Билет 1.1:

Система передачи информации. Двоичный симметричный канал

 $\frac{Cucmema\ nepedaчu\ unpopmauuu}{0\ u\ 1:\ u=(u_1,u_2,...,u_n),\ rдe\ u_i\in\{0,1\}.\ B\ канале\ действует\ случайная\ помеха:\ каждый\ символ\ передаваемой\ последовательности независимо от других может быть искажен с вероятностью <math>\tau<\frac{1}{2}.$

Двоичный симметричный канал описывается следующим образом:

$$p(0|0) = p(1|1) = 1 - \tau, \quad p(0|1) = p(1|0) = \tau$$

Рис. 1: Простейшая модель передачи данных

Рис. 2: Двоичный симметричный канал

Билет 1.2:

Кодовое расстояние. Связь между кодовым расстоянием и корректирующей способностью кода

Кодовое расстояние d между двумя кодовыми словами - это число позиций, в которых эти слова отличаются.

Кодовое расстояние кода - это минимальное расстояние между любыми двумя кодовыми словами этого кода. Корректирующая способность кода тесно связана с кодовым расстоянием. Если кодовое расстояние кода равно d, то этот код может исправить любые $\frac{d-1}{2}$ ошибок.

Билет 1.3:

Скорость передачи данных и кодовое расстояние (граница Гилберта)

 $\underline{\mathit{Граница}\;\mathit{\Gammauлбертa}}$ устанавливает связь между скоростью кода, кодовым расстоянием и вероятностью оппибки.

Теорема

Если
$$R < 1 - \frac{1}{n} \log_2 \sum_{i=1}^{d-1} \binom{n}{i}$$
, то код с параметрами (n,M,d) существует.

Билет 1.4:

Код как линейное векторное подпространство. Порождающая и проверочная матрицы кода

- *Onpedenehue:* Линейным векторным пространством над полем F называется множество V векторов, которые удовлетворяют условиям:
 - 1. Множество V является аддитивной абелевой группой.
 - 2. $\forall c \in F, v \in V \rightarrow cv \in V$
 - 3. Выполняются дистрибутивные законы, то есть если:

$$\forall c \in F, v \in V \rightarrow c \cdot (u + v) = c \cdot u + c \cdot v, \quad \forall c, d \in F, v \in V \rightarrow v \cdot (c + d) = v \cdot d + c \cdot v$$

- 4. Умножение ассоциативно, то есть $(c \cdot d) \cdot v = c \cdot (d \cdot v)$
- <u>Onpedenehue:</u> Подмножество векторов А пространства V называется подпространством, если в нём выполняются условия определения пространства.

Порождающая матрица линейного кода:

- 1. Размерность V: dim V=n, а значит его базис состоит из n векторов, например $e_1,e_2,...,e_n$, где e_i единичные орты
- 2. Размерность $A:\dim V=k$, а значит его базис состоит из k векторов $a_1,a_2,...,a_k$ длины n. Это значит, что любой вектор $c\in A$ имеет вид: $c=\alpha_1a_1+\alpha_2a_2+...+\alpha_ka_k$, где $\alpha_i\in GF(q)$.
- 3. Составим $k \times n$ матрицу G, называемую порождающей матрицей кода A:

$$G = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & a_{k3} & \dots & a_{kn} \end{pmatrix}$$

Проверочная матрица линейного кода:

Ортогональное подпространство состоит из q^{n-k} векторов, а значит его базис состоит из n-k векторов длины n: Причём $\forall v \in A: (v, h_i) = 0$. По аналогии с G построим порождающую матрицу подпространства A':

$$H = \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_{n-k} \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & h_{13} & \dots & h_{1n} \\ h_{21} & h_{22} & h_{23} & \dots & h_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{n-k,1} & h_{n-k,2} & h_{n-k,3} & \dots & h_{n-k,n} \end{pmatrix}$$

Данную матрицу называют проверочной матрицей линейного кода, так как:

$$\forall v \in A : H \cdot v^{t} = \begin{pmatrix} (v, h_{1}) \\ (v, h_{2}) \\ \vdots \\ (v, h_{n-k}) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0$$

Билет 1.5:

Каноническая форма проверочной и порождающей матриц. Их связь друг с другом.

Каноническая форма базисных матриц

Идея: выделить в матрице G единичную подматрицу.

- 1. В i-й строке (i=1,2,...,k) матрицы G найдется по крайней мере одна ненулевая компонента. Пусть первая отличная от нуля компонента этой строки находится в j-м столбце. Разделим каждую компоненту строки на a_{ij} . В результате получится новая компонента a_{ij}' матрицы, равная единице.
- 2. К каждой *z*-й строке $(z \neq i)$ прибавим *i*-ю строку, умноженную на a_{zj} . В результате в *j*-м столбце *i*-я строка будет содержать единицу, а все остальные строки нули.
- 3. Применим шаги (1)-(2) к каждой строке матрицы G.
- 4. Столбцы с одной единицей переставим на первые k позиций.

Связь между проверочной и порождающей матрицами

$$\forall v \in A : H \cdot v^t = \begin{pmatrix} (v, h_1) \\ (v, h_2) \\ \vdots \\ (v, h_{n-k}) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0$$

Билет 1.6:

Проверочная матрица и минимальное расстояние кода. Связь метрических свойств кода со столбцами проверочной матрицы.

Теория про проверочную матрицу находится в билете 4.

• Onpedenetue: Весом w(v) вектора v называется число отличных от нуля его компонент.

