

KubeCon

CloudNativeCon

THE LINUX FOUNDATION

S OPEN SOURCE SUMMIT

China 2024

China 2024

Unlocking Scalability and Simplifying Multi-Cloud Management with Karmada and PipeCD

Hongcai Ren, Huawei, Karmada Community Khanh Tran, CyberAgent, PipeCD Community

——— China 202

- Why multi-cluster
- Introduction of Karmada
- Introduction of PipeCD
- Karmada x PipeCD Integration demo

China 202

Why multi-cluster

- Introduction of Karmada
- Introduction of PipeCD
- Karmada x PipeCD Integration demo

Why multi-cluster

China 2024

- Location
 - Latency: Deploy apps as close to the customers as possible
 - Data locality: Keep user data in-country
- Isolation
 - Environment (e.g. dev, test, prod)
 - Security isolation: sensitive data must be isolated
 - Organization isolation: Teams have different domains
- Reliability
 - Blast radius: Apps incident in one cluster must not impact the whole system
 - Scale: The apps is too big to fit in a single cluster
- And so on ...

Multi-Cloud and Multi-Cluster Deployment Has Become a Common Practice

– China 202

Organizations embrace multi-cloud

- More than 87% of enterprise respondents are using the services of multiple cloud vendors at the same time.
- Cloud native technologies and the cloud market are maturing, and an era of programmable multi-cloud management services is coming.

Challenges of Being Cloud-Native Multi-Cloud

China 2024

Challenges to multi-cloud container cluster management

Numerous clusters

Complex and repeated cluster configurations

Cluster management varies from vendor to vendor

Fragmented API access entries

Scattered services

Application configuration differs across clusters

Cross-cloud service access

Application synchronization between clusters

Restrictions from clusters

Restricted resource scheduling

Restricted application availability

Restricted auto scaling

Vendor lock-in

Service deployment dependency

Lack of automatic failover

Lack of neutral open-source,

multi-cluster orchestration projects

China 20

- Why multi-cluster
- Introduction of Karmada
- Introduction of PipeCD
- Karmada x PipeCD Integration demo

Karmada: Open-Source, Cloud-Native Platform for Multi-Cloud Container Orchestration

China 2024

Compatible with Kubernetes native APIs

- Upgrade from single-cluster to multi-cluster deployments without code refactoring
- Seamlessly integrated with the Kubernetes single-cluster tool chain

Out-of-the-box

- Built-in policy sets for multiple scenarios, such as geo-redundancy,
- · intra-city active-active, and remote DR

No vendor lock-in & Centralized management

- Support for multi-cloud platforms, auto resource allocation, and free migration
- Not bound to any commercial products from cloud vendors
- Support public clouds, private clouds, and edge clouds

Various multi-cluster scheduling policies

- Cluster scheduling based on affinity and multi-cluster
- HA deployment across regions, AZs, clusters, and vendors

Development of Multi-Cluster Container Orchestration

- China 202

Karmada Overview

China 2024

Core Features

Multi-cluster management

- Support cluster in Public cloud, on-prem or edge
- Unified management
- Multi-Vendor support including Huawei Cloud CCE, AWS EKS, and Other K8s clusters.
- Push and Pull mode support
- X86 & ARM64 support

Cross-cloud deployment

- Use Kubernetes native API, including CRD
- Facilitating cross-cloud application deployment, release, and operations capabilities for users.
- Use built-in policy sets for scenarios, including: Active-active, Remote Disaster Recovery, etc

Cross-cloud App failover

Provide the ability for failover and address disaster recovery concerns in multi-cloud applications.

Centralized Management

Access cluster's resource from Karmada control plane (get/describe/logs/exec, etc)

Multi-cluster service and

Deploy service across cluster by leveraging MCS-API

Zero Refactoring: Using Kubernetes Native APIs to Deploy a Multi-Cluster Application

China 2024

Widely applicable propagation policy

```
apiVersion: policy.karmada.io/v1alpha1
kind: PropagationPolicy
metadata:
name: multi-zone-replication
spec:
 resourceSelectors:
  - apiVersion: apps/v1
   kind: Deployment
   labelSelector:
    matchLabels:
     ha-mode: multi-zone-replication
 placement:
  spreadConstraints:
   - spreadByField: zone
    maxGroups: 2
    minGroups: 2
   - spreadByField: cluster
    maxGroups: 3
    minGroups: 3
```

Example policy: Configure a multi-AZ HA deployment scheme for all Deployments

```
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 app: nginx
 ha-mode: multi-zone-replication
spec:
 replicas: 3
 selector:
  matchLabels:
   app: nginx
 template:
  metadata:
   labels:
    app: nginx
  spec:
   containers:
    - name: nginx
     image: nginx
    ports:
    - containerPort: 80
```

Deploy apps with standard Kubernetes API definitions kubectl create -f nginx-deployment.yaml

