Megoldások (A csoport)

2011/12/1 Formális nyelvek és automaták évfolyamzárthelyi

1. feladat: Készítsen az $L = \{u \in \{a, b\}^* | \ell_a(u) = 1 \text{ és } (\ell_b(u) \mod 2) = 0\}$ nyelvhez L-et felismerő $v \acute{e} ges$ determinisztikus $automat\acute{a}t$ (VDA-t)!

Megoldás:

$$\begin{array}{c|cccc} & a & b \\ \rightarrow & q_{00} & q_{10} & q_{01} \\ \leftarrow & q_{10} & q_{\text{hiba}} & q_{11} \\ q_{01} & q_{11} & q_{00} \\ q_{11} & q_{\text{hiba}} & q_{10} \\ q_{\text{hiba}} & q_{\text{hiba}} & q_{\text{hiba}} \end{array}$$

2. feladat: Hozza 3-as normálformára az alábbi G nyelvtant (grammatikát), majd készítsen a tanult algoritmussal olyan *véges determinisztikus automatát* a nyelvtanhoz, mely a G által generált nyelvet ismeri fel! $G = \langle \{a,b,c\}, \{S,A,C\}, \mathcal{P}, S \rangle$, ahol a \mathcal{P} szabályrendszer a következő:

$$S \to a \mid aA \mid C$$

$$A \to bS \mid bbS \mid b$$

$$C \to caA \mid cC \mid \varepsilon$$

Megoldás:

Láncmentesítés: Hosszredukció (+ univerzális
$$\varepsilon$$
 szabály): $S \to a \mid aA \mid caA \mid cC \mid \varepsilon$ $S \to aF \mid aA \mid cD \mid cC \mid \varepsilon$ $A \to bS \mid bbS \mid b$ $A \to bS \mid bE \mid bF$ $C \to caA \mid cC \mid \varepsilon$ $C \to cD \mid cC \mid \varepsilon$ $D \to aA$ $E \to bS$ $F \to \varepsilon$

VDA:
 a
 b
 c

$$\leftrightarrows$$
 {S}
 {A, F}
 {}
 {C, D}

 \leftarrow {A, F}
 {}
 {S, E, F}
 {}

 \leftarrow {C, D}
 {A}
 {}
 {C, D}

 \leftarrow {S, E, F}
 {A, F}
 {S}
 {C, D}

 {A}
 {}
 {S, E, F}
 {}

3. feladat: Készítse el az alábbi \mathcal{A} véges determinisztikus automata *minimális automatáját* a tanult algoritmus alapján (összefüggővé alakítás, redukció)! $\mathcal{A} = \langle \{1, 2, 3, 4, 5, 6, 7, 8\}, \{a, b\}, \delta, 1, \{3, 5, 7\} \rangle$ ahol a δ állapotátmenet függvényt az alábbi táblázatal adjuk meg:

Megoldás: $H_0 = \{1\}, H_1 = \{1, 4, 6\}, H_2 = \{1, 4, 6, 8, 5, 2\}, H_3 = H_2 = H$. Elhagyható 3,7. $\stackrel{0}{\sim}$: $\{1, 2, 4, 6, 8\}, \{5\}$;

4. feladat: A CYK-algoritmus segítségével döntse el, hogy a abaaba szó levezethető-e a $G = \langle \{a,b\}, \{S,A,B,C\}, \mathcal{P}, S \rangle$ nyelvtanban, ahol a \mathcal{P} szabályrendszer a következő:

$$\begin{split} S &\to CB \mid a \\ A &\to SS \mid a \\ B &\to BA \mid CC \mid b \\ C &\to BA \end{split}$$

Megoldás:

5. feladat: Készítsen veremautomatát (1-vermet), mely az alábbi – a '[' bal-, és ']' jobbzárójelek két elemű ábécéje feletti – L nyelv szavait fogadja el $\ddot{u}res\ veremmel$!

$$L = \{u \in \{ [,] \}^* \mid u \text{ helyes zárójelezés és } u\text{-ban nincs }]]]$$
részszó $\}$

Adjon a veremautomatához egy rövid, a működési elvet ismertető szöveges magyarázatot is!

Megoldás: $\mathcal{V} = \langle \{q_0, q_1, q_2\}, \{[,]\}, \{[,\#\}, \delta, q_0, \#, \{\}\} \rangle$ ahol δ :

$$\begin{split} &\delta(q_0,\, \mathbb{I},\, \#) = \{(q_0,\, \mathbb{I}\, \#)\} \\ &\delta(q_0,\, \mathbb{I},\, \mathbb{I}) = \{(q_0,\, \mathbb{I}\, \mathbb{I})\} \\ &\delta(q_1,\, \mathbb{I},\, \#) = \{(q_0,\, \mathbb{I}\, \#)\} \\ &\delta(q_1,\, \mathbb{I},\, \mathbb{I}) = \{(q_0,\, \mathbb{I}\, \#)\} \\ &\delta(q_2,\, \mathbb{I},\, \#) = \{(q_0,\, \mathbb{I}\, \#)\} \\ &\delta(q_2,\, \mathbb{I},\, \mathbb{I}) = \{(q_0,\, \mathbb{I}\, \#)\} \\ &\delta(q_0,\, \mathbb{I},\, \mathbb{I}) = \{(q_1,\, \varepsilon)\} \\ &\delta(q_1,\, \mathbb{I},\, \mathbb{I}) = \{(q_2,\, \varepsilon)\} \\ &\delta(q_0,\, \varepsilon,\, \#) = \{(q_0,\, \varepsilon)\} \\ &\delta(q_1,\, \varepsilon,\, \#) = \{(q_1,\, \varepsilon)\} \\ &\delta(q_2,\, \varepsilon,\, \#) = \{(q_2,\, \varepsilon)\} \end{split}$$

 q_i : i db.] volt az utolsó [óta, $0 \le i \le 2$, verem: ha [jön betesszük a verembe, ha] kitörlünk egy [-t a veremből ha veremtartalom [j #: j-vel több [volt eddig, mint] , $j \ge 0$