Lecture notes on Control Systems and Reinforcement Learning

Written by
Manuel Hinz

mh@mssh dev or s6mlhinz@uni-bonn de

Lecturer
Prof. Dr. Jochen Garcke
garcke[at]math.uni-bonn.de

University of Bonn Summer semester 2025 Last update: April 17, 2025

Contents

Chapter 0.1 Or	Manuel's notes	2 2
Chapter	Control Problems	3
	e Space Models	
	Linear State Space Model	
1.3	State Space Models in continuous Time	5
Journal		L3
Bibliogr	bhy	13

Chapter 0: Manuel's notes

Warning

These are unofficial lecture notes written by a student. They are messy, will almost surely contain errors, typos and misunderstandings and may not be kept up to date! I do however try my best and use these notes to prepare for my exams. Feel free to email me any corrections to mh@mssh.dev or s6mlhinz@uni-bonn.de. Happy learning!

General Information

• Basis: Basis

• Website: https://ins.uni-bonn.de/teachings/ss-2025-467-v5e1-advanced-topics/

• Time slot(s): Tuesday: 14-16 SR 2.035 and Thursdays: 16-18 SR 2.035

• Exams: ?

• Deadlines: No exercise sheets / tutorials

0.1 Organization

- Focused on ingredients, won't get to the current state of the art
- Some algorithmic / numerical background (Euler method is fine)
- Control Problems (Steering the bike / car)

Start of lecture 01 (10.4.2025)

Chapter 1: Control Problems

- 1. u is the control (input / action)
- 2. y observations (outputs)
- 3. $\phi: Y \to U$ policy
- 4. ff feed forward control (plan we had)

Interactions with the outside world might be hidden in the observations. Typically ff is in regard to some reference state. There might be some disturbances (holes in the road, ...). The overall aim is to find a policy ϕ that sticks close to $r(k), k \geq 0$.

 $u(k) = u_{\rm ff}(k) + U_{fb}(k)$

t is continous, k is step by step / iterative

where $u_{\rm ff}$ is the planing to reach the overall goal and $u_{\rm fb}$ actual steering, updated "all the time". Some examples from the book:

Figure 1.1: Sketch 1.01

Figure 1.2: Sketch 1.02: Mountain car

Difference: In Reinforcement learning, we don't start with a model / ode. Some part of reinforcement learning works model-free (i.e. assumes the model only implicitly)

Figure 1.3: Sketch 1.03: cart pole / inverted pendulum

Next example: Acrobot (more then one equilibrium)

1.1 State Space Models

We have some

- state space $X, x \in X$
- action space $U, u \in U$
- action at step $k: u(k) \in U(k)$, i.e. we might have some constraints

• observation space $Y, y \in Y$

Definition 1.1. Given state, action and observation spaces X, U, Y, a <u>state space model</u> is defined by

x(k) might include the past, might be useful for the stock trading problem

$$x(k+1) = \mathcal{F}(x(k), u(k)) \tag{1}$$

$$y(k) = \mathcal{C}(x(k), u(k)) \tag{2}$$

Remark. Overcomplicating problems by loading lots of information into the state space, might make the problem harder!

1.1.1 Linear State Space Model

$$x(k+1) = Fx(k) + Gu(k) \tag{3}$$

$$y(k) = Cx(k) + Du(k) \tag{4}$$

Remark. The representations (in terms of the matrices) might not be unique!

Common scenario for (3) is to keep x(k) near the origin. You have to think about robustness of the system. Disturbances should be handled by the system.

$$u(k) = -Kx(k).$$

Consider a disturbance under the same control:

$$u(k) = -Kx(k) + v(k)$$

inserting this into (3) yields

$$x(k+1) = (F - GK)x(k) - Gv(k)$$
$$y(k) = (C - DK)x(k) + Dv(k)$$

Closed vs open loop: In closed loops we don't change our course based on observations, while in open loop systems we do.

1.1.2 State Space Models in continuous Time

$$\frac{d}{dt}x = f(x, u)$$

for $x \in \mathbb{R}^n, u \in \mathbb{R}^m$. We often write u_t, x_t for u, x at time t. If f is linear we get

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

Figure 1.4: Sketch 1.04

To discretize we use the forward Euler method. Given time interval Δ

$$x(k+1) = x(k) + \Delta f(x(k), u(k))$$

so in (1) $\mathcal{F}(x, u) = x + \Delta f(x, u)$. Using Taylor

$$x_{t+\Delta} = x_t \Delta f(x, u) + O(\Delta^2)$$

For the linear model we get $F = I + \Delta A$

$$x(k+1) = x(k) + \Delta Ax(k) + \underbrace{\Delta B}_{=:G} u(k)$$

For now fix some policy ϕ , so $u(k) = \phi(x(k))$:

$$x(k+1) = \mathcal{F}(x(k))$$

Assumption 1.2. The state space X is equal to \mathbb{R}^n or a closed subset of \mathbb{R}^n .

Definition 1.3. An equilibrium x^e is a state at which is system is frozen:

$$x^e = \mathcal{F}(x^e).$$

Definition 1.4. Given a cost function $C: X \to \mathbb{R}_+$ and a policy ϕ we define

$$J_{\phi}(x) = J(x) = \sum_{k=0}^{\infty} C(x(k)), \ x(0) = x$$

This is called <u>total cost</u> or value function of the policy ϕ .

Given x^e , we usually assume $C(x^e) = 0$. Generally, we consider a discount factor γ^k in front of $C(x^e)$.

Definition 1.5. Denote by $\mathcal{X}(k;x_0)$ the state step k with initial condition x_0 and following fixed policy ϕ . The equilibrium x^e is <u>stable in the sense of Lyapunov</u> if for all $\epsilon > 0 \exists \delta > 0$ s.t. $||x_0 - x^e|| < \delta$, then

$$\|\mathcal{X}(k; x_0) - \mathcal{X}(k; x^e)\| < \epsilon \forall k \ge 0$$

The same concept with a different sign comes up in RL under the term reward

Figure 1.5: Sketch about Lyapunov stability

Definition 1.6. An equilibrium is said to be <u>asymptotically stable</u> if x^e is stable in the sense of Lyapunov and for some $\delta_0 > 0$, whenever $||x_0 - x^e|| < \delta_0$, it follows

$$\lim_{k \to \infty} \mathcal{X}(k, x_0) = x^e.$$

The set of x_0 for which this holds is the <u>region of attraction</u> for x^e , An equilibrium is globally asymptotically stable if the region of attraction is X.

Definition 1.7 (Lyapunov function). A function $V: X \to \mathbb{R}_+$ is called <u>Lyapunov function</u>. We frequently assume V is inf-compact, i.e.: it holds

$$\forall x^0 \in X : \{x \in X \mid V(x) \le V(x^0)\} \text{ is a bounded set.}$$

Remark. There is some variability in the definition of Lyapunov functions! We often assume V(x) is large if x is large.

Sublevel sets:

$$S_V(r) = \{ x \in X \mid V(x) \le r \}.$$

On can see with V being inf-compact $S_V(r)$ is either

- empty
- \bullet the whole domain X
- a bounded subset of X.

Usually, $S_V(r) = X$ is impossible, a common assumption is <u>coersiveness</u>:

$$\lim_{\|x\| \to \infty} V(x) = \infty.$$

Example. • $V(x) = x^2$, coercive

- $V(x) = \frac{x^2}{(1+x)^2}$, not coercive, but inf-compact r > 1: $S_V(r) = \mathbb{R}$, r < 1: $S_V(r) = [-a, a]$ with $a = \sqrt{\frac{r}{1+r}}$
- $V(x) = e^x$ is neither

Page 7 of 13

Start of lecture 02 (15.04.2025)

We usually want to avoid this

Lemma 1.8. Suppose that the cost function C and the value function J from definition 1.5 are non-negative and finite valued.

- this is a assumption on the value function
- 1. J(x(k)) is non-increasing in k and $\lim_{k\to\infty} J(x(k)) = 0$ for each initial condition.
- 2. In addition let J be continuous, inf-compact and vanishing only at x^e. Then for each initial condition

$$\lim_{k \to \infty} x(k) = x^e$$

Proof. Consider $J(x) = \sum_{k=0}^{\infty} c(x(k))$, then

$$J(x) = c(x) + \sum_{k=1}^{\infty} c(x(k))$$

= $c(x) + \sum_{k=0}^{\infty} c(x^{+}(k)); \ x^{+}(0) = \mathcal{F}(x)$
= $c(x) + J(\mathcal{F}(x))$

This is the <u>dynamic programming principle</u> for a <u>fixed policy</u>. It is also called Bellmann equation. For 1. from this it follows

$$J(x(k+1)) + c(x) - J(x(k)) = 0$$

summing up from k = 0 up to N - 1

$$J(x) = J(x(N)) + \sum_{k=0}^{N-1} c(x(k))$$

$$\implies \text{non-increasing}$$

Taking the limit

$$= \lim_{N \to \infty} \left[J(x(N) + \sum_{k=0}^{N-1} c(x(k))) \right] = \left[\lim_{N \to \infty} J(x(N)) \right] + J(x)$$

using J(x) is finite gives (i).

