Лекция 5

0371 Кузнецова Елизавета 21 September 2021

Отношение порядка

Утверждение: R - отношение порядка на $|\mathbf{M}| < \infty$ (строгого или нестрогого), тогда $\exists x$ - минимальный, т.е. $\forall y \times R \cdot y$

Пример: \geq на 1,2,3,4,5

1 - мин, т.к. $\forall y \ 1 \geq y$

Пример: : на 2,3,4,5,6

- 2 мин, т.к. $\forall y \ 2 \vdots y$
- 3 мин, т.к. ∀y 3 : у
- 5 мин, т.к. ∀y 2 : у
- 4, 6 не мин, т.к. $\forall y \ 4.2, 6.2$

Доказательство. Берем x_1 - ∀ элемент множества.

Если он не минимальный $\Rightarrow \exists x_2 \not\models x_1 : x_1 \succ x_2$

Если x_2 не минимальный $\Rightarrow \exists x_3 \not\models x_2 : x_2 \succ x_3$

...

Если не можем найти минимальный элемент \Rightarrow т.к. множество конечно в какой-то момент $x_i = x_j$ (повтор).

$$x_i \succ x_i + 1 \succ \dots \succ x_j - 1 \succ x_j = x_i$$

Отношение порядка транзитивно $\Rightarrow x_i \succ x_j - 1, x_j - 1 \succ x_i, x_j - 1 \not\models x_i$ - невозможно т.к. антисимметрично.

Отношение R_1 на множестве ${\bf M}$ расширяет R_2 на ${\bf M}$, если $R_2\subset R_1$

3амечание: R_1 "добавляет"пары, где xRy

Замечание: $xR_2y \Rightarrow xR_1y$

Топологическая сортировка

Теорема 1 (О топологической сортировке). $Ecnu \succ - omno-$ шение порядка (сторогого или нестрогого) на конечном множестве \mathbf{M} , то $\exists \succcurlyeq - omno-$ шение линейного порядка на \mathbf{M} , такое что \succcurlyeq расширяет \succ .

Пример: Подчинение

Рис. 1: Не линейный порядок (О1 и О2 не связаны)

Рис. 2: Варианты топологической сортировки

 $\@ifnextchar[{\@model{A}}\@ifnextchar[{\@mo$

Удалим x_1 из **М**.

Очевидно, новое отношение - тоже отношение порядка $\Rightarrow \exists$ минимальный элемент - x_2 . Удаляем x_2 и продолжаем.

Итого, имеем последовательность $x_1, x_2, ..., x_n$

Вводим новый порядок $x_i \succ \succ x_j$ для $i < j. \succ \succ$ расширяет \succ .

Если $x \succ y \Rightarrow x$ был удален раньше y.

Замечание: Этот алгоритм не эффективен. Лучше сделать поиск в глубину с обратной нумерацией.

Замечание: Топологическая сортировка - практически важная задача.

Рис. 3: Порядок работ

$$p_1 \to p_2 \to p_3 \to o$$
$$p_1 \to p_3 \to p_2 \to o$$

Транзитивное замыкание

Был порядок - расширяем до линейного (топологическая сортировка)

Было отношение - расшиярем до транзитивного (транзитивное замыкание)

Пример: Подчинение HRO1, O1RC1, но HRC1.

Рис. 4: Подчинение

Если добавить в отношение, что HRC1, HRC2, станет транзитивно.

Теорема 2. Пусть R - бинарное отношение на \mathbf{M} $\exists \overline{R}$ - отношение на \mathbf{M} :

- 1. \overline{R} расширяет R $R \subset \overline{R}$
- $2. \ \overline{R}$ транзитивно
- 3. \overline{R} минимальное транзитивное расширение, т.е., если \overline{R} транзитивное расширение R, то $\overline{R} \subset \overline{R}$

Доказательство. Рассмотрим все транзитивные расширения \overline{R}_i $\overline{R}=\cap\overline{R}_i$

Т.е. берем только те праы, которые есть во всех транзитивных расширения. Пример: $M=\{a,b,c,d\}$: $aRb,\,bRc,\,bRd.$

Рис. 5: Исходный граф

Рис. 6: 1 транзитивное расширение

Рис. 7: 2 транзитивное расширение

Рис. 8: Минимальное транзитивное расширение

Проверим, что \overline{R} подходит под условия:

- 1. \overline{R} расширяет R. Пусть $xRy\Rightarrow \forall \overline{R}\colon x\overline{R}_iy\Rightarrow x\overline{R}y$
- 2. \overline{R} транзитивно. Пусть $x\overline{R}y, \ y\overline{R}z \Rightarrow \forall \overline{R}_i x\overline{R}_i y, y\overline{R}_i z \Rightarrow x\overline{R}_i z$ (транзитивно) $\Rightarrow x\overline{R}z$
- 3. \overline{R} минимальное транзитивное расширение, т.е., если \overline{R} транзитивное расширение R, то $\overline{R} \subset \overline{R}$

0.
$$\exists R_i$$
? \overline{R}_i - полное отношение M .

Графы

Определение 1 (Неориентированный граф). G = (v, E), где V - множество (вершины), $E \subset \{(U, V) \ U, v \in V\}$ - неупорядоченные пары.

Замечание: изображение: вершины - ·. Пары - линии. Примеры:

Рис. 9: Один и тот же граф

Рис. 10: 1 - полный граф, 2 - пустой граф

Определение 2 (Полный граф). $\forall u, v \in V : (u, v) \in E$

Замечание: V-vertex, E-edge

Определение 3. |G| - pазмер(nopядoк) spaфa = |V| - кoличе-ство вершин.

/V/=n - количество вершин

|E|= m - количество ребер

G - ${\it 9mo}\;(n,m)$ - ${\it spa}\phi$

Рис. 11: (4,5)-граф

Определение 4. Степень вершины $degv, v \in V$ - количество ребер у вершины - $/(v,u)/(v,u) \in E/$

Определение 5. K - регулярный граф, где $\forall v \in V \ degv = k$

Рис. 12: 2-регулярный граф