1. History of Linux

Early Beginnings:

- 1969: Development of Unix at AT&T's Bell Labs by Ken Thompson, Dennis Ritchie, and others. Unix inspired the structure and design principles of Linux.
- 1983: Richard Stallman began the GNU Project, aiming to create a free Unix-like operating system. Key components like GCC and bash were developed but lacked a kernel.

Birth of Linux:

- 1991: Linus Torvalds, a Finnish student, developed the Linux kernel as a personal project. He aimed to create a free, open-source Unix-like kernel.
 - o The first release (version 0.01) was announced on August 25, 1991.
 - Combined with GNU tools and utilities, Linux became a complete operating system.

Expansion and Adoption:

- 1992: The Linux kernel was relicensed under the GNU General Public License (GPL), boosting community contributions.
- 1993: The first Linux distributions, like Slackware and Debian, were released.
- 1990s-2000s: Linux gained popularity for server use, especially for web hosting.
- Present: Linux powers servers, supercomputers, embedded devices, smartphones (Android), and desktop systems.

2. Architecture of Linux

Linux follows a modular, layered architecture, divided into the following components:

Linux Operating System System User Process Utility Compilers System Libraries Kernel Kernel Modules CPU RAM I/O System I/O Linux Operating System System User Occupilers Applications Compilers Applications Applications Compilers Applications Compilers Applications Compilers Applications Compilers Applications Compilers Applications Applications Compilers Applications Applications Compilers Applications Applic

1. Hardware:

• The physical components of the computer, such as CPU, RAM, and storage.

2. Kernel:

- The core of the operating system, interacting directly with hardware.
 - Monolithic Kernel: Linux kernel includes device drivers, file systems, and networking within the kernel space.
 - Functions:
 - Process Management: Scheduling and running processes.
 - Memory Management: Allocating and managing memory.
 - Device Drivers: Interface with hardware.
 - File System Management: Managing file storage and access.

3. System Libraries:

- Provide a standard way for applications to interact with the kernel.
 - o Example: GNU C Library (glibc).

4. System Utilities:

- Tools and programs for basic tasks like file management, process control, and system monitoring.
 - o Examples: ls, ps, cp, top.

5. Shell:

- A command-line interface for interacting with the system.
 - o Examples: Bash, Zsh, Fish.

6. Applications:

• User programs and tools, such as web browsers, media players, and development environments.

3. Linux File Structure

Linux uses a hierarchical file system structure starting with the root directory (/). Everything in Linux is treated as a file, including hardware devices.

Key Directories:

Directory	Purpose
/	Root directory; the top-level of the file system hierarchy.
/bin	Essential binary executables (e.g., ls, cp, mv).
/boot	Contains bootloader files (e.g., grub, kernel images).
/dev	Device files representing hardware (e.g., /dev/sda for disks).
/etc	Configuration files for the system and installed applications.
/home	User home directories (e.g., /home/user1, /home/user2).
/lib	Shared libraries required by system programs and the kernel.
/media	Temporary mount points for removable media (e.g., USB drives, CDs).
/mnt	General mount point for external or additional file systems.
/opt	Optional software installed by the user or third-party vendors.
/proc	Virtual file system with system information and processes (e.g., /proc/cpuinfo).
/root	Home directory for the root (superuser).

Directory	Purpose
/sbin	System binaries (e.g., fsck, reboot) used for administrative tasks.
/tmp	Temporary files created by applications or the system.
/usr	User-installed software and libraries.
/var	Variable data files, like logs (/var/log), caches, and spool files.

Key Characteristics of the Linux File Structure

1. Everything is a File:

o Hardware devices, directories, and sockets are treated as files.

2. Single Root Hierarchy:

o All files originate from a single root (/), unlike Windows where each drive (e.g., C:, D:) has its own hierarchy.

3. Mounting:

 External devices and additional file systems are mounted onto the hierarchy.

4. Permissions:

 Files and directories have distinct ownership and permissions for users, groups, and others.