Laboratorio 8

Rodrigo Mansilla

Brandon Reyes

Carga del Conjunto de Datos:

Dimensiones del dataset: (581012, 55)

	Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrolog
0	2596.0	51.0	3.0	258.0	0.0
1	2590.0	56.0	2.0	212.0	-6.0
2	2804.0	139.0	9.0	268.0	65.0
3	2785.0	155.0	18.0	242.0	118.
4	2595.0	45.0	2.0	153.0	-1.0

5 rows × 55 columns

Escalado de variables númericas

Forma: 581,012 filas × 55 columnas (54 features + Cover_Type).

Numéricas (10): magnitudes muy distintas (elevación ~1859–3858, distancias hasta ~7000, hillshade 0-254) \Rightarrow bien escalar solo estas.

Binarias (44): Wilderness_Area1..4 y Soil_Type1..40 son $0/1 \Rightarrow$ dejarlas sin escalar (passthrough).

Target: Cover_Type = {1..7} con desbalance (clases 2 y 1 dominan; 4 y 5 pequeñas). Implicación: usar estratificación en los splits y evaluar con métricas por clase (macro-F1).

Exploración y Descripción de Variables

Tipos de datos (muestra):

Elevation	float64
Aspect	float64
Slope	float64
Horizontal_Distance_To_Hydrology	float64
Vertical_Distance_To_Hydrology	float64
Horizontal_Distance_To_Roadways	float64
Hillshade_9am	float64
Hillshade_Noon	float64
Hillshade_3pm	float64
Horizontal_Distance_To_Fire_Points	float64
Wilderness_Area1	float64
Wilderness_Area2	float64
Wilderness_Area3	float64
Wilderness_Area4	float64
Soil_Type1	float64
dtyne: object	

dtype: object

Descripción de las variables numéricas:

	count	mean	std	min	25%	50%
Elevation	581012.0	2959.365301	279.984734	1859.0	2809.0	2996.0
Aspect	581012.0	155.656807	111.913721	0.0	58.0	127.0
Slope	581012.0	14.103704	7.488242	0.0	9.0	13.0
Horizontal_Distance_To_Hydrology	581012.0	269.428217	212.549356	0.0	108.0	218.0
Vertical_Distance_To_Hydrology	581012.0	46.418855	58.295232	-173.0	7.0	30.0
Horizontal_Distance_To_Roadways	581012.0	2350.146611	1559.254870	0.0	1106.0	1997.0
Hillshade_9am	581012.0	212.146049	26.769889	0.0	198.0	218.0
Hillshade_Noon	581012.0	223.318716	19.768697	0.0	213.0	226.0
Hillshade_3pm	581012.0	142.528263	38.274529	0.0	119.0	143.0
Horizontal_Distance_To_Fire_Points	581012.0	1980.291226	1324.195210	0.0	1024.0	1710.0

```
Valores únicos en columnas binarias (deben ser 0/1): {'Wilderness_Area1': [np.float64(0.0), np.float64(1.0)], 'Wilderness_Area2': [np.float64(0.0), np.float64(1.0)]} {'Soil_Type1': [np.float64(0.0), np.float64(1.0)], 'Soil_Type2': [np.float64(0.0), np.float64(1.0)]}
```

Distribución de la variable objetivo (Cover_Type):

Name: count, dtype: int64

Valores nulos totales: 0

Etiquetar los datos normales y los anormales

Etiqueta Binaria "is_normal" (Normal vs Anómalo)

Visualización del Balance de Clases

División de datos Train/Val/Test:

División General de Datos (Train/Valid/Test)

Tamaño del conjunto de prueba: (116203, 54) Proporción de normales en TEST: 48.76 %

Separación de Normales para Train y Valid del Autoencoder

Tamaños:

- Train_norm: (181312, 54)
- Valid_norm: (45329, 54)
- Test (mixto): (116203, 54)

¿Por qué entrenar el Autoencoder solo con datos normales?

Un **autoencoder** aprende a reconstruir patrones de entrada minimizando el error de reconstrucción (MSE).

Si se entrena con datos *anómalos*, estos patrones "extraños" también son aprendidos, lo que **dificulta distinguir** entre normalidad y anomalía.

Por tanto:

- **Train/Valid:** deben contener **solo observaciones normales**, para que el modelo capture únicamente la "manifold" normal.
- **Test:** debe incluir tanto normales como anómalos, ya que ahí se evalúa si el error de reconstrucción permite **detectar desviaciones anómalas**.

Modelo de Autocodificador:

Preprocesamiento solo para numéricas escaladas, binarias intactas

Dimensiones transformadas → (181312, 54)

Arquitectura Simétrica

Model: "functional_2"

Layer (type)	Output Shape	Param #		
<pre>input_layer_2 (InputLayer)</pre>	(None, 54)	0		
sequential (Sequential)	(None, 16)	18,416		
sequential_1 (Sequential)	(None, 54)	18,198		

Total params: 36,614 (143.02 KB)

Trainable params: 36,230 (141.52 KB)

Non-trainable params: 384 (1.50 KB)

Entrenamiento con Early Stopping

```
Epoch 1/60
89/89
                           19s 56ms/step - loss: 0.1549 - val_loss: 0.1658
Epoch 2/60
89/89 -
                           4s 39ms/step - loss: 0.0728 - val_loss: 0.1135
Epoch 3/60
89/89 -
                           3s 37ms/step - loss: 0.0550 - val_loss: 0.0712
Epoch 4/60
89/89 -
                           4s 40ms/step - loss: 0.0452 - val_loss: 0.0446
Epoch 5/60
89/89 -
                           5s 52ms/step - loss: 0.0390 - val_loss: 0.0313
Epoch 6/60
89/89 -
                           4s 46ms/step - loss: 0.0349 - val_loss: 0.0256
Epoch 7/60
89/89
                           5s 43ms/step - loss: 0.0316 - val_loss: 0.0217
Epoch 8/60
89/89 -
                           4s 33ms/step - loss: 0.0292 - val_loss: 0.0189
Epoch 9/60
                           3s 33ms/step - loss: 0.0271 - val_loss: 0.0167
89/89 -
Epoch 10/60
89/89 -
                           3s 34ms/step - loss: 0.0254 - val_loss: 0.0153
Epoch 11/60
89/89 -
                          - 3s 38ms/step - loss: 0.0240 - val_loss: 0.0134
Epoch 12/60
89/89
                          - 3s 32ms/step - loss: 0.0229 - val_loss: 0.0128
Epoch 13/60
                           3s 38ms/step - loss: 0.0220 - val_loss: 0.0123
89/89
Epoch 14/60
89/89 -
                           3s 31ms/step - loss: 0.0212 - val_loss: 0.0114
Epoch 15/60
                           3s 34ms/step - loss: 0.0204 - val_loss: 0.0123
89/89
Epoch 16/60
89/89 -
                           3s 31ms/step - loss: 0.0197 - val_loss: 0.0111
Epoch 17/60
89/89 -
                          - 3s 36ms/step - loss: 0.0190 - val_loss: 0.0103
Epoch 18/60
89/89 -
                           3s 33ms/step - loss: 0.0184 - val_loss: 0.0105
Epoch 19/60
89/89
                           3s 38ms/step - loss: 0.0178 - val_loss: 0.0102
Epoch 20/60
                           3s 37ms/step - loss: 0.0171 - val_loss: 0.0101
89/89 -
Epoch 21/60
89/89
                           4s 43ms/step - loss: 0.0166 - val_loss: 0.0096
Epoch 22/60
89/89 -
                           5s 60ms/step - loss: 0.0161 - val_loss: 0.0093
Epoch 23/60
89/89 -
                           8s 85ms/step - loss: 0.0156 - val_loss: 0.0092
Epoch 24/60
89/89
                           9s 69ms/step - loss: 0.0150 - val_loss: 0.0085
Epoch 25/60
89/89 -
                           7s 75ms/step - loss: 0.0144 - val_loss: 0.0093
Epoch 26/60
89/89
                          - 4s 40ms/step - loss: 0.0140 - val_loss: 0.0088
Epoch 27/60
89/89 -
                          - 4s 44ms/step - loss: 0.0135 - val_loss: 0.0088
Epoch 28/60
```

89/89	4 s	43ms/step	-	loss:	0.0131	-	val_	_loss:	0.0092	
Epoch 29/60										
89/89	3s	37ms/step	_	loss:	0.0125	-	val	loss:	0.0087	

Características del modelo

- Arquitectura simétrica: encoder y decoder con capas espejo (128 → 64 → 32 → 16 → 32 → 64 → 128).
- Regularización: Dropout y L2 penalty reducen sobreajuste.
- Batch Normalization: estabiliza la convergencia y mejora la generalización.
- Métrica MSE: el error de reconstrucción mide cuán "normal" es una observación.
- **Early Stopping:** detiene el entrenamiento si no hay mejora en val_loss por 5 épocas → evita sobreentrenamiento y limita el tiempo total

Training curve

Modelos de Isolation Forest y LOF:

Consideraciones sobre los modelos de detección no supervisada

- **Isolation Forest** separa anomalías por aislamiento aleatorio de atributos.
 - Escala bien a grandes volúmenes de datos.
 - Ajustar n_estimators, max_samples y el percentil del umbral permite controlar el balance precisión—recall.
- Local Outlier Factor compara la densidad local de un punto con la de sus vecinos.

- Detecta anomalías "de contexto", pero es sensible a la escala y a n_neighbors .
- Ambos se entrenan solo con normales, evitando que las anomalías sesguen la distribución aprendida.
- Para comparar con el autoencoder, se utilizan métricas comunes: F1, ROC-AUC, PR-AUC.

Isolation Forest

```
Umbral (percentil 5 valid_norm): 0.082752
[IsolationForest] Acc=0.6304 Prec=0.5731 Rec=0.9486 F1=0.7145 | ROC-AUC=0.7250
PR-AUC=0.6650
Matriz de confusión [0:Anómalo, 1:Normal]:
[[19512 40031]
  [ 2913 53747]]
```

LOF

Visualización 2D de Anomalías

Interpretación

- Cada punto es una observación del conjunto de prueba (reducido a 2D con PCA).
- Colores:
 - Azul → Normal (predicho 1)
 - Rojo → Anómalo (predicho 0)

Panel izquierdo: Etiquetas verdaderas (y_test), muestra la distribución real.

Panel central: Predicciones del *Isolation Forest*, que tiende a separar regiones dispersas o extremas.

Panel derecho: Predicciones del *LOF*, más sensible a la densidad local: suele detectar microgrupos aislados como anomalías.

En un buen modelo, los anómalos aparecen como pequeños grupos periféricos o puntos rojos dispersos fuera de las regiones densas azules.

Evaluación de los Modelos:

Matriz de Confusión del Mejor Modelo