

Chapter 3 Graphs

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Overview

- Basic Definitions and Applications
- Graph Traversal
 - BFS and DFS
- Applications
 - Connected component
 - Testing bipartite
- Connectivity in directed graph
- DAGs and topological ordering

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. G = (V, E)

- V = nodes. (Vertex, vertices)
- E = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

Some Graph Applications

Graph	Nodes	Edges		
transportation	street intersections	highways		
communication	computers	fiber optic cables		
World Wide Web	web pages	hyperlinks		
social	people	relationships		
food web	species	predator-prey		
software systems	functions	function calls		
scheduling	tasks	precedence constraints		
circuits	gates	wires		
Computational graph	Tensor, matrix, vector, .	Function arguments		

World Wide Web

Web graph.

Node: web page.

■ Edge: hyperlink from one page to another.

9-11 Terrorist Network

Social network graph.

• Node: people.

Edge: relationship between

two people.

Ecological Food Web

Food web graph.

- Node = species.
- Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	1	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to m + n.
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.

degree = number of neighbors of u

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree

the same tree, rooted at 1

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

GUI Containment Hierarchy

GUI containment hierarchy. Describe organization of GUI widgets.

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two nodes and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Friendster. (a social networks website)
- Maze traversal.
- Kevin Bacon number.

Fewest number of hops in a communication network.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $L_0 = \{ s \}.$
- L_1 = all neighbors of L_0 .
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

BFS Implementation

Textbook version, page 90


```
BFS(s):
  Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
  Set the layer counter i = 0
  Set the current BFS tree T = \emptyset
  While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the layer counter i by one
  Endwhile
```

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

A Clearer Implementation

MIT book, page 594

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
 3
      u.d = \infty
         u.\pi = NIL
    s.color = GRAY
 6 s.d = 0
    s.\pi = NIL
    O = \emptyset
    ENQUEUE(Q, s)
    while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
12
         for each v \in G.Adj[u]
13
             if v.color == WHITE
                  v.color = GRAY
14
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, \nu)
18
         u.color = BLACK
```

All vertices start out white.

A vertex becomes non-white the first time it is discovered.

Gray and *black* vertices are already discovered:

- Gray vertices may have adjacent white vertices.
- All vertices adjacent to black vertices are discovered.

Gray vertices represent the frontier between discovered and undiscovered vertices.

BFS Example

10	while $Q \neq \emptyset$
11	u = DEQUEUE(Q)
12	for each $v \in G.Adj[u]$
13	if $v.color == WHITE$
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	$\text{Enqueue}(Q, \nu)$
18	u.color = BLACK

BFS Example

BFS Example

Output of BFS

BFS builds a tree as it searches the graph.

A simple path from s to each vertex is a shortest path in G.

Breadth First Search: Analysis

Theorem. BFS runs in O(m + n) time if the graph is given by its adjacency representation.

Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists L[i]
 - each node occurs on at most one list; for loop runs \leq n times
 - when we consider node u, there are \leq n incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m + n) time:
 - when we consider node u, there are deg(u) incident edges (u, v)
 - total time processing edges is $\Sigma_{u \in V} \deg(u) = 2m$

each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

Breadth First Search: Analysis

- Each vertex is enqueued at most once, and hence dequeued at most once.
- \Rightarrow Total time for queue ops is O(n)
- The for loop (line 12) scans the adjacency list of each vertex only when it is dequeued, each adjacency list is scanned only once
- \Rightarrow Total time for scanning is O(E)

