CENTRALE MP 1996 Maths1

On note \mathcal{F} le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} et \mathcal{L} le sous-ensemble de \mathcal{F} formé des applications lipschitziennes, c'est-à-dire des applications ϕ pour lesquelles existe une constante K_{ϕ} telle que

$$\forall (x,y) \in \mathbb{R}^2, \ |\phi(x) - \phi(y)| \leqslant K_{\phi} |x - y|$$

On a pour but, dans ce problème, de rechercher les fonctions $F \in \mathcal{L}$ telles que

(1)
$$\forall x \in \mathbb{R}, \ F(x) - \lambda F(x+a) = f(x),$$

où f est une fonction de \mathcal{L} donnée et où a et λ sont deux réels non nuls donnés. Les parties III et IV sont largement indépendantes.

Partie I - Question préliminaire

Soit $F \in \mathcal{F}$ vérifiant (1). Montrer que, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, on a

(2)
$$F(x) = \lambda^n F(x + na) + \sum_{k=0}^{n-1} \lambda^k f(x + ka)$$

(3)
$$F(x) = \lambda^{-n} F(x - na) - \sum_{k=1}^{n} \lambda^{-k} f(x - ka).$$

Partie II - Quelques propriétés des fonctions lipschitziennes

- II.1. Prouver que \mathcal{L} est un sous-espace vectoriel de \mathcal{F} .
- II.2. Soit $f \in \mathcal{F}$ dérivable. Montrer que, pour que f appartienne à \mathcal{L} , il faut et il suffit que sa dérivée soit bornée.
- **II.3.** f et g étant deux fonctions bornées de \mathcal{L} , montrer que leur produit $f \cdot g$ est aussi élément de \mathcal{L} .

En est-il de même si f et g ne sont pas toutes les deux bornées?

II.4. Soit $f \in \mathcal{L}$. Montrer l'existence de deux réels positifs A et B tels que

$$(4) \forall x \in \mathbb{R}, |f(x)| \leqslant A|x| + B.$$

II.5. Soit $f \in \mathcal{F}$. On suppose qu'il existe un réel positif M tel que, pour tous x et y réels vérifiant $0 \le x - y \le 1$, on a $|f(x) - f(y)| \le M |x - y|$. Démontrer que $f \in \mathcal{L}$.

Partie III - Étude de (1) pour
$$|\lambda| \neq 1$$

III.A. On suppose dans cette sous-partie que $|\lambda| < 1$.

III.A.1.

- a) Montrer que, pour tout $x \in \mathbb{R}$, la série $\sum_{n \geq 0} \lambda^n f(x + na)$ est absolument convergente (on pourra utiliser la Question II.4).
- b) En déduire qu'il existe une, et une seule, fonction $F \in \mathcal{L}$ vérifiant (1) et que F est donnée par

$$F(x) = \sum_{n=0}^{+\infty} \lambda^n f(x + na).$$

III.A.2. Étude de 3 cas particuliers.

- a) On suppose que f est la fonction constante f_1 définie par $f_1(x) = 1$. Montrer que $f_1 \in \mathcal{L}$ et déterminer la fonction F_1 correspondante.
- **b)** On suppose que f est la fonction f_2 définie par $f_2(x) = \cos x$. Montrer que $f_2 \in \mathcal{L}$ et que la fonction F_2 correspondante est donnée par

(5)
$$F_2(x) = \frac{\cos x - \lambda \cos(x - a)}{1 - 2\lambda \cos a + \lambda^2}.$$

- c) On suppose que f est la fonction f_3 définie par $f_3(x) = \sin x$. Montrer que $f_3 \in \mathcal{L}$ et déterminer la fonction F_3 correspondante.
- III.B. On suppose dans cette sous-partie que $|\lambda| > 1$.
 - **III.B.1.** Montrer que, pour tout $x \in \mathbb{R}$, la série $\sum_{n \ge 1} \lambda^{-n} f(x na)$ est absolument convergente.
 - III.B.2. En déduire qu'il existe une, et une seule, fonction $F \in \mathcal{L}$ vérifiant (1) et que F est donnée par

$$F(x) = -\sum_{n=1}^{+\infty} \lambda^{-n} f(x - na).$$

- III.B.3. Dans chacun des trois cas particuliers suivants, déterminer la fonction F_i correspondante :
 - a) f est la fonction constante f_1 définie par $f_1(x) = 1$.
 - b) f est la fonction f_2 définie par $f_2(x) = \cos x$.
 - c) f est la fonction f_3 définie par $f_3(x) = \sin x$.

Partie IV - Étude de (1) pour
$$|\lambda| \neq 1$$

- **IV.A.** On suppose dans cette sous-partie que $\lambda = 1$.
 - **IV.A.1.** Montrer que, pour qu'il existe une fonction $F \in \mathcal{L}$ vérifiant (1), il faut que f soit bornée.

IV.A.2.

- a) Montrer, en en explicitant une, qu'il existe des fonctions $F \in \mathcal{L}$ non nulles vérifiant : $\forall x \in \mathbb{R}, \ F(x) F(x+a) = 0.$
- **b)** Soit $F \in \mathcal{L}$ vérifiant (1). F est-elle unique?
- IV.A.3. On suppose dans cette question que f est la fonction définie par $f(x) = \cos x$.
 - a) Si $\cos a \neq 1$, montrer qu'en faisant tendre λ vers 1 dans la fonction F_2 donnée par (5), on obtient une fonction $F \in \mathcal{L}$ vérifiant (1).
 - b) Si $\cos a = 1$, établir qu'il n'existe aucune fonction $F \in \mathcal{L}$ vérifiant (1).
- IV.B. On suppose dans cette sous-partie que $\lambda = -1$.

IV.B.1.

- a) Montrer, en en explicitant une, qu'il existe des fonctions $F \in \mathcal{L}$ non nulles vérifiant $\forall x \in \mathbb{R}, \ F(x) + F(x+a) = 0.$
- **b)** Soit $F \in \mathcal{L}$ vérifiant (1). F est-elle unique?
- IV.B.2. On suppose dans cette question que f est la fonction définie par $f(x) = \cos x$.
 - a) Si $\cos a \neq -1$, expliciter une fonction $F \in \mathcal{L}$ vérifiant (1).
 - b) Si $\cos a = -1$, établir qu'il n'existe aucune fonction $F \in \mathcal{L}$ vérifiant (1).

- **IV.B.3.** On suppose dans cette question que a=1 et que $f\in\mathcal{L}$ est décroissante, de limite nulle en $+\infty$ et à dérivée f' croissante.
 - a) Montrer que la série $\sum_{n\in\mathbb{N}} (-1)^n f(x+n)$ converge.
 - **b)** Montrer qu'il existe une, et une seule, fonction $F \in \mathcal{L}$ vérifiant (1) et $\lim_{x \to +\infty} F(x) = 0$ (pour établir que $F \in \mathcal{L}$, on pourra utiliser la question II.5).

