Matematyka Ubezpieczeń Majątkowych i Osobowych Piotr Bocian

Spis treści

1	Wprowadzenie	2
2	Rozkłady portfeli	2
	2.1 Metoda funkcji tworzących	
	2.1.1 Portfel S_N	
	2.1.2 Portfel S_M	
	2.1.3 Portfel S_K	3
	2.2 Wykresy rozkładów	3
	2.3 Parametry rozkładów portfeli	3
3	Histogramy	5
4	Przybliżanie rozkładem normalnym	7
	4.1 Obliczanie parametrów	7
	4.2 Wykresy	8
5	Przybliżanie rozkładem gamma	9
	5.1 Obliczanie parametrów	S
	5.2 Wykresy	10
6	Uporządkowanie portfeli	11
7	Miary ryzyka portfeli	13
	7.1 Wykres $TVaR$	13
8	Prawdopodobieństwo ruiny	15
	8.1 Współczynnik dopasowania	15
	8.2 Wykres prawdopodobieństwa ruiny	

1 Wprowadzenie

Niniejszy dokument zawiera w sobie obie części projektu realizowanego na przedmiot Matematyka Ubezpieczeń Majątkowych i Osobowych. Część pierwsza (rozdziały 2-5) przedstawia zagadnienia dotyczące obliczenia rozkładów portfeli złożonych oraz ich aproksymacji standardowymi rozkładami. W części drugiej (rozdziały 6-8) zajmujemy się analizą portfeli ze względu na miary ryzyka oraz obliczaniem prawdopodobieństwa ruiny.

2 Rozkłady portfeli

Niech X_i , $i \ge 1$ będą szkodami o rozkładzie binomialnym b(k, 10, 1/2). Definiujemy portfele

$$S_N = X_1 + \dots + X_N,$$

$$S_M = X_1 + \dots + X_M,$$

$$S_K = X_1 + \dots + X_K,$$

gdzie $N \sim b(k, n, p), M \sim Poi(\lambda), K \sim Geo(p)$. Dodatkowo N, M, K mają wartość średnią równą 30. Dla poszczególnych rozkładów mamy:

$$\mathbb{E}N = np,$$

$$\mathbb{E}M = \lambda,$$

$$\mathbb{E}K = \frac{1}{p-1}.$$

Możemy więc przyjąć, że $N \sim b(k,60,1/2)$ oraz $M \sim Poi(30)$ i $K \sim Geo(1/31)$

2.1 Metoda funkcji tworzących

Funkcja tworząca rozkładu binomialnego b(k, 10, 1/2) ma postać

$$P_{X_i}(t) = \sum_{k=0}^{10} {10 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{10-k} t^k = \left(\frac{1}{2} + \frac{1}{2}t\right)^{10}$$

2.1.1 Portfel S_N

Zmienna N ma rozkład binomialny b(k,60,1/2). Stąd funkcja tworząca jest dana jako

$$P_N(t) = \sum_{k=0}^{60} {60 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{60-k} t^k = \left(\frac{1}{2} + \frac{1}{2}t\right)^{60}$$

Stąd otrzymujemy funkcję tworzącą S_N daną jako

$$P_{S_N}(t) = P_N(P_{X_i}(t)) = \left(\frac{1}{2} + \frac{1}{2}\left(\frac{1}{2} + \frac{1}{2}t\right)^{10}\right)^{60}$$

2.1.2 Portfel S_M

Zmienna M ma rozkład Poissona Poi(30). Wynika z tego, że funkcja tworząca M jest postaci

$$P_M(t) = \sum_{k=0}^{\infty} \frac{e^{-30}30^k}{k!} t^k = e^{30t-30}$$

Stąd funkcja tworząca S_2M jest dana jako

$$P_{S_M}(t) = P_M(P_{X_i}(t)) = \exp\left(30\left(\frac{1}{2} + \frac{1}{2}t\right)^{10} - 30\right)$$

2.1.3 Portfel S_K

Zmienna K ma rozkład geometryczny Geo(1/31). Funkcja tworząca jest dana jako:

$$P_K(t) = \sum_{k=0}^{\infty} \left(\frac{30}{31}\right)^k \frac{1}{31} t^k = \frac{1/31}{1 - \frac{30}{31}t}$$

Funkcja tworząca S_K jest więc dana jako

$$P_{S_K}(t) = P_K(P_{X_i}(t)) = \frac{1}{31} \left(1 - \frac{30}{31} \left(\frac{1}{2} + \frac{1}{2}t \right)^{10} \right)^{-1}$$

2.2 Wykresy rozkładów

2.3 Parametry rozkładów portfeli

W tej części przyjrzymy się trzem parametrom rozkładów portfeli S_N, S_M, S_K . Przypomnijmy, że wariancja rozkładu S_i jest określona jako

$$VarS_i = \mathbb{E}S_i^2 - (\mathbb{E}S_i)^2$$

Rysunek 1: Wykresy rozkładów portfeli wyliczonych za pomocą metody funkcji tworzących.

