Project 2: ANSYS DOE

By: Cristian Herrera

Design Optimization Fall 2021: Yi Ren

12/5/2021

Initial Setup

The following setup outlines the input and output parameters as well as the initial settings of the design experiment outlined for a brake disc and pads. Here the system was designed to minimize thermal loading as well as the maximum Von-Misses stress experienced by the system while simultaneously maximizing the first natural frequency experienced by the brake disk.

Geometry:

Mesh:

Details of "Patch Conforming Method" - Met $\blacktriangledown \ \ \ \Box \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $						
Scope	Scope					
Scoping Metho	d Geometry Selection					
Geometry	3 Bodies					
- Definition						
Suppressed	No					
Method	Tetrahedrons					
Algorithm	Patch Conforming					
Element Order	Use Global Setting					

D	Details of "Face Sizing" - Sizing ✓ Д □ 🗙					
	Scope					
П	Scoping Method	Geometry Selection				
	Geometry	2 Faces				
⊟	Definition					
	Suppressed	No				
	Type	Element Size				
	Element Size	3.e-003 m				
⊟	Advanced					
	Default					
	Influence Volume	No				
	Behavior Soft					

Material Assignment:

Boundary Conditions:

Loads and Contacts

Details of "Equivalent Str	ess"				
Identifier					
Suppressed	No				
☐ Integration Point Resu	lts				
Display Option	Averaged				
Average Across Bodies	No				
Results					
Minimum	1.9084e+005 Pa				
P Maximum	1.3503e+007 Pa				
Average	5.1069e+006 Pa				
Minimum Occurs On	Solid				
Maximum Occurs On	Solid				
Minimum Value Over T	īme				
Minimum	10879 Pa				
Maximum	1.9084e+005 Pa				
Maximum Value Over 1	Maximum Value Over Time				
Minimum	2.3995e+006 Pa				
Maximum	1.3503e+007 Pa				
Information					

Modal setup:

D	etails of "Total Deform	nation" • 🔻 🗆 🗙				
⊟	Scope					
	Scoping Method	Geometry Selection				
	Geometry	All Bodies				
⊟	Definition					
	Туре	Total Deformation				
	Mode	7.				
	Identifier					
	Suppressed	No				
⊟	Results					
	Minimum	2.6206e-004 m				
	Maximum	0.8068 m				
	Average	0.34276 m				
	Minimum Occurs On	Solid				
	Maximum Occurs On	Solid				
⊟	Information					
P Frequency 1616. Hz						

Transient Thermal:

D	etails of "Temperature"					
	Scope	Scope				
	Scoping Method	Scoping Method Geometry Selection				
	Geometry	All Bodies				
_	Definition					
	Туре	Temperature				
	Ву	Time				
	Display Time	Last				
	Calculate Time History	Yes				
	Identifier					
	Suppressed	No				
_	Results					
	Minimum	34.994 °C				
	P Maximum	341.13 °C				
	Average	145.71 °C				
	Minimum Occurs On	Solid				
	Maximum Occurs On	Solid				
_	Minimum Value Over T	ime				
	Minimum	10.476 °C				
	Maximum	34.995 °C				
-	Maximum Value Over 1	Time				
	Minimum	60.307 °C				

Input Parameters:

D	Details View					
	Show Constraints? No					
_	Dimensions: 11					
	☐ H18	5 mm				
	☐ H20	30 mm				
	☐ H21	35 mm				
	☐ H27	5 mm				
	P H28	25 mm				
	☐ V13	5 mm				
	☐ V26	30 mm				
	P V29	125 mm				
	P V30	75 mm				
	☐ V31	30 mm				
	□ V9	5 mm				
⊟ Edges: 13						
	Line	Ln8				
	Line	Ln9				

Design of Experiments:

The design of experiments method used is optimal space filling with user defined samples as was recommended in the tutorial and ran 50 samples to ensure a decent sample size was reached.

	A	В
1		Enabled
2		
3		
4	☐ 🤪 Geometry (A1)	
5	P1 - rotor_thickness	√
6	P2 - rotor_OD	V
7	P3 - rotor_ID	V
8	■ Output Parameters	
9		
10	P4 - Equivalent Stress Maximum	
11	☐ Modal (C1)	
12	P5 - Total Deformation Reported Frequency	
13	☐ [Transient Thermal (D1) ☐	
14	P6 - Temperature Maximum	
15	☐ Charts	
16	✓₩ Parameters Parallel	
17	✓ M Design Points vs Parameter	

Propertie	es of Outline A2: Design of Experiments	▼ ф X
	A	В
1	Property	Value
2	■ Design Points	
3	Preserve Design Points After DX Run	
4	■ Failed Design Points Management	
5	Number of Retries	0
6	■ Design of Experiments	
7	Design of Experiments Type	Optimal Space-Filling Design
8	Design Type	Max-Min Distance
9	Maximum Number Of Cycles	10
10	Samples Type	User-Defined Samples
11	Random Generator Seed	0
12	Number of Samples	50
13	■ Design Point Report	
14	Report Image	None

Propertie	Properties of Outline A5: P10 - rotor_thickness				
	A	В			
1	Property	Value			
2	■ General				
3	Units	Units mm			
4	Туре	Design Variable			
5	Classification Continuous				
6	■ Values				
7	Lower Bound	20			
8	Upper Bound	30			
9	Allowed Values	Any			

Properties of Outline A6: P11 - rot		tor_OD ▼ Ţ X			
	A	В			
1	Property	Value			
2	■ General				
3	3 Units mm				
4 Type Design Variable					
5 Classification Continuous					
6	■ Values				
7	Lower Bound	122			
8	Upper Bound	150			
9	Allowed Values	Any			

Propertie	es of Outline A7: P12 - rot	tor_ID ▼ Ţ X
	A	В
1	Property	Value
2	■ General	
3	Units	mm
4	Type	Design Variable
5	Classification	Continuous
6	■ Values	
7	Lower Bound	61
8	Upper Bound	88
9	2 = General 3 Units mm 4 Type Design Variable 5 Classification Continuous 6 = Values 7 Lower Bound 61 8 Upper Bound 88	

Table o	f Outline A2: [Design Points of Design of Experime					
	А	В	С	D	E	F	G
1	Name 🔻	P10 - rotor_thickness (mm)	P11 - rotor_OD (mm)	P12 - rotor_ID (mm)	P4 - Equivalent Stress Maximum (Pa)	P5 - Total Deformation Reported Frequency (Hz)	P6 - Temperature Maximum (C)
2	1	24.1	124.52	83.95	1.416E+07	1412.5	341.36
3	2	22.9	140.2	78.55	1.1502E+07	1301.2	348.21
4	3	20.5	139.64	66.67	1.093E+07	1242.3	359.22
5	4	26.7	142.44	87.73	1.2207E+07	1206.3	341.06
6	5	20.9	130.12	65.05	1.1183E+07	1427.6	357.44
7	6	29.1	128.44	73.15	1.1854E+07	1663.1	333.97
8	7	23.7	143	86.65	1.1748E+07	1175.1	346.94
9	8	24.9	143.56	62.35	1.1607E+07	1232.3	340.91
10	9	23.5	131.8	76.93	1.1186E+07	1454.5	347.34
11	10	22.3	136.84	61.81	1.1145E+07	1280.4	349.8
12	11	23.1	126.2	63.97	1.1147E+07	1572.6	344.9
13	12	21.1	134.04	72.61	1.1106E+07	1423.9	355.75
14	13	29.9	135.16	78.01	1.24E+07	1495.8	336.72
15	14	26.1	129.56	72.07	1.1829E+07	1596.3	339.79
16	15	22.1	135.72	85.57	1.1459E+07	1252.6	351,44
17	16	25.3	148.04	82.33	1.1978E+07	1186	340.06
18	17	29.7	144.68	71.53	1.2839E+07	1374.8	331.87
19	18	28.7	146.36	81.79	1.29E+07	1262.2	333.75
20	19	20.3	129	79.09	1.1333E+07	1436.7	360.44
21	20	20.7	144.12	73.69	1.1393E+07	1219	360
22	21	20.1	137.4	80.17	1.1097E+07	1295.9	363.23
23	22	22.7	123.4	77.47	1.3737E+07	1555.4	349.34
	23	28.1	141.88	62.89	1.2509E+07	1362.8	335.76
24	24	21.3	125.64	70.99	1.1443E+07	1597.1	349.78
25 26	25	24.5	148.6	67.75	1.1406E+07	1188.8	343.22
26	25	24.7	132.92	86.11	1.1406E+07 1.2143E+07	1305.1	345.3
	27	26.5	131.24	79.63		1465.4	340.15
28	28		126.76	64.51	1.1625E+07 1.1324E+07	1645	337.45
29	29	25.9 25.5	134.6	61.27	1.1325E+07	1419.1	338.56
30							
31	30	22.5	149.16	76.39	1.1435E+07	1160.4	350.32
32	31	21.5	145.8	83.41	1.1354E+07	1159.2	357
33	32	28.3	132.36	63.43	1.1892E+07	1574	335.16
34	33	23.9	133.48	68.29	1.1172E+07	1477.5	345.54
35	34	29.5	136.28	68.83	1.219E+07	1549.7	338.23
36	35	23.3	141.32	69.91	1.1382E+07	1321.4	346.9
37	36	28.5	125.08	66.13	1.3862E+07	1771.3	334.73
38	37	28.9	138.52	84.49	1.2403E+07	1327.6	335.61
38	37	28.9	138.52	84.49	1.2403E+07	1327.6	335.61
39	38	29.3	127.32	81.25	1.2494E+07	1521.7	334.28
40	39	24.3	122.84	70.45	1.4286E+07	1719.6	343.7
41	40	27.1	122.28	74.23	1.2748E+07	1725	344.42
42	41	25.1	145.24	74.77	1.1509E+07	1276.5	340.18
43	42	27.5	147.48	67.21	1.2635E+07	1278	335.06
44	43	26.9	123.96	82.87	1.2595E+07	1479.1	339.31
45	44	21.7	127.88	85.03	1.1357E+07	1334.5	354.49
46	45	27.7	130.68	87.19	1.2322E+07	1348	338.82
47	46	26.3	137.96	69.37	1.1432E+07	1445.7	336.87
48	47	27.3	149.72	75.31	1.2222E+07	1235.4	335.16
49	48	27.9	140.76	75.85	1.2083E+07	1393.2	334.37
50	49	21.9	146.92	65.59	1.1289E+07	1125	352.37
51	50	25.7	139.08	80.71	1.1653E+07	1334.8	339.77

