OTC_EILE CUPY

CHEMICAL VAPOR SYNTHESIS OF NIOBIUM ALUMINIDES

J.H. Norman G.H. Reynolds

AFWAL-TR-88-4166

MSNW, Inc. P.O. Box 865 San Marcos, CA 92069

October 1988

Final Report for Period August 1987 - April 1988

Approved for Public Release; Distribution is Unlimited

MATERIALS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

88 12

NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

THIS PEPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASD/CPA) AND IS RELEASABLE TO THE NATIONAL TECHNICAL IMPOPMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION,

WILLIAM R. KERR

Project Engineer

Processing & Wi Temp Matl's Br

FOR THE COMMANDER

HENRY C. GRAHAM, Chief

Processing & Hi Temp Matl's Br

Metals & Ceramics Division

NORMAN M. GEYER

Technical Manager

Processing & Hi Temp Matl's Br

Metals & Ceramics Division

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE NOTIFY AFWAL/MLLM, WRIGHT-PATTERSON AFB, OH 45433-6533 TO HELP US MAINTAIN A CURRENT MAILING LIST,

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS PEQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC DOCUMENT.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT D	N PAGE	Form Approved OMB No. 0704-0188					
1a. REPORT SECURITY CLASSIFICATION UNCLASS I FIED	16. RESTRICTIVE MARKINGS None						
2a SECURITY CLASSIFICATION AUTHORITY			AVAILABILITY OF				
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	Approved for is Unlimited		ease;	Distribution		
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING (ORGANIZATION RE	PORT NO	JMBER(S)		
6a NAME OF PERFORMING ORGANIZATION	66. OFFICE SYMBOL		ONITORING ORGAN	VIZATION			
MSNW, Inc.	(If applicable)	Materials La Air Force Wi	•		LLM) Laboratories		
6c. ADDRESS (City, State, and ZIP Code) P. O. Box 865		7b. ADDRESS (Cit	y, State, and ZIP C	ode)			
San Marcos CA 92069		Wright	t-Patterson	AFB OF	45433-6533		
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT	I INSTRUMENT IDE	NTIFICAT	TION NUMBER		
AFWAL/MLLM	(ii applicable)	F3361	5-87-C-5274				
8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBER				
Wright-Patterson AFB OH 45	6433	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.		
11. TITLE (Include Security Classification)		65502F	3005	51	39		
Chemical Vapor Synthesis o	of Niobium Alumi			~ <u>-</u> -			
13a. TYPE OF REPORT 13b TIME CO Final FROM 8/8	OVERED / 104/88	14. DATE OF REPO		Day) 15	5. PAGE COUNT		
	ontrol Restrict	وخبرت فروا المراب المراز المراز المراز والمراز والمراز	ner		\		
This is a Small Business Innov	- 1		rt, Phase I				
17. COSATI CODES	18 SUBJECT TERMS (Continue on revers	e if necessary and	identify	by block number)		
FIELD \GROUP SUB-GROUP		lic compounds, Chemical vapor deposition					
	NIODINI	Temperit	S. Jan . Bu	<i>;</i> , ,	(· • • • · • • • • • • • • • • • • • • • • • • •		
19. ABSTRACT (Continue on reverse if necessary	and identify by block n	umber)			*		
PhaseI experiments to compositions by chemi							
are described.							
<u>~</u> .							
		()					
			-				
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT			CURITY CLASSIFICA	ATION			
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS F	PT DTIC USERS	UNCLASS 22b. TELEPHONE (Include Area Code		FFICE SYMBOL		
W. R. Kerr		(513) 253	5-9834	AFW	AL/MLLM		

Table of Contents

1.0	SUMMARY OF PHASE I RESULTS
2.0	INTRODUCTION2
3.0	PROCESS MODELING
3.1	Preliminary Considerations2
3.2	Synthesis of Alloys and Compounds
3.3	Reaction Mechanisms
4.0	EXPERIMENTAL RESULTS AND DISCUSSION
4.1	Preliminary Experiments
4.2	Deposition From AlCl/NbCl ₅ Mixtures23
5 . ø	CONCLUSIONS AND RECOMMENDATIONS
6.0	REFERENCES

Acce	ssion For	
DTIC	GRA&I TAB Tounced ification	4716
By	ribution/	ONPY INSPECTED
Ava	llability Codes	
Dist	Avail and/or Special	
A-1		

CHEMICAL VAPOR SYNTHESIS OF NIOBIUM ALUMINIDES

1.0 SUMMARY OF PHASE I RESULTS

The Phase I research demonstrated that direct chemical vapor deposition of fine grained, homogeneous, high purity Nb-Al intermetallic compound thin films could be successfully performed. Deposition of the compounds Nb_3Al , Nb_2Al and $NbAl_3$ was demonstrated as was deposition of two-phase microstructures of $Nb_2Al + NbAl_3$ and the end-point composition Nb(Al).

