Lazy vs. non lazy

O. Denas 12/28/2016

Contents

1	Dou	ıble vs. single rank	1
2	Laz	y vs non-lazy	2
	2.1	Run time	2
	2.2	Sandbox timing	2
	2.3	Input properties	

1 Double vs. single rank

algorithm time on protein data

2 Lazy vs non-lazy

2.1 Run time

algorithm time

##		unit	value_lazy	value_nonlazy
##	1	mutation_10	115088	115048
##	2	${\tt mutation_10240}$	223	262
##	3	mutation_1280	1120	1168
##	4	mutation_160	7456	7497
##	5	mutation_20	57327	57366
##	6	${\tt mutation_20480}$	188	228
##	7	mutation_2560	614	664
##	8	mutation_320	3874	3906
##	9	mutation_40	28640	28678
##	10	${\tt mutation_40960}$	138	177
##	11	mutation_5120	352	395
##	12	mutation_640	1858	1893
##	13	mutation_80	14291	14328
##	14	proteins	130850	130961
##	15	random	173818	173748

2.2 Sandbox timing

Measure the time of $10\mathrm{k}$ repetitions of

(1) n consecutive lazy_wl() calls followed by a lazy_wl_followup() and

(2) n consecutive w1() calls

rutime of lazy_wl() vs. wl() calls on input size 10^6

lazy: 3.39 + 3.4333*n; nonlazy: -3.44 + 8.8000*n

2.3 Input properties

For various types ("mutation_xxxx" means s and t are random identical strings with mutations inserted every xxxx characters) of inputs run the MS algorithm and count the number of consecutive lazy_wl() calls of length k for k = 0, 1, 2, 3.

nr of consecutive wl() calls

|s|=10^6, |t|=10^5

Using the linear fits above, this is the expected toal time the wl() or lazy_wl() calls should take (in ms).

```
## # A tibble: 15 × 4
##
                unit
                         lazy_t nonlazy_t
                                              diff_ms
##
                          <dbl>
                                    <dbl>
                                                <dbl>
               <chr>
## 1
         mutation_10 67.347430 79.858300 -12.510870
## 2
      mutation_10240
                      0.060736
                                 0.072391
                                            -0.011655
## 3
       mutation_1280
                      0.525274
                                 0.626903
                                            -0.101629
## 4
        mutation_160
                      4.240214
                                 5.037445
                                            -0.797231
## 5
         mutation_20 33.690606 40.031164
                                            -6.340558
                      0.038526
##
      mutation 20480
                                 0.045929
                                            -0.007403
                                 0.312006
## 7
       mutation_2560
                      0.263940
                                            -0.048066
## 8
        mutation_320
                      2.173368
                                 2.582139
                                            -0.408771
## 9
         mutation_40 16.906014 20.084384
                                            -3.178370
## 10 mutation 40960
                      0.027168
                                 0.032862
                                            -0.005694
       mutation_5120
                      0.142746
                                            -0.027903
## 11
                                 0.170649
## 12
        mutation_640
                      1.013312
                                 1.210646
                                            -0.197334
         mutation_80
##
  13
                      8.455486 10.045392
                                           -1.589906
## 14
            proteins 14.726854 11.100751
                                             3.626103
## 15
              random 38.664398 32.073411
                                             6.590987
```