Information Discrepancy in Strategic Learning

International Conference on Machine Learning Baltimore, USA, July 2022

Yahav Bechavod **Hebrew University**

Chara Podimata

Harvard University

Steven Wu
Carnegie Mellon
University

Juba Ziani **Georgia Institute of Technology**

Strategic Learning

Settings which:

- 1. Involve decision making over human individuals.
- 2. Certain outcomes more desirable than others.

Example: loan approvals π Deployed policy

Strategic Learning

Individuals would like to receive

more favorable assessments

Act <u>strategically</u>

Strategic feature modifications

Strategic Feature Modification

Ideally:

- 1. $\pi(x') >> \pi(x)$.
- 2. Cost(x, x') is small.

Strategic feature modification

Strategic feature modification

Strategic feature modification

Our Work

Focus on strategic learning when decision rules are inaccessible.

Model based on **learning from peers**.

Instead of observing the decision rule, individuals try to learn about it from friends, acquaintances who applied previously.

Strategic Learning with Inaccessible rules

Due to information discrepancy, different peer-networks may form **different estimates** of the deployed rule.

Strategic Learning with Inaccessible rules

Q: What are the effects of information discrepancy between different sub-populations on the ability of individuals to improve?

Adult Dataset

Publicly available at UCI repository.

- ~50K datapoints
- 14 attributes including Age, Country, Workclass, Education, Race, etc.
- Label (annual income): = 50K Our process:
- 4 experiments separating subpopulations based on:

Characteristic	Subpopulation 1	Subpopulation 2
Age	<35 yrs old	>=35 yrs old
Country	All others	Western countries
Education	All others	Above high school
Race	All others	White

Predict **income improvement** (final income – original income) for each sub-population.

Results Snapshot: Adult Dataset

- Total income improvement currently subpopulation 1
- Total income improvement currently subpopulation 2

Results Snapshot: Adult Dataset

Sub-populations may end up worse off.

 Total income improvement currently subpopulation 1

 Total income improvement currently subpopulation 2

Results Snapshot: Adult Dataset

Total improvement may be very unequal across subpopulations.

- Total income improvement currently subpopulation 1
- Total income improvement currently subpopulation 2

Results

We make explicit a connection between:

- 1. Information available to different sub-populations.
- 2. Ability of individuals to improve.

Theoretical characterizations for when, across all sub-populations:

- 1. Do-no-harm.
- 2. Equal improvements.
- 3. Effort is exerted optimally.

Information Discrepancy in Strategic Learning Thank you!

Yahav Bechavod **Hebrew University**

Chara Podimata

Harvard University

Steven Wu
Carnegie Mellon
University

Juba Ziani **Georgia Institute of Technology**