Thermochemical process models were developed to guide the chemical vapor deposition experiments. A preliminary model for surface reaction-controlled deposition was formulated which appears to explain the observed deposition processes. A hot-wall apparatus was developed for deposition of Nb-Al intermetallic films from NbCl₅, AlCl (from AlCl₃), and H₂ gas mixtures at temperatures of 700-900°C. Deposits were produced on Mo foil substrates. The intermetallic films were generally dense and fine grained with a somewhat irregular surface showing typical chemical vapor deposition growth features. Accurate analyses of residual gas content of the foils was complicated by surface contamination of the foils by condensed precursor species during cooling after deposition. Preliminary thick film deposits were produced on Mo foil substrates in a cold-wall system using the same precursor gases. The thick films possessed dense two-phase (Nb + Nb₃Al) microstructures. The microhardness of the two-phase deposits was 150-250 kg/mm² DPH.

The Phase I research suggests needed improvements in the process deposition rate

will be achieved using the cold-wall deposition system. Improvements in deposit homogeneity are sugggested through use of separate, temperature-controllable evaporators for each precursor species and use of higher purity inert carrier gases for the precursor species. Examination of alternative precursor species is suggested for possibly achieving reduced residual gas content in the deposited films. Finally, improved characterization techniques for the deposited films, including direct mechanical property measurements, are required.

2.0 INTRODUCTION

The objectives of this project were to produce and characterize chemically vapor deposited thin films of Nb, Al, and films corresponding to the compositions Nb₃Al, (NbAl), and NbAl₃ with special emphasis on NbAl₃. The feasibility of syntheses at both low temperature and high temperatures were studied. A high temperature synthesis method was selected for foil preparation characterization of the films was performed to permit general comparison to rapidly solidified alloys in terms of microstructure and degree of crystallinity, compositional uniformity and residual impurities. This report describes Phase I studies carried out in performance of the contract requirements.

3.0 PROCESS MODELING

3.1 Preliminary Considerations

The Nb-Al phases expected to be encountered during this study and their chemical stabilities in terms of chemical activities of the basic components have been the subject of a literature search and evaluation. There appears to be agreement

among several authors as to the phase diagram for the Nb-Al system. It is shown in Fig. 1 as reported by Lundin and Yamamoto(1). This Clagram shows Nb₃Al and Nb₂Al as extended compounds and an NbAl₃ line compound, all stable up to greater than 1500° C. The composition (NbAl) falls in the two-phase region Nb_{2-x}Al-NbAl₃. The diagram does not indicate the solubility of Nb in Al but does indicate considerable solubility of Al in Nb. Thus the thermodynamically stable phases for the compositions to be synthesized are Nb(Al), Al(Nb), Nb₃Al, Nb_{2-x}Al-NbAl₃, and NbAl₃ (and perhaps two-phase systems in the immediate vicinity of NbAl₃.)

The stability of these phases has also been investigated. Malets(2) studied this system electrochemically. The paper has not been fully translated. However, a table in this report describes important thermodynamic quantities, both measured and estimated. What have been measured are the voltages of a concentration cell comparing the alloy with Al(s) near 900K. The 900K emfs can be reduced to Al activities at this temperature. Malets(2) also includes integral Gibbs free energy data (it is not clear how he obtained this data). The reported integral free energy data at two-phase borders is consistent with these being integral free energy data at the measured emfs. This then allows us to calculate Nb activity values. Figure 2, which is an activity diagram at 900K, has been constructed from Malets values (2) where the data allow. The dotted lines, used to fill in this diagram, are interpolated and extrapolated values and are expected to be qualitatively, if not quantitatively, correct. The points worthy of note are the low Al activity in Nb-Al solutions as compared to the Nb activity on the high Al side. Al thus appears to be bound more tightly in the intermetallic compounds than is Nb. It is also suggested that the NbAl3 compound will exist over a wider range of Al activities than either the Nb3Al or Nb2Al compounds even though it is basically a line compound. This is probably true for

FIG. 1. Phase diagram of the system niobium-aluminium

Figure 2

AI-Nb ACTIVITY DIAGRAM ACCORDING TO MALETS' DATA (900K)

Nb activities also. Thus, something is quite special about the NbAl $_3$ compound. High temperature synthesis around NbAl $_3$ may indeed lead to NbAl $_{3+/-x}$ phase and it may be difficult to contaminate this phase with Al or Nb $_{2-x}$ Al in small amounts due to this special stability, if one is using near-equilibrium methods of film deposition.

