Conic Sections

11^{th} Maths - Chapter 11

EXERCISE 10.1

Choose the corret answer from the given four options:

- 1. To divide a line segment AB is the ratio 5:7, first a ray AB is drawn so that $\angle BAX$ is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is
 - (a) 8
 - (b) 10
 - (c) 11
 - (d) 12
- 2. To divide a line segment AB in the ratio 4:7, a ray AX is drawn first such that $\angle BAX$ is an acute angle and then points A_1 , A_2 , A_3 ,... are located at equal distances on the ray AX and the point B is joined to
 - (a) A_{12}
 - (b) A_{11}
 - (c) A_{10}
 - (d) \mathbf{A}_9
- 3. To divide a line segment AB in ratio 5:6, draw a ray AX such that $\angle ABX$ is an acute angle, then draw a ray BY parallel to AX and the points A_1 , A_2 , A_3 , ... and B_1 , B_2 , B_3 , ... are located at equal distances on ray AX and BY, respectively, Then the points joinied are

- (a) A_5 and B_6
- (b) \mathbf{A}_6 and \mathbf{B}_5
- (c) \mathbf{A}_4 and \mathbf{B}_5
- (d) \mathbf{A}_5 and \mathbf{B}_4
- 4. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle ABC$, fist draw a ray BX such that $\angle CBX$ is an acute angle and x lies on the opposite side of \mathbf{A} with respect to BC. Then locate points B_1 , B_2 , B_3 , ... on BX at equal distances and next step is to join
 - (a) \mathbf{B}_{10} to \mathbf{C}
 - (b) \mathbf{B}_3 to \mathbf{C}
 - (c) \mathbf{B}_7 to \mathbf{C}
 - (d) \mathbf{B}_4 to \mathbf{C}
- 5. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle ABC$ draw a ray BX such that $\angle CBX$ is an acute angle and X is on the opposite side of A with respect to BC. The minimum number of points to be located at equal distances on ray BX is
 - (a) 5
 - (b) 8
 - (c) 13
 - (d) 3
- 6. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be
 - (a) 135°
 - (b) 90°
 - (c) 60°
 - (d) 120°

EXERCISE 10.2

Write True or False and give reasons for your answer in each of the following:

- 1. By geometrical construction, it is possible to divide a line segment in the $\sqrt{3}$: $\frac{1}{\sqrt{3}}$.
- 2. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{7}{3}$ of the corresponding sides of $\triangle ABC$, draw a ray BX making acute angle with BC and x lies on the opposite side of A with respect to BC. The points B_1 , B_2 , ..., B_7 are located at equal distances on BX, B_3 is joined to \mathbf{c} and then a line segment B_6C is drawn produced. Final line segment A'C' is drawn parallel to AC.
- 3. A pair of tangents can be constructed from a point \mathbf{p} to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre.
- 4. A pair of tangents can be constructed to a circle inclined at an angle of 170° .

EXERCISE 10.3

- 1. Draw a line segment of length 7 cm. Find a point **P** on it which divides it in the ratio 3:5.
- 2. Draw a right triangle ABC n which BC = 12 cm, AB = 5 cm and $\angle B = 90^{\circ}$. Construct a triangle similar to it and of scale factor $\frac{2}{3}$. Is the new triangle also a right triangle?
- 3. Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to it and of scale factor $\frac{5}{3}$.
- 4. Construct a tangent to a circle of radius 4 cm from a point which is at a distance of 6 cm from its centre.

EXERCISE 10.4

- 1. Two line segments AB and AC include an angle of 60° where AB=5 cm and AC=7 cm, respectively such that $AP=\frac{3}{4}AB$ and $AQ=\frac{1}{4}AC$. Join **P** and **Q** and measure the length PQ.
- 2. Draw a parallelogram ABCD in which BC = 5 cm, AB = 3 cm and $\angle ABC = 60^{\circ}$, divide it into triangles ACB and ABD by the diagonal

- BD. Construct the triangle BD'C' similar to $\triangle BDC$ with scale factor $\frac{4}{3}$. Draw the line segment D'A' parallel to DA where \mathbf{A}' lies on extended side BA. Is A'BC'D' a parallelogram?
- 3. Draw two concentric circles of radii 3 cm and 5 cm. Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.
- 4. Draw an isosceles triangle ABC in which AB=AC=6 cm and BC=6 cm. Construct a triangle PQR similar to $\triangle ABC$ in which PQ=8 cm. Also justify the construction.
- 5. Draw a triangle ABC in which AB=5 cm. BC=6cm and $\angle ABC=60^{\circ}$. Construct a triangle similar to $\triangle ABC$ with scale factor $\frac{5}{7}$. Justify the construction.
- 6. Draw a circle of radius 4 cm . Construct a pair of tangents to it, the angle detween which is 60°. Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.
- 7. Draw a triangle ABC in which AB=4 cm, BC=6cm and AC=9. Construct a triangle similar to $\triangle ABC$ with scale factor $\frac{3}{2}$. justify the construction. Are the two triangles congruent? Note that all the three angles and two sides of the two triangles are equal.