Industrial Assessment on Deformable Mirrors (Without Proprietary Information)

Lisa C. Veitch

December 1998
Approved for public release; distribution unlimited.

IDA Document D-2204

Log: H 98-002662

D'IIC QUALITY INSPECTED 4

19990916 014

This work was conducted under contract DASW01 94 C 0054, Task T-AV5-1561, for the Office of the Secretary of Defense, Industrial Capabilities and Assessments. The publication of this IDA document does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of that Agency.

© 1998, 1999 Institute for Defense Analyses, 1801 N. Beauregard Street, Alexandria, Virginia 22311-1772 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227-7013 (10/88).

PREFACE

industrial capabilities for acquisition and support military weapon systems. The IAC performs range of analyses The Institute for Defense Analyses (IDA) has established an Industrial Analyses Center (IAC) to provide the Office of the Secretary of Defense (OSD) with objective and independent analyses that characterize and assess that address industrial issues associated with changing industry structure, competition, and industrial and technology capabilities, at the prime and subtier contractor levels.

may not be able to independently validate material supplied. As a result, future adjustments to these studies may be required to correct information provided by industry sources. The publication of this IDA document does not indicate endorsement by the Department of Defense (DoD) nor do its contents necessarily reflect the official Firms reviewed in this study supply much of the information that IDA uses to perform its analyses. IDA position of that Agency.

This document reports on an analysis done by IDA to address industrial issues associated with deformable

This page is intentionally blank.

CONTENTS

3xecutive Summary	ES-1	Alternative Technology to Piezoelectric Actuators	35
Objectives	3	Applications of MEMS Mirror Technology Outside	37
Study Approach	2	Delonnance minors	5
Fask D100-L89: Deformable Mirrors Task Schedule	7	Alternative to Piezoelectric Actuators for Deformable Mirrors	39
Cut-Away View of a Deformable Mirror	6	Mirror Conceptual Design	41
Adaptive Optics System for Telescopes	11	Estimated Demand for Deformable Mirrors	43
Finished Deformable Mirrors	13	Deformable Mirrors May Not be a "Market"	45
Distinguishing Features of Deformable Mirrors	15	Overall Assessment of Deformable Mirror Suppliers	47
Deforming Mechanisms for Deformable Mirrors	17	Assessment of U.S. Contractor Capabilities in	
Basic System for a Deformable Mirror	19	Lightweight Adaptive SpaceOptics for SBL	9
Deformable Mirror Applications	21	Applications: Aerospace Corporation	4
Deformable Mirror Comparisons	23	Contractor Capabilities	51
Delomination with the particular	25	Optical Payload Element	53
Deformable ivillion froducers	; ;	Laser Payload Element Technology Base Issues	55
Xinetics, Inc.	3 6	IDA Deformable Mirror Industrial Capacity Survey	57
Deformable Mirror Suppliers	67	Dorted Inne 7 1008	
Actuator Suppliers	31	Commerce Business Dauly: Fosted June 2, 1220. Subject: High Reliability Deformable Mirror	61
Control Systems and Optics Suppliers	33	Glossary	63

This page is intentionally blank.

EXECUTIVE SUMMARY

to vertical integration and diminishing competition. As part of a larger industrial study that the Institute for Defense Analyses (IDA) conducted during FY 1997-1998, IDA was tasked to evaluate the deformable mirror industry. The objective of the study was to determine if there were more potential deformable mirror suppliers than the one company that was identified and to identify possible alternatives to the present state-of-the-art for deformable mirrors. Because In 1996, the Federal Trade Commission (FTC) viewed the deformable mirror industry as a problem area with respect of a time constraint, the task's scope was limited to unclassified systems and U.S. deformable mirror producers.

The study had several objectives:

- Define critical components of a typical deformable mirror system using a work breakdown structure (WBS)
- Identify companies related to deformable mirrors
- Use databases to determine demands and identify government Program Management Offices (PMOs)
- Survey the companies for data not received by phone
- Survey the PMOs on issues, funding, and status of programs.

Possible component suppliers who could produce actuators or the flexible optical surfaces for the deformable mirrors were also assessed.

deformable mirror suppliers and the component industries available. However, it did conclude that the deformable re-examined as changes occur in the funding environment, the demand for deformable mirrors, and manufacturing mirrors and magnetostrictive materials for actuators, showed potential in replacing or augmenting the current technology. The study also determined that vertical integration was not an issue because of the current number of mirror market was "thin" and could change rapidly. The final recommendation was that the deformable mirror area be deformable mirror component suppliers. New technologies, including Microelectromechanical Systems (MEMS) The overall assessment identified three deformable mirror producers (Xinetics, Thermotrex, and Raytheon) and several capability of the deformable mirror suppliers.

FC_7

This page is intentionally blank.

