Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. Check all the techniques that can be used to improve the accuracy of detecting objects and encapsulating them entirely within a single bounding box.

1/1 point

- ✓ Use Selective Search technique
 - ✓ Correct

Correct! It is an advanced technique, and faster than a naive approach.

- Scale down the image and then detect the object within it using the bounding box
- ✓ Increase the size of the bounding box until the object fits entirely in it.
 - **⊘** Correct

Correct! That is one of the simplest techniques.

2.	Check all that are true for Selective Search.	1/1 point
	The biggest bounding box detected of the smaller objects in the end becomes the final bounding box around the identified object.	
	It tries to identify larger objects by grouping together initially identified smaller objects.	
	✓ Image segmentation is used in this technique	
	○ Correct Correct! It is used to identify smaller objects.	
3.	The technique of selecting the best bounding box based on the highest intersection over union (IOU) between the true label and several predicted bounding boxes is called non-maximum (NMS). (Hint: it is a one word answer)	1/1 point
	suppression	
	○ Correct Correct!	

4. Consider the following image, according to the NMS technique which coloured bounding box will be eventually selected as the best bounding box around the football?

1/1 point

- Purple (# 4)
- O Yellow (# 2)
- O Green (# 1)
- O Red (#3)

○ Correct

Correct! As this bounding box encapsulates the maximum area of the object.

5. One of the differences between R-CNN and Fast R-CNN is that, Fast R-CNN proposes regions of interest to the input image (generates), whereas in R-CNN regions of interest are expected to be an input (as opposed to generating them) to the model.

1/1 point

- False
- O True

⊘ Correct

Correct! R-CNN generates regions of interest to the input image, whereas in Fast R-CNN regions of interest are an input (as opposed to generating them).

6. Consider the following code and check all that are true.

```
viz_utils.visualize_boxes_and_labels_on_image_array(
    image_np_with_detections[0],
    result['detection_boxes'][0],
    (result['detection_classes'][0] + label_id_offset).astype(int),
    result['detection_scores'][0],
    category_index,
    use_normalized_coordinates=True,
    min_score_thresh=.40,
)
```

label_id_offsetis an adjustment in case the 'detection classes' starting index and actual starting index have an offset between them.

- image_np_with_detections[0] is a numpy array containing the image, and 0 index shows there are multiple input images being passed to this function.
- Setting *use_normalized_coordinates=True* indicates that your bounding box coordinates are not normalized, so you want them to be normalized.
- *min_score_thresh* is used to leave out object labels and their bounding boxes if their score falls below the set threshold.
- ✓ Correct!

7. The following code initializes a model and restores pre-trained weights, *detection_model*, using the .config file method

1/1 point

- False
- O True
 - **⊘** Correct

Correct! The code here only initializes a new model architecture with "empty" weights and does not restore pre-trained weights.

8. Which of the following is the correct syntax to print a list of your trainable variables in a model?

1/1 point

of for varName in myModel.Variables:

print(varName.name)

of for varName in myModel.trainableVariables:

print(varName.name)

of for varName in myModel.trainables:

print(varName.name)

of for varName in myModel.trainable_variables:

print(varName.name)

⊘ Correct

Correct!