Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 10

Виконав студент <u>ІП-11, Друзенко Олександра Юріївна</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Мартинова Оксана Петрівна</u> (прізвище, ім'я, по батькові)

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 10

Для заданого натурального числа n отримати послідовність a_1, a_2, \ldots, a_n , утворену за законом $a_n = x^n/(2n)!$, $n = 1, 2, \ldots$

1.Постановка задачі

Потрібно утворити арифметичний цикл, який буде обчислювати та виводити на екран п членів послідовності. Тіло циклу буде включати в себе знаходження члена послідовності та виведення його в консоль.

2.Математична модель

Змінна	Тип	Ім'я	Призначення
Кількість елементів	int	n	Початкове дане
послідовності			
число х	float	X	початкове дане
знаменник	int	den	проміжне дане
Лічильник	int	i	проміжне дане
Елемент	float	a	результат
послідовності			

Функція pow(a,b) — піднесення числа а до степеня b.

Функція print() – виведення на екран

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо дію присвоєння змінним свого значення

Крок 3. Деталізуємо цикл знаходження та виведення членів суми

3.Псевдокод

Крок 1.

Початок

- 1. присвоєння змінним свого значення
- 2. Знаходження та виведення членів суми

Кінець

Крок 2.

Початок

- 1. den:=1, n, x;
- 2. Знаходження та виведення членів суми

Кінець

Крок 3.

Початок

- 1. den:=1, n, x;
- 2. Повторити для i від 1 до n включно

все повторити

Кінець

4.Блок-схема

5. Випробування алгоритму

Блок	Дія	
	Початок	
1	Задання n=3, x=10	
	den:=1,	
2.1	Повторити для і від 1 до 3 (i=1)	
2.1	$den^* = (2*1)*(2*1-1) = 2;$	
	$a=(10^1)/2=5$	
	print(a1=5)	
2.2	Повторити для і від 1 до 3 (i=2)	
2.2	$den^* = (2^*2)^*(2^*2-1) = 4^*3^*2 = 24;$	
	a=(10^2)/24=4,17	
	print(a2=4,17)	
2.3	Повторити для і від 1 до 3 (і=3)	
2.3	$den^* = (2*3)*(2*3-1) = 6*5*24=720;$	
	a=(10^3)/720=1,39	
	print(a3=1,39)	
	Кінець	

6. Висновок

Отже, сьогодні я дослідила арифметичний цикл та набула практичних навичок його створення та використання. В результаті лабораторної роботи я розробила алгоритм який виводить задане число членів послідовності, які знаходяться за формулою. Алгоритм складається з трьох кроків, останній з них арифметичний цикл. Я навчилася деталізувати кроки арифметичного циклу в псевдокоді та блок-схемою. Випробувавши алгоритм, я отримала шукані результати. Алгоритм працює.