Lecture 12: Design Theory: Functional Dependencies and Normal Forms, Part I

Instructor: Shel Finkelstein

Reference:

A First Course in Database Systems, 3rd edition, Chapter 3, Sections 3.1 - 3.5

- Lecture slides and other class information will be posted on Piazza (not Canvas).
 - Slides are posted under Resources → Lectures
 - Lecture Capture recordings are available to all students under Yuja.
 - That includes classes given over Zoom.
 - There's <u>no</u> Lecture Capture for Lab Sections.
- All Lab Sections (and Office Hours) normally meet In-Person, with rare exceptions announced on Piazza.
 - Some slides for Lab Sections have been posted on Piazza under Resources→Lab Section Notes
- Office Hours for TAs and me are posted in Syllabus and Lecture1, as well as in Piazza notice
 <u>@7</u>; that post also now includes hours for Group Tutors.
- Some suggestions about use (and non-use) of Generative AI systems such as ChatGPT were posted on Piazza in <u>@41</u>, with specific discussion about the Movies tables and the four Avatar queries in Lecture 4.

- Lab3 scores were unmuted on Monday, March 4.
 - Deadline for asking questions about your score is Friday, March 8.
- The Fifth Gradiance Assignment, CSE 180 Winter 2024 #5, will be assigned on Friday, March 8, after you've learned about Design Theory (Lectures 12 and 13).
- Explanation of two difficult Gradiance questions on transactions was posted on Piazza on Sunday, March 2 in openstable.
- Answers for two of the "Practice" Relational Algebra queries (in magenta) were posted on Piazza on Sunday, March 2 in @126.
- Winter 2024 <u>Student Experience of Teaching Surveys SETs</u> open on Monday, March 4.
 - SETs close on Sunday March 17 at 11:59pm.
 - Instructors are not able to identify individual responses.
 - Constructive responses help improve future courses.

- The subject of Lab4 is Real Application Programming, using libpq (Lecture 11) and a Stored Function (Lecture 10).
 - Lab4 was posted on Piazza on Wednesday, February 28.
 - Lab4 is hard, and many students will need help completing it.
 - Read the Lab4 announcement on Piazza as soon as possible!
 - We provided information files and examples, posted under Resources → Lab4, and described in the Lab4 pdf and announcement.
 - We have also provided load data that you can use to test your Lab4 solution.
 - But testing can prove that program is incorrect, <u>not</u> that it's correct.
 - Lab4 is due on Tuesday, March 12 by 11:59pm.
 - unix.ucsc.edu gets busy near the end of the quarter.
 - Please avoid Infinite Loops in your Stored Function.
 - All material needed for Lab4 was covered in Lecture by Friday, March 1.
 - However, there were some important clarifications and corrections which were made to Lab4.
 - These corrections, which are described in <u>@121</u> on Piazza, "Important updates of multiple Lab4 files", are summarized on the next slide.

Important Updates of Multiple Lab4 Files Slide #1 (see @121)

- The Lab4 pdf is now correctly called CSE180_W24_Lab4.pdf
- A new version of the load file, load lab4.sql, has ben posted.
- Several changes have been made in the runShakespeareApplication.c skeleton file.
 - The signature for the C function IncreaseSomeCastMemberSalaries in the runShakespeareApplication.c skeleton has been changed to:

float increaseSomeCastMemberSalaries(PGconn *conn, char *thePlayTitle, int theProductionNum, float maxDailyCost)

- That is, the maxDailyCost parameter is float, and the function returns a float value.
- Minor: The name of the function begins with a lowercase "i", just as all the other C functions begin with lowercase letters.
 - Same is true for the Stored Function which is invokes, which is called increaseSomeCastMemberSalariesFunction (lowercase i, not uppercase).
- Minor: Parameter which had been called the Prod Num is now called the Production Num, aligning with production Num attribute name in tables.

Important Updates of Multiple Lab4 Files Slide #2 (see @121)

• The first lines of the Stored Function increaseSomeCastMemberSalariesFunction (which we did not give you in the Lab4 pdf) should be:

CREATE OR REPLACE FUNCTION

increaseSomeCastMemberSalariesFunction(thePlayTitle VARCHAR(40), theProductionNum INTEGER, maxDailyCost NUMERIC(7,2))
RETURNS NUMERIC(7,2) AS \$\$

- Note that C does not have a type corresponding to NUMERIC(7,2).
- The value returned by increaseSomeCastMemberSalariesFunction when you
 execute that Stored Function in your C program (and then use
 PQgetvalue(res,0,0) to get get the result of the Stored Function) is a string.
 - Just as you can convert an appropriate character string to an integer using C's atoi function, you can convert a character string to a float using C's atof function, and increaseSomeCastMemberSalaries needs to return a float.
- The value that you print out in your tests of increaseSomeCastMemberSalaries should be a number with 2 decimal places. You can print out a floating point value in that format using the %7.2f format string (instead of using %f or %d).
- Per @135, you should assume that salaryPerDay, theaterFeePerDay (and also theaterID in Productions) can't be NULL.

