Contrôle final durée : 2h

Aucun document, ni appareil électronique n'est autorisé.

Exercice 1. Soit $f : \mathbb{R} \to \mathbb{R}$ une application non nulle telle que pour tout $x, y \in \mathbb{R}$, on ait f(x+y) = f(x) + f(y) et f(xy) = f(x)f(y).

- 1. Montrer que f(0) = 0, que f(1) = 1, puis montrer que f est impaire.
- 2. Pour tout $n \in \mathbb{Z}$, exprimer f(n) en fonction de n.
- 3. Pour $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, exprimer f(p) en fonction de $f(\frac{p}{q})$. En déduire $f(\frac{p}{q})$.
- 4. Montrer que si l'on suppose en outre que f est continue, alors f(x) = x pour tout $x \in \mathbb{R}$.
- 5. On ne suppose plus f continue.
 - (a) Soient $x \leq y$ deux réels. En écrivant y-x comme un carré, montrer que f est une fonction croissante.
 - (b) Soient $x \in \mathbb{R}$ et $a, b \in \mathbb{Q}$ tels que $a \leq x \leq b$. Montrer que $a \leq f(x) \leq b$.
 - (c) Montrer que f(x) = x pour tout $x \in \mathbb{R}$.

Exercice 2. On note $\alpha := \frac{1+i}{\sqrt{2}} \in \mathbb{C}$.

- 1. Calculer le module de α .
- 2. Montrer que α est un nombre algébrique.
- 3. On suppose que α est racine d'un polynôme $P(X) = aX^3 + bX^2 + cX + d \in \mathbb{Q}[X]$ de degré inférieur ou égal à 3. Montrer que $c a + d\sqrt{2} = 0$ et $b + d c\sqrt{2} = 0$. En déduire que a = b = c = d = 0.
- 4. Déterminer un polynôme non nul de $\mathbb{Q}[X]$ de degré minimal annulant α et montrer qu'il est irréductible dans $\mathbb{Q}[X]$.

Exercice 3. Soit $P \in \mathbb{R}[X]$ et $\beta \in \mathbb{R}$.

- 1. Montrer que si β est racine simple de P, alors P change de signe au voisinage de β .
- 2. Montrer que si β est racine double de P, alors P est de signe constant au voisinage de β .
- 3. On suppose que β est racine de P de multiplicité exactement $k \geq 1$. Que peut-on dire du signe de P au voisinage de β ?

Exercice 4.

1. Montrer que pour tout $x \in \mathbb{R}^+$, on a

$$\left|\cos x - 1 + \frac{x^2}{2} - \frac{x^4}{24}\right| \le \frac{x^6}{720}.$$

2. En déduire une valeur approchée de $\cos(\frac{1}{2})$ dont on indiquera la précision.