Course 10

Scanning & Parsing Tools

- Scanning => lex
- Parsing => yacc

Lex – Unix utilitary (flex – Windows version)

INPUT FILE FORMAT

- The file containing the specification is a text file, that can have any name. Due to historic reasons we recommend the extension .lxi.
- Consists of 3 sections separated by a line containing %%:

```
definitions
%%
rules
%%
user code
```

Example 1:

99

```
username printf( "%s", getlogin() );
```

specifies a scanner that, when finding the string "username", will replace it with the user login name

Definition Section:

• - declarations of simple *name definitions* (used to simplify the scanner specification), of the form

name definition

- where:
- name is a word formed by one or more letters, digits, '_' or '-', with the remark that the first character MUST be letter or '_' and must be written on the FIRST POSITION OF THE LINE.
- **definition** is a regular expression and is starting with the first nonblank character after name until the end of line.
- declarations of start conditions.

Rules Section

- to associate semantic actions with regular expressions. It may also contain user defined C code, in the following way:

pattern action

where:

- pattern is a regular expression, whose first character MUST BE ON THE FIRST POSITION OF THE LINE;
- action is a sequence of one or more C statements that MUST START ON THE SAME LINE WITH THE PATTERN. If there are more than one statements they will be nested between {}. In particular, the action can be a void statement.

User Defined Code Section:

- Is optional (if is missing, then the separator %% following the rules section can also miss). If it exists, then its containing user defined C code is copied without any change at the end of the file lex.yy.c.
- Normally, in the user defined code section, one may have:
- function main() containing call(s) to yylex(), if we want the scanner to work autonomously (for ex., to test it);
- other called functions from yylex() (for ex. yywrap() or functions called during actions); in this case, the user code from definitions section must contain: either prototypes, either #include directives of the headers containing the prototypes

Launching the execution:

```
lex [option] [name_specification _file]
```

```
where name_specification _file is an input file (implicitly, stdin)
```

```
$ lex spec.lxi
```

\$ gcc lex.yy.c -o your_lex

\$ your_lex<input.txt</pre>

options: http://dinosaur.compilertools.net/flex/manpage.html

Example

yacc – Unix tool (Bison – Window version)

Yet Another Compiler Compiler

- LALR
- C code

A yacc grammar file has four main sections

```
%{
C declarations
%}
yacc declarations
%%
```

Grammar rules

응응

contains declarations that define terminal and nonterminal symbols, specify precedence, and so on.

Additional C code

The grammar rules section

• contains one or more yacc grammar rules of the following general form:

```
result: components... {C statements}
exp:
result: rule1-components...
      rule2-components...
                      /*empty */
result:
      rule2-components...
```

Example: expression interpreter

• input

 Yacc has a stack of values - referenced '\$i' in semantic actions

Input file (desk0)

```
> make desk0
bison -v desk0.y
desk0.y contains 4 shift/reduce conflicts.
gcc -o desk0 desk0.tab.c
>
```

Conflict resolution in yacc

• Conflict shift-reduce – prefer shift

• Conflict **reduce-reduce** – chose first production

- Run yacc
- Run desk0

```
> desk0
2*3+4
14
```

Operator priority in yacc

From low to great

```
%token DIGIT
%left '+'
%left '*'
응응
line : expr '\n' { printf("%d\n", $1);}
expr : expr '+' expr { $$ = $1 + $3;}
     | expr '*' expr { $$ = $1 * $3;}
    | '(' expr ')' { $$ = $2;}
     | DIGIT
응응
```

• Use

>lex spec.lxi
>yacc -d spec.y
>cc lex.yy.c y.tab.c -o rezultat -lfl
>rezultat<fis_intrare</pre>

More on

http://catalog.compilertools.net/lexparse.html

Example

Push-down Automata

Intuitive Model

Definition

- A push-down automaton(PDA) is a 7-tuple M = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where:
 - Q set of states <u>finite</u>
 - Σ alphabet (set of input symbols) <u>finite</u>
 - **Γ** stack alphabet (set of stack symbols) <u>finite</u>
 - δ : Q x (Σ U { ε }) x $\Gamma \rightarrow \mathcal{P}(Qx \Gamma^*)$ transition function
 - $q_0 \in Q$ initial state
 - $Z_0 \in \Gamma$ initial stack symbol
 - $F \subseteq Q$ set of final states

