The function families used for the Lyness-Kaganove¹ test are

$$\int_0^1 |x - \lambda|^{\alpha} dx, \qquad \lambda \in [0, 1], \ \alpha \in [-0.5, 0]$$

$$\tag{1}$$

$$\int_0^1 (x > \lambda)e^{\alpha x} \, \mathrm{d}x, \qquad \lambda \in [0, 1], \ \alpha \in [0, 1]$$
 (2)

$$\int_0^1 \exp(-\alpha |x - \lambda|) \, \mathrm{d}x, \qquad \lambda \in [0, 1], \ \alpha \in [0, 4]$$
(3)

$$\int_{1}^{2} 10^{\alpha} / ((x - \lambda)^{2} + 10^{\alpha}) \, \mathrm{d}x, \qquad \lambda \in [1, 2], \alpha \in [-6, -3]$$
(4)

$$\int_{1}^{2} \sum_{i=1}^{4} 10^{\alpha} / ((x - \lambda_{i})^{2} + 10^{\alpha}) \, \mathrm{d}x, \qquad \lambda_{i} \in [1, 2], \alpha \in [-5, -3]$$
 (5)

$$\int_{0}^{1} |x - \lambda|^{\alpha} dx, \qquad \lambda \in [0, 1], \ \alpha \in [-0.5, 0] \tag{1}$$

$$\int_{0}^{1} (x > \lambda)e^{\alpha x} dx, \qquad \lambda \in [0, 1], \ \alpha \in [0, 1] \tag{2}$$

$$\int_{0}^{1} \exp(-\alpha |x - \lambda|) dx, \qquad \lambda \in [0, 1], \ \alpha \in [0, 4] \tag{3}$$

$$\int_{1}^{2} 10^{\alpha} / ((x - \lambda)^{2} + 10^{\alpha}) dx, \qquad \lambda \in [1, 2], \alpha \in [-6, -3] \tag{4}$$

$$\int_{1}^{2} \sum_{i=1}^{4} 10^{\alpha} / ((x - \lambda_{i})^{2} + 10^{\alpha}) dx, \qquad \lambda_{i} \in [1, 2], \alpha \in [-5, -3] \tag{5}$$

$$\int_{0}^{1} 2\beta (x - \lambda) \cos(\beta (x - \lambda)^{2}) dx, \qquad \lambda \in [0, 1], \ \alpha \in [1.8, 2], \tag{6}$$

$$\beta = 10^{\alpha} / \max\{\lambda^{2}, (1 - \lambda)^{2}\}$$

where the boolean expressions are evaluated to 0 or 1. The integrals are computed to relative precisions of $\tau = 10^{-3}$. 10^{-6} , 10^{-9} and 10^{-12} for 1 000 realizations of the random parameters λ and α . The results of these tests are shown in Table 1. For each function, the number of correct and incorrect integrations is given with, in brackets, the number of cases each where a warning (either explicit or whenever an error estimate larger than the requested tolerance is returned) was issued.

