(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 11. Oktober 2001 (11.10.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/74908 A2

(51) Internationale Patentklassifikation⁷: 2/38, 293/00

C08F 2/00,

(21) Internationales Aktenzeichen: PCT/EP01/03787

(22) Internationales Aumeldedatum:
3. April 2001 (03.04.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 100 16 651.2 4. April 2000 (04.04.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): CHRISTIE, David [AU/DE]; Nietzschestrasse 11, 68165 Mannheim (DE). HAREMZA, Sylke [DE/DE]; Ringstrasse 13, 69151 Neckargemünd (DE). BRINKMANN-RENGEL, Susanne [DE/DE]; Bitzer Pfad 1a, 55270 Ober-Olm (DE). RAETHER, Roman, Benedikt [DE/DE]; Albert-Schweitzer-Strasse 27, 67117 Limburgerhof (DE).

(74) Anwälte: KINZEBACH, Werner usw.; Reitstöttes, Kinzebach & Partner, Sternwartstrasse 4, 81679 München (DE).

(81) Bestimmungsstaat (national): US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR PRODUCING POLYMERS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON POLYMEREN

(57) Abstract: The invention relates to a method for producing polymers. According to said method, at least one first ethylenically unsaturated monomer is subjected to a radically induced polymerization in the presence of stable free radicals or sources of stable free radicals and a compound containing at least a free sulphanyl group, to obtain a polymer, whereby the molar ratio of the compound containing a free sulphanyl group to the stable free radicals ranges between 0.05 and 1.1. The rate of polymerization is significantly increased by the compound containing a free sulphanyl group.

(57) Zusammenfassung: Beschrieben wird ein Verfahren zur Herstellung von Polymeren, wobei wenigstens ein erstes ethylenisch ungesättigtes Monomer in Gegenwart stabiler freier Radikale oder Quellen stabiler freier Radikale sowie einer Verbindung mit wenigstens einer freien Thiolgruppe einer radikalisch initiierten Polymerisation unter Erhalt eines Polymeren unterzogen wird, wobei das molare Verhältnis von Verbindung mit freier Thiolgruppe zu stabilen freien Radikalen im Bereich von 0,05 bis 1,1 liegt. Die Polymerisations geschwindigkeit wird durch die Verbindung mit freier Thiolgruppe deutlich gesteigert.

Verfahren zur Herstellung von Polymeren

Beschreibung

5

Die Erfindung betrifft ein Verfahren zur Herstellung von Polymeren mit enger Molekulargewichtsverteilung sowie ein nach dem Verfahren hergestelltes Polymer.

- 10 Üblicherweise weisen durch radikalisch initiierte Polymerisation ethylenisch ungesättigter Monomere hergestellte Polymere den Nachteil auf, dass das Molekulargewicht der Polymerketten nicht linear mit dem Polymerisationsumsatz zunimmt und die Polymerketten des resultierenden Polymerisats kein einheitliches Molekular-15 gewicht aufweisen. Das durch radikalische Polymerisation erhältliche Polymerisat weist daher normalerweise einen hohen Polydispersitätsindex PDI auf (PDI = M_w/M_n , mit M_w = gewichtsmittleres Molekulargewicht des Polymerisats und M_n = zahlenmittleres Molekulargewicht des Polymerisats). Dies hat seine Ursache zum einen in 20 den Halbwertszeiten der Radikalstarter, die zwischen einigen Minuten und mehreren Stunden liegen können. Dadurch beginnt das Wachstum nicht für alle Polymerketten zum selben Zeitpunkt, weshalb während der Reaktion Ketten mit unterschiedlicher Kettenlänge entstehen. Zum anderen reagieren die wachsenden Polymerket-25 ten miteinander unter Kombination bzw. Disproportionierung, was zu einem Abbruch des Kettenwachstums führt. Da derartige Abbruchreaktionen während der gesamten Reaktionszeit auftreten, führt
- 30 Um Polymerisate mit enger Molekulargewichtsverteilung zu erhalten, soll das Wachstum der Kette für alle Polymermoleküle möglichst zum selben Zeitpunkt beginnen und Kettenabbruchsreaktionen sollten unterdrückt werden.

dies ebenfalls zu unterschiedlichen Kettenlängen im Polymerisat.

35 In der WO 94/11412 wird ein Polymerisationsverfahren zur Herstellung eines thermoplastischen Harzes beschrieben, wobei eine Mischung aus einem Radikalstarter, einem stabilen freien Radikal und zumindest einem polymerisierbares Monomeren erhitzt wird. Es werden Polymere mit enger Polydispersität erhalten. Als stabiles 40 freies Radikal werden TEMPO (2,2,6,6-Tetramethyl-1-piperidinyloxy) und PROXY (2,2,5,5-Tetramethyl-1-pyrrolidinyloxy) und deren Derivate vorgeschlagen.

2

Weitere Verfahren zur kontrollierten radikalischen Polymerisation, d. h. zur radikalischen Polymerisation in Gegenwart stabiler freier Radikale, sind in den EP-A-0 735 052, US-A-5,322,912, US-A-5,412,047 und GB 1,124,009 beschrieben.

5

Die in den genannten Schriften beschriebenen Verfahren haben jedoch den Nachteil, dass die Polymerisation in Gegenwart der stabilen freien Radikale nur sehr langsam und mit nicht zufriedenstellender Umsatzrate verläuft.

10

In der EP-A-0 735 052 wird ein Polymerisationsverfahren zur Herstellung thermoplastischer Harze beschrieben, bei dem zur Steigerung der Polymerisationsgeschwindigkeit der kontrollierten radikalischen Polymerisation bestimmte Sulfonsäuresalze mitverwendet werden. Besonders bevorzugt wird 2-Fluoro-1-methylpyridinium-ptoluolsulfonat verwendet. Die beschriebenen Sulfonsäuresalze sind allerdings nicht ohne Weiteres verfügbar und aufgrund ihres Fluorgehalts in bestimmten Anwendungen unerwünscht.

20 Aufgabe der Erfindung ist daher, ein alternatives Verfahren zur Herstellung von Polymeren mit enger Molekulargewichtsverteilung zur Verfügung zu stellen, das im Vergleich zu bekannten kontrollierten radikalischen Polymerisationen eine größere Reaktionsgeschwindigkeit und höhere Umsatzraten ermöglicht.

25

Diese Aufgabe wird durch ein Verfahren zur Herstellung von Polymeren gelöst, wobei wenigstens ein erstes ethylenisch ungesättigtes Monomer in Gegenwart stabiler freier Radikale oder Quellen stabiler freier Radikale sowie einer Verbindung mit wenigstens

30 einer freien Thiolgruppe einer radikalisch initiierten Polymerisation unter Erhalt eines Polymeren unterzogen wird, wobei das molare Verhältnis von Verbindung mit freier Thiolgruppe zu stabilen freien Radikalen im Bereich von 0,05 bis 1,1 liegt.

- 35 Überraschenderweise hat sich gezeigt, dass durch Zusatz von Verbindungen, die wenigstens eine freie Thiolgruppe aufweisen, eine deutliche Steigerung der Polymerisationsgeschwindigkeit erreicht werden kann, wobei gleichzeitig eine Molekulargewichtskontrolle erhalten bleibt. Die Verbindung mit wenigstens einer freien
- 40 Thiolgruppe wird in solcher Menge eingesetzt, dass das molare Verhältnis von Verbindung mit freier Thiolgruppe zu stabilem freien Radikal im Bereich von 0,05 bis 1,1, vorzugsweise 0,05 bis 0,8, insbesondere 0,1 bis 0,7 liegt. Bei einer Menge unterhalb des angegebenen Bereichs wird keine nennenswerte polymerisations-
- 45 geschwindigkeitssteigernde Wirkung beobachtet. Bei einer Menge oberhalb des angegebenen Bereichs tritt keine weitere Geschwin-

3

digkeitssteigerung ein, und es werden Polymere mit unerwünscht niedrigen Molekulargewichten erhalten.

Die nach dem erfindungsgemäßen Verfahren hergestellten Polymere 5 weisen in der Regel einen Polydispersitätsindex im Bereich von 1,1 bis 5, vorzugsweise 1,2 bis 3,5 und insbesondere 1,3 bis 2,5 auf.

Zur Durchführung der erfindungsgemäßen Verfahren wird zweckmäßi-10 gerweise eine Reaktionsmischung, die ein stabiles freies Radikal oder eine Quelle eines stabilen freien Radikals, wenigstens ein ethylenisch ungesättigtes Monomer sowie eine Verbindung mit wenigstens einer freien Thiolgruppe und - soweit erforderlich - einen Radikalstarter sowie gegebenenfalls Lösungsmittel und/oder 15 übliche Polymerisationshilfsstoffe enthält, auf eine erhöhte Reaktionstemperatur, z. B. 40 bis 200 °C, insbesondere 60 bis 150 °C, erwärmt. Nach erfolgter Reaktion und Abkühlen kann das Polymere isoliert und gegebenenfalls gewaschen und getrocknet werden. Werden als Quelle für die stabilen freien Radikale die nach-20 stehend näher erläuterten Radikalbildner eingesetzt, kann sich der Zusatz eines separaten Radikalstarters erübrigen. Alternativ kann die radikalische Polymerisation auch in Abwesenheit von Radikalstartern thermisch initiiert werden, insbesondere bei Verwendung vinylaromatischer Monomere, wie Styrol. Selbstverständ-25 lich können auch Gemische ethylenisch ungesättigter Monomere verwendet werden.

Das Verfahren eignet sich auch zur Herstellung von Blockcopolymeren. Dazu wird wenigstens ein zweites ethylenisch ungesättigtes

30 Monomer in Gegenwart des vorstehend erhaltenen Polymers einer radikalischen Polymerisation unterzogen. Geeigneterweise gibt man zu dem – gegebenenfalls isolierten – Polymeren das zweite ethylenisch ungesättigte Monomer, das in der Regel verschieden vom ersten ethylenisch ungesättigten Monomer ist, gegebenenfalls unter

35 Zusatz frischer Mengen von Radikalstarter und freien stabilen Radikalen, und erwärmt das Gemisch zur Polymerisation. Nach dem Abkühlen kann ein Blockcopolymer isoliert werden, das gegebenenfalls gewaschen und getrocknet wird. Unter einem "zweiten ethylenisch ungesättigten Monomer" soll vorliegend auch ein Monomerenden gemisch verstanden werden, das hinsichtlich der konstituierenden Monomeren oder Zusammensetzung vom ersten ethylenisch ungesättigten Monomer verschieden ist.

Um höhere Blockcopolymere zu erhalten, kann nach Polymerisation
45 des zweiten Monomers ein drittes Monomer zugegeben werden und die Polymerisation in der gleichen Weise durchgeführt werden. Die Isolierung der intermediär entstehenden Polymere wird dann emp-

4

fohlen, wenn eine möglichst hohe Reinheit, scharfe Blockgrenzen und/oder eine hohe Homogenität innerhalb der Blöcke angestrebt werden.

5 Als Radikalstarter für die Polymerisation kommen prinzipiell alle Verbindungen in Betracht, die in der Lage sind, eine radikalische Polymerisation auszulösen. Geeignete Radikalstarter sind beispielsweise Peroxide, Hydroperoxide, Peroxodisulfate, Percarbonate, Peroxoester, Wasserstoffperoxid und Azoverbindungen. Bei-10 spiele für Initiatoren sind Wasserstoffperoxid, Dibenzoylperoxid, Dicyclohexylperoxidicarbonat, Dilauroylperoxid, Methylethylketonperoxid, Di-tert-butylperoxid, Acetylacetonperoxid, tert-Butylhydroperoxid, Cumolhydroperoxid, tert-Butylperneodecanoat, tert-Amylperpivalat, tert-Butylperpivalat, tert-Butylperneohexanoat, 15 tert-Butylperbenzoat, Lithium-, Natrium-, Kalium- und Ammoniumperoxodisulfat, Azoisobutyronitril, 2,2-Azobis(2-amidinopropan)dihydrochlorid, 2-(Carbamoylazo)isobutyronitril und 4,4-Azobis(4-cyanovaleriansäure). Die Radikalstarter können sowohl öllöslich als auch wasserlöslich sein und werden dem gewählten Po-20 lymerisationsmedium und der gewählten Polymerisationstemperatur in an sich bekannter Weise angepasst.

Als nach dem erfindungsgemäßen Verfahren polymerisierbare Monomere kommen alle diejenigen in Betracht, die wenigstens eine 25 ethylenisch ungesättigte Gruppe aufweisen. Die Monomere können einzeln oder als Gemische untereinander eingesetzt werden. Zu diesen Monomeren zählen Olefine, insbesondere α -Olefine, wie z. B. Ethylen oder Propylen, Cycloalkene, wie Cyclohexen oder Norbornen, vinylaromatische Monomere, wie Styrol, α -Methylstyrol, 30 o-Chlorstyrol oder Vinyltoluole, 1,1-Diphenylethylen und cisund/oder trans-Stilben, wobei die Phenylringe einen oder zwei unter Nitro, Hydroxy, Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Cyano, Sulfonat ausgewählte Substituenten aufweisen können, Vinyl- und Vinylidenhalogenide, wie Vinyl- oder Vinylidenchlorid, Ester aus 35 Vinylalkohol und 1 bis 12 C-Atome aufweisenden Monocarbonsäuren, wie Vinylacetat, Vinylpropionat, Vinyl-n-butyrat, Vinyllaurat, Ester aus Allylalkohol mit 1 bis 12 C-Atomen aufweisenden Monocarbonsäuren, wie Allylacetat, Allylpropionat, Allyl-n-butyrat und Allyllaurat, Ester aus vorzugsweise 3 bis 6 C-Atome aufwei-40 senden α,β -monoethylenisch ungesättigten Mono- und Dicarbonsäuren, wie insbesondere Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, mit im Allgemeinen 1 bis 12, vorzugsweise 1 bis 8 und insbesondere 1 bis 4 C-Atome aufweisenden Alkanolen, wie besonders Acrylsäure- und Methacrylsäuremethyl-, -ethyl-, -n-45 butyl-, -isobutyl-, -tert-butyl- und -2-ethylhexylester, Maleinsäuredimethylester oder Maleinsäure-n-butylester, Nitrile lpha,eta-monoethylenisch ungesättigter Carbonsäuren, wie Acrylnitril und

Methacrylnitril, sowie C₄- bis C₈-konjugierte Diene, wie 1,3-Butadien und Isopren. Ferner sind 3 bis 6 C-Atome aufweisende α,β-monoethylenisch ungesättigte Mono- und Dicarbonsäuren, deren Anhydride und deren Amide, wie z. B. Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure; Maleinsäureanhydrid; Acrylamid und Methacrylamid, N-Methylacrylamid, N-Ethylacrylamid, N-Isopropylacrylamid und N,N'-Dimethylacrylamid, ferner Vinylsulfonsäure und deren wasserlösliche Salze, sowie N-Vinylpyrrolidon, geeignet. Dies gilt ebenso für solche Monomere, die eine funktionelle Gruppe, z. B. eine Epoxy-, Hydroxy-, Ureido- oder N-Methylolgruppe aufweisen. Beispiele hierfür sind Glycidyl(meth)acrylate, Hydroxyalkyl(meth)acrylate, Aminoalkyl(meth)acrylate, N-Alkylolamide von 3 bis 10 C-Atome aufweisenden α,β-monoethylenisch ungesättigten Carbonsäuren sowie deren Ether mit 1 bis 4 C-Atomen aufweisenden Alkanolen.