For 2. with r = J(x), we get $x(k) \in S_J(k) \forall k$. Now suppose $\{x(k_i)\}$ is a convergent subsequence of the trajectory with limit x^{∞} . Then $J(x^{\infty}) = \lim_{i \to \infty} J(x(k_i)) = 0$ by the continuity of J. We assumed $J(x) = 0 \iff x^e = x \implies x^{\infty} = x^e$. Finally, the assumption follows, since each convergent subsequence reach the same value x^e .

Definition 1.9 (Poisson's inequality). Let $V, c: X \to \mathbb{R}_+$ and $\eta \ge 0$. Then <u>Poisson's inequality</u> states that

$$V(\mathcal{F}(x)) \le V(x) - c(x) + \eta.$$

Proposition 1.10. Suppose the Poisson inequality holds with $\eta = 0$. Additionally V shall be continuous, inf-compact and it shall have a unique minima at x^e . Then x^e is stable in the sense of Lyapunov (sitsoL).

Proof.

$$\bigcap \{S_V(r) \mid r > V(x^e)\} = \{S_V(r)|_{r=V(x^e)}\} \stackrel{\text{unique minimizer}}{=} \{x^e\}.$$

Using compactness we get: For each $\epsilon > 0$, we can find some $r > V(x^e)$ and some $\delta < \epsilon$ s.t.

$$\{x \in X \mid ||x - x^e|| < \delta\} \subset S_V(r) \subset \{x \in X \mid ||x - x^e|| < \epsilon\}$$

If $||x_0 - x^e|| < \delta$, then $x_0 \in S_v(r)$ and hence $x(k) \in S_v(k)$ since V(x(k)) is non-increasing. With the second inclusion we see

$$\|\|-x^e\|<\epsilon \forall k$$

This gives sitsoL.

"

We are separating one step!

This is the same Bellman from the curse of dimensionality!

We often assume $\eta = 0$

Proposition 1.11 (Comparison theorem). Poisson's inequality implies

1. For each $N \geq 1$ and x = x(0)

We don't write that explictly, but we don't start in x^e !

$$V(x(N)) + \sum_{k=0}^{N-1} c(x(k)) \le V(x) + N\eta$$

- 2. If $\eta = 0$, then $J(x) \leq V(x) \forall x$
- 3. Assume $\eta = 0$ and V, c are continuous. Suppose that c is inf-compact and vanishes only at the equilibrium x^e . Then x^e is globally asymptotically stable.

Proof. 1.

$$V(x(k+1)) - V(x(k)) + c(x(k)) \le \eta$$

summing up from 0 to N-1:

$$V(x(N)) - V(x(0)) + \sum_{k=0}^{N-1} c(x(k)) \le N\eta$$

- 2. for $\eta=0$ the above is ≤ 0 , so $\sum_{k=0}^{N-1}c(x(k))\leq V(x(0))-V(x(k))\leq V(x(0))$ where the LHS converges to J(x(0)) for $N\to\infty$
- 3. Show sitsoL, with $\eta=0$ it follows form proposition 1.9 that $V(x)\geq c(x)$, which gives V is also inf-compact. c is vanishing only at x^e , so V(x(k)) is strictly decreasing. When $x(k)\neq x^e$, implies $V(x(k))\downarrow V(x^e)$ for each x(0). Further

This is important!

$$V(x^e) < V(x(0)) \ \forall x(0) \in X \setminus \{x^e\}.$$

So it is a unique minimum. V has therefore the properties of proposition 1.10, which gives sitsoL. For global: with 1. we get

$$\lim_{k \to \infty} c(x(k)) = 0$$

and assumptions give us by lemma 1.8 that $x(k) \to x^e$ as $k \to \infty$. So, we converge from any initial condition, which gives global asymptotical stability.

Proposition 1.12. Suppose that $V(\mathcal{F}(x)) = V(x) - c(x)$. Further, we assume that

- 1. J is continuous, inf-compact, vanishing only at x^e
- 2. V is continuous

Then $J(x) = V(x) - V(x^e)$.

