

COPY

390

TRASANA

(D)

TECHNICAL REPORT NO. 3-78

7 PAA ABA-BB-3-78-VOL-5

FLIGHT PROFILE PERFORMANCE HANDBOOK

VOLUME V - YAH-64 (ADVANCED ATTACK HELICOPTER-AAH)

mathen W. Alleck, 'r. Man T. Molfe

SEPTEMBER 1978

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The state of the s

DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO 88002

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

WARNING

Information and data contained in this document are based on the input available at the time of preparation. The results may be subject to change and should not be construed as representing TRADOC position unless so specified.

DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO 88002

TRASANA

TECHNICAL REPORT NO. 3-78

FLIGHT PROFILE PERFORMANCE HANDBOOK

VOLUME V - YAH-64 (ADVANCED ATTACK HELICOPTER-AAH)

PREPARED BY

Nathan H. Cleek, Jr. Alan J. Wolfe

SEPTEMBER 1978

DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO 88CO2

ACKNOWLEDGMENT

At AVRADCOM, Mr. Harold Sell, Mr. James O'Malley and Mr. Dale Pitt provided and validated the data in the Handbook. They also assisted in devising the formats to assure clarity in the data presentation and discussion.

At TRASANA, Mr. Frank Gonzalez provided help and guidance during the preparation of the Handbook.

TABLE OF CONTENTS

	Page
Acknowledgment	iv
Index of Tables and Figures	vi
Chapter 1 - Introduction	1
Chapter 2 - Flight Profile Example	5
Chapter 3 - Performance Data Table Descriptions	13
Chapter 4 - YAH-64 Performance Data Tables	27
Appendix A - Functions For Calculating Basic Fuel Flow	119
Appendix B - Function For Calculating Delta Fuel Flow For Drag	123
Appendix C - Function For Calculating Ground Idle Fuel Flow	127
Appendix D - Functions for Calculating Gross Weight Limits for Takeoff	129
Appendix E - Short Description of YAH-64 Data Source	133

INDEX OF TABLES AND FIGURES

VALL SA (AALL)	Page
YAH-64 (AAH)	vii
Illustration 2-1 - Mission Example	3
Table 2-1 - Flight Plan Example	
Table 2-2 - Ground Idle Fuel Flow Table	6
fable 2-3 - Basic Fuel Flow	7
Table 2-4 - Basic Fuel Flow	ទ
Table 2-5 - Completed Flight Plan Example	9
	11
Table 3-1 - Basic Fuel Flow	15
Table 3-2 - Delta Fuel Flow for Drag	16
Figure 3-1 - Takeoff Criteria	
Table 3-3 - Gross Weight Limit for Takeoff	19
Table 3-4 - Gross Weight Limit for Takeoff	21
Table 3-5 - Velocity Limits Table	22
	24
Table 3-6 - Expanded Flight Plan Example	25
Tables 4-1 to 4-24 - Basic Fuel Flow Data	29
able 4-25 to 4-48 - Delta Fuel Flow for Drag Data	55
able 4-49 - Ground Idle Fuel Flow Data	
ables 4-50 to 4-55 - Gross Weight Limits Data	81
ables 4-56 to 4-79 - Velocity Limits Data	85
The second of th	02

INTRODUCTION

. PURPOSE

The purpose for preparing this handbook series is fourfold: (a) to validate YAH-64 performance data quickly, (b) to reduce the manpower and time to prepare accurate flight profiles, (c) to standardize performance data so that the analysis community can benefit from a single reference in conducting studies and (d) to provide a handbook that can be used for training in the mission profile planning area.

2. BACKGROUND

The YAH-64 performance data contained in this Flight Profile Performance Handbook (FPPH) series was originally acquired as a data base for the Aircraft Mission Processing Simulation (AMPS) model. AMPS is a computer program developed by the Aviation Systems Analysis Branch of the US Army TRADOC Systems Analysis Activity (TRASANA) to support Cost and Operational Effectiveness Analyses (COEAs). AMPS generates detailed flight profiles for a wide variety of helicopter missions. The data was provided TRASANA by the Army Aviation Research and Development Command (AVRADCOM) and was tne most accurate data available to AVRADCOM at the time of handbook publication. In structuring the data base for AMPS it was noted that the data, when properly organized, could provide a method of doing quick and simple flight profile simulations. This volume presents the YAH-64 data and explains how it can be used.

OBJECTIVES OF THE HANDBOOK

- a. Data Validation. This volume of the handbook contains tables with the precise performance data and format required to develop flight profiles for computer simulations. Using the handbooks as a reference, the individual project manager (PM) will be able to quickly validate or update as required all associated data contained in the different tables. If this procedure is followed by the various PMs, support of Helicopter COEAs and other analyses can be efficiently implemented.
- b. Flight Profile Development. Much of the manpower and time spent in preparing flight profiles for supporting aircraft COEAs is dedicated to look-up, correlation and validation of performance data. Once the procedure contained in this handbook is implemented, flight profiles can be easily prepared. What normally took one man 4 to 5 days to prepare can now be prepared in 3 to 4 hours.

- c. Standardization of Performance Data. Each of the PMs has been contacted by AVRADCOM to validate the performance data contained in each handbook in this series. Once each handbook is published, the data contained will be kept current as of the publication date. Since the requests for current information are constantly being frowarded to the PMs by analysis groups, this handbook can be a reference and assure a commonality in studies within the community.
- d. Training for Planning Missions and Flight Profiles. For training purposes each handbook can stand alone. It is only a matter of following the example provided and applying the proper data to fit the flight profile desired. Although the example shown is simplistic, the methodology may be expanded to apply to any flight profile no matter how complex.

4. OTHER VOLUMES

This handbook is one of a series that covers the helicopters in the US Army inventory. The complete set of handbooks and their subjects are:

Volume I - FPPH Description

Volume II - UH-60A (BLACKHAWK)

Volume III - AH-1G (COBRA)

Volume IV - AH-1S (COBRA)

Volume V - YAH-64 (Advanced Attack Helicopter [AAH])

Volume VI - OH-58C (KIOWA)

Volume VII - CH-47 (CHINOOK)

Volume vill - CH-54 (TARHE)

Volume IX - UH-1E (HUEY)

5. GENERAL HANDBOOK DESCRIPTION

a. Performance Data. The data contained in these volumes is YAH-64 performance data compiled from the results of actual experiments. It is not engineering data and is not intended to serve as a base for future helicopter construction or acquisition. The more mature the helicopter becomes, the less likely there will be a change in the basic performance data.

b. Handbook Organization. This volume is one of a series of volumes as identified in paragraph 4 above. Volume I is a description of the methodology used to develop the tables for each of the other volumes. This volume and all other volumes except Volume I provides a simplified flight profile example in Chapter 2. Chapter 3 provides an explanation of each of the five types of data tables contained in the handbook. The five types of tables deal with: (1) Basic Fuel Flow Data, (2) Delta Fuel Flow for Drag Data, (3) Ground Idle Fuel Flow Data, (4) Gross Weight Limits Data and, (5) Velocity Limits Data. Chapter 4 contains the actual tables to be used for developing flight profiles.

CHAPTER 2

FLIGHT PROFILE EXAMPLE

GENERAL

This chapter provides an example of how to develop a flight profile, albeit simple, that can be extended to cover any number of stops, loads and distances all depending on helicopter capability and fuel available.

2. DISCUSSION

- a. The main question this example of a flight profile will answer is, "Do I have enough fuel to fly the proposed mission?"
- b. Suppose a pilot is to fly a simple support mission in an YAH-64 helicopter that calls for flying (as shown in illustration 2-1) from point A (the air base), to point B (the holding area) to point C (the combat area) and return to A.

Illustration 2-1

c. The other information given is airspeed (AS) from A to B which is to be 70 knots (kts), from B to C 40 kts, and from C to A 60 kts. The YAH-64 helicopter is to be flown at an ambient temperature of 15°C. The leg from A to B will be flown at 4,000 ft,* while legs B to C and C to A will be at 3,000 ft. The ground elevations at A, B and C are all 2,000 ft. The mission plan also shows 10 minutes idle at A before takeoff, 15 minutes idle at B, 20 minutes Hover in Ground Effect (HIGE) at C and 5 minutes idle on returning to A for shut-down. The YAH-64 will take off with a gross weight (GW) of 17,500 lbs at A and continue to carry this weight until leaving C to return to A, then the GW will be 16,000 lbs.

^{*}All altitudes are in reference to sea level.

d. The flight plan is prepared by drawing up a table similar to Table 2-1 below. By filling in the blanks under fuel, it can be determined if the total is too large for the helicopter.

TABLE 2-1

Helicopter: YAH-64

Temperature: 15°C

LEG	DISTANCE N.M.	AS KTS	TI MIN	ME HR	GW LBS	ALT FT	FUEL LBS
Idle G A	-		10	1/6	•	2000	
A - B	35	70	30	1/2	17,500	4000	
Idle @ B	-	_	15	1/4	-	2000	
B - C	40	40	60	1	17,500	3000	
HIGE @ C	-	-	20	1/3	17,500	2000	
C - A	60	60	60	1	16,000	3000	
Idle @ A	-	-	5	1/12	-	2000	
h			*****		-	Total	

e. First fill in Idle @ A, Idle @ B, and 2nd Idle @ A since they will all come from Table 2-2. In each case the idle is at 2000 ft and a temperature of 15° C. Consulting the ground idle fuel shown in Table 2-2, the value of 474 lbs/hr is at the intersection of 2000 ft and 15° C.

lst Idle $@A = 1/6 \times 474 = 79 \text{ lbs}$

Idle $@B = 1/4 \times 474 = 119 \text{ lbs}$

2nd Idle @ A = $1/12 \times 474 = 40 \text{ lbs}$

TABLE 2-2

GROUND TOLE FUEL FLOW

AIRCRAFT - YAH-64

		PRES	PRESSURE ALTITUDE (FT)	TUDE (FT)			
		SEA LEVEL	2000	000#	0000	8000	າດຄວລ
TEMPERATURE	-25 C	524	440	60 1	379	351	375
וא נו ייני ייני	3 5-	264	456	424	391	365	815
9.9 C L N	J 51	510	474	946	404	575	Jac
	35 C	275	06F	T.O. T	422	392	362

ENTRIES ARE AIRCRAFT FUEL FLOW KATES IN LBS/HR

TABLE 2-3

FORC FUEL FLO

FUEL FLOW M TIN TO THE GIVEN CONDITIONS TO LEGYNN PUEL PRESENTURE: 18 4

MANNEY - TANABLE

GRUSSS FLIGHT RODE (NTS) 10,000 636 750 707 649 592 550 625 599 8.0 10.05 11,500 753 845 766 647 552 560 599 8.0 10.05 13,000 854 952 640 646 652 640 656 77 10.05 14,500 954 952 731 656 77 762 675 772 856 1100 14,500 916 1032 966 777 702 658 768 772 885 1100 16,000 1004 1142 989 236 759 768 778 850 1464 17,500 1106 1266 1083 906 781 781 797 356 999 1464	1	~~~	Υ	T	Υ	T	7	T	γ
ENUSS FLIGHT HODE (NTS) ENUSS FLIGHT HODE (NTS) 1.550 BAb 750 707 649 592 550 625 599 B 1.500 753 842 766 647 645 646 770 84		160	364	500.	1100	1132	1222	1401	1999
ENUSS FLIGHT NODE (NTS) ENUSS FLIGHT NODE (NTS) LISSO HIGE HOWL NOL HO 60 60 100 1.500 A36 750 705 649 592 550 625 1.500 A53 A45 A56 A46 A56 A47 A65 4.500 B54 A35 A77 A77 A77 A76 6.000 B16 B142 A89 A36 A76 A77 6.000 B104 B142 A89 A36 A56 A77 7.500 B106 B106 B106 A17 A79 A79		1		6,0	8 = 3	(2) (2)	6	256	111
ENUSS FLIGHT HODE (NTS) ENUSS FLIGHT HODE (NTS) ENUSS HIGE HOWE NOE 40 60 60 0.000 AB 42 750 707 649 592 550 1.500 753 842 766 607 622 610 3.000 B54 932 602 731 656 647 4.500 916 1032 906 777 702 668 6.000 1004 1142 989 635 735 7.500 1106 1260 1063 906 717 755	;	120	460	710	742	772	810	35b	921
ERUSS LEGHIS LEGHIS 1.800 1.500		1001	629	618	675	. 7G8	249	797	853
ERUSS LEGHIS LEGHIS 1.800 1.500	E (NTS	និក	5.50	019	249	658	731	781	535
ERUSS LEGHIS LEGHIS 1.800 1.500	47 NOD	39	245	622	359	702	755	√6 1 th	873
68055 (.85) MiGE HOGE 1.500 3.000 854 935 4.500 916 1032 7.500 1106 1260 1	FL16	40	549	637	731	77.5	£35	30 ó	266
6.800 854 854 8500 916 854 9106 916 916 755 9100 916 916 755 9100 916 916 916 916 916 916 916 916 916 916		NOE	757	766	50 ž	906	686	1083	1221
1.500 14.500 17.		HOGL	750	84:	566	1032	1147	1260	1410
1.500 1.500 3.000 3.000 4.500 7.500		HlGE	0 G d	753	854	916	1004	1106	1222
	S S S S S S S S S S S S S S S S S S S	(85	10,360	11.500	13,000	14.500	16.000	17.500	19.000

TABLE 2-4

BASIC FUEL FLOW
FUEL FLOW KATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2000 FT TEMPERATURE: 15 C

AIRCHAFT - TAM-64

GRUSS				FLIGHT	HT MODE)E (XTS)	-3			
(L)	HIGE	HOGE	NOE	40	9.0	9.0	100	120	140	160
10.000	703	785	733	651	629	611	799	740	874	1107
11.500	171	863	190	717	769	639	489	762	988	1147
13,000	849	945	153	757	484	671	769	787	606	1162
14.500	444	1036	616	803	723	210	738	408	932	1196
16.000	1005	1134	966	855	769	751	772	041	463	1232
17.500	1099	1250	1001	911	323	296	418	880	1905	1347
19,000	1202	1371	1177	484	844	847	863	929	1075	101

