

November 27, 2022

Yubo Cai

EXERCISE 1

From the lecture we have that $T(m, n, r) = T(F, C) \le T(F_+, C_+) + T(F_-, C_-) + m_+ + n$ and we have $T(F, C) \le m + 2n \log^* r$, where $\log^* n$ is defined as the number of iterations of \log_2 before reaching ≤ 1 .

From page 50 slides we can have the bound for the high forest gives

$$T(F_+, C_+) \le m_+ + \frac{n}{2^{s-1}} \log^* r$$

Therefore we can have the bound condition

$$T(F,C) \le T(F_-,C_-) + 2m_+ + n + 2\frac{n}{2^s}\log^* r$$

Also, we have the condition for m that $m_{+} := m - m_{-}$

$$T(F,C) \le T(F_{-},C_{-}) + 2m - 2m_{-} + n + 2\frac{n}{2^{s}}\log^{*}r$$
$$T(F,C) - 2m \le T(F_{-},C_{-}) - 2m_{-} + n + 2\frac{n}{2^{s}}\log^{*}r$$

We can choose $s = \lceil \log_2 \log^* r \rceil$ in order to have $2\frac{n}{2^s} \log^* r = 2\frac{2}{\lceil \log^* r \rceil} \log^* r \le 2n$, therefore we got

$$T(F,C) - 2m \le T(F_-,C_-) - 2m_- + 3n$$

where by the definition of F_{-} we got the rank of the nodes in this forest at most $\leq s = \lceil \log_2 \log^* r \rceil$. By interacting $T(F_{-}, C_{-})$ on $\log^* \log^* r$ times we got

$$T(F,C) \le 2m + 2n\log^* \log^* r - m_- + 3n$$
$$= O(m\log^* \log^* n)$$

In order to make $\log^* log^* n = 3$, which we got $\log^* n = 16$. Then we need to compute the function $f: x \to 2^x$ from x = 1 for 16 times. We assume this number is k which is really huge for computation. We can use a **Python** function to compute it.

log_Interation.py

```
import math

def _log(x, base):
    return (int)(math.log(x) / math.log(base))

def recursiveLogStar(n, b):
    if (n > 1.0):
        return 1.0 + recursiveLogStar(_log(n, b), b)
    else:
        return 0

print(recursiveLogStar(1000000**1000000, 2)) # The output is 5.0
```

$\mathrm{CSE}202$ - Design and Analysis of Algorithms

Since from the computation of the **Python** program, for 1000000^{100000} this huge number we got 5.0, so in order to get 16 the number n is tremendous. So we just assume k is the number such that $\log^* k = 16$ and make n = k + 1 in order to make the output larger than 3.