Портфельная теория Марковица

Голик Тимофей

УРФУ

24.10.2020

Однопериодная модель

Допустим, что вы вложили сумму в x_0 у.е. в какую-то ценную бумагу (например, акции некоторой компании).

Разумно рассматривать стоимость ценной бумаги спустя год как случайную величину $X:\Omega \to \mathbb{R}$, где Ω представляет собой несчетное множеством состояний экономики.

Обозначим за $R:\Omega \to \mathbb{R}$ случайную величину $R(\omega) = \frac{X(\omega) - x_0}{x_0}$, равную годовой доходности первоначального вложения x_0 .

Ещё есть многопериодная модель, в которой интервал (в нашем случае годовой) разбивается N периодов и для каждого считается доходность.

Риски ценных бумаг

Возникает сразу несколько вопросов.

ullet как выглядит и как получить эту X?

Для безрисковых вложений (вклады или депозиты), когда сам банк оглашает годовую доходность R посчитать сумму по счету спустя год не составит труда. В иных случаях сказать о X мы ничего не можем. На практике нам известна именно доходность R.

• Как определить риск для ценной бумаги?

Процитирую из перевода книги К.Л. Чжун:

"Очевидно, мы хотим определить риск так, чтобы можно было решить, являются или нет для нас слишком рискованными определенные финансовые инструменты, скажем, акции, а также понять, какую сумму денег (если вообще что-то) нам следует вложить в них."

Риском ценной бумаги с доходностью R будем считать дисперсию $\mathbb{D}(R)$

• А как ещё можно определить риск?

Один из способов моделирование риска - аппарат функций полезности $^{[1]}$.

Портфель инвестора

В случае M видов ценных бумаг портфелем инвестора или стратегией капиталовложения называется набор $(\mathbf{w}_1,\mathbf{w}_2,...,\mathbf{w}_M)$ из M действительных чисел, удовлетворяющих условию

$$\sum_{i=1}^{M} \mathbf{w}_i = 1$$

Для каждого $i \in \{1,2,...,M\}$ соответствующее \mathbf{w}_i представляет собой долю от всего вложенного капитала, приходящуюся на бумаги вида i.

Пример: Если вы купите 5 и 10 акций компании X и Y за 10 и 20 у.е. соответсвенно, то размер вашего кпаитало влажения это

$$x_0 = 5 * 10 + 10 * 20 = 250$$
 y.e.,

а доли портфеля соответсвенно $\mathbf{w}_1 = \frac{50}{250} = 0.2, \ \mathbf{w}_2 = \frac{200}{250} = 0.8$

Доходность портфеля

$$\sum_{i=1}^{M} \mathbf{w}_i * R_i,$$

где R_i — однопериодная доходность (случайная величина) активов вида i.

Зададимся вопросом получения максимальной выгоды.

Замечание

Как говорил сам Макровиц в своём первом труде посвящённом MPT^[1], составление портфеля происходит в два этапа: **оценка возможных будующих данных** для акций и последующее **определение наилучшего портфеля**. Мы заострим своё внимаение на втором этапе, когда все данные о доходностях, рисках, корреляции нам известны(или кажутся известными).

<u>Подумать:</u> А риск это плохо? Может стоит собирать портфели с минимальным риском?

Диверсификация

Поставим перед собой цель снизить риск имеющегося портфеля.

Пусть $(\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_M)$ - некоторый портфель, имеющий риск $\mathbb{D}\left(\sum_{i=1}^M \mathbf{w}_i R_i\right)$, где R_i — однопериодная доходность (случайная величина) активов вида i. Портфель $(\mathbf{w}_1', \mathbf{w}_2', ..., \mathbf{w}_M')$ называется диверсификацией первоначального портфеля, если

$$\mathbb{D}\left(\sum_{i=1}^{M} \mathbf{w}_{i}' R_{i}\right) < \mathbb{D}\left(\sum_{i=1}^{M} \mathbf{w}_{i} R_{i}\right)$$

Другими словами, диверсификация - перераспределение долей, снижающее риск.