Potice the conversion from minutes to hours. These values must be used because fuel flow is in lbs/hr.

f. The fuel flow for leg A-B of the mission is calculated next. This leg takes place at an altitude of 4,000 ft. and a temperature of 15°C. Thus the necessary information is contained in Table 2-3. teg A-B is at 70 kts and 17,500 lbs. This is not one of the values given but 60 kts is 815 lu/hr and 80 kts is 781 lb/hr. Interpolation gives the value of 798 lb/hr for a 70 kts airspeed. Since the lcg is a half hour long:

 $Leg A-B = 1/2 \times 798 = 399 lbs$

g. Leg B-C is calculated next. Since this takes place at a 3,000 ft. altitude, it is necessary to interpolate between Table 2-3 (4,000 ft) and Table 2-4 (2,000 ft). From Table 2-3 the value for 4,000 ft, 15°C, 40 kts and 17,500 lbs is 906 lb/hr. From Table 2-4 the value for 2,000 ft, 15°C, 40 kts and 17,500 lbs is 911 lb/hr. Interpolation gives the value of 909 lb/hr for a 3,000 ft altitude. Since the leg is one hour long:

Leg B-C = $1 \times 909 = 909 \text{ lbs}$

h. HIGE at C is calculated next. Since this occurs at 2,000 ft and 15°C the necessary value is found in Table 2-4. At 17,500 lbs, HIGE uses 1099 lb/hr of fuel. Since the hover is one-third of an hour long:

HIGE $@ C = 1/3 \times 1099 = 366 \text{ lbs}$

i. Leg C-A is the last calculation. Since it takes place at a 3,000 ft altitude, it is once again necessary to interpolate between values from Table 2-3 and Table 2-4. Table 2-3 gives a rate of 755 lb/hr for 4,000 ft, 15°C, 16,000 lbs and 60 kts. Table 2-4 gives a rate of 769 lb/hr for 2,000 ft, 15°C, 16,000 lbs and 60 kts. By interpolation, 762 lb/hr is the value needed. Since the leg is one hour long:

Leg C-A = $1 \times 762 = 762 \text{ lbs}$

j. The flight profile can be finished by filling in Table 2-1 as shown in Table 2-5.

TABLE 2-5

Helicopter: YAH-64
Temperature: 15°C

LEG	DISTANCE N.M.	AS KTS	TI MIN	ME HR	GW LBS	ALT FT	FUEL LBS
Idle @ A	-	~	10	1/6	-	2000	79
A - B	35	70	30	1/2	17,500	4000	399
Idle @ B	-	-	15	1/4	-	2000	119
B - C	40	40	60	1	17,500	3000	909
HIGE @ C	-	-	20	1/3	17,500	2000	366
C - A	60	60	60	1	16,000	3000	762
Idle @ A	-	_	5	1/12	-	2000	40
	<u> </u>			nadio agus attachinguismo casa comp a	- Propries and the second section in	Total	2674

- k. Although only three look-up tables were used for this example, each type of table has several conditions that are changed so that a wide band of performance parameters can be addressed. The discussion on each of the five types of tables is contained in Chapter 3. A succinct description of each of these five types of tables is:
- (1) Basic Fuel Flow Data: Gives the rate the aircraft uses fuel dependent on the given flight conditions.
- (2) Delta Fuel Flow for Drag Data: Gives the additional rate of fuel flow to be added to the basic rate for external drag.
- (3) Ground Idle Fuel Flow Data: Gives the rate fuel is used when the aircraft is on the ground with its engine running.
- (4) Gross Weight Limits Data: A check on whether or not the aircraft has enough lift to take off with a given weight.
- (5) Velocity Limits Data gives the optimum (long range) speed and maximum rates of speed.

CHAPTER 3

PERFORMANCE DATA TABLE DESCRIPTIONS

1. GENERAL

This chapter describes each of the five basic type tables used for developing flight profiles. The variables within each type of table are described as well as how the specific data required can be extracted.

2. BASIC FUEL FLOW DATA

- a. The basic rate of fuel flow* is determined by five variables:
- (1) Type of aircraft
- (2) Altitude (Air Pressure)**
- (3) Temperature***
- (4) Gross Weight***
- (5) Flight Mode
- b. In each table (see Table 3-1) within the basic type, the first three variables are held constant for the whole table, i.e., (a) Type of Aircraft, (b) Altitude (Air Pressure) above sea level, and (c) Temperature. These variables are stated at the top of each table.
- c. There are seven rows of fixed gross weights: 10,000 lbs to 19,000 lbs inclusive at 1,500 lb increments. The ten columns are fixed flight modes.
- (1) The first column is Hover In Ground Effect (HIGE). HIGE is used for hovers at a height of 2 feet or less and a component of forward flight 10 kts or less.
- (2) The second column is Hover Out of Ground Effect (HOGE). This is used for hovers at a height of more than 2 feet.

^{*}The basic fuel flow data represents a clean drag configuration with all doors closed, no wing stores, and no external sling loads.

^{**}All altitudes or air pressures are feet above sea level.

^{***}For simplicity, all temperatures are considered to be the average temperature in which the helicopter is operating (Degrees Centigrade).

****Total vehicle weight in pounds.

- (3) The third column is Nap of the Earth (NOE). This is defined as all flight for variable speeds from 0 to 40 kts and variable altitudes.
- (4) The remaining seven columns are for given airspeeds* (in kts) as the flight mode.
- d. There are 24 of these basic fuel flow charts. Each chart is for a different combination of Air Pressure (Altitude) and temperature.
- e. The Basic Fuel Flow Data is the main table used in simulating a flight profile. For example, assume a pilot's flight path will require 30 minutes of flight at 80 kts airspeed, 4000 ft. altitude, 15°C and a gross weight of 16,000 lbs in a YAH-64 helicopter. Using Table 3-1 at a gross weight of 16,000 lbs and an airspeed of 80 kts, the helicopter will use 731 lbs/hr fuel, i.e., for 30 minutes, 366 lbs of fuel will be used.
- f. The gross weights values selected provide the basic range of load carrying capability for the ten flight modes of the YAH-64 helicopter. Within the gross weight band shown, linear interpolation** is quite accurate for estimating the fuel flow rates.
- g. For example, using Table 3-1, if the helicopter's gross weight was 15,000 lbs and if the flight mode was 60 kts, the fuel flow cannot be found directly. But by interpolating between 60 kts, 14,500 lbs -702 lbs/hr and 16,000 lbs -755 lbs/hr, the basic fuel flow rate for 15,000 lbs is 720 lbs/hr. In this example, if the helicopter flies in this mode for 30 minutes, 360 lbs of fuel will be used.
- h. As altitude and/or temperature changes occur, different tables are used to look up the aircraft's basic fuel flow rate for each leg of the flight path. Care must be taken that the proper table is used.
- i. Appendix A contains a set of functions that will give a good approximation of the basic rate of fuel flow.
- 3. DELTA FUEL FLOW FOR DRAG DATA
 - a. The delta fuel flow for drag is also determined by five variables:
 - (1) Type of Aircraft
 - (2) Altitude (Air Pressure)
 - (3) Temperature
 - (4) Drag Surface (Equivalent Square Footage)
 - (5) Air Speed

^{*}All references to airspeeds are to true airspeeds.

^{**}All references to interpolation are linear interpolations. See FPPH, Volume I, Chapter 3 for a discussion on the accuracy of interpolation.

TABLE 3-1

EASIC FUEL FLOW FUEL FLOW KHTES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 4000 FT TENFERATURE: 15 C

79.	
- YAM-	
IRCHAFT	
4	

	160		5011	1005	1.00		1132	1242		9 0
	140	l	0	35	â u g	1 7	000	976	300	
	120	0.4	5	7:0	742		- [8101	AC.	
_	130	675		6 4 8	675	707	5	749	787	AS.
E (KTS	80	C is a		910	647	428		731	781	F 3.C
FLIGHT NODE (KTS)	39	542		229	3 5 9	70%		755	,61±	873
FL16	107	449		00	731	775	1	ر ا ا	90.6	250
	NON	707	 	3	602	706	†	464	1063	1201
	HOGE	766	9 6	0	933	1032	7 -	7.11	1260	1410
	HIGE	080	752	25.	স এ	916	71.0	500	1106	1222
ME1GH1S	.	10.000	11.500		13,006	14.500	16.000		17.500	19.000

TABLE 3-2 Correction fuel Flow LBS/HR FOR External Orag

AIRCHAFT - YAH-64

PRESSURE: 4000 FT

TEMPERATURE: 15 C

				AIR	R SPEED	Z	KTS	
		40	60	08	130	120	C# 1	160
DRA PR	D • E	1	3	7.	: 5	27	42	7.1
SGUARE FEET	16.0	Ž	.0	14	62	5.3	9.8	14.4

- b. Like the basic fuel flow tables, there are 24 tables for delta fuel flow for drag.
- c. There are two fixed rows of equivalent square feet of drag: 5.0 equivalent sq ft and 10.0 equivalent sq ft.
- d. The seven columns are for airspeeds in kts of: 40 kts, 60 kts, 80 kts, 100 kts, 120 kts, 140 kts, and 160 kts.
- e. When an external load is placed on the helicopter, the amount of fuel consumed per hour increases. The delta fuel flow for drag tables indicate how much extra fuel consumption to add to the basic fuel flow rate.
- f. In the example given earlier, a 30 minute flight at 80 kts airspeed, 4000 ft altitude, 15°C and a gross weight of 16,000 lbs was used. Using the basic fuel flow tables, the basic fuel flow rate was 731 lbs/hr. Assuming for this new example that part of the load is external and inducing a 5.0 equivalent sq ft external drag, the delta fuel flow for drag (Table 3-2) shows 7 lbs/hr should be added to the basic fuel flow rate. Thus the basic fuel flow rate becomes 731 + 7 or 738 lbs per hour and for a half-hour flight, 369 lbs of fuel will be used instead of the 366 lbs figured without an external load.
- g. Appendix B contains a function that will give a good approximation of the delta fuel flow for drag.

4. GROUND IDLE FUEL FLOW DATA

- a. The ground idle fuel flow rate is determined by only three variables:
 - (1) Type of Aircraft
 - (2) Altitude (Air Pressure)
 - '3' Temperature
- b. There is only one ground idle fuel flow table (shown as Table 2-2). The table has four rows of temperatures: -25°C, -5°C, 15°C and 35°C, and six columns of altitudes: Sea Level, 2000 ft, 4000 ft., 6000 ft., 8000 ft., and 10000 ft.
- c. The ground idle ruel flow table is used as discussed in the example flight profile in Chapter 2 (Table 2-2). The YAH-64 helicopter idling for 20 minutes at 2000 ft. altitude and 15°C, (across the row labeled 15°C and down the column labeled 2000) find the intersection at 474. Thus, the YAH-64 uses 474 lbs/hr at these conditions and since it is idling for 20 minutes or 1/3 of an hour, it will use 158 lbs of fuel.

- d. If the helicopter had only been 1000 ft. above sea level, the consumption rate would be found by interpolating between the sea level rate of 510 lbs/hr and the 2000 ft. rate of 474 lbs/hr which would be 492 lts/hr. In 1/3 of an hour 164 lbs of fuel would be used.
- e. Appendix C contains a function that will give a good approximation of the ground idle fuel flow.

GROSS WEIGHT LIMITS DATA

- a. Gross weight limits tables are intended to show whether or not the aircraft can safely take off for four sets of criteria. These criteria are defined in the following paragraphs:
- (1) Criteria #1 is based on the helicopter using 100% of Maximum Power for take off and having enough power to lift straight up and above ground effect (See Figure 3-1). Once it is in hovering above ground effect level the helicopter begins forward flight until it acquires transitional lift and is able to climb at 450 ft/min (a desired standard rate of climb) to the desired altitude. This criteria has some risk since the pilot has no reserve power. It has less risk than Criteria #3 but more than Criteria #2 thus it is considered to be "Middle of the Road" risk.
- (2) Criteria #2 (Figure 3-1) is based on the helicopter using 95% of Maximum Power for take off and enough power to immediately begin to climb at a rate of 450 ft/min. This is the least risky criteria since the pilot has power in reserve and is still able to climb at a satisfactory rate.
- (3) Criteria #3 (Figure 3-1) has the most risk. Using 100% of Maximum Fower the helicopter will only hover in ground effect. Therefore, at the altitude of 2 feet or less, the pilot must begin forward flight and gradually increase airspeed to acquire transitional lift to climb. The reasons for its high risk are readily apparent. First, there is no power in reserve. Second, the pilot must begin forward flight at a very low altitude.
- (4) Criteria #4. Structural Gross Weight Limits is the total upper limit of gross weight the helicopter can carry under any take off criteria.
 - b. Gross Weight Limits are determined by four variables:
 - (1) Type of Aircraft
 - (2) Criteria Chosen
 - (3) Altitude (Air Pressure)
 - (4) Temperature

CRITERIA #2

(LEAST RISKY)

95% OF RATED POWER. VERTICAL RATE OF CLIMB 450 FT/MIN. HOGE

FLIGHT

CRITERIA #3
(MOST RISKY)

Figure 3-1

- c. Additionally, writeria #1, #2, and #3 differ du to engine power limits or transmission power limits of the aircraft. Thus there are six tables:
 - (1) Criteria #1 (Due to engine)
 - (2) Criteria #1 (Due to transmission)
 - (3) Criteria #2 (Due to engine)
 - (4) Criteria #2 (Due to transmission)
 - (5) Criteria #3 (Due to engine)
 - (6) Criteria #3 (Due to transmission)
- d. The structural gross weight limit is a single value for each helicopter and is only dependent on the type helicopter. The YAH-64 structural gross weight limit is given as 17,650 lbs and is listed at the bottom of each table. As the name implies, it is simply not safe to expect the YAH-64 structure to maneuver normally when the total weight is larger than that value.
- e. In simulating inflight profile, the gross weight limits tables are used to check whether the aircraft is going to be too heavy to take off under the given conditions. As an example, assume an YAH-64 pilot planned a mission that called for using take off criteria #1 and the take off was to be at 6000 ft., 15°C, and a gross weight of 16,300. Three checks would be required: First, does this gross weight exceed the structural gross weight limit? Second, does it exceed Criteria #1 (due to transmission)? Third, does it exceed Criteria #1 (due to engine)? In the example given, the answer to all three questions is "No", the take off will not exceed aircraft limits. (Tables 3-3 and 3-4)
- f. If the assigned gross weight had been 16,400 lbs, it would have exceeded the value given for 6,000 ft. and 15°C at Criteria #1 (Due to engine). (Table 3-3) The mission could not be flown as planned. The plan could be changed, for example to take off at 4000 ft. (which might not be practical) or change to take off Criteria #3 (which is more risky but has higher limits).
- g. If the assigned gross weight had been 17,800 lbs., it would have exceeded the structural limits. To perform the mission the only choices would be to lighten the load or get another type helicopter.
- h. Appendix D contains a set of functions that will give a good approximation of the gross weight limits for takeoff.

