

Data Sheet

CX700 Series

Advanced All-in-One System Processor

Preliminary Revision 2.44 September 28, 2009

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2005 ~ 2009 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

CX700, CX700M and CX700M2 may only be used to identify products of VIA Technologies. Windows XP™, VMR™ and Plug and Play™ are registered trademarks of Microsoft Corp. AGP™ is a trademark of the AGP Implementors Forum. PCI™ is a trademark of the PCI Special Interest Group. PS/2™ is a trademark of International Business Machines Corp. All trademarks are the properties of their respective owners.

Macrovision Protection Notice:

This device can only be sold or distributed to Macrovision Authorized Buyers.

Macrovision Product Notice:

This device is protected by U.S. patent numbers 4,631,603, 4,577,216 and 4,819,098, and other intellectual property rights. The use of Macrovision's copy protection technology in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies, Inc. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated **USA Office:** 940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Home Page: http://www.viatech.com

Fax: (510) 683-3301 or (510) 687-4654 Fax: (886-2) 2218-5453

VIA Technologies Incorporated Taiwan Office: 1st Floor, No. 531 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: (886-2) 2218-5452

Home page: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
1.01	8/25/06	Initial public release	JW/TC
1.02	9/22/06	updated revision number to 1.02	JW/TC
		updated release info style and inserted bookmark	
		updated style under trademark notice to be consistent	
		revised SDRAM ECC information in product features	
		revised Macrovision information in product features	
		removed C4 state from Power Management description	
		changed signal name MA[13:0] to MA[12:0]	
		removed C/Y/Y from CRT/TV Monitor Interface table	
		removed extra GPIO Interface signal register table	
		added note under Power On Sequence and Reset Signal timing diagram	
		removed CPU C4 Sequence timing diagram and table	
2.0	2/2/07	Removed S3 logos and related descriptions	SY
		Updated legal page	
		Removed Windows NT/98/2000/ME descriptions in Product Features and	
		System Overview	
		Removed LVDS/DVI interface and CRT/TV Monitor interface descriptions in	
		Signal Descriptions Section	
		Updated signal descriptions of USBOC[5:0]# and AZSDIN[1:0]	
		Updated IO attribute of SERIRQ	
		Updated Table 4. Absolute Maximum Ratings and Table 5. DC Characteristics	
		Updated Power Sequence Section:	
		Power on sequence and reset signal timing	
		2. Suspend to RAM(S3) and resume sequence	
		3. Suspend to DISK and resume sequence	
2.1	4/3/07	Updated product features of FSB, Macrovision, LVDS transmitter and ACPI C4	SY
		state in sophisticated power management	
		Updated Signal Ball List	
		Updated ball# of HREQ[2:0]# in CPU interface signal description tables	
		Modified the note numbers in the tables under Figure 6 and 7	
2.2	6/21/07	Added Macrovision protection notices on the legal page	SY
		Updated FSB in related descriptions	
		Modified #A23 and #C23 ball names in PinList section	
		Updated ball names and signal description of PCIDREQ#, PCIDGNT# in related	
		ballout, balllist and signal description tables	
		Added 15K-ohm pull-down resistor descriptions to USBP[0:5]+/- in USB signal	
		description tables	
		Updated VCC33USB to VSUS33USBIO in related ballout, power/ground	
		balllist, signal descriptions and power planes	
		Updated T07 resume sequence to 5ms in the tables under Figure 6 and Figure 7	
		Added Figure 10 CPU C4 Sequence	
		Fixed the typo of CBE[3:0]# in PAR signal descriptions	
2.3	10/23/07	Updated integrated HDTV Encoder descriptions in Product Features	SY
		Added mux pins to MSCK and MSDT	
		Updated SXI and SXO power planes	
		Added Package Thermal Simulation subsection under Electrical Specification	
		section	
		Updated Mechanical Specification section	
2.31	11/29/07	Updated DC characteristics table and descriptions in Electrical Specifications	SY
		section	
		Updated Package Thermal Simulation section	
2.32	3/18/08	Updated the legal page	SY
		Updated heat sink description in Package Thermal Simulation section	

Document Release	Date	Revision	Initials
2.33	8/4/08	Updated revision and legal page	SY
		Updated signal descriptions of LCD1CLK+/- and LCD2CLK+/-	
2.34	10/24/08	Added Support HD capture on Video Capture Capability under Product Feature	LW
		section	
2.4	12/5/08	Added supported CPU and FSB	LW
		Updated signal descriptions of RSMRST# and PCIRST#	
		Added Total Green package under Mechanical Specifications	
2.41	12/8/08	Revised Timing Font	LW
2.42	1/9/09	Added Clock Electrical Characteristics in Electrical Specifications section	LW
2.43	6/3/09	Updated the legal page	LW
		Removed the WSS feature in the Product Feature section	
		Modified the package naming in Mechanical Specifications	
2.44	9/28/09	Modified the chip top marking in Mechanical Specifications	EY

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	III
LIST OF FIGURES	V
LIST OF TABLES	VI
PRODUCT FEATURES	1
CX700 SERIES FEATURE COMPARISON TABLE	8
CX700 SYSTEM OVERVIEW	9
HOST INTERFACE	9
Memory Controller	9
2D / 3D GRAPHICS PROCESSOR	9
Unified Video Decoding Accelerator (CX700M/CX700M2)	10
HIGH QUALITY VIDEO PROCESSOR	
DISPLAY INTERFACE	
HIGH DEFINITION AUDIO INTERFACE	
STORAGE DEVICE INTERFACE	
USB Interface	
BALLOUTS	
BALL MAP	
SIGNAL BALL LIST	13
SIGNAL DESCRIPTIONS	
CPU Interface	
DDR/DDR2 SDRAM Memory Interface	
LVDS / DVI Interface	
CRT / TV Monitor Interface	
Video Capture Port Interface	
Digital Video Port 1 (DVP1) InterfacePCI Bus Interface	
USB 2.0 Interface	
SATA Interface	
SMBus Interface	
Enhanced IDE Interface.	
LPC Bus Interface	
Serial Port Interface	
High Definition Audio Interface	
Speaker Interface	
Internal Keyboard Controller Interface	
Serial IRQ Interface	
PC / PCI DMA Interface	
General Purpose Input Interface	
General Purpose Output Interface	
General Purpose Input/Output Interface	
GPIO Programming Sequence	
Power Management Control and Event Signals	37

Clock, Test and Miscellaneous Signals	39
Compensation and Reference Voltage Signals	40
Power / Ground Signals	40
Strapping Signal Table	42
Clock, Test and Miscellaneous Signals Compensation and Reference Voltage Signals Power / Ground Signals Strapping Signal Table IO Pads with Integrated Pull Up Resistors	44
ELECTRICAL SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS	45
DC CHARACTERISTICS	45
ELECTRICAL CHARACTERISTICS – CLOCK	46
POWER SEQUENCE	49
PACKAGE THERMAL SIMULATION	54
MECHANICAL SPECIFICATIONS	55

LIST OF FIGURES

FIGURE 1. SYSTEM BLOCK DIAGRAM	9
FIGURE 2. CX700 BALL MAP (C7 CPU INTERFACE) – LEFT SIDE TOP VIEW	11
FIGURE 3. CX700 BALL MAP (C7 CPU INTERFACE) – RIGHT SIDE TOP VIEW	
FIGURE 4. POWER ON SEQUENCE AND RESET SIGNAL TIMING	
FIGURE 5. POWER ON SUSPEND (S1) AND RESUME SEQUENCE	
FIGURE 6. SUSPEND TO RAM (S3) AND RESUME SEQUENCE	
FIGURE 7. SUSPEND TO DISK (S4) AND RESUME SEQUENCE	
FIGURE 8. CPU C2 SEQUENCE	
FIGURE 9. CPU C3 SEQUENCE	53
FIGURE 10. CPU C4 SEQUENCE	
FIGURE 11. ROHS AND TRUE GREEN MECHANICAL SPECIFICATIONS – FCBGA-958 BALL GRID ARRAY	
PACKAGES	55

LIST OF TABLES

TABLE 1. CX700 SERIES FEATURE COMPARISON	8
TABLE 2. CX700 SIGNAL BALL LIST (LISTED BY BALL NAME)	
TABLE 3. POWER / GROUND BALL LIST	
TABLE 4. ABSOLUTE MAXIMUM RATINGS	45
TABLE 5. DC CHARACTERISTICS	45
TABLE 6. ELECTRICAL CHARACTERISTICS - HCLK	46
TABLE 7. ELECTRICAL CHARACTERISTICS – GCLK	47
TABLE 8. ELECTRICAL CHARACTERISTICS – USBCLK	47
TABLE 9. ELECTRICAL CHARACTERISTICS – PCICLK	48
TABLE 10. ELECTRICAL CHARACTERISTICS – XIN	48

CX700 SERIES

ALL-IN-ONE SYSTEM PROCESSOR

800 / 533 / 400 MHz FSB VIA C7 / Eden / Nano Processor DDR2 533 / 400, DDR400 / 333 SDRAM Controller Integrated UniChrome Pro II 3D / 2D Graphics & Video Processor Unified Video Decoding Accelerator Integrated HDTV Encoder and LVDS / DVI Transmitter High Definition Audio Controller Two Serial ATA Ports
One UltraDMA-133 EIDE Channel Six USB 2.0 / 1.1 Ports
PCI 32-bit 33MHz Bus
Two RS-232 Serial Ports
RTC and LPC, SMBus
ACPI and Sophisticated Power Management

PRODUCT FEATURES

• Process Technology and Package

- 0.15um, 1.5V core voltage
- 37.5mm x 37.5mm Flip Chip BGA

CPU Interface

- Supports 800 / 400 MHz FSB VIA C7 / Eden processor
- Supports 800 / 533 MHz FSB VIA Nano processor
- Supports 400 MHz FSB VIA C7 processor (Revision A3)

Memory System

- Supports DDR2 and DDR SDRAM
 - DDR2 Mode
 - Supports DDR2 533 / 400 SDRAM
 - Supports 64Mb / 128Mb / 256Mb / 512Mb (x8 / x16 / x32)
 - Supports 1Gb (x16)
 - Supports CL 2 / 3 / 4 / 5
 - Supports ECC under the following conditions:
 - DDR2 400 SDRAM
 - DRAM burst length of 4
 - No ECC error correction in the frame buffer space
 - DDR Mode
 - Supports DDR 400 / 333 SDRAM
 - Supports 64Mb / 128Mb / 256Mb / 512Mb / 1024Mb (x8 / x16 / x32)
 - Supports CL 2 / 2.5 for DDR 333, CL 2.5 / 3 for DDR 400
 - Supports ECC under the following conditions:
 - DRAM burst length of 4
 - No ECC error correction in the frame buffer space
- Supports 1 or 2 unbuffered or register double-sided DIMMs with different clock buffering scheme
- Supports 64/32-bit data width

• Integrated 3D / 2D / Video Processors

- Optimized Unified Memory Architecture (UMA)
- Supports 32 / 64 / 128 MB Frame Buffer sizes
- 200 MHz Graphics Engine Clock

2D Graphics Processor

- 128-bit 2D graphics engine
- Hardware 2D rotation
- Supports ROP3, 256 operations
- Supports 8bpp, 15/16bpp and 32bpp color depth modes
- BitBLT (Bit BLock Transfer) functions including alpha BLTs
- True-color hardware cursor (64x64x32bpp) with 256-level blending effect
- Color expansion, source Color Key and destination Color Key
- Bresenham line drawing / style line function
- Transparency mode
- Window clipping
- Text function

3D Graphics Processor

3D Graphics Processor

- 128-bit 3D graphics engine
- Dual pixel rendering pipelines and dual texture units
- Floating-point setup engine
- Internal full 32-bit ARGB format for high rendering quality
- 8K Texture Cache

Capability

- Supports ROP2
- Supports various texture formats including 16/32bpp ARGB, 8bpp Palletized (ARGB), YUV 422/420 and compressed texture (DXTC)
- Texture sizes up to 2048x2048 with Microsoft DirectX texture compression
- High quality texture filter for Nearest, Linear, Bi-linear, Tri-linear and Anisotropic modes
- Flat and Gouraud shading
- Vertex Fog and Fog Table
- Z-Bias, LOD-Bias, Polygon offset, Edge Anti-aliasing and Alpha Blending
- Bump mapping and cubic mapping
- Hardware back-face culling
- Specular lighting

Performance

- Two textures per pass
- Triangle rate up to 4.5 million triangles per second
- Pixel rate up to 200 million pixels per second per texture
- Texel bilinear fill rate up to 400 million texels per second
- High quality dithering

Hi-Def Video Processor

High Quality Video Processor

- RGB555, RGB565, RGB8888 and YUV422 video playback formats
- High quality 5-tap horizontal and 5-tap vertical scaler for both horizontal and vertical scaling (linear interpolation for horizontal and vertical p-scaling and filtering for horizontal and vertical down-scaling)
- Independent graphics and video gamma tables
- 2 sets of Color and Chroma Key support
- Color enhancement for contrast, hue, saturation and brightness
- YUV-to-RGB color space conversion
- Display rotation in clockwise and counter-clockwise directions
- Bob, Weave, Median-filter and Adaptive de-interlacing modes
- 3:2 / 2:2 pull-down detection
- De-blocking mode support
- Combining of many special effects such as filter, scaling up or down, sub-picture blending, de-interlacing and deblocking to one pass process
- Tear-free double / triple buffer flipping
- Input video vertical blanking or line interrupt
- Video gamma correction

Video Overlay Engine

- Simultaneous graphics and TV video playback overlay
- Supports video window overlays
- Supports Microsoft VMR™ Through Front-End Video Scaling, Color Space Conversion and Blending
- Supports both YUV and RGB format Chroma Key
- Supports 16 operations for Color and Chroma Key
- Hardware sub-picture blending

Video Capture Capability

- Dual Transport Stream inputs or dual 8-bit or one 16-bit CCIR656/601input
- Video capture and playback tear free auto flipping
- External Hsync / Vsync support
- Support HD capture for resolution up to 1080i60 or 1080p30

External Display Support

CRT / HDTV (CX700M/CX700M2) Display Interface

- 30-bit true-color RAMDAC up to 350 MHz pixel rate with gamma correction capability
- Supports RGB / YPbPr (CX700M/CX700M2) / CompYC (CX700M/CX700M2)
- Supports CRT resolutions up to 1920x1440
- Supports TV resolutions up to 1920x1080i (CX700M/CX700M2)
- Supports Macrovision copy protection (CX700M2), CGMS/A and CC

LVDS Panel Interface

- Support panel resolution from VGA through UXGA (1600 x 1200)
- Supports 1 x Dual-Channel / 2 x Single-Channel LVDS panel

DVI Panel Interface

- Supports panel resolution from VGA through UXGA (1600 x 1200)
- Supports 1 x Single-Channel DVI panel

LVDS + DVI Panel Interfaces

Supports one Single-Channel LVDS + one Single-Channel DVI panels

TV-Out Interface (DVP1)

- 12-bit interface to external TV encoder for NTSC or PAL TV or HDTV display
- Optional 20-bit interface to external TV encoder
- Supports simultaneous SDTV and HDTV display output with the integrated HDTV encoder. (CX700M/CX700M2)

12-bit DVI Transmitter Interface (DVP1)

- Double-data-rate data transfer with clock rates up to 165 MHz
- Built-in digital phase adjuster to fine-tune signal timing between clock and data bus
- Optional 16-bit ARGB interface (DVP1)

