PerformPreprocessingTask

September 11, 2022

1 Data Preprocessing

```
[1]: # Importing the Required Libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

```
Loading the CSV file into Pandas Dataframe
[2]: df = pd.read_csv("data.csv",encoding='ISO-8859-1')
    /tmp/ipykernel_6616/901186919.py:1: DtypeWarning: Columns (0) have mixed types.
    Specify dtype option on import or set low_memory=False.
      df = pd.read_csv("data.csv",encoding='ISO-8859-1')
[3]: df.head()
[3]:
       stn_code
                      sampling_date
                                               state
                                                       location agency
          150.0 February - M021990
                                     Andhra Pradesh Hyderabad
                                                                   NaN
     1
          151.0 February - M021990
                                     Andhra Pradesh Hyderabad
                                                                   NaN
     2
          152.0 February - M021990
                                      Andhra Pradesh Hyderabad
                                                                   NaN
     3
          150.0
                    March - M031990
                                      Andhra Pradesh Hyderabad
                                                                   NaN
          151.0
                    March - M031990
                                     Andhra Pradesh
                                                      Hyderabad
                                                                   NaN
                                             so2
                                                              spm
                                      type
                                                   no2
                                                        rspm
       Residential, Rural and other Areas
                                            4.8
                                                  17.4
                                                              NaN
     0
                                                         NaN
     1
                           Industrial Area
                                             3.1
                                                   7.0
                                                         NaN
                                                              NaN
     2 Residential, Rural and other Areas
                                             6.2
                                                  28.5
                                                         NaN
                                                              NaN
     3
       Residential, Rural and other Areas
                                             6.3
                                                  14.7
                                                         NaN
                                                              NaN
                                             4.7
                                                   7.5
                           Industrial Area
                                                         NaN
                                                              {\tt NaN}
       location_monitoring_station
                                    pm2_5
                                                  date
     0
                               NaN
                                      NaN
                                            1990-02-01
     1
                               NaN
                                      NaN
                                            1990-02-01
     2
                                      NaN
                                            1990-02-01
                               NaN
     3
                                      NaN
                                            1990-03-01
                               NaN
```

1.2 1. Summarized details of the data.

1.2.1 Data Type Info

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 435742 entries, 0 to 435741

Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	stn_code	291665 non-null	object
1	sampling_date	435739 non-null	object
2	state	435742 non-null	object
3	location	435739 non-null	object
4	agency	286261 non-null	object
5	type	430349 non-null	object
6	so2	401096 non-null	float64
7	no2	419509 non-null	float64
8	rspm	395520 non-null	float64
9	spm	198355 non-null	float64
10	location_monitoring_station	408251 non-null	object
11	l pm2_5	9314 non-null	float64
12	2 date	435735 non-null	object

dtypes: float64(5), object(8)

memory usage: 43.2+ MB

1.2.2 Statistical Summary

[5]: df.describe()

[5]:		so2	no2	rspm	spm	pm2_5
	count	401096.000000	419509.000000	395520.000000	198355.000000	9314.000000
	mean	10.829414	25.809623	108.832784	220.783480	40.791467
	std	11.177187	18.503086	74.872430	151.395457	30.832525
	min	0.000000	0.000000	0.000000	0.000000	3.000000
	25%	5.000000	14.000000	56.000000	111.000000	24.000000
	50%	8.000000	22.000000	90.000000	187.000000	32.000000
	75%	13.700000	32.200000	142.000000	296.000000	46.000000
	max	909.000000	876.000000	6307.033333	3380.000000	504.000000

1.3 2. Count the number of data

[6]: df.size

[6]: 5664646

1.4 3. How Many rows and Columns are there in the dataset

```
[7]: df.shape
```

[7]: (435742, 13)

There are 435742 rows and 13 columns

1.5 4. How many null data are in each column

[8]:	Column Name	NullCount	percentage
11	l pm2_5	426428	97.862497
9	spm	237387	54.478797
4	agency	149481	34.304933
0	stn_code	144077	33.064749
8	rspm	40222	9.230692
6	so2	34646	7.951035
10	O location_monitoring_station	27491	6.309009
7	no2	16233	3.725370
5	type	5393	1.237659
12	2 date	7	0.001606
1	sampling_date	3	0.000688
3	location	3	0.000688
2	state	0	0.000000

From the datafame above we can see that column pm2_5 has maximum percentage of null values

1.6 5. Drop out the following columns stn_code, agency, sampling_date, location_monitoring_agency

```
[9]: df.

drop(columns=['stn_code', 'agency', 'sampling_date', 'location_monitoring_station'],

inplace=True)
```

```
[10]: df.head()
```

```
[10]: state location type so2 no2 \
0 Andhra Pradesh Hyderabad Residential, Rural and other Areas 4.8 17.4
1 Andhra Pradesh Hyderabad Industrial Area 3.1 7.0
```

```
2 Andhra Pradesh
                         Hyderabad
                                     Residential, Rural and other Areas 6.2 28.5
                                     Residential, Rural and other Areas
      3 Andhra Pradesh
                          Hyderabad
                                                                           6.3 14.7
      4 Andhra Pradesh
                         Hyderabad
                                                         Industrial Area 4.7
                                                                                 7.5
               spm pm2_5
                                  date
         rspm
                            1990-02-01
      0
          NaN NaN
                      {\tt NaN}
          NaN NaN
                       {\tt NaN}
                            1990-02-01
      1
      2
          NaN NaN
                       {\tt NaN}
                            1990-02-01
      3
          NaN NaN
                       {\tt NaN}
                            1990-03-01
      4
          NaN NaN
                       {\tt NaN}
                            1990-03-01
[11]: df[df['date'].isna()].shape
[11]: (7, 9)
[12]: df.shape
[12]: (435742, 9)
     1.7 6. Drop out the row where the date is not available.
[13]: df.dropna(subset=['date'],inplace=True)
[14]: df.shape
[14]: (435735, 9)
[15]: df['type'].value_counts()
[15]: Residential, Rural and other Areas
                                              179013
      Industrial Area
                                               96089
      Residential and others
                                               86791
      Industrial Areas
                                               51747
      Sensitive Area
                                                8979
      Sensitive Areas
                                                5536
      RIRUO
                                                1304
      Sensitive
                                                 495
      Industrial
                                                 233
      Residential
                                                 158
      Name: type, dtype: int64
```

1.8 7. Making Values Uniform

Notice that the 'type' column has values such as 'Industrial Area' and 'Industrial Areas'. So, let's remove such type of stuff as changing the types to uniform format As:

- 1. "Residential": "R",
- 2. "Residential and others": "RO",

```
3. "Residential, Rural and other Areas": "RRO",
     4. "Industrial Area": "I",
     5. "Industrial Areas": "I",
     6. "Industrial": "I",
     7. "Sensitive Area": "S",
     8. "Sensitive Areas": "S",
     9. "Sensitive": "S",
     10. np.nan: "RRO"
[16]: df['type']=df['type'].replace({
          'Industrial Area':'I',
          'Industrial Areas':'I',
          'Industrial':'I',
          'Sensitive Area':'S',
          'Sensitive Areas':'S',
          'Sensitive':'S',
          'Residential':'R',
          'Residential and others': 'RO',
          'Residential, Rural and other Areas': 'PRO',
          np.nan:'PRO'
      })
[17]: df['type'].value_counts()
[17]: PRO
               184403
      Ι
               148069
      RO
                86791
      S
                15010
      RIRUO
                 1304
                  158
      Name: type, dtype: int64
[18]: df.isna().sum()
[18]: state
                       0
                       0
      location
      type
                       0
      so2
                   34643
     no2
                   16230
      rspm
                   40219
                  237380
      spm
                  426421
      pm2_5
      date
                       0
      dtype: int64
```

1.9 8. Create additional column year

```
[19]: df['year'] = pd.to_datetime(df['date']).dt.year
[20]: df.head()
[20]:
                    state
                            location type
                                             so2
                                                    no2
                                                         rspm
                                                                spm
                                                                     pm2_5
                                                                                    date \
      O Andhra Pradesh Hyderabad PRO
                                             4.8
                                                   17.4
                                                           {\tt NaN}
                                                                {\tt NaN}
                                                                             1990-02-01
                                                                        NaN
      1 Andhra Pradesh Hyderabad
                                             3.1
                                                    7.0
                                                                NaN
                                                                        {\tt NaN}
                                                                              1990-02-01
                                          Ι
                                                           {\tt NaN}
      2 Andhra Pradesh Hyderabad
                                       PRO
                                             6.2
                                                   28.5
                                                           NaN
                                                                NaN
                                                                              1990-02-01
                                                                        {\tt NaN}
      3 Andhra Pradesh Hyderabad
                                       PRO
                                             6.3
                                                   14.7
                                                          {\tt NaN}
                                                                NaN
                                                                        {\tt NaN}
                                                                              1990-03-01
      4 Andhra Pradesh Hyderabad
                                          Ι
                                             4.7
                                                    7.5
                                                          {\tt NaN}
                                                                {\tt NaN}
                                                                        {\tt NaN}
                                                                             1990-03-01
         year
      0 1990
      1 1990
      2 1990
      3 1990
      4 1990
```

1.10 9. Remove null values from SO2, NO2, rspm, spm, pm2_5

1.10.1 Plotting Histogram for Each Column

```
[21]: columns = ['so2', 'no2', 'rspm', 'spm', 'pm2_5']
for column in columns:
    df[column].plot(kind='hist')
    plt.title(f'{column} Histogram')
    plt.show()
```



```
[22]: for column in columns:
    sns.boxplot(df[column])
    plt.title(f'{column} Box Plot')
    plt.show()
```


Looks like none of the column follow normal distribution we will repalce the \mathtt{Null} or $\mathtt{Missing}$ Values with \mathbf{median}

```
[24]: for column in columns:
          df[column].fillna(df[column].median(),inplace=True)
      df.isna().sum()
[24]: state
                  0
      location
                  0
      type
                  0
      so2
                  0
      no2
                  0
                  0
      rspm
                  0
      spm
      pm2_5
                  0
                  0
      date
```

1.11 10. Plot barchart state wise of so2, no2, rspm, spm, pm2_5

```
[73]: new_df.plot(x='state',kind='bar',stacked=False,title='State Wise_
Gomparision',figsize=(10,5),width=2.5)
```

[73]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcf978c10a0>

year

dtype: int64

0

1.12 11. What is the yearly trend in a particular state, say 'Andhra Pradesh'?

```
[77]: df_s = df[df['state'] == 'Andhra Pradesh']
[84]: plt.plot(df_s['year'],df_s['so2'])
```

/usr/lib/python3/dist-packages/matplotlib/cbook/__init__.py:1402: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead.

ndim = x[:, None].ndim

/usr/lib/python3/dist-packages/matplotlib/axes/_base.py:276: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead.

x = x[:, np.newaxis]

/usr/lib/python3/dist-packages/matplotlib/axes/_base.py:278: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead.

y = y[:, np.newaxis]

[84]: [<matplotlib.lines.Line2D at 0x7fcf934b76d0>]

[]: