Control-Flow Analysis

Chapter 8, Section 8.4

Chapter 9, Section 9.6

URL from the course web page [copyrighted material, please do not link to it or distribute it]

Control-Flow Graphs

- Control-flow graph (CFG) for a procedure/method
 - A node is a basic block: a single-entry-single-exit sequence of three-address instructions
 - An edge represents the potential flow of control from one basic block to another
- Uses of a control-flow graph
 - Inside a basic block: local code optimizations; done as part of the code generation phase
 - Across basic blocks: global code optimizations; done as part of the code optimization phase
 - Aspects of code generation: e.g., global register allocation

Control-Flow Analysis

- Part 1: Constructing a CFG
- Part 2: Finding dominators and post-dominators
- Part 3: Finding loops in a CFG
 - What exactly is a loop? We cannot simply say "whatever CFG subgraph is generated by while, do-while, and for statements" – need a general graph-theoretic definition
- Part 4: Static single assignment form (SSA)
- Part 5: Finding control dependences
 - Necessary as part of constructing the program dependence graph (PDG), a popular IR for software tools for slicing, refactoring, testing, and debugging

Part 1: Constructing a CFG

- Basic block: maximal sequence of consecutive three-address instructions such that
 - The flow of control can enter only through the first instruction (i.e., no jumps into the middle of the block)
 - The flow of control can exit only at the last instruction
- Given: the entire sequence of instructions
- First, find the leaders (starting instructions of all basic blocks)
 - The first instruction
 - The target of any conditional/unconditional jump
 - Any instruction that immediately follows a conditional or unconditional jump

Constructing a CFG

 Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader

```
i = 1
                          → First instruction
                          → Target of 11
                          → Target of 9
3. t1 = 10 * i
   t2 = t1 + i
5. t3 = 8 * t2
   t4 = t3 - 88
7. a[t4] = 0.0
   i = j + 1
9. if (j \le 10) goto (3)
10. i = i + 1
                          → Follows 9
11. if (i <= 10) goto (2)
                          → Follows 11
12. i = 1
                          → Target of 17
13. t5 = i - 1
14. t6 = 88 * t5
15. a[t6] = 1.0
16. i = i + 1
17. if (i <= 10) goto (13)
```

Note: this example sets array elements a[i][j] to 0.0, for 1 <= i,j <= 10 (instructions 1-11). It then sets a[i][i] to 1.0, for 1 <= i <= 10 (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets computed as described in Section 6.4.3, assuming row-major order, 8-byte array elements, and array indexing that starts from 1, not from 0.

Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p . This is conservative: e.g., if (3.14 > 2.78) still generates two edges.

Practical Considerations

- The usual data structures for graphs can be used
 - The graphs are sparse (i.e., have relatively few edges),
 so an adjacency list representation is the usual choice
 - Number of edges is at most 2 * number of nodes
- Nodes are basic blocks; edges are between basic blocks, not between instructions
 - Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 - Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block

Part 2: Dominance

- A CFG node d dominates another node n if every path from ENTRY to n goes through d
 - Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 - A dominance relation $dom \subseteq Nodes \times Nodes$: d dom n
 - The relation is trivially reflexive: d dom d
- Node m is the immediate dominator of n if
 - $-m \neq n$
 - m dom n
 - For any $d \neq n$ such d dom n, we have d dom m
- Every node has a unique immediate dominator
 - Except ENTRY, which is dominated only by itself

This example is artificial: it does not have an EXIT node; nodes 4 and 8 have more than 2 outgoing edges

ENTRY dom n for any n

1 dom n for any n except ENTRY

2 does not dominate any other node

3 dom 3, 4, 5, 6, 7, 8, 9, 10

4 dom 4, 5, 6, 7, 8, 9, 10

5 does not dominate any other node

6 does not dominate any other node

7 dom 7, 8, 9, 10

8 dom 8, 9, 10

9 does not dominate any other node

10 does not dominate any other node

Immediate dominators:

 $1 \rightarrow \text{ENTRY}$ $2 \rightarrow 1$

 $3 \rightarrow 1$ $4 \rightarrow 3$

 $5 \rightarrow 4$ $6 \rightarrow 4$

 $7 \rightarrow 4$ $8 \rightarrow 7$

 $9 \rightarrow 8$ $10 \rightarrow 8$

A Few Observations

- For any acyclic path from ENTRY to n, all dominators of n appear along the path, always in the same order (for all such paths)
- Dominance is a transitive relation: a dom b and b dom c means a dom c
- Dominance is an anti-symmetric relation: a dom b
 and b dom a means that a and b must be the same
 - Reflexive, anti-symmetric, transitive: partial order
- If a and b are two dominators of some n, either a dom b or b dom a

Dominator Tree

• The parent of *n* is its immediate dominator

The path from *n* to the root contains all and only dominators of *n*

Constructing the dominator tree: the classic $O(N\alpha(N))$ approach is from T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems, 1(1): 121-141, July 1979.

Many other algorithms: e.g., see K. D. Cooper, T. J. Harvey and K. Kennedy. A simple, fast dominance algorithm. Software – Practice and Experience, 4:1–10, 2001.

Post-Dominance

- A CFG node d post-dominates another node n if every path from n to EXIT goes through d
 - Implicit assumption: EXIT is reachable from every node
 - A relation pdom ⊆ Nodes × Nodes: d pdom n
 - The relation is trivially reflexive: d pdom d
- Node m is the immediate post-dominator of n if
 - $-m \neq n$; m pdom n; $\forall d \neq n$. $d pdom n \Rightarrow d pdom m$
 - Every n has a unique immediate post-dominator
- Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)
- Post-dominance tree: the parent of n is its
 - immediate post-dominator; root is EXIT

Extend the previous example with EXIT

ENTRY does not post-dominate any other *n*

1 *pdom* ENTRY, 1, 9

2 does not post-dominate any other *n*

3 *pdom* ENTRY, 1, 2, 3, 9

4 pdom ENTRY, 1, 2, 3, 4, 9

5 does not post-dominate any other *n*

6 does not post-dominate any other *n*

7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9

8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9

9 does not post-dominate any other *n*

10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

EXIT *pdom n* for any *n*

Immediate post-dominators:

ENTRY
$$\rightarrow$$
 1 1 \rightarrow 3

$$1 \rightarrow 3$$

$$2 \rightarrow 3$$

$$3 \rightarrow 4$$

$$4 \rightarrow 7$$

$$5 \rightarrow 7$$

$$6 \rightarrow 7$$

$$7 \rightarrow 8$$

$$8 \rightarrow 10$$

$$9 \rightarrow 1$$

$$10 \rightarrow EXIT$$

Post-Dominator Tree

The path from *n* to the root contains all and only post-dominators of *n*

Constructing the postdominator tree: use any algorithm for constructing the dominator tree; just "pretend" that the edges are reversed

Computing the Dominator Tree

- Theoretically superior algorithms are not necessarily the most desirable in practice
- Our choice (for the default project): Cooper et al.,
- Formulation and algorithm based on insights from dataflow analysis
 - Essentially, solving a system of mutually-recursive equations – more later ...
- I expect you to read the paper carefully and to implement the algorithm for computing the dominator tree

Part 3: Loops in CFGs

 Cycle: sequence of edges that starts and ends at the same node

Example:
1
2
3
4
5

 Strongly-connected component (SCC): a maximal set of nodes such as each node in the set is reachable from every other node in the set

 Loop: informally, a strongly-connected component with a single entry point

– An SCC that is not a loop:

Back Edges and Natural Loops

- Back edge: a CFG edge (n,h) where h dominates n
 - Easy to see that n and h belong to the same SCC
- Natural loop for a back edge (n,h)
 - The set of all nodes m that can reach node n without going through node h (trivially, this set includes h)
 - Easy to see that h dominates all such nodes m
 - Node h is the header of the natural loop
- Trivial algorithm to find the natural loop of (n,h)
 - Mark h as visited
 - Perform depth-first search (or breadth-first) starting
 from n, but follow the CFG edges in reverse direction
 - All and only visited nodes are in the natural loop

Immediate dominators:

$$\begin{array}{cccccc}
1 \rightarrow \text{ENTRY} & 2 \rightarrow 1 & 3 \rightarrow 1 \\
4 \rightarrow 3 & 5 \rightarrow 4 & 6 \rightarrow 4 \\
7 \rightarrow 4 & 8 \rightarrow 7 & 9 \rightarrow 8 \\
10 \rightarrow 8 & \text{EXIT} \rightarrow 10
\end{array}$$

Back edges: $4 \rightarrow 3$, $7 \rightarrow 4$, $8 \rightarrow 3$, $9 \rightarrow 1$, $10 \rightarrow 7$

$$Loop(10 \rightarrow 7) = \{ 7, 8, 10 \}$$

Loop(
$$7 \rightarrow 4$$
) = { 4, 5, 6, 7, 8, 10 }
Note: Loop($10 \rightarrow 7$) \subseteq Loop($7 \rightarrow 4$)

Loop(
$$4 \rightarrow 3$$
) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop($7 \rightarrow 4$) \subseteq Loop($4 \rightarrow 3$)

Loop(
$$8 \rightarrow 3$$
) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop($8 \rightarrow 3$) = Loop($4 \rightarrow 3$)

Loop(
$$9 \rightarrow 1$$
) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
Note: Loop($4 \rightarrow 3$) \subseteq Loop($9 \rightarrow 1$)

Loops in the CFG

- Find all back edges; each target h of at least one back edge defines a loop L with header(L) = h
- body(L) is the union of the natural loops of all back edges whose target is header(L)
 - Note that header(L) ∈ body(L)
- Example: this is a single loop with header node 1

- For two CFG loops L₁ and L₂
 - $-header(L_1)$ is different from $header(L_2)$
 - $-body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting inner/outer)

Flashback to Graph Algorithms

- Depth-first search in the CFG [Cormen et al. book]
 - Set each node's color as white
 - Call DFS(ENTRY)
 - -DFS(n)
 - Set the color of n to grey
 - For each successor *m*: if color is *white*, call DFS(*m*)
 - Set the color of *n* to *black*
- Inside DFS(n), seeing a grey successor m means that (n,m) is a retreating edge
 - Note: m could be n itself, if there is an edge (n,n)
- The order in which we consider the successors matters: the set of retreating edges depends on it

Reducible Control-Flow Graphs

- For reducible CFGs, the retreating edges discovered during DFS are all and only back edges
 - The order during DFS traversal is irrelevant: all DFS traversals produce the same set of retreating edges
- For irreducible CFGs: a DFS traversal may produce retreating edges that are not back edges
 - Each traversal may produce different retreating edges
 - Example:
 - No back edges
 - ullet One traversal produces the retreating edge 3 o 2
 - The other one produces the retreating edge $2 \rightarrow 3$

Reducibility (1/2)

- A number of equivalent definitions
 - One of them we already saw
- The graph can be reduced to a single node with the application of the following two rules
 - Given a node n with a single predecessor m, merge n into m; all successors of n become successors of m
 - Remove an edge n → n
- Try this on the graphs from slides 18, 17, and 20

Reducibility (2/2)

- The essence of irreducibility: a SCC with multiple possible entry points
 - If the original program was written using if-then, ifthen-else, while-do, do-while, break, and continue, the resulting CFG is always reducible
 - If goto was used by the programmer, the CFG could be irreducible (but, in practice, it typically is reducible)
- Optimizations of the intermediate code, done by the compiler, could introduce irreducibility
- Code obfuscation: e.g., Java bytecode can be transformed to be irreducible, making it impossible to reverse-engineer a valid Java source program

Part 4: Static Single Assignment (SSA) Form

- Source: Cytron et al., ACM TOPLAS, Oct. 1991
 - Section 1 (ignore Section 1.1)
 - Section 2
 - Section 3 (ignore Section 3.1)
 - Section 4 (ignore the detailed proofs in Section 4.3)
- The key issues
 - Insert ϕ -functions at join points (Sections 3 and 4)
 - Rename the variables so that each use (read) of a variable is reached by exactly one definition (write) of that variable i.e., by a single assignment
 - Section 5.2 discusses this issue, but we will not
- Alternative for dom. frontiers: Cooper et al. 2001

Part 5: Control Dependence: Informally

- A node n is control dependent on a node c if
 - There exists an edge e_1 coming out of c that definitely causes n to execute
 - There exists some edge e_2 coming out of c that is the start of some path that avoids the execution of n
- The decision made at c affects whether n gets executed: if e₁ is followed, n definitely is executed; if e₂ is followed, there is the possibility that n is not executed at all
 - Thus, n is control dependent on c the control-flow leading to n depends on what c does

Control Dependence: Formally

- (part 1) *n* is control dependent on *c* if
 - $-n \neq c$
 - n does not post-dominate c
 - there exists a path from c to n such that n postdominates every node on the path except c
- (part 2) n is control dependent on n if
 - there exists a path from n to n (with at least one edge)
 such that n post-dominates every node on the path
 - this implies that *n* has two outgoing edges
 - this case applies to the header of a loop
- See Cytron et al., 1991, Section 6 for more details
 - -c belongs to DF(n) but computed on the *reverse* CFG

Consider all branch nodes c: 1, 4, 7, 8, 10

ENTRY does not post-dominate any other *n* 1 *pdom* ENTRY, 1, 9
2 does not post-dominate any other *n* 3 *pdom* ENTRY, 1, 2, 3, 9
4 *pdom* ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other *n* 6 does not post-dominate any other *n* 7 *pdom* ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 *pdom* ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other *n* 10 *pdom* ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2 is control dependent on 1

EXIT *pdom n* for any *n*

3, 4, 5, 6 are control dependent on 4

4, 7 are control dependent on 7

9, 1, 3, 4, 7, 8 are control dependent on 8

7, 8, 10 are control dependent on 10

Finding All Control Dependences

- Consider all CFG edges (c,x) such that x does not post-dominate c (therefore, c is a branch node)
- Traverse the post-dominator tree bottom-up
 - -n=x
 - while (n!= parent of c in the post-dominator tree)
 - report that n is control dependent on c
 - *n* = parent of *n* in the post-dominator tree
 - Example: for CFG edge (8,9) from the previous slide,
 traverse and report 9, 1, 3, 4, 7, 8 (stop before 10)
- Other algorithms exist, but this one is simple and works quite well [Cooper et al., 2001]