INSTYTUT BADAWCZY DRÓG I MOSTÓW

03-302 Warszawa, ul. Instytutowa 1

tel. sekretariat: 22 814 50 25, fax: 22 814 50 28

Warszawa, 30 grudnia 2019 r.

KRAJOWA OCENA TECHNICZNA

Nr IBDiM-KOT-2019/0431 wydanie 1

Na podstawie art 9 ust. 2 ustawy z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (Dz. U. z 2019 r. poz. 266), po przeprowadzeniu postępowania zgodnie z przepisami rozporządzenia Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie krajowych ocen technicznych (Dz. U. z 2016 r. poz. 1968), na wniosek producenta o nazwie:

Drewplast Zakład Tworzyw Sztucznych Marek Pękala

z siedziba:

Grabowno Wielkie 5E, 56-416 Twardogóra

Instytut Badawczy Dróg i Mostów

stwierdza pozytywną ocenę właściwości użytkowych wyrobu budowlanego:

Rury z nieplastyfikowanego polichlorku winylu (PVC-U) i kształtki z polipropylenu (PP) do drenażu

o nazwie handlowej: Rury i kształtki drenarskie DREWPLAST

do zamierzonego zastosowania w budownictwie komunikacyjnym, w zakresie podanym w niniejszej Krajowej Ocenie Technicznej IBDiM.

DYREKTOR

prof. dr hab. inż. Leszek Rafalski

Data wydania Krajowej Oceny Technicznej: Data utraty ważności Krajowej Oceny Technicznej:

30 grudnia 2019 r. 30 grudnia 2024 r.

1 OPIS TECHNICZNY WYROBU BUDOWLANEGO

1.1 Nazwa techniczna i nazwa handlowa

Zgodnie z § 9 ust. 1 pkt 3 rozporządzenia Ministra Infrastruktury i Budownictwa z 17 listopada 2016 r. w sprawie krajowych ocen technicznych, Instytut Badawczy Dróg i Mostów ustalił następującą nazwę techniczną: Rury z nieplastyfikowanego polichlorku winylu (PVC-U) i kształtki z polipropylenu (PP) do drenażu

i nazwę handlową: Rury i kształtki drenarskie DREWPLAST

wyrobu budowlanego zwanego dalej: Rurami i kształtkami DREWPLAST.

1.2 Nazwa i adres producenta, a także nazwa i adres upoważnionego przez niego przedstawiciela, o ile został ustanowiony

Wnioskodawcą jest producent o nazwie i z siedzibą, które zostały określone na stronie 1/15 niniejszej Krajowej Oceny Technicznej IBDiM.

1.3 Miejsce produkcji wyrobu

Wyrób jest produkowany w zakładzie produkcyjnym: Drewplast Zakład Tworzyw Sztucznych, z siedzibą: Grabowno Wielkie 5E, 56 – 416 Twardogóra.

1.4 Oznaczenie typu i opis techniczny wyrobu

1.4.1 Oznaczenie typu

Na podstawie informacji producenta Instytut Badawczy Dróg i Mostów oznaczył następujące typy wyrobu budowlanego:

- 1. Rury drenarskie z nieplastyfikowanego poli(chlorku winylu) (PVC-U),
- 2. Kształtki drenarskie z polipropylenu (PP).

1.4.2 Opis techniczny wyrobu budowlanego oraz zastosowanych materiałów i komponentów

Przedmiotem Krajowej Oceny Technicznej są rury wykonane z nieplastyfikowanego poli(chlorku winylu) (PVC-U) i kształtki wykonane z polipropylenu (PP):

