Analízis 3. (B és C szakirány)

Szükséges ismeretek az 5. gyakorlathoz

Jelen dokumentum ekkor lett frissítve: 2019/03/12 21:38

További kidolgozások elérhetőek ide kattintva. A gyakorlatok anyaga ide kattintva érhető el.

Forrás(ok): Dr. Szili László - Definíciók és tételek az előadásokon

1. Definiálja a metrikus teret.

Az (M, ϱ) rendezett pár metrikus tér, ha $M \neq \emptyset$ halmaz, és

$$\rho: M \times M \to \mathbb{R}$$

olyan függvény, melyre $\forall x,y,z\in M$ esetén

- 1. $\varrho(x,y) \ge 0$,
- 2. $\rho(x,y) = 0 \iff x = y$,
- 3. $\varrho(x,y) = \varrho(y,x)$ (szimmetria),
- 4. $\varrho(x,y) \leq \varrho(x,z) + \varrho(z,y)$ (háromszög-egyenlőtlenség).

A $\varrho(x,y)$ az x,y pontok távolsága, a ϱ pedig a távolságfüggvény (vagy metrika).

2. Hogyan értelmezzük \mathbb{R}^n -ben a ϱ_2 euklideszi metrikát?

Ha $1 \leq n \in \mathbb{N}$ és $x(x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, akkor

$$\varrho_2(x,y) := \sqrt{\sum_{k=1}^n |x_k - y_k|^2}.$$

3. Írja le a normált tér definícióját.

Az (X, ||.||) rendezett pár normált tér, ha

- 1. $X \neq \emptyset$ lineáris tér (v. vektortér) az \mathbb{R} számtest felett;
- 2. ||.|| : $X \to \mathbb{R}$ olyan függvény, amelyre $\forall x,y \in X$ és $\forall \lambda \in \mathbb{R}$ esetén
 - $||x|| \ge 0$,
 - $||x|| = 0 \Leftrightarrow x = \mathbf{0}$ (**0** az X lin. tér nulleleme)
 - $||\lambda x|| = |\lambda| \cdot ||x||$,
 - $||x+y|| \le ||x|| + ||y||$ (háromszög-egyenlőtlenség)

A ||.|| leképezést normának, az ||x|| számot pedig az x elem normájának mondjuk.

4. Definiálja \mathbb{R}^n -en a $||.||_p$ normákat.

Ha $1 \le n \in \mathbb{N}, 1 \le p \le +\infty$ és $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, akkor

$$||x||_p := \begin{cases} \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} & \text{ha } 1 \le p < +\infty \\ \max_{1 \le k \le n} |x_k| & \text{ha } p = +\infty. \end{cases}$$

5. Definiálja normált térben a konvergens sorozat fogalmát.

Az (X, ||.||) normált tér egy $(a_n) : \mathbb{N} \to X$ sorozata konvergens, ha

$$\exists \alpha \in X$$
, hogy $\forall \varepsilon > 0$ számhoz $\exists n_0 \in \mathbb{N}$, hogy $\forall n \geq n_0$ indexre $||a_n - \alpha|| < \varepsilon$.

Ekkor α az (a_n) határértéke.

6. Mit jelent az, hogy két norma ekvivalens? Az X lineáris téren adott $||.||^{(1)}$ és $||.||^{(2)}$ normák ekvivalensek, ha léteznek olyan m, M pozitív valós számok,

$$m \cdot ||x||^{(1)} \le ||x||^{(2)} \le M \cdot ||x||^{(1)} \qquad (x \in X).$$

Jelölés: $||.||^{(1)} \sim ||.||^{(2)}$.

7. Milyen állítást ismer ekvivalens normák esetén sorozatok konvergenciájára?

Tegyük fel, hogy az X lineáris téren értelmezett $||.||^{(1)}$ és $||.||^{(2)}$ normák ekvivalensek. Ekkor tetszőleges (a_n) : $\mathbb{N} \to X$ sorozatra

$$\lim(a_n) \stackrel{||.||^{(1)}}{=} \alpha \iff \lim(a_n) \stackrel{||.||^{(2)}}{=} \alpha.$$