Fully-differential amplifiers

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Requirements
- Fully-diff. amps with linear MOSTs
- FDA's with error amp.& source followers
- Folded cascode OTA without SF's
- Other fully-differential amps
- Exercise

Single-stage OTA

Simple CMOS fully-differential OTA

Differential pair
No current mirror

$$GBW = \frac{g_{m1}}{2\pi C_L}$$

Problem: keep M1-4 in saturation:

Control V_{OUTCOM} Control I_{DS5}

Simple CMOS fully-diff. OTA with CMFB - 1

Simple CMOS fully-diff. OTA withy CMFB - 2

Control V_{OUTCOM}, I_{DS5}

Common-mode feedback equivalent circuit

Common-mode feedback CMFB

CMFB in unity gain : CMRR = A_{vCM}

- Three tasks: 1. Measure the output voltages
 - 2. Cancel out the differential signals
 - 3. Close the CMFB loop

Requirements fully-differential amplifiers

- High speed : GBW_{CM} > GBW_{DM}
- Matching
- Output swing limited by :
 - Output swing of differential-mode amp
 - Input range of common-mode amp
- Low power P_{CM} < P_{DM}

Load capacitance?

Load capacitance C_{IN}

Load capacitance C_{INDM}

Load capacitance C_{INCM}

$$C_{INCM} = 2 (C_F + C_L + C_S) > C_{INDM}$$

GBW_{DM} & GBW_{CM}

Table of contents

- Requirements
- Fully-diff. amps with linear MOSTs
- FDA's with error amp.& source followers
- Folded cascode OTA without SF's
- Other fully-differential amps
- Exercise

CMFB amplifier with linear MOSTs

Linear MOSTs:

$$I_{DS} = \beta V_{DS}(V_{GS}-V_T)$$
$$g_{m3} = \beta V_{DS3}$$

$$GBW_{DM} = \frac{g_{m1}}{2\pi C_L}$$

$$GBW_{CM} = \frac{g_{m3}}{2\pi C_{I}}$$

is always smaller!

Fully-differential amp. with linear MOSTs

Linear MOSTs: V_{DS5} ≈ 200 mV

Cancel diff. signals

$$GBW_{DM} = B \frac{g_{m1}}{2\pi C_L}$$

$$GBW_{CM} = \frac{g_{m5}}{2\pi C_L}$$

is always smaller! even with M5 in wi!

Fully-differential amp. with linear MOSTs

Ref. Choi, JSSC, Dec.83, 652-653

Total amplifier schematic

E.Peeters etal, CICC 1997

Fully-differential OTA with FF

F. Op't Eynde, Kluwer Ac. 1993

Transconductor with $C \square_{DG}$ compen.

$$V_{DS1} = R_D I_D \approx 0.2 \text{ V}$$

$$I_{DS1} = \beta_1 V_{DS1} (V_{GS1} - V_T)$$

$$g_{m1} = \beta_1 V_{DS1}$$
 is constant

Ref. Alini, JSSC, Dec.92, pp.1905-1915

Table of contents

- Requirements
- Fully-diff. amps with linear MOSTs
- FDA's with error amp.& source followers
- Folded cascode OTA without SF's
- Other fully-differential amps
- Exercise

Fully-differential amplifier with resistive CMFB

Fully-diff. amp. with source followers: Diff. mode

Fully-diff. amp. with source followers: CM

Table of contents

- Requirements
- Fully-diff. amps with linear MOSTs
- FDA's with error amp.& source followers
- Folded cascode OTA without SF's
- Other fully-differential amps
- Exercise

Fully-diff amp. with error amplifier: Diff. mode

$$GBW_{DM} = \frac{g_{m1}}{2\pi C_c}$$

Ref. Ribner, CICC 85; Haspeslagh, CICC 88

Fully-diff amp. with error amp.: Common mode

Nonlinear!

$$GBW_{CM} = \frac{g_{m58}}{4\pi C_c}$$

Ref. Ribner, CICC 85; Haspeslagh, CICC 88

Class AB fully-differential amplifier

Comparison

Criterion	Linear MOST	Error amp Source foll.	Error amp. Quad amp.
GBW _{CM} /GBW _{DM}	< 0.1	> 1	> 1
Required tol.	< 1 %	< 6 %	< 6 %
Diff.output swing Is limited by	0.8 V _{DDSS} cascodes	0.4 V _{DDSS} source foll.	0.4 V _{DDSS} cm input
Power dissipation	1 amp	3 amps	2 amps

Table of contents

- Requirements
- Fully-diff. amps with linear MOSTs
- FDA's with error amp.& source followers
- Folded cascode OTA without SF's
- Other fully-differential amps
- Exercise

Fully-differential amplifier with gain boosting

Low-voltage (1.1 V) DIDO

Gata, JSSC Dec.02 1670-1678

Linear CM amplifier

$$V_{outCM} = VDC + V_{GS7}$$

Ref. Hernandez, JSSC Aug.05, 1610-1617

Fully-diff.amp. with separate linear trans.CMFB

24 MHz/ 3 pF $\,$ 3 V/ 5 mA $\,$ I_{DS1} = 0.25 mA $\,$ Comp 4 k Ω / 2 pF > 20 MHz Ref. Pasch, AICSP, 2000

CMFB over 2 or more amplifiers

Efficient use of 2nd amplifier!

Ref. Mohieldin, JSSC April 2003, 663-668

CMFB over 2 pseudo-differential amps

Fully-differential amplifier with SC CMFB

Fully-differential amp. with SC CMFB: Φ 1

Switches $\phi_{1H} \text{ closed}$ gives CMFB
and
precharge C

Fully-differential amp. with SC CMFB : Φ 2

Switches $\phi_{2H} \text{ closed}$ gives CMFB
and
precharge C

Table of contents

- Requirements
- Fully-diff. amps with linear MOSTs
- FDA's with error amp.& source followers
- Folded cascode OTA without SF's
- Other fully-differential amps
- Exercise

Fully-differental folded cascode with source foll.

Fully-diff. amp. : Specifications

Techn: CMOS
$$L_{min} = 0.8 \ \mu m \ ; \ V_T = 0.7 \ V$$

$$K'_n = 60 \ \mu A/V^2 \ \& \ K'_p = 30 \ \mu A/V^2$$

$$V_{En} = 4 \ V/\mu m \ \& \ V_{Ep} = 6 \ V/\mu m$$

Specs: $GBW_{DM} = 10 \text{ MHz}$ $C_L = 3 \text{ pF}$

 $GBW_{CM} = 20 MHz$

all $PM > 70^{\circ}$

 $V_{DD}/V_{SS} = \pm 1.5 V$

 $\mathbf{Maximum} \ \mathbf{V_{swingptp}} = \mathbf{V_{outmax}} - \mathbf{V_{outmin}}$

Minimum I_{tot}

Verify: Slew Rate, Noise, ...

Fully-diff. folded cascode in BICMOS

Fully-diff. amp. : Specifications

Techn: BICMOS
$$L_{min} = 0.8~\mu m~;~V_T = 0.7~V$$

$$K'_n = 60~\mu A/V^2~\&~K'_p = 30~\mu A/V^2$$

$$V_{En} = 4~V/\mu m~\&~V_{Ep} = 6~V/\mu m$$

$$f_{Tn} = 12~GHz~\&~f_{Tn} = 4~GHz$$

Specs:
$$GBW_{DM} = 10 \text{ MHz}$$
 $C_L = 3 \text{ pF}$

$$GBW_{CM} = 20 MHz$$

all
$$PM > 70^{\circ}$$

$$V_{DD}/V_{SS} = \pm 1.5 \text{ V}$$

$$\mathbf{Maximum} \mathbf{V}_{\mathbf{swingptp}} = \mathbf{V}_{\mathbf{outmax}} - \mathbf{V}_{\mathbf{outmin}}$$

Minimum I_{tot}

Verify: Slew Rate, Noise, ...

Table of contents

- Requirements
- Fully-diff. amps with linear MOSTs
- FDA's with error amp.& source followers
- Folded cascode OTA without SF's
- Other fully-differential amps
- Exercise