

Learning Bayesian Networks with Graph Databases

Philippe Leray philippe.leray@univ-nantes.fr

DUKe (Data User Knowledge) research group, LINA UMR 6241, Nantes, France

Nantes Machine Learning Meetup, April 4, 2016

Outline ...

- 2 Learning with a Relational DB
 - Definitions
 - Probabilistic relational models
 - Learning
- Learning with a Graph DB
 - Definitions
 - Learning
- 4 Conclusion

- Bayesian networks (BNs) are a powerful tool for graphical representation of the underlying knowledge in the data and reasoning with incomplete or imprecise observations.
- BNs have been extended (or generalized) in several ways, as for instance, causal BNs, dynamic BNs, relational BNs, ...

- Bayesian networks (BNs) are a powerful tool for graphical representation of the underlying knowledge in the data and reasoning with incomplete or imprecise observations.
- BNs have been extended (or generalized) in several ways, as for instance, causal BNs, dynamic BNs, relational BNs, ...

Transition Model

Turbo-codes (GSM, ...)

Anti Spam

Mail	Junk E-mail		
Paworite Poblers	Amengral Dirt Date		
Telegram Tent (Semi	∃ LestHorth		
Alfelfolden	Marico Rast		
Personal Publics Deleted House (m) Deleted	Regine Concree		
Street Street (200)	Mome Security Home Security Systems,		
and thepeda	☐ ContConHail		

MS Office assistant

Assistant iPhone SIRI

After-sale services

- complete

- ABCD
- 2 3 5 6
- 9

- complete /incomplete [François et al., 06]

- 2 3 5 2

- complete /incomplete [François et al., 06]
- high n,

A	В	С	D	 	 X ₁₀₀₀₀₀
0	1	2	3	 	 7
4	6	1	0	 	 5
2	3	5	6	 	 4
1	3	2	6	 	 7
3	8	9	0	 	 1
1	2	4	5	 	 3
1	4	3	7	 	 2
8	5	4	3	 	 4

- complete /incomplete [François et al., 06]
- high n, n >> p [Ammar & Leray, 11]

A E	C	D	 	 X ₁₀₀₀₀₀
0 1	. 2	3	 	 7
4 6	1	0	 	 5
2 3	5	6	 	 4

- complete /incomplete [François et al., 06]
- high $n, n \gg p$ [Ammar & Leray, 11]
- stream [Yasin and Leray, 13]

Learning with a Graph DB

Motivations

- + prior knowledge / ontology [Ben Messaoud et al., 13]

- complete /incomplete [François et al., 06]
- high n, n >> p [Ammar & Leray, 11]
- stream [Yasin and Leray, 13]
- + prior knowledge / ontology [Ben Messaoud et al., 13]
- structured data [Ben Ishak, 15, Coutant, 15, Chulyadyo et al.]

- complete /incomplete [François et al., 06]
- high n, n >> p [Ammar & Leray, 11]
- stream [Yasin and Leray, 13]
- + prior knowledge / ontology [Ben Messaoud et al., 13]
- structured data [Ben Ishak, 15, Coutant, 15, Chulyadyo et al.]
- not so structured data [Elabri et al.]

Flat data

- No relational model
- Learning probabilistic dependencies between variables

Flat data

- No relational model
- Learning probabilistic dependencies between variables

Relational DB

- Relational schema is given
- Learning prob. dep. between variables, but more complex!

Flat data

- No relational model
- Learning probabilistic dependencies between variables

Relational DB

- Relational schema is given
- Learning prob. dep. between variables, but more complex!

Graph DB

- Relational schema?
- Learning prob. dep. between variables?

Outline ...

- 2 Learning with a Relational DB
 - Definitions
 - Probabilistic relational models
 - Learning
 - 3 Learning with a Graph DB
 - Definitions
 - Learning
- Conclusion

relational schema $\mathcal R$

- classes + attributes
- reference slots (e.g. Vote. Movie, Vote. User)
- inverse reference slots (e.g. User.User⁻¹)
- slot chain = a sequence of (inverse) reference slots

relational schema ${\cal R}$

- classes + attributes
- reference slots (e.g. Vote.Movie, Vote.User)
- inverse reference slots (e.g User. User⁻¹)
- slot chain = a sequence of (inverse) reference slots

relational schema $\mathcal R$

- classes + attributes
- reference slots (e.g. Vote.Movie, Vote.User)
- inverse reference slots (e.g. *User.User*⁻¹)
- slot chain = a sequence of (inverse) reference slots

relational schema \mathcal{R}

- classes + attributes
- reference slots (e.g. Vote.Movie, Vote.User)
- inverse reference slots (e.g. User. User⁻¹)
- slot chain = a sequence of (inverse) reference slots
 - ex: Vote.User.User⁻¹.Movie: all the movies voted by a particular user

