Molecular Vibrations

C. David Sherrill

School of Chemistry and Biochemistry Georgia Institute of Technology

Why Estimate Molecular Vibrations?

- Simulation of vibrational spectrum (identification of molecules)
- Vibrational corrections to enthalpy
- (Small) vibrational corrections to polarizability and other properties
- Understanding of vibrational motion could assist dynamics experiments and "mode-selective" chemistry

Small Vibrations in Classical Mechanics

The classic reference is Wilson, Decius, and Cross, *Molecular Vibrations* (Dover, New York, 1980). Cheap book, makes a good reference.

Let us focus on purely classical systems at first; all the results carry over to quantum mechanics.

For small vibrations, the motion of atom α away from its equilibrium value may be described by $\Delta x_{\alpha}, \Delta y_{\alpha}, \Delta z_{\alpha}$, with kinetic energy

$$T = \frac{1}{2} \sum_{\alpha=1}^{N} M_{\alpha} \left[\left(\frac{d\Delta x_{\alpha}}{dt} \right)^{2} + \left(\frac{d\Delta y_{\alpha}}{dt} \right)^{2} + \left(\frac{d\Delta z_{\alpha}}{dt} \right)^{2} \right]$$

If we switch to mass-weighted coordinates, such as $q_1 = \sqrt{M_1}\Delta x_1$, $q_2 = \sqrt{M_1}\Delta y_1$, $q_3 = \sqrt{M_1}\Delta z_1$, $q_4 = \sqrt{M_2}\Delta x_2$, etc., then the kinetic energy operator becomes simpler since the mass factors are now absorbed

$$T = \frac{1}{2} \sum_{i=1}^{3N} \dot{q}_i^2$$

$$V = V_0 + \sum_{i=1}^{3N} \left(\frac{\partial V}{\partial q_i}\right)_0 q_i + \frac{1}{2} \sum_{i=1}^{3N} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_0 q_i q_j + \cdots$$

$$\tag{1}$$

Remember that at equilibrium, $(\partial V/\partial q_i)_0 = 0$; we can also set $V_0 = 0$. Also abbreviate $(\partial^2 V/\partial q_i \partial q_j)_0$ as just f_{ij} .

Newton's Equations of Motion

We can rewrite Newton's equations of motion as

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} + \frac{\partial V}{\partial q_i} = 0 \quad j = 1, 2, \dots, 3N$$

or

$$\ddot{q}_j + \sum_{i=1}^{3N} f_{ij} q_i = 0$$

A possible solution to this equation is

$$q_i = a_i cos \left(\sqrt{\lambda}t + \phi\right)$$

where the angular frequency is $\sqrt{\lambda}$; this is just $\sqrt{k/m}$ in harmonic oscillator — the m has been absorbed by the mass-weighted coordinate system used here!

Substitute the last expression into the differential equations to get

$$\sum_{i=1}^{3N} (f_{ij} - \delta_{ij}\lambda) a_i = 0 \quad j = 1, 2, \dots, 3N$$

or in matrix notation, just $\underline{\underline{\mathbf{F}}} \ \underline{\mathbf{a}} = \lambda \ \underline{\mathbf{a}}$. This is an eigenvalue equation! We have a solution to this system of 3N linear equations only if λ has special values obtainable from the secular determinant

$$\begin{vmatrix} f_{11} - \lambda & f_{12} & f_{13} & \cdots & f_{1,3N} \\ f_{21} & f_{22} - \lambda & f_{23} & \cdots & f_{2,3N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{3N,1} & f_{3N,2} & f_{3N,3} & \cdots & f_{3N,3N} - \lambda \end{vmatrix} = 0$$

Normal Modes of Vibration

The matrix eigenvalue equation is equivalent to matrix diagonalization which is equivalent to solving the secular determinant for each λ (N of them). Once we have the eigenvalues λ_k we can get the corresponding eigenvectors $\underline{\mathbf{a}}_k$, giving the motion of each atom for the given eigenvalue λ_k :

$$q_{ik} = a_{ik}cos\left(\sqrt{\lambda_k}t + \phi_k\right).$$

The eigenvectors $\underline{\mathbf{a}}_k$ are the normal modes of vibration. For each normal mode, all the atoms move with the same frequency and phase, but with different amplitudes.

