# Capstone 2 - Final Report

Conducting NLP on Amazon Store Review Data

Author: Zach Palamara

### Project Aim and Background

- Goal was to develop Machine learning models using Natural Language Processing (NLP)
- Used Amazon store review data to predict review sentiment
  - Dataset from "Electronics"



### **Initial Findings**

 The first step I took in examining the data was to look at a simple count plot of reviews broken out by their respective 5-star rating.



#### **Review Sentiment**

 I created a new binary target feature, which represents 1,2 and 3 star reviews as 0 or "Negative" and 4 and 5 star reviews as 1 or "Positive".



## Text Feature Engineering

- 1. Remove Stop Words
- 2. Tokenization
  - a. CountVectorizer()
- 3. Lemmatization
- 4. Stemming
- 5. N-Gram Features



# Review Length



### **Word Cloud**



Based on to 20 Bigrams

# Model Preprocessing

- 1. Bootstrapping Samples
- 2. Shuffling Dataset
- 3. Text Feature Vectorization
- 4. Split Training and Test Set



# Machine Learning

| Model                  | F1 - Score | Wall Time                       |
|------------------------|------------|---------------------------------|
| Naive Bayes            | 0.8225     | 1min 26s                        |
| Deep Neural<br>Network | 0.8134     | ~ 24 hrs (for full<br>data set) |
| Logistic<br>Regression | 0.8721     | 14 min 46s                      |



### Conclusion

- Based on the results, it seems like Logistic Regression may be the best classifier for this particular type of review data.
- Not only did it have a much better F1-Score than both the Naive Bayes model and DNN, it took a reasonable time to fit the model.
- However, the results for the DNN are based on only a 3% sample of the entire dataset.

## Considerations for Future Development

- Moving forward I would like to be able to train the DNN on all the review data, but since the dataset is so large I will likely need a GPU to accelerate the training process. It's quite possible that the DNN may perform better after training on all of the data.
- Additionally, I would like to develop models utilizing the numerical features within this dataset.