On Polarization Properties of Light, Gaussian Beams and Spin-Orbit Interaction of Light

Pritish Karmakar

(21MS179, IISER Kolkata)

July 25, 2023

Submitted to

Prof. Ayan Banerjee
(HOD, DPS, IISER Kolkata)

Topics of discussion

Polarization properties of light

Gaussian Beam

Spin-orbit interaction of light

Polarization properties of light

- ▶ Jones Formalism
- ► Stokes-Muller formalism

Jones Vector

Electric field of $fully\ polarized\ {\rm EM}$ wave propagating along z-axis is given by

$$\boldsymbol{E}(\boldsymbol{r},t) = \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \\ 0 \end{bmatrix} e^{-i(kz-\omega t)}$$

Define normalized **Jones vector** s.t. $J^* J = 1$ as

$$\boldsymbol{J}(\boldsymbol{r},t) = \frac{1}{\sqrt{A_x^2 + A_y^2}} \begin{bmatrix} A_x(\boldsymbol{r}) e^{i\delta_x} \\ A_y(\boldsymbol{r}) e^{i\delta_y} \end{bmatrix}$$

Note that intensity, $I = A_x^2 + A_y^2 = J^*J$

Jones Vector

Electric field of $fully\ polarized\ {\rm EM}$ wave propagating along z-axis is given by

$$\boldsymbol{E}(\boldsymbol{r},t) = \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \\ 0 \end{bmatrix} e^{-i(kz-\omega t)}$$

Define normalized **Jones vector** s.t. $J^* J = 1$ as

$$\boldsymbol{J}(\boldsymbol{r},t) = \frac{1}{\sqrt{A_x^2 + A_y^2}} \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \end{bmatrix}$$

Note that intensity, $I = A_x^2 + A_y^2 = J^*J$

Jones Vector

Electric field of $fully\ polarized\ {\rm EM}$ wave propagating along z-axis is given by

$$\boldsymbol{E}(\boldsymbol{r},t) = \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \\ 0 \end{bmatrix} e^{-i(kz-\omega t)}$$

Define normalized **Jones vector** s.t. $J^*J = 1$ as

$$\boldsymbol{J}(\boldsymbol{r},t) = \frac{1}{\sqrt{A_x^2 + A_y^2}} \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \end{bmatrix}$$

Note that intensity, $I = A_x^2 + A_y^2 = J^*J$

Jones vector of usual polarization state

Polarization state	\boldsymbol{J}
H angle	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
$ V\rangle$	0
$ P\rangle$	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$
M angle	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
$ L\rangle$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$
$ R\rangle$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$

Jones Matrix & evolution of Jones vector

Jones matrix for an optical element be M s.t.

$$\boldsymbol{M} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

If a polarized light of Jones vector J_{in} passes through that optical element then the Jones vector of output light is given by

$$oldsymbol{J}_{out} = oldsymbol{M} oldsymbol{J}_{in}$$

- ightharpoonup Composition rule: $M = M_1 M_2 \dots M_n$
- Frame rotation by θ : $M_{\theta} = R(-\theta) M R(\theta)$ where $R(\theta)$ is passive rotation matrix.

Jones Matrix & evolution of Jones vector

Jones matrix for an optical element be M s.t.

$$\boldsymbol{M} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

If a polarized light of Jones vector J_{in} passes through that optical element then the Jones vector of output light is given by

$$oldsymbol{J}_{out} = oldsymbol{M} oldsymbol{J}_{in}$$

- ightharpoonup Composition rule: $M = M_1 M_2 \dots M_n$
- Frame rotation by θ : $M_{\theta} = R(-\theta) M R(\theta)$ where $R(\theta)$ is passive rotation matrix.

Jones Matrix & evolution of Jones vector

Jones matrix for an optical element be M s.t.

$$\boldsymbol{M} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

If a polarized light of Jones vector J_{in} passes through that optical element then the Jones vector of output light is given by

$$oldsymbol{J}_{out} = oldsymbol{M} oldsymbol{J}_{in}$$

- ► Composition rule: $M = M_1 M_2 ... M_n$
- Frame rotation by θ : $\mathbf{M}_{\theta} = R(-\theta) \mathbf{M} R(\theta)$ where $R(\theta)$ is passive rotation matrix.

Jones matrix of usual optical element

Optical element

M

1	
Free space	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
x-Polariser	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Right circular polariser	$\frac{1}{2} \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$
Linear di-attenuator	$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$
Half-wave plate	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
with fast axis horizontal	0 - 1
Quarter-wave plate	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
with fast axis horizontal	$\begin{bmatrix} 0 & i \end{bmatrix}$
General phase retarder	$ \begin{bmatrix} e^{i\phi_x} & 0 \\ 0 & e^{i\phi_y} \end{bmatrix} $

Polarization properties of light

- ▶ Jones Formalism
- ➤ Stokes-Muller formalism

Coherency matrix, C defined as

$$oldsymbol{C} = \left\langle oldsymbol{E} \otimes oldsymbol{E}^\dagger
ight
angle = egin{bmatrix} \langle E_x E_x^*
angle & \left\langle E_x E_y^*
angle \\ \langle E_y E_x^*
angle & \left\langle E_y E_y^*
angle \end{pmatrix} \end{bmatrix} = egin{bmatrix} c_{xx} & c_{xy} \\ c_{yx} & c_{yy} \end{bmatrix}$$

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- Time averaged intensity = $\langle E_x E_x^* \rangle + \langle E_y E_y^* \rangle = \text{Tr}(\mathbf{C})$
- ightharpoonup Evolution of coherency matrix as $C_{out} = M \ C_{in} \ M^{\dagger}$ Let basis set,

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{V_0}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{V_1}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{V_2}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}}_{V_3} \right\} \ s.t. \ \boldsymbol{C} = \frac{1}{2} \sum_{i=0}^{3} S_i \boldsymbol{V}_i$$

Coherency matrix, C defined as

$$oldsymbol{C} = \left\langle oldsymbol{E} \otimes oldsymbol{E}^\dagger
ight
angle = egin{bmatrix} \langle E_x E_x^*
angle & \left\langle E_x E_y^*
angle \\ \langle E_y E_x^*
angle & \left\langle E_y E_y^*
angle \end{pmatrix} \end{bmatrix} = egin{bmatrix} c_{xx} & c_{xy} \\ c_{yx} & c_{yy} \end{bmatrix}$$

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- Time averaged intensity = $\langle E_x E_x^* \rangle + \langle E_y E_y^* \rangle = \text{Tr}(\mathbf{C})$
- ▶ Evolution of coherency matrix as $C_{out} = M C_{in} M^{\dagger}$ Let basis set,

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{V_0}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{V_1}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{V_2}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}}_{V_3} \right\} \ s.t. \ \boldsymbol{C} = \frac{1}{2} \sum_{i=0}^{3} S_i \boldsymbol{V}_i$$

Coherency matrix, C defined as

$$oldsymbol{C} = \left\langle oldsymbol{E} \otimes oldsymbol{E}^\dagger
ight
angle = egin{bmatrix} \langle E_x E_x^*
angle & \left\langle E_x E_y^*
angle \\ \langle E_y E_x^*
angle & \left\langle E_y E_y^*
angle \end{bmatrix} = egin{bmatrix} c_{xx} & c_{xy} \\ c_{yx} & c_{yy} \end{bmatrix}$$

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- ► Time averaged intensity = $\langle E_x E_x^* \rangle + \langle E_y E_y^* \rangle = \text{Tr}(\mathbf{C})$
- ightharpoonup Evolution of coherency matrix as $C_{out} = M \ C_{in} \ M^{\dagger}$ Let basis set,

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\boldsymbol{V_0}}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{\boldsymbol{V_1}}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\boldsymbol{V_2}}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}}_{\boldsymbol{V_3}} \right\} s.t. \; \boldsymbol{C} = \frac{1}{2} \sum_{i=0}^{3} S_i \boldsymbol{V_i}$$

