For ei gn-2 2013

CHEM STRY MARKING SCHEME FOREI GN 2013 SET - 56/2/2

Q no.	Ans wers	Marks
1	Due to its tendency to flow like liquid.	1
2	Ethylamine forms Hoond with water but aniline, can't form Hoond due to	1
	hydrophobi c benzene ring.	
3	Phenol < 4 nitrophenol < 2, 4, 6-tri nitrophenol	1
4	H ₃ C- CO CH=C(CH ₃) ₂ or structure for m	1
5	Os motic pressure	1
6	5-chl or o-4- met hyl pent - 1-ene	1
7	Differential adsorption	1
8	Et hyl ene glycol +Terepht halic acid	1
9	Positi ve devi ati on	1+1
	M ni mu m boili ng azeotrope	
10	1) Buna-S < Pol yt hene < nyl on-6, 6 2) Neoprene < 1 < 1 yl on-6	1+1
11	A u mi na is leached out by using conc. Na OH solution to sodi u mal u mi nate and silica as sodi u m silicate. Al $_2$ Q ₃ + 2 Na OH + 3 H ₂ O 2 Na[A(OH) ₄]	
so	Al u mi ni u m hydroxi de or hydrated al u mi na is then ppt. by passing CO ₂ gas whereas sodi u m silicate re mai ned in solution. Al u mi ni u m hydroxi de is i gnited to get pure al u mi na. (or explai ned i n any other correct suitable manner) OR	2
11	(a) Cu ₂ S+Fe S	1
	(b) Depressant is used to separate sulphide ore selectively from a mixture of two sulphide ores.	1
	1	

12		
	According to Henry's law, $p = k_{\rm H} x_{\rm CH_4}$ $\therefore x_{\rm CH_4} = \frac{p}{k_{\rm H}} = \frac{760 \text{ mm Hg}}{4.27 \times 10^5 \text{ mm Hg}} = 1.78 \times 10^{-3}$	1/2
	Mole fraction of methane in benzene; $x_{\text{CH}_4} = 1.78 \times 10^{-3}$.	72
13	a) $k = 2.303 \log [A_0]$ t [A]	1/2
	$t = \frac{2303}{60 \text{s}^{-1}} \text{lo}_{\circ}$	1
	t = 0.0383 sec	1/2
14		
	(i) CHO-(CHOH)4-CH2OH HI CH3-(CH2)4-CH3	1
	(CHOH) ₄ $\xrightarrow{H_2N-OH}$ $\xrightarrow{(CHOH)_4}$ $\xrightarrow{(CH_2OH)}$ $\xrightarrow{(CH_2OH)}$	1
15	a) Pepti zati on takes place.	1
	b) Because of larger surface area.	1
16	(i) Kraft temperature: The temperature above which micelle for mation takes place is called Kraft temperature.	

For ei gn-2 2013

	(ii) Sorption: The phenomenon in which both adsorption and absorption takes place simultaneously.	1+1
17	(i) HF < HO < HBr < H (ii) NH ₃ < PH ₃ < As H ₃ < SbH ₃ < B H ₃	1 1
18	 a) Hydrogen bonding b) Nucleotide is sugar +nitrogenous base + phosphate group whereas Nucleoside is sugar + nitrogenous base. 	1+1
19	 i) Due to discrete tetrahedral structure and angular strain, white phosphorus is more reactive whereas red phosphorus is polymeric and therefore less reactive. ii) Because of higher charge/size ratio of Sn⁴⁺. iii) Due to its ease of liberating nascent oxygen. OR	1x3=3
19	(i) $PO_3 +3H_2O \longrightarrow H_3PO_3 + 3HO$ (ii) $XeF_2 +PF_5 \longrightarrow [XeF]^+[PF_6]^-$	
	(iii Na Ng \longrightarrow 2Na $+3$ Ng	1x3=3
20	i) Retention of configuration ii) Inversion of configuration iii) Race misation	1x3=3
21	1) I st order 2) - k 3) sec ⁻¹	1x3=3

22	ii) HO POH OH OH	1x3=3
	(iii) Cd F	
23	i) Hel ping, caring and setting an example of true friendship ii) Tranquilizers iii) Because in excess it act as poison and can harm the nervous system	1.2.2
24	(i) $CH_3-CH_2-\overset{\bullet}{O}-H + H^{\dagger} \longrightarrow CH_3-CH_2-\overset{\bullet}{O}-H$ (ii) $CH_3CH_2-\overset{\bullet}{O}: + CH_3-CH_2-\overset{\bullet}{O}-CH_2CH_3 + H_2O$ (iii) $CH_3CH_2-\overset{\bullet}{O}-CH_2CH_3 \longrightarrow CH_3CH_2-O-CH_2CH_3 + \overset{\dagger}{H}$	1x3=3 1/2 1/2 1
	(b) G' Q ₂ / KMh Q ₄ / Aci dified K ₂ Gr ₂ Q ₃	1
25	(a) (i) [Co(NH ₃) ₄ (H ₂ O)C]C ₂	
	(ii) K ₂ [N(CN) ₄]	1+1

