Python Summer Course

Course 4: Numpy

Théophile Gentilhomme July 11, 2025

Why Use NumPy?

The Problem with Native Python Loops:

- Native Python lists are flexible but slow
- Loops in Python are interpreted line-by-line: not efficient for large data
- For numerical tasks, we often want to apply the same operation to millions of elements

NumPy to the Rescue

- NumPy provides efficient, fixed-type arrays
- Uses **vectorized operations** (implemented in C): much faster than Python loops!
- Reduces code size and boosts performance
- Provide a lot of useful functionalities

Example

```
▶ Run Code
 1 # Import numpy
   import numpy as np
   # To measure time
   import time
   import math
 6
   # Using Python list
 8 py list = list(range(1, 1000000))
 9 start = time.time()
10 py_result = []
11 v for x in py_list:
12
       py_result.append(math.log(2 * math.sqrt(x)))
13
   print("Python time:", round(time.time() - start, 5), "s")
14
15
   # Using NumPy array
   np\_array = np.arange(1000000)
   start = time.time()
   np_result = np.log(2 * np.sqrt(np_array))
19 print("NumPy time:", round(time.time() - start, 5), "s")
```


- NumPy is 10-100x faster for large data and avoids explicit for loops.
- Whenever possible, do not use loop on arrays! Use vector operations
- Numpy is used in Pandas
- If you know Numpy, you know Pytorch (for ML/DL, GPU accelarated library)

Creating NumPy Arrays

NumPy arrays are fixed-type, fast containers for numerical data.

You can create them from list, tuples, list of tuples, etc.

```
Python Code Start Over

import numpy as np

a = np.array([1, 2, 3])

print(a)

print(type(a))

# Type is automatically assigned based on the content of the array

print(a.dtype)

# We can also force a type

a = np.array([1, 2, 3], dtype=np.float)

print(a.dtype)
```


Special arrays

Commun functions to create arrays

Basic Operations on Arrays

NumPy applies operations **elementwise** (vectorized) — no loops needed!

Math functions

Function are applied on each element in parallel

```
Python Code ⊕ Start Over

1  x = np.linspace(0, np.pi, 3)
2  print(np.sin(x))
```


Automatic broadcasting

Operation with a scalar is also automatically applied to each element.

Broadcasting refers to an automatic expansion of an array to match the shape of a larger array. We will see that later in this course.

Multidimensional Arrays

NumPy supports arrays with any number of dimensions: 1D (vector), 2D (matrix), 3D+, etc.

Inspect the array

- Dimensions: number of axes
- Shape: number of elements for each axis
- Size: total numbe of elements

.ndim, .shape, and .size help describe the structure of any array.

Reshaping Arrays

Use reshape () to change the shape of an array without changing its data.

Flattening with ravel()

Can use flatten(), but will make a copy.

Notes

- You can reshape to any shape that preserves total number of elements
- Use −1 to let NumPy infer one dimension:

Statistical Operations on Arrays

NumPy provides fast, vectorized functions to compute common statistics on arrays.

Basic Statistics

Indexing and Slicing Arrays

NumPy arrays support fast access to elements and subarrays using indexing.

This is simular to list manipulation seen before.

Multidimensionnal Indexing

```
▶ Run Code
1_{v} b = np.array([[1, 2, 3],
2
                [4, 5, 6]]
 print(b[0, 1]) # row 0, column 1
 print(b[1]) # entire second row
6 print(b[:, 0]) # all rows, column 0
Python Code | ⊕ Start Over
                                                                         ▶ Run Code
1 b = np.arange (16).reshape (-1, 2, 2)
2 print (b[3, 1, 0])
3 print(b[1]) # equivalent to b[1, :, :]
4 print (b[1].shape)
5 print(b[:, 0]) # equivalent to b[:, 0, :]
6 print (b[:, 0].shape)
```

Use: to select all elements along a dimension

Applying Functions Along an Axis

You can use NumPy functions (like sum, mean, max) with the axis argument to apply them row-wise or column-wise.

Notes

- Works with: np.sum, np.mean, np.std, np.max, np.min, etc.
- Default behavior "remove" the axis where to operation is applied. It can be useful to keep the axis using keepdims=true (keep axis, but its length becomes 1)
- Custom function can be applied using

```
np.apply_along_axis()
```


Concatenating Arrays in NumPy

You can combine multiple arrays using np.concatenate() or

```
np.vstack()/np.hstack().
```


Concatenate 2D Arrays

Important: Arrays must match in shape except along the concatenation

Broadcasting

Broadcasting lets NumPy automatically expand smaller arrays to match larger ones without copying data.

NumPy treats b as:

- Dimensions (axis lenghts) must be equal or 1
- It acts like it copies the elements to match the shape of the larger array, then apply elementwise operation
- Faster than loops
- Less code, more clarity
- Common in data normalization, scaling, or adding biases

Advanced Indexing: Boolean Masks

Boolean indexing lets you select elements **based on conditions**.

Important:

Boolean masks must be the same shape as the array

Index Arrays and Fancy Indexing

You can index using lists or arrays of positions, even in multiple dimensions.

2D Fancy Indexing

Advanced indexing returns a copy, not a view.

Combining Indexing with Slicing (:)

You can mix slicing (:) with Boolean masks or index arrays to target **specific rows or columns**.

1 cols = [1, 2]

2 print(a[:, cols])

Your turn!

You're working with sensor data collected in a lab: each row represents a different sensor, each column a timepoint.

1. Create the dataset of shape (10, 6) using np.random.randint (). Random value must be between 1 and 110.

2. Compute:

- Mean per sensor (using axis=...)
- Max value per sensor
- (Optional) Index of the time when max occurs (using .argmax ())
 [https://numpy.org/doc/stable/reference/generated/numpy.argmax

- 3. Use boolean indexing to select sensors whose **average** reading is above 60
- 4. Subtract mean from each row (sensor), using broadcasting
- 5. Simulate a new column of sensor (i.e. use randint with correct shape) readings and concatenate it to the existing data.

Solution

```
→ Start Over

 Python Code
                                                                          ▶ Run Code
 1
    import numpy as np
 3
    # Simulate 10 sensors over 6 timepoints (values from 0 to 100)
 5
   print("Step 1")
    data = np.random.randint(0, 101, size=(10, 6))
   print (data)
   print("----")
10
    # Statistics
11
12
   print("Step 2")
   mean_per_sensor = data.mean(axis=1)
   print (mean_per_sensor)
15
   print (data.max(axis=1))
   print (data.argmax(axis=1))
   print("----")
19
```


