Roteiro da Aula 12

Roteiro

Eficiência em Máquinas de Turing

Análise de Algoritmos

Eficiência en Algoritmos

- **1** Eficiência em Máquinas de Turing Decidindo $\mathcal{L} = \{0^n 1^n \mid n \geq 0\}$
- 2 Análise de Algoritmos
- 3 Eficiência em Algoritmos Ordenação e Bubble Sort Intuição sobre Notação Assintótica

Roteire

Eficiência em Máquinas de Turing

Análise de

Algoritmos

Eficiência er Algoritmos

- Dado uma linguagem. Ex.: $\mathcal{L} = \{0^n 1^n \mid n \ge 0\}$
- Considere uma MT M que decide \mathcal{L} .
- Quanto tempo M gasta para decidir \mathcal{L} ?

Roteiro

Eficiência em Máquinas de Turing

Análise de

Eficiência en Algoritmos

- Dado uma linguagem. Ex.: $\mathcal{L} = \{0^n 1^n \mid n \ge 0\}$
- Considere uma MT M que decide \mathcal{L} .
- Quanto tempo M gasta para decidir \mathcal{L} ?
- O que é tempo?

Rotein

Análise de Algoritmos

Eficiência en Algoritmos

- Dado uma linguagem. Ex.: $\mathcal{L} = \{0^n 1^n \mid n \ge 0\}$
- Considere uma MT M que decide \mathcal{L} .
- Quanto tempo M gasta para decidir \mathcal{L} ?
- O que é tempo? é o número de operações que M realiza, ou seja, o tamanho da seqüência de configurações

Roteir

Análise de Algoritmos

Eficiência en Algoritmos

- Dado uma linguagem. Ex.: $\mathcal{L} = \{0^n 1^n \mid n \ge 0\}$
- Considere uma MT M que decide \mathcal{L} .
- Quanto tempo M gasta para decidir \mathcal{L} ?
- O que é tempo? é o número de operações que M realiza, ou seja, o tamanho da seqüência de configurações
- Seqüência de configurações para qual palavra?
- claramente, o tamanho da seqüência vai depender do tamanho da palavra.

Rotein

Eficiência em Máquinas de Turing $\begin{array}{c|c} \text{Decidindo } \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0 \} \end{array}$

Análise de Algoritmo

Eficiência en Algoritmos

- Dado uma linguagem. Ex.: $\mathcal{L} = \{0^n 1^n \mid n \ge 0\}$
- Considere uma MT M que decide \mathcal{L} .
- Quanto tempo M gasta para decidir \mathcal{L} ?
- O que é tempo? é o número de operações que M realiza, ou seja, o tamanho da seqüência de configurações
- Seqüência de configurações para qual palavra?
- claramente, o tamanho da seqüência vai depender do tamanho da palavra.
- Mas, mesmo para palavras do mesmo tamanho, o tamanho da seqüência pode ser diferente!...

Roteiro

Análise de Algoritmo

Eficiência er Algoritmos

Eficiência em Máquinas de Turing

... por causa disso:

 $\alpha \alpha \alpha \alpha$

ullet Usamos o pior caso entre todas as palavras de tamanho n.

0000	6
0001	7
0010	7
0011	12
0100	4
0101	4
0110	4
0111	4
1000	4
1001	10
1010	14
1011	3
1100	3
1101	5
1110	8
1111	10

Roteir

Análise de Algoritmo

Eficiência en Algoritmos

Eficiência em Máquinas de Turing

• Associamos à máquina M uma função, $f_M: \mathbb{N} \to \mathbb{N}$, onde: $f_M(n)$ é o tamanho da maior seqüência de configurações entre todas as palavras de tamanho n.

$$\begin{array}{lll} f_M(1) = & 2 \\ f_M(2) = & 4 \\ f_M(3) = & 11 \\ f_M(4) = & 14 \\ f_M(5) = & 16 \\ f_M(6) = & 22 \\ f_M(7) = & 29 \\ f_M(8) = & 45 \\ \vdots & \vdots \end{array}$$

 $f_M(n)$ é a função de custo de tempo de pior caso para M

Roteiro

Eficiência em Máquinas de Turing

$$\begin{array}{l} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$$

Análise de Algoritmos

Eficiência en Algoritmos

Decidindo $\mathcal{L} = \{0^n 1^n \mid n \ge 0\}$

A máquina M_1

Rotein

Máquinas de Turing

 $\begin{array}{l} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$

Análise de Algoritmos

Eficiência en Algoritmos

A máquina M_1

Seq. de configurações de M_1 para 000111

 $q_0000111\Rightarrow Xq_100111\Rightarrow X0q_10111\Rightarrow X00q_1111\Rightarrow X0q_20Y11\Rightarrow Xq_200Y11\Rightarrow q_2X00Y11$

 $Xq_000Y11\Rightarrow XXq_10Y11\Rightarrow XX0q_1Y11\Rightarrow XX0Yq_111\Rightarrow XX0q_2YY1\Rightarrow XXq_20YY1\Rightarrow Xq_2X0YY1$

 $XXq_00YY1 \Rightarrow XXXq_1YY1 \Rightarrow XXXYq_1Y1 \Rightarrow XXXYYq_11 \Rightarrow XXXYq_2YY \Rightarrow XXXq_2YYY \Rightarrow XXQ_2YYY$

 $XXXq_0YYY \Rightarrow XXXYq_3YY \Rightarrow XXXYYq_3Y \Rightarrow XXXYYYq_3$ $XXXq_0YYY$

Rotein

Eficiência em Máquinas de Turing

 $\begin{array}{l} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$

Algoritmo

Algoritmos

A máquina M_1

Seq. de configurações de M_1 para 000111

 $[q_0\,000111 \Rightarrow Xq_100111 \Rightarrow X0q_10111 \Rightarrow X00q_1111 \Rightarrow X0q_20Y11 \Rightarrow Xq_200Y11 \Rightarrow q_2X00Y11] \ 6+1$

 $\begin{array}{l} [XXq_00YY1 \Rightarrow XXXq_1YY1 \Rightarrow XXXYq_1Y1 \Rightarrow XXXYYq_11 \Rightarrow XXXYq_2YY \Rightarrow XXXq_2YYY \Rightarrow XXQ_2YYY] & 6+1 \end{array}$

 $[XXXq_0YYY \Rightarrow XXXYq_3YY \Rightarrow XXXYYq_3Y \Rightarrow XXXYYYq_3] \ 1 + 6/2 \\ [XXXq_0YYY] \ 1$

Roteir

Eficiência em Máquinas de Turing

Análise de Algoritmo

Eficiência en Algoritmos

A máquina M_1

Seq. de configurações de M_1 para 000111

 $[q_0000111 \Rightarrow Xq_100111 \Rightarrow X0q_10111 \Rightarrow X00q_1111 \Rightarrow X0q_20Y11 \Rightarrow Xq_200Y11 \Rightarrow q_2X00Y11]$ 6 + 1

 $\begin{array}{l} [XXq_00YY1 \Rightarrow XXXq_1YY1 \Rightarrow XXXYq_1Y1 \Rightarrow XXXYYq_11 \Rightarrow XXXYq_2YY \Rightarrow XXXq_2YYY \Rightarrow XXQ_2YYY] \ 6+1 \end{array}$

$$[XXXq_0YYY\Rightarrow XXXYYq_3YY\Rightarrow XXXYYYq_3Y\Rightarrow XXXYYYq_3] \ 1+6/2$$

$$[XXXq_0YYY] \ 1$$

Total: $\frac{6}{2}(1+6) + 1 + \frac{6}{2} + 1 = 26$

Roteiro

Eficiência em Máquinas de Turing

$$\begin{array}{c} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$$

Análise de Algoritmo

Algoritmos

A máquina M_1

Seq. de configurações de M_1 para 000111

 $[q_0000111 \Rightarrow Xq_100111 \Rightarrow X0q_10111 \Rightarrow X00q_1111 \Rightarrow X0q_20Y11 \Rightarrow Xq_200Y11 \Rightarrow q_2X00Y11]$ 6 + 1

 $\begin{array}{l} [XXq_00YY1 \Rightarrow XXXq_1YY1 \Rightarrow XXXYq_1Y1 \Rightarrow XXXYYq_11 \Rightarrow XXXYq_2YY \Rightarrow XXXq_2YYY \Rightarrow XXQ_2YYY] & 6+1 \end{array}$

$$[XXXq_0YYY\Rightarrow XXXYq_3YY\Rightarrow XXXYYq_3Y\Rightarrow XXXYYYq_3] \ 1 + 6/2$$

$$[XXXq_0YYY] \ 1$$

Total:
$$\frac{6}{2}(1+6) + 1 + \frac{6}{2} + 1 = 26$$

Generalizando:

$$\frac{n}{2}(1+n)+1+\frac{n}{2}+1=\frac{n^2}{2}+2\frac{n}{2}+2\to f_{M_1}(n)=\frac{n^2}{2}+n+2$$

Roteiro

Eficiência em Máquinas de Turing

 $\begin{array}{l} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$

Algoritmo

Eficiência en Algoritmos

A máquina M_1

Custo de pior caso

n	$f_M(n)$	$f_{M_1}(n)$	MxM1
2	10	6	1,666
4	26	14	1,857
8	82	42	1,952
16	290	146	1,986
32	1090	546	1,996
64	4226	2114	1,999
128	16642	8322	1,999
256	66950	33026	1,999
512	263170	131586	1,999

Dá para ser mais eficiente?

Roteiro

Eficiência em Máquinas de Turing

$$\begin{array}{l} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$$

Análise de Algoritmo

Eficiência en Algoritmos

Decidindo $\mathcal{L} = \{0^n 1^n \mid n \ge 0\}$

A máquina M_2

Roteiro

Máquinas de Turing

 $\begin{array}{l} \operatorname{Decidindo}_{0} \mathcal{L} = \\ \{0^{n}1^{n} | n \geq \\ 0\} \end{array}$

Análise de Algoritmos

Eficiência en Algoritmos

A máquina M_2

Seq. de configurações de M_2 para 00001111

 $q_000001111\\$

 $Zq_10001111 \Rightarrow Z0q_2001111 \Rightarrow Z0Xq_101111 \Rightarrow Z0X0Yq_21111 \Rightarrow Z0X0Yq_3111 \Rightarrow Z0X0Y1q_411 \Rightarrow Z0X0Y1Yq_31 \Rightarrow Z0X0Y1Y1q_4$

 $Z0X0Y1Yq_51 \Rightarrow Z0X0Y1q_5Y1 \Rightarrow Z0X0Yq_51Y1 \Rightarrow Z0X0q_5Y1Y1 \Rightarrow Z0Xq_50Y1Y1 \Rightarrow Z0q_5X0Y1Y1 \Rightarrow Zq_50X0Y1Y1$

Roteiro

Eficiência em Máquinas de Turing

Algoritmo:

Eficiência en Algoritmos

A máquina M_2

Seq. de configurações de M_2 para 00001111

 $\left[q_0\,00001111\right]\,1$ configuração inicial

```
\begin{array}{l} [Zq_10001111\Rightarrow Z0q_2001111\Rightarrow Z0Xq_101111\Rightarrow Z0X0Yq_21111\Rightarrow Z0X0Yq_3111\Rightarrow Z0X0Y1q_411\Rightarrow Z0X0Y1Yq_31\Rightarrow Z0X0Y1Y1q_4] \text{ 8 percorre até o final da palavra} \end{array}
```

```
\begin{split} &[Z0X0Y1Yq_51\Rightarrow Z0X0Y1q_5Y1\Rightarrow Z0X0Yq_51Y1\Rightarrow Z0X0q_5Y1Y1\Rightarrow Z0Xq_50Y1Y1\Rightarrow Z0q_5X0Y1Y1\Rightarrow Zq_50X0Y1Y1] \text{ 7 retorna à posição inicial} \end{split}
```

Roteir

Eficiência em Máquinas de Turing

Algoritmos

Eficiência en Algoritmos

A máquina M_2

Seq. de configurações de M_2 para 00001111

 $\left[q_0\,00001111\right]\,1$ configuração inicial

```
 \begin{array}{l} [Zq_10001111\Rightarrow Z0q_2001111\Rightarrow Z0Xq_101111\Rightarrow Z0X0Yq_21111\Rightarrow Z0X0Yq_3111\Rightarrow Z0X0Y1q_411\Rightarrow Z0X0Y1Y1q_4] \ 8 \ \ \text{percorre até o final da palavra} \end{array}
```

```
\begin{split} & [Z0X0Y1Yq_51\Rightarrow Z0X0Y1q_5Y1\Rightarrow Z0X0Yq_51Y1\Rightarrow Z0X0q_5Y1Y1\Rightarrow Z0Xq_50Y1Y1\Rightarrow Z0q_5X0Y1Y1\Rightarrow Zq_50X0Y1Y1] \text{ 7 retorna à posição inicial} \end{split}
```

Quantas vezes vai repetir esse procedimento?

Roteiro

Eficiência em Máquinas de Turing

$$\begin{array}{l} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$$

Análise de Algoritmos

Eficiência en Algoritmos

A máquina M_2

Seq. de configurações de M_2 para 00001111

 $\left[q_0\,00001111\right]\,1$ configuração inicial

$$\begin{array}{l} [Zq_10001111\Rightarrow Z0q_2001111\Rightarrow Z0Xq_101111\Rightarrow Z0X0Yq_21111\Rightarrow Z0X0Yq_3111\Rightarrow Z0X0Y1q_411\Rightarrow Z0X0Y1Y1q_31\Rightarrow Z0X0Y1Y1q_4] \text{ 8 percorre até o final da palavra} \end{array}$$

$$\begin{split} [Z0X0Y1Yq_51 \Rightarrow Z0X0Y1q_5Y1 \Rightarrow Z0X0Yq_51Y1 \Rightarrow Z0X0q_5Y1Y1 \Rightarrow Z0Xq_50Y1Y1 \Rightarrow Z0Xq_50Y1Y1 \Rightarrow Z0q_5X0Y1Y1 \Rightarrow Zq_50X0Y1Y1] &\text{ 7 retorna à posição inicial} \end{split}$$

Quantas vezes vai repetir esse procedimento?

Total:
$$\log_2(8) * (1 + 8 + 7) = 2 * 8 * \log_2(8) = 48$$

Roteiro

Eticiência em Máquinas de Turing

$$\begin{array}{l} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$$

Análise de Algoritmos

Eficiência en Algoritmos

A máquina M_2

Seq. de configurações de M_2 para 00001111

 $\left[q_0\,00001111\right]\,1$ configuração inicial

$$\begin{array}{l} [Zq_10001111\Rightarrow Z0q_2001111\Rightarrow Z0Xq_101111\Rightarrow Z0X0Yq_21111\Rightarrow Z0X0Yq_3111\Rightarrow Z0X0Y1q_411\Rightarrow Z0X0Y1Y1q_31\Rightarrow Z0X0Y1Y1q_4] \text{ 8 percorre até o final da palavra} \end{array}$$

$$\begin{split} [Z0X0Y1Yq_51 \Rightarrow Z0X0Y1q_5Y1 \Rightarrow Z0X0Yq_51Y1 \Rightarrow Z0X0q_5Y1Y1 \Rightarrow Z0Xq_50Y1Y1 \Rightarrow Z0Xq_50Y1Y1 \Rightarrow Z0q_5X0Y1Y1 \Rightarrow Zq_50X0Y1Y1] &\text{7 retorna à posição inicial} \end{split}$$

Quantas vezes vai repetir esse procedimento?

Total:
$$\log_2(8) * (1 + 8 + 7) = 2 * 8 * \log_2(8) = 48$$

Generalizando:
$$\log_2(n)*(1+n+n-1) \rightarrow f_{M_2}(n) = 2n\log_2 n$$

Roteiro

Eficiência em Máquinas de Turing

 $\begin{array}{l} \operatorname{Decidindo} \mathcal{L} = \\ \{0^n 1^n \mid n \geq \\ 0\} \end{array}$

Análise de Algoritmo

Eficiência er Algoritmos

Quem é mais eficiente?

Custo de pior caso

n	$f_M(n)$	$f_{M_1}(n)$	$f_{M_2}(n)$	M1xM2
2	10	6	4	1,5
4	26	14	16	0,875
8	82	42	48	0,875
16	290	146	128	1,14
32	1090	546	320	1,7
64	4226	2114	768	2,75
128	16642	8322	1792	4,64
256	66950	33026	4096	8,06
512	263170	131586	9216	14,27
1024	1050626	525314	20480	25,65
2048	4198402	2099202	45056	46,59

No limite, quando $n \to \infty$, M_2 é mais eficiente!

Análise de Complexidade de Tempo de Algoritmos

Roteiro

Eficiência en Máquinas de Turing

Análise de Algoritmos

Eficiência e Algoritmos

Medida da eficiência com a qual um dado algoritmo resolve um dado problema

- Nossas palavras-chave:
 - Função de custo do algoritmo;
 - Notação Assintótica;
 - Cotas Superiores e Inferiores:
 - para funções de custo de algoritmos;
 - para problemas;

Roteiro

Eficiência em Máquinas de Turing

Análise de Algoritmos

Eficiência em Algoritmos

Ordenação e Bubble Sort Intuição sobre Notação

Máquinas de Turing → Algoritmos

Mas vimos que...

Formal	Intuitivo, conceitual
Linguagens	Problemas
Máquina de Turing	Algoritmo
Palavra	Entrada ou Instância

Então o que fizemos para as Máquinas de Turing também vale para análise de algoritmos!

Bubble Sort

```
Roteiro
```

Eficiência em Máquinas de Turing

Análise de Algoritmo

Eficiência er

Ordenação e Bubble Sort

Intuição sobre Notação Assintótica

```
int v[N];
bubbleSort( int *v ){
  int i, flag = 1;
 while(flag){
    flag = 0;
    for( i = 0; i < N-1; i++)
      if (v[i] > v[i+1]){
        swap( &v[i], &v[i+1] );
        flag = 1;
```

Quantas comparações serão feitas no pior caso?

Bubble Sort

- No melhor caso, o vetor v já está ordenado e serão feitas (n-1) comparações;
- Se mais ou menos metade dos elementos estiverem ordenados: mais ou menos $\frac{n}{2}(n-1)$ comparações;
- No pior caso, v está em ordem decrescente: n(n-1) comparações;

$$f_{\text{bubbleSort}}(n) = n^2 - n$$

Notação Assintótica

Roteiro

Eficiência em Máquinas de Turing

Análise o Algoritm

Eficiência em Algoritmos Ordenação e A notação assintótica dá informação sobre o crescimento assintótico de uma função

A intuição é:

Intuição sobre Notação função Assintótica	<u>≤</u>	\geq	=	<	>
$f_{M_1}(n) = \frac{n^2}{2} + n + 2$	$O(n^2)$	$\Omega(n)$	$\Theta(n^2)$	$o(n^3)$	w(n)
$f_{M_2}(n) = 2n \log_2 n$	$O(n^4)$	$\Omega(n)$	$\Theta(n \log n)$	$o(n^2)$	w(n)
$f_{\it bubbleSort}(n) = n^2 - n$	$O(f_{M_2}(n))$	$\Omega(\log n)$	$\Theta(f_{M_1}(n))$	$o(n^4)$	$w(n \log n)$