# Machine Learning Assignment - 4

- Swati Sharma (2021568)

## Computational Part (Section C) [Theoretical Part is at the end]

a. EDA (Exploratory Data Analysis) on the country dataset

|       | child_mort | exports    | health     | imports    | income        | inflation  | life_expec | total_fer  | gdpp          |
|-------|------------|------------|------------|------------|---------------|------------|------------|------------|---------------|
| count | 167.000000 | 167.000000 | 167.000000 | 167.000000 | 167.000000    | 167.000000 | 167.000000 | 167.000000 | 167.000000    |
| mean  | 38.270060  | 41.108976  | 6.815689   | 46.890215  | 17144.688623  | 7.781832   | 70.555689  | 2.947964   | 12964.155689  |
| std   | 40.328931  | 27.412010  | 2.746837   | 24.209589  | 19278.067698  | 10.570704  | 8.893172   | 1.513848   | 18328.704809  |
| min   | 2.600000   | 0.109000   | 1.810000   | 0.065900   | 609.000000    | -4.210000  | 32.100000  | 1.150000   | 231.000000    |
| 25%   | 8.250000   | 23.800000  | 4.920000   | 30.200000  | 3355.000000   | 1.810000   | 65.300000  | 1.795000   | 1330.000000   |
| 50%   | 19.300000  | 35.000000  | 6.320000   | 43.300000  | 9960.000000   | 5.390000   | 73.100000  | 2.410000   | 4660.000000   |
| 75%   | 62.100000  | 51.350000  | 8.600000   | 58.750000  | 22800.000000  | 10.750000  | 76.800000  | 3.880000   | 14050.000000  |
| max   | 208.000000 | 200.000000 | 17.900000  | 174.000000 | 125000.000000 | 104.000000 | 82.800000  | 7.490000   | 105000.000000 |

Not much deviation in 'health' and 'life\_expec'



No missing values



Distribution of different column values

ii.

i.



Strong Positive Correlation between:

1. gdpp and income (0.90)

2. total\_fer and child\_mort (0.85)

3. imports and exports (0.74)

4. income and life\_expec (0.61)

5. gdpp and life\_expec (0.60)

Strong Negative Correlation between:

1. child\_mort and life\_expec (-0.89)

2. total\_fed and life\_expec (-0.76)



Many outliers are presented in the 'income' and 'gdpp' column.



- ۷İ.
- 1. We removed the columns = ['income', 'gdpp'] and plotted the box plot
- 2. Many outliers are presented in the 'child\_mort', 'exports', 'imports' and 'inflation'



vii.



- 1. After removing the outliers using the IQR score, there were no outliers present.
- viii. Label Encoding was done for the 'country' column which gave every row a unique ID.

#### b. PCA (Principal Component Analysis)



i. Optimal number of components: 6



### c. K-means Clustering Algorithm



Optimal number of components: 5



iii.

### iv. Analysis part: We can see significant differences between the two clusters.





imports income inflation life\_expec total\_fer

-0.6

gdpp

٧.

child\_mort exports

health





| Global Means: |            |              |  |  |  |
|---------------|------------|--------------|--|--|--|
|               | Feature    | Mean         |  |  |  |
| 0             | child_mort | -3.7229e-17  |  |  |  |
| 1             | exports    | 2.12737e-16  |  |  |  |
| 2             | health     | 5.50458e-16  |  |  |  |
| 3             | imports    | 2.76559e-16  |  |  |  |
| 4             | income     | -7.97765e-17 |  |  |  |
| 5             | inflation  | -1.06369e-17 |  |  |  |
| 6             | life_expec | 3.69631e-16  |  |  |  |
| 7             | total_fer  | 3.0448e-16   |  |  |  |
| 8<br>         | gdpp       | 5.85028e-17  |  |  |  |

vi.

