Capítulo 9

Representações de Sistemas Não-Lineares

9.1 Introdução

O objetivo deste capítulo é apresentar alguns conceitos relevantes ao assunto de representações matemáticas para sistemas nãolineares. Serão descritas em mais detalhes a representação polinomial e a racional NARMAX.

9.2 Representações Não-Lineares

9.2.1 A série de Volterra

A saída y(t) de um sistema não-linear com entrada u(t) pode ser representada pela chamada série de Volterra definida como

$$y(t) = \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h_j(au_1, \ldots, au_j) \prod_{i=1}^{j} \, u(t- au_i) \, d au_i,$$

sendo que as funções h_j são denominadas kernels e claramente são generalizações não-lineares da resposta ao impulso $h_1(t)$.

9.2.2 Modelos de Hammerstein e de Wiener

São uma composição de um modelo dinâmico linear H(s) em cascata com uma função estática não-linear $f(\cdot)$. No caso do modelo de Hammerstein, a não-linearidade estática precede o modelo dinâmico linear, ou seja,

$$U^*(s) = f(U(s)); e Y(s) = H(s)U^*(s).$$

No caso do modelo de Wiener, o modelo dinâmico linear precede a não-linearidade estática, isto é,

$$Y^*(s) = H(s)U(s)$$
; e $Y(s) = f(Y^*(s))$.

9.2.3 Algumas representações NARX

Um modelo NARMAX (do inglês nonlinear autoregressive moving average model with exogenous variables) é normalmente representado da seguinte forma:

$$y(k) = F[y(k-1), \dots, y(k-n_y), u(k-\tau_d), \dots \dots u(k-n_u), e(k), e(k-1), \dots, e(k-n_e)].$$

Duas representações NARMAX comumente usadas para F são a polinomial e a racional.

$$y(k) = \sum_{i} c_{i} \prod_{j=1}^{n_{y}} y(k-j) \prod_{r=1}^{n_{u}} u(k-r) \prod_{q=0}^{n_{e}} e(k-q).$$

Modelos racionais são formados pela razão entre dois polinômios, ou seja

$$y(k) = \frac{\sum_{i} c_{i} \prod_{j=1}^{n_{y}} y(k-j) \prod_{r=1}^{n_{u}} u(k-r) \prod_{q=1}^{n_{e}} e(k-q)}{\sum_{i} d_{i} \prod_{j=1}^{d_{y}} y(k-j) \prod_{r=1}^{d_{u}} u(k-r) \prod_{q=1}^{d_{e}} e(k-q)} + e(k).$$

9.2.4 Modelos polinomiais contínuos

Um modelo polinomial para este sinal pode ser formado utilizandose o sinal e suas derivadas como base, da seguinte forma:

$$egin{array}{lll} \dot{X} &=& \dot{y}(t) \ \dot{Y} &=& \ddot{y}(t) \ \dot{Z} &=& \displaystyle\sum_{l=1}^{n_{ heta}} heta_l \psi^l, \end{array}$$

sendo $\psi^l = X^i Y^j Z^k$ e $i, j, k \in \mathbb{N}$.

9.2.5 Funções de base radial

As funções de base radial (RBF do inglês radial basis functions) são mapeamentos do tipo

$$f(\mathbf{y}) = \omega_0 + \sum_i \, \omega_i \, \phi(\parallel \mathbf{y} - \mathbf{c}_i \parallel),$$

sendo que $\mathbf{y} \in \mathbb{R}^{d_e}$, $\|\cdot\|$ é a norma euclidiana, $\omega_i \in \mathbb{R}$ são pesos, $\mathbf{c}_i \in \mathbb{R}^{d_e}$ são os centros e $\phi(\cdot)$: $\mathbb{R}^+ \to \mathbb{R}$ é uma função, normalmente escolhida a priori, como, por exemplo:

$$\phi(\parallel \mathbf{y} - \mathbf{c}_i \parallel) = \exp\left(-\frac{\parallel \mathbf{y} - \mathbf{c}_i \parallel^2}{\sigma_i^2}\right),$$

sendo σ_i constante e $\|\mathbf{y} - \mathbf{c}_i\|^2 = (\mathbf{y} - \mathbf{c}_i)^{\mathrm{T}}(\mathbf{y} - \mathbf{c}_i)$. A função de base (9.1) é chamada de gaussiana. Outras funções de base usadas são:

Multiquadrática inversa : $\phi(r) = (r^2 + \sigma^2)^{-0.5}$

Linear: $\phi(r) = r$

Cúbica: $\phi(r) = r^3$

Multiquadrática : $\phi(r) = \sqrt{r^2 + \sigma^2}$

 $Thin-plate\ spline: \quad \phi(r)=r^2\log[r],$

sendo que $r=\parallel \mathbf{y}-\mathbf{c}_i\parallel$ e σ define a largura do "chapéu", no caso das funções gaussiana e das multiquadráticas.

