# Respuestas Examen Final

Alex Steve Chung Alvarez

11 de Diciembre del 2019

## 1 Pregunta 1

1a.

$$\begin{bmatrix} 79.1959595 & -4.9 \\ 0.7959595 & 4.9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 195.0 \\ 194.968 \end{bmatrix}$$
$$x^{(0)} = \begin{bmatrix} -5.0500000 \\ 80.0500000 \end{bmatrix}$$

1b. Por el método de Descenso Rápido:

| k  | $v_1^{(k)}$ | $v_{2}^{(k)}$        | t         | $x_1^{(k+1)}$          | $x_2^{(k+1)}$           | Error      |
|----|-------------|----------------------|-----------|------------------------|-------------------------|------------|
| 0  | 987.1846255 | $-193.\bar{2}577374$ | 0.0129488 | $7.7\overline{3}28160$ | $77.\overline{5475551}$ | 12.7828162 |
| 1  | -37.4247610 | -191.1703465         | 0.1455925 | 2.2840500              | 49.7145787              | 27.8329764 |
| 2  | 257.7139080 | -50.4517650          | 0.0129488 | 5.6211253              | 49.0612909              | 3.3370754  |
| 3  | -9.7700887  | -49.9068318          | 0.1455925 | 4.1986733              | 41.7952285              | 7.2660624  |
| 4  | 67.2786596  | -13.1709117          | 0.0129488 | 5.0698485              | 41.6246815              | 0.8711752  |
| 5  | -2.5505743  | -13.0286517          | 0.1455925 | 4.6985039              | 39.7278070              | 1.8968745  |
| 6  | 17.5637321  | -3.4383914           | 0.0129488 | 4.9259324              | 39.6832841              | 0.2274285  |
| 7  | -0.6658516  | -3.4012531           | 0.1455925 | 4.8289894              | 39.1880871              | 0.4951971  |
| 8  | 4.5851788   | -0.8976247           | 0.0129488 | 4.8883618              | 39.1764639              | 0.0593724  |
| 9  | -0.1738269  | -0.8879294           | 0.1455925 | 4.8630539              | 39.0471880              | 0.1292759  |
| 10 | 1.1970044   | -0.2343334           | 0.0129488 | 4.8785536              | 39.0441537              | 0.0154997  |
| 11 | -0.0453792  | -0.2318024           | 0.1455925 | 4.8719467              | 39.0104050              | 0.0337487  |
| 12 | 0.3124894   | -0.0611750           | 0.0129488 | 4.8759931              | 39.0096129              | 0.0040463  |
| 13 | -0.0118467  | -0.0605142           | 0.1455925 | 4.8742683              | 39.0008025              | 0.0088104  |
| 14 | 0.0815783   | -0.0159703           | 0.0129488 | 4.8753246              | 39.0005957              | 0.0010563  |
| 15 | -0.0030927  | -0.0157978           | 0.1455925 | 4.8748744              | 38.9982956              | 0.0023000  |
| 16 | 0.0212968   | -0.0041692           | 0.0129488 | 4.8751501              | 38.9982416              | 0.0002758  |
| 17 | -0.0008074  | -0.0041242           | 0.1455925 | 4.8750326              | 38.9976412              | 0.0006004  |
| 18 | 0.0055597   | -0.0010884           | 0.0129488 | 4.8751046              | 38.9976271              | 0.0000720  |
| 19 | -0.0002108  | -0.0010767           | 0.1455925 | 4.8750739              | 38.9974703              | 0.0001568  |
| 20 | 0.0014514   | -0.0002841           | 0.0129488 | 4.8750927              | 38.9974667              | 0.0000188  |
| 21 | -0.0000550  | -0.0002811           | 0.1455925 | 4.8750847              | 38.9974257              | 0.0000409  |
| 22 | 0.0003789   | -0.0000742           | 0.0129488 | 4.8750896              | 38.9974248              | 0.0000049  |

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4.8750896 \\ 38.9974248 \end{bmatrix}$$

N Iteraciones=23

1c. Por el método de Gradiente Conjugado:

$$\begin{bmatrix} 6272.63355265128 & -384.16 \\ -384.16 & 48.02 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 15598.3984810892 \\ -0.158358764648483 \end{bmatrix}$$
 
$$k \quad v_1^{(k)} \quad v_2^{(k)} \quad Error$$
 
$$0 \quad 7.3445986 \quad 79.1311898 \quad 78027.2082908$$
 
$$1 \quad 4.8750885 \quad 38.9974100 \quad 979.4468146$$
 
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4.8750885 \\ 38.9974100 \end{bmatrix}$$

1e. Recomiendo usar el método de Gradiente Conjugado, ya que converge más rápido y da un valor más cercano.

