QUANTUM FLAG AND SCHUBERT SCHEMES V. Lakshmibai* and N. Reshetikhin**

Abstract: For a semi-simple algebraic group G, we construct a Hopf k(q)-algebra $k_q[G]$ as a quantization of k[G] and we develop a standard monomial theory for $k_q[G]$. The quantum flag variety $k_q[G/B]$ is constructed as a certain subalgebra of $k_q[G]$. It is shown that $k_q[G/B]$ has a canonical \mathbb{Z}^ℓ -gradation (ℓ = rank G) and a canonical left $k_q[G]$ -comodule structure. We also construct the algebra $k_q[X(w)]$, $w \in W$, the Weyl group, as quantization of k[X(w)], the multigraded homogeneous co-ordinate ring of X(w). The algebra $k_q[X(w)]$ also has a canonical \mathbb{Z}^ℓ -gradation and a canonical left $k_q[B]$ -comodule structure. We also give a presentation for $k_q[G/B]$.

^{*} Partially support by NSF Grant 9103129

^{**} On leave of absence from USSR; LOMI, Fontaka 27, Leningrad 191011

^{**} Partially supported by DOE Grant DE-Fu-02-88ER5065

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision), Primary 20G05, 20G10, Secondary 14F05, 14M15.

This paper is in final form and will not appear elsewhere.

^{© 1992} American Mathematical Society 0271-4132/92 \$1.00 + \$.25 per page

Introduction.

In this paper, we prove the results announced in [LR]₁. In [H], [H-P], Hodge constructed canonical bases for the homogeneous co-ordinate rings of the Grassmannian and its Schubert varieties (for the Plücker embedding) in terms of "Standard Monomials" in the Plücker coordinates. We generalized this result of Hodge to a semi-simple algebraic group G by developing a Standard Monomial Theory for G (cf [LS]₁, [L-Ra], [L]₁, [L]₂). In this paper, we develop a Standard Monomial Theory for Quantum groups.

Let G be a semi-simple algebraic group split over k. Let g = Lie(G), and U(g) its universal enveloping algebra. Let $U_q(g)$ be the quantized universal enveloping algebra (over Q) as constructed in $[D]_1$, [J], and U_A the Kostant-Lusztig A-form of $U_q(g)$, where $A = \mathbb{Z}[q,q^{-1}]$ (cf $[Lu]_2$). We construct $\mathbb{Z}_q[G]$ as a "A-dual" to U_A and for any field k, we define $k_q[G]$ as $\mathbb{Z}_q[G] \otimes_A k(q)$.

Let P_d be a maximal parabolic subgroup of G with associated fundamental weight ω_d . We construct $\{x_i^d, i \in I\}$ (the indexing set being as in the Standard Monomial Theory (cf $[LS]_1$, [L-Ra], $[L]_1$, $[L]_2$)) as certain elements of $\mathbb{Z}_q[G]$, and we define $\mathbb{Z}_q[G/P_d]$ (resp.

 $\mathbb{Z}_{q}[G/B]) \text{ as the } \mathscr{A}\text{-sub algebra of } \mathbb{Z}_{q}[G] \text{ generated by } \\ \{x_{i}^{\omega}, 1 \leq i \leq N_{d}(=\dim V^{\omega}d), 1 \leq d \leq \ell\} \text{ (here } V^{i} \text{ is the irreducible } \mathbb{U}_{q}(g)\text{-module with highest weight } \omega_{i}). For weW, we define } \mathbb{Z}_{q}[X(w)] \text{ as a certain quotient of } \mathbb{Z}_{q}[G/B], \text{ and } k_{q}[X(w)] \text{ as } \mathbb{Z}_{q}[X(w)] \otimes_{\mathscr{A}} k(q). \text{ Let } \underline{a} = (a_{1}, \ldots, a_{\ell}) \in (\mathbb{Z}^{+})^{\ell}. \text{ Following } [LS]_{1}, [L]_{1}, [L]_{2} \text{ we define the notion of a monomial in the } x_{i}^{\omega}, \text{ s of type } \underline{a} \text{ (or multidegree } \underline{a}) \text{ being standard on } X(w) \text{ (cf } \S 3, \S 4). \text{ Let } (k_{q}[X(w)])_{\underline{a}} \text{ be the } k(q)\text{-span of all monomials } f \text{ (in } k_{q}[X(w)]) \text{ such that } f \text{ has } a_{i} \text{ factors } x_{i,j}^{i}, 1 \leq j \leq a_{i}, 1 \leq i \leq \ell. \text{ We prove } \text{ (cf Theorems 3.10 and 4.10)}.$

Theorem (a) Standard monomials on X(w) of type \underline{a} form a k(q)-basis for $(k_q[X(w)])_{\underline{a}}$

- (b) $k_q[X(w)] = \underbrace{\underline{a}}_q (k_q[X(w)])_{\underline{a}}$
- (c) $(k_q[X(w)])_{\underline{a}}$ has a left $k_q[B]$ -comodule structure and $\dim_{k(q)}(k_q[X(w)])_{\underline{a}} = s_{\underline{a}}(w)$ (= # { Standard monomials on X(w) of type \underline{a} } (here $k_q[B]$ is the quantum Borel subgroup)
- (d) For X(w) = G/B, $(k_q[G/B])_{\underline{a}}$ has a left $k_q[G]$ comodule structure.

Outline of proof: The philosophy is same as in $[L-R]_2$. Linear independence of standard monomials on X(w) in arbitrary characteristic is obtained as a consequence of the linear independence of standard monomials for the case q = 1 (cf. [L-S]_1). In view of linear independence of standard monomials in arbitrary characteristic, it suffices to prove generation by standard monomials when $k=\mathbb{Q}.$ Generation by standard monomials for the case $k=\mathbb{Q}$ is proved by considering the Clebsch-Gordan coefficient matrix giving the projection $V^\lambda\otimes V^\mu\longrightarrow V^\nu,$ where V^ν is a factor in the expression for $V^\lambda\otimes V^\mu$ as a direct sum of irreducible $U_q(g)$ -modules (here, for a dominant integral weight $\lambda,\ V^\lambda$ denotes the corresponding irreducible $U_q(g)$ -module. If $q^\Gamma=1$, then r is supposed to be sufficiently large).

The paper is organized as follows: In §1, we recall results from Standard Monomial Theory. In §2, we construct $\mathbb{Z}_q[G]$, $k_q[G]$, and prove some Lemmas relating to Quantum Clebsch-Gordan coefficients. In §3, we present results on quantum flag schemes. In §4, we present results on quantum Schubert schemes. In §5, we give a presentation for $k_q[G/B]$.

§1 Brief review of Standard Monomial Theory

Let G be a semi-simple algebraic group split over k. Let T be a maximal k-split torus, B a Borel subgroup, B \supset T. Let W be the Weyl group of G. For $w \in W$, let $X(w) = \overline{\text{BwB}} \pmod{B}$ be the associated Schubert variety in G/B. Let $\ell = \text{rank}(G)$. Let P_d be a maximal parabolic subgroup of G with associated fundamental weight ω_d , W_{P_d} the Weyl group of P, and W, the set of minimal representatives in W of W/W_{P_d} . Let L_d be the ample generator of $\text{Pic}(G/P_d)$. A nice basis $\{p_i^d\}$ for $H^0(G/P_d, L_d)$ (as well as $H^0(X(w), L_d)$, $X(w) \in G/P_d$) has been constructed in $[LS]_1$, [L-Ra], $[L]_1$, $[L]_2$. The indexing set consists of certain pairs of elements of W together with certain sequences of numbers. A notion of monomials in the p_i^d , s, $1 \le i \le N_d$ (= dim $H^0(G/P_d, L_d)$) being standard on a Schubert variety X(w) is defined and the following Theorem is proved.

Theorem. Let $\underline{a}=(a_1,\ldots,a_\ell)\in (\mathbb{Z}^+)^\ell$. Let $\underline{a}=\overset{\ell}{\underset{i=1}{\underline{a}}}\overset{\otimes a}{\underset{i=1}{\underline{a}}}i$.

$$\left\{f \mid \begin{array}{c} (1) \text{ f is a monomial of multi-degree } \underline{a} \\ (2) f|_{X(w)} \neq 0 \end{array}\right\}.$$

(1) Standard monomials on X(w) of multi-degree \underline{a} form a k-basis for $(R(w))_{\underline{a}}$

(2)
$$H^0(X(w), L_{\underline{a}}) = (R(w))_{\underline{a}}$$

Let k[X(w)] be the \mathbb{Z}^{ℓ} -graded co-ordinate ring of X(w).

Then we have (in view of the above Theorem) $k[X(w)] = \bigoplus_{\underline{a}} H^{0}(X(w), L_{\underline{a}}).$

$\S 2$ The Hopf algebra $k_q[G]$

Let k be the base field and q an indeterminate taking values in k^* . If $q^r = 1$, then we shall suppose that r >> 0.

