0.1 Nonlinear model

The dynamic motion equations of the two-wheeled robot are derived using the Lagrangian method. The equations are based on the coordinate system provided in Figure ??.

0.1.1 Coordinate System

The coordinate system is explicitly defined in Equations (0.1) - (0.6).

$$\begin{bmatrix} \theta_{g,l} \\ \theta_{g,r} \\ \theta_{g,av} \\ \phi_y \end{bmatrix} = \begin{bmatrix} \theta_{b,l} + \phi_x \\ \theta_{b,r} + \phi_x \\ \frac{1}{2} \cdot (\theta_{g,l} + \theta_{g,r}) \\ \frac{r_w}{l_{b,w}} \cdot (\theta_{g,r} - \theta_{g,l}) \end{bmatrix}$$

$$(0.1)$$

$$\begin{bmatrix} \dot{p}_{w.x} \\ \dot{p}_{w.y} \\ \dot{p}_{w.z} \end{bmatrix} = \begin{bmatrix} r_w \cdot \dot{\theta}_{g.av} \cdot \cos(\phi_y) \\ r_w \cdot \dot{\theta}_{g.av} \cdot \sin(\phi_y) \\ 0 \end{bmatrix}$$
(0.2)

$$\begin{bmatrix} p_{w.x} \\ p_{w.y} \\ p_{w.z} \end{bmatrix} = \begin{bmatrix} \int \dot{p}_{w.x} \cdot dt + p_{w.x}(0) \\ \int \dot{p}_{w.y} \cdot dt + p_{w.y}(0) \\ \int \dot{p}_{w.z} \cdot dt + p_{w.z}(0) \end{bmatrix}$$
(0.3)

$$\begin{bmatrix} p_{wl.x} \\ p_{wl.y} \\ p_{wl.z} \end{bmatrix} = \begin{bmatrix} p_{w.x} & -\frac{l_{b.w}}{2} \cdot \sin(\phi_y) \\ p_{w.x} & +\frac{l_{b.w}}{2} \cdot \cos(\phi_y) \\ p_{w.z} & \end{bmatrix} \qquad \begin{bmatrix} p_{wr.x} \\ p_{wr.y} \\ p_{wr.z} \end{bmatrix} = \begin{bmatrix} p_{w.x} & +\frac{l_{b.w}}{2} \cdot \sin(\phi_y) \\ p_{w.x} & -\frac{l_{b.w}}{2} \cdot \cos(\phi_y) \\ p_{w.z} & \end{bmatrix}$$
(0.4)

$$\begin{bmatrix} p_{b.x} \\ p_{b.y} \\ p_{b.z} \end{bmatrix} = \begin{bmatrix} p_{w.x} + l_{b.c2a} \cdot \sin(\phi_x) \cdot \cos(\phi_y) \\ p_{w.y} + l_{b.c2a} \cdot \sin(\phi_x) \cdot \sin(\phi_y) \\ p_{w.z} + l_{b.c2a} \cdot \cos(\phi_x) \end{bmatrix}$$
(0.5)

Typically, initial conditions are assumed to be as follows:

$$\begin{bmatrix} p_{w.x}(0) \\ p_{w.y}(0) \\ p_{w.z}(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ r_w \end{bmatrix}$$

$$(0.6)$$