Response Surface:

For the response surface algorithm I chose kriging because I was not worried about the computation times as my sample size is not particularly large and I wanted my model to fit right through my data points because I trusted I followed the tutorial and got the simulation results I needed

Table of	Table of Outline A20: Verification Points							
	A	В	С	D	E	F	G	
1	Name 💌	P10 - rotor_thickness (mm)	P11 - rotor_OD (mm)	P12 - rotor_ID (mm)	P4 - Equivalent Stress Maximum (Pa)	P5 - Total Deformation Reported Frequency (Hz)	P6 - Temperature Maximum (C)	
2	1	29.925	149.85	87.874	1.8404E+07	1164.4	335.46	
3	2	20.316	149.54	61.307	1.0358E+07	1026.8	351.24	
4	3	20.936	122.03	62.297	1.1697E+07	1590.7	366.35	
5	4	29.978	149.53	62.143	1.3563E+07	1272.9	332.05	
6	5	29.86	122.13	62.047	1.3372E+07	1856	340.96	
7	6	29.706	123.18	71.086	1.2739E+07	1808.3	333.08	
8	7	20.054	147.81	87.319	2.126E+07	1075.8	363.08	
9	8	20.238	122.05	75.329	1.1426E+07	1613.6	370.97	
10	9	26.193	122.02	86.344	1.4418E+07	1397.3	346.08	
11	10	29.939	149.8	75.744	1.3185E+07	1281.3	332.67	
12	11	29.024	122.2	87.649	1.5824E+07	1409.4	342.14	
13	12	20.027	122.27	86.828	1.4248E+07	1299.7	372.45	
14	13	20.266	140.32	87.81	1.9092E+07	1152.2	360.83	
15	14	20.09	149.19	78.61	1.12E+07	1112.5	363.23	
16	15	22.87	149.57	87.767	1.6393E+07	1072.1	349.32	
17	16	27.42	149.16	87.538	1.5018E+07	1146.8	337.34	
18	17	20.204	149.57	69.85	1.1134E+07	1110	360.99	
*	New Verification Point							