2.1 The Hopf algebra $U_{\mathcal{A}}$ (cf [Lu]₂)

Let g be a split semi-simple Lie-algebra over Q and let ℓ = rank(g). Let $\mathcal{A} = \mathbb{Z}[q,q^{-1}]$ and $\mathcal{A}' = \mathbb{Q}(q)$. Let $\mathbb{U}_{\mathcal{A}'}$ be the \mathcal{A}' -algebra generated by $\{E_i, F_i, K_i, K_i^{-1}\}$ and relations as in $[Lu]_2$. Let $\mathbb{U}_{\mathcal{A}}$ be the \mathcal{A} -sub algebra of $\mathbb{U}_{\mathcal{A}'}$, generated by $E_i^{(N)}$, $F_i^{(N)}$, K_i , K_i^{-1} , $1 \le i \le \ell$, $N \ge 0$ where $E_i^{(N)} = E_i^{N} / [N]_q!$, $F_i^{(N)} = F_i^{N} / [N]_q!$, $[N]_q!$ = $[N]_q \dots [1]_q$, $[m]_q = \frac{q^m - q^{-m}}{q - q^{-1}}$. We have (cf $[Lu]_2$), $\mathbb{U}_{\mathcal{A}} \otimes_{\mathcal{A}} \mathcal{A}' = \mathbb{U}_{\mathcal{A}'}$. Let $\mathbb{U}_{\mathcal{A}}^+$ (resp. $\mathbb{U}_{\mathcal{A}}^-$) be the \mathcal{A} -sub algebra of $\mathbb{U}_{\mathcal{A}}$ generated by $E_i^{(N)}$ (resp. $F_i^{(N)}$), $1 \le i \le \ell$, $N \ge 0$. We have (cf $[Lu]_2$), $\mathbb{U}_{\mathcal{A}}$ is an \mathcal{A} -algebra; further, the comultiplication on $\mathbb{U}_{\mathcal{A}'}$ induces a comultiplication on $\mathbb{U}_{\mathcal{A}'}$ giving a Hopf \mathcal{A} -algebra structure to $\mathbb{U}_{\mathcal{A}'}$.

2.2 Highest Weight $\mathbf{U}_{\mathcal{A}'}$ -modules

The theories of finite dimensional respresentations of $U_{A'}$ and g are quite parallel (cf [Lu]₁, [Lu]₂, [Ro]).

In particular we have

- (1) The finite dimensional representations of $\mathbf{U}_{\mathbf{A'}}$ are completely reducible.
- (2) The finite dimensional irreducible representations of $\mathbf{U}_{\mathbf{A}'}$ are parametrized by the dominant, integral weights of g.
- (3) Given a dominant integral weight λ , let V^{λ} be the corresponding irreducible $U_{\mathcal{A}'}$ -module. Let $V^{\lambda} = \underset{\mu}{\oplus} V^{\lambda}(\mu)$ (direct sum of weight spaces). The dimensions of $V^{\lambda}(\mu)$'s are the same as those of the corresponding weight spaces of the irreducible g-module with highest weight λ .

2.3 A-lattices

Let V^{λ} be the irreducible $U_{\mathcal{A}'}$ -module with highest weight λ (λ being a dominant integral weight of g). Let us fix a highest weight vector \mathbf{e}_{λ} in V^{λ} . Let $V^{\lambda}_{\mathcal{A}} = U^{-}_{\mathcal{A}} \mathbf{e}_{\lambda}$. Then we have (cf [Lu]₁, [Lu]₂).

- 1. $V_{\mathcal{A}}^{\lambda}$ is a $U_{\mathcal{A}}$ -submodule of V^{λ}
- 2. The natural map $V_{\mathcal{A}}^{\lambda} \otimes_{\mathcal{A}} \mathcal{A}' \longrightarrow V^{\lambda}$ is an isomorphism of \mathcal{A}' -vector spaces.
- 3. $V_{\mathcal{A}}^{\lambda}$ is a direct sum of its intersections with the weight spaces of V_{λ}^{λ} .
- 4. Each intersection in (3) is a finitely generated free A-module of finite rank.

2.4 A nice basis for fundamental representations

Let ω_d be a fundamental weight of g and let $\overline{V}^{\omega}d$ (resp. $V^{\omega}d$) be the corresponding irreducible g-module (resp. $U_{\mathcal{A}'}$ -module). Let P_d be the maximal parabolic subgroup of G corresponding to ω_d . A nice basis for $\overline{V}^{\omega}d$ has been constructed in [LS]₁, [L-Ra], [L]₁, [L]₂, the indexing set being certain pairs of elements of $W^{\omega}d$ together with certain sequences of numbers. Adopting the same procedure, as in the papers cited above, we construct a (similar) basis for $V^{\omega}d$, which we describe below. For simplicity of exposition, we shall suppose ω_d to be of classical type (cf [LS]₁) in the discussion below. (For a non-classical ω , the construction is given in the Appendix).

We have (cf [LS]₁) dim \overline{V}^{d} (= dim V^{d}) =

#{admissible pairs in W^{d} } (we recall (cf [LS]₁) that a
pair (τ, φ) in W^{d} is admissible if either $\tau = \varphi$ (in which case, we call it a trivial admissible pair) or there
exists a sequence $\{\tau_i\}$, $\tau_0 = \tau > \tau_1 > \dots > \tau_r = \varphi$, $\ell(\tau_{i-1}) = \ell(\tau_i) + 1$, such that $(\tau_i(\omega_d), \beta_i^*) = 2$, where β_i is the positive root such that $\tau_{i-1} = \beta_i^{\tau_i}$, $1 \le i \le r$).
Let us fix a highest weight vector e in V^{d} . We first

construct the extremal weight vectors \mathbf{e}_{φ} , $\varphi \in \mathbf{W}^d$, as follows. Let $\varphi = \mathbf{s}_{\gamma_1} \dots \mathbf{s}_{\gamma_1}$ be a reduced expression for φ , where γ_i 's are simple. Further, let us denote $\varphi_0 = \mathrm{Id}, \ \varphi_i = \mathbf{s}_{\gamma_1} \dots \mathbf{s}_{\gamma_1}, \ 1 \leq i \leq \mathbf{s}, \ \mathrm{and} \ \mathbf{m}_i = (\varphi_i(\omega_d), \ \mathbf{m}_{i+1}), \ 0 \leq i \leq \mathbf{s}-1 \ (\mathrm{note \ that} \ \mathbf{m}_i = 1 \ \mathrm{or} \ 2).$ Then $\mathbf{f}_{\gamma_s}^{[\mathbf{m}_s]} \mathbf{f}_{\gamma_{s-1}}^{[\mathbf{m}_1]} \dots \mathbf{f}_{\gamma_1}^{[\mathbf{m}_1]} = i \mathbf{s} \ \mathrm{an} \ \mathrm{evight} \ \varphi(\omega_d) \ \mathrm{and} \ \mathrm{weight} \ \varphi(\omega_d) \ \mathrm{and} \ \mathrm{weight} \ \mathrm{evector} \ \mathrm{of} \ \mathrm{evec}_{\varphi}.$

The non-extremal weight vectors are constructed as follows: Let (τ,φ) be a (non-trivial) admissible pair. Let us fix any sequence $\{\tau_i\}$, $\tau_0 = \tau > \tau_1 > \ldots > \tau_r = \varphi$ and $\ell(\tau_i) = \ell(\tau_{i+1}) + 1$, $0 \le i \le r-1$. Let β_i be the positive root such that $\tau_{i-1} = s_{\beta_i} \tau_i$. Then we have (cf [LS]₁)

(1)
$$\beta_i$$
 is simple $1 \le i \le r$

(2)
$$(\tau_{i}(\omega_{d}), \beta_{i}^{*}) = 2$$

We set

$$Q_{\tau, \varphi} = F_{\beta_1} \dots F_{\beta_r} e_{\varphi}$$

Remark 2.5 As in $[LS]_1$, it can be checked easily (using the commutation relations in $U_{\mathcal{A}}$ (cf $[Lu]_1$, $[Lu]_2$)) that the $Q_{\tau,\varphi}$ as constructed above is uniquely determined by the admissible pair (τ,φ) (and does not depend on the path from $X(\varphi)$ to $X(\tau)$), once a choice of e_{φ} has been made.

Proposition 2.6 The set $\{Q_{\tau,\,\varphi},\ (\tau,\varphi) \text{ an admissible } P_d \}$ is a $\mathbb{Q}(q)$ -basis for V^d .

Proof: We have (from above) $\# \{Q_{\tau,\varphi}\} = \dim V^{\operatorname{w}}d$. We claim: $\{Q_{\tau,\varphi}\}$ is linearly independent over $\mathbb{Q}(q)$. Assume that the claim is not true. Let $\Sigma a_{\tau,\varphi}Q_{\tau,\varphi} = 0$ be a non-trivial linear relation, where we may suppose (after clearing the denominator) that $a_{\tau,\varphi} \in \mathbb{Q}[q]$. Cancelling the maximum power of (q-1) that occurs as a factor in all the $a_{\tau,\varphi}$'s, we obtain a non-trivial relation (for the case q=1) which is not possible (in view of linear independence of $\{Q_{\tau,\varphi}\}$ for q=1 (cf $\{LS\}_1$)).

Remark 2.7 Using the commutation relations in $U_{\mathcal{A}}(cf[Lu]_1, [Lu]_2)$ it can be checked (in the same spirit as in $[LS]_1$) that $\{Q_{\tau, \varphi}, (\tau, \varphi) \text{ an admissible pair in } W^d\}$ is $U_{\mathcal{A}}$ -stable and thus gives an \mathcal{A} -basis for $V_{\mathcal{A}}^d$.

