Pump it Up. Equipo CharlaTED

Ignacio Aguilera Martos (nacheteam, KNN), Luis Balderas Ruiz (luisbalru, RIP-PER), Francisco Luque Sánchez (¡usuario¿, ¡algoritmo¿), Iván Sevillano García ¡usuario¿, SVM

18 de febrero de 2020

Preprocesamiento y Clasificación

Contenidos

- 1. SVM
- 2. RIPPER
- 3. KNN
- 4. J48

SVM

RIPPER

KNN

Pipeline empleado

Pipeline con mejor resultado

Eliminación de variables

Elimino las variables wpt_name, subvillage, scheme_name, funder, installer, ward, amount_tsh y num_private.

Eliminación de variables

Elimino las variables wpt_name, subvillage, scheme_name, funder, installer, ward, amount_tsh y num_private.

Marcado de anomalías como valores perdidos

En cada columna se calcula la media y la desviación típica. Aquellos datos que se salgan del intervalo [media-5std,media+5std] se marcan como NAN.

Eliminación de variables

Elimino las variables wpt_name, subvillage, scheme_name, funder, installer, ward, amount_tsh y num_private.

Marcado de anomalías como valores perdidos

En cada columna se calcula la media y la desviación típica. Aquellos datos que se salgan del intervalo [media - 5std, media + 5std] se marcan como NAN.

Imputación iterativa

Empleamos una imputación iterativa sobre los valores perdidos.

Eliminación de variables

Elimino las variables wpt_name, subvillage, scheme_name, funder, installer, ward, amount_tsh y num_private.

Marcado de anomalías como valores perdidos

En cada columna se calcula la media y la desviación típica. Aquellos datos que se salgan del intervalo [media - 5std, media + 5std] se marcan como NAN.

Imputación iterativa

Empleamos una imputación iterativa sobre los valores perdidos.

PCA

Aplicamos PCA pero sólo sobre las columnas categóricas. El objetivo es explicar las variables categóricas mejor que en su codificación original. Reducimos a 44 variables todas las categóricas.

IPF

Ejecutamos un IPF para limpiar el ruido con 4 iteraciones.

IPF

Ejecutamos un IPF para limpiar el ruido con 4 iteraciones.

SMOTE

Hacemos un oversampling de las clases "functional needs repair" y "non functional" a 7500 y 22000 con respecto a 23500 de la clase "functional" con k=7.

IPF

Ejecutamos un IPF para limpiar el ruido con 4 iteraciones.

SMOTE

Hacemos un oversampling de las clases "functional needs repair" y "non functional" a 7500 y 22000 con respecto a 23500 de la clase "functional" con k=7.

Limpieza Outliers

Hacemos una limpieza de anomalías por cada clase eliminando el $1\,\%$ más anómalo según KNN con k=7 y la métrica de la mayor distancia.

Visualización de las técnicas

Posición en DrivenData

Puntuación final obtenida: $79.29\,\%$

Ranking final: 1729

Número de subidas: 23

J48

Referencias i

¿Preguntas?