No contexto de identificação de sistemas, é comum acrescentar termos auto-regressivos lineares, bem como termos de entrada, resultando em

$$y(k) = \omega_0 + \sum_{i} \omega_i \, \phi(||\mathbf{y}(k-1) - \mathbf{c}_i||) + \sum_{i=1}^{n_y} a_i y(k-i) + \sum_{i=1}^{n_u} a_i u(k-i) + e(k),$$

sendo $\mathbf{y}(k-1)=[y(k-1)\dots y(k-n_y)\ u(k-1)\dots u(k-n_u)]^{\mathrm{T}},$ e e(k) é o erro.

FIGURA 9.1: Função multiquadrática inversa para vários valores do parâmetro σ : (—) $\sigma=1,$ (—·—) $\sigma=0,5$ e (···) $\sigma=0,25$.

9.2.6 Redes neurais artificiais

A saída de um único neurônio com n entradas é do tipo

$$x = f\left(\sum_{j=1}^n \omega_j x_j + b\right),\,$$

sendo que b (bias) e ω_j são constantes e f é chamada de função de ativação. Há vários tipos de função de ativação sendo que uma das mais comuns é a sigmóide

$$f(z) = \frac{1}{1 + e^{-z}}.$$

Normalmente a saída de um neurônio é conectada à entrada de um outro neurônio. Nesse caso, a saída de uma rede com um único nodo na camada de saída e uma camada oculta é uma função não-linear nos parâmetros do tipo

$$y(k) = f_{
m s} \left\{ \sum_{i=1}^m \omega_i f_i \left(\sum_{j=1}^n \omega_{ij} x_j + b_i
ight) + b_{
m s}
ight\}.$$

Em aplicações de identificação, é comum escolher $f_{\rm s}(x)=x$ e $b_{\rm s}=0;$ assim (9.1) fica

$$y(k) = \sum_{i=1}^m \omega_i f_i \left(\sum_{j=1}^n \omega_{ij} x_j + b_i
ight),$$

que ainda é não-linear nos parâmetros.

9.3 O Modelo Polinomial NARMAX

Exemplo 9.3.1. Modelo polinomial NARX

Neste exemplo a função $F^{\ell}[\cdot]$ é expandida como um polinômio de grau dois, ou seja, $F^{2}[\cdot]$.

$$y(k) = c_{0,0} + \sum_{n_1=1}^{n_y} c_{1,0}(n_1)y(k-n_1) + \sum_{n_1=1}^{n_u} c_{0,1}(n_1)u(k-n_1)$$

$$+ \sum_{n_1}^{n_y} \sum_{n_2}^{n_y} c_{2,0}(n_1, n_2)y(k-n_1)y(k-n_2)$$

$$+ \sum_{n_1}^{n_y} \sum_{n_2}^{n_u} c_{1,1}(n_1, n_2)y(k-n_1)u(k-n_2)$$

$$+ \sum_{n_1}^{n_u} \sum_{n_2}^{n_u} c_{0,2}(n_1, n_2)u(k-n_1)u(k-n_2).$$

Exemplo 9.3.2. Regressores de um modelo polinomial NARX

Assumindo-se $n_y = 2$ e $n_u = 1$ para o modelo do exemplo anterior, tem-se o seguinte vetor de regressores:

$$\psi(k-1) \ = \ \left[y(k-1) \ y(k-2) \ u(k-1) \ y(k-1)^2 \ y(k-1)y(k-2) \right.$$

$$\left. y(k-2)^2 \ u(k-1)^2 \ y(k-1)u(k-1) \ y(k-2)u(k-1) \right]^{\mathrm{T}}.$$

