Department of Mathematics

Probability and Random Processes Tutorial Sheet 11

15B11MA301 C201.5

Random Process

- 1. Define a random process and classify them with suitable examples.
- 2. In an experiment of two fair dice, the process $\{X(t)\}$ is defined as $X(t) = \sin \pi t$, if the experiment shows a prime sum and X(t) = 2t + 1, otherwise. Find the mean of the process. Is the process stationary? [Ans: not stationary]
- 3. Let $X(t) = A \cos \lambda t + B \sin \lambda t$, with random variable A taking values 1 and 3 with equal probabilities and random variable B taking values -1 and 1 with probabilities $\frac{1}{4}$ and $\frac{3}{4}$ respectively. Test the process $\{X(t)\}$ for stationarity. [Ans: not stationary]
- **4.** Test the random processes $\{X(t)\}\$ and $\{Y(t)\}\$ for WSS when:
 - (i) $X(t) = \cos(\lambda t + Y)$, where λ is a constant and Y is uniform in $(0, 2\pi)$ [Ans: WSS]
 - (ii) $Y(t) = X\sin(\lambda t)$, where λ is a constant and X is uniform in (-1, 1). [Ans: not WSS]
- 5. Find auto correlation functions of the processes $\{X(t)\}$ and $\{Y(t)\}$ such that $X(t) = A \cos \lambda t + B \sin \lambda t$ and $Y(t) = B \cos \lambda t A \sin \lambda t$, where A and B are uncorrelated random variables taking value -4 and 4 with equal probabilities. Prove that $\{X(t)\}$ and $\{Y(t)\}$ are jointly WSS.
- **6.** If $X(t) = A \sin \omega(\omega t + \theta)$ where A and ω are constants and θ is a random variable, uniformly distributed over $(-\pi,\pi)$, find the autocorrelation of $\{Y(t)\}$ where $Y(t) = X^2(t)$. [Ans: $R(t_1,t_2) = \frac{A^4}{8} \{2 + \cos 2\omega(t_1 t_2)\}$]
- 7. If $\{X(t)\}$ is a WSS process with $E\{X(t)\}=2$ and $R_{XX}(\tau)=4+e^{-|\tau|/10}$, find the variance of X(1), X(2) and X(3). Also compute the second order moment about origin of X(1)+X(2)+X(3). [Ans: $V_{0,X}(X(1))=V_{0,X}(X(2))=V_{0,X}(X(3))=5-4=1$ and $39+4e^{-V_{10}}+2e^{-V_{10}}$]
- **8.** Define a Random walk and prove that the limiting form of a random walk is Wiener process.