

What we will discuss ...

- ► Text, NLP and ML
- ▶ Simple ML for NLP and Tokenization
- ► Simple DL for NLP
- ▶ Deep Architectures and Attention
- ► Language Models
- ► Contrastive Learning for NLP

What is Text

Just Another Modal

Difference to Image:

- The discreteness and meaninglessness of the components
- variable sentence length

Text Tasks

Classification

Generation

Representation Learning

The proposed solution can be independent of the problem: for example, try to solve classification with generation.

Rule Based Viewpoint

Let's classify sports and economic texts.

The first thing that occurs in our intuition as a rule is the presence of certain words.

We can't write all rules of the world!

Now let's try to do this automatically and approximately with machine learning ...

```
sports words = ['فوتبال', 'بسكتبال', 'هندبال', 'شنا']
for word in sports:
    if word in string:
for word in economic words:
    if word in string:
```

ML: Feature Engineering from Text

In machine learning, we must first be able to extract features from the data (textual data here).

Feature extraction: Extraction of

Semantic Units: Tokenization

Then we apply machine learning models such as naive-bayes or logistic regression or neural network on these features

تیم فوتبال آرژانتین قهرمان جام جهانی شد.

> تیم فوتبال آرژانتین قهرمان جام جهانی شد

Feature Engineering from Text Presence, Naive Bayes

Feature Engineering from Text Presence, Why We need Subword?

Feature Engineering from Text Presence, Why We need embedding?

Question: Given this two classes predict the class for given sample:

Class 1: Men usually cry alone.

Class 2: Women are meticulous in details.

Sample: Every day, the queen asks herself why the situation is like this.

Class 1 or Class 2?

Feature Engineering from Text Presence, Why We need embedding?

So far we have proceeded by assuming the presence or absence of each word in the sentence as a feature.

If we have 30,000 words in the language, then we have to keep a vector with size of 30000 element for each word.

This is while some words are similar and related in meaning.

Feature Engineering from Text Why We need embedding in context?

Non-Contextualized word embeddings: Embedding(شیر) = f(شیر)

آن یکی شیر است که آدم می خورد

آن یکی شیر است که آدم می درد

Feature Engineering from Text Why We need embedding in context?

Non-Contextualized word embeddings: Embedding(شیر) = f(شیر) = f(

آن یکی شیر است که آدم می خورد

آن یکی شیر است که آدم می درد

(آن یکی شیر است که آدم میخورد | شیر) f = (شیر) Contextualized word embeddings: Embedding (آن یکی شیر است که آدم میخورد | شیر)

(آن یکی شیر است که آدم میدرد | شیر) = f (شیر) Contextualized word embedding: Embedding (آن یکی شیر است که آدم میدرد

Before RNNs:

= (شیر است که آدم را میخورد) Embedding

Average(e(شير), e(است), e(که), e(آدم), e(رامیخورد)) (میخورد)

= (آدم است که شیر را میخورد) Embedding

Average(e(مىخورد)), e(است), e(كه), e(شير), e(رمىخورد)))

Deep Models: RNNS: The Role of State Embedding is function of context and current word

Why RNN Fails?

When the sentence becomes long, the words at the end of the sentence forget the impact of the words at the beginning.

Why RNN Fails? Use Attention

In addition to being a function of the state and the present word, embedding is also a function of paying attention to the previous words.

Why RNN Fails? Use Just Attention: Transformer

Pretrained Models

Transfer Learning in NLP: Language Models

Word2vec GloVe Pretraining Adaptation **ELMO** Text Classification **BERT** Word Labeling **GPT** Question Answering T5 Dialog System **BART DistilBFRT** XlNet Computationally Intensive Step General Purpose Model

Task Specific High Performance Model

Let's see two pretraining task

Masker Language Model

In the [MASK] of God.

In the name of God.

Next Sentence Prediction

- The man went to the store.
 He bought a gallon of
- He bought a gallon of milk.
- The man went to the store.Penguins are flightlessLabel: Not Next
- Penguins are flightless birds

LLM Trailer!

A model without parameter tuning

Next Sentence Prediction is not Enough for Retrieval (just use [cls] is bad)

- One of the important open problems is similarity measurement for two sentences.
- For This we have two options:
 - Let's use Bert's nsp classification number.
 (massive pairs number)
 - Let's use the comparison of CLS representations. (low quality)

Better Representation using Contrastive Learning

Use Contrastive Learning for Representaion Learning: Hard Negative Problem: NLI Dataset

Fig. 1. Illustration of triplet loss given one positive and one negative per anchor. (Image source: Schroff et al. 2015)

Lets see Set fit, fewshot contrastive classification

Figure 2: SETFIT 's fine-tuning and training block diagram.

Figure 1: Compared to standard fine-tuning, SETFIT is more sample efficient and exhibits less variability when trained on a small number of labeled examples.

Thank You!