TABLE 3-3

GROSS WEIGHT LIMITS

(DUE TO ENGINE)

FOR TAKEOFF CRITERIA #1

IGGS OF MAXIMON POWER (HOGF)

AIRCRAFT - YAH-64

			ä	RESSURE A	PRESSURE ALTITUDE (FT)	: 1)	
		SEA LEVEL	2005	4000	ນຕຽຈ	SCn:	5000 t
	-25 C	21985	12502	19010	79911	16372	15185
- X X	J 5-	41917	20575	19142	+5221	16503	15751
	15 C	69702	18931	17001	10346	15100	13947
	35 C	19521	16746	15527	14357	15107	12100

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LAS

STRUCTURAL GROSS AEIGHT LIMIT: 17.650 LHS

TABLE 3-4

1

GROSS WEIGHT LIMITS

(DUE TO TRANSMISSION)

FOR TAKEOFF CRITERIA #1

100% OF NAXIMUM POWER (HOGE)

AIRCRAFT - YAH-64

<i>:</i>			12	PRESSURE A	ALTITUDE (FT)	FT.)	
		SEA LEVEL	2002	4000	0004	3 6 7	
	- 20 -					20.20	00001
TEMPERATUKE	7 67	15561	19216	18986	18538	15131	17655
	<u>ر</u> ا						
DEGREES	3.	17176	15870	18526	18125	17625	74171
	-	: F : C -					
CENTIGRADE	•	4/981	18536	18143	. 17682	17182	16667
	7 72						10001
	; ;	1000	18181	17733	17241	16736	10.01
				•		,	

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LAS

STRUCTURAL GROSS WEIGHT LIMIT: 17:650 LRS

6. VELOCITY LIMITS DATA

- a. There are various types of data given in these tables but like the gross weight limits tables, they are primarily restraints on what can be expected of a helicopter in planning a mission profile. Velocity limits tables are influenced by five variables:
 - (1) Type of aircraft
 - (2) Air pressure (altitude)
 - (3) Temperature
 - (4) Gross weight
 - (5) Condition or limit
- b. Items (1) through (4) are self-explanatory. There are five types of information that can be iisted under (5):
 - (1) Long range
 - (2) Maximum continuous power
 - (3) Maximum power (due to engine limits)
 - (4) Transmission limits
 - (5) V_{ne} (velocity never exceed)
- c. For each aircraft, there are 24 Velocity Limits Tables depending on air pressure and temperature combination. Table 3-5 is an example of the content of the Velocity Limits Table.
- d. The two columns under Long Range (Table 3-5) give the optimum speed and fuel flow for each set of variables #1 through #4 above. Thus the YAH-64 helicopter operating at 2000 ft., temperature 15°C, and having a gross weight of 16,000 lbs will fly a longer distance if the velocity is kept at 143 kts and will use 997 lbs/hr of fuel at that velocity.
- e. Maximum continuous power gives the fastest speed at which a helicopter can fly for long periods (30 minutes or more) and the associated fuel flow rate. An example from Table 3-5 would be an YAH-64 helicopter at 2000 ft. and 15°C weighing 16,000 lbs could fly 156 kts with a fuel usage of 1152 lbs/hr.

TABLE 3-5

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)

PRESSURE: 2000 FT TEMPERATURE: 15 C

AIRCRAFT - YAH-64

	N N	LONG RANGE	CONTINUOUS POWER	X UOUS ER	POSER FORER	NE N	TRANSM	TRANSMISSION LIMITS	
	(XEL)	(LBS/AK)	(KTS)	(LBS/AR)	X TEL	(1 BS/HR)	(KEL)	F F F F F F F F F F F F F F F F F F F	_
46.806.5 6.16.15 6.16.5 8.16.5					•				~
10.000	139	708 .	103	1152	177	1365	175	1331	_
11.500	141	269	161	1152	175	1365	173	1531	
13,000	142	724	159	1152	172	1365	170	1331	_
14,500	143	404	158	1152	176	1365	168	1331	· · · ·
16.000	143	26%	150	1152	168	1365	166	1331	·
17,500	144	2501	153	1152	150	1365	160	1331	
19,000	140	1973	147	1152	157	1365	156	1 5 2 1	

- f. Maximum power (engine and transmission limits) show the Laximum speeds the aircraft can structurally attain for short periods of time (less than 30 minutes). Thus the YAH-64 helicopter at 2000 ft and 15°C weighing 16,000 lbs has an engine that is capable of producing enough power to fly 168 kts but the transmission limits the aircraft to 166 kts. Between these two columns then, the flight cannot exceed 166 kts with a fuel flow rate of 1331 lbs/hr.
- g. There is another limiting factor called V_{ne} (velocity never exceed). This velocity limit is determined by helicopter structural considerations. V_{ne} 's for YAH-64 have not yet been determined. When they are, they will be included in later editions of this volume.

7. DETAILED FLIGHT PROFILE USING ALL PERFORMANCE DATA TABLES

The example of a Flight Profile in Chapter 2 was intentionally simplified to assure clarity. The description of the various tables in this handbook, however, indicates a more complex set of considerations are normally encountered in developing the flight profile. With the description provided in this chapter, additional information should be included in the flight plan beyond that shown in the example and a suggested format is provided below in Table 3-6.

TABLE 3-6

Helicopter: Altitude: Temperature:

							
LEG	DISTANCE	AS	CHECK VELOCITY LIMIT	TIME	GW (LBS)	DRAG	FUEL
							·

Needed for each take of:
Weight at take off:
Type of take off:
Check transmission limits:
Check engine limits:
Check structural gross weight limit:

CHAPTER 4

AAH (YAH-64) PERFORMANCE DATA TABLES

GENERAL

The following tables are the major information presented in this hand-book. If the procedure for using them is understood, a flight profile for the AAH (YAH-64) helicopter can be prepared in a matter of a few hours. The performance data contained have been reviewed for accuracy and are corrected to the best of our knowledge. The tables are organized in the following manner:

Tables 4-1 to 4-24	Basic Fuel Flow Data
Tables 4-25 to 4-48	Delta Fuel Flow for Drag Data
Table 4-49	Ground Idle Fuel Flow Data
Tables 4-50 to 4-55	Gross Weight Limits Data
Tables 4-56 to 4-79	Velocity Limits Data

BASIC FUEL FLOW DATA
TABLES

TABLE 4-1

BASIC FUEL FLUW FUEL FLOW KAIES FOR THE GIVEN CUNDITIONS IN LBS/HR PRESSURE: SEA LEVEL TEMPERATURE: -25 C

3
~
1
I
⋖
>
•
-
AF
⋖
Œ
ر.
æ
-

75)	0 100 120 140 140	715 844 1022	735 85x 16.4	758 874 1042	+	784 893 1078 1471	8 612 917 1110 1533	842 945 1146	
FLIGHT NUDE (KTS)	03	L°	659	1	\downarrow	11/	752	794	-
SHT NE	29	656	675	700	;	1.67	765	904	
FLi	40	704	738	775		210	854	668	
	NOE	242	793	847	700	3	971	1042	
	MOGE	781	847	920	1000		1028	1186	1.00
	HIGE	676	743	816	862		Y58	1069	1130
E STORY	20 i	10.000	11.500	13.000	14.500	16.000	00000	17.500	19,000

TABLE 4-2

BASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CUNDITIONS IN LBS/HR PRESSURE: SEA LEVEL TEMPERATURE: -5 C

3
4
-1
I
⋖
_
⊢
14
4
œ
J
×
-
- 1

		9,7	041 1171	105 815 969 1264	1		746 844 007 1262		. 774 845 101E 125		003 691 1043 137A	834 921 1074 1.22	17.
	FLIGHT MODE (KTS)	0.8		929	663	,	169		723	176	10/	# C 8	+
	HY MOD	99	107	/60	678	1	705		737	775		818	†
	9174	40	700		743	+	780		820	198		912	
		NOE	76.1		804		098	1	741	686	+	l n 63	
		HOGE	794		8 6 5		7 + 6	10,22	11356	1114		1215	1 6 9
		HIGE	700		768	30.0	838	6.70	ì	1011		1001	
25068	WEIGHTS -	(1881)	10.000		11.500	13.500	2000	14.500		16.000	17 7.00	2000	19.000

TABLE 4-3

SASIC FUEL FLOW
FUEL FLOW MATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: SEA LEVEL TEMPERATURE: 15 C
AIRCHAFT - YAM-64

1546 938 329 746 734 .772 850 945 1141 1609 876 789 775 802 878 1010 1240 1087 427 837 816 636 911 1043 1358 1173 948 892 861 952 1048	HIGE 722 791: 856	HOGE 8U8 883 962	NUE 762	FLIGHT 40 715 6 750 6	66 1 417	60 60 60 60 60 60 60 60 60 60 60 60 60 6	150 702 722 745	120 795 809	1 4C 9 3 4 7 4 9	1187 1198 1198
1141 1609 376 789 775 80z 878 1010 1240 1087 927 837 816 636 911 1043 1358 1173 938 89z 861 95z 1048	951	-	938	325	1	734				
1240 1087 927 837 816 638 911 1043 1358 1173 938 892 861 952 1038	1030		1609	976	789	775		878	1	1294
1358 1173 988 892 862 881 952 1048	1097		1087	427	837	918		9:1	1	1337
	*	j		488	768			952	i	1472

TABLE 4-4

BASIC FUEL FLOW FUEL FLOW AATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: SEA LEVEL TEMPERATURE: 35 C

AIRCRAFT - TAH-64

	160	1110	1133	1100	1187	1213	1 309	
	140	962	416	931	95.1	977	1013	9
	120	781	794	813	836	864	901	24.7
_	100	702	722	745	77.2	804	843	9 8 9
MODE (KTS)	28	653	089	7117	748	787	830	670
HT MOD	09	999	693	725	762	808	859	0
FLIGHT	40	722	758	796	841	890	646	1010
	NOS	773	829	058	956	1029	1112	1264
	HOGE	824	106	983	1070	1108	1275	1392
	HIGE	743	808	885	982	1041	1130	1228
GROSS		10.000	11.500	13.000	14.500	16.000	17.500	19,000

TABEL 4-5

HUEL FLOW RATES FUR THE GIVEN CONDITIONS IN LBS/WR PRESSURE: 2000 FT TEMPERATURE: -25 C

AIRCHAFT - YAri-64

	160	1293	1313	1351	1409	1475	1540	1632
	140	956	176	666	1023	1058	1101	1154
	120	161	80.0	824	9+8	873	905	940
,	1.00	673	559	720	747.	777	812	851
FLIGHT MODE (KTS)	០ទ	129	627	959	069	730	774	818
нт нор	39	8 1 G	040	999	702	7+3	764	458
FL16	u _h	670	106	743	784	827	875	526
	NGE	713	766	823	886	956	1001	1115
	HOGE	756	828	903	900	1034	Pp11	1331
	HJGE	629	730	800	568	516	1052	1126
SSORS	(587)	10.000	11.500	13.000	14.500	16.000	17.500	19.000

35

TABLE 4-6

BASIC FUEL FLOW
FUEL FLOW KATES FUR THE GIVEM CONDITIONS IN LBS/HR
PRESSURE: 2009 FT TEMPERATURE: -5 C

4
•
_
I
⋖
>-
-
_
ŧ
•
L
₹
Œ
J
×

				, ,	1					
S C C C C C C C C C C C C C C C C C C C					3006	(L (N))				
1881	H16E	HOGE	NOE	40	٥٥	ÖB	100	120	140	160
13.000.	789	770	7.22	675	629	404	999	164	906	1178
11.500	753	345	778	710	044	159	. 686	114	7.0	1192
13.000	819	923	936	546	678	199	711	798	640	1226
4.500	913	1012	902	192	710	959	739	822	963	1270
16.000	366	1111	975	839	752	0+4	177	850	992	1313
17.500	1066	1219	1055	89.0	801	763	809	885	1030	1372
19.000	9911	1335	1143	952	158	828	852	928	1083	1534

TABLE 4-7

SASIC FUEL FLOW
FUEL FLOW MATES FUR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2006 FT TEMPERATURE: 15 C

AIRCHAFT - 1AH-64

	160	15	1167	T:	T	12	12	T.
		1107	\perp	1162	1196	-		1
	140	874	489	908	932	963	1005	31.01
	120	740	762	782	809	841	880	920
-	100	599	489	769	738	772	914	86.
E (KTS	0.9	611	639	671	710	751	796	047
FLIGHT MODE (KTS)	0.9	629	209	199	723	769	923	884
FLIG	40	681	717	757	803	653	9111	484
	30N	733	046	851	616	966	1001	1177
	HOGE	785	863	945	1936	1134	1250	1371
	H16E	793	171	849	444	1005	1099	1202
GROSS WEIGHTS	(182)	10.000	11.500	13.000	14.500	16.000	17.500	19.000

TABLE 4-8

EASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2000 FT TEMPERATURE: 35 C

1034 1165 1018 A71 786 763 776 1131 1281 1110 939 848 811 821	160 1044 1095 1119 1119 1367	140 659 677 699 699 699 699	120 732 740 740 790 830			601 601 601 601 738 788	40 466 725 767 815 871 971	NGE 745 803 867 936 1110	361 361 366 1363 1165	H1GE 723 788 889 951 1034	68055 (LBS) (LBS) 10.000 11.500 13.000 14.500 16.000
	1773	1072	931	875	864	911	162n	1219	1416	1243	000.61
	=	106	796	.739	722	738	815	955	1063	951	4.500
951 1863 956 815 738 722 .739	601	877	769	502	683	950	767	867	996	889	3.000
889 966 867 767 696 663 709 951 1063 956 815 736 722 739	190	658	740	489	849	109	725	803	891	788	1.500
788 881 803 725 661 648 664 887 966 867 767 696 663 709 951 1360 936 815 738 722 739	104	844	732	299	619	532	468	745	100	723	0000.0
723 d01 745 466 532 619 662 784 881 803 725 661 648 664 887 966 867 767 696 663 709 951 1360 956 815 738 722 739	191	1 40	120	100	១១	30	40	NGE	HOGE	H16E	200
A HIGE HOGE <)	FL16				25.5

TABLE 4-9

SASIC FUEL FLOW
FUEL FLOW RATES FON THE SIVEN CONDITIONS IN LBS/HR
PRESSURE: 4000 FT TEMPERATURE: -25 C

	•			3 - 13	4 3 7 4 1	3 .				
				9114	00E - H	FLIGHT MUDE (KIS)	_			
HIGE HOGE NOE	-	NGE		40	Ωo	ម ខ	100	120	140	160
645 735 687		6 6	7	639	584	573	635	741	969	1210
717 869 742		. 6	2	474	808	598	659	758	912	1237
78Z 890 RC		જ	ลธร	715	5 ÷ 1	089	685	778	246	1289
878 993 87		8	870	758	878	899	714	804	426	1354
967 1065 9		ď	945	មពិ។	721	212	24S	835	1015	1420
1038 1197 16	1197	<u>:</u>	1627	657	707	992	786	874	1006	1503
1141 1225 1124	1325	7.7	7.7	923	8.26	608	831	927	1130 1727	1747

TABLE 4-10

BASIC FUEL FLOW

FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LOSZHR

PRESSURE: 4000 FT TEMPERATURE: -5 C

AIRCHAFT - TAM-64

GROSS KEIGHIS				FL1G	FLIGHT MODE	E (KTS)	_			
(LBS)	39 I H	ЭЭОН	NGE	40	09	80	100	120	140	160
10.000	199	057	149	643	587	574	627	710	847	1099
11.500	735	827	h 96	089	614	60,2	0 5 O	733	365	1123
13.000	418	116	816	722	518	636	677	750	867	1106
14.500	016	1001	298	768	809	677	.70a	783	416	1210
16.000	975	+111	596	817	7.55	720	744	815	056	1200
17.500	1073	1229	1053	377	710	766	787	957	1600	1405
19.000	1179	1361	8511	454	108	816	836	911	1982	17.28

TABLE 4-11

The second

EASIC FUEL FLOW

FUEL FEOM MATES FUN THE GIVEN CONDITIONS IN LBS/MR Pressure: 4000 ft tempemature: 15 c

AIRCHAFT - YAM-64

FE I GH I S		!) I 7 !	FLIGHT NODE	DE (KTS					_
(188)	HIGH	: 5 C									_
			200	C F	၁ ၀	80	001	120	C7 -	-	T-
10.000	636	766	707	644	567		100				-
11 500				,	7:5	O B C	0 7 0	£69 ·	2 2	3001	
006111	/53	3	766	687	622	610	24.9	1		1	_
13,000	17 13 0	2					5	, 10	G 7 0	1005	
	F. C. O	433	632	731	5 S S	647	675	742	0 1 0	L.	-
14.500	916	1032	70.0	1	1					1 100	-
		*	3 ,		707	829	10H	772	336	1132	
10.00	1001	1142	586	9	745	7.5.1	22.0				_
17.500	7011	10,00	1					010	4.6	1275	-
	2011	0021	1083	906	,615	761	797	8 C x	000	İ	_
19.000	1222	1410	1001	500	0.4.0			3	2	104	
		-	>4.	7 / 2	- · · ·	1		•			

TABLE 4-12

Pro -

EASIC FUEL FLOW

FUEL FLOW RATES FUR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 4000 FT TEMPERATURE: 35 C

AIRCRAFT - YAH-64

	160	979	1001	1032	1078	1247	1590	734
	1 40	790	807	829	859	905	1001	1160
	120	687	706	730	762	805	858	951
150	100	625	648	676	711	755	807	874
FLIGHT MODE (KTS)	90	5.83	620	859	669	745	797	853
HT MO	ດຈ	909	74.	671	216	177	840	906
FL 10	2. C	454	495	741	794	360	939	1036
	30N	719	780	948	928	1015	1120	1252
	BOCH	762	804	456	1057	1169	1361	1468
	HIGE	792	784	866	637	1033	1142	1291
68055 64055	LBS)	16.000	11.500	13.000	14.500	16.000	17.500	19.000

TABLE 4-13

PUEL FLOW KATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: ADGO FT TEMPERATURE: -25 C

AIRLRAFT - YAR-64

	_	_	_				_	
	001	EE11	71174	4521	1302	1376	1573	2010
	140	858	192	893	186	១ឧ៤	1643	0511
	120	695	714	730	167	804	455	616
_	100	109	626	459	999	723	767	821
FLIGHT MODE (KTS)	38	545	572	709	059	669	7 46	293
HI MUD	ũ9	663	785	119	859	901	191	820
FL16	40	919	648	969	735	166	250	930
	30H	500	17.2	902	558	586	1034	9411
	HOUE	716	461	688	१ १ ५	7601	1217	1162 1361
	HIGE	633	702	780	882	646	1050	1162
[Մև	1 8 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.000	11.500	13.000	14.500	16.000	17.500	19.000

TABLE 4-14

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: A000 FT TEMPERATURE: -5 C

	lon	1028	1065	1109	1154	1270	1566	2224
	140	194	814	839	872	616	968	1:34
	120	672	769	717	748	786	940	910
1	100	593	618	647	682	723	771	830
FLIGHT MODE (KTS)	60	546	576	919	859	703	755	809
HT MOD	09	557	588	629	1 2 9	724	784	758
FL16	40	614	459	869	746	803	a78	696
	NOE	673	733	108	677	296	1064	1192
	HOGE	732	812	+36	1008	1211	1250	3141
	HIGE	653	720	821	886	980	1084	1209
GROSS	(58.)	10.000	11.500	13.000	14.500	16.000	17.500	19,000

TABLE 4-15

DASIC FUEL FLOW
FUEL FLOW RATES FOR THE LIVER CONDITIONS IN LBS/HR
PRESSURE: ADUC FT TEMPERATURE: 15 C
AIRCRAFT - YAH-64

	160	973	1008	1040	1102	1310	1776	1160
	0+1	767	788	813	6.9	50.6	1020	8611
	120	653	679	707	242	788	846	957
_	100	290	616	647	589	731	786	65R
FLIGHT NODE (KTS)	อล	552	585	939	899	717	770	858
HT MOD	09	563	245	637	199	942	318	708
FLIG	40	620	194	708	191	828	912	1017
	NOE	409	246	219	258	595	1103	1247
	HOGE	748	831	926	1033	1149	1294	1476
	HIGE	999	754	832	606	1009	1123	1287
6805S	:=	10.000	11.500	13.000	14.500	16.000	17.500	19.000

TABLE 4-16

BASIC FUEL FLOW FUEL FLOW KATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 6000 FT TEMPERATURE: 35 C

		160	92,	0 7 0	070	0	1106	1375	2 7 7 7	72.7
		0+1	741	7.00	7.27		820	9.9	1 70	
		120	640	668	269		736	787	87,7	
		100	165	616	648		040	740	804	Ren
FIRTE	2	9C	560	596	636	1	200	731	767	247
HT MODE	- 1	ઝ 9	572	109	259	7.07	à	592	336	913
FLIGHT		C) T	627	670	720	10,	7,5	857	556	1070
		NOE	5,59	760	534	0 / 0		1021	1149	1313
		30CE	764	850	946	1,056		127	1347	1556
		10E	684	782	843	936		1041	1184	1367
α.	2011	15831	10.006.	11.500	13,000	14.500	220 71	10,000	17.500	18.000

TABLE 4-17

DASIC FUEL FLUW

FUEL FLOW MATES FOR THE GIVEN CONDITIONS IN LBS/HR

PRESSURE: 8000 FT TEMPERATURE: -25 C

AIRCRAFT - TAH-64

			The second name of							
68055				FLIGI	HT NOD	FLIGHT HODE (KTS)	,			
(L85)	HIGE	MOGE	NGE	40	99	Úβ	100	120	0+1	U91
10.000	229	701	642	584	526	516	568	655	187	2901
11.500	689	184	407	624	558	549.	565	674	<u> </u>	1122
13.000	194	198	466	859	265	590	626	702	851	1186
14.500	398	196	852	717	643	454	199	736	897	1255
:6.000	958	1109	943	177	269	679	704	784	956	1414
17.500	1066	1250	1053	256	760	731	757	847	1047	1826
19.000	1205	1205 1439	1195	950	832	791	821	930	1220	1157

TABLE 4-18

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVER CONDITIONS IN LBS/HR
PRESSURE: 8000 FT TEMPERATURE: -5 C

AIRCRAFT - TAN-64

GROSS				21.16	HT MOD	FLIGHT MODE (KTS)	_			
 6.5 5.5 5.5 5.5	HIGE	HOGE	NOE	40	69	80	100	120	140	ión
10.000	637	717	259	586	530	520	195	632	745	969
11.500	724	803	717	089	595	35 5	588	655	768	1012
13.000	603	903	247	677	607	255	621	684	748	1055
14.500	988	1013	87.2	731	659	641	960	721	840	1138
16.000	686	1138	970	802	718	049	707	770	908	1344
17.500	1110	1298	1094	163	7.04	745	765	837	1039	1992
19.000	1291	1511	1255	1 000	862	807	845	957	1253	2440

TABLE 4-19

EASIC FUEL FLOW

FUEL PLOW RATES FUR THE GIVEN CONDITIONS IN LBS/HR Pressüre: Addo ft temperature: 15 C

AIRCRAFT - TAN-64

				FL 16H	T HODE	FLIGHT HODE (KTS)				
i	HIGE	HOGE	NÚE	40	0.0	6.0	100	120	140	160
1	654	733	663	594	530	527	559	619	721	919
1	750	822	730	638	575	565	587	h h 9	743	953
	815	976	807	694	129	909	623	677	775	993
	619	1039	695	752	919	653	299	720	823	1153
	1022	1175	1604	358	1+1	7.06	612	775	924	1535
	1179	i 355	4411	456	312	763	790	876	1095	4798
	1383	1609	1333	1058	895	829	988	1633	1364	451a

TABLE 4-20

BASIC FUEL FLUM FUEL FLUM RATES FUM THE GIVEN CONDITIONS IN LBS/HR PRESSURE: BOCO FT TEMPERATURE: 35 C

SROSS FELCHTS				FLIGHT	HT MODE	E (KTS)				
(587)	HIGE	390H	BON	40	09	38	100	12r	140	100
10.000	683	644	9/9	109	540	536	559	909	969	999
11.500	156	1,8	745	848	597	574.	588	634	716	892
13.000	639	946	826	705	859	616	626	699	752	972
14.500	046	1901	226	777	469	999	414	717	818	1210
16.000	1074	1222	1045	867	764	721	735	792	958	2023
17.500	1251	1463	1203	483	540	760	818	928	1105	3745
19.000	1510	1654	1379	1124	930	851	936	1114	15+9	5930

TABLE 4-22

BASIC FUEL FLOW FUEL FLOW KATES FUR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 10000 FT TEMPERATURE: -25 C

AINCHAFT - YAH-64

6805S FF16HTS				FLIGHT	HT MODE	E (KTS)					
(LBS)	H16E	BOCH	HOF	04	C o	ວລ	103	12C	140	160	
10.000	609	680	429	563	705	493	539	614	7+6	1012	
11.500	969	១ ខ្ល	169	709	8.5.2	530	566	636	774	1076	
13.000	780	883	996	649	285	574	109	671	816	1141	
14.500	865	0001	853	705	633	619	642	714	871	1258	
16.000	973	1137	656	181	969	699	693	775	953	1624	
17.500	1106	1318	1096	874	700	729	156	659	1117	1307	
19.000	1310	1576	1262	686	848	796	844	765	1395	2747	

)<u>.</u>

TABLE 4-22

BASIC FUEL FLOW
FUEL FLOW RATES FCH THE GIVEN CUNDITIONS IN LBS/HH
FRESSURE: 10000 FT TEMPERATURE: -5 C

AIRCAMFT - YAM-64

											-
KEICHTS				FLIGHT	HT MOD	MODE (KTS)	_				_
(L65)	H16L	350u	NOE	40	0,0	30	100	120	140	160	_
10.000	625	765	635	564	507	498	532	590	761	¥13	_
11.500	722	464	704	610	546	537	562	622	727	962	_
13.000	192	906	763	665	594	581	909	656	704	1018	_
14.500	869	1025	678	726	559	628	645	761	822	1270	
16.000	1008	1177	566	812	717	682	559	764	940	1730	
17.500	1184	1384	1151	916	. 793	743	777	877	1144	3074	_
19.000	1423	1698	1370	1052	188	815	881	1021	1492	4792	

TABLE 4-23

BASIC FUEL FLOW FUEL FLOW MATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 10000 FT TEMPEMATURE: 15 C

AINCRAFT

GROSS WEIGHTS				FL16	HT NO	FLIGHT MODE (KTS)	1 9			
LBS	HIGE	HOGE	NOE	40	09	09	100	120	1 40	160
16.000	959	721	646	571	515	975	531	585	677	899
11.500	727	819	616	616	255	546	£ 9 9	614	7.05	900
13.000	817	929	ខពិន	676	119	1.55	ħ09	683	245	1004
14.500	22.6	1056	406	752	673	2+9	· † 4 9	704	828	1307
16.000	1068	1229	1039	350	741	669	720	794	106	9555
17.500	1266	1469	1220	176	824	263	814	946	1243	4097
19.000	1583	1761	1415	1:29	616	842	950	1169	1782	5402

TABLE 4-24

BASIC FUEL FLOW
FUEL FLOW RATES FON THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 10000 FT TEMPERATURE: 35 C
AIRCRAFT - YAM-64

	120 140 160	575 a54 a16	606 683 856	6/174 732 1036	652	837 1045 3254	1017 1400 4591	
	100	531	565	609	999	745	859	-
E (KTS)	80	515	585	602	999	714	763	
FLIGHT MODE	09	525	57.1	627	643	707	355	
FL 16	40	575	631	1.69	782	293	1551	
	NOE	8¢9.	734	825	456	1090	1267	
	HOGE	736	838	952	1095	1286	1503	0
	H16E	677	744	840	196	1:31	1376	
GROSS WEIGHTS	(LBS)	10.000	11.500	13.000	14.500	16.000	17,500	

DELTA FUEL FLOW FOR DRAG DATA
TABLES

TARIF 4-25

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: SEA LEVEL TEMPERATURE: -25 C AIRCRAFT - YAM-64

	•			Ā	AIR SPEED	D IN KTS	7.5	
		40	69	មល	100	120	0 1 1	140
9	5.0	Ĭ.	4	10	50	36	95	109
SUVARE FEET	10.0	ד	י	20	3	17	125	225

TABLE 4-26

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL ORAG Pressure: Sea Level Temperature: -- 6 Aircraft - Yam-64

				AIR	R SPEED	Z	KTS	
		40	09	80	601	120	1 40	100
3 7 7 0	5.0	1	,	6	18	33	53	7
SWUARE FEET	ວ ໍ ຕ າ	7	A	18	37	99	601	160

TABLE 4-27

Service i

CORRECTION FUEL FLOW LBS/HK FOR EXTERNAL DRAG PRESSURE: SEA LEVEL TEMPERATURE: 15 C AIRCHAFT - YAH-64

				1	9 2026	3		
					א אנבר	STEED IN NIS	2	
		40	29	60	100	120	1 40	160
OKAC 2	9. 6	7	4	Œ,	17	31	4.8	5.4
SQUARE FEET	10.0	?	7	17	33	95	44	166

TABLE 4-28

CORRECTION FUEL FLOW LBS/HW FOR EXTERNAL DRAG Pressura: Sea Level Temperature: 35 C

				AIR	R SPEED	Z	KTS	
		40	96	90	100	120	1 40	160
ORAG ING	6.0	1	£	9	15	28	94	7.5
SWUAKE FEET	16.0	Ż	7	S1 .	31	99	9.1	149

TABLE 4-29

CORRECTION FULL FLOW LBS/HR FOR EXTERNAL DRAG

PRESSURE: 2000 FT TEMPERATURE: -25 C

				AIR	R SPEED	55,	KTS	
		UT.	90	ยย	001	:20	0+1	140
DRAG 2	5.0		+	5	51	33	25	102
SGUARE FEET 10.0	ກ•ວາ	2	ņ	91	38	99	1:6	210

TABLE 4-30

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 2000 FT TEMPERATURE: -5 C

				AIR	R SPEED	D IN KTS	15	
		40	99	8.0	100	120	140	160
0840 -2	0.4	1	4	30	17	31	20	7.0
SEUARE FEET	16.0	2	7	17	34	62	101	17.2

TABLE 4-31

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 2000 ft temperature: 15 c

4
4
I
YAH
-
- -
سفة
ヾ
Ľ
RCRA
12

				۲ د	א טיירויט	T T K TS	15	
		₽ 10.4	09	១ទ	001	120	140	140
ORP.G IN	5 • G		.7	8	16	29	45	76
SQUARE FEET	10.01	2	7	15	3.1	57	16	154

TABLE 4-32

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL ORAG Pressure: 2000 ft temperature: 35 c Aincraft - Yam-64

				AIR	A SPEED	z	KTS	
		40	99	OR	100	120	07.	
2000							2	200
7 2 2	0.0	-	(7)	7	14	26	£!7	3
SCUARE PERT								
		7	0	7	58	53	85	154
				-			_)

TABLE 4-33

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL BRAG PRESSURE: 4000 FT TEMPERATURE: -25 C

				-	O CDEED	2 2 2		
				¥ 7 ¥		E V E	2	
		40	:63	8.3	1.00	120	1 40	160
DAAG	ນ•ເ	1	4	6	81	31	54	Ġ.
SEUARE FEET	10.0	7	7	11	98 .	19	601	196

TABLE 4-34

CORRECTION FUEL FLOW LESZHR FOR EXTERNAL URAG PRESSURE: 4000 FT TEMPERATURE: -5 C Airchaft - Yah-64

				A	AIR SPEED	D IN KTS	15	
		40	C9	30	001	120	140	160
3 4 7 7	5.0	1	5	8	16	52	46	7.8
SQUANE FEET	10.0	2	1	10	. 32	57	95	160

TABLE 4-35

CORRECTION FUEL FLOW LBS/HR FOR EATERNAL DRAG PRESSURL: 4000 FT TEMPERATURE: 15 C AIRCRAFT - TAH-64

				AIR	R SPEED	D IN KTS	ſŚ	
		24	90	บช	001	120	140	160
อห์หัด	0*5	1	3	7	51	22	42	11
SWUARE FEET	0.01	17 :	c	₩7	· 67	₹5	48	144
	المالية							

TABLE 4-36

CORRECTION FUEL FLOW LBS/AR FOR EXTERNAL DRAG

PRESSURE: 4000 FT TEMPERATURE: 35 C AIRCRAFT - YAH-64

				AIR	K SPEED	IN KTS	5	
	•	94	09	98	001	120	1 40	1,0
ORAG S	5.0	1	IJ	7	13	4.2	68	49
SWUARE FEET	10.0	2	٥	13	2.7	6.17	66	130

TABLE 4-37

CORRECTION FUEL FLOW LBS/HM FOR EXTERNAL DRAG PRESSURE: 6000 FT TEMPERATURE: -25 C

				AIK	K SPEED IN	D IN KTS	15	
		40	60	0.9	100	120	140	160
O A K O	ე *ዓ	1	ن	છ	17	20	50	7.8
SWUAKE FEET	10.0	2	1	91	33	57	101	183

TABLE 4-38

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG

PRESSURE: 6000 FT TEMPERATURE: -5 C

				AIR	R SPEED	Z.	KTS	
		40	90	80	100	120	140	140
O A A S	D * S	7	ū	7	15	2.2	64	7.5
SUUARE FEET	16.0	લ્ય	9	51	ÜE	5.3	88	4.4.1

TABLE 4-39

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURL: 6000 FT TEMPERATURE: 15 C AIRCRAFT - YAM-64

				AIK	k SPEED 1	IN KTS	TS	
		46	613	80	100	120	1 40	160
DXXI SXI	5.0	1	و	7	1 4	52	39	9.9
SQUARE FEET	10.0	7	0	14	. 27	5.0	52	134

TABLE 4-40

CORRECTION FUEL FLOW 1852MR FOR EXTERNAL DRAG Pressure: 8600 ft Temperature: 35 C

4
4
AH
E
⋖
>
•
-
Ĺ
×
œ
8
λ.
~
Þ

	40 140		73 121
D IN KTS	120	23	9+
R SPEED	001	=	25
A 3 F	96	3	2
	J O	7	n
	40	7	×
		DRAG NN	SQUARE FEET 10.0

TABLE 4-41

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL ORAG PREUSURL: ACCC FT TEMPENATURE: -25 C AIRCHAFT - YAH-64

				AIR	R SPEED	Z	KTS	
		40	Ü9	OR	100	120	0+1	140
9 12 20	D•4	1	ذ	33	15	20	47	**
SWOARE FEET	10.0	7	9	15	7.5	53	46	17.6

TABLE 4-42

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAW
PRESSURE: BOOU FT TEMPERATURE: -S C
AIRCRAFT - YAH-64

				AIR	R SPEE	SPEED IN KTS	75	
		40	69	68	100	120	140	160
0 * × 0	5.0	1	n	7	h [.52	1 6	40
SQUARE FEET	10.0	2	O	h. I	82	54	83	146

TABLE 4-43 CCRRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG

PRESSURE: 8000 FT TEMPERATURE: 15 C AIRCRAFT - YAH-64

				AIR	R SPEED	IN KTS	.5	
		04	บ9	បន	001	120	1.40	160
DAKG NI	5.0	1	٤	9	13	23	36	74
SEUARE FEET	0.01	7	S	83	97	9 %	73	124

TARIE A_AA

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURL: BOCO FT TEMPERATURE: 35 C AIRCRAFT = YAH-64

				A	AIK SPEED	D IN KTS	TS	
		24	99	08	001	120	1 40	150
ONAG	0.e	7	?	9	12	17	4€	50
SGUARE FEET	10.0	2	'n	12	+2	643	19	113

TABLE: 4-45

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressurl: 10000 Ft temperature: -25 C

3	
4	
•	
YAM	•
4	
>	•
-	•
L	
1	
2	
t 1	١
٠,٢	
•	
-	t

				AIR	R SPEED	IN KTS	15	
		40	90	O۳	001	120	: 40	091
บหุลัด	0 • c	Ţ	3	7	+1	54	64	۸،
SWUARE FEET	10.0	2	a	14	62	64	98	791

TABLE 4-46

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 10000 FT TEMPERATURE: -S C AINCHAFT - YAH-64

				AI	AIR SPEE	SPEED IN KTS	TS	
		43	9.0	98	001	120	140	100
OKAG IX	5.0	1	٤	•	13	23	38	4.0
SWUAKE FEET	10.6	Ž	٥	13.	78	94	77	132

TABLE 4-47

COARECTION FUEL FLOW LBS/NR FOR EXTERNAL DRAW

PRESSURE: 10000 FT TEMPERATURE: 15 C

AIRCKAFT - YAH-64

				A J	IR SPEEU	J IN KTS	7.5	
		94	09	96	100	120	0 1 1	C+1
DKAG [3]	0*c	1	ũ	9	12	2.1	34	٤,
SWUARE FEET	13.3	Z	Z)	12	42	43	89	110

TABLE 4-48 CORRECTION FUEL FLOW LB5/HR FOR EXTERNAL DRAG PRESSURE: 10000 FT TEMPERATURE: 35 C

AIRCHAFT - YAN-64

						1		
				Y	AIR SPEED	D IN KTS	15	
		40	09	08	001	120	0+1	160
3 × × × × × × × × × × × × × × × × × × ×	5.0	1	7	9	11	20	31	75
SWUARE FEET	10.0	1	·ù	11	27	94	95	Ins

GROUND IDLE FUEL FLOW DATA

TABLE

TARIF 4. 40

GROUND IDLE FUEL FLOW

		PRES	PRESSURE ALTITUDE (FT)	TUDE (FT)			
		SEA LEVEL	2006	0000			
				1000	0000	9000	100001
TEMPERATURE	7 52-	473	0.4.2	40%	379	-	1.
	'					S. 7	243
DEGREES		764	3. 3.	424	39.	7	,
	7 71					7 6 7	277
CENTIGRADE	•	510	424	440	40.4		0
	35 C	F. 12					ner
10.	,	/ 7 -	ت ۲	± 0.0 ±	422	392	36.2
							-)

ENTRIES ARE AIRCRAFT FUEL FLOW KATES IN LUSTHR

Preceding Page BLANK

GROSS WEIGHT LIMITS DATA
TABLES

GROSS WEIGHT LIMITS

(DUL TO ENGINE)

FOR TAKEOFF CRITERIA #1

IGGS OF MAXIMUM POWER (106F)

AIRCRAFT - YAH-64

			à	RESSUKE A	PRESSURE ALTITUDE (FT)	-T)	
		SEA LEVEL	2005	30Ch	0009	ისეფ	2000 ¹
Jaile Sanowit	-25 C	21985	12492	19010	17662	16372	15185
)) S-	21674	20575	24161	45221	30591	14751
1 0 1 E	15 C	20789	18931	13021	16346	15100	Lhic I
	35 C	19621	16746	15527	14357	15:47	1210

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LAS

STRUCTURAL GROSS MEIGHT LIMIT: 17:650 LHS

TABLE 4-51

GROSS WEIGHT LIMITS
(DUE TO TRANSMISSION)
LOR TAKEOFF CRITENIA #1
100% OF MAXIMUM POWER (HOGF)
AIRCRAFT - YAH-64

			a	RESSUKE A	PRESSURE ALTITUDE (FT)	Τ.)	
		SEA LEVEL	2000	0004	6000	or no	00001
				70 3.	46.30.	18121	17655
	-25 C	19821	17210	0000	00001	15:5:	
TOWNS OF STURY						1-76	17146
	7 5-	195151	16870	18526	57181	C . 0 / 1	
Sittoriac							14:27
1	1.5	18674	18536	57.31	17682	791/1	10001
ACAUNT NO.						1, 2, 1	70 - 4
	35	18564	18181	17733	1 177/1	GF / D]	7
	· ·						
		A					

ENTRIES ARE DINCRAFT GROSS WEIGHTS IN LAS

STRUCTURAL GROSS MEIGHT LIBIT: 17:650 LBS

GROSS WEIGHT LIMITS

(DUE TO ENGINE)

FUR TAKEOFF CRITERIA #2

95% OF RATED POWER. VERTICAL RATE OF CLIMB 450 FT/MIN.

