TD Algorithmique du texte

1 Notations et définitions de base

Exercice 1 Facteurs, préfixes, suffixes

- 1. Donner tous les facteurs du mot abbbaaa.
- 2. Donner la liste des préfixes de abbaa.
- 3. Donner la liste des suffixes de abcd.
- 4. Combien de préfixes a un mot de longueur n?
- 5. Combien de facteurs a un mot de longueur n?
- 6. Combien de facteurs (distincts) possède le mot aⁿ ?
- 7. Combien de facteurs (distincts) possède le mot a^mb^n ?

Exercice 2

- 1. Compter les occurrences des lettres a et b dans les mots suivants : a³cbbca, aabgjdd, titi, babc.
- 2. Donner l'ensemble des couples (u, v) tels que uv = abaac.
- 3. Calculer LM pour les ensembles suivants :
 - (a) $L = \{a, ab, bb\}$ et $M = \{\varepsilon, b, a^2\}$.
 - (b) $L = \emptyset$ et $M = \{a, ba, bb\}$.
 - (c) $L = \{ \varepsilon \} \ et \ M = \{ a, ba, bb \}.$
 - (d) $L = \{aa, ab, ba\}$ et $M = \{a, b\}^*$.

Exercice 3 Soit $L = \{ab, ba\}$. Parmi les mots suivants, lesquels sont dans L^* : abba, ababa, aab, ababab, ε , baab, bbaabb?

2 Palindromes

Soit \mathcal{P} l'ensemble des langages ne contenant que des palindromes sur l'alphabet $A = \{a, b, c\}$.

Exercice 4

- 1. Donner un exemple de langage qui est dans \mathcal{P} .
- 2. Est-ce que les langages suivants sont dans P?
 - (a) $L_1 = \{a^n \mid n \in \mathbb{N}\}$
 - $(b) L_2 = \{a^n b^n \mid n \in \mathbb{N}\}\$
 - (c) $L_3 = \{a^n b a^m \mid n, m \in \mathbb{N}\}$
 - (d) $L_4 = \{ca^nba^nc \mid n \in \mathbb{N}\}$

Exercice 5 Est-ce que $\mathcal P$ est stable par union, intersection, concaténation et le passage au carré (L.L)?

3 Conjugaison

Deux mots u et v sont dits *conjugués* s'il existe deux mots w_1 et w_2 tels que $u = w_1w_2$ et $v = w_2w_1$. En d'autres termes, v s'obtient à partir de u par permutation cyclique de ses lettres.

Exercice 6 Montrer que la conjugaison est une relation d'équivalence.

Exercice 7 Montrer que u et v sont conjugués si et seulement s'il existe un mot w tel que uw = wv.

4 Mots de Fibonacci

On considère l'alphabet $\Sigma = \{a,b\}$. On définit les mots de Fibonacci par :

$$\begin{cases} Fib_0 &= \epsilon \\ Fib_1 &= b \\ Fib_2 &= a \\ Fib_n &= Fib_{n-1}Fib_{n-2} \text{ pour tout } n \geq 2 \end{cases}$$

Exercice 8 Donner les mots de Fibonacci jusqu'à n = 8. Démontrez par récurrence sur $n \ge 0$ que la longueur de Fib_n est F_n , le nombre de Fibonacci d'ordre n.

Exercice 9

- 1. Montrer que pour $n \geq 3$, Fib_n est un préfixe de tous ses successeurs.
- 2. Montrer que pour $n \geq 4$, le carré de Fib_n est un préfixe de tous ses successeurs à partir de Fib_{n+2}.

5 Bords et périodes

Exercice 10

- 1. Soit x un mot non vide. Soit u le plus petit mot tel que x est préfixe de ux. Montrer que |u| = period(x).
- 2. Soit x un mot non vide. Montrer que les trois propositions suivantes sont équivalentes :
 - (a) $period(x^2) = |x|,$
 - (b) x est primitif, c'est-à-dire ne peut être écrit sous la forme u^k pour k > 1,
 - (c) x^2 contient seulement 2 occurrences de x.