

Desafío - Boosting Classifiers

- Para realizar este desafío debes haber estudiado previamente todo el material disponibilizado correspondiente a la unidad.
- Una vez terminado el desafío, comprime la carpeta que contiene el desarrollo de los requerimientos solicitados y sube el .zip en el LMS.
- Desarrollo desafío:
 - El desafío se debe desarrollar de manera Individual.
 - Para la realización del desafío necesitarás apoyarte del archivo Apoyo Desafío
 Boosting Classifiers.

Requerimientos

Para esta sesión trabajaremos con una base de datos sobre rotación de clientes en una compañía de telecomunicaciones. El archivo contiene 3333 registros y 20 atributos. El vector objetivo a modelar es la tasa de rotación entre los clientes de una compañía de telecomunicaciones churn. Los atributos existentes hacen referencia a características de la cuenta de cada cliente.

Lista de atributos:

- State: Estado de Estados Unidos.
- Account Length: Tiempo en que la cuenta ha sido activada.
- Area Code: Código de área.
- International plan: Plan internacional activado.
- Voice mail plan: Plan de mensajes de voz activado.
- number vmail messages: Cantidad de mensajes de voz.
- total_day_minutes: Cantidad de minutos ocupados en la mañana.
- total day calls: Cantidad de llamadas realizadas en la mañana.
- total_day_charge: Cobros realizados en la mañana.
- total eve minutes: Cantidad de minutos ocupados en la tarde.
- total_eve_calls: Cantidad de llamadas realizadas en la tarde.
- total_eve_charge: Cobros realizados en la tarde.
- total_night_calls: Cantidad de llamadas realizadas en la noche.
- tota_night_minutes: Cantidad de minutos ocupados en la noche.
- total_night_charge: Cobros realizados en la noche.
- total_intl_minutes: Cantidad de minutos ocupados en llamadas internacionales.
- total_intl_calls: Cantidad de llamadas internacionales realizadas.
- total_intl_charge: Cobros realizados por llamadas internacionales.
- churn: 1 si el cliente se cambió de compañía, 0 de los contrario.

Los datos provienen del paquete AppliedPreditiveModeling de R.

Ejercicio 1: Preprocesamiento

- Grafique el comportamiento distributivo de los atributos y de la variable dependiente.
 Reporte brevemente el comportamiento de las variables.
- En base al comportamiento de los atributos, considere si es necesario implementar alguna recodificación o transformación de atributo. Algunas normas a seguir:
 - Para las variables categóricas, recodifíquelas en variables binarias.
 - Para aquellas variables numéricas que presenten alto sesgo, pueden transformarlas con su logaritmo.

Ejercicio 2: Comparación de AdaBoost y Gradient Boosting

 Entrene los clasificadores AdaBoost y Gradient Boosting para mejorar su capacidad predictiva en la medida de lo posible. Para ello, implemente una búsqueda de grilla con las siguientes especificaciones:

Modelo	Grilla
AdaBoostClassifier	{'learning_rate': [0.01, 0.1, 0.5], 'n_estimators': [50, 100, 500, 1000, 2000]}
GradientBoostingClassifier	{'learning_rate': [0.01, 0.1, 0.5],'n_estimators': [50, 100, 500, 1000, 2000], 'subsample': [0.1,0.5,0.9]}

- Si el tiempo de computación es alto, puede implementar la búsqueda con 1 validación cruzada.
- Reporte las métricas para los mejores modelos.

Ejercicio 3: Principales factores asociados

• Con el mejor modelo, reporte la importancia relativa de los atributos y comente cuáles son los que aumentan la probabilidad de fuga en los clientes.

Tip: Pueden implementar la función plot_importance que se encuentra en la lectura de Bagging y Random Forest.

Ejercicio 4: Probabilidad de fuga

- El gerente general necesita saber en qué estados hay una mayor probabilidad de fuga de clientes. Para ello, identifique los tres estados con una mayor probabilidad de fuga.
- Implemente el modelo predictivo con el archivo churn_test.csv.
- Recuerde que para obtener la probabilidad de clase, debe utilizar la función predict_proba del modelo.