NAT 虚拟服务器实验

1.实验目的

网络地址转换(NAT,Network Address Translation)属接入广域网(WAN)技术,是一种将私有(保留)地址转化为合法 IP 地址的转换技术,它被广泛应用于各种类型 Internet 接入方式和各种类型的网络中。原因很简单,NAT 不仅完美地解决了 IP 地址不足的问题,而且还能够有效地避免来自网络外部的攻击,隐藏并保护网络内部的计算机。

通过在路由器上配置 NAT 静态端口映射了解 NAT 的虚拟服务器功能是如何实现的。

2.知识补充

虚拟服务器可以使多台服务器共享一个公网 IP, 假设我们现在有一个 202.197.61.123 的公网 IP, 我们将此 IP 分配给路由器, 然后将路由器的内网 IP 设为 192.168.1.1, 再将分别载有 a 项目的服务器 A 和载有 b 项目的服务器 B 与路由器相连,并分别设内网 IP 为 192.168.1.2和 192.168.1.3。然后通过路由器 NAT 静态端口映射将外网的 2222端口映射至 192.168.1.2:80,将外网的 3333端口映射至 192.168.1.3:80;当我们访问 202.197.61.123:2222的时候我们访问到的是 a 项目,当我们访问 202.197.61.123:3333的时候我们访问到的是 b 项目;这样 NAT可以为我们节省很多的公网 IP 资源。

3.实验步骤

在右上方的实验拓扑图中选择配置 NAT 虚拟服务器实验,点击连线配置子网网段,实验拓扑如下图所示:

然后点击提交实验,等待资源分配成功后,点击图标按全屏访问 即可进入设备。

首先我们进入 ApplicationServer(用户名: centos 密码: centos),输入命令 sudo service httpd start 启动 http 服务。

然后我们进入 PC, 在 PC 上登录浏览器输入 10.0.1.4:8080,发现无法载入界面

为了模拟真实的环境,我们需要把 10.0.2.0/24 定义为局域网,把 10.0.1.0/24 定义为广域网,PC 是不能直接访问应用服务器的,但是通过 NAT 可以实现此功能。

然后在 PC 上登录浏览器输入 10.0.1.4, 账号和密码都是 root, 登录路由器管理界面。

进入路由器后点击最上面一行选择 NETWORK,再选择 Firewall,将 reject 选项都改为 accept 选项。然后再最下方选择 Save & Apply。

然后选择 NETWORK,选择 Interfaces,再选择 eth0,点击 edit 选项,再在 common Configuration 中选择 Firewall Settings,将 NET1 归入 wan:

Common Configuration

然后再最下方选择 Save & Apply。

同理再将 eth1 归入 lan,这样就把 PC 和应用服务器的网络隔离了,这时候在网页中访问 10.0.2.3 是访问不通的。

接下来我们选择 NETWROK,再选择 Firewall,选择 Port Forwards 进入了虚拟服务器的端口转发界面。再在下方的配置区域,配置端口转发信息,然后点击 Add 按钮。(Tips: 同学们有没有发现 Internal IP address 这里没有 10.0.2.3 这个选项呢?(需要手动填写)自己先想想为什么,答案将在此文档的最后出现。)

完成之后,会出现如下信息

Port Forwards

配置成功后我们就可以在最下方选择 Save & Apply 保存配置。 然后再在外层的配置页面继续点击 Save & Apply 保存配置。 接下来就是见证奇迹的时刻:

下面就来揭晓为何 Internal IP address 这里没有 10.0.2.3 这个选项,原因在于路由器是基于学习机制的,一开始它也不知道它有哪些邻居,所以可以先进入服务器 ping 10.0.2.2 让路由器知道它有这么一个邻居。之后再去路由器看就能看到 10.0.2.3 这个地址了。

温馨提示:实验资源宝贵,实验结束后记得点击结束实验

