$n^{\circ}5$ - Fonctions spéciales (Corrigé)

Notes de Cours

I Fonctions exponentielles et logarithme

FIGURE 1 – Les graphes des fonction l
n et exp sont symétriques par rapport à la droite d'équation
 $\boldsymbol{x}=\boldsymbol{y}$

Voici un formulaire des propriétés fondamentales à connaître et savoir utiliser.

1. Domaines de définition, variations :

$$\exp: \ \mathbb{R} \longrightarrow \]0, +\infty[\qquad \qquad \ln: \]0, +\infty[\longrightarrow \ \mathbb{R}$$

$$x \longmapsto e^x \qquad \qquad x \longmapsto \ln(x)$$

Les fonctions exp et l
n sont strictement croissantes sur $\mathbb R$ et $\mathbb R_+^*$ respectivement.

$$\lim_{x \to -\infty} e^x = 0 \qquad \qquad \lim_{y \to 0} \ln(y) = -\infty$$

$$\lim_{x \to +\infty} e^x = +\infty \qquad \qquad \lim_{y \to +\infty} \ln(y) = +\infty$$

2. Les fonctions sont réciproques l'une de l'autre :

$$\forall x \in \mathbb{R}, \ \ln(e^x) = x \qquad \forall y > 0, \ e^{\ln(y)} = y$$

3. Dérivée:

$$\frac{d(e^x)}{dx} = e^x \text{ sur } \mathbb{R}, \qquad \frac{d\ln|x|}{dx} = \frac{1}{x} \text{ sur } \mathbb{R}^*$$

et plus généralement pour une fonction u, on a

$$(e^u)' = u' \times e^u \qquad (\ln(u))' = \frac{u'}{u}$$

4. **Des sommes aux produits :** L'exponentielle transforme les sommes en produit. Et le logarithme transforme les produits en sommes. C'est-à-dire que pour tous $x,y\in\mathbb{R}$ et tous $a,b\in\mathbb{R}_+^*$, on a

$$e^{0} = 1 \qquad \ln(1) = 0$$

$$e^{1} = e \qquad \ln(e) = 1$$

$$e^{x+y} = e^{y} \times e^{y} \qquad \ln(a \times b) = \ln(a) + \ln(b)$$

$$e^{x-y} = \frac{e^{x}}{e^{y}} \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

$$e^{-x} = \frac{1}{e^{x}} \qquad \ln\left(\frac{1}{a}\right) = -\ln(a)$$

$$e^{xy} = (e^{x})^{y} \qquad \ln(a^{b}) = b \times \ln(a)$$

$$e^{\frac{x}{y}} = \sqrt[y]{e^{x}} \qquad \ln\left(\sqrt[b]{a}\right) = \frac{\ln(a)}{b}$$

5. Fonction puissance et logarithme en base a > 0: Pour a > 0, $x \in \mathbb{R}$ et y > 0, on définit

$$a^x := e^{x \ln(a)} \qquad \qquad \log_a(y) := \frac{\ln(y)}{\ln(a)}$$

les fonctions $x \mapsto a^x$ et $y \mapsto \log_a(y)$ sont réciproques l'une de l'autre. Le logarithme népérien correspond au logarithme en base e (c'est-à-dire qu'on $\log_e = \ln$).

6. Croissance comparée : Soit $\alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$. Si la limite en α de $(\ln(x))^a \cdot |x|^b \cdot e^{cx}$ est une forme indéterminée, alors

$$\lim_{x \to \alpha} (\ln(x))^a \cdot |x|^b \cdot e^{cx} = \begin{cases} \lim_{x \to \alpha} e^{cx} & \text{si } c \neq 0 \\ \lim_{x \to \alpha} |x|^b & \text{si } c = 0 \text{ et } b \neq 0 \\ \lim_{x \to \alpha} (\ln(x))^a & \text{si } c = 0 \text{ et} b = 0 \end{cases}$$

