

Bayes' Rule

Random Variables

Lecture 9

Law of Total Probability & Bayes'

Rule

Text: Chapter 4

STAT 8010 Statistical Methods I September 9, 2019

Whitney Huang Clemson University

2 Bayes' Rule

Law of partitions

Let A_1, A_2, \dots, A_k form a partition of Ω . Then, for all events B,

$$\mathbb{P}(B) = \sum_{i=1}^k \mathbb{P}(A_i \cap B)$$

Multiplication rule

2 events:

$$\mathbb{P}(B \cap A) = \mathbb{P}(A) \times \mathbb{P}(B|A) = \mathbb{P}(B) \times \mathbb{P}(A|B)$$

More than 2 events:

$$\mathbb{P}(\bigcap_{i=1}^{n} A_i) = \mathbb{P}(A_1) \times \mathbb{P}(A_2 | A_1) \times \mathbb{P}(A_3 | A_1 \cap A_2) \times \cdots \times \mathbb{P}(A_n | A_{n-1} \cap \cdots \cap A_1)$$

Let A_1, A_2, \dots, A_k form a partition of Ω . Then, for all events B,

$$\mathbb{P}(B) = \sum_{i=1}^k \mathbb{P}(A_i \cap B)$$
Law of partitions
$$= \sum_{i=1}^k \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)$$
Multiplication rule

Motivating example

Law of Total Probability & Bayes' Rule

Law of Total Probability

Bayes' Rule

The Monty Hall Problem

There was an old television show called Let's Make a Deal, whose original host was named Monty Hall. The set—up is as follows. You are on a game show and you are given the choice of three doors. Behind one door is a car, behind the others are goats. You pick a door, and the host, who knows what is behind the doors, opens another door (not your pick) which has a goat behind it. Then he asks you if you want to change your original pick. The question we ask you is, "Is it to your advantage to switch your choice?"

The Monty Hall Problem

Law of Total Probability & Bayes' Rule

Law of Total Probability

Bayes' Rule

The Monty Hall Problem Solution

Law of Total Probability & Bayes' Rule

Law of Total Probability

Bayes' Rule

Bayes' Rule

Random Variables

General form

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Let A_1, A_2, \dots, A_k form a partition of the sample space. Then for every event B in the sample space,

$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(B|A_j) \times \mathbb{P}(A_j)}{\sum_{i=1}^k \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)}, j = 1, 2, \dots, k$$

Bayes' Rule
Random Variables

Let us assume that a specific disease is only present in 5 out of every 1,000 people. Suppose that the test for the disease is accurate 99% of the time a person has the disease and 95% of the time that a person lacks the disease. What is the probability that the person has the disease given that they tested positive?

Solution.

Let us assume that a specific disease is only present in 5 out of every 1,000 people. Suppose that the test for the disease is accurate 99% of the time a person has the disease and 95% of the time that a person lacks the disease. What is the probability that the person has the disease given that they tested positive?

Solution.

$$\mathbb{P}(D|+) = \frac{\mathbb{P}(D\cap+)}{\mathbb{P}(+)} = \frac{.005 \times .99}{.005 \times .99 + .995 \times .05} = \frac{.00495}{.0547} = .0905$$

The reason we get such a surprising result is because the disease is so rare that the number of false positives greatly outnumbers the people who truly have the disease.

Bayes' Rule

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework
- Union and Intersection
- Mutually Exclusive, Exhaustive, Partition
- Venn Diagram

Review: Probability Rules

Law of Total Probability & Bayes' Rule

Law of Total Probability

Bayes' Rule

• $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$

Law of Total Probability

Bayes' Rule

• $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$

Law of Total Probability

Bayes' Rule

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- Multiplication rule:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$$

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- Multiplication rule:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$$

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- Multiplication rule:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$$

• Conditional probability: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- Multiplication rule:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$$

• Conditional probability: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- Multiplication rule: $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Law of total probability: $\mathbb{P}(B) = \sum_{i=1}^k \mathbb{P}(B \cap A_i) = \sum_{i=1}^k \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)$

