Scuola universitaria professionale della Svizzera italiana Bachelor di Ingegneria Informatica

SUPSI

Machine Learning Lezione 6 - Classificazione

Loris Cannelli, Ricercatore, IDSIA-SUPSI loris.cannelli@supsi.ch

IDSIA-SUPSI, Polo universitario Lugano - Dipartimento Tecnologie Innovative

▶ Immaginiamo di avere N oggetti/dati $\mathbf{x}_1, \dots, \mathbf{x}_N$ di dimensione D

- ▶ Immaginiamo di avere N oggetti/dati $\mathbf{x}_1, \dots, \mathbf{x}_N$ di dimensione D
- ▶ Ipotizziamo che esistano C diverse Classi di appartenenza e che ogni oggetto \mathbf{x}_n sia associato ad una delle classi $t_n \in \{1, \dots, C\}$

- ▶ Immaginiamo di avere N oggetti/dati $\mathbf{x}_1, \dots, \mathbf{x}_N$ di dimensione D
- ▶ Ipotizziamo che esistano C diverse Classi di appartenenza e che ogni oggetto \mathbf{x}_n sia associato ad una delle classi $t_n \in \{1, \dots, C\}$
- Vogliamo capire a quale classe t_{new} appartiene un nuovo oggetto x_{new}

- ▶ Immaginiamo di avere N oggetti/dati $\mathbf{x}_1, \dots, \mathbf{x}_N$ di dimensione D
- ▶ Ipotizziamo che esistano C diverse Classi di appartenenza e che ogni oggetto \mathbf{x}_n sia associato ad una delle classi $t_n \in \{1, \dots, C\}$
- Vogliamo capire a quale classe t_{new} appartiene un nuovo oggetto x_{new}

⇒ Classificazione

- ► Idea chiave:
 - Se cammina come un'anatra e fa quack come un'anatra, allora probabilmente è un'anatra

- ► Idea chiave:
 - Se cammina come un'anatra e fa quack come un'anatra, allora probabilmente è un'anatra

	Training instances					
Instance ID	ATTRIB1	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS	
#1	0.4	0.5	0.6	0.3	C_1	
#2	0.1	0.6	0.9	0.3	C_0	
#3	0.1	0.1	1.0	0.8	C_1	
Test instance (Query)						
	ATTRIB1	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS	
q	0.6	0.4	0.0	0.3	?	
_			_			

KNN: calcola la distanza Euclidea tra le voci di training e quella di test (la query) da classificare.

	Training instances					
Instance ID	ATTRIB1	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS	
#1	0.4	0.5	0.6	0.3	C_1	
#2	0.1	0.6	0.9	0.3	C_0	
#3	0.1	0.1	1.0	0.8	C_1	
Test instance (Query)						
	ATTRIB1	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS	
q	0.6	0.4	0.0	0.3	?	
_						

KNN: calcola la distanza Euclidea tra le voci di training e quella di test (la query) da classificare.

Esempio: Distanza tra la voce di test e la prima di training

$$d(\#1,q) = \sqrt{(0.6-0.4)^2 + (0.5-0.4)^2 + (0.6)^2 + 0^2} = 0.64$$

► Salva tutti i dati di training

- Salva tutti i dati di training
- ► Calcola la distanza tra ogni dato di training e il dato di test

- Salva tutti i dati di training
- Calcola la distanza tra ogni dato di training e il dato di test
- ▶ Identifica i K dati di training che sono più vicini al dato di test

- Salva tutti i dati di training
- Calcola la distanza tra ogni dato di training e il dato di test
- ▶ Identifica i K dati di training che sono più vicini al dato di test
- Predici la classe a maggioranza

	Training instances				
Instance ID	ATTRIB1	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS
#1	0.4	0.5	0.6	0.3	C_1
#2	0.1	0.6	0.9	0.3	C_0
#3	0.1	0.1	1.0	0.8	C_1
Test instance (Query)					
	ATTRIB1	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS
q	0.6	0.4	0.0	0.3	?
_					

Le distanze tra il dato di test e quelli di training:

$$d(\#1,q) = 0.64$$

$$d(\#2,q)=1.04$$

$$d(\#3,q)=0.77$$

	Training instances					
Instance ID	ATTRIB1	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS	
#1	0.4	0.5	0.6	0.3	C_1	
#2	0.1	0.6	0.9	0.3	C_0	
#3	0.1	0.1	1.0	0.8	C_1	
Test instance (Query)						
	ATTRIB1	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS	
q	0.6	0.4	0.0	0.3	?	
_						