Bevorzugt eingesetzte Monomere sind Styrol, Butadien, Acrylnitril, n-Butylacrylat, 2-Ethylhexylacrylat, Methylmethacrylat, n-Butyl- und t-Butylmethacrylat und Gemische davon.

. 20

Erfindungsgemäß geeignete Verbindungen mit wenigstens einer freien Thiolgruppe sind bevorzugt solche der allgemeinen Formel (I)

25

 $R^{3} - C - SH$ (I)

30

worin

- R¹ , R², und R³ unabhängig voneinander für Wasserstoff, Alkyl, Aryl, Aralkyl, Cycloalkyl, Heterocyclyl oder eine Gruppe -Y-Z stehen, wobei
- ausgewählt ist unter einer Einfachbindung, linearem, oder verzweigtem Alkylen, das gegebenenfalls durch ein oder mehrere, nicht benachbarte Sauerstoffatome unterbrochen sein kann, oder Arylen, das gegebenenfalls mit C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituiert ist, und
- z ausgewählt ist unter den folgenden funktionellen Gruppen: $-OR^4, -NR^4R^5, -N+R^4R^5R^6, -C(O)-R^4, C(O)-NR^4R^5, -OC(O)-OR^4, \\ -OC(O)-NR^4R^5, -N(R^6)-C(O)-R^4, -N(R^6)-C(O)-OR^4, \\ -N(R^6)-C(O)-NR^4R^5, -SR^4, -S(O)-R^4, -S(O)_2-R^4, -O-S(O)_2-OR^4, \\ Si(R^7)_3, -O-Si(R^7)_3, -S(O)_2-NR^4R^5, -P(O)(OR^4)_2,$

6

 $-P(O)(NR^4R^5)_2$, $-O-P(O)R^4(OR^5)$, $-Si(OR^7)_3$, $-OSi(OR^7)_3$, -CN, -OCN, -SCN, $-NO_2$ oder Halogen, sowie im Falle von sauren funktionellen Gruppen auch die Alkalimetall-, Erdalkalimetall- oder Ammoniumsalze, im Falle basischer Gruppen auch die Säureadditionssalze, und worin R^4 , R^5 , R^6 , und R^7 , unabhängig voneinander für Wasserstoff, Alkyl, Aryl, Aralkyl, Alkylcarbonyl oder Arylcarbonyl stehen; oder

R¹ oder R² gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cycloalkylrest stehen, der gegebenenfalls wenigstens eine der vorgenannten funktionellen Gruppen -Y-Z, einen doppelt gebundenen Sauerstoff oder gegebenenfalls Sauerstoff, Stickstoff oder Schwefel als Heteroatom aufweist; oder

15

5

R¹ und R² gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylfunktion, eine Iminofunktion, die gegebenenfalls mit Alkyl, Aryl oder Aralkyl substituiert ist, bedeuten; oder

20

- ${
 m R}^1$, ${
 m R}^2$ und ${
 m R}^3$ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Arylrest, der gegebenenfalls wenigstens eine der vorgenannten Gruppen -Y-Z aufweist, stehen; oder
- 25 R1, R2 und R3 gemeinsam für einen heterocyclischen Rest stehen.

"Alkyl" steht vorzugsweise für C₁-C₂₀-Alkyl; "Aryl" steht vorzugsweise für C₆-C₁₀-Aryl, insbesondere Phenyl; "Aralkyl" steht vorzugsweise für Phenyl-C₁-C₈-alkyl, insbesondere Benzyl und Phene-thyl; "Cycloalkyl" steht vorzugsweise für C₃-C₈-Cycloalkyl, insbesondere Cyclopentyl und Cyclohexyl; "Heterocyclyl" steht vorzugsweise für aromatische Fünfringe, in denen 1, 2, 3 oder 4 Atome von C verschieden sein können, und z. B. unter O, S und/oder N ausgewählt sind.

35

Bevorzugt ist die Verbindung mit mindestens einer freien Thiolgruppe ausgewählt unter Alkylmercaptanen, Aminoalkanthiolen, deren Mono- und Di-N-C1-C4-alkylderivaten; aromatischen Aminothiolen
sowie deren Mono- und Di-N-C1-C4-alkylderivaten; aliphatischen und
40 aromatischen Mercaptocarbonsäuren, Mercaptodicarbonsäuren und
Aminomercaptocarbonsäuren, deren N-Alkyl, N-Aryl, N-Aralkyl-Derivaten bzw. deren N,N-Dialkyl-, N,N-Diaryl-, N,N-Bis(aralkyl)derivaten, den Estern der genannten Carbonsäuren mit aliphatischen,
aromatischen oder araliphatischen Alkoholen; aromatischen und
45 aliphatischen Mercaptoalkoholen sowie Estern der Mercaptoalkohole
mit C1-C10-Alkancarbonsäuren, C6-C20-Arylcarbonsäuren oder C7-C20Aralkylcarbonsäuren; Mercaptodialkylketonen; Mercaptoalkylarylke-

7

tonen; Mercaptoalkyl- und Mercaptoarylsulfonsäuren sowie deren Alkali-, Erdalkali- und Ammoniumsalzen; Thioharnstoff, der gegebenenfalls an einem oder beiden Stickstoffatomen mit Alkyl, Aryl, Aralkyl, Alkylcarbonyl oder Arylcarbonyl substituiert ist; Thiosemicarbazid, das gegebenenfalls am Amin-Stickstoff mit Alkyl, Aryl, Aralkyl, Alkylcarbonyl oder Arylcarbonyl substituiert ist; Mercapto-substituierten Stickstoffheterocyclen, umfassend mercaptosubstituiertes Imidazol, Imidazolin, Thiazol, Thiazolin, Triazol, Thiadiazol und Oxazol, die gegebenenfalls mit Amino, Halogen, Alkyl oder Aryl substituiert sind und/oder einen ankondensierten, gegebenenfalls substituierten Benzolring aufweisen; aliphatische und aromatische Thiocarbonsäuren sowie deren Amide, Nalkyl- und N-Arylamide; Mercaptoalkyltrialkoxysilanen.

- 15 Die Verbindung mit mindestens einer freien Thiolgruppe ist insbesondere ausgewählt unter C1-C20-Alkylmercaptanen, vorzugsweise $C_4-C_{18}-Alkylmercaptanen$, wie Butanthiol oder tert-Dodecylmercaptan oder n-Dodecylmercaptan, 2-Aminoethanthiol, N-Methyl-, N,N-Dimethyl-, N-Ethyl- und N,N-Diethyl-2-aminoethanthiol, 2-, 3- und 20 4-Aminothiophenol, 2-Mercaptoessigsäure, 2-Mercaptopropionsäure, 2-Mercaptoisobuttersäure, 2-Mercaptobernsteinsäure, 2-, 3- und 4-Mercaptobenzoesäure, 2-Amino-3-mercapto-3-methylbutansäure, den Methyl-, Ethyl- und Phenylestern der genannten Carbonsäuren, 2-Hydroxyethanthiol, 2- und 3-Hydroxypropanthiol, 2- und 4-Hydro-25 xybutanthiol, 2-Mercaptobutan-1,4-diol, α-Thioglycerin, 2-Hydroxycyclopentanthiol, 2- und 4-Mercaptophenol, 2-Mercaptoethansulfonsäure, 2- und 3-Mercaptopropansulfonsäure, 2- und 4-Mercaptobutansulfonsäure sowie den Alkali-, Erdalkali- oder Ammoniumsalzen der genannten Sulfonsäuren, 1-Mercaptoaceton, Phenacylthiol, 30 4-Mercaptoacetophenon, 4-Mercaptobenzophenon, Thioharnstoff, N-Methyl-, N-Ethyl-, N-Alkyl-, N-Acetyl- und N-Phenylthioharnstoff, N, N-Dimethyl-, N, N-Diethyl-, N, N-Diisopropyl-, N, N-Di-n-butylund N,N-Diphenylthioharnstoff, Thiosemicarbazid, 4-Methyl-, 4-Ethyl-, 4-Phenylthiosemicarbazid, Mercaptothiadiazol, 35 2-Amino-5-mercaptothiadiazol, Thiazolin-2-thiol, Imidazolin-2-thiol, 3-Amino-5-mercaptotriazol, 2-Mercaptobenzimidazol, 2-Mercaptobenzoxazol und 2-Mercaptobenzthiazol, Thioessigsäure, Thiopropionsäure, Thiobenzoesäure, Thioacetamid, Thiobenzamid, 3-Mercaptopropyltrimethoxysilan und -triethoxysilan. $C_4-C_{18}-Alkyl-$ 40 mercaptane sind aufgrund ihrer Verfügbarkeit im Allgemeinen bevorzugt.
- Die stabilen freien Radikale können der Reaktionsmischung als solche zugesetzt werden oder sie können aus Radikalbildnern in 45 der Reaktionsmischung erzeugt werden. Stabile freie Radikale sind normalerweise nicht in der Lage, eine radikalische Polymerisation von Monomeren auszulösen. Diese Verbindungen können jedoch über