- Lab3 scores were unmuted on Monday, November 28.
 - Deadline for asking questions about Lab3 grades is Saturday, December 2.
 - Your questions don't have to be resolved by that date, but you must submit them by that date.
- The subject of Lab4 is Real Application Programming, using libpq (Lecture 11) and a Stored Function (Lecture 10).
 - Lab4 was posted on Piazza on Wednesday, November 22.
 - Lab4 is hard, and many students will need help completing it.
 - Read the Lab4 announcement on Piazza as soon as possible!
 - We provided information files and examples, posted under Resources → Lab4, and described in the Lab4 pdf and announcement.
 - We have also provided load data that you can use to test your Lab4 solution.
 - But testing can prove that program is incorrect, not that it's correct.
 - Using views isn't required for Lab4, but views may help you, particularly for the countCoincidentSubscriptions C function.
 - Include a createNewspaperViews.sql file in your solution if you use views.
 - Lab4 is due on Tuesday, December 5 by 11:59pm.
 - unix.ucsc.edu gets busy near the end of the quarter.
- You won't be asked to write PL/pgSQL or C code on the Final, but you might be asked about concepts, and you might be asked what code does.

Important Notices: Final

- CSE 180 Final is on Wednesday, March 20, 8:00-11:00am, and it will be given inperson in our classroom, except for students who receive Remote Exam permission.
 - No early/late Exams. No make-up Exams. No devices (except for Remote students).
 - 3 hours, extended for DRC students, covering the entire quarter.
 - All DRC students should have recently received email about the final.
 - Final will be harder than the Midterm.
 - You may bring one double-sided 8.5 x 11 sheet to the Final, with anything that you want written or printed on it that you can read unassisted) ...
 - (Okay, you may bring two sheets with writing only on one side of each sheet.)
 - But you must not use any other material or receive any help during the Final, whether you're in the classroom, remote, or in a DRC room
 - As the Syllabus emphasizes, Academic Integrity violations have serious consequences!
 - We will assign seats as you enter the room. You may not choose your own seat.
- CSE 180 Final from Winter 2023 was posted on Piazza under Resources → Exams on Sunday, March 3.
 - Solution to that Final will be posted on Piazza by Monday, March 11 ... but take it yourself first, rather than just reading the solution.

Important Notices: In-Person Final

Final includes a Multiple Choice Section and a Longer Answers Section.

- In-Person students should bring a <u>Red Scantron</u> sheet (ParSCORE form number f-1712) sold at Bookstore for about 25 cents, and #2 pencils for Multiple Choice Section.
- You'll answer Multiple Choice Section on your Scantron sheet, entering your name, your student ID, and which version ("Test Form Letter") of the Multiple Choice Section you're answering.
 - Write your Multiple Choice answers on the Scantron sheet using a #2 pencil.
 - Ink and #3 pencils don't work.
- You'll answer Longer Answers Section on the Long Answers Section, using either ink or #2 pencil (as on the Midterm).
- Be sure to answer all questions <u>readably</u>!!
- <u>Do not hand in your 8.5 x 11 sheet or your Multiple Choice Section</u>. Just hand in your Scantron Sheet and your Longer Answers Section.
 - But <u>show us your Multiple Choice Section</u>, so that we can check that you filled in the Test Form Letter (A, B, C or D) for that Section on your Scantron Sheet.

Important Notices: Remote Final

CSE 180 Final will be given in-person in our classroom, except for students who receive Remote Exam permission.

- If you need to take the Final Remotely, send me an email whose subject is "Taking the CSE 180 Final Remotely" by Tuesday, March 19 at 6:00pm that includes your strong justification for that request.
 - Only students whose requests are approved may take the Final Remotely.
 - If you don't receive a response from me by 9:00pm, please send email again!
- I'll send instructions to you for taking the Final before 8:00am on Wednesday, March 20 which include a Zoom link
 - You must be on Zoom while you are taking the Final.
 - Please make sure that your face is visible on Zoom video, but that your microphone is muted.
 - Please do not have headphones on during the Final.
 - If there are any bugs on the Final, they will be conveyed to all Remote students via Zoom Chat.
 - If you have a question during the Final, please send it to me (just to me) directly using Zoom Chat, not by speaking.
 - You'll have to complete the exam by 11:00am, just like all other students ...
 - ... except for DRC students, who will receive extra time, whether they take the exam In-Person (in a different room) or Remotely.
 - You won't need a red Scantron Sheet if you're taking the Final Exam Remotely.

A Word to the Unwise

- This is a tough class for some students since it involves a combination of theory and practice.
 - The second half of CSE 180 is <u>much harder</u> than the first half of the course.
- Students who regularly attend Lectures and Lab Sections (and Office Hours and Tutoring) often do well; students who don't regularly attend often do poorly.
 - We don't take attendance; you're responsible for your own choices.
- After the course ends, your course grade will be determined by your scores on Exams, Labs and Gradiance, as described on the "Course Evaluation" and "Grading" Slides in the Syllabus.
 - You won't be able to do any additional work to improve your grade.

Database Schema Design

- So far, we have learned database query languages:
 - SQL, Relational Algebra
- How can you tell whether a given database schema is "good" or "bad"?
- Design theory:
 - A set of design principles that allows one to decide what constitutes a "good" or "bad" database schema design.
 - A set of algorithms for modifying a "bad" design to a "better" one.

Example

 If we know that rank determines the salary scale, which is a better design? Why?

Employees(<u>eid</u>, name, addr, rank, salary_scale)

OR

Employees2(<u>eid</u>, name, addr, rank)
 Salary_Table(<u>rank</u>, salary_scale)

Lots of Duplicate Information

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

- Lots of duplicate information
 - Employees who have the same rank have the same salary scale.

Update Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Update anomaly

 If one copy of salary scale is changed, then all copies of that salary scale (of the same rank) have to be changed.

Insertion Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Insertion anomaly

— How can we store a new rank and salary scale information if currently, no employee has that rank?

Deletion Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Deletion anomaly

— If Hugh is deleted, how can we retain the rank and salary scale information?

So What Would Be a Good Schema Design for this Example?

- salary_scale is dependent only on rank
 - Hence associating employee information such as name, addr with salary_scale causes redundancy.
- Based on the constraints given, we would like to refine the schema so that such redundancies cannot occur.
- Note however, that sometimes database designers may choose to live with redundancy in order to improve query performance.
 - Ultimately, a good design depends in part on the query workload.
 - But understanding anomalies and how to deal with them is still important.

Functional Dependencies

- The information that rank determines salary_scale is a type of integrity constraint known as a functional dependency (FD).
- Functional dependencies can help us detect anomalies that may exist in a given schema.
- The FD "rank → salary_scale" suggests that
 Employees(eid, name, addr, rank, salary_scale)
 should be decomposed into two relations:
 Employees2(eid, name, addr, rank)
 Salary_Table(rank, salary_scale).

Meaning of an FD

We have seen a Functional Dependency before.

Keys:

- Emp(<u>ssn</u>, name, addr)
- If two tuples agree on the ssn value, then they must also agree on the name and address values. (ssn \rightarrow name, addr).

Let **R** be a relation schema. A *Functional Dependency (FD)* is an integrity constraint of the form:

 $X \rightarrow Y$ (read as "X determines Y, or X functionally determines Y") where X and Y are non-empty subsets of attributes of **R**.

A relation instance r of **R** satisfies the FD X \rightarrow Y if for every pair of tuples t and t' in r:

If $\pi_X(t) = \pi_X(t')$ holds, then $\pi_Y(t) = \pi_Y(t')$ also holds.

That is, if the two tuples t and t'agree on the the values of all the attributes in X, then the two tuples t and t' must also agree on the values of all the attributes in Y.

Illustration of the Semantics of an FD

• Relation schema R with the FD A_1 , ..., $A_m \rightarrow B_1$, ..., B_n where $\{A_1, ..., A_m, B_1, ..., B_n\} \subseteq attributes(R)$.

	A ₁ A ₂ A _m	B ₁ B _n	the rest of the attributes in R, if any	
t	XXXXXXXXXXXXXX	ууууууууу	777777777777777777777777777777777777777	
			The actual values do not matter, but they cannot be the same if R is a set.	
t'	XXXXXXXXXXXXX	Ууууууууу	∀ WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	
	vvvvvvvvvvvv	ууууууууу	uuuuuuuuuuuuuuuuuuuuu	
	xxxxxxxxxxxx	vvvvvvvv	ииииииииииииииииииииии	
			VIOLATION!	

