Задача 9-2. Векторная кинематика

Задача допускает как графическое, так и алгебраическое решение (для его реализации бланк можно оцифровать). Мы будем использовать оба подхода. Для сокращения записей компоненты векторов (метрах, или «клеточках») будем записывать в скобках, например, положение тела в момент времени $t_0 = 0$: $\vec{r}_0 = (4, 35)$. Для всех векторов (перемещений, скоростей, ускорения) будем использовать систему единиц СИ.

1 Так как движение является равноускоренным, то векторы перемещений тела из положения в момент времени $t_0 = 0$ за время t описываются формулой:

$$\Delta \vec{r} = \vec{v}_0 t + \frac{1}{2} \vec{g} t^2 \tag{1}$$

Для моментов времени $t_1 = 1,0c$ и $t_4 = 4,0c$ можно записать:

$$\begin{cases}
\Delta \vec{r}_{01} = \vec{v}_0 t_1 + \frac{1}{2} \vec{g} t_1^2 \\
\Delta \vec{r}_{04} = \vec{v}_0 t_4 + \frac{1}{2} \vec{g} t_4^2
\end{cases} \tag{2}$$

Это система уравнений относительно неизвестных векторов ускорения и начальной скорости имеет решение

$$\begin{cases}
\Delta \vec{r}_{01} = \vec{v}_{0}t_{1} + \frac{1}{2}\vec{g}t_{1}^{2} \\
\Delta \vec{r}_{04} = \vec{v}_{0}t_{4} + \frac{1}{2}\vec{g}t_{4}^{2}
\end{cases} \Rightarrow \begin{cases}
\frac{\Delta \vec{r}_{01}}{t_{1}} = \vec{v}_{0} + \frac{1}{2}\vec{g}t_{1} \\
\frac{\Delta \vec{r}_{04}}{t_{4}} = \vec{v}_{0} + \frac{1}{2}\vec{g}t_{4}
\end{cases} \Rightarrow \frac{1}{2}\vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{4}} - \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{4} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{1}} + \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{1} - t_{1}) = \frac{\Delta \vec{r}_{04}}{t_{1}} + \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{1} - t_{1}) = \frac{\Delta \vec{r}_{01}}{t_{1}} + \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{1} - t_{1}) = \frac{\Delta \vec{r}_{01}}{t_{1}} + \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{g}(t_{1} - t_{1}) = \frac{\Delta \vec{r}_{01}}{t_{1}} \Rightarrow \vec{r}_{01} \Rightarrow \vec{$$

Подстановка численных значений времен дает следующие значения искомых векторов

$$\vec{g} = \frac{2}{t_4(t_4 - t_1)} \Delta \vec{r}_{04} - \frac{2}{t_1(t_4 - t_1)} \Delta \vec{r}_{01} = \frac{1}{6} \Delta \vec{r}_{04} - \frac{2}{3} \Delta \vec{r}_{01} = \frac{\Delta \vec{r}_{04} - 4\Delta \vec{r}_{01}}{6}.$$
 (4)

Эти векторы можно построить на бланке (см. рис.). Там же указан вектор \vec{S}_1

Можно также найти численные значения их компонент (в изображенной системе координат):

$$\begin{cases} \vec{r}_{0} = (3,31) \\ \vec{r}_{1} = (4,35) \\ \vec{r}_{4} = (19,23) \end{cases} \Rightarrow \begin{cases} \Delta \vec{r}_{01} = \vec{r}_{1} - \vec{r}_{0} = (1,4) \\ \Delta \vec{r}_{04} = \vec{r}_{4} - \vec{r}_{0} = (16,-8) \end{cases} \Rightarrow \vec{g} = \frac{\Delta \vec{r}_{04} - 4\Delta \vec{r}_{01}}{6} = (2,-4)$$
 (5)

Модуль вектора ускорения равен

$$g = \sqrt{2^2 + 4^2} = 4.5 \frac{M}{c^2}.$$
 (6)

2. Вектор скорости \vec{v}_0 можно выразить из первого уравнения системы (2):

$$\Delta \vec{r}_{01} = \vec{v}_0 t_1 + \frac{1}{2} \vec{g} t_1^2 \quad \Rightarrow \quad \vec{v}_0 = \frac{\Delta \vec{r}_{01}}{t_1} - \frac{1}{2} \vec{g} t_1. \tag{7}$$

Тогда требуемый вектор

$$\vec{S}_2 = \vec{v}_0 t_1 = \Delta \vec{r}_{01} - \frac{1}{2} \vec{g} t_1^2 = \Delta \vec{r}_{01} - \frac{1}{2} \vec{S}_1$$
 (8)

Построение этого вектора также показано на рисунке.

Численные значения его компонент:

$$\vec{S}_2 = \frac{\Delta \vec{r}_{01}}{t_1} - \frac{1}{2} \vec{g} t_1 = (0, 6). \tag{9}$$

Модуль вектора скорости, очевидно, равен $v_0 = 6.0 \frac{M}{c}$.

3. Используя закон равноускоренного движения (1), положение объекта в произвольный момент времени можно описать формулой

$$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{g} t^2 = \vec{r}_0 + \vec{S}_2 \frac{t}{t_1} + \frac{1}{2} \left(\frac{t}{t_1} \right)^2 \vec{S}_1.$$
 (10)

Так в момент падения t = 5.0c радиус-вектор объекта равен

$$\vec{r}_5 = \vec{r}_0 + 5\vec{S}_2 + \frac{25}{2}\vec{S}_1 = (28, 11) \tag{11}$$

- 4. Линия горизонта перпендикулярна вектору ускорения \vec{g} (или \vec{S}_1) и проходит через точку падения. На рисунке жирная двойная линия.
- 5. Расчет координат остальных точек выполняется аналогично, как графически, так и алгебраически. Отметим, что приведенная формула (10) справедлива как для положительных, так и для отрицательных времен. Построения этих точек показаны на рисунке. В таблице приведены рассчитанные значения координат.

T,c	Х, м	Ү, м
0	3	31
1	4	35
2	7	35
3	12	31
4	19	23
5	28	11
-1	4	23
-2	7	11
-3	12	-5

6. Определение точки вылета может быть проведено различными способами.

Простейший из них — формально отметить точку траектории, соответствующую моменту времени t=-3.0c, заметить, что она лежит ниже линии горизонта. На интервале времени [-3,-2] участок траектории приближенно можно считать отрезком прямой линии. Поэтому точка вылета есть точка пересечения указанного отрезка траектории с линией горизонта — точка E на рисунке.

Более точным является следующий способ. Траектория движения симметрична относительно вертикали на всех уровнях. Поэтому проведем через первую точку O прямую OA, параллельную линии горизонта и через ее середину проведем перпендикуляр BC. Эта прямая является осью симметрии параболы (траектории). Поэтому расстояние от точки вылета E до основания перпендикуляра C, на таком же расстоянии, что и точка падения D.

7. Положения вершины параболы с требуемой точностью можно указать и «на глаз» - точка F!

Бланк 1.

Бланк 2

