

Computer and Communication (IT/CPE)

Network Models

Paramate Horkaew

School of Computer Engineering
Institute of Engineering, Suranaree University of Technology

Lecture Outline

- Network Reviews
- Layered Tasks
- Internet Model
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- OSI Model
 - Session Layer
 - Data Representation Layer
- Exercises (ทำแบบฝึกหัดท้ายบท Multiple Choice Questions)

Network Reviews

Network คือกลุ่มของอุปกรณ์ (Devices) ที่สามารถ **รับ และส่งข่าวสาร** ผ่านทาง อุปกรณ์นำข้อมูล (Carrier หรือ Link)

ในทางปฏิบัติ เพื่อให้การบริหารจัดการ ข้อมูล เป็นไปอย่างมีประสิทธิภาพ กระบวนการที่เกิดขึ้นจึงประกอบด้วยการ ทำงาน เกี่ยวเนื่องกันเป็นลำดับชั้น (Layers)

Hardware

Layered Tasks

e.g. ระบบการส่งจดหมายแบบลำดับขั้น มีองค์ประกอบ 5 ประการ (ตามนิยามการสื่อสาร)

- Protocol หมายถึง ชุดของกฎหรือข้อตกลง ในที่นี้คือระบบการส่งจดหมายทางไปรษณีย์
- Message คือ จดหมาย ประกอบด้วยข้อมูล ที่ต้องการสื่อสาร
- Sender ได้แก่ ผู้ส่งเขียนจดหมาย สอดไปในซอง (Packet) ติดแสตมป์ (Protocol) แล้วหย่อน ลงตู้ไปรษณีย์
- Medium คือ เส้นทางการขนส่งจดหมายกำหนดโดยที่ทำการไปรษณีย์ ส่วนกลาง และท้องถิ่น
- Receiver ได้แก่ ผู้รับหยิบจดหมายจากตู้รับหน้าบ้าน เปิดซอง แล้วอ่านข่าวสารในตัวจดหมาย

หมายเหตุ

Protocol การส่งจดหมายทางไปรษณีย์ มีการทำงานเป็นลำดับขั้นเรียกว่า **Hierarchy** หมายถึง ลำดับ ของขั้นตอนดำเนินการซึ่งต้องสอดคล้องกัน (จำนวนเท่ากัน และสมมูลกัน) ทั้งทางด้านส่งและ ทางด้านรับ

Services หมายถึงการใช้ผลลัพธ์ จาก ขั้นตอนที่ต่ำกว่า โดย ขั้นตอนที่สูงถัดขึ้นไป

Layered Post Model

The parcel is carried from the source to the destination.

Internet Model

ชุดลำดับขั้น (Stack) ของการสื่อสารข้อมูลที่นิยมใช้มากในปัจจุบัน ได้แก่ *Internet Model* (บางครั้งอาจเรียกว่า *TCP/IP Protocol Suite*) ซึ่งประกอบด้วย 5 Layers ดังรูป โดยที่ในแต่ละ Layer นิยามด้วยการทำงาน (Function) และหน่วยข้อมูลที่เกี่ยวข้อง (Data Elements)

Peer-to-Peer Processes

การสื่อสาร ระหว่างแต่ละ Node จะเป็นการโต้ตอบภายใน Layer เดียวกันเท่านั้น ด้วย Protocol ที่ นิยามเฉพาะใน Layer นั้น → **Flexibility** เช่น การ Set Internet Connection ใน Windows

A Peer-to-Peer Example

Interface:

Data & Services

ตัวอย่างการสื่อสารด้วย E-mail

ผู้ใช้ จะรับ/ส่งข้อความ ผ่าน <u>E-mail Applications</u> ซึ่งสื่อสารกันด้วย Protocol SMTP

ผู้ใช้ด้านขวามือ ใช้บริการของ Layers ถัดลงไป ตามลำดับ ผ่าน Interface โดยทั้งสองฝั่ง<u>ไม่ต้อง</u> ทราบรายละเอียดการทำงานของ Layer ที่ตรงกัน ของอีกฝั่งหนึ่ง → **Transparent/Modularity**

An Exchange in the Internet Model

ในจำนวน 5 Layers สามารถแบ่งได้เป็น 3 กลุ่ม ดังนี้

- 1. Network Support Layer (L1, 2, 3) ทำหน้าที่จัดการถ่ายโอนข้อมูลระหว่าง Node
- 2. <u>User Support Layer</u> (L5) ทำหน้าที่ติดต่อกับผู้ใช้ ผ่านทางซอฟท์แวร์ต่างๆ
- 3. <u>Transport Layer</u> (L4) ทำหน้าที่ประสานข้อมูลที่กลุ่ม 1 จัดส่งให้อยู่ในรูปแบบที่กลุ่มที่ 2 ใช้ได้

Functions of Layers (I)

Layer 1: Physical Layer

Layer นี้ รับผิดชอบในการส่ง "**กลุ่มของบิต** (Bit Stream)" จาก Node หนึ่ง ไปยังอีก Node หนึ่ง และนอกจากนี้ ยังทำหน้าที่นิยาม

- 🗘 ข้อกำหนดเชิงกล/ไฟฟ้า ของ Interface และ Transmission Media
- 🗘 ขั้นตอน และการทำงาน ของ Device และ Interface ในการจัดส่งข้อมูล

Functions of Layers (II)

