Advanced Linear Algebra Week 9

Jamie Gabe

Let V be an \mathcal{F} -vector space.

Definition (3.1)

The vector space

$$V' := \operatorname{Hom}(V, \mathcal{F}) = \{ y \colon V \to \mathcal{F} \mid y \text{ is linear} \}$$

is called the $\frac{dual}{dual}$ space of V.

The elements $y \in V'$ are called linear functionals (or linear forms).

Let $\mathcal{B} = \{x_i \mid i \in I\}$ be a basis for V parametrised by some index set I.

Definition

Let $i \in I$. The linear functional $y_i \in V'$ given by

$$y_i(\sum_{j\in I}\alpha_jx_j)=\alpha_i$$

is called the *i*'th coordinate functional.

So if $x \in V$ is written as $x = \sum_{i \in I} \alpha_i x_i$, then $y_i(x) = \alpha_i$.

 $\mathcal{B} = \{x_i \mid i \in I\}$ is a basis parametrised by I. Let $\mathcal{B}' = \{y_i \mid i \in I\} \subseteq V'$ be the coordinate functionals.

Theorem (3.4)

The set \mathcal{B}' is linearly independent. If dim $V<\infty$ then

$$y = \sum_{i \in I} y(x_i)y_i$$
 for all $y \in V'$

and \mathcal{B}' is a basis for the dual space V'.

Definition

When V is finite-dimensional with basis \mathcal{B} , then \mathcal{B}' (of coordinate functionals) is called the dual basis og \mathcal{B} .

Note that the dual basis \mathcal{B}' is a basis for V' (Theorem 3.4).

Let $U \subseteq V$ be a subspace.

Definition

The subspace

$$U^{\circ} := \{ y \in V' \mid y(x) = 0 \text{ for all } x \in U \}$$

is called the annihilator of U.

 U° is a subspace.

Indeed, if $y^{(1)}, y^{(2)} \in U^{\circ}$ then for every $x \in U$ we have

$$(y^{(1)} + y^{(2)})(x) = \underbrace{y^{(1)}(x)}_{=0} + \underbrace{y^{(2)}(x)}_{=0} = 0$$

so $y^{(1)}+y^{(2)}\in U^{\circ}$. Similarly $\alpha y\in U^{\circ}$ whenever $y\in U^{\circ}$ and $\alpha\in\mathcal{F}$.

$$U^{\circ} := \{ y \in V' \mid y(x) = 0 \text{ for all } x \in U \}$$

Let $V = \mathbb{R}^2$ with the standard ordered basis (e_1, e_2) . Let $y_1, y_2 \in (\mathbb{R}^2)'$ be the coordinate functionals, so

$$y_1 \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \alpha_1 \qquad y_2 \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \alpha_2$$

and
$$U = \operatorname{span}\{e_2\} = \{\begin{pmatrix} 0 \\ \alpha \end{pmatrix} \mid \alpha \in \mathbb{R}\}.$$

Question: Which of the following is true?

- (1) $y_1, y_2 \in U^{\circ}$;
- (2) $y_1 \in U^{\circ}$ and $y_2 \notin U^{\circ}$;
- (3) $y_1 \notin U^\circ$ and $y_2 \in U^\circ$;
- (4) $y_1, y_2 \notin U^{\circ}$.

$$U^{\circ} := \{ y \in V' \mid y(x) = 0 \text{ for all } x \in U \}$$

Let $V = \mathbb{R}^2$ with the standard ordered basis (e_1, e_2) . Let $y_1, y_2 \in (\mathbb{R}^2)'$ be the coordinate functionals, so

$$y_1 \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \alpha_1 \qquad y_2 \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \alpha_2$$

and
$$U = \operatorname{span}\{e_2\} = \{\begin{pmatrix} 0 \\ \alpha \end{pmatrix} \mid \alpha \in \mathbb{R}\}.$$

For an arbitrary $x = \begin{pmatrix} 0 \\ \alpha \end{pmatrix} \in U$, we have

$$y_1(x) = y_1 \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0,$$

and since $x \in U$ was arbitrary, it follows that $y_1 \in U^{\circ}$.