Relational skeleton

Instance \mathcal{I}

- set of objects for each class
- with a value for each reference slot and each attribute
- == a "populated"
 database

Relational skeleton $\sigma_{\mathcal{R}}$

 Instance without attribute values

Probabilistic Relational Models

[Koller & Pfeffer, 98]

Definition

A PRM Π associated to \mathcal{R} :

- a qualitative dependency structure S (with possible long slot chains and aggregation functions)
- a set of parameters θ_S

Probabilistic Relational Models

Definition

Aggregators

- Vote. User. $User^{-1}$. Movie. $genre \rightarrow Vote. rating$
- movie rating from one user can be dependent with the genre of all the movies voted by this user
 - how to describe the dependency with an unknown number of parents?
 - ullet solution : using an aggregated value, e.g. $\gamma = MODE$

DAPER

Another probabilistic relational model [Heckerman & Meek, 04]

Definition

- Probabilistic model associated to an Entity-Relationship model
- Classes = { Entity classes + Relationship classes }

PRM/DAPER learning

- finding the probabilistic dependencies and the probability tables from an instantiated database
- relational schema is known, but ...
- several situations / PRM extensions

Attribute uncertainty

- Input: relational skeleton (all the objects and relations), some attributes
- Objective : predict only missing attributes

Reference uncertainty

- Input: partial relational skeleton (all the objects, but some relations are missing)
- Objective: predict missing attributes and "foreign keys"

Existence uncertainty

- Input: partial relational skeleton (all the entity objects, but some relationship objects are missing)
- Objective : predict existence of relationships between entity objects

Relational variables

- finding new variables by exploring the relational schema
- ex: student.reg.grade, registration.course.reg.grade, registration.student reg.course.reg.grade, ...
- ⇒ adding another dimension in the search space
- ⇒ limitation to a given maximal slot chain length

Constraint-based methods

- relational PC [Maier et al., 10] relational CD [Maier et al., 13]
- don't deal with aggregation functions

Score-based methods

Greedy search [Getoor et al., 07

Relational variables

- ⇒ adding another dimension in the search space
- ⇒ limitation to a given maximal slot chain length

Constraint-based methods

- relational PC [Maier et al., 10] relational CD [Maier et al., 13]
- don't deal with aggregation functions

Score-based methods

• Greedy search [Getoor et al., 07]

Hybrid methods

• relational MMHC [Ben Ishak et al., 15]

Relational variables

- ⇒ adding another dimension in the search space
- ⇒ limitation to a given maximal slot chain length

Constraint-based methods

- relational PC [Maier et al., 10] relational CD [Maier et al., 13]
- don't deal with aggregation functions

Score-based methods

• Greedy search [Getoor et al., 07]

Hybrid methods

• relational MMHC [Ben Ishak et al., 15]

Relational variables

- ⇒ adding another dimension in the search space
- ⇒ limitation to a given maximal slot chain length

Constraint-based methods

- relational PC [Maier et al., 10] relational CD [Maier et al., 13]
- don't deal with aggregation functions

Score-based methods

• Greedy search [Getoor et al., 07]

Hybrid methods

• relational MMHC [Ben Ishak et al., 15]

Need for partitionning

- The missing foreign key is considered as a random variable
- We need to partition the similar "target" objects in order to obtain a generic model

How to partition

- With object attributes [Getoor et al.] = clustering
- With relational information = graph partitionning
- With both : [Coutant et al., 15]

Outline ...

- Introduction
- Learning with a Relational DB
 - Definitions
 - Probabilistic relational models
 - Learning
- 3 Learning with a Graph DB
 - Definitions
 - Learning
- Conclusion

Graph database

Definition

- Data is described in a graph, with nodes and relationships
- Attributes can be associated to both

Properties

Graph database

Definition

- Data is described in a graph, with nodes and relationships
- Attributes can be associated to both.

Properties

Graph database

Definition

Properties

- Scalability / large data (no join operation, only graph traversal)
- Schema-free, no relational schema

Graph database

Definition

Properties

- Scalability / large data (no join operation, only graph traversal)
- Schema-free, no relational schema

Learning from a Graph database

Our assumptions

- Data is "organized" / stored by approx. following some meta/ER model.
- Use of labels in order to "type" nodes and relationships
- Otherwise, we can't do anything!

