Tópicos de Matemática

Lic. em Ciências da Computação

Teoria elementar de conjuntos

Carla Mendes

Dep. Matemática e Aplicações Universidade do Minho

2010/2011

A noção de conjuntos e o estudo de conjuntos (designada por Teoria de conjuntos), hoje essenciais em muitos campos da Matemática e das Ciências da Computação, foram introduzidos por Georg Cantor nos finais do século XIX. A teoria de Cantor, um tanto intuitiva, foi posteriormente tratada e organizada de forma axiomática.

Nesta unidade curricular vamos considerar a noção de conjunto como um conceito primitivo, i.e. como uma noção intuitiva, a partir da qual serão definidas outras noções.

Intuitivamente, um **conjunto** é uma colecção de objectos chamados os **elementos** ou **membros** do conjunto.

Os conjuntos serão representados por letras maiúsculas A, B, C, ..., X, Y, Z (possivelmente com índices) e os elementos de um conjunto serão representados por letras minúsculas a, b, c, ..., x, y, z (também possivelmente com índices).

Dado um conjunto A e um objecto x, diz-se que: x **pertence a** A, e escrevemos $x \in A$, se x é um dos objectos de A; x **não pertence a** A, e escreve-se $x \notin A$, caso x não seja um dos objectos de A.

Exemplo 2.1

- 1 São exemplos de conjuntos as colecções:
 - a) de disciplinas do 1º ano do plano de estudos de LCC;
 - b) de pessoas presentes numa festa;
 - c) de meses com 30 dias;
 - **d)** dos números naturais, inteiros, racionais, reais e complexos, representados, respectivamente, por \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} .
- **2** Tem-se, por exemplo, $3 \in \mathbb{N}$, $0 \notin \mathbb{N}$, $\frac{1}{2} \in \mathbb{Q}$, $\sqrt{2} \notin \mathbb{Q}$.

Um conjunto pode ser descrito de várias formas.

Uma delas consiste em enumerar explicitamente os seus elementos, os quais são colocados entre chavetas e separados por vírgulas - neste caso diz-se que o conjunto é descrito por **extensão**.

Quando numa descrição por extensão não é possível ou praticável a enumeração de todos os elementos do conjunto, utiliza-se uma notação sugestiva e não ambígua que permita intuir os elementos não expressos.

Um conjunto também pode ser descrito por **compreensão**, i.e., dado um predicado p(x), com x a variar num conjunto X, $\{x \in X : p(x)\}$ representa o conjunto de todos os elementos de X para os quais p(x) é verdadeira.

Exemplo 2.2

- O conjunto dos números naturais menores do que 5 pode ser descrito, por extensão, do seguinte modo {1, 2, 3, 4}.
- **2** O conjunto dos números naturais divisores de 4 pode ser descrito, por compreensão, da seguinte forma $\{n \in \mathbb{N} : n \mid 4\}$.
- ③ Os conjuntos dos números naturais e dos números inteiros são usualmente representados por extensão utilizando a seguinte notação: $\mathbb{N} = \{1, 2, 3, \ldots\}$, $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. O conjunto cujos elementos são o número 0 e os números naturais é representado por $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$.

Definição 2.3

Ao único conjunto que não tem qualquer elemento chamamos **conjunto** vazio e será representado por \emptyset ou por $\{\}$.

Um conjunto fica determinado quando são conhecidos os seus elementos.

Definição 2.4

Dois conjuntos A e B dizem-se **iguais**, e escreve-se A=B, se têm os mesmos elementos, i.e, A=B se

$$\forall_x (x \in A \Leftrightarrow x \in B).$$

Consequentemente, A e B dizem-se **diferentes**, e escreve-se $A \neq B$, se existir um elemento num conjunto que não se encontra no outro.

