

Chap 3. Trees

Yih-Lang Li (李毅郎)

Computer Science Department

National Chiao Tung University, Taiwan

The sources of most figure images are from the course slides (Graph Theory) of Prof. Gross

Outline

- Characterizations and Properties of Trees
- Rooted Trees, Ordered Trees, and Binary Trees
- ☐ Binary-Tree Traversals (Skip)
- Binary-Search Trees (Skip)
- Huffman Trees and Optimal Prefix Codes
- Priority Trees
- Counting Labeled Trees: Pr üfer Encoding
- Counting Binary Trees: Catalan Recursion

3.1 Characterizations and Properties of Trees

- **DEFINITION**: In an undirected tree, a *leaf* is a vertex of degree 1.
- □ **Proposition 3.1.1.** Every tree with at least one edge has at least two leaves.
 - ✓ Let $P = \langle v_1, ..., v_m \rangle$ be a maximum-length path in a tree T. Consider one endpoint v_1 . If $deg(v_1) = 1$, proved. If $deg(v_1) > 1$, case (a), v_1 connects to a vertex w not in $P \to P$ is not maximum-length path; case (b), v_1 connects to a vertex w in $P \to$ form a cycle.

- Corollary 3.1.2. If the degree of every vertex of a graph is at least 2, then that graph must contain a cycle.
- **Proposition 3.1.3.** Every tree on n vertices contains exactly n-1 edges.
 - Proof by induction. This holds for k = 1. Assume k = n, this also holds. For a tree k = n+1, we remove a leaf node v from T. T v is also a tree and only has n vertices, so T v contains exactly n 1 edges. Thus T contains n edges.

Basic Properties of Trees

- **Corollary 3.1.4.** A forest G on n vertices has n c(G) edges.
 - ✓ G has c(G) trees, total edge = $\sum_{1 \le i \le c(G)} |V_i| 1 = n c(G)$
- **Corollary 3.1.5.** Any graph G on n vertices has at least n c(G) edges.
 - ✓ Each component contains at least $(|V_i| 1)$ edges. Thus total at least n-c(G) edges
- **Proposition 3.1.6.** If G is a simple graph with n vertices and k components, then $|E_G| \le \frac{(n-k)(n-k+1)}{2}$
 - ✓ A simple graph with n vertices at most has n(n-1)/2 edges \rightarrow edge upper bound is in proportional to n^2 . All edges are distributed to k components. $100^2 > 99^2 + 1 > 98^2 + 2^2 > 90^2 + 10^2 > 90^2 + 5^2 + 5^2$. Thus edge upper bound is (n-(k-1))(n-(k-1)-1)/2 = (n-k+1)(n-k)/2
- **Corollary 3.1.7.** A simple n-vertex graph with more than (n-1)(n-2)/2 edges must be connected.
 - ✓ K_{n-1} contains ((n-1)(n-2)/2) edges. A simple graph with n vertices and more than (n-1)(n-2)/2 edges is constructed by adding one vertex and connecting this new vertex to any one vertex of K_{n-1} .

Remove *n*-2 edges to separate this vertex

Six Different Characterizations of a Tree

- □ **Theorem 3.1.8.** Let T be a graph with n vertices. Then the following statements are equivalent.
 - 1. T is a tree.
 - 2. T contains no cycles and has n-1 edges.
 - 3. T is connected and has n-1 edges.
 - 4. T is connected, and every edge is a cut-edge.
 - 5. Any two vertices of T are connected by exactly one path.
 - 6. T contains no cycles, and for any new edge e, the graph T + e has exactly one cycle.
 - \checkmark 1→2, by Proposition 3.1.3.
 - ✓ 2→3, Assume *T* has *k* components, by Corollary 3.1.4, *T* has n k edges. $\rightarrow k = 1$.
 - ✓ 3→4, T-e has (n-2) edges. By Corollary 3.1.5, (n- $2) \ge n$ -c(T- $e) \to c(T$ - $e) \ge 2$.
 - \checkmark 4→5, every edge can not lie in a cycle, so any two vertices is connected by one path.
 - ✓ 5→6, if T+e (e connects u and v) has two cycles, then T must has 2 paths from u to v.
 - ✓ $6\rightarrow 1$, we have to prove *T* has no cycle and is connected. Assume *u* and *v* are not connected, then T+uv does not have a cycle, contradiction to 6.