Coherency matrix, C defined as

$$oldsymbol{C} = \left\langle oldsymbol{E} \otimes oldsymbol{E}^\dagger
ight
angle = egin{bmatrix} \langle E_x E_x^*
angle & \left\langle E_x E_y^*
angle \\ \langle E_y E_x^*
angle & \left\langle E_y E_y^*
angle \end{bmatrix} = egin{bmatrix} c_{xx} & c_{xy} \\ c_{yx} & c_{yy} \end{bmatrix}$$

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- ► Time averaged intensity = $\langle E_x E_x^* \rangle + \langle E_y E_y^* \rangle = \text{Tr}(\boldsymbol{C})$
- $lackbox{ Evolution of coherency matrix as } oldsymbol{C}_{out} = oldsymbol{M} oldsymbol{C}_{in} oldsymbol{M}^\dagger$

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{V_0}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{V_1}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{V_2}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}}_{V_3} \right\} s.t. \quad \mathbf{C} = \frac{1}{2} \sum_{i=0}^{3} S_i \mathbf{V}_i$$

Coherency matrix, C defined as

$$oldsymbol{C} = \left\langle oldsymbol{E} \otimes oldsymbol{E}^\dagger
ight
angle = egin{bmatrix} \langle E_x E_x^*
angle & \left\langle E_x E_y^*
angle \\ \langle E_y E_x^*
angle & \left\langle E_y E_y^*
angle \end{pmatrix} \end{bmatrix} = egin{bmatrix} c_{xx} & c_{xy} \\ c_{yx} & c_{yy} \end{bmatrix}$$

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- ► Time averaged intensity = $\langle E_x E_x^* \rangle + \langle E_y E_y^* \rangle = \text{Tr}(\mathbf{C})$
- ightharpoonup Evolution of coherency matrix as $C_{out} = M \ C_{in} \ M^{\dagger}$ Let basis set,

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\boldsymbol{V_0}}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{\boldsymbol{V_1}}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\boldsymbol{V_2}}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}}_{\boldsymbol{V_3}} \right\} \text{ s.t. } \boldsymbol{C} = \frac{1}{2} \sum_{i=0}^{3} S_i \boldsymbol{V_i}$$

Coherency matrix, C defined as

$$oldsymbol{C} = \left\langle oldsymbol{E} \otimes oldsymbol{E}^\dagger
ight
angle = egin{bmatrix} \langle E_x E_x^*
angle & \left\langle E_x E_y^*
angle \\ \langle E_y E_x^*
angle & \left\langle E_y E_y^*
angle \end{pmatrix} \end{bmatrix} = egin{bmatrix} c_{xx} & c_{xy} \\ c_{yx} & c_{yy} \end{bmatrix}$$

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- ► Time averaged intensity = $\langle E_x E_x^* \rangle + \langle E_y E_y^* \rangle = \text{Tr}(\boldsymbol{C})$
- ightharpoonup Evolution of coherency matrix as $C_{out} = M \ C_{in} \ M^{\dagger}$ Let basis set,

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\boldsymbol{V_0}}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{\boldsymbol{V_1}}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\boldsymbol{V_2}}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}}_{\boldsymbol{V_3}} \right\} s.t. \; \boldsymbol{C} = \frac{1}{2} \sum_{i=0}^{3} S_i \boldsymbol{V_i}$$

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S$$
 (Stokes vector)

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ▶ Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S \text{ (Stokes vector)}$$

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ▶ Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$0 \le DOP \le 1$$

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S$$
 (Stokes vector)

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ▶ Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$0 \le DOP \le 1$$

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S$$
 (Stokes vector)

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ▶ Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$0 \le DOP \le 1$$

$$oldsymbol{C} = rac{1}{2} \sum_{i=0}^{3} S_i oldsymbol{V_i} \longrightarrow egin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = oldsymbol{S} ext{ (Stokes vector)}$$

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ▶ Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$0 \le DOP \le 1$$

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S$$
 (Stokes vector)

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ▶ Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$0 \le DOP \le 1$$

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S \text{ (Stokes vector)}$$

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ▶ Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2/S_0}$
- ▶ Degree of circular polarization = S_3/S_0

$$0 \le DOP \le 1$$

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S \text{ (Stokes vector)}$$

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ► Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$0 \le DOP \le 1$$

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S \text{ (Stokes vector)}$$

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ► Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i \longrightarrow \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = S$$
 (Stokes vector)

$$S_1^2 + S_2^2 + S_3^2 \le S_0^2$$

- ► Total degree of polarization = $\sqrt{S_1^2 + S_2^2 + S_3^2}/S_0$
- ▶ Degree of linear polarization = $\sqrt{S_1^2 + S_2^2}/S_0$
- ▶ Degree of circular polarization = S_3/S_0

$$0 \le DOP \le 1$$

Stokes vector of usual polarization state

C

Delemination state

Polarization state	\boldsymbol{C}	\boldsymbol{S}
H angle	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$
$ V\rangle$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}^T$
$ P\rangle$	$\frac{1}{2}\begin{bmatrix}1&1\\1&1\end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T$
$ M\rangle$	$\frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T$
$ L\rangle$	$\frac{1}{2} \begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$	$\begin{bmatrix}1 & 0 & 0 & 1\end{bmatrix}^T$
$ R\rangle$	$\frac{1}{2} \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^T$
Un-polarized	$\begin{array}{c c} 1 & 0 \\ \hline & 0 & 1 \end{array}$	$\boxed{\begin{bmatrix}1 & 0 & 0 & 0\end{bmatrix}^T}$

Muller Matrix & evolution of Stokes vector

Muller matrix for an optical element \mathfrak{M} s.t.

$$\mathfrak{M} = \begin{bmatrix} \mu_{11} & \cdots & \mu_{14} \\ \vdots & \ddots & \vdots \\ \mu_{41} & \cdots & \mu_{44} \end{bmatrix}$$

Evolution of Stokes vector as, $S_{out} = \mathfrak{M} S_{in}$

- ightharpoonup Composition rule: $\mathfrak{M} = \mathfrak{M}_1 \mathfrak{M}_2 \dots \mathfrak{M}_n$
- Frame rotation by θ : $\mathfrak{M}_{\theta} = T^{-1}(\theta) \mathfrak{M} T(\theta)$ where

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta & 0 \\ 0 & -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Muller Matrix & evolution of Stokes vector

Muller matrix for an optical element \mathfrak{M} s.t.

$$\mathfrak{M} = \begin{bmatrix} \mu_{11} & \cdots & \mu_{14} \\ \vdots & \ddots & \vdots \\ \mu_{41} & \cdots & \mu_{44} \end{bmatrix}$$

Evolution of Stokes vector as, $S_{out} = \mathfrak{M} S_{in}$

- Composition rule: $\mathfrak{M} = \mathfrak{M}_1 \mathfrak{M}_2 \dots \mathfrak{M}_n$
- Frame rotation by θ : $\mathfrak{M}_{\theta} = T^{-1}(\theta) \mathfrak{M} T(\theta)$ where

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta & 0 \\ 0 & -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Muller Matrix & evolution of Stokes vector

Muller matrix for an optical element \mathfrak{M} s.t.

$$\mathfrak{M} = \begin{bmatrix} \mu_{11} & \cdots & \mu_{14} \\ \vdots & \ddots & \vdots \\ \mu_{41} & \cdots & \mu_{44} \end{bmatrix}$$

Evolution of Stokes vector as, $S_{out} = \mathfrak{M} S_{in}$

- ightharpoonup Composition rule: $\mathfrak{M} = \mathfrak{M}_1 \, \mathfrak{M}_2 \dots \mathfrak{M}_n$
- Frame rotation by θ : $\mathfrak{M}_{\theta} = T^{-1}(\theta) \mathfrak{M} T(\theta)$ where

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta & 0 \\ 0 & -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} \longrightarrow (S_1, S_2, S_3)$$

$$\begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} \longrightarrow (S_1, S_2, S_3)$$

$$\begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} \longrightarrow (S_1, S_2, S_3)$$

For elliptically polarized light, Stokes vector

$$S = S_0 \begin{bmatrix} 1 \\ \cos 2\chi \cos 2\psi \\ \cos 2\chi \sin 2\psi \\ \sin 2\chi \end{bmatrix} \longrightarrow \underbrace{S_0(\cos 2\chi \cos 2\psi, \cos 2\chi \sin 2\psi, \sin 2\psi)}_{\text{On sphere of radius } S_0}$$

where azimuth (ψ) and ellipticity (χ) of polarization ellipse.