eine reversible Blockierung des Kettenendes eines Polymeren dessen Wachstum steuern, da stationär nur eine geringe Anzahl an freien radikalischen Kettenenden in der Reaktionsmischung vorliegt, wodurch die Wahrscheinlichkeit von irreversiblen Kettenab-5 bruchsreaktionen durch Kombination oder Disproportionierung verringert wird. Solche stabilen freien Radikale, die zur Kontrolle radikalischer Polymerisationen verwendet werden können, sind dem Fachmann bekannt.

- 10 Das stabile freie Radikal bzw. die Quelle stabiler freier Radikale sollte, bezogen auf die molare Menge an ethylenisch ungesättigten Monomeren, in einer Menge von 10^{-6} bis 10 Mol-\$, insbesondere 10^{-4} bis 5 Mol-\$, in der Reaktionsmischung enthalten sein.
- 15 Wird die Polymerisation durch Radikalstarter initiiert, wird das molare Verhältnis zwischen stabilem Radikal bzw. der Quelle stabiler freier Radikale und Radikalstarter im Allgemeinen zwischen 0,1 und 10, vorzugsweise 0,5 und 5, insbesondere 0,8 bis 4 gewählt.

Als stabile freie Radikale kommen vor allem freie N-Oxyl-Radikale in Betracht. Sie lassen sich beispielsweise durch folgende allgemeine Formel beschreiben:

25

30

worin R^a und R^b für organische Reste stehen, die miteinander verbunden sein können, wobei die Summe der Molekulargewichte von R^a und R^b mehr als 15, vorzugsweise mehr als 28 beträgt.

35 Geeignete N-Oxyl-Radikale weisen z. B. die folgenden Strukturen auf:

40

45 worin R für gleiche oder verschiedene Alkyl- Cycloalkyl- Aralkyl- oder Arylreste mit bis zu 24 C-Atomen steht, wobei geminale R-Reste auch paarweise zu einem Ringsystem verbunden sein können, und

9

X, Y und Z unabhängig voneinander für CR'₂, CR'OH, CR'(COOH), O, NR, S, SO₂, CO oder eine chemische Bindung stehen, mit der Maßgabe, dass maximal ein Rest X, Y oder Z für O oder S und maximal ein Rest X, Y oder Z für eine chemische Bindung steht. R' steht für Wasserstoff oder einen Alkyl-, Cycloalkyl-, Aralkyl- oder Arylrest mit bis zu 24 C-Atomen. Beispielsweise steht R für einen C₁ bis C₂₀-, insbesondere C₁ bis C₈-Alkylrest, einen C₅- oder C₆- Cycloalkylrest, einen Benzylrest oder einen Phenylrest. X-Y-Z ist beispielsweise -(CH₂)₂- oder -(CH₂)₃-, CH₂-CH(OH)-CH₂-, -CH₂-CO-O-10 oder -CH₂-O-.

Weiterhin kommen auch N-Oxylverbindungen mit aromatischen Substituenten wie die folgenden Strukturen in Betracht

wobei die aromatischen Ringe jeweils noch 1 bis 3 inerte Substituenten tragen können, wie z. B. C_1 - bis C_4 -Alkyl, C_1 - bis C_4 -Alkyl, C_1 - bis C_4 -Alkoxy, Ester, Amid oder Cyano.

25 Mit Vorteil werden N-Oxyl-Radikale eingesetzt, die sich von cyclischen Aminen ableiten, z. B. von Piperidin- oder Pyrrolidinverbindungen, die im Ring ein weiteres Heteroatom, wie Stickstoff, Sauerstoff oder Schwefel enthalten können, wobei dieses 30 Heteroatom nicht in Nachbarstellung zum Aminstickstoff steht. Die sterische Hinderung ist durch Substituenten in beiden Nachbarstellungen zum Aminstickstoff gegeben, wobei als Substituenten Kohlenwasserstoffreste in Betracht kommen, die alle 4 Wasserstoffatome der $\alpha\text{-CH}_2\text{-Gruppen}$ ersetzen. Beispielsweise seien als 35 Substituenten Phenyl, C3- bis C6-Cycloalkyl, Benzyl und insbesondere C_1 - bis C_6 -Alkylreste genannt, wobei die an demselben α -C-Atom gebundenen Alkylreste auch untereinander zu einem 5- oder 6-Ring verbunden sein können. Vorzugsweise werden als N-Oxyle sterisch gehinderte Aminderivate des 2,2,6,6-Tetraalkylpiperidins 40 eingesetzt.

Bevorzugte N-Oxyl-Verbindungen sind solche der allgemeinen Formel (II) oder (IIa)

$$\stackrel{\circ}{\circ} \stackrel{R^9}{\underset{R^9}{\bigvee}} \stackrel{R^8}{\underset{R^{10}}{\bigvee}}$$
(II)

 $\begin{array}{c|c}
R^9 & R^8 \\
\hline
O & N \\
R^9 & R^8
\end{array}$ Q (IIa)

15 wobei

R8 und R9 unabhängig voneinander jeweils C1- bis C4-Alkyl, Phenyl oder R8 und R9 gemeinsam mit dem C-Atom, an das sie gebunden sind, einen 5- oder 6-gliedrigen, gegebenenfalls substituierten, gesättigten Kohlenwasserstoffring, der gegebenenfalls mit C1-C2-Alkylen überbrückt oder mit einem weiteren 5- oder 6-gliedrigen Kohlenwasserstoffring anelliert ist und 1 oder 2 Heteroatome, ausgewählt unter O, S oder N, sowie 1 oder 2 Ketogruppen enthalten kann,

 R^{10} Wasserstoff, Hydroxy, Amino, SO_3M , OSO_3M , PO_3M , OPO_3M_2 , COOM, oder einen der folgenden Reste steht

40

45

wobei M für Wasserstoff oder ein Alkalimetall, vorzugsweise Li, Na und K steht,

 R^{11} Wasserstoff, C_1 - bis C_4 -Alkyl, C_1 - bis C_4 -Alkoxy, oder

R10 und R11 gemeinsam Sauerstoff oder NOH, oder

11

R¹⁰ und R¹¹ gemeinsam mit dem C-Atom, an das sie gebunden sind, einen 5- oder 6-gliedrigen, gegebenenfalls substituierten, gesättigten Ring bilden, der 1 oder 2 Heteroatome, ausgewählt unter O, S oder N, sowie 1 oder 2 Ketogruppen enthalten kann,

5

- R^{12} C_1 bis C_{12} -Alkyl, C_2 bis C_{12} -Alkenyl, C_6 bis C_{12} -Aryl oder C_7 bis C_{14} -Aralkyl,
- Q einen m-wertigen, über Kohlenstoff, Sauerstoff oder Stick-10 stoff oder Schwefel gebundenen organischen Rest mit vorzugsweise 2 bis 10 000 Atomen, insbesondere 4 bis 2 000 Atomen,
 - m 2 bis 100, vorzugsweise 2 oder 3,
- 15 q 1 bis 10

bedeuten.

R⁸ und R⁹ können C₁- bis C₄-Alkylgruppen, wie Methyl, Ethyl, n20 Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl oder tert-Butyl
sein oder sie können zusammen eine Tetra- oder Pentamethylengruppe bilden. Vorzugsweise sind R⁸ und R⁹ Methylgruppen.

Bevorzugte Reste Q sind beispielsweise die folgenden Reste 25

30

35

wobei

30 R^{13} C_1 - bis C_{12} -Alkyl, vorzugsweise C_1 - bis C_4 -Alkyl,

 R^{14} Wasserstoff oder C_1 - bis C_{12} -Alkyl, vorzugsweise Wasserstoff oder C_1 - bis C_4 -Alkyl,

35 x 1 bis 12

bedeuten.

45

Weitere geeignete N-Oxyle sind auch oligomere oder polymere Ver40 bindungen, welche als Polymerhauptkette ein Polysiloxan besitzen
und in der Seitenkette mit N-Oxyl-Gruppierungen substituiert
sind, welche sich vom 2,2,6,6-Tetraalkylpiperidin ableiten. Als
bevorzugte N-Oxylgruppierung wird dabei der 2,2,6,6-Tetramethylpiperidin-N-oxyl-Rest verwendet.

```
Bevorzugte Nitroxylverbindungen sind die folgenden:
   1-Oxyl-2,2,6,6-tetramethylpiperidin,
   1-Oxyl-2, 2, 6, 6-tetramethylpiperidin-4-ol,
   1-Oxyl-2,2,6,6-tetramethylpiperidin-4-on,
 5 1-0xyl-2,2,6,6-tetramethylpiperidin-4-yl-acetat,
   1-0xyl-2,2,6,6-tetramethylpiperidin-4-yl-2-ethylhexanoat,
   1-Oxyl-2,2,6,6-tetramethylpiperidin-4-yl-stearat,
   1-Oxyl-2,2,6,6-tetramethylpiperidin-4-yl-benzoat,
   1-Oxyl-2,2,6,6-tetramethylpiperidin-4-yl-(4-tert-butyl)benzoat,
10 Bis(1-oxy1-2,2,6,6-tetramethylpiperidin-4-yl)-succinat,
   Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-adipat,
   Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-sebacat,
   Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-n-butylmalonat,
   Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-phthalat,
15 Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-isophthalat,
   Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-terephthalat,
   Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-hexahydrotereph-
   thalat,
   N, N'-Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-adipinamid,
20 N-(1-0xyl-2,2,6,6-tetramethylpiperidin-4-yl)-caprolactam,
   N-(1-Oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-dodecylsuccinimid,
   N, N'-Bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-N, N'-bis-
   formyl-1,6-diaminohexan,
   4,4'-Ethylenbis(1-oxyl-2,2,6,6-tetramethylpiperazin-3-on),
25 Tris-(2,2,6,6-tetramethyl-1-oxyl-piperidin-4-yl)phosphit
   4-Hydroxy-2,6-diphenyl-2,6-dimethyl-1-oxyl-piperidin,
   4-Carboxy-2,2,6,6-tetramethyl-1-oxyl-piperidin,
   4-Carboxy-2,6-diphenyl-2,6-dimethyl-1-oxyl-piperidin,
   3-Carboxy-2,2,5,5-tetramethyl-1-oxyl-pyrrolidin,
30 3-Carboxy-2,5-diphenyl-2,5-dimethyl-1-oxyl-pyrrolidin,
   das Natrium-, Ammonium- oder Kaliumsalz des
   Schwefelsäurehalbesters des
   4-Hydroxy-2,2,6,6-tetramethyl-1-oxyl-piperidin,
   5,5-Dimethyl-3-spiro-cyclopentyl-morphol-2-on-4-oxyl,
35 5,5-Dimethyl-3-spiro-cyclohexyl-morphol-2-on-4-oxyl,
   5,5-Dimethyl-3-spiro-cyclopentyl-morpholin-4-oxyl,
   5,5-Dimethyl-3-spiro-cyclohexyl-morpholin-4-oxyl,
   Di-tert-butyl-nitroxyl,
   N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl-nitroxyl und
40 N-tert-butyl-1-phenyl-2-methylpropyl-nitroxyl.
   Als Quelle der stabilen freien Radikale können Radikalbildner
```

Als Quelle der stabilen freien Radikale können Radikalbildner verwendet werden, die dadurch gekennzeichnet sind, dass durch homolytische Spaltung, z.B. durch Thermolyse, einer chemischen Bindung als ein Fragment ein stabiles freies Radikal entsteht. Als anderes Fragment wird vorzugsweise ein C-Radikal gebildet, das als Radikalstarter der Polymerisationsreaktion geeignet ist.

14

Bevorzugte C-Radikale sind die Fragmente üblicher Polymerisationsinitiatoren, z. B. Methyl-, Ethyl-, Cyclohexyl-, Octyl-, $C(CN)(CH_3)_2$ -, $CHPhCH_3$ - oder $CH(CH_3)COOR$ -($R=C_1-C_4$ -Alkyl)-Radikale. Das C-Radikal kann außerdem für eine oligomere oder polymere 5 Kette aus Einheiten ethylenisch ungesättigter Monomere bestehen. Die Radikalbildner können hergestellt werden, indem man stabile freie Radikale - gegebenenfalls in Gegenwart einer geringen Menge ethylenisch ungesättigter Monomere - mit einem Polymerisationsinitiator erwärmt.

10

Es können Emulgatoren oder Schutzkolloide mitverwendet werden. Es kommen anionische, nichtionische, kationische und amphotere Emulgatoren in Betracht. Bevorzugt sind anionische Emulgatoren, beispielsweise Alkylbenzolsulfonsäure, sulfonierte Fettsäuren, Sul-15 fosuccinate, Fettalkoholsulfate, Akylphenolsulfate, und Fettalkoholethersulfate. Als nichtionische Emulgatoren können beispielsweise Alkylphenolethoxylate, Fettsäureethoxylate, Alkanolamidmethoxylate, Alkanolamidethoxylate, EO/PO-Blockcopolymere und Alkylpolyglucoside verwendet werden. Als kationische bzw. amphotere 20 Emulgatoren werden z. B. quaternisierte Aminoalkoxylate, Alkylbetaine, Alkylamidobetaine und Sulfobetaine verwendet. Typische Schutzkolloide sind z. B. Celluosederivate, Polyethylenglycol, Polypropylenglycol, Copolymerisate aus Ethylenglycol und Propylenglycol, Polyvinylacetat, Polyvinylalkohol, Polyvinylether, 25 Stärke und Stärkederivate, Dextran, Polyvinylpyrrolidon, Polyvinylpyridin, Polyethylenimin, Polyvinylimidazol, Polyvinylsuccinimid, Polyvinyl-2-methylsuccinimid, Polyvinyl-1,3-oxazolidon-2 und

30 Das erfindungsgemäße Verfahren kann als Lösungs-, Substanz-, Suspensions-, Fällungs-, Emulsions-, Miniemulsions- und Mikroemulsionspolymerisation, insbesondere in wässrigem Medium durchgeführt werden. Das Verfahren kann auch als inverse radikalische Emulsionspolymerisation durchgeführt werden. Geeignete Lösungs-35 mittel für eine Durchführung als Lösungspolymerisation sind z. B. aliphatische oder aromatische Kohlenwasserstoffe, wie Cyclohexan, Methylcyclohexan, Toluol, Ethylbenzol oder die Xylole. Die Durchführung des erfindungsgemäßen Verfahrens erfolgt in dem Fachmann an sich bekannter Weise. Lösungs-, Substanz- und Miniemulsionspo-40 lymerisationstechniken sind im Allgemeinen bevorzugt.

