oldsymbol{x}) \}$$

Question

In the direction of which class (hyperplane) should we move x_0 to obtain minimum perturbation?

- A. Second most likely class
- B. Least most likely class

Affine Multiclass Classifiers

Minimum perturbation $r_*(x_0)$ is the minimum vector that projects onto the closest hyperplane.

Find closest hyperplane

$$\hat{l}(\boldsymbol{x}_0) = \operatorname*{arg\,min}_{k
eq \hat{k}(\boldsymbol{x}_0)} \frac{\left| f_k(\boldsymbol{x}_0) - f_{\hat{k}(\boldsymbol{x}_0)}(\boldsymbol{x}_0) \right|}{\| \boldsymbol{w}_k - \boldsymbol{w}_{\hat{k}(\boldsymbol{x}_0)} \|_2}.$$

Closed-form minimum perturbation for closest hyperplane zero level set

$$m{r}_*(m{x}_0) = rac{\left|f_{\hat{l}(m{x}_0)}(m{x}_0) - f_{\hat{k}(m{x}_0)}(m{x}_0)
ight|}{\|m{w}_{\hat{l}(m{x}_0)} - m{w}_{\hat{k}(m{x}_0)}\|_2^2} (m{w}_{\hat{l}(m{x}_0)} - m{w}_{\hat{k}(m{x}_0)}).$$

General Multiclass Classifiers

For general differentiable classifiers, follow the same iterative linearization procedure in binary case

$$egin{aligned} ilde{P}_i &= igcap_{k=1}^c \left\{ oldsymbol{x} : f_k(oldsymbol{x}_i) - f_{\hat{k}(oldsymbol{x}_0)}(oldsymbol{x}_i)
ight. \\ &+
abla f_k(oldsymbol{x}_i)^ op oldsymbol{x} -
abla f_{\hat{k}(oldsymbol{x}_0)}(oldsymbol{x}_i)^ op oldsymbol{x} \leq 0
ight. \end{aligned}$$

Multiclass DeepFool Pseudocode

Algorithm 2 DeepFool: multi-class case

```
1: input: Image x, classifier f.
  2: output: Perturbation \hat{r}.
  3:
  4: Initialize x_0 \leftarrow x, i \leftarrow 0.
  5: while \hat{k}(\boldsymbol{x}_i) = \hat{k}(\boldsymbol{x}_0) do
              for k \neq \hat{k}(\boldsymbol{x}_0) do
          oldsymbol{w}_k' \leftarrow 
abla f_k(oldsymbol{x}_i) - 
abla f_{\hat{k}(oldsymbol{x}_0)}(oldsymbol{x}_i)
             f_k' \leftarrow f_k(\boldsymbol{x}_i) - f_{\hat{k}(\boldsymbol{x}_0)}(\boldsymbol{x}_i)
          end for
            \hat{l} \leftarrow \arg\min_{k \neq \hat{k}(\boldsymbol{x}_0)} \frac{|f_k'|}{\|\boldsymbol{w}_k'\|_2}
11: m{r}_i \leftarrow \frac{\left\| m{f}_i' \right\|}{\left\| m{w}_i' \right\|_2^2} m{w}_{\hat{l}}'
12: m{x}_{i+1} \leftarrow m{x}_i + m{r}_i
            i \leftarrow i + 1
 14: end while
 15: return \hat{\boldsymbol{r}} = \sum_{i} \boldsymbol{r}_{i}
```


DeepFool for Various Norms

For any ℓ_p norm $(p \in [1, \infty))$

$$\hat{l}(x_0) = \underset{k \neq (k(x_0))}{\operatorname{argmin}} \frac{\left| f_k(x_0 - f_{\hat{k}(x_0)}(x_0)) \right|}{||w_k - w_{\hat{k}(x_0)}||_q}$$

$$r_*(x_0) = \frac{\left| f_{\hat{l}(x_0)}(x_0) - f_{\hat{k}(x_0)}(x_0) \right|}{\left| |w_{\hat{l}(x_0)} - w_{\hat{k}(x_0)}| \right|_q^q} \left| w_{\hat{l}(x_0)} - w_{\hat{k}(x_0)} \right|^{q-1} \odot sign(w_{\hat{l}(x_0)} - w_{\hat{k}(x_0)})$$

