CHAPITRE

16

RELATIONS DE COMPARAISONS SUR LES SUITES

Dans ce chapitre, on supposera que les suites (u_n) et (v_n) ne s'annule pas (éventuellement à partir d'un certain rang).

Définition 1

Soient (u_n) et (v_n) deux suites de réels. On suppose que (v_n) ne s'annule pas à partir d'un certain rang n_0 .

On dit que (u_n) est **«petit o»** de (v_n) et on note $u_n = o(v_n)$ lorsque

$$\lim_{n\to\infty}\frac{u_n}{v_n}=0.$$

Exemple 2

- $n = o(n^2)$ car $\lim \frac{n}{n^2} = 0$.
- $\frac{1}{n^2} = o\left(\frac{1}{n}\right) \operatorname{car} \frac{1/n^2}{1/n} = \frac{1}{n} \to 0.$
- $\bullet \ \frac{1}{(n+1)!} = o\left(\frac{1}{n!}\right).$

Définition 3

Soient (u_n) et (v_n) deux suites de réels. On suppose que (v_n) ne s'annule pas à partir d'un certain rang n_0 .

On dit que (u_n) est **«grand O»** de (v_n) et on note $u_n = O(v_n)$ lorsque la suite $\left(\frac{u_n}{v_n}\right)_{n \ge n_0}$ est bornée.

Définition 4

Soient (u_n) et (v_n) deux suites de réels. On suppose que (v_n) ne s'annule pas à partir d'un certain rang n_0 .

On dit que (u_n) est **équivalente** à (v_n) et on note $u_n \sim v_n$ lorsque

$$\lim_{n\to\infty}\frac{u_n}{v_n}=1.$$

À finir...