Theorem A1. (Buchberger's Algorithm) Let $I = \langle f_1, \ldots, f_s \rangle \subset F[x_1, \ldots, x_n]$ be a non-zero ideal. Then a Gröbner basis for I can be constructed in a finite number of steps by the following algorithm:

Input:
$$F=(f_1,\ldots,f_n)$$

Output: a Gröbner basis $G=(g_1,\ldots,g_t)$ for I with $F\subset G$.
 $G:=F$
REPEAT
$$G':=G$$
FOR each pair $\{p,q\},\ p\neq q \text{ in } G' \text{ DO}$

$$r:=\overline{S(p,q)}^{G'}$$
IF $r\neq 0$ THEN $G:=G\cup\{r\}$
UNTIL $G=G'$
RETURN G

Proof. We introduce some notation for convenience. Let $G = \{g_1, \ldots, g_n\}$, we define:

$$\langle LT(G) \rangle := \langle LT(g_1), \dots, LT(g_n) \rangle.$$

Firstly it is clear that $G \subset I$ at every stage of the algorithm because initially $G \subset I$ but we only ever append the remainder of each S(p,q). However since $S(p,q) \in I$ and each f_1, \ldots, f_n are in I we have the remainder is in I since we can write,

$$r = S(p,q) - q_1 f_1 - \dots - q_s f_2$$

for some $q_i \in F[x_1, ..., x_n]$ by the division algorithm. Furthermore we note that G at each step generates I since G contains the generators F.

We show that it eventually terminates. Let us consider two consecutive pass throughs of the algorithm, and name the corresponding sets G and G' where G' is the old set. We of course have $G' \subset G$ and because G contains all the non-zero remainders of S(p,q) we have,

$$\langle LT(G') \rangle \subset \langle LT(G) \rangle.$$
 (3.1)

Additionally if $G' \neq G$ then it turns out that $\langle LT(G) \rangle$ is strictly larger than $\langle LT(G') \rangle$. Indeed take a non-zero remainder $r \in G$ not in G'. Since r is a remainder on division by G', by definition it is not divisible by any of the leading terms of elements in G'. Then by [CLO15, Theorem 2.4.2] we have $LT(r) \notin \langle LT(G') \rangle$ however we clearly have $LT(r) \in \langle LT(G) \rangle$ so $\langle LT(G) \rangle$ is indeed strictly larger than $\langle LT(G') \rangle$.

Now using (3.1) we have that the algorithm produces an infinite ascending chain of ideals in $F[x_1, \ldots, x_n]$, however since F is a field $F[x_1, \ldots, x_n]$ is Noetherian so eventually this chain of ideals stablize to achieve $\langle \operatorname{LT}(G') \rangle = \langle \operatorname{LT}(G) \rangle$. However by the contrapositive of the argument in the previous paragraph this implies that G' = G and the algorithm terminates.

Now we prove that the actual result is indeed a Gröbner basis. Suppose we ran the algorithm until it terminates, then this would necessarily mean that $\overline{S(p,q)}^G = 0$ for every $p,q \in G$ so by Theorem 1.3.1 we have that G is a Gröbner basis of I since G generates I.

Theorem A2. (Improved Buchberger's Algorithm) Let $I = \langle f_1, \ldots, f_s \rangle \subset F[x_1, \ldots, x_n]$ be a non-zero ideal. Then a Gröbner basis for I can be constructed in a finite number of steps by the following algorithm:

```
Input : F = (f_1, \dots, f_n)

Output : a Gröbner basis G = (g_1, \dots, g_t) for I with F \subset G.

B := \{(i,j) \mid 1 \leq i < j \leq s\}

G := F

t := s

WHILE B \neq \emptyset DO

Select (i,j) \in B

IF \operatorname{lcm}(\operatorname{LT}(f_i), \operatorname{LT}(f_j)) \neq \operatorname{LT}(f_i)\operatorname{LT}(f_j) AND \operatorname{Criterion}(f_i, f_j, B) = \operatorname{false} THEN
r := \overline{S(f_i, f_j)}^G
IF r \neq 0 THEN
t := t + 1; \ f_t := r
G := G \cup \{f_t\}
B := B \cup \{(i,t) \mid 1 \leq i \leq t - 1\}
UNTIL B := B \setminus \{(i,j)\}
RETURN G
```

Here, Criterion (f_i, f_j, B) is true provided that there is some $l \notin \{i, j\}$ for which the pairs [i, j] and [j, l] are not in B and $LT(f_l)$ divides $lcm(LT(f_i), LT(f_j))$. Where for $i \neq j$, [i, j] = (i, j) if i < j and (j, i) for j < i. See [CLO15, Theorem 2.10.9] for a proof of the correctness of this algorithm.