2.3 คณิตศาสตร์เลขจำนวนเต็ม

- สัญญาณ Opcode เพื่อสั่งการทำงาน เช่น บวก ลบ เป็นต้น
- ผลลัพธ์ Y เป็นจำนวนเต็มชนิดไม่มีเครื่องหมายขนาด n บิท
- สัญญาณ Status ประกอบด้วย
 - ขาเครื่องหมาย N (Negative) สำหรับเลขจำนวนเต็มชนิดมีเครื่องหมาย
 - ขา Z (Zero)=1 เพื่อบ่งบอกว่าผลลัพธ์ Y มีค่าเท่ากับศูนย์ทุกบิท
 - ขา Carry c_n สำหรับตัวทดบิทที่ n
 - ขา Overflow (V) เพื่อบ่งบอกความผิดพลาด
 ขาสัญญาณเหล่านี้จะบันทึกลงในรีจิสเตอร์สถานะ (Status Register) สำหรับให้วงจรและ
 โปรแกรมเมอร์ตรวจสอบด้วยวงจรดิจิทัลและคำสั่งภาษาแอสเซมบลี ในบทที่ 4

	c_n	c_{n-1}	c_{n-2}	 c_2	c_1	c_0	
$X_{2,u}$ +		x_{n-1}	x_{n-2}	 x_2	x_1	x_0	+
$Y_{2,u}$		y_{n-1}	y_{n-2}	 y_2	y_1	y_0	
$Z_{2,u}$		$\overline{z_{n-1}}$	z_{n-2}	 z_2	\overline{z}_1	\overline{z}_0	

$$c_{i+1}z_i = x_i + y_i + c_i (2.40)$$

เมื่อ i=0, 1, 2, .. , n-1 โดย c_0 = 0 และสัญลักษณ์ + คือการบวกเลข ไม่ใช่การ OR กันเชิงตรรกศาสตร์ ในวิชาออกแบบวงจรดิจิทัล เราเรียกวงจรบวกเลขชนิดนี้ว่า **วงจร FUll Adder** โดยวงจรจะนำบิท ข้อมูลจำนวน 3 บิทมากระทำการทางตรรกศาสตร์ได้ผลลัพธ์ z_i โดย

$$z_i = x_i \oplus y_i \oplus c_i \tag{2.41}$$

เมื่อ \oplus คือ กระบวนการ Exclusive-OR และบิทตัวทด c_{i+1}

$$c_{i+1} = (x_i \& y_i) | (x_i \& c_i) | (y_i \& c_i)$$
(2.42)

เมื่อ & คือ กระบวนการ AND และ | คือ กระบวนการ OR วงจรบวกเลขชนิดไม่มีเครื่องหมายขนาด n บิท นี้สามารถตรวจจับการเกิดโอเวอร์โฟลว์ได้โดย

$$V = c_n (2.43)$$

Computer Organization & Assembly Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

ตัวอย่างที่ 2.3.1 จงคำนวณหาค่าของ 5 + 9 ด้วยเลขจำนวนเต็มชนิดมีเครื่องหมาย แบบ Unsigned ขนาด 4 บิท 5 + 9 = 14 ดังนั้น ในเครื่องคอมพิวเตอร์ขนาด 4 บิท สามารถคำนวณได้ดังนี้

การบวกเลขขนาด 4 บิทแบบไม่มีเครื่องหมาย: 5+9=14 พร้อมตัวทด และผลลัพธ์ถูกต้องเนื่องจากไม่ เกิดโอเวอร์โฟลว์ ($V=c_n=0$)

	c_4	c_3	c_2	c_1	c_0	Overflow=False
	0	0	0	1	0	$V=c_n=0$
X=5 +		0	1	0	1	+
<i>Y</i> =9		1	0	0	1	
Z = 14		1	1	1	0	

ตัวอย่างที่ 2.3.2. จงคำนวณหาค่าของ 7 + 9 ด้วยเลขจำนวนเต็มชนิดมีเครื่องหมาย แบบ Unsigned ขนาด 4 บิท 7 + 9 = 16 = 0 ดังนั้น ในเครื่องคอมพิวเตอร์ขนาด 4 บิท ซึ่งไม่สามารถแสดงผลค่า 16_{10} ได้ ดังนี้

	c_4	c_3	c_2	c_1	c_0	Overflow
	1	1	1	1	0	$V=c_n=1$
X = 7 +		0	1	1	1	+
Y=9		1	0	0	1	
Z=16		0	0	0	0	

