CONTROL VARIABLES

Fundamentals of

PROGRAM EVALUATION

JESSE LECY

CONTROL VARIABLES

		Dependent Variable: Test Scores					
		Model 1	Model 2	Model 3	Model 4	Model 5	
		(1)	(2)	(3)	(4)	(5)	
Classroom Size		-4.22***	-3.91***		-2.67	-2.22***	
		(0.18)	(0.03)		(1.63)	(0.23)	
Teacher Quality			55.01***	55.03***		55.01***	
			(0.25)	(0.26)		(0.25)	
Socio-Economic Status				40.94***	16.34	17.77***	
				(0.27)	(17.10)	(2.40)	
Intercept		738.34***	456.70***	272.91***	665.29***	377.26***	
		(4.88)	(1.48)	(1.39)	(76.57)	(10.82)	
Why are slopes a	nd		Model 1				

standard errors
changing
when we add
"control" variables?

Model 2

Model 4

Visual representations of multiple regression models to allow for reasoning regarding model specification and fit.

BALLENTINE VENN DIAGRAMS

BALLENTINE VENN DIAGRAM

Variance of Y

Variance of X1

BALLENTINE VENN DIAGRAM

SLOPE

$$b_1 = \frac{\text{cov}(x, y)}{\text{var}(x)}$$

SLOPE

$$b_1 = \frac{\text{cov}(x, y)}{\text{var}(x)} = \frac{A}{A + C}$$

THE RESIDUAL AND R²

$$R^2 = \frac{\exp lained \ var(y)}{var(y)} \approx \frac{A}{A+B}$$

Explained Portion

R-SQUARED AND REGRESSION RESIDUAL

The variance of X1 and cov(X1,Y) are the same in these two cases. The var(Y) is larger in the top case.

Although the "explained" portion is the same in both models, there is more variance to explain on top.

COEFFICIENT STANDARD ERROR

There are three ways to make the standard error smaller, and thus improve the confidence intervals around b_1 :

- (1) Increase sample size
- (2) Explain more variance of Y
- (3) Increase variance of X

$$SE_{b1} \approx \frac{\text{residual}}{\text{sample size} \cdot \text{variance X1}} \approx \frac{B}{n \cdot (A+C)}$$

EXPLAIN MORE Y

There are three ways to make the standard error smaller, and thus improve the confidence intervals around b_1 :

$$SE \approx \frac{B}{n \cdot (A+C)}$$

- (1) Increase sample size
- (2) Explain more variance of Y
- (3) Increase variance of X

Adding a control variable can explain some of Y, thus leading to smaller residuals.

INCREASE VAR(X)

There are three ways to make the standard error smaller, and thus improve the confidence intervals around b_1 :

$$SE_{b1} \approx \frac{B}{n \cdot (A+C)}$$

- (1) Increase sample size
- (2) Explain more variance of Y
- (3) Increase variance of X

In an experiment assigning the treatment levels over a range of 0 to 1000mg increases the variance of X compared to a study that uses 0 to 500mg.

TWO TYPES OF CONTROL VARIABLES:

FIRST TYPE: UNCORRELATED WITH THE POLICY VARIABLE

$$slope: \frac{B}{B+C} \to \frac{B}{B+C}$$

Slope does not change.

$$SE_{b1}: \frac{A}{B+C} \to \frac{a}{B+C}$$

Standard error becomes smaller.

	Dependent Variable: Test Scores				
	Model 1	Model 2	Model 3	Model 4	Model 5
	(1)	(2)	(3)	(4)	(5)
Classroom Size	-4.22***	-3.91***		-2.67	-2.22***
	(0.18)	(0.03)		(1.63)	(0.23)
Teacher Quality		55.01***	55.03***		55.01***
		(0.25)	(0.26)		(0.25)
Socio-Economic Status			40.94***	16.34	17.77***
			(0.27)	(17.10)	(2.40)
Intercept	738.34***	456.70***	272.91***	665.29***	377.26***
	(4.88)	(1.48)	(1.39)	(76.57)	(10.82)

The **slope** is approximately the same, but the **standard error** is six times smaller.

SECOND TYPE: CORRELATED WITH THE POLICY VARIABLE

$$slope: \frac{B}{B+C} \to \frac{b}{b+c}$$

$$SE_{b1}: \frac{A}{B+C} \to \frac{a}{b+c}$$

Slope changes (can increase or decrease depending on size of b relative to c).

The standard error typically becomes larger (again depends on ratio).

CONTROL VARIABLES

	Dependent Variable: Test Scores				
	Model 1	Model 2	Model 3	Model 4	Model 5
	(1)	(2)	(3)	(4)	(5)
Classroom Size	-4.22***	-3.91***		-2.67	-2.22***
	(0.18)	(0.03)		(1.63)	(0.23)
Teacher Quality		55.01***	55.03***		55.01***
		(0.25)	(0.26)		(0.25)
Socio-Economic Status			40.94***	16.34	17.77***
			(0.27)	(17.10)	(2.40)
Intercept	738.34***	456.70***	272.91***	665.29***	377.26***
	(4.88)	(1.48)	(1.39)	(76.57)	(10.82)

The **slope** is smaller (close to zero), and the **standard error** is almost ten times as large.

COFFEE STUDY EXAMPLE

Partitioning the Variance of Y

Reconsider the caffeine study as an observational study on coffee consumption. Now caffeine is not assigned, but level of consumption is a choice by individuals. We can add controls.

$$Y = b_0 + b_1 X + e$$

$$Y = \beta_0 + \beta_1 X + \beta_2 X 2 + \varepsilon$$

If the new control variable X2 is highly-correlated with our policy variable, we primarily remove the EXPLAINED variance from the model.

$$Y = \beta_0 + \beta_1 X + \beta_2 X 2 + \varepsilon$$

If the new control variable X2 is NOT correlated with our policy variable and correlated with the outcome, we primarily remove the RESIDUALS from the model.

CONTROL VARIABLES

	Dependent variable:						
	heart.rate						
	Model 1	Model 2	Model 3	Model 4	Model 5		
	(1)	(2)	(3)	(4)	(5)		
Caffeine	0.087***		0.009	0.080***	0.037		
	(0.021)		(0.121)	(0.008)	(0.047)		
Stress Index		0.460***	0.414		0.228		
		(0.108)	(0.631)		(0.246)		
Time Spent at Gym				-1.441***	-1.440***		
				(0.062)	(0.062)		
Intercept	68.953***	68.251***	68.267***	116.461***	116.022***		
	(5.454)	(5.535)	(5.568)	(2.942)	(2.982)		
Observations	100	100	100	100	100		
R ²	0.153	0.157	0.157	0.872	0.873		

Note: p<0.1; p<0.05; p<0.01

CLASS SIZE EXAMPLE

PARTITIONING THE VARIANCE OF Y

Teacher Quality

Control variables target either the **Explained SS** or the **Residual SS**.

EFFECTS OF THE CONTROL VARIABLE

Uncorrelated control variables target the Residual SS, thus removing unexplained variance from the model and improving the relationship between the policy variable and Y.

EFFECTS OF THE CONTROL VARIABLE

MODEL 2 HAS SMALLER STANDARD ERRORS

Model 1

Model 2

95% Confidence Intervals

THE RESIDUAL AND R²

$$R^2 = \frac{\exp lained \ var(y)}{var(y)} \approx \frac{A}{A+B}$$

 ε is proportional to B

Explained Portion

THE OTHER TYPE OF CONTROL TARGETS THE EXPLAINED SS

WHAT HAPPENS WHEN WE REMOVE THE EXPLAINED SS FROM THE MODEL?

