Total No. of Questions—8]

Total No. of Printed Pages—4

Seat	_	
No.		.>

[5559]-195

S.E. (Comp.Tr) (E) Semester) EXAMINATION, 2019

INEERING MATHEMATICS—III

(2015 **PATTERN**)

Time: Three Hours

Maximum Marks: 60

- (i) Neat diagrams must be drawn wherever necessary.

 (ii) Figures to the right indicate full marks.

 - Use of electronic pocket calculator is allowed.
 - (iv) Assume suitable data, if necessary.
- Solve any two differential equations: 1. (a)

(i)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} \sin 4x + 2^{3x} + 6$$
(ii)
$$x^2 \frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = x^4 + 3x + 1$$

(ii)
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = x^4 + 3x + 1$$

(iii) $\frac{d^2y}{dx^2} + 9y = \tan 3x$, by using the method of variation of parameters.

Solve the integral equation: [4] $\int_0^\infty f(x) \cos \lambda x \ dx = \begin{cases} 2 - \lambda & 0 \le \lambda \le 2 \\ 0 & \lambda > 2 \end{cases}$ P.T.O.

(*b*)

$$\int_{0}^{\infty} f(x) \cos \lambda x \ dx = \begin{cases} 2 - \lambda & 0 \le \lambda \ge 2 \\ 0 & \lambda \ge 2 \end{cases}$$

- 2. (a) An inductor of 0.25 henries, with negligible resistance, a capacitor of 0.04 farads are connected in series and having an alternating voltage [12 sin 6t]. Find the current and charge at any time to [4]
 - (b) Solve any one of the following: [4]
 (i) Obtain $z[4^k e^{-6k}], k \ge 0.$
 - (ii) Obtain $z^{-1} \left[\frac{13z}{(5z+1)(4z+1)} \right]$.
 - (c) Solve the difference equation: f(k + 2) 7f(k + 1) + 12f(k) = 0where f(0) = 0, f(1) = 3, $k \ge 0$.
- 3. (a) The first four moments of a distribution about the value 5 are 2, 20, 40 and 50 Obtain the first four central moments, β_1 and β_2 .
 - (b) Fit a straight line of the form Y = aX + b to the following data by the least square method: [4]

X	1	3	4	5	6	8
Y	-3	1	3	5	7	11

(c) A riddle is given to three students whose probabilities of solving it are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability that the riddle is solved. [4]

In a sample of 1,000 cases, the mean of a certain examination 4. (a) is 14 and standard deviation is 2.5. Assuming the distribution to be normal. Find the number of students scoring between [4]

[Given: $Z_1 = 0.4$, $A_1 = 0.1554$, $Z_2 = 0.8$, $A_2 = 0.2881$]

- During working hours, on an average 3 phone calls are coming (*b*) into a company within an hour. Using Poisson distribution, find the probability that during a particular working hour, there will be at the most one phone call. [4]
- For a bivariate data, the regression equation of Y on X is 8x - 10y = -66 and the regression equation of X on Y is 40x - 18y = 214. Find the mean values of X and Y. Also, find the correlation coefficient between X and Y. [4]
- Find the directional derivative of $\phi = xy^2 + yz^2 + zx^2$ **5.** (a)
 - (1, 1, 1) along the line 2(x-2)=y+1=z-1. Find constants a, b, c so that $\overline{F}=(x+2y+az)\overline{i}+(bx-3y-z)\overline{j}+(4x+cy+2z)\overline{k}$ is irrotational. Find the workdone by the force $\overline{F}=(x^2-yz)\overline{i}+(y^2-zx)\overline{j}+(z^2-xy)\overline{k}$ (*b*)

[4]

(c)

$$\overline{\mathbf{F}} = (x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$$

in taking a particle from (0, 0, 0) to (1, 2, 1). [5]

[5559]-195 P.T.O.

6.	(a)	Show	that	(any	one)	2
-----------	-----	------	------	------	------	---

[4]

$$(i) \qquad \nabla \cdot \left(\frac{\overline{a} \times \overline{r}}{r} \right) = 0$$

that (any one)
$$\nabla \cdot \left(\frac{\overline{a} \times \overline{r}}{r^{n}} \right) = 0 \qquad (ii) \qquad \nabla^{2} \left[\nabla \cdot \left(\frac{\overline{r}}{r^{2}} \right) \right] = \frac{2}{r^{4}} .$$

Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2$ (*b*) (2, 2) along the tangent to the curve

$$x = e^t \cos t, \ y = e^t \sin t, \ z = e^t \cot t = 0.$$
 [4]

Find the workdone by, $\overline{F} = 2xy^2\overline{i} + (2x^2y + y)\overline{j}$ in taking a particle from (0, 0, 0) to (2, 4, 0) along the parabola $y = x^2$, z = 0. [5]

7. (a) Determine the analytic function
$$f(z) = u + iv$$
 if $u = 2x - x^3 + 3xy^2$. [4]

- Find the bilinear transformation that maps to points (*b*)
- $z=-i,\ 0,\ i$ into the points $W=1,\ 0,\ \infty.$ Evaluate $\int_{c} \frac{z^3}{z^2-4}\,dz$, where c is the circle |z|=3.(c)

- 8. (a)
- Determine the analytic function f(z)=u+iv if $u=3x^2y+2x^2-y^3-2y^2$. [4] Find image of the circle |z-2i|=2, under the mapping $w=\frac{1}{2}$ [4] Evaluate $\int_c \frac{2z^2+z}{z^2-1} \, dz$, where c is the circle $|z|=\frac{3}{2}$ [5] (*b*)
 - (*c*)