

Presidential Election Sentiment Analysis

NLP PROJECT BY TEAM A

Meet the Team

Alfandy Surya

Dhanny Aryanda

Kusumo Jati Utomo

Alfian Ali Murtadho

Efrad Galio

Muhammad Habibullah

Anton Pranowo Medianto

Hendra Susanto

Background & Problem Statement

Twitter menjadi wadah besar diskusi publik saat Pilpres 2019 karena ada sekitar 5,7 juta tweet per hari terkait pilpres 2019. Jumlah data yang relatif besar tersebut dapat digunakan untuk berbagai analisis, salah satunya adalah **analisis sentimen.**

Analisis sentimen tweet penting untuk memahami opini publik terhadap para kandidat dan isu-isu terkait. Ini dapat membantu tim kampanye, media, peneliti, dan masyarakat. Menganalisis sentimen bisa mengungkap isu disorot publik, persepsi terhadap kandidat, dukungan, dan dampak misinformasi.

Objectives & Scope

Objectives:

Mengembangkan model machine learning dan deep learning untuk mengklasifikasikan tiga sentimen (positif, netral, dan negatif) dari tweet yang berkaitan dengan pilpres 2019 di Indonesia.

Scope:

- Menggunakan data tweet beserta label sentimen yang telah disediakan
- Model yang digunakan adalah Random Forest Classifier (machine learning) dan LSTM (deep learning)

Data Inspection

Dataset used:

tweet.csv

Check null values:

```
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 sentimen 1815 non-null object
1 tweet 1815 non-null object
```

Number of null rows: O

Check null values:

Number of duplicated rows: O

Label Proportion:

Evaluation metrics: Accuracy

Text Preprocessing

Text Cleaning Process:

- 1 Emoji conversion
- 2 Remove hashtag, URL & HTML
- Remove punctuation
- 4 Remove special character
- 5 Case folding

Text Normalization Process:

1 Lemmatization + Finalization

- Processing slang words
- 7 Processing short words
- 8 Remove stopwords
- 9 Process number
- 10 Remove extra spaces

Text Tokenization Process:

Word tokenization

Tweet Example (Before & After) - 1

Text Preprocessing
Stage

TWEET EXAMPLE (INDEX 323)

ORIGINAL TWEET

Kalo prabowo terpilih , ya benar ekonomi makin baik. Karna infrastruktur udah dibangun besar2an sama jokowi. Jadii dia tinggal duduk manis aja.. 🗸 🗸

TEXT CLEANING

prabowo terpilih ekonomi baik infrastruktur dibangun besaran jokowi tinggal duduk manis

TEXT NORMALIZATION

prabowo pilih ekonomi baik infrastruktur bangun besar jokowi tinggal duduk manis 🤣🤣

TEXT TOKENIZATION

['prabowo', 'pilih', 'ekonomi', 'baik', 'infrastruktur', 'bangun', 'besar', 'jokowi', 'tinggal', 'duduk', 'manis', '���']

Tweet Example (Before & After) - 2

Text Preprocessing Stage	TWEET EXAMPLE (INDEX 1326)
ORIGINAL TWEET	Siapa yg mau bayar gajinya? Wong #jokowi presidennya 2019 -2024 💪 💪
TEXT CLEANING	bayar gajinya orang presidennya 2019
TEXT NORMALIZATION	bayar gaji orang presiden 2019 💪💪
TEXT TOKENIZATION	['bayar', 'gaji', 'orang', 'presiden', '2019', '&&']

Exploratory Data Analysis - 1

1250

Most Used Word:

Most Used bi-gram:

Bigram	Frekuensi
('prabowo', 'sandiaga')	496
('tidak', 'ambil')	146
('ambil', 'gaji')	127
('ekonomi', 'indonesia')	116
('sandiaga', 'tidak')	89
('presiden', 'jokowi')	88
('ekonomi', 'makro')	78
('pertumbuhan', 'ekonomi')	78
('susilo', 'bambang')	75

Exploratory Data Analysis - 2

True Label Analysis (Top 10 most used words):

Kata	Negatif Count	Netral Count	Positif Count	Negatif %	Netral %	Positif %
ekonomi	314	333	246	35,2%	37,3%	27,5%
gaji	146	135	202	30,2%	28,0%	41,8%
harga	118	118	153	30,3%	30,3%	39,3%
indonesia	97	124	137	27,1%	34,6%	38,3%
jokowi	239	294	278	29,5%	36,3%	34,3%
negara	60	65	88	28,2%	30,5%	41,3%
prabowo	245	298	308	28,8%	35,0%	36,2%
presiden	101	123	149	27,1%	33,0%	39,9%
rakyat	80	37	89	38,8%	18,0%	43,2%
sandiaga	101	182	243	19,2%	34,6%	46,2%

Key Takeaway:

Dari tabel, kata-kata 'gaji', 'negara', 'rakyat', dan 'Sandiaga' sangat penting untuk meningkatkan performa model karena secara signifikan dapat membedakan sentimen positif.

