Suggested exercises Sections 2 and 3

Section 2: Modules

Exercise 2.21. Let R be a commutative ring and let M be an R-module. We say that M is faithfully flat if it satisfies the following property: A sequence $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ in R-mod is exact if and only if the sequence $0 \longrightarrow M \otimes_R A \xrightarrow{f} M \otimes_R B \xrightarrow{g} M \otimes_R C \longrightarrow 0$ is exact in R-mod.

- i. Prove that an R-module M is faithfully flat if and only if M is flat and if $M \otimes_R N = 0$ implies N = 0 for any R-module N.
- ii. As \mathbb{Z} -module, is \mathbb{Q} faithfully flat, flat or neither?
- iii. Let $\varphi: R \to S$ be a ring homomorphism, and let M be an S-module. Prove that $\operatorname{res}_{\varphi} M$ is flat as R-module if and only if the localisation $\operatorname{res}_{\varphi}(M_P)$ is flat over R_{P^c} for all $P \in \operatorname{Spec}(R)$, where $P^c = \varphi^{-1}(P)$ is the contraction of P.

Solution.

- i. By definition, if M is faithfully flat, then M is flat and if there is an R-module N such that $M\otimes_R N=0$, then N=0. Conversely, suppose that $M\otimes_R A \xrightarrow{1\otimes f} M\otimes_R B \xrightarrow{1\otimes g} M\otimes_R C$ is an exact sequence in R-mod. Since M is flat, $M\otimes_R -$ maps kernels to kernels, and images to images. Therefore, $\operatorname{im}(1\otimes (gf))=\operatorname{im}((1\otimes g)(1\otimes f))=0$. By assumption, $\operatorname{im}(gf)=0$, i.e. the composition gf is zero. Therefore, $A\xrightarrow{f} B\xrightarrow{g} C$ is a complex. Now, $M\otimes_R \ker(g)/\operatorname{im}(f)=\ker(1\otimes g)/\operatorname{im}(1\otimes f)=0$, which implies that $\ker(g)/\operatorname{im}(f)=0$ by assumption.
- ii. \mathbb{Q} is not faithfully flat since $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2 = 0$, but \mathbb{Q} is flat since $\mathbb{Q} = \mathbb{Z}_{(0)}$ is the localisation of \mathbb{Z} at (0), see Proposition 2.35.
- iii. Localisation and restriction preserve exact sequences.

Section 3: Integral dependence

Exercise 3.1. i. Let $f \in \mathbb{Z}[x]$ and let $\frac{a}{b} \in \mathbb{Q}$, in reduced form, such that $f(\frac{a}{b}) = 0$. Prove that b divides the leading coefficient of f and that a divides the constant term

ii. Deduce from it that \mathbb{Z} is integrally closed in \mathbb{Q} .

Solution.

i. By assumption, let $f=c_0x^n+\cdots+c_{n-1}x+c_n\in\mathbb{Z}[x]$ such that $f(\frac{a}{b})=0$, i.e. $0=c_0\frac{a^n}{b^n}+\cdots+c_{n-1}\frac{a}{b}+c_n$. Multiply by b^n both sides, and observe that we get two equations of the form

$$c_0a^n = bg$$
 and $c_nb^n = ah$, for some $g, h \in \mathbb{Z}[a, b]$,

from which we deduce that b divides c_0 and a divides c_n as required.

ii. By the first part, if $\frac{a}{b} \in \mathbb{Q}$ is integral over \mathbb{Z} , then b divides the leading coefficient of any polynomial $f \in \mathbb{Z}[x]$ that has $\frac{a}{b}$ as root. So $b = \pm 1$, i.e. $\frac{a}{b} \in \mathbb{Z}$. The result generalises to any UFD.

Exercise 3.2. Let $z=e^{\frac{2\pi \mathrm{i}}{3}}\in\mathbb{C}$ and let $R=\mathbb{Z}[z]$. Prove that R is integrally closed in $\mathbb{Q}[z]$.

Solution. Note that $\mathbb{Q}[z]$ is the field of fractions of R, since $z^{-1}=e^{\frac{4\pi}{3}}=z^2\in R$, and $\mathbb{Q}[z]$ is a field. So the result follows since \mathbb{Z} is integrally closed in \mathbb{Q} .

Exercise 3.3. i. Prove that $\sqrt{2} + \sqrt{3} \in \mathbb{R}$ is integral over \mathbb{Z} .

ii. Find its minimal polynomial in $\mathbb{Q}[x]$, that is, the unique monic irreducible polynomial $f \in \mathbb{Q}[x]$ such that $f(\sqrt{2} + \sqrt{3}) = 0$.

Solution.

- i. We calculate $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$ and $(\sqrt{2} + \sqrt{3})^4 = 49 + 20\sqrt{6}$, showing that $(\sqrt{2} + \sqrt{3})$ is a root of $x^4 10x^2 + 1 \in \mathbb{Z}[x]$.
- ii. The minimal polynomial is $f=x^4-10x^2+1$. Indeed, f is monic irreducible in $\mathbb{Q}[x]$, and $f(\sqrt{2}+\sqrt{3})=0$.

Exercise 3.8. Let k be a field and let R=k[x,y]. Calculate I^{-1} where I=(x,y), and prove that $(I^{-1})^{-1} \neq I$.

Solution. Note that R is not a Dedekind domain (since nonzero prime ideals need not be maximal). By definition, $I^{-1}=\{\frac{f}{g}\in k(x,y)\mid \frac{f}{g}I\subseteq k[x,y]\}$ (wlog, in any such fraction, we can assume that f,g are coprime, and with little work, we may assume that g=1 too). Let $\frac{f}{g}\in I^{-1}$. Since $y\in I$, we have $\frac{f}{g}y\in R$, which forces $g\mid y$ in k[x,y], for all denominators $g\in I^{-1}$, and similarly, we see that $g\mid x$ in k[x,y] for all such denominators g. Therefore, g must be a nonzero constant, i.e. $I^{-1}=k[x,y]$, and we have $k[x,y]^{-1}=k[x,y]\neq I$.

Exercise 3.9. Let R be a Dedekind domain with field of fractions K, and let M_1, M_2 be fractional ideals of R. Prove the following.

- i. Every nonzero ideal of R is fractional.
- ii. The sum M_1+M_2 and the product

$$M_1M_2=\{\sum_{i=1}^n\frac{a_i}{b_i}\frac{c_i}{d_i}\mid \frac{a_i}{b_i}\in M_1,\ \frac{c_i}{d_i}\in M_2,\ n\in\mathbb{N}\}\quad\text{are fractional ideals of }R.$$

- iii. M_1^{-1} is a fractional ideal of R.
- iv. If $M_1 M_2 = R$, then $M_2 = M_1^{-1}$.
- v. The set of invertible fractional ideals of R forms an abelian multiplicative group with multiplicative identity R.

Solution.

- i. If I is an ideal of R, then I is a finitely generated R-submodule of K.
- ii. The sum and product of finitely generated R-submodules of K are also finitely generated R-submodules of K.
- iii. We know that $M_1^{-1}=\{\frac{a}{b}\in K\mid \frac{a}{b}M_1\subseteq R\}$ is an R-submodule of K. Moreover, $aM_1^{-1}\subseteq R$ for any $a\in M_1$.

- iv. If $M_1M_2 = R$, then $M_1^{-1} = M_1^{-1}R = M_1^{-1}M_1M_2 = M_2$.
- v. The set of fractional ideals of R forms a multiplicative group with multiplicative identity R since we've seen that it is closed under multiplication and taking inverses, and moreover, multiplication is associative.

Exercise 3.10. Let R be a Dedekind domain and let U be a multiplicative subset of R. Prove that R_U is Dedekind too.

Solution. If R is a Noetherian ID, then R_U is a Noetherian ID. Moreover, $\operatorname{Spec}(R_U) = \{P_U \mid P \in \operatorname{Spec}(R), \ P \cap U = \emptyset\}$, and the expansion of ideals is an order preserving correspondence, by Theorem 1.36. Therefore, $\operatorname{Spec}(R_U) = \operatorname{MaxSpec}(R_U) \cup \{(0)\}$. Proposition 3.14 shows that R_U is integrally closed too.

Exercise 3.11. Let $\mathbb{Z}[t^2] = R \subseteq S = \mathbb{Z}[t,\sqrt{3}]$. Apply the going-up theorem to find chains of prime ideals in S lifting the following chains in R. In each case describe the inclusions $R/P_1 \hookrightarrow S/Q_1$ and $R/P_2 \hookrightarrow S/Q_2$.

- (i) $0 \subseteq (13) \subseteq (t^2 1, 13)$.
- (ii) $0 \subseteq (t^2 1) \subseteq (t^2 1, 13)$.
- (iii) $0 \subseteq (t^2 + 1) \subseteq (t^2 + 1, 13)$.
- (iv) $0 \subseteq (t^2) \subseteq (t^2, 13)$.

Solution. In all cases we have $P_0=(0)$ and $Q_0=(0)$. We want to find prime ideals $Q_1\subset Q_2$ in S such that $Q_1\cap R=P_1$ and $Q_2=P_2$.

- (i) We can choose $Q_1=(4-\sqrt{3})$ and $Q_2=(t-1,4-\sqrt{3})$. We have $S/Q_1=\mathbb{Z}[t,\sqrt{3}]/(4-\sqrt{3})\cong \mathbb{Z}[t,s]/(s^2-3,4-s)=\mathbb{Z}[t,s]/(s-4,13)\cong \mathbb{F}_{13}[t]$ is an ID, and so Q_1 is prime. The inclusion $R/P_1\hookrightarrow S/Q_1$ is the inclusion $\mathbb{F}_{13}[t^2]\hookrightarrow \mathbb{F}_{13}[t]$. Similarly, we have $S/Q_2=\mathbb{Z}[t,\sqrt{3}]/(t-1,4-\sqrt{3})=\mathbb{F}_{13}[t]/(t-1)\cong \mathbb{F}_{13}$, and so Q_2 is a prime ideal of S. The inclusion $R/P_2\hookrightarrow S/Q_2$ is the identity map on $\mathbb{F}_{13}=\mathbb{Z}/(13)$.
- (ii) We can choose $Q_1=(t-1)$ and $Q_2=(t-1,4-\sqrt{3})$. We have $R/P_1\cong \mathbb{Z}\hookrightarrow S/Q_1\cong \mathbb{Z}[\sqrt{3}]$. Similarly, $S/Q_2\cong \mathbb{Z}[\sqrt{3}]/(4-\sqrt{3})\cong \mathbb{Z}[s]/(s^2-3,4-s)=\mathbb{Z}[s]/(s-4,13)\cong \mathbb{F}_{13}$. In particular, the map $R/P_2\hookrightarrow S/Q_2$ is the identity on \mathbb{F}_{13} .
- (iii) We have $Q_1 = (t^2+1)$, since $\mathbb{Z}[t,\sqrt{3}]/(t^2+1) \cong \mathbb{Z}[i,\sqrt{3}]$ is an ID. But $(t^2+1,4-\sqrt{3})$ is not a prime ideal of S since $S/(t^2+1,4-\sqrt{13}) \cong \mathbb{Z}[s,t]/(t^2+1,s^2-3,4-s) = \mathbb{Z}[s,t]/(t^2+1,13,s-4) \cong \mathbb{F}_{13}[t]/(t^2+1)$ is not an ID because $t^2+1 = (t+5)(t-5) \in \mathbb{F}_{13}[t]$. Hence let $Q_2 = (t-5,4-\sqrt{13}) \subsetneq (t^2+1,4-\sqrt{3})$. Note that $S/Q_2 = \mathbb{Z}[s,t]/(s^2-3,t-5,s-4) = \mathbb{Z}[s,t]/(13,s-4,t-5) \cong \mathbb{F}_{13}$, and so the map $R/P_2 \hookrightarrow S/Q_2$ is the identity.
- (iv) Let $Q_1=(t)$ and $Q_2=(t,4-\sqrt{3})$. Note that $R/P_1\hookrightarrow S/Q_1$ is the inclusion $\mathbb{Z}\hookrightarrow\mathbb{Z}[\sqrt{3}]$. Similarly, $R/P_2\hookrightarrow S/Q_2$ is the identity on $\mathbb{Z}/(13)$.