2.8 The Hopf algebra $k_{g}[G]$

For each dominant, integral weight λ of g, we fix a \mathcal{A} -basis $\{e_{\mathbf{i}}^{\lambda}\}$ for $V_{\mathcal{A}}^{\lambda}$ consisting of weight vectors. Consider the free \mathcal{A} -module $G_{\mathcal{A}}$ on $\{T_{\mathbf{i}\mathbf{j}}^{\lambda},\lambda$ a dominant integral weight, $1 \leq \mathbf{i},\mathbf{j} \leq \dim V^{\lambda}\}$. We define a pairing <, > on $(G_{\mathcal{A}} \times U_{\mathcal{A}})$ by

$$\langle T_{ij}^{\lambda}, b \rangle = T_{ij}^{\lambda}(b)$$

where $b \in U_{\mathcal{A}}$ and $(T_{ij}^{\lambda}(b))$ is the matrix giving the action of b on $V_{\mathcal{A}}^{\lambda}$ with respect to the basis $\{e_i^{\lambda}\}$. We set

$$\mathbb{Z}_{\alpha}[G] = G_{\mathcal{A}}$$

The Hopf A-algebra structure on \mathbb{U}_{4} induces a Hopf A-algebra structure on $\mathbb{Z}_{q}[G]$. In particular, the comultiplication on $\mathbb{Z}_{q}[G]$ is given by

$$\Delta(T_{ij}^{\lambda}) = \sum_{r} T_{ir}^{\lambda} \otimes T_{rj}^{\lambda}$$

For any field k, we set

$$k_q[G] = \mathbb{Z}_q[G] \otimes_{\mathcal{A}} k(q)$$

We shall denote $T_{ij}^{\lambda} \otimes 1$ by just T_{ij}^{λ} .

2.9 $\mathbb{Z}_{\mathbf{g}}[G]$ -comodule structure for $V_{\mathcal{A}}^{\lambda}$

From the definition of $\mathbb{Z}_q[G]$, it follows that $V_{\mathcal{A}}^{\lambda}$ (notation as above) has a left $\mathbb{Z}_q[G]$ -comodule structure given by

$$\begin{split} \delta \colon & V_{\mathcal{A}}^{\lambda} \longrightarrow \mathbb{Z}_{q}[G] \otimes_{\mathcal{A}} V_{\mathcal{A}}^{\lambda} \\ \delta(e_{j}^{\lambda}) &= \sum_{i} T_{ij}^{\lambda} \otimes e_{i}^{\lambda} \quad (= T^{\lambda} \otimes e_{j}^{\lambda}) \end{split}$$

2.10 The Hopf algebra $k_q(B)$

Let $U_{\mathcal{A}}(b^{+})$ be the \mathcal{A} -sub algebra of $U_{\mathcal{A}'}$ generated by $E_{\mathbf{i}}^{(N)}$, $K_{\mathbf{i}}$, $K_{\mathbf{i}}^{-1}$, $1 \leq i \leq \ell$, $N \geq 0$. Proceeding as in 2.8 let us consider the free \mathcal{A} -module $B_{\mathcal{A}}$ on $\{T_{\mathbf{i}j}^{\lambda}, i \leq j, \lambda \text{ a dominant integral weight, } 1 \leq i \text{ , } j \leq \dim V^{\lambda}\}$. We define a pairing $\langle \ , \ \rangle$ on $B_{\mathcal{A}} \times U_{\mathcal{A}}(b^{+})$ by $\langle T_{\mathbf{i}j}^{\lambda}, f \rangle = T_{\mathbf{i}j}^{\lambda}(f)$ where $f \in U_{\mathcal{A}}(b^{+})$ and $(T_{\mathbf{i}j}^{\lambda}(f))$ is the upper triangular matrix giving the action of f on $V_{\mathcal{A}}^{\lambda}$ with respect to the basis $\{e_{\mathbf{i}}^{\lambda}\}$. We set

$$\mathbb{Z}_{q}[B] = B_{A}$$

The Hopf \mathcal{A} -algebra structure on $\mathbf{U}_{A}(\mathbf{b}^{\dagger})$ induces a Hopf \mathcal{A} -algebra structure on $\mathbf{Z}_{\alpha}[\mathbf{B}]$. For any field k, we set

$$k_{\mathbf{q}}[B] = \mathbb{Z}_{\mathbf{q}}[B] \otimes_{\mathbf{A}} k(\mathbf{q})$$

2.11 The elements $x_i^{\omega} d$

Let $1 \leq d \leq \ell$. For $1 \leq i \leq \dim V^{d}$, we set $x_{i}^{d} = T_{i1}^{d} \ (\in \mathbb{Z}_{q}[G]) \text{ where we suppose that } e_{1}^{d} \ (\in V_{\mathcal{A}}^{d})$ is the highest weight vector. For any field k, we shall denote the image of x_{i}^{d} in $k_{q}[G]$, under the canonical map $\mathbb{Z}_{q}[G] \longrightarrow \mathbb{Z}_{q}[G] \otimes_{\mathcal{A}} k(q), \ x \longrightarrow x \otimes 1,$

by just
$$x_i^{\omega}d$$
.

2.12 Quantum Clebsch-Gordan Coefficients

Let
$$X^{d} = \sum_{i=1}^{N_{d}} x_{i}^{d} \otimes e_{i}^{d} (=T^{d} \otimes e_{1}^{d})$$
. Note that $X^{d} \in \mathbb{Z}_{q}[G] \otimes V_{\mathcal{A}}^{d}$. For $\lambda = \sum_{i=1}^{L} a_{i}\omega_{i}$, $a_{i} \in \mathbb{Z}^{+}$, let $X^{\lambda} = \sum_{i=1}^{\ell} (X^{d})^{\otimes a} d$. (Note that $X^{\lambda} \in \mathbb{Z}_{q}[G] \otimes (\bigcup_{i=1}^{\ell} (V_{\mathcal{A}}^{d})^{\otimes a} d)$.)

Lemma 2.13 Let R be the universal R -matrix in $U_{\overline{\mathcal{A}}} \otimes_{\overline{\mathcal{A}}} U_{\overline{\mathcal{A}}}$, where $\overline{\mathcal{A}} = \mathbb{Q}[[q-1]]$ and $U_{\overline{\mathcal{A}}}$ is the quasi-triangular Hopf algebra $U_{\mathcal{A}} \otimes_{\mathcal{A}} \overline{\mathcal{A}}$. For $1 \leq d$, $d' \leq \ell$, let $R^{d} \otimes_{\mathcal{A}} \overline{\mathcal{A}} = (\rho^{d} \otimes \rho^{d})(R)$, where ρ^{d} is the map $\rho^{d} : U_{\overline{\mathcal{A}}} \longrightarrow 0$.

End $(V^{d} \otimes_{\mathcal{A}}, \overline{\mathcal{A}})$ (and ρ^{d} has a similar discription). Then

$$R^{\omega_{d}\omega_{d'}} X_{1}^{\omega_{d}} X_{2}^{\omega_{d'}} = q^{2(\omega_{d}, \omega_{d'})} X_{2}^{\omega_{d'}} X_{1}^{\omega_{d}},$$

where

$$\begin{array}{lll} \overset{\omega}{X_{1}^{d}} & \overset{\omega}{X_{2}^{d'}} &=& \sum \overset{\omega}{X_{i}^{d}} & \overset{\omega}{X_{j}^{d'}} \otimes \overset{\omega}{e_{i}^{d}} \otimes \overset{\omega}{e_{j}^{d'}}, \\ \overset{\omega}{X_{2}^{d'}} & \overset{\omega}{X_{1}^{d}} &=& \sum \overset{\omega}{X_{j}^{d'}} & \overset{\omega}{X_{i}^{d}} \otimes \overset{\omega}{e_{i}^{d}} \otimes \overset{\omega}{e_{j}^{d'}} \end{array}$$

(here (,) is a W-invariant inner product on \mathfrak{h}^* , where \mathfrak{h} is a Cartan sub algebra of \mathfrak{g}).

Proof. We have $X^u = T^u e^u d$, where $e^u d$ is the highest weight vector in $V^u d$ (by the definition of $X^u d$). Hence

$$R^{\omega_{d}\omega_{d'}} X_{1}^{\omega_{d}} X_{2}^{\omega_{d'}} = R^{\omega_{d}\omega_{d'}} T_{1}^{\omega_{d}} T_{2}^{\omega_{d'}} (e^{\omega_{d}} e^{\omega_{d'}}),$$

where $T_1^{\omega} = T^{\omega} \otimes Id$, $T_2^{\omega} = Id \otimes T^{\omega}d'$. Also, by the property of universal R-matrices (cf [D]₁), we have

$$R^{\omega_{d}\omega_{d'}} T_{1}^{\omega_{d}} T_{2}^{\omega_{d'}} = T_{2}^{\omega_{d'}} T_{1}^{\omega_{d}} R^{\omega_{d}\omega_{d'}}.$$

Further by [R] we have,

$$R^{\omega}d^{\omega}d^{\prime}e^{\omega}d \otimes e^{\omega}d^{\prime} = q^{2(\omega}d, \omega^{\omega}d^{\prime})e^{\omega}d \otimes e^{\omega}d^{\prime}$$

(since muliplicity of $V^{\omega}d^{+\omega}d'$ in $V^{\omega}d\otimes V^{\omega}d'$ is 1).

