

Multivariate Datenanalyse

MSc Psychologie WiSe 2021/22

Prof. Dr. Dirk Ostwald

(4) Eigenanalyse

Orthonormalzerlegung

Singulärwertzerlegung

Vektorkoordinatentransformation

Orthonormalzerlegung

Singulärwertzerlegung

Vektorkoordinatentransformation

Definition (Eigenvektor, Eigenwert)

 $A\in\mathbb{R}^{m imes m}$ sei eine quadratische Matrix. Dann heißt jeder Vektor $v\in\mathbb{R}^m, v
eq 0$, für den gilt, dass

$$Av = \lambda v \tag{1}$$

mit $\lambda \in \mathbb{R}$ ein *Eigenvektor* von A. λ heißt zugehöriger *Eigenwert* von A.

Bemerkungen

- Ein Eigenvektor v von A wird durch A mit einem Faktor λ verlängert.
- Jeder Eigenvektor hat einen zugehörigen Eigenwert.
- Die Eigenwerte verschiedener Eigenvektor können identisch sein.

Theorem (Multiplikativität von Eigenvektoren)

 $A\in\mathbb{R}^{m imes m}$ sei eine quadratische Matrix. Wenn $v\in\mathbb{R}^m$ Eigenvektor von A mit Eigenwert $\lambda\in\mathbb{R}$ ist, dann ist auch $av\in\mathbb{R}^m$ mit $a\in\mathbb{R}$ Eigenvektor von A und zwar mit Eigenwert $a\lambda\in\mathbb{R}$.

Beweis

Es gilt

$$Av = \lambda v \Leftrightarrow a(Av) = a(\lambda)v \Leftrightarrow A(av) = (a\lambda)v$$
 (2)

Also ist av ein Eigenvektor von A mit Eigenwert $a\lambda$.

Konvention

Wir betrachten im Folgenden nur Eigenvektoren mit $\|v\|=1.$

Visualisierung eines Eigenvektors

$$\text{F\"{u}r } A := \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \text{ ist } v := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ Eigenvektor zum Eigenwert } \lambda = 3, w := \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ ist kein Eigenvektor.}$$

Theorem (Bestimmung von Eigenwerten und Eigenvektoren)

 $A \in \mathbb{R}^{m \times m}$ sei eine quadratische Matrix. Dann ergeben sich die Eigenwerte von A als die Nullstellen des *charakteristischen Polynoms*

$$\chi_A(\lambda) := \det(A - \lambda I_m). \tag{3}$$

von A. Weiterhin seien λ_i^* , i=1,2,... die auf diese Weise bestimmten Eigenwerte von A. Die entsprechenden Eigenvektoren $v_i, i=1,2,...$ von A können dann durch Lösen der linearen Gleichungssysteme

$$(A - \lambda_i^* I_m) v_i = 0_m \text{ für } i = 1, 2, \dots$$
 (4)

bestimmt werden.

Bemerkungen

- Für kleine Matrizen mit m < 3 können Eigenwerte und Eigenvektoren manuell bestimmt werden.
- Bei großen Matrizen werden Eigenwerte und Eigenvektor im Allgemeinen numerisch bestimmt.
- R's eigen(), Scipy's linalg.eig(), Matlab's eig().

Beweis

(1) Bestimmen von Eigenwerten

Wir halten zunächst fest, dass mit der Definition von Eigenvektoren und Eigenwerten gilt, dass

$$Av = \lambda v \Leftrightarrow Av - \lambda v = 0_m \Leftrightarrow (A - \lambda I_m)v = 0_m.$$
 (5)

Für den Eigenwert λ wird der Eigenvektor v also durch $(A-\lambda I_m)$ auf den Nullvektor 0_m abgebildet. Weil aber per Definition $v\neq 0_m$ gilt, ist die Matrix $(A-\lambda I_m)$ somit nicht invertierbar: sowohl der Nullvektor als auch v werden durch A auf 0_m abgebildet, die Abbildung

$$f: \mathbb{R}^m \to \mathbb{R}^m, x \mapsto (A - \lambda I_m)x$$
 (6)

ist also nicht bijektiv, und $(A-\lambda I_m)^{-1}$ kann nicht existieren. Die Tatsache, dass $(A-\lambda I_m)$ nicht invertierbar ist, ist aber äquivalent dazu, dass die Determinante von $(A-\lambda I_m)$ Null ist. Also ist

$$\chi_A(\lambda) = \det(A - \lambda I_m) = 0 \tag{7}$$

notwendige und hinreichende Bedingung dafür, dass λ ein Eigenwert von A ist.

