

Paradigmas de Programação

Aula 04 Paradigmas Declarativos

Kellyton Brito kellyton.brito@gmail.com 17/10/2017

Contexto e Motivação

- Paradigmas de Progamação
 - Modelagem Computacional do Mundo Real

- Paradigma Funcional
- Paradigma Lógico
- Paradigma Imperativo
 - Orientado a Objetos
 - Orientado a Aspectos

Paradigmas e Linguagens de Programação

- Objetivo principal:
 - Abstração de código de máquina
 - Linguagem de máquina -> Linguagem natural -> componentes de software

2 Grandes Grupos

Declarativas	Descritivas
Funcionais	Imperativas
Lógicas	Orientado a Objetos
	Orientado a Aspectos

Diferença entre os grupos de paradigmas

- Programação descritiva
 - Foco no COMO é executado
 - Baseado em uma ordem de execução
 - Baseada nos conceitos tradicionais de:
 - Estados,
 - Variáveis,
 - Atribuições,
 - Contexto,
 - Efeitos colaterais e
 - Ordem de execução

Programação declarativa

- Foco no QUÊ é executado
- Programa lido e executado todo de uma vez
- Não existem os conceitos tradicionais da descritiva

Paradigmas Declarativos

O Paradigma Funcional

- Programas são funções que descrevem uma relação explícita e precisa entre E/S
- Um mapeamento

O Paradigma Funcional

 Estilo declarativo: não há o conceito de estado nem comandos como atribuições

- Baseada na implementação de funções
 - Funções
 - Expressões
 - Polimorfismo parametrizado
 - Abstração de dados (em algumas linguagens)

Exemplo de Programa do Paradigma Funcional - LISP

```
1: defun factorial (n)
```

```
2: (if (<= n 1))
```

3: 1

4: (* n (factorial (- n 1)))))

Entrada: factorial 4

Saída: ?

Visão Crítica do Paradigma Funcional

- Vantagens
 - Manipulação de programas mais simples:
 - Prova de propriedades
 - Transformação (exemplo: otimização)
 - Transparência referencial (mesma entrada, mesma saída)
- Desvantagens
 - "O mundo não é funcional!"
 - Implementações ineficientes
 - Mecanismos primitivos de E/S e formatação

O Paradigma Funcional

- Aplicações:
 - Aplicações matemáticas
 - Análise de dados
 - Prototipação
 - Otimização
 - Inteligência Artificial

O Paradigma Lógico

Programas são relações entre dados

O Paradigma Lógico

- Estilo declarativo, como no paradigma funcional
- Baseada na lógica simbólica: proposições
 - Declarações V ou F sobre objetos
 - Relações entre os objetos
- Computação:
 - Lista de fatos (dados)
 - Relações entre os dados como hipóteses
 - Metas a serem inferidas: resolução
 - Perguntas

Conceitos da Programação Lógica

 Proposições representadas através de Cláusulas de Horn

$$u \leftarrow (p \land q \land \cdots \land t)$$
 QU $(p \land q \land \cdots \land t) \rightarrow u$

- u é verdadeiro se p e q e ... e t são verdadeiros
- Cláusulas de Horn sem cabeça (lado esquerdo):
 Fatos

pai (joao, maria)

 Cláusula de Horn com cabeça: Relações avo (joao, maria) ← pai (joao, pedro) ^ pai (pedro, maria) avo(x,z) ← pai(x,y) ^ pai (y,z)

Paradigma Lógico - Exemplo

Quais alunos provavelmente terão dificuldades nessa disciplina?

- Meta: Quais alunos provavelmente terão dificuldade na disciplina X?
- Relações: se aluno foi aprovado com menos de 6 nas disciplinas pré-requisitos de X, provavelmente terá dificuldades na disciplina X
- Fatos:
 - Disciplinas A, B e C são pré-requisitos da disciplina X
 - Media dos alunos nas disciplinas A, B, C

Exemplo de Programa - Prolog

- 1: orbits(mercury, sun). {facts}
- 2: orbits(venus, sun).
- 3: orbits(earth, sun).
- 4: orbits(mars, sun).
- 5:
- 6: orbits(moon, earth).
- 7:
- 8: orbits(phobos, mars).
- 9: orbits(deimos, mars).
- 10:
- 11: planet(P) <= orbits(P, sun). {rules}
- 12: satellite(S) <= orbits(S, P) and planet(P).
- 13:
- 14: ? satellite(S). {query}

- --- running ---
- satellite(moon)
 - true
- satellite(phobos)
 - true
- satellite(deimos)
 - true
- satellite(mercury)
 - false

Visão Crítica do Paradigma Lógico

- Vantagens
 - Em princípio, todas do paradigma funcional
 - Permite concepção da aplicação em um alto nível de abstração (através de associações entre E/S)

Desvantagens

- Em princípio, todos do paradigma funcional
- Linguagens usualmente n\u00e3o possuem tipos

Possíveis Aplicações?

Aplicações do Paradigma Lógico

- Bancos de dados
 - Armazenam dados: fatos
 - Declarativo: preocupação com os dados trazidos, e não em como são trazidos
 - Equivalência direta:

altoRisco(A) <- homem(A), fatorDeRisco(A, sedentarismo), fatorDeRisco(A, obesidade).

equivalente a

select * from pacientes where sexo = 'Masculino' and sedentarismo = true and obesidade = true

Aplicações do Paradigma Lógico

- Sistemas especialistas / Inteligência Artificial
 - Tirar conclusões a partir de fatos e regras
 - Capacidade de trace: Justificativa
- Educação
 - Prova de teoremas
 - Ensino e prática de raciocínio lógico
 - Ensino matemático
 - Ensino diverso
 - Utilizando trace

•

Exercício: Quais outros exemplos de aplicação prática podemos utilizar linguagens funcionais e lógicas?