For elliptically polarized light, Stokes vector

$$S = S_0 \begin{bmatrix} 1 \\ \cos 2\chi \cos 2\psi \\ \cos 2\chi \sin 2\psi \\ \sin 2\chi \end{bmatrix} \longrightarrow \underbrace{S_0(\cos 2\chi \cos 2\psi, \cos 2\chi \sin 2\psi, \sin 2\psi)}_{\text{On sphere of radius } S_0}$$

where azimuth (ψ) and ellipticity (χ) of polarization ellipse.

For elliptically polarized light, Stokes vector

$$\mathbf{S} = S_0 \begin{bmatrix} 1 \\ \cos 2\chi \cos 2\psi \\ \cos 2\chi \sin 2\psi \\ \sin 2\chi \end{bmatrix} \longrightarrow \underbrace{S_0(\cos 2\chi \cos 2\psi, \cos 2\chi \sin 2\psi, \sin 2\psi)}_{\text{On sphere of radius } S_0}$$

where azimuth (ψ) and ellipticity (χ) of polarization ellipse.

Wave Optics (2015), Born, M; Wolf, E (1999)

For un-polarized light,

$$oldsymbol{S} = S_0 egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \longrightarrow \underbrace{(0,0,0)}_{ ext{At Origin}}$$

For partially polarized light,

$$\mathbf{S} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} \longrightarrow \underbrace{(S_1, S_2, S_3)}_{\text{Inside sphere } s.t.}$$
$$0 < S_1^2 + S_2^2 + S_3^2 < S_0^2$$

For un-polarized light,

$$oldsymbol{S} = S_0 egin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \underbrace{(0,0,0)}_{ ext{At Origin}}$$

For partially polarized light,

$$\mathbf{S} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} \longrightarrow \underbrace{(S_1, S_2, S_3)}_{\text{Inside sphere } s.t.}$$

$$0 < S_1^2 + S_2^2 + S_3^2 < S_0^2$$

Gaussian Beam and properties

- ► Paraxial wave
- ► Gaussian beam solution and properties
- ► Modes of Gaussian beam

Maxwell's wave equation:

$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\boldsymbol{E}(x,y,z,t) = \boldsymbol{\psi}(x,y,z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 \left| \psi \right|$$

Paraxial wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

One of the solutions is Gaussian beam.

Maxwell's wave equation:

$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\boldsymbol{E}(x, y, z, t) = \boldsymbol{\psi}(x, y, z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 \left| \psi \right|$$

Paraxial wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

One of the solutions is Gaussian beam.

Maxwell's wave equation:

$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\mathbf{E}(x, y, z, t) = \mathbf{\psi}(x, y, z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 |\psi|$$

Paraxial wave equation:

$$\frac{\partial^2 \boldsymbol{\psi}}{\partial x^2} + \frac{\partial^2 \boldsymbol{\psi}}{\partial y^2} - 2ik\frac{\partial \boldsymbol{\psi}}{\partial r} = 0$$

One of the solutions is Gaussian beam.

Maxwell's wave equation:

$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\mathbf{E}(x, y, z, t) = \mathbf{\psi}(x, y, z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 |\psi|$$

Paraxial wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

One of the solutions is Gaussian beam

Maxwell's wave equation:

$$\nabla^{2} \mathbf{E}(\mathbf{r}, t) - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(\mathbf{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\mathbf{E}(x, y, z, t) = \mathbf{\psi}(x, y, z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 |\psi|$$

Paraxial wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

One of the solutions is Gaussian beam.

Gaussian Beam

- ► Paraxial wave
- ► Gaussian beam solution and properties
- ► Modes of Gaussian beam

Gaussian beam solution

Ansatz:
$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2q(z)} \right) \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Gaussian beam solution

Ansatz:
$$\psi(\mathbf{r}, z) = A \exp\left[-i\left(p(z) + \frac{kr^2}{2q(z)}\right)\right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Gaussian beam solution

Ansatz:
$$\psi(\mathbf{r}, z) = A \exp\left[-i\left(p(z) + \frac{kr^2}{2q(z)}\right)\right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Milonni, P.W (2010), Kogelnik, H. (1966), ECE 4300- Cornell

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$ $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

 $z_0 \to \text{Rayleigh length}$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$

 $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

 $z_0 \to \text{Rayleigh length}$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$

 $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

 $z_0 \to \text{Rayleigh length}$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

Milonni, P.W (2010), Kogelnik, H. (1966), ECE 4300- Cornell

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$

 $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

 $z_0 \to \text{Rayleigh length}$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$

 $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

 $z_0 \to \text{Rayleigh length}$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

Milonni, P.W (2010), Kogelnik, H. (1966), ECE 4300- Cornell

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\underbrace{i \tan^{-1}\left(\frac{z}{z_0}\right)}_{\text{term II}} - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term II related to Gouy phase (ϕ_G) .

$$\phi_G = \tan^{-1} \left(\frac{z}{z_0} \right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\underbrace{i \tan^{-1}\left(\frac{z}{z_0}\right)}_{\text{term II}} - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term II related to Gouy phase (ϕ_G) .

$$\phi_G = \tan^{-1} \left(\frac{z}{z_0} \right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\underbrace{i \tan^{-1}\left(\frac{z}{z_0}\right)}_{\text{term II}} - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term II related to **Gouy phase** (ϕ_G) .

$$\phi_G = \tan^{-1}\left(\frac{z}{z_0}\right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) \underbrace{-i\frac{kr^2}{2R(z)}}_{\text{term III}} - \frac{r^2}{w^2(z)}\right)$$

Term III related to radius of curvature (R) of beam wave-front.

$$R(z) = z \left[1 + \left(\frac{z_0}{z} \right)^{2^{-1}} \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) \underbrace{-i\frac{kr^2}{2R(z)}}_{\text{term III}} - \frac{r^2}{w^2(z)}\right)$$

Term III related to radius of curvature (R) of beam wave-front.

$$R(z) = z \left[1 + \left(\frac{z_0}{z} \right)^2 \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) \underbrace{-i\frac{kr^2}{2R(z)}}_{\text{term III}} - \frac{r^2}{w^2(z)}\right)$$

Term III related to radius of curvature (R) of beam wave-front.

$$R(z) = z \left[1 + \left(\frac{z_0}{z}\right)^2 \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} \underbrace{-\frac{\mathbf{r}^2}{\mathbf{w}^2(z)}}_{\text{term IV}}\right)$$

Term IV related to Gaussian intensity profile.

$$I(r,z) \sim \exp\left(-\frac{2r^2}{w^2(z)}\right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} \underbrace{-\frac{\mathbf{r}^2}{\mathbf{w}^2(z)}}_{\text{term IV}}\right)$$

Term IV related to Gaussian intensity profile.

$$I(r,z) \sim \exp\biggl(-\frac{2r^2}{w^2(z)}\biggr)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} \underbrace{-\frac{\mathbf{r}^2}{\mathbf{w}^2(z)}}_{\text{term IV}}\right)$$

Term IV related to Gaussian intensity profile.

$$I(r,z) \sim \exp\left(-\frac{2r^2}{w^2(z)}\right)$$

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 \mathbf{q}(z)} \right) \right]$$

 $q(z) \longrightarrow \text{characteristic of a beam if } \lambda \text{ known.}$

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$Q_{in} \longrightarrow \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{Optical} \longrightarrow q_{out} = \frac{Aq_{in} + B}{Cq_{in} + D}$$
Optical element

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 \mathbf{q}(z)} \right) \right]$$

 $q(z) \longrightarrow$ characteristic of a beam if λ known.