9.4 O Modelo Racional NARMAX

Um modelo racional NARMAX tem a seguinte forma geral:

$$y(k) = \frac{a(y(k-1), \dots, y(k-n_y), u(k-1), \dots, u(k-n_u), \dots, y(k-n_y), u(k-1), \dots, u(k-n_u), \dots}{b(y(k-1), \dots, y(k-n_y), u(k-1), \dots, u(k-n_u), \dots + e(k-n_e))} + e(k).$$

É conveniente definir o numerador e denominador de (9.1) como sendo, respectivamente,

$$a(k-1) = \sum_{j=1}^{N_{\mathrm{n}}} p_{\mathrm{n}j} \theta_{\mathrm{n}j} = \boldsymbol{\psi}_{\mathrm{n}}^{\mathrm{T}}(k-1) \boldsymbol{\theta}_{\mathrm{n}},$$

$$b(k-1) = \sum_{j=1}^{N_{
m d}} p_{
m dj} heta_{
m dj} = oldsymbol{\psi}_{
m d}^{
m T}(k-1) oldsymbol{ heta}_{
m d}.$$

Manipulando-se os termos, chega-se a

$$egin{aligned} y^*(k) &= a(k-1) - y(k) \sum_{j=2}^{N_{
m d}} p_{
m dj} heta_{
m dj} + b(k-1) e(k) \ &= \sum_{j=1}^{N_{
m n}} p_{
m nj} heta_{
m nj} - y(k) \sum_{j=2}^{N_{
m d}} p_{
m dj} heta_{
m dj} + \zeta(k) \ &= oldsymbol{\psi}_{
m n}^{
m T}(k-1) oldsymbol{ heta}_{
m n} - y(k) oldsymbol{\psi}_{
m d1}^{
m T}(k-1) oldsymbol{ heta}_{
m d} + \zeta(k), \end{aligned}$$

sendo
$$\boldsymbol{\psi}_{\mathrm{d}}^{\mathrm{T}}(k-1) = [p_{\mathrm{d}1} \ \boldsymbol{\psi}_{\mathrm{d}1}^{\mathrm{T}}(k-1)], \ \theta_{\mathrm{d}1} = 1 \ \mathrm{e}$$

$$y^*(k) = y(k)p_{\mathrm{d}1} = \frac{a(k-1)}{b(k-1)}p_{\mathrm{d}1} + p_{\mathrm{d}1}e(k),$$

$$\zeta(k) = b(k-1)e(k) = \left(\sum_{j=1}^{N_{\mathrm{d}}} p_{\mathrm{d}j} \theta_{\mathrm{d}j}\right) e(k),$$

sendo e(k) branco. Como e(k) é independente de b(k-1) e tem média zero, tem-se $\mathrm{E}[\zeta(k)] = \mathrm{E}[b(k-1)]\mathrm{E}[e(k)] = 0.$

Exemplo 9.4.1. Um modelo racional NARX

Um modelo racional é normalmente representado como a razão entre dois polinômios. Um exemplo de tal tipo de modelo é

$$y(k) = \frac{a_0 + a_1 y(k-1) + a_2 u(k-1) + a_3 y(k-1) u(k-1) + a_5 u(k-1)^2}{b_0 + b_2 u(k-1)},$$

sendo que apenas os regressores relacionados a y(k) e u(k) são mostrados.

9.5 Agrupamento de Termos

Um modelo para o qual $n_u = n_y$ abrange uma janela de dados de comprimento $(n_y - 1) \times T_s$. Se essa janela de dados for suficientemente suave, as seguintes aproximações podem ser escritas

$$\begin{cases} y(k-1) \approx y(k-2) \approx \ldots \approx y(k-n_y) \\ u(k-1) \approx u(k-2) \approx \ldots \approx u(k-n_u) \end{cases},$$

então a equação um modelo polinomial NARX pode ser aproximado por

$$y(k) pprox \sum_{n_1, n_m}^{n_y, n_u} c_{p, m-p}(n_1, \dots, n_m) \sum_{m=0}^{\ell} \sum_{p=0}^{m} y(k-1)^p u(k-1)^{m-p}.$$

A equação (9.1) serve como motivação para a seguinte definição

Definição 9.5.1. As constantes $\sum_{n_1,n_m}^{n_y,n_u} c_{p,m-p}(n_1,\ldots,n_m)$ são os coeficientes dos agrupamentos de termos $\Omega_{y^pu^{m-p}}$, que contêm termos da forma $y(k-i)^p u(k-j)^{m-p}$ para $m=0,\ldots,\ell$ e $p=0,\ldots,m$. Tais coeficientes são chamados de coeficientes de agrupamentos e são representados por $\Sigma_{y^pu^{m-p}}$.