$$U^{\circ} := \{ y \in V' \mid y(x) = 0 \text{ for all } x \in U \}$$

Let $V = \mathbb{R}^2$ with the standard ordered basis (e_1, e_2) . Let $y_1, y_2 \in (\mathbb{R}^2)'$ be the coordinate functionals, so

$$y_1 \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \alpha_1 \qquad y_2 \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \alpha_2$$

and
$$U = \operatorname{span}\{e_2\} = \{\begin{pmatrix} 0 \\ \alpha \end{pmatrix} \mid \alpha \in \mathbb{R}\}.$$

For an arbitrary $x = \begin{pmatrix} 0 \\ \alpha \end{pmatrix} \in U$, we have

$$y_2(x) = y_2 \begin{pmatrix} 0 \\ \alpha \end{pmatrix} = \alpha,$$

so if we pick for instance $x = e_2$ (corresponding to $\alpha = 1$) SDU $\stackrel{\bigstar}{\bullet}$ then $y_2(x) = 1 \neq 0$. Hence $y_2 \notin U^{\circ}$.

Theorem (3.8)

There is an isomorphism $(V/U)' \to U^{\circ}$ given by $z \mapsto z \circ \pi$. In particular, if V is finite-dimensional, then

$$\dim U + \dim U^{\circ} = \dim V$$
.

Remark: (V/U)' consists of linear maps $z\colon V/U\to \mathcal{F}$ and $\pi\colon V\to V/U$ is linear.

So $z \circ \pi \colon V \to \mathcal{F}$ is a linear map, and hence $z \circ \pi \in V'$.

Proof.

Let $A: (V/U)' \to V'$ be the linear map $Az = z \circ \pi$. Goal: to show $R(A) = U^{\circ}$ and $N(A) = \{0\}$. Then A induces

an isomorphism $(V/U)' \rightarrow U^{\circ}$ by the first isomorphism theorem.

Theorem (3.8)

There is an isomorphism $(V/U)' \to U^{\circ}$ given by $z \mapsto z \circ \pi$. In particular, if V is finite-dimensional, then

$$\dim U + \dim U^{\circ} = \dim V$$
.

Proof.

Let $A: (V/U)' \to V'$ be the linear map $Az = z \circ \pi$.

Goal: to show $R(A) = U^{\circ}$ and $N(A) = \{0\}$. Then A induces an isomorphism $(V/U)' \to U^{\circ}$ by the first isomorphism theorem.

$$N(A) = \{0\}$$
: Suppose $Az = z \circ \pi = 0$. Goal: $z(x) = 0$ for all $x \in V/U$. Pick $x' \in V$ such that $\pi(x') = x$. Then $z(x) = z(\pi(x')) = (Az)(x') = 0$. Hence $z = 0$, so $N(A) = \{0\}$.

Theorem (3.8)

There is an isomorphism $(V/U)' \to U^{\circ}$ given by $z \mapsto z \circ \pi$. In particular, if V is finite-dimensional, then

$$\dim U + \dim U^{\circ} = \dim V$$
.

Proof.

Let $A\colon (V/U)'\to V'$ be the linear map $Az=z\circ\pi$. Goal: to show $R(A)=U^\circ$ and $N(A)=\{0\}$. Then A induces an isomorphism $(V/U)'\to U^\circ$ by the first isomorphism theorem

 $R(A) \subseteq U^{\circ}$: Let $z \in (V/U)'$. If $x \in U$ then $\pi(x) = 0$, and hence $(Az)(x) = z(\pi(x)) = z(0) = 0$, so $Az \in U^{\circ}$ for all $z \in (V/U)'$. Hence $R(A) \subseteq U^{\circ}$.

Theorem (3.8)

There is an isomorphism $(V/U)' \to U^{\circ}$ given by $z \mapsto z \circ \pi$. In particular, if V is finite-dimensional, then

$$\dim U + \dim U^{\circ} = \dim V$$
.

Proof.