DuoView+TM Dual Image Capability

- WinXP multi-monitor, extended desktop support
- Two independent display engines which can display completely different information at different resolutions, pixel depths, and refresh rates
- CRT, LVDS/DVI panel and TV refresh rates are independently programmable for optimum image quality
- Improved display flexibility with simultaneous CRT / LVDS (or DVI), TV / LVDS (or DVI), TV / HDTV and other combined operations

• Full Software Support

- Microsoft DirectX 7.0, 8.0 and 9.0 compatible
- Microsoft DirectX Texture Compression (DXTC / S3TC)
- Supports OpenGLTM
- Drivers for major operating systems and APIs: Windows XP, Direct3D™, DirectDraw™, DirectShow™ and OpenGL™ ICD for Windows XP

• Graphics Power Management Support

- Built-in reference voltage generator and monitor sense circuits
- Automatic panel power sequencing and VESA DPMS (Display Power Management Signaling) CRT power-down
- External I/O signal controls enabling of graphics accelerator into standby / suspend-off state
- Dynamic clock gating for inactive functions to achieve maximum power saving
- I²C Serial Bus and DDC / E-DDC Monitor Communications for Plug-and-Play configuration

Unified Video Decoding Accelerator

MPEG-2 Decoding Mode

- Supports VLD (Various Length Decode)
- Supports iDCT
- Supports motion compensation
- Supports MP@HL

MPEG-4 Decoding Mode (CX700M/CX700M2)

- Supports ASP (Advanced Simple Profile) Level 5
- Supports GMC (Global Motion Compensation) L0 / L1
- Supports 1/4-pixel MC support
- High video quality and performance

WMV9 Decoding Mode (CX700M/CX700M2)

- Accelerates MP@ML decoding from iDCT to motion compensation
- Supports adaptive macroblock quantization
- Supports variable-sized iDCT Transform
- Supports pre-processing function
- Supports intensity compensation
- Supports 4 MVs and long motion vector mode
- Supports V9 loop filter
- Supports simple and full quarter-pixel motion compensation
- Video auto-flipping
- Hardware DVD sub-picture blending

Integrated HDTV Encoder (CX700M/CX700M2)

- VIA Advance ProScale Technology for studio grade HDTV output
- HDTV tri-level synchronization and broad pulse insertion
- Separate adjustable Y U V delay
- Programmable 2D scaling
- Adaptive deflicker filter to enhance TV image quality
- Programmable sharpness / adaptive filter control
- Multiple Chroma and Luma filters
- Programmable power save management
- P:P2 clocking mode or fixed clock mode for full TV screen
- Automatic detection of TV presence
- Hot plug interrupt support
- DAC auto adjustment
- High Quality 3x10-Bit Video DAC (shared with CRT output)
 - Three flexible and programmable DACs for each specific video signal output
- Output format
 - Compliant with NTSC (M and J) or PAL (B, D, G, H, I, M, N and Nc) TV system
 - Composite, S-Video, Component (YPbPr) with interlaced or non-interlaced scan output
 - SDTV output mode (525p or 625p) compliant with EIA770-1 and EIA770-2
 - HDTV support for 1080i (D3) and 720p (D4) compliant with EIA770-1, EIA770-2, EIA770-3 and ITU-RBT
 - Output resolution support NTSC 525i, 525p, PAL 625i, 625p, HDTV 1080i, 720p
- Macrovision (CX700M2)

 - MacrovisionTM 7.1.L1 copy protection support
 MacrovisionTM 1.2 AGC copy protection with NTSC 525i, 525p, PAL 625i, 625p
 - MacrovisionTM 1.2 AGC copy protection with NTSC 525i, 525p, PAL 625i (Revision A3)

• Integrated LVDS / DVI Transmitter

LVDS transmitter

- Compatible with TIA/EIA-644
- Supports panel resolution from VGA through UXGA (1600 x 1200)
- Supports one Dual-Channel and two Single-Channel LVDS panel(s)
- Supports LVDS panel that operates in "Data Enable Only" mode or accepts positive H and V-sync signals

DVI transmitter

- Standard compliant with DVI 1.0
- Supports panel resolution from VGA through UXGA (1600 x 1200)
- Supports one Single-Channel DVI panel
- Hot Plug detection input

• High Definition (HD) Audio Controller

- High performance audio controller with 192 KHz sample rate, 32-bit per sample and up to 8 channels
- Microsoft UAA (Universal Audio Architecture) driver support
- Up to two independent playback streams and audio codecs
- Multiple recording channels for array microphone
- Supports jack sensing / retasking

• Serial ATA Controller

- Supports up to 2 SATA devices
- Integrated SATA PHY supporting 1.5 Gbit/s and 3 Gbit/s transfer rate
- Complies with Serial ATA II PHY Specification
- Complies with Serial ATA Specification Revision 1.0
- Supports SATA port multiplier functions

Ultra DMA-133 / 100 / 66 / 33 Bus Master EIDE

- Single channel EIDE controller supporting 2 Enhanced IDE devices
- Data transfer rate up to 133 MB/sec to cover PIO mode 4, multi-word DMA mode 2, and UltraDMA-133 interface
- Full scatter gather capability
- Supports ATAPI compliant devices including DVD devices
- Supports PCI native and ATA compatibility modes

• Universal Serial Bus Controller

- Six USB 2.0 ports, one USB 2.0 root hub, and three USB 1.1 root hubs
- USB 2.0 and Enhanced Host Controller Interface (EHCI) v1.0 compliant
- USB 1.1 and Universal Host Controller Interface (UHCI) v1.1 compliant
- Legacy keyboard and PS/2 mouse support
- One USB 2.0 debug port

Concurrent PCI Bus Controller

- PCI 2.3 compliant, 33MHz, 32 bit, 3.3V PCI interface with 5V tolerant inputs
- Supports up to four PCI masters
- Zero wait state PCI master and slave burst transfer rate, with up to 132 MB/sec data transfer rate
- PCI master snoop ahead and snoop filtering
- Byte merging in the write buffers to reduce the number of PCI cycles
- Supports delay transaction
- Transaction timer for fair arbitration between PCI masters
- Symmetric arbitration between Host / PCI bus for optimized system performance
- Complete steerable PCI interrupts
- Supports PC / PCI DMA

System Management Bus Interface

- Compliant with System Management Bus (SMBus) Revision 2.0
- I²C devices compatible
- Supports SMBus Address Resolution Protocol (ARP) by using host commands through software
- Supports slave interface for external SMBus masters to control resume events
- Supports Alarm-On-LAN 2 through a SMBus-interfaced register

Plug and Play Functions

- Steerable PCI interrupts
- Steerable interrupts for integrated peripheral controllers
- Microsoft Windows XP, and plug and play BIOS compliant

• Integrated Legacy Functions

- Integrated Keyboard Controller with PS2 mouse and password wake-up support
- Integrated two RS-232 serial ports (optional)
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM, Day / Month Alarm and century field
- Integrated DMA, timer, and interrupt controller
- Fast reset and Gate A20 operation

• Sophisticated Power Management

- ACPI 2.0 and APM v1.2 Compliant
- Supports CPU clock throttling and clock stop during ACPI C2 / C3 / C4 states
- Supports CPU clock throttling and clock stop during ACPI C2 / C3 states (Revision A3)
- Supports PCI clock run, Power Management Enable (PME) control, and PCI / CPU clock generator stop control
- Supports multiple system suspend types: Power-on Suspend (POS) with flexible CPU / PCI bus reset options, Suspend to DRAM (STR), and Suspend to Disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- Integrates an idle timer, a peripheral timer and a general purpose timer, plus a 24/32-bit ACPI compliant timer
- Supports normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- Supports system event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, and external modem ring indicator
- Multiple internal and external SMI sources for flexible power management models
- Thermal alarm on external temperature sensing circuit
- Dynamic clock gating control on functional blocks
- Dynamic I/O pad driving control
- I/O pad leakage control

Built-in NAND-tree pin scan test capability

CX700 Series Feature Comparison Table

	CX700	CX700M	CX700M2
MPEG-2	$\overline{\checkmark}$		
MPEG-4			
WMV9			
HDTV/SDTV			
Macrovision			

Table 1. CX700 Series Feature Comparison

CX700 / CX700M / CX700M2 Block Diagram Two Single-Channels / One Dual-Channel **Host Interface** One Single-Channel LVDS/DVI DVI+LVDS: Transmitter One Single-Channel DVI + One Single-Channel LVDS **HDTV Encoder** 2D GFX Processor 3D GFX Processor (CX700M/CX700M2 only) Three Video CRT/Component/ -DACs S-Video + Composite Macrovision DDR/DDR2 Unified Video Decoding Accelerator ECC DRAM (CX700M2 only) SDRAM (Two DIMMs) LVDS, DVI, HDMI Digital Video Transmitter/ Port 1 HDTV Encoder/ **Power** RTC & CMOS Hi-Def Video Processor RAM Management VCP: Two 8-bit Video Capture Transport Streams Inputs / PS/2 USB Port EIDE/ One 16-bit or Two 8-bit PCI HD Audio **SMBUS** LPC SATA Keyboard CCIR-656/601 Inputs & Mouse Four Master Keyboard LPC devices Six Ports Two Ports **Devices** + Mouse (e.g. Super I/O)

CX700 SYSTEM OVERVIEW

Figure 1. System Block Diagram

One Master

+ One

Slave

Two EIDE Devices /

Two UARTs

HD Audio and

Modem Codecs

The VIA CX700 is the most advanced and complete all-in-one x86 system processor for today and next generation computing and media processing platforms. From quadruple host data bus, DDR2 memory controller, HDTV interface to Serial ATA and USB ports, the CX700 integrates all the desired, high quality, high performance controllers of modern media and computing platforms:

Host Interface

The CX700 supports VIA C7 / Eden / Nano with up to 800MHz (400MHz for chip A3) data transfer speed. The host bus protocol is determined through automatic negotiation between CPU and the system processor during reset.

Memory Controller

The CX700 memory controller supports two DDR/DDR2 DIMMs, up to 2GB system memory. A memory clock buffer is integrated for 1-DIMM system memory architecture. For applications that do not require large system memory or high memory bandwidth, CX700 supports 32-bit memory data width to reduce total system cost while maintaining adequate memory performance. The memory ECC scheme is integrated to improve the system robustness in applications where high reliability is a priority.

2D / 3D Graphics Processor

The integrated 200MHz, 128-bit UniChrome Pro II graphics processor is implemented on Unified Memory Architecture with frame buffer size of up to 128MB. 32bpp color depth, hardware 2D rotation, true-color hardware cursor and window clipping functions are supported. The high performance 3D graphics processor includes dual pixel rendering pipelines and dual texture units. It delivers up to 4.5 million/second triangle rate, 200 million pixels/second per texture and 400 million texels/second bilinear fill rate for advanced 3D applications.

Unified Video Decoding Accelerator (CX700M/CX700M2)

The CX700M/CX700M2 integrates an industry unique, high performance "Unified Video Decoding Accelerator" for high definition MPEG-2/4 as well as the latest WMV9 HD video stream decoding. This feature significantly reduces host processor utilization rate enabling advanced media applications to be implemented without the needs of high frequency CPU, and further reduces the power consumption of the overall platform.

High Quality Video Processor

The video processor supports RGB555 / 565 / 8888 and YUV422 video formats, and it provides complete video processing capability such as 5-tap horizontal and vertical scaling, clockwise / counter-clockwise display rotation, video de-interlacing / interlacing, de-blocking and video gamma correction. Advanced video display features such as video window overlays, sub-picture blending and Microsoft VMRTM support are also implemented for new generation media applications.

Display Interface

The CX700 provides several types of display interfaces for different applications:

CRT Interface: Three 10-bit 350MHz RAMDAC are integrated for high quality, high resolution (up to 1920x1440) monitor.

TV Interface: The CX700M/CX700M2 integrates a high definition TV Encoder, and supports YpbPr and CompYC TV interface modes through the three RAMDACs. Supported TV resolutions include NTSC - 525i (480i), 525p (480p), PAL - 625i (576i), 625p (576p), and HDTV - 1080i, 720p.

LCD Panel Interface: A LVDS/DVI Transmitter is integrated, which supports LCD Panel in four different modes:

- One Dual-Channel LVDS Interface
- > Two Single-Channel LVDS Interface
- One Single-Channel DVI Interface
- ➤ One Single-Channel LVDS + One Single-Channel DVI Interfaces
- > DVO Interface: Two 16-bit DVO interfaces are provided for interfacing to external TV Encoder or DVI Transmitter.

The DuoView+TM feature is implemented with two independent display engines. Each engine can display completely different contents at different resolution, pixel depth and refresh rate. DuoView+TM includes WinXP multi-monitor, extended desktop support; the CRT, LVDS/DVI LCD panel, TV refresh rates are independently programmable for optimum image quality.

High Definition Audio Interface

A high definition audio controller with up to 32-Bit Sample Size @192KHz Sampling Rate is implemented in CX700 for high-end media applications with up to 8 high definition audio channels.

Storage Device Interface

The CX700 integrates the Serial ATA and EIDE Controllers. These two controllers provide maximum flexibility in selecting storage devices (both HD and Optical drives). The Serial ATA controller is Serial ATA II PHY compliant and supports up to two SATA IDE devices with 3Gb/s data transfer rate. The EIDE controller supports up to two EIDE devices in PIO mode 4, multiword DMA mode 2, and UltraDMA-33/66/100/133 modes.

USB Interface

Six USB 2.0/1.1 ports are integrated to support wide ranging connectivity needs on the platform.

In addition, the CX700 supports PCI bus, LPC bus, UART as well as legacy functions, such as PS/2 keyboard/mouse and RTC CMOS RAM. Through sophisticated power management scheme and state-of-the-art system functions, VIA CX700 makes High Performance, Low Power, Thin-&-Light computing/media processing a reality!