Простая задачка

Рассмотрим M=2 вида активов. Допустим, что

$$\mathbb{D}(R_1) = \mathbb{D}(R_2) > 0,$$

т. е. активы имеют одинаковый риск, а также, что $-1 \le \rho_{12} < 1$, где ρ_{12} - коэффициент корреляции между R_1 и R_2 . Покажем, что если первоначальным портфелем является $(\mathbf{w}_1,\mathbf{w}_2)=(1,0)$, то его диверсификацией будет любой из портфелей вида

$$(\mathbf{w}_1', \mathbf{w}_2') = (\mathbf{w}, 1 - \mathbf{w}),$$
 где $0 < \mathbf{w} < 1$

Простая задачка: доказательство

$$\begin{split} \mathbb{D}(\mathbf{w}R_1 + (1-\mathbf{w})R_2) &= \mathbf{w}^2 \mathbb{D}(R_1) + (1-\mathbf{w})^2 \mathbb{D}(R_2) + 2\mathbf{w}(1-\mathbf{w})cov(R_1, R_2) \\ &= \mathbb{D}(R_1) + 2\mathbf{w}(1-\mathbf{w})[cov(R_1, R_2) - \mathbb{D}(R_1)] \\ &< \mathbb{D}(R_1) \\ &= \mathbb{D}(\mathbf{w}_1 R_1 + \mathbf{w}_2 R_2), \text{ rge } \mathbf{w}_1 = 1, \mathbf{w}_2 = 0 \end{split}$$

Сначала мы расписали дисперсию по формуле, затем перегруппировали слагаемые. Неравенство мы получили из условия

$$\frac{cov(R_1, R_2)}{\sqrt{\mathbb{D}(R_1)\mathbb{D}(R_2)}} = \rho_{12} < 1$$

Вывод прост: если нам предлагают инвестировать в ценные бумаги двух видов, риск которых одинаков, а доходности не образуют линейную зависимость, то вложение в бумаги обоих видов менее рисковано, чем вложение только в один из видов

Подумать: Не клади все яйца в одну корзину.

Непростая задачка

А при каких значениях $\mathbf{w} \in (0,1)$ портфель $(\mathbf{w},1-\mathbf{w})$ из простого примера обладает наименьшим риском? Другими словами, при каком значении \mathbf{w} достигается минимум функции $V(\mathbf{w})$, задаваемой формулой

$$V(\mathbf{w}) = \mathbb{D}(\mathbf{w}R_1 + (1 - \mathbf{w})R_2)?$$

Из выведенного ранее соотношения видим, что V - квадратичная функция относительно ${\bf w}$, имеющая вторую производную

$$V''(\mathbf{w}) = 4\mathbb{D}(R_1)(1 - \rho_{12}) > 0$$

Значит V выпуклая вниз, тогда для точки минимума решим уравнение

$$V'(\mathbf{w}) = 2\mathbb{D}(R_1) - 2(1 - \mathbf{w})\mathbb{D}(R_2) + 2(1 - 2\mathbf{w})\rho_{12}\mathbb{D}(R_1) = 0$$

В результате упрощения за счёт скоращения $2\mathbb{D}(R_1)$ приходим к уравнению

$$\mathbf{w} - (1 - \mathbf{w}) + \rho_{12}(1 - 2\mathbf{w}) = 0 \implies \mathbf{w} = \frac{1}{2}$$

Подумать: Почему мы не рассмотрели случай идеальной положительной корреляции $ho_{12}=1?$

Риск или не риск?

А если в погоне за уменьшением риска мы значитльно уменьшили ожидаемую доходность по сравнению с первоначальной? Можно ли найти какой то баланс?

Экономист Гарри Марковиц был первым, кто предложил $(1952)^{[2]}$, а затем и формализовал алгоритм решения компормиса $(1959)^{[3]}$, за которую он получил Нобелевскую премию(1990):

для заданного размера ожидаемой доходности

$$E\left(\sum_{i=1}^{M} \mathbf{w}_{i} R_{i}\right) = \mu$$

требуется найти портфель $\sum_{i=1}^{M} \mathbf{w}_i = 1$, имеющий наименьший риск

$$\mathbb{D}\left(\sum_{i=1}^{M}\mathbf{w}_{i}R_{i}\right).$$

Зависимость между μ и σ

Построим для портфеля из двух акций зависимость между ожидаемым доходом μ портфеля $(\mathbf{w}_1,\mathbf{w}_2)$ и дисперсией доходности \mathbb{D}_1 и \mathbb{D}_2 акций соответсвенно.

Пусть $\mu_1=E(R_1)$ и $\mu_2=E(R_2)$ — ожидаемый доход первой и второй акцией соответсвенно. Тогда $\mu=E(\mathbf{w}_1R_1+\mathbf{w}_2R_2)=\mathbf{w}_1\mu_1+\mathbf{w}_2\mu_2$. Учитывая, что $\mathbf{w}_1+\mathbf{w}_2=1$ получаем

$$\mathbf{w}_1 = \frac{\mu - \mu_1}{\mu_2 - \mu_1}, \mathbf{w}_2 = \frac{\mu_2 - \mu}{\mu_2 - \mu_1}$$

Тогда

$$\mathbb{D} = \left(\frac{\mu - \mu_1}{\mu_2 - \mu_1}\right)^2 \mathbb{D}_1 + \left(\frac{\mu_2 - \mu}{\mu_2 - \mu_1}\right)^2 \mathbb{D}_2 + 2\left(\frac{\mu - \mu_1}{\mu_2 - \mu_1}\right) \left(\frac{\mu_2 - \mu}{\mu_2 - \mu_1}\right) cov.$$

И если упростить получим уравнение гиперболы в осях $\sigma O \mu$

$$\mathbb{D} = \sigma^2 = \mu^2 A + \mu B + C, A > 0$$

A>0 в силу неравенства о среднем арифметическом и геометрическом.

Эффективная граница

Подумать: при построения графика мы никак не учитываем, что $\mathbf{w}_1 \leq 1$ и $\mathbf{w}_2 \leq 1$. То есть пара $\mathbf{w}_1 = -1$ и $\mathbf{w}_2 = 2$ участвуют в построении графика. Плохо ли это?

Настоящий пример

Рассмотрим пример для двух активов A и B. Пусть $\mu_1=2$, $\mu_2=1$ - ожидаемые доходы акций, $\rho_{12}=0.35$, $\sigma_1=10$, $\sigma_2=6$ - стандартные отклонения доходов акций Тогда перебирая все возможные портфели мы можем получить следующую таблицу

\mathbf{w}_1	\mathbf{w}_2	μ	σ
0	1	1.00	6.00
0.25	0.75	1.25	5.86
0.5	0.5	1.50	6.67
0.75	0.25	1.75	8.15
1	0	2.00	10.00
1.25	1.25 -0.25		12.06

Если кого-то интерисует процесс получения заданных выше параметров (корреляции ρ_{12} , дисперсии σ_1 и σ_2 , матожидания доходов), прошу перейти в раздел redдопматериалов.

Настоящий пример: Эффективная граница

$$\mathbf{w}_2 = -0.25$$
?

Если вы заметили, то у нас в последней строчке $\mathbf{w}_2 = -0.25$.

Если такое случается, то позицию $\mathbf{w}_2 < 0$ называют короткой, а при $\mathbf{w}_1 > 0$ длинной.

На практике, при решении данной задачи, на веса накладывают ограничения

$$l_i \leq \mathbf{w}_i \leq u_i,$$

причем u_i обычно неотрицательны, а l_i могут быть отрицательными.

Когда инвесторы имеют короткую позицию в безрисковых активах, они тем самым, занимают деньги, например, для вложения их в другие ценные бумаги для осуществления своей оптимальной стратегии.

Когда вы кладете деньги на банковский счет, вы **одалживаете** деньги банку, т.е. становитесь обладателем длинной позиции в безрисковых бумагах.

Изменение корреляции

Что произойдет, если мы начнем менять корреляцию от -1 до 1?

<u>Замечание:</u> Не всегда полная отрицательная корреляция дает нам лучший портфель. Смотреть допматериалы.

Подумать: Ой, мы придумали контрпример, ломающий ранее изложенную портфельную теорию.

Случай с n акций

Пусть у нас есть n акций, у которых мы знаем доходность R_i . Мы хотим найти такой вектор $\mathbf{w}=(\mathbf{w}_1,...,\mathbf{w}_M)$, что риск минимален

$$\mathbb{D} = \mathbb{D}\left(\sum_{i=1}^{n} \mathbf{w}_{i} R_{i}\right) = \sum_{i=1}^{n} \mathbf{w}_{i}^{2} \mathbb{D}(R_{i}) + 2 \sum_{1 \leq i \leq j \leq n} \mathbf{w}_{i} \mathbf{w}_{j} cov(R_{i}, R_{j})$$

при выполнении условий

$$E\left(\sum_{i=1}^{n} \mathbf{w}_{i} R_{i}\right) = \mu, \quad \sum_{i=1}^{n} \mathbf{w}_{i} = 1$$

Для удобства обозначим за е вектор состоящий из **ожидаемых доходностей** n акций, то есть $\mathbf{w}^T\mathbf{e}=\mu$. Заметим, что $\mathbb D$ можно записать с помощью матричного перемножения:

$$\mathbb{D} = \mathbf{w}^T \mathbf{V} \mathbf{w} \geq 0$$
, где \mathbf{V} - ковариационная матрица

Заметим, что ${f V}$ - симметричная неотрицальено определённая матрица

Случай с n акций (1)

Будем считать, что из n акций нельзя составить линеную комбинацию, тогда **дисперсия** будет **строго положительна**, тогда матрица ${\bf V}$ - положительно определённая.

