Scilab Textbook Companion for Electronics Instrumentation and Measurements by U. S. Shah¹

Created by
Vivek Maindola
B.TECH
Electronics Engineering
Uttrakhand Technical University
College Teacher
Arshad Khan
Cross-Checked by
Lavitha Pereira

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronics Instrumentation and Measurements

Author: U. S. Shah

Publisher: Tech-max Publication, Pune

Edition: 2

Year: 2011

ISBN: 978-81-8492-334-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Measurement Errors	5
3	Electromechanical Instruments	30
4	Analog Electronic Volt Ohm Milliammeter	43
5	Digital Voltmeters	50
6	Digital Frequency Meter	53
7	Low High and Precise Resistance Measurement	55
8	Inductance and Capacitance Measurements	62
9	Cathode Ray Oscilloscope	72
10	special oscilloscopes	78
11	Instrument Callibration	80
12	Recorders	82

List of Scilab Codes

Exa 2.3.1	Precision of the 5th measurement
Exa 2.3.2.a	Absolute Error
Exa 2.3.2.b	Percentage Error
Exa 2.3.2.c	Relative Accuracy
Exa 2.3.2.d	Percentage Accuracy
Exa 2.3.2.e	Percentage error of full scale reading
Exa 2.3.3	Maximum Error
Exa 2.3.4	Sesitivity and Deflection Factor
Exa 2.3.5	Resolution
Exa 2.3.6	Resolution
Exa 2.6.1	Relative Error
Exa 2.6.2	Limiting Error and Relative Error
Exa 2.6.3	Limiting Error
Exa 2.6.4	Limiting Error
Exa 2.6.5	Magnitude and Limiting Error
Exa 2.6.6	Error
Exa 2.6.7	Limiting Error
Exa 2.6.8	Limiting Error
Exa 2.7.1.a	Arithmetic mean
Exa 2.7.1.b	Deviation
Exa 2.7.1.c	Algebric Sum of Deviation
Exa 2.7.1.d	Standard Deviation
Exa 2.7.2.a	Arithmetic Mean
	Deviation
Exa 2.7.2.c	Standard Deviation
Exa 2.7.2.d	Probable Error
Exa 2.7.3.a	Arithmetic Mean
Exa 2.7.3.b	Average Deviation

Exa	2.7.3.c	Standard Deviation
Exa	2.7.3.d	Probable Error
Exa	2.7.4.a	Arithmetic Mean
		Average Deviation
Exa	2.7.4.c	Standard Deviation
		Probable Error
Exa	2.8.1	Arithmetic mean and variance
Exa	2.8.2	Arithmetic Mean and Standard Deviation 26
Exa	2.8.3	Mean Value and Standard deviation
Exa	2.8.4.a	Apparent Resistance
		Actual Resistance
		Loading Effect
Exa	2.8.5	Limiting Error
Exa	3.2.1	Torque
Exa	3.2.2	Number of Turns
Exa	3.2.3	Resistance
Exa	3.2.4	Diameter
Exa	3.4.1	Shunt Resistor
Exa	3.4.2	Multiplying power and Shunt Resistot
Exa	3.5.1	Shunt Resistance
Exa	3.6.1	Resistance
Exa	3.9.1	Multiplier
Exa	3.9.2	Current
Exa	3.10.1	Multiplier
		Multiplier
		Accurate Value of Voltage
		aVoltage
		Woltage
		cVoltage
		Error
		Shunt Resistance
	4.2.1	Peak Amplitude
		Resistance
		form factor and error
		Form Factor of The Voltage 44

Exa	4.14.2.	Error
Exa	4.19.1	Current
		Current
Exa	4.19.3	Resistance
Exa	4.19.4	Current
		Resistance
Exa	4.26.3	Shunt Resistance and Current
Exa	5.10.1	Resolution
Exa	5.10.2	Resolution
Exa	5.10.3	Resolution
		Time Interval
		Gate Time
Exa	6.17.2	Error
Exa	6.17.3	Accuracy
Exa	7.5.1	Resistance
Exa	7.5.2	Current
Exa	7.5.3	Deflection
Exa	7.5.4	Current
Exa	7.5.5	voltage
Exa	7.5.6	Resistance
Exa	7.5.7	Deflection
Exa	7.5.8	Resistance and Limiting Error
Exa	7.5.9	Resistance
Exa	7.5.10	Resistance
Exa	7.5.11	Resistance
Exa	7.5.12	Ammeter and Voltmeter 61
Exa	8.5.1	Error
Exa	8.5.2	Capacitance and Inductance 62
Exa	8.6.1	Resistance and Capacitance 63
Exa	8.6.2	Capacitance and Dissipation Factor 64
Exa	8.6.3	Resistance and Capacitance 64
Exa	8.6.4	Inductance and Resistance
Exa	8.6.5	Resistance and Inductance
Exa	8.6.6	Capacitance Resistance and Dissipation Factor 66
	8.6.7	Resistance and Relative Permittivity 66
	8.6.8	Resistance and Capacitance 67
	8.6.9	Capacitance and Inductance
	8.6.10	•

Exa	8.6.11	Capacitance									
Exa	8.6.12	Capacitance									
Exa	8.6.13	Capacitance									
Exa	8.7.5	Resistance and In-	ductan	ce							
Exa	9.14.1	Peak to Peak Am	plitude	and	rms	Val	ue				
Exa	9.14.2	Time Interval									
Exa	9.14.3	Period and Freque	ency .								
		Frequency									
		Bandwidth									
Exa	9.17.2	Rise Time									
Exa	9.17.3	Rise Time									
		rise time									
Exa	9.17.5	rise time									
Exa	9.17.6	capacitance									
		input impedence									
		minimum time div									
		rise time									
		sampling rate									
		sampling rate									
		error									
		error									
		chart speed									

Chapter 2

Measurement Errors

Scilab code Exa 2.3.1 Precision of the 5th measurement

```
1 //Example 2.3.1: precision of the 5th measurement
 2 clc;
3 clear;
4 close;
 5 //given data :
6 format('v',6)
7 X1 = 98;
8 X2 = 101;
9 X3 = 102;
10 \quad X4 = 97;
11 X5 = 101;
12 X6 = 100;
13 \quad X7 = 103;
14 X8 = 98;
15 \times 9 = 106;
16 \times 10 = 99;
17 Xn_bar = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10)/10;
18 Xn=101; // value of 5th measurement
19 P=(1-abs((Xn-Xn_bar)/Xn_bar))*100;
20 disp(P, "precision of the 5th measurement, P(\%) = ")
```

Scilab code Exa 2.3.2.a Absolute Error

```
1 //Example 2.3.2.a: absolute error
2 clc;
3 clear;
4 close;
5 //given data :
6 Ae=80; // in V
7 Am=79; // in V
8 e=Ae-Am;
9 disp(e,"absolute error, e(V) = ")
```

Scilab code Exa 2.3.2.b Percentage Error

```
1 //Example 2.3.2.b: error
2 clc;
3 clear;
4 close;
5 //given data:
6 Ae=80; // in V
7 Am=79; // in V
8 e=Ae-Am;
9 error1=(e/Ae)*100;
10 disp(error1, "error(%) = ")
```

Scilab code Exa 2.3.2.c Relative Accuracy

```
1 //Example 2.3.2.c: relative accuracy
2 clc;
```

```
3 clear;
4 close;
5 //given data:
6 format('v',7)
7 Ae=80; // in V
8 Am=79; // in V
9 e=Ae-Am;
10 error1=(e/Ae)*100;
11 A=(1-abs(e/Ae));
12 disp(A,"relative accuracy, A = ")
```

Scilab code Exa 2.3.2.d Percentage Accuracy

```
1 //Example 2.3.2.d: % accuracy
2 clc;
3 clear;
4 close;
5 //given data :
6 Ae=80; // in V
7 Am=79; // in V
8 e=Ae-Am;
9 error1=(e/Ae)*100;
10 A=(1-abs(e/Ae));
11 accuracy=A*100;
12 disp(accuracy, "accuracy(%) = ")
```

Scilab code Exa 2.3.2.e Percentage error of full scale reading

```
1 //Example 2.3.2.e: % error
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 Ae=80; // in V
7 Am=79; // in V
8 e=Ae-Am;
9 f=100; // full scale deflection
10 error1=(e/Ae)*100;
11 A=(1-abs(e/Ae));
12 accuracy=A*100;
13 P_error=(e/f)*100;
14 disp(P_error, "% error(%) = ")
```

Scilab code Exa 2.3.3 Maximum Error

```
1 //Example 2.3.3: maximum error
2 clc;
3 clear;
4 close;
5 //given data :
6 V1=100; // in volts
7 V2=200; //in volts
8 V=V2-V1;
9 A=.25; //may be in %
10 max_error=(A/100)*V;
11 disp(max_error, "maximum error(V) = ")
```

Scilab code Exa 2.3.4 Sesitivity and Deflection Factor

```
1 //Example 2.3.4: sensitivity and deflection error
2 clc;
3 clear;
4 close;
5 //given data :
6 C=4;// change in output in mm
7 M=8;// magnitude of input in ohm
```

```
8 S=C/M;
9 disp(S,"sensitivity,S(mm/ohm) = ")
10 D=M/C;
11 disp(D,"deflection factor,D(ohm/mm) = ")
```

Scilab code Exa 2.3.5 Resolution

```
//Example 2.3.5: resolution
clc;
clear;
close;
//given data :
V=200;// full scale reading in volts
N=100;// number of divisions
Scale_div=V/N;
R=(1/10)*Scale_div;
disp(R, "resolution ,R(V) = ")
```

Scilab code Exa 2.3.6 Resolution

```
1 //Example 2.3.6: resolution
2 clc;
3 clear;
4 close;
5 //given data :
6 V=9.999;// full scale read out in volt
7 c=9999;// range from 0 to 9999
8 R=(1/c)*V*10^3;
9 disp(R,"resolution ,R(mV) = ")
```

