Network Security Architecture: Securing the OSI Layers and Beyond

Exploring security controls, modern frameworks, and breach prevention as of March 28, 2025

1. Introduction to Network Security Architecture

Designing systems to protect networks from threats like the 2013 Target breach.

Check network interfaces on Linux ip link show

"Network security architecture is about safeguarding data across all layers. Today, we'll use OSI, modern tools, and frameworks to build a robust defense."

Q: What's the primary goal of network security architecture?

A: To protect the network and its data from unauthorized access, misuse, or destruction.

2. OSI Model Overview

View network traffic on Linux
sudo tcpdump -i eth0

"The OSI model helps us categorize threats and controls. Let's explore each layer next."

3. Physical Layer Security

Protecting hardware and connections: access control, surveillance.

Simulate physical security check on AWS
aws ec2 describe-instances --query "Reservations[*].Instances[*].

Q: Why is physical security critical?

A: Unsecured hardware can be directly accessed or stolen.

4. Data Link Layer Security

VLANs, port security, MAC filtering to prevent spoofing.

Create VLAN in Docker
docker network create --driver bridge vlan10

"Data Link controls stop local network attacks. Try isolating containers with Docker."

5. Network Layer Security

Firewalls, IPsec, VPNs to secure routing and traffic.

```
# Set up iptables firewall on Linux
sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT
sudo iptables -P INPUT DROP
```


Q: What's the difference between stateful and stateless firewalls?

A: Stateful tracks connection state; stateless filters based on rules.

6. Transport Layer Security

TLS, port security to ensure end-to-end integrity.


```
# Install SSL on Linux (Ubuntu)
sudo apt install certbot -y
sudo certbot certonly --standalone -d example.com
```

"TLS secures data in transit. Let's set up HTTPS with Certbot."

7. Session Layer Security

MFA, session timeouts to manage connections.

Enable MFA on AWS
aws iam create-virtual-mfa-device --virtual-mfa-device-name MyMFA

8. Presentation Layer Security

Encryption, antivirus to protect data formats.

Check SSL on MacOS
openssl s_client -connect example.com:443

9. Application Layer Security

WAF, secure coding to protect user interfaces.

Deploy WAF on AWS aws wafv2 create-web-acl --name MyWAF --scope REGIONAL --default-

"Application layer is the front line. WAFs block exploits."

10. Traditional Defense-in-Depth

Layers static controls: firewalls, antivirus.

11. Limitations of Traditional Approaches

Slow to adapt, lacks integration.

12. Zero Trust Architecture

Verify every access request continuously.

Simulate Zero Trust in AWS aws ec2 authorize-security-group-ingress --group-id sg-123 --prot

Q: How does Zero Trust differ from perimeter security?

A: Verifies every request, not just outside traffic.

13. Extended Detection and Response (XDR)

Integrates endpoint, network, cloud data.

```
# Install CrowdStrike Falcon (example)
wget -q https://falcon.crowdstrike.com/download/falcon-sensor.deb
sudo dpkg -i falcon-sensor.deb
```


14. Security Orchestration, Automation, Response

Automates incident response.


```
# Simulate SOAR with script on Linux
echo "if [ \$(netstat -tuln | grep :22) ]; then sudo ufw deny 22;
chmod +x isolate.sh
```


15. AI/ML in Security

Anomaly detection, predictive analytics.

```
# Simple anomaly detection with Python
pip install scikit—learn
python —c "from sklearn ensemble import IsolationForest; print('M
```


16. MITRE ATT&CK Framework

Threat modeling with adversary tactics.

Map ATT&CK with log analysis
sudo cat /var/log/auth.log | grep "failed"

17. TOGAF Framework

Enterprise architecture for security integration.

18. SABSA Framework

Risk-driven security design.

"SABSA starts with risks, tailoring controls accordingly."

19. Target Data Breach (2013)

Vendor access led to POS malware, 40M cards stolen.

"Target's lack of segmentation was key. Modern controls could've stopped this."

20. Home Depot Breach (2014)

Vendor credentials, 56M cards stolen.

21. Wendy's Breach (2016)

POS malware, 1,000+ locations affected.

