Feuille d'entraînement n° 5, semaine du 11 au 15 mai

Probabiltés et calcul matriciel

Exercice 1 Soit $p_1, p_2 \in]0, 1[$, soit $n \in \mathbb{N}^*$. Soit X, Y deux variables définies sur un même espace probabilisé (Ω, P) , dont les lois sont définies comme suit :

- X suit la loi binomiale de paramètres (n, p_1) ;
- pour chaque $0 \le k \le n$, conditionnellement à [X = k], Y suit la loi binomiale de paramètres (k, p_2) . Quelle est la loi de Y?

Exercice 2 Une urne contient 2n boules numérotées de 1 à 2n. On choisit un entier $k \in [1; 2n]$. On effectue un premier tirage avec remise.

Si le numéro de la boule est strictement supérieur à k, on arrête, et on note le numéro de la boule. Sinon, on retire une boule et on note le numéro. On note X le numéro de la dernière boule tirée et Z le nombre de tirages effectués.

- 1) Trouver la loi conjointe de (X, Z).
- 2) Trouver la loi de X et calculer son espérance.
- 3) Trouver un entier k qui maximise E(X).
- 4) En utilisant un point de vue qualitatif, déterminer le signe de Cov(X, Z).

Exercice 3 On pose $A = \begin{pmatrix} 0 & a & a^2 \\ a^{-1} & 0 & a \\ a^{-2} & a^{-1} & 0 \end{pmatrix}$ pour $a \in \mathbb{R}^*$. Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 4 E est un espace vectoriel de dimension 3 rapporté à la base $B = (e_1, e_2, e_3)$. On pose

$$u = -e_1 + e_2 + e_3$$
 $v = e_1 - e_2 + e_3$ $w = e_1 + e_2 - e_3$

- 1) Montrer que (u, v, w) est une base B' de E.
- 2) Soit f l'endomorphisme de E dont la matrice relativement à B est : $A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & -1 & -2 \\ 1 & -1 & 0 \end{pmatrix}$. Donner la matrice de f relativement à la base B'.

Exercice 5 Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de $\mathcal{M}_2(\mathbb{R})$ dans lui-même $M \mapsto AM$. Montrer que f est linéaire. Déterminer sa matrice dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.

Exercice 6 Montrer que $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ sont les matrices d'un même endomorphisme relativement à des bases différentes : cela signifie que s'il existe E un \mathbb{K} -ev de dimension 2 muni d'une base \mathscr{B} et $u \in \mathscr{L}(E)$ tels que $\mathrm{Mat}_{\mathscr{B}}(u) = A$, alors il existe une base \mathscr{E} telle que $\mathrm{Mat}_{\mathscr{E}}(u) = B$.