Srijit Mukherjee

Memes

Probability Distributions

Distributions

Bernoulli

Dalassa

Process

Summary

Probability Distributions (A Different Perspective)

Srijit Mukherjee

Indian Statistical Institute

June 9, 2021

Meme

Srijit Mukherjee

Memes

Probability Distributions

Bernoul

Process

Process

Meme

Srijit Mukherjee

Memes

Probability Distributions

Process

Poisson

riocess

Meme

Srijit Mukherjee

Memes

Probability Distribution

Process

Poissor

Summa

binomial distribution

POISSON DISTRIBUTION

Discrete Random Variables

Srijit Mukherje

Memes

Probability Distributions

Bernoull Process

Process

Poisson Process

- Bernoulli Random Variable
- Binomial Random Variable
- Poisson Random Variable
- Geometric Random Variable
- Negative Binomial Random Variable
- Hyper Geometric Random Variable

Continuous Random Variables

Srijit Mukherje

Memes

Probability Distributions

Bernoull

Process

Poisson Process

- Exponential Random Variable
- Gamma Distribution
- Beta Random Variable

Bernoulli Trials

Srijit Mukherjee

Memes

Probability Distributions

Bernoulli Process

Poisson Process

Summai

Bernoulli(p)

A random variable which takes the value 1 with probability p and the value 0 with probability q = 1 - p.

Model

A model for the set of possible outcomes of any single experiment that asks a yes—no question.

Bernoulli Process

Srijit Mukherjee

Meme

Probability Distribution

Bernoulli Process

Process

Process

Summar

Bernoulli Process

A Bernoulli process is a sequence of independent identically distributed Bernoulli trials.

Examples

- Sequence of lottery wins/losses
- Arrivals (each second) to a bank
- Arrivals (at each time slot) to server
- Sampling with Replacement

Five Questions in a Bernoulli Process

Srijit Mukherjee

Meme

Probability Distributions

Bernoulli Process

Process

Process

Summar

The Questions

- How many arrivals(successes) there will be among the first n Bernoulli trials?
- How many trials it will take to get the first arrrival (success)?
- How many trials it will take to get the r^{th} arrrival (success) from the $(r-1)^{th}$ arrrival (success) ?
- How many trials it will take to get the first r arrrivals (successes)?
- Given that there are M successes among N trials, how many of the first n trials are successes?

Binomial Distribution

Srijit Mukherje

Meme

Probability Distributions

Bernoulli Process

Poisson Process

Summar

 $X_1, X_2, \cdots X_n, \cdots$ is a Bernoulli Process.

The Question

How many arrivals(successes) there will be among the first n Bernoulli trials?

- The number of arrivals(successes) there will be among the first n Bernoulli trials = $S_n = \sum_{i=1}^n X_i$
- S_n follows Binomial(n, p)

Geometric Distribution

Bernoulli Process

 $X_1, X_2, \cdots X_n, \cdots$ is a Bernoulli Process.

The Question

How many trials it will take to get the first arrrival (success)?

- The number of trials it will take to get the first arrrival (success)? = $T_1 = \min\{i : X_i = 1\}$
- T_1 follows Geometric(p)

Geometric Distribution

Srijit Mukherjee

Meme

Probability Distributions

Bernoulli Process

Poisson Process

Summa

 $X_1, X_2, \cdots X_n, \cdots$ is a Bernoulli Process.

The Question

How many trials it will take to get the r^{th} arrrival (success) from the $(r-1)^{th}$ arrrival (success) ?

The Reply

- The number of trials trials it will take to get the r^{th} arrrival (success) from the $(r-1)^{th}$ arrrival (success)? = $T_{(r-1,r)}$
- $T_{(r-1,r)} = T_1$ follows Geometric(p)

The Memoryless Property

- X_{N+1}, X_{N+2}, \cdots is a Bernoulli Process.
- $X_{T_1+1}, X_{T_1+2}, \cdots$ is a Bernoulli Process.

Negative Binomial Distribution

Srijit Mukherje

ivieilles

Probability Distributions

Bernoulli Process

Poisson Process

Summar

 $X_1, X_2, \cdots X_n, \cdots$ is a Bernoulli Process.

The Question

How many trials it will take to get the first r arrrivals (successes)?

- The number of trials it will take to get the first r arrrivals (success)? = T_r
- $T_r = \sum_{i=1}^r T_{(i-1,1)}$ follows Negative Binomial(r, p)
- $T_{(i-1,1)}$ follows Geometric(p)

Hyper Geometric Distribution

Srijit Mukherjee

Meme

Probability Distributions

Bernoulli Process

Poisson

Process

Summar

 $X_1, X_2, \cdots X_n, \cdots$ is a Bernoulli Process.

The Question

Given that there are M successes among N trials, how many of the first n trials are successes?

- Given that there are M successes among N trials, the number of successes out of the first n trials ? = $H_{(N,M,n)}$
- $H_{(N,M,n)}$ follows Hyper Geometric (N,M,n)
- $N \to \infty$, $M/N \to p$, and n is held constant, then $H_{(N,M,n)} \to \text{Bin}(n,p)$

Poisson Process N(t)

Srijit Mukherjee

Meme

Probability Distribution

Bernoul

Poisson

Poisson Process

Summar

N(t) follows $Poi(\lambda t)$

The counting process $\{N(t), t \ge 0\}$ is said to be a Poisson process having rate $\lambda, \lambda > 0$, if

- N(0) = 0
- The process has independent increments.
- The number of events in any interval of length t is Poisson distributed with mean λt . That is, for all $s, t \ge 0$

$$P\{N(t+s) - N(s) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \quad n = 0, 1, ...$$

Poisson Process N(t)

Srijit Mukherjee

Memes

Probability Distribution

Bernoulli

Poisson Process

Summar

N(t) follows $Poi(\lambda t)$

The counting process $\{N(t), t \ge 0\}$ is said to be a Poisson process having rate $\lambda, \lambda > 0$, if

- N(0) = 0
- The process has independent increments.
- $P\{N(h) = 1\} = \lambda h + o(h)$
- $P\{N(h) \ge 2\} = o(h)$

Bernoulli Process → Poisson Process

Srijit Mukherjee

Memes

Distribution

Process

Poisson Process

- $N(\tau)$ be the number of the arrivals of \boldsymbol{X} in an interval of length τ .
- Partition the interval into $n \gg 1$ small intervals of length $\left(\frac{\tau}{n}\right)$.
- Let N_i be the number of the arrivals in the i th small interval.

Bernoulli Process → Poisson Process

Srijit Mukherje

Memes

Distribution

Bernoulli

Poisson Process

Summar

• The number of the arrivals of \boldsymbol{X} in a small interval is essentially Bernoulli $(\lambda\delta)$.

• $N_i \sim \text{Bernoulli}\left(\lambda\left(\frac{\tau}{n}\right)\right)$ and $N(\tau) = N_1 + \cdots + N_n$. Hence

$$N(\tau) \sim \text{ binomial } \left(n, \lambda\left(\frac{\tau}{n}\right)\right) \stackrel{n \to \infty}{\longrightarrow} \text{ Poisson } (\lambda \tau)$$

• How many trials → How much time?

Five Questions in a Poisson Process

Srijit Mukherje

Meme

Probability Distributions

Bernoul

Poisson

Process

Summar

The Questions

- How many events (arrivals) there will be in the time t?
- How much time it will take to get the first event (arrival)?
- How much time it will take to get the r^{th} event (arrrival) from the $(r-1)^{th}$ event (arrival) ?
- How much time it will take to get the first r events (arrivals)?
- Given that $\alpha + \beta$ events have occurred in a time interval, then what is the fraction of that interval until the α^{th} event occurs?

Poisson Distribution

Srijit Mukherje

Memes

Probability Distributions

Bernoulli

Process

Poisson Process

Summar

 $\{N(t), t \ge 0\}$ is a Poisson process having rate $\lambda, \lambda > 0$.

The Question

How many events (arrivals) there will be in the time t?

- The number of arrivals(successes) in the time t = N(t).
- $S_n = Binomial(n, p = \frac{t}{n}) \stackrel{np \to \lambda t}{\longrightarrow} N(t) = Poi(\lambda t)$

Exponential Distribution

Srijit Mukherje

Memes

Probability Distribution

Bernoulli

Poisson

Process

Summar

 $\{N(t), t \ge 0\}$ is a Poisson process having rate $\lambda, \lambda > 0$,.

The Question

How much time it will take to get the first event (arrival)?

- The amount time it will take to get the first arrrival (success)? = $T_1 = \min\{i : N(t) = 1\}$
- T_1 follows Expoential(λ)
- Geometric(p) $\xrightarrow{np \to \lambda; x = \frac{k}{n}}$ Exponential(λ)

Exponential Distribution

Srijit Mukherje

Meme

Probability Distributions

Bernoull Process

Poisson

Poisson

Summa

 $\{N(t), t \ge 0\}$ is a Poisson process having rate $\lambda, \lambda > 0$.

The Question

How much time it will take to get the r^{th} event (arrrival) from the $(r-1)^{th}$ event (arrival) ?

The Reply

- The amount of time it will take to get the r^{th} arrrival (success) from the $(r-1)^{th}$ arrrival (success)? = $T_{(r-1,r)}$
- $T_{(r-1,r)} = T_1$ follows Exponential(p)

The Memoryless Property

- $\{N(t), t \ge k\}$ is a Poisson process having rate $\lambda, \lambda > 0$.
- $\{N(t), t \ge T_1\}$ is a Poisson process having rate $\lambda, \lambda > 0$,.

Gamma Distribution

Srijit Mukherje

Memes

Probability Distribution

Bernoulli

Poisson

Process

Summar

 $\{N(t), t \ge 0\}$ is a Poisson process having rate $\lambda, \lambda > 0$,.

The Question

How much time it will take to get the first r events (arrivals)?

- The amount of time it will take to get the first arrrival (success)? = T_r
- $T_r = \sum_{i=1}^r T_{(i-1,1)}$ follows $Gamma(r, \lambda)$
- $T_{(i-1,1)}$ follows Exponential(λ)

Beta Distribution

Srijit Mukherje

Meme:

Probability Distributions

Bernoulli

Process

Poisson Process

Summary

 $\{N(t), t \ge 0\}$ is a Poisson process having rate $\lambda, \lambda > 0$.

The Question

Given that $\alpha+\beta$ events have occurred in a time interval, then what is the fraction of that interval until the α^{th} event occurs?

The Reply

• It follows Beta (α, β) .

Summary

Srijit Mukherjee

Meme

Probability Distribution

Pornoulli

Proces

Process

