Week 7

1.1) Find the weight vector using Least Squares for classification

```
W_tilde

[72]: array([[0.50555556, 0.02182423, 0.00478603]])
```

1.2) Create class predictions using the weight vector

```
[74]: preds = predict(W_tilde, X_tilde)
[75]: np.array_equal(t_01, preds)
[75]: True
```

1.3) Plot the decision boundary

2) Perceptron

2.2) Perform class-predictions

2.3) Plot the decision boundary

3.2) Perform class-predictions

```
np.array_equal(preds, t)
True
```


4) Multi-class logistic regression

5) Multi-class logistic regression on original data representation

```
print("acc = {}".format(accuracy(preds, t_cat)))
acc = 1.0
```