Exemplo 2.5

- **①** O conjunto $A = \{1, 2, 4\}$ é igual ao conjunto dos divisores naturais de 4, e é também igual ao conjunto $B = \{x \in \mathbb{R} : x^3 7x^2 + 14x 8 = 0\}$.
- **2** Os conjuntos $A = \{x \in \mathbb{N} : x \text{ \'e m\'ultiplo de 3}\}$ e $B = \{6, 12, 18, 24...\}$ são diferentes, pois, $3 \in A$ e $3 \notin B$.

Definição 2.6

Sejam A e B conjuntos. Diz-se que A **está contido em** B ou que A **é subconjunto de** B, e escreve-se $A \subseteq B$, se todo o elemento de A é também elemento de B, i.e., $A \subseteq B$ se

$$\forall_x (x \in A \Rightarrow x \in B).$$

Caso exista um elemento de A que não seja elemento de B diz-se que A não está contido em B ou que A não é subconjunto de B, e escreve-se $A \nsubseteq B$. Simbolicamente, $A \nsubseteq B$ se

$$\exists_{x \in A} \ x \notin B$$
.

Exemplo 2.7

Sejam A e B conjuntos. Diz-se que A está propriamente contido em B ou que A é subconjunto próprio de B, e escreve-se $A \subsetneq B$ ou $A \subset B$, se $A \subseteq B$ e $A \neq B$.

Exemplo 2.8

Proposição 2.9

Sejam A, B e C conjuntos. Então são válidas as seguintes propriedades:

- \mathbf{Q} $A \subseteq A$.
- **3** se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$.
- **4** $(A \subseteq B \ e \ B \subseteq A)$ se e só se A = B.

Demonstração: 1. No sentido de provar, por redução ao absurdo, que $\emptyset \subseteq A$, admitamos que $\emptyset \nsubseteq A$. Daqui segue que existe um elemento de \emptyset que não pertence a A. Mas \emptyset não tem elementos. Temos, então, uma contradição que resultou de admitirmos que $\emptyset \nsubseteq A$. Logo $\emptyset \subseteq A$.

- 2. Todo o elemento de A é elemento de A. Portanto, $A \subseteq A$.
- 3. Admitamos que $A\subseteq B$ e $B\subseteq C$. Vamos mostrar que $A\subseteq C$. Seja x um elemento de A. Então, como $A\subseteq B$, segue que $x\in B$. Agora, tendo em conta que $x\in B$ e que $B\subseteq C$, vem que $x\in C$. Assim, todo o elemento de A é elemento de C, ou seja, $A\subseteq C$.
- 4. Pretendemos mostrar que

$$(A \subseteq B \in B \subseteq A)$$
 se e só se $A = B$.

 (\Rightarrow) Comecemos por admitir que $A \subseteq B$ e $B \subseteq A$ e mostremos que A = B.

Demonstração (continuação):

Como $A \subseteq B$, todo o elemento de A é elemento de B; por outro lado, como $B \subseteq A$, todo o elemento de B é elemento de A. Logo A e B têm os mesmos elementos, i.e., A = B.

(\Leftarrow) Reciprocamente, admitamos que A=B e provemos que $A\subseteq B$ e $B\subseteq A$. Como A=B, estes conjuntos têm os mesmos elementos. Portanto, para todo o objecto x,

$$(x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A),$$

i.e., $A \subseteq B$ e $B \subseteq A$.

Definição 2.10

Sejam A e B subconjuntos de um conjunto X (chamado o universo).

Chama-se união ou reunião de A com B, e representa-se por $A \cup B$, o conjunto cujos elementos são os elementos de A e os elementos de B, ou seja, $A \cup B = \{x \in X : x \in A \lor x \in B\}.$

Definição 2.10 (continuação)

Chama-se intersecção de A com B, e representa-se por $A \cap B$, o conjunto cujos elementos pertencem simultaneamente a A e a B, isto é,

$$A \cap B = \{x \in X : x \in A \land x \in B\}.$$

Chama-se complementar de B em A, e representa-se por $A \setminus B$, o conjunto cujos elementos pertencem a A mas não a B, ou seja,

$$A \setminus B = \{ x \in X : x \in A \land x \notin B \}.$$

Por vezes, o complementar de B em A é também designado por diferença de A com B e representado por A – B.

