

CIRCUITOS DIGITAIS ARITMÉTICA: MULTIPLICAÇÃO

Marco A. Zanata Alves

Algoritmo da multiplicação: mesma ideia usada na base decimal.

Note que a tabuada da multiplicação na base 2 é muito mais fácil.

$$egin{array}{c|ccc} \times & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

Algoritmo da multiplicação: mesma ideia usada na base decimal.

Note que a tabuada da multiplicação na base 2 é muito mais fácil.

$$egin{array}{c|cccc} \times & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

Algoritmo da multiplicação: mesma ideia usada na base decimal.

Note que a tabuada da multiplicação na base 2 é muito mais fácil.

Se A tem n algarismos e B tem m algarismos, então o produto $A \ast B$ terá, no máximo, n + m algarismos.

×	0	1
0	0	0
1	0	1

Note que não é necessário armazenar todas as parcelas da soma ao mesmo tempo.

$$11011 \times 00101$$

$$\begin{array}{r}
 11011 \\
 \times 00101 \\
 \hline
 11011
 \end{array}$$

$$\begin{array}{r}
11011 \\
\times 00101 \\
+ 11011 \\
000000 \leftarrow \text{desloca 1}
\end{array}$$

Note que não é necessário armazenar todas as parcelas da soma ao mesmo tempo.

$$11011 \times 00101$$

$$\begin{array}{r}
 11011 \\
 \times \underline{00101} \\
 11011
 \end{array}$$

$$11011$$
× 00101
+ 11011
 $000000 \leftarrow desloca 1$

$$11011$$
 $\times 00101$
 $+ 011011$

Note que não é necessário armazenar todas as parcelas da soma ao mesmo tempo.

$$11011 \times 00101$$

$$\begin{array}{r}
 11011 \\
 \times \underline{00101} \\
 11011
 \end{array}$$

$$\begin{array}{r}
 11011 \\
 \times 00101 \\
 + 011011
\end{array}$$

$$\begin{array}{r}
 11011 \\
 \times 00101 \\
 + 011011
\end{array}$$

$$\begin{array}{r}
 11011 \\
 \times 00101 \\
 + 10000111
\end{array}$$

O que acontece com os algoritmos da soma, subtração, multiplicação e divisão quando os números sendo operados não são inteiros?

O que acontece com os algoritmos da soma, subtração, multiplicação e divisão quando os números sendo operados não são inteiros?

Sem perder a generalidade, iremos supor que ${\sf A}$ e ${\sf B}$ possuem k algarismos depois da vírgula.

E se eles não tiverem a mesma quantidade de algarismos após a vírgula?

$$A = a_{n-1} a_{n-2} \dots a_2 a_1 a_0, a_{-1} \dots a_{-k}$$

 $B = b_{m-1} b_{m-2} \dots b_2 b_1 b_0, b_{-1} \dots b_{-k}$

Para a **soma** e a **subtração**: como os algoritmos são "copiados" da versão para números na base 10, a solução é simples: ignore, inicialmente a vírgula. Após a soma, recoloque a vírgula no seu lugar (conte k algarismos à direita).

Para a **soma** e a **subtração**: como os algoritmos são "copiados" da versão para números na base 10, a solução é simples: ignore, inicialmente a vírgula. Após a soma, recoloque a vírgula no seu lugar (conte k algarismos à direita).

Para a **multiplicação**: de novo, a inspiração vem da base decimal. Ignore, inicialmente a vírgula e, após a multiplicação, recoloque a vírgula no seu lugar (conte 2*k algarismos à direita).

MULTIPLICAÇÃO BINÁRIA DE **NÚMEROS REAIS**

Após a multiplicação, recoloque a vírgula no seu lugar (conte 2 * k algarismos à direita).

