Logic of Proof Assistants

Prof. Floris van Doorn University of Bonn

 17^{th} April, 2025

Contents

1	Introduction	2
	1.1 Inductive Definitions	3
2	First-Order Logic	4

1 Introduction

The topics of this class are:

- (i) First-order Logic/Set Theory
- (ii) Lambda Calculus
- (iii) Simple Type Theory (Higher-Order Logic)
- (iv) Dependent Type Theory/ Homotopy Type Theory

Example 1.1. Here are examples of proof assistants for these different types of logics:

- (i) First-order Logic/ Set Theory: Mizar, Metamath
- (ii) Simple Type Theory: Isabelle/HoL, HoL Light
- (iii) Dependent Type Theory: Lean, Rocq (formally Coq), Agda
- (iv) Homotopy Type Theory: cubicaltt, rezk

Remark 1.2. You might want to have the following criteria for a logic:

- (i) Appropriate (You can encode mathematical arguments.)
- (ii) Simple (It is relatively easy to understand.)
- (iii) Expressive (Mathematical arguments are convenient to express.)

Theorem 1.3. Let π be the prime counting function, i.e. $\pi \colon \mathbb{R} \to \mathbb{N}$, $x \mapsto |\{p \leq x \mid p \text{ prime}\}|$. Then $\lim_{x \to \infty} \frac{\pi(x)}{x/\log(x)} = 1$.

Remark 1.4. When formalizing/stating this theorem in a formal logic there are a few things that you need to think about:

- (i) What do you do about division by zero?
- (ii) What does division even mean? (Do you define division for \mathbb{R} explicitly? Do you define it generally for a field? Or even for a group? How do you ensure that the "correct" field structure on \mathbb{R} gets used?)
- (iii) How do you define a limit? (Do you define a limit for \mathbb{R} explicitly? Or for every topological space? How do you ensure the "correct" topology on \mathbb{R} gets used? How do you deal with potentially non-unique limits (for example in non-Hausdorff spaces)?)

Remark 1.5. You can make the following design choices for "a logic":

- (i) Is the logic typed or untyped?
- (ii) Is the logic constructive or classical?
- (iii) Does the logic support computation?

Remark 1.6. In logic there is the **object language** and we reason about it in a **metalanguage** ("ordinary mathematical reasoning").

1.1 Inductive Definitions

Example 1.7. The natural numbers are inductively defined by $0 \in \mathbb{N}$ and $S \colon \mathbb{N} \to \mathbb{N}$, $n \mapsto n + 1$.

Definition 1.8. Let U be a set and $C \subseteq \bigcup_{n \in \mathbb{N}} (U^n \to U)$ a set of **constructors**. $c: U^n \to U$ is called an n-ary function.

- (i) $A \subseteq U$ is **closed under** C if for any n-ary $c \in C$ and for all $x_1, \ldots, x_n \in A$ we have that $c(x_1, \ldots, x_n) \in A$.
- (ii) $A \subseteq U$ is **generated by** \mathcal{C} or **inductively defined by** \mathcal{C} if A is the smallest set that is closed under \mathcal{C} , i.e. $A = \bigcap \{B \subseteq U \mid B \text{ is closed under } \mathcal{C}\}.$
- (iii) $A \subset U$ is freely generated by C if
 - (a) each constructor is injective on A and
 - (b) the images of different constructors are disjoint.

Remark 1.9. \varnothing is closed under \mathcal{C} iff \mathcal{C} has no nullary constructors.

Exercise 1.10. $\bigcap \{B \subseteq U \mid B \text{ is closed under } C\}$ is closed under C.

Example 1.11.

- (i) The free group.
- (ii) The σ -algebra generated by a collection of subsets. (This is not freely generated.)
- (iii) The topology generated by a collection of subsets. (This is not freely generated.)

Theorem 1.12 (Structural Induction). If $A \subset U$ is generated by C and P is a predicate on A, to prove $\forall a \in A, P(a)$ it suffices to show: for any n-ary $c \in C$ and any $x_1, \ldots, x_n \in A$ if $P(x_1), \ldots, P(x_n)$ then $P(c(x_1, \ldots, x_n))$.

Proof. Exercise. \Box

Remark 1.13. The base case of the induction is given by nullary constructors.

