Machine Learning from Data

Lecture 7: Spring 2021

Today's Lecture

- Approximation Vs Generalization
 - VC Dimension
 - Bias-Variance Analysis
 - Learning Curve

Theory of Learning and its relevance.

• We created a link between E_{out} and E_{in}

$$\mathbb{P}\left[|E_{\mathrm{in}}(g)-E_{\mathrm{out}}(g)|>\epsilon
ight]\leq 4m_{\mathcal{H}}(2N)e^{-\epsilon^2N/8},$$

for any $\epsilon > 0$.

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2|\mathcal{H}|e^{-2\epsilon^2 N} \leftarrow \text{finite } \mathcal{H}$$

$$\mathbb{P}\left[|E_{\mathrm{in}}(g)-E_{\mathrm{out}}(g)|\leq\epsilon
ight]\geq 1-4m_{\mathcal{H}}(2N)e^{-\epsilon^2N/8},$$

for any $\epsilon > 0$.

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| \le \epsilon] \ge 1 - 2|\mathcal{H}|e^{-2\epsilon^2 N} \quad \leftarrow \text{ finite } \mathcal{H}$$

$$E_{\mathrm{out}}(g) \leq E_{\mathrm{in}}(g) + \sqrt{\frac{8}{N}} \log \frac{4m_{\mathcal{H}}(2N)}{\delta},$$
 $E_{\mathrm{out}}(g) \leq E_{\mathrm{in}}(g) + \sqrt{\frac{1}{2N}} \log \frac{2|\mathcal{H}|}{\delta} \leftarrow \text{finite } \mathcal{H}$

w.p. at least $1 - \delta$.

$$m_{\mathcal{H}}(N) \leq \sum_{i=1}^{k-1} {N \choose i} \leq N^{k-1} + 1$$

k is a break point.

The VC Dimension

Summarize

$$m_{\mathcal{H}}(N) \sim N^{k-1}$$

The tightest bound is obtained with the smallest break point k^* .

Definition [VC Dimension] $d_{VC} = k^* - 1$.

The VC dimension is the largest N which can be shattered $(m_{\mathcal{H}}(N) = 2^N)$.

 $N \leq d_{VC}$: \mathcal{H} could shatter your data (\mathcal{H} can shatter some N points).

 $N > d_{\rm vc}$: N is a break point for \mathcal{H} ; \mathcal{H} cannot possibly shatter your data.

$$m_{\mathcal{H}}(N) \le N^{d_{\mathrm{VC}}} + 1 \sim N^{d_{\mathrm{VC}}}$$

$$m_{\mathcal{H}}(N) \le N^{d_{\text{vc}}} + 1 \sim N^{d_{\text{vc}}}$$

 $E_{\text{out}}(g) \le E_{\text{in}}(g) + O\left(\sqrt{\frac{d_{\text{vc}} \log N}{N}}\right)$

Examples

Convex Sets

Summarize

				N			
	1	2	3	4	5	#Param	$d_{ m VC}$
2-D perceptron	2	4	8	14		3	3
1-D pos. ray	2	3	4	5	• • •	1	1
2-D pos. rectangles	2	4	8	16	$< 2^5 \cdots$	4	4
pos. convex sets	2	4	8	16	32	∞	∞

There are models with few parameters but infinite $d_{\rm VC}$.

There are models with redundant parameters but small $d_{\rm VC}$.

Sample Complexity?

Set the error bar at ϵ .

$$\epsilon = \sqrt{\frac{8}{N} \ln \frac{4((2N)^{d_{\text{VC}}} + 1)}{\delta}}$$

Solve for N:

$$N = \frac{8}{\epsilon^2} \ln \frac{4((2N)^{d_{\text{VC}}} + 1)}{\delta} = O\left(d_{\text{VC}} \ln N\right)$$

Example. $d_{\text{VC}} = 3$; error bar $\epsilon = 0.1$; confidence 90% ($\delta = 0.1$). A simple iterative method works well. Trying N = 1000 we get

$$N \approx \frac{1}{0.1^2} \log \left(\frac{4(2000)^3 + 4}{0.1} \right) \approx 21192.$$

We continue iteratively, and converge to $N \approx 30000$. If $d_{\text{VC}} = 4$, $N \approx 40000$; for $d_{\text{VC}} = 5$, $N \approx 50000$.

 $(N \propto d_{\rm vc}, \, {\rm but \, gross \, overestimates})$

Theory Vs Practice

VC Bound Quantifies Approximation Vs. Generalization

 $d_{\rm VC} \uparrow \Longrightarrow$ better chance of **approximating** $f(E_{\rm in} \approx 0)$.

 $d_{\text{VC}} \downarrow \Longrightarrow \text{ better chance of generalizing to out of sample } (E_{\text{in}} \approx E_{\text{out}}).$

$$E_{\rm out} \leq E_{\rm in} + \Omega(d_{\rm VC}).$$

Bias Variance Trade-off

- 1. How well can the learning approximate f.
 - ... as opposed to how well did the learning approximate f in-sample (E_{in}) .
- 2. How close can you get to that approximation with a finite data set.
 - ... as opposed to how close is $E_{\rm in}$ to $E_{\rm out}$.

Bias-variance analysis applies to squared errors (classification and regression)

Bias-variance analysis can take into account the *learning algorithm*Different learning algorithms can have different E_{out} when applied to the same \mathcal{H} !

A simple learning problem

Problem continued...

Expected Behavior with Datasets

Which one is better?

$$\begin{array}{c} \mathcal{H}_0 \\ \text{bias} = 0.50 \\ \text{var} = 0.25 \\ \hline E_{\text{out}} = 0.75 \end{array} \checkmark$$

$$\mathcal{H}_1$$
 bias = 0.21
$$\mathbf{var} = 1.69$$

$$E_{\text{out}} = 1.90$$

Data

2 Data Points

$$\begin{array}{c} \mathcal{H}_0 \\ \text{bias} = 0.50; \\ \text{var} = 0.25. \\ \hline E_{\text{out}} = 0.75 \end{array} \checkmark$$

$$\mathcal{H}_1$$
 bias = 0.21; var = 1.69.
$$E_{\text{out}} = 1.90$$

5 Data Points

$$\begin{aligned} \mathcal{H}_0 \\ \text{bias} &= 0.50; \\ \text{var} &= 0.1. \\ \hline E_{\text{out}} &= 0.6 \end{aligned}$$

$$\mathcal{H}_1 \\ \text{bias} = 0.21; \\ \text{var} = 0.21. \\ \hline E_{\text{out}} = 0.42 \quad \checkmark$$

Learning Curve

$$E_{\text{out}} = \mathbb{E}_{\mathbf{x}} \left[E_{\text{out}}(\mathbf{x}) \right]$$

Comparison

VC Analysis

Pick \mathcal{H} that can generalize and has a good chance to fit the data

Bias-Variance Analysis

rumber of Data Follos, 17

Pick $(\mathcal{H}, \mathcal{A})$ to approximate f and not behave wildly after seeing the data

Thanks!