Hence we obtain

$$R^{\omega_{d}\omega_{d'}} X_{1}^{\omega_{d}} X_{2}^{\omega_{d'}} = q^{2(\omega_{d}, \omega_{d'})} T_{2}^{\omega_{d'}} T_{1}^{\omega_{d}} (e^{\omega_{d}} \otimes e^{\omega_{d'}}) = q^{2(\omega_{d}, \omega_{d'})} X_{2}^{\omega_{d'}} X_{1}^{\omega_{d}}.$$

Corollary 2.14 With notation as in Lemma 2.13, we have, for a dominant integral weight δ ,

$$R^{\delta\omega} d X_1^{\delta} X_2^{\omega} = q^{2(\delta, \omega} d) X_2^{\omega} X_1^{\delta}.$$

Proof: Let $\delta = \sum_{i=1}^{\ell} a_i \omega_i$. We prove the result by induction on $n(\delta) = \Sigma a_i$. When $n(\delta) = 1$, the result follows from Lemma 2.13. Let us write $\delta = \lambda + \mu$, where $n(\lambda)$ and $n(\mu)$ are both < $n(\delta)$. Now we have (by induction hypothesis),

$$R_{13}^{\lambda\omega} R_{23}^{\mu\omega} = R_{13}^{\lambda} R_{23}^{\lambda} = R_{13}^{\lambda} R_{23}^{\lambda} = R_{23}^{\lambda\omega} = R_{23}^{\lambda\omega$$

Also, by quasi-triangularity (cf $[D]_1$), we have,

$$K_{12}^{\lambda+\mu} (R_{13}^{\lambda\omega} R_{23}^{\mu\omega}) = R_{(12),3}^{\lambda+\mu,\omega} K_{12}^{\lambda+\mu},$$

where $K_{12}^{\lambda+\mu}$ is the projection $V^{\lambda} \otimes V^{\mu} \otimes V^{\omega} \stackrel{\omega}{\longrightarrow} V \stackrel{\lambda+\mu}{\longrightarrow} V^{\omega} d$. Hence,

$$R_{(12),3}^{\lambda+\mu,\omega_{d}} K_{12}^{\lambda+\mu} (X_{1}^{\lambda} X_{2}^{\mu} X_{3}^{\omega_{d}}) = q^{2(\lambda+\mu,\omega_{d})} K_{12}^{\lambda+\mu} (X_{3}^{\omega_{d}} X_{1}^{\lambda} X_{2}^{\mu})$$

$$= q \quad \begin{array}{c} 2(\lambda + \mu, \omega_d) & \omega_d \\ \chi_3^{\lambda} & \chi_{12}^{\lambda + \mu}, \text{ where } \chi_{(12)}^{\lambda + \mu} = \chi_{12}^{\lambda + \mu} & (\chi_1^{\lambda} \chi_2^{\mu}) \end{array}.$$

Hence,

$$R_{(12),3}^{\lambda+\mu} X_{(12)}^{\lambda+\mu} X_3^{\omega} = q^{2(\lambda+\mu, \omega_d)} X_3^{\omega} X_{(12)}^{\lambda+\mu}$$

This proves the result for δ .

Corollary 2.15 Let λ, μ be dominant and integral. Then

$$R^{\lambda \mu} X_1^{\lambda} X_2^{\mu} = q^{2(\lambda, \mu)} X_2^{\mu} X_1^{\lambda}$$

Proof: Writing $\mu = \Sigma a_i \omega_i$ and denoting $n(\mu) = \Sigma a_i$, we obtain the result by induction on $n(\mu)$, the starting point of induction, namely $n(\mu) = 1$ being true by Corollary 2.14.

Lemma 2.16 Let λ, μ be dominant and integral. Let $V^{\lambda} \otimes V^{\mu} = \underset{\nu}{\oplus} W_{\nu} \otimes V^{\nu}$, where W_{ν} is the space of multiplicites of

 $\begin{array}{lll} \textbf{V}^{\nu}. & \text{Let } \tilde{\textbf{P}}_{\nu} \text{ be the projection } \textbf{V}^{\lambda} \otimes \textbf{V}^{\mu} \longrightarrow \textbf{W}_{\nu} \otimes \textbf{V}^{\nu}. & \text{Then} \\ \textbf{R}_{21}^{\mu\lambda} \textbf{R}_{12}^{\lambda\mu} &= \sum\limits_{\nu} \textbf{G}_{\nu}^{2(c(\nu)-c(\lambda)-c(\mu))} \tilde{\textbf{P}}_{\nu} & \text{(here c is the Casimir operator } c(\lambda) &= (\lambda,\lambda) \,+\, 2(\rho,\lambda), \; \rho \text{ being 1/2 sum of} \\ \textbf{positive roots)}. & \end{array}$

Proof: Let $R = \Sigma \alpha_i \otimes \beta_i$ and let $u = \Sigma S(\beta_i) \alpha_i$ (where S is the antopode). Let $v = uq^{-\rho}$. Then $v \in \text{center of } U_{\overline{\mathcal{A}}}$ and v acts on V^{λ} by $q^{2c(\lambda)}$ (cf $[D]_2$). Also, by quasi-triangularity, we have $\Delta u = R_{21}R_{12}(u \otimes u)$. Hence we obtain,

$$\Delta v = R_{21}R_{12}(v \otimes v)$$
, i.e., $R_{21}R_{12} = v^{-1} \otimes v^{-1} \Delta(v)$.

Hence,

The required result follows from this.

Lemma 2.17 Let λ be dominant and integral, say

$$\lambda = \Sigma a_i \omega_i. \quad \text{Let } (V^{0})^{\otimes a} \otimes a_i \otimes$$

(where recall that $X^{\lambda} = \begin{cases} k \\ \otimes X_{i} \end{cases}$).

Proof: Let us write $\lambda = \lambda' + \omega_d$, for some d such that

 $a_d > 0$. In view of the facts $P \circ R_{12} : V_1 \otimes V_2 \xrightarrow{\sim} V_2 \otimes V_1$ and

$$R^{\omega_{d_{i}}^{\omega_{d_{i}+1}}} (\dots X_{i}^{d_{i}} X_{i+1}^{d_{i+1}} \dots) = q^{2(\omega_{d_{i}}, \omega_{d_{i}+1}} (\dots X_{i+1}^{d_{i+1}} X_{i}^{d_{i}} \dots)$$

(cf Lemma 2.13), we have, $\tilde{P}_{\upsilon}(X^{\lambda}) = 0$ if and only if $\tilde{P}_{\upsilon}(X^{\lambda'} \otimes X^{\omega}) = 0 \text{ (here P: } V_{1} \otimes V_{2} \longrightarrow V_{2} \otimes V_{1} \text{ is the map P}(v_{1} \otimes v_{2}) = v_{2} \otimes v_{1}). \text{ We have (cf Lemma 2.16),}$

$$(1) \quad \underset{21}{\overset{\omega_{d}\lambda'}{R_{21}}} \quad \underset{12}{\overset{\lambda'\omega_{d}}{R_{d}}} = \underset{v}{\overset{2(c(v) - c(\lambda') - c(\omega_{d}))}{\overset{\tilde{P}}{v}}}.$$

Also, by Corollary 2.14, we have

$$(2) \quad R_{21}^{\omega} \quad R_{12}^{\lambda'} \quad R_{12}^{\lambda'\omega} (X^{\lambda'} \otimes X^{\omega}) = q^{(\lambda', \omega_d)} X^{\lambda'} \otimes X^{\omega} = q^{(\lambda', \omega_d)} (X^{\lambda'} \otimes X^{\omega}) = q$$

$$q^{4(\lambda',\omega_d)} \sum_{v} \widetilde{P}_v(X^{\lambda'} \otimes X^{\omega_d}).$$

From (1) and (2), we obtain,

$$\sum_{v \neq \lambda' + \omega_{d}} (q^{2c(v)} - q^{2c(\lambda' + \omega_{d})}) \tilde{P}_{v}(X^{\lambda'} \otimes X^{\omega_{d}}) = 0$$

We claim: $c(v) \neq c(\lambda' + \omega_d)$, $v \neq \lambda' + \omega_d$ (note that the required result follows from the claim).

Proof of claim: By [Li], any dominant weight v such that V^{v} occurs in $V^{\lambda'} \otimes V^{v}$ has the form $v = \lambda' + \mu$, where $\mu \leq \omega_{d}$. Hence if $v \neq \lambda' + \omega_{d}$, then we can write $\omega_{d} = \mu + \sum_{i=1}^{l} c_{i} \alpha_{i}$,

where at least one c_i is non-zero. Hence, $c(\lambda' + \omega_d) = c(\lambda') + c(\mu) + c(\Sigma c_i \alpha_i) + 2(\lambda', \mu) + 2(\mu, \Sigma c_i \alpha_i) + 2(\lambda', \Sigma c_i \alpha_i)$ while $c(\lambda' + \mu) = c(\lambda') + c(\mu) + 2(\lambda', \mu)$. Hence $c(\lambda' + \omega_d) - c(\upsilon) = c(\Sigma c_i \alpha_i) + 2(\lambda' + \mu, \Sigma c_i \alpha_i)$ $= c(\Sigma c_i \alpha_i) + 2(\upsilon, \Sigma c_i \alpha_i) > 0$

(note that if $\delta = \Sigma c_i \alpha_i$, then $c(\delta) = (\delta, \delta) + 2(\rho, \Sigma c_i \alpha_i) > 0$; also $(v, \Sigma c_i \alpha_i) \ge 0$, since v is dominant).

This completes the proof of the claim and hence of Lemma 2.17.