Exemplo 9.5.1. Agrupamentos de termos de um modelo polinomial NARX

Seja o modelo e seus parâmetros

$$\begin{array}{lll} y(k) &=& 1,4269\,y(k-1)-0,41549\,y(k-3)+0,012\,y(k-2)\\ &+0,11736\,u(k-3)-0,04904\,y(k-1)^3+1,2007\,y(k-1)^2u(k-3)\\ &+0,252\,y(k-3)^2u(k-2)-0,078346\,u(k-2)\\ &-0,47759\,y(k-2)y(k-3)u(k-3)-0,030695\,y(k-3)^3\\ &+0,05843\,y(k-2)^3-0,39072\,y(k-2)^2u(k-3)\\ &-1,0272\,y(k-1)^2u(k-2)+0,44085\,y(k-2)y(k-3)u(k-1)\\ &-0,20771\times10^{-2}+0,032643\,y(k-1)^2-0,054208\,y(k-2)^2\\ &+0,023113\,y(k-3)^2\\ \\ &c_{1,0}(1)=1,4269, &c_{1,0}(3)=-0,41549,\\ &c_{1,0}(2)=0,012, &c_{0,1}(3)=0,11736,\\ &c_{3,0}(1,1,1)=-0,04904, &c_{2,1}(1,1,3)=1,2007,\\ &c_{2,1}(3,3,2)=0,252, &c_{0,1}(2)=-0,078346,\\ &c_{2,1}(2,3,3)=-0,47759, &c_{3,0}(3,3,3)=-0,030695,\\ &c_{3,0}(2,2,2)=0,05843, &c_{2,1}(2,2,3)=-0,39072,\\ &c_{2,1}(1,1,2)=-1,0272, &c_{2,1}(2,3,1)=0,44085,\\ &c_{0,0}=-0,20771\times10^{-2}, &c_{1,1}(1,1)=0,032643,\\ &c_{1,1}(2,2)=-0.054208, &c_{1,1}(3,3)=0,023113. \end{array}$$

No próximo exemplo tais parâmetros serão usados para determinar os coeficientes de agrupamentos. $\hfill\Box$

Exemplo 9.5.2. Coeficientes de agrupamentos de um modelo polinomial NARX

Os coeficientes de agrupamentos do modelo (9.1) são

$$\begin{split} &\Sigma_y = c_{1,0}(1) + c_{1,0}(3) + c_{1,0}(2) = 1,0234, \\ &\Sigma_{y^3} = c_{3,0}(1,1,1) + c_{3,0}(3,3,3) + c_{3,0}(2,2,2) = -2,1305 \times 10^{-2}, \\ &\Sigma_u = c_{0,1}(3) + c_{0,1}(2) = 3,9019 \times 10^{-2}, \\ &\Sigma_{y^2u} = c_{2,1}(1,1,3) + c_{2,1}(3,3,2) + c_{2,1}(2,3,3) \\ &+ c_{2,1}(2,2,3) + c_{2,1}(1,1,2) + c_{2,1}(2,3,1) = -1,9184 \times 10^{-3}, \\ &\Sigma_{y^2} = c_{0,0} = -2,0771 \times 10^{-3}, \\ &\Sigma_{y^2} = c_{2,0}(1,1) + c_{2,0}(2,2) + c_{2,0}(3,3) = 1,54771 \times 10^{-3}, \end{split}$$

que correspondem aos agrupamentos Ω_y , Ω_{y^3} , Ω_u , Ω_{y^2u} , Ω_0 e Ω_{y^2} , respectivamente.

Um agrupamento da forma $\Omega_{y^{p_um-p}}$ é um conjunto de termos do tipo $y(k-i)^p u(k-j)^{m-p}$ para $m=0,\ldots,\ell$ e $p=0,\ldots,m$, e os respectivos coeficientes, $\Sigma_{y^{p_um-p}}$, são o somatório dos coeficientes de todos os termos no modelo que pertencem ao referido agrupamento. No limite, tem-se

$$\lim_{T_s\to 0} \Sigma_y = 1,$$

 $\lim_{T_s\to 0} \Sigma_{y^p u^{m-p}} = 0,$ para todos os demais agrupamentos.

