Non-linear protocols for optimal distributed consensus in networks of dynamic agents

D. Bauso and L. Giarre and R. Pesenti

Maksim Levental

March 16, 2021

TLDR...

Outline

- Definitions
- Consensus
 - ullet Time-invariance of χ
 - ullet Convergence of χ
- Mechanism design
- Simulations
 - Graph Laplacian
- Epilogue: Computational Power

Definitions

Definition (Agents)

 $\Gamma=1,\ldots,n$ is a set of agents/players/nodes/vertices and $G=(\Gamma,E)$ is a fixed (in time) undirected, connected, network describing the connections between vertices $i\in\Gamma$, where $E\subset\Gamma\times\Gamma$ is the edge set.

Definition (Neighborhood)

A *neighborhood* of a vertex i is the set of all vertices j for which there is a single edge connecting i, j, that is to say $N_i := \{j \mid (i, j) \in E\}$.

Figure: Example networks

Definition (Control policy)

Let $x_i(t)$ be the state of the agent i at time t, then x_i evolves according to a *distributed* and stationary control policy u_i , if $\dot{x}_i = u_i(x_i, \mathbf{x}_{N_i})$, where \mathbf{x}_{N_i} are the states of x_i 's neighbors.

Definition (Protocol)

The *protocol* of the network is the collection of controls $\mathbf{u}(\mathbf{x}) := (u_i(x_i, \mathbf{x}_{N_i}))$ for all $i \in \Gamma$.

Definition (Agreement function)

The agreement function $\chi: \mathbb{R}^n \to \mathbb{R}$ is any continuous, differentiable function which is permutation invariant, i.e.

$$\chi\left(\mathbf{x}\right) = \chi\left(x_{1}, \dots, x_{n}\right) = \chi\left(x_{\sigma\left(1\right)}, \dots, x_{\sigma\left(n\right)}\right)$$

Definition (Consensus)

To reach consensus on consensus value $\chi(\mathbf{x}(0))$ means

$$\lim_{t \to \infty} \mathbf{x}(t) = \chi(\mathbf{x}(0)) \mathbf{1}$$

where $\mathbf{1} := (1, 1, \dots, 1)$.

Consensus

Definition (Consensus problem)

Given a network G of agents and agreement function χ , the *consensus problem* is to design a protocol \mathbf{u} such that consensus is reached for any consensus value $\chi(\mathbf{x}(0))$.

Definition (Consensus protocol)

A protocol is a consensus protocol if it is the solution to a consensus problem.

Time-invariance of χ

Lemma (Time invariancy)

Let **u** be a stationary consensus protocol. Then $\chi(\mathbf{x}(t))$ is stationary, i.e. $\chi(\mathbf{x}(t)) = \chi(\mathbf{x}(0))$ for all t > 0.

Proof.

By assumption $\mathbf{x}(t) \to \chi(\mathbf{x}(0)) \mathbf{1}$. Stationary $\mathbf{u} \Longrightarrow \text{if } \mathbf{x}(t) \text{ is a solution, then } \mathbf{y}_s(t) := \mathbf{x}(t+s), \text{ with } \mathbf{y}_s(0) := \mathbf{x}(s), \text{ is also a solution. For such } \mathbf{y}_s \text{ we also have } \mathbf{y}_s(t) \to \chi(\mathbf{y}_s(0)) \mathbf{1}, \text{ i.e.}$

$$\lim_{t \to \infty} \mathbf{y}_{s}(t) = \chi(\mathbf{y}_{s}(0)\mathbf{1}) = \chi(\mathbf{x}(s)\mathbf{1})$$

But since both \mathbf{y}_{s} , \mathbf{x} converge to the same limit we must have $\chi(\mathbf{x}(s)) = \chi(\mathbf{x}(0))$ for all s.

Note

$$\frac{\mathrm{d}\chi(\mathbf{x}(t))}{\mathrm{d}t} = \sum_{i \in \Gamma} \frac{\partial \chi}{\partial x_i} \dot{x}_i = \sum_{i \in \Gamma} \frac{\partial \chi}{\partial x_i} u_i = 0$$

Thus, a consensus protocol must satisfy $\nabla \chi \cdot \mathbf{u} = 0$.

