

The Effects of Student Aid - Evidence from Germany

DRAFT - Master's Thesis in Economics (Science Track)

by

Fynn Lohre

(Student number h12232560)

Supervisor: Univ. Prof. Dr. Martin Halla

Submission date: 31.07.2024

For the newest version check

https://github.com/VARFynn/University_Contributions/tree/main/01_Master/01_Masterthesis.pdf

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, conque eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

DISCLAIMER: AI (ChatGPT & DeepL) was used in the following ways: (1) to identify grammatical and typographical errors (ex-post; chapter wise, AI identifies weaknesses & I manually correct), and (2) to suggest synonyms for in my view not-fitting words or phrases (while writing; only sentence fragments chosen by myself).

Acknowledgement

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Contents

Lis	st of Tables	iv
Li	st of Figures	iv
1	Introduction	1
2	Theoretical Framework 2.1 BAfoeG in Germany	2 2 2
3	Data and Descriptive Statistics	4
4	Empirical Framework 4.1 Costs 4.2 Effects	6 7 7
5	Results 5.1 Costs 5.2 Effects 5.2.1 Study Start 5.2.2 Labor Supply	9 9 9 9
6	Discussion and Limitations	15
7	Summary and Concluding Remarks	16
Re	eferences	\mathbf{v}
\mathbf{A}	Further Figures	\mathbf{v}

List of Tables

1	Summary Statistics Students (2002-2019)	4
2	Study Start: Pooled OLS & Probit - Max. Rate	9
3	Study Start: FE - Max. Rate BAfoeG	10
4	Study Start: FE - Mechanical BAfoeG Variation	11
5	Non-Take-Up: Pooled Probit & IV-Probit	12
6	Labor Supply - Intensive Margin: Pooled OLS & IV	13
7	Labor Supply - Extensive Margin: Pooled Probit, OLS & IV	14
8	Share of BAfoeG Recipients per Year - Actual vs. Simulated	vii
9	Summary Statistics Non-Students (2002-2019)	viii

List of Figures

1 Introduction

RQ1: What are the costs associated with BAfoeG, and how do are the effects on the decisions to start studies, complete studies, and supplying labor during the studies? (What factors influence the likelihood of taking up or not taking up BAfoeG? see Kalinovski Herber (2016) paper with comparable SOEP approach)

RQ2: How does this differ between certain (marginalized) subgroups; First-Gen, certain income classes ...

Relevant Literature:

- Welfare State Intro: Several Paper from Torben
- Study Grants: Several Paper from Elena
- SOEP/Germany Specific Pre-Literature:

2 Theoretical Framework

2.1 BAfoeG in Germany

- Means-Based Testing: Explaining the "Calculation Algorithm".
- Algorithm Overview: Brief explanation highlighting the essential parameters. (Create Table of Parameters in Appendix)
- Parameter Modifications & Policy Reforms: Real vs. nominal changes.

Change also holds for other parameters

2.2 The Student's Decisions

1. Decision to enter the state: Study vs. Work

2. Deicision to leave state: (i) Ability to finish program &

3 Data and Descriptive Statistics

- SOEP \Rightarrow
- Data Cleaning
 - Starting with 2002, because prior too many "filler students". Year y $\in [2002, 2019] \Rightarrow \text{pre Covid.}$
 - Imputations (e.g. Heckman correction for missing wages in specific waves) ⇒
 Optimal Behavior e.g. "Steuerklassen"
 - Discussion: Left- & Right-censored students & Students without Parents in Sample (provide summary in apendix that no difference between two groups)
 - Tax Estimation

Table 1: Summary Statistics Students (2002-2019)

