MA5233 Computational Mathematics

Lecture 15: Quadrature

Simon Etter

2019/2020

Def: Quadrature

Computing an approximation $Q \approx \int_a^b f(x) dx$ given a finite number of point-values $f(x_k)$.

Def: Quadrature rule (quadrule)

Formula for computing Q as a linear function of the point values $f(x_k)$,

$$Q:=\sum_{k=1}^n w_k f(x_k)$$

- \triangleright x_k are called quadrature points/nodes.
- $ightharpoonup w_k$ are called *quadrature weights*.

Discussion

Given n, we of course want to choose x_k , w_k such that the error

$$E(f,n) := \left| \int_a^b f(x) \, dx - \sum_{k=1}^n w_k \, f(x_k) \right|$$

becomes as small as possible.

However, this is not a reasonable question:

For any f, there exists an exact n = 1 quadrule, namely

$$w_1 = \frac{1}{f(x_1)} \int_a^b f(x) \, dx.$$

 \triangleright For any quadrule, there exists a sequence f_k such that

$$\lim_{k\to\infty} E(f_k,n)=\infty.$$

Alternative: choose a finite-dimensional space of functions V and demand that quadrule is exact for all $f \in V$.

In practice, we almost always choose $V = \mathcal{P}_d$ for some d.

Def: Polynomial degree of exactness

A quadrule $(x_k, w_k)_{k=1}^n$ is said to be exact on \mathcal{P}_d if for all $p \in \mathcal{P}_d$ it holds

$$\sum_{k=1}^n w_k \, p(x_k) = \int_a^b p(x) \, dx.$$

Thm: Quadrules exact on \mathcal{P}_{n-1}

Given distinct points $(x_k)_{k=1}^n$, there exist weights $(w_k)_{k=1}^n$ such that the resulting quadrature rule is exact on \mathcal{P}_{n-1} .

Proof. Recall Lagrange polynomials $\ell_k(x) = \prod_{j \neq k} \frac{x - x_j}{x_k - x_j}$ from lecture on polynomial approximation. We observe that

$$\int_{a}^{b} p(x) dx = \int_{a}^{b} \sum_{k=1}^{n} \ell_{k}(x) p(x_{k}) dx = \sum_{k=1}^{n} w_{k} p(x_{k})$$

if we set

$$w_k := \int_a^b \ell_k(x) \, dx.$$

Thm: Quadrature error estimate

Assume the quadrature rule $(x_k, w_k)_{k=1}^n$ is exact on \mathcal{P}_{n-1} .

Denote by $p \in \mathcal{P}_{n-1}$ the polynomial interpolant to f on x_k . Then,

$$\left| \int_a^b f(x) \, dx - \sum_{k=1}^n w_k \, f(x_k) \right| \leq (b-a) \, \|f-p\|_{[a,b]}.$$

Proof.

$$\left| \int_{a}^{b} f(x) dx - \sum_{k=1}^{n} w_{k} f(x_{k}) \right| = \left| \int_{a}^{b} f(x) dx - \int_{a}^{b} p(x) dx \right|$$

$$\leq \int_{a}^{b} \left| f(x) - p(x) \right| dx \leq \|f - p\|_{[a,b]} \int_{a}^{b} 1 dx.$$

Corollary

Convergence theory for quadrature follows immediately from theory for polynomial interpolation.

Special quadrature rules

- Newton-Cotes rules: choose x_k as equispaced points.
- \triangleright Clenshaw-Curtis rules: choose x_k as Chebyshev points.

Recall from lecture on polynomial approximation that interpolation in equispaced points is ill-conditioned and may diverge for $n \to \infty$. Hence Newton-Cotes rules are bad for large n, but they are fine for $n \leq 5$.

Special Newton-Cotes rules $(m := \frac{a+b}{2})$

Simpson
$$\frac{b-a}{6} (f(a) + 4 f(m) + f(b))$$

Discussion

We have seen that for every set of distinct points $(x_k)_{k=1}^n$, there exist weights $(w_k)_{k=1}^n$ such that the resulting quadrature rule is exact on \mathcal{P}_{n-1} . Question: can we increase degree of exactness by choosing x_k cleverly? The answer is yes, but seeing how requires some preparation.

Inner product for functions

The function

$$\langle f,g\rangle := \int_a^b f(x) g(x) dx$$

is an inner product on the space of all functions $f,g:[a,b]\to\mathbb{R}$ for which the integral exists.

Proof. Check that $\langle f, g \rangle$ satisfies all the properties of an inner product.

Legendre polynomials

Sequence of polynomials $(L_k \in \mathcal{P}_k)_{k=0}^\infty$ such that $L_k(1) = 1$ and

$$k' \neq k \iff \langle L_{k'}, L_k \rangle = \int_{-1}^1 L_{k'}(x) L_k(x) dx = 0.$$

Determining the Legendre polynomials

Main challenge is to establish orthogonality: once $\tilde{L}_k(x)$ such that $\langle \tilde{L}_{k'}, \tilde{L}_k \rangle = 0$ have been determined, the correct scaling can be achieved by setting $L_k(x) := \tilde{L}_k(x)/\tilde{L}_k(1)$.

Bad way of determining $\tilde{L}_k(x)$

Apply Gram-Schmidt to the sequence $1, x, x^2, x^3, ...,$ i.e.

$$\tilde{L}_0(x)=1, \quad \tilde{L}_1(x)=x-\tfrac{\langle 1,x\rangle}{\langle 1,1\rangle}\,1, \quad \tilde{L}_2(x)=x^2-\tfrac{\langle 1,x^2\rangle}{\langle 1,1\rangle}\,1-\tfrac{\langle x,x^2\rangle}{\langle x,x\rangle}\,x, \quad \dots$$

This is numerically unstable and unnecessarily costly. See next slide for better algorithm.

Good way of determining $\tilde{L}_k(x)$

Use Arnoldi with "matrix" (Af)(x) := x f(x) and "vector" b(x) = 1, i.e.

$$\begin{split} \tilde{L}_0(x) &= 1, \quad \tilde{L}_1(x) = x \, \tilde{L}_0(x) - \frac{\langle \tilde{L}_0, x \tilde{L}_0(x) \rangle}{\langle \tilde{L}_0, \tilde{L}_0 \rangle} \, \tilde{L}_0(x), \\ \tilde{L}_2(x) &= x \, \tilde{L}_1(x) - \frac{\langle \tilde{L}_0, x \tilde{L}_1(x) \rangle}{\langle \tilde{L}_0, \tilde{L}_0 \rangle} \, \tilde{L}_0(x) - \frac{\langle \tilde{L}_1, x \tilde{L}_1(x) \rangle}{\langle \tilde{L}_1, \tilde{L}_1 \rangle} \, \tilde{L}_1(x), \quad \dots \end{split}$$

This approach is numerically stable. Furthermore, Arnoldi simplifies to Lanczos iteration since the "matrix" A is symmetric with respect to the inner product $\langle f,g\rangle$,

$$\langle f, Ag \rangle = \int_{-1}^{1} f(x) \left(x g(x) \right) dx = \int_{-1}^{1} \left(x f(x) \right) g(x) dx = \langle Af, g \rangle$$

Lanczos iter. can be adapted to directly produce $L_k(x)$ rather than $\tilde{L}_k(x)$. This leads to the three-term recurrence relation

$$L_0(x) = 1, \quad L_1(x) = x,$$

 $(k+1) L_{k+1}(x) = (2k+1) \times L_k(x) - k L_{k-1}(x).$

Thm: Gauss quadrature

A quadrature rule $(x_k, w_k)_{k=1}^n$ exact on \mathcal{P}_{2n-1} is obtained if we choose

- \triangleright x_k as the roots of the Legendre polynomial $L_n(x)$, and
- w_k such that (x_k, w_k) is exact on \mathcal{P}_{n-1} .

