999598 3

thursday

Microprocessors est 2

94

100 Points MAX

10 Points

1. You are debugging a PIC32 program and are examining values of 32 bit operands in memory. You examine one location and the value is 0x8000000D. What are the **two** decimal equivalents of this hexadecimal value if the operand is an unsigned integer or a signed integer? A = 10

 B = 11 C = 12 84 + 1 = 1 D = 13 = 1101

2147483648

12 Points

(BFT8_P)	Register Name	DR Pange	Bris																
			31/15	30 14	29/13	28-12 3	27:11	26 10 Tx	2510 R×	241	23/7	226	21.5	204	193	18 2	17/1	16-0	All Base
	BATCON :	31-16		_	_			-	_	-	_	-		-		_	_	550	15
		150				MVEC		an annual state of	TPC=2.0>					INT4EP	MTJEP	INTZEP	INTIEP	INTOEP	Ŀ
010	INTSTATED	31 16	-		-	-		-		W W				-				4	T
		150		SAIPL-20> VEC-50-															
20	IPTMR	31.16 15.0	IPTMR-31.0-																
1030	#50	31:16	IZC 1MIF	12C 15IF	12C 1BIF	UITXIF	UIRXIF	UIEF	SPITRAF	SPITAF	SPITEIF	OC5#	IC5IF	TSIF	INTAIF	OC4F	IC4IF	TAIF	+
		150	MYSE	OC3F	IC3#	THE	H4T2F	OCZIF	KC2#F	T2IF	INT IF	OC 11F	KIF	THE	H-TG#	CSIF	CSOF	CT#	+
1040,	₽\$1	31 16	-	-	_	_	_	_	USBIF	FCEIF			_		DMA3#	DMA2IF	DMAIN	DMADIF	+
		150	RTCCIF	FSCMF	I2C2MIF	12C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2E#	SPI2R+IF	SPI2TAIF	SPICEIF	CMP21F	CMPIF	PMPIF	ADHE	CNIF	+
1000	#EC0	31 16	12CIMIE	12C 15IE	12C 1Bit.	UITAL	UIRALE	UIEE	SPITALE	SPULLE	SPITEIE	OL5E	IC5IE	TSIE	INT4IE	OCAIE	K4IE	74/E	+
		150	ONT ME	OC3/E	- IC ME	THE	MT21E	OCZIE	IC2IE	(TOE)	WIT HE	OCHE	IC HE	THE	INTOIL	CSHE	CSONE	CTIE	+
1070	ECI	31 16	_		_	_		-	USBE	PCEIE.	_	_	-		DMASIE	DMADE	DMA HE	DMADIE	+
		150	RTCCHE	FSCME	12C2ME	12C254E	12C2BIE	UZTXIE	UZRAM:	UZEIE	SPIZRNE	SPIZTNE	SPIZE	CMP2IE	CMFIE	PMPIE	ADNE	CNE	+
	of excession in	31 16	25-			in an order	INTRIPA? N		W/T/W	5-1 A-	-	1 K E			CSIP-20	The second second	CSI	5a.1 Q.	+
							0	0	0	1	0	0	0	0	0	()	0	()	

2. Using table 4.2 above specify the address and the 32-bit word (expressed as a hexadecimal values) that must be written to it, in order to enable the interrupt for <u>Timer 2</u>.

Address: BF881060 Word: Ox100

0001 0000

100

5 Points

3. In the PIC microcontroller, we use SFRs. What are SFRs used for and how do they differ from general purpose registers?

15 Points

4. You have written the following code and have determined that the size of a short int operand is two bytes.

You run the code to test that it works properly and the program output is as follows:

The value of c is: 18464

Is this value correct? If not, why is the product incorrect? (Justify your answer!)

No, the value is incorrect.

8 This is because we used a short int. Here, it is signed, so -32,768 to 32,767, and we don't have enough space for 94000.

5. We need to configure a 32-bit timer in order to measure a time interval which is longer than what we can measure using a 16-bit timer. List one of the timer combinations that can be used for this using one w/o a clk, AKA

async > UART > Timers 283 or 485 ONLY

10 Points

6. List the characteristics of a full-duplex, synchronous, serial communication channel. Also, list the minimal set of signal lines that will be needed to connect communicating devices which are configured with these characteristics.

Full Duplex: Simultaneously Transmit Data

Sync: uses a clock Serial: one bit at a time.

Signal: Ground, Clock, Tx, Rx receive

7. Which peripheral on the PIC32MX795F512L would we use if we need to implement a half-duplex,

Half dup, Sync & Serial:

synchronous, serial communication channel?

Full Dup, Syn = SIP ASYNC > WART

10

8. You have configured the UART on your PIC32 microcontroller to communicate at 2400 baud using an 8,N,1 configuration, where the X,Y,Z notation corresponds to data bits, parity, and stop bits. The terminal to which you are connected is transmitting signals to your microcontroller, but the data are not received properly so you instrument the connection with the oscilloscope and observe the following signal, where each tick on the line corresponds to one bit time:

You measure the bit time and it corresponds to a 2400 baud rate. So, why is the data being 8 = data received erroneously?

N=nopar. In our configuration, we are 1= (tankit) circles 8 data bits, but in the = StopBit) figure above, it indicates 9 bits could be 8, E, 1 or 9, N, 1

9. You are examining a byte of digital data received from the SPI interface. You are processing the received data as ASCII characters. The byte read from the SPI buffer has the following value: 11010011. Is this a valid ASCII character? Why, or why not?

1)10010011

This is NOT a Valid ASCII character, as a Ø is needed as most sig. bit (msb=0) and a 1 is in this position.

10

- 10. There are some <u>restrictions</u> that apply when we are implementing Interrupt Service Routines. List three of these restrictions.
 - 1) Cannot call ISR
 - 3 Cannot pass argument to ISR.
 - 3 Should not call functions

9 Points

- 11. What are the three basic requirement that must be met to use interrupts on the PIC microcontroller.
 - 1) Need interrupt source
 - (2) Enable interrupt
 - (3) ISR

12. You are using a 16-bit timer, timer 1, which has pre-scale options of 1:1, 1:8, 1:64, and 1:256. You are using PBCLK, an internal clock, which is configured to run at 10MHz.

Is it possible to set the preset register to a value that corresponds to a time interval of 1.65 seconds, so that the timer can count from 0 to the value and generate an interrupt? You must justify your answer. A yes/no answer will get no points.

SYSULK => 80 MHZ slower - better +!

PBCLK => 10 MHZ and we can use t!

USBULK => 48 MHZ

NOT AN OPTION!

Yes, we could use a USBCLK that runs at 48 MHZ rather than the PBULK @ 10 MHZ. By increasing this rate, our prescale could be adjusted to correspond w/ 1.65 seconds and generate an interrupt X prove any of the prescale options can be used