Printed Pages: 5	616	NCS-303		
(Following Paper ID and Roll No. to be filled in your Answer Book)				
Paper ID :110303	Roll No.			

B.Tech.

(SEM. III) THEORY EXAMINATION, 2015-16 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

[Time:3 hours] [Total Marks:100]

Section-A

- 1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. (10x2=20)
 - (a) Describe briefly the floating point representation of numbers.
 - (b) Suppose 1.414 is used as an approximation to $\sqrt{2}$. Find the absolute and relative errors.
 - (c) Express 2 $T_0(x)$ - $\frac{1}{4}T_2(x)$ - $\frac{1}{8}T_4(x)$ as polynomials in x.
 - (d) Differentiate between ill conditioned and well conditioned methods.
 - (e) Explain underflow and overflow conditions of error in floating point's addition and subtraction.

17025 (1) P.T.O.

- (f) Write differnce between the truncation error and round off error.
- (g) Differentiate false position method and secant method.
- (h) How can the rate of convergence of two methods be compared, explain by taking an example?
- (i) Find the number of terms of the exponential series such that their sum gives the value of e^x correct to six decimal places at x=1.
- (j) The numbers 0.01850×10^3 and 386755 have................significant digits respectively.

Section-B

Attempt any five questions from this section. $(5 \times 10 = 50)$

2. The following table gives the marks obtained by 100 students in Statistics:

Marks	Number of Students
30-40	25
40-50	35
50-60	22
60-70	11
70-80	7

17025 (2) NCS-303

17025

Use Newton's forward formula to find the number of students who got more than 55 marks.

3. Solve the following system of equation by Gauss elimination method:

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 10$$

$$7x_1 + 10x_2 + 5x_3 + 2x_4 = 40$$

$$13x_1 + 6x_2 + 2x_3 - 3x_4 = 34$$

$$11_{x1} + 14x_2 + 8x_3 - x_4 = 64$$

The speed v meters per second of a car, t seconds after its starts, is shown in following table:

	V
0	0
12	3.6
24	10.08
36	18.9
48	21.6
60	18.54
72	10.26
84	5.40
96	4.50
108	5.40
120	9.00

Using Simpson's 1/3rd rule find the distance traveled by the car in 2 minutes.

(3) P.T.O. www.aktuonline.com

5. Find the form of function F (x) of the following table using Lagrange's method.

	,			
X	0	1	4	5
F(x)	8	11	68	123

- 6. Find a real root of the equation 2x-log 10x=7 c, correct to three decimal places using Aitken;s method and Iteration method. Also show how the rate of convergence of Aitken's method is rapid than iteration method.
- 7. A real root of the equation $f(x) = x^3 5x + 1 = 0$, lies in the interval (0,1). Perform four iterations of the secant method.
- 8. Evaluate the intergral $I=dx/(x^2+1)$ in the interval [0,1] using the Lobatto and Radau 3 point formula.
- 9. Find the value of integral, using Gauss-Legendre three point integration rule.

$$I = \int_{2}^{3} \frac{\cos 2x}{1 + \sin x} dx$$

Section-C

Attempt any two questions from this section. $(15 \times 2 = 30)$

- 10. Using Gram-Schmidt orthogonalization process, compute the first three orthogonal polynomials $P_0(X)$, $P_1(X)$, $P_2(X)$ which are orthogonal on interval [0,1] w.r.t. weight function W (x)=1. Using these polynomials obtain least square approximation of first degree for $f(x)=x^{1/2}$ on interval [0,1].
- 11. Fit a natural cubic Spline to every subinterval for the following data.

Х	У
0	2
1	-6
2	-8
3	2

Hence compute: y (2.5)

- 12. (a) Apply Milne's predictor-corrector method, find y (0.8) if y (x) is the solution of dy/dx=1+y2. Given y(0)=0, y (0.2)=0.2027, y(0.4)=0.4228 and y (0.6)=0.6841.
 - (b) Apply Runge kutta fourth order method to find y (0.1) for the initial value problem, dy/dx=y-x Given y(0)=2.

___×__