

Dynamische Binärübersetzung: RISC−V → x86–64

Zwischenpräsentation

Noah Dormann¹, Simon Kammermeier¹, Johannes Pfannschmidt¹, Florian Schmidt¹

¹ Fakultät für Informatik, Technische Universität München (TUM)

21. Juli 2020

Gliederung

- 1. Einführung
- 1.1 Dynamische Binärübersetzung
- 1.2 Grobüberblick über die RISC-V ISA
- 1.3 Angebot

2. Systemarchitektur

- 2.1 ELF-Loader
- 2.2 Parser
- 2.3 Parser
- 2.4 Register File
- 2.5 Block Loader
- 2.6 Code Generator
- 2.7 Code Cache

3. Anhang

Einführung

Systemarchitektur

Vorgehen

Memory mapping

Ziel: Die Binärdatei einlesen und alle Segmente, die als "load" gekennzeichnet sind, an die korrekten Orte im Speicher laden.

Input: String des Pfads der Binärdatei.

Output: Einsprungadresse des geladenen RISCV-Programms (plus einige Metadaten) in einem t_risc_elf_map_result struct.

Memory mapping

Ziel: Die Binärdatei einlesen und alle Segmente, die als "load" gekennzeichnet sind, an die korrekten Orte im Speicher laden.

Input: String des Pfads der Binärdatei.

Output: Einsprungadresse des geladenen RISCV-Programms (plus einige Metadaten) in einem t_risc_elf_map_result struct.

- Laden des ELF-Headers vom Anfang der Datei.
- Checken der Flags auf nicht unterstüzte RISCV ABIs
- Iterieren über alle Segment-Header um den Addressbereich des Binarys zu erhalten
- Allozieren des gesamten benötigten Addressbereichs an der nativen Addresse
- Laden aller "load" Segmente an die richtigen Speicheradressen

```
typedef struct {
   bool valid;
   t_risc_addr entry;
   t_risc_addr phdr;
   Elf64_Half ph_count;
   Elf64_Half ph_entsize;
   t_risc_addr dataEnd;
} t_risc_elf_map_result;
```


Stack Allocation

Ziel: Stack für das Gastprogramm allozieren und mit den üblichen Daten initialisieren.

Input: Argumentanzahl des Gastprogramms, Argumentarray des Gastprogramms, den Output des memory mappings

Output: Die Adresse des Stackpointers nach dem Initialisieren

Stack Allocation

Ziel: Stack für das Gastprogramm allozieren und mit den üblichen Daten initialisieren.

Input: Argumentanzahl des Gastprogramms, Argumentarray des Gastprogramms, den Output des memory mappings

Output: Die Adresse des Stackpointers nach dem Initialisieren

Erklärung des Stack erstellen folgt...

Parser

Überblick

Ziel: Decodieren der 4 byte großen codierten RISCV-Befehle aus der geladenen elf-Datei.

→ (Zählen der Anzahl von Zugriffen auf einzelne Register für spätere Optimierungen.)

Input: Zeiger auf RISCV-Befehl im Speicher

Output: Ausgefüllte t_risc_instr Struktur mit allen relevanten Informationen

- •
- Ausfüllen der t_risc_instr struct mit den Informationen
- Instruktionsmapping RISC-V → x86
- einzelne Übersetzungsfunktionen für jede Instruktion
- allokierte Speicherseite für die x86-Assembly
- Encoding der Instruktionen in den Speicherbereich

```
typedef struct {
    t_risc_addr addr;
    t_risc_mnem mnem;
    t_risc_optype optype;
    t_risc_reg reg_src_1;
    t_risc_reg reg_src_2;
    t_risc_reg reg_dest;
    t_risc_imm imm;
} t_risc_instr;
```


Parser

Ansatz

Ziel: Decodieren der 4 byte großen codierten RISCV-Befehle aus der geladenen elf-Datei.

```
void parse_instruction(t_risc_instr *p_instr_struct, uint32_t *reg_count);
```


