4.6.1 — Интерференция электромагнитных волн миллиметрового диапазона.

Цель работы. Изучение интерференции электромагнитных волн миллиметрового диапазона с применением двух оптических интерференционных схем, экспериментальное определение длины волны излучения и показателя преломления диэлектрика.

В работе используются: приёмно-передающая система радиоволн миллиметрового диапазона; металлические зеркала; микрометрический винт; проволочная решётка; пластина из диэлектрика.

Теоретическая часть. Для когерентных одинаково поляризованных волн с разностью фаз φ мы знаем популярное выражение интенсивности суперпозиции:

$$I = I_1 + I_2 + \sqrt{I_1 I_2} \cos \varphi, \tag{1}$$

где разность фаз можно определить через разность хода волн: $\varphi=k\Delta$. Из 1 мы сразу легко объясним явление интерференции.

Рис. 1: Приёмно-передающая система СВЧ-диапазона.

На рис. 1 приведена схема используемой установки – мы исследуем интерференцию СВЧволн; роль зеркала играет металлический лист. Прежде всего мы проверим *закон Малюса*

$$I = I_0 \cos^2 \alpha, \tag{2}$$

где α — поворот одной из антенн относительно луча. Выполнение данного закона свидетельствует о наблюдении линейно поляризованной волны.

Рис. 2: Схема с зеркалом и решёткой для наблюдения интерференции радиоволн.

Если на расстоянии d от зеркала поместить решетку (см. рис. 2), частично отражающую волну, то можно наблюдать интерференцию радиоволн в приемнике. Разность хода даётся выражением

$$\Delta = 2d\cos\theta. \tag{3}$$

Более того, мы можем собрать аналог оптического интерферометра Майкельсона (см. рис. 3). Разность хода возникает в результате разной длины плеч интерферометра: $\Delta = 2(l_1 - l_2)$. Если на пути одного из лучей поставить пластинку толщиной h и диэлектрической пронициаемость ε , можно создать дополнительную разность хода 2h(n-1). Пусть до внесения пластинки

мы наблюдали интерференционный максимум. Тогда при сдвиге свободного плеча на δx на расстояние

$$\delta x = h(n-1) \tag{4}$$

мы будем снова наблюдать максимум. Если толщина пластинки настолько мала, что даваемая ей разность хода меньше длины волны света, то её показатель преломления может быть определен однозначно.

Рис. 3: Интерферометр Майкельсона на СВЧ-радиоволнах.

Проверка закона Малюса. Как видно по графику, закон выполняется.

I, MKB	26	24	21	18	14	10
α	5	10	15	20	25	30

Рис. 4: Проверка закона Малюса.

Интерференция волн, отражённых от зеркала и решётки. 100 делений – 1 миллиметр. По графику находим, что расстояние между соседними максимумами есть $\simeq 4$ мм; согласно 3 получаем экспериментально $\lambda \simeq 8$ мм. При этом $\lambda = c/\nu \simeq 8.1$ мм – истинное значение.

I, мкВ	33	31	25	4	0	4	16	28	34	32
x, дел.	0	50	100	150	200	250	300	350	400	450

Рис. 5: Зависимость интенсивности от координаты подвижного зеркала.

Интерферометр Майкельсона. Перемещая подвижное зеркало, снимем зависимость координаты зеркала x от номера максимума n. По графику определим длину волны: $2\pi m = 2\pi\Delta/x \implies \lambda \simeq 7.34$ мм.

x, MM	3.72	7.69	11.8	15.78	19.7	23.8
n	1	2	3	4	5	6

Рис. 6: Зависимость координаты зеркала x от номера максимума n.

Найдем теперь зависимость $I=f(\Delta)$. Снимем зависимость интенсивности от координаты подвижного зеркала в пределах одной длины волны:

I, мкВ	45	38	23	9	5	9.5	24	35	42
x, MM	0	0.5	1	1.5	2	2.5	3	3.5	4

А теперь, убирая поочередно зеркала, измерим интенсивности каждого из интерферирующих лучей. Проверим, выполняется ли формула 1 (spoiler – да).

I, мкВ	44.9	39	24.7	10.6	5	11.2	25.7	39.7	44.9
Δ , mm	0	1	2	3	4	5	6	7	8

Рис. 7: Зависимость интенсивности от положения зеркала.

Ранее мы заметили, что в предположении малой толщины пластины мы можем легко найти её показатель преломления (см. формулу 4). У нас $\delta x \simeq 1$ мм \Rightarrow $n=1+\delta x/h \simeq 1.31$. Табличное значение – n=1.4.

Вывод. При исследовании интерференции СВЧ-волн мы проверили закон Малюса и получили замечательное согласие теории с опытом.