Зная всё это, переформулируем нашу задачу на язке матриц и векторов:

$$\min_{\{\mathbf{w}\}} \frac{1}{2} \mathbf{w}^T \mathbf{V} \mathbf{w} \tag{1}$$

при выполнении условий

$$\mathbf{w}^T \mathbf{e} = \mu \quad \mathbf{w}^T \mathbf{1} = 1$$

Константа $\frac{1}{2}$ используется для удобства в дальнейших расчётах и на ответ она не влияет.

Приступим к решению

n акций: Построение алгоритма

Для минимизации дисперсии, которая является фактический функцией от n переменных воспользуемся методом множителей Лагранжа для нахожденя условного экстремума.

Составим функцию Лагранжа для решения (1):

$$\min_{\{\mathbf{w}, \lambda, \gamma\}} L = \frac{1}{2} \mathbf{w}^T \mathbf{V} \mathbf{w} + \lambda (\mu - \mathbf{w}^T \mathbf{e}) + \gamma (1 - \mathbf{w}^T \mathbf{1}), \tag{2}$$

где λ и γ две положительные константы. Составим систему из частных производных:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{V}\mathbf{w}_p - \lambda \mathbf{e} - \gamma \mathbf{1} = 0, \tag{3}$$

$$\frac{\partial L}{\partial \lambda} = \mu - \mathbf{w}_p^{\mathsf{T}} \mathbf{e} = 0, \tag{4}$$

$$\frac{\partial L}{\partial \gamma} = 1 - \mathbf{w}_p^{\mathsf{T}} \mathbf{1} = 0, \tag{5}$$

Где \mathbf{w}_p - решение для (2). Подробнее о получении (3) искать тут [4]

n акций: Построение алгоритма (1)

Выразим из (3) \mathbf{w}_{p} :

$$\mathbf{w}_p = \lambda(\mathbf{V}^{-1}\mathbf{e}) + \gamma(\mathbf{V}^{-1}\mathbf{1}). \tag{6}$$

Домножим обе стороны (6) на e^T :

$$\mu = \lambda(\mathbf{e}^{\top}\mathbf{V}^{-1}\mathbf{e}) + \gamma(\mathbf{e}^{\top}\mathbf{V}^{-1}\mathbf{1}). \tag{7}$$

Домножим обе стороны (6) на $\mathbf{1}^T$:

$$1 = \lambda (\mathbf{1}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{e}) + \gamma (\mathbf{1}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{1}). \tag{8}$$

Решая систему из (7) и (8) найдем λ и γ :

$$\lambda = \frac{C\mu - A}{D},\tag{9}$$

$$\gamma = \frac{B - A\mu}{D},\tag{10}$$

где

$$A = \mathbf{1}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{e} = \mathbf{e}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{1},$$

$$B = \mathbf{e}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{e}, \quad C = \mathbf{1}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{1}, \quad D = BC - A^2.$$

n акций: Построение алгоритма (2)

Заметим сразу, что так как обратная матрица ${f V}^{-1}$ тоже положительно определённая, но тогда B>0 и C>0. Отсюда же следует, что и D>0:

$$(Ae - B1)^{\top} V^{-1} (Ae - B1) = B(BC - A^2)$$

Левая часть строго больше нуля, так как матрица положительно определённая, но тогда $(BC-A^2)=D>0$. Подставляя найденные λ и γ из (9) и (10) в (6) получаем:

$$\mathbf{w_p} = g + h\mu,$$

где

$$g = \frac{1}{D} \left[B(\mathbf{V}^{-1}\mathbf{1}) - A(\mathbf{V}^{-1}\mathbf{e}) \right],$$

$$h = \frac{1}{D} \left[C(\mathbf{V}^{-1}\mathbf{e}) - A(\mathbf{V}^{-1}\mathbf{1}) \right].$$

Теперь мы научились находить наилучший портфель для n акций!

А эффективная граница?

Продолжим идею и заметим, что

$$\sigma^{2}(R_{p}) = \mathbf{w_{p}}^{T} \mathbf{V} \mathbf{w_{p}} = \frac{C}{D} (\mu_{p} - \frac{A}{C})^{2} + \frac{1}{C},$$

где R_p - какой-то портфель на эффективной границе. Но тогда если преобразовать запись:

$$\frac{\sigma^2}{1/C} - \frac{(\mu - A/C)^2}{D/C^2} = 1,$$

что в точности уравнение гиперболы в осях $\sigma O \mu$.

Заметим, что найдя формулу для эффективной границы, мы за одно научились находить диверсификационный портфель - его матожидение равно A/C, а дисперсия $\sqrt{1/C}$.

<u>Подумать:</u> А все ли портфели буду лежать на эффективной границе? Для случая n=2 любой портфель лежал на эффективной границе.

Более подробные вычисления можно посмотреть в 3 главе Foundations For Financial Economics $^{[1]}$.

Пример!

Построим наш график для n=5 акций с ожидаемыми доходностями

$$e = (2, 1, 1.3, 4, 0.5),$$

и ковариационной матрицей

$$\mathsf{W} = \begin{bmatrix} 90 & 22 & 20 & 5 & 10 \\ 22 & 30 & 15 & 20 & 3 \\ 20 & 15 & 40 & 6 & 11 \\ 5 & 20 & 6 & 95 & 1 \\ 10 & 3 & 11 & 1 & 70 \end{bmatrix}.$$

Пример!

Цвета, в которые раскрашены точки(портфели) определяются коэффициентом Шарпа - показатель эффективности портфеля

А если включить безрисковые?

Что произойдет, если мы какую-то часть средств вложим в безрисковые вложения ($\sigma = 0$)?

Теорема Тобина о разделении

Любой оптимальный портфель получается комбинацией безрискового вложения и портфеля на эффективной границе.

Обсудим графическое доказательство.

Пусть мы построили по алгоритму портфель, который для заданной ождаемой доходности μ_p имеет наименьший риск σ_n^2 .

Рассмотрим вложение с ожидаемой доходностью μ_f и дисперсей $\sigma_f^2 = 0$.

Пусть $\mathbf{w} \ge 0$ - доля, сколько средств вложим в портфель. Тогда

$$\sigma_c = \sqrt{(1-\mathbf{w})^2 \sigma_f^2 + \mathbf{w}^2 \sigma_p^2 + 2\mathbf{w}(1-\mathbf{w})\sigma_p \sigma_f \rho_{pf}} = \sqrt{\mathbf{w}^2 \sigma_p^2} = \mathbf{w}\sigma_p$$

Выразим долю $\mathbf{w} = \frac{\sigma_c}{\sigma_n}$ и подставим в матожидание доходности комбинации:

$$\mu_c = \left(1 - \frac{\sigma_c}{\sigma_p}\right) \mu_f + \frac{\sigma_c}{\sigma_p} \mu_p$$

График зависимости μ от σ

Подумать: Проценты по вкладам равны процентам по кредиту?

Тангенциальный портфель

Портфель G называется тангенциальным, так как он в сочетании с безрисковым вложением даёт наибольшую доходность по сравнению с другими вариантами при заданном риске.

Эффективная граница CAL

Нужно учитывать, что вряд-ли банки будут выдавать кредиты под те же проценты, которые выдают на вкладах.

Дополнительные материалы

Расчёта параметров σ , ρ , μ

Пусть мы знаем доходность акции A и B в нескольких состояниях экономики

Состяония экономики	$\mathbf{R}_{\mathbf{A}}$	R_{B}
Подъем	40%	10%
Стабильное	18%	-7%
Спад	-13%	24%

Если считать, что собыятия равновероятны, то ождиаемая доходность

$$\overline{R}_A = \frac{1}{3}(40\% + 18\% - 13\%) = 15\%, \ \overline{R}_B = 9\%.$$

Посчитаем риск и стандартное квадратичное отклонение риска

Состояние	$R_A - \overline{R}_A$	$(\mathbf{R_A} - \overline{\mathbf{R}_A})^2$	$ m R_B - \overline{R}_B$	$(\mathbf{R_B} - \overline{\mathbf{R}_B})^{2}$
Подъем	25%	0.0625	1%	0.0001
Стабильное	3%	0.0009	-16%	0.0256
Спад	-28%	0.0784	15%	0.0225
	σ_A^2	0.0473	σ_B^2	0.0161
	σ_A	21.7%	σ_B	12.7%

