Examen Terminal 2017-2018

Durée: 2h.

Documents autorisés: 2 pages manuscrites recto-verso, tables statistiques (8 pages), calculatrice programmable (celle du Bac).

Recommandations : soin dans la rédaction et l'orthographe ; inutile de recopier les notes de cours au hasard ; indiquer lorsque c'est explicitement demandé l'expression formelle des statistiques utilisées pour produire les valeurs numériques obtenues ; répondre dans les champs grisés et directement sur le sujet.

Barême: Il est seulement indicatif et proposé ici sur 40 points.

Exercice 1 (15 points):

Un laboratoire utilise un appareil de mesure optique destiné à mesurer la concentration des solutions de fluoresceïne. Les résultats des mesures sont modélisés par une variable aléatoire normale dont l'espérance μ est égale à la concentration réelle de la solution, et l'écart-type, garanti par le constructeur, est connu et vaut $\sigma=0.05$.

1. (3 points) On effectue 9 mesures à partir d'une solution donnée. La moyenne empirique des 9 mesures est 4.38 mg/l. Donner un intervalle de confiance pour la concentration réelle de la solution, au niveau de confiance 0.99.

Solution:

— l'expression formelle de l'intervalle utilisé est :

$$I(\qquad ;\alpha) = \Big[\qquad \qquad ;$$

— **A.N.** : pour $\bar{x}=$; n= ; $\alpha=$; ... on obtient : $I_{calc}($;) = [;]

2. (2 points) Pour le même échantillon, quel est le niveau de confiance de l'intervalle [4.36; 4.40]?

Solution:	

3. (2 points) Quelle devrait être la taille de l'échantillon pour connaître la concentration réelle de la solution, au niveau de confiance 0.99 avec une précision de $\pm 0.01mg/l$?

Solution:

4. (4 points) Sur le même échantillon de 9 mesures, on a observé un écart-type empirique de 0.08mg/l. Donner un intervalle de confiance pour **l'écart-type réel**, de niveau de confiance 0.99. Que pensez-vous de la garantie du constructeur?

Solution:

Dans ce cas l'intervalle de confiance pour ... est donné par :

$$I(\qquad ;\alpha) = \left[\qquad \qquad ; \qquad \qquad \right]$$

et pour l'échantillon observé on a :

 $\mathbf{A.N.}: \alpha = , n = , \dots$ d'où :

$$I_{calc}(;) = [;]$$

et on en déduit l'intervalle de confiance sur σ : ...

$$I_{calc}(;) = [;]$$

Commentaire:

5. (3 points) Reprendre la première question, en supposant cette fois que l'écart-type de la loi des mesures est inconnu, et estimé.

Solution:

- L'estimation sans biais de σ est $\hat{\sigma} = ...$
- Dans ce cas l'intervalle de confiance pour ... est donné par :

$$I(\qquad ;\alpha) = [\qquad \qquad ;$$

et pour l'échantillon observé on a :

A.N. :
$$\alpha =$$
 , $n =$, ... d'où :

$$I_{calc}(;) = [;$$

 $6. \ (1 \ point)$ Comparer les intervalles obtenus dans la première et la dernière question et commenter :

Solution:

Exercice 2 (6 points):

Une clinique a proposé une nouvelle opération chirurgicale, et a connu 160 réussites, sur 200 tentatives. On note p le pourcentage de réussite de cette nouvelle opération.

1. (1 point) Quelle estimation de p proposez-vous?

Solution:

 $\hat{p} = =$

2. (3 points) En utilisant l'approximation normale, donner un intervalle de confiance pour p de niveau de confiance approximatif 0.95 :

Solution:

L'expression formelle de l'intervalle utilisé est donné par :

$$I(; \alpha) = [;$$

A.N.: pour
$$\hat{p} = ; n = ; \alpha = ; \dots$$
 on obtient :

 $I_{calc}(;) = [;]$

3. (2 points) Combien d'opérations la clinique devrait-elle réaliser pour connaître le pourcentage de réussite avec une précision de plus ou moins 1%, au niveau de confiance 0.95 (on supposera que \hat{p} est celui obtenu précédemment)?

