Time Series Modelling ASSIGMENT

Submitted By

Vinit Sharma

Table of Contents

Problem 1: Sparkling Dataset Problem	 3
Problem 1.1	 3
Problem 1.2	 3
Problem 1.3	 4
Problem 1.4	 4
Problem 1.5	 7
Problem 1.6	 8
Problem 1.7	 10
Problem 1.8	 12
Problem 1.9	 12
Problem 1.10	 13
Problem 2: Rose Dataset Problem	14
Problem 2.1	 14
Problem 2.2	 14
Problem 2.3	 15
Problem 2.4	 15
Problem 2.5	 18
Problem 2.6	 18
Problem 2.7	 20
Problem 2.8	 22
Problem 2.9	 22
Problem 2.10	 23

Problem 1: Sparkling Dataset

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

1. Read the data as an appropriate Time Series data and plot the data.

Sparkling dataset has 187 data points with one variable as int datatype and other one is datetime datatype.

	YearMonth	Sparkling
0	1980-01	1686
1	1980-02	1591
2	1980-03	2304
3	1980-04	1712
4	1980-05	1471

Below plot shows the Time Series plot which include trends and seasonality in the plot. Plot is created in a range of 1981 to 1995.

2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Dataset description is shown in below table. Table includes mean, std, percentile information.

	Sparkling
count	187.000000
mean	2402.417112
std	1295.111540
min	1070.000000
25%	1605.000000
50%	1874.000000
75%	2549.000000
max	7242.000000

Additive Decomposition:

We have tried to decompose the dataset with respect to additive and multiplicative method. In a first approach, we can look for the error plot segment which signifies that error spread is more. So this approach is not suitable for the further process.

Multiplicative Decomposition:

In this approach, we can look for the error plot segment which signifies that error spread is less. So this approach is suitable for the further process. Error plot is almost flat and seasonality plot shows some sign of repeatability.

3. Split the data into training and test. The test data should start in 1991.

```
train = df[df.index<='1990']
test = df[df.index>'1990']
```

4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

All the exponential smoothing models have been built on the training dataset and their necessary performance have been evaluated on the test dataset.

Simple Exponential Smoothing:

Based on the process, we have used the smoothing level parameter. This test doesnot include the trend and seasonality parameter in it. Respective plot for the time series also plotted with SES line.

```
{'smoothing_level': 0.04847975339291667,
    'smoothing_trend': nan,
    'smoothing_seasonal': nan,
    'damping_trend': nan,
    'initial_level': 2152.0542614313003,
    'initial_trend': nan,
    'initial_seasons': array([], dtype=float64),
    'use_boxcox': False,
    'lamda': None,
    'remove_bias': False}
```


Double Exponential Smoothing:

Based on the process, we have used the smoothing level and smoothing trend parameter. This test does not include the seasonality parameter in it. Respective plot for the time series also plotted with DES line.

```
# Initializing the Double Exponential Smoothing Model
model_DES = Holt(train,initialization_method='estimated')
# Fitting the model
model_DES = model_DES.fit()

print('')
print(''=Holt model Exponential Smoothing Estimated Parameters ==')
print('')
print(model_DES.params)
```

==Holt model Exponential Smoothing Estimated Parameters ==

Triple Exponential Smoothing: (A, A, A)

