11 класс.

Задача 1 «Источник ЭДС»

В данной задаче вам предстоит проанализировать различные зависимости и энергетические соотношения в цепях постоянного тока, содержащих источники ЭДС.

1.1 Рассмотрим цепь, содержащую источник ЭДС ${\cal E}$ с внутренним сопротивлением

r, подключенный к внешней цепи сопротивлением R. Постройте зависимость силы тока в цепи I(R) от внешнего сопротивления

R на приведенном шаблоне графика. Масштаб по оси ординат выберите самостоятельно, исходя из соображений удобства (это касается и следующих пунктов).

1.2 Постройте на аналогичном шаблоне зависимость напряжения U(R) на внешнем сопротивлении цепи от внешнего сопротивления цепи R .

1.3 Постройте на аналогичном шаблоне зависимость мощности P(R), выделяемой на внешнем сопротивлении цепи (полезной мощности), от внешнего сопротивления цепи R.

1.4 Постройте на аналогичном шаблоне зависимость КПД цепи $\eta(R)$ от внешнего сопротивления цепи R .

На практике возникает необходимость соединять источники ЭДС различными способами для получения требуемой мощности.

2.1 Рассмотрим последовательное соединение N одинаковых источников, ЭДС каждого из которых \mathcal{E} , а внутреннее сопротивление r. Определите полезную мощность P(R) цепи, выделяемую на внешнем сопротивлении в данном случае.

В общем случае источники ЭДС необязательно могут быть одинаковыми, хотя для практического использования лучше приобретать одинаковые батарейки.

3.1 Предположим, что Вы не обратили на это внимание и купили две различные батарейки, ЭДС которых \mathcal{E}_1 и \mathcal{E}_2 , а внутренние сопротивления r_1 и r_2 . Батарейки соединены параллельно. Найдите полезную мощность P(R) цепи в данном случае.

3.2 Не исключено также (например, если Вы филолог ...), что при подключении батареек была «перепутана» полярность, и они включены «навстречу» друг другу. Найдите полезную мощность P(R) цепи в данном случае. При каком соотношении между ЭДС \mathcal{E}_1 и \mathcal{E}_2 , и внутренними сопротивлениями r_1 и r_2 полезная мощность в данном случае станет равна нулю P(R)=0?