Quando A é o universo X, $A \setminus B = X \setminus B$ diz-se o complementar de B e representa-se por \overline{B} ou B'.

Exemplo 2.11

Dados os subconjuntos de \mathbb{R} , $A = \{-2, 0, 2, \pi, 7\}$ e $B =]-\infty, 3]$, tem-se

- **1** $A \cup B =]-\infty,3] \cup \{\pi,7\};$
- **2** $A \cap B = \{-2, 0, 2\};$
- **3** $A \setminus B = \{\pi, 7\};$
- **4** $\overline{A \cup B} = [3, \pi[\cup]\pi, 7[\cup]7, +\infty[.$

Apresentam-se de seguida algumas propriedades relativas às operações de conjuntos apresentadas anteriormente.

Proposição 2.12

Sejam A, B e C subconjuntos de um conjunto X. Então,

- $\bullet A \subseteq A \cup B \ e \ B \subseteq A \cup B.$
- $A \cup \emptyset = A.$

Proposição 2.12 (continuação)

- **5** se $A \subseteq B$, $A \cup B = B$.

Demonstração: Demonstramos as propriedades 1., 2. e 7., ficando as restantes como exercício.

1. Vamos mostrar que $A \subseteq A \cup B$.

Seja $x \in A$. Então, a proposição $x \in A \lor x \in B$ é verdadeira. Logo, $x \in A \cup B$. Assim, para todo o objecto x,

$$x \in A \Rightarrow x \in A \cup B$$
.

Logo $A \subseteq A \cup B$. A prova de $B \subseteq A \cup B$ é semelhante.

Demonstração (continuação): 2. Da propriedade 1. sabemos que $A \subseteq A \cup \emptyset$. Para termos a prova de $A \cup \emptyset = A$, falta mostrar que $A \cup \emptyset \subseteq A$. Consideremos $x \in A \cup \emptyset$. Então, por definição, temos que $x \in A \vee x \in \emptyset$. Dado que \emptyset não tem elementos, podemos concluir que $x \in A$. Logo, para todo o objecto x,

$$x \in A \cup \emptyset \Rightarrow x \in A$$

e, portanto, $A\cup\emptyset\subseteq A$. De $A\subseteq A\cup\emptyset$ e $A\cup\emptyset\subseteq A$ concluímos que $A\cup\emptyset=A$

7. Admitamos que $A\subseteq B$ e mostremos que $A\cup B=B$. Pela propriedade 1., temos $B\subseteq A\cup B$. Logo, resta mostrar que $A\cup B\subseteq B$. Dado que $A\subseteq B$, todo o elemento de A é também elemento de B, donde segue que, para todo o objecto x

$$x \in A \cup B \Rightarrow x \in A \lor x \in B \Rightarrow x \in B \lor x \in B \Rightarrow x \in B$$
.

Portanto, $A \cup B \subseteq B$.

De $B \subseteq A \cup B$ e $A \cup B \subseteq B$ tem-se $A \cup B = B \cup B$

No seguinte resultado, descrevemos algumas propriedades da operação de intersecão de conjuntos.

Proposição 2.13

Sejam A, B e C subconjuntos de um conjunto X. Então,

- $A \cap \emptyset = \emptyset.$
- $A \cap X = A.$

- \bullet se $A \subseteq B$, $A \cap B = A$.

Demonstração: Apresentamos a prova das propriedades 1., 2. e 6. A prova das restantes propriedades fica como exercício.

