Project Development Phase Model Performance Test

Date	26 November 2022	
Team ID	PNT2022TMID00886	
Project Name	Intelligent vehicle damage assessment & cost estimator for insurance companies.	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params:14,789,955 Trainable params: 75,267 Non-trainable params: 14,714,688	□ + Code + Test □ traces_town2 (convers) (conv. 30, 30, 512) 1299988 □ thick g.com2 (conv. 30) (conv. 30, 30, 512) 239988 □ thick g.com2 (conv. 30) (conv. 30, 30, 512) 239988 black g.com2 (conv. 30) (conv. 30, 30, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30) (conv. 30, 31, 512) 239988 black g.com2 (conv. 30, 512) 239988 black g.com2 (conv
2.	Accuracy	Training Accuracy – 98.66 Validation Accuracy – 73.53	+ Code + Test \$775 [

Model Summary

0	model=Model(inputs=vgg.input,outputs=prediction)
	model.summarv()

Model: "model_1"

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 244, 244, 3)]	0
block1_conv1 (Conv2D)	(None, 244, 244, 64)	1792
block1_conv2 (Conv2D)	(None, 244, 244, 64)	36928
block1_pool (MaxPooling2D)	(None, 122, 122, 64)	0
block2_conv1 (Conv2D)	(None, 122, 122, 128)	73856
block2_conv2 (Conv2D)	(None, 122, 122, 128)	147584
block2_pool (MaxPooling2D)	(None, 61, 61, 128)	0
block3_conv1 (Conv2D)	(None, 61, 61, 256)	295168
block3_conv2 (Conv2D)	(None, 61, 61, 256)	590080
block3 conv3 (Conv2D)	(None. 61. 61. 256)	590080

9	DIOCK3 DOOT (WAXLOOTIUGSD)	(None, 30, 30, 256)	9
	block4_conv1 (Conv2D)	(None, 30, 30, 512)	1180160
9	block4_conv2 (Conv2D)	(None, 30, 30, 512)	2359808
	block4_conv3 (Conv2D)	(None, 30, 30, 512)	2359808
	block4_pool (MaxPooling2D)	(None, 15, 15, 512)	0
	block5_conv1 (Conv2D)	(None, 15, 15, 512)	2359808
	block5_conv2 (Conv2D)	(None, 15, 15, 512)	2359808
	block5_conv3 (Conv2D)	(None, 15, 15, 512)	2359808
	block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
	flatten_1 (Flatten)	(None, 25088)	0
	dense_1 (Dense)	(None, 3)	75267

CONTROL DESCRIPTION AND ADDRESS OF THE PROPERTY OF THE PROPERT

Total params: 14,789,955 Trainable params: 75,267 Non-trainable params: 14,714,688

Accuracy

```
r = model.fit_generator(
      training_set,
      validation_data = test_set,
      epochs = 25,
      steps_per_epoch=979//10,
      validation_steps = 171//10
🙆 /tmp/wsuser/ipykernel_164/289406290.py:1: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which
   Epoch 1/25
   97/97 [===
Epoch 2/25
                     =======] - 339s 3s/step - loss: 1.1511 - acc: 0.5459 - val_loss: 0.9324 - val_acc: 0.6294
   97/97 [====
                       Epoch 3/25
   97/97 [===
                              ===] - 331s 3s/step - loss: 0.4937 - acc: 0.8070 - val_loss: 1.1732 - val_acc: 0.6176
   Epoch 4/25
                               ==] - 326s 3s/step - loss: 0.4349 - acc: 0.8411 - val_loss: 0.9766 - val_acc: 0.6824
   Epoch 5/25
                               ==] - 326s 3s/step - loss: 0.3661 - acc: 0.8617 - val_loss: 1.1987 - val_acc: 0.6529
   Fnoch 6/25
   97/97 [====
Epoch 7/25
                               ==] - 325s 3s/step - loss: 0.2681 - acc: 0.8875 - val_loss: 0.9087 - val_acc: 0.6941
                      ========] - 325s 3s/step - loss: 0.2292 - acc: 0.9195 - val_loss: 1.0251 - val_acc: 0.6647
   Epoch 8/25
97/97 [====
                     97/97 [=====
               0
   Epoch 13/25
   97/97 [=====
                 ============= ] - 325s 3s/step - loss: 0.0746 - acc: 0.9763 - val_loss: 1.1819 - val_acc: 0.6647
   Epoch 14/25
   97/97 [=====
                        =======] - 325s 3s/step - loss: 0.1078 - acc: 0.9711 - val_loss: 1.0919 - val_acc: 0.7176
   Epoch 15/25
   97/97 [====
                       ========] - 327s 3s/step - loss: 0.0659 - acc: 0.9866 - val_loss: 1.0925 - val_acc: 0.6824
   Epoch 16/25
                    ==========] - 326s 3s/step - loss: 0.0996 - acc: 0.9721 - val_loss: 1.2487 - val_acc: 0.6706
   97/97 [=====
   Epoch 17/25
   97/97 [=====
                     =========] - 327s 3s/step - loss: 0.0683 - acc: 0.9845 - val_loss: 1.1608 - val_acc: 0.6824
   Epoch 18/25
   97/97 [====
                      =======] - 328s 3s/step - loss: 0.0477 - acc: 0.9856 - val_loss: 1.5155 - val_acc: 0.6706
   Epoch 19/25
   97/97 [=====
                        Epoch 20/25
   97/97 [=====
                      ========] - 324s 3s/step - loss: 0.0498 - acc: 0.9866 - val_loss: 1.2369 - val_acc: 0.6706
   Fnoch 21/25
   97/97 [=====
                     ========] - 323s 3s/step - loss: 0.0736 - acc: 0.9876 - val_loss: 1.1987 - val_acc: 0.6706
   Epoch 22/25
   97/97 [====
                      Epoch 23/25
   97/97 [=====
                     =======] - 325s 3s/step - loss: 0.1011 - acc: 0.9711 - val_loss: 1.2466 - val_acc: 0.6882
   Epoch 24/25
   97/97 [=====
                       ========] - 3275 3s/step - loss: 0.0756 - acc: 0.9814 - val_loss: 1.5177 - val_acc: 0.6588
   Epoch 25/25
                      :========] - 327s 3s/step - loss: 0.0480 - acc: 0.9866 - val_loss: 1.3861 - val_acc: 0.7353
   97/97 [======
```