Normal Coordinates

We can define a new set of coordinates using the normal modes. This gives us the "normal coordinates"

$$Q_k = \sum_{i=1}^{3N} a_{ik} q_i \quad k = 1, 2, \dots, 3N$$

Since the eigenvectors of a real, symmetric matrix $(\underline{\mathbf{F}})$ are orthogonal, T and V become diagonal (no cross terms):

$$T = \frac{1}{2} \sum_{k=1}^{3N} \dot{Q}_k^2$$

$$V = \frac{1}{2} \sum_{k=1}^{3N} \lambda_k Q_k^2$$

The Hamiltonian is separable in this representation!

Polyatomic Molecules

What happens for quantum mechanics, and for polyatomic molecules? Use Harmonic Oscillator model.

- 3N-6 frequencies (3N-5 for linear molecules); the rest are translations and rotations with zero frequency
- In normal mode coordinates, Hamiltonian is separable: wavefunction is a product and energy is a sum. Total vibrational energy is $\sum_i \omega_i \hbar(v_i + 1/2)$
- Minimum energy (due to uncertainty principle) is "zero point vibrational energy" (ZPVE or ZPE), where $v_i = 0$ for all i. ZPVE = $\frac{1}{2}\hbar \sum_i \omega_i$

How Would We Get Harmonic Frequencies for a Molecule?

- Easy just diagonalize the second derivative matrix $\underline{\mathbf{F}}$, called the *Hessian*. The frequencies ω_i are the square roots of the eigenvalues, $\sqrt{\lambda_i}$.
- Where do we get \mathbf{F} ?
- Recall $f_{ij} = (\partial^2 V/\partial q_i \partial q_j)$
- Potential energy V is just E_e (B.O. approximation!): Need $\partial E_e^2/\partial q_i \partial q_j$.
- Compute second derivative of E_e in terms of Cartesian displacements $(x_{\alpha}, y_{\alpha}, z_{\alpha}, \text{ call them } \tilde{q}_i)$ and it's easy to transform to mass-weighted coordinates, using

$$\underline{\underline{\mathbf{F}}} = \underline{\underline{\mathbf{M}}}^{-1/2} \ \underline{\underline{\widetilde{\mathbf{F}}}} \ \underline{\underline{\mathbf{M}}}^{-1/2}.$$

• How do we get $\partial^2 E_e/\partial x_\alpha \partial y_\beta$, etc? Need second derivative of electronic energy vs nuclear coordinates. Can compute analytically (using formula) or numerically from finite differences of energies or gradients:

$$\frac{\partial^2 E_e}{\partial x_{\alpha} \partial y_{\beta}} \approx \left[\left(\frac{\partial E_e}{\partial y_{\beta}} \right) \bigg|_{x_{\alpha} = x_{\alpha 0} + \Delta x_{\alpha}} - \left(\frac{\partial E_e}{\partial y_{\beta}} \right) \bigg|_{x_{\alpha} = x_{\alpha 0} - \Delta x_{\alpha}} \right] / \Delta x_{\alpha}.$$

Analytic Hessian Better than Numerical

- Analytic Hessian might cost $\sim 10\text{-}30\mathrm{x}$ cost of energy; analytic gradient costs maybe $\sim 1.5\text{-}2\mathrm{x}$.
- Can need gradients from many displaced geometries up to 6N (+ and for each of 3N coordinates) unless reduced by point group symmetry
- Numerical Hessian contains numerical errors (divide small number by small number)
- (Can land on wrong solution if displacement drops symmetry)

Availability of Analytic Derivatives

Method	Gradient	Hessian
HF, DFT	Y	Y
CI	Y	N
CCSD, CCSD(T)	Y	S
MP2	Y	S
CASSCF	Y	S
CIS	Y	Y
EOM-CCSD	S	N
TD-DFT	S	N

S = available in some packages; Y = widely available

Approximate Average Errors in Harmonic Frequencies

(Using polarized double and triple zeta basis sets)

Method	Error
HF	11%
CISD	4-6%
CCSD	1-4%
$\frac{\text{CCSD}(T)}{T}$	1-3%

Anharmonicity accounts for another $\sim 2\text{-}3\%$ difference from experimental fundamental frequencies. Many workers employ scaling factors for each level of theory to better predict fundamental frequencies.

