

Model Development Phase Template

Date	12 July 2024
Team ID	SWTID1720083491
Project Title	Early Prediction of Chronic Kidney Disease Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
# Initialize the models
logreg = LogisticRegression(max_iter=1000)
dtree = DecisionTreeClassifier()
rforest = RandomForestClassifier()
svm = SVC()

# Train the models
logreg.fit(X_train, y_train)
dtree.fit(X_train, y_train)
rforest.fit(X_train, y_train)
svm.fit(X_train, y_train)

# Predict on the test set
y_pred_logreg = logreg.predict(X_test)
y_pred_dtree = dtree.predict(X_test)
y_pred_rforest = rforest.predict(X_test)
y_pred_svm = svm.predict(X_test)
```


Model Validation and Evaluation Report:

Model	Classification Repor	t	Accuracy	Confusion Matrix			
Logistic Regression	1 0.74 1.00 0. accuracy 0.87 0.92 0.		88%	print("Confusion Matrix:") cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.title(f"Confusion Matrix for {model}") Confusion Matrix: Confusion Matrix for Logistic Regression 45 40 -35 -30 -25 -20 -15 -10 -5 -10 -5 -7 Predicted			
Decision Tree	1 0.88 0.85 0. accuracy 0. macro avg 0.90 0.90 0.	re support 94 54	91%	print("Confusion Matrix:") cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.title(f"Confusion Matrix for {model}") Confusion Matrix: Confusion Matrix for Decision Tree -50 -40 -30 -20 -10 Predicted			

Random Forest	print("Classif print(classif) Classification p 0 1 accuracy macro avg weighted avg	ication_r	report(y_		95%	cm = cor sns.heat	cmap(cm, annot= le(f"Confusion atrix: Confusion Matrix	x:") y_test, y_pred) True, fmt='d', cmap Matrix for {model}" x for Random Forest 2 24 24	
Support Vector Machine (SVM)	print("Classi print(classif Classification 0 1 accuracy macro avg weighted avg	ication_r	report(y_	support 54 26 80 80 80	88%	cm = cor sns.hea	tmap(cm, annot le(f"Confusion atrix: Confusion 45	ix:") (y_test, y_pred) =True, fmt='d', cm Matrix for {model Matrix for SVM 9	