INDUSTRIAL ASSESSMENT ON DEFORMABLE MIRRORS

- critical component of the Air Forces' anti-missile program. An antitrust settlement was reached to ensure that Boeing/Lockheed team, and Xinetics was contracted to provide deformable mirrors to the Rockwell/Hughes team. However, Itek was acquired by Hughes Danbury Optical Systems. The FTC was concerned that this sale would raise prices or reduce investments in technology and quality for deformable mirrors, which were a International Corporation/Hughes. Itek Optical Systems was contracted to provide deformable mirrors to the program had awarded contracts to two teams: Boeing Company/Lockheed Martin Corporation and Rockwell In 1996, the Federal Trade Commission (FTC) viewed the deformable mirror industry as a problem area with respect to vertical integration and diminishing competition. According to the FTC, the Airborne Laser (ABL) competition for deformable mirrors would continue.
 - In 1997, Raytheon acquired Hughes. There was concern that Raytheon did not retain Itek's deformable mirror expertise, leaving Xinetics as the only deformable mirror producer.
- The objectives of this study were to determine if there were more potential suppliers in this industry and/or possible alternatives to the present state of the art for deformable mirrors and to assess the base of suppliers for deformable mirror components.

Objectives

producers and determine possible alternatives to this particular Investigate the availability of current and potential deformable mirror technology

questioned them about their products, their work in deformable mirrors, and issues or problems related to this technology. We sent surveys to these companies and to the component-level companies (i.e., actuator suppliers) requesting information that was either sensitive or proprietary. We also surveyed the main Program Management to analyze in more depth. At one point, we had included adhesives since they must be able to withstand a variety of Thomas Register, Forecast International's Contractor List) and also relied on contacts from other tasks for This slide outlines our approach to fulfilling the objectives of this study. We developed a work breakdown structure (WBS) from our understanding of the deformable mirrors and selected components critical to the deformable mirror environments. However, given the number of adhesive suppliers, we felt that there were more critical components to information on companies related to deformable mirrors. We called the main deformable mirror suppliers and address in this short study. We were provided with several databases (e.g., Carroll's Publishing R&D Database, Offices (PMOs) on program issues, funding, and status of the defense programs.

Because of time constraints, we limited the scope of the study to U.S. deformable mirror producers and potential U.S. actuator suppliers

Study Approach

- Six-month study
- Define critical components of a typical deformable mirror system using
- · Identify companies related to deformable mirrors, both primary and secondary suppliers
- · Use databases to determine demands and identify government PMOs
- Survey the companies for data not received by phone
- Survey the PMOs on issues, funding, and status of programs
- Study limited to primary U.S. producers of deformable mirrors and actuator suppliers

This slide is the task schedule for the deformable mirror study. A few dates slipped because meeting dates were changed or data from the surveys that were sent to the companies did not come back to us on time. Dr. Lisa Veitch and Dr. Frank Rotondo, both from IDA, and a consultant, Dr. Michael Obal, worked on this task.

Task D100-L89: Deformable Mirrors Task Schedule

Task	Feb	March April	April	May	June	July	Aug
Visit Xinetics							
Create WBS							
Discuss proposed plan and WBS with Frank Rotondo and Mike Obal							
Meeting with sponsor							
Identify sources and alternates							
Collect technical and financial data							
Prepare assessment							
Draft final review						P	
Final report							*
Burn rate (planned) Burn rate (actuals)	5% 1%	7%	15% 5%	30%	20% 13%	15% 31%	8% 26%

This slide is a cut-away view of a deformable mirror. The critical components we identified for the deformable the electronics and the software and controls. Systems integration and experience are also critical for the mirror are the faceplate or mirror, the actuators, and the control system. This last component takes into account all deformable mirrors to perform but are not physical components depicted in the slide.

Cut-Away View of a Deformable Mirror

This slide shows the essential components of an adaptive optics phase-compensation system used in astronomy. The phase sensor measures the first derivative of the phase difference between the incoming wavefront and the surface figure imposed by the tilt and deformable mirrors. The phase reconstructor computes residual phase error and subsequently applies it to the two active optical elements.

The deformable mirror is the active wavefront corrector, and its characteristics largely determine the capability of the entire adaptive optics system. The important characteristics of a deformable mirror are the actuator density, influence function, stroke, and response speed.

Deformable Mirror Loop Phase Sensor Reconstructor Adaptive Optics System for Telescopes Phase Deformable Mirror Output Phase Tilt-Mirror T Input Phase Loop Focal-Plane Image Tilt Mirror

This slide shows finished deformable mirrors. A system can use several mirrors for correction. Most applications, however, only require one mirror.

Finished Deformable Mirrors

A Deformable Mirror system has the following major features:

- unique, depending on the application. For example, specialized optical designs are required for deformable Optical surfaces that can be deformed in a rigid body and/or flexible manner. These optical surfaces may be mirrors subjected to continuous high-energy radiation (Laser Weapons) or extreme short duration high-energy pulses [Department of Energy (DOE) Testbeds].
- and usually assembled in a stack arrangement that pushes against the back surface of the mirror to create optical deformation modes. These actuators can also be used in a manner that results in rigid body rotations and Deforming mechanisms that consist of actuators constructed of piezoelectric or voice coils (electromagnetic coils) displacements of the entire optical surface.
- Support/reaction hardware for mounting the deformable mirror to another platform.
- Sophisticated analog and digital electronics to sense and determine the optical system's configuration and provide drive signals and power to the deformable mirror actuators.
- Use of adhesives to attach the mirror plate to the actuator.

