Teoria Sygnałów w zadaniach

$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Podstawowe własności sygnałów

- 1.1 Podstawowe własności sygnałów
- 1.1.1 Wartość średnia
- 1.1.2 Energia sygnału
- 1.1.3 Moc sygnału

Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

2.1 Trygonometryczny szerego Fouriera

2.2 Zespolony szerego Fouriera

Zadanie 1. Calculate coefficients of the periodic signal f(t) shown below for the expansion into a complex exponential Fourier series. Draw magnitude and phase spectra.

Periodic signal f(t), as a piecewise linear function, is given by:

$$f(x) = \begin{cases} -A & t \in \left(-\frac{T}{4} + k \cdot T; 0 + k \cdot T\right) \\ A & t \in \left(0 + k \cdot T; \frac{T}{4} + k \cdot T\right) & \land k \in \mathbb{Z} \\ 0 & t \in \left(\frac{T}{4} + k \cdot T; \frac{3 \cdot T}{4} + k \cdot T\right) \end{cases}$$
(2.1)

The F_0 coefficient is defined as:

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2.2}$$

For the period $t \in (-\frac{T}{4}; \frac{3 \cdot T}{4})$, i.e. k = 0, we get:

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + \int_{\frac{T}{4}}^{\frac{3 \cdot T}{4}} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^{0} dt + A \cdot \int_{0}^{\frac{T}{4}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot t \Big|_{-\frac{T}{4}}^{0} + A \cdot t \Big|_{0}^{\frac{T}{4}} \right) =$$

$$= \frac{1}{T} \left(-A \cdot \left(0 - \left(-\frac{T}{4} \right) \right) + A \cdot \left(\frac{T}{4} - 0 \right) \right) =$$

$$= \frac{1}{T} \left(-A \cdot \frac{T}{4} + A \cdot \frac{T}{4} \right) =$$

$$= \frac{1}{T} (0) =$$

$$= 0$$

The F_0 coefficient equals 0.

The F_k coefficients are defined as:

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (2.4)

For the period $t \in (-\frac{T}{4}; \frac{3 \cdot T}{4})$, i.e. k = 0, we get:

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \left(\int_{-\frac{T}{4}}^0 -A \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_0^{\frac{T}{4}} A \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{4}}^{\frac{3 \cdot T}{4}} 0 \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + A \cdot \int_0^{\frac{T}{4}} e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{4}}^{\frac{3 \cdot T}{4}} 0 \cdot dt \right) = \\ &= \begin{cases} z &= -\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t \\ dz &= -\jmath \cdot k \cdot \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dz}{-\jmath \cdot k \cdot \frac{2\pi}{T}} \cdot dt \end{cases} \\ &= \begin{cases} \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 e^z \cdot \frac{dz}{-\jmath \cdot k \cdot \frac{2\pi}{T}} + A \cdot \int_0^{\frac{T}{4}} e^z \cdot \frac{dz}{-\jmath \cdot k \cdot \frac{2\pi}{T}} + 0 \right) = \\ &= \frac{1}{T} \left(-\frac{A}{-\jmath \cdot k \cdot \frac{2\pi}{T}} \cdot \int_{-\frac{T}{4}}^0 e^z \cdot dz + \frac{A}{-\jmath \cdot k \cdot \frac{2\pi}{T}} \cdot \int_0^{\frac{T}{4}} e^z \cdot dz \right) = \\ &= \frac{1}{T} \cdot \frac{A}{\jmath \cdot k \cdot \frac{2\pi}{T}} \cdot \left(e^z \big|_{-\frac{T}{4}}^0 - e^z \big|_0^{\frac{T}{4}} \right) = \\ &= \frac{A}{\jmath \cdot k \cdot 2\pi} \cdot \left(e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \big|_{-\frac{T}{4}}^0 - e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{4}} - e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) \right) = \\ &= \frac{A}{\jmath \cdot k \cdot 2\pi} \cdot \left(\left(e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot 0} - e^{\jmath \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{4}} \right) - \left(e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{4}} - e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) \right) = \end{cases}$$

