

总复习(三)

等或多不等或的证明

- 一、主要内容
- 二、典型例题

一、主要内容

导数与定积分的应用(续)综合应用

等式与不等式的证明方法:

- (1) 利用中值定理 (4) 曲线的凹凸性
- (2) 函数的单调性 (5) 定积分的性质;
- (3) 最大、最小值 (6) 积分法.

二、典型例题

3. 等式与不等式的证明

例1 选择题

(1) 设在 [0,1]上, f''(x) > 0,则(B)成立.

$$(A) f'(1) > f'(0) > f(1) - f(0)$$

$$(B) f'(1) > f(1) - f(0) > f'(0)$$

$$(C) f(1) - f(0) > f'(1) > f'(0)$$

$$(D) f'(1) > f(0) - f(1) > f'(0)$$

解 在[0,1]上, f''(x) > 0, $\diamondsuit g(x) = f'(x)$

则由 $g'(x) = f''(x) > 0, x \in [0,1]$

知 g(x) = f'(x)在[0,1]上单调增加

又由拉格朗日中值定理 ,知 $\exists \xi \in (0,1)$

使 $f(1) - f(0) = f'(\xi)(1-0) = f'(\xi)$

∴对0< ξ<1,有

$$g(0) < g(\xi) < g(1)$$

即 $f'(0) < f'(\xi) < f'(1)$ 故选 (B).

- (2) 设函数 f(x)连续,且 f'(0) > 0,则存在 $\delta > 0$,使得(C)
 - $(A) f(x) 在 (0,\delta)$ 内单调增加;

- (B) f(x)在 $(-\delta,0)$ 内单调减少;
- (C) 对任意的 $x ∈ (0, \delta)$ 有 f(x) > f(0);
- (D) 对任意的 $x \in (-\delta, 0)$ 有 f(x) > f(0).

$$\mathbf{f}'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} > 0$$

由极限的保号性,知 $3\delta > 0$,使得

$$\frac{f(x)-f(0)}{x-0} > 0, \quad x \in \mathring{U}(0,\delta)$$

∴ 对任意的 $x \in (0,\delta)$ 有 f(x) > f(0).

$$(3) \, \mathop{\boxtimes} F(x) = \int_{x}^{x+2\pi} e^{\sin t} \sin t \, \mathrm{d}t, \, \mathop{\square} F(x) (A).$$

- (A) 为正常数;

若
$$f(x)$$
连续, $f(x+T)=f(x)$,

$$f(t+2\pi) = f(t)$$

$$F(x) = \int_0^{2\pi} e^{\sin t} \sin t \, dt = \int_{-\pi}^{\pi} e^{\sin t} \sin t \, dt$$
 为常数

$$= \int_0^{\pi} (e^{\sin t} \sin t - e^{-\sin t} \sin t) dt$$

$$= \int_0^{\pi} (e^{\sin t} - e^{-\sin t}) \sin t \, \mathrm{d}t$$

$$= \int_0^{\pi} (e^{\sin t} \sin t - e^{-\sin t} \sin t) dt$$

$$= \int_0^{\pi} (e^{\sin t} - e^{-\sin t}) \sin t dt$$

$$= \int_0^{\pi} (e^{\sin t} - e^{-\sin t}) \sin t dt$$

$$= \int_0^a [f(x) + f(-x)] dx$$

$$::$$
 当 $t \in (0,\pi)$ 时, $\sin t > 0$

:
$$e^{\sin t} - e^{-\sin t} > 0$$
, $(e^{\sin t} - e^{-\sin t}) \sin t > 0$,

∴
$$F(x) > 0$$
且 $F(x)$ 为常数. 选(A)

解法2
$$F(x) = \int_0^{2\pi} e^{\sin t} \sin t \, dt$$

$$= -\int_0^{2\pi} e^{\sin t} \, d(\cos t)$$

$$= -\left[e^{\sin t} \cos t\right]_0^{2\pi} - \int_0^{2\pi} e^{\sin t} \cos^2 t \, dt$$

$$= \int_0^{2\pi} e^{\sin t} \cos^2 t \, dt > 0$$

类似题 证明: $\int_0^{\sqrt{2\pi}} \sin x^2 dx > 0.$

提示:
$$\int_0^{\sqrt{2\pi}} \sin x^2 dx = \int_0^{2\pi} (\sin t) \cdot \frac{1}{2\sqrt{t}} dt$$

$$= \frac{1}{2} \int_{\pi}^{-\pi} \frac{\sin u}{\sqrt{\pi - u}} (-du) = \frac{1}{2} \int_{-\pi}^{\pi} \frac{\sin u}{\sqrt{\pi - u}} du$$

$$=\frac{1}{2}\int_0^{\pi}\left(\frac{\sin u}{\sqrt{\pi-u}}-\frac{\sin u}{\sqrt{\pi+u}}\right)\mathrm{d}u$$

$$= \frac{1}{2} \int_0^{\pi} \left(\frac{1}{\sqrt{\pi - u}} - \frac{1}{\sqrt{\pi + u}} \right) \sin u \, du > 0$$

(4) 设在[a,b]上,f(x) > 0, f'(x) < 0, f''(x) > 0,

则(B).

$$(A) S_1 < S_2 < S_3 \qquad (C) S_3 < S_1 < S_2$$

(B)
$$S_2 < S_1 < S_3$$
 (D) $S_2 < S_3 < S_1$

if
$$\ln(1+x) \ge \frac{\arctan x}{1+x}$$

$$\Leftrightarrow (1+x)\ln(1+x) \ge \arctan x \quad (x \ge 0)$$

$$\Leftrightarrow (1+x)\ln(1+x) - \arctan x \ge 0, \quad (x \ge 0)$$

则
$$f'(x) = 1 + \ln(1+x) - \frac{1}{1+x^2}$$

$$= \ln(1+x) + \frac{x^2}{1+x^2} > 0, \quad (x > 0)$$

f(x)在[0,+∞)上单调增加

故当
$$x \ge 0$$
 时, $f(x) \ge f(0) = 0$,

亦即当
$$x \ge 0$$
时, $\ln(1+x) \ge \frac{\arctan x}{1+x}$.

例3 证明:
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}$$
 (-1< x < 1)

证 需证:
$$x \ln \frac{1+x}{1-x} + \cos x - (1+\frac{x^2}{2}) \ge 0$$
 (-1

则 f(0) = 0 需证: $f(x) \ge f(0) = 0, x \in (-1,1)$ 即f(x)在(-1,1)上取得最小值f(0)

$$f'(x) = \ln \frac{1+x}{1-x} + \frac{2x}{1-x^2} - \sin x - x, \quad f'(0) = 0$$

$$f''(x) = \frac{4}{(1-x^2)^2} - \cos x - 1 \ge 4 - 2 = 2 > 0, \ x \in (-1,1)$$

:. f'(x)在(-1,1)上单调增加

故 f'(x)在(-1,1)上有唯一零点 x = 0 (f'(0) = 0)

即 f(x)在(-1,1)上有唯一驻点 x = 0.

又:
$$f''(0) = 2 > 0$$

x = 0是f(x)的极小值点,

从而是 f(x)在(-1,1)上的最小值点,

即f(x)在(-1,1)上取得最小值 f(0) = 0.

$$f(x) \ge f(0) = 0, \quad x \in (-1,1)$$

从而所给不等式得证.

(1) 需证: 当x > -1时,

$$f(x) \le f(0) = 0$$

类似题 设x > -1,证明:

(1) 当
$$0 < \alpha < 1$$
时, $(1+x)^{\alpha} \le 1 + \alpha x$;

(2) 当
$$\alpha < 0$$
或 $\alpha > 1$ 时, $(1+x)^{\alpha} \ge 1 + \alpha x$.

证法1 令 $f(x) = (1+x)^{\alpha} - (1+\alpha x)$, 则 f(0) = 0 (最值法) $f'(x) = \alpha [(1+x)^{\alpha-1} - 1]$,

令
$$f'(x) = 0$$
, 得 $x = 0$

$$f''(x) = \alpha(\alpha - 1) (1 + x)^{\alpha - 2}$$

(1) 当
$$0 < \alpha < 1$$
, $x > -1$ 时, $f''(x) < 0$

f'(x)在 $(-1,+\infty)$ 上单调减少

- ∴ f(x)在 $(-1,+\infty)$ 上有唯一驻点 x = 0,且为f(x) 的极大值点,从而为 f(x)的最大值点.
- (2) 当 α < 0或 α > 1, x > −1时, f''(x) > 0 f'(x) 在(−1,+∞)上单调增加
- ∴ f(x)在 $(-1,+\infty)$ 上有唯一驻点 x = 0,且为f(x) 的极小值点,从而为 f(x)的最小值点.

证法2 (用泰勒公式)

由g(x)的一阶麦克劳林公式,得

$$g(x) = (1+x)^{\alpha} = g(0) + g'(0)x + \frac{g''(\theta x)}{2!}x^2$$

$$g(x) = (1+x)^{\alpha} = g(0) + g'(0)x + \frac{g''(\theta x)}{2!}x^{2}$$

$$= 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}(\theta x + 1)x^{2} \quad (0 < \theta < 1)$$

$$\therefore \quad \exists x > -1 \text{时}, \quad \theta x > -\theta > -1, \ \theta x + 1 > 0,$$

$$\therefore (1) \stackrel{\cdot}{=} 0 < \alpha < 1, \quad x > -1$$
 时, $g(x) < 1 + \alpha x$ 即 $(1+x)^{\alpha} \le 1 + \alpha x$.

$$(2)$$
 当 $\alpha < 0$ 或 $\alpha > 1$, $x > -1$ 时, $g(x) > 1 + \alpha x$ 即 $(1+x)^{\alpha} \ge 1 + \alpha x$.

例4 证明: 当 $0 < x < \frac{\pi}{2}$ 时, $\sin x > \frac{2}{\pi}x$.

 $\Leftrightarrow f(x) = \sin x - \frac{2}{\pi}x, \qquad x \in (0, \frac{\pi}{2})$

f(x)在[0, $\frac{\pi}{2}$]上可导,且 $f(0) = f(\frac{\pi}{2}) = 0$. 由罗尔定理知, $\exists x_0 \in (0, \frac{\pi}{2})$,使 $f'(x_0) = 0$. $f'(x) = \cos x - \frac{2}{x},$

$$f''(x) = -\sin x < 0, \ x \in (0, \frac{\pi}{2})$$

- $\therefore f'(x) 在 [0, \frac{\pi}{2}] 上 单调减少,故$
- (1) 当 $0 < x < x_0$ 时, $f'(x) > f'(x_0) = 0$ f(x)在[0, x_0]上单调增加,
- $\therefore \forall x \in (0, x_0], f(x) > f(0) = 0$
- (2) $\stackrel{\text{def}}{=} x_0 < x < \frac{\pi}{2}$ $\text{ff}, f'(x) < f'(x_0) = 0$

$$f(x)$$
在 $[x_0,\frac{\pi}{2}]$ 上单调减少,

$$\therefore \forall x \in [x_0, \frac{\pi}{2}), f(x) > f(\frac{\pi}{2}) = 0$$
综上所述: $\forall x \in (0, \frac{\pi}{2}), f(x) > 0$
即 $\sin x - \frac{2}{\pi}x > 0, x \in (0, \frac{\pi}{2})$
亦即当 $0 < x < \frac{\pi}{2}$ 时, $\sin x > \frac{2}{\pi}x$.

证法2
$$\sin x > \frac{2}{\pi}x \Leftrightarrow \frac{\sin x}{x} > \frac{2}{\pi}, \quad x \in (0, \frac{\pi}{2})$$

$$\diamondsuit g(x) = \begin{cases} \frac{\sin x}{x}, & 0 < x \le \frac{\pi}{2}, \\ 1, & x = 0 \end{cases}$$

$$g(x)$$
在[$0,\frac{\pi}{2}$]上连续,在 $(0,\frac{\pi}{2})$ 内可导,且

当
$$x \in (0,\frac{\pi}{2})$$
时,

$$g'(x) = \left(\frac{\sin x}{x}\right)' = \frac{x \cos x - \sin x}{x^2}$$
$$= \frac{\cos x}{x^2} \cdot (x - \tan x)$$

而令
$$h(x) = x - \tan x$$
 $h(x)$ 在 $[0, \frac{\pi}{2}]$ 上可导,且 $h(0) = 0$,
 $h'(x) = 1 - \sec^2 x = -\tan^2 x < 0, x \in (0, \frac{\pi}{2})$
 $h(x)$ 在 $[0, \frac{\pi}{2}]$ 上单调减少

$$\therefore \forall x \in (0, \frac{\pi}{2}), \quad \text{有 } h(x) < h(0) = 0.$$

$$\therefore g'(x) < 0, \quad x \in (0, \frac{\pi}{2})$$

$$\therefore g(x) 在 [0, \frac{\pi}{2}] 上 单调减少$$

故当
$$0 < x < \frac{\pi}{2}$$
时,

$$g(\frac{\pi}{2}) < g(x) < g(0)$$

即
$$\frac{2}{\pi} < \frac{\sin x}{x} < 1$$
, 亦即 $\frac{2}{\pi} x < \sin x < x$.

相关题 证明: $1 < \int_0^{\frac{\pi}{2}} \frac{\sin x}{x} dx < \frac{\pi}{2}$.

$$\text{iff} \quad \because \quad \frac{2}{\pi} < \frac{\sin x}{x} < 1, \quad x \in (0, \frac{\pi}{2})$$

$$\therefore \int_0^{\frac{\pi}{2}} \frac{2}{\pi} dx < \int_0^{\frac{\pi}{2}} \frac{\sin x}{x} dx < \int_0^{\frac{\pi}{2}} dx$$

$$\mathbb{P} \quad 1 < \int_0^{\frac{\pi}{2}} \frac{\sin x}{x} dx < \frac{\pi}{2}.$$

例5 设 $e < a < b < e^2$, 证明:

$$\ln^2 b - \ln^2 a > \frac{4}{e^2}(b-a).$$

分析1
$$\ln^2 b - \ln^2 a > \frac{4}{e^2}(b-a) \Leftrightarrow \frac{\ln^2 b - \ln^2 a}{b-a} > \frac{4}{e^2}$$

则 f(x)在[a,b]上可导,由拉格朗日中值定理知

 $\exists \xi \in (a,b)$,使得

$$\frac{\ln^2 b - \ln^2 a}{b - a} = \frac{f(b) - f(a)}{b - a} = f'(\xi) = \frac{2\ln \xi}{\xi}$$

$$\Rightarrow g(x) = \frac{\ln x}{x}$$
,则

$$g'(x) = \frac{1 - \ln x}{x^2} < 0, \quad x > e$$
 $\xi \in (a,b) \subset (e,e^2)$

$$\frac{2\ln \xi}{\xi} \stackrel{?}{>} \frac{4}{e^2}$$

$$\xi \in (a,b) \subset (e,e^2)$$

$$\therefore g(x)$$
在 $[e,+\infty)$ 上单调减少

从而
$$g(\xi) > g(e^2)$$
, 即

$$\frac{\ln \xi}{\xi} > \frac{\ln e^2}{e^2} = \frac{2}{e^2}$$
 亦即 $\frac{2\ln \xi}{\xi} > \frac{4}{e^2}$

$$\therefore \ln^2 b - \ln^2 a > \frac{4}{e^2}(b-a).$$

分析2
$$\ln^2 b - \ln^2 a > \frac{4}{e^2}(b-a)$$

$$\Leftrightarrow (\ln^2 b - \frac{4}{e^2}b) - (\ln^2 a - \frac{4}{e^2}a) > 0$$

证法1
$$\Rightarrow \varphi(x) = \ln^2 x - \frac{4}{e^2}x, \quad x \in [a,b] \subset [e,e^2]$$

则 $\varphi(x)$ 在 [a,b] 上可导,且

$$\varphi'(x) = 2\frac{\ln x}{x} - \frac{4}{e^2}$$

$$\varphi''(x) = 2\frac{1 - \ln x}{x^2}$$

$$\varphi''(x) = 2\frac{1 - \ln x}{x^2}$$

:. 当x > e时, $\varphi''(x) < 0$, 故 $\varphi'(x)$ 单调减少

从而当 $e < x < e^2$ 时,有

$$\varphi'(x) > \varphi'(e^2) = 0$$

$$\varphi'(x) = 2\frac{\ln x}{x} - \frac{4}{e^2}$$

即当 $e < x < e^2$ 时, $\varphi(x)$ 单调增加

$$\therefore \, \stackrel{\cdot}{=}\, e < a < b < e^2 \, \text{时}, \quad \varphi(b) > \varphi(a)$$

即
$$\ln^2 b - \frac{4}{e^2}b > \ln^2 a - \frac{4}{e^2}a$$
, 故所证不等式成立.

类似题 证明: $\pi^e < e^{\pi}$.

分析 $\pi^e < e^{\pi} \Leftrightarrow \ln \pi^e < \ln e^{\pi}$

$$\Leftrightarrow e \ln \pi < \pi$$

$$\Leftrightarrow \pi - e \ln \pi > 0$$
 $f(x) > 0 = f(e)$

 $\Leftrightarrow e \ln \pi < \pi$ 需证: 当 x > e 时

$$f(x) > 0 = f(e)$$

 $\mathbf{i}\mathbf{E} \quad \Leftrightarrow f(x) = x - e \ln x$

则f(x)在 $[e,+\infty)$ 上可导,

令 f'(x) = 0,得唯一驻点: x = e

::当x > e时,f'(x) > 0

∴ f(x)在[e,+∞)上单调增加

故当x > e时, f(x) > f(e) = 0

 $\therefore \pi > e, \quad \therefore f(\pi) > 0$

即 $\pi - e \ln \pi > 0$, 亦即 $\pi^e < e^{\pi}$

一般地,设 $\alpha > \beta \ge e$,证明:

$$\alpha^{\beta} < \beta^{\alpha}$$

例6 设 f(x)在[a,b]上可导,且 $f'(x) \le M, f(a) = 0$, 证明: $\int_a^b f(x) dx \le \frac{M}{2} (b-a)^2.$

证法1 (单调性) 需证: $\int_{a}^{b} f(x)dx - \frac{M}{2}(b-a)^{2} \le 0$ 令 $F(x) = \int_{a}^{x} f(t)dt - \frac{1}{2}(x-a)^{2}$, F(a) = 0

则由题设条件,知 F(x)在[a,b]上可导,且

$$F'(x) = f(x) - M(x - a), \quad x \in [a, b]$$

 $F'(a) = f(a) = 0$

$$F''(x) = f'(x) - M \le 0, \quad x \in [a,b]$$

F'(x)在[a,b]上单调不增,

$$\forall x \in [a,b], \quad 有F'(x) \leq F'(a) = 0$$

从而 F(x) 在 [a,b] 上单调不增,

$$\forall x \in [a,b]$$
, 有 $F(x) \leq F(a) = 0$

特别地, 有 $F(b) \leq F(a) = 0$

即
$$F(b) = \int_a^b f(t)dt - \frac{M}{2}(b-a)^2 \le 0.$$

$$\therefore \int_a^b f(t)dt \leq \frac{M}{2}(b-a)^2.$$

证法2 (分部积分+定积分性质)

$$f(a) = 0, \quad f'(x) \le M \quad (x \in [a,b])$$

$$\therefore \int_a^b f(x)dx = -\int_a^b f(x)d(b-x)$$

$$= -[f(x)(b-x)|_a^b - \int_a^b (b-x)f'(x)dx]$$

$$= \int_a^b (b-x)f'(x)dx$$

$$\leq \int_{a}^{b} (b-x)Mdx = M\left[-\frac{(b-x)^{2}}{2}\right]_{a}^{b} = \frac{M}{2}(b-a)^{2}.$$

证法3(拉格朗日中值定理+定积分性质)

- : 可在[a,x]上对 f(x)用拉格朗日中值定理, $\exists \xi \in (a,x), \quad \text{使}$ $f(x) f(a) = f'(\xi)(x-a)$
- $f(a) = 0, \quad f'(x) \le M \quad (x \in [a,b])$
- $\therefore f(x) = f'(\xi)(x-a) \le M(x-a), x \in (a,b]$

$$\therefore \int_{a}^{b} f(x)dx \leq \int_{a}^{b} M(x-a)dx$$

$$= M \left[\frac{(x-a)^{2}}{2} \right]_{a}^{b}$$

$$= \frac{M}{2} (b-a)^{2}.$$

类似于证法1的题:

例7 设 f(x)在[0,1]上有连续导数,且 $0 < f'(x) \le 1$, f(0) = 0, 证明: $[\int_0^1 f(x) dx]^2 \ge \int_0^1 [f(x)]^3 dx.$

证 令
$$F(x) = \left[\int_0^x f(t)dt\right]^2 - \int_0^x [f(t)]^3 dt$$
, $F(0) = 0$

