St. Francis Institute of Technology, Mumbai-400 103 **Department Of Information Technology**

A.Y. 2024-2025 Class: TE-ITA/B, Semester: V

Subject: **DevOps Lab**

Experiment – 2: To understand version control system/ source code management, install git and create a GitHub account

- 1. Aim: To understand version control using Git and create a GitHub account
- 2. Objectives: Aim of this experiment is that, the students will be able
 - To be aware of different Version Control tools like GIT and GitHub
 - To obtain complete knowledge of the "version control system" to effectively track changes augmented with Git and GitHub
- 3. Outcomes: After study of this experiment, the students will be able to
 - GIT Installation
 - Version Control
 - Working with remote repository
- **4. Prerequisite:** Knowledge of software engineering concept of version control
- **5. Requirements:** Git, Personal Computer, Windows operating system, browser, Internet Connection, Microsoft Word.
- 6. Pre-Experiment Exercise:

Brief Theory: Refer shared material

- 7. Laboratory Exercise
 - A. Procedure:
 - a. Answer the following:
 - Explain version control and its types
 - What is Git and GitHub?
 - Explain different Git commands
 - b. Execute following on Git and GitHub (Refer the shared material) and attach screenshots:
 - Git installation
 - Git commands
 - GitHub account creation
- 8. Post-Experiments Exercise
 - A. Extended Theory:

Nil

- **B.** Questions:
 - What are the different Git areas? Explain with diagram
 - What is a Git conflict?
- C. Conclusion:
 - Write what was performed in the experiment.
 - Write the significance of the topic studied in the experiment.
- D. References:

https://github.com/

https://guides.github.com/activities/hello-world/

https://git-scm.com/docs/gittutorial

Name: Vishal Rajesh Mahajan Devops EXP 2

Class: TE IT A Roll No: 62

7. Laboratory Exercise:

A. Answer the following questions

1. Explain Version Control and Its Types

Answer: Version Control is a system that tracks and manages changes to files over time, allowing multiple collaborators to work together. The main types are:

- Local Version Control: Keeps track of changes on a local machine.
- Centralized Version Control (CVCS): Uses a single server to store all versions of files; examples include SVN.
- Distributed Version Control (DVCS): Each user has a full copy of the repository; examples include Git and Mercurial.

2. What is Git and GitHub?

Answer: Git is a distributed version control system that tracks changes in source code during software development, allowing multiple developers to work together.

GitHub is an online platform that hosts Git repositories, offering features like collaborative tools, issue tracking, and pull requests. It acts as a social coding platform, enabling sharing and collaboration on projects.

3. Explain Different Git Commands

Answer:

- git init: Initializes a new Git repository.
- git clone [URL]: Copies an existing repository.
- git add [file]: Stages changes for the next commit.
- git commit -m "[message]": Commits staged changes with a message.
- git status: Shows the current state of the working directory.
- git diff: Displays differences between files.
- git branch [name]: Creates a new branch.
- git checkout [name]: Switches to a different branch.
- git merge [branch]: Merges another branch into the current one.
- git fetch [remote]: Downloads changes from a remote repository.
- git pull [remote] [branch]: Fetches and merges changes from a remote branch.
- git push [remote] [branch]: Pushes local commits to a remote repository.
- git reset [commit]: Resets the current branch to a specific commit.
- git revert [commit]: Creates a commit that undoes a previous commit.
- git log: Shows the commit history.
- git show [commit]: Displays detailed information about a specific commit.

B. Execute following on Git and GitHub (Refer the shared material) and attach screenshots:

Git Installation:

Git Commands:

1. Command: Git --version

Screenshot:

2. Command: git init

Screenshot:

3. **Command**: git status

Screenshot:

4. **Command**: git config

Screenshot:

```
MINGW64:/c/VishalRMahajan — — X

Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ git config --global user.name "VishalRMahajan"

Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ git config --global user.email "vism06@gmail.com"

Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ git config --global --list user.email=vism06@gmail.com user.name=VishalRMahajan

Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ |
```

5 & 6. Command: git add and git commit Screenshot:

1. Adding only one file using **git add <filename>** and then committing it using **git commit --m <commit message>**

2.Adding all files at once using **git add**. and then committing it using **git commit --m <commit message>**

```
\Box
 MINGW64:/c/VishalRMahajan
                                                                                                          ×
Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ git status
On branch master
Untracked files:
  (use "git add <file>..." to include in what will be committed)
VishalRMahajan - Copy (2).docx
VishalRMahajan - Copy (3).docx
VishalRMahajan - Copy (4).docx
nothing added to commit but untracked files present (use "git add" to track)
Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ git add .
Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ git status
On branch master
Changes to be committed:
  (use "git restore --staged <file>..." to unstage)
new file: VishalRMahajan - Copy (2).docx
new file: VishalRMahajan - Copy (3).docx
          new file: VishalRMahajan - Copy (4).docx
          new file: VishalRMahajan - Copy.docx
```

```
MINGW64:/c/VishalRMahajan — — X

Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)

$ git commit -m "Second Commit"
[master 02624be] Second Commit

4 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 VishalRMahajan - Copy (2).docx
create mode 100644 VishalRMahajan - Copy (3).docx
create mode 100644 VishalRMahajan - Copy (4).docx
create mode 100644 VishalRMahajan - Copy (4).docx
Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)

$
```

7. Command: git log

Screenshot:

1. Getting the log of all the files committed using git log

```
MINGW64:/c/VishalRMahajan
                                                                        ×
Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ git log
commit 076dd3cc972d5af9264c00fa51efc8bc174818d2 (HEAD -> master)
Author: VishalRMahajan <vism06@gmail.com>
       Tue Jul 23 11:06:10 2024 +0530
    Third commit
commit 02624be1703795fd6bb44b536fa9eab68068b6b0
Author: VishalRMahajan <vism06@gmail.com>
       Tue Jul 23 11:02:09 2024 +0530
    Second Commit
commit e3a4fb35f8da17dff1af585d4ba1fb016d14d0be
Author: VishalRMahajan <vism06@gmail.com>
       Tue Jul 23 10:54:15 2024 +0530
    Committing Docx File
Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
```

2. Getting the log of all the files committed in one line using git log -- oneline

```
MINGW64:/c/VishalRMahajan — — X

Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ git log --oneline
076dd3c (HEAD -> master) Third commit
02624be Second Commit
e3a4fb3 Committing Docx File

Student@IT306A-20 MINGW64 /c/VishalRMahajan (master)
$ |
```

3. Getting log of a particular file in one line using git log --oneline <filename>

4. Getting log of a particular file in one line using **git log --oneline <commit** hash>

GitHub Account Creation:

