Esercizio codice correzione Hamming

Si consideri un codice di correzione di Hamming su 16 bit. Dire quale sequenza di bit è memorizzata in memoria se si devono memorizzare i seguenti 16 bit

0101110101011010

di dati.

Esercizio codice correzione Hamming

Soluzione:

I bit dati devono essere disposti secondo il seguente schema:

Per determinare il valore del bit di controllo Cx, si deve effettuare lo XOR dei bit dati in posizioni la cui rappresentazione binaria ha l'x-esimo bit da destra a 1.

C1: posizioni dispari;

C2: 3,6,7,10,11,14,15,18,19

Esercizio codice correzione Hamming

C4: 5,6,7,12,13,14,15,20,21 C8: 9,10,11,12,13,14,15 C16: 17,18,19,20,21

Quindi la soluzione è:

21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
D16	D15	D14	D13	D12		D11	D10	D9	D8	D7	D6	D5		D4	D3	D2		D1		
					C16								C8				C4		C2	C1
0	1	0	1	1	1	1	0	1	0	1	0	1	0	1	0	1	1	0	0	1

Esercizio su dischi magnetici

Sia dato un disco rigido con le seguenti caratteristiche:

- capacità di 512GB;
- 4 piatti (8 facce);
- 32768 tracce per faccia e 4096 settori per traccia;
- velocità di rotazione di 7200 rpm;
- tempo medio di posizionamento della testina di 9,5 ms.

Si calcoli il tempo totale medio di trasferimento (in millisecondi, e senza contare l'attesa che il dispositivo ed uno dei suoi canali sia libero; sul libro riferito come tempo di accesso) che occorre per trasferire 64KB, assumendo che i byte da trasferire siano memorizzati:

- a) in settori contigui di una singola traccia;
- b) in settori contigui di un cilindro.

Esercizio su dischi magnetici

Soluzione a): Sappiamo che

$$T_S = 9.5 \text{ ms e } T_L = (1000/(7200/60)) / 2 \approx 4.166667 \text{ ms}$$

e che il tempo totale di trasferimento è dato da

$$T = T_S + T_L + T_t$$

dove il tempo di trasferimento (in millisecondi) è dato dalla formula

$$T_{t} = \frac{b}{rN} \times 1000$$

$$b \text{ #byte da trasferire } N \text{ #byte per traccia } r \text{ velocità rotazione } (in rotazioni per sec.)}$$

Il numero di byte per faccia sarà dato dalla capacità totale del disco diviso il numero di facce

$$512GB / 8 = 2^{39} / 2^3 = 2^{36}$$

Esercizio su dischi magnetici

Il numero di byte per traccia N sarà dato dalla capacità totale di una faccia diviso il numero di tracce (32768 = 2^{15})

$$N = 2^{36} / 2^{15} = 2^{21}$$

Quindi

$$T_t = [1000 \times 64\text{KB}] / [(7200/60) \times 2^{21}]$$

= $[1000 \times 2^{16}] / [(7200/60) \times 2^{21}]$
= 0.260417 ms

Pertanto il tempo totale di accesso è

$$T = 9.5 + 4.166667 + 0.260417 = 13.927083$$
 ms

Soluzione b): come nel caso a), però essendo i settori memorizzati in un cilindro, si possono leggere simultaneamente i settori posti su tracce collocate nella medesima posizione di facce diverse. Pertanto il tempo di trasferimento dei 64KB deve essere diviso per 8 (numero facce):

$$T = 9.5 + 4.166667 + 0.260417/8 = 13.699219 \text{ ms}$$