FIT 3152 Assignment 01 33370311

Generative AI was used in this assignment,

Question 1

(a) The provided csv for analysis has 40000 rows with 52 columns consisting of data from 110 unique countries. The data has large variety of numerical attributes and few non numerical attributes following is our terminal output

The Numeric Attributes: employstatus_1 employstatus_2 employstatus_3 employstatus_4 employstatus_5 employstatus_6 employstatus_7 employstatus_8 employstatus_9 employstatus_10 isoFriends_inPerson isoOthPpl_inPerson isoFriends_online isoOthPpl_online lone01 lone02 lone03 happy lifeSat MLQ bor01 bor02 bor03 consp01 consp02 consp03 c19perBeh01 c19perBeh02 c19perBeh03 c19RCA01 c19RCA02 c19RCA03 coronaClose_1 coronaClose_2 coronaClose_3 coronaClose_4 coronaClose_5 coronaClose_6 gender age edu c19ProSo01 c19ProSo02 c19ProSo03 c19ProSo04

The Non-Numeric Attributes: rankOrdLife_1 rankOrdLife_2 rankOrdLife_3 rankOrdLife_4 rankOrdLife_5 rankOrdLife_6 coded_country

The data has a lot of NA values. Notably, attributes related to respondents' perceptions and behaviours during the COVID-19 pandemic, such as coronaClose_1 to coronaClose_6, exhibit high counts of missing values, ranging from 10,805 to 39,436. Demographic attributes like age, gender, and edu also show notable numbers of missing values, with 236, 214, and 280 missing values, respectively. Additionally, attributes related to psychological factors (happy, lifeSat, MLQ) and conspiracy beliefs (bor01 to bor03, consp01 to consp03) demonstrate varying counts of missing values, ranging from 82 to 1,571. Employment status attributes (employstatus_1 to employstatus_10) also exhibit a range of missing values, with the highest count in employstatus_1 (34,300 missing values) and the lowest count in employstatus_3 (29,057 missing values).

Now we will discuss the distribution of numerical attributes, If you see the plots below for employment status variables we see a lot of values are zero or NA, now one of the relevant thing I would like to mention is that the NA values simply does not mean they are meaning less here but rather if one belongs to particular status it would be one if not then NA so 0 acts like a no here. The visualisation provides us with an insight that most of the participants work 40 hours or more (employstatus 3) or are students (employstatus 9)

(Figure b)

(Figure c)

Same as employment status if refer (**Figure b**) we see that in our responses many participants knew no one close who had coronavirus. Moving on to more depth we see a lot (**Figure c**) of female participants in our dataset.

(Figure d)

Through age distribution in **(Figure d)** we can see that our many participants are from the age group of 25 -34 and least are 85+

Below are some self explanatory distributions where I have shown each attribute distribution with proper labelling.

For our numerical attributes for Boredom we get this distribution (Figure e)

For our numerical attribute distribution for Corona RadicalAction (Figure f)

For our numerical attribute distribution for MLQ (Figure g)

For our numerical attribute distribution for Life Satisfaction (Figure g)

For our numerical attribute distribution for Loneliness (Figure h)

For our numerical attribute distribution for Isolation Online(Figure i)

(Figure e)

(Figure f)

(Figure g)

(Figure h)

Histogram of isoFriends inPerson Distribution

Histogram of isoOthPpl inPerson Distribution

Histogram of isoFriends_online Distribution

(Figure i)

b)

For the analysis provided in part (a), several pre-processing steps and data manipulations were necessary to ensure the accuracy and reliability of the results. Initially, I randomly sampled 40,000 rows from the dataset to facilitate efficient computation while maintaining a representative sample size. Additionally, I replaced any missing values (NA) in the employment status columns and corona proximity columns with zeros, as these variables likely indicate absence or lack of response rather than true missing values. This step ensured consistency in subsequent analyses involving these columns and I would have rather used omit I would lose half of my data. Furthermore, I created customised histograms to visualise the distribution of various attributes, such as employment status, corona-related behaviours, boredom levels, life satisfaction, and loneliness, among others. These histograms were tailored to represent ordinal categorical variables appropriately, utilising defined breaks and labels to accurately depict the underlying data distributions. Overall, these pre-processing and data manipulation steps were essential to ensure the validity and interpretability of the subsequent analyses.

Question 2

a)

As per getting the summary of each dataset and max occurrence The summary statistics for Pakistan and other countries reveal some interesting differences. In Pakistan, the mean values for employment status indicators such as employment status 1, 2, and 3 are relatively lower compared to other countries. However, Pakistan shows a higher mean for employment status 9, indicating a higher percentage of respondents being unemployed but actively seeking employment. Regarding social behaviour during the COVID-19 pandemic, Pakistan reports slightly higher mean values for in-person interaction with friends and acquaintances compared to other countries. In terms of loneliness indicators (lone01, lone02, lone03), Pakistan tends to report slightly lower mean values compared to other countries, suggesting potentially lower levels of loneliness. Additionally, Pakistan reports higher mean values for life satisfaction as the most occurring value in Pakistan for life satisfaction is 7 very satisfied and happiness compared to other countries which is 5 means slightly satisfied.

Pie Chart of Age Distribution Of Other Countries

if you notice the pie charts Pakistan"s most of the respondents are from the age group of 18-24

Below you will find the correlation difference of both the datasets between Corona ProSocial Behaviour attributes

COTTENATION FIOLIOF COUNTINES DATA

even though the Pakistan dataset is less and undoubtedly we have good correlation but this matrix gives us a notable difference which is that both datasets do not follow the same pattern because the least correlated in other countries is c19ProSo01 and c19ProSo04 but in Pakistan least correlated are c19ProSo01 and c19ProSo03.

Since this is just an image so its hard to compare because I have used plotly and it gives you analysis on just the plot itself but both the 3d scatter plots provide us with insights into the loneliness(lone01) and life satisfaction of the respondents based on their age so we see that most of the participants belonging from age group 2 have life satisfaction of 1 in both the plots similarly most of the participants from age group 1 have life satisfaction of 6, also quite interesting that mostly in both the scatterplots we see yellow(life satisfaction of 6) means satisfied with their life have loneliness value of 1 which means they never felt lonely. If we move on to the differences we see that most of the respondents in Pakistan's data are from the age group 2 or 1. We can observe that participants belonging to age group 7 (75-85) are not satisfied with their life by see most purple dots.

b)

The linear regression model summary for predicting c19ProSo01 in Pakistan reveals several important attributes that contribute to explaining variations in pro-social attitudes during the COVID-19 pandemic.

c19ProSo02, c19ProSo03, c19ProSo04: These attributes all exhibit significant positive coefficients, indicating strong predictors of pro-social attitudes (c19ProSo01). Higher scores on c19ProSo02, c19ProSo03, and c19ProSo04 correspond to more positive pro-social attitudes.

employstatus_8: This attribute has a notably negative coefficient, implying that being from employstatus_8 means less positive pro-social attitudes during the pandemic.

lone01: With a positive coefficient, lone01 emerges as a significant predictor, indicating that feelings of loneliness are associated with more positive pro-social attitudes.

c19RCA01: Similar to the previous model, c19RCA01 displays a positive coefficient, suggesting that higher levels of perceived risk are associated with more positive pro-social attitudes.

bor03:bor03 shows a negative coefficient, indicating a decrease in pro-social attitudes with higher participants who have higher control of time.

The linear regression model summary for predicting c19ProSo02 in Pakistan reveals several important attributes that contribute to explaining variations in pro-social attitudes during the COVID-19 pandemic.

c19ProSo01, c19ProSo03, c19ProSo04: These attributes all exhibit significant positive coefficients, indicating strong predictors of pro-social attitudes (c19ProSo02). Higher scores on c19ProSo01, c19ProSo03, and c19ProSo04 correspond to more positive pro-social attitudes.

age: age attribute has also been significant but due to negative coefficient.

The linear regression model summary for predicting c19ProSo03 in Pakistan reveals several important attributes that contribute to explaining variations in pro-social attitudes during the COVID-19 pandemic.

c19ProSo01, c19ProSo02, c19ProSo04: These attributes all exhibit significant positive coefficients, indicating strong predictors of pro-social attitudes (c19ProSo03). Higher scores on c19ProSo01, c19ProSo02, and c19ProSo04 correspond to more positive pro-social attitudes.

employstaus_9: This attribute has a notably negative coefficient, implying that being from employstatus_9 means less positive pro-social attitudes during the pandemic.

The linear regression model summary for predicting c19ProSo04 in Pakistan reveals several important attributes that contribute to explaining variations in pro-social attitudes during the COVID-19 pandemic.

c19ProSo01, c19ProSo03, c19ProSo02: These attributes all exhibit significant positive coefficients, indicating strong predictors of pro-social attitudes (c19ProSo04). Higher scores on c19ProSo01, c19ProSo03, and c19ProSo02 correspond to more positive pro-social attitudes.

employstaus_5: This attribute has a notably negative coefficient, implying that being from employstatus_5 means less positive pro-social attitudes during the pandemic. For all the models I looked at the coefficients value and p_value to determine their significance.

c)

Model for c19ProSo01:

The regression analysis for c19ProSo01 in other_countries_data highlights several significant predictors. Notably, employment status categories 4, 5, 6, 7, 9, and 10 show significant associations with c19ProSo01, with category 10 having the strongest positive association. Additionally, positive perceptions and behaviours related to COVID-19 (c19perBeh01, c19perBeh02, and c19perBeh03) demonstrate strong positive associations with c19ProSo01 scores. Variables such as MLQ and bor03 also exhibit significant positive associations, while variables like lone01 and lone02 show significant negative associations. Demographic factors such as age and gender are also significant predictors, with gender showing a notable positive association. However, some variables such as rankOrdLife_12 and edu do not appear to be significant predictors. Overall, the model explains a moderate amount of variance in c19ProSo01 (Adjusted R-squared = 0.3491), and the F-statistic indicates the overall significance of the regression model (p < 0.001), suggesting that the included predictors collectively contribute to explaining the variability in c19ProSo01 scores among individuals in other countries.

Model for c19ProSo02:

The regression analysis for c19ProSo02 in other_countries_data reveals several significant predictors. Employment status categories 2, 3, 4, 5, 6, and 8 exhibit significant associations with c19ProSo02, with category 4 having the most substantial negative association. In terms of social interactions during the pandemic, in-person interactions with friends and other people show significant associations, while online interactions with friends also have a significant positive association. Psychological factors like loneliness (lone01 and lone02), happiness, and life satisfaction demonstrate notable associations with c19ProSo02, as does the Multidimensional Leadership Questionnaire (MLQ). COVID-19 perception and behaviour variables (c19perBeh01, c19perBeh03) also show significant positive associations, as well as variables related to risk perception (bor01 and bor02) and conspiracy beliefs (consp01 and consp03). Demographic factors such as age and education level are significant predictors, with education level showing a particularly strong positive association. Interestingly, variables related to the perceived closeness of COVID-19 are not consistently significant predictors. Overall, the model explains a moderate amount of variance in

c19ProSo02 (Adjusted R-squared = 0.3835), and the F-statistic indicates the overall significance of the regression model (p < 0.001), suggesting that the included predictors collectively contribute to explaining the variability in c19ProSo02 scores among individuals in other countries.

