Второй курс, осенний 2018/19 Конспект лекций по алгоритмам

Собрано 5 сентября 2018 г. в 17:50

Содержание

1. Паросочетания	1
1.1. Определения	1
1.2. Сведения	1
1.3. Поиск паросочетания в двудольном графе	1
1.4. Реализация	2
1.5. Алгоритм Куна	2
1.6. Оптимизации Куна	3
1.7. Поиск минимального вершинного покрытия	3
1.8. Обзор решений	4
1.9. Решения для произвольного графа	4
1.9.1. Обзор	4
1.9.2. Матрица Татта	4
1.9.3. Читерский подход	5
2. Паросочетания (продолжение)	5
2.1. Классификация рёбер двудольного графа	6
2.2. Stable matching (marriage problem)	6
2.3. Венгерский алгоритм	7
$2.3.1$. Реализация за $\mathcal{O}(V^3)$	7
2.3.2. Псевдокод	8
2.4. Покраска графов	9
2.4.1. Вершинные раскраски	9
2.4.2. Рёберные раскраски	9
	10
	10

Лекция #1: Паросочетания

4 сентября

1.1. Определения

- **Def 1.1.1.** Паросочетание (matching) множество попарно не смежных рёбер M.
- **Def 1.1.2.** Вершинное покрытие (vertex cover) множество вершин C, что у любого ребра хотя бы один конец лежит в C.
- **Def 1.1.3.** Независимое множество (indpendent set) множество попарно несмежных вершин I.
- **Def 1.1.4.** *Клика (clique) множество попарно смежных вершин.*
- **Def 1.1.5.** Совершенное паросочетание паросочетание, покрывающее все вершины графа. В двудольном графе совершенным является паросочетание, покрывающее все вершины меньшей доли.
- Def 1.1.6. Относительно любого паросочетания все вершины можно поделить на
- покрытые паросочетанием (принадлежащие паросочетанию),
- не покрытые паросочетанием (свободные).

Обозначения: Matching (M), Vertex Cover (VC или C), Independent Set (IS или I).

1.2. Сведения

Пусть дан граф G, заданный матрицей смежности g_{ij} . Инвертацией G назовём граф G', заданный матрицей смежности $g'_{ij} = 1 - g_{ij}$. тогда независимое множество в G задаёт клику в G', а клика в G задаёт независимое множество в G'.

Следствие 1.2.1. Задачи поиска тах клики и тах IS сводятся друг к другу.

Lm 1.2.2. Дополнение любого VC – IS. Дополнение любого IS – VC.

Следствие 1.2.3. Все три задачи поиска min VC, max IS, max clique сводятся друг к другу.

Утверждение 1.2.4. Задачи поиска min VC, max IS, max clique NP-трудны.

Утверждение было доказано в прошлом семестре в разделе про сложность.

1.3. Поиск паросочетания в двудольном графе

- **Def 1.3.1.** Чередующийся путь простой путь, в котором рёбра чередуются в смысле принадлежности паросочетанию.
- **Def 1.3.2.** Дополняющий чередующийся путь (ДЧП) чередующийся путь, первая и последняя вершина которого не покрыты паросочетанием.
- <u>Lm</u> 1.3.3. Паросочетание P максимально \Leftrightarrow ∄ ДЧП (лемма о дополняющем пути).

Доказательство. Пусть \exists ДЧП \Rightarrow инвертируем все рёбра на нём, получим паросочетание размера |P+1|. Докажем теперь, что если \exists паросочетание M: |M| > |P|, то \exists ДЧП. Для этого рассмотрим $S = M \triangledown P$. Степень каждой вершины в S не более двух (одно ребро из M, одно из P) \Rightarrow S является объединением циклов и путей. Каждому пути сопоставим число a_i – разность количеств рёбер из M и P. Тогда $|M| = |P| + \sum_i a_i \Rightarrow \exists a_i > 0 \Rightarrow$ один из путей – ДЧП. ■

Лемма доказана для произвольного графа, но с лёгкостью найти ДЧП мы сможем только для двудольного графа.

<u>Lm</u> 1.3.4. Пусть G – двудольный граф, а P паросочетание в нём. Построим орграф G'(G, P), в котором из первой доли во вторую есть все рёбра G, а из второй в первую долю только рёбра из P. Тогда есть биекция между путями в G' и чередующимися путями в G.

