Privacy Homomorphism and Applications through Symmetric Key Encryption Algorithms

4th Febrary 2023 Devesh C Jinwala, Professor (HAG), SVNIT, Surat and Adjunct Professor, IIT Jammu

Sardar Vallabhbhai National Institute of Technology Surat

1

Homomorphic Encryption [Peter et al]

- A privacy homomorphism (PH) is
 - an encryption transformation that allows direct computation on encrypted data.

 - □ Let K be the key space.
 - □ The encryption transformation is E: K X Q \rightarrow R and the corresponding decryption transformation is D: K X R \rightarrow Q.
 - $\hfill\Box$ Given a, $b\in Q$ and $k_1,k_2\in K,$ we term

$$a + b = D_{k}(E_{k}(a) \oplus E_{k}(b))$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

2/36

An Illustration

Additive Privacy homomorphism.....

Let $x_1 = 20$ and $x_2 = 22$, to compute $x_1+x_2 = 42$

Use an encryption scheme, for example $E(x) = e^x$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

2/26

3

An Illustration

Additive Privacy homomorphism.....

Let $x_1 = 20$ and $x_2 = 22$, to compute $x_1+x_2 = 42$

Use an encryption scheme, for example $E(x) = e^x$

Server stores $E(x_1) = e^{20}$ and $E(x_2) = e^{22}$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

4/36

An Illustration

Additive Privacy homomorphism.....

```
Let x_1 = 20 and x_2 = 22, to compute x_1 + x_2 = 42

Use an encryption scheme, for example E(x) = e^x

Server stores E(x_1) = e^{20} and E(x_2) = e^{22}

Compute using encrypted data y = E(x_1) E(x_2) = e^{20} e^{22} = e^{42}
```

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

E/26

5

An Illustration

Additive Privacy homomorphism.....

Let
$$x_1 = 20$$
 and $x_2 = 22$, to compute $x_1 + x_2 = 42$

Use an encryption scheme, for example $E(x) = e^x$

Server stores $E(x_1) = e^{20}$ and $E(x_2) = e^{22}$

Compute using encrypted data $y = E(x_1) E(x_2) = e^{20}.e^{22} = e^{42}$

Decrypt z = D(y) = ln(y) $z = D(y) ln (e^{42}) = 42$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

6/36

Definition

- Homomorphic encryption is a form of encryption that allows for some computations to be performed on the ciphertext without decrypting the ciphertext.
- The result of the operations is returned as an encrypted result, which when decrypted is the same as if some operation was performed on the plaintext.
 - Useful in implementation of secure voting systems and in cloud computing.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

7/3

7

Homomorphic Encryption Types

- Partially Homomorphic Encryption
- Fully Homomorphic Encryption

Partially homomorphic cryptosystems are those that allow for either addition OR multiplication operation ONLY to be performed on the ciphertext, but not both.

A cryptosystem is considered fully homomorphic if it exhibits both additive and multiplicative homomorphism.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

8/36

Algorithms for Secure Data Aggregation

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

9/3

9

SDA using HE...

- Secure Data Aggregation using Homomorphic Encryption
 - □ Three broad approaches.....consisting of algorithms
 - · based on polynomial rings using SKC
 - Domingo-Ferrer, Castelluccia, Domingo-Ferrer + Castelluccia
 - based on one-time pads
 - CMT 2005 (in Mobiquitous 2005)
 - based on PKC
 - Okamoto Uchiyama, Goldwasser-Micali, Benaloh, Elgamal, RSA, Paillier
 - the ECC versions with the focus on improving the overhead

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

SDA using HE...

- Secure Data Aggregation using Homomorphic Encryption
 - □ Three broad approaches.....consisting of algorithms
 - · based on polynomial rings using SKC
 - Domingo-Ferrer, Castelluccia, Domingo-Ferrer + Castelluccia
 - · based on one-time pads
 - CMT 2005 (in Mobiquitous 2005)
 - · based on PKC
 - Okamoto Uchiyama, Goldwasser-Micali, Benaloh, Elgamal, RSA, Paillier
 - the ECC versions with the focus on improving the overhead

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

11/3

11

Symmetric Key Homomorphic Algorithms

- Castelluccia's Algorithm
- Domingo-Ferrer's Algorithm
- Stefeen Peter's Algorithm

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Symmetric Key Homomorphic Algorithms

- Castelluccia's Algorithm
- Domingo-Ferrer's Algorithm
- Stefeen Peter's Algorithm

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

13/3

13

Castelluccia's Algorithm

```
Algorithm Casstelluccia ()
```

Parameters: Select large integer M Encryption: Message $m \in [0, M-1]$,

Randomly generated key stream $k \in [0, M-1]$

 $c = (m + k) \mod M$

Decryption: $m = (c-k) \mod M$ Aggregation: $c_{12} = (c_1 + c_2) mod M$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Castelluccia's Algorithm – Homomorphic Property

$$(C_1 + C_2) \mod n = E(m_1 + m_2) \mod n$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Symmetric Key Homomorphic Algorithms

- Castelluccia's Algorithm
- Domingo-Ferrer's Algorithm
- Stefeen Peter's Algorithm

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

21

Domingo-Ferrer's Algorithm

```
Algorithm Domingo-Ferrer ()
```

Parameters:

Public Key: integer $d \geq 2$, large integer M

Secret Key: g that divides M; r so that r^{-1} exists in Z_M

Encryption: Split m into d parts $m_1..m_d$ such that $\sum_{i=1}^{d} (m_i) \mod g = m$

Aggregation: Scalar addition modulo M: $C_{12} = C_1 + C_2 =$

 $[(c_11 + c_21)modM, ..., (c_1d + c_2d)modM]$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Domingo-Ferrer's Algorithm – Homomorphic Property

$$(C_1 + C_2) \mod n = E(m_1 + m_2) \mod n$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

۷,

Symmetric Key Homomorphic Algorithms

- Castelluccia's Algorithm
- Domingo-Ferrer's Algorithm
- Stefeen Peter's Algorithm

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

28/36

```
Algorithm Casstelluccia+Domingo-Ferrer () Parameters: Public Key: integer d \geq 2, large\ integer\ M Secret Key: g that divides M; r so that \mathbf{r}^{-1}\ exists\ in\ Z_M Encryption: Randomly generated key stream \mathbf{k}\in[0,M-1] e1 = (\mathbf{k}+\mathbf{m}) mod M Split e1 into d parts \mathbf{m}_1..m_d\ such\ that \sum_{i=1}^d (m_i)\ mod\ g=m \mathbf{C}=[\mathbf{c}_1,...,\mathbf{c}_d]=[m_1r^1modM,m_2r^2modM,...,m_dr^dmodM] Aggregation: Scalar addition modulo M: \mathbf{C}_{12}=C_1+C_2=[(c_11+c_21)modM,...,(c_1d+c_2d)modM] Decryption: \mathbf{d}_1=(c_1r^{-1}+c_2r^{-2}+...+c_dr^{-d})modg \mathbf{m}=(d_1-k)\ mod\ M where k is the sum of aggregated key streams
```

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

29/36

29

ЭТ

Stefeen Peter's Algorithm – Homomorphic Property

$$(C_1 + C_2) \mod n = E(m_1 + m_2) \mod n$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

33/3

33

Another Example

```
Aggregation:

(12,26) + (12,17) = (24,43)

Decryption:

(24,43)

= [(24*19)mod28 + (43*19*19)mod28]mod7 =

=5

(5-2)mod28 = 3
```

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

