

Logistic Regression and Neural Network

Logistic Regression and Neural Network

Author:
Ana Costa
authors@email.com

Supervisors:

UiO November 13, 2018

Contents

1	General structure
	1.1 Part a) Producing the data for the one-dimensional Ising model
	1.2 Part b) Estimating the coupling constant of the one-dimensional Ising model 6
	1.3 Understanding the results
	1.4 Part c) Determine the phase of the two-dimensional Ising model
	1.5 Part d) Regression analysis of the one-dimensional Ising model using neural networks 18
	1.6 Part e) Classifying the Ising model phase using neural networks
	1.7 Part f) Critical evaluation of the various algorithms
2	References
_	TOTAL CONTROL OF THE PROPERTY
Li	ist of Figures
1	ist of Tables
L	ist of Tables
Li	ist of Codes
	1.1 Code example
	1.1 Code example
	1.3 Performance MSE
	1.4 Performance bias/variance
	1.5 Performance OlS bias/variance
	,
	1.6 Performance Ridge bias/variance
	0
hH	they / /github com /anagost /project? EVS STV 1155

- Project title
- Name, email, course title, date, group assistant
- Abstract (1/2 page max)
- Introduction (1 page)
- Method
 - Packages used
 - Datasets (models and observations)
 - Analysis method
 - ...
- Results
- Discussion and outlook (1 page)
- Conclusions (1/2 page)
- References
- Acknowledgments

```
import tensorflow
import sklearn
import pandas
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import seaborn
%matplotlib inline
import numpy as np
```

1.1 Part a) Producing the data for the one-dimensional Ising model

```
import scipy.sparse as sp
np.random.seed(12)
3 import warnings
4 #Comment this to turn on warnings
5 warnings.filterwarnings('ignore')
7 ### define Ising model aprams
8 # system size
_9 L = 40
# create 10000 random Ising states
states=np.random.choice([-1, 1], size=(10000,L))
def ising_energies(states,L):
15
      This function calculates the energies of the states in the nn

→ Ising Hamiltonian

      0.00
17
      J=np.zeros((L,L),)
18
      for i in range(L):
          J[i,(i+1)%L]-=1.0
     # compute energies
21
      E = np.einsum('...i,ij,...j->...',states,J,states)
22
```

```
return E

zs # calculate Ising energies

energies=ising_energies(states,L)
```

```
# reshape Ising states into RL samples: S_iS_j --> X_p
states=np.einsum('...i,...j->...ij', states, states)
shape=states.shape
states=states.reshape((shape[0],shape[1]*shape[2]))
# build final data set
Data=[states,energies]
```

