Divison

alb iff
$$\exists c : ac = b$$
 (a, b, $e \neq Z$, $c \neq Z^+$)

a divides b Some Velox of C

$$3|22 \quad \exists c = 22$$

$$C = 22 \quad e \neq Z^+$$
Since that $\exists c \in Z^+$ or in evenly.

Properties of Divisibility

$$a|b$$
 $ac=b$ $at=C$

b = as and
$$C = at$$
 from define of divisibility.
b+ $C = as + at = a(s+t)$
b+ $C = a(s+t)$
a = a|(b+c) + Proof

Properties of Divoi bility

- b.) iff all then albe for all $C \in \mathbb{Z}$ 3|15 3|10 3|45 3|60

 If a|b then b = at for some $t \in \mathbb{Z}$ b(=(at)c = a(tc)

 A|b(by define of divisibility)
- C) If a|b and b|c, then a|c

 3|6 and 6|18, then 3|18 \checkmark Since a|b then b=at for some t \in Z.

 Since b|c then c=b5 for some \in \in Z.

 Then (=(a+)s, or (=a(+s)) \therefore a|c

Let a EZ end d EZ*. $\exists ! q, r : a = dq + r$. Te main der divisor

Exemple:

$$4|2|$$
 $2|=4q+r$
 $4|2|$ $2|=4(5)+1$ $0 \le r < d$

Give the quotient and remainder for each.

7/18

quotient remainder q = a dird r = a mad d 2 = 18 dir 7 4 = 18 mad 7

e If We took 18 divised by 7 our remander would be 4

$$|0|-|12 -|12 = |0(-|1|) + -2$$

$$-|12 = |0(-|2) + 8$$

$$|0| - |12 = |0(-|2) + 8$$

$$|0| - |12 = |0| + |12| + |12| + |12| + |13| + |13| + |14| + |1$$

Modular Arithmetic

If $a,b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then $a \equiv b \pmod{m}$ iff $m \mid a-b$.

Determine if 2=6 (mod 9)

Determine if 24= 14 (mod 6)

Let $a,b, \in \mathbb{Z}$ and $m \in \mathbb{Z}^*$. Then $a = b \pmod{m}$ iff $a \mod m = b \mod m$

Determine It 2=6 (mod 9)

Determine if 24= 14 (mod 6)