Univ. Al

Estimating Firebrand Properties from Multiple Video Cameras Team Falcons – Chandra Prakash, Mohan Kudipudi, Rashmi Deshpande, Rashmi Anchan

Motivation and About the Project

To protect communities from firebrand ignition. We use CNN networks to find properties of Firebrands. We estimate the shape of the firebrand, it's length, width and height, the orientation of the firebrand and it's volume.

Data and Label

Cylindrical Cubical Spherical Primarily 3 shapes of firebrands are present. Labels for length, width, height and camera orientation for each image.

Fully Connected Output Convolution Pooling Feature Extraction Classification

We trained two types of models:

- sigmoid activation in final layer for classification task.
- linear activation in last layer for regression task.

Conclusion

- Predicted properties of firebrands using CNN models.
- Improved the predictions by adding more layers and using early stopping.
- The accuracy for firebrand shape classification task increased from 91.86% to 96.74%
- The MSE errors for predicting the Length, Width and Height were also reduced.

Future Work

- Split the images to 4 images & check the accuracy.
- Try transfer learning
- Auto-encoders to make better predictions.

Results

Model name	Test Loss	Test Accuracy
Baseline Model Improved Model Fine-tuned VGG16 Model Fine-tuned ResNet50 Model Fine-tuned MobileNet Model Fine-tuned DenseNet Model	0.37 0.16 0.09 0.29 0.21 0.12	0.86 0.94 0.96 0.91 0.96

True Values	for random sample
obj_shape	cyl
L	30
W	50
Н	50
a	37
b	338
С	17
volume	235500
surfacearea	31400
Name: 101, 0	dtype: object

Predictions	from Model B
obj_shape	cyl
L	38.517593
W	44.293007
Н	44.526943
а	151.702225
b	144.921661
C	147.904465
volume	238532
surfacearea	24837
Name: 101, 0	dtype: object