- Le distanze tra il dato di test e quelli di training:
 - d(#1,q)=0.64
 - d(#2,q)=1.04
 - d(#3,q)=0.77
- ightharpoonup Con K=1
 - ightharpoonup Cerca la distanza minore ($\Rightarrow #1$)
 - Assegna il dato di test alla classe C_1

Due classi; K = 3; distanza Euclidea

- ▶ Due classi; K = 3; distanza Euclidea
- Ogni simbolo + rappresenta il training set di una classe; il rappresenta il training set di un'altra classe

- ▶ Due classi; K = 3; distanza Euclidea
- Ogni simbolo + rappresenta il training set di una classe; il rappresenta il training set di un'altra classe
- In questo esempio i 3 oggetti più vicini al dato di test sono dei +, quindi il dato di test è assegnato a quella classe

- La classificazione cambia a seconda di K: in questo esempio 1-NN classifica con il -, ma 3-NN con il +
- ► Si consiglia di scegliere K dispari in modo che non si verifichino classificazioni incerte come nel caso (b)

Nel caso K=1 si può dare un'interpretazione geometrica del metodo 1-NN rappresentando ogni dato di training come un punto nello spazio degli attributi

- Nel caso K=1 si può dare un'interpretazione geometrica del metodo 1-NN rappresentando ogni dato di training come un punto nello spazio degli attributi
- Per ogni dato di training, si disegna una regione (cella di Voronoi) comprendente tutti i punti che sono più vicini a quel dato di training rispetto che a qualsiasi altro dato

- Nel caso K=1 si può dare un'interpretazione geometrica del metodo 1-NN rappresentando ogni dato di training come un punto nello spazio degli attributi
- Per ogni dato di training, si disegna una regione (cella di Voronoi) comprendente tutti i punti che sono più vicini a quel dato di training rispetto che a qualsiasi altro dato
- Le regioni di Voronoi creano una partizione dello spazio basata sulla distanza tra punti

- Una regione di Voronoi racchiude tutti i punti che sono più vicini a un dato di training rispetto che a tutti gli altri
- Per fare classificazione è sufficiente vedere in quale regione cade il dato di test e controllare la classe del dato di training associato

- Valori piccoli di K possono essere inaffidabili perché si basano su pochi elementi per classificare
- ▶ Valori alti di K hanno il problema che possono prendere in considerazione dati di training troppo lontani che appartengono alla classe sbagliata
- ► Scelte comuni: *K* = 1, 5, 10

Con K = 1 la classificazione è ancora inaccurata

- ▶ Quando K è troppo elevato la classificazione perde di significato
- Esempio: Immaginiamo un caso con $N_0=10$ dati di training per la classe 0 e $N_1=60$ per la classe 1. Se si scegliesse $K\geq 21$ qualsiasi dato di test sarebbe associato sempre alla classe 1

(a) Binary classification dataset. Note the class inbalance: the grey squares class has fewer members than the white circles

(b) Average cross-validation error as K is increased

 Standardizzare gli attributi è necessario per prevenire che le distanze calcolate siano affette dalle unità di misura

Esempio

- ▶ l'altezza di una persona può variare tra 1.50m e 1.80m
- ▶ il peso di una persona può variare tra 40kg e 130kg
- ▶ il reddito di una persona può variare tra \$10K e \$1M

 Standardizzare gli attributi è necessario per prevenire che le distanze calcolate siano affette dalle unità di misura

Esempio

- ▶ l'altezza di una persona può variare tra 1.50m e 1.80m
- ▶ il peso di una persona può variare tra 40kg e 130kg
- ▶ il reddito di una persona può variare tra \$10K e \$1M
- Standardizzare rende gli attributi numericamente confrontabili

 Standardizzare gli attributi è necessario per prevenire che le distanze calcolate siano affette dalle unità di misura

Esempio

- ▶ l'altezza di una persona può variare tra 1.50m e 1.80m
- ▶ il peso di una persona può variare tra 40kg e 130kg
- ▶ il reddito di una persona può variare tra \$10K e \$1M
- ▶ Standardizzare rende gli attributi numericamente confrontabili
- Una delle standardizzazioni più comuni rende tutti gli attributi a media 0 e deviazione standard 1 (ne esistono molte altre, come il min-max scaling)