- rury drenarskie DREWPLAST o ściankach karbowanych, jednowarstwowych z perforacją (TP, LP, MP), o średnicach nominalnych od DN/OD 50 do DN/OD 200, wykonane z nieplastyfikowanego poli(chlorku winylu) (PVC-U), bez otuliny, z otuliną filtracyjną z geowłókniny lub z filtrem z włókna kokosowego lub innych włókien naturalnych,
- rury drenarskie DREWPLAST o ściankach karbowanych, jednowarstwowych bez perforacji (UP), o średnicach nominalnych od DN/OD 50 do DN/OD 200, wykonane

z nieplastyfikowanego poli(chlorku winylu) (PVC-U), bez otuliny, z otuliną filtracyjną z geowłókniny lub z filtrem z włókna kokosowego lub innych włókien naturalnych,

 kształtki DREWPLAST do rur drenarskich, o ściankach strukturalnych lub litych wykonane z polipropylenu (PP): złączki dwukielichowe, złączki dwukielichowe redukcyjne, zaślepki, kolano, trójniki, łącznik do rur gładkich.

Rury drenarskie produkowane są w zależności od geometrii rozmieszczenia otworów perforacyjnych w następujących odmianach:

- odmiana TP (totally perforated) rura w pełni sącząca, z całkowitą perforacją, na powierzchni, której otwory wykonane są równomiernie na całym obwodzie, tworząc co najmniej cztery rzędy szczelin na długości rury,
- odmiana LP (locally perforated) rura częściowo sącząca, z częściową perforacją, na powierzchni, której otwory wykonane są na wierzchołku rury, symetrycznie w stosunku do pionowej osi rury i równomiernie na obwodzie w przedziale kątowym około 220° (+10°), zaś dno rury nie posiada żadnych szczelin. Rury posiadają co najmniej trzy rzędy szczelin,
- odmiana MP (multipurpose) rura wielofunkcyjna sącząco- przepływowa, na powierzchni której otwory wykonane są na jej wierzchołku, symetrycznie do pionowej osi rury i w maksymalnym przedziale kątowym do 120°. Rury te posiadają przynajmniej dwa rzędy szczelin, ich połączenie może być wodoszczelne. Dolna część rury wielofunkcyjnej (MP) może służyć za kanał transportowy dla przepływu wody,
- odmiana UP (unperforated) bez perforacji.

Rysunek 1 – Odmiany rur drenarskich (* – po uzgodnieniu z producentem możliwy inny przedział kątowy szczelin)

Ułożenie montażowe rur LP i MP jest jednoznacznie określone poprzez oznaczenie punktu wierzchołkowego.

Głębokość wsunięcia bosego końca rur drenarskich w kielichy rur i kształtek powinna stanowić co najmniej 30% średnicy znamionowej rury do średnic DN 200.

Rury drenarskie DREWPLAST łączone są za pomocą kształtek z zatrzaskami. Połączenie rur perforowanych uzyskuje się poprzez wciśnięcie kształtki z zatrzaskiem na koniec rury. Połączenia, w których wymagana jest wodoszczelność, wyposażone są w uszczelki elastomerowe spełniające wymagania norm PN-EN 681-1, PN-EN 681-2 lub PN-EN 681-3.

Do wykonania otulin filtracyjnych z włókien syntetycznych do rur drenarskich DREWPLAST stosowany jest materiał spełniający wymagania normy PN-EN 13252.

Długości rur drenarskich DREWPLAST w odcinkach prostych wynoszą do 6 m, natomiast w kręgach do 200 m. Możliwa jest produkcja rur w innych długościach, zależnie od ustaleń pomiędzy zleceniodawcą a zleceniobiorcą.

Rury drenarskie oraz kształtki produkowane są w dowolnych kolorach według uzgodnień między producentem a zleceniodawcą.

Wykończenie i wygląd rur odpowiadają wymaganiom PN-EN 13476-1:2008 i PN-EN 61386-1:2011.

Wymiary i tolerancje wymiarowe, określone wg PN-EN ISO 3126 zawarte są w Załączniku.

2 ZAMIERZONE ZASTOSOWANIE WYROBU

2.1 Zamierzone zastosowanie wyrobu

Rury i kształtki drenarskie DREWPLAST przeznaczone są do stosowania w inżynierii komunikacyjnej do wykonywania systemów odsączających, rozsączających i odwodnieniowych stosowanych do odwadniania dróg, tras komunikacyjnych, parkingów, placów manewrowych, podziemnych elementów konstrukcyjnych oraz odwadniania gruntów w pasie drogowym i obszarach związanych z inżynierią komunikacyjną.

