Brueckenkurs SoSe24 Uebungen SoSe 2023

Prof. Dr. J. Harz / S. Weber

Aufgabenkatalog - März, 2024

 Ermittlung Definitionsmenge und Lösungsmenge von linearen Gleichungen Geben Sie die Definitionsmenge und die Lösungsmenge für die folgendem Gleichungen an.

1.
$$2x + 3 = 7$$

$$2. \ 4 - 3x = 10$$

3.
$$5x - 8 = 2x + 4$$

4.
$$2(3x-1) = 4x + 6$$

5.
$$2(x+4) = 3(x-1)$$

6.
$$\frac{1}{2}(2x-3) = \frac{1}{3}(6-x)$$

7.
$$\frac{3}{4}(4x+5) = \frac{1}{2}(2x-3)$$

8.
$$\frac{2}{3}(3x-4) + \frac{1}{2}(x+6) = \frac{5}{2}$$

9.
$$\frac{1}{3}(6-x) = \frac{1}{4}(8-2x)$$

10.
$$2(x-3) = 3(x-4) - 5$$

2. Ermittlung Definitionsmenge und Lösungsmenge von linearen Ungleichungen:

1.
$$2x - 5 < 7$$

2.
$$3x + 4 \ge 10$$

3.
$$-2x + 8 > -4$$

4.
$$\frac{1}{2}x + 3 \le 5$$

5.
$$3x - 7 > 2x + 1$$

$$6. \ 4x + 9 < 3x - 5$$

7.
$$\frac{1}{3}x - 2 > \frac{2}{3}x + 1$$

$$8. \ -3x + 5 \le -2x + 3$$

9.
$$2x + 7 < x + 12$$

$$10. \ \frac{1}{4}x + 2 \ge \frac{3}{4}x - 1$$

 $3.\ Ermittlung$ Definitionsmenge und Lösungsmenge

1.
$$2x + 5 = 11$$

$$2. \ 3x^2 - 7x + 2 = 0$$

3.
$$\frac{x}{3} + 4 = 7$$

4.
$$\sqrt{x} + 1 = 5$$

5.
$$\frac{2x}{3} - 1 > 4$$

6.
$$x^2 + 3x < 10$$

7.
$$2\log_2(x) = 4$$

8.
$$2x^2 - 5x \ge 3$$

9.
$$\frac{1}{x} \le 3$$

10.
$$|3x + 1| = 7$$

4. Graphische Darstellung linearer Gleichungen

Zeichnen Sie die Grafen folgender linearer Gleichungen

1.
$$y = 2x + 3$$

2.
$$y = -3x + 5$$

3.
$$y = \frac{1}{2}x - 2$$

4.
$$y = -2x + 4$$

5.
$$y = 3x - 1$$

6.
$$y = -\frac{2}{3}x + 2$$

7.
$$y = \frac{3}{4}x - 3$$

8.
$$y = 4x + 1$$

9.
$$y = -\frac{1}{4}x + 2$$

10.
$$y = \frac{5}{2}x - 3$$

5. Graphische Darstellung linearer Ungleichungen

Zeichnen Sie die Grafen folgender linearer Ungleichungen

1.
$$y < 2x + 3$$

2.
$$y \ge -3x + 5$$

3.
$$y \le \frac{1}{2}x - 2$$

4.
$$y > -2x + 4$$

5.
$$y \ge 3x - 1$$

6.
$$y < -\frac{2}{3}x + 2$$

7.
$$y \leq \frac{3}{4}x - 3$$

8.
$$y > 4x + 1$$

9.
$$y \le -\frac{1}{4}x + 2$$

10.
$$y < \frac{5}{2}x - 3$$

6. Graphische Darstellung quadratischer Gleichungen

Zeichnen Sie die Grafen folgender quadratischer Gleichungen

1.
$$y = x^2 - 2x + 1$$

$$2. \ y = -2x^2 + 4x - 3$$

3.
$$y = \frac{1}{2}x^2 - 3x + 2$$

4.
