Capstone Project 1

KKBox Customer Churn Prediction

How will I retain my customers?

- Most companies utilize subscription business model, including KKBox
- KKBox shared their customer data on Kaggle to learn more about predicting churn rates.
- **Inquiry:** Can we predict if a user will make a new service subscription transaction within 30 days after the current membership expiration date based on their behaviors and interactions with the product?

KKBox is a Taiwan-based music streaming software

Data Provided

Train Dataset

msno

is_churn

msno

city

bd

gender

registered_via

registration_init_time

Transactions Data

payment method id

payment_plan_days

plan_list_price

msno

 \rightarrow

actual_amount_paid

is_auto_renew

transaction_date

membership_expire_date

is_cancel

User Log Data

→

date

msno

num_25

num_50

num_75

num 985

num 100

num_unq

total_secs

Both groups are similar in certain demographics.

17500 - is chum 0 15000 - 12500 - 12500 - 5000 - 2500 - 6emale Gender

Even gender ratio

Their behaviors with the app was also similar.

Similar length of account distribution

A few demographics features did vary between the 2 groups.

Most of churned users are in their early 20s while users who did not churn are mostly in their late 20s.

Users who did not churn mostly signed up via registration method 7 while most churned users registered via method 9.

They also differed in the monetary transactions made.

Those who did not churn seemed to have made more transactions than those that churned.

The users who used the auto-renew feature tend to be less likely to churn.

Inferential Statistics

Although the distributions may seem to look like they differ visually, these hypotheses should be tested to see if the difference is statistically significant

Method used: Permutation (Bootstrap) Hypothesis Testing

Null Hypothesis	Mean Difference	95% Confidence Interval	P-value	Reject H0
There's no difference in the age between user who churned and did not churn.	2.574	[2.437, 2.711]	0	True
There's no difference in auto-renewal rate between user who churned and did not churn.	0.441	[0.437, 0.445]	0	True
There's no difference in the number of transactions between user who churned and did not churn.	5.520	[5.431, 5.609]	0	True
There's no difference in the number of unique songs listened per session between user who churned and did not churn.	-1.093	[-1.299, -0.888]	0	True

Building the Classification Model

To take advantage of the temporal aspect of the data, we will split the dataset into 2 separate time periods for training and testing data:

- Training Data: February (2017/02/01 2017/02/28)
- Testing Data: March (2017/03/01 2017/03/31)

Feature Engineering

Transactions Data

msno

payment method id

payment_plan_days

plan_list_price

actual amount paid

is_auto_renew

transaction_date

membership_expire_date

is_cancel

Transactions Data

msno

—

avg_actual_amount_paid

avg_is_auto_renew

avg_is_cancel

avg_payment_plan_7

avg_payment_plan_30

avg_discount_received

trans_count

Member Data

msno

city

bd

gender

registered_via

registration_init_time

gender_male registered_via days_since_reg city_3 city_4 city_5 city_6 city_7 city_8 city_9 city_10 city_11 city_12 city_13 city_14

city_15

city_16

city 17

city_18

city_19

city 20

city_21

city_22 registered via 4

registered_via_7
registered via 9

registered via 13

Member Data

msno age

Feature Engineering

User Log Data

msno

date

num_25

num_50

num_75

num_985

num_100

num_unq

total_secs

User Logs Data
msno
avg_num_25
avg_num_50
avg_num_75
avg_num_985
avg_num_100
avg_num_unq
avg_rate_num_25
avg_rate_num_50
avg_rate_num_75
avg_rate_num_985
avg_rate_num_100
total_secs
log_count
days since login

In total, there are 48 features.

Data Preprocessing

Not all users in the training data and testing data that had churn information had records of transactions or user activity.

- If the user did not have any transactions data, the transactions count feature was filled with 0.
- If the user did not have any user log data, the days since log in was filled with 31.
- All the other features were filled with the sample mean for the column.

In the end, all the values were normalized.

Selecting Classification Model

Fit 5 different classification models on the data using the default parameters and

utilized log loss as the model metric.

Classification Model	Average Log Loss
Logistic Regression	0.463
Random Forest	1.464
Adaptive Boosting	0.681
Gradient Boosting	0.428
Extreme Gradient Boosting	0.427

Random Forest Accuracy Score: 0.962

Fine Tuning Hyperparameters

Utilized GridSearch cross validation to select best parameters for both models:

- Extreme Gradient Boosting
 - colsample_bytree = 0.8
 - learning_rate = 0.05
 - o max_depth = 8
- Logistic Regression
 - o penalty = 'l2'
 - o dual = False
 - o C=1
 - o max iter = 100

Interpreting Logistic Regression Coefficients

Feature	Coefficient
avg_is_cancel	0.905624
avg_payment_plan_7	0.362903
avg_discount_received	0.165612
avg_is_auto_renew	-0.947160
trans_count	-0.848782
log_count	-0.192631
registered_via_7	-0.145023

The features with the highest effect mostly seem to relate to the transactions dataset.