1.2 Part b) Estimating the coupling constant of the one-dimensional Ising model

Code 1.1: Code example

```
from sklearn import linear_model
2 # define error lists
train_errors_leastsq = []
4 test_errors_leastsq = []
  train_MSE_leastsq = []
6 test_MSE_leastsq = []
7 train_bias_leastsq = []
s test_bias_leastsq = []
9 train_var_leastsq = []
test_var_leastsq = []
train_errors_ridge = []
13 test_errors_ridge = []
train_MSE_ridge = []
test_MSE_ridge = []
train_bias_ridge = []
test_bias_ridge = []
18 train_var_ridge = []
19 test_var_ridge = []
  train_errors_lasso = []
21
22 test_errors_lasso = []
train_MSE_lasso = []
test_MSE_lasso = []
25 train_bias_lasso = []
26 test_bias_lasso = []
  train_var_lasso = []
  test_var_lasso = []
30 # set regularisation strength values
1 \text{ lmbdas} = \text{np.logspace}(-4, 5, 10)
_{
m 33} #Initialize coeffficients for OLS, ridge regression and Lasso
34 coefs_leastsq = []
35 coefs_ridge =
  coefs_lasso=[]
  # set up Lasso Regression model
  lasso = linear_model.Lasso()
  for _,lmbda in enumerate(lmbdas):
       ### ordinary least squares
41
       xb = np.c_[np.ones((X_train.shape[0],1)),X_train]
       #fit model/singularity :
       beta_ols = np.linalg.pinv(xb.T @ xb) @ xb.T @ Y_train
44
       coefs_leastsq.append(beta_ols) # store weights
45
       \# use the coefficient of determination R^2 as the performance
      \hookrightarrow of prediction.
      fitted_train = xb @ beta_ols
       xb_test = np.c_[np.ones((X_test.shape[0],1)),X_test]
       fitted_test = xb_test @ beta_ols
       R2_train = 1 - np.sum( (fitted_train - Y_train)**2 )/np.sum( (
1 General structure np.mean(Y_train))**2 )
       R2_test = 1 - np.sum((fitted_test - Y_test)**2)/np.sum((Y_test
      \rightarrow - np.mean(Y_test))**2)
       MSE_train = np.sum((fitted_train - Y_train)**2)/len(Y_train)
54
       MSE_test = np.sum((fitted_test - Y_test)**2)/len(Y_test)
       var_train = np.sum((fitted_train - np.mean(fitted_train))**2)/
```

```
1 # Plot our performance on both the training and test data
2 plt.semilogx(lmbdas, train_errors_leastsq, 'b',label='Train (OLS)')
plt.semilogx(lmbdas, test_errors_leastsq,'--b',label='Test (OLS)')
4 plt.semilogx(lmbdas, train_errors_ridge,'r',label='Train (Ridge)',
     \hookrightarrow linewidth=1)
5 plt.semilogx(lmbdas, test_errors_ridge,'--r',label='Test (Ridge)',
     \hookrightarrow linewidth=1)
plt.semilogx(lmbdas, train_errors_lasso, 'g',label='Train (LASSO)')
  plt.semilogx(lmbdas, test_errors_lasso, '--g',label='Test (LASSO)')
9 fig = plt.gcf()
fig.set_size_inches(10.0, 6.0)
#plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color
              linewidth=3, label='Optimum on test')
plt.legend(loc='lower left',fontsize=16)
15 plt.ylim([-0.01, 1.01])
plt.xlim([min(lmbdas), max(lmbdas)])
plt.xlabel(r'$\lambda$',fontsize=16)
plt.ylabel('Performance',fontsize=16)
plt.tick_params(labelsize=16)
plt.show()
```

1.3 Understanding the results

Let us make a few remarks: (i) the (inverse, see Scikit documentation) regularization parameter λ affects the Ridge and LASSO regressions at scales, separated by a few orders of magnitude. Notice that this is different for the data considered in Notebook 3 Section VI: Linear Regression (Diabetes). Therefore, it is considered good practice to always check the performance for the given model and data with λ . (ii) at $\lambda \to 0$ and $\lambda \to \infty$, all three models overfit the data, as can be seen from the deviation of the test errors from unity (dashed lines), while the training curves stay at unity. (iii) While the OLS and Ridge regression test curves are monotonic, the LASSO test curve is not -- suggesting the optimal LASSO regularization parameter is $\lambda \approx 10^{-2}$. At this sweet spot, the Ising interaction weights J contain only nearest-neighbor terms (as did the model the data was generated from).

Gauge degrees of freedom: recall that the uniform nearest-neighbor interactions strength $J_{j,k} = J$ which we used to generate the data was set to unity, J = 1. Moreover, $J_{j,k}$ was NOT defined to be symmetric (we only used the $J_{j,j+1}$ but never the $J_{j,j-1}$ elements). The colorbar on the matrix elements plot above suggest that the OLS and Ridge regression learn uniform symmetric weights J = -0.5. There is no mystery since this amounts to taking into account both the $J_{j,j+1}$ and the $J_{j,j-1}$ terms, and the weights are distributed symmetrically between them. LASSO, on the other hand, can break this symmetry (see matrix elements plots for $\lambda = 0.001$ and $\lambda = 0.01$). Thus, we see how different regularization schemes can lead to learning equivalent models but in different gauges. Any information we have about the symmetry of the unknown model that generated the data has to be reflected in the definition of the model and the regularization chosen.

Code 1.3: Performance MSE

```
# Plot our performance on both the training and test data
{\tt plt.semilogx(lmbdas, train\_MSE\_leastsq, 'b', label='Train (OLS)')}\\
_{\mbox{\scriptsize 3}} plt.semilogx(lmbdas, test_MSE_leastsq,'--b',label='Test (OLS)')
4 plt.semilogx(lmbdas, train_MSE_ridge, 'r', label = 'Train (Ridge)',
      \hookrightarrow linewidth=1)
plt.semilogx(lmbdas, test_MSE_ridge,'--r',label='Test (Ridge)',
     → linewidth=1)
6 plt.semilogx(lmbdas, train_MSE_lasso, 'g',label='Train (LASSO)')
7 plt.semilogx(lmbdas, test_MSE_lasso, '--g',label='Test (LASSO)')
9 fig = plt.gcf()
10 fig.set_size_inches(10.0, 6.0)
#plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color
               linewidth=3, label='Optimum on test')
plt.legend(loc='lower left',fontsize=16)
15 plt.ylim([-0.01, 1.01])
plt.xlim([min(lmbdas), max(lmbdas)])
plt.xlabel(r'$\lambda$',fontsize=16)
plt.ylabel('Performance-MSE', fontsize=16)
plt.tick_params(labelsize=16)
20 plt.show()
```

```
1 # Plot our bias-variance on both the training and test data
plt.semilogx(lmbdas, train_bias_leastsq, 'b',label='Bias-Train (OLS)
plt.semilogx(lmbdas, test_bias_leastsq,'--b',label='Bias-Test (OLS)'
      \hookrightarrow )
4 plt.semilogx(lmbdas, train_bias_ridge, 'r', label='Bias-Train (Ridge)'
      \hookrightarrow , linewidth=1)
5 plt.semilogx(lmbdas, test_bias_ridge,'--r',label='Bias-Test (Ridge)'
      \hookrightarrow , linewidth=1)
plt.semilogx(lmbdas, train_bias_lasso, 'g',label='Bias-Train (LASSO)
      \hookrightarrow ')
7 plt.semilogx(lmbdas, test_bias_lasso, '--g',label='Bias-Test (LASSO)
      \hookrightarrow ')
9 plt.semilogx(lmbdas, train_var_leastsq, ':b',label='Variance-Train (
      \hookrightarrow OLS)')
plt.semilogx(lmbdas, test_var_leastsq,'.b',label='Variance-Test (OLS
      \hookrightarrow )')
n plt.semilogx(lmbdas, train_var_ridge,':r',label='Variance-Train (
      → Ridge)',linewidth=1)
plt.semilogx(lmbdas, test_var_ridge,'.r',label='Variance-Test (Ridge
      \hookrightarrow )', linewidth=1)
plt.semilogx(lmbdas, train_var_lasso, ':g',label='Variance-Train (
      \hookrightarrow LASSO)')
plt.semilogx(lmbdas, test_var_lasso, '.g',label='Variance-Test (
      → LASSO)')
15
16 fig = plt.gcf()
fig.set_size_inches(10.0, 6.0)
  #plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color
      \hookrightarrow = 'k',
                linewidth=3, label='Optimum on test')
plt.legend(loc='lower left',fontsize=16)
22 #plt.ylim([-0.01, 1.01])
plt.xlim([min(lmbdas), max(lmbdas)])
plt.xlabel(r'$\lambda$',fontsize=16)
plt.ylabel('Bias-Variance', fontsize=16)
plt.tick_params(labelsize=16)
27 plt.show()
```

```
1 # Plot our bias-variance on both the training and test data
plt.semilogx(lmbdas, train_bias_leastsq, 'b',label='Bias-Train (OLS)
plt.semilogx(lmbdas, test_bias_leastsq,'--b',label='Bias-Test (OLS)'
      \hookrightarrow )
# #plt.semilogx(lmbdas, train_bias_ridge,'r',label='Bias-Train (Ridge)
      \hookrightarrow ', linewidth=1)
#plt.semilogx(lmbdas, test_bias_ridge,'--r',label='Bias-Test (Ridge)
      \hookrightarrow ', linewidth=1)
#plt.semilogx(lmbdas, train_bias_lasso, 'g',label='Bias-Train (LASSO
      \hookrightarrow )')
7 #plt.semilogx(lmbdas, test_bias_lasso, '--g',label='Bias-Test (LASSO)
      \hookrightarrow )')
9 plt.semilogx(lmbdas, train_var_leastsq, ':b',label='Variance-Train (
      \hookrightarrow OLS)')
plt.semilogx(lmbdas, test_var_leastsq,'.b',label='Variance-Test (OLS
      \hookrightarrow )')
#plt.semilogx(lmbdas, train_var_ridge,':r',label='Variance-Train (
      → Ridge)',linewidth=1)
#plt.semilogx(lmbdas, test_var_ridge,'.r',label='Variance-Test (
      → Ridge)',linewidth=1)
#plt.semilogx(lmbdas, train_var_lasso, ':g',label='Variance-Train (
      → LASSO)')
  #plt.semilogx(lmbdas, test_var_lasso, '.g',label='Variance-Test (
      → LASSO)')
15
16 fig = plt.gcf()
fig.set_size_inches(10.0, 6.0)
  #plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color
      \hookrightarrow = 'k',
               linewidth=3, label='Optimum on test')
plt.legend(loc='lower left',fontsize=16)
22 #plt.ylim([-0.01, 1.01])
plt.xlim([min(lmbdas), max(lmbdas)])
plt.xlabel(r'$\lambda$',fontsize=16)
plt.ylabel('Bias-Variance', fontsize=16)
plt.tick_params(labelsize=16)
27 plt.show()
```

```
1 # Plot our bias-variance on both the training and test data
#plt.semilogx(lmbdas, train_bias_leastsq, 'b',label='Bias-Train (OLS)
      \hookrightarrow )')
  #plt.semilogx(lmbdas, test_bias_leastsq,'--b',label='Bias-Test (OLS)
      \hookrightarrow ')
4 plt.semilogx(lmbdas, train_bias_ridge, 'r', label='Bias-Train (Ridge)'
      \hookrightarrow , linewidth=1)
5 plt.semilogx(lmbdas, test_bias_ridge,'--r',label='Bias-Test (Ridge)'
     \hookrightarrow , linewidth=1)
#plt.semilogx(lmbdas, train_bias_lasso, 'g',label='Bias-Train (LASSO
      \hookrightarrow )')
7 #plt.semilogx(lmbdas, test_bias_lasso, '--g',label='Bias-Test (LASSO)
      \hookrightarrow )')
  #plt.semilogx(lmbdas, train_var_leastsq, ':b',label='Variance-Train
      → (OLS)')
  #plt.semilogx(lmbdas, test_var_leastsq,'.b',label='Variance-Test (
      → OLS)')
n plt.semilogx(lmbdas, train_var_ridge,':r',label='Variance-Train (
      → Ridge) ', linewidth=1)
plt.semilogx(lmbdas, test_var_ridge,'.r',label='Variance-Test (Ridge
      \hookrightarrow )', linewidth=1)
#plt.semilogx(lmbdas, train_var_lasso, ':g',label='Variance-Train (
      → LASSO)')
  #plt.semilogx(lmbdas, test_var_lasso, '.g',label='Variance-Test (
      → LASSO)')
15
16 fig = plt.gcf()
fig.set_size_inches(10.0, 6.0)
  #plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color
      \hookrightarrow = 'k',
                linewidth=3, label='Optimum on test')
plt.legend(loc='lower left',fontsize=16)
22 #plt.ylim([-0.01, 1.01])
plt.xlim([min(lmbdas), max(lmbdas)])
plt.xlabel(r'$\lambda$',fontsize=16)
plt.ylabel('Bias-Variance', fontsize=16)
plt.tick_params(labelsize=16)
27 plt.show()
```

```
1 # Plot our bias-variance on both the training and test data
#plt.semilogx(lmbdas, train_bias_leastsq, 'b',label='Bias-Train (OLS)
      \hookrightarrow )')
  #plt.semilogx(lmbdas, test_bias_leastsq,'--b',label='Bias-Test (OLS)
     \hookrightarrow ')
# #plt.semilogx(lmbdas, train_bias_ridge,'r',label='Bias-Train (Ridge)
     \hookrightarrow ', linewidth=1)
#plt.semilogx(lmbdas, test_bias_ridge,'--r',label='Bias-Test (Ridge)
     \hookrightarrow ', linewidth=1)
6 plt.semilogx(lmbdas, train_bias_lasso, 'g',label='Bias-Train (LASSO)
7 plt.semilogx(lmbdas, test_bias_lasso, '--g',label='Bias-Test (LASSO)
     \hookrightarrow ')
  #plt.semilogx(lmbdas, train_var_leastsq, ':b',label='Variance-Train
     → (OLS)')
  #plt.semilogx(lmbdas, test_var_leastsq,'.b',label='Variance-Test (
      → OLS)')
#plt.semilogx(lmbdas, train_var_ridge,':r',label='Variance-Train (
     → Ridge)',linewidth=1)
#plt.semilogx(lmbdas, test_var_ridge,'.r',label='Variance-Test (
     → Ridge)',linewidth=1)
plt.semilogx(lmbdas, train_var_lasso, ':g',label='Variance-Train (
     \hookrightarrow LASSO)')
plt.semilogx(lmbdas, test_var_lasso, '.g',label='Variance-Test (
     → LASSO)')
15
16 fig = plt.gcf()
fig.set_size_inches(10.0, 6.0)
  #plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color
     \hookrightarrow = 'k',
               linewidth=3, label='Optimum on test')
plt.legend(loc='lower left',fontsize=16)
22 #plt.ylim([-0.01, 1.01])
plt.xlim([min(lmbdas), max(lmbdas)])
plt.xlabel(r'$\lambda$',fontsize=16)
plt.ylabel('Bias-Variance', fontsize=16)
plt.tick_params(labelsize=16)
  plt.show()
```

```
#bootstrap:
```

