Extra credit problems

Math 485

4. (solved) Assume that the sequence d_1, \ldots, d_p is graphic, $d_i \geq 1$ for each i and

$$d_1 + \ldots + d_p \ge 2 \cdot (p-1).$$

Show that there is a connected graph G with the degree sequence d_1, \ldots, d_p .

2. Assume d_1, \ldots, d_p is a sequence of integers in a nonincreasing order. Show that it is multigraphic if and only if $d_p \geq 0$ and

$$d_1 \le d_2 + \ldots + d_p.$$

(A sequence of integers d_1, \ldots, d_p is called *multigraphic* if it appears as a sequence of degrees of a multigraph.)

3. (solved) Show that in any connected graph G there is a vertex v such that G-v is connected.

4. Let G be a critical graph and $\chi(G) = k + 1$. Show after removing any k - 1 edges from G the obtained graph remains connected.

5. Assume both sequences d_1, \ldots, d_p and $d_1 - 1, \ldots, d_p - 1$ are graphic. Show that there is a graph with a 1-factor and with the degree sequence d_1, \ldots, d_p .

6. (solved) Show that any 4-regular graph has a 2-factor.

7. Show that any edge of cubic graph lies in an even number of Hamiltonian cycles.

8. (solved) Let G be a connected graph. Show that any two paths of maximum length in G have a common vertex.

9. Assume that the edges of a complete graph are colored in two colors. Show that there is a Hamiltonian cycle which either monochromatic or consists of two monochromatic paths.

10. Assume two trees R and S have the vertices r_1, \ldots, r_n and s_1, \ldots, s_n correspondingly. Assume that $R - r_i$ is isomorphic to $S - s_i$ for each i. Show that R is isomorphic to S.

- 11. Assume that G is 3-regular connected graph such that for any two vertices v, w of G there is an isomorphism $G \to G$ which sends v to w. Prove that G remains connected after removing any 2 edges.
- 12. Let G be a connected graph. Given any two vertices v, w in G, denote by d(v, w) the length of a shortest path containing v to w.

Assume that G has no triangles and

$$d(x,y) + d(v,w) = \max\{d(x,v) + d(y,w), d(x,w) + d(y,v)\}\$$

for any 4 vertices x, y, v, w in G. Show that G is a tree.

13. Suppose p = r(m, n) is the Ramsey number for m and n.

Assume that G results from K_p by deleting a single edge. Show that G has a red/blue edge coloring with no red K_m and no blue K_n .