(2) Bestimmen von Eigenvektoren

Es sei λ_i^* ein Eigenwert von A. Dann gilt mit den obigen Überlegungen, dass Auflösen von

$$(A - \lambda_i^* I_m) v_i^* = 0_m \tag{8}$$

nach v_i^* einen Eigenvektor zum Eigenwert λ^* ergibt.

Beispiel

Es sei

$$A := \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \tag{9}$$

Wir wollen die Eigenwerte und Eigenvektoren von A bestimmen.

(1) Berechnen von Eigenwerten

Die Eigenwerte von A sind die Nullstellen des charakteristischen Polynoms von A.

Das charakteristische Polynom von A ergibt als

$$\chi_A(\lambda) = \det \left(\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) = \det \begin{pmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{pmatrix} = (2 - \lambda)^2 - 1.$$
(10)

Nullsetzen und Auflösen nach λ ergibt mit der pq-Formel

$$(2-\lambda)^2 - 1 = 0 \Rightarrow \lambda_1 = 3, \lambda_2 = 1.$$
 (11)

Die Eigenwerte von A sind also $\lambda_1=3$ und $\lambda_2=1$.

Beispiel (fortgeführt)

(2) Berechnen von Eigenvektoren

Die Eigenvektoren zu den Eigenwerten $\lambda_1=3$ und $\lambda_2=1$ ergeben sich durch Lösen der linearen Gleichungssysteme

$$(A - \lambda_i I_2)v_i = 0_2 \tag{12}$$

Für $\lambda_1 = 3$ ergibt sich

$$(A - 3I_2)v_1 = 0_2 \Leftrightarrow \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ ist eine L\"osung.}$$
 (13)

Fpr $\lambda_2 = 1$ ergibt sich

$$(A - 1I_2)v_2 = 0_2 \Leftrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_{21} \\ v_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ ist eine L\"osung.}$$
 (14)

Weiterhin gilt $v_1^T v_2 = 0$ und $||v_1||_2 = ||v_2||_2 = 1$.

Beispiel (fortgeführt)

```
# Matrixdefinition
A = matrix(c(2,1,
            1,2),
           nrow = 2,
           byrow = TRUE)
# Eigenanalyse
eigen(A)
> eigen() decomposition
> $values
> [1] 3 1
> $vectors
        [,1] [,2]
> [1,] 0.707 -0.707
> [2,] 0.707 0.707
```

Orthonormalzerlegung

Singulärwertzerlegung

Vektorkoordinatentransformation

Theorem (Eigenwerte und Eigenvektoren symmetrischer Matrizen)

Eine symmetrische Matrix $S\in\mathbb{R}^{m\times m}$ hat m verschiedene Eigenwerte $\lambda_1,...,\lambda_m$ mit zugehörigen orthogonalen Eigenvektoren $q_1,...,q_m\in\mathbb{R}^m$.

Bemerkungen

- Das Theorem ist eine Konsequenz aus dem Spektralsatz der Linearen Algebra.
- Ein vollständiger Beweis findet sich in Strang (2009), Section 6.4.

Teilbeweis

Wir setzen die Tatsache, dass S m verschiedene Eigenwerte hat, als gegeben voraus und zeigen lediglich, dass die Eigenvektoren von S orthogonal sind. Ohne Beschränkung der Allgemeinheit seien also λ_i und λ_j mit $1 \leq i,j \leq m$ und $\lambda_i \neq \lambda_j$ zwei der m verschiedenen Eigenwerte von S mit zugehörigen Eigenvektoren q_i und q_j , respektive. Dann ergibt sich

$$Sq_i = \lambda_i q_i \Leftrightarrow (Sq_i)^T = (\lambda_i q_i)^T \Leftrightarrow q_i^T S = q_i^T \lambda_i \Leftrightarrow q_i^T S q_i = \lambda_i q_i^T q_i.$$
 (15)

Ähnlicherweise gilt

$$Sq_j = \lambda_j q_j \Leftrightarrow q_i^T Sq_j = \lambda_j q_i^T q_j. \tag{16}$$

Also folgt

$$\lambda_i q_i^T q_j = \lambda_j q_i^T q_j \text{ mit } q_i \neq 0, q_j \neq 0, \text{ und } \lambda_i \neq \lambda_j$$
 (17)

und damit die Orthogonalität $q_i^T q_i = 0$.

Orthonormalzerlegung

Theorem (Orthonormale Zerlegung einer symmetrischen Matrix)

 $S \in \mathbb{R}^{m \times m}$ sei eine symmetrische Matrix. Dann kannn S geschrieben werden als

$$S = Q\Lambda Q^T, (18)$$

wobei $Q \in \mathbb{R}^{m \times m}$ eine orthogonale Matrix ist und $\Lambda \in \mathbb{R}^{m \times m}$ eine Diagonalmatrix ist.

