Applying the Normal Model

Ryan Miller

Introduction

► The last presentation introduced the **Normal distribution** as a probability model for a continuous random variable

Introduction

- ➤ The last presentation introduced the **Normal distribution** as a probability model for a continuous random variable
- ▶ This model is defined by two components:
 - The parameter μ, a constant that defines the center of the bell-curve
 - ▶ The parameter σ , a constant that defines the *spread* of the bell-curve

Introduction

- ➤ The last presentation introduced the **Normal distribution** as a probability model for a continuous random variable
- ▶ This model is defined by two components:
 - The parameter μ , a constant that defines the *center* of the bell-curve
 - The parameter σ, a constant that defines the spread of the bell-curve
- ► This presentation will go through an example that illustrates where this model is and is not appropriate

- ▶ In this example, we'll look at the sale prices of all homes in lowa City, IA between 2005-2008
 - ► The mean sale price was \$180.1k, and the standard deviation was \$90.65k

Home Sales in Iowa City (2005-2008)

- ► Let *X* be a random variable denoting the sale price of a randomly selected home
 - ightharpoonup What might you consider using as a probability model for X?

- ► Let *X* be a random variable denoting the sale price of a randomly selected home
 - ▶ What might you consider using as a probability model for *X*?
- ▶ Because X is a continuous random variable, it seems reasonable to take the mean and standard deviation in our dataset and use N(180.1, 90.65) as a probability model for X
 - ▶ How would you use this model to estimate $P(X \ge $400k)$?

▶ Using StatKey, we could directly input our mean and standard deviation then calculate this right-tail probability to be 0.0076

- Using StatKey, we could directly input our mean and standard deviation then calculate this right-tail probability to be 0.0076
 - We also could standardize \$400k into a Z-score of z = 400 180.190.65 = 2.426 and use the Standard Normal distribution to arrive at the same estimated probability

- Using StatKey, we could directly input our mean and standard deviation then calculate this right-tail probability to be 0.0076
 - ▶ We also could standardize \$400k into a Z-score of z = 400 - 180.190.65 = 2.426 and use the Standard Normal distribution to arrive at the same estimated probability
- However, both of these calculations assume the Normal model is a perfect representation of these data (or the population represented by them)
 - Is that an appropriate assumption?

- ► The *empirical probability* of a randomly selected home selling for more than \$400*k* is 0.0283 (22 of 777 homes)
 - ► This discrepancy might not seem like much, but this is 3.7 times larger than what the Normal model suggested! (0.0076)

- ► The *empirical probability* of a randomly selected home selling for more than \$400*k* is 0.0283 (22 of 777 homes)
 - ► This discrepancy might not seem like much, but this is 3.7 times larger than what the Normal model suggested! (0.0076)

Home Sales in Iowa City (2005-2008)

Primary issue with this application is that distribution of the data doesn't match the *shape* of the normal curve

- Primary issue with this application is that distribution of the data doesn't match the *shape* of the normal curve
 - That is, even if we center and scale our normal model appropriately (ie: good choices of μ and σ), the model is incapable of representing the underlying distribution of these data

- Primary issue with this application is that distribution of the data doesn't match the *shape* of the normal curve
 - That is, even if we center and scale our normal model appropriately (ie: good choices of μ and σ), the model is incapable of representing the underlying distribution of these data
- As an aside, notice these data contain n = 777 cases
 - ► A common misconception is that larger amounts of data tend to be normally distributed

- Primary issue with this application is that distribution of the data doesn't match the *shape* of the normal curve
 - That is, even if we center and scale our normal model appropriately (ie: good choices of μ and σ), the model is incapable of representing the underlying distribution of these data
- As an aside, notice these data contain n = 777 cases
 - ► A common misconception is that larger amounts of data tend to be normally distributed
- ► That said, more data (larger sample sizes) *does* impact the distributional shape of certain random variables
 - Next week, we will extend the normal model to the distribution of sample averages

Conclusion

- ► The Normal distribution provides a useful probability model for many, but not all, continuous random variables
 - Proper application of the Normal model requires the specification the bell-curve's center, μ , and it's spread, σ

Conclusion

- ► The Normal distribution provides a useful probability model for many, but not all, continuous random variables
 - Proper application of the Normal model requires the specification the bell-curve's center, μ , and it's spread, σ
 - However, variables with skewed distributions cannot be appropriately modeled by the normal curve, even when using reasonable values of μ and σ

Conclusion

- The Normal distribution provides a useful probability model for many, but not all, continuous random variables
 - Proper application of the Normal model requires the specification the bell-curve's center, μ , and it's spread, σ
 - However, variables with skewed distributions cannot be appropriately modeled by the normal curve, even when using reasonable values of μ and σ
- ▶ In general, having more data does not make a random variable more normally distributed
 - However, if the random variable represents the sample average (rather than the data-points themselves), having more data does have an important impact
 - We will explore the distribution of sample averages next week