II Exercices

II.A Calculs élémentaires

1. (SF 31, 32) (Aspect fondamental) Mettre les expressions suivantes sous la forme ln(a):

$$\ln(6) + \ln(4) - \ln(12) = \ln(\dots)$$

$$\frac{1}{2}\ln(t^2 + 4t + 4) = \ln(\dots)$$

$$\ln(x^2 - 1) - \ln(x + 1) = \ln(\dots)$$

Solution:

$$\ln(6) + \ln(4) - \ln(12) = \ln(2)$$

$$3\ln(2) - 4\ln(\sqrt{2}) = \ln\left(\frac{2^3}{\sqrt{2}^4}\right) = \ln(2)$$

$$\frac{1}{2}\ln(t^2 + 4t + 4) = \ln(|t + 2|)$$

$$\ln(x^2 - 1) - \ln(x + 1) = \ln(x - 1)$$

2. (SF 31, 33, 34) (Aspect fondamental) Mettre les expressions suivantes sous la forme e^a :

 $\sqrt[3]{e^{-12}} = e^{\cdots}$

$$\frac{\sqrt{e^{-4x}}}{\left(e^{-\frac{x}{2}}\right)^6 e^{5x}} = e^{\cdots} \qquad u^{\frac{1}{\ln(u)}} = e^{\cdots}$$

Solution:

$$\sqrt[3]{e^{-12}} = e^{-4}, \quad e^3 3^e = e^{3+e\ln(3)}, \quad \frac{\sqrt{e^{-4x}}}{\left(e^{-\frac{x}{2}}\right)^6 e^{5x}} = e^{-4x}, \quad u^{\frac{1}{\ln(u)}} = e^1 = e^{-4x}$$

3. (SF 22, 23, 24, 25, 39) (Aspect fondamental) Déterminer les domaines de définition des fonctions suivantes et calculer leurs dérivées

$$f_1(x) = \ln(3x - 2)$$
 $f_2(x) = e^{x^2}$
 $f_3(x) = x \ln(x) - x$ $f_4(x) = 3^x$
 $f_5(x) = \log_{10}(x)$ $f_6(x) = \ln(e^x - x)$

Solution:

- 4. (SF 32, 33, 34)
 - (a) Sachant $2^{10} = 1024$, $2^9 = 512$ et 10^3 , montrer que

$$3 \le \log_2(10) \le 3 + \frac{1}{3}$$

- (b) Sachant que $10 \le 33 < 100$, donner un encadrement de $\log_{10}(33)$ entre deux entiers.
- (c) Que vaut la partie entière de $\log_{10}(3827939174323)$? (Indication : trouver $k \in \mathbb{N}$ tel que $10^k \le 3827939174323 < 10^{k+1}$)

Solution:

(a) On a

$$2^9 < 10^3 < 2^{10}$$

donc en prenant le log_2 (qui est croissant), on obtient

$$9 \le 3\log_2(10) \le 10$$

et en divisant par 3, on tire

$$3 \le \log_2(10) \le 3 + \frac{1}{3}$$

Remarque II.1. L'approximation $\log_2(10) \sim 3 + \frac{1}{3}$ est assez bonne car $\log_2(10) \sim 3,32$ et $3 + \frac{1}{3} \sim 3,33$

(b) En prenant le \log_{10} dans l'inégalité $10 \le 33 < 100$, on déduit

$$1 < \log_{10}(33) < 2$$

(c) On a

$$10^{12} < 3827939174323 < 10^{13}$$

donc

$$12 < \log_{10}(3827939174323) < 13$$

et $|\log_{10}(3827939174323)| = 12.$

Remarque II.2. De manière plus générale pour un entier $n \in \mathbb{N}^*$, $\lfloor \log_{10}(n) \rfloor + 1$ correspond au nombre de chiffres de n dans son écriture en base n.

