QUOTIENT GROUPS

COLTON GRAINGER (MATH 6130 ALGEBRA)

4. Assignment due 2018-09-26

4.1. **[1, No. 2.5.12].** The group $Z_2 \times Z_4 = \langle a, b | a^2 = b^4 = 1, ab = ba \rangle$ of order 8 has three subgroups of order 4. They are $\langle a, b^2 \rangle \cong V_4$, $\langle b \rangle \cong Z_4$, and $\langle ab \rangle \cong Z_4$.

Here's the lattice of subgroups of $Z_2 \times Z_4$, with each subgroup expressed in terms of at most two generators.

4.2. **[1, No. 2.5.13].** The group $Z_2 \times Z_8 = \langle x, y : x^2 = y^8 = 1, xy = yx \rangle$ has order 16 has three subgroups of order 8. They are $\langle x, y^2 \rangle \cong Z_2 \times Z_4$, $\langle y \rangle \cong Z_8$, and $\langle xy \rangle \cong Z_8$.

Here's the lattice of subgroups of $Z_2 \times Z_8$.

Date: 2018-09-19. Compiled: 2018-09-28.

1

¹TODO, use TikZ. See, e.g., https://tex.stackexchange.com/questions/47392/how-to-draw-a-poset-hasse-diagram-using-tikz or https://ctan.math.washington.edu/tex-archive/graphics/pgf/contrib/tikz-cd/tikz-cd-doc.pdf.

4.3. [1, No. 2.5.14]. Let M be the (modular) group of order 16 with the following presentation:

$$\langle u, v : u^2 = v^8 = 1, vu = uv^5 \rangle$$

M has three subgroups of order 8, they are

$$\langle u, v^2 \rangle, \langle v \rangle, \langle uv \rangle.$$

One can show the lattice of subgroups of M is the same as the lattice of subgroups of $Z_2 \times Z_8$, replacing everywhere x with u and y with v.

However, $Z_2 \times Z_8$ is abelian but M is not. Hence the two groups are not isomorphic.

4.4. [1, No. 3.1.11]. Let **F** be a field and consider the subgroup of upper triangular matrices in $GL_2(\mathbf{F})$,

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbf{F}, ac \neq 0 \right\}.$$

Note that for all $A, B \in G$ we have

$$AB = \begin{pmatrix} a & b \\ & c \end{pmatrix} \begin{pmatrix} d & e \\ & f \end{pmatrix} = \begin{pmatrix} ad & b+e \\ & cf \end{pmatrix}.$$

- (a) The map $\varphi:\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto a$ is a surjective homomorphism from G onto \mathbf{F}^{\times} (the multiplicative group of nonzero elements in \mathbf{F}). We describe the fibers and kernel of φ .
 - φ is well defined and onto, noting $A_{1,1} \in \mathbf{F}^{\times}$ for all $A \in G$.
 - φ is a homomorphism as for all $A, B \in G$ we have that $\varphi(AB) = A_{1,1}B_{1,1} = \varphi(A)\varphi(B)$.
 - For $x \in \mathbf{F}^{\times}$ we have

$$\varphi^{-1} = \left\{ \begin{pmatrix} x & b \\ & c \end{pmatrix} c \neq 0 \right\},\,$$

in particular $\ker \varphi = \left\{ \begin{pmatrix} 1 & b \\ & c \end{pmatrix} c \neq 0 \right\}$

- (b) The map $\psi : \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto (a, c)$ is a surjective homomorphism from G onto $\mathbf{F}^{\times} \times \mathbf{F}^{\times}$. We describe the fibers and kernel of ψ .
 - φ again is well defined and onto.
 - φ is a homomorphism as for all $A, B \in G$ we have that

$$\varphi(AB) = (A_{1,1}B_{1,1}, A_{2,2}B_{2,2}) = (A_{1,1}, A_{2,2}) \cdot (B_{1,1}, B_{2,2}) = \varphi(A)\varphi(B)$$

- $\bullet \ \, \text{For}\, (x,y) \in \mathbf{F}^\times \times \mathbf{F}^\times \text{, note } \varphi^{-1} \left\{ \begin{pmatrix} x & b \\ & y \end{pmatrix} \right\} \text{ and in particular } \ker \varphi = \left\{ \begin{pmatrix} 1 & b \\ & 1 \end{pmatrix} \right\}.$
- (c) Let H be the subgroup of unit upper triangular matrices² in $GL_2(\mathbf{F})$. Then $H \cong \mathbf{F}$ (the additive group).
- Consider the map $\varphi \colon H \to \mathbf{F}$ defined by $\begin{pmatrix} 1 & b \\ & 1 \end{pmatrix} \mapsto b$.
- Here φ is well defined and onto.
- For $A, B \in H$, note that $\varphi(AB) = A_{1,2} + B_{1,2} = \varphi(A) + \varphi(B)$, so φ is a homomorphism.
- Lastly, observe $\ker \varphi = \begin{pmatrix} 1 & 0 \\ & 1 \end{pmatrix}$, whence the kernel is trivial and φ is an isomorphism.
- We conclude that $H \cong \mathbf{F}$

²A *unit* upper triangular matrix is an upper triangular matrix with 1 in each diagonal entry. In the 2×2 case, the unit upper triangular matrices are completely determined by the element $b \in \mathbf{F}$ in row 1, column 2. The isomorphism should be clear.