AIRCRAFT - YAH-64

			a.	RESSURE A	PRESSURE ALTITUDE (FT)	FT)	
		SEA LEVEL	9907	3004	0009	8000	1 0000
TEMPTRATURE	-25 C	51202	18828	17484	16244	15058	13907
DEGREES	ე 5≖	57.881	16999	17679	16438	15243	14077
Z) SI	16710	17463	16236	1.5082	13934	12802
	35 C	16522	15466	14263	13207	12138	11132
				_			•

ENTRIES ANE AIRCRAFT GROSS WEIGHTS IN LAS

STRUCTURAL GROSS WEIGHT LIMIT: 17:650 LAS

TABLE 4-53

GROSS WEIGHT LIMITS

(DUE TO "RANSMISSION)

THANSMISSION POWER LIMIT. VERTICAL RATE OF CLIMB 450 FT/MIN. FCH TANEUR CRITERIA #2

AIRCRAFT - YAH-69

190

			à	RESSURE AL	PRESSURE ALTITUDE (FT)	T)	
		SEA LEVEL	2000	2004	9000	2004	0.00.
	2 36						00001
TEMPERATURE	7 67	1607	16376	18072	17766	17435	17025
	• و ز	1000				00.	C L O / 1
DEGREES	,	2000	18057	17758	17433	17045	16566
	5	. 7077	, ; ;				
CENTIGRADE		10001	99//1	17447	·1706a	16626	10159
	35 C	17726	1 2 11 2				
		60//1	9/4/1	17111	16681	16220	15743
							•

ENTRIES ARE AIRCRAFT GAGSS WEIGHTS IN LAS

STRUCTURAL GROSS NEIGHT LIMIT: 17:650 LAS

GROSS WEIGHT LIMITS

(DUE TO ENGINE)

FUR TAKEOFF CRITERIA #3

100× OF MAXIMUM POWER (HIGE)

AIRCRAFT - YAH-64

			ď	ESSURE AL	PRESSURE ALTITUDE (FT)	113	
		SEA LEVEL	5667	4006	6000	9000	0000
	2 25 4					33	50001
TEMPERATURE	٦ د٠.	65957	25622	21518	19803	18350	27021
	7 3	17 17 4 17 1					
DEGREES	י ב	74044	22702	21:11	19615	18185	16808
	١ ٠٠٠	7 5 7 5					
CENTIGRADE	,	6/177	26755	19473	18081	16721	15448
	.5	10.00					
	2	/0107	¥0/81	17579	1001	14794	13587

ENTRIES ARE AIRCRAFT GROSS MEIGHTS IN LAS

STRUCTURAL GROSS MEIGHT LIMIT: 17,650 LHS

TABLE 4-55

GROSS WEIGHT LIMITS
(DUE TO TRANSMISSION)
FUR TAKEÜFF CRITERIA #3
100% OF MAXIMUM POWER (HIGE)
AIRCRAFT - YAH-64

		d.	PRESSURE ALTITUDE (FT)	-TITUDE .	FT.)	
SEA LEVEL	E.	7007	4000	0009	0001	0000
_	ı			3616	5000	1 0000
-25 C 22127	~	21668	21196	20623	198ch	19127
	ľ	L				
25 5 7 656	۵۰	21171	20001	19883	19124	18500
0.11	1 1	-				
13 5 1177	~	20917	19912	.1922G	18540	17841
		ļ				
25 C 2005		19676	19290	18626	17926	17100
	1					

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LAS

STRUCTURAL GROSS MEIGHT LIMIT: 17,650 LBS

VELOCITY LIMITS DATA

TABLES

TABLE 4-56

VELCCITY LIMITS TABLE
(INCLULING FUEL FLOW RATES)
PRESSURE: SEA LEVEL TEMPERATURE: -25 C

AIRCRAFT - YAH-64

			_	_			-		
TRANSHISSTUN LIMITS	(Lac/HR)		1881	1551	1551	1531	1351	1531	1661
TRANS	(KTS)		158	157	156	155	153	151	140
AX Mer Inej	(1 BS/HR)		1532	1532	1532	1532	1532	1532	1532
PAX POWER (ENGINE)	(KTS)		991	105	164	. 162	091	158	156
Y LOUS ER	(LBS/HR)		1565	1505	1565	1565	1565	1565	1565
CCNTINDUS POWER	KEL		167	157	166	163	161	159	157
P O O O O O O O O O O O O O O O O O O O	(L85/hR)		674 .	453	494	066	1916	1642	1370
75	(KTS)		131	132	132	152	132	131	130
		GROSS WEIGHTS (LBS)	10,000	11.500	13.000	14.500	16.000	17,500	000.81

TABLE 4-57

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES) PRESSURE: SEA LEVEL TEMPERATURE: "R C

AIRCRAFT - YAM-64

	REC	LONG RANGE	NAM SUOUNTINGO PAWOO	X Joous FR	HAX POWER (ENGINE)	NE NE NE	TRANSH1S LIMIT	115516N
	VEL (KTS)	(LBS/RR)	VEL (KTS)	(LES/HR)	VEL (KTS)	(LES/HR)	VEL (KTS)	F.F.
GROSS WEIGHTS (LBS)								
10.000	135	4.23	169	1426	174	1544	163	1 239
11.500	137	164	8 o 1	1426	174	1544	163	1339
13.000	138	816	191	9741	173	1544	102	1239
14.500	139	1006	163	1426	170	1544	160	1339
16.000	140	1346	162	9741	157	1544	159	1339
17.500	141	1980	160	9761	165	1544	157	1539
19.000	140	1117	158	1426	162	1544	154	1539

TABLE 4-58

VELOCITY LIMITS TABLE (INCLUBING FUEL FLOW RATES) PRESSURE: SEA LEVEL TEMPERATURE: 15 C

AIRCKAFT - YAH-64

TRANSH1SS10N LIMITS		(KTS) (LBC/HR)			170		169 1548	167		164 1548	162 1348		100 1348	L 7
MAX POWER	2 3 1) (LB\$/#R)			7 1461		1461	1 1461			1461	146.5		
0 X	4	(KTS)	•		177	!	0,1	174]	1		169	166		160
CONTINUOUS POWER	7 9 6	(LESZHR)			1240	1 740		1240	0471		1240	1240	0.75	0171
CONTI	VEL	(KTS)		1,73	201	1.62		161	159	1.57		155	15.3	יי
LONG RANGE	14.0	I LOUVING		216		950	077		1012	1045		1355	1126	
<u> 18</u>	73%			1.37		140	1 7 7		143	143	6.7.	175	144	
		5,000	WEIGHTS (LBS)	10.000		11,500	13,030		17,500	16.000	17.500		19.000	

TABLE 4-59

VELUCITY LIMITS TABLE LINCLUDING FUEL FLOW RATES) PRESSURL: SEA LEVEL TEMPERATURE: 34_C

AIKCRAFT - YAH-64

	7		T	1	7	7	1			_
TRANSHISSION LIMITS	FoFe	(L86/4R)	53	/35/	1351	1357	1357	1357	1357	1357
TRANS	VEL	(873)	177		0/1	?	17.1	691	101	163
AX MER INE 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	× × × × × × × × × × × × × × × × × × ×	1310	2121	0161	0151	1310	1310	1310	1310
MAX POWER (ENGINE)	V=L	2	174	173	170		100	301	100	101
S S S S S S S S S S S S S S S S S S S	F F F		1673	1073	1673	1072	200	2/01	1073	1073
SAX CONTINCOUS POWER	VEL		157	9 5 7	122	1.6.3	1 2 1		743	145
LONG RANGE	F.F.		921	848	974	854	1632	, 53	15/0	1112
R	(KTS)		142	144	145	145	146	1		4.4
		GROSS WEIGHTS (LBS)	10.000	11.500	13,000	14.500	16.000	17.500	202	14,000

TABLE 4-60

VELUCITY LIMITS TABLE (INCLUDINS FUEL FLOW RATES) PRESSURE: 2000 FT TEMPERATURE: -25 C

AIRCRAFT - YAH-64

TABLE 4-61

VELOCITY LIMITS TABLE
LINCLUDING FUEL FLOW RATES)
PRESSURE: 2006 FT TEMPERATURE: -5 C
AIRCRAFT - YAH-64

	RE	PONG RANGE	MAX CONTINUOUS POWER	E ROCK	PO MAKE PONEN PONE	7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TRANS	TRANSHISSION LIMITS
	VEL	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	VEL.	F 6 F 3	VEL	F . F .	VEL	6.5
GRGSS REIGHTS (LHS)				(L05/hR)	(K1S)	1 65/HR)	(KTS)	(Lac/AR)
10.000	136	870	159	1324	133	. 43-		
11,500	138	\$11.5	371	70.6			707	1524
13,000	136	424	1, 5	1261		14/7	768	1324
14.500	140	404	1,42	1377	2/3	14/7	105	1324
16.000	141	998	1,60	1324	2/1	14/7	162	1324
17,500	140	1034	156	1324	16.41	1477	160	1324
17.000	138	1961	155	13/4	0 3 1	1,17	80	1324

TABLE 4-62

VELULITY LIMITS TABLE (INCLULING FUEL FLOW RATES)

10174× 1 1445

PRESSUAL: 2000 FT

	JÆ OA	A Pare	COLTINGOUS POWER POWER	\$ 0 % 0 %	PAN	(교 (교 (교	THANSM	Transmission Limits
	X ← → → → → → → → → → → → → → → → → → →	(475) (103/Hir)	(KTS)	(LÖS/AR)	(KTS)	(1 BS/AR)	(KTS)	(LBG/HR)
70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -					·			
00000	139	700	i o 3	1152	177	1365	175	1331
: •503	141	297	101	7911	175	1365	173	1531
3,060	142	467	159	1152	173	1.365	170	1231
4,500	143	F 3 F	isa	1152	170	1305.	168	1531
6 . OC-3	1+3	141	0 5 1	1152	168	1365	1001	1531
7.500	441	7500	5 5 5	1152	160	1365	160	1331
5.900	140	6.00	4.7	1152	157	405.	156	160:

VELUCITY LIMITS TABLE (INCLUDING FUEL FLOW MATES) PRESSURE: 2000 FT TEMPERATURE: 35 C

AIRCHAFT - YAH-64

	Jæ	ANG F F F F F F F F F F F F F F F F F F F	CONTE	FAX CONTINCOUS POWER	MAX POWER (ENGINE)	NEX FIN	TRANSA15S LIMITS	155 r ON	<u></u>
	VEL (XTS)	ILBS/HR	× × + + + + + + + + + + + + + + + + + +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, SEL.	F . F .	VEL	4 4	
GROSS WEIGHTS (LBS)			1		n 		(×15)	(LB6/4R)	
10,000	143	870	157	866	174	1223			
11.500	341	960	155	9.0		2771	183	1534	
3.000	145	6,0	2 3			7771	1/4	1339	
14.600			Cr.	448	169	1222	176	1551	_
200	2		151	498	167	1222	175	1339	_
000.0	72.	266	143	866	101	1222	168	1 439	
17.500	145	1029	141	846	159	1222	1:3	067.1	
000.61	134	1936	131	866	148	1222	. 5.2	1551	
,				_	-	- 411.	֓֞֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡֓֡֓		

VELUCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES) PRESSURE: 4600 FT TEMPERATURE: -25

E: 4600 FT TEMPERATURE: -25 C AIMCMAFT - YAH-64

	-16 2	RANG RANGE	CONTINUOUS	AX NUOUS VER	O S S S S S S S S S S S S S S S S S S S	X X X X X X X X X X X X X X X X X X X	TRANS	TRANSMISSION LIMITS	<u> </u>
	VEL	VEL FOF		Febr	1				
0.000	2	ירטט/מאן	(K i S)	(LBS/HR)	(KTS)	(1 85/HR)	(K TS)	F.F.	_
WEIGHIS (LBS)			_						
10.000	132	. 600	1					i	
			101	1350	165	1325	741		_
11.500	132	841	165	1350				+101	
13.000	132	6 4 5				1325	163	1314	
33			166	1350	161	1325	141		_
005.1	131	969	163	94%	3			* T O I	
10.000	130	916	1 2 1		, c. 1	1325	159	1314	
17.500	2	3000	2	0561	157	1325	157	1014	
		444		1350	154	1325	100		
6,000	130	1014	15.2	0 4 5 -		1363	121	1314	
						1325	1 2 1		

TABLE 4-65

VELUCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESSURE: 4000 ... TEMPERATURE: -5

AIRCAAFT - TAH-64

1		T -		T~ '	7	7	T		-	_
	TRANSMISSION LIMITS	14° F	(L86/HK)		alt	9161		916	BIE	0
	TRANS	VEL	2	. 7.3		07.	37.	1,2	1 1 1	
	A NE		, , , , , , , , , , , , , , , , , , ,	1375	1 270	1375	1375	1375	1375	
	POSER FOSER	VEL.		177	175	171	168	165	159	
	A K LUOUS REBOUS	F . F .		1228	12.8	1228	1228			
	MAK CONTINUOUS POWER	VEL		168	166	162	161	159	 դ :0	57.
	RONG Bange Ge	F.F.		. 023	5+9	i 86 I	616	954	463	10.1
	28.	VEL (KTS)		137	136	139	140	140	138	134
			GROSS WE16MTS (LBS)	10.000	11.500	13.000	14.500	16.000	17.500	19.000

