第3节 互感与自感 Mutual Induction and Self-Induction

一、互感

一导体回路的电流变化,在另一回路中

产生感应电动势~~互感电动势。

1. 互感系数

 L_1 中的 i_1 变化 引起 L_2 中 $\boldsymbol{\Phi}_{12}$ 的变化

在 L_2 中产生感应电动势

 $\sim\sim$ 互感电动势 \mathcal{E}_{12}

反之: L_2 中 i_2 的变化,也在 L_1 中产生**互感电动势** ε_{21}

显然, ε_{12} 、 ε_{21} 不仅与另一线圈的电流变化有关, 而且还与它们的相对位置有关。

若两线圈的相对位置确定:

设 L_1 的电流为 i_1 ,在 L_2 ,中产生的磁通匝链数为 ψ_{12} 。

$$: B_1 \propto i_1 \quad \text{in} \quad \Psi_{12} \propto B_1 \propto i_1$$

即有: $\Psi_1, \propto i_1$

$$\boldsymbol{\varPsi}_{12} = \boldsymbol{M}_{12} \boldsymbol{i}_1$$

 $m{\Psi}_{12} = M_{12} i_1$ 同理: $m{\Psi}_{21} = M_{21} i_2$

可证明: $M_{12} = M_{21} = M$

M—互感系数,简称互感。

单位: 亨利(H)

两回路的位置有关; 线圈的几何形状及介质*μ* 有关。

互感电动势

$$\boldsymbol{\varepsilon}_{M} = -\frac{\mathrm{d}\boldsymbol{\psi}}{\mathrm{d}t} = -M\frac{\mathrm{d}\boldsymbol{i}}{\mathrm{d}t} - \boldsymbol{i}\frac{\mathrm{d}\boldsymbol{M}}{\mathrm{d}t}$$

当
$$M =$$
 常数时
$$\varepsilon_{M} = -M \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$\varepsilon_{12} = -M \frac{\mathrm{d}i_{1}}{\mathrm{d}t}$$

$$\varepsilon_{21} = -M \frac{\mathrm{d}i_{2}}{\mathrm{d}t}$$

2. 互感的计算

根据
$$\varepsilon_M = -M \frac{\mathrm{d}i}{\mathrm{d}t}$$
 或 $\Psi_{12} = Mi_1$ $\Psi_{21} = Mi_2$

$$M = \Psi_{12}/i_1 = \Psi_{21}/i_2$$

$$M = \left| \frac{\mathcal{E}_{12}}{\mathrm{d}i_1/\mathrm{d}t} \right| = \left| \frac{\mathcal{E}_{21}}{\mathrm{d}i_2/\mathrm{d}t} \right|$$

例8. 长直螺线管,单位长度上有n 匝线圈,另一半径为r 的圆环放在螺线管内,环平面与管轴垂直。求它们之间的互感M?

解: 由互感的定义可知

$$M = \underbrace{\frac{\Psi_{21}}{i_2}} = \underbrace{\frac{\Psi_{12}}{i_1}}$$

但此处 421很难算出!

设此螺线管通有 i_1 ,则 $B_1 = \mu_0 n i_1$,

圆环中:
$$\Psi_{12}=B_1\pi r^2=\mu_0 ni_1\pi r^2$$

$$\therefore M = \frac{\Psi_{12}}{i_1} = \mu_0 n \pi r^2$$

1°原则上可对任一线圈产生磁场计算另一线圈的磁通量 $\psi \rightarrow M = \psi/i$ 。

但很多实际问题中M 很难算出。

2° 互感在电工和无线电技术中应用广泛如:变压器,互感器......

互感往往也是有害的......

