CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 16 MARZO 2024

α 1		, •	
Svolger	e 1	seguenti	esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. La forma proposizionale $((p \Rightarrow r) \iff (s \lor \neg q)) \Longrightarrow ((s \land q) \Rightarrow (s \lor q))$ è una tautologia?

Esercizio 2. Sia $f:(a,b)\in\mathbb{Z}\times\mathbb{Z}\mapsto 30a+b\in\mathbb{Z}$.

- (i) f è iniettiva? È suriettiva?
- (ii) Posto $T = \{n \in \mathbb{N} \mid 60 \le n \le 70\}$, determinare l'insieme S delle coppie in $(a, b) \in \mathbb{N} \times T$ tali che l'elemento $[f(a, b)]_{45}$ sia invertibile in \mathbb{Z}_{45} .
- (iii) Scelto $(a, b) \in S$ in modo che a+b abbia il minimo valore possibile, si calcoli l'inverso di $[f(a, b)]_{45}$ in \mathbb{Z}_{45} .

Esercizio 3. Nel prodotto cartesiano $\mathbb{Z}_4 \times \mathbb{Z}_6$ si considerino le operazioni di addizione e moltiplicazione usuali componente per componente. Rispetto a tali operazioni, che indichiamo ancora con $+ e \cdot, R := \mathbb{Z}_4 \times \mathbb{Z}_6$ risulta essere un anello commutativo unitario. Determinare:

- (i) |R|;
- (ii) lo zero 0_R , l'unità 1_R , gli elementi invertibili, i divisori dello zero e gli elementi idempotenti di R;
- (iii) le radici in R del polinomio $x^2 x \in R[x]$;
- (iv) la caratteristica di R (cioè il minimo $n \in \mathbb{N}^*$ tale che $n1_R = 0_R$).
- (v) R è un dominio di integrità?
- (vi) La parte $M = \mathbb{Z}_4 \times \{[0]_6, [3]_6\}$, è chiusa rispetto alle operazioni di addizione e moltiplicazione in R? Nel caso lo sia, che tipo di struttura risulta essere $(M, +, \cdot)$?
- (vii) Se M è chiusa rispetto a \cdot , (a) (M, \cdot) ha elemento neutro? (b) Che tipo di struttura è (M, \cdot) ?

Esercizio 4. Sia ρ la relazione binaria definita in \mathbb{N} da: $\forall a, b \in \mathbb{N}$ ($a \rho b \iff b - a \in 2a\mathbb{N}$). (Qui, come altrove, $2a\mathbb{N} = \{2ak \mid k \in \mathbb{N}\}$). Decidere se ρ è una relazione d'ordine. Se lo è:

- (i) determinare i minoranti di $\{12\}$ in (\mathbb{N}, ρ) ;
- (ii) determinare gli elementi minimali, massimali, minimo, massimo in (\mathbb{N}, ρ) ;
- (iii) decidere se (\mathbb{N},ρ) è un reticolo;
- (iv) decidere se l'applicazione identica di \mathbb{N} è crescente da (\mathbb{N}, ρ) a $(\mathbb{N}, |)$ e se è un isomorfismo tra questi due insiemi ordinati;
- (v) posto $S = \{1, 3, 5, 9, 21, 45, 75, 105^2\}$, disegnare un diagramma di Hasse di (S, ρ) e stabilire se (S, ρ) è un reticolo, un reticolo distributivo, un reticolo complementato.

Esercizio 5. Dare la definizione di relazione binaria.

- (i) Sia $a = \{n \in \mathbb{N} \mid n \leq 7\}$. Determinare tutte le relazioni di equivalenza ρ in a tali che $0 \rho 7$, (1,4) appartenga al grafico di ρ , $\{3,4,7\} \subseteq [2]_{\rho}$ e $3 \rho 1 \Rightarrow 5 \rho 0$.
- (ii) Presentare, se possibile, due distinte partizioni p_1 e p_2 di a tali che $p_1 = a/\sim_1$ e $p_2 = a/\sim_2$ per due delle relazioni di equivalenza, \sim_1 e \sim_2 , trovate al punto (i).

Esercizio 6. Sia $f = (x^2 - \bar{5})g \in \mathbb{Z}_{11}[x]$, dove $g = x^5 + \bar{4}x^2 - x + \bar{7}$. Dopo aver calcolato $g(\bar{1})$ e $g(-\bar{1})$, dando per noto che non esistono numeri interi n tali che $n^3 + n \equiv_{11} 7$, scrivere f come prodotto di polinomi irriducibili in $\mathbb{Z}_{11}[x]$.

- (i) È possibile scrivere f come prodotto di sei polinomi (in $\mathbb{Z}_{11}[x]$) non costanti?
- (ii) È possibile scrivere f come prodotto di polinomi irriducibili (in $\mathbb{Z}_{11}[x]$) non monici tutti con lo stesso coefficiente direttore?

Poichi Bè sempre vere A⇒Bè une tautologia $(\leq \wedge q) \Rightarrow (\leq Vq)$ \(\bu\) \(\bu\

Es 2

a * 6 = 30 a + b

i) INIETIVA: NO Vx.y & Z(P(x) = P(y) => x=y)

SURRIETIVA: SI Vy & Z (3 x & Z (y = p(x))

Vero perchi:
$$\forall y \in \mathbb{Z} (0 * y = y)$$

$$5 \times = 1 \qquad \times = 9$$

$$11 = 5 \cdot 2 + 1 \qquad 1 = 11 \cdot 5(-2)$$

$$(9 \times + 3)(3 \times - 3)(3 \times 3 + 3 \times + 3)(3 \times + 9)(3 \times - 9)$$

()
$$|R| = |Z_h| \cdot |Z_6| = 6.6 = 24$$

Es 4 p: Va,6 ∈ IN (apb ⇔ b-a ∈ 201N) p i d'ordine: Antisimentais: Va.b & IN (aph 1 6 pe (-> a=6)

b-a & 2a N / a-6 & 2a N (=> a=6 se prenotono a:3.1=3 0 = 6N A 0 = 6 N = 3=3 V mentre se prenotione a = 3. b = 15 15-366INA 3-15EGIN <=> 3=15

12 e 6 N 1 - 12 e 6 IN <=> 3 = 15

3 p 15, ma 15 p 3 mm è verso

Thons: tives:

apb abje => ape

a pb => b-a e 2a IN <->] Ke IN (b-a= 2ak) (->] Ke IN (b=a(2kx)

m'a e mos O

ap 3a

minimali sono la potoure di 2 { 2m | m∈ N} U {0}