Analyzing Adaptive Parameter Landscapes in Parameter Adaptation Methods for Differential Evolution

Rvoji Tanabe

Yokohama National University Yokohama, Japan

Differential Evolution (DE) [Storn 97]: A simple black-box optimizer

DE is sensitive to the setting of two parameters: F and C

- ullet Scale factor F controls the magnitude of the differential mutation
- ullet Crossover rate C controls the number of inherited variables from x

Adaptive DE algorithms

Introduction

- E.g., jDE [Brest 06], JADE [Zhang 09], SHADE [Tanabe 13]
- ullet adaptively adjust F and C values

Poor understanding of parameter adaptation mechanisms in DE

- Its working principle is unclear
- Only a few previous studies tried to analyze adaptive DEs
 - E.g., [Zielinski 08, Drozdik 15, Tanabe 16, Tanabe 17, Tanabe 20]

Difficulty comes from the unclarity of the adaptive parameter space

• Is it possible to make the adaptive parameter space "visualizable"?

Contributions

Introduction

This work

- 1. proposes a concept called adaptive parameter landscapes
- 2. proposes a method of analyzing adaptive parameter landscapes
- 3. provides insightful knowledge on parameter adaptation in DE

Visualization of dynamically changing parameter landscapes

Fitness landscape analysis

Fitness landscape [Pitzer 12]

$$\mathcal{L}_{\text{fitness}} = (\mathbb{X}, f, D)$$

• \mathbb{X} : solution space, f: objective function, D: distance function

No explanation needed in GECCO

Parameter landscape analysis

Parameter landscape [Harrison 19]

$$\mathcal{L}_{\text{parameter}} = (\Theta, M, D),$$

- ullet Θ : parameter space, M: performance metric, D: distance function
- ullet $\mathcal{L}_{\mathrm{parameter}}$ is an $\mathcal{L}_{\mathrm{fitness}}$ of a parameter tuning problem

Example: parameter tuning of $F \in [0,1]$ and $C \in [0,1]$ in DE

- ullet to find the best pair $(F,C)\in\Theta$ on a training problem set I
- $\Theta = [0,1] \times [0,1]$, M: ERT on I, D: Euclidean distance

Parameter landscapes coined in [Yuan 12] are also known as

- performance landscapes [Yuan 07], meta-fitness landscapes [Pedersen 10], utility landscapes [Eiben 11], ERT landscapes [Belkhir 16], parameter configuration landscapes [Harrison 19], and algorithm configuration landscapes [Pushak 18]
- No consistency in the terminology in the EC community

Introduction

Proposed concept: adaptive parameter landscapes

Parameter landscape [Harrison 19]

$$\mathcal{L}_{\text{parameter}} = (\Theta, M, D)$$

Adaptive parameter landscape

$$\mathcal{L}_{\text{adaptive}} = (\Theta_i^t, M, D)$$

- Θ_i^t : dynamic parameter space of ${\pmb x}_i^t, \, M$: performance metric, D: distance function
- ullet $\mathcal{L}_{ ext{adaptive}}$ is an $\mathcal{L}_{ ext{parameter}}$ of the i-th individual at iteration t $(m{x}_i^t)$
- While $\mathcal{L}_{parameter}$ is static, $\mathcal{L}_{adaptive}$ is dynamic

Example: parameter adaptation of $F \in [0,1]$ and $C \in [0,1]$ in DE

- to find the best pair $(F_i^t, C_i^t) \in \Theta_i^t$ for x_i^t
- $\Theta_i^t = [0,1] \times [0,1]$, M: G1 (explained later), D: Euclidean distance

Introduction

Parameter landscapes vs. adaptive parameter landscapes (F and C in DE)

Parameter landscape $\mathcal{L}_{parameter} = (\Theta, M, D)$ is STATIC

Parameter landscape of DE [Belkhir 16]

Adaptive parameter landscape $\mathcal{L}_{adaptive} = (\Theta_i^t, M, D)$ is DYNAMIC

