Nirma University

Institute of Technology

Semester End Examination (IR), February - 2022

B. Tech. in CSE / EC, Semester-VII

2ICOE03 Pattern Recognition and Image Analysis

Roll No. Time: 2 Instruc	Supervisor's initial with date: hours Max. Marks: 50 tions: 1. Attempt all questions. 2. Figures to right indicate full marks. 3. Draw neat sketches wherever necessary. 4. Assume suitable data wherever necessary and clearly indicate	it.
Q:1 [A] CO1,L4	Answer the following. Implement the object skeletonization algorithm with the use of morphological operations for the object shown in Fig.1.	[20] [08]
[B] CO1,L3	Discuss the applications of Hit-or-Miss Transform with suitable example.	[08]
[B] CO1,L3	OR Discuss discontinuity based image segmentation approaches for Edge detection.	[80]
[C] CO2,L3	Discuss the applications of boundary signature feature with suitable example.	[04]
Q:2 [A] CO1,L3	Answer the following. Discuss the applications of Morphological techniques for Boundary extraction. OR	[19] [06]
[A] CO1,L3	Discuss the following spatial filtering techniques with suitable examples: 1) Mean Filter 2) Median filter	[06]

- [B] Discuss the application of Polygonal approximation method by splitting [05] CO2,L3 the boundary with suitable example.
- [C] Discuss the basic components of the convolutional neural network [08] CO3,L2 architecture?

Q:3 Answer the following.

[11] [05]

[A] Consider the dataset shown in table given below. A data sample is given to CO3,L4 you here and you have to find whether the person has stolen or no using Naive Bayesian classification.

Data sample X = (color=red, type=SUV, origin=domestic)

NO	COLOR	TYPE	ORIGIN	STOLEN?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

[B] Assume that we have a binary classification problem. We have some [06] CO3,L3 samples belonging to two classes: YES or NO. Also, we have our own classifier which predicts a class for a given input sample. On testing our model on 165 samples, we get the confusion matrix shown below. Calculate accuracy, recall, precision, F1 score, True positive rate and False positive rate.

	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual:	5	100