₽		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_N
	0	FDA15	9.30	Low Fat	0.016047	Dairy	249.80
	1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2€
	2	FDN15	17.50	Low Fat	0.016760	Meat	141.61
	3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.09
	4	NCD19	8.93	Low Fat	0.000000	Household	53.86
	4						+

Pre-Processing for categorical Variables

```
## 1. Checking for null values
df.isnull().sum()
```

```
Item_Identifier 0
Item_Weight 1463
Item_Fat_Content 0
Item_Visibility 0
Item_Type 0
Item_MRP 0
Outlet_Identifier 0
Outlet_Establishment_Year 0
Outlet_Size 2410
Outlet_Location_Type 0
Outlet_Type 0
Item_Outlet_Sales 0
dtype: int64
```

df.isnull().sum()/len(df)*100

Item Identifier	0.000000
 Item_Weight	17.165317
Item_Fat_Content	0.000000
<pre>Item_Visibility</pre>	0.000000
Item_Type	0.000000
Item_MRP	0.000000
Outlet_Identifier	0.000000
Outlet_Establishment_Year	0.000000
Outlet_Size	28.276428
Outlet_Location_Type	0.000000
Outlet_Type	0.000000
<pre>Item_Outlet_Sales</pre>	0.000000
dtype: float64	

Drop the variable outlet_size

df_new=df.drop('Outlet_Size', axis =1)

df_new.isnull().sum()/len(df_new)*100

Item_Identifier	0.000000
Item_Weight	17.165317
Item_Fat_Content	0.000000
Item_Visibility	0.000000
Item_Type	0.000000
Item_MRP	0.000000
Outlet_Identifier	0.000000
Outlet_Establishment_Year	0.000000
Outlet_Location_Type	0.000000
Outlet_Type	0.000000
Item_Outlet_Sales	0.000000
dtype: float64	

```
df.dtypes
```

```
Item_Identifier
                               object
__
Item_Weight
                              float64
Item Fat Content
                               object
Item_Visibility
Item_Type
                              float64
                               object
                               float64
{\tt Item\_MRP}
Outlet_Identifier
                               object
Outlet_Establishment_Year
                                int64
Outlet_Size
                               object
Outlet_Location_Type
                               object
Outlet_Type
                               object
Item_Outlet_Sales
                              float64
dtype: object
```

df_new.describe()

	Item_Weight	<pre>Item_Visibility</pre>	Item_MRP	Outlet_Establishment_Year	Item_Out
count	7060.000000	8523.000000	8523.000000	8523.000000	8!
mean	12.857645	0.066132	140.992782	1997.831867	2
std	4.643456	0.051598	62.275067	8.371760	17
min	4.555000	0.000000	31.290000	1985.000000	
25%	8.773750	0.026989	93.826500	1987.000000	}
50%	12.600000	0.053931	143.012800	1999.000000	17
75%	16.850000	0.094585	185.643700	2004.000000	3.
max	21.350000	0.328391	266.888400	2009.000000	130

df_new["Item_Weight"]=df_new["Item_Weight"].fillna(12.65)

```
df_new.isnull().sum()
```

```
Item_Identifier
Item_Weight
Item_Fat_Content
Item_Visibility
                            0
Item_Type
                            0
Item_MRP
Outlet_Identifier
                            0
Outlet Establishment Year
                            0
Outlet_Location_Type
                            0
Outlet_Type
                            0
Item_Outlet_Sales
                            0
dtype: int64
```

```
df_new['Item_Fat_Content'].unique() ## Checking the unique values for categorical variable
    array(['Low Fat', 'Regular', 'low fat', 'LF', 'reg'], dtype=object)

### Need to replace all the repititive values to unique values i.e. Low Fat, Regular

df_new["Item_Fat_Content"] = df_new["Item_Fat_Content"].str.replace("low fat", "Low Fat")

df_new["Item_Fat_Content"] = df_new["Item_Fat_Content"].str.replace("LF", "Low Fat")

df_new["Item_Fat_Content"] = df_new["Item_Fat_Content"].str.replace("reg", "Regular")

df_new['Item_Fat_Content'].unique()
    array(['Low Fat', 'Regular'], dtype=object)

df.head()
```

```
Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_N
                      FDA15
                                        9.30
                                                                              0.016047
                                                          Low Fat
                                                                                               Dairy 249.80
                      DRC01
                                        5.92
                                                           Regular
                                                                              0.019278 Soft Drinks
                                                                                                        48.2€
       1
df_new['Item_Type'].unique()
      array(['Dairy', 'Soft Drinks', 'Meat', 'Fruits and Vegetables',
               'Household', 'Baking Goods', 'Snack Foods', 'Frozen Foods', 
'Breakfast', 'Health and Hygiene', 'Hard Drinks', 'Canned', 
'Breads', 'Starchy Foods', 'Others', 'Seafood'], dtype=object)
df_new['Outlet_Identifier'].unique()
      array(['0UT049', '0UT018', '0UT010', '0UT013', '0UT027', '0UT045', '0UT017', '0UT046', '0UT035', '0UT019'], dtype=object)
df_new['Outlet_Establishment_Year'].nunique()
      9
Now We have to seperate the categorical variables and numerical variables
df_new.dtypes
      Item_Identifier
                                           object
      Item Weight
                                         float64
      Item_Fat_Content
                                          object
      Item_Visibility
                                          float64
      Item_Type
                                          object
      Item_MRP
                                         float64
      Outlet_Identifier
                                          object
      Outlet_Establishment_Year
                                           int64
      Outlet_Location_Type
                                           object
      Outlet_Type
                                          object
      Item_Outlet_Sales
                                         float64
      dtype: object
```

