Forme canonique

Activité d'approche

Soit f la fonction du second degré définie sur \mathbb{R} par $f(x) = 2x^2 - 8x - 6$ dont la représentation graphique \mathcal{C}_f est donnée ci-dessous :

- 1. Lecture graphique
 - a. Lire les coordonnées du sommet S de la parabole $\mathscr{C}_{\mathsf{f}}.$
 - b. La fonction f peut s'écrire sous la forme $f(x) = a(x \alpha)^2 + \beta$, appelée forme canonique de la fonction f et cette écriture est unique. Développer cette forme.
 - c. En déduire les valeurs de α , α et β , puis la forme canonique de f.
 - d. Que peut-on dire des valeurs de α et β trouvées?
- 2. Sans utiliser la courbe représentative de la fonction f, on peut mener le raisonnement suivant pour déterminer la forme canonique :
 - a. Trouver le nombre réel d tel que $2x^2 8x 6 = 2(x^2 4x d)$.
 - b. En développant $(x-2)^2$, déterminer e tel que $x^2-4x-d=(x-2)^2+e$.
 - c. En déduire la forme canonique de f.
- 3. Reprendre la démarche précédente pour déterminer la forme canonique de la fonction g définie sur $\mathbb R$ par :

$$g(x) = 4x^2 + 8x + 10.$$

4. Dans le cas général, une fonction f du second degré est définie sur $\mathbb R$ par :

$$f(x) = \alpha x^2 + bx + c \text{ avec } \alpha \neq 0.$$

- a. Développer $a\left(x+\frac{b}{2a}\right)^2$.
- b. En déduire que $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + d$ où d est un nombre réel que l'on déterminera.
- c. On pose $\alpha = -\frac{b}{2a}$. Calculer $f(\alpha)$.
- d. Conclure sur la forme canonique de f.