1. Mostremos que $A \cap B \subseteq A$. Dado $x \in A \cap B$, tem-se, por definição, que $x \in A \land x \in B$. Então $x \in A$ é uma proposição verdadeira. Logo, para todo o objecto x,

$$x \in A \cap B \Rightarrow x \in A$$
,

- e, portanto $A \cap B \subseteq B$. A prova de $B \subseteq A \cap B$ é análoga.
- 2. Pretendemos mostrar que o conjunto $A \cap \emptyset$ não tem elementos. No sentido de fazer esta prova por redução ao absurdo, admitamos que $A \cap \emptyset \neq \emptyset$. Então existe um objecto x tal que $x \in A \land x \in \emptyset$; em particular, $x \in \emptyset$. Mas \emptyset não tem elementos, logo temos uma contradição que resultou de admitirmos que $A \cap \emptyset$ tinha elementos. Assim, $A \cap \emptyset = \emptyset$.

Demonstração (continuação):

6. A propriedade $(A \cap B) \cap C = A \cap (B \cap C)$ é verdadeira se, para todo o objecto x,

$$x \in (A \cap B) \cap C \Leftrightarrow x \in A \cap (B \cap C).$$

Com efeito, atendendo à propriedade de associatividade da operação \land , tem-se, para todo o objecto x,

$$x \in (A \cap B) \cap C \Leftrightarrow x \in A \land x \in (B \cap C)$$

$$\Leftrightarrow x \in A \land (x \in B \land x \in C)$$

$$\Leftrightarrow (x \in A \land x \in B) \land x \in C$$

$$\Leftrightarrow x \in (A \cap B) \land x \in C$$

$$\Leftrightarrow x \in (A \cap B) \cap C.$$

Logo
$$(A \cap B) \cap C = A \cap (B \cap C)$$
.

Apresentam-se de seguida mais algumas propriedades, desta vez relacionadas com a complementação de conjuntos.

Proposição 2.14

Sejam A, B e C subconjuntos de um conjunto X. Então são válidas as propriedades seguintes:

- $\bullet A \cap \overline{A} = \emptyset \ e \ A \cup \overline{A} = X.$
- $2 A \setminus \emptyset = A e A \setminus X = \emptyset.$
- **3** se $A \subseteq B$, então $A \setminus B = \emptyset$.

- $\overline{A \cap B} = \overline{A} \cup \overline{B}.$
- $\overline{(\overline{A})} = A.$

Demonstração: Apresentamos a prova das propriedades 1., 2. e 5..

1. Facilmente se prova que o conjunto $A \cap \overline{A}$ não tem elementos. De facto, se admitirmos que este conjunto tem elementos, então existe um objecto x tal que $x \in A \land x \in \overline{A}$ e daqui segue que $x \in A \land (x \in X \land x \not\in A)$. Desta forma, temos uma contradição, $x \in A \land x \not\in A$, que resultou de admitirmos que $A \cap \overline{A}$ tinha elementos. Logo $A \cap \overline{A} = \emptyset$.

Mostremos, agora, que $A \cup \overline{A} = X$. Uma vez que $A \in \overline{A}$ são subconjuntos de X é imediato que $A \cup \overline{A} \subseteq X$. Logo, resta mostrar que $X \subseteq A \cup \overline{A}$. Esta última inclusão é também simples de verificar, pois, dado $x \in X$, a proposição $x \in A \lor x \not\in A$ é verdadeira. Por outro lado, se $x \in X$ e $x \not\in A$, então $x \in \overline{A}$. Sendo assim, para todo o objecto x,

$$x \in X \Rightarrow x \in A \lor x \notin A \Rightarrow x \in A \lor x \in \overline{A} \Rightarrow x \in A \cup \overline{A}.$$

Logo $X \subseteq A \cup \overline{A}$. Da prova de $A \cup \overline{A} \subseteq X$ e de $X \subseteq A \cup \overline{A}$ segue $A \cup \overline{A} = X$.

Demonstração (continuação):

2. Por definição, $A\setminus\emptyset$ é o conjunto dos elementos que pertencem a A mas não pertencem a \emptyset . Mas \emptyset não tem elementos, pelo que não se retira qualquer elemento a A e, portanto, $A\setminus\emptyset=A$.

