Лекція 12. Маршрутизація в корпоративних мережах

- 1. Маршрутизація в комп'ютерних мережах
- 2. Статична та динамічна маршрутизація.
- 3. Приклад створення найпростішій мережі зі статичною маршрутизацією.

Мета лекції

- Розкрити сутність маршрутизації
- Показати особливості застосування статичної та динамічної маршрутизації у комп'ютерних мережах
- За допомогою прикладу розглянуті створення найпростіший мережі зі статичною маршрутизацією

Router man

William Yeager

Цитата

В университетский парк (Стэнфордский университет) входили мэйнфреймы, системы DEC10, несколько машин Xerox PARC Lisp и файл-серверы Altos (впоследствии к ним добавились DEC VAX, TI Explorers и системы Symbolic). Все это нужно было соединить, потому что люди устали бегать туда и обратно с магнитными лентами.

Проект по созданию маршрутизатора начался в январе **1980** г.

На надежность и оптимизацию алгоритма маршрутизации пакетов было потрачено все лето. Три последующих месяца ушло на сборку системы, а через шесть — первый маршрутизатор установили в телефонном шкафу в здании, расположенном посередине между медицинским центром и отделом вычислительных машин.

Цитата:

О Cisco все узнали в 1986 г. Именно тогда компания выпустила на рынок свой первый маршрутизатор, который назывался Advanced Gateway Server

Он базировался на процессоре Motorola 68000 10 MHz, имел 1 MB памяти, 8 слотов для интерфейсных карт, к которым можно было подключить Ethernet, ARPAnet и низкоскоростные последовательные каналы. Производительность составляла 200 пакетов в секунду.

Компанія була заснована у 1984 році

Созданная в 1984 г. сотрудниками Стэнфордского университета Леонардом Босаком (Leonard Bosack) и Сандрой Лернер (Sandra Lerner) компания в 1986 г. вывела на рынок первый многопротокольный маршрутизатор (адаптировав, усовершенствовав и доведя до коммерческого продукта внутреннюю разработку Уильяма Иджера (William Yeager)

Cisco зробила суттєвий внесок в становлення Інтернету. До 2000р. **75**% всього трафіку в Інтернет проходило через її маршрутизатори. У 2009 році компанія відсвяткувала **25**-річний ювілей.

Len Bosack

Sandy Lerner

Cisco 2801

• Маршрутизатор з інтегрованими службами (ISR - Integrated Services Router)

маршрутизатор

комутатор

пристрій, що забезпечує безпеку мережі

засоби голосової передачі

засоби зв'язку між LAN WAN

Таблица 1. Возможности маршрутизатора Cisco 2801.

Производительность:		
Маршрутизация пакетов:	• 90.000 пакетов/сек • 46.08 Мбит/сек	
Производительность в приложениях VPN со встроенным ускорителем шифрования:	• до 150 VPN-туннелей, • 3DES, AES - 50 Mbps	
Производительность в приложениях VPN при установленном модуле AIM-VPN/SSL-2:	• до 1500 VPN туннелей • 3DES, AES до 160 Mbps	
Производительность межсетевого экрана:	127 Mbps	
Число телефонов в IP-PBX CallManager Express или Survivable Remote Site Telephony:	До 24 IP-телефонов	
Число одновременных звонков по цифровым каналам:	До 30	
Число аналоговых телефоных линий:	До 16 FXS или FXO	
Число ящиков голосовой почты:	До 50	

Модулі розширення

90 модулів

HWIC - High-Performance WAN Interface Card

Режими команд: користувальницький і привілейований

У користувальницькому режимі можна тільки отримувати інформацію про роботу маршрутизатору.

У привілейованому режимі можна змінювати режими роботи маршрутизатору.

Щоб виконати налаштування маршрутизатору потрібно увійти в привілейований режим.

Для отримання доступу до команд налаштування потрібно увійти в режим глобальної конфігурації. Команда: configure terminal або config t.

У цьому режимі в командному рядку відображається Router (config) #.

Команди, що вводяться у глобальному режимі виконуються негайно і відбиваються на роботі пристрою.

Маршрутизація в комп'ютерних мережах

Методи маршрутизації

Согласно методу одношаговой маршрутизации каждый маршрутизатор и конечный узел принимает участие в выборе только одного шага передачи дейтаграммы. В каждой строке таблицы маршрутизации указывается только один IP-адрес следующего маршрутизатора на том пути, по которому нужно передать дейтаграмму. Таким образом, ни в IP-дейтаграмме, ни в таблице маршрутизации нет сведений обо всем маршруте следования дейтаграммы в виде последовательности IP-адресов маршрутизаторов, через которые она должна пройти.

Каждый маршрутизатор принимает решение о передаче дейтаграммы на основании своей таблицы маршрутизации. В качестве индекса таблицы используется номер сети, полученный из поля «Адрес получателя» в заголовке IP-дейтаграммы.

Кожний маршрутизатор приймає участь у вибору тільки одного кроку передачі пакету.

