Equations used in geothermal power capacity reserve estimates

 μ (nu) is the mean in log units α (sigma) is the variance in log units

Lognormal distribution inputs for area

To calculate μ and α for the area based on user-specified P90 and P10 input parameters:

$$\mu_{\text{area}}$$
 = 0.5(ln P90_{area} + ln P10_{area})
$$\alpha_{\text{area}}$$
 = (ln P10_{area} - ln P90_{area})*0.434

Lognormal distribution inputs for power density

To calculate μ and α for the power density based on user-specified P90 and P10 input parameters:

$$\mu_{powerdensity} = 0.5(lnP90_{power_density} + lnP10_{power_density})$$

$$\alpha_{powerdensity} = (lnP10_{power_density} - lnP90_{power_density})*0.434$$

Lognormal distribution inputs for MWe capacity

To calculate μ and α for MWe capacity:

$$\mu_{\text{MWe capacity}} = \mu_{\text{area}} + \mu_{\text{power_density}}$$

$$\alpha_{\text{MWe capacity}} = 0.5(\alpha_{\text{area}}^2 + \alpha_{\text{power_density}}^2)$$

Lognormal distribution definition (from Wikipedia)

Let Z be a standard normal variable, and let μ and $\alpha > 0$ be two real numbers. Then, the distribution of the random variable

$$X = e^{\mu + \alpha Z}$$

is called the log-normal distribution with parameters μ and α .