seometria Analitica Cortión de Sabardo hoviembre



| Dac         | dok          | 1 10 1 | 0.0      | -    |        |   | J.  |     | 100 | -   | 1        |   | 4- | 30  |    | 1      | 1   |   |     |    | 1. |   |    |     |          |          |
|-------------|--------------|--------|----------|------|--------|---|-----|-----|-----|-----|----------|---|----|-----|----|--------|-----|---|-----|----|----|---|----|-----|----------|----------|
|             | dek<br>ndred | 1.1    | 2        | -    | -      | 1 | 3.6 | 1   | -   |     | 1        |   | UE |     | CL | e.1.5  | 1 0 |   | 1   | 30 | -  | - | CC |     |          |          |
|             | 22/6 00      |        | non      |      | CV     | D | C   | VO. | -   |     | $\vdash$ | + | -  |     |    |        |     |   |     |    |    |   |    | - 4 |          |          |
|             |              |        |          |      |        |   |     |     | +   |     | +        | H | +  |     |    |        |     |   | Н   |    | +  | - |    |     |          |          |
|             | 1 -          | -      |          |      |        | , |     |     | 1   |     |          | - |    |     | -  |        | -   |   |     |    | -4 |   |    |     | -        |          |
| <b>&gt;</b> | 15           | , 4    | )        | 1000 |        |   | 1   | -1  | )   |     | -        | - |    |     |    |        |     |   |     |    | 4  | 4 |    |     | _        |          |
|             |              |        | 4-0      |      |        |   | -   |     |     |     |          |   |    |     |    |        |     | 1 |     |    |    |   |    |     |          |          |
| <b>A</b>    | 5 -          | -)     | , 4      | 17   |        | 1 | _   |     |     |     |          |   |    |     |    |        |     |   |     | 1  |    |   |    |     |          |          |
|             |              | 1      |          |      |        | - |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              | 1      |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   | 7  | 4   |          |          |
| > (         | 4            | 1      | 1        |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   | 1  | 7   |          |          |
| 7           |              | 1      | -        | /    |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    | - | 7  | 7   | $\dashv$ | +        |
| +           | . 1          | 0.0    | 1        | 1    | 423000 |   |     |     | 000 | 1   |          |   | Н  |     |    |        |     |   |     |    |    | + | +  | -   | +        | $\dashv$ |
| Mni         | Imnt         | -      | 09       | He   | NC     | W | 10- |     | C   | 104 |          |   |    |     |    |        |     |   |     |    |    | + | +  | -   |          | -        |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    | - Comm |     |   |     |    | 4  |   | -  | 4   |          |          |
|             |              |        | -        |      |        |   |     |     | _   | -   |          | 1 |    |     |    |        | 1   |   |     |    |    | 9 |    |     |          |          |
|             |              |        | 1        |      |        |   |     | 1   |     |     |          | 1 |    | 1   |    | Y      | 1   | - |     |    |    |   |    |     |          | 1        |
| =           | { (          | 1,6    | 1)       |      | +      |   | A   |     | 1   | , ( | Z        | ) |    | X   | E  | 30     |     |   |     |    |    |   |    |     | 1        | 1        |
|             |              |        |          |      |        |   |     | ,   |     | 1   |          |   |    |     | Ĭ  |        | 1   |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          | П |    |     |    |        | -   |   |     |    |    |   |    |     |          | T        |
|             |              |        |          |      | - 4    |   |     |     |     |     |          |   |    | 1   |    |        |     |   |     |    | 1  |   | 1  |     |          |          |
|             |              | 1      | H        |      |        |   |     |     | 1   | H   | $\vdash$ |   |    |     |    |        |     |   |     |    | _  | + | 1  |     | -        | +        |
|             |              |        | $\vdash$ |      | -      | _ |     |     | -   | -   |          | - |    |     |    |        |     |   |     |    |    | 1 |    |     | -        | +        |
|             |              | -      |          |      | -      |   |     |     |     | -   |          |   |    |     |    |        | 1   |   |     |    | +  | 4 |    |     | -        |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   | - 5 |    | 4  | _ | 4  | 4   | 4        | 4        |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   | 1   | 1  |    |   |    |     |          |          |
|             | 1 4          |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        | (   |   |     |    | di |   |    |     |          | 7        |
|             |              |        |          | -1   |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   | +  | 7   | +        | +        |
|             |              | _      | 1        | -    |        | _ |     |     |     |     |          |   |    |     |    |        |     |   |     |    | +  | - | -  | -   | -        | -        |
|             |              | -      |          |      |        |   |     | -   |     |     |          |   |    |     |    |        |     |   |     |    |    | + | _  |     |          |          |
|             |              | -      |          | -    | _      |   |     |     |     | -   | -        | - |    | -   |    |        |     |   | -   |    |    | - | -  | -   |          | -        |
|             |              |        |          |      |        |   |     |     | -   |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     | -  |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    | 9   |    | 1      |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    | 1 |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    | 1 | 1  |     |          |          |
|             |              | -      |          |      |        |   |     |     |     | -   |          |   |    |     |    |        |     |   |     |    |    | - |    | +   | 1        |          |
|             |              | -      | +        |      |        |   | -   | -   | _   |     |          |   |    |     |    |        |     |   | -   |    |    | - | -  | -   |          |          |
|             |              | -      | -        |      |        |   |     |     | -   |     |          |   |    | - 1 |    |        |     |   |     |    |    | 7 |    |     |          |          |
|             |              | +      | -        |      | 1      |   | -   |     |     | -   |          | - |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        |          |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |
|             |              |        | 1        |      |        |   |     |     |     |     |          |   |    |     |    |        |     |   |     |    |    |   |    |     |          |          |

Examen Considera los vertices de triangulo ABC
y elemota por Alatecta que con tiene
al lado obvesto al vertice Apsimilarmente By CAGHA A=05.6), B=05,10,0=01,40 z. En cuentra la ecuarción normal de B Tenemos que 4. (g-p) - x = g - p Para C-A ó g-p tenemos -A=C-4,-2) x p=(5,6) Sustifuxendo. [ 2 x ER7 (-4,-2) , x t (-4,-2) , (5,6) 3 150,-4).x=(2,-4). (5,6)3 52x-4y=10-243 Su ec. hormal es = 2x-4x=-14/x, y ER=3

3. Encuentra la ecuación normal de la altura por A la perpendicular a L por A).

La ecuación normal es:

Entonces:

Como la Irnea de CB es perpendicular a la alfura, el vector, director puede actuar como

$$\Rightarrow (-4,3) \cdot (x,y) = (-4,3) \cdot (5,6)$$

$$-4x+3y = -20+18$$

$$-4x+3y = -2$$

Forma funcional: y = -2+4x

4. Calcula las distacia b=d(A,C) y h=d(B,B), para determinar el área bh/2 y haz un dibujo del



Sortie

p=B=(5,1)

 $h = d(B, \beta) = \frac{|c - n \cdot \rho|}{|\ln |l|} = \frac{|-1 \cdot 1 \cdot 4 - ((2, -4) \cdot (5, -1))|}{|\sqrt{(2)^2 + (-4)^{21}}}$ = 1-14-(10-4) 255 2/51 2015' = 215 Area del triangulo (25) (25) (120')(120') (120)

5. Obtén las coordenadas polares de los puntos con coordenadas cartesianas P=(0,-2) y Q=(-1,2) P=(0,-2) P= (0, 1Pl) del vector es 2 y que el angulo que forma es 270° o 311/2 P=(317,2) Q=(-1,2) Q=(0,191) |Q|= J(-1)2 + (2)2) = 51+4 = 15 tan 0 = 6.0. tano= = = 0= tan ( =) Q=(116.56°, 55'), 0= 26.56° 0= 25.56° +90°

6 Demvestra que dos vectores « y v son perpend, culques si y solo si ||u+v||=||u-v|| y dibujo.

## Demostración:

=)) se tiene que u 7 v son perpendiculares 7 se quiere demostrat que 1/4 + v/1 = 1/4 - v/1.

= 11u112 + 2 w.v + 11v112 pero se tenia que u y v eran
perpendiculares

=>  $\| \| u + v \|^2 = \| \| u \|^2 + 0 + \| v \|^2$ =  $\| \| u \|^2 + \| v \|^2$  pero como  $\| u \cdot v \| = 0$  51 restamos

-2u·v no se altera la igualdad =>  $||u+v||^2 = ||u||^2 - 2u·v + ||v||$ =>  $||u+v||^2 = u·u - 2u·v + v·v = (u-v)·(u-v) = ||u-v||^2$ =>  $(||u+v||)^2 = (||u-v||)^2$  pero : ||u+v|| = ||u-v||

(=) Ahora supongase que 11 u+v11 = 11 u-v11 y se quiere demostror que wyv son perpendirulares.

As1 pres si ||u+v|| = ||u-v||, elevando al cuadrado y usando la definición de norma =>  $||u+v||^2 = ||u-v||^2 (=> (u+v) \cdot (u+v) = (u-v) \cdot (u-v)$ =>  $||u||^2 + ||u||^2 = ||u||^2 - ||u||^2 - ||v||^2$  para que se cumpla

la igualdad => 2 v.v= 0 => v.v=0 pero esto

.. u y v son perpendiculares

0.60,0





El paralelogramo que se torma es un rectangulo en el que sus diagonales son iguales.