Product sets of arithmetic progressions

Yunkun Zhou

Stanford University

SCMS, Dec. 2022

Joint work with Max Wenqiang Xu

Coauthor

Figure: Max Wenqiang Xu

Contents

- Motivations
 - Erdős Multiplication table problem
 - Extremal sum product conjecture

Main ideas in the Proof of Theorems

How large is $M(N) := |[N] \cdot [N]|$?

Fact

$$M(N) := o(N^2).$$

How large is $M(N) := |[N] \cdot [N]|$?

Fact

$$M(N) := o(N^2).$$

Sketch of the proof

Hardy-Ramanujan theorem: all but at most o(N) number of $n \leq N$ have log log N number of prime factors (with multiplicities).

How large is $M(N) := |[N] \cdot [N]|$?

Fact

$$M(N) := o(N^2).$$

Sketch of the proof

Hardy-Ramanujan theorem: all but at most o(N) number of $n \leq N$ have log log N number of prime factors (with multiplicities). Thus all but at most $o(N^2)$ elements in the multiplication table have $2 \log \log N$ number of prime factors,

How large is $M(N) := |[N] \cdot [N]|$?

Fact

$$M(N) := o(N^2).$$

Sketch of the proof

Hardy-Ramanujan theorem: all but at most o(N) number of $n \leq N$ have log log N number of prime factors (with multiplicities). Thus all but at most $o(N^2)$ elements in the multiplication table have $2 \log \log N$ number of prime factors, which is different from typical integers $n \leq N^2$ having $\log \log N^2$ number of prime factors.

Summary

Let
$$\delta = 1 - \frac{1 + \log\log 2}{\log 2} \approx 0.086 \ldots$$

• Erdős (1960):

$$M(N) = \frac{N^2}{(\log N)^{\delta + o(1)}}.$$

Summary

Let
$$\delta = 1 - \frac{1 + \log \log 2}{\log 2} \approx 0.086 \dots$$

Erdős (1960):

$$M(N) = \frac{N^2}{(\log N)^{\delta + o(1)}}.$$

2 Tenenbaum (1984):

$$M(N) \geq \frac{N^2}{(\log N)^{\delta} \exp((\log \log N)^{1/2+\varepsilon})}.$$

Summary

Let
$$\delta = 1 - \frac{1 + \log \log 2}{\log 2} \approx 0.086 \dots$$

• Erdős (1960):

$$M(N) = \frac{N^2}{(\log N)^{\delta + o(1)}}.$$

2 Tenenbaum (1984):

$$M(N) \geq \frac{N^2}{(\log N)^{\delta} \exp((\log \log N)^{1/2+\varepsilon})}.$$

Ford (2008):

$$M(N) \simeq \frac{N^2}{(\log N)^{\delta} (\log \log N)^{3/2}}.$$

Elekes-Ruzsa's Conjecture (2003)

Let $A \subset \mathbb{Z}$ be a finite arithmetic progressions of length N. Then

$$|A\cdot A|\gg \frac{N^2}{(\log N)^{\delta+o(1)}}.$$

Elekes-Ruzsa's Conjecture (2003)

Let $A \subset \mathbb{Z}$ be a finite arithmetic progressions of length N. Then

$$|A\cdot A|\gg \frac{N^2}{(\log N)^{\delta+o(1)}}.$$

Theorem 1 (X.-Zhou, $\overline{2022+}$)

The conjecture above is true.

Elekes-Ruzsa's Conjecture (2003)

Let $A \subset \mathbb{Z}$ be a finite arithmetic progressions of length N. Then

$$|A\cdot A|\gg \frac{N^2}{(\log N)^{\delta+o(1)}}.$$

Theorem 1 (X.-Zhou, 2022+)

The conjecture above is true.

Remark

The strongest version we can prove is, for some c>0

$$|A \cdot A| \gg \frac{N^2}{(\log N)^{\delta} (\log \log N)^c}.$$

Sum-Product conjecture

Sum-Product Conjecture (Erdős-Szemerédi, 1983)

Let $A \subset \mathbb{Z} \ (\subset \mathbb{R})$ be a finite set. Then,

$$\max\{|A + A|, |A \cdot A|\} \ge |A|^{2-o(1)}.$$

Sum-Product conjecture

Sum-Product Conjecture (Erdős-Szemerédi, 1983)

Let $A \subset \mathbb{Z} \ (\subset \mathbb{R})$ be a finite set. Then,

$$\max\{|A + A|, |A \cdot A|\} \ge |A|^{2-o(1)}.$$

Record (Rudnev-Stevens, 2020)

$$\max\{|A+A|,|A\cdot A|\} \ge |A|^{\frac{4}{3}+\frac{2}{1167}-o(1)}.$$

Extremal cases

Let $A \subset \mathbb{Z}$ be a finite set.

