3 Степенная функция, экспонента, логарифм

Выше мы рассуждаем о том, как определить степенную функцию для произвольного действительного альфа через последовательные приближения числа альфа рациональными числами.

Определение. Экспоненциальной или показательной функцией при a>0 называется $f:\mathbb{R}\to\mathbb{R}_+,$ действующая по формуле

$$f(x) = a^x$$
.

В случае, если $a=e=2.71828\ldots$, то функция e^x называется экспонентой.

Свойства экспоненты

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$a^{0} = 0$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{1/x} = \sqrt[x]{a}$$

Разложение экспоненты в ряд.

Логарифм

Определение. Пусть а — положительное число. Логарифмом числа x>0 по основанию a называется такое число $\log_a x$, что

 $a^{\log_a x} = x.$

Логарифм по основанию числа e записывается как $\ln x$.

Свойства логарифма

$$\log_a 1 = 0$$

$$\log_a \frac{1}{x} = -\log_a x$$

$$\log_a (x \cdot y) = \log_a x + \log_a y$$

$$\log_a x^y = y \log_a x$$

$$a^{\log_a x} = x$$

Примеры задач с решениями

График экспоненты

График логарифма и разложение в ряд