1.4 Part c) Determine the phase of the two-dimensional Ising model.

```
np.random.seed(1) # shuffle random seed generator

# Ising model parameters

L=40 # linear system size

J=-1.0 # Ising interaction

T=np.linspace(0.25,4.0,16) # set of temperatures

T_c=2.26 # Onsager critical temperature in the TD limit
```

```
##### prepare training and test data sets
import pickle,os
from sklearn.model_selection import train_test_split
 5 ###### define ML parameters
 6 num_classes=2
 7 train_to_test_ratio=0.5 # training samples
 9 # path to data directory
path_to_data=os.path.expanduser('.')+'/data/'
12 # load data
13 file_name = "Ising2DFM_reSample_L40_T=All.pkl" # this file contains
      \hookrightarrow 16*10000 samples taken in T=np.arange(0.25,4.0001,0.25)
data = pickle.load(open(path_to_data+file_name, 'rb')) # pickle
      \hookrightarrow reads the file and returns the Python object (1D array,
      → compressed bits)
   data = np.unpackbits(data).reshape(-1, 1600) # Decompress array and

    → reshape for convenience

data=data.astype('int')
data[np.where(data==0)]=-1 # map 0 state to -1 (Ising variable can
      \hookrightarrow take values +/-1)
  file_name = "Ising2DFM_reSample_L40_T=All_labels.pk1" # this file
      \hookrightarrow contains 16*10000 samples taken in T=np.arange
      \hookrightarrow (0.25, 4.0001, 0.25)
labels = pickle.load(open(path_to_data+file_name,'rb')) # pickle
      \hookrightarrow reads the file and returns the Python object (here just a 1D
      → array with the binary labels)
21
22 # divide data into ordered, critical and disordered
23  X_ordered=data[:70000,:]
  Y_ordered=labels[:70000]
26  X_critical=data[70000:100000,:]
27 Y_critical=labels[70000:100000]
29 X_disordered=data[100000:,:]
30 Y_disordered=labels[100000:]
32 #X_ordered[np.where(X_ordered==0)]=-1 # map 0 state to -1 (Ising
      \hookrightarrow variable can take values +/-1)
^{33} #X_critical[np.where(X_critical==0)]=-1 # map 0 state to -1 (Ising
      \hookrightarrow variable can take values +/-1)
   #X_disordered[np.where(X_disordered==0)]=-1 # map 0 state to -1 (
      \hookrightarrow Ising variable can take values +/-1)
  del data, labels
  # define training and test data sets
  X=np.concatenate((X_ordered,X_disordered))
y=np.concatenate((Y_ordered, Y_disordered))
_{
m 41} # pick random data points from ordered and disordered states
_{\rm 42} # to create the training and test sets
43 X_train, X_test, Y_train, Y_test=train_test_split(X,Y,train_size=
      → train_to_test_ratio)
14Gefferal structure set
                                                                            14
X=np.concatenate((X_critical,X))
47 Y=np.concatenate((Y_critical,Y))
```

print('X_train shape:', X_train.shape)
print('Y_train shape:', Y_train.shape)

print()

```
X_train shape: (65000, 1600)
Y_train shape: (65000,)

65000 train samples
30000 critical samples
65000 test samples
```

Code 1.8: Plotting some states

```
##### plot a few Ising states
3 # set colourbar map
4 cmap_args=dict(cmap='plasma_r')
6 # plot states
fig, axarr = plt.subplots(nrows=1, ncols=3)
axarr[0].imshow(X_ordered[20001].reshape(L,L),**cmap_args)
axarr[0].set_title('$\\mathrm{ordered\\ phase}$',fontsize=16)
axarr[0].tick_params(labelsize=16)
axarr[1].imshow(X_critical[10001].reshape(L,L),**cmap_args)
axarr[1].set_title('$\\mathrm{critical\\ region}$',fontsize=16)
axarr[1].tick_params(labelsize=16)
im=axarr[2].imshow(X_disordered[50001].reshape(L,L),**cmap_args)
axarr[2].set_title('\mathrm{disordered\\ phase}\$',fontsize=16)
19 axarr[2].tick_params(labelsize=16)
fig.subplots_adjust(right=2.0)
23 plt.show()
```

```
###### apply logistic regression
from sklearn import linear_model
3 from sklearn.neural_network import MLPClassifier
5 # define regularisation parameter
6 lmbdas=np.logspace(-5,5,11)
8 # preallocate data
  train_accuracy=np.zeros(lmbdas.shape,np.float64)
test_accuracy=np.zeros(lmbdas.shape,np.float64)
critical_accuracy=np.zeros(lmbdas.shape,np.float64)
train_accuracy_SGD=np.zeros(lmbdas.shape,np.float64)
test_accuracy_SGD=np.zeros(lmbdas.shape,np.float64)
critical_accuracy_SGD=np.zeros(lmbdas.shape,np.float64)
  # loop over regularisation strength
  for i,lmbda in enumerate(lmbdas):
18
19
       # define logistic regressor
       logreg=linear_model.LogisticRegression(C=1.0/lmbda,random_state
21
      \hookrightarrow =1, verbose=0, max_iter=1E3, tol=1E-5)
       # fit training data
       logreg.fit(X_train, Y_train)
24
25
       # check accuracy
26
       train_accuracy[i] = logreg.score(X_train, Y_train)
       test_accuracy[i] = logreg.score(X_test, Y_test)
       critical_accuracy[i] = logreg.score(X_critical, Y_critical)
29
      print('accuracy: train, test, critical')
       print('liblin: %0.4f, %0.4f, %0.4f' %(train_accuracy[i],
32

    test_accuracy[i], critical_accuracy[i]) )

       # define SGD-based logistic regression
       logreg_SGD = linear_model.SGDClassifier(loss='log', penalty='12
35

→ ', alpha=lmbda, max_iter=100,
                                                shuffle=True,
      → random_state=1, learning_rate='optimal')
37
       # fit training data
38
       logreg_SGD.fit(X_train,Y_train)
39
       # check accuracy
41
       train_accuracy_SGD[i]=logreg_SGD.score(X_train,Y_train)
       test_accuracy_SGD[i]=logreg_SGD.score(X_test,Y_test)
       critical_accuracy_SGD[i]=logreg_SGD.score(X_critical,Y_critical
      \hookrightarrow )
45
      print('SGD: %0.4f, %0.4f, %0.4f' %(train_accuracy_SGD[i],

    test_accuracy_SGD[i], critical_accuracy_SGD[i]) )
47
       print('finished computing %i/11 iterations' %(i+1))
48
1ºGe#eralstructure against regularisation strength
                                                                         16
51 plt.semilogx(lmbdas,train_accuracy,'*-b',label='liblinear train')
plt.semilogx(lmbdas,test_accuracy,'*-r',label='liblinear test')
53 plt.semilogx(lmbdas,critical_accuracy,'*-g',label='liblinear
      ⇔ critical')
  plt.semilogx(lmbdas,train_accuracy_SGD,'*--b',label='SGD train')
```

```
###### apply logistic regression
import logisRegresANA
import importlib
importlib.reload(logisRegresANA)

lr = 0.5
epochs = 300
weights = logisRegresANA.logistic_reg(X_train, Y_train, epochs, lr)

###### apply logistic regression
import logisRegresANA
import importlib
importlib.reload(logisRegresANA)
weights = logisRegresANA.stocGradAscentA(X_train, Y_train)
```

```
###### apply logistic regression
import logisRegresANA
3 import importlib
importlib.reload(logisRegresANA)
s weights = logisRegresANA.steepest_descent_auto(X_train, Y_train,
      \hookrightarrow alpha =0.001)
6 error_train = logisRegresANA.simptest(weights, X_train, Y_train)
r error_test = logisRegresANA.simptest(weights, X_test, Y_test)
###### apply logistic regression
import logisRegresANA
3 import importlib
importlib.reload(logisRegresANA)
s weights = logisRegresANA.logistic_reg(X_train, Y_train, epochs=
      \hookrightarrow 100, lr=0.001)
error_train = logisRegresANA.simptest(weights, X_train, Y_train)
r error_test = logisRegresANA.simptest(weights, X_test, Y_test)
###### apply logistic regression
import logisRegresANA
3 import importlib
importlib.reload(logisRegresANA)
5 weights = logisRegresANA.gradDscent(X_train, Y_train, alpha= 0.01)
```

```
import importlib
import logisRegresANA
importlib.reload(logisRegresANA)

weights2 = logisRegresANA.sgd(X_train, Y_train)
print(weights2)
weights2 = weights2.flatten()
error_train = logisRegresANA.simptest(weights2, X_train, Y_train)
error_test = logisRegresANA.simptest(weights2, X_test, Y_test)
```