Polyvinyl-2-methylimidazolin.

Die Reaktionstemperatur wird zwischen 40 und 200 °C, vorzugsweise 60 bis 150 °C, gewählt. Geeignete Reaktionszeiten betragen zwischen 30 Minuten und 60 Stunden.

15

Die Erfindung wird durch die folgenden Beispiele näher veranschaulicht.

Beispiel 1

Die in der nachstehend Tabelle angegebenen Mengen 2,2,6,6-Tetramethylpiperidin-N-oxyl (TEMPO), tert-Dodecylmercaptan (t-DMK) und Dibenzoylperoxid (BPO) wurden in 360 g Styrol gelöst. Man versetzte das Gemisch mit 1 000 ml Cyclohexan und erwärmte es auf 10 95 °C. Die Probe wurde eine Stunde lang bei dieser Temperatur gehalten und dann auf 130 °C erwärmt. Die Proben wurden über die in der Tabelle angegebene Zeitspanne bei 130 °C gehalten. Anschließend wurden die Proben auf Raumtemperatur abgekühlt, in einem Überschuss Methanol gefällt, durch Filtration gesammelt, mehrmals 15 mit Methanol gewaschen und bei 80 °C im Vakuum getrocknet. In der Tabelle sind der Umsatz, das gewichtsmittlere Molekulargewicht (Mw), das zahlenmittlere Molekulargewicht (Mn) und der Polydispersitätsindex (PDI) des erhaltenen Polymers angegeben.

20 Tabelle

ſ		TEMPO	вро	t-DMK	Zeit	Umsatz	Mn	Mw	PDI
1		[g]	[g]	[g]	[h]	[%]	[g/mol]	[g/mol]	
İ	1	0,656	0,855	0,25	4	21,8	21200	28600	1,35
25					6	28,4	25200	35900	1,43
					23	57,8	30900	51400	1,67
Ì	2	0,656	0,855	0,50	4	31	15700	22000	1,40
					6	38,6	20600	30600	1,49
					23	64,5	23300	36800	1,58
30	3	0,656	0,855	1,00	4	30,8	18400	31100	1,69
					6	38,6	19200	34600	1,81
					23	64,5	21800	42500	1,95
1	4	0,656	0,855	1,70	4	32,9	n.b.	n.b.	
35					6	38,9			
	5	0,656	0,855	4,25	4	31,3	n.b.	n.b.	
					6	41,1			
	6	0,656	0,855	0	5	0		-	

n.b. = nicht bestimmt

In Fig. 1 ist der Umsatz in % nach 4 Stunden bei 130 °C bzw. nach 6 Stunden bei 130 °C in Abhängigkeit des molaren Verhältnisses von tert-Dodecylmercaptan zu TEMPO angegeben. Wie aus Fig. 1 ersichtlich ist, wird ohne Zusatz von tert-Dodecylmercaptan kein fest-stellbarer Umsatz beobachtet. Bei Zugabe solcher Mengen von tert-Dodecylmercaptan, dass das molare Verhältnis von tert-Dodecylmercaptan zu TEMPO im Bereich von 0,05 bis 1,1 liegt, wird eine

16

deutliche Steigerung der Polymerisationsgeschwindigkeit beobachtet. Die Verwendung größerer Mengen tert-Dodecylmercaptan führt zu keiner weiteren Steigerung der Polymerisationsgeschwindigkeit.

5 Beispiel 2

Man löste 4-Hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl (4-OH-TEMPO) (0,82 g) in Wasser (350 g). Benzoylperoxid (75 %ig in Wasser; 1,19 g), Hexadecan (4,8 g), Lumiten I-RA (Bis-isooctylsulfo-10 succinat-Natriumsalz; 50 %ig in Wasser; 4,8 g) und tert-Dodecylmercaptan (0,75 g) wurden zu einem Gemisch von Styrol (84,4 g) und n-Butylacrylat (155,7 g) gegeben. Man gab das Monomerengemisch zu der wässrigen Lösung von 4-OH-TEMPO und emulgierte mittels Ultrabeschallung (5 Min. bei der Einstellung 25 % und wei-15 tere 20 Min. bei 100 %). Nach der Emulgierung gab man weiteren Emulgator (C15-Alkylsulfonat-Natriumsalz; 40 %ig in Wasser; 12 g) in Wasser (10 g) dazu. Man füllte die Emulsion in ein druckdichtes Polymerisationsgefäß, verschloss das Gefäß und erwärmte die Emulsion 7 Stunden lang auf 130 °C. Anschließend kühlte man die 20 Emulsion ab, bestimmte gravimetrisch den Umsatz und analysierte das isolierte Polymer mittels GPC. Umsatz 86 %; zahlenmittleres Molekulargewicht 33 000 g/mol, Polydispersität 1,9.

Vergleichsbeispiel 3

25

Beispiel 2 wurde wiederholt, wobei jedoch das Monomergemisch kein tert-Dodecylmercaptan enthielt. Umsatz 44 %; zahlenmittleres Molekulargewicht 23 000 g/mol; Polydispersität 1,6.

30

35

17

Patentansprüche

Verfahren zur Herstellung von Polymeren, wobei wenigstens ein erstes ethylenisch ungesättigtes Monomer in Gegenwart stabiler freier Radikale oder Quellen stabiler freier Radikale sowie einer Verbindung mit wenigstens einer freien Thiolgruppe einer radikalisch initiierten Polymerisation unter Erhalt eines Polymeren unterzogen wird, wobei das molare Verhältnis von Verbindung mit freier Thiolgruppe zu stabilen freien Radikalen im Bereich von 0,05 bis 1,1 liegt.

- Verfahren nach Anspruch 1, wobei wenigstens ein zweites ethylenisch ungesättigtes Monomer in Gegenwart des Polymers des ersten ethylenisch ungesättigten Monomers einer radikalischen Polymerisation unter Erhalt eines Blockcopolymeren unterzogen wird.
- Verfahren nach Anspruch 1 oder 2, wobei das molare Verhältnis
 von Verbindung mit freier Thiolgruppe zu stabilen freien Radikalen im Bereich von 0,05 bis 0,8 liegt.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die Verbindung mit freier Thiolgruppe ausgewählt ist unter Verbindungen der allgemeinen Formel (I)

30

45

15

worin

- 35 R¹ , R², und R³ unabhängig voneinander für Wasserstoff, Alkyl, Aryl, Aralkyl, Cycloalkyl, Heterocyclyl oder eine Gruppe Y-Z stehen, wobei
- 40 ausgewählt ist unter einer Einfachbindung, linearem
 oder verzweigtem Alkylen, das gegebenenfalls durch
 ein oder mehrere, nicht benachbarte Sauerstoffatome
 unterbrochen sein kann, oder Arylen, das gegebenen-

18

falls mit $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$ oder Halogen substituiert ist, und

