Network Calculus Tests – Tree (TR) Networks

Version 2.0 beta2 (2017-Jun-25)

© Steffen Bondorf 2013 - 2017, Some Rights Reserved.

General Information

- The network calculus analyses presented in this document were created for the purpose of testing the Disco Deterministic Network Calculator (DiscoDNC)¹ an open-source deterministic network calculus tool developed by the *Distributed Computer Systems (DISCO) Lab* at the University of Kaiserslautern.
- Naming of the individual network configurations depicts the name of the according functional test for the DiscoDNC.
- \bullet The naming scheme used in this document is detailed in Network Calculus_NamingScheme.pdf.
- Arrival bound computations are equivalent to the PbooArrivalBound_Output_PerHop.java class of the DiscoDNC.
- The end-to-end left-over service curve for PBOO arrival bounds can be computed by simply convolving the server-local ones.
- Arrival bounds for PmooArrivalBound. java and analyses using them are listed only if results are different to PBOO.

Changelog:

Version 1.1 (2014-Dec-30):

- \bullet Streamlined the PMOO left-over latency $T_{\rm e2e}^{\rm l.o.\it f}$ computation.
- Adapted to naming scheme version 1.1.

Version 2.0 beta2 (2017-Jun-25):

- Rework of the documentation according to code changes
 - New, more complete naming.
 - Separation of network and test.

 $^{^{1} \}rm http://disco.cs.uni\text{-}kl.de/index.php/projects/disco-dnc$

 $TR_3S_1SC_2F_1AC_2P_Network$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \, i \in \{0,1,2\}$
- $\bullet \ \mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \alpha^{f_1} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, n \in \{0,1\}$

 $TR_3S_1SC_2F_1AC_2P_Test$

arrivalBound $(s_2, \{f_n\}, \mathcal{G}), \mathcal{G} = \mathcal{P}(\mathcal{F})$	FIFO_MUX	ARB_MUX		
$lpha_{s_2}^{f_n}$	$= \gamma_{5,25}$			
$lpha_{s_2}^{xf_n}$	$= \gamma_{0,0}$			
$\beta_{s_2}^{\text{l.o.}f_n} = \beta_{s_2} \ominus \alpha_{s_2}^{xf_n} = \beta_{R_{s_2}^{\text{l.o.}f_n}, T_{s_2}^{\text{l.o.}f_n}}$	$\beta_{s_2}^{\text{l.o.}f_n} = \beta_{s_2} \ominus \alpha_{s_2}^{xf_n} = \beta_{R^{\text{l.o.}f_n}} T^{\text{l.o.}f_n} $		$=\beta_{20,20}$	
	$r_{s_2}^{f_n}$		= 5	
$\alpha_{s_2}^{f_n} = \alpha_{s_n}^{f_n} \oslash \beta_{s_n}^{\text{l.o.}f_n} = \gamma_{r_{s_2}^{f_n}, b_{s_2}^{f_n}}$	$b_{s_2}^{f_n}$	$\alpha_{s_n}^{f_n}(T_{s_n}^{\text{l.o.}f_n}) =$	$5 \cdot 20 + 25 = 125$	
	=	= '	$\gamma_{5,125}$	

Flow $f_n, n \in \{0,1\}$ (comparable with Tandem_1SC_2Flows_1AC_2Paths)

	TFA FIFO_MUX		ARB_MUX
	$\alpha_{s_n} = \alpha_{s_n}^{f_n}$		$=\gamma_{5,25}$
s_n		$\beta_{s_n} = b_{s_n}^{f_n}$	FIFO per micro flow
		$\begin{vmatrix} b_{s_n} - b_{s_n} \\ 20 \cdot [t - 20]^+ = 25 \end{vmatrix}$	$\beta_{s_n} = b_{s_n}^{f_n} \mid$
	$D_{s_n}^{f_n}$		$20 \cdot [t - 20]^+ = 25$
		$t = 21\frac{1}{4}$	$t = 21\frac{1}{4}$
	$B_{s_n}^{f_n}$	$\alpha_{s_n}(T_{s_n})$	$5 \cdot 20 + 25$
	D_{s_n}		= 125
	$\alpha_{s_2} = \sum_j \alpha_{s_2}^{f_n}$		$+\gamma_{5,125} = \gamma_{10,250}$
s_2		$\beta_{s_2} = b_{s_1}$	
	$D_{s_2}^{f_n}$	$20 \cdot [t - 20]^+ = 250$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 250$
	- 2	$t = 32\frac{1}{2}$	t = 65
	$B_{s_2}^{f_n}$	$\alpha_{s_2}(T_{s_2})$	$= 10 \cdot 20 + 250$
	$D_{s_2}^{\circ}$		= 450
	D^{f_n}	$\sum_{i=\{n,2\}} D_{s_i}^{f_n} = 53\frac{3}{4}$	$\sum_{i=\{n,2\}} D_{s_i}^{f_n} = 86\frac{1}{4}$
	B^{f_n}	$\max_{i=1}^{n}$	$b_{s_i}^{f_n} = 450$

