Compilé: 19 janvier 2002

THÉORIE ÉCONOMÉTRIQUE EXERCICES 6

GÉNÉRALITÉS SUR LA THÉORIE DES TESTS

- 1. Expliquez les distinctions suivantes :
 - (a) test de signification et test de spécification;
 - (b) hypothèse simple et hypothèse composite;
 - (c) problème de test identifiable et problème de test non identifiable ;
 - (d) erreur de première espèce et erreur de seconde espèce.
- 2. On suppose qu'une variable Y_t suit une équation de la forme

$$Y_t = ae^{bt} + c + u_t$$
, $t = 1, \ldots, T$

où a, b, c sont des paramètres inconnus et $u_1, ..., u_T$ sont des varaiables aléatoires i.i.d. $N(0, \sigma^2)$.

- (a) Ce modèle est-il identifiable? Pourquoi?
- (b) Décidez lesquelles des hypothèses suivantes sont identifiables :

i.
$$a = 0$$
;

ii.
$$b = 0$$
;

iii.
$$c = 0$$
;

iv.
$$a = b = 0$$
;

v.
$$b = c = 0$$
.

- (a) Quand un test est-il *préférable* à un autre test?
- (b) Montrez qu'il n'existe pas de test optimal, sauf dans des cas dégénérés.
- 3. On considère un jet d'une pièce de monnaie et on note :

$$Y = \begin{cases} 1, \text{ si "pile" est observ\'e} \\ 0, \text{ si "face" est observ\'e} \end{cases}.$$

On définit P[Y=1]=1 et on s'intéresse à l'hypothèse nulle $H_0: p \geq \frac{1}{2}$. Trouvez tous les tests admissibles de H_0 . Décrivez un test non admissible.

- 4. Expliquez la différence entre le principe bayesien et le principe de Neyman pour sélectionner un test.
 - (a) Expliquez ce qu'est le *diagramme de risques* pour un test entre deux hypothèses simples.
 - (b) Qu'est-ce qu'un test de Neyman?
- 5. Énoncez et démontrez le théorème de Neyman-Pearson.
- 6. Considérez le modèle paramétrique $(\Upsilon, (P_{\theta}; \theta \in \Theta))$ où Θ est un intervalle dans \mathbb{R} .
 - (a) Quand la famille $(P_{\theta}; \theta \in \Theta)$ est-elle à rapport de densités monotone?
 - (b) Dans le cas où la famille $(P_{\theta}; \theta \in \Theta)$ est à rapport de densités croissant, donnez un test uniformément plus puissant au seuil α pour tester $H_0: \theta \leq \theta_0$ contre $H_1: \theta > \theta_0$.
- 7. Considérez un modèle exponentiel uniparamétrique dont les densités sont

$$\ell(y; \theta) = C(\theta) h(y) \exp[Q(\theta) T(y)]$$

où $Q(\theta)$ est une fonction strictement croissante de $\theta \in \mathbb{R}$.

- (a) Trouvez un test uniformément plus puissant au seuil α pour tester $H_0: \theta \leq \theta_0$ contre $H_1: \theta > \theta_0$.
- (b) Trouvez un test localement plus puissant au seuil α pour tester $H_0:\theta\leq\theta_0$ contre $H_1:\theta>\theta_0$. [Si une condition de différentiabilité est requise, précisez cette dernière.]
- (c) Donnez un test uniformément plus puissant au seuil α pour tester $H_0: \theta \leq \theta_1$ ou $\theta \geq \theta_2$ contre $H_1: \theta_1 < \theta < \theta_2$, où $\theta_1 < \theta_2$.