สาเหตุของการเกิด Overflow เนื่องจากผลลัพธ์มีค่าอยู่นอกย่านที่เป็นไปได้ โดยสามารถตรวจสอบ อย่างง่ายดายโดย $c_4=1$ (V: Overflow) เมื่อเกิดโอเวอร์โฟลว์ ผลลัพธ์ที่ได้จึงมีค่าไม่ถูกต้อง (Invalid)

การบวกเลขจำนวนเต็มชนิดไม่มีเครื่องหมาย

การบวกเลขจำนวนเต็มชนิดไม่มีเครื่องหมาย 2 จำนวน ผลลัพธ์ที่ได้จะไม่มีเครื่องหมายด้วยเช่นกัน แต่การบวก เลขขนาดใหญ่ที่เข้าใกล้ค่าสูงสุด สามารถเกิดความผิดพลาดได้ เรียกว่า **การเกิดโอเวอร์โฟลว์** (Overflow) ใน สมการที่ (2.43) ซึ่งเป็นผลสืบเนื่องจากวงจรดิจิทัลที่สามารถประมวลผลได้จำกัด ตามจำนวนบิทข้อมูลสูงสุด ที่ทำได้ ในตัวอย่างการแปลงเลขฐานสองเป็นฐานสิบที่ได้แสดงไปแล้ว ยกตัวอย่างเช่น การวนรอบหรือวนลูป (Loop) เพิ่มค่าอย่างต่อเนื่องโดยไม่ระวัง ตามประโยคในภาษา C/C++ ประโยค i++ หรือ i=i+1 นี้ หาก i มีค่าเพิ่มขึ้นเรื่อยๆ จนถึง**ค่าสูงสุด** การบวกเพิ่มอีก 1 ไปเรื่อยๆ โดยไม่มีการตรวจจับการเกิดโอเวอร์โฟลว์ล่วง หน้า จะทำให้ค่าของ i กลายเป็น**ศูนย์**ในที่สุด ซึ่งอาจทำให้เกิดผลร้ายตามมาอย่างรุนแรง ผู้อ่านสามารถทดสอบ ได้ตามกิจกรรมท้ายการทดลองในภาคผนวก E

2.3.2 คณิตศาสตร์เลขจำนวนเต็ม ชนิดมีเครื่องหมาย 2's Complement

									Inte Oper		Integer Operand
		c_n	c_{n-1}	c_{n-2}	 c_2	c_1	c_0				<u></u>
$X_{2,.}$	$_{s}$ +		x_{n-1}	x_{n-2}	 x_2	x_1	x_0	+	Status — A		В
$Y_{2,s}$			y_{n-1}	y_{n-2}	 y_2	y_1	y_0		Opcode -	Y	Status
$Z_{2,s}$	3		z_{n-1}	z_{n-2}	 z_2	z_1	z_0		-		
									(c) teach-ict.com	Integer Result	

2.3.2 คณิตศาสตร์เลขจำนวนเต็ม ชนิดมีเครื่องหมาย 2's Complement

$$c_{i+1}z_i = x_i + y_i + c_i (2.44)$$

เมื่อ i=0, 1, 2, .. , n-1 โดย c_0 = 0

ผลลัพธ์ของการบวกเลขจำนวน 3 บิท สามารถคำนวณได้จากวงจร Full Adder ดังนี้

$$z_i = x_i \oplus y_i \oplus c_i \tag{2.45}$$

เมื่อ \oplus คือ กระบวนการ Exclusive-OR

$$c_{i+1} = (x_i \& y_i) | (x_i \& c_i) | (y_i \& c_i)$$
(2.46)

เมื่อ & คือ กระบวนการ AND และ | คือ กระบวนการ OR การเกิดโอเวอร์โฟลว์ของการบวกเลขชนิดมีเครื่องหมาย 2-Complement ได้โดย

$$V = c_n \oplus c_{n-1} \tag{2.47}$$

Computer Organization & Assembly Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

