

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

$\overline{}$
0
2
\square
1
CKE 2010
0
_
=
$\overline{}$
eraficzny
Œ
7
Η.
Jkład
ã
T
~

WPISUJE ZDAJĄCY Miejsce na naklejkę **KOD** PESEL z kodem

dysleksja

EGZAMIN MATURALNY **Z MATEMATYKI**

POZIOM PODSTAWOWY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamknietych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj **p**ola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26-34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2013

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 1P-132

ZADANIA ZAMKNIĘTE

W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność |x+4| < 5.

Zadanie 2. (1 pkt)

Liczby a i b są dodatnie oraz 12% liczby a jest równe 15% liczby b. Stąd wynika, że a jest równe

A. 103% liczby *b*

B. 125% liczby *b*

C. 150% liczby*b*

D. 153% liczby *b*

Zadanie 3. (1 pkt)

Liczba log 100 – log₂ 8 jest równa

A. −2

B. -1

C. 0

D. 1

Zadanie 4. (1 pkt)

Rozwiązaniem układu równań $\begin{cases} 5x + 3y = 3 \\ 8x - 6y = 48 \end{cases}$ jest para liczb

A. x = -3 i y = 4

B. x = -3 i y = 6 **C.** x = 3 i y = -4 **D.** x = 9 i y = 4

Zadanie 5. *(1 pkt)*

Punkt A = (0,1) leży na wykresie funkcji liniowej f(x) = (m-2)x + m - 3. Stąd wynika, że

A. m = 1

B. m = 2

C. m = 3

D. m = 4

Zadanie 6. (1 pkt)

Wierzchołkiem paraboli o równaniu $y = -3(x-2)^2 + 4$ jest punkt o współrzędnych

A. (-2, -4)

B. (-2,4) **C.** (2,-4)

D. (2,4)

Zadanie 7. *(1 pkt)*

Dla każdej liczby rzeczywistej x, wyrażenie $4x^2 - 12x + 9$ jest równe

A. (4x+3)(x+3)

B. (2x-3)(2x+3) **C.** (2x-3)(2x-3) **D.** (x-3)(4x-3)

Zadanie 8. *(1 pkt)*

Prosta o równaniu $y = \frac{2}{m}x + 1$ jest prostopadła do prostej o równaniu $y = -\frac{3}{2}x - 1$. Stąd wynika, że

A.
$$m = -3$$

B.
$$m = \frac{2}{3}$$

D.
$$m = 3$$

Zadanie 9. (1 pkt)

Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

Jakie znaki mają współczynniki a i b?

A.
$$a < 0 \text{ i } b < 0$$

B.
$$a < 0 \text{ i } b > 0$$

C.
$$a > 0$$
 i $b < 0$

C.
$$a > 0$$
 i $b < 0$ **D.** $a > 0$ i $b > 0$

Zadanie 10. (1 pkt)

Najmniejszą liczbą całkowitą spełniającą nierówność $\frac{x}{2} \le \frac{2x}{3} + \frac{1}{4}$ jest

Zadanie 11. *(1 pkt)*

Na rysunku 1 przedstawiony jest wykres funkcji y = f(x) określonej dla $x \in \langle -7, 4 \rangle$.

Rysunek 2 przedstawia wykres funkcji

$$\mathbf{A.} \quad y = f\left(x+2\right)$$

B.
$$y = f(x) - 2$$

C.
$$y = f(x-2)$$

B.
$$y = f(x) - 2$$
 C. $y = f(x-2)$ **D.** $y = f(x) + 2$

Zadanie 12. *(1 pkt)*

Ciąg (27, 18, x+5) jest geometryczny. Wtedy

$$\mathbf{A.} \quad x = 4$$

B.
$$x = 5$$

B.
$$x = 5$$
 C. $x = 7$

D.
$$x = 9$$

Zadanie 13. *(1 pkt)*

Ciąg (a_n) określony dla $n \ge 1$ jest arytmetyczny oraz $a_3 = 10$ i $a_4 = 14$. Pierwszy wyraz tego ciągu jest równy

A.
$$a_1 = -2$$

B.
$$a_1 = 2$$

C.
$$a_1 = 6$$

C.
$$a_1 = 6$$
 D. $a_1 = 12$

Zadanie 14. *(1 pkt)*

Kąt α jest ostry i $\sin \alpha = \frac{\sqrt{3}}{2}$. Wartość wyrażenia $\cos^2 \alpha - 2$ jest równa

A.
$$-\frac{7}{4}$$

B.
$$-\frac{1}{4}$$
 C. $\frac{1}{2}$

C.
$$\frac{1}{2}$$

D.
$$\frac{\sqrt{3}}{2}$$

Zadanie 15. *(1 pkt)*

Średnice AB i CD okręgu o środku S przecinają się pod kątem 50° (tak jak na rysunku).