Beweis

Weil S symmetrisch ist, hat sie m verschiedene Eigenwerte $\lambda_i, i=1,...,m$ und m zugehörige orthogonale Eigenvektoren $q_i, i=1,...,m$, so dass

$$Sq_i = \lambda_i q_i \text{ für } i = 1, ..., m. \tag{19}$$

Mit den Definitionen

$$Q:=\begin{pmatrix} q_1 & q_2 & \cdots & q_m \end{pmatrix} \text{ und } \Lambda:=\operatorname{diag}\left(\lambda_1,\lambda_2,...,\lambda_m\right), \tag{20}$$

folgt dann

$$SQ = \Lambda Q \Leftrightarrow SQ = Q\Lambda.$$
 (21)

Rechtseitige Multiplikation mit Q^T ergibt dann

$$SQQ^{T} = Q\Lambda Q^{T} \Leftrightarrow SI_{m} = Q\Lambda Q^{T} \Leftrightarrow S = Q\Lambda Q^{T}$$
(22)

und damit ist alles gezeigt.

Orthonormalzerlegung

Beispiel (fortgeführt)

Für

$$Q := \begin{pmatrix} v_1 & v_2 \end{pmatrix} \text{ and } \Lambda = \operatorname{diag}(\lambda_1, \lambda_2) \tag{23}$$

ergibt sich

$$\begin{split} Q\Lambda Q^T &= \begin{pmatrix} v_1 & v_2 \end{pmatrix} \operatorname{diag}(\lambda_1,\lambda_2) \begin{pmatrix} v_1 & v_2 \end{pmatrix}^T \\ &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{pmatrix} 3 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} \\ &= \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \\ &= A \end{split}$$

Orthonormalzerlegung

Singulärwertzerlegung

Vektorkoordinatentransformation

Singulärwertzerlegung

Definition (Singulärwertzerlegung)

 $X \in \mathbb{R}^{m \times n}$ sei eine Matrix. Dann heißt die Zerlegung

$$X = USV^{T}, (24)$$

wobei $U\in\mathbb{R}^{m\times m}$ eine orthogonale Matrix ist, $S\in\mathbb{R}^{m\times n}$ eine Diagonalmatrix ist und $V\in\mathbb{R}^{n\times n}$ eine orthogonale Matrix ist, *Singulärwertzerlegung (Singular Value Decomposition (SVD))* von X. Die Diagonalelemente von S heißen die *Singulärwerte* von X.

Bemerkungen

- Die Existenz der Singulärwertzerlegung folgt aus dem Spektralsatz der Linearen Algebra.
- Singulärwertzerlegungen können in R mit svd() berechnet werden.

Singulärwertzerlegung

Theorem (Singulärwertzerlegung und Eigenanalyse)

 $X \in \mathbb{R}^{m \times n}$ sei eine Matrix und

$$X = USV^{T} (25)$$

sei ihre Singulärwertzerlegung. Dann gilt:

- Die Spalten von U sind die Eigenvektoren von XX^T ,
- die Spalten von V sind die Eigenvektoren von X^TX und
- die entsprechenden Singulärwerte sind die Quadratwurzeln der zugehörigen Eigenwerte.

Bemerkung

• Singulärwertzerlegung und Eigenanalyse sind eng verwandt.

Singulärwertzerlegung

Beweis

Wir halten zunächst fest, dass mit

$$\left(XX^T \right)^T = XX^T \text{ and } \left(X^T X \right)^T = X^T X,$$
 (26)

 XX^T und X^TX symmetrische Matrizen sind und somit Orthornomalzerlegungen haben. Wir halten weiterhin fest, dass mit der Definition der Singulärwertzerlegung gelten, dass sowohl

$$XX^{T} = USV^{T} \left(U\Sigma V^{T} \right)^{T} = USV^{T} VS^{T} U^{T} = USSU^{T} = U\Lambda U^{T}$$
(27)

als auch

$$X^{T}X = \left(USV^{T}\right)^{T}USV^{T} = VS^{T}UUS^{T}V^{T} = V\Lambda V^{T}$$
(28)

ist, wobei wir $\Lambda:=SS$ definiert haben. Weil das Produkt von Diagonalmatrizen wieder eine Diagonalmatrix ist, ist Λ eine Diagonalmatrix und per Definition sind U und V orthogonale Matrizen. Wir haben also XX^T und X^TX in Form der Orthonormalzerlegungen

$$XX^{T} = U\Lambda U^{T} \text{ and } X^{T}X = V\Lambda V^{T}$$
 (29)

geschrieben und damit ist alles gezeigt.

