

# Why Orthofuzz?



The search results of the term "RNA Seq transcriptome": The results grouped based on date

## Three issues with examples

- Same contig mapping relatively weakly to several families.
- Multiple contigs from the same assembly that are very close to each other sharing reads mapping and affecting expression levels.
- Many Many mapping makes it impossible to ask questions experimenters are interested in?
  - Is an enzyme x expressed in the data?
  - Is a gene expressed in the system?

### Illustration

- 1. Fragmentation
- 2. Many Many mapping
- 3. Mismapped reads causing expression problem.

• Figures here

#### **FRAGMENTATION**



**Figure 1: Example of fragmented contigs** - The homologs of Acetyl CoA Carboxylase (AT1G36160.1) from *Arabidopsis thaliana* visualized on the NCBI BLAST server. The contigs are obtained from transcriptome assembled *denovo* from Corn (B-73) Silks. Contigs of varying bit score and coverage show significant hits. The Contigs were assembled using Trinity Transcriptome Assembler<sup>2</sup>

## Network formulation

### Random Walking with Restart!



$$p^{t+1} = (1-r)W_{p^t} + rp^0$$

$$p_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} w_{p0} = \begin{bmatrix} A & B & C & D & E & F \\ A & 0 & 0.8 & 0.8 & 0.7 & 0 & 0.5 \\ B & 0.8 & 0 & 0 & 0 & 0 & 0.7 \\ C & 0.8 & 0 & 0 & 0.6 & 0.5 & 0 \\ D & 0.7 & 0 & 0.6 & 0 & 0 & 0 \\ E & 0.4 & 0 & 0.5 & 0 & 0 & 0 \\ F & 0.5 & 0.7 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Run RWR:

tolerence = 0.06

Max Iterations = 1000

$$r = 0.33$$

Normalize by maximum score





Figure X: Annotation flow network: A1-A3 are annotations of source sequences S1, S2 and S3. axsy represents the user-defined confidence of the annotation ax to be associated with sequence sy. sxty is the maximum score normalized orthofuzz score(sx,ty) obtained by querying the pairwise sequence similarity network using sx.



### $\mathbf{ATS}_{N_A \times N_{TS}} = \mathbf{ASS}_{N_A \times N_{SS}} \times \mathbf{SSTS}_{N_{SS} \times N_{TS}}$

| Symbol   | Description                                       |  |  |
|----------|---------------------------------------------------|--|--|
| SS       | Set of Source Sequences                           |  |  |
| $N_{SS}$ | Total Number of Source Sequences                  |  |  |
| A        | Set of Source Annotations                         |  |  |
| $N_A$    | Total Number of Annotations from Source Sequences |  |  |
| TS       | Set of Target Sequences                           |  |  |
| $N_{TS}$ | Total Number of Target Sequences                  |  |  |
| ATS      | Target Annotation Weight Matrix                   |  |  |
| ASS      | Source Annotation Confidence Matrix               |  |  |
| SSTS     | Source Target Orthofuzz Matrix                    |  |  |
| axsy     | Confidence of assigning ax to sy                  |  |  |
| sytz     | Max. normalized orthofuzz score of sy to tz       |  |  |
| axtz     | Annotation weight of ax to tz                     |  |  |



Figure X: Protocol used for assigning functional annotations to the de-novo assembled contigs



Figure X: Expression summary network: C0-C3 are the contigs identified as homologs of Query Sets Q1 and Q2. E(X) is the normalized expression level of X. qxcy is the within species normalized orthofuzzscore (qx,cy) obtained by querying the network using the query set Q.



$$\mathbf{QC}_{N_Q \times N_C} \times \mathbf{Ce}_{N_C \times 1} = \mathbf{Qe}_{N_Q \times 1}$$

| Symbol   | Description                                    |  |
|----------|------------------------------------------------|--|
| Q        | Set of Query Sets                              |  |
| $N_Q$    | Total Number of Query Sets                     |  |
| $N_C$    | Total Number of Expressed Contigs              |  |
| QC       | Query Contig Orthofuzz Matrix                  |  |
| qxcy     | Species.normalized orthofuzz score of qx to cy |  |
| Ce       | Vector containing expression values of Contigs |  |
| $e_{cy}$ | Expression value of contig y                   |  |
| Qe       | Vector containing expression values of Query   |  |



Figure: Protocol used for estimating expression levels of gene-sets



Is there evidence for protein complexes?

Are there interaction units whose expression levels are changing?

Are they co-expressed?



Figure: Protocol used for estimating expression levels of gene-sets



Figure: Protocol used for estimating expression levels of gene-sets



Is there evidence for protein complexes?

Are there interaction units whose expression levels are changing?

Are they co-expressed?