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$\begin{array}{c}
A & B \\
C & D
\end{array} \longrightarrow q_{out} = \frac{Aq_{in} + B}{Cq_{in} + D}$$
Optical element

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 q(z)} \right) \right]$$

 $q(z) \longrightarrow \text{characteristic of a beam if } \lambda \text{ known.}$

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$Q_{in} \longrightarrow \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{Optical} \longrightarrow q_{out} = \frac{Aq_{in} + B}{Cq_{in} + D}$$

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 q(z)} \right) \right]$$

 $q(z) \longrightarrow \text{characteristic of a beam if } \lambda \text{ known.}$

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$\frac{q_{in}}{Q_{in}} \longrightarrow \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{Optical} \longrightarrow q_{out} = \frac{Aq_{in} + B}{Cq_{in} + D}$$
Optical element

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 q(z)} \right) \right]$$

 $q(z) \longrightarrow \text{characteristic of a beam if } \lambda \text{ known}.$

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$\frac{q_{in}}{Q_{in}} \longrightarrow \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{Optical} \longrightarrow \frac{q_{out}}{Cq_{in} + D}$$
Optical element

Gaussian Beam and properties

- ► Paraxial wave
- ► Gaussian beam solution and properties
- ► Modes of Gaussian beam

Hermite-Gaussian mode

$$\psi_{m,n}(\mathbf{r},z) = A\left(\frac{w_0}{w(z)}\right) H_m\left(\frac{\sqrt{2}x}{w(z)}\right) H_n\left(\frac{\sqrt{2}y}{w(z)}\right) \exp\left(-\frac{r^2}{w^2(z)}\right) \cdot \exp\left(i\left(m+n+1\right)\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)}\right)$$

 $m, n = 0 \implies \psi = \text{Gaussian}$

Hermite-Gaussian mode

$$\psi_{m,n}(\mathbf{r},z) = A\left(\frac{w_0}{w(z)}\right) H_m\left(\frac{\sqrt{2}x}{w(z)}\right) H_n\left(\frac{\sqrt{2}y}{w(z)}\right) \exp\left(-\frac{r^2}{w^2(z)}\right) \cdot \exp\left(i\left(m+n+1\right)\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)}\right)$$

 $m, n = 0 \implies \psi = \text{Gaussian}$

Hermite-Gaussian Intensity profile

Laguerre-Gaussian mode

$$\psi_{p,l}(r,\phi,z) = A \frac{w_0}{w(z)} \left[\frac{r\sqrt{2}}{w(z)} \right]^{|l|} L_p^{|l|} \left(\frac{2r^2}{w^2(z)} \right) \exp\left(-\frac{r^2}{w^2(z)} \right) \cdot \exp\left(-il\phi + i(2p+l+1)\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} \right)$$

 $l, p = 0 \implies \psi = \text{Gaussian}$

$$\exp(-il\phi) \longrightarrow \text{Helical phase}$$
(carries OAM)

Milonni, P.W (2010), Kogelnik, H. (1966), Bliokh, K. Y.; Rodríguez-Fortuño, F. J. (2015)

Laguerre-Gaussian mode

$$\psi_{p,l}(r,\phi,z) = A \frac{w_0}{w(z)} \left[\frac{r\sqrt{2}}{w(z)} \right]^{|l|} L_p^{|l|} \left(\frac{2r^2}{w^2(z)} \right) \exp\left(-\frac{r^2}{w^2(z)} \right) \cdot \exp\left(-il\phi + i(2p+l+1)\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} \right)$$

$$l, p = 0 \Rightarrow \psi = Gaussian$$

$$\exp(-il\phi) \longrightarrow \text{Helical phase}$$
(carries OAM)

Milonni, P.W (2010), Kogelnik, H. (1966), Bliokh, K. Y.; Rodríguez-Fortuño, F. J. (2015)

Laguerre-Gaussian mode

$$\psi_{p,l}(r,\phi,z) = A \frac{w_0}{w(z)} \left[\frac{r\sqrt{2}}{w(z)} \right]^{|l|} L_p^{|l|} \left(\frac{2r^2}{w^2(z)} \right) \exp\left(-\frac{r^2}{w^2(z)} \right) \cdot \exp\left(-il\phi + i(2p+l+1)\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} \right)$$

Helical phase front

$$\exp(-il\phi) \longrightarrow \text{Helical phase}$$
 (carries OAM)

Milonni, P.W (2010), Kogelnik, H. (1966), Bliokh, K. Y.; Rodríguez-Fortuño, F. J. (2015)

Laguerre-Gaussian Intensity profile

Laguerre-Gaussian Phase profile

(g)
$$p = 2, l = 0$$

(b) p = 0, l = 1

(e) p = 1, l = 1

(h)
$$p = 2, l = 1$$

(f) p = 1, l = 2

(i)
$$p = 2, l = 2$$

Spin-orbit interaction

- ► Momentum of Light
- ► Geometric phase of light
- ► SOI in anisotropic medium

Monochromatic beam with angular frequency ω propagating in z-direction :

$$\boldsymbol{\mathcal{E}}(\boldsymbol{r},t) = \text{Re} \Big\{ \boldsymbol{E}(\boldsymbol{r}) e^{-i(\omega t - kz)} \Big\}$$

$$\boldsymbol{\mathcal{B}}(\boldsymbol{r},t) = \mathrm{Re} \big\{ \boldsymbol{B}(\boldsymbol{r}) e^{-i(\omega t - kz)} \big\}$$

Maxwell-Faraday law:

$$\nabla \times \boldsymbol{E} = i\omega \boldsymbol{B}$$

Time-averaged linear momentum per length,

$$\mathcal{P}_z = \frac{1}{c^2} \int d\tau \ \langle \mathbf{S} \rangle_z = \frac{\epsilon_0}{2i\omega} \iint dx \ dy \ \langle \mathbf{E} \times (\nabla \times \mathbf{E}) \rangle_z$$

Haus, H. A. (1984)

Monochromatic beam with angular frequency ω propagating in z-direction :

$$\boldsymbol{\mathcal{E}}(\boldsymbol{r},t) = \operatorname{Re} \left\{ \boldsymbol{E}(\boldsymbol{r}) e^{-i(\omega t - kz)} \right\}$$

$$\boldsymbol{\mathcal{B}}(\boldsymbol{r},t) = \mathrm{Re} \big\{ \boldsymbol{B}(\boldsymbol{r}) e^{-i(\omega t - kz)} \big\}$$

Maxwell-Faraday law:

$$\nabla \times \boldsymbol{E} = i\omega \boldsymbol{B}$$

Time-averaged linear momentum per length,

$$\mathcal{P}_z = \frac{1}{c^2} \int d\tau \ \langle \mathbf{S} \rangle_z = \frac{\epsilon_0}{2i\omega} \iint dx \ dy \ \langle \mathbf{E} \times (\nabla \times \mathbf{E}) \rangle_z$$

Monochromatic beam with angular frequency ω propagating in z-direction :

$$\boldsymbol{\mathcal{E}}(\boldsymbol{r},t) = \operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{r})e^{-i(\omega t - kz)}\right\}$$

$$\boldsymbol{\mathcal{B}}(\boldsymbol{r},t) = \mathrm{Re} \Big\{ \boldsymbol{B}(\boldsymbol{r}) e^{-i(\omega t - kz)} \Big\}$$

Maxwell-Faraday law:

$$\nabla \times \boldsymbol{E} = i\omega \boldsymbol{B}$$

Time-averaged linear momentum per length,

$$\mathcal{P}_{z} = \frac{1}{c^{2}} \int d\tau \ \langle \mathbf{S} \rangle_{z} = \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \ \langle \mathbf{E} \times (\nabla \times \mathbf{E}) \rangle_{z}$$