Orthonormalzerlegung

Singulärwertzerlegung

Vektorkoordinatentransformation

Vektorkoordinatentransformation

Im Folgenden wichtige Begriffe

Euklidischer Vektorraum. Das Tupel $((\mathbb{R}^m,+,\cdot),\langle\rangle)$ aus dem reellen Vektorraum $(\mathbb{R}^m,+,\cdot)$ und dem Skalarprodukt $\langle\rangle$ auf \mathbb{R}^m heißt reeller kanonischer Euklidischer Vektorraum.

Basis. V sei ein Vektorraum und es sei $B\subseteq V$. Dann heißt B eine Basis von V, wenn die Vektoren in B linear unabhängig sind und die Vektoren in B den Vektorraum V aufspannen.

Basisdarstellung und Koordinaten. $B:=\{b_1,...,b_m\}$ sei eine Basis eines m-dimensionalen Vektorraumes V und es sei $x\in V$. Dann heißt die Linearkombination $x=\sum_{i=1}^m a_ib_i$ die Darstellung von x bezüglich der Basis B und die Koeffizienten $a_1,...,a_m$ heißen die Koordinaten von x bezüglich der Basis B.

Orthonormalbasis von \mathbb{R}^m . Eine Menge von m Vektoren $q_1,...,q_m\in\mathbb{R}^m$ heißt Orthonormalbasis von \mathbb{R}^m , wenn $q_1,...,q_m$ jeweils die Länge 1 haben und wechselseitig orthogonal sind.

Orthonormale Zerlegung einer symmetrischen Matrix. $S \in \mathbb{R}^{m \times m}$ sei eine symmetrische Matrix. Dann kannn S geschrieben werden als $S = Q\Lambda Q^T$, wobei $Q \in \mathbb{R}^{m \times m}$ eine orthogonale Matrix ist und $\Lambda \in \mathbb{R}^{m \times m}$ eine Diagonalmatrix ist. Dabei sind die Spalten von Q die Eigenvektoren von S und die Diagonalelemente von S sind die entsprechenden Eigenwerte.

Vektorkoordinatentransformationn

Im Folgenden wichtige Intuition

Bei Hauptkomponenten- und Faktorenanalysen werden aus den Koordinaten eines Vektors bezüglich einer Basis die Koordinaten desselben Vektors bezüglich einer anderen Basis berechnet.

Definition (Orthogonalprojektion)

x und q seien Vektoren im Euklidischen Vektorraum \mathbb{R}^m . Dann ist die *Orthogonalprojektion von x auf q* definiert als der Vektor

$$\tilde{x} = aq \text{ mit } a := \frac{q^T x}{q^T q}, \tag{30}$$

wobei der Skalar a Projektionsfaktor genannt wird.

Bemerkungen

- Per definition ist $\tilde{x}=aq$ mit $a\in\mathbb{R}$ der Punkt in Richtung von q der x am nähesten ist.
- Diese minimierte Distanzeigenschaft impliziert die Orthogonalität von q und $x-\tilde{x}$.
- Die Formel von a folgt direkt aus der Orthogonalität von $x-\tilde{x}$ und q, da gilt

$$q^{T}(x - \tilde{x}) = 0 \Leftrightarrow q^{T}(x - aq) = 0 \Leftrightarrow q^{T}x - aq^{T}q = 0 \Leftrightarrow a = \frac{q^{T}x}{q^{T}q}.$$

ullet Wenn q die Länge $||q||=\sqrt{q^Tq}=1$ hat, dann gilt $a=rac{q^Tx}{||q||^2}=q^Tx.$

Orthogonalprojektion

Theorem (Vektorkoordinaten bezüglich einer Orthogonalbasis)

Es sei $x\in\mathbb{R}^m$ und es sei $B:=\{q_1,...,q_m\}$ eine Orthonormalbasis von von \mathbb{R}^m . Dann ergeben sich für i=1,...,m die Koordinaten a_i in der Basisdarstellung von x bezüglich B als die Projektionsfaktoren

$$a_i = x^T q_i \tag{31}$$

in der Orthogonalprojektion von x auf q_i . Äquivalent ist die Basisdarstellung von x bezüglich B gegeben durch

$$x = \sum_{i=1}^{m} (x^{T} q_{i}) q_{i}. \tag{32}$$

Beweis

Für i = 1, ..., m gilt

$$x = \sum_{j=1}^{m} a_j q_j \Leftrightarrow q_i^T x = q_i^T \sum_{j=1}^{m} a_j q_j \Leftrightarrow q_i^T x = \sum_{j=1}^{m} a_j q_i^T q_j \Leftrightarrow q_i^T x = a_i \Leftrightarrow a_i = x^T q_i.$$
 (33)