Parser

Ansatz

Ziel: Decodieren der 4 byte großen codierten RISCV-Befehle aus der geladenen elf-Datei.

void parse_instruction(t_risc_instr *p_instr_struct, uint32_t *reg_count);

31 27 26 25	5 24 20	19 15	14 12	11 7	6 0
funct7	rs2	rs1	funct3	rd	opcode
imm[11:0]		rs1	funct3	rd	opcode
imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode
imm[12 10:5]	rs2	rs1	funct3	imm[4:1 11]	opcode
imm[31:12]				rd	opcode
imm[20 10:1 11 19:12]				rd	opcode

R-type -type S-type B-type J-type I-type

```
typedef struct {
    t_risc_addr addr;
    t_risc_mnem mnem;

mmorthodiairs Pfarmtschmidth Schmidt | Rinary Translation: RISC_V \ x86_64
```


Register File

Ziel: Speicherung der Registerinhalte des RISC-V-Programmes

Register File

Ziel: Speicherung der Registerinhalte des RISC-V-Programmes

Emulieren der Register x0 bis x31 sowie pc in

t_risc_reg_val contents[33];

Register File

Ziel: Speicherung der Registerinhalte des RISC-V-Programmes

Emulieren der Register x0 bis x31 sowie pc in

```
t_risc_reg_val contents[33];
```

und Zugriff via Startpointer und den convenience methods:

```
t_risc_reg_val *get_reg_data(void);
t_risc_reg_val get_value(t_risc_reg reg);
void set_value(t_risc_reg reg, t_risc_reg_val val);
```

z.T.: Caching der Inhalte in Hardware-x86-Registern je nach Registermapping für die Basic Blocks.

Überblick

Input: geparste RISC-V-Instruktionen eines Basic Blocks **Output:** übersetzte x86-Instruktionen für diesen Block

Überblick

Input: geparste RISC-V-Instruktionen eines Basic Blocks **Output:** übersetzte x86-Instruktionen für diesen Block

- Nutzen der Instruction-Structs des Parsers
- Instruktionsmapping RISC-V → x86
- einzelne Übersetzungsfunktionen für jede Instruktion
- allokierte Speicherseite für die x86-Assembly
- Encoding der Instruktionen in den Speicherbereich

```
typedef struct {
    t_risc_addr addr;
    t_risc_mnem mnem;
    t_risc_optype optype;
    t_risc_reg reg_src_1;
    t_risc_reg reg_src_2;
    t_risc_reg reg_dest;
    t_risc_imm imm;
} t_risc_instr;
```


Ansatz

Übersetzung aller Instruktionen im Basic Block in einen x86-Buffer,

```
//aus translate_block(t_risc_addr), translate.cpp
init_block();

for (int i = 0; i < instructions_in_block; i++) {
   translate_risc_instr(block_cache[i], r_info);
}

return finalize_block();</pre>
```

anschließend

- Finalisieren des Blocks (ret anhängen, etc.)
- Rückgabe des Blocks an den Cache (später).

Metadaten

Register-Mapping als Parameter für die Übersetzerfunktionen, basierend auf Zuteilung des Block Loaders:

```
/**
 * Register information for the translator functions.
 */
struct register_info {
   asmjit::x86::Gp *map;
   bool *mapped;
   uint64_t base;
};
```


Metadaten

Register-Mapping als Parameter für die Übersetzerfunktionen, basierend auf Zuteilung des Block Loaders:

```
/**
 * Register information for the translator functions.
 */
struct register_info {
   asmjit::x86::Gp *map;
   bool *mapped;
   uint64_t base;
};
```

- Synchronisierung der zugewiesenen Register mit register file
- Lesen/Schreiben an Basic-Block-Grenzen
- Unterschiedliche Instruktionsübersetzungen je nach Mapping

Dispatch

Verteilung der Übersetzung auf einzelne Funktionen für jede Instruktion:

```
//aus translate.cpp
void translate_risc_instr(const t_risc_instr &instr, const register_info &r_info) {
  switch (instr.mnem) {
     //...
     case OR:
        translate_OR(instr, r_info);
        break;
     case AND:
        translate_AND(instr, r_info);
        break:
     case SLLIW:
        translate_SLLIW(instr, r_info);
        break:
     //...
```


Übersetzerfunktionen (1)

Realisierung der RISC-V-Instruktionen mit x86-64-Assembly.

Übersetzerfunktionen (1)

Realisierung der RISC-V-Instruktionen mit x86-64-Assembly.

Einfache Instruktionen, z.B. ADD:

```
//aus translate_arithmetic.cpp
void translate_ADD(const t_risc_instr &instr, const register_info &r_info) {
   if (r_info.mapped[instr.reg_dest] && r_info.mapped[instr.reg_src_1] &&
        r_info.mapped[instr.reg_src_2]) {
        //...
   } else {
        a->mov(x86::rax, x86::ptr(r_info.base + 8 * instr.reg_src_1));
        a->add(x86::rax, x86::ptr(r_info.base + 8 * instr.reg_src_2));
        a->mov(x86::ptr(r_info.base + 8 * instr.reg_dest), x86::rax);
   }
}
```


Übersetzerfunktionen (1)

Realisierung der RISC-V-Instruktionen mit x86-64-Assembly.

Einfache Instruktionen, z.B. ADD:

```
//aus translate_arithmetic.cpp
void translate_ADD(const t_risc_instr &instr, const register_info &r_info) {
   if (r_info.mapped[instr.reg_dest] && r_info.mapped[instr.reg_src_1] &&
        r_info.mapped[instr.reg_src_2]) {
        //...
} else {
        a->mov(x86::rax, x86::ptr(r_info.base + 8 * instr.reg_src_1));
        a->add(x86::rax, x86::ptr(r_info.base + 8 * instr.reg_src_2));
        a->mov(x86::ptr(r_info.base + 8 * instr.reg_dest), x86::rax);
}
```

→ Load-Store-Architektur vs. Register-Memory-Architecture

Übersetzerfunktionen (2)

Realisierung der RISC-V-Instruktionen mit x86-64-Assembly.

Notwendigkeit von Fallunterscheidungen, z.B. REM: (Semantik nach¹, S. 44f.)

¹A. Waterman u. a. (2017). The RISC-V Instruction Set Manual. Volume I: User-Level ISA. Version 2.2.

Übersetzerfunktionen (2)

Realisierung der RISC-V-Instruktionen mit x86-64-Assembly.

Notwendigkeit von Fallunterscheidungen, z.B. REM: (Semantik nach¹, S. 44f.)

```
mov rax, [r_info.base + 8 * instr.reg_src_1]
cmp qword ptr [r_info.base + 8 * instr.reg_src_2], 0
jnz not_div_zero
mov [r_info.base + 8 * instr.reg_dest], rax
jz div_zero

not_div_zero:
xor rdx, rdx
idiv qword ptr [r_info.base + 8 * instr.reg_src_2]
mov [r_info.base + 8 * instr.reg_dest], rdx

div_zero:
```

¹A. Waterman u. a. (2017). The RISC-V Instruction Set Manual. Volume I: User-Level ISA. Version 2.2.

Übersetzerfunktionen (3)

Realisierung der RISC-V-Instruktionen mit x86-64-Assembly.

Emulierung der system calls für ECALL:

Übersetzerfunktionen (3)

Realisierung der RISC-V-Instruktionen mit x86-64-Assembly.

Emulierung der system calls für ECALL:

```
void translate_ECALL(const t_risc_instr &instr, const register_info &r_info) {
    save_risc_registers(r_info);
    a->mov(x86::rdi, instr.addr);
    a->mov(x86::rsi, r_info.base);
    typedef void emulate(t_risc_addr addr, t_risc_reg_val *registerValues);
    emulate *em = &emulate_ecall;
    a->call(reinterpret_cast<uintptr_t>(em));
}
```


Übersetzerfunktionen (3)

Realisierung der RISC-V-Instruktionen mit x86-64-Assembly.