and controls is critical to the operation of the deformable mirrors. Systems integration is not necessarily a "part," but the knowledge and experience is definitely a component of the deformable mirrors. Only a few companies Although the electronics and supporting structure are off-the-shelf, the integration of the sensors, actuators, optics, have systems integration expertise.

withstand. However, the large number of suppliers and formulations that exist for this application exceeds the structures and electronic manufacturing capabilities in U.S. industry. The shaded areas represent unique items for deformable mirror design and manufacturing that are restricted to a few optical systems and/or piezoelectric material/actuator manufacturers. At the beginning of this study, we thought that the adhesives to be used for deformable mirrors would be unique because of the different environments the adhesives were required to On this slide, the unshaded areas identify the parts of the deformable mirror system that are common to precision demand for deformable mirrors. Therefore, we did not view adhesives as a critical component to study further.

Distinguishing Features of Deformable Mirrors

lead magnesium niobate (PMN) actuators to rotate, displace, or deform a mirror surface. These actuators can be materials; however, this is a new area that only universities are investigating. Actuator systems and/or applications have not been developed for these new materials. Only the material properties of the single crystals are being This slide details the deforming mechanisms on a deformable mirror. There are a variety of different designs for deformable mirrors. The most common type employs piezoelectric lead zirconate titanate (PZT) and electrostrictive made out of either polymer or ceramic materials. Other materials could include single-crystal piezoelectric determined at this time. Optical surface deformations are commonly accomplished by using force actuators attached to the back of the deformable mirror's thin mirror structure. These actuators can apply a direct force to the mirror when charged by a As the number of actuators increases per mirror surface area, complex deformation patterns can be generated. For example, some deformable mirrors can employ hundreds of actuators within a 0.3-m mirror diameter. The dynamic response of the actuators can be as high as several hundred hertz.

atmospheric turbulence and other effects. The number of deformable mirror actuators per mirror surface area and the When used in an optical system, these devices reduce the overall optical degradation of the system caused by mirror system frequency response drive the control software complexity and become limiting design constraints.

Deforming Mechanisms for Deformable Mirrors

crystal silicon. Silicon is relatively inexpensive and readily available. Although the material is inexpensive, the This slide details the optical surfaces on a deformable mirror. One of the most common surfaces used is singleoptical polishing and mirror coatings are expensive because of the amount of time and labor involved. Also, silicon must be cooled, and this process adds an additional weight penalty to the system. Silicon carbide (SiC) is also being used. The advantages of SiC are its light weight, its cryo optical performance of large thermal gradients. However, when using SiC, polishing the optical surface and applying optical coatings are glass to visible/ultraviolet (UV) wavelengths, and its superior thermal stability over wide temperature ranges and more difficult.

Only a few deformable mirrors that use SiC for the mirror have been produced to date. For ground telescopes, the single-crystal silicon, or even glass, is sufficient.

New designs have been explored because of the non-availability of large-diameter mirrors. For example, instead of the more traditional flat-plate, arrays of small mirrors have been considered.

information that we requested from the deformable mirror and actuator suppliers. At the end of this Since the silicon industry is well established, we did not ask the optics companies for the amount of document, one primary optic supplier and a systems control/ software supplier are given.

Basic Systems for a Deformable Mirror

Deformable mirrors can compensate for time-varying optical distortions in several areas:

- sensed and then corrected in real time by modifying the surface of a deformable mirror. This technology is Atmospheric effects. Light traversing the atmosphere undergoes distortions that can blur an image or compromise the focus of an optical system. These distortions cause stars to "twinkle." Such distortions can be currently used in surveillance optics, laser weapons, and astronomical telescopes.
- Separation (AVLIS) projects, both at Lawrence Livermore National Laboratory (LLNL), require deformable require 10 deformable mirror units. Both of these facilities may create a long-term, low-level need for energy densities at laser foci. The National Ignition Facility (NIF) and the Atomic Vapor Laser Isotope mirrors to remove such distortions. NIF will require about 200 deform-able mirror units, and AVLIS will Distortions in the lab. Lab-based optical systems can be adversely affected by distortions from temperature variations and vibrations. This is especially true of high-power laser systems that are designed to produce high-

Deformable Mirror Applications

- Ground-based telescopes
- Next-generation telescope (space)
- Surveillance
- Laser weapons systems
- Inertial confinement fusion (NIF at LLNL)
- Isotope separation (AVLIS project at LLNL)
- Laser communications

for each type. Repairing ground-based systems is much easier than repairing space-based systems but reliability is still critical for any of these systems, especially when a deformable mirror can cost as much as \$100,000. Most of the ground-based systems are liquid-cooled since weight is not an issue. For space-based mirrors or the ABL, other This slide attempts to show the progression of the simplest deformable mirrors to the most complex deformable mirrors. These are not quantified categories, so it is possible that different temperatures and accuracies are required techniques are being explored to minimize the amount of heat in the system.