Model for c19ProSo03:

The regression analysis for c19ProSo03 in other countries data indicates several significant predictors. Notably, employment status categories 3, 7, and 26 display significant associations with c19ProSo03. In-person interactions with friends and other people also exhibit significant associations, as well as online interactions with other people. Psychological factors like loneliness (lone02 and lone03) and life satisfaction show significant associations with c19ProSo03. Beliefs related to conspiracy theories (consp01, consp02, and consp03) demonstrate significant associations, as well as variables related to risk perception (bor02 and bor03). Similarly, certain ordinal life ranking categories show significant associations with c19ProSo03. COVID-19 perception and behavior variables (c19perBeh01 and c19perBeh03) also show significant associations. Demographic factors such as age and education level are significant predictors, with age displaying a particularly strong negative association. Interestingly, the perception of the closeness of COVID-19 does not consistently emerge as a significant predictor. Overall, the model explains a considerable amount of variance in c19ProSo03 (Adjusted R-squared = 0.442), and the F-statistic indicates the overall significance of the regression model (p < 0.001), suggesting that the included predictors collectively contribute to explaining the variability in c19ProSo03 scores among individuals in other countries.

The model for c19ProSo04:

The regression analysis for c19ProSo04 in other countries data reveals several significant predictors. Employment status categories 1, 2, 3, 4, 5, 7, 8, and 10 display significant associations with c19ProSo04. In-person interactions with friends and online interactions with friends both show significant associations, while in-person interactions with other people and online interactions with other people only exhibit significant associations in the case of online interactions with other people. Loneliness (lone01, lone02, and lone03) also displays significant associations with c19ProSo04, as does life satisfaction. Some beliefs related to conspiracy theories (consp01, consp02, and consp03) show significant associations, as well as variables related to risk perception (bor01, bor02, and bor03). Certain ordinal life ranking categories also show significant associations with c19ProSo04. COVID-19 perception and behaviour variables (c19perBeh01, c19perBeh02, and c19perBeh03) exhibit significant associations, as well as variables related to COVID-19 risk perception and close contact (c19RCA01, c19RCA02, c19RCA03, and coronaClose_6). Age is a significant predictor, with a positive association with c19ProSo04. Variables related to happiness, gender, and education level do not consistently emerge as significant predictors. Overall, the model explains a significant amount of variance in c19ProSo04 (Adjusted R-squared = 0.3207), and the F-statistic indicates the overall significance of the regression model (p < 0.001), suggesting that the included predictors collectively contribute to explaining the variability in c19ProSo04 scores among individuals in other countries.

Question 3

a)

My focus country is Pakistan.

In figuring out which countries are similar to Pakistan, I took a thorough approach. I started by combining data from different sources, making sure everything matched up. This meant dealing with any missing info properly, so our data stayed reliable. Then, I looked at all sorts of indicators, like how corrupt a government is, how well it works, how stable the country is politically, and even stuff like immunisation and disease reporting. My health data was from a different file and the government performance data was from a different file but both had data of 2019 and 2021 so computed average values for each country across the years 2019 and 2021. and then I had to use a merge function to combine both the files after handling missing values and changing column names as per my need.

These are the names of my columns

- [1] "Country"
- [2] "Control of Corruption Estimate"
- [3] "Government Effectiveness Estimate"
- [4] "Political Stability and Absence of Terrorism Estimate"
- [5] "Immunization"
- [6] "Vaccination_rates"
- [7] "Overall_Health_Score"

[8]"EARLY_DETECTION/REPORTING.FOR.EPIDEMICS.OF.POTENTIAL.INT.L.CONCERN" Once I had all that data together, I used a method called k-means clustering. It's like sorting countries into groups based on how alike they are when you look at all those different indicators. To decide how many groups to make, I used something called the elbow method. It showed that five groups would work best for what we needed.

After sorting the countries into their groups, I checked which ones were in the same group as Pakistan. These are the countries that have similar situations across all those different indicators. It gives a good picture of where Pakistan stands compared to its peers.

Countries similar to Pakistan include Afghanistan, Algeria, Angola, Benin, Bolivia, Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Comoros, Djibouti, Dominican Republic, Eritrea, Ethiopia, Guatemala, Guinea, Guinea-Bissau, Haiti, Honduras, Iraq, Lebanon, Lesotho, Libya, Madagascar, Malawi, Mali, Mozambique, Myanmar, Nepal, Niger, Nigeria, Papua New Guinea, Somalia, South Sudan, Sudan, Suriname, Tajikistan, Tanzania, Togo, Uganda, Ukraine, and Zimbabwe.

The linear regression model for c19ProSo01 in similar countries data reveals several significant predictors. Notably, employment status emerges as a significant predictor, with employstatus_10 showing a positive association with c19ProSo01 (Estimate = 0.7927, p < 0.01). Additionally, the MLQ variable is significant (Estimate = 0.0956, p < 0.01). Among the variables related to COVID-19 behaviours, c19ProSo02 (Estimate = 0.2241, p < 0.001), c19ProSo03 (Estimate = 0.1974, p < 0.001), and c19ProSo04 (Estimate = 0.1743, p < 0.001) all show significant positive associations with c19ProSo01.

The linear regression model for c19ProSo02 in similar countries data reveals several significant predictors. Notably, c19ProSo01 (Estimate = 0.1853, p < 0.001), c19ProSo03 (Estimate = 0.4640, p < 0.001), and c19ProSo04 (Estimate = 0.1244, p < 0.001) all show significant positive associations with c19ProSo02. Among the socio-demographic variables,

age is significant (Estimate = -0.0851, p = 0.015), suggesting that younger individuals may perceive lower levels of social support during the pandemic compared to older individuals. Additionally, employstatus_5 (Estimate = -0.3908, p = 0.0348) shows a significant negative association with c19ProSo02.

The regression analysis for c19ProSo03 in the dataset of similar countries yields some significant predictors. Notably, c19ProSo01 (Estimate = 0.1541, p < 0.001), c19ProSo02 (Estimate = 0.4382, p < 0.001), and c19ProSo04 (Estimate = 0.2477, p < 0.001) all demonstrate significant positive associations with c19ProSo03. Among the socio-demographic variables, education (Estimate = 0.0626, p = 0.023) emerges as significant, suggesting that higher levels of education are associated with higher perceptions of social support during the pandemic. Other variables such as age, employstatus, and gender do not appear to have significant associations with c19ProSo03 in this analysis. Overall, the model explains a moderate amount of variance in c19ProSo03 (Adjusted R-squared = 0.5506) and the F-statistic indicates that the overall regression model is significant (p < 0.001).

The regression analysis for c19ProSo04 reveals several significant predictors. Notably, positive perceptions and behaviours related to COVID-19, represented by c19ProSo01, c19ProSo02, and c19ProSo03, demonstrate strong positive associations with c19ProSo04. Education also shows a weak negative association, while certain categories of rankOrdLife_15, rankOrdLife_54, and c19RCA02 display significant associations with c19ProSo04. However, socio-demographic variables such as age, employment status, and gender do not appear to be significant predictors. Overall, the model explains a moderate amount of variance in c19ProSo04 (Adjusted R-squared = 0.4029), and the F-statistic indicates the overall significance of the regression model (p < 0.001).

The regression analysis for perceived social support (c19ProSo04) in Pakistan and similar countries reveals notable differences and similarities. In Pakistan, employment status (employstatus_5), age, and COVID-19 related factors (c19ProSo01, c19ProSo02, c19ProSo03) emerge as significant predictors. However, in similar countries, employment status (employstatus_5) is not significant, while variables like happiness (happy), perceived life satisfaction (lifeSat), and certain COVID-19 related factors (c19ProSo01, c19ProSo02, c19ProSo03) play significant roles. Additionally, gender and education are significant predictors in similar countries but not in Pakistan.

The regression analysis reveals differences in predictors of perceived social support (c19ProSo03) between similar countries and Pakistan. In similar countries, variables such as employment status (employstatus_8), happiness (happy), and education (edu) play significant or marginally significant roles alongside COVID-19 related factors (c19ProSo01, c19ProSo02, c19ProSo04). However, in Pakistan, employment status (employstatus_9) emerges as a significant predictor alongside COVID-19 related factors, while other predictors like age and education are not significant.

The comparison between similar countries and Pakistan also reveals differences in the attributes that play a significant role in predicting perceived social support (c19ProSo02). In the model for similar countries, variables such as age and lifeSat are significant predictors of perceived social support, with age showing a negative coefficient and lifeSat showing a positive coefficient. This suggests that older individuals in similar countries perceive less social support, while those with higher life satisfaction perceive more. However, in the Pakistan model, age emerges as a significant predictor with a negative coefficient, indicating that older individuals in Pakistan also perceive less social support. However, variables such as lifeSat and gender, which are significant in the similar countries model, are not significant

predictors in the Pakistan model. This suggests that factors influencing perceived social support may differ between similar countries and Pakistan, possibly due to cultural, social, or economic differences.

In comparing the significant predictors between the models for similar countries to Pakistan and Pakistan itself, several factors stand out. First, variables related to social behaviour during the pandemic, such as c19ProSo02, c19ProSo03, and c19ProSo04, are consistently significant in both models. These variables likely capture important aspects of individuals' responses to the pandemic, such as adherence to protective behaviours, which are crucial for understanding variations in perceived social support. Additionally, employment status (employstatus_10 in the similar countries model and lone01 in Pakistan's model) emerges as significant in both cases, underscoring the role of economic factors in shaping individuals' perceptions of social support during crises. Moreover, while life satisfaction (lifeSat) appears significant in the similar countries model, it loses significance in Pakistan's model, suggesting potential cultural or contextual differences in the importance of this factor. These comparisons highlight the robustness of certain predictors across contexts, such as social behaviours and employment status, while also indicating nuanced differences that may reflect unique cultural or socio-economic factors within Pakistan.

We have gone through all the details of the significant predictors of both similar countries and other countries and as per my analyses we see a lot of significant predictors in other countries model for Corona pro social behaviours rather than similar countries and Pakistan corona pro social behaviour model.

The differences observed between "other countries" and Pakistan, as well as the similarities between Pakistan and the identified "similar countries," can be attributed to a range of socio-economic, cultural, and contextual factors that influence the predictors of perceived social support during the COVID-19 pandemic.

In the analysis of "other countries," specific employment status categories (e.g., employstatus_10) emerge as significant predictors of perceived social support. This suggests that economic factors related to employment play a crucial role in shaping social support perceptions in these countries.

