

수면 모니터링 딥러닝 모델 개발

윤지영, 고가연, 전영현, 윤수지, 김수진 광운대학교 컴퓨터정보공학부

지도교수: 최상호

프로젝트 목적

수면의 질은 다음 날의 활동에서의 집중력과 사고력, 주의력에 영향을 미치며 일상생활과 밀접한 관련이 있다. 또한 수면장애가 장기화되면 우울증, 기억력 및 집중력 감퇴 등 신경계의 기능저하가 나타나게 된다.

수면 다원검사인 PSG(polysomnography)는 평소 수면 환경과 상이한 병원에서 진행하며 몸에 여러 전극을 부착해야하기 때문에 편안한 수면을 취하기 어렵다. 비접촉식인 IR-UWB(impulse-radio ultra-wideband) 레이더를 이용하면보다 간편하고 정확한 수면 모니터링이 가능할 것이다.

수면 데이터 수집

수면 데이터 측정을 위해 피험자로부터 약 1m 거리의 삼각대에 UWB 레이더를 고정했다. 레이더의 탐지거리가 3m이고 취침 시 침대 위에서 신체의 위치가 달라질 수 있다는 점을 고려하여 안정적인신호를 측정할 수 있는 위치로 거리를 선정했다.

프로젝트 개발 내용

Data Preprocessing

- 수식을 통한 clutter 제거
- 흉부 감지 및 호흡 신호 검출
- 신호 행렬의 각 거리 지점에 대한 Dynamic threshold 설정
- 사람이 감지된 index 추출
- Normalization

Data Transformation

Index extraction

- 호흡의 주파수 대역 ≒ 0.5 Hz
- High-pass filtering: 0.1 Hz 이상 의 신호 추출 (저주파 제거)
- Low-pass filtering: 4 Hz 이하의 신호 추출 (고주파 제거)
- CWT 이미지화 및 2D 행렬 값 추출

Deep learning

Vision
Transformer
model
Sleep stage
classification

- ViT 모델 구축
- 이미지 데이터로 훈련 및 검증
- 수면의 3단계(N1+N2+N3, wake, REM)으로 분류

입력 데이터

	N1+N2+N3	wake	REM	Total
Train	8343	7997	8236	24576
Validation	2754	280	684	3718
Test	8388	702	2046	11136

CWT 이미지 변환 결과

생성한 데이터 셋의 분포

ViT 모델 구조

Vision Transformer(ViT) 모델은 이미지를 패치로 분할한 후, 각 패치의 linear embedding을 순서대로 Transformer의 input으로 넣어 이미지를 분류한다.

ViT는 Multi-head Self Attention(MSA)와 Multi-Layer Perceptron(MLP) block으로 구성되어 있다. 각 block의 앞에는 Layer Norm(LU)을 적용하고, 각 block의 뒤에는 residual connection을 적용한다.

프로젝트 결과

50 epoch으로 학습을 진행했으며, test 데이터 셋에 대해 전체 정확도는 70.15%라는 결과가 도출되었다. 또한 N1+N2+N3와 wake, 그리고 REM 단계의 정확도는 각각 79.27%, 35.64%, 44.85%로 나타났다.

