Задание 2.

Выполняется (в MATLAB) вариант задания, порядковый номер которого совпадает с порядковым номером в списке группы. Результаты (графические отображения спектров исходного и зашумленного сигналов, сохраненные в форматах JPEG или WMF), а также реализующий решение поставленной задачи скрипт MATLAB высылаются на проверку преподавателю на следующий адрес электронной почты

kp_andreichenko@renet.ru

с темой электронного письма

АСНИ-ИВТ-2-<Фамилия>-Отчет

Если не получается решить задачу, выслать сообщение с описанием ошибки с темой электронного письма

АСНИ-ИВТ-2-МатМоделир-ПМИ-1-<Фамилия>-Err В письме указать номер варианта.

Необходимо при помощи стандартных функций быстрого дискретного преобразования Фурье проанализировать и графически отобразить спектр исходного сигнала, представляющего сумму двух периодических функций с разными круговыми частотами $x(t) = A_1 f_1(\omega_1 t) + A_2 f_2(\omega_2 t)$

а затем проанализировать и графически отобразить спектр зашумленного сигнала с амплитудой шума, равной сумме амплитуд исходных периодических функций. Здесь $f_{1,2}:\mathbb{R}\to\mathbb{R}-2\pi$ - периодические функции с амплитудой 1.

Вариант
1. Принять
$$f_{\!\scriptscriptstyle 1}(t)=\frac{3}{2+\sin t}-2,\; f_{\!\scriptscriptstyle 2}(t)=\cos t,\; \omega_1=47\,,\;\; \omega_2=123\,,$$
 $A_{\!\scriptscriptstyle 1}=1,\; A_{\!\scriptscriptstyle 2}=0.7\,.$

Вариант 2. Принять
$$f_1(t)=\frac{3}{2+\cos t}-2$$
 , $f_2(t)=\sin t$, $\omega_1=57$, $\omega_2=175$, $A_1=1$, $A_2=0.7$.

Вариант 3. Принять
$$f_1(t)=\frac{3}{2}\frac{\sin t}{2+\sin t}+\frac{1}{2},\; f_2(t)=\cos t,\; \omega_1=53$$
 , $\omega_2=145$, $A_1=1$, $A_2=1$.

Вариант 4. Принять $f_{\!\scriptscriptstyle 1}(t)=\frac{3}{2}\frac{\cos t}{2+\cos t}+\frac{1}{2},\; f_{\!\scriptscriptstyle 2}(t)=\sin t\,,\; \omega_{\!\scriptscriptstyle 1}=65\,,$ $\omega_{\!\scriptscriptstyle 2}=156\,,\; A_{\!\scriptscriptstyle 1}=1\,,\; A_{\!\scriptscriptstyle 2}=1\,.$

Вариант 5. Принять $f_1(t)=\sqrt{5+4\sin t}-2$, $f_2(t)=\cos t$, $\omega_1=65$, $\omega_2=156$, $A_1=1$, $A_2=1$.

Вариант 6. Принять $f_1(t)=\sqrt{5+4\cos t}-2$, $f_2(t)=\sin t$, $\omega_1=53$, $\omega_2=145$, $A_1=1$, $A_2=1$.

Вариант 7. Принять $f_1(t)=\frac{3}{2}\frac{\sin t}{\sqrt{5+4\sin t}}+\frac{1}{2},\;\;f_2(t)=\cos t,\;\omega_1=63$, $\omega_2=150$, $A_1=1$, $A_2=0.5$.

Вариант 8. Принять $f_1(t)=\frac{3}{2}\frac{\cos t}{\sqrt{5+4\cos t}}+\frac{1}{2},\;\;f_2(t)=\sin t,\;\omega_1=77,$ $\omega_2=133$, $A_1=1$, $A_2=0.5$.

Вариант 9. Принять $f_1(t)=\sin\biggl(\frac{\pi}{2}\sin t\biggr),\;\;f_2(t)=\cos t,\;\omega_1=37\;,\;\;\omega_2=150$, $A_1=1,\;A_2=0.7$.

Вариант 10. Принять $f_1(t)=\sin\left(\frac{\pi}{2}\cos t\right),\;\;f_2(t)=\sin t\;,\;\omega_1=43\;,$ $\omega_2=134\;,\;A_1=1\;,\;A_2=0.7\;.$

Вариант 11. Принять $f_1(t)=\frac{\sin(3\sin t)}{\sin(3)},\ f_2(t)=\cos t,\ \omega_1=47\,,\ \omega_2=123\,,$ $A_1=1,\ A_2=1\,.$

Вариант 12. Принять $f_1(t)=\frac{\sin(3\cos t)}{\sin(3)},\; f_2(t)=\sin t\;,\; \omega_1=52\;,\;\; \omega_2=147\;,$ $A_1=1,\;A_2=1\;.$

Вариант 13. Принять $f_1(t)=\frac{1}{\ln 3}\ln\frac{5+4\sin t}{3},\ f_2(t)=\cos t,\ \omega_1=51,$ $\omega_2=175,\ A_1=1,\ A_2=0.6$.

Вариант 14. Принять $f_1(t)=\frac{1}{\ln 3}\ln\frac{5+4\cos t}{3},\ f_2(t)=\sin t,\ \omega_1=48$, $\omega_2=163$, $A_1=1$, $A_2=0.75$.