NOTES ON COMBINATORIAL VECTOR FIELDS

VAIBHAV KARVE

These notes were last updated July 1, 2018. They are notes taken from my reading of the paper Combinatorial vector fields and dynamical systems by Robin Forman.

1. Introduction

- (1) Let M be a finite simplicial complex, with K the set of simplices. If σ and τ are simplices of M, then write $\sigma^{(p)}$ if dim $\sigma = p$ and write $\sigma < \tau$ if σ lies in the boundary of τ .
- (2) A combinatorial vector field on M is a map

$$V: K \to K \cup \{0\}$$

such that

- (a) if $V(\sigma) \neq 0$, then dim $V(\sigma) + 1$ and $\sigma < V(\sigma)$.
- (b) if $V(\sigma) = \tau \neq 0$, then $V(\tau) = 0$.
- (c) for all $\sigma \in K$, $\#V(\sigma) \leq 1$.

in other words:

- (a) V maps simplices to higher simplices (by one dimension). Also, the smaller simplex is contained in the bigger simplex that V maps it to, that is, σ is always a face of $V(\sigma)$.
- (b) A sink (according to V) cannot be a source. This also means $V \circ V = 0$.
- (c) Each sink can have only one source coming into it (via V).
- (d) Simplices that don't map to higher simplices, must map to 0.
- (3) Thus, for every simplex $\sigma^{(p)} \in K$, there are precisely 3 disjoint possibilities:
 - (a) σ is a sink/head, that is $\sigma \in \text{Image}(V)$.
 - (b) σ is a source/tail, that is $V(\sigma) \neq 0$.
 - (c) σ is neither source nor sink, that is $\sigma \notin \text{Image}(V)$ and $V(\sigma) = 0$. In this case, σ is a rest point of V of index p.
- (4) Combinatorial Poincaré-Hopf formula:

$$\chi(M) := \sum_{p=0}^{n} (-1)^p \{ \# \text{ of } p\text{-cells} \} = \sum_{p=0}^{n} (-1)^p \{ \# \text{ of rest points of index } p \}$$