Dataset Construction

- 1. Question
 Selection
- · Diversity
- · Difficulty
- ·Novelty

2. Rewriting

RFMDataset

Model Experiment

Let $f: [0, +\infty) \to \mathbb{R}$ be a continuous function. For any $x \in [0, 1]$, we have $\lim_{n \to +\infty} f(x+n) = 0$. Prove that $\lim_{x \to +\infty} f(x)$ may not exist.

Reasoning Model

<think> Okay, so I need to prove that...First, let me parse the problem...I need to construct an example of such a function... **</think>(Thinking Process)**To show this, we construct a function that satisfies the given conditions but does not have a limit as $x \to +\infty$...: 1) In each interval [n, n+1], where n is a positive integer, place a triangular peak centered at $n+\frac{1}{n}$... 2)Outside these peaks, the function f is 0...

Proofs made by models

Evaluation

GUIDE

Here is a math proof question: {Question}. A student give an answer to this question. Here is his proof: {Proof by LLM}. And his thinking process: {Thinking Process}.

You are a teacher need to justify whether the student's proof is right. You should examine the proof step by step. Here are possible mistakes:

- 1) Transformation Error...
- 2) Over Generalization...
- 3) Invalid Construction...
- 4) Wrong Division...
- 5) Circular Reasoning...
- 6) Hidden Assumption...
- 7) Vague Argument...

•••

LLM-as-a-judge

The student describes a function with **triangular peaks** of height 1 at positions $n + \frac{1}{n}$...and defines f(x) = 0 outside these peaks...

Final Verdict: The proof is correct. No mistakes identified.

Analysis made by Judge