Aditya Shirode, Rhythm Shah, Shrenuj Gandhi

3. [12 points – 4 points each part] Analysis of linear-time median algorithms.

Assume $T(1) = c_1$, where c_1 is some constant. Prove Θ bounds for each of the following recurrences using the substitution method.

(a)
$$T(n) = n + (1/n) \sum_{i=1}^{n-1} T(i)$$

(b)
$$T(n) = n + \sum_{i=1}^{n-1} T(i)$$
 (this one is tricky)

(c)
$$T(n) = n + T(\lceil n/2 \rceil) + T(\lceil n/4 \rceil) + T(\lceil n/8 \rceil)$$

Answer:

(a)

$$T(n) = n + \frac{1}{n} \sum_{i=1}^{n-1} T(i)$$
$$T(n-1) = (n-1) + \frac{1}{n-1} \sum_{i=1}^{n-2} T(i)$$

$$nT(n) - (n-1)T(n-1) = n^2 + \sum_{i=1}^{n-1} T(i) - (n-1)^2 - \sum_{i=1}^{n-2} T(i)$$

$$\therefore nT(n) - (n-1)T(n-1) = T(n-1) + 2n - 1$$

$$nT(n) = nT(n-1) + 2n - 1$$

$$T(n) = T(n-1) + 2 - \frac{1}{n}$$
and $T(1) = c_1$, where c_1 is some constant

BigO Analysis

Let us assume $T(n) \in O(n)$, then $T(n) \le cn, c \ge 0$

Lets check the base case first i.e. for n = 1,

 $T(1) = c_1, \qquad \text{from } (1)$

 $T(1) \le c$, from assumption

Lets check for recurrence relation, i.e. $T(n-1) \le c(n-1)$

$$T(n) \le c(n-1) + 2 - \frac{1}{n}$$

$$T(n) \le cn - c + 2 - \frac{1}{n}$$

$$T(n) \le cn - c + 2$$
 (since $n \ge 0$ and $\frac{-1}{n}$ is negative)

and we can say that $T(n) \le cn$ (from our assumption) $\therefore cn - c + 2 \le cn$ $\implies c \ge 2$ Our assumption has been proven true.

Hence, we can say that, $T(n) \in O(n)$ if $c \ge \max(2, c_1)$

BigOmega Analysis

Let us assume that $T(n) \in \Omega(n)$, then $T(n) \geq cn$, for $c \geq 0$

Lets check the base case first i.e. for n = 1,

 $T(1) = c_1, \qquad \text{from } (1)$

 $T(1) \ge cn$, from assumption

Hence, we can say our assumption is true, if $c \leq c_1$

Lets check the recurrence relation i.e. $T(n-1) \ge c(n-1)$

$$T(n) \ge c(n-1) + 2 - \frac{1}{n}$$

= $cn - c + 2 - \frac{1}{n}$

and we can say that

 $T(n) \ge cn$ (which is also our assumption)

$$cn \le cn - c + 2 - \frac{1}{n}$$

$$\implies c \le 2 - \frac{1}{n}$$

 $\implies c \leq \frac{3}{2}$ (since min value of n can be 2)

Hence, we can say that our assumption is true, and $T(n) \in \Omega(n)$ if $c \leq \min(c, \frac{3}{2})$ Thus, we can say - $T(n) \in \Theta(n)$

(b)

$$T(n) = n + \sum_{i=1}^{n-1} T(i)$$

$$T(n-1) = (n-1) + \sum_{i=1}^{n-2} T(i)$$

$$T(n) - T(n-1) = n + T(n-1) + \sum_{i=1}^{n-2} T(i) - \sum_{i=1}^{n-2} T(i)$$

$$T(n) - T(n-1) = T(n-1) + 1$$

$$T(n) = 2T(n-1) + 1 (2)$$

$$T(1) = c_1$$
, where c_1 is some constant

BigO Analysis

Let us assume $T(n) \in O(2^n)$, then

$$T(n) \le c2^n - b,$$
 $c \ge 0$, and b is also a constant.

Lets check for base case first i.e. n=1

$$T(1) = c_1 from (2)$$

$$T(1) \le 2c - b$$
 from assumption

Hence, our assumption is true, if $c \ge \left(\frac{c_1+b}{2}\right)$.

Lets check for recurrence relation -

$$T(n) \le 2(c2^{n-1} - b) + 1$$

$$\le 2c2^{n-1} - 2b + 1$$

$$< c2^{n} - b - b + 1$$

And we can say that

$$T(n) \le c2^n - b$$
 if
$$c2^n - 2b + 1 \le c2^n - b$$

$$\implies b \ge 1$$

Hence, our assumption is true, and $T(n) \in \mathcal{O}(2^n), \qquad \text{if } c \geq \frac{c_1+b}{2} \text{ and } b \geq 1$

BigOmega Analysis

Let us assume $T(n) \in \Omega(2^n)$, then $T(n) \ge c2^n - b$, $c \ge 0$ and b is some constant.

