Topic Modeling

Introducción

 Conjunto de técnicas para descubrir estructuras latentes semánticas comunes (topics / temas) en un conjunto de documentos

 Surge del problema: ¿cómo puedo sintetizar la información en una colección grande de documentos con información semi estructurada?

Latent Dirichlet Allocation (LDA)

Introducción

Idea principal

Introducción

Idea principal

LDA (Latent Dirichlet Allocation)

- Modelo probabilístico probabilístico
- Aprendizaje no supervisado (no tenemos información a priori de los posibles topics que hay o, al menos, no están etiquetados)
- Asume que
 - Documentos con topics similares usarán palabras similares
 - Los documentos están compuestos por un conjunto de topics (que siguen una determinada distribución)
 - Los topics están compuestos por un conjunto de palabras (que siguen una determinada distribución)

LDA (Latent Dirichlet Allocation)

- Debe fijarse el vocabulario al inicio
- Conviene prepocesar. En este caso, eliminar stop words suele arrojar mejores resultados
- Representación de bag-of-words
- Debemos definir el número de topics que queremos que extraiga (similar al k-means)

LDA - Parámetros

M - número de documentos

N - número de palabras en el documento M
alpha - factor de densidad de doc-topic
beta - factor de densidad de topic-word
xxi—

Matrix Factorization Interpretation of LDA

1300

LDA - Distribuciones

 Los documentos estarán compuestos por un conjunto de topics (que siguen una determinada distribución)

 Los topics estarán compuestos por un conjunto de palabras (que siguen una determinada distribución)

Madrid | Barcelona | Bogotá

Datos de contacto