Übersicht: Aufbau von Computersystemen

- ** Arbeitsweise von Computersystemen
- **≭Ein-/Ausgabe-Struktur**
- ** Speicherstruktur
- ** Speicherhierarchie
- ★ Schutzmechanismen mit Hardware-Unterstützung
- ****** Allgemeine Systemarchitektur

Uwe Neuhaus

BS: Aufbau v. Computersystemen

Arbeitsweise von Computersystemen

- * Ein-/Ausgabegeräte und der Prozessor können gleichzeitig arbeiten.
- ** Jede Gerätesteuereinheit (device controller) ist für einen speziellen Gerätetyp zuständig.
- * Jedes Gerät hat einen lokalen Pufferspeicher (buffer).
- ** Der Prozessor transferiert Daten vom Hauptspeicher zu den lokalen Puffern und umgekehrt.
- ** Die Ein-/Ausgabe erfolgt zwischen dem Gerät und dem lokalen Puffer.
- Ein Gerät informiert den Prozessor über die Beendigung einer Ein-/Ausgabe-Operation durch einen *Interrupt*.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

3

Allgemeines zu Interrupts

- ** Bei einem Interrupt erhält die zuständige Interrupt-Routine die Kontrolle.
- ** Die zuständige Routine wird über den Interrupt-Vektor (enthält die Adressen aller Interrupt-Routinen) ermittelt.
- ** Bei einem Interrupt muss die Adresse der unterbrochenen Anweisung gesichert werden.
- ** Während der Bearbeitung eines Interrupts werden andere Interrupts häufig gesperrt.
- Durch einen Aufruf eines Anwendungsprogramms (oder bei einem Fehler) wird ein Software-Interrupt (trap) generiert.
- Moderne Betriebssysteme sind typischerweise interruptgesteuert.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

Interrupt-Behandlung

- ** Das Betriebssystem sichert den Zustand des Prozessors, in dem die Register und der Programmzähler gespeichert werden.
- ****** Bestimmung des Interrupt-Types:
 - durch Polling
 - •durch ein vektorisiertes Interrupt-System
- ** Spezielle Interrupt-Routinen ermitteln, welche Operationen für einen gegebenen Interrupt-Typ ausgeführt werden müssen.
- **Nach Beendigung der Interrupt-Routine wird mit einem bereiten Prozess fortgefahren.

Uwe Neuhaus

Uwe Neuhaus

BS: Aufbau v. Computersystemen

5

Zeitlicher Verlauf von Interrupts bei Ein-/Ausgabeanforderungen PU user process executing I/O interrupt processing idle device transferring I/O transfer I/O transfer request done request done

BS: Aufbau v. Computersystemen

Ein-/Ausgabestruktur

- ** Das Anwenderprogramm erhält die Kontrolle erst nach Beendigung der E/A-Anforderung:
 - Wait-Anweisung versetzt den Prozessor in "Leerlauf" bis ein Interrupt erfolgt.
 - Warte-Schleife (eventuell inklusive Polling)
 - Maximal eine ausstehende E/A-Anforderung. Keine gleichzeitige E/A-Bearbeitung.
- ** Das Anwenderprogramm erhält die Kontrolle direkt nach Absetzen der E/A-Anforderung zurück:
 - ◆ Wait-System-Aufruf Anforderung an das Betriebssystem, den Prozess bis zur Beendigung der E/A-Anforderung ruhen zu lassen.
 - ◆ Geräte-Statustabelle enthält Einträge für jedes Gerät (Typ, Adresse, Status, Warteschlangen)
 - Betriebssystem prüft den zum Interrupt gehörenden Eintrag in der Geräte-Statustabelle und nimmt die nötigen Veränderungen vor.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

DMA: Direct Memory Access

- ** Nutzung bei E/A-Geräten, die Daten mit hoher Geschwindigkeit übertragen können.
- ** DMA-Controller überträgt die Datenblöcke vom Gerätepuffer ohne Zutun des Prozessors direkt in den Hauptspeicher.
- ** Nur ein Interrupt pro Datenblock, nicht ein Interrupt pro Byte.
- ** DMA-Controller konkurriert mit dem Prozessor um den Speicherzugriff.

Speicherstruktur

- ** Hauptspeicher einziges Speichermedium, das direkt vom Prozessor angesprochen werden kann.
- ** Sekundärspeicher Erweiterung des Hauptspeichers mit großer, dauerhafter Speicherkapazität.
- ** Festplatte starre, magnetisch beschichtete Metalloder Glasscheiben.
 - Scheibenoberflächen sind logisch unterteilt in Spuren, diese wieder in Sektoren.
 - ◆ Der Festplatten-Controller bestimmt die logische Interaktionen zwischen Festplatte und Betriebssystem.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

11

Aufbau einer Festplatte track t spindle cylinder c rotation Uwe Neuhaus BS: Aufbau v. Computersystemen 12

