Semaine 1 - Complexes et sommes

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Quelques autres cosinus et sinus remarquables (1)

- 1 Calculer $(\sqrt{2+\sqrt{2}}+i\sqrt{2-\sqrt{2}})^8$.
- **2** En déduire $\cos(\frac{\pi}{8})$ et $\sin(\frac{\pi}{8})$.
- 3 Retrouver ce résultat en utilisant des formules trigonométriques.

2 Quelques autres cosinus et sinus remarquables (2)

- 1 Donner les solutions de $z^5 1 = 0$ sous forme trigonométrique.
- 2 Soit Q le polynôme tel que $z^5-1=(z-1)Q(z)$. À partir du changement de variable $\omega=z+\frac{1}{z}$ exprimer par radicaux les racines de Q.
 - **3** En déduire $\cos(\frac{2\pi}{5})$ et $\sin(\frac{2\pi}{5})$.

Remarque : en menant des calculs un peu plus compliqués on peut aussi obtenir d'autres valeurs comme $\cos(\frac{\pi}{17}) = \frac{1}{16}(1 - \sqrt{17} + \sqrt{34 - 2\sqrt{17}} + \sqrt{68 + 12\sqrt{17} + 2\sqrt{680 + 152\sqrt{17}}}).$

3 Inverse de la somme, somme des inverses

1 Résoudre dans \mathbb{C}^{*2} : $\frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}$.

4 Recherche d'une factorisation

- **1** Résoudre dans \mathbb{C} : $z^8 + z^4 + 1 = 0$.
- 2 En déduire une factorisation de $z^8 + z^4 + 1 = 0$ en produit de polynômes de degré 2 à coefficients réels.

1

5 Produit de sinus

- 1 Résoudre dans $\mathbb C$ l'équation $(z+1)^n=\exp(2i\alpha n)$ pour $n\in\mathbb N$.
- **2** Donner la valeur de $\prod_{k=0}^{n-1} \sin(\alpha + \frac{k\pi}{n})$.

6 Somme de sinus et de cosinus (1)

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$.

- 1 Calculer $\sum_{k=0}^{n} \cos(kx)$ et $\sum_{k=0}^{n} \sin(kx)$.
- 2 Calculer $\sum_{k=0}^{n} {n \choose k} \sin(kx)$.

- **3** Calculer $\sum_{k=0}^{n} \cos(x)^k \cos(kx)$
- 4 Calculer $\sum_{k=0}^{n} {n \choose k} (-1)^k \cos(x)^k \cos(kx)$

7 Somme de sinus et de cosinus (2)

Soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$. On suppose que :

$$\begin{cases} \cos(\alpha) + \cos(\beta) + \cos(\gamma) = 0\\ \sin(\alpha) + \sin(\beta) + \sin(\gamma) = 0 \end{cases}$$

1 Montrer que :

$$\begin{cases} \cos(\alpha + \beta) + \cos(\beta + \gamma) + \cos(\gamma + \alpha) = 0\\ \sin(\alpha + \beta) + \sin(\beta + \gamma) + \sin(\gamma + \alpha) = 0 \end{cases}$$

2 Montrer que :

$$\begin{cases} \cos(2\alpha) + \cos(2\beta) + \cos(2\gamma) = 0\\ \sin(2\alpha) + \sin(2\beta) + \sin(2\gamma) = 0 \end{cases}$$

8 Un peu de géométrie

Soit $z \in \mathbb{C}$.

- 1 Donner des conditions sur z pour que le triangle (z, z^2, z^3) soit isocèle respectivement en z, z^2, z^3 .
- **2** En déduire une condition sur z pour que le triangle (z, z^2, z^3) soit équilatéral.

9 Plus loin dans les sommes de Newton

Soit $n \in \mathbb{N}$ et $m \in \mathbb{N}$. On note S_m la m-ième somme de Newton.

- 1 Rappeler la valeur de $S_0 = \sum_{k=0}^n k^0$, $S_1 = \sum_{k=0}^n k$, $S_2 = \sum_{k=0}^n k^2$.
- **2** Montrer que $\sum_{k=0}^{n} k^{3} = (\sum_{k=0}^{n} k)^{2}$
- **3** En utilisant une somme télescopique et l'expression $(n+1)^{m+1}$ exprimer S_m en fonction des S_k pour $k \in [0, m-1]$.

10 Somme et coefficient binomial(1)

Soit $n \in \mathbb{N}$.

1 Calculer les sommes suivantes : $S_0 = \sum_{k=0}^n \binom{n}{k}$, $S_1 = \sum_{k=0}^n \binom{n}{k} k$, $S_2 = \sum_{k=0}^n \binom{n}{k} k^2$.

11 Somme et coefficient binomial(2)

Soit $(n, p, q) \in \mathbb{N}^3$ avec $n \le p + q$.

1 Montrer que : $\sum_{k=0}^{n} {p \choose k} {q \choose n-k} = {p+q \choose n}$.

Remarque : cette formule est appelée formule de Van der Monde. On peut la retrouver par des raisonnements d'ordre combinatoire... Une idée ?

12 Somme et coefficient binomial (3)

Soit A un ensemble fini à $n \in \mathbb{N}$ éléments.

1 Montrer que A contient autant de sous-ensembles ayant un nombre pair d'éléments que de sous-ensembles ayant un nombre impair d'éléments.

13 Somme et coefficient binomial (4)

Soit $(n, p) \in \mathbb{N}^2$.

- 1 Calculer $\sum_{k=0}^{n} {p+k \choose k}$.
- **2** En déduire $\sum_{i=0}^{n} \prod_{j=0}^{p} (i+j)$.

14 Inégalité(s) de Shapiro

- 1 Montrer que $\forall (a, b, c) \in \mathbb{R}^{*3}$ on $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6$.
- 2 Soit $(x_1, x_2, x_3) \in \mathbb{R}^{*3}$. On pose $y_1 = x_2 + x_3$, $y_2 = x_1 + x_3$ et $y_3 = x_1 + x_2$. Montrer que $\frac{x_1}{y_1} + \frac{x_2}{y_2} + \frac{x_2}{y_2} \ge \frac{3}{2}$.
- 3 Soit $(x_1, x_2, x_3, x_4) \in \mathbb{R}^{*3}$. On pose $y_1 = x_2 + x_3$, $y_2 = x_3 + x_4$, $y_3 = x_4 + x_1$ et $y_4 = x_1 + x_2$. Montrer que $(x_1 + x_2 + x_3 + x_4)^2 \ge 2(x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4)$.
- 4 En admettant que $\left(\sum_{i=1}^4 \frac{x_i}{y_i}\right) \left(\sum_{i=1}^4 x_i y_i\right) \ge \left(\sum_{i=1}^4 x_i\right)^2$ (inégalité de Cauchy-Schwarz) déduire que $\sum_{i=1}^4 \frac{x_i}{y_i} \ge 2$.

Remarque : ces inégalités sont appelées les inégalités de Shapiro et on a $\sum_{i=1}^{n} \frac{x_i}{x_{i+1}+x_{i+2}} \ge \frac{n}{2}$ (où l'addition est à prendre modulo n) pour $n \le 12$ dans le cas pair et $n \le 23$ dans le cas impair. On remarquera qu'ici on a montré les cas n=3 et n=4. Un contre-exemple pour le cas n=14 a été trouvé en 1985 par Troesch, le voici : (0,42,2,42,4,41,5,39,4,38,2,38,0,40).