BALLOUTS

Ball Map

Figure 2. CX700 Ball Map (C7 CPU Interface) – Left Side Top View

4 5 6 7 8 9 10 11 12 13 14 15

Figure 3. CX700 Ball Map (C7 CPU Interface) – Right Side Top View

Signal Ball List

Table 2. CX700 Signal Ball List (Listed by Ball Name)

Ball#	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball#	Ball Name	Ball #	Ball Name	Ball #	Ball Name
E30	A20M#	AH21	DCD1	AN14	GPI03	A14	HD23#	AH22	IRQ15	AA36	MD19
U01	AB	AM22	DCD2	AP14	GPI04	C13	HD24#	AL13	KBCK	AC33	MD20
AN10	AD0	D18	DEFER#	AN15	GPI05	B14	HD25#	AM13	KBDT	AC35	MD21
AM10	AD1	AL07	DEVSEL#	AN17	GPI06	E13	HD26#	N03	LCD1CLK-	AA35	MD22
AT09	AD2	B31	DFTIN	AT13	GPI07	E12	HD27#	N02	LCD1CLK+	AA33	MD23
AR09	AD3	AB06 AB05	DISPCLKI2	AL14	GPI08	D11	HD28#	T02	LCD1D00-	Y34	MD24
AP09 AT08	AD4 AD5	AB03 A31	DISPCLKO2 DMCOMP	AP16 C28	GPI09 GPI10	D14 A12	HD29# HD30#	T03 R01	LCD1DO0+ LCD1DO1-	Y35 U33	MD25 MD26
AR08	AD6	B30	DPSLP#	AM18	GPI11	A13	HD31#	R02	LCD1DO1+	U34	MD27
AP08	AD7	F18	DPWR#	AL16	GPIO00	E08	HD32#	P02	LCD1DO2-	Y36	MD28
AN09	AD8	AC30	DQM0	AK16	GPIO01	E09	HD33#	P01	LCD1DO2+	Y33	MD29
AN08	AD9	W32	DQM1	AK09	GPIO02	A07	HD34#	M04	LCD1DO3-	V36	MD30
AM08	AD10	AB36	DQM2	AK08	GPIO03	A08	HD35#	M03	LCD1DO3+	U35	MD31
AN07	AD11	W33	DQM3	AB08	GPIOA	C09	HD36#	L01	LCD2CLK-	N36	MD32
AL09	AD12	M34	DQM4	AB07	GPIOB	B09	HD37#	L02	LCD2CLK+	M33	MD33
AM07	AD13	H36	DQM5	AB06	GPIOC	A09	HD38#	J02	LCD2DO0-	L36	MD34
AT07	AD14	D36	DQM6	AB05	GPIOD	D10	HD39#	J01	LCD2DO0+	K33	MD35
AR07 AN06	AD15 AD16	C33 AB30	DQM7 DQS0	AL22	GPO00	F09 D07	HD40# HD41#	K03 K02	LCD2DO1-	N35 M36	MD36
AT04	AD17	W31	DQS0 DQS1	AT20 AT22	GPO01 GPO02	E07	HD41# HD42#	L04	LCD2DO1+ LCD2DO2-	L33	MD37 MD38
AP05	AD17 AD18	AB33	DQS1 DQS2	AG22	GPO02 GPO03	E10	HD42# HD43#	L03	LCD2DO2+	K36	MD39
AT06	AD19	W36	DQS3	AR22	GPO04	D09	HD44#	M02	LCD2DO3-	J36	MD40
AN05	AD20	M35	DQS4	AM12	GPO05	G10	HD45#	M01	LCD2DO3+	J33	MD41
AT03	AD21	H33	DQS5	AL12	GPO06	G09	HD46#	AT13	LID#	G35	MD42
AR03	AD22	D35	DQS6	AL18	GPO07	D08	HD47#	AR19	LPCAD0	G34	MD43
AT02	AD23	A33	DQS7	AM15	GPO08	F07	HD48#	AT19	LPCAD1	J34	MD44
AL06	AD24	P32	DQS8	AR13	GPO09	A05	HD49#	AN19	LPCAD2	J35	MD45
AM04	AD25	E18	DRDY#	AM14	GPO10	E06	HD50#	AM19	LPCAD3	G36	MD46
AL05	AD26	AP21	DSR1	H20 J12	GTLVREF0	B02	HD51#	AK19	LPCDRQ0# LPCDRQ1#	F33 F36	MD47
AL04 AR02	AD27 AD28	AH20 AN20	DSR2 DTR1	B21	GTLVREF1 HA03#	A04 A06	HD52# HD53#	AL19 AP19	LPCDRQ1# LPCFRAME#	F35	MD48 MD49
AT01	AD29	AL20	DTR2	D25	HA04#	C06	HD54#	L30	MA00	D33	MD50
AN02	AD30	AD02	DVP1CLK	A24	HA05#	B03	HD55#	N27	MA02	A36	MD51
AP03	AD31	AB03	DVP1D0	D24	HA06#	C05	HD56#	N30	MA03	F34	MD52
A19	ADS#	AC02	DVP1D1	B24	HA07#	B06	HD57#	N32	MA04	E36	MD53
U02	AG	AC03	DVP1D2	C25	HA08#	C01	HD58#	P30	MA05	D34	MD54
AN14	AOL	AD04	DVP1D3	C24	HA09#	C02	HD59#	N31	MA06	C36	MD55
V01	AR	AC01	DVP1D4	A25	HA10#	C03	HD60#	P28	MA07	B35	MD56
AR11	AZBITCLK	AD03	DVP1D5	B25	HA11#	C04	HD61#	P29	MA08	A34	MD57
AR10	AZRST#	AD01	DVP1D6	A26	HA12#	A01	HD62#	P27	MA09	C32	MD58
AT11 AP11	AZSDIN0 AZSDIN1	AF05 AE03	DVP1D7 DVP1D8	E25 D26	HA13# HA14#	D06 H16	HD63# HDBI0#	L28 L31	MA1 MA10	A32 A35	MD59 MD60
AT12	AZSDINI	AG05	DVP1D9	E26	HA15#	C14	HDBI1#	T28	MA11	D32	MD61
AP10	AZSYNC	AF03	DVP1D10	E27	HA16#	A10	HDBI2#	T29	MA12	B33	MD62
L29	BA0	AG03	DVP1D11	B27	HA30#	D04	HDBI3#	G30	MA13	D31	MD63
L32	BA1	AG01	DVP1D12	A23	HADSTB0N#	F14	HDSTB0N#	AD35	MCLKO0-	K28	MEMVREF0
G30	BA2	AH01	DVP1D13	C23	HADSTB0P#	E15	HDSTB0P#	AD34	MCLKO0+	V27	MEMVREF1
AP14	BATLOW#	AH02	DVP1D14	K23	HCLK-	C12	HDSTB1N#	R35	MCLKO1-	T35	MPD0
AA05	BISTIN	AF04	DVP1D15	L23	HCLK+	B11	HDSTB1P#	R34	MCLKO1+	T36	MPD1
F19	BNR#	AG04	DVP1DE DVP1DET	J17	HD00#	C08	HDSTB2N#	E33	MCLKO2-	P33	MPD2
E20 C19	BPRI# BREQ0#	AE05 AB04	DVP1DET DVP1HS	G15 E16	HD01# HD02#	B08	HDSTB2P#	E32	MCLKO2+ MD00	N34 U36	MPD3
AM09	CBE0#	AE04	DVP1TVCLKR	A17	HD02# HD03#	A02 A03	HDSTB3N# HDSTB3P#	AC27 AB29	MD00 MD01	T34	MPD4 MPD5
AP07	CBE1#	AG02	DVP1TVELKK DVP1TVFLD	F15	HD03# HD04#	A18	HIT#	AC32	MD01 MD02	P36	MPD6
AR05	CBE1# CBE2#		DVP1VS	H14	HD05#	D20	HITM#	AB32	MD03	N33	MPD7
	CBE3#		ENVBLD1	G17	HD06#	E19	HLOCK#		MD04		MSCK
T31	CKE0		ENVBLD2	E17	HD07#	C21	HREQ0#		MD05		MSDT
T30	CKE1		ENVDD1	H17	HD08#	D22	HREQ1#		MD06	A27	NC
T32	CKE2		ENVDD2	C16	HD09#	A22	HREQ2#	AB31	MD07	F27	NC
T33	CKE3		EXTSMI#	J14	HD12#	AA06	HSYNC	W28	MD08	D21	NC NC
AP18	CLKRUN#		FERR#	C17	HD13#	D19	HTRDY#	W29	MD09	E24	NC NC
D01 AK17	CPURST# CPUSTP#	K11	FRAME# GCLK	E14 J16	HD14#	E29 B29	IGNNE# INIT#	V33 V30	MD10 MD11	E23 G23	NC NC
K29	CS0#			B15	HD15# HD16#	AL01	INTA#	V30 V29	MD11 MD12	F22	NC NC
H32	CS1#		GNT1#	D15	HD10# HD17#	AL01	INTB#	W30	MD12 MD13	E22	NC
G32	CS2#	AM03		A11	HD17# HD18#	AL02	INTC#	V31	MD14	J22	NC
G31	CS3#		GNT3#	C11	HD19#		INTD#	V32	MD15	H21	NC
AP20	CTS1	AH22		A15	HD20#	A30	INTR	AC34	MD16	H22	NC
AG20	CTS2	AP12		C15	HD21#	AN17	INTRUDER#		MD17	E21	NC
B19	DBSY#	AN12	GPI2	A16	HD22#	AP06	IRDY#	AA34	MD18	F23	NC

CX700 Signal Ball List Continued (Listed by Ball Name)

Ball #	Ball Name	Ball#	Ball Name	Ball #	Ball Name	Ball#	Ball Name	Ball #	Ball Name	Ball #	Ball Name
H23	NC	AL21	PDD12	AN21	RTS1	AM35	STX0+	T02	TXC-	AG06	VCP0VS
G22	NC	AK21	PDD13	AJ20	RTS2	AN33	STX1-	T03	TXC+	AJ03	VCP1CLK
A20	NC	AM22	PDD14	AJ23	SATALED#	AM33	STX1+	AT23	USBCLK	AJ04	VCP1D0
A21	NC	AT21	PDD15	AJ33	SATAR50COMP	AM15	SUSA#	AL23	USBOC0#	AK01	VCP1D1
C30	NMI	AJ22	PDDACK#	K30	SCAS#	AR13	SUSB#	AP23	USBOC1#	AJ07	VCP1D2
H29	ODT0	AR20	PDDREQ	AM20	SDOUT1	AM14	SUSC#	AN23	USBOC2#	AJ08	VCP1D3
G33	ODT1	AL22	PDIOR#	AK21	SDOUT2	T05	SW_REXT	AM23	USBOC3#	AK04	VCP1D4
F32	ODT2	AK22	PDIORDY	AM17	SERIRQ	K31	SWE#	AK23	USBOC4#	AK05	VCP1D5
F30	ODT3	AT20	PDIOW#	AR06	SERR#	AK35	SXI	AK24	USBOC5#	AK06	VCP1D6
AR04	PAR	AL08	PERR#	AK20	SIN1	AK36	SXO	AN29	USBP0-	AJ06	VCP1D7
AL10	PCICLK	AL15	PME#	AL21	SIN2	AK15	TESTIN	AM29	USBP0+	AK02	VCP1HS
AK08	PCIDGNT#	AJ15	PWRBTN#	B28	SLP#	AP16	THRM#	AR29	USBP1-	AK03	VCP1VS
AK09	PCIDREQ#	AR17	PWRGD	AP15	SMBALRT#	C28	THRMTRIP#	AT29	USBP1+	AM18	VGATE
AT10	PCIRST#	AN03	REQ0#	AM16	SMBCLK1	J10	TP1	AR27	USBP2-	AL17	VRDSLP
AN18	PCISTP#	AP01	REQ1#	AK16	SMBCLK2	J11	TP2	AT27	USBP2+	AA07	VSYNC
AT22	PDA00	AP02	REQ2#	AN16	SMBDATA1	H12	TP3	AN27	USBP3-	AB09	XIN
AG22	PDA01	AN04	REQ3#	AL16	SMBDATA2	J24	TP4	AM27	USBP3+		
AR22	PDA02	AG21	RI1	D29	SMI#	H24	TP5	AR25	USBP4-		
AN22	PDCS1#	AT21	RI2	AA02	SPCLK1	AJ19	TP6	AT25	USBP4+		
AP22	PDCS3#	AL14	RING#	AA03	SPCLK2	AJ16	TP7	AN25	USBP5-		
AP20	PDD00	C18	RS0#	AA01	SPD1	AH09	TP8	AM25	USBP5+		
AP21	PDD01	B18	RS1#	AA04	SPD2	AM05	TRDY#	AR23	USBREXT		
AN21	PDD02	G19	RS2#	AL18	SPKR	AJ02	TS0ERR	AH05	VCP0CLK		
AN20	PDD03	V03	RSET	K32	SRAS#	AK07	TS1ERR	AG09	VCP0D0		
AK20	PDD04	AP17	RSMRST#	AJ34	SREXT	Y02	TVXI	AH07	VCP0D1		
AM20	PDD05	K25	RSVD0	AT35	SRX0-	Y01	TVXO	AG07	VCP0D2		
AH21	PDD06	J25	RSVD1	AR35	SRX0+	R01	TX0-	AH06	VCP0D3		
	PDD07	AC08	RSVD2	AT33	SRX1-	R02	TX0+	AH04	VCP0D4		
AG20	PDD08	AC06	RSVD3	AR33	SRX1+	P02	TX1-	AH03	VCP0D5		
AH20	PDD09	AC07	RSVD4	AM06	STOP#	P01	TX1+	AJ05	VCP0D6		
AJ20	PDD10	AT16	RTCX1	C29	STPCLK#	N03	TX2-	AJ01	VCP0D7		
AL20	PDD11	AR16	RTCX2	AN35	STX0-	N02	TX2+	AG08	VCP0HS		

Table 3. Power / Ground Ball List

Ball Name	Ball Numbers
GND	B01, B04, B05, B07, B10, B12, B13, B16, B17, B20, B22, B23, B26, B32, B34, B36 C07, C10, C20, C22, C26, C27, C31, C34, C35, D02, D03, D05, D12, D13, D16, D17, D23, D27 E05, E31, E34, E35, F08, F10, F12, F13, F16, F17, F20, F21, F24, F25, F26, G08, G11, G12, G13, G18, G20, G21, G24 H15, H34, H35, J15, J18, J21, K34, K35, L34, L35, P34, P35, R33, R36, T16, T18, T20, U17, U19, U21, U30, U31 V16, V18, V20, V34, V35, W17, W19, W21, W27, W34, W35, Y16, Y18, Y20, Y28, Y30, Y31 AA17, AA19, AA28, AA30, AA31, AB34, AB35, AC28, AC29, AD32, AD33, AD36, AF21, AH12, AH13, AJ21, AM21, AR21
GNDA15SATA	AK34, AL32, AL33, AL34, AL35, AL36, AM32, AM34, AM36, AN32, AN34, AN36, AP32, AP33, AP34, AP35, AP36, AR32, AR34, AR36, AT32, AT34, AT36
GNDA15PLLUSB	AH23
GNDA33SATA	AK31, AL31, AM31
GNDA33PLLUSB	AG23
GNDADAC	U03, U06, V02
GNDAHCK	L24
GNDALVDS	R04
GNDALVDSPLL	M05, P05
GNDAPLL	V05, V07, W04
GNDAPLLSATA	AK32
GNDASXO	AJ35
GNDATVPLL	W02
GNDLVDS	K01, K04, N01, N04, N07, P07, P14, P15, R03, R05, R07, R14, R15, T01, T04, T07, T14, T15
GNDUSB	AL24, AL25, AL26, AL27, AL28, AL29, AL30, AM24, AM26, AM28, AM30 AN24, AN26, AN28, AN30, AP24, AP25, AP26, AP27, AP28, AP29, AP30 AR24, AR26, AR28, AR30, AT24, AT26, AT28, AT30
VBAT	AT17
VCC15	T17, T19, T21, U16, U18, U20, V17, V19, V21, W16, W18, W20, Y17, Y19, Y21 AA16, AA18, AA20, AA21, AA22, AA23, AB21, AB22, AB23, AC21, AC22, AC23, AD28, AD29, AD30, AD31 AE28, AE29, AE30, AE31, AE32, AE33, AE34, AE35, AE36, AF28, AF29, AF30, AF31, AF32, AF33, AF34, AF35, AF36 AG28, AG29, AG30, AG31, AG32, AG33, AG34, AG35, AG36, AH28, AH29, AH30, AH31, AH32, AH33, AH34, AH35, AH36
VCC33	Y14, Y15, AA14, AA15, AB14, AB15, AB16, AB17, AB19, AB20, AC14, AC15, AC16, AC17, AC19, AC20
VCC33CPU	P23
VCC33LVDS	M06, N06, P06, R06, T06
VCCA15SATA	AJ28, AJ29, AK28, AK29
VCCA15SXO	AJ36
VCCA15PLLUSB	AJ24
VCCA33DAC[2:1]	U05, U04
VCCA33HCK	K24
VCCA33LVDS	P03
VCCA33LVDSPLL[2:1]	P04, N05
VCCA33PLL[3:1]	V04, V06, W03
VCCA33SATA	AN31, AP31, AR31, AT31
VCCA33PLLSATA	AK33
VCCA33TVPLL	W01
VCCA33PLLUSB	AH24
VCCMEM	F31, H30, H31, J29, J30, J31, M28, M29, M30, M31, N28, N29, P31, R23, R28, R29, R31, R32 T22, T23, U22, U23, V22, V23, W22, W23, Y22, Y23
VSUS15	AJ12, AJ13
VSUS15MEM	V26
VSUS15USB	AG24
VSUS33	AB18, AK11, AK12, AK13
VSUS33USBIO	AJ25, AJ26, AJ27, AK25, AK26, AK27
VTT	E01, E02, E03, E04, F01, F02, F03, F04, F05, F06, G01, G02, G03, G04, G05, G06, G07 H01, H02, H03, H04, H05, H06, H07, H08, J03, J04, J05, J06, J07, J08, K05, K06, K07, K08 L06, L07, L08, P16, P17, P18, P19, P20, P21, P22, R16, R17, R18, R19, R20, R21, R22

Signal Descriptions

CPU Interface

The CPU interface supports the VIA V4 host protocol. Strapping ball TP7 is used to select the operating mode for the interface. See the Strapping Table for the setup.