9.6 Pontos Fixos

9.6.1 Número de pontos fixos

Os pontos fixos ou pontos de equilíbrio de um modelo discreto autônomo são definidos como aqueles pontos para os quais $y(k) = y(k+i), i \in \mathbb{Z}$. No caso de modelos não autônomos, os pontos fixos satisfazem $y(k) = y(k+i), i \in \mathbb{Z}$ para um dado valor constante do sinal de entrada $\bar{u} = u(k) = u(k+i), i \in \mathbb{Z}$.

Os pontos fixos de um modelo polinomial NAR (autônomo) com grau de não-linearidade ℓ são as raízes do seguinte polinômio "agrupado":

$$egin{align} y(k) \ = \ c_{0,0} \ + \ y(k) \sum_{n_1=1}^{n_y} c_{1,0}(n_1) \ + \ y(k)^2 \sum_{n_1,n_2}^{n_y,n_y} c_{2,0}(n_1,n_2) \ + \ \dots \ + \ y(k)^\ell \sum_{n_1,n_\ell}^{n_y,n_y} c_{\ell,0}(n_1,\dots,n_\ell), \end{array}$$

ou

$$\Sigma_{y^{\ell}} y^{\ell} + \ldots + \Sigma_{y^2} y^2 + (\Sigma_y - 1) y + \Sigma_0 = 0,$$

sendo $\Sigma_0 = c_{0,0}$ uma constante. Em muitos casos práticos $\Sigma_0 = c_{0,0} = 0$, e neste caso

$$[\Sigma_{y^{\ell}} y^{\ell-1} + \ldots + \Sigma_{y^2} y + (\Sigma_y - 1)] y = 0.$$

9.6.2 Localização de pontos fixos

Os pontos fixos de um polinômio linear $(\ell=1)$ são dados por

$$\bar{y} = \frac{\Sigma_0}{1 - \Sigma_y}.$$

Para polinômios quadráticos ($\ell=2$),

$$\bar{y}_{1,2} = \frac{1 - \Sigma_y \pm \sqrt{\Delta}}{2\Sigma_{y^2}},$$

$$\Delta = (\Sigma_y - 1)^2 - 4\Sigma_{y^2}\Sigma_0.$$

Os pontos fixos de um modelo polinomial cúbico $(\ell=3)$ são

$$\begin{split} \bar{y}_1 &= (\Delta_3 + \Delta_2) - \Sigma_{y^2}/(3\Sigma_{y^3}), \\ \bar{y}_{2,3} &= -0, 5(\Delta_3 + \Delta_2) - \Sigma_{y^2}/(3\Sigma_{y^3}) \pm j \sqrt{3}(\Delta_3 - \Delta_2)/2, \\ \text{sendo } j &= \sqrt{-1} \quad \text{e} \\ \Delta_1 &= \sqrt{3} \left[4(\Sigma_y - 1)^3 \Sigma_{y^3} - (\Sigma_y - 1)^2 \Sigma_{y^2} - 18 (\Sigma_y - 1) \Sigma_0 \Sigma_{y^2} \Sigma_{y^3} \right. \\ &\left. + 27 \, \Sigma_0^2 \Sigma_{y^3}^2 + 4 \Sigma_0 \Sigma_{y^2}^3 \right]^{0,5} / \Sigma_{y^3}^2, \\ \Delta_2 &= \left[\Sigma_{y^2} (\Sigma_y - 1)/6 \Sigma_{y^3}^2 - \Sigma_0/2 \Sigma_{y^3} - \Sigma_{y^2}^3 / 27 \Sigma_{y^3}^3 - \Delta_1/18 \right]^{1/3}, \\ \Delta_3 &= \left[\Sigma_{y^2} (\Sigma_y - 1)/6 \Sigma_{y^3}^2 - \Sigma_0/2 \Sigma_{y^3} - \Sigma_{y^2}^3 / 27 \Sigma_{y^3}^3 + \Delta_1/18 \right]^{1/3}. \end{split}$$

Exemplo 9.6.1. Pontos fixos de um modelo polinomial NARX

Substituindo os coeficientes de agrupamentos calculados no exemplo 9.5.2, os pontos fixos do modelo podem ser facilmente calculados como sendo (1,150; -1,155; 0,078). Pelo fato de o agrupamento Ω_{y^3} ser o agrupamento do sinal de saída de mais alto grau, e porque $\Sigma_0 \neq 0$, a versão autônoma do modelo (9.1) tem três pontos fixos não triviais, como já era esperado.

