04 - 7 segment display decoder

Preparation tasks

Nexys A7 7 segment display output schematics

Decoder truth table

N	HEX	input	Α	В	C	D	E	F	G
0	0	0000	0	0	0	0	0	0	1
1	1	0001	1	0	0	1	1	1	1

N	HEX	input	Α	В	C	D	E	F	G
2	2	0010	0	0	!	0	0	1	0
3	3	0011	0	0	0	0	1	1	0
4	4	0100	1	0	0	1	1	0	0
5	5	0101	0	1	0	0	1	0	0
6	6	0110	0	1	0	0	0	0	0
7	7	0111	0	0	0	1	1	1	1
8	8	1000	0	0	0	0	0	0	0
9	9	1001	0	0	0	0	1	0	0
10	А	1010	0	0	0	1	0	0	0
11	В	1011	0	1	1	0	0	0	0
12	С	1100	1	1	1	0	0	1	0
13	D	1101	1	0	0	0	0	1	0
14	E	1110	0	1	1	0	0	0	0
15	F	1111	0	1	1	1	0	0	0

Seven segment display decoder

hex_7seg.vhd

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity hex_7seg is
 Port (
    hex_i : in std_logic_vector(3 downto 0);
    seg_o : out std_logic_vector(6 downto 0)
  );
end hex_7seg;
architecture Behavioral of hex_7seg is
begin
    p_hex_7seg : process(hex_i)
    begin
        case hex_i is
            when "0000" => -- 0
                seg_o <= "1111110";
            when "0001" => -- 1
                seg_o <= "1001111";
```

```
when "0010" => -- 2
                seg_o <= "0010010";
            when "0011" => -- 3
                seg_o <= "0000110";
            when "0100" => -- 4
                seg_o <= "1001100";
            when "0101" => -- 5
                seg_o <= "0100100";
            when "0110" => -- 6
                seg_o <= "0100000";
            when "0111" => -- 7
                seg_o <= "0001111";
            when "1000" => -- 8
                seg_o <= "0000000";
            when "1001" => -- 9
                seg_o <= "0000100";
            when "1010" => -- A
                seg_o <= "0001000";
            when "1011" => -- b
                seg_o <= "1100000";
            when "1100" => -- c
                seg_o <= "1110010";
            when "1101" => -- d
                seg_o <= "1000010";
            when "1110" => -- E
                seg_o <= "0110000";
            when "1111" => -- F
                seg_o <= "0111000";
            when others =>
                seg_o <= "1111111";
        end case;
    end process p_hex_7seg;
end Behavioral;
```

hex_7seg_tb.vhd

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity tb_hex_7seg is
-- Port ( );
end tb_hex_7seg;

architecture testbench of tb_hex_7seg is
    -- signals
    signal s_hex : std_logic_vector(3 downto 0);
    signal s_seg : std_logic_vector(6 downto 0);
begin
```

```
uut_hex_7seg : entity work.hex_7seg port map(
         hex_i => s_hex,
         seg_o => s_seg
         );
    p_stim : process
    begin
         s_hex <= "0000"; wait for 40 ns;</pre>
         s_hex <= "0001"; wait for 40 ns;</pre>
         s_hex <= "0010"; wait for 40 ns;</pre>
         s_hex <= "0011"; wait for 40 ns;</pre>
         s_hex <= "0100"; wait for 40 ns;</pre>
         s_hex <= "0101"; wait for 40 ns;</pre>
         s_hex <= "0110"; wait for 40 ns;</pre>
         s_hex <= "0111"; wait for 40 ns;</pre>
         s_hex <= "1000"; wait for 40 ns;</pre>
         s_hex <= "1001"; wait for 40 ns;</pre>
         s_hex <= "1010"; wait for 40 ns;</pre>
         s_hex <= "1011"; wait for 40 ns;</pre>
         s_hex <= "1100"; wait for 40 ns;</pre>
         s_hex <= "1101"; wait for 40 ns;</pre>
         s_hex <= "1110"; wait for 40 ns;</pre>
         s_hex <= "1111"; wait for 40 ns;</pre>
         wait;
    end process p_stim;
end architecture testbench;
```

Simulated waveforms

Led indicators

Truth table

N	HEX	LEDs				
0	0	0000				
1	1	0001				
2	2	0010				

N	HEX	LEDs
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15 F		1111

Led indicators code (top.vhd)

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity top is
   Port (
        SW : in std_logic_vector(3 downto 0);
        SSEG_AN : out std_logic_vector(7 downto 0);
       LED : out std_logic_vector(7 downto 0);
       CA : out std_logic;
       CB : out std_logic;
       CC : out std_logic;
       CD : out std_logic;
       CE : out std_logic;
       CF : out std_logic;
       CG : out std_logic
   );
end top;
architecture Behavioral of top is
begin
   hex2seg : entity work.hex_7seg
        port map(
           hex_i => SW,
```

```
seg_o(6) \Rightarrow CA
                 seg_o(5) \Rightarrow CB,
                 seg_o(4) \Rightarrow CC,
                 seg_o(3) \Rightarrow CD,
                 seg_o(2) \Rightarrow CE
                 seg_o(1) \Rightarrow CF,
                seg_o(0) \Rightarrow CG
           );
     SSEG_AN <= b"1111_0111";</pre>
     LED(3 downto ∅) <= SW;
     LED(4) \leftarrow '1' \text{ when } (SW = "0000") \text{ else}
                    '0';
     LED(5) \leftarrow '1' \text{ when } (SW > "1001") \text{ else}
                    '0';
     LED(6) \leftarrow 1' when (SW(0) = 1') else
                    '0';
     LED(7) \leftarrow '1' \text{ when } (SW = "0010") \text{ or }
                                (SW = "0100") or
                                (SW = "1000") else
end Behavioral;
```

All inputs and outputs