2.2 Zakres stosowania wyrobu

Na podstawie § 9 ust. 2 pkt 1 rozporządzenia Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie krajowych ocen technicznych, Instytut Badawczy Dróg i Mostów stwierdza pozytywną ocenę właściwości użytkowych wyrobu budowlanego o nazwie technicznej: Rury z nieplastyfikowanego polichlorku winylu (PVC-U) i kształtki z polipropylenu (PP) do drenażu i nazwie handlowej: Rury i kształtki drenarskie DREWPLAST do zamierzonego zastosowania w budownictwie komunikacyjnym w zakresie:

2.2.1 dróg publicznych bez ograniczeń,

w rozumieniu i zgodnie z warunkami określonymi w rozporządzeniu Ministra Transportu i Gospodarki Morskiej z dnia 2 marca 1999 r. w sprawie warunków technicznych jakim powinny odpowiadać drogi publiczne i ich usytuowanie (Dz. U. Nr 43, poz. 430 ze zm.) oraz w rozporządzeniu Ministra Transportu i Gospodarki Morskiej z dnia 16 stycznia 2002 r. w sprawie przepisów techniczno-budowlanych dotyczących autostrad płatnych (Dz. U. Nr 12, poz. 116 ze zm.).

2.2.2 dróg wewnętrznych bez ograniczeń,

w rozumieniu przepisów ustawy z dnia 21 marca 1985 r. o drogach publicznych (Dz. U. Nr 14 poz. 60, tekst jednolity)

2.2.3 drogowych obiektów inżynierskich bez ograniczeń,

w rozumieniu i zgodnie z warunkami określonymi w rozporządzeniu Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 r. w sprawie warunków technicznych jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz. U. Nr 63, poz. 735 ze zm.).

2.2.4 kolejowych obiektów inżynieryjnych bez ograniczeń,

w rozumieniu i zgodnie z warunkami określonymi w rozporządzeniu Ministra Transportu i Gospodarki Morskiej z dnia 10 września 1998 r. w sprawie warunków technicznych, jakim powinny odpowiadać budowle kolejowe i ich usytuowanie (Dz. U. Nr 151, poz. 987).

2.3 Warunki stosowania wyrobu

Rury i kształtki DREWPLAST mogą być układane pod ziemią zgodnie z warunkami określonymi w projekcie technicznym na głębokościach od 0,8 m do 6 m na podkładzie (lub podsypce) i w otoczeniu prawidłowo zagęszczonych gruntów dopuszczonych do stosowania w budownictwie drogowym ujętych w PN-S-02205:1998 zgodnie z zasadami budowy przewodów kanalizacyjnych ustalonych w PN-EN 1610 dotyczących szczególnie zasad zagęszczania gruntu w strefie ułożenia przewodu oraz doboru gruntu podatnego na zagęszczenia, a w przypadku rur odsączających - gruntu o uziarnieniu dostosowanym do wielkości szczelin sączących lub rodzaju zastosowanej otuliny filtracyjnej.

Pod jezdnią należy stosować rury i kształtki DREWPLAST o sztywności obwodowej $SN \geq 8~kN/m^2$, natomiast poza jezdnią mogą być użyte rury o sztywności obwodowej $SN \geq 4~kN/m^2$. Pod jezdnią w przypadkach uzasadnionych dopuszcza się zastosowanie rur o sztywnościach obwodowych $SN \geq 4~kN/m^2$ przy zapewnieniu warunków zabudowy przewodu rurowego bez jego nadmiernego odkształcenia.

Każdorazowe zastosowanie rur i kształtek DREWPLAST powinno uwzględniać warunki wodnogruntowe, przewidywane obciążenia oraz skutki osiadania podłoża nawierzchni spowodowane ewentualnymi odkształceniami elastycznej rury. Dobór odpowiedniego rodzaju rur i kształtek układanych w gruncie może być wykonany przez projektanta zgodnie z PN-EN 1295-1:2002 na podstawie wytycznych producenta oraz jego deklaracji dotyczącej sztywności obwodowej rur.

