

ESCUELA SUPERIOR DE INGENIERÍA EN SISTEMAS COMPUTACIONALES

Práctica Nº 1 "MEDICIÓN DE RESISTENCIA"

Objetivo: Realizar lecturas del valor óhmico de los resistores utilizando el código de colores y comprobar ese valor con el óhmetro y el programa simulador LIVEWIRE.

Equipo a utilizar: Multímetro digital

Material a utilizar: Resistores varios, 3.3 k_{Ω} -- $\frac{1}{2}$ W, 4.7 k_{Ω} -- $\frac{1}{2}$ W, 5.6 k_{Ω} -- $\frac{1}{2}$ W, 3.9 k_{Ω} -- $\frac{1}{2}$ W.

Procedimiento:

- 1. Identificar físicamente el valor óhmico de los 4 resistores, mediante el código de colores y obtener los valores máximos y mínimos según su banda de tolerancia.
- 2. Medir con el óhmetro el valor de los resistores, anotar y tomar imágenes de evidencia.
- 3. Con esta información verificar si el componente (el resistor) está en condiciones óptimas. Registrar valores.
- 4. Conectar los resistores en serie y luego en paralelo.
- 5. Calcular el valor de la resistencia total para ambos casos.
- 6. Medir con el óhmetro esos valores.
- 7. Dibujar el circuito con el simulador LIVEWIRE y obtener una tabla comparativa de los valores antes mencionados.

Código de colores

■Ejemplo: ■

Si los colores son: (Marrón - Negro - Rojo - Oro) su valor en ohmios es:

 $(10 \times 100) \pm 5\% = 1000 \Omega \pm 5\% = 1 \text{K} \Omega \pm 5\%$

Tolerancia de ±5%

Valores comerciales de los resistores

10	x 100	x 1.000 (K)	x 10.000 (10K)	x 100.000 (100K)
Ω 0	100 Ω	1 ΚΩ	10 ΚΩ	100 KΩ
2Ω	120 Ω	1K2 Ω	$12 \text{ K}\Omega$	120 KΩ
5Ω	150 Ω	1Κ5 Ω	$15 \text{ K}\Omega$	150 KΩ
8Ω	180 Ω	1K8 Ω	18 KΩ	180 KΩ
2Ω	220 Ω	2K2 Ω	$22 \text{ K}\Omega$	220 KΩ
7Ω	270 Ω	2K7 Ω	$27~\mathrm{K}\Omega$	270 KΩ
3Ω	330 Ω	зКз Ω	$33 \text{ K}\Omega$	330 KΩ
9Ω	390Ω	$3K9 \Omega$	$39 \text{ K}\Omega$	390 KΩ
7Ω	470 Ω	4K7 Ω	$47~\mathrm{K}\Omega$	470 KΩ
1Ω	510 Ω	5K1 Ω	51 KΩ	510 KΩ
6Ω	560 Ω	5K6 Ω	$56 \text{ K}\Omega$	560 KΩ
8Ω	680 ♀	6K8 Ω	$68 \text{ K}\Omega$	680 KΩ
2Ω	820 Q	8K2 Ω	82 KΩ	820 KΩ