II.B Calculs de limites

5. (SF 13, 14, 16) Calculer les limites suivantes

$$\lim_{x \to +\infty} e^{-3x} \qquad \qquad \lim_{x \to 1} \ln(x^2 + x + 1)$$

$$\lim_{x \to 1^+} \ln(e^x - 1) \qquad \qquad \lim_{x \to -\infty} e^{x \ln(-\frac{1}{2+x})}$$

$$\lim_{x \to -\infty} \frac{1}{e^{3-4x}} \qquad \qquad \lim_{x \to 0^+} e^{-\frac{1}{x}}$$

Solution:

$$\lim_{x \to +\infty} e^{-3x} = 0 \qquad \qquad \lim_{x \to 1} \ln(x^2 + x + 1) = \ln(3)$$

$$\lim_{x \to 1^+} \ln(e^x - 1) = -\infty \qquad \qquad \lim_{x \to -\infty} e^{x^2 \ln(-\frac{1}{2+x})} = 0$$

$$\lim_{x \to -\infty} \frac{1}{e^{3-4x}} = 0 \qquad \qquad \lim_{x \to 0^+} e^{-\frac{1}{x}} = 0$$

6. (SF 13, 14, 15, 16, 17) Calculer les limites suivantes

$$\lim_{x \to +\infty} \frac{e^x}{x}$$

$$\lim_{x \to 0^+} x \ln(x)$$

$$\lim_{x \to 0^+} e^x \ln(x)$$

$$\lim_{x \to +\infty} \frac{e^{3x} - e^{2x}}{\sin x + e^{-x}}$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x}$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x}$$

$$\lim_{x \to +\infty} x \ln(x)$$

Solution:

$$\lim_{x \to +\infty} \frac{e^x}{x} = 0$$

$$\lim_{x \to 0^+} x \ln(x) = 0$$

$$\lim_{x \to 0^+} e^x \ln(x) = -\infty$$

$$\lim_{x \to +\infty} \frac{2e^{-x} - 5e^{2x} + 1}{3e^{2x} - e^x} = -\frac{5}{3}$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 1$$

- 7. (SF 13,16, 19)
 - (a) Calculer les limites suivantes (on pourra faire apparaître des taux de variation)

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

$$\lim_{x \to 0} \frac{\ln(1 + 4x)}{x}$$

$$\lim_{x \to +\infty} x \ln\left(1 + \frac{2}{x}\right)$$

$$\lim_{x \to +\infty} \frac{e^x - 1}{x}$$

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

(b) Pour $x \in \mathbb{R}$, calculer la limite suivante

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n$$

Solution:

(a) On trouve

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1 + 4x)}{x} = 4$$

$$\lim_{x \to 0} x \ln\left(1 + \frac{2}{x}\right) = 2$$

(b) On trouve

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

II.C Trigonométrie hyperbolique

Définition II.3 (sinus, cosinus et tangente hyperbolique). Pour $x \in \mathbb{R}$, on pose

$$ch(x) = \frac{e^x + e^{-x}}{2}, \quad sh(x) = \frac{e^x - e^{-x}}{2}, \quad th(x) = \frac{sh(x)}{ch(x)}$$

8. (SF 31, 32, 33) Montrer que pour tout $x \in \mathbb{R}$, on a

$$\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$$

Solution : On part des expressions $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$ et $\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$ puis on développe les carrés. Alternativement, on peut aussi dériver $\operatorname{ch}^2(x) - \operatorname{sh}^2(x)$, ce qui donne 0 et montre que cette expression est constante. Et évaluer en x = 0 nous donne sa valeur.

