1. Ejemplos de espacios vectoriales

Ejemplo 1 (el espacio de n-tuplas). Si \mathbb{F} es un campo, entonces \mathbb{F}^n es el conjunto de n-tuplas formadas por

$$\mathbb{F}^n = \mathbb{F} \times \mathbb{F} \times \ldots \times \mathbb{F} = \{(a_1, a_2, \ldots, a_n) : a_j \in \mathbb{F} \,\forall j \in \{1, \ldots, n\}\}.$$

Sean $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbb{F}^n$ y $c \in \mathbb{F}$. Si definimos

$$+: \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$$

 $(a,b) \mapsto a+b := (a_1+b_1, \dots, a_n+b_n)$

у

entonces \mathbb{F}^n es un espacio vectorial sobre el campo \mathbb{F} con las operaciones + y \cdot .

 \mathbb{K}^n sobre \mathbb{K} es un espacio vectorial. En estas condiciones, es claro que \mathbb{R}^n es un espacio vectorial sobre \mathbb{R} , así como \mathbb{C}^n también es un espacio vectorial sobre \mathbb{C} con la suma usual de n-tuplas complejas y el producto de un escalar complejo por una n-tupla de números complejos.

Por supuesto, cualquier campo F sobre sí mismo es un espacio vectorial.

Ejemplo 2 (espacio de matrices). $\mathcal{M}_{m \times n}(\mathbb{K})$, el conjunto de todas las matrices de orden $m \times n$ con coeficientes en \mathbb{K} junto con el mismo campo \mathbb{K} y las operaciones usuales de suma matricial y producto de un escalar por una matriz es un espacio vectorial sobre \mathbb{K} .

Ejemplo 3 (espacio de todos los polinomios). $\mathcal{P}(\mathbb{K})$, el conjunto de todos los polinomios con coeficientes en \mathbb{K} junto con las operaciones usuales de suma de polinomios y producto de un escalar por un polinomio es un espacio vectorial sobre \mathbb{K} .

Ejemplo 4 (espacio de polinomios de grado menor o igual que n). $\mathcal{P}_n(\mathbb{K})$, el conjunto de los polinomios de grado **menor o igual** que n junto con las operaciones mencionadas en el ejemplo anterior es un espacio vectorial sobre \mathbb{K} .

Ejemplo 5 (conjunto de polinomios de exactamente grado n no es un espacio vectorial). Sea $n \in \mathbb{N}$ fijo. Denotemos por P al conjunto de polinomios de grado exactamente n con coeficientes en \mathbb{K} y las operaciones usuales. Entonces P no forma un espacio vectorial. Veamos, por ejemplo, para n = 3, que la cerradura bajo la suma no se satisface:

Supongamos que
$$p(x) = 2 - 3x + x^2 - 5x^3$$
, $q(x) = 7 - x + x^2 + 5x^3 \in P$.

Entonces

$$p(x) + q(x) = 9 - 4x + 2x^2$$
 no es un polinomio de grado 3.

Ejemplo 6 (espacio de funciones). Sea X un conjunto no vacío. Denotamos por $\mathcal{F}(X,\mathbb{F})$ al conjunto de todas las funciones f con dominio en X y conradominio \mathbb{F} :

$$\mathcal{F}(X,\mathbb{F}) := \{ f : X \to \mathbb{F} \}.$$

Si definimos operaciones punto a punto:

$$+: \mathcal{F}(X, \mathbb{F}) \times \mathcal{F}(X, \mathbb{F}) \to \mathcal{F}(X, \mathbb{F})$$

$$(f, g) \mapsto (f + g)(x) := f(x) + g(x), \ \forall x \in X,$$

$$\cdot: \mathbb{F} \times \mathcal{F}(X, \mathbb{F}) \to \mathcal{F}(X, \mathbb{F})$$

 $(a, f) \mapsto (af)(x) := af(x) \, \forall x \in X,$

entonces $\mathcal{F}(X,\mathbb{F})$ es un espacio vectorial sobre \mathbb{F} .

Ejemplo 7 (espacio vectorial trivial). Sea V un conjunto dado por un único elemento v, es decir, $V = \{v\}$. Entonces V es un espacio vectorial sobre \mathbb{F} con las operaciones

$$+: V \times V \to V$$

$$(v, v) \mapsto v + v := v,$$

$$+: \mathbb{F} \times V \to V$$

 $(a, v) \mapsto av := v.$

Observe que el elemento v se comporta como el elemento neutro del espacio, por lo que simplemente escribiremos v=0, es decir, $V=\{0\}$. En otras palabras, V consta solamente de un vector llamado **vector cero**.