Домашнее задание №1

Д.А. Першин

17 октября 2014 г.

1 Словесное описание алгоритма

При решении данной задачи будем использовать метод динамического программирования. Будем обрабатывать входной массив в обратном порядке, чтобы найти наименьшую в лексикографическом порядке подпоследоветльность. Назовем его α . Создадим четыре массива: $L_{<}$, $L_{>}$, $P_{<}$, $P_{>}$. В этих массивах будем хранить элементы $l_{<i}$, $l_{>i}$, $p_{<i}$, $p_{>i}$ соответственно, где

- $l_{< i}$ длина наибольшей чередующейся подпоследовательности $\alpha_{x_0} \dots \alpha_{x_k} \alpha_i$ обратной входной последовательности α , заканчивающийся в α_i , такой, что $\alpha_{x_k} < \alpha_i$.
- $l_{>i}$ длина наибольшей чередующейся подпоследовательности $\alpha_{x_0} \dots \alpha_{x_k} \alpha_i$ обратной входной последовательности α , заканчивающийся в α_i , такой, что $\alpha_{x_k} > \alpha_i$.
- $p_{< i}$ индекс предыдущего элемента для α_i в наибольшей чередующейся подпоследовательности $\alpha_{x_0} \dots \alpha_{x_k} \alpha_i$ обратной входной последовательности α , заканчивающийся в α_i , такой, что $\alpha_{x_k} < \alpha_i$.
- $p_{>i}$ индекс предыдущего элемента для α_i в наибольшей чередующейся подпоследовательности $\alpha_{x_0} \dots \alpha_{x_k} \alpha_i$ обратной входной последовательности α , заканчивающийся в α_i , такой, что $\alpha_{x_k} > \alpha_i$.

Алгоритм:

- 1. Заполним массивы $L_{<}$ и $L_{>}$ значением 1, а массивы $P_{<}$ и $P_{>}$ значением -1.
- 2. Для каждого элемента α_i из α найдем значения $l_{< i}, p_{< i}, l_{> i}, p_{> i}$, заполнив массивы $L_<, L_>, P_<, P_>$ следующим образом:
 - если $\alpha_i < \alpha_i$ и $L_>[j] > L_<[i]$, то $L_<[i] = L_>[j] + 1$, а $P_<[i] = j$.
 - если $\alpha_i > \alpha_i$ и $L_{\leq}[j] > L_{\geq}[i]$, то $L_{\geq}[i] = L_{\leq}[j] + 1$, а $P_{\geq}[i] = j$.

где
$$j \in [0, i-1]$$

- 3. В массивах L_< и L_> найдем максимум (при этом, если максимумов несколько, то выбираем максимум с наибольшим индексом(так как входной массив обрабатывается в обратном порядке), чтобы найти наименьшую в лексикографическом порядке подпоследовательность). Это будет индекс первого элемента искомой подпоследовательности.
- 4. l = 0
- 5. Восстановим найденную подпоследовательность с помощью массивов $P_{<}$ и $P_{>}$ следующим образом:

пусть текущий элемент подпоследовательности $x_l = \alpha_{m_k}$, тогда:

- если индекс m_k был найден в массиве $L_>$, то $m_{k-1} = P_>[m_k];$
- если индекс m_k был найден в массиве $L_{<}$, то $m_{k-1} = P_{<}[m_k]$;
- если $m_{k-1} = -1$, переходим к пункту 7;
- l = l + 1
- 6. Меняем массив поиска с $L_{>}$ на $L_{<}$ или наоборот. Далее повторяем предыдущий пункт.
- 7. Подпоследовательность $\alpha_0 \dots \alpha_l$ искомая последовательность.

2 Доказательство корректнсти

Доказательство будем строить по индукции. Для одного элемента алгоритм работает корректно. Предположим, что для n элементов алгоритм также работает корректно. Рассмотрим ситуацию, когда к последоветельности из n элементов добавдяется еще один.

Заполнять элементы массивов $P_{<}$ и $P_{>}$ будем следующим образом:

$$P_{>}[n] = \underset{0 \le i < n; \ \alpha_j > \alpha_i}{\arg \max} (L_{<}[i])$$

$$P_{<}[n] = \underset{0 \le i < n; \ \alpha_j < \alpha_i}{\arg \max} (L_{>}[i])$$

при этом для выполнения условия вывода последовательности с минимальным i_k будем выбирать самые левые из возможных индексов.

Заполнять элементы массивов $L_{<}$ и $L_{>}$ будем следующим образом:

$$L_{>}[n] = L_{<}[P_{<}[n]] + 1$$

$$L_{<}[n] = L_{>}[P_{>}[n]] + 1$$

Предположим, что найденная чередующейся подпоследовеьтльность не является наибольшей, но в таком случае существует другая чередующаяся подпоследовательность $\alpha_{m_0} \dots \alpha_{m_k} \alpha_n$, такая что $\alpha_{m_k} > \alpha_n$, следоветельно $L_{<}[m_k] > L_{<}[P_>[n]]$, что протеворечит ранее описаным условиям

$$P_>[n] = \mathop{\arg\max}_{0 \leq i < n; \ \alpha_j > \alpha_i} (L_<[i])$$

Таким образом $\alpha_{x_0} \dots \alpha_{P>[n]} \alpha_n$ является наибольшей чередующейся подпоследовательностью. Аналогичным образом доказывем корректность для $P_{<}[n]$

В итоге получаем предыдущий индекс для каждого элемента последоветльности и длины наибольших чередующейхся подпоследовательностей. Из этих данных легко восстановить наибольшую чередующуюся подпоследовательность $\alpha_{x_0} \dots \alpha_{x_k} \alpha_n$ входной последовательности.

3 Асимптотические оценки

В результате получаем сложность по памяти O(n), так как мы используем 4 массива длиной n.Сложность по времени равна $O(n^2)$, так как для каждого элемента α_i , где 0 < i < n-1 просматривается не более n элементов для массивов $L_{<}$ и $L_{>}$, а для восстановления индексов последовательности просматривется не более n элементов из массивов $P_{<}$ и $P_{>}$ и не более n элементов исходного массива для восстановления самой последоветльности.