GEOG 5680 Introduction to R

09: Probabilities and Inference tests

Simon Brewer

Geography Department University of Utah Salt Lake City, Utah 84112 simon.brewer@geog.utah.edu

May 04, 2020

S. Brewer (Univ. Utah)

Probability

What is this thing called probability?

- Mathematical description of uncertainty
- Tightly linked to statistics for inference
 - Model of population from samples
- Several functions in R for estimating probability
- Also found as part of the inference in test in other functions (e.g. ANOVA, linear models, etc)

Probability

What is this thing called probability?

- Probability shows what outcomes might occur given a model
 - Given the animal, what are the footprints?

Probability

What is this thing called probability?

- Probability shows what outcomes might occur given a model
 - Given the animal, what are the footprints?
- Statistics show what models might result in a given outcome
 - Given the footprints, what is the animal?

Distributions in R

- R comes as standard with approx. 20 well-known probability distribution functions
- Including normal, uniform, binomial, log-normal, beta, gamma, t, F, χ^2 etc
- Add-on packages include approx 100+ extra distributions
- Most distribution come with four functions:
 - d* density functions (e.g. dnorm())
 - p* probability distribution functions (e.g. pnorm())
 - q* quantile functions (e.g. qnorm())
 - r* random number generation (e.g. rnorm())
- Look at examples with Poisson (discrete, count) and normal (continuous)

- Count data ($\lambda = \text{mean count}$)
- d*: density function, gives the height of the density curve for a given value
- E.g what is the probability of getting 6 trees in a quadrat?

```
dpois(6,lambda=4)
## [1] 0.1041956
```


- Count data ($\lambda = \text{mean count}$)
- p*: probability dist. function, gives the integral above or below that value
- E.g what is the probability of getting ≤ 6 trees in a quadrat?

- Count data ($\lambda = \text{mean count}$)
- q*: quantile function, gives the values of X corresponding to a percentile probability
- E.g how many trees do we expect at the 10 percentile of the distribution?

```
qpois(0.1,lambda=4)
## [1] 2
```


- Count data ($\lambda = \text{mean count}$)
- q*: quantile function, gives the values of X corresponding to a percentile probability
- E.g what is the 95% CI on the number of trees we expect?

```
qpois(c(0.025,0.975),lambda=4)
## [1] 1 8
```


- Count data ($\lambda = \text{mean count}$)
- r*: random function, generates random samples from the distribution
- E.g how many trees might be found in the next four plots?

```
rpois(4,lambda=4)
## [1] 4 4 6 3
rpois(4,lambda=4)
## [1] 4 5 4 2
```

Number of trees (1000 random samples) □ rpois Density 0.10

- Continuous data ($\mu = \text{mean}, \sigma =$ std.dev.)
- d*: density function, gives the height of the density curve for a given value
- E.g what is the probability density for a height of 150cm?

```
dnorm(150.mean = 160. sd=15)
      0.02129653
```

Student height (prob. density)

S. Brewer (Univ. Utah)

GEOG 5680 Summer '20

May 04, 2020

- Continuous data ($\mu = \text{mean}, \sigma =$ std.dev.)
- p*: probability dist. function, gives the integral above or below that value
- E.g what is the probability of a student being smaller than 140cm?

```
pnorm(140, 160, 15,
      lower.tail = TRUE)
  [1] 0.09121122
```

Student height (prob. density)

S. Brewer (Univ. Utah)

GEOG 5680 Summer '20

May 04, 2020

- Continuous data ($\mu = \text{mean}, \sigma =$ std.dev.)
- q*: quantile function, gives the values of X corresponding to a percentile probability
- E.g what cutoff in height gives me the top 5% of students?

```
qnorm(0.95, 160, 15)
   [1] 184,6728
```

Student height (prob. density)

S. Brewer (Univ. Utah)

- Continuous data ($\mu = \text{mean}, \sigma =$ std.dev.)
- r*: random function, generates samples from the distribution
- E.g heights of 3 random students?

```
rnorm(3, 160, 15)
   [1] 145.6133 168.2708 153.2355
rnorm(3, 160, 15)
      143.2768 159.0669 166.8958
```


Statistical Inference

Statistical Inference and hypothesis testing

- Test some assumptions about a population of interest, using data drawn or sampled from that population
- Compared to descriptive statistics, inference gives significance of a statistical observation
- Examples
 - Do two sets of observations have the same characteristics (mean, variance)?
 - Are two variables correlated among a set of observations?
 - Are observations distributed equally or not?

