Lesson Objectives

- 1. Basic terms with quadratic functions
- 2. Determine if a function is linear, quadratic, or neither
- 3. Identify (or calculate) characteristics of quadratic functions and graphs
 - a. Leading coefficient opens up or down
 - b. Vertex
 - c. Axis of symmetry
 - d. Intervals of increasing or decreasing
 - e. Domain and Range
 - f. Maximum or minimum value
- 4. Using vertex and standard form for a quadratic function

Α.	Basic	Terms	with	Quad	ratic	Fu	nctior	าร
----	-------	-------	------	------	-------	----	--------	----

_____ – a function of one variable where the highest exponent (degree) is 2.

Quadratic comes from the Latin *quadrare*, which means "to make square."

Let a, b, and c be real numbers with $a \neq 0$. A function represented by

$$f(x) = ax^2 + bx + c$$

is a quadratic function (written in ______ form).

Let a, h, and k be real numbers with $a \neq 0$. A function represented by

$$f(x) = a(x - h)^2 + k$$

is also a quadratic function (written in _____ form).

By contrast, a _____ function is of the form:

$$f(x) = ax + b$$

where a and b are real numbers ($a \neq 0$).

B. Determine if a function is linear, quadratic, or neither

- **1.** For both quadratic and linear, there must be _____ variables in the denominator.
- **2.** Quadratic: Look for a term with _____ in it (no _____ exponents). The leading coefficient is beside the x^2 .
- 3. Linear: Look for a term with just an ____ (exponent ____) in it (no higher exponents).
- **EXAMPLE:** Identify $f(x) = 4 3x + 5x^2$ as being linear, quadratic, or neither. If f is quadratic, identify the leading coefficient a and evaluate f(-2). [3.1.1]

For both quadratic and linear, there must be NO variables in the denominator. ______Quadratic: Look for a term with x^2 in it (no higher exponents).

This function has the $+5x^2$ term (no higher exponents), so this function is

_____. The leading coefficient (beside x^2) is a =____.

Evaluate: f(-2)

Given Function: $f(x) = 4 - 3 x + 5 x^2$

Plug in – 2 for x: $f() = 4 - 3() + 5()^2$

Be very careful with these negatives here.

Your placement of PARENTHESES is critical. Respect Order of Operations, too.

$$f(-2) = 4$$
_____ + 5()
= 4_____ = ___ = ____ = ____

You don't have to do this by hand.

Using calculator: $f(-2) = 4 - 3(-2) + 5(-2)^2$

You still have to use parentheses correctly on calculator this way.

But remember, you can do the "Go to the STO>" method on the calculator:

Type in: (-) 2, STO>, XTθn, ENTER

Then, type in the function formula with variables:

$$4 - 3x + 5x^2$$

EXAMPLE: Identify $f(x) = \frac{2}{x^2 - 1}$ as being linear, quadratic, or neither. If f is quadratic, identify the leading coefficient a and evaluate $f(-3)$. [3.1.3]					
For both quadratic and linear, there must be NO variables in the denominator Although there is an x^2 present, it is in the of a fraction. Since there is a variable in the denominator, this function $f(x)$ is					
• EXAMPLE: Identify $f(x) = \frac{1}{2} - \frac{7}{10}x$ as being linear, quadratic, or neither. If f is quadratic, identify the leading coefficient a and evaluate $f(-2)$. [3.1.5]					
For both quadratic and linear, there must be NO variables in the denominator Quadratic: Look for a term with x^2 in it Linear: Look for a term with just an x (exponent 1) in it (no higher exponents).					
This function has the term (no higher exponents), so this function is					
C. Characteristics Quadratic Functions and Graphs – theshaped graph of a quadratic function.					
Leading Coefficient () – determines whether the parabola opens up or down.					
If $a > 0$ (, the parabola opens					
If $a < 0$ (, the parabola opens Parabola $y = ax^2 + bx + c$					
opens upward opens downward					
– the highest point on a parabola that opens downward or the					
lowest point on a parabola that opens downward. It's where the graph					
from decreasing to increasing or vice-versa.					
value – the y -coordinate of the vertex of a parabola opening DOWN (a < 0)					
value – the y-coordinate of the vertex of a parabola opening UP ($a > 0$)					

