Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный авиационный технический университет»

ИЗУЧЕНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК И ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА УСИЛЕНИЯ ТРАНЗИСТОРА

Методические указания к лабораторной работе № 79 по дисциплине «Физика»

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный авиационный технический университет»

Кафедра физики

ИЗУЧЕНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК И ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА УСИЛЕНИЯ ТРАНЗИСТОРА

Методические указания к лабораторной работе № 79 по дисциплине «Физика»

Составитель С. Н. Сазонов

УДК 621.382.3 (07) ББК 32.852.3 (Я7)

Изучение статических характеристик и определение коэффициента усиления транзистора: Методические указания к лабораторной работе $\mathfrak{N}\mathfrak{D}$ 79 по дисциплине «Физика» / Уфимск. гос. авиац. техн. ун-т; Сост. С. Н. Сазонов — Уфа, 2015. — 14 с.

указаний Цель методических закрепление И совершенствование знаний студентов по дисциплине «Физика» и формирование умений применять решения ИХ ДЛЯ научнотеоретических прикладных технических задач В И аспектах, профессиональной последующей возникающих В деятельности выпускников технического университета.

Приведены краткие сведения по теории диффузии, об инжекции носителей тока, принципе работы транзистора, даны описания экспериментальной установки, порядок выполнения работы и контрольные вопросы.

Предназначены для студентов, изучающих дисциплину «Физика» по разделу «Оптика и атомная физика» на всех направлениях подготовки бакалавров и специалистов.

Табл. 1. Ил. 5. Библ.: 2 назв.

Рецензенты: д-р физ.-мат. наук, доц. Михайлов Г. П., канд. тех. наук, доц. Иванов М. П.

© Уфимский государственный авиационный технический университет, 2015

Содержание

1. Цели работы	4
2. Задача	4
3. Теоретическая часть	4
3.1. Введение	4
3.2. Инжекция носителей тока	5
3.3. Принцип работы транзистора	7
4. Приборы и оборудование	11
5. Требования к технике безопасности	12
6. Задания	12
7. Методика выполнения заданий	13
Контрольные вопросы	13
Требования к содержанию и оформлению отчёта	14
Критерии результативности выполнения лабораторной работы	14
Список литературы	14

Лабораторная работа № 79

ИЗУЧЕНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК И ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА УСИЛЕНИЯ ТРАНЗИСТОРА

1. ЦЕЛИ РАБОТЫ

- 1. Изучение принципа работы биполярного транзистора.
- 2. Снятие статических характеристик транзистора, включенного по схеме с общим эмиттером.
 - 3. Определение коэффициента усиления по току.

2. ЗАДАЧА

Приобретение навыков проведения измерений и умения обработки экспериментальных данных, характеризующих работу биполярного транзистора в электрических схемах.

3. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

3.1. Введение

Транзистором, или полупроводниковым триодом, называется электронный прибор на основе полупроводникового монокристалла, содержащий три вывода и служащий для преобразования (чаще всего усиления) электрических сигналов. По физическим принципам работы транзисторы делятся на биполярные и полевые.

В биполярных транзисторах ток создаётся как электронами, так и дырками. В основе их работы лежит явление диффузии электронов и дырок в p-n- переходе.

В полевых (униполярных) транзисторах ток создаётся носителями заряда только одного типа, либо электронами, либо дырками. Диффузионные процессы в них отсутствуют.

Диффузией называется процесс спонтанного перемещения вещества из областей, где его концентрация относительно велика, туда, где она мала. Это явление — следствие хаотического теплового движения частиц. Математически диффузия описывается уравнением

$$J = -D \cdot \operatorname{grad} n, \tag{3.1}$$

где J – вектор плотности потока вещества с модулем, равным числу частиц, пересекающих за единичное время площадку единичной

площади, ориентированную перпендикулярно потоку, n — концентрация частиц в данном месте пространства. Коэффициент пропорциональности называется коэффициентом диффузии. Для кремния при комнатной температуре коэффициент диффузии электронов $D_n = 35 \text{ cm}^2/\text{c}$, дырок — $D_p = 15 \text{ cm}^2/\text{c}$. Зная величину D, можно найти путь L, проходимый частицей в процессе диффузии за данное время t,

$$L = \sqrt{D \cdot t} \ . \tag{3.2}$$

называется законом случайных блужданий. формула Формулы (3.1)-(3.2) применимы для описания диффузии любых Для диффузии частиц. описания неосновных носителей полупроводниках помимо коэффициентов D_n и D_p нужен ещё один параметр – время жизни неосновных носителей т, определяемое как среднее время, прошедшее от появления заряда в полупроводнике до пары) рекомбинации (исчезновения \mathbf{c} противоположного знака. Время жизни зависит от концентрации примесей в полупроводнике и для разных образцов лежит в широких пределах $\tau = 10^{-8} - 10^{-4}$ с.

3.2. Инжекция носителей тока

Рис. 3.1

Пусть на p-n- переход (рис. 3.1) подано напряжение такой полярности, что внешнее поле E противоположно полю p-n- перехода E_{κ} (прямое смещение). Тогда потенциальный барьер для основных носителей на границе p-n- перехода снижается по сравнению со случаем, когда внешнее напряжение отсутствует. Под влиянием внешнего поля дырки переходят из p- в n- полупроводник, а

электроны в обратном направлении (из n в p- полупроводник), и в цепи возникает прямой ток, определяемый величиной ЭДС источника питания.

Дырки, перешедшие в n- полупроводник, являются для него неосновными носителями. Встречаясь с электронами, они рекомбинируют с ними с характерным временем жизни τ_p . То же самое происходит с электронами, перешедшими в p- полупроводник, но уже со своим временем жизни τ_n .

Пусть на p-n- переход, показанный на рис. 3.1, в момент времени t=0 подан импульс прямого напряжения, длящийся время t_0 , намного меньшее, чем τ_p и τ_n . А при $t=t_0$, напряжение вновь скачком падает до нуля. Процесс рекомбинации происходит не мгновенно, поэтому у границы p-n- перехода за время импульса происходит как бы «впрыскивание» дырок в приграничный слой n- полупроводника, а электронов — в приграничный слой n- полупроводника. Это явление получило название инжекции носителей.

За время dt число неосновных носителей уменьшается на dN, причем уменьшение числа носителей пропорционально времени dt и концентрации неосновных носителей N, так как, чем их больше, тем больше вероятность встречи их с основными носителями, приводящей к рекомбинации

$$-dN = \frac{1}{\tau} N dt, \qquad (3.3)$$

где $\tau = \tau_p$, если рассматривается диффузия дырок (слева направо на рис. 3.1) и $\tau = \tau_n$ для диффузии электронов (справа налево там же).

Разделяя переменные и интегрируя полученное выражение, получим закон, по которому изменяется с течением времени число неосновных носителей на границе p-n- перехода в результате рекомбинации

$$N = N_0 e^{-t/\tau}, (3.4)$$

где N_0 — концентрация неосновных носителей при t=0. Если p-полупроводник легирован примесями намного сильнее, чем n-полупроводник, то величина N(t) для электронов в любой момент t намного меньше, чем N(t) для дырок и процессом диффузии электронов можно пренебречь.

Из соотношения (3.4) видно, что при $t = \tau \frac{N}{N_0} = \frac{1}{e}$, следовательно,

т можно определить и как время, спустя которое число неосновных

носителей при подаче короткого импульса напряжения уменьшается в e раз. За это время носители успевают проникнуть вглубь полупроводника на расстояние L, называемое диффузионной длиной носителей. Её можно рассчитать по формуле (3.2). Величина L различна для различных полупроводников и зависит от количества примесей и других дефектов кристаллической решетки. Например, для чистого германия $L \cong 1$ мм, для германия с примесями 0,3-0,5 мм.

Если же время импульса напряжения t_0 много больше τ_p и τ_n , то вблизи p-n- перехода при $0 < t < t_0$ успевает установиться равновесная концентрация дырок, график зависимости которой от координаты показан на рис. 3.2 верхней кривой II. (Кривая I — распределение концентрации дырок без внешнего напряжения.) По мере удаления от границы p-n- перехода направо, концентрация N(x) дырок плавно уменьшается, а расстояние, на которое они проникают в n- область, по порядку величины, равно

$$L_p = \sqrt{D_p \cdot \tau_p} \,. \tag{2.5}$$

Существует и инжекция электронов из n- области в p- область (справа налево на рис. 3.2), но при малой концентрации N_0 электронов в n- полупроводнике, этим процессом можно пренебречь.

3.3. Принцип работы транзистора

Существуют два типа биполярных транзисторов: p-n-p и n-p-n, которые различаются последовательностью чередования в монокристалле полупроводника областей с различным типом проводимости (p- и n-).

На рис. 3.3 показана принципиальная схема *n-p-n*- транзистора, включенного в схему с общим эмиттером.

трех областей: Транзистор состоит ИЗ левой. легированной n- области, называемой эмиттером (Э), средней, слабо легированной р- области, называемой базой (Б) и правой сильно легированной *п*- области, называемой коллектором (К). Эти области отделены одна от другой двумя p-n- переходами: эмиттерным (1) и коллекторным (2). Эмиттерный p-n- переход включен в прямом помощью источника постоянного направлении c напряжения величиной E_1 , коллекторный смещён в обратном направлении постоянным напряжением от источника E_2 .

При включении транзистора в схему с общим эмиттером, источника слабого усиливаемый сигнал OT переменного напряжения u подается в цепь между эмиттером и базой, а снимается с нагрузочного резистора $R_{\rm H}$, включенного в цепь между эмиттером и Поток электронов коллектором. эмиттера базу ИЗ регулироваться напряжением $U_{\mathfrak{B}}$ на $U_{26} = E_1 + u$ базе, равным будет изменять высоту потенциального барьера которое эмиттерном *p-n*- переходе по сравнению со случаем $U_{26} = 0$.

Рис. 3.3

Основными носителями в эмиттере n-p-n- транзистора являются электроны. Так как эмиттерный *p-n*- переход включен в прямом направлении, TO потенциальный барьер ДЛЯ электронов, совершающих переход эмиттер - база, снижается, что приводит к инжекции электронов из эмиттера в базу (р- область).

Рис. 3.4

Это схематично показано на рис. 3.4 (e – заряд электрона), где изображены графики зависимости потенциальной энергии электрона $W_{\text{пот}}$ от координаты вдоль транзистора x при двух значениях потенциала базы U_{36} , но фиксированных потенциалах эмиттера и коллектора. (Для простоты, на рис. 3.4 взят случай $R_{\rm H}=0$, так что потенциал коллектора совпадает с потенциалом «плюса» верхней батареи на рис. 3.3.) При $U_{96} = 0$, тока коллектора нет – транзистор «закрыт». Для «отпирания» n-p-n- транзистора, на базу нужно подать положительный относительно эмиттера потенциал U_{36} , больший, чем 0,5-0,6 В. В результате инжекции электронов в базу, их концентрация границе эмиттерного перехода становится больше, остальном объеме базы. Вследствие этого начинается диффузия электронов к границе второго *p-n-* перехода, где они попадают под действие электрического поля, приложенного к переходу база коллектор. Так как коллекторный переход (2) включен в направлении запирания, то не будет перехода ни дырок из базы в коллектор, ни электронов из коллектора в базу. Но для электронов, попавших в базу из эмиттера и диффундирующих к коллектору, приложенное ко второму p-n- переходу поле является ускоряющим (рис. 3.4) и потенциального барьера для него не существует. Эти электроны втягиваются в коллектор, создавая коллекторный ток I_{κ} . Таким образом, в активном режиме коллектор собирает инжектированные в базу электроны, что и отражается в его названии (to collect – собирать).

Инжекция электронов из эмиттера сопровождается их рекомбинацией с дырками базы, в результате чего образуется базовый ток I_6 . Чтобы сократить потери носителей, базу делают слаболегированной, а её толщина l (см. рис. 3.4) берется много меньшей диффузионной длины электронов L_n ($l < L_n$), которая составляет в германии 0,3-0,5 мм. Поэтому в германиевых транзисторах толщина базы не более 0,25 мм.

Итак, большая часть электронов, инжектируемых с эмиттера, будет диффундировать к коллектору и только незначительная часть уходит в цепь базы, создавая небольшой по сравнению с током коллектора I_{κ} ток базы I_{δ} ($I_{\delta} << I_{\kappa}$), причем, по первому правилу Кирхгофа,

$$I_{\delta} = I_{\mathfrak{I}} - I_{\kappa}. \tag{3.6}$$

Базовый ток имеет и дырочную компоненту, которая образуется за счёт инжекции дырок базы в эмиттер. В силу слабой легированности базы, этим процессом можно пренебречь. Величину

$$\alpha = I_{\kappa} / I_{2} \tag{3.7}$$

называют передаточным коэффициентом транзистора. Обычно $\alpha = 0.90$ -0.99. Комбинируя (3.6) и (3.7), найдём, что

$$\frac{I_{\kappa}}{I_{\delta}} = \frac{\alpha}{1 - \alpha} >> 1. \tag{3.8}$$

Отношение изменения коллекторного тока к изменению тока базы при постоянном напряжении на коллекторе $U_{\rm эк}$ называется коэффициентом усиления по току в схеме с общим эмиттером

$$\beta = \left(\frac{\Delta I_{\kappa}}{\Delta I_{6}}\right) \Big|_{U_{9\kappa} = \text{const}}.$$
 (3.9)

Функция $I_{\kappa}(I_{6})$ близка к линейной, поэтому

$$\beta \approx \frac{I_{\kappa}}{I_{\delta}} \,. \tag{3.10}$$

Это означает, что в схеме включения транзистора с общим эмиттером достигается усиление по току. Значение коэффициента β практически не зависит от величины сопротивления нагрузки $R_{\rm H}$,

поэтому схема рис. 3.3 будет работать как усилитель тока, даже когда $R_{\rm H}=0$. Однако сигнал на выходе при этом отсутствует и практического значения схема с рис. 3.3 при $R_{\rm H}=0$ не имеет.

Введём коэффициент усиления сигнала по напряжению как отношение

$$\gamma = \frac{\Delta U_{\text{вых}}}{\Delta U_{\text{26}}} = \frac{\Delta U_{\text{вых}}}{\Delta u},\tag{3.11}$$

где $U_{\text{вых}}$ – напряжение на нагрузке $R_{\rm H}$ (рис. 3.3). Определим входное сопротивление транзистора как

$$R_{\rm BX} = \frac{\Delta U_{96}}{\Delta I_6} , \qquad (3.12)$$

(для типовых транзисторов значение $R_{\rm BX} \sim 1$ кОм). Подставив (3.9) и (3.12) в (3.11), получим

$$\gamma = \beta \frac{R_{\rm H}}{R_{\rm px}} \ . \tag{3.13}$$

В радиотехнических схемах обычно $R_{\rm H} > R_{\rm BX}$, поэтому $\gamma >> 1$, то есть схема с общим эмиттером усиливает не только входной ток, но и напряжение входного сигнала.

Коэффициент усиления по мощности равен

$$K_p = \frac{P_{\text{вых}}}{P_{\text{вх}}} = \frac{I_{\text{вых}} \cdot U_{\text{вых}}}{I_{\text{вх}} \cdot u} \approx \frac{I_{\text{вых}}}{I_{\text{вх}}} \cdot \gamma \approx \beta^2 \cdot \frac{R_{\text{H}}}{R_{\text{вх}}} \gg 1.$$
 (3.14)

Для некоторых типов транзисторов K_p может достигать десятков тысяч.

Характеристики транзистора в статическом режиме, то есть при отсутствии нагрузки в цепи коллектора и, следовательно, при постоянстве напряжений, приложенных к коллекторному и эмиттерному переходам при изменении тока в цепях транзистора, называются статическими характеристиками.

4. ПРИБОРЫ И ОБОРУДОВАНИЕ

В данной работе исследуются статические выходные характеристики германиевых транзисторов типа П214, включенных по схеме с общим эмиттером. Электрическая схема установки приведена на рис. 4.1.

Рис. 4.1

Блок питания, транзистор и электроизмерительные приборы смонтированы в установку, подключаемую к сети шнуром и тумблером «Сеть». На переднюю панель установки вынесены электроизмерительные приборы: 1) амперметр для измерения тока базы I_6 , 2) вольтметр, измеряющий напряжение между эмиттером и коллектором $U_{\rm эк}$, 3) амперметр для измерения коллекторного тока $I_{\rm k}$ с двумя пределами измерений: 50 и 500 mA. Поскольку транзисторы П214 относятся к типу p-n-n, а не n-p-n, полярность подключения источников напряжения на эмиттерном и коллекторном переходах на рис. 4.1 обратна по отношению к показанной ранее на рис. 3.3.

5. ТРЕБОВАНИЯ К ТЕХНИКЕ БЕЗОПАСНОСТИ

- 1. Прежде чем приступить к работе, необходимо внимательно ознакомиться с оборудованием и заданием.
- 2. Перед включением установки в сеть проверить, чтобы тумблер «Сеть» в источнике питания находился в нижнем положении («Выкл»).
 - 3. По окончании работы отключить питание установки и привести рабочее место в порядок.
 - 4. Не оставлять без присмотра включенную установку.

6. ЗАДАНИЯ

- 1. Построение семейства статических характеристик транзистора.
 - 2. Вычисление коэффициента усиления транзистора по току.

7. МЕТОДИКА ВЫПОЛНЕНИЯ ЗАДАНИЙ

- 1. Включить установку в сеть, переводя тумблер в положение «Вкл».
- 2. Установить ток базы $I_6 = 0.2$ mA, и, меняя ручкой потенциометра напряжение на коллекторе $U_{9 \text{\tiny K}}$ от 1 до 8 В с шагом 0,5 В, снять соответствующие значения коллекторного тока $(I_{\text{\tiny K}})$, записывая их в таблицу. После измерений необходимо сбросить напряжение до нуля.
- 3. Повторить измерения для тока базы I_6 = 0,3 mA; 0,4 mA; 0,5 mA; 0,6 mA. Так как при I_6 = 0,6 mA, амперметр для измерения коллекторного тока зашкаливает уже при $U_{\rm 9k}$ = 3,5 B, в таблице в клетках, соответствующих таким напряжениям, ставят пропуск.
- 4. Построить графики зависимости I_{κ} от $U_{{}^{9\kappa}}$ при различных значениях тока базы I_{6} (на одном листе миллиметровой бумаги).
- 5. Используя построенные графики, по формуле (3.9) рассчитать коэффициент усиления по току (β) при одном из значений коллекторного напряжения, например при $U_{3\kappa}$ = 6 B.
- 6. Рассчитать абсолютную погрешность величины β по формуле $\Delta\beta = \beta \cdot \epsilon_{\beta}$, где ϵ_{β} относительная погрешность β . Для расчёта ϵ_{β} можно использовать формулу

$$\varepsilon_{\beta} = \frac{\delta I_{\kappa}}{I_{\kappa,2} - I_{\kappa,1}} + \frac{\delta I_{\delta}}{I_{\delta,2} - I_{\delta,1}}.$$
 (7.1)

Здесь $I_{\kappa,\,2},\,I_{\kappa,\,1}$ — коллекторные токи транзистора при одном и том же значении $U_{\rm 9\kappa}$ и двух разных базовых токах $I_{6,\,2},\,I_{6,\,1}$, а δI_{6} и δI_{κ} — цена деления амперметров, подключенных к базе и коллектору транзистора соответственно.

Таблица

$U_{\mathfrak{R}}\left(\mathrm{B} ight)$	I_{κ} (mA)					
	$I_{\rm 0} = 0.2 \; {\rm mA}$	$I_6 = 0.3 \text{ mA}$	$I_6 = 0.4 \text{ mA}$	$I_{\rm 0} = 0.5 \; {\rm mA}$	$I_6 = 0.6 \text{ mA}$	

Контрольные вопросы

1. Что такое *p-n-* переход? Какими свойствами он обладает?

В чем заключается процесс инжекции неосновных носителей тока в полупроводниках?

- 2. Почему уменьшается концентрация неосновных носителей при удалении от границы *p-n-* перехода?
- 3. Что называется временем жизни и диффузионной длиной пробега носителей тока в полупроводниках?
- 4. Каков принцип работы транзистора, включенного по схеме с общим эмиттером?
- 5. Почему носители тока, перешедшие из эмиттера в базу, свободно переходят в цепь коллектора?
- 6. Почему транзистор может служить усилителем по напряжению?
 - 7. Как определяется коэффициент усиления по току?

Требования к содержанию и оформлению отчёта

Отчёт по лабораторной работе должен содержать:

- 1. Название и номер работы.
- 2. Основные теоретические и рабочие формулы.
- 3. Таблицу с результатами измерений.
- 4. Графики статических характеристик транзистора (зависимость $I_{\rm K}$ от $U_{\rm 9K}$) при значениях тока базы $I_{\rm 6}=0.2$ mA; 0,3 mA; 0,4 mA; 0,5 mA; 0,6 mA, выполненные на миллиметровой бумаге.
- 5. Расчет коэффициента усиления по току β при одном из значений $U_{3\kappa}$ в интервале $U_{3\kappa}$ = 3-6 B.
 - 6. Расчет погрешности в определении β.
 - 7. Выводы.

Критерии результативности выполнения лабораторной работы

Лабораторная работа считается выполненной, если студент:

- умеет объяснять физические принципы работы биполярного транзистора;
 - правильно выполнил измерения и расчеты;
 - грамотно построил графики;
- представил отчет, соответствующий предъявляемым требованиям;
 - знает ответы на все контрольные вопросы.

Список литературы

- 1. Трофимова Т. И. Курс физики. М.: Академия, 2012.
- 2. Левинштейн М. Е., Симин Г. С. Барьеры. М.: Наука, 1987.

ИЗУЧЕНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК И ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА УСИЛЕНИЯ ТРАНЗИСТОРА

Методические указания к лабораторной работе № 79 по дисциплине «Физика»

Подписано в печать 2015. Формат 60х84 1/16. Бумага офсетная. Печать плоская. Гарнитура Nimes New Roman. Усл. печ. л. 1,1. Уч-изд.л. 1,0. Тираж 100 экз. Заказ № ФГБОУ ВПО «Уфимский государственный авиационный технический университет» Редакционно-издательский комплекс УГАТУ 450000, Уфа-центр, ул. К. Маркса, 12