Push-down automaton

Transition/ move determined by:

- Current state
- Current input symbol
- Head of stack

Reading head -> input band:

- Read symbol
- Do nothing

Stack:

- Zero symbols => pop
- One simbol => push
- More symbols => push several times

Configurations and moves

• Configuration:

$$(q, x, \alpha) \in Q \times \Sigma^* \times \Gamma^*$$

with meaning:

- PDA is in state q
- Input band contains x
- Head of stack is α
- Initial configuration (q_0, w, Z_0)

Configurations and moves (cont.)

Moves between configurations:

p,q
$$\in \mathbb{Q}$$
, $a \in \Sigma$, $Z \in \Gamma$, $w \in \Sigma^*$, $\alpha, \gamma \in \Gamma^*$

 $(q,aw,Z\alpha) \vdash (p,w,\gamma\alpha)$ if and only if $\delta(q,a,Z) \ni (p,\gamma)$

Z is replaced by γ

$$(q,aw,Z\alpha) \vdash (p,aw,\gamma\alpha)$$
 if and only if $\delta(q,\varepsilon,Z) \ni (p,\gamma)$
 $(\varepsilon\text{-move})$

$$\bullet \stackrel{k}{\vdash} , \stackrel{+}{\vdash} , \stackrel{*}{\vdash}$$

Language accepted by PDA

Empty stack principle:

$$L_{\varepsilon}(M) = \{ w \mid w \in \Sigma^*, (q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon), q \in Q \}$$

Final state principle:

$$L_f(M) = \{w \mid w \in \Sigma^*, (q_0, w, Z_0) \vdash^* (q_f, \varepsilon, \gamma), q_f \in F\}$$

Representation

- Enumeration
- Table
- Graphical

Construct PDA

- L = $\{0^n1^n | n \ge 1\}$
- States, stack, moves?

1. States:

- Initial state:q₀ start & process symbols '0'
- When meeting the first symbol '1' move to other state => q_1
- Final: q₂

2. Stack:

- Z₀ initial stack symbol
- X to count symbols:
 - When reading symbol '0' push X in stack
 - When reading symbol '1' pop X from stack

Exemple 1 (enumeration)

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, Z_0, \{q_2\})$$

$$\boldsymbol{\delta}(q_0, 0, Z_0) = (q_0, XZ_0)$$

$$\delta(q_0,0,X) = (q_0,XX)$$

$$\delta(q_0,1,X) = (q_1,\varepsilon)$$

$$\delta(q_1,1,X) = (q_1,\varepsilon)$$

$$\delta(q_1, \varepsilon, Z_0) = (q_2, Z_0)$$

$$\delta(q_1, \varepsilon, Z_0) = (q_1, \varepsilon)$$

Empty stack

$$\vdash (q_1, \varepsilon, \varepsilon)$$

$$(q_0,0011,Z_0) \vdash (q_0,011,XZ_0) \vdash (q_0,11,XXZ_0) \vdash (q_1,1,XZ_0) \vdash (q_1, \varepsilon, Z_0) \vdash (q_2, \varepsilon, Z_0)$$

Final state

Exemple 1 (table)

		0	1	ε
	Z_0	q_0,XZ_0		
q_0	X	q ₀ ,XZ ₀ q ₀ ,XX	$q_{\scriptscriptstyle 1}, \boldsymbol{\varepsilon}$	
	Z_0			q_2,Z_0
q_1	X		$q_{\scriptscriptstyle 1}, \boldsymbol{\varepsilon}$	
	Z_0			
q_2	X			

Example 1 (graphical)

Proprieties

Theorem 1: For any PDA M, there exists a PDA M' such that $L_{\varepsilon}(M) = L_{f}(M)$

Theorem 2: For any PDA M, there exists a cfg G such that $L_{\varepsilon}(M) = L(G)$

Theorem 3: For any cfg G, there exists a PDA M such that $L(G) = L_{\varepsilon}(M)$

Homework

- Parser:
 - Descendent recursive
 - LL(1)
 - LR(0), SLR, LR(1)

Corresponding PDA

Please, please, please

COURSE EVALUATION