Based on the process, we have used the smoothing level, smoothing trend and seasonality parameter. This test used additive decomposition approach for the dataset. Respective plot for the time series also plotted with TES line.

```
# Initializing the Double Exponential Smoothing Model
model_TES = ExponentialSmoothing(train,trend='additive',seasonal='additive',initialization_method='estimated')
# Fitting the model
model_TES = model_TES.fit()

print('')
print(('')
print(model_TES.params)

C:\Python\Anaconda\lib\site-packages\statsmodels\tsa\base\tsa_model.py:539: ValueWarning: No frequency information was provide
d, so inferred frequency M will be used.
% freq, ValueWarning)

==Holt Winters model Exponential Smoothing Estimated Parameters ==

('smoothing_level': 0.0759640279371264, 'smoothing_trend': 0.04336101054036127, 'smoothing_seasonal': 0.47864368464705426, 'dam
ping_trend': nan, 'initial_level': 2356.512698405284, 'initial_trend': -2.15237363936188, 'initial_seasons': array([-636.371339
4, 723.0906225, 398.39409242, -473.5382788),
-808.059758782, -815.15136094, -384.2643042, 73.1284207,
-237.65218686, 272.25793688, 1541.69781336, 2590.31364122]), 'use_boxcox': Faise, 'lamda': None, 'remove_bias': False)

Simple Double and Typle Exponential Smoothing Predictions

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing productions in the Set Additive

# Tank
Date Exponential Smoothing Productions in the Set Additive

# Tank
Date Exponential Smoothing Productions in the
```

Triple Exponential Smoothing: (A, A, M)

Based on the process, we have used the smoothing level, smoothing trend and seasonality parameter. This test used multiplicative decomposition approach for the dataset. Respective plot for the time series also plotted with TES line.

Below table shows the performance of all the smoothing model. We have seen that TES with multiplicative decomposition approach has minimum error at place.

	Test RMSE
SES	1355.557634
DES	6290.069982
TES	473.871025
licative	455.360502

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

Check for stationarity of the whole Time Series data.

The Augmented Dickey-Fuller test is an unit root test which determines whether there is a unit root and subsequently whether the series is non-stationary.

The hypothesis in a simple form for the ADF test is:

- H₀: The Time Series has a unit root and is thus non-stationary.
- H₁: The Time Series does not have a unit root and is thus stationary.

We would want the series to be stationary for building ARIMA models and thus we would want the p-value of this test to be less than the a value.

Check for stationarity of the Training Data Time Series.

Let us plot the training data once.

```
train.plot(grid=True);

dftest = adfuller(train,regression='ct')
print('DF test statistic is %3.3f' %dftest[0])
print('DF test p-value is' ,dftest[1])
print('Number of lags used' ,dftest[2])

DF test statistic is -2.710
DF test p-value is 0.23197916198156393
Number of lags used 12
```

The training data is non-stationary at 95% confidence level. Let us take a first level of differencing to stationarize the Time Series.

```
dftest = adfuller(train.diff().dropna(),regression='ct')
print('DF test statistic is %3.3f' %dftest[0])
print('DF test p-value is' ,dftest[1])
print('Number of lags used' ,dftest[2])

DF test statistic is -7.794
DF test p-value is 2.1438260690703056e-10
Number of lags used 11
```

Based on p-value, we can now reject the null hypothesis.

6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

ARIMA MODEL:

Based on analysis, we have figured out parameter (2,1,2) shows lowest AIC value based on which further analysis needs to be done.

	param	AIC
10	(2, 1, 2)	2012.666187
15	(3, 1, 3)	2016.372299
11	(2, 1, 3)	2025.152612
14	(3, 1, 2)	2025.729053
9	(2, 1, 1)	2027.872565

Here, we have test statistics on model which shows all the AR and MR are significant for the process.

Dep. Variable:		Spark1	ing No.	Observations:		120	
Model:		ARIMA(2, 1,	 Log 	Likelihood		-1001.333	
Date:	We	d, 25 May 2	022 AIC			2012.666	
Time:		22:00	:30 BIC			2026.562	
Sample:		01-31-1	.980 HQIC			2018.309	
		- 12-31-1	989				
Covariance Type	:		opg				
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	1.3149	0.050	26.110	0.000	1.216	1.414	
ar.L2 -	0.5712	0.089	-6.405	0.000	-0.746	-0.396	
ma.L1 -:	1.9391	0.054	-35.639	0.000	-2.046	-1.832	
ma.L2	0.9487	0.054	17.448	0.000	0.842	1.055	
sigma2 1.	16e+06	3.91e-08	2.97e+13	0.000	1.16e+06	1.16e+06	
							=
Ljung-Box (L1)	(Q):		0.30	Jarque-Bera	(JB):	13.3	1
Prob(Q):			0.58	Prob(JB):		0.0	0
Heteroskedastic	ity (H):		2.63	Skew:		0.5	8
Prob(H) (two-si	ded):		0.00	Kurtosis:		4.1	6
							=

Significant diagnostics have been performed for the model performance.

SARIMA MODEL:

Based on analysis, we have figured out parameter (2,1,2)(3,0,3,4) shows lowest AIC value based on which further analysis needs to be done. This model includes the seasonality factor in the analysis.

AIC	seasonal	param		
1532.703232	(3, 0, 3, 4)	(3, 1, 3)	255	
1534.726268	(3, 0, 3, 4)	(0, 1, 3)	63	
1535.121149	(3, 0, 3, 4)	(1, 1, 3)	127	
1536.910520	(3, 0, 3, 4)	(2, 1, 3)	191	
1541.039257	(2, 0, 3, 4)	(3, 1, 3)	251	

Here, we have test statistics on model which shows all the AR and MR are significant for the process. Some AR and MR values are more than 0.05 which could show less significance in the analysis.

Dep. Varia	ble:		Spank	ling No. 0	bservations:		12
Model:	SAR	IMAX(3, 1,	3)x(3, 0, 3	, 4) Log L	ikelihood		-753.35
Date:		W	ed, 25 May	2022 AIC			1532.70
Time:			22:0	7:30 BIC			1566.95
Sample:			01-31-	1980 HQIC			1546.57
			- 12-31-	1989			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1					-1.987		
ar.L2				0.000		-0.516	
ar.L3				0.869		0.196	
ma.L1				0.251		2.198	
ma.L2	-1.0510			0.000			
ma.L3	-1.0823	0.769	-1.407	0.159	-2.590	0.425	
ar.S.L4	-0.0057	0.015	-0.392	0.695	-0.034	0.023	
ar.S.L8	-0.0276	0.015	-1.875	0.061	-0.056	0.001	
ar.S.L12	1.0644	0.015	72.954	0.000	1.036	1.093	
ma.S.L4	0.0405	0.689	0.059	0.953	-1.309	1.390	
ma.S.L8	0.0692	0.715	0.097	0.923	-1.332	1.471	
ma.S.L12	-1.0863	0.736	-1.475	0.140	-2.530	0.357	
	7.447e+04		3.75e+09	0.000	7.45e+04	7.45e+04	
Ljung-Box	(11) (0):		0.02	Jarque-Bera	(3B):		9.94
Prob(0):	(/ (4/-			Prob(JB):	(/-		0.01
5.50	lasticity (H)		2.88				0.27
	wo-sided):	-	0.00				4.42
	,						

Significant diagnostics have been performed for the model performance.

Based on analysis of Both ARIMA and SARIMA, we have evaluated the performance which shows SARIMA is performing better than ARIMA model on lower AIC value.

	RMSE	MAPE
ARIMA(2,1,2)	1339.707781	53.172870
SARIMA/3.1.3)(3.0.3.4)	852.835727	21.466912

7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE. ARIMA MODEL:

- The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PAGF plot cuts-off to 0.
- The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 0.

By looking at the above plots, we will take the value of p and q to be 0 and 0 respectively.

Here, we have test statistics on model which shows all the AR and MR are significant for the process.

Dep. Variable:		Sparkli	ng No.	Observations		120	
Model:		ARIMA(0, 1,	 Log 	Likelihood		-1026.816	
Date:	We	d, 25 May 20	22 AIC			2055.631	
Time:		22:10:	34 BIC			2058.411	
Sample:		01-31-19	80 HQIO			2056.760	
		- 12-31-19	89				
Covariance Type:		c	pg				
	oef	std err	Z	P> z	[0.025	0.975]	
sigma2 1.8146		1.32e+05	13.795	0.000	1.56e+06	2.07e+06	
Ljung-Box (L1) (0)	::		2.56	Jarque-Bera	(JB):	170	. 25
Prob(Q):			0.11	Prob(JB):		0.	.00
Heteroskedasticity	(H):		2.48	Skew:		-1	. 86
Prob(H) (two-sided	1):		0.01	Kurtosis:		7.	. 53

Significant diagnostics have been performed for the model performance.