Monochromatic beam with angular frequency ω propagating in z-direction :

$$\boldsymbol{\mathcal{E}}(\boldsymbol{r},t) = \operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{r})e^{-i(\omega t - kz)}\right\}$$

$$\mathbf{\mathcal{B}}(\mathbf{r},t) = \text{Re}\left\{\mathbf{B}(\mathbf{r})e^{-i(\omega t - kz)}\right\}$$

Maxwell-Faraday law:

$$\nabla \times \boldsymbol{E} = i\omega \boldsymbol{B}$$

Time-averaged linear momentum per length,

$$\mathcal{P}_z = \frac{1}{c^2} \int d\tau \ \langle \mathbf{S} \rangle_z = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \ \langle \mathbf{E} \times (\nabla \times \mathbf{E}) \rangle_z$$

Time-averaged AM per length:

$$\mathcal{J}_z = \frac{1}{c^2} \int d\tau [\mathbf{r} \times \langle \mathbf{S} \rangle]_z = \frac{\epsilon_0}{2i\omega} \iint dx dy [\mathbf{r} \times \langle \mathbf{E} \times (\nabla \times \mathbf{E}) \rangle]_z$$

For paraxial beam,

$$\mathcal{J}_{z} = \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^{*} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) E_{\xi} \right]_{\xi=x,y} + \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, (E_{x}^{*} E_{y} + E_{y}^{*} E_{x})$$

Allen, L. (1999), Wave Optics (2015), S.J. van Enk; G. Nienhuis (1992), Cohen-Tannoudji, C., Dupont-Roc, J. (1989)

Time-averaged AM per length:

$$\mathcal{J}_z = \frac{1}{c^2} \int d\tau [\boldsymbol{r} \times \langle \boldsymbol{S} \rangle]_z = \frac{\epsilon_0}{2i\omega} \iint dx dy \left[\boldsymbol{r} \times \langle \boldsymbol{E} \times (\nabla \times \boldsymbol{E}) \rangle \right]_z$$

For paraxial beam.

$$\mathcal{J}_{z} = \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^{*} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) E_{\xi} \right]_{\xi=x,y} + \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, (E_{x}^{*} E_{y} + E_{y}^{*} E_{x})$$

Time-averaged AM per length:

$$\mathcal{J}_z = \frac{1}{c^2} \int d\tau [\mathbf{r} \times \langle \mathbf{S} \rangle]_z = \frac{\epsilon_0}{2i\omega} \iint dx dy [\mathbf{r} \times \langle \mathbf{E} \times (\nabla \times \mathbf{E}) \rangle]_z$$

For paraxial beam,

$$\mathcal{J}_{z} = \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^{*} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) E_{\xi} \right]_{\xi=x,y} + \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, (E_{x}^{*} E_{y} + E_{y}^{*} E_{x})$$

Time-averaged AM per length:

$$\mathcal{J}_z = \frac{1}{c^2} \int d\tau [\mathbf{r} \times \langle \mathbf{S} \rangle]_z = \frac{\epsilon_0}{2i\omega} \iint dx dy \left[\mathbf{r} \times \langle \mathbf{E} \times (\nabla \times \mathbf{E}) \rangle \right]_z$$

For paraxial beam,

$$\mathcal{J}_{z} = \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^{*} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) E_{\xi} \right]_{\xi=x,y} + \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, \left(E_{x}^{*} E_{y} + E_{y}^{*} E_{x} \right)$$

Orbital AM, \mathcal{L}

Time-averaged AM per length:

$$\mathcal{J}_z = \frac{1}{c^2} \int d\tau [\boldsymbol{r} \times \langle \boldsymbol{S} \rangle]_z = \frac{\epsilon_0}{2i\omega} \iint dx dy \left[\boldsymbol{r} \times \langle \boldsymbol{E} \times (\nabla \times \boldsymbol{E}) \rangle \right]_z$$

For paraxial beam,

$$\mathcal{J}_{z} = \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^{*} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) E_{\xi} \right]_{\xi=x,y} + \frac{\epsilon_{0}}{2i\omega} \iint dx \, dy \, (E_{x}^{*} E_{y} + E_{y}^{*} E_{x})$$

Spin AM, \mathcal{S}

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$m{E}(r,\phi) = u(r) \; \exp(-il\phi) \; \hat{m{g}}$$
 $m{\mathcal{W}}_z = rac{\epsilon_0}{2} \iint dx \; dy \; m{E}^* \cdot m{E}$ $m{\frac{\mathcal{L}}{\mathcal{W}_z}} = rac{ ext{OAM}}{ ext{Total energy}} = rac{l}{\omega}$

Allen, L. (1999), Wave Optics (2015), S.J. van Enk (1992), Berry, M. V.; Soskin, M. S. (1998)

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$\boldsymbol{E}(r,\phi) = u(r) \, \exp(-il\phi) \, \hat{\boldsymbol{p}}$$

$$\mathcal{W}_z = \frac{\epsilon_0}{2} \iint dx \, dy \, \boldsymbol{E}^* \cdot \boldsymbol{E}$$

$$\frac{\mathcal{L}}{\mathcal{W}_z} = \frac{\text{OAM}}{\text{Total energy}} = \frac{l}{\omega}$$

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\mathcal{W}_z = \frac{\epsilon_0}{2} \iint dx \, dy \, \boldsymbol{E}^* \cdot \boldsymbol{E}$$

$$\frac{\mathcal{L}}{\mathcal{W}_z} = \frac{\text{OAM}}{\text{Total energy}} = \frac{l}{\omega}$$

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\mathcal{W}_z = \frac{\epsilon_0}{2} \iint dx \, dy \, \boldsymbol{E}^* \cdot \boldsymbol{E}$$

$$\frac{\mathcal{L}}{\mathcal{W}_z} = \frac{\text{OAM}}{\text{Total energy}} = \frac{l}{\omega}$$

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\mathcal{W}_z = \frac{\epsilon_0}{2} \iint dx \, dy \, \boldsymbol{E}^* \cdot \boldsymbol{E}$$

$$\frac{\mathcal{L}}{\mathcal{W}_z} = \frac{\text{OAM}}{\text{Total energy}} = \frac{l}{\omega}$$

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\mathbf{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

Allen, L. (1999), Wave Optics (2015), S.J. van Enk (1992), Berry, M. V.; Soskin, M. S. (1998)

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

Allen, L. (1999), Wave Optics (2015), S.J. van Enk (1992), Berry, M. V.; Soskin, M. S. (1998)

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

Allen, L. (1999), Wave Optics (2015), S.J. van Enk (1992), Berry, M. V.; Soskin, M. S. (1998)

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$r \longrightarrow r' = r + r_0$$

$$\mathcal{L} \longrightarrow \mathcal{L}' = \mathcal{L}_z + \Delta \mathcal{L}$$

$$\boxed{\text{OAM}}$$

$$\checkmark \qquad \qquad \searrow$$
Intrinsic Extrinsic

Allen, L. (1999), Wave Optics (2015), S.J. van Enk (1992), Berry, M. V.; Soskin, M. S. (1998)

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$egin{aligned} oldsymbol{r} & oldsymbol{r}' = oldsymbol{r} + oldsymbol{r}_0 \ \mathcal{L} & \longrightarrow \mathcal{L}' = \mathcal{L}_z + \Delta \mathcal{L} \ \hline ext{OAM} \ & \swarrow & \searrow \ \hline ext{Intrinsic} & ext{Extrinsic} \ \ oldsymbol{\Delta} \mathcal{L} = \mathbf{0} \ & \iint dx \, dy \, \left[E_{\xi}^* \left(oldsymbol{r}_0 imes
abla
ight)_z E_{\xi}
ight] = 0 \end{aligned}$$

Allen, L. (1999), Wave Optics (2015), S.J. van Enk (1992), Berry, M. V.; Soskin, M. S. (1998)

