EEE 103 / EEE 121 / EEE 141 Problem Solutions

Operational Amphifiers

$$Q16) \text{ if } A_{v} \Rightarrow \infty$$

$$v_{i} = v^{+} = v^{-} = v_{o} \frac{R_{1}}{R_{1} + R_{2}}$$

$$v_{i} = \frac{R_{1} + R_{2}}{V_{i}}$$

$$= \frac{75 \text{len} + 15 \text{len}}{15 \text{len}} = \frac{6}{R_{1}}$$

$$[\text{You can quote } \frac{v_{o}}{v_{i}} = \frac{R_{1} + R_{2}}{R_{1}} \text{ if yon can remember}]$$

Q2 if Av finite... $v' = v_i$ (connected by wire) $v' = v_o \frac{R_i}{R_i + R_2}$ (by potential division). $v_o = A_v (v' - v')$ (op-amp eq.)

putting v' + v' into op-amp equation... $v_o = A_v (v_i - v_o \frac{R_i}{R_i + R_2})$ or $v_o \left[\frac{1}{A_v} + \frac{R_i}{R_i + R_2}\right] = v_i$ or $v_o = \frac{1}{\sqrt{V_i}} + \frac{R_i}{\sqrt{R_i + R_2}}$

a) when
$$R_2 = 9R_1$$
, ideal gain = 10.
actual gain = $\frac{1}{105} + \frac{1}{10} = 9.999$
 $\therefore error = -0.01\%$

b) when
$$R_2 = 299R_1$$
, ideal gain = 300 actual gain = $\frac{1}{105 + \frac{1}{300}} = 299.1$
error = -0.3% .

(both these errors are very small).

Ф3

Summing currents at v-node...

ii+if = 0 (since op-amp input

current xo).

$$\frac{v_{1} - v}{R_{i}} + \frac{v_{0} - v}{R_{f}} = 0.$$
but since $A_{v} \Rightarrow \infty$, $v^{+} = 0 \approx v^{-}$

$$\frac{v_{1}}{R_{i}} + \frac{v_{0}}{R_{f}} = 0 \quad \text{or} \quad \frac{v_{0}}{v_{1}} = -\frac{R_{f}}{R_{i}}$$

The virtual earth node is the inverting input node. It exists because $Av \Rightarrow \infty$ so $v \neq x v^-$ and since v^+ is connected to Ov, v^- must always be very close to Ov.

 V_0 due to V_1 ... is V_0 due to V_1 ... is with V_2 grounded ... V_2 V_1 V_2 and V_3 grounded ... V_2 V_3 and V_4 grounded ... V_4 V_4 V_5 V_6 V_7 V_8 V_8 V_9 $V_$

No due to V2 with Vi grounded

V+ is now a potentially divided version of $v_2 \dots v_t = v_2 \cdot \frac{R_2}{R_1 + R_2}$ and the amphher operates as a non-inverting amphher on v_t , so $v_0 = v_t \cdot \frac{R_1 + R_2}{R_1}$ = $V_2 \cdot \frac{R_2}{R_1 + R_2} \cdot \frac{R_1 + R_2}{R} = V_2 \cdot \frac{R_2}{R_1}$

Start with ac ... ground v, , v, v, and the de part of v3. v+ is 15 Sin wt x R TOK+R

Vo is v^+ . $\frac{10k + 3kn/12kn}{3kn/12kn}$ — ie a non-inverting amp operates on v^+

So Voac = \$ Survet = 18 Survet \frac{R}{10k+R} \cdot \frac{10k + 3k || 2k}{3k || 2k} $/ = 3.\frac{R}{10l+R} \cdot \frac{11.2 kA}{1.2 kA}$ or R = 370 s.

considering the d.c. bit (ignore the a.c.)

$$V_0(V_2) = V_2(-)\frac{10liu}{2ku}$$
 (for some reasons)

$$v_{o(v_3)} = v_3 \cdot \frac{370}{10k + 370} \cdot \frac{10l_2 + 1 \cdot 2l_2}{1 \cdot 2l_2} = 0.333 v_3.$$

$$V_0(v_4) = V_4 \cdot \frac{10 l k}{10 l k + 370} \cdot \frac{10 l k + 1.2 l k}{1.2 l k} = 9 v_4$$

(11) this question is really asking what value of v, inthe put a de offset of +5v and -5v on the output. The + v, inthe be the same as the -v, in magnitude terms so lets consider only the + v, term

We know the V2, V3 + V4 contributions sum to zero so...

$$V_0 = -\frac{10}{3}V_1 = 5$$

or $V_1 = -\frac{15}{10} = 1.5V$
so $V_1 = \pm 1.5V$ to make peak V_0
reach $-10 + +10$ respectively.