QF627 Programming and Computational Finance

S0102: MATLAB Basics

Learning Outcomes:

- 1. (DNT) Assessment:
 - Class Participation: 20 %
 - o Attendance: 16%
 - o Peer Evaluation: 4%
 - In-Class Exercises: <u>15</u>%
 - Homework Assignments: <u>15</u>%
 - Final Exam: 50%, ✓ closed-book / ☐ open-book, ✓ 2 hours / ☐ 3 hours
- 2. (DNT) We prefer to run MATLAB programs in the MATLAB IDE, though we can also run a script through the "Command Prompt" or "Terminal".
- 3. (DNT) MATLAB Desktop has four commonly used windows:
 - <u>Editor</u> (creating, editing, debugging and running scripts)
 - Command Window (running commands line by line)
 - Current Folder (the nearest folder that MATLAB programs can be accessed)
 - Workspace (list of variables that have been defined)
- 4. ☑ (DNT) Use of MATLAB Debugger + Workspace
- 5. ☑ (DNT) MATLAB "Change Current Folder" or "Add to Path".
- 6. ☑ (DNT) MATLAB also has "Live Editor" to create, edit and run programs.
- 7. MATLAB uses Drackets / Dbraces for indexing and Dbrackets / Dbraces for a function call.
- 8. True / False MATLAB command clear removes items from workspace, freeing up system memory.
- 9. It is a second of the secon
- 10. True / False In MATLAB, values/expressions separated by commas form a commaseparated list. Such as list, by itself, is not very useful. But when used with large and more complex data structures like MATLAB structures and cell arrays, the comma-separated list can enable you to simplify your MATLAB code.
- 11. True / False MATLAB uses semicolon (;) to suppress output in the Command Window.
- 12. ☑ True / ☐ False MATLAB also uses semicolon (;) to signify end of row in 2D arrays.
- 13. True / False Elements in the row (of a 2D array) can be separated by using either commas or spaces.
- 14. ☑ (DNT) Review of the formulation of the "HDB Loan Calculator" application

- 15. MATLAB Variables Names
 - starts with a ☑ letter / □ digit / □ underscore
 - followed by <u>✓ letters / ✓ digits / ✓ underscores</u>
- 16. MATLAB is case **☑** sensitive / **□** insensitive, so **A** and **a □** are / **☑** are not the same variable.
- 17. (DNT) The maximum length of a variable name is the value that <u>namelengthmax</u> command returns. The value is <u>63</u> on my computer.
- 18. ☐ True / ☑ False MATLAB can use **a** as a variable name.
- 19. MATLAB arithmetic operators:
 - addition: +
 - subtraction: -
 - multiplication: *
 - division: /
 - power: ^
- 20. Precedence of the above 5 arithmetic operators and parentheses.
- 21. MATLAB expression to compute 4^{3^2} : $\square 4^3^2 / \square 4^6$
- 22. ****** (Python) ⇔ ^ (MATLAB)
- 23. print (P) (Python) ⇔ disp(P) (MATLAB)
- 24. ✓ True / ☐ False In MATLAB, disp(1, 2) causes an Error.
- 25. ☑ (DNT) A temporary solution: (Python) print(1, 2) ⇔ (MATLAB) pythonprint(1, 2)
- 26. MATLAB code converted from the following Python code:

Python	MATLAB
PV=800000	%2345678901234567890123456789012345
t=25	clc PV=800000;
r=2.6/100	t=25;
P=(r/12*PV)/(1-(1+r/12)**(-12*t))	r=2.6/100;
print(P)	$P=(r/12*PV)/(1-(1+r)/12)^(-12*t));$
	disp(P)

- 27. (DNT) Default format of the output in MATLAB Command Window is format short
- 28. (DNT) GUI programming: objectName (PyQt5) ⇔ Tag (MATLAB GUIDE)
- 29. ☑ (DNT) Demonstration of the main steps in building the HDB Loan Calculator MATLAB GUI.
- 30. MATLAB function str2num converts a string to a number.
- 31. MATLAB function <u>num2str</u> converts a number to a string.

