- Relacion 4:

4.1 / 4.2

1. $\alpha = \alpha \wedge 7b \rightarrow cv(e \wedge \alpha)$ Sub(α) = $\{\alpha, \alpha \wedge 7b, cv(e \wedge \alpha), \alpha, 7b, b, c, e \wedge \alpha, e \}$

2. d= c/(avb) -> Tavb

Sub(a)= { d, c/(avb), avb,
a, b, Tavb, Ta, b}

3. $\alpha = 7(\alpha - b) - \alpha \wedge 7(\alpha \wedge b)$ $Sub(\alpha) = \{\alpha, 7(\alpha \wedge b), \alpha \wedge b, \alpha, b, \alpha, b, \alpha, \beta, \alpha, \beta,$

4. $\alpha = \alpha \wedge (\alpha \vee b \rightarrow a) \wedge (a \rightarrow 7a)$ $Sub(\alpha) = \{\alpha, \alpha \wedge (\alpha \vee b \rightarrow a), \alpha \}$ $\alpha \vee b \rightarrow a, a, \alpha \vee b, \alpha, b, 7\alpha, a \rightarrow 7a$

- 2. a/8 = 28 = 0
- 3. 7x 178 = (1+x)1 (1+8)= 011=0
- 4. « A-0 7BV8= 1+x+7DV8= 7BV8= 0V0=0
- 5. 13 V78 => 2 => 1 + (13 V78) + 2 (13 V78) = 1 + (13 V78) = 1

- 6. 13 V × → (B→ 78) = 1 V L → (1 + 1)=
 1 → 1 = 1/
- 7. (13 407 a) 40 (a 408) = (1 000) 40 (1000) =
- 8. (13-02) -> ((d-078) -> (78-0B)) = (1-B+B2)-> ((1+2+(1+8)) -> (1+(1+8)+B(1-8)) = 1 -> (1->1)=1
- 4.4. d -0 B = 1 40 1+ 2+ dB = 1 d+ aB = 0; &B = a; => d=dB;
 - 1. dv8 -> /3v8 => (d+8+d8) -> (d+8+d8)=

 1+d+8+d8+(d+8+d8)()3+8+38)

 1+d+8+d8+d8+d3+d38+83+82+d83+d83+d83

 -> 1)
 - 2. d N 8 -> |3 N 8 -> 1+ (d N 8) + (d N 8) (B N 8)

 1+d 8 + a 8 -> 1)

 1+d 8 + a 8 -> 1)

g g 35 45 4 4 4 5 5 5 7 2

growing the fire of the of

12 2 1 2 m 1 1 2 1

- 1. ans => an(1+a)=0
- Z. XVB => XV7X=1
- 3. d + 13 => a +> Ta = 1+ d + 0 => 1+a= Ta= 13
- 4. « N& a-p 3 1 8 = « 18 4 -> 78 18 = 4+ « 8+ 7 « 8 = 1 + 8 (« + 7 «) = 1+8 = 78;

- 1. ans= as= a;
- 2. QVB= Q+B+ QB + B/
- 3. ~ + B= 1+ x+ xB= 1/
- 4. LAX 40 BAX= 1+(dAX)+(BAX)

4.7.

Tautología y satisferaible.

-> Es satisfacible y rejutable.

3. (~ → B) NB → ~

d	13	x -0 B	Bod	2013 N B-SU			
0	0	1	1	1	A de que	* 0.7.X	
0	1	1	0	G			
1	0	0	1	3 0			,
ì	1	1	1	1	* > * .	1	
,	<u>'</u>	1	1	\			

-> Es contingente.

of 1	·B 1	72	d/B1	7x -0 x13
2		-	C	0
0	O	1.		0
0	١	2	0	
١	0	0	0	Ø/ ±
ı	1	O	, {	1

a) Es contingente

to the second to the second to

4 4.7.5. 217(avs)

a	131	a v B	7(av B)	a N7 (aVB)
0	0	0	3.	and delander Arminarani
0	1	4	0	Cord Mark Lands
1	0	4	S	
4	1	1	0	Long constant to deal and a second
	ı			I make any me in the other ordered , 2 *

=> Es contradicación.