Scilab code Exa 2.6.1 Relative Error

```
1 //Example 2.6.1: magnitude and relative error
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 R1 = 15; //ohm
8 E1=R1*5/100; // limiting error for R1
9 R2=33; //ohm
10 E2=R2*2/100; // limiting error for R2
11 R3=75; //ohm
12 E3=R3*5/100; // limiting error for R3
13 RT=R1+R2+R3; //ohm(in series)
14 ET=E1+E2+E3; // limiting error for RT
15 disp("For series connection, magnitude is "+string(
     RT) +" ohm & limiting error is "+string(ET)+"
     ohm.");
16 Epr=ET/RT*100; //\%
17 disp(Epr, "Percent relative error (%): ");
```

Scilab code Exa 2.6.2 Limiting Error and Relative Error

```
//Example 2.6.2: magnitude and relative error
clc;
clear;
close;
//given data:
R1=36;//ohm
E1=5;// limiting error for R1
R2=75;//ohm
E2=5;// limiting error for R2
RT=(R1*R2)/(R1+R2);//ohm(in parallel)
EP1=E1+E2;// limiting error
```

Scilab code Exa 2.6.3 Limiting Error

```
1 //Example 2.6.3: limiting error
2 clc;
3 clear;
4 close;
5 vr=40; //reading of voltmeter in volts
6 v=50; //rane in volts
7 va=50; //ammeeter reading in mA
8 i=125; //range in mA
9 fsd=2;//accurace in percentage in
10 dv=(2/100)*v;//limiting error of voltmeter
11 da=(2/100)*i;//liming error of the ammeter in mA
12 erv=dv/vr; //relative limiting error in voltmeter
     reading
13 eri=da/i;//relative limiting error in ammeter
     reading
14 et=erv+eri;//
15 pet=et*100; //percentage limiting error of the power
      calcultaed
16 disp(pet," percentage limiting error of the power
     calcultaed ( )")
```

Scilab code Exa 2.6.4 Limiting Error

```
1 //Example 2.6.4: limiting error
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 r1=120;//in ohms
7 er1=0.5;//limiting error in resistance 1 in ohms
8 r2=2;//in amperes
9 er2=0.02;//limiting error in amperes
10 e1=er2/r2;//limiting error in current
11 e2=er1/r1;//limiting error in resistance
12 et=(2*e1+e2);//totak error
13 etp=et*100;//percentage limiting error in the value of power dissipation in ")
```

Scilab code Exa 2.6.5 Magnitude and Limiting Error

```
1 //Example 2.6.5: magnitude and limiting error
2 clc;
3 clear;
4 close;
5 format('v',10)
6 \text{ r1=120;}//\text{in ohms}
7 er1=0.1; //limiting error in resistance 1 in ohms
8 \text{ r2=2700; } //\text{in ohms}
9 er2=0.5; //limiting error in resistance 2 in ohms
10 r3=470; //in ohms
11 er3=0.5; //limiting error in resistance 3 in ohms
12 rxm=(r2*r3)/r1;//magnitude of unknown resistance in
      ohms
13 rxe=(er1+er2+er3); // error
14 er=(rxe*rxm)/100;//relative error
15 disp(rxm*10^-3, magnitude of unknown resistance in
      kilo ohms")
16 disp(er, "relative limiting error in ohms is ( )")
```

Scilab code Exa 2.6.6 Error

```
1 //Example 2.6.6. // absolute error, % error,
      relative error, % accuracy and % error of full
      scale reading
2 clc;
3 clear;
4 close;
5 //given data :
6 Ae=80; // in volt
7 Am=79; // in volt
8 fsd=100; //full scale reading in volt
9 \quad e = Ae - Am;
10 disp(e, "absolute error, e(V) = ")
11 error1=(e/Ae)*100;
12 disp(error1, "% error (%) = ")
13 A=1-abs(e/Ae);
14 disp(A, "relative accuracy, A = ")
15 p_accuracy = A*100;
16 disp(p_accuracy, "% accuracy (%)=")
17 error2=(e/fsd)*100;
18 disp(error2, "% error expressed as percentage of full
       scale reading, (\%) = ")
```

Scilab code Exa 2.6.7 Limiting Error

```
1 //Example 2.6.7. // limiting error
2 clc;
3 clear;
```

```
4 close;
5 //given data :
6 format('v',7)
7 fsd=100; // in volts
8 A=1; // (+ve or -ve) in %
9 del_A=(A/100)*fsd;
10 As=15; //in volts
11 e1=del_A/As;
12 e=e1*100;
13 disp(e,"limiting error, e(%) = ")
```

Scilab code Exa 2.6.8 Limiting Error

```
1 //Example 2.6.8. // limiting value of current and \%
      limiting error
2 clc;
3 clear;
4 close;
5 //given data :
6 As=2.5; // in A
7 fsd=10; // full scale reading in A
8 A=1.5/100;
9 del_A=A*fsd;
10 At1=As+del_A;
11 At2=As-del_A;
12 disp(At1, "limiting value of current, At1(A) = ")
13 disp(At2, "limiting value of current, At2(A) = ")
14 e = (del_A/As) * 100;
15 disp(e, "percentage limiting error, e(\%) = ")
```

Scilab code Exa 2.7.1.a Arithmetic mean

```
1 //Example 2.7.1.a://ARITHEMATIC MEAN
```

```
2 clc;
3 clear;
4 format('v',6)
5 q=[49.7,50.1,50.2,49.6,49.7];//
6 AM= mean(q);//arithematic mean in mm
7 for i= 1:5
8    qb(i)= q(i)-AM;
9 end
10 Q= [qb(1),qb(2),qb(3),qb(4),qb(5)];//
11 AV=(-qb(1)-qb(2)+qb(3)+qb(4)-qb(5))/10;//
12 SD=stdev(Q);//standard deviation
13 V=SD^2;//variance
14 disp(AM,"arithematic mean is")
```

Scilab code Exa 2.7.1.b Deviation

```
1 //Example 2.7.1.b://deviation
2 clc;
3 clear;
4 q=[49.7,50.1,50.2,49.6,49.7];//
5 AM= mean(q);//arithematic mean in mm
6 for i= 1:5
7 qb(i)= q(i)-AM;
8 disp(qb(i),"deviation in "+string (q(i))+" is")
9 end
```

Scilab code Exa 2.7.1.c Algebric Sum of Deviation

```
1 //Example 2.7.1.c://algebric sum of deviation
2 clc;
3 clear;
4 format('v',2)
5 q=[49.7,50.1,50.2,49.6,49.7];//
```

```
6 AM= mean(q); // arithematic mean in mm
7 for i= 1:5
8    qb(i) = q(i) - AM;
9 end
10 asm1 = qb(1) + qb(4) + qb(5); //
11 asm2 = qb(2) + qb(3); //
12 asm = asm1 + asm2;
13 disp(asm, "algebric sum of deviation is")
```

Scilab code Exa 2.7.1.d Standard Deviation

```
//Example 2.7.1.d://standard deviation
clc;
clc;
clear;
format('v',5)
q=[49.7,50.1,50.2,49.6,49.7];//
AM= mean(q);//arithematic mean in mm
for i= 1:5
    qb(i)= q(i)-AM;
end
Q= [qb(1),qb(2),qb(3),qb(4),qb(5)];//
SD=stdev(Q);//standard deviation
disp(SD,"standard deviation is")
```

Scilab code Exa 2.7.2.a Arithmetic Mean

```
6 AM= mean(q); // arithematic mean in mm
7 for i= 1:10
8     qb(i)= q(i)-AM;
9 end
10 Q= [qb(1),qb(2),qb(3),qb(4),qb(5)]; //
11 AV=(-qb(1)-qb(2)+qb(3)+qb(4)-qb(5))/10; //
12 SD=stdev(Q); // standard deviation
13 V=SD^2; // variance
14 disp(AM, "arithematic mean is in volts")
```

Scilab code Exa 2.7.2.b Deviation

Scilab code Exa 2.7.2.c Standard Deviation

```
1 //Example 2.7.2.c://standard deviation
2 clc;
3 clear;
4 format('v',6)
```

Scilab code Exa 2.7.2.d Probable Error

```
1 //Example 2.7.2.d://probable error
2 clc;
3 clear;
4 n=10; //
5 format('v',7)
6 q
      = [101.2, 101.4, 101.7, 101.3, 101.3, 101.2, 101.0, 101.3, 101.5, 101.1];
7 AM = mean(q); //arithematic mean in mm
8 \text{ for } i = 1:10
9
       qb(i) = q(i) - AM;
10
11 end
12 Q = [qb(1), qb(2), qb(3), qb(4), qb(5), qb(6), qb(7), qb(8),
      qb(9),qb(10)];//
13 SD=stdev(Q);//standard deviation
14 Pe1=0.6745*SD; // probable error of one reading
15 probable_error=Pe1/sqrt(n-1);
16 disp(Pe1, "probable error of one reading(V) = ")
17 disp(probable_error, "probable error of mean(V) = ")
```

Scilab code Exa 2.7.3.a Arithmetic Mean

```
1 //Example 2.7.3.a: Arithmetic mean
2 clc;
 3 clear;
4 close;
 5 //given data :
6 X1 = 147.2; // in nF
7 \text{ X2=147.4; // in nF}
8 \text{ X3=147.9;} // \text{ in } \text{nF}
9 X4 = 148.1; // in nF
10 X5 = 148.1; // in nF
11 X6 = 147.5; // in nF
12 X7 = 147.6; // in nF
13 X8 = 147.4; // in nF
14 X9 = 147.6; // in nF
15 X10=147.5; // in nF
16 AM = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10) / 10;
17 disp(AM, "Arithmetic mean, AM(nF) = ")
```

Scilab code Exa 2.7.3.b Average Deviation

```
1 //Example 2.7.3.b: Average deviation
2 clc;
3 clear;
4 close;
5 //given data:
6 n=10;
7 X1=147.2;// in nF
8 X2=147.4;// in nF
9 X3=147.9;// in nF
```

```
10 X4 = 148.1; // in nF
11 X5 = 148.1; // in nF
12 X6 = 147.5; // in nF
13 X7 = 147.6; // in nF
14 X8 = 147.4; // in nF
15 X9 = 147.6; // in nF
16 X10=147.5; // in nF
17 AM = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10) / n;
18 d1 = X1 - AM;
19 d2 = X2 - AM;
20 \, d3 = X3 - AM;
21 d4 = X4 - AM;
22 d5 = X5 - AM;
23 d6 = X6 - AM;
24 d7 = X7 - AM;
25 	ext{ d8=X8-AM};
26 	ext{ d9} = X9 - AM;
27 \quad d10 = X10 - AM;
28 Average_deviation=(abs(d1)+abs(d2)+abs(d3)+abs(d4)+
       abs(d5) + abs(d5) + abs(d6) + abs(d7) + abs(d8) + abs(d9) +
       abs(d10))/n;
29 disp(Average_deviation, "Average_deviation(nF) = ")
30 // answer is wrong in book
```

Scilab code Exa 2.7.3.c Standard Deviation

```
1 //Example 2.7.3.c: Standard deviation
2 clc;
3 clear;
4 close;
5 //given data :
6 n=10;
7 X1=147.2;// in nF
8 X2=147.4;// in nF
9 X3=147.9;// in nF
```

```
10 X4 = 148.1; // in nF
11 X5 = 148.1; // in nF
12 X6 = 147.5; // in nF
13 X7 = 147.6; // in nF
14 X8 = 147.4; // in nF
15 X9 = 147.6; // in nF
16 X10=147.5; // in nF
17 AM = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10) / n;
18 d1 = X1 - AM;
19 d2 = X2 - AM;
20 \, d3 = X3 - AM;
21 d4 = X4 - AM;
22 d5 = X5 - AM;
23 d6 = X6 - AM;
24 d7 = X7 - AM;
25 \, d8 = X8 - AM;
26 	ext{ d9} = X9 - AM;
27 \quad d10 = X10 - AM;
d9^2+d10^2)/(n-1);
29 disp(sigma, "Standard deviation(nF) = ")
```

Scilab code Exa 2.7.3.d Probable Error

```
1 //Example 2.7.3.d: Probable error
2 clc;
3 clear;
4 close;
5 //given data:
6 n=10;
7 X1=147.2;// in nF
8 X2=147.4;// in nF
9 X3=147.9;// in nF
10 X4=148.1;// in nF
```

```
12 X6 = 147.5; // in nF
13 X7 = 147.6; // in nF
14 X8 = 147.4; // in nF
15 X9 = 147.6; // in nF
16 X10=147.5; // in nF
17 AM = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10) / n;
18 d1 = X1 - AM;
19 d2 = X2 - AM;
20 \quad d3 = X3 - AM;
21 d4 = X4 - AM;
22 	ext{d5=X5-AM};
23 \quad d6 = X6 - AM;
24 d7 = X7 - AM;
25 	ext{ d8=X8-AM};
26 	ext{d9} = X9 - AM;
27 	 d10 = X10 - AM;
d9^2+d10^2)/(n-1);
29 Pe1=0.6745*sigma;// probable error of one reading
30 probable_error=Pe1/sqrt(n-1);
31 disp(Pe1, "probable error of one reading(nF) = ")
32 disp(probable_error, "probable error of mean(nF) = ")
```

Scilab code Exa 2.7.4.a Arithmetic Mean

```
1 //Example 2.7.4.a://ARITHEMATIC MEAN
2 clc;
3 clear;
4 format('v',8)
5 q=[10.3,10.7,10.9,9.7,9.5,9.2,10.3,11.7];//
6 AM= mean(q);//arithematic mean in mm
7 for i= 1:8
    qb(i)= q(i)-AM;
9 end
10 Q= [qb(1),qb(2),qb(3),qb(4),qb(5)];//
```

```
11 AV=(-qb(1)-qb(2)+qb(3)+qb(4)-qb(5))/10;//
12 SD=stdev(Q);//standard deviation
13 V=SD^2;//variance
14 disp(AM, "arithematic mean is in kg/cm^2")
15 //answer is wrong in textbook
```

Scilab code Exa 2.7.4.b Average Deviation

```
1 //Example 2.7.4.b://average deviation
2 clc;
3 clear;
4 format('v',7)
5 n=8
6 q=[10.3,10.7,10.9,9.7,9.5,9.2,10.3,11.7];//
7 AM = mean(q); // arithematic mean in mm
8 for i= 1:8
       qb(i) = q(i) - AM;
       disp(qb(i), "deviation in "+string (q(i))+" is")
10
11 end
12 Q = [qb(1), qb(2), qb(3), qb(4), qb(5), qb(6), qb(7), qb(8)
13 AV = (-qb(1) + qb(2) + qb(3) - qb(4) - qb(5) - qb(6) - qb(7) + qb(8)
      )/n;//
14 SD=stdev(Q); //standard deviation
15 V=SD^2; //variance
16 disp(AV,"average deviation in kg/cm^2")
17 //answer iswring in textbook
```

Scilab code Exa 2.7.4.c Standard Deviation

```
1 //Example 2.7.4.c://standard deviation
2 clc;
3 clear;
```

```
4 format('v',7)
5 n=8
6 q=[10.3,10.7,10.9,9.7,9.5,9.2,10.3,11.7];//
7 AM = mean(q); // arithematic mean in mm
8 for i= 1:8
9
       qb(i) = q(i) - AM;
10
11 end
12 Q = [qb(1), qb(2), qb(3), qb(4), qb(5), qb(6), qb(7), qb(8)
13 AV = (-qb(1) + qb(2) + qb(3) - qb(4) - qb(5) - qb(6) - qb(7) + qb(8)
      )/n;//
14 SD=stdev(Q);//standard deviation
15 V=SD^2; //variance
16 disp(SD, "standard deviation in kg/cm<sup>2</sup>")
17 //answer iswring in textbook
```

Scilab code Exa 2.7.4.d Probable Error

```
1 //Example 2.7.4.d://probable error
2 clc;
3 clear;
4 format('v',7)
5 n=8
6 q=[10.3,10.7,10.9,9.7,9.5,9.2,10.3,11.7];//
7 AM = mean(q); //arithematic mean in mm
8 for i= 1:8
9
       qb(i) = q(i) - AM;
10
11 end
12 \quad Q = [qb(1), qb(2), qb(3), qb(4), qb(5), qb(6), qb(7), qb(8)
      ];//
13 AV = (-qb(1) + qb(2) + qb(3) - qb(4) - qb(5) - qb(6) - qb(7) + qb(8)
      )/n;//
14 SD=stdev(Q); //standard deviation
```

```
15 V=SD^2; // variance
16 Pe1=0.6745*SD; // probable error of one reading
17 probable_error=Pe1/sqrt(n-1);
18 disp(Pe1, "probable error of one reading(kg/cm^2) = ")
19 disp(probable_error, "probable error of mean(kg/cm^2) = ")
20 // answer iswring in textbook
```

Scilab code Exa 2.8.1 Arithmetic mean and variance

```
1 //Example 2.8.1://ARITHEMATIC MEAN , median value ,
      standard deviation and variance
2 clc;
3 clear;
4 format('v',8)
5 q
      = [25.5, 30.3, 31.1, 29.6, 32.4, 39.4, 28.9, 30.0, 33.3, 31.4, 29.5, 30.5, 31.4]
6 AM = mean(q); //arithematic mean in mm
7 	 for i = 1:15
       qb(i) = q(i) - AM;
9 end
10 Q = [qb(1), qb(2), qb(3), qb(4), qb(5), qb(6), qb(7), qb(8),
      qb(9),qb(10),qb(11),qb(12),qb(13),qb(14),qb(15)];
      //
11 AV = (-qb(1) - qb(2) + qb(3) + qb(4) - qb(5))/15; //
12 SD=stdev(Q); //standard deviation
13 V=SD^2; //variance
14 mv = q(12); //
15 disp(AM, "arithematic mean is in volts")
16 disp(mv, "median value is")
17 for i=1:15
18
          disp(qb(i), "deviation in "+string (q(i))+" is"
```

```
19 end
20 disp(round(SD), "standard deviation is")
21 disp(round(V), "variance is")
```

Scilab code Exa 2.8.2 Arithmetic Mean and Standard Deviation

```
1 //Example 2.8.2://ARITHEMATIC MEAN
2 clc;
3 clear;
4 format('v',6)
5 v = [10, 11, 12, 13, 14]; //
6 f = [03, 12, 18, 12, 03]; //
7 q=[v(1)*f(1),v(2)*f(2),v(3)*f(3),v(4)*f(4),v(5)*f(5)
      ];
8 am=[q(1)+q(2)+q(3)+q(4)+q(5)]; //
9 n=[f(1)+f(2)+f(3)+f(4)+f(5)];/
10 AM = am/n; //arithematic mean
11 for i= 1:5
       qb(i) = v(i) - AM;
12
       m(i)=f(i)*qb(i);//
13
14 end
15 sm = [-m(1) - m(2) + m(3) + m(4) + m(5)]; //
16 \text{ md} = \text{sm/n}; //
17 \text{ sm1} = [f(1)*qb(1)^2, f(2)*qb(2)^2, f(3)*qb(3)^2, f(4)*qb
      (4)^2, f(5)*qb(5)^2]; //
18 sm2 = [sm1(1) + sm1(2) + sm1(3) + sm1(4) + sm1(5)]; //
19 sd=sqrt(sm2/n); //standard deviation
20 disp(AM, "arithematic mean is in volts")
21 disp(md, "mean deviation is")
22 disp(sd, "standard deviation is")
```

Scilab code Exa 2.8.3 Mean Value and Standard deviation

```
1 //Example 2.8.3://ARITHEMATIC MEAN , median value ,
      standard deviation
2 clc;
3 clear;
4 format('v',6)
5 q
      = [29.2, 29.5, 29.6, 30.0, 30.5, 31.4, 31.7, 32.4, 33.0, 33.3, 39.4, 28.9];
6 AM = mean(q); // arithematic mean in mm
7 for i= 1:12
       qb(i) = q(i) - AM;
8
9 end
10 Q = [qb(1), qb(2), qb(3), qb(4), qb(5), qb(6), qb(7), qb(8),
      qb(9),qb(10),qb(11),qb(12)];//
11 AV = (-qb(1) - qb(2) + qb(3) + qb(4) - qb(5))/12; //
12 SD=stdev(Q);//standard deviation
13 V=SD^2; // variance
14 mv = q(5); //
15 disp(AM, "arithematic mean is")
16 disp(mv, "median value is")
17 disp((SD), "standard deviation is")
```

Scilab code Exa 2.8.4.a Apparent Resistance

```
1 //Example 2.8.4.a // unknown resistor
2 clc;
3 clear;
4 close;
5 //given data :
6 V=100; //in volts
7 I=5*10^-3; // in A
8 R_app=(V/I)*10^-3;
9 disp(R_app, "apparent resistor, R_app(kilo-ohm) = ")
```

Scilab code Exa 2.8.4.b Actual Resistance

```
1 //Example 2.8.4.b // resistance
2 clc;
3 clear;
4 close;
5 //given data :
6 V=100; //in volts
7 I=5*10^-3; // in A
8 S=1000; //in ohm/volts
9 R_app=(V/I)*10^-3;
10 V1=150; //in volts
11 Rv=S*V1*10^-3;
12 Rx=Rv/6.5; //actual resistance in kilo ohms
13 disp(Rx, "actual resistance in kilo ohms is")
```

Scilab code Exa 2.8.4.c Loading Effect

```
1 //Example 2.8.4.c // error
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 V=100;//in volts
8 I=5*10^-3;// in A
9 S=1000;//in ohm/volts
10 R_app=(V/I)*10^-3;
11 V1=150;//in volts
12 Rv=S*V1*10^-3;
13 Rx=Rv/6.5;//actual resistance in kilo ohms
14 per=(Rx-R_app)/Rx;//
```

15 disp(per*100, "percentage error due to loading effect of voltmeter is")

Scilab code Exa 2.8.5 Limiting Error

```
1 //Example 2.8.5 // limiting error
2 clc;
3 clear;
4 close;
5 //given data :
6 del_A=2.5; // may be +ve or-ve in %
7 As=400;
8 FSD=600; // in volts
9 del_A1=(del_A/100)*600;
10 disp(del_A1, "del_A1 (V)= ")
11 e=(del_A1/As)*100;
12 disp(e, "limiting error, e(%) = ")
```

Chapter 3

Electromechanical Instruments

Scilab code Exa 3.2.1 Torque

```
1 //Example 3.2.1 // torque
2 clc;
3 clear;
4 close;
5 format("v",8)
6 //given data:
7 N=10;
8 L=1.5*10^-2;// in m
9 I=1;// in mA
10 B=0.5;
11 d=1*10^-2;// in m
12 Td=B*I*L*d*N;
13 disp(Td*10^-3, "torque, Td(Nm) = ")
```

Scilab code Exa 3.2.2 Number of Turns

```
1 //Example 3.2.2 // number of turns
2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 theta=%pi/2;
7 I=5*10^-3; // in A
8 B=1.8*10^-3; // in Wb/m^2
9 C=0.14*10^-6; // in Nm/rad
10 L=15*10^-3; // in m
11 d=12*10^-3; // in m
12 N=(C*theta)/(B*I*L*d);
13 disp(round(N), "number of turns, N(turns) = ")
```

Scilab code Exa 3.2.3 Resistance

```
1 //Example 3.2.3 // resistance
 2 clc;
3 clear;
4 close;
5 //given data :
6 Tc = 240 * 10^{-6}; //in Nm
 7 N = 100;
8 L=40*10^-3;
9 d=30*10^-3;
10 B=1; // \text{in Wb/m}^2
11 TdBYI=N*B*L*d;
12 I=Tc/TdBYI;
13 //voltage per division=I*(R/100)
14 R = 100/I;
15 \operatorname{disp}(R*10^-3, "\operatorname{resistance}, R(k-\operatorname{ohm}) = ")
16 //UNIT IS TAKEN WRONG IN THE BOOK
```

Scilab code Exa 3.2.4 Diameter

```
1 //Example 3.2.4 // flux density and diameter
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 p=1.7*10^-8; //in ohm-m
8 V=100*10^{-3}; //in V
9 R=50; // in ohm
10 theta=120; // in degree
11 L=30; // in mm
12 d=25; // in mm
13 N = 100;
14 C=0.375*10^-6; // in Nm/degree
15 I=V/R;
16 Td_By_B=I*L*10^-3*d*10^-3*N;
17 Tc=C*theta;
18 B=Tc/Td_By_B;
19 disp(B," the flux density, B(Wb/m^2) = ")
20 Rc=0.3*R;
21 \text{ Lmt} = 2*(L+d);
22 a=(N*p*Lmt*10^-3*10^6)/Rc;
23 D=sqrt(4/(%pi*a));
24 disp(D, "diameter, D(m) = ")
```

Scilab code Exa 3.4.1 Shunt Resistor

```
1 //Example 3.4.1 // shunt resistor
2 clc;
3 clear;
4 close;
5 im=3;//in mA
6 rm=100;//in ohms
7 i=150;//in mA
8 rsh=(im*10^-3*rm)/((i-im)*10^-3);//shunt resistance
```

```
in ohms
9 disp(rsh, "shunt resistance in ohms is")
```

Scilab code Exa 3.4.2 Multiplying power and Shunt Resistot

```
//Example 3.4.2 // shunt resistormultiplying factor
and resistance

clc;
clear;
close;
//given data:
format('v',6)
Rsh=300; //in ohm
Rm=1500; //in ohm
m=1+(Rm/Rsh);
disp(m," multiplying factor, m = ")
m1=40;
Rsh1=Rm/(m1-1);
disp(Rsh1," the shunt resistor, Rsh1(ohm) = ")
```

Scilab code Exa 3.5.1 Shunt Resistance

```
1 //Example 3.5.1 //
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 Rm=100;// in ohm
8 Im=1;
9 //for range 0-20 mA
10 I1=20;
11 m=I1/Im;
```

```
12  Rsh1=Rm/(m-1);
13  disp(Rsh1,"the shunt resistor, Rsh1(ohm) = ")
14  //for the range of 0-100 mA
15  I2=100;
16  m=I2/Im;
17  Rsh2=Rm/(m-1);
18  disp(Rsh2,"the shunt resistor, Rsh2(ohm) = ")
19  //for the range 0-200 mA
20  I3=200;
21  m=I3/Im;
22  Rsh3=Rm/(m-1);
23  disp(Rsh3,"the shunt resistor, Rsh3(ohm) = ")
```

Scilab code Exa 3.6.1 Resistance

```
1 //Example 3.6.1 //design
2 clc;
3 clear;
4 close;
5 format('v',8)
6 rm=50; //in ohms
7 \text{ im}=2;//\text{in } \text{mA}
8 i1=2; //in amperes
9 i2=10;//in amperes
10 i3=15; //in amperes
11 x=(im*rm*10^-3)/i1;//
12 A = [1 \ 1; 1 \ -7500]; //
13 B = [0.05; -50];
14 X = A \setminus B;
15 z=X(2,1);//
16 R1=0.2167/10.002; //in ohms
17 R2=0.025-R1; // in ohms
18 disp(R1, "resistance (R1) in ohms")
19 disp(R2, "resistance (R2) in ohms")
20 disp(z, "resistance (R3) in ohms")
```

Scilab code Exa 3.9.1 Multiplier

```
1 //Example 3.9.1// multiplier
2 clc;
3 clear;
4 close;
5 //given data :
6 Vin=20; //in volts
7 I_fsd=50*10^-6; //in Farad
8 Rm=200; // in ohm
9 Rs=(Vin/I_fsd)-Rm;
10 disp(Rs*10^-3, "the multiplier , Rs(k-ohm) = ")
```

Scilab code Exa 3.9.2 Current

```
//Example 3.9.2// full scale deflection current
clc;
clear;
close;
//given data :
format('v',5)
Vin=10;// in volts
Rs=200;//in k-ohm
Rm=400;// in ohm
I_fsd=Vin/((Rs*10^3)+Rm);
disp(I_fsd*10^6,"full scale deflection current, I_fsd (micro-A) = ")
```

Scilab code Exa 3.10.1 Multiplier

```
1 //Example 3.10.1// multiplier
2 clc;
3 clear;
4 close;
5 //given data :
6 V1 = 200; //in V
7 V2=100; //in V
8 V3=10;// in V
9 Rm=100; //in ohm
10 I_fsd=50*10^-3;
11 //for the range 0-10V
12 Rt3=V3/I_fsd;
13 Rs3=Rt3-Rm;
14 disp(Rs3," the multiplier, Rs3(ohm) = ")
15 //for the range 0-100V
16 Rt2=V2/I_fsd;
17 Rs2=Rt2-(Rm+Rs3);
18 disp(Rs2," the multiplier, Rs2(ohm) = ")
19 Rt1=V1/I_fsd;
20 Rs1=Rt1-(Rm+Rs3+Rs2);
21 disp(Rs1, "the multiplier, Rs1(ohm) = ")
```

Scilab code Exa 3.11.1 Multiplier

```
1 //Example 3.11.1// multiplier
2 clc;
3 clear;
4 close;
5 //given data:
6 format('v',7)
7 Rm=200;//in ohm
8 I_fsd=150*10^-6;// in A
9 S=1/I_fsd;
10 V=50;//in V
11 Rs=(S*V)-Rm;
```

