بسمه تعالى

نام و نام خانوادگی : نوید نادری علی زاده – شماره ی دانشجویی : ۸۶۱۰۸۷۴۴ – رشته : مهندسی برق – گروه : ۱ – زیر گروه : ۲ – تاریخ انجام آزمایش : ۸۷/۱/۱۷ – ساعت : ۲۰:۳۰ – دستیار آموزشی : خانم فضل علی

آزمایش شماره ی ۴

عنوان آزمایش: سرعت، شتاب خطی و قانون دوم نیوتن

هدف: اندازه گیری سرعت و شتاب در حرکت بر روی خط مستقیم و مطالعه ی رابطه ی بین نیرو، شتاب و جرم (قانون دوم نیوتن)

وسایل مورد نیاز: ریل هوا با پایه – شیر اتصال به پمپ هوا – آغاز گر حرکت – زمان سنج الکترونیکی – سنسور نوری – خرطومی اتصال به پمپ هوا – سره – خط کش با دقت نیم میلیمتر – تیغه ی پایه دار V ، V ، V و V سانتی متری (این اندازه ها تقریبی هستند و با کولیس آنها را دقیقا اندازه خواهیم گرفت) – تعدادی وزنه ی سوراخ دار (V گرمی) – قرقره ی پایه دار – نگهدارنده ی وزنه – وزنه – نخ

نظریه:

برای جسمی که نسبت به یک دستگاه مختصات در حال حرکت است ، کمیت های سرعت متوسط ، سرعت لحظه ای ، شتاب متوسط و شتاب لحظه ای به این صورت تعریف می شوند :

$$Average \ velocity : \overrightarrow{\overline{V}} = \frac{\Delta \overrightarrow{r}}{\Delta t} = \frac{\overrightarrow{r} - \overrightarrow{r_*}}{t - t_*}$$

$$Instantaneous \ velocity : \overrightarrow{V} = \lim_{\Delta t \to *} \frac{\Delta \overrightarrow{r}}{\Delta t} = \frac{d\overrightarrow{r}}{dt} = \lim_{t \to t_*} \frac{\overrightarrow{r} - \overrightarrow{r_*}}{t - t_*}$$

$$Average \ acceleration : \overrightarrow{\overline{a}} = \frac{\Delta \overrightarrow{V}}{\Delta t} = \frac{\overrightarrow{V} - \overrightarrow{V_*}}{t - t_*}$$

$$Instantaneous \ acceleration : \overrightarrow{\overline{a}} = \lim_{\Delta t \to *} \frac{\Delta \overrightarrow{V}}{\Delta t} = \frac{d\overrightarrow{V}}{dt} = \lim_{t \to t_*} \frac{\overrightarrow{V} - \overrightarrow{V_*}}{t - t_*}$$

همچنین در حرکت با سرعت ثابت ، معادله ی مکان-زمان جسم ، از درجه ی ۱ است :

$$x(t) = Vt + x.$$

و در حرکت با شتاب ثابت ، معادله ی سرعت-زمان از درجه ی ۱ و معادله ی مکان-زمان جسم از درجه ی ۲ است :

$$V(t) = at + V, x(t) = \frac{1}{2} at^2 + V, t + x,$$

طبق قانون اول نیوتن ، اگر برآیند نیروهای وارد بر جسم برابر صفر باشد ، جسم وضعیت خود را حفظ می کند ؛ یعنی ، اگر ساکن بوده باشد ، ساکن می ماند و اگر در حال حرکت بوده باشد ، با سرعت ثابت به حرکت خود ادامه می دهد.

و طبق قانون دوم نیوتن ، اگر برآیند نیروهای وارد بر جسم مخالف صفر باشد ، جسم شتابی خواهد گرفت که (اندازه ی آن) با (اندازه ی) برآیند نیروها نسبت مستقیم و با جرم جسم ، نسبت عکس دارد :

$$|\vec{a}| \propto |\sum \vec{F}|$$
 , $|\vec{a}| \propto \frac{1}{m}$ $\rightarrow \vec{a} = \frac{\sum \vec{F}}{m}$

روش انجام آزمایش:

قبل از شروع آزمایش ها ، سطح ریل را تراز می کنیم به این صورت که اگر سره را بدون سرعت اولیه روی ریل قرار دهیم ، ثابت باقی بماند و به دو طرف حرکت نکند ؛ در واقع ، شیب سطح ریل را صفر می کنیم و همچنین با کولیس ، طول ۴ تیغه را اندازه می گیریم . همچنین میزان هوای خروجی از ریل را نیز در تمام آزمایش ها ، ثابت نگه می داریم و آن را تغییر نمی دهیم .

۱- حرکت با سرعت ثابت

ابتدا زمان سنج را در حالت ۳ قرار می دهیم ؛ تیغه ی اول را روی سره می گذاریم ؛ سپس تفنگ فنری را تا بیشترین حد ممکن می کشیم و سره را روی ریل هوا و در تماس با نوک تفنگ فنری کشیده شده قرار می دهیم . (در تمام آزمایش ها ، تفنگ را تا انتها می کشیم تا میزان ضربه ی وارده و در نتیجه میزان سرعت اولیه در تمام آزمایش ها یکسان باشد .) و زمانی را که طول می کشد تا کل طول تیغه از زیر سنسور عبور کند را از روی زمان سنج می خوانیم . این آزمایش را برای ۳ تیغه ی دیگر نیز تکرار می کنیم.

در مرحله ی بعد ، زمان سنج را در حالت ۲ قرار می دهیم تا از هر دو سنسور که در فاصله های معینی از هم قرار دارند ، استفاده کنیم ؛ در این مرحله زمانی را که برای پیمودن فاصله ی میان دو سنسور طی می شود ، اندازه می گیریم . بنابراین ، نتیجه ی آزمایش هیچ ربطی به طول تیغه ندارد و از هر تیغه ی دلخواهی که استفاده شود ، نتایج ، یکسان است .این آزمایش برای فواصل ۲۰، ۴۰، ۶۰ ، ۸۰ و ۱۰۰ سانتی متری دو سنسور ، تکرار می شود .

۲- حرکت با شتاب ثابت

در این بخش ، به سره ، یک وزنه ی ۵۰ گرمی آویزان می کنیم تا به آن شتابی بدهد. تیغه ها را بر روی سره قرار می دهیم و وزنه ای ۵۰ گرمی را با نخ به سره وصل و آویزان می کنیم . انتهای سره را در نزدیکترین مکان ممکن نسبت به سنسور قرار می دهیم تا سرعت اولیه ی ما تقریبا برابر صفر باشد . بنابراین از تفنگ فنری استفاده نمی کنیم و سره رها می کنیم . در این حالت ، به علت شتابی که وزنه ی آویخته شده به سره و تیغه می دهد ، تیغه ، شتاب و سرعت پیدا می کند و سرعت آن هم دائما افزایش می یابد. زمان سنج را در حالت ۳ قرار می دهیم و زمانی را که تیغه ، کل طول خود را می پیماید ، می سنجیم و آزمایش را برای تمام تیغه ها تکرار می کنیم.

در بخش بعد ، دقیقا همان آزمایش تکرار می شود ، با این تفاوت که به دو طرف سره ، دو وزنه ی ۵۰ گرمی وصل می کنیم.در بخش بعد ، ۴ وزنه ی ۵۰ گرمی به دو طرف سره وصل می کنیم و بالاخره در آزمایش پایانی ، همانند آزمایش قبل ، ۴ وزنه ی ۵۰ گرمی به دو طرف سره وصل می کنیم ؛ اما این بار ، زمان سنج را در حالت ۲ قرار می دهیم و زمانی را که تیغه در آن زمان ، فاصله ی معین بین دو سنسور را طی می کند ، اندازه می گیریم .

جداول:

جدول ۱

$\Delta x(mm)$	۲۸	۲۸	۲۸	۵١	۵١	۵١	۶۹	۶۹	۶۹	1.7	1.7	1.7
$\Delta t(ms)$	٣١	٣٢	٣٣	۶١	۶٠	۶٠	٨۴	٨٢	۸١	178	۱۲۸	١٢٣
$\Delta \bar{t}$ (ms)	٣٢			≈۶.			≈∧٢			≈ 1 T ۶		
$\overline{V}(\frac{m}{s})$		۵۷۸.۰			۵۸.۰			≈٠.⋏۴١	١		۰ ۱ ۸. ۰ ≈	,

جدول ۲

$\Delta x(cm)$	۲٠	۲.	۲٠	۴.	۴.	۴.	۶٠	۶۰	۶٠	٨٠	٨٠	٨٠	١	1	1
$\Delta t(ms)$	۲۸۳	788	۲۷۸	۵۰۳	۵۱۶	497	YAY	۷۵۴	799	1.41	1.77	١٠۵٢	1788	١٣٠٧	1818
$\Delta \bar{t}$ (ms)		≈77 <i>۶</i>			≈۵٠۶			789			≈1.٣9			≈179۶	
$\overline{V}(\frac{m}{s})$		۵۲۷.۰≈			≈+.∀91			≈+.YA+			≈ •∀∀ •			≈٠.٧٧٢	

