5	Pro	of of Theorem 2.1	15
6	Pro	of of Proposition 4.1	17
	6.1	Edge pairing: a preliminary version	20
	6.2	Implication of Assumption 2.2: Resolution of Difficulties [A1] and [B1] $$	23
	6.3	Edge pairing and weight assignments	25
	6.4	Refined pairing and weight assignments	27
		6.4.1 Proof of Proposition 4.1 by assuming Proposition 6.11	29
		6.4.2 Switching between graphs of equal weights: Proof of Proposition 6.11	31

1 Introduction

In the present paper, we are interested in the phase transition at the critical inverse temperature of the XY model on the three-dimensional square lattice.

To formulate the problem we start by considering a finite subset of a three-dimensional square lattice

$$\mathcal{L} = [-L, L]^3 \bigcap \mathbb{Z}^3. \tag{1.1}$$

On this lattice the Hamiltonian is defined as

$$H_{L,\nu} := -\sum_{k,l \in \mathcal{L}} J_{k,l} S_k \cdot S_l \tag{1.2}$$

and $\nu = +$ or 0. Here, depending on the location of the site $k, S_k \in \mathbb{S}^1$ satisfies different conditions: the lattice is decomposed into two parts,

$$\mathcal{L} = \mathcal{L}^o \cup \partial \mathcal{L},\tag{1.3}$$

with \mathcal{L}^o being the interior, and $\partial \mathcal{L} = \{(z_1, z_2, z_3) \mid \max\{|z_1|, |z_2|, |z_3|\} = L\}$ the boundary; for $k \in \mathcal{L}^o$, the only requirement for S_k is that $|S_k| = 1$; when $k \in \partial \mathcal{L}$ i.e. it is on the boundary, we consider two boundary conditions: when $\nu = 0$, we use the free boundary condition, specifically

$$S_k = 0$$
, if $k \in \partial \mathcal{L}$; (1.4)

when $\nu = +$, the plus boundary condition,

$$S_k = (1,0)^T$$
, if $k \in \partial \mathcal{L}$. (1.5)