Algorithms

Lesson #5b:

DFS

Topological Sort

Strongly Connected Components
(Based on slides by Prof. Dana Shapira)

• Adjacency Lists.

Adjacency Matrix.

	1	2	3	4
1	0	1	1 1 0 1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Depth-first Search

- Input: G = (V, E), directed or undirected.
- Output:
 - for all $v \in V$.
 - d[v] = discovery time (v turns from white to gray)
 - f[v] = finishing time (v turns from gray to black)
 - $\pi[v]$: predecessor of v = u, such that v was discovered during the scan of u's adjacency list.
- Forest of depth-first trees: $G_{\pi} = (V, E_{\pi})$ $E_{\pi} = \{(\pi[v], v), v \in V \text{ and } \pi[v] \neq \text{null}\}$
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - Black Finished.

DFS(G)

Main Loop

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow \text{NULL}$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. then DFS-Visit(u)

DFS-Visit(u)

- 1. $color[u] \leftarrow GRAY$
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = WHITE
 - then $\pi[v] \leftarrow u$
- DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK$
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Running time is $\Theta(|V|+|E|)$

Example (DFS)

Parenthesis Theorem

Theorem

For all u, v, exactly one of the following holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.
- So d[u] < d[v] < f[u] < f[v] cannot happen.
- Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u].

Theorem

v is a descendant of u if and only if at time d[u], there is a path $u \sim v$ consisting of only white vertices.

Proof

- → direction: Algorithm only proceeds on white vertices, so path must have been white.
- ← direction: By induction on the length of the white path. Let w be the vertex preceding v in the path. By induction assumption, w is a descendant of u. What color was v when we examined the edge (w, v)? White?... Gray/black?...

- Tree edge: Edges in G_{π} . v was found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v in G_{π} .
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Identification of Edges

- Edge type for edge (u, v) can be identified when it is first explored by DFS.
- Identification is based on the color of v.
 - White tree edge.
 - Gray back edge.
 - Black forward or cross edge.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Proof:

- Let $(u,v) \in E$. w.l.o.g let d[u] < d[v]. Then v must be discovered and finished before u is finished.
- If the edge (u,v) is explored first in the direction $u\rightarrow v$, then v is white until that time then it is a tree edge.
- If the edge is explored in the direction, $v\rightarrow u$, u is still gray at the time the edge is first explored, then it is a back edge.

Characterizing a DAG

Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

- ⇒:
 - Suppose there is a back edge (u, v). Then v is an ancestor of u in depth-first forest.
 - Therefore, there is a path $v \sim u$, so $v \sim u \sim v$ is a cycle.

Characterizing a DAG

Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Cont.):

- **=**:
 - c: cycle in G, v: first vertex discovered in c, (u, v): preceding edge in c.
 - At time d[v], vertices of c form a white path $v \sim u$. Why?
 - By white-path theorem, u is a descendent of v in depth-first forest.
 - Therefore, (u, v) is a back edge.

Want to "sort" a directed acyclic graph (DAG).

Order the vertices such that all edges go forward

or

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. return the linked list of vertices

Example

Linked List:

Correctness Proof

- Just need to show if $(u, v) \in E$, then f[v] < f[u].
- When we explore (u, v), what are the colors of u and v?
 - u is gray.
 - Is v gray, too?
 - No, because then v would be an ancestor of u.
 - \Rightarrow (u, v) is a back edge.
 - $\bullet \Rightarrow$ contradiction of Lemma (DAG has no back edges).
 - Is v white?
 - v is a descendant of u.
 - By parenthesis theorem, d[u] < d[v] < f[v] < f[u].
 - Is v black?
 - Then v is already finished.
 - Since we're exploring (u, v), we have not yet finished u.
 - \Rightarrow f[v] < f[u].

Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from each other.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all u, $v \in C$, both $u \curvearrowright v$ and $v \curvearrowright u$ exist.

- $G^{SCC} = (V^{SCC}, E^{SCC}).$
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there is an edge between the corresponding SCC's in G.

 G^{SCC} for the example considered:

Proof:

• Suppose for a contradiction that G^{SCC} contains a cycle

- All the vertices in these components are reachable from one another
- They should have been in the same component

Algorithm to determine SCCs

Idea: Do DFS, going "from the bottom up" in the Main Loop, so that each SCC becomes a separate tree

Algorithm to determine SCCs

Idea (cont.):

- We will do 2 rounds of DFS. The first round will give us the vertex order for the Main Loop of the second round
- In the first DFS, the Main Loop vertex order is arbitrary

Notation:

- d[u] and f [u] always refer to first DFS.
- Extend notation for d and f to sets of vertices $U \subseteq V$:
 - $d_{min}(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
 - $f_{max}(U) = \max_{u \in U} \{ f[u] \}$ (latest finishing time)

SCCs and DFS finishing times

Lemma

Let C and C' be distinct SCC's in G = (V, E). Suppose there is a path $u \sim v$ such that $u \in C$ and $v \in C'$. Then $f_{max}(C) > f_{max}(C')$.

Proof:

- Case 1: $d_{\min}(C) < d_{\min}(C')$
 - Let x be the first vertex discovered in C.
 - At time d[x], all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in *C* and *C'* are descendants of *x* in depth-first tree.
 - By the parenthesis theorem, $f[x] = f_{\text{max}}(C) > f_{\text{max}}(C')$.

- Case 2: $d_{\min}(C) > d_{\min}(C')$
 - Let y be the first vertex discovered in C'.
 - At time d[y], all vertices in C' are white and there is a white path from y to each vertex in $C' \Rightarrow$ all vertices in C' become descendants of y. Again, $f[y] = f_{\text{max}}(C')$.
 - At time d[y], all vertices in C are also white.
 - By earlier lemma, we cannot have a path from C' to C.
 - So no vertex in *C* is reachable from *y*.
 - Therefore, at time f[y], all vertices in C are still white.
 - Therefore, for all $w \in C$, f[w] > f[y], which implies that $f_{\text{max}}(C) > f_{\text{max}}(C')$.

First DFS

This almost works: f_{max} gives opposite order Solution: Reverse all the graph's edges for 2nd DFS

Transpose of a Directed Graph

- G^T = transpose of directed G.
 - $G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}.$
 - G^T is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T .)

Algorithm to determine SCCs

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^{T}
- call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Running time is $\theta(V+E)$

Second DFS

