EE16A - Midterm 2 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Ena Hariyoshi

Superposition

• Investigate circuit using one source at a time

• Sum all components algebraically (keep in mind polarity)

Passive Sign Convention

ullet Consuming Power: Current enters (V^+) ; Supply Power: Current enters (V^-)

• Supply: Voltage/Current sources, discharging capacitors

• Consume: Resistors, charging capacitors

OpAmps

- $\bullet \ V_{out} = A(V^+ V^-)$
- $V_{s-} \ge V_{out} \ge V_{s-}$

Golden Rules:

- $I^- = I^+ = 0$
- $V^- = V^+$ (only with Neg FB)

Charge Sharing

• For each phase: compute $Q_{tot} = \sum Q_n$ in terms of CV

• Equate Q_{tot} of all phases: solve

• When getting ΔV for $Q_n = \frac{C_n}{\Delta V_n}$, subract $(V^+ - V^-)$

Capacitance

• $Q = CV, C = \varepsilon \frac{A}{d}, E = \frac{CV^2}{2}$

• Parallel: $C_p = \sum C_n$ V is same, but Q may not be

• Series: $C_s = \frac{C_1C_2}{C_1+C_2}, \frac{1}{C_s} = \sum \frac{1}{C_n}$

 \bullet Current applied to cap $\Rightarrow Q$ increases and V increases over time

• Dischargin cap $\Rightarrow V$ drops

• Q on cap. after t time = It

Thevenin/Norton

• Treat output terminals as open circuit $(V_{out} = V_{th})$

• Treat output terminals as short circuit ($I_{sc} = I_{no}$

• $R_{th} = R_{no} = \frac{V_{th}}{I_{no}}$

Dividers

• Voltage: $V_{out} = V_{in} \frac{R_2}{R_1 R_2}$

• Current: $I_x = I_t \frac{R_t}{R_x + R_t}, I_1 = I_{tot} \frac{R_2}{R_1 + R_2}$

KVL/VCL

• KVL: net potential around any loop = 0: $\sum V = 0$

Resistors

• Ohm's Law: V=IR, Resistivity: $R=\rho \frac{L}{A}$

• Series: $R_{tot} = \sum R_n$: Current equiv. Voltage splits proportionally

• Parallel: $R_{tot} = \frac{R_1 R_2}{R_1 + R_2}, \frac{1}{R_{tot}} = \sum \frac{1}{R_n}$: Voltage drop equiv. Current split proportionally

Null Space

• Full Row reduction

• Set free vars to arbitrary values (r,s,...)

 \bullet Solve x in terms of free vars

• dim(Nul(A)) = No. of free vars