TOSHIBA

TC551001CP/CF/CFT/CTR/CST/CSR-55,-70,-85,-55L,-70L,-85L

TENTATIVE

TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON GATE CMOS

131,072-WORD BY 8-BIT STATIC RAM

DESCRIPTION

The TC551001CP/CF/CFT/CTR/CST/CSR is a 1,048,576-bit static random access memory (SRAM) organized as 131,072 words by 8 bits. Fabricated using Toshiba's CMOS Silicon gate process technology, this device operates from a single 5 V \pm 10% power supply. Advanced circuit technology provides both high speed and low power at an operating current of 5 mA/MHz (typ) and a minimum cycle time of 55 ns. It is automatically placed in low-power mode at 1 μ A standby current (typ) when chip enable ($\overline{\text{CE1}}$) is asserted high or (CE2) is asserted low. There are three control inputs. $\overline{\text{CE1}}$ and $\overline{\text{CE2}}$ are used to select the device and for data retention control, and output enable (OE) provides fast memory access. This device is well suited to various microprocessor system applications where high speed, low power and battery backup are required. The TC551001CP/CF/CFT/CTR/CST/CSR is available in a standard plastic 32-pin dual-in-line package (DIP), plastic 32-pin smalloutline package (SOP) and normal and reverse pinout plastic 32-pin thin-small-outline package (TSOP).

FEATURES

- Low-power dissipation Operating: 27.5 mW/MHz (typical)
- Single power supply voltage of 5 V \pm 10%
- Power down features using CE1 and CE2.
- Data retention supply voltage of 2 to 5.5 V
- Direct TTL compatibility for all inputs and outputs
- Standby Current (maximum):

	TC551001CP/CF/CFT/CTR/CST/C								
	-55, -70, -85	-55L, -70L, -85L							
5.5V	Αμ 100	20 μΑ							
3.0V	50 μA	10 μA							

• Access Times (maximum):

	TC55100	/CST/CSR	
	-55, -55L	-70, -70L	-85, -85L
Access Time	55 ns	70 ns	85 ns
CE1 Access Time	55 ns	70 ns	85 ns
CE2 Access Time	55 ns	70 ns	85 ns
OE Access Time	30 ns	35 ns	45 ns

Packages:

DIP32-P-600-2.54 (CP)	(Weight: 4.45 g typ)
SOP32-P-525-1.27 (CF)	(Weight: 1.04 g typ)
TSOP I 32-P-0820-0.50 (CFT)	(Weight: 0.34 g typ)
TSOP I 32-P-0820-0.50A (CTR)	(Weight: 0.34 g typ)
TSOP I 32-P-0.50 (CST)	(Weight: 0.24 g typ)
TSOP I 32-P-0.50A (CSR)	(Weight: 0.24 g typ)

PIN ASSIGNMENT (TOP VIEW)

○ <u>32 PIN DIP</u>	& SOP
NC	32

PIN NAMES

A0 to A16	Address Inputs
R/W	Read/Write Control
ŌĒ	Output Enable
CE1, CE2	Chip Enable
I/O1 to I/O8	Data Input/Output
V_{DD}	Power (+ 5 V)
GND	Ground
NC	No Connection

Pin No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Pin Name	A ₁₁	A ₉	A ₈	A ₁₃	R/W	CE2	A ₁₅	V_{DD}	NC	A ₁₆	A ₁₄	A ₁₂	A ₇	Α ₆	A ₅	A ₄
Pin No.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Pin Name	A ₃	A ₂	Α1	A ₀	1/01	1/02	I/O3	GND	1/04	1/05	1/06	1/07	I/O8	CE1	A ₁₀	ŌĒ

961001EBA1

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.
- The information contained herein is subject to change without notice.

BLOCK DIAGRAM

OPERATION MODE

MODE	CE1	CE2	ŌĒ	R/W	I/O1 to I/O8	POWER
Read	L	Н	L	Н	D _{OUT}	I _{DDO}
Write	L	Ι	×	L	D _{IN} I _{DDO}	
Outputs Disabled	L	Ι	Н	Η	High-Z	I _{DDO}
Chandle	Н	×	×	×	High-Z	I _{DDS}
Standby	×	L	×	×	High-Z	I _{DDS}

Note: x = don't care. H = logic high. L = logic low.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	VALUE	UNIT
V _{DD}	Power Supply Voltage	- 0.3 to 7.0	V
V _{IN}	Input Voltage	- 0.3* to 7.0	V
V _{I/O}	Input and Output Voltage	- 0.5 to V _{DD} + 0.5	V
P_{D}	Power Dissipation	1.0/0.6**	w
Tsolder	Soldering Temperature (10 s)	260	°C
Tstrg.	Storage Temperature	– 55 to 150	°C
Topr.	Operating Temperature	0 to 70	°C

