Задание 1

Построить графики пространственных кривых. Тип маркера – "точка", цвет и стиль линии выбрать самостоятельно.

Вариант 1

$$x = \frac{a\cos t}{t},$$

$$y = \frac{a\sin t}{t},$$

$$z = at,$$

где $a = 2, \pi \le t \le 10\pi$.

Вариант 2

$$x = 10\cos t - 5\cos 2t,$$

$$y = 10\sin t - 5\sin 2t,$$

$$z = 10t,$$

 $0 \le t \le 10\pi$.

Вариант 3

$$x = 2\cos t \cdot (1 + \cos t),$$

$$y = 2\sin t \cdot (1 + \cos t),$$

$$z = 2t,$$

 $0 \le t \le 10\pi$.

Задание 2

Загрузить координаты точек из файла. Отобразить точки при помощи plot3 или scatter3.

Вариант 1

Файл: cdata1.csv.

Вариант 2

Файл: cdata2.csv.

Вариант 3

Файл: cdata3.csv.

Задание 3

Построить график поверхности z = f(x, y) в заданной области с помощью графических функций:

- mesh
- surf

Шаг сетки выбрать по своему усмотрению. Сделать подписи к осям координат и заголовок графика. В заголовке указать отображаемую на графике функцию.

Вариант 1

$$z = x \exp(-x^2 - y^2).$$

Область определения: $-3 \le x, y \le 3$.

Вариант 2

$$z = \sin 2x \cos y$$
.

Область определения: $0 \le x, y \le 2\pi$.

Вариант 3

$$z = \frac{x}{x^2 + y}.$$

Область определения: $0 \le x \le 5$, $1 \le y \le 3$.

Задание 4

Построить график поверхности z = f(x, y) в заданной области с помощью графических функций:

- contour
- meshc

Шаг сетки выбрать по своему усмотрению. Сделать подписи к осям координат и заголовок графика. В заголовке указать отображаемую на графике функцию.

Вариант 1

$$z = -(1 - \cos 4\pi y)^{1/4} \cdot (1 - \cos 2\pi x)^{1/4}.$$

Область определения: $0 \le x \le 3$, $0 \le y \le 1$.

Вариант 2

$$z = \exp\left(-\sqrt{x^2 + y^2}\right) \cdot \cos 4x \cdot \cos 4y;$$

Область определения: $-1 \le x \le 1$, $-1 \le y \le 1$.

Вариант 3

$$x = r\cos\theta,$$

$$y = r\sin\theta,$$

$$z = \exp(-r)\cos4x\cos4y.$$

Область определения: $0 \le r \le 1.7$, $0 \le \theta \le 2\pi$.

Задание 5

Постройте множество Жюлиа (julia.m), самостоятельно выбрав начальную точку. Отобразите выбранную начальную точку в заголовке графика и сделайте скриншот полученного множества.

Постройте множество Жюлиа, применив для итераций следующие функции:

Вариант 1

- Z.^3 + C
- sin(Z).*cos(Z)

Вариант 2

- Z.^4 + C
- cosh(Z)

Вариант 3

- sinh(Z)
- cot(Z)

Задание 6

Запрограммируйте для одномерного клеточного автомата (onedimca.m) следующие правила:

Вариант 1

111	110	101	100	011	010	001	000
1	0	0	1	1	0	1	0

Вариант 2

Вариант 3

Проследите за эволюцией данного автомата. В конце сделайте скриншот и поместите его в отчет.

Задание 7

Для всех вариантов.

Получите на экране картину движения точек, моделирующих случайные блуждания на плоскости. На каждом шаге координаты частицы x и y случайным образом принимают значения +1, 0 или -1. Число шагов – не менее 300.

Выведите номер шага в заголовок графика. Для итоговой картинки сделайте скриншот и поместите его в отчет.