Homework 2

 $Akeem\ Ajede$ 10/4/2019

Q. 1b(i)

Sketch the pdf of U(0,10).

PDF of a Uniform Distribution

Q.1b(ii)

Sketch the cdf of U(0,10).

Q. 1c(i)

Use R to generate a random sample of size 50 from Uniform(0, 10) and plot the histogram (overlaid with the true pdf).

Histogram of a Uniform Distribution (n=50)

Q. 1c(ii)

plot the emperical cdf overlaid with the theoretical cdf.

ECDF of a Uniform Distribution (n=50)

Q. 1d(i)

Use R to generate a random sample of size 1000 from Uniform(0, 10) and plot the histogram (overlaid with the true pdf).

Histogram of a Uniform Distribution

Q. 1d(ii)

Plot the emperical cdf overlaid with the theoretical cdf.

ECDF of a Uniform Distribution

Q. 2d

Use R to generate 1000 independent random samples of size 30 from Uniform (0, 10). Compute the corresponding 1000 values of $\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3$.

Q. 2d(i)

For each estimator, draw the histograms based on their 1000 estimates. Include the theoretical pdf overlayed. For $\hat{\theta_1}$, you can use the approximate distribution in part (c).

Distribution of the Sample in the First R

Sampling Distribution of theta1

Sampling Distribution of theta2

Sampling Distribution of Theta3

Q. 2d(ii)

For each estimator, draw the ecdf based on their 1000 estimates. Include the theoretical cdf overlayed. For $\hat{\theta_1}$, you can use the approximate distribution in part (c).

ecdf(theta2)

Q. 2d(iii)

Compute the empirical bias, variance and MSE for each of the estimators. Compare and contrast. Note: $bias(\hat{\theta}_1) = (\bar{\theta}_1) - \theta$ and MSE can be computed as above or recall, $MSE = Var + bias^2$.

[1] TRUE

[1] TRUE

[1] TRUE

Since MSE_3 is less than both MSE_1 and MSE_2 , MSE_3 (i.e.,the mean square error of the modified MLE) has the least residual error for a 1000 uniform random samples of size 30.

$$\begin{array}{l} (bias(2\bar{X})=E(2\bar{X})-\theta\\ =2E(\bar{X})-\theta\\ =2\frac{\theta}{2}-\theta\\ =0\\) \\ =4\frac{\theta^2}{12n}\\ =\frac{\theta^2}{3n}\\ \\ MSE(2\bar{X})=Var(2\bar{X})+bias^2(2\bar{X})\\ =Var(2\bar{X})\\ =\frac{\theta^2}{3n}\\) \end{array}$$