CS 622 – Homework 3

Shen Chan Huang

March 24 2023

1 Python Version and Libraries Used

• Python Version: 3.8.13

• Pandas

Numpy

2 Datasets

The dataset we are working on is the 'auto-mpg.data'. Since it is not a csv file, we use pd.read_fwf. I used the following to load the dataset with the given column names.

col_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'model year', 'origin', 'car name']

 $X = pd.read_fwf(filename, names = col_names)$

Since the dataset had missing values, data imputation of some sort had to be used. I chose to impute data using the mean of the feature was used for filling the missing values. Of course, before imputing, I had to split the dataset into training and testing set.

3 Description

To run the script, go to cmd and use "python -u Huang_HW3_CS622.py"

In this assignment, I implemented linear regression from scratch and used 10-fold cross validation.

The problem is to model the correlation the dependent variable 'mpg' and the 7 independent variables:

$$Y = X \cdot \vec{b},\tag{1}$$

where \vec{b} is the unknown vector of coefficients. To optimize it, we use the formula

$$\vec{b} = (X'X)^{-1}X'Y. {2}$$

To calculate the RMSE, the professor's formula is

$$RMSE = \sqrt{\sum_{i=1}^{N} (y_i - \mathbf{X}_i \cdot \mathbf{b})^2}.$$
 (3)

First, I loaded the data set and shuffled it. I wrote functions to perform the following:

- 1. Split the full dataset into training and testing set given an N for N-fold cross validation.
- 2. Impute data by filling in the mean.
- 3. Linear Regression.
- 4. Normalize data and normalize test data.

- 5. Compute the RMSE.
- 6. Compute total error.

To ensure randomization, I first shuffled the dataset. Then pass it to (1.) to split and obtain a training and testing set.

Next, since there are missing values, I imputed the missing values with the mean, within the training and testing set separately.

I then normalized the training set and obtained the normalizing parameters (mean and standard deviation, to normalize the test data later).

Then I appended a column of ones for setting up the matrix to perform linear regression.

I calculated the coefficient of the linear regression, the RMSE, and the \mathbb{R}^2 value each time during cross validation.

4 Experimental Results

	cylinders	displacement	horsepower	weight	acceleration	model year	origin	RMSE
Fold 1	-0.0673	0.2077	-0.0498	-0.7083	0.0344	0.3618	0.1524	2.6198
Fold 2	-0.0908	0.294	-0.0733	-0.735	0.0474	0.3652	0.1417	2.418
Fold 3	-0.1362	0.2816	-0.0432	-0.7501	0.054	0.3476	0.112	3.1042
Fold 4	-0.0732	0.2216	-0.0404	-0.7319	0.0362	0.3616	0.1426	2.8051
Fold 5	-0.1091	0.3113	-0.0685	-0.7433	0.0293	0.3672	0.1506	2.0094
Fold 6	-0.0496	0.1368	-0.0642	-0.6664	0.0086	0.3583	0.1486	3.1907
Fold 7	-0.1101	0.263	-0.0266	-0.7481	0.038	0.3577	0.1547	3.3534
Fold 8	-0.0727	0.2286	-0.0512	-0.7238	0.0393	0.3619	0.1427	2.1895
Fold 9	-0.1141	0.2971	-0.0872	-0.7292	0.0303	0.3483	0.1554	3.1671
Fold 10	-0.0901	0.2822	-0.0579	-0.7413	0.0422	0.3494	0.1539	2.1603

Table 1: Coefficients of seven independent variables and RMSE.

	R^2
Fold 1	$R^2 = 0.8134309367892417$
Fold 2	$R^2 = 0.7497888351588635$
Fold 3	$R^2 = 0.7990822959353385$
Fold 4	$R^2 = 0.7516948400135615$
Fold 5	$R^2 = 0.9103504917061611$
Fold 6	$R^2 = 0.8025174489758431$
Fold 7	$R^2 = 0.7569253566054717$
Fold 8	$R^2 = 0.8568706158111572$
Fold 9	$R^2 = 0.7723414863150336$
Fold 10	$R^2 = 0.8644754761165729$

Table 2: The R^2 value of each fold.