Project III | AI ChatBot for YouTube Video QA and summary

Nataliya Demyanenko

Table of contents

Project Scope App 01 02 **Other Steps** Conclusion 03 04

01

Project Scope

Project Scope

Goal: Build a chatbot for YouTube video summarization and Q&A

Focus areas:

- Exploration of open-source solutions
- Optimization for CPU deployment
- Abstractive question answering
- Real-life processing of user-provided videos

O2 App

Input Initialization Video Processing Task Determination Summarization **Question Answering** Common Functions Output

General overview of the app

- **1. Initialization**: model loading and index clearing.
- **2. Video Processing**: Extraction and chunking of video content.
- **3. Task Determination**: Q&A or summary
- 4. Summarization: Multi-step process involving context retrieval, abstractive summarization, and post-processing.
- **7. Q&A**: Utilizes hybrid context retrieval and relevance checking for accurate answers.
- **6. Common Functions**: Post-processing for output quality.

Initialization load_model clear_pinecone_index Input Video Processing preprocess_video extract_key_topics Task Determination Summarization Question-Answering check_relevance get_context abstractive_summarize post_process_summary get_context generate_answer extract_key_topics reorder_sentences add_transitions hybrid_context_retrieval extract_relevant_sentences fix_capitalization Common Functions remove_repetitions Output

All functions

Video Preprocessing

URL upload

- Extracts video information and transcript
- Splits the content into manageable chunks
- Upserts to Pinecone

```
video_data.append({
               'chunk_id': chunk_id,
                'video_id': video_id.
                'title': info['title'],
                'channel': info['uploader'],
                'description': info['description'],
                'duration': info['duration'],
                'start_time': combined_start_time,
                'end_time': combined_start_time + combined_duration,
                'source': f"https://www.youtube.com/watch?v=
                               {video_id}&t={int(combined_start_time)}",
               'chunk_text': text,
                'metadata_context': f"Video Title: {info['title']}\n"
})
```

Task Determination

Function: determine_task()

Purpose: Decide between summarization and Q&A

Process:

- Checks user input against predefined summarization phrases
- Classifies as 'summarization' or 'question_answering'

Advantage: Easily expandable for future task types

List of phrases that indicate a summary request summary_phrases =

["summarize", "summary", "summarize the video", "what is this video about", "what is the video about", "what is the main topic of the video", "what's the video about", "what's the video about", "give me an overview", "brief overview", "overview", "main points", "key points", "main idea", "what is the video discussing"]

Model Selection for Q&A

Selected model: VBlagoje/BART-LFQA

Reasons for selection:

- Advanced question-answering capabilities
- State-of-the-art language model (BART architecture)
- Pre-trained on large datasets
- Customization and fine-tuning potential
- Optimized for long-form answers

Abstractive Summarization

Model Used: facebook/bart-large-cnn

Function: abstractive_summarize()

Process:

- Prepend key topics to guide summary
- Use beam search, length penalties, and sampling Parameters:
- Beam size, max/min length, length penalty, etc.

Hybrid Context Retrieval

Function: hybrid_context_retrieval()

Combines TF-IDF and semantic similarity for more accurate context retrieval.

- Compute TF-IDF scores
- Generate semantic embeddings
- Combine scores with weighted average

Advantage: Balances keyword matching and semantic understanding

```
# TF-IDF
  vectorizer = TfidfVectorizer(stop_words='english')
  tfidf_matrix = vectorizer.fit_transform([query] + contexts)
  tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]).flatten()

# Semantic Similarity
  query_embedding = retriever.encode([query])
  context_embeddings = retriever.encode(contexts)
  semantic scores = cosine similarity(query embedding, context embeddings)[0]
```

def hybrid_context_retrieval(query, contexts, top_k=7, tfidf_weight=0.4):

Combine scores
combined_scores = 0.5 * tfidf_scores + 0.5 * semantic_scores
top_indices = combined_scores.argsort()[-top_k:][::-1]
return [contexts[i] for i in top_indices]

Post-Processing and Formatting

Key Functions:

- post_process_summary()
- remove_repetitions()
- add_transitions()
- fix_capitalization()

Purpose: Enhance readability and coherence Techniques:

- Sentence reordering
- Redundancy removal
- Proper capitalization
- Transition phrase insertion

03

Other Steps

Memory implementation

Type: ConversationBuffer WindowMemory

Purpose: Maintain context of recent interactions Implementation:

- Set window size (k=3)
- Integrate with ConversationChain
- Implemented in Jupyter Notebook, not in deployed app

Advantage: Enables more coherent multi-turn conversations

Fine-tuning with PEFT-optimization & Quantization

Due to time constraints, computational limits, and the size of the model being fine-tuned, I had to drastically limit training parameters, which resulted in a poor performance:

	vblagoje/bart_lfqa	Model fine-tuned
		on SQUAD
Faithfulness	0.653	0.484
Context Recall	0.578	0.578
Relevance	0.110	0.110
ROUGE-1	0.110	0.110
ROUGE-2	0.056	0.056
ROUGE-L	0.110	0.110

I attempted to fine tune the model on two datasets, the Stanford Question Answering Dataset (SQuAD) and ELI5-Category dataset, that both seemed promising fit.

04

Conclusion

Conclusion and Future work

Key Takeaways:

More cautious approach to project scope definition

Future Improvements

- Processing videos without YouTube transcript
- Fine-tuning both Q&A and summarization models
- Advanced sentence reordering in summarization
- Integration of sophisticated NLP techniques

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Please keep this slide for attribution