#### Sistemas de Bancos de Dados Prof. Jorge Soares

jasoares@uerj.br

#### Tema

Transações em Bancos de Dados

### Agenda

- Definição
- Propriedades ACID
- Diagrama de transição de estados de uma transação
- Serialização
- Fenômenos em transações

Banco de Dados – Prof. Jorge Soares

### Agenda

- Níveis de isolamento
- Conflito de operações de transações
- Teste de serialização: construção do grafo de precedências
- Questões de concursos sobre o tema!

Banco de Dados – Prof. Jorge Soares

3

#### Definição

✓ Unidade lógica de trabalho, constituída de um conjunto de operações, cujo objetivo é transformar um BD de um estado consistente para outro estado consistente, mesmo que nos passos intermediários o sistema permaneça temporariamente inconsistente.

Banco de Dados – Prof. Jorge Soares

#### Características

- Formada por um conjunto de operações
- Escopo delimitado por marcas de início (BEGIN TRANSACTION) e fim (END TRANSACTION)
- Transações que só lêem
  - Read Only
- Ações em diferentes granularidades

Banco de Dados – Prof. Jorge Soares

5

## Modelo simplificado

- Operações básicas
  - Leitura de um item: read\_item(x)
  - Escrita de um item: write\_item(x)
- Exemplo:





#### **Escalas**

- Execução concorrente de transações
- Representação compacta

S:  $r_1(x)$ ;  $r_2(x)$ ;  $w_1(x)$ ;  $r_1(y)$ ;  $w_2(x)$ ;  $c_2$ ;  $w_1(y)$ ;  $c_1$ 

Notação simplificada:  $r_i(X)$ ,  $w_i(X)$ ,  $c_i$ ,  $a_i$  para as operações principais

Banco de Dados – Prof. Jorge Soares

0

#### **Escalas**

- Tipos
  - *♦* Seriais
  - **♦** Concorrentes
- Exemplo

 $T1(r(X),w(X),r(Y),w(Y),c) \in T2(r(X),w(X),c)$ 

$$S_1$$
:  $r_1(X)$ ;  $r_2(X)$ ;  $w_1(X)$ ;  $r_1(Y)$ ;  $w_2(X)$ ;  $c_2$ ;  $w_1(Y)$ ;  $c_1$   
 $S_2$ :  $r_1(X)$ ;  $r_2(X)$ ;  $w_1(X)$ ;  $w_2(X)$ ;  $r_1(Y)$ ;  $c_2$ ;  $w_1(Y)$ ;  $c_1$ 

Banco de Dados – Prof. Jorge Soares

## Serialização

- Escala concorrente serializável
  - Sua execução equivale a alguma execução serial
- Exemplo: transações T1 e T2

```
T<sub>1</sub>

read (X);

X:=X-N;

write (X);

Y:=Y+N;

write (AY);

V:=Y+N;

write (AY);

V=Y+N;

write (AY);

V=Y+N;

write (AY);

V=Y+N;

Write (AY);

V=Y+N;

V=Y+N;
V=Y+N;

V=Y+N;
V=Y+N;
V=Y+N;
V=Y+N;
V=Y+N;
V=Y+N;
V=Y+N;
V=Y+N;
V=Y+N
```

11

### Exemplo: Execução Serial T1 → T2

Banco de Dados - Prof. Jorge Soares

```
\mathsf{T}_1
                                   Entradas:
read (X);
                                    X = 90
X:=X-N;
                                    Y = 90
write (X);
                                    N=3
read (Y);
Y:=Y+N;
                                   Saídas:
write (Y);
                                    X = 78,3
              read (X);
                                     Y =93
              X := X*0,9;
              write (X);
```

Banco de Dados - Prof. Jorge Soares

## *Exemplo*: Execução Serial $T2 \rightarrow T1$

 $T_1$  $T_2$ read (X); X := X\*0,9;write (X); read (X); X:=X-N; write (X); read (Y); Y:=Y+N;write (Y);

**Entradas:** 

X = 90Y = 90

Saídas:

N=3

X = 78

Y =93

Banco de Dados – Prof. Jorge Soares

13

## Exemplo: Execução Concorrente (I)

 $\mathsf{T}_1$  $T_2$ read (X); X:=X-N;write (X); read (X); X := X\*0,9;write (X); read (Y); Y:=Y+N;write (Y);

**Entradas:** 

X = 90

Y = 90

N=3

Saídas:

X = 78,3Y =93

Banco de Dados – Prof. Jorge Soares





## Fenômenos

- Atualização Perdida
- Leitura Suja
- · Sumário Incorreto
- · Leitura Não Repetível
- Fenômeno Fantasma

Banco de Dados – Prof. Jorge Soares

```
Fenômenos
Atualização Perdida
      T_1
   read (X);
   X:=X-N;
              read (X);
              X := X*0,9;
   write (X);
   read (Y);
              write (X);
                    o item X tem um valor
   Y:=Y+N:
                    incorreto porque a sua
   write (Y);
                    atualização feita por T<sub>1</sub>
                    foi perdida
  Banco de Dados – Prof. Jorg
```





## Fenômenos Leitura Não Repetível

| Nome                | Idade | Departamento     |     | Salário  | Telefone |
|---------------------|-------|------------------|-----|----------|----------|
| Alberto da Silva    | 25    | Vendas           | R\$ | 1.850,00 | 555-1902 |
| Antônio dos Santos  | 32    | Administração    | R\$ | 2.200,00 | 555-1117 |
| Fabiana Rossi       | 40    | Administração    | R\$ | 3.000,00 | 555-8929 |
| Horácio Almeida     | 31    | Recursos Humanos | R\$ | 2.350,00 | 555-8907 |
| João Pereira        | 35    | Vendas           | R\$ | 2.500,00 | 555-7814 |
| Márcia Souza        | 26    | Vendas           | R\$ | 2.600,00 | 555-9800 |
| Maria José Costa    | 22    | Vendas           | RS  | 2.600,00 | 555-6629 |
| Roberto Albuquerque | 29    | Administração    | R\$ | 5,200,00 | 555-8273 |
| Sílvia Pires        | 23    | Vendas           | R\$ | 1.600,00 | 555-8664 |

Banco de Dados – Prof. Jorge Soares

21

#### Fenômenos Fenômeno Fantasma



Banco de Dados – Prof. Jorge Soares



### Níveis de Isolamento das Transações

- READ UNCOMMITTED
- READ COMMITTED
- REPEATABLE READ
- SERIALIZABLE

SET TRANSACTION ISOLATION LEVEL <nível>

Banco de Dados – Prof. Jorge Soares

## Transações em SQL

#### SET TRANSACTION

ISOLATION LEVEL < level>
 READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ,
 SERIALIZABLE (default)

– ACCESS MODE < level>

READ ONLY / READ WRITE (default)

DIAGNOSTIC AREA SIZE <n>

número de condições que podem ser especificadas simultaneamente nessa área (errors/exceptions)

Banco de Dados – Prof. Jorge Soares

Slide 25/51

#### Transações em SQL Exemplo

Exec SQL whenever SQLError GOTO undo;

Exec SQL set transaction

read write

diagnostics size 5

isolation level serializable;

Exec sql insert into Emp(nome,cpf, n0dep, sal) values ('Maria', 12345,9, 2000);

Exec sql update Emp

set sal= sal\*1.1 where n0dep=4;

Exec sql commit;

GOTO fim;

undo: exec sql rollback;

fim: ....

Banco de Dados – Prof. Jorge Soares

Slide 26/51

## Conflito de Operações

 $r_1(X); w_2(Y)$   $w_1(X); r_1(X)$ NÃO estão em conflito !!!

Banco de Dados – Prof. Jorge Soares

27

## Equivalência entre planos

Fequivalência por conflito

 $r_1(X), w_2(X)$  $w_1(X), r_2(X)$   $r_1(X), w_2(X)$  $w_2(X), r_1(X)$ 

Conflitos **EQUIVALENTES** 

Conflitos NÃO EQUIVALENTES

Banco de Dados – Prof. Jorge Soares

## Conflitos de Operações em Escalas

#### Escala Concorrente (I) Escala Concorrente (II)

| T <sub>1</sub>       | T <sub>2</sub> |                 | T <sub>1</sub>        | T <sub>2</sub> |    |
|----------------------|----------------|-----------------|-----------------------|----------------|----|
| read(X);             |                | •               | read(X);              |                |    |
| X:=X-N;<br>write(X); |                |                 | X:=X-N;               | read(X);       |    |
|                      | read(X);       |                 |                       | X := X + N     | 1; |
|                      | X := X + M;    |                 | write(X);<br>read(Y); |                |    |
| read(Y);             | write(X);      |                 |                       | write(X);      |    |
| Y:=Y+N;<br>write(Y); |                |                 | Y:=Y+N;<br>write(Y);  |                |    |
|                      | Banco de I     | Dados – Prof. J | orge Soares           |                | 2  |

