# Deep Neural Networks for Sequential Data

CS771: Introduction to Machine Learning
Pivush Rai

## Plan Today

- Batch-normalization and Dropout layers
- Deep Neural Networks for sequential data (e.g., text)
  - Recurrent Neural Networks and variants
  - CNNs for text
  - Attention mechanism



## Recap: Normalization Layer

- Each hidden layer is a nonlinear transformation of the previous layer's inputs
- To prevent distribution drift in activations' distribution, we often "standardize" each layer
- lacktriangle Standardize = activation  $h_{nk}^{(\ell)}$  should have zero mean and unit variance across all n
- It is achieved by inserting a "batch normalization" layer after each hidden layer
- lacktriangle To do so, during training, (omitting layer number  $\ell$ ) we replace each  $h_n$  by  $\widetilde{h}_n$

$$\gamma$$
 and  $\beta$  are trainable batch-norm parameters

We compute  $\mu_{\mathcal{B}}$  and  $\sigma_{\mathcal{B}}^2$  using the data from the current minibatch of examples  ${\cal B}$  (thus the name "batch norm"

$$\widetilde{\boldsymbol{h}}_n = \boldsymbol{\gamma} \odot \ \widehat{\boldsymbol{h}}_n + \boldsymbol{\beta}$$

$$\mu_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{h \in \mathcal{B}} h$$

$$\widetilde{h}_{n} = \gamma \odot \widehat{h}_{n} + \beta \qquad \widehat{h}_{n} = \frac{h_{n} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$$

$$\mu_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{h \in \mathcal{B}} h \qquad \sigma_{\mathcal{B}}^{2} = \frac{1}{|\mathcal{B}|} \sum_{h \in \mathcal{B}} (h - \mu_{\mathcal{B}})^{2}$$

$$\sigma_{\mathcal{B}}^2 = \frac{1}{|\mathcal{B}|} \sum_{h \in \mathcal{B}} (h - \mu_{\mathcal{B}})^2$$

Note: Batch-norm assumes sufficiently large mini-batch  ${\cal B}$  to work well. There are variants such as "layer normalization" and "instance normalization" that don't require a mini-batch can be computed using a single example

■ After training, we store  $\gamma$  and  $\beta$  + the statistics  $\mu$  and  $\sigma^2$  computed on the whole training data, and use these values to apply batch-norm on each test input

### Dropout Layer

- Deep neural networks can overfit when trained on small datasets
- Dropout is a method to regularize without using an explicit regularizer
- lacktriangle In every update of the network, drop neuron i in layer  $\ell$  with probability p

$$\epsilon_i^{(\ell)} \sim \text{Bernoulli}(1-p)$$

ullet If  $\epsilon_i^{(\ell)}=0$ , set all outgoing weights  $w_{ij}^{(\ell)}$  from neuron i to 0





- Each update of weights will change a different subset of weights
  - In doing so, we are making individual neurons more self-reliant and less dependent on others
- At test time, no dropout is used. After training is complete, we multiply each weight by the keep probability 1-p and use these weights for predictions

## Sequential Data

■ In many problems, each input, each output, or both may be in form of sequences



- Different inputs or outputs need not have the same length
- Some examples of prediction tasks in such problems
  - Image captioning: Input is image (not a sequence), output is the caption (word sequence)
  - Document classification: Input is a word sequence, output is a categorical label
  - Machine translation: Input is a word sequence, output is a word sequence (in different language)
  - Stock price prediction: Input is a sequence of stock prices, output is its predicted price tomorrow
  - No input just output (e.g., generation of random but plausible-looking text)

## Recurrent Connections in Deep Neural Networks

■ Feedforward nets such as MLP and CNN assume independent observations



Feedforward neural networks are not ideal when inputs  $[x_1, x_2, ..., x_N]$  and/or outputs  $[y_1, y_2, ..., y_N]$  represent sequential data (e.g., sentences)



■ A recurrent structure can be helpful if each input and/or output is a sequence



## Recurrent Neural Networks: Some Examples

lacktriangle Consider generating a sequence  $y_1, y_2, \dots, y_T$  given an input x



## Recurrent Neural Networks: Some Examples

Parts of speech tagging (or "aligned" translation; input and output have same length)



"Unaligned" translation (input and output can have different lengths)



■ In the unaligned case, generation stops when an "end" token (e.g., <END>) is generated on the output side