9.6.3 Estabilidade de pontos fixos

Um modelo polinomial NAR de ordem n_y pode ser representado como um mapa $f: \mathbb{R}^{n_y} \to \mathbb{R}^{n_y}$ da seguinte forma:

$$\mathbf{y}(k) = f(\mathbf{y}(k-1)),$$

sendo que $\mathbf{y} \in \mathbb{R}^{n_y}$ é o vetor de estado, ou

$$\begin{bmatrix} y(k-n_y+1) \\ y(k-n_y+2) \\ \vdots \\ y(k) \end{bmatrix} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \\ \frac{f_1}{y(k-n_y)} & \frac{f_2}{y(k-n_y+1)} & \dots & \frac{f_{n_y}}{y(k-1)} \end{bmatrix} \begin{bmatrix} y(k-n_y) \\ y(k-n_y+1) \\ \vdots \\ y(k-1) \end{bmatrix},$$

sendo $f_j/y(k-i)=0$ se $f_j(\cdot)$ não inclui y(k-i) e a matriz não é única. Em outras palavras, há diversas funções $f_j(\cdot)$ tais que

 $y(k) = f_1 + f_2 + \ldots + f_{n_y}$. Por outro lado, a matriz jacobiana de f é

$$\mathrm{D}f = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \frac{\partial f}{\partial y(k-n_y)} & \frac{\partial f}{\partial y(k-n_y+1)} & \frac{\partial f}{\partial y(k-n_y+2)} & \dots & \frac{\partial f}{\partial y(k-1)} \end{bmatrix}$$

e é única.

Exemplo 9.6.2. Auto-estrutura de um modelo polinomial NARX

Avaliando a matriz jacobiana do modelo do exemplo 9.5.2 nos pontos fixos calculados no exemplo 9.6.1 percebe-se que tais pontos fixos são dois focos e uma sela, respectivamente. Mais especificamente, os autovalores da matriz jacobiana do modelo (9.1) são -0,601 e $0,942\pm j0,185$ no ponto fixo 1,150 (foco instável); -0,602 e $0,942\pm j0,188$ no ponto fixo -1,155 (foco instável) e -0,506, 0,824 e 1,079 no ponto fixo 0,078 (sela).

9.6.4 Simetria de pontos fixos

ℓ	número de pontos	agrupamentos de termos
	fixos triviais	permitidos no modelo
1	1	Ω_y
2	0	$\Omega_{y^2},~\Omega_0$
3	1	$\Omega_{y^3},~\Omega_y$
4	0	$\Omega_{y^4}, \ \Omega_{y^2}, \ \Omega_0$
4	2	$\Omega_{y^4},~\Omega_{y^2}$
5	1	$\Omega_{y^5}, \Omega_{y^3}, \Omega_y$
5	3	$\Omega_{y^5},~\Omega_{y^3}$
6	0	$\Omega_{y^6},\ \Omega_{y^4},\ \Omega_{y^2},\ \Omega_0$
6	2	$\Omega_{y^6}, \ \Omega_{y^4}, \ \Omega_{y^2}$
6	4	$\Omega_{y^6}, \Omega_{y^4}$

Tabela 9.1: Agrupamentos de termos necessários para simetria

Exemplo 9.6.3. Simetria de pontos fixos

Considere a equação logística $y(k) = \lambda \, y(k-1) - \lambda \, y(k-1)^2$ que não tem pontos fixos simétricos. O fato de não ter pontos fixos triviais pode ser constatado notando que polinômios quadráticos terão pontos fixos simétricos se $\Sigma_0 \neq 0$, $\Sigma_y = 0$ e $\Sigma_{y^2} \neq 0$. Para a equação logística é claro que $\Sigma_0 = 0$, $\Sigma_y = \lambda$ e $\Sigma_{y^2} = -\lambda$. Por outro lado, a equação logística impar $y(k) = \lambda \, y(k-1) - \lambda \, y(k-1)^3$ tem $\Sigma_0 = 0$, $\Sigma_y = \lambda \, \Sigma_{y^2} = 0$ e $\Sigma_{y^3} = -\lambda$ e, de acordo com a terceira linha da Tabela 9.1, essa equação tem pontos fixos não triviais simétricos em torno de um ponto fixo trivial.

