The Effect of Data Poisoning on Counterfactual Explanations – Appendix

No Author Given

No Institute Given

11

15

16

20

1 Proofs

1.1 Proof of Theorem 1

Proof. Sketch: For any \vec{x}_{orig} , $h(\vec{x}_{\text{orig}}) = y_{\text{orig}}$, assume uniqueness of the solution \vec{x}' – i.e. the closest sample to \vec{x}_{orig} on the decision boundary:

$$\underset{\vec{x}' \in \mathbb{R}^d}{\arg \min} \|\vec{x}' - \vec{x}_{\text{orig}}\|_{p} \text{ s.t.}
\exists i \neq j : (\vec{x}_{i}, y_{i}), (\vec{x}_{j}, y_{j}) \in \mathcal{D}, y_{i} \neq y_{j}, \text{ with } \|\vec{x}' - \vec{x}_{i}\|_{p} = \|\vec{x}' - \vec{x}_{j}\|_{p}$$
(1)

where we (w.l.o.g.) assume the use of the p-norm as the distance function in the 1-nearest neighbor classifier.

Adding $(\vec{x}', y_{\text{orig}})$ to the training data \mathcal{D} implies that \vec{x}' is no longer the solution to Eq. (1). Therefore, the new closest sample on the decision boundary must have a larger distance to \vec{x}_{orig} than \vec{x}' , otherwise it would have been \vec{x}' before! \square

1.2 Proof of Theorem 2

Proof. Sketch: From the triangle-inequality and $\lambda > \|\vec{x}_i - \vec{x}_j\|_2$ it follows that:

$$\|\vec{x}_i - \vec{x}_j\|_2 + \delta_j' \ge \underbrace{\delta_i + \lambda}_{\delta_i'} \quad \leftrightarrow \quad \delta_j' \ge \delta_i + \lambda - \|\vec{x}_i - \vec{x}_j\|_2 \tag{2}$$

Because of $\delta_j > \delta_i$, we know that $\delta_j = \alpha \delta_i$ for some $\alpha > 1$. This allows us to rewrite Eq. (2):

$$\delta_j' \ge \underbrace{\frac{\delta_j}{\alpha}}_{\delta_i} + \lambda - \|\vec{x}_i - \vec{x}_j\|_2 \tag{3}$$

The desired results follows from choosing $\lambda \geq 2\alpha \delta_j + \|\vec{x}_i - \vec{x}_j\|_2$ yields:

$$\delta'_{j} \geq \frac{\delta_{j}}{\alpha} + \lambda - \|\vec{x}_{i} - \vec{x}_{j}\|_{2}$$

$$\geq \frac{\delta_{j}}{\alpha} + 2\alpha\delta_{j} + \|\vec{x}_{i} - \vec{x}_{j}\|_{2} - \|\vec{x}_{i} - \vec{x}_{j}\|_{2}$$

$$= \delta_{j}$$
(4)

2 No Author Given

2 Experiments

22 2.1 Details on the Classifiers

- RandomForest: 10 decision tree classifiers each with a maximum depth of
- DNN: 3-layer neural network with ReLU activation functions.

2.2 Local Poisoning Attack

Classifier	Data set	Nearest ↑	DiCE ↑	FACE ↑	Proto ↑
DNN	Diabetes	1.59	1.42	1.24	1.89

Table 1: Difference in the cost of recourse: no vs. local poisoning. Positive numbers denote an increase in the cost of recourse. We report the median (over all folds) rounded to two decimal places.

Fig. 1: Local data poisoning: Cost of recourse (over all test samples) in the case of the diabetes data set and a DNN classifier. Cost of recourse without any data poisoning, of untargeted instances and targeted instances in a local data poisoning.

4 No Author Given

2.3 Sub-group Poisoning Attack

(a) \mathcal{D} : Diabetes – $h(\cdot)$: RNF – CF: FACE (b) \mathcal{D} : Diabetes – $h(\cdot)$: SVC – CF: FACE

(c) \mathcal{D} : Credit – $h(\cdot)$: DNN – CF: FACE

(d) \mathcal{D} : Credit – $h(\cdot)$: RNF – CF: FACE

(e) \mathcal{D} : Credit – $h(\cdot)$: SVC – CF: FACE

(f) \mathcal{D} : Crime – $h(\cdot)$: DNN – CF: Nearest

(g) \mathcal{D} : Crime – $h(\cdot)$: RNF – CF: Nearest

(h) \mathcal{D} : Crime – $h(\cdot)$: SVC – CF: Nearest

(c) \mathcal{D} : Diabetes – $h(\cdot)$: SVC – CF: Nearest

(d) \mathcal{D} : Credit – $h(\cdot)$: SVC – CF: Nearest

(e) \mathcal{D} : Credit – $h(\cdot)$: RNF – CF: Nearest

(f) \mathcal{D} : Credit – $h(\cdot)$: SVC – CF: Nearest

(h) \mathcal{D} : Crime – $h(\cdot)$: SVC – CF: Proto

(b)
$$\mathcal{D}$$
: Diabetes – $h(\cdot)$: SVC – CF: Proto

(d) \mathcal{D} : Credit – $h(\cdot)$: SVC – CF: Proto

(e) \mathcal{D} : Credit – $h(\cdot)$: RNF – CF: Proto

(f) \mathcal{D} : Diabetes – $h(\cdot)$: RNF – CF: Proto

(g) \mathcal{D} : Crime – $h(\cdot)$: RNF – CF: Proto

Fig. 7: Sub-group data poisoning attack: Median (over all folds) F1-score of the classifier for different percentages of poisoned samples (0% to 70%).

Fig. 8: Sub-group data poisoning attack: Median (over all folds) F1-score of the classifier for different percentages of poisoned instances (0% to 70%).

28

2.4 Global Poisoning Attack

Fig. 9: Global data poisoning attack: Median (over all folds) difference in the cost of recourse vs. percentage of poisoned instances (5% to 70%).

Fig. 10: Global data poisoning attack: Median (over all folds) difference in the cost of recourse vs. percentage of poisoned instances (5% to 70%).

Fig. 11: Cost of recourse (over all folds) of original data vs. poisoned data – (5% to 70% of poisoned instances).

Fig. 12: Cost of recourse (over all folds) of original data vs. poisoned data – (5% to 70% of poisoned instances).

Fig. 13: Cost of recourse (over all folds) of original data vs. poisoned data – (5% to 70% of poisoned instances).

Fig. 14: Cost of recourse (over all folds) of original data vs. poisoned data – (5% to 70% of poisoned instances).

Fig. 15: Cost of recourse (over all folds) of original data vs. poisoned data - (5% to 70% of poisoned instances).

Fig. 16: Cost of recourse (over all folds) of original data vs. poisoned data – (5% to 70% of poisoned instances).

Fig. 17: Global data poisoning attack: Median (over all folds) F1-score of the classifier for different percentages of poisoned samples (0% to 70%).

Fig. 18: Global data poisoning attack: Median (over all folds) F1-score of the classifier for different percentages of poisoned samples (0% to 70%).