МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 6

по дисциплине: «Вычислительная математика»

Выполнил: ст. группы ПВ-211 Медведев Д.С.

Проверила: Бондаренко Т.В.

Одномерная минимизация функции

Вариант 8

Цель работы: изучить методы нахождения приближенного решения задачи одномерной минимизации функции одной переменной, и получить практические навыки их применения.

Ход работы

8 $y = (2x^2 - 3x)(3x^2 + 3x^2)$	+6)
----------------------------------	-----

- 1. Найти область определения заданной функции y = f(x) и построить её график, используя равномерную сетку значений хі (шаг сетки выбрать самостоятельно).
- 2. Найти промежутки унимодальности функцииу=f(x), используя построенный график.
- 3. Найти первую y'=f'(x) и вторую y''=f''(x) производные заданной функции y=f(x).
- 4. Найти точное решение задачи одномерной минимизации минимум функции y = f(x), точку xT, и минимальное значение функции

5. Найти приближенное решение задачи одномерной

минимизации, точку такую, что вручную, используя численные методы одномерной минимизации:

• метод оптимального поиска;

x	0,8	0,81	0,82	0,83	0,84	0,85	0,86	0,87	0,88	0,89	0,9
f(x)	-8,8704	-8,9069657	-8,9407814	-8,9717837	-8,9999078	-9,0250875	-9,047255	-9,0663413	-9,0822758	-9,0949865	-9,1044
0,89	0,9	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1

 $x_{\min} = 0.92$

 $f(x_{min}) = -9.113$

метод деления отрезка пополам

метод деления отрезка пополам;						
Шаг	а	b	delta			
0	0	1,5				
f	0	0				
1	0,749	0,751				
f	-8,643363	-8,653488				
Новый отрезок	0,749	1,5	0,751			
2	1,1235	1,1255				
f	-8,2795522	-8,2616065				
Новый отрезок	0,749	1,1255	0,3765			
3	0,93625	0,93825				
f	-9,1096918	-9,1086203				
Новый отрезок	0,749	0,93825	0,18925			
4	0,842625	0,844625				
f	-9,0068052	-9,0119235				
Новый отрезок	0,842625	0,93825	0,095625			
5	0,8894375	0,8914375				
f	-9,0943584	-9,0965444				
Новый отрезок	0,8894375	0,93825	0,0488125			
6	0,91284375	0,91484375				
f	-9,1115329	-9,1121327				
Новый отрезок	0,91284375	0,93825	0,02540625			
7	0,92454688	0,92654688				
f	-9,1130518	-9,1128267				
Новый отрезок	0,91284375	0,92654688	0,01370313			
8	0,91869531	0,92069531				
f	-9,1128943	-9,1130843				
Новый отрезок	0,91869531	0,92654688	0,00785156			

 $x_{min} = 0.9187$ $f(x_{min}) = -9.1129$

• метод, основанный на использовании чисел Фибоначчи

Шаг	a	b	delta	i	Числа Фибоначчи
				0	1
0	0	1,5	1,5	1	1
f	0	0		2	2
				3	3
1	0,57291667	0,92708333		4	5
f	-7,4197285	-9,112742		5	8
Новый отрезок	0,57291667	1,5	0,92708333	6	13
				7	21
2	0,92708333	1,14583333		8	34
f	-9,112742	-8,0666493		9	55
Новый отрезок	0,57291667	1,14583333	0,57291667	10	89
				11	144
3	0,79166667	0,92708333		12	233
f	-8,8378725	-9,112742		13	377
Новый отрезок	0,79166667		0,35416667	14	610
				15	987
4	0,92708333	1,01041667		16	1597
f	-9,112742			17	2584
Новый отрезок	0,79166667		0,21875		
	0,1020001		0,220.0		
5	0.875	0,92708333			
f	-9,074707	-9,112742			
Новый отрезок		1,01041667			
	0,070		0,200 .200		
6	0 92708333	0,95833333			
f		-9,0896087			
Новый отрезок	-	0,95833333			
riobbin orpeson	0,073	0,55055555	0,00333333		
7	0 90625	0,92708333			
f	-9,1085758	-9,112742			
Новый отрезок		0,95833333	0.05208333		
Hobbin Olpeson	0,50025	0,2303333	0,03200333		
8	0,92708333	0,9375			
o	-9,112742	-9,1090393			
Новый отрезок	0,90625	0,9375	0,03125		
повыи отрезок	0,90625	0,9375	0,05125		
9	0.01666667	0 02700222			
9 f		0,92708333 -9,112742			
·					
Новый отрезок	0,90725	0,91666667	0,00941667		

 $x_{min} = 0.90725$ $f(x_{min}) = -9.1126$

с точностью $\varepsilon = 0.01$.

