Conditional Monte Carlo Density Estimation

Anton Braun, Huiyu Li and John Stachurski

September 2010

Conditional Monte Carlo (CMC) density estimation:

a way to compute densities

What we do:

- 1. Define and analyze CMC density estimation in a general setting
- 2. Provide general asymptotic theory suited to fin/econ/emetrics

But first, some background:

Problem Statement

- We have a given model
- ullet The model defines a density ψ of some r.v. Y
- Want to be able to evaluate $\psi(y)$ for any $y \in \mathbb{X}$
- No analytical solution for ψ available

How to compute an approximation ψ_n to ψ ?

Example 1: Discrete Time Markov Models

Consider AR(1) model

$$X_{t+1} = \alpha X_t + Z_{t+1}$$
 where $\{Z_t\} \stackrel{\text{IID}}{\sim} N(0,1)$

Let $p^t(\cdot \,|\, x)$ be the density of X_t given $X_0 = x$

Can be computed analytically:

$$p(\cdot | x) := p^{1}(\cdot | x) = N(\alpha x, 1)$$

$$p^{2}(\cdot | x) = N(\alpha^{2} x, \alpha^{2} + 1)$$

$$p^{3}(\cdot | x) = N(\alpha^{3} x, \alpha^{4} + \alpha^{2} + 1)$$

$$p^{4}(\cdot | x) = \cdots$$

The stationary density is the limit of this sequence

$$\psi := \lim_{t \to \infty} p^t(\cdot \mid x) = N\left(0, \frac{1}{1 - \alpha^2}\right)$$

Note that everything here is tractable because of

- linearity
- normality

Without both, $p^t(\cdot \mid x)$ and ψ typically intractable Let's now consider this case:

Consider general discrete time first order Markov model

$$p(\cdot \,|\, x) = \text{ conditional density of } X_{t+1} \text{ given } X_t = x$$

Given p, the t-step transition density defined by

$$p^t(y \mid x) = \int p(y \mid z) p^{t-1}(z \mid x) dz$$
 and $p^1 = p$

Stationary density ψ defined by

$$\psi(y) = \int p(y \mid x) \psi(x) dx, \quad \forall y$$

- Typically, ψ and $p^t(\cdot \mid x)$ are <u>not</u> tractible
- How to compute approximations to these densities?

Example 2: SDEs

Consider model

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t$$

Let $p(\cdot | x, t)$ be the density of X_t given $X_0 = x$

- Sometimes p not tractable
- Sometimes stationary density not tractable

How to compute them?

Example 3: GARCH

Consider a GARCH(1,1) model

$$R_t = \sigma_t Z_t \quad \text{with} \quad Z_t \stackrel{\text{IID}}{\sim} N(0, 1)$$
 (1)

Process for (σ_t) given by

$$\sigma_{t+1}^2 = \alpha_0 + \beta \sigma_t^2 + \alpha_1 R_t^2$$

Assume:

- All parameters positive
- $\alpha_1 + \beta < 1$

Then R_t has unique stationary density—how to compute it?

Why Compute Densities Anyway?

There are many reasons—here are two

Example 1: To compare

- density implied by model vs
- density constructed from data

Eg: Ait-Sahalia (Rev. Fin. Stud, 1996)

- Let $dr_t = \mu(r_t)dt + \sigma(r_t)dW_t$ be model of interest rates
- Let ψ_m be stationary density of model
- Let ψ_d be est. of same constructed from interest rate data
- Reject model if $\|\psi_m \psi_d\|$ is large

Example 2: Max likelihood

Let $dr_t = \mu(r_t;\theta)dt + \sigma(r_t;\theta)dW_t$ be model of interest rates Let $p_{\theta}(\cdot\,|\,x,t) =$ the transition density, $\psi_{\theta} =$ stationary distribution Let r_1,\ldots,r_T be observations at time interval Δ Log likelihood given by

$$\ell(\theta) = \ln \psi_{\theta}(r_1) + \sum_{t=1}^{T-1} \ln p_{\theta}(r_{t+1} | r_t, \Delta)$$