#### 2 Pregunta 2

2a.

$$F(x) = \begin{bmatrix} x_1 x_2 - 72 \\ x_1 x_2 - 3x_1 + 2x_2 - 78 \end{bmatrix}$$

$$JF(x) = \begin{bmatrix} x_2 & x_1 \\ x_2 - 3 & x_1 + 2 \end{bmatrix}$$

$$[JF(x)]^{-1} = \begin{bmatrix} \frac{-x_1(3-x_2) - x_1(x_2 - 3) + x_2(x_1 + 2)}{x_2(-x_1(x_2 - 3) + x_2(x_1 + 2))} & -\frac{x_1}{-x_1(x_2 - 3) + x_2(x_1 + 2)} \\ \frac{-x_1(x_2 - 3) + x_2(x_1 + 2)}{-x_1(x_2 - 3) + x_2(x_1 + 2)} & -\frac{x_1}{-x_1(x_2 - 3) + x_2(x_1 + 2)} \end{bmatrix}$$

$$x^{(0)} = \begin{bmatrix} 3.00000000 \\ 6.00000000 \end{bmatrix}$$

$$tol = 0.0000100$$

2b.Usando el método de Newton:

$$k$$
  $x_1^{(k)}$   $x_2^{(k)}$   
0 3.0000000 6.0000000  
1 7.7142857 14.5714286  
2 6.1686183 12.2529274  
3 6.0019831 12.0029746  
4 6.0000003 12.0000004  
5 6.0000000 12.0000000

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.0000000 \\ 12.0000000 \end{bmatrix}$$

2c.Usando Homeotopia:

$$F(x) = \begin{bmatrix} x_1x_2 - 72 \\ x_1x_2 - 3x_1 + 2x_2 - 78 \end{bmatrix}$$
 
$$JF(x) = \begin{bmatrix} x_2 & x_1 \\ x_2 - 3 & x_1 + 2 \end{bmatrix}$$
 
$$[JF(x)]^{-1} = \begin{bmatrix} \frac{-x_1(3-x_2)-x_1(x_2-3)+x_2(x_1+2)}{x_2(-x_1(x_2-3)+x_2(x_1+2))} & -\frac{x_1}{-x_1(x_2-3)+x_2(x_1+2)} \\ \frac{-x_1(x_2-3)+x_2(x_1+2)}{-x_1(x_2-3)+x_2(x_1+2)} & -\frac{x_1}{-x_1(x_2-3)+x_2(x_1+2)} \end{bmatrix}$$
 
$$x^{(0)} = \begin{bmatrix} 3.0000000 \\ 6.0000000 \end{bmatrix}$$
 
$$tol = 0.0100000$$
 
$$i \quad x_1^{(i)} \quad x_2^{(i)} \quad F_1(x^{(i)}) \quad F_2(x^{(i)}) \quad \text{error}$$
 
$$0 \quad 3.0000000 \quad 6.0000000 \quad -54.0000000 \quad -57.0000000 \quad -1$$
 
$$1 \quad 3.6082272 \quad 7.1266265 \quad -46.2855121 \quad -48.8569407 \quad 48.8569407$$
 
$$2 \quad 4.1215055 \quad 8.1108297 \quad -38.5711703 \quad -40.7140275 \quad 40.7140275$$
 
$$3 \quad 4.5714462 \quad 9.0000264 \quad -30.8568633 \quad -32.5711490 \quad 32.5711490$$
 
$$4 \quad 4.9752725 \quad 9.8200516 \quad -23.1425679 \quad -24.4282822 \quad 24.4282822$$
 
$$5 \quad 5.3435971 \quad 10.5868242 \quad -15.4282771 \quad -16.2854199 \quad 16.2854199$$
 
$$6 \quad 5.6835074 \quad 11.3109753 \quad -7.7139885 \quad -8.1425599 \quad 8.1425599$$
 
$$7 \quad 6.0000142 \quad 12.0000214 \quad 0.0002990 \quad 0.0002990 \quad 0.0002990$$
 
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.0000142 \\ 12.0000214 \end{bmatrix}$$

2e. Recomiendo usar el método de Newton, ya que necesita menos iteraciones para llegar al valor exacto, en cambio homeotopía demora muchisimo más en converger.

