Universidad del Valle de Guatemala Departamento de Matemática Licenciatura en Matemática Aplicada Fecha de entrega: 5 de marzo de 2021 Rudik R. Rompich - Carné: 19857

Estadística 2 - Eugenio Aristondo

Tarea 3

1. Capítulo 13

1.1. Ejercicio 21

Considere los resultados experimentales del siguiente diseño de bloques aleatorizado. Realice los cálculos necesarios para establecer la tabla de análisis de varianza. Utilice $\alpha=0.05$ para probar cualesquiera diferencias significativas.

Solución. Considerando:

Contralador	Α	В	С	Totales	Medias
1	10	9	8	27	9
2	12	6	5	23	7.66666667
3	18	15	14	47	15.6666667
4	20	18	18	56	18.6666667
5	8	7	8	23	7.66666667
Totales	68	55	53	176	
Medias	13.6	11	10.6		11.7333333

Entonces, la construcción de la ANOVA:

STC:

$$= \sum_{i=1}^{b} \sum_{j=1}^{k} (x_{ij} - \overline{\overline{x}})^2 = \sum_{i=1}^{5} \sum_{j=1}^{3} (x_{ij} - \overline{\overline{x}})^2$$
 (1)

$$= [(10 - 11, 73)^{2} + (12 - 11, 73)^{2} + (18 - 11, 73)^{2} + (20 - 11, 73)^{2} + (8 - 11, 73)^{2} + (20 - 11, 73)^{2} + (2$$

$$+(9-11,73)^2+(6-11,73)^2+(15-11,73)^2+(18-11,73)^2+(7-11,73)^2+$$
 (3)

$$+(8-11,73)^{2}+(5-11,73)^{2}+(14-11,73)^{2}+(18-11,73)^{2}+(8-11,73)^{2}$$
 (4)

$$=354,93$$
 (5)

SCTR:

$$= b \sum_{j=1}^{k} (x_j - \overline{\overline{x}})^2 = 5 \sum_{j=1}^{3} (x_j - \overline{\overline{x}})^2$$
 (6)

$$= 5[(13, 6 - 11, 73)^{2} + (11 - 11, 73)^{2} + (10, 6 - 11, 73)^{2}]$$
(7)

$$=26,53$$
 (8)

SCBL:

$$=k\sum_{i=1}^{b}(x_{i}-\overline{x})^{2}=3\sum_{i=1}^{6}(x_{i}-\overline{x})^{2}$$
(9)

$$= 3[(9-11,73)^{2} + (7,667-11,73)^{2} + (15,667-11,73)^{2} + (10)$$

$$+(18,667-11,73)^2+(7,667-11,73)^2$$
 (11)

$$=312,3$$
 (12)

SCE:

$$= STC - SCTR - SCBL \tag{13}$$

$$= 354, 93 - 26, 53 - 312, 3 \tag{14}$$

$$=16,133$$
 (15)

Considerando:

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	F	valor-p
Tratamientos	SCTR	k-1	$CMTR = \frac{SCTR}{k - 1}$	CMTR	
Bloques	SCBL	b-1	$CMBL = \frac{SCBL}{b-1}$		
Error	SCE	(k-1)(b-1)	$CME = \frac{SCE}{(k-1)(b-1)}$		
Total	STC	$n_T - 1$			

Entonces, tenemos:

ANOVA						
Fuente de Variación	SC	gl	СМ	F	Valor - P	
Tratamientos	26.533333	2	13.266667	6.5785124	0.0204429	
Bloques	312.26667	4	78.066667			
Error	16.133333	8	2.0166667			
Total	354.93333	14				

Buscamos el F crítico:

Es decir, tenemos un $F > F_{\alpha}$. Por lo que se puede concluir que la H_0 se rechaza. Las medias son distintas, hay una diferencia significativa entre tratamientos.

1.2. Ejercicio 23

Se realizó un experimento con cuatro tratamientos y ocho bloques. Use $\alpha = 0.05$ y pruebe si existen cualesquiera diferencias significativas.

Solución.

