Diseño y Construcción de Data Warehouse

Instituto de Computación - Facultad de Ingeniería Edición 2017

Pentaho: Ejemplo de Diseño y Carga

- Temario
 - □ Planteo de la realidad
 - □ Fuentes
 - □ Diseño Conceptual
 - □ Diseño Lógico
 - □ Diseño Físico
 - □ Carga de Dimensiones
 - □ Carga de Hechos
 - □ Diseño de Cubos
 - □ Herramienta de Análisis

Planteo de la realidad

Una empresa (*Tienda Celeste*), dedicada a la venta de diferentes tipos de ropa y calzado, que tiene sucursales en distintas ciudades, abarcando la mayoría de los departamentos.

Requerimientos:

- □ Los gerentes desean analizar las Ventas, para poder definir la estrategia a futuro.
- □ Interesa clasificarlas según los *Clientes*, el *Tiempo* (fecha, mes y año) y tipo de *Producto*.
- □ Interesa evaluar las *ventas* por *ciudad* y *departamento de los Clientes*.

Fuentes

- La empresa tiene diferentes formas de almacenamiento de datos.
 - □ Clientes: Base de Datos
 - □ Productos: Planilla Excel (.xls)
 - □ Ventas: Planilla (.csv)

Ventas (.csv)

Fuentes

Clientes

Productos

	А	В	С	D
1	Código del Producto	Nombre del Producto	Código de la Familia	Nombre de la Familia
2	1	Botas	G	Gala
3	2	Buzo	S	Sport
4	3	Camisa	G	Gala
5	4	Chaleco	G	Gala
		·		

Ventas

	Α	В	С	D	E
1	Fecha	Nro. Factura	Cliente	Producto	Cantidad
2	08/10/2007	2636	32	6	1
3	08/10/2007	1166	18	14	1
4	08/10/2007	5061	2	3	2

Diseño Conceptual

Dimensiones y Jerarquías

Diseño Conceptual

Relación Dimensional

Diseño Conceptual

Estudio de Aditividad

Medida Dimensión		Cantidad
	Fechas → Meses	+
Tiempo	Meses → Años	+
	Años → ALL	+
Productos	Productos → Familias	+
Troductos	Familias → ALL	+
	Clientes → Ciudades	+
Clientes	Ciudades → Departamentos	+
	Departamentos → ALL	+

Diseño Lógico

Esquema Estrella

tiempo '

Diseño Físico

 Seleccionar los tipos de datos más pequeños del DBMS que permitan representar los datos.

Name	Storage Size	Description	Range
smallint	2 bytes	small-range integer	-32768 to +32767
integer	4 bytes	typical choice for integer	-2147483648 to +2147483647
bigint	8 bytes	large-range integer	-9223372036854775808 to 9223372036854775807
decimal	variable	user-specified precision, exact	up to 131072 digits before the decimal point; up to 16383 digits after the decimal point
numeric	variable	user-specified precision, exact	up to 131072 digits before the decimal point; up to 16383 digits after the decimal point
real	4 bytes	variable-precision, inexact	6 decimal digits precision
double precision	8 bytes	variable-precision, inexact	15 decimal digits precision
smallserial	2 bytes	small autoincrementing integer	1 to 32767
serial	4 bytes	autoincrementing integer	1 to 2147483647
bigserial	8 bytes	large autoincrementing integer	1 to 9223372036854775807

postgreSQL 9.6 Reference Manual

https://www.postgresql.org/docs/current/static/datatype-numeric.html

Diseño Físico

- Utilizar claves subrogadas (artificiales) de tipo entero sin signo para identificar los hechos y los diferentes niveles de las dimensiones.
- Caso particular dimensión *Tiempo*. Claves subrogadas con formato YYYYMMDD permiten:
 - □ a partir de una fecha generar el identificador y viceversa
 - preservan la relación de orden

Diseño Físico

- Seleccionar un conjunto de índices adecuado, que permita realizar joins de forma eficiente: B-TREE, HASH, etc.
- Estudiar características particulares del DBMS para aprovecharlo al máximo. Por ejemplo en PostgreSQL:
 - □ Table partitioning: Divide tablas muy grandes en pequeñas tablas (https://www.postgresql.org/docs/9.6/static/ddl-partitioning.html)
 - □ VACUUM: Recupera el almacenamiento ocupado por «tuplas muertas» (https://www.postgresql.org/docs/9.6/static/sql-vacuum.html)
 - □ ANALIZE: Recopila estadísticos de la BD (https://www.postgresql.org/docs/9.6/static/sql-analyze.html)
 - □ REINDEX: Reconstruye índices (https://www.postgresql.org/docs/9.6/static/sql-reindex.html)

Carga de Dimensiones

- Dimensión *Tiempo*:
 - □ Generar las fechas
 - □ Para cada fecha generar los identificadores y los restantes campos de la tabla.
 - □ Insertar en la tabla *Tiempo* del DW.

Carga de Dimensiones

Cliente

□ BD Fuente (BD):

□ Tabla en el DW:

- Dimensión Cliente:
 - □ Leer los registros de las tres tablas de la base fuente.
 - □ Unir ("join") los registros de cliente, ciudad y dpto.
 - □ Insertar en la tabla CLIENTE del DW.
- Cliente: Transformación

Cliente: Step

«Ordenar por Dpto.»

M

Carga de Dimensión Cliente

Cliente: *Step* «Unión por Clave»

Carga de Dimensiones

- Producto
 - ☐ Fuente (.xls):

	А	В	С	D
1	Código del Producto	Nombre del Producto	Código de la Familia	Nombre de la Familia
2	1	Botas	G	Gala
3	2	Buzo	S	Sport
4	3	Camisa	G	Gala
5	4	Chaleco	G	Gala
		·		

☐ Tabla en el DW:

- Dimensión Producto
 - □ Leer los registros de la planilla Excel (.xls)
 - □ Insertar en la tabla "producto" del DW
- Producto: Transformación

Producto: Step «Entrada Excel»

Producto: Step «Entrada Excel»

Producto: Step «Actualizar

Dimensión Producto»

Ventas

☐ Fuente (.csv):

	Α	В	С	D	E
1	Fecha	Nro. Factura	Cliente	Producto	Cantidad
2	08/10/2007	2636	32	6	1
3	08/10/2007	1166	18	14	1
4	08/10/2007	5061	2	3	2

□ Tabla de Hechos en el DW:

- Tabla de Hechos Ventas
 - Leer los registros de la planilla de Ventas.
 - □ Filtrar los campos que realmente son necesarios.
 - □ Calcular *id_fecha* (clave foránea a dimensión Tiempo).
 - □ Agrupar por Fecha-Cliente-Producto.
 - □ Para las combinaciones Fecha-Cliente-Producto que ya existen en el DW, sumar la cantidad.
 - □ Insertar en la tabla de hechos Ventas del DW.

Ventas: Transformación

Ventas: Step

«Agrupar por Fecha-Cliente-Producto»

Ventas: Step

«Calcular nuevos valores del DW»

Para las combinaciones Fecha-Cliente-Producto que ya existen en el DW, sumar la cantidad

M

Carga de Hechos

Ventas: Step

Actualizar Ventas en el DW

«Actualizar Ventas en el DW»

Transformaciones

- En general, la dimensión *Tiempo* podría ser cargada solo la primera vez, eventualmente cada mucho tiempo.
- Dimensiones *Productos* y *Clientes*:
 - □ Varían más frecuentemente, dimensiones dinámicas.
 - Deberían actualizarse en el DW cada vez que se van a cargar los hechos.

Trabajo (Job)

- Primera Carga:
 - □ Cargar todas las Dimensiones
 - □ Cargar los Hechos
- Actualización del DW:
 - Cargar las Dimensiones "dinámicas" Clientes y Productos
 - □ Cargar los Hechos *Ventas*

Trabajo (Job)

Trabajo: Step Transformación

Diseño de Cubos

Diseño de Cubos

Diseño de Cubos

Herramienta de Análisis: Saiku

Herramienta de Análisis: JPivot

