

# UNISONIC TECHNOLOGIES CO., LTD

### **TL082**

#### LINEAR INTEGRATED CIRCUIT

## GENERAL PURPOSE DUAL J-FET OPERATIONAL **AMPLIFIER**

#### DESCRIPTION

The UTC TL082 is a high speed J-FET input dual operational amplifier. It incorporates well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit.

The device features high slew rates, low input bias and offset current, and low offset voltage temperature coefficient.

#### **FEATURES**

- \* Low input bias and offset current
- \* Wide common-mode (up to  $V_{CC}^{\dagger}$ ) and differential voltage range
- \* Output short-circuit protection
- \* High input impedance J-FET input stage
- \* Internal frequency compensation
- \* Latch up free operation
- \* High slewrate:16V/µs(typ.)

# DIP-8 SOP-8 TSSOP-8

Lead-free: TL082L Halogen-free:TL082G

#### ORDERING INFORMATION

|             | Dookago           | Dacking      |         |           |
|-------------|-------------------|--------------|---------|-----------|
| Normal      | Lead Free Plating | Halogen Free | Package | Packing   |
| TL082-D08-T | TL082L-D08-T      | TL082G-D08-T | DIP-8   | Tube      |
| TL082-P08-R | TL082L-P08-R      | TL082G-P08-R | TSSOP-8 | Tape Reel |
| TL082-S08-R | TL082L-S08-R      | TL082G-S08-R | SOP-8   | Tape Reel |



www.unisonic.com.tw

#### ■ PIN CONFIGURATION



#### ■ BLOCK DIAGRAM



#### ■ ABSOLUTE MAXIMUM RATING (Ta=25°C)

| PARAMETER                              | SYMBOL           | RATINGS    | UNIT |
|----------------------------------------|------------------|------------|------|
| Supply Voltage (Note 2)                | $V_{CC}$         | ±18        | V    |
| Input Voltage (Note 3)                 | $V_{IN}$         | ±15        | V    |
| Differential Input Voltage (Note 4)    | $V_{ID}$         | ±30        | V    |
| Power Dissipation                      | $P_{D}$          | 680        | mW   |
| Output Short-Circuit Duration (Note 5) |                  | Infinite   |      |
| Operating Temperature                  | T <sub>OPR</sub> | -20 ~ +85  | °C   |
| Storage Temperature Range              | T <sub>STG</sub> | -65 ~ +150 | °C   |

- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
  - 2. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between  $V_{CC}$  and  $V_{CC}$ +.
  - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
  - 4. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal.
  - 5. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

#### ■ THERMAL DATA

| PARAMETER           |             | SYMBOL        | RATINGS | UNIT |
|---------------------|-------------|---------------|---------|------|
|                     | SOP-8       |               | 125     | °C/W |
| Junction to Ambient | DIP-8       | $\theta_{JA}$ | 85      | °C/W |
|                     | TSSOP-8 120 |               | 120     | °C/W |
|                     | SOP-8       |               | 40      | °C/W |
| Junction to Case    | DIP-8       | $\theta_{JC}$ | 41      | °C/W |
|                     | TSSOP-8     |               | 37      | °C/W |

#### ELECTRICAL CHARACTERISTICS

(V<sub>CC</sub>=±15V, Ta=25°C, T<sub>MIN</sub>=0°C, T<sub>MAX</sub>=70°C , unless otherwise specified)

