nr albumu: 347208 str. 1/1 Seria: 3

Zadanie 1

Twierdzę, że szukanym zbiorem jest $\{id_{\mathbb{N}}\}.$

Dowód. Weźmy dowolne f spełniające warunki zadania.

Załóżmy, że istnieje takie ζ , że $f(\zeta) = \xi$, że $\xi \neq \zeta$. Ustalmy teraz dowolne różne $\upsilon, \upsilon \in \mathbb{N} \setminus \{\zeta, \xi\}$ i określmy permutację ϖ następująco:

$$\varpi(\vartheta) = egin{cases} \upsilon & \mathrm{gdy} \ \vartheta = \zeta \ \zeta & \mathrm{gdy} \ \vartheta = \upsilon \ v & \mathrm{gdy} \ \vartheta = \xi \ \xi & \mathrm{gdy} \ \vartheta = v \ \vartheta & \mathrm{wp.p.} \end{cases}$$

Łatwo widać, że ϖ istotnie jest zarówno injektywna jak i surjektywna, a więc jest permutacją. Jednak mamy wtedy, na mocy powyższych definicji i założeń, a także na podstawie równości z zadania:

$$f(\upsilon)=f(\varpi(\zeta))=\varpi(f(\zeta))=\varpi(\xi)=\nu$$

Jednak zauważmy, że równie dobrze możemy zamiast ν wybrać jakieś ν' różne od ν , ζ , ξ oraz ν i postępując dokładnie analogicznie uzyskamy, że $f(\nu) = \nu'$. Jest to oczywista sprzeczność.

Stąd nie może istnieć takie ζ , żeby $f(\zeta) \neq \zeta$, zatem dla każdego ζ musi zachodzić $f(\zeta) = \zeta$, a więc $f = id_{\mathbb{N}}$. \square

Zadanie 2

Surjektywność

Twierdzę, że F nie jest surjektywna.

Dowód. Oznaczmy $h = \lambda x.\varnothing$. Twierdzę, że h nie jest wartością funkcji F. Załóżmy bowiem przeciwnie, że dla pewnego f zachodzi F(f) = h. Wtedy jednak mamy, że dla każdego $X \subseteq \mathbb{N}$ zachodzi: $f(X) = F(f)(X) = h(X) = \varnothing$. Jednak oczywiście, gdy weźmiemy $X = \mathbb{N}$ otrzymamy sprzeczność, gdyż $f(42) \in f(\mathbb{N})$, więc $f(\mathbb{N})$ nie może być pusty.

Injektywność

Twierdzę, że F jest injektywna.

Dowód. Załóżmy bowiem, że dla pewnych różnych f, g zachodzi F(f) = F(g). Ponieważ $f \neq g$, to istnieje takie $x \in \mathbb{N}$, że $f(x) \neq g(x)$. Ale jednak mamy, że $\{f(x)\} = f(\{x\}) = F(f)(\{x\}) = F(g)(\{x\}) = g(\{x\}) = \{g(x)\}$, co na mocy aksjomatu ekstensjonalności daje, że f(x) = g(x), quod est absurdum.