

MMA867 Predictive Modeling

Jue Wang

Individual Assignment 2 2019-09-05

Chris Cao

Order of files:

Filename	Pages	Comments and/or Instructions
Individual Assignment 2 – Chris Cao	10	10 pages in total including cover page
submission.xlsx		Submission file for Kaggle
a2-kaggle code.r		R file for code

Additional Comments:											

Leaderboard

Overvie	w Data Notebooks Discussion Leaderboard Rules Team		y Submissions	Submit Predictions		
825	maybe1day	9	0.11749	3	17d	
826	startech		0.11750	2	1mo	
827	G.X.learning		0.11752	1	15d	
828	utsccy	9	0.11753	35	2m	
You adv	est Entry ↑ anced 35 places on the leaderboard! bmission scored 0.11753, which is an improvement of your previous score	of 0.11779. Gre	eat job! 🏏 T	weet this	!	
000	V01	43	0.44750	А	4	

House Price Prediction

Introduction

We would like to make prediction of house price based on 76 explanatory features provided in the train and test dataset. Due to the large number of variables, we decided to build advanced regression model (LASSO/RIDGE) to help with variables selection.

Load Data

We are provided two datasets: test.csv and train.csv. The first step is to load the dataset and remove ID columns. We only store IDs in the test data for our submission file.

```
train<-read.csv('train.csv',stringsAsFactors = FALSE)
test<-read.csv('test.csv',stringsAsFactors = FALSE)
test_id <- test$Id
train<-select(train,-'Id')</pre>
```

Log Transformation

By plotting the histogram of sale price, we noticed that sale price distribution is right skewed, so we use log transform to make it to normally distributed.

hist(train_y\$SalePrice)

y<-log(train_y+1)

y = y[[1]]

Before

After

Outlier Analysis

After plotting chart of GrLiveArea and SalePrice, we noticed there are two observations having more than 4000 sqft living area and were sold less than 350000. We decided to remove these two observations as they will be too influential to our model.

Feature Engineering

We then combine our train and test dataset and perform feature engineering on the explanatory variables.

```
train_x<-select(train,-'SalePrice')
train_y<-select(train,'SalePrice')
test_x<-select(test,-'Id')
full<-rbind(train_x,test_x)</pre>
```

We added one new dummy variable isnew, for houses' year sold (YrSold) is within one year of year built (YearBuilt)

By looking at other two numeric variables: MoSold and MSSubclass, month should be factor variable and MSSubclass is a mapping from numeric code to subclasses, so it should be a factor variable as well. Here, we changed their data type to character and we will mass update all character variables to factor variables later.

```
full$IsNew <- as.character(ifelse(full$YrSold<=1+full$YearBuilt, 1, 0))
full$MoSold <- as.character(full$MoSold)
full$MSSubClass <- as.character(full$MSSubClass)
```

Missing Data

There are 33 variables having missing data.

which(colSums(is.na(full)) > 0)

MSZoning	LotFron	tage	Alley I	Utilities	Exterio	r1st	Exterio	r2nd	MasVnr	Туре	MasVn	rArea	Bsmt	Qual	BsmtCo	nd
2	3	6	9	23	24	25	26	ô	30	31						
BsmtExposu	re BsmtF	inType1	BsmtFi	nSF1 Bs	mtFinTy	ype2	BsmtF	inSF2	BsmtU	nfSF	TotalBsr	ntSF	Electric	al Bsm	tFullBath	Bsmt
HalfBath																
32	33	34	35	36	37	3	38	42	46	4	7					
KitchenQua	Function	onal Fire	eplaceQu	น Garaยู	geType	Gara	geYrBlt	Garag	geFinish	Gara	geCars	Gara	geQual	Garag	eCond	Pool
QC																
52	53	55	56	57	58	į	59	60	61	6	9					
Fence M	liscFeatu	re Sal	еТуре													
70	71	75														

Garage Variables

We filled in missing data in garage-related variables with 0 and 'None' as these houses are very likely to not have a garage.

full\$GarageCars[is.na(full\$GarageCars)]<-0

full\$GarageYrBlt[is.na(full\$GarageYrBlt)]<-0

full\$GarageArea[is.na(full\$GarageArea)]<-0

full\$GarageType[is.na(full\$GarageType)]<-'None'

full\$GarageFinish[is.na(full\$GarageFinish)]<-'None'

full\$GarageQual[is.na(full\$GarageQual)]<-'None'

full\$GarageCond[is.na(full\$GarageCond)]<-'None'

Basement Variables

We filled in missing data in Basement-related variables with 0 and 'None'. The reason for these data get missing is because the house does not have basement or corresponding rooms in their basements.

full\$BsmtFinSF1[is.na(full\$BsmtFinSF1)]<-0

full\$BsmtFinSF2[is.na(full\$BsmtFinSF2)]<-0

full\$BsmtUnfSF[is.na(full\$BsmtUnfSF)]<-0

full\$TotalBsmtSF[is.na(full\$TotalBsmtSF)]<-0

full\$BsmtFullBath[is.na(full\$BsmtFullBath)]<-0

full\$BsmtHalfBath[is.na(full\$BsmtHalfBath)]<-0

full\$BsmtQual[is.na(full\$BsmtQual)]<-'None'

full\$BsmtExposure[is.na(full\$BsmtExposure)]<-'None'

full\$BsmtFinType1[is.na(full\$BsmtFinType1)]<-'None'

full\$BsmtFinType2[is.na(full\$BsmtFinType2)]<-'None'

full\$BsmtCond[is.na(full\$BsmtCond)]<-'None'

LotFrontage

We impute missing LotFrontage data using the sample median.