$$\begin{split} &=\frac{A}{\jmath \cdot k \cdot 2\pi} \cdot \left(\left(e^0 - e^{\jmath \cdot k \cdot \frac{2\pi}{4}}\right) - \left(e^{-\jmath \cdot k \cdot \frac{2\pi}{4}} - e^0\right) \right) = \\ &= \frac{A}{\jmath \cdot k \cdot 2\pi} \cdot \left(\left(1 - e^{\jmath \cdot k \cdot \frac{\pi}{2}}\right) - \left(e^{-\jmath \cdot k \cdot \frac{\pi}{2}} - 1\right) \right) = \\ &= \frac{A}{\jmath \cdot k \cdot 2\pi} \cdot \left(1 - e^{\jmath \cdot k \cdot \frac{\pi}{2}} - e^{-\jmath \cdot k \cdot \frac{\pi}{2}} + 1 \right) = \\ &= \frac{A}{\jmath \cdot k \cdot 2\pi} \cdot \left(2 - \left(e^{\jmath \cdot k \cdot \frac{\pi}{2}} + e^{-\jmath \cdot k \cdot \frac{\pi}{2}}\right) \right) = \\ &= \frac{A}{\jmath \cdot k \cdot 2\pi} \cdot 2 \cdot \left(1 - \frac{e^{\jmath \cdot k \cdot \frac{\pi}{2}} + e^{-\jmath \cdot k \cdot \frac{\pi}{2}}}{2}\right) = \\ &= \frac{A}{\jmath \cdot k \cdot \pi} \cdot \left(1 - \frac{e^{\jmath \cdot k \cdot \frac{\pi}{2}} + e^{-\jmath \cdot k \cdot \frac{\pi}{2}}}{2}\right) = \\ &= \left\{\cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2}\right\} = \\ &= \frac{A}{\jmath \cdot k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) = \\ &= -\jmath \cdot \frac{A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) = \\ &= \jmath \cdot \frac{A}{k \cdot \pi} \cdot \left(\cos\left(k \cdot \frac{\pi}{2}\right) - 1\right) \end{split}$$

The F_k coefficients equal to $j \cdot \frac{A}{k \cdot \pi} \cdot (\cos(k \cdot \frac{\pi}{2}) - 1)$.

To sum up, coefficients for the expansion into a complex exponential Fourier series are given by:

$$F_0 = 0$$

$$F_k = \jmath \cdot \frac{A}{k \cdot \pi} \cdot \left(\cos \left(k \cdot \frac{\pi}{2} \right) - 1 \right)$$
(2.5)

The first several coefficients are equal to:

k	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
F_k	$j \cdot \frac{A}{3\pi}$	$j \cdot \frac{A}{5\pi}$	0	$\int \cdot \frac{A}{3\pi}$	$j \cdot \frac{A}{\pi}$	$j \cdot \frac{A}{\pi}$	0	$-\jmath\cdot\frac{A}{\pi}$	$-\jmath\cdot\frac{A}{\pi}$	$-j \cdot \frac{A}{3\pi}$	0	$-j \cdot \frac{A}{5\pi}$	$-j \cdot \frac{A}{3\pi}$
$ F_k $	$\frac{A}{3\pi}$	$\frac{A}{5\pi}$	0	$\frac{A}{3\pi}$	$\frac{A}{\pi}$	$\frac{A}{\pi}$	0	$\frac{A}{\pi}$	$\frac{A}{\pi}$	$\frac{A}{3\pi}$	0	$\frac{A}{5\pi}$	$\frac{A}{3\pi}$
$Arg\{F_k\}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	0	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	0	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	0	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$

Hence, the signal f(t) may be expressed as the sum of the harmonic series

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{k \cdot \frac{2\pi}{T} \cdot t}$$

$$f(t) = \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} \left[j \cdot \frac{A}{k \cdot \pi} \cdot \left(\cos\left(k \cdot \frac{\pi}{2}\right) - 1 \right) \right] \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
(2.6)

A partial approximation of the f(t) signal from $k_{min} = -1$ to $k_{max} = 1$ results in:

A partial approximation of the f(t) signal from $k_{min} = -2$ to $k_{max} = 2$ results in:

A partial approximation of the f(t) signal from $k_{min}=-3$ to $k_{max}=3$ results in:

A partial approximation of the f(t) signal from $k_{min} = -5$ to $k_{max} = 5$ results in:

A partial approximation of the f(t) signal from $k_{min} = -6$ to $k_{max} = 6$ results in:

A partial approximation of the f(t) signal from $k_{min} = -11$ to $k_{max} = 11$ results in:

A partial approximation of the f(t) signal from $k_{min} = -21$ to $k_{max} = 21$ results in:

Approximation of the f(t) signal for from $k_{min} = -\infty$ to $k_{max} = \infty$ results in oryginal signal. Based on coefficients F_k we can plot magnitude spectrum $|F_k|$ of the f(t) signal.

The magnitude spectrum of a <u>real signal</u> is an even-symmetric function of k. Based on coefficients F_k we can plot phase spectrum $\arg\{F_k\}$ of the f(t) signal.

The phase spectrum of a real signal is an odd-symmetric function of k.

2.3 Obliczenia mocy sygnałów - twierdzenie Parsevala

Analiza sygnałów nieokresowych. Transformata Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

Przetwarzanie sygnałów za pomocą układów LTI

- 4.1 Obliczanie splotu ze wzoru
- 4.2 Filtry