N. Belkhir, J. Dréo, P. Sayéant, M. Schoenauer: Feature Based Algorithm Configuration: A Case Study with Differential Evolution, PPSN

Parameter landscapes vs. adaptive parameter landscapes (continued)

NOT proposed: 1-step-lookahead greedy improvement metric (G1)

Nomenclature

Introduction

- x_i^t : the *i*-th individual in the population at iteration t
- ullet $oldsymbol{u}_i^t$: the i-th child generated by $oldsymbol{x}_i^t$ at iteration t
- ullet F_i^t : the scale factor value used for generating $oldsymbol{u}_i^t$
- ullet C_i^t : the crossover rate value used for generating $oldsymbol{u}_i^t$

G1 measures how much F_i^t and C_i^t improve the fitness value of $oldsymbol{x}_i^t$

$$G1(\mathbf{F}_i^t, \mathbf{C}_i^t) = \begin{cases} |f(\mathbf{x}_i^t) - f(\mathbf{u}_i^t)| & \text{if } f(\mathbf{u}_i^t) < f(\mathbf{x}_i^t) \\ 0 & \text{otherwise} \end{cases}$$

- If $f(x_i^t) = 10$ and $f(u_i^t) = 3$, $G1(F_i^t, C_i^t) = 7$
- If $f(\mathbf{x}_i^t) = 10$ and $f(\mathbf{u}_i^t) = 30$, $G1(F_i^t, C_i^t) = 0$
- Just for the sake of simplicity, we use the term "G1"
- G1 can be replaced with G2, G3, and G1 + novelty

Proposed method for analyzing adaptive parameter landscapes

For the *i*-th individual at iteration t (x_i^t)

- 1. Generate $50 \times 50 = 2500$ pairs of F and C in a grid manner
- 2. Generate $2\,500$ children by using the $2\,500$ pairs of F and C
 - ullet Same random numbers are used for generating the $2\,500$ children
- 3. Evaluate the objective function values of the $2\,500$ children
 - Extra 2500 function evaluations are not counted
- 4. Calculate the G1 values of the $2\,500$ pairs

Conclusion

Properties of the proposed method

Proposed method is totally independent from the procedure of DE

- Proposed method is just a logger, not an optimizer
- \bullet 2500 children are used only for the analysis, not for the search
- Behavior of DE with/without the proposed method is the same

Suppression strategy of the randomness in DE

- ullet 1 child for the actual search and $2\,500$ children for the G1 calculation are generated using the same parents and crossover mask
- Stochastic nature of DE can be suppressed

Cheat in not counting the $2\,500$ extra function evaluations

- This cheat is no problem at all for the analysis
- We are not interested in solving any real-world problem

Experimental setup

Introduction

Settings for adaptive DEs

- jDE [Brest 06], JADE [Zhang 09], SHADE [Tanabe 13]
- Default hyperparameter settings
- Population size $\mu = 100$, no restart
- Current-to-pbest/1 [Zhang 09], binomial crossover [Storn 97]

Settings for test functions

- 24 BBOB noiseless functions [Hansen 09] in COCO [Hansen 16]
- Dimensionality $n \in \{2, 3, 5, 10, 20, 40\}$
- Maximum number of evaluations = $10000 \times n$
- Number of runs = 15 (results of a single run are shown)

Source code is available:

• https://github.com/ryojitanabe/APL

Results

Conclusion

Contour maps of adaptive parameter landscapes in SHADE on the 20-dimensional Sphere function (f_1)

- 100 individuals were sorted
- Pairs for the best (1st) individual are seldom successful, so omitted it

Results

Conclusion

- \bullet SHADE found \boldsymbol{x}^* at $\approx 16\,000$ fe
- o: the pair generated by SHADE
- *: the best pair regarding G1
- Shape of $\mathcal{L}_{\mathrm{adaptive}}$ is different depending on:
 - the rank of each individual
 - the search progress
- ○ and * are far from each other
- $\mathcal{L}_{\mathrm{adaptive}}$ is unimodal/multimodal?

Contour maps of adaptive parameter landscapes in SHADE on the 20-dimensional Rastrigin function (f_3)

- Generating a successful pair on f_3 is more difficult than that on f_1
- $\bullet~\mathcal{L}_{\mathrm{adaptive}}$ at 100 fe looks easy
- Area with $\mathsf{G1} > 0$ is large
- $\mathcal{L}_{\mathrm{adaptive}}$ at $43\,000$ fe looks hard
 - Area with G1 > 0 is very small like needle-in-haystack land.
 - When all 2500 pairs obtain G1 = 0, $\mathcal{L}_{\mathrm{adaptive}}$ is not shown
- $\mathcal{L}_{\mathrm{adaptive}}$ at $87\,000$ fe looks easy
 - Area with G1 > 0 values becomes large again
 - ullet SHADE found $oldsymbol{x}^*$ at $pprox 87\,000$ fe
 - ullet Population has converged to x^*
 - Generating better children is easy

Average FDC values of adaptive parameter landscapes in SHADE (n = 20)

- Results of FDC [Jones 95] and Dispersion [Lunacek 06] are similar
- FDC value is different depending on the function
- \bullet $\mathcal{L}_{\mathrm{adaptive}}$ of individuals with similar ranks have similar FDC values
 - E.g., FDC values of the 75th and 100th individuals are similar
- ullet Global structures of $\mathcal{L}_{\mathrm{adaptive}}$ can correlate with the rank of indiv.

Conclusion

This work

- ullet proposed the concept called adaptive parameter landscapes $\mathcal{L}_{\mathrm{adaptive}}$
- proposed the method of analyzing adaptive parameter landscapes
- provided insightful knowledge on parameter adaptation in DE

Our observations

- ullet $\mathcal{L}_{\mathrm{adaptive}}$ is different depending on the search progress
- ullet $\mathcal{L}_{\mathrm{adaptive}}$ is influenced by the properties of a problem
- ullet Global structures of $\mathcal{L}_{\mathrm{adaptive}}$ can correlate with the rank of indiv.
- ullet ADEs generally generate a pair of F and C far from the best pair

Future work

- analyze other adaptive evolutionary algorithms, e.g., GA and ES
- use other performance metric, e.g., G2 and G1+novelty

Contour maps of adaptive parameter landscapes in SHADE on the 20-dimensional Gallagher and Katsuura functions (f_{22} and f_{23})

- Results of the 100-th individual at 100 evaluations
- Shape of adaptive parameter landscapes is significantly influenced by the global structures of fitness landscapes

Parameter landscape analysis

Motivation

- ullet A better understanding of $\mathcal{L}_{\mathrm{parameter}}$ can lead to a better understanding of the corresponding optimizer
 - making the optimizer more efficient
- ullet Knowledge on $\mathcal{L}_{\mathrm{parameter}}$ are useful for designing a parameter tuner

Z. Yuan and M. A. M. de Oca, M. Birattari, T. Stützle: Continuous optimization algorithms for tuning real and integer parameters of swarm intelligence algorithms. Swarm Intelligence 6(1): 49-75 (2012)

Basic DE with almost any parameter adaptation method

input: $\mathbb{X} \subseteq \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$, population size μ , some hyperparameters

$$t \leftarrow 1$$
, initialize $oldsymbol{P} = \{oldsymbol{x}_1,...,oldsymbol{x}_{\mu}\}$ randomly;

Initialize internal parameters for adaptation of F and C; while The termination criteria are not met do

```
for i \in \{1, ..., \mu\} do
      Generate F_i and C_i:
      Randomly select r_1, r_2, r_3 from \{1, ..., \mu\} \setminus \{i\} s.t. r_1 \neq r_2 \neq r_3;
      Mutant vector \boldsymbol{v}_i \leftarrow \boldsymbol{x}_{r_1} + |F_i| (\boldsymbol{x}_{r_2} - \boldsymbol{x}_{r_3});
      Child u_i = (u_{i,1}, ..., u_{i,n})^{\top}, randomly select j_{\text{rand}} form \{1, ..., n\};
      for j \in \{1, ..., n\} do
            if \operatorname{rand}[0,1] \leq C_i or j = j_{\operatorname{rand}} then u_{i,j} \leftarrow v_{i,i};
        else u_{i,j} \leftarrow x_{i,j};
for i \in \{1, ..., \mu\} do
if f(u_i) \leq f(x_i) then x_i \leftarrow u_i;
```

