

Statistik I

Prof. Dr. Simone Abendschön 11. Einheit

Plan heute

Grundlagen der Inferenzstatistik

- Zentrales Grenzwerttheorem
- Standardfehler

Lernziele heute

- Kennen und Verstehen des Zentralen Grenzwerttheorems
- Kennen und Bestimmen des Standardfehlers

Einführung

 Bislang haben wir die Konzepte der Wahrscheinlichkeit, z-Wert-Transformation und Normalverteilung nur für Stichproben mit der Größe n = 1 angewendet, d.h.

Wie groß ist die Wahrscheinlichkeit per Zufallsauswahl bei gegebenem Mittelwert und Standardabweichung einen Fall in einem bestimmten Werteintervall auszuwählen?

Welcher Flächenanteil der Normalverteilung entspricht z-Werten >1? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert > 1.0 zu erhalten?

Inferenzstatistik

Grundgesamtheit

Stichprobe

Statistik $\bar{\chi}$

(Arithmetisches Mittel Stichprobe)

Inferenzstatistik

Inferenzstatistik

Grundgesamtheit

(Erwartungswert – "Durchschnitt der Grundgesamtheit")

Inferenz hätzung

Statistik $\bar{\chi}$

(Arithmetisches Mittel Stichprobe)

Stichproben und Grundgesamtheit

- Aber sozialwissenschaftliche Forschungspraxis:
 Stichproben sind typischerweise (sehr) viel größer
 - Z.B. ALLBUS: > 3000 Befragte; European Social Survey: ca. 35.000 Befragte
- Schätzungen auf Basis von Stichprobenkennwerten (z.B. Mittelwerte oder Anteilswerte)
- Diese Kennwerte können ebenfalls in z-Werte transformiert und für Wahrscheinlichkeitsaussagen genutzt werden

Stichproben und Grundgesamtheit

- Stichprobenfehler (Stichprobenschwankung/Sampling Error):
 - Empirische Ergebnisse einer Zufallsstichprobe weichen immer (mehr oder weniger) vom tatsächlichen Wert in Grundgesamtheit ab
 - \rightarrow Diskrepanz zwischen Stichprobenkennwert \bar{x} und Populationskennwert μ
 - Berechnung eines Standardfehlers
- Da wir den "wahren" Wert in der GG nicht kennen, wissen wir nicht ob unser Stichprobenfehler groß oder klein ist
 - Stichprobenergebnisse variieren wir können eine "gute" oder "schlechte" Stichprobe erwischen
 - Zufällige Einflüsse: Unterschiedliche Stichproben = unterschiedliche Beobachtungseinheiten
- Aber: Grundannahmen über die Verteilung von Stichprobenkennwerten!

Zentrales Grenzwerttheorem

Auch: zentraler Grenzwertsatz

Definition:

- Eine Stichprobenkennwerteverteilung für unendlich viele Stichproben von Mittelwerten nähert sich der Normalverteilung an, falls die Stichprobe ausreichend groß ist (n>= 30) oder die Werte in der GG normalverteilt sind
- Der Erwartungswert E der Stichprobenmittelwerte entspricht dem "wahren" Mittelwert der GG
- μ : $E(\bar{x}) = \mu$

Stichprobenkennwerteverteilung

- Es werden theoretisch unendlich viele Stichproben vom jeweils gleichen Umfang n aus derselben Grundgesamtheit gezogen.
- Für jede einzelne Stichprobe wird der interessierende Kennwert (hier arithmetisches Mittel) berechnet
- → Stichprobenmittelwerteverteilung
 (Stichprobenkennwerteverteilung), "theoretische"
 Verteilung

- Es werden theoretisch unendlich viele Stichproben vom jeweils gleichen Umfang n aus derselben Population gezogen (Simulationsbeispiel n=100.000)
- Für jede einzelne Stichprobe wird der interessierende Kennwert (hier arithmetisches Mittel, funktioniert aber auch mit Anteilswert) berechnet

- Simulierte Daten, Modellpopulation N= 100.000,
- Unterschiedliche Verteilungsformen
- Für jede Verteilungsform: jeweils 1.000 Zufallsstichproben vom Umfang n= 500; Berechnung \bar{x} für jede einzelne Stichprobe
- Berechnung des arithmetischen Mittels aus diesen 1000 Mittelwerten
- Wie sieht die Verteilung der Mittelwerte aus? Was passiert? (Siehe auch Abbildung 22 im Lehrbrief)

Verteilung der Stichprobenmittelwerte:

Verteilung der Stichprobenmittelwerte:

Normalverteilung

Population:

Verteilung der Stichprobenmittelwerte:

Gleichverteilung

Population:

Verteilung der Stichprobenmittelwerte:

Zentrales Grenzwerttheorem

- Zentrale Tendenz der Verteilung von Stichprobenkennwerten (Mittelwerte, aber auch Anteilswerte)
- Unabhängig von der Verteilung eines interessierenden Merkmals in der Population wird die Verteilung der Stichprobenmittelwerte (und Anteilswerte) normalverteilt um μ sein
 - falls die Stichprobe ausreichend groß ist (n>= 30)
 - oder die Werte in der Population normalverteilt sind

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Die arithmetischen Mittel verschiedener Stichproben sind (mit zunehmender Anzahl an Beobachtungen n) normalverteilt um das arithmetische Mittel μ der

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Die arithmetischen Mittel verschiedener Stichproben sind (mit zunehmender Anzahl an Beobachtungen n) normalverteilt um das arithmetische Mittel μ der

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Standardfehler des Mittels

- Standardabweichung der Stichprobenmittelwerte als Standardfehler der Stichprobenmittelwerte oder Standardfehler des Mittels (kurz: Standardfehler, $\sigma_{\bar{\chi}}$)
- Durchschnittliche Streuung der arithmetischen Mittel
- informiert darüber, wie präzise ein
 Stichprobenmittelwert den Populationsmittelwert schätzt
- Informiert über die Größe der Diskrepanz zwischen einem Stichprobenmittelwert \bar{x} und dem Populationsmittelwert μ
- Englische Bezeichnung: Standard Error (S.E.)

Standardfehler des Mittels

- Ein relativ kleiner Standardfehler bedeutet, dass die Stichprobenmittelwerte alle relativ ähnlich sind, d.h. grafisch wenig streuen
- Ein relativ großer Standardfehler bedeutet, dass die Stichprobenmittelwerte alle relativ unähnlich sind, d.h. stärker streuen
- Je größer der Standardfehler desto unsicherer die Schätzung
- Formal: $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

Beispiel: Standardfehler

- Gegeben sei für ein interessierendes Merkmal eine Population mit der Standardabweichung σ = 10.
- Wie groß ist die durchschnittliche Abweichung zwischen dem Mittelwert einer Stichprobe für n= 4 zufällig aus dieser Population ausgewählten Beobachtungseinheiten und dem Populationsmittelwert?

Beispiel: Standardfehler

- Gegeben sei für ein interessierendes Merkmal eine Population mit der Standardabweichung σ = 10.
- Wie groß ist die durchschnittliche Abweichung zwischen dem Mittelwert einer Stichprobe für n=4 zufällig aus dieser Population ausgewählten Beobachtungseinheiten und dem Populationsmittelwert? $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

- Gegeben sei für ein interessierendes Merkmal eine Population mit der Standardabweichung σ = 10.
- Wie groß ist die durchschnittliche Abweichung zwischen dem Mittelwert einer Stichprobe für n= 4 zufällig aus dieser Population ausgewählten Beobachtungseinheiten und dem Populationsmittelwert? → S.E. =5

Übung: Standardfehler

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

- Gegeben sei für ein interessierendes Merkmal eine Population mit der Standardabweichung σ = 10.
- Wie groß ist die durchschnittliche Abweichung zwischen dem Mittelwert einer Stichprobe für n= 25 zufällig aus dieser Population ausgewählten Beobachtungseinheiten und dem Populationsmittelwert?

Durch welche Faktoren wird der Standardfehler beeinflusst?

1. Varianz des Merkmals in der Grundgesamtheit

 Je größer die Varianz des Merkmales in der Population, desto größer ist der Standardfehler der Stichprobenmittelwerte.

Durch welche Faktoren wird der Standardfehler noch beeinflusst?

Stichprobengröße (n)	Standardfehler	
1	$\sigma_{ar{X}} = rac{10}{\sqrt{1}}$	= 10
9	$\sigma_{\bar{X}} = \frac{10}{\sqrt{9}}$	= 3.33
25	$\sigma_{ar{X}} = rac{10}{\sqrt{25}}$	= 2
100	$\sigma_{ar{X}} = rac{10}{\sqrt{100}}$	= 1

Durch welche Faktoren wird der Standardfehler beeinflusst?

2. Stichprobenumfang

- "Gesetz der großen Zahl": Je größer der Stichprobenumfang, desto kleiner ist der Standardfehler, denn:
 - mit steigendem Stichprobenumfang wird die Informationsunsicherheit über die Grundgesamtheit reduziert

- Zusammenhang ist negativ: Je größer die Stichprobe, desto kleiner der Standardfehler
- Zusammenhang ist monoton, aber nicht-linear

Stichprobengröße (n)	Standardfehler	
1	$\sigma_{ar{X}} = rac{10}{\sqrt{1}}$	= 10
9	$\sigma_{\bar{X}} = \frac{10}{\sqrt{9}}$	= 3.33
25	$\sigma_{\bar{X}} = \frac{10}{\sqrt{25}}$	= 2
100	$\sigma_{ar{X}} = rac{10}{\sqrt{100}}$	= 1

- Durchschnittliche Streuung aller Stichprobenmittelwerte
- Maß für die Genauigkeit des Stichprobenmittelwerts
- Interpretation?
 - Je kleiner desto besser (da präziser)
 - (Standard-)Normalverteilung als "Hilfe" für Berechnung von Wahrscheinlichkeiten

Gegeben sei eine Grundgesamtheit mit μ = 50 und σ = 12.