Do wyliczenia wartości oczekiwanej będzie nam potrzebna funkcja tworząca momenty

$$M_{S_i}(t) = P_{S_i}(e^t)$$

Wtedy wartości oczekiwane poszczególnych momentów są dane przez

$$\mathbb{E}S_i = M'_{S_i}(0), \ \mathbb{E}S_i^2 = M''_{S_i}(0)$$

Wartości powyższych parametrów rozkładów portfeli S_N, S_M, S_K zostały zawarte w poniższej tabeli

	Portfel			
Parametr	S_N	S_M	S_K	
$\mathbb{E}S_i$	150	150	150	
$\mathbb{E}S_i^2$	22950	23325	45825	
$VarS_i$	450	825	23325	

Jak widać zachodzi nierówność

$$VarS_N < VarS_M < VarS_K$$
.

3 Histogramy

Z rozkładów portfeli wygenerowano próby wielkości 50. Poniżej znajdują się histogramy prób wraz z wykresem gęstości.

W przypadku wszystkich wykresów widzimy, że histogram 50 wartości daje słabo widoczne przybliżenie rozkładu.

4 Przybliżanie rozkładem normalnym

4.1 Obliczanie parametrów

Funkcja gęstości rozkładu normalnego jest dana przez

$$\Phi(\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

W celu przybliżenia rozkładu S_i rozkładem normalnym obliczamy parametry

$$\mu = \mathbb{E}S_i, \ \sigma = \sqrt{VarS_i}$$

	Portfel			
Parametr	S_N	S_M	S_K	
μ	150	150	150	
σ	21.2132	28.72281	152.7252	

4.2 Wykresy

Poniższe wykresy przedstawiają wykresy rozkładów portfeli wraz z ich przybliżeniami rozkładem normalnym.

5 Przybliżanie rozkładem gamma

5.1 Obliczanie parametrów

Funkcja gęstości rozkładu gamma jest dana przez

$$g(x, \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

W celu przybliżenia rozkładu S_i rozkładem gamma obliczamy parametry α,β określone jako

 $\mathbb{E}[S_i] = \frac{\alpha}{\beta}, \ Var[S_i] = \frac{\alpha}{\beta^2}$

	Portfel			
Parametr	S_N	S_M	S_K	
α	300/7	25	25/26	
β	2/7	1/6	1/156	

5.2 Wykresy

Poniższe wykresy przedstawiają wykresy rozkładów portfeli wraz z ich przybliżeniami rozkładem gamma.

6 Uporządkowanie portfeli

Dla dwóch zmiennych losowych X,Y wprowadzamy następującą relację porządku:

$$X <_{CX} Y \Leftrightarrow (\forall d \in \mathbb{R}) (\mathbb{E} [(X - d)_{+}] \leqslant \mathbb{E} [(Y - d)_{+}])$$

Mając tak zdefiniowaną relację, w tej części zbadamy uporządkowanie zmiennych S_N , S_M i S_K . W tym celu wykorzystamy metodę zwaną kryterium Karlina-Novikowa.

Twierdzenie 6.1 (Kryterium Karlina-Novikowa). *Jeżeli zmienne losowe X,Y spełniają* $\mathbb{E}[X] \leq \mathbb{E}[Y]$ oraz istnieje x_0 , takie że:

- $(\forall x < x_0)(F_Y(x) \geqslant F_X(x))$
- $(\forall x > x_0)(F_Y(x) \leqslant F_X(x)),$

to $X <_{CX} Y$.

W naszym przypadku, wartości oczekiwane rozkładów portfeli są równe. Dodatkowo, na poniższych wykresach przedstawione zostały dystrybuanty rozkładów portfeli S_N, S_M, S_K .

Jak widać, korzystając z kryterium Karlina-Novikowa otrzymujemy następujące zależności:

$$S_N <_{CX} S_M, \ S_N <_{CX} S_K, \ S_M <_{CX} S_K$$

7 Miary ryzyka portfeli

W tym rozdziale przyjrzymy się rozkładom portfeli w kontekście miar ryzyka. Na początku przypomnimy miary potrzebne w kontekście naszego zagadnienia.