Wyrób budowlany należy stosować zgodnie z zamierzeniem, zakresem i warunkami, które podano w Krajowej Ocenie Technicznej oraz w przepisach techniczno-budowlanych właściwych dla poszczególnych rodzajów budowli w budownictwie komunikacyjnym. Przed zastosowaniem wyrobu budowlanego w sposób niezgodny z przepisami techniczno-budowlanymi należy uzyskać zgodę na odstępstwo od tych przepisów w trybie określonym w art. 9 ustawy z dnia 7 lipca 1994 r. Prawo budowlane (t. j. Dz. U. z 2019 r., poz. 1186).

2.4 Warunki użytkowania, montażu i konserwacji

Warunki użytkowania, montażu i konserwacji zgodnie z zaleceniami Producenta.

3 WŁAŚCIWOŚCI UŻYTKOWE WYROBU BUDOWLANEGO I METODY ZASTOSOWANE DO ICH OCENY

Właściwości użytkowe wyrobu budowlanego zestawiono w tablicy.

Tablica

Lp.	Oznaczenie typu wyrobu budowlanego	Zasadnicze charakterystyki wyrobu budowlanego dla zamierzonego zastosowania lub zastosowań	Właściwości użytkowe wyrażone w poziomach, klasach lub w sposób opisowy	Jedn.	Metody badań i obliczeń	
1	2	3	4	5		
1	Rury drenarskie	Rzeczywisty stopień udarności (TIR) rur drenarskich o ściankach falistych z PVC-U, metodą spadającego ciężarka (temp. $(0\pm1)^{\circ}$ C, długość próbek (200 ± 10) mm	TIR≤ 10	%	PN-C-89221:1998	
2	DREWPLAST	Sztywność obwodowa rur o nominalnej klasie sztywności SN ¹⁾ : - SN4 - SN8	≥ 4,0 ≥ 8,0	kN/m²	PN-EN ISO 9969	
3		Wskaźnik pełzania rur	≤ 2,7	-	PN-EN ISO 9967	
5	Kształtki drenarskie	Zmiana wyglądu kształtek wtryskowych w wyniku ogrzewania: temp. badania (150±2)° C e ≤ 3 mm, czas 15 min 3 mm < e ≤ 10 mm, czas 30 min 10 mm< e > 20 mm, czas 60 min	Wokół punktu wtrysku nie powinno być śladów pęknięć większych niż 20% grubości	-	PN-EN ISO 580 metoda A (suszarka)	
6	DREWPLAST	Odporność na uderzenia (metoda zrzutu na twarde podłoże) temp. kondycjonowania (0 ± 1) °C Wysokość zrzutu: $d_n \leq 100 \text{ mm} - 1000 \text{ mm}$ $d_n \geq 125 \text{ mm} - 500 \text{ mm}$	brak uszkodzeń	-	PN-EN 12061	

4 WYTYCZNE DOTYCZĄCE TECHNOLOGII WYTWARZANIA, PAKOWANIA, SKŁADOWANIA I TRANSPORTU ORAZ SZCZEGÓŁOWY SPOSÓB ZNAKOWANIA WYROBU BUDOWLANEGO

4.1 Wytyczne dotyczące technologii wytwarzania

Rury drenarskie DREWPLAST wytwarzane są w odcinkach prostych w procesie wytłaczania z równoczesnym formowaniem karbowanym ścianki stanowiącym jej usztywnienie. Następnie w przypadku rur perforowanych wykonywana jest operacja perforowania polegająca na wycięciu szczelin we wgłębieniach pomiędzy karbami o odpowiednich wymiarach, usytuowanych w 6 rzędach lub 8 rzędach.

Kształtki do rur drenarskich DREWPLAST są wytwarzane metodą wtryskową z polipropylenu (PP).

