Name	
Student Number	
Signature	

THE UNIVERSITY OF NEW SOUTH WALES

School of Electrical Engineering & Telecommunications

FINAL EXAMINATION

Session 2, 2016

ELEC1111 Electrical and Telecommunications Engineering

TIME ALLOWED:

3 hours

TOTAL MARKS:

100

TOTAL NUMBER OF QUESTIONS:

5

THIS EXAM CONTRIBUTES 60% TO THE TOTAL COURSE ASSESSMENT

Reading Time: 10 minutes.

This paper contains 5 pages.

Candidates must **ATTEMPT ALL** questions.

Answer each question in a separate answer book.

Marks for each question are indicated beside the question.

This paper may **NOT** be retained by the candidate.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may only be used** for drawing, sketching or graphical work.

OUESTION 1 [25 marks]

(a) Consider the circuit shown in Figure 1 with $R_L=2\Omega$.

- [4 marks] Write down three node equations for the node voltages v_a , v_b and v_c .
- ii) Find the values of v_a , v_b and v_c .

[2 marks]

iii) Write down three equations for the mesh currents i_1 , i_2 and i_3 .

[4 marks]

iv) Find the values of i_1 , i_2 and i_3 .

[2 marks]

- v) Find the power supplied or absorbed by each element of the circuit and show that [2 marks] power is conserved in this circuit.
- (b) For the circuit in Figure 1, find the resistance of the resistor R_L such that the power dissipating on it is maximized. Calculate the maximum power. Hint: This can be answered by finding the Thevenin equivalent of the circuit to the left of terminals a-b.

[2 marks]

(c) Using superposition principle, find the voltage V_o in the circuit in Figure 2. [6 marks]

(d) For the circuit in Figure 2, determine the values for the Thevenin equivalent of the circuit [3 marks] to the left of the terminal pair a-b.

QUESTION 1 [25 marks]

(a) Consider the circuit shown in Figure 1 with $R_L=2\Omega$.

i) Write down three node equations for the node voltages v_a , v_b and v_c . [4 marks]

ii) Find the values of v_a , v_b and v_c . [2 marks]

iii) Write down three equations for the mesh currents i_1 , i_2 and i_3 . [4 marks]

iv) Find the values of i_1 , i_2 and i_3 . [2 marks]

- v) Find the power supplied or absorbed by each element of the circuit and show that power is conserved in this circuit. [2 marks]
- (b) For the circuit in Figure 1, find the resistance of the resistor R_L such that the power dissipating on it is maximized. Calculate the maximum power. Hint: This can be answered by finding the Thevenin equivalent of the circuit to the left of terminals a-b.

 [2 marks]

(c) Using superposition principle, find the voltage V_o in the circuit in Figure 2. [6 marks]

Figure 2

(d) For the circuit in Figure 2, determine the values for the Thevenin equivalent of the circuit to the left of the terminal pair a-b. [3 marks]

QUESTION 2 [15 marks]

Consider the circuit shown in Figure 3. Assume that the switch has been opened for a long time and is closed at t = 0. The switch then remains closed for 1 second and opens again.

Determine:

Figure 1

(a) The initial value of the voltage across capacitor, i.e. $v_c(0^+)$	[2 marks]
(b) An expression for the voltage $v_c(t)$ when $0 \le t \le 1$.	[5 marks]
(c) An expression for the voltage $v_c(t)$ when $t \ge 1$.	[4 marks]
(d) The steady state voltage when $t>1$, i.e. $v_c(+\infty)$.	[2 marks]
(e) The energy stored in the capacitor at time $t = 5$ seconds.	[2 marks]

QUESTION 3 [25 marks]

(a) Consider the circuit shown in Figure 4 where L=0.1 H, $C=2 \text{x} 10^3 \mu \text{F}$, $R=6 \Omega$ and the angular frequency is $\omega=100 \text{rad/s}$.

- i. Write down an expression for the impedance Z_{eq} between terminals a-b in terms of R, C, L and ω . [4 marks]
- ii. Calculate Z_{eq} . [2 marks]
- iii. A voltage source $v_s(t)=240sin(100t)$ V is supplied to the terminals a-b of the circuit. Find an expression for the current supplied by the source in time domain.
- iv. Find the phase difference between the voltage $v_s(t)$ and current in part (iii). Is the voltage leading or lagging compared to the current? [2 marks]
- v. In order to make the circuit have a unity power factor, a capacitor C_x is connected in parallel with the resistor. Find the capacitance of C_x.
 [2 marks]

(b) Consider the circuit in Figure 5.

- Find expressions for the currents $i_2(t)$ and $i_3(t)$ and the voltage v(t). [7 marks]
- ii) Sketch a phasor diagram showing all currents and voltages in the circuit. [3 marks]
- iii) Calculate the power factor of the circuit to the right of the terminal pair a-b.

[3 marks]

QUESTION 4 [15 marks]

Consider the circuit in Figure 6 with $v_1=v_2=1V$; $R_1=R_2=20k\Omega$; $R_3=R_4=10k\Omega$ and $R_5=100k\Omega$.

Figure 6

a. When the switch S is opened, find the voltage Va.

[5 marks]

- b. When the switch S is closed:
 - i. Determine the ratio v_o/v_a .

[5 marks]

ii. Find the output voltage v_o .

[2 marks]

iii. Justify that the circuit is a non-inverting amplifier circuit based on your answer in part (i). [3 marks]

QUESTION 5 [20 Marks]

(a) Convert the binary number 11001 into decimal.

[2 marks]

(b) Convert the decimal number 35 into binary.

[2 marks]

(c) Draw a logic diagram which represents the following logic equation:

$$Output = \overline{ABC} + \overline{BC} + \overline{CD}$$

[4 marks]

- (d) Show that the logic equation in part (c) can be implemented by using only NAND gates and sketch the logic diagram of the equation using only NAND gates. [2 marks]
- (e) Consider the logic diagram shown in Fig. 7.

Figure 7

- i. Directly from Figure 7, derive a logical expression for f(A,B,C). [5 marks]
- ii. Write down a truth table that describes the operation of this diagram. [3 marks]
- iii. Simplify the logical expression f(A,B,C) in part (i) as much as possible and show that it can be implemented by using only two NOT gates and one 3-input AND gate. [2 marks]

END OF PAPER