

CERTIFICATION TEST REPORT

Report Number.: 12150036-E2V1

Applicant: SEOWON INTECH

69, LS-RO 115BEON-GIL

GUNPO-SI, GYEONGGI-DO, 15809 KOREA.

Model: SLC-120T42OGA

FCC ID: V7MSLC-120T42OGA

IC: 23728-S120T42OGA

EUT Description: LTE NETWORK OUTDOOR CPE

Test Standard(s): FCC CFR47 PART 1 SUBPART I

FCC Part 2 Subpart J

INDUSTRY CANADA RSS 102 ISSUE 5

Date Of Issue:

June 12, 2018

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	06/12/18	Initial Issue	

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
		ST METHODOLOGY	
		FERENCES	
		CILITIES AND ACCREDITATION	
5.	MA	XXIMUM PERMISSIBLE RF EXPOSURE	6
		FCC RULES	
	5.2.	IC RULES	7
		EQUATIONS	
	5.4.	LIMITS AND IC EXEMPTION	10
6	RF	EXPOSURE RESULTS	11

DATE: JUNE 12, 2018

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SEOWON INTECH

69, LS-RO 115BEON-GIL

GUNPO-SI, GYEONGGI-DO, KOREA 15809

EUT DESCRIPTION: LTE Network Outdoor CPE

MODEL: SLC-120T42OGA

SERIAL NUMBER: KRSD173910448-00054, KRSD1733910448-00037

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J

Pass

INDUSTRY CANADA RSS 102 ISSUE 5

Pass

UL Verification Services Inc. calculated the RF Exposure of the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Approved & Released For UL Verification Services Inc. By:

Calculated By:

DAN CORONIA
OPERATIONS LEADER
UL Verification Services Inc.

STEVEN TRAN
PROJECT ENGINEER
UL Verification Services Inc.

2. TEST METHODOLOGY

All calculations were made in accordance with FCC OET Bulletin 65 Edition 97-01 and IC Safety Code 6.

3. REFERENCES

All measurements were made as documented in test report UL Verification Services Inc. Document 12150036-E1V1 and FCC ID: V7MSLC-120T42OGA and IC ID: 23728-S120T42OGA for Cellular band (LTE43).

Output power, Duty cycle and Antenna gain data is excerpted from the applicable test reports.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

5. MAXIMUM PERMISSIBLE RF EXPOSURE

5.1. FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz) Electric field strength (V/m)		Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(A) Limits for Occupational/Controlled Exposure								
0.3-3.0	614	1.63	*100	6				
3.0-30	1842/f	4.89/f	*900/f ²	6				
30-300	61.4	0.163	1.0	6				
300-1,500			f/300	6				
1,500-100,000			5	6				
	(B) Limits for Genera	l Population/Uncontrolle	d Exposure					
0.3-1.34	614	1.63	*100	30				
1.34-30	824/f	2.19/f	*180/f ²	30				
30-300	27.5	0.073	0.2	30				
300-1,500			f/1500	30				
1,500-100,000			1.0	30				

f = frequency in MHz

Notes:

- (1) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
- (2) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

^{* =} Plane-wave equivalent power density

5.2. IC RULES

For the purpose of this standard, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6.

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency RangeElectric Field Magnetic Field Power DentistyReference Period								
(MHz)	(V/m rms)	(A/m rms)	(W/m²)	(minutes)				
0.003-1021	83	90	-	Instantaneous*				
0.1-10	-	0.73/ f	-	6**				
1.1-10	87/ f ^{0.5}	-	-	6**				
10-20	27.46	0.0728	-2	6				
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6				
48-300	22.06	0.05852	1.291	6				
300-6000	3.142 f 0.3417	$0.008335 f^{0.3417}$	$0.02619 f^{0.6834}$	6				
6000-15000	61.4	0.163	10	6				
15000-150000	61.4	0.163	10	616000/ f ^{1.2}				
150000-300000	0.158 f 0.5	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}				

Note: *f* is frequency in MHz.

DATE: JUNE 12, 2018

^{*} Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

REPORT NO: 12150036-E2V1 FCC ID: V7MSLC-120T420GA

5.3. EQUATIONS

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm²

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W **DATE: JUNE 12, 2018**

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

REPORT NO: 12150036-E2V1 FCC ID: V7MSLC-120T42OGA

5.4. LIMITS AND IC EXEMPTION

FIXED LIMITS

For operation in the 3.4-3.6 GHz bands:

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 4 Table 4 Column 4, S = $0.02619 f^{0.6834}$ W/m²

INDUSTRY CANADA EXEMPTION

RSS-102 Clause 2.5.2 RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 4.49/f0.5 W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance):
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10-2 f 0.6834 W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

DATE: JUNE 12, 2018

6. RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

5	Single Chain and non-colocated transmitters										
	Band	Mode	Separation	Output	Antenna	Duty	EIRP	FCC Power	IC Power	FCC	IC
			Distance	Power	Gain	Cycle		Density	Density	Limit	Limit
			(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m ^2)	(m W/cm ^2)	(W/m ^2)
	3600-3800 MHz	LTE B43	20	26.0	10.59	100.0	4560.4	0.9077	9.077	1.00	10.0

Remarks:

1) Maximum conducted output power (per tune-up or target power)

Notes:

- 1) For MPE the new KDB 447498 requires the calculations to use the maximum rated power; that power should be declared by the manufacturer, and should not be lower than the measured power. If the power has a tolerance then we also need to check that the measured power is within the tolerance.
- 2) The manufacturer configures output power so that the maximum power, after accounting for manufacturing tolerances, will never exceed the maximum power level measured.
- 3) The output power in the tables above is the maximum power among various channels and various modes within the specific band.
- 4) The antenna gain in the tables above is the maximum antenna gain among various channels within the specified band.

END OF REPORT