	SFA		FIFO_MUX	ARB_MUX
s_n	$\beta_n \qquad \frac{\alpha_{s_n}^{xf_n}}{\beta_{s_n}^{\text{l.o.}f_n} = \beta_{s_n} \ominus \alpha_{s_n}^{xf_n} = \beta_{s_n}}$		$=\gamma_{0,0}$	
o n			$=\beta_2$	20,20
	$\alpha_{s_2}^{xf_n} = \alpha_{s_2}^{f_n}$		$=\gamma_5$	5,125
s_2		$R_{s_2}^{\text{l.o.}f_n}$	$ \frac{[R_{s_2} - r_{s_2}^{xx}]}{\beta_{s_2} = b_{s_2}^{xf_n}} $	$[f_n]^+ = 15$
02	$\beta_{s_2}^{\text{l.o.}f_n} = \beta_{s_2} \ominus \alpha_{s_2}^{xf_n} = \beta_{R_{s_2}^{\text{l.o.}f_n}, T_{s_2}^{\text{l.o.}f_n}}$		$\beta_{s_2} = b_{s_2}^{xf_n}$	$\beta_{s_2} = \alpha_{s_2}^{xf_n}$
		$T_{s_2}^{\mathrm{l.o.}f_n}$		$20 \cdot [t - 20]^{+} = 5 \cdot t + 125$
			$t = 26\frac{1}{4}$	t = 35
		=	$=\beta_{15,26\frac{1}{4}}$	$=\beta_{15,35}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$		$\bigotimes_{i=\{n,2\}} \beta_{s_i}^{\text{l.o.}f_n} = \beta_{15,46\frac{1}{4}}$ $\beta_{e^{2e}}^{\text{l.o.}f_n} = b^{f_n}$	$\bigotimes_{i=\{n,2\}} \beta_{s_i}^{\text{l.o.} f_n} = \beta_{15,55}$
			020	$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_n} = b^{f_n}$
	D^{f_n}		$15 \cdot [t - 46\frac{1}{4}]^{+} = 25$	$15 \cdot [t - 55]^+ = 25$
			$t = 47\frac{11}{12}$	$t = 56\frac{2}{3}$
	B^{f_n}			$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 55 + 25$
	Б		$=$ $256\frac{1}{4}$	= 300

	PMOO	ARB_MUX		
S_n $\dfrac{\alpha_{s_n}^{\overline{x}f_n}}{\alpha_{s_n}^{xf_n}}$ $\alpha_{s_n}^{\overline{x}f_n}$ $\alpha_{s_2}^{\overline{x}f_0}$		$=\gamma_{0,0}$		
	$\alpha_{s_n}^{xf_n}$	$=\gamma_{0,0}$		
s_2	$lpha_{s_2}^{ar{x}(f_0)}$	$=\gamma_{5,125}$		
- Z	$lpha_{s_2}^{x(f_0)}$	$=\gamma_{5,125}$		
	$R_{\text{e2e}}^{\text{l.o.}f_n} = \bigwedge_{i \in \{n,2\}} \left(R_{s_i} - r_{s_i}^{xf_n} \right)$	$= (20 - 0) \wedge (20 - 5)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$		= 15		
$R_{\text{e2e}}^{\text{Rioijn}}, T_{\text{e2e}}^{\text{Rioijn}}$		$= 20 + \frac{0 + 0 \cdot 20}{15} + 20 + \frac{125 + 5 \cdot 20}{15}$		
	$\int_{S_{s,i}} b_{s,i}^{\bar{x}f_n} + r_{s,i}^{xf_n} \cdot T_{s,i}$	15 15		
	$T_{\text{e2e}}^{\text{l.o.}f_n} = \sum_{i \in \{n,2\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}f_n} + r_{s_i}^{\bar{x}f_n} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_0}} \right)$	$=$ $40 + \frac{225}{15}$		
		55		
	=	$=\beta_{15,55}$		
		$\beta_{\text{e}2\text{e}}^{\text{l.o.}f_n} = b^{f_n}$		
D^{f_n}		$15 \cdot [t - 55]^+ = 25$		
		$t = 56\frac{2}{3}$		
B^{f_n}		$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 55 + 25$		
	D	= 300		

 $TR_7S_1SC_3F_1AC_3P_Network$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \, i \in \{0,1,2\}$
- $\mathcal{F} = \{f_0, f_1, f_2\}$
- $\alpha^{f_0} = \alpha^{f_1} = \alpha^{f_2} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, n \in \{0, 1, 2\}$

$TR_7S_1SC_3F_1AC_3P_Test$

arrivalBound $(s_1, \{f_1\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_1}^{f_1}$		FIFO_MUX	ARB_MUX	
$lpha_{s_0}^{f_1}$		$=\gamma_{5,25}$		
$\alpha_{s_0}^{x(ilde{f}_1)}$		$=\gamma_{0,0}$		
$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_1)} = \beta_{R_{s_0}^{\text{l.o.}f_1}, T_{s_0}^{\text{l.o.}f_1}}$			$= \beta_{20,20}$	
1 1 2		=5		
$\alpha_{s_1}^{f_1} = \alpha_{s_0}^{f_1} \oslash \beta_{s_0}^{\text{l.o.}f_1} = \gamma_{r_{s_1}^{f_1}, b_{s_1}^{f_1}}$	$b_{s_1}^{f_1}$	$\alpha_{s_0}^{f_1}(T_{s_0}^{\text{l.o.}f_1}) =$	$5 \cdot 20 + 25 = 125$	
	=	=	$\gamma_{5,125}$	

$\operatorname{arrivalBound}(s_2, \{f_1\}, \{f_0\}) = \alpha_{s_2}^{f_1}$		FIFO_MUX	ARB_MUX	
$lpha_{s_1}^{f_1}$		$=\gamma_{5,125}$		
$lpha_{s_1}^{x(ilde{f}_1)}$		$=\gamma_{0,0}$		
$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)} = \beta_{R_{s_1}^{\text{l.o.}f_1}, T_{s_1}^{\text{l.o.}f_1}}$	$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)} = \beta_{p_1^{\text{l.o.}f_1}, p_1^{\text{l.o.}f_1}} =$		$=\beta_{20,20}$	
	1 / 2		=5	
$\alpha_{s_2}^{f_1} = \alpha_{s_1}^{f_1} \oslash \beta_{s_1}^{\text{l.o.}f_1} = \gamma_{r_{s_2}^{f_1}, b_{s_2}^{f_1}} \qquad \boxed{\begin{array}{c} s_2 \\ b_1^{f_1} \\ s_2 \end{array}}$		$\alpha_{s_1}^{f_1}(T_{s_1}^{\text{l.o.}f_1}) = 5 \cdot 20 + 125 = 225$		
=		=	$\gamma_{5,225}$	