110,1

 \times 010,0

1101

 \times 0100

MULTIPLICAÇÃO BINÁRIA DE NÚMEROS REAIS

Após a multiplicação, recoloque a vírgula no seu lugar (conte 2*k algarismos à direita).

$$110,1 \times 010,0$$

$$\begin{array}{c} 1101 \\ \times \underline{0100} \end{array}$$

$$\begin{array}{r}
 1101 \\
 \times \underline{0100} \\
 0000
 \end{array}$$

MULTIPLICAÇÃO BINÁRIA DE NÚMEROS REAIS

Após a multiplicação, recoloque a vírgula no seu lugar (conte 2*k algarismos à direita).

$$110,1 \times 010,0$$

$$\begin{array}{c}
1101 \\
\times 0100
\end{array}$$

$$\begin{array}{r}
 1101 \\
 \times 0100 \\
 \hline
 0000
 \end{array}$$

$$\begin{array}{r}
 1101 \\
 \times 0100 \\
 + 0000 \\
 \hline
 00000
 \end{array}$$

$$\begin{array}{r}
 1101 \\
 \times 0100 \\
 + 0000 \\
 00000 \\
 110100
\end{array}$$

Desloca 1 casa

Desloca 2,3 casas

MULTIPLICAÇÃO BINÁRIA DE NÚMEROS REAIS

Após a multiplicação, recoloque a vírgula no seu lugar (conte 2*k algarismos à direita).

$$110,1 \times 010,0$$

$$\begin{array}{c} 1101 \\ \times 0100 \end{array}$$

$$\begin{array}{r}
 1101 \\
 \times 0100 \\
 \hline
 0000
 \end{array}$$

$$\begin{array}{r}
 1101 \\
 \times 0100 \\
 + 00000
\end{array}$$

$$\begin{array}{r}
 110,1 \\
 \times 010,0 \\
 \hline
 1101,00
 \end{array}$$

Re-colocamos a vírgula

CIRCUITOS DIGITAIS

REPRESENTAÇÃO NUMÉRICA

REPRESENTAÇÃO NUMÉRICA

Representação de números no papel: usamos tantos dígitos forem necessários.

Limitado apenas pela quantidade de papel, tempo disponível para escrever os dígitos, paciência. . .

REPRESENTAÇÃO NUMÉRICA

Representação de números no papel: usamos tantos dígitos forem necessários.

Limitado apenas pela quantidade de papel, tempo disponível para escrever os dígitos, paciência. . .

Número π :

3.1415926535897932384626433832795028841971693993751058 209749445923078164062862089986280348253421170679821480 865132823066470938446095505822317253594081284811174502 841027019385211055596446229489549303819644288109756659 334461284756482337867831652712019091456485669234603486 104543266482133936072602491412737245870066063155881748 815209209628292540917153643678925903600113305305488204 665213841469519415116094330572703657595919530921861173 81932611793105118548074462379...

REPRESENTAÇÃO NUMÉRICA NUM COMPUTADOR DIGITAL

Recordando: em um computador digital **qualquer informação**, em última instância, é **representada por um número**.

Atualmente, os números são representados internamente em binário (por vários motivos, entre eles facilidade de fazer contas na base 2).

Um computador digital possui **espaço finito** para guardar informações.

Por questões de eficiência, geralmente o processamento de dados (ou seja, números) não é feito algarismo binário por algarismo binário, e sim por **grupos de algarismos binários** de uma só vez.

Abreviação: algarismo binário = bit (do inglês *binary digit*)

Abreviação: algarismo binário = bit (do inglês *binary digit*)

A unidade natural de processamento de um determinado sistema é chamada **palavra de dado**

Trata-se de uma sequência de bits com tamanho fixo que é processada em conjunto.

Tamanho w = 16 bits

Essa palavra tem 16 bits

Abreviação: algarismo binário = bit (do inglês *binary digit*)

A unidade natural de processamento de um determinado sistema é chamada **palavra de dado**

Trata-se de uma sequência de bits com tamanho fixo que é processada em conjunto.

MSB = Most Significant Bit = bit mais significativo LSB = Least Significant Bit = bit menos significativo

Nomes comuns para conjunto de bits:

```
... 8 bits = byte (binary term) ou octeto
```

... 4 bits = nibble

(nibble, em inglês, significa "mordidinha" = "small bite")

Atenção: $10Mb/s \neq 10MB/s$

Um sistema digital pode padronizar o tamanho de seus operandos.