The Center of a Tree

- For a graph, the center Z(G) can be anything, from a vertex to G. However, C. Jordan showed in 1869 that the center of a tree has only two possible cases.
- **Lemma 3.1.9.** *Let T be a tree with at least three vertices.*
 - (a) If v is a leaf of T and w is its neighbor, then ecc(v) = ecc(w) + 1.
 - (b) If v is a central vertex of T, then $deg(v) \ge 2$.
 - \checkmark (a). A path from leaf v to any vertex must also pass its neighbor w.
 - ✓ (b). By (a), any leaf's ecc can not be minimum, so a center vertex's degree ≥ 2 .
- **Lemma 3.1.10.** Let v and w be two vertices in a tree T such that w is of maximum distance from v (i.e., ecc(v) = d(v, w)). Then w is a leaf.
 - \checkmark if w is not a leaf, then w has a neighbor u not in the path from v to $w \rightarrow d(v,u) > d(v,w)$
- **Lemma 3.1.11.** Let T be a tree with at least three vertices, and let T^* be the subtree of T obtained by deleting from T all its leaves. If v is a vertex of T^* , then $ecc_T(v) = ecc_{T^*}(v) + 1$.
 - By Lemma 3.1.10, the endpoints of all longest paths from v are leaves. Let w be a leaf in T and $d(v,w) = ecc_T(v)$ and x be the neighbor of w. If deg(x) > 2, then the neighbor of x not in the path v-w must also be a leaf. In T^* , x becomes a leaf and $d(v,x) = ecc_{T^*}(v) = ecc_{T}(v) 1$.

The Center of a Tree

- **Proposition 3.1.12.** Let T be a tree with at least three vertices, and let T^* be the subtree of T obtained by deleting from T all its leaves. Then $Z(T) = Z(T^*)$
 - \checkmark By previous Lemma, the eccentricity of every vertex in T^* is less than that in T by one.
- Corollary 3.1.13 [Jordan, 1869]. Let T be an n-vertex tree. Then the center Z(G) is either a single vertex or a single edge.
 - ✓ We can iteratively delete the leaves of a tree until the new tree is a vertex or an edge. By Proposition 3.1.12. Original tree's center is a vertex or an edge.

Tree Isomorphisms and Automorphisms

- A center of a graph must be mapped to the other graph's center and the leaf and its image leaf must be the same distance from their respective centers.
- **Example 3.1.1 & 3.1.2:**

A tree that has no non-trivial automorphisms.

Tree-Graphic Sequences

- **DEFINITION**: A sequence $\langle d_1, d_2, ..., d_n \rangle$ is said to be *tree-graphic* if there is a permutation of it that is the degree sequence of some *n*-vertex tree.
- **Theorem 3.1.14.** A sequence $< d_1, d_2, ..., d_n > of n \ge 2$ positive integers is tree-graphic if and only if $\sum_{1 \le i \le n} d_i = 2n 2$
 - \checkmark \rightarrow , By Euler degree sum theorem & Proposition 3.1.3, degree sum = $2|E_T| = 2n 2$
 - ✓ ←, By induction. This is true for n=2. It holds for n=k. As for n=k+1, $< d_1, d_2, ..., d_{k+1}>$ satisfies the condition that degree sum = 2(k+1) 2 = 2k. Assume $d_1 \ge d_2 \ge ... \ge d_{k+1}$. By simple counting arguments that $2 \le d_1 \le k$ and $d_k = d_{k+1} = 1$. The sequence $< d_1 1, d_2, ..., d_k>$ is positive and sum to 2k-2, hence, there is a k-vertex tree T whose degree sequence is a permutation of $< d_1 1, d_2, ..., d_k>$. Let T^* be the tree by adding a new vertex to a vertex of T of degree $d_1 1$. Then the degree sequence of T^* is a permutation of the sequence $< d_1, d_2, ..., d_{k+1}>$.
- **NOTATION**: The minimum degree of the vertices of a graph G is denoted $\delta_{min}(G)$.
- **Theorem 3.1.15.** Let T be any tree on n vertices, and let G be a simple graph such that $\delta_{min}(G) \ge n 1$. Then T is a subgraph of G.