二、自感

1. 自感电动势

回路自身 i 变化 $\rightarrow B$ 变化 $\rightarrow Y$ 变化

$$\Psi \propto B \propto i \qquad \Psi = Li$$

 $L\sim$ 自感系数或自感(电感)

$$L = \frac{\Psi}{i}$$
 取决于回路的大小、
形状、匝数以及 μ 。

目身电流的变化

 ε_L 的方向: 反抗回路中电流的改变

(电流增加时,自感电动势与原电流方向相反; 电流减小时,自感电动势与原电流方向相同。

$$\varepsilon_L = -L \frac{\mathrm{d}i}{\mathrm{d}t} - i \frac{\mathrm{d}L}{\mathrm{d}t}$$

$$\mathbf{\varepsilon}_{L} = -L \frac{\mathrm{d}i}{\mathrm{d}t} - i \frac{\mathrm{d}L}{\mathrm{d}t}$$
 $L = 常量$
 $\mathbf{\varepsilon}_{L} = -L \frac{\mathrm{d}i}{\mathrm{d}t}$
 $\Psi = Li$

 \circ $\mathbf{\mathcal{E}}_{L} \propto \frac{\mathrm{d}i}{\mathrm{d}t}$,回路里 $\mathrm{d}i/\mathrm{d}t \neq \mathbf{0} \rightarrow \mathbf{\mathcal{E}}_{L}$

直流电路在ON、OFF开关的瞬间才出现 \mathcal{E}_{r} 。

 2° $\varepsilon_L \propto L < L$ 大, ε_L 大 \to 阻碍电路变化的阻力大; L小, ε_L 小 \to 阻碍电路变化的阻力小。

 $L \sim$ 对电路 "电磁惯性" 的量度

$$3^{\circ}$$
 *L*的定义: $L = \frac{\Psi}{i}$ 或: $L = \left| \frac{\mathcal{E}_L}{\frac{\mathrm{d}i}{\mathrm{d}t}} \right|$

注意:两个定义式只有在L是常量时是一致的

2. 自感L的计算

例9. 计算一长直螺线管的自感,截面积为S,长为l,单位长度上的匝数为n,管中充有 μ 的磁介质,求该螺线管的自感L。

解: 设螺线管通有I的电流,

则管内磁场为: $B = \mu nI$

管内全磁通:

$$\Psi=N\Phi=NBS=N\mu nIS=n^2\mu IIS$$
 $V=IS$ $L=\frac{\Psi}{I}=n^2\mu V$ 若管内为真空: $L=n^2\mu_0 V$ 可见: $L\propto\mu$, V , n

注:除线圈外,任何一个实际电路都存在自感,输电线相当于单匝回路,回路上有分布自感。

例10. 两根中心距离为d半径为a的平行输电导线,

求:两导线单位长度上的分布电感(d>>a)。

解:如图,设导线中有电流 I,单位长度上的磁通量

$$\Psi = \Phi = \int \vec{B} \cdot d\vec{S}$$

$$= \int_{a}^{d-a} \frac{\mu_0 I}{2\pi r} dr + \int_{a}^{d-a} \frac{\mu_0 I}{2\pi (d-r)} dr$$

$$= \frac{\mu_0 I}{\pi} \ln \frac{d-a}{a}$$

$$L = \frac{\Psi}{I} = \frac{\mu_0}{\pi} \ln \frac{d-a}{a}$$

$$= \frac{\mu_0}{\pi} \ln \frac{d}{a} \quad (d >> a)$$

例:一线圈中通过的电流I 随时间t 变化的规律如图.试画出自感电动势 \mathcal{E}_L 随时间 t 变化的规律(以I 的正方向为 \mathcal{E}_L 的正向).

解: 根据

$$\varepsilon_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$$

可得左边的 \mathcal{E}_L 随 t 变化的曲线。

3. LR 电路

由一自感线圈L,电阻R,与电源 ε 组成电路。

求:电键k接a上一段时间后,又接到b上回路里i的变化。

$$k o a$$
, $i o I$, L 上产生 \mathcal{E}_L ,
 $\mathcal{E}_L = -L \frac{\mathrm{d}i}{\mathrm{d}t}$, $\mathcal{E}_{\mathbb{R}} = \mathcal{E} + \mathcal{E}_L$

即:
$$\varepsilon + \varepsilon_L = iR$$

$$\varepsilon - L \frac{\mathrm{d}i}{\mathrm{d}t} = iR$$
 $\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = \varepsilon$

