

INFORME ENSAYO CAVITACIÓN

ICM557 Laboratorio de Maquinas

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: 2665

Fecha: 9 diciembre de 2020

1. INTRODUCCIÓN

A través de una experiencia de laboratorio se dará a conocer la curva de columna neta de succión positiva requerida y disponible de una bomba centrífuga general. Se tabularán los resultados y se obtendrán conclusiones que permitan predecir el trazado de gráficos, para así conocer el funcionamiento del sistema.

2. ÍNDICE

Introducción	2
Índice	3
Objetivos	4
Procedimientos / Parámetros	4
Resultados	5
Preguntas	8
Conclusiones	12

3. OBJETIVOS

- Determinar la curva de columna neta de succión positiva requerida de una bomba centrífuga.

4. PROCEDIMIENTO / PARÁMETROS

Una vez puesta en marcha la instalación, con válvulas de aspiración y descarga completamente abiertas, se regula la velocidad dada en el práctico.

Tras esperar un tiempo razonable para la estabilización del instrumento a utilizar se toma medida de los siguientes parámetros:

- Velocidad de ensayo: n [rpm]
- Velocidad de la bomba: nx [rpm]
- Presión de aspiración: pax% [%]
- Presión de descarga: pdx% [%]
- Caudal de la bomba, presión diferencial del venturímetro: deltahx, [mmHg]
- Fuerza medida en la balanza: Fx [kp]
- Temperatura de agua en el estanque: T [°C]
- Presión atmosférica: Patm [mmHg]

Una vez tomados estos valores se procede a estrangular la descarga colocando un disco con abertura menor. Repetimos esto hasta alcanzar plena cavitación.

Luego se procede a medir los siguientes parámetros:

- cpax: altura piezométrica del manómetro de aspiración respecto del eje de la bomba.
- cpdx: altura piezométrica del manómetro de descarga respecto del eje de al bomba.

4. RESULTADOS

Se obtiene la siguiente tabla de valores medidos:

	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm	Pv
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	[mca]
									٤		
1	2900	0,115	0,165	2899	91,8	5,6	140	1,19	18	757,1	0,2108
2	2900	0,115	0,165	2899	93,8	10,2	128	1,27	18	757,1	0,2108
3	2900	0,115	0,165	2898	96,3	14,6	115	1,34	18	757,1	0,2108
4	2900	0,115	0,165	2899	98,6	19,4	101	1,42	18	757,1	0,2108
5	2900	0,115	0,165	2898	100,8	24	87	1,48	18	757,1	0,2108
6	2900	0,115	0,165	2897	103,2	28,5	74	1,53	18	757,1	0,2108
7	2900	0,115	0,165	2899	104,8	32,2	63	1,53	18	757,1	0,2108
8	2900	0,115	0,165	2896	107,3	37,7	50	1,57	18	757,1	0,2108
9	2900	0,115	0,165	2897	109,7	42,2	36	1,53	18	757,1	0,2108
10	2900	0,115	0,165	2898	112,2	46,5	22	1,45	18	757,1	0,2108
11	2900	0,115	0,165	2899	115,2	50,3	9	1,21	19	757,1	0,2244
12	2900	0,115	0,165	2900	121,1	54,3	0	0,82	19	757,1	0,2244

Tabla 1: Tabla de valores medidos para 2900 [rpm]

	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm	Pv
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	[mca]
					5						
1	2900	0,115	0,165	2908	97,4	17,6	105	1,4	16	757,1	0,18496
2	2900	0,115	0,165	2912	79,5	12,8	105	1,4	16	757,1	0,18496
3	2900	0,115	0,165	2912	63	8,6	105	1,4	16	757,1	0,18496
4	2900	0,115	0,165	2913	53,5	5,2	105	1,38	16	757,1	0,18496
5	2900	0,115	0,165	2916	50,4	5	98	1,35	16	757,1	0,18496
6	2900	0,115	0,165	2917	39,4	4,9	89	1,4	16,5	757,1	0,19176
7	2900	0,115	0,165	2916	36,2	4,7	79	1,4	17	757,1	0,1972

Tabla 2: Tabla de valores medidos Punto 1

	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}	Pv
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	[mca]
1	2900	0,115	0,165	2917	102,3	27,8	78	1,52	17	757,1	0,1972
2	2900	0,115	0,165	2917	74	20,5	78	1,52	17	757,1	0,1972
3	2900	0,115	0,165	2917	48,4	10,6	78	1,48	17	757,1	0,1972
4	2900	0,115	0,165	2917	37,7	4,7	78	1,41	17,5	757,1	0,204
5	2900	0,115	0,165	2915	35,9	4,6	73	1,4	17,5	757,1	0,204
6	2900	0,115	0,165	2917	35,8	4,7	69	1,38	18	757,1	0,2108
7	2900	0,115	0,165	2916	36,1	4,4	64	1,35	18	757,1	0,2108