Необходимые параметры методов выбрать самостоятельно.

Подробно «вручную» достаточно выполнить только первый шаг численного метода решения.

Окончательный результат вычислений может быть получен с помощью приложения MS Excel.

6. Определить абсолютную Δ и относительную δ погрешность решения задачи одномерной минимизации для каждого из используемых численных методов. Представить полученные результаты в виде таблицы (табл. 6.1).

Погрешность	Метод	Метод деления	Метод чисел
	оптимального	отрезка пополам	Фибоначчи
	поиска		
Δ	-0,0024	-0,0037047	-0,01515
δ	0,00260191	0,00401636	0,01642454

7. Описать в модуле функции, которые возвращают приближенные значения минимума функции y = f(x) для заданного промежутка унимодальности с заданной точностью ε каждым из рассмотренных численных методов: метод оптимального поиска; метод, основанный на использовании чисел Фибоначчи; метод деления отрезка пополам.

```
#include <iostream>
#include "cmath"
#include "vector"
using namespace std;
typedef float func(float x);
struct Segment {
    float l;
    float r;
};
float taskFunction(float x) {
    return (2 * pow(x, 2) - 3 * x) * (3 * pow(x, 2) + 6);
}
float findMinFunctionValue(func f, Segment segment, float eps, float
&xMinValue) {
    float minValueArgument = segment.l;
    float minFunctionValue = f(segment.l);
    for (float x = segment.l; x <= segment.r; x += eps) {</pre>
        if (f(x) < minFunctionValue) {</pre>
            minFunctionValue = f(x);
            minValueArgument = x;
    }
    xMinValue = minValueArgument;
    return minFunctionValue;
}
float findMinFunctionValueDivisionByTwo(func f, Segment segment, float eps,
float &xMinValue) {
    float precision = abs(segment.r - segment.l);
    while (precision > eps) {
```

```
float alpha = (segment.l + segment.r) / 2 - (segment.r - segment.l)
/ 4;
        float betta = (segment.l + segment.r) / 2 + (segment.r - segment.l)
/ 4;
        if (f(alpha) >= f(betta)) {
            segment.l = alpha;
        } else {
            segment.r = betta;
        precision = abs(segment.r - segment.l);
    }
    xMinValue = segment.l;
    return f(segment.l);
}
float findMinFunctionValueFibonacci(func f, Segment segment, float eps,
float &xMinValue) {
    int N = 100;
    vector<float> fibonacciValues{1, 1};
    for (int i = 2; i <= N; i++) {</pre>
        fibonacciValues.push_back(fibonacciValues[fibonacciValues.size() -
2] +
                                   fibonacciValues[fibonacciValues.size() -
1]);
    }
    float precision = abs(segment.r - segment.l);
    int step = 1;
    while (precision > eps && step < N - 1) {</pre>
        float delta = segment.r - segment.l;
        int fibonacciMainIndex = N - step;
        float alpha = segment.l + fibonacciValues[fibonacciMainIndex - 1] /
                                   fibonacciValues[fibonacciMainIndex + 1] *
delta:
        float betta = segment.l + fibonacciValues[fibonacciMainIndex] /
                                   fibonacciValues[fibonacciMainIndex + 1] *
delta;
        if (f(alpha) >= f(betta)) {
            segment.l = alpha;
        } else {
            segment.r = betta;
        }
        precision = abs(segment.r - segment.l);
        step++;
    }
    xMinValue = segment.l;
```

```
return f(segment.l);
}
```

8. Составить программу для вычисления приближенного решения задачи одномерной минимизации для заданного варианта задания с использованием функций, описанных в модуле.

```
int main() {
    float xMinValue;
    cout << findMinFunctionValueFibonacci(taskFunction, {0, 2}, 0.00001,
xMinValue) << " " << xMinValue;
}</pre>
```

Вывод программы:

```
-9.11314 0.922504
Process finished with exit code 0
```

Вывод: в ходе лабораторной работы мы изучили методы нахождения приближенного решения задачи одномерной минимизации функции одной переменной, и получили практические навыки их применения.