Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ 2 ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ ВАРИАНТ 12

Студент: Пышкин Никита Сергеевич, Р3213

Преподаватель:

Содержание

Цель лабораторной работы	3
Порядок выполнения лабораторной работы	
Рабочие формулы используемых методов	
Графики функций на исследуемом интервале	
Заполненные таблицы вычислительной части 1 лабораторной работы	
Подробное решение системы нелинейных уравнений	
Листинг программы	
Результаты выполнения программы при различных исходных данных	
с сзультаты выполнения программы при различных неходных данных	

Цель лабораторной работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Порядок выполнения лабораторной работы

1 Вычислительная реализация задачи:

Состоит из двух частей и отражается ТОЛЬКО в отчете.

1 часть. Решение нелинейного уравнения

Задание:

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
- 2. Определить интервалы изоляции корней.
- 3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью ε =10-2.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
- 5.1 Для метода половинного деления заполнить таблицу 1.
- 5.2 Для метода хорд заполнить таблицу 2.
- 5.3 Для метода Ньютона заполнить таблицу 3.
- 5.4 Для метода секущих заполнить таблицу 4.
- 5.5 Для метода простой итерации заполнить таблицу 5. Проверить условие сходимости метода на выбранном интервале.
- 6. Заполненные таблицы отобразить в отчете.

2 часть. Решение системы нелинейных уравнений

Задание:

- 1. Отделить корни заданной системы нелинейных уравнений графически (вид системы представлен в табл. 8).
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01.
- 3. Для метода простой итерации проверить условие сходимости метода.
- 4. Подробные вычисления привести в отчете.

2 Программная реализация задачи:

Для нелинейных уравнений:

- 1. Все численные методы (см. табл. 9) должны быть реализованы в виде отдельных подпрограмм/методов/классов.
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- 3. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 5. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения x_0 (а или b) вычислять в программе.
- 6. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- 7. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- 8. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал.

Для систем нелинейных уравнений:

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2-3 системы).
- 2. Организовать вывод графика функций.
- 3. Начальные приближения ввести с клавиатуры.
- 4. Для метода простой итерации проверить достаточное условие сходимости.
- 5. Организовать вывод вектора неизвестных: x₁, x₂
- 6. Организовать вывод количества итераций, за которое было найдено решение.
- 7. Организовать вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$
- 8. Проверить правильность решения системы нелинейных уравнений.

Рабочие формулы используемых методов

Рабочие формулы метода секущих:

Рабочая формула:
$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
, $i = 1, 2, ...$

Критерий окончания итерационного процесса: $|x_n - x_{n-1}| \le \varepsilon$

Приближенное значение корня: $x^* = x_n$

Рабочие формулы метода простых итераций:

Уравнение f(x) = 0 приведем к виду $x = \varphi(x)$

Рабочая формула: $x_{i+1} = \varphi(x)$

Достаточное условие сходимости:

$$|\varphi'(x)| \leq q < 1$$
, где q — некоторая константа $q = \max_{[a;b]} |\varphi'(x)|$

При $q \approx 0$ – скорость сходимости высокая

При $q \approx 1$ – скорость сходимости низкая

При $q \gg 1$ – нет сходимости

Критерий окончания итерационного процесса: $|x_n - x_{n-1}| \le \varepsilon$

Рабочие формулы метода хорд:

Рабочая формула при фиксированном левом конце хорд:

$$x_{i+1} = x_i - \frac{a - x_i}{f(a) - f(x_i)} f(x_i), \qquad i = 1, 2, ...$$

Рабочая формула при фиксированном правом конце хорд:

$$x_{i+1} = x_i - \frac{b - x_i}{f(b) - f(x_i)} f(x_i), \qquad i = 1, 2, ...$$

Фиксирование конца происходит по следующему принципу:

$$f(a) * f''(a) > 0$$
 — зафиксирован конец a

$$f(b) * f''(b) > 0$$
 — зафиксирован конец b

Критерий окончания итерационного процесса: $|x_n - x_{n-1}| \le \varepsilon$

Графики функций на исследуемом интервале

Заполненные таблицы вычислительной части 1 лабораторной работы

1) Исследуемая функция

$$f(x) = x^3 - 4.5x^2 - 9.21x - 0.383$$

2) Определим интервалы изоляции корней

Наша функция выглядит следующим образом:

Или если рассматривать поближе точки пересечения с осью абсцисс:

Исходя из этого графика аналитическим способом мы можем выделить 3 интервала изоляции корней:

Крайний левый корень: (-2, -1)

Центральный корень: (-0.5; 0.5)

Крайний правый корень: (5.5; 6.5)

3) Уточним корни нелинейного уравнения с точностью $\varepsilon=10^{-2}$

Крайний левый корень ≈ -1.49

Центральный корень: ≈ -0.04

Крайний правый корень ≈ 6.04

4) Вычислим корни используя представленные методы

Крайний правый корень: уточнение корня уравнения методом секущих

№ итерации	x_{k-1}	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1	5.500	6.500	5.962	-3.326	0.538
2	6.500	5.962	6.027	-0.424	0.065
3	5.962	6.027	6.036	-0.013	0.009

Крайний левый корень: уточнение корня уравнения методом простых итераций

Уравнение f(x) = 0 приведем к виду $x = \varphi(x)$, для этого

- 1) Преобразуем уравнение f(x) = 0 к равносильному (при $\lambda \neq 0$) $\lambda f(x) = 0$
- 2) Прибавим x в обеих частях $x + \lambda f(x) = x$

3)
$$\varphi(x) = x + \lambda f(x)$$
, $\varphi'(x) = 1 + \lambda f'(x)$

$$f'(x) = 3x^2 - 9x - 9.21$$

$$f'(-2) = 3x^2 - 9x - 9.21 = 20.79$$

$$f'(-1) = 3x^2 - 9x - 9.21 = 2.79$$

$$\lambda = -\frac{1}{21}$$

$$\varphi(x) = x - \frac{1}{21}f(x)$$

№ итерации	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1	-2.000	-1.621	-1.537	0.379
2	-1.621	-1.548	-0.619	0.073
3	-1.548	-1.519	-0.281	0.029
4	-1.519	-1.506	-0.135	0.013
5	-1.506	-1.500	-0.068	0.006

Центральный корень: уточнение корня уравнения хорд

$$f(x) = x^3 - 4.5x^2 - 9.21x - 0.383$$

$$f'(x) = 3x^2 - 9x - 9.21$$

$$f''(x) = 9x - 9$$

Наш интервал (-0.5; 0.5)

$$f(a) * f''(a) > 0$$
 – фиксируем конец а

Используем формулу $x_{i+1} = x_i$	$-\frac{a-x_i}{f(a)-f(x_i)}f(x_i)$
------------------------------------	------------------------------------

№ шага	а	b	x	f(a)	f(b)	f(x)	$ x_{k+1}-x_k $
1	-0.500	0.500	0.400	2.972	-5.988	-4.723	0.100
2	-0.500	0.400	-0.152	2.972	-4.723	0.909	0.552
3	-0.500	-0.152	0.001	2.972	0.909	-0.392	0.153
4	-0.500	0.001	-0.057	2.972	-0.392	0.127	0.058
5	-0.500	-0.057	-0.037	2.972	0.127	-0.048	0.020
6	-0.500	-0.037	-0.044	2.972	-0.048	0.013	0.007

Подробное решение системы нелинейных уравнений

1) Уравнение для решения методом простых итераций

$$\begin{cases} x + \sin y = -0.4 \\ 2y - \cos(x+1) = 0 \end{cases}$$

2) Графически отделим корни заданной системы

Решение системы уравнений находится в квадрате: -1 < $x < 0, \ 0 < y < 1$

3) Проверим условие сходимости

$$\begin{cases} x = -(0.4 + \sin y) \\ y = \frac{\cos(x+1)}{2} \end{cases}$$

$$\frac{\partial \varphi_1}{\partial x} = 0$$

$$\frac{\partial \varphi_1}{\partial y} = \cos(x)$$

$$\frac{\partial \varphi_2}{\partial x} = \frac{-\sin(x+1)}{2}$$

$$\frac{\partial \varphi_1}{\partial y} = 0$$

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_1}{\partial y} \right| = \cos(x) < 1$$

$$\left| \frac{\partial \varphi_2}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| = \frac{\sin(x+1)}{2} < 1$$

Процесс сходится

4) Вычисляем корни

В качестве начального приближения возьмем (0, 0)

№ итерации	x_i	x_{i+1}	y_i	y_{i+1}	$ x_{i+1}-x_i $	$ y_{i+1}-y_i $
1	0.0	-0.4	0.0	0.27	0.4	0.27
2	-0.4	-0.667	0.27	0.413	0.267	0.143
3	-0.667	-0.801	0.413	0.473	0.134	0.06
4	-0.801	-0.855	0.473	0.49	0.054	0.018
5	-0.855	-0.871	0.49	0.495	0.016	0.005
6	-0.871	-0.875	0.495	0.496	0.004	0.001

Листинг программы

Результаты выполнения программы при различных исходных данных

Пример 1:

Введите номер типа решаемой задачи:

- 1. Линейное уравнение
- 2. Система нелинейных уравнений

Введите номер: 1

Выберите метод:

1. Метод половинного деления

- 2. Метод Ньютона
- 3. Метод простой итерации

Введите номер метода: 1

Выберите функцию:

1. $x^{**2} - 0.5$

2. x**3 - 4*x + 1

3. $x^{**}20 - 10^{*}x^{**}19 - 3^{*}x^{**}14 + 0.124^{*}x^{**}10 + x^{**}7 - x^{**}3 - 1$

4.2**x - 4

Введите номер функции: 1

Введите границы интервала а и b через пробел (либо введите путь до файла с числами): -1 0

Получен ручной ввод: -1 0

Введите точность вычисления (либо введите путь до файла с этим числом): 0.0001

Получен ручной ввод: 0.0001

Найденный корень: -0.7071533203125, f(корень) =

6.58184289932251e-05, итераций: 13

Пример 2:

Введите номер типа решаемой задачи:

- 1. Линейное уравнение
- 2. Система нелинейных уравнений

Введите номер: 2

Выберите систему:

1)

$$x + \sin(y) + 0.4 = 0$$

$$y - \cos(x + 1)/2 = 0$$

2)

$$x^*2 + y^*2 - 4 = 0$$

$$-3*x**2 + y = 0$$

3)

$$-y + cos(x) = 0$$

$$x**2 - y = 0$$

Введите номер системы: 1

Система будет решена методом Ньютона.

Введите начальное приближение x0 y0 (либо введите путь до файла с числами): 0 0

Получен ручной ввод: 0 0

Введите точность вычисления (либо введите путь до файла с этим (ислом): 0.00001

Получен ручной ввод: 0.00001

Вектор неизвестных: [-0.876055948823948, 0.49616438208948005]

Вектор погрешностей: [4.6043069246159973e-08, - 2.9135045098716006e-08]

Число итераций: 4

Заключение

В результаты выполнения данной лабораторной работы были изучены методы решения нелинейных уравнений и систем нелинейных уравнений с использованием Python