Numerical methods in magnetic resonance imaging: the Bloch-Torrey equation

Jonathan Doucette

University of British Columbia

March 31, 2018

- Background
 - Magnetic Resonance Visualised
 - The Bloch-Torrey Equation
 - Problem Geometry
- Solving the Bloch-Torrey Equation
 - Operator Splitting Methods
 - Finite Element Methods
- Results
 - Operator Splitting vs. FEM

TODO: uncomment all "pause" statements

Magnetic Resonance Visualised

- Animation of a typical "spin echo" MRI sequence
- **2** TODO: re-compile with animated gif

Magnetic Resonance Visualised

- In actuality, spins (water molecules) do not truly fully refocus
- Relative angular frequency depends on local magnetic field, and therefore spins dephase at different rates at different locations
- **1** In particular, the **diffusion** of spins during the scan (\approx 40 ms) leads to a net lost in signal: the "echo" is weaker

The Bloch-Torrey Equation

We model this system through the Bloch-Torrey equation

$$\frac{\partial \mathcal{M}}{\partial t} = D\Delta \mathcal{M} - \Gamma \mathcal{M}$$

where:

$$\mathcal{M} = M_{x} + iM_{y}$$
$$\Gamma(\mathbf{x}) = R(\mathbf{x}) + i\omega(\mathbf{x})$$

- ② The initial transverse magnetization $\mathcal{M}(\mathbf{x},0)=\mathcal{M}_0(\mathbf{x})$ is given
- Soundary conditions are typically zero Neumann or periodic

Magnetic Resonance Visualised

Figure: Cubic imaging voxel filled with randomly oriented microvasculature

Figure: Cross section of ω corresponding to the microvasculature filled voxel

Operator Splitting Methods

- One effective method of solving the BT equation is via operator splitting methods
- First, we re-write the BT PDE in the more suggestive form

$$\frac{\partial \mathcal{M}}{\partial t} = H\mathcal{M}$$

where

$$H = -D\Delta + \Gamma$$
.

lacktriangle Then, the general solution ${\mathcal M}$ may then be written as

$$\mathcal{M} = e^{-Ht}\mathcal{M}_0$$

where e^{-Ht} is the evolution operator

Operator Splitting Methods

• Now, the evolution operator may be *split* using the approximation

$$\begin{split} e^{-Ht} &= e^{D\Delta t - \Gamma t} \\ &\approx e^{-\Gamma t/2} e^{D\Delta t} e^{-\Gamma t/2} + \mathcal{O}(t^3) \end{split}$$

② Although e^{-Ht} has no closed form, the split operators do:

$$e^{-\Gamma t/2}\mathcal{M} = e^{-\Gamma(\mathbf{x})t/2}\odot\mathcal{M}$$

 $e^{D\Delta t}\mathcal{M} = \Phi * \mathcal{M}$

where \odot is the Hadamard (pointwise) product, * is the spatial convolution, and Φ is a Gaussian smoothing kernel with $\sigma = \sqrt{2Dt}$

Finite Element Methods

- 1 The BT equation can also be solved using FEM
- ② First, we let $u = M_x$ and $v = M_y$ and re-write the complex Bloch-Torrey PDE as a pair of coupled real PDE's:

$$\begin{cases} \frac{\partial u}{\partial t} = D\Delta u - Ru + \omega v, & u(\mathbf{x}, 0) = M_{x}(\mathbf{x}, 0) \\ \frac{\partial v}{\partial t} = D\Delta v - Rv - \omega u, & v(\mathbf{x}, 0) = M_{y}(\mathbf{x}, 0) \end{cases}$$

Writing the pair of PDE's as a linear system, we have

$$\frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} D\Delta - R & \omega \\ -\omega & D\Delta - R \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

9/12

Finite Element Methods

$$\frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} D\Delta - R & \omega \\ -\omega & D\Delta - R \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

• If we take the inner product of both sides with (u, v), we have that

$$\int_{\Omega} uu_t + vv_t \, dx = \int_{\Omega} Du\Delta u - Ru^2 + \omega uv - \omega vu + Dv\Delta v - Rv^2 \, dx$$

Integrating by parts, we have that

$$\frac{1}{2}\frac{\partial}{\partial t}\left(\int_{\Omega}u^2+v^2\,\mathrm{d}x\right)=\int_{\Omega}-D(||\nabla u||^2+||\nabla v||^2)-R(u^2+v^2)\,\mathrm{d}x$$

$$\leq 0$$

② Now, $\int_{\Omega} u^2 + v^2 dx = \|\mathcal{M}\|_{L^2}^2$, and so $\|\mathcal{M}\|_{L^2}$ decreases with time

lacktriangledown For this reason, the second order and strongly A-stable time stepping TR-BDF2 was used

Operator Splitting vs. FEM

- Comparing the solution of the BT equation with splitting methods vs. FEM...
- 2 TODO: do this