Definition 1. Given a partial order (D, \sqsubseteq) , a non-empty subset $\Delta \subseteq D$ is called directed if

$$\forall x, y \in \Delta . \exists z. \ x \sqsubseteq z \ and \ y \sqsubseteq z$$

In the sequel $\Delta \subseteq_{dir}$ stands for: " Δ is a directed subset of D" (when clear from the context, the subscript is omitted). A partial order (D, \sqsubseteq) is called a directed complete partial order (dcpo) if every $\Delta \subseteq D$ has a least upperbound (lub) denoted $\bigsqcup \Delta$. If moreover (Δ, \sqsubseteq) has a least element (written \bot), then it is called a complete partial order (cpo).

Definition 2. Let (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) be partial orders. A function $f: D_1 \to D_2$ is called monotonic if

$$\forall x, y \in D.x \sqsubseteq_1 y \Rightarrow f(x) \sqsubseteq_2 f(y)$$

If D_1 and D_2 are dcpo's, a function $f:D_1\to D_2$ is called continuous if it is monotonic and

$$\forall \Delta \subseteq_{dir} X. f(\bigsqcup_{1} \Delta) = \bigsqcup_{2} f(\Delta)$$

(Notice that a monotonic function maps directed sets to directed sets). A fixpoint of $f: D \to D$ is an element x such that f(x) = x. A prefixpoint of $f: D \to D$ is an element x such that $f(x) \sqsubseteq x$. If f has a least fixpoint, we denote if by fix(f).

Theorem 3. If D is a cpo and $f: D \to D$ is continuous then $\bigsqcup_{n \in \omega} f^n(\bot)$ is a fixpoint of f, and is the least prefixpoint of f (hence it is the least fixpoint of f).

Proof. From $\bot \sqsubseteq f(\bot)$, we get by monotonicity that $\bot, f(\bot), \ldots, f^n(\bot), \ldots$ is a increasing chain, thus is directed. By continuity of f, we have

$$f(\bigsqcup_{n\in\omega}f^n(\perp))=\bigsqcup_{n\in\omega}f^{n+1}(\perp)=\bigsqcup_{n\in\omega}f^n(\perp)$$

Suppose $f(x) \sqsubseteq x$. We show $f^n(\bot) \sqsubseteq x$ by induction on n. The base case is clear by minimality of \bot . Suppose $f^n(\bot) \sqsubseteq x$: by monotonicity $f^{n+1}(\bot) \sqsubseteq f(x)$ and we conclude by transitivity.