Conversely, in Pakistan and similar countries, different employment status categories (e.g., employstatus_5 in Pakistan) are significant predictors. This highlights potential differences in the employment landscape and its impact on social support perceptions within these specific contexts.

Variables like happiness and education exhibit significant associations with perceived social support in the regression models for similar countries but do not emerge as significant predictors in Pakistan. Age consistently shows a negative association with perceived social support in both "other countries" and Pakistan:

Variables related to COVID-19 perceptions and behaviours (c19ProSo01, c19ProSo02, c19ProSo03, c19ProSo04) consistently demonstrate significant associations with perceived social support across all analysed contexts. This underscores the overarching influence of pandemic-related experiences and responses on individuals' social support perceptions worldwide. The differences in significant predictors between "other countries" and Pakistan highlight unique contextual nuances. While employment status remains influential across both contexts, other predictors like happiness and education vary in their significance, reflecting distinct socio-cultural landscapes.

APPENDIX

Generative AI use 1

Technology used was Chatgpt3.5

Question: best method to check the accuracy of my clustering be very precise

Answer: The elbow method is a technique used to determine the optimal number of clusters
in a dataset for K-means clustering. It involves plotting the variance explained as a function
of the number of clusters, and identifying the "elbow" point where the rate of decrease in
variance slows down significantly.

Here's how to use the elbow method:

Perform K-means clustering on the dataset for a range of cluster numbers (typically from 1 to some maximum value).

For each clustering result, calculate the total within-cluster sum of squares (WCSS), which is a measure of the variability within each cluster.

Plot the number of clusters against the corresponding WCSS values.

Identify the point on the plot where the rate of decrease in WCSS slows down abruptly. This point is often referred to as the "elbow."

The number of clusters at the elbow point is considered to be the optimal number of clusters for the dataset.

In essence, the elbow method helps to find the point where increasing the number of clusters does not significantly improve the clustering performance, as adding more clusters does not substantially reduce the within-cluster variation. This optimal number of clusters strikes a balance between capturing meaningful patterns in the data while avoiding overfitting.

Use: I used the idea in 3a to determine the right k value by using elbow method

Generative AI use 2

The technology used was ChatGPT3.5

Question: in my data set, I have 1,2,3 .. to represent the age groups I wanna make a visualisation but first, I need to count the ages and assign them to their respective class. What is the best way?

Define age group boundaries age_group_boundaries <- c(17, 24, 34, 44, 54, 64, 74, 84, Inf)

Assign age group based on age dataset\$age_group <- cut(dataset\$age, breaks = age_group_boundaries, labels = FALSE)

Count the number of individuals in each age group age_counts <- table(dataset\$age_group) print(age_counts)

Used to create pie chart for age attribute distribution

Generative Al use 3

The technology used was ChatGPT3.5

Question: I cant include a file in my dataset i would rather have to have the whole table in my report

Answer: Tabulate the Data: Use R's kable function from the knitr package to create a nicely formatted table directly in your report. This function allows you to generate tables in various formats, including Markdown and HTML. Here's an example:

Install and load the knitr package if you haven't already

install.packages("knitr")

library(knitr)

kable(merged_data)

Used it to print the table and attach it as an appendix in my report for question 3a

Table used for 3a

Vaccination_rate EARLY_DETEC	al Stabili s Overa TION/RE	ty and Absence all_Health_Sco EPORTING.FO	e of Terrorism Estimate re R.EPIDEMICS.OF.POT	Government Effectiveness Immunization ENTIAL.INT.L.CONCERN
• •	•	•	•	:
			1	-1
1 Afghanistan		 2019	-1.4194992	-1.5186142
-2.6524069	<i>50</i>	50	27.9	
20.0	001	331		
2 Afghanistan		2021	-1.1523274	-1.6695621
-2.5185304	<i>50</i>	50	28.8	,
20.6		·	,	
3 Albania	2	2019	-0.5638996	-0.0621441
0.1100497	100	100	46.2	·
45.4	·	•	·	
4 Albania	2	2021	-0.5765355	-0.0353601
0.1962940	100	100	45.0	·
40.0				
5 Algeria	2	019	-0.6558951	-0.5677304
-1.0558299	75	<i>75</i>	26.8	
8.5				
6 Algeria	2	021	-0.6356576	-0.6532953
-0.9924372	50	50	26.2	
12.6				
9 Andorra	[2	2019	1.1765922	1.8520651
1.5772115	75	<i>75</i>	30.5	
2.2				
10 Andorra	I	2021	1.2798718	1.7492533
1.5810674	100	100	34.7	
2.2				
11 Angola	[2	2019	-1.0584179	-1.1285623
-0.3700947	50	50	25.2	
13.3				

12 Angola -0.7093695 13.3	2021 50 50	-0.6516102 29.1	-1.1280763
19 Argentina -0.0978643 54.6	2019 75 75	-0.1069402 56.1	-0.1206776
20 Argentina 0.0004683 56.7	2021 75 75	-0.4222729 54.4	-0.3896721
21 Armenia -0.4200442 67.9	2019 100 100	-0.2269752 63.2	-0.2259586
22 Armenia -0.8040366 69.6	2021 100 100	0.0489783 61.8	-0.2819272
25 Australia 0.9173131 79.6	2019 75 75	1.7881731 73.2	1.5387604
26 Australia 0.8353159 82.2	2021 75 75	1.7076461 71.1	1.4739963
27 Austria 0.8920804 38.8	2019 75 75	1.5214090 57.4	1.4922441
28 Austria 0.8994187 41.4	2021 75 75	1.2429926 56.9	1.5300202
29 Azerbaijan -0.6934121 21.7	2019 100 100	-0.8494244 34.2	-0.1281072
30 Azerbaijan -0.8378164 21.7	2021 100 100	-0.8473721 34.7	0.2134166
35 Bahrain -0.6268352 33.5	2019 100 100	-0.0380973 38.9	0.2452668
36 Bahrain -0.5247797 37.2	2021 100 100	0.1445442 36.3	0.6833251
37 Bangladesh -0.9286134 39.6	2019 75 75	-1.0169935 35.4	-0.7537483
38 Bangladesh -1.0366328 43.8	2021 100	-0.9858609 35.5	-0.6556278
39 Barbados 1.0328128 7.9	2019 50 50	1.1594402 32.2	0.5921367

40 Barbados 1.1184167 13.8	2021 50 50	1.2134006 34.9	0.4981979
41 Belarus 0.3449067 26.1	2019 50 50	0.0072857 41.8	-0.1743137
42 Belarus -0.7542452 34.4	2021 50 50	-0.2581499 43.9	-0.8045502
43 Belgium 0.4583162 52.9	2019 75 75	1.4489959 61.9	1.1134673
44 Belgium 0.6625663 52.9	2021 75 75	1.4555250 59.3	1.0870334
45 Belize 0.0619344 20.4	2019 75 75	-0.1910709 30.2	-0.6341446
46 <i>Belize</i> 0.2723819 20.4	2021 100 100	-0.3300229 29.7	-0.5262241
47 Benin -0.4202595 18.3	2019 50 50	-0.3301082 27.0	-0.4905158
48 Benin -0.3963478 14.2	2021 50 50	-0.1709435 25.4	-0.2376709
51 Bhutan 1.0653510 27.1	2019 100 100	1.5722663 40.8	0.2516028
52 Bhutan 0.7971277 33.3	2021 75 75	1.5071211 39.8	0.7017297
53 Bolivia -0.7283386 21.3	2019 50 50	-0.7809188 32.0	-0.7904927
54 Bolivia -0.2788130 21.3	2021 50 50	-0.8831868 29.9	-0.7623890
59 Botswana 1.0952075 18.9	2019 50 50	0.6862887 31.1	0.3756971
60 Botswana 1.0412596 29.3	2021 50 50	0.6658261 33.6	0.3238047
61 Brazil -0.7143936 51.5	2019 50 50	-0.4076793 51.0	-0.2339713

•	50	2021 50	-0.4987977 51.2	-0.4922956
•	75	2019 75	-0.1807891 61.4	0.1738259
61.7 68 Bulgaria 0.3646476 61.7	75	2021 75	-0.2576372 59.9	-0.1729552
69 Burkina Faso -1.3021532	50	2019 50	-0.2201210 34.4	-0.7783582
•	<i>50</i>	2021 50	-0.0830340 29.8	-0.7639615
·	50	2019 50	-1.4968066 22.7	-1.3747797
14.2 72 Burundi -1.2583575	<i>75</i>	2021 75	-1.5993913 22.1	-1.3574017
14.2 73 Cabo Verde 0.8595210	75	2019 75	0.8510368 32.6	0.2787158
10.6 74 Cabo Verde 0.8942331	75	2021 75	1.0169486 34.1	-0.0013689
14.7 75 Cambodia	50	2019 50	-1.3231657 31.0	-0.6236061
32.9 76 Cambodia	·	2021	-1.1974894	-0.4781099
-0.1315732 37.1 77 Cameroon	75	75 2019	31.1 -1.2187133	-0.8661700
-1.5617648 31.4 78 Cameroon	50	50 2021	32.2 -1.1171824	-0.9043247
-1.3940357 30.8 79 Canada	0	0 2019	28.6 1.7299765	1.6973951
0.9948179 64.6	75	75	67.6	·
70.8	75	75	1.6165298 69.8	1.5635246
83 Central Africa -2.1357780 12.5	n Re 50	public 2019 50	-1.2339615 20.7	-1.7801981

84 Central Afric	can Re 50		-1.2462837 18.6	-1.6720594
12.5	OO	001	70.0	
85 Chad		2019	-1.4170589	-1.6070483
-1.3504070	50	50	24.5	7.007.07.00
18.3	001	001	•	
86 Chad		2021	-1.4957544	-1.4607559
-1.3898128	50	50	23.9	
18.3	001			
87 Chile		2019	0.9791573	0.8635918
-0.0161684	75	75	53.0	0.00000.01
43.5	. •1	1	00.01	
88 Chile		2021	0.9567333	0.5922043
0.1613522	75	75	56.2	
58.1	. • [1		
89 China		2019	-0.3124051	0.5449034
-0.2598109	50	50	49.0	3.3.1.3.1.1
48.5		1	1	
90 China		2021	0.0303935	0.8093318
-0.5167289	50	50	47.5	•
48.5	'	,	·	
91 Colombia		2019	-0.2831572	0.0327499
-0.9794673	75	75	50.0	·
43.3	•	•	·	
92 Colombia		2021	-0.3654351	-0.0466582
-0.9545575	75	75	53.2	·
57.9	•		·	
93 Comoros		2019	-1.0578653	-1.7532390
-0.1768335	50	50	25.2	
15.8				
94 Comoros		2021	-1.3096988	-1.8138077
-0.2280336	50	50	24.9	
17.9				
105 Costa Rica		2019	0.6272395	0.3477333
0.4302428	75	75	40.5	
33.1				
106 Costa Rica		2021	0.4704830	0.2241175
0.8602900	75	<i>75</i>	40.8	
33.1				
111 Croatia		2019	0.0527427	0.4569915
0.6854161	100	100	49.8	
37.8				
112 Croatia		2021	0.0379616	0.5530890
0.6214828	100	100	48.8	
37.8				
113 Cuba		2019	0.0146971	-0.1777930
0.6104111	100	100	32.3	
6.8				

114 Cuba 0.3927019 13.1	100	2021 100	-0.0332559 30.5	-0.2487406
115 Cyprus 0.5445133 21.4	75	2019 75	0.5992194 42.3	0.9559514
116 Cyprus 0.4220542 25.0	<i>75</i>	2021 75	0.3696348 41.9	0.6993143
121 Denmark 0.9674850 60.4	<i>75</i>	2019 75	2.1216173 67.3	1.8733810
122 Denmark 0.9285245 64.6	75	2021 75	2.3337526 64.4	1.9617968
123 Djibouti -0.3434125 10.0	<i>75</i>	2019 75	-0.8802125 23.9	-0.8179903
124 Djibouti -0.5663399 14.2	<i>75</i>	2021 75	-0.8047198 25.2	-0.8317110
125 Dominica 1.0298235 10.0	25	2019 25	0.5216411 27.1	-0.2531514
126 Dominica 1.3339591 14.2	25	2021 25	0.5474969 26.4	-0.1208519
127 Dominican -0.0031599 27.9	Republ 50	ic 2019 50	-0.8387812 35.8	-0.3512725
128 Dominican 0.2873006 30.0	Republ 50	ic 2021 50	-0.5900345 34.5	-0.0019536
129 Ecuador -0.2382494 45.3	<i>50</i>	2019 50	-0.5090747 48.2	-0.3676400
130 Ecuador -0.2574279 51.5	50	2021 50	-0.5940891 50.8	-0.2407347
135 El Salvadol -0.1202680 50.4	r 75	2019 75	-0.5376289 42.9	-0.5310541
136 El Salvadol -0.0915463 52.5	r 25	2021 25	-0.5530355 40.8	-0.3409142
137 Equatorial -0.1479361 0.0	Guinea 0	2019 0	-1.5633754 18.0	-1.0412003

138 Equatorial -0.2027806	Guinea 0	2021 0	-1.5868884 17.4	-1.1847091
0.0 139 Eritrea -0.7059686	20 75	75	-1.4070611 22.5	-1.8025423
10.4 140 Eritrea -1.0556570	20 75)21 75	-1.2571419 21.4	-1.6955115
10.4 141 Estonia 0.6301070	2 75	019 75	1.5254382 55.6	1.1397940
41.3 142 Estonia 0.7484661 41.3	2 75	021 75	1.5068430 55.5	1.3450180
1.3 147 Ethiopia -1.3037219 23.5	50	019 50	-0.4354776 37.4	-0.6615252
148 Ethiopia -2.1837132 29.7	50	021 50	-0.4229709 37.8	-0.6487360
149 Fiji 0.7797738 6.3	201 75	9 75	0.6880963 25.4	0.7624882
150 Fiji 0.7241088 6.3	202 75	1 75	0.4432103 25.8	0.6543344
151 Finland 0.8351541 65.4	2 75	019 75	2.1140051 72.0	1.9728713
152 Finland 0.9631349 67.5	2 75	021 75	2.2382171 70.9	1.9206853
153 France 0.2712749 45.1	2 75	019 75	1.2483281 62.6	1.3382878
154 France 0.3255238 45.7	2 75	021 75	1.2822850 61.9	1.2306139
157 Gabon -0.0751414 3.3	0	2019 O	-0.8881114 19.9	-0.9575180
158 Gabon -0.0757728 7.5	0	2021 0	-0.8695272 21.8	-0.8195783
163 Georgia -0.4981859 51.5	75	2019 75	0.7163765 48.2	0.7662318

164 Georgia -0.4296466	100	2021 100	0.6611901 52.6	0.6181614
65.1 165 Germany 0.5484546 70.3	75	2019 75	1.8653662 65.7	1.4954659
166 Germany 0.7256667	75	2021 75	1.7831718 65.5	1.2908278
72.4 167 Ghana 0.1184709 22.6	75	2019 75	-0.1088939 31.6	-0.2900706
168 Ghana 0.0657853	75	2021 75	-0.1285271 34.3	-0.1763141
33.1 169 Greece 0.1623694	75	2019 75	0.0140720 50.6	0.3144917
•	25	2021 25	0.1834526 51.5	0.4067216
48.9 173 Grenada	Οl	2019	0.3379768	-0.1086683 5.8
•	<i>0</i> 25	0 2021 25	25.6 0.4941749 26.7	0.0180175
10.0 177 Guatemala -0.5773494 30.8	<i>75</i>	2019 75	-0.9153916 31.0	-0.7264336
30.8 178 Guatemala -0.3955471 30.8	50	2021 50	-1.1921371 29.1	-0.7823205
179 Guinea -0.8425967 28.3	50	2019 50	-0.9159014 28.5	-0.8557539
180 Guinea -0.9398943 28.3	50	2021 50	-1.0223854 26.8	-0.9539956
181 Guinea-Biss -0.5615771	au 50	2019 50	-1.4979489 19.3	-1.5601293
12.5 182 Guinea-Biss -0.2800246	au 50	2021 50	-1.3199301 21.4	-1.4479542
16.7 183 Guyana -0.2541044 11.0	<i>75</i>	2019 75	-0.1428223 30.0	-0.3955183

184 Guyana -0.1371637	2021 75 75	-0.1874441 30.8	-0.2613762
11.0 185 Haiti -0.8876247 38.3	2019 50 50	-1.3468052 30.1	-2.0670664
186 Haiti -1.1280994 38.3	2021 50 50	-1.4413589 30.4	-2.2187500
187 Honduras -0.5690662 12.5	2019 75 75	-0.8756863 26.3	-0.6190965
188 Honduras -0.6278241 12.5	2021 75 75	-1.0910184 26.2	-0.8181291
191 Hungary 0.7618216 38.1	2019 100 100	0.0311543 55.0	0.4505960
192 Hungary 0.7984638 38.1	2021 100 100	0.0125177 54.4	0.5976323
193 Iceland 1.6196480 32.2	2019 100 100	1.6708744 47.6	1.4821239
194 Iceland 1.3721787 36.4	2021 100 100	1.7606179 48.5	1.5952553
195 India -0.7968406 37.2	2019 75 75	-0.3022053 43.6	0.1308447
196 India -0.6919979 43.5	2021 75 75	-0.3164935 42.8	0.2508563
197 Indonesia -0.5021567 45.4	2019 50 50	-0.4731803 49.2	0.1387610
198 Indonesia -0.5314672 55.4	2021 50 50	-0.4490747 50.4	0.3473631
203 <i>Iraq</i> -2.6091480 15.8	2019 75 75	-1.3898027 23.3	-1.3106563
204 Iraq -2.3845594 24.2	2021 75 75	-1.2687253 24.0	-1.3196481
205 Ireland 0.9593033 49.9	2019 50 50	1.4588335 55.1	1.2576550

206 <i>Ireland</i> 0.8435314 50.4	2021 50 50	1.6196781 55.3	1.4654449
207 Israel -0.8155604 43.3	2019 100 100	0.7741138 50.7	1.2887442
208 Israel -1.1222825 46.7	2021 100 100	0.8296165 47.2	1.2526623
209 <i>Italy</i> 0.3810405 49.7	2019 75 75	0.2342612 51.9	0.4510613
210 Italy 0.5504139 49.7	2021 75 75	0.5174145 51.9	0.3260358
211 Jamaica 0.3882355 18.8	2019 100 100	-0.1138340 30.9	0.5890101
212 Jamaica 0.2179147 19.3	2021 75 75	-0.0529802 31.8	0.3783157
213 Japan 1.0196950 56.1	2019 100 100	1.4311672 58.8	1.5501909
214 Japan 1.0153564 71.1	2021 75 75	1.5360502 60.5	1.3627553
217 Jordan -0.2744396 27.2	2019 100 100	0.0804249 41.2	0.0748955
218 Jordan -0.3157934 32.5	2021 100 100	0.0268350 42.8	0.1955090
219 Kazakhstar -0.1679799 22.4	n 2019 100 100	-0.2856953 44.7	0.0689593
	n 2021 100 100	-0.2591599 46.1	0.0303978
221 Kenya 221 Kenya -1.1057360 51.5	2019 50 50	-0.8074189 43.1	-0.4418037
222 Kenya -1.0324142 55.7	2021 50 50	-0.7358834 38.8	-0.3247459
223 Kiribati 1.1242330	2019 0	0.3671322 21.6	-0.0515527 0.6

224 Kiribati 1.1389109 4.7	25	2021 25	0.2817656 26.2	0.0944074
231 Kuwait 0.1751136 17.9	100	2019 100	-0.1594345 40.1	-0.0172721
232 Kuwait 0.2629825 17.9	75	2021 75	-0.0562744 36.8	-0.0731540
233 Kyrgyz Rep -0.2661922 26.7	oublic 100	= = = = = = = = = = = = = = = = = = = =	-0.9598920 43.0	-0.7316424
234 Kyrgyz Rep -0.4671561 26.7	oublic 100		-1.1497189 42.4	-0.7765979
239 <i>Latvia</i> 0.4267935 72.9	75	2019 75	0.4808072 59.8	1.0658338
240 Latvia 0.6733230 77.1	100	2021 100	0.7208624 61.9	0.8341649
241 Lebanon -1.6722910 41.0	50	2019 50	-1.1687958 36.8	-0.8090068
242 Lebanon -1.4819446 38.9	0	2021 0	-1.2480382 33.4	-1.3116974
243 Lesotho -0.4279990	75	2019 75	-0.1236888 32.6	-0.9026215
8.5 244 Lesotho -0.2132691	25	2021 25	-0.3466125 30.9	-0.9483575
8.5 245 Liberia -0.3391354	0	2019 0	-0.9190943 34.5	-1.3950703
23.8 246 Liberia -0.2863615	0	2021 0	-0.9392408 35.7	-1.4103801
24.6 247 Libya -2.5657713	75	2019 75	-1.5750152 23.3	-1.7741348
22.1 248 Libya -2.3083458	50	2021 50	-1.5844948 25.3	-1.7474649
28.3 249 Liechtenste 1.5974932 17.1	ein 50	2019 50	1.9210759 45.0	1.6505092