6. TX 4-> (X-> 7X)

72	→	a 43 (4)	farvar, the demonstrate
«	72	d -0 7d	1 x 2 x (x - > 7 x)
0	1	1	1 demont and and a manda and a
1	0	8	1=1 1 = (1=m) 1 1/4
		, paloye	a co solved si a crusi is around is,

=> Es tartologia institutad alla person per up is " sol or more

7. (2-0B) 4-0 7a v Band = md + d + d + d + d + d + (man) + 1

~ "	, ,				_	1 (may 6) 4. 15		· ~ 1 8
		JAB	1141	7dVB	(4 D):	3)45 (147)		, , , , , ,
2		A THE	1	1		7		
0	0	1	\ .			120,000	1.08	Evaluet
0	1	1	1			.		
1	0	0	0	0	9.15	1		5 X " 1
	١.		0	1	1	1 . (10 V 12)		
,(,	1 2		1 1 1 /	0744	11014 1.		1
	1			11 4 6 6	1114	1. 1424 4 :	W. Cal	11 00 1

=> Es tautología.

in about aidned in come in their in.

- 1. Cuando el hombre dice "ambos somos embateros". h a- > 7h 1 7m = h + (h+1) 1 (m+1) +1= p+7+pw+ r+m+7= m(++7) => Si m (h+1)=1, entonces { m=1 h=0 * El hombre miente y la mujer dice la verdad
- 2. Cuando el Marido dice "por la menos una es embustero" h d-0 7h v 7m => 1+h+ (7h v 7m)= 1+h+ (1+h)+ (1+m)+ (1+h) (1+m)= 1+m+ ++m + h+ hm = h(m+x)

=> Si h(m+1)=1 { h=1

* E(hombre es veraz y la mojer es mendez.

3. Hombre dice "si yo say veraz, ella también la es". h at (h om) = 1+ h+1+ h+ hm = hm=1 $p''w=T \begin{cases} w=T \\ y=T \end{cases}$

Ambus son veraces.

4. "Yo say la misma que mi mujer" H ao (Haow) = H+T+(H+T+W) = W; MZI

La mujer es veras, el hombre puede ser veraz o mendaz (cualquiera de las des).

1. a-0 b = 7a-07b

۵	P	assb	70	10	70-076
0 0	0	١	100	16	1
0	- (1	1	0	0
·	0	0	0	1	ľ
1	1	ι /	0	0	1

* La equivalencia es cierta.

2. a 40 b = 7a 40 7b

a	Ь	a40b	701	dr	7040 Tb
O	0	1	1	7	T 200 51
0	1	0 -	0000 0	. 0	0
1	O	0	0	1	0
1	1	7	0	0	7

La equivalencia es cierta (avb) -o c = (a-oc)v(b-oc)

Ca.V	D) -	(a-0c) v(b-0c)					
91	al biclarbl		(avb) +>c	aoc	P-0C	(4,00)	
0	0	0	0	1	, 1	\ '	,
0	0	7	0	1	1 4	1	, \ ,
0	1	0	1	٥	1	٥	\
0	1	1	1	1	1	- V 152	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1	ဝ	٥	١	0	0	ι	1 1 2 10 11 1
1	0	7	1	()	1	1	, ,
ላ	1	0	1	0	0	0	lι
L	12	1	1 1	1	()	' '	,
	0000011	00001100		a b c avb 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1	a b c avb (avb) +> c 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	a b c a vb (avb) +>c a +>c 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a b c avb (avb) ** c a * c b ** c 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

La equivelencia es Jalsa

4. (avb) + c=(a+oc) 1 (b+oc)

a	р	c	avb	(avb) +0 c	مهد	6 0 C	(04) () 1 (64) ()
0000111	001	01010101	0011	1 0 0 0 0 1	1 1 0 1 0 1	101101	

* Equivalencia es cierta

a +> (bvc) = (a +> b) v(a +> c) 5.

a	P	C,	prc	a -> (bvc)	aob	a→c	(a >> b) V (a >> c)
0	0	0	0	1	0	1	1
٥	O	7	7	1.	0	1.	at leas d
0	7	ဇ	1	1	1	7	J. 7.
O	L	7	2	1_	1	7	1 1
L	0	O	0	0	0	0	0
1	င	1	1	£	0	1 L ,	- 1 1
1	1	ဇ	1	1	1	whom.	7
7	1 +	1	1 1	1	1	1	

*La equivalencia es cierta.