- A t-test is used to compare an observed sample mean (μ_1) to a hypothesized value (μ_0) (one sample t-test)
- Or to compare two sample means (two sample *t*-test)

$$t = \frac{\mu_1 - \mu_2}{s_{\mu_1 - \mu_2}} \tag{1}$$

- One-tailed ($\mu_1 < \mu_2$ or $\mu_1 > \mu_2$)
- Two-tailed $(\mu_1 \neq \mu_2)$

S. Brewer (Univ. Utah) GEOG 5680 Summer '20 May 04, 2020 15 / 28

- Two samples (n = 50) of actors who auditioned for the role of Aragorn in Lord of the Rings in two different locations
- Is there a difference in heights?

- Is there a difference in mean height?
- Loc. 1 mean = 179.54
- Loc. 2 mean = 178.07
- Difference = 1.46
- t-statistic = 0.6886

- Compare *t*-statistic to *t*-distribution
- Represents the range of *t*-statistics expected through normal random variation
- If observed t has a low probability (i.e. in one of the tails), it is less likely to have occured by chance (p-value)

S. Brewer (Univ. Utah)

- Two-tail test:
- The p-value represents the probability that this difference (positive or negative) could have occurred by chance
 - ullet p-value is integral of curve <-|t| plus integral of curve >|t|
 - p-value = 0.4929

t-test in R using the t.test() function:

```
t.test(apop1, apop2, alternative = "two.sided")
##
   Welch Two Sample t-test
##
## data: apop1 and apop2
## t = 0.68864, df = 87.394, p-value = 0.4929
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.761618 5.690039
## sample estimates:
## mean of x mean of y
## 179.5392 178.0750
```

S. Brewer (Univ. Utah)

- If we also had 50 actors who auditioned for Gimli + 50 who auditioned for Aragorn
- Difference = 22.48
- t-statistic = 9.2512

- The p-value represents the probability that this value (or larger) could have occurred by chance
- Two-tail test:
 - p-value is integral of curve < -|t| plus integral of curve > |t|
 - *p*-value = $1.4492108 \times 10^{-14}$

t-test in R using the t.test() function:

```
t.test(aragorn, gimli, alternative = "two.sided")
##
   Welch Two Sample t-test
##
## data: aragorn and gimli
## t = 9.2512, df = 86.451, p-value = 1.449e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 17.64770 27.30697
## sample estimates:
## mean of x mean of y
## 176.2119 153.7345
```

S. Brewer (Univ. Utah)

t-test in R using the t.test() function (one-sided):

S. Brewer (Univ. Utah)

ANOVA

- What if we have more than two groups?
- If we also have 50 actors who auditioned for Legolas

ANOVA

The *F*-statistic is used to test for significance in the split of variance:

$$F = \frac{BSS/(t-1)}{ESS/(n-t-1)}$$
 (2)

- Ratio of how much of the variance is between the groups to how much is within the groups
- Compare to an F-distribution, using degrees of freedom based on the number of groups (t) and the number of observations (n)

S. Brewer (Univ. Utah) GEOG 5680 Summer '20 May 04, 2020 26 / 28

ANOVA

• We can use the R function aov() to calculate ANOVA for the three groups. Note this uses the model syntax (\sim)

S. Brewer (Univ. Utah)

Other inference tests

- F-test: test if difference in ratio of variance of two samples
 - var.test()
- Wilcoxon rank sum test: Non-parametric test for the equality of medians
 - wilcox.test()
- Correlation tests: tests of covariation
 - cor.test()
 - Pearson's vs. Spearman's
- Chi-squared (χ^2) tests: tests of distribution and association
 - chisq.test()