Trees as Subgraphs

- **Theorem 3.1.15.** Let T be any tree on n vertices, and let G be a simple graph such that $\delta_{min}(G) \ge n 1$. Then T is a subgraph of G.
 - ✓ it holds as n=1 or 2 since K_1 and K_2 are subgraphs of every graph having at least one edge.
 - ✓ Assume it holds for some $n \ge 2$. Let T be a tree on n+1 vertices, and let G be a graph with $\delta_{min}(G) \ge n$. We have to show T is a subgraph of G.

T'in *G* is isomorphic to *T-v*. $deg_G(u') \ge n$, there exists *v*' not in *T*' connecting *u*' with *e*

3.2 Rooted Trees, Ordered Trees, and Binary Trees

DEFINITION: A *directed tree* is a directed graph whose underlying graph is a tree.

■ **DEFINITION**: A *rooted tree* is a tree with a designated vertex called the root. Each edge is considered to be directed away from the root.

DEFINITION: Let v be a vertex in a connected graph G. A **shortest-path tree** for G from v is a rooted tree T with vertex-set V_G and root v such that the unique path in T from v to each vertex w is a shortest path in G from v to w.

Remark: The *breadth-first search* produces a shortest path tree for an unweighted graph, and *Dijkstra's algorithm* produces one for a weighted graph.

Rooted Tree Terminology

- **DEFINITION**: In a rooted tree, the *depth* or *level* of a vertex v is its distance from the root, i.e., the length of the unique path from the root to v. Thus, the root has depth 0.
- **DEFINITION**: The *height* of a rooted tree is the length of a longest path from the root (or the greatest depth in the tree).
- **DEFINITION**: If vertex v immediately precedes vertex w on the path from the root to w, then v is the *parent* of w and w is the *child* of v.
- **DEFINITION**: Vertices having the same parent are called *siblings*.
- **DEFINITION**: A vertex w is called a *descendant* of a vertex v (and v is called an *ancestor* of w), if v is on the unique path from the root to w. If, in addition, $w \ne v$, then w is a *proper* descendant of v (and v is a proper ancestor of w).
- **DEFINITION**: A *leaf* in a rooted tree is any vertex having no children.
- **DEFINITION**: An *internal vertex* in a rooted tree is any vertex that has at least one child. The root is internal, unless the tree is trivial (i.e., a single vertex).

Rooted Tree Terminology

- **DEFINITION**: An *m*-ary tree $(m \ge 2)$ is a rooted tree in which every vertex has *m* or fewer children.
- **DEFINITION**: A *complete m-ary tree* is an *m*-ary tree in which every internal vertex has exactly *m* children and all leaves have the same depth.

Two 3-ary trees, one complete and the other not complete

- **Proposition 3.2.1.** A complete m-ary tree has m^k vertices at level k.
 - \checkmark The statement is trivially true for k = 1.
 - Assume as an induction hypothesis that there are m^l vertices at level k=l, for some $l \ge 1$.
 - Since each of these vertices has m children, there are $m \cdot m^l = m^{l+1}$ children at level l+1.
- **Corollary 3.2.2.** An m-ary tree has at most m^k vertices at level k.

Rooted Tree Terminology

□ **Theorem 3.2.3.** *Let T be an n-vertex m-ary tree of height h. Then*

$$h+1 \le n \le \frac{m^{h+1}-1}{m-1}$$

✓ Let n_k be the number of vertices at level k, so that $1 \le n_k \le m^k$, by Corollary 3.2.2. Thus,

$$h+1 = \sum_{k=0}^{h} 1 \le \sum_{k=0}^{h} n_k \le \sum_{k=0}^{h} m^k = \frac{m^{h+1} - 1}{m-1}$$

The result follows since $\sum_{k=0}^{h} n_k = n$

Corollary 3.2.4. The complete m-ary tree of height h has $\frac{m^{h+1}-1}{m-1}$ vertices.