More on Meaning of an FD

- Relation R satisfies X → Y
 - Pick any two (not necessarily distinct) tuples t and t' of an instance r of R. If t and t' agree on the X attributes, then they must also agree on the Y attributes.
 - The above must hold for every possible instance r of R.
- An FD is a statement about all possible legal instances of a schema. We <u>cannot</u> just look at an instance (or even at a set of instances) to determine which FDs hold.
 - Looking at an instance may enable us to determine that some FDs are not satisfied.

Reasoning about FDs

```
R(A,B,C,D,E)
```

Suppose A \rightarrow C and C \rightarrow E. Is it also true that A \rightarrow E? In other words, suppose an instance r satisfies A \rightarrow C and C \rightarrow E, is it true that r must also satisfy A \rightarrow E?

YES

Proof: ?

Implication of FDs

- We say that a set \mathcal{F} of FDs *implies* an FD F if for every instance r that satisfies \mathcal{F} , it must also be true that r satisfies F.
- Notation: $T \models F$
- Note that just finding some instance(s) r such that r satisfies \mathcal{F} and r also satisfies F is <u>not</u> sufficient to prove that $\mathcal{F} \models F$.
- How can we determine whether or not $\mathcal F$ implies F?

Armstrong's Axioms

- Let X, Y, and Z denote sets of attributes over a relation schema R.
- Reflexivity: If Y ⊆ X, then X → Y.
 ssn, name → name
 - FDs in this category are called trivial FDs.
- Augmentation: If X → Y, then XZ → YZ for any set Z of attributes.
 ssn, name, addr → name addr
- Transitivity: If X → Y and Y → Z, then X → Z.
 If ssn → rank, and rank → sal_scale,
 then ssn → sal_scale.

Union and Decomposition Rules

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- **Decomposition**: If $X \to YZ$, then $X \to Y$ and $X \to Z$.
- Union and Decomposition rules are not essential. In other words, they can be derived using Armstrong's axioms.
- Derivation of the Union rule: (to fill in)

Union and Decomposition Rules

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- **Decomposition**: If $X \to YZ$, then $X \to Y$ and $X \to Z$.
- Union and Decomposition rules are not essential. In other words, they can be derived using Armstrong's axioms.
- Derivation of the Union rule:

```
Since X \rightarrow Z, we get XY \rightarrow YZ (augmentation)
```

Since $X \rightarrow Y$, we get $X \rightarrow XY$ (augmentation)

Therefore, $X \rightarrow YZ$ (transitivity)

Additional Rules

 Derivation of the Decomposition rule: (to fill in)

Additional Rules

Derivation of the Decomposition rule:

```
X \rightarrow YZ (given)

YZ \rightarrow Y (reflexivity)

YZ \rightarrow Z (reflexivity)

Therefore, X \rightarrow Y and X \rightarrow Z (transitivity).
```

- We use the notation F ⊢ F to mean that F can be derived from F using Armstrong's axioms.
 - What was the meaning of $\mathcal{F} \models F (\mathcal{F} \text{ implies } F)$?

Pseudo-Transitivity Rule

- Pseudo-Transitivity: If $X \to Y$ and $WY \to Z$, then $XW \to Z$.
- Can you derive this rule using Armstrong's axioms?
- Derivation of the Pseudo-Transitivity rule: (to fill in)

Pseudo-Transitivity Rule

- Pseudo-Transitivity: If $X \to Y$ and $WY \to Z$, then $XW \to Z$.
- Can you derive this rule using Armstrong's axioms?
- Derivation of the Pseudo-Transitivity rule:

```
X \rightarrow Y and WY \rightarrow Z
```

XW -> WY (augmentation)

WY -> Z (given)

Therefore XW -> Z (transitivity)

Completeness of Armstrong's Axioms

• Completeness: If a set \mathcal{F} of FDs implies F, then F can be derived from \mathcal{F} using Armstrong's axioms.

– If \mathcal{T} implies F, then we can derive F from \mathcal{T} using Armstrong's axioms.

For those familiar with Mathematical Logic:

- T ⊨ F is "model-theoretic"
- T ⊢ F is "proof-theoretic"

Soundness of Armstrong's Axioms

- Soundness: If F can be derived from a set of FDs $\mathcal F$ using Armstrong's axioms, then $\mathcal F$ implies F.
 - If $\mathcal{F} \vdash F$, then $\mathcal{F} \models F$.
 - That is, if we can derive F from $\mathcal F$ using Armstrong's axiom, then $\mathcal F$ implies F.
 - Handwaving proof: If we can derive F from \mathcal{F} using Armstrong's axioms, then surely \mathcal{F} implies F. (Why?)
- With Completeness and Soundness, we know that $\mathcal{T} \vdash \mathsf{F}$ if and only if $\mathcal{T} \models \mathsf{F}$
- In other words, the FDs that we can derive from \mathcal{F} using Armstrong's axioms are <u>precisely</u> all the FDs that must hold given \mathcal{F} (that is, all the axioms that \mathcal{F} implies).
- Great! But how can we decide whether or not $\mathcal T$ implies F?

Closure of a Set of FDs \mathcal{F}

Expensive and

tedious! Let's

find a better way.

- Let \mathcal{F}^+ denote the set of all FDs implied by a given set \mathcal{F} of FDs.
 - \circ Also called the closure of \mathcal{F} .
- To decide whether \$\mathcal{T}\$ implies \$F\$, first compute \$\mathcal{T}^+\$, then see whether
 F is a member of \$\mathcal{T}^+\$.
- Example: Compute \mathcal{T}^+ for the set $\{A \to B, B \to C\}$ of FDs.
- Trivial FDs
 - $\bigcirc \ \ \, \mathsf{A} \to \ \, \mathsf{A}, \, \mathsf{B} \to \ \, \mathsf{B}, \, \mathsf{C} \to \ \, \mathsf{C}, \, \mathsf{AB} \to \ \, \mathsf{A}, \, \mathsf{AB} \to \ \, \mathsf{B}, \, \mathsf{BC} \to \ \, \mathsf{B}, \, \mathsf{BC} \to \ \, \mathsf{C}, \, \mathsf{AC} \to \ \, \mathsf{A}, \\ \mathsf{AC} \to \ \, \mathsf{C}, \, \mathsf{ABC} \to \ \, \mathsf{A}, \, \mathsf{ABC} \to \ \, \mathsf{B}, \, \mathsf{ABC} \to \ \, \mathsf{C}, \, \mathsf{ABC} \to \ \, \mathsf{AB}, \, \mathsf{ABC} \to \ \, \mathsf{AC}, \\ \mathsf{ABC} \to \ \, \mathsf{BC}, \, \mathsf{ABC} \to \ \, \mathsf{AB$
- Transitivity (non-trivial FDs)
 - \circ AC \rightarrow B AC \rightarrow A (trivial), A \rightarrow B (given), so AC \rightarrow B (transitivity).
 - \circ AB \rightarrow C AB \rightarrow B (trivial), B \rightarrow C (given), so AB \rightarrow C (transitivity).
 - \circ A \to C A \to B (given), B \to C (given), so A \to C (transitivity).

Attribute Closure Algorithm

Let X be a set of attributes, and \mathcal{F} be a set of FDs.

The Attribute Closure X^+ with respect to T is the set of all attributes A such that $X \to A$ is derivable from T.

- That is, all the attributes A such that $\mathcal{F} \vdash X \rightarrow A$

```
Input: A set X of attributes and a set F of FDs.
Output: X+

Closure = X;  // initialize Closure to equal the set X
Repeat until no change in Closure {
    If there is an FD U → V in F such that U ⊆ Closure,
        then Closure = Closure U V;
}
return Closure;
```

Should be clear that: If $A \in \text{"Closure"}$ (that is, if $A \in X^+$), then $X \to A$. More strongly: $\mathcal{F} \vdash X \to A$ if and only if $A \in X^+$.

FD Example 1 using Attribute Closure

- $\mathcal{F} = \{ A \rightarrow B, B \rightarrow C \}.$
- Question: Does A → C?
- Compute A⁺

We'll write A⁺
Instead of {A}⁺

- Closure = { A }
- Closure = $\{A, B\}$ (due to $A \rightarrow B$)
- Closure = $\{A, B, C\}$ (due to $B \rightarrow C$)
- Closure = { A, B, C }
 - no change, stop
- Therefore A⁺ = {A, B, C }
- Since C ∈ A⁺, answer YES.

FD Example 2 using Attribute Closure

- $\mathcal{T} = \{ AB \rightarrow E, B \rightarrow AC, BE \rightarrow C \}$
- Question: Does BC → E?
- Compute (BC)⁺

We'll write (BC)⁺
Instead of {B,C}⁺

- Closure = { B, C }
- Closure = $\{A, B, C\}$ (due to $B \rightarrow AC$)
- Closure = $\{A, B, C, E\}$ (due to $AB \rightarrow E$)
- Closure = { A, B, C, E } (due to BE → C)
 - No change, so stop.
- Therefore (BC)+ = {A,B,C,E}
- Since $E \in (BC)^+$, answer YES.

A Better Algorithm for FDs

It's much easier to compute Attribute Closure X^+ , rather than FD Closure \mathcal{T}^+

- To determine if an FD $X \to Y$ is implied by \mathcal{T} , compute X^+ and check if $Y \subseteq X^+$.
- Notice that computing Attribute Closure X^+ is less expensive (and less tedious) to compute than is FD Closure \mathcal{F}^+ .

Correctness of Attribute Closure Algorithm

If
$$A \in X^+$$
, then $\mathcal{F} \vdash X \rightarrow A$

This is true because Armstrong's Axioms are "sound".

If
$$\mathcal{F} \vdash X \rightarrow A$$
, then $A \in X^+$

- Proof by contradiction. Won't go through proof details.
- Please let me know if you'd like to see the proof.

Reminder: Superkeys and Keys

- A superkey S for a relation schema R is a subset of the attributes of R such that:
 - 1. There can't be two different tuples in an instance of R that have the same value for all the attributes in S.
 - So S is a superkey for relation R if and only if S^+ = attrib(R).
- A key K for a relation schema R is a subset of the attributes of R such that the following two properties hold:
 - 1. There can't be two different tuples in an instance of R that have the same value for <u>all</u> the attributes in K.
 - ... that is, K is a superkey of R, which is true if and only if K^+ = atttrib(R).
 - 2. And K is Minimal: No proper subset of K is a superkey of R.

All keys are superkeys ... but some superkeys are not keys.

Using Attribute Closure Algorithm to Find All Superkeys/Keys for Relation R, Given Functional Dependencies \mathcal{F}

Attribute Closure algorithm can be modified to **find all superkeys and all candidate keys** for R, given Functional Dependencies \mathcal{F} .

- Compute the closure of a single attribute in attr(R). Then compute the closure of every 2 attribute set, 3 attribute set, and so on.
- If the closure of a set of attributes X contains <u>all</u> the attributes of relation R, then X is a *superkey* for R.
- If <u>no proper subset</u> of X is a superkey, then X is a *key*.
 - Proper subset of a set: A subset that isn't the entire set.

Here's an observation which makes it easier to find superkeys and keys:

If some attribute B doesn't appear on the right-hand side of any non-trivial FD for R, then that attribute B must in <u>every</u> superkey for R (why?), and hence must be in <u>every</u> key for R!

Using Attribute Closure Algorithm to Determine If a Set of Attributes X is a SuperKey/Key for Relation R, Given Functional Dependencies \mathcal{F}

Attribute Closure algorithm can be modified to determine if a set of attributes X is a superkey/key for R, given Functional Dependencies \mathcal{F} .

- How?
 - Compute the attribute closure of X⁺.
 - If X^+ = attr(R), then X is a *superkey*.
 - If no proper subset of X is a superkey, then X is a key.
 - See whether X is still a superkey after it "goes on a diet"!
 - That is, try to find some attribute in X such that X is still a superkey if X loses that attribute?
 - If X still is a superkey after X loses some attribute ("goes on a diet"), then X is a superkey, but X is <u>not</u> a key.

Practice Homework 6

- 1. Let R(A,B,C,D,E) be a relation schema and let $\mathcal{T} = \{AB \rightarrow E, B \rightarrow AC, BE \rightarrow C\}$ be a set of FDs that hold over R.
 - a. Prove that $\mathcal{F} \models B \rightarrow E$ using Armstrong's axioms.
 - b. Compute the closure of B. That is, compute B⁺.
 - c. Give a key for R. Justify why your answer is a key for R.
 - d. Show an example relation that satisfies \mathcal{F} .
 - e. Show an example relation that does not satisfy $\mathcal{F}.$
- 2. Let R(A,B,C,D,E) be a relation schema and let $\mathcal{F} = \{ A \rightarrow C, B \rightarrow AE, B \rightarrow D, BD \rightarrow C \}$ be a set of FDs that hold over R.
 - a. Show that $B \rightarrow CD$ using Armstrong's axioms.
 - b. Show a relation of R such that R satisfies \mathcal{F} but R does not satisfy $A \rightarrow D$.
 - c. Is AB a key for R?