^{* - 3.0} V when measured at a pulse width of 50 ns

TOSHIBA TC551001CP/CF/CFT/CTR/CST/CSR-55,-70,-85,-55L,-70L,-85L

DC RECOMMENDED OPERATING CONDITIONS (Ta = 0° to 70°C)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
V_{DD}	Power Supply Voltage	4.5	5.0	5.5	
V _{IH}	Input High Voltage	2.2	ı	V _{DD} + 0.3	v
V _{IL}	Input Low Voltage	- 0.3*	ı	0.8	V
V_{DH}	Data Retention Supply Voltage	2.0	ı	5.5	

^{* - 3.0} V when measured at a pulse width of 50 ns

DC CHARACTERISTICS (Ta = 0° to 70°C, V_{DD} = 5 V ± 10%)

SYMBOL	PARAMETER	TEST	CONDITION		MIN	TYP	МАХ	UNIT	
I _{IL}	Input Leakage Current	$V_{IN} = 0 V \text{ to } V_{DD}$			_	-	± 1.0	μΑ	
I _{OH}	Output High Current	V _{OH} = 2.4 V			1.0	_	_	mA	
l _{OL}	Output Low Current	V _{OL} = 0.4 V			4.0	_	_	mA	
I _{LO}	Output Leakage Current	$\overline{\text{CE1}} = \text{V}_{\text{IH}} \text{ or CE2} = \text{V}_{\text{IL}} \text{ or R}$ $\overline{\text{OE}} = \text{V}_{\text{IH}}, \text{V}_{\text{OUT}} = \text{0 V to V}_{\text{D}}$	_	_	± 1.0	μA			
		$\overline{\text{CE1}} = \text{V}_{\text{IL}} \text{ and CE2} = \text{V}_{\text{IH}}$		-55, -55L	_	_	80		
I _{DDO1}		and R/W = V _{IH} ,	Tcycle = min	-70, -70L, -85, -85L	_	-	70	mA	
		$I_{OUT} = 0 \text{ mA}$ Other Inputs = V_{IH}/V_{IL}	Tcycle = 1μ s		_	- 70 m - 20 - 70			
	Operating Current	CE1 = 0.2 V and		-55, -55L	_	_	70		
I _{DDO2}		$CE2 = V_{DD} - 0.2 V$ $R/W = V_{DD} - 0.2 V$,	Tcycle = min	-70, -70L, -85, -85L	_	_	60	mA	
		$I_{OUT} = 0 \text{ mA}$ Other Inputs = $V_{DD} - 0.2 \text{ V/0}$.	2 Tcycle = 1μ s		-	_	±1.0 - - ±1.0 80 70 20 70		
I _{DDS1}		CE1 = V _{IH} or CE2 = V _{IL}			_	_	3	mA	
			FF 70 9F	Ta = 25°C	_	1	_		
I _{DDS2}	Standby Current	$\overline{CE1} = V_{DD} - 0.2 V$	-55, -70, -85	$Ta = 0^{\circ} \text{ to } 70^{\circ}\text{C}$	_	_	100	١,	
		or CE2 = 0.2 V V _{DD} = 2.0 to 5.5 V		Ta = 25°C	_	1	2	μA	
		2.0 00 0.0 0	-55L, -70L, -85L	$Ta = 0^{\circ} \text{ to } 70^{\circ}\text{C}$	-	-	20		

Note: In standby mode with $\overline{\text{CE1}} \ge \text{V}_{DD} - 0.2 \, \text{V}$, these limits are assured for the condition CE2 $\ge \text{V}_{DD} - 0.2 \, \text{V}$ or CE2 $\le 0.2 \, \text{V}$.

CAPACITANCE (Ta = 25° C, f = 1 MHz)

SYMBOL	PARAMETER	TEST CONDITION	MAX	UNIT
C _{IN}	Input Capacitance	V _{IN} = GND	10	F
C _{OUT}	Output Capacitance	V _{OUT} = GND	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

TOSHIBA TC551001CP/CF/CFT/CTR/CST/CSR-55,-70,-85,-55L,-70L,-85L

<u>AC CHARACTERISTICS AND OPERATING CONDITIONS</u> (Ta = 0° to 70° C, $V_{DD} = 5 \text{ V} \pm 10\%$) <u>READ CYCLE</u>

			TC551001CP/CF/CFT/CTR/CST/CSR						
SYMBOL	PARAMETER	-55,	-55L	-70,	-70L	-85,	- 8 5L	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX		
t _{RC}	Read Cycle Time	55	_	70	_	85	_		
t _{ACC}	Address Access Time	_	55	-	70	-	85		
t _{CO1}	Chip Enable (CE1) Access Time	_	55	-	70	-	85]	
t _{CO2}	Chip Enable (CE2) Access Time	_	55	-	70	-	85]	
t _{OE}	Output Enable Access Time	_	30	-	35	-	45]	
t _{COE}	Chip Enable Low to Output Active	10	_	10	-	10	-	ns	
t _{OEE}	Output Enable Low to Output Active	5	-	5	-	5	-]	
t _{OD}	Chip Enable High to Output High-Z	_	20	-	25	-	30		
t _{ODO}	Output Enable High to Output High-Z	-	20	-	25	-	30		
t _{OH}	Output Data Hold Time	10	-	10	-	10	_		