Variable	Obs.	Mean	Std. Dev.	Min.	Max.
Individual Characteristics:					
Age	12589	23.5436	3.2963	17	35
Male	12589	.4799	.4996	0	1
HH with Parents	12589	.4273	.4947	0	1
Migration Background	12589	.2273	.4191	0	1
First Gen	12589	.3395	.4736	0	1
Academic:					
University	12589	.7283	.4448	0	1
Polytechnic	12589	.2332	.4229	0	1
Work Academy	12589	.0274	.1633	0	1
Year in University	12589	3.3196	2.3323	1	16
Income:					
Inc. Student (€, Gross, Mth.)	12589	506.285	690.0756	0	3000
Labor Supply	12589	.4902	.4999	0	1
Labor Supply (Weekly Hours)	6171	20.3635	12.6687	1	40
Inc. Father (€, Gross, Mth.)	12589	4068.4187	5151.7772	0	92317.5
Inc. Mother (€, Gross, Mth.)	12589	1785.1596	2277.5304	0	72000
BA foe G:					
Student Grants (SOEP)	12589	.2361	.4247	0	1
Student Grants (€, Mth.)	2151	430.0014	236.917	10	3000
BAfoeG (simulated)	12589	.3246	.4682	0	1
BAfoeG (€, Mth.)	4086	360.05	206.1949	10.3133	2599
Eligible for BAfoeG	12589	.8988	.3016	0	1

Note: This includes every individual who studied for at least one semester in the respective year. Consequently, individuals appearing in j study years influence the mean with a weighting of j/n. Student Grants include state funding (BAfoeG) as well as other forms of stipends. BAfoeG amounts are calculated under the assumption of optimal behavior and always assume an application is made if the amount is greater than zero. Therefore, these figures may be higher than the actual amounts received.

- BAfoeG Simulated vs. Actual
 - See for Share actual vs. simulated details per year
 - Discussion where difference might stem from (totally in line with "offical estimates" (from Fraunhofer FIT in official BAF Statistik [include proper citation in BibTex])
 - Discussion Approach
- Differences other papers, e.g. Kalinovski Herber 2016 or
 - Many just took Student Grant variable = BAFoeG, which is not correct
 - HH with parents too high (SOEP specific reporting & Living place vs. official place of residency aka specific variables vs. hid)

4 Empirical Framework

The Game-Plan:

- 1. Plain Cost Estimation
 - (a) Estimate the costs of BAfoeG per Year \Rightarrow suppose an Income-Tax-Change to finance this costs \Rightarrow take ε from the Literature \Rightarrow End up with Monetary + Lapor Supply Costs
- 2. Effects Real BAfoeG Variation
 - (a) Decision to start study (first. post. sec. degree)
 - General
 - Only Students which qualify for BAfoeG (Probit/OLS LPM)
 - Share First Generation Students
 - FH & Technical
 - (b) Decision to end study in planned time ¹
 - (c) Decision to provide labor while studying (Reference to positive effects Mattana & Joensen) both extensive & intensive margin
 - (d) Take up & Non-Take-UP
 - Income Groups who drop out due to real wage inadjustment
- 3. Controls/Robustness:
 - Robustness-Check: Average Wage (Inflation Variation might not fully relfecting Real Wage Variance)
 - Robustness-Check: Financial Crisis 2008 (2018) similar argument as above (+ US argument of choosing edu in crisis; might not hold for risk averse Germany with inversely observed effects).
 - Robustness-Check: Grant & Loan Share (can be calc. using sim BAF), see argument Elena Mattana & Juana Joensen: "find that if study aid consists mostly of grants, a reduction in loans and increase in grants reduces graduation rates. However, once loans are larger than grants, further changes have little impact on dropout and graduation rates. This means that once aid is mostly provided as loans, the government can decide who bears the college cost without affecting human capital accumulation"
 - Only for LS & TAKE-UP: Hochschultyp (internal FIT Argument that differences in BAF Behavior, Takeup between Uni type)
 - Brutto t-1 (t-1, since t flawed for students who chose to study; proxy for outside option)

¹Still open, if panel structure allows to validly access this.