Axis of Symmetry – the ______ line passing through the _____ Equation is x = (x-Vertex)Increasing – graph moves ______, from left to right **Decreasing** – graph moves ______, from left to right a > 0a < 0• **EXAMPLE:** Use the graph to find the following. [3.1.9](a) Sign of the leading coefficient (b) Vertex (c) Axis of Symmetry (d) Intervals where f is increasing and where f is decreasing (e) Domain and range **SOLUTION** (a) The parabola opens , so the sign of the leading coefficient is ______ (b) The **vertex** is located at (,). (c) The axis of symmetry (AOS) is the line ______. It goes through the vertex. (d) On the **LEFT** side of the parabola, the On the **RIGHT** side of the parabola, the function *f* is ______. function *f* is ______. Written as inequality: _____ Written as inequality: _____ Interval Notation: _____ Interval Notation: _____ (e) The **domain** of *f* is describing ______, The **range** of *f* is describing _____, and it and it moves ______. moves _____**-to-**____ Always use (Use the x-axis to help you.) (Use y-axis to help you.) bracket with an Written as inequality: ______ included value! Written as inequality: Interval Notation: _____ Interval Notation:

- **EXAMPLE:** Use the graph of f to determine the intervals where f is increasing and where f is decreasing. [1.4-28]
 - (STEP 1) x-Vertex _____ (the x-coordinate of the vertex)
 - (STEP 2) Write out LEFT & RIGHT sides.

LEFT side RIGHT side of the parabola

Written as Inequality:

Interval Notation:

ANSWER: Increasing _____ and Decreasing _____

1. Vertex Form: $f(x) = a(x-h)^2 + k$ Vertex is (,

a is the leading coefficient(opens ∪ or ∩)

x-Vertex is h

(x-coordinate of vertex is INSIDE parentheses with x)

SIGN with

y-Vertex is *k*

(y-coordinate of vertex is OUTSIDE parentheses)

SIGN outside – IT

• **EXAMPLE:** Identify the vertex of the parabola and determine whether its graph opens upward or downward. [*Hornsby 3.2.17]

$$f(x) = (x - 9)^2 - 3$$

SOLUTION

INSIDE parentheses with x, SWITCH SIGN. I see – 9 with x, so x-Vertex is _____ OUTSIDE parentheses is y, SAME SIGN (keep it). y-Vertex is _____

The vertex is therefore (,)

The leading coefficient a, is an understood value of _____.

That is,
$$f(x) = (x - 9)^2 - 3$$
 can rewrite as $f(x) = (x - 9)^2 - 3$

a = ____

Since a = 1, that's a POSITIVE number, which **opens** ______.

• **EXAMPLE:** Give the largest interval where the function increases or decreases, as requested. $f(x) = (x+3)^2 + 6$; increases [*Hornsby 3.2-30]

SOLUTION

• (STEP 1) Does the parabola open UP or DOWN?

Leading coefficient, a, is understood value of ____ (positive). It opens _____.

• (STEP 2)

Make a ______ of a parabola opening **UP**.

$$f(x) = (x+3)^2 + 6$$

$$x = \underline{\hspace{1cm}}$$

• (STEP 3)

x-Vertex (SWITCH SIGN)

• (STEP 4)

Write out LEFT & RIGHT sides.

LEFT side of parabola

RIGHT side of parabola

Written as Inequality:

______ Interval Notation:

• (STEP 5)

Who's INCREASING or DECREASING?

LEFT side is _____CREASING

RIGHT side is _____CREASING

What we're after: increases

$$x = -3$$

ANSWER is: (,)

(go on to the next page)

• **EXAMPLE:** (a) Use the vertex formula to find the vertex.

[3.1.47]

(b) Find the intervals where f is increasing and where f is decreasing.

$$f(x) = 8 - x^2$$

SOLUTION

Since this function has no parentheses with x, then it's in ______ form.

The terms are not in the right order. Rewrite them highest power to lowest.

$$f(x) = 8 - x^2$$
 rewritten in correct order: $f(x) =$

It's missing the x-term, so write in a zero placeholder: $f(x) = -x^2 + 0x + 8$

(a) The vertex formula is
$$x = \frac{-b}{2a}$$
 $b = \underline{\qquad}, a = \underline{\qquad}$ $x = \frac{-0}{2 \cdot (-1)} = \underline{\qquad}$

x-Vertex = ____ Plug in x into function (use parentheses) in order to get y.

$$f(x) = -x^2 + 8$$
 $f(0) =$

(go on to the next page)

(continued from previous page)

• **EXAMPLE:** (a) Use the vertex formula to find the vertex.