Emulierung der system calls für ECALL:

```
void translate_ECALL(const t_risc_instr &instr, const register_info &r_info) {
    save_risc_registers(r_info);
    a->mov(x86::rdi, instr.addr);
    a->mov(x86::rsi, r_info.base);
    typedef void emulate(t_risc_addr addr, t_risc_reg_val *registerValues);
    emulate *em = &emulate_ecall;
    a->call(reinterpret_cast<uintptr_t>(em));
}
```

- Behandlung von system calls zur Laufzeit
- Übersetzung, Adaptieren bzw. Emulieren der benötigten Funktionalität

Überblick

Ziel: Caching bereits übersetzter Basic Blocks für nochmalige Ausführung (teure Übersetzung nur einfach)

Überblick

Ziel: Caching bereits übersetzter Basic Blocks für nochmalige Ausführung (teure Übersetzung nur einfach)

Ansatz

Ziel: Caching bereits übersetzter Basic Blocks für nochmalige Ausführung (teure Übersetzung nur einfach)

Idee: Hashtable für schnellen Lookup der Blöcke, Startadresse des RISC-V-Blocks als Key

Ansatz

Ziel: Caching bereits übersetzter Basic Blocks für nochmalige Ausführung (teure Übersetzung nur einfach)

Idee: Hashtable für schnellen Lookup der Blöcke, Startadresse des RISC-V-Blocks als Key

Einträge speichern RISC-V-Blockstartadresse sowie die Adresse des übersetzten Blocks:

```
typedef struct {
   t_risc_addr risc_addr;
   t_cache_loc cache_loc;
} t_cache_entry;
```


Ansatz

Ziel: Caching bereits übersetzter Basic Blocks für nochmalige Ausführung (teure Übersetzung nur einfach) **Idee:** Hashtable für schnellen Lookup der Blöcke, Startadresse des RISC-V-Blocks als Key

Einträge speichern RISC-V-Blockstartadresse sowie die Adresse des übersetzten Blocks:

```
typedef struct {
   t_risc_addr risc_addr;
   t_cache_loc cache_loc;
} t_cache_entry;
```

Lookup als Open Hashing mit linearem Sondieren, via

```
inline size_t hash(t_risc_addr risc_addr) {
   return (risc_addr & 0x0000FFF0u) >> 4u;
}
```


Einsatz im System

Zugriff auf den Cache von außen via

```
t_cache_loc lookup_cache_entry(t_risc_addr risc_addr);
void set_cache_entry(t_risc_addr risc_addr, t_cache_loc cache_loc);
```

wobei UNSEEN_CODE von lookup_cache_entry(...) einen nicht im Cache enthaltenen Block anzeigt.

Einsatz im System

Zugriff auf den Cache von außen via

```
t_cache_loc lookup_cache_entry(t_risc_addr risc_addr);
void set_cache_entry(t_risc_addr risc_addr, t_cache_loc cache_loc);
wobei UNSEEN_CODE von lookup_cache_entry(...) einen nicht im Cache enthaltenen Block anzeigt.
```

→ Dynamische Reallokation der Größe bei Kapazitätsgrenzen

Einsatz im System

Zugriff auf den Cache von außen via

```
t_cache_loc lookup_cache_entry(t_risc_addr risc_addr);
void set_cache_entry(t_risc_addr risc_addr, t_cache_loc cache_loc);
wobei UNSEEN_CODE von lookup_cache_entry(...) einen nicht im Cache enthaltenen Block anzeigt.
```

→ Dynamische Reallokation der Größe bei Kapazitätsgrenzen

Ausführung bereits übersetzter Blöcke via

```
typedef void (*blk)(void);
((blk) loc)();
```


Literaturverzeichnis

Waterman, A. u. a. (2017). The RISC-V Instruction Set Manual. Volume I: User-Level ISA. Version 2.2.