4.2 Wytyczne dotyczące pakowania, transportu i składowania

Rury drenarskie DREWPLAST nie wymagają pakowania, mogą być natomiast wiązane w wiązki (palety) lub kręgi. Kształtki drenarskie DREWPLAST mogą być pakowane w opakowania zbiorcze lub dostarczane luzem.

Rury drenarskie DREWPLAST należy składować w pozycji poziomej na równym podłożu, na podkładach drewnianych lub paletach.

Kształtki drenarskie DREWPLAST należy składować w opakowaniach zbiorczych lub na płaskich, równych powierzchniach w sposób uniemożliwiający ich uszkodzenie.

Dopuszcza się składowanie rur i kształtek drenarskich DREWPLAST na otwartych placach magazynowych przez czas nie dłuższy niż 1 rok.

Rury i kształtki drenarskie DREWPLAST należy transportować w położeniu poziomym, zabezpieczone przed przesunięciem i uszkodzeniami. Podczas załadunku i rozładunku należy zachować ostrożność, ażeby nie uległy uszkodzeniu. Rury i kształtki drenarskie DREWPLAST nie mogą być przeciągane.

4.3 Sposób znakowania wyrobu budowlanego

Wyrób należy oznakować znakiem budowlanym zgodnie z wymaganiami określonymi w rozporządzeniu Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2016 r., poz. 1966) oraz w rozporządzeniu Ministra Inwestycji i Rozwoju z dnia 13 czerwca 2018 r. zmieniającym rozporządzenie w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2018 r. poz. 1233).

Przed oznakowaniem wyrobu znakiem budowlanym należy sporządzić krajową deklarację właściwości użytkowych wyrobu budowlanego według wzoru opublikowanego w załączniku nr 2 do cytowanego rozporządzenia oraz udostępnić ją w sposób opisany w rozporządzeniu.

Oznakowaniu wyrobu znakiem budowlanym powinny towarzyszyć następujące informacje:

 dwie ostatnie cyfry roku, w którym znak budowalny został po raz pierwszy umieszczony na wyrobie budowlanym,

- nazwa i adres siedziby producenta lub znak identyfikujący pozwalający jednoznacznie określić nazwę i adres siedziby producenta,
- nazwa i oznaczenie typu wyrobu budowlanego,
- numer i rok wydania krajowej oceny technicznej, zgodnie z którą zostały zadeklarowane właściwości użytkowe,
- numer krajowej deklaracji właściwości użytkowych,
- poziom lub klasa zadeklarowanych właściwości użytkowych,
- nazwa jednostki certyfikującej, która uczestniczyła w ocenie i weryfikacji stałości właściwości użytkowych wyrobu budowlanego,
- adres strony internetowej producenta, jeżeli krajowa deklaracja zgodności jest na niej udostępniona.

5 OCENA I WERYFIKACJA STAŁOŚCI WŁAŚCIWOŚCI UŻYTKOWYCH

5.1 Krajowy system oceny i weryfikacji stałości właściwości użytkowych

Zgodnie z Załącznikiem nr 1 do rozporządzenia Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2016 r., poz. 1966) oraz rozporządzeniem Ministra Inwestycji i Rozwoju z dnia 13 czerwca 2018 r. zmieniającym rozporządzenie w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2018 r. poz. 1233), Instytut Badawczy Dróg i Mostów wskazuje dla wyżej wymienionego wyrobu budowlanego wymagany krajowy system 4 oceny i weryfikacji stałości właściwości użytkowych.

Zgodnie z § 4 cytowanego wyżej rozporządzenia w krajowym systemie 4 ocena i weryfikacja stałości właściwości użytkowych wyrobu budowlanego obejmuje:

- a) działania producenta:
 - określenie typu wyrobu budowlanego,
 - ocenę właściwości użytkowych wyrobu na podstawie badań, obliczeń, tabelarycznych wartości lub opisowej dokumentacji tego wyrobu,
 - prowadzenie zakładowej kontroli produkcji.