Scilab code Exa 3.11.2 Accurate Value of Voltage

```
1 //Example 3.11.2//accurate voltmeter reading
2 clc;
3 clear;
4 close;
5 format('v',6)
6 r1=50; // in killo ohms
7 r2=50; //in killo ohms
8 \text{ v=100; //in volts}
9 vr2=(r1/(r1+r2))*v;// voltage in volts
10 // case 1
11 s1=12000; //sensivity in ohms/volts
12 rm1=r1*s1*10^-3; //in killo ohms
13 req=((rm1*r1)/(rm1+r1));//equivalent resistance in
     ohms
14 v1=((req/(r1+req)))*v;// voltmeter reading when
      sensivity is 12000 ohms /V
15 // case 2
16 s2=15000; //sensivity in ohms/volts
17 rm2=r1*s2*10^-3; //in killo ohms
18 req1=((rm2*r1)/(rm2+r1)); //equivalent resistance in
19 v2=((req1/(r1+req1)))*v;//voltmeter reading when
      sensivity is 15000 ohms /V
20 disp(v1, "voltmeter reading when sensivity is 12000
     ohms /V in volts")
21 disp(v2, "voltmeter reading when sensivity is 15000
     ohms /V in volts, this voltmeter will measure the
       correct value")
```

Scilab code Exa 3.15.1.a Voltage

```
//Example 3.15.1.a//voltage
clc;
clear;
close;
format('v',6)
r1=25;// in kilo ohms
r2=5;//in kilo ohms
v=30;//in volts
vr2=(r2/(r1+r2))*v;// voltage in volts across 5 kilo ohms resistance
disp(vr2,"voltage in volts across 5 kilo ohms resistance")
```

Scilab code Exa 3.15.1.b Voltage

```
1 //Example 3.15.1.b//voltage
2 clc;
3 clear;
4 close;
5 format('v',5)
6 \text{ r1=25;} // \text{ in kilo ohms}
7 r2=5; //in kilo ohms
8 \text{ v=30;}//\text{in volts}
9 vr2=(r1/(r1+r2))*v;// voltage in volts across 5 kilo
       ohms resistance
10 / case 1
11 s1=1; //sensivity in kilo ohms/volts
12 v1=10; // in volts
13 rm1=v1*s1; //in kilo ohms
14 req=((rm1*r2)/(rm1+r2)); //equivalent resistance in
      ohms
15 vrb1=((req/(r1+req)))*v;// voltmeter reading when
      sensivity is 1 kilo ohms /V
```

16 disp(vrb1," voltmeter reading when sensivity is 1 kilo ohms /V in volts")

Scilab code Exa 3.15.1.c Voltage

```
1 //Example 3.15.1.c//voltage
2 clc;
3 clear;
4 close;
5 format('v',5)
6 r1=25; // in kilo ohms
7 r2=5; //in kilo ohms
8 \text{ v=30;}//\text{in volts}
9 vr2=(r1/(r1+r2))*v;// voltage in volts across 5 kilo
      ohms resistance
10 // case 2
11 s2=20; //sensivity in kilo ohms/volts
12 v1=10; // in volts
13 rm2=v1*s2; //in kilo ohms
14 req1=((rm2*r2)/(rm2+r2)); // equivalent resistance in
15 vrb2=((req1/(r1+req1)))*v;// voltmeter reading when
      sensivity is 1 kilo ohms /V
16 disp(vrb2," voltmeter reading when sensivity is 1
      kilo ohms /V in volts")
```

Scilab code Exa 3.15.1.d Error

```
1 //Example 3.15.1.d//error
2 clc;
3 clear;
4 close;
5 format('v',5)
```

```
6 r1=25; // in kilo ohms
7 r2=5; //in kilo ohms
8 \text{ v=30;}//\text{in volts}
9 vr2=(r2/(r1+r2))*v;//voltage in volts across 5 kilo
      ohms resistance
10 / case 1
11 s1=1; //sensivity in kilo ohms/volts
12 \text{ v1=10}; // in volts
13 rm1=v1*s1; //in kilo ohms
14 req=((rm1*r2)/(rm1+r2));//equivalent resistance in
     ohms
15 vrb1=((req/(r1+req)))*v;// voltmeter reading when
      sensivity is 1 kilo ohms /V
16 // case 2
17 s2=20;//sensivity in kilo ohms/volts
18 v1=10; // in volts
19 rm2=v1*s2; //in kilo ohms
20 req1=((rm2*r2)/(rm2+r2)); //equivalent resistance in
21 vrb2=((req1/(r1+req1)))*v;// voltmeter reading when
      sensivity is 1 kilo ohms /V
22 er1=(vr2-vrb1)/vr2;//voltmeter 1 error
23 er2=(vr2-vrb2)/vr2;//voltmeter 2 error
24 disp(er1*100,"voltmeter 1 error in percentage")
25 disp(er2*100,"voltmeter 2 error in percentage")
26 //answer is wrong in the textbook
```

Scilab code Exa 3.15.2 Shunt Resistance

```
//Example 3.15.2: shunt resistance
clc;
clear;
close;
//given data:
Im=1;// in mA
```

```
7 Rm=100; // in ohm
8 I=100; // in mA
9 Rsh=(Im*10^-3*Rm)/((I-Im)*10^-3);
10 disp(Rsh, "shunt resistance, Rsh(ohm) = ")
```

Scilab code Exa 3.15.3 Shunt Resistance

```
1 //Example 3.15.3: shunt resistance
2 clc;
3 clear;
4 close;
5 //given data :
6 Im=1;// in mA
7 P=100;// in kilo-watt
8 I=100;// in mA
9 Rm=(P)/(Im)^2;
10 Rsh=((Im*10^-3*Rm*10^3)/((I-Im)*10^-3))*10^-3;
11 disp(Rsh,"shunt resistance, Rsh(kilo-ohm) = ")
```

Scilab code Exa 3.15.4 Shunt Resistance

```
1 //Example 3.15.4: shunt resistance
2 clc;
3 clear;
4 close;
5 //given data:
6 Rsh=200;// in ohm
7 Rm=100;// in ohm
8 m=50;
9 Rsh=Rm/(m-1);
10 disp(Rsh,"the shunt resistance, Rsh(ohm) = ")
```

Scilab code Exa 3.15.5 Shunt Resistance

```
1 //Example 3.15.5: shunt resistance
2 clc;
3 clear;
4 close;
5 //given data:
6 Im=1;// in mA
7 Rm=100;// in ohm
8 I=100;// in mA
9 Rsh=(Im*10^-3*Rm)/((I-Im)*10^-3);
10 disp(Rsh, "shunt resistance, Rsh(kilo-ohm) = ")
```

Chapter 4

Analog Electronic Volt Ohm Milliammeter

Scilab code Exa 4.2.1 Peak Amplitude

```
1 //Example 4.2.1: peak amplitude
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',7)
7 E_rms=230;//in V
8 Ep=sqrt(2)*E_rms;
9 disp(Ep,"peak amplitude, Ep(V) = ")
```

Scilab code Exa 4.12.1 Resistance

```
1 //Example 4.12.1: resistance
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 format('v',5)
7 Rm=500; //in ohm
8 E_rms=50; // in V
9 E_dc=(sqrt(2)*E_rms)/(%pi/2);
10 Im=1*10^-3; //in A
11 R=E_dc/Im;
12 Rs=(R-Rm)*10^-3;
13 disp(Rs,"the resistance, Rs(kilo-ohm) = ")
```

Scilab code Exa 4.14.1 form factor and error

```
//Example 4.14.1: form factor and percentage error
clc;
clear;
close;
ff1=1;//form factor
r=1.11;//sine wave form factor
per=((r-ff1)/ff1)*100;//percentage error
disp(ff1, "form factor is")
disp(per, "percentage error is")
```

Scilab code Exa 4.14.2.a Form Factor of The Voltage

```
1 //Example 4.14.2.a:form factor
2 clc;
3 clear;
4 close;
5 format('v',6)
6 T1=3;//
7 T=0:3;
8 Vrms=200*(sqrt((1/T1)*(intsplin(T,T^2))));//in volts
9 Vav=200*(1/T1)*(intsplin(T,T));// in volts
```

```
10 ff=Vrms/Vav;//
11 disp(ff, "form factor is")
```

Scilab code Exa 4.14.2.b Error

```
1 //Example 4.14.2.b:error
2 clc;
3 clear;
4 close;
5 format('v',6)
6 T1=3;//
7 T=0:3;
8 Vrms=200*(sqrt((1/T1)*(intsplin(T,T^2))));//in volts
9 Vav=200*(1/T1)*(intsplin(T,T));// in volts
10 ff=Vrms/Vav;//
11 ff1=1.11;//form factor of sine wave
12 per=((ff1/ff)-1)*100;//percentage error
13 disp(per,"percentage error in meter indication is")
```

Scilab code Exa 4.19.1 Current

```
12 disp(I*10^3, "current, I(mA) = ")
```

Scilab code Exa 4.19.2 Current

```
1 //Example 4.19.2: current
2 clc;
3 clear;
4 close;
5 //given data :
6 gm = 0.005; //in mho
7 V1=1//in V
8 rd=200*10^3; // in Ohm
9 Rd=15*10^3; // in ohm
10 Rm=75; //in ohm
11 V = [0.2, 0.4, 0.6, 0.8, 1]; // IN VOLTS
12 for i=1:5
       I(i) = (gm*V(i)*((Rd*rd)/(rd+Rd)))/((2*((Rd*rd)/(rd+Rd))))
          rd+Rd)))+Rm);
       disp(I(i)*10^3,"current in mA for voltage"+
14
          string(V(i))+" volts")
15 end
```

