## Age Estimator



Ivan Lokas, Josip Vucić, Petar Jukić, Vedran Kurdija, Matija Benotić

University of Zagreb, Faculty of Electrical Engineering and Computing

Zagreb, January 2023

### Introduction

- Goal to build a machine learning model to estimate a persons age
- Used in healthcare, security, beauty industry...



### Our solution

- Convolutional neural networks (CNNs)
- ullet First model: 2 convolutional layers -> 1 fully connected linear layer with age estimate output
- Second model: 5 convolutional layers -> 1 fully connected linear layer
- Third layer: 5 convolutional layers -> 5 fully connected linear layers

The more complex model achieved better results.

### Results and comparison to existing work

- model was trained and evaluated on the UTKFace (Zhang and Qi, 2017) dataset
- we evaluated our model on a previously unseen test set containing 25% of the dataset
- we report several measures of our model's performance following existing papers

# Mean squared error (MSE) during training



## Comparison to existing work

- classification accuracy on the dataset grouped into four age classes: 0-12 (childhood), 13-19 (teenage), 20-59 (adulthood) and 60+ (senior)
- average age-bucket absolute difference (AABD) the average of the absolute differences between the true age buckets and the predicted age buckets (intervals of ten years)

| Measure                 | Value  | Comparison                          |
|-------------------------|--------|-------------------------------------|
| MAE                     | 5.90   | 4.37 by (Shin et al., 2022)         |
| Accuracy (four classes) | 87.26% | 80.76% by (Raman et al., 2022)      |
| AABD                    | 0.57   | 0.11 by (Abdolrashidi et al., 2020) |

# Graphical user interface



### Conclusion

- we developed a deep convolutional neural network for age estimation, consisting of 5 convolutional layers with 2D max-pooling and batch normalization followed by 5 fully connected layers
- we built a graphical user interface for more convenient use
- we find our results comparable to existing work and near state-of-the-art on the UTKFace dataset

#### Future work

- · this work had limited computational power
- experiment with different architectures
- add more layers or increase the size of the layers
- train and/or evaluate our model on different age estimation datasets