Definicja 7.1. Dla zmiennej losowej X i $p \in (0,1)$ definiujemy następujące miary ryzyka:

1. Value at Risk:

$$VaR_X(p) = \inf\{t : F_X(t) \geqslant p\}.$$

2. Expected Shortfall:

$$ES_X(p) = \mathbb{E}[(X - VaR_X(p))_+]$$

3. Tail Value at Risk:

$$TVaR_X(p) = \frac{1}{1-p} \int_p^1 VaR_X(u) du,$$

lub

$$TVaR_X(p) = VaR_X(p) - \frac{ES_X(p)}{1-p}$$

Z uwagi na to, że zmienne które rozpatrujemy są dyskretne, użyjemy drugiego wzoru na obliczenie TVaR.

7.1 Wykres TVaR

Poniższy wykres przedstawia wartość miary TVaR dla naszych portfeli S_N, S_M, S_K .

Jak widać na wykresie najmniejszym ryzykiem cechuje się S_K - największym zaś $S_M.$

8 Prawdopodobieństwo ruiny

Niech $R_n = u + 160n - (W_1 + \cdots + W_n)$, gdzie W_i są niezależne. Chcemy wyliczyć przybliżenia prawdopodobieństwa ruiny w przypadkach gdy W_i mają kolejno rozkłady takie jak S_N, S_M, S_K .

Ciąg R_n możemy zapisać jako błądzenie losowe startujące z poziomu u:

$$R_n = u + (c - W_1) + \dots + (c - W_n).$$

Wtedy prawdopodobieństwo ruiny, jest określone jako

$$\psi(u) = P\left(\bigcup_{i \ge 1} \{R_i < 0\}\right) = P\left(\bigcup_{i \ge 1} \{S_i - ci > u\}\right) = P\left(\max(S_i - ci : i \ge 1) > u\right)$$

W naszym przypadku c = 160 więc możemy napisać:

$$R_n = u + (160 - W_1) + \dots + (160 - W_n).$$

8.1 Współczynnik dopasowania

Dla zmiennych losowych $(W_i)_{i \geqslant 1}$ mających ten sam rozkład i $\mathbb{E}[W] < c$, współczynnik dopasowania definiujemy jako dodatnie rozwiązanie równania

$$\exp(-cr)M_w(r) = 1,$$

gdzie $M_W(t)$ jest funkcją tworzącą momenty zmiennych W_i . Współczynnik dopasowania oznaczamy przez R(W,c).

Obliczymy teraz współczynniki dopasowania w naszych trzech przypadach. Przypomnijmy najpierw parametry naszych rozkładów:

	Zmienna			
Parametr	N	M	K	X
Wartość oczekiwana	30	30	30	5
Wariancja	15	30	930	2.5

Dla kolejnych rozkładów i c=160, możemy je przybliżyć za pomocą poniższych formuł:

$$R(W_N, 160) \approx \frac{2(160 - \mathbb{E}[N]\mathbb{E}[X])}{\mathbb{E}[N]Var[X] + (\mathbb{E}[X])^2 Var[N]} = \frac{2(160 - 150)}{75 + 375} = \frac{20}{450} = \frac{2}{45}$$

$$R(W_M, 160) \approx \frac{2(160 - \mathbb{E}[M]\mathbb{E}[X])}{\mathbb{E}[M]Var[X] + (\mathbb{E}[X])^2 Var[M]} = \frac{20}{825} = \frac{4}{165}$$
$$R(W_K, 160) \approx \frac{2(160 - \mathbb{E}[K]\mathbb{E}[X])}{\mathbb{E}[K]Var[X] + (\mathbb{E}[X])^2 Var[K]} = \frac{20}{23325} = \frac{4}{4665}$$

W naszym przypadku dla R(W,c), prawdopodobieństwo ruiny jest określone jako

$$\psi(u) = \frac{\exp(-Ru)}{\mathbb{E}[\exp(-RR_T|T < \infty)]}$$

Wyliczenie wartości znajdującej się w mianowniku jest w większości przypadków trudne. Wyrażenie to daje nam jednak górne oszacowanie prawdopodobieństwa ruiny:

$$\psi(u) \leqslant \exp(-Ru),$$

co znane jest jako Nierówność Cramera.

8.2 Wykres prawdopodobieństwa ruiny

Poniżej przedstawiony jest wykres prawdopodobieństwa ru
iny dla trzech portfeli w zależności od 0 < u < 100.

