

Endothelin-Rezeptor-Antagonisten

Patent number: DE19543639
Publication date: 1997-05-28
Inventor: MEDERSKI WERNER DR (DE); OSWALD MATHIAS DR (DE); DORSCH DIETER DR (DE); SCHMITGES CLAUS J DR (DE); WILM CLAUDIA DR (DE); CHRISTADLER MARIA (DE); ANZAHLI SOHEILA DR (DE)
Applicant: MERCK PATENT GMBH (DE)
Classification:
- **international:** C07D417/04; C07D417/06; C07D417/14; C07D413/04; C07D413/06; C07D413/14; A61K31/41; C07D417/04; C07D285/14; C07D209/42; C07D417/14; C07D285/14; C07D317/48; C07D417/14; C07D285/14; C07D307/79; C07D413/06; C07D271/12; C07D319/16; C07D207/16; C07D211/90
- **european:** C07D413/04; C07D413/14; C07D417/04; C07D417/14
Application number: DE19951043639 19951123
Priority number(s): DE19951043639 19951123

Also published as:

 WO9719077 (A1)
 EP0863898 (A1)

[Report a data error here](#)

Abstract of DE19543639

The invention relates to novel compounds of the formula (I), wherein R is (a) or (b), X is O or S and R<1>, R<2>, R<3>, R<4>, R<5>, R<6>, R<7>, R<8> and n have the meaning given in claim 1. It also relates to the salts of said compounds. Said compounds and salts demonstrate endothelin receptor antagonistic properties.

Data supplied from the **esp@cenet** database - Worldwide

⑨ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑫ Offenlegungsschrift

⑩ DE 195 43 639 A 1

⑪ Int. Cl. 6:

C 07 D 417/04

C 07 D 417/06

C 07 D 417/14

C 07 D 413/04

C 07 D 413/06

C 07 D 413/14

A 61 K 31/41

// (C07D 417/04,285:14)C07D 209:42 (C07D 417/14,285:14)C07D 209:42,317:48 (C07D 417/14,285:14)C07D 209:42,
307:79 (C07D 413/06,271:12) C07D 209:42,317:48,319/18,207/18,211/90

⑯ Anmelder:

Merck Patent GmbH, 64293 Darmstadt, DE

⑰ Erfinder:

Mederski, Werner, Dr., 64390 Erzhausen, DE;
Oßwald, Mathias, Dr., 64673 Zwingenberg, DE;
Dorsch, Dieter, Dr., 64372 Ober-Ramstadt, DE;
Schmitges, Claus J., Dr., 64823 Groß-Umstadt, DE;
Wilm, Claudia, Dr., 64367 Mühlthal, DE; Christadler,
Maria, 63322 Rödermark, DE; Anzahli, Soheila, Dr.,
64297 Darmstadt, DE

⑮ Endothelin-Rezeptor-Antagonisten

⑯ Neue Verbindungen der Formel I

worin

X O oder S bedeuten,
und

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ und n die in Patentanspruch 1
angegebene Bedeutung haben, sowie deren Salze
zeigen Endothelinrezeptor-antagonistische Eigenschaften.

DE 195 43 639 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 04.97 702 022/117

37/28

DE 195 43 639 A 1

Beschreibung

Die Erfindung betrifft Verbindungen der Formel I

15 worin

Ähnliche Verbindungen mit Indan- und Indengrundgerüsten sind aus WO 93/08799, solche mit Indolsystemen sind aus WO 94/14434, Pyrimidinderivate sind aus EP 0 526 708 A1 und Phenyl- und Naphthylverbindungen sind aus EP 0 617 001 A1 bekannt.

Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.

Es wurde gefunden, daß die Verbindungen der Formel I und ihre Salze bei guter Verträglichkeit sehr wertvolle pharmakologische Eigenschaften besitzen. Insbesondere zeigen sie Endothelinrezeptor-antagonistische Eigenschaften und können daher zur Behandlung von Krankheiten wie Hypertonie, Herzinsuffizienz, koronare Herzerkrankung, renale, cerebrale und myocardiale Ischämie, Niereninsuffizienz, Hirninfarkt, subarachnoidale Hämmorrhagie, Arteriosklerose, pulmonaler Hochdruck, Entzündungen, Asthma, Prostatahyperplasie, endotoxischer Schock und bei Komplikationen nach der Verabreichung von Substanzen wie z. B. Cyclosporin, sowie anderen, mit Endothelin-Aktivitäten assoziierten Krankheiten eingesetzt werden.

Die Verbindungen zeigen u. a. eine hohe Affinität zu den Endothelin-Subrezeptoren ET_A und ET_B. Diese Wirkungen können nach üblichen in vitro- oder in vivo-Methoden ermittelt werden, wie z. B. beschrieben von P.D. Stein et al., J. Med. Chem. 37, 1994, 329-331 und E. Ohlstein et al., Proc. Natl. Acad. Sci. USA 91, 1994, 8052-8056.

Eine geeignete Methode zur Bestimmung der blutdrucksenkenden Wirkung wird z. B. beschrieben von M.K. Bazil et al., J. Cardiovasc. Pharmacol. 22, 1993, 897-905 und J. Lange et al., Lab Animal 20, 1991, Appl. Note 1016.

Die Verbindungen der Formel I können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden, insbesondere zur Prophylaxe und/oder Therapie von Herz-, Kreislauf- und Gefäßkrankheiten, vor allem von Hypertonie und Herzinsuffizienz.

Gegenstand der Erfindung sind die Verbindungen der Formel I und ihre Salze sowie ein Verfahren zur Herstellung dieser Verbindungen sowie ihrer Salze, dadurch gekennzeichnet, daß man zur Herstellung von

Verbindungen der Formel I nach Anspruch 1 sowie ihrer Salze,
worin

eine Verbindung der Formel II

worin
R¹, R², R³, R⁸ und X die in Anspruch 1 angegebene Bedeutung haben,
mit einer Verbindung der Formel III

worin

L Cl, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet und
R⁴ und n die in Anspruch 1 angegebene Bedeutung haben,

umsetzt,

oder

daß man zur Herstellung von Verbindungen der Formel I nach Anspruch 1 sowie ihrer Salze,
worin

eine Verbindung der Formel IV

worin

R², R³, R⁵, R⁶, R⁷ und R⁸ die in Anspruch 1 angegebene Bedeutung haben, mit einer Verbindung der Formel V

15 worin

L Cl, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet und R¹ und n die in Anspruch 1 angegebene Bedeutung haben,

umsetzt,

und/oder daß man in einer Verbindung der Formel I einen oder mehrere Rest(e) R¹, R², R³, R⁴, R⁵, R⁶, R⁷

20 und/oder R^8 in einen oder mehrere Reste $R^1, R^2, R^3, R^4, R^5, R^6, R^7$ und/oder R^8 umwandelt, indem man beispielsweise

- 25 i) eine Nitrogruppe zu einer Aminogruppe reduziert,
ii) eine Estergruppe zu einer Carboxygruppe hydrolysiert,
iii) eine Aminogruppe acyliert oder alkyliert,
iv) eine Aminogruppe in eine Sulfonamidogruppe umwandelt,

und/oder eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.