- ausgewählt ist unter den folgenden funktionellen Gruppen: $-OR^4$, $-NR^4R^5$, $-N+R^4R^5R^6$, $-C(O)-R^4$, 5 $C(O)-NR^4R^5$, $-OC(O)-OR^4$, $-OC(O)-NR^4R^5$, $-N(R^6)-C(O)-R^4$, $-N(R^6)-C(O)-OR^4$, $-N(R^6)-C(O)-NR^4R^5$, $-SR^4$, $-S(O)-R^4$, $-S(0)_2-R^4$, $-O-S(0)_2-OR^4$, $Si(R^7)_3$, $-O-Si(R^7)_3$, $-S(O)_2-NR^4R^5$, $-P(O)(OR^4)_2$, $-P(O)(NR^4R^5)_2$, $-O-P(O)R^4(OR^5)$, $-Si(OR^7)_3$, $-OSi(OR^7)_3$, CN, -OCN, -SCN, 10 -NO2 oder Halogenid, sowie im Falle von sauren funktionellen Gruppen auch die Alkalimetall-, Erdalkalimetall- oder Ammoniumsalze, im Falle basischer Gruppen auch Säureadditionssalze, und worin R4, R5, R6, und R7, unabhängig voneinander für Wasserstoff, Alkyl, 15 Aryl, Aralkyl, Alkylcarbonyl oder Arylcarbonyl stehen; oder
- R¹ oder R² gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Cycloalkylrest stehen, der gegebenenfalls wenigstens eine der vorgenannten funktionellen Gruppen Y-Z, einen doppelt gebundenen Sauerstoff oder gegebenenfalls Sauerstoff, Stickstoff oder Schwefel als Heteroatom aufweist; oder
- R¹ und R² gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylfunktion, eine Iminofunktion, die gegebenenfalls mit Alkyl, Aryl oder Aralkyl substituiert ist, bedeuten; oder

30

- R¹, R² und R³ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für einen Arylrest, der gegebenenfalls wenigstens eine der vorgenannten Gruppen Y-Z aufweist stehen; oder
- \mathbb{R}^1 , \mathbb{R}^2 und \mathbb{R}^3 gemeinsam für einen heterocyclischen Rest stehen.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die Verbindung mit mindestens einer freien Thiolgruppe ausgewählt ist unter Alkylmercaptanen, Aminoalkanthiolen, deren Monound Di-N-C1-C4-alkylderivaten; aromatischen Aminothiolen sowie deren Mono- und Di-N-C1-C4-alkylderivaten; aliphatischen und aromatischen Mercaptocarbonsäuren, Mercaptodicarbonsäuren und Aminomercaptocarbonsäuren, deren N-Alkyl-, N-Aryl-, N-Aralkyl-Derivaten bzw. deren N,N-Dialkyl-, N,N-Diaryl-, N,N-Bis(aralkyl)derivaten, den Estern der genannten Carbonsäuren

mit aliphatischen, aromatischen oder araliphatischen Alkoholen; aromatischen und aliphatischen Mercaptoalkoholen sowie Estern der Mercaptoalkohole mit C1-C10-Alkancarbonsäuren, C6-C20-Arylcarbonsäuren oder C7-C20-Aralkylcarbonsäuren; Mercaptodialkylketonen; Mercaptoalkylarylketonen; Mercaptoalkylund Mercaptoarylsulfonsäuren sowie deren Alkali-, Erdalkaliund Ammoniumsalzen; Thioharnstoff, der gegebenenfalls an einem oder beiden Stickstoffatomen mit Alkyl, Aryl, Aralkyl, Alkylcarbonyl oder Arylcarbonyl substituiert ist; Thiosemicarbazid, das gegebenenfalls am Amin-Stickstoff mit Alkyl, Aryl, Aralkyl, Alkylcarbonyl oder Arylcarbonyl substituiert ist; Mercapto-substituierten Stickstoffheterocyclen, umfassend mercaptosubstituiertes Imidazol, Imidazolin, Thiazol, Thiazolin, Triazol, Thiadiazol und Oxazol, die gegebenenfalls mit Amino, Halogen, Alkyl oder Aryl substituiert sind und/ oder einen ankondensierten, gegebenenfalls substituierten Benzolring aufweisen; aliphatische und aromatische Thiocarbonsäuren sowie deren Amide, N-Alkyl- und N-Arylamide; Mercaptoalkyltrialkoxysilanen.

20

5

10

15

Verfahren nach Anspruch 5, wobei die Verbindung mit mindestens einer freien Thiolgruppe ausgewählt ist unter C6-C18-Alkylmercaptanen, 2-Aminoethanthiol, N-Methyl-, N,N-Dimethyl-, N-Ethyl-, N,N-Diethyl-2-aminoethanthiol, 2-, 3- und 4-Aminothiophenol, 2-Mercaptoessigsäure, 2-Mercaptopropionsäure, 25 2-Mercaptoisobuttersäure, 2-Mercaptobernsteinsäure, 2-, 3und 4-Mercaptobenzoesäure, 2-Amino-3-mercapto-3-methylbutansäure, den Methyl-, Ethyl- und Phenylestern der genannten Carbonsäuren, 2-Hydroxyethanthiol, 2- und 3-Hydroxypropanthiol, 2- und 4-Hydroxybutanthiol, 2-Mercaptobu-30 tan-1,4-diol, α-Thioglycerin, 2-Hydroxycyclopentanthiol, 2und 4-Mercaptophenol, 2-Mercaptoethansulfonsäure, 2- und 3-Mercaptopropansulfonsäure, 2- und 4-Mercaptobutansulfonsäure sowie den Alkali-, Erdalkali- oder Ammoniumsalzen der genannten Sulfonsäuren, 1-Mercaptoaceton, Phenacylthiol, 35 4-Mercaptoacetophenon, 4-Mercaptobenzophenon, Thioharnstoff, N-Methyl-, N-Ethyl-, N-Alkyl-, N-Acetyl-, N-Phenylthioharnstoff, N,N'-Dimethyl-, N,N'-Diethyl-, N,N'-Diisopropyl-, N,N'-Di-n-butyl-, N,N'-Diphenylthioharnstoff, Thiosemicarbazid, 4-Methyl-, 4-Ethyl-, 4-Phenylthiosemicarbazid, Mercapto-40 thiadiazol, 2-Amino-5-mercaptothiadiazol, Thiazolin-2-thiol, Imidazolin-2-thiol, 3-Amino-5-mercaptotriazol, 2-Mercaptobenzimidazol, 2-Mercaptobenzoxazol und 2-Mercaptobenzthiazol, Thioessigsäure, Thiopropionsäure, Thiobenzoesäure, Thioacetamid, Thiobenzamid, 3-Mercaptopropyltrimethoxysilan und -trie-45 thoxysilan.

20

- 7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das stabile freie Radikal oder die Quelle stabiler freier Radikale, bezogen auf die molare Menge an ethylenisch ungesättigtem Monomeren, in einer Menge von 10-6 bis 10 Mol-% verwendet wird.
- 8. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Initiierung der Polymerisation wenigstens ein Radikalstarter verwendet wird und das molare Verhältnis zwischen stabilem freien Radikal oder Quelle stabiler freier Radikale und Radikalstarter zwischen 0,1 und 10 gewählt ist.
- 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Polymerisationstemperatur im Bereich von 40 bis 200 °C liegt.

15

10

5

- 10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das stabile Radikal ein N-Oxyl-Radikal und/oder die Radikal-Quelle die Quelle eines N-Oxyl-Radikals ist.
- 20 11. Polymer mit einem Polydispersitätsindex im Bereich von 1,2 bis 3,5, erhalten nach dem Verfahren gemäß einem der Ansprüche 1 bis 10.

25

30

35

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 11. Oktober 2001 (11.10.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/74908 A3

(51) Internationale Patentklassifikation?: 2/38, 293/00

C08F 2/00.

(21) Internationales Aktenzeichen:

PCT/EP01/03787

(22) Internationales Anmeldedatum:

3. April 2001 (03.04.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 16 651.2

4. April 2000 (04.04.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): CHRISTIE, David [AU/DE]; Nietzschestrasse 11, 68165 Mannheim (DE). HAREMZA, Sylke [DE/DE]; Ringstrasse 13, 69151

Neckargemünd (DE). **BRINKMANN-RENGEL**, Susanne [DE/DE]; Bitzer Pfad 1a, 55270 Ober-Olm (DE). **RAETHER, Roman, Benedikt** [DE/DE]; Albert-Schweitzer-Strasse 27, 67117 Limburgerhof (DE).

(74) Anwälte: KINZEBACH, Werner usw.; Reitstöttes, Kinzebach & Partner, Sternwartstrasse 4, 81679 München (DE).

