I/WE CLAIM:

1

T1

L.

j.

14 15 16

- A method of engine starting in a gas turbine engine 1. 2 comprising: 3
- rotating the engine to provide an air flow into a 4 combustor of the engine; 5
- injecting fuel into the combustor at a varying rate 6 7 until the engine is lighted-off, the varying rate being a function of time and represented by a curve 8 9 - 10 - 11 having at least one high frequency with respect to a light-off time, representing instant changes of the for intersecting a light-off zone reducing a quantity of fuel injected into 12 13 combustor; and then,
 - continuously injecting fuel into the combustor accelerate the engine to a self-sustaining operation condition.
 - A method as claimed in claim 1 wherein the 17 2. comprises a low frequency with respect to the light-off 18 time, representing a change trend of the varying rate. 19
 - A method as claimed in claim 2 wherein the curve has an 20 3. increasing trend and comprises an oscillatory profile. 21
 - A method as claimed in claim 2 wherein the curve has an 22 4. increasing trend and comprises a series of spikes. 23

- 1 5. A method as claimed in claim 2 wherein the curve has an increasing trend and comprises a squared-off wave profile.
- 4 6. A method as claimed in claim 2 wherein the curve has an increasing trend and comprises a step profile.
- 6 7. A method as claimed in claim 2 wherein the engine is rotated at a varying speed as a function of time.
- 8 8. A method as claimed in claim 6 wherein the engine is rotated at an increasing speed.
- 10 9. A method as claimed in claim 2 further comprising introduction of a predetermined first fuel flow level into the combustor prior to fuel injection at the varying rate.
- 13 14 14 A method as claimed in claim 9 further comprising: 10. speed minimum engine begin the 15 selecting a introduction of the predetermined first fuel flow level 16 for stating the engine under a variety of altitude and 17 temperature conditions. 18
 - 19 11. A method as claimed in claim 10 further comprising:
 - sensing a temperature of the fuel to be injected into the combustor;
 - sensing a temperature of the air flow to be provided into the combustor;
 - sensing a forward flight velocity ram quantity;

processing the sensed data to determine the minimum

the

and

engine speed for the introduction of

sensing the varying speed of the engine; and

sensing an ambient air pressure;

1

2

3

4

25

5		predetermined first fuel flow level.
6	12.	A method as claimed in claim 2 further comprising:
7		sensing a temperature of an exhaust gas flow to
8		determine if the light-off occurs.
5 9	13.	A method as claimed in claim 2 further comprising:
10 10		biasing a profile of the curve representing the varying
10 11 0 12		fuel injection rate according to changes in the altitude
		and temperature conditions.
= 	14.	A method as claimed in claim 2 further comprising:
14 14		changing the predetermined first fuel flow level
14 15		according to changes in the altitude and temperature
16		conditions.
17	15.	A method as claimed in claim 11 further comprising:
18		measuring a light-off time taken from the beginning of
19		the introduction of the predetermined first fuel
20		flow level, to the occurrence of the light-off; and
21		storing the measured light-off time and the sensed data
22		in a database for reference in a future engine
23		starting process when a search shows no data
24		associated with an altitude and temperature

condition, similar to a current altitude

1	temperature	conditi	on gene	erated	d :	in	a	previous
2	light-off pr	ocess and	stored	in th	ne d	atab	ase.	

- 3 16. A method as claimed in claim 15 further comprising:
 - changing a criterion of the minimum engine speed and the predetermined first fuel flow level to reduce the light-off according to the stored time associated with the similar altitude and temperature located in the condition, when such data is database; and
 - storing data regarding the changes and the light-off time currently measured, and deleting the previously stored data of the minimum engine speed and the predetermined first fuel flow level and the previously stored light-off time associated with the similar altitude and temperature condition, when the is shorter than the light-off time current previously stored light-off time.

16

<u>|</u> 17

4

5

6

7

8

9

10

T 11

13