

Sfinksin Tapmacası

Böyük Sfinksin sizin üçün bir tapmacası var. Sizə N təpəli qraf verilir. Təpələr 0 ilə N-1 arasında nömrələnib. Qrafda 0 ilə M-1 arasında nömrələnmiş M bağlantı var. Hər bir bağlantı iki fərqli təpəni birləşdirir və iki istiqamətlidir. Konkret olaraq, 0 və M-1 (daxil olmaqla) aralığında olan hər j üçün j bağlantısı X[j] və Y[j] təpələrini birləşdirir. Hər hansı iki təpəni birləşdirən ən çox bir bağlantı var. İki təpə bağlantı ilə birləşdirilirsə, onlar **qonşu** adlanır.

 v_0,v_1,\ldots,v_k təpələri ardıcıllığındakı ($k\geq 0$ üçün) bütün iki ardıcıl v_l və v_{l+1} təpələri ($0\leq l< k$ ödəyən bütün l dəyərləri üçün) qonşu olarsa bu ardıcıllıq **yol** adlanır. Biz deyirik ki, v_0,v_1,\ldots,v_k yolu v_0 və v_k təpələrini **birləşdirir**. Sizə verilən qrafda istənilən iki təpə hansısa yol ilə birləşir.

0-dan N-ə qədər nömrələnmiş N+1 rəng var. N rəngi xüsusidir və **Sfinksin rəngi** adlanır. Hər bir təpəyə bir rəng verilir. Konkret olaraq, i təpəsi ($0 \le i < N$) C[i] rənginə malikdir. Birdən çox təpə eyni rəngə malik ola bilər və bəzi rənglər heç bir təpəyə təyin olunmaya bilər. Heç bir təpədə Sfenksin rəngi yoxdur, yəni $0 \le C[i] < N$ ($0 \le i < N$).

 v_0,v_1,\dots,v_k ($k\geq 0$ üçün) yolundakı bütün təpələr eyni rəngdədirsə, yəni $C[v_l]=C[v_{l+1}]$ ($0\leq l< k$ ödəyən hər l üçün) olarsa bu yol **monoxromatik** adlanır. Əlavə olaraq, p və q təpələri ($0\leq p< N$, $0\leq q< N$) yalnız və yalnız monoxromatik yol ilə birləşərsə onlar bir **monoxromatik komponentdə** yerləşir.

Siz təpələri və bağlantıları bilirsiniz, lakin hər təpənin hansı rəngə malik olduğunu bilmirsiniz. Siz **yenidən rəngləmə təcrübələri** həyata keçirərək təpələrin rənglərini öyrənmək istəyirsiniz.

Yenidən rəngləmə təcrübəsində siz ixtiyari olaraq bir çox təpələri yenidən rəngləyə bilərsiniz. Xüsusilə, yenidən rəngləmə təcrübəsini yerinə yetirmək üçün əvvəlcə N ölçüsündə E massivi seçməlisiniz, burada hər i ($0 \le i < N$) üçün E[i] —1 və N (daxil olmaqla) aralığındadır. Sonra hər i təpəsinin rəngi S[i] olur, burada S[i] dəyəri:

- ullet əgər E[i]=-1 olarsa, C[i], yəni i-nin orijinal rəngi, və ya
- əks halda, E[i] olur.

Nəzərə alın ki, siz yenidən rəngləmənizdə Sfinksin rəngindən istifadə edə bilərsiniz.

Nəhayət, Böyük Sfinks hər bir i təpəsinin rəngini ($0 \le i < N$) S[i] etdikdən sonra qrafdakı monoxromatik komponentlərin sayını elan edir. Yeni rəngləmə yalnız bu xüsusi yenidən rəngləmə təcrübəsi üçün tətbiq edilir, beləliklə **təcrübə bitdikdən sonra bütün təpələrin rəngləri orijinallarına qayıdır**.

Tapşırığınız ən çox $2\,750$ yenidən rəngləmə təcrübəsi həyata keçirərək qrafdakı təpələrin rənglərini müəyyən etməkdir. Hər bir qonşu təpə cütü üçün onların eyni rəngə malik olub-olmadığını düzgün müəyyən etsəniz, siz həm də qismən bal ala bilərsiniz.

İcra Təfərrüatları

Aşağıdakı proseduru yerinə yetirməlisiniz.

```
std::vector<int> find_colours(int N,
    std::vector<int> X, std::vector<int> Y)
```

- *N*: qrafdakı təpələrin sayı.
- ullet X, Y: bağlantıları göstərən M uzunluqlu massivlər.
- ullet Bu prosedur geriyə qrafdakı təpələrin rənglərini gostərən N uzunluqlu G massivini qaytarmalıdır.
- Bu prosedur hər bir test üçün bir dəfə çağrılır.

Bu prosedur yenidən rəngləmə təcrübəsi həyata keçirmək üçün aşağıdakı proseduru çağıra bilər:

```
int perform_experiment(std::vector<int> E)
```

- ullet E: Təpələrin necə yenidən rəngləndiyini göstərən N uzunluqlu massiv.
- ullet Bu prosedur E-yə uyğun olaraq təpələri yenidən rənglədikdən sonra monoxromatik komponentlərin sayını geri qaytarır.
- Bu prosedur ən çox 2 750 dəfə çağrıla bilər.

Qiymətləndirici **adaptiv deyil**, yəni təpələrin rəngləri find_colours çağırışından əvvəl müəyyən edilir.