[3.1.47]

(b) Find the intervals where *f* is increasing and where *f* is decreasing.

$$f(x) = 8 - x^2$$

SOLUTION

$$f(x) = 8 - x^2$$

 $f(x) = 8 - x^2$ means the same thing as $f(x) = -x^2 + 8$

$$f(x) = -x^2 + 8$$

- **(b)** To find intervals of increasing and decreasing:
- (STEP 1) Does the parabola open **UP** or **DOWN**? Leading coefficient, a, is understood value of ____ (negative). It opens ______
- Make a **SKETCH** of a parabola opening **DOWN**. • (STEP 2)

 $f(x) = -x^2 + 8$

Vertex is (0,8)

$$x = 0$$

(STEP 3)

x-Vertex

(STEP 4)

Write out LEFT & RIGHT sides.

LEFT side of parabola

RIGHT side of parabola

Written as Inequality:

Interval Notation:

(STEP 5)

Who's INCREASING or DECREASING?

LEFT side is _____CREASING

RIGHT side is _____CREASING

What we're after: (both)

$$x = 0$$

ANSWER is: DECREASING on and INCREASING on

• **EXAMPLE:** Identify where *f* is increasing and where *f* is decreasing

$$f(x) = 280x - 70x^2$$

[1.4.79]

SOLUTION

Reorder the function into correct standard form: f(x) =

• (STEP 1)

Does the parabola open **UP** or **DOWN**?

Leading coefficient, a, is (negative). It opens .

• (STEP 2)

Make a **SKETCH** of a parabola opening **DOWN**.

$$x =$$

• (STEP 3)

x-Vertex

The vertex formula is $x = \frac{-b}{2a}$ $b = \underline{\qquad}$ $a = \underline{\qquad}$ $x = \underline{\qquad}$ $a = \underline{\qquad}$

We don't need the *y*-Vertex because we're only finding intervals of increasing and decreasing. These only use *x*-Vertex.

• (STEP 4)

Write out LEFT & RIGHT sides.

LEFT side of parabola

RIGHT side of parabola

Written as Inequality:

Interval Notation:

• (STEP 5)

Who's INCREASING or DECREASING?

LEFT side is _____CREASING RIGHT side is _____CREASING

$$f(x) = -70x^2 + 280x + 0$$

$$x = 2$$

ANSWER: Over the interval ______ the function f is increasing. Over the interval _____ the function f is decreasing.

3. Find the Maximum or Minimum Value of a Quadratic Function

That's the job of the y-coordinate of the vertex.

Max./Min...use ____--Vertex

EXAMPLE: If a football is kicked straight up with an initial velocity of 64 ft/sec from a
height of 4 feet, then its height above the earth is a function of time given by

$$h(t) = -16t^2 + 64t + 4$$

What is the maximum height reached by the ball?

[3.1.123]

SOLUTION

For convenience, let's rewrite the function

$$h(t) = -16t^2 + 64t + 4$$
 as

• (STEP 1) Does the parabola open UP or DOWN?

Leading coefficient, a, is ______ (negative). It opens ______.

• (STEP 2) Make a SKETCH of a parabola opening DOWN.

$$f(x) = -16x^2 + 64x + 4$$

• (STEP 3)

x-Vertex

The vertex formula is $x = \frac{-b}{2a}$ $b = \underline{\qquad}$ $a = \underline{\qquad}$ $x = \underline{\qquad}$ $a = \underline{\qquad}$

• (STEP 4)

y-Vertex

Since x-Vertex = 2 _____ x into function (use parentheses) in order to get y.

$$f(x) = -16x^2 + 64x + 4$$
 $f(2) = -16()^2 + 64() + 4$
= -16() + +4 = + =

The **y-Vertex** = _____ft.

Sources Used:

- 1. MyLab Math for A Graphical Approach to College Algebra, 7th Edition, Hornsby, Pearson Education Inc.
- 2. MyLab Math for College Algebra with Modeling and Visualization, 6th Edition, Rockswold, Pearson Education Inc.
- 3. Number Line Inequalities (modified) from Desmos, https://www.desmos.com/calculator/evxn1e1njv, © 2019, Desmos, Inc.
- 4. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit