

System Level Analysis of Hydrogen Storage Options

R. K. Ahluwalia, T. Q. Hua, J. K. Peng and R. Kumar

2010 DOE Hydrogen Program Review
Washington, DC
June 8-11, 2010

Project ID: ST001

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project start date: Oct 2009

Project end date: Sep 2014

Percent complete: 20%

Budget

FY10: \$700 K

FY09: \$960 K

Barriers

- H₂ Storage Barriers Addressed:
 - A: System Weight and Volume
 - B: System Cost
 - C: Efficiency
 - E: Charging/Discharging Rates
 - J: Thermal Management
 - K: System Life-Cycle Assessments

Partners/Interactions

- FreedomCAR and Fuel Partnership
- Storage Systems Analysis Working Group, MH COE, CH COE
- BMW, Caltech, Ford, GM, LANL, LLNL, TIAX, Lincoln Composites, SCI, UTC, and other industry

Objectives and Relevance

- Perform independent systems analysis for DOE
 - Provide input for go/no-go decisions
- Provide results to CoEs for assessment of performance targets and goals
 - Address all aspects of on-board and off-board storage targets including capacity, charge/discharge rates, GHG emissions, safety, and cost
- Model and analyze various developmental hydrogen storage systems
 - On-board system analysis
 - Off-board regeneration
 - Reverse engineering
- Identify interface issues and opportunities, and data needs for technology development

Approach

- Develop thermodynamic and kinetic models of processes in physical, complex metal hydride, sorbent, and chemical hydrogen storage systems
 - Select rigor of analysis to resolve system-level issues, conduct trade-off analysis and provide fundamental understanding of system/material behavior
- Calibrate, validate and evaluate models
- Work closely with the DOE Contractors, CoEs, Storage Tech Team, other developers, and Storage Systems Analysis Working Group (SSAWG)
- Assess improvements needed in materials properties and system configurations to achieve H₂ storage targets
- Organize monthly SSAWG calls and communicate results and discuss work plans

Collaborations

cH2	Lincoln Composites, Quantum, SCI
CcH2	BMW, LLNL, SCI
Metal Hydrides	BNL, UH/UB, UTC
Chemical Hydrides	APCI, CHCoE (LANL/UPenn)
Sorbents	HSCoE (NREL), SWRI®
GHG Emissions	ANL (GREET)
Off-Board Regeneration	MHCoE (BNL, SRNL), CHCoE (LANL, PNNL)
Off-Board Cost	ANL (H2A Group), ANL (HDSAM)
On-Board Cost	TIAX
SSAWG	CHCoE, HSCoE, HSECoE, MHCoE, DOE, OEMs, Tank Manufactures, TIAX

 Argonne develops the storage system configuration, determines performance, identifies and sizes components, and provides this information to TIAX for high-volume manufacturing cost estimation

Technical Accomplishments

- Systems analyzed or updated in FY2010
 - Physical storage: cH2, CcH2, LH2
 - Sorption storage: MOF-177, AC
 - Chemical storage: AB/IL
- Systems are at different stages of development and have been analyzed to different levels of sophistication
 - Results are constantly updated

System Analysis of Physical Storage Systems

- Benedict-Webb-Rubin equation of State: REFPROP coupled to GCtool
- Carbon Fiber Netting Analysis
 - Algorithm for optimal dome shape with geodesic winding pattern (i.e., along iso-tensoids)
 - Algorithm for geodesic and hoop windings in cylindrical section
- Fatigue Analysis of Type 3 Tanks
 - Algorithm for residual compressive stresses introduced by autofrettage, pre- and post-proof load distribution between liner and CF
 - Unloading of residual stresses under cryogenic conditions
 - S/N curves for Al 6061-T6 alloy, non-zero mean stresses
 - 5500 pressure cycles at 1.25 NWP (SAE J2579)
- Dynamic models for gaseous/liquid refueling, discharge, dormancy
- Models for off-board analysis
 - FCHtool and GREET for greenhouse gas emissions
 - H2A for pathway analysis
 - HDSAM for scenario analysis

Compressed H₂ Storage in Type 3 and Type 4 Tanks

- Type 3 Tanks
 - For cost and weight reasons, shift the load to carbon fiber
 - Maximum load share in CF limited to 90% because of liner fatigue life and constraint on proof pressure
 - Type 3 tank may not be appropriate for service at 700 bar
- Type 4 Tanks (Single-tank design)
 - Higher volumetric but lower gravimetric capacity at 700 bar
 - CF requirement function of translation efficiency, safety factor and variability of fiber strength at high volume manufacturing

Cryo-Compressed H₂ Storage

- LLNL Gen-3 System Configuration
 - Reduced insulation, Better packaging, Vacuum valve box eliminated
 - In-tank heat exchanger, 4000-psi pressure vessel rating
- Projected capacity of the scaled 5.6-kg system meets 2015 targets
 - Single vs. double flow nozzle, liquid H₂ pump
 - Gravimetric capacity > 9% with aluminum shell but higher cost
 - Maximum CF load share limited to 85% at cryogenic T, 276 bar

Charge and Discharge Behavior

- Storage capacity is a function of initial temperature
 - Can store 6.4 kg usable H₂ (80.8 g/L) starting from 50 K, 4 atm
- Heat supplied during discharge to maintain 4-atm minimum P
 - 2.3 MJ for 34.3 K initial T, 6.4 kg stored H₂

Dormancy and Hydrogen Loss Rate

- No loss of hydrogen after tank reaches 323 K, tank 30% full
- Difficult to always meet the targets of 0.1/0.05 g/h/kg-H₂ with 5 W reference heat in-leakage rate
- No H₂ loss with minimal daily driving (LLNL work)

Hydrogen Storage in Metal Organic Frameworks Adiabatic Liquid H₂ Refueling

Key System Requirements
Storage Medium

- 5.6 kg recoverable H₂
- 4-bar minimum delivery P
- MOF-177, 0.6 packing fraction

Type-3 Containment Vessel

- 2.25 safety factor
- 5,500 P and T cycles
- Toray 2550 MPa CF
- Al 6061-T6 alloy liner

Heat Transfer System

- 1.5 kg/min H₂ refueling rate
- 1.6 g/s H₂ min flow rate
- 1.3 W radiative in-leakage

System Storage Capacity – Optimum P & T

 System gravimetric capacity peaks at ~150 atm but the volumetric capacity increases slowly with storage pressure

Refueling/Discharge Dynamics and Dormancy

- Refueling: 7.1 MJ evaporative cooling load
 - 62% for Δ H, 38% for sensible cooling and PV work
- Discharge options
 - Constant Q (1.2 kJ/g of H₂ discharged), 1.9 kW
 - Variable Q, heat supplied only if tank P < 4 atm, 6.3-kW peak Q
- Dormancy: Function of amount of H₂ stored and P/T at start of the event
 - Minimum dormancy is 16 W.d (2.8 days at 5 W in-leakage rate)
 - Peak H₂ vent rate is 1 g/h/W (4.8 g/h at 5 W in-leakage rate)

Cold Gas Storage

- Gravimetric capacity suffers at high pressures and low temperatures
- At low pressures, liquid H₂ may be needed to reach the storage temperatures required for target volumetric capacity
- Difficult to match 2015 targets without liquid H₂ infrastructure

Hydrogen Storage using Ammonia Borane in Ionic Liquids – Preliminary Results

Work at UPenn has shown that 1.1 H₂-equiv are released in 5 min and 2.2 H₂-equiv in 20 min from 50:50 wt% AB/bmimCl at 110°C

	Unit	Value	Comments/Source				
AB							
Molecular weight		30.9					
H ₂ content	wt.%	19.6					
Melting point	°C	110 - 114	E. Mayer, Inorg. Chem., 12, 1954–1955, 1973				
Density	kg/m³	780					
Thermal stability	O°	90 -110	1 st H ₂ -equiv released, >1 h induction period for release at 85°C				
and decomposition		150°C	2 nd H ₂ -equiv released				
		>450°C	3rd H ₂ -equiv released				
DH	kJ/mol-H ₂	21	Exothermic reaction				
Solvent: 1-butyl-3-me	ethylimadazol	lium chloride (l	omimCl)				
Molecular weight		174.7					
Melting point	Ω°	70	BASF				
Flash point	°C	192	BASF				
Density	kg/m³	1050	at 80°C, BASF				
Viscosity	Pa-s	0.147	at 80°C, BASF				
Specific heat	kJ/kg-K	1.81	at 80°C, BASF				
Thermal stability	°C	?					
50:50 wt% AB/bmim(Cl						
H ₂ content	wt.%	9.9	Himmelberger et al, Inorg. Chem., 48, 9883-9889, 2009				
Melting point	°C	NA	Liquid at room temperature				
Density	kg/m ³	NA					
Viscosity	Pa-s	NA	Stirrable liquid at room temperature				
Specific heat	kJ/kg-K	NA					
Thermal stability	°C	NA	Foams once H ₂ is released; foam begins to convert to white solid				
and decomposition			after releasing 1 H ₂ -equiv; entire mixture becoms solid after				
			releasing 2 H ₂ -equiv; no induction period for H ₂ release.				
DH	kJ/mol-H ₂	33	Exothermic reaction				

Dehydrogenation Kinetics: 50:50-wt% AB in bmimCl

- Avrami-Erofeyev fits to rates derived from UPenn cumulative release data
- Need T > 150°C for 67 mEq/s average release rate if 2 H₂-equiv are to be released in 30 s, 120 h⁻¹ liquid hourly space velocity (LHSV)

Dehydrogenation Reactor Performance

- Main challenge: control peak T and AB conversion using heat transfer and product recycle (R: recycle ratio)
 - Adiabatic T rise in excess of 500°C ($\Delta T_{ad} = 295N_{H2}$)
- Difficult to control the peak temperature by heat transfer
- Inverse relationship between peak temperature and inlet temperature
- R < 0.95 for 100% conversion (2.2 H₂-Eq) at 150°C T,150 h⁻¹ LHSV
- R > 0.8 to limit maximum temperature to 250°C

- AB flow rate adjusted for 1.6 g/s of H₂ at 100% conversion
- Coolant (ethylene glycol) flow rate adjusted for 10°C ∆T with 26.4 kW heat transfer

Adiabatic Operation of Reactor

- The 100% conversion line determines the maximum recycle ratio as a function of the inlet temperature
- Lower peak temperature if the reactor is operated adiabatically: 275°C vs. >320°C with cooling (125°C inlet T)
- Simpler reactor design but 100% of the heat of reaction has to be removed elsewhere in the system

On-board System Configuration

- Volume exchange tank design for storing fresh and spent fuel
- Adiabatic vs. non-adiabatic dehydrogenation reactor
- Buffer hydrogen tank
- Heat transfer system (FCS HT and LT coolants)
- Gas liquid separator (coalescing filter)
- Startup heater (electrical)

Summary and Status

- Results given as single data points, consult references for range, sensitivity and background
- Metrics cover all DOE targets for on-board and off-board storage
- Some results vetted, others for developmental materials and processes
- Providing quantitative results for kinetics and thermodynamics of sorption & desorption and hydrogenation & dehydrogenation, usable & recoverable H₂, cyclic material behavior, on-board & off-board heat transfer, GHG emissions, regeneration pathways and efficiencies, and fuel and ownership cost

Performance and Cost Metric	Units	cH2 350-bar	cH2 700-bar	LH2	CcH2	MOF-177	2010 Targets	2015 Targets	Ultimate Targets
Usable Storage Capacity (Nominal)	kg-H ₂	5.6	5.6	5.6	5.6	5.6			
Usable Storage Capacity (Maximum)	kg-H ₂	5.6	5.6	5.6	6.6	5.6			
System Gravimetric Capacity	wt%	5.5	5.2	5.6	5.5-9.2	4.0	4.5	5.5	7.5
System Volumetric Capacity	kg-H ₂ /m ³	17.6	26.3	23.5	41.8-44.7	34.6	28	40	70
Storage System Cost	\$/kWh	13.4	20	TBD	12	18	4	2	TBD
Fuel Cost	\$/gge	4.2	4.3	TBD	4.80	4.6	2-3	2-3	2-3
Cycle Life (1/4 tank to Full)	Cycles	NA	NA	NA	5500	5500	1000	1500	1500
Minimum Delivery Pressure, FC/ICE	atm	4	4	4	3-4	4	4/35	3/35	3/35
System Fill Rate	kg-H ₂ /min	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.2	1.5	2.0
Minimum Dormancy (Full Tank)	W-d	NA	NA	2	4-30	2.8			
H ₂ Loss Rate (Maximum)	g/h/kg-H ₂	NA	NA	8	0.2-1.6	0.9	0.1	0.05	0.05
WTT Efficiency	%	56.5	54.2	22.3	41.1	41.1	60	60	60
GHG Emissions (CO ₂ eq)	kg/kg-H ₂	14.0	14.8	TBD	19.7	19.7			
Ownership Cost	\$/mile	0.12	0.15	TBD	0.12	0.15			

Future Work

As lead for Storage System Analysis Working Group, continue to work with DOE contractors and CoEs to model, validate and analyze various developmental hydrogen storage systems.

Physical Storage

- Multi-tank compressed H₂ tank system
- Advanced cryo-compressed storage concepts

Metal Hydrides

- Update of alane slurry storage system analysis
- Regeneration of alane/other off-board regenerable metal hydrides
- Reversible metal-hydride storage system

Sorbent Storage

- Analysis of generic sorbent system with arbitrary heat of adsorption
 Chemical Hydrogen
- On-board system for AB/IL class of materials (LANL collaboration)
- Fuel cycle efficiency of AB regeneration (PNNL/LANL collaboration)
- Advanced reactor concepts for organic liquid carriers

Supplemental Slides

On-Board Performance: Key Assumptions

	Parameter	Reference Values					
Sorbent	MOF-177	J. Mater. Chem., 2007, 17, 3197-3204					
	Skeletal density	1534 kg/m ³					
	Crystallographic density	427 kg/m ³ (1.56 cm ³ /g pore volume)					
	Bulk density	256 kg/m ³ (0.6 packing fraction)					
	Thermal conductivity	0.3 W/m.K					
Insulation	Multi-Layer Vac. Super Insulation	Aluminized Mylar sheets, Dacron spacer					
	Layer density	28 cm ⁻¹					
	Density	59.3 kg/m ³					
	Pressure	10 ⁻⁵ torr					
	Effective conductivity	5.2x10 ⁻⁴ W/m.K					
Tank	T700S Carbon Fiber	Toray Carbon Fiber					
	Tensile strength	2550 MPa					
	Density	1600 kg/m ³					
	L/D	2					
	Liner	Al 6061-T6 alloy, 5500 PT cycles, 125% NWP					
	Shell	3.2-mm thick Al 6061-T6 alloy					
Refueling	Adiabatic Refueling with LH ₂						
	Storage temperature	Function of storage pressure					
	Temperature swing	Function of storage temperature					
Discharge	H ₂ Recirculation						
	Temperature rise	150 K					
	Recirculation rate	TBD					
System	Miscellaneous weight	16 kg					
	Miscellaneous volume	10 L					

Modeled Hydrogen Adsorption Isotherms

- H Furukawa, M Miller, M Yaghi (J. Mater. Chem. 2007, 3197 3204)
 - MOF-177, Zn₄O(1,3,5-benzenetribenzoate) crystals
 - Peak 75 g-H₂/kg surface excess at 77 K, 70 atm;110 g/kg absolute
- Low-T data fitted to Dubinin-Astakhov (D-A) isotherm with m=2.5
 - Derived ΔH_a : 5.3 kJ/mol at $N_a/N_{a,max}$ <<0.1, 2 kJ/mol at $N_a/N_{a,max}$ =0.5
- Need temperature swing to release H₂ sorbed in MOF
 - At 4 atm, $N_{ex}/N_{ex,max}$ =79% (50 K), 41% (77 K), 19% (100 K)

Modeled Uptake at 100 K

- 62 g-H₂/kg peak excess adsorption at 100 atm
- 101 g-H₂/kg peak absolute adsorption at 100 atm

Adiabatic Refueling Option

- Adiabatic refueling with LH₂
 - Hydrogen recirculated during discharge to provide the heat of desorption & $\Delta \mathsf{T}$
- Optimum storage temperature (120 K) for maximum recoverable excess adsorption capacity
 - Allowable temperature swing increases with increase in storage temperature, $\Delta T = 0$ at 90 K

 Excess adsorption capacity generally decreases with increase in storage temperature

System Storage Capacity - Optimum Temperature

- Optimum storage T (95 K) for maximum system capacity is lower than the T at which recoverable excess capacity is maximum
 - 4.8 wt% maximum system gravimetric capacity
 - 33.9 kg-H₂/m³ maximum system volumetric capacity

System Storage Capacity - Optimum Pressure

- Optimum storage temperature is a function of storage pressure
- Gravimetric capacity peaks at about 150 atm storage pressure

Weight and Volume Distribution

- 4.8-wt% gravimetric and 33.9 kg/m³ volumetric capacity at 250 atm
 - Medium and liner account for >50% the overall weight
 - 68% volumetric efficiency

Refueling Dynamics

- Evaporative cooling (7.1 MJ cooling load)
 - 62% of the cooling duty is due to heat of adsorption
 - 38% is due to sensible cooling of active thermal mass and PV work

Dormancy

- Dormancy: Function of amount of H₂ stored and P/T at start of the event
 - Minimum dormancy is 16 W.d (2.8 days at 5 W in-leakage rate)
 - Peak H₂ vent rate is 1 g/h/W (4.8 g/h at 5 W in-leakage rate)

Sensitivity Analysis

- Baseline conditions: 250 bar, 100 K, 0.6 packing fraction
- Allowable DT depends on operating conditions and decreases with increase in adsorption

Off-Board Performance

- Two pathways: SMR/U.S grid mix and electrolysis/renewable
- Three market penetrations: 2/15/40% (Sacramento, CA)

Process	Nominal Value	Source/Comment				
Production						
SMR central plant capacity	341,448 kg H ₂ /d	H2A, turnkey from Krupp-Uhde				
SMR efficiency	73%	H2A				
Central electrolysis, electrolyzer capacity	1046 kg H ₂ /d	H2A				
Electrolysis efficiency	74.7%	H2A				
Electricity production efficiency	32.2%	EIA projected U.S. grid for 2015, inclusive of 8% transmission loss from power plant to user site				
Cost of natural gas	\$0.22/Nm3	H2A				
Cost of electricity	\$0.05-0.06/kWh	H2A				
Delivery						
H ₂ Liquefaction	8.2 kWh/kg	HDSAM, 150 tons/day liquefier				
Truck capacity	4300 kg	HDSAM				
Station capacity	400-1000 kg/d	2-40% market penetration, HDSAM				
Boil-off losses	9.5%	HDSAM: liquefaction 0.5%, storage 0.25%/day, loading 0.5 %, unloading 2%, cryopump 3%				
On-board						
Manufacturer/dealer markup	1.72	DOE 2008				
Discount rate	15%	DOE 2008				
Vehicle fuel economy	63.0 mpgge	PSAT				
Annual mileage	12,000 miles	DOE 2008				
Regulated pollutant and GHG emissions	range	GREET				

Regulated Pollutant and GHG Emissions

- Total GHG emissions = 19.7 kg/kg-H₂ (CO₂ equivalent)
 - Production: 62% (inclusive of 9.5% H₂ loss during on-site storage and distribution)
 - Storage: 37% (central liquefaction)
 - Distribution: <1% (truck delivery)
- g/kg-H₂ delivered to vehicle

Process	voc	со	NO _x	PM ₁₀	SO _x	CH₄	N ₂ O	CO ₂	GHG
H ₂ Production	-	ı	1	ı	ı	0.02	0.00	11,613	12,180
Liquefaction	0.64	1.66	10.92	9.52	24.20	9.16	0.10	6,987	7,227
Refueling Station	0.02	0.05	0.30	0.26	0.67	0.26	0.00	195	201
Truck Delivery	0.04	0.12	0.45	0.02	0.03	0.10	0.00	86	89
Total:	0.70	1.83	11.67	9.80	24.90	9.54	0.10	18,881	19,697

WTT Efficiency and GHG Emissions

- 35.6-41.1% WTT efficiency, below 60% DOE target for physical storage
- GHG emissions are comparable to conventional gasoline ICEV (~0.35 kg CO₂/mile, 30 mpg)

Refueling Cost

- Fuel cost dominates production cost (SMR: 77% fuel, 14% capital
- Capital cost dominates delivery cost (55% capital, 18% fuel)
- Delivery cost dominates refueling cost in SMR pathway (67%)

Ownership Cost

- On-board system accounts for 50% of ownership cost in SMR pathway (\$18/kWh preliminary TIAX cost estimate)
- Ownership cost >50% higher than for conventional gasoline ICEV (~\$0.1/mile, 30 mpg and \$3/gal untaxed)

On-Board and Off-Board Performance of Hydrogen Storage in Metal Organic Frameworks

On-Board Performance

- System with adiabatic liquid H₂ refueling
- Adsorption isotherms
- Gravimetric and volumetric storage capacity
- Refueling and discharge dynamics
- Dormancy and H₂ loss rate
- Sensitivity analyses

Off-Board Performance

- Regulated pollutant and GHG emissions
- WTT efficiency
- Refueling cost
- Ownership cost

Hydrogen Storage using Ammonia Borane in Ionic Liquids – Preliminary Results

AB/IL on-board storage system

- Physical properties of ionic liquid solvent and AB solution
- Dehydrogenation kinetics
- Dehydrogenation reactor
 - Control of AB conversion and peak temperature
 - Adiabatic operation
- System configuration
- Future work
 - Reactor startup and shutdown
 - Shelf life
 - System gravimetric and volumetric capacities
 - Off-board regeneration and fuel cycle efficiency

