

Foundations of Robotics – Subsystems and Components

Prof. Dr. Karsten Berns

Robotics Research Lab (RRLab)

Department of Computer Science

TU Kaiserslautern, Germany

Content

- Mechanical components
 - Joints
 - Basic configuration for a robot
 - Workspace
- Actuators
- Sensors
- Open and closed loop control
- Simulation

Subsystems 2 rrlab.cs.uni-kl.de

Basic Joint Types of Robotic Systems

Rotational Joint (R)

[Siegert, Bocionek 96]

Subsystems 4 rrlab.cs.uni-kl.de

Torsion Joint (T)

Subsystems 5 rrlab.cs.uni-kl.de

Revolute Joint (V)

[Siegert, Bocionek 96]

Subsystems 6 rrlab.cs.uni-kl.de

Linear Joint (L)

[Siegert, Bocionek 96]

Subsystems 7 rrlab.cs.uni-kl.de

Definition Workspace

- Workspace consists of all points, which are reachable by the robot hand
 - At least 3 DOF (degree of freedom) necessary for a 3-D space
 - At least 3 basic joints necessary for a 3-D space
- Basic shape of workspace consists of all points, which are reachable by the robot hand without considering any restrictions by the joints or obstacles

Subsystems 8 rrlab.cs.uni-kl.de

Reminder: 3D Coordinate Systems

Cartesian coordinates Spherical coordinates

Cylindrical coordinates

Subsystems 9 rrlab.cs.uni-kl.de

Reminder: Trigonometric Functions

The trigonometric functions \sin , \cos , \tan , \cot are defined as the ratios of corresponding sides in a right triangle (between 0° and 90°).

•
$$\cos \alpha = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{b}{c}$$

$$\sin \alpha = \frac{opposite}{\text{hypotenuse}} = \frac{a}{c}$$

tan
$$\alpha = \frac{opposite}{adjacent} = \frac{a}{b} = \frac{a/c}{b/c} = \frac{\sin \alpha}{\cos \alpha}$$

$$\cot \alpha = \frac{\text{adjacent}}{opposite} = \frac{b}{a} = \frac{b/c}{a/c} = \frac{\cos \alpha}{\sin \alpha} = \frac{1}{\tan \alpha}$$

Subsystems 10 rrlab.cs.uni-kl.de

Reminder: Trigonometric Functions

- For arbitrary angles we define them for the unit circle
 - Length of the hypotenuse: $\sqrt{x^2 + y^2} = 1$, or $x^2 + y^2 = 1$
 - $\sin \alpha = y$
 - $\cos \alpha = x$
- Radian of an angle α : Length of the arc of a unit circle corresponding to α

Subsystems 11 rrlab.cs.uni-kl.de

Reminder: Properties of Sine and Cosine

	sin x	cos x
Domain	$-\infty < x < \infty$	
Codomain	$-1 \le \sin x \le 1$	$-1 \le \cos x \le 1$
Period	2π	
Symmetry	Odd	Even
Roots	$x_k = k \cdot \pi$	$x_k = \frac{\pi}{2} + k \cdot \pi$
Maxima	$x_k = \frac{\pi}{2} + k \cdot 2\pi$	$x_k = k \cdot 2\pi$
Minima	$x_k = \frac{3\pi}{2} + k \cdot 2\pi$	$x_k = \pi + k \cdot 2\pi$
Transformations	$\sin(90^{\circ} - \alpha) = \cos \alpha$	$\cos(90^{\circ} - \alpha) = \sin \alpha$

Subsystems 12 rrlab.cs.uni-kl.de

Reminder: Table of Values

	Sine	Cosine
0°	$\frac{1}{2}\sqrt{0}=0$	$\frac{1}{2}\sqrt{4}=1$
30°	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
45°	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$	
60°	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$
90°	$\frac{1}{2}\sqrt{4}=1$	$\frac{1}{2}\sqrt{0}=0$