5.2 Określenie typu wyrobu budowlanego

Badania wyrobu budowlanego, stanowiące podstawę do oceny właściwości użytkowych w odniesieniu do zasadniczych charakterystyk i zamierzonego zastosowania tego wyrobu określonych w rozdziale 3 niniejszej Krajowej Oceny Technicznej, stanowią badanie typu wyrobu. Typy wyrobu objęte niniejszą Krajową Oceną Techniczną wynikają z właściwości użytkowych podanych w rozdziale 3.

5.3 Zakładowa kontrola produkcji

Wyrób budowlany, objęty niniejszą Krajową Oceną Techniczną, powinien być produkowany zgodnie z systemem zakładowej kontroli produkcji.

Producent powinien ustanowić, udokumentować, wdrożyć i utrzymywać system zakładowej kontroli produkcji w celu zapewnienia stałości właściwości użytkowych wyrobu budowlanego, określonych w niniejszej Krajowej Ocenie Technicznej.

Dokumentacja zakładowej kontroli produkcji powinna zawierać:

- a) strukturę organizacyjną,
- b) wymagania dla personelu (kwalifikacje, uprawnienia, odpowiedzialność za poszczególne elementy zakładowej kontroli produkcji, szkolenia),
- c) audyty wewnętrzne, prowadzenie działań korygujących i zapobiegawczych,
- d) nadzór nad dokumentacją i zapisami,
- e) plany kontroli i badania surowców, wymagania,
- f) plany kontroli i badania gotowego wyrobu,
- g) nadzór nad wyposażeniem produkcyjnym,
- h) nadzór nad wyposażeniem do kontroli i badań z zachowaniem spójności pomiarowej,
- i) nadzór nad procesem produkcyjnym, w tym prowadzone kontrole i badania międzyoperacyjne,
- j) opis prac podzlecanych i tryb ich nadzoru,
- k) postępowanie z wyrobem niezgodnym i reklamacjami,
- 1) opis sposobu pakowania, transportu i składowania oraz sposób znakowania wyrobu.

Dokumentacja zakładowej kontroli produkcji powinna być uzupełniona o dokumentację techniczną, specyfikacje techniczne (normy wyrobu, normy badawcze, europejskie lub krajowe oceny techniczne, itp.), przepisy prawa.

System zarządzania jakością stosowany wg wymagań PN-EN ISO 9001:2015-10 może być uznany za system zakładowej kontroli produkcji, jeżeli są również spełnione wymagania niniejszej Krajowej Oceny Technicznej.

5.4 Badania gotowych wyrobów

5.4.1 Program badań

Program badań gotowych wyrobów obejmuje badania bieżące.

5.4.2 Badania bieżące

Badania bieżące gotowych wyrobów obejmują:

- a) badanie rzeczywistego stopnia udarności (TIR) rur, wg tablicy, lp. 1,
- b) badanie sztywności obwodowej SN rur, wg tablicy, lp. 2,
- c) kontrolę wymiarów rur, wg tablicy, lp. 4,
- d) badanie zmiany wyglądu kształtek wtryskowych w wyniku ogrzewania, wg tablicy, lp. 5,
- e) badanie odporności na uderzenia kształtek metodą zrzutu, wg tablicy, lp. 6,
- f) kontrolę wymiarów kształtek, wg tablicy, lp. 7.

5.5 Pobieranie próbek do badań

Próbki do badań bieżących należy pobierać zgodnie z ustaleniami dokumentacji zakładowej kontroli produkcji.

5.6 Czestotliwość badań

Badania bieżące określone w pkt 5.4.2 a, b, c, f powinny być wykonywane dla każdej partii wyrobu zgodnie z planem badań ustalonym w dokumentacji zakładowej kontroli produkcji, lecz nie rzadziej niż raz w roku, natomiast badania bieżące określone w pkt. 5.4.2 d, e, powinny być wykonywane nie rzadziej niż co dwa lata. Wielkość partii wyrobu powinna zostać określona w dokumentacji zakładowej kontroli produkcji.

5.7 Ocena wyników badań

Właściwości użytkowe wyrobu budowlanego są zgodne ze wszystkimi właściwościami użytkowymi określonymi w niniejszej Krajowej Oceny Technicznej IBDiM.

