

Subscribe to DeepL Pro to translate larger documents.

Visit www.DeepL.com/pro for more information.

Fundamentals of Theoretical Computer Science

S 2023 Exercise Sheet II

Hand in: 23.5.2023, 10:00

a.m.

Note: Only the (partial) tasks marked with * have to be handed in. A total of 25 points is to be achieved. The tasks will be discussed/solved in the tutorials.

Task 1 NEA 2 + 2 points

Give nondeterministic finite automata (NEA), with as few states as possible, for the following languages over the alphabet {0, 1}. Briefly explain your automaton.

- (a) The set of all words whose first and last letters are the same.
- (b) The set of all words that contain exactly three 1s.
- (c) The set of all words that contain 0101 as a partial word. (*)
- (d) The set of all words that contain even many 1s or exactly two 0s. (*)
- (e) The set of all words that do not contain a pair of 1s separated by an odd number of symbols.

Task 2NEA (*) 3 + 3 + 4 points

Let M = $(Q, \Sigma, \delta, q_0, F)$ be an NEA that accepts the language L = L(M).

- (a) Prove or disprove that the NEA M' = (Q, Σ , δ , q₀ , Q \ F) accepts the complement language $\Sigma^* \setminus L$. (\star)
- (b) Prove or disprove that if L = L(M) is nonempty, then there exists an NEA M' with exactly one accepting state such that L(M') = L. (*)
- (c) Specify NEAs that accept the following regular expression-defined languages over the alphabet {0, 1}. (★)

$$L_1 = L(0(011)^* \cup 1),$$

 $L_2 = L((0 \cup 11^*)00^* 11^*).$

Task 3

Power set construction (*)

2 + 3 points

Consider the NEA M = (Q, Σ , δ , q₀ , F), with Σ = {0, 1}, Q = {a, b, c}, q₀ = a, F = {a}, and δ (a, 0) = {a, b}, δ (b, 1) = {b, c}, and δ (c, 0) = {a, c}, δ (a, 1) = δ (b, 0) = δ (c, 1) = \varnothing .

- (a) Draw the state diagram for M. (★)
- (b) Use power set construction to find a DEA equivalent to M. Eliminate all redundant states. (★)

Task 4

Kleene's algorithm

Construct a regular expression to follow- the finite automaton using Kleene's algorithm.

In doing so, you may simplify intermediate expressions for R^k . Describe the acceptted language in one sentence.

Show that the following languages are not regular.

- (a) L = $\{0^n \ 10^n \mid n \ge 0\}$ via $\Sigma = \{0, 1\}$
- (b) $L = \{1^2 \mid n \mid n \ge 0\} \text{ via } \Sigma = \{0, 1\} (\star)$
- (c) L = $\{1^p \mid p \text{ is a prime number}\}\ \text{via }\Sigma = \{1\}$
- (d) L = $\{0, 1^{mn} \mid m, n \in N, m' = n\}$ via $\Sigma = \{0, 1\}$
- (e) L = $\{0 \ 1 \ 2^{nnn} \mid n \ge 0\}$ via $\Sigma = \{0, 1, 2\}$
- (f) L = $\{0 \ 1 \ 0^{nmn+m} \mid n, m \in N\}$ via $\Sigma = \{0, 1\}$ (*)
- (g) L = the set of all valid bracket expressions over $\Sigma = \{(,)\}$
- (h) L = the set of all words in which the number of 0s and the number of 1s differ by at most 5, via $\Sigma = \{0, 1\}$
- (i) $L = \{w1^{|w|} \mid w \in \Sigma^* \} \text{ via } \Sigma = \{0, 1\}$
- (i) $L = \{0 \mid 1^{ij} \mid i, j \in \mathbb{N}, i > j \ge 1\} \text{ via } \Sigma = \{0, 1\}$
- (k) L = {w | w = w^R } via Σ = {0, 1} where w^R equals w, read backward
- (I) L = the set of all valid regular expressions over $\Sigma = \{0, 1, (,), \varnothing, \varepsilon, *, \circ, U\}$

Task 6

Pumping lemma

Let $\Sigma = \{a, b, c\}$ and $L = \{a b c^{ijk} | i, j, k \ge 0 \text{ and } j = k \text{ if } i = 1\}.$

- (a) Show that L satisfies the inference of the pumping lemma.
- (b) Using the closure properties of regular languages, show that ifL is regular, then L' = {ab c'' | j ≥ 0} must also be regular.
- (c) Infer that L is not regular using the pumping lemma.

Task

7Myhill-Nerode (MN) Relation

- (a) Let $L = L(0\ 1\ 0^{***})$. Give three words that are pairwise equivalent under the MN relation for L, and three words that are pairwise non-equivalent under the MN relation for L.
- (b) Let L be the language defined in Task 5(k). Give three words that are pairwise non-equivalent under the MN relation for L.
- (c) Determine the equivalence classes of the MN relation for the language $L = \{w \mid \text{the fourth last character of } w \text{ is a 1} \} \text{ over } \Sigma = \{0, 1\}.$

(d) Minimize the following DEA with the table filling algorithm. Which language is accepted?

Task 8Reset words

Let M be a DEA with state set Q and input alphabet Σ . A word $w \in \Sigma^*$ is called a *reset word for* M if the following holds:

There is a state $h \in Q$ such that the input w in M transfers any state to h.

M is called *resettable* if a reset word exists for M.

- (a) Specify a DEA that is not resettable.
- (b) Specify a DEA with at least 4 states that is resettable and specify an appropriate reset word.
- (c) Show that for each resettable DEA with n states, there is a reset word of length at most n .3