TABLE 4-66

VELOCITY LIMITS TABLE (Including fuel flow rates)

PRESSURE: 4000 FT TEMPERATURE: 15 C

4
_
٥
T
Ĭ
>-
_
-
4
CRAF
$\overline{}$
•
ž
_
◂

	10E	ANGE	HAX CONTINUOUS POWER	AX NUOUS *ER	MAX POWER (ENGINE)	AX VER INE)	TRANS,	TRANSHISSION LIMITS	
	VEL	F.F.	1 1 1 X X X	F . F .	, VE.	6 6 6 6 1	1117	• <u>1</u> • • • • • • • • • • • • • • • • • • •	
GROSS WEIGHTS (LBS)						, contraction (1)	() () () () () () () () () ()	(LBC/HR)	
10.000	140	. 622	162	1007	177	1269	0 %	017	7-
11.500	141	645	160		174	1269		013	- -
13,000	143	086	158	1607	170	1269		017	y
14.500	143	\$17	156	1007	109	1760	1 5	017	~ _f
16.000	1+4	454	153	1007	161	1269	162	916	 -
17.500	1+1	565	147	1907	158	1269	0,0		-
19,000	133	1024	137	1067	877	1264	150		
				-			5	77	_

TABLE 4-67

VELOCITY LINITS TABLE

INCLUDING FUEL FLOW RATES)

PRESSURE: 4000 FT TEMPERATURE: 35 C

AINCHAFT - YAH-64

	10%	MC NS NS E	CONTINUOUS POWER	A X S S S S S S S S S S S S S S S S S S	MAX POWER (ENGINE	AX SER SER	TRANSH	15510N
•	(KTS)	(LBS/HR)	VEL (KTS)	(LdS/HR)	(KTS)	(1 85/HR)	VEL (KTS)	F.F.
GROSS WEIGHTS (LBS)								
10.000	144	. 621	156	675	173	1133	187	1324
11.500	145	370	154	57.5	169	1133	183	1324
13,600	146	671	152	876	191	1133	181	1324
14.500	147	910	144	676	162	1133	170	1324
16.000	146	950	142	923	651	1133	159	1324
17.500	135	096	181	623	149	1133	157	1324
19,000	132	1054	116	675	139	1133	146	1324

TABLE 4-68

VELDCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)

PRESSURE: 6000 FT TEMPERATURE: -25 C

AIHCKEFT - YAH-64

- (_		~~~	~~	_	-	-		
	TRANSHISSIUN LIMITS	F. F. F.		1314	4151	1314	1314	1514	1314	412.
	TRANS	(KFS)		169	167	162	160	158	155	071
	NE J	(1 BS/AR)	•	1232	1232	1232	1232	1232	1232	1232
	HAX POWER LNGINE!	YEL)		164	162	166	150	155	151	145
	LX LUGUS ERUS	i LBS/AR)		1253	1253	1653	1253	1253	1253	1233
	CONTINUOUS PUZER	(KTS)		166	163	161	H51	150	152	146
	LONG RANGE	(LESTAR)		.772	162	916	043	272	935	626
	78	(25%)		132	152	132	131	129	130	128
			GROSS WEIGHTS (LSS)	10.000	11.500	13.000	14.500	16.000	17.500	19.000

VELOCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES)

PRESSURE: 6000 FT TEMPERATURE: -5 C

AIRCRAFT - YAH-04

		T	_		T	_		7			Τ	1		T
	MISSION MISSION	2 2	(LOC/HR)			1314	41.5		1014	1314	77.	1314	1314	
	TRANSMISS	73/	(ATS)			1/8	174			168	1.61		157	
	8	F.F.	(1280	6071	1280	1 200	0071	1280	1280	96.	1601	
	PONE POWER (ENGINE)	7	(8)	•	176		173	169		100	160	144	;	
X 1	ري ان در	F 6 F 6			11.59		トラー	1139		, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1539	11.39		· · ·
3	つのことでは、このでは、このでは、このでは、このできるのは、このできるのは、このできるのは、このできるのは、このできるのは、このできるのは、このできるのは、このできるのは、このできるのは、このできるのは、	V ∏ V			168		007	151	0 3		156	151		
JAG	AiGE	(LBS/HR)			666 .	4:18		942	877	3	108	738		1 1 1 1
1	ž	(KTS)			138	138		140	140	130		±€.1	130	~)).
-			26253 2616315 16115	160-1	10,000	11.500	0000	000	14.500	16.000		17.500	19,000	

VELOCITY LIMITS TABLE IINCLUDING FÜEL FLOW RATES! PRESSÜRE: 6606 FT TENPERATURE: 15 C

AIRCHAFT . YAH-64

		AN N N N	CONTINUOUS POWER	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PONENCE PONE	KX KE NE	TRANS	TRANSHISS FON
	VEL	F	137	14				
	(KTS)	(LBS/HR)	(KTS)	(L85/1K)	VEL		VEL	F. F.
GROSS WE1GHTS (LBS)					-		(5/3)	1 LBC/11R)
000.01	141	775	171	000				
000				770	175	1179	1.80	4151
00611	142	Ġ 07	651	066	172	1170	1	
13,000	143	a 4.1	1=7	000			787	4151
14.500	777	ľ		2	101	1179	177	1314
	-	6/0	154	0.6.5	. 163	1179	172	11.0
16.000	142	616	149	066	159	1.70		F 101
17.500	133	046	25				3	1314
0.000	55		2	044	150	1179	155	1314
	35.7	6401	124	0.8.5	139	1179	777	1314

TABLE 4-71

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESSÜRE: 6000 FT TEMPERATURE: 35 C

AIRCRAFT - YAH-64

		•						
	78	ONG ANGE	CONTINUOUS PORER	Cous FR FR	E SOEN	Zin Zin	202481 202481 213	20102 1102 1102 1102 1102 1102 1102 110
	VEL (KTS)	(LÖS/HR)	(KTS)	(Lbs/hR)	(KTS)	(1 BS/HR)	(KTS)	(Lac/HR)
69055 8616815 (LBS)								
10.000	145	774	154	652	171	1042	191	1310
11.500	145	198	152	d52	108	1047	191	1316
13,000	146	931	150	d52	165	1047	ទែ <u>ខ</u> ្ម	1310
14.500	147	878	744	852	159	1047	693	1316
16.000	138	969	132	852	151	1047	0 9 1	1316
17,500	132	995	117	852	139	1047	051	1:16
19.000	130	1109	Ç Ģ	ŹċŖ	123	1047	141	1316

JELDCITT LIMITS TABLE

UNCLUBING FUEL FLOW RATES!

PRESSURE: 8000 FT TEMPERATURE: -25 C

AIRCHAFT - YAH-64

	غود	LOKG RANGE	MAX CONTINUOUS POWER	AX COCS FRCS	MAX POWER (ENGINE)	NX VERS (NE)	TRANS	TRANSPISSION LIMITS	
	VEL (KTS)	EL (55/HR)	VEL (KTS)	(LBS/AR)	VEL	(LBS/HR)	VEL		
GROSS WEIGHTS (LBS)							•		
10.000	132	. 724	165	1161	163	1142	173	1321	_
11.500	132	748	162	1911	191	1142	169	1321	_
13,000	131	774	159	1101	158	1142	1661	1321	
14.500	129	199	156	1161	156	1142	162	1321	_
16.000	1 30	657	153	1101	152	1142	158	1321	·
17.500	128	912	147	1011	146	1142	153	1321	-
19,000	123	996	137	1161	136	1142	144	1321	
								•	

TABLE 4-73

VELUCITY LIBITS TABLE

(INCLUDING FUEL FLOW RATES)

PRESSURE: 8000 FT TEMPERATURE: -5 C

AIRCRAFT - YAH-64

				The second secon			7 10 4 10 1	10000
	JK JK	LONG	CONTINUOUS POWER	K UGUS ER	100 POS	KIN KIN		Likits
	VEL (KTS)	(LBS/HR)	(KTS)	(Löszhr:	(KTS)	(LB\$/#R)	VEL (ATS)	(Lac/HR)
68055 WE16475 (LBS)					,			
10.000	138	732	991	1055	175	1187	79	1316
11,500	140	758	162	1055	170	1187	111	
13,000	1 4.1	238	160	1055	167	1187	724	
14.500	140	837	157	1055	191	1187	991	1316
16.800	135	863	152	1055	157	181	100	1316
17.500	130	414	141	1055	148	1187	152	1516
19.000	124	1302	129	1055	137	1187	142	1:16

44E 4-74

SELVITY LINITS TABLE

LINCLUCIES FUEL FLOW RATES)

TEMPERATURE: 15 C

PRESSURE: POOD FY

AINCHAFT - YAHLO4

	R A	ONG ANGE	CONTINUOS POWER POWER	x 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	MAX POWER (ENGINE)	KE NE 3	TRANS	TRANSKI SSICE LIVITS
	VEL (KTS)	(LÖS/AR)	(KTS)	(LUS/AR)	(KTS)	(LBS/HR)	VEL (KTS)	(LOS/AR)
GROSS FEIGHTS (LBS)						•		
10.000	142	732	160	913	173	1089	991	1314
11.500	641	59/	158	913	179	1089	184	+151
13.000	143	200	155	913	167	1089	181	1314
14,500	143	959	156	913	159	1089	160	+151
16.000	133	299	651	913	151	1089	158	1314
17,500	130	294	971	913	140	1089	146	1314
19.000	116	164	901	613	125	1035	139	4151

TABLE 4-75

Sauce of Libits talk

FRUSSUN: 8000 PT TEMPERATURE: 35

Alacabet - YAH-64

						The second secon		1	
	_100	ONG PNGE	CONTINUOL	25 CONT. CON	NEW	E S	TRAN.	NO 1 9 3 7	•-
	VEL (ATS)	(LBS/HR)	VEL (KTS)	(LESZHR)	VEL	(1 BS/HK)	VEL (KTS)	LES/HR)	
GROSS WE1GHTS (LBS)									
10.000	145	128	152	783	168	962	196	-151	~ ~
11.500	146	756	150	763	166	962	153	+101	~
13,000	147	651	145	763	160	962	17.6	+101	-
14.500	1 42	834	134	783	154	962	651	1314	· · · ·
16.000	132	910	119	783	140	962	155	+161	~ -
17.500	131	1022	83	743	124	962	1.4.1	1314	•
19,000	1:3	101	O	763	105	962	134	#151	
	֡								

TABLE 4-76

VELCCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)

PRESSURE: 10000 FT TEMPERATURE: -25 C

AINCHAFT - YAH-64

	78	ROCE	CUNTINCOUS POWER	S S S S S S S S S S S S S S S S S S S	HAX POWER (ENGINE)	KEN NED	TRANS	TRANSMISSION LIMITS
	(KES)	ES (55788)	4 E E	ā	14 A	100 S	, VE 6	ř.f.
68085 WEIGHIS 1 LBS 1) C D 3 (<u> </u>	- Cas/am
10.000	132	100	163	1073	162	1060	174	144.
11.500	131	707	169	1073	351	1060	1.7.2	1.5
13.000	130	734	157	1673	157	1360		7
14.500	129	779	134	1073	153	1060	2	1 1 2 2
16.000	129	C#2	148	1073	147	1060	157	1101
17.500	h?1	989	136	1073	137	1069	1.95	1.46.
19.000	180	284	961	1073	125	1060	136	

TABLE 4-77

VELOCITY LIMITS TABLE

IINCLUDING FUEL FLOW RATES) PRESSURE: 10000 FT TEMPERATURE: -5 C

AIRCRAFT - YAH-64

	RA	ONGE	SUCULINOS SUCULINOS	Snons Frons	(END	POWER POWER INGINE)	TRANS	1 1 5 5 1 GN	
	VEL	F.F.	VE.	(LBS/HR)	VEL	F F T	VEL	F . F .	7
GROSS JEIGHTS (LBS)						į			
0.00	139	093	163	572	172	1095	185	1329	_
1.500	1 40	730	160	972	168	1095	1 80	1329	
3,000	1 40	766	158	472	163	1095	176	1329	_
4.500	136	192	i 5.3	972	158	1095	160	: 329	
6,000	131	धमन	142	972	149	1095	156	1329	_
7,500	124	616	139	972	138	1095	146	1329	
9,000	113	496	115	972	123	1095	136	1329	

TABLE 4-78

VELUCITY LIMITS TABLE
(INCLUDING FUEL FLOW RATES)
PRESSURE: 10000 FT TEMPERATURE: 15 C
AIRCRAFT - YAH-04

	T		T	T	T	7	7	1	T
TRANSKISSION LIMITS	F .	1	1 65 1		1361		1351	1321	1 2 2 2
TRANS	- III W+ 2 × 2		192	200	175	04.	151	14.2	1.20
NX VER INE)	F F F	K	1305	1035	1005	1005	1005	1005	1305
MAX POWER (ENGINE)	VEL		17.1	168	160	154	141	126	110
E R C	F F F		837	837	837	037	857	657	837
CONTINCOUS POWER	VEL (XTS)		153	155	151	1 7 1	1.20	1,05	e
LONG	(L65, HR)		969	129	772	788	073	419	1029
N.	(KEE)	ı	143.	143	144	135	131	117	112
		WEIGHIS WEIGHIS (LBS)	16.000	11.500	13.000	14,500	16.000	17.500	19.600

TABLE 4-79

VELGCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES) PRESSURE: 10000 FT TEMPERATURE: 35 C