The functions used for the "battery" test are

$$\begin{array}{lll} f_1 &=& \int_0^1 e^x \, \mathrm{d}x & f_{14} &=& \int_0^{10} \sqrt{50} e^{-50\pi x^2} \, \mathrm{d}x \\ f_2 &=& \int_0^1 (x>0.3) \, \mathrm{d}x & f_{15} &=& \int_0^{10} 25 e^{-25x} \, \mathrm{d}x \\ f_3 &=& \int_0^1 x^{1/2} \, \mathrm{d}x & f_{16} &=& \int_0^{10} 50 (\pi (2500x^2+1))^{-1} \, \mathrm{d}x \\ f_4 &=& \int_{-1}^1 (\frac{23}{25} \cosh(x) - \cos(x)) \, \mathrm{d}x & f_{17} &=& \int_0^1 50 (\sin(50\pi x)/(50\pi x))^2 \, \mathrm{d}x \\ f_5 &=& \int_{-1}^1 (x^4 + x^2 + 0.9)^{-1} \, \mathrm{d}x & f_{18} &=& \int_0^\pi \cos(\cos(x) + 3\sin(x) + 2\cos(2x) + 3\cos(3x)) \, \mathrm{d}x \\ f_6 &=& \int_0^1 x^{3/2} \, \mathrm{d}x & f_{19} &=& \int_0^1 \log(x) \, \mathrm{d}x \\ f_7 &=& \int_0^1 x^{-1/2} \, \mathrm{d}x & f_{20} &=& \int_{-1}^1 (1.005 + x^2)^{-1} \, \mathrm{d}x \\ f_8 &=& \int_0^1 (1 + x^4)^{-1} \, \mathrm{d}x & f_{21} &=& \int_0^1 \sum_{i=1}^3 \left[\cosh(20^i(x - 2i/10)) \right]^{-1} \, \mathrm{d}x \\ f_9 &=& \int_0^1 2(2 + \sin(10\pi x))^{-1} \, \mathrm{d}x & f_{22} &=& \int_0^1 4\pi^2 x \sin(20\pi x) \cos(2\pi x) \, \mathrm{d}x \\ f_{10} &=& \int_0^1 (1 + x)^{-1} \, \mathrm{d}x & f_{23} &=& \int_0^1 (1 + (230x - 30)^2)^{-1} \, \mathrm{d}x \\ f_{11} &=& \int_0^1 (1 + e^x)^{-1} \, \mathrm{d}x & f_{24} &=& \int_0^3 \left[e^x \right] \, \mathrm{d}x \\ f_{12} &=& \int_0^1 x (e^x - 1)^{-1} \, \mathrm{d}x & f_{25} &=& \int_0^5 (x + 1)(x < 1) + (3 - x)(1 \le x \le 3) \\ f_{13} &=& \int_0^1 \sin(100\pi x)/(\pi x) \, \mathrm{d}x & +2(x > 3) \, \mathrm{d}x \end{array}$$

where the boolean expressions in f_2 and f_{25} evaluate to 0 or 1. The functions are taken from Gander & Gautschi $(2008)^2$ with the following modifications:

- No special treatment is given to the case x=0 in f_{12} , allowing the integrand to return NaN.
- f_{13} and f_{17} are integrated from 0 to 1 as opposed to 0.1 to 1 and 0.01 to 1 respectively, allowing the integrand to return NaN for x = 0.
- No special treatment of $x < 10^{-15}$ in f_{19} allowing the integrand to return $-\ln f$.
- f_{24} was suggested by J. Waldvogel as a simple yet tricky test function with multiple discontinuities.
- f_{25} was introduced in Gander & Gautschi, yet not used in the battery test therein.

¹J. N. Lyness and J. J. Kaganove, A technique for comparing automatic quadrature routines. Comp. J. 20, 2, 170–177, 1977.

²W. Gander and W. Gautschi, Adaptive quadrature — revisited, Tech. Rep. 306, Department of Computer Science, ETH Zurich, Switzerland, 1998.

	dnad			quadl			quadgk			integral			quadcc	
>	×	n_{eval}	`	×	n_{eval}	`	×	n_{eval}	`	×	n_{eval}	`	×	n_{eval}
88(0)	912(0)	19.22	406(0)	594(0)	95.13	454(0)	546(0)	238.23	454(0)	546(0)	238.23	1000(0)	(0)0	280.15
101 (0	(0) 668 (0	26.46	894(0)	106(0)	117.15	993 (0)	2 (0)	267.27	993(0)	2 (0)	267.27	1000(1)	(0) 0	175.34
468(0)	0) 532(0)	14.42	(0) 898	132(0)	45.39	1000(0)	(0) 0	150.00	1000 (0)	(0) 0	150.00	1000(0)	(0) 0	112.72
16(0)	984(0)	18.74	359(0)	641(0)	29.68	719(0)	281(0)	404.46	(0) 612	281(0)	404.46	1000(0)	(0) 0	342.12
(0)0	(0) 0001	13.17	303 (0)	(0) 269	308.76	917(0)	83 (1)	1300.89	917(0)	83(0)	1300.89	(0) 266	3(0)	976.35
643 (0	0) 357(0)	368.36	994 (0)	(0) 9	746.19	1000(0)	(0) 0	491.85	1000 (0)	(0) 0	491.85	1000(0)	(0) 0	873.80
	dnad		_	quadl		_	quadgk			integral			quadcc	
`	×	n_{eval}	`	×	n_{eval}	`	×	n_{eval}	`	'×	n_{eval}	`	×	n_{eval}
31(0)	(0) 696	118.66	398(0)	602(0)	368.70	305(0)	(0) 269	894.90	305 (0)	(0) 269	894.90	1000(0)	0 (0)	89.998
92(0)	(0) 806	66.22	(0) 988	114(0)	236.25	957(0)	43(0)	552.24	957 (0)	43(0)	552.24	1000(0)	0)0	315.75
308(0)	692(0)	36.72	(0) 022	230(0)	103.41	(0) 668	101(0)	240.09	(0) 668	101(0)	240.09	1000(0)	0(0)	313.69
112(0)	(0) 888	184.12	992 (0)	8(0)	481.80	1000 (0)	(0) 0	788.43	1000(0)	(0)0	788.43	1000(0)	0 0	614.82
(0) 0	1000(0)	16.04	982 (0)	18(0)	1297.56	1000(2)	(0) 0	2073.30	1000(0)	(0) 0	2073.30	1000(0)	0 0	1811.84
843(0)	157(2)	1486.79	(0) 866	2(2)	2029.44	1000 (0)	(0) 0	909.45	1000(0)	(0)0	909.45	1000(0)	(0) 0	1196.39