Figure 2 can also be used to predict alloys deposited under various, close to equilibrium, coating conditions. For instance, $Nb_{0.96}Al_{0.04}$ would be deposited with an Nb activity near unity and an Al activity of 10^{-11} at 900K. That is, for a system pAlCl₃ = 0.01, pH₂ = 0.1, pHCl = 0.01 the Al activity is 4×10^{-12} .

Thus, Al will be codeposited while depositing Nb (from NbCl₅ reduction by $\rm H_2$) at a concentration around 4%, but its activity would be far below that necessary to make Nb₃Al (10^{-6}). Thus, the temperature must be considerably increased or the Al activity increased using techniques other than $\rm H_2$ reduction for successful codeposition.

3.2 Synthesis of Alloys and Compounds

Deposition of Al in low temperature processes has been performed using aluminum alkyls, in particular triisobutylaluminum at 250-300°C. This has been found to give a reasonably pure Al deposit. Precursors where Al is bonded to 0 or N do not give pure deposits. Table 1 shows several possible Al compounds where high purity deposits may occur and some of the physical properties of these Al precursor compounds important to their use as precursors for coating are also shown.

Table 1

Possible Low Temperature Precursors for Aluminum Coating

Aluminum Alkyls

Triisobutylaluminum

(C4H9)3A1

MP 4°C

BP 73°C/5 mm.

Trimethylaluminum

(CH₃)₃A1

MP 0°C

BP 130°C/125 mm.

Dimethylaluminum chloride

(CH₃)₂A1C1

MP -50°C

8P 83°C/200mm

Low temperature, high purity Nb deposition appears to be much more limited. Table 2 shows three possible Nb precursor compounds that may deposit Nb at low temperatures. Carbonyls of Ni, Fe, Co, Mo, etc. have been used to deposit these metals. There is no pure niobium carbonyl, however. The nearest compound to a metal carbonyl is cyclopentadienylniobium carbonyl which, in principle, could release CO and cyclopentadiene by H₂ reduction. The third compound shown is a partial alkyl and might also be induced to deposit Nb by reduction techniques.

High temperature Al deposition has usually been performed by a sequence similar to that occurring in a pack cementation process where $AlCl_3(g)$ is reduced to AlCl(g) by Al(s). This reaction then reverses in the presence of an Al sink or upon lowering of the temperature. The extended equations which govern this process are shown in Table 3. Physical properties of various AlX_3 halides are shown in Table 4 for aiding the selection of the proper halide for the coating process. Note the 3HCl energies listed and compared with the AlX_3 energies. This comparison says it is difficult (at room temperature at least) to reduce an aluminum halide with H_2 . This process will work but only at rather high temperatures.

In contrast, the reaction shown in Table 5 and the data shown in Table 6 for Nb are more hopeful since they are 20 kcals lower for NbCl₅ reduction than AlCl₃ reduction. The liberation of 5HCl instead of 3HCl formed helps the reduction also. The NbCl₅ reduction proceeds readily at about 1000K in H₂. Calculations of equilibrium pressures of HCl, AlCl₂, AlCl₃, and Al₂Cl₆ have been made under conditions representative of a coating process. These demonstrate the aluminum deposition capability of AlCl/AlCl₂ gas mixtures. The calculations were performed for the condition of equilibrium with Al(s,1) at various temperatures.

Table 2

Possible Low Temperature Precursors For Nb Coating

Pentadienyltetracarbonyl-niobium

(c₅H₅) Nb(со)₄

MP 144-6°C

BP Sublimes

Pentadienyl trihydrido-niobium

(с₅н₅) мын₃

Properties Unknown

Trimethyldichloro-niobium

 $(CH_3)_3$ NbCl₂

Known to Sublime

Table 3

High Temperature Al Coating Reactions

3 A1X(g)
$$\stackrel{?}{\leftarrow}$$
 2 A1(s) + A1X₃(g)

6 AlX(g)
$$\stackrel{?}{\leftarrow}$$
 4 Al(s) + Al₂X₆(g)

$$3 \text{ Alx}_2(g) \stackrel{?}{\leftarrow} \text{Al}(s) + 2 \text{ Alx}_3(g)$$

$$3 \text{ AlX}_{2}(g) \stackrel{?}{\leftarrow} 2 \text{ Al}(s) + \text{Al}_{2}X_{6}(g)$$

where X = halide

Table 4

AlX₃ Properties

		•		3HX(g)
<u>x</u>	MP(°C)	BP(°C)	ΔH _f (kcal/mole)	ΔH _f (kcal/3mole)
F	-	1276	-361.0	-195.4
C1	190*	181	-168.3	-66.2
Br	98	256	-126.0	-26.0
I	191	385	-73.9	+18.9