See the Strapping T		<u> </u>	CPU Interface (VIA V4 Host Protocol)	
Signal Name	Ball #	I/O	Signal Description	Power Plane
HCLK+/-	L23, K23	I	Host Clock. CPU clock (100 / 133 MHz).	VTT
HA[30, 16:3]#	(see ball list)		Host Data Address. Host data addresses are transferred in 4X rate. On beat 0 and 2, address bits HA[30, 16:3]# are transferred. On beat 1 and 3, address bits HA[31, HAP, 29:17]# are transferred.	VTT
HD[63:0]#	(see ball list)	IO	Host Data. These signals are connected to the CPU data bus.	VTT
ADS#	A19	IO	Address Strobe . The CPU asserts ADS# in T1 of the CPU bus cycle.	VTT
BNR#	F19	Ю	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.	VTT
BPRI#	E20	Ю	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted.	VTT
DBSY#	B19	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.	VTT
DEFER#	D18	Ю	Defer . A dynamic deferring policy is used to optimize system performance. The DEFER# signal is also used to indicate a processor retry response.	VTT
DRDY#	E18	IO	Data Ready . Asserted for each cycle that data is transferred.	VTT
HIT#	A18	Ю	Hit . Indicates that a caching agent holds the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.	VTT
HITM#	D20	I	Hit Modified . Asserted by the CPU to indicate that the address presented with the last assertion of EADS# is modified in the L1 cache and needs to be written back.	VTT
HLOCK#	E19	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.	VTT
HREQ[2:0]#	A22, D22, C21	IO	Host Request Command. Host request commands are transferred in 4X rate. On beat 0 and 2, host request bits HREQ[2:0]# are transferred. On beat 1 and 3, host request bits HREQ[4:3]# are transferred on signal balls HREQ[1:0]#.	VTT

CPU Interface (VIA V4 Host Protocol) – continued						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
HTRDY#	D19	Ю	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.	VTT		
RS[2:0]#	G19, B18, C18	Ю	Response Signals.Indicates the type of response per the table below:RS[2:0]#Response type000Idle State001Retry Response010Defer Response011Reserved100Hard Failure101Normal Without Data110Implicit Writeback111Normal With Data	VTT		
CPURST#	D01	О	CPU Reset. Reset output to CPU. External pull-up and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	VTT		
BREQ0#	C19	I	Bus Request 0. Connect to CPU bus request 0.	VTT		
HDBI[3:0]#	D04, A10, C14, H16	Ю	Host Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the associated signals are inverted or not. Used to limit the number of simultaneously switching signals to 8 for the associated 16-bit data signal group (HDBI3# for HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for HD[15:0]#). HDBIn# is asserted to limit the number of switching data signals simultaneously.	VTT		
HADSTB0P# HADSTB0N#	C23 A23	Ю	Host Address Strobe. HADSTB0P# / HADSTB0N# are differential synchronous strobes used to transfer HA[30, 16:3]# and HREQ[2:0]# at a 4x transfer rate.	VTT		
HDSTB[3:0]P# HDSTB[3:0]N#	A03, B08, B11, E15 A02, C08, C12, F14	Ю	Host Differential Data Strobes. Source synchronous strobes used to transfer HD[63:0]# & HDBI[3:0]# at a 4x transfer rate. HDSTB3P# / HDSTB3N# are the strobes for HD[63:48]# & HDBI3#; HDSTB2P# / HDSTB2N# are the strobes for HD[47:32]# & HDBI2#; HDSTB1P# / HDSTB1N# are the strobes for HD[31:16]# & HDBI1#; and HDSTB0P# / HDSTB0N# are the strobes for HD[15:0]# & HDBI0#.	VTT		
DPWR#	F18	О	Data Bus Power Reduction. Request to reduce power on the mobile CPU data bus input buffer. HIGH will disable the CPU data bus input buffer.	VTT		

CPU Control Interface (VIA V4 Host Protocol)					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
A20M#	E30	OD	A20 Mask. Connect to A20 mask input of the CPU to control address bit-20 generation. Logical combination of the A20GATE input (from internal or external keyboard controller) and Port92 bit-1 (Fast_A20).	VCC33CPU	
FERR#	D30	I	Numerical Coprocessor Error. This signal is tied to the coprocessor error signal on the CPU. Internally generates interrupt 13 if active.	VCC33CPU	
IGNNE#	E29	OD	Ignore Numeric Error. This signal is connected to the CPU "ignore error" signal.	VCC33CPU	

	CPU Control Interface (VIA V4 Host Protocol) - continued					
Signal Name	Ball #	I/O	Signal Description	Power Plane		
INIT#	B29	OD	Initialization. INIT# is asserted if a shut-down special cycle on the PCI bus is detected or if a soft reset is initiated by the register.	VCC33CPU		
INTR	A30	OD	CPU Interrupt. INTR is driven by the CX700 to signal the CPU that an interrupt request is pending and needs service.	VCC33CPU		
NMI	C30	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the CPU. CX700 generates an NMI when PCI bus SERR# is asserted.	VCC33CPU		
SLP#	B28	OD	Sleep. Used to put the CPU into a sleep state.	VCC33CPU		
SMI#	D29	OD	System Management Interrupt. SMI# is asserted by CX700 to the CPU in response to power management events.	VCC33CPU		
STPCLK#	C29	OD	Stop Clock. This signal is asserted by the CX700 to throttle the processor clock.	VCC33CPU		
THRMTRIP# / GPI10	C28	I	Thermal Detect Power Down. This signal indicates a thermal trip from the processor. THRMSTRIP# can optionally be used as GPI10.	VCC33CPU		
DPSLP#	B30	OD	CPU Deep Sleep. Used to put the CPU into a deeper sleep mode.	VCC33CPU		

DDR/DDR2 SDRAM Memory Interface

SDRAM Memory Interface supports two operating modes: DDR or DDR2 mode. Signal ball TP8 is used to select the operating mode for the interface. See the Strapping Table for the setup.

DDR/DDR2 SDRAM Memory Interface				
Signal Name	Ball #	I/O	Signal Description	Power Plane
MA[12:0]	(see ball list)	О	DRAM Row/Column Address.	VCCMEM
MA13 / BA2	G30	O	DRAM Row/Column Address.	VCCMEM
			MA13 can optionally be used as BA2 to support 1Gb (64Mb x 16) DRAM.	
BA[1:0]	L32, L29	О	DRAM Bank Address.	VCCMEM
SRAS#	K32	О	DRAM Row Address Strobe.	VCCMEM
SCAS#	K30	Ο	DRAM Column Address Strobe.	VCCMEM
SWE#	K31	Ο	DRAM Write Enable.	VCCMEM
MD[63:0]	(see ball list)	IO	Memory Data. In 32-bit memory interface mode, connect memory data	VCCMEM
			lines to MD[31:0].	
MPD[7:0]	(see ball list)	IO	Memory Parity Data Bits. For ECC function.	VCCMEM
DQM[7:0]	(see ball list)	О	Memory Data Mask. Data mask for the eight data bytes.	VCCMEM
ODT[3:0]	F30, F32,	O	DDR2 On-Die Termination Enable. For the four DDR2 memory	VCCMEM
	G33, H29		banks.	
			Not used in DDR mode.	
DQS[8:0]	(see ball list)	IO	DDR/DDR2 Memory Data Strobes. Data strobe for the eight data bytes and the MPD[7:0] byte.	VCCMEM
CS[3:0]#	G31, G32,	О	Memory Chip Select. Chip select for the four memory banks.	VCCMEM
	H32, K29			
CKE[3:0]	T33, T32,	O	Memory Clock Enable. For the four memory banks to enable DRAM	VCCMEM
	T30, T31		power down mode.	
MCLKO[2:0]+	E32, R34,	O	Differential Memory Clock Output. In one DIMM system memory	VCCMEM
	AD34		configuration, connect memory clock outputs to the DIMM socket	
MCLKO[2:0]-	E33, R35,		directly.	
	AD35		Use Zero Delay buffer for two DIMM system memory configurations.	

LVDS / DVI Interface

			LVDS Interface	
Signal Name	Ball #	I/O	Signal Description	Power Plane
LCD1DO0+/-	T03, T02	О	LVDS Single Channel Mode: LVDS Differential Data Output 0 for Panel 1. LVDS Dual Channel Mode: LVDS Differential Data Output 0.	VCC33LVDS
TXC+/-			In DVI Mode, used as DVI Differential Clock Output.	
LCD1DO1+/-	R02, R01	O	Single Channel Mode: LVDS Differential Data Output 1 for Panel 1. Dual Channel Mode: LVDS Differential Data Output 1.	VCC33LVDS
TX0+/-			In DVI Mode, used as DVI Differential Data Output 0.	
LCD1DO2+/-	P01, P02	O	Single Channel Mode: LVDS Differential Data Output 2 for Panel 1 Dual Channel Mode: LVDS Differential Data Output 2.	VCC33LVDS
TX1+/-			In DVI Mode, used as DVI Differential Data Output 1.	
LCD1DO3+/-	M03, M04	O	Single Channel Mode: LVDS Differential Data Output 3 for Panel 1. Dual Channel Mode: LVDS Differential Data Output 3.	VCC33LVDS
LCD2DO0+/-	J01, J02	О	Single Channel Mode: LVDS Differential Data Output 0 for Panel 2. Dual Channel Mode: LVDS Differential Data Output 4.	VCC33LVDS
LCD2DO1+/-	K02, K03	О	Single Channel Mode: LVDS Differential Data Output 1 for Panel 2. Dual Channel Mode: LVDS Differential Data Output 5.	VCC33LVDS
LCD2DO2+/-	L03, L04	О	Single Channel Mode: LVDS Differential Data Output 2 for Panel 2 Dual Channel Mode: LVDS Differential Data Output 6.	VCC33LVDS
LCD2DO3+/-	M01, M02	О	Single Channel Mode: LVDS Differential Data Output 3 for Panel 2 Dual Channel Mode: LVDS Differential Data Output 7.	VCC33LVDS
LCD1CLK+/- TX2+/-	N02, N03	O	Single Channel Mode: LVDS Differential Clock Output for Panel 1. Dual Channel Mode: LVDS Differential Clock Output for Panel 1. In DVI mode, used as DVI Differential Data Output 2.	VCC33LVDS
LCD2CLK+/-	L02, L01	О	Single Channel Mode: LVDS Differential Clock Output for Panel 2. Dual Channel Mode: LVDS Differential Clock Output for Panel 2.	VCC33LVDS

DVI Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
TXC+/-	T03, T02	О	DVI Differential Clock Output.	VCC33LVDS	
LCD1DO0+/-			In LVDS mode, used as Channel 1 differential data output 0.		
TX0+/-	R02, R01	О	DVI Differential Data Output 0.	VCC33LVDS	
LCD1DO1+/-			In LVDS mode, used as Channel 1 differential data output 1.		
TX1+/-	P01, P02	О	DVI Differential Data Output 1.	VCC33LVDS	
LCD1DO2+/-			In LVDS mode, used as Channel 1 differential data output 2.		
TX2+/-	N02, N03	О	DVI Differential Data Output 2.	VCC33LVDS	
LCD1CLK+/-			In LVDS mode, used as Channel 1 differential clock output.		
SW_REXT	T05	ΑI	Voltage Swing Adjustment of Pixel Channel in DVI Mode	VCC33LVDS	
			This signal controls the amplitude of the DVI output voltage swing. A		
			410 ohm pull-up resistor should connect this ball to VCCA33LVDS.		
			If DVI interface is not needed, leave it unconnected.		

LCD Panel Power Control				
Signal Name	Ball #	I/O	Signal Description	Power Plane
ENVDD[2:1]	Y05, Y03	О	Enable Panel VDD Power. For the two panels.	VCC33
ENVBLD[2:1]	Y06, Y04	О	Enable Panel Back Light. For the two panels.	VCC33

CRT / TV Monitor Interface

CRT / TV Monitor Interface						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
AR, AG, AB	V01, U02, U01	AO	CRT Mode: Analog Red / Green / Blue. DAC outputs.	VCCA33DAC		
			TV Mode: The AR / AG / AB outputs could be used as C / Y / CVBS or R / G / B or Pr / Y / Pb outputs depends on the strapping settings. See the Strapping Table for DVP1D[10:8] strapping setup for the desired DAC operating mode.			
HSYNC	AA06	О	Horizontal Sync.	VCC33		
VSYNC	AA07	О	Vertical Sync.	VCC33		
RSET	V03	AI	Reference Resistor. Tie to GNDADAC through an external resistor to control the RAMDAC full-scale current.	VCCA33DAC		
SPCLK2	AA03	Ю	Serial Port (SMBus) Clock and Data. The SPCLKn signals are the	VCC33		
SPD2	AA04		clocks for serial data transfer. The SPDn signals are the data signals			
			used for serial data transfer. SPCLK1/SPD1 is typically used for DVI			
SPCLK1	AA02		monitor communications and SPCLK2/SPD2 is typically used for			
SPD1	AA01		DDC for CRT monitor communications.			

Video Capture Port Interface

VCP Interface supports multiple operating modes, signal balls DVP1D[7:0] are used to select the operating mode for the interface. See the Strapping Table for the setup.