lcc	_	_	0) 460.60	0) 520.52	0) 1077.16	0) 3254.49	0) 1392.89
dnad	× —	(26) 90 (88)	0) (0) (0)	0) (0) (0)	0) (0) (0) (0) (0) (0) (000 (2) 0 ((
	neval	$652.44 \mid 910(26)$		33.31 1000 (0	1661.88 1000 (0	17.84 1000 (0	Г
integral		721 (271) 144		123(0) 38	0 (0) 16	0 (0) 43	0(0) 19
	<u> </u>	279 (13) 7	915(0)	(0) 228	1000(1)	1000(2)	1000(1)
	n_{eval}	987.36	825.66	383.31	1332.06	3352.65	1599.66
quadgk	×	755 (406)	85(0)	123(0)	0 (0)	0 (0)	(0)0
	`	245(22)	915(0)	(0) 228	1000(1)	1000 (4)	1000(1)
	neval	1051.22	356.58	184.98	1211.85	3336.06	5186.43
quadl	×	633(31)	114(0)	220(0)	1(0)	2(0)	41 (41)
	`	367(0)	(0) 988	(0) 082	(0)666	(0) 866	959(0)
	neval	530.14	111.64	100.98	756.48	36.98	5677.96
dnad	×	962(0)	884(0)	711(0)	343(0)	1000 (0)	143 (71)
	`	38(0)	116(0)	289(0)	(0) 229	0 (0)	857(0)
$\tau = 10^{-9}$	f(x)	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (4)	Eqn (5)	Eqn (6)

	n_{eval}	8593.84	606.37	736.10	18000.30	12835.15	19961.92
quadcc	×	432 (432)	0 (0)	0(0)	0 0	0 (0)	7 (7)
	`	568 (103)	1000(0)	1000(0)	1000(426)	1000(326)	993 (471)
	n_{eval}	366606.78	1078.92	525.15	120443.04	15607.95	32893.77
integral	×	887 (788)	187 (55)	155(0)	3(3)	(0)0	10 (10)
	`>	113 (16)	813 (50)	845(0)	997 (311)	1000(20)	(09) 066
	n_{eval}	17611.11	1078.92	525.15	7074.06	8274.06	4297.38
quadgk	×	938 (893)	187 (55)	155(0)	112 (112)	(0) 0	18 (18)
	`	62 (14)	813 (50)	845(0)	888 (206)	1000 (35)	982 (73)
	neval	2843.43	488.10	315.78	3217.08	8697.84	9601.47
quadl	×	739 (375)	121(0)	205(0)	72(0)	259 (259)	751 (751)
	`	261(0)	879(0)	795(0)	928(0)	741(0)	249(0)
	n_{eval}	2152.67	186.15	322.63	2999.06	139.02	10008.64
dnad	×	963 (238)	(0) 988	675(0)	22(0)	1000(0)	992 (991)
	`	37(0)	114(0)	325(0)	(0) 826	0 (0)	8(0)
$\tau = 10^{-12}$	f(x)	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (4)	Eqn (5)	Edn (6)

