

\mathbf{M} + СЕМИНАР

МИНИАТЮРА ЗА РАЗСТОЯНИЯ ОТ ТОЧКА ДО ВЪРХОВЕТЕ НА ПРАВИЛЕН СИМПЛЕКС

проф. Сава Гроздев, доц. д-р Веселин Ненков

Често в равнината на даден триъгълник се търсят разстояния от точка до неговите върхове. Обратното, определянето на триъгълника по известни разстояния от дадена точка до върховете му, не винаги е възможно. Ако обаче триъгълникът е равностранен, той може да бъде определен по разстоянията от точка до върховете му и нейното положение спрямо триъгълника. Такъв е случаят със следната:

Задача 1. Ако точката P е вътрешна за равностранния триъгълник $A_1A_2A_3$, а разстоянията от P до върховете на $A_1A_2A_3$ са равни на 3, 4 и 5, да се намери дължината на страната на $\Delta A_1A_2A_3$.

Тук разбира се възниква въпросът за определяне на страната на $\Delta A_1 A_2 A_3$, ако разстоянията от P до върховете му са например 3, 5 и 7 или 57, 65 и 73. Това естествено води до следната по-обща

Задача 2. Ако точката P е вътрешна за равностранния триъгълник $A_1A_2A_3$, а разстоянията от P до върховете A_1 , A_2 и A_3 са равни съответно на a_1 , a_2 и a_3 , да се намери дължината на страната a_0 на $\Delta A_1A_2A_3$.

Едно решение на задача 2, използващо допълнително построение, се получава по следния начин. Построяваме точка Q, така че $\Delta A_1 PQ$ е равностранен (както е показано на фиг. 1). Означаваме с φ мярката на $\sphericalangle A_2 PQ$. Тъй като $A_1 A_2 = A_1 A_3 = a_0$, $A_1 Q = A_1 P = a_1$ и $\sphericalangle A_2 A_1 Q = 60^\circ - \sphericalangle A_2 A_1 P = \sphericalangle A_3 A_1 P$, то $\Delta A_1 A_2 Q \cong \Delta A_1 A_3 P$. Следователно $QA_2 = PA_3 = a_3$. Сега от косинусовата теорема за $\Delta A_2 PQ$ намираме, че $\cos \varphi = \frac{a_1^2 + a_2^2 - a_3^2}{2a_1a_2}$.

Оттук следва още равенството $\sin \varphi = \frac{s_3}{2a_1a_2}$, където

(1)
$$s_3 = \sqrt{2a_1^2 a_2^2 + 2a_2^2 a_3^2 + 2a_3^2 a_1^2 - a_1^4 - a_2^4 - a_3^4} = \sqrt{(a_1 + a_2 + a_3)(-a_1 + a_2 + a_3)(a_1 - a_2 + a_3)(a_1 + a_2 - a_3)}.$$

Фиг. 1

От косинусовата теорема за $\Delta A_i A_2 P$ следва $a_0^2 = a_1^2 + a_2^2 - 2a_1a_2\cos(\varphi + 60^\circ) = a_1^2 + a_2^2 - 2a_1a_2(\cos\varphi\cos60^\circ - \sin\varphi\sin60^\circ)$.

Като използваме равенствата за $\sin \varphi$, $\cos \varphi$ и (1), получаваме формулата:

(2)
$$a_0 = \sqrt{\frac{a_1^2 + a_2^2 + a_3^2 + s_3\sqrt{3}}{2}}.$$

От (2) при $a_1=3$, $a_2=4$ и $a_3=5$ получаваме $a_0=\sqrt{25+12\sqrt{3}}$ (Фиг. 2). В приведеното решение $\varphi = 90^{\circ}$, а косинусовата теорема се преобразува в Питагоровата теорема.

От формулата (2) при $a_1 = 57$, $a_2 = 65$, $a_3 = 73$ (Фиг. 3) и $a_1 = 3$, $a_2 = 5$, $a_3 = 7$ (Фиг. 4) получаваме съответно $a_0 = 112$ и $a_0 = 8$. Във втория случай се получава, че точката P лежи върху страната A_1A_2 (Фиг. 4). Тук от една страна точката P не отговаря на всички условия в задача 2, а от друга - съществува равностранен триъгълник, страната на който се пресмята по формула (2). Това ни дава основание да обобщим задача 2 по следния начин:

Задача 3. Ако точката Р лежи в равнината на равностранния триъгълник $A_{\rm l}A_{\rm 2}A_{\rm 3}$, а разстоянията от P до върховете $A_{\rm l}$, $A_{\rm 2}$ и $A_{\rm 3}$ са равни съответно на $a_{\rm l}$, $a_{\rm 2}$ u a_3 , да се определи дължината на страната a_0 на $\Delta A_1 A_2 A_3$ в зависимост от положението на P спрямо $\Delta A_1 A_2 A_3$.

