Base des antennes Partie expérimentale

Réalisation des antennes

Éléments caractéristiques d'une antenne

F. Daout

fdaout@parisnanterre

CFD

Objectifs du cours

- Revoir les bases des antennes
 - Fournir le vocabulaire nécessaire et les concepts pour réaliser les antennes du projet
- Être capable d'établir un cahier des charges
- Préparer la réalisation pratique des antennes
 - Dimensionner le matériel nécessaire
- Comment caractériser mon antenne
 - Préparer les manipulations

- L'antenne d'émission (routeur) converti le signal RF en une OEM
- L'OEM se propage dans le bâtiment a la vitesse de la lumière
- Elle est captée par l'antenne « bâtiment » qui la transforme en signal électrique
- Ce signal est conduit par un cordon RF à l'antenne « atelier » qui la transforme en OEM
- Cette OEM se propage dans l'atelier et est captée par votre ordinateur portable

Antennes: Caractéristiques physiques

Caractéristiques physique d'une antenne

- ses dimensions et sa masse (critique dans le cas d'un système embarqué – ex. Satellite)
- ses propriétés mécaniques (ex. résistance au vent, fixation, ...)
- son aspect (ex station de base dans une ville) : mise en place d'un radôme ?

- Caractéristiques radio-électriques : impactent les performances de la liaison
 - L'impédance d'entrée de l'antenne (ROS, VSWR, S11, RL)
 - Son diagramme de rayonnement (ouverture à -3dB) et son gain
 - Sa polarisation (linéaire : horizontale, verticale
 circulaire, ...)

Impédance d'entrée de l'antenne : VSWR

Voltage Stationnary Voltage Ratio (Rapport d'Onde Stationnaire, R0S) Traduit la qualité d'adaptation d'impédance de la charge

Onde incidente $Ra(\Omega)$ $R_{ligne} = 50 \Omega$ Transmission totale	$Ra(\Omega)$ Onde incidente $R_{ligne} = 50 \Omega$ $Réflexion partielle$	Ra (Ω) Onde incidente Rigne = 50Ω Réflexion totale
$Ra(\Omega) = R_{ligne}(\Omega)$	$Ra(\Omega) \approx R_{ligne}(\Omega)$	$Ra(\Omega) = 0 \Omega$ Ou $Ra(\Omega) = \infty \Omega$
WSWR = 1	WSWR Le plus proche possible de 1	WSWR = ∞
A _{eff} (V, x) ne varie pas le long de la ligne	$A_{min} < A_{eff}(V, x) < A_{max}$	$0 < A_{eff}(V, x) < A_{M}$ $A_{M} > A_{max}$
idéal	réel	Le pire

Bande de fréquence d'une antenne

Diagramme d'antenne (1/7)

Diagramme d'antenne : C'est la répartition de la puissance rayonnée dans l'espace

- Représenté en fonction des angle (θ, φ)
- Diagramme 2D (coupe) ou 3D

diagramme dans le plan yOz (gain en dB) © AC Lepage - 2015

Diagramme d'antenne (2/7)

Diagramme d'antenne d'une ouverture circulaire

- Une antenne directionnelle est constituée d'un lobe principal et de lobes secondaires
- Quand le diamètre de l'ouverture augmente, le gain du lobe principal augmente et sa largeur diminue

Source: R.M. O'Donnell, http://ocw.mit.edu/resources/res-II-001-introduction-to-radar-systems-spring-2007/

- La densité de puissance (W/m²) décroît avec r
- Le gain s'exprime par rapport à l'antenne isotrope (dBi)
- Gain d'une antenne directive > Gain d'une antenne isotrope
- Diagramme d'antenne d'une antenne directive = fonction (angles d'observation)

Gain (G) et ouverture effective d'une antenne (Ae)

$$G = 4\pi A_e / \lambda^2$$
 (1) \Rightarrow $A_e = G \lambda^2 / 4\pi$ (1a)
Longueur d'onde

Exemple: Gain d'une antenne à ouverture circulaire

$$G_{m, dBi} = 10 \log_{10} (\pi D / \lambda)^2$$
 (2)

Ouverture a 3dB (HPBW: half-power beamwidth)

HPBW =
$$58^{\circ} \lambda / D$$
 (3)

PIRE: puissance isotrope rayonnée équivalente

$$\mathsf{EIRP}(\theta, \varphi) = P_t G_t(\theta, \varphi) \tag{4}$$

Densité de puissance isotrope rayonnée à une distance r

$$P_d(\theta,\varphi) = \text{EIRP} / 4\pi r^2 = P_t G_t(\theta,\varphi) / 4\pi r^2$$
 (5)

Puissance reçue (Pr) par une antenne d'ouverture effective Ae à une distance r

$$P_r = P_{di} A_e$$
 (6) $A_e = G_r \lambda^2 / 4\pi$ (1b)

Puissance reçue / puissance transmise

$$P_r(\theta,\varphi)/P_t = G_t(\theta,\varphi) G_r(\theta,\varphi) \lambda^2/(4\pi r)^2$$
 (7)

•
$$P_r(\theta,\varphi)/P_t = G_t(\theta,\varphi) G_r(\theta,\varphi) \lambda^2/(4\pi r)^2$$
 (7)

•
$$P_r(\theta, \varphi)/P_t = G^2 \lambda^2/(4\pi r)^2$$
 (8)

•
$$G^2 = P_r(\theta, \varphi)/P_t (4\pi r/\lambda)^2$$
 (9)

•
$$G_{dBi} = \frac{1}{2} [10 \log_{10} (P_r(\theta, \varphi)/P_t) + 20 \log_{10} (4\pi r/\lambda)]$$
 (10)

Exemple:

- Fréquence 2.4 GHz (longueur d'onde = 0.125m)
- S21 = Puissance reçue / puissance émise = -24dB pour une distance r =1m

$$G_{dBi} = \frac{1}{2}[-24 + 22 + 18.1] = 8.1 dBi$$

Quels sont les paramètres importants pour le rayonnement?

- La valeur du gain maximum : pour calculer la puissance reçue (rayonnée). Plus le gain est important, plus la puissance reçue (rayonnée) est importante
- L'ouverture à 3dB (θ_{3dB}), ou ouverture à mi-puissance : décrit la répartition de la puissance rayonnée (captée). Plus l'ouverture est faible, plus le gain est important mais plus l'antenne est difficile à « pointer »
- Le niveau des lobes secondaires : plus le niveau des lobes secondaires est important, plus l'antenne envoie (capte) de la puissance dans des directions indésirables. Cela engendre des problèmes d'interférences.

Polarisation de l'émetteur et du récepteur

Émiss	ion	propagation	Ré	ception
V _t	Horizontal Polarization Vertical Polarization	y X	Polarisation H	V _r
V _t	Circular olarization E SOI	y X	, tolansation in	-t
Signal Électrique	Antenne Émission	Onde polarisée	Antenne Réception	Signal Électrique

Penser à orienter l'antenne de réception du répéteur...

Fiche recette d'une antenne

Caractéristique	Valeur	Remarque
Type d'antenne		
Directivité		Isotrope / Directionnelle
Gamme de Fréquences (MHz)		
Gain d'antenne (dBi)		
Rapport d'onde stationnaire		
Ouverture a mi- puissance (deg.)		
Polarisation		