Scaling ZPVE's

In an enlightening paper, Grev, Janssen, and Schaefer [J. Chem. Phys. 95, 5128 (1991)] showed that using scaled fundamental frequencies to estimate the ZPVE is not necessarily better than using unscaled frequencies. The reason is anharmonicity.

If ZPVE's use scaling, they should have a different scaling factor than the individual frequencies.

$$G(v) = \sum_{r} \omega_{r} \left(v_{r} + \frac{1}{2} \right) + \sum_{r \geq s} \chi_{rs} \left(v_{r} + \frac{1}{2} \right) \left(v_{s} + \frac{1}{2} \right) + \cdots,$$

$$\Delta^{harm} = G(0) - ZPVE^{harm} = \frac{1}{4} \sum_{r} \chi_{rr} + \frac{1}{4} \sum_{r > s} \chi_{rs}.$$

$$\Delta^{fund} = G(0) - ZPVE^{fund} = -\frac{3}{4} \sum_{r} \chi_{rr} - \frac{1}{4} \sum_{r > s} \chi_{rs}.$$

Characterization of Stationary Points

- A stationary point is a geometry $\tilde{\mathbf{q}}$ for which the gradient $\partial E_e(\tilde{\mathbf{q}})/\partial \tilde{q}_i$ for all coordinates \tilde{q}_i : can be a (global or local) PES minimum, transition state, or higher order saddle point
- The *Hessian Index* is the number of negative force constants (corresponding to imaginary vibrational frequencies, often printed as negative frequencies)
- For a minimum, verify that there are no imaginary frequencies
- For a transition state, verify there is exactly one unique imaginary frequency

Dec 15, 00 14:54		h2o.fr	eq.out		Page 1/5
**************************************	******	*******	******	****	
cicero.chemistry.	gatech.edu	on Fri Dec 15 14	1:51:29 EST 20	00.	
Version: /usr/loc /usr/loc	cal/qchem.6. cal/qchem.6.	3.00/bin/qchem 3.00/exe/progman	ı.exe		
**************************************	Welcome to			****	
J. Kong, C. A. W R. D. Adamson, T S. R. Gwaltney, P. P. Korambath, G. S. Kedziora, N. A. Besley, P. E. F. C. Byrd, T C. P. Hsu, N. Is B. G. Johnson, F Q-Chem, Version	T. R. Furlan T. R. Adams C. Ochsenf D. R. Mauri E. Maslen, T. Van Voorh Shikawa, J. P. M. W. Gil	i, M. S. Lee, A , H. Dachsel, W eld, A. T. B. G: ce, N. Nair, Y. J. P. Dombrosk: is, M. Oumi, S. Florian, A. Wars 1, M. Head-Gord	M. Lee, M. Zhang, ilbert, Shao, J. Baker, Hirata, shel, Dn, J. A. Popl	е,	
Intel x86 Linux	Version				
User input:					
\$molecule 0 1 0 H1 O OH H2 O OH H1 HOH					
OH = 0.989276 HOH = 100.0198 \$end					
EXCHANGE	FREQ HF NONE STO-3G 2 E	nergies plus MOS	5		
Processing \$rem i				========	
######################################	an.exe on Fr	i Dec 15 14:51:3	30 2000 #		
I Atom	X	ntation (Angstro Y	Z		
1 O 2 H 3 H	0.000000 -0.757939 0.757939	0.00000 0.00000 0.00000	0.127153 -0.508611 -0.508611		
Molecular Point Largest Abelian Nuclear Repulsic	Group	C2v	NOp = 4		