– China 2024

- Why multi-cluster
- Introduction of Karmada
- Introduction of PipeCD
- Karmada x PipeCD Integration demo

Introduction of PipeCD

- 4000s commits / 90 contributors
- CNCF Sandbox from 2023

What is PipeCD

China 2024

The One CD for All {applications, platforms, operations}

- A GitOps style continuous delivery platform that provides consistent deployment and operations experience for any applications
- Support multi-clouds providers, multi-analysis providers
- Built-in secret management/attachment for manifests manipulating
- Event-based communication mechanism to work with whatever CI
- And it works for not just Kubernetes workloads but other as well

Build your own Progressive Delivery Pipeline

- Built In support for Progressive Delivery (Canary, Blue/Green...)
- Automatically analyze, rollout with metrics

	e executing stage stage-1		
Application	n podinfo-2		Commit Update to 4.0.0 (2f8edb9 ☑)
Piped	nakabonne-cluster		Triggered by nakabonne
Summary	Sync progressively because of updating image podinfo from 4.0.2 to 4.0.0		
			K8S_PRIMARY_ROLLOUT
ANALYSIS	s		×
1 [2020-11-24 10:43:38 +09:00]	Preparing deploy source at running commit (ae32a	Bec9b24470e83b9ec8d263de6936ca34d6)
			b24470e83b9ec8d263de6936ca34d6 of the repository delivery
		Successfully loaded the deployment configuration Successfully prepared deploy source at running or	
		[metrics-2] Start analysis for Prometheus	mile (desember 17000000000000000000000000000000000000
	2020-11-24 10:43:40 +09:00]	[metrics-0] Start analysis for Prometheus	
		[metrics-1] Start analysis for Prometheus	
5 [6 [7 [
5 [6 [7 [thout(path, status) (rate(http_request_duration_seconds_sum{job=\"podinfo-canary\"}[5m]
5 [6 [7 [thout(path, status) (rate(http_request_duration_seconds_sum(job=\"podinfo-canary\")[5m] tion_seconds_count(job=\"podinfo-canary\")[5m]))
5 [6 [7 [8 [2020-11-24 10:48:40 +09:00]	<pre>[metrics-1] Run query against Prometheus: "sum w: / sum without(path, status) (rate(http_request_duri</pre>	

Zero Refactoring: Using your Kubernetes manifests to perform Progressive Delivery

China 2024

K8S_CANARY_CLEAN

Zero Refactoring: Using your Kubernetes manifests to perform Progressive Delivery

K8S_CANARY_CLEAN

pipecd: PIPELINE_SYNC

Wait **ADA** Rollout canary Approval

```
pipeline:
 stages:
   - name: K8S_CANARY_R0LLOUT
     with:
        replicas: 10%
    - name: K8S_BASELINE_R0LLOUT
     with:
        replicas: 10%
    - name: ANALYSIS
     with:
       duration: 15m
       metrics:
         - template:
              name: http_error_rate_canary_baseline
              appArgs:
               podNamePrefix:
         # - template:
                 threshold: "0.025"
    - name: K8S_BASELINE_CLEAN
    - name: K8S_CANARY_CLEAN
    - name: WAIT_APPROVAL
     with:
       timeout: 1h
    - name: K8S_PRIMARY_ROLLOUT
```


pipecd: PIPELINE_SYNC

Wait Rollout **ADA** canary Approval

```
pipeline:
 stages:
   - name: K8S_CANARY_R0LLOUT
     with:
       replicas: 10%
    - name: K8S_BASELINE_R0LLOUT
     with:
       replicas: 10%
    - name: ANALYSIS
      with:
       duration: 15m
       metrics:
         - template:
              name: http_error_rate_canary_baseline
              appArgs:
               podNamePrefix:
         # - template:
                  podNamePrefix:
                 threshold: "0.025"
    - name: K8S_BASELINE_CLEAN
    - name: K8S_CANARY_CLEAN
    - name: WAIT_APPROVAL
     with:
       timeout: 1h
    - name: K8S_PRIMARY_ROLLOUT
```


pipecd: PIPELINE_SYNC

Wait **ADA** Rollout canary **Approval**

```
pipeline:
 stages:
   - name: K8S_CANARY_R0LLOUT
     with:
       replicas: 10%
    - name: K8S_BASELINE_R0LLOUT
     with:
       replicas: 10%
    - name: ANALYSIS
      with:
       duration: 15m
       metrics:
         - template:
             name: http_error_rate_canary_baseline
             appArgs:
               podNamePrefix:
         # - template:
               name: http 4xx error rate threshold
                 podNamePrefix:
                 threshold: "0.025"
    - name: K8S_BASELINE_CLEAN
    - name: K8S_CANARY_CLEAN
   - name: WAIT_APPROVAL
     with:
       timeout: 1h
    name: K8S_PRIMARY_R0LLOUT
```


