THESIS TITLE SECOND LINE IF NECESSARY

by

Dilraj Ghuman

A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in conformity with the requirements for the degree of Master of Science

Queen's University
Kingston, Ontario, Canada
May 2021

Copyright © Dilraj Ghuman, 2021

Abstract

This is my abstract.

Acknowledgments

Blah blah blah.

Statement of Originality

Contents

Abstra	ct		i	
Ackno	wledgme	ents	ii	
Statement of Originality				
Contents				
List of	Tables		vi	
List of	Figures		vii	
Chapt	er 1:	Introduction	1	
1.1	Neutrin	os	1	
	1.1.1	Interactions	2	
	1.1.2	Oscillations	2	
	1.1.3	Production & Sources	2	
1.2	Neutrin	o Telescopes	2	
Chapt	er 2:	The Pacific Ocean Neutrino Explorer	3	
2.1	Detecto	rs	3	
	2.1.1	Geometry	3	
2.2	Ocean N	Networks Canada	3	
Chapt	er 3:	Simulation	4	
3.1	IceCube	Framework	4	
3.2	Simulat	ing Neutrinos	4	
3.3	Simulat	ing Muons	4	
3.4	Detecto	r Response	4	
Chapt	er 4:	Reconstruction	5	
4.1	Linefit		5	

hante	er 5: Results
-	
0.1	Likelihood
Chapte	er 6: Summary and Conclusions
6.1	Summary
6.2	Future Work
	Conclusion

List of Tables

List of Figures

1.1	The Feynmann diagrams for the vertices that would be included in						
	neutrino interactions using the charged W^{\pm} boson on the left and the						
	neutral Z^0 boson on the right	6					

Introduction

The cosmic sky has entranced humans for as far as recorded history can trace. As technology evolved, so too did the observation of the universe around us; from the naked eye to primitive telescopes, and eventually to present day space telescopes, like the Hubble Space Telescope and the upcoming James Web Space Telescope (NEED TO CITE THESE). These growing technological leaps have also resulted in the exploration of the incredibly small and eventually resulted in the discovery of the neutrino [4]. It was perhaps inevitable that these two seemingly separate areas of physics would eventually meet.

1.1 Neutrinos

The neutrino is a fundemental particle first proposed by Wolfgang Pauli [1], and then later discovered in 1956 using the byproducts of β^- decay [4]. As research continued into the elusive neutrino, another flavour of neutrino was discovered in 1962 called the muon neutrino (ν_{μ}) [2] and eventually the final flavour of the tau neutrino (ν_{τ}) [3].

1.2. NEUTRINO TELESCOPES

Figure 1.1: The Feynmann diagrams for the vertices that would be included in neutrino interactions using the charged W^{\pm} boson on the left and the neutral Z^0 boson on the right.

1.1.1 Interactions

Neutrinos are neutral and interact only through the Weak interaction. The Weak interaction is a force that is mediated by the W^{\pm} and Z^0 massive bosons, and is the force responsible for decays. The main vertices involved in neutrino interactions are shown in Figure [?], where we see the lepton

1.1.2 Oscillations

1.1.3 Production & Sources

1.2 Neutrino Telescopes

The Pacific Ocean Neutrino Explorer

- 2.1 Detectors
- 2.1.1 Geometry
- 2.2 Ocean Networks Canada

Simulation

- 3.1 IceCube Framework
- 3.2 Simulating Neutrinos
- 3.3 Simulating Muons
- 3.4 Detector Response

Reconstruction

- 4.1 Linefit
- 4.2 Likelihood

Results

5.1 Likelihood

Summary and Conclusions

- 6.1 Summary
- 6.2 Future Work
- 6.3 Conclusion

BIBLIOGRAPHY

Bibliography

- [1] Laurie M. Brown. The idea of the neutrino. *Physics Today*, 31(9):23–28, September 1978.
- [2] G. Danby, J. Gaillard, K. Goulianos, L. Lederman, N. Mistry, M. Schwartz, and J. Steinberger. Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. *Physical Review Letters*, 9:36–44, 1962.
- [3] K. Kodama, N. Ushida, C. Andreopoulos, N. Saoulidou, G. Tzanakos, P. Yager, B. Baller, D. Boehnlein, W. Freeman, B. Lundberg, and et al. Observation of tau neutrino interactions. *Physics Letters B*, 504(3):218–224, Apr 2001.
- [4] F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, and H. W. Kruse. Detection of the free antineutrino. *Phys. Rev.*, 117:159–173, Jan 1960.