$\operatorname{arrivalBound}(s_5, \{f_1\}, \{f_0\}) = \alpha_{s_5}^{f_1}$		FIFO_MUX	ARB_MUX	
$lpha_{s_2}^{f_1}$		$=\gamma_{5,225}$		
$\alpha_{s_2}^{x(\bar{f}_1)}$		$=\gamma_{0,0}$		
$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_1)} = \beta_{R_{s_2}^{\text{l.o.}f_1}, T_{s_2}^{\text{l.o.}f_1}}$	$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_1)} = \beta_{p_0, o.f_1, p_0, o.f_1} =$		$= \beta_{20,20}$	
	$r_{s_2}^{f_1}$		=5	
$\alpha_{s_5}^{f_1} = \alpha_{s_2}^{f_1} \oslash \beta_{s_2}^{\text{l.o.}f_1} = \gamma_{r_{s_5}^{f_1}, b_{s_5}^{f_1}}$	$b_{s_5}^{f_1}$	$\alpha_{s_2}^{f_1}(T_{s_2}^{\text{l.o.}f_1}) = 0$	$5 \cdot 20 + 225 = 325$	
	=	= '	$\gamma_{5,325}$	

arrivalBound $(s_4, \{f_2\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_4}^{f_2}$		FIFO_MUX	ARB_MUX
$lpha_{s_3}^{f_2}$		$=\gamma_{5,25}$	
$lpha_{s_3}^{x(ilde{f}_2)}$		$=\gamma_{0,0}$	
$\beta_{s_3}^{\text{l.o.}f_2} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_2)} = \beta_{R_{s_3}^{\text{l.o.}f_2}, T_{s_3}^{\text{l.o.}f_2}}$	=	$=\beta_{20,20}$	
	$r_{s_4}^{f_2}$	=	= 5
$lpha_{s_4}^{f_2} = lpha_{s_3}^{f_2} \oslash eta_{s_3}^{\mathrm{l.o.}f_2} = \gamma_{r_{s_A}^{f_2}, b_{s_A}^{f_2}}$	$b_{s_4}^{f_2}$	$\alpha_{s_3}^{f_2}(T_{s_3}^{\text{l.o.}f_2}) = 0$	$5 \cdot 20 + 25 = 125$
1 1	=	= 1	Ý5,125

arrivalBound $(s_5, \{f_2\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_5}^{f_2}$		FIFO_MUX	ARB_MUX
$lpha_{s_4}^{f_2}$		$=\gamma_{5,125}$	
$lpha_{s_4}^{x(\hat{f}_2)}$		$=\gamma_{0,0}$	
$\beta_{s_4}^{\text{l.o.}f_2} = \beta_{s_4} \ominus \alpha_{s_4}^{x(f_2)} = \beta_{R_{s_4}^{\text{l.o.}f_2}, T_{s_4}^{\text{l.o.}f_2}}$	=	$= \beta_{20,20}$	
1 7 5		=5	
$\alpha_{s_5}^{f_2} = \alpha_{s_4}^{f_2} \oslash \beta_{s_4}^{\text{l.o.}f_2} = \gamma_{r_{s_5}^{f_2}, b_{s_5}^{f_2}}$	$b_{s_5}^{f_2}$	$\alpha_{s_4}^{f_2}(T_{s_4}^{\text{l.o.}f_2}) =$	$5 \cdot 20 + 125 = 225$
	=		$\gamma_{5,225}$

arrivalBound $(s_6, \{f_1, f_2\}, \{f_0\}) = \alpha_{s_6}^{\{f_1, f_2\}}$		FIFO_MUX	ARB_MUX	
$lpha_{s_5}^{\{f_1,f_2\}}$		$=\gamma_{10,550}$		
$lpha_{s_5}^{x\{f_1,f_2\}}$		$=\gamma_{0,0}$		
$\beta_{s_5}^{\text{l.o.}\{f_1,f_2\}} = \beta_{s_5} \ominus \alpha_{s_5}^{x\{f_1,f_2\}} = \beta_{R_{s_5}^{\text{l.o.}\{f_1,f_2\}}, T_{s_5}^{\text{l.o.}\{f_1,f_2\}}}$	$\beta_{s_5}^{\text{l.o.}\{f_1,f_2\}} = \beta_{s_5} \oplus \alpha_{s_5}^{x\{f_1,f_2\}} = \beta_{p^{\text{l.o.}\{f_1,f_2\}},p^{\text{l.o.}\{f_1,f_2\}}} = $		$=\beta_{20,20}$	
$R_{s_5} = \frac{R_{s_5}}{R_{s_5}} = \frac{R_{s_5}}{R_{s_6}} = \frac{R_{s_5}}{R_{s_6}}$		=10		
$\alpha_{s_6}^{\{f_1,f_2\}} = \alpha_{s_5}^{\{f_1,f_2\}} \oslash \beta_{s_5}^{\text{l.o.}\{f_1,f_2\}} = \gamma_{r_{s_6}^{\{f_1,f_2\}},b_{s_6}^{\{f_1,f_2\}}}$	$b_{s_6}^{\{f_1,f_2\}}$	$\alpha_{s_5}^{\{f_1,f_2\}}(T_{s_5}^{\text{l.o.}\{f})$	$(1,f_2) = 10 \cdot 20 + 550 = 750$	
	=		$=\gamma_{10,750}$	