32. MATLAB mathematical functions:

Maths function	MATLAB function	Maths function	MATLAB function
ln(x)	log(x)	tan(x)	tan(x)
$\log_{10}(x)$	log10(x)	$\cot(x)$	cot(x)
$\log_2(x)$	log2(x)	sec(x)	sec(x)
e^x	exp(x)	asin(x)	asin(x)
sin(x)	sin(x)	acos(x)	acos(x)
cos(x)	cos(x)	[x]	floor(x)
x	abs(x)	[x]	ceil(x)

- 33. ✓ True / ☐ False MATLAB can use 007 as a numeric literal.
- 34. True / False MATLAB can use 7 7 as a numeric literal.
- 35. ☐ True / ☑ False MATLAB can use 0xdeadbeaf as a numeric literal.
- 36. ✓ True / ☐ False MATLAB can use 1e5 as a numeric literal.
- 37. MATLAB <u>character vector</u> is a sequence of characters enclosed in $\underline{\underline{\vee}}$ single / $\underline{\underline{\square}}$ double quotation marks.
- 38. ✓ (DNT) MATLAB <u>character array</u> is a 2D array that stores character vectors (of the same length) as rows.
- 39. Some MATLAB special characters in character vectors include
 - single quotation mark: ' '
 - single percent sign: %%
 - single backslash: //
 - new line: \n
- 40. ☐ True / ☐ False MATLAB can use triple-quotes to create strings as Python does.
- 41. ☐ True / ☐ False MATLAB can concatenate two adjacent string literals.
- 42. ☐ True / ☑ False MATLAB can use addition (+) to concatenate two string literals.
- 43. True / False MATLAB can use the [] operator to concatenate two strings.
- 44. ✓ True / ☐ False MATLAB can use function streat to concatenate two strings.
- 45. ✓ True / ☐ False MATLAB can use function strcmp to compare equality of two strings.
- 46. True / False MATLAB can use function **strfind** to find all occurrence of one string in another. If not found, the function returns [].
- 47. ✓ True / ☐ False MATLAB indexing and slicing use braces.
- 48. ✓ True / ☐ False e In MATLAB, the index starts from 1.
- 49. <u>✓ True / □ False</u> In MATLAB, negative index is not allowed. Subscript indices must either be real positive integers or logicals.

- 51. ✓ True / ☐ False In MATLAB, extended slicing's format is start:step:end.
- 52. **True** / **False** In MATLAB, **x** (1:1) is not empty.
- 53. ✓ True / ☐ False In MATLAB, **x** (3:1) is empty.
- 55. \square True / \square False In MATLAB, $\mathbf{x}(1:3)$ is equivalent to $\mathbf{x}([1,2,3])$.
- 56. Output of the following MATLAB code is: 'accb'

```
clear;
clc;
x='abcdef';
x([1,3,3,2])
```

57. Output of the following MATLAB code is: 'ollellleeo'

```
clear;
clc;
x='Hello';
x([5,3,3,2,3,4,4,2,2,5])
```

- 58. Remainder: 5%2 (Python) $\Leftrightarrow mod(5,2)$ (MATLAB)
- 59. Integer Division: 5//2 (Python) ⇔ floor (5/2) (MATLAB)
- 61. ✓ True / ☐ False MATLAB does not have implicit line joining as Python has.
- 62. ✓ True / ☐ False MATLAB uses % for comments.
- 63. ✓ True / ☐ False MATLAB does not require any indentation for a code block.
- 64. ✓ True / ☐ False MATLAB needs to save the function definition in an M-file.
- 65. True / False In an M-file, only the first function (i.e. the main function) is visible to others. Additional functions defined are for internal use only.
- 66. The MATLAB function to compute monthly installment of the HDB Loan on slide 74 is

```
%234567890123456789012345678901234567890123456789012345678901234567890
function [P]=funP(PV, r, t)
P=(r/12*PV)/(1-(1+r/12)^(-12*t));
end
```

67. ✓ True / ☐ False MATLAB does not need to import anything as Python does.

