Exercise 0.1 (12.2). Let U and V be normed spaces, and assume that V is complete. Show that then B(U, V) is also complete with the operator norm.

Solution. Suppose B_n is a Cauchy sequence in B(U, V), so

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \mid ||B_n - B_m|| < \varepsilon, \quad \forall m, n \ge N.$$

That is, for all $m, n \geq N$,

$$\sup_{\|x\|=1} \|B_n x - B_m x\| < \varepsilon$$

For a fixed n, this becomes a Cauchy sequence in V which thus converges, so we can define $Bx = \lim_{n \to \infty} B_n x$. We claim that B is a bounded operator too. It is clear that it is linear since each B_n is a continuous map. What remains is to show that B is bounded. It suffices to show that it is bounded on $S = \{x \mid ||x|| = 1\}$. Suppose it were not bounded and choose a sequence $(x_n) \subset S$ such that $||Bx_n|| > n$. Choose $\varepsilon = \frac{1}{2}$ and let N be such that for $n, m \geq N$, we have

$$||B_n - B_m|| < \varepsilon$$

Then for all k

$$||B_n x_k - B_m x_k|| < \varepsilon$$

for all $n \geq N$, so in particular

$$||Bx_k - B_m x_k|| = \lim_{n \to \infty} ||B_n x_k - B_m x_k|| < \varepsilon$$

But B_m is bounded, so let $||B_m|| = R$. Choose M such that that for all $k \ge M$, we have $||Bx_k|| \ge ||B_m x_k||$, then

$$||Bx_k|| - ||B_m x_k|| < \varepsilon$$

giving

$$||Bx_k|| < \varepsilon + R$$

contradicting $||Bx_k|| \to \infty$.

Exercise 0.2 (12.3). Let $A \in B(V)$ for a complete normed space V. Prove

- (1) If ||A|| < 1 then $\sum_{k=0}^{\infty} A^k$ converges in B(V) to an inverse of I A.
- (2) If $B \in B(V)$ is invertible and $||A|| < \frac{1}{||B^{-1}||}$ then B A is invertible.
- (3) The set of invertible bounded operators is an open subset of B(V).

(Here invertible means there is a bounded inverse)

Solution. (1) geometric series.

- (2) $B A = B\left(1 \frac{A}{B}\right)$. Now $\|\frac{A}{B}\| \le \|A\| \|B^{-1}\| < 1$, so by (1), $1 \frac{A}{B}$ has inverse $\sum_{k=0}^{\infty} \left(\frac{A}{B}\right)^k$. But then B A is a composition of invertible maps hence invertible since $\mathrm{GL}(V)$ is a group.
- (3) Suppose $A \in B\left(B, \frac{1}{\|B^{-1}\|}\right)$, so $\|B A\| < \frac{1}{\|B^{-1}\|}$. By (2), B (B A) = A is then invertible. Hence $B\left(B, \frac{1}{\|B^{-1}\|}\right)$ is an open neighborhood of B in B(V) consisting of invertible maps. Thus the set of invertible maps is open in B(V).

Exercise 0.3 (12.6). Let $S \in \text{End}(\ell^2)$ denote the right shift taking the sequence (x_1, x_2, \ldots) to $(0, x_1, x_2, \ldots)$. Show it is bounded and determine the operator norm ||S||. Find also the adjoint S^* , and verify that $S^*S = I$ but $SS^* \neq I$.

Solution.

Solution. Recall that we are dealing with the norm $\|(x_1, x_2, \ldots)\|^2 = \sum_{k=1}^{\infty} |x_k|^2$. But indeed then if $\|(x_1, \ldots)\| = 1$, then

$$||S(x_1,...)||^2 = ||(0,x_1,x_2,...)||^2 = \sum_{k=1}^{\infty} |x_k|^2 = 1$$

so, in fact, S preserves the norm. But then since ||Sx|| = ||x|| for all x by linearity, we have ||S|| = 1. Now, the inner product is $\langle x, y \rangle = \sum_k x_k \overline{y_k}$. Then

$$\langle Sx, y \rangle = \sum_{k=2}^{\infty} x_k y_{k-1} = \langle x, S^*y \rangle$$

if we define $S^*(y_1, y_2,...) = (y_2, y_3,...)$. We then indeed get $S^*S = I$ clearly, but $SS^*(x_1, x_2,...) = (0, x_2, x_3,...)$.

Exercise 0.4 (12.8). Show $||Ax \pm ix||^2 = ||Ax||^2 + ||x||^2$ for A Hermitian and $\dim V < \infty$. Then show $A \pm iI$ is invertible and $(A - iI)(A + iI)^{-1}$ unitary.

$$\langle Ax \pm ix, Ax \pm ix \rangle = ||Ax||^2 + \langle Ax, \pm ix \rangle + \langle \pm ix, Ax \rangle + \langle \pm ix, \pm ix \rangle$$

$$= ||Ax||^2 + ||x||^2 \mp i \langle Ax, x \rangle \pm i \langle x, Ax \rangle$$

$$= ||Ax||^2 + ||x||^2 \mp i \langle Ax, x \rangle \pm i \langle Ax, x \rangle$$

$$= ||Ax||^2 + ||x||^2.$$

Now, if $A \pm iI$ were not invertible, it would not be injective, so for $x \neq 0$, we would get

$$0 = ||Ax \pm ix||^2 = ||Ax||^2 + ||x||^2$$

but $||x||^2 > 0$ and $||Ax||^2 \ge 0$, so this gives a contradiction.

