1.088-15VO

DTIE MICROCARD ISSUANCE

M96

Reproduced From Best Available Copy

DISTRIBUTION STATEMENT A

Approved for Public Release Distribution Unlimited

7/161- dit

5cpc- 3 284

REPORT SBW-4

COMPUTATION CURVES FOR AXI-SYMMETRIC BASE PRESSURE ANALYSIS

ğ

GLEN W. ZUMWALT and HOMER H. TANG

Prepared for SANDIA CORPORATION ORGANIZATION NO. 7131 (Purchase Order 82-4326) / School of Mechanical Engineering Oklahoma State University Stillwater, Oklahoma March, 1963 Facsimile Price \$ 27.6

Available from the Office of Technical Services Department of Commerce Woshington 25, D. C.

200000915 023

e,

:5

blast wave. During the transient phase, the computation method requires solutions of the axi-symmetric base pressure to be found for successive compressible jet mixing, where the total temperature is constant across velocity of the streamline which divids, the free stream flow mass from graphical form. The curves presented here are applicable to turbulent, A research contract between Sandia Corporation and Oklahoma State become necessary to provide as much of the calculations as possible in University calls for analysis of base pressures under the highly tranof even steady-state solutions of axi-symmetric base pressures, it has sient conditions which occur when a supersonic missile flys through a and the free stream conditions vary with time. Due to the complexity the flow mass entrained from the "dead-air" near the base of the body. principal parameter obtainable from these curves is the dimensionless time increments while the jet-mixing surfaces are acting as ejectors the mixing region, and the flow streamlines converge conically.

LIST OF SYMBOLS

Dimensionless group defined in Equation 2, page 2

$$C = \frac{u}{u}$$
, Crocco number = $\left| \frac{H^2}{k-1} + \frac{R^2}{H^2} \right|$

- Diameter of sting
- Diameter of body
- Function of some variables
- Integral defined on p. 2 Integral defined on p. 2 12
- Integral defined on p. 2

Integral defined on p. 2

- Ratio of specific heats
- Mach number
- Absolute pressure
- Radius of body
- Radius of the "sting," a cylindrical body extending axially from the base,
 - A reference streamline near but outside the mixing region
- Velocity in x or X direction
- Coordinates of the intrinsic coordinate system
- Coordinates of the reference coordinate system
- Similarity parameter of the homogeneous coordinate y/x (Also called the tree jet parameter)
- $\eta = \sigma y/x$, Dimensionless coordinate

Streamline angle

	ve locity.	45777
	Dimensionless	201
5	-	· · · · · · · · · · · · · · · · · · ·
	11 9	

Subscripts

Refer to conditions at cross sections indicated in Fig. 1.	Refers to conditions of the flow in the isentropic stream adjacent to the dissipative regions	Refers to the conditions at the base of the sudden expansion	Refers to the streamline whose kinetic energy is just sufficient to enter the recompression region.	Refers to conditions along the jet boundary streamline.	Refers to coordinate shift in the mixing theory due to the momentum integral.	Stagnation conditions	Refers to conditions along the R streamline
, 2, 3, 4							

TABLE OF CONTENTS

p2.8e	·H	ii	~	Ŋ	n	2	5	9	7	.8-14	15-20	21-27	88	29	30
Ω.										Φ.	15	2		•	
		•									•	•	•	Experi- Reduced	
	•	•	•	•	•	•			•	•	•	•	•	Experi Reduce	
	•		٠	•	•	•	•	•		•	•	•	•	i si ki	· Er
	•	•	•	•	•	•	•	•	•	•	•	•	•		Ğ.
	•	•	•	•	•	•	•	•	•	•	•	•	•	with with	Cylinder
	•	•	•	•	•	•	•	•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	ry er	ba.
	•	•	•	•	•	•	•	•	•	•	•	•	•	eo uq	a t
	•	•	•	•	•	•	•	•	•	•	•	•	•	w Theory Cylinder	r i
	•	•	•		•	•	•	•	•	•	•	•	•	გე.	E -
	-	:		Ö	:	Ċ	•	·	·			·		. a	ž č
	·		•	THEOR Z.		·	•				•			st .	ly iti
													θ3 4 ·	Conical Flow Theory low Past a Cylinder	Suddenly Terminated ry Solution)
				RISE									Φ	ida.	dd.
				~						•_	ė		sno	. 19	Sury
	•			Æ			•	•		øj.	ΛS	•	-2	the	4 வ
	•		•	PRESSURE	•	•	•	•	•	۸S		:-	Various	on of th External	for * Th
	•	•	•	ä	3	•	vi.	•	•	⊲້ 🥙	3a	j.		Comparison of ment of Extern Radius	M _l fo Flow
	•	•	•		5	TS	Š	٠	•	~	X X COS &	۸S	for	, , ,	M ₁ F 10
	•	•	•	ΑŢ	8	'n	Ţ	٠	e l	IK X	σ R KCOS	m	9 ^P	ος Ei	
	•	•	•	CONICAL	80	RESULTS	APPLICATIONS	•	Flow Model	xcox9	LIX.		9-	iri: of is.	P _b /P _l vs (Conical
	•	•	•	õ	~		ij	•	2.		<i>-</i> :	21.	C34 vs	Compari ment of Radius,	P _b /P ₁ (Conic
	•	Ę.	•		ŝ	Ś	Į.	•	Į,	to 8.	14.	ţ	8	Compa ment Radiu	ွဲရှိ
	:	ě	ž.	Ŀ.	Ę	Ę		•	ш	ដ	ţ		0	OPE	н О
		SYMBOLS	Ï	RESUME	CALCULATION PROCEDURE	CALCULATION	FURTHER	ES		c ₂	6	15	22.	23.	24.
	Œ	ę.	Š	SU	2	S	RI	S	Ή.			so.			à
	AC	0	8	RE	CA	S	FU	핊	H.	H.	r e	r e	ų ų	e e	re
	PREFACE	LIST	INTRODUCTION.					REFERENCES.	Figure	Figures	Figures	Figures	Figure	.g.	Figure
	PR	Ľ	Z	ij	II.	III.	IV.	RE	E.	Fi	F	F.	Fi	Figure	F
						H									

iv

INTRODUCTION

The conical pressure rise theory for separated flows, which was developed by the first author in Ref. 1, has been adapted for calculating axi-symmetric body base pressure in this technical note. The computation complexity of the theory has been reduced by the provision of auxiliary curves, plotted as Figures 2 to 21. Furthermore, several typical solutions for steady flow have been calculated for M=1.5, 2.0, 3.0, 4, and 5 in order to check the theory with some published experimental results.

All axi-symmetric flow field theories fail for flow converging on the centerline, and the axi-symmetric base pressure theory is no exception. The mathematical difficulties for the flow field of an axi-symmetric body with an empty base have been conveniently avoided by using a "sting" which is concentric with the body (see Fig. 1). Thus, the conical pressure rise theory has been established for this flow model. Fortunately, the theory predicts that base pressure will be almost a constant value when d/D < 0.4, and this agrees well with experimental data (Ref. 2). hance, the theory which assumes a small d/D ratio sting on the base is sufficiently accurate to predict base pressure for a no-sting axi-symmetric body.

I. RESUME OF CONICAL PRESSURE RISE THEORY

$$(B-\tilde{\beta})^2 + 2(1-C_3\frac{2}{3})\left[I_1\Big|_{-\infty}^3 - I_1\Big|_{-\infty}^{\phi_j}\right]_B - 2(1-C_3\frac{2}{3})\left[J_1\Big|_{-\infty}^3 - J_1\Big|_{-\infty}^{\phi_j}\right] = \left(\frac{\sigma_K}{\cos\Theta}\right)^2$$

$$Eqn. 1$$

 $B = \frac{J_1 \left| \frac{\phi_1}{-\sigma} - (1 - \frac{C_2 a}{C_2 a}) J_1 \right|^{3} - \frac{C_3 a}{\sigma} (J_1 - J_2) \left| \frac{3}{-\sigma}}{I_1 \left| \frac{\phi_1}{-\sigma} - (1 - \frac{C_3 a}{C_2 a}) I_1 \right|^{3} - \frac{C_3 a}{C_2 a} (I_1 - I_2) \right|^{3} + \frac{k - 1}{K} \frac{2}{C_2 a C_3 a} (1 - \frac{D_2}{P_3})}$

$$1 = \int \frac{\eta}{1 - G^2 d^2} d\eta$$
 Eqn. 3

$$\mathcal{L} = \int_{-\infty}^{\parallel} \frac{\varphi_{\parallel}^{2}}{1-C_{3}^{2}\varphi^{2}} d\eta$$
 Eqn. the second s

$$\int_{-\infty}^{\eta} \frac{\varphi^2}{1 - G^2 \varphi^2} d\eta$$
 Eqn. 5

$$2 = \int_{-\infty}^{\parallel} \frac{\varphi^2}{1 - \zeta_0^2 \varphi^2} d\eta$$
 Eqn. 6

in Equations 1 and 2, the integrals are evaluated at $C_{3\mathbf{a}}.$

It is evident that, for fixed geometry, the integral Equation (1) includes four variables, namely, C₂a, C₃a, q_ja, and θ₃4. It might be possible to obtain a direct solution if a proper relationship could be found. The work now being carried on by the second author for his Ph. D. dissertation, expected to be published later this year, may provide some empirical formulations to relate the four variables mutually.

In this note, we simply provide graphs which include the most practical combinations of these four variables to allow a trial and error technique to be applicable. Calculation procedures have also been suggested

II. CALCULATION PROCEDURES

For a given uniform M_1 flowing steadily near the 2m3 of a cylinder, the calculation for the pressure on the base of the cylinder is as follows: Select a typical value of 912, then locate a proper \overline{k}/R position by the trial and error method below.

- A. M_{20} or C_{20} can be obtained when M_1 and $\vartheta_{1,2}$ are given by using Prandtl-Meyer expansion relations locally at the cylinder end.
- . Assume an \overline{R}/R value, then an empirical equation based on conical afterbody characteristic solutions yields M_{3a} or C_{3a} as

$$M_{3a} = \frac{M_{2a}}{e_{-3.209(1-R/R)}}$$

Hence, for each assumed \overline{R}/R value, M_{2B} can be obtained. Note that $C_{5B}^2 = M_{5B}^2/5 + M_{5B}^2$ for air at moderate temperatures.

C. Calculate
$$\left(\frac{\overline{R} \ \sigma}{x \cos \theta}\right)^2$$
 :

1) Let $\theta_{34} = \theta_{12}$ (conical wake assumption)

2) $\sigma = 47.1 \text{ C}_{3a}^2 (\text{experimental basis})$

$$5) \left(\frac{R}{x \cos \theta}\right)^2 = \left(\frac{\sigma \tan \theta_{34}}{\frac{1}{R/R} - 1}\right)^2$$

- D. Values of $\left(\frac{R}{\kappa \cos \theta}\right)^2$, C_3^2 , C_3a/C_{2a} will allow one to find ϕ_j
- E. Since non-bleed wake prevails for steady flow, $\phi_d = \phi_j$, and

$$C_d = \phi_d C_{3a}$$
.
F. But also, $C_d = \begin{pmatrix} 1 & \frac{1}{p_d} \\ \frac{p_d}{p_3} \end{pmatrix} \cdot \frac{286}{866}$

where p_4/p_3 is the pressure ratio across an oblique shock of a stream flowing with velocity M_{28} deflected through an angle

If
$$\phi_d C_{3a} \rightleftarrows \left(1 - \frac{1}{\left(\frac{p_4}{p_3}\right)^{3.286}}\right)^{\frac{1}{2}}$$
, we should repeat from step B.

For convenience, this check can be made instead by using a family of curves of Cyavs ϕ_d to read Θ_{34} values directly from Figure 22. Therefore, after ϕ_j has been found in step D, then known $\phi_d(=\phi_j)$ with the known C_{3a} value allows us to find Θ_{34} immediately. If $\Theta_{34} \not\cong \Theta_{12}$, then repeat the calculation from even. B

G. With correct \overline{R}/R , Mga $\theta_{1,2}$ values, p_b/p_1 at specific position \overline{R}/R can be obtained by the isentropic flow relation as:

$$\frac{P_{b}}{P_{1}} = \frac{P_{2}}{P_{1}} = \frac{\frac{P_{2}}{P_{02}}}{\frac{P_{02}}{P_{01}}} \frac{f(M_{2})}{f(M_{1})}$$

The base pressure is now known for a particular \overline{R}/R . A curve results similar to Figure 25.

111. CALCULATION RESULTS

The conical pressure rise theory has been used to calculate the steady base pressures for Mach numbers 1.5, 2, 3, 1 , and 5. The first three results check well with available experimental duta. Results are plotted in Figure 23. The nearly constant value of p_b/p_1 in the region of small \overline{R}/R values is the base pressure for a blunt base at M_1 . Fortunately, they result in a simple empirical formula as

$$\frac{P_b}{p_1} = 0.928 - 1n M_1$$

Eqn. 🤃

for 1.2 s M1 s 5. (See Figure 24.)

Evidently this formula cannot be used when $M_{\rm L} > 5$. It is suggested to obtain data for high Mach numbers so that an equation can be empioyed to form another simple relation which is valid in the region of hypersonic flows. Until this is done, an estimated value is shown for this region in Figure 24,

IV. FURTHER APPLICATIONS

With the assistance of Eqn. 7, we can obtain quasi-steady base pressure solutions for a missile base with a head-on passing blast wave by using the moving shock technique which is described in detail in Ref. 3, p. 5 \pm . Other non-steady base pressure problems can be treated similarly.

Also, for a base with downstream non-cylindrical body, a solution can be obtained by using the "Equivalent Parallel Flow" technique which has been described in detail in Ref. 4.

REFERENCES

- 1. Zumwalt, G. W. Analytical and Experimental Study of the Axially Symmetric Supersonic Base Pressure Problem, Ph. D. Dissertation, University of Illinois, 1959.
 - 2. Beheim, M. A. Flow in the Base Region of Axisymmetric and Two-Dimensional Configurations, Lewis Research Center, NASA-TR--R-77, 1960.
- 3. Zumwalt, G. W. and Tang, H. H. Blast Wave Effect on Missile Base Pressure, Research Report SBW-1 for Sandia Corporation, P. O. 12-3012, Office of Engineering Research, Oklahoma State University, June 1,961, pp. 41, 54; F1g. 2.
- 4. Korst, H. H, Chow, W. L., and Zumwalt, G. W. Research on Transonic and Supersonic Flow of a Real Fluid at Abrupt Increases in Cross Section, ME-1N-592, Engineering Experiment Station, University of Illinois, December, 1959.
- 5. Chapman, D. R., An Analysis of Base Pressure at Supersonic Velocities and Comparison with Experiments. NACA Report 1051, 1951.
- 6. Sivier, K. R. and Bogdonoff, S. M., The Effect of Support Interierence on the Base Pressure of a Body of Revolution, Report No. 332, Princeton University, October 1955. (AFOSR IN-55-501)

Figure 1. Flow Model For Use in The Analysis of a Free Jet Boundary With Rising Pressure.

hand had a second

Fig. 23 Comparison of the Contcal Flow Theory with Experiment for External Flow Past a Cylinder with Reduced Radius.

