Sprawozdanie

Kajetan Bilski 244942

10 listopada 2019

1 Zadanie 1.

W tym zadaniu trzeba powtórzyć operacje z zadania 5. na poprzedniej liście ze zmienionymi danymi i wyniki porównać z oryginalnymi.

Tabela 1: Float32

	Stare wyniki	Nowe wyniki
W przód	-0.4999443	-0.4999443
W tył	-0.4543457	-0.4543457
Od największego do najmniejszego	-0.5	-0.5
Od najmniejszego do największego	-0.5	-0.5

Tabela 2: Float64

	Stare wyniki	Nowe wyniki
W przód	1.0251881368296672e-10	-0.004296342739891585
W tył	-1.5643308870494366e-10	-0.004296342998713953
Od największego do najmniejszego	0.0	-0.004296342842280865
Od najmniejszego do największego	0.0	-0.004296342842280865

Jak widać o ile nieznaczna zmiana danych wpływa na wynik dla Float64, to przez mniejszą ilość bitów mantysy w Float32 różnica ta zostaje zgubiona w trakcie obliczeń.

2 Zadanie 2.

W tym zadaniu trzeba użyć 2 różnych programów do wizualizacji, żeby narysować wykresy podanej funkcji $f(x) = e^x * ln(1 + e^{-x})$, policzyć jej faktyczną granicę i stwierdzić przyczynę rozbieżności. Do wykresów użyłem Wolframa Alpha i Julia Plots.

Rysunek 1: Wykres wygenerowany przez Wolfram Alpha.

Rysunek 2: Wykres wygenerowany przez Julia Plots.

Z reguły de l'Hospitala możemy wyliczyć, że:

$$\lim_{x\to\infty}f(x)=\lim_{x\to-\infty}\frac{\ln(1+e^x)}{e^x}=\lim_{x\to-\infty}\frac{\frac{e^x}{1+e^x}}{e^x}=\lim_{x\to-\infty}\frac{1}{1+e^x}=1$$

Widać to na wykresie do pewnego momentu. Później wykres zaczyna się wachać w górę i w dół, a na końcu zchodzi do 0 i już tam zostaje. Wachanie prawdopodobnie wynika z nakładających się błędów przy liczeniu logarytmu, co komputer robi za pomocą szeregu Taylora, którego składniki zaczynają od pewnego momentu odbiegać od rzeczywistości. Dalej funkcja się zeruje, ponieważ $e^{-x} < macheps$ co powoduje $ln(1+e^{-x})=0$ i f(x)=0.

3 Zadanie 3.

W tym zadaniu trzeba obliczyć błędy względne dla różnych metod wyliczania (gaussa i z inwersją) wektora x dla różnych macierzy (hilberta i losowych z ustalonym uwarunkowaniem).

Stopień macierzy	Wskaźnik uwarunkowania	$\operatorname{rank}(\mathbf{A})$	Błąd względny
2	19.28147006790397	2	5.661048867003676e-16
$\frac{2}{3}$	524.0567775860644	3	8.022593772267726e-15
4	15513.73873892924	4	4.4515459601812086e-13
5	476607.25024259434	5	1.6828426299227195e-12
6	1.4951058642254665e7	6	2.618913302311624e-10
7	4.75367356583129e8	7	1.2606867224171548e-8
8	1.5257575538060041e10	8	1.9003267931522502e-7
9	4.931537564468762e11	9	1.072517737563097e-5
10	1.6024416992541715e13	10	0.00015601223234378126
11	5.222677939280335e14	10	0.006132597501362619
12	1.7514731907091464e16	11	0.2625249535369144
13	3.344143497338461e18	11	3.2730305773781527
14	6.200786263161444e17	11	1.7495323143027766
15	3.674392953467974e17	12	4.1912370309692895
16	7.865467778431645e17	12	25.686453221698734
17	1.263684342666052e18	12	3.0657949207071473
18	2.2446309929189128e18	12	4.185151825134459
19	6.471953976541591e18	13	6.899020791086356
20	1.3553657908688225e18	13	26.842489432946138
21	3.290126328601399e18	13	6.9043916113228425
22	1.0361032753348465e19	13	7.4924154604655575
23	6.313778670724671e17	13	8.471075526243837
24	2.129502667338134e18	13	98.34352635694334
25	1.3719347461445998e18	13	12.846254107361691
26	5.838636705219328e18	14	28.41382203596652
27	4.424587877361583e18	14	30.13996618025699
28	9.235324245161374e18	14	15.905168194843549
29	8.05926200352767e18	14	299.5315582325362
30	5.507991645999902e18	14	49.40864890889737
31	2.3508867005384925e19	14	12.94964868410062
32	4.651068176216694e18	14	10.997171241510001
33	1.2131406082348128e19	14	36.57983826120465
34	4.5616405243414067e18	14	127.81296546825526
35	2.6087455171093307e19	14	30.717841445345766
36	4.467552764961839e18	15	44.25598727444102
37	6.763982849658887e18	15	91.35867845428301
38	2.5799096742390997e19	15	20.735469961824794
39	9.520296177201873e18	15	188.38797573515703
40	6.507249058549335e18	15	41.23475624960689
41	1.1216722118346185e19	15	43.31483456571188
42	2.672423916643256e19	15	183.5052001092518
43	3.895762014266483e19	15	49.5621109674247
44	4.377574261588784e19	15	19.345726038770415
45	1.1740913241980596e19	15	46.63776005192658
46	2.394794042936751e19	15	26.659152100163077
47	1.2561317401570136e19	15	52.003119705551015
48	6.715716325530528e18	15	156.83584676228938
49	6.148071066691518e18	16	35.73432466638007
50	2.3125456566766473e19	16	49.17758195799673

Tabela 3: Dane dla macierzy Hilberta o stopniu \boldsymbol{n} i eliminacji Gaussa.

Stopień macierzy	Wskaźnik uwarunkowania	rank(A)	Błąd względny
2	19.28147006790397	2	1.1240151438116956e-15
$\frac{2}{3}$	524.0567775860644	3	9.825526038180824e-15
4	15513.73873892924	4	2.950477637286781e-13
5	476607.25024259434	5	8.500055777753297e-12
6	1.4951058642254665e7	6	3.3474135070361745e-10
7	4.75367356583129e8	7	5.163959183577243e-9
8	1.5257575538060041e10	8	3.7848151989133265e-7
9	4.931537564468762e11	9	1.1585425852932993e-5
10	1.6024416992541715e13	10	0.0004113060270049873
11	5.222677939280335e14	10	0.011527389868830604
12	1.7514731907091464e16	11	0.3337010916689215
13	3.344143497338461e18	11	3.420572025886181
14	6.200786263161444e17	11	6.189258670076646
15	3.674392953467974e17	12	8.601007703113547
16	7.865467778431645e17	12	19.52407993391386
17	1.263684342666052e18	12	11.353062349066438
18	2.2446309929189128e18	12	7.4373553679602855
19	6.471953976541591e18	13	14.72476228249035
20	1.3553657908688225e18	13	23.28948681435163
21	3.290126328601399e18	13	18.368572770144162
22	1.0361032753348465e19	13	12.956205767885796
23	6.313778670724671e17	13	14.164303681843158
24	2.129502667338134e18	13	268.1682125005299
25	1.3719347461445998e18	13	28.28658300598808
26	5.838636705219328e18	14	39.12222160709079
27	4.424587877361583e18	14	38.90044951648005
28	9.235324245161374e18	14	18.684648018221907
29	8.05926200352767e18	14	337.8870882730629
30	5.507991645999902e18	14	77.34529067309852
31	2.3508867005384925e19	14	32.216657549120804
32	4.651068176216694e18	14	26.39783578476492
33	1.2131406082348128e19	14	34.10586577993141
34	4.5616405243414067e18	14	209.1605795773681
35	2.6087455171093307e19	14	61.090159944544155
36	4.467552764961839e18	15	86.94555740870577
37	6.763982849658887e18	15	131.50632695219028
38	2.5799096742390997e19	15	300.6815606711967
39	9.520296177201873e18	15	346.3935257231161
40	6.507249058549335e18	15	137.1082633724537
41	1.1216722118346185e19	15	30.843003797731487
42	2.672423916643256e19	15	183.83523245308626
43	3.895762014266483e19	15	50.61904998722598
44	4.377574261588784e19	15	34.03161661284166
45	1.1740913241980596e19	15	50.68269375820404
46	2.394794042936751e19	15	29.561545335150377
47	1.2561317401570136e19	15	264.9733418880102
48	6.715716325530528e18	15	236.70249050320876
49	6.148071066691518e18	16	50.24440344442719
50	2.3125456566766473e19	16	71.05835606379519

Tabela 4: Dane dla macierzy Hilberta o stopniu \boldsymbol{n} i inwersji.

Stopień macierzy	Wskaźnik uwarunkowania	Błąd względny
5	1	1.796112971375373e-16
5	10	2.5553928339844176e-16
5	1000	1.9845380013700284e-14
5	10000000	1.8623634937186393e-10
5	1000000000000	1.858594645351755e-5
5	10000000000000000	0.2066709392548781
10	1	3.0553357839804734e-16
10	10	3.6902063619166863e-16
10	1000	1.9447467629397773e-14
10	10000000	1.9474012466140714e-10
10	1000000000000	1.9473156100222065e-5
10	10000000000000000	0.2099241744102125
20	1	5.238723895926471e-16
20	10	5.443120701728143e-16
20	1000	2.060420091151763e-14
20	10000000	2.038251651467488e-10
20	1000000000000	1.9951319738212058e-5
20	10000000000000000	0.23370078789988769

Tabela 5: Średni błąd względny dla macierzy losowych i eliminacji Gaussa.

Stopień macierzy	Wskaźnik uwarunkowania	Błąd względny
5	1	1.6870650404002345e-16
5	10	2.6072988524009526e-16
5	1000	1.8848914263053216e-14
5	10000000	1.9091260510968597e-10
5	1000000000000	1.9084227759896513e-5
5	10000000000000000	0.2190465678778694
10	1	2.7061992425870126e-16
10	10	3.529586011420378e-16
10	1000	1.9372385587674556e-14
10	10000000	1.973090263711236e-10
10	1000000000000	1.9288961431553272e-5
10	10000000000000000	0.22621902628833687
20	1	4.366193978216266e-16
20	10	5.236178474821283e-16
20	1000	2.0819978742271137e-14
20	10000000	2.0322849291078214e-10
20	1000000000000	2.0166466641692097e-5
20	10000000000000000	0.23409540279579083

Tabela 6: Średni błąd względny dla macierzy losowych i metody z inwersją.

Jak widać istnieje zależność między wskaźnikiem uwarunkowania macierzy zarówno dla macierzy Hilberta, jak i dla losowych. Dla macierzy Hilberta eliminacja Gaussa daje mniejsze błędy, a dla macierzy losowych błędy są podobne dla obu metod.

4 Zadanie 4.

W tym zadaniu trzeba użyć Julii z pakietem Polynomials do policzenia pierwiastków wielomianu Wilkinsona $z_k,\ 1\leqslant k\leqslant 20$, a następnie sprawdzić ich odchył prawdziwych pierwistków tego wielomianu. Na końcu trzeba powtórzyć eksperyment z lekko zmienionym drugim współczynnikiem wielomianu.