Інформація про маршрут у пакеті та таблицях маршрутизаторів відсутня.

Если сетевая часть IP-адреса отправителя и адресата не совпадает, для пересылки сообщения необходимо использовать маршрутизатор. Если узел, находящийся в сети 1.1.1.0, должен отправить сообщение узлу в сети 5.5.5.0, оно переправляется маршрутизатору. Он получает сообщение, распаковывает и считывает IP-адрес получателя. Затем он определяет, куда переправить сообщение. Затем маршрутизатор снова упаковывает пакет в кадр и переправляет его по назначению.

Маршрутизація

МАС-адреси аналізуються комутаторами IP-адреси аналізуються маршрутизаторами

Маршрутизація — процес перенаправлення пакетів в мережу одержувача, рішення про подальший шлях просування пакету приймає **маршрутизатор**

Cisco 3845
ISR - Integrated Services Router

Задача маршрутизації — задача вибору найкращого шляху передачі пакету Рішення задачі здійснюється на основі даних *таблиці маршрутизації*. Формування і оновлення таблиці маршрутизації, як правило, здійснюється в автоматичному режимі на основі інформації, яку маршрутизатори передають один одному за допомогою *протоколів маршрутизації*.

Приклади протоколів маршрутизації:

RIP (Routing Information Protocol), **OSPF** (Open Shortest Path First)

Таблиця маршрутизації (ТМ)

Перегляд таблиці маршрутів здійснюється командою show ip route

Адміністративна відстань

Источник маршрута	Значения расстояний по умолчанию
Подключенный интерфейс	0
Статический маршрут	1
Объединенный маршрут по протоколу EIGRP	5
Протокол BGP	20
Внутренний протокол EIGRP	90
Протокол IGRP	100
Протокол OSPF	110
Протокол IS-IS	115
Протокол RIP	120
Протокол EGP	140
Протокол ODR	160
Внешний протокол EIGRP	170
Внутренний протокол BGP	200
Неизвестный протокол*	255

Чим менше значення адміністративної відстані, тим надійніше протокол.

Таблиця маршрутизації

Адміністративне відстань - це функція, використовувана маршрутизаторами для вибору оптимального маршруту за наявності двох і більше різних маршрутів до мережі призначення. Адміністративна відстань визначає надійність протоколу маршрутизації. Кожному протоколу маршрутизації призначається пріоритет надійності (достовірності)

За допомогою налаштування інтерфейсу з ІР-адресою і маскою мережі інтерфейс стає вузлом в підключеній мережі

Статична маршрутизація

Зміни в топології мережі відслідковує адміністратор. У випадку недосяжності деякої мережі внаслідок несправності каналу, адміністратор мережі формує новий маршрут і вручну вводить його в таблицю маршрутизації.

Введення маршруту

Для введення **статичного** маршруту використовується команда **ip route**: **ip route** [мережа_призначення] [маска_підмережі] [адреса_шлюзу]

Статична маршрутизація

Випадки, коли доцільно використання статичного маршруту

Маршрут за замовчуванням

ip route 0.0.0.0 0.0.0.0 192.168.2.2

Динамічна маршрутизація

Дозволяє виключити трудомістку і відповідальну процедуру настройки статичних маршрутів. Динамічна маршрутизація дозволяє маршрутизаторам реагувати на зміни в мережі і коригувати таблиці маршрутизації без втручання системного адміністратора. Реалізується на основі використання протоколів динамічної маршрутизації.

Оновлення таблиць маршрутизації здійснюється поетапно.

Порівняння

	Статическая маршрутизация	Динамическая маршрутизация
Сложность конфигурирования	Повышается с увеличением размера сети	Обычно не зависит от размера сети
Изменения топологии	Требуется участие администратора	Изменяется автоматически в соответствии с изменениями топологии
Масштабирование	Подходит для простых топологий	Подходит для простых и сложных топологий
Безопасность	Более высокий уровень безопасности	Более низкий уровень безопасности
Использование ресурсов	Не требует дополнительных ресурсов	Использует ЦП, память, полосу пропускания канала
Предсказуемость	Маршрут к месту назначения всегда один и тот же	Маршрут зависит от текущей топологии

Завдання

Створити модель комп'ютерної мережі на основі маршрутизаторів зі статичною маршрутизацією за допомогою програми Packet Tracer.

Статична маршрутизація

- 1. Створити мережу за зазначеною топологією.
- 2. Визначити ІР-адреси 3-х підмереж.
- 3. Задати IP-адреси PC0 і порту маршрутизатору Router0 з діапазону доступних адрес 1-ї підмережі.
- 4. Задати IP-адреси PC1 і порту маршрутизатору Router1 з діапазону доступних адрес 2-ї підмережі.
- 5. Задати IP-адреси портам маршрутизаторів, за допомогою яких вони з'єднаються з діапазону доступних адрес 3-ї підмережі.
- 6. Визначити статичні маршрути для кожного маршрутизатору і ввести їх.
- 7. Перевірити таблицю маршрутів маршрутизаторів і роботу мережі.