pipecd: PIPELINE_SYNC

Wait **ADA Rollout** canary Approval

```
pipeline:
 stages:
   - name: K8S_CANARY_R0LLOUT
     with:
       replicas: 10%
    - name: K8S_BASELINE_R0LLOUT
     with:
       replicas: 10%
    - name: ANALYSIS
      with:
       duration: 15m
       metrics:
         - template:
              name: http_error_rate_canary_baseline
              appArgs:
               podNamePrefix:
         # - template:
               name: http 4xx error rate threshold
                 podNamePrefix:
                 threshold: "0.025"
    - name: K8S_BASELINE_CLEAN
    - name: K8S_CANARY_CLEAN
    - name: WAIT_APPROVAL
     with:
       timeout: 1h
   - name: K8S_PRIMARY_ROLLOUT
```

Why PipeCD for Multi-cluster/cloud/

China 2024

Support Multi-clusters/clouds at mind

Easy to operate multi-cluster, multi-tenancy by separating control-plane and piped

- Single Control-Plane for centric state management
- Agents installed freely next to your applications in clusters (or not)

Why PipeCD for Multi-cluster/cloud/

China 2024

Support Multi-clusters/clouds at mind

Easy to operate multi-cluster, multi-tenancy by separating control-plane and piped

- Single Control-Plane for centric state management
- Agents installed freely next to your applications in clusters (or not)

Why PipeCD for Multi-cluster/cloud

China 2024

pipecd: Deployment Chain

cluster-2
cluster-1
cluster-3

```
apiVersion: pipecd.dev/v1beta1
      kind: KubernetesApp
      spec:
        name: app-1
         labels:
          env: cluster-1
         pipeline:
           stages:
             200
         postSync:
11
           chain:
12
             applications:
13
               - name: app-1
                 kind: KUBERNETES
14
15
                 labels:
                   env: cluster-2
17
               - name: app-1
                 kind: KUBERNETES
19
                 labels:
20
                   env: cluster-3
```


- China 2024

- Why multi-cluster
- Introduction of Karmada
- Introduction of PipeCD
- Karmada x PipeCD Integration demo

Install and launch the PipeCD

China 2024


```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: canary
  labels:
    app: canary
spec:
 replicas: 2
 revisionHistoryLimit: 2
  selector:
    matchLabels:
      app: canary
      pipecd.dev/variant: primary
  template:
    metadata:
      labels:
        app: canary
        pipecd.dev/variant: primary
    spec:
      containers:
      - name: helloworld
        image: ghcr.io/pipe-cd/helloworld:v0.32.0
        args:
          - server
        ports:
        - containerPort: 9085
```


China 2024


```
apiVersion: v1
kind: Service
metadata:
  name: canary
spec:
  selector:
    app: canary
  ports:
    - protocol: TCP
      port: 9085
      targetPort: 9085
```


China 2024


```
apiVersion: pipecd.dev/v1beta1
kind: KubernetesApp
      # Deploy the workloads of CANARY variant. In this case, the number of
      # workload replicas of CANARY variant is 10% of the replicas number of PRIMARY variant.
      # Wait 10 seconds before going to the next stage.
      # Update the workload of PRIMARY variant to the new version.
      # Destroy all workloads of CANARY variant.
      - name: K8S_CANARY_CLEAN
```


Deploy application to a single cluster

hina 2024 -

Add Karmada configuration


```
apiVersion: policy.karmada.io/v1alpha1
kind: PropagationPolicy
metadata:
  name: canary
spec:
  resourceSelectors:
    - apiVersion: apps/v1
      kind: Deployment
      name: canary
    - apiVersion: v1
      kind: Service
      name: canary
  placement:
    clusterAffinity:
      clusterNames:
        - member1
        - member2
    replicaScheduling:
      replicaSchedulingType: Divided
      replicaDivisionPreference: Weighted
      weightPreference:
        staticWeightList:
          - targetCluster:
              clusterNames:
                - member1
            weight: 1
          - targetCluster:
              clusterNames:
                - member2
            weight: 1
```


China 2024

Deploy application to Karmada

— China 2024

Show status of applications

China 2024

Single Cluster Mode

Take Away

China 2024

- PipeCD, a GitOps tool that enables deploy application by pull request on Git
 - Easy to manage / operate for both dev & operator
 - o Manage multi applications across multiple clusters
 - Same simple but powerful interface for many kinds of applications (not just Kubernetes)
- Karmada, multi-cluster container orchestration platform
 - Speaks Kubernetes API
 - Easy to integrate with Kubernetes ecosystem tool-chain
 - Manage application across multiple clusters

Join Us

https://karmada.io

https://github.com/karmada-io/karmada

https://slack.cncf.io (#karmada)

https://pipecd.dev

https://github.com/pipe-cd/pipecd

https://slack.cncf.io (#pipecd)

China 2024

Thanks!