Programme de colle : Semaine 25 Lundi 28 avril

1 Cours

- 1. Variables aléatoires.
 - Définition d'une variable aléatoire réelle finie. Univers image.
 - Loi et fonction de répartition
 - Moments: Espérance, variance (définition + Koenig Huygens), écart-type.
 - Théorème de transfert.
 - Bienaimé-Tchebychev
 - Lois usuelles : loi uniforme, loi de Bernouilli, loi binomiale. (Les lois, l'espérance et la variance (exceptée celle de la loi unfire) doivent être connues par coeur)
 - Variables indépentantes.
- 2. Equation différentielle.
 - Retour sur les équations différentielles mais cette fois à coefficients pas nécessairement constant.
- 3. Python:
 - Tableau numpy, dictionnaires
 - Représentation informatique d'un polynome par une liste (évaluation, racine, dérivation, somme)

2 Exercices Types

- 1. On lance deux dés équilibrés distincts à 6 faces. On note X le plus grand numéro obtenu et Y le plus petit.
 - (a) Déterminer les lois et les fonctions de répartition de X et de Y.
 - (b) Calculer E(X) et E(Y) et comparer ces espérances.
 - (c) Calculer V(X) et V(Y).
- 2. On considère une urne contenant 5 boules numérotées : 2 rouges et 3 bleues.
 - (a) On réalise 3 tirages successifs avec remise et on note Y le nombre de boules bleues obtenu au cours de ces tirages. Donner la loi de Y ainsi que son espérance et sa variance.
 - (b) On tire une boule de l'urne et on note T le numéro de la boule obtenue. Donner la loi de Z ainsi que son espérance et sa variance.
- 3. On considère une suite de tirages avec remise dans une urne contenant N boules numérotées de 1 à N. Pour tout $n \ge 1$, on note Y_n le nombre de numéros non encore sortis à l'issue du n-ième tirage.
 - (a) Déterminer Y_1 .
 - (b) Soit $n \geq 2$.
 - i. Justifier que $Y_n \leq N 1$.
 - ii. Montrer en utilisant la formule des probabilités totales que pour tout $k \in [0, N]$, on a

$$P(Y_n = k) = \frac{N - k}{N} P(Y_{n-1} = k) + \frac{k+1}{N} P(Y_{n-1} = k+1).$$

- (c) En déduire que la suite $(E(Y_n))_{n\geq 1}$ est une suite géométrique et en déduire l'expression explicite de $E(Y_n)$ pour tout $n\geq 1$.
- (a) i. Déterminer $(a,b)\in\mathbb{R}^2$ tel que $\frac{x^2}{1+x^2}=\frac{a}{1+x^2}+b$
 - ii. A l'aide d'une intégration par partie, déterminer une primitive de $x \mapsto 2x \arctan(x)$
- (b) Résoudre l'équation différentielle suivante sur $]0, +\infty[$

$$y' + \frac{1}{x}y = 2\arctan(x)$$

4. Déterminer la solution générale des équations différentielles suivantes

(a)
$$(1+x^2)y' - 2xy = (1+x^2)^2$$

Determiner in solution generate determiner in solution generate determiner in solution generate determine
$$(a) (1 + x^2)y' - 2xy = (1 + x^2)^2$$

(b) $y' + \frac{1 - 2x}{x^2}y = 1$
(c) $y' - y = x^2(e^x + e^{-x})$
(d) $xy' + (1 - 2x)y = 1$
(e) $x^3y' + 4(1 - x^2)y = 0$

(c)
$$y' - y = x^2(e^x + e^{-x})$$

(d)
$$xy' + (1-2x)y = 1$$

(e)
$$x^3y' + 4(1-x^2)y = 0$$

(f)
$$(1-x^2)y' - 2xy = 1$$

(g)
$$(\tan x)y' + y - \sin x = 0$$

(h)
$$y' + (\tan x)y = \sin x + \cos^3 x$$