Isomorphism of Rooted Trees

- **DEFINITION**: Two rooted trees are said to be *isomorphic as rooted trees* if there is a graph isomorphism between them that maps root to root.
- **DEFINITION**: An *ordered tree* is a rooted tree in which the children of each vertex are assigned a fixed ordering.

Ordered Trees

- **DEFINITION**: In a *standard plane drawing* of an ordered tree,
 - (1) the root is at the top,
 - (2) the vertices at each level are horizontally aligned,
 - (3) the left-to-right order of the vertices agrees with their prescribed order.

Binary Trees

■ **DEFINITION**: A *binary tree* is an ordered 2-ary tree in which each child is designated either a *left-child* or a *right-child*.

■ **DEFINITION**: The *left (right) subtree* of a vertex *v* in a binary tree is the binary subtree spanning the left (right)-child of *v* and all of its descendants.

Four different binary trees that are the same ordered tree

Binary Trees

- RECURSIVE PROPERTY OF A BINARY TREE: If T is a binary tree of height h, then its left and right subtrees both have heights less than or equals to h-1, and equality holds for at least one of them.
- **Theorem 3.2.5.** The complete binary tree of height h has $2^{h+1} 1$ vertices.
 - ✓ Both T_1 and T_2 have $(2^{h+1} 1)$ vertices Totally $2 \times (2^{h+1} - 1) + 1 = 2^{h+2} - 1$

Corollary 3.2.6. Every binary tree of height h has at most $2^{h+1} - 1$ vertices.

3.5 Huffman Trees and Optimal Prefix Codes

- **DEFINITION**: A *binary code* is an assignment of symbols or other meanings to a set of bitstrings. Each bitstring is referred to as a *codeword*.
- **DEFINITION**: A *prefix code* is a binary code with the property that no codeword is an initial substring of any other codeword.
- □ **Application 3.5.1** *Constructing Prefix Codes by Binary Tree*:

Example 3.5.1

a: 00

b: 010

c: 011

d: 10

e: 11

Huffman Codes

- In a prefix code that uses its shorter codewords to encode the more frequently occurring symbols, the messages will tend to require fewer bits than in a code that does not.
 - ✓ This suggests that one measure of a code's efficiency be the *average weighted length* of its codewords.
- **Example 3.5.2.** Consider the codewords: a: 00 (0.3), b: 010 (0.25), c: 011 (0.2), d: 10 (0.1), e: 11 (0.15). The average weighted length of a codeword is $2\times0.3+3\times0.25+3\times0.2+2\times0.1+2\times0.15=2.45$
- **DEFINITION**: Let T be a binary tree with leaves $s_1, s_2, ..., s_l$, such that each leaf s_i is assigned a weight w_i . Then the *average weighted depth* of the binary tree T, denoted wt(T), is given by $wt(T) = \sum_{i=1}^{l} depth(s_i) \cdot w_i$
- **Application 3.5.2.** *Constructing Efficient Codes the Huffman Algorithm:*

0.3 0.25 0.2 0.1 0.15

0.3 0.25 0.2

0.25

0.3 0.45

0.25

0.45

0.55

b

•

d e

a b c

a

b c

a

Huffman Codes

- **COMPUTATIONAL NOTE:** In choosing the two trees of smallest weights, ties are resolved by some default ordering of the trees in the forest.
- **DEFINITION**: The binary tree produced from Algorithm 3.5.1 is called the *Huffman tree* for the list of symbols, and its corresponding prefix code is called the *Huffman code*.
- Lemma 3.5.1: If the leaves of a binary tree are assigned weights, and if each internal vertex is assigned a weight equal to the sum of its children's weights, then the trees's average weighted depth equals the sum of the weights of its internal vertices.
- **Theorem 3.5.2:** For a given list of weights $w_1, w_2, ..., w_b$, a Huffman tree has the smallest possible average weighted depth among all binary trees whose leaves are assigned those weights.