Below table shows the performance of the SARIMA model on certain parameters value.

	RMSE	MAPE
ARIMA(0,1,0)	4482.058965	234.266414

SARIMA MODEL:

Here, we have taken alpha=0.05.

We are going to take the seasonal period as 4 or its multiple e.g. 8. We are taking the pivalue to be 0 and the qivalue also to be 0 as the parameters same as the ARIMA model.

- . The Auto-Regressive parameter in an SARIMA model is 'P' which comes from the significant lag after which the PACF plot cuts-off to 2.
- The Moving-Average parameter in an SARIMA model is 'Q' which comes from the significant lag after which the ACF plot cuts-off to 1.

Here, we have test statistics on model which shows all the AR and MR are significant for the process. Some AR and MR values are more than 0.05 which could show less significance in the analysis.

Dep. Vari	able:		Spa	rkling No.	Observations	:	126
Model:	SARI	IMAX(0, 1,	0)x(2, 1, [1], 4) Log	Likelihood		-829.058
Date:			Wed, 25 Ma	y 2022 AIC			1666.117
Time:			22	:18:07 BIC			1676.808
Sample:			01-3	1-1980 HQI	C		1670.451
			- 12-3	1-1989			
Covariance	e Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.S.L4	-0.9655	0.036	-26.958	0.000	-1.036	-0.895	
ar.S.L8	-0.9722	0.041	-23.917		-1.052		
ma.S.L4	-0.0473	0.103	-0.461	0.645	-0.248	0.154	
sigma2	3.135e+05	3.54e+04	8.862	0.000	2.44e+05	3.83e+05	
Lifung Boy	(1.1) (0)		44.44	Zanava Bana	(38)	24	06
	(L1) (Q):		11.11	Jarque-Bera	(JR):		.96
Prob(Q):			0.00	Prob(JB):			. 00
Heteroske	dasticity (H):		2.09	Skew:			. 62
Prob(H) (1	two-sided):		0.03	Kurtosis:		5	.02

Significant diagnostics have been performed for the model performance.

Below table shows the performance of the SARIMA model on certain parameters value.

	RMSE	MAPE
SARIMA(0.1.0)(2.1.1.4)	558 543882	23 245745

8. Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

Performance of all the built models with their corresponding parameters and RMSE value has been captured in the table for the test data. Based on this table, we can suggest SARIMA model based on Lowest AIC perform much better than any other built model.

MAPE	RMSE	
53.172870	1339.707781	ARIMA(2,1,2)
21.466912	852.835727	SARIMA(3,1,3)(3,0,3,4)
234.266414	4482.058965	ARIMA(0,1,0)
23.245745	556.543882	SARIMA(0,1,0)(2,1,1,4)

9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

SARIMA model with lowest AIC parameter is the most optimum model for complete dataset and it is used to predict 12 months into the future with appropriate CI.

Evaluate the model on the whole data and predict 12 months into the future (till the end of next year).

```
predicted_manual_SARIMA_full_data = results_full_data_model.get_forecast(steps=12)
\label{local_pred_full_manual_SARIMA_date} predicted\_manual\_SARIMA\_full\_data.summary\_frame(alpha=0.05) \\ pred\_full\_manual\_SARIMA\_date.head()
                        mean_se mean_ci_lower mean_ci_upper
                 mean
1995-08-31 1807.580567 361.539969
                                    1098.975249
                                                 2516.185885
1995-09-30 2547.640258 366.780928
                                   1828.762849
                                                 3266.517667
1995-10-31 3227.953700 366.876542 2508.888891
                                                 3947.018509
1995-11-30 4064.965835 368.206420 3343.294513 4786.637158
1995-12-31 6274.879647 368.425000 5552.779916 6996.979378
       mean_squared_error(df['Sparkling'],results_full_data_model.fittedvalues,squared=False)
print('RMSE of the Full Model', rmse)
RMSE of the Full Model 525.810355093653
```

This plot signifies about the behaviour of the future predict months.

