

Machine Learning

Dr. Muhammad Adeel Nisar

Assistant Professor – Department of IT, Faculty of Computing and Information Technology, University of the Punjab, Lahore

Contact

Contact Hours

In Class Contact Hours
Tuesdays & Thursdays — 1.5 x 2 = 3 Hours

Outside Class Meeting Hours Thursdays: 14:00 to 16:00

Office: Room 12, Ground Floor, Graduate Block, PUCIT

Email: adeel.nisar@pucit.edu.pk

Web: http://faculty.pucit.edu.pk/adeelnisar

Course Outline

- Detailed course outline is available on Google classroom
- Main Topics: Introduction to Machine Learning, Supervised, Unsupervised, Semi-supervised Machine Learning, Applications of Machine Learning, Linear Regression, Polynomial Regression, Logistic Regression, Bayes Theorem, Naïve Bayes Classifier, Support Vector Machines, Neural Networks: Forward and Backpropagation, Convolutional Neural Networks, Clustering, Dimensionality Reduction: Principal Component Analysis
- Additional Topics: Introduction to the Python programming language and its libraries and packages: NumPy, Matplotlib, Scikit-learn, PyTorch, Tensorflow.

Text and Reference Book(s)

- A1: Python for Everybody by Dr. Charles R. Severance
- A2: Starting Out with Python by Tony Gaddis
- B1: The Hundred-Page Machine Learning Book by Andriy Burkov
- B2: Hands On Machine Learning with Scikit Learn, Keras and TensorFlow 2e by Aurélien Géron
- B3: Introduction to Machine Learning by Ethem Alpaydin
- B4: Deep Learning with Python by François Chollet
- B5: Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

•

Reference Material

- R1: https://www.youtube.com/watch?v=gb262LDH1So (Machine Learning by Andrew Ng) OR https://youtu.be/vStJoetOxJg?si=qiOMZaH3DUw1E742
- R2: https://www.deeplearningbook.org/
- R3: https://www.w3schools.com/ai/default.asp
- R4: https://www.w3schools.com/python/
- R5: https://numpy.org/
- R6: https://matplotlib.org/
- R7: https://scikit-learn.org/
- R8: https://pytorch.org/tutorials/
- R9: https://www.tensorflow.org/learn

Course Evaluation

- Sessional 25% (Quizzes, Assignments, Project)
- Midterm Exam 35%
- Final Term Exam 40%

Introduction to the Course

- Why Do you Need to Learn Machine Learning?
- What is Machine Learning?
- Applications of Machine Learning
- Machine Learning Life-Cycle
- Types of Machine Learning

Let's Begin with Some Questions

- x is an input integer number
- Its output **y** is either <u>Positive</u> or <u>Negative</u> (Finding Category)
- I want to check its output.
- What is the rule?
- If $(x \ge 0)$ then y = Positive otherwise y = Negative

Another Question

• x is an input integer number

I want to check whether its output y is <u>Even</u> or <u>Odd</u>

• What is the rule?

• If (x % 2 == 0) then <u>y = Even</u> otherwise <u>y = Odd</u>

Another Question

- **Gender Classification** using Facial Images [1]
- Input x is an Image
- Output y is a label "Male" or "Female"
- Rule?

https://peteradekolu.medium.com/gender-classification-of-facial-images-using-cnn-in-python-19fff3e986a

Gender: Male

Gender: Male

Labeled Facial Images

Another Question

Cats vs Dogs [2]

Rule?

[2] https://www-edlab.cs.umass.edu/~smaji/cmpsci670/fa14/hw/recognition/

VS

Why Machine Learning?

Finding Data Pattern

```
• \mathbf{x} = [1, 2, 3, 4, 5, 6, 7]
• \mathbf{y} = \mathbf{f}(\mathbf{x})= [1, 2, 3, 4, 5, 6, 7]
```

```
x = [1, 2, 3, 4, 5, 6, 7]
y = [1, 2, 3, 4, 5, 6, 7]
x = 3.5?
y = 3.5
```



```
• \mathbf{x} = [1, 2, 3, 4, 5, 6, 7]
• \mathbf{y} = [2, 4, 6, 8, 10, 12, 14]
• \mathbf{x} = 3.5?
```

```
• \mathbf{x} = [1, 2, 3, 4, 5, 6, 7]
• \mathbf{y} = [2, 4, 6, 8, 10, 12, 14]
• \mathbf{x} = 3.5?
• \mathbf{y} = [3, 5, 7, 9, 11, 13, 15]
```

- x = [-0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]
- y = f(x) = [45.0, 31.25, 20.0, 11.25, 5.0, 1.25, 0.0, 1.25, 5.0, 11.25, 20.0, 31.25]

• x = [-0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]

• y = f(x) = [45.0, 31.25, 20.0, 11.25, 5.0, 1.25, 0.0, 1.25, 5.0,

11.25, 20.0, 31.25]

Can You Find The Pattern?

What is Machine Learning?

 Machine learning (ML) is a branch of Artificial Intelligence (AI).

- Arthur Samuel (1959) defined ML as "Field of study that gives computers the ability to learn without being explicitly programmed"
 - Samuels wrote a checkers playing program
 - Had the program play 10000 games against itself
 - Work out which board positions were good and bad depending on wins/losses

What is Machine Learning?

• Tom Michel (1999) defines ML as a well posed learning problem: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

The checkers example,

- E = 10000s games
- T is playing checkers
- P is probability of winning

Virtual Personal Assistant

Spam Filtering

Recommendation System

Photo-tagging/Image Understanding

Translation / Text and Speech Recognition

Handwriting Recognition

Activity Recognition / Video Data Understanding

Video Cameras

Applications of ML in Health Informatics

Activity Recognition / Sensors Data Understanding

Inertial Sensors

Recognition of Daily Activities

https://youtu.be/s5wZP4ArZtU

Recognition of Daily Activities

Recognition of Eating Activities

https://youtu.be/J4QLzRRmCY8

Machine Learning Life-Cycle

- Data Acquisition
- Data Preparation
- Feature Extraction
- Train Model
- Test Model
- Evaluate and Improve

Data Acquisition

- Types of data
 - Electronic Records/ Tabular data

studies		
Data source	Sample size	Reference
Single psychiatric inpatient unit	728-2,010	82, 97
Specialized center/clinic	544-10,017	15, 40
Prison network	370,511	8
Single hospital	467-55,492	23, 47
Multiple hospitals	1,074-25,241	53, 105
Multiple primary care practices	7,925-345,143	44, 74
Health care system	2,537-919,873	25, 48
Consortium	8,709-233,844	28, 83
Centralized anonymized repository	923-5,244,402	39, 101

	Administration		ectronic Medical Rec	ords.
Variables	Claims	Primary Core	Specialist Core	Integrated Health Egisters
Diagnosis	•	•	•	•
Demographics	0	•	0	•
Treatment Prescribed	•	•	0	•
Treatment Dispersed	•	0	0	0
Treatment Administered in Hospital	0	0	0	•
Cornorbidities	•	•	0	•
Other Concomitant Medication Use	•	•	•	•
Specialist Visits (All Specialities)	•	0	•	•
Surgical Procedures	•	•	0	•
Radiology / Pathelogy Findings	0	0	•	•
Laboratory Tests Performed	•	0	•	•
Laboratory Test Results	0	0	•	•
Over-The-Counter Medications	0	0	•	•

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
5	25.29	4.71	Male	No	Sun	Dinner	4
6	8.77	2.00	Male	No	Sun	Dinner	2
7	26.88	3.12	Male	No	Sun	Dinner	4
8	15.04	1.96	Male	No	Sun	Dinner	2
9	14.78	3.23	Male	No	Sun	Dinner	2
10	10.27	1.71	Male	No	Sun	Dinner	2
11	35.26	5.00	Female	No	Sun	Dinner	4

• Images

Data Acquisition

- Types of data
 - Audio

Sensors Data

https://images.app.goo.gl/m5uUHz9keixcwV3u8

https://instock.pk/emotiv-epoc-14-channel-mobile-eeg.html

Data Preparation

Noise Removal

https://images.app.goo.gl/WGpHsUFYAqr2DcmE8

https://images.app.goo.gl/MtPN7BpxiHyYBj9T9

- Python Libraries for noise removal
 - https://pypi.org/project/noisereduce/
 - https://scikitimage.org/docs/stable/auto_examples/filters/plot_denoise.html

Data Preparation

Segmentation

Sensor-Based Human Activity Recognition for Assistive Health Technologies by Dr. Muhammad Adeel Nisar, Logos Verlag Berlin GmbH, 2023

Types of Machine Learning

- Supervised Machine Learning assumes that a set of labelled training data is available and the classifier is designed by exploiting this apriori known information.
- Two further types
 - Regression
 - Linear Regression
 - Nonlinear Regression
 - Classification
 - Logistic Regression
 - Naïve Bayes
 - Support Vector Machines etc

Types of Machine Learning

- Unsupervised Machine Learning clusters unlabeled training data described by feature vectors into similar groups
 - Clustering
 - K-Means Clustering
 - Dimensionality Reduction
 - Principal Component Analysis
 - Autoencoders

Types of Machine Learning

- In **Semi-supervised Machine Learning** the dataset contains both labeled and unlabeled examples. Usually, the quantity of unlabeled examples is much higher than the number of labeled examples. The goal of a semi-supervised learning algorithm is the same as the goal of the supervised learning algorithm.
- Reinforcement Learning solves a particular kind of problems where decision making is sequential, and the goal is long-term, such as game playing, robotics, resource management, or logistics.

Homework

- Python Programming
 - (Input/Output, Processing, Selection, Repetition, Functions)
 - Book A1: Chapter 2 to 5
 - Book A2: Chapter 2 to 5
- Machine Learning
 - Resource R1
 - Book B1: 1.1, 1.2