```
BFS(G,s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
         u.d = \infty
         u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
7 s.\pi = NIL
    O = \emptyset
    ENQUEUE(O, s)
    while Q \neq \emptyset
         u = \text{DEQUEUE}(Q)
11
         for each v \in G.Adi[u]
             if v.color == WHITE
13
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
                  ENQUEUE(Q, v)
17
18
         u.color = BLACK
```

Depth First Search

Difference from BFS?

Sequence of being discovered: 1, 2, 3, 4, 5

DFS

Sequence of being discovered: 1, 2, 4, 5, 3

DFS(u):

Mark u as "Explored" and add u to R

For each edge (u, v) incident to u

If v is not marked "Explored" then

Recursively invoke DFS(v)

Endif

Endfor

Textbook page 84

DFS Implementations

A simple recursive version

DFS-RECURSIVE(G, s)

- 1. s.visited = true
- 2. **for** *v* **in** *G*. *adj*[*s*]:
- 3. **if** v.visited == false
- 4. DFS-RECURSIVE(G, v)

DFS-RECURSIVE(G, u)

u.visited = true

DFS-RECURSIVE(G, v)

v.visited = true

DFS-RECURSIVE(G, x)

x.visited = true

DFS-RECURSIVE(G, y)

y.visited = true

DFS Implementations

A simple non-recursive version

DFS-ITERATIVE(G, s)

- 1. let S be a stack
- 2. S.push(s)
- 3. while $S \neq \emptyset$
- 4. u = S.pop()
- 5. **if** u.visited == false:
- 6. u.visited = true
- 7. **for** v in G. adj[u]:
- 8. S.push(v)

Output of DFS

A DFS tree (or forest)

Assume that in the call of DFS(G), DFS-RECURSIVE(G, w) is first called.

Resulting forest:

3.3 Application 1: Connected Component

Connected component. Find all nodes reachable from s.

Textbook page 82, Exploring a Connected Component

Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

Node: pixel.

Edge: two neighboring lime pixels.

Blob: connected component of lime pixels.

recolor lime green blob to blue Tux Paint Magic Tools Redo Colors

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

Node: pixel.

Edge: two neighboring lime pixels.

Blob: connected component of lime pixels.

recolor lime green blob to blue Tux Paint Magic Tools Redo Click in the picture to fill that area with color.

Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path Initially $R=\{s\}$ While there is an edge (u,v) where $u\in R$ and $v\not\in R$ Add v to R Endwhile

Textbook page 82

it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.

Both BFS and DFS can find the connected component

3.4 Application 2: Testing Bipartiteness

(二分性)

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.

- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

a bipartite graph

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

of edges in this cycle is odd

(2-colorable)

not bipartite (not 2-colorable)

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

(we can find an odd-length cycle whenever it is not bipartite)

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i) Textbook page 96

- Suppose no edge joins two nodes in the same layer.
- By previous lemma, this implies all edges join nodes on adjacent layers.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j .
- Let z = lca(x, y) = lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is 1 + (j-i) + (j-i), which is odd. \blacksquare (x,y) path from path from y to z z to x

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

not bipartite (not 2-colorable)

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. G = (V, E)

Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web pages. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity (强连通性)

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow Follows from definition.

Pf. ← Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path.

ok if paths overlap

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time. Pf.

- Pick any node s.
- Run BFS from s in G. reverse orientation of every edge in G
- Run BFS from s in G^{rev} . Some books call it transpose G^T
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. ■

strongly connected

not strongly connected

Strong Connectivity: Algorithm

What's the result of running DFS on G_2 ?

Strong Connected Components (强连通分量)

If G is strongly connected, how many trees will be returned from BFS/DFS?

How many strongly connected components?

Observe the visiting order nodes in DFS

Two resulting trees:

Lemma 3.6 (Textbook page 85)

For a given recursive call DFS(u), all nodes that are visited between the invocation and end of this recursive call are descendants of u in T.

Q: if we run DFS on any node in T_A , can we reach T_B ?

Lemma 3.7 (Textbook page 85)

Let T be a depth-first search tree, let x and y be nodes in T, and let (x, y) be an edge of G that is not an edge of T. Then one of x or y is an ancestor of the other.

STRONGLY-CONNECTED-COMPONENT(G)

- 1. call DFS(G) to compute the finishing times u.f for each vertex u
- 2. compute G^T ($G^T = G^{rev} \Rightarrow every edge in reversed direction)$
- 3. call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u. f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate SCC

MIT Book, page 604