6 POUCZENIE

- **6.1** Krajowa Ocena Techniczna nie jest dokumentem upoważniającym do oznakowania wyrobu budowlanego znakiem budowlanym.
- **6.2** Krajową Ocenę Techniczną uchyla jednostka, która ją wydała, z własnej inicjatywy albo na wniosek Głównego Inspektora Nadzoru Budowlanego, po przeprowadzeniu postępowania wyjaśniającego z udziałem wnioskodawcy.
- 6.3 Krajowa Ocena Techniczna nie narusza uprawnień wynikających z ustawy z dnia 30 czerwca 2000 r. Prawo własności przemysłowej (Dz. U. z 2003 r. Nr 119, poz. 1117, ze zm.).

7 WYKAZ DOKUMENTÓW WYKORZYSTANYCH W POSTĘPOWANIU

W postępowaniu o wydanie Krajowej Oceny Technicznej wykorzystano:

7.1 Przepisy:

- a) Ustawa z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (tj. Dz. U. z 2019 r. poz. 266 z późn. zmianami)
- b) Ustawy z dnia 7 lipca 1994 r. Prawo budowlane (tj. Dz. U. z 2019 r., poz. 1186);
- Rozporządzenia Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie krajowych ocen technicznych (Dz. U. z 2016 r. poz. 1968);
- d) Rozporządzenia Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2016 r. poz. 1966);
- e) Rozporządzenie Ministra Inwestycji i Rozwoju z dnia 13 czerwca 2018 r. zmieniające rozporządzenie w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2018 r. poz. 1233.

7.2 Polskie Normy i inne Normy:

- a) PN-EN 681-1:2002 Uszczelnienia z elastomerów -- Wymagania materiałowe dotyczące uszczelek złączy rur wodociągowych i odwadniających -- Część 1: Guma
- b) PN-EN 681-2:2003 Uszczelnienia z elastomerów -- Wymagania materiałowe dotyczące uszczelek złączy rur wodociągowych i odwadniających -- Część 2: Elastomery termoplastyczne
- c) PN-EN 681-3:2003 Uszczelnienia z elastomerów -- Wymagania materiałowe dotyczące uszczelek złączy rur wodociągowych i odwadniających -- Część 3: Materiały z gumy porowatej
- d) PN-EN 1295-1:2002 Obliczenia statyczne rurociągów ułożonych w ziemi w różnych warunkach obciążenia -- Część 1: Wymagania ogólne
- e) PN-EN 1610:2015-10 Budowa i badania przewodów kanalizacyjnych
- f) PN-EN 13252:2016-11 Geotekstylia i wyroby pokrewne -- Właściwości wymagane w odniesieniu do wyrobów stosowanych w systemach drenażowych
- g) PN-EN 13476-1:2008 Systemy przewodów rurowych z tworzyw sztucznych do podziemnego bezciśnieniowego odwadniania i kanalizacji Systemy przewodów rurowych o ściankach strukturalnych z nieplastyfikowanego poli(chlorku winylu) (PVC-U), polipropylenu (PP) i polietylenu (PE) Część 1: Wymagania ogólne i właściwości użytkowe
- h) PN-EN 61386-1:2011 Systemy rur instalacyjnych do prowadzenia przewodów -- Część 1: Wymagania ogólne
- i) PN-EN ISO 580:2006 Systemy przewodów rurowych i rur osłonowych z tworzyw sztucznych. Kształtki wtryskowe z tworzyw termoplastycznych. Metody wizualnej oceny zmian w wyniku ogrzewania
- j) PN-EN ISO 3126:2006 Systemy przewodów rurowych z tworzyw sztucznych Elementy z tworzyw sztucznych Sprawdzanie wymiarów
- k) PN-EN ISO 9001:2015-10 Systemy zarządzania jakością Wymagania
- PN-EN ISO 9967:2016-02 Rury z tworzyw termoplastycznych -- Oznaczanie wskaźnika pełzania
- m) PN-EN ISO 9969:2016-02 Rury z tworzyw termoplastycznych Oznaczanie sztywności obwodowej
- n) PN-C-89221:1998, PN-C-89221:1998/Az1:2004 Rury z tworzyw sztucznych -- Rury drenarskie karbowane z niezmiękczonego poli(chlorku winylu) (PVC-U)
- o) PN-S-02205:1998 Drogi samochodowe Roboty ziemne Wymagania i badania

