Programming Assignment 2

Group - 20

Problem Statement

Design a non-sequential convolutional neural network for classifying the line dataset. This network will have 4 outputs based on the 4 kind of variations(length, width, color, angle). You are required to divide your network architecture into two parts:

- a) Feature network
- b) Classification heads

The feature network will be responsible for extracting the required features from the input and attached to it would be the four classification heads one for each variation.

Model

Learning Curves

Accuracy curves for output heads

Loss curves for output heads

Learning curves for complete model

F-Scores

F1-scores for each output head:

Color : 0.9631759867873927
Length : 0.7723438586735037
Width : 0.9951043689210557
Angle : 0.9515091015077034

Final F1-score for model: 0.9205275

Confusion Matrices

Confusion matrices for each output head:

• Color:

[[96240]

[706 8870]]

• Length:

[[96030]

[4165 5432]]

• Width:

[[94720]

[94 9634]]

• Angle:

[[15520		0		0	0		0	C)	0		0		0 41]					
[0 1	629	9	0		0	0		0	0		0	0		0		0		0]
[0	0 ′	162	4		0	2		0	0		0	0		0		0		0]
	[0	0		0 ′	1608	17	0		2	0	C)	0		0		0]	
[0	0		0		0 16	10		0	0		0	0		0		0		0]
	[0	0		0	0	١	0	874	691	0	C)	0		0		0]	
	[0	0		0	0	١	0	126	1484	0	C)	0		0		0]	
	[0	0		0	0	١	0		0	4	1611	18	0		0		0]	
[0	0		0		0	0		0	0		0 14	.97		0		0		0]
[0	0		0		0	0		0	0		0	0	162	5		2		0]
[0	0		0		0	0		0	0		0	0		0 ′	161	7		0]
[0	0		0		0	0		0	0		0	0		0		0 .	156	6]]

Variations Tried

- Increased the number of convolutional layers as well as the number of filters within the convolutional layer to improve the feature extraction.
- Reduced the number of max-pooling layers from 3 to 2 to maintain the granularity.
- Added the batch-normalization layers which also improved the accuracy of the model by reducing the amount by which the hidden unit values shift around (covariance shift).
- Reduced the network's architecture complexity to save the model from overfitting.
- Increased the number of hidden units in the classification layer of angle which improved the accuracy.

Inferences

- Increasing the model complexity may sometimes lead to the risk of overfitting.
- Training the model on increased number of epochs reduces the network validation accuracy by overfitting.
- Increasing the number of max-pooling layers can lead to the loss of features of the image.
- Increasing the number of units within a hidden layer helps to prevent underfitting.

• Accuracy on validation set :

o Color : 100 %

○ Length : 100 %

o Width : 100 %

o Angle : 95.3 %

Model : 98.8 %