

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Review

A review on the effect of amination pretreatment for the selective separation of CO₂

Adedeji Adebukola Adelodun a, Ki-Hyun Kim b,*, Jane Catherine Ngila a, Jan Szulejko b

HIGHLIGHTS

- A review of surface chemical characteristics of activated carbon (AC) is provided.
- The significance of enhanced surface energy through amination of AC is described.
- Pretreatment prior to amination is assessed to improve selective adsorption of CO₂.
- The efficiency of different adsorbents is assessed for CO₂ adsorption.
- KOH is found to be the most efficient pre-treatment for improving amination.

ARTICLE INFO

Article history: Received 20 February 2015 Received in revised form 22 August 2015 Accepted 24 August 2015 Available online 16 September 2015

Keywords: Amination Ammoxidation Carbon dioxide Adsorption Surface energy

ABSTRACT

For the cost-effective control of unregulated CO_2 emissions, its capture through modifications to adsorbents has recently gained much attention. In this respect, amination through basification of activated carbon (AC) surface is one of the practical approaches to separate CO_2 . To learn more about such mechanism, a number of key variables (e.g., the nature of the AC surface groups, their CO_2 absorption enthalpy, and the effect of amination on adsorption) are reviewed. The potent role of amination is hence described with respect to the significance of pretreatment prior to amination technique by comparing the performance of diverse media (e.g., advanced oxidation processes (AOP), $Ca(NO_3)_2$, and KOH) for such application. The analysis of collected adsorption data suggests that the efficiency of amination and eventual selective adsorption of CO_2 can be improved by such pretreatment as KOH sintering in terms of inducing stronger surface CO_2 binding energy.

© 2015 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction	632
2.	Surface chemistry of activated carbon	634
3.	Amination and ammoxidation	534
	3.1. Amination	634
	3.2. Ammoxidation	635
	Significance of pretreatment to amination	
5.	Selectivity	636
	5.1. Modification of activated carbon for selective CO_2 adsorption	637
	5.2. CO_2 adsorption capacities of aminated carbons	637
	5.3. Regeneration study	639
6.	Comparison of amination with other methods and future research	639

^a Department of Applied Chemistry, Faculty of Science, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa

^b Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea

^{*} Corresponding author. Tel.: +82 2 2220 2325; fax: +82 2 2220 1945. E-mail addresses: kkim61@hanyang.ac.kr, kkim61@nate.com (K.-H. Kim).