* 2.5 atmospheres

Table 5

High Temperature Nb Coating Reaction

$$NbX_5(g)* + 5/2 H_2 \rightarrow Nb(s) + 5 HX$$

where X = halide

* (lower halides, e.g. NbX4, are also known)

Table 6

NbX₅ Properties

				5HX(g)
x	MP(°C)	BP(°C)	ΔH_{f} (kcal/mole)	ΔH _f (kcal/5mole)
F	79	234	-433.5	-325.7
C1	203.4	242.4	-190.5	-110.3
8r	254.0	365.0	-133.0	-43.3
I	-	_	-64.6	+31.5

The data, developed from the JANAF Thermochemical Tables, are shown in Table 7. The last portion of this table is the most revealing. It shows that high capacities for depositing Al are attained by about 1200K where the AlCl pressure exceeds 10^{-2} atm. AlCl₃ and is approaching 10^{-1} atm. AlCl₃. Note that under these conditions Al₂Cl₆ is largely dissociated and does not enter into the considerations. Coating temperatures in the vicinity of 900° C are required for efficient Al deposition.

This analysis suggests the most likely way to deposit high purity Nb-Al alloys. If H_2 is used to reduce NbCl₅ the resultant product HCl is expected to react with Al, AlCl, or AlCl₂ producing H_2 and forming stable AlCl₃ which will reduce the Al deposition rate severely. These two coating reactions and the interfering HCl reaction are shown in Table 8. Also shown is the reaction producing intermetallics which will aid the deposition of Al as governed by the activities shown in Figure 2. It appears better to avoid H_2 reduction systems and consider AlCl(g) as the reductant for NbCl₅(g). Significant amounts of AlCl(g) will be used in a coating process to reduce NbCl₅(g) to the metal. Since codeposition of Al with Nb is desired, more AlCl will have to be present to accomplish the codeposition.

The deposition reactions for the appropriate intermetallic compounds using $NbX_5(g)$ and AlX(g) are shown in Table 9. These equations describe the stoichiometry from both AlX and AlX_2 species and clearly demonstrate the large excess of AlX necessary to produce the various intermetallic compounds. Note for example the 7/1 ratio of AlX over NbX_5 needed to obtain $NbAl_3(s)$. This effect will be quite apparent during the operation of the Al source. One will have to inject about 10 times as much $AlCl_3$ into the Al reactor as $NbCl_5$ to produce

Table 7

Aluminum Chloride Equilibria (Pressures in Atm.)

A1Cl₃ + 2A1(s,1)
$$\stackrel{?}{\Rightarrow}$$
 3A1Cl $K_1 = pA1Cl^3/pA1Cl_3$
2A1Cl₃ + A1(s,1) $\stackrel{?}{\Rightarrow}$ 3A1Cl₂ $K_2 = pA1Cl_2^3/pA1Cl_3^2$
2A1Cl₃ $\stackrel{?}{\Rightarrow}$ Al₂Cl₆ $K_3 = pAl_2Cl_6/pA1Cl_3^2$

	A12C16	A1C1 ₃	A1C1	AlCl ₂			
T(K)	log K	log K	log K	log K	log K ₁	log K ₂	log K ₃
600 800 1000 1200 1400	99.822 71.708 54.774 43.358 35.208	48.338 35.589 27.885 22.671 18.939	9.005 7.813 7.025 6.410 5.954	26.319 20.152 16.383 13.782 11.910	-21.323 -12.150 -6.810 -3.441 -1.077	-17.707 -10.722 -6.6621 -3.996 -2.148	3.146 0.530 -0.996 -1.984 -2.67

For pAlCl ₃ = 0.1			For pA1C1	,	
T (K) log pAl ₂ Cl ₆	log pAlCl	log pAlCl ₂	log pAl ₂ Cl ₆	log pA1C1	log pA1C1
600 1.146	-7.441	-6.569	-0.854	-7.774	-7.236
800 -1.470	-4.383	-4.241	-3.470	-4.717	-4.907
1000 -2.996	-2.603	-2.874	-4.996	-2.937	-3.540
1200 -3.984	-1.480	-1.999	-5.984	-1.814	-2.665
1400 -4.670	-0.692	-1.382	-6.670	-1.026	-2.049

Table 8

High Temperature Coating Reactions

Nb:

 $NbC1_4 + 2H_2 \stackrel{?}{=} Nb + 4 HC1$

Al:

 $A1C1_3 + 2 A1$ $\stackrel{?}{\Rightarrow}$ 3 A1C1

Interference Reactions:

 $3 \text{ HC1} + \text{A1} \quad \stackrel{?}{=} \quad \text{A1Cl}_3 + 3/2 \text{ H}_2$