```
DFS(G)
                                DFS-VISIT(G, u)
   for each vertex u \in G.V
                                 1 time = time + 1
                                2 \quad u.d = time
       u.color = WHITE
                                 3 u.color = GRAY
       u.\pi = NIL
                                 4 for each v \in G.Adj[u]
 time = 0
                                        if v.color == WHITE
                                 5
   for each vertex u \in G.V
6
       if u.color == WHITE
                                            \nu.\pi = u
                                            DFS-VISIT(G, \nu)
           DFS-VISIT(G, u)
                                 8 u.color = BLACK
                                   time = time + 1
                                    u.f = time
```

Strongly connected components - demo

Get reversed graph G^{rev} :

Call DFS(G^{rev})

consider the vertices in order of decreasing u.f (finishing times from previous DFS)

Strongly connected components - demo

Old finishing times from previous DFS(G)

DFS(G^{rev}) produces 4 DFS trees

That is, 4 strongly connected components (of G and G^{rev})

Strongly connected components - Result

Q: Is there any cycles in G^{SCC} ?

Define $V^{SCC} = \{v_1, v_2, ..., v_k\}$, which contains a vertex v_i for each SCC C_i of G.

There is an edge $(v_i, v_j) \in E^{SCC}$ if G contains a directed edge (x, y) for some $x \in C_i$ and $y \in C_j$

Def. Component graph $G^{SCC} = (V^{SCC}, E^{SCC})$

Lemma 1: Let C and C' be distinct strongly connected components in directed graph G=(V,E), let $u,v\in C$, let $u',v'\in C'$, and suppose that G contains a path $u\sim u'$. Then G cannot also contain a path $v'\sim v$. (Lemma 22.13 in MIT book, page 617)

If G contains a path $v' \sim v$ Then $u' \sim v' \sim v \sim u$

Thus, u and u' are mutually reachable

contradicting the assumption that C and C' are distinct SCCs

Lemma 2: Let C and C' be distinct strongly connected components in directed graph G = (V, E). Suppose that there is an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$. Then f(C) > f(C'). (Lemma 22.14 in MIT book, page 618)

Proof of Lemma 2: Assuming two SCCs, C and C', and consider two cases

Case 1: C is first discovered during the first DFS

Case 2: C' is first discovered ...

Case 1: C is first discovered \Rightarrow d(C) < d(C')

Assuming x is the first discovered node in C \Rightarrow

All nodes in C and C' are descendants of x =>

$$x.f = f(C) > f(C')$$

Case 2: C' is first discovered => d(C) > d(C'), let y be the first vertex discovered in C'.

$$\Rightarrow$$
 $y.f = f(C')$

By Lemma 1, there cannot be a path $C' \sim C$

 \Rightarrow no nodes in C is reachable from y

Thus, for any node $w \in C$, w.f > y.fThat is, f(C) > f(C'). Proof done.

(推论)

Corollary of lemma 2: Let C and C' be distinct strongly connected components in directed graph G=(V,E). Suppose that there is an edge $(u,v) \in G^{rev}$, where $u \in C$ and $v \in C'$. Then f(C) < f(C').

According to lemma 2, f(C) < f(C')

Now, consider the second round of DFS in the algorithm

STRONGLY-CONNECTED-COMPONENT(*G*)

- 1. call DFS(G) to compute the finishing times u. f for each vertex u
- 2. compute G^T
- 3. call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u. f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate SCC

We start from C whose finishing time f(C) is max

Because f(C) is maximum, there can only be edges from other SCCs to C

Thus, the DFS tree rooted at x contains exactly the nodes of C. (no nodes in C' or C'' will be visited)

3.6 DAGs and Topological Ordering

(DAG: 有向无环图) (拓扑排序)

Directed Acyclic Graphs (DAG: 有向无环图)

Def. An DAG is a directed graph that contains no directed cycles.

(优先序)

Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j .

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

a DAG

a topological ordering

DAG example

DAG describes precedence relations or dependencies

Precedence Constraints

Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_j .

Applications.

- Course prerequisite graph: course v_i must be taken before v_j .
- Compilation: module v_i must be compiled before v_j . Pipeline of computing jobs: output of job v_i needed to determine input of job v_j .

(Lemma 3.18 textbook page 101)

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v_1 , ..., v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i ; thus (v_j, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and $v_1, ..., v_n$ is a topological order, we must have j < i, a contradiction.

the supposed topological order: $v_1, ..., v_n$

Lemma. If G has a topological order, then G is a DAG.

- Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?

Textbook, lemma 3.19, page 102

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat (after n+1 steps) until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. ■

Textbook, lemma 3.20, page 102

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n) 数学归纳法

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- $G \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of G { v }
- in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first Delete v from G

Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

- Maintain the following information:
 - count [w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement count[w] for all edges from v to w, and add w to S if c count[w] hits 0
 - this is O(1) per edge ■

Topological Sorting Algorithm: Another View

Alternative:

Order nodes in reverse order that DFS finishes visiting them

Q: Which node has the biggest finish time?

Consider using this DFS implementation

```
DFS(G)
                                DFS-VISIT(G, u)
   for each vertex u \in G.V
                                   time = time + 1
                                 2 \quad u.d = time
       u.color = WHITE
                                 3 u.color = GRAY
       u.\pi = NIL
                                 4 for each v \in G.Adj[u]
   time = 0
                                         if v.color == WHITE
   for each vertex u \in G.V
                                             \nu.\pi = u
6
       if u.color == WHITE
                                             DFS-VISIT(G, \nu)
           DFS-VISIT(G, u)
                                   u.color = BLACK
                                    time = time + 1
                                    u.f = time
```

Topological Sorting Algorithm: Using finishing time in DFS

Topological Sorting Algorithm: Using finishing time in DFS

MIT Book, page 612

TOPOLOGICAL-SORT(*G*)

- 1. call DFS(G) to compute the finishing times v. f for each vertex v
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. **return** the linked list of vertices

Theorem: TOPOLOGICAL-SORT produces a topological sort of the input DAG.

Proof.

It suffices to show that for any pair of nodes u, v, if G contains an edge (u, v), then v, f < u, f.

Case 1: when going from u to v, v is finished (black)

Case 2: when going from u to v, v is not finished (white)