CANS2D モデルパッケージ md_sndwave

音波

2006. 1. 9.

1 はじめに

このモデルパッケージは、2次元平面内での音波(流体線形波動)の伝播を解くためのものである。

2 仮定と基礎方程式

流体は非粘性・圧縮性流体とする。計算領域は 2 次元デカルト座標(xy 平面)で $\partial/\partial z=0$ 、 $V_z=0$ と仮定する。解くのは、 密度 ρ 、圧力 p、速度 V_x 、 V_y についての 2 次元 Euler 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}(\rho V_x^2 + p) + \frac{\partial}{\partial y}(\rho V_x V_y) = 0$$
 (2)

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}(\rho V_x V_y) + \frac{\partial}{\partial y}(\rho V_y^2 + p) = 0$$
(3)

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 \right) + \frac{\partial}{\partial x} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_x \right] + \frac{\partial}{\partial y} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_y \right] = 0 \tag{4}$$

である。ここで、 γ は比熱比。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 $C_{\rm S0}$ 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は計算領域の大きさの $1/(2\pi)$ 倍、 $C_{\rm S0}$ は初期一様状態の音速。密度は初期一様状態の値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位
x, y	L_0
V_x, V_y	$C_{ m S0}$
t	$L_0/C_{\rm S0}$
ho	$ ho_0$
p	$ ho_0 C_{\mathrm{S0}}^2$

表 1: 変数と規格化単位。 ho_0 、 $C_{
m S0}$ は初期一様状態の値。

4 パラメータ・初期条件・計算条件・境界条件

 $|x| < X_{
m bnd}$ 、 $|y| < Y_{
m bnd}$ の領域を解く。初期状態は以下のようなもの。サブルーチン ${
m model}$ で設定する。

$$\rho = 1 + (a/\gamma) \exp [-(r/w)^{2}]$$

$$p = (1/\gamma) * \{1 + a \exp [-(r/w)^{2}]\}$$

$$V_{x} = V_{y} = 0$$

ただし、

$$r = \sqrt{x^2 + y^2}$$

で、aは擾乱の振幅、wは擾乱の印加範囲。

パラメータ	値	コード中での変数名	設定サブルーチン名
比熱比 γ	5/3	gm	model
擾乱の振幅 a	0.1	amp	model
擾乱の印加範囲 w	0.2	wexp	model

表 2: おもなパラメータ

境界条件は、すべて対称境界条件。すなわち $|x|=X_{\rm bnd}$ で、 V_x は「絶対値が等しく符号反転で鏡面配置」、 ρ 、p、 V_y は「絶対値・符号が等しく鏡面配置」。 $|y|=Y_{\rm bnd}$ で、 V_y は「絶対値が等しく符号反転で鏡面配置」 ρ 、p、 V_x は「絶対値・符号が等しく鏡面配置」。サブルーチン bnd で設定する。

計算パラメータは以下の通り(表3参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
境界の位置 x 方向 X_{bnd}	π	_	model
境界の位置 x 方向 Y_{bnd}	π	_	model
グリッド数 x 方向	103	ix	main
グリッド数 y 方向	102	jx	main
マージン	4	margin	main
終了時刻	2	tend	main
出力時間間隔	0.1	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。

5 参考文献

音波(線形波動)についてはたいていの流体力学の教科書に載っている。たとえばランダウ・リフシッツ「流体力学」第 63 節など。