# 3 Pregunta 3

3a.

$$A = \begin{bmatrix} 0.7000000 & 0.2000000 & 0.1000000 \\ 0.3000000 & 0.6000000 & 0.1000000 \\ 0.1000000 & 0.3000000 & 0.6000000 \end{bmatrix}$$
 
$$y = \begin{bmatrix} 0.0000000 \\ 1.0000000 \\ 1.0000000 \end{bmatrix}$$
 
$$Ay = \begin{bmatrix} 0.3000000 \\ 0.7000000 \\ 0.9000000 \end{bmatrix}$$

$$A^{2}y = \begin{bmatrix} 0.4400000 \\ 0.6000000 \\ 0.7800000 \end{bmatrix}$$

$$A^{3}y = \begin{bmatrix} 0.5060000 \\ 0.5700000 \\ 0.6920000 \end{bmatrix}$$

$$\begin{bmatrix} 0.506 \\ 0.57 \\ 0.692 \end{bmatrix} + b_{1} \begin{bmatrix} 0.44 \\ 0.6 \\ 0.78 \end{bmatrix} + b_{2} \begin{bmatrix} 0.3 \\ 0.7 \\ 0.9 \end{bmatrix} + b_{3} \begin{bmatrix} 0.0 \\ 1.0 \\ 1.0 \end{bmatrix} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$
Stada da Krulani

3b. Por el método de Krylon:

$$f(x) = x^3 + -1.9000000x^2 + 1.1000000x + -0.20000000$$

3c. Por el metodo de Potencia, la tabla es:

| k  | $y_1$     | $y_2$     | $y_3$     | $\lambda$          | $x_1$     | $x_2$     | $x_3$     | Err   |
|----|-----------|-----------|-----------|--------------------|-----------|-----------|-----------|-------|
| 0  | 91<br>—   | 92<br>—   | 93<br>—   | _                  | 1.0000000 | 0.0000000 | 0.0000000 |       |
| 1  | 0.7000000 | 0.3000000 | 0.1000000 | 0.7                | 1.0000000 | 0.4285714 | 0.1428571 | 0.451 |
| 2  | 0.8000000 | 0.5714286 | 0.3142857 | 0.799999999999999  | 1.0000000 | 0.7142857 | 0.3928571 | 0.379 |
| 3  | 0.8821429 | 0.7678571 | 0.5500000 | 0.882142857142857  | 1.0000000 | 0.8704453 | 0.6234818 | 0.278 |
| 4  | 0.9364372 | 0.8846154 | 0.7352227 | 0.9364372469635627 | 1.0000000 | 0.9446606 | 0.7851275 | 0.177 |
| 5  | 0.9674449 | 0.9453091 | 0.8544747 | 0.9674448767833981 | 1.0000000 | 0.9771194 | 0.8832283 | 0.103 |
| 6  | 0.9837467 | 0.9745944 | 0.9230728 | 0.9837467042052107 | 1.0000000 | 0.9906965 | 0.9383236 | 0.056 |
| 7  | 0.9919717 | 0.9882503 | 0.9602031 | 0.9919716716712169 | 1.0000000 | 0.9962485 | 0.9679744 | 0.030 |
| 8  | 0.9960471 | 0.9945465 | 0.9796592 | 0.9960471356078358 | 1.0000000 | 0.9984934 | 0.9835470 | 0.015 |
| 9  | 0.9980534 | 0.9974508 | 0.9896762 | 0.9980533881605883 | 1.0000000 | 0.9993962 | 0.9916065 | 0.008 |
| 10 | 0.9990399 | 0.9987984 | 0.9947828 | 0.999039890692029  | 1.0000000 | 0.9997582 | 0.9957388 | 0.004 |
| 11 | 0.9995255 | 0.9994288 | 0.9973707 | 0.999525527783183  | 1.0000000 | 0.9999033 | 0.9978442 | 0.002 |
| 12 | 0.9997651 | 0.9997264 | 0.9986775 | 0.9997650699378258 | 1.0000000 | 0.9999613 | 0.9989122 | 0.001 |
| 13 | 0.9998835 | 0.9998680 | 0.9993357 | 0.9998834750583449 | 1.0000000 | 0.9999845 | 0.9994521 | 0.000 |
| 14 | 0.9999421 | 0.9999359 | 0.9996666 | 0.9999421178612532 | 1.0000000 | 0.9999938 | 0.9997245 | 0.000 |
| 15 | 0.9999712 | 0.9999687 | 0.9998328 | 0.9999712121130833 | 1.0000000 | 0.9999975 | 0.9998616 | 0.000 |
| 16 | 0.9999857 | 0.9999847 | 0.9999162 | 0.9999856675870317 | 1.0000000 | 0.9999990 | 0.9999306 | 0.000 |
| 17 | 0.9999929 | 0.9999925 | 0.9999580 | 0.9999928584691096 | 1.0000000 | 0.9999996 | 0.9999652 | 0.000 |
| 18 | 0.9999964 | 0.9999963 | 0.9999790 | 0.9999964391204464 | 1.0000000 | 0.9999998 | 0.9999826 | 0.000 |
| 19 | 0.9999982 | 0.9999982 | 0.9999895 | 0.9999982235184545 | 1.0000000 | 0.9999999 | 0.9999913 | 0.000 |
| 20 | 0.9999991 | 0.9999991 | 0.9999947 | 0.9999991133434805 | 1.0000000 | 1.0000000 | 0.9999956 | 0.000 |
| 21 | 0.9999996 | 0.9999995 | 0.9999974 | 0.9999995573056802 | 1.0000000 | 1.0000000 | 0.9999978 | 0.000 |
| 22 | 0.9999998 | 0.9999998 | 0.9999987 | 0.9999997789064754 | 1.0000000 | 1.0000000 | 0.9999989 | 0.000 |
| 23 | 0.9999999 | 0.9999999 | 0.9999993 | 0.9999998895547066 | 1.0000000 | 1.0000000 | 0.9999995 | 0.000 |
| 24 | 0.9999999 | 0.9999999 | 0.9999997 | 0.9999999448179445 | 1.0000000 | 1.0000000 | 0.9999997 | 0.000 |
| 25 | 1.0000000 | 1.0000000 | 0.9999998 | 0.9999999724252095 | 1.0000000 | 1.0000000 | 0.9999999 | 0.000 |
| 26 | 1.0000000 | 1.0000000 | 0.9999999 | 0.9999999862190999 | 1.0000000 | 1.0000000 | 0.9999999 | 0.000 |
| 27 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9999999931121479 | 1.0000000 | 1.0000000 | 1.0000000 | 0.000 |
| 28 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9999999965571134 | 1.0000000 | 1.0000000 | 1.0000000 | 0.000 |
| 29 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9999999982789723 | 1.0000000 | 1.0000000 | 1.0000000 | 0.000 |

