MATH 410/510: REGRESSION ANALYSIS- PRACTICE MIDTERM 2

You are allowed 1.25 hours to complete this exam. There are a total of 50 possible points. You must show all work to get credit. Print out all relevant SAS code and output. Look through the entire exam before you start. Please do not hesitate to raise your hand if you have a question.

1. a. Express the two sample problem as a specific instance of the multiple regression model. Clearly identify the design matrix, the response variables, and the parameters. b. Find the least squares estimates for the parameters using the usual method.

SOLUTION

a.
$$\vec{y} = X\vec{\beta} + \vec{\varepsilon}$$
 is our model, where $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \\ \vdots \\ y_{m+1} \\ \vdots \\ y_n \end{bmatrix}$, $X = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ \hline 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix}$, $\vec{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$, and $\vec{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_m \\ \vdots \\ \varepsilon_{m+1} \end{bmatrix}$.

Please see notes.

b. Now solve $\vec{b} = (X'X)^{-1}X'\vec{y}$. You will get the sample mean from each group

- 2. The Federal Trade Commission (FTC) annually ranks varieties of domestic cigarettes according to their tar, nicotine, and carbon monoxide contents. The U.S. surgeon general considers each of these three substances hazardous to a smoker's health. Past studies have shown that increases in the tar and nicotine contents of a cigarette are accompanied by an increase in the carbon monoxide emitted from the cigarette smoke. The data set (see http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html) lists tar, nicotine, and carbon monoxide contents (in milligrams) and weight (in grams) for a simple of 25 (filter) brands tested in a recent year. Suppose we want to model carbon monoxide content, y, as a function of tar content, x₁, nicotine content, x₂, and weight, x₃.
 - a. Perform a regression analysis on the data using SAS. Are any of the variables significant?
 - b. Calculate the variance inflation factors by finding the R_j values. What does this indicate about multicollinearity?
 - c. What is your choice of a final model? Use forward selection to assist you in making your choice. Does a log transformation increase the coefficient of determination R^2 for your model?

SOLUTION

a. The REG Procedure

Model: MODEL1 Dependent Variable: y

Number of Observations Read 25 Number of Observations Used 25

Analysis of Variance

	Sum of		Mean			
Source	DF	Squares	Square	F Value	Pr > F	
Model	3	495.25781	165.08594	78.98	<.0001	
Error	21	43.89259	2.09012			
Corrected Total	2	24 539.150	40			

Root MSE 1.44573 R-Square 0.9186 Dependent Mean 12.52800 Adj R-Sq 0.9070 Coeff Var 11.53996

Parameter Estimates

	Parameter		Standard		Variance
Variable	DF	Estimate	Error	t Value	Pr > t Inflation
Intercept	1	3.20219	3.46175	0.93	0.3655
x 1	1	0.96257	0.24224	3.97	0.0007 21.63071
x2	1	-2.63166	3.90056	-0.67	0.5072 21.89992
x 3	1	-0.13048	3.88534	-0.03	0.9735 1.33386

The only variable that is significant is x1, while the overall F test indicates that the whole model is significant.

b. For example, to find VIF1, the code we need is

```
proc reg data=cig;
model x1=x2 x3;
run;
```

from which we get an R-squared value of 0.9537745. The VIFs larger than 10, along with the insignificant variables for an overall significant model point to multicollinearity.

c. Based on forward selection with SLE=0.1, we get

```
proc reg data=cig;
model y=x1 x2 x3/selection=f sle=.10;
run;
```

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 25 Number of Observations Used 25

Forward Selection: Step 1

Variable x1 Entered: R-Square = 0.9168 and C(p) = 0.4672

Analysis of Variance

Sum of			Mean			
Source	DF	Squares	Square	F Value	Pr > F	
Model	1	494.28131	494.28131	253.37	<.0001	
Error	23	44.86909	1.95083			
Corrected Total	24	539.15040				

```
Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 2.74328 0.67521 32.20226 16.51 0.0005
x1 0.80098 0.05032 494.28131 253.37 <.0001
```

Bounds on condition number: 1, 1

No other variable met the 0.1000 significance level for entry into the model.

Summary of Forward Selection

\	/ariable	Number	Partial M	odel			
Step	Entered	Vars In	R-Square	R-Square	C(p)	F Value	Pr > F
1	x 1	1	0.9168	0.9168	0.4672	253.37	<.0001

We select the model with x1 alone. This corroborates the conclusion we would have reached had we looked at all 8 sub models and kept an eye on

- 1. VIFs
- 2. Significance of each regressor via partial t tests
- 3. Overall R-squared values.

The following code will allow us to do this:

```
proc reg data=cig;
model y=x1 x2 x3;
model y=x1 x2;
model y=x1 x3;
model y=x2 x3;
model y=x1;
model y=x2;
model y=x2;
model y=x3;
run;
```

As for the log transformation, the following code will create a new transformed variable, which, after we perform a proc reg with it being the dependent variable, we see that the already high R squared does not increase by much at all.

```
data cigl;
set cig;
ly=log(y);
run;
```

3. a. There are a number of ways that we can detect outliers. Give a formula (or definition) of the following statistics, and describe the rules of thumb we use for outlier detection: i. Leverage ii. Cook's D iii. Studentized residuals

Discussed in class

b. Draw a sample graph illustrating a violation of the following assumptions concerning the residuals α : i. $Var(\varepsilon_i) = \sigma^2$, for all i (i.e. heteroscedasticity). ii. $\varepsilon_i \sim N(0, \sigma^2)$ for all i.

Discussed in class

4. Use stepwise regression to determine the best model for the asphalt data. Use an α level of SLE=SLS=0.15. Are there any potential outliers?

SOLUTION

4. Model: MODEL1

Dependent Variable: Y

Number of Observations Read 31 Number of Observations Used 31

	Sum of		Mean			
Source	DF	Squares	Square	F Value	Pr > F	
Model	6	994.00414	165.66736	10.67	<.0001	
Error	24	372.51430	15.52143			
Corrected Total	3	30 1366.518	344			

Root MSE 3.93972 R-Square 0.7274

Dependent Mean 6.50710 Adj R-Sq 0.6592

Coeff Var 60.54504

Parameter Estimates

Parameter Standard								
Variable	DF	Estimate	Error t	Value	Pr > t			
Intercept	1	-62.97048	36.11900	-1.74	0.0941			
VISC .	1	0.00307	0.00816	0.38	0.7100			
SURF	1	7.49803	3.96716	1.89	0.0709			
BASE	1	6.22582	4.81273	1.29	0.2081			
FINES	1	0.52221	1.17467	0.44	0.6606			
VOIDS	1	-0.24127	1.68496	-0.14	0.8873			
RUN	1	-5 38630	0 98538	-5 47	< 0001			

OUTLIER DETERMINATION

The SAS System

11:01 Thursday, May 10, 2007 35

The REG Procedure Model: MODEL1 Dependent Variable: Y

Output Statistics

Dependent Predicted	Std Error Std	d Error Student	Cook's
Obs Variable Value	Mean Predict Residu	al Residual Residual -2	2-1 0 1 2 D
1 6.7500 11.0354		•	0.035
2 13.0000 11.6445		3.514 0.386	0.005
3 14.7500 10.8504	1.4312 3.8996	3.671 1.062 **	0.025
4 12.6000 11.5869		3.684 0.275	0.002
5 8.2500 13.1548	2.2482 -4.9048	3.235 -1.516 ***	0.159
6 10.6700 11.6229	1.8463 -0.9529	3.480 -0.274	0.003
7 7.2800 12.3848	2.0724 -5.1048	3.351 -1.524 ***	0.127
8 12.6700 11.4490	1.7889 1.2210	3.510 0.348	0.004
9 12.5800 10.5673		3.625 0.555 *	0.008
10 20.6000 13.7904	1.5209 6.8096	3.634 1.874 ***	0.088
11 3.5800 9.2581		3.553 -1.598 ***	0.084
12 7.0000 8.2729	1.7727 -1.2729	3.518 -0.362	0.005
13 26.2000 15.0738	2.0156 11.1262	3.385 3.287 **	·**** 0.547
14 11.6700 12.0926	1.7542 -0.4226	3.528 -0.120	0.001
15 7.6700 12.6612	2.5469 -4.9912	3.006 -1.661 ***	0.283
16 12.2500 12.0749	1.1568 0.1751	3.766 0.0465	0.000
17 0.7600 0.4695	1.4307 0.2905	3.671 0.0791	0.000
18 1.3500 1.7615	1.6323 -0.4115	3.586 -0.115	0.000
19 1.4400 2.0018	1.7859 -0.5618	3.512 -0.160	0.001
20 1.6000 3.1272		3.390 -0.450	0.010
21 1.1000 -1.4451	2.1288 2.5451	3.315 0.768 *	0.035
22 0.8500 0.6062	1.5241 0.2438	3.633 0.0671	0.000
23 1.2000 4.4006	2.0223 -3.2006	3.381 -0.947 *	0.046
24 0.5600 2.6946	2.0039 -2.1346	3.392 -0.629 *	0.020
25 0.7200 1.2446	2.3368 -0.5246	3.172 -0.165	0.002
26 0.4700 0.2119	2.7524 0.2581	2.819 0.0916	0.001
27 0.3300 -0.8277	1.9526 1.1577	3.422 0.338	0.005
28 0.2600 -2.4224	2.0234 2.6824	3.380 0.794 *	0.032
29 0.7600 -0.8561	1.3419 1.6161	3.704 0.436	0.004
30 0.8000 3.7135	2.0680 -2.9135	3.353 -0.869 *	0.041
31 2.0000 -0.4800	1.8875 2.4800	3.458 0.717 *	0.022

