1.) Tétel:

Logikai műveletek, Neumann-elv(a.):

Logikai műveletek

Az A és a B a logikai változókat, az L az eredményt jelöli. Negálás

Jelölése: NEM (NOT)

Jele: -

Egyváltozós művelet. Az N a negálás művelet jelölése.

Logikai összeadás

Jelölése: VAGY (OR)

Jelen: V

Α		В		L
0	V	0	=	0
0	V	1	=	1
1	V	0	=	1
1	V	1	=	1

Logikai szorzás

Jelölése: ÉS (AND)

Jele: A

A		В		L
0	٨	0	=	0
0	٨	1	=	0
1	٨	0	=	0
1	٨	1	=	1

Kizáró vagy

Jelölés: XOR

A		В		L
0	xor	0	=	0
0	xor	1	=	1
1	xor	0	=	1
1	xor	1	=	0

Továbbá: NAND, NOR

Neumann-elv:

A Neumann-elveket Neumann János 1946-ban dolgozta ki a számítógépek ideális működéséhez. Ezek szerint a gépnek öt alapvető funkcionális egységből kell állnia: bemeneti egység, memória, aritmetikai és logikai egység, vezérlőegység, kimeneti egység, s ami lényegesebb: a gép működését a tárolt program elvére kell alapozni. Ez azt jelenti, hogy a gép a program utasításait az adatokkal együtt a központi memóriában, bináris ábrázolásban tárolja, s a Boole-algebra műveleteit ezek sorrendjében hajtja végre. A számítógépek az elmúlt évtizedekben páratlan fejlődésen mentek keresztül, de elvi felépítésük nem változott.

Neumann-elvek

- 1. soros utasításvégrehajtás (az utasítások végrehajtása időben egymás után történik. Ellentéte a párhuzamos utasításvégrehajtás, amikor több utasítás egyidejűleg is végrehajtható)
- 2. kettes (bináris) számrendszer használata
- 3. belső memória (operatív tár) használata a program és az adatok tárolására
- 4. teljesen elektronikus működés
- 5. széles körű felhasználhatóság, alkalmasság bármilyen adatfeldolgozási feladatra (a számítógép univerzális Turing-gépként működik)
- 6. központi vezérlőegység alkalmazása

A Neumann-elvű számítógépek elméleti felépítése

- A. központi egység
 - a) központi feldolgozó egység (Central Processing Unit)
 - b) központi vezérlő egység (Control Unit)
 - c) aritmetikai-logikai egység (Arithmetical-Logical Unit)
 - d) regiszterblokk
 - e) gyorsítómemória (cache)
 - f) matematikai társprocesszor (Floating Point Unit)
 - g) operatív tár (memória)
- B. háttértárak (pl. merevlemez, CD vagy DVD, floppy stb.)
- C. perifériák
 - a) input perifériák (pl. billentyűzet, egér, szkenner stb.)
 - b) output perifériák (pl. monitor, nyomtató, hangszóró stb.)

A Neumann-elvben megjelenő szűk keresztmetszet

A Neumann-elveknek megfelelő számítógépek problémája a CPU és a memória közötti limitált adatátviteli képesség. Rendszerint a CPU nem kap annyi adatot a memóriából, mint amennyit fel tudna dolgozni. Ez nagyban befolyásolja a processzor működési sebességét, mivel a CPU-t várakozásra ítéli. Erre egy részleges megoldás volt a CPU cache bevezetése.

Ismertesse a FOR ciklust felismerő automatát(b.):

Példa: elemezzük a for a to b mondatot az alábbi grammatika segítségével (ponttal jelöljük, hogy hol tartunk az elemzésben).

 $G=({A,B,S},{a,b,c,d},P,S), S \rightarrow aAd|aB, A \rightarrow b|c, B \rightarrow ccd|ddc.$

Lépés	Mond	atforma	ı Állapot	Megjegyzés
1.	S	.accd		
2.	aAd	a.ccd		
3.	abd	a.ccd	a mondat nem azonos	s a szöveggel, vissza a 2-re
4.	aAd	a.ccd		
5.	acd	acc.d	a mondat nem azonos	s a szöveggel, vissza a 4-re
6.	aAd	a.ccd	A-ra nincs több szabá	ily, vissza az 1-re
7.	S	.accd		
8.	aB	a.ccd		
9.	accd	accd.	az elemzés sikeres	

Szintaktikus elemzés(c.):

Szintaktikus elemzés

A szintaktikus elemzőnek a feladata a program struktúrájának a felismerése. A szintaktikus elemző működésének az eredménye lehet például az elemzett program szintaxisfája vagy ezzel ekvivalens struktúra. Bemenete egy szimbólumsorozat, eredménye pedig a szintaktikusan elemzett program, és ha vannak, akkor a szintaktikai hibák. A szintaxist nagyobb részében környezetfüggetlen grammatikával, kisebb részét környezetfüggő vagy attribútum grammatikával lehet leírni. A környezetfüggetlen grammatikával leírható tulajdonságok vizsgálatát szintaktikus elemzésnek nevezzük. A programnyelv szintaktikájának azon követelményei, amelyek nem írhatók le környezetfüggetlen grammatikával a statikus szemantikát alkotják. (E tulajdonság ellenőrzésével a szemantikus elemző foglalkozik.) Továbbiakban a grammatika alatt mindig környezetfüggetlen (Chomsky 2-es típusú) grammatikát értünk. Legyen G=(T, N, S, P) egy grammatika. Ha S⇒d, akkor az d-t mondat formának nevezzük. Ha S⇒*x, akkor az x a grammatika által definiált nyelv egy mondata. A program terminális szimbólumok sorozata, de csak akkor lesz a nyelvnek egy mondata, ha szintaktikusan helyes. Legyen a G=(T,N,S,P) egy grammatika és a=a₁ba₂ egy mondatformája. A b–t az a egy részmondatának nevezzük, ha van olyan A szimbólum, amelyre S⇒* a1ba2 és S S⇒+ b. A b egy egyszerű részmondata a–nak, ha a fentiekben az $A \Rightarrow b$ teljesül, azaz $A \rightarrow b$. Példa:

- 1. $E \rightarrow T|E+T$
- 2. $T \rightarrow F | T * F$
- 3. $T \rightarrow i|(E)$

Ekkor az E+T*i+T*F mondatformának az i+T vagy az i+T*F nem részmondata, de E+T*i, T*F vagy T*i egy részmondata és T*F egyszerű részmondata. Egy mondatforma legbaloldalibb egyszerű részmondatát a mondatforma nyelének nevezzük. Az előző példában a mondatforma nyele az i.

 $G=(\{i,+,*,(,)\}, \{E,F,T\}, E, P)$, ahol a P a következő szabályokat tartalmazza:

Ha A→*a, akkor az xAb mondatforma legbaloldalibb helyettesítése xab, azaz xAb→_{legbal}xab. Ha az S→*x levezetésben minden helyettesítés legbaloldalibb helyettesítés, akkor ezt a levezetést legbaloldalibb levezetésnek nevezzük. Jelölése: S→_{legbal}x.