

http://atm.neuro.pub.ro/radu_d/

Comparative performances of XFSVC and SVM for IRIS, SATIMG, PHONEME and OPTD64 datasets

R. Dogaru and Ioana Dogaru , NHC Lab, May 25, 2016.

Platform: Octave 4.0 on Windows-XP, Intel 2-core E7500 2.93Ghz

SVM – LIBSVM (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) implementation (.MEX prepared for Octave)

FSVC-NT (no-tune – fastest – version of FSVC, with eta=0); This version gives a large number of RBF units but using fast training and with some advantages in embedded systems design.

FSVC with tuned Adaline (standard version of FSVC) – may achieve better performance with less units but larger training times.

IRIS problem

Implement	Parameters	RBF- units (or SVs)	Training time (s)	Accuracy	Notes
FSVC-NT	xfsvc(1,.6,0/16,'rbf_dog','manh','iris',20); xfsvc(.1,.5,0/16,'rbf_dog','manh','iris',20);	15 7	01	100%	
SVM	Gaussian kernel $(\gamma, C) = (0.1,10)$	27	0	94%	

PHONEME problem

Implement Parameters RBF-Training Accuracy Notes units time (s) (or SVs) FSVC-NT xfsvc(4,0.14,0,'rbf_dog','manh','phoneme',2); 1565 0.093 87.23% xfsvc(1,0.03,0,'rbf_qus','eucl','phoneme',2); 2329 88.82% 0.36 SVM 961 88.675% 0.468 Gaussian kernel $(\gamma, C) = (28,10)$

¹ Too small to be measured with routines from time.h

OPTD64 problem

Implement	Parameters	RBF-	Training	Accuracy	Notes
		units	time (s)		
		(or			
		SVs)			
FSVC-NT	xfsvc(.25,1,0,'rbf_gus','eucl','optd64',2);	1720	0.953	98.664%	
	xfsvc(1,7.6,0,'rbf_dog','manh','optd64',2);	595	0.218	97.663%	
SVM	Gaussian kernel (γ, C) = (0.046,10)	1076	0.95	98.442%	

SATIMG problem

Implement	Parameters	RBF- units (or SVs)	Training time (s)	Accuracy	Notes
FSVC-NT	xfsvc(.5,.15,0,'rbf_gus','eucl','satimg',2);	2115	0.6	91.67%	
FSVC	xfsvc(4,.25,1/32,'rbf_gus','eucl','satimg',8);	1654	2.06	91.889%	
SVM	Gaussian kernel (γ, C) = (1.76,10)	1244	0.75	91.67%	

Usage:

- Data should be prepared using the LIBSVM format;
- Data should be randomized (consecutive samples from random classes in the training set)
- Tuning advice: Start with "prag=1" and a big radius (e.g. 64), then divide by 2 the value until entering a region with good accuracy; fine tuning of radius (and eventually the "prag" parameters) until getting the best performance
- More details in the list of papers from xfsvc.m (to be cited when used in published work)
- Details on parameters and running examples are included in xfsvc.m file