$$2*0.25 + 2*0.2 + 2*0.3 + 3*0.1 + 3*0.15 = 2.25$$

1 + 0.45 + 0.55 + 0.25 = 2.25

Huffman Codes

- ✓ By induction. Assume for some $l \ge 2$, Theorem holds.
- ✓ Let $w_1, w_2, ..., w_{l+1}$ be any list of l+1 weights, and assume w_1 and w_2 are two of the smallest ones. H is the Huffman tree, and \overline{H} be the right one obtained from H. $wt(H) = wt(\overline{H}) + w_1 + w_2$. \overline{H} is also a Huffman tree of l weights $\rightarrow \overline{H}$ is optimal.
- Suppose T^* is an optimal binary tree for the weights $w_1, w_2, ..., w_{l+1}$. Let x be the internal vertex of T^* of greatest depth whose two descendants are leaves y and z of weights w_1 and w_2 (otherwise T^* is not optimal).
- ✓ Let \overline{T} be the tree by deleting y and z from T^* .

$$wt(T^*) = wt(\overline{T}) + w_1 + w_2$$
. $wt(\overline{T}) \ge wt(\overline{H})$. $wt(T^*) \ge wt(H)$.

3.6 Priority Trees

- **DEFINITION**: A binary tree of height *h* is called *left-complete* if the bottom level has no gaps as one traverses from left to right. More precisely, it must satisfy the following three conditions.
 - \checkmark Every vertex of depth h 2 or less has two children.
 - ✓ There is at most one vertex v at depth h-1 that has only one child (a left one).
 - ✓ No vertex at depth h-1 has fewer children than another vertex at depth h-1 to its right.
- **DEFINITION**: A *priority tree* is a left-complete binary tree whose vertices have labels (*called priorities*) from an ordered set (or sometimes, a *partially ordered set*), such that no vertex has higher priority than its parent.

DEFINITION: A *priority queue* is a set of entries, each of which is assigned a *priority*. When an entry is to be removed, or *dequeued*, from the queue, an entry with the highest priority is selected.

Heaps

- **DEFINITION**: A *heap* is a representation of a priority tree as an array, having the following address pattern.
 - \checkmark index(root) = 0
 - \checkmark index(leftchind(v)) = $2 \times index(v) + 1$
 - ✓ $index(rightchind(v)) = 2 \times index(v) + 2$
 - \checkmark index(parent(v)) = $\left| \frac{index(v) 1}{2} \right|$

3.7 Counting Labeled Trees: Prüfer Encoding

- ☐ In 1875, Cayley presented a paper describing a method for counting certain hydrocarbons containing a given number of carbon atoms.
 - \checkmark Also count the number of *n*-vertex trees with the standard vertex labels 1, ..., *n*.
- Two labeled trees are considered the same if their respective edge-sets are identical.
- □ The number of *n*-vertex labeled trees is n^{n-2} , for $n \ge 2$, and is known as Cayley's Formula.
- **Remark:** Counting the number of isomorphically distinct labeled *n*-vertex simple graphs is much more difficult. The Pálya-Burnside enumeration method, which is presented in Chapter 14, can be used to solve this kind of problem.

Prüfer Encoding

DEFINITION: A **Prüfer sequence** of length n-2, for $n \ge 2$, is any sequence of integers

between 1 and n, with repetitions allowed.

Algorithm: Prüfer Encoding

Input: an n-vertex tree with std 1-based vertex-labels.

Output: a Prüfer sequence of length n-2.

Initialize T to be the given tree.

For i = 1 to n - 2

Let v be the 1-valent vertex with the smallest label.

Let s_i be the label of the only neighbor of v.

$$T := T - v$$
.

Return sequence $\langle s_1, s_2, \dots, s_{n-2} \rangle$.

Prüfer Encoding

- **Proposition 3.7.1.** Let d_k be the number of occurrences of number k in a Prüfer encoding sequence for a labeled tree T. Then the degree of vertex k in T equals $d_k + 1$.
 - ✓ Prove by induction. The assertion is true for any tree on 3 vertices. Let T be a standard labeled tree on n+1 vertices and v be the 1-valent vertex with the smallest label and w be v's neighbor.
 - ✓ T^* is obtained by removing v from T. T^* is a standard labeled tree on n vertices, so $\forall k \in V_{T^*}$, $deg_{T^*}(k) = d_k(T^*) + 1$. $deg_T(w) = deg_{T^*}(w) + 1$ and $d_w(T) = d_w(T^*) + 1 \rightarrow deg_T(w) = d_w(T) + 1$.