Məhdudiyyətlər

- $2 \le N \le 250$
- $N-1 \le M \le \frac{N \cdot (N-1)}{2}$
- ullet Hər bir $0 \leq j < M$ bərabərsizliyinə uyğun j üçün $0 \leq X[j] < Y[j] < N.$
- ullet Hər bir $0 \leq j < k < M$ bərabərsizliyinə uyğun j və k üçün X[j]
 eq X[k] və ya Y[j]
 eq Y[k].
- Hər bir təpə cütü yol ilə birləşir.
- Hər bir $0 \leq i < N$ bərabərsizliyinə uyğun i üçün $0 \leq C[i] < N$.

Alt Tapşırıqlar

Alt Tapşırıq	Bal	Əlavə Məhdudiyyətlər
1	3	N=2
2	7	$N \leq 50$
3	33	Qraf bir yoldur: $M = N-1$, və j və $j+1$ təpələri qonşudurlar ($0 \leq j < M$).
4	21	Qraf tam qrafdır: $M=rac{N\cdot (N-1)}{2}$ və istənilən iki təpə qonşudurlar.
5	36	Əlavə məhdudiyyət yoxdur.

Proqramınız hər bir qonşu təpə cütü üçün onların eyni rəngə malik olub-olmadığını düzgün müəyyən edərsə, hər bir alt tapşırıqda siz qismən xal əldə edə bilərsiniz.

Daha dəqiq desək, əgər bir alt tapşırıqdakı bütün test vəziyyətlərində find_colours tərəfindən qaytarılan G massivi C massivi ilə tam eyni olarsa, siz alt tapşırığın bütün xalını əldə etmiş olursunuz (yəni $0 \leq i < N$ ödəyən hər bir i üçün G[i] = C[i]). Əks halda, aşağıdakı şərtlər bütün testlərdə doğru olarsa, alt tapşırıq üçün 50% bal alırsınız:

- ullet Hər bir $0 \leq i < N$ bərabərsizliyinə uyğun i üçün $0 \leq G[i] < N$;
- Hər bir $0 \le j < M$ bərabərsizliyinə uyğun j üçün:
 - $\circ \ \ G[X[j]] = G[Y[j]] \ {\rm yalnız} \ {\rm ve} \ {\rm yalnız} \ C[X[j]] = C[Y[j]] \ {\rm olduqda}.$

Nümunə

Aşağıdakı çağırışı nəzərdən keçirin.

Bu misal üçün fərz edək ki, təpələrin (gizli) rəngləri C=[2,0,0,0] ilə verilir. Bu ssenari aşağıdakı şəkildə göstərilmişdir. Rənglər əlavə olaraq hər bir təpəyə əlavə edilmiş ağ etiketlərdə rəqəmlərlə təmsil olunur.

Prosedur aşağıdakı kimi perform_experiment çağıra bilər.

```
perform_experiment([-1, -1, -1, -1])
```

Bu çağırışda heç bir təpə yenidən rənglənmir, bütün təpələr orijinal rənglərini saxlayır.

1 və 2 təpəsini nəzərdən keçirin. Hər ikisi 0 rənginə malikdir və 1,2 yolu monoxromatik yoldur. Nəticədə, 1 və 2 təpələri eyni monoxromatik komponentdədir.

1 və 3 təpəsini nəzərdən keçirin. Onların hər ikisinin rəngi 0 olsa da, onları birləşdirən monoxromatik yol olmadığı üçün onlar fərqli monoxromatik komponentlərdədir.

Ümumilikdə təpələri $\{0\}$, $\{1,2\}$ və $\{3\}$ olan 3 monoxromatik komponent var. Beləliklə, bu çağırış 3 qaytarır.

İndi prosedur perform_experiment çağırışını belə edə bilər.

Bu çağırışda yalnız 0 təpəsi 0 rənginə dəyişdirilir ki, bu da aşağıdakı şəkildə göstərilən rəngləmə ilə nəticələnir.

Bu çağırış 1 qaytarır, çünki bütün təpələr eyni monoxromatik komponentə aiddir. İndi belə nəticə çıxara bilərik ki, 1, 2 və 3 təpələri 0 rənginə malikdirlər.

Sonra prosedur perform_experiment çağırışını belə edə bilər.

Bu çağırışda 3 təpəsi 2 rənginə yenidən rənglənir ki, bu da aşağıdakı şəkildə göstərilən rəngləmə ilə nəticələnir.

Bu çağırış 2 qaytarır, çünki ucları müvafiq olaraq $\{0,3\}$ və $\{1,2\}$ olan 2 monoxromatik komponent var. Biz belə nəticə çıxara bilərik ki, 0 təpəsi 2 rənginə malikdir.

Daha sonra find_colours proseduru [2,0,0,0] massivini geri qaytarır. C=[2,0,0,0] olduğundan tam bal verilir.

Nəzərə alın ki, balın 50%-i veriləcək bir neçə geri qaytarıla bilən dəyərlər də var (məsələn [1,2,2,2] və ya [1,2,2,3]).

Nümunə Qiymətləndirici

Giriş formatı:

```
N M
C[0] C[1] ... C[N-1]
X[0] Y[0]
X[1] Y[1]
...
X[M-1] Y[M-1]
```

Çıxış formatı:

```
L Q
G[0] G[1] ... G[L-1]
```

Burada, L find_colours tərəfindən qaytarılan G massivinin uzunluğu, Q isə perform_experiment üçün edilən çağırışların sayıdır.