- 9. (SF 38, 39, 40, 41) Dans cet exercice, on cherche à étudier les fonctions sh et ch.
 - (a) Déterminer la parité des fonctions ch et sh.
 - (b) Dériver les fonctions ch et sh (exprimer le résultat en fonction de ch et sh).
 - i. Développer le produit $(e^{x/2} e^{-x/2})^2$. En déduire que pour tout $x \in \mathbb{R}$, on a $\operatorname{ch}(x) \geq 1$.
 - ii. Calculer les limites de la fonction sh en $-\infty$ et $+\infty$.
 - iii. En déduire le tableau de variation de la fonction sh
 - (c) i. Déterminer le signe de sh(x) en fonction de x (on pourra se servir du tableau de variation).
 - ii. Calculer les limites de la fonction chen $-\infty$ et $+\infty$.
 - iii. En déduire la tableau de variation de la fonction ch.
 - (d) Dessiner l'allure du graphe de sh et ch.

Solution:

- (a) On a $\operatorname{ch}(-x) = \operatorname{ch}(x)$ et $\operatorname{sh}(-x) = -\operatorname{sh}(x)$
- (b) On trouve ch'(x) = sh(x) et sh'(x) = ch(x)

i. Comme $(e^{x/2}-e^{-x/2})^2=e^x+e^{-x}-2\geq 0$ on a $e^x+e^{-x}\geq 2$ et donc $\operatorname{ch}(x)\geq 1$.

ii. On a

$$\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty, \qquad \lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$$

x	$-\infty$ $+\infty$
sh'(x)	+
sh(x)	+∞

(c) i. La fonction sh est strictement croissante, et sh(0) = 0. Donc sh(x) est du signe de x.

ii. On a

$$\lim_{x\to -\infty} \operatorname{ch}(x) = +\infty, \qquad \lim_{x\to +\infty} \operatorname{ch}(x) = +\infty$$

x	$-\infty$	0		$+\infty$
$\operatorname{ch}'(x)$	_	0	+	
$\operatorname{ch}(x)$	$+\infty$	→ ₁ /		+∞

(d) On obtient les graphes suivants :

- 10. (SF 31, 32, 38, 39, 40, 41) Dans cet exercice, on étudie la fonction th.
 - (a) Déterminez le domaine de définition de th. Quelle est sa parité?
 - (b) i. Calculer la dérivée de thet montrer que pour tout $x \in \mathbb{R}$,

$$th'(x) = \frac{1}{ch^2(x)}$$

- ii. Calculer les limites de th(x) en $\pm \infty$.
- iii. Tracer le tableau de variation et l'allure du graphe.

Solution:

- (a) On sait $\operatorname{ch}(x) \leq 1 > 0$ pour tout $x \in \mathbb{R}$ donc la fonction the est définie sur \mathbb{R} tout entier. On vérifie par ailleurs qu'elle est impaire.
- (b) i. On trouve

$$\operatorname{th}'(x) = \frac{1}{\operatorname{ch}^2(x)} \ge 0$$

ii. En factorisant les termes dominants on trouve

$$\lim_{x \to -\infty} \operatorname{th}(x) = -1, \qquad \lim_{x \to +\infty} \operatorname{th}(x) = 1$$

iii.

II.D Etude de la fonction x^x

- 11. (SF 15, 31, 33, 34, 38, 39, 40, 41) Dans cet exercice, on cherche à étudier la fonction $f(x) = x^x$.
 - (a) Réécrire f(x) sous la forme $f(x) = e^{g(x)}$ avec g une fonction qu'on explicitera. En déduire le domaine de définition de f.
 - (b) i. Calculer la dérivée de f.
 - ii. Calculer la limite de f en $+\infty$. Calculer la limite en 0^+ et en déduire que f est prolongeable par continuité en 0.
 - iii. Tracer le tableau de variation.

Solution:

(a) On a $f(x) = e^{x \ln(x)}$ (c'est-à-dire $g(x) = x \ln(x)$). Donc f est définie sur \mathbb{R}_+^* .