No sentido de provar, por redução ao absurdo, que $A\setminus X=\emptyset$, admitamos que o conjunto $A\setminus X$ tem elementos. Então existe um objecto x tal que $x\in A\setminus X$, ou seja, existe x tal que $x\in A \land x\not\in X$. Mas A é um subconjunto de X, pelo que todo o elemento de A é também elemento de X. Assim, temos uma contradição: $x\in X \land x\not\in X$. Por conseguinte, a hipótese inicial, de que o conjunto $A\setminus X$ tinha elementos, está errada e, portanto, $A\setminus X=\emptyset$.

4. Para provar que $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$, temos de mostrar que para todo o objecto x,

$$x \in A \setminus (B \cap C) \Leftrightarrow x \in (A \setminus B) \cup (A \setminus C).$$

Demonstração (continuação):

Com efeito, atendendo às leis de De Morgan e à propriedade distributiva das operações lógicas \land e \lor , tem-se, para todo o objecto x, o seguinte

$$x \in A \setminus (B \cap C) \Leftrightarrow x \in A \land x \notin (B \cap C)$$

$$\Leftrightarrow x \in A \land \neg (x \in B \cap C)$$

$$\Leftrightarrow x \in A \land \neg (x \in B \land x \in C)$$

$$\Leftrightarrow x \in A \land (\neg (x \in B) \lor \neg (x \in C))$$

$$\Leftrightarrow x \in A \land (x \notin B \lor x \notin C)$$

$$\Leftrightarrow (x \in A \land x \notin B) \lor (x \in A \land x \notin C)$$

$$\Leftrightarrow (x \in A \setminus B) \lor (x \in A \setminus C)$$

$$\Leftrightarrow x \in (A \setminus B) \cup (A \setminus C).$$

Portanto, $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Estudamos de seguida outros processos de construir conjuntos a partir de conjuntos dados.

Definição 2.15

Dado um conjunto A chamamos conjunto das partes de A ou conjunto potência de A, e representamos por $\mathcal{P}(A)$, ao conjunto de todos os subconjuntos de A, i.e.,

$$\mathcal{P}(A) = \{X : X \subseteq A\}.$$

Exemplo 2.16

Sejam $A = \{a, b, c\}$, $B = \{1, \{2\}\}$ e $C = \emptyset$. Então, tem-se

2
$$\mathcal{P}(B) = \{\emptyset, \{1\}, \{\{2\}\}, \{1, \{2\}\}\}\}.$$

3
$$\mathcal{P}(C) = \{\emptyset\}.$$

Proposição 2.17

Dados conjuntos A e B, tem-se:

- **2** Se $A \subseteq B$, então $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- **3** Se A tem n elementos, então $\mathcal{P}(A)$ tem 2^n elementos.

Demonstração: 1. Para qualquer conjunto A, tem-se $\emptyset \subseteq A$ e $A \subseteq A$. Logo \emptyset e A são elementos de $\mathcal{P}(A)$.

- 2. Admitamos que $A \subseteq B$. Vamos mostrar que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Dado $X \in \mathcal{P}(A)$, tem-se $X \subseteq A$. Logo, como $A \subseteq B$, segue que $X \subseteq B$, o que significa que $X \in \mathcal{P}(B)$. Provámos, desta forma, que todo o elemento de $\mathcal{P}(A)$ é também elemento de $\mathcal{P}(B)$ e, portanto, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- 3. Consultar bibliografia adequada.

Dados objectos a, b, os conjuntos $\{a, b\}$ e $\{b, a\}$ são iguais, não interessando a ordem pela qual os elementos ocorrem. No entanto, em certas situações, interessa considerar os objectos por determinada ordem. Sendo assim, introduz-se a noção de par ordenado.

Dados objectos a, b define-se **par ordenado de** a **e de** b como sendo o objecto (a, b) tal que (a, b) = (c, d) se e só se a = c e b = d.