| Cluster Means:    |                                        |                                        |               |           |                                        |          |           |           |
|-------------------|----------------------------------------|----------------------------------------|---------------|-----------|----------------------------------------|----------|-----------|-----------|
| i i i             |                                        |                                        |               |           |                                        | Cluster  | Feature   | Mean      |
| 0   0   -0.41424  | -===================================== | -===================================== | 0.0260358<br> | r         | -===================================== | 0.276216 | -0.444141 | -0.349263 |
| 1 1 1 1.3063      | -0.418849                              | -0.128947                              | -0.132965     | -0.690625 | 0.205899                               | -1.2793  | 1.34239   | -0.605453 |
| 2 2 2 -0.849003   | 4.93567                                | -0.00816303                            | 4.54806       | 2.43954   | -0.504206                              | 1.22682  | -1.03886  | 2.4408    |
| 3   3   -0.822941 | 0.183308                               | 0.829894                               | -0.261252     | 1.39838   | -0.499856                              | 1.07433  | -0.76825  | 1.59544   |
| 4   4   2.28139   | -0.578452                              | -0.637438                              | -1.22178      | -0.624065 | 9.12972                                | -1.13412 | 1.91613   | -0.581936 |

### Theoretical Part (Section C)

#### a. A



- ii. The purpose of the pooling layers is to reduce the dimensions of the hidden layer by combining the outputs of neuron clusters at the previous layer into a single neuron in the next layer.
  - 1. <u>Translation Invariant</u>: Pooling helps in achieving translation invariance by selecting the most appropriate information
  - 2. <u>Parameter Reduction</u>: Reduces the number of parameters, which helps prevent overfitting
  - 3. <u>Downsampling</u>: Reduces the dimensions, which helps in lowering the computational complexity

iii.

- b. When the number of groups (k) is constant, the k-means algorithm may produce the same groupings based on the initial choice of group centers. If the initial centers are chosen from the same group where the algorithm previously converged, it will revisit that grouping. This occurs because the closest points to those initial centers stay consistent, regardless of how often the algorithm is run.
  - The algorithm minimizes a cost function, precisely the sum of squared distances between data points and their assigned group centers. The number of possible configurations (assignment points to groups and corresponding centers) is finite. The cost function decreases or remains the same with each algorithm iteration.
  - The algorithm cannot endlessly cycle through configurations due to the monotonic decrease in the cost function and the finite number of possible configurations. The k-means algorithm is guaranteed to converge in a finite number of steps, ensuring it eventually reaches the same grouping.
- c. kNN, or k-Nearest Neighbors, is an algorithm that predicts outcomes by looking at the majority class of the closest K data points. It calculates distances between points without learning specific parameters or weights, which is a key difference from neural networks. Unlike neural networks, kNN doesn't create a model from the training data. Instead, it uses the entire dataset for predictions. It identifies the K-nearest neighbors and makes decisions based on their labels.

Neural networks, in contrast, are designed for learning intricate patterns by adjusting weights during training. They have input, hidden, and output layers, and their weights

are optimized using specific methods. This is a stark contrast to kNN, which doesn't involve weights or parameters.

Therefore, a neural network isn't suitable for modeling the kNN algorithm due to their differing approaches – kNN relies on distances and majority classes, while neural networks learn patterns through weight adjustments.

d.

| LINEAR KERNEL                                                         | NON-LINEAR KERNEL                                                                                          |  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| Used when there's a linear relationship between the input and output. | Used when there's no linear relationship between the input and output, consists of a more complex function |  |  |  |
| It may not capture the complexity; computational easy                 | Capture more complex patterns; might be computationally expensive                                          |  |  |  |
| The decision boundary is a hyperplane                                 | The decision boundary can have a complex, non-linear shape                                                 |  |  |  |
| It consists of an identity activation function                        | It consists of a non-linear activation function                                                            |  |  |  |
| Sensitive to outliers                                                 | More robust to outliers                                                                                    |  |  |  |
| e.g: y = 2x + 5                                                       | e.g.: RBF(Radial Based Kernel) kernel                                                                      |  |  |  |