2.3.2 คณิตศาสตร์เลขจำนวนเต็ม ชนิดมีเครื่องหมาย 2's Complement

ตัวอย่างที่ 2.3.5 จงคำนวณหาค่าของ 7 + 3 ด้วยเลขจำนวนเต็มชนิดมีเครื่องหมาย แบบ 2-Complement ขนาด 4 บิท ดังนั้น ในเครื่องคอมพิวเตอร์ขนาด 4 บิท สามารถคำนวณได้ดังนี้

	c_4	c_3	c_2	c_1	c_0	Overflow=True
	0	1	1	1	0	V =0 \oplus 1=1
\overline{X} =7		0	1	1	1	+
+ <i>Y</i> =+3		0	0	1	1	
Z =-6		1	0	1	0	

ผลการคำนวณผลลัพธ์ที่ไม่ถูกต้อง (Invalid) เนื่องจากเกิดโอเวอร์โฟลว์ (Overflow) เพราะฮาร์ดแวร์ คำนวณ $V = c_4 \oplus c_3 = 0 \oplus 1 = 1$ ตามสมการที่ (2.47) ทำให้ซอฟท์แวร์นำคำตอบนี้ไปใช้ไม่ได้

2.3.2 คณิตศาสตร์เลขจำนวนเต็ม ชนิดมีเครื่องหมาย 2-Complement

ตัวอย่างที่ 2.3.7 จงคำนวณหาค่าของ -3 - 6 ด้วยเลขจำนวนเต็มชนิดมีเครื่องหมาย แบบ 2-Complement ขนาด 4 บิท -3 - 6 = (-3) + (-6) ดังนั้น ในเครื่องคอมพิวเตอร์ขนาด 4 บิท ดังนี้

	c_4	c_3	c_2	c_1	c_0	Overflow=True
	1	0	0		0	V =1 \oplus 0=1
X =-3 +		1	1	0	1	+
-Y =-6		1	0	1	0	
Z =+7		0	1	1	1	

ผลการคำนวณผลลัพธ์ที่ไม่ถูกต้อง (Invalid) เนื่องจากเกิดโอเวอร์โฟลว์ (Overflow) เพราะฮาร์ดแวร์ คำนวณ $V = c_4 \oplus c_3 = 1 \oplus 0 = 1$ ตามสมการที่ (2.47) ทำให้ซอฟท์แวร์นำคำตอบนี้ไปใช้ไม่ได้

2.3.2 คณิตศาสตร์เลขจำนวนเต็ม ชนิดมีเครื่องหมาย 2-Complement

การบวก/ลบเลขจำนวนเต็มชนิดมีเครื่องหมาย

การบวก/ลบเลขจำนวนเต็มชนิดมีเครื่องหมาย 2 จำนวน ผลลัพธ์ที่ได้จะมีเครื่องหมายด้วยเช่นกัน แต่การบวก/ลบเลขขนาดใหญ่ที่เข้าใกล้ค่าสูงสุดหรือค่าต่ำสุด สามารถเกิดความผิดพลาดได้ เรียกว่า **การเกิดโอเวอร์โฟลว์** (Overflow) ในสมการที่ (2.47) ซึ่งเป็นผลสืบเนื่องจากวงจรดิจิทัลที่สามารถประมวลผลได้จำกัดตามจำนวน บิตข้อมูลสูงสุดที่ทำได้ ยกตัวอย่างเช่น การวนรอบหรือวนลูป (Loop) เพิ่มค่าอย่างต่อเนื่องโดยไม่ระวัง ตาม ประโยคในภาษา C/C++ ประโยค i++ หรือ i=i+1 นี้ หาก i มีค่าเพิ่มขึ้นเรื่อยๆ จนถึง**ค่าสูงสุด** การบวกเพิ่ม อีก 1 ไปเรื่อยๆ โดยไม่มีการตรวจจับการเกิดโอเวอร์โฟลว์ล่วงหน้า จะทำให้ค่าของ i กลายเป็นค่า**ลบ**ในที่สุด ซึ่ง อาจทำให้เกิดผลร้ายตามมาอย่างรุนแรง ผู้อ่านสามารถทดสอบได้ตามกิจกรรมท้ายการทดลองในภาคผนวก E

2.4 เลขทศนิยมฐานสองชนิดจุดตรึง (Fixed Point)

นิยามที่ 2.4.1 กำหนดให้ F_2 เป็นเลขทศนิยมฐานสองชนิด Signed Magnitude เขียนอยู่ในรูป

$$F_2 = [s][x_{n-1}x_{n-2}x_{n-3}..x_1x_0].[y_{-1}y_{-2}y_{-3}...y_{-m}]$$
(2.48)

