Comparisons

	C4	HellaSwag		PIQA		Physics	
	Perplexity ↓	0-shot ↑	5-shot ↑	0-shot ↑	5-shot ↑	0-shot ↑	5-shot ↑
GPT-2 Small style, 100M-scale, 12 layers	default, Context 1	Length 819	2, 125k tra	ining steps			
Softmax	17.81	30.2	27.8	64.6	63.2	27.5	27.5
Polynomial (degree 4)	18.18	28.6	<u>28.4</u>	64.2	<u>65.0</u>	<u>27.5</u>	<u>31.0</u>
Polynomial (degree 8)	<u>17.77</u>	29.8	29.8	62.2	64.0	23.1	26.2
GPT-2 Large style, 700M-scale, 36 layers	default, Context	Length 204	18, 125k tra	aining steps	5		
Softmax	12.71	40.2	40.2	68.8	71.4	34.4	24.4
Polynomial (degree 4)	12.82	40.0	<u>40.6</u>	67.8	66.6	31.8	<u>31.4</u>
Polynomial (degree 8)	12.85	40.0	39.8	66.8	70.4	<u>34.4</u>	29.6

Feature map for Polynomials

- A finite dimensional φ such that $\langle \varphi(q), \varphi(k) \rangle = \langle q, k \rangle^p$?
 - $\varphi: x \mapsto x^{\otimes p}$
 - If $x \in \mathbb{R}^h$, then $x^{\otimes p} \in \mathbb{R}^{h^p}$
 - $(x^{\otimes p})_{(i_1,i_2,\ldots,i_p)} = x_{i_1} \cdot x_{i_2} \cdot \cdots \cdot x_{i_p}$