- 4.5. [1, No. 3.1.19]. Let M be the modular group of order 16 and let $\overline{M} = M/\langle v^4 \rangle$ be the quotient of M by the (normal) subgroup generated by v^4 .
 - (a) The order of \overline{M} is 8. Consider that the order of $\langle v^4 \rangle$ in M is 2, whence there are 8 left cosets of $\langle v^4 \rangle$ in M, and these cosets are the distinct elements of \overline{M} .
 - (b) Each element of \overline{M} is of the form $\overline{u}^a \overline{v}^b$ for some integers a and b. Why? Suppose $\overline{x} \in \overline{M}$, then \overline{x} is a coset of $\langle v^4 \rangle$ in M. If x is a representative of $\overline{x} = \{x, xv^4\}$. Suppose $x = u^a v^c$ (any element of M can be written in such form). To take advantage of the quotient structure, notice that $u^a v^{c+4}\{1, v^4\} = u^a v^c \{v^4, 1\}$. Generalizing, we write $\bar{x} = \bar{u}^a \bar{v}^b$ where b is the least residue of c modulo 4.
 - (c) The order of each of the elements in part (b) is given.
 - \overline{v} , \overline{uv} , \overline{v}^3 , \overline{uv}^3 of order 4
 - \overline{u} , \overline{v}^2 , \overline{uv} , \overline{uv}^2 of order 2
 - $\overline{1}$ the identity
 - (d) We reduce the following elements of \overline{M} to their "least residue" (i.e., to the form $\overline{u}^a \overline{v}^b$).

 - $\bullet \ \overline{uv^{-2}u} = \overline{v}^2$ $\bullet \ u^{-1}v^{-1}uv = \overline{1}$
 - (e) $\overline{M} \cong Z_2 \times Z_4$. How come? Let $\varphi : \overline{M} \to Z_2 \times Z_4$ be defined by $\varphi(\overline{u}^a \overline{v}^b) = (a, b)$.
 - φ is here well defined and surjective, for there's a $\overline{u}^a \overline{v}^b$ for each $a \in \{0, 1\}$ and $b \in \{0, 1, 2, 3\}$.
 - φ is a homomorphism when we consider at multiplication of \overline{x} in \overline{M} is addition in the exponents.
 - Now ker $\varphi = \{\overline{u}^0, \overline{v}^0\}$ is trivial.
 - Whence φ is an isomorphism of groups.

4.6. [1, No. 3.1.22].

(a) If H and K are normal subgroups of a group G then their intersection $H \cap K$ is also a normal subgroup of G.

Proof. Let G act on itself by conjugation. What's the normalizer of $H \cap K$ in G? It's $\{q \in G : qxq^{-1} \in H \cap K, \text{ for all } x \in G\}$ $H \cap K$ }.

Both H and K are normal in G, hence $x \in H \cap K$ implies every element g of G conjugates x into H and also K. Therefore the normalizer of $H \cap K$ in G is G itself, hence $H \cap K$ is normal. \square

(b) The intersection of an arbitrary nonempty collection of normal subgroups of a group is a normal subgroup.

Proof. Let H_{λ} be normal in G for all $\lambda \in \Lambda$. Suppose $x \in H_{\lambda}$ for all λ . Then for every $g \in G$, by normality of H_{λ} we have $qxq^{-1} \in H_{\lambda}$. Whence for all $q \in G$, $qxq^{-1} \in \cap H_{\lambda}$. So the normalizer of $\cap H_{\lambda}$ in G is G itself. \square

4.7. **[1, No. 3.1.36].** If G/Z(G) is cyclic then G is abelian.³

Proof. Choose a generator of the cyclic group G/Z(G), say the coset xZ(G) for some $x \in G$. Now let $g \in G$, so the coset $qZ(G) \in G/Z(G) = \langle xZ(G) \rangle$. Hence for some $a \in \mathbb{Z}$ we have $qZ(G) = x^a Z(G)$. By definition of a coset, we have $y, w \in Z(G)$ such that

$$gw = x^a y$$
, hence $g = x^a y w^{-1}$, hence $gw = x^a z$, for $yw^{-1} = z \in Z(G)$.

