

Introduction to Data Engineering on Databricks

Adastra Thailand Campus on-tour program

Chiang Mai University, 3 July 2024

Before we start...

(take photos first, we will advance real quick!)

github.com/AdastraTH/2024-univ-workshop

- Check notes down below file list which will share with you how to...
 - Grab the slides
 - Sign up for Databricks Community Edition (which you should do during the lecture)
 - Download Power BI Desktop
 (or find ways to work with Power BI web app if you are a Linux/Mac user)

About the Speakers

Sirakorn Lamyai (Tan)

Practice Lead + AWS Lead

Nat Rattanarom (Art)

HR Recruiter

Meet our team

Apichart Hortiangtham

Data Science Lead

Jitdawan Pawanna

Data Engineer

Methasit Penhmatchaya

Google Cloud Platform Lead

Chatchadaporn Saradet

Data Engineer

Siwat Tansiri

Data Engineer

Adastra's Global Presence

22 Offices

500+
Customers

2,200+

Professionals

40+

Countries where we have delivered projects

20+

Languages supported

Realize Your Data-Driven Destiny

For 20+ years, customers have trusted Adastra to design and deliver comprehensive data-driven solutions that fuel efficiency, innovation and long-term success.

Our diverse set of Superpowers transform the way organizations utilize their data, unlocking its full potential.

Our Partners

,/ADASTRA

Data and Data Engineering

Big Data: how can it be massive?

- Cheaper device makes it possible to generate massive data.
- Cheaper storage unit makes it possible to store data first without thinking whether to use it or not.
- Internet makes it capable for users to distribute massive amounts of data.
- How can we process them?
- What are the aspects of processing them?
 - Make predictions and forecasts
 - Deliver insights in understandable format
 - Productionize the process

Data Careers

 Use statistics, machine learning, mathematics to make predictions and forecasts

Data Engineers

 Build data systems that allow data scientists and data analysts to perform their work

Data Analysts/Bl Developer

 Deliver data in an understandable format to help make business decisions

Data Engineering

Get data to where it's needed

Get data into a usable condition

Manage all the data after the process

Productionize the process

Data Platforms

Data Pipeline

Transactional Database

- Transactional: fast retrieval, fast updates
- Structured
- Silo-ed for specific departments or function
- Online Transactional Processing (OLTP)

Data Lake

- Giant reservoir of data in any forms
- Can be in unprocessed format and unstructured data. Excel files, voice, images, anything.
- Flexibility for exploration
- Focus on volume over usability

Data Warehouse

- Central repository for processed and managed historical data
- Ideally not silo-ed
- Designed and structured for large scale analytical purpose
- Prioritize complex queries and analysis over speedy updates
- Allow answering of specific questions
- Powerful: need its power for the "add meaningfulness" part and data retrieval
- Online Analytical Processing (OLAP)

Extract-Transform-Load (ETL)

- Extract, Transform, and Load (ETL) is the traditional approach for data warehousing processes.
- Clean the data to answer business questions first.
 - Example: source data is daily, but business wants nothing more than monthly data then sum it up
- Data in warehouse adheres to a structure per business requirement.

Computation Scaling

- We can scale up our system by adding more resources to a single computational unit.
 - Exists limitations such as bottlenecks.
- We can scale out our system by connecting many smaller systems, therefore creating a distributed system.
 - Achieved Distributed Computing

This requires distributing and "talking" between devices.

Storage-Compute Decoupling

- Storage and compute demand does not scale proportionally!
- We eventually managed to decouple them and create a flexible solution.
- Still, some analytics workload are harder than others.

Calculate summation of these numbers

Storage

Workers, here is the plan: grab four each, sum them up, and let me know... Worker 1 Master Worker 2

Storage

Compute

Storage

^{*} That is an exclamation mark, not a factorial sign.

Extract-Load-Transform (ELT)

- Modern data warehousing approach do ELT (Extract, Load, and Transform) instead of ELT.
- Transform after Load so that we can transform per different requirements.
- Capable by advantages of scalability and flexibility in Cloud Computing.

Data Lake House

- Flexibility of Data Lake + Rigidness of transformed data ready to answer business questions of Data Warehouse
- Storage in Lake
- Compute unit somewhere else
- Write results back to Lake
- Query from Lake!

Components of Data Pipelines

Components of Data Pipelines (continued 1)

Components of Data Pipelines (continued 2)

Medallion Layers of Data Lake House

Massive computation= Massive computers needed

Cloud Data Platforms Meaning: someone else's computer

Computation Scaling

- We can scale up our system by adding more resources to a single computational unit.
 - Exists limitations such as bottlenecks.
- We can scale out our system by connecting many smaller systems, therefore creating a distributed system.
 - Achieved Distributed Computing

Apache Spark

- Open-source unified analytics engine built for large-scale data processing.
- Single machine or across clusters of computers.
- Speed + ease of use -> popularity
- Java/Scala/Python

Spark Core

Spark Execution

Databricks

- Spark on the cloud
- Less hassle managing Spark cluster
- Provides useful features rather than computing engine
 - GUI for development
 - Data catalog
 - Orchestration*

* non-free plan only

Data Pipelines on Databricks

Databricks Lab

https://github.com/AdastraTH/2024-univ-workshop/raw/main/notebooks/ATH%20Workshop%202024.dbc