9.7 Complementos

Complemento 9.1. Modelos polinomiais NARMAX MIMO

$$\mathbf{y}(k) = F[\mathbf{y}(k-1), \cdots, \mathbf{y}(k-n_y), \mathbf{u}(k-1), \cdots, \mathbf{u}(k-n_u),$$

$$\mathbf{e}(k-1), \cdots, \mathbf{e}(k-n_e)] + \mathbf{e}(k),$$

sendo $F[\cdot]$ uma função vetorial qualquer e

$$\mathbf{y}(k) = \left[egin{array}{c} y_1(k) \ y_2(k) \ dots \ y_m(k) \end{array}
ight], \mathbf{u}(k) = \left[egin{array}{c} u_1(k) \ u_2(k) \ dots \ u_r(k) \end{array}
ight], \mathbf{e}(k) = \left[egin{array}{c} e_1(k) \ e_2(k) \ dots \ e_m(k) \end{array}
ight]$$

que pode ser escrito como m equações escalares, uma para cada subsistema, como se segue:

$$y_i(k) = F_i[y_1(k-1), \cdots, y_1(k-n_{y1}^i), \cdots, y_m(k-1), \cdots, y_m(k-n_{ym}^i),$$
 $u_1(k-1), \cdots, u_1(k-n_{u1}^i), \cdots, u_r(k-1), \cdots, u_r(k-n_{ur}^i),$
 $e_1(k-1), \cdots, e_1(k-n_{e1}^i), \cdots, e_m(k-1), \cdots, e_m(k-n_{em}^i)] +$
 $e_i(k), i = 1, \cdots, m.$

No caso de $F[\cdot]$ ser aproximado por uma função vetorial polinomial de grau ℓ tem-se para o i-ésimo subsistema

$$y_i(k) = heta_0^i + \sum_{i_1=1}^{M_r} heta_{i_1}^i x_{i_1}(k) + \sum_{i_1=1}^{M_r} \sum_{i_2=i_1}^{M_r} heta_{i_1i_2}^i x_{i_1}(k) x_{i_2}(k) + \cdots \ + \sum_{i_1=1}^{M_r} \cdots \sum_{i_\ell=i_\ell=1}^{M_r} heta_{i_1\cdots i_\ell}^i x_{i_1}(k) \cdots x_{i_\ell}(k) + e_i(k), \quad i=1,\cdots,m$$

para $i=1,\ldots,m$, sendo que θ_i são os parâmetros a estimar, x_i os monômios que compõem os regressores, y_i a saída do i-ésimo subsistema e $e_i(k)$ é o erro da equação de regressão desse subsistema, e $M_r=m(n_y+n_e)+r\times n_u$.

Complemento 9.2. Estimação de derivadas

Seja um sinal amostrado y(k). Primeiramente deve-se obter uma aproximação polinomial g_n do sinal de interesse numa (normalmente estreita) janela de tempo. Matematicamente, tem-se

$$y(k) \approx g_n, \ k_i \leq k \leq k_f,$$

sendo o caso polinomial

$$g_n = \alpha_0 + \alpha_1 k + \ldots + \alpha_{n-1} k^{n-1} + \alpha_n k^n.$$

A fim de estimar α_i pode ser usada a seguinte equação de regressão

$$y(k) = \alpha_0 + \alpha_1 k + \ldots + \alpha_{n-1} k^{n-1} + \alpha_n k^n + e(k),$$

para $k_i \le k \le k_f$ e sendo e(k) o erro de regressão. Portanto, tomando-se $k_f - k_i + 1$ restrições chega-se a:

$$\left[egin{array}{c} y(k_{
m i}) \ dots \ y(k_{
m f}) \end{array}
ight] = \left[egin{array}{cccc} 1 & k_{
m i} & \ldots & k_{
m i}^{n-1} & k_{
m i}^n \ dots & dots & dots \ 1 & k_{
m f} & \ldots & k_{
m f}^{n-1} & k_{
m f}^n \end{array}
ight] \left[egin{array}{c} lpha_0 \ lpha_1 \ dots \ lpha_{
m n-1} \ lpha_{
m n-1} \ lpha_n \end{array}
ight] \ egin{array}{c} eta_0 \ egin{array}{c} eta_0 \ e$$

$$e \; \hat{\boldsymbol{\theta}} = [X^{\mathrm{T}}X]^{-1}X^{\mathrm{T}}\mathbf{y}.$$