นิยมใช้ชนิดขนาด-เครื่องหมาย ประกอบด้วย 3 ส่วน คือ บิทเครื่องหมาย (Sign bit: s หรือ \pm) โดย s=0 แทนเครื่องหมายบวก และs=1 แทนเครื่องหมายลบ ส่วนจำนวนเต็ม (Integer: $X_{2,u}$) มีความยาว n บิท และ ส่วนทศนิยม (Fraction: F_2) ยาว m บิท รวมความยาวทั้งหมด m+n+1 บิท

โดย F_{10} คือ ค่าฐานสิบของเลขทศนิยมฐานสองชนิดจุดตรึง F_2 สามารถคำนวณได้จาก

$$F_{10} = (-1)^s \times \left[x_{n-1} 2^{n-1} + \dots + x_1 2^1 + x_0 2^0 + y_{-1} 2^{-1} + y_{-2} 2^{-2} + y_{-3} 2^{-3} + \dots + y_{-m} 2^{-m} \right]$$
(2.49)

หรือ

$$F_{10} = (-1)^s \times \left[x_{n-1} 2^{n-1} + \dots + x_1 2^1 + x_0 2^0 + \frac{y_{-1}}{2} + \frac{y_{-2}}{4} + \frac{y_{-3}}{8} + \dots + \frac{y_{-m}}{2^m} \right]$$
(2.50)

Computer Organization & Assembly Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

2.4 เลขทศนิยมฐานสองชนิดจุดตรึง (Fixed Point)

ตัวอย่างที่ 2.4.1. จงแปลงเลขฐานสิบต่อไปนี้เป็นเลขทศนิยมฐานสองชนิดจุดคงที่ m=n=2 บิท

$$+0.75_{10} = 000.11_2 \tag{2.51}$$

$$+3.00_{10} = 011.00_2 \tag{2.52}$$

$$-3.75_{10} = 111.11_2 \tag{2.53}$$

ผู้อ่านสามารถสามารถเขียนเลขทศนิยมฐานสองชนิดจุดคงที่ได้ตามรูปแบบนี้

$$F_2 = [s][X_{2,u}].[Y_2] (2.54)$$

ค่าทศนิยม (Y_2) มีความยาว m บิท เขียนเป็นสัญลักษณ์ได้ดังนี้

$$Y_2 = y_{-1}y_{-2}y_{-3}...y_{-m} (2.55)$$

2.5 เลขทศนิยมฐานสองชนิดจุดลอยตัว

เลข ทศนิยม ฐาน สอง ชนิด ชนิด จุด ลอยตัว เหมาะ สำหรับ ข้อมูล ที่ มี พิสัย (Range) กว้าง และ เลข ทศนิยม ที่ ต้องการความละเอียดสูง สำหรับการคำนวณทางวิทยาศาสตร์ (Scientific) ดังนี้

- -2.34 imes 10^{56} ซึ่งเขียนอยู่ในลักษณะที่**นอร์มัลไลซ์** (Normalize) แล้ว
- +0.002 \times 10^{-4} ซึ่งจะต้องนอร์มัลไลซ์ต่อไปเป็น +2.000 \times 10^{-7}
- +987.02 \times 10^9 ซึ่งจะต้องนอร์มัลไลซ์ต่อไปเป็น +9.8702 \times 10^{11}

นิยามที่ 2.5.1 เลขทศนิยม ชนิด จุด ลอยตัว ฐาน สอง ที่ อยู่ ใน รู ปน อร์มัลไลซ์ ประกอบ ด้วย 3 ส่วน คือ บิต เครื่องหมาย (Sign bit: s) ค่านัยสำคัญ (Significand: S_2) ในสมการที่ (2.61) และค่ายกกำลัง (Exponent: E_2) มีลักษณะดังนี้

$$(-1)^{s} \times [1.y_{-1}y_{-2}y_{-3}...y_{-m}]_{2} \times 2^{E_{2}}$$
(2.59)

เลขยกกำลังเป็นเลขจำนวนเต็มฐานสองชนิด sign-magnitude ความยาว n บิต ดังนี้

$$E_2 = \pm [e_{n-1}e_{n-2}...e_0]_2 \tag{2.60}$$

2.5 เลขทศนิยมฐานสองชนิดจุดลอยตัว

เมื่อ e_i แต่ละบิตมีค่า "1" หรือ "0" ในตำแหน่งที่ $i\ s$ คือ Sign bit และ n คือ จำนวนบิตซึ่งกำหนดไว้ก่อน จะออกแบบวงจร