Subsystems 13 rrlab.cs.uni-kl.de

Reminder: Graphs of Sine and Cosine

Subsystems 14 rrlab.cs.uni-kl.de

Reminder: Additional Theorem

- Sine
 - $\sin(x_1 \pm x_2) = \sin x_1 \cdot \cos x_2 \pm \cos x_1 \cdot \sin x_2$
- Cosine
 - $\cos(x_1 \pm x_2) = \cos x_1 \cdot \cos x_2 \mp \sin x_1 \cdot \sin x_2$
- tangent
 - $tan(x_1 \pm x_2) = \frac{\tan x_1 \pm \tan x_2}{1 \mp \tan x_1 \cdot \tan x_2}$

Subsystems 15 rrlab.cs.uni-kl.de

Transformation of Coordinate Systems

- Cartesian coordinates → Cylindrical coordinates
 - $(x, y, z) \rightarrow (r, \alpha, z)$
 - $r = \sqrt{x^2 + y^2}$
 - $\tan \alpha = \frac{y}{x}$
 - z = z
- Cylindrical coordinates → Cartesian coordinates
 - $(r, \alpha, z) \to (y, x, z)$
 - $x = r \cdot \cos \alpha$
 - $y = r \cdot \sin \alpha$
 - z = z

Subsystems 16 rrlab.cs.uni-kl.de

Transformation of Coordinate Systems

- Cartesian coordinates → Spherical coordinates
 - $(x, y, z) \rightarrow (r, \alpha, \beta)$

•
$$r = \sqrt{x^2 + y^2 + z^2}$$

- $\cos \beta = \frac{z}{r}$
- $\tan \alpha = \frac{y}{x}$
- Spherical coordinates → Cartesian coordinates
 - $(r, \alpha, \beta) \rightarrow (x, y, z)$
 - $x = r \cdot \sin \beta \cdot \cos \alpha$
 - $y = r \cdot \sin \beta \cdot \sin \alpha$
 - $z = r \cdot \cos \beta$

Subsystems 17 rrlab.cs.uni-kl.de

Cartesian Robot (LLL)

 Basic shape of operational space: Cuboid [Siegert, Bocionek96]

Subsystems 18 rrlab.cs.uni-kl.de

Cartesian Robot (LLL)

Basic shape of operational space: Cuboid
 [Siegert, Bocionek96]

Subsystems 19 rrlab.cs.uni-kl.de

Robot Arm (LVL)

- Basic shape of operational space: Cylinder
- Other possibilities: TLL, LTL [Siegert, Bocionek96]

Subsystems 20 rrlab.cs.uni-kl.de

SCARA-Robot (RRLT)

- Selective compliance assembly robot arm
- Basic shape of operational space: Cylinder
 [Siegert, Bocionek96]

Subsystems 21 rrlab.cs.uni-kl.de

Universal Robot Arm (TRR)

- Basic shape of operational space: Sphere
- Other possibilities: VVR

Subsystems 22 rrlab.cs.uni-kl.de

Basic Shape of Wrist (TRR)

Subsystems 23 rrlab.cs.uni-kl.de

Basic Shape of Wrist (TRT)

Subsystems 24 rrlab.cs.uni-kl.de

Puma Robot (TVRRRT)

Subsystems 25 rrlab.cs.uni-kl.de

Robot Kinematics

[World Robotics 2003]

Subsystems 26 rrlab.cs.uni-kl.de

Robot Kinematics

[World Robotics 2003]

Subsystems 27 rrlab.cs.uni-kl.de

Actuators

- Fluid actuators (pneumatic/hydraulic)
 - Linear
 - Rotational
 - Muscle principle
- Electric actuators
 - Linear
 - Rotational
 - DC motor (brushless, brushed)
 - AC motor
 - Stepper motors
 - Servo motor

