Università degli Studi di Verona

DIPARTIMENTO DI INFORMATICA Corso di Laurea in Informatica

ARCHITETTURA DEGLI ELABORATORI

Relazione Elaborato SIS

Candidati:
Marco Strambini
Matricola VRstoCazzo

Andrea Olivieri Matricola VR353886

Indice

1	Introduzione	5
2	FSMD	7
3	FSM	ę
4	Datapath 4.1 Composizione 4.1.1 velox.blif 4.1.2 signal.blif 4.1.3 ruota_principale.blif 4.1.4 ruota.blif 4.1.5 diff.blif 4.1.6 or3.blif	12 12 12 13 14
5	Mapping e ottimizzazione	17

4 INDICE

Introduzione

Il progetto è incentrato sulla realizzazione di un circuito che verrà utilizzato in un sistema automobilistico in cui verrà utilizzato come dispositivo per la rilevazione di foratura di pneumatici. È stato realizzato in SIS, partendo da una rappresentazione concettuale grafica, indipendente dall'architettura finale, per poi mappare il prodotto finale in una libreria di componenti chimata synch.genlib.

Di notevole importanza è stata la realizzazione del progetto in higth synthesis level: è stato creato un programma in Excel che simullasse il comportamento del circuito in modo da capire, oltre al funzionamento, la divisione del lavoro tra datapath e fsm.

Si è partiti da una due progetti distinti, creando la parte FSM e la parte Datapath, allacciando poi le due parti per creare la FSMD.

FSMD

La FSMD è composta da 14 input (STEERING, RESET, SPEED a 8 bit, ROTDXF, ROTSXF, ROTDXR, ROTSXR) e da 1 output (LIGHT). Quando avviene un malfunzionamento (ossia la foratura di una gomma), monitorato dalla campionatura della velocità e delle rotazioni della ruota anteriore destra, l'output vale 1 e quindi viene segnalato un guasto.

Questo componente contiene due sotto componenti, la FSM che si occupa di tener traccia dello stato attuale del controllo, e del Datapath, che si deve occupare dell'esecuzione dei calcoli e quindi dei confronti della velocità e delle rotazioni.

Il Datapath ha un output direzionato verso la FSM, per generare il segnale di START, mentre la FSM ha un output verso il Datapath per generare il segnale di RESTART; entrambi servono alla campionatura dei controlli.

Figura 2.1: FSMD

FSM

Per capire il funzionamento, bisogna prima analizzare gli inputs e gli outputs:

- START è un output del DATAPATH: vale 1 se la velocità rilevata è maggiore di 10 $\frac{Km}{h}$;
- RESET rappresenta un ingresso che serve per resettare il dispositivo: il bit di reset blocca il conteggio dei giri dei pneumatici senza azzerare il numero di giri già calcolato;
- STEERING rappresenta la fase di sterzo: vale 1 se l'automobile sta sterzando;
- LIGHT è un output del DATAPATH e vale 1 se almeno uno pneumatico è forato (in base al calcolo del datapath).
- RESTART è l'output della FSM e un input del DATAPATH, vale 1 se, con una velocità maggiore di 10 Km/h, l'automobile è in fase di sterzo;

Ora si possono considerare gli stati di questa FSM: sono 4 stati che rappresentano 4 situazioni differenti del sistema di controllo.

PARK è lo stato iniziale della FSM. L'automobile si trova in questo stato quando la sua velocità è inferiore a 10 Km/h o quando riceve il segnale di reset. In questo stato non viene incrementato il numero di giri dei pneumatici in quanto la velocità dell'automobile è troppo bassa (come da specifiche).

COUNT è lo stato in cui si avviano i conteggi del numero di giri di ogni pneumatico. Questo stato si può raggiungere quando START vale 1 e gli altri ingressi sono posti a 0.