Расчёт: Продолжение

Теперь посчитаем ковариацию и корреляцию:

Состояние	$R_A - \overline{R}_A$	$ m R_B - \overline{R}_B$	$(\mathbf{R_A} - \overline{\mathbf{R}_A})(\mathbf{R_B} - \overline{\mathbf{R}_B})$
Подъем	25%	1%	0.0025
Стабильное	3%	-16%	-0.0048
Спад	-28%	15%	-0.0420
		$Cov(R_A,R_B)$	-0.0148
		ρ_{AB}	-0.54

Этот пример показывает, что посчитать входные данные для расчета наилучшего портфеля **долго**, но можно.

Возникает только вопрос: насколько точно полученные данные описывают состояение акции и их корреляцию.

Плохая Диверсификация

Покажем, что в некоторых случаях диверсификация может только ухудшить состояние портфеля.

Пусть у нас есть строго отрицательно коррелирующие акции A и B с дискретным равномерным распределением доходов:

Данные о доходности и рисках

1 1			-
Акция	Возможные μ	μ	σ
Α	3%, 2%, 1%	2%	1%
В	5%, 10%, 15%	10%	5%

Диверсификационный портфель:

ификационный п		
вес w_A	5/6	
вес w_B	1/6	
μ_p	3.3%	
σ_p	0%	

$$\rho = -1$$

Очевидно, что куда лучше вложить средства в акцию B, чем пытаться использовать диверсификационный портфель.

Тут и возникает проблема, что определять риск как дисперсию доходности - плохая идея.

Почему дисперсия не синоним к риску

Приведём основые причины почему риск не равен дисперсии доходности:

- Мы привели простой пример, когда алгоритм нахождения науилучшего портфеля будет выдавать портфели, заведомо не выгодные, за исключением одного портфеля, состоящего только из акции B.
- Обычное определение риска не совпадает с тем, как мы его ввели.

РИСК - Возможность опасности, неудачи.

На самом деле всё это время мы рассматривали именно **волитльность**, а не риск. В в письме 2014 года к акционерам Уоррен Баффетт $^{[5]}$ написал:

That lesson has not customarily been taught in business schools, where volatility is almost universally used as a proxy for risk. Though this pedagogic assumption makes for easy teaching, it is dead wrong: Volatility is far from synonymous with risk.

Такого же мнения придерживается Magnus Pedersen в своё работе Simple Portfolio Optimization That Works! [6]. В ней подробно рассматривается примеры(в том числе непрервыных с.в.), которые показывают противоречия в MPT.

Незакрытые вопросы

Осталось ещё очень много вопросов и тем связанных с МРТ, которые можно обсудить:

- Как следует определять будующие данные об акциях? Конечно можно предположить, что данные о будщем надо собирать из данных о прошлого акции. Однако и тут не всё так просто: Magnus Pedersen в своей работе Simple Portfolio Optimization That Works! 4 глава [6] показывает, что такие наивные прогнозы очень неточны и не позволяют определить, какой портфельный метод действительно работает лучше.
- Какой период должен соблюдаться в обновлении портфеля? Многие книжки упускают этот момент, хотя он важен для получения наибольшей выгоды.
- Марковиц в своём труде $(1952)^{[1]}$ предлагал некоторые геометрические интерпритации получения эффективного портфеля для случая трех и четырех акций.

Замечание от докладчика

Тема опционов и анализ работы Simple Portfolio Optimization That Works! забронирован на матстат!

Источники и ссылки

Источники

- Элементарный курс теории вероятностей. Стохастические процессы и финансовая математика. Чжун К.Л. Глава 9
- Portfolio Theory: Why Diversification Matters
- Лекция университета Кейс-Вестерн-Резерв
- Modern portfolio theory and investment analysis 9 Edition. Edwin J. Elton
- Foundations for financical economics. Chi-fu Huang. Robert H. Litzenberger

Ссылки

- [1] Foundations for financical economics. Chi-fu Huang. Глава 1
- [2] Markowitz, H.M. (March 1952). The Journal of Finance
- [3] Markowitz, H.M. Portfolio Selection. Efficient diversification of investments
- [4] Michael Orlitzky, The derivative of a quadratic form
- [5] Warren Buffett, 2014 letter to shareholders
- [6] Magnus Pedersen, Simple Portfolio Optimization That Works!

Исходный код для графиков можно найти в репозитории F1Soda/MPT-report