- 10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.
- In all the built smoothing model, TES with multiplicative decomposition approach has minimum error at place
- We can suggest that SARIMA model based on Lowest AIC perform much better than any other time series-built model.
- Based on the result, companies wine sales in Sparkling segment takes a heavy spike in a
 certain quarter of the year. If companies supply chain should be strong to support that
 demand and by providing some offers (wedding special and buy one get one kind), company
 can boost its sales revenue.

Problem 2: Rose Dataset

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

1. Read the data as an appropriate Time Series data and plot the data.

Rose dataset has 187 data points with one variable as float datatype and other one is datetime datatype.

	YearMonth	Rose
0	1980-01-31	112.0
1	1980-02-29	118.0
2	1980-03-31	129.0
3	1980-04-30	99.0
4	1980-05-31	116.0

Below plot shows the Time Series plot which include trends and seasonality in the plot. Plot is created in a range of 1981 to 1995.

2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Dataset description is shown in below table. Table includes mean, std, percentile information.

	Rose
count	187.000000
mean	90.347594
std	38.966791
min	28.000000
25%	63.000000
50%	86.000000
75%	111.000000
max	267.000000

Additive Decomposition:

We have tried to decompose the dataset with respect to additive and multiplicative method. In a first approach, we can look for the error plot segment which signifies that error spread is more. So this approach is not suitable for the further process. In the plot, we can clearly sees that we have trend in the dataset.

Multiplicative Decomposition:

In this approach, we can look for the error plot segment which signifies that error spread is less. So this approach is suitable for the further process. Error plot is almost flat and seasonality plot shows some sign of repeatability. We also have a clear trend in the plot.

3. Split the data into training and test. The test data should start in 1991.

```
train = df2[df2.index<='1990']
test = df2[df2.index>'1990']
```

4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

All the exponential smoothing models have been built on the training dataset and their necessary performance have been evaluated on the test dataset.

Simple Exponential Smoothing:

Based on the process, we have used the smoothing level parameter. This test doesnot include the trend and seasonality parameter in it. Respective plot for the time series also plotted with SES line.

```
{'smoothing_level': 0.04847975339291667,
    'smoothing_trend': nan,
    'smoothing_seasonal': nan,
    'damping_trend': nan,
    'initial_level': 2152.0542614313003,
    'initial_trend': nan,
    'initial_seasons': array([], dtype=float64),
    'use_boxcox': False,
    'lamda': None,
    'remove_bias': False}
```


Double Exponential Smoothing:

Based on the process, we have used the smoothing level and smoothing trend parameter. This test does not include the seasonality parameter in it. Respective plot for the time series also plotted with DES line.

Triple Exponential Smoothing: (A, A, A)

Based on the process, we have used the smoothing level, smoothing trend and seasonality parameter. This test used additive decomposition approach for the dataset. Respective plot for the time series also plotted with TES line.

```
==Molt Winters model Exponential Smoothing Estimated Parameters ==

{'smoothing_level': 0.09497210888874562, 'smoothing_trend': 7.465095965273274e-05, 'smoothing_seasonal': 0.0003521866705400393, 'damping_trend': nan, 'initial_level': 146.58611350466705, 'initial_trend': -0.5551780400208214, 'initial_seasons': array([-30.49580985, -19.51332275, -11.15657296, -23.27538705, -12.84253406, -7.64478742, 3.10608786, 10.50245295, 4.77490993, 4.38565829, 19.65816521, 63.91978977]), 'use_boxcox': False, 'lamda': None, 'remove_bias': False}

Simple_Double and Triple Exponential Smoothing Predictions

Tain

Ta
```


Triple Exponential Smoothing: (A, A, M)

Based on the process, we have used the smoothing level, smoothing trend and seasonality parameter. This test used multiplicative decomposition approach for the dataset. Respective plot for the time series also plotted with TES line.

```
==Holt Winters model Exponential Smoothing Estimated Parameters ==

{'smoothing_level': 0.061212896166004546, 'smoothing_trend': 0.06121289609390582, 'smoothing_seasonal': 1.9472419683677065e-07, 'damping_trend': nan, 'initial_level': 132.95858964065945, 'initial_trend': -0.826106263183913, 'initial_seasons': array([0.862 90308, 0.96224949, 1.05305424, 0.90797979, 1.03682312, 1.124019411, 1.41573663, 1.97074129]), 'use_boxcox': False, 'lamda': None, 'remove_bias': False}

Simple_Double and Triple Exponential Smoothing Predictions

Talk

Simple Exponential Smoothing predictions on Test Set

Osuble Exponential Smoothing predictions on Test Set

Osuble Exponential Smoothing predictions on Test Set

Simple_Double and Triple Exponential Smoothing Predictions

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

100
```

Below table shows the performance of all the smoothing model. We have seen that TES with additive decomposition approach has minimum error at place.

	Test RMSE
SES	2755.358150
DES	17.876669
TES:Additive	14.694018
TES: Multiplicative	28.363216

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

Check for stationarity of the whole Time Series data.

The Augmented Dickey-Fuller test is an unit root test which determines whether there is a unit root and subsequently whether the series is non-stationary.

The hypothesis in a simple form for the ADF test is:

- H₀: The Time Series has a unit root and is thus non-stationary.
- H₁: The Time Series does not have a unit root and is thus stationary.

We would want the series to be stationary for building ARIMA models and thus we would want the p-value of this test to be less than the α value.

```
dftest = adfuller(train_1,regression='ct')
print('DF test statistic is %3.3f' %dftest[0])
print('DF test p-value is' ,dftest[1])
print('Number of lags used' ,dftest[2])

DF test statistic is -1.321

DF test p-value is 0.8827240404113933
Number of lags used 13

dftest = adfuller(train_1.diff().dropna(),regression='ct')
print('DF test statistic is %3.3f' %dftest[0])
print('DF test p-value is' ,dftest[1])
print('Number of lags used' ,dftest[2])

DF test statistic is -6.392
DF test p-value is 3.1814938121222416e-07
Number of lags used 12
```

Based on p-value, we can now reject the null hypothesis.

Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

ARIMA MODEL:

Based on analysis, we have figured out parameter (2,1,3) shows lowest AIC value based on which further analysis needs to be done.

AIC	param	
1162.387543	(2, 1, 3)	11
1166.943160	(3, 1, 3)	15
1167.498636	(0, 1, 2)	2
1167.897377	(1, 1, 2)	6
1168.359028	(1, 1, 1)	5

Here, we have test statistics on model which shows all the AR and MR are significant for the process.

Dep. Variab	le:	R	ose No.	Observations:		120	
Model:		ARIMA(2, 1,	 Log 	Likelihood		-575.194	
Date:	Wee	d, 25 May 2	022 AIC			1162.388	
Time:		22:54	:23 BIC			1179.062	
Sample:		01-31-1	.980 HQIC			1169.159	
		- 12-31-1	.989				
Covariance	Type:		opg				
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-1.6499	0.089	-18.557	0.000	-1.824	-1.476	
ar.L2	-0.6968	0.091	-7.636	0.000	-0.876	-0.518	
ma.L1	1.0466	0.726	1.442	0.149	-0.376	2.469	
ma.L2	-0.7700	0.145	-5.299	0.000	-1.055	-0.485	
ma.L3	-0.9037	0.662	-1.366	0.172	-2.201	0.393	
sigma2	877.3869	628.179	1.397	0.162	-353.820	2108.594	
Ljung-Box (L1) (Q):		0.01	Jarque-Bera	(JB):	21	1.14
Prob(Q):			0.93	Prob(JB):		•	0.00
Heteroskeda	sticity (H):		0.39	Skew:		(3.69
Prob(H) (tw	o-sided):		0.00	Kurtosis:		4	4.53

Significant diagnostics have been performed for the model performance.

Below table shows the performance of the ARIMA model on certain parameters value.

			RMSE	MAPE
	A	RIMA(2,1,2)	38.844627	74.407596
	param	seasonal	AIC	
227	(3, 1, 2)	(0, 0, 3, 12)	677.210818	3
220	(3, 1, 1)	(3, 0, 0, 12)	680.64000	9
222	(3, 1, 1)	(3, 0, 2, 12)	681.62566	9
221	(3, 1, 1)	(3, 0, 1, 12)	681.905114	4
252	(3, 1, 3)	(3, 0, 0, 12)	682.24533	1
	220 222 221	param 227 (3, 1, 2) 220 (3, 1, 1) 222 (3, 1, 1) 221 (3, 1, 1)	param seasonal 227 (3, 1, 2) (0, 0, 3, 12) 220 (3, 1, 1) (3, 0, 0, 12) 222 (3, 1, 1) (3, 0, 2, 12) 221 (3, 1, 1) (3, 0, 1, 12)	ARIMA(2,1,2) 38.844627

Here, we have test statistics on model which shows all the AR and MR are significant for the process.

Dep. Varia					e No. Obse		1
Model:	SARI	MAX(3, 1,	2)x(0, 0, [1, 2, 3], 12) Log Like	elihood	
Date:			Wed	, 25 May 202	2 AIC		677.2
Time:				23:16:0	5 BIC		698.6
Sample:				01-31-198	0 HQIC		685.8
				- 12-31-198	9		
Covariance	Type:			op	g		
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.9516	3.361	-0.283	0.777	-7.540	5.637	
ar.L2	0.6325	524.798	0.001	0.999	-1027.953	1029.218	
ar.L3	-0.2495	314.044	-0.001	0.999	-615.764	615.265	
ma.L1	1.0620	3.403	0.312	0.755	-5.607	7.731	
ma.L2	-1.0122	0.008	-128.531	0.000	-1.028	-0.997	
ma.S.L12	-9.81e+13	2.17e-08	-4.52e+21	0.000	-9.81e+13	-9.81e+13	
na.S.L24	-1.948e+13	1.26e-13	-1.55e+26	0.000	-1.95e+13	-1.95e+13	
na.S.L36	-3.18e+14	9.48e-17	-3.35e+30	0.000	-3.18e+14	-3.18e+14	
sigma2	1072.0748						
Ljung-Box	(L1) (Q):					2541.51	
Prob(Q):			0.00	Prob(JB):		0.00	
Heterosked	asticity (H):		0.00	Skew:		-4.50	
Prob(H) (t	wo-sided):		0.00	Kurtosis:		29.11	

7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

ARIMA MODEL:

Here, we have taken alpha=0.05.

- . The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to 2.
- . The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 2.

By looking at the above plots, we will take the value of p and q to be 2 and 2 respectively.

Here, we have test statistics on model which shows all the AR and MR are significant for the process.

Dep. Variable:		Ros	se No.	Observations:		120
Model:	ARIM	A(2, 1, 2	Log	Likelihood		-579.948
Date:	Wed, 2	5 May 202	22 AIC			1169.896
Time:		22:57::	16 BIC			1183.792
Sample:		01-31-198	B0 HQIC			1175.539
	-	12-31-198	89			
Covariance Type:		o	pg			
	coef st	d err	Z	P> z	[0.025	0.975]
ar.L1 -0.	4423	0.494	-0.896	0.370	-1.410	0.526
ar.L2 0.	0043	0.184	0.024	0.981	-0.356	0.365
ma.L1 -0.	2552	0.483	-0.528	0.597	-1.202	0.692
ma.L2 -0.	5948	0.453	-1.313	0.189	-1.482	0.293
sigma2 988.	1544 9	9.393	9.942	0.000	793.348	1182.960
Ljung-Box (L1) (0):		0.02	Jarque-Bera	(JB):	29.97
Prob(Q):	-		0.90	Prob(JB):		0.00
Heteroskedasticit	y (H):		0.35	Skew:		0.79
Prob(H) (two-side			0.00	Kurtosis:		4.88

Significant diagnostics have been performed for the model performance.

