ДИСКРЕТНИ СТРУКТУРИ 2 Задачи от контролни и изпити

Този сборник съдържа условията на задачите от контролните и изпитите, давани по дисциплината Дискретни структури 2 на специалност Софтуерно инженерство.

Съдържание

Глава	1. $2013/2014$	1
	Първо контролно	
	Второ контролно	
	Изпит	
	2. 2014/2015	5
1.	Първо контролно	5
	Второ контролно	
	Писмен изпит	
Глава	3. 2015/2016	11
1.	Първо контролно	11
2.	Второ контролно	11
	Изпит	
4.	Поправителен изпит	
Глава	4. 2016/2017	15
1.	Първо контролно	15
2.	Второ контролно	15
3.	Изпиттишт	

2013/2014

1. Първо контролно

1. Намерете краен детерминиран автомат, еквивалентен на дадения:

2. Нека L_1 и L_2 са съответно езиците

$$L_1 = \{ w \in \{a, b, c\}^* | N_b(w) \equiv 0 \pmod{2} \},$$

u

$$L_2 = \{ w \in \{a, b, c\}^* | N_a(w) + N_c(w) \equiv 1 \pmod{3} \ u \ N_b(w) \equiv 0 \pmod{2} \}.$$

- (1) Намерете автомат \mathcal{A} с език $L(\mathcal{A}) = L_1$.
- (2) Hamepeme автомат A с език $L(A) = L_2$.
- (3) Докажете, че езикът на построения автомат действително е L_2 .

Забележка: ако $w \in \Sigma^*$ и $a \in \Sigma$, то с $N_a(w)$ ще бележим броя на срещанията на буквата a в думата w.

- **3.** Докажете, че езикът L не е регулярен, където L е:
 - (1) $L = \{w \in \{1\}^* | w = 1^{2p}, p \ e \ npocmo \ число\};$
 - (2) $L = \{w \in \{1\}^* | w = 1^{2p}, p \text{ не е просто число}\}.$

* * *

- 1. Намерете краен детерминиран автомат, еквивалентен на дадения:
- **2.** Нека L_1 и L_2 са съответно езиците

$$L_1 = \{ w \in \{a, b, c\}^* | N_a(w) \equiv 1 \pmod{2} \},$$

u

$$L_2 = \{ w \in \{a, b, c\}^* | N_a(w) \equiv 1 \pmod{2} \ u \ N_b(w) + N_b(w) \equiv 2 \pmod{3} \}.$$

- (1) Намерете автомат \mathcal{A} с език $L(\mathcal{A}) = L_1$.
- (2) Hamepeme автомат A с език $L(A) = L_2$.
- (3) Докажете, че езикът на построения автомат действително е L_2 .

Забележка: ако $w \in \Sigma^*$ и $a \in \Sigma$, то с $N_a(w)$ ще бележим броя на срещанията на буквата a в думата w.

- **3.** Докажете, че езикът L не е регулярен, където L е:
 - (1) $L = \{w \in \{0\}^* | w = 0^{3p}, p e npocmo число\};$
 - (2) $L = \{w \in \{0\}^* | w = 0^{3p}, p \text{ не е просто число}\}.$

2. Второ контролно

1. (1) Намерете КСГ Γ' без дълги правила (т.е. с дължина не повече от 2) и с език $L(\Gamma') = L(\Gamma)$, където Γ е граматиката:

$$\langle \{a,b\}, \{S,A,B,C\}, S, \{S \rightarrow AaaB | \varepsilon, A \rightarrow CbA | BBb, B \rightarrow B | bB | AAA, C \rightarrow Sb | bbb \} \rangle;$$

- (2) Намерете КСГ Γ' без ε -правила c език $L(\Gamma') = L(\Gamma) \setminus \{\varepsilon\}$, където Γ е граматиката: $\langle \{a,b\}, \{S,A,B,C,D\}, S, \{S \to AB|DD|Cb,A \to CC|bS|a,B \to \varepsilon|bA,C \to \varepsilon|Da,D \to Ba|bA\} \rangle$.
- 2. Намерете КСГ с език, съвпадащ с този на автомата:

δ	0	1
$\rightarrow s$	$\{p,r\}$	$\{q,r\}$
*p	$\{p,r\}$	{ <i>p</i> }
q	$\{q\}$	$\{q,r\}$
r	Ø	Ø

3. $\overline{He\kappa a} \ L_1 \ u \ L_2 \ ca \ c$ omветно езиците

$$L_1 = \{a^n b^m c^{2n+m} \mid n, m \in \mathbb{N}\},\$$

u

$$L_2 = \{a^{2k+3n+5}b^{3k+2l+1}a^{2m+l+5}b^{2j+7n}a^{5j+2} \mid j,k,l,m,n \in \mathbb{N}\}.$$

- (1) Hamepeme KC Γ Γ c esux $L(\Gamma) = L_1$.
- (2) Намерете КСГ Γ с език $L(\Gamma) = L_2$.
- (3) За всеки един от написаните от Вас нетерминали от подточка 2, посочете генерирания от него език.
- **4.** Докажете, че езикът $L = \{w \in \{1\}^* | w = 1^{2p}, p \ e \ просто число\}$ не е контекстно свободен.

