Introduction of this course

李宏毅

Hung-yi Lee

Welcome our TAs

林資偉

盧柏儒

方為

宋昀蓁

賴顗安

沈家豪

林賢進

敖家維

吳柏瑜

What are we going to learn?

What is Machine Learning?

What is Machine Learning?

Machine Learning ≈ Looking for a Function

Speech Recognition

$$f($$
 $)=$ "How are you"

Image Recognition

Playing Go

Dialogue System

$$f($$
 "Hi" $)=$ "Hello" (what the user said) (system response)

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

A set of function

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_2($$

$$)=$$
 "money"

$$f_1($$

$$f_2($$

$$) =$$
 "snake"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Training
Data

function f

function input:

function output: "monkey"

"cat"

"dog"

Image Recognition:

Framework

$$f(\bigcap)=$$
 "cat"

Regression

The output of the target function f is "scalar".

預測 PM2.5

HW1

Training Data:

Input:

Input:

9/12 上午 PM2.5 = 30 9/13 上午 PM2.5 = 25

Output:

9/03 上午 PM2.5 = 100

Output:

9/14 上午 PM2.5 = 20

Classification

Binary Classification

Multi-class
 Classification

Class 1, Class 2, ... Class N

Function f

Input

Binary Classification

Multi-class Classification

Classification - Deep Learning

Image Recognition

Training Data

Classification - Deep Learning

Playing GO

Training Data

一堆棋譜

進藤光 v.s. 社清春

黑: 5之五 → 白: 天元 → 黑: 五之5

Classification - Deep Learning

Playing GO

Training Data

一堆棋譜

進藤光 v.s. 社清春

黑: 5之五 → 白: 天元 → 黑: 五之5

Input: 黑: 5之五 天元

Output:

Input:

黑:5之五、白:天元 五之5

Training Data:

Input/output pair of target function

Function output = label

Semi-supervised Learning

For example, recognizing cats and dogs

Labelled data

Unlabeled data

(Images of cats and dogs)

Transfer Learning

For example, recognizing cats and dogs

Labelled data

Data not related to the task considered

(can be either labeled or unlabeled)

Unsupervised Learning

 Machine Reading: Machine learns the meaning of words from reading a lot of documents without

http://top-breaking-news.com/

Unsupervised Learning

Ref: https://openai.com/blog/generative-models/

Unsupervised Learning

Machine listens to lots of audio book

[Chung & Lee, INTERSPEECH 2016]

How about machine watch TV?

Learning Map

Structured Learning

- Beyond Classification

"機器學習"

"Machine Learning"

Machine Translation

長門

實玖瑠

人臉辨識

Learning Map

Reinforcement Learning

Supervised v.s. Reinforcement

Supervised v.s. Reinforcement

Supervised:

Next move: **"5-5"**

Next move: "3-3"

Reinforcement Learning

First move ____ many moves

Alpha Go is supervised learning + reinforcement learning.

Why I need to learn Machine Learning?

AI 即將取代多數的工作?

New Job in Al Age

AI訓練師

Manual Line and Line

(機器學習專家、 資料科學家)

http://www.express.co.uk/news/science/651202/First-step-towards-The-Terminator-becoming-reality-AI-beats-champ-of-world-s-oldest-game

AI訓練師

機器不是自己會學嗎? 為什麼需要 AI 訓練師

> 戰鬥是寶可夢在打, 為什麼需要寶可夢訓練師?

AI訓練師

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

寶可夢訓練師

- 寶可夢訓練師要挑選適合的寶可夢來戰鬥
 - 寶可夢有不同的屬性
- 召喚出來的寶可夢不一定 聽話
 - E.g. 小智的噴火龍
 - 需要足夠的經驗

AI訓練師

- 在 step 1, AI訓練師要挑 選合適的模型
 - 不同模型適合處理不同的問題
- 不一定能在 step 3 找出 best function
 - E.g. Deep Learning
 - 需要足夠的經驗

http://www.gvm.com.tw/webonly_content_10 787.html

AI訓練師

- 厲害的 AI , AI 訓練師功不可沒
- •讓我們一起朝 AI 訓練師之路邁進

Policy

上課教材

- 以後上課會錄音
- 上課投影片和錄音會放到 ceiba 和李宏毅的個人網頁上
 - 李宏毅的個人網頁:
 http://speech.ee.ntu.edu.tw/~tlkagk/courses_M
 L16.html

FB社團

- 社團: Machine Learning (2016, Fall)
 - https://www.facebook.com/groups/1774853276101781 /
- 有問題可以直接在 FB社團上發問
 - 如果有同學知道答案請幫忙回答
- 有想法也可以在 FB社團上發言
- 會紀錄好的問題、答案、留言,期末會加分

評量方式

- 不點名、不考試
- 作業:沒有分組、每個人都要繳交
 - 作業一(10%): 9/30 10/14(二週)
 - 作業二 (10%): 10/14 10/28 (二週)
 - 作業三 (10%): 10/28 11/18 (三週)
 - 作業四 (10%): 11/18 12/02 (二週)
- 期末專題 (60%): 分組進行
 - 以比賽方式進行

評量方式-期末專題

- 11/18 公告
- 2~4人一組
- 進行方式: 會公告幾個可能的題目給同學們選擇
 - Intrusion Detection比賽
 - Fintech 比賽 (規劃中)
 - 指定的 Kaggle 比賽
- 最後會有組內互評

加簽

- •助教會公告作業 0,今天晚上 10:00 前完成
 - 作業 O 跟機器學習無關,只是測驗基礎程式能力
- 如果可以解決空間的問題,完成作業 0 就加簽, 助教會公告授權碼取得方式
 - 但如果無法解決,就不得不有所篩選
 - 這學期沒修到也不用太難過,未來還會再開