Zweierkomplement ganzer Binärzahlen (n Bit)

- Nichtnegative ganze Zahlen c $(0 \le c \le 2^{n-1} 1)$ werden unverändert dargestellt. Das vordere Bit (MSB ... most significant bit) ist gleich 0.
- Negative Zahlen Zahlen -d $(1 \le d \le 2^{n-1})$ werden als sogenanntes Zweierkomplement $\overline{d} := 2^n - d$ dargestellt. Damit ergibt sich $\overline{d} \ge 2^{n-1}$, d.h. das MSB ist gleich 1.
- Die Umwandlung erfolgt am schnellsten mit folgender Methode:

Rechts beim LSB (least significant bit) beginnend alle Ziffern bis einschließlich der ersten 1 unverändert lassen. Für alle höherwertigen (weiter links stehenden) das Einerkomplement $(0 \to 1, 1 \to 0)$ bilden.

• Bsp. n=8: Darzustellen sei die Zahl -100 (als Zweierkomplement $\overline{100}$) Zunächst Binärdarstellung von 100 über das Hexadezimalsystem:

$$(100)_{10} = (64)_{16} = (110\ 0100)_2 \implies$$

100	0	110	0100
100	1	001	1100

ullet Die Subtraktion wird auf die Addition des Zweierkomplements zurückgeführt. Beispiel 64-100

	0 100 0000	64
+	1 001 1100	-100
	1 101 1100	-36
	0 010 0100	36

Ergebnis negativ (-a), Übergang zum Zweierkomplement liefert a=36 (letzte Zeile), also Ergebnis -36.

• Für die Handrechnung (z.B. 2-9=:a) kleinere Zahl von größerer subtrahieren a=-(9-2), dabei genügt für n die Binärstellenzahl des Minuenden $(9)_{10}=(1001)_2$ also n=4.

Es wird dabei ausschließlich mit nichtnegativen Zahlen $(0, 1, ..., 2^n - 1)$ gerechnet: $(9-2)_{10} = ((9+2^n-2)-2^n)_{10} = (9+\overline{2}-2^n)_{10}$. Das MSB wird dabei nicht als Vorzeichenbit verwendet.

Das Zweierkomplement des Minuenden wird wie üblich gebildet ($\overline{z}=2^n-z$): $2=(0010)_2 \Rightarrow$ Zweierkomplement $\overline{2}=(1110)_2$ (n=4 Stellen).

		1001	9
+		1110	$\overline{2}$
	1	0111	7

Die vordere Stelle $(2^n = 2^4)$ wird ignoriert Ergebnis der Subtraktion ist direkt ablesbar: 9-2=7, also a=-7.