Proof. As before we sum up:

$$V(x(0)) + \sum_{k=0}^{J(x(N-1))} \stackrel{N \to \infty}{\longrightarrow} J(x)$$

$$V(x(0)) + \sum_{k=0}^{N-1} c(x(k)) = V(x).$$

Lemma 1.8 together with the continuity of V implies that

$$V(x(N)) \to V(x^e)$$
 as $N \to \infty$.

This gives

$$V(x^e) + J(x) = V(x)$$

Start of lecture 03 (17.04.2025)

Example (Linear state space model). Setting $x(k+1) = \mathcal{F}(x(k))$, now with linear dynamics:

$$x(k+1) = Fx(k) = F^{k+1}x(0) = F^{k+1}x.$$

Assume quadratic cost $c(x) = x^{\intercal}Sx$, where S is symmetric and positive definite. Observe

$$c(x(k)) = (F^k x)^{\mathsf{T}} S F^k x$$

Summing up yields

$$J(x) = x^{\mathsf{T}} \underbrace{\left[\sum_{k=0}^{\infty} (F^k)^{\mathsf{T}} S F^k \right]}_{-\cdot M} x$$

THis satisfies a linear fixed point equation:

$$M = S + F^{\mathsf{T}}MF$$
 (5) $\frac{discrete\ time}{Lyapunov\ equation}$

One can show for the linear state space model, that the following are equivalent:

- 1. the origin is asymptotically stable
- 2. the origin is globally asymptotically stable
- 3. Each eigenvalue λ of F satisfies $|\lambda| < 1$
- 4. (5) admits a solution M positive semi-definite for any S positive semidefinite.

Reference: arxiv: 2007.01367

Consider 1.1 without y

$$y(k+1) = \mathcal{F}(x(k), u(k))$$

with

$$c: X \times U \to \mathbb{R}_+.$$

The total cost J_{ϕ} for a given ϕ given $u(k) = \phi(x(k))$ is

$$J_{\phi}(x) = \sum_{k=0}^{\infty} c(x(k), u(k)).$$

The optimal value function is the minimum over all controls

$$J^{\star}(x) = \min_{\underline{\mathbf{U}} = [u(0), u(1), \dots]} \sum_{k=0}^{\infty} c(x(k), u(k)), \ x(0) = x \in X$$
 (6)

Remark. The minimizer might not be unique! In harder settings this might need to be an inf!

Goal: Find a control sequence that achieves the minimum.

Computationally we can't expect to calculate J_{ϕ} exactly, but we will approximate it.

and the corrensponding policy

This describes the optimal control policy

(OCP)

This is also called

Remark. We are in the infinite horizon setting (infinite time steps) to talk about the stability. For this it is important that the equilibrium has cost 0. Without an equilibrium we can also think about discounted value functions

$$J_{\phi} = \sum_{k=0}^{\infty} \gamma^k c(x(k), u(k))$$

We will see later that it holds for the sequence x^* achieving the minimum

$$J^{\star}(x^{\star}(k)) = c(x^{\star}(k), u^{\star}(k)) + J(x^{\star}(k+1))$$

which is definition 1.9 with $\eta = 0$ and equality.

Proposition 1.11 implies, under some conditions, that x^e is globally asymptotically stable. Under the following assumptions J^* is finite:

Page 10 of 13

- 1. there is a (target) state x^e that is an equilibria for some control $F(x^e, u^e) = x^e$
- 2. $c \ge 0, c(x^e, u^e) = 0$
- 3. for any initial condition x(0) = x there is a control sequence \underline{u} and a time T, such that $x(T) = x^e$ for x(0) = x using control \underline{u} .

This is sometimes called controllability

Example (Linear Quadratic Regulator). Consider linear dynamics 3 from the first lecture with quadratic cost $c(x, u) = x^{\intercal}Sx + u^{\intercal}Ru$ with S positive semi-definite and R positive definite. Reminder: u = -Kx.

