MAS350: Assignment 3

1. Let $f_n, f: [0,1] \to \mathbb{R}$. In each of the following cases, explain whether the Monotone and/or Dominated Convergence Theorems can be used to prove that $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$.

(a)
$$f_n(x) = \cos(\frac{x}{n}) + \sin(\frac{x}{n})$$
 and $f(x) = 1$.

(b)
$$f_n(x) = \mathbb{1}_{[\frac{1}{2},1]}(x) x^{-1}$$
 and $f(x) = \mathbb{1}_{(0,1]}x^{-1}$.

(c)
$$f_n(x) = \mathbb{1}_{[0,\frac{1}{2}]}(x) n$$
 and $f(x) = 0$.

2. Let (S, Σ, m) be a measure space. Let $f: S \to [0, \infty)$ be measurable and let c > 0. Consider the following two facts, which were stated (and proved) within the lecture notes:

(a)
$$\left| \int_{S} f \, dm \right| \leq \int_{S} |f| \, dm$$
,

(b)
$$m(\{x \in S : f(x) \ge c\}) \le \frac{1}{c} \int_S f \, dm.$$

You do not need to prove these facts here.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X : \Omega \to [0, \infty)$ be a random variable. Let \mathbb{E} denote expectation with respect to \mathbb{P} . Use this notation to write down probabilistic versions of statements (a) and (b).

3. Consider the probability space ([0,1], $\mathcal{B}([0,1])$, λ) where λ denotes the restriction of Lebesgue measure to the Borel σ -field $\mathcal{B}([0,1])$ on [0,1].

Let
$$X_n(\omega) = \begin{cases} 1 & \text{if } \omega = 0\\ \omega n^{3/2} & \text{if } \omega \in (0, \frac{1}{n}]\\ 0 & \text{if } \omega \in (\frac{1}{n}, 1]. \end{cases}$$

Determine in which modes of convergence we have $X_n \to 0$.

4. (a) Let $(U_n)_{n\in\mathbb{N}}$ be a sequence of independent, identically distributed uniform random variables on (0,1). Prove that, $\mathbb{P}[U_n<1/n \text{ i.o.}]=1$ and $\mathbb{P}[U_n<1/n^2 \text{ i.o.}]=0$.

1

(b) Let $(X_n)_{n\in\mathbb{N}}$ be the sequence of results obtained from infinitely many rolls of a fair six sided dice. Prove that the (consecutive) pattern 123456 will occur infinitely often.