Sum of Residuals0Sum of Squared Residuals372.51430Predicted Residual SS (PRESS)670.16794

STEPWISE REGRESSION

proc reg data=asphalt;
model y=visc __surf __base __fines __voids run/selection=stepwise
sle=.15 sls=.15;
run;

The SAS System 11:01 Thursday, May 10, 2007 36

The REG Procedure Model: MODEL1 Dependent Variable: Y

Number of Observations Read 31 Number of Observations Used 31

Stepwise Selection: Step 1

Variable RUN Entered: R-Square = 0.6576 and C(p) = 3.1488

Analysis of Variance

Sum of Mean Source DF Squares Square F Value Pr > F 898.56551 Model 898.56551 55.69 < .0001 1 29 Error 467.95293 16.13631 Corrected Total 30 1366.51844

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 6.33333 0.72185 1242.15054 76.98 <.0001
RUN -5.38667 0.72185 898.56551 55.69 <.0001

Bounds on condition number: 1, 1

Stepwise Selection: Step 2

Variable SURF Entered: R-Square = 0.6947 and C(p) = 1.8789

Analysis of Variance

Sum of Mean

 Source
 DF
 Squares
 Square
 F Value
 Pr > F

 Model
 2
 949.31954
 474.65977
 31.86
 <.0001</td>

 Error
 28
 417.19890
 14.89996

 Corrected Total
 30
 1366.51844

The SAS System 11:01 Thursday, May 10, 2007 37

The REG Procedure Model: MODEL1 Dependent Variable: Y

Stepwise Selection: Step 2

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept -23.00056 15.90890 31.14451 2.09 0.1593
__SURF 5.97498 3.23738 50.75403 3.41 0.0755
RUN -5.40584 0.69372 904.76953 60.72 <.0001

Bounds on condition number: 1.0002, 4.0009

Stepwise Selection: Step 3

Variable __BASE Entered: R-Square = 0.7239 and C(p) = 1.3062

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	989.25205	329.75068	23.60	<.0001
Error	27	377.26639	13.97283		
Corrected Total	3	30 1366.518	844		

Pa	arameter S	tandard		
Variable	Estimate	Error Ty	vpe II SS F V	/alue Pr > F
		•	, 1	
Intercept	-62.60050	28.03676	69.66015	4.99 0.0340
SURF		3.25057	72.94400	5.22 0.0304
BASE	6.82824	4.03913	39.93251	2.86 0.1024
RUN	-5.26852	0.67669	847.00772	60.62 < .0001

Bounds on condition number: 1.0907, 9.5425

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

The SAS System

11:01 Thursday, May 10, 2007 38

The REG Procedure Model: MODEL1 Dependent Variable: Y

Summary of Stepwise Selection

	Variable	Variable Nur	nber Pa	rtial Mod	del				
Step	Entered	Removed	Vars In	R-Square	R-Square	C(p)	F۷	alue	Pr > F
1	RUN	1	0.6576	0.6576	3.14	88 5	55.69	<.00	01
2	SURF	2	0.0371	0.6947	1.87	789	3.41	0.07	55
3	BASE	3	0.0292	0.7239	1.30	6 2.86	0.10	24	

Thus the final model includes the variables RUN, __SURF, and __BASE (note: you have to place two consecutive underscores before SURF, etc for SAS to read the variables correctly).

As far as outliers, based on the criteria in 3a,

Average leverage is (p+1)/n=7/31. 2*(p+1)/n=0.452. We can compare the leverage for individual observations to this value. If they are larger, they are considered x-outliers.

Based on Studentized Residuals, ldl>3 for observation 13.

Based on Cook's D, the appropriate F quantile to compare it to is F(p+1, n-p-1, 0.50) = F(7,24,0.5) = 0.93. Since the Cook's D value for observation 13 is less than 0.93, we say that the observation is not an outlier.