Modeling Individuals: Agent-based Approaches

Eric T. Lofgren, MSPH
Dept. of Epidemiology
UNC Gillings School of Global Public Health

The Concept

- Use computer simulation to model lots of individuals in the same environment
- Each can move around the environment
- Each has a susceptibility to disease and a current disease state (S, I, R, etc.)
- Rules for movement, interaction and behavior

Why Is This Interesting?

- Very flexible approach
- New kinds of randomness
- Complex results arise from simple, low level interactions
 - Quilts
 - Can help discover patterns other models later describe

Basic Example

With Infection

Again, transmission with some probability p p = 0.65

Analogies to Other Models

- Entirely random mixing (as with the previous example):
 - Should have results identical to a compartmental model
 - Added randomness
- Model where agents group and associate with each other:
 - Should have results similar to a network model with those same associations

Network-analog

Where ABMs Are Unique

- Add a type of stochasticity not present in other models
 - Random but rule-based mixing
 - Can be influenced by environmental conditions
 - Positions and states of other individuals
- Model different classes of individual more easily
 - Can do this in other models, but it's less intuitive

Environmental and Other Agent States

Different Classes of Individuals

 $p_{Civilian} = 0.65$ $p_{Law} = 0.40$ g = 0.75

More Complexity

- As with other models, ABMs can be more complex
 - Grouping and behavior processes
 - Individually generated traits for each agent
 - Direct interaction with the environment spatially discrete models
 - Huge numbers of agents a human body, an entire hospital, an entire healthcare *system*, an entire city...
- ABMs are a massively powerful tool

A Note of Caution

- Ease of adding complexity
 - Parameter choices are difficult
 - Individual level data, distributions for random variables
 - Easy to get carried away
 - Focus shifts to modeling the system, not the question
- Randomness means simulating the system repeatedly
 - Computing power

Other Tradeoffs

- Few analytic solutions those that exist are hard
- Difficult to describe and publish
 - Consider the figures in this presentation
 - Can use flow-charts like the SIR model diagrams for individuals, but harder to represent the whole population
 - No equations
 - Results can be hard to visualize
- Randomness means simulating the system many times
 - Computational power
 - Programming expertise