Finalmente, as estimativas das derivadas de y(k) podem ser obtidas derivando-se a aproximação polinomial analiticamente e avaliando as funções resultantes no ponto de interesse, k_0 , ou seja

$$\begin{aligned} \hat{y}(k_0) &\approx \left. \frac{d g_n}{dk} \right|_{k=k_0} = \hat{\alpha}_1 + \ldots + (n-1)\hat{\alpha}_{n-1}k_0^{n-2} + n\hat{\alpha}_n k_0^{n-1} \\ \hat{y}(k_0) &\approx \left. \frac{d^2 g_n}{dk^2} \right|_{k=k_0} = \hat{\alpha}_2 + \ldots + (n-2)(n-1)\hat{\alpha}_{n-1}k_0^{n-3} + (n-1)n\hat{\alpha}_n k_0^{n-2} \end{aligned}$$

e assim por diante.

Complemento 9.3. Estimação de pontos fixos a partir de dados

Exemplo 9.7.1. Pontos fixos estimados de dados reais

O primeiro conjunto de dados considerado foi o atrator duplavolta. A série temporal original tem N=5.000 valores amostrados com $T_{\rm s}=2\mu\,{\rm s}$. Nesse caso escolheu-se L=900 e $\Delta=5$. Os pontos fixos estimados com a matriz Ψ incluindo todos os agrupamentos foram: $\{-2,25\pm0,02;\ 0,03\pm0,13;\ 2,15\pm0,02\}\,{\rm V}$.

FIGURA 9.2: Coeficientes de agrupamentos estimados a partir de dados sobre o atrator dupla-volta dsvc1 @. (a) Σ_0 , (b) Σ_y , (c) Σ_{y^2} , (d) Σ_{y^3} .

A Figura 9.2 claramente revela que os agrupamentos Ω_0 e Ω_{y^2} são espúrios. Portanto, eliminando-se as colunas de Ψ correspondentes aos agrupamentos espúrios Ω_0 e Ω_{y^2} , os seguintes pontos fixos sim'etricos foram estimados: $\{\pm 2, 20\pm 0, 01p; 0, 00\}$ V.

A seguir, 3.000 observações foram tomadas do atrator espiral do mesmo oscilador eletrônico (spivc1 **@**). Os seguintes valores foram usados $T_{\rm s}=20\mu\,{\rm s},\ L=900$ e $\Delta=5$.

FIGURA 9.3: Pontos fixos estimados a partir de dados do atrator espiral. As linhas tracejadas indicam a faixa em que se encontram os dados medidos.

A variância de um ponto fixo é muito maior do que a dos demais, além de os valores estimados estarem fora dos limites dos dados (aproximadamente -6 e 0). Pode-se concluir que o algoritmo pode estimar corretamente apenas dois pontos fixos e, portanto, as colunas de Ψ que correspondem a Ω_{y^3} devem ser removidas. Fazendo-se isso, os seguintes pontos fixos foram finalmente estimados: $\{-3,65\pm0,02;0,00\}$ V.

Exemplo 9.7.2. Características estáticas de modelos ARX e NARX

Considere os seguintes modelos obtidos de (mydin2 @)

$$y(k) = 1,3817 y(k-1) + 0,0411 u(k-1) - 0,4296 y(k-2) -0,0077 u(k-2) + \xi(k),$$

$$\begin{array}{lll} y(k) & = & 1,3920 \ y(k-1) + 0,0454 \ u(k-1)^2 - 0,4235 \ y(k-2) \\ & & -0,4388 \ y(k-1)u(k-2) + 0,3756 \ y(k-2)u(k-2) \\ & & +0,0218 \ u(k-2)^2 + 0,0097 u(k-1)u(k-2) + \xi(k). \end{array}$$

FIGURA 9.4: Características estáticas de um pequeno aquecedor elétrico. \bar{u} é o valor em volts em estado estacionário da tensão elétrica da entrada e \bar{y} é o valor em p.u. correspondente à temperatura atingida em estado estacionário. Característica estática (—) medida em teste estático, (- -) do modelo linear e ($-\cdot$ -) do modelo não-linear.