250 Liechtenst 1.5954915 17.1	ein 50	2021 50	1.6653777 46.4	1.4651920
251 Lithuania 0.7705232 62.2	75	2019 75	0.6666125 54.9	1.0077667
252 Lithuania 0.8097184 64.3	75	2021 75	0.8248296 59.5	1.0187372
253 Luxembou 1.3331749	rg 25	2019 25	2.0725117 48.6	1.6956311
33.3 254 Luxembou 1.1939195	rg 25	2021 25	1.8411816 48.4	1.6790369
33.3 257 Madagasc -0.3139838	ar 50	2019 50	-1.0522057 30.9	-1.1932924
27.5 258 Madagasc -0.5422798	ar 50	2021 50	-0.9524589 30.4	-1.0277181
31.7 259 Malawi -0.2868479	50	2019 50	-0.7854043 27.8	-0.7987269
14.7 260 Malawi -0.1093158	<i>50</i>	2021 50	-0.3231938 28.5	-0.7928368
10.6 261 Malaysia 0.1460664	100	2019 100	0.2333076 55.1	0.9678217
57.5 262 Malaysia 0.0587540	75	2021 75	0.1467863 56.4	0.9535441
72.5 263 <i>Maldives</i> 0.0276085	50	2019 50	-0.2632436 30.8	-0.1957321
16.7 264 Maldives 0.5347784	50	2021 50	-0.3799698 32.0	0.3241976
20.8 265 <i>Mali</i> -2.2142057	 50	2019 50	-0.7052555 30.6	-1.0992519
24.6 266 <i>Mali</i> -2.3328054	 50	2021 50	-0.8880186 29.0	-1.2519928
25.1 267 Malta 1.0135281 19.7	75	2019 75	0.2100382 39.3	0.8243102

268 Malta 0.8873797 10 21.8	00	2021 100	0.2930495 40.2	0.8533724
269 Marshall Islan		2019	0.3671322	-0.1663450
270 Marshall Island	기 ds 기	0 2021 0	18.8 0.4167231 24.6	1.7 0.0241439
273 Mauritania	0	2019 <i>0</i>	-0.8657974 25.4	-0.6093966
274 Mauritania	0	2021 0	-0.8418127 26.2	-0.7751758
275 Mauritius	00	2019 100	0.2098069 38.3	0.8623255
276 Mauritius	00	2021 100	0.4424288 39.7	0.8109112
277 <i>Mexico</i>	50	2019 50	-0.9171847 55.1	-0.3066530
278 Mexico	50	2021 50	-1.0203100 57.0	-0.3422988
283 Moldova	75	2019 75	-0.6444892 40.8	-0.4406213
284 Moldova	00	2021 100	-0.4689192 41.0	-0.4378827
285 Monaco 1.5772115 0 20.6)	2019 <i>0</i>	1.7807099 33.8	1.8520651
286 Monaco	기	2021 0	1.2798718 33.3	2.0267587
287 Mongolia	00	2019 100	-0.4553134 40.9	-0.2345575
288 Mongolia	00	2021 100	-0.5529425 41.0	-0.5164195
289 Montenegro	5	2019 75	-0.0298483 40.8	0.1066157

290 Montenegro -0.0525021 32.1	75	2021 75	-0.0434206 44.1	-0.0299340
291 Morocco -0.3458297 27.9	100	2019 100	-0.3356444 35.6	-0.2515638
292 Morocco -0.4025913 27.9	100	2021 100	-0.4209625 33.6	-0.1734744
293 Mozambiqu -0.7667162 24.2	ie 50	2019 50	-0.8589432 29.6	-0.8883838
294 Mozambiqu -1.2593542 28.3	ie 75	2021 75	-0.8189727 30.4	-0.7543381
295 Myanmar -1.3304590 38.5	75	2019 75	-0.6452308 37.8	-1.1853216
296 Myanmar -2.0839694 46.8	75	2021 75	-1.0480769 38.3	-1.4123977
297 Namibia 0.5288066 35.4	50	2019 50	0.3275282 30.9	0.0947278
298 Namibia 0.5186849 31.8	50	2021 50	0.2360043 30.3	0.0270601
299 Nauru 0.7927320 0.0	25	2019 25	0.5295177 19.5	-0.0037915
300 Nauru 0.7871121 0.0	50	2021 50	0.6041547 18.0	0.0982897
301 Nepal -0.4529429 23.9	50	2019 50	-0.6910474 35.6	-1.0925521
302 Nepal -0.1888078 28.1	50	2021 50	-0.5561397 34.0	-0.9312484
303 Netherland 0.8212212 61.3	s 75	2019 75	1.8678021 67.7	1.7672653
304 Netherland 0.8929240 57.1	s 75	2021 75	2.0046263 64.7	1.7270592
307 New Zealar 1.4157494 47.6	nd 75	2019 75	2.1310298 55.8	1.6326025

308 New Zealand 1.3952363 75	2021 75	2.1701555 62.5	1.3068949
75.3 309 Nicaragua -0.9924811 75	2019 75	-1.0320594 40.0	-0.7773451
30.8 310 Nicaragua -0.4719982 100	2021 D 100	-1.2547038 36.3	-0.8843739
23.3 311 Niger -1.4049586 50	2019 50	-0.5701931 29.7	-0.8404199
28.3 312 Niger -1.5384851 50	2021 50	-0.5826251 28.7	-0.6438968
24.2 313 Nigeria -1.9330711 50	2019 50	-1.1151304 37.0	-1.2133290
35.8 314 Nigeria -1.7872993 50	2021 50	-1.1032567 38.0	-1.0278199
37.9 319 North Macedoni 0.0080933 100	•	-0.4566225 40.1	-0.1238972
30.8 320 North Macedoni 0.0624172 75	•	-0.3746143 42.2	-0.1211693
37.1 321 Norway 1.1419865 75	2019 75	2.0338359 61.4	1.8277836
52.5 322 Norway 1.0884751 100	2021 100	2.1087081 60.2	1.7979517
46.3 323 Oman 0.5891687 100	2019 100	0.4215426 40.9	0.2064655
33.5 324 Oman 0.4318880 100	2021 100	0.0621689 39.1	-0.1551568
33.5 325 Pakistan -2.2516375 50	2019 50	-0.8793301 31.3	-0.7181478
25.0 326 Pakistan -1.7136562 50	2021 50	-0.8097374 30.4	-0.4383641
29.2 327 <i>Palau</i> 1.1716704 0	2019 <i>0</i>	0.5295177 19.9	0.2279621 1.7

328 <i>Palau</i> 1.1722332 17.5	2 25	021 25	0.6041547 25.5	0.3708985
329 Panama 0.2908781 51.7	<i>75</i>	2019 75	-0.6435570 50.4	0.0999357
330 Panama 0.3071201 50.4	100	2021 100	-0.5912358 53.5	0.1242338
331 Papua Nev -0.7050464 18.8	√ Guinea 50	2019 50	-1.0023326 26.3	-0.7924939
16.6 332 Papua Nev -0.5767089 14.6	V Guinea 50	2021 50	-0.7702186 25.0	-0.8861411
333 Paraguay -0.0180594 30.4	75	2019 75	-0.8934145 39.8	-0.5767058
334 Paraguay -0.0009996 28.3	<i>75</i>	2021 75	-1.0259774 40.3	-0.6554369
335 Peru -0.1636593 48.9	20 50	019 50	-0.5092068 53.8	-0.1257993
336 <i>Peru</i> -0.3552855	20 50	021 50	-0.6532260 54.9	-0.2944655
57.8 337 <i>Philippines</i> -0.9280454	50	2019 50	-0.6059991 43.5	0.0599960
34.3 338 Philippines -0.9840031	50	2021 50	-0.5295781 45.7	0.0356625
52.6 339 Poland 0.5506312	2 75	2019 75	0.6109892 54.3	0.5129446
31.0 340 Poland 0.4918013	2 75	2021 75	0.5464258 55.7	0.2548574
42.5 341 Portugal 1.0516324	100	2019 100	0.7457133 58.7	1.1342911
44.7 342 Portugal 0.9372513	2 100	2021 100	0.7423466 54.7	0.9536869
42.6 345 Qatar 0.6842756 33.5	2 75	019 75	0.8172509 45.1	0.7074524

346 Qatar 0.8332614 39.7	100	2021 100	0.7799670 48.7	1.0764580
349 Romania 0.5421712 33.6	50	2019 50	-0.2365268 45.5	-0.2150140
350 Romania 0.5816803 44.0	50	2021 50	-0.0609266 45.7	-0.1632058
355 Rwanda 0.0569405 24.6	100	2019 100	0.5210270 31.1	0.0929243
356 Rwanda 0.0719058 34.6	<i>75</i>	2021 75	0.5732059 33.1	0.2279074
357 Samoa 1.1637257 0.0	50	2019 50	0.6480354 29.7	0.4362015
358 Samoa 1.1062322 4.2	50	2021 50	0.5925877 28.8	0.3771847
359 San Marino 1.2258400 17.2	50	2019 50	1.1765922 32.2	1.5796709
360 San Marino 1.1724969	50	2021 50	1.2798718 32.9	1.7492533
21.4 365 Saudi Arab -0.6234558	oia 100	2019 100	0.2464770 45.0	0.2613156
50.0 366 Saudi Arab -0.5911313	oia 100	2021 100	0.2827371 44.9	0.4658907
52.1 367 Senegal 0.0375260 28.3	50	2019 50	-0.0038142 35.9	-0.1343478
368 Senegal -0.1798180 28.3	<i>50</i>	2021 50	0.0421113 32.8	0.0218494
369 Serbia -0.0780941	75	2019 75	-0.4499893 45.0	-0.0166273
28.6 370 Serbia -0.0852662	75	2021 75	-0.4585689 45.0	0.0126692
28.6 371 Seychelles 0.6586941 22.9	50	2019 50	1.1759818 33.2	0.6225972

1272 Sayahallan	12024 1	1 6004540	0 90059791
372 Seychelles 0.7446139 50	2021 50	1.6004549 31.8	0.8995878
18.8	30	37.0	
373 Sierra Leone	2019	-0.4716616	-1.1745967
	•	34.1	-1.1743907
-0.0569588 50	50	34. /	
31.4	120241	0.4563356	1 1506050
374 Sierra Leone	2021	-0.4563256	-1.1506950
-0.0970259 0	0	32.7	
31.4	100401	0.4004000	0.0047400
375 Singapore	2019	2.1201060	2.2317193
1.4803056 75	75	55.8	
49.0	100041		//
376 Singapore	2021	2.1398079	2.2501128
1.4423250 75	<i>75</i>	<i>57.4</i>	
61.1			
381 Slovenia	2019	0.8889422	1.0419170
0.8014835 75	<i>75</i>	68.6	
66.7			
382 Slovenia	2021	<i>0.6934186</i>	1.1386214
0.7554614 75	75	67.8	
70.8			
383 Solomon Islands	2019	-0.0503519	-0.8811658
0.4956767 0	0	21.8	4.2
384 Solomon Islands	2021	-0.1635806	-0.8337227
0.5416700 0	0	23.3	4.2
385 Somalia	2019	-1.7237843	-2.2808883
-2.3862884 50	50	17.9	
15.8			
386 Somalia	2021	-1.7951125	-2.0838933
-2.7271757 50	50	16.0	
11.7			
387 South Africa	2019	-0.0310517	0.1278810
-0.2832497 50	50	47.5	
52.1			
388 South Africa	2021	-0.0341142	-0.0710127
-0.7509814 50	50	<i>45.8</i>	
50.0			
391 South Sudan	2019	-1.7998860	-2.3836708
-2.5183439 50	50	21.6	
16.7	·	·	
392 South Sudan	2021	-1.8368162	-2.3965635
-2.2872014 50	50	21.3	·
14.6	·	·	
393 Spain	2019	0.6665267	0.9688812
0.2927009 75	75	60.4	ı
64.6	·	ı	
•			

394 Spain 0.5091319 70.8	<i>75</i>	2021 75	0.7155032 60.9	0.9092734
395 Sri Lanka -0.2155698 32.9	100	2019 100	-0.3038257 33.1	-0.1248893
396 Sri Lanka -0.3768038 35.6	100	2021 100	-0.3563530 34.1	-0.1144987
409 Sudan -1.6961982 15.8	50	2019 50	-1.4078447 30.0	-1.6586438
410 Sudan -1.9875722 15.8	50	2021 50	-1.2792203 28.3	-1.6632018
411 Suriname 0.0876267 20.0	50	2019 50	-0.4198544 33.2	-0.6268236
412 Suriname 0.3483017 24.2	50	2021 50	-0.4186403 35.0	-0.6806551
413 Sweden 1.0117697 64.6	100	2019 100	2.0920341 66.4	1.6740988
414 Sweden 1.0143628 62.5	100	2021 100	2.0988910 64.9	1.6124706
415 Switzerlan 1.3108382 38.3	d 75	2019 75	1.9450564 60.4	1.9163042
416 Switzerlan 1.1152221 42.5	d 75	2021 75	1.9590089 58.8	1.9930376
423 Tajikistan -0.5120729	100	2019 100	-1.3455535 29.8	-1.1167146
5.8 424 Tajikistan -0.6768180 10.6	50	2021 50	-1.3540801 29.3	-0.6469495
425 Tanzania -0.3884414	50	2019 50	-0.4230077 32.2	-0.8546779
29.7 426 Tanzania -0.3355928	50	2021 50	-0.3969004 31.3	-0.6463974
25.6 427 Thailand -0.4914205 83.2	100	2019 100	-0.4717595 68.9	0.2606455

428 Thailand -0.5687262 75 91.5	2021 5	-0.4783483 68.2	0.2211909
429 Timor-Leste 0.2430168 0 18.3	2019 <i>0</i>	-0.4005702 24.2	-0.8581024
430 Timor-Leste 0.1923154 25 24.6	2021 25	-0.0724385 27.8	-0.7549486
431 Togo -0.9082437 50 27.1	2019 	-0.7472892 26.1	-0.9727898
432 Togo -0.6957114 50	2021 50	-0.6916795 27.8	-0.6865243
34.6 433 Tonga 1.0377861 100	2019 100	-0.3298207 24.5	0.2056895
4.2 434 Tonga 1.0789658 100	2021 100	-0.4286540 26.4	0.3034193
8.3 435 Trinidad and To 0.0815371 75		-0.2567028 37.7	0.0881585
12.1 436 <i>Trinidad and To</i> 0.2390293 75	• •	-0.2999710 36.8	0.1549869
12.6 437 Tunisia -0.8770729 75	2019 	-0.1408772 32.1	-0.0353329
20.4 438 Tunisia -0.7565514 75	2021	-0.2636990 31.5	-0.2100148
20.4 443 Turkmenistan	2019	-1.3935708	-1.0176277
-0.1781499 100 27.1 444 Turkmenistan	2021	33.3 -1.4390671	-0.9620621
-0.3320110 100 27.6 445 Tuvalu) 100 2019	31.9 0.3868456	-0.5368156
1.1716704 25 0.0 446 Tuvalu	25 2021	20.2 0.6609164	-0.4026066
1.2676833 25 0.0	25	20.0	
447 Uganda -0.6942645 50 35.0	2019 50	-1.1765792 39.0	-0.6487716

448 Uganda -0.9377432 50 35.6	2021 50	-1.0305375 36.5	-0.6001834
449 Ukraine -1.4283267 75 23.3	2019 75	-0.8002426 36.9	-0.3341684
450 Ukraine -1.1269530 75 32.8	2021 75	-0.7864681 38.9	-0.4388590
451 United Arab Emil 0.6674451 100 25.1	rates 2019 100	1.0721111 40.1	1.3803160
452 United Arab Emil 0.5974612 100	rates 2021 100	1.1501433 39.6	1.3659306
22.6 453 United Kingdom 0.5274704 75	2019 75	1.7487724 68.3	1.4499079
62.5 454 United Kingdom 0.4898921 75	2021 75	1.6409292 67.2	1.2417737
70.8 459 Uruguay 1.0281792 75	2019 75	1.1954031 39.1	0.6431634
15.0 460 Uruguay 1.0458239 100	2021 100	1.5862535 40.3	0.7999353
15.0 461 Uzbekistan -0.2966655 100	2019 100	-1.0468915 37.7	-0.6000623
20.0 462 Uzbekistan -0.2529742 100	2021 100	-0.8293310 39.0	-0.2661737
18.5 463 Vanuatu 1.0021076 50	2019 50	-0.2841584 27.0	-0.5175012
4.2 464 Vanuatu	2021	-0.0398655	-0.5504693
0.9003791 0 469 Vietnam 0.0389102 75	0 2019 75	25.9 -0.5458180 42.2	6.8 0.0279832
42.1 470 Vietnam -0.1181897 75	2021 75	-0.3078603 42.9	0.2433947
55.1 479 Zambia -0.1170296 50 18.8	2019 50	-0.6739175 28.0	-0.7419474

480 Zambia		2021	-0.7597278	-0.8411018
0.0523477	0	0	26.5	
19.3				
481 Zimbabwe		2019	-1.2711903	-1.3197736
-0.9432861	50	50	33.4	
40.4				
482 Zimbabwe		2021	-1.2535501	-1.3048168
-0.9544259	50	50	32.4	
40.4				

R Code

```
rm(list = ls())
set.seed(33370311) # XXXXXXXX = your student ID
cvbase =
read.csv("C:/Users/Home/OneDrive/Desktop/3152/PsyCoronaBaselineExtract.csv")
cvbase <- cvbase[sample(nrow(cvbase), 40000), ] # 40000 rows
# Question 1
# 1(a)
# to check if the csv is loaded correctly
head(cvbase)
# dimensions of the data
dim(cvbase)
# names of all the columns in my data
names(cvbase)
#Examine the structure of the data
str(cvbase)
#using the summary function to check the summary of csv
summary(cvbase)
#checking how many countries exist in the csv
unique countries <- unique(cvbase$coded country)
print(length(unique_countries))
#checking all the numeric and non numeric attributes in our data
numerical attributes <- sapply(cvbase, is.numeric)
numerical_attributes_names <- names(numerical_attributes[numerical_attributes == TRUE])
non numerical names <- names(numerical attributes[numerical attributes == FALSE])
cat("The Numeric Attributes:", numerical_attributes_names, "\n")
cat("The Non-Numeric Attributes:", non_numerical_names, "\n")
#check for all NA or missing values
na_count <- sapply(cvbase, function(x) sum(is.na(x)))</pre>
na_count[na_count > 0]
```

#the function which replace NA with zero

```
replace_na_with_zero <- function(data, columns) {
 for (col in columns) {
  data[[col]] <- ifelse(is.na(data[[col]]), 0, data[[col]])
 return(data)
# Columns to process
emp_status_columns <- c("employstatus_1", "employstatus_2", "employstatus_3",
"employstatus 4", "employstatus 5", "employstatus 6", "employstatus 7",
"employstatus_8", "employstatus_9", "employstatus_10")
corona_close_columns <-
c("coronaClose_1", "coronaClose_2", "coronaClose_3", "coronaClose_4", "coronaClose_5", "co
ronaClose_6")
# Apply the function to replace NA values with 0 for emp status columns
cvbase <- replace_na_with_zero(cvbase, emp_status_columns)</pre>
cvbase <- replace na with zero(cvbase, corona close columns)
# Below function is used to plot and visualize the distribution of all the Employ Status
columns
# Set up the layout for the plots
par(mfrow=c(2, 3)) # 2 rows, 3 columns
# Function to replace NA values with 0 and generate bar plot for each employ status column
replace na and plot <- function(column name) {
 cvbase[[column_name]] <- ifelse(is.na(cvbase[[column_name]]), 0,
cvbase[[column_name]])
 # Update the column in the original dataframe
 cvbase[[column_name]] <- cvbase[[column_name]]</pre>
 counts <- table(cvbase[[column name]])
 ordered_levels <- names(sort(counts))</pre>
 barplot(counts[ordered levels], main = paste("Distribution of", column name),
      xlab = "Ordinal Category", ylab = "Frequency", col = "skyblue")
}
# Apply the function to each column
for (col in emp_status_columns) {
 replace_na_and_plot(col)
par(mfrow=c(2, 3)) # 2 rows, 3 columns
# Apply the function to each column
for (col in corona close columns) {
```

```
replace_na_and_plot(col)
#The list of plots created by the below function is a more gender based distribution of
Employ Status'
# Set up the layout for the plots
par(mfrow=c(4, 3)) # 2 rows, 3 columns
# Function to generate stacked bar plot for each employ status column
generate_stacked_bar_plot <- function(column_name) {</pre>
 # Filter out NA values
 cvbase[[column_name]] <- ifelse(is.na(cvbase[[column_name]]), 0,
cvbase[[column_name]])
 # Create a table to count gender occurrences within each employ status
 counts <- table(cvbase$gender, cvbase[[column_name]])</pre>
 # Create stacked bar plot
 barplot(counts, beside = TRUE,
      legend.text = FALSE, col = c("yellow", "lightblue", "lightgreen"),
      xlab = column_name, ylab = "Count")
 # Add legend for gender only
 legend("topright", legend = c("Female", "Male", "Other"), fill = c("yellow", "lightblue",
"lightgreen"))
}
# Apply the function to each employ status column
for (column in emp status columns) {
 generate_stacked_bar_plot(column)
# Age Distribution
age_counts <- table(cvbase$age)</pre>
# Define the age groups
age_groups <- c("18-24", "25-34", "35-44", "45-54", "55-64", "65-74", "75-84", "85+")
# Calculate percentages
age_percentages <- round(prop.table(age_counts) * 100, 1)</pre>
# Create a pie chart
pie(age counts,
  main = "Pie Chart of Age Distribution",
  col = rainbow(length(age counts)),
  labels = paste("Age Group ", age_groups, "\n", age_percentages, "%"),
  cex = 0.8)
```

```
# Legend indicating the age groups
legend("bottomleft", legend = age_groups, fill = rainbow(length(age_counts)))
par(mfrow=c(1, 3))
create_custom_histogram <- function(data, column, breaks, labels) {</pre>
 # Remove NA values from the specified column
 cleaned_data <- na.omit(data[[column]])</pre>
 hist(cleaned_data,
    breaks = breaks,
    main = paste("Histogram of", column, "Distribution"),
    xlab = "Scale",
    ylab = "Frequency",
    col = "skyblue",
    labels = labels,
    cex.lab = 1)
}
# Define breaks and labels for the histogram bins
breaks <- seq(-3.5, 3.5, by = 1)
labels <- c("Strongly disagree", "Disagree", "Somewhat disagree", "Neither agree nor
disagree", "Somewhat agree", "Agree", "Strongly agree")
# Specify the columns for which you want to create histograms
columns <- c("bor01", "bor02", "bor03")
# Loop through each column and create a customized histogram
for (col in columns) {
 create_custom_histogram(cvbase, col, breaks, labels)
par(mfrow=c(3, 1))
columns <- c("c19RCA01", "c19RCA02", "c19RCA03")
# Loop through each column and create a customized histogram
for (col in columns) {
 create_custom_histogram(cvbase, col, breaks, labels)
columns <- c( "c19perBeh01", "c19perBeh02", "c19perBeh03")
# Loop through each column and create a customized histogram
for (col in columns) {
```

```
create_custom_histogram(cvbase, col, breaks, labels)
par(mfrow=c(1, 1))
columns <- c( "MLQ")
# Loop through each column and create a customized histogram
for (col in columns) {
 create_custom_histogram(cvbase, col, breaks, labels)
par(mfrow=c(2, 2))
columns <- c( "c19ProSo01", "c19ProSo02", "c19ProSo03", "c19ProSo04")
# Loop through each column and create a customized histogram
for (col in columns) {
 create_custom_histogram(cvbase, col, breaks, labels)
}
#Life Satisfaction Distribution
par(mfrow=c(1, 1))
# Now we just change bin breaks in our histograms
breaks <- seq(0.5, 7.5, by = 1)
# Now we also change labels
labels <- c("Very dissatisfied", "Dissatisfied", "Slightly
       dissatisfied", "Slightly satisfied", "Very
       satisfied")
columns <-c("lifeSat")
# Loop through each column and create a customized histogram
for (col in columns) {
 create_custom_histogram(cvbase, col, breaks, labels)
# Loneliness Distribution
par(mfrow=c(1, 3))
# Now we just change bin breaks in our histograms
breaks <- seq(0.5, 5.5, by = 1)
# Now we also change labels
labels <- c("Never", "Rarely", "Sometimes", "Often", "All the time")
columns <-c("lone01", "lone02", "lone03")
# Loop through each column and create a customized histogram
for (col in columns) {
```

```
create_custom_histogram(cvbase, col, breaks, labels)
# Loneliness Distribution
par(mfrow=c(2, 2))
# Now we just change bin breaks in our histograms
breaks <- seq(-0.5, 7.5, by = 1)
# Now we also change labels
labels <- c("0","1","2","3","4","5","6","7")
columns
<-c("isoFriends_inPerson", "isoOthPpl_inPerson", "isoFriends_online", "isoOthPpl_online")
# Loop through each column and create a customized histogram
for (col in columns) {
 create_custom_histogram(cvbase, col, breaks, labels)
}
#Question 2
#2(a)
# Load necessary libraries
library(dplyr)
# Impute missing values with mean for numeric columns
imputed cvbase <- cvbase %>%
 mutate all(~ifelse(is.na(.), mean(., na.rm = TRUE), .))
# then for non numeric variables we remove na
cleaned cvbase <- imputed cvbase %>%
 na.omit()
#below we are just using contrast on rankOrderLife variables
cleaned cvbase$rankOrdLife 1 <- factor(cleaned cvbase$rankOrdLife 1)</pre>
cleaned_cvbase$rankOrdLife_2 <- factor(cleaned_cvbase$rankOrdLife_2)</pre>
cleaned_cvbase$rankOrdLife_3 <- factor(cleaned_cvbase$rankOrdLife_3)</pre>
cleaned cvbase$rankOrdLife 4 <- factor(cleaned cvbase$rankOrdLife 4)</pre>
cleaned_cvbase$rankOrdLife_5 <- factor(cleaned_cvbase$rankOrdLife_5)</pre>
cleaned_cvbase$rankOrdLife_6 <- factor(cleaned_cvbase$rankOrdLife_6)</pre>
contrasts(cleaned cvbase$rankOrdLife 1) = contr.treatment(6)
contrasts(cleaned_cvbase$rankOrdLife_2) = contr.treatment(6)
contrasts(cleaned_cvbase$rankOrdLife_3) = contr.treatment(6)
contrasts(cleaned_cvbase$rankOrdLife_4) = contr.treatment(6)
contrasts(cleaned cvbase$rankOrdLife 5) = contr.treatment(6)
contrasts(cleaned_cvbase$rankOrdLife_6) = contr.treatment(6)
# Subset Data for Pakistan
pakistan_data <- cleaned_cvbase[cleaned_cvbase$coded_country == "Pakistan",]
# Subset Data for Other Countries and Remove NA values
```

```
other_countries_data <- cleaned_cvbase[cleaned_cvbase$coded_country != "Pakistan", ]
#just to know how much rows i still have left
dim(pakistan data)
# Print unique country codes (just for verification)
print(pakistan data$coded country)
# Filter numeric columns
numeric attributes pakistan<- pakistan data[sapply(pakistan data, is.numeric)]
numeric_attributes_other<- other_countries_data[sapply(other_countries_data, is.numeric)]
# Summarize numeric attributes
summary stats_pakistan <- summarise_all(numeric_attributes_pakistan, list(mean = mean,</pre>
median = median, sd = sd)
# Aggregate Data for Other Countries
summary stats other <- summarise all(numeric attributes other, list(mean = mean, median
= median, sd=sd))
print(summary_stats_pakistan)
print(summary_stats_other)
text_columns <- names(cvbase)
find max <- function(column) {</pre>
 # Calculate frequency of each unique value in the column for both Pakistan and other
countries
 freq_pakistan <- table(pakistan_data[[column]])</pre>
 freq_other <- table(other_countries_data[[column]])</pre>
 # Find the maximum frequency for Pakistan and other countries
 max freq pakistan <- max(freq pakistan)
 max_freq_other <- max(freq_other)</pre>
 # Identify the element(s) with maximum frequency
 max_elem_pakistan <- names(freq_pakistan)[freq_pakistan == max_freq_pakistan]
 max elem other <- names(freq other)[freq other == max freq other]
 # Print the results
 cat("Max occurrence for other countries in", column, ":", max_elem_other, "with frequency",
max_freq_other, "\n")
 cat("Max occurrence for Pakistan in", column, ":", max_elem_pakistan, "with frequency",
max freq pakistan, "\n")
for (col in text_columns){
 find_max(col)
# Subset Data for Pakistan
pakistan_data <- cleaned_cvbase[cleaned_cvbase$coded_country == "Pakistan", ]
```

```
# Subset Data for Other Countries
other_countries_data <- cleaned_cvbase[cleaned_cvbase$coded_country != "Pakistan", ]
# Select relevant columns
columns of interest <- c("c19ProSo01", "c19ProSo02", "c19ProSo03", "c19ProSo04")
# Combine Pakistan and Other Countries data
combined data <- rbind(pakistan data, other countries data)
# Add a column indicating the country
combined_data$country <- factor(ifelse(combined_data$coded_country == "Pakistan",
"Pakistan", "Other Countries"))
install.packages("corrplot")
# Load the corrplot package
library(corrplot)
# Now lets check the correlation matrix for each pro social behaviours for both the datasets
# Select relevant columns
columns_of_interest <- c("c19ProSo01", "c19ProSo02", "c19ProSo03", "c19ProSo04")
# Calculate the correlation matrix
correlation_matrix_pakistan <- cor(pakistan_data[columns_of_interest])</pre>
correlation_matrix_other <- cor(other_countries_data[columns_of_interest])</pre>
# Create the correlation plot with title
corrplot(correlation matrix pakistan, method = "color", type = "upper",
     addCoef.col = "black", tl.col = "black", tl.srt = 45,
     main = "Correlation Plot for Pakistan Data")
# Create the correlation plot
corrplot(correlation matrix other, method = "color", type = "upper",
     addCoef.col = "black", tl.col = "black", tl.srt = 45,main = "Correlation Plot for Other
Countries Data")
# Age Distribution
age counts pakistan <- table(pakistan data$age)
# Age Distribution
age_counts_other <- table(other_countries_data$age)</pre>
# Define the age groups
age_groups <- c("18-24", "25-34", "35-44", "45-54", "55-64", "65-74", "75-84", "85+")
# Calculate percentages
age_percentages_other <- round(prop.table(age_counts_other) * 100, 1)</pre>
age percentages pakistan <- round(prop.table(age counts pakistan) * 100, 1)
```

```
# Create a pie chart
pie(age counts pakistan,
  main = "Pie Chart of Age Distribution Of Pakistan",
  col = rainbow(length(age counts)),
  labels = paste("Age Group ", age_groups, "\n", age_percentages_pakistan, "%"),
  cex = 0.8)
# Legend indicating the age groups
legend("bottomleft", legend = age groups, fill = rainbow(length(age counts pakistan)))
# Create a pie chart
pie(age_counts_other,
  main = "Pie Chart of Age Distribution Of Other Countries",
  col = rainbow(length(age_counts)),
  labels = paste("Age Group ", age_groups, "\n", age_percentages_other, "%"),
  cex = 0.8)
# Legend indicating the age groups
legend("bottomleft", legend = age_groups, fill = rainbow(length(age_counts_other)))
# Load necessary libraries
library(ggplot2)
library(dplyr)
install.packages("tidyr")
# Load the tidyr package
library(tidyr)
# Assuming you have two datasets: pakistan_data and other_countries_data
# Combine both datasets
combined_data <- bind_rows(
 mutate(pakistan_data, Country = "Pakistan"),
 mutate(other_countries_data, Country = "Other Countries")
# Reshape the data for plotting
combined_data_long <- combined_data %>%
 select(Country, starts_with("employstatus_")) %>%
 pivot_longer(cols = starts_with("employstatus_"), names_to = "Employment_Status",
values_to = "Count")
# Create a multivariate bar plot
ggplot(combined_data_long, aes(x = Employment_Status, y = Count, fill = Country)) +
 geom_bar(stat = "identity", position = "stack") +
```

```
labs(title = "Employment Status Comparison between Pakistan and Other Countries", x =
"Employment Status", y = "Count") +
 theme minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels if needed
# Load necessary library
library(plotly)
# Create 3D scatter plot
plot_ly(pakistan_data, x = \sim age, y = \sim lone 01, z = \sim life Sat',
     color = ~`lifeSat`,
     colors = c("#440154", "#3B528B", "#21918C", "#5DC863", "#FDE725"),
     marker = list(size = 5),
     type = "scatter3d", mode = "markers",
     text = paste("Age: ", pakistan_data$age, "<br>",
              "Loneliness: ", pakistan_data$lone01, "<br>",
              "Life Satisfaction: ", pakistan_data$`lifeSat`),
     hoverinfo = "text") %>%
 layout(title = "Relationship between Age, Loneliness, and Life Satisfaction of Pakistan",
     scene = list(xaxis = list(title = "Age"),
              yaxis = list(title = "Loneliness"),
              zaxis = list(title = "Life Satisfaction")))
# Load necessary library
library(plotly)
# Create 3D scatter plot
plot ly(other countries data, x = \text{-age}, y = \text{-lone01}, z = \text{-`lifeSat'},
     color = ~`lifeSat`,
     colors = c("#440154", "#3B528B", "#21918C", "#5DC863", "#FDE725"),
     marker = list(size = 5).
     type = "scatter3d", mode = "markers",
     text = paste("Age: ", other_countries_data$age, "<br>",
              "Loneliness: ", other countries data$lone01, "<br>",
              "Life Satisfaction: ", other_countries_data$`lifeSat`),
     hoverinfo = "text") %>%
 layout(title = "Relationship between Age, Loneliness, and Life Satisfaction of Other
Countries",
     scene = list(xaxis = list(title = "Age"),
              yaxis = list(title = "Loneliness"),
              zaxis = list(title = "Life Satisfaction")))
#2(b)
# Since only one country no need for this column
pakistan_data <- pakistan_data[, !(names(pakistan_data) %in% c("coded_country"))]
```

```
# Fit linear regression model for c19ProSo01, c19ProSo02, c19ProSo03, c19ProSo04
fit_c19ProSo01 <- Im(c19ProSo01 ~ ., data = pakistan_data)
fit c19ProSo02 <- Im(c19ProSo02 ~ ., data = pakistan data)
fit_c19ProSo03 <- Im(c19ProSo03 ~ ., data = pakistan_data)
fit c19ProSo04 <- Im(c19ProSo04 ~ ., data = pakistan data)
# Check all the models summary
summary(fit c19ProSo01)
summary(fit_c19ProSo02)
summary(fit c19ProSo03)
summary(fit_c19ProSo04)
#2 c
# Since only one country no need for this column
other_countries_data <- other_countries_data[, !(names(other_countries_data) %in%
c("coded_country"))]
# Fit linear regression model for c19ProSo01, c19ProSo02, c19ProSo03, c19ProSo04
fit_c19ProSo01 <- Im(c19ProSo01 ~ ., data = other_countries_data)
fit_c19ProSo02 <- Im(c19ProSo02 ~ ., data = other_countries_data)
fit_c19ProSo03 <- Im(c19ProSo03 ~ ., data = other_countries_data)
fit_c19ProSo04 <- Im(c19ProSo04 ~ ., data = other_countries_data)
# Check all the models summary
summary(fit_c19ProSo01)
summary(fit c19ProSo02)
summary(fit c19ProSo03)
summary(fit_c19ProSo04)
# Question 3
# 3a
# Preparing the data since we got it from two different sources
#since we want to read xlsx we need this package
install.packages("readxl")
library(readxl)
library(dplyr)
# reading the first file
file1 <-read_excel("C:/Users/Home/OneDrive/Desktop/3152/governancedata.xlsx")
#reading the second file
file2 <- read.csv("C:/Users/Home/OneDrive/Desktop/3152/Healthdata.csv")
# checking for na
na count <- sapply(file1, function(x) sum(is.na(x)))</pre>
```

```
na_count[na_count > 0]
#getting rid of all the na values
file1 <- file1 %>%
 na.omit()
# in file 2 we had a lot of complex predictors hence I picked the ones needed
file2 <- file2[, c("X1.6..Immunization", "X1.6.1..Vaccination.rates", "OVERALL.SCORE",
"Year", "Country",
"X2..EARLY.DETECTION...REPORTING.FOR.EPIDEMICS.OF.POTENTIAL.INT.L.CONCER
N")]
#change column names as per my need
colnames(file1)[which(colnames(file1) == "Time")] <- "Year"
colnames(file1)[which(colnames(file1) == "Country Name")] <- "Country"
colnames(file1)[which(colnames(file1) == "Control of Corruption: Estimate [CC.EST]")] <-
"Control of Corruption Estimate"
colnames(file1)[which(colnames(file1) == "Government Effectiveness: Estimate [GE.EST]")]
<- "Government Effectiveness Estimate"
colnames(file1)[which(colnames(file1) == "Political Stability and Absence of
Violence/Terrorism: Estimate [PV.EST]")] <- "Political Stability and Absence of Terrorism
Estimate"
colnames(file1)[which(colnames(file1) == "Political Stability and Absence of
Violence/Terrorism: Estimate [PV.EST]")] <- "Political Stability and Absence of Terrorism
Estimate"
colnames(file2)[which(colnames(file2) == "X1.6.1..Vaccination.rates")] <- "Vaccination_rates"
colnames(file2)[which(colnames(file2) == "X1.6..Immunization")] <- "Immunization"
colnames(file2)[which(colnames(file2) == "OVERALL.SCORE")] <- "Overall Health Score"
colnames(file2)[which(colnames(file2) ==
"X2..EARLY.DETECTION...REPORTING.FOR.EPIDEMICS.OF.POTENTIAL.INT.L.CONCER
N")] <-
"EARLY_DETECTION/REPORTING.FOR.EPIDEMICS.OF.POTENTIAL.INT.L.CONCERN"
file1 <- subset(file1, select = -c(`Country Code`,`Time Code`))
print(colnames(file1))
# Merge file1 and file2 based on "Country" and "Year" columns
merged_data <- merge(file1, file2, by = c("Country", "Year"), all = TRUE)
# since my data is from 2019 and 2021 I wanna get an avg hence changing column names
to numeric from character
merged_data <- merged_data %>%
 mutate(`Control of Corruption Estimate` = as.numeric(`Control of Corruption Estimate`),
     `Government Effectiveness Estimate` = as.numeric(`Government Effectiveness
Estimate`),
```

```
`Political Stability and Absence of Terrorism Estimate` = as.numeric(`Political Stability
and Absence of Terrorism Estimate`))
# getting rid of na values
merged data <- na.omit(merged data)
#install.packages("knitr")
#library(knitr)
# Print the table using kable
#kable(merged_data)
#we have our final data which has all the avg
countries_data <- merged_data %>%
 group_by(Country) %>%
 summarise(across(everything(), mean, na.rm = TRUE))%>%
 select(-Year)
# checking for na
na count <- sapply(countries data, function(x) sum(is.na(x)))</pre>
na_count[na_count > 0]
# Next step is to perform clustering and hence we first perform scaling
library(dplyr)
install.packages("tidyr")
library(tidyr)
# Select numeric columns for scaling
numeric_cols <- select(countries_data, -Country)</pre>
# Scale the numeric columns
scaled data <- scale(numeric cols)
# Combine scaled numeric columns with non-numeric columns
scaled avg data <- bind cols(select(countries data, Country), as.data.frame(scaled data))
# Print the first few rows of scaled data
print(colnames(scaled_avg_data))
library(ggplot2)
# Calculate the within-cluster sum of squares (WCSS) for different values of k
wcss <- numeric(length = 10)</pre>
for (i in 1:10) {
 countryclust <- kmeans(scaled_avg_data[, -1], centers = i)
 wcss[i] <- countryclust$tot.withinss</pre>
```

Plot the elbow method

```
plot(1:10, wcss, type = "b", pch = 19, frame = FALSE, xlab = "Number of Clusters (k)", ylab =
"Within-Cluster Sum of Squares (WCSS)",
   main = "Elbow Method for Optimal Number of Clusters")
# as per the plot we see elbow between 4 and 6 hence k = 5
# Set seed for reproducibility
set.seed(123)
# Perform k-means clustering
k <- 5 # You can adjust the number of clusters as needed
countryclust <- kmeans(scaled_avg_data[, -1], centers = k) # Excluding 'Country' for
clustering
print(countryclust)
# Extract cluster assignments from clustering results
cluster_assignments <- countryclust$cluster</pre>
# Find the index of the focus country (e.g., Pakistan) in the dataset
focus_country_index <- which(scaled_avg_data$Country == "Pakistan")
# Find the cluster assignment of the focus country
focus_country_cluster <- cluster_assignments[focus_country_index]
# Find countries in the same cluster as the focus country
similar_countries <- scaled_avg_data$Country[cluster_assignments ==
focus_country_cluster]
# Display the similar countries
print(similar_countries)
# 3b
# List of countries similar to Pakistan's cluster
countries to check <- c("Afghanistan", "Algeria", "Angola", "Benin", "Bolivia", "Burkina
Faso", "Burundi", "Cambodia", "Cameroon", "Central African Republic", "Chad", "Comoros",
"Djibouti", "Dominican Republic", "Eritrea", "Ethiopia", "Guatemala", "Guinea",
"Guinea-Bissau", "Haiti", "Honduras", "Iraq", "Lebanon", "Lesotho", "Libya", "Madagascar",
"Malawi", "Mali", "Mozambique", "Myanmar", "Nepal", "Niger", "Nigeria", "Pakistan", "Papua
New Guinea", "Somalia", "South Sudan", "Sudan", "Suriname", "Tajikistan", "Tanzania",
"Togo", "Uganda", "Ukraine", "Zimbabwe")
# Check if countries exist in cleaned_cvbase
existing_countries <- countries_to_check[countries_to_check %in%
cleaned cvbase$coded country]
# Print the existing countries
print(existing_countries)
# Filter the cleaned_cvbase dataset for the existing countries
```

```
existing_countries & cleaned_cvbase$coded_country != "Pakistan", ]
# Check the dimensions of the filtered dataset
dim(similar countries data)
print
# check all exist or not
print(unique(similar countries data$coded country))
# Since only one country no need for this column
similar_countries_data <- similar_countries_data[, !(names(similar_countries_data) %in%
c("coded_country"))]
# Fit linear regression model for c19ProSo01, c19ProSo02, c19ProSo03, c19ProSo04
fit_proso_01 <- Im(c19ProSo01 ~ ., data = similar_countries_data)
fit_proso_02 <- Im(c19ProSo02 ~ ., data = similar_countries_data)
fit proso 03 <- Im(c19ProSo03 ~ ., data = similar countries data)
fit_proso_04 <- Im(c19ProSo04 ~ ., data = similar_countries_data)
# Check all the models summary
summary(fit_proso_01)
summary(fit_proso_02)
summary(fit_proso_03)
summary(fit_proso_04)
```

similar_countries_data <- cleaned_cvbase[cleaned_cvbase\$coded_country %in%

Reference for the data in 3a

Global Health Security Index: Reports and Data

https://www.ghsindex.org/report-model/

World Health Organization

https://www.who.int/