Тъй като приведеното решение на задача 2 е коректно само когато точката Р е вътрешна за $\Delta A_1 A_2 A_3$ и числата са дължини на страни на триъгълник, то ни е необходимо решение, обхващащо всички случаи, които се съдържат в задача 3. За целта ще използваме барицентрични координати спрямо $\Delta A_1 A_2 A_3$, като $A_1 (1,0,0)$, $A_{2}\left(0,1,0\right),\ A_{3}\left(0,0,1\right)$ и $P\left(x_{1},x_{2},x_{3}\right)$ $\left(x_{1}+x_{2}+x_{3}=1\right).$ Разстоянието от P до произволна точка $Q(y_1, y_2, y_3)$ $(y_1 + y_2 + y_3 = 1)$ се определя чрез формулата:

$$PQ^{2} = -\left[(y_{1} - x_{1})(y_{2} - x_{2}) + (y_{2} - x_{2})(y_{3} - x_{3}) + (y_{3} - x_{3})(y_{1} - x_{1}) \right] a_{0}^{2}.$$

От тази формула при $Q \equiv A_i$ (i = 1, 2, 3) следват равенствата:

(3)
$$a_i^2 = a_0^2 (1 - x_i - \delta_3) \quad (i = 1, 2, 3),$$

където

(4)
$$\delta_3 = x_1 x_2 + x_2 x_3 + x_3 x_1.$$

След сумиране на равенствата (3) и използване на (4) се получава равенството:

(5)
$$\delta_3 = \frac{2a_0^2 - a_1^2 - a_2^2 - a_3^2}{3a_0^2}.$$

Сега от (3) и (5) намираме координатите на P във вида:

(6)
$$x_1 = \frac{a_0^2 - 2a_1^2 + a_2^2 + a_3^2}{3a_0^2}, \ x_2 = \frac{a_0^2 + a_1^2 - 2a_2^2 + a_3^2}{3a_0^2}, \ x_3 = \frac{a_0^2 + a_1^2 + a_2^2 - 2a_3^2}{3a_0^2}.$$

След заместване на координатите (6) в (4) стигаме до

(7)
$$\delta_3 = \frac{a_1^2 a_2^2 + a_2^2 a_3^2 + a_3^2 a_1^2 + a_0^4 - a_1^4 - a_2^4 - a_3^4}{3a_0^4}.$$

Приравняването на десните страни на (5) и (7) води до $a_0 = \sqrt{\frac{a_1^2 + a_2^2 + a_3^2 \pm s_3\sqrt{3}}{2}}$

Оттук за страната a_0 получаваме (2) или

(8)
$$a_0 = \sqrt{\frac{a_1^2 + a_2^2 + a_3^2 - s_3\sqrt{3}}{2}}.$$

От (1), (2) и (8) следва, че когато едно от разстоянията a_1 , a_2 и a_3 е по-голямо от сумата на другите две, равностранният триъгълник $A_1A_2A_3$ не съществува. В останалите случаи – когато a_1 , a_2 и a_3 са страни на триъгълник или едното е равно на сумата на другите две – страната a_0 на $\Delta A_1A_2A_3$ се пресмята по една от формулите (2) или (8). Остава да се определи коя от тези формули е валидна в зависимост от положението на P в равнината на $\Delta A_1A_2A_3$. Първо да обърнем внимание, че точката P лежи върху описаната за $\Delta A_1A_2A_3$ окръжност точно когато $\delta_3 = 0$. Според (5) последното равенство е изпълнено тогава и само тогава, когато е в сила равенството

(9)
$$a_0 = \sqrt{\frac{a_1^2 + a_2^2 + a_3^2}{2}}.$$

От (9) следва, че (2) и (8) водят до равенството $s_3=0$. От (1) се вижда, че това се случва тогава и само тогава, когато едно от разстоянията a_1 , a_2 и a_3 е равно на сумата от другите две (Разбира се това твърдение е добре известно и се доказва по различни други начини). Така получихме, че a_0 се пресмята по формулата (9) тогава и само тогава, когато точката P лежи върху описаната за $\Delta A_1 A_2 A_3$ окръжност Γ . Освен това точката P е вътрешна за Γ , когато е изпълнено неравенството $\delta_3 > 0$, а е външна за Γ при $\delta_3 < 0$. Лесно се вижда, че тези неравенства се удовлетворяват, когато a_0 се пресмята съответно с (2) и (8). Така стигаме до следните изводи: 1) A ко P e

вътрешна за Γ , страната a_0 се пресмята по формулата (2); 2) Ако P е външна за Γ , страната a_0 се пресмята по формулата (8); 3) Ако P е лежи върху Γ , страната a_0 се пресмята по формулата (9).

Трите разгледани по-рано случаи $a_1 = 3$, $a_2 = 4$, $a_3 = 5$; $a_1 = 57$, $a_2 = 65$, $a_3 = 73$ и $a_1 = 3$, $a_2 = 5$, $a_3 = 7$ се отнасят за точка P, вътрешна за Γ . Формулите (6) ни дават възможност да построим точката P по нейните координати, които в съответните случаи са следните: $\left(\frac{4(64-23\sqrt{3})}{193}, \frac{81-8\sqrt{3}}{193}, \frac{4(25\sqrt{3}-36)}{193}\right)$, $\left(\frac{325}{784}, \frac{33}{98}, \frac{195}{784}\right)$, $\left(\frac{5}{8}, \frac{3}{8}, 0\right)$.