Assistance Reactions

A1 + 2Nb $\stackrel{\Rightarrow}{=}$ Nb₂A1 (or Nb₃A1, or NbA1₃)

Table 9

High Temperature Combined Nb-Al Coating Reactions

$$4NbX_5(g) + 13A1X(g) \stackrel{?}{\leftarrow} 2Nb_2A1(s) + 11A1X_3(g)$$

$$2NbX_{5}(g) + 13A1X_{2}(g) \stackrel{?}{=} 2Nb_{2}A1 + 12A1X_{3}(g)$$

$$3NbX_5(g) + 9A1X(g) \stackrel{?}{\leftarrow} Nb_3A1 + 8A1X_3(g)$$

$$3NbX_5 + 18A1X_2(g) \stackrel{?}{=} Nb_3A1 + 17A1X_3(g)$$

$$NbX_5(g) + 7A1X(g) \stackrel{?}{\leftarrow} NbA1_3 + 4A1X_3(g)$$

$$NbX_5 + 14A1X_2(g) \stackrel{?}{=} NbA1_3 + 11A1X_3$$

where X = halide

(Al2X6 also a product)

 $NbAl_3$. This assumes that $pAlCl_3$ = pAlCl at the exit of the Al source as pictured in Figure 3 and that AlCl is almost absent from the coating chamber exit. The coating apparatus shown in this figure is now in operation. Note in Figure 3 that H_2 is suggested as a possible carrier gas. This is to aid in Nb deposition if the $AlCl-NbCl_5$ reaction kinetics are poor. In any case the presence of H_2 is expected to be only catalytic and not as an overall reactant and will be considered further in the next section including reaction mechanisms.

3.3 Reaction Mechanisms

The reaction of $\mathrm{AlCl}_3(g)$ with $\mathrm{Al}(s \text{ or } 1)$ to produce $\mathrm{AlCl}(g)$ is almost certainly a heterogeneous reaction involving (1) the adsorption of $\mathrm{AlCl}_3(g)$ on the $\mathrm{Al}(g)$ surface, (2) the interaction of the $\mathrm{AlCl}_3(g)$ with the surface $\mathrm{Al}(g)$, and (3) the desorption of $\mathrm{AlCl}_3(g)$ from the surface to give gaseous $\mathrm{AlCl}_3(g)$. The formation of $\mathrm{AlCl}_2(g)$ would follow a similar route and $\mathrm{AlCl}_2(g)$ may be an intermediate.

$$AlCl_3(g) \rightarrow AlCl_3(ads)$$

$$AlCl_3(ads) + 2Al(s or 1) \rightarrow 3AlCl(ads)$$

$$3AlCl(ads) \rightarrow 3AlCl(g)$$

The reverse reaction undoubtedly follows a similar course. A fully gaseous reaction would lead to Al(g) and this is a very energetic intermediate and thus unlikely.

These reactions seem appropriate for AlCl formation and decomposition. Reactions

Nb AI COATING PROCESS SCHEMATIC

Figure 3

involving H_2 may also be important, particularly in the case of NbCl $_5$ reduction. Here again adsorbed state reactions are likely to constitute the critical path. An important step on many metal surfaces is the the adsorption and dissociation of H_2 on the surface.

$$H_2 \rightarrow H_2 \text{ (ads)}$$

$$H_2(ads) \rightarrow 2H(ads)$$

These adsorbed H atoms can approach adsorbed halides and extract halide ions sequentially.

$$NbCl_n(ads) + H(ads) \rightarrow NbCl_{(n-1)}(ads) + HCl(ads)$$
.

The adsorbed HCl can then react with adsorbed AlCl.

$$HCl(ads) + AlCl(ads) \rightarrow AlCl_2(ads) + H(ads)$$

$$HCl(ads) + AlCl_2(ads) \rightarrow AlCl_3(ads) + H(ads)$$

and the formed ${\rm AlCl}_3$ vaporized according to

$$AlCl_3(ads) \rightarrow AlCl_3(g)$$

Thus H_2 may act catalytically to facilitate the reduction of NbCl₅ by AlCl. Indeed, what is observed experimentally is a faster rate of deposition of Nb-Al (as intermetallics) in the presence of H_2 than when using NbCl₅(g) + AlCl(g)

alone. Thus, the use of catalytic ${\rm H_2}$ in Nb-Al alloy deposition appears useful in aiding the Nb reduction at least.

It should also be noted that the Nb-Al deposits do not appear to be generated as powders or dust by reduction and condensation from the gaseous state. This is another indication of adsorbed state surface reactions being rate controlling.

