First name:	Last name:	Student ID:
1 11 St Haille.	Last name.	Student ID.

Chapter 4 Quadratic Functions (1) homework

1. Using finite differences to determine whether the relation is linear, quadratic, or neither.

a)	x	y
	0	4
	1	5
	2	6
	3	7
	4	8

c)	X	y
	1	0
	3	1
	5	8
	7	27
	9	64

b)	X	у
	0	3
	1	4
	2	7
	3	12
	4	19

)	x	у
	-2	6
	1	0
	4	12
	7	42
	10	90

2. Given the standard form of quadratic relation $y = ax^2 + bx + c$. Make a table of values when x is -2, -1, 0, 1, 2, then find the first and the second differences. Relate the second differences to a. Are there any relationships?

- 3. The zeros of a quadratic relation are -2 and 5, and the second differences are all negative. a) Explain whether the optimal value will be a maximum or a minimum using the conclusion from #2.
- b) What value of the independent variable will produce the optimal value?
- c) Will the optimal value be positive or negative? Explain.

- 4. Two points on a parabola are (4, -1) and (-10, -1). What is the equation of the axis of symmetry?
- 5. Fill in the blanks for each parabola. Then sketch the parabolas.

Properties	a) $y = -x^2 + 4x$	b) $y = x^2 + 3x + 2$	c) $x^2 - 4x + 4$	d) $y = 2x^2 + 9x + 9$
Zeros				
Equation of AOS				
Equation of AOS				
Vertex				
Direction of opening				
Max / min				
Optimal value				
y-intercept				

6. If the graph of a quadratic function has two x intercepts -2, 1 and it passes through (2, 8). Find the function in factored form.

7. Find the equation in standard form for the following graphs.

- 8. Determine the quadratic equation for a parabola with
- a) zeros at 5 and 9, and an optimal value of -2

b) zeros at -9 and -5, and a y-intercept of 8

9. The stainless steel Gateway Arch in St. Louis, Missouri, is parabolic in shape. It is 192 m from the base of the north leg to the base of the south leg. The arch is 192 m high. Determine an algebraic expression, in standard form, that models the shape of the arch. Draw a diagram!

10. A football is kicked into the air. Its height above the ground is approximated by the relation $h = 20t - 5t^2$, where h is the height in metres and t is the time in seconds since the football was kicked.

- a) What are the zeros of the relation? When does the football hit the ground?
- b) What are the coordinates of the vertex?
- c) Graph the relation.

d) What is the maximum height reached by the football? After how many seconds does the maximum height occur?

packages of batteries per day, at \$5.00 per package. a) Determine an equation for the revenue R. Hint: Let x be number of 10 cents increases.
Price =
Number of packages sold =
Revenue = Price x Number of items sold =
b) What is the maximum daily revenue that Rahj can expect from battery sales?
c) How many packages of batteries are sold when the revenue is at a maximum?

11. Rahj owns a hardware store. For every increase of 10 cents in the price of a package of batteries, he estimates that sales decrease by 10 packages per day. The store normally sells 700