• Chang's Theorem (2003): $|A \cdot A| \ll |A| \implies |A + A| \gg |A|^2$.

Extremal cases

Let $A \subset \mathbb{Z}$ be a finite set.

- Chang's Theorem (2003): $|A \cdot A| \ll |A| \implies |A + A| \gg |A|^2$.

Extremal cases

Let $A \subset \mathbb{Z}$ be a finite set.

- Chang's Theorem (2003): $|A \cdot A| \ll |A| \implies |A + A| \gg |A|^2$.

Progress on the case with small sumset

• Chang (unpublished notes): $|A + A| \ll |A| \implies |A \cdot A| \gg |A|^{2-o(1)}$.

Extremal cases

Let $A \subset \mathbb{Z}$ be a finite set.

- Chang's Theorem (2003): $|A \cdot A| \ll |A| \implies |A + A| \gg |A|^2$.
- $|A+A| \ll |A| \implies |A \cdot A| \gg ?$

Progress on the case with small sumset

- Chang (unpublished notes): $|A + A| \ll |A| \implies |A \cdot A| \gg |A|^{2-o(1)}$.
- ② Elekes-Ruzsa (2003): $|A + A| \ll |A| \implies |A \cdot A| \gg \frac{|A|^2}{\log |A|}$.

Extremal cases

Let $A \subset \mathbb{Z}$ be a finite set.

- Chang's Theorem (2003): $|A \cdot A| \ll |A| \implies |A + A| \gg |A|^2$.

Progress on the case with small sumset

- Chang (unpublished notes): $|A + A| \ll |A| \implies |A \cdot A| \gg |A|^{2-o(1)}$.
- ② Elekes-Ruzsa (2003): $|A + A| \ll |A| \implies |A \cdot A| \gg \frac{|A|^2}{\log |A|}$.
- **3** Solymosi (2009): $|A \cdot A| |A + A|^2 \gg \frac{|A|^4}{\log |A|}$

Do we expect better bounds than $|A \cdot A| \gg \frac{|A|^2}{\log |A|}$ when $|A + A| \ll |A|$?

Do we expect better bounds than $|A\cdot A|\gg \frac{|A|^2}{\log |A|}$ when $|A+A|\ll |A|$?

Elekes-Ruzsa's Conjecture (2003)

Let $A \subset \mathbb{Z}$ be a finite set. If $|A + A| \ll |A|$, then

$$|A \cdot A| \gg \frac{|A|^2}{(\log A)^{2 \log 2 - 1 + o(1)}}.$$

Here $2 \log 2 - 1 \approx 0.39$.

Do we expect better bounds than $|A\cdot A|\gg \frac{|A|^2}{\log |A|}$ when $|A+A|\ll |A|$?

Elekes-Ruzsa's Conjecture (2003)

Let $A \subset \mathbb{Z}$ be a finite set. If $|A + A| \ll |A|$, then

$$|A \cdot A| \gg \frac{|A|^2}{(\log A)^{2 \log 2 - 1 + o(1)}}.$$

Here $2 \log 2 - 1 \approx 0.39$.

The conjecture is based on a special case: $A \subset [N]$ with $|A| \gg N$, proved by Pomerance-Sárkőzy (1987).

Simple case: $A \subset [N]$ with $|A| \gg N$. How small can $|A \cdot A|$ be?

Simple case: $A \subset [N]$ with $|A| \gg N$. How small can $|A \cdot A|$ be? **Heuristic**: Let $A' \subset A$ be the subset of typical numbers n, where each n has $\omega(n) \approx \Omega(n) \approx \log \log N$.

Simple case: $A \subset [N]$ with $|A| \gg N$. How small can $|A \cdot A|$ be? **Heuristic**: Let $A' \subset A$ be the subset of typical numbers n, where each n has $\omega(n) \approx \Omega(n) \approx \log \log N$. We have

$$|A\cdot A|\gg |A'\cdot A'|$$
.

Each product $ab \in A' \cdot A'$ has approximately $\omega(n) \approx \Omega(n) \approx 2 \log \log N$.

Simple case: $A \subset [N]$ with $|A| \gg N$. How small can $|A \cdot A|$ be? **Heuristic**: Let $A' \subset A$ be the subset of typical numbers n, where each n has $\omega(n) \approx \Omega(n) \approx \log \log N$. We have

$$|A \cdot A| \gg |A' \cdot A'|$$
.