4.0 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Preliminary Experiments

Preliminary experiments examined low temperature deposition of pure Al from triisobutylaluminum, high temperature deposition of pure Nb from mixed NbCl $_5/\mathrm{H}_2$ gases, and high temperature deposition of alloy compositions from mixed NbCl₅/AlCl₃/H₂ gases. Other preliminary experiments involved triethyl or triisobutyl aluminum in combination with ${\rm NbCl}_5$ and ${\rm H}_2$. The product deposits were powdery and nonadherent. Deposition of the pure metals was demonstrated without difficulty. The dense, adherent Nb-Al alloy coating from the $AlCl_3/NbCl_5/H_2$ experiment is shown in Figure 4. Here, the secondary electron SEM micrograph shows the coating, on a molybdenum foil substrate, to be about 5 microns thick. The coating exhibits the typical nodular appearance characteristic of CVD processes. However, because of the H2 reduction of AlCl2 deposition process used, the coating contains less than 4% Al. This is consistent with Figure 2 where the Al activity of this composition is about 10^{-11} at 900K. More Al in the deposit would not be expected unless the AlCl3 is prereduced to AlCl. The apparatus shown in Figure 3 was constructed to make this correction and lead to the desired intermetallic compounds and their mixtures.

Nb Al Alloy Coating ← Molybdenum Substrate

Figure 4. Chemically vapor deposited Nb-Al alloy film (containing 2-4 at.% Al) produced from mixed chlorides, 800°C/l hr., on molybdenum foil substrate.

4.2 Deposition From AlCl/NbCl₅ Mixtures

The apparatus shown in Figure 3 was constructed to prereact the ${\rm AlCl}_3$ vapor with molten Al to form AlCl. As shown in section 3.0, AlCl will reduce ${\rm NbCl}_5$ to form the desired intermetallic compounds. Although this was found to be the case the product coatings were extremely thin, i.e. the deposition rate was low. It was found that the addition of ${\rm H}_2$ gas to the ${\rm NbCl}_5/{\rm AlCl}$ gas mixture greatly increased the deposition rate.

A total of 25 deposition runs were performed with the NbCl₅/AlCl gas mixtures. The deposition conditions used are summarized in Table 10. Since the apparatus shown in Figure 3 is a hot-wall device, containing a quartz tube surrounded by a clamshell resistance heater, deposition of the Nb-Al compounds occurred on the walls of the quartz tube as well as on the Mo foil substrate coupons contained within the quartz tube. Thus most coatings produced were rather thin.

Figure 5. shows a typical coating on a Mo substrate. This deposit, whose preparative parameters are identified in Table 10 as Run No. 1028, shows a duplex deposit. The thick inner coating was found to be Nb containing a minor amount of Al, while the darker outer coating was found to be approximately 50 at.% Nb and Al as shown in Figure 6. (The calculated elemental analysis corresponding to these x-ray spectra are shown following Figure 6.). Several such duplex coatings were obtained in early experiments.

One multilayer coating (Run No. 1028) where the AlCl₃ source temperature and inert carrier gas flow rate were increased in steps during the deposition run is shown in Figure 7. The innermost coating layer corresponded to Nb containing a

Table 10 Summary of Nb-Al Deposition Conditions Using ${\rm AlCl}_3$ + NbCl $_5$ Precursors

Run No.	Temp.	Pressure	A Flow	H ₂ Flow	AlCl Conversion
	(°C)	(mm Hg)	(ml/min)*	(ml/min)	
		•			
1014	000	100	25	100	No
1014	800	100	35	100 100	No
1015 1020	900 900	100 9	35 40	100	No No
1020	900	10	6Ø	100	Yes
1021	900	10	5Ø	100	Yes
1026	910	10	6Ø	100	Yes
1027	900	10	5Ø	100	Yes
1028	900	10	100(in steps)	100	Yes
1228	900	12	30	50	Yes
1229	900	20	30	50	Yes
1230	900	20	100	120	Yes
Ø1Ø4	900	100	300	325	Yes
Ø1Ø5	900	400	75	250	Yes
Ø12Ø	800	100	35	100	Yes
0202	800	100	35	100	Yes
Ø2Ø3	800	100	35	100	No
0204	900	14	130	200	Yes
Ø2Ø9	900	160	130	200	Yes
Ø217	900	650	200	350	Yes
Ø218	900	65Ø	200	350	Yes
Ø222	900	300	200	250	Yes
Ø321	86Ø	650	225	210	Yes
Ø323	860	730	50	170	Yes
Ø32 4	86Ø	760	80	250	Yes
Ø325	860	760	100	250	Yes

^{*}Divided between ${\rm AlCl}_3$ and ${\rm NbCl}_5$ source boats.

Figure 5. Cross section through chemically vapor deposited coating. Substrate material is Mo foil.

Figure 6. X-ray spectra of the outer coating shown in Figure 5.