(81) Bestimmungsstaat (national): US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Veröffentlicht:

mit internationalem Recherchenbericht

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 4. April 2002

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR PRODUCING POLYMERS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON POLYMEREN

(57) Abstract: The invention relates to a method for producing polymers. According to said method, at least one first ethylenically unsaturated monomer is subjected to a radically induced polymerization in the presence of stable free radicals or sources of stable free radicals and a compound containing at least a free sulphanyl group, to obtain a polymer, whereby the molar ratio of the compound containing a free sulphanyl group to the stable free radicals ranges between 0.05 and 1.1. The rate of polymerization is significantly increased by the compound containing a free sulphanyl group.

(57) Zusammenfassung: Beschrieben wird ein Verfahren zur Herstellung von Polymeren, wobei wenigstens ein erstes ethylenisch ungesättigtes Monomer in Gegenwart stabiler freier Radikale oder Quellen stabiler freier Radikale sowie einer Verbindung mit wenigstens einer freien Thiolgruppe einer radikalisch initiierten Polymerisation unter Erhalt eines Polymeren unterzogen wird, wobei das molare Verhältnis von Verbindung mit freier Thiolgruppe zu stabilen freien Radikalen im Bereich von 0.05 bis 1,1 liegt. Die Polymerisations geschwindigkeit wird durch die Verbindung mit freier Thiolgruppe deutlich gesteigert.

/O 01/74908 A3

INTERNATIONAL SEARCH REPORT

In tional Application No PCT/EP 01/03787

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO8F2/00 CO8F C08F2/38 C08F293/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO8F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ⁴ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X WO OO 63267 A (SUTORIS HEINZ FRIEDRICH 1-11 ;BASF AG (DE); CHRISTIE DAVID (DE); KNOLL) 26 October 2000 (2000-10-26) claims 1-4,6-12 page 10, line 36 - line 41 page 29, line 1 - line 4 page 29, line 14 - line 17 examples 4,7-9 X WO 96 18663 A (DOW CHEMICAL CO) 11 20 June 1996 (1996-06-20) page 15 -page 16; claims 1,8-10,14,15,17,20-22 A page 5, line 36 -page 6, line 2 1-10 examples 2,3 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. *P* document published prior to the international filing date but tater than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18/12/2001 12 December 2001 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni. Hollender, C Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Int ational Application No
PCI/EP 01/03787

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT							
category *	Citation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.					
X	EP 0 135 280 A (COMMW SCIENT IND RES ORG) 27 March 1985 (1985-03-27) claims page 13, line 8 - line 12 examples 23,50	11					

INTERNATIONAL SEARCH REPORT

information on patent family members

Intr Itional Application No
PC+/EP 01/03787

Patent document		Publication		Patent family	Publication
cited in search report		date		member(s)	date
WO 0063267	Α	26-10-2000	DE	19917675 A1	26-10-2000
			AU	4913200 A	02-11-2000
			WO	0063267 A1	26-10-2000
WO 9618663	A	20-06-1996	DE	69506280 D1	07-01-1999
			DE	69506280 T2	12-08-1999
			EP	0797600 A1	01-10-1997
			ES	2124599 T3	01-02-1999
			JP	10510858 T	20-10-1998
			WO	9618663 A1	20-06-1996
			US	6084044 A	04-07-2000
			US	5990255 A	23-11-1999
			US	5962605 A	05-10-1999
EP 0135280	Α	27-03-1985	AU	571240 B2	14-04-1988
			DE	3486145 D1	17-06-1993
			DE	3486145 T2	23-09-1993
			ΕP	0135280 A2	27-03-1985
			JP	1797643 C	28-10-1993
			JP	5006537 B	26-01-1993
			JP	60089452 A	20-05-1985
			KR	9300892 B1	11-02-1993
			US	4581429 A	08-04-1986
			AU	3037884 A	17-01-1985

INTERNATIONALER RECHERCHENBERICHT

Into religionales Aktenzeichen PC i /EP 01/03787

			21, 00, 0,				
A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08F2/00 C08F2/38 C08F293/00							
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK							
	RCHIERTE GEBIETE						
Recherchiei IPK 7	Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C08F						
Recherchier	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	wed diese unter die recherchierten Gebi	ete fallen				
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	arne der Datenbank und evtl. verwende	te Suchbegriffe)				
EPO-In	ternal, WPI Data, PAJ, CHEM ABS Data	ı					
C. ALS WE	ESENTLICH ANGESEHENE UNTERLAGEN						
Kategorie®	Bezeichnung der Veröffentlichung, soweit erfordertich unter Angaba	e der in Betracht kommenden Teile	Betr. Anspruch Nr.				
Ρ,Χ	WO 00 63267 A (SUTORIS HEINZ FRIE ;BASF AG (DE); CHRISTIE DAVID (DE 26. Oktober 2000 (2000-10-26) Ansprüche 1-4,6-12 Seite 10, Zeile 36 - Zeile 41	1-11					
	Seite 29, Zeile 1 - Zeile 4 Seite 29, Zeile 14 - Zeile 17						
x	Beispiele 4,7-9 WO 96 18663 A (DOW CHEMICAL CO)		11				
Î	20. Juni 1996 (1996-06-20) Seite 15 -Seite 16; Ansprüche 1,8-10,14,15,17,20-22						
A	Seite 5, Zeile 36 -Seite 6, Zeile Beispiele 2,3	2	1-10				
	-	/					
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu nehmen	X Siehe Anhang Patentfamilie					
** Besondere Kategorien von angegebenen Veröffentlichungen : 'A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E* älteres Dokument, das jedoch erst am oder nach dem internationalen 'E* älteres Dokument, das jedoch erst am oder nach dem internationalen 'T* Spätere Veröffentlichung, die nach dem internationalen ander dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolltdiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist							
X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung von besonderen Ferfielt von von Verffentlichung von besonderen Ferfielt von von Verffentlichung von besonderen Ferfielt von von Verffentlichung von besonderen Ferfielt von Verffentlichung von Verffentlichung von Verffentlichung von Verffentlichung von Verffentlichung von Verffentlichun							
soli oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "Ann nicht als auf erfinderischer Tätigkeit beruhend betrachtel werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "Averöffentlichung, die Mitglied derselben Patentfamilie ist							
Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherches							
1	12. Dezember 2001	18/12/2001					
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Bevollmächtigter Bediensteler							

INTERNATIONALER RECHERCHENBERICHT

Intrationales Aktenzeichen
PCI/EP 01/03787

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategone	Bezeichnung der Veröffentlichung, soweil erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
(EP 0 135 280 A (COMMW SCIENT IND RES ORG) 27. März 1985 (1985-03-27) Ansprüche Seite 13, Zeile 8 - Zeile 12 Beispiele 23,50		11
	·		
	·		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlic. ,en, die zur selben Patentfamilie gehören

Intrintionales Aktenzeichen PCI/EP 01/03787

	echerchenbericht tes Patentdokumen	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
WO	0063267	A	26-10-2000	DE AU WO	19917675 A1 4913200 A 0063267 A1	26-10-2000 02-11-2000 26-10-2000
WO	9618663	A	20-06-1996	DE DE EP ES JP WO US US	69506280 D1 69506280 T2 0797600 A1 2124599 T3 10510858 T 9618663 A1 6084044 A 5990255 A 5962605 A	07-01-1999 12-08-1999 01-10-1997 01-02-1999 20-10-1998 20-06-1996 04-07-2000 23-11-1999 05-10-1999
EP	0135280	A	27-03-1985	AU DE DE EP JP JP JP KR US AU	571240 B2 3486145 D1 3486145 T2 0135280 A2 1797643 C 5006537 B 60089452 A 9300892 B1 4581429 A 3037884 A	14-04-1988 17-06-1993 23-09-1993 27-03-1985 28-10-1993 26-01-1993 20-05-1985 11-02-1993 08-04-1986 17-01-1985