Lm 1.3.5. Поиск ДЧП в $G \Leftrightarrow$ поиску пути в G' из свободной вершины в свободную.

Cледствие 1.3.6. Мы получили алгоритм поиска максимального паросочетания M за $\mathcal{O}(|M| \cdot E)$:

- 0. $P \leftarrow \emptyset$
- 1. Попробуем найти путь dfs-ом в G'(G, P)
- 2. if не нашли $\Rightarrow M$ максимально
- 3. else goto 1

1.4. Реализация

Важной идеей является применение ДЧП к паросочетания на обратном ходу рекурсии.

```
def dfs(v):

used[v] = 1 # массив пометок для вершин первой доли

for x in graph[v]: # рёбра из 1-й доли во вторую

if (pair[x] == -1) or (used[pair[x]] == 0 and dfs(pair[x])):

pair[x] = v # массив пар для вершин второй доли

return True

return False
```

Граф G' в явном виде мы нигде не строим. Вместо этого, когда идём из 1-й доли во вторую, перебираем все рёбра ($v \to x$ in graph[v]), а когда из 2-й в первую, идём только по ребру паросочетания ($x \to pair[x]$).

1.5. Алгоритм Куна

<u>Lm</u> 1.5.1. В процессе поиска максимального паросочетания \sharp ДЧП из $v \Rightarrow$ ДЧП из v уже никогда не появится.

Пусть появился ДЧП $p\colon v\leadsto u$ после применения ДЧП $q\colon a\leadsto b$. Тогда пойдём по p из v, найдём $x\in p$ — первую вершину в q. Из x пойдём по пути $a\longleftrightarrow b$ по ребру паросочетания, дойдём до конца, получим пути $v\leadsto (a\lor b)$, который существовал до применения q.

Получили алгоритм Куна:

```
1 for v in range(n):
2  used = [0] * n
3  dfs(v)
```

1.6. Оптимизации Куна

Обозначим за k размер максимального паросочетания. Сейчас время работы алгоритма Куна $\mathcal{O}(VE)$ даже для $k = \mathcal{O}(1)$. Будем обнулять пометки used[] только, если мы нашли ДЧП.

```
1  used = [0] * n
2  for v in range(n):
3   if dfs(v):
4   used = [0] * n
```

Алгоритм остался корректным, так как, между успешными запусками dfs граф G' не меняется. И теперь работает за $\mathcal{O}(kE)$.

Следующая оптимизация – "жадная инициализация". До запуска Куна переберём все рёбра и те из них, что можем, добавим в паросочетание.

<u>Lm</u> 1.6.1. Жадная инициализация даст паросочетание размера $\geq \frac{k}{2}$.

Доказательство. Если мы взяли ребро, которое на самом деле не должно лежать в максимальном паросочетании M, мы заблокировали возможность взять ≤ 2 рёбер из M.

При использовании жадной инициализации у нас появляется необходимость поддерживать массив covered[v], хранящий для вершины первой доли, покрыта ли она паросочетанием.

Попробуем теперь сделать следующее:

```
1    used = [0] * n
2    for v in range(n):
3       if not covered[v]:
4       dfs(v)
```

Код работает за $\mathcal{O}(V+E)$. И, если паросочетание не максимально, найдёт хотя бы один ДЧП. А может найти больше чем один... в этом и заключается последняя оптимизация "вообще не обнулять пометки": пока данный код находит хотя бы один путь, запускать его.

Замечание 1.6.2. Докажите, что если мы используем последнюю оптимизацию, "жадная инициализация" является полностью бесполезной.

Напоминание: мы умеем обнулять пометки за $\mathcal{O}(1)$. Для этого помеченной считаем вершины v: "used[v] == cc", тогда операция "cc++" сделает все вершины не помеченными.

1.7. Поиск минимального вершинного покрытия

```
Lm 1.7.1. ∀M,VC верно, что |VC| \geqslant |M|
```

Доказательство. Для каждого ребра $e \in M$, нужно взять в VC хотя бы один из концов e.