→ change the datatypes for Outlet_establishment_Year as it content only 9 unique values

```
df_new["Outlet_Establishment_Year"]=df_new["Outlet_Establishment_Year"].astype("category")
df_new.dtypes
     Item_Identifier
                                     object
     Item_Weight
                                    float64
                                     object
     Item Fat Content
     {\tt Item\_Visibility}
                                    float64
     Item_Type
                                     object
     {\tt Item\_MRP}
                                    float64
     Outlet_Identifier
                                     object
     Outlet_Establishment_Year
                                   category
     Outlet_Location_Type
                                     object
     Outlet_Type
                                     object
     Item_Outlet_Sales
                                    float64
     dtype: object
df_num=df_new.select_dtypes(include=["int64", "float64"])
df_cat=df_new.select_dtypes(include=["object","category"])
df_num.head()
```

df_cat.head()

	Item_Identifier	Item_Fat_Content	<pre>Item_Type</pre>	Outlet_Identifier	Outlet_Establish
0	FDA15	Low Fat	Dairy	OUT049	
1	DRC01	Regular	Soft Drinks	OUT018	
2	FDN15	Low Fat	Meat	OUT049	
4					>

Dropping the dependent variables.

df_num=df_num.drop('Item_Outlet_Sales', axis=1)

df_num.head()

	Item_Weight	Item_Visibility	Item_MRP
0	9.30	0.016047	249.8092
1	5.92	0.019278	48.2692
2	17.50	0.016760	141.6180
3	19.20	0.000000	182.0950
4	8.93	0.000000	53.8614

df_cat.head()

	Item_Identifier	Item_Fat_Content	Item_Type	Outlet_Identifier	Outlet_Establish
0	FDA15	Low Fat	Dairy	OUT049	
1	DRC01	Regular	Soft Drinks	OUT018	
2	FDN15	Low Fat	Meat	OUT049	
4					>

df_num.describe()

	Item_Weight	Item_Visibility	Item_MRP
count	8523.000000	8523.000000	8523.000000
mean	12.822002	0.066132	140.992782
std	4.226849	0.051598	62.275067
min	4.555000	0.000000	31.290000
25%	9.310000	0.026989	93.826500
50%	12.650000	0.053931	143.012800
75%	16.000000	0.094585	185.643700
max	21.350000	0.328391	266.888400

 $\ensuremath{\mbox{\#\#}}$ no need to do transformation as data is normally distributed

Applying the scaling techniques

from sklearn.preprocessing import MinMaxScaler, StandardScaler

mn=MinMaxScaler()

df_sc=mn.fit_transform(df_num)

 $\label{lem:df_sc_df_pd_def} $$ df_sc_df_pd_DataFrame(df_sc_,columns=df_num.columns,index=df_num.index) $$$

df_sc_df.head()

```
Item_Weight Item_Visibility Item_MRP
            0.282525
                              0.048866 0.927507
            0.081274
      1
                              0.058705 \quad 0.072068
      2
            0.770765
                             0.051037  0.468288
            0.871986
      3
                              0.000000
                                       0.640093
      4
            0.260494
                             0.000000 0.095805
## Preprocessing for categorical data
## Applying One-Hot Encoding
df_cat_dum = pd.get_dummies(df_cat, drop_first=True)
df_cat_dum.head()
```

	Item_Identifier_DRA24	Item_Identifier_DRA59	Item_Identifier_DRB01	Item_Identif
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	0	0	
4	0	0	0	
5 r	ows × 1596 columns			
4)

Combining the both numerical and categorical data after preprocessing

df_final = pd.concat([df_sc_df,df_cat_dum], axis=1)

df_final.head()

Item_Weight Item_Visibility Item_MRP Item_Identifier_DRA24 Item_Identifier_DRA 0 0.282525 0.048866 0.927507 0 1 0.081274 0.058705 0.072068 0 0.770765 0.468288 2 0.051037 0 3 0.871986 0.000000 0.640093 0 0.000000 0.095805 4 0.260494 0 5 rows × 1599 columns

```
X=df_final
y=df_new["Item_Outlet_Sales"]
```

from sklearn.model_selection import train_test_split

 $X_train, \ X_test, \quad y_train, \ y_train = train_test_split(X,y, \ test_size=0.2, \ random_state=1)$

from sklearn.linear_model import LinearRegression

```
y_train, X_train
```

```
(1070
          952.7598
6305
         1133.8574
8504
        4138.6128
5562
        1657.1762
1410
          679.1160
376
         5715.2272
7708
         4832.3764
3812
         2972.1312
3928
         2492.7552
7654
Name: Item_Outlet_Sales, Length: 1705, dtype: float64,
       Item_Weight ... Outlet_Type_Supermarket Type3
0.821375 ... 0
```

SEARCH STACK OVERFLOW

Colab paid products - Cancel contracts here

• ×