Example

For $\chi(\mathbf{x}) = \min_{i \in \Gamma} (x_i)$, a suitable **u** is

$$u_i = h\left(x_i, \min_{j \in N_i} x_j\right)$$

where h(x, y) = 0 when x = y.

Henceforth, we assume further structure for the agreement function:

$$\chi(\mathbf{x}) := f\left(\sum_{i \in \Gamma} g(x_i)\right) \tag{1}$$

with $f, g: \mathbb{R} \to \mathbb{R}$ and $g' \neq 0$.

Fact

Means of order psatisfy the assumptions

Mean	$\chi(\mathbf{x})$	f(y)	g(z)
Arithmetic	$\frac{1}{ \Gamma }\sum_{i\in\Gamma}x_i$	$\frac{y}{ \Gamma }$	Z
Geometric	$(\prod_{i\in\Gamma}x_i)^{1/ \Gamma }$	$e^{y/ \Gamma }$	$\log(z)$
Harmonic	$rac{ \Gamma }{\sum_{i\in\Gamma}x_i^{-1}}$	$\frac{ \Gamma }{y}$	$\frac{1}{z}$
p-mean	$\left(\frac{1}{ \Gamma }\sum_{i\in\Gamma}x_i^p\right)^{1/p}$	$\left(\frac{y}{ \Gamma }\right)^{1/p}$	z ^p

Theorem (Protocol design rule)

The following protocol

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{1}{g'} \sum_{i \in N_i} \phi(x_i, x_i)$$
 (2)

with $g' \neq 0$, induces time-invariance in χ if ϕ is antisymmetric, i.e.

$$\phi(x_j,x_i)=-\phi(x_i,x_j)$$

Proof.

 χ is time-invariant iff

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{i \in \Gamma} g(x_i) = \sum_{i \in \Gamma} \frac{\mathrm{d}g(x_i(t))}{\mathrm{d}t} = \sum_{i \in \Gamma} \frac{\mathrm{d}g(x_i)}{\mathrm{d}x_i} \dot{x}_i = \sum_{i \in \Gamma} g'u_i = 0$$

Finally, since ϕ is antisymmetric and the graph defining the network is undirected, we have that

$$\sum_{i\in\Gamma} g'u_i = \frac{1}{g'}\sum_{i\in\Gamma} g'\sum_{j\in\mathcal{N}_i} \phi(x_j,x_i) = 0$$

Example (to be proved)

Consider $\phi(x_j, x_i) := \alpha \cdot (x_j - x_i)$. Then the p-mean is time invariant under protocol

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{x_i^{1-p}}{p} \sum_{i \in N_i} \phi(x_i, x_i) = \alpha \cdot \frac{x_i^{1-p}}{p} \sum_{i \in N_i} (x_i - x_i)$$

Convergence of χ

- Owing to time-invariance of χ , if the system converges, it will converge to $\chi(\mathbf{x}(0))\mathbf{1}$.
- We prove convergence if

$$\phi(x_j,x_i) := \alpha \phi(\theta(x_j) - \theta(x_i))$$

with $\alpha > 0$ and ϕ is continuous, $\theta : \mathbb{R} \to \mathbb{R}$ is differentiable with θ' locally Lipschitz and strictly positive.

• Thus, the protocol (2) becomes

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{\alpha}{g'} \sum_{j \in N_i} \phi\left(\theta(x_j) - \theta(x_i)\right)$$
(3)

with g is strictly increasing.

Lemma

Let G be a network and \mathbf{u} be a protocol with components defined by eqn. (3). Then all equilibria \mathbf{x}^* of the network have the following properties:

- $\mathbf{x}^* = \lambda \mathbf{1}$ for some λ
- ② if $\mathbf{x}(t)$ converges to the equilibrium $\lambda_0 \mathbf{1}$, then $\lambda_0 = \chi(\mathbf{x}(0))$, for any initial state $\mathbf{x}(0)$

Proof (sketch).

Sufficiency 1 $\mathbf{x} = \lambda \mathbf{1}$, then $\phi(\theta(\lambda) - \theta(\lambda)) = 0$ since ϕ is odd and continuous.