Update internal parameters for adaptation of F and C; $t \leftarrow t+1$:

Basic DE [Storn 97]

```
input: \mathbb{X} \subseteq \mathbb{R}^n, f: \mathbb{R}^n \to \mathbb{R}, population size \mu, scale factor F, crossover rate C t \leftarrow 1, initialize P = \{x_1, ..., x_{\mu}\} randomly;
```

while The termination criteria are not met do

```
for i \in \{1, ..., \mu\} do
       Randomly select r_1, r_2, r_3 from \{1, ..., \mu\} \setminus \{i\} s.t. r_1 \neq r_2 \neq r_3;
       Mutant vector v_i \leftarrow x_{r_1} + F(x_{r_2} - x_{r_3});
      Child \mathbf{u}_i = (u_{i,1}, ..., u_{i,n})^{\top}, randomly select j_{\text{rand}} form \{1, ..., n\};
     for j \in \{1, ..., n\} do
            if \operatorname{rand}[0,1] \leq C or j=j_{\operatorname{rand}} then u_{i,j} \leftarrow v_{i,j} ; else u_{i,j} \leftarrow x_{i,j} ;
for i \in \{1, ..., \mu\} do
if f(\boldsymbol{u}_i) \leq f(\boldsymbol{x}_i) then \boldsymbol{x}_i \leftarrow \boldsymbol{u}_i;
t \leftarrow t + 1;
```

Basic DE with the parameter adaptation method in JADE [Zhang 09]

 $\textbf{input} \colon \mathbb{X} \subseteq \mathbb{R}^n \text{, } f: \mathbb{R}^n \to \mathbb{R} \text{, population size } \mu \text{, } \text{ adaptation rate } \alpha = 0.1$

$$t \leftarrow 1$$
, initialize $oldsymbol{P} = \{oldsymbol{x}_1,...,oldsymbol{x}_{\mu}\}$ randomly;

Initialize internal parameters $m_F \leftarrow 0.5$ and $m_C \leftarrow 0.5$;

while The termination criteria are not met do

 $t \leftarrow t + 1$:

```
for i \in \{1, ..., \mu\} do
      F_i \sim \text{CauchyDist}(m_F, 0.1) and C_i \sim \text{NormalDist}(m_C, 0.1);
      Randomly select r_1, r_2, r_3 from \{1, ..., \mu\} \setminus \{i\} s.t. r_1 \neq r_2 \neq r_3;
      Mutant vector \boldsymbol{v}_i \leftarrow \boldsymbol{x}_{r_1} + |F_i| (\boldsymbol{x}_{r_2} - \boldsymbol{x}_{r_3});
      Child u_i = (u_{i,1}, ..., u_{i,n})^{\mathsf{T}}, randomly select j_{\text{rand}} form \{1, ..., n\};
     for j \in \{1, ..., n\} do
            if \operatorname{rand}[0,1] \leq C_i or j = j_{\operatorname{rand}} then u_{i,j} \leftarrow v_{i,i};
        else u_{i,j} \leftarrow x_{i,j};
for i \in \{1, ..., \mu\} do
if f(u_i) \leq f(x_i) then x_i \leftarrow u_i;
```

 $m_F \leftarrow (1-\alpha)m_F + \alpha \operatorname{Lmean}(\mathbf{S}_F) \text{ and } m_C \leftarrow (1-\alpha)m_C + \alpha \operatorname{mean}(\mathbf{S}_C);$

Behavior of the internal parameters \emph{m}_F and \emph{m}_C in JADE