$$y = 3x^2 + 2x + 1$$

5.
$$y = -x^2 + 5x - 6$$

6.
$$y = 2x^2 - 4x + 3$$

7.
$$y = -\frac{1}{3}x^2 + 2x - 1$$

8.
$$y = \frac{1}{4}x^2 + x - 4$$

9.
$$y = -2x^2 + 3x + 2$$

10.
$$y = \frac{3}{2}x^2 - 5x + 1$$

7. Scheitelpunktdarstellung

Finden Sie die Scheitelunktsdarstellung folgender Gleichungen

1.
$$y = x^2 - 2x + 1$$

$$2. \ y = -2x^2 + 4x - 3$$

3.
$$y = \frac{1}{2}x^2 - 3x + 2$$

$$4. \ y = 3x^2 + 2x + 1$$

$$5. \ y = -x^2 + 5x - 6$$

6.
$$y = 2x^2 - 4x + 3$$

7.
$$y = -\frac{1}{3}x^2 + 2x - 1$$

8.
$$y = \frac{1}{4}x^2 + x - 4$$

9.
$$y = -2x^2 + 3x + 2$$

10.
$$y = \frac{3}{2}x^2 - 5x + 1$$

8. Graphische Darstellung quadratischer Ungleichungen

Zeichnen Sie die Grafen folgender quadratischer Ungleichungen

1.
$$y < x^2 - 2x + 1$$

2.
$$y > -2x^2 + 4x - 3$$

3.
$$y \le \frac{1}{2}x^2 - 3x + 2$$

4.
$$y > 3x^2 + 2x + 1$$

5.
$$y \ge -x^2 + 5x - 6$$

6.
$$y < 2x^2 - 4x + 3$$

7.
$$y \le -\frac{1}{3}x^2 + 2x - 1$$

8.
$$y > \frac{1}{4}x^2 + x - 4$$

9.
$$y \ge -2x^2 + 3x + 2$$

10.
$$y < \frac{3}{2}x^2 - 5x + 1$$

9. Quadratische Ergänzung

Bestimmen Sie die Nullstellen folgender Gleichungen durch quadratische Ergänzung.

1.
$$y = x^2 + 6x + 9$$

2.
$$y = x^2 + 4x + 4$$

3.
$$y = x^2 + 10x + 25$$

4.
$$y = x^2 - 8x + 16$$

$$5. \ y = x^2 + 12x + 36$$

6.
$$y = x^2 - 5x + 4$$

7.
$$y = x^2 + 7x + 10$$

8.
$$y = x^2 - 3x + 1$$

9.
$$y = x^2 + 9x + 18$$

10.
$$y = x^2 - 11x + 30$$

10. Satz von Vieta

Bestimmen Sie die Nullstellen folgender Gleichungen mit Hilfe des Satzes von Vieta.

1.
$$x^2 - 5x + 6 = 0$$

$$2. \ 2x^2 - 10x + 12 = 0$$

$$3. \ x^2 - 4x + 4 = 0$$

$$4. \ x^2 - 1x + 12 = 0$$

$$5. \ x^2 + 7x + 12 = 0$$

6.
$$x^2 - 9x + 18 = 0$$

7.
$$x^2 - 6x + 9 = 0$$

$$8. \ x^2 - 2x - 1 = 0$$

9.
$$x^2 - 1 = 0$$

11. Bruchgleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Bruchgleichungen

- 1. $\frac{x}{2} + 3 = 5$
- 2. $\frac{2}{x} = 4$
- 3. $\frac{x-3}{4} = 7$
- 4. $\frac{5}{x+2} = 3$
- 5. $\frac{3x}{5} = 6$
- 6. $\frac{4}{x} 2 = 5$
- 7. $\frac{x}{3} + \frac{2}{3} = \frac{5}{3}$
- $8. \ \frac{x-1}{2} + \frac{x+3}{4} = \frac{5}{2}$
- 9. $\frac{3x}{4} \frac{2x}{3} = \frac{5}{12}$ 10. $\frac{2x+1}{3} \frac{x-2}{2} = \frac{1}{6}$

12. Bruchungleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Bruchungleichungen

- 1. $\frac{x}{2} + 3 < 5$
- 2. $\frac{2}{x} \ge 4$
- 3. $\frac{x-3}{4} \le 7$ 4. $\frac{5}{x+2} > 3$
- 5. $\frac{3x}{5} \le 6$
- 6. $\frac{4}{x} 2 < 5$
- 7. $\frac{x}{3} + \frac{2}{3} \ge \frac{5}{3}$
- $8. \ \frac{x-1}{2} + \frac{x+3}{4} \le \frac{5}{2}$
- 9. $\frac{3x}{4} \frac{2x}{3} > \frac{5}{12}$
- 10. $\frac{2x+1}{3} \frac{x-2}{2} < \frac{1}{6}$

13. Wurzelgleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Wurzelgleichungen

- 1. $\sqrt{x} = 4$
- 2. $\sqrt{x+3} = 5$
- 3. $\sqrt{2x-1} = 3$
- 4. $\sqrt{4x} = 8$
- 5. $\sqrt{x^2 9} = 2$

6.
$$\sqrt{3x+1} = 7$$

7.
$$\sqrt{x-2} = 6$$

8.
$$\sqrt{2x+5} = 4$$

9.
$$\sqrt{5x-4} = 9$$

10.
$$\sqrt{x^2+7}=5$$

14. Wurzelgleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Wurzelungleichungen

1.
$$\sqrt{x} < 4$$

2.
$$\sqrt{x+3} \ge 5$$

3.
$$\sqrt{2x-1} \le 3$$

4.
$$\sqrt{4x} > 8$$

5.
$$\sqrt{x^2 - 9} \le 2$$

6.
$$\sqrt{3x+1} \ge 7$$

7.
$$\sqrt{x-2} < 6$$

8.
$$\sqrt{2x+5} > 4$$

9.
$$\sqrt{5x-4} \le 9$$

10.
$$\sqrt{x^2+7} < 5$$

15. Logarithmus–Gleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Logarithmus–Gleichungen

$$1. \log(x) = 3$$

2.
$$\log(x+2) = 5$$

3.
$$\log_2(x) = 4$$

4.
$$\log_3(x-1) = 2$$

5.
$$\log_5(2x+3) = 1$$

6.
$$\log(x^2) = 6$$

7.
$$\log_3(4x+1) = 3$$

8.
$$\log_2(3x-2)=2$$

9.
$$\log_4(x+3) = 3$$

10.
$$\log(2x - 1) = 4$$

16. Logarithmus–Ungleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Logarithmus-Ungleichungen

- 1. $\log(x) < 3$
- 2. $\log(x+2) \ge 5$
- 3. $\log_2(x) \le 4$
- 4. $\log_3(x-1) > 2$
- 5. $\log_5(2x+3) \le 1$
- 6. $\log(x^2) > 6$
- 7. $\log_3(4x+1) \ge 3$
- 8. $\log_2(3x-2) < 2$
- 9. $\log_4(x+3) \ge 3$
- 10. $\log(2x 1) < 4$

17. Exponential-Gleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Exponential-Gleichungen

- 1. $2^x = 8$
- $3 \cdot 4^x = 48$
- 3. $5 \cdot 10^x = 1250$
- 4. $e^x = 20$
- 5. $2 \cdot e^{2x} = 16$
- 6. $3^x = 81$
- 7. $4 \cdot 5^{x+1} = 100$
- 8. $10 \cdot e^{3x} = 5000$
- 9. $3^x \cdot 9^{x-1} = 27$
- 10. $e^{2x} + e^x = 10$

18. Exponential-Ungleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Exponential-Ungleichungen

- 1. $2^x < 8$
- 2. $3 \cdot 4^x > 48$
- 3. $5 \cdot 10^x \le 1250$
- 4. $e^x > 20$
- 5. $2 \cdot e^{2x} \le 16$
- 6. $3^x \ge 81$
- 7. $4 \cdot 5^{x+1} < 100$

