主成分分析

基本的な考え方

村田 昇

講義概要

・第1日:主成分分析の考え方

• 第2日: 分析の評価と視覚化

主成分分析の考え方

主成分分析

• 多数の変量のもつ情報の分析・視覚化

- 変量を効率的に縮約して少数の特徴量を構成する

- 特徴量に関与する変量間の関係を明らかにする

• PCA (Principal Component Analysis)

- 構成する特徴量: 主成分 (princial component)

分析の枠組み

• $X_1, ..., X_p$: 変数

• $Z_1, ..., Z_d$: 特徴量 $(d \le p)$

• 変数と特徴量の関係 (線形結合)

$$Z_k = a_{1k}X_1 + \dots + a_{pk}X_p \quad (k = 1, \dots, d)$$

- 特徴量は定数倍の任意性があるので以下を仮定

$$\|\boldsymbol{a}_k\|^2 = \sum_{j=1}^p a_{jk}^2 = 1$$

主成分分析の用語

- 特徴量 Z_k
 - 第 k 主成分得点 (principal component score)
 - 第 k 主成分
- 係数ベクトル a_k
 - 第 k 主成分負荷量 (principal component loading)
 - 第 k 主成分方向 (principal component direction)

分析の目的

目的

主成分得点 Z_1, \ldots, Z_d が変数 X_1, \ldots, X_p の情報を効率よく反映するように主成分負荷量 a_1, \ldots, a_d を観測データから決定する

- 分析の方針 (以下は同値)
 - データの情報を最も保持する変量の線形結合を構成
 - データの情報を最も反映する 座標軸を探索
- 教師なし学習 の代表的手法の1つ
 - 特徴抽出:情報処理に重要な特性を変数に凝集
 - 次元縮約:入力をできるだけ少ない変数で表現

実習

R:主成分分析を実行する関数

- R の標準的な関数
 - stats::prcomp()
 - stats::princomp()
- 計算法に若干の違いがある
 - 数値計算の観点からみると prcomp() が優位
 - princomp() はS言語(商用)との互換性を重視した実装
- 本講義では prcomp() を利用

R: 関数 prcomp() の使い方

• データフレームの全ての列を用いる場合

```
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,
tol = NULL, rank. = NULL, ...)
#' x: 必要な変数のみからなるデータフレーム
#' center: 中心化 (平均 0) を行って処理するか否か
#' scale.: 規格化 (分散 1) を行って処理するか否か
```

• 列名を指定する (formula を用いる) 場合

```
prcomp(formula, data = NULL, subset, na.action, ...)
#' formula: ~ 変数名 (解析の対象を + で並べる) 左辺はないので注意
#' data: 必要な変数を含むデータフレーム
#' 詳細は '?stats::prcomp' を参照
```

R: 関数 predict() の使い方

• 主成分得点を計算する関数

```
predict(object, newdata, ...)
#' object: prcomp が出力したオブジェクト
#' newdata: 主成分得点を計算するデータフレーム
#' 詳細は '?stats::prcomp' または '?stats::predict.prcomp' を参照
```

- 'newdata' を省略すると分析に用いたデータフレームの得点が計算される

練習問題

- 数値実験により主成分分析の考え方を確認しなさい
 - 以下のモデルに従う人工データを生成する

```
#' 観測データ (2次元) の作成 (aのスカラー倍に正規乱数を重畳)
a <- c(1, 2)/sqrt(5) # 主成分負荷量 (単位ベクトル)
n <- 100 # データ数
toy_data <- tibble(runif(n, -1, 1) %o% a + rnorm(2*n, sd = 0.3))
```

- 観測データの散布図を作成
- 観測データから第1主成分負荷量を推定

```
prcomp(toy_data) # 全ての主成分を計算する
a_hat <- prcomp(toy_data)$rotation[,1] # 負荷量 (rotation)の 1列目が第 1主成分</pre>
```

- 散布図上に主成分負荷量を描画

geom_abline(slope = 傾き, intercept = 切片) # 指定の直線を追加できる

第1主成分の計算

記号の準備

- 変数: $x_1, ..., x_p$ (p 次元)
- 観測データ: n 個の $(x_1,...,x_p)$ の組

$$\{(x_{i1},\ldots,x_{ip})\}_{i=1}^n$$

- ベクトル表現
 - $x_i = (x_{i1}, ..., x_{ip})^{\mathsf{T}} : i$ 番目の観測データ (p 次元空間内の 1 点)
 - $a = (a_1, ..., a_p)^\mathsf{T}$: 長さ 1 の p 次元ベクトル

係数ベクトルによる射影

データ x_i の a 方向成分の長さ

$$a^{\mathsf{T}}x_i$$
 (スカラー)

• 方向ベクトル a をもつ直線上への点 x_i の直交射影

$$(a^{\mathsf{T}}x_i)a$$
 $(\lambda \lambda \lambda \lambda - \lambda \lambda \lambda)$

幾何学的描像

ベクトル a の選択の指針

• 射影による特徴量の構成

ベクトル a を **うまく** 選んで観測データ x_1, \dots, x_n の情報を最も保持する 1 変量データ z_1, \dots, z_n を構成

$$z_1 = a^{\mathsf{T}} x_1, z_2 = a^{\mathsf{T}} x_2, \dots, z_n = a^{\mathsf{T}} x_n$$

• 特徴量のばらつきの最大化

観測データの ばらつきを最も反映するベクトル a を選択

$$\arg\max_{\boldsymbol{a}} \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}, \quad \bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i},$$

図 1: 観測データの直交射影 (p = 2, n = 2 の場合)

ベクトル a の最適化

• 最適化問題

制約条件 $\|a\| = 1$ の下で以下の関数を最大化せよ

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}$$

- この最大化問題は必ず解をもつ
 - f(a) は連続関数
 - 集合 $\{a \in \mathbb{R}^p : ||a|| = 1\}$ はコンパクト (有界閉集合)

演習

問題

- 以下の間に答えなさい
 - 評価関数 f(a) を以下の中心化したデータ行列で表しなさい

$$X = \begin{pmatrix} \boldsymbol{x}_{1}^{\mathsf{T}} - \bar{\boldsymbol{x}}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{x}_{n}^{\mathsf{T}} - \bar{\boldsymbol{x}}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} x_{11} - \bar{x}_{1} & \cdots & x_{1p} - \bar{x}_{p} \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_{1} & \cdots & x_{np} - \bar{x}_{p} \end{pmatrix}$$

- 上の結果を用いて次の最適化問題の解の条件を求めなさい

maximize
$$f(\mathbf{a})$$
 s.t. $\mathbf{a}^{\mathsf{T}}\mathbf{a} = 1$

解答例

• 定義どおりに計算する

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}$$
$$= \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}}) (\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{a} - \bar{\boldsymbol{x}} \boldsymbol{a}^{\mathsf{T}})$$
$$= \boldsymbol{a}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{a}$$

- 回帰分析の Gram 行列を参照
- 制約付き最適化なので未定係数法を用いればよい

$$L(\boldsymbol{a}, \lambda) = f(\boldsymbol{a}) + \lambda (1 - \boldsymbol{a}^{\mathsf{T}} \boldsymbol{a})$$

の鞍点

$$\frac{\partial}{\partial \boldsymbol{a}}L(\boldsymbol{a},\lambda)=0$$

を求めればよいので

$$2X^{\mathsf{T}}Xa - 2\lambda a = 0$$
$$X^{\mathsf{T}}Xa = \lambda a \quad \text{(固有值問題)}$$