จากนิยามที่ 2.59 ค่านัยสำคัญ (Significand) S_2 ความยาว m+1 บิต สามารถเขียนใหม่ได้ ดังนี้

$$S_2 = [1.y_{-1}y_{-2}y_{-3}...y_{-m}]_2 (2.61)$$

ซึ่งมีความสำคัญต่อรูปแบบการเขียน เนื่องจากวงจรจะต้องทำการนอร์มัลไลซ์ผลลัพธ์ที่ได้จากการคำนวณเสมอ ค่านัยสำคัญที่นอร์มัลไลซ์ข้างต้นสามารถคำนวณหาค่าฐานสิบ ได้ดังนี้

$$S_{10} = (-1)^s \times \left[1 + \frac{y_{-1}}{2} + \frac{y_{-2}}{4} + \frac{y_{-3}}{8} + \dots + \frac{y_{-m}}{2^m}\right] \times (2^{\pm E_2})$$
 (2.62)

2.5 เลขทศนิยมฐานสองชนิดจุดลอยตัว

ตัวอย่างที่ 2.5.1 จงแปลงเลขทศนิยมฐานสองชนิดจุดลอยตัวที่นอร์มัลไลซ์แล้ว $(-1)^1 \times 1.0101_2 \times 2^3$ ให้เป็น เลขทศนิยมฐานสิบตามสมการที่ (2.62)

วิธีทำ

- 1. ปรับจุดทศนิยม เพื่อให้เป็นเลขฐานสองชนิด Sign-Magnitude และเลขยกกำลังเท่ากับ 0 -1010.1 $_2 \times 2^0$
- 2. แปลงค่าเลขฐานสองชนิดที่เลื่อนตำแหน่งแล้วให้เป็นฐานสิบ -{ $1\times 2^3+0\times 2^2+1\times 2^1+0\times 2^0+1\times 2^{-1}$ } =-{8+0+2+0+0.5} = -10.5

มาตรฐานของเลขทศนิยมฐานสองชนิดจุดลอยตัวได้ถูกกำหนดโดย IEEE (Institute of Electrical and Electronics Engineers) เรียกว่า มาตรฐาน IEEE754 ในปี ค.ศ.1985 เพื่อให้โปรแกรมคอมพิวเตอร์ สามารถคำนวณค่าเลขทศนิยมฐานสองบนเครื่องที่ใช้ซีพียูใดๆก็ได้แล้วให้ผลลัพธ์ตรงกัน ปัจจุบันนี้มาตรฐานได้ รับการยอมรับอย่างแพร่หลายและปรับปรุงอย่างต่อเนื่อง สามารถรองรับเลขทศนิยมจุดลอยตัว 2 รูปแบบหลัก คือ

- ชนิด Single precision (32-bit) ตรงกับตัวแปรชนิด float ในภาษา C/C++ และ Java
- ชนิด Double precision (64-bit) ตรงกับตัวแปรชนิด double ในภาษา C/C++ และ Java เวอร์ชั่น ล่าสุดของ IEEE754 คือ ปี ค.ศ. 2019 รายละเอียดเพิ่มเติม

ตัวอย่างการประกาศและตั้งค่าตัวแปรที่ใช้มาตรฐานนี้

```
float a = -5; /* a = 0xC0A00000 */
double b = -0.75; /* b = 0xBFE800000000000 */
```

นิยามที่ 2.6.1 เลขทศนิยมฐานสองชนิดจุดลอยตัวที่นอมัลไลซ์แล้ว สามารถเขียนอยู่ในรูปของเลขฐานสองต่อ ไปนี้

$$F_{2,IEEE} = [s][E_{2,IEEE}][Y_2]$$
 (2.63)