- Per standardizzare un attributo si sottrae la media e si divide il risultato per la deviazione standard
- Dopo la standardizzazione, l'attributo ha media 0 e deviazione standard 1

$$[\mathbf{z}_n]_i = \frac{[\mathbf{x}_n]_i - \bar{x}_i}{\sigma_{x_i}}$$

- Per standardizzare un attributo si sottrae la media e si divide il risultato per la deviazione standard
- Dopo la standardizzazione, l'attributo ha media 0 e deviazione standard 1

$$[\mathbf{z}_n]_i = \frac{[\mathbf{x}_n]_i - \bar{\mathbf{x}}_i}{\sigma_{\mathbf{x}_i}}$$

- $ightharpoonup [\mathbf{z}_n]_i$ è l'attributo *i*-esimo dell'oggetto *n*-esimo dopo la standardizzazione
- [x_n]_i è l'attributo i-esimo dell'oggetto n-esimo prima della standardizzazione
- $ightharpoonup \bar{x}_i$ è la media dell'attributo *i*-esimo calcolata sul training set
- $ightharpoonup \sigma_{x_i}$ è la deviazione standard *i*-esimo calcolata sul training set

$$ar{\mathbf{x}}_i \triangleq \frac{1}{N} \sum_{t=1}^N [\mathbf{x}_t]_i; \quad \sigma_{\mathbf{x}_i} \triangleq \sqrt{\frac{1}{N-1} \sum_{t=1}^N ([\mathbf{x}_t]_i - \bar{\mathbf{x}}_i)^2}$$

- Prima si standardizza ogni attributo di ogni dato del training set
- Poi si salva la media e la deviazione standard utilizzate per la standardizzazione
- Quando un dato da classificare viene ricevuto, questo va prima standardizzato
- La classificazione si effettua sul dato standardizzato utilizzando il training set standardizzato

	Unstandardized training set and query			
Instance	ATTRIB1	ATTRIB 2	CLASS	
#1	0.3	50	C_1	
#2	0.1	60	C_0	
#3	-0.1	20	C_1	
••••				
mean	0.1	50		
std. dev	0.1	15		
query	0.2	70		
	Standardized training set and query			
	ATTRIB1	ATTRIB 2	CLASS	
#1	2	0	C_1	
#2	0	0.66	C_0	
#3	-2	-2	C_1	
query	1	1.33		

Weighted NN

- Ad ogni dato del training set viene dato un peso inversamente proporzionale alla distanza dal dato da classificare
- Si classificano i dati di test come appartenenti alla classe con la somma di pesi più elevata tra i K elementi più vicini

Neighbor	Class	Distance from query	Inverse of distance (weight)
1	Yes	0.1	10
2	No	0.2	5
3	Yes	0.5	2

 Si possono scegliere molti modi diversi per costruire i pesi (inverso del quadrato delle distanze, ecc.)

Invece di mantenere tutti i dati del training set e calcolare la distanza da ciascuno di essi, per risparmiare tempo e costo computazionale si può derivare da essi dei prototipi e utilizzare questi ultimi per la classificazione

Invece di mantenere tutti i dati del training set e calcolare la distanza da ciascuno di essi, per risparmiare tempo e costo computazionale si può derivare da essi dei prototipi e utilizzare questi ultimi per la classificazione

- ► Editing:si cancellano dati/attributi senza derivarne di nuovi
- Condensing: si aggiungono nuovi dati, derivati da quelli già presenti

Invece di mantenere tutti i dati del training set e calcolare la distanza da ciascuno di essi, per risparmiare tempo e costo computazionale si può derivare da essi dei prototipi e utilizzare questi ultimi per la classificazione

- ► Editing:si cancellano dati/attributi senza derivarne di nuovi
- Condensing: si aggiungono nuovi dati, derivati da quelli già presenti

Invece di mantenere tutti i dati del training set e calcolare la distanza da ciascuno di essi, per risparmiare tempo e costo computazionale si può derivare da essi dei prototipi e utilizzare questi ultimi per la classificazione

- Editing:si cancellano dati/attributi senza derivarne di nuovi
- Condensing: si aggiungono nuovi dati, derivati da quelli già presenti

