AI1103-Assignment 5

W Vaishnavi AI20BTECH11025

Download all latex-tikz codes from

https://github.com/vaishnavi-w/AI1103/blob/main/ Assignment5/latex5.tex

OUESTION

Let X_1 and X_2 be i.i.d. with probability mass function $f_{\theta}(x) = \theta^{x} (1 - \theta)^{1-x}$; x = 0, 1 where $\theta \in (0, 1)$. Which of the following statements are true?

- 1) $X_1 + 2X_2$ is a sufficient statistic
- 2) $X_1 X_2$ is a sufficient statistic
- 3) $X_1^2 + X_2^2$ is a sufficient statistic 4) $X_1^2 + X_2$ is a sufficient statistic

SOLUTION

A statistic t = T(X) is sufficient for a parameter θ if the conditional probability distribution of the data, given the statistic t = T(X) does not depend on the parameter θ . i.e,

$$P_{\theta}(X_1 = x_1, X_2 = x_2 | T = t) \tag{0.0.1}$$

is independent of θ for all x_1, x_2 and t

1) Let $T = X_1 + 2X_2$

$$Pr(T = 0) = Pr(X_1 + 2X_2 = 0)$$
 (0.0.2)

$$= \Pr(X_1 = 0, X_2 = 0) \qquad (0.0.3)$$

As X_1 and X_2 are independent

$$Pr(T = 0) = Pr(X_1 = 0) Pr(X_2 = 0)$$

$$= \theta^0 (1 - \theta)^{1-0} \times \theta^0 (1 - \theta)^{1-0} = (1 - \theta)^2$$
(0.0.4)

Consider,

$$\Pr(X_1 = 0, X_2 = 0 | T = 0)$$

$$= \frac{\Pr(X_1 = 0, X_2 = 0)}{\Pr(T = 0)} = \frac{(1 - \theta)^2}{(1 - \theta)^2} = 1 \quad (0.0.5)$$

Similarly, conditional probabilities for other values of x_1, x_2 and t are given in table 1

	1	I .	~
\mathbf{x}_1	x ₂	t	Conditional probability
		$t = X_1 + 2X_2$	$P_{\theta}(X_1 = x_1, X_2 = x_2 T = t)$
0	0	0	1
		otherwise	0
1	0	1	1
		otherwise	0
0	1	2	1
		otherwise	0
1	1	3	1
		otherwise	0

TABLE 1: Conditional Probabilities

From table 1, all the conditional probabilities are independent of θ

 $\therefore X_1 + 2X_2$ is a sufficient statistic.

2) Let $T = X_1 - X_2$

$$Pr(T = 0) = Pr(X_1 - X_2 = 0)$$

$$= Pr(X_1 = 0, X_2 = 0) + Pr(X_1 = 1, X_2 = 1)$$
(0.0.6)

As X_1 and X_2 are independent

=
$$\Pr(X_1 = 0) \Pr(X_2 = 0)$$

+ $\Pr(X_1 = 1) \Pr(X_2 = 1) = (1 - \theta)^2 + \theta^2$
(0.0.7)

Consider,

$$\Pr(X_1 = 0, X_2 = 0 | T = 0) = \frac{\Pr(X_1 = 0, X_2 = 0)}{\Pr(T = 0)} = \frac{(1 - \theta)^2}{(1 - \theta)^2 + \theta^2} \quad (0.0.8)$$

depends on θ .

 $\therefore X_1 - X_2$ is not a sufficient statistic.

3) Let $T = X_1^2 + X_2^2$

$$Pr(T = 1) = Pr(X_1^2 + X_2^2 = 1)$$

$$= Pr(X_1 = 1, X_2 = 0) + Pr(X_1 = 0, X_2 = 1)$$
(0.0.9)

$$= \theta (1 - \theta) + (1 - \theta) \theta = 2\theta (1 - \theta) \quad (0.0.10)$$

Consider,

$$\frac{\Pr(X_1 = 1, X_2 = 0 | T = 1)}{\Pr(X_1 = 1, X_2 = 0)} = \frac{(1 - \theta)}{2(1 - \theta)^2} = \frac{1}{2} \quad (0.0.11)$$

Similarly, conditional probabilities for other values of x_1, x_2 and t are given in table 3

\mathbf{x}_1	x ₂	t	Conditional probability
		$t = X_1^2 + X_2^2$	$P_{\theta}(X_1 = x_1, X_2 = x_2 T = t)$
0	0	0	1
		otherwise	0
1	0	1	$\frac{1}{2}$
		otherwise	Ō
0	1	1	$\frac{1}{2}$
		otherwise	Ō
1	1	2	1
		otherwise	0

TABLE 3: Conditional Probabilities

From table 3, all the conditional probabilities are independent of θ

 $\therefore X_1^2 + X_2^2 \text{ is a sufficient statistic.}$ 4) Let $T = X_1^2 + X_2$

4) Let
$$T = X_1^2 + X_2$$

$$Pr(T = 1) = Pr(X_1^2 + X_2 = 1)$$

$$= Pr(X_1 = 1, X_2 = 0) + Pr(X_1 = 0, X_2 = 1)$$
(0.0.12)

$$= \theta (1 - \theta) + (1 - \theta) \theta = 2\theta (1 - \theta) \quad (0.0.13)$$

Consider,

$$\frac{\Pr(X_1 = 1, X_2 = 0 | T = 1)}{\Pr(X_1 = 1, X_2 = 0)} = \frac{(1 - \theta)}{2(1 - \theta)^2} = \frac{1}{2} \quad (0.0.14)$$

Similarly, conditional probabilities for other values of x_1, x_2 and t are given in table 4

From table 4, all the conditional probabilities are independent of θ : $X_1^2 + X_2$ is a sufficient statistic.

Answer: Options 1,3,4

\mathbf{x}_1	X ₂	t	Conditional probability
		$t = X_1^2 + X_2$	$P_{\theta}(X_1 = x_1, X_2 = x_2 T = t)$
0	0	0	1
		otherwise	0
1	0	1	$\frac{1}{2}$
		otherwise	Õ
0	1	1	$\frac{1}{2}$
		otherwise	Õ
1	1	2	1
		otherwise	0

TABLE 4: Conditional Probabilities