Scilab code Exa 4.19.3 Resistance

```
1 //Example 4.19.3: design
2 clc;
3 clear;
4 close;
5 format('v',6)
6 v1=100;// in volts
7 v2=30;//in volts
8 v3=103;// in volts
9 v4=1;//in volts
```

```
10     x=9; //assume input resistance in mega ohms
11     r4=(v4/v3)*x*10^3; //in kllo ohms
12     r3=(((v4/v1)*x*10^6)-(r4*10^3))*10^-3; //in kilo ohms
13     r2=(((v4/v2)*x*10^6)-((r4+r3)*10^3))*10^-3; // in kilo ohms
14     r1=9*10^6-((r2+r3+r4)*10^3); // in ohms
15     disp(r4,"resistance (R4) in kilo ohms is")
16     disp(r3,"resistance (R3) in kilo ohms is")
17     disp(r2,"resistance (R2) in kilo ohms is")
18     disp(r1*10^-6,"resistance (R1) in mega ohms is")
```

Scilab code Exa 4.19.4 Current

```
1 //Example 4.19.4: current
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',4)
7 rd=150*10^3; // in ohm
8 Rm=50; // in ohm
9 Rs=1000*10^3; // in ohm
10 gm=0.0052; // in mho
11 rd1=rd/((gm*rd)+1);
12 V0=gm*((rd1*Rs)/(rd1+Rs))
13 R0=(2*Rs*rd1)/(Rs+rd1)
14 I=V0/(R0+Rm);
15 disp(I*10^3, "curent, I (mA) = ")
```

Scilab code Exa 4.19.5 Resistance

```
1 //Example 4.19.5: resistance 2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 V1=1; //in V
7 I=1.5*10^-3; //in A
8 rd=200*10^3; // in ohm
9 Rm=50; // in ohm
10 Rs=600*10^3; // in ohm
11 gm=0.005; //in mho
12 rd1=rd/((gm*rd)+1);
13 V0=gm*((rd1*Rs)/(rd1+Rs))*V1
14 R0=(2*Rs*rd1)/(Rs+rd1)
15 R_cal=(V0/I)-Rm-R0;
16 disp(R_cal, "resistance , R_cal(ohm) = ")
17 // answer is wrong in book
```

Scilab code Exa 4.26.3 Shunt Resistance and Current

```
1 //Example q.3: current and voltae
2 clc;
3 clear;
4 close;
5 format('v',5)
6 \text{ rm} = 10; // \text{in ohms}
7 \text{ im=5;} // \text{ in mA}
8 i=1;// in amperes
9 v=5; //in volts
10 ish=i-(im*10^-3);// in amperes
11 m=i/(im*10^-3); // ratio
12 rsh=rm/(m-1); //in ohms
13 vo=v/i; //in volts
14 rsh1=vo/(im);//in kilo ohms
15 disp(rsh,"shunt resistance in ohms to measure
      current upto 1 A")
16 disp(rsh1," shunt resistance in kilo to measure
```

Chapter 5

Digital Voltmeters

Scilab code Exa 5.10.1 Resolution

```
1 //Example 5.10.1: resolution
2 clc;
3 clear;
4 close;
5 format('v',8)
6 //given data:
7 n=4
8 R=1/10^n;
9 disp(R,"resolution,R = ")
```

Scilab code Exa 5.10.2 Resolution

```
1 //Example 5.10.2: resolution
2 clc;
3 clear;
4 close;
5 format('v',9)
6 //given data:
```

```
7 n=5
8 R=1/10^n;
9 disp(R, "resolution, R = ")
```

Scilab code Exa 5.10.3 Resolution

```
1 //Example 5.10.3: resolution
2 clc;
3 clear;
4 close;
5 format('v',8)
6 //given data:
7 n=4
8 R=1/10^n;
9 disp(R,"resolution,R = ")
```

Scilab code Exa 5.10.4 Time Interval

```
1  //Example 5.10.4: voltage and time interval
2  clc;
3  clear;
4  close;
5  //given data :
6  t1=1; //sec
7  R=100; //k-ohm
8  C=1; //micro F
9  Vin=1; //V
10  Vref=5; //V
11  Vout=1/(R*1000)/(C*10^-6)*integrate('Vin*1', 't',0,t1); //V
12  disp(Vout, "Output vltage after 1 sec in Volt : ");
13  //Vout=Vref*t2/R/C & Vout=Vin*t1/R/C
14  t2=t1*Vin/Vref; //sec
```

15 disp(t2, "Time interval t2 in sec : ");

Chapter 6

Digital Frequency Meter

Scilab code Exa 6.17.1 Gate Time

```
1 //Example 6.17.1 // desired gate time
2 clc;
3 clear;
4 close;
5 //given data :
6 r=0.1; //in Hz
7 D=1/r;
8 disp(D,"the desired gate time, D(sec) = ")
```

Scilab code Exa 6.17.2 Error

```
1 //Example 6.17.2 // error
2 clc;
3 clear;
4 close;
5 f1=1; // in Mhz
6 f2=200; //in kHz
7 per=(200*10^-3)*100; // percentage error that display may indicate 4 micro seconds or 6 micro seconds
```

```
8 per1=(1/50)*100;//percentage error after 10 times
    improvement
9 disp(per, "percentage error that display may indicate
        4 micro seconds or 6 micro seconds")
10 disp(per1, "percentage error after 10 times
        improvement")
```

Scilab code Exa 6.17.3 Accuracy

```
1 //Example 6.17.3 // Accuracy
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',9)
7 f=400;//Hz
8 time_accuracy=10^-8;//sec
9 display_accuracy=1;//(+ve or -Ve)
10 t=10;//sec
11 period=1/f;//ms
12 Accuracy= 1+((period*10^3)/10);//ms
13 disp(Accuracy,"accuracy in ms ( )")
```

Chapter 7

Low High and Precise Resistance Measurement

Scilab code Exa 7.5.1 Resistance

```
1 //Example 7.5.1: resistance
2 clc;
3 clear;
4 close;
5 //given data:
6 R1=5;// in kilo-ohm
7 R2=7;// in kilo-ohm
8 R3=10; // in kilo-ohm
9 Rx=(R2*R3)/R1;
10 disp(Rx,"unknown resistance, Rx(k-ohm) = ")
```

Scilab code Exa 7.5.2 Current

```
1 //Example 7.5.2: current
2 clc;
3 clear;
```

```
d close;
//given data:
R1=1.5;// in kilo-ohm
R2=3;// in kilo-ohm
R3=5; // in kilo-ohm
R4=14;//in kilo-ohm
Rg=250;//in ohm
LE=10;//in V
Vd=(E*R4)/(R2+R4);
Vc=(E*R3)/(R1+R3);
E_th=E*((R4/(R2+R4))-(R3/(R1+R3)));
R_th=((R1*R3)/(R1+R3))+((R2*R4)/(R2+R4));
Ig=(E_th/((R_th*10^3)+Rg))*10^6;
Ig=(E_th/((R_th*10^3)+Rg))*10^6;
Ig=(E_t, "current, Ig(micro-A) = ")
// answer is wrong in book
```

Scilab code Exa 7.5.3 Deflection

```
1 //Example 7.5.3: deflection
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',4)
7 s=8; //sensivity in mm/micro amperes
8 R1=1; // in kilo—ohm
9 R2=5;// in kilo-ohm
10 R3=2; // in kilo—ohm
11 R4=10; //in kilo—ohm
12 Rg=150; // in ohm
13 E=6; //in V
14 r=10; // unbalance resistance in ohm
15 del_r=10; // in kilo-ohm
16 R4_1 = ((R4*10^3) + r)*10^-3;
17 Vd = (E*R4_1)/(R2+R4_1);
```

```
18  Vc=(E*R3)/(R1+R3);
19  E_th=E*((R4_1/(R2+R4_1))-(R3/(R1+R3)));
20  R_th=((R1*R3)/(R1+R3))+((R2*R4)/(R2+R4));
21  Ig=(E_th/((R_th*10^3)+Rg))*10^6;
22  d=Ig*s;//deflection in mm
23  disp(d,"deflection in mm")
24  //answer is wrong in the textbook
```

Scilab code Exa 7.5.4 Current

```
1 //Example 7.5.4: current
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',7)
7 R=500;//in ohm
8 Rg=150;// in ohm
9 del_r=10;// in ohm
10 E=6;//in V
11 E_th=(E*del_r)/(4*R);
12 R_th=R;
13 Ig=(E_th/(R_th+Rg))*10^6;
14 disp(Ig,"current, Ig(micro-A) = ")
```

Scilab code Exa 7.5.5 voltage

```
//Example 7.5.5: supply voltage
clc;
clear;
close;
//given data:
R=120;//in ohm
```

```
7 del_r=1; // in ohm
8 E_th=10*10^-3; //in V
9 E=(E_th*4*R)/del_r;
10 disp(E,"supply voltage, E(volts) = ")
```

Scilab code Exa 7.5.6 Resistance

```
1 //Example 7.5.6: resistance
2 clc;
3 clear;
4 close;
5 //given data :
6 A=100.24; // in ohm
7 B=200; // in ohm
8 a=100.31; // in ohm
9 b=200; // in ohm
10 S=100.03; // in micro—ohm
11 r=700; // in micro—ohm
12 X=((A/b)*S)+(((r*b)/(r+a+b))*((A/B)-(a/b)));
13 disp(X,"the unknown resistance, X(micro—ohm) = ")
```

Scilab code Exa 7.5.7 Deflection

```
1 //Example 7.5.7: deflection
2 clc;
3 clear;
4 close;
5 //given data:
6 format('v',6)
7 R_ab=100;// in ohm
8 R_bc=500;// in ohm
9 R_cd=1000;// in ohm
10 R_da=200;// in ohm
```

```
11  V=10;
12  VRg=200; // in ohm
13  del_CD=10; // in ohm
14  V_bd=V*((R_ab/(R_ab+R_bc))-(R_da/(R_da+R_cd+del_CD))
      );
15  R_bd=(((R_ab*R_bc)/(R_ab+R_bc))+((VRg*(R_cd+del_CD))
      /(VRg+R_cd+del_CD)));
16  I_G=(V_bd/(R_bd+VRg));
17  s=5; // sensivity in micro ampere /mm
18  dg=I_G*10^6*s; // deflection in mm
19  disp(dg," deflection in mm")
20  // answer is wrong in the textbook
```