Lemma 2.18 With notation as in Lemma 2.17, let

$$e_{i,t}^{\upsilon} = \sum_{J_a} c_{i,t}^{\upsilon} (J_{\underline{a}}) v_{J_{\underline{a}}}, c_{i,t}^{\upsilon} (J_{\underline{a}}) \in \mathbb{Q}(q)$$

where $J_a = \{J_{mj}, 1 \le J_{mj} \le N_m, 1 \le j \le a_m, 1 \le m \le \ell\}$ and

$$\mathbf{v}_{\mathbf{J}_{\mathbf{a}}} = \overset{\ell}{\underset{m=1}{\otimes}} \overset{a_{m}}{\underset{j=1}{\otimes}} \mathbf{v}_{\mathbf{m}}^{\omega_{m}} \text{ (here } \{\mathbf{v}_{\mathbf{i}}^{\omega_{m}}, \ 1 \leq \mathbf{i} \leq \mathbf{N}_{\mathbf{m}}\} \text{ is the basis}$$

 $\{\mathbf{Q}_{\mathbf{\tau},\,\boldsymbol{\varphi}}\}$ for $\mathbf{V}^{\mathbf{m}}$ as constructed in 2.4 above. Then

$$\sum_{J_a} c_{i,t}^{\upsilon} (J_{\underline{a}}) X(J_{\underline{a}}) = 0$$

where

$$X(J_{\underline{a}}) = \prod_{m=1}^{\ell} \prod_{j=1}^{a} w_{\underline{m}}^{m}.$$

Proof: This is immediate from Lemma 2.17.

§3 Quantum G/B

3.1 The algebras $k_q[G/P_d]$ and $k_q[G/B]$

We preserve the notation of §2. Further, If $\lambda=\omega_{\rm d}$, then we take for $\{{\rm e}_{\rm i}^\lambda\}$, the 4-basis $\{{\rm Q}_{\tau,\,\phi}\}$ as constructed in 2.4 above.

We define $\mathbb{Z}_q[G/P_d]$, $1 \le d \le \ell$ as the \mathscr{A} -sub algebra of $\mathbb{Z}_q[G]$ generated by $\{x_i^\omega d,\ 1 \le i \le N_d\}$, and $\mathbb{Z}_q[G/B]$ as the \mathscr{A} -sub algebra of $\mathbb{Z}_q[G]$ generated by $\{x_i^\omega d,\ 1 \le i \le N_d\}$, $1 \le i \le N_d$, $1 \le d \le \ell\}$. For any field k, we set

$$k_q[G/P_d] = \mathbb{Z}_q[G/P_d] \otimes_{\mathcal{A}} k(q)$$

and

$$k_{q}[G/B] = \mathbb{Z}_{q}[G/B] \otimes_{\mathscr{A}} k(q)$$

3.2 Standard Monomials

Recall (cf §2) that $\{x_i^{\omega d}\}$ has an indexing $I^d = \{(\tau, \varphi)_N\}$ by certain pairs of elements of W^d , together with certain sequences of numbers. In the sequel, we shall denote $x_i^{\omega}d$ by just x_i . Further, if i corresponds to $(\tau, \varphi)_N$, then we shall denote x_i by $x_{(\tau, \varphi)_N}$ also.

Definition 3.3 Let
$$\underline{a} = (a_1, \ldots, a_\ell), a_i \in \mathbb{Z}^+$$
. A

monomial f in k_q [G/B] is said to be standard of type a (or multi-degree a), if

- (a) $f = \prod_{i \neq j} x_{ij}, 1 \leq j \leq a_i, 1 \leq i \leq \ell$
- (b) Let x_{ij} correspond to $(\tau_{ij}, \varphi_{ij})_N$ (where note that $\tau_{ij}, \varphi_{ij} \in W^Pi$). There exists a sequence $\{\theta_{ij}, \delta_{ij}, 1 \leq j \leq a_i, 1 \leq i \leq \ell\}$ in W such that
 - (1) $\Pi_{\mathbf{i}}(X(\theta_{\mathbf{i}\mathbf{j}})) = X(\tau_{\mathbf{i}\mathbf{j}}), \Pi_{\mathbf{i}}(X(\delta_{\mathbf{i}\mathbf{j}})) = X(\varphi_{\mathbf{i}\mathbf{j}}) \text{ under } \Pi_{\mathbf{i}}:$ $G/B \longrightarrow G/P_{\mathbf{i}}$
 - (2) $X(\theta_{11}) \ge X(\delta_{11}) \ge X(\theta_{12}) \ge \dots \ge X(\delta_{1a_1}) \ge X(\theta_{21}) \ge \dots$ $\ge X(\delta_{\ell}a_{\ell})$ (in G/B)

Proposition 3.4 Standard monomials are linearly independent over k(q).

Proof: Let $\sum a_i f_i = 0$, $a_i \in k(q)^*$ be a non-trivial linear relation among standard monomials. Clearing the denominators, we may suppose that $a_i \in k[q]$. Let r be the largest integer such that $(q-1)^r$ divides all the a_i 's. Cancelling $(q-1)^r$ and going modulo the ideal (q-1), we obtain a non-trivial relation among standard monomials (for q = 1), which is not possible $(cf[LS]_1, [L-Ra], [L]_1, [L]_2)$.

Remark 3.5 Below, we shall show that standard monomials generate the k(q)-vector space $k_q[G/B]$. In view of

linear independence of standard monomials in arbitrary characteristic, to prove generation by standard monomials over k(q), k being an arbitrary field, it suffices to prove generation for the case $k=\mathbb{Q}$.

3.6 Generation by standard monomials for the case $k = \mathbb{Q}$

Let $(k_q[G/B])_{\underline{\underline{a}}}$ be the k(q)-span of $\{f \mid f \text{ is a }$

monomial in $x_i^{\omega}d$, s of multi-degree <u>a</u> having a linear factors x_{ij}^{ω} , $1 \le j \le a_i$, $1 \le i \le \ell$ (the factors appearing in some order)}. Let N_a =#{monomials of multi-degree <u>a</u>}. By Lemma 2.18, we have

I: $\sum_{j} c_{ij}^{\nu} (J_{\underline{a}}) X(J_{\underline{a}}) = 0$, $c_{ij}^{\nu} (J_{\underline{a}}) \in \mathbb{Q}(q)$ (Notation being as $J_{\underline{a}}$ in Lemma 2.18). These give $N_{\underline{a}} - s_{\underline{a}}$ linear equations among the $N_{\underline{a}}$ monomials of type \underline{a} , where $s_{\underline{a}} = \#\{standard \\ monomials of type <math>\underline{a}\}$ (= dim V^{λ} , $\lambda = \sum_{i=1}^{n} a_{i} \omega_{i}$). Further, the coefficient matrix of I has maximal rank (= $N_{\underline{a}} - s_{\underline{a}}$) in view of linear independence of $\{e_{i,t}^{\nu}, 1 \le t \le m_{\nu}\}_{i,\nu}$. Hence taking the standard monomials of type \underline{a} as the free variables of I (in view of linear independence of standard monomials), we obtain that each non-standard monomial of type \underline{a} has an expression as a linear

combination (over Q(q)) of standard monomials of type a.

Thus we obtain

Proposition 3.7 Standard monomials of type \underline{a} generate $(k_q[G/B])_a$

Combining Propositions 3.4 and 3.7, we obtain Theorem 3.8. Standard monomials of type \underline{a} form a k(q)-basis for $(k_q[G/B])_a$ (k being an arbitrary field).

3.9 \mathbb{Z}^{ℓ} -gradation and $k_q[G]$ -comodule structure

In view of Proposition 3.4 and Theorem 3.8, we obtain a natural \mathbb{Z}^ℓ -gradation for $\mathbf{k}_q[G/B]$ given by $\mathbf{k}_q[G/B] = \underset{\mathbf{a}}{\oplus} (\mathbf{k}_q[G/B])_{\mathbf{a}} \ , \ \underline{\mathbf{a}} \in (\mathbb{Z}^+)^\ell.$

Now the comultiplication $\Delta: k_q[G] \longrightarrow k_q[G] \otimes k_q[G]$, $\Delta(T_{ij}^{\lambda}) = \sum T_{ir}^{\lambda} \otimes T_{rj}^{\lambda}$, induces a left $k_q[G]$ -comodule structure on $(k_q[G/B]_{\underline{a}} \text{ given by } \Delta: (k_q[G])_{\underline{a}} \longrightarrow k_q[G] \otimes (k_q[G/B])_{\underline{a}},$

 $\Delta(x_i^{\omega}d) (= \Delta T_{i1}^{\omega}d)) = \sum_{r=1}^{\omega} x_{r}^{\omega} x_{r}^{\omega}d = \sum_{r=1}^{\omega} x_{r}^{\omega} x_{r}^{\omega}d.$ Thus we obtain

Theorem 3.10 (a) $k_q[G/B] = \underbrace{\underline{a}}_{\underline{a}} (k_q[G/B])_{\underline{a}}$

(b) $(k_q[G/B])_{\underline{a}}$ is a left $k_q[G]$ -comodule and

 $\dim_{k(q)}(k_{q}[G/B])_{\underline{a}} = s_{\underline{a}}$

(c) $k_q[G/B]$ has a canonical left $k_q[G]$ -comodule structure.

Remark 3.11 In view of Theorems 3.8 and 3.10(a), we infer that all relations (among x_i^{od} , s) are consequences

of the relations expressing non-standard monomials as sums of standard monomials, which in turn are consequences of relations given in Lemma 2.18.