Every element of G has such a representation. Now G is abelian because for any two $q, h \in G$, we have $n, m \in Z(G)$ such that $gh = x^a n x^b m = x^{a+b} n m = x^b m x^a n = h q$, exploiting that n, m commute. \square

³If G/Z(G) is cyclic with generator xZ(G), every element of G can be written in the form x^az for some integer $a \in \mathbb{Z}$ and some element $z \in Z(G)$.

4.8. [1, No. 3.1.41]. Let G be a group. Then *commutator subgroup* $N = \langle x^{-1}y^{-1}xy : x, y \in G \rangle$ is a normal subgroup of G, also for which the quotient group G/N is abelian.

Proof. Suppose the word $x_1 \cdots x_n \in N$ and consider an element $g \in G$. We'll conjugate the word by g and show that it lies in the commutator subgroup.

Consider that strategically inserting $g^{-1}g$ into the conjugate word produces $gx_1 \cdots x_n g^{-1} = gx_1 g^{-1} \cdots gx_n g^{-1}$. Take the individual segment $gx_i g^{-1}$, which explodes to $ga_i^{-1}b_i^{-1}a_ib_ig^{-1}$ since x_i is a commutator. Again inserting $g^{-1}g$ into the conjugate of the segment, we have $(ga_ig^{-1})^{-1}(gb_ig^{-1})^{-1}(ga_ig^{-1})(gb_ig^{-1})$ which is itself a commutator in N.

So the conjugate $gx_1 \cdots x_n g^{-1}$ is the product of commutators, and thus in N. We conclude that the normalizer of N is G is all of G, so N is normal in G.

Now to show that G/N is abelian, let $g, h \in G$. Since $g^{-1}h^{-1}gh \in N$, we have $(hg)^{-1}gh \in N$. Thus $(hg)^{-1}ghN = 1N$, and because N is normal we have the equality of cosets ghN = hgN. So G/N is abelian.

4.9. [1, No. 3.2.4]. A finite abelian group has a subgroup of order n for each positive divisor n of its order.⁴

Proof. We proceed by strong induction on the order of the group.

For small orders of the group G, say 1, 2, 3 and 4, the claim is obviously true. It's trivial to check for 1, Z_2 , Z_3 and we (exhaustively) list that both Z_4 and V_4 have subgroups of orders 1, 2 and 4.

Now suppose for all $k \le |G|$ a finite abelian group of order k has subgroups of order d for every positive integer d such that d|k.

Let d be a proper divisor of n = |G|. If d = 1 the trivial subgroup of G will do. So assume that $d \ne 1$ and choose a prime p in the factorization of d.

Assuming Cauchy's theorem, there's a (cyclic) subgroup $\langle x \rangle$ of G of order p. The subgroup $\langle x \rangle$ is normal in G because $\langle x \rangle$ is abelian.

We have the natural homomorphism $\pi: G \to G/\langle x \rangle$, where $|G/\langle x \rangle| = \frac{n}{p}$. By the inductive hypothesis, there's a subgroup H of $G/\langle x \rangle$ of order $\frac{d}{p}$.

Now consider $K = \pi^{-1}(H)$. Since H is a group, the inverse image $K \le G$ in the domain. The restriction of π to K is a surjective homomorphism onto H with kernel $\langle x \rangle$. Now $K/\langle x \rangle \cong H$ by the first isomorphism theorem, hence

$$\frac{|K|}{|\langle x \rangle|} = |H|$$
 and thus $|K| = \frac{d}{p} \cdot p = d$.

4.10. **[1, No. 3.2.9].** A proof of Cauchy's theorem.⁵

Let G be a finite group and let p be a prime dividing |G|. Let \mathcal{S} denote the set of p-tuples of elements of G the product of whose coordinates is 1:

$$S \mathscr{S} = \{(x_1, x_2, \dots, x_p) : x_i \in G \text{ and } x_1 x_2 \cdots x_p = 1\}.$$

(a) \mathscr{S} has $|G|^{p-1}$ elements, hence has order divisible by p. Why? Of |G| elements, choose p-1 with repetitions, and such that the product of the p elements is 1, we must take the unique inverse $x_p = (x_1 \cdots x_{p-1})^{-1}$. So $|\mathscr{S}| = |G|^{p-1}$. By Fermat's little theorem, p divides $|G|^{p-1}$.

For notation's sake, let C_p (considered as a subgroup of the symmetric group on p letters) act on $\mathcal S$ by

$$\sigma(x_1,\ldots,x_p)\mapsto (x_{\sigma(1)},\ldots,x_{\sigma(p)}).$$

⁴Notably, I consulted (1) "If G is abelian, it has a subgroup in every order of |G|'s divisors?" https://math.stackexchange.com/q/1352384/(2) "every Abelian group is a converse lagrange theorem group" https://math.stackexchange.com/q/910426/.

⁵Due to James McKay (*Another proof of Cauchy's group theorem*, Amer. Math. Monthly, 66(1959), p. 119)

Now we identify each cyclic permutation shifting j entries right of every $\alpha \in \mathcal{S}$ with $\sigma^j(\alpha)$ where for $j \in \mathbf{Z}$ σ^j is the p-cycle $(1 \ 2 \cdots p)^j$. Now the action is faithful, and additionally for all $j \in ZZ$ and all $\alpha \in \mathcal{S}$ we know $\sigma^j(\alpha) \in \mathcal{S}$ since x_p remains nested in cyclic order between x_{p-1} and x_1 .

Define the relation \sim on $\mathscr S$ by letting $\alpha \sim \beta$ if β is a cyclic permutation of α .

- (b) We've shown a cyclic permutation of an element of S is again an element of S.
- (c) \sim is an equivalence relation on S. Why?
 - $\sigma^0(\alpha) = \alpha$ gives reflexivity,
 - $\sigma^{-k}(\beta) = \alpha$ whenever $\sigma^{j}(\alpha) = \beta$ gives symmetry, and lastly
- for $\sigma^j(\alpha) = \beta$, $\sigma^k(\beta) = \gamma$ then $\sigma^{k+j}(\alpha) = \gamma$.
- (d) An equivalence class in \mathcal{S} contains a single element if and only if it is of the form (x, x, ..., x) with $x^p = 1$.

Note that σ^j stabilizes elements of the form (x, x, ..., x) for all $j \in \mathbb{Z}$. Now if $\alpha \in \mathscr{S}$ is not of the form (x, x, ..., x) then the equivalence class in α has p distinct elements, because $\sigma^j(\alpha) = \alpha$ if and only if $j \in \mathbb{Z}/p\mathbb{Z}$. There are no more distinct elements in α 's equivalence class than those already conspicuous, namely $\alpha, \sigma(\alpha), ..., \sigma^{p-1}(\alpha)$.

(e) Every equivalence class has order 1 or p (note that p is a prime). Whence $|G|^{p-1} = k + pd$, where k is the number of classes of size 1 and d is the number of classes of size p.

Since $\mathscr S$ is partitioned by \sim , summing the elements in each class will produce $|G|^{p-1}$. Well, an $\overline{\alpha} \in \mathscr S/\sim$ has size 1 or p. Say there are k classes of size 1 and d classes of size p. Thus $|G|^{p-1}=k+dp$.

(f) Since $\{(1, 1, ..., 1)\}$ is an equivalence class of size 1, from (e) there must be a nonidentity element x in G with $x^p = 1$, that is, G contains an element of order p.

Since p divides $|G|^{p-1}$ we must have that p divides k + dp hence p|k. Because k > 1, we have k = mp for some integer $m \ne 0$, so there's a non-identity element $x \in G$ with $x^p = 1$.

4.11. [1, No. 3.2.18]. Let G be a finite group, let H be a subgroup of G and let $N \subseteq G$. If |H| and |G| : N| are relatively prime then $H \subseteq N$.

Proof. Consider the natural projection $\pi: G \to G/N$. Since $H \le G$, we have $\pi(H) \le G/N$. So $|\pi(H)|$ divides |G| : N|. Now note that $|\pi(H)|$ divides |H| (it's "like" a subgroup). Because the greatest common divisor of |G| : N| and |H| is 1, we have $|\pi(H)| = 1$, whence $|H| \le \ker \pi = N$. \square

4.12. **Minimal and maximal subgroups.** Suppose N is a nontrivial abelian subgroup of G, minimal with the property that it is normal in G. Let H be a proper subgroup of G such that NH = G. The intersection of N with H is trivial and H is a maximal subgroup of G.

Proof. Consider the natural homomorphism π onto the group G/N. I claim $H \cap N \subset \ker \pi = N$, and noting that N is abelian, we have that $H \cap N$ is normal in N. Since N is minimal normal we have that $H \cap N = \{1\}$ or $H \cap N = N$. But because H is a proper subgroup of G, there's some $g \in G$ for which $gN \not\subset \pi^{-1}(H)$, so $H \cap N \not= \ker \pi = N$. Whence $H \cap N$ is seen to be trivial.

References

[1] D. S. Dummit and R. M. Foote, *Abstract algebra*, 3rd ed. Hardcover; Prentice Hall, 2004 [Online]. Available: http://www.worldcat.org/isbn/0471433349