Stochastic (Incremental) Gradient Descent

Batch gradient descent (GD): Do until satisfied Stochastic gradient descent (SGD): Do until satisfied

- 1. Compute gradient $\nabla L_D(\mathbf{w})$
- For each training example $d \in D$
- 2. $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla L_D(\mathbf{w})$ where $L_D(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} (t_d o_d)^2$

1. Compute gradient $\nabla L_d(\mathbf{w})$

2.
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla L_d(\mathbf{w})$$
 where $L_d(\mathbf{w}) = \frac{1}{2}(t_d - o_d)^2$

- SGD can approximate batch GD arbitrarily closely if learning rate η is sufficiently small
- General case. Objective function (differentiable wrt model parameters w) can be decomposed into a sum of terms, each depending on a subset of training examples

Multilayer Networks of Sigmoid Units

Speech recognition task.

Sigmoid Unit

GD rules can be derived to train

- 1 sigmoid unit
- Multilayer networks of sigmoid units → Backpropagation

Error/Loss Gradient for 1 Sigmoid Unit

$$\frac{\partial L_D}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
= \sum_{d} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)
= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}
= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}
\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d (1 - o_d)
\frac{\partial net_d}{\partial w_i} = \frac{\partial (\mathbf{w} \cdot \mathbf{x}_d)}{\partial w_i} = x_{id}
\frac{\partial L_D}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{id}$$

Feedforward Networks of Sigmoid Units

Use GD to learn w that minimizes squared error/loss:

$$L_D(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in K} (t_{kd} - o_{kd})^2$$

where K is the set of output units in the network, t_{kd} and o_{kd} are, respectively, target output and output of sigmoid unit associated with k-th output unit and training example d

Backpropagation algorithm here assumes 2 layers of sigmoid units and is based on SGD:

$$L_d(\mathbf{w}) = \frac{1}{2} \sum_{k \in K} (t_k - o_k)^2$$

BACKPROPAGATION Algorithm

Idea. Initialize w randomly, propagate input forward and then errors backward thru the network for each training example

Initialize all network weights to small random numbers Until satisfied, do

- For each training example $\langle \mathbf{x}, (t_k)_{k \in K}^{\top} \rangle$, do
 - 1. Input instance \mathbf{x} to the network and compute output of every sigmoid unit in the hidden and output layers
 - 2. For each output unit k, compute error $\delta_k \leftarrow o_k(1-o_k)(t_k-o_k)$
 - 3. For each hidden unit h, compute error $\delta_h \leftarrow o_h(1-o_h) \sum_{k \in K} w_{hk} \delta_k$
 - 4. Update each weight $w_{hk} \leftarrow w_{hk} + \Delta w_{hk}$ where $\Delta w_{hk} = \eta \delta_k o_h$
 - 5. Update each weight $w_{ih} \leftarrow w_{ih} + \Delta w_{ih}$ where $\Delta w_{ih} = \eta \delta_h x_i$

Derivation of BACKPROPAGATION

$$\frac{\partial L_d}{\partial w_{hk}} = \frac{\partial L_d}{\partial o_k} \frac{\partial o_k}{\partial net_k} \frac{\partial net_k}{\partial w_{hk}} \text{ where } net_k = \sum_{h'} w_{h'k} o_{h'}
\frac{\partial L_d}{\partial o_k} = \frac{\partial}{\partial o_k} \frac{1}{2} \sum_{k' \in K} (t_{k'} - o_{k'})^2 = -(t_k - o_k)
\frac{\partial o_k}{\partial net_k} = \frac{\partial \sigma(net_k)}{\partial net_k} = o_k (1 - o_k)
\frac{\partial net_k}{\partial w_{hk}} = o_h
\Delta w_{hk} = -\eta \frac{\partial L_d}{\partial w_{hk}} = \eta(t_k - o_k) o_k (1 - o_k) o_h$$

Homework. Derive $\Delta w_{ih} = -\eta \partial L_d / \partial w_{ih} = \eta \delta_h x_i$.

Remarks on BACKPROPAGATION

- L_D has multiple local minima! GD is guaranteed to converge to some local min., but not necessarily global min.
 - In practice, GD often performs well, especially after using multiple random initializations of w
- Often include weight momentum $\alpha \in [0,1)$:

$$\Delta w_{hk} \leftarrow \eta \delta_k o_h + \alpha \Delta w_{hk}$$
, $\Delta w_{ih} \leftarrow \eta \delta_h x_i + \alpha \Delta w_{ih}$

- Easily generalized to feedforward networks of arbitrary depth:
 - Step 3: Let *K* denote all units in the next deeper layer whose inputs include output of *h*
 - Step 5: Let x_i denote the output of unit i in previous layer that is input to h

Remarks on BACKPROPAGATION

- Expressive hypothesis space. Requires limited depth feedforward networks:
 - Every Boolean function can be represented by a network with one hidden layer but may require exponential hidden units in no. of inputs
 - Every bounded continuous function can be approximated with arbitrarily small error by a network with one hidden layer (Cybenko 1989; Hornik et al. 1989)
 - Any function can be approximated to arbitrary accuracy by a network with two hidden layers (Cybenko 1988)
- Approximate inductive bias. Smooth interpolation between data points.

Learning Hidden Layer Representations

Can the $8 \times 3 \times 8$ feedforward network (left) be trained using BACKPROPAGATION to learn the target function (right)?

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Learning Hidden Layer Representations

Learned hidden layer representation

Input		Hidden				Output	
Values							
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000	
01000000	\rightarrow	.15	.99	.99	\rightarrow	01000000	
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000	
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000	
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000	
00000100	\rightarrow	.01	.11	.88	\rightarrow	00000100	
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010	
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001	

Training

Training

Training

Overfitting

Alternative Loss/Error Functions

• Penalize large weights:

$$L_D(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in K} (t_{kd} - o_{kd})^2 + \gamma \sum_{j,\ell} w_{j\ell}^2$$

• Train on target values as well as slopes:

$$L_D(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in K} \left[(t_{kd} - o_{kd})^2 + \mu \sum_{i=1}^n \left(\frac{\partial t_{kd}}{\partial x_{id}} - \frac{\partial o_{kd}}{\partial x_{id}} \right)^2 \right]$$

• Tie together weights (e.g., phoneme recognition networks)