Input: A confidence parameter $\delta \in (0,1)$, S and A.

Initialization: Set t := 1, and observe the initial state s_1 .

For episodes $k = 1, 2, \dots$ do

Initialize episode k:

- 1. Set the start time of episode k, $t_k := t$.
- 2. For all (s,a) in $S \times A$ initialize the state-action counts for episode k, $v_k(s,a) := 0$. Further, set the state-action counts prior to episode k,

$$N_k(s,a) := \#\{\tau < t_k : s_\tau = s, a_\tau = a\}.$$

3. For $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}$ set the observed accumulated rewards and the transition counts prior to episode k,

$$R_k(s,a) := \sum_{\tau=1}^{t_k-1} r_{\tau} \mathbb{1}_{s_{\tau}=s, a_{\tau}=a},$$

$$P_k(s, a, s') := \#\{\tau < t_k : s_{\tau} = s, a_{\tau} = a, s_{\tau+1} = s'\}.$$

Compute estimates $\hat{r}_k(s, a) := \frac{R_k(s, a)}{\max\{1, N_k(s, a)\}}, \hat{p}_k(s'|s, a) := \frac{P_k(s, a, s')}{\max\{1, N_k(s, a)\}}$.

Compute policy $\tilde{\pi}_k$:

4. Let \mathcal{M}_k be the set of all MDPs with states and actions as in M, and with transition probabilities $\tilde{p}(\cdot|s,a)$ close to $\hat{p}_k(\cdot|s,a)$, and rewards $\tilde{r}(s,a) \in [0,1]$ close to $\hat{r}_k(s,a)$, that is,

$$\left| \tilde{r}(s,a) - \hat{r}_k(s,a) \right| \leq \sqrt{\frac{7\log(2SAt_k/\delta)}{2\max\{1,N_k(s,a)\}}} \quad \text{and}$$
 (3)

$$\left\| \tilde{p}\left(\cdot|s,a\right) - \hat{p}_k\left(\cdot|s,a\right) \right\|_{1} \leq \sqrt{\frac{14S\log(2At_k/\delta)}{\max\{1,N_k(s,a)\}}}. \tag{4}$$

5. Use extended value iteration (see Section 3.1) to find a policy $\tilde{\pi}_k$ and an optimistic MDP $\tilde{M}_k \in \mathcal{M}_k$ such that

$$\tilde{\rho}_k := \min_{s} \rho(\tilde{M}_k, \tilde{\pi}_k, s) \ge \max_{M' \in \mathcal{M}_k, \pi, s'} \rho(M', \pi, s') - \frac{1}{\sqrt{t_k}}.$$

Execute policy $\tilde{\pi}_k$:

- 6. While $v_k(s_t, \tilde{\pi}_k(s_t)) < \max\{1, N_k(s_t, \tilde{\pi}_k(s_t))\}$ do
 - (a) Choose action $a_t = \tilde{\pi}_k(s_t)$, obtain reward r_t , and observe next state s_{t+1} .
 - (b) Update $v_k(s_t, a_t) := v_k(s_t, a_t) + 1$.
 - (c) Set t := t + 1.

Figure 1: The UCRL2 algorithm.