Por exemplo, podemos ter um processador de 32 bits ou 64 bits.

Nesse caso dizemos que a **palavra** tem 32 ou 64 bits, respectivamente.

Note que a palavra pode mudar de tamanho em cada sistema.

Mas as unidades de medida (bytes, nibble, MB, Mb, etc.) não.

REPRESENTAÇÃO BINÁRIA

REPRESENTANDO NÚMEROS EM PALAVRAS BINÁRIAS

Qual é o maior inteiro sem sinal que podemos representar?

Exemplo: quais inteiros sem sinal podemos representar com 3 bits?

REPRESENTANDO NÚMEROS EM PALAVRAS BINÁRIAS

Qual é o maior inteiro sem sinal que podemos representar?

Exemplo: quais inteiros sem sinal podemos representar com 3 bits?

De 0 até $7 = 2^3 - 1$

REPRESENTANDO NÚMEROS: INTEIROS SEM SINAL

Inteiros sem sinal em palavras binárias com w bits.

Palavra		Decimal
00000	=	0
00001	=	1
00010	=	2
	• • •	
11110	=	ś
11111	=	? maior inteiro sem sinal com w bits

O próximo número na sequência, que não cabe em w bits, é...

REPRESENTANDO NÚMEROS: INTEIROS SEM SINAL

Inteiros sem sinal em palavras binárias com w bits.

Palavra		Decimal
00000	=	0
00001	=	1
00010	=	2
	•••	
11110	=	$2^{w}-2$
11111	=	$2^w - 1$ = maior inteiro sem sinal com w bits
100000	=	2^{w}

Quantas combinações diferentes temos com N bits?

O próximo número na sequência, que não cabe em w bits, é $(100 \dots 000)_2 = 2^w$

EXTENSÃO DE NÚMEROS SEM SINAL

EXTENSÃO DE NÚMEROS SEM SINAL

Como representar um número inteiro sem sinal

 $A=(a_{n-1}\,a_{n-2}\,...\,a_2\,a_1\,a_0)_2$ numa palavra de comprimento $W\geq n$?

EXTENSÃO DE NÚMEROS SEM SINAL

Como representar um número inteiro sem sinal

 $A=(a_{n-1}\,a_{n-2}\,...\,a_2\,a_1\,a_0)_2\,$ numa palavra de comprimento $W\geq n$?

REPRESENTANDO NÚMEROS NEGATIVOS

REPRESENTANDO NÚMEROS: INTEIROS COM SINAL

Precisamos reservar espaço na palavra para representar, além dos algarismos do número, alguma informação sobre o sinal.

Existem várias possibilidades para o sinal:

REPRESENTANDO NÚMEROS: INTEIROS COM SINAL

Precisamos reservar espaço na palavra para representar, além dos algarismos do número, alguma informação sobre o sinal.

Existem várias possibilidades para o sinal:

- Podemos usar um dos bits para representar o sinal.
- Podemos usar complemento de 1.
- Podemos usar complemento de 2.

SINAL MAGNITUDE

Esta representação é conhecida como sinal-magnitude.

Sinal +: bit de sinal 0

Sinal -: bit de sinal 1

W bits

Esta representação é conhecida como sinal-magnitude.

Sinal +: bit de sinal 0

Sinal -: bit de sinal 1

Esta representação é conhecida como sinal-magnitude.

Sinal +: bit de sinal 0

Sinal -: bit de sinal 1

Menor número:

$$111 \dots 111 = -(11 \dots 111)_2 = -(100 \dots 000 - 1)_2 = -2^{w-1} + 1$$

$$1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$1 \quad 1 \quad 1 \quad 1$$

W bits

Menor número:

$$111 \dots 111 = -(11 \dots 111)_2 = -(100 \dots 000 - 1)_2 = -2^{w-1} + 1$$

Maior número:

$$011 \dots 111 = +(11 \dots 111)_2 = +(100 \dots 000 - 1)_2 = 2^{w-1} - 1$$
W-1 uns

Vantagens:

- Simples de entender
- Simples de implementar

Desvantagens:

- Zero tem duas representações:
- 00...000 = +0
- $10 \dots 000 = -0$
- Complica a aritmética: é necessário tratar o sinal separadamente na hora de fazer as contas de soma e subtração.

