

LAZADA DATA REVIEW

Analyzed by Upwiz

Content

- Business Understanding is Determine
 Business Objectives by understanding from a
 business perspective
- Data Understanding is the knowledge that you have about the data, the needs that the data will satisfy, its content and location
- Data Preparation and Exploration is the process of cleaning and transforming raw data prior to processing and analysis
- Modelling is the process of analyzing the data objects and their relationship to the other objects
- Business Insight is the conclusions related to the business obtained from the data that we have analyzed

Business Understanding

Lazada is the number one online shopping and selling destination in Southeast Asia. As a pioneer of the eCommerce ecosystem in Southeast Asia, through a marketplace platform supported by a variety of unique marketing services, data services, and other services, Lazada offers a variety of products in various categories ranging from electronics to household goods, toys, fashion, sports equipment and daily necessities.

Business Understanding

Our team aim to analyze:

- Peak transaction period
- influence of unfamiliar keywords in product names on rating,
- influence of certain keywords in product reviews to predict its rating,
- brands that have the most contribution in sales and transactions,

and hopefully impact to maximize sales and reviews.

Data Understanding

The Dataset Retrieved From kaggle.com/datasets/grikomsn/lazada-indonesian-reviews

It contains two csv files and one txt file, scraped on 2 October 2019:

- 20191002-items.csv
- 20191002-reviews.csv
- categories.txt

categories txt File

research bounded for consumer electronics review from 5 product categories:

- beli-harddisk-eksternal
- 2. beli-laptop
- 3. beli-smart-tv
- 4. jual-flash-drives
- 5. shop-televisi-digital

20191002-items.csv

in the 20191002-items.csv file there are description for the product that appeared under categories discussed earlier. There are **10942 products** described with 9 columns. The column description are as follows:

No.	Column	Data Type	Description
1.	itemId	Integer	ld on each item
2.	category	String	Category of product
3.	name	String	Name of product
4.	brandName	String	Brand Name of product
5.	url	String	Link of product
6.	price	Integer	Price of product
7.	averageRating	Float	Average rating of product
8.	totalReviews	Integer	Total reviews of product
9.	retrievedDate	Date Time	2 October 2019

int (3), float (1), str (4), date (1)

20191002-reviews.csv

in the 20191002-reviews.csv file there are reviews made by customer for products from previous csv. There are **203787 reviews** made from **consumer electronic products** sold between the year **2014** until **2019.** Here are the details:

No.	Column	Data Type	Description
1.	itemId	Integer	Id on each item
2.	category	String	Category of product
3.	name	String	Name of customers
4.	rating	Integer	rating of product
5.	originalRating	Integer	Original rating of product
6.	reviewTitle	String	Review title of product
7.	reviewContent	String	Review content of product
8.	likeCount	Integer	Total like of product
9.	upVotes	Integer	Total up votes of product

20191002-reviews.csv

No.	Column	Data Types	Description	
10.	downVotes	Integer	Total down votes of product	
11.	helpful	Boolean		
12.	relevance	Integer	Relevancy score of a review to a product	
13.	boughtDate	String	Bought date of product	
14.	clientType	String	Client operating system	
15.	retrievedDate	Date Time	20191002	

int (6), str (6), bool (1), date (1)

Data Preparation

- EXPLORATORY DATA ANALYSIS

 EDA using pandas_profiling package to generate a summary for the two csv's
 - 1. Profiling report from file items.csv

From Overview

Overview

retrievedDate is a constant column, there are 235 unique brandName

From Variables

The top category is

The *brands* with the most products are, in order:

Value	Count	Frequency (%)
SanDisk	1258	11.5%
Asus	946	8.6%
No Brand	945	8.6%
Lenovo	910	8.3%
Toshiba	674	6.2%

price ranged from 1000 to 275.000.000, with half of it under 1.095.000 (median value)

atistics Histogram Common value	es Extreme values		
Quantile statistics		Descriptive statistics	
Minimum	1000	Standard deviation	6681452.569
5-th percentile	27900	Coefficient of variation (CV)	2.21224137
Q1	79200	Kurtosis	762.1288081
median	1095000	Mean	3020218.616
23	3959000	Median Absolute Deviation (MAD)	1051544
95-th percentile	11999000	Skewness	20.29046952
Maximum	275000000	Sum	3.30472321e+10
Range	274999000	Variance	4.464180844e+13
Interquartile range (IQR)	3879800	Monotocity	Not monotonic

averageRating 47.5% fall at the value of 5, and progressively less for 4, 3, 2, and 1

Statistics	Histogram	Common values	Extreme values			
Value				Count	Frequency (%)	
5				5202	47.5%	
4				3708	33.9%	
3				1173	10.7%	
1				433	4.0%	
2				426	3.9%	

totalReview column have 40% of its value 1

Value	Count Frequency (%)
1	4456 40.7%
2	1508 13.8%
3	875 8.0%
4	504 4.6%
5	403 3.7%

rating of 81.5% reviews are 5 star rating

Value	Count	Frequency (%)	
5	166016	81.5%	
4	17567	8.6%	
1	9749	4.8%	
3	7073	3.5%	
2	3382	1.7%	

Data Preparation

Profiling report from file reviews.csv From Overview (warnings)

helpful has constant value "203787"	Constant
retrievedDate has constant value "203787"	Constant
Dataset has 3113 (1.5%) duplicate rows	Duplicates
name has a high cardinality: 40099 distinct values	High cardinality
reviewTitle has a high cardinality: 5725 distinct values	High cardinality
reviewContent has a high cardinality: 38071 distinct values	High cardinality
boughtDate has a high cardinality: 1690 distinct values	High cardinality
upVotes is highly correlated with likeCount	High correlation
likeCount is highly correlated with upVotes	High correlation
originalRating has 203779 (> 99.9%) missing values	Missing
reviewTitle has 180383 (88.5%) missing values	Missing
reviewContent has 96758 (47.5%) missing values	Missing
boughtDate has 7107 (3.5%) missing values	Missing
11keCount is highly skewed (γ1 = 98.02694893)	Skewed
upVotes is highly skewed (γ1 = 98.02694893)	Skewed
downVotes is highly skewed (γ1 = 20.07366216)	Skewed
11keCount has 184611 (90.6%) zeros	Zeroe
upVotes has 184611 (90.6%) zeros	Zeroe
downVotes has 199268 (97.8%) zeros	Zeros

helpful and retrievedDate are constant columns,

dataset still have a lot of duplicated rows, originalRating is almost 100% missing, likeCount, upVotes, and downVotes are

more than 90% zero

3.5% of boughtDate are missing.

The common dates are 09-Sep-2019, 27-Mar-2019, 11-Nov-2018, 12-Jul-2019, and 12-Des-2018

Value	Count	Frequency (%)
09 Sep 2019	7421	3.6%
27 Mar 2019	6093	3.0%
11 Nov 2018	4981	2.4%
12 Jul 2019	4316	2.1%
12 Des 2018	3460	1.7%
14 Mei 2019	2479	1.2%
10 Des 2018	2428	1.2%
08 Agu 2019	1805	0.9%
16 Mei 2019	1539	0.8%
11 Des 2018	1406	0.7%
Other values (1680)	160752	78.9%
(Missing)	7107	3.5%

most customers (82.2%) uses androidApp, followed by desktop, iosApp, and mobile.

Value	Count F	requency (%)	
androidApp	167478	82.2%	
desktop	12251	6.0%	
iosApp	9105	4.5%	
mobile	8298	4.1%	
mobile-app	6655	3.3%	

Data Preparation

DATA CLEANING

1. Removing low-information columns

- From items
 url column with unique values, and retrievedDate column with constant value.
- From reviews,
 originalRating, likeCount, upVotes, and downVotes columns with >90% missing or zero values,
 helpful and retrievedDate columns with constant value, and
 relevanceScore for its unknown interpretation.

2. Joining the two dataframes Join using *itemId*, and preserving the review table.

3. Merging reviewTitle and reviewContent column At the end, both of them are review in text.

```
df['reviewContent'] = df.reviewTitle.fillna('').str.cat(df.reviewContent, sep = ' ')
df.head()
```

4. Renaming and deleting columns

df	<pre>df = df.rename(columns = { 'name_x' : 'productName',</pre>										
	itemId	category	productName	brandName	price	averageRating	totalReviews	rating	review	boughtDate	clientType
0	100002528	beli-harddisk- eksternal	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	Toshiba	2499000	4	8	5	bagus mantap dah sesui pesanan	09 Apr 2019	androidApp
1	100002528	beli-smart-tv	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	Toshiba	2499000	4	8	5	bagus mantap dah sesui pesanan	09 Apr 2019	androidApp
2	100002528	jual-flash-drives	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	Toshiba	2499000	4	8	5	bagus mantap dah sesui pesanan	09 Apr 2019	androidApp

- First, there are two *category* column. we only need one
- Second, the name on items refer the product's name, but on reviews it refer to the customer's name
- Then the *reviewTitle* can be deleted since its already absorbed into *review*
- Also we propose deleting customerName column due to lack of customerld as a unique customer identifier, so the name serves no purpose

5. Removing the duplicated rows

As you can see in previous slide, the first three rows is exactly the same transaction and review, but flagged under different *category*. This indicated that seller often put their product to an array of categories to increase impression, even if its inaccurate.

So, we propose deleting the *category* column altogether.

		= 'category').drop_duplicates(-		A. a. s.					
	itemId	productName	brandName	price	averageRating	totalReviews	rating	review	boughtDate	clientTyp
0	100002528	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	Toshiba	2499000	4	8	5	bagus mantap dah sesui pesanan	09 Apr 2019	androidAp
1	100002528	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	Toshiba	2499000	4	8	4	Bagus, sesuai foto	24 Sep 2017	androidAp
2	100002528	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	Toshiba	2499000	4	8	5	ok mantaaapppp barang sesuai pesanan good ok	04 Apr 2018	androidAp
3	100002528	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	Toshiba	2499000	4	8	4	bagus sesuai	22 Sep 2017	androidAp
4	100002528	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	Toshiba	2499000	4	8	5	NaN	17 Agu 2018	androidAp

6. Fixing datetime format

Python by default is using month abbreviation for US locale, so we need to change our locale to ID, then using pandas.to_datetime to convert *boughtDate* column

import locale								
<pre>locale.setlocale loc = locale.get print(loc)</pre>	(locale.LC_ALL, 'ID') locale()							
('id_ID', 'IS088	59-1')							
<pre>df.boughtDate = df.head()</pre>	pd.to_datetime(df.boughtDate, fo	ormat = '%d %b %Y)					
itemId	productName	brandName pri	ce averageRating	totalReviews	rating	review	boughtDate	clientType
itemId 0 100002528	productName TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B	brandName pri Toshiba 24990	and a S koo vo 1 3	totalReviews	<u> </u>	review bagus mantap dah sesui pesanan		
	TOSHIBA Smart HD LED TV 32" -		00 4		5		2019-04-09	androidApp
0 100002528	TOSHIBA Smart HD LED TV 32" - 32L5650VJ Free B TOSHIBA Smart HD LED TV 32" -	Toshiba 24990	00 4	8	5	bagus mantap dah sesui pesanan	2019-04-09	clientType androidApp androidApp androidApp

7. Generate categories

This time we will **re-assign product category** based on the product name, from this we can inspect whether **unfamiliar product name can affect sales.**

We use **LDA (latent dirichlet allocation) model** under **pycaret's nlp package** to **split** our products into **4 categories**, topic model will consider intrinsic property of a product, that is its name, brand, and price.

GENERATING MODEL

PLOT INSPECTION

PLOT INSPECTION

based of words such as core, hdd, vga, amd, intel, etc, we can conclude:

Topic 0 akeen to **laptop** products,

PLOT INSPECTION

based of words such as led, inch, android tv, usb port, vga port, etc, we can conclude that:

Topic 1 akeen to **tv** products,

PLOT INSPECTION

based of word such as flash, drive, usb, cz, etc, we conclude that:

Topic 2 akeen to **flashdrive** products,

PLOT INSPECTION

based of words such as hard disk, hdd, external, storage, etc, we conclude that:

Topic 3 akeen to **harddrive** products,

Model Evaluation

The left bar plot is checking whether prediction is among the listed category, and the right is checking against all listed categories.

We can see that the prediction landed on at least one of the listed category most of the time, and eliminate most of the duplicate category issue.

Assign model

	name	brandName	price	Topic_0	Topic_1	Topic_2	Topic_3	Dominant_Topic	Perc_Dominant_Topic
0	toshiba lead tv lvj bracket tv	Toshiba	2499000	0.021561	0.795407	0.173026	0.010007	Topic 1	0.80
1	toshiba full smart lead tv	Toshiba	3788000	0.025494	0.758088	0.204587	0.011832	Topic 1	0.76
2	inch full flat lead digital tv	LG	3850000	0.021561	0.949657	0.018776	0.010007	Topic 1	0.95
3	lead tv lc lei	Sharp	1275000	0.031182	0.927191	0.027154	0.014472	Topic 1	0.93
4	laptop multimedia hdd lead dvdrw	Lenovo	3984100	0.755140	0.210826	0.022201	0.011832	Topic 0	0.76
		1000	222		2227	222	2220	222	4.02

Results dataframe **consist of the probability** of a product **belonging to a topic**, the dominant topic, and its probability.

We can view the **dominant** probability as the **confidence of our model** to assign that product to a category.

Products with common keywords will have higher confidence value.

8. Compiling rating under 5

As seen from the countplot above, majority of ratings are 5, with the rest of rating values making up the minority this will result in a biassed analysis

So, we decide to merge all the <5 rating

1

Brands that have the most contribution in sales

by transaction

Based on the chart beside, from the top 10 brands whose transactions contributed the most is Sandisk, with a total of 18.156 transactions. Followed by Coocaa with a total of 5,899 transactions, and eight other brands, where the sandisk and Coocaa brands have a significant difference in the number of transactions, compared to the coocaa brand and the other eight brands.

1

Brands that have the most contribution in sales

by sales

Based on the chart beside, from the **top 10 brands** that sell the most is **LG** with total sales of IDR 48.32 billion. Followed by **Coocaa** with total sales of IDR 16,66 billion, and eight other brands, where the **LG and Coocaa** brands have a **significant difference** in total sales, compared to the coocaa brand and the other eight brands.

2 Brands contribution overtime

by transaction

chart aside, from the top 5 brands, sandisk brand always get the highest number of transactions, while the four brands in the top five always change every year.

2 Brands contribution overtime

by sales

top 5 brand sales - 2014

Coocaa

Samsung

Asus

brandName

Sharp

Xiaomi

top 5 brand sales - 2016

Based on the annual chart beside, total sales of the brands that are in the top 5 always change every year.

Even though Sandisk brand has the most transaction, it does not make a lot of sales because the price of the products are cheap.

As you probably have noticed, the brand that supposedly have **the largest sales** overall (LG) is **missing**

this turns out is largely the effect of one particular product labeled under LG brand (itemId 9092536), that have an astronomical price at Rp275 Million, have a high transaction record at 519 transactions, yet all of them missed the date

this should ring the fraud product alarm, but for completeness sake we will not discard this particular product

3 Brands growth

To measure brands growth, we will use the average quarter to quarter transaction percentage increase.

Brands rating

Laplace Rule of Succession

We will **balance** brand that **have low number of transaction** with **adding** a review with **rating 1 and rating 5** to each brands.

With this, the brands that have consistently **higher rating** among large number of reviews will **stand on top**.

Peak transaction period

overall transaction behaviour (weekly basis)

Data Exploration

5

Peak transaction period

overall transaction in each category

Brand title effect

without grouping

Visually, there are increase in median value and tightening of IQR across ratings, indicating that there are a difference in confidence level across all rating values

6 Brand title effect

with grouping
 product with rating 5 will be compared against product that have rating less than 5

Visually, neither of them seemed to be normal distributed with shapiro test, both of them are not normally distributed under 5% significance

Brand title effect

We will use **mann-whitney u test** (a nonparametric for uneven sample) to see whether those **two distributions are significantly different.**

```
stats.mannwhitneyu(rating1conf, rating5conf)

MannwhitneyuResult(statistic=404784754.0, pvalue=3.560152728277421e-23)
```

The above shows that the two distributions are significantly different.

	mean	median		
rating5				
0	0.776231	0.80		
1	0.789553	0.82		

Comparing the mean and median, the confidence of rating 5 is higher, meaning that they use more common, directive words.

7

Price distribution

From the log-distribution plots, we can see that **tv and flashdrive** products are **dominating the sales**.

- Most of tv products sold are in 1
 Million to 10 Million rupiah price range
- Most of flashdrives are sold in the range of 100 thousand rupiah
- harddrives have two price frequency peaks, that is in the range of 100 thousand rupiah, and around 1 million rupiah
- Then, most of laptops are sold in the 1 million to 10 million rupidh price range

1

Aim: predict rating from a given review

We use **LDA algorithm** to answer this aim. Latent Dirichlet Allocation or LDA is a dimension reduction algorithm that is used in topic modelling.

Using Tune Model

Coherence Value and # of Topics

We select 8 topic model that correspond to a local maxima in coherence curve.

1

Aim: predict rating from a given review

Topic Model

Document Distribution by Topics

Topic 5: item, fast, function, receive, neat, recommend, seller, bonus, day, hopefully

Topic 6: great, message, order, stuff, want, disappoint, sip, process, color, immediately

Topic 7: product, price, quality, cheap, really, easy, image, small, quite, wrong

Topic 0: disappointed, pretty, steady, still, transfer, free, ask, year, need, warranty

Topic 1: accord, come, try, satisfied, durable, arrive, description, safe, picture, real

Topic 2: use, quickly, even, already, ori, courier, directly, work, complete, content

Topic 3: buy, original, capacity, file, datum, bro, sell, damage, nice, also

Topic 4: time, long, package, condition, accept, service, delivery, problem, okay, yesterday

Aim: Predict rating using review with 6 topics

We use **Classification Model** for answer this aim. **Classification Model** separates the data based on a **categorical labels** (classes).

Description	Value	21 USI	420a		
0 session_id	8538	22 Imputation Type	simple		
1 Target	rating5	23 Iterative Imputation Iteration	None		
2 Target Type	Binary	24 Numeric Imputer	mean		
3 Label Encoded	None		0.5		
4 Original Data	(41666, 26)	25 Iterative Imputation Numeric Model	None		
5 Missing Values	True	26 Categorical Imputer	constant		
6 Numeric Features	13	27 Iterative Imputation Categorical Model None			
7 Categorical Features	2				
8 Ordinal Features	False	28 Unknown Categoricals Handling	least_frequent		
9 High Cardinality Features	False	29 Normalize	False		
10 High Cardinality Method	None	30 Normalize Method	None		
11 Transformed Train Set	(27707, 53)		200		
12 Transformed Test Set	(12500, 53)	31 Transformation	False		
13 Shuffle Train-Test	True	32 Transformation Method	None		
14 Stratify Train-Test	False	33 PCA	False		
15 Fold Generator	StratifiedKFold		2.16152		
16 Fold Number	10	34 PCA Method	None		
17 CPU Jobs	-1	35 PCA Components	None		
18 Use GPU	False	36 Ignore Low Variance	False		
19 Log Experiment	False		0.0000000		
20 Experiment Name	clf-default-name	37 Combine Rare Levels	False		

2

Aim: Predict rating using review with 6 topics

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
gbc	Gradient Boosting Classifier	0.8069	0.7655	0.9680	0.8169	0.8861	0.2811	0.3325	7.7390
lightgbm	Light Gradient Boosting Machine	0.8054	0.7690	0.9579	0.8211	0.8842	0.2961	0.3350	0.6180
ada	Ada Boost Classifier	0.8033	0.7610	0.9588	0.8187	0.8832	0.2835	0.3239	1.8980
ridge	Ridge Classifier	0.8020	0.0000	0.9750	0.8090	0.8842	0.2384	0.3014	0.1090
lda	Linear Discriminant Analysis	0.8017	0.7477	0.9592	0.8171	0.8824	0.2746	0.3156	0.6210
Ir	Logistic Regression	0.7950	0.7157	0.9707	0.8051	0.8802	0.2105	0.2674	1.6820
rf	Random Forest Classifier	0.7923	0.7387	0.9410	0.8184	0.8754	0.2679	0.2937	6.0890
knn	K Neighbors Classifier	0.7797	0.6802	0.9278	0.8141	0.8673	0.2352	0.2540	0.9550
et	Extra Trees Classifier	0.7768	0.7190	0.9180	0.8169	0.8645	0.2432	0.2573	5.7640
dummy	Dummy Classifier	0.7758	0.5000	1.0000	0.7758	0.8737	0.0000	0.0000	0.0900
svm	SVM - Linear Kernel	0.7243	0.0000	0.8466	0.8180	0.7910	0.1744	0.2112	0.7470
dt	Decision Tree Classifier	0.7200	0.6014	0.8138	0.8233	0.8185	0.2065	0.2066	0.6300
nb	Naive Bayes	0.7090	0.6666	0.7756	0.8373	0.8052	0.2332	0.2360	0.1190
qda	Quadratic Discriminant Analysis	0.5155	0.5000	0.5281	0.7676	0.6053	0.0102	0.0030	0.3240

Based on compare models table, we pick **light gradient boosting machine** as our **primary model** due to its **high performance** and **short running time**.

2 Summary of the modeling process

classifier = create_model('lightgbm')

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.8102	0.7765	0.9600	0.8242 0	.8869	0.3166	0.3566
1	0.8030	0.7595	0.9539	0.82100	.8825	0.2937	0.3289
2	0.7986	0.7651	0.9544	0.8169 0	.8803	0.2696	0.3061
3	0.8196	0.7897	0.9600	0.83290	.8920	0.3612	0.3978
4	0.8044	0.7692	0.9553	0.82160	.8834	0.2966	0.3329
5	0.8084	0.7787	0.9656	0.81960	.8866	0.2942	0.3418
6	0.8051	0.7707	0.9628	0.81820	.8846	0.2838	0.3286
7	0.7960	0.7522	0.9525	0.8155 0	.8787	0.2609	0.2960
8	0.8054	0.7587	0.9581	0.82100	.8843	0.2959	0.3350
9	0.8032	0.7698	0.9563	0.8200 0	.8829	0.2891	0.3267
Mean	0.8054	0.7690	0.9579	0.8211 0	.8842	0.2961	0.3350
Std	0.0061	0.0104	0.0040	0.00460	.0035	0.0261	0.0264
	0 1 2 3 4 5 6 7 8 9 Mean	Fold 0 0.8102 1 0.8030 2 0.7986 3 0.8196 4 0.8044 5 0.8084 6 0.8051 7 0.7960 8 0.8054 9 0.8032 Mean 0.8054	Fold 0 0.8102 0.7765 1 0.8030 0.7595 2 0.7986 0.7651 3 0.8196 0.7897 4 0.8044 0.7692 5 0.8084 0.7787 6 0.8051 0.7707 7 0.7960 0.7522 8 0.8054 0.7587 9 0.8032 0.7698 Mean 0.8054 0.7690	Fold 0 0.8102 0.7765 0.9600 1 0.8030 0.7595 0.9539 2 0.7986 0.7651 0.9544 3 0.8196 0.7897 0.9600 4 0.8044 0.7692 0.9553 5 0.8084 0.7787 0.9656 6 0.8051 0.7707 0.9628 7 0.7960 0.7522 0.9525 8 0.8054 0.7587 0.9581 9 0.8032 0.7698 0.9563 Mean 0.8054 0.7690 0.9579	Fold 0 0.8102 0.7765 0.9600 0.8242 0 1 0.8030 0.7595 0.9539 0.8210 0 2 0.7986 0.7651 0.9544 0.8169 0 3 0.8196 0.7897 0.9600 0.8329 0 4 0.8044 0.7692 0.9553 0.8216 0 5 0.8084 0.7787 0.9656 0.8196 0 6 0.8051 0.7707 0.9628 0.8182 0 7 0.7960 0.7522 0.9525 0.8155 0 8 0.8054 0.7587 0.9581 0.8210 0 9 0.8032 0.7698 0.9563 0.8200 0 Mean 0.8054 0.7690 0.9579 0.8211 0	0 0.8102 0.7765 0.9600 0.8242 0.8869 1 0.8030 0.7595 0.9539 0.8210 0.8825 2 0.7986 0.7651 0.9544 0.8169 0.8803 3 0.8196 0.7897 0.9600 0.8329 0.8920 4 0.8044 0.7692 0.9553 0.8216 0.8834 5 0.8084 0.7787 0.9656 0.8196 0.8866 6 0.8051 0.7707 0.9628 0.8182 0.8846 7 0.7960 0.7522 0.9525 0.8155 0.8787 8 0.8054 0.7587 0.9581 0.8210 0.8843 9 0.8032 0.7698 0.9563 0.8200 0.8829 Mean 0.8054 0.7690 0.9579 0.8211 0.8842	Fold 0 0.8102 0.7765 0.9600 0.8242 0.8869 0.3166 1 0.8030 0.7595 0.9539 0.8210 0.8825 0.2937 2 0.7986 0.7651 0.9544 0.8169 0.8803 0.2696 3 0.8196 0.7897 0.9600 0.8329 0.8920 0.3612 4 0.8044 0.7692 0.9553 0.8216 0.8834 0.2966 5 0.8084 0.7787 0.9656 0.8196 0.8866 0.2942 6 0.8051 0.7707 0.9628 0.8182 0.8846 0.2838 7 0.7960 0.7522 0.9525 0.8155 0.8787 0.2609 8 0.8054 0.7587 0.9581 0.8210 0.8843 0.2959 9 0.8032 0.7698 0.9563 0.8200 0.8829 0.2891 Mean 0.8054 0.7690 0.9579 0.8211 0.8842 0.2961

Trial 1: Using *brandName* and *clientType*, alongside the topic results from *productName* topic results from *review* (6), *logPrice*, *averageRating*, and *totalReview* as a *predictor* for whether the products is **rated 5** (class 1) or **not** (class 0).

Price were **subjected to log** transformation so that the **distribution** is closer to a **normal**.

2

Summary of the modeling process

Turns out that brandNames and clientTypes were not significant.

2

Summary of the modeling process

Trial 2: **Eliminate** *brandName* and *clientType*. Overall **model** performance **are maintained**. With parsimonious principle, we'll discard both columns.

2 Summary of the modeling process

Trial 3: Trying to **tune the hyperparameter**. The **result isn't** significantly **better** considering the time effort. We will **forego** this **tuning** step.

Summary of the modeling process

Trial 4: **Updating topic result** from review using **8 topics** that results in higher coherence metric. The **model** still have a **high false positive rate of 0.715**.

True positive (**TP**): Observation is predicted positive and is actually positive.
False positive (**FP**): Observation is predicted positive and is actually negative.
True negative (**TN**): Observation is predicted negative and is actually negative.
False negative (**FN**): Observation is predicted negative and is actually positive.

3

Aim: Predict rating using review - Updated with 8 topics

Light Gradient Boosting Machine Probability Threshold Optimization (default = 0.5)

Trial 5: Optimizing the classification threshold to Kappa metric, results in lower false positive rate with higher false negative rate that is still tolerable

Kappa stats is the measure of accuracy of the model compared to random classifier that produce the same confusion matrix

Aim: Predict rating using review - Updated with 8 topics

Classifier model with 8 topic, without brand/client, optimized for kappa metric

This Confusion Matrix shows that:

- TN = 1452
- FP = 1366
- FN = 1460
- TP = 8222

False positive rate: 0.4735

Aim: Predict rating using review - Updated with 8 topics

Classifier model with 8 topic, without brand/client

The proportion of True predictions that are correct (**precision class 1**) is **0.858**, meanwhile the same metric for **class 0** is **0.499**

The proportion of class I that are predicted correctly (recall class I) is **0.849**, meanwhile the same metric for class **0** is **0.515**

Harmonic mean of precision and recall (F1 class 1) is 0.853, and the same metric for class 0 is 0.507

Aim: Predict rating using review - Updated with 8 topics

Classifier model with 8 topic, without brand/client

From the ROC (Receiver Operating Characteristic) curve shows the effect of various probability threshold to True Positive Rate to False Positive Rate.