جدول ۳

$\Delta x(mm)$	۲۸	۲۸	۸۲	۵۱	۵١	۵۱	۶۹	۶۹	۶۹	1.7	1.7	1.7
$\Delta t(ms)$	٨٨	94	99	۱۷۱	۱۵۱	174	۱۸۵	194	۱۸۴	۲۷۸	779	۲۷۵
$\Delta \bar{t}$ (ms)		≈9٣		≈ ۱۶۵		≈ \			≈ ۲ ۷۶			

 $M \cdot = 1 \lambda Y. Y gr$

 $m = a \cdot gr$

جدول ۴

$\Delta x(mm)$	۲۸	۲۸	۲۸	۵۱	۵١	۵١	۶۹	۶۹	۶۹	1.7	1.7	1.7
$\Delta t(ms)$	117	177	17.	۱۹۳	717	۱۹۸	777	747	747	٣٠۶	٣٠٣	794
$\Delta \bar{t}$ (ms)	١٢٠		۲۰۱		≈7 ٣ ٧			٣٠١				

 $M + \overline{M \cdot = r_{\lambda} v_{\cdot} v \ gr}$

 $m = a \cdot gr$

جدول ۵

$\Delta x(mm)$	۲۸	۲۸	۲۸	۵١	۵۱	۵۱	۶۹	۶۹	۶۹	1.7	1.7	1.7
$\Delta t(ms)$	178	۱۲۵	179	7.7	717	7.7	754	769	787	۳۵۶	489	۳۷۰
$\Delta \bar{t}$ (ms)		≈ \		7.7		≈7 <i>5</i> 1			350			

 $M + M_{\cdot} = r_{\lambda} v_{\cdot} v gr$

 $m = a \cdot gr$

جدول ۶

$\Delta x(cm)$	۲٠	۲٠	۲٠	۴.	۴.	۴٠	۶٠	۶٠	۶٠	٨٠	٨٠	٨٠	1	1	1
$\Delta t(ms)$	१११	۶۸۴	۷۱۸	1	14	٩٨٠	١٠۵١	1.49	1.81	١١٠٩	1174	١١١٥	۱۳۵۰	١٣٨٣	1749
$\Delta \bar{t}$ (ms)		≈ γ			≈৭৭∆			≈1.0m			≈1119			≈17°51	

 $M + M \cdot = r_{\lambda} v_{\cdot} v g r$

خواسته ها:

خواسته ی ۱:

اعداد موجود در جداول ۱ و ۲ ، مربوط به حرکت یکنواخت (با سرعت ثابت) هستند . در این نوع حرکت ، سرعت در تمام بازه های زمانی ثابت است ؛ یعنی سرعت متوسط در هر بازه ی زمانی با سرعت لحظه ای در هر لحظه برابر است . البته تمامی این نکات در بحث تئوری می گنجد و در عمل ، به علت وجود خطاهای محیطی مانند وجود اصطکاک (هر چند که سره روی تخت هواست ، ولی غیر ممکن است که اصطکاک به صفر برسد) ، خطای سنسور ها و زمان سنج ، خطای سنجش طول تیغه ها ، خطای فاصله ی بین سنسورها و ... ، سرعت های متوسط با سرعت های لحظه ای متفاوت خطای سنجش طول تیغه ها ، خطای فاصله ی بین سنسورها و ... ، سرعت های متوسط با سرعت های کشیم تا طبق است.همچنین به خاطر اینکه ضربه ی وارده بر سره در تمام آزمایش ها یکسان باشد ، تفنگ را تا انتها می کشیم تا طبق رابطه ی ضربه ($J=m\times v$) سرعت اولیه ی سره همواره یکسان باشد ؛ ولی باز هم دیده می شود که سرعت های بدست آمده در بخش های مختلف جدول ۱ و جدول ۲ با هم تفاوت دارد که باز هم نشان دهنده ی خطاست ؛ لازم به ذکر است که در تمام این آزمایش ها ، ما سرعت متوسط ، یعنی سرعت در یک بازه ی زمانی (نه در یک لحظه) ، را اندازه می گیریم .

در جدول های ۳ تا ۶ هم که مربوط به حرکت با شتاب ثابت هستند ، فقط می توانیم سرعت های متوسط را بدست بیاوریم و با توجه به اینکه این حرکت با شتاب ثابت است ، سرعتهای لحظه ای در هر لحظه ، با سرعتهای متوسط در بازه های مختلف ، متفاوت است.در اینجا چکیده از نتایج مربوط به سرعت های متوسط در جداول ۳ تا ۶ را می آوریم :

سرعت های جدول ۳

$\Delta x(mm)$	۲۸	۵۱	۶۹	1.7
$\Delta \bar{t}$ (ms)	≈9٣	≈ 18a	≈١٨٨	≈77۶
$\overline{v}(m/s)$	≈ • .٣• 1	۹ ۳۰۰ ≈	× • .٣۶٧	≈ • .٣۶٩

سرعت های جدول ۴

$\Delta x(mm)$	۲۸	۵۱	۶۹	1.7
$\Delta \bar{t}$ (ms)	17.	7 - 1	≈7 7 7	٣٠١
$\overline{v}(m/s)$	≈٠.٢٣٣	≈٠.٢۵۴	27.79	₽77.0≈

سرعت های جدول ۵

$\Delta x(mm)$	۲۸	۵۱	۶۹	1.7
$\Delta \bar{t}$ (ms)	≈ 1 T Y	۲٠٧	≈7 <i>5</i> 1	380
$\overline{v}(m/s)$	≈٠.٢٢٠	≈٠.۲۴۶	≈٠.۲۶۴	₽٧٢.٠≈

سرعت های جدول ۶

$\Delta x(cm)$	۲٠	۴۰	۶۰	٨٠	1
$\Delta \bar{t}$ (ms)	≈γ٠٠	≈٩٩۵	≈1.04	≈1119	≈ 1 ٣ ۶1
$\overline{v}(m/s)$	≈٠.٢٨۶	≈•.۴•۲	≈ • .∆ ∨ •	≈·.Y\∆	۵۳۷.≻≈

همانطور که مشاهده می شود ، در جدول π (و همین طور جدول π تا π) با افزایش طول Δ و در نتیجه افزایش Δ ، سرعت متوسط افزایش می یابد π چون سرعت اولیه ، صفر است (سره را از نزدیکی سنسور رها کردیم) ، طبق رابطه ی زیر ، با افزایش زمان طی شده ، سرعت متوسط از ابتدای مسیر تا انتهای زمان مورد نظر زیاد می شود :

$$\overline{V} = \frac{V(t) + V}{Y} = \frac{at}{Y}$$

همچنین طبق این رابطه ، هر چه شتاب حرکت دستگاه بیشتر باشد ، سرعت متوسط کمتر است و چون جرم وزنه های روی سره در جداول ۳ تا ۵ افزایش می یابد ، شتابها و در نتیجه سرعت های متوسط متناظر ، کاهش می یابند که در جداول به وضوح قابل مشاهده است.

خواسته ی ۲:

نمودار فوق مربوط به جدول ۱ است که خط توپر ، بهترین خط راستی است که از نقاط می گذرد و خط چین ، مجموعه ای از پاره خط های گذرنده از خطوط است که دو خط مذکور ، بسیار به هم نزدیکند ، بطوریکه تشخیص آنها از هم ، دشوار است . شیب نمودار که بیانگر سرعت متحرک است ، برابر ۰.۷۸۷ متر بر ثانیه و خطای آن برابر ۱۴۰۰۰ متر بر ثانیه است که خطای کمی است . این خطای کم ، نشانگر این موضوع است که دقت آزمایش های جدول ۱ تا حد زیادی بالا بوده و سرعت های بدست آمده برای ۴ تیغه ، تقریبا برابرند.

توضیحات این نمودار هم مانند قبلی است ؛ شیب نمودار برابر ۰.۷۷۷ متر بر ثانیه و خطای آن برابر ۰.۰۱۲ متر بر ثانیه است که حتی از خطای نمودار قبلی هم کوچکتر است ؛ می توان نتیجه گرفت که هر چه بازه ی زمانی و یا مسافت پیموده شده توسط تیغه بیشتر باشد ، دقت اندازه گیری ها بالاتر خواهد بود .

خواسته ی ۳ :

نمودار توپر ، بهترین تابع درجه ی دومی است که رفتار ۴ نقطه را توصیف می کند ؛ اما شیب بهترین خط راستی که رفتار نقاط را توصیف می کند ، برابر ۱۰۰۴، متر بر ثانیه و خطای آن برابر ۲۰۰۳۴ متر بر ثانیه است . به طور کلی ، شیب خطی که دو نقطه از نمودار مکان-زمان را به هم وصل می کند ، برابر سرعت متوسط است .