* * *

1. (1) Намерете КСГ Γ' без дълги правила (т.е. с дължина не повече от 2) и с език $L(\Gamma') = L(\Gamma)$, където Γ е граматиката:

$$\langle \{a,b\}, \{S,A,B,C\}, S, \{S \rightarrow bBBa | \varepsilon, A \rightarrow BCa | aaB, B \rightarrow A | AaA | Ab, C \rightarrow aS | aAa\} \rangle;$$

- (2) Намерете КСГ Г' без ε -правила c език $L(\Gamma') = L(\Gamma) \setminus \{\varepsilon\}$, където Γ е граматиката: $\langle \{a,b\}, \{S,A,B,C,D\}, S, \{S \to BA|AA|Da,A \to \varepsilon|Ba,B \to DD|Sa|b,C \to AB|aB,D \to \varepsilon|bC\} \rangle$.
- 2. Намерете КСГ с език, съвпадащ с този на автомата:

δ	0	1
$\rightarrow s$	$\{p,r\}$	$\{q,r\}$
p	$\{q,r\}$	$\{q\}$
q	{ <i>p</i> }	$\{p,r\}$
r	Ø	Ø

3. Нека L_1 и L_2 са съответно езиците

$$L_1 = \{a^n b^m c^{n+2m} \mid n, m \in \mathbb{N}\},\$$

u

$$L_2 = \{b^{5m+1}a^{2m+7k}b^{2j+n+4}a^{3l+2n+2}b^{2l+3k+4} \mid j,k,l,m,n \in \mathbb{N}\}.$$

- (1) Намерете КСГ Γ с език $L(\Gamma) = L_1$.
- (2) Намерете КСГ Γ с език $L(\Gamma) = L_2$.
- (3) За всеки един от написаните от Вас нетерминали от подточка 2, посочете генерирания от него език.
- **4.** Докажете, че езикът $L = \{w \in \{0\}^* | w = 0^{3p}, p \text{ е просто число}\}$ не е контекстно свободен.

3. Изпит

3.1. Първо контролно.

- **1.** Hera $L = \{w \in \{a,b\}^* | \text{между никои две а в w не се среща 'bb'} \}.$
 - (1) Hamepeme автомат A с език L(A) = L.
 - (2) Докажете, че езикът на построения автомат действително е L.
- **2.** Докажете, че езикът $L = \{vuv|u, v \in \{0,1\}^*\& |u| \le |v|\}$ не е регулярен. * * *
- **1.** Нека $L = \{w \in \{a, b\}^* | \text{след някое 'ab' в w броят на a-та след него е четен} \}.$
 - (1) Намерете автомат \mathcal{A} с език $L(\mathcal{A}) = L$.
 - (2) Докажете, че езикът на построения автомат действително е L.
- **2.** Докажете, че езикът $L = \{vuv|u,v \in \{a,b\}^*\&\ |u| < |v|\}$ не е регулярен.

3.2. Второ контролно.

1. Използвайте алгоритъма за динамично програмиране (CYK), за да проверите дали думата $\alpha = baaba$ принадлежи на езика, определен от граматиката:

$$\Gamma = \langle \{a,b\}, \{S,A,B,C\}, S, \{S \rightarrow AB|BC, A \rightarrow BA|a, B \rightarrow CC|b, C \rightarrow AB|a\} \rangle.$$

2. Използвайте обща конструкция, за да построите к.св.г. G с език $L(G) = L(G_1) \circ L(G_2)$, където:

$$G_{1} = \langle \{a, b\}, \{S_{1}, T_{1}\}, S_{1}, \{S_{1} \to T_{1}bS_{1}b, T_{1} \to T_{1}S_{1}|bS_{1}aa|a|\varepsilon\} \rangle$$

$$G_{2} = \langle \{a, b\}, \{S_{2}\}, S_{2}, \{S_{2} \to a|aS_{2}b|bbS_{2}a|S_{2}aS_{2}\} \rangle$$

- **3.** Нека $L = \{w2u|w \in \{0,1\}^* \ \& \ w_3^R e \ noddyма \ на \ u\}.$
 - (1) Намерете КСГ Γ с език $L(\Gamma) = L$.
 - (2) За всеки един от написаните от Вас нетерминали от подточка 1, посочете генерирания от него език.

Забележка. w_i^R означава думата w заисана в обратен ред като всяка буква е написана точно i пъти. Например $(001)_2^R=110000$.

- **4.** Докажете, че езикът $L = \{a^n b^n c^m | n \le m \le 2n\}$ не е контекстно свободен. * * *
- **1.** Използвайте алгоритъма на динамично програмиране (CYK), за да проверите дали думата $\alpha = babaa$ принадлежи на езика, определен от граматиката:

$$\Gamma = \langle \{a, b\}, \{S, A, B, C\}, S, \{S \to AB, A \to AC | a | b, B \to CB | a, C \to a\} \rangle$$

2. Използвайте обща конструкция, за да построите к.св.г. G с език $L(G) = L(G_1) \cup L(G_2)$, където:

$$G_1 = \langle \{a, b\}, \{S_1\}, S_1, \{S_1 \to \varepsilon | bbS_1 | aS_1 b\} \rangle$$

$$G_2 = \langle \{a, b\}, \{S_2, T_2\}, S_2, \{S_2 \to aT_2T_2 | aS_2 b, T_2 \to \varepsilon | bS_2 b\} \rangle$$

- **3.** Нека $L = \{wcu|w \in \{a,b\}^* \ \& \ w_2^R e \ nod дума \ на \ u\}.$
 - (1) Намерете КСГ Γ с език $L(\Gamma) = L$.
 - (2) За всеки един от написаните от Вас нетерминали от подточка 1, посочете генерирания от него език.

Забележка. w_i^R означава думата w заисана в обратен ред като всяка буква е написана точно i пъти. Например $(001)_2^R=110000$.

4. Докажете, че езикът $L = \{a^n b^n c^m | n \le m \le 3n\}$ не е контекстно свободен.

2014/2015

1. Първо контролно

1. Нека L_1 и L_2 са езиците, разп<u>о</u>знавани стответно от автоматите:

	Δ	a	b
A:	$\rightarrow^* s$	$\{s\}$	$\{p\}$
	p	$\{s\}$	Ø

	Δ	a	b
B:	$\rightarrow q$	$\{q,r\}$	Ø
D .	r	Ø	{ <i>t</i> }
	t	Ø	$\{q\}$

Да се построят автомати за

езиците $L_1 \cup L_2$, L_1L_2 .

Peшение: За автомат, разпознаващ езика $L_1 \cup L_2$, достатъчно е да разгледаме такъв, образуван по следния начин:

- множеството от състояния му е обединението на множествата от състоянията на A и B с добавено ново начално състояние n;
- множеството от заключителните му състояния равно на обединението на тези на A и B, към които е прибавено и новото начално състояние, при положение, че поне едно от A и B е имал начално състояние, което е било и финално.
- преходите между състоянията се пренасят без промяна от A и B. Допълнително се добавят преходи от новото начално състояние към директните наследници на началните състояния на A и B със същите етикети по стрелките:

В конкретния случай получаваме автомата:

Δ	a	b
$\rightarrow^* n$	$\{s,q,r\}$	{ <i>p</i> }
*s	$\{s\}$	<i>{p}</i>
p	$\{s\}$	Ø
q	$\{q,r\}$	Ø
r	Ø	$\{t\}$
t	Ø	$\{q\}$

 $L_1 L_2$, достатъчно е да разгледаме такъв, образуван по следния начин:

- множеството от състояния му е обединението на множествата от състоянията на A и B:
- множеството от заключителните му състояния равно на тези на B, към които е прибавено и множеството от заключителните състяния на A, при положение, че началното сътояние на B е било и финално.
- преходите между състоянията се пренасят без промяна от A и B. Допълнително се добавят преходи от състоянията, които са били заключителни за A към директните наследници на началното състояние на B със същите етикети по стрелките;

В конкретния случай получаваме автомата:

Δ	a	b
$\rightarrow^* s$	$\{s\}$	$\{p,t\}$
p	$\{s\}$	Ø
q	$\{q,r\}$	Ø
r	Ø	{ <i>t</i> }
t	Ø	$\{q\}$

2. Да се детерминира автомата, зададен с таблицата:

Δ	a	b
$\rightarrow s$	$\{s,p\}$	$\{s\}$
p	Ø	$\{q\}$
q	Ø	<i>{r}</i>
r	Ø	Ø

Решение: Детерминираният автомат еквивалентен на дадения ще има за състояния множествата от състояния на първоначалния. Преходът на всяко нова състояние P с буквата a ще бъде в множеството от състоянията, които са достижими от кое да е състояние в P. Така търсеният детерминиран автомат ще бъде:

Δ	a	b
$\rightarrow \{s\}$	$\{s,p\}$	$\{s\}$
$\{s,p\}$	$\{s,p\}$	$\{s,q\}$
$\{s,q\}$	$\{s,p\}$	$\{s,r\}$
r	$\{s,p\}$	$\{s\}$

3. Да се състави регулярен израз за езика

$$L = \{ \xi w \mid \xi w \ c \sigma \partial \sigma p$$
 энса поддума $\xi \xi \}$.

Peшение: Ще разделим думите u от L на два основни вида:

- $u = \xi w$, за подходящи ξ и w, където $w = \xi v$, т.е. w започва с ξ ;
- $u = \xi w$, за подходящи ξ и w, където $w = v_0 \xi \xi v_1$, т.е. $w \xi \xi$, но не започва с ξ ; Други възможности за u, ясно, не може да има. Оттук, и забелязвайки, че $\xi \in \{a,b\}$,

получаваме и описание на L като регулярен израз: $L = 00(a \cup b)^* \cup 11(a \cup b)^* \cup 0(a \cup b)^* 00(a \cup b)^* \cup 1(a \cup b)^* 11(a \cup b)^*$

4. Да се докаже, че не е регулярен езикът

$$L = \{ w \in \{a, b\}^* \mid N_a(w) > N_b(w) + 2 \}.$$

Pewenue: Да допуснем, че езикът <math>L е регулярен. Не е трудно да се види, че той е и безкраен. Следователно, по Лемата за разрастването, съществува константа p>0такава, че за всяка дума $w \in L$ с $|w| \ge p$ съществуват думи x, y, z, за които w = xyzи такива, че

- $|xy| \le p$; $(\forall i \ge 0)[x \underbrace{y \dots y}_{i} z \in L]$;

Да разгледаме думата $w=a^{p+3}b^p$. Ясно е, че $w\in L$ и $|w|\geq p$. Така w може да се разложи като w=xyz, за някои x,y и z, които да изпълнват горните условия. Понеже $|xy|\geq p$, и първите p+3 символа на w са a-та, то xy се състои само от a. В частност, y се състои само от a. Но понеже y е с ненулева дължина, то $y\in a^+$. Така думата $w_0=xz=a^{p+3-|y|}b^p$ трябва да е от L, което не може да бъде вярно понеже $p+3-|y|\leq p+2$. Следователно, предположението ни, че L е регулярен е погрешно.

2. Второ контролно

1. Намерете безконтекстна граматика, която разпознава същия език като автомата, зададен с таблицата:

Δ	a	b	c	d
$\rightarrow s$	$\{s\}$	{ <i>p</i> }	Ø	Ø
*p	Ø	Ø	Ø	$\{q\}$
q	Ø	$\{q\}$	Ø	Ø
r	$\{q\}$	Ø	$\{s,p\}$	Ø

Решение: Търсената граматика има за нетерминали състояниата на автомата, като начален нетерминал, ще бъде началното състояние на автомата. Множеството от правилата ще бъде:

$$\mathcal{R} = \{q \to ap \mid p \in \Delta(q, a)\} \cup \{q \to \varepsilon \mid q \in F\}.$$

В конкретния случай, търсената граматика, ще има правилата:

 $s \to as|bp$

 $p \to dq | \varepsilon$

 $q \rightarrow bq$

 $r \to aq|cs|cp|\varepsilon$

Начален символ е s.

2. Нека L' е езикът, разпознаван от граматиката с правила $\{S \to a|bSSP, P \to PaS\}$ и L'' е езикът, разпознаван от граматиката с правила $\{S \to SP|aPS, P \to SbS|a\}$. Да се построи граматика, чийто език е L'L''.