Dec 15, 00 14:54		h2o.1	freq.out		Page 2/5
There are Requested basis s There are 4 shell A cutoff of 1.0I There are 34	ls and 7 basi D-10 yielded	s functions 10 shell	a electrons		
######################################	n.exe on Fri	Dec 15 14:51	:30 2000 #		
Smallest overlap Multipole matrice Guess from super Warning: Energy	es computed to position of a	hrough 2nd o atomic densit	rder ies	tional	
######################################	n.exe on Fri	Dec 15 14:51	:30 2000 #		
A restricted Hart performed using I SCF converges whe	Pulay DIIS ex en DIIS error	ktrapolation s is below 1.	0E-08		
Cycle Ener		DIIS Error			
1 -74.6063 2 -74.9233 3 -74.9653	1773729 3301871 3425178	4.01E-01 00 6.78E-02 00 8.77E-03 00	0000 0000 0000		
5 -74.9659 6 -74.9659	9011332 9011457	2.76E-05 00 1.08E-05 00	0000		
7 -74.9659 8 -74.9659	9011480 9011480	2.76E-05 00 1.08E-05 00 7.89E-08 00 2.72E-08 00 1.03E-08 00 3.60E-10 00	0000		
9 -74.9659 10 -74.9659	9011480 9011480	1.03E-08 00 3.60E-10 00	0000 0000 Conver	gence criter	ion met
SCF time: CPU 0					
Final Alpha MO Ei	igenvalues				
1 1 -20.2515674	2 -1.2576205	3 -0.5939092	4 -0.4597630	5 -0.3926280	6 0.5819312
1 0.6928062 Final Alpha MO Co		3	4	5	6
1 0.9942161	-0.2337592	0.0000000	-0.1040490	0.0000000	0.1258359
1 -0.0000000 2 0.0000000 3 0.9598513 4 -0.0000000 5 -0.0000000 6 0.8147663 7 -0.8147663 Final Alpha dens:			4	-	
2 -0.2276888 3 0.0000000 4 -0.0000000 5 -0.0540635 6 -0.0112263	-0.0000000 0.0000000 0.3029695	-0.0000000 0.3754133 -0.0000000 -0.0000000 -0.2752409	0.0000000 -0.0000000 1.0000000 -0.0000000 -0.0000000	0.3029695 -0.0000000 -0.0000000 0.5864768 -0.2421295	-0.0275650 -0.2752409

ec 15, 00 1	4:54		h2o.fre	eq.out	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5650 2409 0000 1295 4933				
	###########	:########	##########	#########	
Entering a	nlman.exe or	n Fri Dec	15 14:51:3	0 2000 #	
alysis of	SCF Wavefund	ction			
	Orbital Ener	rgies (a.u	.) and Sym	 metries	
pha MOs, R Occupied .252 -1.2 A1 2 A Virtual - .582 0.6 A1 2 B	 58 -0.594 1 1 B1	-0.460 - 3 Al	0.393 1 B2		
ta MOs, Re Occupied .252 -1.2 A1 2 A Virtual -	 558 -0.594 1 1 B1 93	-0.460 - 3 A1	0.393 1 B2		
A1 2 B	1				
AL 2 B	1		es		
Mull	iken Net Ato		es		
Mull Atom 1 0	iken Net Ato	Charge (a.u.) 		
Mull Atom 1 O 2 H 3 H	iken Net Ato	Charge (0.33 0.16	a.u.) 0636 5318 5318		
Mull Atom 1 0 2 H 3 H	iken Net Ato	Charge (-0.33 0.16 0.16	a.u.) 0636 5318 5318		
Mull Atom 1 O 2 H 3 H Jum of atom	iken Net Ato	Charge (-0.33 0.16 0.16 = 0.00	a.u.) 	 nts	
Mull Atom 1 O 2 H 3 H cum of atom	iken Net Ato	Charge (-0.33 0.16 0.16 = 0.00	a.u.) 	 nts	
Mull Atom 1 0 2 H 3 H cum of atom Charge (E	iken Net Ato	Charge (-0.33 0.16 0.16	a.u.) 	nts	
Mull Atom 1 O 2 H 3 H Cum of atom Charge (E Dipole Mo X Tot Quadrupol	iken Net Ato	Charge (-0.33 0.16 0.16 esian Mult	a.u.) 0636 5318 5318 0000 ipole Mome:	nts Z	-1.7094
Mull Atom 1 O 2 H 3 H Tum of atom Charge (E Dipole Mo X Tot Quadrupol XX XZ	iken Net Ato ic charges = Carte 3SU x 10^10) 0.0000 ment (Debye) 0.0000 1.7094 e Moments (I -4.4859 0.0000	Charge (-0.33 0.16 0.16	0.0000 0.0000	z YY ZZ	-1.7094 -6.1256 -5.3331
Mull Atom 1 O 2 H 3 H Tum of atom Charge (E Dipole Mo X Tot Quadrupol XX XZ	iken Net Ato ic charges = Carte 3SU x 10^10) 0.0000 ment (Debye) 0.0000 1.7094 e Moments (I -4.4859 0.0000	Charge (-0.33 0.16 0.16	0.0000 0.0000	z YY ZZ	-1.7094 -6.1256 -5.3331
Mull Atom 1 O 2 H 3 H Tum of atom Charge (E Dipole Mo X Tot Quadrupol XX XZ	iken Net Ato ic charges = Carte 3SU x 10^10) 0.0000 ment (Debye) 0.0000 1.7094 e Moments (I -4.4859 0.0000	Charge (-0.33 0.16 0.16	0.0000 0.0000	z YY ZZ	-1.7094 -6.1256 -5.3331
Mull Atom 1 O 2 H 3 H 3 H Charge (E Dipole Mo X Tot Quadrupol XX XZ Octapole XXX YYY YYZ ZZZ	iken Net Ato	Charge (-0.33 0.16 0.16 0.16	a.u.) 0636 5318 5318 0000 ipole Mome: 0.0000 0.0000 0.0000 0.0000 -0.5313 0.0000	z YY ZZ	-1.7094 -6.1256 -5.3331
Mull Atom 1 O 2 H 3 H Tum of atom Charge (E Dipole Mo X Tot Quadrupol XX YYZ YYZ YYZ YYZ Heyadecan	iken Net Ato iken Net Ato carte Carte Carte 0.0000 ment (Debye) 0.0000 1.7094 e Moments (I -4.4859 0.0000 0.0000 0.0000 0.0000 0.0000 0.0191 -0.1747 cole Moments	Charge (-0.33 0.16 0.16	a.u.) 0636 5318 5318 0000 ipole Mome: 0.0000 0.0000 0.0000 -0.5313 0.0000	z YY ZZ XYY XYZ YZZ	-1.7094 -6.1256 -5.3331 0.0000 0.0000 0.0000
Mull Atom 1 O 2 H 3 H Tum of atom Charge (E Dipole Mo X Tot Quadrupol XX YYZ YYZ YYZ YYZ Heyadecan	iken Net Ato iken Net Ato carte Carte Carte 0.0000 ment (Debye) 0.0000 1.7094 e Moments (I -4.4859 0.0000 0.0000 0.0000 0.0000 0.0000 0.0191 -0.1747 cole Moments	Charge (-0.33 0.16 0.16	a.u.) 0636 5318 5318 0000 ipole Mome: 0.0000 0.0000 0.0000 -0.5313 0.0000	z YY ZZ XYY XYZ YZZ	-1.7094 -6.1256 -5.3331 0.0000 0.0000 0.0000
Mull Atom 1 O 2 H 3 H Tum of atom Charge (E Dipole Mo X Tot Quadrupol XX YYZ YYZ YYZ YYZ Heyadecan	iken Net Ato iken Net Ato carte Carte Carte 0.0000 ment (Debye) 0.0000 1.7094 e Moments (I -4.4859 0.0000 0.0000 0.0000 0.0000 0.0000 0.0191 -0.1747 cole Moments	Charge (-0.33 0.16 0.16	a.u.) 0636 5318 5318 0000 ipole Mome: 0.0000 0.0000 0.0000 -0.5313 0.0000	z YY ZZ XYY XYZ YZZ	-1.7094 -6.1256 -5.3331 0.0000 0.0000 0.0000
Mull Atom 1 0 2 H 3 H um of atom Charge (E Dipole Mo X Tot Quadrupol XX XZ Octapole XXX YYY YYZ ZZZ Heyadecon	iken Net Ato	Charge (-0.33 0.16 0.16	a.u.) 0636 5318 5318 0000 ipole Mome: 0.0000 0.0000 0.0000 -0.5313 0.0000	z YY ZZ XYY XYZ YZZ	-1.7094 -6.1256 -5.3331 0.0000 0.0000 0.0000

```
Dec 15, 00 14:54
                                h2o.freq.out
                                                                Page 4/5
# Entering dryman.exe on Fri Dec 15 14:51:30 2000 #
Calculating MO derivatives via CPHF
          10
               2
                            0.009892
                                       0.007094
          12
                            0.000000
                                       0.000000
                      Ω
                                                  Roots Converged
Calculating analytic Hessian of the SCF energy
Polarizability Matrix (a.u.)
   1 -5.5054487 -0.0000000 -0.0000000
   2 -0.0000000 -0.0400454 -0.0000000
   3 -0.0000000 -0.0000000 -2.5654448
Direct stationary perturbation theory relativistic correction:
             0.031221304489
rels =
relv =
            -0.096844180832
rel2e =
            0.023322614724
E_rel =
            -0.042300261619
Hessian of the SCF Energy
      0.8044023 \qquad 0.0000000 \quad -0.0000000 \quad -0.4022012 \quad -0.0000000 \quad -0.3374251
      0.0000000 -0.0001352 0.0000000 -0.0000000 0.0000676 -0.0000000
   3 \quad -0.0000000 \quad 0.0000000 \quad 0.6352335 \quad -0.2165519 \quad -0.0000000 \quad -0.3176168
     -0.4022012 -0.0000000 -0.2165519
                                       0.4391751
                                                 0.0000000
                                                             0.2769885
     -0.0000000 0.0000676 -0.0000000
                                       0.0000000 -0.0000838
                                                             0.0000000
     -0.3374251 -0.0000000 -0.3176168
                                      0.2769885 0.0000000
                                                             0.3002754
      -0.4022012 -0.0000000 0.2165519
                                      -0.0369740 -0.0000000
                                                             0.0604366
      0.0000000 0.0000676 -0.0000000 -0.0000000 0.0000162
                                                             0.0000000
      0.3374251 - 0.0000000 - 0.3176168 - 0.0604366 - 0.0000000
                                                             0.0173414
                     8
                                9
      -0.4022012
                 0.0000000
                            0.3374251
     -0.0000000 0.0000676 -0.0000000
      0.2165519 -0.0000000 -0.3176168
      -0.0369740 -0.0000000 -0.0604366
      -0.0000000 0.0000162 -0.0000000
      0.0604366 0.0000000 0.0173414
      0.4391751 0.0000000 -0.2769885
      0.0000000 -0.0000838
                           0.0000000
     -0.2769885 0.0000000 0.3002754
Gradient time: CPU 0.59 s wall 1.00 s
# Entering vibman.exe on Fri Dec 15 14:51:31 2000 #
* *
* *
                       VIBRATIONAL ANALYSIS
                                                              * *
                       _____
**
* *
         VIBRATIONAL FREQUENCIES (CM**-1) AND NORMAL MODES
* *
                  INFRARED INTENSITIES (KM/MOL)
Frequency:
               2169.95
                                    4141.60
                                                         4392.63
IR Active:
                  YES
                                      YES
                                                            YES
IR Intens:
                 7.245
                                     44.303
                                                          29.972
Raman Active:
                  YES
                                       YES
                                                            YES
                   Y
          0.000 0.000 -0.069
                               0.000 0.000 0.052
                                                   -0.068 0.000 0.000
0
          -0.448 0.000 0.545
                              -0.570 0.000 -0.416
                                                    0.540 0.000 0.453
Η
Η
          0.448 0.000 0.545
                               0.570 0.000 -0.416
                                                    0.540 0.000 -0.453
STANDARD THERMODYNAMIC QUANTITIES AT
                                  298.18 K AND
                                                    1.00 ATM
  This Molecule has 0 Imaginary Frequencies
```