デザインエンジニアリング特論(構造)

講義構成(予定)

- 第1回(2022/5/12)構造設計における構造解析の概要 grasshopperを使用した単純梁の構造解析
- 第2回(2022/5/19)アーチ造のパラメトリックスタディ(grasshopper・python)
- 第3回(2022/5/26) 演習(設計クライテリアを満足する構造架構デザイン)
- 第4回(2022/6/02)構造最適化の試行

構造設計における構造解析

構造設計を行うにあたって、主に以下の手続き を経て構造解析を行う。

- 解析モデルの構築
 建物をコンピューターで解析できる要素に置き換える。
- 2 . 荷重の評価 建築物の用途、立地条件から作用する荷重を仮定する。
- 3 **. 解析** 解析条件を実状に合うように設定を行い、解析を実行する。
- 4 . 解析結果の評価 解析結果の妥当性を評価し、断面の検討を行う。

一貫計算プログラム によるモデル化

柱・梁を線材要素でモデル化 モデル化する位置は原則的に 材軸中心とする

荷重の設定

期間に応じて2種類の区分がある。

長期荷重(常時作用する荷重) 固定荷重(建物の自重や仕上げ荷重) 積載荷重(人や家具・荷物による荷重)

短期荷重(短期的に作用する荷重) 地震荷重 風荷重 雪荷重(非多雪地域)など

許容応力度設計

建築基準法では許容応力度設計法を採用

長期荷重時(常時など) 短期荷重時(常時と地震や風との組合せなど)

各部材に作用する断面力(曲げモーメント・せん断力・軸力)を計算

部材に生じる応力度を計算し、長期許容応力度・ 短期許容応力度以下であることを確認する。

常時荷重時 断面力図

地震荷重時 断面力図

柱の断面検討の例

【断面検定表】(10/11)

コンクリート 長期 短期 Fc 36.0 fc 12.00 24.00 (普通) fs 0.85 1.28 fa 2.79 4.19		失筋 D10-C D19-C D29-D)25 [SD:	295A] R9 345] 390]	-R32 [[SR295]] U7. 1 \$10	-U17. (-S16	0 [SBPD1275 [KSS785	5/1 420]]					
[201]		ケース	ND	MX	MY	MDX	MDY	MAX	MAY 検定比		Х	Y		Χ	Υ
[2F X2 Y2] 部	材長 3100	Ĺ	12499	T		34	39	1000	1000 0.08	QL	-1	10 c	:Mu T		-
<x></x>	<y></y>			В		36	10	1000	1000 0.05	QE	-1474	1473	В		
$Dx \times Dy$ 1100 × 110	00	(+ L+Ex	12491	T -1459	-1	-1426	39	4141	4141 0.36	QD	-1475	1483 g	Mu T		
主筋T 7-D32	7-D32	L+Ex	12491 I	B 1783	1	1819	10	4141	4141 0.45		L+Ex	L-Ey	В		
B 7–D32		(– L–Ex	12507	T 1459	1	1492	40	4140	4140 0.37			N	lud T		
	·U12. 6@100	L–Ex	12007	B -1783	-1	-1747	10	4140	4140 0.43				В		
dt T 71		Y+ L+Ey	12520	T 1	-1453		-1414	4139	4139 0.35	QAL	842	842	ho		
B 71	71	L+Ey		B 1	1789	37	1798	4139	4139 0.45	QAS	2291	2291			0. 45
	Y	Y– L–Eý	12478	T –1	1453	34	1492	4142	4142 0.37	Q-TYP			αL 1	. 00	1. 00
		L–Ey		B -1	-1789		<u>–1779 </u>	4142	4142 0.44	検定比	0. 65	0. 65			
	700 L+Ex	τ 2.34]< X> ψ	700 L+	Exτ	2.34 τ	/fa 0.56 軸	力N/NA	Ļ	12499/	17494). 72
<Υ> <i>ψ</i>	700 L-Ey	τ 2.36	<u>τ/fa 0</u>	<u>. 57</u>	<u><Υ>ψ</u>	<u>700 L-</u>	Ey τ	<u>2.36 τ</u>	/fa 0.57		L+Ey	12520/	34987	= 0	<u>). 36 </u>
										1					

簡単な構造解析

単純梁の構造解析を例に解析を行います

鋼材ヤング係数E = 205000 N/mm² 鉄骨断面 H-400x200x8x13 (Ix = 23500cm⁴ Zx=1170cm³) 点Bは点ACの中点とする。

汎用応力解析ソフトにおける 入出力

INPUT

- 1.節点座標
- 2.要素
- 3. 支点条件
- 4 . 荷重

- 1. 節点变位
- 2.要素断面力
- 3. 支点反力

1. 節点座標の設定

$$A = (0, 0, 0), B = (4000, 0, 0), C = (8000, 0, 0)$$

Α.

В

C

2. 要素の配置1

20kN/m

A

B

8m

H形鋼形状・ヤング係数定義 →部材剛性(EI・EA)の設定

ヤング係数Eの定義

2.要素の配置2

AB間、BC間を断面B1で接続する