Lecture 21 Algorithm Families

EECS 281: Data Structures & Algorithms

Outline

- Brute-Force
- Greedy
- Divide and Conquer
- Dynamic Programming
- Backtracking
- Branch and Bound

Brute-Force & Greedy Algorithms

Data Structures & Algorithms

Brute-Force Algorithms

Definition: Solves a problem in the most simple, direct, or obvious way

- Not distinguished by structure or form
- Pros
 - Often simple to implement
- Cons
 - May do more work than necessary
 - May be efficient, but typically is not
 - Sometimes, not that obvious

Example: Counting Change

Problem Definition:

- Cashier has collection of coins of various denominations
- Goal is to return a specified sum <u>using the</u> <u>smallest number of coins</u>

Brute-force Counting Change

Try all subsets S of coins, C to make change totaling A.

- Since there are n coins, there are 2ⁿ possible subsets
- Check if sum of subset coins equals A
 - Called "feasible solution" set
 - -O(n)
- Pick a feasible subset that minimizes |S|
 - Called "objective function"
 - -O(n)

Fewest coins that sum to 30¢?

Coins

0	0	0	30	30
0	0	1	25	26
0	0	2	20	12
0	0	3	15	18
0	0	4	10	14
0	0	5	5	10
0	0	6	0	6
0	1	0	20	21
0	1	1	15	17
0	1	2	10	13
0	1	3	5	9
0	1	4	0	5
0	2	0	10	12
0	2	1	5	8
0	2	2	0	4
0	3	0	0	3
1	0	0	5	6
1	0	1	0	2

Brute-Force Counting Change

- Best Case
 - $-\Omega (n 2^n)$
- Worst Case
 - $-O(n 2^n)$

Greedy Algorithms

Definition: Algorithm that makes sequence of decisions (best at each point), and never reconsiders decisions that have been made

- Must show that locally optimal decisions lead to globally optimal solution
- Pros
 - May run significantly faster than brute-force
- Cons
 - May not lead to correct/optimal solution

Greedy Counting Change

- Go from largest to smallest denomination
 - Return largest coin p_i from P, such that $d_i \le A$
 - $-A = A d_i$
 - Find next largest coin ...

 If money is already sorted (by value), then the algorithm is O(n)

Fewest coins that sum to 30¢?

Greedy: Take the best option at the time

- 1. Always pick quarter if possible
- 2. Pick dimes if possible
- 3. Pick nickels if possible
- 4. Pick pennies if possible

Fewest coins that sum to 30¢?

Greedy: Take the best option at the time

Coins: 2

Does Greedy Always Work?

Q: Can you devise a set of coins for which greedy does not yield an optimal solution for some amount?

A: Pennies, Dimes, Quarters to make 30¢

Fewest coins that sum to 30¢?

Greedy: Take best option at the time

- 1. Always pick quarter if possible
- 2. Pick dimes if possible
- 3. Pick nickels if possible
- 4. Pick pennies if possible

Fewest coins that sum to 30¢?

Greedy: Take best option at the time

Coins: 6

Brute-Force:

Fewest coins that sum to 30¢?

Example: Sorting

- Precond: A random array of int called myArr[]
- Postcond: For all i < n 1, myArr[i] ≤ myArr[i + 1]

Sorting: Brute-Force Approach

- Generate all permutations of array myArr[]
 O(n!)
- For each permutation, check if all myArr[i] ≤ myArr[i + 1]
 - -O(n)

Sorting: Greedy Approach

- Find smallest item, move to first location
 - n operations
- Find next smallest item, move to second location
 - -n-1 operations
- . . .
- Leave the largest item in the final location
 - 1 operation (0 ops if you're clever)

Example: Mountain Climbing

Brute-Force

- Lay out a grid in the area around the mountain
- Visit <u>all</u> possible locations in the grid
- The highest measured altitude was the top

Greedy

- Take a step that increases altitude
- Iterate until altitude is no longer increasing in any direction

Proving Greedy Optimality

- Need an optimal substructure
 Optimal solution = first "best" action + optimal solution for remaining subproblem
- Need a greedy-choice property
 First action can be chosen greedily without invalidating optimal solution
- Applied recursively though often programmed iteratively

Algorithm Family Summary

Brute-force

- Solve problem in simplest way
- Generate entire solution set, pick best
- Will give optimal solution with (typically) poor efficiency

Greedy

- Make local, best decision, and don't look back
- May give optimal solution with (typically) "better" efficiency
- Depends upon "greedy-choice property"
 - Global optimum found by series of local optimum choices

Brute-Force & Greedy Algorithms

Data Structures & Algorithms

Divide and Conquer & Dynamic Programming Algorithms

Data Structures & Algorithms

Divide and Conquer Algorithms

Definition: Divide a problem solution into two (or more) smaller problems, preferably of equal size

- Often recursive
- Often involve log n
 - Why?

Divide and Conquer Algorithms

Pros

- Efficiency
- "Elegance" of recursion

Cons

- Recursive calls to small subdomains often expensive
- Sometimes dependent upon initial state of subdomains
 - Example: binary search requires sorted array

Combine and Conquer Algorithms

Definition: Start with smallest subdomain possible. Then combine increasingly larger subdomains until size = n

Divide and Conquer: Top down

Combine and Conquer: Bottom up

Algorithms You Already Know

- Divide and Conquer
 - Binary Search of sorted list (phonebook)
 - Quicksort
- Combine and Conquer
 - Merge Sort

Dynamic Programming Algorithms

Definition: Remember partial solutions when smaller instances are related

- Solves small instances first, stores the results, look up when needed
- Pros
 - Can make brutally inefficient algorithm very efficient (sometimes $O(2^n) \rightarrow O(n^c)$)
- Cons
 - Difficult algorithmic approach to grasp

Dynamic Programming: Fibonacci

Fibonacci Numbers

$$-F_0 = 0$$

 $-F_1 = 1$
 $-F_n = F_{n-1} + F_{n-2}$

• Try F₅₀

$$F_{50} = F_{49} + F_{48}$$

$$= F_{48} + F_{47} + F_{47} + F_{46}$$

$$= F_{47} + F_{46} + F_{46} + F_{45} + F_{46} + F_{45} + F_{45} + F_{45}$$

$$= F_{47} + F_{46} + F_{46} + F_{45} + F_{46} + F_{45} + F_{45} + F_{44}$$

$$= F_{47} + F_{46} + F_{46} + F_{45} + F_{46} + F_{45} + F_$$

Algorithm Family Summary

- Divide and Conquer
 - Divide problem into <u>non-overlapping</u> subspaces
 - Solve within each subspace
 - Most efficient when subspaces divide evenly
- Dynamic Programming
 - Similar to Divide and Conquer, but used for overlapping subspaces
 - Used when partial solutions are needed later
 - Often times looking "nearby" for previously calculated values

Divide and Conquer & Dynamic Programming Algorithms

Data Structures & Algorithms

Backtracking & Branch and Bound Algorithms

Data Structures & Algorithms

Types of Algorithm Problems

- Constraint Satisfaction Problems
 - Can we satisfy all given constraints?
 - If yes, how do we satisfy them?
 (need a specific solution)
 - May have more than one solution
 - Examples: sorting, mazes, spanning tree
- Optimization Problems
 - Must satisfy all constraints (can we?) and
 - Must minimize an objective function subject to those constraints
 - Examples: giving change, MST

Types of Algorithm Problems

- Constraint satisfaction problems
 - Stop when a satisfying solution is found
 - If one solution is sufficient
- Optimization problems
 - Usually cannot stop early
 - Must develop set of possible solutions
 - Called feasibility set
 - Usually just the best complete solution so far, and the current partial solution being developed
 - When done, the best solution seen is the best

Types of Algorithm Problems

- Constraint Satisfaction problems
 - Can rely on Backtracking algorithms
- Optimization problems
 - Can rely on Branch and Bound algorithms

For particular problems, there may be much more efficient approaches, but think of these as a fallback to a more sophisticated version of a brute force approach.

Backtracking Algorithms

Definition: Systematically consider all possible outcomes of each decision, but prune searches that do not satisfy constraint(s)

- Think of as DFS with Pruning
- Pros
 - Eliminates exhaustive search
- Cons
 - Search space is still large

Applied Backtracking: 4 Color

Example: graph coloring in four colors

- Assign colors to vertices such that no two vertices connected by an edge have the same color
- Some graphs can be 4-colored, and some cannot
 - Give examples
- Given a graph, is it 4-colorable?

Graph Coloring

 Ever wonder how to pick colors in a map without coloring adjacent states the same color?

Graph Properties

- Cartographic maps can be drawn as planar graphs
- Planar Graph: a graph that can be drawn with no crossing edges
- Conversion of a map to a planar graph
 - States become nodes
 - Shared borders become edges

Map to Graph conversion

Using 4 colors: R B G O

Map to Graph conversion

Using 3 colors: R B G

Map to Graph conversion

Using 3 colors: R B G

From Enumeration to Backtracking

- Enumeration
 - Take vertex v_1 , consider 4 branches (colors)
 - Then take vertex v_2 , consider 4 branches
 - Then take vertex v_3 , consider 4 branches
 - **—** . . .
- Suppose there is an edge (v_1, v_2)
 - Then among $4 \times 4 = 16$ branches, 4 are dead-ends (don't lead to a solution)

Backtracking

- Branch on every possibility
- Must maintain the current partial solution being developed
 - Might print or maintain all complete solutions
- Check every partial solution for validity
 - If a partial solution violates some constraint, it makes no sense to extend it (so drop it), i.e., backtrack
- Why is this better than enumeration?

M-Coloring Algorithm

Output: all possible colorings of graph represented by int vcolor[0..n), where vcolor[i] is the color associated with node i

M-Coloring Algorithm

```
Algorithm m_coloring(index i = 0)
   if (i == n)
      print vcolor(0) thru vcolor(n - 1)
      return
   for (color = 0; color < m; color++)
      vcolor[i] = color
      if (promising(i))
            m_coloring(i + 1)</pre>
```

M-Coloring Algorithm

```
bool promising(index i)
  for (index j = 0; j < i; ++j)
   if (W[i][j] and vcolor[i] == vcolor[j])
    return false</pre>
```

return true

When is Backtracking Efficient?

- Backtracking avoids looking at large portions of the search space by pruning, but this does not necessarily improve the asymptotic complexity over brute force.
 - e.g. If we prune out 99% of the search space, $0.01 * b^n$ is still $O(b^n)$
- However, backtracking works well for constraint satisfaction problems that are either:
 - Highly-constrained: Constraint violations are detected early in partial solutions and lead to MASSIVE amounts of pruning.
 - Under-constrained: Acceptable solutions are densely distributed, so it is quite likely we find one early and can terminate.

Algorithm Family Summary

Backtracking

- Used for pruning in Constraint Satisfaction problems
- For problems that require <u>any</u> solution
- Can determine/prune dead ends (choices that break constraints)

Branch and Bound

- Used for pruning in Optimization problems
- For problems that require a <u>best</u> solution
- Can determine/prune both dead ends and nonpromising branches

Backtracking & Branch and Bound Algorithms

Data Structures & Algorithms