Tabla 3: Tabla de valores medidos Punto 2

	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Paim	Pv
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	[mca]
1	2900	0,115	0,165	2916	109,8	43,8	35	1,49	18	757,1	0,2108
2	2900	0,115	0,165	2917	86,1	36,8	35	1,55	18	757,1	0,2108
3	2900	0,115	0,165	2918	26,8	4	35	1,28	18	757,1	0,2108
4	2900	0,115	0,165	2918	27,8	3,7	34	1,25	18,5	757,1	0,2176
5	2900	0,115	0,165	2917	29,3	3,6	31	1,2	18,5	757,1	0,2176

Tabla 4: Tabla de valores medidos Punto 3

Se presentan también las tablas de los valores calculados:

	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	η _{gl}	٧	CNSPD	CNSPR
	[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
1	110,88	110,9182	-0,8201	2,2402	3,0603	3,0624	2,5373	2,5400	0,9247	36,4049	3,7485	9,9366	9,9366
2	104,76	104,7961	-0,6201	4,0802	4,7003	4,7035	2,7079	2,7107	1,3418	49,5003	3,5416	10,0597	9,9366
3	100,44	100,5093	-0,3701	5,8402	6,2103	6,2189	2,8562	2,8621	1,7015	59,4505	3,3967	10,2585	9,9366
4	93,24	93,2722	-0,1401	7,7602	7,9003	7,9057	3,0277	3,0309	2,0073	66,2291	3,1522	10,4068	9,9366
5	89,28	89,3416	0,0799	9,6002	9,5203	9,5334	3,1546	3,1611	2,3186	73,3474	3,0193	10,5850	9,9366
6	81,72	81,8046	0,3199	11,4002	11,0803	11,1032	3,2600	3,2702	2,4726	75,6101	2,7646	10,7499	9,9366
7	75,6	75,6261	0,4799	12,8802	12,4003	12,4088	3,2623	3,2657	2,5546	78,2266	2,5558	10,8533	9,9366
8	66,6	66,6920	0,7299	15,0802	14,3503	14,3899	3,3441	3,3580	2,6125	77,7996	2,2539	11,0292	9,9366
9	58,68	58,7408	0,9699	16,8802	15,9103	15,9432	3,2600	3,2702	2,5494	77,9595	1,9852	11,2111	9,9366
10	43,56	43,5901	1,2199	18,6002	17,3803	17,4043	3,0906	3,0970	2,0652	66,6836	1,4731	11,3709	9,9366
11	25,56	25,5688	1,5199	20,1202	18,6003	18,6131	2,5800	2,5827	1,2955	50,1635	0,8641	11,5847	9,9366
12	0	0,0000	2,1099	21,7202	19,6103	19,6103	1,7490	1,7490	0,0000	0,0000	0,0000	12,1366	9,9366

Tabla 5: Tabla de valores calculados para 2900 [rpm]

	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	η _{gl}	V	CNSPD	CNSPR
	[m ³ /h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
		4											
1	96,48	96,21458	-0,260115	7,040165	7,30028	7,2601686	2,9943676	2,9697227	1,901565	64,031735	3,2516009	10,345127	4,0516982
2	96,48	96,082418	-2,050115	5,120165	7,17028	7,111306	2,9984864	2,9615697	1,8600168	62,805099	3,2471345	8,5536474	4,0516982
3	96,48	96,082418	-3,700115	3,440165	7,14028	7,0815528	2,9984864	2,9615697	1,8522346	62,542326	3,2471345	6,9036474	4,0516982
4	96,48	96,049434	-4,650115	2,080165	6,73028	6,6703429	2,9566659	2,9172577	1,7440806	59,784934	3,2460198	5,9532783	4,0516982
5	90	89,506173	-4,960115	2,000165	6,96028	6,8841079	2,8953693	2,8479699	1,6773521	58,896411	3,0248883	5,5725766	4,0516982
6	86,4	85,896469	-6,060115	1,960165	8,02028	7,9270695	3,0036349	2,9514257	1,8535809	62,802901	2,9028972	4,4289069	4,0516982
7	81	80,555556	-6,380115	1,880165	8,26028	8,1698809	3,0026052	2,9534503	1,7915742	60,660381	2,7223994	4,0516982	4,0516982

Tabla 6: Tabla de valores calculados Punto 1

	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	$\eta_{\rm gl}$	V	CNSPD	CNSPR
	[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
1	80,2800	79,8121	0,2299	11,1202	10,8903	10,7637	3,2611	3,2044	2,3386	72,9806	2,6973	10,6548	3,9492
2	80,2800	79,8121	-2,6001	8,2002	10,8003	10,6748	3,2611	3,2044	2,3193	72,3774	2,6973	7,8248	3,9492
3	80,2800	79,8121	-5,1601	4,2402	9,4003	9,2910	3,1753	3,1201	2,0186	64,6980	2,6973	5,2648	3,9492
4	80,2800	79,8121	-6,2301	1,8802	8,1103	8,0160	3,0251	2,9725	1,7416	58,5907	2,6973	4,1880	3,9492
5	78,4800	78,0762	-6,4101	1,8402	8,2503	8,1656	3,0016	2,9555	1,7355	58,7222	2,6386	3,9920	3,9492
6	75,6000	75,1594	-6,4201	1,8802	8,3003	8,2038	2,9607	2,9093	1,6785	57,6952	2,5400	3,9492	3,9492
7	72,0000	71,6049	-6,3901	1,7602	8,1503	8,0611	2,8954	2,8480	1,5713	55,1728	2,4199	3,9488	3,9492
				97									

Tabla 7: Tabla de Valores calculados Punto 2

	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	η _{gl}	٧	CNSPD	CNSPR
	[m ³ /h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
1	54,000000	53,703704	0,979885	17,520165	16,540280	16,359266	3,195630	3,143315	2,391617	76,085820	1,814933	11,188165	2,887935
2	54,000000	53,685293	-1,390115	14,720165	16,110280	15,923049	3,325453	3,267650	2,327047	71,214695	1,814311	8,818050	2,887935
3	54,000000	53,666895	-7,320115	1,600165	8,920280	8,810568	2,747122	2,696597	1,287164	47,732907	1,813689	2,887935	2,887935
4	53,280000	52,951337	-7,220115	1,480165	8,700280	8,593274	2,682736	2,633396	1,238680	47,037371	1,789506	2,976693	2,887935
5	50,400000	50,106274	-7,070115	1,440165	8,510280	8,411375	2,574544	2,529793	1,147315	45,352122	1,693357	3,109619	2,887935

Tabla 8: Tabla de valores calculados Punto 3

Se pide que con los valores del ensayo anterior se trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos:

Gráfico 1: Gráfico de H v/s Caudal usando la curva original.

¿Qué significan las desviaciones que se producen?

Tal como se señala durante el práctico se observan diferencias y desviaciones en el gráfico producto de la cavitación existente. Esta se produce principalmente en las secciones en donde la presión absoluta es muy baja, provocando una vaporización instantánea de los fluidos, seguida de una rápida condensación. Las burbujas provocadas erosionan el interior del sistema, provocando daños.

Se pide trazar tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en % respecto al valor sin cavitación y ngl, y en la abscisa la CNSPD.

Gráfico 2: Gráfico de % v/s CNSPD en Punto 1

♣ H[%] ♣ Ne[%] ♣ ngl[%]

Gráfico 3: Gráfico de % v/s CNSPD en Punto 2

H, Ne y ηgl en % vs CNSPD

Gráfico 4: Gráfico de % v/s CNSPD en Punto 3

¿Cómo se determina la CSPD crítica y que representa?

Se determina ensayando y creando los gráficos de comportamiento a diferentes puntos. Indica que el CSPD es crítico en el punto en que cambia dirección.

Se pide grafica la CNSPR en función del caudal:

Gráfico 5: Gráfico de caudal v/s CNSPR en los 3 puntos realizados.

¿La curva obtenida tiene a la forma característica?

Los puntos situarse de forma ascendente. Se aprecia tras todos los ensayos que el comportamiento es esperado y sí tiene la forma característica.

¿De acuerdo con la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

Dado los gráficos obtenidos y el comportamiento esperado según la pegunta anterior se concluye que el valor es apropiado.

5. CONCLUSIONES

Se obtiene a partir del práctico realizado una tabulación de datos de distintos intentos o iteraciones del comportamiento de una bomba centrífuga. Se obtiene la importancia del CNSPR y sus respectivas curvas para describir el comportamiento del sistema en general.

*Las fórmulas usadas fueron sacadas de los apuntes de Aula Virtual de la asignatura.