4.1 Costs

4.2 Effects

(a) $\Omega = \text{all i with age} \leq 35$, qualifying highschool degree, no student, no degree + respective first year students (\Rightarrow obv. result unbalanced panel - **Does this yield any unwanted bias?**)

General Pooled Regression - (Naíve Pre Reg) \Rightarrow Using Real BAfoeG Max Rate as Treatment (No Effect expected)

$$PR_{it}(Begin \mid Eligble) = \beta_0 + \beta_1 \times BAfoeG Max Rate_t + W'\zeta + \varepsilon_{it}$$
 (1)

 $W'\zeta = Matrix Controls$

Problem: Unobserved Heterogeneity \Rightarrow LPM + FE (Add Appendix Table where we see non-difference between Probit & LPM)

$$PR_{it}(Begin \mid Eligble) = \beta_0 + \beta_1 \times BAfoeG Max Rate_t + W'\zeta + u_i + \varepsilon_{it}$$
 (2)

 $u_i = i FE$

Problem: Not everyone receives treatment.² With Simulated individual specific Data \Rightarrow allows to (i) determine who would have received BAfoeG & (ii) use mechanical BAfoeG variation (simulated) unconditional on working decision:

(i) Simulated Treatment \Rightarrow s = 1; s = 0 \Rightarrow BAfoeG Max Rate = 0

$$PR_{ist}(Begin \mid Eligble) = \beta_0 + \beta_1 \times BAfoeG Max Rate_{st} + W'\zeta + u_i + \varepsilon_{ist}$$
 (3)

(ii) Mechanical BAfoeG Variation (w/o own Income Restriction)

$$PR_{ist}(Begin \mid Eligble) = \beta_0 + \beta_1 \times Sim. BAfoeG_{ist} + W'\zeta + u_i + \varepsilon_{ist}$$
 (4)

Following regressions with similar setup. Also possible to use the variation in grant rate (vs loan).

- (b) Unclear
- (c) student body simple
- (d)

NTU -; see Kalinowski & Herber:

$$NTU = \frac{SE - (BAF|SE)}{SE} = \frac{\overline{BAF}|SE}{SE}$$
 (5)

Argument made in K & Beta Error Rate:

$$\beta = \frac{BAF|\overline{SE}}{BAF} \tag{6}$$

Consequently, as often made in Literature, Lower Bound

$$NTU_{LB} = \frac{\overline{BAF}|SE}{SE} \tag{7}$$

²Actually, one could argue that current missperception of BAfoeG in the public the treated are only those, who think they receive BAfoeG. \Rightarrow Limitations.

5 Results

5.1 Costs

5.2 Effects

5.2.1 Study Start

(Probably in APPENDIX:)

We see only minor difference between probit und LPM.

Table 2: Study Start: Pooled OLS & Probit - Max. Rate

	((1)		
$PR(Study\ Start)$	Probit	dydx	(2) OLS	
Real BAfoeG (Max. Rate)	0021 (.0024)	0004 (.0004)	0004 (.0004)	
First Generation	6151*** (.0237)	1028*** (.0039)	1231*** (.0051)	
Migration Background	0349 (.0269)	0058 (.0045)	0048 (.0048)	
East Germany	3191*** (.0306)	0533*** (.0051)	0631*** (.005)	
Gross Income T-1 (Main Job)	0005*** (0)	0001*** (0)	0001*** (0)	
N	28811		28811	
R^2			.0992	
Pseudo- R^2	.1562			
RMSE			.3000	
Wald Chi ²	1847.82			

Cluster Robust Std. Errors in Parantheses

Note:

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Using Max. Rate as Treatment:

Table 3: Study Start: FE - Max. Rate BAfoeG

(1)	(2)	(3)	(4)	(5)
.001** (.0004)	.0006 (.0004)	.0014** (.0006)	.0014** (.0006)	.0014** (.0006)
		0005 (.0003)	0005 (.0003)	0005 $(.0003)$
		0015* (.0009)	0015* (.0009)	0015* (.0009)
			.0014** (.0006)	.0014** (.0006)
			0005 (.0003)	0005 (.0003)
			0015* (.0009)	0015* (.0009)
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
				$\sqrt{}$
			$\sqrt{}$	$\sqrt{}$
28811	28811	28811	28811	28811
				9081
.0007	.0000	.0019	.0019	.0019 0
	.001** (.0004)	.001** .0006 (.0004) .0004) .0004) .0004	.001** .0006 .0014** (.0004) (.0004) (.0006)0005 (.0003)0015* (.0009)	.001** .0006 .0014** .0014** (.0004) (.0006) (.0006) (.0006) (.0006) (.0006) (.0006) (.0003) (.0003) (.0003) (.0003) (.0009) (.0009) (.0009) (.0009) (.0009) (.0009) (.0006) (.0006) (.0006) (.0003) (.0003) (.0005) (.0003) (.0005) (.0003) (.0009) (

Robust Std. Errors in Parantheses

Note:

- Higher BAfoeg Max. Rate \Rightarrow higher incentive to study.
- However, negative Effect on marginalized groups (First Gen & Migration Background). Reasoning could be an increase in tightness (similar to the labor market).
- No difference between treament & non-treatment group ⇒ could indicate missperception about BAfoeG reception or a misspecified model.
- Time-FE (Yearly) makes no sense, as treatment also varies on a yearly basis. However, regression for different time frames similar results (see Appendix INCLUDE TABLE).

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Using Individual (mechanical) BAfoeG as Treatment:

Table 4: Study Start: FE - Mechanical BAfoeG Variation

PR(Study Start)	(1)	(2)	(3)	(4)
Real BAfoeG (Mechanical)	00001 (.00001)	00002 (.00002)	.00000 (.00005)	00003 (.00003)
Real BAfoeG (Mechanical) \times First Generation		.00002 (.00003)	00001 (.00005)	.00003 (.00003)
Real BAfoeG (Mechanical) \times Migration Background		00001 (.00002)	.00000 (.00004)	00001 (.00003)
Specification				
Gross Income (Main Job, T-1)	\checkmark	\checkmark	\checkmark	\checkmark
HH with Parents	$\sqrt{}$	\checkmark	\checkmark	\checkmark
Individual FE	$\sqrt{}$	\checkmark	\checkmark	\checkmark
Age	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
> 2010				
≤ 2010				$\sqrt{}$
N	28811	28811	15325	13486
Cluster	9081	9081	5842	4404
R^2	.0016	.0016	.003	.0016
Prob > F	.0000	.0000	.001	.041

Robust Std. Errors in Parantheses

Note:

• Interestingly, no effect by individual BAfoeG (mechanical). However, is in line with (4) of table 3. Same Reasoning: Missperception about BAfoeG (both, falsly assuming a BAfoeG reception, and underestimating the funds available).

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table 5: Non-Take-Up: Pooled Probit & IV-Probit

	(1)		(2)		(3)		(4)		(5)		(6)	
PR(Non-Take-Up)	Probit	dydx	Probit	dydx	Probit	dydx	Probit	dydx	Probit	dydx	IV-Probit	dydx
First Generation	1659*** (.0597)	0636*** (.0228)	2333*** (.0604)	0855*** (.022)	2048*** (.0611)	0746*** (.0221)	2153*** (.0614)	0787*** (.0223)	2075*** (.0616)	0756*** (.0223)	2189*** (.0610)	0799*** (.0226)
Migration Background	.0113 (.0604)	.0043 (.0232)	1277** (.0648)	0468** (.0237)	0953 (.0656)	0347 (.0238)	112* (.0653)	041* (.0238)	0955 (.0657)	0348 (.0239)	1106* (.0655)	0404* (.0240)
Simulated BAfoeG (Real)					0698*** (.0171)	0254*** (.0062)			0752*** (.0201)	0274*** (.0072)	0003* (.0002)	0001* (.0001)
2. Quartile Parental Income							.1308** (.0571)	.0479** (.0208)	0118 (.0651)	0043 (.0237)	.091 (.0096)	
3. Quartile Parental Income							.1456 (.1252)	.0532 (.0451)	098 (.1369)	0359 (.0504)	.1739** (.0677)	
Age (Centered at 23)			1	/	-	V	1	/		<u> </u>		/
Apprenticeship			1	/		V	,	/		\	V	/
Sex			١	/	,	\checkmark	,	/		\checkmark	√	/
Living in City			١	/	•	\checkmark	,	/		\checkmark	√	/
Living with Parents			١	/	•	√ <u>.</u>	,	√.		√ <u>.</u>	√	
East Germany			١	/.	•	√.	1	√.		√ <u>.</u>	V	,
Siblings		,	١	/.	•	√.	1	√.		√ <u>.</u>	V	,
Year (Dummies)	1	<u>/</u>	1	/	•	<u> </u>	1	<u>/</u>		<u> </u>		/
N D 1 D2		154	39			930		029		929	393	30
Pseudo-R ²		106	.05			573		535		574		1000
Wald Chi ²		1782	140.			6455		1893		.3297	144.6	
Baseline predicted probability	.59	940	.59	7/1	.59	974	.59	971	.5	973	.24	
Wald Test Prob. > Chi ²											13.13	
											1.040	
Instrument (First Stage)												
											(.01:	20)

Clustered Std. Errors in Parantheses (on ID) * p < 0.05, ** p < 0.01, *** p < 0.001

Note: The simulated mechanical BAfoeG variation is used as an instrument. Regression (1) & (2) are baseline regressions with and without controls. (3), (4) & (5) indicate the issue of including both parental income and BAfoeG. In (6) SE 000065, heavily rounded to 1 with effect .00011

- Similar Non-Take UP Rates than Kalinovski Herber.
- However, different specification without Independent Funding as second instrument, personal character traits

5.2.2 Labor Supply

Intensive Margin:

Table 6: Labor Supply - Intensive Margin: Pooled OLS & IV

	(1)	(2)	(3)	(4)	(5)
Labor Supply (Hrs)	OLS	OLS	OLS	ĬV	ĬV
Circulated DAfoo((Deal)	1 4994***	1 2566***	1 6206***	2084*	2017**
Simulated BAfoeG (Real)	-1.4224***	-1.3566***	-1.6306***		2917**
	(.0733)	(.0722)	(.0808)	(.1172)	(.1151)
First Generation			2.2152***	.7791**	.7618**
			(.3644)	(.371)	(.3677)
Migration Background			4899	-1.7223***	-1.8529***
migration Background			(.3644)	(.371)	(.3677)
			(.5011)	(.011)	(.5011)
Apprenticeship					
Age			\checkmark	$\sqrt{}$	$\sqrt{}$
Sex			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Living in City			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Living with Parents			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
East Germany					
Siblings				$\sqrt{}$	
Year (Dummies)					
N	12589	12589	12589	12589	12589
Cluster	3824	3824	3824	3824	3824
R^2	.0363	.0802	.1323	.1014	.1126
Wald Chi ²				602.31	719.15
RMSE	13.25	12.95	12.58	12.8	12.72
Instrument (First Stage)				.0073***	.0073***
				(.0001)	(.0001)

Cluster Robust Std. Errors in Parantheses (on ID)

Note:

- Higher BAfoeG ⇒ negative effect on labor supply (intensive margin). IV Approach allows for valid causal inference (taking out the simultaneity issue between BAfoeG & Hrs. worked). Hence, effect much smaller than one might assume given on (1) (3).
- We see in Appendix, that this effect also holds for first gens, whilst not being visible for migration background.

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table 7: Labor Supply - Extensive Margin: Pooled Probit, OLS & IV

	(1)		(2)	(3)	(4)	(5)
$PR(Labor\ Supply)$	Probit	dydx	Probit	dydx	OLS	ÌV	ÌV
Simulated BAfoeG (Real)	0926*** (.009)	0364*** (.0035)	106*** (.0096)	0398*** (.0035)	0401*** (.0035)	015*** (.0045)	0179*** (.0045)
First Generation			.0968***	.0363***	.0361***	.0107	.0101
			(.042)	(.0158)	(.0158)	(.0161)	(.016)
Migration Background			0928** (.042)	0348** (.0158)	0345** (.0158)	0562*** (.0161)	0596*** (.016)
Apprenticeship			1				
Age			1	√			
Sex			1				
Living in City			1				
Living with Parents			1	<i></i>			
East Germany			1	<i></i>			
Siblings			1	/	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Year (Dummies)				•	•	•	$\sqrt{}$
N	12	589	12	589	12589	12589	12589
Cluster	38	324	38	324	3824	3824	3824
Pseudo- R^2	.01	126	0.	551			
R^2					.0739	.0669	.0742
Wald Chi ²	105.	5566	492.	9869		431.93	539.87
RMSE					.4800	.4800	.4800
Baseline predicted probability	.48	396	.48	899	.5442	.524	.5178
Instrument (First Stage)						.0073***	.0074***
, - /						(.0001)	(.0001)