SCE:

$$= STC - SCTR - SCBL \tag{1}$$

$$= 1800 - 900 - 400 \tag{2}$$

$$=500\tag{3}$$

Grados de libertad:

$$k - 1 = 3 \tag{4}$$

$$b - 1 = 7 \tag{5}$$

$$(k-1)(b-1) = 21 (6)$$

$$N_t - 1 = 31 \tag{7}$$

Cuadrado medio:

$$CMTR = \frac{SCTR}{k-1} = \frac{900}{3} = 300 \tag{8}$$

$$CMBL = \frac{SCBL}{b-1} = \frac{400}{7} = 57,143 \tag{9}$$

$$CME = \frac{SCE}{(k-1)(b-1)} = \frac{500}{21} = 23,81$$
 (10)

Prueba F:

$$\frac{CMTR}{CME} = \frac{300}{23,81} = 12,6\tag{11}$$

Entonces, tenemos:

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	$oldsymbol{F}$
Tratamientos Bloques	900 400	3 7	300 57,143 23,81	12,6
Error	500	21	23,01	
Total	1 800	31		

Entonces, para encontrar el F crítico:

Por lo tanto, por la prueba F, $F < F_{\alpha}$. Por lo que las medias son iguales y la H_0 se acepta.

1.3. Ejercicio 24

Un vendedor de automóviles realiza una prueba para determinar si el tiempo en minutos que se necesita para afinar un motor pequeño depende de si se utiliza un analizador de motor computarizado o uno electrónico. Debido a que el tiempo de afinación varía entre automóviles compactos, medianos y grandes, en el experimento se utilizaron los tres tipos de vehículos como bloques. Los datos obtenidos se indican a continuación. Use $\alpha=0.05$ y pruebe si existen cualesquiera diferencias significativas.

Solución. Se procede por medio de Excel:

Anova: Two-Factor	Without Repl	ication				
SUMMARY	Count	Sum	Average	Variance		
Compacto	2	92	46	32		
Mediano	2	99	49.5	60.5		
Grande	2	109	54.5	144.5		
Computarizado	3	168	56	43		
Electrónico	3	132	44	4		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	73	2	36.5	3.47619048	0.22340426	19
Columns	216	1	216	20.5714286	0.04533126	18.5128205
Error	21	2	10.5			
Total	310	5				

Por lo tanto, por medio de la prueba F; en donde $F > F_{\alpha}$, es decir, la H_0 se rechaza. Existe una diferencia significativa entre tratamientos. Existe una diferencia entre computarizado y electrónico.

1.4. Ejercicio 25

Las vitaminas y otros suplementos para la salud se han encarecido durante los años recientes y, con frecuencia, los precios establecidos por los distintos minoristas varían en gran medida. Los datos a continuación listan los precios de 13 productos (Item) de cuatro minoristas en Rochester, Nueva York (Democrat and Chronicle, 13 de febrero de 2005). Use $\alpha=0.05$ y pruebe si existe alguna diferencia significativa entre los precios medios de los cuatro minoristas.

Solución. Considerando la solución de Excel:

Anova: Two-Factor Without Replication	on					
SUMMARY	Count	Sum	Average	Variance		
Caltrate +D (600mg/60 tablets)	4	28.46	7.115	1.729167		
Centrum (130 tablets)	4	36.82	9.205	0.7153		
Cod liver oil (100 gel tablets)	4	9.93	2.4825	0.109558		
Fish oil (1,000 mg, 60 tablets)	4	22.16	5.54	0.41		
Flintstones Children's (60 tablets)	4	25.96	6.49	0.66		
Folic acid (400 mcg/250 tablets)	4	11.11	2.7775	0.453958		
One-a-Day Maximum (100 tablets)	4	30.46	7.615	0.895833		
One-a-Day Scooby (50 tablets)	4	25.44	6.36	0.740933		
Poly-Vi-Sol (drops, 50 ml.)	4	36.84	9.21	0.8136		
Vitamin B-12 (100 mcg/100tablets)	4	9.36	2.34	0.703333		
Vitamin C (500 mg/100tablets)	4	9.86	2.465	0.169167		
Vitamin E (200 IU/100tablets)	4	14.46	3.615	0.555833		
Zinc (50 mg/100 tablets)	4	12.03	3.0075	0.435892		
CVS	13	77.11	5.931538	8.475281		
Kmart	13	64.05	4.926923	6.399056		
Rite-Aid	13	69.02	5.309231	8.124808		
Wegmans	13	62.71	4.823846	5.264692		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	323.7899	12	26.9825	63.17399	1.77E-20	2.032703
Columns	9.801621	3	3.267207	7.649497	0.000443	2.866266
Ептог	15.3761	36	0.427114			
Total	348.9677	51				

5

Por lo tanto, por medio de la prueba F; en donde $F > F_{\alpha}$, es decir, la H_0 se rechaza. Existe una diferencia significativa entre tratamientos. Es decir, sí existe una diferencia significativa entre los 4 minoritas.

