Measure Theory: Exercises (not for credit)

Josephine Evans

November 5, 2021

Question 1 (The devil's staircase). In this question we construct a function which is continuous, flat almost everywhere and increases from 0 to 1 as x goes from 0 to 1 (This is quite a lot like doing research, you are only making progress at a measure 0 amount of time!). First we construct the Cantor set recursively. Let $C_0 = [0, 1], C_1 = [0, 1/3] \cup [2/3, 1], C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1], \dots$ where each C_n is constructed from C_{n-1} by removing the middle thirds of each of the closed intervals making up C_{n-1} . Let us write $C = \bigcap_n C_n$, so $C_n \downarrow C$ that is to say $C_1 \supset C_2 \supset \ldots$ and $C = \bigcap_n C_n$.

- Show that C is uncountable.
- Show that $\lambda(C) = 0$.
- Define $F_n(x) = \lambda(C_n \cap [0,x])/\lambda(C_n)$, show that $F(x) = \lim_n F_n(x)$ exists. hint: try and find a reccurrence relationship for F_n in terms of F_{n-1} then use this to show F_n is a Cauchy sequence with the uniform norm on functions
- Show that the function F is continuous for all x with F(0) = 0 and F(1) = 1.
- Show that for lebesgue almost every $x \in [0,1]$ we have that F(x) is differentiable with F'(x) = 0.