Let $A\colon (V/U)'\to V'$ be the linear map $Az=z\circ\pi$. Goal: to show $R(A)=U^\circ$ and $N(A)=\{0\}$. Then A induces an isomorphism $(V/U)'\to U^\circ$ by the first isomorphism theorem

 $U^{\circ} \subseteq R(A)$: Let $y \in U^{\circ}$. Define $\overline{y} \colon V/U \to \mathcal{F}$ by $\overline{y}(x+U) = y(x)$. Well-defined since y(u) = 0 for $u \in U$. Then $y = \overline{y} \circ \pi = A\overline{y}$, so $U^{\circ} \subseteq R(A)$.

Theorem (3.8)

There is an isomorphism $(V/U)' \to U^{\circ}$ given by $z \mapsto z \circ \pi$. In particular, if V is finite-dimensional, then

$$\dim U + \dim U^{\circ} = \dim V.$$

Proof.

Let $A\colon (V/U)'\to V'$ be the linear map $Az=z\circ\pi$. By Theorem 2.14 we have dim $V=\dim U+\dim V/U$. By Corollary 3.5 we have dim $V/U=\dim(V/U)'$. As we just proved $(V/U)'\cong U^\circ$ we get $\dim(V/U)'=\dim U^\circ$. Hence

$$\dim V = \dim U + \dim U^{\circ}$$
.

Theorem (3.8)

There is an isomorphism $(V/U)' \to U^{\circ}$ given by $z \mapsto z \circ \pi$. In particular, if V is finite-dimensional, then

$$\dim U + \dim U^{\circ} = \dim V.$$

Consider the \mathcal{F} -vector space \mathcal{F}^n and let

$$U = \left\{ \begin{pmatrix} \alpha \\ \alpha \\ \vdots \\ \alpha \end{pmatrix} \mid \alpha \in \mathcal{F} \right\}.$$

Question: What is the dimension of the annihilator U° ?

- (1) 0
- (2) 1
- (3) n-1
- (4) n.

Theorem (3.8)

There is an isomorphism $(V/U)' \to U^{\circ}$ given by $z \mapsto z \circ \pi$. In particular, if V is finite-dimensional, then

$$\dim U + \dim U^{\circ} = \dim V.$$

Consider the \mathcal{F} -vector space \mathcal{F}^n and let

$$U = \left\{ \begin{pmatrix} \alpha \\ \alpha \\ \vdots \\ \alpha \end{pmatrix} \mid \alpha \in \mathcal{F} \right\}.$$

We have dim $\mathcal{F}^n = n$ and dim U = 1. So

$$\dim U^{\circ} = \dim \mathcal{F}^n - \dim U = n - 1.$$

Let $U \subseteq V$ be a subspace, and assume dim $V < \infty$.

Theorem (3.9, The Extension Theorem)

For every $z \in U'$ there exists $y \in V'$ such that z(x) = y(x) for all $x \in U$. (In other words, $y|_{U} = z$).

Consider
$$\mathbb{R}^2$$
 and let $U = \{ \begin{pmatrix} -\alpha \\ \alpha \end{pmatrix} : \alpha \in \mathbb{R} \}$.

Consider
$$z \in U'$$
 given by $z \begin{pmatrix} -\alpha \\ \alpha \end{pmatrix} = 2\alpha$

and
$$y \in (\mathbb{R}^2)'$$
 given by $y \begin{pmatrix} \beta \\ \gamma \end{pmatrix} = 2\beta$.

Question: is $y|_U = z$?

- (1) Yes,
- (2) No,
- (3) There is not enough information to determine this.

Let $U \subseteq V$ be a subspace, and assume dim $V < \infty$.

Theorem (3.9, The Extension Theorem)

For every $z \in U'$ there exists $y \in V'$ such that z(x) = y(x) for all $x \in U$. (In other words, $y|_{U} = z$). Proof.

Let $J \colon V' \to U'$ be the restriction map $J(y) = y|_U$ for $y \in V'$, or equivalently, $J(y) \colon U \to \mathcal{F}$ is given by J(y)(x) = y(x) for all $x \in U$.

It is easy to check that J is linear.

Goal: show that R(J) = U'.