Numerical computation requires lots of computer power:

- Different densities for different parameter values
- Worse in multiple dimensions

How People Approximate Densities

- Discretize the model
- Linearization plus analytical solutions
- Numerical approximation (basis functions, etc.)
- Monte Carlo

Monte Carlo has some advantages:

- Robust to curse of dimensionality
- Good convergence properties
- Simple to program

Direct Monte Carlo Approach

Recall our problem

- ullet Our model defines a density ψ of some r.v. Y
- No analytical solution for ψ available

How to compute approximation ψ_n to ψ ?

Direct Monte Carlo method:

- 1. Generate draws (Y_1, \ldots, Y_n) from ψ (assume possible)
- 2. Use sample (Y_1, \ldots, Y_n) to construct $\psi_n \cong \psi$

But how should we implement last step???

Intermezzo: Density Estimation Is Hard

Suppose that

- ullet ψ is a density
- F =corresponding cdf $(F' = \psi)$
- neither ψ nor F known
- But have draws Y_1, \ldots, Y_n from ψ (equiv., from F)

In this setting,

- estimating cdf F from Y_1, \ldots, Y_n is easy, but
- ullet estimating density ψ from Y_1,\ldots,Y_n is hard

Let me explain:

As estimator of F, can take empirical cdf (ecdf) F_n :

$$F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{Y_i \leq x\}$$
 = fraction of the sample less than x

F_n is a random cdf, with jump at each observation:

F_n is a random cdf, with jump at each observation:

F_n is a random cdf, with jump at each observation:

As is well known, F_n converges to F as $n \to \infty$

Figure: n = 10

Figure: n = 100

Figure: n = 1000

By SLLN, for any x, we have $|F_n(x) - F(x)| \to 0$ with prob one

How about global deviation?

What we really care about is whether $F_n \to F$ as functions

Define

$$||F_n - F||_{\infty} := \sup_{x} |F_n(x) - F(x)|$$

Does this also converge to zero?

Glivenko-Cantelli:

$$||F_n - F||_{\infty} \to 0$$
 with prob one

Donsker:

$$||F_n - F||_{\infty} = O_P(n^{-1/2})$$

To paraphrase: F_n is globally \sqrt{n} -consistent for F

Density Estimation is III-Posed

Consider an inverse problem (functional equation)

$$Tf = g$$

Here

- f and g are functions, T is an operator
- ullet T and g given, goal is to recover f

Assume we can only approximate g with g_n

III-posed means:

- g_n is close to g
- but the solution f_n in $Tf_n = g_n$ is not close to f

Density estimation: We know that

$$\int_{-\infty}^{x} \psi(u) du = F(x)$$

We have a great estimator F_n for F

Should be able to estimate ψ by $\psi_n := F_n'$

But F_n is a step function

 \therefore $F'_n = 0$ (off a set of measure zero)

In this sense, F_n tells us nothing about the density

The numerical problem is ill-posed

Moral: Estimating F is easy, estimating ψ is hard How else can we estimate ψ from the sample Y_1,\ldots,Y_n ?

- Histograms?
- Nonparametric kernel density estimation?

Histograms:

Nonparametric kernel density estimation (NPKDE):

Problems with NPKDEs

Theoretical problems:

- Rate of convergence is slower than $O_P(n^{-1/2})$
- And sensitive to dimension of state space

Practical problems with standard implementations:

- Support
- Bias at mode, convex and concave regions

In fact we have no completely general, globally $\sqrt{n}\text{-}\mathsf{consistent}$ density estimator

But with one wee assumption we can get there...

