

Montagem de RNA-Seq com genoma de referência

Leandro Costa do Nascimento

leandro@lge.ibi.unicamp.br

l.costa.nascimento@gmail.com 21/07/2015

- Scaffold1280: sequência genômica
- Eucgr.L02715: lócus gênico
- Eucgr.L02715.1, Eucgr.L02715.2 e Eucgr.L02715.3: transcritos do lócus

GFF/GTF

- Arquivos tabulares (separados por tabs).
- Contém 9 colunas, representando uma "feature" por linha.
- Cada "feature" pode representar um gene, um transcrito, exon etc.
- Em resumo, contém as posições dos genes já conhecidos no genoma de referência.

GFF/GTF

- Coluna 1: Sequência genômica.
- Coluna 2: Tipo de dado ou programa utilizado.
- Coluna 3: Feature (Gene, transcrito, CDS).
- Coluna 4: Posição inicial da feature na sequência genômica.
- Coluna 5: Posição final
- Coluna 6: Score.
- Coluna 7: Strand (foward ou reverse).
- Coluna 8: Frame.
- Coluna 9: Atributos (nome, id, etc).

scaffold_1	phytozome7	gene	12024	17350		+		ID=Eucgr.A00001;Name=Eucgr.A00001;
scaffold_1	phytozome7	mRNA	12024	17350		+	•	ID=PAC:18799928;Name=Eucgr.A00001.1;pacid=
18799928; Parent	=Eucgr.A00001;							
scaffold_1	phytozome7	five_p	rime_UTR	12024	12154		+	. ID=PAC:18799928.five_prime_UTR.1;P
arent=PAC:18799	928;pacid=18799	9928;						
scaffold_1	phytozome7	five_p	rime_UTR	12668	12710		+	. ID=PAC:18799928.five_prime_UTR.2;P
arent=PAC:18799	928;pacid=18799	9928;						
scaffold_1	phytozome7	CDS	12711	12896		+	0	<pre>ID=PAC:18799928.CDS.1; Parent=PAC:18799928;</pre>
pacid=18799928;								
scaffold_1	phytozome7	CDS	12991	13086		+	0	<pre>ID=PAC:18799928.CDS.2; Parent=PAC:18799928;</pre>
pacid=18799928;								
scaffold_1	phytozome7	CDS	13275	13395		+	0	<pre>ID=PAC:18799928.CDS.3; Parent=PAC:18799928;</pre>
pacid=18799928;								
scaffold_1	phytozome7	CDS	13484	13590		+	2	<pre>ID=PAC:18799928.CDS.4; Parent=PAC:18799928;</pre>
pacid=18799928;								
scaffold_1	phytozome7	CDS	13670	13887		+	0	<pre>ID=PAC:18799928.CDS.5; Parent=PAC:18799928;</pre>
pacid=18799928;								
scaffold_1	phytozome7	CDS	14202	14379		+	1	<pre>ID=PAC:18799928.CDS.6; Parent=PAC:18799928;</pre>
nacid=18799928;								

Estratégias para análise de RNA-Seq

De novo assembly

Align to transcriptome

Align to reference genome

Simplifying complexity (Cloonan and Grimmond, 2010)

Qual a melhor estratégia?

- Montagem de novo
 - Não existe genoma/transcriptoma de referência.
- Alinhamento com transcritos
 - Visa identificar a expressão de genes/transcritos já conhecidos.
- Alinhamento com o genoma
 - Estudos voltados para a descoberta de novos genes (codificantes ou não) e novos transcritos para genes já conhecidos.

Como alinhar meus reads?

How to map billions of short reads onto genomes (Trapnell and Salzberg, 2009)

TopHat

- Faz mapeamento com "splicing", permitindo a identificação de introns.
- Utiliza o Bowtie (tem que gerar índices do bowtie para o genoma).
- Permite a utilização de um catálogo de transcritos conhecidos.
- Arquivo de saída em formato BAM.
- http://ccb.jhu.edu/software/tophat/index.sht
 ml

TopHat - pipeline

- Alinhamento dos reads nos transcritos (caso fornecido).
- Reads não alinhados nos transcritos são alinhados no genoma (sem splicing).
- Reads sem alinhamento com o genoma são divididos em seeds (sementes).
- As sementes são alinhadas no genoma: parâmetros de tamanho do intron limitam a distância entre sementes do mesmo read.

TopHat - pipeline

TopHat - parâmetros

- Tamanho mínimo do intron (-i).
- Tamanho máximo do intron (-I).
- Transcritos conhecidos (-G).
- Número máx. de alinhamentos por read (-g).
- Número máx. de mismatches (-N).
- Diretório de saída (-o).