k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	1.810441792686032e-9	1.9903054634328896e18	0.950639027336251
2	1.810441792686032e-9	1.9903054634328896e18	1.950638314317964
3	5.2738380570532775e-9	1.9603045451252319e18	2.947270170915779
4	5.2738380570532775e-9	1.9603045451252319e18	3.9472683968141467
5	$2.1833150474298537\mathrm{e}\text{-}8$	1.8986230967648804e18	4.940261103267425
6	$2.1833150474298537\mathrm{e}\text{-}8$	1.8986230967648804e18	5.94025845619948
7	1.1060473806865536e-7	1.7942764158130138e18	6.928470995087672
8	$1.1060473806865536\mathrm{e}\text{-}7$	1.7942764158130138e18	7.928467948875542
9	6.147094764624633e-7	1.635099126269708e18	8.910966172995028
10	6.147094764624633e-7	1.635099126269708e18	9.910963513277059
11	3.294359732426998e-6	1.4150728707341862e18	10.887890388233775
12	3.294359732426998e-6	1.4150728707341862e18	11.887888943720807
13	1.5599974479103758e-5	1.1467631332545471e18	12.860995611574912
14	1.5599974479103758e-5	1.1467631332545471e18	13.860995445079546
15	6.359660288768332e-5	8.711755039228508e17	14.832765543928463
16	0.0002468752348492309	5.532738743218158e17	15.800030116128744
17	0.001292543281409042	6.975238303156173e16	16.74999929277055
18	0.008870981937623812	$7.081833742276362\mathrm{e}{17}$	17.66666667148003
19	0.286276201356511	2.000828411463103e18	18.500000000012154
20	3744.9845589677943	634368.0	18.99999999999964

Tabela 7: Wyniki dla pierwiastków wyliczonych przez Julia Polynomials.

k	P(k)
1	159.9999998807907
2	3.1983098677287795e23
3	2.295148179742699e27
4	1.0274389639067845e30
5	1.0903141433384138e32
6	4.766501963120987e33
7	1.140877043947735e35
8	1.7653368797014896e36
9	1.9625873100922425e37
10	1.6835428283135563e38
11	1.1720094068406205e39
12	6.871149173054107e39
13	3.488723959321415e40
14	1.567634288621782e41
15	6.3414731050071485e41
16	2.341375789846226e42
17	7.979145255955322e42
18	2.5332008228921597e43
19	7.550479345334306e43
20	2.126726319843987e44

Tabela 8: Wyniki dla zaburzonego wielomianu.

Julia Polynomials dla niezaburzonej wersji wielomianu znalazło pierwistki zespolone. Sa one błedne nawet dla P(x), chociaż błedy sa niewilkie dla k < 20. Błedy dla p(x) sa nieporównywalnie wieksze od błedów dla P(x). Musi to zależeć od sposobu konstruowania wielomianu przez Julie. Przy ekperymencie Wilkinsona wartości zwracane przez P(x) dla starych pierwiastków nie zostawiaja watpliwości że ten wielomian jest bardzo źle uwarunkowany.

5 Zadanie 5.

W tym zadaniu trzeba przeprowadzić ekperyment z modelem logistycznym, obliczajac wartości kolejnych iteracji danego równania rekurencyjnego, dwa razy na Float32 (raz z obcieciem) i raz na Float64, a nastepnie porównać wyniki.

Rysunek 3: Porównanie wykresów dla Float32 z i bez obciecia po 10. iteracji.

Rysunek 4: Porównanie wykresów dla Float32 i Float64.

Powyższy ciag jest numerycznie niestabilny wiec nawet małe błedy, wywołane obcieciem lub sama niedokładnośćia Float32, po kilku iteracjach zwielokrotniaja sie i powoduja zupełne odkształcenie wykresu.

6 Zadanie 6.

W tym zadaniu trzeba prze
analizować zachowanie 7 ciagów stworzonych przez funkcje rekurencyjn
a $x_{n+1}=x_n^2+c$ dla podanych x_0 i
 c.

Rysunek 5: c=-2 i $x_0=1$

Rysunek 6: c=-2 i $x_0=2$

Rysunek 8: c = -1 i $x_0 = 1$

Rysunek 9: c = -1 i $x_0 = -1$

Rysunek 10: c=-1i $x_0=0.75\,$

Rysunek 11: c=-1i $x_0=0.25\,$

Ciagi dla przypadków 1.,2.,4. i 5. zachowuja sie zgodnie z wszelkimi oczekiwaniami. W przypadkach 6. i 7. dla danych c i x_0 x daży do odbijania sie pomiedzy 0 i -1. W przypadku 3. dla danych bardzo podobnych do przypadku 2. widzimy zupełne odkształcenie wykresu po 20 iteracjach spowodowane numeryczna niestabilnościa, ponieważ w każdej iteracji bład jest podnoszony do kwadratu.