

DIGITAL DESIGN & COMPUTER ORGANISATION

FINITE STATE MACHINES

Sudarshan T S B., Ph.D.

Department of Computer Science & Engineering

1

1

DIGITAL DESIGN & COMPUTER ORGANISATION

FINITE STATE MACHINES

Sudarshan T S B., Ph.D.

Department of Computer Science & Engineering

2

FINITE STATE MACHINES

Course Outline

- Digital Design
 - ► Combinational logic design
 - Sequential logic design
 - **★** Finite State Machines
- Computer Organization
 - ► Architecture (microprocessor instruction set)
 - ► Microarchitecure (microprocessor operation)

Concepts covered

- Finite State Machines
 - Mealy and Moore Machines

24/09/21

Sudarshan TSB, PES University

3

FINITE STATE MACHINES

Example-2

Construct a State Diagram

$$A(t+1) = AX + BX$$
$$B(t+1) = A'X$$

$$Y = X' (A + B)$$

24/09/21 Sudarshan TSB, PES University

FINITE STATE MACHINES

Example-3

- Design a circuit using State Transition Diagram that has a serial input X and an output Z.
- Z should be 1 coinciding with the last bit of the pattern **010** or else Z is 0.
- Construct a Mealy machine and Moore machine for both <u>non-overlapping pattern</u> detection

Sudarshan TSB, PES University

6

24/09/21

FINITE STATE MACHINES
Example-4 (contd)

FSM Diagram:

• Moore FSM: outputs labeled in each state

Reset

SO

L_A: green
L_B: red

FINITE STATE MACHINES

Example-4 (contd)

• State Assignment, State Table

Current State		Inputs		Next State	
S_1	S_0	T_A	T_B	S'_1	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding		
S0	00		
S1	01		
S2	10		
S3	11		

$$S'_1 = S_1 \oplus S_0$$

$$S'_0 = S_1 S_0 T_A + S_1 S_0 T_B$$

24/09/21

Sudarshan TSB, PES University

13

13

FINITE STATE MACHINES

Example-4 (contd)

• Output Table

Current State		Outputs			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

$$L_{A1} = S_1$$
$$L_{A0} = S_1 S_0$$

$$L_{B1} = S_1$$

$$L_{B0} = S_1 S_0$$

Sudarshan TSB, PES University

14

14

24/09/21

FINITE STATE MACHINES

Example-4 (contd)

15

FINITE STATE MACHINES

Example-5

PES UNIVERSITY

• Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last two digits it has crawled over are 01. Design Moore and Mealy FSMs of the snail's brain.

16

24/09/21

Sudarshan TSB, PES University

State	Encoding
S0	00
S1	01
S2	10

Moore FSM

Current				
State		Inputs	Next State	
S_1	S_0	A	S'_1	S'_0
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
	C	,		

$$S_1' = S_0 A$$

 $S_0' = A'$

24/09/21 Sudarshan TSB, PES University 17

17

FINITE STATE MACHINES

Example-5 (contd)

 S_1 0

0

1

 $Y = S_1$

 S_0

0

1

0

Sudarshan TSB, PES University

24/09/21

Y

0

0

1

18

THANK YOU

Sudarshan T S B. Ph.D.,
Department of Computer Science & Engineering
sudarshan@pes.edu

+91 80 6666 3333 Extn 215

21