Lastly, what is the adjoint of $(A - iI)(A + iI)^{-1}$? Well, $(A - iI)^* = A + iI$ by the rules on page 70. Hence the expression is of the form X^*X^{-1} which has adjoint $(X^{-1})^*X$. Then $(X^{-1})^*XX^*X^{-1}$.

Now, since A is self-adjoint, it is in particular normal, so A+iI is normal and hence orthogonally diagonable. Writing $A+iI=\sum \lambda E_{\lambda}$, we get $(A+iI)^*=\sum \overline{\lambda} E_{\lambda}$, so A+iI and A-iI commute. Hence we get $XX^*=X^*X$, and the expression above becomes the identity.

Exercise 0.5 (12.4). Give a simple proof of the Hahn-Banach theorem for a continuous linear form on a closed subspace of a Hilbert space.

Solution. Let V be a Hilbert space and let $U \subset V$ be a closed subspace. Then $V = U \oplus U^{\perp}$. Let \mathcal{B} be a basis for U and extend it to a basis \mathcal{A} for V. Take the duals \mathcal{B}' and \mathcal{A}' . For $z \in U^*$ we can write $z = \sum_{y_i' \in \mathcal{B}'} a_i y_i$. Then z can also be considered a linear form on V by letting the coefficient for $y_i \in \mathcal{A}'$ be 0 if $y_i \notin \mathcal{B}'$ and a_i otherwise. The restrictions are clearly the same. By the Riesz-Fréchet representation theorem, since U is a closed subspace of a Hilbert space, it is also a Hilbert space, so by continuity of z, there exists $u \in U$ such that $z(x) = \langle x, u \rangle$ for all $x \in U$ and such that ||z|| = ||u||. But since $z|_{U^{\perp}} = 0$, we also have $z(x) = \langle x, u \rangle$ for all $x \in V$, so by the Riesz-Fréchet theorem, ||z|| = ||u|| over V as well.

Exercise 0.6 (13.1). Prove $\rho(A+B) \leq \rho(A) + \rho(B)$ if A and B are normal. Prove it for general $A, B \in \text{End}(V)$, now assuming they commute. Show the inequality can fail in general.

Solution. If A and B are normal, then they are orthogonally diagonable with respect to the associated inner product, hence $\rho(A) = ||A||$ and $\rho(B) = ||B||$. Now, in general, we have $\rho(X) \leq ||X||$, we we get

$$\rho(A+B) \le ||A+B|| \le ||A|| + ||B|| = \rho(A) + \rho(B).$$

If A and B commute, then

$$\rho(A+B) = \lim_{k \to \infty} \| (A+B)^k \|^{\frac{1}{k}} = \lim_{k \to \infty} \| \sum_{i=0}^k \binom{k}{i} A^i B^{k-i} \|^{\frac{1}{k}}$$

$$\leq \lim_{k \to \infty} \left| \sum_{i=0}^k \binom{k}{i} \|A\|^i \|B\|^{k-i} \right|^{\frac{1}{k}}$$

$$= \lim_{k \to \infty} \|A\| + \|B\|$$

$$= \lim_{k \to \infty} \|A^k\|^{\frac{1}{k}} + \lim_{k \to \infty} \|B^k\|^{\frac{1}{k}}$$

where the last equality follows from $||X^k|| = ||X||^k$ when X is diagonable (by the proof of lemma 13.4).

To show that it can fail in general, note that for $[A] = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $[B] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, we have that the eigenvalues of both are precisely 1, hence $\rho(A) + \rho(B) = 2$, while $A + B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ which has characteristic polynomial (x - 3)(x - 1) and thus 3 as an eigenvalue.

Exercise 0.7 (13.2). Let $F = \mathbb{C}$. Find a counterexample to the statement: $\rho(p(A)) = p(\rho(A))$ for all polynomials p, where ρ is the spectral radius.

Solution. Consider p(x) = ix - i and A = -I. So $p(A) = \begin{pmatrix} -2i & 0 \\ 0 & -2i \end{pmatrix}$ which has spectral radius 2. However, -I has spectral radius 1 and p(1) = 0.

Exercise 0.8 (13.3). Show $\rho(A^*A) = ||A^*A|| = ||A||^2$ for the operator norm of an inner product.

Solution. The first equality holds when the matrix is orthogonally diagonable. But A^*A is self-adjoint, hence normal hence orthogonally diagonable. The latter equality holds since

$$||A^*A|| = \sup_{\|x\|=1} \langle A^*Ax, x \rangle = \sup_{\|x\|=1} ||Ax||^2 = ||A||^2$$