STOP_COUNT è lo stato in cui si interrompe il conteggio del giri di ogni pneumatico in quanto l'automobile è in fase di sterzo. Questo stato è raggiungibile da tutti gli altri stati se e solo se START e STEERING valgono 1, mentre gli altri ingressi sono posti a 0. In questo caso l'automobile ha una velocità maggiore di 10 Km/h ed è in fase di sterzo.

LIGHT è lo stato in cui si accende la spia che indica la foratura di uno pneumatico. Questo stato è raggiungibile dagli altri se e solo START e LIGHT valgono 1 e RESET vale 0.

10 CAPITOLO 3. FSM

Figura 3.1: FSM

Datapath

Per capire il funzionamento, bisogna prima analizzare gli inputs e gli outputs:

- RESTART è l'output della FSM: vale 1 se, con una velocità maggiore di 10 Km/h, l'automobile è in fase di sterzo;
- SPEED rappresenta la velocità dell'automobile: è espressa in modulo a 8 bit e può assumere valori da 0 a 255;
- ROTDXF rappresenta la ruota anteriore destra: vale 1 se la ruota fa un giro completo;
- ROTSXF rappresenta la ruota anteriore sinistra: vale 1 se la ruota fa un giro completo;
- ROTDXR rappresenta la ruota posteriore destra: vale 1 se la ruota fa un giro completo;
- ROTSXR rappresenta la ruota posteriore sinistra: vale 1 se la ruota fa un giro completo.
- START è un output del DATAPATH e un input della FSM: vale 1 se la velocità dell'automobile risulta maggiore di 10 Km/h;
- LIGHT è un output del DATAPATH e un input della FSM, è anche l'output del circuito sequenziale; vale 1 se è stato riscontrato che almeno uno pneumatico ha effettuato un numero di giri troppo basso per poter sembrare non forato.

Figura 4.1: Datapath

4.1 Composizione

Il DATAPATH è costituito dai seguenti file con estensione .blif: velox.blif signal.blif ruota_principale.blif ruota.blif diff.blif or 3.blif

4.1.1 velox.blif

Restituisce 1 se e solo se gli 8 bit di input rappresentano un valore maggiore di 10. In questo caso l'output di velocita.blif costituisce l'output START del DATAPATH. Esso indica che la velocità dell'automobile è superiore a 10 Km/h.

Figura 4.2: Velox

4.1.2 signal.blif

Riceve come input i valori di RESTART (1 bit) e SPEED (8 bit). Se il bit di RESTART vale 0 e la velocità è superiore a 10 km/h, allora restituisce 1, altrimenti restituisce 0.

Figura 4.3: Signal

4.1.3 ruota_principale.blif

Riceve in input il bit restituito dal file segnale.blif SIGNAL e ROTDXF. Se SIGNAL vale 0, il multiplexer seleziona la costante 0. Questo caso si verifica quando l'automobile si trova in fase di sterzo oppure ha una velocità troppo bassa. In queste due condizioni il dispositivo non incrementa il numero di giri del pneumatico, ma continua a sommare 0 al numero che rappresenta i giri del pneumatico, il quale rimane invariato. Altrimenti, se SIGNAL vale 1, il multiplexer seleziona il valore della ruota, che potrebbe essere 0, se la ruota non ha effettuato un giro completo, oppure 1, se la ruota ha effettuato un giro completo. Il registro, inizializzato a 0, memorizza un numero a 6 bit che rappresenta il numero di giri completi effettuati dalla ruota. Il contatore prende in input il valore contenuto dal registro e la costante appena selezionata dal multiplexer, sommando al primo la costante e restituendo un numero che potrebbe essere invariato, se è stato sommato 0, oppure

4.1. COMPOSIZIONE

incrementato di 1, se è stato sommato 1. A questo punto il multiplexer deve selezionare quale valore salvare nel registro: il numero restituito dal contatore oppure una costante 0 a 6 bit, la quale serve per azzerare il contenuto del registro. Nel frattempo un altro componente controlla se il numero appena restituito dal contatore sia uguale a 50. In questo caso il multiplexer seleziona la costante 0 a 6 bit e la restituisce come output, permettendo al registro di salvarla al suo interno e azzerarsi. Altrimenti, se il numero è minore di 50, il multiplexer seleziona il numero restituito dal contatore, il quale si salverà nel registro. ruota_princ.blif restituisce in output un bit, il quale vale 0 se il numero di giri del pneumatico è inferiore a 50, altrimenti vale 1 se il pneumatico ha effettuato 50 giri.

Figura 4.4: Ruota principale

4.1.4 ruota.blif

La struttura di questo file è analoga a quella di ruota_princ.blif, ma presenta qualche lieve differenza. Anzitutto presenta un input in più, cioè un segnale UG50 che corrisponde all'output della ruota anteriore destra e vale 1 se quest'ultima ha raggiunto i 50 giri, altrimenti vale 0. Il multiplexer dovrà leggere ogni volta il valore di questo bit per decidere quale valore restituire al registro perché quest'ultimo possa memorizzarlo al suo interno. Inoltre ruota.blif restituisce come output il valore del registro appena incrementato dal contatore. Infine, il contatore utilizzato in questo caso è implementato in contatore6bis.blif. Esso realizza un contatore analogo a contatore6.blif ma conta fino a 60, azzerandosi successivamente. Questo permette di continuare a contare i giri delle ruote anteriore sinistra e posteriore destra e sinistra anche quando la ruota di riferimento per qualche motivo gira più lentamente senza essere bucata. I confronti sui giri dei pneumatici si avviano quando la ruota di riferimento arriva a 50 giri. Per cui se il pneumatico di riferimento effettua in 100 metri 45 giri, mentre gli altri ne effettuano 50, il confronto avverrà quando il primo sarà arrivato a

50 giri e gli altri a 55 giri, supponendo che abbiano girato sempre correttamente. La differenza tra 55 e 50 è infatti minore del 20%.

Figura 4.5: Ruota

4.1.5 diff.blif

Questo file di occupa di controllare che la differenza tra il numero di giri della ruota di riferimento, cioè quella anteriore destra, e ognuna delle altre tre ruote sia inferiore al 20%. differenza.blif riceve in input un segnale S, che indica se la ruota anteriore destra ha effettuato 50 giri, e un numero a 6 bit, che rappresenta il numero di giri effettuato dalla ruota che deve essere confrontata con quella di riferimento. Il confronto ha senso solo se il segnale S vale 1 Quindi, se la differenza tra 50, cioè il numero di giri del pneumatico anteriore destro, e il numero di giri del pneumatico da confrontare è inferiore al 20%, allora l'uscita di differenza.blif vale 0. In caso contrario, per cui di differenza superiore al 20%, l'uscita vale 1.

4.1.6 or 3.blif

Rappresenta un componente or a 3 bit. Questo ha uscita zero se e solo se tutti e 3 i bit in entrata valgono 0. or 3. blif riceve in input 3 bit, ognuno dei quali rappresenta l'esito di un confronto sul numero di giri tra la ruota "principale" e ciascuna delle altre 3 ruote. Se tutte le ruote, compresa quella di riferimento, hanno girato correttamente, gli input di OR3 saranno 3 zeri e l'uscita avrà valore 0. Altrimenti, se almeno una ruota non ha girato correttamente, almeno un input di OR3 sarà 1 e quindi anche la sua uscita avrà valore 1. L'output di OR3 è LIGHT. Questo è un output del DATAPATH e anche l'unico della FSMD. Esso costituisce inoltre un input per la FSM. Se LIGHT vale 1, significa che il dispositivo ha rilevato un problema sul numero di giri dei pneumatici su una distanza pari a 100 metri.

4.1. COMPOSIZIONE

Figura 4.6: Diff e or3

Mapping e ottimizzazione

È stato deciso di ottimizzare il circuito finale (FSMD.blif) in modo da poter lavorare su un unico file ed eseguire uno script che potesse minimizzare il numero di letterali il più possibile. Lo script ha il seguente path: $FSMD/script_ottimizzazione.script$

La situazione iniziale era questa:

```
sis> read_blif FSMD.blif
Warning: network 'FSMD', node "STEERING" does not fanout
Warning: network 'FSMD', node "RESET" does not fanout
Warning: network 'FSMD', node "START" does not fanout
sis> print_stats
FSMD pi=14 po= 1 nodes= 91 latches=24
lits(sop)=9471
sis>
```

Dopo aver eseguito lo script che genera la FSMD mappata (gen_fsmd.script) è stato ottenuto questo:

```
sis> source gen_fsmd.script
   Warning: network 'FSMD', node "STEERING" does not fanout
   Warning: network 'FSMD', node "RESET" does not fanout
   Warning: network 'FSMD', node "START" does not fanout
   FSMD
                           po=1
                   pi=14
                                   nodes= 59
                                                    latches=24
   lits(sop) = 413
   WARNING: uses as primary input drive the value (0.20,0.20)
   WARNING: uses as primary input arrival the value (0.00,0.00)
   WARNING: uses as primary input max load limit the value (999.00)
   WARNING: uses as primary output required the value (0.00,0.00)
   WARNING: uses as primary output load the value 1.00
11
   Total Area
                           = 6504.00
   Gate Count
                           = 170
13
  Buffer Count
  Inverter Count
                           = 32
  Most Negative Slack
                           = -27.00
   Sum of Negative Slacks = -588.00
   Number of Critical PO = 25
            or2_comb
                              32.00
   [1837]
19
   [1304]
              aoi12_comb
                              32.00
20
   [1389]
              invand_comb
                              32.00
21
   [2241]
              or4_comb
                              48.00
22
   [720]
              aoi12_comb
                              32.00
23
   [1848]
              nand3_comb
                              32.00
24
   [1765]
                              32.00
              invand_comb
  [1842]
                              24.00
              nand2_comb
```

```
[1846]
                            40.00
             or3\_comb
27
                            24.00
   [1380]
             nor2\_comb
28
   [1850]
             oai12_comb
                            32.00
29
   [1851]
             invor_comb
                            32.00
30
  [1273]
            invand_comb
                            32.00
31
             nor2_comb
  [1379]
                            24.00
32
  [1272]
            aoi12_comb
                            32.00
33
  [2020]
                           40.00
            oai22_comb
34
35 [1839]
           inv_comb
                            16.00
  Γ1844]
           inv_comb
                            16 00
36
37 [1853]
           or3_comb
                           40.00
38 [1841]
           \mathtt{inv}_{\mathtt{comb}}
                           16.00
39 [1843]
           inv_comb
                           16.00
40 [1387]
                           32.00
           nor3_comb
41 [2576]
           oai12_comb
                           32.00
42 [1270]
           nor2_comb
                           24.00
43 [1855]
           oai12_comb
                            32.00
44 [1383]
           nor3_comb
                            32.00
45 [1783]
           nor2_comb
                            24.00
46 [1773]
           aoi12_comb
                            32 00
47 | [2014]
            inv comb
                            16.00
          oai12_comb
48 | [2017]
                            32.00
  [1860]
             nand3\_comb
                           32.00
49
  ROT1_05MUX6 dff_reset_re
                             104.00
50
   [2019] inv_comb
                           16.00
51
52
  ROT1_04MUX6 dff_reset_re
                            104.00
53
  [1375] nor2_comb
                            24.00
                          32.00
  [1292]
             aoi12_comb
  ROT1_03MUX6 dff_reset_re
                            104.00
                           32.00
  [2436] oai12_comb
56
                           40.00
  [2698]
             and3_comb
57
  ROT1_02MUX6 dff_re
                            88.00
58
  [2021] inv_comb
                           16.00
59
ROT1_01MUX6 dff_reset_re
                            104.00
61 | [2700] inv_comb
                          16.00
62 [2231]
            dff_re
                           88.00
63 [1698]
           aoi12_comb
                           32.00
64 [1863]
           inv_comb
                           16.00
65 [2355]
                           32.00
           nand3_comb
66 [1869]
           nand3_comb
                           32.00
67 | [1870]
           invor_comb
                           32.00
 [1875]
           nand3_comb
                            32.00
68
69 | [1369]
           nor3_comb
                            32.00
70 | [1695]
            aoi12\_comb
                            32.00
71 | [1295]
             and2_comb
                            32.00
  O5MUX6
             dff_reset_re
                            104.00
72
  [1873]
            inv_comb
                            16.00
73
  [1871]
            inv_comb
                            16.00
74
           inv_comb
  [1862]
                            16.00
75
  [2546]
            oai12_comb
                           32.00
76
  [1276]
            and2_comb
                           32.00
77
  [1879]
            oai22_comb
                           40 00
78
79 [2540]
           oai12_comb
                           32.00
80 [1878]
           \mathtt{nand2\_comb}
                           24.00
81 [1880]
           oai12_comb
                            32.00
82 [1361]
                           24.00
           nor2_comb
83 [2532]
           oai12_comb
                           32.00
84 [2072]
             inv_comb
                           16.00
85 [1881]
                           32.00
             oai12_comb
```

	i		
86	[2064]	inv_comb	16.00
87	O4MUX6	dff_reset_re	104.00
88	[2067]	inv_comb	16.00
89	O3MUX6	dff_reset_re	104.00
90	O2MUX6	dff_reset_re	104.00
91	[2329]	inv_comb	16.00
92	[1647]	aoi12_comb	32.00
93	[1883]	oai12_comb	32.00
94	O1MUX6	dff_reset_re	104.00
	[1884]		24.00
95		nand2_comb	
96	[1297]	aoi12_comb	32.00
97	[1296]	nor2_comb	24.00
98	[2706]	nor3_comb	32.00
99	OOMUX6	dff_re	88.00
100	[1608]	aoi12_comb	32.00
101	[1887]	inv_comb	16.00
102	[2349]	nand3_comb	32.00
103	[1893]	nand3_comb	32.00
104	[1894]	invor_comb	32.00
105	[1899]	nand3_comb	32.00
106	[1354]	nor3_comb	32.00
107	[1605]	aoi12_comb	32.00
108	[1298]	and2_comb	32.00
109	[461]	dff_reset_re	104.00
110	[1897]	inv_comb	16.00
111	[1895]	inv_comb	16.00
112	[1886]	inv_comb	16.00
	[2524]	oai12_comb	32.00
113	[1282]	and2_comb	32.00
114	l		40.00
115	[1903]	oai22_comb	
116	[2518]	oai12_comb	32.00
117	[1902]	nand2_comb	24.00
118	[1904]	oai12_comb	32.00
119	[1346]	nor2_comb	24.00
120	[2510]	oai12_comb	32.00
121	[2129]	inv_comb	16.00
122	[1905]	oai12_comb	32.00
123	[2121]	inv_comb	16.00
124	[462]	dff_reset_re	104.00
125	[2124]	inv_comb	16.00
126	[463]	dff_reset_re	104.00
127	[464]	dff_reset_re	104.00
128	[2337]	inv_comb	16.00
129	[1557]	aoi12_comb	32.00
130	[1907]	oai12_comb	32.00
131	[465]	dff_reset_re	104.00
132	[1908]	nand2_comb	24.00
133	[1300]	aoi12_comb	32.00
134	[1299]	nor2_comb	24.00
135	[2712]	nor3_comb	32.00
136	[466]	dff_re	88.00
137	[1518]	aoi12_comb	32.00
138	[1911]	inv_comb	16.00
	[2352]	nand3_comb	32.00
139	[1917]	nand3_comb	32.00
140	[1917]	invor_comb	32.00
141	l	nand3_comb	
142	[1923] [1339]		32.00 32.00
143		nor3_comb	
144	[1515]	aoi12_comb	32.00

```
[1301]
                and2\_comb
                                  32.00
145
    [487]
                dff_reset_re
                                  104.00
146
    [1921]
                                  16.00
                inv_comb
147
    [1919]
                inv_comb
                                  16.00
148
    [1910]
                inv_comb
                                  16.00
149
    [2502]
                oai12_comb
                                  32.00
150
    [1288]
                and2\_comb
                                  32.00
151
    [1927]
                oai22_comb
                                  40.00
152
    [2496]
                oai12_comb
                                  32.00
153
    [1926]
                nand2_comb
                                  24 00
154
    Γ1928l
                oai12_comb
                                  32.00
155
    [1331]
                nor2\_comb
                                  24.00
156
    [2488]
                oai12_comb
                                  32.00
157
   [2186]
                                  16.00
                inv_comb
158
    [1929]
                oai12_comb
                                  32.00
159
   [2178]
                inv_comb
                                  16.00
160
   [488]
                dff_reset_re
                                  104.00
   [2181]
                                  16.00
                inv_comb
162
                dff_reset_re
   [489]
                                  104.00
163
                dff_reset_re
   [490]
                                  104.00
164
    Γ2321]
                inv comb
                                  16.00
165
    [1467]
                aoi12_comb
                                  32.00
166
    [1931]
                oai12_comb
                                  32.00
167
    [491]
                dff_reset_re
                                  104.00
168
    [1932]
                nand2_comb
                                  24.00
169
    [1303]
                aoi12_comb
                                  32.00
    [1302]
                nor2_comb
                                  24.00
    [2718]
                nor3_comb
                                  32.00
                dff_re
    [492]
                                  88.00
173
                nand3_comb
   [1940]
                                  32 00
174
   [1269]
                and2_comb
                                  32 00
175
                oai12_comb
   [2382]
                                  32.00
176
   [2482]
                nand3\_comb
                                  32.00
177
                aoi12_comb
                                  32.00
   [1311]
178
   [1267]
                and2_comb
                                  32.00
179
   [2378]
                oai12_comb
                                  32.00
180
   [2474]
                nand3_comb
                                  32.00
   [1309]
                aoi12_comb
                                  32.00
   [1268]
                and2_comb
                                  32.00
183
   [2380]
184
                oai12_comb
                                  32.00
    [2478]
                nand3_comb
                                  32.00
185
                aoi12_comb
    Γ1310]
                                  32.00
186
    [1260]
                nor4_comb
                                  40.00
187
    {LIGHT}
                nor2_comb
                                  24.00
188
189
```