Deformable Mirror Comparisons

Applications	Environment Temperature Issue	Heat Dissipation	Accuracy	Bandwidth	Reliability and Repairability
Ground telescopes	No	No	Yes	High	*
LLNL NIF	No	Yes	Yes	High	*
LLNL AVLIS	No	Yes	Yes	High	*
Surveillance Satellites	Yes	No	Yes	Low	Yes
Laser Weapon Systems	Yes	Yes	Yes	Low	Yes
Laser Communications	i	i	i	i	i

Note: Ground-based deformable mirrors are not subjected to the same vibrations and environmental conditions to which the space-based deformable mirrors are also less expensive to replace than the space-based deformable mirrors. These areas are factored into the design and cost of the deformable mirror for a given application.

Xinetics has been producing deformable mirrors since 1993. Xinetics has developed an in-house knowledge base in assembling deformable mirrors, constructing electro-strictive actuators, and polishing SiC. Nineteen of the 25 employees at Xinetics had previously worked for Itek.

depth from which to draw. Raytheon relies on its Hughes Optical to provide the optics for the deformable mirrors manufacturing capabilities of its own, merged with Itek (Litton) in 1996, making it a major producer of deformable mirrors. In addition, Raytheon's Danbury office gives their deformable mirror team great optical and engineering and an outside vendor for its actuators. (Raytheon did not reveal their suppliers.) Raytheon employs four people Raytheon purchased Hughes Danbury Optical Systems in 1997. The former Hughes, which had deformable mirror who had previously worked for Itek.

Thermotrex, a subsidiary of Thermo Electron Corp., has made deformable mirrors for several years and is in the running for a major deformable mirror contract with the LLNL NIF facility. Two of Thermotrex's employees had previously worked at Itek.

mirrors (i.e., Xinetics). We have not been able to identify specifically the DoD representatives who made this recommendation to Lockheed Martin. However, Lockheed Martin has built one mirror and intends to keep one person involved in this technology on a yearly basis. The mirror that they have built was to have been tested in July capability to build their own deformable mirrors. This capability was developed after Department of Defense (DoD) representatives recommended that Lockheed Martin not depend entirely on one source for deformable A representative from Lockheed Martin Missiles and Space also stated that they have developed an in-house at Phillips Lab; however, to date, no results have been provided to the Institute for Defense Analyses (IDA)

Deformable Mirror Producers

addition to some other smaller products for military and commercial use. The company has 25 employees. Six are structural engineers, and the remainder are electro-ceramists. Xinetics manufacturing space is ~12,000 square feet and is equipped with fairly modern equipment as compared with other small ceramic processing businesses in the Dr. Veitch visited Xinetics and talked directly with the president, Mark Ealey. Mark is a former employee of Itek Optical Systems. He started Xinetics in 1993 and has produced 26 deformable mirrors over the last 5 years, in area. Eighty-five percent of their income results from government contracts. The remainder is from commercial develop-ment.

the highest purity material for the actuators. They are then able to obtain consistent properties from run to run. One of the reasons that Itek was unable to maintain their deformable mirror business before Hughes purchased them was of actuator properties. To decrease this variability, Xinetics purifies the starting powders and mixes them to yield because they had lost a good raw material supplier and did not want to invest in purifying the starting powders. PMN actuators. Most of the starting powders (lead oxide, zirconium oxide, niobium oxide, and magnesium oxide) come pre-mixed but can have purity ranges over ±20 percent. This can have a significant impact on the consistency One strength in Xinetics operation is their ability to control raw material's purity for the deformable mirror actuators. One of the problems (which also hurt Itek's business) is the lead oxide purity needed for the PZT and They tried other vendors of mixed powders but were not able to obtain consistent actuator properties.

Xinetics Inc.

- Private company outside of Boston
- Mark Ealey, president, started the company after leaving Itek
- 25 employees: 6 structural engineers, the rest are electro-ceramists
- At start of this study, identified as the ONLY company that was able to produce deformable mirrors
- Has produced 26 mirrors to date
- Income: 85 percent government funds, 15 percent commercial development

produce deformable mirrors is provided under a separate cover. This list includes proprietary information regarding A listing of the deformable mirror suppliers that we identified as having produced or having the capability to government sales, independent research and development (IRAD) investment in deformable mirror technology, and so forth.

Deformable Mirror Suppliers

Proprietary Information supplied under a different cover

A list of actuator suppliers for deformable mirrors is provided under a separate cover because of proprietary information. All these companies have the capability to supply actuators for this application, but none have actually been involved in this area in recent years.

Actuator Suppliers

Proprietary Information supplied under a different cover

integrates all the components for the deformable mirrors in-house. The two companies listed in this table rely on This table lists Adaptive Optics Associates and SSG, Inc., as control systems and mirror suppliers, respectively. Both suppliers have participated in programs with the deformable mirror suppliers; however, they do not produce the entire deformable mirror system themselves. The main deformable mirror supplier, Xinetics, produces and outside vendors for the mirror components and have limited expertise in systems integration.

CONTROL SYSTEMS AND OPTICS SUPPLIERS

The state of the s	and and a	A A	CTATE 7ID		DHONE	FAY NIMBER POC		PRODICTS	SPECIAL CAPABILITIES	SPECIAL CAPABILITIES/ SUBSIDIARY RELATIONSHIP TO
COMPANY NAME	ADDRESS		TIVIE		Т	A CONTRACTOR OF THE PARTY OF TH			UNIQUE PROCESSES	ANOTHER COMPANY
				T						
A Latin Online American & Combridge But Cantridge	54 Combridge Back		N.	03140	17.864.0201	10140 617-864-0201 617-864-1348	Martin Levine	Image Processors	Systems integration/software United Technologies/	United Technologies/
Activité Opucs Assixiate	24 Calliantes Lain			2				Machine vision	supplier unique to DM	Hamilton Standard
								Precision motion analysis	neck	
								High-resolution line and area		
								High speed cameras		
								Adaptive optic control systems		
								Microlens arrays for HDTV		
								Laser diodes		
date t	La Come De	Wilmington	MA	01887	078 604 9091	11887 078 604 9091 078 694 9972	Joseph Robichaud	Joseph Robichard Mirrors for telescopes, SiC		
SNS, IIK.	DO JUILI OF ILL ING	14 milion Sucri						mirrors for DMs		

Microelectromechanical systems (MEMS) technology offers the potential for improve-ment in deformable mirror performance, including precision of deflection and speed (or rep rate) of the mirror's adjustments.

tion techniques with 9 actuators and a stroke of 0.8 microns. A 400-element mirror with a 2-micron stroke is in A Boston University group recently developed a continuous membrane deformable mirror using MEMS construcdevelopment.

commercial offshoot of the Delft University group, offers 19- and 37-actuator MEMS-produced deformable mirrors with a 15-mm diameter, 500-Hz maximum frequency range, and a 9-micron maximum deflection at the mirror A Delft University group has been developing a varifocal mirror using MEMS techniques. OKO Technologies, a

Alternative Technology to Piezoelectric Actuators

- MEMS-produced mirrors, actuated by electrostatics
- Active research program at Boston University; related research in varifocal mirrors at Delft University in The Netherlands
- MEMS adaptive optics available from industry: OKO Technologies (Delft)

This slide shows two different approaches to using MEMS mirror technology in applications outside of deformable mirrors.

high-definition television (HDTV) and video applications. Stanford University is producing tunable laser cavities Texas Instruments is producing digital micromirror devices (DMDs), which are highly pixilated mirrors for use in using MEMS techniques.

Note: While these devices are not deformable mirrors themselves, the MEMS construction techniques used to produce them may influence and improve future deformable mirror production.

Applications of MEMS Mirror Technology Outside Deformable Mirrors

Texas Instruments' MEMS mirror technology for HDTV and video applications

negligible power dissipation. The magnetostrictive materials come from the family of alloys consisting of Tb_{1-x} Dy_x Zn, which exhibit saturation magnetostrictions of over 0.5 percent with little hysteresis, resulting in a compact and lightweight actuator. When excited with high-current density superconducting coils, the actuators Energen, Inc., is using magnetostrictive materials to develop actuators for cryogenic deformable mirrors. Magnetostrictive actuators have advantages over piezoelectric actuators because of low-voltage operation and provide very precise positioning capability with negligible power dissipation.

Alternative to Piezoelectric Actuators for Deformable Mirrors

ENERGEN, INC

Magnetostrictive actuators provide:

- High spatial frequency resolution
- Greater wavefront error correction
- Low-voltage operation
- · High pulling and pushing forces
- Negligible power dissipation

This slide was taken from a presentation by Energen, Inc., at the Next Generation Space Telescope (NGST) review in July 1997. Energen is pursuing a design similar to the "traditional" deformable mirror; however, instead of using piezoelectric materials for the actuators, they are developing magnetostrictive materials for this application.

Mirror Conceptual Design

The table shown on this slide is an estimate of the demand for deformable mirrors from (1999–2016):

- typical SBL design proposal would have one deformable mirror per platform. This mirror would be approximately 0.3 m in Space-Based Lasers (SBLs) may be deployed within the next two decades for ballistic missile defense (BMD). SBLs would propagate a high-energy laser beam from space through the atmosphere to destroy a missile during its initial stages of launch. A diameter, with 240 actuators per mirror. Current plans call for a fleet of about 20 to 24 satellites for complete global coverage, but only one SBL system will be built as a prototype at this time.
- Airborne Lasers (ABLs) under development by the Air Force would contain a laser weapon with sufficient capacity to destroy a tactical ballistic missile above the cloud layer. The ABL program will field seven aircraft. Each aircraft will use one deformable mirror. The ABL deformable mirrors are approximately 0.25 m in diameter. The current plan calls for a demonstration vehicle in 2002, with all seven aircraft deployed by 2008.
- Ground-Based Lasers (GBLs) are being developed by the Army for tactical missile and aircraft defense. Discussions with the Theater High-Energy Laser (THEL) office indicate that the current design does not employ deformable mirrors but that a future fielded weapon may. The actual number of deformable mirrors per platform is unknown at this time.
 - been determined if new surveillance systems will use deformable mirrors for primary optics or laser communication systems. If Earth Surveillance Systems could use deformable mirrors; however, discussions with this community indicated that it has not yet deformable mirrors are incorporated, the number would be on the order of tens in the next 10 years.
- major NASA-sponsored telescope systems. If this community seriously embraces this technology, a large number of deformable Recent applications of deformable mirrors to ground-based astronomy systems have indicated improvement in existing systems by reducing image degradation caused by atmospheric turbulence effects. A small number of deformable mirrors are planned for mirrors could be required. Any organization with a telescope 1 m or larger in diameter (approximately 100 worldwide) may find it cost effective to install a deformable mirror for performance enhancement.
- communication systems. To estimate the deformable mirror demand generated by these systems, further study is needed to Laser Communications can use deformable mirrors (required numbers not shown in the table), and discussions with the communication community indicated that deformable mirrors might improve the performance of certain types of laser identify which type of laser communication system requires deformable mirrors.
 - with a 100-Hz bandwidth. These deformable mirrors are designed to handle extremely high-energy laser loads. Another DOE as 200 deformable mirrors. These deformable mirrors are about 15 × 15 inches with approximately 40 actuators, each operating project requiring about 15 deformable mirrors is the AVLIS testbed that will demonstrate a new, low-cost method of making Several DOE Testbeds are currently in design and use many deformable mirrors in their optical paths. The NIF requires as many fissionable materials. The NIF and AVLIS projects are planned to be built within the next 4 years.