Experiments Results

Experiment Setup

Dataset + Architecture combinations:

- MNIST:
 - 2 FC layers
 - 2-layer LeNet
- CIFAR-10
 - 3-layer LeNet
 - Network in Network(NIN)
- ILSVRC2012 (1.2 million training, 15,000 test)
 - CaffeNet
 - GoogLeNet

Experiment Setup

Approaches compared:

- DeepFool
- Fast Gradient Sign (min epsilon to generate 90% error on data)
- Optimization based method in Intriguing properties of neural networks

Metrics:

 $\begin{array}{ll} \bullet & \text{Time to compute one adversarial example} \\ \bullet & \text{Average robustness computed as} \end{array} \hat{\hat{\rho}}_{\mathrm{adv}}(f) = \frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \frac{\|\hat{\boldsymbol{r}}(x)\|_2}{\|\boldsymbol{x}\|_2}$

Result analysis

Classifier	Test error	$\hat{ ho}_{adv}$ [DeepFool]	time	$\hat{\rho}_{adv}$ [4]	time	$\hat{\rho}_{\rm adv}$ [18]	time
LeNet (MNIST)	1%	2.0×10^{-1}	110 ms	1.0	20 ms	2.5×10^{-1}	> 4 s
FC500-150-10 (MNIST)	1.7%	1.1×10^{-1}	50 ms	3.9×10^{-1}	10 ms	1.2×10^{-1}	> 2 s
NIN (CIFAR-10)	11.5%	2.3×10^{-2}	1100 ms	1.2×10^{-1}	180 ms	2.4×10^{-2}	>50 s
LeNet (CIFAR-10)	22.6%	3.0×10^{-2}	220 ms	1.3×10^{-1}	50 ms	3.9×10^{-2}	>7 s
CaffeNet (ILSVRC2012)	42.6%	2.7×10^{-3}	510 ms*	3.5×10^{-2}	50 ms*	-	-
GoogLeNet (ILSVRC2012)	31.3%	1.9×10^{-3}	800 ms*	4.7×10^{-2}	80 ms*	-	-

[4] = fast gradient sign

[18] = Optimization based method (Intriguing properties of neural networks)

The Same Conclusion on l_{∞}

Classifier	DeepFool	Fast gradient sign	
LeNet (MNIST)	0.10	0.26	
FC500-150-10 (MNIST)	0.04	0.11	
NIN (CIFAR-10)	0.008	0.024	
LeNet (CIFAR-10)	0.015	0.028	

Table 2: Values of $\hat{\rho}_{\text{adv}}^{\infty}$ for four different networks based on DeepFool (smallest l_{∞} perturbation) and fast gradient sign method with 90% of misclassification.

Fine-tuning with Adversarial Examples

- MNIST and CIFAR-10
- 5 extra epochs with adversarial data generated separately by DeepFool and fast gradient sign
- Half original learning rate
- Measures average robustness on every epoch with attack from DeepFool

(a) Effect of fine-tuning on adversarial examples computed by two different methods for LeNet on MNIST.

(b) Effect of fine-tuning on adversarial examples computed by two different methods for a fully-connected network on MNIST.

(c) Effect of fine-tuning on adversarial examples com-

puted by two different methods for NIN on CIFAR-10. puted by two different methods for LeNet on CIFAR-10.

Figure 6

Result

Reasoning on Robustness Drop

- Perturbation computed by fast gradient sign is not minimal
- Overly perturbed examples can go across the boundary of classes

Figure 7: Fine-tuning based on magnified DeepFool's adversarial perturbations.

Fine-tuning with DeepFool Improves Robustness

Classifier	DeepFool	Fast gradient sign	Clean
LeNet (MNIST)	0.8%	4.4%	1%
FC500-150-10 (MNIST)	1.5%	4.9%	1.7%
NIN (CIFAR-10)	11.2%	21.2%	11.5%
LeNet (CIFAR-10)	20.0%	28.6%	22.6%

Table 3: The test error of networks after the fine-tuning on adversarial examples (after five epochs). Each columns correspond to a different type of augmented perturbation.

Importance of Accurate Measurement

Conclusion & Contribution

Demo

Q&A