Università degli Studi di Trento - Esame Sistemi Operativi 1 15 Luglio 2019

ISTRUZIONI: Scrivere in modo chiaro e leggibile. Scrivere il proprio nome, cognome e matricola su ogni foglio. Tempo a disposizione 120 minuti. Restituire il testo dell'esame. Totale 6 domande.

- 1. **(4 punti)** Spiegare in dettaglio che cos'è il trashing, perche' si verifica e le possibili misure per mitigarlo/eliminarlo.
- 2. **(6 punti)** Si consideri la seguente situazione di un sistema che possiede 4 tipi di risorsa e 5 processi in competizione per queste risorse. La situazione dei tre processi e rappresentata dalle seguenti matrici:

Allocation						Max				Available			
P_0	0	0	1	2	0	0	1	2		1	5	2	0
P_1	1	0	0	0	1	6	5	0					
P_2	1	3	5	4	2	3	5	6					
P_3	0	6	3	2	0	6	4	2					
P_4	0	0	1	4	0	6	5	6					

Successivamente, si supponga che adesso il processo P_1 effettui una richiesta Req = (0,4,2,0). Usando l'algoritmo del banchiere, indicare se questa richiesta porti in uno stato safe, e in caso affermativo, indicare una sequenza safe.

- 3. **(6 punti)** Date 5 partizioni di memoria di dimensioni 100K, 500K, 200K, 300K, and 600K (nell'ordine), come vengono allocati processi di dimensioni 212K, 417K, 112K e 426K (nell'ordine) applicando gli algoritmi First-fit, Best-fit e Worst-fit? Quale algoritmo fa un uso piu' efficiente della memoria?
- 4. **(4 punti)** Si consideri un sistema con memoria virtuale in cui i frame hanno dimensione 2k. Si supponga che servano 32 bit per descrivere l'indirizzo di un frame. Quanti KB di memoria virtuale possono essere indirizzati se it sistema di paginazione ha 2 livelli? Si giustifichi la risposta.
- 5. (5 punti) Si descrivano in dettaglio i passi necessari per attivare la comunicazione tra due processi mediante memoria condivisa in UNIX. Come avviene la rimozione dell'area di memoria condivisa?
- 6. (7 punti) Scrivere lo pseudocodice di una soluzione basata su semafori che coordini la seguente situazione: Un processo P accede ad una risorsa A, condivisa con altri due processi P_1 e P_2 . P e il primo ad utilizzare A, e, successivamente al suo utilizzo, attivera l'accesso di P_1 e P_2 ad A. Prima di utilizzare A nuovamente, tuttavia, P dovra' attendere che P_1 e P_2 utilizzino entrambi A, in qualsiasi ordine. In altre parole, la sequenza di utilizzo di A sara' del tipo:

$$P \rightarrow Pi \rightarrow Pi \rightarrow Pi \rightarrow Pi \rightarrow Pi \rightarrow P...$$

dove $i = \{1,2\}.$

Si supponga che P, P_1 e P_2 operino secondo il classico schema dell'elaborazione "infinita" (cioe while $(1)\{..\}$).