- Layer 2: Data Link Layer รับผิดชอบ การควบคุมการถ่ายโอนข้อมูลระหว่าง Node เพื่อ ประสิทธิภาพสูงสุด โดยทำหน้าที่
 - 🗘 บริหารจัดการ การใช้ตัวกลาง (Access Control) ณ เวลาใดๆ ในกรณีมีการใช้งานร่วมกัน
 - 🗘 ระบุ Node ถัดไป (H2) ในการส่ง Bit Stream/Frame (ปณ. ปลายทาง ถ้าอยู่นอกเครือข่าย)
 - 🗘 ควบคุมอัตราการใหลของข้อมูล (Flow Control) และแก้ไขข้อผิดพลาด (Error Control) (T2)

Hop-to-Hop Delivery

Data Link Example

จากรูป Node #10 ต้องการส่งข้อมูลไปยัง Node #87 แต่เนื่องจาก Node ทั้งสองเชื่อมต่อ ด้วย Link เดียว (Bus Topology) จึงไม่จำเป็นต้องทำ Hop-to-Hop ดังนั้นใน Layer นี้ ส่วนที่เป็น Header (H2) จึงระบุเพียงแค่ Node ต้นทาง (10) และ Node ถัดไป (= Node ปลายทาง = 87) ส่วน T2 จะใช้สำหรับการตรวจจับ และแก้ไข Error

หมายเหตุ นอกจากหมายเลขตันทาง-ปลายทางแล้ว H2 ยังบรรจุข้อมูล Header ส่วนอื่นๆ ที่จำเป็นอีก แต่จะยังไม่กล่าวถึงในที่นี้

Functions of Layers (III)

- Layer 3: Network Layer รับผิดชอบในการส่ง "ข้อมูล" จาก Node ต้น ทางไปยัง Node ปลายทาง (อาจอยู่ต่าง Network ได้) โดยสมบูรณ์
 - ♣ Logical Addressing คือ ระบบการกำหนดหมายเลขตำแหน่ง (ของ Node) เพื่อให้สามารถแยกแยะ Node ต่าง Network ได้ (เช่น IP Address)
 - ♣ Routing คือ ระบบการกำหนดเส้นทางลำเลียงข้อมูลจากต้นทาง-ปลายทาง

Source-to-Destination Delivery

Network Example

ตัวอย่างการส่งข้อมูลในชั้น Network

เมื่อส่งข้อมูลจาก Node A ซึ่งมี Physical Address 10 บน Network หนึ่ง ไปยัง Node P ซึ่งมี Physical Address 95 บน อีก Network หนึ่ง

เนื่องจากเป็นการส่งข้าม Network จึงไม่ สามารถใช้ Physical Address ซึ่งจำกัด เฉพาะใน Network เดียวเท่านั้น ได้

Logical Address (A, E, F, T, *etc.*) จึงใช้ สำหรับนิยาม ตำแหน่ง Node และจำแนก Node ที่อยู่ต่าง Network กัน

Functions of Layers (IV)

- Layer 4: Transport Layer รับผิดชอบในการส่ง "ข้อมูล" จาก กระบวนการ (Process) ต้นทางไปยัง Process ปลายทาง
 - ♣ Port Addressing คือ การกำหนดหมายเลข Process ที่ใช้ (1 Node มีหลาย Proc.)
 - Connection คือ นิยามลักษณะการเชื่อมต่อระหว่างการส่งข้อมูล
 - Segmentation/Assembly คือ การแบ่งข้อมูลเป็นกลุ่มย่อย และเรียบเรียงใหม่
 - ➡ Flow/Error Control คือ การควบคุมคุณภาพของการรับ/ส่ง (คล้าย Data Link)

Process-to-Process Delivery

จากรูป สังเกตว่าการส่งข้อมูลข่าวสาร (**Message**) ระหว่างสอง Process จะเกิดขึ้น ณ Transport Layer เนื่องจาก ในแต่ละ Node อาจจะมีหลายๆ Process ทำงานพร้อมกัน ดังนั้น จึงต้องมีการระบุหมายเลขของ Process เรียกว่า **Port** และหาก Message มีขนาด ใหญ่เกินไป อาจต้องมีกระบวนการแบ่ง/เรียบเรียง Message เป็นชิ้น เรียกว่า **Packet**

18

Transport Example

Functions of Layers (V)

• Layer 5: Application Layer ทำหน้าที่เชื่อมต่อระหว่างผู้ใช้กับ Network ผ่านทาง Application Software ต่างๆ เช่น E-mail, WWW เป็นต้น

Application Examples

- 1. Remote Login
- 2. Messenger
- 3. WWW
- 4. FTP

Summary of Layers

Function ของแต่ละ Layer สรุปได้ดังนี้

- Physical รับ/ส่ง *Bit Stream* ระหว่างตัวกลาง และนิยามข้อกำหนดที่เกี่ยวข้อง
- Data Link รับ/ส่ง *Frame* ข้อมูลเพื่อทำการ รับ/ส่งระหว่าง Node (Hop-to-Hop)
- **Network** รับ/ส่ง *Packet* ระหว่าง Node ต้นทางไปยัง Node ปลายทาง
- Transport รับ/ส่ง *Message* ระหว่าง Process ต้นทาง ไปยังปลายทาง
- Application เชื่อมต่อระหว่างผู้ใช้กับเครือข่าย

OSI Model

Conclusion

- Network Reviews
- Layered Tasks
- Internet Model
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- OSI Model
 - Session Layer
 - Data Representation Layer
- Exercises (ทำแบบฝึกหัดท้ายบท Multiple Choice Questions)