EPIC TABLE FOR SI - 14
LINE ENERGY LAMBDA REL.HT.
K A1 1.739 7.130 100.0
K B1 1.828 6.783 1.7
K ABS 1.843 6.727 0.0

٢

INTE-%-ZAF:
LABEL = #1026 MSNW
09-NOV-87 09:32:13
101.015 LIVE SECONDS
KV= 20.0 TILT= 0. TKOFF=20.
ZAF CORRECTION

ELEM K Z A F

ALK 0.1153 1.119 0.451 1.011 NBL 0.6192 0.949 0.843 1.000

AT % ELEM CPS ELEM AL K 195.7042 50.12 NB L 440.3517 49.88 ----- TOTAL 100.00

Figure 7. Cross section through chemically vapor deposited coating. Substrate material is Mo foil.

small amount of Al (ca. 1-2 at.%) as shown in Figure 8. The second coating layer corresponded approximately to Nb₃Al as shown in Figure 9 (and the table following Figure 9). The third layer corresponded closely to Nb₂Al as shown in Figure 10 and the table which follows. The fourth, or outermost, coating layer corresponded almost exactly to Al₃Nb as shown in Figure 11 and the table which follows. Note in Figure 7 that the three outer coatings contain some porosity and that the outermost coating is cracked. This presumably resulted from the higher thermal expansion coefficient expected for the higher Al content layers.

Another example of a thin product Nb-Al film from Run No. 0203 is shown in Figure 12. As shown in Figure 13, the coating composition was 60 at.% Nb-40 at.% Al which corresponds to a two-phase Nb₂Al-Al₃Nb composition. As with all Nb-Al coatings produced, no grain structure can be resolved in the as-deposited material.

4.3 Deposition of Thick Films

A cold-wall deposition apparatus was constructed which was similar to that shown schematically in Figure 3. The resistance furnace surrounding the quartz tube coating chamber in Figure 3 was removed. Copper bus bars through the end flanges were connected to a 0.5 in. x 6.0 in. Mo foil resistance heater which was maintained at 800°C while the quartz tube remained near room temperature. The resistance heated foil served as the substrate for deposition. The precursor gas mixtures used were those found earlier to produce Nb₃Al, Nb₂Al and NbAl₃ thin films in the hot-wall system. Deposition times of 2.0 hours were used for comparison to the earlier results. The resulting deposit thicknesses were in the range of 25-125 microns (as opposed to less than 6 microns in the hot-wall

Figure 8. X-ray spectra of innermost coating shown in Figure 7.

Figure 9. X-ray spectra of second layer of coating shown in Figure 7.

INTE-%-ZAF:
LABEL = #1028 MSNW
09-NOV-87 09:56:24
54.504 LIVE SECONDS
KV= 20.0 TILT= 0. TKOFF=20.
ZAF CORRECTION

ELEM K Z A F

ALK 0.0332 1.152 0.403 1.014 NBL 0.8658 0.983 0.948 1.000

AT %
ELEM CPS ELEM
AL K 106.1396 20.71
NB L 1160.8936 79.29
TOTAL 100.00

Figure 10. X-ray spectra of third layer coating shown in Figure 7.

INTE-%-ZAF:
LABEL = #1028 MSNW
09-NOV-87 10:01:01
47.514 LIVE SECONDS
KV= 20.0 TILT= 0. TKOFF=20.
ZAF CORRECTION

ELEM K Z A F

ALK 0.0583 1.141 0.417 1.013 NBL 0.7788 0.971 0.912 1.000

AT % ELEM CPS ELEM AL K 202.4246 32.15 NB L 1131.6876 67.85 ----- TOTAL 100.00

Figure 11. X-ray spectra of outermost coating shown in Figure 7.

INTE-%-ZAF:
LABEL = #1028 MSNW
09-NOV-87 10:04:44
41.210 LIVE SECONDS
KV= 20.0 TILT= 0. TKOFF=20.
ZAF CORRECTION

ELEM K Z A F

ALK 0.2727 1.076 0.547 1.007 NBL 0.3466 0.904 0.710 1.000

AT % ELEM CPS ELEM AL K 1034.3252 74.58 NB L 550.6614 25.42 ----- TOTAL 100.00

Figure 12. Cross section through chemically vapor deposited coating. Substrate material is Mo foil.

Figure 13. X-ray spectra of the coating shown in Figure 12.

ELEM K Z A F

ALK 0.0858 1.130 0.434 1.012 NBL 0.6960 0.960 0.877 1.000

AT % ELEM CPS ELEM AL K 63.0554 41.90 NB L 217.7136 58.10 ----- TOTAL 100.00

system). Thus the overall deposition rate was increased by almost an order of magnitude through use of the cold-wall system. The microstructures of these coatings and their corresponding x-ray spectra are shown in Figures 14-19. All were found to have lower than expected average Al contents which indicates that the deposition efficiency of Al in the cold-wall system was lower than observed in the hot-wall system. An increased AlCl₃ (and AlCl) flux would produce the desired higher Al content deposits.

