Example: Prove that |2x| = |x| + |x + 1/2|

Write $x = n + \varepsilon$ where n is an integer and $0 \le \varepsilon < 1$ We rewrite the left hand side (LHS) as

We know that $0 \le \varepsilon < 1$ so if we multiply by 2 we get

$$0 \le 2\varepsilon < 2$$

Therefore the LHS can have one of two values depending on whether the floor results in 0 or 1. We are going to create a case for each of these possibilities.

Case 1:
$$0 \le 2\varepsilon < 1$$
 gives $|2\varepsilon| = 0$

So:
$$0 \le \varepsilon < 1/2$$

Case 2:
$$1 \le 2\varepsilon < 2$$
 gives $|2\varepsilon| = 1$

So:
$$1/2 \le \varepsilon < 1$$

We now proceed to show each case

Case 1:
$$0 \le 2\varepsilon < 1$$
 gives $|2\varepsilon| = 0$

The LHS is
$$\lfloor 2x \rfloor = 2n + \lfloor 2\varepsilon \rfloor = 2n + 0$$

=2n

The RHS is
$$\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = \lfloor n + \varepsilon \rfloor + \lfloor n + \varepsilon + 1/2 \rfloor$$

$$= n + n + \lfloor \varepsilon + 1/2 \rfloor$$

$$= n + n + 0$$

$$= 2n$$

The LHS and RHS match.

We know that $0 \le \varepsilon < 1/2$ Adding in ½ we get $1/2 \le (\varepsilon + 1/2) < 1$ Therefore $|\varepsilon + 1/2| = 0$

Case 2:
$$1 \le 2\varepsilon < 2$$
 gives $\lfloor 2\varepsilon \rfloor = 1$
The LHS is $\lfloor 2x \rfloor = 2n + \lfloor 2\varepsilon \rfloor = 2n + 1$
 $= 2n + 1$
The RHS is $\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = \lfloor n + \varepsilon \rfloor + \lfloor n + \varepsilon + 1/2 \rfloor$
 $= n + n + \lfloor \varepsilon + 1/2 \rfloor$
 $= n + n + 1$

= 2n+1The LHS and RHS match. We know that $1/2 \le \varepsilon < 1$ Adding in ½ we get $1 \le (\varepsilon + 1/2) < 1 + 1/2$ Therefore $\lfloor \varepsilon + 1/2 \rfloor = 1$

The statement is true in all cases. QED