

Entanglement and basics of quantum protocols

Jibran Rashid

Monday, July 18
WOMANIUM QUANTUM 2022

QBronze Summary

n-qubit Quantum State
$$|\psi\rangle = \sum_{i=0}^{2^{i-1}} \kappa_i |i\rangle$$
, $\sum_{i=0}^{2^{i-1}} \kappa_i^2 = 1$, $\kappa_i \in \mathbb{R}$

Unitary Evolution
$$U|\psi\rangle = |Q\rangle = \sum_{i=0}^{2^{n}-1} \beta_{i}|i\rangle$$
, $\sum_{i=0}^{2^{n}-1} \beta_{i}^{2} = 1$, $\beta_{i} \in \mathbb{R}$

Measurement Probability to observe particular outcome i on measuring Iu> is given by xi

Preparing a Bell State

$$|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) |0\rangle$$

$$= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

Superdense Coding

Holevo Bound

Superdense Coding

Quantum Teleportation

Quantum Teleportation

$$\begin{array}{l} (\alpha \mid 0 \rangle + \beta \mid 1 \rangle) \otimes |\varphi^{+}\rangle \\ = (\alpha \mid 0 \rangle + \beta \mid 1 \rangle) \otimes \frac{1}{\sqrt{2}} (|0 \rangle \rangle + |1 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \mid 0 \rangle + |\beta \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \mid 0 \rangle + |\beta \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \mid 0 \rangle + |\alpha \mid 0 \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle) \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle \\ = \frac{1}{\sqrt{2}} (\alpha \mid 0 \rangle \rangle + |\alpha \mid 0 \rangle \rangle$$

Quantum Teleportation

$$\frac{1}{2} | \cos \rangle \left(\chi | 0 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle - \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle - \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta | 1 \rangle \right)$$

$$+ \frac{1}{2} | \cos \rangle \left(\chi | 1 \rangle + \beta$$

Comparison

Reversible Transformations

Reversible Transformations

Classical Gates Via Unitaries

Phase Kickback

Recall
$$\begin{aligned}
&|a\rangle \\
&|-\rangle = \frac{1}{\sqrt{2}} (10\rangle - 11\rangle) \\
&= B_{f} |a\rangle |-\rangle \\
&= B_{f} |a\rangle |-\rangle \\
&= B_{f} |a\rangle |-\rangle \\
&= \frac{1}{\sqrt{2}} (10\rangle - 11\rangle) = \frac{1}{\sqrt{2}} \left(B_{f} |a\rangle (0) - B_{f} |a\rangle (1) \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |0 \oplus f(a)\rangle - |a\rangle |1 \oplus f(a)\rangle \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |0 \oplus f(a)\rangle - |a\rangle |1 \oplus f(a)\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |0 \oplus f(a)\rangle - |a\rangle |1 \oplus f(a)\rangle \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |0 \oplus f(a)\rangle - |a\rangle |1 \oplus f(a)\rangle \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle \right) \\
&= \frac{1}{\sqrt{2}} \left(|a\rangle |1 \oplus f(a)\rangle - |1\rangle$$

Simple Search

f_{00}		j	f_{01}		f_{10}		f_{11}	
input	output	input	output	input	output	input	output	
00	1	00	0	00	0	00	0	
01	0	01	1	01	0	01	0	
10	0	10	0	10	1	10	0	
11	0	11	0	11	0	11	1	

Simple Search

$$|\psi_1\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

Determine 142> via phase kickback

$$B_{f} |\psi\rangle =$$

$$\frac{1}{2}\left(\frac{1}{100}\right) |00\rangle + \frac{1}{100} |00\rangle + \frac{1}{100}$$

Simple Search

$$\frac{1}{2} \left((-1)^{f(oo)} |oo\rangle + (-1)^{f(oi)} |oi\rangle + (-1)^{f(io)} |io\rangle + (-1)^{f(ii)} |ii\rangle \right)$$

$$f = f_{oo} = \frac{1}{2} \left(-|oo\rangle + |oi\rangle + |io\rangle + |ii\rangle \right)$$

$$f = f_{oi} = \frac{1}{2} \left(+|oo\rangle - |oi\rangle + |io\rangle + |ii\rangle \right)$$

$$f = f_{io} = \frac{1}{2} \left(+|oo\rangle + |oi\rangle - |io\rangle + |ii\rangle \right)$$

$$f = f_{io} = \frac{1}{2} \left(+|oo\rangle + |oi\rangle + |oi\rangle - |ii\rangle \right)$$

$$f = f_{io} = \frac{1}{2} \left(+|oo\rangle + |oi\rangle + |oi\rangle - |oi\rangle + |oi\rangle \right)$$

$$f = f_{io} = \frac{1}{2} \left(+|oo\rangle + |oi\rangle + |oi\rangle - |oi\rangle \right)$$