Scilab code Exa 7.5.8 Resistance and Limiting Error

```
1 //Example 7.5.8: LIMITING VALUE OF RESISTANCE
2 clc:
3 clear;
4 close;
5 format('v',8)
6 P = 100; //OHMS
7 Q=P; //
8 S=230; //IN OHMS
9 DP=0.02; //ERROR IN PERCENTAGE
10 DS=0.01; //IN PERCENTAGE
11 R=(P/Q)*S;//unkow resistance in ohms
12 dr=(DP+DP+DS);//relative limiting error in unknow
      resistance in percentage
13 drm = (dr/100) *R; // magnitude of error
14 R1=R+drm; //in ohms
15 R2=R-drm; //in ohms
16 disp("limiting value of unknown resistance is "+
      string(R1)+" ohms to "+string(R2)+" ohms")
```

Scilab code Exa 7.5.9 Resistance

```
//Example 7.5.9: insulation resistance of cable
clc;
clear;
close;
format('v',6)
t=120;//in seconds
v1=300;//in volts
v2=100;//in volts
c=300;//capacitance in pf
r=((t)/(c*10^-12*log(v1/v2)));//resistance in ohms
disp(r*10^-12,"resistance of cable in mega ohms is")
```

Scilab code Exa 7.5.10 Resistance

```
//Example 7.5.10: resistance
clc;
clc;
clear;
close;
format('v',9)
g=2000;//in ohms
s=10;//in kilo ohms
q1=40;//divisions
q2=46;//divisions
r=((q1/q2)*((s*10^3)+(g)))-g;//in ohms
disp(r,"unknown resistance in ohms is")
//answer is wrong in the textbook
```

Scilab code Exa 7.5.11 Resistance

```
//Example 7.5.11: resistance
clc;
clear;
close;
t=200;// in volts
i=0.5;//in amperes
ra=10;//in ohms
x=t/i;//in ohms
r=x-ra;//in ohms
disp(r,"unknown resistance in ohms is")
```

Scilab code Exa 7.5.12 Ammeter and Voltmeter

```
1 //Example 7.5.12: ammeter and voltmeter readings
2 clc;
3 clear;
4 close;
5 format('v',7)
6 t=200; // in volts
7 i=0.5; //in amperes
8 \text{ ra=10;} //\text{in ohms}
9 \text{ x=t/i;}//\text{in ohms}
10 r=x-ra;//in ohms
11 sv=10; //sensivity in killo ohms / V
12 \text{ v=} 1000; // \text{in volts}
13 rv=v*sv *10^-6; // in mega ohms
14 rp=((rv*10^6)*r)/(rv*10^6+r); //in ohms
15 vr=((t*rp)/(ra+rp));//voltmeter reading in volts
16 vi=vr/rp; //ammeter rading in amperes
17 disp(vr, "voltmeter reading in volts")
18 disp(vi, "ammeter rading in amperes")
```

Chapter 8

Inductance and Capacitance Measurements

Scilab code Exa 8.5.1 Error

Scilab code Exa 8.5.2 Capacitance and Inductance

```
//Example 8.5.2:self capacitance and inductance
clc;
clear;
close;
format('v',6)
f1=2;//in MHz
c1=460;//in pF
f2=4;//in MHz
c2=100;//in pF
cd1=((c1-(4*c2))/3);//self capacitance in pF
x=((1/(2*%pi*f1*10^6)))^2;//
l=x/((c1+cd1)*10^-12);//
disp(cd1,"self capacitance in pF")
disp(l*10^6,"inductance in micro Henry")
```

Scilab code Exa 8.6.1 Resistance and Capacitance

```
1 //Example 8.6.1: Lx and Rx
2 clc;
3 clear;
4 close;
5 //given data :
6 R1=560; // in kilo-ohm
7 R2=6.3; // in kilo-ohm
8 R3=120; // in kilo-ohm
9 Ci=0.01; // in micro-farad
10 Sensitivity=10; // in mm/micro-A
11 del_r=1; // in ohm
12 Rx=(R2*R3)/R1;
13 disp(Rx,"unknown resistance, Rx(k-ohm) = ")
14 Lx=R2*10^3*R3*10^3*Ci*10^-6;
15 disp(Lx,"unknown inductanceLx(H) = ")
```

Scilab code Exa 8.6.2 Capacitance and Dissipation Factor

```
1 //Example 8.6.2: Cx,Rx and D
2 clc;
3 clear;
4 close;
5 //given data:
6 \text{ f=1000;} // \text{in Hz}
7 R1=1.1; // in kilo—ohm
8 R2=2.2; // in kilo-ohm
9 C1=0.47; // in micro-farad
10 C3=0.5; // in micro-farad
11 Rx = (R2*C1)/C3;
12 disp(Rx, "unknown resistance, Rx(k-ohm) = ")
13 Cx = (R1 * C3) / R2;
14 disp(Cx, "unknown capacitance, Cx(micro-farad) = ")
15 \text{ w=} 2*f*\%pi;
16 D=w*Cx*10^-6*Rx*10^3;
17 disp(D, "dissipation factor, D = ")
18 //answer is wrong in the textbook
```

Scilab code Exa 8.6.3 Resistance and Capacitance

```
1 //Example 8.6.3: unknown resistance and capacitance
2 clc;
3 clear;
4 close;
5 r1=10;//in kilo ohms
6 r2=50;//in kilo ohms
7 r3=100;//in kilo ohms
8 c3=100;//in micro farads
```

```
9 rx=((r2*10^3*r3*10^3)/(r1*10^3))*10^-3;//unknown
resistance in killo ohms

10 cx=((r1*10^3*c3*10^-6)/(r2*10^3))*10^6;// unknown
capacitance in micro farads

11 disp(rx,"unknown resistance in kilo ohms")

12 disp(cx,"unknown capacitance in micro farads")
```

Scilab code Exa 8.6.4 Inductance and Resistance

```
//Example 8.6.4: Lx and Rx
clc;
clc;
clear;
close;
//given data :
R1=600; // in ohm
R2=1000; // in ohm
R3=100; // in ohm
Rx=(R2*R3)/R1;
disp(Rx,"resistance,Rx(ohm) = ")
Lx=C1*10^-6*R2*R3;
disp(Lx,"inductance,Lx(henry) = ")
```

Scilab code Exa 8.6.5 Resistance and Inductance

```
1 //Example 8.6.5: L3 and R3
2 clc;
3 clear;
4 close;
5 format('v',5)
6 //given data:
7 R1=10;// in kilo-ohm
8 R2=2;// in kilo-ohm
```

```
9 R4=1; // in kilo-ohm
10 C2=1*10^-6; // in micro-farad
11 w=3000; // in rad/sec
12 L3=(R1*10^3*R4*10^3*C2)/(1+((R2*10^3)^2*(C2^2)*w^2))
13 R3=R2*10^3*L3*C2*w^2; //
14 disp(R3,"unknown resistance in ohms")
15 disp(L3,"inductance in henry ")
16 //resistance is calculated wrong in the textbook
```

Scilab code Exa 8.6.6 Capacitance Resistance and Dissipation Factor

```
1 //Example 8.6.6: Cx,Rx and D
2 clc;
3 clear;
4 close;
5 format('v',9)
6 //given data :
7 f = 1000; //in Hz
8 R2=20000; // in ohm
9 R3=1.2*10^3; // in ohm
10 C3=300*10^-12; // in farad
11 C4=0.05*10^-6; // in farad
12 Rx = (R2*C3)/C4;
disp(Rx, "unknown resistance, Rx(k-ohm) = ")
14 Cx = ((R3*C4)/R2)*10^6;
15 disp(Cx, "unknown capacitance, Cx(micro-farad) = ")
16 \ w=2*f*\%pi;
17 D=w*Cx*10^-6*Rx*10^3;
18 disp(D*10^-3, "dissipation factor, D = ")
```

Scilab code Exa 8.6.7 Resistance and Relative Permittivity

```
1 //Example 8.6.7: resistance and capacitance
```

```
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',8)
7 C2=106*10^-12; // in farad
8 C4=0.6*10^-6; // in farad
9 R4=1000/%pi; // in ohm
10 R3=250; // in ohm
11 R1=(C4/C2)*R3*10^-6;
12 disp(R1*10^6, "resistance, R1(ohm) = ")
13 C1=(R4/R3)*C2*10^6;
14 disp(round(C1*10^6), "capacitance, C1(micro-farad) = ")
```

Scilab code Exa 8.6.8 Resistance and Capacitance

```
1 //Example 8.6.8: resistance and capacitance
2 clc;
3 clear;
4 close;
5 //given data :
6 R1=3.1; // in kilo-ohm
7 C1=5.2; //in micro-ohm
8 R2=25; //in kilo-ohm
9 R4=100; //in kilo-ohm
10 f=2.5*10^3; //in Hz
11 w=2*\%pi*f*10^-3;
12 R3 = (R4/R2) * (R1 + (1/(w^2 * R1 * C1^2)));
13 disp(R3, "resistance, R3(kilo-ohm) = ")
14 C3 = ((R4/R2) - (R1/R3)) * C1;
15 \operatorname{disp}(C3, "\operatorname{capacitance}, C3(\operatorname{micro-farad}) = ")
16 // answer is wrong in book
```

Scilab code Exa 8.6.9 Capacitance and Inductance

Scilab code Exa 8.6.10 Error

```
1 //Example 8.6.10 // Q
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',5)
7 rsh=0.02;//:
8 r=10;// in ohm
9 f=1;//in MHz
10 c=65;//in pico-farad
11 L=(1/((2*%pi*f*10^6)^2*c*10^-12))*10^3;
```

Scilab code Exa 8.6.11 Capacitance

```
1 //Example 8.6.11 // capacitance
2 clc;
3 clear;
4 close;
5 //given data :
6 F1=3; //in MHz
7 C1=400; //in pico-farad
8 F2=6; //in MHz
9 C2=120; //in pico-farad
10 Cd=(C1-(4*C2))/3;
11 disp(-Cd," self capacitance, Cd(pico-farad) = ")
```

Scilab code Exa 8.6.12 Capacitance

```
1 //Example 8.6.12 // capacitance
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',6)
7 F1=2; //in MHz
8 C1=450; //in pico-farad
9 F2=5; //in MHz
10 C2=60; //in pico-farad
```

```
11 ratio=F2/F1;
12 //1/sqrt(C2+Cd)=ratio/sqrt(C1+Cd)
13 Cd=(C1-(ratio^2*C2))/5.25;
14 disp(Cd,"self capacitance, Cd(pico-farad) = ")
```

Scilab code Exa 8.6.13 Capacitance

```
1 //Example 8.6.13 // capacitance
2 clc;
3 clear;
4 close;
5 //given data :
6 F1=8; //in MHz
7 C1=120; //in pico-farad
8 F2=12; //in MHz
9 C2=40; //in pico-farad
10 ratio=F1/F2;
11 //1/sqrt(C2+Cd)=ratio/sqrt(C1+Cd)
12 Cd=((4*C1-9*C2)/5); //
13 disp(Cd, "self capacitance, Cd(pico-farad) = ")
```

Scilab code Exa 8.7.5 Resistance and Inductance

```
1 //Example Q.5: Lx and Rx
2 clc;
3 clear;
4 close;
5 //given data:
6 r1=28.5; //in ohms
7 L1=52.6; //in mH
8 R2=1.68; //in ohms
9 R3=80; //in ohms
10 R4=R3; // in ohms
```

```
11 Lx=(R3/R4)*L1;//inductance in mH
12 Rx=r1*(R3/R4)-R2;//in ohms
13 disp(Rx,"unknown resistance, Rx(ohm) = ")
14 disp(Lx,"unknown inductanceLx(mH) = ")
```

Cathode Ray Oscilloscope

Scilab code Exa 9.14.1 Peak to Peak Amplitude and rms Value

```
//Example 9.14.1 // peak to peak voltage and rms
    voltage

clc;
clear;
close;
format('v',7)
vdv=1;//volts per division in V/div
    n=6.8;//no. of divisions
Vpp=vdv*n;//peak to peak voltage in volts
vrms=Vpp/(2*sqrt(2));//rms voltage in volts
disp(Vpp, "peak to peak voltage in volts")
disp(vrms, "rms voltage in volts")
```

Scilab code Exa 9.14.2 Time Interval

```
1 //Example 9.14.2 // time interval
2 clc;
3 clear;
```

```
4 close;
5 format('v',7)
6 vdv=2;//volts per division in micro seconds/div
7 n=2;//no. of divisions
8 Tint=vdv*n;//peak to peak voltage in volts
9 disp(Tint,"time interval in micro seconds is")
```

Scilab code Exa 9.14.3 Period and Frequency

```
//Example 9.14.3 // period and frequency
clc;
clear;
close;
format('v',6)
vdv=2;//volts per division in micro seconds/div
n=12;//no. of divisions
Tp=vdv*n;// period in micro seconds
f=1/(Tp*10^-3);//frequency in kHz
disp(Tp,"period in micro seconds")
disp(f,"frequency in kHz")
```

Scilab code Exa 9.14.4 Frequency

```
1 //Example 9.14.4 // peak to peak voltage and
    frequency
2 clc;
3 clear;
4 close;
5 format('v',7)
6 vdv1=0.5;//volts per division in V/div
7 nv=3;//no. of divisions
8 nh=4;//numbers of horizontal divisions
9 Vpp=vdv1*nv;//peak to peak voltage in volts
```

Scilab code Exa 9.17.1 Bandwidth

```
1 //Example 9.17.1 // bandwidth
2 clc;
3 clear;
4 close;
5 format('v',6)
6 //given data:
7 Trs=12; //in micro-sec
8 Trd=15; //in micro-sec
9 Tro=sqrt(Trd^2-Trs^2);
10 K=0.35; // constant
11 BW=(K/Tro)*10^3;
12 disp(BW,"bandwidth,BW(KHz) =")
```

Scilab code Exa 9.17.2 Rise Time

```
1 //Example 9.17.2 // rise time
2 clc;
3 clear;
4 close;
5 //given data :
6 BW=10*10^6; // in Hz
7 tr=(0.35/BW)*10^9;
8 disp(tr,"rise time, tr(ns) = ")
```

Scilab code Exa 9.17.3 Rise Time

```
1 //Example 9.17.3 // rise time
2 clc;
3 clear;
4 close;
5 //given data :
6 Tro=10; //in micro-sec
7 Trd=13; //in micro-sec
8 Trs=sqrt(Trd^2-Tro^2);
9 disp(Trs,"actual rise time, Trs(n-sec) = ")
```

Scilab code Exa 9.17.4 rise time

```
1 //Example 9.17.3 // rise time
2 clc;
3 clear;
4 close;
5 //given data :
6 Tro=10; //in micro-sec
7 Trd=15; //in micro-sec
8 Trs=sqrt(Trd^2-Tro^2);
9 disp(Trs,"actual rise time, Trs(n-sec) = ")
```

Scilab code Exa 9.17.5 rise time

```
1 //Example 9.17.5 // rise time
2 clc;
3 clear;
```

```
4 close;
5 //given data :
6 Trs=12; //in micro-sec
7 Trd=30; //in micro-sec
8 BW=20*10^6; // in Hz
9 K=0.35; // constant
10 Tro=(K/BW)*10^9;
11 Trs=sqrt(Trd^2-Tro^2);
12 disp(Trs,"actual rise time, Trs(n-sec) = ")
```

Scilab code Exa 9.17.6 capacitance

```
1 //Example 9.17.5 // capacitance
2 clc;
3 clear;
4 close;
5 //given data :
6 K=10; // constant
7 C2=35*10^-12;
8 C1=(C2/(K-1))*10^12;
9 disp(C1, "capacitance ,C1(pico-farad) = ")
```

Scilab code Exa 9.17.7 input impedence

```
1 //Example 9.17.7 // impedance of CRO
2 clear;
3 close;
4 clc;
5 K=10;//
6 vin=1;//vpp
7 vout=0.1;//in vpp
8 c1=2;// in pF
9 c2=c1*(K-1);//CAPACITANCE IN Pf
```

```
10 disp(c2, "capacitance in pF")
```

Scilab code Exa 9.17.8 minimum time division sensivity

```
//Example 9.17.8 // sensivity
clear;
close;
close;
clc;
n=2;//divisions
f=50;//in MHz
t=(1/f)*10^3;//time in nanao seconds
mdv=t/4;//in ns/div
mtds=mdv*n;// in ns/div
disp(mdv,"minimum time/div in ns/div")
disp(mtds,"minimum time/div setting in ns/div")
```

Scilab code Exa 9.17.9 rise time

```
1 //Example 9.17.9 // rise time
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',4)
7 Trs=21; //in micro-sec
8 K=0.35; // constant
9 BW=50*10^6; // in Hz
10 Tro=(K/BW)*10^9;
11 Trd=sqrt(Trs^2+Tro^2);
12 disp(Trd," rise time, Tro(n-sec) = ")
```

special oscilloscopes

Scilab code Exa 10.11.1 sampling rate

```
1 //Example 10.11.1 // sampling rate
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',6)
7 N=10; //number of cycles
8 f1=1*10^3; //in Hz
9 f2=100*10^3; // in Hz
10 sampling_period1=N/f1;
11 sampling_frequency1=1/sampling_period1;
12 disp(sampling_frequency1, "sampling frequency of 1
     kHz signal in samples per second")
13 sampling_period2=N/f2;
14 sampling_frequency2=1/sampling_period2;
15 disp(sampling_frequency2, "sampling frequency of 100
     kHz signal in samples per second")
```

Scilab code Exa 10.13.1 sampling rate

```
//Example 10.13.1 // sampling rate
clc;
clear;
close;
//given data:
N=10;//number of cycles
f=1*10^3;//in Hz
sampling_period=N/f;
sampling_rate=1/sampling_period;
disp(sampling_rate, "sampling rate in samples per second")
```

Instrument Callibration

Scilab code Exa 11.3.1 error

```
1 //Example 11.3.1 // percentage of the reading and
      percentage of full scale
2 clc;
3 clear;
4 close;
5 //given data:
6 a=10; // scale reading
7 b=70;// full scale
8 \text{ error1} = -(0.5/10)*100;
9 disp("step 1")
10 disp(error1, "error of reading in %")
11 error2 = -(0.5/100)*100;
12 disp(error2, "error of full scale in %")
13 disp("step 2")
14 \text{ error3}=(2.5/70)*100;
15 disp(error3, "error of reading in \%")
16 \text{ error4} = (2.5/100) *100;
17 disp(error4, "error of full scale in %")
```

Scilab code Exa 11.3.2 error

```
//Example 11.3.2 // wattmeter error and correction
figure
clc;
clear;
close;
//given data:
P1=120;// in watt
V=114;//in volts
I=1;//in A
P=V*I;
error1=P-P1;
disp(error1, "correction figure in (W)")
error2=(error1/P1)*100;
disp(error2, "wattmeter error in %")
```

Recorders

Scilab code Exa 12.5.1 chart speed

```
1 //Example 12.5.1 // chart speed
2 clc;
3 clear;
4 close;
5 //given data :
6 f=50; // frequency in Hz
7 period=1/f;
8 t=5; //in mm/cycle
9 chart_speed=t/period;;
10 disp(chart_speed, "chart speed(mm/s) = ")
```