演習問題

線形代数続論演習の授業をとってない人もいるようなので、期末試験前にいくつか演習問題を挙げておきます。これらの演習問題の解答は6月27日(月)に次のページにアップロードします(土日にやってみて、月曜に答え合わせ、という感じで使ってみてください):

http://www.math.tsukuba.ac.jp/~amano/lec2011-1/ad-linear/index.html

K を実数全体 $\mathbb R$ または複素数全体 $\mathbb C$ とする.

演習 0.1~K[X] を K 係数の 1 変数多項式全体のなすベクトル空間とする.

- (1)~K[X] の 3 つの元 $1+X,~X-X^3,~1+X^3$ で生成される部分空間 $\langle 1+X,X-X^3,1+X^3 \rangle$ の次元を求めよ.
 - (2) $\langle 1+X, X+X^3, 1+X^3 \rangle$ の次元を求めよ.

演習 0.2 (1) \mathbb{R}^3 の 2 組の基底 $\{e_1, e_2, e_3\}$ および $\{e_1', e_2', e_3'\}$ を次のように与える:

$$m{e}_1 = \left(egin{array}{c} 1 \ 0 \ 0 \end{array}
ight), \; m{e}_2 = \left(egin{array}{c} 0 \ 1 \ 0 \end{array}
ight), \; m{e}_3 = \left(egin{array}{c} 0 \ 0 \ 1 \end{array}
ight); \; m{e}_1' = \left(egin{array}{c} 1 \ -1 \ 0 \end{array}
ight), \; m{e}_2' = \left(egin{array}{c} 0 \ 1 \ -1 \end{array}
ight), \; m{e}_3' = \left(egin{array}{c} 1 \ 0 \ 1 \end{array}
ight).$$

このとき、基底 $\{e_1,e_2,e_3\}$ から $\{e_1',e_2',e_3'\}$ への基底の変換行列を求めよ.

(2) \mathbb{R}^2 の 2 組の基底 $\{v_1, v_2\}$ と $\{v_1', v_2'\}$ を次のように与える:

$$oldsymbol{v}_1 = \left(egin{array}{c} rac{1}{2} \ rac{1}{2} \end{array}
ight), \; oldsymbol{v}_2 = \left(egin{array}{c} rac{1}{2} \ -rac{1}{2} \end{array}
ight) \; ; \; \; oldsymbol{v}_1' = \left(egin{array}{c} 1 \ 0 \end{array}
ight), \; oldsymbol{v}_2' = \left(egin{array}{c} 0 \ 1 \end{array}
ight).$$

このとき、基底 $\{v_1',v_2'\}$ から $\{v_1,v_2\}$ への基底の変換行列を求めよ.

- (3) 線形写像 $f: \mathbb{R}^3 \to \mathbb{R}^2$ を $f(e_1) = v_1$, $f(e_2) = -v_2$, $f(e_3) = -v_1$ により定義する. このとき, \mathbb{R}^3 の基底 $\{e_1, e_2, e_3\}$ および \mathbb{R}^2 の基底 $\{v_1, v_2\}$ に関する f の表現行列を求めよ.
 - (4) 基底 $\{e_1',e_2',e_3'\}$ および $\{v_1',v_2'\}$ に関する f の表現行列を求めよ.

演習 $0.3~K[X]_n$ を n 次以下の多項式全体からなる K[X] の部分空間とする. 線形写像 $f:K[X]_2 \to K[X]_3$ を

$$f(a+bX+cX^2) = (a+b+c) + (a-b-c)X + 2aX^2 + (3a+b+c)X^3 \quad (a,b,c \in K)$$

により定義する.

- (1) $K[X]_2$ の基底 $\{1,X,X^2\}$ および $K[X]_3$ の基底 $\{1,X,X^2,X^3\}$ に関する f の表現行列を求めよ.
 - (2) Ker f の基底を 1 組求めよ.
 - (3) Im f の基底を 1 組求めよ.
 - $(4) \operatorname{rank} f + \operatorname{null} f = \dim K[X]_2$ を確かめよ.

演習 0.4~U,V をベクトル空間, $f:U\to V$ を線形写像とする.

- (1) f が単射 \Leftrightarrow $\operatorname{Ker} f = \{0\}$ を示せ.
- (2) U,V が有限次元であったとする. $\dim U=m, \dim V=n$ とし、U の基底 $\{u_1,\ldots,u_m\}$ および V の基底 $\{v_1,\ldots,v_n\}$ に関する f の表現行列を A とする. また、線形写像 $L_A:K^m\to K^n$ を $L_A(x)=Ax$ により定める. このとき、 $\ker f$ と $\ker L_A$ が同型であることを示せ.
 - (3) 上記で、 さらに $\operatorname{Im} f$ と $\operatorname{Im} L_A$ も同型であることを示せ.

演習 0.5 次のエルミート行列 (実対称行列) をユニタリ行列 (直交行列) によって対角 化せょ