IAI83: Inteligencia Artificial (Semestre 2019-I)

Instituto Tecnológico Metropolitano

Instructor:

Profesor Pedro Atencio

pedroatencio@itm.edu.co

Material de clase:

El material de clase se encuentra disponible de forma pública en: https://github.com/psatencio/IA_ITM/tree/2018_II

Horario:

Martes de 18:00 a 20:00 en el salón N-503 Fraternidad

Jueves de 18:00 a 20:00 en el salón N-503 Fraternidad

Descripción del curso:

En este curso se abordan los fundamentos teóricos y de técnicas del campo del conocimiento Inteligencia Artificial. En el curso serán tratadas técnicas clásicas y modernas y su aplicación en diversos problemas de interés general y de ingeniería. El material del curso será presentado en forma de sesiones magistrales y de laboratorio por parte del docente, así como a través del análisis de artículos científicos altamente influyentes.

Nota 1: En algunos trabajos, será necesario revisar artículos escritos en inglés. Por esta razón los estudiantes deberán estar preparados para afrontar este reto.

Nota 2: No es el objetivo de este curso, cubrir todos los trabajos más relevantes del campo de la Inteligencia Artificial, ni pretender cubrir todos los últimos adelantos al respecto. Por lo que el objetivo principal de este curso es generar motivación en los estudiantes para que los mismos sigan indagando y trabajando en este tema.

Plan de trabajo

Semana	Fecha	Temática	Tema
Semana	recna	rematica	- Presentación del curso
1	05/02/2019 07/02/2019	Introducción	 Introducción a la inteligencia artificial. Tecnologías de trabajo en clase.
2	12/02/2019 14/02/2019	Búsqueda: Aproximación clásica	 Problemas y su planteamiento. Búsqueda de soluciones. Estrategias de búsqueda no-informada.
3	19/02/2019 21/02/2019		 Estrategias de búsqueda informada. Trabajo (10%).
4	26/02/2019 28/02/2019		 Búsqueda con adversario: Minimax. Examen (10%).
5	05/03/2019 07/03/2019	Búsqueda: Más allá de la aproximación clásica	 Algoritmos genéticos. Trabajo (10%).
6	12/03/2019 14/03/2019	Conocimiento e incertidumbre	- Lógica borrosa.
7	19/03/2019 21/03/2019	Introducción al aprendizaje de maquina	 Examen (10%). Introducción al aprendizaje de máquina.
8	26/03/2019 28/03/2019		- Ejemplo de un proyecto de Aprendizaje de máquina.
9	02/04/2019 04/04/2019	Aprendizaje Supervisado – Parte 1: Clasificación (técnicas básicas)	K-Vecinos CercanosNaive Bayes ContinuoNaive Bayes Multinomial
10	09/04/2019 11/04/2019		 Medidas de rendimiento y Análisis del error. Examen (20%).
N/A	16/04/2019 18/04/2019		Semana santa
11	23/04/2019 25/04/2019		- Regresión lineal
12	30/04/2019 30/04/2019 02/05/2019	Aprendizaje Supervisado – Parte 2: Redes Neuronales y Deep Learning	 Descenso del gradiente Regresión Logística Regresión Softmax El problema XOR
13	07/05/2019 09/05/2019		- Redes neuronales - Perceptrón Multicapa: notación, representación matricial Propagación hacia adelante.
14	14/05/2019 16/05/2019		 Examen 20% Propagación hacia atrás (backpropagation). Generalización de la red.

15	21/05/2019 23/05/2019	- Forward / backward
		propagation general.
		- Normalización de datos.
		- Inicialización de
		parámetros.
		- Regularización.
		- Entrenamiento por lotes.
16	28/05/2019 30/05/2019	- Arquitecturas de red
		avanzadas: Convolutional
		Neural Networks,
		Recurrent Networks.
		- Trabajo final 20%.
17	04/06/2018 06/06/2018	Sustentación del trabajo
		final.

Fuentes de consulta

- Revista Distill (openai.org) https://distill.pub/
- Curso de inteligencia artificial del profesor Patrick Winston: https://www.youtube.com/watch?v=TjZBTDzGeGg&list=PLUI4u3cNGP63gFHB6 xb-kVBiQHYe 4hSi
- Curso de Deep Learning de Andrew Ng: https://www.youtube.com/channel/UCcIXc5mJsHVYTZR1maL5I9w
- Revisión de artículos por Adrian Colyer (The Morning Paper): https://blog.acolyer.org/
- Russell & Norvig. Inteligencia Artificial: Un enfoque moderno (tercera edición). http://aima.cs.berkeley.edu/
- O Curso de Deep Learning Aplicado. www.fast.ai