Пусть у нас уже построено максимальное паросочетание M. Запустим dfs на G' из всех свободных вершин первой доли. Обозначим первую долю A, вторую B. Посещённые dfs-ом вершины соответственно A^+ и B^+ , а непосещённые A^- и B^- .

Теорема 1.7.2. $X = A^- \cup B^+$ – минимальное вершинное покрытие.

Доказательство. Если бы из $a \in A^+$ было бы ребро в $b \in B^-$, мы бы по нему прошли, и b лежала бы в $B^+ \Rightarrow$ в $A^+ \cup B^-$ нет рёбер $\Rightarrow X$ — вершинное покрытие. Оценим размер X: все вершины из $A^- \cup B^+$ — концы рёбер паросочетания M, т.к. dfs не нашёл дополняющего пути. Более того это концы обязательно разных рёбер паросочетания, т.к. если один конец ребра паросочетания лежит в B^+ , то dfs пойдёт по нему, и второй конец окажется в A^+ . Итого $|X| \leqslant |M|$. Из этого и 1.7.1 следует |X| = |M| и $|X| = \max$.

Следствие 1.7.3. $A^+ \cup B^-$ — максимальное независимое множество.

3амечание 1.7.4. Мы умеем строить $\min VC$ и $\max IS$ за $\mathcal{O}(V+E)$ при наличии максимального паросочетания.

Cледствие 1.7.5. $\max M = \min VC$ (теорема Кёнига).

1.8. Обзор решений

Мы изучили алгоритм Куна со всеми оптимизациями.

Асимптотически время его работы $\mathcal{O}(VE)$, на практике же он жутко шустрый.

На графах $V, E \leq 10^5$ решение укладывается в секунду.

 \exists также алгоритм Хопкрофта-Карпа за $\mathcal{O}(EV^{1/2})$. Его мы изучим в контексте потоков.

В регулярном двудольном графе можно найти совершенное паросочетание за время $\mathcal{O}(V \log V)$. Статья Михаила Капралова и ко.

1.9. Решения для произвольного графа

1.9.1. Обзор

Наиболее стандартным считается решение через сжатие "соцветий" (видим нечётный цикл – сожмём его, найдём паросочетание в новом цикле, разожмём цикл, перестроим паросочетание). Этот подход используют реализации Габова за $\mathcal{O}(V^3)$ и Тарьяна за $\mathcal{O}(VE\alpha)$. Подробно эту тему мы будем изучать на 3-м курсе.

Оптимальный по времени – алгоритм Вазирани, $\mathcal{O}(EV^{1/2})$.

Кроме этого есть два подхода, которые мы обсудим подробнее.

1.9.2. Матрица Татта

Рассмотрим матрицу Татта T. Для каждого ребра (i,j) элементы $t_{ij}=x_{ij}, t_{ji}=-x_{ij}$.

Остальные элементы равны нулю. Здесь x_{ij} – переменные.

Получается, для каждого ребра неорграфа мы ввели ровно одну переменную.

 $\det T$ – многочлен от n(n-1)/2 переменных.

Теорема Татта: $\det T \not\equiv 0 \Leftrightarrow \exists$ совершенное паросочетание.

Чтобы проверить $\det T \equiv 0$, используем лемму Шварца-Зиппеля: в каждую переменную x_{ij} подставим случайное значение, посчитаем определитель матрицы над полем \mathbb{F}_p , где $p = 10^9 + 7$, получим вероятность ошибки не более n^2/p .

Время работы $\mathcal{O}(n^3)$, алгоритм умеет лишь проверять наличие совершенного паросочетания. Алгоритм можно модифицировать сперва для определения размера максимального паросочетания, а затем для его нахождения.

Пример:
$$n=3, E=\{(1,2),(2,3)\}, T=\begin{bmatrix}0&x_{12}&0\\-x_{12}&0&x_{23}\\0&-x_{23}&0\end{bmatrix}$$
, подставляем $x_{12}=9, x_{23}=7$, считаем

$$\det \begin{bmatrix} 0 & 9 & 0 \\ -9 & 0 & 7 \\ 0 & -7 & 0 \end{bmatrix} = 0 \Rightarrow$$
 с большой вероятностью нет совершенного паросочетания.