Vantaggi

- non è più necessario calcolare un elevato numero di distanze
- i dati ottenuti dal condensing sono spesso più affidabili e robusti (si riduce il rischio di affidarsi ad outliers)

Invece di mantenere tutti i dati del training set e calcolare la distanza da ciascuno di essi, per risparmiare tempo e costo computazionale si può derivare da essi dei prototipi e utilizzare questi ultimi per la classificazione

- ► Editing:si cancellano dati/attributi senza derivarne di nuovi
- Condensing: si aggiungono nuovi dati, derivati da quelli già presenti

Vantaggi

- non è più necessario calcolare un elevato numero di distanze
- ▶ i dati ottenuti dal condensing sono spesso più affidabili e robusti (si riduce il rischio di affidarsi ad outliers)

Un singolo dato di condensing per una classe può essere derivato per esempio come vettore medio (*centroide*) dei vettori di quella classe nel training set. Altrimenti si applicano processi di *vector quantization* o *clustering*

0/1 loss

 Si conta il numero di errori di classificazione fatti e lo si divide per il numero totale di test effettuati

0/1 loss

- Si conta il numero di errori di classificazione fatti e lo si divide per il numero totale di test effettuati
- Il numero risultante indica la proporzione di test per cui il classificatore sbaglia

0/1 loss

- Si conta il numero di errori di classificazione fatti e lo si divide per il numero totale di test effettuati
- Il numero risultante indica la proporzione di test per cui il classificatore sbaglia
- Svantaggi: in un test binario in cui, ad esempio, un alto numero di dati appartiene alla Classe 0, un classificatore difettoso che classifica ogni dato di test come appartenente alla Classe 0 avrebbe buone performances secondo questa 0/1 loss

► True Positives (TP): il numero di dati appartenente alla Classe 1 correttamente classificati come Classe 1

- True Positives (TP): il numero di dati appartenente alla Classe 1 correttamente classificati come Classe 1
- True Negatives (TN): il numero di dati appartenente alla Classe 0 correttamente classificati come Classe 0

- True Positives (TP): il numero di dati appartenente alla Classe 1 correttamente classificati come Classe 1
- True Negatives (TN): il numero di dati appartenente alla Classe 0 correttamente classificati come Classe 0
- ► False Positives (FP): il numero di dati appartenente alla Classe 0 erroneamente classificati come Classe 1

- True Positives (TP): il numero di dati appartenente alla Classe 1 correttamente classificati come Classe 1
- True Negatives (TN): il numero di dati appartenente alla Classe 0 correttamente classificati come Classe 0
- ► False Positives (FP): il numero di dati appartenente alla Classe 0 erroneamente classificati come Classe 1
- ► False Negatives (TN): il numero di dati appartenente alla Classe 1 erroneamente classificati come Classe 0

Sensitività

$$S_{e} \triangleq \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

La proporzione delle persone appartenenti alla Classe 1 (TP+FN) che è correttamente classificata (TP)

Specificità

$$S_p \triangleq \frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}}$$

La proporzione delle persone appartenenti alla Classe 0 (TN+FP) che è correttamente classificata (TN)

Sensitività

$$S_e \triangleq \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

La proporzione delle persone appartenenti alla Classe 1 (TP+FN) che è correttamente classificata (TP)

Specificità

$$S_p \triangleq \frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}}$$

La proporzione delle persone appartenenti alla Classe 0 (TN+FP) che è correttamente classificata (TN)

ldealmente vorremmo $S_e = S_p = 1$

Sensitività

$$S_e \triangleq \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

La proporzione delle persone appartenenti alla Classe 1 (TP+FN) che è correttamente classificata (TP)

Specificità

$$S_p \triangleq \frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}}$$

La proporzione delle persone appartenenti alla Classe 0 (TN+FP) che è correttamente classificata (TN)

- ldealmente vorremmo $S_e = S_p = 1$
- ▶ Quale valore è più importante? Dipende dall'applicazione. Ad esempio, se stiamo facendo un test per scoprire se alcune persone sono malate (Classe 1), è più importante avere alti valori di S_e rispetto a quelli per S_p

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di S_e e S_p

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di S_e e S_p

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di S_e e S_p

 I classificatori migliori hanno il picco della curva il più possibile vicino all'angolo in alto a sinistra

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di S_e e S_p

- I classificatori migliori hanno il picco della curva il più possibile vicino all'angolo in alto a sinistra
- Area Under the Curve (AUC) è un indicatore univoco che descrive la qualità di un classificatore.