§4 Quantum Schubert Schemes

4.1 The algebra $k_q[X(w)]$

Let $w \in W$ and let I be the two-sided ideal in $\mathbb{Z}_q[G/B]$ generated by $\{x_{(\tau,\varphi)_N}^{\omega}, 1 \le d \le \ell \big| w \not\models \tau\}$. We define

$$\mathbb{Z}_{q}[X(w)] = \mathbb{Z}_{q}[G/B]/I_{w}$$

For any field k, we set $k_q[X(w)] = \mathbb{Z}_q[X(w)] \otimes_{\mathscr{A}} k(q)$. In the sequel, we shall denote $k_q[X(w)]$ by just $R_q(w)$.

4.2 Standard monomials on X(w)

Definition 4.3 A monomial f as in Definition 3.3 is said to be standard on X(w) (or in $R_q(w)$) of type <u>a</u>, if in addition to the conditions (a) and (b) in Definition 3.3, we also have, $X(w) \supseteq X(\theta_{11})$.

Propositon 4.4 Standard monomials in $R_q(w)$ of type \underline{a} are k(q)-linearly independent.

The proof is similar to that of Proposition 3.4 (using the linear independence for q = 1 (cf [L-S]₁, [L-Ra], [L]₁, [L]₂)).

4.5 Generation by standard monomials

Let $(R_q(w))_{\underline{a}}$ be the k(q)-span (in $R_q(w)$) of

monomials of type \underline{a} . We shall show that standard monomials on X(w) of type \underline{a} generate the k(q)-vector space $(R_q(w))_{\underline{a}}$. We first observe that all relations in $R_q(w)$ are consequences of relations of the following type. Let f be a non-standard monomial of type \underline{a} in $k_q[G/B]$. Further let

(*) $f = \sum a_i f_i$, $a_i \in k(q)$, where f_i are standard monomials of type \underline{a} in $k_{\sigma}[G/B]$. Now going modulo I_{w} , some of the f_{i} 's on the R.H.S. of (*) may not be standard in $\mathbf{R}_{\sigma}(\mathbf{w}),$ while the L.H.S. of (*) is non-zero or zero in $\mathbf{R}_{\mathbf{q}}(\mathbf{w})$ according as f does not or does contain a factor $\mathbf{x}_{(\tau,\,\varphi)_{N}}^{\alpha}$ (for some d, 1 \le d \le \ell) such that $\mathbf{w} \not\models \tau$. q = 1, these relations in k[X(w)] give rise to expressions for non-standard monomials of type a on X(w)as sums of standard monomials on X(w) of type a (cf $[LS]_1$, [L-Ra], $[L]_1$, $[L]_2$). From this, it follows that a non-standard monomial (in $R_q(w)$) of type \underline{a} has an expression as a sum of standard monomials on X(w) of type $\frac{a}{\sigma}$ in $R_{\alpha}(w)$. To make it more precise, considering all the above relations (in $R_{\sigma}(w)$) as a linear system of equations in monomials of type $\underline{\mathtt{a}}$ in $\mathtt{R}_{\sigma}(\mathtt{w})$, let us denote the corresponding coefficient matrix by $A_{\alpha}(w)$. Denoting $s_a(w) = \#\{standard\ monomials\ of\ type\ \underline{a}\ in\ R_q(w)\},\ we\ have$ (in view of linear independence of standard monomials of in $R_{_{\mathbf{G}}}(\mathbf{w})$),

$$s_{\underline{a}}(w) \le \# \{\text{free variables of the above system}\}$$

$$\le \# \{\text{free variables of the system for } q = 1\}$$

$$= s_{\underline{a}}(w).$$

Hence we obtain that # {free variables of the above system} = $s_{\underline{a}}(w)$. This together with the linear independence of standard monomials in $R_{\underline{a}}(w)$ implies the

Proposition 4.6 $(R_q(w))_{\underline{a}}$ is spanned by standard monomials of type \underline{a} in $R_q(w)$.

4.8 \mathbb{Z}^{ℓ} -gradation

following

In view of Proposition 4.4 and Theorem 4.7, we obtain a natural \mathbb{Z}^ℓ -gradation for $R_q(w)$ given by $R_q(w) = \underbrace{ \left(R_q(w) \right)_{\underline{a}}, \ \underline{a} \in (\mathbb{Z}^+)^\ell}_{\underline{a}}.$

4.9 $U_{\mathcal{A}}(b^{+})$ -stability for $I_{\mathbf{w}}$

Let $x_i^d \in I_w$. For the sake of simplicity of our discussion, we shall suppose that ω_d is a fundamental weight of classical type. Let then $x_i^d = x_{\tau, \varphi}$ where

 $\begin{array}{l} \text{$w$} \not\models \tau. \quad \text{Let α be a positive root such that $E_{\alpha}x_{\tau,\phi} \neq 0$. Let } \\ E_{\alpha}x_{\tau,\phi} &= \sum c_{\theta,\delta}x_{\theta,\delta} \;,\; c_{\theta,\delta} \in \mathbb{Q}(q)^{*}. \quad \text{This implies that for each (θ,δ) on the R.H.S., the vector $E_{\alpha}Q_{\theta,\delta}$ is nonzero, and in the expression for $E_{\alpha}Q_{\theta,\delta}$ as a linear combination of the $Q_{\xi,\eta}$'s, the vector $Q_{\tau,\phi}$ occurs with a nonzero coefficient.$

Claim: Given an admissible pair (θ, δ) , let α be a positive root such that $E_{\alpha}Q_{\theta, \delta} \neq 0$. Then in the expression $E_{\alpha}Q_{\theta, \delta} = \sum b_{\xi, \eta}Q_{\xi, \eta}$, $b_{\xi, \eta} \in k(q)^*$, each ξ on the R.H.S. is $\leq \theta$.

Proof of the claim: Clearly it suffices to prove the claim for α simple. Let $\{\beta_i\}$, $1 \le i \le r$ be simple roots such that if $\delta_t = s_{\beta_t} \dots s_{\beta_1} \delta$, $1 \le t \le r$ then

(1)
$$\theta = \delta_r$$

(2)
$$(\delta_{t-1}, \beta_t^*) = 2, 1 \le t \le r.$$

(here $\delta_0 = \delta$). We have $E_{\alpha}Q_{\theta,\delta} = F_{\beta_r} \dots F_{\beta_1}E_{\alpha}Q_{\delta}$.

(Using the commutation relation $[E_{\alpha}, F_{\alpha}] = \sin(\frac{1}{2}dH_{\alpha}h)/\sinh(\frac{1}{2}dh)$ (here d = length of α) and induction on r, we may assume $\alpha \neq \beta_i$, $1 \leq i \leq r$.) The hypothesis that $E_{\alpha}Q_{\theta}$, δ is nonzero implies that $E_{\alpha}Q_{\delta} \neq 0$. Hence we obtain $(\delta(\omega), \alpha^*) < 0$. We now distinguish the following two cases:

Case 1: $(\delta(\omega), \alpha^*) = -1$. In this case we have (cf. $[LS]_1$), $(\delta_t(\omega), \alpha^*) = -1$, $1 \le t \le r$ and $(s_\alpha \delta_{t-1}, \beta_t^*) = 2$, $1 \le t \le r$. Also $E_\alpha Q_\delta = Q_{S_\alpha \delta}$ (since $(\delta(\omega), \alpha^*) = -1$). Hence $E_\alpha Q_{\theta, \delta} = Q_{S_\alpha \theta, S_\alpha \delta}$. From this, claim follows in this case (note that $s_\alpha \delta < \delta$, since $(\delta(\omega), \alpha^*) < 0$).

Case 2: $(\delta(\omega), \alpha^*) = -2$. In this case we have $E_{\alpha}Q_{\delta} = Q_{\delta}$, $S_{\alpha}\delta$ (cf. Remark 2.5). Hence $E_{\alpha}Q_{\theta}$, $\delta = Q_{\theta}$, $S_{\alpha}\delta$ and the claim follows from this.

Now claim implies that in $E_{\alpha}x_{\tau,\varphi} = \sum_{e} c_{\theta,\delta}x_{\theta,\delta}$, for each non-zero $c_{\theta,\delta}$, $\theta \ge \tau$. Hence if $x_{\tau,\varphi} \in I_w$, then so does $x_{\theta,\delta}$ (note that $\tau \not\models w$ implies $\theta \not\models w$). Now the fact that I_w is $U_{\mathcal{A}}(b^+)$ -stable implies that $R_q(w)$ is $U_q(b^+)$ -stable. The pairing between $U_{\mathcal{A}}(b^+)$ and $\mathbb{Z}_q[B]$ (cf. 2.10) induces a $k_q[B]$ -comodule structure on $R_q(w)$. Thus we obtain (in view of 4.8 and 4.9)

Theorem 4.10

- (a) $R_q(w)$ has a canonical \mathbb{Z}^ℓ -gradation given by $R_q(w) = \underbrace{\underline{a}}_{q}(R_q(w))_{\underline{a}}, \ \underline{a}_{q} \in (\mathbb{Z}^+)^\ell$.
- (b) $R_{q}(w)$ has a canonical left $k_{q}[B]$ -comodule structure.
- (c) $(R_q(w))_{\underline{a}}$ is a left $k_q[B]$ -comodule and $\dim_{k(q)} R_q(w)_{\underline{a}} = s_{\underline{a}}(w)$ (= # {standard monomials of type \underline{a} on X(w)).