arrivalBound $(s_2, \{f_0, f_1\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\{f_2\}) = \alpha_{s_2}^{\{f_0, f_1\}}$	FIFO_MUX	ARB_MUX		
$lpha_{s_1}^{\{f_0,f_1\}}$	$=\gamma_{10,150}$			
$lpha_{s_1}^{x\{f_0,f_1\}}$	$=\gamma_{0,0}$			
$\beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_1} \ominus \alpha_{s_1}^{x\{f_0,f_1\}} = \beta_{R_{s_1}^{\text{l.o.}\{f_0,f_1\}}, T_{s_1}^{\text{l.o.}\{f_0,f_1\}}}$	$\beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_1} \ominus \alpha_{s_1}^{x\{f_0,f_1\}} = \beta_{s_1,s_1,f_0,f_1\}} = \beta_{s_1,s_2,f_0,f_1\}} = \beta_{s_1,s_2,f_0,f_1}$		$=\beta_{20,20}$	
			= 10	
$\alpha_{s_2}^{\{f_0,f_1\}} = \alpha_{s_1}^{\{f_0,f_1\}} \oslash \beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_2}^{\{f_0,f_1\}},b_{s_2}^{\{f_0,f_1\}}} \qquad \begin{array}{c} r_{s_2} \\ b_{s_2}^{\{f_0,f_1\}} \end{array}$		$\alpha_{s_1}^{\{f_0, f_1\}}(T_{s_1}^{\text{l.o.}\{f_0, f_1\}}) = 10 \cdot 20 + 150 = 350$		
			$=\gamma_{10,350}$	

arrivalBound $(s_5, \{f_0, f_1\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\{f_2\}) = \alpha_s^{\{}$	FIFO_MUX	ARB_MUX				
$\alpha_{s_2}^{\{f_0,f_1\}}$	$=\gamma_{10,350}$					
$lpha_{s_2}^{x\{f_0,f_1\}}$	$=\gamma_{0,0}$					
$\beta_{s_2}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_2} \ominus \alpha_{s_2}^{x\{f_0,f_1\}} = \beta_{R_{s_2}^{\text{l.o.}\{f_0,f_1\}}, T_{s_2}^{\text{l.o.}\{f_0,f_1\}}}$	=	$=\beta_{20,20}$				
			= 10			
$\alpha_{s_5}^{\{f_0,f_1\}} = \alpha_{s_2}^{\{f_0,f_1\}} \oslash \beta_{s_2}^{\text{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_5}^{\{f_0,f_1\}},b_{s_5}^{\{f_0,f_1\}}} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\alpha_{s_2}^{\{f_0, f_1\}}(T_{s_2}^{\text{l.o.}\{f_0, f_1\}}) = 10 \cdot 20 + 350 = 55$				
			$=\gamma_{10,550}$			

arrivalBound $(s_6, \{f_0, f_1, f_2\}, \{\}) = \alpha_{s_6}^{\{f_0, f_1, f_2\}}$		FIFO_MUX	ARB_MUX
$\alpha_{s_5}^{\{f_0,f_1,f_2\}}$			$=\gamma_{10,775}$
$lpha_{s_5}^{x\{f_0,f_1,f_2\}}$			$=\gamma_{0,0}$
$\beta_{s_5}^{\text{l.o.}\{f_0,f_1,f_2\}} = \beta_{s_5} \ominus \alpha_{s_5}^{x\{f_0,f_1,f_2\}} = \beta_{R_{s_5}^{\text{l.o.}\{f_0,f_1,f_2\}}, T_{s_5}^{\text{l.o.}\{f_0,f_1,f_2\}}}$	=		$=\beta_{20,20}$
	$r_{s_6}^{\{f_0,f_1,f_2\}}$		=15
$\alpha_{s_6}^{\{f_0, f_1, f_2\}} = \alpha_{s_5}^{\{f_0, f_1, f_2\}} \oslash \beta_{s_5}^{\text{l.o.}\{f_0, f_1, f_2\}} = \gamma_{r_{s_6}^{\{f_0, f_1, f_2\}}, b_{s_6}^{\{f_0, f_1, f_2\}}}$	$b_{s_6}^{\{f_0,f_1,f_2\}}$	$\alpha_{s_5}^{\{f_0,f_1,f_2\}}(T_{s_5}^{\text{l.o}})$	$ (f_0, f_1, f_2) = 15 \cdot 20 + 775 = 1075 $
	=		$=\gamma_{15,1075}$

