Математический анализ 3. Лекция 5.

Лепский Александр Евгеньевич *

19 сентября 2015 г.

Примеры 1.

1.
$$\sum_{n=0}^{\infty} x^n, D = [-\alpha; \alpha]; 0 < \alpha < 1$$

По пр. Вейерштрасса

$$\sup |x^n| \leq \alpha^n \ \forall n, \sum_{1}^{\infty} \alpha^n \ cxo \partial umc$$
я $\Rightarrow \sum_{0}^{\infty} x^n \ на \ D = [-\alpha; \alpha]$

2.
$$\sum_{n=0}^{\infty} x^n, D = [0; 1]$$

$$\sup_{x \in D} |r_n(x)| = \sup_{0 \le x < 1} \sum_{k=n+1}^{\infty} x^k = \sup \frac{x^{n+1}}{1 - x} = \infty \not\to 0 \ npu \ n \to \infty$$

Поэтому ряд рас-ся на D неравномерно.

3.
$$\sum_{1}^{\infty} \frac{\sin(nx)}{n^{\alpha}}$$
$$D = [\varepsilon, 2\pi - \varepsilon], \varepsilon \in (0, \pi)$$

По признаку Дирихле:

$$a_n(x) = sin(nx), \left| \sum_{1}^{n} a_k(x) \right| = \left| \sum_{1}^{n} sin(kx) \right| \le \frac{1}{\left| sin(\frac{1}{2}) \right|}$$

$$\sup_{\substack{\varepsilon \leq x \leq 2\pi - \varepsilon \\ \textit{частичных сумм}}} \left| \sum_{1}^{n} a_k(x) \right| \leq \sup_{\substack{\varepsilon \leq x \leq 2\pi - \varepsilon \\ \textit{vacmuvhisx сумм}}} \frac{1}{\left| sin(\frac{x}{2}) \right|} = \frac{1}{sin(\frac{\varepsilon}{2})} \; \forall n \Rightarrow \textit{равномерная ограниченность}$$

По пр. Дирихле ряд равн. сх-ся на D

4.
$$\sum_{0 \le \alpha \le 1}^{\infty} \frac{\sin(nx)}{n^{\alpha}}, D = [0, 2\pi]$$

$$\sup_{0 \le x \le 2\pi} |r_n(x)| = \sup_{0 \le x \le 2\pi} \left| \sum_{k=n+1}^{\infty} \frac{\sin(kx)}{k^{\alpha}} \right| \ge \lim_{x_k = \frac{\pi}{2k} \to 0} \left| \sum_{k=n+1}^{\infty} \frac{\sin(x_k)}{k^{\alpha}} \right| = \sum_{k=n+1}^{\infty} \frac{1}{k^{\alpha}} \to 0 \quad npu$$

$$n \to \infty, \ m.\kappa \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} \ pacx.$$

^{*}лекция записана Жуковым Иваном (группа 145)

1. Непрерывность:

Определение 1. $\varphi(x)$ наз-ся **непр.** в **точке** x_0 на множестве D, если $\forall \varepsilon > 0 \ \exists \sigma(\varepsilon) : |\varphi(x) - \varphi(x_0)| < \varepsilon \ \forall x \in D \cap \{x : |x - x_0| < \sigma\}$

Теорема 1. Пусть есть $\{f_n(x)\}_{n=1}^{\infty}$. Если $f_n(x)$ непр. в D $\forall n$ и $f_n \xrightarrow{D} f$, то f непр. в D.

Доказательство.
$$\forall x_0 \in D |f(x) - f(x_0)| \leq \varepsilon$$

 $\leq |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$
 $< \frac{\varepsilon}{3} ('cause f_n \xrightarrow{D} f)$

Замечание 1. При выполнении условий

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x)$$

 $\Rightarrow f$ - непр. на D.

Следствие 1. Если $u_k(x)$ - непр. в D и $\sum_1^\infty u_k(x)$ равн. cx-ся в D, то $S(x) = \sum_1^\infty u_k(x)$ - непр. в D

2. Интегрируемость:

Теорема 2. $\{f_n(x)\}_{n=1}^{\infty}, f_n(x)$ - непр. в D=[a;b] и $f_n \xrightarrow{D} f$. Тогда

$$\int_{a}^{x} f_{n}(t)dt \xrightarrow{[a;b]} \int_{a}^{x} f(t)dt$$

$$= \Phi_{n}(x)$$

 \mathcal{A} оказательство. Т.к. f_n - непр в D и $f_n \xrightarrow{D} f$, то по пред. теор. $\Rightarrow f$ - непр. в D $\Rightarrow f$ - интегр. на D = [a; b]

$$|\Phi_n(x) - \Phi(x)| \le \int_a^x |f_n(t) - f(t)| dt \le (b - a) \cdot \varepsilon$$

Tог ∂a

$$\int_{a}^{x} \sum_{1}^{\infty} u_k(t)dt = \sum_{k=1}^{\infty} \int_{a}^{x} u_k(t)dt$$

Замечание 2. Результат теоремы и её следствие можно усилить, если непрерывность заменить на интегрируемость. (С сохранением условий равномерной сходимости)

Примеры 2.

$$(a) \sum_{1}^{\infty} \frac{x^{k-1}}{k}, x \in (-1; 1); [-\alpha; \alpha]; 0 < \alpha < 1$$

$$\sum_{0}^{\infty} x^{k} - pash. \ cx\text{-}cs \ ha \ [-\alpha; \alpha]$$

$$\sum_{1}^{\infty} \frac{x^{k-1}}{k} = \frac{\ln(1-x)}{x} - \ln(1-x) = \int_{a}^{x} \frac{dt}{1-t} = \int_{a}^{x} (\sum_{k=0}^{\infty} tk) dt = \sum_{k=0}^{\infty} (\int_{0}^{x} t^{k} dt) = \sum_{k=0}^{\infty} \frac{t^{k+1}}{k+1} \Big|_{0}^{x} = \sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1} = \sum_{k=1}^{\infty} \frac{x^{k}}{k} = x \cdot \sum_{k=1}^{\infty} \frac{x^{k-1}}{l} \ nenp. \ 6 \ D$$

3. Дифференциируемость:

Теорема 3. Пусть

(a)
$$f_n(x)$$
 - *Henp.* $\partial u \phi$. $\partial u \phi$. $\partial u \phi$.

(b)
$$f'_n \xrightarrow{D} \varphi$$

(c)
$$\exists c \in [a;b] : \sum_{1}^{\infty} f_n(c) - cxod. \ m.e. \Rightarrow f_n \xrightarrow{D} f$$

Tог ∂a

$$f' = \varphi \Leftrightarrow (\lim_{n \to \infty} f_n(x))' = \lim_{n \to \infty} f'_n(x)$$

Доказательство.

$$f_n(x) - f_n(c) = \int_c^x f'_n(t)dt \xrightarrow{D} \int_c^x \varphi(t)dt \Rightarrow f_n \xrightarrow{D} f$$
 (1)

В пределе в (1) при $n \to \infty$:

$$f(x)-f(c)=\int_{c}^{x}arphi(t)dt$$
 - диф. ф-я $\Rightarrow \ f'(x)=arphi(x)$