e-Edge Education Centre

Quadratic Equations

Class XI-EMM-MT-PAGE 42

LESSON-7

QUADRATIC EQUATIONS

1. QUADRATIC EQUATION

An equation of the form $ax^2 + bx + c = 0$ (a \neq 0), a, b, c are real numbers, is called a quadratic equation.

If α is a root of this equation, then α satisfies this equation and hence $a\alpha^2 + b\alpha + c = 0$.

The quantity $D = b^2 - 4ac$ is called the discriminant of quadratic equation

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$(1)

The roots of the quadratic equation, generally denoted by α and β are

$$\alpha = \frac{-b + \sqrt{D}}{2a} \quad \text{and} \quad \beta = \frac{-b - \sqrt{D}}{2a}$$

1. NATURE OF THE ROOTS

- 1. Suppose $a, b, c \in R$ and $a \neq 0$. Then the following hold good:
 - (a) The equation (1) has real and distinct roots if and only if D > 0.
 - (b) The equation (1) has real and equal roots if and only if D = 0.
 - (c) The equation (1) has complex roots with non-zero imaginary parts if and only if D < 0.
 - (d) p + iq $(p, q \in R, q \ne 0)$ is a root of (1) if and only if p iq is a root of (1).
- 2. If $a, b, c \in Q$ and D is a perfect square of a rational number, then (1) has rational roots.
- 3. If $a, b, c \in Q$ and $p + \sqrt{q}$ $(p, q \in Q)$ is an irrational root of (1) then $p \sqrt{q}$ is also a root of (1).
- 4. If (1) is satisfied by more than two complex numbers, then (1) becomes an identity, that is a = b = c = 0.

Example: Let a > 0, b > 0 and c > 0. Then prove that both the roots of the equation $ax^2 + bx + c = 0$ have negative real parts.

Solution: We have $D = b^2 - 4ac$. If $D \ge 0$, then the roots of the equation are given by

e-Edge Education Centre

Quadratic Equations

Class XI-EMM-MT-PAGE 42

$$x = \frac{-b \pm \sqrt{D}}{2a}$$

As $D = b^2 - 4ac < b^2$ (a > 0, c > 0), it follows that the roots of the quadratic equation are negative. In case D < 0, then the roots of the equation are given by

$$x = \frac{-b \pm i\sqrt{-D}}{2a}$$

which have negative real parts.

2. RELATION BETWEEN ROOTS AND COEFFICIENTS AND SYMMETRIC FUNCTIONS OF ROOTS

Let α and β be the roots of the equation $ax^2 + bx + c = 0$ then $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ Location of real roots on the number line

1. When *D* 0

(a) if both roots are positive, then
$$\alpha + \beta = \frac{-b}{a} > 0$$
 and $\alpha\beta = \frac{c}{a} > 0$

(b) if both roots are negative, then
$$\alpha + \beta = \frac{-b}{a} < 0$$
 and $\alpha\beta = \frac{c}{a} > 0$

2. When D > 0

(a) if one root say
$$\alpha$$
 is positive and the other root β is negative, then $\alpha\beta = \frac{c}{a} < 0$

3. When D 0

(a) if both roots are greater than
$$k$$
, then $\alpha - k > 0$ and $\beta - k > 0$
 $\alpha - k + \beta - k > 0$ and $(\alpha - k)(\beta - k) > 0$

(b) if both roots are less than k, then
$$\alpha - k < 0$$
 and $\beta - k < 0$ $\alpha + \beta - 2k < 0$ and $(\alpha - k)(\beta - k) > 0$

(c) If both roots lie between
$$k$$
 and l , $k < l$ then $\alpha - k > 0$, $\beta - k > 0$, $\alpha - l < 0$, $\beta - l < 0$
Therefore $\alpha - k + \beta - k > 0$, $\alpha - l + \beta - l < 0$ and $(\alpha - k)$ $(\beta - k) > 0$ and $(\alpha - l)$ $(\beta - l) > 0$

(d) If
$$\alpha < k$$
 and $\beta > k$, then $\alpha - k < 0$ and $\beta - k > 0$

e-Edge Education Centre

Quadratic Equations

Class XI-EMM-MT-

$$\cdot \cdot (\alpha - k)(\beta - k) < 0$$

(e) If $\alpha < k$ and $\beta > I$, k < I

then
$$\alpha-k < 0$$
, $\beta-k > 0$, $\alpha-l < 0$, $\beta-l > 0$

Symmetric functions of the roots are algebraic expressions, which are symmetric in α and β .

For examples:
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3 \alpha\beta (\alpha + \beta) = \frac{3abc - b^3}{a^3}$$

Example: If α , β are the roots of the equation $6x^2 - 6x + 1 = 0$, then prove that

$$\frac{1}{2}(a+b\alpha+c\alpha^2+d\alpha^3)+\frac{1}{2}(a+b\beta+c\beta^2+d\beta^3)=\frac{a}{1}+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}$$

Solution: $\alpha + \beta = 1$ and $\alpha \beta = \frac{1}{6}$

Now
$$\frac{1}{2}(a+b\alpha+c\alpha^2+d\alpha^3)+\frac{1}{2}(a+b\beta+c\beta^2+d\beta^3)$$

$$=\frac{1}{2}[(a+a)+b(\alpha+\beta)+c(\alpha^2+\beta^2)+d(\alpha^3+\beta^3)]$$

$$=\frac{1}{2}[2a+b+c\{(\alpha+\beta)^2-2\alpha\beta\}+d\{(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)\}]$$

$$=\frac{1}{2}[2a+b+c\{1-\frac{1}{3}\}+d\{1-\frac{1}{2}\}]$$

$$=a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}$$