TOPOLOGÍA. Examen del Parcial 1

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11

Nombre:

Razonar las respuestas

- 1. Sea X un conjunto y $A \subset X$ un subconjunto fijo. Se define $\tau = \{O \subset X; A \subset O\} \cup \{\emptyset\}$. Probar que τ es una topología en X. Para cada $x \in X$, probar que $\beta_x = \{\{x\} \cup A\}$ es una base de entornos de x en (X, τ) . Dado $B \subset X$, hallar int(B) y \overline{B} .
- 2. En \mathbb{R}^3 se considera el cilindro $X=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2=1\}$ y el hiperboloide reglado $Y=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2-z^2=1\}$ (ver figura). Hallar explícitamente un homeomorfismo entre ambos conjuntos.
- 3. Se considera en $\mathbb N$ la topología $\tau = \{A_n; n \in \mathbb N\} \cup \{\emptyset\}$, con $A_n = \{n, n+1, \ldots\}$. Estudiar la continuidad de las aplicaciones $f: (\mathbb N, \tau) \to (\mathbb N \times \mathbb N, \tau \times \tau), g: (\mathbb N \times \mathbb N, \tau \times \tau) \to (\mathbb N, \tau)$ dadas por

$$f(n) = (n^2, n+1),$$
 $g(n, m) = n + m.$

4. Estudiar conexión, componentes conexas y conexión local del siguiente conjunto de \mathbb{R}^2 : $X = ([0,1] \times \{0\}) \cup \bigcup_{n \in \mathbb{N}} \{(1,\frac{1}{n})\}.$

Todas las preguntas valen lo mismo.

- 1. Sea X un conjunto y $A \subset X$ un subconjunto fijo. Se define $\tau = \{O \subset X; A \subset O\} \cup \{\emptyset\}$. Probar que τ es una topología en X. Para cada $x \in X$, probar que $\beta_x = \{\{x\} \cup A\}$ es una base de entornos de x en (X, τ) . Dado $B \subset X$, hallar $\operatorname{int}(B)$ y \overline{B} . Solución.
 - (a) Como $X \supset A$, entonces $X \in \tau$. Por otro lado, si dos conjuntos contienen a A, lo mismo sucede con su intersección; y si una familia de conjuntos contienen a A, su unión también contiene a A. Esto prueba que τ es una topología.
 - (b) El conjunto $\{x\} \cup A$ es una abierto (contiene a A), luego es un entorno de x. Si U es un entorno de x, entonces existirá $O \in \tau$ tal que $x \in O \subset U$. Como O es abierto, contiene a A, y como $x \in \emptyset$, entonces $\{x\} \cup A \subset O$.
 - (c) El interior de B es el mayor abierto dentro de B. Si $A \not\subset B$, entonces $int(B) = \emptyset$. Si $A \subset B$, entonces B es un abierto y su interior coincide con B. Si $A \cap B \neq \emptyset$, entonces todo punto x es adherente a B, ya que $(\{x\} \cup A) \cap B \supset A \cap B \neq \emptyset$. Entonces $\overline{B} = X$. Si $A \cap B = \emptyset$, entonces $\overline{B} = B$, ya que si $x \notin B$, $(\{x\} \cup A) \cap B = \emptyset$.
- 2. En \mathbb{R}^3 se considera el cilindro $X=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2=1\}$ y el hiperboloide reglado $Y=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2-z^2=1\}$ (ver figura). Hallar explícitamente un homeomorfismo entre ambos conjuntos.

Solución. Se define la aplicación $f: X \to Y$ mediante

$$f(x, y, z) = (x\sqrt{1+z^2}, y\sqrt{1+z^2}, z).$$

Esta aplicación es biyectiva y su inversa es

$$g(x, y, z) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, z\right).$$

Tanto f como g son aplicaciones continuas, sin más que componer con las proyecciones de \mathbb{R}^3 .