1.5. Ejercicio 26

El Examen de aptitud escolar (SAT, por sus siglas en inglés) contiene tres secciones: lectura crítica, matemáticas y redacción. Cada parte se califica en una escala de 800 puntos. La información de las puntuaciones del examen para la versión 2009 del SAT está disponible en el sitio web del College Board. Una muestra de las puntuaciones alcanzadas por seis estudiantes (Student) en el SAT se lista enseguida para lectura crítica (Critical Reading), matemáticas (Mathematics) y redacción (Writing).

1. Utilizando un nivel de significancia de 0.05, ¿los estudiantes se desempeñan de manera distinta en las tres partes del examen?

Solución	Considerand	o la golución	do Evcol.
Solucion.	Considerand	o la solución	de r/xcei:

Anova: Two-Factor W	ithout Repl	ication				
SUMMARY	Count	Sum	Average	Variance		
1	3	1590	530	16		
2	3	1770	590	16		
3	3	1374	458	127		
4	3	1680	560	43		
5	3	1344	448	684		
6	3	1308	436	388		
Critical Reading	6	3012	502	4686		
Mathematics	6	3090	515	3161.2		
Writing	6	2964	494	5042.8		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	63250	5	12650	105.417	2.6E-08	3.32583
Columns	1348	2	674	5.61667	0.02317	4.10282
Error	1200	10	120			
Total	65798	17				

Por lo tanto, por medio de la prueba F; en donde $F > F_{\alpha}$, es decir, la H_0 se rechaza. Existe una diferencia significativa entre tratamientos, en otras palabras, el desempeño es distinto en las 3 partes del examen.

2. ¿Cuál sección parece darles más problemas? Explique.

Solución. Según el anterior desarrollo de la ANOVA, la sección de Writing tiene la media más pequeña, por lo que se podría inferir que es la sección que da más problemas en el SAT.

1.6. Ejercicio 27

El Journal of the American Medical Association publicó una investigación acerca de la deman- da cardiaca por palear grandes cantidades de nieve. Diez hombres saludables se sometieron a pruebas de ejercicio empleando una caminadora y una bicicleta adaptada ergonómicamen- te para ejercitar los brazos. Después, estos mismos hombres limpiaron dos tramos de nieve mojada y pesada con una pala ligera para nieve y un lanzanieve eléctrico. Se midió el ritmo cardiaco, la presión sanguínea y el consumo de oxígeno de cada uno de los participantes en la prueba durante la remoción de nieve, y estos valores se compararon con los obtenidos durante las pruebas con la caminadora (Treadmill) y la bicicleta adaptada (Arm-Crank Ergometer). En la tabla siguiente se presentan los valores de ritmo cardiaco expresados en pulsaciones por minuto, de cada uno de los 10 individuos (Subject). Se incluyen los valores de pala para nieve (Snow Shovel) y lanzanieve eléctrico (Snow Thrower).

Solución. Considerando la solución de Excel:

Anova: Two-Facto	or Without Replication	n				
SUMMARY	Count	Sum	Average	Variance		
177	3	483	161	3133		
151	3	461	153.6666667	892.3333333		
184	3	444	148	1027		
161	3	447	149	657		
192	3	472	157.3333333	372.3333333		
193	3	535	178.3333333	582.3333333		
164	3	464	154.6666667	1370.333333		
207	3	453	151	613		
177	3	483	161	876		
174	3	454	151.3333333	1686.333333		
Arm-Crank Ergom	10	1710	171	356.6666667		
Snow Shovel	10	1750	175	219.1111111		
Snow Thrower	10	1236	123.6	336.9333333		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	2144.133333	9	238.237037	0.706437938	0.696096669	2.456281149
Columns	16349.06667	2	8174.533333	24.23972588	7.82106E-06	3.554557146
Error	6070.266667	18	337.237037			
Total	24563.46667	29				

Por lo tanto, por medio de la prueba F; en donde $F > F_{\alpha}$, es decir, la H_0 se rechaza. Existe una diferencia significativa entre tratamientos, en otras palabras sí hay una diferencia significativa entre los cuatro métodos para medir el ritmo cardíaco.

7