โดยค่าทศนิยม (Fraction): Y_2 ตามสมการที่ (2.64) มีความยาว m=23 และ 51 ปีท ตามชนิด Single Precision และ Double Precision ตามลำดับ สามารถเขียนเป็นสัญลักษณ์คล้ายกับเลขทศนิยมฐานสองชนิดจุด ตรึง ดังนี้

$$Y_2 = y_{-1}y_{-2}y_{-3}...y_{-m} (2.64)$$

ค่ายกกำลัง เป็นเลขจำนวนเต็มชนิดไม่มีเครื่องหมาย ความยาว n=8 และ 11 บิท ขึ้นกับชนิด Single Precision และ Double Precision ตามลำดับ โดยมีลักษณะคล้ายกับเลขทศนิยมฐานสองชนิดจุดลอยตัวในสมการ ที่ 2.60 แต่ต่างกันที่เลขยกกำลังของ IEEE754 มีค่าเป็นเลขจำนวนเต็มไม่มีเครื่องหมาย

$$E_{2,IEEE} = [e_{n-1}e_{n-2}...e_0] (2.65)$$

เลขทศนิยมฐานสองชนิดจุดลอยตัวตามมาตรฐาน IEEE754 ในสมการที่ 2.63 สามารถแปลงเป็นค่าเลข ทศนิยมฐานสิบ ได้ดังนี้

$$F_{10,IEEE} = (-1)^s \times \left[1 + \frac{y_{-1}}{2} + \frac{y_{-2}}{4} + \frac{y_{-3}}{8} + \dots + \frac{y_{-m}}{2^m}\right] \times 2^{(E_{2,IEEE} - E_{bias})}$$
(2.67)

ดังนั้น เลขยกกำลังจริงจึงสามารถคำนวณได้โดย

$$E_{2,IEEE} = E_2 + E_{bias} (2.66)$$

- ชนิด Single Precision ค่า E_{bias} = 011111111 $_2$ =127 $_{10}$
- ชนิด Double Precision ค่า E_{bias} = 01111111111 $_2$ =1023 $_{10}$

2.6 เลขทศนิยมฐานสองชนิดจุดลอยตัวมาตรฐาน IEEE754 • ชนิด Single precision (32-bit) ตรงกับตัวแปรชนิด float ในภาษา C/C++ และ Java

- ชนิด Double precision (64-bit) ตรงกับตัวแปรชนิด double ในภาษา C/C++ และ Java

ตัวอย่างที่ 2.6.1 เลขทศนิยมฐานสองชนิดจุดลอยตัวมาตรฐาน IEEE754 ชนิด Single Precision ต่อไปนี้ มีค่า เท่าไรในฐานสิบตามสมการที่ (2.67)

- **1.** แปลงจากเลขฐานสิบหกให้เป็นฐานสองและองค์ประกอบต่างๆ ได้ดังนี้ s=[0][$E_{2,IEEE}$ =100 0010 0][Y_2 =010 1000 0000 0000 0000 0000] $_2$
- 2. จะพบว่าบิตเครื่องหมาย s=0 ค่ายกกำลังจริง $E_{true}=1000\ 0100_2\text{-}E_{bias}=132\text{-}127=5$ ค่าทศนิยม $Y_2=010\ 1000\ 0000\ 0000\ 0000\ 0000_2$

$$F_{10,IEEE} = (-1)^{0} \times (1 + .0101_{2}) \times 2^{5}$$

$$= (-1)^{0} \times (1.0101_{2}) \times 2^{5}$$

$$= (-1)^{0} \times (101010.0_{2})$$

$$= (+1) \times (32 + 8 + 2)$$

$$= 42.0_{10}$$
(2.68)
(2.69)
(2.70)
(2.71)

ตัวอย่างที่ 2.6.4 จงแปลงเลข -0.75₁₀ เป็นเลขทศนิยมฐานสองชนิดจุดลอยตัวตามมาตรฐาน IEEE754 ทั้งสอง ชนิด

วิธีทำ

1. แปลงเลขทศนิยมฐานสิบให้อยู่ในรูปฐานสองแบบนอร์มัลไลซ์

$$-0.75_{10} = (-1)^{1} \times (0.5_{10} + 0.25_{10})$$
$$= (-1)^{1} \times (\frac{1}{2} + \frac{1}{4})$$

$$= (-1)^1 \times (0.1_2 + 0.01_2)$$

$$= (-1)^1 \times 0.11_2 \times 2^0$$

2. ทำการนอร์มัลไลซ์ ตามสมการที่ (2.59)

$$-0.75_{10}=(-1)^1 imes 1.1_2 imes 2^{-1}$$

ดังนั้น บิตเครื่องหมาย $s=1$
ค่าทศนิยม $Y_2=$ 100 0000 0000 0000 0000 0000 $_2$

ค่ายกกำลัง $E_{2,IEEE}$ = -1 + E_{bias}

```
ดังนั้น บิตเครื่องหมาย s=1 ค่าทศนิยม Y_2= 100 0000 0000 0000 0000 0000_2 ค่ายกกำลัง E_{2,IEEE}= -1 + E_{bias} โดยชนิด Single ค่ายกกำลัง (8 บิต): E_{2,IEEE}=-1 + 127 = 126 หรือ E_{2,IEEE} = 0111 1110_2 โดยชนิด Double ค่ายกกำลัง (11 บิต): E_{2,IEEE}=-1 + 1023 = 1022 หรือ E_{2,IEEE} = 011 1111 1110_2
```