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$egin{aligned} oldsymbol{r} & oldsymbol{r} & oldsymbol{r}' = oldsymbol{r} + oldsymbol{r}_0 \\ \mathcal{L} & \longrightarrow \mathcal{L}' = \mathcal{L}_z + \Delta \mathcal{L} \\ \hline \text{OAM} \\ & \swarrow & \searrow \\ \hline & \text{Intrinsic} & \text{Extrinsic} \\ \hline & \Delta \mathcal{L} = 0 \\ \iint dx \ dy \ \left[E_\xi^* \left(oldsymbol{r}_0 imes
abla \right)_z E_\xi \right] = 0 \end{aligned}$$

Allen, L. (1999), Wave Optics (2015), S.J. van Enk (1992), Berry, M. V.; Soskin, M. S. (1998)

$$\mathcal{L} = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, \left[E_{\xi}^* \left(\boldsymbol{r} \times \nabla \right)_z E_{\xi} \right]_{\xi = x, y}$$

$$egin{aligned} oldsymbol{r} & oldsymbol{r}' = oldsymbol{r} + oldsymbol{r_0} \ \mathcal{L} & \longrightarrow \mathcal{L}' = \mathcal{L}_z + \Delta \mathcal{L} \ \hline & OAM \end{bmatrix} \ & \swarrow & \searrow \ \hline & Intrinsic & Extrinsic \end{aligned}$$

$$\Delta \mathcal{L} \neq 0$$

Allen, L. (1999), Wave Optics (2015), S.J. van Enk (1992), Berry, M. V.; Soskin, M. S. (1998)

$$S = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, (E_x^* E_y + E_y^* E_x)$$

SAM is intrinsic.

For vortex beam,

$$\mathbf{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\mathbf{p}}$$

$$\frac{\mathcal{S}}{\mathcal{W}_z} = \frac{\text{SAM}}{\text{Total energy}} = \frac{\sigma}{\omega}$$

$$\frac{\mathcal{J}_z}{\mathcal{W}_z} = \frac{\mathcal{L} + \mathcal{S}}{\mathcal{W}_z} = \frac{\text{Total AM}}{\text{Total energy}} = \frac{l + \sigma}{\omega}$$

$$S = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, (E_x^* E_y + E_y^* E_x)$$

SAM is **intrinsic**.

For vortex beam,

$$\mathbf{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\mathbf{p}}$$

$$\frac{\mathcal{S}}{\mathcal{W}_z} = \frac{\text{SAM}}{\text{Total energy}} = \frac{\sigma}{\omega}$$

$$\frac{\mathcal{J}_z}{\mathcal{W}_z} = \frac{\mathcal{L} + \mathcal{S}}{\mathcal{W}_z} = \frac{\text{Total AM}}{\text{Total energy}} = \frac{l + \sigma}{\omega}$$

$$S = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, (E_x^* E_y + E_y^* E_x)$$

SAM is **intrinsic**.

For vortex beam,

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\frac{\mathcal{S}}{\mathcal{W}_z} = \frac{\text{SAM}}{\text{Total energy}} = \frac{\sigma}{\omega}$$

$$\frac{\mathcal{J}_z}{\mathcal{W}_z} = \frac{\mathcal{L} + \mathcal{S}}{\mathcal{W}_z} = \frac{\text{Total AM}}{\text{Total energy}} = \frac{l + \sigma}{\omega}$$

$$S = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, (E_x^* E_y + E_y^* E_x)$$

SAM is intrinsic.

For vortex beam,

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\frac{\mathcal{S}}{\mathcal{W}_z} = \frac{\text{SAM}}{\text{Total energy}} = \frac{\sigma}{\omega}$$

$$\frac{\mathcal{J}_z}{\mathcal{W}_z} = \frac{\mathcal{L} + \mathcal{S}}{\mathcal{W}_z} = \frac{\text{Total AM}}{\text{Total energy}} = \frac{l + \sigma}{\omega}$$

$$S = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, (E_x^* E_y + E_y^* E_x)$$

SAM is **intrinsic**.

For vortex beam,

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\frac{\mathcal{S}}{\mathcal{W}_z} = \frac{\text{SAM}}{\text{Total energy}} = \frac{\sigma}{\omega}$$

$$\frac{\mathcal{J}_z}{\mathcal{W}_z} = \frac{\mathcal{L} + \mathcal{S}}{\mathcal{W}_z} = \frac{\text{Total AM}}{\text{Total energy}} = \frac{l + \sigma}{\omega}$$

$$S = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, (E_x^* E_y + E_y^* E_x)$$

SAM is **intrinsic**.

For vortex beam,

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\frac{\mathcal{S}}{\mathcal{W}_z} = \frac{\text{SAM}}{\text{Total energy}} = \frac{\sigma}{\omega}$$

$$\frac{\mathcal{J}_z}{\mathcal{W}_z} = \frac{\mathcal{L} + \mathcal{S}}{\mathcal{W}_z} = \frac{\text{Total AM}}{\text{Total energy}} = \frac{l + \sigma}{\omega}$$

$$S = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, (E_x^* E_y + E_y^* E_x)$$

SAM is intrinsic.

For vortex beam,

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\frac{\mathcal{S}}{\mathcal{W}_z} = \frac{\text{SAM}}{\text{Total energy}} = \frac{\sigma}{\omega}$$

$$\frac{\mathcal{J}_z}{\mathcal{W}_z} = \frac{\mathcal{L} + \mathcal{S}}{\mathcal{W}_z} = \frac{\text{Total AM}}{\text{Total energy}} = \frac{l + \sigma}{\omega}$$

$$S = \frac{\epsilon_0}{2i\omega} \iint dx \, dy \, (E_x^* E_y + E_y^* E_x)$$

SAM is intrinsic.

For vortex beam,

$$\boldsymbol{E}(r,\phi) = u(r) \exp(-il\phi) \,\hat{\boldsymbol{p}}$$

$$\frac{\mathcal{S}}{\mathcal{W}_z} = \frac{\text{SAM}}{\text{Total energy}} = \frac{\sigma}{\omega}$$

$$\frac{\mathcal{J}_z}{\mathcal{W}_z} = \frac{\mathcal{L} + \mathcal{S}}{\mathcal{W}_z} = \frac{\text{Total AM}}{\text{Total energy}} = \frac{l + \sigma}{\omega}$$

Visualisation of AM

Visualisation of AM

Bliokh, K. Y. (2015)

Visualisation of AM

Bliokh, K. Y. (2015)

Spin-orbit interaction

- ► Momentum of Light
- ► Geometric phase of light
- ► SOI in anisotropic medium

Associated with optical path length.

Associated with geometry of evolution.

Associated with geometry of evolution.

- ► Spin-redirection Berry phase
- ► Pancharatnam-Berry Phase

Associated with adiabatic evolution of wave-vector.

e.g., Polarized light through a helical optic fibre

$$\boldsymbol{J} = \begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boldsymbol{J'} = \boldsymbol{J} \exp(i\sigma\Theta)$$

$$\Theta = 2\pi (1 - \cos \theta)$$

 $\Theta \to$ solid angle obtained at the apex of the cone.

$$|L\rangle \longrightarrow e^{i\Theta} |L\rangle$$

Associated with adiabatic evolution of wave-vector. e.g., Polarized light through a helical optic fibre.

$$\boldsymbol{J} = \begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boldsymbol{J'} = \boldsymbol{J} \exp(i\sigma\Theta)$$

$$\Theta = 2\pi (1 - \cos \theta)$$

 $\Theta \to \text{solid}$ angle obtained at the apex of the cone.

$$|L\rangle \longrightarrow e^{i\Theta}|L\rangle$$

$$|R\rangle \longrightarrow e^{-i\Theta} |R\rangle$$

Associated with adiabatic evolution of wave-vector. e.g., Polarized light through a helical optic fibre.

$$oldsymbol{J} = egin{bmatrix} 1 \ i\sigma \end{bmatrix} \longrightarrow oldsymbol{J'} = oldsymbol{J} \exp(i\sigma\Theta)$$

Helicity-dependant geometric phase

$$\Theta = 2\pi (1 - \cos \theta)$$

 $\Theta \rightarrow$ solid angle obtained at the apex of the cone.

