

TRABAJO PRÁCTICO

Sistemas Operativos, Arquitectura de Software y Computación en la Nube

Alumno: Ignacio Figueroa

Tecnicatura Universitaria en Programación – UTN

Materia: AySO

Comisión: 7

Objetivos

- Comprender la gestión e instalación de aplicaciones en sistemas operativos Linux.
- Analizar los modelos de arquitectura de software, diferenciando enfoques monolíticos, cliente-servidor y de microservicios.
- Explorar la computación en la nube y los modelos de servicio, identificando laaS, PaaS y SaaS

Desarrollo

Ejercicio 1: Métodos de Instalación de Software en Linux

Instrucciones: Completa la tabla seleccionando el método de instalación adecuado según la descripción dada.

Descripción	Método de Instalación
Permite instalar paquetes desde repositorios oficiales con resolución automática de dependencias.	Código Fuente
Ejecuta archivos binarios precompilados sin necesidad de instalación.	Ejecutables Binarios
Facilita la instalación de paquetes autocontenidos.	Snap, Flatpak y Applmage
Se basa en la descarga del código fuente y su compilación manual.	Gestores de paquetes

^{- &}quot;Gestores de paquetes", "Ejecutables binarios", "Snap, Flatpak y Applmage", "Código fuente"

Ejercicio 2: Modelos de Arquitectura de Software

Instrucciones: Relaciona cada característica con su tipo de arquitectura marcando la opción correcta.

Característica	Monolítica	Cliente-Servidor	Microservicios
Integra todas las funciones en un solo bloque de código.	X		
Se basa en la comunicación entre un cliente y un servidor centralizado.		Х	
Divide la aplicación en servicios pequeños e independientes.			Х
Ofrece facilidad de desarrollo y despliegue para proyectos pequeños.	X		

Ejercicio 3: Computación en la Nube y Modelos de Servicio

Instrucciones: Completa las afirmaciones con el modelo de servicio en la nube correspondiente: laaS, PaaS o SaaS.

 Un usuario accede a Google Docs desde su navegador sin instalar software adicional. →SaaS
2. Una empresa aprovisiona máquinas virtuales en AWS EC2 y las configura manualmente. →IaaS
3. Un desarrollador sube su código a Google App Engine, que asigna recurso automáticamente. →PaaS
4. Un banco gestiona sus propios servidores privados para cumplir con normativas de seguridad. →Ninguno

Ejercicio 4: Estrategias de Despliegue en la Nube

Instrucciones: Une cada estrategia de despliegue en la nube con su descripción.

Estrategia	Descripción
Nube Publica	Infraestructura compartida gestionada por proveedores como AWS o Pública.
Nube Privada	Recursos dedicados a una única organización con mayor control y seguridad
Nube Hibrida	Combina recursos privados y públicos para optimizar costos y flexibilidad
Multinube	Uso de múltiples proveedores de nube para evitar dependencias de un solo servicio

5

Ejercicio 5: Ventajas y Desafíos de los Modelos de Arquitectura

Instrucciones: Selecciona si la siguiente afirmación representa una **ventaja** o un **desafío** de la arquitectura de microservicios.

- 1. Facilita la escalabilidad independiente de cada servicio. → Ventaja
- 2. Aumenta la complejidad en la comunicación entre servicios. → Desafío
- 3. Permite el despliegue individual de cada componente. → Ventaja
- 4. Requiere herramientas adicionales para la gestión y monitoreo. → Desafío