Prüfer Decoding

Algorithm: Prüfer Decoding

Input: a Prüfer sequence of length n-2.

Output: an n-vertex tree with std 1-based vertex-labels.

Initialize list P as the Prüfer input sequence.

Initialize list L as $1, \ldots, n$.

Initialize forest F as n isolated vertices, labeled 1 to n.

For i = 1 to n - 2

Let k be the smallest # in list L that is not in list P.

Let j be the first number in list P.

Add an edge joining the vertices labeled k and j.

Remove k from list L.

Remove the first occurrence of j from list P.

Add an edge joining the vertices labeled with the two remaining numbers in list L.

Return F with its vertex-labeling.

$$L = 4, 5, 6, 7 P = 7, 5$$

$$L = 5, 6, 7 P = 5$$

Prüfer Decoding

- **Proposition 3.7.2.** The decoding procedure defines a function $f_d: P_{n-2} \to T_n$ from the set of Prüfer sequences of length n-2 to the set of labeled trees on n vertices.
 - ✓ Each step of decoding procedure specifically define a graph operation. We can be sure decoding procedure will create a graph. We have to prove the graph is a tree.
 - ✓ The assertion is true for n = 2 as the procedure produces a single edge. Assume the assertion is true for some $n \ge 2$. Consider a Prüfer sequence $(p_1, p_2, ..., p_{n-1})$ and a set of vertices $\{1, 2, ..., n+1\}$.
 - The first iteration of the procedure draws an edge from b to p_1 , where b is the smallest vertex not appearing among the p_i 's. None of the n-1 edges that are produced in iteration 2 through n will be incident with b. Thus continuing the procedure from iteration 2 is equivalent to applying the procedure to the Prüfer sequences $(p_2, ..., p_{n-1})$ for the set of vertices $\{1, ..., b\text{-}1, b\text{+}1, ..., n\text{+}1\}$. By the induction hypothesis, the edges produced form a tree on these vertices. This tree, together with the edge from b to p_1 , forms a tree on the vertices $\{1, 2, ..., n\text{+}1\}$.
- **Proposition 3.7.3.** The decoding function $f_d: P_{n-2} \to T_n$ is the inverse of the encoding. function $f_e: T_n \to P_{n-2}$.

$$(1, 2, 3, ..., b, b+1, ..., n)$$
 $(p_1, p_2, ..., p_{n-1})$

Prüfer Decoding

- Theorem 3.7.4 [Cayley's Tree Formula]. The number of different trees on n labeled vertices is n^{n-2} .
 - ✓ Pro. 3.7.3 builds a one-to-one correspondence between T_n and P_{n-2} . $(k_1, ..., k_{n-2}) \rightarrow n^{n-2}$
- **Remark:** A slightly different view of Cayley's Tree Formula is that it gives us the number of different spanning trees of the complete graph K_n . The next chapter is devoted to spanning trees.

Pruffer Encoding Application

- Serious image distortion in advanced technology nodes Design for Manufacturability (DFM) issues
- □ Pattern calibration identify hot-spot patterns according to a set of pattern library
- Problem definition: given a layout possibly consisting of more than hundreds of million polygons and a set of pattern library.
 - ✓ Identify all occurrences of each pattern in the layout without any false alarm.
 - ✓ A matching includes the case that a pattern matches partial set of a polygon.

• Hong-Yan Su, Chieh-Chu Chen, Yih-Lang-Li, An-Chun Tu, Chuh-Jen Wu and Chen-Ming Huang, "A Novel Fast Layout Encoding Method for Exact Multi-Layer Pattern Matching with Prüfer-Encoding", IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2015

Pruffer Encoding Application

Pruffer Encoding Application

EPC Transformation Algorithm

Q: How to find the function *f*?

