Vetor tangente a uma curva paramétrica

Seja C o gráfico de uma função vetorial \vec{r} diferenciável no ponto t_0 . Suponhamos que Se $\vec{r'}(t_0) \neq 0$ e tem o ponto inicial sobre a ponta do vetor $\vec{r}(t_0)$, então o vetor $\vec{r'}(t_0)$ é tangente ao gráfico de \vec{r} e aponta no sentido crescente do parâmetro t.

Funções vetoriais regulares

- Diz-se que r é uma função de classe C¹ (e escreve-se r ∈ C¹(I)) em I se r é diferenciável em I e a função derivada é contínua em I.
- Diz-se que uma função vetorial é regular em I se $\vec{r} \in C^1(I)$ e $\vec{r}'(t) \neq 0$, $\forall t \in I$.

Curvas regulares

Seja C uma curva ou linha orientada no espaço ou no plano.

- Se C é uma curva fechada, diz-se que C é uma curva simples se tiver um único ponto de "sobreposição" (o ponto inicial coincide com o ponto final).
- Se C não é uma curva fechada, diz-se que C é uma curva simples se não tiver pontos de "sobreposição".

Diz-se que C é curva curva regular se for uma curva simples e existir uma função vetorial regular cujo gráfico seja C.

Curvas seccionalmente regulares

Uma curva paramétrica C diz-se seccionalmente regular se é a união de um número finito de curvas regulares C_1, \ldots, C_n , tais que o ponto inicial de C_{i+1} é o ponto terminal de C_i .

Parametrização de uma curva no plano ou no espaço

Seja C uma curva regular correspondente ao gráfico de

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}, \quad t \in I.$$

À curva paramétrica associada

$$(x, y, z) = (f(t), g(t), h(t)), t \in I$$

chamamos parametrização de C e as equações

$$x = f(t), y = g(t), z = h(t), t \in I$$

dizem-se equações paramétricas da curva C.

Linhas- Exemplos

Exemplos

- (a) Considere a linha C em \mathbb{R}^2 definida pela equação $(x-1)^2+(y-2)^2=3$ orientada no sentido anti-horário (ou sentido trigonométrico). Determine uma parametrização de C.
- (b) Dados dois pontos no espaço $P = (x_0, y_0, z_0)$ e $Q = (x_1, y_1, z_1)$ Determine uma parametrização do segmento de reta $\{PQ\}$ orientado de P para Q.
- (c) Considere a linha orientada C em \mathbb{R}^2 definida pela equação $y=x^2$, $0 \le x \le 2$ com ponto inicial (0,0) e ponto final (2,4). Determine uma parametrização de C.

Exemplos

Reta tangente a uma linha simples

Seja C uma linha regular definida pela função vetorial

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}, \quad t \in I.$$

Dado um ponto P_0 pertencente a C, existe $t_0 \in I$ tal que $P_0 = (f(t_0), g(t_0), h(t_0))$.

• Chama-se reta tangente à curva C no ponto P_0 à reta que passa no ponto P_0 e tem vetor diretor $\vec{r}'(t_0)$.

A equação vetorial da reta é dada por

$$(x,y,z) = P_0 + \lambda \vec{r'}(t_0), \quad \lambda \in \mathbb{R}.$$

Exemplo

Determinar a reta tangente à elipse $\frac{x^2}{4} + y^2 = 1$ no ponto $P = (\sqrt{2}, \frac{1}{\sqrt{2}})$.

Reta tangente - Exemplo

Seja

Curvas - Trajetórias - Vetores velocidade e aceleração

As trajetórias de partículas que se movem no plano ou no espaço são descritas por curvas paramétricas onde o parâmetro corresponde ao tempo.

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}, \quad t \in I$$

a trajetória (duas vezes diferenciável) de uma partícula que se move no espaço.

O vetor velocidade no instante t_0 é dado por $\vec{r}'(t_0)$.

O vetor aceleração no instante t_0 é dado por $\vec{r}''(t_0)$.

Integração de funções vetoriais

Seja $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ uma função vetorial contínua definida no intervalo [a, b], a < b, com valores em \mathbb{R}^3 .

$$\int_a^b \vec{r}(t) dt = \left(\int_a^b x(t) dt \right) \vec{i} + \left(\int_a^b y(t) dt \right) \vec{j} + \left(\int_a^b z(t) dt \right) \vec{k}.$$

Exemplo

Seja
$$\vec{r}(t) = t^2 \vec{i} + e^t \vec{j} - 2 \cos t \vec{k}$$
. Determine $\int_0^1 \vec{r}(t) dt$.