Table of Schematic E3: Response Surface							
	A	A B C		D			
1		P4 - Equivalent Stress Maximum	P5 - Total Deformation Reported Frequency	P6 - Temperature Maximum			
2	■ Coefficient of Determination (Best Value = 1)						
3	Learning Points	1	Å 1	☆ 1			
4	Root Mean Square Error (Best Value = 0)						
5	Learning Points	0.19662	2.148E-05	3.1029E-07			
6	Verification Points	0.158	1.7628E-05	3.8641E-07			
7	Relative Maximum Absolute Error (Best Value = 0%)						
8	Learning Points	♣ 0	♣ 0	♣ 0			
9	Verification Points	☆ 0	♣ •	♣ 0			
10	■ Relative Average Absolute Error (Best Value = 0%)						
11	Learning Points	♣ •	♣ 0	♣ 0			
12	Verification Points	* 0	♣ •	♣ 0			

Optimization:

For my optimization algorithm I did a combination of SQP and MOGA across multiple runs to find the optimum result. I used MOGA for the run where I was running all three output parameters as optimization objectives and then SQP for when I was running one objective and multiple constraints.

1.Run for all 3 output parameters

Table of Schematic F4: Optimization						
	A	В	С	D		
1	■ Optimization Study					
2	Minimize P4	Goal, Minimize P4 (Default importance)				
3	Maximize P5	Goal, Maximize P5 (Defa	ault importance)			
4	Minimize P6	Goal, Minimize P6 (Defa	ult importance)			
5	■ Optimization Method					
6	MOGA	The MOGA method (Multi-Objective Genetic Algorithm) is a variant of the popular NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum.				
7	Configuration	Generate 3000 samples initially, 600 samples per iteration and find 3 candidates in a maximum of 20 iterations.				
8	Status	Converged after 6609 evaluations.				
9	■ Candidate Points					
10		Candidate Point 1	Candidate Point 2	Candidate Point 3		
11	P10 - rotor_thickness (mm)	24.448	24.436	24.424		
12	P11 - rotor_OD (mm)	135.26	135.09	135.57		
13	P12 - rotor_ID (mm)	65.402	65.464	65.537		
14	P4 - Equivalent Stress Maximum (Pa)	→ 1.0217E+07	- 1.0216E+07	- 1.0214E+07		
15	P5 - Total Deformation Reported Frequency (Hz)	1410.2	1414.6	1404.9		
16	P6 - Temperature Maximum (C)	× 342.39	** 342.46	X 342.5		

Design Changes:

Rotor Thickness: 25 mm → 24.448 mm

Outer Diameter: 125 mm → 135.26 mm

Inner Diameter: 75 mm → 65.402 mm

Objective Improvements:

Maximum Von-Mises stress: 1.3503e+007 Pa → 1.0217e+007

Percent improvement: 24.33%

Total Deformation Reported Frequency: 1616 Hz → 1396.7 Hz

Percent Improvement: -13.5%

Temperature Maximum: 341.13 C → 342.39 C

Percent Improvement: -0.37%

Percent Improvement overall: 10.46%

2.Run to minimize stress with Freq > 1200 Hz and Temp < 350 C

Table of Schematic F4: Optimization						
	A	В	С	D	E	
1	■ Optimization Study					
2	Minimize P4	Goal, Minimize P4 (Default importance)				
3	P5 >= 1200 Hz	Strict Constraint, P5 values greater than or equals to 1200 Hz (Default importance)				
4	P6 <= 350 C	Strict Constraint, P6 va	lues less than or equals t	o 350 C (Default importa	nce)	
5	■ Optimization Method					
6	MISQP	The MISQP method (Mixed-Integer Sequential Quadratic Programming) solves mixed-integer nonlinear programming problems by a modified sequential quadratic programming (SQP) method . Under the assumption that integer variables have a smooth influence on the model functions, i .e., that function values do not change drastically when in- or decrementing an integer variable, successive quadratic approximations are applied. It supports a single objective and multiple constraints. The starting point must be specified to determine the region of the design space to explore.				
7	Configuration	Approximate derivatives by Central difference and find 3 candidates in a maximum of 20 iterations.				
8	Status	Converged after 69 evaluations.				
9	■ Candidate Points					
10		Starting Point	Candidate Point 1	Candidate Point 2	Candidate Point 3	
11	P10 - rotor_thickness (mm)	25	24.062	24.018	23.906	
12	P11 - rotor_OD (mm)	136	136.44	136.7	137.14	
13	P12 - rotor_ID (mm)	74.5	75.752	75.67	75.911	
14	P4 - Equivalent Stress Maximum (Pa)	→ 1.0773E+07	→ 1.0377E+07	→ 1.0379E+07	= 1.039E+07	
15	P5 - Total Deformation Reported Frequency (Hz)	1433.2	1400.5	1396.3	1385.5	
16	P6 - Temperature Maximum (C)	341	344.39	344.4	344.73	