В същите случаи, но за точка P, външна за Γ , получаваме триъгълници съответно с дължина на страната $a_0 = \sqrt{25-12\sqrt{3}}$ (Фиг. 5), $a_0 = \sqrt{19}$ (Фиг. 6) и $a_0 = 76$ (Фиг. 7). Координатите на P в съответните случаи са следните: $\left(\frac{4(64+23\sqrt{3})}{193}, \frac{81+8\sqrt{3}}{193}, -\frac{4(36+25\sqrt{3})}{193}\right), \left(\frac{1105}{259}, \frac{129}{259}, -\frac{975}{259}\right), \left(\frac{25}{19}, \frac{9}{19} - \frac{15}{19}\right)$. Един случай, в който точката P лежи върху описаната окръжност Γ , е показан на фигура 8 и се получава при $a_0 = 7$, $a_1 = 3$, $a_2 = 5$, $a_3 = 8$. Координатите на P са

 A_{1} A_{3} A_{2} $A_{0} = 7$

Фиг. 8

$$\left(\frac{40}{49}, \frac{24}{49}, -\frac{15}{49}\right)$$
.

Трябва да отбележим, че както се вижда от (5) и (7), равенствата (2) и (8) (и (9), което е следствие и на двете) се обобщават с формулата $a_0^4 + a_1^4 + a_2^4 + a_3^4 = a_0^2 a_1^2 + a_0^2 a_2^2 + a_0^2 a_3^2 + a_1^2 a_2^2 + a_1^2 a_3^2 + a_2^2 a_3^2$. Тя може да се запише и по следния начин:

(10)
$$\left(a_0^2 + a_1^2 + a_2^2 + a_3^2\right)^2 = 3\left(a_0^4 + a_1^4 + a_2^4 + a_3^4\right).$$

От последната формула се вижда, че всяко от числата a_0 , a_1 , a_2 и a_3 може са се определи чрез останалите три с някой вариант на (2) и (8), който се получава с подходяща пермутация на числата 0, 1, 2 и 3.

След като описахме подробно случая с равностранен триъгълник, възниква въпросът за разглеждане на същата задача за правилен тетраедър. Ако $A_1A_2A_3A_4$ е правилен тетраедър с ръб a_0 , а $P(x_1,x_2,x_3,x_4)$ е точка в пространството, за която $PA_i=a_i$ (i=1,2,3,4), аналогично на триъгълника получаваме равенствата

$$x_{i} = \frac{a_{0}^{2} + a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2} - 4a_{i}^{2}}{4a_{0}^{2}} \quad (i = 1, 2, 3, 4),$$

$$\delta_{4} = x_{1}x_{2} + x_{1}x_{3} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4} + x_{3}x_{4} = \frac{3a_{0}^{2} - a_{1}^{2} - a_{2}^{2} - a_{3}^{2} - a_{4}^{2}}{4a_{0}^{2}} =$$

$$= \frac{2\left(a_{1}^{2}a_{2}^{2} + a_{1}^{2}a_{3}^{2} + a_{1}^{2}a_{4}^{2} + a_{2}^{2}a_{3}^{2} + a_{2}^{2}a_{4}^{2} + a_{3}^{2}a_{4}^{2}\right) - 3\left(a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2} - a_{0}^{2}\right)}{8a_{0}^{4}}.$$

От последното равенство следва

(11)
$$\left(a_0^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2\right)^2 = 4\left(a_0^4 + a_1^4 + a_2^4 + a_3^4 + a_4^4\right).$$

Случаите на триъгълник и тетраедър се обобщават по естествен начин за правилен симплекс $A_1A_2\dots A_nA_{n+1}$ с ръб a_0 в n-мерното пространство. Ако $P\left(x_1,x_2,\dots,x_n,x_{n+1}\right)$ е точка, за която $PA_i=a_i$ $(i=1,2,\dots,n,n+1)$, аналогично на предишните случаи за координатите на P спрямо $A_1A_2\dots A_nA_{n+1}$ се получават равенствата

$$x_{i} = \frac{a_{0}^{2} + a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2} + a_{n+1}^{2} - 4a_{i}^{2}}{na_{0}^{2}} \quad (i = 1, 2, \dots, n, n+1),$$

а формулата, свързваща числата a_i ($i=0,1,2,\ldots,n,n+1$), е следната:

(12)
$$\left(a_0^2 + a_1^2 + a_2^2 + \dots + a_n^2 + a_{n+1}^2\right)^2 = n\left(a_0^4 + a_1^4 + a_2^4 + \dots + a_n^4 + a_{n+1}^4\right).$$

ЛИТЕРАТУРА

Гарднер, М. Математически развлечения. Том 3. Наука и изкуство, София, 1980.

A MINIATURE ABOUT DISTANCES FROM A POINT TO THE VERTICES OF A SIMPLEX

Prof. Sava Grozdev. Assoc. prof. Dr. Veselin Nenkov

Abstract. The problem to find the side length of an equilateral triangle using the distances from a given point to the vertices of the triangle is generalized for a regular simplex.