第1主成分の解

行列による表現

• 中心化したデータ行列

$$X = \begin{pmatrix} \boldsymbol{x}_{1}^{\mathsf{T}} - \bar{\boldsymbol{x}}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{x}_{n}^{\mathsf{T}} - \bar{\boldsymbol{x}}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} x_{11} - \bar{x}_{1} & \cdots & x_{1p} - \bar{x}_{p} \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_{1} & \cdots & x_{np} - \bar{x}_{p} \end{pmatrix}$$

・評価関数 f(a) は行列 X^TX の二次形式

$$f(a) = a^{\mathsf{T}} X^{\mathsf{T}} X a$$

ベクトル a の解

• 最適化問題

maximize
$$f(a) = a^{\mathsf{T}} X^{\mathsf{T}} X a$$
 s.t. $a^{\mathsf{T}} a = 1$

• 制約付き最適化なので未定係数法を用いればよい

$$L(\boldsymbol{a}, \lambda) = f(\boldsymbol{a}) + \lambda(1 - \boldsymbol{a}^{\mathsf{T}}\boldsymbol{a})$$

の鞍点

$$\frac{\partial}{\partial \boldsymbol{a}}L(\boldsymbol{a},\lambda)=0$$

を求めればよいので

$$2X^{\mathsf{T}}Xa - 2\lambda a = 0$$

$$X^{\mathsf{T}}Xa = \lambda a \quad \text{(固有值問題)}$$

解の条件

$$f(a)$$
 の極大値を与える a は $X^\mathsf{T} X$ の固有ベクトルとなる

$$X^{\mathsf{T}}X\boldsymbol{a} = \lambda \boldsymbol{a}$$

第1主成分

• 固有ベクトル a に対する f(a) は行列 X^TX の固有値

$$f(\mathbf{a}) = \mathbf{a}^{\mathsf{T}} X^{\mathsf{T}} X \mathbf{a} = \mathbf{a}^{\mathsf{T}} \lambda \mathbf{a} = \lambda$$

- 求める a は行列 X^TX の最大固有ベクトル (長さ 1)
- 第1主成分負荷量: 最大(第一) 固有ベクトル a
- 第1主成分得点

$$z_{i1} = a_1 x_{i1} + \dots + a_p x_{ip} = \boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_i, \quad (i = 1, \dots, n)$$

実習

練習問題

- 第1主成分と Gram 行列の固有ベクトルの関係を調べなさい
 - 人工データを生成する
 - 主成分分析を実行する
 - Gram 行列を計算し固有値・固有ベクトルを求める

#' 中心化を行う
X <- scale(toy_data, scale=FALSE) # help(scale) でオプション scale を確認
#' Gram 行列を計算する
G <- crossprod(X)
#' 固有値・固有ベクトルを求める
eigen(G) # help(eigen) で返り値を確認

Gram 行列の性質

Gram 行列の固有値

- X^TX は非負定値対称行列
- X^TX の固有値は 0 以上の実数
 - 固有値を重複を許して降順に並べる

$$\lambda_1 \ge \dots \ge \lambda_p \quad (\ge 0)$$

- 固有値 λ_k に対する固有ベクトルを a_k (長さ 1) とする

$$\|a_k\| = 1, \quad (k = 1, \dots, p)$$

Gram 行列のスペクトル分解

• a_1, \ldots, a_p は 互いに直交 するようとることができる

$$j \neq k \implies \boldsymbol{a}_{j}^{\mathsf{T}} \boldsymbol{a}_{k} = 0$$

行列 X^TX (非負定値対称行列) のスペクトル分解

$$X^{\mathsf{T}}X = \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} + \lambda_2 \boldsymbol{a}_2 \boldsymbol{a}_2^{\mathsf{T}} + \dots + \lambda_p \boldsymbol{a}_p \boldsymbol{a}_p^{\mathsf{T}}$$
$$= \sum_{k=1}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}}$$