Ш

Theorem (Vektorkoordinatentransformation)

 $B_v:=\{v_1,...,v_m\}$ und $B_w:=\{w_1,...,w_m\}$ seien zwei Orthonormalbasen eines Vektorraums. $A\in\mathbb{R}^{m\times m}$ sei die Matrix, die durch die spaltenweise Konkatenation der Koordinaten der Vektoren in B_w in der Basisdarstellung bezüglich der Basis B_v ergibt. Dann können die Koordinaten $x_i, i=1,...,m$ eines Vektors x bezüglich der Basis B_v in die Koordinaten $\tilde{x}_1,...,\tilde{x}_m$ des Vektors bezüglich der Basis B_w durch

$$\tilde{x} = A^T x \tag{34}$$

transformiert werden. Analog können die Koordinaten $\tilde{y}_1,...,\tilde{y}_m$ des Vektors hinsichtlich der Basis B_w in die Koordinaten $y_1,...,y_m$ des Vektors hinsichtlich B_v durch

$$x = A\tilde{x}. (35)$$

transformiert werden.

Bemerkungen

- Das Theorem erlaubt die Berechnung von Vektorkoordinaten bezüglich einer anderen Orthonormalbasis.
- Für die Berechnung muss zunächst die Matrix A gebildet und dann (nur) entsprechend multipliziert werden.
- Wir verzichten auf einen Beweis und demonstrieren das Theorem an einem Beispiel.

Ein Vektor wird hier als fester Punkt in \mathbb{R}^m betrachtet; die Komponenten (Zahlen) des Vektors werden dagegen nur als Koordinaten bezüglich einer spezifischen Basis interpretiert!

Beispiel

Man beachte, dass x and \tilde{x} am selben Ort in \mathbb{R}^2 liegen!

Vektorkoordinatentransformation

Beispiel

Wir nehmen an, dass wir die Koordinaten von $x=(1/3,2/3)^T\in\mathbb{R}^2$ hinsichtlich der kanonischen Orthonormalbasis $B_v:=\{e_1,e_2\}$ in die Koordinaten bezüglich der Basis

$$B_w := \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$
 (36)

transformieren wollen. Die Basisdarstellungen der in Vektoren B_w bezüglich der Basisvektoren in B_v sind

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = a_{11} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = a_{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \tag{37}$$

Die Projektionsfaktoren der Orthogonalprojektionen der Vektoren in B_w auf die Vektoren in B_v sind

$$a_{11} = \frac{1}{\sqrt{2}}, a_{21} = \frac{1}{\sqrt{2}}, a_{12} = -\frac{1}{\sqrt{2}}, a_{22} = \frac{1}{\sqrt{2}}.$$
 (38)

Die Transformationsmatrix $A \in \mathbb{R}^{m \times m}$ in obigem Theorem ergibt sich also zu

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}. \tag{39}$$

Die Vektorkoordinatentransformation von $x \in \mathbb{R}^2$ ergibt sich also zu

$$\tilde{x} = A^T x = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \end{pmatrix} \approx \begin{pmatrix} 0.70 \\ 0.23 \end{pmatrix}.$$
 (40)

Orthonormalzerlegung

Singulärwertzerlegung

Vektorkoordinatentransformation

- 1. Geben Sie die Definition eines Eigenvektors und eines Eigenwertes einer quadratischen Matrix wieder.
- 2. Geben Sie das Theorem zur Bestimmung von Eigenwerten und Eigenvektoren wieder.
- 3. Geben Sie das Theorem zu den Eigenwerten und Eigenvektoren symmetrischer Matrizen wieder.
- 4. Geben Sie das Theorem zur orthonormalen Zerlegung einer symmetrischen Matrix wieder.
- 5. Geben Sie die Definition einer Singulärwertzerlegung wieder.
- 6. Geben Sie das Theorem zum Zusammenhang von Singulärwertzerlegung und Eigenanalyse wieder.
- 7. Definieren Sie den Begriff Orthogonalprojektion.
- 8. Geben Sie das Theorem zu Vektorkoordinaten bezüglich einer Orthogonalbasis wieder.
- 9. Geben Sie das Vektorkoordinatentransformationstheorem wieder.
- 10. Erläutern Sie das Vektorkoordinatentransformationstheorem.