$$|L\rangle \longrightarrow e^{i\Theta} |L\rangle$$

 $|R\rangle \longrightarrow e^{-i\Theta} |R\rangle$

Associated with adiabatic evolution of wave-vector. e.g., Polarized light through a helical optic fibre.

$$\boldsymbol{J} = \begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boldsymbol{J'} = \boldsymbol{J} \exp(i\sigma\boldsymbol{\Theta})$$

$$\Theta = 2\pi(1 - \cos\theta)$$

 $\Theta \rightarrow$ solid angle obtained at the apex of the cone.

$$|L\rangle \longrightarrow e^{i\Theta} |L\rangle$$

 $|R\rangle \longrightarrow e^{-i\Theta} |R\rangle$

Parallel transport

Associated with adiabatic evolution of wave-vector. e.g., Polarized light through a helical optic fibre.

$$\boldsymbol{J} = \begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boldsymbol{J'} = \boldsymbol{J} \exp(i\sigma\boldsymbol{\Theta})$$

$$\Theta = 2\pi(1 - \cos\theta)$$

 $\Theta \to \text{solid}$ angle obtained at the apex of the cone.

$$|L\rangle \longrightarrow e^{i\Theta} |L\rangle$$

 $|R\rangle \longrightarrow e^{-i\Theta} |R\rangle$

Parallel transport

Associated with adiabatic evolution of wave-vector. e.g., Polarized light through a helical optic fibre.

$$\boldsymbol{J} = \begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boldsymbol{J'} = \boldsymbol{J} \exp(i\sigma\Theta)$$

$$\Theta = 2\pi(1 - \cos\theta)$$

 $\Theta \to \text{solid}$ angle obtained at the apex of the cone.

$$\begin{split} |L\rangle &\longrightarrow e^{i\Theta} \, |L\rangle \\ |R\rangle &\longrightarrow e^{-i\Theta} \, |R\rangle \end{split}$$

Parallel transport

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$)

QP2 \rightarrow movable (aligned at β)

$$J_A = |x\rangle$$

$$oldsymbol{J}_A \longrightarrow oldsymbol{J}_A'$$

$$J_A' = |x\rangle \exp(i\phi_d) \exp(-i 2\varphi)$$

$$\varphi = \beta + \pi/4$$

Pancharatnam-Berry Phase

 $(\varphi \text{ depends on QP2})$

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$) QP2 \rightarrow movable (aligned at β)

$$J_A = |x\rangle$$
 $J_A \longrightarrow J'_A$
 $J'_A = |x\rangle \exp(i\phi_d) \exp(-i 2\varphi)$
 $\varphi = \beta + \pi/4$

Pancharatnam-Berry Phase $(\varphi \text{ depends on QP2})$

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$) QP2 \rightarrow movable (aligned at β)

$$J_A = |x\rangle$$
 $J_A \longrightarrow J'_A$
 $J'_A = |x\rangle \exp(i\phi_d) \exp(-i 2\varphi)$

$$\varphi = \beta + \pi/4$$

Pancharatnam-Berry Phase (φ depends on QP2 alignment)

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$) QP2 \rightarrow movable (aligned at β)

$$J_A = |x\rangle$$
 $J_A \longrightarrow J'_A$
 $J'_A = |x\rangle \exp(i\phi_d) \exp(-i2\varphi)$

$$\varphi = \beta + \pi/4$$

Pancharatnam-Berry Phase $(\varphi \text{ depends on QP2})$ alignment

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$) QP2 \rightarrow movable (aligned at β)

$$J_A = |x\rangle$$
 $J_A \longrightarrow J'_A$
 $J'_A = |x\rangle \exp(i\phi_d) \exp(-i 2\varphi)$

Pancharatnam-Berry Phase $(\varphi \text{ depends on QP2})$ alignment

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$) QP2 \rightarrow movable (aligned at β)

$$\mathbf{J}_A = |x\rangle$$

$$\mathbf{J}_A \longrightarrow \mathbf{J}'_A$$

$$\mathbf{J}'_A = |x\rangle \exp(i\phi_d) \exp(-i 2\varphi)$$

$$\varphi = \beta + \pi/4$$

Pancharatnam-Berry Phase (φ depends on QP2 alignment)

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$) QP2 \rightarrow movable (aligned at β)

$$\mathbf{J}_A = |x\rangle$$

$$\mathbf{J}_A \longrightarrow \mathbf{J}'_A$$

$$\mathbf{J}'_A = |x\rangle \exp(i\phi_d) \exp(-i 2\varphi)$$

$$\varphi = \beta + \pi/4$$

Pancharatnam-Berry Phase (φ depends on QP2 alignment)

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$) QP2 \rightarrow movable (aligned at β)

$$egin{aligned} oldsymbol{J}_A &= |x
angle \ oldsymbol{J}_A &\longrightarrow oldsymbol{J}_A' \ oldsymbol{J}_A' &= |x
angle \exp(i\phi_d) \ \exp(-i \ 2\varphi) \end{aligned}$$

$$\varphi=\beta+\pi/4$$

Pancharatnam-Berry Phase $(\varphi \text{ depends on QP2})$

Associated with cyclic evolution in Poincare sphere keeping wave-vector fixed.

e.g., Michelson interferometer.

QP1 \rightarrow fixed (aligned at $\pi/4$) QP2 \rightarrow movable (aligned at β)

$$J_A = |x\rangle$$
 $J_A \longrightarrow J'_A$
 $J'_A = |x\rangle \exp(i\phi_d) \exp(-i 2\varphi)$

$$\varphi = \beta + \pi/4$$

Pancharatnam-Berry Phase $(\varphi \text{ depends on QP2})$ alignment

Spin-orbit interaction

- ► Momentum of Light
- ► Geometric phase of light
- ► SOI in anisotropic medium

Spin-orbit interaction of light

Three types of AM:

- ► IOAM
- ► EOAM
- ► SAM

Inter-conversion between AM in a process represents spin-orbit interaction of light

Spin-orbit interaction of light

Three types of AM:

- ► IOAM
- ► EOAM
- ► SAM

Inter-conversion between AM in a process represents spin-orbit interaction of light

Spin-orbit interaction of light

Three types of AM:

- ► IOAM
- ► EOAM
- ► SAM

Inter-conversion between AM in a process represents spin-orbit interaction of light

Spin-orbit interaction of light

Three types of AM:

- ► IOAM
- ► EOAM
- ► SAM

Inter-conversion between AM in a process represents spin-orbit interaction of light

Bliokh, K. Y. (2015)

Spin-orbit interaction of light

Three types of AM:

- ► IOAM
- ► EOAM
- ► SAM

Inter-conversion between AM in a process represents spin-orbit interaction of light

e.g. Quarter wave-plate

 $\pm\hbar$ SAM per photon is transferred to the wave plate. e.g. Half wave-plate

Circularly polarized
$$\longrightarrow$$
 W \longrightarrow polarized $(\sigma = \pm 1)$ P \longrightarrow $(\sigma = \mp 1)$

 $\pm 2\hbar$ SAM per photon is transferred to the wave plate and spin is flipped.

