Аппроксимация временных рядов рядами конечного ранга

Звонарев Никита Константинович

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Голяндина Н. Э.

Рецензент: к.ф.-м.н., доц. Коробейников А. И.

Санкт-Петербург 2015г.

Постановка задачи

Дан $\mathbb{X} = \mathbb{S} + \mathbb{N}$, $\mathbb{X} = (x_1, \dots, x_N)$.

Требуется построить оценку сигнала.

 \mathbb{N} — белый шум.

S — сигнал, управляемый *линейной рекуррентной формулой*

Определение

Pяд, управляемый $\mathcal{I}P\Phi$ порядка r:

$$\mathbb{S} = (s_1, \dots, s_N), \quad s_n = \sum_{i=1}^r a_i s_{n-i}, \ n = r+1, \dots, N, \ a_r \neq 0.$$

Параметрический вид рядов, управляемых ЛРФ:

$$s_n = \sum_i P_i(n) \exp(\alpha_i n) \cos(2\pi\omega_i n + \psi_i).$$

Параметрический подход не работает из-за неустойчивости

Ряды конечного ранга

$$\mathbb{X}=(x_1,\ldots,x_N)$$
 — ряд.

1 < L < N — длина окна, K = N - L + 1.

Tраекторная матрица ряда X:

$$\mathbf{X} = \mathcal{T}(\mathbb{X}) = \begin{pmatrix} x_1 & x_2 & \dots & x_K \\ x_2 & x_3 & \dots & x_{K+1} \\ \vdots & \vdots & \vdots & \vdots \\ x_L & x_{L+1} & \dots & x_N \end{pmatrix}.$$

Заметим, что \mathbf{X} — ганкелева $(\mathbf{X} \in \mathcal{H})$.

Определение

Pяд $\mathbb S$ имеет L-ранг r если $\mathrm{rank}\,\mathbf S=r$, где $\mathbf S=\mathcal T(\mathbb S)$.

Ряд $\mathbb S$ управляется минимальной ЛРФ порядка $r\Rightarrow \mathbb S$ имеет L-ранг r.

$$\mathsf{X}_N^r = \{\mathbb{X}: \mathbb{X} = (x_1, \dots, x_N), \ \mathbb{X} \text{ имеет L-ран}_{\underline{\Gamma}} \leq \underline{r} \}$$

Эквивалентные задачи

$$\mathbb{X} = (x_1, \dots, x_N), \ \mathbf{X} = \mathcal{T}(\mathbb{X}).$$

Задача аппроксимации матрицы:

$$\|\mathbf{X} - \mathbf{Y}\|_{\mathrm{F}}^2 \to \min_{\mathbf{Y} \in \mathcal{M}_r \cap \mathcal{H}},$$
 (1)

где \mathcal{M}_r — множество матриц ранга $\leq r$.

$$\hat{\mathbb{S}} = \mathcal{T}^{-1}(\mathbf{Y})$$
 — оценка \mathbb{S} .

Задача аппроксимации рядов (эквивалентная (1)):

$$\sum_{i=1}^{N} q_i (x_i - y_i)^2 \to \min_{\mathbb{Y} \in \mathcal{X}_N^r},$$

где

$$q_i = egin{cases} i & \text{для } i = 1, \dots, L-1, \ L & \text{для } i = L, \dots, K, \ N-i+1 & \text{для } i = K+1, \dots, N, \end{cases}$$

трапециевидные веса.

Задача: как сделать веса q_i равными?

План работы

I часть Теория

- 1. Метод решения задачи аппроксимации в общем случае
- 2. Применение теории к аппроксимации рядами конечного ранга
- 3. Выбор норм, соответствие между весами для аппроксимации рядов и матриц
- 4. Нахождение проекторов в выбранных нормах

II часть Алгоритмы и их особенности

- III часть Численные эксперименты
 - 1. Сравнение на модельном примере
 - 2. Реальный пример

Общая схема итераций

Х — гильбертово пространство

 \mathcal{H} — замкнутое (топологически) линейное подпространство.

 \mathcal{M} — замкнутое относительно умножения на константу подмножество, т.е. если $\mathbf{z}\in\mathcal{M}$, то $\alpha\mathbf{z}\in\mathcal{M}$ для любого $\alpha\in\mathsf{R}.$

Требуется спроектировать заданную точку \mathbf{x} на $\mathcal{H} \cap \mathcal{M}$: $\|\mathbf{x} - \mathbf{y}\| \to \min_{\mathbf{y}}$, где $\mathbf{y} \in \mathcal{H} \cap \mathcal{M}$

Метод переменных проекций (Alternating projections, AP): $\mathbf{y}_{k+1} = \Pi_{\mathcal{H}} \Pi_{\mathcal{M}} \mathbf{y}_k$, где $\mathbf{y}_0 = x$, $\Pi_{\mathcal{M}}$ — проектор на \mathcal{M} , $\Pi_{\mathcal{H}}$ — проектор на \mathcal{H} .

Основная теорема

Один шаг алгоритма AP: $\mathbf{y}_{k+1} = \Pi_{\mathcal{H}} \Pi_{\mathcal{M}} \mathbf{y}_k$, где $\mathbf{y}_0 = \mathbf{x}$.

Теорема

Пусть X — гильбертово пространство, $\mathcal{M} \subset X$ — замкнутое относительно умножения на константу подпространство, множество \mathcal{M} и подпространство \mathcal{H} топологически замкнуты, $\Pi_{\mathcal{M}}$ — проектор на \mathcal{M} . Тогда

- $\|\mathbf{y}_k \Pi_{\mathcal{M}}\mathbf{y}_k\| \to 0$ при $k \to +\infty$, $\|\Pi_{\mathcal{M}}\mathbf{y}_k \mathbf{y}_{k+1}\| \to 0$ при $k \to +\infty$.
- $m{Q}$ Пусть $\mathcal{M} \cap B_1$ является компактом, где $B_1 = \{ \mathbf{z} : \|\mathbf{z}\| \le 1 \}$ — замкнутый единичный шар. Тогда существует сходящаяся подпоследовательность точек $\mathbf{y}_{i_1}, \mathbf{y}_{i_2}, \dots$ такая, что ее предел \mathbf{y}^* лежит в $\mathcal{M} \cap \mathcal{H}$.

Обратно к задаче

Ряды: $\sum\limits_{i=1}^N q_i(x_i-y_i)^2 o \min, \ \mathbb{Y} \in \mathcal{X}_N^r$, заданы $q_i>0$.

Матрицы: \mathbf{Y} : $\|\mathbf{X} - \mathbf{Y}\|_? o \min$, $\mathbf{Y} \in \mathcal{H} \cap \mathcal{M}_r$. Так как q_i задаются, то требуется другая (не фробениусовская) норма.

Применяем алгоритм к нашему случаю, и получаем решение. Переменные проекции (метод Cadzow):

$$\mathbf{Y}_R = (\Pi_{\mathcal{H}} \circ \Pi_{\mathcal{M}_r})^R(\mathbf{X}),$$

 $\Pi_{\mathcal{H}}$ — проектор на ганкелевы матрицы, $\Pi_{\mathcal{M}_r}$ — проектор на матрицы ранга < r, R — число итераций.

Теорема применима к задаче ⇒ существование сходящейся к нужному множеству подпоследовательности.

Варианты норм

Ряды:
$$\|\mathbb{X}\|_q^2 = \sum_{i=1}^N q_i x_i^2$$
, все $q_i \geq 0$

Матрицы:

- $\|\mathbf{X}\|_{1,M}^2 = \sum_{l=1}^L \sum_{k=1}^K m_{l,k}(x_{l,k})^2$, BCE $m_{l,k} \geq 0$
- ② Частный случай предыдущего пункта: $m_{l,k} = 1$.
- $\|\mathbf{X}\|_{2,\mathbf{C}}^2 = \operatorname{tr}(\mathbf{X}\mathbf{C}\mathbf{X}^{\mathrm{T}})$, \mathbf{C} симметричная, неотрицательно определенная матрица порядка $K \times K$ (+ диагональная в нашем случае)

Проблемы:

- lacktriangle Как подобрать $m_{i,j}$, соответствующие q_i ?
- f 2 Как вычислить $\Pi_{\mathcal{H}}$, $\Pi_{\mathcal{M}_r}$ по нужной норме?