La solucion del valor y vector propios son  $\lambda_1 = 1.0000000$  y  $x_1 = \begin{bmatrix} 1.0000000 \\ 1.0000000 \\ 1.0000000 \end{bmatrix}$ 

Por el metodo de Potencia inversa, la tabla es:

| k  | $y_1$      | $y_2$      | $y_3$      | $\lambda$            | $x_1$      | $x_2$      | $x_3$      |
|----|------------|------------|------------|----------------------|------------|------------|------------|
| 0  | <i>9</i> 1 | 92         | 93<br>—    | _                    | 1.0000000  | 0.0000000  | 0.0000000  |
| 1  | 1.6500000  | -0.8500000 | 0.1500000  | 1.650000000000000001 | 1.0000000  | -0.5151515 | 0.0909091  |
| 2  | 1.8636364  | -1.9242424 | 0.8030303  | -1.9242424242424239  | -0.9685039 | 1.0000000  | -0.4173228 |
| 3  | -1.9645669 | 2.9566929  | -1.8464567 | 2.956692913385827    | -0.6644474 | 1.0000000  | -0.6245007 |
| 4  | -1.4214381 | 2.7396804  | -2.1737683 | 2.739680426098536    | -0.5188335 | 1.0000000  | -0.7934386 |
| 5  | -1.1473876 | 2.6496962  | -2.4560146 | 2.6496962332928313   | -0.4330261 | 1.0000000  | -0.9269042 |
| 6  | -0.9791122 | 2.6034530  | -2.6833815 | -2.6833814830100415  | 0.3648800  | -0.9702135 | 1.0000000  |
| 7  | 0.8386481  | -2.4990857 | 2.7764349  | 2.7764348517084927   | 0.3020593  | -0.9001060 | 1.0000000  |
| 8  | 0.7034456  | -2.3019678 | 2.7004096  | 2.700409621015928    | 0.2604959  | -0.8524513 | 1.0000000  |
| 9  | 0.6134213  | -2.1689467 | 2.6489032  | 2.648903150441974    | 0.2315756  | -0.8188094 | 1.0000000  |
| 10 | 0.5505640  | -2.0753985 | 2.6126052  | 2.6126052489105174   | 0.2107337  | -0.7943789 | 1.0000000  |
| 11 | 0.5051811  | -2.0076004 | 2.5862700  | 2.5862700083727264   | 0.1953319  | -0.7762532 | 1.0000000  |
| 12 | 0.4716116  | -1.9573512 | 2.5667403  | 2.566740333409842    | 0.1837395  | -0.7625825 | 1.0000000  |
| 13 | 0.4463323  | -1.9194727 | 2.5520143  | 2.552014281843771    | 0.1748941  | -0.7521403 | 1.0000000  |
| 14 | 0.4270384  | -1.8905475 | 2.5407674  | 2.540767359434162    | 0.1680746  | -0.7440853 | 1.0000000  |
| 15 | 0.4121614  | -1.8682382 | 2.5320922  | 2.532092179695293    | 0.1627751  | -0.7378239 | 1.0000000  |
| 16 | 0.4005996  | -1.8508978 | 2.5253490  | 2.5253489787889905   | 0.1586314  | -0.7329275 | 1.0000000  |
| 17 | 0.3915592  | -1.8373381 | 2.5200759  | 2.5200758732994197   | 0.1553759  | -0.7290805 | 1.0000000  |
| 18 | 0.3844565  | -1.8266845 | 2.5159329  | 2.5159328518332815   | 0.1528087  | -0.7260466 | 1.0000000  |
| 19 | 0.3788554  | -1.8182830 | 2.5126656  | 2.5126656013135804   | 0.1507783  | -0.7236470 | 1.0000000  |
| 20 | 0.3744253  | -1.8116380 | 2.5100814  | 2.5100814218455216   | 0.1491686  | -0.7217447 | 1.0000000  |
| 21 | 0.3709133  | -1.8063699 | 2.5080328  | 2.508032751104796    | 0.1478901  | -0.7202338 | 1.0000000  |
| 22 | 0.3681239  | -1.8021859 | 2.5064056  | 2.506405621468372    | 0.1468732  | -0.7190320 | 1.0000000  |
| 23 | 0.3659053  | -1.7988579 | 2.5051114  | 2.5051114014861535   | 0.1460635  | -0.7180750 | 1.0000000  |
| 24 | 0.3641385  | -1.7962077 | 2.5040808  | 2.50408077818671     | 0.1454180  | -0.7173122 | 1.0000000  |
| 25 | 0.3627302  | -1.7940953 | 2.5032593  | 2.503259302511233    | 0.1449032  | -0.7167038 | 1.0000000  |
| 26 | 0.3616069  | -1.7924104 | 2.5026040  | 2.502604047121195    | 0.1444923  | -0.7162181 | 1.0000000  |
| 27 | 0.3607104  | -1.7910656 | 2.5020811  | 2.5020810700403993   | 0.1441642  | -0.7158304 | 1.0000000  |
| 28 | 0.3599945  | -1.7899918 | 2.5016635  | 2.5016634713222654   | 0.1439021  | -0.7155206 | 1.0000000  |
| 29 | 0.3594227  | -1.7891340 | 2.5013299  | 2.5013298921668476   | 0.1436926  | -0.7152731 | 1.0000000  |
| 30 | 0.3589657  | -1.7884486 | 2.5010633  | 2.5010633480797755   | 0.1435252  | -0.7150753 | 1.0000000  |
| 31 | 0.3586005  | -1.7879008 | 2.5008503  | 2.5008503167913734   | 0.1433914  | -0.7149172 | 1.0000000  |
| 32 | 0.3583086  | -1.7874629 | 2.5006800  | 2.5006800221396586   | 0.1432845  | -0.7147907 | 1.0000000  |
| 33 | 0.3580752  | -1.7871128 | 2.5005439  | 2.5005438697744347   | 0.1431989  | -0.7146896 | 1.0000000  |
| 34 | 0.3578886  | -1.7868329 | 2.5004350  | 2.5004350011859904   | 0.1431305  | -0.7146088 | 1.0000000  |
| 35 | 0.3577393  | -1.7866090 | 2.5003479  | 2.500347940407013    | 0.1430758  | -0.7145441 | 1.0000000  |
| 36 | 0.3576200  | -1.7864299 | 2.5002783  | 2.500278313590999    | 0.1430321  | -0.7144924 | 1.0000000  |
| 37 | 0.3575245  | -1.7862868 | 2.5002226  | 2.5002226260888554   | 0.1429971  | -0.7144511 | 1.0000000  |
| 38 | 0.3574481  | -1.7861722 | 2.5001781  | 2.5001780850125375   | 0.1429691  | -0.7144180 | 1.0000000  |
| 39 | 0.3573871  | -1.7860806 | 2.5001425  | 2.5001424578621867   | 0.1429467  | -0.7143915 | 1.0000000  |
| 40 | 0.3573382  | -1.7860073 | 2.5001140  | 2.500113959795962    | 0.1429288  | -0.7143704 | 1.0000000  |
| 41 | 0.3572991  | -1.7859487 | 2.5000912  | 2.500091163681172    | 0.1429144  | -0.7143534 | 1.0000000  |
| 42 | 0.3572679  | -1.7859018 | 2.5000729  | 2.500072928285573    | 0.1429030  | -0.7143399 | 1.0000000  |
| 43 | 0.3572429  | -1.7858643 | 2.5000583  | 2.500058340926577    | 0.1428938  | -0.7143291 | 1.0000000  |
| 44 | 0.3572229  | -1.7858343 | 2.5000467  | 2.5000466716521146   | 0.1428865  | -0.7143204 | 1.0000000  |
| 45 | 0.3572069  | -1.7858103 | 2.5000373  | 2.500037336624667    | 0.1428806  | -0.7143134 | 1.0000000  |
| 46 | 0.3571941  | -1.7857911 | 2.5000299  | 2.5000298688536526   | 0.1428759  | -0.7143079 | 1.0000000  |
| 47 | 0.3571838  | -1.7857757 | 2.5000239  | 2.5000238947974385   | 0.1428722  | -0.7143035 | 1.0000000  |
| 48 | 0.3571756  | -1.7857634 | 2.5000191  | 2.5000191156552445   | 0.1428692  | -0.7142999 | 1.0000000  |
| 49 | 0.3571691  | -1.7857536 | 2.5000153  | 2.5000152924072663   | 0.1428668  | -0.7142971 | 1.0000000  |
| 50 | 0.3571638  | -1.7857457 | 2.5000122  | 2.500012233850979    | 0.1428648  | -0.7142948 | 1.0000000  |
| 51 | 0.3571596  | -1.7857395 | 2.5000098  | 2.50000978703289     | 0.1428633  | -0.7142930 | 1.0000000  |
| 52 | 0.3571563  | -1.7857344 | 2.5000078  | 2.5000078295956607   | 0.1428621  | -0.7142915 | 1.0000000  |
| 53 | 0.3571536  | -1.7857304 | 2.5000063  | 2.5000062636569114   | 0.1428611  | -0.7142904 | 1.0000000  |
| 54 | 0.3571514  | -1.7857272 | 2.5000050  | 2.500005010912975    | 0.1428603  | -0.7142894 | 1.0000000  |

La solucion del valor y vector propios son  $\lambda_2 = 0.4000000$  y  $x_2 = \begin{bmatrix} 0.1428572 \\ -0.7142857 \\ 1.0000000 \end{bmatrix}$ 

Por el metodo de Potencia inversa desplazado, la tabla es:

La solucion del valor y vector propios son  $\lambda_3 = 0.4000000$  y  $x_3 = \begin{bmatrix} 0.1428571 \\ -0.7142857 \\ 1.0000000 \end{bmatrix}$ 

3d. Debido a que todos los valores propios cumplen, si es una renta estable.

### 4 Pregunta 4

4a.

Coeficientes del polinomio

Polinomio de Newton

$$P(t) = 0.00911991815996465t\left(t - 9.0\right)\left(t - 5.0\right)\left(t - 3.0\right)\left(t - 2.0\right)\left(t - 1.0\right)\left(t - 0.5\right) - 0.109876925770308t\left(t - 5.0\right)\left(t - 1.0\right)\left(t - 1.0\right)\left(t - 0.5\right) - 0.109876925770308t\left(t - 5.0\right)\left(t - 1.0\right)\left(t - 1.0\right)\left(t - 0.5\right) - 0.109876925770308t\left(t - 5.0\right)\left(t - 1.0\right)\left(t - 0.5\right) - 0.109876925770308t\left(t - 5.0\right)\left(t - 0.0\right)\left(t - 0.$$

4b.

$$P(5.5) = 498.2918625898433$$

4e.

Newton:



Spline: