1. Ride, PASSO 亞别訓

Import Data

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Ridge, Lasso import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error

1. Linear Regression

```
In [7]: reg = LinearRegression()
results1 = reg.fit(x_train, y_train)
In [8]: reg.coef_
```

2 Ridge Regression

df = [] acc_table = []

```
In [9]:
rreg = Ridge(alpha = 0) # alpha = Lambda
rreg.fit(x_train, y_train)

Out[9]: Ridge(alpha=0)
```

Out[8]: array([-3.07793956, 2.89401562, -3.37220023, 16.09065086])

```
000) |000
```

```
for (i) a) in enumerate(alpha):
    rreg = Ridge(alpha=a).fit(x_train, y_train)
    df.append(pd.Series(np.hstack([rreg.intercept_, rreg.coef_])))
    pend y = rreg predict(x text)
```

```
pred_y = rreg.predict(x_test)

df_ridge = pd.DataFrame(df,index = alpha).T

df_ridge
```

```
        0.001
        0.010
        0.100
        1.000
        10.000
        100.000
        100.000

        0
        132.296084
        132.295649
        132.291303
        132.247877
        131.817002
        127.823048
        105.704966

        1
        -3.077937
        -3.077919
        -3.077732
        -3.075864
        -3.057321
        -2.884607
        -1.883048
```

ALKOL SHINKELL. (00)56										
4	16.090648	16.090622	16.090363	16.087768	16.061871	15.807207	13.634454			
3	-3.372199	-3.372192	-3.372122	-3.371422	-3.364435	-3.295822	-2.731156			
2	2.894014	2.893995	2.893806	2.891920	2.873198	2.698718	1.681685			
1	-3.077937	-3.077919	-3.077732	-3.075864	-3.057321	-2.884607	-1.883048			

Lasso Regression

```
Ireg = Lasso(alpha = 0 ) # alpha = Lambda
Ireg.fit(x_train, y_train)
```

df = []
acc_table = []

for i, a in enumerate(alpha):
 Ireg = Lasso(alpha=a).fit(x_train, y_train)
 df.append(pd.Series(np.hstack([Ireg.intercept_, Ireg.coef_])))
 pred_y = Ireg.predict(x_test)

df_lasso = pd.DataFrame(df,index = alpha).T
df_lasso

C:#Users#Jeong NeulPum#anaconda3#lib#site-packages#sklearn#linear_model#_coordinate_descent.py:530: ConvergenceWarning: Objective did not converge. You might want to ease the number of iterations. Duality gap: 3094.37938440009, tolerance: 373.8484092000001
model = of fast enet coordinate descent/

moder - cu_rast.enet_coordinate_descent(
	0.001	0.010	0.100	1.000	10.000	100.000	1000.000				
0	132.261976	131.960877	128.945930	98.937749	54.569493	73.876	73.876				
1	-3.076625	-3.065044	-2.949074	-1.794975	-0.134206	-0.000	-0.000				
2	2.892703	2.881139	2.765340	1.612913	-0.000000	-0.000	-0.000				
3	-3.371595	-3.366136	-3.311548	-2.765340	-0.000000	-0.000	-0.000				
4	16.090400	16.088142	16.065558	15.839618	13.184919	0.000	0.000				

o of UELLE SESUCI!)

Suppose we fit a ridge regression with a given shrinkage parameter $\lambda \in \mathbb{R}^+$ on a single variable x_1 . (Notice that x_1 is a N imes 1 vector.)

- 1. (Essential) Show that the coefficient must be $rac{X^Ty}{X^TX+\lambda}$ where $X=x_1.$
- 2. (Essential) We now include an exact copy $x_2=x_1$, so our new design matrix would be $X=[x_1|x_2]$. Using this matrix, re-fit our ridge regression. Show that both coefficients are identical, and derive their value.
- 3. (Extra) Show in general that if m copies of a variable x_j , are included in a ridge regression, so X would be $[x_1|x_2|\cdots|x_m]$, their coefficients are all the same.

$$\beta riJge = \alpha remin \{ || x \beta_1 + x \beta_2 - y'|^2 + \lambda || \beta_1 ||^2 + \lambda || \beta_2 ||^2 \} \Rightarrow \text{EDE};$$

$$= 2x^{T}(x \beta_1 + x \beta_2 - y') + 2\lambda \beta_1 = 0$$

$$= 2x^{T}(x \beta_1 + x \beta_2 - y') + 2\lambda \beta_2 = 0$$

$$\Rightarrow -2\lambda \beta_1 = -2\lambda \beta_2$$

$$= 2x^{T}(x \beta_1 + x \beta_1 - y') + 2\lambda \beta_1 = 0$$

$$\Rightarrow 2x^{T}(x \beta_1 + x \beta_1 - y') + 2\lambda \beta_1 = 0$$

$$\Rightarrow 2x^{T}(x \beta_1 + x \beta_1 - y') + \lambda \beta_1 = 0$$

$$\Rightarrow 2x^{T}(x \beta_1 + x \beta_1 - y') + \lambda \beta_1 = 0$$

$$\Rightarrow 2x^{T}(x \beta_1 + x \beta_1 - y') + \lambda \beta_1 = 0$$

$$\Rightarrow \beta_1(2x \beta_1 + x \beta_1 - x \beta_2 + y')$$

$$\Rightarrow \beta_1(2x \beta_1 + x \beta_1 - x \beta_2 + y')$$

$$\Rightarrow \beta_1(2x \beta_1 + x \beta_1 - x \beta_2 + y')$$

$$\Rightarrow \beta_1(2x \beta_1 + x \beta_1 - x \beta_2 + y')$$

$$\Rightarrow \beta_1(2x \beta_1 + x \beta_1 - x \beta_2 + y')$$

$$\Rightarrow \beta_1(2x \beta_1 + x \beta_1 - x \beta_2 + y')$$

$$\Rightarrow \beta_1(2x \beta_1 + x \beta_1 - x \beta_2 + y')$$

$$\Rightarrow \beta_1(2x \beta_1 + x \beta_1 - x \beta_2 + y')$$

$$\exists P_{1}(2XX+\lambda) = X^{1}X \\
\exists P_{1} = P_{2} = \frac{X^{1}X}{2XX+\lambda}$$

$$\exists P_{1} = P_{2} = \cdots = P_{m} = \frac{X^{1}X}{2XX+\lambda}$$

$$\exists P_{1} = P_{2} = \cdots = P_{m} = \frac{X^{1}X}{2XX+\lambda}$$