

Jakub Pawlewicz
Treść zadania, Opracowanie

Paweł Wolff Program

Maksymalne rzędy permutacji

Permutacją n-elementową nazywamy różnowartościową funkcję

$$\pi: \{1, 2, ..., n\} \longmapsto \{1, 2, ..., n\}.$$

1

Rzędem permutacji π nazywamy najmniejsze takie $k\geqslant 1$, że dla wszystkich $i=1,2,\ldots,n$ zachodzi:

$$\underbrace{\pi(\pi(\dots(\pi(i))\dots))}_{k \text{ razy}} = i$$

Na przykład, rzędem trzyelementowej permutacji $\pi(1) = 3, \pi(2) = 2, \pi(3) = 1$ jest 2, bo $\pi(\pi(1)) = 1, \pi(\pi(2)) = 2, \pi(\pi(3)) = 3$.

Dla zadanego n rozważmy permutacje n-elementowe o największym możliwym rzędzie. Na przykład maksymalny rząd permutacji pięcioelementowej wynosi 6. Przykładem permutacji pięcioelementowej, której rząd wynosi 6 jest $\pi(1) = 4, \pi(2) = 5, \pi(3) = 2, \pi(4) = 1, \pi(5) = 3$.

Spośród wszystkich permutacji n-elementowych o maksymalnym rzędzie chcemy znaleźć permutację najwcześniejszą (w porządku leksykograficznym). Dokładniej, mówimy, że permutacja n-elementowa π jest wcześniejsza niż permutacja n-elementowa σ , gdy istnieje takie i, że $\pi(j) = \sigma(j)$ dla argumentów j < i oraz $\pi(i) < \sigma(i)$. Najwcześniejszą permutacją pięcio-elementową o rzędzie 6 jest $\pi(1) = 2, \pi(2) = 1, \pi(3) = 4, \pi(4) = 5, \pi(5) = 3$.

Zadanie

Napisz program, który:

- wczyta ze standardowego wejścia zestaw liczb całkowitych n_1, n_2, \ldots, n_d ,
- dla każdej liczby n_i (dla i = 1, 2, ..., d) wyznaczy najwcześniejszą n_i -elementową permutacje o maksymalnym rzedzie,
- wypisze na standardowe wyjście wyznaczone permutacje.

Wejście

W pierwszym wierszu standardowego wejścia znajduje się jedna dodatnia liczba całkowita d, $1 \le d \le 10$. W kolejnych d wierszach znajdują się dodatnie liczby całkowite n_1, n_2, \ldots, n_d , po jednej w wierszu, $1 \le n_i \le 10~000$.

Wyjście

Twój program powinien wypisać na standardowe wyjście d wierszy. Wiersz nr i powinien zawierać ciąg liczb całkowitych oddzielonych pojedynczymi odstępami, będący ciągiem wartości $\pi(1), \pi(2), \ldots, \pi(n_i)$ najwcześniejszej permutacji n_i -elementowej o maksymalnym rzędzie.

Przykład

Dla danych wejściowych:

2

5

14

poprawnym wynikiem jest:

2 1 4 5 3

2 3 1 5 6 7 4 9 10 11 12 13 14 8

Rozwiązanie

Podstawowe pojęcia i fakty

Zanim przystąpimy do omawiania problemu, należy przypomnieć parę podstawowych pojęć i faktów.

I

NWD i NWW

Definicja 1 *Największym wspólnym dzielnikiem* liczb całkowitych a_1, \ldots, a_k nazwiemy największą liczbę całkowitą, która dzieli wszystkie a_i , dla $i = 1, \ldots, k$:

$$NWD(a_1,...,a_k) = \max\{d : d \mid a_i \text{ dla wszystkich } i = 1,...,k\}.$$

Definicja 2 Powiemy, że liczby całkowite a i b są względnie pierwsze, jeśli nie mają wspólnego dzielnika większego od 1, czyli NWD(a,b) = 1.

Definicja 3 Najmniejszą wspólną wielokrotnością liczb całkowitych a_1, \ldots, a_k nazwiemy najmniejszą dodatnią liczbę całkowitą, która jest podzielna przez każdą z liczb a_i , dla $i=1,\ldots,k$.

$$NWW(a_1, ..., a_k) = \min\{d > 0 : a_i \mid d \text{ dla wszystkich } i = 1, ..., k\}.$$

Fakt 1 Zachodzą następujące własności NWW:

(i) Dla liczb całkowitych b, c, a_1, \dots, a_k :

$$NWW(b,c,a_1,\ldots,a_k) = NWW(NWW(b,c),a_1,\ldots,a_k).$$

(ii) Jeśli a i b są względnie pierwsze, to:

$$NWW(a,b) = ab.$$

Permutacje, rozkłady na cykle, rząd permutacji

Definicja 4 Cyklem długości c w permutacji π nazwiemy taki ciąg indeksów $(i_1 \cdots i_c)$, że $\pi(i_1) = i_2, \pi(i_2) = i_3, \dots, \pi(i_{c-1}) = i_c, \pi(i_c) = i_1$.

1

Przykład 1 Dla permutacji $\pi(1) = 4$, $\pi(2) = 5$, $\pi(3) = 2$, $\pi(4) = 1$, $\pi(5) = 3$ rozkład na cykle wynosi: (14)(253).

Teraz w inny sposób zdefiniujemy rząd permutacji.

Definicja 6 Permutację powstałą przez k-krotne złożenie n-elementowej permutacji π ze sobą, dla $k \ge 1$, oznaczamy π^k :

$$\pi^k(i) = \underbrace{\pi(\pi(\dots(\pi(i))\dots))}_{k \text{ razy}}$$
 dla $i = 1, \dots, n$.

Definicja 7 *n*–elementową permutację *identycznościową* oznaczamy przez id:

$$id(i) = i$$
 dla $i = 1, ..., n$.

Definicja 8 *Rzędem* permutacji π nazywamy najmniejsze $k \geqslant 1$, dla którego zachodzi $\pi^k \equiv \mathrm{id}$:

$$rz\pi = \min\{k \geqslant 1 : \pi^k \equiv id\}.$$

Aby zrozumieć istotę problemu, jaka zaszyta jest w treści zadania, pokażemy w jaki sposób liczy się rząd permutacji.

Lemat 1 Niech permutacja π zawiera cykl $(i_1 i_2 \cdots i_c)$ długości c. W permutacji π^k , $k \ge 1$, elementy cyklu przejdą na siebie wtedy i tylko wtedy, gdy k jest wielokrotnością c:

$$\pi^k(j) = j \ dla \ j \in \{i_1, \dots, i_c\} \ wtw, \ gdy \ c \mid k.$$

Rysunek 1: Cykl w permutacji

Dowód Na cykl w permutacji możemy patrzeć jak na graf, którego krawędzie są postaci $i \longrightarrow \pi(i)$ (Rysunek 1). Oczywiste jest, że każda ścieżka z danego wierzchołka do tego samego wierzchołka będzie miała długość, która jest wielokrotnością długości cyklu.

Fakt 2 Rząd permutacji π , której cykle są długości c_1, \ldots, c_l , wyraża się wzorem:

$$rz\pi = NWW(c_1, \ldots, c_l).$$

Dowód Z lematu 1 wynika, że w permutacji π^k , j-ty cykl, $j=1,\ldots,l$, przejdzie na siebie wtedy i tylko wtedy, gdy k jest wielokrotnością c_j . Zatem rzędem π będzie najmniejsza wspólna wielokrotność c_1,\ldots,c_l .

Przykład 2 Permutacja z przykładu 1 ma cykle długości 2 i 3, więc jej rząd wynosi NWW(2,3)=6.

Postać maksymalnego rzędu permutacji *n*-elementowej

W tej sekcji przyjrzymy się jaką postać ma maksymalny rząd permutacji.

Definicja 9 Skończony ciąg liczb całkowitych dodatnich a_1, \ldots, a_l nazwiemy *podziałem* liczby n, jeśli zachodzi:

1

$$\sum_{i=1}^{l} a_i = n.$$

Z faktu 2 wynika, że musimy szukać permutacji n-elementowej, w taki sposób, żeby $NWW(c_1,...,c_l)$ było największe, gdzie $c_1,...,c_l$ oznaczają długości cyklów permutacji. Zatem szukanie maksymalnego rzędu sprowadza się do maksymalizowania wartości $NWW(c_1,...,c_l)$ po wszystkich podziałach $c_1,...,c_l$ liczby n.

Przechodzimy do omówienia własności podziałów *n* o maksymalnej NWW. Posłużymy się oczywistą nierównością:

Fakt 3 Dla liczb całkowitych $2 \le x < y$ zachodzi nierówność:

$$x + y < xy. \tag{11}$$

Dowód
$$2 < y \Leftrightarrow y + 2 < 2y \Leftrightarrow y < 2(y - 1) \Rightarrow y < x(y - 1) \Leftrightarrow x + y < xy$$
.

Wśród podziałów *n* o maksymalnej NWW, jak się później okaże, będą nas interesowały podziały o największej liczbie jedynek. Poniższy lemat mówi o podstawowych własnościach takich podziałów.

Lemat 2 Podział c_1, \ldots, c_l liczby n o maksymalnej NWW i o największej liczbie jedynek spełnia warunki:

- (i) Dla każdego i = 1, ..., l, c_i jest dodatnią potęgą liczby pierwszej lub jedynką.
- (ii) Każde dwie liczby podziału c_i i c_j są względnie pierwsze, dla $i, j = 1, ..., l, i \neq j$.

Dowód Dowody obu punktów są nie wprost. Zakładamy, że podział c_1, \ldots, c_l liczby n jest podziałem o maksymalnej NWW i ma największą liczbę jedynek wśród takich podziałów.

- (i) Załóżmy, że $c_i > 1$ jest iloczynem liczb względnie pierwszych: $c_i = ab$, NWD(a,b) = 1, $2 \le a < b$. Z (11) mamy a + b < ab. Zatem jeśli zamiast jednej liczby ab podziału n weźmiemy liczby a, b oraz ab a b jedynek otrzymamy nowy podział n, który będzie miał więcej jedynek. Ponadto NWW otrzymanego podziału się nie zmieni, gdyż NWW(a,b) = ab. Mamy więc nowy podział o maksymalnej NWW i większej liczbie jedynek. Otrzymana sprzeczność dowodzi, że $c_i = p^{\alpha}$ dla pewnej liczby pierwszej p i $\alpha \geqslant 1$.
- (ii) Załóżmy, że dla pewnych $i \neq j$ jest NWD $(c_i, c_j) > 1$. Na podstawie (i) wiemy, że c_i i c_j są potęgami liczb pierwszych. Ponieważ mają wspólny dzielnik, więc muszą być potęgami tej samej liczby pierwszej. Przyjmijmy $c_i = p^{\alpha}$ i $c_j = p^{\beta}$. Bez straty ogólności załóżmy, że $\alpha \leq \beta$, wtedy NWW $(c_i, c_j) = c_j$. Zatem możemy w podziale n zamiast c_i wziąć c_i jedynek nie zmieniając NWW. Sprzeczność dowodzi, że NWD $(c_i, c_j) = 1$.

Bezpośrednio z lematu 2 wynika twierdzenie.

Twierdzenie 3 Podział n o maksymalnej NWW i największej liczbie jedynek składa się z jedynek oraz liczb postaci $p_1^{\alpha_1}, \ldots, p_k^{\alpha_k}$, gdzie p_1, \ldots, p_k są różnymi liczbami pierwszymi, a $\alpha_1, \ldots, \alpha_k$ dodatnimi liczbami całkowitymi.

1

Przykład 3 Weźmy wszystkie podziały 22 o maksymalnej NWW, która wynosi 420. Są to:

$$22 = 4 + 5 + 6 + 7 = 3 + 3 + 4 + 5 + 7 = 1 + 2 + 3 + 4 + 5 + 7 = 1 + 1 + 1 + 3 + 4 + 5 + 7.$$

W pierwszym podziałe 6 rozkłada się na iloczyn liczb względnie pierwszych 2 i 3. W drugim i trzecim znajdujemy pary liczb, które nie są względnie pierwsze: 3,3 oraz 2,4. Ostatni podział spełnia warunki lematu 2. Każda liczba różna od jedynki jest potęgą liczby pierwszej: $2^2, 3^1, 5^1, 7^1$, a zatem według twierdzenia 3 ma największą liczbę jedynek wśród podziałów o maksymalnej NWW.

Wniosek 4 Maksymalny rząd permutacji n–elementowej wyraża się wzorem:

$$p_1^{\alpha_1} \dots p_k^{\alpha_k}$$
,

gdzie p_1, \ldots, p_k są różnymi liczbami pierwszymi, $\alpha_1, \ldots, \alpha_k$ dodatnimi liczbami całkowitymi takimi, że:

$$\sum_{i=1}^k p_i^{\alpha_i} \leqslant n.$$

Permutacje najmniejsze leksykograficznie

Pokażemy jak konstruować permutacje najmniejsze leksykograficznie wśród permutacji o zadanych długościach cykli.

Twierdzenie 5 Najmniejszą leksykograficznie permutacją rozkładającą się na cykle długości $c_1 \le c_2 \le ... \le c_l$ jest permutacja π wyrażająca się wzorami (dla r = 1,...,l):

$$\pi(C_{r-1}+j) = \begin{cases} C_{r-1}+j+1 & dla \ j=1,\ldots,c_r-1, \\ C_{r-1}+1 & dla \ j=c_r, \end{cases}$$
 (12)

gdzie

$$C_0 = 0 \ i \ C_r = \sum_{i=1}^r c_i, \ dlar > 0.$$

Przyjrzyjmy się, co mówi to twierdzenie. Wzory (12) przedstawiają zapis cyklu c_r -elementowego. Zatem konstrukcja permutacji najmniejszej leksykograficznie polega na zapisaniu kolejnych cykli od najkrótszego do najdłuższego, gdzie cykl długości c jest postaci $(j-j+1-j+2\cdots j+c-1)$.

Dowód Udowodnimy indukcyjnie po *i* tezę:

Wartości $\pi(1), \dots, \pi(i)$ najmniejszej leksykograficznie permutacji π , wśród permutacji rozkładających się na cykle długości $c_1 \leqslant \dots \leqslant c_l$, spełniają wzór (12).

I

Dla i=0 teza (13) jest oczywista. Niech $i\geqslant 1$, wtedy $i=C_{r-1}+j$ dla pewnych $1\leqslant r\leqslant l$ i $1\leqslant j\leqslant c_r$. Załóżmy, że wartości $\pi(1),\ldots,\pi(i-1)$ są wyznaczone przez wzory (12). Zobaczmy co oznacza to założenie. $\pi(1),\ldots,\pi(C_{r-1})$ reprezentują cykle długości c_1,\ldots,c_{r-1} , więc pozostaje nam już tylko utworzyć cykle długości c_r,\ldots,c_l . Ponadto zbiór wartości wynosi $\{\pi(1),\ldots,\pi(C_{r-1})\}=\{1,\ldots,C_{r-1}\}$. Pozostałe znane wartości to $\pi(C_{r-1}+1),\ldots,\pi(C_{r-1}+j-1)$, które wynoszą odpowiednio $C_{r-1}+2,\ldots,C_{r-1}+j$. Zatem dostępne wartości, które może przyjąć $\pi(i)$, wynoszą $C_{r-1}+1$ oraz $C_{r-1}+j+1,\ldots,n$. Najmniejszą z nich jest $C_{r-1}+1$. Jeśli przyjmiemy

$$\pi(i) = C_{r-1} + 1$$

utworzymy cykl $(C_{r-1}+1 \quad C_{r-1}+2 \quad \cdots \quad C_{r-1}+j)$ o długości j. Najmniejszy cykl jaki możemy utworzyć ma długość c_r . Zatem możemy przyjąć $\pi(i)=C_{r-1}+1$ tylko wtedy, gdy $j=c_r$. Jeśli $j< c_r$, to za $\pi(i)$ przyjmujemy drugą najmniejszą możliwą wartość:

$$\pi(i) = C_{r-1} + i + 1.$$

Rysunek 2: Najmniejsza leksykograficznie permutacja o długościach cykli 1,3,4

Przykład 4 Najmniejszą leksykograficznie permutacją, która rozkłada się na cykle długości 1,3,4 jest

$$\pi(1) = 1, \pi(2) = 3, \pi(3) = 4, \pi(4) = 2, \pi(5) = 6, \pi(6) = 7, \pi(7) = 8, \pi(8) = 5$$

(Rysunek 2).

Umiemy już konstruować permutacje najmniejsze leksykograficznie o zadanych długościach cykli. Jeśli dodatkowo mamy możliwość decydowania jakie są długości cykli permutacji, to chcemy wiedzieć, który zestaw długości cykli umożliwi utworzenie permutacji najmniejszej leksykograficznie.

Lemat 6 Dane są dwa ciągi $c_1 \leqslant ... \leqslant c_l$ oraz $c'_1 \leqslant ... \leqslant c'_{l'}$ takie, że

$$n = \sum_{i=1}^{l} c_i = \sum_{i=1}^{l'} c'_i,$$

I

Dowód Jest to wniosek z twierdzenia 5. Wystarczy wziąć najmniejszą leksykograficznie permutację dla ciągu c_1, \ldots, c_l oraz dla ciągu $c'_1, \ldots, c'_{l'}$ i sprawdzić, że ta pierwsza jest mniejsza leksykograficznie.

Wniosek 7 Jeśli ciąg $c_1,...,c_l$ ma więcej jedynek niż ciąg $c'_1,...,c'_{l'}$, to najmniejsza leksykograficznie permutacja o cyklach długości $c_1,...,c_l$ jest mniejsza od najmniejszej leksykograficznie permutacji o cyklach długości $c'_1,...,c'_{l'}$.

Na podstawie twierdzenia 3 i wniosku 7 możemy sformułować twierdzenie, które mówi nam w jakiej klasie permutacji szukać rozwiązania naszego zadania.

Twierdzenie 8 Permutacja n–elementowa o największym rzędzie, która jest najmniejsza leksykograficznie, składa się z cykli długości $1, \ldots, 1, p_1^{\alpha_1}, \ldots, p_k^{\alpha_k}$, dla pewnych różnych liczb pierwszych p_1, \ldots, p_k i dodatnich liczb całkowitych $\alpha_1, \ldots, \alpha_k$ takich, że:

$$\sum_{i=1}^k p_i^{\alpha_i} \leqslant n.$$

Szukanie maksymalnego rzędu

Wiemy jaka jest postać szukanej permutacji n-elementowej. Pozostaje pytanie jak znaleźć maksymalny rząd. Możemy to zrobić stosując podejście programowania dynamicznego. Od teraz p_1, p_2, p_3, \ldots oznaczają kolejne liczby pierwsze.

Definicja 10 Maksymalny rząd permutacji n–elementowej, w której występują tylko cykle o długości 1 lub postaci p^{α} , dla $p \leq p_k$, oznaczamy przez $R_{n,k}$.

Bezpośrednio z tej definicji wynika, że wartości $R_{n,k}$ będą rosły wraz z wzrostem n i k:

Fakt 4

$$R_{n_1,k_1} \leqslant R_{n_2,k_2}$$
 dla $k_1 \leqslant k_2$, $i \, n_1 \leqslant n_2$.

Do wyliczania $R_{n,k}$ w sposób systematyczny wykorzystujemy twierdzenie:

Twierdzenie 9 Wartości $R_{n,k}$ możemy wyliczać rekurencyjnie według wzoru:

$$R_{n,k} = \max\{R_{n,k-1}\} \cup \{p_k^{\alpha} R_{n-p_k^{\alpha},k-1} : 1 < p_k^{\alpha} \leqslant n\}, \tag{14}$$

przy warunkach brzegowych

$$R_{n,0} = 1$$
.

Dowód Permutacja może nie zawierać cyklu postaci p_k^{α} co daje $R_{n,k-1}$. Jeśli jednak zawiera cykl postaci p_k^{α} , to maksymalny rząd n-elementowej permutacji z cyklami o długościach postaci p^{β} , $p \leq p_k$, będzie wynosił tyle, co maksymalny rząd permutacji mającej mniej o p_k^{α} elementów z cyklami o długościach postaci p^{β} , $p \leq p_{k-1}$, pomnożony przez długość cyklu p_k^{α} .

Żeby znaleźć maksymalny rząd permutacji n-elementowej wystarczy wyliczyć $R_{n,k}$ dla odpowiednio dużego k. Musi ono być na tyle duże, że powiększenie k nie powiększy już $R_{n,k}$. Zatem algorytm na szukanie maksymalnego rzędu permutacji n-elementowej wygląda następująco:

I

- 1: **for** i := 0 **to** n **do**
- 2: $R_{i,0} := 1$
- 3: **for** k := 1 **to** "odpowiednio duże k" **do**
- 4: $R_{i,k} := \max\{R_{i,k-1}\} \cup \{p_k^{\alpha}R_{i-p_k^{\alpha},k-1} : 1 < p_k^{\alpha} \leq i\}$
- 5: maksymalny rząd permutacji n-elementowej wynosi $R_{n,k}$, gdzie k jest "odpowiednio duże"

Ograniczanie k

Co oznacza "odpowiednio duże k"? Przyjmijmy parę oznaczeń.

Definicja 11 Niech K_n oznacza najmniejsze k takie, że dla wszystkich $k' \ge k$ jest $R_{n,k'} = R_{n,k}$.

Definicja 12 Niech \overline{K}_n oznacza najmniejsze k takie, że dla wszystkich $k' \ge k$ i dowolnego $n' \le n$ jest $R_{n',k'} = R_{n',k}$.

Wartość \overline{K}_n można też opisać za pomocą K_n :

$$\overline{K}_n = \max_{0 \leqslant n' \leqslant n} K_{n'}.$$

Możemy teraz powiedzieć, że przez "odpowiednio duże k" rozumiemy dowolne k, o którym wiemy, że jest większe od \overline{K}_n .

Jak duże jest K_n ? Na pewno zachodzi $p_{K_n} \le n$. W ten sposób dla $n=10\,000$ dostajemy bardzo słabe ograniczenie $\overline{K}_n \le 1229$, gdyż $p_{1229}=9973<10\,000<10\,007=p_{1230}$. Do "rozsądnego" ograniczania K_n pomocny jest następujący lemat.

Lemat 10 Niech $n \ge 1$. Niech h będzie najmniejszą liczbą spełniającą jeden z warunków:

- (*i*) $p_{h+1} > n$,
- (ii) $h \geqslant \overline{K}_{n-1} i R_{n,h} \geqslant nR_{n-p_{h+1},h}$,

wtedy h jest ograniczeniem na K_n :

$$K_n \leqslant h$$
.

Dowód Jeżeli $p_{h+1} > n$, to dla każdego k' > h będzie $p_{k'} > n$, a co za tym idzie, ze wzoru (14) mamy $R_{n,k'} = R_{n,k'-1}$. Czyli $R_{n,k'} = R_{n,h}$ dla każdego $k' \geqslant h$, zatem $K_n \leqslant h$.

