

WHAT IS DEEP LEARNING?

Visual Cortices Parietal Lobe LGN Occipital Lobe V5 (Motion) V7 V3a (Motion) **Extrastriate Cortex** Light V3 (Form) V2 (Relays signals) V1 (Catalogs Input) Striate Cortex Temporal Lobe VP (Relays signals) Visual V4 (Color and Form) Extrastriate Cortex Radiation V8

WHAT IS DEEP LEARNING?

Biologically-inspired multilayer neural networks

Both supervised and unsupervised

WHAT IS DEEP LEARNING?

Example. Face recognition (Facebook)

Deeper layers learn higher-order features

O APPLICATIONS

HANDWRITING RECOGNITION

0	1	2	3	4	5	6	7	જ	9
0	/	α	3	#	5	حا	7	8	9
0	1	Ą	3	4	5	6	>	8	9
0									

GOOGLE CAT VIDEOS

IMAGE RECOGNITION

CamFind

Visual Search Engine (available on iOS, Android)

FACE RECOGNITION

SPEECH TRANSLATION

From Hidden Markov Models to Recurrent Neural Networks

NEURON

Perceptron.

Depending on function f, neurons can be: real-valued or binary-valued; deterministic or probabilistic.

$$h_{w,b}(x) = f(w^{\mathsf{T}}x) = f(\sum_{i=1}^{d} w_i x_i + b)$$

ACTIVATION FUNCTIONS

sigmoid
$$f(z) = \frac{1}{1+e^{-z}}$$

$$\tanh f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

softplus
$$f(z) = \ln(1 + e^{-z})$$

rectified
$$f(z) = \max(0, z)$$

linear unit (ReLU)

Forward Propagation.

$$egin{aligned} z^{(2)} &= W^{(1)}x + b^{(1)} \ a^{(2)} &= f(z^{(2)}) \ z^{(3)} &= W^{(2)}a^{(2)} + b^{(2)} \ h_{W,b}(x) &= a^{(3)} &= f(z^{(3)}) \end{aligned}$$

Feedforward Neural Network.

$$z^{(l+1)} = W^{(l)}a^{(l)} + b^{(l)}$$
 $a^{(l+1)} = f(z^{(l+1)})$ Activation

Neural Network Architecture.

Arrangement of neurons, e.g. number of neurons in each layer.

TRAINING LOSS

For binary neurons, other loss functions are used.

Point Loss

$$J(W,b;x,y) = rac{1}{2} \|h_{W,b}(x) - y\|^2 + rac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_l} \sum_{i=1}^{s_{l+1}} \left(W_{ji}^{(l)}
ight)^2$$

Training Loss

 $J(W,b) = \left[\frac{1}{m}\sum_{i=1}^{m}J(W,b;x^{(i)},y^{(i)})\right] \\ = \left[\frac{1}{m}\sum_{i=1}^{m}\left(\frac{1}{2}\left\|h_{W,b}(x^{(i)})-y^{(i)}\right\|^2\right)\right] + \frac{\lambda}{2}\sum_{l=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^2$

 λ weight decay parameter

BACKPROPAGATION

Chain Rule for Neural Networks.

$$\begin{split} \frac{\partial}{\partial W_{ij}^{(l)}} \left(\frac{1}{2} \left\| a^{(n_l)} - y \right\|^2 \right) &= \left(a^{(n_l)} - y \right) \frac{\partial}{\partial W_{ij}^{(l)}} f \left(z^{(n_l)} \right) \\ &= \left(a^{(n_l)} - y \right) f' \left(z^{(n_l)} \right) \frac{\partial}{\partial W_{ij}^{(l)}} \left(W^{(n_l - 1)} a^{(n_l - 1)} + b^{(n_l - 1)} \right) \\ &= \left(a^{(n_l)} - y \right) f' \left(z^{(n_l)} \right) W^{(n_l - 1)} \frac{\partial}{\partial W_{ij}^{(l)}} a^{(n_l - 1)} \\ &= \left(a^{(n_l)} - y \right) f' \left(z^{(n_l)} \right) W^{(n_l - 1)} f' \left(z^{(n_l - 1)} \right) \frac{\partial}{\partial W_{ij}^{(l)}} z^{(n_l - 1)} \\ &\frac{\delta^{(n_l)}}{\delta^{(n_l - 1)}} \end{split}$$