(b) i. Pour tout x > 0, on a

$$f'(x) = (\ln(x) + 1) \cdot f(x)$$

ii. On a

$$\lim_{x \to +\infty} f(x) = e^{\infty \ln(\infty)} = e^{\infty} = +\infty$$

et pour la limite en 0⁺, on utilise que $g(x) \underset{x \to 0^+}{\longrightarrow} 0$ par croissance comparée, et donc

$$\lim_{x \to 0^+} f(x) = e^0 = 1$$

La limite étant finie, on peut ainsi prolonger f par continuité en 0 en posant f(0)=1.

Remarque II.4. La limite $\lim_{x\to 0^+} x^x = 1$ est une des raisons de prendre la convention $0^0 := 1$.

iii. Comme $f(x) = e^{g(x)} > 0$ pour tout x > 0, alors f'(x) est du signe de $\ln(x) + 1$. On a donc le tableau de variation suivant

II.E Propriétés du logarithme

Comment démontre-t-on les propriétés du logarithme? Dans cette partie on propose quelques preuves en partant de zéro. C'est-à-dire qu'on prend la définition suivante du logarithme et qu'on en déduit ses propriétés.

Définition II.5 (Logarithme). Pour x > 0, on pose

$$\ln(x) = \int_{1}^{x} \frac{dt}{t}$$

12. (SF 65, 57) Le logarithme transforme les produits en sommes

L'objectif de cet exercice est de démontrer que le logarithme transforme les produits en sommes. Pour cela, on ne s'autorisera à utiliser que la définition II.5 ci-dessus (on ne suppose pas que l'on connaît déjà les autres propriété du logarithme).

- (a) Que vaut ln(1)?
- (b) Montrer que pour tout a, b > 0, on a

$$\int_{a}^{b} \frac{dt}{t} = \ln(b) - \ln(a)$$

(c) En effectuant le changement de variable u = ty, montrer que pour tout x, y > 0

$$\ln\left(\frac{x}{y}\right) = \int_{u}^{x} \frac{du}{u}$$

(d) En déduire que pour tout x, y > 0,

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

(e) En déduire que pour tout x, y > 0, on a également

$$\ln\left(\frac{1}{x}\right) = -\ln(x)$$

puis

$$\ln(x \times y) = \ln(x) + \ln(y)$$

Solution:

- (a) On a $\ln(1) = \int_1^1 \frac{dt}{t} = 0$.
- (b) On a

$$\int_{a}^{b} \frac{dt}{t} = [\ln(t)]_{a}^{b} = \ln(b) - \ln(a)$$

(c) En effectuant le changement de variable u = ty (ce qui donne $\frac{du}{u} = \frac{dt}{t}$), on obtient

$$\ln\left(\frac{x}{y}\right) = \int_{1}^{\frac{x}{y}} \frac{dt}{t}$$
$$= \int_{y}^{x} \frac{du}{u}$$

(d) En combinant les deux questions précédentes, on obtient

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

(e) En appliquant la relation de la question précédente en 1 et x, on obtient :

$$\ln\left(\frac{1}{x}\right) = \underbrace{\ln(1)}_{=0} - \ln(x) = -\ln(x)$$

Puis on déduit enfin

$$\ln(x \times y) = \ln\left(\frac{x}{\frac{1}{y}}\right)$$

$$= \ln(x) - \ln\left(\frac{1}{y}\right)$$

$$= \ln(x) - (-\ln(y))$$

$$= \ln(x) + \ln(y)$$

13. (SF 57, 1253, 329) Bijectivité du logarithme

Dans cet exercice, on ne s'autorise à utiliser que l'expression $\ln(x) = \int_1^x \frac{dt}{t}$ et les propriétés du logarithme démontrée dans l'exercice prédédent.

