Trabajo Final de Curso

Antonio Manuel Padilla Urrea

Curso IA para profesionales del sector TIC

2024-08-25

Contenidos

- Introducción
- 2 Aprendizaje por Refuerzo
- Solucion MLP
- 4 Solución Transformer
- Comparativa de modelos
- 6 Conclusiones

- Introducción
- 2 Aprendizaje por Refuerzo
- Solucion MLP
- Solución Transformer
- Comparativa de modelos
- Conclusiones

Antecedentes

- Aplicación del Aprendizaje por Refuerzo (2019-2020)
- Juego sencillo con información oculta (Dominó)
- Primera implementación con Perceptrón Multicapa
- Buenos resultados, superando a jugadores algorítmicos simples.

Objetivos

- El objetivo de este trabajo es extender el trabajo que hice allá en 2020 usando simplemente un modelo MLP sencillo con dos capas densas.
- Tras el curso y el análisis de los Transformes, se me ocurrió
 interpretar una partida de dominó como una frase en un lenguaje particular
 -la sucesión de jugadas realizadas por cada jugador-.
- Con este lenguaje se pueden entrenar transformers en la esperanza de superar el juego del jugador MLP.
- En este juego, puesto que hay información oculta, es importante prestar *atención* a todas las anteriores jugadas -> Transformers.

Jugadores unidad de medida

Para medir los resultados del jugador basado en IA se crean dos tipos de jugadores básicos contra los que comparar la calidad del juego.

Jugador Aleatorio: Elije una jugada aleatoria entre todas las posibles Jugador Maximizador: Elije la ficha de mayor puntuación de entre todas las posibles.

- Introducción
- 2 Aprendizaje por Refuerzo
- Solucion MLP
- 4 Solución Transformer
- Comparativa de modelos
- Conclusiones

Resumen muy resumido

- Idea Principal.
 - Averiguar qué acción es mejor a largo plazo.
- Solución:
 - Reproducir el juego muchas veces.
 - Registrar las acciones y el resultado.
 - Entrenar modelo supervisado con datos etiquetados.
- Datos para el entrenamiento:
 - Cada acción modifica el estado del juego.
 - Cada partida tiene un ganador y varios perdedores.
 - Dataset está formado por:
 - Estado alcanzado tras la acción del jugador.
 - Resultado de la partida para este jugador.

Dataset

- Conjunto de datos casi infinito, no habrá sobreajuste.
- Los datos se generan durante el entrenamiento.
- Un objeto de tipo generador genera lotes de datos.
- Durante la generacion se usa el modelo que está siendo entrenado.

- Introducción
- 2 Aprendizaje por Refuerzo
- Solucion MLP
- Solución Transformer
- Comparativa de modelos
- Conclusiones

Modelo de Red Neuronal

- La red neuronal estima la probabilidad de ganar la partida.
- Durante el juego se evaluan las posibles acciones.
- Se elige la acción de mayor probabilidad estimada de ganar.
- Con modelos simples ya se obtienen buenos resultados.

Modelo con 1 capa oculta

Model: "MLP"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 100)	22,500
dense_1 (Dense)	(None, 60)	6,060
dense_2 (Dense)	(None, 1)	61

Total params: 28,621 (111.80 KB)

Trainable params: 28,621 (111.80 KB)

Non-trainable params: 0 (0.00 B)

Resultados del entrenamiento

Configuración

```
Loss "mse"
Optimizer "adam"
epochs 50
steps 10
```

batch-size 1000

- Introducción
- 2 Aprendizaje por Refuerzo
- Solucion MLP
- 4 Solución Transformer
- Comparativa de modelos
- Conclusiones

Modelo de Transformer

Model: "Transformer"

Output Shape	Param #
(None, 50)	0
(None, 50, 64)	3,200
(None, 50, 64)	70,816
(None, 64)	0
(None, 20)	1,300
(None, 2)	42
	(None, 50) (None, 50, 64) (None, 50, 64) (None, 64)

Total params: 75,358 (294.37 KB)

Trainable params: 75,358 (294.37 KB)

Non-trainable params: 0 (0.00 B)

- La salida representa las probabilidades de Ganar/Perder.
- Triple de coeficientes que el MLP

Resultados del entrenamiento

Configuracion.

Vocabulario de 32 palabras.

Frases 50 palabras de longitud máxima

Embeddings 64 dimensiones.

Loss Binary Cross Entropy

Optimizer "adam"

- Introducción
- 2 Aprendizaje por Refuerzo
- Solucion MLP
- 4 Solución Transformer
- Comparativa de modelos
- Conclusiones

Partidas todos contra todos

Se enfrentan los 4 tipos de jugadores entre si Jugadas: 4000 partidas

Resultados	Ganadas	Ratio (%)
Jugador 1 : Aleatorio	936	19%
Jugador 2 : Maximizador	1277	26%
Jugador 3: MLP	1670	34%
Jugador 4 : Transformer	1020	21%
Total	4903	100%

Hay más partidas ganadas que jugadas debido a que se producen empates y se consideran ganadores ambos.

- Introducción
- 2 Aprendizaje por Refuerzo
- Solucion MLP
- Solución Transformer
- Comparativa de modelos
- 6 Conclusiones

Análisis de resultados

- En el Dominó, el azar juega un papel importante. El mejor jugador pierde muchas veces debido al reparto de fichas.
- El mejor jugador resulta ser el basado en MLP.
- El basado en transformer es solo un poco mejor que el jugador aleatório. Lo que indica que ha conseguido aprender algo durante el entrenamiento.
- Es sorprendente que con tan pocos parámetros, el MLP se haya proclamado campeón.

Trabajos futuros

- Realizar entrenamientos mas prolongados para el Transformer.
- Probar con otras funciones de perdida y/o optimizadores.
- Diseñar un modelo de transformer mas complejo.
- Diseñar una Interfaz Gráfica para jugar contra la IA.

FIN

GITHUB: https://github.com/AntManUPCT/valgrai Esto es todo.