- Those that opted to use the auto-renewal feature are less likely to churn (coefficient of -0.947)
- The more number of transactions made, the less likely the user would churn (coefficient of -0.849).
- Those who had a payment plan of 7 days were more likely to churn. (coefficient of 0.363)
- The registration method also seemed to matter since those that registered via method 7 were less likely to churn. (coefficient of -0.145)

Feature Selection

Feature selection is the method of selecting the most important features to be used in the model. There are multiple ways to perform feature selection:

- 1. Drop one of the variables that is highly correlated to another
- 2. Use the recursive feature elimination method to see dropping which features would affect the model the least
- Perform feature importance to see which features are the most important for the model

Feature Selection: Multicollinearity

As shown by this pairwise scatter plot, there are 3 pairs of variables that are highly negatively correlated.

- avg_payment_plan_30 and avg_payment_plan_7
- avg_rate_num_25 and avg_rate_num_100
- log_count and days_since_login.

Dropped the following features since produced the better score:

- 'Avg_payment_plan_30'
- 'Avg_rate_num_25'
- 'days_since_login'

The log loss score after dropping these variables was 0.463304.

Feature Selection: Recursive Feature Elimination

RFE is able to work out the combination of attributes that contribute to the prediction on the target variable (or class).

As the graph suggests, the ideal number of features to keep is 21.

Feature Selection: Recursive Feature Elimination

Here are the 21 features to be kept.

A majority of the features kept are regarding the demographics of the user. The other half of the features is composed of the nature of the user's transactions (type of payment plan, number of transactions, auto-renewal, cancellation) and the average rate of how much of the song the user actually listens to. The number of active days did not seem to make it onto the list.

The log loss score after dropping these variables worsened to 0.468988.

Feature Selection: Feature Importance

The scoring method used to rank each feature is Mutual Information.

Number of Top Features Kept	Log Loss Score
18	0.4674
20	0.4642
24	0.4634
28	0.4634
30	0.4634

Feature Selection: Feature Importance

avg_is_auto_renew 0.190177 trans count 0.145051 avg actual amount paid 0.123797 avg is cancel 0.088513 avg_payment_plan_7 0.075063 avg discount received 0.064310 registered_via_7 0.061058 age 0.023075 registered via 4 0.020251 avg payment plan 30 0.015818 days_since_reg 0.013782 registered via 9 0.011532 gender male 0.010578 city 14 0.005798 city 5 0.005577 city 4 0.005511 log count 0.004673 city 15 0.004220 city 13 0.004218 city 12 0.004160 avg_num_985 0.004034

Here are the 24 features to be kept.

The top 6 features all seem to relate to the details of the transactions the users have made. The most important feature is the average auto renewal rate.

The features kept due to feature importance is very similar to the features kept due to recursive feature elimination. They are comprised of features related to transactions details and user demographic information. The user activity does not seem to be that important as only 3 of the features are from the user activity dataset.

The log loss score is slightly better through this method with a log loss score of 0.46393.

Principal Component Analysis

Another way to improve the model is through adding more variance into the model. Principal Component Analysis (PCA) linearly transforms the features into a lower dimension while keeping the most important components of the feature. The larger the variance the larger the amount of information the variable contains. Since the Recursive Feature Elimination method and the Feature Importance both removed many features from the dataset, the variance in the dataset was reduced. I have added the top 2 principal component into each of the features of the dataset to see if they would result in a better log loss score.

Feature Selection Method	Log Loss Before PCA	Log Loss After PCA
Recursive Feature Elimination	0.4690	0.4677
Feature Importance	0.4639	0.4637

Final Results

The final model uses the top 24 most important features as well as the 2 principal components to train on. The following are the results on the test data and train data:

Algorithm Used	Train Data Results	Test Data Results
XG Boosting	Accuracy score: 0.8367 Log Loss: 0.3953	Accuracy score: 0.8027 Log Loss: 0.4559
Logistic Regression	Accuracy score: 0.8129 Log Loss: 0.4637	Accuracy score: 0.8016 Log Loss: 0.4718

Limitations and Further Opportunities

- Model can be improved using server with higher CPU
 - Solving issue of unbalanced dataset by assigning higher weight to users that churned so that all the data can be used to train model
 - Fine tune more hyperparameters
- Model can be improved in a better understanding of the variables provided
 - Extreme negative values in columns that should strictly be positive (age and total seconds listened)

A model with a low log loss allows accurate prediction of the likelihood of churning. Clustering similar users together in terms of demographics and activity can pave the opportunity of a recommender system that provides the most effective promotion for the user.