1.9.3. Читерский подход

Давайте на недвудольном графе запустим dfs из Куна для поиска дополняющей цепи... При этом помечать, как посещённые, будем вершины обеих долей в одном массиве used. С некоторой вероятностью алгоритм успешно найдёт дополняющий путь.

Если мы запускаем dfs из вершины 1, то у неё есть шанс найти дополняющий путь $1 \to 2 \to 3 \to 5 \to 4 \to 6$. Но если из вершины 3 dfs сперва попытается идти в 4, то он пометит 4 и 5, как посещённые, больше в них заходить не будет, путь не найдёт.

Т.е. на данном примере в зависимости от порядка соседей вершины 3 dfs или найдёт, или не найдёт путь. Если выбрать случайный порядок, то найдёт с вероятностью 1/2.

Это лучше, чем "при некотором порядке рёбер вообще не иметь возможности найти путь", поэтому первой строкой dfs добавляем random_shuffle(c[v].begin(), c[v].end()).

На большинстве графов алгоритм сможет найти максимальное паросочетание. \exists графы, на которых вероятность нахождения дополняющей цепи экспоненциально от числа вершин мала.

Лекция #2: Паросочетания (продолжение)

11 сентября

2.1. Классификация рёбер двудольного графа

Дан двудольный граф $G = \langle V, E \rangle$. Задача — определить $\forall e \in E, \exists$ ли максимальное паросочетание $M_1 \colon e \in M_1$, а также \exists ли максимальное паросочетание $M_2 \colon e \not\in M_2$. Иначе говоря, мы хотим разбить рёбра на три класса:

- 1. Должно лежать в максимальном паросочетании. MUST.
- 2. Может лежать в максимальном паросочетании, а может не лежать. МАУ.
- 3. Не лежит ни в каком максимальном паросочетании. NO.

Решение: для начала найдём любое максимальное паросочетание M. Если мы найдём класс MAY, то MUST $= M \setminus \text{MAY}$, $\text{NO} = \overline{M} \setminus \text{MAY}$.

<u>Lm</u> 2.1.1. $e \in MAY \Leftrightarrow \exists P$ — чередующийся относительно M путь чётной длины или чётный цикл, при этом $e \in P$.

Доказательство. Если ребро $e \in MAY$, то \exists другое максимальное паросочетание M': $e \in M \nabla M'$. Симметрическая разность, как мы уже знаем, состоит из чередующихся путей и циклов.

Посмотрим с другой стороны: если относительно M есть P – чередующийся путь чётной длины или чередующийся цикл, то $P \subseteq M$, так как и M, и $M \nabla P$ являются максимальными, а каждое ребро P лежит ровно в одном из двух.

Осталось научиться находить циклы и пути алгоритмически. Для этого рассмотрим тот же граф G', на котором работает dfs из Kyнa. С чётными путями всё просто: все они начинаются в свободных вершинах, dfs из Kyнa, запущенный от всех свободных вершин *обеих долей* пройдёт ровно по всем рёбрам, которые можно покрыть чётными путями, и пометит их.

Lm 2.1.2. Ребро e лежит на чётном цикле \Leftrightarrow концы e лежат в одной компоненте сильной связности графа G'.

2.2. Stable matching (marriage problem)

Сформулируем задачу на языке мальчиков/девочек. Есть n мальчиков, у каждого из них есть список девочек bs[a], которые ему нравятся в порядке от наиболее приоритетных к менее. Есть m девочек, у каждой есть список мальчиков as[b], которые ей нравятся в таком же порядке. Мальчики и девочки хотят образовать пары.

Никто не готов образовывать пару с тем, кто вообще отсутствует в его списке.

И для мальчиков, и для девочек наименее приоритетный вариант – остаться вообще без пары. Будем обозначать p_a – пара мальчика a или -1, q_b – пара девочки q или -1.

Def 2.2.1. Паросочетание называется **не** стабильным, если \exists мальчик a и девочка b: мальчику a нравится b больше чем p_a и девочке b нравится a больше чем q_b .

Def 2.2.2. Иначе паросочетание называется стабильным

• Алгоритм поиска: "мальчики предлагают, девочки отказываются"

Изначально проинициализируем $p_a = bs[a]$.first, далее, пока есть два мальчика $i, j: b = p_i = p_j \neq -1$, Девочка b откажет тому из них, кто ей меньше нравится. Пусть она отказала мальчику i, тогда делаем bs[i].remove_first(), $p_i = bs[i]$.first.

Теорема 2.2.3. Алгоритм всегда завершится и найдёт стабильное паросочетание

Доказательство. Длины списков bs[i] убывают ⇒ завершится. Пусть мальчик a и девочка b образуют не стабильность. Но это значит, что a перед тем, как образовать пару с p_a , предлагал себя b, а она ему отказала. Но зачем?! Ведь он ей нравился больше. Противоречие.

Аккуратная реализация даёт время $\mathcal{O}(\sum_i |bs[i]| + \sum_j |as[j]|)$: для каждой девочки b поддерживаем $s_b = \{a \colon p_a = b\}$, при присваивании $p_a \leftarrow b$ добавляем a в s_b и, если $|s_b| \geqslant 2$, вызываем рекурсивную процедуру откажиВсемКромеЛучшего(b).

2.3. Венгерский алгоритм

Дан взвешенный двудольный граф, заданный матрицей весов $a\colon n\times n$, где a_{ij} – вес ребра из i-й вершины первой доли в j-ю вершину второй доли. Задача – найти совершенное паросочетание минимального веса.

Формально: найти $\pi \in S_n$: $\sum_i a_{i\pi_i} \to \min$.

Иногда задачу называют *задачей о назначениях*, тогда a_{ij} – стоимость выполнения *i*-м работником *j*-й работы, нужно каждому работнику сопоставить одну работу.

<u>Lm</u> 2.3.1. Если $a_{ij} \geqslant 0$ и \exists совершенное паросочетание на нулях, оно оптимально.

<u>Lm</u> **2.3.2.** Рассмотрим матрицу $a'_{ij} = a_{ij} + row_i + col_j$, где $row_i, col_j \in \mathbb{R}$. Оптимальные паросочетания для a' и для a совпадают.

Доказательство. Достаточно заметить, что в $(f = \sum_i a_{i\pi_i})$ войдёт ровно по одному элементу каждой строки, каждого столбца \Rightarrow если все элементы строки (столбца) увеличить на константу C, в не зависимости от π величина f увеличится на $C \Rightarrow$ оптимум перейдёт в оптимум.

Венгерский алгоритм, как Кун, перебирает вершины первой доли и от каждой пытается строить ДЧП, но использует при этом только нулевые рёбра. Если нет нулевого ребра, то $x=\min$ на $A^+\times B^->0$. Давайте все столбцы из B^- уменьшим на x, а все строки из A^- увеличим на x.

$$\begin{array}{c|c}
B^+ & B^- \\
A^+ & -x \\
A^- & +x & 0
\end{array}$$

В итоге в подматрице $A^+ \times B^-$ на месте минимального элемента появится 0, в матрице $A^- \times B^+$ элементы увеличатся, остальные не изменятся. При этом все элементы матрицы остались неотрицательными. Рёбра из $A^- \times B^+$ могли перестать быть нулевыми, но они не лежат ни в текущем паросочетании, ни в дереве дополняющих цепей: $M \subseteq (A^- \times B^-) \cup (A^+ \times B^+)$, рёбра дополняющих цепей идут из A^+ .

2.3.1. Реализация за $\mathcal{O}(V^3)$

Венгерский алгоритм = V поисков ДЧП.

Поиск ДЧП = инициализировать $A^+ = B^+ = \emptyset$ и не более V раз найти минимум $x = a_{ij}$ в $A^+ \times B^-$. Если x > 0, то пересчитать матрицу весов. Посетить столбец j и строку $pair_j$.

Чтобы быстро увеличивать столбец/строку на константу, поддерживаем row_i, col_j .

Реальное значение элемента матрицы: $a'_{ij} = a_{ij} + row_i + col_j$. Увеличение строки на x: $row_j += x$.

Чтобы найти минимум x, а также строку i, столбец j, на которых минимум достигается, воспользуемся идеей из алгоритма Прима: $w_j = \min_{i \in A^+} \langle a'_{ij}, i \rangle$. Тогда $\langle \langle x, i \rangle, j \rangle = \min_{j \in B^-} \langle w_j, j \rangle$.