[Elabri, in progress]

Learning from a Graph database

Our assumptions

- Data is "organized" / stored by approx. following some meta/ER model.
- Use of labels in order to "type" nodes and relationships
 - Otherwise, we can't do anything!

[Elabri, in progress]

Learning from a Graph database

Our assumptions

- Data is "organized" / stored by approx. following some meta/ER model.
- Use of labels in order to "type" nodes and relationships
- Otherwise, we can't do anything!

[Elabri, in progress]

ER identification from data

- E=node labels, R=relationship labels
- ullet choosing only the most frequent signature $(\mathsf{E}_i imes\mathsf{E}_i)$ for each F

ER identification from data

- E=node labels, R=relationship labels
- choosing only the most frequent signature $(E_i \times E_j)$ for each R

DAPER structure learning

Once ER model is identified, we can learn the probabilistic dependencies :

- Attribute uncertainty : predicting attribute value only
- Reference uncertainty: predicting the target node for ar existing relation?
- Existence uncertainty: predicting a relationship between two existing nodes?

DAPER structure learning

Once ER model is identified, we can learn the probabilistic dependencies :

- Attribute uncertainty : predicting attribute value only
- Reference uncertainty: predicting the target node for an existing relation?
- Existence uncertainty: predicting a relationship between two existing nodes?

DAPER structure learning

Once ER model is identified, we can learn the probabilistic dependencies :

- Attribute uncertainty : predicting attribute value only
- Reference uncertainty: predicting the target node for an existing relation?
- Existence uncertainty : predicting a relationship between two existing nodes ?

Another track?

Markov Logic Networks [Richardson & Domingos, 06]

- Yet another probabilistic relational model
- Relations and probabilistic dependencies are described with First Order Logic (clauses)
- Uncertainty is represented by weights over logic formulas (that can contradict themselves)

English	First-Order Logic	Clausal Form	Weight
Friends of friends are friends.	$\forall x \forall y \forall z Fr(x,y) \wedge Fr(y,z) \Rightarrow Fr(x,z)$	$\neg Fr(x, y) \lor \neg Fr(y, z) \lor Fr(x, z)$	0.7
Friendless people smoke.	$\forall \mathtt{x} \ (\neg(\exists \mathtt{y} \ \mathtt{Fr}(\mathtt{x},\mathtt{y})) \Rightarrow \mathtt{Sm}(\mathtt{x}))$	$Fr(x, g(x)) \vee Sm(x)$	2.3
Smoking causes cancer.	$\forall \mathtt{x} \; \mathtt{Sm}(\mathtt{x}) \Rightarrow \mathtt{Ca}(\mathtt{x})$	$\neg \mathtt{Sm}(\mathtt{x}) \vee \mathtt{Ca}(\mathtt{x})$	1.5
If two people are friends, either	$\forall \mathtt{x} \forall \mathtt{y} \ \mathtt{Fr}(\mathtt{x},\mathtt{y}) \Rightarrow (\mathtt{Sm}(\mathtt{x}) \Leftrightarrow \mathtt{Sm}(\mathtt{y}))$	$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \mathtt{Sm}(\mathtt{x}) \vee \neg \mathtt{Sm}(\mathtt{y}),$	1.1
both smoke or neither does.		$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \neg \mathtt{Sm}(\mathtt{x}) \vee \mathtt{Sm}(\mathtt{y})$	1.1

Another track?

Markov Logic Networks [Richardson & Domingos, 06]

- Yet another probabilistic relational model
- Relations and probabilistic dependencies are described with First Order Logic (clauses)
- Uncertainty is represented by weights over logic formulas (that can contradict themselves)

English	First-Order Logic	Clausal Form	Weight
Friends of friends are friends.	$\forall \mathtt{x} \forall \mathtt{y} \forall \mathtt{z} \mathtt{Fr}(\mathtt{x},\mathtt{y}) \wedge \mathtt{Fr}(\mathtt{y},\mathtt{z}) \Rightarrow \mathtt{Fr}(\mathtt{x},\mathtt{z})$	$\neg Fr(x, y) \lor \neg Fr(y, z) \lor Fr(x, z)$	0.7
Friendless people smoke.	$\forall \mathtt{x} \ (\neg(\exists \mathtt{y} \ \mathtt{Fr}(\mathtt{x},\mathtt{y})) \Rightarrow \mathtt{Sm}(\mathtt{x}))$	$Fr(x, g(x)) \vee Sm(x)$	2.3
Smoking causes cancer.	$\forall \mathtt{x} \; \mathtt{Sm}(\mathtt{x}) \Rightarrow \mathtt{Ca}(\mathtt{x})$	$\neg \mathtt{Sm}(\mathtt{x}) \vee \mathtt{Ca}(\mathtt{x})$	1.5
If two people are friends, either	$\forall \mathtt{x} \forall \mathtt{y} \ \mathtt{Fr}(\mathtt{x}, \mathtt{y}) \Rightarrow (\mathtt{Sm}(\mathtt{x}) \Leftrightarrow \mathtt{Sm}(\mathtt{y}))$	$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \mathtt{Sm}(\mathtt{x}) \vee \neg \mathtt{Sm}(\mathtt{y}),$	1.1
both smoke or neither does.		$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \neg \mathtt{Sm}(\mathtt{x}) \vee \mathtt{Sm}(\mathtt{y})$	1.1

Another track?

Markov Logic Networks [Richardson & Domingos, 06]

- Yet another probabilistic relational model
- Relations and probabilistic dependencies are described with First Order Logic (clauses)
- Uncertainty is represented by weights over logic formulas (that can contradict themselves)

English	First-Order Logic	Clausal Form	Weight
Friends of friends are friends.	$\forall x \forall y \forall z Fr(x,y) \wedge Fr(y,z) \Rightarrow Fr(x,z)$	$\neg Fr(x, y) \lor \neg Fr(y, z) \lor Fr(x, z)$	0.7
Friendless people smoke.	$\forall \mathtt{x} \; (\neg(\exists \mathtt{y} \; \mathtt{Fr}(\mathtt{x},\mathtt{y})) \Rightarrow \mathtt{Sm}(\mathtt{x}))$	$Fr(x, g(x)) \vee Sm(x)$	2.3
Smoking causes cancer.	$\forall \mathtt{x} \; \mathtt{Sm}(\mathtt{x}) \Rightarrow \mathtt{Ca}(\mathtt{x})$	$\neg \mathtt{Sm}(\mathtt{x}) \vee \mathtt{Ca}(\mathtt{x})$	1.5
If two people are friends, either	$\forall \mathtt{x} \forall \mathtt{y} \ \mathtt{Fr}(\mathtt{x}, \mathtt{y}) \Rightarrow (\mathtt{Sm}(\mathtt{x}) \Leftrightarrow \mathtt{Sm}(\mathtt{y}))$	$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \mathtt{Sm}(\mathtt{x}) \vee \neg \mathtt{Sm}(\mathtt{y}),$	1.1
both smoke or neither does.		$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \neg \mathtt{Sm}(\mathtt{x}) \vee \mathtt{Sm}(\mathtt{y})$	1.1

Learning MLN from graph DB?

Pros

- MLNs can handle multiple relationship signatures or exceptions
- MLN structure learning can deal in the same time with "relational schema" and probabilistic dependencies identification

Cons

Learning MLN from graph DB?

Pros

- MLNs can handle multiple relationship signatures or exceptions
- MLN structure learning can deal in the same time with "relational schema" and probabilistic dependencies identification

Cons

• MLN structure learning complexity is huge

Outline ...

- Introduction
- Learning with a Relational DB
 - Definitions
 - Probabilistic relational models
 - Learning
- 3 Learning with a Graph DB
 - Definitions
 - Learning
- 4 Conclusion

Visible face of this talk

- Probabilistic Relational Models = powerful tool for knowledge representation and reasoning with relational data
- Our proposition about PRM/DAPER learning from graph databases

Visible face of this talk

- Probabilistic Relational Models = powerful tool for knowledge representation and reasoning with relational data
- Our proposition about PRM/DAPER learning from graph databases

Visible face of this talk

- Experimental comparison about PRM/DAPER learning from relational and graph databases
- and comparison with MLN learning ... expressivity power vs complexity!
- ⇒ Implementation in our software platform PILGRIM

Visible face of this talk

- Experimental comparison about PRM/DAPER learning from relational and graph databases
- and comparison with MLN learning ... expressivity power vs. complexity!
- ⇒ Implementation in our software platform PII GRIM

Visible face of this talk

- Experimental comparison about PRM/DAPER learning from relational and graph databases
- and comparison with MLN learning ... expressivity power vs. complexity!
- ⇒ Implementation in our software platform PILGRIM

References

[Koller & Friedman, 09] MIT Press

[Robinson et al. 13] O'Reilly

[Getoor & Taskar, 07] MIT Press

Our publications

http://tinyurl.com/PhLeray