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di $S_{\rm e}$ e S_p

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di S_e e S_p

Area Under the Curve (AUC) è un indicatore univoco che descrive la qualità di un classificatore.

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di S_e e S_p

- Area Under the Curve (AUC) è un indicatore univoco che descrive la qualità di un classificatore.
 - ▶ AUC = 0.5 ⇒ Peggior classificatore (è equivalente a lanciare una moneta e scegliere la classe a seconda del risultato)

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di S_e e S_p

- ► Area Under the Curve (AUC) è un indicatore univoco che descrive la qualità di un classificatore.
 - ► AUC = 0.5 ⇒ Peggior classificatore (è equivalente a lanciare una moneta e scegliere la classe a seconda del risultato)
 - ▶ AUC = $1 \Rightarrow$ Miglior classificatore (0 errori)

La curva Receiver Operating Characteristic (ROC) serve a dare un'interpretazione grafica della validità di un classificatore basandosi sui valori di S_e e S_p

- Area Under the Curve (AUC) è un indicatore univoco che descrive la qualità di un classificatore.
 - ► AUC = $0.5 \Rightarrow$ Peggior classificatore (è equivalente a lanciare una moneta e scegliere la classe a seconda del risultato)
 - ▶ AUC = $1 \Rightarrow$ Miglior classificatore (0 errori)
- Svantaggio: cosa fare quando ci sono più di due classi?

⇒ Confusion Matrix

Confusion Matrix

Struttura di una Confusion Matrix per un problema di classificazione binaria

		True class				
		1	0			
Predicted class	1	TP	FP			
Fredicted class	0	FN	TN			

Confusion Matrix

Confusion Matrix per un problema multiclass con 20 classi

			True class																		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	18	18	19	20
	1	242	3	3	0	1	0	0	1	0	4	2	0	2	10	4	7	1	12	7	47
	2	0	296	33	8	8	42	9	1	1	0	0	4	18	7	8	2	0	1	1	3
	3	0	6	209	15	9	8	4	0	0	0	0	1	0	1	0	1	0	0	0	0
	4	0	12	60	303	36	12	46	2	0	1	0	1	28	3	0	0	0	0	0	0
	5	0	8	10	22	277	2	21	0	0	1	0	2	7	0	0	1	1	0	0	0
	6	1	21	30	2	2	304	0	1	0	3	0	1	3	0	1	2	0	0	1	0
	7	0	1	0	5	5	1	235	5	1	2	0	1	1	0	0	0	1	0	0	0
class	8	0	3	1	6	4	0	31	356	25	3	1	0	9	4	0	0	2	2	1	0
	9	0	2	2	0	1	2	5	4	353	1	0	0	2	0	1	0	1	1	0	1
Predicted	10	0	0	2	0	1	1	0	2	2	348	4	0	0	1	0	0	1	1	0	0
<u>:</u>	11	1	0	1	1	0	0	1	0	0	16	382	0	1	0	1	0	1	1	0	0
· 18	12	1	16	16	5	4	10	3	1	1	2	0	360	45	0	4	1	3	4	3	1
Ъ	13	1	4	1	24	16	0	9	5	1	2	0	3	260	3	4	0	0	0	0	0
	14	. 2	3	4	0	8	0	2	0	1	0	2	2	6	324	4	1	1	0	3	3
	15	3	7	4	1	2	3	3	2	0	0	1	0	4	3	336	0	2	0	7	5
	16	39	4	5	0	0	1	3	1	1	3	2	2	5	17	4	376	3	7	2	68
	17	4	0	0	0	3	1	1	5	4	1	0	9	0	3	1	3	325	3	95	19
	18	7	1	0	0	0	1	3	1	2	2	1	0	2	6	2	1	2	325	4	5
	19	7	2	9	0	6	2	5	8	5	8	4	8	0	10	21	1	16	19	185	7
	20	10	0	1	0	0	0	1	0	0	0	0	1	0	1	1	2	4	0	1	92

- I valori elevati sulla diagonale principale indicano che il calssificatore in generale sta funzionando piuttosto bene
- Analizzando i valori off-diagonal si può intuire che le Classi 16 e 20 sono molto simili, così come 19 e 17