Below table shows the performance of the ARIMA model on certain parameters value.

	RMS	SE MAPE
ARIMA(2,1,2)	39.159403	75.173677

SARIMA MODEL:

Here, we have taken alpha=0.05.

We are going to take the seasonal period as 11 or its multiple e.g. 22. We are taking the pivalue to be 2 and the qivalue also to be 2 as the parameters same as the ARIMA model.

- The Auto-Regressive parameter in an SARIMA model is 'P' which comes from the significant lag after which the PACF plot cuts-off to 2.
- . The Moving-Average parameter in an SARIMA model is 'Q' which comes from the significant lag after which the ADF plot cuts-off to 2.

Here, we have test statistics on model which shows all the AR and MR are significant for the process. Some AR and MR values are more than 0.05 which could show less significance in the analysis.

Dep. Varia	ble:			Rose No.	Observations:		12
Model:	SARI	IMAX(2, 0, 2)x(2, 0, 2	, 11) Log	Likelihood		-436.53
Date:		W	ed, 25 May	2022 AIC			891.07
Time:			23:	24:57 BIC			914.05
Sample:			01-31	-1980 HQIC			900.35
			- 12-31	-1989			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
					0.418		
					-0.497		
ma.L1	-0.7668	7.610	-0.101	0.920	-15.683	14.149	
ma.L2	-0.2328	1.798	-0.129	0.897	-3.757	3.291	
ar.S.L11	0.0291	0.137	0.213	0.832	-0.239	0.297	
ar.S.L22	-0.0054	0.158	-0.034	0.973	-0.315	0.304	
ma.S.L11	-0.1231	0.186	-0.662	0.508	-0.487	0.241	
ma.S.L22	-0.1789	0.214	-0.835	0.404	-0.599	0.241	
sigma2	540.6313	4108.819	0.132	0.895	-7512.507	8593.769	
Ljung-Box	(11) (0):		0 00	Jarque-Bera	(1B):		9 25
Prob(0):	(LI) (Q):			Prob(JB):	(36).		
	acticity (H)		1.08				0.88
	asticity (H):						
Prob(H) (to	wo-sided):		0.82	Kurtosis:			2.84

Significant diagnostics have been performed for the model performance.

Below table shows the performance of the SARIMA model on certain parameters value.

8. Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

Performance of all the built models with their corresponding parameters and RMSE value has been captured in the table for the test data. Based on this table, we can suggest SARIMA model based on ACF and PACF plot perform much better than any other built model.

MAPE	RMSE	
7.440760e+01	3.884463e+01	ARIMA(2,1,3)
7.517368e+01	3.915940e+01	ARIMA(2,1,2)
1.285628e+33	2.060948e+33	SARIMA(1,1,3)(3,0,3,6)
4.803361e+01	2.600800e+01	SARIMA(2,0,2)(2,0,2,11)

9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

SARIMA model with ACF and PACF cut off point parameter is the most optimum model for complete dataset and it is used to predict 12 months into the future with appropriate CI.

This plot signifies about the behaviour of the future predict months.

- 10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.
- In all the built smoothing model, TES with additive decomposition approach has minimum error at place
- We can suggest that SARIMA model based on ACF and PACF cut off plot perform much better than any other time series-built model.
- Based on the result, companies wine sales in Rose segment takes a downtrend in a year by year. We have seen some sudden spikes in a year may be due to some special occasion. If companies works on its quality and marketing campaign, company can stablies the sales downfall. As per predicted plot, Rose wine sales will be stable for the coming year.