积分可得: $i = \frac{\mathcal{E}}{R} + Ce^{-Rt/L}$ C为积分常数。

由初始条件: t=0, i=0, 则 $C=-\varepsilon/R$,

$$i = \frac{\mathcal{E}}{R}(1 - e^{-Rt/L})$$

讨论:

$$i = \frac{\varepsilon}{R} (1 - e^{-Rt/L})$$

$$1^{\circ} t \rightarrow \infty, i = \frac{\varepsilon}{R} = I$$

$$2^{\circ}$$
 $t=L/R$ $i=\frac{\mathcal{E}}{R}(1-\frac{1}{e})=0.63I$ 时间常数

令 τ =L/R, i从0 →0.63I所需时间

 τ 大, L大, i 增长慢, ε_L 阻力大, **电磁惯性大**;

 τ 小,L小,i 增长快 ε_L 阻力小,**电磁惯性小**。

$i \rightarrow I$ 后, $k \rightarrow b$ (相当于电路加了阶跃电压 $\varepsilon \rightarrow 0$)

自感电动势将使电流维持一段时间。

积分可得: $i = Ce^{-Rt/L}$

初始条件: t=0, i=I, $C=I=\varepsilon/R$

$$\therefore i = \frac{\mathcal{E}}{R}e^{-Rt/L}$$

可见:去掉电源,电流仍按 指数递减,递减快慢 仍由 $\tau = L/R$ 表征。

 $t = \tau$ 时, $i = 0.37I < \tau$ 大,i衰减慢; τ 小,i衰减快。

 $1^{\circ}LR$ 电路在阶跃电压的作用下,电流不能突变, $\tau = L/R$ 标志滞后时间。

L有平稳电流作用

2°自感在电工及无线电技术中应用很广泛, 但在大自感电路里也是有害的。 例: $A \times B$ 是相同的两灯泡,内阻r >> R. 线圈的电阻为R,L很大。则下面正确的是[].

- (A) K接通时,I_A<I_B.
- (B) K接通时,I_A=I_B.
- (C) K断开时, A、B同时灭.
- (D) K断开时, $I_A=I_B$.

解:

K接通时,因r >> R,故 $I_A << I$. 又因L很大,故 ε_L 大,所以 $I_L \approx 0$, $I_B \approx I$ 故, K接通时, $I_B > I_A$. K断开时,仍有 $I_R > I_A$.

例: 载流正方形线圈旁有一无限长直导线。若线圈中有变化的电流*i*, 求在无限长直导线中产生的感应电动势。

解: 直导线中的电动势是互感电动势。

$$\varepsilon = -M \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$M = ?$$

设直导线中有电流I,在线圈中

$$\phi = \int \vec{B} \cdot d\vec{s} = \int_{b}^{b+a} \frac{\mu_{0}I}{2\pi r} \cdot a dr$$

$$= \frac{\mu_{0}Ia}{2\pi} \ln \frac{b+a}{b}$$

$$M = \frac{\phi}{I} = \frac{\mu_{0}a}{2\pi} \ln \frac{b+a}{b}$$

$$\therefore \varepsilon = -M \frac{di}{dt} = \frac{\mu_{0}a}{2\pi} \frac{di}{dt} \ln \frac{b+a}{b}$$

例: 环形螺线管总匝数 N (如图) (1) 求 L

安培环路定理

 \mathbf{M} : 设线圈中通有电流 I.

$$\varphi = \int_{s} \vec{B} \cdot d\vec{s} = \int_{a}^{b} \frac{\mu_{0} NI}{2\pi r} \cdot h dr = \frac{\mu_{0} NI}{2\pi} h \cdot \ln \frac{b}{a}$$

$$L = \frac{\Psi}{I} = \frac{N\varphi}{I} = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a}$$

(2) 若中心有一无限长直导线, 求M.

设直线中通电流
$$I_1$$
 $M=\psi_2/I_1$

$$= \frac{N\varphi_2}{I_1} = \frac{N}{I_1} \cdot \int_a^b \frac{\mu_0 I_1}{2\pi r} \cdot h \, \mathrm{d}r = \frac{\mu_0 N}{2\pi} h \ln \frac{b}{a}$$

(3) 若在螺绕环中通以交变 电流 $i = I_0 \cos \omega t$, 求在长直导线中的 感应电动势.

$$\mathcal{E}=-M\frac{\mathrm{d}i}{\mathrm{d}t}=+\frac{\mu_0Nh}{2\pi}\ln\frac{b}{a}I_0\omega\sin\omega t$$
方向?