Załóżmy teraz, że zachodzi (ii). Udowodnimy indukcyjnie, że dla k' > h jest

$$R_{n\,k'} = R_{n,h}.\tag{15}$$

Zakładamy, że $R_{n,k'-1} = R_{n,h}$. Jeżeli $p_{k'} > n$, to równość (15) otrzymujemy bezpośrednio z (14). Zatem niech $p_{k'} \le n$. Weźmy α takie, że $p_{k'}^{\alpha} \le n$. Z tego, że $h \geqslant \overline{K}_{n-1}$ mamy

$$p_{k'}^{\alpha}R_{n-p_{k'},k'-1}=p_{k'}^{\alpha}R_{n-p_{k'},h}.$$

171

Maksymalne rzędy permutacji

Zachodzi $n - p_{k'}^{\alpha} \le n - p_{h+1}$, więc z faktu 4 mamy

$$p_{k'}^{\alpha}R_{n-p_{k'},h} \leqslant p_{k'}^{\alpha}R_{n-p_{k+1},h}.$$

Dalej szacujemy:

$$p_{k'}^{\alpha}R_{n-p_{h+1},h} \leqslant nR_{n-p_{h+1},h} \leqslant R_{n,h}.$$

W końcu z założenia indukcyjnego mamy

$$R_{n,h} = R_{n,k'-1}.$$

Podsumowując powyższe rozumowanie otrzymujemy:

$$p_{k'}^{\alpha}R_{n-p_{k'},k'-1} \leqslant R_{n,k'-1},$$

skąd wynika, że $R_{n,k'} = R_{n,k'-1} = R_{n,h}$, a to kończy dowód indukcyjny.

Z pomocą lematu 10 możemy termin "odpowiednio duże k" zastąpić warunkiem:

$$p_{k+1} > i \lor (k \geqslant \overline{K}_{i-1} \land R_{i,k} \geqslant iR_{i-p_{k+1},k}). \tag{16}$$

Możemy teraz uzupełnić algorytm:

- 1: $\overline{K}_0 := 0$
- 2: **for** i := 0 **to** n **do**
- 3: $R_{i,0} := 1$
- 4: k := 0
- 5: **while** $p_{k+1} \leqslant i \land (k < \overline{K}_{i-1} \lor R_{i,k} < iR_{i-p_{k+1},k})$ **do**
- 6: k := k+1
- 7: $R_{i,k} := \max\{R_{i,k-1}\} \cup \{p_k^{\alpha}R_{i-p_k^{\alpha},k-1} : 1 < p_k^{\alpha} \le i\}$
- 8: **while** $k > 0 \lor R_{i,k} = R_{i,k-1}$ **do** k := k-1 { Szukamy wartości K_i }
- 9: $K_i := k, \overline{K}_i := \max(\overline{K}_{i-1}, K_i)$
- 10: maksymalny rząd permutacji n-elementowej wynosi R_{n,K_n}

Okazuje się, że w tym algorytmie dla $n \le 10000$ największe k dla jakiego będziemy liczyć $R_{i,k}$ wynosi 99. Natomiast największe K_i wynosi 70. Wynika stąd, że za ograniczenie k wystarczyło przyjąć dowolną liczbę nie mniejszą od 70.

Reprezentacja $R_{n,k}$

Jak duże mogą być $R_{n,k}$? Okazuje się, że są na tyle duże, że trzeba implementować duże liczby całkowite. Przy czym na dużych liczbach potrzebujemy tylko operacji:

- dodawania,
- mnożenia przez liczbę z przedziału [1,10000],
- porównywania.

Zauważmy, że nie potrzebujemy wypisywania dużej liczby i za podstawę możemy wziąć potęgę dwójki. Najwygodniej za podstawę jest wziąć 2^{16} . Rozmiar pamiętanej liczby można ustalać dynamicznie przy zapamiętywaniu nowo wyliczanej wartości $R_{n,k}$. W przypadku, gdy chcemy przydzielić pamięć statycznie, trzeba określić maksymalny rozmiar liczby jaką będziemy pamiętać. W tym celu musimy sprawdzić jakie jest największe $R_{n,k}$. Największe $R_{n,k}$ wynosi tyle co rząd permutacji n-elementowej dla $n=10\,000$. Można eksperymentalnie sprawdzić, że wartość ta wynosi w przybliżeniu $1.8 \cdot 2^{454} < 2^{464} = 2^{16\cdot29}$. Zatem można reprezentować wartości $R_{n,k}$ przez 29–cyfrowe liczby o podstawie 2^{16} .

I

Przy takiej reprezentacji pamięć potrzebna na zapamiętanie wszystkich wartości $R_{n,k}$ wynosi $2 \cdot 29 \cdot 10\,000 \cdot 70 = 40\,600\,000 \approx 40$ M.

Wypisanie szukanej permutacji

Gdy już mamy wyliczony maksymalny rząd R_{n,K_n} permutacji n–elementowej, pozostaje wypisanie permutacji najmniejszej leksykograficznie. Wpierw musimy odtworzyć długości cykli tej permutacji. Oznaczmy:

$$C_{i,k} = \begin{cases} 0 & \text{jeśli } R_{i,k} = R_{i,k-1} \\ p_k^{\alpha} & \text{jeśli } R_{i,k} = p_k^{\alpha} R_{i-p_k^{\alpha},k-1} \end{cases}$$

wtedy algorytm wyznaczania długości cykli jest następujący:

- 1: i := n
- 2: **for** $k := K_n$ **downto** 1 **do**
- 3: **if** $C_{i,k} > 0$ **then** zapamiętaj długość cyklu $C_{i,k}$
- $4: \qquad i := i C_{ik}$
- 5: do zapamiętanych długości cykli dodaj i cykli długości 1

Wartości $C_{i,k}$ możemy sobie wcześniej zapamiętać podczas wyliczania wartości $R_{i,k}$.

Mając długości cykli możemy już wypisać permutację najmniejszą leksykograficznie. Sortujemy otrzymany ciąg liczb długości cykli od najmniejszej do największej otrzymując ciąg $c_1 \leqslant \ldots \leqslant c_l$, a następnie stosujemy twierdzenie 5.

Wiele wartości n

Dla testu zawierającego wiele wartości n bierzemy to największe. Dla niego stosujemy przedstawiony algorytm do wyliczania wartości $R_{n,k}$ oraz $C_{n,k}$. Mając te wartości możemy wypisać szukane permutacje dla wszystkich n znajdujących się w teście.

Inne rozwiązania

Typ double zamiast dużych liczb całkowitych

Można sprawdzić, że dla $n \le 10000$ przy wyliczaniu wartości $R_{n,k}$ wszystkie porównania dotyczą liczb różniących się względnie o co najmniej 10^{-5} . Sugeruje to reprezentowanie wartości $R_{n,k}$ przez typ double. Rzeczywiście stosując zamiast dużych liczb całkowitych liczby zmiennoprzecinkowe podwójnej precyzji otrzymamy poprawny program dla danych wejściowych w tym zadaniu.

173

Pamiętanie części wartości $R_{n,k}$

Zauważmy, że we wzorze (14) wartość $R_{n,k}$ zależy tylko od wartości $R_{i,k-1}$, gdzie $i \le n$. Zatem, aby wyznaczyć wszystkie wartości $R_{i,k}$ wystarczy, że będziemy pamiętać wartości $R_{i,k-1}$. Jeśli będziemy liczyć w odpowiedniej kolejności, to wystarczy pamiętać tylko n+1 wartości:

I

```
1: for i:=0 to n do R_i:=1 { Inicjacja dla k=0 }
2: for k:=1 to "odpowiednio duże k" do
3: for i:=n downto 0 do
4: R_i:=\max\{R_i\}\cup\{p_k^\alpha R_{i-p_k^\alpha}:1< p_k^\alpha\leqslant i\}
5: maksymalny rząd permutacji n-elementowej wynosi R_n
```

Oczywiście, żeby odtworzyć później długości cykli trzeba zapamiętać już wszystkie wartości $C_{i,k}$.

Testy

Zostało przygotowanych piętnaście testów. Maksymalne n w każdym z testów wynosiło kolejno: 5, 10, 20, 79, 789, 2003, 4567, 7890, 8945, 10000, 9878, 9991, 510, 2021, 3705. W ostatnich pięciu testach dane zostały tak dobrane, aby wyłapać rozwiązania nakładające zbyt duże ograniczenie na k.