Subsystems 28 rrlab.cs.uni-kl.de

Pneumatic Actuators

- Adjustments: Compressed air, no gear box
- Pros
 - Cheap, easy setup, fast reaction times
 - Usable in rough environments
- Cons
 - Noisy
 - Difficult control
 - Mostly just point to point
 - Bad accuracy
- Usage
 - Small robots with fast cycles and low force

Subsystems 29 rrlab.cs.uni-kl.de

Hydraulic Actuators

- Used energy: Oil pressure and controllable valves
- Pros
 - Very high forces
 - Average speed
- Cons
 - Noise
 - Additional space for hydraulics are needed
 - Leakage of oil
 - Slow and inaccurate due to viscosity of oil
- Usage
 - Big robots

Subsystems 30 rrlab.cs.uni-kl.de

Electric Actuators

- Used energy: Electric energy
- Pros
 - Small
 - Easy to control
 - High precision
- Cons
 - Small forces
- Usage
 - Small robots for tasks which require high accuracy

Subsystems 31 rrlab.cs.uni-kl.de

Sensor Classification: Proprioceptive

Acquisition of internal states of a robot/machine e.g.: Joint position, joint velocity, joint acceleration, orientation

- Position
 - Potentiometer
 - Optical encoder
 - Differential transformer transducer
 - Magnetic-inductive encoder

- Velocity
 - Speed generator
 - Optical encoder
- Acceleration
 - Si-sensor
 - Piezo-electric sensor
- Orientation
 - Gyroscope
 - Geomagnetic sensor

Subsystems 32 rrlab.cs.uni-kl.de

Sensor Classification: Exteroceptive

Acquisition of external states (⇒ environment) e. g.: obstacle distance, object identification, object position

- "Feel"
 - Artificial skin
 - Sliding sensors
 - Force-torque-sensors
- Approach
 - Inductive, capacitive sensors
 - Optical sensors
 - Acoustic sensors

Subsystems 33 rrlab.cs.uni-kl.de

Electronics and Computing Architecture

Software Architecture and Middleware

MCABrowser visualizing MCA2 application

35

Closed Loop Control

- Observes process via feedback (Closed Loop)
- Can react to Noise
- Process: Part of the system which needs to be controlled
- Reference variable w: value which the output should trace
- Control difference e: Difference between w and process variable r

Closed-Loop-Control

Subsystems 37 rrlab.cs.uni-kl.de

Goals and Attributes of a Closed Loop Control

Selection of controller type and calculation of its parameters for ...

- Steady state accuracy: control difference vanishes for $t \to \infty$
- Speed: actual value follows desired value as good/fast as possible
- Stability: no instability of control system due to feedback of system output
- Robustness: small changes of parameters of the control plant do not change the properties of the control system

 → approximations for calculation of control parameters are feasible

Simulation

Why simulation?

- Control and perception algorithms can be developed before the robot exists
- Safe testing of algorithms
- Tests in simulation are faster (several tests in parallel on a computer cluster)
- Test can be repeated under absolutely the same conditions
- Test environments can be exchanged
- Different light and weather conditions can be generated

Subsystems 39 rrlab.cs.uni-kl.de

Simulation

Problems with simulation?

- High effort for a realistic simulation of sensor systems (realtime requirements not fulfilled)
- Physical Engine are weak in the modelling of dynamics
- High effort for the development of simulators
- Adequate interfaces to the control system must be implemented
- Still large differences between simulation and real robots in its operational environment

Subsystems 40 rrlab.cs.uni-kl.de

Simulations using Unreal Engine

Subsystems 41 rrlab.cs.uni-kl.de

Literature

- [Siegert, Bocionek 96] Siegert, H.-J. and Bocionek, S. (1996)
 Robotik: Programmierung intelligenter Roboter. Springer
 Verlag
- [World Robotics 2003] International Federation of Robotics,
 United Nation, New York and Geneva, 2003

Subsystems 42 rrlab.cs.uni-kl.de

Next Lecture ...

Spacial kinematics

- Position of objects
- Orientation

Subsystems 43 rrlab.cs.uni-kl.de