Corrigé du devoir maison 5.

Exercice

La constante d'Euler

1°) On sait : $\forall x \in]-1, +\infty[$, $\ln(1+x) \le x$.

$$\ln(n+2) - \ln(n+1) = \ln\left(\frac{n+2}{n+1}\right) = \ln\left(1 + \frac{1}{n+1}\right) \le \frac{1}{n+1}.$$

$$\ln(n) - \ln(n+1) = \ln\left(\frac{n}{n+1}\right) = \ln\left(\frac{n+1-1}{n+1}\right) = \ln\left(1 - \frac{1}{n+1}\right) \le -\frac{1}{n+1}.$$
On a bien obtenu :
$$\ln(n+2) - \ln(n+1) \le \frac{1}{n+1} \text{ et } \ln(n) - \ln(n+1) \le -\frac{1}{n+1}.$$

- **2°)** \star $\forall n \in \mathbb{N}^*, \ a_{n+1} a_n = \frac{1}{n+1} \ln(n+2) + \ln(n+1) \ge 0 \text{ par } 1).$ Donc (a_n) est croissante.
 - ★ $\forall n \in \mathbb{N}^*, b_{n+1} b_n = \frac{1}{n+1} \ln(n+1) + \ln(n) \le 0 \text{ par } 1$). Donc (b_n) décroissante.
 - $\star \forall n \in \mathbb{N}^*, b_n a_n = \ln(n+1) \ln n = \ln\left(1 + \frac{1}{n}\right) \xrightarrow[n \to +\infty]{} 0.$

 (a_n) et (b_n) sont donc adjacentes.

Ainsi, par le théorème des suites adjacentes, elles convergent et ont même limite γ . De plus, par la monotonie des suites, $a_1 \leq \gamma \leq b_1$.

Donc $1 - \ln 2 \le \gamma \le 1$.

3°) $\forall n \in \mathbb{N}^*, H_n = b_n + \ln n.$ La suite (b_n) est convergente et $\ln n \xrightarrow[n \to +\infty]{} +\infty$ donc, par somme, $H_n \xrightarrow[n \to +\infty]{} +\infty$.

Une première application

 5°) a) Soit $n \in \mathbb{N}^*$.

$$K_{n+1} - K_n = \sum_{k=1}^{n+1} \frac{1}{n+1+k} - \sum_{k=1}^{n} \frac{1}{n+k}$$

$$= \sum_{j=2}^{n+2} \frac{1}{n+j} - \sum_{j=1}^{n} \frac{1}{n+j} \quad \text{en posant } j = k+1 \text{ dans la 1ere somme}$$

$$= \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}$$

$$= \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{2}{2n+2}$$

$$= \frac{1}{2n+1} - \frac{1}{2n+2} = \frac{(2n+2) - (2n+1)}{(2n+1)(2n+2)}$$

$$= \frac{1}{(2n+1)(2n+2)} > 0$$

La suite (K_n) est donc strictement croissante.

b) Soit $n \in \mathbb{N}^*$. Soit $k \in \{1, \dots, n\}$.

$$1 \le k \le n \text{ donc } 0 < n+1 \le n+k \le 2n \text{ donc } \frac{1}{2n} \le \frac{1}{n+k} \le \frac{1}{n+1}.$$

On somme de k = 1 à k = n l'inégalité de droite :

$$\sum_{k=1}^{n} \frac{1}{n+k} \le \sum_{k=1}^{n} \frac{1}{n+1} \text{ i.e } K_n \le \frac{n}{n+1} \text{ donc } K_n \le 1.$$

La suite (K_n) est croissante et majorée donc la suite (K_n) converge

c) Soit $n \in \mathbb{N}^*$.

$$K_n = \sum_{k=1}^n \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
$$= \left(1 + \frac{1}{2} + \dots + \frac{1}{2n}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$$
$$= \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^n \frac{1}{k}$$

Ainsi, $K_n = H_{2n} - H_n$.