EXTENSÃO DE NÚMEROS EM SINAL-MAGNITUDE

EXTENSÃO DE NÚMEROS EM SINAL-MAGNITUDE

Como representar um número inteiro $A=(a_{n-1}\,a_{n-2}\,...\,a_2\,a_1\,a_0)_2$ numa palavra de comprimento $W\geq n$? Se for positivo, e se for negativo?

W bits

EXTENSÃO DE NÚMEROS EM SINAL-MAGNITUDE

Como representar um número inteiro $A=(a_{n-1}\,a_{n-2}\,\dots a_2\,a_1\,a_0)_2$ numa palavra de comprimento $W\geq n$?

Se positivo

Se negativo

O processo de conversão ocorre apenas se o número for negativo

Trata-se de uma forma simples de converter uma representação binária sem sinal para uma representação com sinal

O processo de conversão ocorre apenas se o número for negativo

Trata-se de uma forma simples de converter uma representação binária sem sinal para uma representação com sinal

Matematicamente fazemos: $111111 - bbbbb = ()_{c1}$

Para realizar a conversão basta inverter os níveis lógicos do número

O bit mais significativo irá indicar o sinal:

- 0 se positivo
- 1 se negativo

Vantagens:

- Conversão simples
- Somas e subtrações são feitas da mesma forma que para números sem sinal

Desvantagens:

- Duas representações para o zero
- Comparações não são tão simples. Ex.: $(-1)_{10} = (\mathbf{110})_2 > (\mathbf{100})_2 = (-3)_{10}$

SUBTRAINDO COM COMPLEMENTO DE 1

Vamos considerar a subtração de 3-2.

Iniciamos com o complemento de 1, do número 2.

$$010 \rightarrow 101_{c1}$$

SUBTRAINDO COM COMPLEMENTO DE 1

Vamos considerar a subtração de 3-2.

Iniciamos com o complemento de 1, do número 2.

$$010 \to 101_{c1}$$

Depois fazemos a soma A + (-B)

$$\begin{array}{r}
 11 \\
 011 \\
 101 \\
\hline
 1000 \\
 \end{array}$$

$$3 - 2 = 0$$
???

Cuidando para adicionar 1 ao final.

SUBTRAINDO COM COMPLEMENTO DE 1

Vamos considerar a subtração de 3-2.

Iniciamos com o complemento de 1, do número 2.

$$010 \rightarrow 101_{c1}$$

Depois fazemos a soma A + (-B)

$$\begin{array}{r}
 11 \\
 011 \\
 101 \\
\hline
 1000 \\
 + 1
 \end{array}$$

001

- Podemos ter apenas 1 representação para zero!
- Podemos representar um número negativo a mais!

- Podemos ter apenas 1 representação para zero!
- Podemos representar um número negativo a mais!

Inteiros representados em complemento de dois em palavras de 3 bits:

$$011 = +3_{10}$$

$$010 = +2_{10}$$

$$001 = +1_{10}$$

$$000 = 0_{10}$$

$$111 = ?_{10}$$

$$110 = ?_{10}$$

$$101 = ?_{10}$$

$$100 = ?_{10}$$

Inteiros representados em complemento de dois em palavras de 3 bits:

$$011 = +3_{10}$$
$$010 = +2_{10}$$

$$001 = +1_{10}$$

$$000 = 0_{10}$$

$$111 = -(\overline{11} + 1)_2 = -(01)_2 = -1_{10}$$

$$110 = -(\overline{10} + 1)_2 = -(11)_2 = -2_{10}$$

$$101 = -(\overline{01} + 1)_2 = -(10)_2 = -3_{10}$$

$$100 = -(\overline{00} + 1)_2 = -(100)_2 = -4_{10}$$

Note que o intervalo de representação não é simétrico

Como só há uma representação para 0, é possível representar um inteiro negativo a mais

somas/subtrações com esta representação são simples!

$$A - B = A + (-B)$$

Logo, podemos notar que caso o número esteja em representação de complemento de 2, devemos ignorar o primeiro digito mais significativo, pois este indica o sinal.