Note-se que num par ordenado a ordem dos elementos é relevante: dados dois objectos a, b, se $a \neq b$, tem-se $(a, b) \neq (b, a)$.

Num par ordenado (a, b) designa-se o objecto a como a **primeira componente (ou coordenada)** e o objecto b como a **segunda componente (ou coordenada)**.

Os pares ordenados são objectos com os quais se podem formar novos conjuntos.

Definição 2.18

Sejam A, B conjuntos. O produto cartesiano de A por B, representado por $A \times B$, é o conjunto formado por todos os pares ordenados (a,b) em que $a \in A$ e $b \in B$, i.e.,

$$A \times B = \{(a, b) : a \in A \land b \in B\}.$$

Exemplo 2.19

- **1** Sejam $A = \{1,2\}$ e $B = \{a,b,c\}$. Então $A \times B = \{(1,a),(2,a),(1,b),(2,b),(1,c),(2,c)\}; B \times A = \{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\}.$
- **2** Sejam $A = B = \mathbb{R}$. Os elementos de $A \times B = \mathbb{R} \times \mathbb{R}$ podem ser representados geometricamente como pontos dum plano munido de um eixo de coordenadas.

Apresentam-se, agora, algumas propriedades relacionadas com o produto cartesiano, algumas delas envolvendo, também, as operações definidas anteriormente.

Proposição 2.20

Para quaisquer conjuntos A, B, C e D, tem-se

- **2** $A \subseteq C$ e $B \subseteq D$ se e só se $A \times B \subseteq C \times D$.

Demonstração: Mostremos que $C \times (A \cup B) = (C \times A) \cup (C \times B)$.

Seja $(x,y) \in C \times (A \cup B)$. Então $x \in C \wedge y \in (A \cup B)$. Se $y \in A$, tem-se $(x,y) \in C \times A$; se $y \in B$, tem-se $(x,y) \in C \times B$. Em qualquer dos casos, vem $(x,y) \in (C \times A) \cup (C \times B)$. Logo $C \times (A \cup B) \subseteq C \times A) \cup (C \times B)$.

Para a prova da inclusão contrária basta ter em conta a propriedade 2.. De facto, como $A \subseteq A \cup B$ e $B \subseteq A \cup B$, tem-se $C \times A \subseteq C \times (A \cup B)$ e $C \times B \subseteq C \times (A \cup B)$. Logo $(C \times A) \cup (C \times B) \subseteq C \times (A \cup B)$.

Da prova das duas inclusões resulta a igualdade que se pretendia mostrar.

(A prova das restantes propriedades fica ao cuidado do aluno). \square

Observação: Se A e B são dois conjuntos com p e q elementos $(p, q \in \mathbb{N}_0)$, respectivamente, então $A \times B$ tem $p \times q$ elementos.

As noções de união, intersecção e produto cartesiano de conjuntos podem ser generalizadas a colecções de conjuntos. A uma colecção de conjuntos dá-se a designação de família de conjuntos e, no caso dos seus elementos serem indexados, falamos em família de conjuntos indexada.

Definição 2.21

Seja I um conjunto não vazio e, para cada $i \in I$, seja A_i um conjunto. À colecção dos conjuntos A_i dá-se a designação de **família de conjuntos** indexada por I, e representamo-la por $(A_i)_{i \in I}$, i.e.,

$$(A_i)_{i\in I}=\{A_i:i\in I\}.$$

Ao conjunto I referido na definição anterior dá-se o nome de **conjunto de índices**. Este conjunto pode ser finito ou infinito. No caso em que I tem n elementos é usual escrever $I = \{1, 2, ..., n\}$.

Exemplo 2.22

Para cada $n \in \mathbb{N}_0$, seja $A_n = \{x \in \mathbb{N}_0 : x \leq n\}$. Assim, $(A_i)_{i \in \mathbb{N}_0}$ é uma família de conjuntos indexada por \mathbb{N}_0 .