Video Capture Port (VCP)					
Signal Name	Ball #	I/O	Signal Description	Power Plan	
VCP1D[7:0] / TS1D[7:0]	(see ball list)	IO	Video Capture Mode: VCP1D[7:0] is 8-bit CCIR-601/656 Port 1 or Upper half of 16-bit CCIR-601/656. VCP0D[7:0] is 8-bit CCIR-601/656 Port 0 or	VCC33	
VCP0D[7:0] / TS0D[7:0]			Lower half of 16-bit CCIR-601/656. VCP1D[7:0] plus VCP0D[7:0] can be used for 16-bit CCIR-601/656. Transport Stream Input Mode: TS1D[7:0] is 8-bit Transport Stream Port 1. TS0D[7:0] is 8-bit Transport Stream Port 0.		
VCP0HS / TS0VLD	AG08	Ю	Video Capture Mode: VCP0HS: Video Capture Port 0 Horizontal Sync. Transport Stream Input Mode: TS0VLD: Transport Stream Port 0 Data Valid.	VCC33	
VCP0VS / TS0SYNC	AG06	IO	Video Capture Mode: VCP0VS: Video Capture Port 0 Vertical Sync. Transport Stream Input Mode: TS0SYNC: Transport Stream Port 0 Data Sync.	VCC33	
VCP1HS / TS1VLD	AK02	I	Video Capture Mode: VCP1HS: Video Capture Port 1 Horizontal Sync. Transport Stream Input Mode: TS1VLD: Transport Stream Port 1 Data Valid.	VCC33	
VCP1VS / TS1SYNC	AK03	I	If the interface is not needed, leave it unconnected. Video Capture Mode: VCP1VS: Video Capture Port 1 Vertical Sync. Transport Stream Input Mode: TS1SYNC: Transport Stream Port 1 Data Sync. If the interface is not needed, leave it unconnected.	VCC33	
NC / TS0ERR	AJ02	Ю	Video Capture Mode: NC: Not Connected. Transport Stream Input Mode: TS0ERR: Transport Stream Port 0 Error.	VCC33	
VCP0CLK / TS0CLK	AH05	IO	Video Capture Mode: VCP0CLK: Video Capture Port 0 Clock. Transport Stream Input Mode: TS0CLK: Transport Stream Port 0 Clock.	VCC33	
VCP1CLK / TS1CLK	AJ03	Ю	Video Capture Mode: VCP1CLK: Video Capture Port 1 Clock. Transport Stream Input Mode: TS1CLK: Transport Stream Port 1 Clock.	VCC33	
NC / TS1ERR	AK07	Ι	Video Capture Mode: NC: Not Connected. Transport Stream Input Mode: TS1ERR: Transport Stream Port 1 Error. If the interface is not needed, leave it unconnected.	VCC33	

Note: Please use the **bold signal name** to find the ball location in the signal ball list.

Digital Video Port 1 (DVP1) Interface

DVP1 Interface supports multiple operating modes, signal balls VCP1D[5:3] are used to select the operating mode for the interface. See the Strapping Table for the setup.

See the Strapping Tax	Digital Video Port 1 (DVP1) Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane		
DVP1D [15:0]	(see ball list)	О	12-Bit Digital Video Output Mode:	VCC33		
			DVP1D [11:0] is for 12-Bit DVO Interface.			
			20-Bit TV Output Mode:			
			DVP1D [15:0] is the first 16 Bits of the TV Interface.			
			ARGB Mode:			
			DVP1D[15:0] supports 16-bit ARGB interface.			
DVP1HS /	AB04	О	12-Bit Digital Video Output Mode:	VCC33		
DVP1D[16]			DVP1HS is Digital Video Port 1 Horizontal Sync.			
			20-Bit TV Output Mode:			
			DVP1D[16] is the 17 th Bit of the TV Interface.			
DVP1VS /	AC04	О	12-Bit Digital Video Output Mode:	VCC33		
DVP1D[17]			DVP1VS is Digital Video Port 1 Vertical Sync.			
			20-Bit TV Output Mode:			
			DVP1D[17] is the 18 th Bit of the TV Interface.			
DVP1DE /	AG04	О	12-Bit Digital Video Output Mode:	VCC33		
DVP1D[18]			DVP1DE is Digital Video Port 1 Data Enable.			
			20-Bit TV Output Mode:			
			DVP1D[18] is the 19 th Bit of the TV Interface.			
DVP1TVFLD /	AG02	IO	12-Bit Digital Video Output Mode:	VCC33		
DVP1D[19]			DVP1TVFLD is Digital Video Port 1 Field Out.			
			20-Bit TV Output Mode:			
			DVP1D[19] is the 20 th Bit of the TV Interface.			
DVP1DET	AE05	I	Display Detect. Tie to GND if not used.	VCC33		
DVP1CLK	AD02	О	Digital Video Port 1 Clock / TV Clock	VCC33		
DVP1TVCLKR	AE04	I	TV Return Clock. Tie to GND if not used.	VCC33		

Note: Please use the **bold signal name** to find the ball location in the signal ball list.

PCI Bus Interface

			PCI Bus Interface	
Signal Name	Ball #	I/O	Signal Description	Power Plane
AD[31:0]	(see ball list)	Ю	Address / Data Bus. Multiplexed address and data. The address is driven with FRAME# assertion and data is driven or received in following cycles.	VCC33
CBE[3:0]#	AP04, AR05, AP07, AM09	IO	Command / Byte Enable. The command is driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.	VCC33
DEVSEL#	AL07	IO	Device Select. The CX700 asserts this signal to claim PCI transactions through positive or subtractive decoding. As an input, DEVSEL# indicates the response to a CX700-initiated transaction and is also sampled when decoding whether to subtractively decode the cycle.	VCC33
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F7 Rx55[0]).	
FRAME#	AT05	Ю	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one additional data transfer is desired by the cycle initiator.	VCC33
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F7 Rx55[0]).	
IRDY#	AP06	Ю	Initiator Ready. Asserted when the initiator is ready for data transfer. This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F7 Rx55[0]).	VCC33
TRDY#	AM05	Ю	Target Ready. Asserted when the target is ready for data transfer. This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F7 Rx55[0]).	VCC33
STOP#	AM06	Ю	Stop. Asserted by the target to request the master to stop the current transaction. This signal has a programmable internal 10K ohms pull-up resistor	VCC33
			(default enable, B0D17F7 Rx55[0]).	
SERR#	AR06	I	System Error. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, the CX700 can be programmed to generate an NMI to the CPU.	VCC33
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F7 Rx55[0]). If internal pull-up is used, this signal can be left unconnected.	
PERR#	AL08	-	Parity Error. PERR#, sustained tri-state, is only for the reporting of data parity errors during all PCI transactions except a Special Cycle.	VCC33
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F7 Rx55[0]). If internal pull-up is used, this signal can be left unconnected.	
PAR	AR04	IO	Parity. A single parity bit is provided over AD[31:0] and CBE[3:0]#.	VCC33

	PCI Bus Interface - continued						
Signal Name	Ball #	I/O	Signal Description	Power Plane			
INTA#	AL01	I	PCI Interrupt Request. The INTA# through INTD# signal balls are	VCC33			
INTB#	AL03		typically connected to the PCI bus INTA#-INTD# signals per the table				
INTC#	AL02		below. BIOS settings must match the physical connection method.				
INTD#	AM01						
			INTA# INTB# INTC# INTD#				
			PCI Slot 1 INTA# INTB# INTC# INTD#				
			PCI Slot 2 INTB# INTC# INTD# INTA#				
			PCI Slot 3 INTC# INTD# INTA# INTB#				
			PCI Slot 4 INTD# INTA# INTB# INTC#				
DEO2#	ANOA	T	This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F7 Rx55[1]). If internal pull-up is used, this signal can be left unconnected.	VCC22			
REQ3#,	AN04	I	PCI Request. These signals connect to the CX700 from each PCI slot	VCC33			
REQ2#,	AP02 AP01		(or each PCI master) for access request to the PCI bus.				
REQ1#,	AN03		This signal has a programmable internal 10K ohms pull-up resistor				
REQ0#	AINUS		(default enable, B0D17F7 Rx55[1]). If internal pull-up is used, this signal can be left unconnected.				
GNT3#,	AR01	О	PCI Grant. These signals are driven by the CX700 to grant PCI bus	VCC33			
GNT2#,	AM03		access to a specific PCI master.				
GNT1#,	AM02		This signal has a programmable internal 10K ohms pull-up resistor				
GNT0#	AN01		(default enable, B0D17F7 Rx55[1]).				
PCIRST#	AT10	О	PCI Reset. This signal is used to reset devices attached to the PCI bus.	VCC33			
			The rising edge of this signal is used to sample all power-up strap options				
PCICLK	AL10	I	PCI Clock. This signal provides timing for all transactions on the PCI	VCC33			
			Bus. This clock is necessary even if the system does not need PCI				
			interface.				

USB 2.0 Interface

	USB 2.0 Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane		
USBP0+/-	AM29, AN29	IO	USB Port 0 Differential Data	VSUS33USBIO		
			This signal has an internal 15K ohms pull-down resistor.			
USBP1+/-	AT29, AR29	IO	USB Port 1 Differential Data	VSUS33USBIO		
			This signal has an internal 15K ohms pull-down resistor.			
USBP2+/-	AT27, AR27	IO	USB Port 2 Differential Data	VSUS33USBIO		
			This signal has an internal 15K ohms pull-down resistor.			
USBP3+/-	AM27, AN27	IO	USB Port 3 Differential Data	VSUS33USBIO		
			This signal has an internal 15K ohms pull-down resistor.			
USBP4+/-	AT25, AR25	IO	USB Port 4 Differential Data	VSUS33USBIO		
			This signal has an internal 15K ohms pull-down resistor.			
USBP5+/-	AM25, AN25	IO	USB Port 5 Differential Data	VSUS33USBIO		
			This signal has an internal 15K ohms pull-down resistor.			
USBCLK	AT23	I	USB Clock. 48 MHz clock input for the USB and HD Audio. If	VSUS33USBIO		
			USB and HD Audio interfaces are not used, leave it			
			unconnected.			
USBOC0#	AL23	I	USB Port 0 Over Current Detect. Port 0 is disabled if low.	VSUS33USBIO		
			If USB interface is not needed, leave it unconnected.			
USBOC1#	AP23	I	USB Port 1 Over Current Detect. Port 1 is disabled if low.	VSUS33USBIO		
			If USB interface is not needed, leave it unconnected.			
USBOC2#	AN23	I	USB Port 2 Over Current Detect. Port 2 is disabled if low.	VSUS33USBIO		
			If USB interface is not needed, leave it unconnected.			
USBOC3#	AM23	I	USB Port 3 Over Current Detect. Port 3 is disabled if low.	VSUS33USBIO		
			If USB interface is not needed, leave it unconnected.			
USBOC4#	AK23	I	USB Port 4 Over Current Detect. Port 4 is disabled if low.	VSUS33USBIO		
			If USB interface is not needed, leave it unconnected.			
USBOC5#	AK24	I	USB Port 5 Over Current Detect. Port 5 is disabled if low.	VSUS33USBIO		
			If USB interface is not needed, leave it unconnected.			
USBREXT	AR23	ΑI	USB External Resistor	VSUS33USBIO		
			If USB interface is not needed, leave it unconnected.			

SATA Interface

SATA Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
SRX0+/-	AR35, AT35	I	SATA Port 0 Differential Receiver	VCCA33SATA	
SRX1+/-	AR33, AT33	I	SATA Port 1 Differential Receiver	VCCA33SATA	
STX0+/-	AM35, AN35	О	SATA Port 0 Differential Transmitter	VCCA33SATA	
STX1+/-	AM33, AN33	О	SATA Port 1 Differential Transmitter	VCCA33SATA	
SXI	AK35	I	SATA Crystal Input. 25MHz Crystal Input. If SATA interface is not needed, SATA crystal can be removed. Tie to GND if not used.	VCCA15SXO	
SXO	AK36	О	SATA Crystal Output. 25MHz crystal output. If SATA interface is not needed, SATA crystal can be removed.	VCCA15SXO	
SREXT	AJ34	AI	SATA External Resistor. If SATA interface is not needed, leave it unconnected.	VCCA33SATA	
SATALED#	AJ23	О	SATA LED.	VCC33	

SMBus Interface

SMBus Interface				
Signal Name	Ball #	I/O	Signal Description	Power Plane
SMBCLK1	AM16	OD	SMB Channel 1 Clock. Master Mode.	VSUS33
SMBDATA1	AN16	OD	SMB Channel 1 Data. Master Mode.	VSUS33
SMBCLK2 / GPIO1	AK16	OD	SMB Channel 2 Clock. Slave Mode. SMBCLK2 can optionally be used as GPIO1.	VSUS33
SMBDATA2 / GPIO0	AL16	OD	SMB Channel 2 Data. Slave Mode. SMBDATA2 can optionally be used as GPIO0.	VSUS33
SMBALRT#	AP15	I	SMB Alert. (With optional 10K ohms built-in pull-up resistor) Enabled by System Management Bus I/O space. When enabled, SMBALRT# assertion generates an IRQ or SMI interrupt or a power management resume event. This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F0 Rx97[1]). If internal pull-up is used, this signal can be left unconnected.	VSUS33

Enhanced IDE Interface

Enhanced IDE is enabled when signal ball PDDACK# is strapped HIGH.

Enhanced IDE Interface				
Signal Name	Ball #	I/O	Signal Description	Power Plane
PDIORDY	AK22	I	UltraDMA Mode: (Write) PDDMARDY: Output flow control. The device may assert PDDMARDY to pause output transfers (Read) PDSTROBE: Input data strobe (both edges). The device may stop assertion of PDSTROBE to pause input data transfers	VCC33
PDIOR# / GPO0	AL22	0	EIDE Mode: PDIOR#: Device read strobe UltraDMA Mode: (Write) PHSTROBE: Output data strobe (both edges). The host may stop assertion of PHSTROBE to pause output data transfers (Read) PHDMARDY: Input flow control. The host may assert PHDMARDY to pause input transfers	VCC33
PDIOW# / GPO1	AT20	0	PDIOR# can optionally be used as GPO0. EIDE Mode: PDIOW#: Device write strobe UltraDMA Mode: PSTOP: Stop transfer. Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of PSTOP by the host during or after data transfer signals the termination of the burst. PDIOW# can optionally be used as GPO1.	VCC33
PDDREQ	AR20	I	IDE Device DMA Request.	VCC33
PDDACK#	AJ22	Ο	IDE Device DMA Acknowledge.	VCC33

Enhanced IDE Interface - continued				
Signal Name	Ball #	I/O	Signal Description	Power Plane
PDCS1#	AN22	О	IDE Master Chip Select.	VCC33
			This signal has an internal 10K ohms pull-up resistor.	
PDCS3#	AP22	О	IDE Slave Chip Select.	VCC33
PDA[2:0] /	AR22, AG22,	О	IDE Disk Address. PDA[2:0] are used to indicate which byte in	VCC33
GPO[4:2]	AT22		either the ATA command block or control block is being accessed.	
			PDA[2:0] can optionally be used as GPO[4:2].	
PDD[15:0]	(see ball list)	Ю	IDE Data Bus.	VCC33
IRQ15 / GPI0	AH22	I	IDE Channel Interrupt Request. This signal has a programmable	VCC33
			internal 10K ohms pull-up resistor (default enable, B0D17F7	
			Rx55[2]). If it is not used, leave it unconnected.	

LPC Bus Interface

LPC Bus Interface				
Signal Name	Ball #	I/O	Signal Description	Power Plane
LPCAD[3:0]	AM19, AN19,	Ю	LPC Address / Data.	VCC33
	AT19, AR19		This signal has an internal 10K ohms pull-up resistor.	
LPCFRAME#	AP19	О	LPC Frame.	VCC33
			This signal has an internal 10K ohms pull-up resistor.	
LPCDRQ0#	AK19	I	LPC DMA / Bus Master Request 0.	VCC33
			Pull up 10K ohms to VCC33 if not used.	
LPCDRQ1#	AL19	I	LPC DMA / Bus Master Request 1.	VCC33
			Pull up 10K ohms to VCC33 if not used.	

Serial Port Interface

Serial ports are enabled when signal ball PDDACK# is strapped LOW.

Serial Port Interface				
Signal Name	Ball #	I/O	Signal Description	Power Plane
SDOUT1 / PDD5	AM20	О	Transmit Data for Serial Port 1.	VCC33
			SDOUT1 can optionally be used as PDD5.	
SDOUT2 / PDD13	AK21	О	Transmit Data for Serial Port 2.	VCC33
			SDOUT2 can optionally be used as PDD13.	
SIN1 / PDD4	AK20	I	Receive Data for Serial Port 1.	VCC33
			SIN1 can optionally be used as PDD4.	
SIN2 / PDD12	AL21	I	Receive Data for Serial Port 2.	VCC33
2			SIN2 can optionally be used as PDD12.	
RTS1 / PDD2	AN21	О	Request To Send for Serial Port 1.	VCC33
			RTS1 can optionally be used as PDD2.	
RTS2 / PDD10	AJ20	О	Request To Send for Serial Port 2.	VCC33
			RTS2 can optionally be used as PDD10.	
CTS1 / PDD0	AP20	I	Clear To Send for Serial Port 1.	VCC33
			CTS1 can optionally be used as PDD0.	
CTS2 / PDD8	AG20	I	Clear To Send for Serial Port 2.	VCC33
			CTS2 can optionally be used as PDD8.	
DTR1 / PDD3	AN20	О	Data Terminal Ready for Serial Port 1.	VCC33
			DTR1 can optionally be used as PDD3.	
DTR2 / PDD11	AL20	О	Data Terminal Ready for Serial Port 2.	VCC33
			DTR2 can optionally be used as PDD11.	
DSR1 / PDD1	AP21	I	Data Set Ready for Serial Port 1.	VCC33
			DSR1 can optionally be used as PDD1.	
DSR2 / PDD9	AH20	I	Data Set Ready for Serial Port 2.	VCC33
			DSR2 can optionally be used as PDD9.	
DCD1 / PDD6	AH21	I	Data Carrier Detect for Serial Port 1.	VCC33
			DCD1 can optionally be used as PDD6.	
DCD2 / PDD14	AM22	I	Data Carrier Detect for Serial Port 2.	VCC33
			DCD2 can optionally be used as PDD14.	
RI1 / PDD7	AG21	I	Ring Indicator for Serial Port 1.	VCC33
			RI1 can optionally be used as PDD7.	
RI2 / PDD15	AT21	I	Ring Indicator for Serial Port 2.	VCC33
-			RI2 can optionally be used as PDD15.	

High Definition Audio Interface

	High Definition Audio Interface								
Signal Name	Ball #	I/O	Signal Description	Power Plane					
AZRST#	AR10	О	High Definition Audio Reset.	VSUS33					
AZBITCLK	AR11	О	High Definition Audio Bit Clock. 24.00 MHz.	VCC33					
AZSYNC	AP10	О	High Definition Audio Sync. 48 KHz Frame Sync and outbound tag signal.	VCC33					
AZSDOUT	AT12	О	High Definition Audio Serial Data Output.	VCC33					
AZSDIN[1:0]	AP11, AT11	Ι	High Definition Audio Serial Data Input. These signals have internal 10K ohms pull-down resistors.	VSUS33					

Speaker Interface

Speaker Interface							
Signal Name	Signal Name Ball # I/O Signal Description Power Pla						
SPKR / GPO7	AL18	О	Speaker Out. SPKR can optionally be used as GPO7.	VCC33			

Internal Keyboard Controller Interface

	Internal Keyboard Controller Interface							
Signal Name	Ball #	I/O	Signal Description	Power Plane				
MSCK / IRQ1	AN13	Ю	Mouse Clock. From internal mouse controller. This signal has an internal 10K ohms pull-up resistor.	VSUS33				
MSDT / IRQ12	AP13	Ю	Mouse Data. From internal mouse controller. This signal has an internal 10K ohms pull-up resistor.	VSUS33				
KBCK / A20GATE	AL13	Ю	Keyboard Clock. From internal keyboard controller. This signal has an internal 10K ohms pull-up resistor. This signal is used as A20GATE to connect to external keyboard controller's A20Gate signal if external KBC is used.	VSUS33				
KBDT / KBC_CPURST#	AM13	Ю	Keyboard Data. From internal keyboard controller. This signal has an internal 10K ohms pull-up resistor. This signal is used as KBC_CPURST# to connect to external keyboard controller's CPURST# signal if external KBC is used.	VSUS33				

Note: Please use the **bold signal name** to find the ball location in the signal ball list.

Serial IRQ Interface

Serial IRQ Interface							
Signal Name	Ball #	I/O	Signal Description	Power Plane			
SERIRQ	AM17	IO	Serial IRQ. This signal has an internal 10K ohms pull-up resistor. If it is not used, leave it unconnected.	VCC33			

PC / PCI DMA Interface

PC / PCI DMA Interface							
Signal Name	Ball #	I/O	Signal Description	Power Plane			
PCIDREQ# / GPIO2	AK09	Ι	PC / PCI DMA Request. PCIDREQ# can optionally be used as GPIO2. Pull up 10K ohms to VCC33 if not used.	VCC33			
PCIDGNT# / GPIO3	AK08	О	PC / PCI DMA Grant. PCIDGNT# can optionally be used as GPIO3.	VCC33			

General Purpose Input Interface

			Genera	l Purpose Inpu	ıt Interface – S	ignal Att	ributes			
Signal Name	Ball #	I/O	Default		Signal S	State			Interrupt	Power
			Function	Reset	After Reset	POS	STR	STD	Triggered by GPI	Plane
GPIO / IRQ15	AH22	I	IRQ15	IRQ15	IRQ15	Driven	Off	Off	No	VCC33
GPI1	AP12	I	_	Reserve	ed for TV/CRT or HIGH: TV, LO		t function		No	VCC33
GPI2	AN12	I	_	_	_	Driven	Driven	Driven	No	VSUS33
GPI3 / AOL	AN14	Ι		_	_	Driven	Driven	Driven	No	VSUS33
GPI4 / BATLOW#	AP14	Ι	GPI4	Static	Driven	Driven	Driven	Driven	No	VSUS33
GPI5 / EXTSMI#	AN15	I	GPI5	Static	Driven	Driven	Driven	Driven	No	VSUS33
GPI6 / Intruder#	AN17	I	GPI6	Static	Driven	Driven	Driven	Driven	No	VBAT
GPI7 / LID#	AT13	Ι	GPI7	Static	Driven	Driven	Driven	Driven	No	VSUS33
GPI8 / RING#	AL14	Ι	GPI8	Static	Driven	Driven	Driven	Driven	SCI/SMI	VSUS33
GPI9 / THRM#	AP16	I	GPI9	Static	Driven	Driven	Driven	Driven	SCI/SMI	VSUS33
GPI10 / THRMTRIP#	C28	I	THRMTRIP#	THRMTRIP#	THRMTRIP#	Driven	Off	Off	SCI/SMI	VCC33
GPI11/ VGATE	AM18	I	GPI11	Static	Driven	Driven	Driven	Driven	Generate Wakeup Event Then SCI/SMI	VSUS33

GPI Signal States:

1. **Static:** The input signal must remain static, either high or low.

2. **Driven:** The input signal is driven from outside. It is allowed to change.

3. **Off:** The power plane of the input signal is off.

System States:

1. **Reset:** During <RSMRST#, PCIRST#> is <0, 0>

2. **After Reset:** Immediately after <RSMRST#, PCIRST#> is <1, 1>

	General Purpose Input Interface – Signal Control Registers								
Signal Name	Control Register	GPI Status Register	GPI SCI/SMI Register	Status Change Register					
GPI0	B0D17F0 RxE4[3] = 1	PMIO Rx48[0]	N/A	N/A					
GPI1	B0D17F0 Rx94[3] = 1	PMIO Rx48[1]	N/A	N/A					
GPI2	B0D17F0 Rx94[3] = 1	PMIO Rx48[2]	N/A	N/A					
GPI3	B0D17F0 Rx95[1] = 1	PMIO Rx48[3]	N/A	N/A					
GPI4	PMIO $Rx25[4] = 0 & $ PMIO $Rx23[4] = 0$	PMIO Rx48[4]	N/A	N/A					
GPI5	PMIO $Rx24[4] = 0 & $ PMIO $Rx22[4] = 0$	PMIO Rx48[5]	N/A	N/A					
GPI6	PMIO Rx24[6] = 0 & PMIO Rx22[6] = 0	PMIO Rx48[6]	N/A	N/A					
GPI7	PMIO Rx25[3] = 0 & PMIO Rx23[3] = 0	PMIO Rx48[7]	N/A	N/A					
GPI8	PMIO Rx25[0] = 0 & PMIO Rx23[0] = 0	PMIO Rx49[0]	PMIO Rx52[0] = 1, B0D17F0 RxE0[0], B0D17F0 RxE1[0]	PMIO Rx50[0]					
GPI9	PMIO Rx25[2] = 0 & PMIO Rx23[2] = 0 & B0D17F0 Rx8C[3] = 0	PMIO Rx49[1]	PMIO Rx52[1] = 1, B0D17F0 RxE0[1], B0D17F0 RxE1[1]	PMIO Rx50[1]					
GPI10	PMIO Rx2B[1] = 0	PMIO Rx49[2]	PMIO Rx52[2] = 1, B0D17F0 RxE0[2], B0D17F0 RxE1[2]	PMIO Rx50[2]					
GPI11	B0D17F0 RxE5[4] = 0	PMIO Rx49[3]	PMIO Rx22[1] or PMIO Rx24[1]	PMIO Rx20[1]					

General Purpose Output Interface

			General Pu	rpose Output	t Interface – S	Signal Attrik	outes		
Signal Name	Ball #	I/O	Default Function			Power Plane			
			runction	Reset	After Reset	POS	STR	STD	
GPO0 / PDIOR#	AL22	О	PDIOR#	PDIOR#/	PDIOR#	Defined	Off	Off	VCC33
GPO1 / PDIOW#	AT20	О	PDIOW#	PDIOW#	PDIOW#	Defined	Off	Off	VCC33
GPO2 / PDA0	AT22	О	PDA0	PDA0	PDA0	Defined	Off	Off	VCC33
GPO3 / PDA1	AG22	О	PDA1	PDA1	PDA1	Defined	Off	Off	VCC33
GPO4 / PDA2	AR22	О	PDA2	PDA2	PDA2	Defined	Off	Off	VCC33
GPO5	AM12	О	_	_	_	Defined	Off	Off	VCC33
GPO6	AL12	О	_	_	_	Defined	Defined	Defined	VSUS33
GPO7 / SPKR	AL18	О	SPKR	SPKR	SPKR	Defined	Off	Off	VCC33
GPO8 / SUSA#	AM15	О	SUSA#	SUSA#	SUSA#	Defined	Defined	Defined	VSUS33
GPO9 / SUSB#	AR13	О	SUSB#	SUSB#	SUSB#	Defined	Defined	Defined	VSUS33
GPO10 / SUSC#	AM14	О	SUSC#	SUSC#	SUSC#	Defined	Defined	Defined	VSUS33
GPO11	AR12	О	_	_	_	Defined	Off	Off	VCC33

GPO Signal States:

1. **High-Z:** Tri-State.

2. **High:** The output signal is logic "1".3. **Low:** The output signal is logic "0".

4. **Defined:** The output signal can be high or low, defined by the GPO function.

5. **Undefined:** The output signal is undetermined.

6. **Off:** The power plane of output signal is off.

System States:

1. **Reset:** During <RSMRST#, PCIRST#> is <0, 0>

2. **After Reset:** Immediately after <RSMRST#, PCIRST#> is <1, 1>

	General Purpose Output Interface	- Signal Control Registers
Signal Name	Control Register	GPO Output Register
GPO0	B0D17F0 RxE4[3] = 1	PMIO Rx4C[0]
GPO1	B0D17F0 RxE4[3] = 1	PMIO Rx4C[1]
GPO2	B0D17F0 RxE4[3] = 1	PMIO Rx4C[2]
GPO3	B0D17F0 RxE4[3] = 1	PMIO Rx4C[3]
GPO4	B0D17F0 RxE4[3] = 1	PMIO Rx4C[4]
GPO5	B0D17F0 Rx94[3] = 1	PMIO Rx4C[5]
GPO6	B0D17F0 Rx94[3] = 1	PMIO Rx4C[6]
GPO7	B0D17F0 RxE4[4] = 1	PMIO Rx4C[7]
GPO8	B0D17F0 Rx94[2] = 1	PMIO Rx4D[0]
GPO9	B0D17F0 Rx94[2] = 1	PMIO Rx4D[1]
GPO10	B0D17F0 Rx94[2] = 1	PMIO Rx4D[2]
GPO11	B0D17F0 Rx94[3] = 1	PMIO Rx4D[3]

General Purpose Input/Output Interface

	General Purpose Input/Output Interface – Signal Attributes													
Signal Name	Ball #	I/O	Default	nult Signal State										
			Function	Reset	After Reset	POS (GPO)	STR (GPO)	STD (GPO)	Plane					
GPIO0 / SMBDATA2	AL16	Ю	GPI Mode	Static	Driven	Defined	Defined	Defined	VSUS33					
GPIO1 / SMBCLK2	AK16	Ю	GPI Mode	Static	Driven	Defined	Defined	Defined	VSUS33					
GPIO2 / PCIDREQ#	AK09	Ю	GPI Mode	Static	Driven	Defined	Off	Off	VCC33					
GPIO3 / PCIDGNT#	AK08	Ю	GPI Mode	Static	Driven	Defined	Off	Off	VCC33					
GPIOA	AB08	IO	_		Re	served for disp	olay		VCC33					
GPIOB	AB07	IO	_		Re	served for disp	olay		VCC33					
GPIOC / DISPCLKI2	AB06	IO	DISPCLKI2	Reserved for display					VCC33					
GPIOD / DISPCLKO2	AB05	Ю	DISPCLKO2		Re	served for disp	olay		VCC33					

	General Purpose Input/Output Interface – Signal Registers											
Signal Name	Control Register	GPI Status Register	GPI SCI/SMI Register	GPI Status Change Register	GPO Output Register							
GPIO0	B0D17F0 Rx95[3] = 1 B0D17F0 Rx95[2] = 1	PMIO Rx49[4]	PMIO Rx52[4] = 1, B0D17F0 RxE0[4], B0D17F0 RxE1[4]	PMIO Rx50[4]	PMIO Rx4D[4]							
GPIO1	B0D17F0 Rx95[3] = 1 B0D17F0 Rx95[2] = 1	PMIO Rx49[5]	PMIO Rx52[5] = 1, B0D17F0 RxE0[5], B0D17F0 RxE1[5]	PMIO Rx50[5]	PMIO Rx4D[5]							
GPIO2	B0D17F0 Rx53[7] = 0	PMIO Rx49[6]	PMIO Rx52[6] = 1, B0D17F0 RxE0[6], B0D17F0 RxE1[6]	PMIO Rx50[6]	PMIO Rx4D[6]							
GPIO3	B0D17F0 Rx53[7] = 0	PMIO Rx49[7]	PMIO Rx52[7] = 1, B0D17F0 RxE0[7], B0D17F0 RxE1[7]	PMIO Rx50[7]	PMIO Rx4D[7]							

GPIO Programming Sequence

- 1. To Input from a GPIO[3:0] signal:
 - → Enable the control register and write "1" to the corresponding PMIO Rx4D<7:4> register bit:
 - → Read the corresponding input register to retrieve the current signal state.

Example: GPIO2 I/O Pad Circuit Diagram (Input Mode)

- 2. To Output through a GPIO[3:0] signal:
 - → Enable the control register
 - → Program the corresponding output register bit, PMIO Rx4D<7:4>, to the desired state.

Example: GPIO2 I/O Pad Circuit Diagram (Output Mode)

Power Management Control and Event Signals

	Pov	ver M	anagement Control and Event Signals	
Signal Name	Ball #	I/O	Signal Description	Power Plane
PWRBTN#	AJ15	I	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch. Internal logic powered by VSUS33.	VSUS33
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F0 Rx97[1]). If internal pull-up is used, this signal can be left unconnected.	
EXTSMI# / GPI5	AN15	IO	External System Management Interrupt. When enabled, a falling edge on this input causes an SMI# to be generated to the CPU to enter SMI mode.	VSUS33
			EXTSMI# can optionally be used as GPI5.	
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F0 Rx97[1]).	
PME#	AL15	I	Power Management Event. This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F0 Rx97[1]). If it is not used, leave it unconnected.	VSUS33
LID# / GPI7	AT13	Ι	Notebook Computer Display Lid Open / Closed Monitor. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high or high-to-low transitions to generate an SMI#.	VSUS33
			LID# can optionally be used as GPI7.	
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F0 Rx97[1]). If it is not used, leave it unconnected.	
INTRUDER# / GPI6	AN17	I	Intrusion Indicator. INTRUDER# can optionally be used as GPI6. If it is not used, pull high with 1M ohms resistor to VBAT.	VBAT
THRM# / GPI9	AP16	I	Thermal Alarm Monitor. This signal is to enable the throttling mode of the STPCLK# signal for thermal control. THRM# can optionally be used as GPI9.	VSUS33
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F0 Rx97[1]). If it is not used, leave it unconnected.	
RING# / GPI8	AL14	I	Ring Indicator. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call.	VSUS33
			RING# can optionally be used as GPI8.	
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F0 Rx97[1]). If it is not used, leave it unconnected.	
BATLOW# / GPI4	AP14	I	Battery Low Indicator. BATLOW# can optionally be used as GPI4.	VSUS33
			This signal has a programmable internal 10K ohms pull-up resistor (default enable, B0D17F0 Rx97[1]). If it is not used, leave it unconnected.	

	Power M	anage	ement Control and Event Signals - continued	
Signal Name	Ball #	I/O	Signal Description	Power Plane
CPUSTP#	AK17	О	CPU Clock Stop. Signals the system clock generator to disable the CPU clock outputs.	VCC33
PCISTP#	AN18	О	PCI Clock Stop. Signals the system clock generator to disable the PCI clock outputs.	VCC33
SUSA# / GPO8	AM15	О	Suspend Plane A Control. Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane. SUSA# can optionally be used as GPO8.	VSUS33
SUSB# / GPO9	AR13	О	Suspend Plane B Control. Asserted during power management STR and STD suspend states. Used to control the secondary power plane. SUSB# can optionally be used as GPO9.	VSUS33
SUSC# / GPO10	AM14	О	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. Also connected to ATX power-on circuitry. SUSC# can optionally be used as GPO10.	VSUS33
AOL / GPI3	AN14	I	Alert On LAN. AOL may optionally be used as GPI3. If it is not used, leave it unconnected.	VSUS33
CLKRUN#	AP18	Ю	PCI Clock Run. Suspend PCICLK when CLKRUN# is high. See PCI Specification for CLKRUN# protocol.	VCC33
VGATE / GPI11	AM18	I	Voltage Gate. This signal is not implemented. VGATE may optionally be used as GPI11. If it is not used, leave it unconnected.	VSUS33
VRDSLP	AL17	OD	Voltage Regulator Deep Sleep. Connected to the CPU voltage regulator. High selects the proper voltage for deep sleep mode.	VCC33

Clock, Test and Miscellaneous Signals

Signal Name	Ball #	I/O	Signal Description	Power Plane
Signal I Wille			als of Graphics & Video Processors	10,10111
DISPCLKI2 / GPIOC	AB06	I	SSC Dot Clock 2 (Pixel Clock) In.	VCC33
DIST CERTIZY OF TOC	71000		DISPCLKI2 can optionally be used as GPIOC.	1000
DISPCLKO2 / GPIOD	AB05	О	Dot Clock 2 (Pixel Clock) Out.	VCC33
	1 2 2 2 2 2		DISPCLKO2 can optionally be used as GPIOD.	, 0000
GCLK	K11	I	Graphics clock (66Mhz)	VCC33CPU
TVXI	Y02	I	TV Encoder Crystal Input. 27 MHz Crystal Input.	VCCA33TVPLL
			If TV interface is not needed, TV crystal can be	
			removed. Tie to GND if not used.	
TVXO	Y01	O	TV Encoder Crystal Output. 27 MHz Crystal	VCCA33TVPLL
			Output. If TV interface is not needed, TV crystal can	
			be removed.	
XIN	AB09	I	14.31818MHz Reference Frequency Input.	VCC33
			External 14.31818 MHz clock source. All internal	
			graphics controller clocks and internal timer are	
			synthesized on chip using this frequency as a reference.	
			RTC Crystal Interface	
RTCX1	AT16	T	RTC Crystal Input: 32.768 KHz Crystal Input.	VBAT
RTCX2	AR16 AR16	I	RTC Crystal Input. 32.768 KHz Crystal Input. RTC Crystal Output: 32.768 KHz Crystal Output.	VBAT
RICAZ	AKIO		wer State and System Reset	VDAI
PWRGD	AR17	I	Power Good. Connected to the Power Good signal	VBAT
rwkGD	AK1/	1	on the Power Supply. Internal logic powered by	VDAI
			VBAT.	
RSMRST#	AP17	I	Resume Reset. When asserted, this signal resets the	VBAT
KSMKSTII	711 17	1	CX700 and sets all register bits to the default value.	V D/X 1
		Tes	t and Miscellaneous Signals	
TESTIN	AK15	I	Test In. This signal is used for testing.	VSUS33
		-	Tie to GND for normal system operation.	
DFTIN	B31	I	DFT In. This signal is used for testing.	VCCMEM
			Tie to GND for normal system operation.	
BISTIN	AA05	I	BIST In. This signal is used for testing.	VCC33
			Tie to GND for normal system operation.	
TP1	J10	-	Test Pad. Also serve as a strapping pin.	VTT
TP2	J11	-	Test Pad. Also serve as a strapping pin.	VTT
TP3	H12	-	Test Pad. Also serve as a strapping pin.	VTT
TP4	J24	-	Test Pad. Also serve as a strapping pin.	VCC33CPU
TP5	H24	-	Test Pad. Also serve as a strapping pin.	VCCMEM
TP6	AJ19	-	Test Pad. Also serve as a strapping pin.	VCC33
TP7	AJ16	-	Test Pad. Also serve as a strapping pin.	VCC33
TP8	AH09	-	Test Pad. Also serve as a strapping pin.	VCC33
RSVD[4:0]	AC07, AC06,	-	Reserved.	-
	AC08, J25, K25		No connection.	

Compensation and Reference Voltage Signals

Compensation					
Signal Name	Signal Name Ball # I/O Signal Description Power Plane				
DMCOMP	DMCOMP A31 AI DRAM Compensation.		VCCMEM		
SATAR50COMP	AJ33	ΑI	Serial ATA Auto Compensation. VCCA338		
If SATA interface is not needed, leave it unconnected.					

Reference Voltages						
Signal Name	Signal Name Ball # I/O Signal Description					
GTLVREF[1:0]	J12, H20	ΑI	Host CPU Interface AGTL+ Voltage Reference.			
	Set it to 2/3 of VTT.					
MEMVREF[1:0]	MEMVREF[1:0] V27, K28 AI Memory Voltage Reference.					
	Set it to 1/2 of VCCMEM.					

Power / Ground Signals

	Digital Power / Ground			
Signal Name	Ball #	Signal Description		
VTT	(see ball list)	I/O Power for CPU Interface.		
VCCMEM	(see ball list)	I/O Power for Memory Interface. 2.5V (DDR) /1.8V (DDR2) ±5%.		
VSUS15MEM	V26	Suspend Power for Memory Module. 1.5V ±5%		
VSUS15	AJ12, AJ13	Suspend Power. 1.5V ±5%		
VSUS15USB	AG24	Suspend Power for USB. 1.5V ±5%		
VSUS33	AB18, AK11, AK12, AK13	Suspend Power. $3.3V \pm 5\%$. Always available unless the mechanical switch of the power supply is turned off. If the "soft-off" state is not implemented, then these signal balls can be connected to VCC33.		
VCC15	(see ball list)	Core Power. $1.5V \pm 5\%$. This supply is turned on only when the mechanical switch on the power supply is turned on and the PWRON signal is conditioned high.		
VCC33	(see ball list)	I/O Power. 3.3V ±5%		
VCC33CPU	P23	Power for 3.3V CPU Interface. 3.3V ±5%		
VBAT	AT17	RTC Battery. Battery input for internal RTC (RTCX1, RTCX2).		
GND	(see ball list)	Ground. Connect to primary motherboard ground plane.		
VCC33LVDS	(see ball list)	Power for LVDS Transmitter. 3.3V ±5%.		
GNDLVDS	(see ball list)	Ground for LVDS Transmitter.		

		Analog Power / Ground		
Signal Name	Ball #	Signal Description		
		Host Interface		
VCCA33HCK	K24	Power for Host CPU Clock PLL. 3.3V ±5%.		
GNDAHCK	L24	Ground for Host CPU Clock PLL		
		Graphics and Video		
VCCA33PLL[3:1]	V04, V06, W03	Power for Graphics Controller PLL. 3.3V ±5%.		
GNDAPLL	V05, V07, W04	Ground for Graphics Controller PLL.		
VCCA33DAC[2:1]	U05, U04	Power for DAC. $3.3V \pm 5\%$.		
GNDADAC	U03, U06, V02	Ground for DAC.		
		LVDS Transmitter		
VCCA33LVDSPLL[2:1] P04, N05 LVDS PLL Power. 3.3V ±5%				
GNDALVDSPLL	M05, P05	LVDS PLL Ground.		
VCCA33LVDS	P03	LVDS Analog Power. 3.3V ±5%		
GNDALVDS	R04	LVDS Analog Ground.		
		TV Encoder		
VCCA33TVPLL	W01	TV Encoder PLL Power. 3.3V ±5%		
GNDATVPLL	W02	TV Encoder PLL Ground.		
		SATA Controller		
VCCA15SXO	AJ36	SATA Oscillator Power. 1.5V ±5%.		
GNDASXO	AJ35	SATA Oscillator Ground.		
VCCA15SATA	(see ball list)	SATA Analog Power. 1.5V ±5%.		
GNDA15SATA	(see ball list)	SATA Analog Ground.		
VCCA33SATA	AN31, AP31,	SATA Analog Power. 3.3V ±5%.		
	AR31, AT31			
GNDA33SATA	AK31, AL31,	SATA Analog Ground.		
	AM31			
VCCA33PLLSATA	AK33	SATA PLL Analog Power. 3.3V ±5%.		
GNDAPLLSATA	AK32	SATA PLL Analog Ground.		
		USB Controller		
VCCA15PLLUSB	AJ24	USB PLL Analog Voltage. 1.5V ±5%.		
GNDA15PLLUSB	AH23	USB PLL Analog Ground.		
VCCA33PLLUSB	AH24	USB PLL Analog Voltage. 3.3V ±5%.		
GNDA33PLLUSB	AG23	USB PLL Analog Ground.		
VSUS33USBIO	(see ball list)	Suspend Power for USB I/O Signals. 3.3V ±5%.		
GNDUSB	(see ball list)	Ground for USB.		

Strapping Signal Table

		Strapp	ing Signal				
(Extern	al pull-up	/ pulldown straps are required to	<u> </u>	eans the strapping is ignored.)			
Signal	Ball #	Function	Description				
TP[2:1]	J11, J10	FSB Clock	State (TP[2:1])	Mode (MHz)			
			LL	100 Mhz			
			LH	133 Mhz			
			HL	Reserved			
			НН	Auto			
TP3	H12	IO Queue Depth	L: 8-level deep	H: 1-level deep			
TP4	J24	GTL Pull-up	L: Enable internal GTL Pull-up				
		_	H: Disable internal GTL Pull-up				
TP5	H24	Reserved	Always strapped LOW				
TP6	AJ19	Reserved	Always strapped HIGH				
TP7	AJ16	V4 Data Width	L: 64 bit	H: 32 bit			
PDCS1#	AN22	Dual Processor Configuration	L: Single Processor	H: Dual Processor			
TP8	AH09	Memory Type	L: DDR	H: DDR2			
SPKR	AL18	CPU Frequency Strapping	L: Enable	H: Disable			
AZSDOUT	AT12	Auto Reboot	L: Enable	H: Disable			
AZSYNC	AP10	LPC FWH Command	L: Enable	H: Disable			
PDDACK#	AJ22	COM Port Enable	L: Enable COM ports	H: Enable EIDE port			
SUSA#	AM15	Reserved	Always strapped HIGH				
LPCFRAME#	AP19	Reserved	Always strapped HIGH.				

(Externa	Strapping Signal - continued (External pull-up / pulldown straps are required to select "H" / "L". "X" means the strapping is ignored.)						
Signal	Ball #	Function	Description				
VCP1D[5:3]	AK05 AK04 AJ08	DVP1 Output Selection	LLX: DVP-TV output LHX: DVP with alpha output HLL: DCVI 10-bit data output HLH: DCVI 8-bit data output HHL: DCVI 20-bit data output HHH: DCVI 16-bit data output				
VCP1D2	AJ07	Reserved	Always strapped LOW.				
VCP1D1	AK01	Reserved	Always strapped LOW.				
VCP1D0	AJ04	Reserved	Always strapped HIGH.				
VCP0D7	AJ01	Reserved	Always strapped LOW.				
VCP0D6	AJ05	Reserved	Always strapped LOW.				
VCP0D[3:0]	AH06 AG07 AH07 AG09	Panel Type Selection					
DVP1D[15:14]	AF04 AH02	LVDS/DVI Mode Selection	LL: Two Single LVDS Channel: LVDS1 + LVDS2 LH: Reserved HL: One Dual LVDS Channel (High resolution panel) HH: One DVI only				
DVP1D[10:8]	AF03 AG05 AE03	DAC (CRT/TV) Output Mode Selection	LXX: DAC A/B/C = R/G/B for CRT HLL: DAC A/B/C = C/Y/CVBS for TV HLH: DAC A/B/C = C/Y/Y for TV HHL: DAC A/B/C = R/G/B for TV HHL: DAC A/B/C = Pr/Y/Pb for TV				
DVP1D[7:4]	AF05 AD01 AD03 AC01	Video Capture Port 1 Type Selection	LLLL: CAP 8 bit CCIR656 LLLH: CAP 8 bit CCIR601 LLHL: CAP 8 bit VIP 1.1 LLHH: CAP 8 bit VIP 2.0 LHLL: CAP 16 bit CCIR656 LHLH: CAP 16 bit CCIR601 LHHL: CAP 16 bit VIP 1.1 LHHH: CAP 16 bit VIP 2.0 HXXX: TS 8 bit				
DVP1D[3:0]	AD04 AC03 AC02 AB03	Video Capture Port 0 Type Selection Valid if VCP0D6 is strapped LOW.	LLLL: CAP 8 bit CCIR656 LLLH: CAP 8 bit CCIR601 LLHL: CAP 8 bit VIP 1.1 LLHH: CAP 8 bit VIP 2.0 LHLL: CAP 16 bit CCIR656 LHLH: CAP 16 bit CCIR601 LHHL: CAP 16 bit VIP 1.1 LHHH: CAP 16 bit VIP 2.0 HXXX: TS 8 bit				

IO Pads with Integrated Pull Up Resistors

Some of the CX700 IO pads, as listed below, are integrated with internal 10K Ohms \pm 30% Pull Up resistor to reduce component counts on the motherboards.

- 1. IO pads with hardwired Pull Up: LPCFRAME#, LPCAD[3:0], MSCK, MSDT, KBCK, KBDT, PDCS1#, SERIRQ
- 2. IO pads with programmable Pull Up:
 - ➤ PCI bus signals: FRAME#, TRDY#, IRDY#, STOP#, DEVSEL#, PERR#, SERR#
 - ➤ PCI bus signals: INT[A, B, C, D]#, REQ[0-3]#, GNT[0-3]#
 - ➤ EIDE signals: IRQ15
 - ➤ Power management event signals: BATLOW#, THRM#, PME#, RING#, EXTSMI#, LID#, SMBALRT#, PWRBTN#

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T_{C}	Operating case temperature	0	85	oC	1
T_{S}	Storage temperature	- 55	125	oC	1
V_{IN}	Input voltage	0	$V_{RAIL} + 10\%$	Volts	1, 2
V_{OUT}	Output voltage	0	$V_{RAIL} + 10\%$	Volts	1, 2

Note:

- 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.
- 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. Memory is 2.5V (DDR) or 1.8V (DDR2). Graphics / Display is 3.3V.

DC Characteristics

$$T_C = 0-85^{\circ}C$$
, $V_{RAIL} = V_{CC} \pm 5\%$, $V_{CORE} = 1.5V \pm 5\%$, $V_{BAT} = 3.3V + 0.3 / -0.5V$, $GND = 0V$

Table 5. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$V_{ m IL}$	Input Low Voltage	0	0.8	V	
V_{IH}	Input High Voltage	2.0	V _{CC}	V	
V_{OL}	Output Low Voltage	_	0.55	V	$I_{OL} = 4.0 \text{mA}$
V_{OH}	Output High Voltage	2.4	_	V	$I_{OH} = -1.0 \text{mA}$
${ m I}_{ m IL}$	Input Leakage Current	_	±10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current	-	±20	uA	$0 < V_{OUT} < V_{CC}$
I_{BAT}	Power Supply Current – RTC Battery (3.3V)	_	10	uA	

Electrical Characteristics – Clock

Table 6. Electrical Characteristics - HCLK

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
HCLK Long Accuracy	ppm	See Tperiod min-max values	-300	300	ppm
HCLK Frequency	F _{HCLK}	Freq = 100Mhz	_	100.03	MHz
Clock Period	T_{PERIOD}	Freq = 100Mhz	9.997	_	ns
HCLK Frequency	F_{HCLK}	Freq = 100Mhz, SSC -0.5%	_	100.03	MHz
Clock Period	T_{PERIOD}	Freq = 100Mhz, SSC -0.5%	9.997	_	ns
HCLK Jitter – Cycle to Cycle	$\mathrm{TJ}_{\mathrm{C2C}}$	Freq = 100MHz Differential Measurement	-	200	ps
HCLK Frequency	F_{HCLK}	Freq = 200Mhz	_	200.06	MHz
Clock Period	T_{PERIOD}	Freq = 200Mhz	4.998	_	ns
HCLK Frequency	F_{HCLK}	Freq = 200Mhz, SSC -0.5%	_	200.06	MHz
Clock Period	T_{PERIOD}	Freq = 200Mhz, SSC -0.5%	4.998	_	ns
HCLK Jitter – Cycle to Cycle	$\mathrm{TJ}_{\mathrm{C2C}}$	Freq = 200MHz Differential Measurement	_	150	ps
Input Voltage High	V_{H}	Statistical measurement on single ended signal	660	850	mV
Input Voltage Low	$V_{ m L}$	Statistical measurement on single ended signal	-150	_	mV
Maximum Input Voltage	V _{ovs}	Measurement on single ended signal using absolute	_	1150	mV
Minimum Input Voltage	$ m V_{UDV}$	Measurement on single ended signal using absolute	-300	-	mV
Crossing Point Voltage	V_{XABS}	Single-ended Measurement	250	550	mV
Crossing Point Variation	ΔV_{CROSS}	Single-ended Measurement	_	140	mV
Ring Back Voltage	V_{RB}	Single-ended Measurement	_	200	mV
Rise Time	T_R	$V_L = 0.245V, V_H = 0.455V$	175	700	ps
Fall Time	T_{F}	$V_H = 0.455V, V_L = 0.245V$	175	700	ps
Duty Cycle	D_{CYC}	Differential Measurement	45	55	%

Table 7. Electrical Characteristics – GCLK

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Long Accuracy	ppm	See Tperiod min-max values	-300	300	ppm
Frequency	F_{GCLK}		-	66.69	MHz
Clock Period	T_{PERIOD}		14.995	_	ns
Input High Voltage	V_{IH}		2	4	V
Input Low Voltage	V_{IL}		-0.65	0.8	V
High Time	V_{TH}		5	-	ns
Low Time	V _{TL}		5	-	ns
Edge Rate	T_{SR}	Rising/Falling edge rate	0.67	4	V/ns
Rise Time	T_R	$V_L = 0.4 \text{ V}, V_H = 2.4 \text{ V}$	0.5	3	ns
Fall Time	$T_{\rm F}$	$V_H = 2.4 \text{ V}, V_L = 0.4 \text{ V}$	0.5	3	ns
Duty Cycle	D_{CYC}	$V_T = 1.5 \text{ V}$	45	55	%
Jitter, Cycle to cycle	TJ_{C2C}	$V_{T} = 1.5 \text{ V}$	_	500	ps

Table 8. Electrical Characteristics – USBCLK

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Long Accuracy	ppm	See Tperiod min-max values	-100	100	ppm
Frequency	F _{48MHZ}		_	48.0048	MHz
Clock Period	T_{PERIOD}	48.00MHz output nominal	20.8313	-	ns
Input High Voltage	V_{IH}		2	4	V
Input Low Voltage	$V_{\rm IL}$		-0.65	0.8	V
High Time	V_{TH}		7	-	ns
Low Time	V_{TL}		7	-	ns
Edge Rate	T_{SR}	Rising/Falling edge rate	0.67	4	V/ns
Rise Time	T_R	$V_L = 0.4 \text{ V}, V_H = 2.4 \text{ V}$	0.5	3	ns
Fall Time	T_{F}	$V_H = 2.4 \text{ V}, V_L = 0.4 \text{ V}$	0.5	3	ns
Duty Cycle	D_{CYC}	$V_{\rm T} = 1.5 \text{ V}$	45	55	%
Jitter – Cycle to cycle	TJ_{C2C}	$V_T = 1.5 \text{ V}$	_	250	ps

Table 9. Electrical Characteristics – PCICLK

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Frequency	F _{PCICLK}		30	35	MHz
Clock period	T_{PERIOD}		28.57	33.33	ns
Input High Voltage	V_{IH}		2	4	V
Input Low Voltage	V _{IL}		-0.65	0.8	V
High Time	V_{TH}		12	-	ns
Low Time	V_{TL}		12	-	ns
Edge Rate	T_{SR}	Rising/Falling edge rate	0.5	4	V/ns
Rise Time	T_R	$V_L = 0.4 \text{ V}, V_H = 2.4 \text{ V}$	0.5	4	ns
Fall Time	T_{F}	$V_H = 2.4 \text{ V}, V_L = 0.4 \text{ V}$	0.5	4	ns
Duty Cycle	D_{CYC}	$V_{\rm T} = 1.5 \text{ V}$	45	55	%
Jitter – Cycle to cycle	TJ_{C2C}	$V_{T} = 1.5 \text{ V}$	_	500	ps

Table 10. Electrical Characteristics – XIN

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Long Accuracy	ppm	See Tperiod min-max values	-30	30	ppm
Frequency	F_{REF}		14.3175705	14.31842954	MHz
Clock period	T_{PERIOD}		69.84	69.8422	ns
Input High Voltage	V_{IH}		2	4	V
Input Low Voltage	$V_{\rm IL}$		-0.55	0.8	V
High Time	V_{TH}		24	_	ns
Low Time	V_{TL}		24	_	ns
Edge Rate	T_{SR}	Rising/Falling edge rate	0.5	4	V/ns
Rise Time	T_R	$V_L = 0.4 \text{ V}, V_H = 2.4 \text{ V}$	0.5	4	ns
Fall Time	T_{F}	$V_H = 2.4 \text{ V}, V_L = 0.4 \text{ V}$	0.5	4	ns
Duty Cycle	D_{CYC}	$V_T = 1.5 \text{ V}$	45	55	%
Jitter – Cycle to cycle	TJ_{C2C}	$V_{\rm T} = 1.5 \text{ V}$	Ι	500	ps

Power Sequence

Figure 4. Power On Sequence and Reset Signal Timing

Note: This sequence should be followed regardless of the power supply type (ATX or AT).

Symbol	Parameter	Min	Max	Unit	Note
T01	VBAT supply active to 1.5VSUS supply active	0	1	ms	
T02	1.5VSUS supply active to 3.3VSUS supply active	0.5	1	ms	
T03	3.3VSUS supply active to RSMRST# inactive	5	1	ms	
T04	PWRBTN# active width	1	1	RTCCLK	
T05	PWRBTN# rising to SUS[A-C]# inactive	4	5	RTCCLK	
T06	1.5V supply active to 3.3V/VTT supply active	0.5	1	ms	
T07	3.3V/VTT supply active to VCCMEM supply active	0	20	ms	
T08	VCCMEM supply active to PWRGD active	5	1	ms	
T09	PWRGD active to PCIRST# inactive	7	_	ms	
T10	PCIRST# inactive to CPURST# inactive	12	_	us	1

Note:

1. CPURST# is de-asserted after the completion of the ROMSIP cycle.

Figure 5. Power On Suspend (S1) and Resume Sequence

1.5V/3.3V/VTT/VCCMEM
POS COMMAND
STOP GRANT
WAKEUP EVENT
STPCLK#
SLP#
CPUSTP#
PCISTP#
SUSA#

SUS[B-C]#

Symbol	Parameter	Min	Max	Unit	Note
T01	STOP GRANT to SLP# active	_	1	RTCCLK	
T02	SLP# active to CPUSTP# and PCISTP# active	_	2	RTCCLK	
T03	CPUSTP# and PCISTP# active to SUSA# active	_	1	RTCCLK	
T04	Wakeup Event to SUSA# inactive	_	2	RTCCLK	
T05	SUSA# inactive to CPUSTP# and PCISTP# inactive	16	32	ms	1
T06	CPUSTP# and PCISTP# inactive to SLP# inactive	1.03	2.03	ms	2
T07	SLP# inactive to STPCLK# inactive	_	1	RTCCLK	

Note:

- 1. If B0D17F0 Rx95[7] = 1, the minimum delay is 1ms and the maximum delay is 2ms.
- 2. If B0D17F0 Rx95[7] = 1, the minimum delay is 155us and the maximum delay is 280us.

Figure 6. Suspend to RAM (S3) and Resume Sequence

Symbol	Parameter	Min	Max	Unit	Note
T01	STOP GRANT to SLP# active	_	1	RTCCLK	
T02	SLP# active to CPUSTP# and PCISTP# active	_	2	RTCCLK	
T03	CPUSTP# and PCISTP# active to SUS[A-B]# active	_	1	RTCCLK	
T04	Wakeup Event to SUS[A-B]# inactive	_	2	RTCCLK	
T05	CPUSTP# and PCISTP# inactive to SLP# inactive	1.03	2.03	ms	1
T06	SLP# inactive to STPCLK# inactive	_	1	RTCCLK	
T07	1.5V/3.3V/VTT supplies active to PWRGD active	5	_	ms	
T08	PWRGD active to PCIRST# inactive	7	_	ms	
T09	PCIRST# inactive to CPURST# inactive	12	_	us	2

Note:

- 1. If B0D17F0 Rx95[7] = 1, the minimum delay is 155us and the maximum delay is 280us.
- 2. CPURST# is de-asserted at the completion of the ROMSIP cycle.

Figure 7. Suspend to DISK (S4) and Resume Sequence

CPURST#
PCIRST#
PWRGD
1.5V/3.3V/VTT/VCCMEM
STR COMMAND
STOP GRANT
WAKEUP EVENT
STPCLK#
SLP#
CPUSTP#
PCISTP#
SUS[A-C]#

Symbol	Parameter	Min	Max	Unit	Note
T01	STOP GRANT to SLP# active	_	1	RTCCLK	
T02	SLP# active to CPUSTP# and PCISTP# active	_	2	RTCCLK	
T03	CPUSTP# and PCISTP# active to SUS[A-C]# active	_	1	RTCCLK	
T04	Wakeup Event to SUS[A-C]# inactive	_	2	RTCCLK	
T05	CPUSTP# and PCISTP# inactive to SLP# inactive	1.03	2.03	ms	1
T06	SLP# inactive to STPCLK# inactive	_	1	RTCCLK	
T07	1.5V/3.3V/VTT/VCCMEM supplies active to	5	_	ms	
	PWRGD active				
T08	PWRGD active to PCIRST# inactive	7	_	ms	
T09	PCIRST# inactive to CPURST# inactive	12	_	us	2

Note:

- 1. If B0D17F0 Rx95[7] = 1, the minimum delay is 155us and the maximum delay is 280us.
- 2. CPURST# is de-asserted at the completion of the ROMSIP cycle.

Figure 8. CPU C2 Sequence

C2 COMMAND STOP GRANT BREAK EVENT STPCLK#

Symbol	Parameter	Min	Max	Unit	Note
T01	Break Event to STPCLK# inactive	2	_	PCICLK	

Figure 9. CPU C3 Sequence

Symbol	Parameter	Min	Max	Unit	Note
T01	STOP GRANT to SLP# active	7.5	1	us	
T02	SLP# active to CPUSTP# and DPSLP# active	11.25	_	us	
T03	Break Event to CPUSTP# and DPSLP# inactive	7.5	1	us	
T04	CPUSTP# and DPSLP# inactive to SLP# inactive	7.5	_	us	
T05	SLP# inactive to STPCLK# inactive	7.5		us	

Figure 10. CPU C4 Sequence

Symbol	Parameter	Min	Max	Unit	Note
T01	STOP GRANT to SLP# active	7.5	_	us	
T02	SLP# active to CPUSTP# and DPSLP# active	11.25	_	us	
T03	CPUSTP# and DPSLP# active to VRDSLP active	3.75	_	us	
T04	Break Event to VRDSLP inactive	_	7.5	us	
T05	VRDSLP inactive to CPUSTP# and DPSLP#	90	110	us	
	inactive				
T06	CPUSTP# and DPSLP# inactive to SLP# inactive	7.5	_	us	
T07	SLP# inactive to STPCLK# inactive	7.5	_	us	

Package Thermal Simulation

Heat sink is required for this chip.

The compression force limit of this chip is 100 psi.

Package	Simulatio	on Result
Specification	Thermal Characteri	zation (unit: °C/W)
	Vflow (m/s)	θја
FCBGA	0.00	14.29
37.5 x 37.5 mm	1.00	10.91
	2.00	10.09
	4.00	9.34
	θјс	0.03
	θјb	4.34

Vflow (m/s): Velocity of external flow passing by the package

T_j (°C): Junction temperature

T_a (°C): Ambient temperature

T cx (°C): Temperature on whole top surface equal to ambient temperature

θjc (°C/W): Junction-to-case thermal resistance

 θ **jc** = (T_j-T_cx) / Power where Tcase equal to Ta

θja (°C/W): Junction-to-ambient thermal resistance

 θ **ja** = $(T_j-T_a) / Power$

θjb (°C/W): Junction-to-board thermal resistance

MECHANICAL SPECIFICATIONS

Figure 11. RoHS and True Green Mechanical Specifications – FCBGA-958 Ball Grid Array Packages