则 $F'(x) = 2\left[\int_0^x f(t)dt\right] \cdot f(x) - [f(x)]^3$

$$= \left\{2\left[\int_0^x f(t)dt\right] - [f(x)]^2\right\} \cdot f(x)$$

- \therefore 0 < $f'(x) \le 1$ ($x \in [0,1]$), f(0) = 0,
- f(x) 在 [0,1] 上 单调增加, $\forall x \in (0,1], \quad f(x) > f(0) = 0$ g'(x) = 2f(x) 2f(x)f'(x) $= 2f(x) \cdot [1 f'(x)] \ge 0, \quad x \in [0,1]$
- ∴ g(x)在[0,1]上单调不减, $\forall x \in [0,1]$, 有 $g(x) \ge g(0) = 0$

即
$$g(x) = 2[\int_0^x f(t)dt] - [f(x)]^2 \ge 0, x \in [0,1]$$

$$F'(x) = \{2[\int_0^x f(t)dt] - [f(x)]^2\} \cdot f(x)$$

$$\geq 0, x \in [0,1]$$

即 F(x)在[0,1]上单调不减,从而

$$F\left(1\right)\geq F\left(0\right)=0$$

$$[\int_0^1 f(t)dt]^2 - \int_0^1 [f(t)]^3 dt \ge 0$$

亦即
$$\left[\int_0^1 f(t)dt\right]^2 \ge \int_0^1 [f(t)]^3 dt$$
.

类似于证法2的题

例8 设 f(x)在[0,1]上有连续导数,且 f(0) = f(1) = 0,

证明:
$$\left| \int_0^1 f(x) dx \right| \leq \frac{1}{4} \max_{x \in [0,1]} |f'(x)|. M$$

分析
$$\int_0^1 f(x) dx = x f(x) \Big|_0^1 - \int_0^1 x f'(x) dx$$
 太大, 得不到
$$= -\int_0^1 x f'(x) dx$$
 希望的结果!
$$\int_0^1 f(x) dx \le \int_0^1 x |f'(x)| dx \le M \int_0^1 x dx = \frac{M}{2}$$

证 : f'(x)在[0,1]上连续,

:. f'(x)在[0,1]上必有最大值,

设 $M = \max_{x \in [0,1]} |f'(x)|$.

$$f(0) = f(1) = 0$$

于是
$$\left| \int_0^1 f(x) dx \right| \le \int_0^1 |x - c| \cdot |f'(x)| dx$$

$$\le \int_0^1 |x - c| \cdot M dx = M \int_0^1 |x - c| dx$$

$$= M \left(\int_0^c |x - c| dx + \int_c^1 |x - c| dx \right)$$

$$= M \left[\int_0^c (c - x) dx + \int_c^1 (x - c) dx \right]$$

$$= M \left[-\frac{(c - x)^2}{2} \right]_0^c + \frac{(x - c)^2}{2} \right]_c^1$$

$$= \frac{M}{2} \cdot \left[c^2 + (1 - c)^2 \right] \qquad (\forall c \in (0, 1))$$

$$\Rightarrow g(c) = c^2 + (1-c)^2$$

可验证:
$$g(\frac{1}{2}) = \min_{c \in (0,1)} g(c) = \frac{1}{2}$$

特别地,取
$$c=\frac{1}{2}$$
,有

$$\left| \int_0^1 f(x) dx \right| \le \frac{M}{2} \cdot \left[\left(\frac{1}{2} \right)^2 + \left(1 - \frac{1}{2} \right)^2 \right]$$

$$= \frac{M}{4} = \frac{1}{4} \max_{x \in [0,1]} f'(x).$$

例9 设函数 $S(x) = \int_0^x |\cos t| dt$

(1) 当n为正整数且 $n\pi \le x < (n+1)\pi$ 时,证明: $2n \le S(x) \le 2(n+1)$

 $(2) 求 \lim_{x \to +\infty} \frac{S(x)}{x}.$

证 : $|\cos t|$ 连续, : S(x)可导,且 $S'(x) = |\cos x| \ge 0$

:. S(x) 单调不减

从而

$$(1)$$
 当 n 为正整数且 $n\pi \le x < (n+1)\pi$ 时,有 $S(n\pi) \le S(x) \le S[(n+1)\pi]$

$$\mathbb{P} \int_0^{n\pi} |\cos t| dt \le S(x) \le \int_0^{(n+1)\pi} |\cos t| dt$$

$$\therefore \int_0^{n\pi} |\cos t| dt = n \int_0^{\pi} |\cos t| dt$$

$$= n \left[\int_0^{\frac{\pi}{2}} \cos t \, dt + \int_{\frac{\pi}{2}}^{\pi} (-\cos t) \, dt \right] = 2n$$

$$\int_0^{(n+1)\pi} |\cos t| \, dt = (n+1) \int_0^{\pi} |\cos t| \, dt = 2(n+1)$$