BACKPROPAGATION

- 1. Perform a feed-forward pass, computing the activations layer by layer.
- 2. For the output layer (layer n_l), set

$$\delta^{(n_l)} = -(y-a^{(n_l)})ullet f'(z^{(n_l)})$$

3. For $l = n_l - 1, n_l - 2, n_l - 3, \dots, 2$, set

$$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)}
ight) ullet f'(z^{(l)})$$

4. Compute the desired partial derivatives:

$$egin{aligned}
abla_{W^{(l)}} J(W,b;x,y) &= \delta^{(l+1)}(a^{(l)})^T, \
abla_{b^{(l)}} J(W,b;x,y) &= \delta^{(l+1)}. \end{aligned}$$

denotes
 element-wise
 multiplication

Note that with weight decay, $\nabla_{W^{(l)}}J(W,b) = \nabla_{W^{(l)}}J(W,b;x,y) + \lambda W^{(l)}$

AUTOENCODERS

Training a multilayer neural network to reconstruct the input from a reduced representation.

Strategies for Dimensionality Reduction

- Few hidden neurons
- Sparse activations

SPARSE AUTOENCODER

Sparsity Penalty.

Average activation
$$\hat{
ho}_j = rac{1}{m} \sum_{i=1}^m \left[a_j^{(2)}(x^{(i)})
ight]$$

$$\mathrm{KL}(\rho||\hat{\rho}_j) = \rho \log \frac{\rho}{\hat{\rho}_j} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_j}$$

$$J_{\text{sparse}}(W, b) = J(W, b) + \beta \sum_{j=1}^{s_2} \text{KL}(\rho || \hat{\rho}_j),$$

 β sparsity parameter

NATURAL IMAGES

Edge features similar to those from neuroscience experiments (see Hubel & Wiesel Cat Experiment, 1959).

WHY DOES DEEP LEARNING WORK?

WHY DOES DEEP LEARNING WORK?

WHY DOES DEEP LEARNING WORK?

1006

RIDICULOUSLY SIMPLIFIED HISTORY

1943	Artificial Neuron (McCullough, Pitts)
1957	Perceptrons (Rosenblatt)
1969	Problem with XOR (Minsky, Papert)

FIRST AI WINTER

1989 Convolutional Neural Nets (LeCun) Autoencoders, Belief Nets, Recurrent NN, Reinforcement	1900	backpropagation (Rumemart, fillion, williams)
	1989	Convolutional Neural Nets (LeCun) Autoencoders, Belief Nets, Recurrent NN, Reinforcement

Paglance Company (Dumalbart Linton Williams)

1995 Problems with Backprop.
Rise of SVMs and Random Forests.

SECOND AI WINTER

DEEP LEARNING CONSPIRACY

Yann LeCun, Geoffrey Hinton, Yoshua Bengio, Andrew Ng

2006 Greedy Initialization of Layers

2009 Graphics Processing Units

2012 Dropout (ImageNet)

WHAT WAS WRONG WITH BACKPROPAGATION IN 1986?

- Our labeled datasets were thousands of times too small.
- 2. Our computers were millions of times too slow.
- 3. We initialized the weights in a stupid way.
- 4. We used the wrong type of non-linearity.

SUMMARY

- Multilayer Neural Networks
 - Neuron
 - Activation Function
 - Forward Propagation
- Learning Algorithm
 - Cost Function
 - Backpropagation
 - Autoencoders

INTENDED LEARNING OUTCOMES

Deep Learning

- Describe how the output of an artificial neuron relates to its inputs.
 Give examples of activation functions which are commonly used.
- Describe how the output of a multilayer neural network relates to its inputs. In particular, write down formulas for forward propagation. Given a network, identify the neural network architecture.
- Write down the training loss of a feedforward network. Derive the gradient formulas in backpropagation from the training loss.
- Give a definition of an autoencoder. Explain how they are used for dimensionality reduction. Describe two strategies for reduction.
- List some successful applications of deep learning.
 Give four reasons for the recent success of deep learning.