8.
$$10 \cdot e^{3x} \le 5000$$

9.
$$3^x \cdot 9^{x-1} \ge 27$$

10.
$$e^{2x} + e^x < 10$$

19. Betrags–Gleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Betrags-Gleichungen

1.
$$|x| = 3$$

$$|x-2|=5$$

3.
$$|3x+1|=10$$

4.
$$|2x - 5| = 7$$

5.
$$|x+4|=2$$

6.
$$|2x+3|=6$$

7.
$$|x-1|=3$$

8.
$$|4x + 2| = 8$$

9.
$$|x-3|=4$$

10.
$$|5x + 6| = 9$$

20. Betrags-Ungleichungen

Bestimme Definitionsmenge, Lösungsmenge folgender Exponential-Gleichungen

1.
$$|x| < 3$$

2.
$$|x-2| \ge 5$$

3.
$$|3x+1| \le 10$$

4.
$$|2x - 5| > 7$$

5.
$$|x+4| \ge 2$$

6.
$$|2x+3| < 6$$

7.
$$|x-1| \le 3$$

8.
$$|4x+2| > 8$$

9.
$$|x-3| \ge 4$$

10.
$$|5x + 6| < 9$$

21. Gleichungen mit Parametern

Bestimme Definitionsmenge, Lösungsmenge folgender Ungleichungen abhänging von dem Parameter \boldsymbol{p}

1.
$$2x + p = 5$$

2.
$$3x - 2p = 7$$

3.
$$px + 4 = 10$$

4.
$$5x - 3p = 8$$

5.
$$2px + 6 = 15$$

6.
$$4x - 2p = 3$$

7.
$$3x + 2p = 12$$

8.
$$px - 5 = 9$$

9.
$$6x - 4p = 14$$

10.
$$2px + 3 = 8$$

22. Ungleichungen mit Parametern

Bestimme Definitionsmenge, Lösungsmenge folgender Ungleichungen abhänging von dem Parameter \boldsymbol{p}

1.
$$2x + p > 5$$

2.
$$3x - 2p \le 7$$

3.
$$px + 4 > 10$$

4.
$$5x - 3p < 8$$

5.
$$2px + 6 \ge 15$$

6.
$$4x - 2p \le 3$$

7.
$$3x + 2p < 12$$

8.
$$px - 5 > 9$$

9.
$$6x - 4p \ge 14$$

10.
$$2px + 3 \le 8$$

23. Substitutionsmethode

Lösen Sie die folgenden Gleichungen mit Hilfe der Substitutionsmethode

$$1. \ 2x^4 - 8x^2 + 6 = 0$$

$$2. \ 3x^10 + 12x^5 - 15 = 0$$

$$3. \ x^6 - 6x^3 + 9 = 0$$

4.
$$4(e^x)^2 + 20e^x + 25 = 0$$

5.
$$\log(x)^2 + 8\log(x) + 16 = 0$$

24. Faktorisierung von Polynomgleichungen

Faktorisieren sie folgende Polynomgleichungen

1.
$$x^2 - 4 = 0$$

2.
$$x^3 - 8 = 0$$

3.
$$x^2 - 9x + 18 = 0$$

4.
$$x^3 - 6x^2 + 11x - 6 = 0$$

5.
$$x^4 - 16x^2 = 0$$

$$6. \ x^3 + 6x^2 + 11x + 6 = 0$$

7.
$$x^4 - 9x^2 + 20 = 0$$

8.
$$x^3 - 4x^2 - x + 4 = 0$$

9.
$$x^4 + 4x^3 - 5x^2 - 20x + 16 = 0$$

10.
$$x^4 - 10x^2 + 9 = 0$$

25. Polynomdivision

Finden Sie die Nullstellen folgender Polynomgleichungen durch Polynomdivision

1.
$$x^2 - 4 = 0$$

2.
$$x^3 - 8 = 0$$

3.
$$x^2 - 9x + 18 = 0$$

4.
$$x^3 - 6x^2 + 11x - 6 = 0$$

$$5. \ x^4 - 16x^2 = 0$$

6.
$$x^3 + 6x^2 + 11x + 6 = 0$$

7.
$$x^4 - 9x^2 + 20 = 0$$

$$8. \ x^3 - 4x^2 - x + 4 = 0$$

9.
$$x^4 + 4x^3 - 5x^2 - 20x + 16 = 0$$

10.
$$x^4 - 10x^2 + 9 = 0$$

$26.\ Lineare\ Gleichungssysteme:\ Gleichsetzungsverfahren$

Lösen Sie folgende linearen Gleichungssysteme mit Hilfe des Gleichsetzungsverfahren.