TopHat - exemplo

- Supondo que eu tenho 2 amostras de RNAseq e quero alinhá-las no genoma permitindo introns de até 300.000 bp e permitir somente 1 mismatch nos alinhamentos, qual linha de comando vou usar?
- Importante, se você vai rodar o programa 2 vezes (uma por amostra) você deve modificar o diretório de saída!

TopHat - exemplo

```
[leandro@lactads04 Test]$
[leandro@lactads04 Test]$
[leandro@lactads04 Test]$ bowtie2-build meu genoma.fasta meu genoma.fasta ^C
[leandro@lactads04 Test]$
[leandro@lactads04 Test]$ ls
meu genoma.fasta meu genoma.fasta.4.bt2 SRR521590.fastq
meu genoma.fasta.1.bt2 meu genoma.fasta.rev.1.bt2 tophat-2.0.9.Linux x86 64
meu genoma.fasta.2.bt2 meu genoma.fasta.rev.2.bt2
meu genoma.fasta.3.bt2 SRR521589.fastq
[leandro@lactads04 Test]$
[leandro@lactads04 Test]$ ./tophat-2.0.9.Linux x86 64/tophat -I 300000 -N 1 -o tophat SRR521589 meu gen
oma.fasta SRR521589.fastq
```

Cufflinks

- Faz a montagem dos transcritos usando o alinhamento dos reads no genoma.
- 1 montagem por amostra.
- Permite a utilização de um catálogo de transcritos conhecidos.
- http://cole-trapnell-lab.github.io/cufflinks/

Cufflinks - parâmetros

- Tamanho máximo do intron (-I).
- Descartar transcritos com abundância menor que a estabelecida (-F).
- Descartar transcritos intrônicos com abundância menor que a estabelecida (-j).
- Usar somente os transcritos conhecidos (-G).
- Usar os transcritos conhecidos para guiar a montagem (-g).

O que muda o –F?

- O parâmetro "-F" evita a montagem de transcritos falso positivos (transcrição de fundo).
- Corte muito baixo pode trazer transcritos que não existem.
- Corte muito alto pode descartar transcritos reais, principalmente não codificantes.

Montagem (cufflinks) alterando o –F (0,4)

Porque usar o –g?

- O parâmetro "-g" permite fornecer ao cufflinks um catálogo de transcritos conhecidos para auxiliar a montagem.
- São aceitos os formatos GFF e GTF.
- Sem esse parâmetro, transcritos com pouca cobertura podem acabar "picados" em vários.

Montagem (cufflinks) utilizando o –g

PAC:18758799

E o −j?

- Parecido com o "-F", mas diz respeito a transcritos localizados dentro de introns.
- Muito importante em estudos de ncRNA intrônicos.
- Corte muito baixo pode trazer transcritos que não existem (pré-mRNA).
- Corte muito alto pode descartar transcritos reais.

Cuffmerge

- Se eu fizer uma montagem por biblioteca, terei transcritos iguais com nomes diferentes.
- O cuffmerge faz um "merge" das montagens do cufflinks, gerando uma referência única.
- Usa como entrada os arquivos GTFs das montagens do cufflinks e gera um GTF único.

Cuffmerge

- Os resultados são diferentes dos resultados de uma única montagem com várias bibliotecas.
- Em uma montagem com todas as bibliotecas, a soma de expressão de todas as bibliotecas vai causar um viés.

Montagem - Cuffmerge

Cuffcompare

- Compara os resultados de montagens do cufflinks/cuffmerge com o GTF/GFF inicial.
- Após a comparação, divide os transcritos em classes (class_codes) e grava os resultados no arquivo "cuffcmptracking".

Class codes

- =
 - Transcrito igual a um conhecido.
- j
 - Nova variante de splicing.
- u
 - Transcrito em região intergênica (novo).
- i
 - Transcrito localizado em um intron.
- http://cole-trapnelllab.github.io/cufflinks/cuffcompare/