Each product $ab \in A' \cdot A'$ has approximately $\omega(n) \approx \Omega(n) \approx 2 \log \log N$. One might expect that $|A' \cdot A'|$ is comparable to

$$\#\{n \leq N^2 : \omega(n) = (2 + o(1)) \log \log N\}.$$

as $|A'| \simeq N$.

We use the classical formula due to Sathe-Selberg (Landau, Delange etc.) in the range when $k = (2 + o(1)) \log \log x$,

$$\pi_k(x) := \#\{n \le x : \omega(n) = k\} \asymp \frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!}$$

We use the classical formula due to Sathe-Selberg (Landau, Delange etc.) in the range when $k = (2 + o(1)) \log \log x$,

$$\pi_k(x) := \#\{n \le x : \omega(n) = k\} \asymp \frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!} \asymp \frac{x}{(\log x)^{2\log 2 - 1 + o(1)}}.$$

Why δ ?

Using the same method, we could also analyze the value of δ . Let $N_k(x) = \#\{n \le x : \Omega(n) = k\}$. Then one has

$$\begin{split} |[N]*[N]| &\leq \sum_{k_1,k_2} \min\{N_{k_1}(N)N_{k_2}(N),N_{k_1+k_2}(N^2)\} \\ &\ll (\log\log N)^2 \max_{k_1,k_2}\{N_{k_1}(N)N_{k_2}(N),N_{k_1+k_2}(N^2)\} \end{split}$$

Why δ ?

Using the same method, we could also analyze the value of δ . Let $N_k(x) = \#\{n \le x : \Omega(n) = k\}$. Then one has

$$\begin{split} |[N]*[N]| &\leq \sum_{k_1,k_2} \min\{N_{k_1}(N)N_{k_2}(N),N_{k_1+k_2}(N^2)\} \\ &\ll (\log\log N)^2 \max_{k_1,k_2}\{N_{k_1}(N)N_{k_2}(N),N_{k_1+k_2}(N^2)\} \end{split}$$

When $k_1 + k_2 < (2 - \epsilon) \log \log N$, we have the asymptotics

$$N_{k_i}(N) \ll rac{N}{\log N} rac{(\log \log N)^{k_i-1}}{(k_i-1)!}; N_{k_1+k_2}(N^2) \ll rac{N^2}{\log N} rac{(\log \log N)^{k_1+k_2-1}}{(k_1+k_2-1)!}$$

Why δ ?

Using the same method, we could also analyze the value of δ . Let $N_k(x) = \#\{n \le x : \Omega(n) = k\}$. Then one has

$$\begin{split} |[N]*[N]| &\leq \sum_{k_1,k_2} \min\{N_{k_1}(N)N_{k_2}(N),N_{k_1+k_2}(N^2)\} \\ &\ll (\log\log N)^2 \max_{k_1,k_2}\{N_{k_1}(N)N_{k_2}(N),N_{k_1+k_2}(N^2)\} \end{split}$$

When $k_1 + k_2 < (2 - \epsilon) \log \log N$, we have the asymptotics

$$N_{k_i}(N) \ll \frac{N}{\log N} \frac{(\log \log N)^{k_i-1}}{(k_i-1)!}; N_{k_1+k_2}(N^2) \ll \frac{N^2}{\log N} \frac{(\log \log N)^{k_1+k_2-1}}{(k_1+k_2-1)!}$$

This is optimized at $k_1=k_2=\left(\frac{1}{\log 4}+o(1)\right)\log\log N$, and

$$N_k(N)^2 \approx N_{2k}(N^2) = \frac{N^2}{(\log N)^{\delta + o(1)}}.$$

Summary

Suppose |A + A| < C|A|, where $A \subset \mathbb{Z}$ is finite.

1 $C = 2 \implies A$ is an arithmetic progression.

Summary

Suppose |A + A| < C|A|, where $A \subset \mathbb{Z}$ is finite.

- **1** $C = 2 \implies A$ is an arithmetic progression.
- ② $C \approx 3 \implies A \subset \mathcal{P}$ with $|A| \times |\mathcal{P}|$ where \mathcal{P} is an A.P. (Freiman's 3k 4 theorem).

Summary

Suppose |A + A| < C|A|, where $A \subset \mathbb{Z}$ is finite.

- **1** $C = 2 \implies A$ is an arithmetic progression.
- ② $C \approx 3 \implies A \subset \mathcal{P}$ with $|A| \times |\mathcal{P}|$ where \mathcal{P} is an A.P. (Freiman's 3k 4 theorem).
- **1** In general, $A \subset \mathsf{GAP}$ (Freiman-Ruzsa theorem).