Dehydrogenation Reactor Model

- Main challenge is to control the peak temperature (bmimCL stability, undesirable side products) and AB conversion (regenerability) by using heat transfer and/or product recycle
 - Adiabatic temperature rise in excess of 500°C (∆T_{ad} = 295N_{H2})
- AB conversion (Φ, Φ_1, Φ_2)
- Recycle ratio (R)
- Liquid hourly space velocity (LHSV) defined on the basis of volumetric flow rate of fuel (AB/IL)

$$\Phi = 1 - \frac{(\beta_{1} + \beta_{2}) N_{1} + \beta_{2} N_{2}}{(\beta_{1} + \beta_{2}) N_{1} + \beta_{2} N_{2}} R = 1 - \frac{(N_{1} + N_{2} + N_{3} + N_{s})}{(N_{1} + N_{2} + N_{3} + N_{s})} LHSV = \frac{V_{f}}{V_{t}}$$

$$\Phi_{1} = 1 - \frac{N_{1}}{N_{1}}$$

$$\Phi_{2} = 1 - \frac{N_{2}}{N_{2}}$$

$$\Phi_{2} = 1 - \frac{N_{2}}{N_{2}}$$

$$\Phi_{3} = \frac{1 - \frac{N_{1}}{N_{1}}}{(N_{2} + \Phi_{1} N_{1})}$$

$$\Phi_{4} = \frac{1 - \frac{N_{2}}{N_{2}}}{(N_{2} + \Phi_{1} N_{1})}$$

$$\Phi_{5} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{6} = \frac{1 - \frac{N_{1}}{N_{2}}}{(N_{2} + \Phi_{1} N_{1})}$$

$$\Phi_{7} = \frac{1 - \frac{N_{1}}{N_{2}}}{N_{2}}$$

$$\Phi_{8} = \frac{1 - \frac{N_{1}}{N_{1}}}{(N_{1} + N_{2} + N_{3} + N_{s})}$$

$$\Phi_{1} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{2} = \frac{1 - \frac{N_{1}}{N_{2}}}{(N_{1} + N_{2} + N_{1})}$$

$$\Phi_{3} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{4} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{5} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{7} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{8} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{1} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{2} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{3} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{4} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{5} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{7} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{8} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{1} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

$$\Phi_{2} = \frac{1 - \frac{N_{1}}{N_{1}}}{N_{1}}$$

Dehydrogenation Reactor Performance

- Main challenge: control peak T and AB conversion using heat transfer and product recycle
 - Adiabatic T rise in excess of 500°C ($\Delta T_{ad} = 295N_{H2}$)
- R < 0.95 for 100% AB conversion at 150°C inlet T and 150 h⁻¹ LHSV

R > 0.8 to limit maximum temperature to 250°C

- AB flow rate determined to yield 1.6 g/s of H₂ at 100% conversion
- Coolant (ethylene glycol) flow rate determined to limit ∆T to 10°C while absorbing 26.4 kW of heat

Reactor Temperature and Conversion

- Peak temperature is a function of inlet temperature and R (conversion)
 - R <0.55 for 100% conversion at 125°C inlet T and 150 h⁻¹ LHSV
 - Peak T > 315°C for R < 0.55
 - For specified conversion, not possible to control the peak temperature by reducing the inlet temperature
 - The coolant removes only a fraction of the heat released
 - Difficult to limit the peak temperature by controlling heat transfer

Reactor Heat Transfer

- Heat transfer depends on the LHSV and R
- Depending on the inlet T and recycle ratio (given LHSV) the coolant removes only a fraction of the heat released by the exothermic reaction (26.4 kW at 100% conversion)
- Difficult to limit the peak temperature by controlling heat transfer

Summary and Interim Conclusions

Product stream recycle needed to control the reactor peak temperature and AB conversion

- Depending on the inlet temperature, R may be > 0.9 to limit the peak temperature to <200°C
 - Very difficult to control the peak temperature with heat transfer
 - Lower inlet temperature does not necessarily lead to lower peak temperature
- The reactor can be operated adiabatically while controlling peak T and AB conversion
 - The reactor peak temperature can be lower if operated adiabatically

Remaining challenges

- Reactor startup and shutdown
- Heat rejection