Научились находить (x, i, j) за $\mathcal{O}(n)$, осталось при изменении row_i , col_j пересчитать $w_j \colon j \in B^-$. $col_i += y \Rightarrow w_k += y$. А row_i будет меняться только у $i \in A^- \Rightarrow$ на $\min_{i \in A^+}$ не повлияет.

Замечание 2.3.3. Можно выбирать min в множестве $w_i : j \in B^-$ не за линию, а используя кучи.

2.3.2. Псевдокод

```
Обозначим, как обычно, первую долю A, вторую B, посещённые вершины – A^+, B^+.
Также, как в Куне, если x \in B, то pair [x] \in A – её пара в первой доли.
Строки – вершины первой доли (A). В нашем коде строки – i, v, x.
Столбцы – вершины второй доли (B). В нашем коде столбцы – j.
\mathtt{pair}[b \in B] – её пара в A, \mathtt{pair2}[a \in A] – её пара в B.
1. row \leftarrow 0, col \leftarrow 0
2. for v \in A
       A^+ = \{v\}, B^+ = \emptyset // (остальное в A^-, B^-).
3.
       w[j] = (a[v][j] + row[v] + col[j], v) // (минимум и номер строки)
4.
       while (True) // (пока не нашли путь из v в свободную вершину B)
5.
6.
          ((z,i),j) = \min\{(w[j],j): j \in B^-\} // (минимум и позиция минимума в A^+ \times B^-)
          // (і - номер строки, ј - номер столбца \Rightarrow a[i,j] + row[i] + col[j] == z)
7.
          for i \in A^-: row[i] += z;
8.
9.
          for j \in B^-: col[j] -= z, w[j].value -= z;
          // (в итоге мы уменьшили A^+ \times B^-, увеличили A^- \times B^+, пересчитали w[j]).
10.
          ј перемещаем из B^- в B^+; запоминаем prev[j] = i;
11.
12.
          if (x=pair[j]) == -1
              break // дополняющий путь: j,prev[j],pair2[prev[j]],prev[pair2[prev[j]]],...
13.
          х перемещаем из A^- в A^+;
14.
          пересчитываем все w[j] = min(w[j], pair(a[x][j] + row[x] + col[j], x));
15.
16.
       применим дополняющий путь v \leadsto j, пересчитаем pair[], pair2[]
Текущая реализация даёт время \mathcal{O}(V^3).
Внутри цикла while строки 6, 8, 9, 15 работают за \mathcal{O}(V) каждая.
Из них 8 и 9 улучшить до \mathcal{O}(1), храня специальные величины addToAMinus, addToBMinus.
Строки 6 и 15 можно улучшить до \langle \mathcal{O}(\log V), deq[x] \cdot \mathcal{O}(1) \rangle, применив кучу Фибоначчи.
Итого получится \mathcal{O}(V(E+V\log V)).
```

8/10

2.4. Покраска графов

2.4.1. Вершинные раскраски

Задача: покрасить вершины графа так, чтобы любые смежные вершины имели разные цвета. В два цвета красит обычный dfs за $\mathcal{O}(V+E)$.

В три цвета красить NP-трудно. В прошлом семестре мы научились это делать за $\mathcal{O}(1.44^n)$.

Во сколько цветов можно покрасить вершины за полиномиальное время?

• Жадность

Удалим вершину v из графа \to покрасим рекурсивно $G \setminus \{v\} \to$ докрасим v.

У вершины v всего deg_v уже покрашенных соседей \Rightarrow

в один из deg_v+1 цветов мы её точно сможем покрасить.

Cледствие 2.4.1. Вершины можно покрасить в D+1 цвет за $\mathcal{O}(V+E)$, где $D=\max_v deg_v$.

На дискретной математике будет доказана более сильная теорема:

Теорема 2.4.2. Брукс: все графы кроме нечётных циклов и клик можно покрасить в D цветов.

Кроме теоремы есть алгоритм покраски в D цветов за $\mathcal{O}(V+E)$.

На практике, если удалять вершину $v: deg_v = \min$ и докрашивать её в минимально возможный цвет, жадность будет давать приличные результаты. За счёт потребности выбирать вершину именно минимальной степени нам потребуется куча, время возрастёт до $\mathcal{O}((E+V)\log V)$.

Замечание 2.4.3. Иногда про покраску вершин удобно думать, как про разбиение множества вершин на независимые множества.

2.4.2. Рёберные раскраски

Задача: покрасить $p\ddot{e}bpa$ графа так, чтобы любые смежные рёбра имели разные цвета. Попробуем для начала применить ту же жадность: удаляем ребро e из графа, рекурсивно красим рёбра в $G\setminus\{e\}$, докрасим e. У ребра e может быть 2(D-1) смежных, где $D=\max_v deg_v$. Значит, чтобы ребро e всегда получалось докрасить, в худшем, нашей жадности нужен 2D-1 цвет, C другой стороны, поскольку рёбра, инцидентные одной вершине, должны иметь попарно разные цвета, Eсть гораздо более сильный результат, который также подробнее будет изучен в курсе дискретной математики.

Теорема 2.4.4. Визинг: рёбра любого графа можно покрасить в D+1 цвет.

Доказательство теоремы представляет собой алгоритм покраски в D+1 цвет за $\mathcal{O}(VE)$.

При этом задача покраски в D цветов NP-трудна.

2.4.3. Рёберные раскраски двудольных графов

 ${\bf C}$ двудольными графами всё проще. Сейчас научимся красить их в D цветов.

Покраска рёбер – разбиения множества рёбер на паросочетания. В последнем домашнем задании мы доказали, что в двудольном регулярном графе существует совершенное паросочетание.

 $Cnedcmeue\ 2.4.5.\ d$ -регулярный граф можно покрасить в d цветов.

Доказательство. Отщепим совершенное паросочетание, покрасим его в первый цвет. Оставшийся граф является (d-1)-регулярным, по индукции его можно покрасить в d-1 цвет.

Чтобы покрасить не регулярный граф, дополним его до регулярного.

• Дополнение до регулярного

- 1. Если в долях неравное число вершин, добавим новые вершины.
- 2. Пока граф не является D-регулярным (D максимальная степень), в обеих долях есть вершины степени меньше D, соединим эти вершины ребром.
- 3. В результате мы получим D-регулярный граф, возможно, с кратными рёбрами. Кратные рёбра — это нормально, все изученные нами алгоритмы их не боятся.

Итого рёбра d-регулярного двудольного граф мы умеем красить за $\mathcal{O}(d \cdot \mathtt{Matching}) = \mathcal{O}(E^2)$, а рёбра произвольного двудольного за $\mathcal{O}(D \cdot V \cdot VD) = \mathcal{O}(V^2D^2)$.

Поскольку в полученном регулярном графе есть совершенное паросочетание, мы доказали:

Cледствие 2.4.6. Для \forall двудольного G \exists паросочетание, покрывающее все вершины G (в обеих долях) максимальной степени.

Раз такое паросочетание З, его можно попробовать найти, не дополняя граф до регулярного.

2.4.4. Покраска не регулярного графа за $\mathcal{O}(E^2)$

Обозначим A_D – вершины степени D первой доли, B_D – вершины степени D второй доли. Уже знаем, что \exists паросочетание M, покрывающее $A_D \cup B_D$.

- 1. Запустим Куна от вершин A_D , получили паросочетание P. Обозначим B_P покрытые паросочетанием P вершины второй доли.
- 2. Если $B_D \nsubseteq B_P$, чтобы покрыть $X = B_D \setminus B_P$ рассмотрим $M \nabla P$. Каждой вершине из X в $M \nabla P$ соответствует или ДЧП, или чётный путь из X в $Y = B_P \setminus B_D$.
- 3. Алгоритм: для всех $v \in X$ ищем путь или в свободную вершину первой доли, или в Y.

Чтобы оценить время работы, обозначим размер найденного паросочетания k_i и заметим, что нашли мы его за $\mathcal{O}(k_i E)$. Все k_i рёбер паросочетания будут покрашены и удалены из графа, то есть, $\sum_i k_i = E$. Получаем время работы алгоритма $\sum_i \mathcal{O}(k_i E) = \mathcal{O}(E^2)$.