Functions

- A **function** is a rule that assigns a unique value f(x) to any x from a set called the domain.
- The **domain** of a function is the <u>set of all possible input values</u> (i.e. all possible values of x) for which the function is defined.
- The **codomain** of a function is the set which contains <u>all possible output values</u>.
- The **range** is the <u>set of all output values</u> (i.e. all values of y or f(x)), which <u>actually result</u> from using the function formula.
- In general, the range of a function is a subset of its codomain but not necessarily the same set.

- Clearly, the range of a function depends on what you put into the function (domain) and the function itself.
- If set A is the domain of f and set B is the codomain of f, we write $f:A \to B$.

For example, we may write the following to define a function:

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = x^2 + x + 1.$$

- If $x \in A$ and $y = f(x) \in B$ (for example, $y = x^2 + x + 1$), then x is called the **independent** variable and y is called the **dependent** variable.
- We use the term "largest possible domain" to denote the largest possible set of the input values x, not just the largest possible number that x can take.

E.g. If
$$g: \mathbb{R} \to \mathbb{R}$$
 & $g(x) = x + 1$,

then
$$Dom(g) = R$$

and
$$Ran(g) = R$$
.

If
$$h: [0,\infty) \to \mathbb{R} \& h(x) = x+1$$
,

then
$$Dom(h) = [0, \infty)$$

and
$$Ran(h) = [1, \infty)$$
.

We use the notations Dom(f) and Ran(f) to denote the largest possible domain and the largest possible range of the function f, respectively. Then $x \in Dom(f)$ and $f(x) \in Ran(f)$.

In this course, we will mainly study those functions whose domains and codomains are subsets of \mathbb{R} , i.e. they are real-valued functions.

Summary of the domain, codomain and range of a function:

Domain:

What can be put into the function?

Codomain:

What may possibly come out of a function?

Range:

What actually comes out of a function?

Note that every element of the domain A (input) must have <u>exactly one</u> output (in the codomain B).

Consider the following figures:

This is a well-defined function. (Why?)

This is not a well-defined function.

(Why?)

Here are some examples of equations which define y as a function of x (where $x \in \mathbb{R}$):

•
$$y = 3x^2 + 5x + 1$$
, $y = 3x - 1$ (These are examples of polynomials (Ch.3))

•
$$y = \sin x$$
, $y = \cos x$ (These are examples of **trigonometric functions** (Ch.4))

•
$$y = e^x$$
, $y = 10^x$ (These are examples of **exponential functions** (Ch.5))

•
$$y = \ln x$$
, $y = \log x$ (for $x > 0$) (These are examples of logarithmic functions (Ch.5))

Examples of equations which do not define y as a function of x (where $x \in \mathbb{R}$):

•
$$x^2 + y^2 = 4$$
 (Why?)

$$x^2+y^2=4 \Rightarrow y=\pm\sqrt{4-x^2}$$

For every $x \in (-2,2)$, there are two corresponding values of y.

E.g. When
$$x=1$$
, $y=\pm 14-1^2=\pm 13$.

•
$$x = y^2 + 1$$
 (Why?)

$$x = y^2 + 1 \Rightarrow y = \pm \sqrt{x-1}$$

For every > < > 1, there are two corresponding values of y.

E.g. When x=2, $y=\pm \sqrt{2-1}=\pm 1$.

$$x = y^2 + 1 \implies y^2 = 4\left(\frac{1}{4}\right)(x - 1)$$

$$a = \frac{1}{4} > 0 : opens to the right$$

Example 7

For each of the following functions, determine the largest possible domain and the largest possible range of f.

(a)
$$f(x) = x^2 + 1$$

(b)
$$f(x) = 25 - x$$

(c)
$$f(x) = \sqrt{x+4}$$

(d)
$$f(x) = 3 + \frac{1}{x-5}$$

(e)
$$f(x) = 5 + \sin x$$

Solution

(a) The function $f(x) = x^2 + 1$ is well-defined for every real number x.

 \therefore The largest possible domain of f is $Dom(f) = \mathbb{R}$ (the set of all real numbers)

Since $x^2 \ge 0$ for any $x \in Dom(f) = \mathbb{R}$, we have $x^2 + 1 \ge 1$ for any $x \in \mathbb{R}$.

 \therefore The largest possible range of f is $Ran(f) = [1, \infty)$ (the set of all real numbers greater than or equal to 1)

- (b) The function f(x) = 25 x is well-defined for every real number x.
 - \therefore The largest possible domain of f is $Dom(f) = \mathbb{R}$.

For any $x \in Dom(f) = \mathbb{R}$, 25 - x can be any real number.

- \therefore The largest possible range of f is $Ran(f) = \mathbb{R}$.
- (c) The function $f(x) = \sqrt{x+4}$ is well-defined when $x+4 \ge 0$, i.e. $x \ge -4$.
 - \therefore The largest possible domain of f is $Dom(f) = [-4, \infty)$.

For any $x \in Dom(f) = [-4, \infty)$, we have $x + 4 \ge 0$ and therefore $\sqrt{x + 4} \ge 0$.

 \therefore The largest possible range of f is $Ran(f) = [0, \infty)$.

- (d) The function $f(x) = 3 + \frac{1}{x-5}$ is well-defined when $x 5 \neq 0$, i.e. $x \neq 5$.
 - \therefore The largest possible domain of f is $Dom(f) = \mathbb{R} \setminus \{5\}$. (The set of all real

numbers except 5)

Since $\frac{1}{x-5} \neq 0$ for all $x \in Dom(f)$, we have $3 + \frac{1}{x-5} \neq 3 + 0$. Therefore, $3 + \frac{1}{r-5}$ cannot be equal to 3.

- \therefore The largest possible range of f is $Ran(f) = \mathbb{R} \setminus \{3\}$.
- (e) The function $f(x) = 5 + \sin x$ is well-defined for all $x \in \mathbb{R}$.
 - \therefore The largest possible domain of f is $Dom(f) = \mathbb{R}$.

For any $x \in Dom(f)$, $-1 \le \sin x \le 1$ and therefore $5-1 \le 5 + \sin x \le 5 + 1$, i.e. $4 \le f(x) \le 6$.

 \therefore The largest possible range of f is Ran(f) = [4, 6].

Ex.7 (d) Method 2: (To find Ran(f))

Let
$$y = 3 + \frac{1}{x-5}$$
.

Then
$$y-3 = \frac{1}{x-5}$$
 \Rightarrow $x-5 = \frac{1}{y-3}$ \Rightarrow $x = 5 + \frac{1}{y-3}$

y can be any real number except 3.

$$\therefore Ran(f) = R \setminus \{3\}$$

An alternative way to find the domain and range of a function is to sketch its graph first and then determine its domain and range from the graph. For example, the graphs of the first 4 functions in Example 7 are shown below (with **domain** highlighted in green and **range** highlighted in red):

(a)
$$f(x) = x^2 + 1$$

(c)
$$f(x) = \sqrt{x+4}$$

(b)
$$f(x) = 25 - x$$

(d)
$$f(x) = 3 + \frac{1}{x-5}$$

Example 8 (A bit harder examples)

Find the largest possible domain and largest possible range for each of the following functions:

(a)
$$f(x) = \frac{3x+1}{x-1}$$

(b)
$$f(x) = 3 + \sqrt{x^2 - 16}$$

(c)
$$f(x) = 3 + \sqrt{x^2 + 16}$$
 (d) $f(x) = 1 + 2x - x^2$

(d)
$$f(x) = 1 + 2x - x^2$$

Solution

(a) $f(x) = \frac{3x+1}{x-1}$ is well-defined only when $x-1 \neq 0$, i.e. $x \neq 1$.

 \therefore The largest possible domain of f is $Dom(f) = \mathbb{R} \setminus \{1\}$

$$f(x) = \frac{3x+1}{x-1} = \frac{3(x-1+1)+1}{x-1} = \frac{3(x-1)+4}{x-1} = 3 + \frac{4}{x-1}$$

Since $\frac{4}{x-1} \neq 0$ for any $x \in Dom(f)$, it follows that $f(x) = 3 + \frac{4}{x-1}$ cannot be equal to

3. (Similar to Ex. 7d)

 \therefore The largest possible range of f is $Ran(f) = \mathbb{R} \setminus \{3\}$

Alternative method to find its range:

Let $y = \frac{3x+1}{x-1}$. Then express x in terms of y:

$$y = \frac{3x+1}{x-1} \implies y(x-1) = 3x+1 \implies x(y-3) = 1+y \implies x = \frac{1+y}{y-3}$$
.

From this expression, y can be any real number except 3. Hence, $Ran(f) = \mathbb{R}\setminus\{3\}$.

(b) $f(x) = 3 + \sqrt{x^2 - 16}$ is well-defined only when $x^2 - 16 \ge 0$ $\Rightarrow x^2 \ge 16 \Rightarrow x \ge 4$ (or) $x \le -4$.

 \therefore The largest possible domain of f is $Dom(f) = (-\infty, -4] \cup [4, \infty)$

For any $x \in Dom(f)$, $x^2 - 16 \ge 0 \implies \sqrt{x^2 - 16} \ge 0 \implies 3 + \sqrt{x^2 - 16} \ge 3 + 0$. i.e. $f(x) \ge 3$.

 \therefore The largest possible range of f is $Ran(f) = [3, \infty)$

(c) $f(x) = 3 + \sqrt{x^2 + 16}$ is well-defined only when $x^2 + 16 \ge 0$.

Clearly, $x^2+16\geq 16>0$ for any real number x, thus the largest possible domain of f is $Dom(f)=\mathbb{R}$.

Since $x^2 + 16 \ge 16$ for all $x \in Dom(f)$, we have $\sqrt{x^2 + 16} \ge \sqrt{16} = 4$ and thus $f(x) = 3 + \sqrt{x^2 + 16} \ge 3 + 4 = 7$.

 \therefore The largest possible range of f is $Ran(f) = [7, \infty)$.

- (d) $f(x) = 1 + 2x x^2$ is well-defined for all $x \in \mathbb{R}$.
 - \therefore The largest possible domain of f is $Dom(f) = \mathbb{R}$.

Coeff. of $x^2 < 0$: opens downward

By completing the square,

$$f(x) = 1 + 2x - x^2 = -(x^2 - 2x) + 1 = -[(x - 1)^2 - 1^2] + 1 = 2 - (x - 1)^2$$

For any $x \in Dom(f)$, $(x-1)^2 \ge 0 \implies -(x-1)^2 \le 0 \implies 2-(x-1)^2 \le 2+0$, i.e.

 $f(x) \le 2$. Hence the largest possible range of f is $Ran(f) = (-\infty, 2]$.

Example 9 (More harder examples)

Find the largest possible domain for each of the following functions:

(a)
$$f(x) = \sqrt{x^2 - 3x + 2}$$

(b)
$$f(x) = \sqrt{3 + 2x - x^2}$$

(c)
$$f(x) = \frac{9}{x^2 + 4x - 5}$$

$$(d) f(x) = \sqrt{\frac{x+1}{x+2}}$$

Solution

Two important things to remember when determining the largest possible domain of a function which involves square root or quotient:

- 1. We <u>cannot</u> take square root of a negative number. Solve inequality $\cdots \ge 0$.
- 2. We <u>cannot</u> divide by zero. Solve equation $\cdots = 0$, then exclude these x values from R.

(a) The function $f(x) = \sqrt{x^2 - 3x + 2}$ is well-defined only when $x^2 - 3x + 2 \ge 0$, i.e. $(x-1)(x-2) \ge 0$. We want to find all those values of x which satisfy the inequality $(x-1)(x-2) \ge 0$.

One way is to draw a table like the one shown below:

Method 1:

	<i>x</i> < 1	x = 1	1 < x < 2	x = 2	<i>x</i> > 2
Sign of $(x-1)$	_	0	+	+	+
Sign of $(x-2)$	_	_	_	0	+
Sign of $(x-1)(x-2)$	+	0	_	0	+

i.e. we get $(x-1)(x-2) \ge 0$ only when $x \le 1$ or $x \ge 2$.

... The largest possible domain of f is $Dom(f) = (-\infty, 1] \cup [2, \infty)$ or written as $\mathbb{R} \setminus (1, 2)$.

Method 2: $f(x) = \int x^2 - 3x + 2$ is defined when $x^2 - 3x + 2 > 0$.

Consider $x^2 - 3x + 2 = (x-1)(x-2)$.

Coeff. of x^2 is 1 > 0

: parabola opens upward

 $\therefore Dom(f) = (-\infty, 1] \cup [2, \infty).$

Remark: To find the range of $f(x) = \sqrt{x^2 - 3x + 2}$:

For any $x \in Dom(f) = (-\infty, 1] \cup [2, \infty)$,

observe that $x^2-3x+2 \ge 0$

$$\Rightarrow \int x^2 - 3x + 2 > 10 = 0$$

$$= f(x)$$

 $\therefore Ran(f) = [0, \infty).$

(b) $f(x) = \sqrt{3 + 2x - x^2}$ is well-defined only when $3 + 2x - x^2 \ge 0$,

i.e. $(3-x)(1+x) \ge 0$. To solve this inequality, we draw the following table:

Don't put		<i>x</i> < -1	x = -1	-1 < x < 3	x = 3	<i>x</i> > 3
$(x-3)(x+1) \ge 0$ It should be $-(x-3)(x+1) \ge 0$ i.e. $(3-x)(x+1) \ge 0$	Sign of $(3-x)$	+	+	+	0	_
	Sign of $(1+x)$		0	+	+	+
	Sign of $(3 - x)(1 + x)$	_	0	+	0	_

i.e. we get $(3-x)(1+x) \ge 0$ only when $-1 \le x \le 3$.

 \therefore The largest possible domain of f is $Dom(f) = \begin{bmatrix} -1 & 3 \end{bmatrix}$.

Remark:

To find the range of
$$f(x) = \sqrt{3+2x-x^2}$$
:

Consider
$$3+2x-x^2 = (3-x)(1+x)$$

: Parabola passes through x-axis at x=-1 and x=3.

Coeff. of
$$x^2$$
 is $-1 < 0$

: Parabola opens downward.

$$3+2x-x^{2} = -(x^{2}-2x) + 3$$

$$= -[(x-1)^{2}-1^{2}] + 3$$

$$= 4 - (x-1)^{2}$$

:. Vertex at (1,4).

For any
$$X \in Dom(f) = [-1, 3]$$
,
 $0 \le 3 + 2x - x^2 \le 4$
 $\Rightarrow \sqrt{0} \le \sqrt{3 + 2x - x^2} \le \sqrt{4}$
i.e. $0 \le f(x) \le 2$

:
$$Ran(f) = [0, 2]$$

Quadratic function of the form

$$y = a(x-h)^{2} + k$$
vertex at
$$(h,k)$$