3. Se considera en \mathbb{N} la topología $\tau = \{A_n; n \in \mathbb{N}\} \cup \{\emptyset\}$, con $A_n = \{n, n+1, \ldots\}$. Estudiar la continuidad de las aplicaciones $f: (\mathbb{N}, \tau) \to (\mathbb{N} \times \mathbb{N}, \tau \times \tau), g: (\mathbb{N} \times \mathbb{N}, \tau \times \tau) \to (\mathbb{N}, \tau)$ dadas por

$$f(n) = (n^2, n+1),$$
 $g(n, m) = n + m.$

Solución.

(a) Como f llega a un espacio producto, componemos con las proyecciones. Con la primera, $p \circ f : (\mathbb{N}, \tau) \to (\mathbb{N}, \tau), f(n) = n^2$. Esta aplicación es continua, pues

$$(p\circ f)^{-1}(A_n)=\{m\in\mathbb{N};m^2\geq n\}=\left\{\begin{array}{ll}\{m\in\mathbb{N};m\geq E[\sqrt{n}]\}=A_{E[\sqrt{n}]}&\text{si }\sqrt{n}\in\mathbb{N}\\\{m\in\mathbb{N};m\geq E[\sqrt{n}]+1\}=A_{E[\sqrt{n}]+1}&\text{si }\sqrt{n}\not\in\mathbb{N}\end{array}\right.$$

Para la segunda proyección $p', p' \circ f$ es continua, pues

$$(p' \circ f)^{-1}(A_n) = A_{n-1}.$$

- (b) La aplicación g es continua. Una base de entornos de n es $\beta_n = \{A_n\}$. Una base de entornos de (n,m) en $\tau \times \tau$ es $A_n \times A_m$. Finalmente, $g(A_n \times A_m) \subset A_{(n+m)}$.
- 4. Estudiar conexión, componentes conexas y conexión local del siguiente conjunto de \mathbb{R}^2 : $X = ([0,1] \times \{0\}) \cup \bigcup_{n \in \mathbb{N}} \{(1,\frac{1}{n})\}.$

Solución. Las componentes conexas de X son $[0,1] \times \{0\}$ y los puntos $(1,\frac{1}{n})$. Para ello, cada uno de los conjuntos son conexo, ya que el primero es convexo (también es homeomorfo a [0,1]) y los otros son puntos. Veamos que son los conexos más grandes. Sea $(0,0) \in [0,1] \times \{0\}$ y supongamos que $[0,1] \times \{0\} \nsubseteq C_{(0,0)}$. Entonces existirá $(1,\frac{1}{n}) \in C_{(0,0)} - ([0,1] \times \{0\})$. Sea $y_0 = (\frac{1}{n} + \frac{1}{n+1})/2$. Se tendría la siguiente descomposición en abiertos de $C_{(0,0)}$:

$$C_{(0,0)} = (C_{(0,0)} \cap \{(x,y); y < y_0\}) \cup (C_{(0,0)} \cap \{(x,y); y > y_0\})$$

la cual no es trivial, pues en el primer conjunto está (0,0) y en el segundo (1,1/n). Esta contradicción prueba que $[0,1] \times \{0\}$ es una componente conexa.

Sea ahora (1,1/n) y supongamos que $\{(1,1/n)\}\not\subseteq C_{(1,1/n)}$. Entonces existirá $m\in\mathbb{N}$ tal que $(1,1/m)\in C_{(1,1/n)}$ (no puede ser de la forma (x,0), ya que $C_{(x,0)}=C_{(0,0)}$). Sin perder generalidad, supongamos que m>n. Usando la notación anterior, tendríamos una partición no trivial de $C_{(1,1/n)}$:

$$C_{(1,1/n)} = (C_{(1,1/n)} \cap \{(x,y); y < y_0\}) \cup (C_{(1,1/n)} \cap \{(x,y); y > y_0\}),$$

lo cual es una contradicción.

El espacio no es localmente conexo, ya que el punto p:=(1,0) no tiene ningún entorno conexo. Sea U tal entorno. Entonces existirá r>0 tal que $B_r(p)\cap X\subset U$. Es evidente que existe $n\in\mathbb{N}$ tal que $(1,1/n)\in B_r(p)\cap X\subset U$. Si U es conexo, entonces

$$U \subset C_p = [0,1] \times \{0\}, \ U \subset C_{(1,1/n)} = \{(1,1/n)\}:$$

contradicción.