

General Topic: Rational Numbers

Lesson Overview:

In this lesson, you will learn what **rational numbers** are, how to use them, and how to perform basic operations such as addition, subtraction, multiplication, and division with rational numbers.

Key Concepts and Subtopics:

1. What are Rational Numbers?

- Numbers that can be written in the form a/b where a and b are integers and $b \neq 0$.
- This includes whole numbers, fractions, and decimals that terminate or repeat.

2. Difference between Rational Numbers, Integers, and Whole Numbers

 All whole numbers and integers are rational numbers, but not all rational numbers are integers or whole numbers.

3. Operations with Rational Numbers

- Addition and Subtraction: Denominators must be the same before adding or subtracting numerators.
- Multiplication: Multiply numerator by numerator and denominator by denominator.
- **Division:** Flip the second rational number (find its reciprocal) and multiply.

Example 1: $\frac{2}{3}+\frac{1}{6}$

- Find the common denominator: 6
- Convert: $\frac{2}{3} = \frac{4}{6}$
- Add: $\frac{4}{6} + \frac{1}{6} = \frac{5}{6}$

Example 2: $\frac{3}{4} imes \frac{2}{5}$

- Multiply numerator: 3 imes 2 = 6
- Multiply denominator: 4 imes 5 = 20
- Result: $\frac{6}{20} = \frac{3}{10}$ (simplified)

Summary:

1

- Rational numbers are numbers that can be written as fractions with integers in numerator and denominator (denominator ≠ 0).
- Use the correct operations when adding, subtracting, multiplying, or dividing fractions.
- Always simplify your answer when possible.

General Topic: Integers and Their Operation

Lesson Overview:

In this lesson, you will learn what integers are and how to perform basic operations such as addition, subtraction, multiplication, and division with integers.

Key Concepts and Subtopics:

1. What are Integers?

- Whole numbers that can be positive, negative, or zero.
- Examples: -3, -2, -1, 0, 1, 2, 3

2. Operations with Integers

- Addition
- Subtraction
- Multiplication
- Division

3. Rules for Addition and Subtraction of Integers

- When the signs are different, subtract the absolute values and take the sign of the larger number.
- When the signs are the same, add the absolute values and keep the sign.

4. Rules for Multiplication and Division of Integers.

- If the signs are the same, the result is positive.
- If the signs are different, the result is negative.

Example 1: 7 + (-3)

- Different signs, subtract 7 3 = 4
- Take the sign of the larger number $(7) \rightarrow positive$
- Result: 4

Example 2: (-5) + (-8)

- Same signs, add 5 + 8 = 13
- Sign is negative
- Result: -13

Example 3: (-4) × 6

- Different signs \rightarrow negative
- Multiply 4 × 6 = 24
- Result: -24

Example 4: (-12) ÷ (-3)

- Same signs → *positive*
- Divide $12 \div 3 = 4$
- Result: 4

- Integers are whole numbers that can be positive, negative, or zero.
- Follow the rules for adding, subtracting, multiplying, and dividing integers.
- Remember the signs to get the correct answer.

General Topic: Factors and Multiples

Lesson Overview:

In this lesson, you will learn about factors and multiples, and how to find them for given numbers. These concepts help in simplifying fractions and solving problems in algebra.

Key Concepts and Subtopics:

1. What are Factors?

- Factors of a number are integers that divide the number exactly without leaving a remainder.
- Example: Factors of 12 are 1, 2, 3, 4, 6, 12.

2. What are Multiples?

- Multiples of a number are the products of that number and any integer.
- Example: Multiples of 5 are 5, 10, 15, 20, 25, and so on.

3. Prime Numbers

- Prime numbers are numbers greater than 1 that have only two factors: 1 and itself.
- Example: 2, 3, 5, 7, 11.

4. Composite Numbers

- Composite numbers are numbers greater than 1 that have more than two factors.
- Example: 4, 6, 8, 9, 12.

5. Greatest Common Factor (GCF)

• The largest factor that two or more numbers have in common.

6. Least Common Multiple (LCM)

• The smallest multiple that two or more numbers have in common.

Example 1: Find the factors of 18.

Factors of 18 are 1, 2, 3, 6, 9, and 18.

Example 2: Find the multiples of 4 up to 40.

Multiples of 4 are 4, 8, 12, 16, 20, 24, 28, 32, 36, 40.

Example 3: Find the GCF of 12 and 18.

Factors of 12: 1, 2, 3, 4, **6**, 12 Factors of 18: 1, 2, 3, **6**, 9, 18 Common factors: 1, 2, 3, **6**

GCF: 6

Example 4: Find the LCM of 3 and 4.

Multiples of 3: 3, 6, 9, **12**, 15, 18, ... Multiples of 4: 4, 8, **12**, 16, 20, ... *LCM:* **12**

- Factors are numbers that divide another number exactly.
- Multiples are products of a number and any integer.
- GCF is the greatest factor shared by two or more numbers.
- LCM is the smallest multiple shared by two or more numbers.

General Topic: Algebraic Expressions

Lesson Overview:

In this lesson, you will learn about algebraic expressions, their parts, and how to simplify them.

Key Concepts and Subtopics:

1. What are Algebraic Expressions?

- Combinations of numbers, variables, and operations (like addition and multiplication).
- Example: 3x + 5, 2a 7, $4y^2 + 3y 1$.

2. Terms

- The parts of an expression separated by plus (+) or minus (-) signs.
- Example: In 3x + 5, the terms are 3x and 5.

3. Coefficients

- The numbers multiplied by variables in a term.
- Example: In 3x, 3 is the coefficient.

4. Constants

- Numbers without variables.
- Example: In 3x + 5, 5 is the constant.

5. Like Terms

- Terms that have the same variable raised to the same power.
- Example: 2x and 5x are like terms; 3y and 4y² are not.

6. Simplifying Expressions

• Combine like terms by adding or subtracting their coefficients.

Example 1: Simplify 4x + 3x

• Both terms are like terms (x).

• Add coefficients: 4 + 3 = 7.

• Result: 7x

Example 2: Simplify $5a^2 + 2a - 3a^2 + 4$

• Combine like terms: $5a^2 - 3a^2 = 2a^2$

• Other terms: 2a and 4 stay as is.

• Result: 2a² + 2a + 4

- Algebraic expressions combine numbers, variables, and operations.
- Like terms have the same variables and powers.
- Simplify expressions by combining like terms.

General Topic: Linear Equations in One Variable

Lesson Overview:

In this lesson, you will learn how to solve linear equations that have one variable.

Key Concepts and Subtopics:

1. What is a Linear Equation?

- An equation that makes a straight line when graphed.
- It has variables with the highest power of 1.
- Example: 2x + 3 = 7

2. Goal of Solving Linear Equations

• Find the value of the variable that makes the equation true.

3. Properties Used in Solving

- Addition Property: You can add the same number to both sides.
- Subtraction Property: You can subtract the same number from both sides.
- Multiplication Property: You can multiply both sides by the same number (except zero).
- Division Property: You can divide both sides by the same number (except zero).

4. Steps in Solving Linear Equations

- Simplify both sides (remove parentheses, combine like terms).
- Use properties to isolate the variable on one side.
- Solve for the variable.
- Check the solution by substituting the value back into the original equation.

Example 1: Solve 2x + 3 = 7

- Subtract 3 from both sides: 2x = 4
- Divide both sides by 2: x = 2
- Check: 2(2) + 3 = 7 ✓

Example 2: Solve 5y - 4 = 16

- Add 4 to both sides: 5y = 20
- Divide both sides by 5: y = 4
- Check: 5(4) 4 = 16 ✓

- Linear equations have variables with power 1.
- Use properties of equality to isolate the variable.
- Always check your solution.

General Topic: Ratio, Proportion, and Percentage

Lesson Overview:

In this lesson, you will learn about ratios, proportions, and percentages. These concepts help you compare quantities and solve real-life problems involving parts, wholes, and rates.

Key Concepts and Subtopics:

1. Ratio

- A ratio compares two quantities showing how many times one value contains or is contained within the other.
- Written as a:b or a/b.
- Example: If there are 6 boys and 3 girls in a class, the ratio of boys to girls is 6:3 or simplified to 2:1.

2. Proportion

- An equation that states two ratios are equal.
- Example: 3/4 = 6/8
- Proportions can be solved using cross multiplication.

3. Percentage

- A ratio that compares a number to 100.
- Expressed with the symbol %.
- Example: 45% means 45 parts out of 100.
- Can be converted to fractions or decimals.

Ratio Example:

If there are 10 apples and 5 oranges, what is the ratio of apples to oranges?

• Ratio = 10:5 = 2:1 (simplified)

Proportion Example: Solve for x: 4/5 = x/15

- Cross multiply: $4 \times 15 = 5 \times x$
- 60 = 5x
- Divide both sides by 5: x = 12

•

Percentage Examples:

- 1. Find 25% of 200
 - Convert percentage to decimal: 25% = 0.25
 - Multiply: $0.25 \times 200 = 50$
- 2. Convert 0.4 to percentage
 - $0.4 \times 100 = 40\%$
- 3. Convert 3/5 to percentage

Divide: 3 ÷ 5 = 0.6Multiply by 100 = 60%

- Ratio compares two quantities.
- Proportion states two ratios are equal and can be solved with cross multiplication.
- Percentage shows parts per hundred and can be converted to decimals or fractions.

General Topic: Geometry – Basic Concepts and Properties

Lesson Overview:

In this lesson, you will learn the basic concepts of geometry such as points, lines, angles, and shapes. You will also understand the basic properties of these figures.

Key Concepts and Subtopics:

1. Points

- The smallest unit in geometry.
- Has no size or dimension, just a location.
- Represented by a dot (·).

2. Lines

- Extends infinitely in both directions with no end points.
- Types of lines:
 - Line segment (has two endpoints)
 - Ray (has one endpoint and extends infinitely in one direction)
 - Straight line (extends infinitely in both directions)

3. Angles

- Formed when two lines meet at a point.
- Types of angles:
 - Acute angle (less than 90 degrees)
 - Right angle (exactly 90 degrees)
 - Obtuse angle (greater than 90 degrees but less than 180 degrees)

4. Basic Geometric Shapes

- Triangle (3 sides)
- Quadrilateral (4 sides)
- Circle (all points are equal distance from the center)

5. Properties of Shapes

- Triangle: has 3 sides, the sum of interior angles is 180 degrees.
- Quadrilateral: has 4 sides, the sum of interior angles is 360 degrees.
- Circle: all points on the circle are the same distance from the center (radius).

Example 1: Identify types of angles.

- Angle A measures 45° → acute angle
- Angle B measures 90° → right angle
- Angle C measures 120° → obtuse angle

Example 2: Sum of interior angles of a triangle.

- Angles are 50°, 60°, and 70°
- $50 + 60 + 70 = 180^{\circ} \rightarrow correct$

Example 3: Sum of interior angles of a quadrilateral.

- Angles are 90°, 80°, 100°, and 90°
- $90 + 80 + 100 + 90 = 360^{\circ} \rightarrow correct$

- Points are locations with no size.
- Lines can extend infinitely or have endpoints.
- Angles are formed by two lines meeting at a point.
- Triangles and quadrilaterals have specific sums for their interior angles.
- Circles have a radius, which is the distance from the center to any point on the circle.

Statistics and Probability (Basic)

Lesson Overview:

In this lesson, you will learn the basics of statistics and probability. You will understand how to collect, organize, and interpret data, and how to calculate simple probabilities.

Key Concepts and Subtopics:

1. Statistics

- The science of collecting, organizing, analyzing, and interpreting data.
- Types of data:
 - Qualitative (descriptive)
 - Quantitative (numerical)

2. Data Representation

- Tables
- Bar graphs
- Pie charts
- Line graphs

3. Mean (Average)

- Sum of all data values divided by the number of values.
- Formula: Mean = (Sum of values) ÷ (Number of values)

4. Median

- The middle value when data is arranged in order.
- If even number of data points, median is the average of the two middle values.

5. Mode

• The value that appears most frequently in a data set.

6. Probability

- The chance or likelihood that an event will happen.
- Formula: Probability = (Number of favorable outcomes) ÷ (Total number of possible outcomes)
- Probability ranges from 0 (impossible) to 1 (certain).

Example 1: Find the mean of 4, 6, 8, 10

- Sum = 4 + 6 + 8 + 10 = 28
- Number of values = 4
- Mean = $28 \div 4 = 7$

Example 2: Find the median of 3, 7, 9, 11, 15

- Arrange data (already arranged)
- Middle value = 9 (3rd number)
- Median = 9

Example 3: Find the mode of 2, 4, 4, 6, 8

• Mode = 4 (appears twice)

Example 4: Calculate probability of rolling a 3 on a 6-sided die

- Favorable outcomes = 1 (only one side has 3)
- Total outcomes = 6
- Probability = $1 \div 6 \approx 0.167$

- Statistics helps us understand data through measures like mean, median, and mode.
- Probability tells us how likely an event is to happen.
- Both are important for making decisions based on data and chance.