Miara kata α jest równa

Zadanie 16. *(1 pkt)*

Liczba rzeczywistych rozwiązań równania $(x+1)(x+2)(x^2+3)=0$ jest równa

A. 0

B. 1

C. 2

D. 4

Zadanie 17. (1 pkt)

Punkty A = (-1,2) i B = (5,-2) są dwoma sąsiednimi wierzchołkami rombu ABCD. Obwód tego rombu jest równy

A.
$$\sqrt{13}$$

В. 13 **C.** 676

D. $8\sqrt{13}$

Zadanie 18. *(1 pkt)*

Punkt S = (-4, 7) jest środkiem odcinka PQ, gdzie Q = (17, 12). Zatem punkt P ma współrzędne

A.
$$P = (2, -25)$$
 B. $P = (38, 17)$ **C.** $P = (-25, 2)$ **D.** $P = (-12, 4)$

B.
$$P = (38, 17)$$

C.
$$P = (-25, 2)$$

D.
$$P = (-12, 4)$$

Zadanie 19. *(1 pkt)*

Odległość między środkami okręgów o równaniach $(x+1)^2 + (y-2)^2 = 9$ oraz $x^2 + y^2 = 10$ jest równa

A.
$$\sqrt{5}$$

B.
$$\sqrt{10} - 3$$
 C. 3

Zadanie 20. *(1 pkt)*

Liczba wszystkich krawędzi graniastosłupa jest o 10 większa od liczby wszystkich jego ścian bocznych. Stąd wynika, że podstawą tego graniastosłupa jest

Zadanie 21. *(1 pkt)*

Pole powierzchni bocznej stożka o wysokości 4 i promieniu podstawy 3 jest równe

A.
$$9\pi$$

B.
$$12\pi$$

C.
$$15\pi$$

D.
$$16\pi$$

Zadanie 22. *(1 pkt)*

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Niech p oznacza prawdopodobieństwo zdarzenia, że iloczyn liczb wyrzuconych oczek jest równy 5. Wtedy

A.
$$p = \frac{1}{36}$$

B.
$$p = \frac{1}{18}$$

B.
$$p = \frac{1}{18}$$
 C. $p = \frac{1}{12}$ **D.** $p = \frac{1}{9}$

D.
$$p = \frac{1}{9}$$

Zadanie 23. (1 pkt)

Liczba $\frac{\sqrt{50} - \sqrt{18}}{\sqrt{2}}$ jest równa

A.
$$2\sqrt{2}$$

D.
$$\sqrt{10} - \sqrt{6}$$

Zadanie 24. *(1 pkt)*

Mediana uporządkowanego niemalejąco zestawu sześciu liczb: 1, 2, 3, x, 5, 8 jest równa 4. Wtedy

A.
$$x = 2$$

B.
$$x = 3$$

C.
$$x = 4$$

D.
$$x = 5$$

Zadanie 25. (1 pkt)

Objętość graniastosłupa prawidłowego trójkątnego o wysokości 7 jest równa $28\sqrt{3}$. Długość krawędzi podstawy tego graniastosłupa jest równa

ZADANIA OTWARTE

Rozwiązania zadań 26-34 należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. *(2 pkt)*

Rozwiąż równanie $x^3 + 2x^2 - 8x - 16 = 0$.

Odpowiedź:

Zadanie 27. *(2 pkt)*

Kąt α jest ostry i $\sin \alpha = \frac{\sqrt{3}}{2}$. Oblicz wartość wyrażenia $\sin^2 \alpha - 3\cos^2 \alpha$.

Odpowiedź:

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. (2 pkt) Udowodnij, że dla dowolnych liczb rzeczywistych x, y, z takich, że x+y+z=0, prawdziwa jest nierówność $xy + yz + zx \le 0$.

Możesz skorzystać z tożsamości $(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$.

Zadanie 29. (2 pkt)

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla $x \in \langle -7, 8 \rangle$.

Odczytaj z wykresu i zapisz:

a) największą wartość funkcji f,

b) zbiór rozwiązań nierówności f(x) < 0.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. *(2 pkt)*

Rozwiąż nierówność $2x^2 - 7x + 5 \ge 0$.

Odpowiedź:

Zadanie 31. *(2 pkt)* Wykaż, że liczba $6^{100} - 2 \cdot 6^{99} + 10 \cdot 6^{98}$ jest podzielna przez 17.

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (4 pkt)
Punkt S jest środkiem okręgu opisanego na trójkącie ostrokątnym ABC. Kąt ACS jest trzy razy większy od kąta BAS, a kąt CBS jest dwa razy większy od kąta BAS. Oblicz kąty trójkąta ABC.

Odpowiedź:

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 33. *(4 pkt)*Pole podstawy ostrosłupa prawidłowego czworokątnego jest równe 100 cm², a jego pole powierzchni bocznej jest równe 260 cm². Oblicz objętość tego ostrosłupa.

Odpowiedź:

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 34. *(5 pkt)*

Dwa miasta łączy linia kolejowa o długości 336 kilometrów. Pierwszy pociąg przebył tę trasę w czasie o 40 minut krótszym niż drugi pociąg. Średnia prędkość pierwszego pociągu na tej trasie była o 9 km/h większa od średniej prędkości drugiego pociągu. Oblicz średnią prędkość każdego z tych pociągów na tej trasie.

Odpowiedź:

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	