Association of Short-term Exposure to Air Pollution With Mortality in Older Adults

First author Qian Di; Corresponding author Joeal D. Schwartz; Fuyu Guo Presenting

November 29, 2020

Background

- US National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM_{2.5}) and ozone every are reviewed every 5 years.
- ▶ 2012 annual and 24-hour NAQQS for PM_{2.5} is 35 $\mu \mathrm{g/m^3}$ and 12 $\mu \mathrm{g/m^3}$.
- 2012 8-hour NAQQS for ozone is 70 ppb, no annual standard
- Studies in large metropolitan areas have provided evidence for short-term exposure to PM_{2.5} and ozone were associated with mortality.

Aim and Objectives

- ► Aim to study the effect of short-term exposure below daily NAQQS, and in rural and unmonitored areas.
- Aim to study the effect on sensitive subgoups such as those with low socio-economic status.

Data source and participants

- ▶ Participants: all deaths among all Medicare benficiaries from 2000 to 2012.
- Outcome: all-cause mortality. Individuals with validated date of death between January 1, 2020 and December 31, 2012 were included.
- Exposure: daily 24-hour PM_{2.5}, 8-hour maximum ozone, and daily air and dew point temperatures. Monitored data from the EPA, satellite-based measurements, and other data sets. Neural networks were used to predict 24-hour PM2.5 and 8-hour maximum ozone concentrations.
- Warm season: April 1 to September 30, which is the specific time window to examine the association between ozone and mortality

Case-cross over design

- ► Usage: the design has been widely used to study the association between c short-term air pollution exposure and the risk of an acute adverse health event.
- Main idea: for each individual case, exposure just before the event is compared with exposure at other control ("referent") times.
- Statistical method: Conditional logistic regression.

In this study

- Case day: date of the death. - Control days: on the same day of the week as the case day to control for potential confounding effect by day of week; before and after the case day to control for time trend; only in the same month as the case day to control for seasonal and subseasonal. - Time window: the death day and the day before death.

Statistical analysis

- Regression model included both pollutants as main effects and natural splines of air and dew point temperatures with 3 df to control for residual confounding by weather.
- \triangleright Relative risk increase (RRI) was defined as RR -1.
- ▶ The absolute risk difference (ARD) of all-cause mortality associated with air pollution was defined as $\alpha \times (RR-1)/RR$, where α denotes the baseline daily mortality rate.

Baseline characteristics

Baseline Characteristic	Value
Case days, No.	22 433 862
Control days, No.	76 143 209
Among All Cases (n = 22 433 862), %	
Age at death, y	
≤69	10.38
70-74	13.37
75-84	38.48
≥85	37.78
5ex	
Male	44.73
Female	55.27
Race/ethnicity	
White	87.34
Black	8.87
Asian	1.03
Hispanic	1.51
Native American	0.31
Medicaid Eligibility (n = 22 433 862), %	
neligible	77.36
Eligible	22.64

Figure 1: Baseline Characteristics of Study Population (2000-2012)

PM_{2.5} times series

Figure 2: Daily mean fine particulate matter $\mathsf{PM}_{2.5}$ concentrations

Ozone time series

Figure 3: Daily mean 8-hour maximum ozone concentrations

Regression result

Table 2. Relative Risk Increase and Absolute Risk Difference of Daily Mortality Associated With Each $10-\mu g/m^3$ Increase in $PM_{2.5}$ and Each 10-ppb Increase in Ozone

PM _{2.5}	Ozone ^b	PM ₂ s	e b
			Ozone ^b
1.05 (0.95-1.15)	0.51 (0.41-0.61)	1.42 (1.29-1.56)	0.66 (0.53-0.78)
1.61 (1.48-1.74)	0.58 (0.46-0.70)	2.17 (2.00-2.34)	0.74 (0.59-0.90)
1.18 (1.09-1.28)	0.55 (0.48-0.62)	1.61 (1.48-1.73)	0.71 (0.62-0.79)
0.83 (0.73-0.93)	0.35 (0.28-0.41)	1.13 (0.99-1.26)	0.45 (0.37-0.53)

Abbreviations: PM2.5, fine particulate matter; ppb, parts per billion.

Figure 4:

^a The daily baseline mortality rate was 137.33 per 1 million persons at risk per day; the warm-season daily baseline mortality rate was 129.44 per 1 million persons at risk per day.

b Ozone analyses included days from the warm season only (April 1 to September 30).

^c The main analysis used the mean of daily exposure on the same day of death and 1 day prior (lag of Jady) as the exposure metric for both PM₂5 and zone, and controlled for natural splines of air and dew point temperatures with 3 df. The main analysis considered the 2 pollutants jointly included into the regression model and estimated the percentage increase in the daily mortality rate associated with a 10-µg/m³ increase in PM₂5 exposure adjusted for zone and the percentage increase in the air Dr-ppb increase in warm-season zone exposure adjusted for PM₂5.

 $^{^{}m d}$ The low-exposure analysis had the same model specifications as the 2-pollutant analysis and was constrained for days when PM $_{2.5}$ was below 25 $\mu g/m^2$ or ozone below 60 ppb.

 $^{^{\}circ}$ The single-pollutant analysis estimated the percentage increase in the daily mortality rate associated with a 10- Ig/m^3 increase in PM $_{2.5}$ exposure without adjusting for ozone and the percentage increase in the daily mortality rate associated with a 10-ppb increase in ozone exposure without adjusting for PM $_{2.5}$

 $^{^{}f}$ PM₂₋₈ and ozone monitoring data were retrieved from the US Environmental Protection Agency Air Quality System, which provides the daily mean of PM₂₋₅ and daily 8-hour maximum ozone levels at each monitoring site. Daily ozone concentrations were averaged from April 1 to September 30. Individuals were assigned to the PM₂₋₈ and ozone levels from the nearest monitor site within 50 km. Those living 50 km from any monitoring site were excluded.

Subgroup analysis

Figure 5: Subgroup analysis of PM_{2.5}

p-value

two sample test
$$Z = \frac{RR_{male} - RR_{female}}{\sqrt{(se(RR_{male})^2 - se(RR_{female})^2)}}$$

Dose-response

Figure 6: Estimated Exposure-Response Curves for Short-term Exposures to Fine Particulate Matter $(PM_{2.5})$ and Ozone

Conclusions

In the US Medicare population from 2000 to 2012, short-term exposures to $PM_{2.5}$ and warm-season ozone were significantly associated with increased risk of mortality. This risk occurred at levels below current national air quality standards, suggesting that these standards may need to be reevaluated.

