

A particle of mass m is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle is moving in complete vertical circles with the string taut. When the particle is at the point P, where OP makes an angle α with the upward vertical through O, its speed is u. When the particle is at the point Q, where angle $QOP = 90^{\circ}$, its speed is v (see diagram). It is given that $\cos \alpha = \frac{4}{5}$.

(i) Show that
$$v^2 = u^2 + \frac{14}{5}ag$$
. [2]

The tension in the string when the particle is at Q is twice the tension in the string when the particle is at P.

(ii) Obtain another equation relating
$$u^2$$
, v^2 , a and g , and hence find u in terms of a and g . [5]

•••••											
••••		•••••									
••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••••	••••••••	•••••••	••••••	••••••	••••••	••••••	••••••	•••••
• • • • •	•••••	•••••		•••••		••••••	•••••		•••••	••••••	••••
• • • • • •	•••••	•••••		•••••		•••••	•••••		•••••	•••••	••••
		•••••				•••••	•••••				•••••
Find	d the leas	st tensio	n in the	string o	during th	e motion					••••
 Find	d the lea	st tensic	on in the	string (during th	e motion					
Find	d the leas	st tensio	n in the	string o	during th	ne motion					
	d the leas	st tensic	n in the	string o	during th	me motion					
Find	d the leas	st tensic	on in the	string o	during th	e motion					
Fino	d the lea	st tensio	n in the	string o	during th	ne motion					
Fino	d the leas	st tensio	on in the	string o	during th	ne motion					
Fino	d the leas	st tensic	on in the	string o	during th	e motion					
Find	d the leas	st tensio	on in the	string	during th	ne motion					
Fino	d the leas	st tensio	on in the	string	during th	ne motion					
						ne motion					
										•••••	
										•••••	