lab8 实验报告

课程名 <u>高性能计算应用实践</u> 学期 <u>2024年秋季学期</u> 姓名 <u>陈卫喆</u> 学号 <u>2023311F13</u>

硬件配置

cpu型号

13th Gen Intel(R) Core(TM) i5-13500H

核数

Core(s) per socket: 8 Socket(s): 1

频率

cpu MHz: 3187.200

avx指令集版本

avx, avx2, avx_vnni

内存大小

	total	used	free	shared	buff/cache	available
Mem:	7.7Gi	913Mi	6.5Gi	3.0Mi	273Mi	6.5Gi
Swap:	2.0Gi	0B	2.0Gi			

CPU理论峰值计算

CPU理论性能计算公式为:

$$FLOPS = cores imes rac{cycles}{second} imes rac{FLOPs}{cycle}$$

结合硬件配置得

单精度峰值 $FLOPS_{FP32}=3.1872\times 8\times 8=203.7888$ GFLOPS 双精度峰值 $FLOPS_{FP64}=3.1872\times 4\times 8=101.5744$ GFLOPS

软件环境

操作系统版本

Distributor ID: Ubuntu

Description: Ubuntu 22.04.3 LTS

Release: 22.04 Codename: jammy

MPI版本

Version: 4.0

BLAS版本

0.3.20

参数调优过程和说明,最优的测试结果,与CPU峰值性能的比例

初始设定Ns = 1000, NBs = 128, P = Q = 2, 计算的GFLOPs只有3左右 首先根据硬件内存增大NBs, 提高cpu对所有计算资源的利用率, 增大Ns到10000, GFLOPs达到50左右 更改P, Q, 结果显示P = 2, Q = 4和P = 4, Q = 2的GFLOPs均低于P = Q = 2, 故仍选择P = Q = 2 调整RFACTs和BFACTs, 最优情况下是均设置为2

调整NBs, 利用二分法逐步缩小最优范围, 最后得到的最优的NBs在160左右最后增大Ns到30000,结果取平均值,得到GFLOPs = 73.257与cpu峰值性能的比例为 $\frac{73.257}{101.5744} \times 100\% = 72.1\%$

碰到的问题及解决方法

- 1. Make.linux的配置问题
 - 一开始修改了MPdir和LAdir, 编译总有error, 不修改MPdir和LAdir, 直接留空, 再次make, 问题解决
- 2. HPL.dat的配置问题

各参数的选择和设置,一开始遇到了一些问题,改参数的过程中还有提示格式错误等信息,根据提示信息和参考文档更改,最终解决