If there is a policy for which J^* is finite, then

$$J^{\star}(x) = x^{\mathsf{T}} M^{\star} x$$

with M^* positive semi-definite and

$$\phi^{\star}(x) = -K^{\star}(x)$$

with K^* depends on M^*, R, F, G .

and implicitly on c

Bellmann equation

Figure 1.6: Sketch 1.06; Principle of optimality

Observation:

$$J^{\star}(x) = \min_{\underline{\mathbf{u}}} \left[\sum_{k=0}^{k_m - 1} c(x(k), u(k)) + \sum_{k_m}^{\infty} c(x(k), u(k)) \right]$$

$$= \min_{u[0, \dots, k_m - 1]} \left[\sum_{k=0}^{k_m - 1} c(x(k), u(k)) + \underbrace{\min_{u[k_m, \dots,]} \sum_{k_m}^{\infty} c(x(k), u(k))}_{=J^{*}(x(k_m))} \right]$$

This gives

$$J^*(x) = \min_{u[0,\dots,k_m-1]} \left[\sum_{k=0}^{k_m-1} c(x(k), u(k)) \right] + J^*(x(k_m)).$$

With $k_m = 1$ we have shown the following theorem

which can be seen as a kind of fix point equation

Theorem 1.13 (Bellmann equation, Dynamic Programming equation). Assume that J^* is finite and optimal control u^* solving (6) exists. Then the value function satisfies

$$J^{\star}(x) \min_{u} \{ c(x, u) + J^{\star}(\mathcal{F}(x, c)) \}$$
 (7)

Suppose the minimum is unique for each x and let $\phi^*(x)$ denote the minimum feedback law at x. Then the optimal control is expressed as

$$u^{\star}(k) = \phi^{\star}(x^{\star}(k)).$$

Definition 1.14 (Q-function). The function of two variables within the minimum in (7) is called Q-function.

$$Q^{\star}(x, u) = c(x, u) + J^{\star}(\mathcal{F}(x, u))$$

In the optimal case we write Q^* . Thus

$$J^{\star}(x) = \min_{u} Q^{\star}(x, u).$$

The optimal feedback law is then

$$\phi^{\star}(x) \in \underset{u}{\operatorname{argmin}} Q^{\star}(x, u).$$

The Q-function solves the fixed point equation

$$Q^{\star}(x,u) = c(x,u) + \min_{u} Q^{\star}(\mathcal{F}(x,u),u).$$

This already gives a hint for an algorithm coming later next lecture.

Remark. In RL the difference is that we don't know the model, we only observe state action pairs. This motivates the Q-function.

Some concepts from Reinforcement Learning

Actors and critic:

Given is a parameterized family of policies $\{\phi^{\theta} \mid \theta \in \mathbb{R}^d\}$. the <u>actors</u>. For each θ , observe the trajectories by their states x and actions u determined by their policy.

The <u>critic</u> approximates the associated value function \tilde{J}_{θ} . Aim for the minimum

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \langle v, \tilde{J}_{\theta} \rangle,$$

where the weight vector $v \ge 0$ reflects the weighting of the states. v(x) is large for *important* states.

Temporal differences:

$$J_{\theta}(x(k)) = c(x(k), u(k \mid \theta)) + J_{\theta}(x(k+1))$$

Look for an approximation \hat{J} for which the error is small (w.r.t. the equality above). Temporal differences are

$$D_{k+1}(\hat{J}) := -\hat{J}(x(k)) + \hat{J}(x(k+1)) + c(x(k), u(k)).$$

After N samples

$$\Gamma(\hat{J}) \coloneqq \frac{1}{N} \sum_{k=0}^{N-1} D_{k+1}(\hat{J})^2.$$

We can optimize / minimize this.

There is a whole class of TD algorithms and those fit into the actors critic approach!

Definition, which is not so useful for the analysis, but for the pratical application!

scalar product in \mathbb{R}^n (all states?)

What changes, or what is the information gain

Journal

- Lecture 01: Covering: Introduction, (linear, continuous) State space models, equilibrium, (Lyapunov, asymptotically) stable, region of attraction, globally asymptotically stable. Starting in 'Organization' on page 2 and ending in 'State Space Models in continuous Time' on page 7. Spanning 5 pages
- Lecture 02: Covering: Lyapunov function,inf-compactness and coerciveness, sublevel sets, Poisson's inequality, comparison theorem, a few propositions connecting the value function, equilibria and Lyapunov functions.

 Starting in 'State Space Models in continuous Time' on page 7 and ending in 'State Space Models in continuous Time' on page 9. Spanning 2 pages
- Lecture 03: Covering: discrete time Lyapunov equation, optimal control policy, controllability, linear quadratic regulator, Bellmann equation, principle of optimality, Q-function and some concepts from Reinforcement Learning.

 Starting in 'State Space Models in continuous Time' on page 9 and ending in 'Some concepts from Reinforcement Learning' on page 12. Spanning 3 pages