Design Changes:

Rotor Thickness: 25 mm → 24.062 mm

Outer Diameter: 125 mm → 136.44 mm

Inner Diameter: 75 mm → 75.752 mm

Objective Improvements:

Maximum Von-Mises stress: 1.3503e+007 Pa → 1.0773e+007

Percent improvement: 20.21%

Total Deformation Reported Frequency: 1616 Hz → 1433.2 Hz

Percent Improvement: -11.3%

Temperature Maximum: 341.13 C → 341 C

Percent Improvement: 0.00%

3.Run to maximize Frequency with Stress < 1.5e+7 Pa and Temp < 350 C

Table of Schematic F4: Optimization							
	A	В	С	D	E		
1	■ Optimization Study						
2	Maximize P5 Goal, Maximize P5 (Default importance)						
3	P4 <= 1.5E+07 Pa Strict Constraint, P4 values less than or equals to 1.5E+07 Pa (Default importance)						
4	P6 <= 370 C	Strict Constraint, P6 values	less than or equals to 370 C (D	efault importance)			
5	□ Optimization Method						
6	MISQP	The MISQP method (Mixed-Integer Sequential Quadratic Programming) solves mixed-integer nonlinear programming problems by a modified sequential quadratic programming (SQP) method. Under the assumption that integer variables have a smooth influence on the model functions, i.e., that function values do not change drastically when in- or decrementing an integer variable, successive quadratic approximations are applied. It supports a single objective and multiple constraints. The starting point must be specified to determine the region of the design space to explore.					
7	Configuration	Approximate derivatives by Central difference and find 3 candidates in a maximum of 20 iterations.					
8	Status	Converged after 39 evaluations.					
9	□ Candidate Points						
10		Starting Point	Candidate Point 1	Candidate Point 2	Candidate Point 3		
11	P10 - rotor_thickness (mm)	25	30	30	28.14		
12	P11 - rotor_OD (mm)	136	122	122	122		
13	P12 - rotor_ID (mm)	74.5	65.972	63.76	62.282		
14	P4 - Equivalent Stress Maximum (Pa)	1.0773E+07	1.4576E+07	1.3774E+07	1.298E+07		
15	P5 - Total Deformation Reported Frequency (Hz)	1433.2	1880.7	1873.3	1804.7		
16	P6 - Temperature Maximum (C)	341	336.74	339.31	342.72		

Design Changes:

Rotor Thickness: 25 mm → 30 mm

Outer Diameter: 125 mm → 122 mm

Inner Diameter: 75 mm → 65.972 mm

Objective Improvements:

Maximum Von-Mises stress: 1.3503e+007 Pa → 1.4576e+007

Percent improvement: -7.94%

Total Deformation Reported Frequency: 1616 Hz → 1876.2 Hz

Percent Improvement: 16.44%

Temperature Maximum: 341.13 C → 338.28 C

Percent Improvement: 1.29%

Percent Improvement Total: 9.79%

4.Run to Minimize Temp with Stress < 1.4e+7 Pa and Freq >1200 Hz

Table of Schematic F4: Optimization							
	A	В	С	D	E		
1	■ Optimization Study						
2	Minimize P6; P6 <= 370 C	Goal, Minimize P6 (Default importance); Strict Constraint, P6 values less than or equals to 370 C (Default importance)					
3	P5 >= 1200 Hz	Strict Constraint, P5 values	greater than or equals to 1200	Hz (Default importance)			
4	P4 <= 1.4E+07 Pa	Strict Constraint, P4 values l	less than or equals to 1.4E+07	Pa (Default importance)			
5	■ Optimization Method						
6	MISQP	The MISQP method (Mixed-Integer Sequential Quadratic Programming) solves mixed-integer nonlinear programming problems by a modified sequential quadratic programming (SQP) method. Under the assumption that integer variables have a smooth influence on the model functions, i.e., that function values do not change drastically when in- or decrementing an integer variable, successive quadratic approximations are applied. It supports a single objective and multiple constraints. The starting point must be specified to determine the region of the design space to explore.					
7	Configuration	Approximate derivatives by Central difference and find 3 candidates in a maximum of 20 iterations.					
8	Status	Status Converged after 63 evaluations.					
9	■ Candidate Points						
10		Starting Point	Candidate Point 1	Candidate Point 2	Candidate Point 3		
11	P10 - rotor_thickness (mm)	25	29.928	30	30		
12	P11 - rotor_OD (mm)	136	138.74	138.51	138.19		
13	P12 - rotor_ID (mm)	74.5	69.867	71.383	72.619		
14	P4 - Equivalent Stress Maximum (Pa)	1.0773E+07	1.2225E+07	1.2214E+07	1.22E+07		
15	P5 - Total Deformation Reported Frequency (Hz)	1433.2	1503.8	1498.2	1495.3		
16	P6 - Temperature Maximum (C)	→ 341	→ 332.2	→ 332.9	→ 333.45		

Design Changes:

Rotor Thickness: 25 mm → 29.928 mm

Outer Diameter: 125 mm → 138.74 mm

Inner Diameter: 75 mm → 69.867 mm

Objective Improvements:

Maximum Von-Mises stress: 1.3503e+007 Pa → 1.2225e+007

Percent improvement: 9.46%

Total Deformation Reported Frequency: 1616 Hz → 1503.8 Hz

Percent Improvement: -6.94%

Temperature Maximum: 341.13 C → 332.2 C

Percent Improvement: 2.69%

Percent Improvement Total: 5.21%

Trade Offs:

Equivalent stress Maximum:

Total Deformation Reported Frequency:

Temperature Maximum:

Analysis

Pareto Curve/ Trade-offs:

When optimizing for multiple objectives there will more than likely be trade-offs associated with the design. The trade-offs for these objectives are outlined in the above pareto curves. Here we can see that as we increase the rotor thickness the maximum temperature reached by the rotor decreases however the maximum Von-Mises stress experienced increases, furthermore the first modal frequency seems to have little to no correlation when it come to the thickness of the brake disc. On the subject of rotor outer diameter, it seems that the first modal frequency has a very strong correlation, as the outer diameter increases the first frequency decreases, and the other objectives remain unaffected. Lastly for the rotor inner diameter there seems to be a very slight increase in the maximum temperature and a very slight decrease in the maximum von mises stress.

Sensitivity:

The below graph shows the sensitivity or how much a change in the input parameter effects the output parameter we can see that equivalent stress is not particularly sensitive to any one input parameter however the first modal frequency has a high sensitivity to the rotor outer diameter meaning small changes in the outer diameter can affect the output of the first modal frequency significantly this correlation was also outlined in the pareto curves discussed above. Another section of this graph that stands out is the maximum temperature where a change in the thickness has the most effect by far on the rotor temperature and this was also outlined in the above pareto curves. The variables with the most impact in order are rotor thickness, outer diameter then inner diameter.

Optimal Design:

Initial Geometry

Final Geometry

Design Changes:

Rotor Thickness: 25 mm → 24.448 mm

Outer Diameter: 125 mm → 135.26 mm

Inner Diameter: 75 mm → 65.402 mm

Objective Improvements:

Maximum Von-Mises stress: 1.3503e+007 Pa **→** 1.0217e+007

Percent improvement: 24.33%

Total Deformation Reported Frequency: 1616 Hz → 1396.7 Hz

Percent Improvement: -13.5%

Temperature Maximum: 341.13 C → 342.39 C

Percent Improvement: -0.37%

Percent Improvement overall: 10.46%

Overall, this design seems feasible the only issue that might arise is that during manufacturing the small lip that exists between the main barrel where the rotor is mounted, and the inner diameter may be more expensive than it is worth to produce or potentially the rotor may be too large to fit inside of the wheel of the car.