TENTAMEN

Dynamiska system och reglerteknik, El2, Dl2, MEl2, lp 2

Kursbeteckning:

LEU 235

Datum:

lördag 2009-12-19 fm

Examinator och ansv. lärare:

Bertil Thomas, tel 5743

Besöker tentamen 10.00 (ca)

Tillåtna hjälpmedel:

Formelsamling(ar), typgodkänd miniräknare,

bodediagram, pennor, linjaler.

Antal uppgifter:

10

Maxpoäng

20

Preliminära betygsgränser:

8/12/16

The state of the s

b) Figuren nedan visar stegsvaret för en PI-regulator. Bestäm integrationstiden T_I och förstärkningen K.

PI-regulatorns överföringsfunktion antas vara $G = K(1 + \frac{1}{T_I s})$

c) Bestäm stegsvaret för följande överföringsfunktion:

$$G(s) = \frac{1}{(s+2)(s+3)}$$

(2)

Bestäm den totala överföringsfunktionen från V till Y för nedanstående reglersystem. Beskriv kortfattat vad denna överföringsfunktion kan användas till. (2p)

Bodediagrammet för en process visas i figuren nedan.

Antag att processen kopplas in i ett enhetsåterkopplat reglersystem.

- a) Antag att processen ska regleras med en PID-regulator.

 Bestäm regulatorparametrarna K, T_I och T_D enligt Ziegler-Nichols svängningsmetod. (1 p)
- b) Antag att processen ska regleras med en PI-regulator.

 Bestäm regulatorparametrarna K och T_I så att fasmarginalen blir 50°.

 Använd den i kursen genomgångna arbetsmetodiken.*

 (2 p)

Bestäm amplitudfunktionen och fasfunktionen för nedanstående process och bestäm med hjälp av dem processens fasvridning och amplitudförstärkning vid frekvensen 2 rad/s. (2p)

$$G = \frac{3+S}{S(1+5s)}$$

Processen H_P i reglersystemet i figuren kan beskrivas med differensekvationen:

$$y(k) = 0.8y(k-1) + 2u(k-1)$$

Givaren H_G kan beskrivas med differensekvationen:

$$g(k) = y(k-1)$$

En tidsdiskret, proportionell regulator med överföringsfunktion $H_R(z) = K$, där K>0, ska användas som regulator i reglersystemet. Bestäm hur stort K maximalt får vara om reglersystemet ska vara stabilt. (2 p)

6

Figuren nedan beskriver ett system med två insignaler (u och v) samt en utsignal y. Ställ upp systemet på tillståndsform. Utsignalen från de tre blocken som ligger i serie med varandra ska väljas som tillstånd.

En process består av två vattentankar med ventiler enligt nedanstående figur. Ventilerna antas vara lineära, d v s flödet genom en ventil är proportionellt mot vattennivån i ovanliggande behållare, d v s

$$u_1 = \frac{h_1}{R_1} \qquad \text{och} \qquad u_2 = \frac{h_2}{R_2}$$

där R_1 och R_2 är ventilresistanser för de två ventilerna.

Bestäm överföringsfunktionen från u_0 till h_2 . Det förutsätts att ingen av behållarna är tom.

Följande beteckningar används:

 $u_0 u_1 u_2$ flöden

 $A_1 = \text{area, tank 1}$

 A_2 = area, tank 2

 $h_1 = \text{Nivå}, \text{ tank } 1$

 $h_2 = \text{Nivå}$, tank 2

Ett reglersystem för positionering av en lyftarm i en produktionscell ska dimensioneras. Se nedanstående blockschema. Lyftarmen är en del av en större produktionsprocess med robotar, transportband och numeriskt styrda verktygsmaskiner. Börvärdet till lyftarmen kommer från ett överordnat styrsystem. Här studerar vi bara rörelsen i en dimension.

- a) Bestäm de kvarstående felen vid steg- och rampformade börvärdesändringar $(e_0 \text{ och } e_1)$.
- b) Rita amplitudkurvan för produkten $G_R(s)\cdot G_P(s)$ med hjälp av asymptotmetoden. Vad kallas denna produkt?
- c) Skriv om överföringsfunktionen för regulatorn till en differensekvation som kan programmeras in i en tidsdiskret regulator. Använd bilineär transform. Samplingstiden skall vara 0,1 sekunder.

$$G_{R} = \frac{1+5s}{1+0.2s}$$
 Regulator
$$G_{P} = \frac{0.5}{s(1+s)}$$
 Process

Arbetsmetodik - dimensionering av PI-regulatorer

- 1) Rita först Bodediagram för den process $G_P(s)$ som ska regleras
- 2) Bestäm sedan det K-värde som vid ren P-reglering hade givit fasmarginalen $\mathcal{O}_m = \mathcal{O}_{min} + 11$ grader.

Orsaken till de extra 11 graderna på fasmarginalen är att den integrerande delen sedan kommer att försämra fasmarginalen i motsvarande utsträckning, se punkt 3.

3) Bestäm vilken överkorsningsfrekvens ω_c som erhålls med ovanstående K-värde. Bestäm därefter T_I så att brytfrekvensen ω_b för PI-regulatorn hamnar på lämpligt avstånd från ω_c .

Ett lämpligt läge för brytfrekvensen är $\omega_b = 0.2 \ \omega_c$. Detta ger:

$$\omega_b = \frac{1}{T_I} = 0.2 \ \omega_c \implies T_I = \frac{1}{0.2 \ \omega_c}$$

Detta val av T_I gör att fasmarginalen försämras med 11 grader.

Lösningar - Tentamen

1 a)
$$f(t) = 2g(t-2) - 2g(t-4) \Rightarrow$$

 $F(s) = 2 \cdot \frac{1}{s^2} e^{-2s} - 2 \cdot \frac{1}{s^2} \cdot e^{-4s} =$
 $= \frac{2(e^{-2s} - e^{-4s})}{s^2}$

b) Vi ser
$$K = 0.75$$

$$T_{I} = 27$$

$$\Rightarrow G = 0.75 (1 + \frac{1}{275})$$

c) Formelsamling ger:

$$Y = \frac{1}{5} \cdot 6 = \frac{1}{S(s+2)(s+3)}$$

$$y(t) = \frac{1}{2 \cdot 3} + \frac{e^{-2t}}{1 \cdot (-2)} + \frac{e^{-3t}}{(-3)(-i)} = \frac{1}{6} - \frac{e^{-2t}}{2} + \frac{e^{-3t}}{3} = \frac{1}{6} \left(1 - 3e^{-2t} + 2e^{-3t}\right)$$

$$\frac{2}{V} = \frac{\frac{10}{5(s+10)}}{1 - \frac{10}{5(s+10)} \cdot \frac{-5}{(1+3s)}} = \frac{10(1+3s)}{5(s+10)(1+3s)+50}$$

$$= \frac{10+30s}{3s^3+31s^2+10s+50}$$

3a) Ur Bode:
$$w_{rr} = 3.4 \Rightarrow T_{0} = \frac{2\pi}{w_{rr}} = 1.85 [5]$$

-11 - $|G_{0}(w_{p})| = -23.48 \Rightarrow K_{0} = +23.48 = 14$

2-N sv. metod: $K = 0.6K_{0} = \frac{8.4}{9.12}$
 $T_{r} = 0.5T_{0} = \frac{0.92}{0.23} [5]$
 $T_{0} = 0.125T_{0} = \frac{0.23}{0.23} [5]$

3b) Boster K vid P-regl. sc all: $\theta_{rr} = \theta_{rr} + 11^{\circ} = 50 + 11 = 61^{\circ}$

Ur Bode: Det kraves $w_{c} = 1.35$

-11 - $|G_{0}(w_{c})| = -3.40 \Rightarrow K = +3.48 = 1.41$

Brythelm. PI-regl. $w_{b} = 0.2 \cdot w_{c} = 0.27 \Rightarrow T_{r} = \frac{1}{w_{b}} = 3.7 [5]$

4
$$G(j\omega) = \frac{3+j\omega}{j\omega (1+5j\omega)}$$

$$A(\omega) = |G(j\omega)| = \frac{\sqrt{9+\omega^2}}{\omega \sqrt{1+25\omega^2}}$$

$$\Phi(\omega) = \underline{/G(j\omega)} = \arctan \frac{\omega}{3} - 90^\circ - \arctan (5\omega)$$

$$A(z) = \frac{\sqrt{9+4}}{2\sqrt{101}} = 0.18$$

$$\varphi(2) = \arctan \frac{2}{3} - 90^{\circ} - \arctan 10 = 33,7 - 90 - 84,3 = -140,6$$

K < 0,5

$$\frac{X_1}{U} = \frac{2}{s+3} \implies X_1(s+3) = 2u$$

$$\Rightarrow X_1 = -3x_1 + 2u$$

$$\frac{x_2}{x_1 + 6v + x_3} = \frac{5}{1 + 2s} \Rightarrow x_2(1 + 2s) = 5(x_1 + 6v + x_3)$$

$$\Rightarrow 2x_2 = -x_2 + 5x_1 + 36v + 5x_3$$

$$\Rightarrow x_2 = 2x_2 + 5x_1 - 0x_2 + 2x_3 + 15v$$

$$\frac{x_3}{x_2 - x_3} = \frac{10}{s + 4} \implies x_3(s + 4) = 10(x_2 - x_3)$$

$$\Rightarrow x_3 = -4x_3 + 10x_2 - 10x_3$$

$$\Rightarrow x_3 = 10x_2 - 14x_3$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 2,5 & -0.5 & 2.5 \\ 0 & 10 & -14 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 15 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\frac{dV_1}{dt} = U_0 - U_1 \qquad (1)$$

$$\frac{dV_2}{dt} = U_1 - U_2 \qquad (2)$$

(1)
$$\Rightarrow$$
 $A_1 \frac{dh_1}{dt} = u_0 - u_1 \Rightarrow (h_1 = u_1 R_1)$

$$\Rightarrow$$
 $A_1 R_1 \frac{du_1}{dt} = u_0 - u_1 \Rightarrow$

$$U_1 + A_1 R_1 \frac{du_1}{dt} = U_0 \Rightarrow U_1 + A_1 R_1 U_1 S = U_0$$

$$\Rightarrow \frac{U_1}{U_0} = \frac{1}{1 + A_1 R_5}$$

$$A_{2} \frac{dh_{2}}{dt} = U_{1} - \frac{h_{2}}{R_{2}} \Rightarrow$$

$$A_2 R_2 \frac{dh_2}{dt} + h_2 = R_2 U_1 \Rightarrow H_2 + A_2 R_2 H_2 S = R_2 U_1$$

$$\frac{H_2}{U_i} = \frac{R_2}{1 + A_2 R_2 S}$$

$$G_{TeT} = \frac{H_2}{V_0} = \frac{R_2}{(1 \pm A_1 R_1 s)(1 \pm A_2 R_2 s)}$$

a)
$$e_0 = 0$$
 (pga integration i kectren)
$$e_v = \lim_{s \to 0} \frac{1}{5(1 + \frac{0.5(1 + 5s)}{5(1 + 5)(1 + 0.2s)})} =$$

$$= \lim_{s \to 0} \frac{\sqrt[4]{(1+s)(1+0.2s)}}{\sqrt[4]{[s(1+s)(1+0.2s)} + 0.5(1+5s)]} =$$

$$= \frac{1}{0.5} = 2$$

b) Kretsöverföringen
$$G_{K} = \frac{0.5(1+55)}{5(1+0.25)(1+5)}$$

Brytfrekvewer

$$\omega_i = \frac{1}{5} = 0.2 \text{ rad/s}$$
 UPPAT

$$\omega_2 = \frac{1}{0.2} = 5 \text{ rad/s}$$
 NER

$$\omega_3 = \frac{1}{1} = 1 \text{ rad/s}$$
 NER

LF-asymptot

$$G_{LF}(s) = \frac{0.5}{S}$$
 $|G(0,1)| = 5$

c)
$$\frac{U}{E} = \frac{1+5s}{1+0.2s}$$
 Transform $S \to \frac{2(z-1)}{0.1(z+1)}$

$$\Rightarrow H(z) = \frac{U}{E} = \frac{1 + \frac{10(z-1)}{0,1(z+1)}}{1 + \frac{0,4(z-1)}{0,1(z+1)}} = \frac{0,1(z+1) + 10(z-1)}{0,1(z+1) + 0,4(z-1)} = \frac{0,1(z+1) + 0,4(z-1)}{0,1(z+1)}$$

$$= \frac{10.1 \times -9.9}{0.5 \times -0.3} = \frac{20.2 - 19.8 \times^{-1}}{1 - 0.6 \times^{-1}}$$

$$\Rightarrow$$
 $u(k) = 0.6 u(k-1) + 20.2 e(k) - 19.8 e(k-1)$