Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Random matrices and covariance estimation

Kaveh S. Nobari

Lectures in High-Dimensional Statistics

Department of Mathematics and Statistics Lancaster University

Contents

- Preliminaries
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Motivation

The issue of covariance estimation is intertwined with random matrix theory, since sample covariance is a particular type of random matrix. These slides follow the structure of chapter 6 of Wainwright (2019) to shed light on random matrices in a non-asymptotic setting, with the aim of obtaining explicit deviation inequalities that hold for all sample sizes and matrix dimensions.

In the classical framework of covariance matrix estimation the sample size n tends to infinity while the matrix dimension d is fixed; in this setting the behaviour of sample covariance matrix is characterized by the usual limit theory. In contrast, in high-dimensional settings the data dimension is either comparable to the sample size $(d \times n)$ or possibly much larger than the sample size $d \gg n$.

Preliminaries
Wishart matrices and their behaviour
covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Motivation

We begin with the simplest case, namely ensembles of Gaussian random matrices, and we then discuss more general sub-Gaussian ensembles, before moving to milder tail conditions.

- Preliminaries
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Consider a rectangular matrix $A \in \mathbb{R}^{n \times m}$ with $n \geq m$, the ordered singular values are written as follows

$$\sigma_{\mathsf{max}}(A) = \sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_m(A) = \sigma_{\mathsf{min}}(A) \ge 0$$

- Preliminaries
- 2 Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
- 2 Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Matrix Chernoff approach and independent decomposition Upper tail bounds for random matrices Consequences for covariance matrices

- Preliminaries
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Consequences for covariance matrices

- Preliminaries
- 2 Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
- 2 Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- Sounds for structured covariance matrices
 - Unknown sparsity and thresholding

Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

References

Wainwright, M. J. (2019). *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press.