Lazy Rule Learning Nikolaus Korfhage

Introduction

Lazy Rule Learning Algorithm

Possible Improvements

Improved Lazy Rule Learning Algorithm

Implementation

Evaluation and Results

Rule Learning

- Learns classifier once on the training data to classify test instances
- ► Classifier → Rule set
- Separate-and-conquer
 - add rules that cover many positive examples

Lazy Learning

- ► Training data utilized by each query instance individually
- Classify instances simultaneously
- More time for classification

k-NN

$$W_i = \frac{1}{d(TestInstance, x_i)}$$

Lazy Rule Learning

- Combine lazy learning and rule learning
 - produces many context-less rules
- Learn one rule
- Rule consists of conditions from test instance
- Rule should classify test instance correctly
- Example:
 - Test instance: <rainy, 68, 80, FALSE>
 - Rule: play = yes :- windy = FALSE.
- # rules = # instances to classify

LAZYRULE

LAZYRULE (Instance, Examples)

InitialRule = ∅

BestRule = InitialRule

for Class ∈ Classes

Conditions ← PossibleConditions(Instance)

NewRule = REFINERULE (Instance, Conditions, InitialRule, Class)

if NewRule > BestRule

BestRule = NewRule

return BestRule

Possible Conditions


```
PossibleConditions (Instance)

Conditions \leftarrow \emptyset

for Attribute \in Attributes

Value = AttributeValue (Attribute, Instance)

if Value \neq \emptyset

Conditions = Conditions \cup \{(Attribute = Value)\}

return Conditions
```

REFINERULE

REFINERULE (Instance, Conditions, Rule, Class)

if Conditions ≠ ∅

BestRule = Rule

BestCondtion = BESTCONDITION (Rule, Conditions)

Refinement = Rule ∪ BestCondtion

Evaluation = EVALUATERULE (Refinement)

NewRule = < Evaluation, Refinement>

if NewRule > BestRule

BestRule = NewRule

REFINERULE (Instance, Conditions \ BestCondition, NewRule, Class)

return BestRule

Numeric Attributes

- Test instance:
 - <sunny, 85, 85, FALSE>
- Condition outlook = sunny
 - → covers some training examples
- ▶ but condition temperature = 85
 - → covers **no** training example
- Solution
 - \rightarrow infer two conditions, e.g. temperature \geq 80 \land temperature < 90

Numeric Attributes

Example of Learned Rules

play = yes :- humidity < 88, humidity >= 70, windy = FALSE.

play = yes :- temperature >= 72, temperature < 84.

play = yes :- outlook = overcast.

play = yes :- humidity >= 70, humidity < 82.5, windy = FALSE.

play = no :- outlook = sunny, temperature \geq 70.5, temperature < 80.5.

Heuristics

- ► LAZYRULE evaluated with heuristics available in SECo
- Laplace significantly better on most datasets
- Results:
 - Laplace 76.17
 - Linear Regression 72.44
 - ► *F*-Measure 70.62
 - Linear Cost 69.17
 - m-Estimate 68.81
 - Foil Gain 65.99
 - **...**

Complexity

- # rules to check for one test instance: $O(c \cdot a^2)$
- \blacktriangleright # rules all instances: $O(c \cdot a^2 \cdot d)$
- # instances to check on first call REFINERULE: c · a · t
- Decrease a or t

c:#classes

a:# attributes

d:# instances to classify

t:# training instances

Possible Improvements

- Increase accuracy
 - Beam search
- Reduce execution time
 - Consider less data → random subset of training data
 - Preselect attributes
- Increase accuracy and decrease execution time
 - Learn rules on k-nearest neighbors

LAZYRULENN

- Learn rule on *k*-nearest neighbors
- Less training data to learn rule on
 - \rightarrow faster
- Consider only useful instances to learn rule on
 - $\rightarrow \text{higher accuracy}$

Computation Time

Accuracy

Dataset	LAZYRULE	LazyRuleNN, $k = 5$	significance level: 0.01
iris	94.27	95.40	3
labor	85.67	88.20	
balance-scale	85.44	86.16	
heart-statlog	70.63	79.33 ∘	
Z00	77.10	96.35 ∘	
hepatitis	79.70	84.91	
Glass	61.10	66.77	
wisconsin-breast-cancer	91.47	96.81 ∘	
lymphography	76.16	84.11	
breast-cancer	72.15	73.37	
autos	65.45	68.81	
hungarian-14-heart-disease	80.41	82.52	
primary-tumor	41.18	43.45	_ improvement
credit-rating	84.55	86.17	Improvement
cleveland-14-heart-disease	75.59	83.08 0 -	
pima-diabetes	69.91	73.84	
vote	94.05	93.38	degradation
horse-colic.ORIG	71.92	63.02 •	
audiology	48.30	66.02 ∘	
vehicle	52.74	70.56 ∘	
horse-colic	81.79	82.15	
ionosphere	91.91	85.36 •	
anneal.ORIG	89.21	94.42 0	
vowel	29.42	93.67 ∘	
sonar	64.14	82.42 0	
anneal	90.75	98.24 ∘	
german-credit	70.84	73.11	
soybean	80.08	91.07 ∘	
sick	93.88	96.28 ∘	
segment	73.89	95.68 ∘	
hypothyroid	92.86	93.43	
Average	75.37	82.84	

Learned Rules

- Shorter rules for small k
- ► More empty rules

	LAZYRULE	LAZYRULENN	LAZYRULENN	
		>, $k = 5$	\geq , $k = 5$	
Accuracy (%)	75.41	82.86	82.86	
Average Rule Length	2.88	0.89	19.56	
Empty Rules (%)	0.01	54.41	1.78	

Implementation

- Based on SECo-framework
 - Rules
 - Heuristics
- Weka:
 - Evaluation
 - Interface
 - kNN

Weka Interface

Evaluation

- 37 datasets
- Evaluating possible improvements:
 - Weka: ten-fold CV
 - Corrected paired Student's t-Test
 - Leave-one-out cross-validation
- Comparing algorithms:
 - Weka: ten-fold CV
 - Friedmann test with post-hoc Nemenyi test

LAZYRULENN and other algorithms

Compared to:

- ▶ Decision tree algorithm J48 (C4.5)
- Separate-and-conquer rule learning algorithm JRip (RIPPER)
- k-nearest neighbor
- Weighted k-nearest neighbor
- k = 1, 2, 3, 5, 10, 15, 25

Results

Average accuracy

	k = 1	k = 2	k = 3	k = 5	<i>k</i> = 10	<i>k</i> = 15	k = 25
LAZYRULENN	83.31	83.02	84.00	83.90	82.94	82.47	82.09
kNN	83.35	82.75	83.73	83.47	81.73	80.23	78.18
kNN, weighted						83.29	82.14
JRip	83.09						
JRip J48	83.37						

Results

Summary

- Combines lazy learning and rule learning
- Improved lazy rule learning algorithm uses kNN
- Not significantly worse than considered learning algorithms
- Learns many context-free rules (one for each instance)
- May be useful for other projects (e.g. Learn-a-LOD)