WRITE CYCLE

SYMBOL	PARAMETER	TC551001CP/CF/CFT/CTR/CST/CSR						
		-55, -55L		-70, -70L		-85, -85L] UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t_WC	Write Cycle Time	55	-	70	-	85	-	
t _{WP}	Write Pulse Width	45	-	50	-	60	-]
t _{CW}	Chip Enable to End of Write	5	-	60	-	75	-	
t _{AS}	Address Setup Time	0	-	0	-	0	-]
t _{WR}	Write Recovery Time	0	-	0	-	0	-	ns
t _{ODW}	R/W Low to Output High-Z	_	20	_	25	_	30]
t _{OEW}	R/W High to Output Active	5	-	5	_	5	-]
t _{DS}	Data Setup Time	25	-	30	-	35	-	
t _{DH}	Data Hold Time	0	-	0	-	0	-	

AC TEST CONDITIONS

Output load: 30 pF + one TTL gate (-55, -55L)

: 100 pF + one TTL gate (-70, -70L, -85, -85L)

Input pulse level: 0.6 V, 2.4 V

Timing measurements: 1.5 V

Reference level: 1.5 V

 t_R , t_F : 5 ns

TIMING DIAGRAMS

READ CYCLE (See Note 1)

WRITE CYCLE 1 (R/W CONTROLLED) (See Note 4)

WRITE CYCLE 2 (CE1 CONTROLLED) (See Note 4)

WRITE CYCLE 3 (CE2 CONTROLLED) (See Note 4)

Note: (1) R/W remains HIGH for the read cycle.

- (2) If CE1 goes LOW (or CE2 goes HIGH) coincident with or after R/W goes LOW, the outputs will remain at high impedance.
- (3) If CE1 goes HIGH (or CE2 goes LOW) coincident with or before R/W goes HIGH, the outputs will remain at high impedance.
- (4) If \overline{OE} is HIGH during the write cycle, the outputs will remain at high impedance.
- (5) Because I/O signals may be in the output state at this time, input signals of reverse polarity must not be applied.

DATA RETENTION CHARACTERISTICS (Ta = 0° to 70°C)

SYMBOL	PARAMETER			MIN	TYP	MAX	UNIT
V_{DH}	Data Retention Supply Voltage			2.0	-	5.5	V
	Standby Current	-55, -70, -85	V _{DH} = 3.0 V	-	-	50	μΑ
I _{DDS2}			V _{DH} = 5.5 V	_	_	100	
2טטי		-55L, -70L, -85L	$V_{DH} = 3.0 V$	-	-	10*	
			V _{DH} = 5.5 V	_	-	20	
t _{CDR}	Chip Deselect to Data Retention Mode Time			0	-	-	n\$
t _R	Recovery Time	5	_	_	mS		

 $^{2 \}mu A$ (max) at Ta = 0° to 40° C

$\overline{\textbf{CE1}} \ \textbf{CONTROLLED} \ \textbf{DATA} \ \textbf{RETENTION} \ \textbf{MODE} \ (\textbf{See} \ \textbf{Note} \ \textbf{1})$

GND -

CE2 CONTROLLED DATA RETENTION MODE (See Note 3)

Note: (1) In $\overline{CE1}$ controlled data retention mode, minimum standby current mode is entered when $CE2 \leqq 0.2 \ V \ or \ CE2 \geqq V_{DD} - 0.2 \ V.$

- (2) When $\overline{CE1}$ is operating at the V_{IH} level (2.2 V), the operation current is given by I_{DDS1} during the transition of V_{DD} from 4.5 to 2.4 V.
- (3) In CE2 controlled data retention mode, minimum standby current mode is entered when CE2 $\leq 0.2\,\mathrm{V}$.

PACKAGE DIMENSIONS (DIP32-P-600-2.54)

Weight: 4.45 g (typ)

PACKAGE DIMENSIONS (SOP32-P-525-1.27)

Weight: 1.04 g (typ)

PACKAGE DIMENSIONS (TSOP I 32-P-0820-0.50)

Weight: 0.34 g (typ)

PACKAGE DIMENSIONS (TSOP I 32-P-0820-0.50A)

Weight: 0.34 g (typ)

PACKAGE DIMENSIONS (TSOP I 32-P-0.50)

Units in mm

Weight: 0.24 g (typ)

PACKAGE DIMENSIONS (TSOP I 32-P-0.50A)

Units in mm

Weight: 0.24 g (typ)

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.