Or, pour tout $p \in \mathbb{N}^*$, $H_p = b_p + \ln p$ donc

$$K_n = b_{2n} + \ln(2n) - b_n - \ln n = \ln\left(\frac{2n}{n}\right) + b_{2n} - b_n$$

Ainsi, $K_n = \ln 2 + b_{2n} - b_n$

Or la suite (b_n) converge vers γ donc la suite extraite (b_{2n}) aussi.

On en déduit, par opérations, que la suite (K_n) converge vers $\ln 2$

6°) a) On note, pour $n \in \mathbb{N}^*$, $\mathcal{P}_n : A_{2n} = K_n$.

- ★ Pour $n = 1 : K_1 = \frac{1}{2}$ et $A_2 = 1 \frac{1}{2} = \frac{1}{2}$ donc \mathcal{P}_1 est vraie.
- ★ Soit $n \in \mathbb{N}^*$ fixé. On suppose que \mathcal{P}_n est vraie.

$$A_{2(n+1)} = A_{2n+2} = A_{2n} + \frac{1}{2n+1} - \frac{1}{2n+2}$$

= $K_n + \frac{1}{2n+1} - \frac{1}{2n+2}$ par \mathcal{P}_n
= K_{n+1} par le calcul effectué dans 5a

Ainsi, \mathcal{P}_{n+1} est vraie.

- \star On a montré par récurrence que : $\forall n \in \mathbb{N}^*, \ A_{2n} = K_n$
- **b)** (K_n) converge vers $\ln 2$ par 5c donc (A_{2n}) converge vers $\ln 2$.

De plus, pour tout $n \in \mathbb{N}$, $A_{2n+1} = A_{2n} + \frac{1}{2n+1}$ donc la suite (A_{2n+1}) converge aussi vers $\ln 2$.

Les 2 suites extraites de rangs pairs et de rangs impairs de la suite (A_n) sont convergentes de même limite $\ln 2$ donc $\boxed{\text{la suite } (A_n) \text{ converge vers } \ln 2}$.

2

Une deuxième application

7°) Pour
$$n \in \mathbb{N}^*$$
, on a $v_n = \frac{n(n+1)(2n+1)}{6}$

8°) Soit $n \in \mathbb{N}^*$. On a:

$$\frac{1}{n(n+1)(2n+1)} = \frac{n+1-n}{n(n+1)(2n+1)}$$

$$= \frac{1}{n(2n+1)} - \frac{1}{(n+1)(2n+1)}$$

$$= \frac{2n+1-2n}{n(2n+1)} - \frac{2(n+1)-(2n+1)}{(n+1)(2n+1)}$$

$$= \frac{1}{n} - \frac{2}{2n+1} - \frac{2}{2n+1} + \frac{1}{n+1}$$

$$= \frac{1}{n} + \frac{1}{n+1} - \frac{4}{2n+1}$$

Les réels a = 1, b = 1, c = -4 conviennent donc.

Autre méthode : Réduire l'expression $\frac{a}{n} + \frac{b}{n+1} + \frac{c}{2n+1}$ au même dénominateur, il suffit alors de résoudre un système.

 9°) Soit $n \in \mathbb{N}^*$. On a

$$H_{2n+1} = \sum_{p=1}^{2n+1} \frac{1}{p}$$

$$= \sum_{\substack{p \text{ pair} \\ 1 \le p \le 2n+1}} \frac{1}{p} + \sum_{\substack{p \text{ impair} \\ 1 \le p \le 2n+1}} \frac{1}{p}$$

$$= \sum_{k=1}^{n} \frac{1}{2k} + \sum_{k=0}^{n} \frac{1}{2k+1}$$

$$= \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} + \sum_{k=0}^{n} \frac{1}{2k+1}$$

$$= \frac{1}{2} H_n + 1 + \sum_{k=1}^{n} \frac{1}{2k+1}$$

On a donc :
$$\sum_{k=1}^{n} \frac{1}{2k+1} = H_{2n+1} - \frac{1}{2}H_n - 1$$

 $Autre\ m\'ethode$: Par récurrence

Posons, pour tout $n \in \mathbb{N}^*$, $P_n : \sum_{k=1}^n \frac{1}{2k+1} = H_{2n+1} - \frac{1}{2}H_n - 1$.