Theorem 1.14 (Structural Recursion). If $A \subset U$ is freely generated by C, B is a set and for any n-ary $c \in C$ we have a $g_c \colon B^n \to B$ then there is a unique function $f \colon A \to B$ such that $f(c(a_1, \ldots, a_n)) = g_c(f(a_1), \ldots, f(a_n))$ for every $c \in C$ and $a_1, \ldots, a_n \in A$.

Proof. Exercise. \Box

Example 1.15. For $A = \mathbb{N}$ this reduces to $f(0) := g_0$ and $f(S(n)) := g_s(f(n))$.

2 First-Order Logic

Definition 2.1. A (first-order) language \mathcal{L} is a triple $(\mathcal{F}, \mathcal{R}, a)$ where \mathcal{F} is a set of function symbols, \mathcal{R} is a set of relation symbols, \mathcal{F} and \mathcal{R} are disjoint and $a: \mathcal{F} \cup \mathcal{R} \to \mathbb{N}$ is the arity function.

Example 2.2. A language for groups \mathcal{L}_{Group} has $\mathcal{F} := \{\cdot,^{-1}, 1\}$, $\mathcal{R} := \emptyset$, $a(\cdot) = 2$, $a(^{-1}) = 1$ and a(1) = 0.

Definition 2.3. We fix an infinite set of variables $\mathcal{V} := \{x_0, x_1, \dots\}$.

Remark 2.4. We use x for variables, f and g for functions and R and S for relations.

Definition 2.5. We can define the **terms** $T_{\mathcal{L}}$ in the language \mathcal{L} using the **Backus–Naur** form (BNF):

$$s, t := x \mid f(t_1, \dots, t_n)$$

where f is an n-ary function symbol.

Definition 2.6. Formally, we define the **terms** $T_{\mathcal{L}}$ in the language \mathcal{L} in the following way. We define the set of **symbols** $S := \mathcal{F} \dot{\cup} \mathcal{V} \dot{\cup} \{"(",")",",","\}$ and the set of finite sequences of symbols S^* . Let \mathcal{C} be defined as:

- (i) for each variable $x \in \mathcal{V}$ there is a nullary constructor $c_x := x$
- (ii) for each *n*-ary function symbol f there is an *n*-ary constructor $c_f: (S^*)^n \to S^*$, $c_f(t_1, \ldots, t_n) := f"("t_1", "\ldots", "t_n")"$

Then $T_{\mathcal{L}} \subseteq S^*$ is the set generated by \mathcal{C} .

Example 2.7.

- (i) "("")"", "f is in S^* but not in $T_{\mathcal{L}}$.
- (ii) If f is binary then $f''("x_0", "x_1")"$ is in $T_{\mathcal{L}}$.

Remark 2.8. Technically, the brackets and commas are not necessary. They are however necessary when you use infix notation. (For example the meaning of $a \cdot b + c$ is unclear.)

Definition 2.9. First-order formulas $\Phi_{\mathcal{L}}$ are specified by

$$\varphi, \psi := \bot \mid s = t \mid R(t_1, \dots t_n) \mid (\varphi \land \psi) \mid (\varphi \lor \psi) \mid (\varphi \to \psi) \mid (\forall x.\varphi) \mid (\exists x.\varphi)$$

where \mathcal{R} is an *n*-ary relation symbol and $t_1, \ldots, t_n \in T_{\mathcal{L}}$.

Remark 2.10. In classical logic one could omit the rules $(\varphi \wedge \psi)$ and $(\varphi \vee \psi)$ (as they can be defined using the other rules). They are however necessary for constructive logic.

Remark 2.11. We can define other connectives:

- (i) $\neg \varphi := (\varphi \to \bot)$
- (ii) $\varphi \leftrightarrow \psi := ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

Remark 2.12. When writing formulas we omit some parentheses:

- (i) $\varphi \to \psi \to \theta$ means $\varphi \to (\psi \to \theta)$
- (ii) $\forall x.\varphi \rightarrow \psi$ means $\forall x.(\varphi \rightarrow \psi)$

Remark 2.13. We want $\forall x.x = x$ and $\forall y.y = y$ to mean the same thing. Options to achieve this are:

- (i) Define $(\forall x.x=x)\equiv_{\alpha}(\forall y.y=y)$ to be α -equivalent. And then define the set of formulas to be $\Phi_{\mathcal{L}}/\equiv_{\alpha}$.
- (ii) We could not use variable names for bound variables and use **de Bruijn indices** instead.