Not all real numbers in the range are representable

Normalized floating-point numbers

Denormalized floating-point numbers

1	±	0000 00012-	XX2	เลขฐานสิบทั่วไป (นอมัลไลซ์)
		1111 1110 ₂		สมการที่ (2.67)
2	±	0000 00002	XX2	เลขฐานสิบที่น้อยมาก
				แต่ไม่เท่ากับศูนย์ (ดีนอมัลไลซ์)
3	0	0000 00002	002	0.010 (ศูนย์จุดศูนย์)
4	±	1111 11112	002	$\pm\infty$ (\pm อินฟินิตี)
5	0	1111 11112	XX2	Nan (Not a Number)

Floating-point numbers

Step 7

Step 8 0

(No rounding necessary)

000 0001 0000 0000 0000 0000

10000010

[0 10000001	111 1100 0000 0000 0000 0000		
[0 01111100	100 0000 0000 0000 0000 0000		
	Exponent 10000001	Fraction 111 1100 0000 0000 0000 0000	Sign Exponent Fraction Sign Exponent Fraction	
Step 1	01111100	100 0000 0000 0000 0000 0000		Compare
Step 2	01111100	1.111 1100 0000 0000 0000 0000 1.100 0000 0000 0000 0000 0000	Small ALU	xponents
Step 3	10000001 - 01111100	1.111 1100 0000 0000 0000 0000 0000	Exponent difference 0 1 0 1	
	101 (sh	ift amount)		hift smaller
Step 4	10000001	1.111 1100 0000 0000 0000 0000	Control Shift right	umber right
	10000001	0.000 0110 0000 0000 0000 0000 0000		
Step 5	10000001 +	1.111 1100 0000 0000 0000 0000 0000 0.000 0110 0000 0000 0000 0000	Big ALU A	dd
		10.000 0010 0000 0000 0000 0000		
Step 6	10000001	10.000 0010 0000 0000 0000 0000 >> 1	Increment or Shift left or right	
	10000010	1.000 0001 0000 0000 0000 0000	decrement	Iormalize

Computer Organization & Assembly Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

Rounding hardware

Fraction

Exponent

Step 1

Step

Step

Round

2.7 ตัวอักษร (Character)

char[10] str="Hello!"

2.7 ตัวอักษร (Character)

- รหัส ASCII คือ มาตรฐานของรูปแบบการใช้เลขฐานสองเพื่อ แทนตัวอักษรตั้งแต่อดีต ซึ่งกำหนดขึ้นมาโดยหน่วยงานชื่อ ว่า ANSI (American National Standard Institute)
- ตารางรหัสแอสกี้ (ASCII) กำหนดเลขฐานสองขนาด 8 บิต เพื่อแทนตัวอักษรจำนวน 2^8 =256 ตัว โดยมีรหัสเริ่มต้น คือ $00_{16} = 0000 \ 0000_2$ ถึง $FF_{16} = 1111 \ 1111_2$ โดยรหัส 00_{16} แทนอักษร NULL อ่านว่า นัลล์
- ไมโครซอฟต์พัฒนารหัสภาษาไทยของตนเอง เรียกว่า
 Windows-874 โดยใช้มาตรฐาน TIS-620 เป็นพื้นฐาน สำหรับตัวอักษรภาษาไทยสำหรับการแลกเปลี่ยนข้อมูลใน ระบบปฏิบัติการ Windows

2.7 ตัวอักษร (Character)

