Regular tunctions on P Θ k[\mathbb{P}^{1}] = \mathbb{R} How to compute k[x]? - X affine then V - Reduce to the affine situation 4) patch & $P' = V_0 V_1$ glye {[i-y]} {[a:1]} - Jy - - - Jx 12 1P \ 5 [0:1], [1:0]} V (217-1) - -A' origin affine

Func	tion on L			
	Function			
	Function		which	
	agree			
	k[Uo]			· · · · · · · · · · · · · · · · · · ·
R[H]	> k[U]			
	> k[Ui]	1		-
	k[y]	Je [×13 ~ 1	· · · · · · · · · · · · · · · · · · ·
			$\times (-1)$	
	R [x]	2172		

.

.

.

.

.

. .

.

.

.

. .

. . .

. .

.

. .

.

.

. . .

.

.

.

. . .

.

. . .

. . .

.

.

. .

.

.

. .

. .

.

. .

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

. . .

.

.

.

.

.

. .

.

Form	
	Honest work.
	(n+1) affines of their overlaps.
2) T <u>y</u>	<u> </u>
	ЭP, q distinct
	Through any two points
	Passes a
	q) unique line.
	Through any
	two lin-ind vectors passes
	aunique 2 dim space

Veronese p. M is IP = [Uo:--:Un] cannot be all Zero Equations U; U; -UxUl if (How many?) itj=k+l I = ideal generated. $\varphi: P \to V(T)$ () makes all elts in Ita O

Inverse (Regular) 600 $\underset{=}{\text{or}} \left[U_1 : V_2 \right]$ $(\mathcal{A}_{\mathcal{A}})$ $\bigcup_{i=1}^{2} \left[\bigcup_{i=1}^{2} \left[\bigcup_{i=1}^{3} \left[\bigcup_{i$ $\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{$ & likewise for any of these Meeds to be cheeked O + PEV(I) at least one is P=[U0:---:Un] at lest one $Ui \neq 0$ so [vi] or [Vi: ViH] well-defined, so P the domain &

$$\psi: V(T) \rightarrow P'$$
 $\psi: V(T) \rightarrow P'$
 $\psi: V(T) \rightarrow$

 $U_0 U_i^* = U_1 U_i^*$ y Es l Equations in the ideal force (x) (Po)---, Pn), (90)--, 9n)

lin dep? (90)--, 9n) 2×2 minors Vanish All a

m has rank < r

All (rH) x(rH)

minors vanish

polynomial equations

Same thm is true in higher dim. eg prall mon. of deg m $= \left(\frac{1}{2} \sum_{i=1}^{n} \left(\frac{1}{2} \sum_{i=1}$ Get $P \longrightarrow P$ $\mathbb{E}\left[X_{0}, \dots, X_{n}\right] \mapsto$ all des m Im is closed (can write explicit 91s) q is an iso on the image

Plane conic & Plane