Równanie różniczkowe y'' + py' + qy = f(x), $x \in [a, b]$ z warunkami $y(a) = y_a$, $y(b) = y_b$ rozwiązać można sprowadzając go poprzez jego "dyskretyzację" do układu równań liniowych. Zastąpmy więc pochodne odpowiednimi centralnymi ilorazami różnicowymi:

$$y_i' = \frac{y_{i+1} - y_{i-1}}{2h}, \quad y_i'' = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2},\tag{1}$$

gdzie h jest odległością pomiędzy każdą parą sąsiednich iksów, z których pierwszy $x_1=a,$ a ostatni $x_n=b.$

Po wstawieniu równań (1) do wejściowego równania i po prostym przekształceniu tego równania otrzymamy to równanie w postaci

$$y_{i-1}(2-ph) + y_i(2qh^2 - 4) + y_{i+1}(2+ph) = 2h^2 f_i,$$
(2)

gdzie $f_i=f(x_i)$. Wstawiając teraz kolejno $i=2,3,\ldots,n-1$, otrzymamy układ równań, który w zapisie "macierzowym", po wprowadzeniu oznaczeń: $w_1=2-ph,\,w_2=2(qh^2-2),\,w_3=2+ph,\,w_4^i=2h^2f_i,$ przyjmie postać:

	y_2	y_3	y_4	y_5		y_{n-3}	y_{n-2}	y_{n-1}	
i=2	w_2	w_3	0	0		0	0	0	$w_4^2 - y_a w_1$
i = 3	w_1	w_2	w_3	0		0	0	0	w_4^3
i = 4	0	w_1	w_2	w_3		0	0	0	w_4^4
• • •						• • •			• • •
i = n - 3	0	0	0		w_1	w_2	w_3	0	w_4^{n-3}
i = n - 2	0	0	0	0	0	w_1	w_2	w_3	$w_{\scriptscriptstyle A}^{n-2}$
i = n - 1	0	0	0	0	0	0	w_1	w_2	$w_4^{n-1} - y_b w_3$

Rozwiązując ten układ równań (*LinearSolve*) otrzymamy brakujące (poza pierwszym i ostatnim, które znamy) wartości igreków.

Napisz program rrr2 zależny od argumentów f, p, q, a, b, y_a , y_b i n oznaczających odpowiednio: funkcję f(x), współczynniki równania, lewy i prawy koniec przedziału, w którym rozwiązujemy równanie różniczkowe, wartości z warunku początkowego i ilość punktów (łącznie z punktami a i b), w których odtwarzana jest poszukiwana funkcja y(x). Program ma zwracać dwa rysunki: na pierwszym znajdują się wykresy rozwiązania dokładnego i rozwiązania uzyskanego za pomocą tej metody (dyskretnego), na drugim znajduje się wykres błędów bezwzględnych tego odtworzenia. Program przetestuj dla danych: $f(x) = x - e^x$, p = 3, q = -4, a = 0, b = 3, $y_a = 1$, $y_b = 0.5$ i n = 31.

Rysunek 1: Rozwiazanie (linia ciagła) i odtworzenie oraz błędy bezwzględne.

Wskazówka:

 $roz = DSolve[\{y''[x] + py'[x] + qy[x] == f[x], y[a] == ya, y[b] == yb\}, y[x], x][[1,1,2]]$ jest rozwiązaniem dokładnym.