Flow f_0

	TFA	FIFO_MUX	ARB_MUX	
	$\alpha_{s_1} = \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_1}$	$= \gamma_{5,25} + \gamma_{5,125} = \gamma_{10,150}$		
s_1		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$	
	$D_{s_1}^{f_0}$	$20 \cdot [t - 20]^+ = 150$	$20 \cdot [t - 20]^+ = 10 \cdot t + 150$	
	-	$t = 27\frac{1}{2}$	t = 55	
	$B_{s_1}^{f_0}$	$\frac{1}{\alpha_{s_1}(T_{s_1})} = 10$	0.20 + 150	
	1	=	350	
	$\alpha_{s_2} = \alpha_{s_2}^{\{f_0, f_1\}}$	$=\gamma_{10,3}$	50	
s_2		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$	
	$D_{s_2}^{f_0}$	$20 \cdot [t - 20]^+ = 350$	$20 \cdot [t - 20]^+ = 10 \cdot t + 350$	
	-	$20 \cdot [t - 20]^{+} = 350$ $t = 37\frac{1}{2}$ $\alpha_{s_2}(T_{s_2}) = 10$	t = 75	
	$B_{s_2}^{f_0}$	$\alpha_{s_2}(T_{s_2}) = 10$	0.20 + 350	
	D_{s_2}	=	550	
	$\alpha_{s_5} = \alpha_{s_5}^{\{f_0, f_1\}} + \alpha_{s_5}^{f_2}$	$= \gamma_{10,550} + \gamma_{5,22}$	$q_{25} = \gamma_{15,775}$	
s_5		$\beta_{s_5} = b_{s_5}$	$\beta_{s_5} = \alpha_{s_5}$	
	$D_{s_5}^{f_0}$	$20 \cdot [t - 20]^+ = 775$	$20 \cdot [t - 20]^+ = 15 \cdot t + 775$	
		$t = 58\frac{3}{4}$	t = 235	
	$B_{s_5}^{f_0}$	$\alpha_{s_5}(T_{s_5}) = 15$	$6 \cdot 20 + 775$	
		=	1075	
	$\alpha_{s_6} = \alpha_{s_6}^{\{f_0, f_1, f_2\}}$	$=\gamma_{15,1075}$		
s_6		$\beta_{s_6} = b_{s_6}$	$\beta_{s_6} = \alpha_{s_6}$	
	$D_{s_6}^{f_0}$	$20 \cdot [t - 20]^+ = 1075$	$20 \cdot [t - 20]^+ = 15 \cdot t + 1075$	
		$t = 73\frac{3}{4}$	t = 295	
	$B_{s_6}^{f_0}$	$\alpha_{s_6}(T_{s_6}) = 15 \cdot 20 + 1075$		
	-	=	1375	
	D^{f_0}	$\sum_{i=\{1,2,5,6\}} D_{s_i}^{f_0} = 27\frac{1}{2} + 37\frac{1}{2} + 58\frac{3}{4} + 73\frac{3}{4} = 197\frac{1}{2}$	$\sum_{i=\{1,2,5,6\}} D_{s_i}^{f_0} = 55 + 75 + 235 + 295 = 660$	
	B^{f_0}	$\max_{i=\{1,2,5,6\}} E$	$B_{s_i}^{f_0} = 1375$	

SFA FIFO MUX:

$$\begin{array}{ll} \beta_{c2c}^{\text{lo.5}} & = & \left(\beta_{s_1}^{\text{lo.x}}(f_0) \odot \alpha_{s_1}^{x_1(f_0)}\right) \otimes \left(\beta_{s_2}^{\text{lo.x}}(f_0) \odot \alpha_{s_2}^{x_2(f_0)}\right) \otimes \left(\beta_{s_5}^{\text{lo.x}}(f_0) \odot \alpha_{s_5}^{x_2(f_0)}\right) \otimes \left(\beta_{s_5}^{\text{lo.x}}(f_0) \odot \alpha_{s_5}^{x_2(f_0)}\right) \\ & = & \left(\beta_{s_1}^{\text{lo.x}}(f_0) \odot \alpha_{s_1}^{x_1(f_0)}\right) \otimes \left(\beta_{s_2}^{\text{lo.x}}(f_0) \odot \alpha_{s_2}^{x_2(f_0)}\right) \otimes \left(\beta_{s_5}^{\text{lo.x}}(f_0) \odot \alpha_{s_5}^{x_5(f_0)}\right) \otimes \left(\beta_{s_5}^{\text{lo.x}}(f_0) \odot \alpha_{s_5}^{x_5(f_0)}\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_2}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \beta_{s_5}^{\text{lo.f},f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_2}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \beta_{s_5}^{\text{lo.f},f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \beta_{s_5}^{\text{lo.f},f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \beta_{s_5}^{\text{lo.f},f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \left(\beta_{s_5} \odot \alpha_{s_5}^{f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_5}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \left(\beta_{s_5} \odot \alpha_{s_5}^{f_1,f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_5}^{f_2}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right) \odot \left(\beta_{s_5} \odot \alpha_{s_5}^{f_2}\right) \otimes$$

SFA ARB MUX:

$$\begin{array}{ll} \beta_{c2c}^{\text{l.o.}f_0} & = & \left(\beta_{s_1}^{\text{l.o.}x(f_0)} \odot \alpha_{s_1}^{x(f_0)}\right) \otimes \left(\beta_{s_2}^{\text{l.o.}x(f_0)} \odot \alpha_{s_2}^{x(f_0)}\right) \otimes \left(\beta_{s_0}^{\text{l.o.}x(f_0)} \odot \alpha_{s_0}^{x(f_0)}\right) \otimes \left(\beta_{s_0}^{\text{l.o.}x(f_0)} \odot \alpha_{s_0}^{x(f_0)}\right) \\ & = & \left(\beta_{s_1}^{\text{l.o.}x(f_0)} \odot \alpha_{s_1}^{x(f_0)}\right) \otimes \left(\beta_{s_2}^{\text{l.o.}x(f_0)} \odot \alpha_{s_2}^{x(f_0)}\right) \otimes \left(\beta_{s_0}^{\text{l.o.}x(f_0)} \odot \alpha_{s_0}^{x(f_0)}\right) \otimes \left(\beta_{s_0}^{\text{l.o.}x(f_0)} \odot \alpha_{s_0}^{x(f_0)}\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_1}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \\ & = & \left(\beta_{s_1} \odot \alpha_{s_1}^{f_1}\right) \otimes \left(\beta_{s_2} \odot \alpha_{s_2}^{f_2}\right) \otimes \left(\beta_{s_5} \odot \left(\alpha_{s_5}^{f_1} + \alpha_{s_5}^{f_2}\right)\right) \otimes \left(\beta_{s_6} \odot \left(\alpha_{s_5}^{f_1} + \alpha$$

PMOO		ARB_MUX		
s_1	$\frac{\alpha_{s_1}^{\bar{x}(f_0)}}{\alpha_{s_1}^{x(f_0)}}$	$=\gamma_{5,125}$		
91	$lpha_{s_1}^{x(f_0)}$	$=\gamma_{5,125}$		
s_2	$\frac{\alpha_{s_2}^{\bar{x}(f_0)}}{\alpha_{s_2}^{x(f_0)}}$	$=\gamma_{0,0}$		
02	$lpha_{s_2}^{x(f_0)}$	$=\gamma_{5,125}$		
s_5	$lpha_{s_2} = rac{ar{x}(f_0)}{lpha_{s_5}}$	$=\gamma_{5,225}$		
	$\alpha_{s_5}^{x(f_0)}$ $\alpha_{s_6}^{x(f_0)}$ $\alpha_{s_6}^{x(f_0)}$ $\alpha_{s_6}^{x(f_0)}$	$=\gamma_{10,xxx}$		
s_6	$lpha_{s_6}^{ar{x}(f_0)}$	$=\gamma_{0,0}$		
	$lpha_{s_6}^{x(f_0)}$	$=\gamma_{10,xxx}$		
	$R_{\text{e2e}}^{\text{l.o.}f_0} = \bigwedge_{i \in \{1,2,5,6\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$	$= (20-5) \wedge (20-5) \wedge (20-10) \wedge (20-10)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$		= 10		
nt _{e2e} , r _{e2e}		$= 20 + \frac{125 + 5 \cdot 20}{10} + 20 + \frac{0 + 5 \cdot 20}{10} + 20 + \frac{225 + 10 \cdot 20}{10} + 20 + \frac{0 + 10 \cdot 20}{10}$		
	$T_{\text{e2e}}^{\text{l.o.}f_0} = \sum_{i \in \{1,2,5,6\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e2e}}^{1,0,f_0}} \right)$	950		
	$= \frac{2e}{L(1,2,5,0)} \left(\begin{array}{cc} s_i & R_{e2e}^{1.6,10} \end{array} \right)$	$=$ $80 + \frac{950}{10}$		
		= 175		
	=	$=\beta_{10,185}$		
		$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$		
D^{f_0}		$10 \cdot [t - 175]^+ = 25$		
		$t = 177\frac{1}{2}$		
	B^{f_0}	$\alpha^{f_0}(T_{\text{e2e}}^{\text{1.o.}f_0}) = 5 \cdot 175 + 25$		
	D	= 900		

Flow f_1

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_1} = \alpha_{s_1}^{f_1}$	$=\gamma_{5,25}$	
s_0		$\beta_{s_0} = b_{s_0}$	FIFO per micro flow
		$20 \cdot [t - 20]^{+} = 25$	$\beta_{s_0} = b_{s_0}$
	$D_{s_0}^{f_1}$		$20 \cdot [t - 20]^+ = 25$
		$t = 21\frac{1}{4}$	$t = 21\frac{1}{4}$
	Df_1	$\alpha_{s_0}(T_{s_0}) =$	$5 \cdot 20 + 25$
	$B_{s_0}^{f_1}$	=	125
	$\alpha_{s_1} = \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_1}$ $D_{s_1}^{f_1}$ $B_{s_1}^{f_1}$	$= \gamma_{5,25} + \gamma_{5,125} = \gamma_{10,150}$	
s_1	$D_{s_1}^{f_1}$	$=27\frac{1}{2}$	=55
$B_{s_1}^{f_1} = 350$		50	
	$\alpha_{s_2} = \alpha_{s_2}^{\{f_0, f_1\}}$	$=\gamma_{10}$	
s_2	$\begin{array}{c} D_{s_2}^{f_1} \\ B_{s_2}^{f_1} \end{array}$	$=37\frac{1}{2}$	= 75
		=55	<u> </u>
	$\alpha_{s_5} = \alpha_{s_5}^{\{f_0, f_1\}} + \alpha_{s_5}^{f_2}$	$= \gamma_{5,225} + \gamma_{10,550} = \gamma_{15,775}$	
s_5	$\begin{array}{c c} D_{s_5}^{f_1} \\ B_{s_5}^{f_1} \end{array}$	$=58\frac{3}{4}$	= 235
	$B_{s_5}^{f_1} = 1075$		
	$\alpha_{s_6} = \alpha_{s_6}^{\{f_0, f_1, f_2\}}$	$\{-1,f_1,f_2\}$ = $\gamma_{15,1075}$	
s_6	$\begin{array}{c c} D_{s_6}^{f_1} \\ B_{s_6}^{f_1} \end{array}$	$=73\frac{3}{4}$	= 295
	D^{f_1}	$\sum_{i \in \{0,1,2,5,6\}} D_{s_i}^{f_1} = 21\frac{1}{4} + 27\frac{1}{2} + 37\frac{1}{2} + 58\frac{3}{4} + 73\frac{3}{4} = 218\frac{3}{4}$	$\sum_{i \in \{0,1,2,5,6\}} D_{s_i}^{f_1} = 21\frac{1}{4} + 55 + 75 + 235 + 295 = 681\frac{1}{4}$
	B^{f_1}	$max_{i \in \{0,1,2,5,6\}}$	$B_{s_i}^{f_1} = 1375$

SFA FIFO MUX:

$$\begin{array}{ll} \beta_{c2}^{b,0,c} & = & \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \alpha_{c_2}^{a(f_1)}\right) \otimes \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \beta_{c_2}^{a(f_1)}\right) \otimes \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \beta_{c_2}^{a(f_1)} \ominus \beta_{c_2}^{a(f_1)}\right) \otimes \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \beta_{c_2}^{a(f_1)} \ominus \beta_{c_2}^{a(f_1)}\right) \otimes \left(\beta_{c_1}^{b,o,c}(f_1) \ominus \beta_{c_2}^{a(f_1)} \ominus \beta_{c_2}^{a(f_1)$$

