

## Indian Association for the Cultivation of Science

(Deemed to be University under the *de novo* category) Integrated Bachelor's-Master's Program

End-Semester Examination-2019 (Semester I/III)

Subject: Calculus of One Variable

 $Subject\ Code(s)$ :  $Mathematics\ I$ 

 $Full\ marks:\ 50$ 

Time allotted: 3 hrs

Instruction: Answer Group A and any THREE from each of Groups B and C.

## GROUP A

1 Answer ANY FIVE from the following:

 $(5 \times 2) = [10]$ 

- (x) State clearly the Archimedean property.
- (b) Define clearly what is meant by a sequence  $\{x_n\}$  converging to a limit x.
- (c) Define what is meant by a subsequence of a sequence  $\{x_n\}$ .
- Define clearly what is meant by the convergence of an infinite series  $\sum_{n} x_n$ .
- State clearly the comparison test for an infinite series.
- (\*) For a function f on an open interval I, how is  $\lim_{x\to a} f(x)$  defined at a point  $a\in I$ ?
- (g) State the intermediate value theorem for a continuous function on an interval.

2. For each of the following statements, you are to only state whether it is **TRUE** or **FALSE**. Attempt **ANY FIVE ONLY**  $(5 \times 2) = [10]$ 

- (a) If A is a bounded non-empty set of rational numbers, then  $\sup A$  is rational.
- (b) Any sequence that converges to a limit must be bounded.
- (e) Any sequence that is not bounded above must diverge to  $+\infty$ .
- If  $x_n y_n \to 0$ , then at least one of  $\{x_n\}$  and  $\{y_n\}$  must converge to 0.
- (e) Every bounded sequence must have a subsequence that converges.
- (f) An infinite series  $\sum x_n$ , with  $|x_n| < 1/n$  for all n, must converge.
- (g) If  $x_n \geq 0, y_n \geq 0$  and  $\sum (x_n + y_n)$  converges, then both  $\sum x_n$  and  $\sum y_n$  converge.
- (h) If f is a function such that  $f^2$  is continuous at a, then f is continuous at a.

## GROUP B: Attempt ANY THREE ONLY (Each Carries 5 Marks)

- Suppose B and C are two non-empty subsets of  $\mathbb{R}$ , both bounded above. Show that, if  $\sup B < \sup C$ , then there must be some  $c \in C$ , which is an upper bound for B.
- 4. Let  $\{x_n\}$  and  $\{y_n\}$  be two real sequences. Prove that, if  $x_n \to 0$  and  $\{y_n\}$  bounded, then  $x_n y_n \to 0$ .

- Let Let  $\{x_n\}$  and  $\{y_n\}$  be two real sequences converging to x and y respectively. Prove that, if x < y, then the sequence  $z_n = \min\{x_n, y_n\}$  must converge to x.
  - 6. Let  $\{x_n\}$  be a sequence of non-negative real numbers. Prove that, if the series  $\sum x_n$ converges, then the series  $\sum x_n^2$  also converges.
  - 7. Let  $\{s_n\}$  denote the sequence of partial sums of the series  $\sum_{n=1}^{\infty} n/2^n$ . (a) Show that, for all  $n \geq 2$ ,  $s_n = \frac{1}{2} \left[ s_n n/2^n + (1 + 2^{-1} + \cdots + 2^{-(n-1)}) \right]$ .

    - (b) From (a), deduce that the series  $\sum_{n=1}^{\infty} n/2^n$  converges and find the sum.
  - 8. Let f be a continuous function on an interval I. Prove that, if f is not a constant function, then it is not possible for f(x) to be rational for every  $x \in I$ .

## GROUP C: Attempt ANY THREE ONLY (Each Carries 5 Marks)

.9 For each of the following sequences, decide, stating reasons, whether it converges or not and. in case it does, identify the limit.

(a) 
$$\left\{ \frac{9^n + (-5)^n + 10n^{20}}{9^{n+1} + 7^{n+5}} \right\}$$
 (b)  $\left\{ \frac{\sqrt{n+3}}{\sqrt{3n+10} - 2} \cos^2(n\pi/2) \right\}$  (c)  $\left\{ \sqrt{4n^2 + 3n} - 2n \right\}$ 

- 19. For an irrational number  $x \in (0,1)$ , let  $x = .a_1a_2a_3...$  denote its decimal expansion
  - (a) Consider the sequence  $\{x_n\}$  where  $x_n$  is the number with the terminating decimal expansion  $x_n = a_1 \dots a_n$ . Show that  $\{x_n\}$  is an increasing sequence of rationals.
  - (b) Show that  $0 < x x_n \le (10)^{-n}$  and hence conclude that  $x_n \to x$ .
- 11. For each of the following infinite series, decide, stating reasons, whether the series converges or not.

(a) 
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

(a) 
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
 (b)  $\sum_{n=1}^{\infty} \frac{\sqrt{3n+1}}{n \log(5n+1)}$  (c)  $\sum_{n=1}^{\infty} n^7 \cdot (5)^{-n^2/5}$ 

(c) 
$$\sum_{n=1}^{\infty} n^7 \cdot (5)^{-n^2/5}$$

- 2. Assume that the exponents  $2^r$  have been defined for every rational r and assume that they satisfy the usual properties of exponents. For every real x, denote S(x)to be the set  $S(x) = \{2^r : r \text{ rational}, r \leq x\}.$ 
  - (a) Show that S(x) is a non-empty set which is bounded above and that, for any rational r,  $2^r = \sup S(r)$ .
  - (b) Defining  $2^x = \sup S(x)$  for every real x, prove that  $2^{x+y} = 2^x \cdot 2^y$
- 13. Find if the following limits exist and if so, identify the limits. Your answers must be justified.

(a) 
$$\lim_{x \to a} \frac{\cos 3x - \cos 3a}{x - a}$$
 (b)  $\lim_{x \to 0+} x \log x$  (c)  $\lim_{x \to \pi/2} \frac{\sin|x - \pi/2|}{x - \pi/2}$ 

(b) 
$$\lim_{x \to 0+} x \log x$$

(c) 
$$\lim_{x \to \pi/2} \frac{\sin|x - \pi/2|}{x - \pi/2}$$

14. Consider the function  $f(x) = [1/x] = \text{integer part of } 1/x \text{ for } x \in (0,2)$ . Identify, with justification, the points  $a \in (0,2)$  where f is continuous and the points  $a \in$ (0,2) where f is not continuous.