Лабораторная работа 1.1.6 Изучение электронного осциллографа

Злобина Вера

20 мая 2021 г.

Цель работы: ознакомление с устройством и работой осциллографа и изучение его основных характеристик.

В работе используются: осциллограф, генераторы электрических сигналов, соединительные кабели.

Теоретические сведения

Осциллограф – регистрирующий прибор, в котором исследуемый сигнал преобразуется в видимый на экране график изменения напряжения от времени. Осциллограф широко используется в физическом эксперименте, так как с его помощью можно регестрировать любую величину, которую можно преобразовать в электрический сигнал.

Устройство осциллографа

Схема устройства осциллографа

Принцип работы

Основной элесент осциллографа — электронно-лучевая трубка. Электронный пучок формируется системой электродов, называемой электронной пушкой: катод с нагревателем, модулятор, фокусирующий и ускоряющий аноды. Форма, размеры и расположение электродов подобраны таким образом, чтобы разгонять электроны и фокусировать пучок на экране.

На пути к экрану, сформированный пучок проходит две пары отклоняющих пластин. Две вертикальные пластины образуют плоский конденсатор, поле которого способно отклонять пучок в горизонтальном направлении. Аналогично, поле горизонтального конденсатора способно отклонять пучок в вертикальном направлении. Подавая на пластины электрическое напряжение и отслеживая траеторию пучка на экране можно анализировать входящий сигнал.

Развертка

Так как подаваемые на пластины сигналы лежат в довольно широком диапазоне, а чувствительность трубки довольно сильно ограничена, то в конструкции осциллографа присутствуют делители и усилетели.

Для получения на экране изображения необходимо выполнение двух условий:

- 1. Подаваемое на вертикально отклоняющие пластины напряжение должно линейно завсить от сигнала.
- 2. Подаваемое на горизонтально отклоняющие пластины напряжение должно линейно зависить от времени.

В таком случае, напряжение пилообразной формы, вырабатываемое генератором, (Которое называется напряжением развертки) имеет вид, представленный на рисунке.

Напряжение развёртки

Кроме того, еще один важный процесс - синхронизация. Для получения устойчивой картины сигнала на экране необходимо, чтобы период развертки был кратен периоду самого сигнала.

Условие наблюдения устойчивой картины сигнала на экране осциллографа

Наблюдение периодического сигнала от генератора и измерение его частоты.

f_{zg} , Гц	Т, дел	time/div	Т, с	f, Гц	df, Гц	f - fzg, Гц
1999	5	10^{-4}	0,0005	2000	80	1
1299	7,8	10^{-4}	0,00078	1280	30	19
534	9,4	$2 \cdot 10^{-4}$	0,00188	530	10	4
2502	8	$5 \cdot 10^{-5}$	0,0004	2500	60	2
4714	4,3	$5 \cdot 10^{-5}$	0,000215	4700	200	14

Таблица 1: Период и частота синусоидального сигнала

Измерение амплитуды сигнала

$$U_{MAX}=11$$
В $U_{MIN}=0.6$ мВ 2.2 дел; $5\frac{\mathrm{B}}{\mathrm{дел}}$ 2.4 дел; $5\frac{\mathrm{MB}}{\mathrm{дел}}$ $\frac{\delta U_{MAX}}{U_{MAX}}\approx 0.05$ $\frac{\delta U_{MIN}}{U_{MIN}}\approx 0.08$ $\beta_{21}[\mathrm{дБ}]=10\,\mathrm{lg}\,\frac{P_2}{P_1}=20\,\mathrm{lg}\,\frac{U_2}{U_1}=25.3$ дБ $\delta\beta_{21}\approx 0.1$

где P_2/P_1 — отношение средних мощностей, U_2/U_1 — отношениеамплитуд некоторых двух сигналов (здесь учтено, что мощность попорциональна квадрату амплитуды $P \sim U^2$).

Измерение амплитудно-частотной характеристики осциллографа

Измерим амплитудно-частотную характеристику K(f) при открытом (DC, \approx) и при закрытом (AC, \sim) входе. Результаты занесем в таблицу.

$f_{\rm reh}$	$\lg f$	U_{AC} , ДЕЛ	K_{AC}	U_{DC} , ДЕЛ	K_{DC}
1	0.0	1.6	0.32	5.0	1.00
3	0.5	3.2	0.64	5.0	1.00
5	0.7	4.0	0.80	5.0	1.00
8	0.9	4.8	0.96	5.0	1.00
10	1.0	4.9	0.98	5.0	1.00
50	1.7	5.0	1.00	5.0	1.00
10^{2}	2.0	5.0	1.00	5.0	1.00
10^{3}	3.0	5.0	1.00	5.0	1.00
10^{6}	6.0	5.0	1.00	5.0	1.00
$5 \cdot 10^{6}$	6.7	4.8	0.96	4.8	0.96
10^{7}	7.0	4.4	0.88	4.4	0.88
$1.5 \cdot 10^7$	7.2	4.0	0.80	4.0	0.80
$2 \cdot 10^7$	7.3	3.6	0.72	3.6	0.72

Таблица 2: Амплитудно-частотная характеристика

Зависимость величины K от частоты сигнала

Измерение разности фазово-частотных характеристик каналов осциллографа

При подаче на взаимно перпендикулярные отклоняющие пла-стины двух синусоидальных сигналов траектория луча на экранеосциллографа представляет собой эллипс и может быть в общемвиде описана уравнениями:

Тогда:

$$\delta\Phi=arcsin|rac{y_0}{A_y}|$$
 или $\delta\Phi=\pi-arcsin|rac{y_0}{A_y}|$ или $\delta\Phi=\pi+arcsin|rac{y_0}{A_y}|$

$f_{ m ren}, \Gamma$ ц	10	10^{3}	$5 \cdot 10^4$	10^{5}	$5 \cdot 10^5$	10^{6}	$1.5 \cdot 10^6$
$\lg f$	1.0	3.0	4.7	5.0	5.7	6.0	6.2
$2y_0,$ ДЕЛ	0.0	0.0	0.2	0.4	1.2	2.4	3.8
$2A_y$, ДЕЛ	0.0	0.0	5.0	5.0	5.0	5.0	5.0
$\Delta\Phi$, рад	0.00	0.00	0.04	0.08	0.24	0.50	0.86

Таблица 3: Зависимость величины разности фаз от частоты сигнала

Зависимость величины разности фаз от частоты сигнала

Исходя из графика сделаем вывод, что осциллограф отображает корректную разность фаз для f < 1к Γ ц.

Наблюдение фигур Лиссажу

Фигуры Лиссажу для соотношения частот 1:3, 2:3 и 1:2

Вывод

В результате работы был изучен электронный осциллограф. Выяснилось, что на больших и низких частотах из-за конструктивных особенностей прибора результаты измерений искажаются. Помимо этого были при помощи осциллографа были получены фигуры Лиссажу.