Основная теорема о минимальном расстоянии линейного кода

Любому значению расстояния $d(v_1,v_2)$ между векторами v_1 и v_2 линейного (n,k) – кода отвечает кодовый вектор $v_1v_2=v$, для веса w(v) которого выполняется равенство $w(v)=d(v_1,v_2)$. И, наоборот, каждому значению w(v) веса кодового вектора $v_1v_2=v_1$ 0, причём таких пар имеется в точности $v_1v_2=v_1v_2=v_2$ 1, причём таких пар имеется в точности $v_1v_2=v_1v_2=v_2$ 2.

Доказательство

В силу того, что код – всегда группа с операцией поразрядного сложения векторов, разность двух кодовых векторов есть снова кодовый вектор: $v_1 - v_2 = v$, и вес w(v) вектора v, то есть число отличных от нуля его компонент в точности равно расстоянию $d(v_1, v_2)$. Наоборот, пусть вектор v имеет вес w(v). Сложив вектор v с произвольным кодовым вектором v_i , получим, что $d(v + v_i, v_i) = w(v)$, чем и завершается доказательство. Остаётся вспомнить, что кодовых векторов v_i имеется в точности q^k

Метрические свойства проверочной матрицы

Пусть $v=(a_1,a_2,\ldots,a_n)$ – кодовый вектор. Представим проверочную матрицу в виде: $H=[h_1h_2\ldots h_n]$, где h_i есть і-вектор-столбец проверочной матрицы. Тогда выражение $v\cdot H^T=0$ можно переписать в виде $a_1h_1+a_2h_2+\cdots+a_nh_n=0$.

Иначе говоря, каждый отличный от нуля кодовый вектор v задаёт нетривиальное соотношение линейной зависимости векторов-столбцов проверочной матрицы. Пусть $a_{i1}, a_{i2}, \ldots, a_{iw}$ все отличные от нуля компоненты вектора v. Тогда равенство превратится в $a_{i1}h_{i1} + a_{i2}h_{i2} + \ldots + a_{iw}h_{iw} = 0$.

Если $w \leq d-1$, то это означает, что имеется такой кодовый вектор, вес которого не превосходит d1, а значит, найдутся такие пары векторов, расстояния между которыми не превосходит d-1. Тем более, минимальное расстояние оказывается меньше чем d. С другой стороны, если любые d-1 столбцов проверочной матрицы линейно независимы, то минимальный вес, а значит минимальное расстояние кода, не менее d.

Основная теорема о проверочной матрице

Для того, чтобы минимальное расстояние линейного кода было не менее, чем d, необходимо и достаточно, чтобы любые d-1 и менее столбцов проверочной матрицы были линейно независимы.

Следствие

Граница Сигнлтона: $d - 1 \le n - k$

Билет 1.7: Границы Синглтона и Варшамова-Гилберта.

Граница Сигнлтона

$$d-1 < n-k$$

Граница Варшамова-Гилберта

Будем строить проверочную матрицу H размера $(n-k)\cdot n$ следующим образом. В качестве первого столбца h_1 можно выбрать любой ненулевой столбец длины n-k. Вторым столбцом h_2 может стать любой из оставшихся $q^{n-k}-q$ столбцов, кроме ненулевого и q-1 столбцов, кратных столбцу h_1 . Предположим, что выбрано уже j столбцов и имеется не более

$$(q-1)\cdot \binom{1}{j} + (q-1)^2\cdot \binom{2}{j} + \dots + (q-1)^{d-2}\cdot \binom{d-2}{j}$$

их различных линейных комбинаций, содержащих d-2 и менее столбцов. Если эта величина меньше, чем $q^{n-k}-1$, то можно добавить ещё один ненулевой столбец, который отличен от всех этих линейных комбинаций. Тогда никакие d-1 столбцов из выбранных j+1 столбцов не буду линейно зависимы.

Если выполняется соотношение:

$$(q-1)\cdot \binom{1}{n-1} + (q-1)^2\cdot \binom{2}{n-1} + \dots + (q-1)^{d-2}\cdot \binom{d-2}{n-1} < q^{n-k} - 1$$

то можно добавить ещё один ненулевой n-й столбец и любые d-1 и менее из этих n столбцов будут линейно независимы. Проверочная матрица построена, у данной границы есть предельная форма:

$$R \leq 1 - h(\delta)$$

где
$$R = \frac{k}{n}, \delta = \frac{d}{n}, h(x)$$
 - функции энтропии.

График для данного билета есть в 3 лекции на последнем слайде.

Билет 1.8:

Декодирование линейного кода. Синдромное декодирование. Стандартное расположение.

Основные теоремы синдромного декодирования

- 1. Линейный код A исправляет все независимые ошибки кратности t и менее тогда и только тогда, когда все векторы веса t и менее принадлежат различным смежным классам.
- 2. Минимальное расстояние линейного кода равно d = 2t + 1 тогда и только тогда, когда все векторы веса $1, 2, \ldots, t$ принадлежат различным смежным классам.

Алгоритм синдромного декодирования

- ullet Вход: принятый вектор v, проверочная матрица H.
- Выход: кодовое слово и или отказ от декодирования.
- 1. Вычисляем $S = v \cdot H^T$
- 2. По вычисленному S находим смежный класс A_i кода A
- 3. Ищем вектор минимального веса в A_i : если их несколько, то возвращаем отказ от декодирования, если вектор e единственный, то переходим к следующему шагу
- 4. Возвращаем u = v e

Алгоритм через стандартное расположение

- 1. Выпишем все векторы кодового подпространства слева направо, начиная с нулевого вектора.
- 2. Расположим произвольный смежный класс под кодовым подпространством, начиная с вектора e минимального веса (лидер смежного класса), так чтобы под кодовым вектором u находился вектор v = u + e смежного класса.
- 3. Приняв вектор ν , и вычислив его синдром S, определяем отвечающий ему смежный класс, а в нём находим вектор ν .
- 4. Непосредственно над ним в первой строке таблицы находится перелвшийся вектор u.