TP: Classification - BI

Durand JF & Amara Antoine

Exercice: ZOO

Q2.1

Nous avons commencé par construire le tableau suivant :

Caractéristiques Classification Animale

poils mammifères plumes oiseaux

ponte d'oeufs oiseaux, insecte, amphibiens, reptiles, poissons, invertébrés

production de lait mammifères

capacité de voler insectes, amphibiens, mammifères, oiseaux

Respiration à l'air Tout sauf poissons

venimosité reptiles, poissons, insectes, oiseaux

2 pattes mammifères, oiseaux

4 pattes mammifères, amphibiens, reptiles

6 pattes insectes

domesticable oiseaux, mammifères, amphibiens, poissons, insectes

A partir du tableau précédent nous en avons déduit un arbre pour classer les animaux listés :

- Respire à l'air?
 - ∘ non--> poisson
 - ∘ oui--> Plume?
 - ∘ oui--> poule
 - o non--> Capacité de voler ?
 - oui--> abeille
 - non--> Poils?
 - non--> crabe
 - oui--> Carnivore?
 - non--> antilope
 - oui--> Produit du lait?
 - non--> ours
 - oui--> chat

Q2.2

Le taux d'erreur est de 100%, le modèle est centré sur un petit échentillon et lui même appliqué sur

un petit échantillon.

Q2.3

De notre point de vue, aucun attributs ne semble génant à la création du modèle. On parle ici de classification supervisé car nous utilisons des données d'entrainement pour construire le modèle. Une fois le modèle construit grâce à ces données on le test avec de nouvelles instance, qui n'était pas présente lors de la construction du modèle. Cela correspond à un entrainement supervisé car nous avons un oracle(nos données d'entrainement) qui permet d'amelioré au fur et à mesure l'erreur de prédiction de notre modèle. Notre jeu de test permet de valider le modèle. Le principe de séparer données d'entrainement et données de test s'appelle la cross-validation.

Q2.4

Le meilleur algorithme que nous ayons expérimenté est celui de Hoedffing, celui-ci a une très bonne précision: 96% de classification correct et un taux d'erreur de 4%. Nous avons régler le paramètre de la cross-validation(folds) à 10.

Q2.5

- abeilles
 - plumes = false
 - ponte d'oeufs = true
 - capacité de voler = true
 - ∘ respire à l'air = true
- poule
 - ∘ plumes = true
 - ∘ ponte d'oeufs = true
 - capacité de voler = true
 - ∘ repire à l'air = true
- ours
 - o carnivore = true
 - poils = true
 - ∘ repire à l'air = true
- antilope
 - carnivore = false
 - ∘ poils = true
 - ∘ repire à l'air = true

Exercice: Titanic

Q3.1

Q3.2 | Q3.3 | Q3.4

Le résultat semble identique quelque soit la méthode de validation choisie.

Q3.5

Titanic Correctly classified instances F-measure

Algo 1	79.055 %	0.765
Algo 2	79.055 %	0.768
Algo 3	78.5552 %	0.683
Algo 4	79.055 %	0.768

Q3.7

On remarque que les résultats présents via les différents algorithmes sont sensiblents identiques.