- (2) :: $x \to +\infty$, :. 不妨设 x > 4.

$$\Rightarrow n = \left[\frac{x}{\pi}\right], \quad \text{则} \quad n \leq \frac{x}{\pi} < n+1, \text{即}$$

$$n\pi \leq x < (n+1)\pi$$

于是
$$2n \leq S(x) \leq 2(n+1)$$
.

$$\frac{2n}{(n+1)\pi} \leq \frac{S(x)}{x} \leq \frac{2(n+1)}{n\pi}.$$

$$\Leftrightarrow x \to +\infty$$
, 则 $n \to \infty$

$$\lim_{n\to\infty}\frac{2n}{(n+1)\pi}=\lim_{n\to\infty}\frac{2(n+1)}{n\pi}=\frac{2}{\pi}$$

由夹逼准则,得

$$\lim_{x\to+\infty}\frac{S(x)}{x}=\frac{2}{\pi}.$$

例10 设
$$p > 0$$
, 证明:
$$\frac{p}{p+1} < \int_0^1 \frac{dx}{1+x^p} < 1.$$

证 :
$$\frac{1}{1+x^p}$$
在[0,1]上连续,且

当
$$x$$
 ∈ (0,1), p > 0时,有

$$1 - x^{p} < \frac{1}{1 + x^{p}} = 1 - \frac{x^{p}}{1 + x^{p}} < 1$$

$$\overline{||} \int_0^1 (1-x^p) dx = 1 - \frac{x^{p+1}}{p+1} \Big|_0^1 = \frac{p}{p+1}$$

$$\therefore \int_0^1 (1-x^p) dx < \int_0^1 \frac{dx}{1+x^p} < \int_0^1 dx$$

$$\mathbb{P} \quad \frac{p}{p+1} < \int_0^1 \frac{dx}{1+x^p} < 1.$$

类似题

(1) 比较
$$\int_0^1 |\ln t| [\ln(1+t)]^n dt = \int_0^1 t^n |\ln t| dt$$

($n = 1, 2, \cdots$)的大小,说明理由. 2010年考研

(2)
$$i \exists u_n = \int_0^1 |\ln t| [\ln(1+t)]^n dt \ (n=1,2,\cdots), \Re \lim_{n\to\infty} u_n.$$

解 (1) 当
$$0 < t < 1$$
时, $0 < \ln(1+t) < t$
$$[\ln(1+t)]^n < t^n$$

当
$$0 < t < 1$$
时, $\ln t \left[\ln(1+t) \right]^n < t^n \ln t$

$$\int_0^1 |\ln t| [\ln(1+t)]^n \, \mathrm{d}t < \int_0^1 t^n |\ln t| \, \mathrm{d}t \quad (n=1,2,\cdots)$$

$$(2) \int_{0}^{1} t^{n} |\ln t| dt = \int_{0}^{1} t^{n} (-\ln t) dt$$

$$= -\frac{1}{n+1} \int_{0}^{1} \ln t dt^{n+1}$$

$$= -\frac{1}{n+1} (t^{n+1} \ln t) \Big|_{0}^{1} - \int_{0}^{1} t^{n} dt$$

$$= \frac{1}{(n+1)^{2}} \frac{1}{t^{n} \ln t} \frac{1}{t^{n}} \frac{1}$$

$$\lim_{t \to 0^{+}} t^{n+1} \ln t \quad (0 \cdot \infty)$$

$$= \lim_{t \to 0^{+}} \frac{\ln t}{t^{-n-1}} \quad (\infty)$$

$$= \lim_{t \to 0^{+}} \frac{1}{t^{-n-1}}$$

$$= \lim_{t \to 0^{+}} \frac{t}{(-n-1)t^{-n-2}}$$

$$= -\frac{1}{n+1} \lim_{t \to 0^{+}} t^{n+1} = 0$$

 \therefore 由夹逼准则,得 $\lim u_n = 0$.