Übung zur Vorlesung im WS 2010/2011 **Algorithmische Eigenschaften von Wahlsystemen I**

(Lösungsvorschläge) Blatt 11, Abgabe am 20. Januar 2011

Aufgabe 1 (Plurality with Runoff-CCWM für 3 Kandidaten): Zeigen Sie, dass das Manipulationsproblem CCWM für das Wahlsystem Plurality with Runoff für 3 Kandidaten NP-hart ist.

Lösungsvorschläge: Bei 3 Kandidaten entspricht Pwro dem Wahlsystem STV. Damit gilt nach der Vorlesung, dass Plurality with Runoff-CCWM für 3 Kandidaten NP-hart ist.

Aufgabe 2 (Non-monotonicity in STV): Das aus der Vorlesung bekannte Monotonie-Kriterium kann auch wie folgt definiert werden:

Ein Wahlsystem \mathcal{E} heißt monoton, wenn für jede \mathcal{E} -Wahl gilt: Ist Kandidat c kein Gewinner der Wahl, so kann er nicht zum Gewinner gemacht werden, indem die Position von c in einigen Stimmen verschlechtert wird.

Es lässt sich das folgende Entscheidungsproblem definieren:

Non-Monotonicity					
Gegeben:	Eine \mathcal{E} -Wahl (C, V) für ein Wahlsystem \mathcal{E} und ein ausgezeichneter				
	Kandidat c , der nicht \mathcal{E} -Gewinner der Wahl (C, V) ist.				
Frage:	Gibt es ein $V' \subseteq V$ derart, dass c zum Gewinner gemacht werden				
	kann, wenn die Position von c in den Stimmen in V' verschlechtert				
	wird?				

Für das Wahlsystem STV sei nun der folgende Ansatz für eine Reduktion von X3C auf NON-MONOTONICITY gegeben:

Es sei (B, \mathcal{S}) eine X3C Instanz mit $B = \{b_1, b_2, \dots, b_{3m}\}$ und einer Familie von Teilmengen $\mathcal{S} = \{S_1, S_2, \dots, S_n\}$ mit $\|S_i\| = 3$ und $S_i \subseteq B$ für alle $i, 1 \leq i \leq n$. Wir konstruieren daraus die STV-Wahl (C, V) mit der Kandidatenmenge

$$C = \{c\} \cup \{b_0, b_1, \dots, b_{3m}\} \cup \{d_1, d_2, \dots, d_n\} \cup \{\bar{d}_1, \bar{d}_2, \dots, \bar{d}_n\} \cup \{g_1, g_2, \dots, g_n\} \cup \{w, w'\}$$

und der Wählerliste V:

(1)		12n	Wähler:	cw
(2)		12n - 1	Wähler:	w c
(3)		12n	Wähler:	w' w c
(4)		10n + 2m	Wähler:	$b_0 w c$
(5)	Für jedes $j \in \{1, \dots, 3m\}$	12n - 2	Wähler:	$b_j w c$
(6)	Für jedes $i \in \{1, \dots, n\}$	12n	Wähler:	$g_i w c$
	Für jedes $i \in \{1, \dots, n\}$	6n	Wähler:	$d_i \bar{d}_i w c \dots$
	und wenn $S_i = \{b_x, b_y, b_z\}$, dann	2	Wähler:	$d_i b_x w$
(7)		2	Wähler:	$d_i b_y w$
		2	Wähler:	$d_i b_z w$
(8)	Für jedes $i \in \{1, \dots, n\}$	6n	Wähler:	$\bar{d}_i d_i w c$
		2	Wähler:	$\bar{d}_i b_0 w c$
(9)	Für jedes $i \in \{1, \dots, n\}$	1	Wähler:	$c d_i$
(9)		6	Wähler:	$c\bar{d}_i$

- (a) Zeigen Sie, dass c die Wahl (C, V) nicht gewinnt.
- (b) Es sei eine Indexmenge $I\subseteq\{1,\ldots,n\}$ gegeben. Wir vertauschen in den Stimmen der Wählergruppe (9) nun für alle $i\in I$ die Position von c und d_i bzw. $\bar{d_i}$ und es sei V' die so veränderte Wählerliste. Zeigen Sie, dass c die Wahl (C,V') gewinnt, wenn I die Indexmenge einer exakten Überdeckung für B ist.

Lösungsvorschläge:

(a) In (C, V) sehen die Punktwerte in den Runden wie folgt aus:

	1. Runde	2. Runde	3. Runde
c	19n	19n	19n
w	12n - 1	12n - 1	3m(12n-2) + 12n - 1
w'	12n	12n	12n
b_0	10n + 2m	12n + 2m	12n+m
b_{j}	12n - 2	12n - 2	-
g_i	12n	12n	12n
d_i	6n + 6	12n + 6	12n + 6
\bar{d}_i	6n + 2	-	-

Kandidat c kann ab hier Kandidat w nicht mehr einholen. c wird also vor w ausscheiden und somit kein Gewinner der Wahl (C,V) sein.

(b) Es sei nun $I\subseteq\{1,\ldots,n\}$ die Indexmenge einer exakten Überdeckung für B. Das heißt, dass $\|I\|=m$ gilt. Zudem gilt folgendes für die Wahl (C,V'):

	1. Runde	2. Runde	3. Runde
c	12n + 7(n-m)	12n + 7(n-m)	12n + 7(n-m) + m
w	12n - 1	12n - 1	12n - 1
w'	12n	12n	12n
b_0	10n + 2m	10n + 2m + 2(n-m)	12n
b_{j}	12n - 2	12n - 2	12n
g_i	12n	12n	12n
d_i	$6n + 6(+1, i \in I)$	$6n + 7(+6n - 1, i \not\in I)$	$12n+6, i \not\in I$
\bar{d}_i	$6n + 2(+6, i \in I)$	$6n + 8, i \in I$	$12n + 8, i \in I$

1. Runde: \bar{d}_i mit $i \notin I$ scheiden aus.

2. Runde: d_i mit $i \in I$ scheiden aus.

3. Runde: w scheidet aus, weil nun jedes b_j aufgrund der exakten Überdeckung noch 2 zusätzliche Punkte bekommt. Somit wird c dann die Wahl gewinnen, weil ihm alle Stimmen von w und im Verlauf der restlichen Wahl die Punkte der anderen Kandidaten zukommen.