Summary

Suppose |A + A| < C|A|, where $A \subset \mathbb{Z}$ is finite.

- **1** $C = 2 \implies A$ is an arithmetic progression.
- ② $C \approx 3 \implies A \subset \mathcal{P}$ with $|A| \times |\mathcal{P}|$ where \mathcal{P} is an A.P. (Freiman's 3k 4 theorem).
- **1** In general, $A \subset \mathsf{GAP}$ (Freiman-Ruzsa theorem).

Product sets of dense subsets of Arithmetic Progressions

Theorem 2 (X. Zhou, 2022+)

Let $A \subset \mathcal{P} \subset \mathbb{Z}$ be a finite set with $|A| \asymp |\mathcal{P}|$, where \mathcal{P} is an arithmetic progression. Then,

$$|A \cdot A| \gg \frac{|A|^2}{(\log |A|)^{2 \log 2 - 1 + o(1)}}.$$

Multiplicative energies

Definition (Multiplicative energy)

Let A, B be two finite subsets of integers. The multiplicative energy between A, B is defined as

$$E_{\times}(A,B) := |\{(a_1,a_2,b_1,b_2) \in A \times A \times B \times B : a_1b_1 = a_2b_2\}|.$$

When A = B, we write $E_{\times}(A) := E_{\times}(A, A)$.

Multiplicative energies

Definition (Multiplicative energy)

Let A, B be two finite subsets of integers. The multiplicative energy between A, B is defined as

$$E_{\times}(A,B) := |\{(a_1,a_2,b_1,b_2) \in A \times A \times B \times B : a_1b_1 = a_2b_2\}|.$$

When A = B, we write $E_{\times}(A) := E_{\times}(A, A)$.

Multiplicative energies

Definition (Multiplicative energy)

Let A, B be two finite subsets of integers. The multiplicative energy between A, B is defined as

$$E_{\times}(A,B) := |\{(a_1,a_2,b_1,b_2) \in A \times A \times B \times B : a_1b_1 = a_2b_2\}|.$$

When A = B, we write $E_{\times}(A) := E_{\times}(A, A)$.

- ② $E_{\times}(A,B) \leq \sqrt{E_{\times}(A)E_{\times}(B)}$ ⇒ Theorem 1,2 have asymmetric extensions.

Main results restated

Theorem 1'(X.-Zhou, 2022+)

Let A be a finite arithmetic progression. Then there exists a subset $A' \subset A$ with $|A'| \gg |A|(\log |A|)^{-\delta/2 - o(1)}$ such that

$$E_{\times}(A') \ll |A'|^2$$
.

Main results restated

Theorem 1'(X.-Zhou, 2022+)

Let A be a finite arithmetic progression. Then there exists a subset $A' \subset A$ with $|A'| \gg |A|(\log |A|)^{-\delta/2 - o(1)}$ such that

$$E_{\times}(A') \ll |A'|^2$$
.

Theorem 2'(X.-Zhou, 2022+)

Let $A\subset \mathcal{P}$ with $|A|\asymp |\mathcal{P}|$ where \mathcal{P} is an arithmetic progression. Then there exists $A'\subset A$ with $|A'|\asymp |A|$ such that

$$E_{\times}(A') \ll |A|^2 (\log |A|)^{2\log 2 - 1 + o(1)}.$$

As indicated in the heuristic argument, we may want to chose $A' \subset A$ to be the set of typical numbers!

As indicated in the heuristic argument, we may want to chose $A' \subset A$ to be the set of typical numbers! Then use "Sathe-Selberg's formula" to get the $2 \log 2 - 1$.

As indicated in the heuristic argument, we may want to chose $A' \subset A$ to be the set of typical numbers! Then use "Sathe-Selberg's formula" to get the $2 \log 2 - 1$. This might require us to understand the quantity: number of elements in \mathcal{P} with a given number of (distinct) prime factors (uniformly for all arithmetic progressions with a given length).

As indicated in the heuristic argument, we may want to chose $A' \subset A$ to be the set of typical numbers! Then use "Sathe-Selberg's formula" to get the $2\log 2-1$. This might require us to understand the quantity: number of elements in $\mathcal P$ with a given number of (distinct) prime factors (uniformly for all arithmetic progressions with a given length).

① Short intervals: What if $\mathcal{P} \subset [x, x + y]$ with y very small comparing to x?

As indicated in the heuristic argument, we may want to chose $A' \subset A$ to be the set of typical numbers! Then use "Sathe-Selberg's formula" to get the $2\log 2-1$. This might require us to understand the quantity: number of elements in $\mathcal P$ with a given number of (distinct) prime factors (uniformly for all arithmetic progressions with a given length).

- **①** Short intervals: What if $\mathcal{P} \subset [x, x + y]$ with y very small comparing to x?
- ② Sparsity: Suppose $\mathcal P$ is contained in an interval $\mathcal I$, what if $|\mathcal P|/|\mathcal I|$ very small?

We show the following two lemmas to deduce our problem to only considering a "good" \mathcal{P} . Let $\mathcal{P} = \{a + id : 1 \le i \le L\}$.

We show the following two lemmas to deduce our problem to only considering a "good" \mathcal{P} . Let $\mathcal{P} = \{a + id : 1 \leq i \leq L\}$.

Lemma (Dyadic interval)

We may assume that $a \ge dL$, i.e. $\mathcal{P} \subset [x, 2x]$ for some x.

We show the following two lemmas to deduce our problem to only considering a "good" \mathcal{P} . Let $\mathcal{P} = \{a + id : 1 \leq i \leq L\}$.

Lemma (Dyadic interval)

We may assume that $a \ge dL$, i.e. $\mathcal{P} \subset [x, 2x]$ for some x.

Sketch of the proof.

Dyadically decompose [a,a+dL] into sub-intervals $\mathcal{I}_1,\mathcal{I}_2,\cdots,\mathcal{I}_t$ and consider the intersections $\mathcal{P}\cap\mathcal{I}_j$. Then apply Pigeonhole Principle. The density change roughly from δ to $\frac{\delta}{\log\delta^{-1}}$.

We show the following two lemmas to deduce our problem to only considering a "good" \mathcal{P} . Let $\mathcal{P} = \{a + id : 1 \leq i \leq L\}$.

Lemma (Dyadic interval)

We may assume that $a \ge dL$, i.e. $\mathcal{P} \subset \mathcal{I} = [a, 2a]$.

Lemma (Density)

We may further assume that ad $\leq L \log L$, i.e. $\mathcal P$ has density in $\mathcal I$ at least (roughly)

$$1/\sqrt{\log a}$$
.

.

We now prove the "density" Lemma.

Lemma (density lemma)

Let $\mathcal{P} = \{a + id : 0 \le i < L\}$ be an arithmetic progression with $\gcd(a, d) = 1$ and a > 0, d > 0. For any $A \subseteq \mathcal{P}$, we have

$$E_{\times}(A) \le 2|A|^2 + 4\frac{L^3}{a}(1 + \log L).$$

We now prove the "density" Lemma.

Lemma (density lemma)

Let $\mathcal{P} = \{a + id : 0 \le i < L\}$ be an arithmetic progression with $\gcd(a, d) = 1$ and a > 0, d > 0. For any $A \subseteq \mathcal{P}$, we have

$$E_{\times}(A) \le 2|A|^2 + 4\frac{L^3}{a}(1 + \log L).$$

We begin with parametrization to off diagonal solutions to the equation

$$n_1 n_2 = n_3 n_4$$
.

We now prove the "density" Lemma.

Lemma (density lemma)

Let $\mathcal{P} = \{a + id : 0 \le i < L\}$ be an arithmetic progression with $\gcd(a, d) = 1$ and a > 0, d > 0. For any $A \subseteq \mathcal{P}$, we have

$$E_{\times}(A) \leq 2|A|^2 + 4\frac{L^3}{a}(1 + \log L).$$

We begin with parametrization to off diagonal solutions to the equation

$$n_1 n_2 = n_3 n_4$$
.

Write $x_1 = \gcd(n_1, n_3)$, then we have 4 parameters x_1, x_2, y_1, y_2 such that

$$n_1 = x_1 y_1, \quad n_2 = x_2 y_2, \quad n_3 = x_1 y_2, \quad n_4 = x_2 y_1.$$

Fix x_1 . WLOG assume $x_2 \ge x_1$.

Fix x_1 . WLOG assume $x_2 \ge x_1$. Then

$$\frac{x_2}{x_1} = \frac{n_4}{n_1} \le \frac{a + dL}{a}.$$

Fix x_1 . WLOG assume $x_2 \ge x_1$. Then

$$\frac{x_2}{x_1} = \frac{n_4}{n_1} \le \frac{a + dL}{a}.$$

Also $x_2 \equiv x_1 \equiv ay_1^{-1} \mod d$. Thus, # of choices for x_2 is at most $\frac{x_1L}{a}$.

Fix x_1 . WLOG assume $x_2 \ge x_1$. Then

$$\frac{x_2}{x_1} = \frac{n_4}{n_1} \le \frac{a + dL}{a}.$$

Also $x_2 \equiv x_1 \equiv ay_1^{-1} \mod d$. Thus, # of choices for x_2 is at most $\frac{x_1L}{a}$. Note $y_i \in \left[\frac{a}{x_1}, \frac{a+dL}{x_1}\right]$. To guarantee off diagonal solutions exist, we require $y_1 \neq y_2$ and it implies $x_1 \leq L$ and # of choices for each y_i is at most $L/x_1 + 1$.

Fix x_1 . WLOG assume $x_2 \ge x_1$. Then

$$\frac{x_2}{x_1} = \frac{n_4}{n_1} \le \frac{a + dL}{a}.$$

Also $x_2 \equiv x_1 \equiv ay_1^{-1} \mod d$. Thus, # of choices for x_2 is at most $\frac{x_1L}{a}$. Note $y_i \in \left[\frac{a}{x_1}, \frac{a+dL}{x_1}\right]$. To guarantee off diagonal solutions exist, we require $y_1 \neq y_2$ and it implies $x_1 \leq L$ and # of choices for each y_i is at most L/x_1+1 . Thus $\#\{(n_1,n_2,n_3,n_4): \text{ off-diag solution to } n_1n_2=n_3n_4\}$ is

$$\sum_{\substack{x_1 \neq x_2, y_1 \neq y_2 \\ x_i y_i \in A}} 1 \ll \sum_{\substack{x_1 \leq L}} \frac{x_1 L}{a} \cdot (\frac{L}{x_1})^2.$$

We now focus on a "nice" \mathcal{P} and A has constant density in \mathcal{P} . As discussed in "Heuristic", we choose

$$A' = \{a \in A : \omega(a) \le (1 + o(1)) \log \log(a + dL), a \text{ square-free} \}.$$

We now focus on a "nice" \mathcal{P} and A has constant density in \mathcal{P} . As discussed in "Heuristic", we choose

$$A' = \{a \in A : \omega(a) \le (1 + o(1)) \log \log(a + dL), a \text{ square-free} \}.$$

Two tasks:

- |A'| = (1 + o(1))|A|.
- $E_{\times}(A') \ll |A|^2 (\log |A|)^{2\log 2 1 + o(1)}.$

Proof of (2).

We do the same parametrization as before: having x_1, x_2, y_1, y_2 .

Proof of (2).

We do the same parametrization as before: having x_1, x_2, y_1, y_2 . The quantity we are interested in now is

$$\sum_{\substack{x_1, x_2, y_1, y_2 \\ x_i y_j \in A'}} 1.$$

$$\omega(x_i y_j) \le (1 + o(1)) \log \log(a + dL)$$

Proof of (2).

We do the same parametrization as before: having x_1, x_2, y_1, y_2 . The quantity we are interested in now is

$$\sum_{\substack{x_1, x_2, y_1, y_2 \\ x_i y_j \in A'}} 1.$$

$$\omega(x_i y_j) \le (1 + o(1)) \log \log(a + dL)$$

Let
$$k = (1 + o(1)) \log \log(a + dL)$$

Proof of (2).

We do the same parametrization as before: having x_1, x_2, y_1, y_2 . The quantity we are interested in now is

$$\sum_{\substack{x_1, x_2, y_1, y_2 \\ x_i y_j \in A'}} 1.$$

$$\omega(x_i y_j) \le (1 + o(1)) \log \log(a + dL)$$

Let $k = (1 + o(1)) \log \log(a + dL)$ and we use the classical trick: for any $\lambda > 1$,

$$1 \leq \lambda^{k-\omega(x_iy_j)}.$$

Proof of (2) continue.

Thus we have following upper bounds for any $\lambda > 1$,

$$\sum_{x_i y_j \in A'} \lambda^{4k - \omega(x_1 y_1) - \omega(x_1 y_2) - \omega(x_2 y_1) - \omega(x_2 y_2)}$$

$$\leq \sum_{x_i y_j \in \mathcal{P}} \lambda^{4k} \lambda^{-2\omega(x_1)} \lambda^{-2\omega(x_2)} \lambda^{-2\omega(y_1)} \lambda^{-2\omega(y_2)}.$$

Proof of (2) continue.

Thus we have following upper bounds for any $\lambda > 1$,

$$\sum_{x_i y_j \in A'} \lambda^{4k - \omega(x_1 y_1) - \omega(x_1 y_2) - \omega(x_2 y_1) - \omega(x_2 y_2)}$$

$$\leq \sum_{x_i y_i \in \mathcal{P}} \lambda^{4k} \lambda^{-2\omega(x_1)} \lambda^{-2\omega(x_2)} \lambda^{-2\omega(y_1)} \lambda^{-2\omega(y_2)}.$$

We need to take sum of multiplicative function over an AP. We have classical tool, e.g. Shiu's lemma to deal with it.

Proof of (2) continue.

Thus we have following upper bounds for any $\lambda > 1$,

$$\sum_{x_i y_j \in A'} \lambda^{4k - \omega(x_1 y_1) - \omega(x_1 y_2) - \omega(x_2 y_1) - \omega(x_2 y_2)}$$

$$\leq \sum_{x_i y_j \in \mathcal{P}} \lambda^{4k} \lambda^{-2\omega(x_1)} \lambda^{-2\omega(x_2)} \lambda^{-2\omega(y_1)} \lambda^{-2\omega(y_2)}.$$

We need to take sum of multiplicative function over an AP. We have classical tool, e.g. Shiu's lemma to deal with it. Apply Shiu's result, we end up geting a function in λ . Optimize it and $\lambda=\sqrt{2}$ gives the desired bound.

Shiu's Lemma: a vague version

Let f(n) be a non-negative multiplicative function, not growing too fast.

Shiu's Lemma: a vague version

Let f(n) be a non-negative multiplicative function, not growing too fast. Suppose gcd(a, d) = 1, then as $x \to \infty$ we have

$$\sum_{\substack{x-y \le n < x \\ n \equiv a \pmod{d}}} f(n) \ll \frac{y}{\phi(d)} \frac{1}{\log x} \exp\left(\sum_{p \le x, p \nmid d} \frac{f(p)}{p}\right),$$

Shiu's Lemma: a vague version

Let f(n) be a non-negative multiplicative function, not growing too fast. Suppose $\gcd(a,d)=1$, then as $x\to\infty$ we have

$$\sum_{\substack{x-y \le n < x \\ n \equiv a \pmod{d}}} f(n) \ll \frac{y}{\phi(d)} \frac{1}{\log x} \exp\left(\sum_{p \le x, p \nmid d} \frac{f(p)}{p}\right),$$

provided that the A.P. is not too sparse the interval is not too short.

Shiu's Lemma

Let f(n) be a non-negative multiplicative function such that $f(p^{\ell}) \leq A_1^{\ell}$ for some positive constant A_1 and for any $\varepsilon > 0$, $f(n) \leq A_2 n^{\varepsilon}$ for some $A_2 = A_2(\varepsilon)$.

Shiu's Lemma

Shiu's Lemma

Let f(n) be a non-negative multiplicative function such that $f(p^{\ell}) \leq A_1^{\ell}$ for some positive constant A_1 and for any $\varepsilon > 0$, $f(n) \leq A_2 n^{\varepsilon}$ for some $A_2 = A_2(\varepsilon)$. Let $\alpha, \beta \in (0, 1/2)$, integer a satisfying $\gcd(a, d) = 1$. Then as $x \to \infty$ we have

$$\sum_{\substack{x-y \le n < x \\ n \equiv a \pmod{d}}} f(n) \ll \frac{y}{\phi(d)} \frac{1}{\log x} \exp\left(\sum_{p \le x, p \nmid d} \frac{f(p)}{p}\right),$$

provided that $d < y^{1-\alpha}$ and $x^{\beta} < y < x$, where the implicit constant depends only on A_1, A_2, α, β and the summation on the right hand side is taken over prime p.

h-fold product Conjecture

We may naturally extend the Elekes-Ruzsa's conjecture to the following.

Conjecture (X.-Zhou, 2022)

Let A be a set of integers and $A^h := \{a_1 a_2 \cdots a_h : a_i \in A, \forall \ 1 \leq i \leq h\}$. If $|A + A| \ll |A|$, then

$$|A^h| \ge |A|^h (\log |A|)^{-h \log h + h - 1 - o(1)}.$$

One way to achieve this lower bound is by choosing

$$A = \{1 \le n \le N : \omega(n) = (1 + o(1)) \log \log N\}.$$

We need to pick a subset $A' \subset A$ where A can be assumed as a "nice" A.P.

We need to pick a subset $A' \subset A$ where A can be assumed as a "nice" A.P. Following the strategy towards multiplication table problem, we choose the following subset (taking both global and local information into account).

We need to pick a subset $A' \subset A$ where A can be assumed as a "nice" A.P. Following the strategy towards multiplication table problem, we choose the following subset (taking both global and local information into account).

