

Práctica 2a

Estática

1) Hallar la tensión en cada una de las cuerdas de una estructura ideada por el viejito de Newton para sostener su manzana, la que pesa unos 200 N (es una manzana importante)

- 2) Un bloque de masa m=2.0 kg es sostenido en equilibrio sobre un plano inclinado que forma 60° con la horizontal, como indica la figura.
 - a) Determine el valor de la fuerza **F**;
 - b) determine la fuerza normal ejercida por el plano inclinado sobre el bloque (ignore la fricción).

- 3) Un bloque de masa m1 = 3.70 kg, sobre un plano inclinado sin fricción a 30° de la horizontal, está conectado por medio de una polea (sin masa y la que tampoco ejerce fricción) a un segundo bloque de masa m2 = 2.30 kg, el que cuelga verticalmente como lo muestra la figura.
 - a) Determine la magnitud de la aceleración de cada bloque;
 - b) indique hacia dónde se mueve la segunda masa;
 - c) calcule la tensión de la cuerda.

- 4) Una masa M está sostenida por una fuerza **F** y un sistema de poleas como se muestra en la figura. Considere que la polea no tiene fricción ni masa. Entonces, encuentre:
 - a) las tensiones en cada sección de la cuerda $(\mathbf{T}_{1,2,3,4,5})$ y
 - b) la magnitud de \mathbf{F}

5) El bloque B de la figura pesa 711 N. El coeficiente de fricción estática entre el bloque y la mesa es de 0.25. Asuma que la cuerda entre el bloque y el nudo es horizontal. Encuentre, entonces, el peso máximo del bloque A para el cual el sistema se mantendrá en reposo.