Estimated Demand for Deformable Mirrors

System							Y	Year								
7	00	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	02	03	94	05 (9() //	0 80	9 1	0	11	2 13	3 14	15	16
Platforms								\dashv	+	-	\dashv	+	4			
SBL			2					\dashv	+	\dashv	+	\dashv	\dashv	_		
ABL		1	1	7	-	一	ᅴ	=		\dashv	+	\dashv	+	_		
Army GBL												-	+	_		
Surveillance	i	9	3	6	6	٠.	ن	٠.	٠.	6		6	-	c.	٠.	٠.
Ground Testbeds								1			+	-	+	4		
NASA Ground Telescopes					4	7			+	\dashv	\dashv	\dashv	\dashv	4	_	
Laser Communications								1	1		+	+	+	4		
DOE NIF	99	99	66								\dashv	\dashv	+	4		
DOE AVLIS	3	3	3				\neg			1	-	\dashv	+	-		_
Total	69	70	72	1	5	3	1	1						_	_	

potential over the next 10 years will be small. The exception to this assess-ment may be the development of the As the team obtained more data on deformable mirror technology, it became apparent that this technology was not part of a large-scale production industry. The limited demand for this specialized component and the fact that each mirror is tailored to a given application (i.e., cannot be mass produced like a semiconductor) suggest that the growth DOE NIF and AVLIS facilities and the European (United Kingdom and France) AVLIS-type facilities.

Deformable mirrors is a "thin market"

- Low productivity
- Each mirror is dependent on an application
- Little growth in the market over the next 10 years, with the exception of the DOE facilities described

Our recommendation, based on the data to date, is that this technology area does not require close monitoring at this time.

Overall Assessment of Deformable Mirror Suppliers

- Three companies have been identified as deformable mirror suppliers
- Component suppliers (existing and potential) are in good supply
- New technologies are being developed to advance the state of the art
- available. However, this is a "thin" market, and the number of suppliers number of deformable mirror suppliers and the component industries · Vertical integration is not an issue in this area because of the current could change rapidly.

We recommend that this area should be re-examined in 2 or 3 years or as the DoD and DOE funding environment, the demand for deformable mirrors, and the manufacturing capability of the deformable mirror suppliers change.

initiated the study based on its concern that limited sources existed for various components of the SBL. Aerospace Their report identified areas needing additional technical development: large optical components, polishing large optical components, and coating large optical components. Deformable mirror technology was not considered a show stopper for the SBL. Aerospace Corporation identified Xinetics and Raytheon as deformable mirror suppliers; that specifically addressed U.S. contractor capabilities in producing lightweight adaptive space optics for SBL application. The Space and Missile Systems Center (SMSC) under the Air Force Materiel Command SBL PMO Corporation addressed optics fabrication, optical control, and structural control technologies related to the SBL. Aerospace Corporation, also a Federally Funded Research and Development Center (FFRDC), produced a report however, they did comment that Raytheon might need some time to get the former Itek's capability back on line.

Capabilities in Lightweight Adaptive Space Optics for SBL Applications Assessment of U.S. Contractor

Aerospace Corporation

This table was taken from the Aerospace Corporation's report on U.S. contractor capabilities to produce lightweight adaptive space optics for the SBL.

Table 1. Contractor Capabilities

	Large Blanks	Large Optics	Space	Optical Finish	Large Coatings	Active Primary	Deploy- ment	Vib Isol Smart Struct	Beam	Sensors	Mirrors	HOES	
404										×			
VOC							×		×				
Dall	_								×	×			×
Boeing													
100			×	×									
Contraves USA		×		×		×							
Corning	×												-
CSA								×					
DSI					×								
Easiman Kodak	-	×	×	×	×	×		×		×			
Casillai Notan							×	×					
Territor I		-		_				×					
TORIGHADII	+		-						×				
raman Lathard Madia	-	-					×	×	×	×			×
LOCALISEU-INGLIII	+				*								
OCLI					< :	; -	;		,	,	>	>	>
Raytheon OSI		×	×	×	×	×	×		< 	< 	<	<	4
Scholl	×								-		-	-	-
556			×	×						-	-	1	-
SVS						×	×		×	×	-	_	-
Tinsley	×		×					1	-		+	+	+
TRW							×		×			+	+
U of Arizona	×	×		×		_	-	+	-	+	-		+
Xicera	×		×	-	1		1	+	-	-	,	+	+
Xinetics				4	-		_		-	-	<		-

elements of the program were addressed in detail. These elements focused on the current industry and its ability to supply elements for the SBL. For the optical payload element of the program, specific processes and suppliers were identified. It appears as though Xinetics does provide most of the expertise in producing the deformable mirror but This slide was taken from an industrial base data overview for the SBL Readiness Demonstration. Different is still dependent on several other contractors.

