EPC7004 – Rad Hard Power Transistor

 V_{DS} , 100 V $R_{DS(on)}$, 7 m Ω max I_D , 160 A 95% Pb/5% Sn Solder

preliminary

Rad Hard eGaN® transistors have been specifically designed for critical applications in the high reliability or commercial satellite space environments. GaN transistors offer superior reliability performance in a space environment because there are no minority carriers for single event, and as a wide band semiconductor there is less displacement for protons and neutrons, and additionally there is no oxide to breakdown. These devices have exceptionally high electron mobility and a low temperature coefficient resulting in very low $R_{\rm DS(on)}$ values. The lateral structure of the die provides for very low gate charge ($Q_{\rm G}$) and extremely fast switching times. These features enable faster power supply switching frequencies resulting in higher power densities, higher efficiencies and more compact designs.

	Maximum Ratings					
	PARAMETER	VALUE	UNIT			
V	Drain-to-Source Voltage (Continuous)		V			
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	120	\ \ \			
	Continuous	60	Α			
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	160				
	Gate-to-Source Voltage	6	V			
V _{GS}	Gate-to-Source Voltage	-4	V			
T	Operating Temperature -55 to 150		°C			
T _{STG}	Storage Temperature	-55 to 150				

Thermal Characteristics						
	PARAMETER TYP UNIT					
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.8				
$R_{\theta JB}$	R _{θJB} Thermal Resistance, Junction-to-Board		°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	54				

Note 1: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

EPC7004 eGaN® FETs are supplied only in passivated die form with solder bars Die Size: 4.1 x 1.6 mm

Applications

- Space Applications: DC-DC power, motor drives, lidar, ion thrusters
- · Commercial satellite EPS & avionics
- Deep space probes
- High frequency rad hard DC-DC conversion
- · Rad hard motor drives

Features

- Ultra high efficiency
- Ultra low $R_{DS(on)}$, Q_G , Q_{GD} , Q_{OSS} , and Q_{RR}
- Light weight
- Total dose
- Rated > 1 Mrad
- · Single event
- SEE immunity for LET of 85 MeV/(mg/cm²) with V_{DS} up to 100% of rated breakdown
- Neutror
- Maintains pre-rad specification for up to 3 x 10¹⁵ neutrons/cm²
- Ultra Small Footprint

Benefits

 Superior radiation and electrical performance vs. rad hard MOSFETs: smaller, lighter, and greater radiation hardness

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
PARAMETER TEST CONDITIONS MIN TYP MAX					MAX	UNIT
BV_{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 300 \mu\text{A}$	100			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$		1	300	μΑ
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.001	1.6	
	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V}, T_J = 125^{\circ}\text{C}$		0.015	3.6	mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.001	0.25	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 5 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 25 \text{ A}$		5	7	mΩ
V_{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.7		V

[#] Defined by design. Not subject to production test.

Dynamic Characteristics# $(T_j = 25^{\circ}C \text{ unless otherwise stated})$							
PARAMETER TEST CONDITIONS MIN TYP MAX					UNIT		
C _{ISS}	Input Capacitance			817			
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		2.3			
Coss	Output Capacitance			485		pF	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+= 50VVV 0V		575			
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 50 \text{ V}, V_{GS} = 0 \text{ V}$		731			
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 25 \text{ A}$		6.4			
Q_{GS}	Gate-to-Source Charge			2.2			
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_{D} = 25 \text{ A}$		1.1			
$Q_{G(TH)}$	Gate Charge at Threshold			1.6		nC	
Q _{OSS}	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		37	·		
Q _{RR}	Source-Drain Recovery Charge			0			

All measurements were done with substrate connected to source.

Defined by design. Not subject to production test.

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Typical Transfer Characteristics

Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and ${\rm C}_{\rm OSS}$ Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Reverse Drain-Source Characteristics

Figure 9: Normalized On-State Resistance vs. Temperature

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 10: Normalized Threshold Voltage vs. Temperature

Figure 11: Safe Operating Area

Figure 12: Transient Thermal Response Curves

EPC7004 eGaN® FET DATASHEET

TAPE AND REEL CONFIGURATION

4 mm pitch, 12 mm wide tape on 7" reel

	Dimension (mm)		
EPC7004 (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
(Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	4.00	3.90	4.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

(face side down)

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Dout		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC7004	7004	YYYY	ZZZZ

DIM	MICROMETERS			
DIM	MIN	Nominal	MAX	
A	4075	4105	4135	
В	1602	1635	1662	
C	1379	1382	1385	
d	577	580	583	
e	235	250	265	
f	195	200	205	
g	400	400	400	

Pad 1 is Gate;

Pads 3, 5, 7, 9, 11 are Drain; Pads 2, 4, 6, 8, 10 are Source

Substrate (top side) connected to Source

RECOMMENDED

LAND PATTERN
(measurements in μm)

180

180

180

291

1 1 1 280

292

1 1 203

3 4 5 6 7 8 9 10 11 11 989

400

x8

The land pattern is solder mask defined.

Pad 1 is Gate;

Pads 3, 5, 7, 9, 11 are Drain;

Pads 2, 4, 6, 8, 10 are Source

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.
Revised June 2022