## Recurrent Neural Networks: Some Examples

 Unconditional generation (no input, only an output sequence is generated given a RNN that was trained using some training data containing several sequences)



- Each generate word/token is fed to the next step's hidden state
- Generation stops when an "end" token (e.g., <END>) is generated



#### Recurrent Neural Networks

A basic RNN's architecture (assuming input and output sequence have same lengths)



lacktriangle RNN has three sets of weights  $oldsymbol{W}, oldsymbol{U}, oldsymbol{v}$ 

g is some activation function like ReLU

- W and U model how  $h_t$  at step t is computed:  $h_t = g(Wx_t + Uh_{t-1})$
- $m{v}$  models the hidden layer to output mapping, e.g.,  $m{y}_t = o(m{v} m{h}_t)$  of b depends on the nature of b of b then b can be softmax
- Important: Same W, U, v are used at all steps of the sequence (weight sharing)

# For RNNs, Long Distant Past is Hard to Remember

lacktriangle The hidden layer nodes  $h_t$  are supposed to summarize the past up to time t-1



- In theory, they should. In practice, they can't. Some reasons
  - Vanishing gradients along the sequence too past knowledge gets "diluted"
  - Hidden nodes also have limited capacity because of their finite dimensionality
- Various extensions of RNNs have been proposed to address forgetting
  - Gated Recurrent Units (GRU), Long Short Term Memory (LSTM)



#### GRU and LSTM

GRU and LSTM are variants of RNNs. These contain specialized units and "memory" which modulate what/how much information from the past to retain/forget



#### Bidirectional RNN

- RNNs and GRU and LSTM only remember the information from the previous tokens
- Bidirectional RNNs can remember information from the past and future tokens



#### **CNN** for Text

- CNNs can exploit sequential structure as well using convolutions
- Figure below is CNN for text data where the goal is to predict sentiment of a review





#### Need for Attention

- Each layer in standard deep neural nets computes a linear transform + nonlinearity
- For N inputs, collectively denoting inputs as  $X \in \mathbb{R}^{N \times K_1}$  and outputs as  $H \in \mathbb{R}^{N \times K_2}$

$$m{H} = g(m{X}m{W})$$
 Notation alert: Input  $m{X}$  can be data (if  $m{H}$  denotes first hidden layer) or the  $m{H}$  of the previous hidden layer

- Here the weights  $W \in \mathbb{R}^{K_1 \times K_2}$  do not depend on the inputs X
  - Output  $h_n = g(W^T x_n) \in \mathbb{R}^{K_2}$  only depends on  $x_n \in \mathbb{R}^{K_1}$  and pays no attention to  $x_m$ ,  $m \neq n$



■ When different inputs outputs have inter-dependencies (e.g., they denote representations of words in a sentence, or patches in an image), paying attention to other inputs is helpful/needed CS771: Intro to ML

#### Attention Mechanism

■ Don't define output  $h_n$  as  $h_n = g(Wx_n)$  but as a weighted combination of all inputs

$$h_n = \sum_{i=1}^N lpha_{ni}(X) f(x_i) = \sum_{i=1}^N lpha_{ni}(X) v_i$$
 and  $v_i$  is the attention score (to be learned) which tells us how much input  $x_i$  should attend to output  $h_n$  or  $v_i$  is the "value" vector of input  $v_i$  should be used to compute the output  $v_i$  should attend to output  $v_i$  is the "value" vector of input  $v_i$  should be used to compute the output  $v_i$  should attend to output  $v_i$  is the "value" vector of input  $v_i$  is the "value" vector of  $v_i$  is the "value" vector of  $v_i$  is the "value" vector of  $v_i$  is the "value" vector

■ Attention scores  $\alpha_{ni}(X)$  and "value"  $v_i = f(x_i)$  of  $x_i$  can be defined in various ways



One popular way to define the attention scores

$$\alpha_{ni}(\mathbf{X}) = \frac{\exp(\mathbf{q}_n^{\mathsf{T}} \mathbf{k}_i)}{\sum_{j=1}^{N} \exp(\mathbf{q}_n^{\mathsf{T}} \mathbf{k}_j)}$$







Attention mechanism (especially self-attention is used in transformers)

#### Attention Mechanism



$$Q = XW_Q$$

$$K = XW_K$$

$$V = XW_V$$

