Date	7 November 2022
Team Id	PNT2022TMID13492
Project Name	Natural Disaster Intensity Analysis and Classification Using AI

CYLONE

Data Sources	Variables/Model	Units	Temporar Coverage	Spatial Coverage	Levels
NCEP/NCAR _	geopotential height	m	4-times daily and daily	2.5 x 2.5 degree grid	multiple level
	precipitable water	kg m ⁻²	4-times daily		surface
	relative humidity	%			*
	sea surface pressure (SLP)	hPa	(#5)		50
	u and v wind components	m s ⁻¹	***	*	*
	air temperature	°C		,	*
	relative vorticity	10 ⁻³ s ⁻¹	•	*	
	moisture convergence*	g kg ⁻¹ s ⁻¹	hourly	,	-
ECMWF	Convective Available Potential Energy (CAPE)	J kg ⁻¹	*	0.5x0.5 degree grid	*
3-4000000000000000000000000000000000000	total of precipitation mm "				
APHRODITE	total of precipitation	mm	daily	0.25x0.25-degree grid	
NOAA ARL	HYSPLIT backward trajectory	AGL	hourly	360 x 180 at 1 degree	multiple level

Moisture convergence was computed with GrADS software using 7 variables: relative humidity, air temperature, vapour pressure nixing ratio, u and v wind components and dew point temperature.

EARTH QUAKE

EQ01 Northridge – 1994 ^a	6.7	17.40	9.71	2.91	2.22
EQ02 El Centro – 1940ª	6.9	2.14	3.49	2.37	1.47
EQ03 Kobe - 1995	6.9	8.21	5.99	1.47	1.42
EQ04 Loma Prieta - 1989 ^a	6.9	3.52	2.67	1.37	1.47
EQ05 Christchurch – 2010 ^a	7.0	7.38	6.64	0.76	0.71
EQ06 Miyagi Ken-Oki – 2003 ^b	7.1	8.25	11.10	7.89	6.96
EQ07 Chi-Chi – 1999 ^a	7.7	2.92	4.34	3.66	1.61
EQ08 Gorkha - 2015 ^a	7.8	1.54	1.60	0.22	0.22
EQ09 Chile Coquimbo – 2015 ^a	8.3	6.77	5.45	5.70	8.73
EQ10 Great East Japan – 2011 ^b	9.0	12.20	25.90	5.08	6.01

WILDLIFE

The Number of Endangered Species is Rising

Number of animal species of the IUCN Red List, by class

* other invertebrate (spineless) animals, such as crustaceans, corals and arachnids (spiders, scorpions)

Source: IUCN Red List

FLOOD