Caso o número seja negativo, a conversão entre bases deve acontecer após a conversão para complemento de 2.

Menor número:

$$100 \dots 000 = -(01 \dots 111 + 1)_2 = -(100 \dots 000)_2 = -2^{w-1}$$

$$1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$1 \quad 1 \quad 1 \quad 1$$

W bits

Menor número:

$$100 \dots 000 = -(01 \dots 111 + 1)_2 = -(100 \dots 000)_2 = -2^{w-1}$$

Maior número:

$$011 \dots 111 = +(011 \dots 111)_2 = 2^{w-1} - 1$$
 Assim como sinal magnitude! W-1 uns $0 \quad 1 \quad 1 \quad 1 \quad 1$

W bits

Vantagens:

- Representação única para o zero
- Somas e subtrações são feitas da mesma forma que para números sem sinal

Desvantagens:

- Não é tão intuitivo para nós (indiferente para computador)
- Comparações não são tão simples. Ex.: $(1)_{10} = (\mathbf{001})_2 > (\mathbf{101})_2 = (-3)_{10}$

Como representar um número inteiro em **complemento de 2** $A=(a_{n-1}\,a_{n-2}\,...\,a_2\,a_1\,a_0)_2$ numa palavra de comprimento $W\geq n$? Se for positivo, e se for negativo?

Como representar um número inteiro em **complemento de 2** $A=(a_{n-1}\,a_{n-2}\,...\,a_2\,a_1\,a_0)_2$ numa palavra de comprimento $W\geq n$? Se for positivo, e se for negativo?

Se positivo

Se negativo

Como representar um número inteiro em complemento de 2 $A=(a_{n-1}\,a_{n-2}\,...\,a_2\,a_1\,a_0)_2$ numa palavra de comprimento $W\geq n$? Se for positivo, e se for negativo?

Se positivo ou negativo

Cópia do bit mais significativo

Perceba que a extensão de sinal será diferente do que fazíamos para números sem sinal!

LIMITAÇÕES EM ADIÇÕES

LIMITAÇÕES NA REPRESENTAÇÃO

Toda vez que uma operação precisar de mais bits do que os disponíveis na representação que estamos utilizando um erro (overflow/underflow) ocorre.

LIMITAÇÕES NA REPRESENTAÇÃO

Toda vez que uma operação precisar de mais bits do que os disponíveis na representação que estamos utilizando um erro (overflow/underflow) ocorre.

Considere que estamos utilizando complemento de dois, com representação de 3 bits.

Ao somar +1 no número $011 (3_{10})$ causamos um erro (**overflow**), devido à representação com 3 bits.

$$011 + 1 = 100 = (-4_{10})$$

DETECÇÃO DE OVERFLOW/UNDERFLOW

A ocorrência de overflow pode ser detectada examinando-se o bit de sinal do resultado e comparando-o com os bits de sinal dos números que estão sendo adicionados.

Nos computadores, um circuito especial é usado para detectar qualquer condição de overflow para indicar que a resposta está errada.

Overflow/Underflow só ocorre quando somando dois números de mesmo sinal (positivos ou negativos).

Quando temos dois números de mesmo sinal, devemos verificar se o resultado da soma tem mesmo sinal dos operadores.

Caso negativo temos um overflow/underflow.

PROBLEMAS DE CONVERSÃO

Sempre que queremos adicionar o sinal, na representação do número iremos precisar de um bit livre para isso (representar o sinal).

Toda vez que fizermos uma conversão de inteiro sem sinal para inteiro com sinal, podemos ter um overflow.

Isso ocorre caso o bit mais significativo do inteiro sem sinal esteja sendo usado.