Corso di Laurea in Ingegneria Informatica e Automatica

Corso di RICERCA OPERATIVA

PROVA di AUTOVALUTAZIONE N.3

1. Si consideri il seguente problema di programmazione matematica:

$$\max -3x_1 + 2x_2 - 2.1x_3
-x_1 \ge 0
-x_2 + x_3 = x_4
x_3^2 - x_1^2 \le x_1
x_2 \text{ intera}$$
(1)

- (a) dire a quale tipo di programmazione matematica si riferisce il problema (1): PL, PLI, PNL, PLM, etc. ... ;
- (b) dopo aver tolto il vincolo " x_2 intera", porre (1) se possibile (dire se è sempre possibile) nella forma

$$\min f(x)$$

$$g_i(x) \ge 0, \qquad i = 1, \dots, m;$$

- (c) cambia la natura del problema e/o le sue eventuali soluzioni modificando l'ordine con cui compaiono i vincoli ?
- (d) dopo aver tolto il vincolo " x_2 intera", porre (1) se possibile (dire se è sempre possibile) nella forma

$$\max_{g_i(x) \le 0,} f(x) = 1, \dots, m.$$

2. Una raffineria distilla delle quantità di petrolio provenienti dal Venezuela e dall'Arabia Saudita. La raffineria produce i seguenti tre prodotti: benzina per auto, carburante per aerei e lubrificanti. I due petroli hanno composizioni diverse e danno differenti prodotti:

per ciascun barile di petrolio dal Venezuela si ottengono 0,4 barili di benzina, 0,2 barili di carburante, 0,3 barili di lubrificante e 0,1 barili di scarti;

per ciascun barile di petrolio dall'Arabia Sauduta si ottengono 0,3 barili di benzina, 0,4 barili di carburante, 0,2 barili di lubrificante e 0,1 barili di scarti;

La disponibilità giornaliera di petrolio è di 6000 barili dal Venezuela e di 9000 barili dall'Arabia Saudita. Il costo di un barile dal Venezuela è di 20 \$ e quello di un barile dall'Arabia Saudita è di 15 \$. Definire un modello lineare che permetta di minimizzare i costi di acquisto e di soddisfare le richieste giornaliere di 2000 barili di benzina, 1500 barili di carburante e 500 barili di lubrificante.

3. Un'industria ha ricevuto un ordine di 10000 tonnellate di un tipo di fertilizzante. Tale fertilizzante deve avere una composizione di almeno il 4% di azoto, il 15% di fosforo e il 18 % di potassio. L'industria ottiene il prodotto finito usando quattro tipi di costituenti base C1, C2, C3 e C4. La tabella che segue riporta i contenuti percentuali di azoto, fosforo e potassio di ciascuno dei costituenti base insieme al costo espresso in dollari la tonnellata.

	Azoto	Fosforo	Potassio	costo
C1	54%	10%	3%	120
C2	10%	45%	13%	135
С3	20%	5%	38%	140
C4	15%	20%	17%	180

L'industria ha già nei nei suoi magazzini 200 tonnellate di componente C2 acquistato in precedenza e che quindi può essere usato senza considerare il suo costo. Inoltre c'è la possibilità di acquistare da un'altra industria il fertilizzante già pronto per la vendita a \$ 185 la tonnellata. Costruire un modello lineare per pianificare la produzione dell'industria in modo da soddisfare esattamente l'ordine richiesto minimizzando il costo globale.

4. Risolvere graficamente i seguenti problemi di Programmazione Lineare:

(a)
$$\begin{cases} \max 2x_1 + 2x_2 \\ x_1 - 2x_2 \ge 10 \\ 2x_1 + x_2 \le 22 \\ x_1 + 4x_2 \le 32 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

(b)
$$\begin{cases} \min 4x_1 - x_2 \\ x_1 + x_2 \le 6 \\ x_1 - x_2 \ge 3 \\ -x_1 + 2x_2 \ge 2 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

									_									o, il 1							-							
																		ostitu e pot														
											_		onne			1051	010	. pot	116600	o ui	Cias	Cuile	, aei		orout	ATUI K	Juse	11151		ou ou		
												Γ			zoto	T _E	sfor	_ D	otas	rgio	cos	rt o										
												-	C1		$\frac{3000}{4\%}$.0%	9 1	$\frac{00as}{3\%}$		12											
												-	C2		0%		15%		13%		13											
												ŀ	C3	11	0%		5%		38%		14											
													C4		5%		20%		17%		18	30										
					L	inc	lust	ria	ha g	già r	ei n	ei su	ioi m	aga	zzini	i 200	ton	nella	te d	i cor	npoi	nente	e C2	2 acc	uist	ato i	n pr	eced	lenz	a e		
																		suo														
																		a ven														
														one	dell'	indu	stria	a in n	nodo	o da	sodd	lisfa	re es	satta	men	te l'o	ordii	ne ri	chie	sto		
					minimizzando il costo globale.																											
					, ,	+																										
Xı	=		qμ	الم	4	9		C																								
ĺ			1																													
1/											L	H				1.			,	27			0.7	2 6 1								
X2	5		-					Ca			X	2	=	0	WDL	١١٧٠			2	14	u	٦	-	IIL	J.							
					+	_								<u> </u>																		
X3	=			=				<u> </u>	5																							
1/	_																															
Xa	E			=	+	_		Ca																								
F	_	1	2-	1	0	ת מ	ul	D -																								
Ī		0					-																									
Fe			,	,	0		1		1																							
Te	=	1	e	1/1	ערט	DL	٠,	C	s le	2	\$																					
																					٦											
	سال		12		1			12	5 1	10	4 1	40	X.	L	12	61	Ca	4	12	4												
	س.	L	4	U				ت ،			1	1							10.	7.6	J											
				-	+	4																										
Vil	دى	e_{i}																														
	٥,				1.	1		, ,								١,		. ^		V	e		_		7.4	:						
	0,	> 4	-	4	+		U,	1	2	*	Ole	スメ	3	+ (יוור	> /	4	T (, (^2		2	U	J	ا ب							
					+	_																										
	0,	LX		+	C	, 4	45	X	2 -	+ 0	5 , C	S	K3	+ 0	5,2	X	4	0.	45	Ka	4	>	0,	15	P							
											•									"			'									
	1	_	ما		\top	1	_	سا				0 1			1.	2 1.				, ,,	H -		. ,	0 4	_							
+	م, د	3	ΧL	+	9	4	3/	×2	4	0	3	31	3 -	0	4	T X	4	+ 6) _/ [3	5 X	4		ז,נ	54								
	<u> </u>				_	_																										
	F	+ 1	e			10	20	00																								
					T																											
	X	4																														
	\X	-	5	A E	٥٥	+																										
						4					1.																					
	F		χ.	4	Ko	4	Χz	4	Xe	+	X	1																				
				Ť		1	ر .	-		Ţ	114																					
	.,	_				+	, 4																									
	K	د	C	>	+	X	2	>	0																							
	f	2	^		F		>	0																								
	0	1	ر		1	4																										
	1									1					1			1														