TCONS 00000001	XLOC 000001	5511297	13100.1	0	q1:SS11297 TCONS (
TCONS 00000002	XLOC 000001		13100.1		q1:SS11297 TCONS (
TCONS 00000003	XLOC 000002		13155.1		q1:SS11349 TCONS (
TCONS 00000004	XLOC 000003	-	u		000003 TCONS 00000
TCONS 00000005	XLOC 000004		u		000004 TCONS 00000
TCONS 00000006	XLOC 000005	_		_	000005 TCONS 00000
			u 152100 1	_	q1:SS49599 TCONS (
TCONS_00000007	XLOC_000006	2243233	53190.1		_
TCONS_00000008	XLOC_000007	_	u	_	000007 TCONS00000
TCONS_00000009	XLOC_000008	_	u	_	000008 TCONS00000
TCONS_00000010	XLOC_000009	-	u 	al : XLOC	000009 TCONS00000
TCONS_00000011	XLOC_000010	SS49600		= !	q1:SS49600 TCONS_(
TCONS_00000012	XLOC_000011		19325.1	=	q1:SS16995 TCONS_(
TCONS_00000013	XLOC_000012		53192.1		q1:SS49601 TCONS_(
TCONS_00000014	XLOC_000013		53193.1		q1:SS49602 TCONS_(
TCONS_00000015	XLOC_000014	SS49603		- ;	q1:SS49603 TCONS_(
TCONS_00000016	XLOC_000015	_	u		_000015 TCONS_00000
TCONS_00000017	XLOC_000016		53195.1	=	q1:SS49604 TCONS_(
TCONS_00000018	XLOC_000017		19326.1	j	q1:SS16996 TCONS_(
TCONS_00000019	XLOC_000017	SS16996		= ;	q1:SS16996 TCONS_(
TCONS_00000020	XLOC_000018		19327.1	j	q1:SS16997 TCONS_(
TCONS_00000021	XLOC_000018		19327.1	j	q1:SS16997 TCONS_(
TCONS_00000022	XLOC_000018	19328 19	9328.1	=	q1:19328 TCONS_000
TCONS_00000023	XLOC_000018	SS16997	19327.1	=	q1:SS16997 TCONS_(
TCONS_00000024	XLOC_000019	SS49605	53196.1	= i	q1:SS49605 TCONS_(
TCONS_00000025	XLOC_000020	_	u	q1:XLO	_000020 TCONS_00000
TCONS_00000026	XLOC_000020	_	u	q1:XLO	_000020 TCONS_00000
TCONS_00000027	XLOC_000021	_	u	q1:XLO	_000021 TCONS_00000
TCONS 00000028	XLOC 000022	SS49606	53197.1	=	q1:SS49606 TCONS (
TCONS 00000029	XLOC 000023	SS16998	19329.1	=	q1:SS16998 TCONS (
TCONS 00000030	XLOC 000024	_	u	q1 XLO	000024 TCONS 00000
TCONS 00000031	XLOC 000025	_	u	q1:XLO	000025 TCONS 00000
TCONS 00000032	XLOC 000026	SS49607	53198.1	=	q1:SS49607 TCONS (
TCONS 00000033	XLOC 000027	SS16999	19330.1	×	q1:SS16999 TCONS (
TCONS 00000034	XLOC 000028	SS17000	19331.1	= !	q1:SS17000 TCONS (
TCONS 00000035	XLOC 000029	SS16999	19330.1	j	q1:SS16999 TCONS (
TCONS 00000036	XLOC 000029		19330.1	j	q1:SS16999 TCONS (
TCONS 00000037	XLOC 000029		19330.1	ji	q1:SS16999 TCONS (
TCONS 00000038	XLOC 000029		19330.1	i !	q1:SS16999 TCONS (
TCONS 00000039	XLOC 000029	SS16999	19330.1		q1:SS16999 TCONS (
TCONS 00000040	XLOC 000030	_	u		000030 TCONS 00000
TCONS 00000041	XLOC 000031	SS49608	53199.1		q1:SS49608 TCONS (
TCONS 00000042	XLOC 000032		53200.1		q1:SS49609 TCONS (
TCONS 00000043	XLOC 000033		53201.1		q1:SS49610 TCONS (
TCONS 00000044	XLOC 000034		53202.1		q1:SS49611 TCONS (
TCONS 00000045	XLOC 000035	_	u		000035 TCONS 00000
TCONS 00000046	XLOC 000035		u		000035 TCONS 00000
TCONS 00000046	XLOC_000036	_	u		000033 1CONS_00000
TCONS 00000047	XLOC_000036	99496121	u 53203.1	_	q1:SS49612 TCONS (
			-		_
TCONS_00000049	XLOC_000038		53204.1		q1:SS49613 TCONS_(
TCONS_00000050	XLOC_000039		19332.1	_	q1:SS17001 TCONS_(
TCONS_00000051	XLOC_000039	3517001	19332.1	3	q1:SS17001 TCONS_(

ncRNA

- Diversos estudos tem se voltado para descoberta de RNAs não codificadores, chamados de ncRNAs.
- Os ncRNAs estão relacionados a regulação gênica, pré ou pós transcrional.
- Não traduzem proteínas, ou seja, não possuem ORF.

CPC

- Coding Potential Calculator:
- http://cpc.cbi.pku.edu.cn/
- Programa que tenta calcular o potencial codificador de um transcrito.
- Usa diversas evidências:
 - Alinhamento com bancos de dados de proteínas.
 - Existência de ORFs.
 - Alinhamento com bancos de UTR.