Necessity 1 $\mathbf{x}^* \neq \lambda$, then there exists $u_i < 0$ (contradicts equilibrium).

Convergence if $\lambda \neq \chi(\mathbf{x}(0))$ then χ is not time-invariant.

Theorem

Let G be a network of agents that implement a distributed and stationary protocol

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{\alpha}{g'} \sum_{j \in N_i} \phi(\theta(x_j) - \theta(x_i))$$

against agreement function of the form (1) with g' > 0. Then the agents asymptotically reach consensus on $\chi(\mathbf{x}(0))$ for any initial state $\mathbf{x}(0)$.

Proof (idea).

Define

$$\eta_i := g(x_i) - g\left(\chi\left(\mathbf{x}\left(0\right)\right)\right)$$

and note that, since η is strictly increasing (since g is) and $\eta = 0$ iff $\mathbf{x} = \chi(\mathbf{x}(0))$, consensus corresponds to asymptotic stability of η around 0. Introduce a candidate Lyapunov function

$$V(\eta) := \frac{1}{2} \sum_{i \in \Gamma} \eta_i^2$$

Then $V\left(\eta\right)=0$ iff $\eta=0$, $V\left(\eta\right)>0$ if $\eta\neq0$, and $\dot{V}\left(\eta\right)<0$ if $\eta\neq0$ proves stability.

Figure: Lyapunov function

Mechanism design

Definition (Individual objective function)

Define an individual objective function for an agent i

$$J_i(x_i,\mathbf{x}_{N_i},u_i) := \lim_{T\to\infty} \int_0^T \left(F(x_i,\mathbf{x}_{N_i}) + \rho u_i^2\right) dt$$

where $\rho > 0$ and $F : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is a non-negative *penalty function*. A protocol is *optimal* if each u_i optimizes an agent's corresponding individual objective.

Definition (Mechanism design problem)

Consider a network of agents. The *mechanism design problem* is, for any agreement function χ , to determine a penalty F such that there exists an optimal consensus protocol \mathbf{u} with respect to $\chi(\mathbf{x}(0))$ for any initial state $\chi(0)$.

Note that the mechanism design problem is over an infinite planning horizon $T \to \infty$.

Definition

Let a one-step $action/planning\ period$ be $\delta=t_{k+1}-t_k$. Further let $\hat{x}_i\left(\tau,t_k\right)$, $\hat{\mathbf{x}}_{N_i}\left(\tau,t_k\right)$, $\hat{u}_i\left(\tau,t_k\right)$ be agent and neighboring states and agent controls, for $\tau\geq t_k$.

Hence, we keep neighboring agents' states constant over a single planning period and ultimately let $\delta \to 0$ to get an approximation to the original problem.

Receding horizon problem

Define the receding horizon objective function

$$\hat{J}_{i}(\hat{x}_{i},\hat{\mathbf{x}}_{N_{i}},\hat{u}_{i}):=\lim_{T\to\infty}\int_{t_{k}}^{T}\left(\hat{F}(\hat{x}_{i}\left(\tau,t_{k}\right),\hat{\mathbf{x}}_{N_{i}}\left(\tau,t_{k}\right))+\rho\hat{u}_{i}^{2}\right)\mathrm{d}\tau$$

Then for all agents $i \in \Gamma$ and discrete time steps t_k , given initial states $x_i(t_0)$, $\mathbf{x}_{N_i}(t_0)$ find

$$\hat{u}_i^* := \operatorname{argmin} \hat{J}_i(\hat{x}_i, \hat{\mathbf{x}}_{N_i}, \hat{u}_i)$$

subject to

$$\dot{x}_i(\tau, t_k) = \hat{u}_i(\tau, t_k)
\dot{x}_j(\tau, t_k) = \hat{u}_j(\tau, t_k) = 0 \quad \forall j \in N_i
\dot{x}_i(t_k, t_k) = x_i(t_k)
\dot{x}_j(t_k, t_k) = x_j(t_k) \quad \forall j \in N_i$$

Note that the assumption that all neighboring states are fixed during an action step implies

$$\hat{J}_i(\hat{x}_i, \hat{u}_i) := \lim_{T \to \infty} \int_{t_k}^T \left(\hat{F}(\hat{x}_i(\tau, t_k)) + \rho \hat{u}_i^2(\tau, t_k) \right) d\tau$$

Thus, we use Pontryagin's minimum principle.