6. a -> (b -> c) = (a 16) -> c

91	p 1	c	100c	a	-D (P	→ c)	م	<u> үр</u>	C	~ V P	-6 C		•	
0	0	0	1		, I				0		1			•	
0	ಲ	1	(l		4		ر س		,	rail.			1
O	١	O	0		(Š		ì				
O		\	1		1		- [0	2.1%	J 45	, ·			
(ಲ	0	1.1.		1				C)	1.9	1111			. !	
(ပ	1	1	10	l	1	110	٠,	Ĭ		0	<i>j.</i>			
1	1	0	0		0				1		1		-		
ı	1.	١, ١	1 1		1		1	,			N.*				
•	1 /	,	1	l	1	,		,		,			-1		
						(1)		,				i			
*).	0.0	. \	lencia	62	ા'લ્પ	45		r		1		,	pt.	2	9
<i>H</i> in	eyc	, , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1						i			
			,			1		,		,			2		
															7
			,		,	,	t	,	,	I			1 4	1	

4.11. r= {c+ (avb), b+ (c+a), dr (c+a)}

		1	1 . ,		1 - ~ (~ (b)	1 (-0 4 1	hac sall	7(2-00)	d17(c+0a)
a	P	c	9			1	1	6	0
0	0	C	40	O	1	~	,	1	6
C	0	d	0	0	٥	0	'	·	1
0	C	1	Ł	0	0	0	1	,	0
O	12/	0	0	1	1	1	\	0	6
0	$ \cdot $	0	1	1	1	2	\	O	0
		,	0	1	, 1	٥	0	,	1
0	1	`	١	: 1	ļ	O	B	1	0
O	11		1	1	1	,	1	0	0
1	0	0	C	1	1	1	1	0	0
1	0	0	١	1	1	î	,	0	0
il	0	1	0	1	1	1	1	1 0	\
1	0		1	1 /	1	ī	1	\ 0	0
il	11	2	0	;	1	1	{	\ G	G
		C	1	1	1	1	1	\	0
` \	, 1		1	1	i	1) 0	
1	11	1	0	1	1	1	,	1	•
14	11	1	1	1	1	\ \ \	V		
. /			,	1 ,	•				
_	-								
	l								

c + (avb): Contingente ? El conjunto de proposiciones b + (c+a): Contingente es Inschisgacitale.

- Polinomios premisas:

Dolchamio conclusion:

4) Hultiplicamos premisas por negado conclusión:

(1+13+013+138+0188)(1+0+013) d (1+8+138)(1+8)

6) 23(1+8+138)(1+8)=(213+0138+0158)(1+8)=013 (1+8)=

023+0138

→ No tautologia.

2.
$$\models (\beta \rightarrow 7\alpha) \rightarrow ((7\alpha \rightarrow 7(\alpha \rightarrow \beta)) \rightarrow \alpha)$$
 $\beta \rightarrow 7\alpha \models ((7\alpha \rightarrow 7(\alpha \rightarrow \beta)) \rightarrow \alpha)$
 $\beta \rightarrow 7\alpha, 7\alpha \models 7(\alpha \rightarrow \beta) \rightarrow \alpha$
 $\beta \rightarrow 7\alpha, 7\alpha, 7(\alpha \rightarrow \beta) \models \alpha$
 $\rightarrow Polinomios premiscs:$
 $\beta \rightarrow 7\alpha = 1 + \beta + \beta \cdot 7\alpha$
 7α
 $7(\alpha \rightarrow \beta) = 0 + 7\alpha + 7(\alpha\beta)$

-> Polinomio conclusión:

d

-D <u>Multiplicamos premisas por negado conclusión:</u>

(1+β+β7d) 7d (7d + 7(dβ)) = 0 (7d + β\$ + β\$ 7ά) (7d + 9(dβ))

Lo 7d + 7d 7β => 7d (1+7β) => 7dβ

=> No tartología

Maghit Boys the Take to be distributed in

-> Es fautologia.

43 + 2p = 0

galega i ne aggjanereg a frema ekonomeg allje

그들이 아이들 사람들이 나를 들어 나를 다 다른

was properly to a figure period only see figure to be a control to a contract.

4. 13.

1. {7(anb), 7cva, b3 = 7a 17c

2) La resolvemos a traves de la table de vorded:

				20101	791761	
al	P	C	7(0/16)	1000	701701	
0	O	ಲ	1	\	,	
0	0	١	I	G	υ	
0	1	O	1	1	1	
C	1		1	0	0	
	`	'			0	
1	0	C	1	1		
١	0	l i	1	1		
,		0	0	1	0	
(1		0			
1	1	1		'	1	
		1	1	1	1	`

D'Consecuencia légrea crexta.

2. {7(anb),7cva, b3 = 1a->7c

•					4	
a	1 b l	c \	7(01/6)	7c /a/	1a -> 7c	
		0	1	1	()	
O	O	1		٥	0	
O	O	1		,	1 , 1	
0	ι	0	1	ı	, ,	
0	•	,		G	0	
0	1	1	1 1		a \	
1	O	0	1	1		
,	ಲ	1	1	1	47	
,	١,	B	C	1	1	
•	1	\ .	1	\ ,		1
1	1	('	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 1	\ '	
`	1	l	\	\	_	

a) Consecuencia logica cierta.