Speicherhierarchie

- ** Speichersysteme sind hierarchisch organisiert:
 - •nach Geschwindigkeit
 - nach Kosten
 - •bezüglich ihrer Volatilität (Dauerhaftigkeit)
- Caching Nutzung kleiner, schneller
 Zwischenspeicher zur Performanzsteigerung.
 Caches sind auf verschiedenen Ebenen einsetzbar.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

13

Hierarchie der Speichermedien registers cache main memory electronic disk optical disk Uwe Neuhaus BS: Aufbau v. Computersystemen 14

Caching

- ** Nutzung schneller Speicher, die die in letzter Zeit verwendeten Daten enthalten.
- **★ Setzt eine Caching-Strategie voraus.**
- **Durch Caching entstehen weitere Ebenen in der Speicherhierarchie. Daten müssen gleichzeitig auf mehreren Ebenen gespeichert werden, um die Konsistenz der Daten zu wahren.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

15

Der Weg von der Festplatte in ein Prozessorregister magnetic disk main memory A hardware register

Uwe Neuhaus

BS: Aufbau v. Computersystemen

Schutzmechanismen mit Hardware-Unterstützung

- **★ Dual-Mode-Anweisungen**
- **⋇E/A-Schutz**
- ** Speicherschutz
- **** CPU-Schutz**

Uwe Neuhaus

BS: Aufbau v. Computersystemen

17

Dual-Mode-Anweisungen I

- ** Bei gemeinsam genutzten Betriebsmitteln muss das Betriebssystem Prozesse vor inkorrekten anderen Prozessen schützen.
- ** Die Hardware/der Prozessor muss zwischen wenigstens zwei Anweisungsmodi unterscheiden:
 - 1. Anwendermodus (auch User-Modus)
 - Anweisungen stammen von Anwenderprogrammen
 - 2. *Systemmodus* (auch *Kernelmodus* oder *Monitormodus*) Anweisungen stammen vom Betriebssystem

Uwe Neuhaus

BS: Aufbau v. Computersystemen

Dual-Mode Anweisungen II

- ** Moderne Prozessoren enthalten ein Modus-Bit, um den gegenwärtigen Modus anzuzeigen: Systemmodus (0) oder Anwendermodus (1).
- ** Wenn ein Interrupt oder ein Fehler auftritt, wird in den Systemmodus geschaltet.

Schalte in Systemmodus

Betriebs-system

Schalte in Anwender

Schalte in Anwendermodus

Privilegierte Anweisungen können nur im Systemmodus ausgeführt werden.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

19

E/A-Schutz

- ** Alle E/A-Anweisungen sind privilegierte Anweisungen.
- *Es muss sichergestellt werden, dass ein Anwendungsprogramm niemals im Systemmodus die Kontrolle über das System erhält (z.B. durch Verbiegen des Interrupt-Vektors auf einen Benutzerprozess.)

Uwe Neuhaus

BS: Aufbau v. Computersystemen

Benutzung von System-Aufrufen für E/A-Anforderungen

Uwe Neuhaus

BS: Aufbau v. Computersystemen

21

Speicherschutz

- ** Wenigstens der Interrupt-Vektor und die Interrupt-Routinen müssen vor Veränderungen durch nicht befugte Prozesse geschützt werden (Speicherschutz).
- ** Realisierung: Ergänzung des Prozessors durch zwei zusätzliche Register, die den legalen Speicherbereich definieren:
 - Basisregister enthält die Startadresse des physikalischen Hauptspeichers.
 - ◆ Grenzregister enthält die Größe des für den Prozess zur Verfügung stehenden Speichers
- ** Speicher außerhalb des vorgegebenen Bereichs ist geschützt.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

Schutz der Zugriffsregister

- Im Systemmodus hat das Betriebssystem uneingeschränkten Zugriff auf den Speicher des Betriebssystems und den Speicher der Anwendungsprozesse.
- ** Die Anweisungen zum Laden der Basis- und Grenzregister sind privilegierte Anweisungen, können also nur vom Betriebssystem ausgeführt werden.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

25

CPU-Schutz

- ** Timer unterbricht den Computer nach einem definierten Zeitintervall, um sicherzustellen, dass das Betriebssystem die Kontrolle behält.
 - ◆Der Timer wird mit jedem Systemtakt dekrementiert.
 - Erreicht der Timer den Wert 0, wird ein Interrupt ausgelöst.
- ** Der Timer wird üblicherweise auch für Time-Sharing-Betriebssysteme eingesetzt.
- *Das Setzen des Timers ist eine privilegierte Anweisung.

Uwe Neuhaus

BS: Aufbau v. Computersystemen

**** Local Area Networks (LAN):**

Lokales Netzwerk

(Ausdehnung: bis zu mehreren hundert Metern)

※ Wide Area Networks (WAN):

Weitverkehrsnetz

(Ausdehnung: bis zu vielen tausenden von

Kilometern)

Uwe Neuhaus

BS: Aufbau v. Computersystemen