7.4 Raporty z badań wyrobu budowlanego:

- a) Raporty z badań bieżących, Laboratorium zakładowe, styczeń –lipiec 2019 r.
- b) Sprawozdanie z badań nr 48/19/TW-1 rur drenarskich DREWPLAST, Instytut Badawczy Dróg i Mostów, Pracownia Mostów i Urządzeń Odwadniających TW-1, Żmigród, grudzień 2019 r.

Załącznik

Otrzymuja:

- Wnioskodawca o nazwie: DREWPLAST Zakład Tworzyw Sztucznych z siedzibą: Grabowno Wielkie 5e, 56-416 Twardogóra 2 egz.
- 2. a/a Jednostka Oceny Technicznej **Instytutu Badawczego Dróg i Mostów** ul. Instytutowa 1 03-302 Warszawa tel. (22) 614 56 59, (22) 39 00 414, fax: (22) 675 41 27 1 egz.

ZAŁĄCZNIK

Wymiary i tolerancje rur DREWPLAST

Tablica Z-1

Średnica zewnętrzna rur d _n [mm]		Średnica wewnętrzna	Parametry perforacji					
Wymiar nominalny	Odchyłka dopuszczalna	rur d _{i min.}	Szerokość s [mm] ±0,2 mm	Średnia długość I [mm]	Minimalna liczba rzędów [szt.]*)	Średnia liczba szczelin [sz./mb rury]*)	Średnia powierzchn ia perforacji [cm²/mb rury]	
1	2	3	4	5	6	7	8	
50	± 0,5	44,0	1,5	5,0	6	498	37,4	
65	± 0,5	58,0	1,5	5,0	6	498	37,4	
80	± 0,5	71,5	1,5	5,0	6	396	29,7	
100	± 0,5	91,0	1,5	5,0	6	396	29,7	
125	± 1,0	115,0	1,5	5,0	8	400	30,0	
160	± 1,0	144,0	1,5	5,0	8	400	30,0	
200	± 1,0	184,0	1,5	5,0	8	333	25,0	

Rysunek Z-1 - Rura drenarska z PVC-U

Wymiary i tolerancje kształtek drenarskich z PP

Tablica Z-2

Kształtka	Średnica wew. D1 [mm]	Tolerancja średnicy [mm]	Średnica wew. D2 [mm]	Tolerancja średnicy [mm]	Grubość ścianki [mm]
1	2	3	4	5	6
Mufa (złączka) 50	50,5	-0,0+0,5			1,6
Mufa (złączka) 65	65,5	-0,0+0,5			1,6
Mufa (złączka) 80	80,5	-0,0+0,5			1,8
Mufa (złączka) 100	100,5	-0,0+0,5			2,0
Mufa (złączka) 125	125,5	-0,0 +0,5			2,0
Mufa (złączka) 160	160,5	-0,0 +0,5			2,5
Kolano 80	80,5	-0,0 +0,5			2,0
Kolano 100	100,5	-0,0 +0,5			2,0
Trójnik 80/80	80,5	-0,0+0,5			2,0
Trójnik 100/80	100,5	-0,0 +0,5	80,5	-0,0+0,5	2,0
Trójnik 100/100	100,5	-0,0+0,5			2,0
Redukcja (przejście na rurę gładką) 100/110	100,5	-0,0 +0,5	110,0	± 0,5	2,0
Zaślepka 50	50,5	-0,0+0,5			1,6
Zaślepka 80	80,5	-0,0 +0,5			1,8
Zaślepka 100	100,5	-0,0+0,5			2,0

Rysunek Z-2 - Kształtki drenarskie z PP