Vejamos, então, de que forma se generalizam as noções das operações de união, intersecção e produto cartesiano.

Definição 2.23

Seja I um conjunto não vazio e $\mathcal{F}=(A_i)_{i\in I}$ uma família de conjuntos indexada por I.

- **1** Chama-se união da família \mathcal{F} e representa-se por $\bigcup_{i \in I} A_i$ o conjunto $\{x : \exists_{i \in I} \ x \in A_i\}.$
- **2** Chama-se **intersecção da família** \mathcal{F} e representa-se por $\bigcap_{i \in I} A_i$ o conjunto $\{x : \forall_{i \in I} \ x \in A_i\}.$

Definição 2.23 (continuação)

Se $I=\{1,2,\ldots,n\}$, o produto cartesiano de $A_1,\ A_2,\ \ldots \ A_n$, representado por $A_1\times A_2\times \ldots A_n$ ou por $\prod_{i\in I}A_i$, é o conjunto formado pelos n-uplos ordenados (a_1,a_2,\ldots,a_n) em que $a_1\in A_1$, $a_2\in A_2,\ \ldots,\ a_n\in A_n$, i.e., $A_1\times A_2\times \ldots \times A_n=\{(a_1,a_2,\ldots,a_n): a_1\in A_1, a_2\in A_2,\ldots,a_n\in A_n\}.$

No caso em que $A_1 = A_2 = \ldots = A_n$ escrevemos A^n em alternativa a $A_1 \times A_2 \times \ldots \times A_n$.

Exemplo 2.24

Para cada
$$n \in \mathbb{N}_0$$
, seja $A_n = \{x \in \mathbb{N}_0 : x \le n\}$. Tem-se
$$\bigcup_{i \in I} A_i = \mathbb{N}_0; \qquad \bigcap_{i \in I} A_i = \{0\};$$

$$\prod_{i \in \{0,1,2\}} A_i = \{(0,0,0), (0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,1,2)\}.$$

Generalizando a noção de igualdade de pares ordenados, diz-se que dois *n*-uplos ordenados (a_1, a_2, \ldots, a_n) e (b_1, b_2, \ldots, b_n) de um produto cartesiano $A_1 \times A_2 \times ... \times A_n$ são iguais se e só se $a_1 = b_1$, $a_2 = b_2$, ... $a_n = b_n$.

A generalidade das propriedades da união, da intersecção e do produto cartesiano também são extensíveis a famílias de conjuntos. Sendo $(A_i)_{i \in I}$ uma família de conjuntos, tem-se, por exemplo:

•
$$A_i \subseteq \bigcup_{i \in I} A_i$$
, para todo $i \in I$. $\bigcap_{i \in I} A_i \subseteq A_i$, para todo $i \in I$.
• $B \cap \bigcup_{i \in I} A_i = \bigcup_{i \in I} (B \cap A_i)$. $B \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \cup A_i)$.
• $B \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (B \setminus A_i)$. $B \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (B \setminus A_i)$.
• $B \times \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \times A_i)$. $B \times \bigcup_{i \in I} A_i = \bigcup_{i \in I} (B \times A_i)$.

$$\bigcap_{i\in I} A_i \subseteq A_i$$
, para todo $i\in I$.

•
$$B \cap \bigcup_{i \in I} A_i = \bigcup_{i \in I} (B \cap A_i)$$

$$B \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \cup A_i).$$

•
$$B \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (B \setminus A_i).$$

$$B \times \bigcup_{i \in I} A_i = \bigcup_{i \in I} (B \times A_i).$$

$$\bullet \ B \times \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \times A_i).$$

• Se
$$I = \{1, 2, \dots, n\}$$
 e se cada conjunto A_i tem p_i elementos, então
$$\prod_{i \in I} A_i \text{ tem } p_1 \times p_2 \times \dots \times p_n \text{ elementos.}$$