BMW DATA ENGINEERING

Esta es la documentación adjunta para el notebook con el proyecto de data engineering de un dataset de bmw con el objetivo de predecir el precio de estos vehículos. Explicaremos paso por paso el proceso que se ha llevado a cabo y el motivo por el cual se han tomado cada una de las decisiones.

Exploración y limpieza de valores nulos

Antes de empezar con la limpieza de nulos lo que hemos hecho es convertir las variables temporales a datetime para poder trabajar adecuadamente con ellas, estas eran 'fecha_registro' y 'fecha_venta'. Con ellas extraeremos una nueva variable llamada antigüedad y seguidamente desglosaremos las anteriores en otras como el mes, el dia y el año. Para terminar con las variables temporales generaremos la última columna temporal que será 'año_registro' y sus valores serán el resultado de restar el año de la venta con la antigüedad.

Para seguir con la exploración ya podemos darnos cuenta que hay una serie de variables que no nos interesan para nuestra predicción así como 'marca' (no nos interesa debido a que el dataset es solo de BMW), 'fecha_registro', 'fecha_venta' (las dos variables temporales ya las hemos desglosado, así que seguimos teniendo los valores necesarios) y 'asientos_traseros_plegables' (considero que no puede tener mucho peso a la hora de decidir el precio de un vehículo ya que la mayoría de los vehículos lo tienen, además tenían demasiados valores nulos como para imputar algún valor o eliminarlos, nos quedaríamos con un dataset muy pobre).

Nos encontramos con un número de variables que tienen muy pocos nulos así que podemos proceder a eliminar estos nulos sin temer por la calidad de datos de nuestro dataset. Estas variables son: 'modelo', 'km', 'potencia', 'tipo_gasolina', 'volante_regulable', 'camara_trasera', 'elevalunas_electrico', 'precio'.

Hay que tener en cuenta que la variable precio será la escogida a predecir, entonces no hay otra alternativa que eliminar los nulos ya que sino tendremos datos falsos y el modelo falseará

Ahora ya nos disponemos a lidiar con los valores grandes de nulos, después de mirar muy bien todas las variables existentes, decidí generar una función que lo que hace es coger el porcentaje de la distribución de la variable, y a cada atributo se le aplica el mismo valor porcentual del total de nulos, así conseguimos mantener la misma distribución.

Este método lo he aplicado a las variables: 'color', 'tipo_coche', 'aire_acondicionado', 'bluetooth', 'alerta_lim_velocidad' y 'año_registro.

Una vez teniendo todas estas variables limpias, puedo rellenar los nulos de la variable antigüedad realizando la resta entre 'fecha_venta_año' y 'año_registro'.

Eliminamos las 3 columnas con muchos nulos restantes ya que considero complicado una imputación correcta ya que son temporales y seguidamente convertimos todas las variables a la categoría que les corresponde.

Exploración e imputación de outliers

Empezaremos con la exploración de outliers representando todas las distribuciones, tanto visualizándolas como usando analíticos descriptivos.

En primera instancia vemos que hay que corregir la variable 'tipo_gasolina', ya que tiene un atributo repetido, el diesel, y los agruparemos en un solo atributo. Seguidamente apreciamos un kilometraje negativo, y lo que hacemos es eliminarlo.

Nos encontramos con algo parecido en 'potencia', que hay un vehículo con potencia o, que al igual que la anterior la eliminaremos, pero esta vez eliminaremos todos los valores inferiores a 50 ya que si hablamos de cv de potencia, es muy raro encontrar vehículos con potencias inferiores a 50 cv.

Después lo mismo pasa con antigüedad, que tiene valores negativos, también los eliminamos, solo pueden existir valores positivos cuando hablamos de años.

Volvemos a repetir el análisis y vemos que ahora nos gusta más, pero hay dos variables temporales que no difieren en valores, solo tienen 1 mismo valor para toda la distribución, las eliminamos, estas son: 'fecha_venta_año' y 'fecha_venta_dia'.

Antes habíamos representado con histogramas, ahora dividiremos las variables en diferentes listas según su categoría y realizaremos visualizaciones de las variables numéricas con gráficos de cajas. La variable 'km', tiene muchos outliers pero sólo eliminaremos 1, el que más resalta en la distribución, no hay indicios que los demás no sean reales, son valores que pueden ser tranquilamente kilometrajes de vehículos.

Preprocesamiento

Para empezar con el preprocesamiento del dataset generamos una nueva variable llamada 'log_precio', ya que haciendo la logarítmica de precio conseguimos normalizar la distribución de la variable. Una vez realizado esto, visualizaremos las correlaciones en un mapa de calor y apreciamos que no existen correlaciones pero si una correlación inversa y es la de 'precio' y 'año_registro', entendemos que el precio estará muy condicionado a esta variable.

Volveremos a realizar una exploración de variables, ahora toca hacerlas todas numéricas para que el modelo pueda entenderlo y veremos la relación de cada una de ellas con la variable precio.

En las categóricas vemos que el modelo tiene impacto sobre el precio, pero hay tantos que es difícil de leer, en 'tipo_gasolina' también se aprecia que el diesel tiene un precio superior, a parte de tener muchos más valores que los demás atributos de su variable. Hablando del color de los coches, hay dos que salen de la media, el gris y el azul. 'Tipo_coche', el sur es el más caro y en dia de la semana el miércoles.

Se aprecian diferencias, en cada categoría hay uno o dos atributos que el precio se dispara más, pero yo no las consideraría muy importantes, el resto son muy lineales entre ellas.

Al ver que la variable 'modelo' tenia demasiados atributos me propuse realizar un cambio para poder tener todo un poco más organizado, aunque vi que el impacto no fue tampoco positivo la eliminé al momento pero generé una variable agrupando todos los modelos en subgrupos y volví a hacer unas representaciones para poder ver como actuaban.

Continuamos con las representaciones de las variables numéricas por precio, los inputs más destacables son que a menos kms el precio es más alto, igual que a más potencia también.

Hay alguna variable que no se aprecia muy bien por el tipo de representación así que realizaremos alguna extra.

Apreciamos que el miércoles es el dia que se vendieron los vehículos más caros, pero no creo que sea muy representativo, hablando de meses, el pico más alto se encuentra en Agosto y el más bajo en enero. Lo más remarcable podría decirse que es la relación entre precio y año_registro junto con antigüedad, dónde vemos que a más nuevo más caro y para terminar también es de interés la relación entre antigüedad y km.

Seguimos con las booleanas y no hay datos relevantes para ver que aumenten el precio por tener según que extras, ya que lo más lógico seria que por tener x extra el precio final aumentara.

Entonces eliminamos las variables: 'alerta_lim_velocidad', 'gps', 'bluetooth', 'elevalunas electrico', 'camara trasera'.

Ahora ya empezaremos con el verdadero preprocesamiento, generaremos de nuevo unas listas para cada tipo de variable, una para numéricas, otra para booleanas y una categórica, excluyendo la variable a predecir, es decir, el target (precio).

Primero de todo, hay que convertir las booleanas a numéricas, pasándolas a int ellas solas se convierten en o y 1, siendo False y True respectivamente.

Para las categóricas usaremos la función get.dummies, que convierte cada atributo de las variables categóricas en columnas y asigna un 1 o un o según sea cierto que cumplen esa característica o no.

Y para las numéricas usaremos el minmaxscaler, que lo que hace es de todas las distribuciones numéricas las redistribuye entre o y 1.

Una vez hecho todo esto, el dataset estará limpio y preprocesado, volveremos a ver las correlaciones, y vemos que sigue habiendo solo dos variables que se correlacionan inversamente entre sí, precio y antigüedad. Así que el precio estará firmemente condicionado por la antigüedad.

ANEXO

Lista de columnas

km float64							
potencia float64							
volante_regulable	int64						
aire_acondicionado	int64						
precio	int64						
antiguedad fecha_venta_mes	float64 float64						
año_registro	float64						
log_precio	float64						
modelo_ Active Tourer	uint8						
modelo_114	uint8						
modelo_116	uint8 uint8						
modelo_118	uint8						
modelo_120 modelo_123	uint8						
modelo_125	uint8						
modelo_135	uint8						
modelo_214 Gran Tourer							
modelo_216 modelo_216 Active Toure	uint8 er uint8						
modelo_216 Gran Tourer	r uint8						
modelo 218	uint8						
modelo_218 Active Toure	er uint8						
modelo_218 Gran Tourer							
modelo_220 modelo_220 Active Toure	uint8 er uint8						
modelo_225	uint8						
modelo_225 Active Toure							
modelo_316	uint8						
modelo_318	uint8						
modelo_318 Gran Turism							
modelo_320 modelo_320 Gran Turism	uint8 no uint8						
modelo_325	uint8						
modelo_325 Gran Turism							
modelo_328	uint8						
modelo_330	uint8						
modelo_330 Gran Turism							
modelo_335 modelo_335 Gran Turism	uint8 no uint8						
modelo_418 Gran Coupe							
modelo_420	uint8						
modelo_420 Gran Coupe	é uint8						
modelo_425	uint8						
modelo_430	uint8 é uint8						
modelo_430 Gran Coupe modelo_435	uint8						
modelo_435 Gran Coupe							
modelo_518	uint8						
modelo_520	uint8						
modelo_520 Gran Turism							
modelo_523 modelo_525	uint8 uint8						
modelo_528	uint8						
modelo_530	uint8						
modelo_530 Gran Turism	no uint8						
modelo_535	uint8						
modelo_535 Gran Turism modelo 630	no uint8 uint8						
modelo_635	uint8						
modelo_640	uint8						
modelo_640 Gran Coupe	é uint8						
modelo_650	uint8						
modelo_730	uint8						
modelo_735 modelo_740	uint8 uint8						
modelo_750	uint8						
modelo ActiveHybrid 5	uint8						
modelo_M135	uint8						
modelo_M235	uint8						
modelo_M3	uint8						
modelo_M4 modelo_M5	uint8 uint8						
modelo_M550	uint8						
modelo_X1	uint8						
modelo_X3	uint8						
modelo_X4	uint8						
modelo_X5	uint8						
modelo_X5 M modelo_X5 M50	uint8 uint8						
modelo_X6	uint8						
modelo_X6 M	uint8						

modelo_Z4 modelo_i3 modelo_i8 uint8 uint8 uint8 tipo_gasolina_diesel uint8 tipo_gasolina_electro uint8 tipo_gasolina_hybrid_petrol uint8 uint8 tipo_gasolina_petrol color_beige color_black color_blue uint8 uint8 uint8 color_brown uint8 color_green uint8 color_grey color_orange uint8 uint8 color_red color_silver color_white uint8 uint8 uint8 tipo_coche_convertible uint8 tipo_coche_coupe uint8 tipo_coche_estate uint8 uint8 tipo_coche_hatchback tipo_coche_sedan tipo_coche_subcompact uint8 uint8 tipo_coche_suv uint8 tipo_coche_van uint8 fecha_venta_nombredia_Friday uint8 fecha_venta_nombredia_Monday uint8 fecha_venta_nombredia_Saturday fecha_venta_nombredia_Sunday fecha_venta_nombredia_Thursday fecha_venta_nombredia_Tuesday uint8 uint8 uint8 uint8 fecha_venta_nombredia_Wednesday dtype: object

	km	potencia	volante_regulable	aire_acondicionado	precio	antiguedad	fecha_venta_mes	año_registro	log_precio	Active Tourer	•••	tipo_coche_subcompact
(0.289039	0.095238	1	1	11300	0.153846	0.000	0.846154	4.053078	0		0
	1 0.027787	0.703081	1	1	69700	0.115385	0.125	0.884615	4.843233	0		0
:	2 0.377621	0.151261	0	0	10200	0.153846	0.125	0.846154	4.008600	0		0
;	3 0.263476	0.193277	1	1	25100	0.115385	0.125	0.884615	4.399674	0		0
	4 0.199573	0.263305	1	1	33400	0.115385	0.375	0.884615	4.523746	0		0

5 rows × 114 columns