The AUC (area under the ROC Curve) is 0.76

Aim: Predict rating using review - Updated with 8 topics

Classifier model with 8 topic, without brand/client

averageRating and totalReviews are two numerical values with high positive correlation to rating 5, along with logPrice.

Reviews affect the rating most by the presence of words in **Topic 0**, **Topic 3**, and **Topic 5**.

Topic 0 and Topic 3 have negative correlation, unlike Topic 5 with a positive correlation.

3

Aim: Predict rating using review

With this, we have arrived at the model that we'll propose.

Model : Light-GBM (Kappa optimized)

Predictors: topic results from **brandName** (4 topics/categories),

topic results from review (8 topics),

logPrice, averageRating, totalReview

Label: rating5 (1 if rating is equal to 5, 0 else)

Below are the metrics of our final model, trained for the whole dataset.

Model Accuracy AUC Recall Prec. F1 Kappa MCC 0 Light Gradient Boosting Machine 0.8084 0.8235 0.8716 0.8799 0.8757 0.4576 0.4577

Aim: Predict rating using review

After finalize model

This Confusion Matrix shows that:

- TN = 1666 data
- FP = 1152 data
- FN = 1243 data
- TP = 8439 data

Precision : 0.879
Recall : 0.871
F1-score : 0.875
False positive rate: 0.408

From our analysis, we conclude that:

- The overall transactions have a peak in notable dates, such as dates around April 1st, May 20th, July 15th, Sep 16th, Nov 11th, and Dec 16th, with a clear increasing trend in the recent years.
 Due to this pattern we advice to increase the availability of Lazada's resources to handle the increase in traffic.
- Products that have common and directive words tend to have a higher rating. Such words are:
 - TV products:

Features : led, inch, android tv, usb port, vga port, wifi

Color : black

Brand : sharp/coocaa

From our analysis, we conclude that:

Laptop products:

Features : core, hdd, vga, amd (ryzen, radeon), processor: intel,

inch, fingerprint, gaming, slim, touch

Brand: rog, toshiba, aspire, macbook

Color : blue

Various promos

Flashdisk Products:

Features : flash drive, usb drive

Brand : cz, toshiba, kingstone

Color : white, silver, black

From our analysis, we conclude that:

Hardisk Products:

Features : hdd, hard disk, external drive, storage, sd card

Accessories: pouch, softcase, cover, portable

Brand: transcend, antishock, jetflash, toshiba, element

Various promos

From our analysis, we conclude that:

- influence of certain keywords in product reviews to predict its rating We identify that words in Topic 0 and Topic 3 correlate negatively with review, and the reverse for Topic 5. Those words are:
 - Topic 0 : disappointed, pretty, steady, still, transfer, free, ask, year, need, warranty
 - Topic 3: buy, original, capacity, file, datum, bro, sell, damage, nice, also
 - Topic 5: item, fast, function, receive, neat, recommend, seller, bonus, day, hopefully

This can be further applied into **alternative rating system** and **suggestive review templates**

From our analysis, we conclude that:

- Brands that have the most contribution in sales and transactions
 - By transaction: Transactions contributed the most is
 Sandisk, with a total of 14,150 transactions.
 - By sales: Brands that sell the most is LG with total sales of IDR 48.32 billion.

Further findings:

- Categories listed on most products isn't accurate, but product titles can be used to suggest the more suitable category.
- There are products that have suspicious transaction record and ridiculous prices that may have been used for fraud

Thank you!

See u on the next event 😌