Definition (Pontryagin's minimum principle)

Let Hamiltonian be

$$H(\hat{x}_i, \hat{u}_i, p_i) = L(\hat{x}_i, \hat{u}_i) + p_i \hat{u}_i$$

where the Lagrangian $L := F(\hat{x}_i + \rho \hat{u}_i^2)$. Then H abides by the Pontryagin necessary conditions at the optimum $(\hat{x}_i, \hat{u}_i, p_i)$:

$$\frac{\partial H}{\partial \hat{u}_i} = 0 \Rightarrow p_i = -2\rho \hat{u}_i$$
 optimality

$$\dot{p}_i = -rac{\partial H}{\partial x_i}$$
 multiplier

$$\dot{\hat{x}}_i = -\frac{\partial H}{\partial p_i} \Rightarrow \dot{\hat{x}}_i = \hat{u}_i$$
 costate equation

$$\left.\frac{\partial^2 H}{\partial \hat{u}_i^2}\right|_{\hat{x}_i=\hat{x}_i^*,\hat{u}_i=\hat{u}_i^*,p_i=p_i^*}\geq 0 \Rightarrow \rho \geq 0 \quad \text{minimality equation}$$

 $H(\hat{x}_i^*, \hat{u}_i^*, p_i^*) = 0$ boundary

Theorem

Consider the penalty function

$$F(\hat{x}_i(\tau, t_k)) := \rho \left(\frac{1}{g'} \sum_{j \in N_i} \theta(x_j(t_k)) - \theta(\hat{x}_i(\tau, t_k)) \right)^2$$

where g is increasing, θ is concave, and (1/g') is convex. Then

$$\hat{u}_i^* := \frac{\alpha}{g'} \sum_{i \in N_i} \theta(x_j(t_k)) - \theta(x_i(\tau))$$

solves the mechanism design problem.

Proof (idea).

Check each of the conditions of Pontryagin's minimum principle.

Corollary

Taking $\delta \to 0$ we get that the penalty function

$$F(x_i, \mathbf{x}_{N_i}) := \rho \left(\frac{1}{g'} \sum_{j \in N_i} \theta(x_j) - \theta(x_i) \right)^2$$

and the optimal control law

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{1}{g'} \sum_{i \in N_i} \theta(x_i) - \theta(x_i)$$

Simulations

$$F := \left(\sum_{j \in N_i} (x_j - x_i)\right)^2 \Rightarrow u_i = \sum_{j \in N_i} (x_j(t) - x_i(t)) \Rightarrow \lim_{t \to \infty} \chi(\mathbf{x}(t)) \to \frac{1}{|\Gamma|} \sum_{i \in \Gamma} x_i(0)$$

$$F := \left(\sum_{j \in N_i} x_i(x_j - x_i)\right)^2 \Rightarrow u_i = x_i \sum_{j \in N_i} (x_j(t) - x_i(t)) \Rightarrow \lim_{t \to \infty} \chi(\mathbf{x}(t)) \to \left(\prod_{i \in \Gamma} x_i(0)\right)^{1/|\Gamma|}$$

$$F := \left(x_i^2 \sum_{j \in N_i} (x_j - x_i)\right)^2 \Rightarrow u_i = -x_i^2 \sum_{j \in N_i} (x_j(t) - x_i(t)) \Rightarrow \lim_{t \to \infty} \chi(\mathbf{x}(t)) \to \frac{|\Gamma|}{\sum_{i \in \Gamma} (x_i(0))^{-1}}$$

$$F := \frac{1}{2x_i} \left(\sum_{j \in N_i} (x_j - x_i) \right)^2 \Rightarrow u_i = \frac{1}{2x_i} \sum_{j \in N_i} (x_j(t) - x_i(t)) \Rightarrow \lim_{t \to \infty} \chi(\mathbf{x}(t)) \rightarrow \sqrt{\frac{1}{|\Gamma|} \sum_{i \in \Gamma} (x_i(0))^2}$$

In general

$$F\left(x_{i}, \mathbf{x}_{N_{i}}\right) := \left(\frac{x_{i}^{1-p}}{p} \sum_{j \in N_{i}} (x_{j} - x_{i})\right)^{2} \Rightarrow$$

$$u_{i}(x_{i}, \mathbf{x}_{N_{i}}) := \frac{x_{i}^{1-p}}{p} \sum_{j \in N_{i}} (x_{j} - x_{i}) \Rightarrow$$

$$\lim_{t \to \infty} \chi\left(\mathbf{x}\left(t\right)\right) \to \left(\frac{1}{|\Gamma|} \sum_{i \in \Gamma} (x_{i}\left(0\right))^{p}\right)^{1/p}$$

Graph Laplacian

Definitions

The adjacency matrix of a graph $G = (\Gamma, E)$ is defined

$$\Delta A_{ij}\left(G
ight) \coloneqq egin{cases} 1 & (i,j) \in E \ 1 & (j,i) \in E \ 0 & ext{otherwise} \end{cases}$$

The degree matrix of a graph G is defined

$$\Delta_{ij}(G) \coloneqq \begin{cases} \deg(v_i) & i = j \\ 0 & i \neq j \end{cases}$$

The Laplacian of the graph G is defined

$$L(G) := \Delta(G) - A(G)$$

Theorem

Suppose that each node $v \in G$ of a connected graph G receives the information from its neighboring nodes after a fixed delay $\delta > 0$ and applies a linear protocol. Then for

$$\delta = \delta^* := \frac{\pi}{2\lambda_n} \quad \lambda_n = \lambda_{\mathsf{max}}(L)$$

where λ_i are eigenvalues of the Laplacian, the system has a globally asymptotically stable oscillatory solution with frequency $\omega = \lambda_n$ [6].

Epilogue: Computational Power

Definition

 $NL := NSPACE(\log n)$ is the set of all decision problems that can be solved by a non-deterministic Turing machine using a logarithmic amount of space.

 $NL \subseteq P \subseteq NP \subseteq PH \subseteq PSPACE$ $PSPACE \subseteq EXPTIME \subseteq EXPSPACE$ $NL \subseteq PSPACE \subseteq EXPSPACE$ $P \subseteq EXPTIME$

Figure: Four-state exact majority algorithm; nodes start in either A (55%) or B state (45%), and proceed to interact. The resulting population has converged to only A and eA node types, corresponding to the initial majority of A [1].

Population protocols stably compute any predicate in the class definable by formulas of Presburger arithmetic, which includes Boolean combinations of threshold-k, majority, and equivalence modulo m. All stably computable predicates are shown to be in NL [2].

- "...Inspired by the work of the verification community on Emerson and Namjoshi's broadcast protocols, we show that NL-power is also achieved by extending population protocols with reliable broadcasts, a simpler, standard communication primitive." [4]
- "...We show that every predicate computable by population protocols is computable by a BCP with expected $O(n \log n)$ interactions, which is asymptotically optimal. We further show that every log-space, randomized Turing machine can be simulated by a BCP with $O(n \log n \cdot T)$ interactions in expectation, where T is the expected runtime of the Turing machine. This allows us to characterise polynomial-time BCPs as computing exactly the number predicates in ZPL..." [5]

Bibliography I

Recent algorithmic advances in population protocols.

SIGACT News, 49(3):63-73, October 2018.

Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta.

Computation in networks of passively mobile finite-state sensors.

In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed

Computing, PODC '04, pages 290–299, New York, NY, USA, 2004. Association for Computing Machinery.

🔋 D. Bauso, L. Giarré, and R. Pesenti.

Non-linear protocols for optimal distributed consensus in networks of dynamic agents. *Systems and Control Letters*, 55(11):918–928, 2006.

Michael Blondin, Javier Esparza, and Stefan Jaax. Expressive power of broadcast consensus protocols, 2019.

Bibliography II

Philipp Czerner and Stefan Jaax.

Running time analysis of broadcast consensus protocols, 2021.

R. O. Saber and R. M. Murray.

Consensus protocols for networks of dynamic agents.

In *Proceedings of the 2003 American Control Conference, 2003.*, volume 2, pages 951–956, 2003.