Clean version of claims, incorporating current amendments.

	1.	(Cancelled)
1	2.	(New) A method of soft decision decoding, the method comprising the steps of:
2		a. receiving an input signal over a channel; and
3		b. approximating a Log-Likelihood-Ratio result of the input signal, wherein
4		the Log-Likelihood-Ratio result is independent of a signal to noise ratio
5		value calculable over the channel.
1	3.	(New) The method of soft decision decoding according to claim 2 wherein the
2		step of approximating further comprises calculating an actual
3		Log-Likelihood-Ratio value for each of a plurality of m bits per symbol
4		contained in the input signal.
1	4.	(New) The method of soft decision decoding according to claim 3 wherein the
2		step of approximating further comprises separating the actual Log-
3		Likelihood-Ratio values into one or more n-regions, wherein n is an
4		integer.
1	5.	(New) The method of soft decision decoding according to claim 4 wherein the
2		step of approximating further comprises determining a constant, a _n , by
3		computing a partial derivative for the actual Log-Likelihood-Ratio values
4		in the one or more n-regions.
1	6.	(New) The method of soft decision decoding according to claim 5 wherein the
2		step of approximating further comprises determining a slope for the actual
3		Log-Likelihood-Ratio value for each of the plurality of m bits per symbol.
4		
1	7.	(New) The method of soft decision decoding according to claim 6 wherein the
2		slope is determined by use of a linear equation, wherein the linear equation
3		utilizes the constant a_n .

- (New) The method of soft decision decoding according to claim 6 wherein the 8. 1 2 step of approximating further comprises quantizing the slope for each m 3 bit per symbol.
- 9. (New) The method of soft decision decoding according to claim 8 wherein the step of quantizing is performed using a quantizing equation 2

$$Quantize = \left(LLR \frac{2^{SOFT_BITS \rightarrow 1}}{qLIMIT} + 2^{SOFT_BITS \rightarrow 1} \right)$$

- 5 wherein the SOFT_BITS value and the qLIMIT value are dependent on the signal to 6 noise ratio.
 - 10. (New) A method of soft decision decoding over a channel, the method comprising the steps of:
 - receiving an input signal over the channel, wherein the input signal has a a. plurality of m bits per symbol;
 - calculating an actual Log-Likelihood-Ratio value for each of the plurality b. of m bits per symbol;
 - determining a slope for the actual Log-Likelihood-Ratio value of each m c. bit: and
 - quantizing the slope for each m bit per symbol and generating a d. Log-Likelihood-Ratio result, wherein the Log-Likelihood-Ratio value is independent of noise over the channel.
 - 11. (New) The method of soft decision decoding according to claim 10 further comprising separating the actual Log-Likelihood-Ratio values into one or more n-regions, wherein n is an integer.
 - 12. (New) The method of soft decision decoding according to claim 11 further comprising determining a constant a by computing a partial derivative for the actual Log-Likelihood-Ratio values in the one or more n-regions.

1

1

3

1

2 3

1

2

3

9

- 1 13. (New) The method of soft decision decoding according to claim 12 wherein the slope is determined by use of a linear equation, wherein the linear equation utilizes the constant a_n.
 - 14. (New) The method of soft decision decoding according to claim 10 wherein the step of quantizing is performed using a quantizing equation

$$Quantize = \left(LLR \frac{2^{SOFT_BITS} - 1}{qLIMIT} + 2^{SOFT_BITS} - 1\right)$$

1

2

4

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

- wherein the SOFT_BITS value and the qLIMIT value are dependent on the signal to noise ratio.
 - 15. (New) A method of soft decision decoding over a modulated channel wherein a signal to noise ratio may be calculated over the channel, the method comprising the steps of:
 - a. receiving an input signal over the channel, wherein the input signal has a plurality of m bits per symbol;
 - b. calculating an actual Log-Likelihood-Ratio value for each of the plurality of m bits per symbol, wherein the actual Log-Likelihood-Ratio value includes a SOFT_BITS value for each of the plurality of m bits per symbol;
 - c. separating the actual Log-Likelihood-Ratio values into one or more nregions, wherein n is an integer;
 - d. determining a constant, a_n by computing a partial derivative for the actual Log-Likelihood-Ratio values in the one or more n-regions;
 - e. calculating a slope by use of a linear equation, wherein the linear equation utilizes the constant a_n; and
 - f. quantizing the constant a_n by utilizing the quantizing equation

18 $Quantize = \left(LLR \frac{2^{SOFT_BITS \rightarrow}}{qLIMIT} + 2^{SOFT_BITS \rightarrow}\right)$

Attorney Docket No.:AHA-02201

1	wherein the SOFT_BITS value and qLIMIT are dependent on the signal to noise ratio,				
2	the quantizing equation generating a quantized Logarithmic-Likelihood-Ratio result				
3	substa	ntially in	ndependent of the signal to noise ratio over the channel.		
1	16.	(New)	A Logarithmic Likelihood Ratio module for soft decision decoding over a		
2		modula	ated channel, the Logarithmic Likelihood Ratio module comprising:		
3		a.	an input module for receiving a plurality of (I,Q) data symbols;		
4		b.	a modulation unit for determining a modulation scheme for calculating a		
5			Logarithmic Likelihood Ratio result for the plurality of (I,Q) data symbols,		
6			wherein the Logarithmic Likelihood Ratio result is substantially		
7			independent of a signal to noise ratio over the modulated signal; and		
8		c.	a converter module for converting the Logarithmic Likelihood Ratio result		
9			of the plurality of (I,Q) data symbols into unsigned values.		
1	17.	(New)	The Logarithmic Likelihood Ratio module according to claim 16 further		
2			comprising a gain module for amplifying the plurality of data symbols by a		
3			multiplicative factor.		
1	18.	(New)	The Logarithmic Likelihood Ratio module according to claim 16 further		
2			comprising a PSK module for calculating the Logarithmic Likelihood		
3			Ratio result by determining a slope of the plurality of (I,Q) data symbols in		
4			a phase shift key modulation scheme.		
1	19.	(New)	The Logarithmic Likelihood Ratio module according to claim 16 further		
2			comprising a QAM module for calculating the Logarithmic Likelihood		
3			Ratio result by a determining a slope of the plurality of (I,Q) data symbols		
4 .			over a quadrature amplitude modulation scheme.		
1	20.	(New)	The Logarithmic Likelihood Ratio module according to claim 19 further		
2			comprising a second QAM module for calculating the Logarthimic		
3			Likelihood Ratio result for a portion of the m bits in parallel with the		
4			QAM module.		

Attorney Docket No.:AHA-02201

	1
(j)	2
Λ,	3

21.

(New) The Logarithmic Likelihood Ratio module according to claim 16 further comprising a multiplexer coupled to the modulation unit, wherein multiplexer provides the Logarithmic Likelihood Ratio result to the converter module.