

Import the required libraries

hs.preferences.GUIs.warn_if_guis_are_missing = False

atom_lattice = am.load_atom_lattice_from_hdf5('atom_lattice_gw.hdf5')

To select the optimal zone axis, the parameter **direction** is varied until the optimum is found.

zone_vector = sublattice_A.zones_axis_average_distances[direction]
atom_planes = sublattice_A.atom_planes_by_zone_vector[zone_vector]
zone_axis = sublattice_A.get_atom_planes_on_image(atom_planes)

sublattice_A.construct_zone_axes(atom_plane_tolerance=0.8)

Starting with the sublattice A, it is necessary to construct a 2D array with the intensities of every atom column in this sublattice. Therefore, we need to select the required planes from a zone axis.

In [1]: **%matplotlib** widget

In [2]:

In [3]:

In [4]:

import hyperspy.api as hs

import atomap.api as am

hs.preferences.save()

Intensity Maps

First, we load the atom lattice:

s=hs.load('data.hspy')

Constructing the zone axes:

direction=1

zone_axis.plot()
ax = plt.gca()

sublattice_A

ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (7,7)

sublattice_A=atom_lattice.sublattice_list[0]
sublattice_B=atom_lattice.sublattice_list[1]

import numpy as np