- (a) Montrer que la fonction ln est strictement croissante sur \mathbb{R}_+^*
- (b) Montrer par récurrence sur $n \ge 0$ que $\ln(2^n) = n \ln(2)$.
- (c) En déduire que

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

puis que

$$\lim_{x \to 0^+} \ln(x) = -\infty$$

(Indication: pour déduire la limite en 0^+ , on pourra faire le changement de variable $y=\frac{1}{x}$)

(d) Justifier que la fonction ln est continue. En déduire que c'est une bijection de \mathbb{R}_+^* dans \mathbb{R} .

Solution:

(a) La fonction ln est dérivable sur \mathbb{R}_+^* , et

$$\ln'(x) = \frac{1}{x} > 0$$

donc la fonction est strictement croissante.

(b) Pour n = 0: on a $\ln(2^0) = \ln(1) = 0 = 0 \ln(2)$.

<u>Hérédité</u>: Supposons la propriété vraie jusqu'au rang n, et démontrons-la au rang n+1. On a $\ln(2^{n+1}) = \ln(2^n \times 2)$, mais par la propriété démontrée dans l'exercice précédente, $\ln(2^n \times 2) = \ln(2^n) + \ln(2)$. Et par hypothèse de récurrence, $\ln(2^n) = n \ln(2)$. Donc au final on obtient bien

$$ln(2^{n+1}) = (n+1) ln(2)$$

(c) La fonction ln est croissante, donc soit elle tend vers une limite finie, soit elle tends vers $+\infty$. Or elle tend vers l'infini le long de la suite 2^n puisque

$$\ln(2^n) = n \underbrace{\ln(2)}_{\text{> ln(1)=0}} \underset{n \to +\infty}{\longrightarrow} +\infty$$

donc au final on a

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

et en faisant le changement de variable $y=\frac{1}{x}$, on a

$$\lim_{x \to 0^+} \ln(x) = \lim_{y \to +\infty} \ln\left(\frac{1}{y}\right) = \lim_{y \to +\infty} -\ln\left(y\right) = -\infty$$

(d) La fonction ln est continue (comme primitive de fonction continue) et strictement croissante, donc d'après le théorème de la bijection, c'est une bijection de \mathbb{R}_+^* dans $\mathbb{R} = \lim_{x \to 0^+} \ln(x), \lim_{x \to +\infty} \ln(x)$.

II.F Propriétés de l'exponentielle

Le fait que la fonction ln soit une bijection de \mathbb{R}_+^* dans \mathbb{R} assure qu'il existe une fonction réciproque de \mathbb{R} dans \mathbb{R}_+^* . Cela nous autorise à prendre la définition suivante de l'exponentielle.

Définition II.6 (exponentielle). La fonction $\exp : \mathbb{R} \to \mathbb{R}_+^*$ est définie comme la réciproque de la fonction ln. En particulier c'est une fonction strictement positive, strictement croissante sur \mathbb{R} et on a les limites

$$\lim_{x \to -\infty} e^x = 0, \qquad \lim_{x \to +\infty} e^x = +\infty$$

- 14. (SF 22, 25, 67) Lien avec les équation différentielles
 - (a) En utilisant la relation $\ln(e^x) = x$ valable pour tout $x \in \mathbb{R}$, montrer que $\exp'(x) = \exp(x)$.
 - (b) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable telle que f'(x) = af(x). Montrer qu'il existe $c \in \mathbb{R}$ tel que $f(x) = ce^{ax}$ pour tout $x \in \mathbb{R}$. (Indication: On pourra considérer $g(x) = \frac{f(x)}{e^{ax}}$, et dériver g.)

Solution:

(a) En dérivant la relation $ln(e^x) = x$, on trouve

$$\frac{\exp'(x)}{\exp(x)} = 1$$

d'où $\exp'(x) = \exp(x)$.

(b) On pose $g(x) = \frac{f(x)}{e^{ax}}$. En dérivant g, on trouve

$$g'(x) = \frac{f'(x) - af(x)}{e^{ax}} = 0$$

Donc g est constante, disons g(x) = c, et

$$f(x) = ce^{ax}$$