Proof. Consider $p \in \mathcal{P}_{2n-1}$. By polynomial division with remainder, there exist $p_1, p_2 \in \mathcal{P}_{n-1}$ such that $p(x) = p_1(x) L_n(x) + p_2(x)$.

Using orthogonality of $L_n(x)$ and choice of x_k for the first integral and exactness on \mathcal{P}_{n-1} for second integral, we obtain

$$\int_{-1}^{1} p(x) dx = \int_{-1}^{1} p_1(x) L_n(x) dx + \int_{-1}^{1} p_2(x) dx$$

$$= 0 + \sum_{k=1}^{n} w_k p_2(x_k)$$

$$= \sum_{k=1}^{n} w_k p_1(x_k) L_n(x_k) + \sum_{k=1}^{n} w_k p_2(x_k) = \sum_{k=1}^{n} w_k p(x_k).$$

Remarks on Gauss quadrature

One can show:

- $ightharpoonup L_n(x)$ has n distinct roots in [-1,1]. (Gauss quadrature is well defined.)
- Gauss quadrature rules are unique.

Thm: Gauss quadrature error estimate

Let $(x_k, w_k)_{k=1}^n$ be a Gauss quadrule.

Denote by $p \in \mathcal{P}_{2n-1}$ the polynomial interpolant to f on x_k plus n-1 arbitrary additional interpolation points. Then,

$$\left| \int_a^b f(x) \, dx - \sum_{k=1}^n w_k \, f(x_k) \right| \le (b-a) \|f-p\|_{[a,b]}.$$

Proof. Analogous to previous result.

Discussion

One can show that the interpolation error described above behaves similarly as the error for interpolation in 2n - 1 Chebyshev points.

Conclusion: Gauss converges twice as fast as Clenshaw-Curtis.

At least in theory. In practice, CC often performs better than theoretical upper bound.

Thm: Optimality of Gauss quadrature

No quadrature rule $(x_k, w_k)_{k=1}^n$ is exact on \mathcal{P}_{2n} .

Proof. By contradiction. Assume $(x_k, w_k)_{k=1}^n$ is exact on \mathcal{P}_{2n} , and consider $p(x) := \prod_{k=1}^n (x - x_k)^2 \in \mathcal{P}_{2n}$. Then,

$$\int_a^b p(x) dx > 0 \text{ since } p(x) \ge 0, \quad \text{ but } \quad \sum_{k=1}^n w_k p(x_k) = 0.$$

Remark

Heuristic for degree of exactness of Gauss quadrules: $(x_k, w_k)_{k=1}^n$ introduces 2n "unknowns", \mathcal{P}_{2n-1} is 2n dimensional.

Gauss quadrature in practice

Quite a bit of code is required for computing the Gauss quadrature points, i.e. the roots of the Legendre polynomials.

Advice: use package to compute Gauss quadrules whenever possible. In Julia, use FastGaussQuadrature.jl.

Mapping of integrals

Recall integration by substitution:

$$\int_a^b f(x) dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(\hat{x})) \varphi'(\hat{x}) d\hat{x}.$$

In the context of quadrature, this formula has (at least) two applications:

Assume we have a quadrule $(\hat{x}_k, \hat{w}_k)_{k=1}^n$ for integration on [0, 1]. We can then approximate integrals on arbitrary intervals [a, b] using

$$\int_{a}^{b} f(x) dx = \int_{0}^{1} f(a + (b - a)\hat{x}) (b - a) d\hat{x}$$
$$\approx \sum_{k=1}^{n} (b - a) \hat{w}_{k} f(a + (b - a)\hat{x}_{k}).$$

Mapping of integrals

Recall integration by substitution:

$$\int_a^b f(x) dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(\hat{x})) \varphi'(\hat{x}) d\hat{x}.$$

In the context of quadrature, this formula has (at least) two applications:

▶ Consider the substitution $x = \sin(\theta)$ applied to

$$\int_{-1}^{1} \sqrt{1-x^2} \, dx = \int_{-\pi/2}^{\pi/2} \sqrt{1-\sin(\theta)^2} \, \cos(\theta) \, d\theta = \int_{-\pi/2}^{\pi/2} \cos(\theta)^2 \, d\theta.$$

Derivative of original integrand blows up at x=1, which leads to algebraic convergence of quadrature. Integrand on the right is analytic everywhere, hence quadrature converges superexponentially.