- a) Wie lautet der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=4?
- b) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 4 für die Verteilung der Stichprobenmittelwerte zu erwarten?
- c) Wie lautet der Mittelwert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=36?
- d) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 36 für die Verteilung der Stichprobenmittelwerte zu erwarten?

Gegeben sei eine Population mit μ = 50 und σ = 12.

a) Wie lautet der Erwartungswert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=4?

$$\mu = 50; \sigma_{\bar{X}} = \frac{12}{\sqrt{4}} = 6$$

- b) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n=4 für die Verteilung der Stichprobenmittelwerte zu erwarten? Keine Normalverteilung.
- c) Wie lautet der Mittelwert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=36?

d) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 36 für die Verteilung der Stichprobenmittelwerte zu erwarten?

Gegeben sei eine Population mit μ = 50 und σ = 12.

a) Wie lautet der Erwartungswert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=4?

 $\mu = 50; \sigma_{\bar{X}} = \frac{12}{\sqrt{4}} = 6$

- b) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n=4 für die Verteilung der Stichprobenmittelwerte zu erwarten? Keine Normalverteilung.
- c) Wie lautet der (erwartete) Mittelwert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=36? $\mu=50; \ \sigma_{\bar{X}}=\frac{12}{\sqrt{36}}=2$

d) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n=36 für die Verteilung der Stichprobenmittelwerte zu erwarten?

Gegeben sei eine Population mit μ = 50 und σ = 12.

a) Wie lautet der Erwartungswert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=4?

 $\mu = 50; \sigma_{\bar{X}} = \frac{12}{\sqrt{4}} = 6$

- b) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 4 für die Verteilung der Stichprobenmittelwerte zu erwarten? Keine Normalverteilung.
- c) Wie lautet der Mittelwert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=36?

$$\mu = 50$$
; $\sigma_{\bar{X}} = \frac{12}{\sqrt{36}} = 2$

d) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 36 für die Verteilung der Stichprobenmittelwerte zu erwarten? Normalverteilung

Stichprobenmittelwerte, Standardfehler und Tus-LIEBIG-Wahrscheinlichkeit

Beispiel

- Arithmetisches Mittel des Alters der Bevölkerung (μ) ist 43,9 Jahre
- Wie hoch ist die Wahrscheinlichkeit einen Stichprobenmittelwert $\bar{x} = 32$ Jahre zufällig zu ziehen?

Stichprobenmittelwerte, Standardfehler und Tus-LIEBIG-Wahrscheinlichkeit

- Hängt vom Standardfehler $\sigma_{ar{\chi}}$ ab
- Arithmetische Mittel des Alters der Bevölkerung (μ) ist 43,9 Jahre
- Wie hoch ist die Wahrscheinlichkeit einen Stichprobenmittelwert $\bar{x} = 32$ Jahre zufällig zu ziehen?
- 3 verschiedene Streuungsbeispiele:
 - $\sigma_{\bar{x}} = 15$ Jahre, $\bar{x} = 32$ Jahre
 - $\sigma_{\bar{x}} = 10$ Jahre, $\bar{x} = 32$ Jahre
 - $\sigma_{\bar{x}} = 5$ Jahre, $\bar{x} = 32$ Jahre

Stichprobenkennwerteverteilung

• $\mu=43.9$ Jahre und $\sigma_{\bar{\chi}}=15$

Stichprobenkennwerteverteilung

• $\mu = 43.9$ Jahre und $\sigma_{\bar{x}} = 10$

Stichprobenkennwerteverteilung

• $\mu = 43.9$ Jahre und $\sigma_{\bar{x}} = 5$

 $\bar{x} = 32$ Jahre sehr unwahrscheinlich

Stichprobenkennwerteverteilung Alter

Stichprobenmittelwerte, Standardfehler und Wahrscheinlichkeit

- Analog zum bereits bekannten Vorgehen für X-werte können wir auch jeden beliebigen
 Stichprobenmittelwert in einen z-Wert transformieren
- Formale Darstellung: $z = \frac{x \mu}{\sigma_{\overline{x}}}$
- Anhand der z-Werte Tabelle kann dann die Wahrscheinlichkeit bestimmt werden, einen interessierenden Stichprobenmittelwert zu erhalten

Stichprobenmittelwerte, Standardfehler und Wahrscheinlichkeit

Beispiel 1:

Gegeben sei eine Population normalverteilten Werten für einen Leistungstest mit μ = 500 und σ = 100. Wie hoch ist die Wahrscheinlichkeit, dass der Mittelwert für eine Zufallsstichprobe mit n= 25 größer als 540 ist?

- 1. Von Wahrscheinlichkeiten zu Anteilen: "Wie groß ist der Anteil von allen theoretisch möglichen Stichprobenmittelwerten, der größer ist als 540?"
- 2. Anwendung des zentralen Grenzwerttheorems:

Stichprobe ist annahmegemäß normalverteilt, weil Werte in der Population normalverteilt sind

Erwartungswert ist 500, weil der Populationsmittelwert 500 ist

- Für n= 25 beträgt der Standardfehler: $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{100}{\sqrt{25}} = \frac{100}{5} = 20$ $z = \frac{\bar{x} \mu}{\sigma_{\bar{x}}}$
- 3. 540 entspricht 40 Punkten über dem Mittelwert; dies entspricht z = 2
- 4. Der Anteil für z > 2 ist 0.0228 (Die gesuchte Wahrscheinlichkeit beträgt 2.28%)

Gegeben sei eine Population mit μ = 60 und σ = 12. Wie hoch ist die Wahrscheinlichkeit, dass der Mittelwert für eine Zufallsstichprobe mit n= 36 größer als 64 ist?

$$P(x > 64) = ?$$

- 1. "Wie groß ist der Anteil aller theoretisch möglichen Stichprobenmittelwerte, der größer ist als 64?"
- 2.Für n = 36 beträgt der Standardfehler:

3.z-Wert berechnen:

Gegeben sei eine Population mit μ = 60 und σ = 12. Wie hoch ist die Wahrscheinlichkeit, das der Mittelwert für eine Zufallsstichprobe mit n= 36 größer als 64 ist?

$$P(x > 64) = ?$$

- 1. "Wie groß ist der Anteil aller theoretisch möglichen Stichprobenmittelwerte, der größer ist als 64?"
- 2.Für n = 36 beträgt der Standardfehler:

3.z-Wert
$$b^{\sigma_{\bar{X}}} = \frac{\sigma}{\sqrt{n}} = \frac{12}{\sqrt{36}} = \frac{12}{6} = 2$$

Gegeben sei eine Population mit μ = 60 und σ = 8.

- a) Wie lautet die Wahrscheinlichkeit, für eine *rechtsschiefe* Stichprobe mit *n*= 4 einen Mittelwert größer als 62 zu erhalten?
- b) Wie lautet die Wahrscheinlichkeit, für eine Stichprobe mit n= 64 einen Mittelwert größer als 62 zu erhalten?

Gegeben sei eine Population mit μ = 60 und σ = 8.

a) Wie lautet die Wahrscheinlichkeit, für eine *rechtsschiefe* Stichprobe mit *n*= 4 einen Mittelwert größer als 62 zu erhalten?

Nicht beantwortbar, weil weder normalverteilt noch n >=30

b) Wie lautet die Wahrscheinlichkeit, für eine Stichprobe mit n= 64 einen Mittelwert größer als 62 zu erhalten?

Gegeben sei eine Population mit μ = 60 und σ = 8.

■ Wie lautet die Wahrscheinlichkeit, für eine Stichprobe mit *n*= 64 einen Mittelwert größer als 62 zu erhalten?

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{8}{\sqrt{64}} = 1;$$

$$z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{62 - 60}{1} = 2 = 0.0228 (2.28\%)$$

- Wie hoch ist jeweils die Wahrscheinlichkeit für die bereits besprochenen 3 Beispiele von oben?
- Arithmetische Mittel des Alters der Bevölkerung (μ) ist 43,9 Jahre
 - $\sigma_{\bar{x}}=15$ Jahre, $\bar{x}<32$ Jahre
 - $\sigma_{\bar{x}} = 10$ Jahre, $\bar{x} < 32$ Jahre
 - $\sigma_{\bar{x}} = 5$ Jahre, $\bar{x} < 32$ Jahre

Schätzung des Standardfehlers

- Aber: in Wirklichkeit kennen wir ja den wahren Mittelwert und die wahre Standardabweichung gar nicht und daher auch nicht den "wahren" Standardfehler eines Stichprobenmittelwerts
- Schätzung des Standardfehlers auf Basis der Standardabweichung der Stichprobe

$$\hat{\sigma}_{\bar{X}} = \frac{s}{\sqrt{n}}$$

"Wahre" Streuung σ wird aus (empirischer)
 Streuung s in Stichprobe geschätzt