AIRCHAFT - YAH-64

ANGE CONTINUOUS (ENG POWER (ENG (LBS/HR) (KTS) (LPS/HR) (KTS) 723 146 716 166 723 146 716 166 724 119 716 141 926 84 716 126 929 0 716 106									
146 667 150 716 166 147 723 146 7: 161 144 765 139 716 159 133 786 119 716 141 131 926 84 716 106 113 929 0 716 106		102	A S G G G G G G G G G G G G G G G G G G	CONTIN	AX VUOUS ER	E OU	Z W	TRANS	TRANSHISSTON LIMITS
146. 667 150 716 166 147. 723 146 7: 161 144. 765 139 716 159 133. 786 119 716 141 131. 926 84 716 126 92. 938 0 716 106			14.0 14.0	VEL	6.36.5	VEL	9 9	137	, ,
146 667 150 716 147 723 146 75 144 765 139 716 133 746 119 716 131 926 84 716 113 929 0 716	GR055 /E16HTs (LBS)		1 LBS/HR)	(KTS)	(Los/hr)	(KTS)	(LäS/HR)	(x 15)	(LB6/HR)
147 723 146 75 144 765 139 716 133 746 119 716 131 926 84 716 113 929 0 716	00000	146	0.67	0.5.0	717				
144 765 140 720 133 786 119 716 131 926 84 716 113 929 0 716	1.560	1 47	723		01,	901	282	701	1317
133 746 119 716 131 926 84 716 113 929 0 716	000		(7)	27	27.2	191	382	195	1317
131 926 119 716 131 926 84 716 113 929 0 716	000.5	7	763	139	716	159	882	170	1317
131 926 84 716 113 929 0 716	COCT	133	786	119	716	141	882	191	1317
92 938 0 716 1	0000	131	326	78	716	126	382	147	1317
92 938 0	7,500		676	c	716	106	382	1.58	7141
	2,000	92	938	0	717	y a	000		

APPENDIX A FUNCTIONS FOR CALCULATING BASIC FUEL FLOW

There are four functions that can be used to calculate the basic fuel flow for the YAH-64 helicopter. In order to use the functions the following data is needed:

- 1. Flight Mode
- 2. Temperature
- 3. Pressure (altitude)
- 4. Gross weight

Which of the four functions will be used depends on the flight mode. The first function is for HIGE (Hover In Ground Effect).

$$FF$$
 (HIGE) = f (TEMP, ALT, GW)

The second function is for HOGE (Hover Out of Ground Effect).

$$FF (HOGE) = f (TEMP, ALT, GW)$$

The third function is for NOE (Nap of the Earth).

$$FF (NOE) = f (TEMP, ALT, GW)$$

The fourth function is for Forward Flight.

The equation for FF (HIGE) is:

Where ALT is the altitude, TEMP is the temperature and GW is the gross weight and the constants have the following values:

A =
$$-4.52915784 \times 10^{-2}$$

B = 1.2890086
C = $4.78281789 \times 10^{-2}$
D = $-5.70888187 \times 10^{-4}$
E = 3.3351526×10^{-6}
F = $-1.23381615 \times 10^{-5}$
G = $4.69120325 \times 10^{-8}$
K = 2.21027534×10^{2}

fhe equation for FF (HOGE) is exactly the same form as FF (HIGE).
A new set of values for the constants is used. These values are:

 $A = -5.66156958 \times 10^{-2}$

 $E = 4.27112303 \times 10^{-6}$

 $B = -4.32469729 \times 10^{-1}$

 $F = 1.10334622 \times 10^{-4}$

 $C = 5.50694503 \times 10^{-2}$

 $G = 1.54133408 \times 10^{-8}$

 $D = -1.62422193 \times 10^{-4}$

 $K = 2.29973969 \times 10^2$

The equation for FF (NOE) is once again the same as FF (HIGE). The new values for the constants are:

 $A = -5.02837365 \times 10^{-2}$

 $E = 3.44749702 \times 10^{-6}$

 $B = -5.13175853 \times 10^{-1}$

 $F = 9.31747927 \times 10^{-5}$

 $C = 4.08097133 \times 10^{-2}$

 $G = 2.16190963 \times 10^{-8}$

 $D = -2.33548515 \times 10^{-4}$

 $K = 3.32278954 \times 10^2$

For the Forward Flight modes the form of the equation is:

 $FF = A(AS) + B(AS^2) + C(AS^3) + D(TEMP) + E(GW) + F(ALT) + G(AS^3)(TEMP)$

+ $H(AS^2)(TEMP) + I(AS)(TEMP) + J(AS^3)(GW) + K(AS^2)(GW)$

+ $L(AS)(GW) + M(AS^3)(ALT) + N(AS^2)(ALT) + O(AS)(ALT) + P(TEMP)(GW)$

+ Q(TEMP)(ALT) + R(GW)(ALT) + S(TEMP)(GW)(ALT) + T

Where AS is the air speed in kts and the values of the constants are:

 $A = -1.64140005 \times 10$

 $K = -1.92257844 \times 10^{-5}$

 $B = 2.32707351 \times 10^{-1}$

 $L = 1.03616714 \times 10^{-3}$

 $C = -8.84023364 \times 10^{-4}$

 $M = 3.13308841 \times 10^{-8}$

 $D = -5.40581383 \times 10^{-1}$

 $N = -7.56994245 \times 10^{-6}$

 $E = 5.64757193 \times 10^{-3}$

 $0 = 4.91480343 \times 10^{-4}$

 $F = -6.36781073 \times 10^{-2}$

 $P = 1.17895909 \times 10^{-4}$

 $G = -2.56489074 \times 10^{-6}$

 $Q = 5.03020265 \times 10^{-5}$

 $H = 4.20826217 \times 10^{-4}$

 $R = 3.21928789 \times 10^{-6}$

 $I = -2.99940109 \times 10^{-2}$

 $S = 2.573941 \times 10^{-9}$

 $J = 9.14912190 \times 10^{-8}$

 $T = 8.33048630 \times 10^2$

These functions allow anyone with a simple nalculator to figure the fuel flow of the aircraft and bypass both looking up the values and interpolating for points in between the data points in the tables.

The above equations calculate the basic fuel flow for the YAH-64 helicopter with the following accuracies:

FF (HIGE) - 96.65%

FF (HOGE) - 97.42%

FF (NOE) - 97.14%

FF (Forward Flight) - 92.57%

APPENDIX B FUNCTION FOR CALCULATING DELTA FUEL FLOW FOR DRAG

The function below will calculate the delta fuel flow for drag for the YAH-64 helicopter. Recall from the discussion in chapter three that this value is added to the basic fuel flow value whenever drag is increasing the rate of fuel flow.*

In order to use the function the following data is needed:

- 1. Air Speed (AS)
- 2. Equivalent Square Footage of Drag (SQ)
- 3. Temperature (TEMP) in degrees centigrade
- 4. Altitude (ALT) in feet above sea level

That is:

$$FF$$
 (Drag) = $f(AS, SQ, TEMP, ALT)$

The equation for FF (Drag) is:

$$FF (Drag) = A(AS) + B(AS^{2}) + C(AS^{3}) + D(TEMP) + E(SQ) + F(ALT)$$

$$+ G(AS^3)(TEMP) + H(AS^2)(TEM) + I(AS)(TEMP) + J(AS^3)(SQ) + K(AS^2)(Q)$$

$$+ L(AS(SQ) + M(AS^3)(ALT) + N(AS^2)(ALT) + O(AS)(ALT) + P(TEMP)(SQ)$$

+
$$Q(TEMP)(ALT) + R(SQ)(ALT) + S(SQ)(ALT)(TEMP) + T$$

Where the constants have the following values:

$$A = 2.98456727 \times 10^{-2}$$
 $K = -1.99920862 \times 10^{-3}$

$$B = -4.99894668 \times 10^{-4}$$
 $L = 1.48910522 \times 10^{-1}$

$$C = 7.0723803 \times 10^{-6}$$
 $M = -1.98390332 \times 10^{-9}$

$$D = 6.74270667 \times 10^{-1}$$
 $N = 2.64920097 \times 10^{-7}$

$$E = -2.3219077$$
 $0 = -1.86108518 \times 10^{-5}$

$$F = 1.74824033 \times 10^{-2}$$
 $P = -3.38239935 \times 10^{-2}$

$$G = -1.16197936 \times 10^{-6}$$
 $Q = 2.91575162 \times 10^{-7}$

$$H = 2.61590816 \times 10^{-4}$$
 $R = -1.79812578 \times 10^{-4}$

=
$$-1.97713673 \times 10^{-2}$$
 S = 8.6047406×10^{-7}

$$J = 1.12929628 \times 10^{-5}$$
 $T = -8.39928055$

^{*}There is no delta fuel flow for drag for NIGE, HOGE or NOE flight.

This equation calculates the delta fuel flow for drag value with an accuracy of 99.34%. It should be noted that in some instances the computed value will be negative. If this occurs, zero (0) should be used as the value for delta fuel flow.

APPENDIX C FUNCTION FOR CALCULATING GROUND IDLE FUEL FLOW

The function below will calculate the ground idle fuel flow rate for the YAH-64 helicopter. In order to use the function the following data is needed:

- 1. Temperature (TEMP) in degrees centigrade.
- 2. Altitude (ALT) in feet above sea level.

That is:

FF (Idle) = f (TEMP, ALT)

The equation, for FF (Idle) is:

FF (Idle) = $A(TEMP) + B(ALT) + C(TEMP)(ALT) + D(TEMP^2) + E(ALT^2) + F$ Where the constants have the following values:

 $A = 8.93869027 \times 10^{-1}$

 $D = -6.24998611 \times 10^{-4}$

 $B = -1.80299901 \times 10^{-2}$

 $E = 2.4999909 \times 10^{-7}$

 $C = -2.68571453 \times 10^{-5}$

 $F = 4.96430187 \times 10^2$

This equation calculates the ground idle fuel flow rate with an accuracy of 99.98%.

APPENDIX D

FUNCTIONS FOR CALCULATING GROSS WEIGHT LIMITS FOR TAKEOFF

The functions given below will calculate the gross weight limits for take off for the YAH-64 helicopter. Each of the functions is of the same basic form with the values of the constants changing depending on which take off criteria is being used. In all cases the Structural Gross Weight Limit of the YAH-64 helicopter is 17,650 lbs.

In order to use the functions the following data is needed:

- 1. Temperature (TEMP) in degrees centigrade
- 2. Altitude (ALT) in feet above sea level

That is:

The basic equation for GW (Limit) is:

$$GW (Limit) = A(TEMP) + B(ALT) + C(TEMP)(ALT) + D$$

For take off criteria #1 the equation must be used twice, once using the engine limit constants and once using the transmission limit constants. For take off criteria #1 the constants for engine limits are:

$$A = -6.67171421 \times 10$$

$$C = 1.49692866 \times 10^{-3}$$

$$B = -6.46466747 \times 10^{-1}$$

$$D = 2.07670376 \times 10^4$$

For take off criteria #1 the constants for transmission limits are:

$$A = -1.60576179 \times 10$$

$$C = -8.59643027 \times 10^{-4}$$

$$B = -2.08641062 \times 10^{-1}$$

$$D = 1.91961926 \times 10^4$$

For take off criteria #2 two checks must also be made. The constants for engine limits, take off criteria #2 are:

$$A = -6.13288145 \times 10$$

$$A = -6.13288145 \times 10$$
 $C = 1.35542954 \times 10^{-3}$

$$B = -5.94784282 \times 10^{-1}$$

$$D = 1.91296797 \times 10^4$$

For take off criteria #2 the constants for transmission limits are:

$$A = -1.38092849 \times 10$$

$$C = -7.64643009 \times 10^{-4}$$

$$B = -1.78823207 \times 10^{-1}$$

$$D = 1.$$
 366 x 10^4

Also for take off criteria #3 two checks must be made. The constants for engine limits, take off criteria #3 are:

 $A = -7.53869057 \times 10$

 $C = 1.90821471 \times 10^{-3}$

 $B = -7.22173177 \times 10^{-1}$

 $D = 2.31263032 \times 10^4$

For take our criteria #3 the constants for transmission limits are:

 $A = -2.64504738 \times 10$

 $C = -8.46571842 \times 10^{-4}$

 $B = -3.20595697 \times 10^{-1}$

 $D = 2.16187283 \times 10^4$

This equation with the various sets of constants gives results that are 95.2% accurate or better.

APPENDIX E
SHORT DESCRIPTION OF YAH-64 DATA SOURCE

DRDAV-EQA(A)

SUBJECT: Short Description of YAH-64 AAH Performance Data Provided to TRADOC Systems Analysis Activity (TRASANA)

MFR:

1. References:

- a MAH-6- Eystems Specification, Rev A, 23 Nov 76.
- b. Determination of the Effects of Rotor Blade Compressibility on the Performance of the UH-1F; FTC-TR-65-17.
- 2. The performance data presented to TRANSANA is the result of combining the helicopter power required, engine power available and engine fuel flow characteristics. The YAH-64 power required was calculated for the required altitude and temperature combinations from a non-dimensional representation of engine power required (coefficient of power) v.s. gross weight (coefficient of thrust) and true airspeed (advance ratio). The non-dimensional engine power required was extracted from reference a. All performance in ground effect represents a 5 foot wheel height. A temperature dependent correction, based on the method outlined in reference b, was made to the power required to account for compressibility which could not be accounted for in the non-dimensional representation.
- 3. The T700-GE-700 engine power available (which was used in combination with the power required to find helicopter take off and speed limits), was calculated for the various altitude and temperature combination, by the use of the T700-GE-700 engine specification computer program.
- 4. The engine fuel flow at a particular altitude and temperature combination was derived from a representative referred fuel flow as a function of referred engine power. The referred fuel flow curve was constructed by use of the T700-GE-700 engine specification computer program which calculated fuel flows at various engine power levels and atmospheric conditions. The fuel flows were then corrected to reflect 5% conservatism. A referred parameter is one which is divided by temperature and pressure ratios in order to represent all atmospheric conditions by one function.
- 5. The never exceed speeds (V_{ne}) have not been formally established for the production YAH-64 and are, therefore, not presented at this time.

JAMES A. O'MALLEY'
Aero Engr

THIS PAGE LEFT BLANK INTENTIONALLY