Изогональное сопряжение 1

Определение: Пусть дан треугольник ABC и точка P. Тогда изогонали к прямым AP, BP, CP относительно соответствующих углов треугольника пересекаются в одной точке или параллельны. Если они пересекаются, то точка их пересечения Q называется изогонально сопряжённой точке P относительно треугольника ABC. Если P лежала не на стороне и не на описанной окружности треугольника, то изогональное сопряжение является взаимно-однозначным соответствием.

Если точку P отразить относительно сторон треугольника, то изогонально сопряжённая ей точка Q будет центром окружности, проходящей через эти три отражения.

- $\boxed{1}$ Точка T такова, что все стороны треугольника ABC видны из неё под углами 120° . Докажите, что основания перпендикуляров, опущенных из изогонально сопряжённой ей точки, являются вершинами равностороннего треугольника.
- $\boxed{2}$ Касательные к описанной окружности треугольника ABC в точках B и C пересекаются в точке P. Точка Q такова, что четырёхугольник ABQC является параллелограммом. Докажите, что точки P и Q изогонально сопряжены.
- $\boxed{3}$ Про выпуклый четырёхугольник ABCD известно, что $\angle A = \angle C \neq 90^\circ$. Докажите, что основания перпендикуляров, опущенных из точки D на прямые AB, BC, AC, и середина отрезка AC лежат на одной окружности.
- $\boxed{4}$ В треугольнике ABC проведена высота AK. Точка K' симметрична точке K относительно середины стороны BC. Касательные в точках B и C к описанной окружности треугольника ABC пересекаются в точке X. Докажите, что точка K' и основания перпендикуляров, опущенных из точки X на прямые AB, BC и CA, лежат на одной окружности.
- [5] В трапеции ABCD боковая сторона CD перпендикулярна основаниям, O точка пересечения диагоналей. На описанной окружности треугольника OCD взята точка S, диаметрально противоположная точке O. Докажите, что $\angle BSC = \angle ASD$.
- [6] Точки P и Q изогонально сопряжены относительно треугольника ABC. Точка Q_A симметрична точке Q относительно прямой BC. Тогда точки A и Q_A изогонально сопряжены относительно треугольника BPC.
- [7] Стороны треугольника ABC видны из точки T под углами 120° . Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.
- 8 Точка M середина основания AB равнобедренного треугольника ABC. Точка P внутри треугольника такова, что $\angle CAP = \angle ABP$. Докажите, что $\angle APM + \angle CPB = 180^\circ$.

Внутри выпуклого четырёхугольника ABCD выбрана точка P. Точки Q_1 и Q_2 расположены внутри ABCD и таковы, что

$$\angle Q_1BC = \angle ABP, \angle Q_1CB = \angle DCP, \angle Q_2AD = \angle BAP, \angle Q_2DA = \angle CDP.$$

Докажите, что $Q_1Q_2 \parallel AB$ тогда и только тогда, когда $Q_1Q_2 \parallel CD$.

- [10] В треугольнике ABC провели высоты AA_0 , BB_0 , CC_0 . Точка M произвольная точка, A_1 точка, симметричная M относительно BC, аналогично определим точки B_1 , C_1 . Докажите, что прямые A_0A_1 , B_0B_1 , C_0C_1 пересекаются в одной точке или параллельны.
- Про параллелограмм ABCD известно, что $\angle DAC = 90^{\circ}$. Пусть H основание перпендикуляра, опущенного из A на DC, P такая точка на прямой AC, что прямая PD касается описанной окружности треугольника ABD. Докажите, что $\angle PBA = \angle DBH$.
- 12 Точки I и I_a являются центрами вписанной и вневписанной (напротив вершины A) окружностей треугольника ABC. Точка A' диаметрально противоположна точке A на описанной окружности треугольника ABC. Докажите, что $\angle BA'I + \angle CA'I_a = 180^{\circ}$.
- 13 В треугольнике ABC выполнено неравенство AB < BC. Биссектриса угла C пересекает прямую, параллельную AC и проходящую через точку B, в точке P. Касательная к описанной окружности треугольника ABC, проведённая в точке B, пересекает ту же биссектрису в точке R. Точка R' симметрична точке R относительно AB. Докажите, что $\angle R'PB = \angle RPA$.
- 14 Пусть P точка внутри треугольника ABC такая, что

$$\angle APB - \angle ACB = \angle APC - \angle ABC$$
.

Докажите, что биссектрисы углов ABP и ACP пересекаются на прямой AP.