

EINSTIEG IN DIE WELT DER DATENBANKEN

WARUM DATENBANKEN

Zugang zu Daten mehrerer Benutzer

Strukturierte Hinterlegung der Daten

DIE 9 CODD'SCHEN ANFORDERUNGEN

		, D V	TIC	7 R I
IIV	LEC	ıKA	TIC	JΙΝ

Einheitliche, nicht redundante Datenverwaltung

BENUTZERSICHTEN

Unterschiedliche Sichten für Benutzer

TRANSAKTION

Mehrere DB-Operationen als Funktionseinheit

OPERATION

Speichern, Suchen, Ändern, Einfügen

INTEGRITÄTSSICHERUNG

Einheitliche, nicht redundante Datenverwaltung

SYNCHRONISATION

Parallele Transaktionen Mehrere Benutzer koordinieren

KATALOG

Zugriff auf Datenbeschreibungen (Data Dictionary)

ZUGRIFFSKONTROLLE

Ausschluss von unberechtigtem Zugriff

DATENSICHERUNG

Wiederherstellung von Daten nach Systemfehlern

DATENBANKENTWURF

DATENMODELLIERUNG

Studenten			hören	
MatrNr	Name		MatrNr	VorlNr
26120	Fichte		25403	5022
25403	Jonas		26120	5001

1	Vorlesungen			
	VorlNr	Titel		
	5001	Grundzüge		
	5022	Glaube und Wissen		

SELECT Name

FROM Studenten, hören, Vorlesungen

WHERE Studenten.MatrNr = hören.MatrNr AND

hören.VorlNr = Vorlesungen.VorlNr AND

Vorlesungen. Titel = 'Grundzüge';

UPDATE Vorlesungen

SET Titel = 'Grundzüge der Logik'

WHERE VorlNr = 5001;

ENTITY RELATIONSHIP MODEL

 Modelliert Gegenstände (Entities) und die Beziehungen (Relationships) zwischen diesen

Entity

 Objekt, über welches Informationen zu speichern sind (Bsp.: Vorlesung, Professor, Prüfung)

Relationship

Beziehung zwischen Entities
 (Bsp.: Professor liest Vorlesung)

Attribut

 Eigenschaft von Entities oder Beziehungen (Name, Titel,...)

ER-MODELL – CHEN NOTATION

ENTITY RELATIONSHIP MODEL

Werte

- Primitive Datenelemente, die direkt erstellbar sind
- Werte werden durch **Datentypen** beschrieben

Datentypen

- Vorgegebene Standard-Datentypen
 - Beispiele
 - int
 - varchar
 - date

ÜBUNG DATENTYPEN

- Ganzzahlen
- Fließkommazahlen
- Datumsangaben
- Zeichenketten
- Binärdaten

ATTRIBUTE

- Modellieren Eigenschaften von Entities oder Beziehungen
- Alle Entitites eines Entity-Typen (hier bspw. "Studenten")
 haben dieselben Arten von Eigenschaften.
- Attribute werden somit für Entity-Typen deklariert
- textuelle Notation:

E (A1: D1, ..., Ax: Dx)

Attributen ist ein Datentyp zuzuweisen

SCHLÜSSEL

- Die Werte der Schlüsselattribute identifizieren Entities eindeutig
- Bei mehreren Schlüsselkandidaten ist ein Primärschlüssel zu wählen (im Modell unterstreichen)

 Beispiel: Die Matrikelnummer kennzeichnet einen Studenten eindeutig. Zu jeder Matrikelnummer gibt es genau einen

Studenten.

- Beziehungen zwischen Entities werden zu Beziehungstypen zusammengefasst.
- Beziehungen können ebenfalls Attribute besitzen (Note im Beispiel)

Unterschiede in Grade

Am häufigsten: binär

Zwei beteiligte Entitäten

Unterschiede in Grade

ternär

Drei beteiligte Entitäten

 Unterschiede in Grade unär

Eine beteiligte Entität

Unterscheidung Kardinalitäten

Beschreiben die Beziehung genauer.

Formen: 1:1, 1:N, N:1, M:N

Müssen immer eingehalten werden

ÜBUNG KARDINALITÄTEN

Definiere die Kardinalitäten für folgende Beziehungen:

- Mann ist verheiratet mit Frau
- Prospekt beschreibt Produkt
- Lehrer unterrichtet Fach
- Lieferant liefert Produkt
- Mitarbeiter arbeitet für Firma
- Bestellung umfasst Produkt
- Kino hat Kinosaal

ÜBUNG KARDINALITÄTEN

- Überlege dir je ein eigenes Beispiel:
- 1:1
- 1:N
- N:1
- M:N

Kardinalitäten bei ternären Beziehungen

Welche Integritätsbedingungen werden hier festgelegt?

Kardinalitäten bei ternären Beziehungen

Studenten dürfen bei demselben Professor nur ein Seminarthema bearbeiten

Kardinalitäten bei ternären Beziehungen

Studenten dürfen dasselbe Seminarthema nur bei einem Professor bearbeiten (also nicht wiederverwenden).

Kardinalitäten bei ternären Beziehungen

Professoren können dasselbe Seminarthema an mehrere Studenten vergeben (= "wiederverwenden")

ENDE

