

Obrázek 1: Konstrukce úlohy

Nechť body X' a Y' jsou středy stran AB a AC. Jako první dokážeme shodnost trojúhelníků AY'K a MX'K. Protože body X', K a Y' leží na střední příčce, úhly při vrcholu K jsou shodné a bod K půlí jak úsečku AM, tak úsečku X'Y', z čehož nutně plyne shodnost trojúhelníků AY'K a MX'K. Podobně ukážeme i shodnost trojúhelníků AKX' a MKY'.

Ze shodnosti těchto trojúhelníků platí rovnosti $| \sphericalangle KX'M | = | \sphericalangle KXM | = | \sphericalangle ACB | = \gamma$ a $| \sphericalangle KY'M | = | \sphericalangle KYM | = | \sphericalangle ABC | = \beta$, proto jsou čtyřúhelníky KMXX' a Y'YMK tětivové. Úhlením pak přijdeme na rovnost $| \sphericalangle AMX | = \beta$ a $| \sphericalangle AMY | = \gamma$ (viz konstrukce na obrázku 1). Pak podle věty uu platí podobnosti $ABM \sim AMX$ a $AMC \sim AYM$.

Teď už umíme ukázat, že body $B,\,C,\,X,\,Y$ leží na kružnici, a to pomocí rovnice vycházející z mocnosti bodu ke kružnici:

$$|AX| \cdot |AB| = |AY| \cdot |AC| \tag{1}$$

Z podobnosti trojúhelníků $ABM \sim AMX$ platí:

$$\frac{|AB|}{|AM|} = \frac{|AM|}{|AX|} \quad \Rightarrow \quad |AM|^2 = |AX| \cdot |AB|$$

A z podobnosti trojúhelníků $AMC \sim AYM$ platí:

$$\frac{|AC|}{|AM|} = \frac{|AM|}{|AY|} \quad \Rightarrow \quad |AM|^2 = |AY| \cdot |AC|$$

Rovnice 1 tedy zřejmě platí, proto body B, C, X, Y leží na kružnici, jak jsme chtěli dokázat.