Solution:

Exercice 3 (6 points):

Neuf malades présentant des symptômes d'anxiété reçoivent un tranquillisant. On évalue l'état du malade avant et après traitement par un indice que le médecin traitant calcule d'après les réponses à une série de questions. Si le traitement est efficace, l'indice doit diminuer. Les valeurs observées de cet indice sur les 9 patients sont les suivantes :

Avant	11		l						1 1
Après	0.88	0.65	0.59	2.05	1.06	1.29	1.06	3.14	1.29

1. (1 point) Les échantillons sont-ils appariés ou indépendants?

Solution:

2. (1 point) Préciser les hypothèses de modélisation :

Solution:

3. (4 points) Mettre en oeuvre le test au niveau 5%.

Solution:

— Poser les hypothèses du test :

 \mathcal{H}_0 : \mathcal{H}_1 :

— La statistique de test et la région de rejet sont données par :

$$T =$$
 et $W_{\alpha} = \{$

— **A.N.**: $n = , \alpha = , ...$

$$T_{calc} =$$
 et $W_{0.05} = \{$

— Conclusion littérale :

Exercice 4 (9 points)

Pour déterminer le poids moyen d'un épi de blé appartenant à deux variétés, on procède à 9 pesées pour chaque variété. On donne les moyennes et variances empiriques des deux échantillons :

$$\bar{x} = 170;$$
 $\bar{y} = 168;$ $s_x^2 = 432;$ $s_y^2 = 182.$

On notera X le poids d'un épi de la première variété et Y celui de la seconde, μ_x , μ_y leurs espérances respectives, σ_x^2 , σ_y^2 leurs variances respectives et n_x , n_y les tailles des échantillons.

1. (1 point) Préciser les hypothèses de modélisation.

Solution:

2. (4 points) Tester l'égalité des variances au niveau $\alpha = 5\%$:

Solution:

— Poser les hypothèses du test :

$$\mathcal{H}_0$$
: \mathcal{H}_1 :

— La statistique de test et la région de rejet sont données par :

$$T =$$
 et $W_{\alpha} = \{T...$ ou $T...$ $\}$

—
$$\mathbf{A.N.}: n_x = n_y = \dots$$

 $T_{calc} = \text{ et } W_{0.05} = \{T... \text{ ou } T...$

— Comme $T_{calc}\ \dots\ W_{0.05}$ dans un test de niveau 5% on concluera \dots

3. (4 points) Compte tenu du résultat précédent, indiquer l'hypothèse supplémentaire à faire sur le modèle pour pouvoir comparer les espérances de X et Y et mettre en oeuvre le test permettant de savoir si les deux espèces sont en moyenne significativement différentes :

Solution	n	•

- Hypothèse à rajouter sur le modèle :
- Hypothèses du test :

$$\mathcal{H}_0$$
: \mathcal{H}_1 :

— Statistique de test et région de rejet :

$$T = \text{et } W_{\alpha} = \{$$

— Calcul de T et de la p-valeur :

$$T_{calc} = ; p - valeur =$$

— Conclusion littérale :

Exercice 5 (4 points):

On souhaite savoir si un dé à six faces déclaré non pipé l'est réellement. On fait 120 tirages de ce dé et on relève les données suivantes :

Face obtenue	1	2	3	4	5	6
Effectifs obs.	15	15	25	25	26	14

1. (4 points) Proposer un test statistique pour répondre à cette question. Indiquer les hypothèses testées, le test (statistique de test et région de rejet au niveau α) et les conditions à vérifier avant sa mise en oeuvre. Calculer la statistique de test et la p-valeur du test, puis donner une conclusion littérale.

Solution: