8. Fast gradient methods

- fast proximal gradient method (FISTA)
- Nesterov's second method

Fast (proximal) gradient methods

- Nesterov (1983, 1988, 2005): three gradient projection methods with $1/k^2$ convergence rate
- Beck & Teboulle (2008): FISTA, a proximal gradient version of Nesterov's 1983 method
- Nesterov (2004 book), Tseng (2008): overview and unified analysis of fast gradient methods
- several recent variations and extensions

this lecture:

FISTA and Nesterov's 2nd method (1988) as presented by Tseng

Outline

- fast proximal gradient method (FISTA)
- Nesterov's second method

Fast proximal gradient method

convex problem with composite objective

minimize
$$f(x) = g(x) + h(x)$$

g differentiable with $\operatorname{dom} g = \mathbf{R}^n$; h has inexpensive $\operatorname{\mathbf{prox}}_{th}$ operator

algorithm: choose $x^{(0)} = y^{(0)} \in \operatorname{dom} h$; for $k \ge 1$

$$x^{(k)} = \mathbf{prox}_{t_k h} \left(y^{(k-1)} - t_k \nabla g(y^{(k-1)}) \right)$$

$$y^{(k)} = x^{(k)} + \frac{k-1}{k+2}(x^{(k)} - x^{(k-1)})$$

known as FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

Interpretation

- ullet first iteration (k=1) is a proximal gradient step at $x^{(0)}$
- ullet next iterations are proximal gradient steps at extrapolated points $y^{(k-1)}$

sequence $x^{(k)}$ remains feasible (in $\operatorname{dom} h$); sequence $y^{(k)}$ not necessarily

Example

minimize
$$\log \sum_{i=1}^{m} \exp(a_i^T x + b_i)$$

randomly generated data with m=2000, n=1000, same fixed step size

another instance

FISTA is not a descent method

Convergence of FISTA

assumptions

- optimal value f^* is finite and attained at x^* (not necessarily unique)
- $\operatorname{dom} g = \mathbf{R}^n$ and ∇g is Lipschitz continuous with constant L > 0:

$$\|\nabla g(x) - \nabla g(y)\|_2 \le L\|x - y\|_2 \quad \forall x, y$$

• h is closed and convex (hence $\mathbf{prox}_{th}(u)$ exists and is unique for all u)

result: $f(x^{(k)}) - f^*$ decreases at least as fast as $1/k^2$

- ullet if fixed step size $t_k=1/L$ is used
- if backtracking line search is used

Reformulation of FISTA

define $\theta_k = 2/(k+1)$ and introduce an intermediate variable $v^{(k)}$

algorithm: choose $x^{(0)} = y^{(0)} = v^{(0)} \in \text{dom } h$; for $k \ge 1$

$$x^{(k)} = \mathbf{prox}_{t_k h} \left(y^{(k-1)} - t_k \nabla g(y^{(k-1)}) \right)$$

$$v^{(k)} = x^{(k-1)} + \frac{1}{\theta_k} (x^{(k)} - x^{(k-1)})$$

$$y^{(k)} = (1 - \theta_{k+1}) x^{(k)} + \theta_{k+1} v^{(k)}$$

- ullet substituting expression for $v^{(k)}$ in step 3 gives algorithm on page 8-3
- $\theta_k = 2/(k+1)$ satisfies

$$\frac{1 - \theta_k}{\theta_k^2} \le \frac{1}{\theta_{k-1}^2}, \qquad k \ge 2$$

Key inequalities

upper bound from Lipschitz property

$$g(u) \le g(z) + \nabla g(z)^T (u - z) + \frac{L}{2} ||u - z||_2^2 \quad \forall u, z$$

property of proximal operators: if $u = \mathbf{prox}_{th}(w)$,

$$h(u) \le h(z) + \frac{1}{t}(w - u)^T(u - z) \quad \forall z$$

this follows from subgradient characterization of prox-operator (page 4-15)

$$u = \mathbf{prox}_{th}(w) \iff w - u \in t\partial h(u)$$

Progress in one iteration

$$x = x^{(i-1)}$$
, $x^+ = x^{(i)}$, $y = y^{(i-1)}$, $v = v^{(i-1)}$, $v^+ = v^{(i)}$, $t = t_i$, $\theta = \theta_i$

• from Lipschitz property if $t \leq 1/L$

$$g(x^{+}) \le g(y) + \nabla g(y)^{T} (x^{+} - y) + \frac{1}{2t} ||x^{+} - y||_{2}^{2}$$
 (1)

from property of prox-operator

$$h(x^+) \le h(z) + \nabla g(y)^T (z - x^+) + \frac{1}{t} (x^+ - y)^T (z - x^+) \quad \forall z$$

add the upper bounds and use convexity of g

$$f(x^{+}) \le f(z) + \frac{1}{t}(x^{+} - y)^{T}(z - x^{+}) + \frac{1}{2t}||x^{+} - y||_{2}^{2} \quad \forall z$$

ullet make convex combination of upper bounds for z=x and $z=x^\star$

$$f(x^{+}) - f^{*} - (1 - \theta)(f(x) - f^{*})$$

$$= f(x^{+}) - \theta f^{*} - (1 - \theta)f(x)$$

$$\leq \frac{1}{t}(x^{+} - y)^{T}(\theta x^{*} + (1 - \theta)x - x^{+}) + \frac{1}{2t}\|x^{+} - y\|_{2}^{2}$$

$$= \frac{1}{2t}\left(\|y - (1 - \theta)x - \theta x^{*}\|_{2}^{2} - \|x^{+} - (1 - \theta)x - \theta x^{*}\|_{2}^{2}\right)$$

$$= \frac{\theta^{2}}{2t}\left(\|v - x^{*}\|_{2}^{2} - \|v^{+} - x^{*}\|_{2}^{2}\right)$$

conclusion: if the inequality (1) holds (for example, if $0 < t \le 1/L$), then

$$\frac{1}{\theta^2} \left(f(x^+) - f^* \right) + \frac{1}{2t} \|v^+ - x^*\|_2^2 \le \frac{1 - \theta}{\theta^2} \left(f(x) - f^* \right) + \frac{1}{2t} \|v - x^*\|_2^2$$

Analysis for fixed step size

apply inequality with $t = t_i = 1/L$ recursively, using $(1 - \theta_i)/\theta_i^2 \le 1/\theta_{i-1}^2$:

$$\frac{1}{\theta_k^2} (f(x^{(k)}) - f^*) + \frac{1}{2t} \|v^{(k)} - x^*\|_2^2$$

$$\leq \frac{1 - \theta_1}{\theta_1^2} (f(x^{(0)}) - f^*) + \frac{1}{2t} \|v^{(0)} - x^*\|_2^2$$

$$= \frac{1}{2t} \|x^{(0)} - x^*\|_2^2$$

therefore,

$$f(x^{(k)}) - f^* \le \frac{\theta_k^2}{2t} \|x^{(0)} - x^*\|_2^2 = \frac{2L}{(k+1)^2} \|x^{(0)} - x^*\|_2^2$$

conclusion: reaches $f(x^{(k)}) - f^{\star} \le \epsilon$ after $O(\sqrt{L/\epsilon})$ iterations

Line search

purpose: determine step size $t = t_k$ in

$$x^{+} = \mathbf{prox}_{th} (y - t\nabla g(y))$$
 (with $x^{+} = x^{(k)}, y = y^{(k-1)}$)

backtracking line search: start at $t := t_{k-1}$; repeat $t := \beta t$ until

$$g(x^{+}) \le g(y) + \nabla g(y)^{T}(x^{+} - y) + \frac{1}{2t} ||x^{+} - y||_{2}^{2}$$

for t_0 , can choose any positive value $t_0 = \hat{t}$

- from Lipschitz property, $t_k \ge t_{\min} = \min\{\hat{t}, \beta/L\}$
- guarantees that inequality (1) on page 8-10 holds
- initialization implies $t_k \leq t_{k-1}$, i.e., step sizes are nonincreasing

Analysis for backtracking line search

apply inequality on page 8-11 recursively to get

$$\frac{t_{\min}}{\theta_k^2} (f(x^{(k)}) - f^*) \leq \frac{t_k}{\theta_k^2} (f(x^{(k)}) - f^*) + \frac{1}{2} ||v^{(k)} - x^*||_2^2
\leq \frac{t_1 (1 - \theta_1)}{\theta_1^2} (f(x^{(0)}) - f^*) + \frac{1}{2} ||v^{(0)} - x^*||_2^2
= \frac{1}{2} ||x^{(0)} - x^*||_2^2$$

therefore

$$f(x^{(k)}) - f^* \le \frac{2}{(k+1)^2 t_{\min}} ||x^{(0)} - x^*||_2^2$$

conclusion: reaches $f(x^{(k)}) - f^{\star} \le \epsilon$ after $O(\sqrt{L/\epsilon})$ iterations

Example: quadratic program with box constraints

n = 3000; fixed step size $t = 1/\lambda_{\max}(A)$

1-norm regularized least-squares

minimize
$$\frac{1}{2} ||Ax - b||_2^2 + ||x||_1$$

randomly generated $A \in \mathbf{R}^{2000 \times 1000}$; step $t_k = 1/L$ with $L = \lambda_{\max}(A^T A)$

Example: nuclear norm regularization

minimize
$$g(X) + ||X||_*$$

g is smooth and convex; variable $X \in \mathbf{R}^{m \times n}$ (with $m \ge n$)

nuclear norm

$$||X||_* = \sum_i \sigma_i(X)$$

- $\sigma_1(X) \ge \sigma_2(X) \ge \cdots$ are the singular values of X
- the dual norm of the matrix norm $\|\cdot\|$ (maximum singular value)
- for diagonal X, reduces to the 1-norm of $\operatorname{diag}(X)$
- popular as penalty function that promotes low rank

prox operator of $\mathbf{prox}_{th}(X)$ for $h(X) = ||X||_*$

$$\mathbf{prox}_{th}(X) = \operatorname*{argmin}_{U} \left(\|U\|_* + \frac{1}{2t} \|U - X\|_F^2 \right)$$

- take singular value decomposition $X = P \operatorname{diag}(\sigma_1, \dots, \sigma_n)Q^T$
- apply soft thresholding to singular values:

$$\mathbf{prox}_{th}(Y) = P \operatorname{\mathbf{diag}}(\hat{\sigma}_1, \dots, \hat{\sigma}_n) Q^T$$

where

$$\hat{\sigma}_k = \sigma_k - t \quad (\sigma_k \ge t), \qquad \hat{\sigma}_k = 0 \quad (\sigma_k \le t)$$

Approximate low-rank completion

minimize
$$\sum_{(i,j)\in N} (X_{ij} - A_{ij})^2 + \gamma ||X||_*$$

- entries $(i,j) \in N$ are approximately specified $(X_{ij} \approx A_{ij})$; rest is free
- ullet nuclear norm regularization added to obtain low rank X

example

$$m=n=500$$
 5000 specified entries

convergence (fixed step size t = 1/L)

result

optimal X has rank 38; relative error in specified entries is 9%

Descent version of FISTA

choose $x^{(0)} \in \operatorname{dom} h$ and $y^{(0)} = x^{(0)}$; for $k \ge 1$

$$\begin{array}{lcl} u^{(k)} & = & \mathbf{prox}_{t_k h} \left(y^{(k-1)} - t_k \nabla g(y^{(k-1)}) \right) \\ x^{(k)} & = & \left\{ \begin{array}{ll} u^{(k)} & f(u^{(k)}) \leq f(x^{(k-1)}) \\ x^{(k-1)} & \text{otherwise} \end{array} \right. \\ v^{(k)} & = & x^{(k-1)} + \frac{1}{\theta_k} (u^{(k)} - x^{(k-1)}) \\ y^{(k)} & = & (1 - \theta_{k+1}) x^{(k)} + \theta_{k+1} v^{(k)} \end{array}$$

- step 2 implies $f(x^{(k)}) \le f(x^{(k-1)})$
- same iteration complexity as original FISTA
- changes on p. 8-10: replace x^+ with $u^+ = u^{(i)}$ and use $f(x^+) \leq f(u^+)$

Example

(from page 8-6)

Outline

- fast proximal gradient method (FISTA)
- Nesterov's second method

Nesterov's second method

algorithm: choose $x^{(0)} = y^{(0)} = v^{(0)} \in \text{dom } h$; for $k \ge 1$

$$v^{(k)} = \mathbf{prox}_{(t_k/\theta_k)h} \left(v^{(k-1)} - \frac{t_k}{\theta_k} \nabla g(y^{(k-1)}) \right)$$

$$x^{(k)} = (1 - \theta_k) x^{(k-1)} + \theta_k v^{(k)}$$

$$y^{(k)} = (1 - \theta_{k+1}) x^{(k)} + \theta_{k+1} v^{(k)}$$

- $\theta_k = 2/(k+1)$
- ullet can be shown to be identical to FISTA if h(x)=0
- unlike in FISTA, $y^{(k)}$ remains feasible (i.e., in $\operatorname{dom} h$)

Convergence of Nesterov's second method

assumptions

- optimal value f^* is finite and attained at x^* (not necessarily unique)
- ∇g is Lipschitz continuous on $\operatorname{dom} h \subseteq \operatorname{dom} g$ with constant L > 0:

$$\|\nabla g(x) - \nabla g(y)\|_2 \le L\|x - y\|_2 \quad \forall x, y \in \operatorname{dom} h$$

• h is closed and convex

result: $f(x^{(k)}) - f^*$ decreases at least as fast as $1/k^2$

- ullet if fixed step size $t_k=1/L$ is used
- if backtracking line search is used

Analysis of one iteration

$$x=x^{(i-1)}$$
, $x^+=x^{(i)}$, $y=y^{(i-1)}$, $v=v^{(i-1)}$, $v^+=v^{(i)}$, $t=t_i$, $\theta=\theta_i$

• from Lipschitz property if $t \leq 1/L$

$$g(x^{+}) \le g(y) + \nabla g(y)^{T} (x^{+} - y) + \frac{1}{2t} ||x^{+} - y||_{2}^{2}$$
 (2)

• plug in $x^+ = (1-\theta)x + \theta v^+$ and $x^+ - y = \theta(v^+ - v)$

$$g(x^{+}) \le g(y) + \nabla g(y)^{T} ((1 - \theta)x + \theta v^{+} - y) + \frac{\theta^{2}}{2t} ||v^{+} - v||_{2}^{2}$$

• from convexity of g, h

$$g(x^{+}) \leq (1 - \theta)g(x) + \theta \left(g(y) + \nabla g(y)^{T}(v^{+} - y)\right) + \frac{1}{2t} \|v^{+} - v\|_{2}^{2}$$
$$h(x^{+}) \leq (1 - \theta)h(x) + \theta h(v^{+})$$

• from property of prox-operator on page 8-9

$$h(v^+) \le h(z) + \nabla g(y)^T (z - v^+) - \frac{\theta}{t} (v^+ - v)^T (v^+ - z) \quad \forall z$$

ullet combine the upper bounds on $g(x^+)$, $h(x^+)$, $h(v^+)$, with $z=x^\star$

$$f(x^{+}) \leq (1-\theta)f(x) + \theta f^{\star} - \frac{\theta^{2}}{t}(v^{+} - v)^{T}(v^{+} - x^{\star}) + \frac{1}{2t}\|v^{+} - v\|_{2}^{2}$$

$$= (1-\theta)f(x) + \theta f^{\star} + \frac{\theta^{2}}{2t}(\|v - x^{\star}\|_{2}^{2} - \|v^{+} - x^{\star}\|_{2}^{2})$$

the same final inequality as in the analysis of FISTA on page 8-11

conclusion: same $1/k^2$ complexity as FISTA

- for fixed step size $t_i = 1/L$
- backtracking line search that ensures (2) and $t_i \leq t_{i-1}$

References

surveys of fast gradient methods

- Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004)
- P. Tseng, On accelerated proximal gradient methods for convex-concave optimization (2008)

FISTA

- A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. on Imaging Sciences (2009)
- A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal recovery, in: Y. Eldar and D. Palomar (Eds.), Convex Optimization in Signal Processing and Communications (2009)

Nesterov's third method (not covered in this lecture)

- Yu. Nesterov, *Smooth minimization of non-smooth functions*, Mathematical Programming (2005)
- S. Becker, J. Bobin, E.J. Candès, *NESTA: a fast and accurate first-order method for sparse recovery*, SIAM J. Imaging Sciences (2011)