Note that $N(J)=U^{\circ}$. By the rank-nullity theorem we have

$$\dim R(J) + \underbrace{\dim N(J)}_{} = \dim V' \stackrel{Cor3.5}{=} \dim V \stackrel{Thm3.8}{=} \dim U + \dim U^{\circ}$$

so dim $R(J) = \dim U = \dim U'$. As $R(J) \subseteq U'$ is a subspace,

it follows that R(J) = U' (Corollary 1.23).

Lemma (3.10)

Suppose dim $V < \infty$, and let $x \in V$ be non-zero. Then $y(x) \neq 0$ for some $y \in V'$.

Proof.

Let $U = \text{span}\{x\} = \{\alpha x : \alpha \in \mathcal{F}\}$, which is a 1-dimensional subspace of V.

Define $z \in U'$ by $z(\alpha x) = \alpha$ for $\alpha \in \mathcal{F}$.

By the Extension Theorem we may find $y \in V'$ such that $y|_U = z$. Hence y(x) = z(x) = 1.

Theorem (3.11, The Separation Theorem)

Let dim $V < \infty$ and $U \subseteq V$ be a subspace. For each $x \in V \setminus U$ there exists $y \in V'$ which annihilates U but not x, i.e. y(u) = 0 for all $u \in U$ and $y(x) \neq 0$. Alternatively (equivalently), this means

$$U = \{x \in V \mid y(x) = 0 \text{ for all } y \in U^{\circ}\}.$$

Proof.

Let $\pi \colon V \to V/U$ be the projection. As $x \notin U$ we have $\pi(x) \neq 0$.

By Lemma 3.10 there exists $z \in (V/U)'$ such that $z(\pi(x)) \neq 0$.

By Theorem 3.8 $y:=z\circ\pi\in U^\circ$ (so y annihilates U), and $y(x)=z(\pi(x))\neq 0$.

Let U, V be \mathcal{F} -vector spaces and $A \in \text{Hom}(U, V)$.

Definition

The adjoint of A is the linear map $A' \colon V' \to U'$ given by

$$(A'y)(x) = y(A(x)),$$
 for all $x \in U$.

In other words, $A'y = y \circ A$.

Consider
$$A \colon \mathbb{R} \to \mathbb{R}^2$$
 given by $A\alpha = \begin{pmatrix} -\alpha \\ 3\alpha \end{pmatrix}$.

Let $y_1, y_2 \in (\mathbb{R}^2)'$ be the first and second coordinate functionals (wrt the standard ordered basis).

Question: Then $A'y_1 \in \mathbb{R}'$. What is $A'y_1(\alpha)$?

- (1) 1
- (2) 2
- (3) 3
- (4) -1

Let U, V be \mathcal{F} -vector spaces and $A \in \text{Hom}(U, V)$.

Definition

The adjoint of A is the linear map $A': V' \rightarrow U'$ given by

$$(A'y)(x) = y(A(x)),$$
 for all $x \in U$.

In other words, $A'y = y \circ A$.

Consider
$$A \colon \mathbb{R} \to \mathbb{R}^2$$
 given by $A\alpha = \begin{pmatrix} -\alpha \\ 3\alpha \end{pmatrix}$.

Let $y_1, y_2 \in (\mathbb{R}^2)'$ be the first and second coordinate functionals (wrt the standard ordered basis).

$$A'y_1(\alpha) = y_1(A(\alpha)) = y_1\begin{pmatrix} -\alpha \\ 3\alpha \end{pmatrix} = -\alpha.$$

$$A'y_2(\alpha) = y_2(A(\alpha)) = y_2\begin{pmatrix} -\alpha \\ 3\alpha \end{pmatrix} = 3\alpha.$$

Consider
$$A \colon \mathbb{R} \to \mathbb{R}^2$$
 given by $A\alpha = \begin{pmatrix} -\alpha \\ 3\alpha \end{pmatrix}$.

Let $y_1, y_2 \in (\mathbb{R}^2)'$ be the first and second coordinate functionals (wrt the standard ordered basis).

$$A'y_1(\alpha) = -\alpha$$
 $A'y_2(\alpha) = 3\alpha$.

The matrix for
$$A$$
 is $[A] = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.
 $A' : (\mathbb{R}^2)' \to \mathbb{R}'$ has the matrix $[A'] = (-1 \ 3)$.