Integração de funções vetoriais

Sejam $\vec{r_1}$ e $\vec{r_2}$ funções vetoriais contínuas definidas no intervalo [a,b], a < b com valores em \mathbb{R}^3 (ou em \mathbb{R}^2). Seja λ uma constante real. Então:

(a)
$$\int_a^b \lambda \, \vec{r_1}(t) \, dt = \lambda \int_a^b \, \vec{r_1}(t) \, dt$$
;

(b)
$$\int_a^b (\vec{r}_1(t) + \vec{r}_2(t)) dt = \int_a^b \vec{r}_1(t) dt + \int_a^b \vec{r}_2(t) dt$$
.

Primitivação de funções vetoriais

Seja $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ uma função vetorial contínua definida no intervalo $[a,b],\ a < b,$ com valores em \mathbb{R}^3 .

$$\int \vec{r}(t) dt = \left(\int x(t) dt \right) \vec{i} + \left(\int y(t) dt \right) \vec{j} + \left(\int z(t) dt \right) \vec{k}.$$

Exemplo

Considere a função vetorial $\vec{r}(t) = t \vec{i} + \cos t \vec{j}$ com valores em \mathbb{R}^2 e determine $\int \vec{r}(t) dt$.

Comprimento de uma curva

Seja C uma curva regular em \mathbb{R}^3 (ou em \mathbb{R}^2) gráfico da função vetorial regular

$$\vec{r}:[a,b]\to\mathbb{R}^3\quad (\mathbb{R}^2).$$

Então o comprimento da curva C é dado por

$$L = \int_a^b \left\| \frac{d\vec{r}}{dt}(t) \right\| dt.$$

Exemplo

Considere a função vetorial

$$\vec{r}(t) = \cos t \, \vec{i} + \sin t \vec{j} + \vec{k}, \quad 0 \le t \le 2\pi.$$

Seja C o gráfico de \vec{r} . Determine o comprimento de C.

Função comprimento de arco

Para $c \in I$, define-se a função comprimento de arco que verifica s(c) = 0 por

$$s(t) = \int_c^t \left\| \frac{d\vec{r}}{d\tau}(\tau) \right\| d\tau.$$

Comprimento de arco

Seja $c, d \in I$, c < d. O comprimento do arco correspondente a $c \le t \le d$ é dado por

$$L = \int_{c}^{d} \left\| \frac{d\vec{r}}{dt}(t) \right\| dt.$$

Exemplo

Considere a função vetorial

$$\vec{r}(t) = \cos t \, \vec{i} + \sin t \vec{j} + 2t \vec{k}, \quad 0 \le t \le 2\pi.$$

Seja C o gráfico de r.

- (a) Determine a função comprimento de arco $s(\cdot)$ que verifica s(0) = 0.
- (b) Determine o comprimento do arco da curva C correspondente a $0 < t < \pi$.

Exemplo

Parametrização associada ao comprimento de arco

Seja C uma curva regular e

$$(x, y, z) = (f(t), g(t), h(t)), t \in [a, b]$$

uma parametrização de C.

Seja

$$s: [a, b] \rightarrow [\alpha, \beta]$$

a função comprimento de arco tal que s(a) = 0. A função s(t) é invertível. Seja t = t(s) a função inversa

$$t: [\alpha, \beta] \rightarrow [a, b].$$

 A parametrização associada ao comprimento de arco é definida por

$$(x, y, z) = (f(t(s)), g(t(s)), h(t(s))), s \in [\alpha, \beta].$$

Exemplo

Exemplo

Seja

$$(x, y, z) = (\cos t, \sin t, t), \quad t \in [0, 2\pi]$$

uma parametrização de uma curva regular C em \mathbb{R}^3 . Determine a parametrização associada ao comprimento de arco.

Vetor tangente unitário

Seja C uma curva regular em \mathbb{R}^3 (ou em \mathbb{R}^2) definida pela função vetorial regular $\vec{r}: [a,b] \to \mathbb{R}^3$ (\mathbb{R}^2). Define-se

- vetor tangente unitário à curva C no instante t_0 $\vec{T}(t_0) = \frac{\vec{n}(t_0)}{\|\vec{n}(t_0)\|};$
- se o parâmetro da função vetorial for o comprimento de arco $\vec{r} = \vec{r}(s), \ \vec{T}(s_0) = \vec{r}'(s_0)$ uma vez que $\|\vec{r}'(s_0)\| = 1$.

Vetor normal unitário principal

- O vetor normal unitário principal à curva C no instante t_0 é $\vec{N}(t_0) = \frac{\vec{T}\prime(t_0)}{\|\vec{T}\prime(t_0)\|}$, no caso de $\vec{T}\prime(t_0) \neq \vec{0}$. Para curvas no plano, o vetor $\vec{N}(t_0)$ diz-se normal unitário interior (corresponde ao vetor $n(t_0)$ que aponta para o lado concavo da curva).
- se o parâmetro da função vetorial for o comprimento de arco $\vec{r} = \vec{r}(s), \ \vec{N}(s_0) = \frac{\vec{r}''(s_0)}{\|\vec{r}''(s_0)\|}$