| PARAMETER                                  | SYMBOL            | TEST CONDITIONS                                             | MIN  | TYP              | MAX | UNIT   |
|--------------------------------------------|-------------------|-------------------------------------------------------------|------|------------------|-----|--------|
| Input Offset Voltage (R <sub>S</sub> =50Ω) | V <sub>IO</sub>   | Ta=25°C                                                     | 3 10 |                  | 10  | mV     |
|                                            |                   | T <sub>MIN</sub> ≤Ta ≤T <sub>MAX</sub>                      |      |                  | 13  | IIIV   |
| Input Offset Voltage Drift                 | D <sub>VIO</sub>  |                                                             |      | 10               |     | μV/°C  |
| Input Offset Current (Note)                | I <sub>IO</sub>   | T <sub>a</sub> =25°C                                        |      | 5                | 100 | pА     |
|                                            |                   | T <sub>MIN</sub> ≤Ta ≤T <sub>MAX</sub>                      |      |                  | 10  | nA     |
| Input Pige Current (Note)                  |                   | T <sub>a</sub> =25°C                                        |      | 20               | 400 | pА     |
| Input Bias Current (Note)                  | I <sub>IB</sub>   | T <sub>MIN</sub> ≤Ta ≤T <sub>MAX</sub>                      |      |                  | 20  | nA     |
| Input Common Mode Voltage Range            | $V_{\text{ICM}}$  |                                                             | ±11  | -12~+15          |     | V      |
|                                            | ±V <sub>OPP</sub> | $T_a=25^{\circ}C$ , $R_L=2k\Omega$ ,                        | 10   | 12               |     | V      |
| Output Voltage Swing                       |                   | $T_a=25$ °C, $R_L=10$ k $\Omega$                            | 12   | 13.5             |     | V      |
| Output Voltage Swing                       |                   | $T_{MIN} \le Ta \le T_{MAX}, R_L = 2k\Omega$                | 10   |                  |     | V      |
|                                            |                   | $T_{MIN} \le Ta \le T_{MAX}, R_L = 10k\Omega$               | 12   |                  |     | V      |
| Large Signal Voltage Gain                  | Avd               | T <sub>a</sub> =25°C                                        | 25   | 200              |     | V/mV   |
| $(R_L=2k\Omega, V_{OUT}=\pm 10V)$          | Avu               | T <sub>MIN</sub> ≤Ta ≤T <sub>MAX</sub>                      | 15   |                  |     | V/IIIV |
| Gain Bandwidth Product (Ta=25°C)           | GBP               | $V_{IN}$ =10mV, $R_L$ =2k $\Omega$ , $C_L$ =100pF, f=100kHZ | 2.5  | 4                |     | MHz    |
| Input Resistance                           | R <sub>I</sub>    |                                                             |      | 10 <sup>12</sup> |     | Ω      |
| Common Mode Rejection Ratio                | CMR               | Ta=25°C                                                     | 70   | 86               |     | dВ     |
| $(R_S=50\Omega)$                           |                   | T <sub>MIN</sub> ≤Ta ≤T <sub>MAX</sub>                      | 70   |                  |     | dB     |
| Supply Voltage Rejection Ratio             | SVR               | Ta=25°C                                                     | 70   | 86               | _   | dD     |
| $(R_S=50\Omega)$                           |                   | $T_{MIN} \le Ta \le T_{MAX}$                                | 70   |                  |     | dB     |

#### ■ ELECTRICAL CHARACTERISTICS (Cont.)

| PARAMETER                                                | SYMBOL                           | TEST CONDITIONS                                                          | MIN | TYP  | MAX | UNIT                                 |
|----------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------|-----|------|-----|--------------------------------------|
| Supply Current, No Load                                  | Icc                              | Ta=25°C                                                                  |     | 3.6  | 5.6 | mA                                   |
| Channel Separation<br>(Av=100, T <sub>a</sub> =25°C)     | V <sub>01</sub> /V <sub>02</sub> |                                                                          |     | 120  |     | dB                                   |
| Output Short-Circuit Current                             | los                              | Ta=25°C                                                                  | 10  | 40   | 60  | mA                                   |
| Output Short-Circuit Current                             | ios                              | T <sub>MIN</sub> ≤Ta ≤T <sub>MAX</sub>                                   | 10  |      | 60  | mA                                   |
| Slew Rate (T <sub>a</sub> =25°C)                         | SR                               | $V_{IN}$ =10V, $R_L$ =2k $\Omega$<br>$C_L$ =100pF, unity gain            | 8   | 16   |     | V/µs                                 |
| Rise Time (T <sub>a</sub> =25°C)                         | t <sub>R</sub>                   | $V_{IN}$ =20mV, $R_L$ =2k $\Omega$<br>$C_L$ =100pF, unity gain           |     | 0.1  |     | μs                                   |
| Overshoot (T <sub>a</sub> =25°C)                         | Kov                              | $V_{IN}$ =20mV, $R_L$ =2k $\Omega$<br>$C_L$ =100pF, unity gain           |     | 10   |     | %                                    |
| Total Harmonic Distortion (T <sub>a</sub> =25°C)         | THD                              | $A_V$ =20dB, f=1kHz, $R_L$ =2k $\Omega$ , $C_L$ =100pF, $V_{OUT}$ =2Vpp) |     | 0.01 |     | %                                    |
| Phase Margin                                             | Фт                               |                                                                          |     | 45   |     | Degrees                              |
| Equivalent Input Noise Voltage $(R_S=100\Omega, f=1KHz)$ | eN                               |                                                                          |     | 15   |     | $\frac{\text{nV}}{\sqrt{\text{Hz}}}$ |

Note: The Input bias currents are junction leakage currents, which approximately double for every 10°C increase in the junction temperature.

#### ■ PARAMETER MEASUREMENT INFORMATION



Figure 1. Voltage Follower



Figure 2. Gain-of-10 Inverting Amplifier

#### TYPICAL APPLICATION CIRCUIT

#### 100 KHz Quadruple Oscillators



Note: These resistors values may be adjusted for a symmetrical output

#### ■ TYPICAL CHARACTERISTICS











UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.