Table 1: Results of the Lyness-Kaganove tests for $\tau = 10^{-3}, 10^{-6}, 10^{-9}$ and 10^{-12} . The columns marked with \checkmark and \times indicate the number of correct and incorrect results respectively, out of 1000 runs. The numbers in brackets indicate the number of runs in which a warning was issued. The column n_{eval} contains the average number of function evaluations required for each run.

	quadcc	33	581	1191	33	219	209	2179	95	1425	33	33	63	2521	369	277	33	2451	581	1943	219	1839	627	957	25199	1253
21	integral	150	1170	150	150	150	150	150	150	1200	150	150	150	3780	450	300	150	3120	390	510	150	820	930	840	17010	1950
$\tau = 10^{-12}$	quadgk	150	1170	150	150	150	150	150	150	1200	150	150	150	3780	450	300	150	3120	390	510	150	820	930	840	17010	1950
	quadl	18	408	618	48	168	288	2429	138	2808	48	48	19	10039	588	802	18	6469	1758	1369	168	2748	5568	1608	5538	829
	dnad	161	149	609	297	497	385	2142	586	2757	257	125	06	10018	717	833	13	6558	2173	1214	489	2437	7565	2181	464	205
=	quadcc	33	441	799	33	95	359	1409	95	991	33	33	63	2459	225	191	33	2419	395	1323	95	653	627	569	18503	933
	integral	150	840	150	150	150	150	150	150	570	150	150	150	1950	300	210	150	1740	240	360	150	210	099	510	12690	1350
$\tau = 10^{-9}$	quadgk	150	840	150	150	150	150	150	150	220	150	150	150	1950	300	210	150	1740	240	360	150	210	099	510	12690	1350
	quad1 c	18	318	258	18	48	108	688	48	1038	48	18	19	4879	228	288	18	2839	738	499	48	1158	2508	288	3738	528
	quad					_	97				_				_			_	_			_			_	137
=	quadcc		_	_	33	_		_		587	_	_			_	_		_	_	_		_	_	365	11433	593
	integral	150	540	150	150	150	150	150	150	300	150	150	150	1500	180	180	150	840	150	210	150	270	330	360	7290	840
$\tau = 10^{-6}$	quadgk	150	540	150	150	150	150	150	150	300	150	150	150	1500	180	180	150	840	150	210	150	570	330	360	7290	840
	quadl	18	198	108	18	48	48	439	18	468	18	18	19	1519	138	168	18	949	228	229	48	348	888	258	1878	348
	dnad	13	1 9	#	17	33	25	186	17	189	17	13	14	1026	65	65	13	362	129	\$	33	#	477	141	253	85
=	quadcc	33	161	101	33	33	33	269	33	261	33	33	47	1403	151	135	33	903	145	255	33	203	371	191	4515	277
8	integral	150	240	150	150	150	150	150	150	150	150	150	150	780	150	150	150	330	150	150	150	240	150	210	1380	300
$\tau = 10^{-3}$	quadgk	150	240	150	150	150	150	150	150	150	150	150	150	780	150	150	150	330	150	150	150	240	150	210	1380	300
	quadl	18	108	48	18	18	18	588	18	198	18	18	19	589	28	282	18	79	108	109	18	138	228	108	138	108
_	dnad	13	21	#	13	13	13	\$11	13	25	13	13	14	110	33	33	13	25	41	38	13	25	113	33	#	21
	f(x)	f1	f2	f3	f4	f5	9J	LJ	8J	6J	610	f11	f12	f13	f14	f15	91J	L17	£18	61J	f20	f21	f22	f23	f24	f25

Table 2: Results of battery test for $\tau = 10^{-3}, 10^{-6}, 10^{-9}$ and 10^{-12} . The columns contain the number of function evaulations required by each integrator for each tolerance. For each test and tolerance, the best result (least function evaluations) is in bold and unsuccessful runs are stricken through.

Figure 1: Scatter-plots of the results of the Lyness-Kaganove testsuite for each tolerance. Each point represents one of the test functions (Equations 1 to 6). Its location is determined by the relative number of function evaluations (on the x-axis) and the relative number of correct evaluations (on the y-axis). Algorithms in the top left corner are (relatively) efficient and reliable whereas algorithms in the lower right corner are (relatively) inefficient and unreliable.