EPC_1							
L_d	$1 \rightarrow 2$	$2 \rightarrow 3$	$3 \rightarrow 5$	4 → 4			
C_{num}	$2 \rightarrow 3$	$4 \rightarrow 4$	4 → 4	$5 \rightarrow 1$			
D_{d2n}	L	U	L	L			
DP_d	0,0	0,0	0,0	2,0			

EPC_1							
L_d	2	3	4	1			
C_{num}	3	4	5	4			
D_{d2n}	L	U	R	R			
DP_d	0,0	0,0	2,0	0,0			

Counting Binary Trees: Catalan Recursion

- Let b_n denote the number of binary trees on n vertices.
 - ✓ Catalan Recursion: $b_n = b_0 b_{n-1} + b_1 b_{n-2} + ... + b_{n-1} b_0$
 - \checkmark b_n : the *nth Catalan number*.

Theorem 3.8.1. The number b_n of different binary trees on n vertices is given by $b_n = \frac{1}{n+1} \binom{2n}{n}$.

$$b_{n} = b_{0}b_{n-1} + b_{1}b_{n-2} + \dots + b_{n-1}b_{0} = \sum_{i=0}^{n-1}b_{i}b_{n-1-i},$$

$$B(x) = b_{0} + b_{1}x + b_{2}x^{2} + \dots = \sum_{n=0}^{\infty}(\sum_{i=0}^{n-1}b_{i}b_{n-1-i})x^{n} \qquad (1), \quad A(x) = a_{0} + a_{1}x + a_{2}x^{2} + \dots$$

$$C(x) = A(x)B(x) = c_{0} + c_{1}x + c_{2}x^{2} + \dots = \sum_{n=0}^{\infty}c_{n}x^{n}, \quad c_{n} = a_{0}b_{n} + a_{1}b_{n-1} + \dots + a_{n-1}b_{1} + a_{n}b_{0} = \sum_{i=0}^{n}a_{i}b_{n-i}$$

$$\text{now let } A(x) = B(x) \Rightarrow B(x)^{2} = \sum_{n=0}^{\infty}(\sum_{i=0}^{n}b_{i}b_{n-i})x^{n}, \text{ replace } n \text{ with } n-1 \Rightarrow B(x)^{2} = \sum_{n=1}^{\infty}(\sum_{i=0}^{n-1}b_{i}b_{n-1-i})x^{n-1}$$

$$\Rightarrow xB(x)^{2} = \sum_{n=1}^{\infty}(\sum_{i=0}^{n-1}b_{i}b_{n-1-i})x^{n} \Rightarrow (\text{By Eq. (1)}) \quad 1 + xB(x)^{2} = B(x)$$

Counting Binary Trees: Catalan Recursion

$$B(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x} \Rightarrow B(x) = \frac{1 - \sqrt{1 - 4x}}{2x} \text{ since } B(x) = \frac{1 + \sqrt{1 - 4x}}{2x} = \frac{2}{0} \text{ as } x = 0$$

$$\therefore (x+y)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n y^{k-n}$$
 (Generalized Binomial Theorem)

$$\therefore (1-4x)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right) (-4x)^n \cdot 1^{\frac{1}{2}-n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right) (-4x)^n$$

$$\therefore B(x) = \frac{1}{2x} \left[1 - \sum_{n=0}^{\infty} \left(\frac{1}{2} \right) (-4x)^n \right] = \frac{1}{2x} \left[1 - \sum_{n=1}^{\infty} \left(\frac{1}{2} \right) (-4x)^n - \left(\frac{1}{2} \right) (-4x)^0 \right]$$

$$= \frac{-1}{2x} \sum_{n=1}^{\infty} \left(\frac{1}{2}\right) (-4x)^n = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right) (-1)^{n+1} 2^{2n-1} x^{n-1} = \text{(replace } n \text{ with } n+1)$$

$$\sum_{n=0}^{\infty} \left(\frac{1}{2} \atop n+1\right) (-1)^{n+2} 2^{2(n+1)-1} x^n = \sum_{n=0}^{\infty} \left(\frac{1}{2} \atop n+1\right) (-1)^n 2^{2n+1} x^n \Rightarrow b_n = \binom{1}{2} (-1)^n 2^{2n+1}$$