- 1.5 Part d) Regression analysis of the one-dimensional Ising model using neural networks.
- 1.6 Part e) Classifying the Ising model phase using neural networks.

```
mini_batch [[-1 -1 -1 ..., -1 -1 1]
 [-1 -1 -1 ..., -1 -1 0]
 [1 1 1 \dots, 1 1]
 [ 1 1 1 \dots, -1 -1 0 ]
 [-1 -1 -1 ..., -1 -1 1]
 [ 1 1 -1 ..., 1 -1 0]]
nabla_w from weights -shape
                           (2,)
nabla_b from weights -shape
x [-1 -1 -1 ..., -1 -1 -1]
activations: [array([-1, -1, -1, ..., -1, -1, -1])]
f 0 w in loop [[ 0.50892274 -0.28898022 -1.20827711 ..., -0.456469
0.65965346
  0.102419627
 -0.90373304]
 [ 0.97948496 -0.55957186 -0.1711543 ..., 0.08315642 -0.76727449
 -0.1474379 ]
 [-0.75724226 -0.53077548 -1.08823808 ..., -0.28865485 0.48977372
  1.44011092]
 [-0.01027559 \quad 0.83852329 \quad -0.11277865 \quad \dots, \quad -0.85940721 \quad 0.45309176
 -0.42789696]
```

```
[ \ 0.26413263 \ \ 1.05422235 \ -0.36335701 \ \dots, \ -1.30188984 \ -0.40503143
   -0.68552322]]
activation : [-1 -1 -1 ..., -1 -1 -1]
w_a = numpy.dot(w, activation): [-13.49316819 -39.12589526 -
10.07647132 37.48403681 -26.31504817
   15.09851548 -13.01447302 18.43597532 -29.68447902 -0.04488525]
b: [-0.9073413 -1.36768501 -0.35959421 -0.89205373 -1.35507506 -
0.08539942
 -1.56692176 0.74175751 0.30745289 -0.95706228]
z = w_a + b: [-14.40050949 - 40.49358026 - 10.43606554 36.59198309 - 40.49358026 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198309 - 10.43606554 36.59198009 - 10.43606554 36.59198009 - 10.43606554 36.59198009 - 10.43606554 36.59198009 - 10.43606554 36.59198000 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.43606554 - 10.45606554 - 10.45606554 - 10.45606554 - 10.45606554 - 10.45606556 - 10.45606556 - 10.456065656 - 10.45606566 - 10.45606566 - 10.4560656 - 10.4560666 - 10.4560666 - 10.4560666 - 10.4560666 - 1
27.67012324
   15.01311605 - 14.58139478 19.17773283 - 29.37702613 - 1.00194753
f 1 w in loop [[ 0.74683728 -1.36658155 1.73000956 -0.99789933 -
0.8230627 -0.840913
   -0.48278465 0.37804188 0.20443838 0.55033394]]
activation: [ 5.57106144e-07 2.59335242e-18
                                                                                             2.93536138e-05
1.00000000e+00
     9.61652500e-13 9.99999698e-01
                                                                     4.64922440e-07 9.99999995e-01
     1.74469556e-13 2.68558686e-01]
w_a = numpy.dot(w, activation): [-1.31292226]
b : [ 0.6802191]
z = w_a + b : [-0.63270316]
ACTIVATIONS : [-1 -1 -1 ..., -1 -1 -1]
   5.57106144e-07
                                     2.59335242e-18 2.93536138e-05 1.00000000e+00
                                                                     4.64922440e-07 9.99999995e-01
     9.61652500e-13 9.99999698e-01
     1.74469556e-13 2.68558686e-01]
[ 0.34689786]
in last layer, y 1 activations[-1] [ 0.34689786]
zs stored : [array([-14.40050949, -40.49358026, -10.43606554,
36.59198309,
             -27.67012324, 15.01311605, -14.58139478, 19.17773283,
             -29.37702613, -1.00194753]), array([-0.63270316])]
DELTA: [-0.65310214]
in backprop: numpy.array(activations[-2]).T [ 5.57106144e-07
2.59335242e-18 2.93536138e-05 1.00000000e+00
      9.61652500e-13 9.99999698e-01
                                                                      4.64922440e-07 9.99999995e-01
      1.74469556e-13
                                      2.68558686e-01]
in backprop: nabla_b_backprop[-1] [-0.65310214]
in backprop: nabla_w_backprop[-1] [ -3.63847217e-07 -1.69372402e-18
1.91709081e-05 -6.53102143e-01
   -6.28057308\, e{-13} \quad -6.53101946\, e{-01} \quad -3.03641842\, e{-07} \quad -6.53102140\, e{-01}
   -1.13946441e-13 -1.75396253e-01]
ENTRA NESTE LOOP, k = 1
sp [ 5.57105834e-07 2.59335242e-18 2.93527522e-05