Optical Payload Element

- · Current ALI beam expander activities use specific suppliers
- · Deformable mirror, fast steering mirror, secondary
- Boule production: Silicon Crystals, Silicon Castings
- Backing structure, actuators, polishing: Xinetics
- Deposition of coatings: LPC, Star Optics, Lohnstar (DM)
 - Machining secondary center hole: Advanced Ceramics
- · Wavefront sensor focal plane arrays:
- Platinum silicide arrays: Lockheed Fairchild Imaging Systems
- Holographic Optical Element (HOE) processing: Raytheon Optical Systems, Inc.
- · Only demonstrated source
- Large optics fabrication: ROSI

The SBL PMO identified a limited number of sources for uncooled resonator optics elements. This slide itemizes the different components of the laser payload element and the company that has expertise for that particular component. Xinetics provides the integrating structure for the deformable mirror system. This is critical for this system because it must take into account the thermal and vibrational environment. This is not a trivial task. Xinetics' expertise in integrating all the components for a deformable mirror is just as valuable as fabricating the actuators or polishing the optical surfaces.

Laser Payload Element Technology Base Issues

- · Limited sources for uncooled resonator optics
- Optical coatings: Laser Power Corp. (LPC), Star Optics
- Silicone carbide and single silicone machining: McCarter Machine and Tooling
- Single crystal silicone boule production: Silicon Crystals, Silicon Castings
- Silicon "brick" brazing: Scarrott
- Silicone carbide integrating structure: Xinetics
- Constant thermal expansion (CTE) integrating structure fabrication: Xinetics
- Diamond turning of resonator optics: Lawrence Livermore National Lab Large Optics Diamond Turning Machine (LODTM)

This slide is an example of the survey sent to the deformable mirror suppliers.

Attachment 2 IDA Deformable Mirror Industrial Capacity Survey Page 1 of 2 Proprietary Data Handle Via Official Channels

Ì
-
1
74
C
1
9

hen was the company established?	
hat is the current number of employees?	
ow many engineers are currently employed (including consultants)?	
your company a subsidiary of another firm? What is that relationship?	
oes your firm have any foreign ownership? If so, by whom and at what percent?	
eneral Sales Information:	
Vhat were the company's total sales for 1997?	
What percent of total sales is for defense-related projects?	
roducts and Capabilities:	
lease briefly describe your company's major products and any essential product	

This slide is a continuation of the survey sent to deformable mirror suppliers. A similar survey with a slightly different emphasis was also sent to the component-level suppliers.

IDA Deformable Mirror Industrial Capacity Survey Page 2 of 2 Proprietary Data Handle Via Official Channels

DM Industrial Capacity:

What percent of total sales was for DMs?

low many engineers (including consultants) are working on DM technology?
lease mention any special capabilities or unique processes your company has related to the abrication and calibration of DMs.
What is your current level of production for DMs?
Can you identify any issues regarding materials or sub-components necessary to produce a DM which may contribute to an unstable DM industrial base in the future?
No your DM products have dual-use (defense and non-defense) potential? For what applications are your DMs used?
What is your total R&D funding for 1997 and what percent was spent on DM technology?
What do you see as the current and future market demands for DMs?

primary and several secondary deformable mirror suppliers are in the process of submitting proposals for this This slide is an excerpt from the Commerce Business Daily (CBD) dated June 2, 1998. The team contacted the conversations with the different companies and customers, the team developed a survey for the companies to complete. (The previous slide showed a copy of one of the surveys.) Each of the companies was called before the surveys were faxed or sent via overnight mail in early June. When the companies were called a week after receiving the surveys to see if they wanted IDA to sign proprietary agreements or if they had questions, most were we were directed to the CBD Program Research and Development Announcement (PRDA) on June 2, 1998. All the primary deformable mirror suppliers and most of the actuator companies as early as February. After several reluctant to disclose their business information. When asked what had changed since our previous conversations, PRDA. Recently, we have been able to obtain proprietary information from the deformable mirror suppliers. information is provided under a separate cover. [Commerce Business Dally: Posted June 2, 1998] [Printed Issue Date: June 4, 1998] PART: U.S. GOVERNMENT PROCUREMENTS (MODIFICATION)

SUBPART: SERVICES

CLASSCOD: A--Research and Development

DFFRDD: Phillips Laboratory, Directorate of Contracting, 2251 Maxwell Rvenue SE, Kirtland AFB, NM 87117-5773