Lemma (3.13)

Let $A \in \text{Hom}(U, V)$. Then the adjoint $A' \in \text{Hom}(V', U')$ and satisfies

- (1) $A \mapsto A'$ is a linear map $\operatorname{Hom}(U, V) \to \operatorname{Hom}(V', U')$;
- (2) (BA)' = A'B' for $A \in \operatorname{Hom}(U, V)$ and $B \in \operatorname{Hom}(V, W)$;
- (3) $(I_V)' = I_{V'} \in \text{End}(V')$.

Proof.

Straight-forward from definitions (omitted).

Corollary (3.14)

If $A \in \text{Hom}(U, V)$ is an isomorphism then so is $A' \in \text{Hom}(V', U')$, and $(A')^{-1} = (A^{-1})'$.

Proof.

$$(A^{-1})'A' = (AA^{-1})' = (I_V)' = I_{V'}$$

 $A'(A^{-1})' = (A^{-1}A)' = (I_U)' = I_{U'}.$

Let U, V be finite dimensional vector spaces with ordered bases \mathcal{B} and \mathcal{C} , let $m = \dim U$ and $n = \dim V$. Let $A \in \operatorname{Hom}(U, V)$. Then $_{\mathcal{C}}[A]_{\mathcal{B}} \in M_{n,m}(\mathcal{F})$. Then $A' \in \operatorname{Hom}(V', U')$ and therefore $_{\mathcal{B}'}[A']_{\mathcal{C}'} \in M_{m,n}(\mathcal{F})$.

Note: *n* and *m* swapped!

Lemma (3.15)

$$_{\mathcal{B}'}[A']_{\mathcal{C}'}=(_{\mathcal{C}}[A]_{\mathcal{B}})^{\mathsf{T}}$$
 (the transpose).

Moral: the adjoint is really the transpose, but it does not require any bases (as opposed to the transpose of a matrix).

Proof.

Left as an exercise. (Good exercise for understanding the definitions).

Let $A: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map given by the matrix

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

Let $y_1, y_2 \in (\mathbb{R}^2)'$ be the standard coordinate functionals.

Question: What is $A'y_1$?

(1)
$$y_1 + 2y_2$$

(2)
$$2y_1 + y_2$$

$$(3) y_1 + 3y_2$$

$$(4) 3y_1 + y_2$$

Answer:
$$[A'] = [A]^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
, and $[y_1] = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Since

$$[A'y_1] = [A'][y_1] = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix},$$

we get $A'y_1 = y_1 + 2y_2$.

Definition

The vector space V'' := (V')' is the double dual of V.

Suppose $x \in V$. Define a map $Tx \colon V' \to \mathcal{F}$ by (Tx)(y) = y(x).

Lemma (3.20, 3.22)

There is a linear map $T: V \to V''$ given by (Tx)(y) = y(x) for all $x \in V$ and $y \in V'$.

Proof.

Straight forward from definitions.

Definition

 $T\colon V\to V''$ is called the natural correspondence from V to V''.

Theorem (3.23)

If dim $V < \infty$ then $T \colon V \to V''$ is an isomorphism.

Proof.

First we show that $N(T) = \{0\}$, so let $x \in V$ such that Tx = 0.

Assume for contradiction that $x \neq 0$. By Corollary 3.10 there is $y \in V'$ such that $y(x) \neq 0$. Hence

$$(Tx)(y) = y(x) \neq 0$$

which contradicts that Tx = 0. So x = 0, and thus $N(T) = \{0\}$.

By Corollary 3.5 dim $V = \dim V' = \dim V''$. By Theorem 2.10 T is an isomorphism.

If $A \in \operatorname{Hom}(U, V)$, then $A' \in \operatorname{Hom}(V', U')$. Taking the adjoint of A', we get $A'' \in \operatorname{Hom}(U'', V'')$. If $T_U \colon U \to U''$ and $T_V \colon V \to V''$ are the natural correspondences, we have the diagram

Lemma (3.24)

$$A'' \circ T_{IJ} = T_{V} \circ A.$$

In other words: the diagram above is commutative.

Proof.

Follows from unraveling the definitions.