Misalnya, 41,8% dari kemunculan kata 'gaji' terkait dengan sentimen positif. 'Gaji' digunakan oleh pasangan O2 Prabowo-Sandiaga sebagai janji kampanye untuk tidak mengambil gaji saat menjadi presiden.

Modelling

Data Splitting Strategy (Stratifed):

60% train

20% validation

20% test

Experimentation:

Random Forest (RF)

- Random Forest SW Word2Vec SG (Baseline)
- Random Forest SW Word2Vec CBOW (Baseline)
- Random Forest SW Word2Vec SG (Tuned)
- Random Forest SW Word2Vec CBOW (Tuned)
- Random Forest Word2Vec SG (Baseline)
- Random Forest Word2Vec CBOW (Baseline)
- Random Forest Word2Vec SG (Tuned)
- Random Forest Word2Vec CBOW (Tuned)

Long-Short Term Memory (LSTM)

- LSTM Dengan text preprocessing (Baseline)
- LSTM Tanpa text preprocessing (Baseline)
- LSTM Dengan text preprocessing (Tuned)
- LSTM Tanpa text preprocessing (Tuned)

Result: Random Forest

Tanpa Stopwords - Word2Vec

Hipotesis: text data tanpa stopwords akan meningkatkan performa model

SkipGram (Baseline)

Accuracy

Train: 0.99

Valid: 0.60

Test: 0.53

SkipGram (Tuned)

Accuracy

Train: 0.76

Valid: 0.61

Test: 0.52

CBOW (Baseline)

Accuracy

Train: 0.99

Valid: 0.48

Test: 0.46

CBOW (Tuned)

Accuracy

Train: 0.76

Valid: 0.50

Test: 0.45

Dengan Stopwords - Word2Vec

Hipotesis: text data dengan stopwords akan menurunkan performa model

SkipGram (Baseline)

Accuracy

Train: 1.00

Valid: 0.59

Test: 0.57

SkipGram (Tuned)

Accuracy

Train: 071

Valid: 0.61

Test: 0.55

CBOW (Baseline)

Accuracy

Train: 1.00

Valid: 0.48

Test: 0.51

CBOW (Tuned)

Accuracy

Train: 0.87

Valid: 0.54

Test: 0.49

Hyperparameter Tuning (Best Model)

- Optimisasi hyperparameter menggunakan optuna (bayesian)
- Berikut ini adalah parameter hyperparameter untuk model terbaik:

```
{'n_estimators': 221, '
max_depth': 39,
min_samples_split': 0.041,
'min_samples_leaf': 0.0102,
'max_features': 'auto'}
```

Best Model

Result: LSTM

Tanpa Preprocessing Data

embedding (Embedding)	(None, 198, 64)	807232
lstm (LSTM)	(None, 64)	33024
dense (Dense)	(None, 3)	195
======================================		

Accuracy
Train: 0.989 Valid: 0.586 Ta

Train: 0.989, Valid: 0.586, Test: 0.575

Dengan Preprocessing Data

Accuracy

Train: 0.941, Valid: 0.575, Test: 0.550

Hasil Tuning untuk Accuracy tidak ada perubahan

Hyperparameter Tuning

- Menambahkan dan Mengurangi LSTM Layer dan jumlah unit baik di LSTM Layer dan Embedding Layer.
- Menambahkan Dropout Layer, EarlyStopping, dan ReduceLROnPlateau.
- Mengubah EPOCH, BATCHSIZE dan OPTIMIZER.
- Mengubah MAX_WORDS dan MAX_LEN.

1250

Error analysis dilakukan terhadap misklasifikasi pada 10 kata terbanyak yang digunakan dalam dataset.

negatif netral positif all

Model LSTM belum dapat memprediksi sentimen dari tweet yang berkaitan dengan ekonomi, jokowi ekonomi, jokowi harga dan prabowo sandiaga gaji.

Kesimpulan

ekonomi --> Model belum dapat memprediksi kalimat yang tidak mengandung kata negatif, dan jika terdapat kata negatif model cenderung melabeli kalimat tersebut negatif.

Contoh 1

Tweet: Eh bung, tolong bedakan startup sebagai monetizing dan hobi yg di monetize, startup jelas ada nilai keekonomian yg besar, tapi hobi? Hanya segelintir orang yg melakukannya, dan bukan kebutuhan. Ya Allah masa harus saya jelaskan seh bedanya panjang lebar bung...

Label: Negatif **Predict:** Positif

Contoh 2

Tweet: Alhamdulillah, dalam membangun ekonomi dan pemerataan yang adil pasti akan mengalami batu aral dan pasti akan ada pihak yang merasa jadi korban.... tapi apa yang bapak kerjakan dan lakukan saat ini saya percaya dan yakin suatu saat anak dan cucu saya yang merasakannya

Label: Positif
Predict: Negatif

jokowi ekonomi --> Model belum dapat memprediksi kalimat singkat yang jelas-jelas positif dan terdapat hasil preprocess yang tidak sesuai ekspetasi serta typo yang tidak teratasi.

Contoh 1

Tweet: Isu SDG dibahas saat Pk Jokowi menjelaskan kalau pertumbuhan ekonomi tdk berarti kalau ketimpangan tdk diperhatikan

Final Tweet: isu bahas jahat kelamin jokowi tumbuh ekonomi tidak timpang

tidak perhati **Label:** Positif **Predict:** Netral

Contoh 2

Tweet: Nyatnaya Pemerinta di Era Jokowi Sangat Mendukung Perkembangan Ekonomi Digital. #17aprilcoblosbajuputih #coblosO1JokowiKHMaruf #DaritimurUntukPresidenku #CoblosPutihJokowi #Jokowi2Periode #jokowiAmin

Final Tweet: nyatnaya pemerinta era jokowi dukung kembang ekonomi

digital

Label: Positif Predict: Negatif

Kesimpulan

jokowi harga --> Model kesulitan untuk memprediksi label netral yang memiliki kata-kata negatif atau positif dan label yang tidak sesuai

Contoh 1

Tweet: Tidak Cuma Cek Harga, Jokowi Juga Akan Perbaiki Pasar #2019JokowiKyaiMaruf #JokowiKHMarufUnggulanKita #DerinDiPRO2FM #InterBarça

Final Tweet: tidak cek harga jokowi baik pasar

Label: Netral **Predict:** Negatif

Contoh 2

Tweet: Sebelumnya harga BBM di Papua senilai Rp 100.000/liter, sungguh drastik, di era Jokowi mampu menekan harga premium seharga Rp6.450/liter setara dengan harga BBM di seantero nusantara.

#PiliOrangbaik #PilihJelasIslamnya #PilihBajuPutih

Final Tweet: harga bahan bakar minyak papua nilai rupiah liter sungguh drastik era jokowi tekan harga premium harga rp6 liter tara harga bahan bakar minyak antero nusantara

Label: Netral **Predict:** Positif prabowo sandiaga gaji --> Banyak sekali label yang tidak sesuai sehingga membuat model bingung.

Contoh 1

Tweet: Dengan mencoblos PROBOWO SANDI anda ikut beramal. Karena selama 5 tahun, gaji Prabowo sandi akan di sumbangkan ke fakir

miskin,kaum duafa,dll Label: Positif

Predict: Netral

Contoh 2

Tweet: JikaTerpilih, Prabowo – Sandi Tak akan Ambil@Gaji

Label: Netral

Predict: Positif

App Deployment

Proses deployment masih berada pada tahap **local deployment**. Berikut ini adalah screenshot dari prototype aplikasi

Back-end:

Front-end:

Chart:

Our Github Repository

Link:

Directory Structure:

```
dataset
  tweet.csv
 models
  model_rf_sg_tuned_sw.joblib
  word2vec_model_sg_min_8_window_6_sw.bin
  └─ [dan file model lainnya]
 plugins
  text_prep_function.py
 resources
  — emoji_dictionary.json
  slang_word_dictionary.json
 .gitignore
app_flask.py
app_streamlit.py
 notebook_eda.ipynb
 notebook_modelling.ipynb
 README.md
```

Summary, Evaluation & Future Improvements

Summary:

- Model Random Forest terbaik adalah **model RF + stopwords + Word2Vec SkipGram** dengan performa akurasi train 71%, validation 61% dan test 55%.
- Model LSTM terbaik adalah **model LSTM tanpa text processing** dengan performa akurasi train 98%, validation 58,6%, dan test 57,5%.

- Performa kedua model cukup mirip namun dibandingkan dengan RF, LSTM mengalami overfitting yang cukup parah karena selisih akurasi dengan validation dan test yang besar.
- Dari hasil error analysis, performa model belum cukup bagus dikarenakan:
 - Terdapat beberapa pola tweet dengan label yang tidak sesuai.
 - Belum dapat memahami sarkasme atau tweet yang tidak mengandung kata negatif
 - o Adanya noise dari label netral yang memiliki kata negatif atau positif
- Terdapat juga kesalahan pemrosesan data khusunya di bagian singkatan atau slang words
- Penggunaan stopwords di kasus ini berpengaruh positif terhadap performa model

Summary, Evaluation & Future Improvements

Confusion Matrix Evaluation:

Label

O: Positif, 1: Netral, 2: Negatif

Summary, Evaluation & Future Improvements

Future Improvements:

- Karena data yang dimiliki sedikit sehingga menyebabkan overfitting, selanjutnya bisa dilakukan penambahan data.
- Memperbaiki label yang salah sehingga model tidak bingung dalam melakukan klasifikasi.
- Memperbaiki preprocessing yang salah seperti pada typo dan slang words.
- Menggunakan embedding Word2Vec dan menambahkan Regularization untuk model LSTM
- Melakukan eksperimen dengan model lain selain dari Random Forest
- Memperbanyak data dengan label negatif dan positif agar dapat mengimprove performa model untuk sentimen tersebut
- Tidak menghapus Hashtag karena berisikan informasi penting terkait sentimen

Thank you, any question?