$$1. \begin{cases} 2x + 3y = 7 \\ 4x - y = 2 \end{cases}$$

$$2. \begin{cases} 3x - 2y = 5 \\ x + 4y = 10 \end{cases}$$

3.
$$\begin{cases} 5x + 2y = 8\\ 3x - y = 1 \end{cases}$$

$$4. \begin{cases} 2x + y = 4 \\ x - 3y = -5 \end{cases}$$

5.
$$\begin{cases} 4x - 3y = 6 \\ 2x + 5y = 11 \end{cases}$$

6.
$$\begin{cases} 3x + 2y = 7 \\ 2x - 4y = -2 \end{cases}$$

$$7. \begin{cases} x + 3y = 9 \\ 2x - y = 4 \end{cases}$$

8.
$$\begin{cases} 2x - 5y = -1\\ 3x + 4y = 7 \end{cases}$$

$$9. \begin{cases} 3x + 2y = 5 \\ x - y = 3 \end{cases}$$

10.
$$\begin{cases} 5x - 2y = 1\\ 4x + 3y = 22 \end{cases}$$

27. Lineare Gleichungssysteme: Additionsverfahren

Lösen Sie folgende linearen Gleichungssysteme mit Hilfe des Additionsverfahren.

$$1. \begin{cases} 2x + 3y = 7 \\ 4x - y = 2 \end{cases}$$

2.
$$\begin{cases} 3x - 2y = 5 \\ x + 4y = 10 \end{cases}$$

$$3. \begin{cases} 5x + 2y = 8 \\ 3x - y = 1 \end{cases}$$

4.
$$\begin{cases} 2x + y = 4 \\ x - 3y = -5 \end{cases}$$

5.
$$\begin{cases} 4x - 3y = 6 \\ 2x + 5y = 11 \end{cases}$$

6.
$$\begin{cases} 3x + 2y = 7 \\ 2x - 4y = -2 \end{cases}$$

$$7. \begin{cases} x + 3y = 9 \\ 2x - y = 4 \end{cases}$$

8.
$$\begin{cases} 2x - 5y = -1\\ 3x + 4y = 7 \end{cases}$$
9.
$$\begin{cases} 3x + 2y = 5\\ x - y = 3 \end{cases}$$

$$9. \begin{cases} 3x + 2y = 5 \\ x - y = 3 \end{cases}$$

10.
$$\begin{cases} 5x - 2y = 1\\ 4x + 3y = 22 \end{cases}$$

28. Lineare Gleichungssysteme: Einsetzungsverfahren

Lösen Sie folgende linearen Gleichungssysteme mit Hilfe des Einsetzungsverfahren.

$$1. \begin{cases} 2x + 3y = 7 \\ 4x - y = 2 \end{cases}$$

$$2. \begin{cases} 3x - 2y = 5 \\ x + 4y = 10 \end{cases}$$

2.
$$\begin{cases} 3x - 2y = 5 \\ x + 4y = 10 \end{cases}$$
3.
$$\begin{cases} 5x + 2y = 8 \\ 3x - y = 1 \end{cases}$$

$$4. \begin{cases} 2x + y = 4 \\ x - 3y = -5 \end{cases}$$

5.
$$\begin{cases} 4x - 3y = 6 \\ 2x + 5y = 11 \end{cases}$$

5.
$$\begin{cases} 4x - 3y = 6 \\ 2x + 5y = 11 \end{cases}$$
6.
$$\begin{cases} 3x + 2y = 7 \\ 2x - 4y = -2 \end{cases}$$

$$7. \begin{cases} x + 3y = 9 \\ 2x - y = 4 \end{cases}$$

8.
$$\begin{cases} 2x - 5y = -1\\ 3x + 4y = 7 \end{cases}$$

$$9. \begin{cases} 3x + 2y = 5 \\ x - y = 3 \end{cases}$$

10.
$$\begin{cases} 5x - 2y = 1 \\ 4x + 3y = 22 \end{cases}$$

29. Parabelflug

Ein Ball wird von der Position (x,y)=(1,0) in die Luft geworfen und erreicht an der Position (x, y) = (5, 0) den Boden. Die Flugbahn des Balles folgt einer Parabel, finden Sie die entsprechende Gleichung. Zeichnen Sie die Flugbahn in eine Koordinatensystem. An welcher Position erreicht der Ball seinen höchsten Punkt.

30. Ermittlung von Nullstellen

Ermitteln Sie die Nullstellen folgender Gleichungen.

1.
$$3x - 6 = 0$$

2.
$$x^2 - 4x + 4 = 0$$

3.
$$2x^2 + 5x = 0$$

4.
$$4x^2 - 12x = 0$$

5.
$$x^3 - 8 = 0$$

6.
$$2x^2 - 10x + 12 = 0$$

7.
$$x^4 - 16 = 0$$

8.
$$3x^2 + 6x + 3 = 0$$

9.
$$x^3 + x^2 - 2x = 0$$

10.
$$4x^2 - 9 = 0$$

31. Polynomdivision

Führen Sie für die folgenden Paare von Polynomen jeweils die Polynomdivision durch.

1.
$$(x^3 - x^2 - 5x - 3), (3 - x)$$

2.
$$(x^4 + 3x^3 + 4x^2 + 3x + 1), (x^2 + x + 1)$$

3.
$$(6x^4 - 12x^3 + 37x^2 - 48x + 45), (2x^2 - 4x + 4)$$

4.
$$(x^5 + 4x^4 - 9x^3 - 40x^2 - 4x + 48), (x^2 + 4x + 4)$$

5.
$$(x^5 + 4x^4 - 9x^3 - 40x^2 - 4x + 48), (x^3 - 13x + 12)$$

6.
$$(2x^8 + 4x^7 + 3x^6 - 5x^5 - 16x^4 - 13x^3 + 4x^2 - 4x + 18), (x^3 + x - 4)$$

7.
$$(x^8 - 4x^7 + 14x^6 - 4x^5 + 13x^4 + x^2 - 3), (x^5 - 4x^4 + 13x^3)$$

8.
$$(x^{10}-1)$$
, $(1-x+x^2-x^3+x^4)$

32. Faktorisierung von Polynomen

Bestimmen Sie für die folgenden Polynome jeweils alle reellen Nullstellen und überprüfen Sie, ob das Polynom über $\mathbb R$ in Linearfaktoren zerfällt. Falls nicht, geben Sie die verbleibenden quadratischen Faktoren an und bestimmen Sie die zugehörigen komplexen Nullstellen.

1.
$$x^2 - 2x + 1$$

2.
$$x^2 + 2x + 1$$

3.
$$x^2 + 4$$

4.
$$x^3 + 9x$$

5.
$$x^3 - 13x + 12$$

6.
$$x^3 - 5x^2 + 7x - 3$$

7.
$$6x^4 - 12x^3 + 36x^2 - 48x + 48$$

$$8 x^8 - 2x^4 + 1$$

33. Aufgabe 7: Logarithmus und Exponentialfunktion Vereinfachen oder berechnen Sie:

1.

$$\log_2 8$$

2.

$$\ln\left(\frac{1}{\sqrt{e^3}}\right)$$

3.

$$\ln{(b^5)} + \ln{\left(\frac{1}{b^5}\right)}$$

4.

$$\ln\left(x^a\right) + \ln\left(x^b\right)$$

5.

$$\ln\left(b^{x}\right) + \ln\left(a^{x}\right)$$

6.

$$(\log_b a)(\log_a b)$$

7.

$$\ln(e) + e^{\ln(1)}$$

8.

$$\frac{e^{-3} \cdot e^4}{e^{-1}}$$

9.

$$e^{\ln(e^2)}$$

10.

$$2\ln(e^3) + \ln\frac{1}{e^6}$$