22. Sally Beauty Breach (2015)

25,000 cards compromised via POS.

23. Neiman Marcus Breach (2014) 350,000 cards stolen via POS malware.

"Slow response worsened this; SOAR helps."

24. Prevention with Modern Architecture

Segmentation, Zero Trust, XDR stop breaches.

25. Hands-on: Firewall Setup Secure a Linux server with ufw.

Enable and configure ufw
sudo apt install ufw -y
sudo ufw allow 22
sudo ufw enable

"Let's secure SSH access now."

26. Hands-on: VLAN Setup

Isolate networks with Docker.

Create and test VLAN
docker network create --driver bridge vlan20
docker run --rm -d --network vlan20 nginx

27. Hands-on: SSL/TLS Setup Secure a site with HTTPS.

Install and run Certbot
sudo apt install certbot python3-certbot-nginx -y
sudo certbot --nginx -d mydomain.com

"HTTPS is critical for transport security."

28. Hands-on: Security Assessment Audit with Lynis.

Install and run Lynis
sudo apt install lynis -y
sudo lynis audit system

"Assess your server's security now."

29. Conclusion and Q&A

Recap: OSI controls, modern tools, breach prevention.

Q: How can we stay ahead of new threats?

A: Use threat intelligence and continuous monitoring.

30. Introduction to TCP/IP

TCP/IP: Core protocol suite for internet communication, simpler than OSI.

Check TCP/IP stack on Linux
netstat -tuln

"TCP/IP drives the internet. It's a 4-layer model we'll dissect for security."

Q: How does TCP/IP differ from OSI?

A: TCP/IP is practical, with 4 layers vs. OSI's theoretical 7.

31. Link Layer in TCP/IP

Handles hardware addressing, Ethernet, ARP.

View ARP table on Linux
arp -n

"Link layer maps IPs to MACs. ARP spoofing is a risk here."

Q: What's an ARP spoofing attack?
A: Faking MAC addresses to intercept traffic.

32. Internet Layer in TCP/IP

IP addressing, routing with IPv4/IPv6, ICMP.

Ping an IP on Linux
ping -c 10 8.8.8.8

Q: Why secure ICMP?

A: Prevents ping sweeps and DoS attacks.

33. Transport Layer in TCP/IP

TCP (reliable) vs. UDP (fast), port management.

Check open ports on Linux ss —tuln

"TCP ensures delivery; UDP is lightweight. Both need securing."

Q: When to use TCP vs. UDP?
A: TCP for reliability (e.g., HTTP), UDP for speed (e.g., streaming).

34. Application Layer in TCP/IP

Protocols like HTTP, FTP, DNS for user services.

Query DNS on MacOS/Linux
dig google.com

Q: How can DNS be attacked?

A: Spoofing or cache poisoning to redirect traffic.

35. TCP/IP Security Challenges

Spoofing, sniffing, session hijacking.

Sniff packets on Linux sudo tcpdump —i eth0

36. Securing TCP/IP with IPsec

Encrypts and authenticates IP packets.


```
# Set up IPsec on Linux (strongSwan)
sudo apt install strongswan -y
sudo vi /etc/ipsec.conf
# Add: conn my-vpn
# left=192.168.1.1
# right=192.168.1.2
sudo systemctl restart strongswan-starter
```


37. TCP Handshake Security

Three-way handshake: SYN, SYN-ACK, ACK.

Simulate handshake on Linux nc -l 12345 & nc localhost 12345

Q: What's a SYN flood?

A: Overwhelming a server with fake SYN requests.

38. Hands-on: TCP Traffic Analysis Use Wireshark to analyze TCP packets.

Install Wireshark on Linux
sudo apt install wireshark -y
sudo wireshark &

39. TCP/IP in Modern Architecture

Integrates with Zero Trust, XDR for security.

Restrict TCP ports on AWS aws ec2 revoke-security-group-ingress --group-id sg-123 --protoco

"Modern tools enhance TCP/IP's weak spots. Secure ports here."

40. Conclusion and Q&A

TCP/IP secured with layered controls and modern tools.

Q: How does TCP/IP fit into OSI security?

A: Maps to OSI layers, needing controls at each for full protection.