Application of FracMinHash to analyse the phylogenetic context of *Phytophthora*

Felix Seidel felix.seidel@student.uni-tuebingen.de June 7, 2024

Overview

A short story

Background

Phylogenetic Context of Phytophthora

Conclusion

A short story

The setting

Figure 1: A potato farm in Sweden¹.

¹Magnusson, https://flic.kr/p/85qcc9, CC BY-ND 2.0

The trace

Figure 2: Infected potato plant².

Figure 3: Infected potato tuber³.

³Cooke, https://flic.kr/p/nPy5Qa, CC BY-SA 2.0

³Millet, https://flic.kr/p/qRXVt, CC BY-NC-ND 2.0

The villain: Phytophthora

Phytophthora infestans Phytophthora cinnamomi

Phytophthora ramorum

Research on Phylogeny⁴⁵ Research on effector proteins⁶ and genome architecture⁷

Research on impact on microbial communities⁸

⁸Yang et al., "An Expanded Phylogeny for the Genus Phytophthora"

⁸Abad et al., "Phytophthora"

⁸ Raffaele et al., "Analyses of Genome Architecture and Gene Expression Reveal Novel Candidate Virulence Factors in the Secretome of Phytophthora Infestans"

 $^{^8 \, \}mathrm{Dong}$ et al., "The Two-Speed Genomes of Filamentous Pathogens"

⁸Solís-García et al., "Phytophthora Root Rot Modifies the Composition of the Avocado Rhizosphere Microbiome and Increases the Abundance of Opportunistic Fungal Pathogens"

Background

Phylogenetic Trees⁹¹⁰¹¹

- X: set of n taxa
- D: distance matrix for X
- S = A|B: a bipartition of X (split) based on D
- $\omega(S)$: the weight of S
- \cdot $\Sigma\!$: the set of all splits

⁹Scornavacca et al., "Splits and Unrooted Phylogenetic Networks".

¹⁰Bryant and Huson, "NeighborNet".

¹¹Bagci et al., "Microbial Phylogenetic Context Using Phylogenetic Outlines".

Phylogenetic Outlines¹²¹³¹⁴

- X: set of n taxa
- D: distance matrix for X
- S = A|B: a bipartition of X (split) based on D
- $\omega(S)$: the weight of S
- Σ : the set of all splits

¹²Scornavacca et al., "Splits and Unrooted Phylogenetic Networks".

¹³Bryant and Huson, "NeighborNet".

¹⁴Bagci et al., "Microbial Phylogenetic Context Using Phylogenetic Outlines".

Phylogenetic Context¹⁵

 $^{^{15} \}mbox{Bagci}$ et al., "Microbial Phylogenetic Context Using Phylogenetic Outlines".

Idea: Hash k-mers and keep values smaller or equal to a threshold

• Sequence: ATGCATGATG

¹⁶Irber et al., Lightweight Compositional Analysis of Metagenomes with FracMinHash and Minimum Metagenome Covers.

Idea: Hash k-mers and keep values smaller or equal to a threshold

· Sequence: ATGCATGATG

• k-mers: ATG, TGC, GCA, CAT, ATG, TGA, GAT, ATG

¹⁶Irber et al., Lightweight Compositional Analysis of Metagenomes with FracMinHash and Minimum Metagenome Covers.

Idea: Hash k-mers and keep values smaller or equal to a threshold

• Sequence: ATGCATGATG

• k-mers: ATG, TGC, GCA, CAT, ATG, TGA, GAT, ATG

• hash values: 1, 8, 3, 4, 1, 10, 6, 1

¹⁶Irber et al., Lightweight Compositional Analysis of Metagenomes with FracMinHash and Minimum Metagenome Covers.

Idea: Hash k-mers and keep values smaller or equal to a threshold

• Sequence: ATGCATGATG

• k-mers: ATG, TGC, GCA, CAT, ATG, TGA, GAT, ATG

• hash values: 1, 8, 3, 4, 1, 10, 6, 1

· define threshold: 3

¹⁶Irber et al., Lightweight Compositional Analysis of Metagenomes with FracMinHash and Minimum Metagenome Covers.

Idea: Hash k-mers and keep values smaller or equal to a threshold

• Sequence: ATGCATGATG

• k-mers: ATG, TGC, GCA, CAT, ATG, TGA, GAT, ATG

• hash values: 1, 8, 3, 4, 1, 10, 6, 1

· define threshold: 3

FracMinHash sketch: {1,3}

¹⁶Irber et al., Lightweight Compositional Analysis of Metagenomes with FracMinHash and Minimum Metagenome Covers.

- · W: input sequence
- h: hash function producing values in [0, H]
- s: scaling parameter $0 < s \le H$
- k(W): set of k-mers of W

$$FRAC_s(W) = \{h(w) \le \frac{H}{s} \mid \forall w \in k(W)\}$$
 (1)

¹⁷Irber et al., Lightweight Compositional Analysis of Metagenomes with FracMinHash and Minimum Metagenome Covers.

From sketches to distances¹⁸

$$J_{frac}(A,B) = \frac{1}{1 - (1 - \frac{1}{s})^{|A \cup B|}} \frac{|FRAC_s(A) \cap FRAC_s(B)|}{|FRAC_s(A) \cup FRAC_s(B)|}$$
(2)

$$D_{frac}(A, B) = 1 - \left(\frac{2J_{frac}(A, B)}{1 + J_{frac}(A, B)}\right)^{\frac{1}{k}}$$
(3)

¹⁸Hera et al., "Deriving Confidence Intervals for Mutation Rates across a Wide Range of Evolutionary Distances Using FracMinHash".

Phytophthora _____

Phylogenetic Context of

The implementation with fmhdist (1)

- Input: List of NCBI accession codes
- Sketching parameters: s, k, h and random seed for h
- · Output: Reference database

The implementation with fmhdist (2)

- Input: List of paths to FASTA files
- Sketching parameters: s, k, h and random seed for h
- Output: sketches and their coordinates

The implementation with fmhdist (3)

- Input: reference databse (fmhdist db or fmhdist sketch), query sketches (fmhdist sketch)
- · Distance threshold
- Output: distance matrix

The implementation with fmhdist (4)

- Input: distance matrix
- Image parameters (width, height, scaling, offset)
- Output: phylogenetic outline as SVG

An outline produced by fmhdist

Figure 4: Outline based on FracMinHash distances of *Phytophthora* reference sequences and fungal and bacterial query sequences (bold). Only some labels shown.

Compare this to Mash

Figure 5: Outline based on Mash distances of *Phytophthora* reference sequences and fungal and bacterial query sequences (bold). Only some labels shown.

Origin of the hashes in the sketch of Phytophthora sojae

Figure 6: Hash counts in windows of the NW_009258123.1 sequence of the *Phytophthora* sojae reference genome.

...and the corresponding sequence complexity¹⁹

Figure 7: Hash counts and sequence complexity in windows of the NW_009258123.1 sequence of the *Phytophthora sojae* reference genome.

¹⁹Pirogov et al., "High-Complexity Regions in Mammalian Genomes Are Enriched for Developmental Genes".

How about other genomes?

Figure 8: Hash counts and sequence complexity in windows of the NW_003303751.1 sequence of the *Phytophthora infestans* reference genome.

Statistical analysis

	n	и	r	р
P. cambivora	727	0	-0.0272	
P. betacei	26688	437	0.2446	4.5575e-265
P. cinnamomi	10799	28	-0.0933	4.3767e-19
P. infestans	11173	37	0.1830	2.8352e-24
P. sojae	7339	74	0.1570	6.5134e-48
P. nicotianae	2529	0	-0.0042	

Table 1: Excerpt of the statistical analysis of window (w = 10000) hash counts and sequence complexity of *Phytophthora* genomes.

Benchmarks

	mash ²⁰ (1)	mash (6)	sourmash ²¹ (1)	fmhdist(1)	fmhdist(6)
min (s)	135	44	171	201	75
max (s)	140	58	178	215	91
avg (s)	137	51	174	208	84

Table 2: Runtime comparison of three tools calculating sketches for sequences totalling 5.477Gb. The number of threads is in parantheses.

²⁰Ondov et al., "Mash".

²¹Irber et al., Lightweight Compositional Analysis of Metagenomes with FracMinHash and Minimum Metagenome Covers.

Conclusion

Conclusion

Summary

- FracMinHash is a solid foundation for Phylogenetic outlines.
- Distantly related genomes are better represented.
- Some Phytophthora genomes have windows with unusual densities.

Open questions

- What happens to the left and the right of windows with unusual densities?
- Can we use this method to assign a label to a draft genome?