Решение: Преименуваме нетерминалите на граматиките за L' и L'' така, че да нямат общи елемнти помежду си: $\{S' \to a | bS'S'P', P' \to P'aS'\}$ и

$$\{S'' \to S''P'' | aP''S'', P'' \to S''bS'' | a\}.$$

Сега, конкатенацията на езиците ще се разпознава от граматиката с правила:

$$\{S \rightarrow S'S'', S' \rightarrow a|bS'S'P', P' \rightarrow P'aS', S'' \rightarrow S''P''|aP''S'', P'' \rightarrow S''bS''|a\}$$

3. За произволна дума w от $\{0,1\}^*$ с \overline{w} ще означаваме Іппобитовото Y отрицание на w. Например $\overline{01100010} = 10011101$. Да се състави граматика, разпознаваща езика

$$L=\{w\#x\colon w,x\in\{0,1\}^*\ u\ x$$
 съдържа \overline{w}^R като поддума}

Решение: В сила е, че:

$$L = \{ w \# u \overline{w}^R v \colon w, u, v \in \{0, 1\}^* \} =$$
$$= \{ w \# u \overline{w}^R \colon w, u \in \{0, 1\}^* \} \circ \{0, 1\}^* = L_1 \circ L_2$$

За правила на граматика, пораждаща езика L_2 можем да вземем: $S_2 \to 0S_2|1S_2|\varepsilon$. За да намерим правилата на граматика, пораждаща L_1 да разгледаме произволна дума λ от L_1 . Щом $\lambda \in L_1$, то ще се намерят думи w и u такива, че $\lambda = w\#u\overline{w}^R$. Сега, ако |w|=0, т.е. $w=\varepsilon$, то също имаме, че $\overline{w}^R=\varepsilon$ и тогава $\lambda=\#u$. Ако пък, |w|>0, то има символ $a\in\{0,1\}$ и дума $v\in\{0,1\}^*$, за които w=av. Да забележим, че $\overline{w}^R=\overline{v}^R\overline{a}$ и, следователно, $\lambda=av\#u\overline{v}^R\overline{a}=a\mu\overline{a}$, където $\mu=v\#u\overline{v}^R$ и, значи, последната е дума от L_1 .

Не е трудно да се види, че последните са и достатъчни условия една дума да принадлежи на езика L_1 , т.е. че ако $\lambda = \#u$ за някое $u \in \{0,1\}^*$ или $\lambda = a\mu \overline{a}$ за някои $a \in \{0,1\}$ и $\mu \in L_1$, то тогава $\lambda \in L_1$.

Следователно, като правила за граматика пораждаща езика L_1 можем да вземем: $S_1 \to T|0S_11|1S_10,$

 $T \to \#|T0|T1$

Накрая, за да получим правила за граматика, пораждаща $L=L_1\circ L_2$, достатъчно е да добавим към правилата за L_1 и L_2 правилото $S\to S_1S_2$, където S е началната променлива за търсената граматика:

 $S \to S_1 S_2$,

 $S_1 \to T|0S_11|1S_10,$

 $T \rightarrow \#|T0|T1$,

 $S_2 \to 0S_2|1S_2|\varepsilon$

3. Писмен изпит

3.1. Първо контролно.

1. Нека L' и L'' са езиците, разпознавани от автоматите

 \mathcal{A} а се построят крайни автомати за $L' \cup L''$ и L'.L''.

2. Да се детерминира автоматът

- **3.** Да се състави регулярен израз за езика $\{\xi w \colon \xi \in \{a,b\}, w \in \{a,b\}^*, \xi w$ съдържа поддума $\xi \xi \}$.
- **4.** Да се докаже, че не е регулярен езикът $\{w \in \{a,b\}^* : N_a(w) > N_b(w) + 2\}.$

* * *

1. Нека L' и L'' са езиците, разпознавани от автоматите

 \mathcal{A} а се построят крайни автомати за $L' \cup L''$ и L'.L''.

2. Да се детерминира автоматът

- **3.** Да се състави регулярен израз за езика $\{w\zeta: \zeta \in \{0,1\}, w \in \{0,1\}^*, \zeta w \ \text{съдърэнса поддума } \zeta\zeta\}.$
- **4.** Да се докаже, че не е регулярен езикът $\{w \in \{a,b\}^* : N_a(w) + 2 > N_b(w)\}.$

3.2. Второ контролно.

1. Намерете безконтекстна граматика, която разпознава същия език, както автомата:

- **2.** Нека L' е езикът, разпознаван от граматиката с правила $\{S \to a|bSSP, P \to PaS\}$ и L'' е езикът, разпознаван от граматиката с правила $\{S \to SP|aPS, P \to SbS|a\}$. Да се построи граматика, чийто език е L'L''.
- 3. За произволна дума w от $\{0,1\}^*$ с \overline{w} ще означаваме Іппобитовото Y отрицание на w. Например $\overline{01100010}=10011101$. Да се състави граматика, разпознаваща езика

$$\{w\#x\colon w,x\in\{0,1\}^*\ u\ w\ c$$
ъдържа \overline{x} като поддума $\}$

* * *

1. Намерете безконтекстна граматика, която разпознава същия език, както автомата:

- **2.** Нека L е езикът, разпознаван от граматиката c правила $\{S \to a | bSSP, P \to PaS\}$. Да се построи граматика, чийто език е L^* .
- 3. За произволна дума w от $\{0,1\}^*$ с \overline{w} ще означаваме Іпобитовото Y отрицание на w. Например $\overline{01100010}=10011101$. Да се състави граматика, разпознаваща езика

$$\{w\#x\colon w,x\in\{0,1\}^*\ u\ x\ c$$
ъдържа \overline{w} като поддума $\}$

2015/2016

1. Първо контролно

1. Използвайки обща конструкция намерете недетерминиран краен автомат без недостижими състояния, с език равен на този на регулярния израз:

$$(ab^* \cup a^*b)^*$$

- 2. Постройте краен детерминиран автомат с език:
 - (1) $L_1 = \{w \in \{a,b\}^* \mid w \text{ завършва } c \text{ } ab\};$
 - (2) $L_2 = \{ w \in \{a, b\}^* \mid w \text{ HE завършва } c \text{ } ab \}.$

Обосновете отговора си!

3. Докажете, че езикът

$$L = \{a^{n_1}ba^{n_2}\dots ba^{n_k} \mid k \geq 2 \ u \ k \ e \ четно \ u \}$$

$$\forall i \in \{1, \dots, k\} (n_i \in \mathbb{N} \ u \ n_i = n_{k+1-i}) \}$$

не е регулярен.

* * *

1. Използвайки обща конструкция намерете недетерминиран краен автомат без недостижими състояния, с език равен на този на регулярния израз:

$$((a \cup b^*)(a^* \cup b))^*$$

- 2. Постройте краен детерминиран автомат с език:
 - (1) $L_1 = \{w \in \{0,1\}^* \mid w \ c \ d \ p \ p \ ma \ nod \ d \ y \ ma \ 00\};$
 - (2) $L_2 = \{ w \in \{0,1\}^* \mid w \mid HE \ c \ d \ sp ж a \ като \ nod d y м a \ 00 \}.$

Обосновете отговора си!

3. Докажете, че езикът

$$L = \{a^{n_1}ba^{n_2}\dots ba^{n_k} \mid n \geq 3 \ u \ n \ e$$
 нечетно u

$$\forall i \in \{1, ..., k\} (n_i \in \mathbb{N} \ u \ n_i = n_{k+1-i}) \}$$

не е регулярен.

2. Второ контролно

- 1. (1) Постройте безконтекстна граматика за всеки от следните езици:
 - $L_1 = \{a^n b^m c^k \mid 2m = n + 2k\};$ $L_2 = \{a^n b^m c^k \mid m \le n + k\};$

 - (2) За всеки нетерминал X в граматиката за L_2 , която сте дали, намерете езика $L_X = \{\alpha \in \{a, b, c\}^* \mid X \Rightarrow^* \alpha\};$
 - (3) Преобразувайте граматиката, която сте дали за L_1 , в нормална форма на Чомски.
- **2.** Докажете, че $L = \{a^{k+n}b^{k+n}c^k \mid k,n \in \mathbb{N}\}$ не е безконтекстен език.

- 1. (1) Постройте безконтекстна граматика за всеки от следните езици:
 - $L_1 = \{a^n b^m c^k \mid 2m = 2n + k\};$
 - $L_2 = \{a^n b^m c^k \mid m \ge n + k\};$
 - (2) За всеки нетерминал X в граматиката за L_2 , която сте дали, намерете езика $L_X = \{ \alpha \in \{a, b, c\}^* \mid X \Rightarrow^* \alpha \};$
 - (3) Преобразувайте граматиката, която сте дали за L_1 в нормална форма на Чомски.
- **2.** Докажете, че $L = \{a^n b^{k+n} c^{k+n} \mid k, n \in \mathbb{N} \}$ не е безконтекстен език.

3. Изпит

3.1. Първо контролно.

1. (1) Постройте тотален краен детерминиран автомат с език равен на:

 $L = \{w \in \{a, b, c\}^* \mid w \text{ започва или завършва } c \text{ a}$

$$u N_b(w) \equiv 0 \pmod{2}$$
;

- (2) Минимизирайте построения от Вас автомат;
- (3) Намерете контекстно-свободна граматика с език равен на този на получения от Вас минимален автомат.
- **2.** Докажете, че $L = \{w \in \{a,b\}^* \mid 3N_a(w) < 2N_b(w) + 1\}$ не е регулярен.
- 1. (1) Постройте тотален краен детерминиран автомат с език равен на:

 $L = \{w \in \{a,b,c\}^* \mid w \text{ започва или завършва } c \text{ } b$

$$u N_a(w) \equiv 1 \pmod{2};$$

- (2) Минимизирайте построения от Вас автомат;
- (3) Намерете контекстно-свободна граматика с език равен на този на получения от Вас минимален автомат.
- **2.** Докажете, че $L = \{w \in \{a,b\}^* \mid 3N_a(w) > 2N_b(w) + 1\}$ не е регулярен.

3.2. Второ контролно.

- **1.** Нека Γ е безконтекстната граматика ($\{S,A\},\{a,b\},S,\{S\to AA\mid AS\mid b,\ A\to SA\mid AS\mid a\}$) и $\alpha=abaab$. Използвайки алгоритъма СҮК, определете дали $\alpha\in L(\Gamma)$.
- **2.** (1) Постройте безконтекстна граматика за езика L, състоящ се от всички думи над $\{a,b\}$, в които броят на поддумите ав е равен на броя на поддумите ва.
 - (2) За всеки нетерминал X в граматиката за L, която сте дали, намерете езика $L_X = \{\alpha \in \{a,b\}^* \mid X \Rightarrow^* \alpha\};$
- **3.** Докажете, че $L = \{a^{2^n} \mid n \in \mathbb{N}\}$ не е безконтекстен език.

* * *

- **1.** Нека Γ е безконтекстната граматика ($\{S,B\},\{0,1\},S,\{S\to BB\mid SB\mid 0,\ BS\mid SB\mid 1\}$) и $\alpha=01101$. Използвайки алгоритъма СҮК, определете дали $\alpha\in L(\Gamma)$.
- **2.** (1) Постройте безконтекстна граматика за езика L, състоящ се от всички думи над $\{a,b\}$, в които броят на поддумите ав е различен от броя на поддумите ва.

- (2) За всеки нетерминал X в граматиката за L, която сте дали, намерете езика $L_X = \{ \alpha \in \{a,b\}^* \mid X \Rightarrow^* \alpha \};$
- **3.** Докажете, че $L = \{a^{3^n} \mid n \in \mathbb{N}\}$ не е безконтекстен език.

4. Поправителен изпит

4.1. Първо контролно.

1. (1) Постройте тотален детерминиран краен автомат c език

$$L = \{w \in \{0,1\}^* \mid \exists k \ge 0 \ u \ w \ e \ \partial$$
воичен запис на $2^k + 1\}.$

- (2) Минимизирайте построения от Вас автомат;
- (3) Намерете контекстно-свободна граматика с език равен на този на получения от Вас минимален автомат.
- **2.** Докажете, че езикът $L = \{w \in \{a,b\}^* \mid w \neq w^R\}$ не е регулярен.

4.2. Второ контролно.

1. (1) Постройте безконтекстна граматика за езика

$$L = \{a^n b^m c^p d^q \mid n, m, p, q \in \mathbb{N} \ u \ n + p = m + q\};$$

- (2) За всеки нетерминал X в граматиката за L, която сте дали, намерете езика $L_X = \{\alpha \in \{a,b\}^* \mid X \Rightarrow^* \alpha\};$
- (3) Преобразувайте граматиката, която сте дали за L_1 , в нормална форма на Чомски.
- **2.** Докажете, че езикът $L = \{(a^n b^n)^n \mid n \in \mathbb{N}\}$ не е безконтекстен.

Глава 4

2016/2017

1. Първо контролно

- 1. Използвайки обща конструкция намерете недетерминиран краен автомат без недостижими състояния, с език равен на този на регулярния израз: $b(ab\cup a^*)^*$
- 2. Детерминирайте автомата:

Δ	a	b
$\rightarrow A$	$\{A,B\}$	$\{A,C\}$
B	$\{B,D\}$	$\{C\}$
C	$\{B\}$	$\{C,D\}$
*D	Ø	Ø

3. Представете чрез регулярен израз езика L=

 $\{w \in \{a,b\}^* \mid w$ завършва с буква, която се е срещала по-рано $\}$.

4. Докажете, че езикът $L = \{b^n a a b^{n+2} \mid n \in \mathbb{N}\}$ не е регулярен.

- 1. Използвайки обща конструкция намерете недетерминиран краен автомат без недостижими състояния, с език равен на този на регулярния израз: $(b^* \cup ba)^*a$
- 2. Детерминирайте автомата:

Δ	a	b
$\rightarrow A$	$\{A,B\}$	$\{A,C\}$
B	$\{C,D\}$	$\{B\}$
C	$\{A\}$	$\{B,D\}$
*D	Ø	Ø

3. Представете чрез регулярен израз езика L =

 $\{w \in \{a,b\}^* \mid w \text{ започва } c \text{ буква, която се среща след това}\}.$

4. Докажете, че езикът $L = \{a^{n+1}ba^n \mid n \in \mathbb{N}\}$ не е регулярен.

2. Второ контролно

1. Намерете безконтекстна граматика Γ' в нормална форма на Чомски такава, че $L(\Gamma') = L(\Gamma) \setminus \{\varepsilon\}$, където Γ е безконтекстната граматика $(\{u, v, x, y\}, \{S, A, B\}, S, \{S, A,$

$$\{S \to Sxy|A|B, A \to B|uAv|\varepsilon, B \to A|vBu\}$$
).

- 2. Постройте безконтекстна граматика с език равен на:
 - $\begin{array}{ll} (1) \ L = \{a^n b^m \mid m = 2n \ \text{unu} \ m = 3n\}; \\ (2) \ L = \{a^n b^m \mid n \leq m \leq 2n\}; \end{array}$

За всеки един от използваните нетерминали, посочете породения от него език.

3. Докажете, че $L = \{a^n b^m c^n \mid 2n \le m \le 3n\}$ не е безконтекстен език.

1. Намерете безконтекстна граматика Γ' в нормална форма на Чомски такава, че $L(\Gamma') = L(\Gamma) \setminus \{\varepsilon\}$, където Γ е безконтекстната граматика $(\{a,b,u,v\},\{S,X,Y\},S,$

$$\{S \to uvS | X | Y, X \to Y | aaX, Y \to X | Ybb | \varepsilon\}$$
).

- 2. Постройте безконтекстна граматика с език равен на:
 - (1) $L = \{a^n b^m \mid m = n \text{ unu } m = 2n\};$
 - (2) $L = \{a^n b^m \mid 2n \le m \le 3n\};$

За всеки един от използваните нетерминали, посочете породения от него език.

3. Докажете, че $L = \{a^m b^n c^n \mid n \le m \le 2n\}$ не е безконтекстен език.

3. Изпит

3.1. Първо контролно.

1. Минимизирайте автомата, представен със следната таблица:

δ	a	b
$\rightarrow^* A$	F	B
B	E	D
C	C	F
D	D	A
E	B	C
F	F	E

- **2.** (1) Постройте краен автомат с език L, състоящ се от всички думи над азбуката $\{a,b,c\}$, имащи първи символ различен от последния;
 - (2) Постройте краен детерминиран автомат със същия език.
- 3. Докажете, че не е регулярен езикът

$$L = \{w \in \{a, b\}^* \mid |w|_a \text{ не дели } |w|_b\}.$$

3.2. Второ контролно.

1. Нека $\Gamma_1 = (\{a,b\}, \{S_1, P_1, P_2\}, S_1, \{S_1 \to aP_1P_2|b, P_1 \to aP_1|\varepsilon, P_2 \to P_2b|\varepsilon\})$ и $\Gamma_2 = (\{a,b\}, \{S_2, T_1, T_2\}, S_2, \{S_2 \to T_1|T_2, T_1 \to T_1T_1|a, T_2 \to T_1|bT_2b\})$ са безконтекстни граматики, а $\mathcal{A} = (\{a,b\}, \{A,B,C\}, A, \{A,B\}, \Delta)$ е недетерминиран краен автомат с функция на преходите Δ , определена с $\Delta(A,a) = \{B,C\}$, $\Delta(A,b) = \emptyset$, $\Delta(B,a) = \{B\}$, $\Delta(B,b) = \{A\}$, $\Delta(C,a) = \emptyset$ и $\Delta(C,b) = \{B,C\}$. Намерете безконтекстна граматика с език

$$(L(\mathcal{A}) \circ L(\Gamma_1)) \cup (L(\Gamma_2))^*$$
.

2. (1) Постройте безконтекстна граматика за езика

$$L = \{a^{n_1}ba^{n_2}b\dots ba^{n_{2k-1}}ba^{n_{2k}} \mid k \ge 1$$

$$u \ (\forall i \le k)[n_{2i-1} < n_{2i}]\};$$

- (2) За всеки използван нетерминал X в граматиката за L, която сте дали, посочете езика, който поражда;
- 3. Докажете, че не е безконтекстен езикът

$$L = \{a^{n_1}ba^{n_2}b\dots ba^{n_k} \mid k \ge 3 \ u \ n_1 < n_2 < \dots < n_k\}.$$