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- Multiplication rule: $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Law of total probability: $\mathbb{P}(B) = \sum_{i=1}^k \mathbb{P}(B \cap A_i) = \sum_{i=1}^k \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)$

- Tieview. I Tobability Hale
 - $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$

• General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$

• Complement rule: $\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$

- Multiplication rule: $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Law of total probability: $\mathbb{P}(B) = \sum_{i=1}^{k} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{k} \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)$
- Independence: if A and B are independent, then $\mathbb{P}(A|B) = \mathbb{P}(A), \, \mathbb{P}(B|A) = \mathbb{P}(B), \, \text{and} \, \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

UNIVERSITY

Davisa' Dula

Random Variables

A random variable is a real-valued function whose domain is the sample space of a random experiment. In other words, a random variable is a function

$$X:\Omega\mapsto\mathbb{R}$$

where Ω is the sample space of the random experiment under consideration and $\mathbb R$ represents the set of all real numbers.

Bayes' Rule

Random Variables

The following is a chart describing the number of siblings each student in a particular class has.

Siblings (X)	Frequency	Relative Frequency		
0	8	.200		
1	17	.425		
2	11	.275		
3	3	.075		
4	1	.025		
Total	40	1		

Let's define the event A as the event that a randomly chosen student has 2 or more siblings. What is $\mathbb{P}(X \in A)$?

Solution.

$$\mathbb{P}(X \in A) = \mathbb{P}(X \ge 2) = \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4)$$
$$= .275 + 0.75 + 0.25 = .375$$

Types of Random Variables

Law of Total Probability & Bayes' Rule

Law of Total Probability

Bayes' Rule

Random Variables

There are two main types of quantitative random variables: discrete and continuous. A discrete random variable often involves a count of something. Examples may include number of cars per household, etc.

Discrete random variable

A random variable X is called a discrete random variable if the outcome of the random variable is limited to a countable set of real numbers (usually integers).

Probability Mass Function

Law of Total Probability

Let X be a discrete random variable. Then the probability mass function (pmf) of X is the real–valued function defined on \mathbb{R} by

$$p_X(x) = \mathbb{P}(X = x)$$

The capital letter, X, is used to denote random variable. Lowercase letter, x, is used to denote possible values of the random variable.

Example

Law of Total Probability & Bayes' Rule

Law of Total Probability

Bayes' Rule

Random Variables

Flip a fair coin 3 times. Let X denote the number of heads tossed in the 3 flips. Create a pmf for X

Solution.

Flip a fair coin 3 times. Let *X* denote the number of heads tossed in the 3 flips. Create a pmf for X

Solution.

X	0	1	2	3
$p_X(x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Properties of a PMF

Law of Total Probability & Bayes' Rule

Law of Total Probability

Bayes' Rule

Properties of a PMF

Law of Total Probability & Bayes' Rule

Law of Total Probability

Bayes' Rule

Bayes' Rule

andom Variables

$$0 \le p_X(x) \le 1, \ \forall x \in R$$

• $\{x \in \mathbb{R} : p_X(x) \neq 0\}$ is countable

Bayes' Rule

andom Variables

$$0 \le p_X(x) \le 1, \ \forall x \in R$$

• $\{x \in \mathbb{R} : p_X(x) \neq 0\}$ is countable

Bayes' Rule

- $0 \le p_X(x) \le 1, \ \forall x \in R$
- $\{x \in \mathbb{R} : p_X(x) \neq 0\}$ is countable
- $\bullet \ \sum_{x} p_X(x) = 1$

Let *X* be a random variable with pmf defined as follows:

$$p_X(x) = \begin{cases} k(5-x) & \text{if } x = 0, 1, 2, 3, 4 \\ 0 & \text{otherwise} \end{cases}$$

- Find the value of k that makes $p_X(x)$ a legitimate pmf.
- What is the probability that *X* is between 1 and 3 inclusive?
- If X is not 0, what is the probability that X is less than 3?