<u>Эквивалентн</u>ость скалярных произведений и норм

- \bullet $\langle \mathbb{X}, \mathbb{Y} \rangle_q = \sum_{i=1}^N q_i x_i y_i$
- **2** $\langle \mathbf{X}, \mathbf{Y} \rangle_{1,M} = \sum_{l=1}^{L} \sum_{k=1}^{K} m_{l,k} x_{l,k} y_{l,k}$
- $\langle \mathbf{X}, \mathbf{Y} \rangle_{2 \mathbf{C}} = \operatorname{tr}(\mathbf{X}\mathbf{C}\mathbf{Y}^{\mathrm{T}}).$

<u>Утверждение</u>

f O Пусть ${f X}={\cal T}({\mathbb X})$, ${f Y}={\cal T}({\mathbb Y})$. Тогда $\langle {\mathbb X},{\mathbb Y}\rangle_a=\langle {f X},{f Y}\rangle_{1,M}$ тогда и только тогда, когда

$$q_i = \sum_{\substack{1 \leq l \leq L \\ 1 \leq k \leq K \\ l+k-1=i}} m_{l,k}.$$

 $oldsymbol{Q}$ Для диагональной матрицы $oldsymbol{\mathbf{C}}$, $\langle \mathbf{X}, \mathbf{Y}
angle_{1,M} = \langle \mathbf{X}, \mathbf{Y}
angle_{2,\mathbf{C}}$ тогда и только тогда, когда

$$m_{l,k} = c_{k,k}$$
.

Проектор $\Pi_{\mathcal{M}_n}$

Варианты:

- $\| \mathbf{X} \|_{1,M}$, все $m_{l,k} = 1$: через стандартное SVD-разложение. $\Pi_{\mathcal{M}_r}(\mathbf{X}) = \mathbf{U}\Sigma_r\mathbf{V}^{\mathrm{T}}$, где $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^{\mathrm{T}}$.
- $\|\mathbf{X}\|_{2,\mathbf{C}}$: косоугольное SVD-разложение. Сводится к п. 1
- $\| \mathbf{X} \|_{1,M}$, общий случай: ЕМ-подобный алгоритм.

Проектор $\Pi_{\mathcal{H}}$

Общий случай (взвешенное диагональное усреднение):

$$\mathbf{X} = \Pi_{\mathcal{H}}(\mathbf{Y}), \quad x_{l,k} = \frac{\sum_{i,j: i+j=l+k} m_{i,j} y_{i,j}}{\sum_{i,j: i+j=l+k} m_{i,j}}.$$

Варианты:

ullet $\|{f X}\|_{1.M}$, $m_{l.k}$ на побочных диагоналях равны, в частности $m_{l,k} = 1$: диагональное усреднение.

$$\mathbf{X} = \Pi_{\mathcal{H}}(\mathbf{Y}), \quad x_{l,k} = \sum_{i+j=l+k} y_{i,j}/w_{l+k-1}.$$

 $\| \mathbf{X} \|_{2,\mathbf{C}}, \ \mathbf{C} - \mathbf{g}$ иагональная: взвешенное диагональное усреднение с весами $m_{i,i} = c_{i,i}$, где ${\bf C} = (c_{i,i})$.

Варианты алгоритма Cadzow

$$\|\mathbf{X}\|_{2,\mathbf{C}}^2 = \operatorname{tr}(\mathbf{X}\mathbf{C}\mathbf{X}^T)$$

- ullet $\mathbf{C} = \mathbf{I}_K$ базовый алгоритм Cadzow (Cadzow, 1988) ($\Pi_{\mathcal{M}_r}$ используя обычное SVD, $\Pi_{\mathcal{H}}$ диаг. усреднение).
- $\mathbf{C} = \operatorname{diag}(1, \alpha, \alpha, \ldots, \alpha, 1, \alpha, \ldots, 1)$, где единицы стоят на 1, $L+1, \ 2L+1, \ \ldots, \ K$ месте, $0 \leq \alpha \leq 1$. Cadzow(α) (Zhigljavsky, 2015) $\Pi_{\mathcal{M}_r}$ косоугольное SVD, $\Pi_{\mathcal{H}}$ взвешенное диагональное усреднение.

$$\|\mathbf{X}\|_{1,M}^2 = \sum_{l=1}^L \sum_{k=1}^K m_{l,k}$$

- ullet $\|\mathbf{X}\|_{1,M}$, $m_{l,k}$ такие, что $q_i=1$ Weighted Cadzow ($\Pi_{\mathcal{M}_r}$ ЕМ, $\Pi_{\mathcal{H}}$ диаг. усреднение). Для него все $q_i=1$.
- Extended Cadzow (использует искусственное продолжение ряда в обе стороны)

Различные особенности

$$C = diag(1, \alpha, \alpha, \dots, \alpha, 1, \alpha, \dots, 1)$$
 (Cadzow(α)).

Теорема

Эквивалентные веса ряда в алгоритме $Cadzow(\alpha)$:

$$q_i = egin{cases} 1 + (i-1) lpha &$$
для $i = 1, \dots, L-1, \ 1 + (L-1) lpha &$ для $i = L, \dots, K-1, \ 1 + (N-i) lpha &$ для $i = K, \dots, N. \end{cases}$

Достаточно взять $\alpha=0$, чтобы получить равномерные веса? Нет!

- $\alpha = 0$ другая задача
- $\alpha \approx 0$, $\alpha > 0$: медленно сходится, проблемы со слабой разделимостью, требуется, чтобы N:L.
- $\alpha = 1$ базовый алгоритм Cadzow

Сравнение (одна итерация)

Задача оценки сигнала: $N=40,\,L=20,\,r=2,\,$ $\mathbb{X}=(x_1,\dots,x_N),\,x_k=5\sin\frac{2k\pi}{6}+\varepsilon_k;\,\varepsilon_k,\,k=1,\dots N,$ — гауссовский белый шум, $\mathbb{E}\varepsilon_k=0,\,\mathbb{D}\varepsilon_k=1,\,1000$ реализаций.

Сравнение (100 итераций)

Задача оценки сигнала: $N=40,\ L=20,\ r=2,$ $\mathbb{X}=(x_1,\dots,x_N),\ x_k=5\sin\frac{2k\pi}{6}+\varepsilon_k;\ \varepsilon_k,\ k=1,\dots N,$ — гауссовский белый шум, $\mathbb{E}\varepsilon_k=0,\ \mathbb{D}\varepsilon_k=1,\ 1000$ реализаций.

Сравнение (зависимость RMSE от числа итераций)

Задача оценки сигнала: N=40, L=20, r=2, $\mathbb{X}=(x_1,\ldots,x_N), x_k=5\sin\frac{2k\pi}{6}+\varepsilon_k; \varepsilon_k, k=1,\ldots N,$ гауссовский белый шум, $\mathbb{E}\varepsilon_k=0$, $\mathbb{D}\varepsilon_k=1$, 1000 реализаций.

Реальный пример

Ряд 'Fortified wine', первые 168 значений.

Схема выбора параметра α для применения метода Cadzow(α):

- Построена параметрическая модель "похожего" ряда с помощью SSA + ESPRIT
- С помощью моделирования метода Cadzow(α) получено качество оценки модельного сигнала и точность аппроксимации ряда
- Найден промежуток значений lpha, на котором улучшение точности аппроксимации даёт улучшение RMSE оценки сигнала
- Метод применён к исходному ряду с параметром α , соответствующим наибольшей точности

Реальный пример: наилучшее приближение

Получено алгоритмом $\operatorname{Cadzow}(0.2)$. Пунктирная линия — исходный ряд, сплошная линия — аппроксимация рядом конечного ранга.

Итоги

- Рассмотрен широкий класс итерационных алгоритмов решения задачи для оценивания сигнала $\mathbb S$ в модели $\mathbb X=\mathbb S+\mathbb N$
- Доказано существование сходящейся подпоследовательности для всех алгоритмов
- Установлено соотношение между разделимостью, скоростью сходимости и точностью в пределе на численных примерах
- Проведено численное сравнение на модельном и реальном примере
- Получена скорость разделимости для одного примера в алгоритме $Cadzow(\alpha)$, рекомендации к быстрой реализации алгоритмов (в приложении)