CMC Density Estimation

Same problem: want to compute density ψ of random variable Y Now suppose \exists second random variable X correlated with Y

- density of Y given X is $q(\cdot | X)$
- distribution of X is denoted ϕ

Gives us another way to estimate $\psi(y)$:

• Sample X's from ϕ and then use $q(y \mid X)$

Key eq. for the theory: ψ and ϕ linked by

$$\psi(y) = \int q(y \mid x)\phi(dx)$$

Example 1: Transition Densities

Recall general discrete time first order Markov model

$$p(\cdot \,|\, x) = \text{ conditional density of } X_{t+1} \text{ given } X_t = x$$

Suppose we want to compute density $p^t(\cdot \mid x)$ of X_t

For conditioning variable, can use X_{t-1}

By definition, we have

$$p^{t}(y \mid x) = \int p(y \mid z)p^{t-1}(z \mid x)dz$$

This is a version of

$$\psi(y) = \int q(y \mid x)\phi(dx)$$

Example 2: GARCH

 $R_t = \sigma_t Z_t$ with $Z_t \stackrel{ ext{ iny IID}}{\sim} N(0,1)$

Conditional density of R_t given $\sigma_t = x$ is

$$q(r \mid x) = N(0, x^2) = \frac{1}{\sqrt{2\pi x}} \exp\left\{-\frac{y^2}{2x^2}\right\}$$

lf

- $\phi :=$ stationary distribution of σ_t
- $\psi :=$ stationary distribution of R_t

Then

$$\psi(r) = \int q(r \mid x) \phi(dx)$$

To estimate ψ , can use the CMC density estimator:

$$\operatorname{draw}\, X_i \overset{\operatorname{IID}}{\sim} \phi \text{ and set } \psi_n(y) := \frac{1}{n} \sum_{i=1}^n q(y \,|\, X_i)$$

The key here is that

$$\mathbb{E}\,q(y\,|\,X_i)=\psi(y)$$

$$\left[\text{ because } \psi(y) = \int q(y \,|\, x) \phi(dx) \text{ always holds } \right]$$

 $\psi_n(y) = \text{ sample mean of r.v.s with common mean } \psi(y)$

Follows that CMC density estimator is:

1. Unbiased

$$\mathbb{E}\psi_n(y) = \frac{1}{n} \sum_{i=1}^n \mathbb{E} q(y \mid X_i) = \frac{1}{n} \sum_{i=1}^n \psi(y) = \psi(y)$$

2. Consistent

$$\psi_n(y) = \frac{1}{n} \sum_{i=1}^n q(y \,|\, X_i) \to \mathbb{E} \, q(y \,|\, X_i) = \psi(y)$$

3. \sqrt{n} -consistent:

$$\sqrt{n}\{\psi_n(y) - \psi(y)\} = \sqrt{n}\left\{\frac{1}{n}\sum_{i=1}^n q(y \mid X_i) - \mathbb{E}q(y, \mid X_i)\right\}$$

$$\therefore \quad \sqrt{n} \{ \psi_n(y) - \psi(y) \} \stackrel{\mathscr{D}}{\to} N(0, \sigma^2)$$

$$\psi_n(y) - \psi(y) = O_P(n^{-1/2})$$

Variants of CMC density estimator discovered/rediscovered in many specific settings

- Posterior densities (Gelfand and Smith, 1990; Chib 1995)
- Simulated max likelihood for SDEs (Pedersen, 1995; etc.)
- Look-ahead estimators (Glynn and Henderson, 2001)

Could be used in many more:

- Calculating equilibrium asset/wealth/firm distributions
- Replacing kernel density estimators

What is lacking is a general theory

Wish list for a general theory

- General X and Y (multivariate, etc.)
- Global convergence
- Sampled X_i 's may be correlated, not IID
- Draws from ϕ may not be exact

Finally, want to

- Tailor assumptions to economic/econometric settings
- Accommodate randomness in parameter estimates