- Pour n = 1, $\sum_{k=1}^{1} \frac{1}{2k+1} = \frac{1}{3}$ et $H_3 \frac{1}{2}H_1 1 = 1 + \frac{1}{2} + \frac{1}{3} \frac{1}{2}.1 1 = \frac{1}{3}$, donc P_1 est vraie.
- Supposons P_n vraie pour un $n \in \mathbb{N}^*$ fixé.

$$\sum_{k=1}^{n+1} \frac{1}{2k+1} = \sum_{k=1}^{n} \frac{1}{2k+1} + \frac{1}{2(n+1)+1}$$
$$= H_{2n+1} - \frac{1}{2}H_n - 1 + \frac{1}{2n+3} \qquad \text{par H.R.}$$

3

Par ailleurs:

$$\begin{split} H_{2(n+1)+1} - \frac{1}{2}H_{n+1} - 1 &= \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{1}{2} \sum_{k=1}^{n+1} \frac{1}{k} - 1 \\ &= \sum_{k=1}^{2n+1} \frac{1}{k} + \frac{1}{2n+2} + \frac{1}{2n+3} - \frac{1}{2} \left(\sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1} \right) - 1 \\ &= H_{2n+1} + \frac{1}{2n+2} + \frac{1}{2n+3} - \frac{1}{2}H_n - \frac{1}{2} \frac{1}{n+1} - 1 \\ &= H_{2n+1} - \frac{1}{2}H_n - 1 + \frac{1}{2n+3} \end{split}$$

On a donc bien $\sum_{k=1}^{n+1} \frac{1}{2k+1} = H_{2(n+1)+1} - \frac{1}{2}H_{n+1} - 1 : P_{n+1}$ est vraie.

- Conclusion : pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{2k+1} = H_{2n+1} \frac{1}{2}H_n 1$.
- 10°) Soit $n \in \mathbb{N}^*$. De ce qui précède, on déduit :

$$S_{n} = \sum_{k=1}^{n} v_{k}$$

$$= \sum_{k=1}^{n} \left(\frac{6}{k} + \frac{6}{k+1} - \frac{24}{2k+1}\right)$$

$$= 6 \left[\sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n} \frac{1}{k+1} - 4\sum_{k=1}^{n} \frac{1}{2k+1}\right]$$

$$= 6 \left[H_{n} + \sum_{j=2}^{n+1} \frac{1}{j} - 4\left(H_{2n+1} - \frac{1}{2}H_{n} - 1\right)\right] \quad \text{en posant } j = k+1$$

$$= 6 \left(H_{n} + \left(H_{n+1} - 1\right) - 4H_{2n+1} + 2H_{n} + 4\right)$$

$$= 6 \left(3 + 3H_{n} + H_{n+1} - 4H_{2n+1}\right)$$

$$= 6 \left[3 + 3(b_{n} + \ln(n)) + (b_{n+1} + \ln(n+1)) - 4(b_{2n+1} + \ln(2n+1))\right]$$

$$= 6 \left[3 + 3b_{n} + b_{n+1} - 4b_{2n+1} + \ln\left(\frac{n^{3}(n+1)}{(2n+1)^{4}}\right)\right]$$

La suite (b_n) converge vers γ , donc les suites extraites (b_{n+1}) et (b_{2n+1}) convergent aussi vers γ , donc $3b_n + b_{n+1} - 4b_{2n+1} \underset{n \to +\infty}{\longrightarrow} 0$.

De plus,
$$\frac{n^3(n+1)}{(2n+1)^4} = \frac{n^4 + n^3}{n^4 \left(2 + \frac{1}{n}\right)^4} = \frac{1 + \frac{1}{n}}{\left(2 + \frac{1}{n}\right)^4} \xrightarrow[n \to +\infty]{} \frac{1}{2^4}.$$
Par continuité de ln, on a $\ln\left(\frac{n^3(n+1)}{(2n+1)^4}\right) \xrightarrow[n \to +\infty]{} \ln\left(\frac{1}{2^4}\right) = -4\ln(2).$
On en déduit que : $S_n \xrightarrow[n \to +\infty]{} 6\left(3 - 4\ln(2)\right) = 18 - 24\ln 2.$