#### Teste de Serialização

- 1. Para cada transação T<sub>i</sub> participante do esquema S criar um nó T<sub>i</sub> no grafo de precedência;
- 2. Para cada operação em S onde  $T_j$  executa um read(X) após um write(X) executado por  $T_i$ , criar um arco  $T_i \rightarrow T_i$  no grafo
- 3. Para cada operação em S onde  $T_j$  executa um **write(X)** após um read(X) executado por  $T_i$ , criar um arco  $T_i \rightarrow T_j$  no grafo
- 4. Para cada operação em S onde  $T_j$  executa um **write\_item(X)** após um **write(X)** executado por  $T_i$ , criar um arco  $T_i \rightarrow T_j$  no grafo
- 5. Um esquema S é serializável se e somente se o grafo de precedência não contiver ciclos

Banco de Dados – Prof. Jorge Soares

|   |         | de Serializ<br>Exemplo 1      | zação              |  |
|---|---------|-------------------------------|--------------------|--|
|   | T1      | T2                            | Т3                 |  |
|   |         | read Z<br>read Y<br>write Y   |                    |  |
|   |         |                               | read Y             |  |
|   |         |                               | read Z             |  |
|   | read X  |                               |                    |  |
|   | write X |                               | write Y<br>write Z |  |
|   |         | read X                        |                    |  |
|   | read Y  |                               |                    |  |
| • | write Y |                               |                    |  |
|   |         | write X                       |                    |  |
|   | Banco d | le Dados – Prof. Jorge Soares | 31                 |  |

|          |         | de Serializ<br>Exemplo 2      | zação   |   |
|----------|---------|-------------------------------|---------|---|
|          | T1      | T2                            | T3      |   |
|          |         |                               | read Y  | - |
|          |         |                               | read Z  |   |
|          | read X  |                               |         |   |
|          | write X |                               |         |   |
|          |         |                               | write Y |   |
|          |         |                               | write Z |   |
|          |         | read Z                        |         |   |
|          | read Y  |                               |         |   |
|          | write Y |                               |         |   |
| <b>↓</b> |         | read Y                        |         |   |
|          |         | write Y                       |         |   |
|          |         | read X<br>write X             |         |   |
|          | Banco c | le Dados – Prof. Jorge Soares | 32      | 2 |

#### Equivalência de Visões

#### Condições:

- O mesmo conjunto de transações participa de S e S1, onde estes incluem as mesmas operações
- Para qualquer operação r<sub>i</sub>(X) de T<sub>i</sub> em S, se o valor de X lido por uma operação tiver sido gravado por uma operação w<sub>i</sub>(X) de T<sub>i</sub>, a mesma condição deve valer para o valor de X lido por r<sub>i</sub> (X) de T<sub>i</sub> em S1
- Se a operação w<sub>k</sub>(Y) de T<sub>k</sub> é a última operação que grava o item Y em S, então wk(Y) de Tk deve ser também a última operação que grava Y em S1

Banco de Dados – Prof. Jorge Soares

33

#### Equivalência de Visões

· Exemplo:

 $S_1$ : T1: r1(x); w1(x); T2: w2(x); T3:w3(x)

 $S_2$ : r1(x); w2(x);w1(x);w3(x); c1;c2;c3

write cego

- é serializável por conflito?

- e por visão?

Banco de Dados - Prof. Jorge Soares

#### Equivalência de Visões

#### • Condições:

- O mesmo conjunto de transações participa de S e S1, onde estes incluem as mesmas operações
- Para qualquer operação r<sub>i</sub>(X) de T<sub>i</sub> em S, se o valor de X lido por uma operação tiver sido gravado por uma operação w<sub>i</sub>(X) de T<sub>j</sub>, a mesma condição deve valer para o valor de X lido por r<sub>i</sub> (X) de T<sub>i</sub> em S1
- Se a operação  $w_k(Y)$  de  $T_k$  é a última operação que grava o item Y em S, então  $w_k(Y)$  de  $T_k$  deve ser também a última operação que grava Y em S1

Banco de Dados – Prof. Jorge Soares

35

#### Equivalência de Visões

• Exemplo:

 $S_1$ : T1: r1(x); w1(x); T2: w2(x); T3:w3(x)

 $S_2$ : r1(x); w2(x);w1(x);w3(x); c1;c2;c3

write cego - é serializável por conflito? - e por visão?

Banco de Dados – Prof. Jorge Soares