نمودار ۴- نمودار مکان-مجذور زمان مربوط به جدول ۳

شیب این نمودار برابر ۱۰۰۷۸ متر بر مجذور ثانیه و خطای آن ۱.۱۳۸ متر بر مجذور ثانیه است . با توجه به صفر بودن تقریبی سرعت اولیه و در نتیجه ، صادق بودن رابطه ی $\Delta x = 1/7$ at ، شیب نمودار برابر نصف شتاب است . پس شتاب تقریبا برابر ۲.۱۵۶ متر بر مجذور ثانیه است.

نمودارهای مربوط به جدول ۴:

شیب این نمودار برابر ۰.۴۰۸ متر بر ثانیه و خطای این شیب ، برابر ۰.۰۴۸ متر بر ثانیه است.به طور کلی ، شیب خط مماس بر نمودار مکان-زمان در هر لحظه ، برابر سرعت لحظه ای در آن لحظه است .

نمودار۶- نمودار مکان-مجذور زمان مربوط به جدول ۴

شیب این نمودار برابر 0.979 متر بر مجذور ثانیه و خطای آن 0.0079 متر بر مجذور ثانیه است . با توجه به صفر بودن تقریبی سرعت اولیه و در نتیجه ، صادق بودن رابطه ی 0.0000 0.0000 ، شیب نمودار برابر نصف شتاب است . پس شتاب تقریبا برابر 0.0000 متر بر مجذور ثانیه است.

نمودارهای مربوط به جدول ۵:

شیب این نمودار برابر ۰.۳۱۳ متر بر ثانیه و خطای این شیب ، برابر ۰.۰۰۶ متر بر ثانیه است

نمودار ۸- نمودار مکان-مجذور زمان مربوط به جدول ۵

شیب این نمودار برابر ۰.۶۱۷ متر بر مجذور ثانیه و خطای آن ۰.۰۵۸ متر بر مجذور ثانیه است . با توجه به صفر بودن تقریبی سرعت اولیه و در نتیجه ، صادق بودن رابطه ی $\Delta x = 1/r$ at ، شیب نمودار برابر نصف شتاب است . پس شتاب تقریبا برابر ۱.۲۳۴ متر بر مجذور ثانیه است.

به طور کلی ، خطاهای موجود در شیب نمودارها ، بدلیل وجود اصطکاک هر چند بسیار کم ولی ناصفر ریل هوا ، اصطکاک قرقره ، جرم نخ ، صفر نبودن دقیق سرعت اولیه ، نیروی مقاومت هوا در برابر وزنه ی آویخته شده ، خطای ذاتی وسایل اندازه گیری و ... بوجود می آیند.

خواسته ی ۴:

جدول ۳:

$$a = \frac{mg}{M_{\circ} + M + m} = \frac{\Delta \cdot \times 4.\lambda}{1 \, \text{N.V} + \Delta \cdot} \cong \text{Y.-FI} \frac{m}{s^{\, \text{Y}}} \rightarrow \frac{m}{s^{\, \text{Y}}} \Rightarrow \frac{\text{Y.10F} - \text{Y.-FI}}{\text{Y.-FI}} \cong \cdot ... \text{YF} = \text{Y.FI}$$

جدول ۴:

$$\alpha = \frac{mg}{M_{\circ} + M + m} = \frac{\Delta \cdot \times 5.\Lambda}{\text{TAV.V} + \Delta \cdot} \cong \text{1.501} \\ \frac{m}{s^{*}} \rightarrow \frac{1.50\Lambda - 1.5\Delta \cdot 1}{1.5\Delta \cdot 1} \cong \cdot.\text{TF3} = \text{TF.5} \%$$

برای جدول ۵:

$$a = \frac{mg}{M, + M + m} = \frac{\Delta \cdot \times 3.\Lambda}{\text{TAY.V} + \Delta \cdot} \cong 1.113 \, m/s^{7} \Rightarrow خطای نسیں $\cong \frac{1.775 - 1.113}{1.113} \cong -.1 \cdot 7 = 1 \cdot .7\%$$$

و همانطور که پیش تر گفته شد ، دلایل ایجاد خطا ، اصطکاک ریل هوا ، قرقره و خود هوا (در برابر سقوط وزنه) ، جرم نخ ، صفر نبودن سرعت اولیه ی سره ، خطای سنسورها ، کولیس (برای اندازه گیری طول تیغه ها) ، زمان سنج و احتمالا تراز نبودن ریل هوا می باشند .