	(b) sp ³	1
26	$d = \underbrace{z x M}_{a^3 x N_A}$	1/2
	$27 \text{ g c m}^{3} = \frac{\text{z x 27 g mol}^{-1}}{(4.05 \text{ x } 10^{-8} \text{ c m})^{3} \text{ x } 6.022 \text{ x } 10^{23} \text{ mol}^{-1}}$	1
	$z = \frac{27 \text{ g cm}^3 \text{ x 6 022 x } 10^{23} \text{ mol}^{-1} \text{ x } (4.05 \text{ x } 10^{-8} \text{ cm})^3}{27 \text{ g mol}^{-1}}$	
	z ≈ 4	1/2
	Hence the cubic unit cell is f.c.c.	1
27		
	(i) $ \underbrace{ NH_2 NANO_2 + HCI}_{O^{\circ}C} \longrightarrow \underbrace{ CI N_2^{\dagger}CI^{-}}_{A} + \underbrace{ BF_4}_{A} \longrightarrow \underbrace{ CI F}_{A} $	
	(ii)	
	(iii) CH3CI ECN > CH3CN LiAIHY > CH3CH2NH2	
		1x3=3

28	a)	
	i) Because carbon of carbonyl group in ethanal is more electrophilic than of ket one due to the presence of one electron donating methyl group. ii) Because of the absence of α - hydrogen at α merisation in carboxylic acid b) i) Add Na OH + I_2 , acet ophenone gives yellow ppt. of CH $_3$ whereas benzophenone does not for many ppt.	1x3=3
	ii) Add Na $OH + I_2$, et hanal gives yellow ppt. of CHI_3 whereas benzal dehyde does not	1+1
	for many ppt. (or any other correct suitable test) OR	
28	(a) Kohlrausch's law states that limiting molar conductivity of an electrol we can be	1 x5=5
29	(a) Kohlrausch's law states that limiting molar conductivity of an electrolyte can be	
	represented as the sum of the individual contributions of the anion and cation of the	

	electrolyte.	1
	It is used to calculate ∧ m of even weak electrolyte./ It is used to calculate degree of dissociation.	1
	(b)	
29	R= ρ (1/a) Cell constant 1/a=R/ ρ =Rκ = (1500 Ω) x(0.15x10 ⁻⁴ Sc m ⁻¹) = 0.225c m ⁻¹ OR	1 1 1
	$E_{cell} = E_{cat hode} - E_{anode}$ $= 0.34 \text{ V} - (-2.36) \text{ V}$ $= +2.70 \text{ V}$	1/2 1/2
	$E_{cell} = E_{gell} - \frac{0.059 \log \left[Mg^{2+} \right]}{2}$ $E_{cell} = 2.70 \text{ V} - \frac{0.059}{0.059} \log \left(0.001 \text{ M} \right)$	1
	$\frac{3607}{2} \log \frac{3607}{100001} M_{1}$ $2.70 \text{ V} - \frac{0.059}{2} \log (10)$	
	$= 2.70 \mathrm{V} - 0.0295 \mathrm{V}$ $= 2.6705 \mathrm{V}$	1
	$\Delta G = -nFE_{cell}^{O}$	1/2
	= - 2 x 96500 C mol ⁻¹ x 2 70 V = - 521.1 kJ mol ⁻¹	1/2

30			
	because of non-involvment of d-orb ii) Because of lant hanoid contractio iii) Because of incomplete filling of	d-orbitals. Δ_a H of Cu^{2+} ion and Cu respectively.	1x5=5
30	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$h O_4 + 2 H_2 O$	1
	$Mh Q_1^{2-}$ under goes disproportionation reaction in acid medium to give $Mh Q_1^{-}$ ion.		1
	$3 \text{ Mh } Q_4^{2-} + 4 \text{ H}^{\dagger} = -2 \text{ Mh } Q_4^{} + \text{Mh } Q_2^{} + 2 \text{ H}_2 \text{ O}$		1
	i) $Mh Q_1^- + 8H^+ + Fe^{2+} - Mh^{2+} + Fe^{3+} + 4H_2 O$		1
	ii) $2 \text{ Mh Q}^{-} + 16 \text{ H}^{+} + 5 \text{ C}_{2} \text{ Q}^{2-} - 2 \text{ Mh}^{2+} + 10 \text{ CO}_{2} + 8 \text{ H}_{2} \text{ O}$		1
	Sh. S K Murj al		
	Dr (Mrs.) Sangeeta Bhatia		
	Pr of . R D Shukla	M. K.M. Abdul Raheem	
	Dr. KN Uppadhya	M.D A Nishra	
	Mr. Rakesh Dhawan	Mr. Deshbir Singh	
	Ms. Neer u Sof at	Mi. Akhileshwar Mishra	
	Mr. Virendra Singh		