MA 101 (Mathematics I)

Multivariable Calculus: Tutorial Problem Set - 2

- 1. Let $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1\}$ and $B = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$. Examine whether $A \cap B$ is (a) an open set (b) a closed set in \mathbb{R}^3 .
- 2. Show that $\{\mathbf{x} \in \mathbb{R}^m : 1 < ||\mathbf{x}|| \le 2\}$ is neither an open set nor a closed set in \mathbb{R}^m .
- 3. State TRUE or FALSE with justification: If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous and if S is a bounded subset of \mathbb{R}^2 , then f(S) must be a bounded subset of \mathbb{R} .
- 4. Let S be a nonempty subset of \mathbb{R}^m such that every continuous function $f: S \to \mathbb{R}$ is bounded. Show that S is a closed and bounded set in \mathbb{R}^m .
- 5. Let $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$ and let $f : S \to \mathbb{R}$ be continuous. Show that there exist $\alpha, \beta \in \mathbb{R}$ with $\alpha \le \beta$ such that $f(S) = [\alpha, \beta]$.
- 6. Examine whether the following limits exist (in \mathbb{R}) and find their values if they exist (in \mathbb{R}).
 - (a) $\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)^2}$
- (b) $\lim_{(x,y)\to(0,0)} \frac{y}{x^2+y^2} \sin \frac{1}{x^2+y^2}$
- 7. Let S be a nonempty open set in \mathbb{R} and let $F: S \to \mathbb{R}^m$ be a differentiable function such that ||F(t)|| is constant for all $t \in S$. Show that $F(t) \cdot F'(t) = 0$ for all $t \in S$.