Clustered Std. Errors in Parantheses (on ID)

Note:

- Again argument both probit (1) & (2) and LPM yield same results as LPM (3). Hence, "normal" IV used.
- Similar change in effect sign visible

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

6 Discussion and Limitations

Collection of Limitations

• The forgotten parameter: The "Pay-Back-Cap"

- Benefit Side cannot measure: (i) Skill (ii) Buraucrtcy costs & (iii) Effects of Uncertainty/Certainty on students
- Search & Matching in this thesis excluded.
- Causal Diagram to highlight the imposed orthogonality assumptions.

7 Summary and Concluding Remarks

A Further Figures

Table 8: Share of BAfoeG Recipients per Year - Actual vs. Simulated

Variable	Obs.	Mean	Std. Dev.	Min.	Max.
Received Student Grants (actual)	12589	.2361	.4247	0	1
- 2002	589	.2309	.4218	0	1
- 2003	601	.2696	.4441	0	1
- 2004	660	.2591	.4385	0	1
- 2005	633	.2243	.4175	0	1
- 2006	641	.234	.4237	0	1
- 2007	614	.2117	.4089	0	1
- 2008	607	.2273	.4195	0	1
- 2009	599	.2321	.4225	0	1
- 2010	615	.2325	.4228	0	1
- 2011	644	.264	.4411	0	1
- 2012	637	.2873	.4529	0	1
- 2013	772	.2798	.4492	0	1
- 2014	764	.2421	.4287	0	1
- 2015	812	.2389	.4267	0	1
- 2016	794	.2418	.4285	0	1
- 2017	886	.2167	.4122	0	1
- 2018	890	.191	.3933	0	1
- 2019	831	.1913	.3936	0	1
BAfoeG (simulated)	12589	.3220	.4673	0	1
- 2002	589	.3379	.4734	0	1
- 2003	601	.3411	.4745	0	1
- 2004	660	.2894	.4538	0	1
- 2005	633	.2717	.4452	0	1
- 2006	641	.259	.4384	0	1
- 2007	614	.2492	.4329	0	1
- 2008	607	.2685	.4436	0	1
- 2009	599	.2805	.4496	0	1
- 2010	615	.3122	.4638	0	1
- 2011	644	.3323	.4714	0	1
- 2012	637	.3312	.471	0	1
- 2013	772	.3795	.4856	0	1
- 2014	764	.3442	.4754	0	1
- 2015	812	.3387	.4735	0	1
- 2016	794	.3766	.4848	0	1
- 2017	886	.3533	.4783	0	1
- 2018	890	.3371	.473	0	1
- 2019	831	.3333	.4717	0	1

Note: Student Grants include state funding (BAfoeG) as well as other forms of stipends. BAfoeG amounts are calculated under the assumption of optimal behavior and always assume an application is made if the amount is greater than zero. Therefore, these figures may be higher than the actual amounts received.

Table 9: Summary Statistics Non-Students (2002-2019)

Variable	Obs.	Mean	Std. Dev.	Min.	Max.
Individual Characteristics:					
Age	25458	25.7247	5.0839	17	35
Male	25458	.5171	.4997	0	1
Migration Background	25458	.2708	.4444	0	1
First Gen	25458	.6952	.4603	0	1
Income:					
Inc. Student (€, Gross, Mth.)	25458	1315.5583	1301.5073	0	49000
Labor Supply	25458	.7996	.4003	0	1
Labor Supply (Weekly Hours)	25458	27.4549	17.4159	0	80
Inc. Father (€, Gross, Mth.)	25458	2144.1482	3181.3766	0	104000
Inc. Mother (€, Gross, Mth.)	25458	1050.8017	1345.8818	0	25000

Note: A person is considered a non-student if they are under 35 years old, have earned the right to study, but are not studying in the respective year and have not finished any post-secondary degree.