Step 1: Global Analysis

So far our arguments are local, at fixed \boldsymbol{y}

For global analysis, can use Hilbert space LLN and CLT

- Let $\{H_i\}=$ IID sequence of <u>random functions</u> in L_2
- Let $\mathcal{E}H$ be the expectation (def. omitted)

Hilbert space LLN:

$$\left\| \frac{1}{n} \sum_{i=1}^n H_i - \mathcal{E}H \, \right\| o 0$$
 in L_2 with prob one

Hilbert space CLT:

$$n^{1/2}\left\{\frac{1}{n}\sum_{i=1}^n H_i - \mathcal{E}H\right\} \stackrel{\mathscr{D}}{ o} \text{ centered Gaussian on } L_2$$

Can be applied to the CMC density estimator

Key idea: Regard $q(\cdot | X_i)$ as a random function in L_2

Recall that $\mathbb{E}q(y \mid X_i) = \psi(y)$ for all y

From this, can prove that $\mathcal{E}q(\cdot\,|\,X)=\psi$

By Hilbert space LLN:

$$\psi_n = \frac{1}{n} \sum_{i=1}^n q(\cdot \mid X_i) \to \mathcal{E}q(\cdot \mid X_i) = \psi$$

By Hilbert space CLT:

$$n^{1/2}(\psi_n - \psi) \stackrel{\mathscr{D}}{\to} N(0, C)$$

Implies global \sqrt{n} -consistency: $\|\psi_n - \psi\| = O_P(n^{-1/2})$

Looking back at our wish list for a general theory

- General X and Y (multivariate, etc.) \checkmark
- Global convergence ✓
- Sampled X_i's may be correlated, not IID ?
- Draws from ϕ may not be exact ?

Why do we need the last two?

What sort of situations should we accommodate?

Example 1: Gibbs Sampling, MCMC

Wish to compute a given density ψ (e.g., posterior) Cannot evaluate ψ , or even simulate draws from ψ directly Instead, construct transition density p such that

- 1. can simulate Markov process $(X_t)_{t\geq 0}$ with transition density p
- 2. p is suitably ergodic (i.e., $X_t \stackrel{\mathscr{D}}{\to}$ stationary density)
- 3. ψ is the stationary density

Hence, if t large, then X_t an approx. draw from ψ

Can use this approximate sampling to reconstruct ψ

The CMC approach to estimating ψ :

Since ψ stationary, it satisfies

$$\psi(y) = \int p(y \mid x) \psi(x) dx$$

Hence, generate process X_1, \ldots, X_n from p and use

$$\psi_n(y) = \frac{1}{n} \sum_{t=1}^n p(y \,|\, X_t)$$

Intuitively, should work because X_t almost $\sim \psi$ for t large But previous global theory does not work, because not IID

Example 2: GARCH

Recall the GARCH(1,1) model

$$R_t = \sigma_t Z_t$$

with

$$\sigma_{t+1}^2 = \alpha_0 + \beta \sigma_t^2 + \alpha_1 (\sigma_t Z_t)^2 \tag{2}$$

Conditioning variable is σ_t , with stationary distribution ϕ Can't sample from ϕ directly, but can generate $\sigma_1, \ldots, \sigma_n$ via (2)
Here $\sigma_1, \ldots, \sigma_n$ is Markov, with ϕ as stationary distribution
Want to accommodate this kind of scenario

Prev. assumption:

• $\{X_t\} \stackrel{\text{IID}}{\sim} \phi$

New assumption:

• $\{X_t\} \sim V$ -UE Markov with stationary distribution ϕ

Many economic models are V-UE Markov

- various stationary time series models
- stochastic optimal growth models, etc.

Main technical result: Global, \sqrt{n} -consistency continues to hold in this Markov setting

Example 1: Stationary ARCH(1) model, sample X_1, \ldots, X_n :

Conclusions

CMC density estimation is a neat idea

Could be used much more than it is

Our contributions:

- Provide a general theory
- Global convergence results, in general Markov setting

To do:

- Treat uncertainty in parameters
- More applications?