These thick deposits showed varying amounts of Nb₃Al second phase which is quite apparent in the highest Al content deposit shown in Figure 18. The Nb₃Al second phase was also noted to be layered or occur in bands in the deposit.

Microhardness results on the thick film deposits are shown in Table 11. Readings were consistent for a given deposit but do not appear to correlate with the observable amount of Nb₃Al second phase.

Optimization of the composition of the thick film deposits will be continued under internal funding as will the residual gas analyses on the deposited films.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be drawn from these preliminary experiments.

1. The end point composition Nb(Al) and the intermetallic compositions Nb₃Al, Nb₂Al and Al₃Nb and mixtures of these phases can be successfully deposited as thin films from AlCl-NbCl₅ gas mixtures in a hot-wall system. The deposition rate of the films is significantly increased by the presence of $\rm H_2$ and the

Figure 14. Cross section through chemically vapor deposited coating produced in cold-wall apparatus. Substrate material is Mo foil.

Figure 15. X-ray spectra of central portion of coating shown in Figure 14.

INTE-%-ZAF:

LABEL = MAY 3 2000X AREA

27-MAY-88 06:5C:11

321.323 LIVE SECONDS

KV= 20.0 TILT= 0. TKOFF=20.

ZAF CORRECTION

ELEM K Z A F
ALK 0.0023 1.167 0.385 1.015

NBL 0.9898 0.999 0.996 1.000

AT %
ELEM CPS ELEM
AL K 1.5903 1.72
NB L 296.3840 98.28
TOTAL 100.00

Figure 16. Cross section through chemically vapor deposited coating produced in cold-wall apparatus. Substrate material is Mo foil.

Figure 17. X-ray spectra of central portion of coating shown in Figure 16.

LABEL = MAY 4 5000X AREA 27-MAY-88 06:58:11 100.411 LIVE SECONDS KV= 20.0 TILT= 0. TKOFF=20. ZAF CORRECTION

ELEM K Z A F

ALK 0.0029 1.166 0.385 1.015 NBL 0.9872 0.998 0.995 1.000

		AT %
ELEM	CPS	ELEM
AL K	1.8325	2.17
NB L	269.1041	97.83
TOTAL		100.00

Figure 18. Cross section through chemically vapor deposited coating produced in cold-wall apparatus. Substrate material is Mo foil.

Figure 19. X-ray spectra of central portion of coating shown in Figure 18.

LABEL = APRIL 28B 6000X AREA 27-MAY-88 06:58:11 101.283 LIVE SECONDS KV= 20.0 TILT= 0. TKOFF=20. ZAF CORRECTION

ELEM K Z A F

ALK 0.0059 1.165 0.387 1.015 NBL 0.9745 0.997 0.990 1.000

AT %
ELEM CPS ELEM
AL K 5.6278 4.27
NB L 407.5923 95.73
---TOTAL 100.00

Table 11

Microhardness Results on Thick-Film Deposits (DPH, 50g Load)

Run No.	Microhardness, kg/mm ²
Ø5 Ø 3	169, 164, 170
0504	262, 257, 260
0428B	146, 145, 144

observed details of the process are consistent with a surface reaction-controlled process. Preliminary deposits produced in a cold-wall system were of low Al content and had an observable Nb-Nb₃Al two-phase microstructure.

- 2. The deposited materials are generally dense, very fine grained and homogeneous in composition if deposition process parameters are held constant during their synthesis.
- 3. Improved process control is required to reliably produce the desired compositions. The coating apparatus configuration should be changed to a cold-wall system to effect higher deposition rates for the product intermetallic films.

The following recommendations are offered:

- 1. The coating apparatus should be modified and optimized for cold-wall operation to avoid deposition on the coater tube walls and increase the deposition rate, particularly of Al, on the target substrate.
- 2. The coating source gas materials (Nb and Al halides) should be dispensed from independent, temperature-controlled evaporators. High purity inert carrier gases should be used.
- 3. Alternative precursor species, such as Nb and Al iodides, which may decompose easier and more completely than the corresponding chlorides, should be examined.
- 4. Detailed characterization of the deposits properties and composition should

be performed.

6.0 REFERENCES

- 1. C. E. Lundin and A.S. Yamamoto, Trans. Met. Soc. AIME, 236, 863, (1966).
- 2. G. A. Malets, Vesti. Akad. Nauk., B. SSR, Ser. Khim, Nauk. 6, 127, (1974).