- 固有値と固有ベクトルによる行列の表現

第2主成分以降の計算

第2主成分の考え方

• 第1主成分

- 主成分負荷量: ベクトル a₁

- 主成分得点: $a_1^{\mathsf{T}} x_i \ (i = 1, ..., n)$

• 第1主成分負荷量に関してデータが有する情報

$$(\boldsymbol{a}_1^\mathsf{T}\boldsymbol{x}_i)\,\boldsymbol{a}_1 \quad (i=1,\ldots,n)$$

・ 第1主成分を取り除いた観測データ (分析対象)

$$\tilde{\boldsymbol{x}}_i = \boldsymbol{x}_i - (\boldsymbol{a}_1^\mathsf{T} \boldsymbol{x}_i) \, \boldsymbol{a}_1 \quad (i = 1, \dots, n)$$

第2主成分の最適化

• 最適化問題

制約条件 ||a|| = 1 の下で以下の関数を最大化せよ

$$\tilde{f}(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \tilde{\boldsymbol{x}}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\tilde{\boldsymbol{x}}})^{2} \quad \text{tet} \quad \bar{\tilde{\boldsymbol{x}}} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\boldsymbol{x}}_{i}$$

第2主成分以降の解

行列による表現

• 中心化したデータ行列

$$\tilde{X} = \begin{pmatrix} \tilde{x}_1^{\mathsf{T}} - \bar{\tilde{x}}^{\mathsf{T}} \\ \vdots \\ \tilde{x}_n^{\mathsf{T}} - \bar{\tilde{x}}^{\mathsf{T}} \end{pmatrix} = X - X a_1 a_1^{\mathsf{T}}$$

• Gram 行列

$$\begin{split} \tilde{X}^{\mathsf{T}} \tilde{X} &= (X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}})^{\mathsf{T}} (X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}}) \\ &= X^{\mathsf{T}} X - X^{\mathsf{T}} X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} - \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} X^{\mathsf{T}} X + \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= X^{\mathsf{T}} X - \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} - \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} + \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= X^{\mathsf{T}} X - \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= \sum_{k=2}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}} \end{split}$$

第2主成分

• Gram 行列 $\tilde{X}^T \tilde{X}$ の固有ベクトル a_1 の固有値は 0

$$\tilde{X}^\mathsf{T} \tilde{X} \pmb{a}_1 = 0$$

- Gram 行列 $\tilde{X}^{\mathsf{T}}\tilde{X}$ の最大固有値は λ_2
- 解は第2固有値 λ_2 に対応する固有ベクトル a_2
- 以下同様に第 k 主成分負荷量は $X^\mathsf{T} X$ の第 k 固有値 λ_k に対応する固有ベクトル \boldsymbol{a}_k

実習

データセットの準備

- 主成分分析では以下のデータセットを使用する
 - japan_social.csv(配付)

総務省統計局より取得した都道府県別の社会生活統計指標の一部

- * Pref: 都道府県名
- * Forest: 森林面積割合(%) 2014年
- * Agri: 就業者 1 人当たり農業産出額(販売農家)(万円)2014年
- * Ratio: 全国総人口に占める人口割合(%) 2015年
- * Land: 土地生産性(耕地面積1ヘクタール当たり)(万円)2014年
- * Goods: 商業年間商品販売額 [卸売業+小売業] (事業所当たり) (百万円) 2013 年
- * 参考: https://www.e-stat.go.jp/SG1/estat/List.do?bid=000001083999&cycode=0

練習問題

- 前掲のデータを用いて主成分分析を行いなさい
 - 都道府県名を行名としてデータを読み込む

js_data <- read_csv("data/japan_social.csv")</pre>

- データの散布図行列を描く
- 各データの箱ひげ図を描き、変数の大きさを確認する
- 主成分負荷量を計算する

js_pca <- prcomp(js_data[-1], scale. = TRUE)
#' '-1' は都道府県名を除く. 関数 select() を利用することもできる
#' 'scale.=TRUE' とすると変数を正規化してから解析する

次回の予定

- 第1日: 主成分分析の考え方
- ・第2日:分析の評価と視覚化