Low Pass Filter Example

A Low Pass Filter circuit consisting of a resistor of 4.7 k Ω in series with a capacitor of 47 nF is connected across a 10 V sinusoidal supply. Calculate the output voltage (V_{out}) at a frequency of 100 Hz, 200 Hz and again at frequency of 10kHz, 11 kHz.

$$\begin{split} X_c &= \frac{1}{2\pi fC} \\ Z &= R - jX_c \\ |Z| &= \sqrt{R^2 + X_c^2} \\ V_{out} &= V_{in} \frac{X_c}{\sqrt{R^2 + X_c^2}} = V_{in} \frac{X_c}{Z} \end{split}$$

tails ^

Turn on captions

Paul Brain

XC 10/4

Low Pass Filter Example

A Low Pass Filter circuit consisting of a resistor of 4.7 k Ω in series with a capacitor of 47 nF is connected across a 10 V sinusoidal supply. Calculate the output voltage (V_{out}) at a frequency of 100 Hz, 200 Hz and again at frequency of 10kHz, 11 kHz.

$$X_{c} = \frac{1}{2\pi fC}$$

$$Z = R - jX_{c}$$

$$|Z| = \sqrt{R^2 + X_c^2}$$

$$V_{out} = V_{in} \frac{X_c}{\sqrt{R^2 + X_c^2}} = V_{in} \frac{X_c}{Z}$$

A dive filler non-forvaling LP Active faller Resistor, R Capacitor, C Investing filters non-emotterg HPAF greatery AF

ails ^

Paul Brai is prese

High-pass RC filter

$$H(j\omega) = \frac{V_o}{V_i} = \frac{R}{R + 1/(j\omega C)} = \frac{1}{1 - j(1/\omega RC)}$$

gren genery suspon

when 100 HZ

f= 100 HZ

20 HZ 10 KH3 20 KH3

Start a business: Buy a new iPhone:

\$999 - too much \$999 - no problem

Healthy groceries: \$100 - too much

Dinner & drinks: \$100 - no problem

Watch Netflix: 2 hrs - 1 more episode

Learn a new skill: 2 hrs - no time

Life is about choices, stop blaming the "LACK OF OPPORTUNITY."

AI NIKHIL CHAVA has left the meeting

ails ^

Paul Brain

Frequency Response of a 2nd-order Low Pass Filter

Second-order Low Pass Filter

If -20dB/decade angle of the slope is not enough to remove an unwanted signal, then two stages of filtering can be used

The RC Integrator Circuit

First order low pass active filter

5 ^