                                                                                                              2.22044605e-
16
      9.61652500e-13 3.01916105e-07
                                                                    4.64922224e-07
                                                                                                   4.69047088e-09
      1.74469556e-13
                                     1.96434918e-01]
numpy.array(weights[-1-(k-1)]).T [[ 0.74683728]
  [-1.36658155]
  [ 1.73000956]
  [-0.99789933]
  [-0.8230627]
  [-0.840913
  [-0.48278465]
  [0.37804188]
```

```
[ 0.20443838]
  [ 0.55033394]]
delta -0.653102142795
delta in loop k [ -2.71734513e-07 2.31461199e-18 -3.31648807e-05
1.44713173e-16
      5.16930545e-13 1.65812954e-07
                                                                              1.46593551e-07 -1.15807709e-09
    -2.32950262e-14 -7.06034783e-02]
testyy [-1 -1 -1 ..., -1 -1 -1]
        ValueError
                                                                                                    Traceback (most recent
      → call last)
        <ipython-input-29-0374de8f71b8> in <module>

→ validation_x=X_test, validation_y=Y_test,
                                                                                                                                       verbose=
      → True,
       ---> 13
                                                                                        epochs= 30, mini_batch_size =
      \hookrightarrow 10, lr= 0.5, C='ce')
        ~/Documents/FYS-STK4155/Project2/logisRegresANA.py in neuralnetwork

→ (sizes, X_train, Y_train, validation_x, validation_y, verbose,
      → epochs, mini_batch_size, lr, C)
                                  #print('initial weights ', weights)
                 139
                                  biases, weights = SGD(X_train, Y_train, epochs,

→ mini_batch_size, lr, C, sizes, num_layers,
        --> 140
                                          biases, weights, verbose, validation_x,
      → validation_y)
                 141
                                  return biases, weights
                 142 def SGD(X_train, Y_train, epochs, mini_batch_size, lr, C,
      \hookrightarrow sizes, num_layers,
        \verb|^{\sim}/Documents/FYS-STK4155/Project2/logisRegresANA.py in SGD(X_train, and all of the state o

→ Y_train, epochs, mini_batch_size, lr, C, sizes, num_layers,
      → biases, weights, verbose, validation_x, validation_y)
                 152
                                          #feed-forward (and back) all mini_batches
                 153
                                           for k, minib in enumerate(mini_batches):
        --> 154
                                                   biases, weights = update_mini_batch(minib, lr,

→ C, sizes, num_layers, biases, weights)
                 155
                 156
                                          if(verbose):
        ~/Documents/FYS-STK4155/Project2/logisRegresANA.py in
      → update_mini_batch(minibatch, lr, C, sizes, num_layers, biases,
      → weights)
                 185
                                                    print('y', y)
                 186
                                                    #backpropagation for each observation in
      → mini_batch
        --> 187
                                                   delta_nabla_b, delta_nabla_w = backprop(x, y, C
      → ,sizes,num_layers,biases,weights)
                                                    #print(delta_nabla_b.shape, 'delta_nabla_b ',
      → delta_nabla_b)
                                                    print(delta_nabla_w.shape, 'delta_nabla_w ',
                 189
```

1.7 Part f) Critical evaluation of the various algorithms.

2 References

2 References 22