full \$LotFrontage[is.na(full \$LotFrontage)] < -median(full \$LotFrontage,na.rm = TRUE)

Other Variables

We replaced missing data in other variables with 0 and 'None' depend on the data type as we wouldn't want to impute them with wrong data.

full\$MasVnrArea[is.na(full\$MasVnrArea)]<-0

full\$MasVnrType[is.na(full\$MasVnrType)]<-'None'

full\$Alley[is.na(full\$Alley)]<-'None'

full\$PoolQC[is.na(full\$PoolQC)]<-'None'

full\$MiscFeature[is.na(full\$MiscFeature)]<-'None'

full\$Fence[is.na(full\$Fence)]<-'None'

full\$FireplaceQu[is.na(full\$FireplaceQu)]<-'None'

full\$MSZoning[is.na(full\$MSZoning)]<-'None'

full\$KitchenQual[is.na(full\$KitchenQual)]<-'None'

full\$Functional[is.na(full\$Functional)]<-'None'

full\$Electrical[is.na(full\$Electrical)]<-'None'

full\$Exterior1st[is.na(full\$Exterior1st)]<-'None'

full\$Exterior2nd[is.na(full\$Exterior2nd)]<-'None'

full\$SaleType[is.na(full\$SaleType)]<-'None'

Correlation Analysis

After cleaning the data, we run the correlation matrix plot between independent variables to see if there is any multi-collinearity issue exists.

We noticed several variables have very high correlation between each other. So we decided to remove these variables from our dataset.

ggcorr(full)

full <- select(full, -c(TotRmsAbvGrd, GarageArea,X2ndFlrSF, X1stFlrSF))

Data Preprocess

Data Normalization

We would like our independent variables to be normally distributed, after we run skim function, we noticed that skewness issue exists in lots of variables, so we perform the boxcox transformation to all variables having skewness more than 0.5.

```
int_skew <- sapply(names(int_var), function(x) {
    skewness(full[[x]], na.rm = TRUE)
})
int_skew <- int_skew[abs(int_skew) > 0.5]
for (x in names(int_skew)) {
    bc = BoxCoxTrans(full[[x]], lambda = 0.1)
    int_var[[x]] = predict(bc, full[[x]])
}}
```

Standardization

We then further clean our data using preprocess function to standardize our numeric variables.

```
#normalize the data
preint <- preProcess(int_var, method=c("center", "scale"))
int_var <- predict(preint, int_var)</pre>
```

One-hot encoding

We create all the dummy variables for our character variables so they can be treat as factors in our model.

```
dummies <- dummyVars(~., full[names(chr_var)])</pre>
```

```
chr_var <- predict(dummies, full[names(chr_var)])</pre>
```

Now, we have the data cleaned and are ready for building the model.

Model Development

We would like to lasso and ridge regression method to perform variables selection since we have over 200 variables.

First, we start with dividing

LASSO MODEL

We run lasso regression model with default nfolds = 10 and get optimal lambda = 0.002821214 and RMSE = 0.09578228. The RMSE is quite small but we didn't know how this model performs on the test dataset. Thus, we are going to run ridge regression and then compare both results.

```
cv_lasso = cv.glmnet(x, y,alpha=1)
penalty.lasso <- cv.lasso$lambda.min
penalty.lasso
lasso.opt.fit <-glmnet(x = x, y = y, alpha = 1, lambda = penalty.lasso)
lasso.train <- predict(lasso.opt.fit, s = penalty.lasso, newx =x)
sqrt(mean((y - lasso.train)^2))
lasso_test <- predict(cv_lasso, newx = x_test, s = "lambda.min")
lasso.final<-cbind(test_id,(exp(lasso_test)-1))</pre>
```

RIDGE MODEL

We run the ridge model by changing alpha in the cv.glmnet function from 1 to 0 and we get optimal lambda = 0.06294838 and RMSE = 0.09366618. Looks like Ridge Model has better performance on our test dataset. However, RIDGE model has way more variables than LASSO (more likely to have over-fitting issues), both models' performance on test dataset is unknown at this point.

To compare the result, we upload result from both models and see which one has the higher score.

```
#ridge
cv.ridge = cv.glmnet(x, y, alpha = 0)
plot(cv.ridge)
penalty.ridge <- cv.ridge$lambda.min
ridge.opt.fit <-glmnet(x = x, y = y, alpha = 0, lambda = penalty.ridge)
coef(ridge.opt.fit) #resultant model coefficients
ridge.train <- predict(ridge.opt.fit, s = penalty.ridge, newx =x)</pre>
```

```
sqrt(mean((y - ridge.train)^2))
ridge.testing <- predict(ridge.opt.fit, s = penalty.ridge, newx =x_test)</pre>
```

Submission

We run the model on test dataset, and we create the final submission file according to the format requirement.

It turns out our lasso regression model has the best score: 0.11753 (ridge model's score is 0.124), so we choose LASSO model as our final model and we are able to reach top 20% in the competition.

Appendix

Leaderboard:

Final Model:

```
cv_lasso = cv.glmnet(x, y,alpha=1)
penalty.lasso <- cv.lasso$lambda.min
penalty.lasso
lasso.opt.fit <-glmnet(x = x, y = y, alpha = 1, lambda = penalty.lasso)
lasso.train <- predict(lasso.opt.fit, s = penalty.lasso, newx =x)
sqrt(mean((y - lasso.train)^2))
lasso_test <- predict(cv_lasso, newx = x_test, s = "lambda.min")
lasso.final<-cbind(test_id,(exp(lasso_test)-1))
colnames(lasso.final)<-c('ld','SalePrice')
write.csv(lasso.final, '../kaggle_houseprice/submission_lasso.csv',row.names=FALSE)</pre>
```