Quindi è stato ottimizzato tantissimo il numero di letterali (da 9471 a 413) e quindi mappando ed ottimizzando per area (map -m 0) è stato generato un circuito sicuramente più piccolo di quello che sarebbe stato generato senza lo script di ottimizzazione.

Lo script di ottimizzazione è il seguente:

```
sweep #Esegue l'operazione di sweep;
eliminate 20 #Esegue l'operazione di eliminazione
#rimuovendo i nodi tali che la loro
#rimozione non aumenti il numero di
#letterali di una quantita' superiore
#a ''n''

fx #Esegue l'operazione di estrazione;
```

```
full_simplify
                            #Esegue l'operazione di semplificazione su ogni
9
                            #nodo della rete;
10
11
   eliminate 1
12
                            #Esegue l'operazione di scomposizione dei nodi
13
   resub
                            #indicati nella lista. Se la lista non viene
14
                            #specificata, la sostituzione viene eseguita
15
                            #per tutti i nodi della rete.
16
17
  resub
18
  eliminate 2
19
  full_simplify
20
21 | fx
22 | fx
23 || fx
24 sweep
25 || resub
26 resub
27 | full_simplify
28 eliminate 1
  eliminate 2
29
  full_simplify
30
31
  print_stats
32
                            #stampa le statistiche del risultato
```