68. Convert the following Python code to MATLAB, using the same function name.

```
from scipy.stats import norm
     from math import *
     def BS EuroCallPut(S,K,r,q,sigma,T,t):
         d1=(log(S/K)+(r-q+sigma**2/2.)*(T-t))/(sigma*sqrt(T-t))
         d2=d1-sigma*sqrt(T-t)
         c=S*exp(-q*(T-t))*norm.cdf(d1)-K*exp(-r*(T-t))*norm.cdf(d2)
         p=K*exp(-r*(T-t))*norm.cdf(-d2)-S*exp(-q*(T-t))*norm.cdf(-d1)
         return [c, p]
     r=BS_EuroCallPut(50,50,0.04,0.01,0.4,0.5,0)
     print(r)
     function [c,p]=BS EuroCallPut(S,K,r,q,sigma,T,t)
 MATLAB Function
     d1=(log(S/K)+(r-q+sigma^2/2)*(T-t))/(sigma*sqrt(T-t));
     d2=d1-sigma*sqrt(T-t);
     c=S*exp(-q*(T-t))*normcdf(d1)-K*exp(-r*(T-t))*normcdf(d2);
     p=K*exp(-r*(T-t))*normcdf(-d2)-S*exp(-q*(T-t))*normcdf(-d1);
     end
     clear;
MATLAB
     clc;
      [c, p]=BS_EuroCallPut(50,50,0.04,0.01,0.4,0.5,0)
```

69. What is the output on slide 81, when we run the following command:

```
>> r=BS_EuroCallPut(50,50,0.04,0.01,0.4,0.5,0)
r =
5.9316
```

- 70. True / False MATLAB does not have keyword arguments.
- 71. True / False MATLAB does not have keyword-only parameters.
- 72. Convert the following Python lambda expression (for an anonymous function) to a MATLAB anonymous function with the same function name.

Python	MATLAB
f=lambda x,y: x+y	f=@(x,y) x+y;

73. The MATLAB command to evaluate the first function in the following function handle cell array at x=1 is: $f\{1\}(1)$

```
f = \{ @ (x) x+1, @ (x,y) x+y \};
```

- 74. ☑ True / ☐ False In MATLAB ['ab', 'cde'] results 'abcde'.
- 75. True / False In MATLAB [1, 2] results an array of 2 numbers.

- 76. \square True / \square False In MATLAB $\mathbf{x} = [1, 'ab']$ results an array of 2 items, where $\mathbf{x}(1)$ is $\{1\}$ and $\mathbf{x}(2)$ is $\{'ab'\}$.
- 77. \square True / \square False In MATLAB $\mathbf{x} = \{1, 'ab'\}$ results a cell array of 2 items, where $\mathbf{x} \{1\}$ is 1 and $\mathbf{x} \{2\}$ is 'ab'.
- 78. True / False MATLAB does not have nested arrays. [[1,2],[3,4]] reduces to [1,2,3,4].
- 79. True / False MATLAB has nested cell arrays, e.g. { {1,2}, {3,4}}.
- 80. In MATLAB, if $x=\{\{1,2\},\{3,4\}\}$, the values for the following notations are

Notation	Value	Notation	Value
x(1)	☐ Error / ☑ {1x2 cell}	x{1}	☐ Error / ☑ <u>{[1]}{[2]}</u>
x(1)(1)	☑ Error / □	x(1){1}	☑ Error / □
x{1}{1}	☐ Error / ☑ <u>1</u>	x{1}(1)	☐ Error / ☑ <u>{[1]}</u>

81. In MATLAB, if $x=\{1,2,3\}$, after the following assignment, values of a, b are

Assignment	Values of a , b	Assignment	Values of a , b
[a,b]=x{1:2}	☐ Error /	[a,b]=x{:}	☐ Error /
	☑ a= <u>1</u>		☑ a= <u>1</u>
	b = <u>2</u>		b = <u>2</u>
[a,b]=deal(x{1:2})	☐ Error /	[a,b]=deal(x{:})	☑ Error /
	☑ a= <u>1</u>		□ a=
	b = <u>2</u>		b=
[a,b]=1, 2	☑ Error /	[a,b]=deal(1,2)	☐ Error /
	□ a=		☑ a= <u>1</u>
	b=		b = <u>2</u>

- 82. True / False Extracting multiple elements from a cell array yields a comma-separated list.
- 83. True / False MATLAB deal function requires the number of outputs to match the number of inputs.
- 84. True / False In the output, character vectors do not show single-quotation marks.
- 85. True / False In the output, cell arrays do not show curly braces. Character vectors in a cell array are shown with single-quotation marks.
- 86. True / False In the output, arrays of numbers do not show square brackets.
- 87. True / False In the output, cell arrays do not show curly braces. Arrays of numbers in a cell array are shown with square brackets.
- 88. \square True / \square False In the output, arrays and cell arrays in a cell array are not shown in details, but a summary respectively in square brackets and curly braces, e.g. [1x2 double] or {1x2 cell}.

- 91. True / False In MATLAB, structures with the same field names can be concatenated (using the [] operator) into an array of structures, or a structure array.

by simple assignments, e.g. **x**.**b**=2. MATLAB function **fieldnames** can be used to return all the field names of a structure. We can also create a structure using the **struct** function.

- 92. True / False For a structure array, extracting a field of the structure yields a commaseparated list.
- 93. True / False MATLAB does not have membership test operators. We can use the MATLAB function ismember, but it does not simply return a single value of True or False. The output depends on the inputs and the number of outputs.
- 94. True / False In the output, MATLAB displays 1 for true and 0 for false.
- 95. True / False In MATLAB, function **ismember** cannot tell whether one string is a substring of another. Function **strfind** can help.
- 96. ✓ True / ☐ False In MATLAB, a non-zero number represents true.
- 97. True / False In MATLAB, empty array and empty string do not represent true or false. We need to use function isempty to obtain a truth value.
- 98. True / False MATLAB does not support chained comparison.
- 99. Output of the MATLAB expression **1<10<5**: 1
- 100. True / False In MATLAB, Inf (or inf) values are equal to other Inf (or inf) values.
- 101. True / False In MATLAB, NaN (or nan) values are not equal to any other numerical values, including other NaN (or nan) values.
- 102. ✓ True / ☐ False In MATLAB, 1==~1 returns 0 instead of causing a syntax error. This is because logical not (~) has a higher precedence than equality relational operator (==).
- 103. ☑ True / ☐ False MATLAB does not have augmented assignment.
- 105. True / False MATLAB has return statement, which return control to invoking function.

106. Convert the following Python code to MATLAB. Manage to use the same variable names.

Python	MATLAB
x=150_000	%23456789012345678901234567890123456789012345678
if 0<=x<20 000:	x=150000;
y=0	if 0<=x && x<20000
elif 20 000<=x<30 000:	у=0
y=0+0.02*(x-20 000)	elseif 20000<=x && x<30000
elif 30 000<=x<40 000:	y=0+0.02* (x-20000)
y=200+0.035*(x-30 000)	elseif 30000<=x && x<40000
elif 40 000<=x<80 000:	v=200+0.035*(x-30000)
y=550+0.07*(x-40 000)	elseif 40000<=x && x<80000
elif 80 000<=x<120 000:	y=550+0.07*(x-40000)
y=3 350+0.115*(x-80 000)	elseif 80000<=x && x<120000
elif 120 000<=x<160 000:	y=3350+0.115*(x-80000)
y=7 950+0.15*(x-120 000)	elseif 120000<=x && x<160000
elif 160 000<=x<200 000:	y=7950+0.15*(x-120000)
y=13 950+0.18*(x-160 000)	elseif 160000<=x && x<200000
elif 200 000<=x<240 000:	y=12950+0.18* (x-160000)
y=21 150+0.19*(x-200 000)	elseif 200000<=x && x<240000 v=21150+0.19*(x-200000)
elif 240 000<=x<280 000:	y-21130+0.19*(x-200000) elseif 240000<=x && x<280000
y=28 750+0.195*(x-240 000)	y=28750+0.195* (x-240000)
elif 280 000<=x<320 000:	elseif 280000<=x && x<320000
<u> </u>	y=36550+0.2*(x-280000)
y=36_550+0.2*(x-280_000) else:	else
	y=44550+0.22*(x-320000)
y=44_550+0.22*(x-320_000)	end
print(y)	disp(y)

107. Convert the following Python code to MATLAB. Manage to use the same variable names.

```
bi=[0, 200, 550, 3350, 7950, 13950, 21150, 28750, 36550, 44550]
    mi=[2.0, 3.5, 7.0, 11.5, 15.0, 18.0, 19.0, 19.5, 20.0, 22.0]
    xi=[20000, 30000, 40000, 80000, 120000, 160000, 200000, 240000,
        280000, 320000]
    x=400_000
    if x>xi[-1]:
Python
        i=len(xi)-1
    else:
        i=next(filter(lambda w: w[1]>x, enumerate(xi)))[0]-1
    if i==-1:
        y=0
    else:
        y=bi[i]+mi[i]/100*(x-xi[i])
    print(y)
      bi=[0, 200, 550, 3350, 7950, 13950, 21150, 28750, 36550, 44550];
    mi=[2.0, 3.5, 7.0, 11.5, 15.0, 18.0, 19.0, 19.5, 20.0, 22.0];
    xi=[20000, 30000, 40000, 80000, 120000, 160000, 200000, 240000, 280000, 320000];
    x=400000;
    if x>xi(end)
   i=length(xi);
   else
    c=find(xi>x);
    i=c(1)-1;
    end
    if i==0
    y=0;
    else
    y=bi(i)+mi(i)/100*(x-xi(i));
    disp(y)
```

108. True / False The switch block tests each case until one of the case expressions is true.

109. Complete the following table:

A	isscalar(A)	isvector(A)	ismatrix(A)	isempty(A)
2	1	1	1	0
[2, 2]	0	1	1	0
[2; 2]	0	1	1	0
[2 2;2 2]	0	0	1	0
[]	0	0	1	1
'a'	1	1	1	0
'abc'	0	1	1	0
1 1	0	0	1	1

- 110. True / False MATLAB has functions arrayfun, cellfun and strctfun to apply a simple function to each element of an array, each cell of a cell array and each field of a scalar structure, respectively.
- 111. What is the output the following MATLAB code?

MATLAB code			
for i=1:3	i=1:3		
disp(i)	for i=x	for i=x	
end	disp(i)	disp(i)	
	end	end	
Output			
%2345678901234567890	%2345678901234567890	%2345678901234567890	
1	1 2 3	1 2 3	
2	1	1	
3	2	2	
	3	3	

112. What is the output the following MATLAB code?

MATLAB code			
x=1:3	x=1:3	for i='abc'	
for i=x	for i=x	disp(i)	
x(3) = 4;	i=5;	i=2;	
disp(i)	disp(i)	end	
end	end		
	Output		
%2345678901234567890	%2345678901234567890	%2345678901234567890	
1 2 3	1 2 3	a	
1	5	b	
2	5	С	
3	5		

113. What is the output the following MATLAB code?

MATLAB code	Output
for i={'abc', 1, 'abc'}	%2345678901234567890
disp(i)	'abc'
end	[1]
	'abc'

- 114. True / False MATLAB for loop and while loop do not have the "else" clause.
- 115. True / False (MATLAB) continue passes control to next iteration of the for or while loop. break terminates execution of for or while loop.
- 116. True / False MATLAB, as all other programming languages, allows recursive function definition.
- 117. Convert the following Python class definition and its simple application to MATLAB.

```
import math
     class A:
        value=1
        def __init__(self, val):
Python code
           self.value=val
        def roundOff(self):
           return round(self.value, 2)
     a=A(math.pi)
     a.roundOff()
     classdef A
        proprties
          value
        end
MATLAB class definition
        methods
            function obj=A(val)
               obj.value=val;
            function r=roundoff(obj)
                 r=round(obj.value,2);
            end
        end
     end
     a=A(pi)
MATLAB script
       A with properties:
       value:3.1416
     a.roundoff()
     ans=
        3.1400
```