B9A2 Wir wollen zeigen, dass $\{\mathcal{N}(\mu, \sigma^2) \mid (\mu, \sigma^2) \in L \subset \mathbb{R} \times (0, \infty)\}$ genau dann straff ist, wenn L beschränkt ist. Angenommen L ist beschränkt. Wir wollen zeigen, dass für alle $\varepsilon > 0$ ein r > 0 existiert, sodass für alle $(\mu, \sigma) \in L$ gilt $\mathcal{N}(\mu, \sigma)([-r, r]) > 1 - \varepsilon$. Sei also $\varepsilon > 0$ gegeben. Es gilt

$$\mathcal{N}(\mu, \sigma)([-r, r]) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-r}^{r} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right] \mu(\mathrm{d}x).$$

Substitution mit $z = (x - \mu)/\sigma$ liefert

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{(-r-\mu)/\sigma}^{(r-\mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] \mu(\mathrm{d}x) \,.$$

B9A4 Sei $(P_i)_{i\in I}$ eine Familie von Wahrscheinlichkeitsmaßen auf \mathbb{R}^d . Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- 1. $(P_i)_{i \in I}$ ist straff
- 2. Für alle Projektionen π_1, \ldots, π_d ist $(P_i^{\pi_k})_{i \in I}$ straff.

Sei zunächst $(P_i)_{i\in I}$ straff. Dann gibt es für alle $\varepsilon > 0$ eine kompakte Menge $K \in \mathbb{R}^d$, sodass für alle $i \in I$ gilt $P_i(K) > 1 - \varepsilon$. Da für alle $k \leq d$ gilt, dass $K \subset \pi_k^{-1}(\pi_k(K))$, gilt aufgrund der Monotonie des Maßes auch für alle $\varepsilon > 0$ und alle $i \in I$ dass $P_i^{\pi_k}(\pi_k(K)) > 1 - \varepsilon$. Damit ist für $(P_i^{\pi_k})_{i \in I}$ für alle Projektionen π_1, \ldots, π_d straff.

Seien nun für alle Projektionen π_1, \ldots, π_d die Familien der Bildmaße $(P_i^{\pi_k})_{i \in I}$ straff. Dann gibt es für alle $\varepsilon > 0$ Kompakta K_1, \ldots, K_d , sodass für alle $i \in I$ gilt $P_i^{\pi_k}(K_k) = P_i(\pi_k^{-1}(K_k)) > 1 - \varepsilon$. Sei r > 0 so, dass $\overline{B}_r(0) \supset K_k$. Dann gilt auch $P_i^{\pi_k}(\overline{B}_r(0)) > 1 - \varepsilon$. Betrachte $K = \underset{k=1}{\overset{d}{\overline{B}_r(0)}} \overline{B}_r(0)$. Dann gilt für alle $i \in I$, dass $P_i(K) = P_i(\bigcap_{k=1}^d \{|\omega_k| \le r\})$. Entsprechend gilt, dass

$$P_i(K^c) = P_i\left(\bigcup_{k=1}^d \{|\omega_k| > r\}\right).$$

durch die σ -Subadditivität der Maße P_i können wir abschätzen

$$\leq \sum_{k=1}^{d} P_i(|\omega_k| > r) \,,$$

wobei $\{|\omega_k| > r\} = \pi_k^{-1} (\overline{B}_r(0)^c)$, sodass

$$\leq \sum_{k=1}^{d} P_i^{\pi_k} \left(\overline{B}_r(0)^c \right).$$

Da wir rso gewählt haben, dass $P_i^{\pi_k}\big(\overline{B}_r(0)\big)>1-\varepsilon,$ erhalten wir

$$\leq d\varepsilon$$
.

Sei nun $\delta>0$ gegeben. Wähle $\varepsilon=\delta/d,$ dann gilt für alle $i\in I,$ dass $P_i(K)>1-\delta.$ Somit ist (P_i) straff.