Lets check base case first, i.e. n=1

$$T(1) = c_1 from (2)$$

$$T(1) \ge c * 2 - b$$
 from assumption

Hence, our assumption is true, if $c \leq \frac{c_1+b}{2}$

Lets check for the recurrence relation -

$$T(n) \ge 2(c2^{n-1} - b) + 1$$

$$\ge 2c2^{n-1} - 2b + 1$$

$$\ge c2^n - b - b + 1$$

And we can say that -

$$T(n) \ge c2^n - b \qquad \text{if}$$

$$c2^n - 2b + 1 \ge c2^n - b$$

$$\implies b \le 1$$

Hence, our assumption is true and
$$T(n)\in\Omega(2^n)\qquad \text{ if }c\leq \tfrac{c_1+b}{2}\text{ and }b\leq 1$$

Thus, we can say - $T(n) \in \Theta(2^n)$

page 4

(c)

$$T(n) = n + T\left(\left\lceil \frac{n}{2}\right\rceil\right) + T\left(\left\lceil \frac{n}{4}\right\rceil\right) + T\left(\left\lceil \frac{n}{8}\right\rceil\right)$$

$$T(1) = c_1$$
(3)

BigO Analysis

Let us assume $T(n) \in \mathcal{O}(n \lg n)$, then $T(n) \leq cn \lg n$, $c \geq 0$ Lets check the base case first i.e. n = 1 $T(1) = c_1$ from (3) $T(1) \leq c(1)(\lg 1) = 0$ from assumption Hence, our assumption is true, if $c_1 \leq 0$

Lets check for the recurrence relation -

$$\begin{split} T(n) & \leq n + \left\lceil c\frac{n}{2} \lg \frac{n}{2} \right\rceil + \left\lceil c\frac{n}{4} \lg \frac{n}{4} \right\rceil + \left\lceil c\frac{n}{8} \lg \frac{n}{8} \right\rceil \\ & \leq n + \left(c\frac{n}{2} \lg \frac{n}{2} + 1 \right) + \left(c\frac{n}{4} \lg \frac{n}{4} + 1 \right) + \left(c\frac{n}{8} \lg \frac{n}{8} + 1 \right) \qquad \text{as } \lceil a \rceil \leq a + 1 \\ & \leq n + 3 + \frac{cn}{2} (\lg n - \lg 2) + \frac{cn}{4} (\lg n - \lg 4) + \frac{cn}{8} (\lg n - \lg 8) \\ & \leq n + 3 + cn \lg n \left(\frac{4}{8} + \frac{2}{8} + \frac{1}{8} \right) - cn \left(\frac{4}{8} + \frac{4}{8} + \frac{3}{8} \right) \\ & \leq n + 3 + \frac{7}{8} cn \lg n - \frac{11}{8} cn \\ & \leq n + 3 + \frac{7}{8} cn \lg n \qquad \qquad \text{(since } n \geq 1 \text{ and } c \geq 0) \end{split}$$

And we say that -

$$T(n) \le cn \lg n \qquad \text{if}$$

$$n+3+\frac{7}{8}cn \lg n \le cn \lg n$$

$$\implies \qquad c \ge \frac{8n+24}{n \lg n} \qquad \text{where } n \ge 1$$

Hence, we can say that our assumption is true and

$$T(n) \in \mathcal{O}(n \lg n)$$
 if $c \ge \frac{8n+24}{n \lg n}$, $n \ne 1$

BigOmega Analysis

Let us assume that
$$T(n) \in \Omega(n \lg n)$$
,
then $T(n) \ge cn \lg n$, for $c \ge 0$

Lets check with base case first i.e. for
$$n = 1$$
, $T(1) = c_1$ from (1) $T(1) \ge c(1)(\lg 1) = 0$ from assumption

Hence our assumption is true if $c_1 \geq 0$

Lets check for the recurrence relation -

$$\begin{split} T(n) &\geq n + \left\lceil \frac{cn}{2} \lg \frac{n}{2} \right\rceil + \left\lceil \frac{cn}{4} \lg \frac{n}{4} \right\rceil + \left\lceil \frac{cn}{8} \lg \frac{n}{8} \right\rceil \\ &\geq n + \left\lceil \frac{cn}{2} (\lg n - \lg 2) + \frac{cn}{4} (\lg n - \lg 4) + \frac{cn}{8} (\lg n - \lg 8) \right\rceil \qquad \text{since } \lceil a \rceil + \lceil b \rceil \geq \lceil a + b \rceil \\ &\geq n + \left\lceil cn \lg n \left(\frac{4}{8} + \frac{2}{8} + \frac{1}{8} \right) - cn \left(\frac{4}{8} + \frac{4}{8} + \frac{3}{8} \right) \right\rceil \\ &\geq n + \left\lceil \frac{7}{8} cn \lg n - \frac{11}{8} cn \right\rceil \\ &\geq n + \left\lceil \frac{7}{8} cn \lg n \right\rceil - \left\lceil \frac{11}{8} cn \right\rceil \\ &\geq n + cn \lg n - 2cn \qquad \qquad \dots \text{ taking ceiling} \end{split}$$

And we say that -

$$T(n) \ge cn \lg n \qquad \text{if}$$

$$n + cn \lg n - 2cn \ge cn \lg n$$

$$\implies c \le \frac{1}{2}$$

Hence, we can say that our assumption is true and $T(n) \in \Omega(n \lg n)$ if $c \leq \frac{1}{2}$ Thus we have, $T(n) \in \Theta(n \lg n)$