- รหัส Unicode ถูกกำหนดให้เป็นมาตรฐานโดย ISO (International Standard Organization) เพื่อมาทดแทนรหัส ASCII เนื่องจากความต้องการ ใช้ภาษาทั่วโลกที่เพิ่มขึ้นเรื่อยๆ
- รหัส UCS-2 จะใช้พื้นที่ 2 ไบท์ หรือ 16 บิต ต่อ 1 ตัวษร ซึ่งทำให้สามารถใช้ เลขฐานสองจำนวน 2\${16}\$ หรือ 65,536 แบบมาแทนตัวอักษร ตำแหน่ง เริ่มต้นของตารางรหัส Unicode จะเหมือนกับตารางรหัส ASCII ตัวภาษา อังกฤษและภาษาไทย ภายในแต่ละตัวอักษร มีค่ารหัส Unicode กำกับอยู่ ด้วย ยกตัวอย่างเช่น ตัวอักษรไทยเริ่มต้นที่ รหัส ASCII เท่ากับ A1 คือ ก ใน รูปของเลขฐานสองขนาด 8 บิต ตรงกับรหัส 0E01 ความยาว 16 บิต
- UTF-8 นิยมใช้ในเว็บเพจต่างๆ โดยแต่ละตัวอักษรจะใช้ความยาว ตั้งแต่ 1
 ไบท์ จนถึง 4 ไบท์ โดยตัวอักษร 128 ตัวแรกคือรหัส ASCII ใช้ความยาว 1
 ไบท์ ส่วนตัวอักษรในภาษาอื่นๆ จะใช้จำนวนไบท์เพิ่มขึ้น
- รหัส UTF-16 คือ การขยายรหัส UCS-2 ให้ทันสมัยมากขึ้น โดยเพิ่มการเข้า รหัสเป็นขนาด 4 ไบท์

2.8 สรุปท้ายบท

ตารางที่ 2.13: ชนิด ความยาว ข้อมูล และการประยุกต์ใช้งานเลขฐานสองขนิดต่างๆ ในคอมพิวเตอร์

ชนิด	ชนิด บิต ข้อมูล		การประยุกต์ใช้งาน
char	8	ตัวอักษร	ข้อความ อีเมล ชื่อ นามสกุล
unsigned char	8	จุดภาพ	รูปภาพขาวดำ และ Gray Scale
unsigned char	8	จุ๊ดภาพ	รูปภาพสี RGB Bitmap JPEG
unsigned int	32/64	พอยน์เตอร์	แอดเดรสชี้ตำแหน่งข้อมูล ระบบ 32/64 บิต
unsigned int	32/64	จำนวน	จำนวนอุปกรณ์ IoT ้จำนวนดาวต่างๆ
int	32/64	จำนวน	์ เลขจำนวนเต็ม
ทศนิยมจุดตรึง	16-32	เสียง	ข้อมูลเสียงดนตรี
ทศนิยมจุ่ดตรึง	16-32	จุดภาพ	ข้อมูลภา ^พ ความละเอียดสูง
float	32	จุดภาพ	ข้อมูลภาพความละเอียดสูง
float	32	ระยะทาง	เกม 3 มิติ
double	64	± ระยะทาง	ระยะทางไปยังดาวต่างๆ นอกโลก
double	64	± น้ำหนัก	น้ำหนักดาวต่างๆ น้ำหนักอนุภาคเล็กๆ

References

- https://www.researchgate.net/figure/Block-Diagram-of-Micro-SD-card_fig6_306236972
- https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/
- https://freedompenguin.com/articles/how-to/learning-the-linux-file-system
- https://www.techpowerup.com/174709/arm-launches-cortex-a50-series-the-worlds-most-energy-efficient-64-bit-processors
- https://www.researchgate.net/figure/NVIDIA-Tegra-2-mobile-processor-11_fig1_221634532
- Harris, D. and S. Harris (2013). Digital Design and Computer Architecture (1st ed.). USA: Morgan Kauffman Publishing.
- https://learn.adafruit.com/resizing-raspberry-pi-boot-partition/edit-partitions

References

- https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
- https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/programmer-s-guide-for-armv8-a
- https://xdevs.com/article/rpi3 oc/
- https://www.gsmarena.com/a look inside the new proprietary apple a6 chipset-news-4859.php
- https://www.slideshare.net/kleinerperkins/2012-kpcb-internet-trends-yearend-update/25-Global_Smartphone_Tablet_Shipments_Exceeded
- https://www.aliexpress.com/item/32329091078.html
- https://www.raspberrypi.org/forums/viewtopic.php?t=63750
- https://www.youtube.com/watch?v=2ciyXehUK-U