Налаштування маршрутизатору

Послідовний інтерфейс

Router>enable

Router#configure terminal

Enter configuration commands, one per line.

End with CNTL/Z.

Router(config)#interface Serial0/0/0

Router(config-if)#no shutdown

Router(config-if)#clock rate 64000

Router(config-if)#ip address 172.16.2.1 255.255.255.0


```
Router(config)#interface Serial0/0/0
                  Router(config-if)#
                  %LINK-5-CHANGED: Interface SerialO/O/O, changed state to up
                  no shutdown
Налаштування
                  Router(config-if)#clock rate 56000
послідовного
                  Router(config-if)#clock rate 64000
інтерфейсу 2
                  Router(config-if)#
маршрутизатору
                  $LINEPROTO-5-UPDOWN: Line protocol on Interface SerialO/O/O, changed state to up
                   ip address 172.16.2.2 255.255.0.0
                  Router(config-if)#ip address 172.16.2.2 255.255.255.0
                  Router(config-if)#end
                  Router#
                   $SYS-5-CONFIG_I: Configured from console by console
                  Router#ping 172.16.2.1
Перевірка
працездатності
                   Type escape sequence to abort.
з'єднання між
                  Sending 5, 100-byte ICMP Echos to 172.16.2.1, timeout is 2 seconds:
маршрутизатора
                   Success rate is 100 percent (5/5), round-trip min/avg/max = 20/26/50 ms
```

Show Ip Interface Brief

Status – описує стан фізичного рівня: підключений кабель або ні, правильний це кабель або ні, ε живлення або ні

Protocol – описує стан канального рівня, якщо Status = Up, a Protocol = Down, те неправильно налаштований протокол канального рівня

Інтерфейс Fast Ethernet

- Router>enable
- Router#configure terminal
- Enter configuration commands, one per line. End with CNTL/Z.
- Router(config)#interface FastEthernet0/0
- Router(config-if)#no shutdown

- Router(config-if)#
- %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
- %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
- ip address 172.16.1.1 255.255.255.0

Налаштування ПК

Default Gateway

Refer to the exhibit. Using the network in the exhibit, what would be the default gateway address for host A in the 192.133.219.0 network?

Перевірка


```
Command Prompt
PC>ping 172.16.1.2
Pinging 172.16.1.2 with 32 bytes of data:
Reply from 172.16.1.2: bytes=32 time=10ms TTL=128
Ping statistics for 172.16.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
PC>ping 172.16.1.1
Pinging 172.16.1.1 with 32 bytes of data:
Reply from 172.16.1.1: bytes=32 time=70ms TTL=255
Reply from 172.16.1.1: bytes=32 time=41ms TTL=255
Reply from 172.16.1.1: bytes=32 time=40ms TTL=255
Reply from 172.16.1.1: bytes=32 time=41ms TTL=255
Ping statistics for 172.16.1.1:
    Packets: Sent = 4 Received = 4 Lost = 0 (0% loss)
```

Show Ip Route

Перегляд таблиці маршрутизації

Маршрутів не має, але є мережі, що безпосереднє підключені до пристрою

```
₽R1
                                                                                        _ l _ l ×
Physical Config CLI
                             IOS Command Line Interface
                    interface FastMthernetU/U, changed state to
 %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernetO/O, changed state t
 ip address 172.16.3.1 255.255.255.0
 Router(config-if)#end
 Router#
  $SYS-5-CONFIG_I: Configured from console by console
 Router#sh ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
         * - candidate default, U - per-user static route, o - ODR
         P - periodic downloaded static route
 Gateway of last resort is not set
       172.16.0.0/24 is subnetted, 2 subnets
          172.16.2.0 is directly connected, Serial0/0/0
          172.16.3.0 is directly connected, FastEthernet0/0
```

Визначення Маршрутів

Маршрути

R1 lp route 172.16.1.0 255.255.255.0 172.16.2.1

Маршрутизатор Cisco CRS-3

Магістральний маршрутизатор Carrier

Routing System (CRS) забезпечує перепускну здатність 322 Тб/с

Нова платформа за обсягом трафіку більш, ніж у 12 разів перевершує найближчу конкурентну пропозицію. Вона також втричі продуктивніше свого безпосереднього попередника, Cisco CRS-1. Найвища швидкодія (до 322 Тб / с) дозволяє завантажити весь друкований зміст Бібліотеки Конгресу США всього за одну секунду, або всім жителям Китаю одночасно зробити відеодзвінок.

Проблема

Формируя маршрут от A к E, и RIP, и OSPF выберут путь AFGE. Маршрут через узлы B, C и D будет отвергнут, как более длинный. Теперь представим себе, что с узла H на узел I пересылаются большие объемы данных. Это приведет к тому, что пакет, переданный с A и адресованный E, будет поставлен в хвост длинной очереди на передачу сначала на узле F, а потом и на G. В сложившейся ситуации маршрут ABCDE оказался более предпочтительным, но используемые в настоящее время протоколы не позволяют обнаружить этот факт.