$\S 5$ A Presentation for $k_{\alpha}[G/B]$

5.1 The A-algebra A(G/B)

Let $\mathcal{A}(G/B)$ be the associative \mathcal{A} -algebra with generators $\{y_i^{\omega}\}$, $1 \leq i \leq N_d$, $1 \leq d \leq \ell$ and relations

$$R^{\omega_d \omega_{d'}} Y_1^{\omega_{d'}} Y_2^{\omega_{d'}} = q^{2(\omega_d, \omega_{d'})} Y_2^{\omega_{d'}} Y_1^{\omega_{d'}}$$

where $Y^{ud} = \sum_{i} y_{i}^{ud} \otimes e_{i}^{ud}$ (and a similar description for Y^{ud}), $\{e_{i}^{ud}\}$ being the basis $\{Q_{\tau, \varphi}\}$ for $V_{\mathcal{A}}^{ud}$ as constructed in §2. (Note that $Y^{ud} \in \mathcal{A}(G/B) \otimes_{\mathcal{A}} V_{\mathcal{A}}^{ud}$). For any field k, we set

$$\mathcal{A}_{\mathbf{k}}(G/B) = \mathcal{A}(G/B) \otimes_{\mathcal{A}} \mathbf{k}(q)$$

5.2 $\mathbb{Z}_{\mathbf{q}}[G]$ -comodule structure

The map $\Delta: \mathcal{A}(G/B) \longrightarrow \mathbb{Z}_q[G] \otimes_{\mathcal{A}} \mathcal{A}(G/B), \ \Delta(y_i^{d}) = \sum_{i}^{\omega} \mathbb{Z}_q \otimes_{\mathcal{A}} \mathbb{Z}_q[G] \otimes_{\mathcal{A}} \mathbb{Z}_q[G]$ defines a canonical left $\mathbb{Z}_q[G]$ -comodule structure on $\mathcal{A}(G/B)$.

5.3 The map θ

Define $\theta \colon \mathcal{A}(G/B) \longrightarrow \mathbb{Z}_q[G/B], \ \theta(y_i^{d}) = x_i^{d}$. Note that θ is well-defined (in view of Lemma 2.13) and that θ is an \mathcal{A} -algebra homomorphism.

5.4 Standard monomials

Let us define a monomial in $y_i^{\omega_d}$, s to be standard

similar to Definition 3.3.

We have

Proposition 5.5 Standard monomials are linearly independent over k(q), k being an arbitrary field.

Proof: The result follows by considering the $k(q)\text{-algebra homomorphism }\theta\colon \mathcal{A}_k(G/B) \longrightarrow k_q[G/B], \ \theta(y_i^d) = x_i^d \text{ and using Proposition 3.4.}$

Proposition 5.6 For a dominant integral weight

 $\lambda = \sum_{i=1}^{\ell} a_i \omega_i, \text{ let us define } Y^{\lambda} = \bigotimes_{i=1}^{\ell} (Y_i^{\omega_i})^{\otimes a} i. \text{ With notation}$ as in Lemma 2.17, we have $\widetilde{P}_{\nu}(Y^{\lambda}) = 0$, $\nu \neq \lambda$.

Proof: Observe that Lemma 2.17 was proved as a direct consequence of Lemma 2.13, and that the relation stated in Lemma 2.13 hold by replacing X^d , X^d respectively by Y^d , Y^d (by the very definition of $\mathcal{A}(G/B)$). Hence the result follows.

As a consequence of Proposition 5.6, we have (similar to Lemma 2.18).

Lemma 5.7 With notation as in Lemma 2.18, we have

$$\sum_{i,t} (J_{\underline{a}}) Y(J_{\underline{a}}) = 0$$
, where $Y(J_{\underline{a}}) = \prod_{m=1}^{\ell} J_{\underline{m}} Y_{\underline{m}}$.

Proposition 5.8 Let $\underline{\mathbf{a}} = \sum_{i=1}^{\ell} \mathbf{a}_i \omega_i$ and let $(\mathcal{A}_{\mathbf{k}}(G/B))_{\underline{\mathbf{a}}}$ be

the k(q)-span of $\{f \mid f \text{ is a monomial in } y_t^{\omega_d}, \text{s of } \}$

multi-degree \underline{a} having \underline{a}_i linear factors y_{ij}^{ω} , $1 \le j \le \underline{a}_i$, $1 \le i \le \ell$ (the factors appearing in some order). Then standard monomials of type \underline{a} generate $(\mathcal{A}_k(G/B))_a$.

Proof: The result follows by the same reasoning as in 3.6.

Combining Propositions 5.5 and 5.8, we obtain Theorem 5.9 Standard monomials of type \underline{a} form a $k(q)\text{-basis for } (\mathcal{A}_k(G/B))_a.$

5.10 \mathbb{Z}^{ℓ} -gradation

In view of Proposition 5.5 and Theorem 5.9, we obtain a \mathbb{Z}^{ℓ} -gradation for $\mathcal{A}_k(G/B)$ given by $\mathcal{A}_k(G/B) = \underbrace{\underline{a}}_{\underline{a}} \mathcal{A}_k(G/B))_{\underline{a}}, \ \underline{a} \in (\mathbb{Z}^+)^{\ell}. \quad \text{Further } \Delta \colon \mathcal{A}_k(G/B) \longrightarrow k_q[G] \otimes \mathcal{A}_k(G/B), \ \Delta(y_i^d) = \sum_{r} T_{ir}^d \otimes y_r^d \text{ induces a left } k_q[G]\text{-comodule structure on } (\mathcal{A}_k(G/B))_{\underline{a}}. \quad \text{Thus we obtain}$ Theorem 5.11 (a) $\mathcal{A}_k(G/B) = \underbrace{\underline{a}}_{\underline{a}} (\mathcal{A}_k(G/B))_{\underline{a}}, \ \underline{a} \in (\mathbb{Z}^+)^{\ell}$

(b) $(\mathcal{A}_{k}(G/B))_{\underline{a}}$ is a left $k_{q}[G]$ -comodule and $\dim_{k(q)}(\mathcal{A}_{k}(G/B))_{a} = s_{a}$

(c) $\mathcal{A}_{k}(G/B)$ has a canonical left $k_{q}[G]$ -comodule structure.

Theorem 5.12 The map θ : $\mathcal{A}_{k}(G/B) \longrightarrow k_{q}(G/B)$, $\theta(y_{i}^{\omega}d) =$

 \mathbf{x}_{i}^{ω} is a (degree zero) graded k(q)-algebra isomorphism, preserving the left \mathbf{k}_{q} [G]-comodule structures of the respective graded pieces. In particular, \mathbf{k}_{q} [G/B] is a quadratic algebra.

Proof: The result follows from Theorems 3.10, 5.11, Remark 3.11 and Lemma 5.7.

Remark 5.13: One can give a similar presentation for ${\bf R}_q({\bf w}) \text{ and deduce that } {\bf R}_q({\bf w}) \text{ is again a quadratic algebra.}$ Appendix A

A nice basis for $V^{\omega}d$ for non-classical ω_d 's

With notation as in §2, let ω_d be a fundamental weight of non-classical type, i.e., there exists a positive root β such that $(\omega_d, \beta^*) > 2$. We first construct the extremal weight vectors in V^d in exactly the same way as in §2. To construct the non-extremal weight vectors, let us use the indexing I' as in $[L]_2$. (see also $[LS]_2$) We recall the set I'. The set I' consists of $\{(\tau,\mu)_N, \tau,\mu\in W^d\}$ where τ,μ and N are given as follows:

(a) There exists a sequence $\{\mu_i \in W^P d, 0 \le i \le r+1\}$ such that $\tau = \mu_0 > \mu_1 > \dots > \mu_{r+1} = \mu, \ \ell(\mu_i) = \ell(\mu_{i+1}) + 1$ (b) Let $\mu_i = s_{\beta_i} \mu_{i+1}$ (where β_i is positive), and $m_i = (\mu_{i+1}(\omega_d), \beta_i^*)$. There exist positive integers n_i , $0 \le i \le r$,

such that

$$1 > \frac{n_r}{m_r} \ge \ldots \ge \frac{n_0}{m_0} > 0$$

(in particular, note that m, > 1)

(c) Let
$$\frac{p_i}{q_i} > \dots > \frac{p_i}{q_i}$$
 be all the distinct numbers in

$$\{ \frac{\overset{n}{r}}{\overset{n}{r}}, \dots, \frac{\overset{n}{0}}{\overset{n}{0}} \}. \quad \text{Then N} = (\frac{\overset{P}{i}}{\overset{1}{q}_{i}}, \dots, \frac{\overset{P}{i}}{\overset{1}{q}_{i}}). \quad \text{To a } (\tau, \mu)_{N}, \text{ we}$$
 associate the vector $F \begin{bmatrix} \overset{n}{0} \end{bmatrix} \begin{bmatrix} \overset{n}{1} \end{bmatrix} \begin{bmatrix} \overset{n}{1} \end{bmatrix} \begin{bmatrix} \overset{n}{r} \end{bmatrix}$ e _{μ} (here e _{μ} , as in §2, is the extremal weight vector of weight $\mu(\omega_{d})$; also, for β non-simple, F_{β} is to the understood as in [Lu]₁)

Appendix B

Relationship between $\mathbb{C}_{q}[G]$ and the Hopf algebra $\mathbb{A}_{q}(G)$ of [FRT]

Type \mathbf{A}_{ℓ} : $\mathbf{A}_{\mathbf{q}}$ (G) is the associative algebra with 1 over $\mathbf{C}(\mathbf{q})$ generated by $\mathbf{t}_{\mathbf{i}\,\mathbf{j}}^{1}$ (or just $\mathbf{t}_{\mathbf{i}\,\mathbf{j}}$), 1 \leq i. j \leq n (= ℓ +1), the relations being

$$R T_1 T_2 = T_2 T_1 R (1)$$

and

$$\sum_{\sigma \in S_{\mathbf{p}}} (-\mathbf{q})^{-\ell(\sigma)} \mathbf{t}_{1\sigma(1)} \cdots \mathbf{t}_{n\sigma(n)} = 1$$
 (2)

where

$$R = \sum_{\substack{i \neq j \\ i, j=1}}^{n} e_{ii} \otimes e_{jj} + q \sum_{\substack{i=1 \\ i=1}}^{n} e_{ii} \otimes e_{ii} + e_{ii} \otimes e_{ii}$$

$$(q-q^{-1}) \sum_{\substack{1 \leq j \leq i \leq n}} e_{ij} \otimes e_{ji}$$

(e_{ij}'s being the elementary matrices), $T_1 = T \otimes Id$, $T_2 = Id \otimes T$, $T = (t_{ij})$. It can be seen easily that map $\theta \colon A_q(G) \longrightarrow \mathbb{C}_q[G], \ t_{ij} \longmapsto T_{ij}^{u_1} \text{ defines an isomorphism of Hopf algebras.}$

Type C_n : $A_q(G)$ is the associative C(q) algebra with 1 generated by t_{ij}^{0} or just t_{ij} , $1 \le i \le 2n$, the relations being

$$R T_1 T_2 = T_2 T_1 R$$
 (1)

and

$$T C ^{t} T C^{-1} = C ^{t} T C^{-1} T = I$$
 (2)

where

$$R = q \sum_{i=1}^{2n} e_{ii} \otimes e_{ii} + \sum_{\substack{i,j=1\\i\neq j,\,j'}}^{2n} e_{ii} \otimes e_{jj}$$

$$+ q^{-1} \sum_{i=1}^{2n} e_{ii} \otimes e_{i'i'} + (q-q^{-1}) \sum_{\substack{\sum\\i,j=1\\i\neq j}}^{2n} e_{ij} \otimes e_{ji}$$

+
$$(q-q^{-1})$$
 $\sum_{\substack{\Sigma \\ i, j=1 \\ i>j}}^{2n} \epsilon_i \epsilon_j e_{ij} \otimes e_{i'j'}$

where C = anti-diag $(q^n, \ldots, q, -q^{-1}, \ldots, -q^{-n})$,

i'=2n+1-i, ϵ_i = 1 or -1 according as i≤n or i>n. As in type A_n , the map $\theta\colon A_q(G) \longrightarrow \mathbb{C}_q[G]$, $\theta(t_{ij}) = T_{ij}^{\omega_1}$ induces a Hopf algebra isomorphism.

Type B_n , D_n : The algebra $A_q(G)$ is generated by t_{ij}^{wn} , $1 \le i$, $j \le \dim V^n$ for type B_n and by t_{ij}^{wn} , t_{ij}^{wn-1} , $1 \le i$, $j \le \dim V^n$ (= dim V^{n-1}) for type D_n . The generators satisfy similar relations as (1) above and some extra relations. These extra relations could also be written explicity, but they are more complicated and can be deduced from [R]. As in Type A_n and C_n , we have $A_q(G) \approx \mathbb{C}_q[G]$ (as Hopf algebras).

Appendix C

The algebra A_G(G/B)

Again for simplicity of discussion, let us suppose that G is classical. Let $1 \le d \le \ell$ (= rank G); let $d \ne m$, if G is of type B_n , and $d \ne n-1$, n, if G is of type D_n . Observe that V occurs as an irreducible factor in V occurs as an irreducible factor in V occurs as an irreducible factor in V occurs V occurs as an irreducible factor in V occurs V o

(Observe that

 $\mathbf{T}^{\omega_1} = \mathbf{K}_{\omega_1}^{\omega_n \omega_n} (\mathbf{T}^{\omega_n} \otimes \mathbf{T}^{\omega_n}) \overline{\mathbf{K}}_{\omega_1}^{\omega_n \omega_n}, \text{ if G is of type B}_n, \text{ and }$ $T^{1} = K_{\omega_{1}}^{0} (T^{n} \otimes T^{n}) \overline{K}_{\omega_{4}}^{0}, \text{ if G is of type D}_{n}, \text{ where } \overline{\omega}_{n} =$ $\omega_{\rm n}$ (resp. $\omega_{\rm n-1}$) if n is even (resp. odd), $K_{v}^{\lambda\mu}$ is the projection $V^{\lambda} \otimes V^{\mu} \longrightarrow V^{\upsilon}$, and $\overline{K}^{\lambda \mu}_{\upsilon}$ is the inclusiion $\textbf{V}^{\upsilon} \ \hookrightarrow \ \textbf{V}^{\lambda} \otimes \textbf{V}^{\mu} \text{ such that } \textbf{K}^{\lambda \mu}_{\upsilon} \ \overline{\textbf{K}}^{\lambda \mu}_{\upsilon'} = \textbf{Id}_{\textbf{V}_{..}} \boldsymbol{\delta}_{\upsilon\upsilon'}. \quad \text{Thus } \textbf{t}_{\texttt{i},\texttt{j}} \ (=$ $t_{ij}^{\omega_1}$) is a quadratic expression in $t_{ij}^{\omega_n}$, if G is of type ${\bf B_n},$ and is a bilinear expression in ${\bf t_{i,i}^{\omega}},~{\bf t_{i}^{\omega}},$ if G is of type D_n . For $1 \le d \le \ell$, let us write $T^{\omega} = (t_{i,i}^{\omega})$, $1 \le i$, $j \le N_d$ (= dim V^d), and set $x_i^d = t_{i,1}^d$. Note that x_i^d , s are polynomials in t_{ij}^{-1} 's, if G is of type A_n or C_n. For type B_n , $\bar{x}_i^{\omega d}$, s are polnomials in $t_{ii}^{\omega n}$, s and for type D_n , x_i^{ω} d, s are polnomials in $t_{i,i}^{\omega}$, s and $t_{i,i}^{\omega}$, s. Define $A_q(G/B)$ as the sub algebra of $A_q(G)$ generated by $\{\bar{x}_i^{\omega d}, 1 \le i \le N_d, 1 \le d \le \ell\}$. Then it is easily seen that the map $\theta: A_{\mathbf{q}}(G/B) \longrightarrow \mathbb{C}_{\mathbf{q}}[G/B], \ \theta(\bar{x}_{\mathbf{i}}^{d}) = x_{\mathbf{i}}^{d}$ induces an algebra isomorphism. Similarly, we have $A_{\sigma}(G/P_{d}) \sim \mathbb{C}_{\sigma}[G/P_{d}].$

References

- [D] V. Drinfeld, Quantum groups, Proc. of the ICM, Berkeley 1988.
- [D]₂ ————, On almost cocommutative Hopf algebras, Leningrad Math. J., Vol 1 (1990), 321-342.
- [FRT] L. Faddeev, N. Reshetikhin and L. Takhtajan, Quantization of Lie Groups and Lie algebras, preprint, LOMIE-14-87, 1987; Algebra and Analysis, 1, 1 (1989).
- [H] W.V.D. Hodge, Some enumerative results in the theory of forms, Proc. Camb. Phil. Soc. 39 (1943), 22-30.
- [H-P] W.V.D. Hodge and D. Pedoe, Methods of Algebraic Geometery, Vol. II, Cambridge University Press, (1952).
- [J] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10, 63-69 (1985).
- [L] V. Lakshmibai, Standard monomial theory for G₂,
 J. Alg., Vol. 98 (1986), 281-318.
- [L]₂ ————, Standard Monomial Theory for exceptional groups (in preparation).
- [Li] P. Littelmann, A generalization of the Littlewood-Richardson rule, J. Alg, Vol. 130, 1990, 328-368.
- [LR] V. Lakshmibai and N. Reshetikhin, Quantum
 deformations of Flag and Schubert Schemes, C.R.
 Acad.Sci., Paris, t.313, Serie I, 1991, 121-126.
- [LR] $_2$, Quantum deformations of SL $_n$ /B and its Schubert varieties,

- "Special Functions", ICM-90 Satellite Conference Proceedings, Springer-Verlag.
- [L-Ra] V. Lakshmibai and K.N. Rajeswari, Towards a standard monomial theory for exceptional groups, Contemporary Math., A.M.S., Vol 88.
- [LS] V. Lakshmibai and C.S. Seshadri, Geometry of G/P-V, J. Alg. 100, (1986), 462-557.
- [LS]₂ , Standard Monomial Theory, Proceedings of the Hyderabad Conference on "Algebraic Groups," 279-322.
- [Lu] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., 70 (1988), 237-249.
- [Lu]₂ ———, Finite dimensional Hopf algebras arising from quantized enveloping algebras, Jour. A.M.S. (1990), 257-296.
- [R] N. Reshetikhin, Quantized universal eveloping algebras, Yang-Baxter equation and invariants of links, Lomi-preprint, E-4-87, E-17-87.
- [Ro] M. Rosso, Finite Dimensional Representations of Quantum Analog of the Enveloping Algebra of a Complex Simple Lie Algebra, Comm. Math. Phys., 117 (1988), 581-593.

V.Lakshmibai Northeastern University Mathematics Department Boston, MA 02115 N.Reshetikhin University of California Mathematics Department Berkeley, CA 94720