MAT 201B Homework 2 Winter 2020

Professor Qinglan Xia

Due Date: Wednesday, January 22th at 9:00am

- 1. Integrability of f on $\mathbb R$ does not necessarily imply the convergence of f(x) to 0 as $x \to \infty$.
 - (a.) Find a nonnegative continuous function f on \mathbb{R} so that f is Lebesgue integrable on \mathbb{R} , but yet $\limsup_{x\to\infty} f(x) = \infty$.
 - (b). However, if we assume that f is uniformly continuous on \mathbb{R} and integrable, then $\lim_{x\to\infty} f(x) = 0$.
- 2. Suppose that f is Lebesgue integrable on \mathbb{R} . Show that

$$F(x) := \int_{-\infty}^{x} f(t)dt$$

is uniformly continuous on \mathbb{R} .

- 3. Suppose that f is a real-valued Lebesgue integrable on \mathbb{R}^n . If $\int_E f(x)dx \geq 0$ for every measuable set E, then $f(x) \geq 0$ for a.e. x. If $\int_E f(x)dx = 0$ for every measuable set E, then f(x) = 0 for a.e. x.
- 4. Let (f_n) be a sequence of non-negative μ -integrable functions on X with f beings its pointwise limit. If

$$\lim_{k \to \infty} \int_{X} f_k(x) d\mu = \int_{X} f(x) d\mu,$$

show that

$$\lim_{k \to \infty} \int_E f_k(x) d\mu = \int_E f(x) d\mu,$$

for every measuable subset E of X.

- 5. Let (X, Σ, μ) be a measure sapce, and $\varphi: X \to [0, \infty]$ be Σ -measurable. Show that
 - (a.) For any a > 0,

$$\mu(\{x \in X : \varphi(x) \ge a\}) \le \frac{1}{a} \int_X \varphi d\mu.$$

- (b.) If φ is μ -integrable, then $\varphi(x)$ is finite μ -a.e. x.
- (c.) If $\int_X \varphi d\mu = 0$, then $\varphi(x) = 0$ for μ -a.e. x.