A treatise on phenomenological models of surface second-harmonic generation from crystalline surfaces

Bernardo S. Mendoza and Sean M. Anderson December 18, 2015

Contents

1	\mathbf{SH}	G yield per Sipe, Moss, and van Driel [1]				
	1.1	\mathcal{R}_{pP}				
	1.2	\mathcal{R}_{pS}				
	1.3	\mathcal{R}_{sP}				
	1.4	Summary				
2	SHG yield per Mizrahi and Sipe [2]					
		\mathcal{R}_{pP}				
		\mathcal{R}_{pS}				
	2.3	\mathcal{R}_{sP}				
	2.4	Summary				
3	SHG yield per Mendoza [3]					
	3.1	\mathcal{R}_{pP}				
		\mathcal{R}_{pS}				
	3.3	\mathcal{R}_{sP}				
	3.4	Summary				

1 SHG yield per Sipe, Moss, and van Driel [1]

In this treatment, they define the following for all polarizations;

$$f_{s} = \frac{\kappa}{n\tilde{\omega}} = \frac{\kappa}{\sqrt{\epsilon(\omega)}\tilde{\omega}},$$

$$f_{c} = \frac{w}{n\tilde{\omega}} = \frac{w}{\sqrt{\epsilon(\omega)}\tilde{\omega}},$$

$$f_{s}^{2} + f_{c}^{2} = 1,$$
(1)

where

$$\kappa = \tilde{\omega} \sin \theta,$$

$$w_0 = \sqrt{\tilde{\omega} - \kappa^2} = \tilde{\omega} \cos \theta,$$

$$w = \sqrt{\tilde{\omega} \epsilon(\omega) - \kappa^2} = \tilde{\omega} k_z(\omega).$$
(2)

From this point on, all capital letters and symbols indicate evaluation at 2ω . Common to all three polarization cases studied here, we require the nonzero components for the (111) face for crystals with C_{3v} symmetry,

$$\delta_{11} = \chi^{xxx} = -\chi^{xyy} = -\chi^{yyx},$$

$$\delta_{15} = \chi^{xxz} = \chi^{yyz},$$

$$\delta_{31} = \chi^{zxx} = \chi^{zyy},$$

$$\delta_{33} = \chi^{zzz}.$$

$$(4)$$

Lastly, the remaining quantities that will be needed for all three cases are

$$A_{p} = \frac{4\pi\tilde{\Omega}\sqrt{\epsilon(2\omega)}}{W_{0}\epsilon(2\omega) + W},$$

$$A_{s} = \frac{4\pi\tilde{\Omega}}{W_{0} + W}.$$
(5)

1.1 \mathcal{R}_{pP}

For the (111) face (m = 3), we have

$$\frac{E^{(2\omega)}(\|,\|)}{E_p^2 A_p} = a_{\|,\|} + c_{\|,\|}^{(3)} \cos 3\phi. \tag{6}$$

We extract these coefficients from Table V, noting that $\Gamma = \gamma = 0$ as we are only interested in the surface contribution,

$$a_{\parallel,\parallel} = i\tilde{\Omega}F_s\epsilon(2\omega)\delta_{31} + i\tilde{\Omega}\epsilon(2\omega)F_sf_s^2(\delta_{33} - \delta_{31}) - 2i\tilde{\Omega}f_sf_cF_c\delta_{15},$$

$$c_{\parallel,\parallel}^{(3)} = -i\tilde{\Omega}F_cf_c^2\delta_{11}.$$

We substitute these in Eq. (6),

$$\frac{E^{(2\omega)}(\parallel,\parallel)}{E_p^2 A_p} = i\tilde{\Omega} F_s \epsilon(2\omega) \delta_{31} + i\tilde{\Omega} \epsilon(2\omega) F_s f_s^2 (\delta_{33} - \delta_{31}) - 2i\tilde{\Omega} f_s f_c F_c \delta_{15} - i\tilde{\Omega} F_c f_c^2 \delta_{11} \cos 3\phi$$

and reduce (omitting the (\parallel,\parallel) notation),

$$\begin{split} \frac{E^{(2\omega)}}{E_p^2} &= A_p i \tilde{\Omega} \left[F_s \epsilon(2\omega) (\delta_{31} + f_s^2 (\delta_{33} - \delta_{31})) - f_c F_c (2f_s \delta_{15} + f_c \delta_{11} \cos 3\phi) \right] \\ &= A_p i \tilde{\Omega} \left[F_s \epsilon(2\omega) (f_s^2 \delta_{33} + (1 - f_s^2) \delta_{31}) - f_c F_c (2f_s \delta_{15} + f_c \delta_{11} \cos 3\phi) \right] \\ &= A_p i \tilde{\Omega} \left[F_s \epsilon(2\omega) (f_s^2 \delta_{33} + f_c^2 \delta_{31}) - f_c F_c (2f_s \delta_{15} + f_c \delta_{11} \cos 3\phi) \right]. \end{split}$$

As every term has an $f_i^2 F_i$, we can factor out the common

$$\frac{1}{\tilde{\omega}^2 \tilde{\Omega} \epsilon(\omega) \sqrt{\epsilon(2\omega)}}$$

factor after substituting the appropriate terms from Eq. (1),

$$\frac{E^{(2\omega)}}{E_p^2} = \frac{A_p i}{\epsilon(\omega)\sqrt{\epsilon(2\omega)}\tilde{\omega}^2} \left[K\epsilon(2\omega)(\kappa^2 \delta_{33} + w^2 \delta_{31}) - wW(2\kappa \delta_{15} + w\delta_{11}\cos 3\phi) \right]
= \frac{A_p i\tilde{\Omega}}{\epsilon(\omega)\sqrt{\epsilon(2\omega)}} \left[\sin \theta \epsilon(2\omega)(\sin^2 \theta \delta_{33} + k_z^2(\omega)\delta_{31}) - k_z(\omega)k_z(2\omega)(2\sin \theta \delta_{15} + k_z(\omega)\delta_{11}\cos 3\phi) \right]
= \frac{A_p i\tilde{\Omega}}{\epsilon(\omega)\sqrt{\epsilon(2\omega)}} \left[\sin \theta \epsilon(2\omega)(\sin^2 \theta \chi^{zzz} + k_z^2(\omega)\chi^{zxx}) - k_z(\omega)k_z(2\omega)(2\sin \theta \chi^{xzz} + k_z(\omega)\chi^{xxx}\cos 3\phi) \right].$$

We substitute Eq. (5) to complete the expression,

$$\begin{split} \frac{E^{(2\omega)}}{E_p^2} &= \frac{4i\pi\tilde{\Omega}^2}{\epsilon(\omega)(W_0\epsilon(2\omega) + W)} [\cdots] \\ &= \frac{4i\pi\tilde{\Omega}}{\epsilon(\omega)(\epsilon(2\omega)\cos\theta + k_z(2\omega))} [\cdots] \\ &= \frac{4i\pi\tilde{\omega}}{\cos\theta} \frac{1}{\epsilon(\omega)} \frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)} [\cdots]. \end{split}$$

However, our interest lies in \mathcal{R}_{pP} which is calculated as

$$\mathcal{R}_{pP} = \frac{I_p(2\omega)}{I_p^2(\omega)} = \frac{2\pi}{c} \left| \frac{E^{(2\omega)}(\parallel,\parallel)}{E_p^2} \right|^2,$$

and we can finally complete the expression,

$$\mathcal{R}_{pP} = \frac{2\pi}{c} \left| \frac{4i\pi\tilde{\omega}}{\cos\theta} \frac{1}{\epsilon(\omega)} \frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)} r_{pP} \right|^2$$

$$= \frac{32\pi^3\tilde{\omega}^2}{c\cos^2\theta} |t_p(\omega)T_p(2\omega)r_{pP}|^2$$

$$= \frac{32\pi^3\omega^2}{c^3\cos^2\theta} |t_p(\omega)T_p(2\omega)r_{pP}|^2, \tag{7}$$

where

$$t_p(\omega) = \frac{1}{\epsilon(\omega)},$$

$$T_p(2\omega) = \frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)},$$

$$r_{pP} = \sin\theta\epsilon(2\omega)(\sin^2\theta\chi^{zzz} + k_z^2(\omega)\chi^{zxx})$$

$$-k_z(\omega)k_z(2\omega)(2\sin\theta\chi^{xxz} + k_z(\omega)\chi^{xxx}\cos3\phi).$$

1.2 \mathcal{R}_{pS}

We follow the same procedure as above. For the (111) face (m = 3),

$$\frac{E^{(2\omega)}(\parallel,\perp)}{E_n^2 A_s} = b_{\parallel,\perp}^{(3)} \sin 3\phi, \tag{8}$$

and we extract the relevant coefficient from Table V with $\Gamma=\gamma=0,$

$$b_{\parallel,\perp}^{(3)} = i\tilde{\Omega}f_c^2\delta_{11}.$$

Substituting this coeffecient and Eq. (5) into Eq. (8),

$$\begin{split} \frac{E^{(2\omega)}(\parallel,\perp)}{E_p^2} &= A_s i \tilde{\Omega} f_c^2 \delta_{11} \sin 3\phi \\ &= \frac{A_s i \tilde{\Omega}}{\tilde{\omega}^2 \epsilon(\omega)} w^2 \delta_{11} \sin 3\phi \\ &= \frac{A_s i \tilde{\Omega}}{\epsilon(\omega)} k_z^2(\omega) \delta_{11} \sin 3\phi \\ &= \frac{A_s i \tilde{\Omega}}{\epsilon(\omega)} k_z^2(\omega) \chi^{xxx} \sin 3\phi \\ &= \frac{4 i \pi \tilde{\Omega}^2}{W_0 + W} \frac{1}{\epsilon(\omega)} k_z^2(\omega) \chi^{xxx} \sin 3\phi \\ &= 4 i \pi \tilde{\Omega} \frac{1}{\epsilon(\omega)} \frac{1}{\cos \theta + k_z(2\omega)} k_z^2(\omega) \chi^{xxx} \sin 3\phi \\ &= \frac{4 i \pi \omega}{c \cos \theta} \frac{1}{\epsilon(\omega)} \frac{2 \cos \theta}{\cos \theta + k_z(2\omega)} k_z^2(\omega) \chi^{xxx} \sin 3\phi \end{split}$$

As before, we must calculate

$$\mathcal{R}_{pS} = \frac{2\pi}{c} \left| \frac{E^{(2\omega)}(\parallel, \perp)}{E_s^2} \right|^2,$$

to obtain the final expression,

$$\mathcal{R}_{pS} = \frac{2\pi}{c} \left| \frac{4i\pi\omega}{c\cos\theta} \frac{1}{\epsilon(\omega)} \frac{2\cos\theta}{\cos\theta + k_z(2\omega)} k_z^2(\omega) \chi^{xxx} \sin 3\phi \right|^2 \\
= \frac{32\pi^3\omega^2}{c^3\cos^2\theta} \left| \frac{1}{\epsilon(\omega)} \frac{2\cos\theta}{\cos\theta + k_z(2\omega)} k_z^2(\omega) \chi^{xxx} \sin 3\phi \right|^2 \\
= \frac{32\pi^3\omega^2}{c^3\cos^2\theta} \left| t_p(\omega) T_s(2\omega) k_z^2(\omega) r_{pS} \right|^2, \tag{9}$$

where

$$t_p(\omega) = \frac{1}{\epsilon(\omega)},$$

$$T_s(2\omega) = \frac{2\cos\theta}{\cos\theta + k_z(2\omega)},$$

$$r_{pS} = k_z^2(\omega)\chi^{xxx}\sin 3\phi.$$

1.3 \mathcal{R}_{sP}

We follow the same procedure as above for the final polarization case. For the (111) face (m=3),

$$\frac{E^{(2\omega)}(\perp,\parallel)}{E_s^2 A_p} = a_{\perp,\parallel} + c_{\perp,\parallel}^{(3)} \cos 3\phi, \tag{10}$$

and we extract the relevant coefficients from Table V with $\Gamma=\gamma=0,$

$$a_{\perp,\parallel} = i\tilde{\Omega} F_s \epsilon(2\omega) \delta_{31},$$

$$c_{\perp,\parallel}^{(3)} = i\tilde{\Omega} F_c \delta_{11}.$$

Substituting this coeffecient and Eq. (5) into Eq. (10),

$$\begin{split} \frac{E^{(2\omega)}(\perp,\parallel)}{E_s^2} &= A_p(i\tilde{\Omega}F_s\epsilon(2\omega)\delta_{31} + i\tilde{\Omega}F_c\delta_{11}\cos3\phi) \\ &= A_pi\tilde{\Omega}(F_s\epsilon(2\omega)\delta_{31} + F_c\delta_{11}\cos3\phi) \\ &= \frac{A_pi\tilde{\Omega}}{\sqrt{\epsilon(2\omega)}}(\sin\theta\epsilon(2\omega)\delta_{31} + k_z(2\omega)\delta_{11}\cos3\phi) \\ &= \frac{A_pi\tilde{\Omega}}{\sqrt{\epsilon(2\omega)}}(\sin\theta\epsilon(2\omega)\chi^{zxx} + k_z(2\omega)\chi^{xxx}\cos3\phi) \\ &= \frac{4i\pi\tilde{\Omega}^2}{W_0\epsilon(2\omega) + W}(\sin\theta\epsilon(2\omega)\chi^{zxx} + k_z(2\omega)\chi^{xxx}\cos3\phi) \\ &= \frac{4i\pi\tilde{\Omega}}{\epsilon(2\omega)\cos\theta + k_z(2\omega)}(\sin\theta\epsilon(2\omega)\chi^{zxx} + k_z(2\omega)\chi^{xxx}\cos3\phi) \\ &= \frac{4i\pi\omega}{\epsilon\cos\theta}\frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)}(\sin\theta\epsilon(2\omega)\chi^{zxx} + k_z(2\omega)\chi^{xxx}\cos3\phi). \end{split}$$

And we finally obtain \mathcal{R}_{sP} ,

$$\mathcal{R}_{sP} = \frac{2\pi}{c} \left| \frac{E^{(2\omega)}(\perp, \parallel)}{E_s^2} \right|^2 \\
= \frac{2\pi}{c} \left| \frac{4i\pi\omega}{c\cos\theta} \frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)} (\sin\theta\epsilon(2\omega)\chi^{zxx} + k_z(2\omega)\chi^{xxx}\cos3\phi) \right|^2 \\
= \frac{32\pi^3\omega^2}{c^3\cos^2\theta} \left| \frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)} (\sin\theta\epsilon(2\omega)\chi^{zxx} + k_z(2\omega)\chi^{xxx}\cos3\phi) \right|^2 \\
= \frac{32\pi^3\omega^2}{c^3\cos^2\theta} \left| t_s(\omega)T_p(2\omega)r_{sP} \right|^2, \tag{11}$$

where

$$t_s(\omega) = 1,$$

$$T_p(2\omega) = \frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)},$$

$$r_{sP} = \sin\theta\epsilon(2\omega)\chi^{zxx} + k_z(2\omega)\chi^{xxx}\cos3\phi.$$

1.4 Summary

We unify the final expressions for the SHG yield, Eqs. (7), (9), and (11), as

$$\mathcal{R}_i F = \frac{32\pi^3 \omega^2}{c^3 \cos^2 \theta} \left| t_i(\omega) T_F(2\omega) r_{iF} \right|^2. \tag{12}$$

The necessary factors are summarized in Table 1.

iF	$t_i(\omega)$	$T_F(2\omega)$	r_{iF}
pP	$\frac{1}{\epsilon(\omega)}$	$\frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)}$	$\sin \theta \epsilon (2\omega) (\sin^2 \theta \chi^{zzz} + k_z^2(\omega) \chi^{zxx}) -k_z(\omega) k_z(2\omega) (2\sin \theta \chi^{xxz} + k_z(\omega) \chi^{xxx} \cos 3\phi)$
pS	$\frac{1}{\epsilon(\omega)}$	$\frac{2\cos\theta}{\cos\theta + k_z(2\omega)}$	$k_z^2(\omega)\chi^{xxx}\sin 3\phi$
sP	1	$\frac{2\cos\theta}{\epsilon(2\omega)\cos\theta + k_z(2\omega)}$	$\sin \theta \epsilon(2\omega) \chi^{zxx} + k_z(2\omega) \chi^{xxx} \cos 3\phi$

Table 1: The necessary factors for Eq. (12) for each polarization case.

2 SHG yield per Mizrahi and Sipe [2]

- 2.1 \mathcal{R}_{pP}
- 2.2 \mathcal{R}_{pS}
- $\mathbf{2.3}$ \mathcal{R}_{sP}
- 2.4 Summary

3 SHG yield per Mendoza [3]

- 3.1 \mathcal{R}_{pP}
- 3.2 \mathcal{R}_{pS}
- 3.3 \mathcal{R}_{sP}
- 3.4 Summary

References

- [1] J. E. Sipe, D. J. Moss, and H. M. van Driel. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. *Phys. Rev. B*, 35(3):1129–1141, January 1987.
- [2] V. Mizrahi and J. E. Sipe. Phenomenological treatment of surface second-harmonic generation. *J. Opt. Soc. Am. B*, 5(3):660–667, 1988.
- [3] B. S. Mendoza. Longitudinal Gauge Theory of Second Harmonic Generation at Semiconductor Surfaces. In *Epioptics-7: Proceedings of the 24th Course of the International School of Solid State Physics: Erice, Italy, 20-26 July 2002*, volume 23, page 52, 2004.