Subset A'

$$\mathcal{N}_k(A; \alpha, \beta) := \{ n \in A : \omega(n) = k, \log \log p_j(n) \ge \alpha j - \beta, \ 1 \le j \le k \},$$

where $k = \left\lfloor \frac{\log \log L}{\log 4} - 5\sqrt{\log \log L} \right\rfloor - 4$, $\alpha = \log 4$, $\beta = 1$, and $p_j(n)$ is the j-th prime factor.

We need to pick a subset $A' \subset A$ where A can be assumed as a "nice" A.P. Following the strategy towards multiplication table problem, we choose the following subset (taking both global and local information into account).

Subset A'

$$\mathcal{N}_k(A; \alpha, \beta) := \{ n \in A : \omega(n) = k, \log \log p_j(n) \ge \alpha j - \beta, \ 1 \le j \le k \},$$
 where $k = \left\lfloor \frac{\log \log L}{\log 4} - 5\sqrt{\log \log L} \right\rfloor - 4, \alpha = \log 4, \beta = 1$, and $p_j(n)$ is the j -th prime factor.

Remark: A similar set has been considered by Ford (2018).

We need to pick a subset $A' \subset A$ where A can be assumed as a "nice" A.P. Following the strategy towards multiplication table problem, we choose the following subset (taking both global and local information into account).

Subset A'

$$\mathcal{N}_k(A; \alpha, \beta) := \{ n \in A : \omega(n) = k, \log \log p_j(n) \ge \alpha j - \beta, \ 1 \le j \le k \},$$
 where $k = \left\lfloor \frac{\log \log L}{\log 4} - 5\sqrt{\log \log L} \right\rfloor - 4, \alpha = \log 4, \beta = 1$, and $p_j(n)$ is the j -th prime factor.

Remark: A similar set has been considered by Ford (2018).

• Show the size of $\mathcal{N}_k(A; \alpha, \beta)$ is actually large (Smirnov statistics).

We need to pick a subset $A' \subset A$ where A can be assumed as a "nice" A.P. Following the strategy towards multiplication table problem, we choose the following subset (taking both global and local information into account).

Subset A'

$$\mathcal{N}_k(A; \alpha, \beta) := \{ n \in A : \omega(n) = k, \log \log p_j(n) \ge \alpha j - \beta, \ 1 \le j \le k \},$$
 where $k = \left\lfloor \frac{\log \log L}{\log 4} - 5\sqrt{\log \log L} \right\rfloor - 4, \alpha = \log 4, \beta = 1$, and $p_j(n)$ is the j -th prime factor.

Remark: A similar set has been considered by Ford (2018).

- **1** Show the size of $\mathcal{N}_k(A; \alpha, \beta)$ is actually large (Smirnov statistics).
- ② Show the multiplicative energy of $\mathcal{N}_k(A; \alpha, \beta)$ is small.

Strategy of proving Theorem 1': large subset

To complete Task 1, the reduction steps are necessary, e.g. we need to count primes in A.P. (Siegel-Walfisz) which requires the moduli are small.

 $\mathcal{N}_k(A; \alpha, \beta)$ has small multiplicative energy.

 $\mathcal{N}_k(A; \alpha, \beta)$ has small multiplicative energy. In the proof of Theorem 2', we studied average value of multiplicative function $f = \lambda^{k-\omega(x_iy_j)}$.

 $\mathcal{N}_k(A; \alpha, \beta)$ has small multiplicative energy. In the proof of Theorem 2', we studied average value of multiplicative function $f = \lambda^{k-\omega(x_iy_j)}$. Now to further detect the local information, we write

$$\omega(n,t) \leq g(t) := \frac{\log \log t}{\log 4} + \beta,$$

where

$$\omega(n,t) := \#\{\text{distinct } p : p|n, p \leq t\}.$$

 $\mathcal{N}_k(A; \alpha, \beta)$ has small multiplicative energy. In the proof of Theorem 2', we studied average value of multiplicative function $f = \lambda^{k-\omega(x_iy_j)}$. Now to further detect the local information, we write

$$\omega(n,t) \leq g(t) := \frac{\log \log t}{\log 4} + \beta,$$

where

$$\omega(n,t) := \#\{\text{distinct } p : p|n, p \leq t\}.$$

Apply Shiu's Lemma to sums of terms of the form

$$\lambda_1^{k-\omega(x_iy_j)}\lambda_2^{g(t)-\omega(x_iy_j,t)}$$

and optimize the two parameters $(\lambda_1 = \sqrt{\log 4}, \lambda_2 = \sqrt{2})$.

Thank You!