Für alle Reste, die mehrfach auftreten, wie z. B. R^3 , R^5 , R^6 , R^7 und R^8 , gilt, daß deren Bedeutungen unabhängig voneinander sind.

Vor- und nachstehend haben die Reste bzw. Parameter R , X , R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , A , Hal und n die bei den Formeln I bis V angegebenen Bedeutungen, falls nicht ausdrücklich etwas anderes angegeben ist.

In den vorstehenden Formeln bedeutet A Alkyl und hat 1 bis 6, vorzugsweise 1, 2, 3 oder 4 C-Atome. A bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1,1-, 1,2- oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-, 2-, 3- oder 4-Methylpentyl, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethylbutyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, 1,1,2- oder 1,2,2-Trimethylpropyl, weiter bevorzugt ist Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl.

Alkylen bedeutet vorzugsweise Methylen, Ethylen, Propylen, Butylen, ferner Pentylen oder Hexylen.

40 Acyl bedeutet vorzugsweise Formyl, Acetyl, Propionyl, ferner auch Butyryl, Pentanoyl oder Hexanoyl. n ist vorzugsweise 1, ferner bevorzugt 2.

Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I.

⁴⁵ R³, R⁵, R⁶, R⁷ und R⁸ bedeuten jeweils unabhängig voneinander jeweils vorzugsweise H, Fluor, Chlor, Brom, Iod, Hydroxy, Methoxy, Ethoxy, Propoxy, Butoxy, Pentyloxy, Hexyloxy, Cyclopentyloxy, Cyclohexyloxy, Benzyloxy, Phenethyloxy, Methylthio, Ethylthio, Nitro, Amino, Methylamino, Ethylamino, Dimethylamino, Diethylamino, Formamido, Acetamido, N-Methylacetamido, N-Ethylacetamido, N-Propylacetamido, N-Butylacetamido, Propionylamino, Butyrylamino, Methylsulfonamido, Ethylsulfonamido, Propylsulfonamido, Butylsulfonamido, N-Methylmethylsulfonamido, N-Methyl-ethylsulfonamido, N-Ethylmethylsulfonamido, N-Ethyl-ethylsulfonamido, N-Propylmethylsulfonamido, N-Propyl-ethylsulfonamido, N-Butylmethylsulfonamido, N-Butyl-ethylsulfonamido, Phenylsulfonamido, (4-Methylphenyl)-sulfonamido, Ureido, Methylureido, Phenylureido, Methoxycarbonylamino, Ethoxycarbonylamino, Formyl, Hydroxymethyl, Methoxymethyl, Ethoxymethyl, Anilino, Phenoxy carbonylamino, Benzoyloxycarbonylamino, Benzylsulfonamido, N,N-Dimethylureido, Hydroxyethoxycarbonylamino, Methoxyethoxycarbonylamino, Carboxymethoxy, Carboxyethoxy, Methoxycarbonylmethoxy, Methoxycarbonylethoxy, Hydroxyethoxy oder Methoxyethoxy.

55 R⁴ ist unsubstituiertes, vorzugsweise — wie angegeben — monosubstituiertes Phenyl, im einzelnen bevorzugt Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-Isopropylphenyl, o-, m- oder p-tert-Butylphenyl, o-, m- oder p-Hydroxyphenyl, o-, m- oder p-Nitrophenyl, o-, m- oder p-Amino-phenyl, o-, m- oder p-(N-Methylamino)-phenyl, o-, m- oder p-Acetamidophenyl, o-, m- oder p-Methoxyphenyl, o-, m- oder p-Ethoxyphenyl, o-, m- oder p-(N,N-Dimethylamino)-phenyl, o-, m- oder p-(N-Ethylamino)-phenyl, o-, m- oder p-(N,N-Diethylamino)-phenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Bromphenyl, o-, m- oder p-Chlorphenyl, o-, m- oder p-Formylphenyl, o-, m- oder p-(Phenylsulfonamido)-phenyl, o-, m- oder p-(Methylsulfonamido)-phenyl, o-, m- oder p-Methylthiophenyl, o-, m- oder p-Benzoyloxyphenyl, o-, m- oder p-Ureidophenyl, o-, m- oder p-(N-Methylureido)-phenyl, o-, m- oder p-(Hydroxymethyl)-phenyl, o-, m- oder p-(Methoxymethyl)-phenyl,

65 weiter bevorzugt 2,3-Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)phenyl, 2,3-Dihydrobenzofuran-5- oder 6-yl,
weiter bevorzugt 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl,
2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2,4- oder 2,5-Dinitrophenyl, 2,5- oder 3,4-Dimethoxyphenyl,

3-Nitro-4-chlorphenyl, 2-Amino-3-chlor-, 2-Amino-4-chlor-, 2-Amino-5-chlor- oder 2-Amino-6-chlorphenyl, 2-Nitro-4-N,N-dimethylamino- oder 3-Nitro-4-N,N-dimethylaminophenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- oder 3,4,5-Trichlorphenyl, 2,4,6-Trimethoxyphenyl, 2-Hydroxy-3,5-dichlorphenyl, p-Iodphenyl, 3,6-Dichlor-4-amino-phenyl, 4-Fluor-3-chlorphenyl, 2-Fluor-4-bromphenyl, 2,5-Difluor-4-bromphenyl, 3-Brom-6-methoxyphenyl, 3-Chlor-6-methoxyphenyl oder 3-Chlor-4-acetamidophenyl.

Die Verbindungen der Formel I können ein oder mehrere chirale Zentren besitzen und daher in verschiedenen stereoisomeren Formen vorkommen. Die Formel I umschließt alle diese Formen.

Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln Ia bis Ik ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

in Ia R

in Ib R

in Ic R

X

S

bedeutet;

15

20

25

30

35

40

45

in Id R

X

S

bedeutet;

50

55

60

65

5 in le R

10 X O bedeutet;

20 in If R

25 X O bedeutet:

35 in Ig R

40 X S und
R¹ H bedeutet;

50 in Ih R

55 X S und
R¹ H bedeutet;

60

65

in Ii R

X S und
R¹ H bedeutet;

10

in Ik R

X S,
R¹ H,

25

30

R³, R⁶ und R⁷ jeweils unabhängig voneinander H, OA, Formyl, CH₂OH, S-A, Hal, O-Benzyl oder OCH₂COOH,
R³ und R⁶ zusammen auch -O-CH₂-O-, -O-CH₂-CH₂-O-, -O-CH₂-CH₂-, -O-CF₂-O-
oder -O-CF₂-CF₂-O-,

35

R⁵ und R⁸ jeweils unabhängig voneinander H, OA, O-Benzyl, Hal, NH₂, NHA, NA₂, NH-AcyI, NHSO₂A,
NHSO₂R⁴, NASO₂A, NASO₂-R⁴, NH(CO)NH₂, NH(CO)NHA, Formyl, NH(CO)NHPheNyl, NHCOOA, NAA-
acyl, NHR⁴, NHCOOR⁴, NHCOOBenzyl, NHSO₂Benzyl, NHCOO-Alkylen-OA, NH(CO)NA₂, N-Piperidinyl-
CONH, N-Pyrrolidinyl-CONH, O(CH₂)_nCOOR², O(CH₂)_nOR², CH₂OH oder CH₂OA
bedeutet.

40

Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

45

Die Ausgangsstoffe können, falls erwünscht, auch *in situ* gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.

Verbindungen der Formel I, worin R

45

55

bedeutet, können vorzugsweise erhalten werden, indem man Verbindungen der Formel II mit Verbindungen der Formel III umsetzt.

60

In den Verbindungen der Formel III bedeutet L vorzugsweise Cl, Br, I oder eine reaktionsfähig abgewandelte OH-Gruppe wie Alkylsulfonyloxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyl- oder p-Tolylsulfonyloxy).

Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel, in Gegenwart eines säurebindenden Mittels vorzugsweise eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums, Calciums oder Cäsiums. Auch der Zusatz einer organischen Base wie Triethylamin, Dimethylanilin, Pyridin oder

65

Chinolin oder eines Überschusses der Indolkomponente der Formel II bzw. des Alkylierungsderivates der Formel III kann günstig sein. Die Reaktionszeit liegt je nach den angewendeten Bedingungen zwischen einigen Minuten und 14 Tagen, die Reaktionstemperatur zwischen etwa 0° und 150°, normalerweise zwischen 20° und 130°.

Als inerte Lösungsmittel eignen sich z. B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylo; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykol-monomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

Die Ausgangsverbindungen der Formel II sind in der Regel neu, während die der Formel III in der Regel bekannt sind.

Die Verbindungen der Formel II können aber nach an sich bekannten Methoden hergestellt werden. So kann z. B. analog der Vorschrift von Yokoe et al. in Chem. Pharm. Bull. Jpn. 1989, 529, 3-(2,1,3-Benzothiadiazol-5-yl)-5,6-dimethoxy-indol-2-carbonsäureethylester durch Umsetzung von 3-Brom-5,6-dimethoxy-indol-2-carbonsäureethylester mit 2,1,3-Benzothiadiazol-5-boronsäure unter Zusatz eines Edelmetallkatalysators wie $PdCl_2(dppf)$ = Palladium(II)-[1,1-bis-(diphenyl-phosphino)-ferrocen]chlorid und eines säurebindenden Mittels, erhalten werden. Dies erfolgt zweckmäßig bei Temperaturen zwischen 0 und etwa 200°; vorzugsweise arbeitet man zwischen 30 und 80°.

Als inerte Lösungsmittel eignen sich die schon oben erwähnten Verbindungen der Formel I, worin R

bedeutet, können vorzugsweise erhalten werden, indem man Verbindungen der Formel IV mit Verbindungen der Formel V umsetzt.

In den Verbindungen der Formel V bedeutet L vorzugsweise Cl, Br, I oder eine reaktionsfähig abgewandelte OH-Gruppe wie Alkylsulfonyloxy mit 1—6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6—10 C-Atomen (bevorzugt Phenyl- oder p-Tolylsulfonyloxy).

Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel, in Gegenwart eines säurebindenden Mittels und bei Temperaturen wie oben angegeben.

Die Ausgangsverbindungen der Formel IV und V sind in der Regel neu, können aber nach an sich bekannten Methoden hergestellt werden. So kann z. B., analog der Vorschrift von Yokoe et al. in Chem. Pharm. Bull. Jpn. 1989, 529, 3-(1,3-Benzodioxol-5-yl)-5-propoxy-indol-2-carbonsäureethylester durch Umsetzung von 3-Brom-5-propoxy-indol-2-carbonsäureethylester mit 3,4-Methylendioxyphenylboronsäure unter Zusatz eines Edelmetallkatalysators wie $PdCl_2(dppf)$ und eines säurebindenden Mittels, erhalten werden. Dies erfolgt zweckmäßig bei Temperaturen zwischen 0 und etwa 200°; vorzugsweise arbeitet man zwischen 30 und 80°. Als inerte Lösungsmittel eignen sich die schon oben erwähnten.

Es ist ferner möglich, eine Verbindung der Formel I in eine andere Verbindung der Formel I umzuwandeln, indem man einen oder mehrere Rest(e) $R^1, R^2, R^3, R^4, R^5, R^6, R^7$ und/oder R^8 in einen oder mehrere Reste $R^1, R^2, R^3, R^4, R^5, R^6, R^7$ und/oder R^8 umwandelt, z. B. indem man Nitrogruppen (beispielsweise durch Hydrierung an Raney-Nickel oder Pd-Kohle in einem inerten Lösungsmittel wie Methanol oder Ethanol) zu Aminogruppen reduziert und/oder eine Estergruppe zu einer Carboxygruppe hydrolysiert und/oder Bromsubstituenten durch Umsetzung mit z. B. Kupfer-I-cyanid in Cyangruppen umwandelt.

Ferner kann man freie Aminogruppen in üblicher Weise mit einem Säurechlorid oder -anhydrid acylieren oder mit einem unsubstituierten oder substituierten Alkyhalogenid alkylieren, zweckmäßig in einem inerten Lösungsmittel wie Dichlormethan oder THF und/oder in Gegenwart einer Base wie Triethylamin oder Pyridin bei Temperaturen zwischen —60 und +30°.

Gewünschtenfalls kann in einer Verbindung der Formel I eine funktionell abgewandelte Amino- und/oder Hydroxygruppe durch Solvolyse oder Hydrogenolyse nach üblichen Methoden in Freiheit gesetzt werden. So kann z. B. eine Verbindung der Formel I, die eine NH-Acyl- oder eine COOA-Gruppe enthält, in die entsprechende Verbindung der Formel I umgewandelt werden, die statt dessen eine NH₂- oder eine HOOC-Gruppe enthält. COOA-Gruppen können z. B. mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.

Eine Base der Formel I kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden,

beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z. B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z. B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan-, oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und Disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z. B. Pikrate, können zur Isolierung und/oder Aufreinigung der Verbindungen der Formel I verwendet werden.

Andererseits können Verbindungen der Formel I mit Basen (z. B. Natrium- oder Kaliumhydroxid oder -carbonat) in die entsprechenden Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in die entsprechenden Ammoniumsalze umgewandelt werden.

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I und/oder ihrer physiologisch unbedenklichen Salze zur Herstellung pharmazeutischer Zubereitungen, insbesondere auf nicht-chemischen Wege. Hierbei können sie zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.

Gegenstand der Erfindung sind ferner pharmazeutische Zubereitungen, enthaltend mindestens eine Verbindung der Formel I und/oder eines ihrer physiologisch unbedenklichen Salze.

Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z. B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Alkylenglycole, Polyethylenglycole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z. B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und/oder mehrere weitere Wirkstoffe enthalten, z. B. ein oder mehrere Vitamine.

Die Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze können bei der Bekämpfung von Krankheiten, insbesondere von Hypertonie und Herzinsuffizienz verwendet werden.

Dabei werden die erfundungsgemäßen Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethylacetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und/oder durch Kristallisation.

Rf-Werte an Kieselgel;

Laufmittel: Ethylacetat/Methanol 9 : 1.

Massenspektrometrie (MS):

EI (Elektronenstoß-Ionisation) M⁺

FAB (Fast Atom Bombardment) (M + H)⁺

Beispiel 1

Zu einer Lösung von 1,03 g 3-(2,1,3-Benzothiadiazol-5-yl)-5,6-dimethoxyindol-2-carbonsäureethylester (erhältlich durch Umsetzung von 3-Brom-5,6-dimethoxy-indol-2-carbonsäureethylester, F. 212–214° mit 2,1,3-Benzothiadiazol-5-boronsäure; 2,1,3-Benzothiadiazol-5-boronsäure ist erhältlich durch Lösen von 50 g 5-Brom-2,1,3-Benzothiadiazol [Herstellung beschrieben von V.G. Pesin et al. in Chem. Heterocycl. Compd. (Engl. Transl.) 1967, 662] in 250 ml THF, Zugabe von 175 ml n-Butyllithium (15%ig in n-Hexan) bei –78°C, nach 1 Stunde Zugabe von 69 g Trimethylborat, Röhren über Nacht und üblicher Aufarbeitung) und 1,0 g Cäsiumcarbonat in 20 ml DMF gibt man 0,68 g 3,4-Methylendioxybenzylchlorid. Man röhrt 12 Stunden bei Raumtemperatur, arbeitet wie üblich auf und erhält 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5,6-dimethoxyindol-2-carbonsäureethylester.

Analog erhält man durch Umsetzung

von 3-(2,1,3-Benzothiadiazol-5-yl)-5,6-dimethoxy-indol-2-carbonsäureethylester mit 4-Methoxybenzylchlorid

ester,
von 3-(2,1,3-Benzothiadiazol-5-yl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester mit 4-Methoxybenzylchlorid
3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester,
mit 2-Methoxybenzylchlorid 5
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester,
mit 2,5-Dimethoxybenzylchlorid
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester.

Beispiel 2

10

Zu einer Lösung von 1,0 g 3-(1,3-Benzodioxol-5-yl)-5-propoxy-indol-2-carbonsäureethylester, F. 128—129° (erhältlich durch Umsetzung von 3-Brom-5-propoxy-indol-2-carbonsäureethylester, F. 145—147°, mit 3,4-Methylendioxyphenylboronsäure; 3-Brom-5-propoxy-indol-2-carbonsäureethylester ist erhältlich durch Umsetzung von 2-Propoxy-1H-indol-2-carbonsäureethylester [Herstellung beschrieben von Proft et al. in J. Prakt. Chem. 1954/1955, 110 und 123] mit N-Bromsuccinimid) und 1,0 g Calciumcarbonat in 20 ml DMF gibt man 0,7 g 5-Brommethyl-2,1,3-Benzothiadiazol ("A"). Man röhrt 12 Stunden bei Raumtemperatur, arbeitet wie üblich auf und erhält 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester, F. 129—130°.

Analog erhält man durch Umsetzung von 3-(1,3-Benzodioxol-5-yl)-5-ethoxy-indol-2-carbonsäureethylester mit "A" 20

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäureethylester,
von 3-(4-Methoxyphenyl)-5-ethoxy-indol-2-carbonsäureethylester mit "A"

3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäureethylester, F. 115—117°, 25
von 3-(4-Methoxyphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A"

3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester, F. 108—109°, 40
von 3-(3,4-Dimethoxyphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A"

3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester, F. 111—112°, 45
von 3-(3,4,5-Trimethoxyphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A"

3-(3,4,5-Trimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,
von 3-(2,4-Dimethoxyphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A"

3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester, F. 126—127°, 50
von 3-(4-Formylphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A"

3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,
von 3-(4-Hydroxymethylphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A"

3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,
von 3-(4-Methylthiophenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A"

3-(4-Methylthiophenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,
von 3-(1,3-Benzodioxol-5-yl)-5-methoxy-6-benzylxy-indol-2-carbonsäureethylester mit "A"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzylxy-indol-2-carbonsäure-
ethylester, 45
von 3-(1,3-Benzodioxol-5-yl)-6-benzylxy-indol-2-carbonsäureethylester mit "A"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzylxy-indol-2-carbonsäureethylester
von 3-(1,3-Benzodioxol-5-yl)-5-methoxy-6-isopropoxy-indol-2-carbonsäureethylester mit "A"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbonsäure-
ethylester, 50
von 3-(1,3-Benzodioxol-5-yl)-5-methoxy-6-cyclopentyloxy-indol-2-carbonsäureethylester mit "A"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-carbon-
säureethylester,

von 3-(1,3-Benzodioxol-5-yl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester mit "A"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethyl- 55
ester,

von 3-(1,3-Benzodioxol-5-yl)-5,6-dimethoxy-indol-2-carbonsäureethylester mit "A"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäureethylester, F. 192—194,5°. 60

Beispiel 3

Eine Lösung aus 0,23 g 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5,6-dimethoxy-indol-2-carbonsäureethylester in 20 ml Ethanol wird mit 10 ml KOH-Lösung versetzt und 3 Stunden unter Rückfluß erhitzt. Man arbeitet wie üblich auf und erhält 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5,6-dime- 65
thoxy-indol-2-carbonsäure.

Analog erhält man durch Hydrolyse
von 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5,6-dimethoxyindol-2-carbonsäureethylester

ethylester	
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-methoxy-6-cyclopentyloxy-indol-2-carbonsäure;	
von 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester	
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäure;	
von 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethyl- <td>5</td>	5
ester	
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäure;	
von 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxyindol-2-carbonsäureethylester	
3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäure, F. 216—218°;	
von 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxyindol-2-carbonsäureethylester	10
3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure, F. 194—195°;	
von 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester	
3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure, F. 170—171°;	
von 3-(3,4,5-Trimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester	
3-(3,4,5-Trimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;	
von 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester	15
3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure, F. 161—162°;	
von 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxyindol-2-carbonsäureethylester	
3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;	
von 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester	20
3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;	
von 3-(4-Methylthiophenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester	
3-(4-Methylthiophenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;	
von 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbonsäure- <td>25</td>	25
ethylester	
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbonsäure;	
von 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäureethylester	
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäure;	
von 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbon- <td>30</td>	30
säureethylester	
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbonsäure;	
von 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-carbon- <td>35</td>	35
säureethylester	
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-carbonsäure;	
von 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäure- <td>40</td>	40
ethylester	
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäure;	
von 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäureethylester	
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäure.	

Beispiel 4

Analog Beispiel 2 erhält man durch Umsetzung von 3-(1,3-Benzodioxol-5-yl)-5-propoxy-indol-2-carbonsäure-ethylester mit 5-Brommethyl-6-chlor-2,1,3-Benzothiadiazol ("B") nach der üblichen Aufarbeitung

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester. 45

Analog erhält man durch Umsetzung von 3-(1,3-Benzodioxol-5-yl)-5-ethoxy-indol-2-carbonsäureethylester mit "B"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-ethoxy-indol-2-carbonsäureethylester,

von 3-(4-Methoxyphenyl)-5-ethoxy-indol-2-carbonsäureethylester mit "B",

3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-ethoxy-indol-2-carbonsäureethylester, 50

von 3-(4-Methoxyphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "B"

3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,

von 3-(3,4-Dimethoxyphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "B"

3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethyl- 55 |

ester,

von 3-(3,4,5-Trimethoxyphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "B"

3-(3,4,5-Trimethoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethyl- 60 |

ester,

von 3-(2,4-Dimethoxyphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "B"

3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethyl- 65 |

ester,

von 3-(4-Formylphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "B"

3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,

von 3-(4-Hydroxymethylphenyl)-5-propoxy-indol-2-carbonsäureethylester mit "B"

3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethyl- 65 |

ester,

von 3-(4-Methylthiophenyl)-5-propoxy-indol-2-carbonsäureethylester mit "B"

3-(4-Methylthiophenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,

von 3-(1,3-Benzodioxol-5-yl)-5-methoxy-6-benzyloxy-indol-2-carbonsäureethylester mit "B"
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbon-
 säureethylester,

von 3-(1,3-Benzodioxol-5-yl)-6-benzyloxy-indol-2-carbonsäureethylester mit "B"

5 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäureethyl-
 ester,

von 3-(1,3-Benzodioxol-5-yl)-5-methoxy-6-isopropoxy-indol-2-carbonsäureethylester mit "B"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbon-
 säureethylester,

10 von 3-(1,3-Benzodioxol-5-yl)-5-methoxy-6-cyclopentyloxy-indol-2-carbonsäureethylester mit "B"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-car-
 bonsäureethylester,

von 3-(1,3-Benzodioxol-5-yl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester mit "B"

15 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbon-
 säureethylester,

von 3-(1,3-Benzodioxol-5-yl)-5,6-dimethoxy-indol-2-carbonsäureethylester mit "B"

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäureethyl-
 ester.

Durch Hydrolyse der Carbonsäureethylester analog Beispiel 3 erhält man die entsprechenden Carbonsäuren:

20 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-ethoxy-indol-2-carbonsäure;

3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-ethoxy-indol-2-carbonsäure;

3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

25 3-(3,4,5-Trimethoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

3-(4-Methylthiophenyl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

30 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbon-
 säure;

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäure;

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbon-
 säure;

35 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-car-
 bonsäure;

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbon-
 säure;

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-6-chlor-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäure.

40

Beispiel 5

Analog Beispiel 2 erhält man durch Umsetzung von 3-(2,3-Dihydrobenzofuran-5-yl)-5-propoxy-indol-2-car-
 bonsäureethylester mit "A"

45 3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,

von 3-(2,3-Dihydrobenzofuran-5-yl)-5-ethoxy-indol-2-carbonsäureethylester mit "A"

3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäureethylester,

von 3-(2,3-Dihydrobenzofuran-5-yl)-5-methoxy-6-benzyloxy-indol-2-carbonsäureethylester mit "A"

50 3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbon-
 säureethylester,

von 3-(2,3-Dihydrobenzofuran-5-yl)-6-benzyloxy-indol-2-carbonsäureethylester mit "A"

3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäureethyl-
 ester

von 3-(2,3-Dihydrobenzofuran-5-yl)-5-methoxy-6-isopropoxy-indol-2-carbonsäureethylester mit "A"

55 3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbon-
 säureethylester,

von 3-(2,3-Dihydrobenzofuran-5-yl)-5-methoxy-6-cyclopentyloxy-indol-2-carbonsäureethylester mit "A"

3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-car-
 bonsäureethylester,

60 60 von 3-(2,3-Dihydrobenzofuran-5-yl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester mit "A"

3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbon-
 säureethylester,

von 3-(2,3-Dihydrobenzofuran-5-yl)-5,6-dimethoxy-indol-2-carbonsäureethylester mit "A"

3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäureethyl-
 ester,

von 3-(3-Fluor-4-methoxy-phenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A"

3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester;

von 3-(3-Fluor-4-methoxy-phenyl)-5-ethoxy-indol-2-carbonsäureethylester mit "A"

3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäureethylester,
von 3-(3-Fluor-4-methoxy-phenyl)-5-methoxy-6-benzyloxy-indol-2-carbonsäureethylester mit "A"
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbon-
säureethylester,
von 3-(3-Fluor-4-methoxy-phenyl)-6-benzyloxy-indol-2-carbonsäureethylester mit "A" 5
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäureethylester,
von 3-(3-Fluor-4-methoxy-phenyl)-5-methoxy-6-isopropoxy-indol-2-carbonsäureethylester mit "A"
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbon-
säureethylester,
von 3-(3-Fluor-4-methoxy-phenyl)-5-methoxy-6-cyclopentyloxy-indol-2-carbonsäureethylester mit "A" 10
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-car-
bonsäureethylester,
von 3-(3-Fluor-4-methoxy-phenyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester mit "A"
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbon-
säureethylester, 15
von 3-(3-Fluor-4-methoxy-phenyl)-5,6-dimethoxy-indol-2-carbonsäureethylester mit "A"
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäureethyl-
ester.
Durch Hydrolyse der Carbonsäureethylester analog Beispiel 3 erhält man die entsprechenden Carbonsäuren:
3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure, 20
3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäure,
3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbon-
säure,
3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäure,
3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbon-
säure, 25
3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-car-
bonsäure,
3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbon-
säure, 30
3-(2,3-Dihydrobenzofuran-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäure,
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäure,
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbonsä-
re, 35
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäure,
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbon-
säure,
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-car-
bonsäure, 40
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäu-
re,
3-(3-Fluor-4-methoxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäure.

Beispiel 6 45

Analog Beispiel 1 erhält man durch Umsetzung von 3-(2,1,3-Benzothiadiazol-5-yl)-5-nitro-indol-2-carbon-
säureethylester mit 3,4-Methylendioxybenzylchlorid
3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-nitro-indol-2-carbonsäureethylester,
mit 4-Methoxybenzylchlorid 50
3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-nitro-indol-2-carbonsäureethylester,
mit 2-Methoxybenzylchlorid
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-nitro-indol-2-carbonsäureethylester,
mit 2,5-Dimethoxybenzylchlorid
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-nitroindol-2-carbonsäureethylester. 55

Durch Hydrolyse der Carbonsäureester analog Beispiel 3 erhält man die entsprechenden Carbonsäuren:
3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-nitro-indol-2-carbonsäure,
3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-nitro-indol-2-carbonsäure,
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-nitro-indol-2-carbonsäure,
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-nitroindol-2-carbonsäure. 60

Beispiel 7

Eine Lösung von 1 g 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-nitro-indol-2-carbonsäure-
ethylester in 25 ml Methanol wird bei Normaldruck und 20° bis zum Stillstand an 1 g Raney-Nickel hydriert. 65
Man filtriert, entfernt das Lösungsmittel und erhält 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxyben-
zyl)-5-amino-indol-2-carbonsäureethylester.

Analog erhält man aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-nitro-indol-2-carbonsäureethyl-

ester

- 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester,
aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-nitro-indol-2-carbonsäureethylester
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester,
5 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-nitro-indol-2-carbonsäureethylester
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-aminoindol-2-carbonsäureethylester,
aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-nitroindol-2-carbonsäureethylester
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester,
aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-nitroindol-2-carbonsäureethylester
10 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester,
aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-nitroindol-2-carbonsäureethylester
3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester,
aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-nitroindol-2-carbonsäureethylester
3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester,
15 aus 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-nitroindol-2-carbonsäureethylester
3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester,
aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-nitro-indol-2-carbonsäureethylester
3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-aminoindol-2-carbonsäureethylester,
aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-nitro-indol-2-carbonsäureethylester
20 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester.

Durch Hydrolyse der Carbonsäureester analog Beispiel 3 erhält man die entsprechenden Carbonsäuren:

- 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-amino-indol-2-carbonsäure,
3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-amino-indol-2-carbonsäure,
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-amino-indol-2-carbonsäure,
25 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-aminoindol-2-carbonsäure,
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäure,
3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäure,
3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäure,
3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäure,
30 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäure,
3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-aminoindol-2-carbonsäure,
3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäure.

Beispiel 8

- 35 Durch Umsetzung mit äquimolaren Mengen Acetylchlorid in Pyridin und katalytischer Mengen Dimethylaminopyridin erhält man aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-aminoindol-2-carbonsäureethylester
3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-acetamido-indol-2-carbonsäureethylester,
40 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-acetamidoindol-2-carbonsäureethylester,
aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-acetamidoindol-2-carbonsäureethylester,
aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-amino-indol-2-carbonsäureethylester
45 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-acetamido-indol-2-carbonsäureethylester,
aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester,
aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-aminoindol-2-carbonsäureethylester
3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester,
50 aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-aminoindol-2-carbonsäureethylester
3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester,
aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester,
aus 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
55 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester,
aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-aminoindol-2-carbonsäureethylester
3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester,
aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester
60

Beispiel 9

- Durch Umsetzung mit äquimolaren Mengen Chlorkohlensäuremethylester und Cäsiumcarbonat in DMF erhält man
65 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-amino-indol-2-carbonsäureethylester
3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(methoxycarbonylamino)-indol-2-carbonsäureethylester,
aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester

- 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(methoxycarbonylamino)-indol-2-carbonsäureethylester, aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(methoxycarbonylamino)-indol-2-carbonsäureethylester, aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-amino-indol-2-carbonsäureethylester
3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(methoxycarbonylamino)-indol-2-carbonsäureethyl-ester,
aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure-ethylester,
aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure-ethylester,
aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure-ethylester,
aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure-ethylester,
aus 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure-ethylester,
aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäureethyl-ester,
aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbon-säureethylester.

Durch Hydrolyse der Carbonsäureester analog Beispiel 3 erhält man die entsprechenden Carbonsäuren:

- 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure,
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(methoxycarbonylamino)-indol-2-carbonsäure.

Beispiel 10

Durch Umsetzung mit äquimolaren Mengen Phenylisocyanat in Dichlormethan erhält man

- aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäureethylester,
 aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäureethylester
 aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäureethylester.

Durch Hydrolyse der Carbonsäureester analog Beispiel 3 erhält man die entsprechenden Carbonsäuren:

- 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(phenylureido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(phenylureido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(phenylureido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(phenylureido)-indol-2-carbonsäure,
 5 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäure,
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäure,
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäure,
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäure,
 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäure,
 10 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäure,
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(phenylureido)-indol-2-carbonsäure.
 Analog erhält man durch Umsetzung mit äquimolaren Mengen Butyliiscycanat in Dichlormethan aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 15 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 20 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 25 aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 aus 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 30 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäureethylester,
 aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäureethylester.
 35 Durch Hydrolyse der Carbonsäureester analog Beispiel 3 erhält man die entsprechenden Carbonsäuren:
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(butylureido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(butylureido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(butylureido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(butylureido)-indol-2-carbonsäure,
 40 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäure,
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäure,
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäure,
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäure,
 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäure,
 45 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäure,
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylureido)-indol-2-carbonsäure.

Beispiel 11

- 50 Durch Umsetzung äquimolarer Mengen NaH und Butyliodid in THF erhält man aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-acetamido-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethyl-
 ester
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-acetamido-indol-2-carbonsäureethylester
 55 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-acetamido-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-acetamido-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäureethylester,
 60 aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethyl-
 ester,
 aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethyl-
 ester,
 65 aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethyl-
 ester,

aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester,
 aus 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester
 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester, 5
 aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamidoindol-2-carbonsäureethylester
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester,
 aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-acetamido-indol-2-carbonsäureethylester 10
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester.
 Durch Hydrolyse der Carbonsäureester analog Beispiel 3 erhält man aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(N-butyl-amino)-indol-2-carbonsäure und 15
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(N-butyl-acetamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(N-butylamino)-indol-2-carbonsäure und
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäureethylester 20
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(N-butylamino)-indol-2-carbonsäure und
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(N-butylamino)-indol-2-carbonsäure und 25
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(N-butylacetamido)-indol-2-carbonsäure,
 aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure und 30
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäure,
 aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure und 35
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäure,
 aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure und 40
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäure,
 aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure und 45
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäure,
 aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäureethylester
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure und 50
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäure,
 aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbon-
 säureethylester
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure und
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-acetamido)-indol-2-carbonsäure.
 Aus den Carbonsäuregemischen werden die Einzelkomponenten durch Chromatographie in der üblichen
 Weise gewonnen. 55

Beispiel 12

Analog Beispiel 1 erhält man durch Umsetzung von 3-(2,1,3-benzoxadiazol-5-yl)-5,6-dimethoxy-indol-2-carbonsäureethylester mit 3,4-Methylendioxybenzylchlorid 60

3-(2,1,3-Benzoxadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5,6-dimethoxy-indol-2-carbonsäureethylester.

Durch Hydrolyse analog Beispiel 3 erhält man daraus 3-(2,1,3-Benzoxadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5,6-dimethoxy-indol-2-carbonsäure.

Beispiel 13

65

Analog Beispiel 2 erhält man durch Umsetzung von 3-(1,3-Benzodioxol-5-yl)-5-propoxy-indol-2-carbonsäureethylester mit 5-Brommethyl-2,1,3-Benzoxadiazol

3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzoxadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester.
 Durch Hydrolyse analog Beispiel 3 erhält man daraus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzoxadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure.

5

Beispiel 14

Durch Umsetzung mit äquimolaren Mengen Butylsulfonylchlorid und Cäsiumcarbonat in DMF erhält man aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(butyl-sulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(butyl-sulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(butyl-sulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(butyl-sulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(N-butyl-butylsulfonamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(N-butylamino)-indol-2-carbonsäure
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(N-butyl-butylsulfonamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(N-butylbutylsulfonamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(N-butylamino)-indol-2-carbonsäure
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(N-butylbutylsulfonamido)-indol-2-carbonsäure,
 aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-amino-indol-2-carbonsäureethylester
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-butylsulfonamido)-indol-2-carbonsäure,
 aus 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butylbutylsulfonamido)-indol-2-carbonsäure,
 aus 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butylamino)-indol-2-carbonsäure
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butylbutylsulfonamido)-indol-2-carbonsäure,
 aus 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butylbutylsulfonamido)-indol-2-carbonsäure,
 aus 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butylbutylsulfonamido)-indol-2-carbonsäure,
 aus 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butylbutylsulfonamido)-indol-2-carbonsäure,
 aus 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(N-butylbutylsulfonamido)-indol-2-carbonsäure,
 Durch analoge Umsetzung mit äquimolaren Mengen Tolsylfonylchlorid und Cäsiumcarbonat in DMF erhält man
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(tolyl-sulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(tolyl-sulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(tolyl-sulfonamido)-indol-2-carbonsäureethylester,

aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-amino-indol-2-carbonsäureethylester
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(tolyl-sulfonamido)-indol-2-carbonsäureethylester,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(N-butylamino)-indol-2-carbonsäure
 3-(2,1,3-Benzothiadiazol-5-yl)-1-3,4-methylendioxybenzyl)-5-(N-butyl-tolylsulfonamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(N-butylamino)-indol-2-carbonsäure 5
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(N-butyltolylsulfonamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(N-butyl-amino)-indol-2-carbonsäure
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(N-butyltolylsulfonamido)-indol-2-carbonsäure,
 aus 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(N-butylamino)-indol-2-carbonsäure
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(N-butyltolylsulfonamido)-indol-2-carbonsäure. 10
 Durch Hydrolyse analog Beispiel 3 der vorstehenden Sulfonamido-carbonsäureester erhält man die entsprechenden Carbonsäuren
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(butyl-sulfonamido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(butylsulfonamido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(butylsulfonamido)-indol-2-carbonsäure 15
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(butylsulfonamido)-indol-2-carbonsäure,
 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäure,
 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäure,
 3-(2-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäure,
 3-(3,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäure, 20
 3-(2,4-Dimethoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäure,
 3-(4-Formylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäure,
 3-(4-Hydroxymethylphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-(butylsulfonamido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5-(tolyl-sulfonamido)-indol-2-carbonsäure, 25
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-(tolylsulfonamido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2-methoxybenzyl)-5-(tolylsulfonamido)-indol-2-carbonsäure,
 3-(2,1,3-Benzothiadiazol-5-yl)-1-(2,5-dimethoxybenzyl)-5-(tolylsulfonamido)-indol-2-carbonsäure.

Beispiel 15

Analog Beispiel 2 erhält man durch Umsetzung von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-5-propoxy-indol-2-carbonsäureethylester mit "A" 30
 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester,
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-5-ethoxy-indol-2-carbonsäureethylester mit "A"
 35 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäureethylester,
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-5-methoxy-6-benzyloxy-indol-2-carbonsäureethylester mit "A"
 40 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbonsäureethylester,
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-6-benzyloxy-indol-2-carbonsäureethylester mit "A"
 45 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäureethylester,
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-5-methoxy-6-isopropoxy-indol-2-carbonsäureethylester mit "A"
 50 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-indol-2-carbonsäureethylester,
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-5-methoxy-6-cyclopentyloxy-indol-2-carbonsäureethylester mit "A"
 55 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-indol-2-carbonsäureethylester,
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-5-methoxy-6-pentyloxyindol-2-carbonsäureethylester mit "A"

60 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-2-carbonsäureethylester,
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-5,6-dimethoxy-indol-2-carbonsäureethylester mit "A"
 65 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäureethylester.
 Analog Beispiel 3 erhält man durch Hydrolyse von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäureethylester
 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäureethylester
 70 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäure;
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbonsäureethylester
 75 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-benzyloxy-indol-2-carbonsäure;
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-car-

- bonsäureethylester
 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-6-benzyloxy-indol-2-carbonsäure;
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-
 5 indol-2-carbonsäureethylester
 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-isopropoxy-in-
 dol-2-carbonsäure;
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopenty-
 10 loxy-indol-2-carbonsäureethylester
 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-cyclopentyloxy-
 indol-2-carbonsäure;
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-
 15 indol-2-carbonsäure;
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-methoxy-6-pentyloxy-indol-
 20 2-carbonsäure;
 von 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5,6-dimethoxy-indol-2-carbonsäureethylester 3-(4-Methoxy-2-carboxymethyloxy-phenyl)-1-(2,1,3-benzothiadiazol-5-yl-
 methyl)-5,6-dimethoxy-indol-2-carbonsäure.
- Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:

Beispiel A: Injektionsgläser

- Eine Lösung von 100 g eines Wirkstoffes der Formel I und 5 g Dinatriumhydrogenphosphat werden in 3 l
 25 zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt,
 unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.

Beispiel B: Suppositorien

- 30 Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I mit 100 g Sojalecithin und 1400 g
 Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.

Beispiel C: Lösung

- 35 Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I, 9,38 g $\text{NaH}_2\text{PO}_4 \cdot 2 \text{ H}_2\text{O}$, 28,48 g
 $\text{Na}_2\text{HPO}_4 \cdot 12 \text{ H}_2\text{O}$ und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8
 ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet
 werden.

Beispiel D: Salbe

Man mischt 500 mg eines Wirkstoffes der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.

Beispiel E: Tabletten

- 45 Ein Gemisch von 1 kg Wirkstoff der Formel I, 4 kg Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg
 Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff
 enthält.

Beispiel F: Dragees

Analog Beispiel E werden Tabletten geprägt, die anschließend in üblicher Weise mit einem Überzug aus
 Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

Beispiel G: Kapseln

2 kg Wirkstoff der Formel I werden in üblicher Weise in Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg
 des Wirkstoffs enthält.

Beispiel H: Ampullen

Eine Lösung von 1 kg Wirkstoff der Formel I in 60 l zweifach destilliertem Wasser wird steril filtriert, in
 Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg
 Wirkstoff.

65 Patentansprüche

1. Verbindungen der Formel I

worin

X O oder S,

R¹ H, Hal, OH, OA, A, Alkylen-O—A, NO₂, NH₂, NH-AcyI, SO₂NH₂, SO₃-A, SO₂NHA, CN oder Formyl,
R² H oder A,R³, R⁵, R⁶, R⁷, R⁸ jeweils unabhängig voneinander H, Hal, OH, OA, O-Alkylen-R⁴, A, S—A, NO₂, NH₂, NHA,
NA₂, NHAcyl, NSO₂A, NSO₂R⁴, NASO₂A, NASO₂-R⁴, NH(CO)N H₂, NH(CO)NHA, Formyl,
NH(CO)NHPheNyl, NHCOOA, NAAcyl, NHR⁴, NHCOOR⁴, NHCOOBenzyl, NSO₂Benzyl, NHCOO-Alkylen-OA,
NH(CO)NA₂, N-Piperidinyl-CO-NH, N-Pyrrolidinyl-CONH, O(CH₂)_nCOOR², O(CH₂)_nOR²,
CH₂OH oder CH₂OA,R³ und R⁶ zusammen auch —O—CH₂—O—, —O—CH₂—CH₂—O—, —O—CH₂—CH₂—,
—O—CF₂—O— oder —O—CF₂—CF₂—O—,R⁴ unsubstituiertes oder ein- oder mehrfach durch R³ und/oder R⁶ substituiertes Phenyl,

30

A Alkyl mit 1—6 C-Atomen,

Hal Fluor, Chlor, Brom oder Iod,

n 1 oder 2

bedeuten,

sowie ihre Salze.

40

2. a) 3-(1,3-Benzodioxol-5-yl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

b) 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-ethoxy-indol-2-carbonsäure;

c) 3-(4-Methoxyphenyl)-1-(2,1,3-benzothiadiazol-5-ylmethyl)-5-propoxy-indol-2-carbonsäure;

d) 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-ethoxyindol-2-carbonsäure;

45

e) 3-(2,1,3-Benzothiadiazol-5-yl)-1-(4-methoxybenzyl)-5-propoxy-indol-2-carbonsäure;

f) 3-(2,1,3-Benzothiadiazol-5-yl)-1-(3,4-methylendioxybenzyl)-5,6-dimethoxy-indol-2-carbonsäure;

3. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1 sowie ihrer Salze,

worin

50

dadurch gekennzeichnet, daß man
eine Verbindung der Formel II

60

65

worin
R¹, R², R³, R⁸ und X die in Anspruch 1 angegebene Bedeutung haben,
mit einer Verbindung der Formel III

worin
20 L Cl, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet und
R⁴ und n die in Anspruch 1 angegebene Bedeutung haben,
umsetzt,
oder daß man zur Herstellung von Verbindungen der Formel I nach Anspruch 1 sowie ihrer Salze,
worin

dadurch gekennzeichnet, daß man eine Verbindung der Formel IV

worin
55 R², R³, R⁵, R⁶, R⁷ und R⁸ die in Anspruch 1 angegebene Bedeutung haben,
mit einer Verbindung der Formel V

worin
L Cl, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet und

R¹ und n die in Anspruch I angegebene Bedeutung haben,
umsetzt,

und/oder daß man in einer Verbindung der Formel I einen oder mehrere Rest(e) R¹, R², R³, R⁴, R⁵, R⁶, R⁷
und/oder R⁸ in einen oder mehrere Reste R¹, R², R³, R⁴, R⁵, R⁶, R⁷ und/oder R⁸ umwandelt,
indem man beispielsweise

5

- i) eine Nitrogruppe zu einer Aminogruppe reduziert,
- ii) eine Estergruppe zu einer Carboxygruppe hydrolysiert,
- iii) eine Aminogruppe acyliert oder alkyliert,
- iv) eine Aminogruppe in eine Sulfonamidogruppe umwandelt,

und/oder eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.

10

4. Verfahren zur Herstellung pharmazeutischer Zubereitungen, dadurch gekennzeichnet, daß man eine
Verbindung der Formel I nach Anspruch 1 und/oder eines ihrer physiologischen unbedenklichen Salze
zusammen mit mindestens einem festen, flüssigen oder halbflüssigen Träger- oder Hilfsstoff in eine geeigne-
te Dosierungsform bringt.

15

5. Pharmazeutische Zubereitung, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der
Formel I nach Anspruch 1 und/oder einem ihrer physiologisch unbedenklichen Salze.

6. Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze zur Bekämp-
fung von Hypertonie, Herzinsuffizienz, Niereninsuffizienz, Hirninfarkt, koronarer Herzerkrankung, renaler,
cerebraler und myocardialer Ischämie, subarachnoidal Hämorrhagie, Entzündungen, Asthma und endoto-
xischem Schock.

20

7. Arzneimittel der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze als Endothelin-
Rezeptor-Antagonisten.

8. Verwendung von Verbindungen der Formel I nach Anspruch 1 und/oder ihre physiologisch unbedenkli-
chen Salze zur Herstellung eines Arzneimittels.

25

9. Verwendung von Verbindungen der Formel I nach Anspruch 1 und/oder ihrer physiologisch unbedenkli-
chen Salze bei der Bekämpfung von Hypertonie, Herzinsuffizienz, Niereninsuffizienz, Hirninfarkt, korona-
rer Herzerkrankung, renaler, cerebraler und myocardialer Ischämie, subarachnoidal Hämorrhagie, Ent-
zündungen, Asthma und endotoxischem Schock.

30

35

40

45

50

55

60

65