Def: Composite quadrature rules

Consider interval [a, b] with partition $a = y_0 < y_2 < \ldots < y_m = b$.

Composite quadrules compute $\int_a^b f(x) dx$ by writing

$$\int_{a}^{b} f(x) \, dx) = \sum_{\ell=1}^{m} \int_{y_{\ell-1}}^{y_{\ell}} f(x) \, dx$$

and applying a nested quadrule to each of the terms on the right.

Examples

Composite midpoint rule:

$$\int_a^b f(x) dx \approx \sum_{\ell=1}^m (y_\ell - y_{\ell-1}) f\left(\frac{y_{\ell-1} + y_\ell}{2}\right).$$

Composite trapezoidal rule:

$$\int_{a}^{b} f(x) dx \approx \sum_{\ell=1}^{m} \frac{y_{\ell} - y_{\ell-1}}{2} (f(y_{\ell-1}) + f(y_{\ell})).$$

Reasons for considering composite quadrules

- Function is defined piecewise (cf. finite element method).
- Quadrules for large n are tedious to construct.
- Adaptive quadrature: refine partition in regions where integrand lacks smoothness.

Error estimate for composite quadrules

Assume

- equispaced partition $y_\ell := a(1 \frac{\ell}{m}) + b\frac{\ell}{m}$ with $\ell \in \{0, \dots, m\}$,
- local quadrule is exact on \mathcal{P}_d , and
- ▶ $f : [a, b] \rightarrow \mathbb{R}$ has d + 1 continuous derivatives.

Then, the composite quadrature error e_m satisfies

$$e_m = \mathcal{O}(m^{-d-1})$$
 for $m \to \infty$.

Proof on next slide

Proof. We have seen that local quadrule exact on \mathcal{P}_d implies that the local quadrature error is bounded by

$$\left| \int_{y_{\ell-1}}^{y_{\ell}} f(x) \, dx - Q_{\ell} \right| \leq (y_{\ell} - y_{\ell-1}) \, \|f - p\|_{[y_{\ell-1}, y_{\ell}]}$$

where p is the interpolant to f in d+1 distinct points $x_k \in [y_{\ell-1}, y_{\ell}]$. Recall from previous lecture the interpolation error estimate

$$f(x) - p(x) = \frac{f^{(d+1)}(\xi)}{(d+1)!} \prod_{k=0}^{d} (x - x_k).$$

Since $x, x_k \in [y_{\ell-1}, y_{\ell}]$, we have $|x - x_k| \le y_{\ell} - y_{\ell-1}$ and hence

$$\left| \int_{y_{\ell-1}}^{y_{\ell}} f(x) \, dx - Q_{\ell} \right| \leq C \, (y_{\ell} - y_{\ell-1})^{(d+2)} = \mathcal{O}(m^{-d-2}).$$

Global error estimate follows by summing local error estimate over m intervals.

Error estimates for special quadrature rules

- $\qquad \text{Midpoint } (n=1): \ e_m = \mathcal{O}\big(m^{-2}\big).$
- ▶ Trapezoidal (n = 2): $e_m = \mathcal{O}(m^{-2})$.
- ► Simpson (n = 3): $e_m = \mathcal{O}(m^{-4})$.

Note that midpoint and Simpson rules (and in general any Newton-Cotes rule with odd n) achieve $e_m = \mathcal{O}\big(m^{-n-1}\big)$ rather than $e_m = \mathcal{O}\big(m^{-n}\big)$ because they are exact on \mathcal{P}_n rather than \mathcal{P}_{n-1} .

References and further reading

E. Suli and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press (2003), doi:10.1017/CB09780511801181

Can be accessed online for free via the library website!