SFA ARB MUX:

$$\begin{array}{ll} \beta_{coc}^{a,f_{1}} &=& \left(\beta_{coc}^{a,c,f_{1}}\right) \circ \left(\beta_{coc}^{a,c$$

	PMOO	ARB_MUX		
s_0	$\begin{array}{c} \alpha_{s_0}^{\bar{x}(f_1)} \\ \alpha_{s_0}^{x(f_1)} \end{array}$	$=\gamma_{0,0}$		
30	$lpha_{s_0}^{x(f_1)}$	$=\gamma_{0,0}$		
s_1	$\begin{array}{c} \overset{x}{\alpha_{s_1}} \\ \alpha_{s_1} \\ & \alpha_{s_1}^{x(f_1)} \end{array}$	$=\gamma_{5,25}$		
31	$lpha_{s_1}^{x(f_1)}$	$=\gamma_{5,25}$		
s_2	$\alpha_{s_2}^{\overline{x}(f_1)}$ $\alpha_{s_2}^{x(f_1)}$ $\alpha_{s_2}^{x(f_1)}$ $\alpha_{s_5}^{\overline{x}(f_1)}$	$=\gamma_{0,0}$		
0.2	$\alpha_{s_2}^{x(f_1)}$	$=\gamma_{5,125}$		
s_5	$lpha_{s_5}^{ar{x}(f_1)}$	$=\gamma_{5,225}$		
	$\alpha_{s_5}^{\kappa(f_1)}$	$=\gamma_{10,xxx}$		
s_6	$\frac{\alpha_{s_6}^{\overline{x}(f_1)}}{\alpha_{s_6}^{x(f_1)}}$	$=\gamma_{0,0}$		
50	$lpha_{s_6}^{x(f_1)}$	$=\gamma_{10,xxx}$		
	$R_{\text{e2e}}^{\text{l.o.}f_1} = \bigwedge_{i \in \{0,1,2,5,6\}} \left(R_{s_i} - r_{s_i}^{x(f_1)} \right)$	$= (20-0) \wedge (20-5) \wedge (20-5) \wedge (20-10) \wedge (20-10)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$		= 10		
$R_{e2e}, T_{e2e}, T_{e2e}$		$= 20 + \frac{0+0\cdot 20}{10} + 20 + \frac{25+5\cdot 20}{10} + 20 + \frac{0+5\cdot 20}{10} + 20 + \frac{225+10\cdot 20}{10} + 20 + \frac{0+10\cdot 20}{10}$		
	$ T_{\text{e2e}}^{\text{l.o.}f_1} = \sum_{i \in \{0,1,2,5,6\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_1)} + r_{s_i}^{\bar{x}(f_1)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_1}} \right) $	10 10 10 10 10 850		
		$=$ $100 + \frac{850}{10}$		
		=		
	=	$=\beta_{10,185}$		
		$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_1} = b^{f_1}$		
D^{f_1} B^{f_1}		$10 \cdot [t - 185]^+ = 25$		
		$t = 187\frac{1}{2}$		
		$\alpha^{f_1}(T_{e2e}^{1.o.f_1}) = 5 \cdot 185 + 25$		
		a = 950		

Flow f_2

	TFA	FIFO_MUX	ARB_MUX	
	$\alpha_{s_3} = \alpha_{s_3}^{f_2}$	$=\gamma_{5,25}$		
s_3		$\beta_{s_3} = b_{s_3}$	FIFO per micro flow	
	- f	$20 \cdot [t - 20]^{+} = 25$	$\beta_{s_3} = b_{s_3}$	
	$D_{s_3}^{f_2}$		$20 \cdot [t - 20]^+ = 25$	
		$t = 21\frac{1}{4}$	$t = 21\frac{1}{4}$	
	$B_{s_3}^{f_2}$	$\alpha_{s_3}(T_{s_3})$	$0 = 5 \cdot 20 + 25$	
	D_{s_3}		= 125	
	$\alpha_{s_4} = \alpha_{s_4}^{f_2}$			
s_4		$\beta_{s_4} = b_{s_4}$	FIFO per micro flow	
	$D_{s_4}^{f_2}$	$20 \cdot [t - 20]^{+} = 125$	$\beta_{s_4} = b_{s_4}$	
			$20 \cdot [t - 20]^+ = 125$	
		$t = 26\frac{1}{4}$	$t = 26\frac{1}{4}$	
	$B_{s_A}^{f_2}$	$\alpha_{s_4}(T_{s_4})$	$= 5 \cdot 20 + 125$	
	- 4 <u>-</u>		= 225	
	$\alpha_{s_5} = \alpha_{s_5}^{\{f_0, f_1\}} + \alpha_{s_5}^{f_2}$	$=\gamma_{5,225}$ +	$-\gamma_{10,550} = \gamma_{15,775}$	
s_5	$\begin{array}{c} D_{s_5}^{f_2} \\ B_{s_5}^{f_2} \end{array}$	$=58\frac{3}{4}$	= 235	
	$B_{s_5}^{J_2}$		= 1075	
	$\alpha_{s_6} = \alpha_{s_6}^{\{f_0, f_1, f_2\}}$ D^{f_2}		$= \gamma_{15,1075}$	
s_6	$D_{s_6}^{f_2} \ B_{s_2}^{f_2}$	$=73\frac{3}{4}$	= 295	
	36		= 1375	
			$\sum_{i \in \{3,4,5,6\}} D_{s_i}^{f_2} = 577\frac{1}{2}$	
B^{f_2}		$\max_{i \in \{3,4,5,6\}} B_{s_i}^{f_2} = 1375$		

SFA FIFO MUX:

= 750

$$\begin{array}{ll} \beta_{cd}^{\text{l.o.}f_2} & = & \left(\beta_{s_3}^{\text{l.o.}x(f_2)} \odot \alpha_{s_3}^{r(f_2)}\right) \otimes \left(\beta_{s_4}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_3}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_5}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_5}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_5}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \left(\beta_{s_5}^{\text{l.o.}x(f_2)} \odot \alpha_{s_5}^{x(f_2)}\right) \otimes \beta_{s_5}^{\text{l.o.}x(f_2)} \otimes \beta_{s_5}^{\text$$

SFA ARB MUX:

 $B^{f_1} = \alpha^{f_1}(T_{e2e}^{\text{l.o.}f_1})$

= 1275

 $= 5 \cdot 250 + 25$

$$\begin{array}{ll} \beta_{s_{0}}^{\text{Lo.}f_{2}} &=& \left(\beta_{s_{3}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{3}}^{x(f_{2})}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\left(\beta_{s_{5}} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \ominus \alpha_{s_{0}}^{f_{0},f_{1}}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \otimes \left(\beta_{s_{0}}^{\text{Lo.}x(f_{2})} \ominus \alpha_{s_{0}}^{x(f_{2})}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \alpha_{s_{0}}^{f_{0},f_{1}}\right) \otimes \left(\beta_{s_{0}} \ominus \alpha_{s_{0}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \alpha_{s_{0}}^{f_{0},f_{1}}\right) \otimes \left(\beta_{s_{1}} \otimes \beta_{s_{2}}\right) \right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) \ominus \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) + \alpha_{0}^{f_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) + \alpha_{0}^{f_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) + \alpha_{0}^{f_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\alpha_{s_{1}}^{f_{0},f_{1}} \ominus \beta_{s_{0}}\right) + \alpha_{0}^{f_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\left(\alpha_{s_{1}}^{f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \right) \otimes \beta_{s_{0}}\right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{5}} \ominus \left(\left(\left(\alpha_{s_{1}}^{f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right)\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\left(\alpha_{s_{1}}^{f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{3}} \ominus \left(\left(\left(\alpha_{s_{1},f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{2}}\right)\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\left(\left(\alpha_{s_{1},f_{1},f_{1}} \ominus \beta_{s_{0}}\right) - \beta_{s_{0}}\right) - \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \\ &=& \beta_{s_{3}} \otimes \beta_{s_{4}} \otimes \left(\beta_{s_{3}} \ominus \left(\left(\left(\beta_{s_{1},f_{1},f_{1}} \ominus \beta_{s_{0}} - \beta_{s_{0}}\right) - \beta_{s_{0}}\right) \otimes \left(\beta_{s_{0}} \ominus \left(\left(\left(\left(\beta_{s_{1},f_{1},$$

	PMOO	ARB_MUX		
Ca	$\begin{array}{c}\alpha_{s_3}^{\bar{x}(f_2)}\\\alpha_{s_3}^{x(f_2)}\\\alpha_{s_3}^{x(f_2)}\end{array}$	$=\gamma_{0,0}$		
s_3	$lpha_{s_3}^{x(f_2)}$	$=\gamma_{0,0}$		
s_4	$lpha_{s_4}^{ar{x}(f_2)}$	$=\gamma_{0,0}$		
54	$\begin{array}{c} \alpha_{x}(f_{2}) \\ \alpha_{s_{4}} \\ \alpha_{x}(f_{2}) \\ \alpha_{s_{5}} \end{array}$	$=\gamma_{0,0}$		
s_5	$lpha_{s_5}^{ar{x}(f_2)}$	$=\gamma_{10,550}$		
	$lpha_{s_5}^{x(f_2)}$	$=\gamma_{10,550}$		
s_6	$\frac{\tilde{x}(f_2)}{\alpha_{s_6}^{\tilde{x}(f_2)}}$ $\alpha_{s_6}^{x(f_2)}$	$=\gamma_{0,0}$		
- 0	$lpha_{s_6}^{x(J_2)}$	$=\gamma_{10,xxx}$		
	$R_{\text{e2e}}^{\text{l.o.}f_2} = \bigwedge_{i \in \{3,4,5,6\}} \left(R_{s_i} - r_{s_i}^{x(f_2)} \right)$	$= (20-0) \wedge (20-0) \wedge (20-10) \wedge (20-10)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_2} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_2}, T_{\text{e2e}}^{\text{l.o.}f_2}}$		= 10		
n _{e2e} , r _{e2e}		$= 20 + \frac{0 + 0 \cdot 20}{5} + 20 + \frac{0 + 0 \cdot 20}{5} + 20 + \frac{550 + 10 \cdot 20}{5} + 20 + \frac{0 + 10 \cdot 20}{5}$		
	$ T_{\text{e2e}}^{\text{l.o.}f_2} = \sum_{i \in \{3,4,5,6\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_2)} + r_{s_i}^{x(f_2)} \cdot T_{s_i}}{R_{e^{2e}}^{1,0.f_2}} \right) $	950		
	$= 2e \qquad \angle n \in \{3,4,5,0\} \qquad \qquad R_{\text{e}2e}^{\text{1.0.1}2} \qquad \int$	$=$ $80 + \frac{950}{10}$		
		= 175		
	=	$=\beta_{10,175}$		
		$eta_{ ext{e}2 ext{e}}^{ ext{l.o.}f_2} = b^{f_2}$		
D^{f_2}		$10 \cdot [t - 175]^{+} = 25$		
		$t = 177\frac{1}{2}$		
B^{f_2}		$\alpha^{f_2}(T_{\text{e2e}}^{\text{l.o.}f_2}) = 5 \cdot 175 + 25$		
D*-		= 900		