Wave Optics (2015)

e.g. Quarter wave-plate

Circularly polarized
$$\longrightarrow$$
 W \longrightarrow polarized $(\sigma = \pm 1)$ \longrightarrow $(\sigma = 0)$

 $\pm\hbar$ SAM per photon is transferred to the wave plate. e.g. Half wave-plate

Circularly polarized
$$\longrightarrow$$
 W \longrightarrow polarized $(\sigma = \pm 1)$ P $(\sigma = \mp 1)$

e.g. Quarter wave-plate

Circularly polarized
$$\longrightarrow$$
 $\begin{bmatrix} Q \\ W \\ P \end{bmatrix}$ Linearly polarized $(\sigma = \pm 1)$ $(\sigma = 0)$

 $\pm \hbar$ SAM per photon is transferred to the wave plate.

e.g. Half wave-plate

Circularly polarized
$$\longrightarrow$$
 H \longrightarrow Directly polarized $(\sigma = \pm 1)$ P \longrightarrow polarized $(\sigma = \mp 1)$

e.g. Quarter wave-plate

Circularly polarized
$$\longrightarrow$$
 $\begin{array}{c} Q \\ W \\ (\sigma = \pm 1) \end{array} \longrightarrow \begin{array}{c} \text{Linearly} \\ \text{P} \end{array}$ $(\sigma = 0)$

 $\pm \hbar$ SAM per photon is transferred to the wave plate. e.g. Half wave-plate

Circularly polarized
$$\longrightarrow$$
 W \longrightarrow polarized $(\sigma = \pm 1)$ P \longrightarrow $(\sigma = \mp 1)$

e.g. Quarter wave-plate

Circularly polarized
$$\longrightarrow$$
 W \longrightarrow polarized $(\sigma = \pm 1)$ \longrightarrow $(\sigma = 0)$

 $\pm \hbar$ SAM per photon is transferred to the wave plate.

e.g. Half wave-plate

Circularly polarized
$$\longrightarrow$$
 W \longrightarrow polarized $(\sigma = \pm 1)$ \longrightarrow $(\sigma = \pm 1)$

e.g. Quarter wave-plate

Circularly polarized
$$\longrightarrow$$
 W \longrightarrow polarized $(\sigma = \pm 1)$ \longrightarrow $(\sigma = 0)$

 $\pm \hbar$ SAM per photon is transferred to the wave plate. e.g. Half wave-plate

$$\begin{array}{c} \text{Circularly} \\ \text{polarized} \\ (\sigma = \pm 1) \end{array} \longrightarrow \begin{array}{c} \mathbf{H} \\ \mathbf{W} \\ \mathbf{P} \end{array} \longrightarrow \begin{array}{c} \text{Circularly} \\ \text{polarized} \\ (\sigma = \mp 1) \end{array}$$

e.g. **q-plate**

Inhomogeneous orientation of the fast axis varying with azimuth (ϕ) .

e.g. **q-plate**

Inhomogeneous orientation of the fast axis varying with azimuth (ϕ) .

e.g. **q-plate**

Inhomogeneous orientation of the fast axis varying with azimuth (ϕ) .

$$\alpha(\phi) = q\phi + \alpha_0$$

q-plate

(a)
$$q = 1$$
, $\alpha_0 = 0$

(b)
$$q = 1$$
, $\alpha_0 = \pi/2$

Q-plate of phase retardation of π

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \mathbf{Q}_{\lambda/2} \end{bmatrix} \longrightarrow \begin{bmatrix} 1 \\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$

$$= \pm 1, l = 0) \longrightarrow (\sigma = \pm 1, l = \pm 2a)$$

 $q = 1 \rightarrow$ Angular momentum per photon is conserved **Q-plate of phase retardation of** $\pi/2$

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/4}} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4) \\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$

 $q=1 o {
m Angular}$ momentum per photon is conserved

Q-plate of phase retardation of π

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/2}} \longrightarrow \begin{bmatrix} 1 \\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$

$$+1, l = 0) \longrightarrow (\sigma = \mp 1, l = \pm 2a)$$

 $q = 1 \rightarrow$ Angular momentum per photon is conserved **O-plate** of phase retardation of $\pi/2$

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \mathbf{Q}_{\lambda/4} \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4) \\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$

$$+1 \quad l = 0) \longrightarrow (\sigma = 0, l = \pm a)$$

$$(0 - \pm 1, t - 0)$$
 $(0 - 0, t - \pm q)$

 $q = 1 \rightarrow \text{Angular momentum per photon is conserved}$

Q-plate of phase retardation of π

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \mathbf{Q}_{\lambda/2} \longrightarrow \begin{bmatrix} 1 \\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$

$$+1 \quad l = 0 \quad \longrightarrow \quad (\sigma = \pm 1 \quad l = \pm 2a)$$

 $q = 1 \rightarrow$ Angular momentum per photon is conserved **Q-plate of phase retardation of** $\pi/2$

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/4}} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4) \\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$

 $q = 1 \rightarrow \text{Angular momentum per photon is conserved}$

Q-plate of phase retardation of π

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/2}} \longrightarrow \begin{bmatrix} 1 \\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = \mp 1, l = \pm 2q)$$

 $q = 1 \rightarrow$ Angular momentum per photon is conserved **Q-plate of phase retardation of** $\pi/2$

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \mathbf{Q}_{\lambda/4} \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4) \\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$

$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = 0, l = \pm q)$$

 $q = 1 \rightarrow \text{Angular momentum per photon is conserved}$

Q-plate of phase retardation of π

$$\begin{bmatrix} 1\\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/2}} \longrightarrow \begin{bmatrix} 1\\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = \mp 1, l = \pm 2q)$$

 $q = 1 \rightarrow$ Angular momentum per photon is conserved.

Q-plate of phase retardation of $\pi/2$

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \mathbf{Q}_{\lambda/4} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4) \\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$

$$+1 \quad l = 0 \quad \Longrightarrow (\sigma = 0, l = \pm a)$$

 $q=1 \rightarrow \text{Angular momentum per photon is conserved}$

Q-plate of phase retardation of π

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/2}} \longrightarrow \begin{bmatrix} 1 \\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = \mp 1, l = \pm 2q)$$

 $q = 1 \rightarrow \text{Angular momentum per photon is conserved.}$

Q-plate of phase retardation of $\pi/2$

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \mathbf{Q}_{\lambda/4} \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4) \\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$

$$= \pm 1, l = 0) \longrightarrow (\sigma = 0, l = \pm q)$$

 $q=1 \rightarrow \text{Angular momentum per photon is conserved}$

Q-plate of phase retardation of π

$$\begin{bmatrix} 1\\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/2}} \longrightarrow \begin{bmatrix} 1\\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = \mp 1, l = \pm 2q)$$

 $q = 1 \rightarrow \text{Angular momentum per photon is conserved.}$

Q-plate of phase retardation of $\pi/2$

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \mathbf{Q}_{\lambda/4} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4) \\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$

 $q = 1 \rightarrow$ Angular momentum per photon is conserved.

Q-plate of phase retardation of π

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/2}} \longrightarrow \begin{bmatrix} 1 \\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = \mp 1, l = \pm 2q)$$

 $q = 1 \rightarrow \text{Angular momentum per photon is conserved.}$

Q-plate of phase retardation of $\pi/2$

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/4}} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4) \\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$

 $q=1 o {
m Angular\ momentum\ per\ photon\ is\ conserved}$

Q-plate of phase retardation of π

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/2}} \longrightarrow \begin{bmatrix} 1 \\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = \mp 1, l = \pm 2q)$$

 $q = 1 \rightarrow \text{Angular momentum per photon is conserved.}$

Q-plate of phase retardation of $\pi/2$

$$\begin{bmatrix} 1\\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/4}} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4)\\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = 0, l = \pm q)$$

 $q=1 \rightarrow \text{Angular momentum per photon is conserved}$

Q-plate of phase retardation of π

$$\begin{bmatrix} 1 \\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/2}} \longrightarrow \begin{bmatrix} 1 \\ -i\sigma \end{bmatrix} \underbrace{\exp(i2\sigma q\phi)}_{\text{Vortex}} \exp(i2\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = \mp 1, l = \pm 2q)$$

 $q = 1 \rightarrow$ Angular momentum per photon is conserved.

Q-plate of phase retardation of $\pi/2$

$$\begin{bmatrix} 1\\ i\sigma \end{bmatrix} \longrightarrow \boxed{\mathbf{Q}_{\lambda/4}} \longrightarrow \begin{bmatrix} \cos(\alpha - \sigma\pi/4)\\ \sin(\alpha - \sigma\pi/4) \end{bmatrix} \underbrace{\exp(i\sigma q\phi)}_{\text{Vortex}} \exp(i\sigma\alpha_0)$$
$$(\sigma = \pm 1, l = 0) \longrightarrow (\sigma = 0, l = \pm q)$$

 $q=1\to$ Angular momentum per photon is conserved.

THANKS

TO ALL