SUBJECT: A--HIGH RELIABILITY DEFORMABLE MIRROR

SOL PRDA NO 98-D81

POC Barbara Steinbock,Contracting Officer, 505/846-2246; Lt Jeff Barchers AFRL/DES 505/846-5671

DESC: HIGH RELIABILITY DEFORMABLE MIRROR. PRDA NO. 98-D01. The Air Force Research Laboratory (AFRL) is seeking proposals for design and fabrication of a High Reliability Deformable Mirror.

design and build 1000-actuator class deformable mirrors with close actuator spacing, high reliability and low cost. Innovative approaches to accomplish these goals are strongly encouraged. The deformable mirror will be used in adaptive optics systems designed to correct phase distortions created by atmospheric turbulence. The deformable mirror will be used in a closed loop servo having a control bandwith of 500 Hz (at -3 dB error rejection). The mirror must have inter-actuator spacing of less than 7.0 mm with individual actuator stroke greater than plus/minus 2.0 micrometers and adjacent actuators restricted so that differential stroke does not exceed 2.0 micrometers

This page is intentionally blank.

GLOSSARY

ABL	Airborne Laser	IRAD	independent research and development
AVLIS	Atomic Vapor Laser Isotope Separation	LLNL	Lawrence Livermore National Laboratory
BMD	ballistic missile defense	LODTM	Large Optics Diamond Turning Machine
CBD	Commerce Business Daily	MEMS	microelectromechanical systems
CSED	Computer and Software Engineering Division	NASA	National Aeronautics and Space Administration
CTE	constant thermal expansion	NGST	Next Generation Space Telescope
DM	deformable mirror	NIF	National Integration Facility
DMD	digital micromirror device	PMO	Program Management Office
DoD	Department of Defense	PMN	lead magnesium niobate
DOE	Department of Energy	PRDA	Program Research and Development
FFRDC	Federally Funded Research and Develop-		Announcement
	ment Center	PZT	lead zirconate titanate
FTC	Federal Trade Commission	SBL	Space-Based Laser
FY	Fiscal Year	SiC	silicon carbide
GBL	Ground-Based Laser	SMSC	Space and Missile Systems Center
HDTV	high-definition television	THEL	Theater High-Energy Laser
HOE	Holographic Optical Element	N	ultraviolet
IDA	Institute for Defense Analyses	WBS	work breakdown structure

REPORT DOCUMENTATION PAGE

Reports blue to the decision of termation is seturated to response including the terminal seturation assistant of the seturation of terminal to the seturation of terminal terminal to the seturation of terminal ter The deformable mirror subjier task was part of the larger industrial study that the Institute for Defense Analyses (IDA) conducted during FY 1997–1998. The objective of the study was to determine if there were more potential deformable mirror suppliers than the one company that was identified and to identify possible alternatives to the present state of the mirror suppliers than the one company that was identified and to identify possible alternatives to the present state of the mirror suppliers when the one company that was identified and to identify the scope of the task was limited to unclassified systems and U.S. deformable mirror producers. The overall assessment identified three deformable mirror producers. Xinetics, Thermotice, and Raytheon. Several deformable mirror suppliers were also determined in this study. New technologies including Microelectromechanical Systems (MEMS) mirrors and magnetostrictive materials for actuators showed potential in replacing or augmenting the current deformable mirror technology. It was also determined that vertical integration was not an issue in the deformable mirror area because of the current number of deformable was "thin" and could change rapidly. The final recommendation was that the deformable mirror area because was "thin" and could change rapidly. The final recommendation was that the deformable mirror area because deformable mirror area because of the current number of deformable mirror area to be examined as the Department of Defense (DoD) and Department of Energy (DOE) funding environment, the demand for deformable mirrors, and manufacturing capability of the deformable mirror suppliers change. 7. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT Standard Form 298 (Rev. 2-89) Prescribed by ANSI SM 239-18 Contract DASW01 94 C 0054 Task Order T-AV5-1561 15. NUMBER OF PAGES PERFORMING ORGANIZATION REPORT NUMBER 10. SPONSORING/MONITORING AGENCY REPORT NUMBER IDA Document D-2204 12b. DISTRIBUTION CODE 6. PRICE CODE 5. FUNDING NUMBERS Final—February 1998—August 1998 3. REPORT TYPE AND DATES COVERED active wavefront corrector, deformable mirrors, flexible optical surfaces, piezoelectric actuators OF ABSTRACT UNCLASSIFIED ndustrial Assessment on Deformable Mirrors (Without Proprietary Information) Approved for Public Release/Unlimited Distribution, April 23, 1999. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) December 1998 2. REPORT DATE PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) UNCLASSIFIED OF THIS PAGE 128. DISTRIBUTION/AVAILABILITY STATEMENT Industrial Capabilities and Assessments Office of the Secretary of Defense 1777 North Kent Street, Suite 11400 Arlington, VA 22209 AGENCY USE ONLY (Leave blank) Institute for Defense Analyses 1801 N. Beauregard St. Alexandria, VA 22311-1772 1. SUPPLEMENTARY NOTES UNCLASSIFIED TITLE AND SUBTITLE 4. SUBJECT TERMS 6. AUTHOR(S) Lisa C. Veitch OF REPORT

NSN 7540-01-280-5500