Lecture 5 Minimum Spanning Tree

- 1. The Minimum Spanning Tree Problem
- 2. A Generic Algorithm
- 3. Kruskal's Algorithm
- 4. Prim's Algorithm

Tree and Its Properties

- Tree is an acyclic, connected graph.
- A tree of |V| vertices has |V|-1 edges.
- There exists a unique path between any two vertices of a tree.
- Adding any edge to a tree creates a unique cycle.
 Breaking any edge on this cycle restores a tree.
- Deleting any edge on a tree increases the number of connected components by 1.

An Application

- In the design of networking
- Given *n* computers, we want to connect them so that each pair of them can communicate with each other.
- Price of cable: \$1/foot
- We want the cheapest possible network.

The Definition of Minimum Spanning Tree

Spanning tree: Given a connected undirected graph G = (V, E), a spanning tree of G is an acyclic subgraph that connects all vertices of G.

Minimum spanning tree: Given a connected undirected graph G = (V, E) and an assignment of weights w(e) to the edges of G, a minimum spanning tree T of G is a spanning tree with minimum total edge weight $w(T) = \sum_{e \in T} w(e)$.

Note:

- (1). A connected undirected graph may have many different spanning trees
- (2). The minimum spanning tree may not be unique

Minimum Spanning Tree Problem

The Problem:

- Input: A connected, weighted, undirected graph G = (V, E; W).
- Output: A minimum spanning tree T for G.

Idea of the Generic Algorithm

- It grows the minimum spanning tree *one edge at a time*.
 - What's the foundation?: An edge set *A* that is a subset of some minimum spanning tree *T*;
 - Which edge?: An edge (u, v) satisfying that $A \cup \{(u, v)\}$ is also a subset of some minimum spanning tree T.
- In other words, it maintains the following loop invariant:
 - Prior to each iteration, A is a subset of some minimum spanning tree.
- The edge (u, v) is called a safe edge for A if $A \cup \{(u, v)\}$ is also a subset of a minimum spanning tree, that is,
 - (u, v) can be safely added to A without violating the above invariant

A Generic Algorithm

```
GENERIC-MST(G, w)
```

```
1 A \leftarrow \emptyset

2 while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A

4 A \leftarrow A \cup \{(u, v)\}

5 return A
```

•Kruskal's and Prim's algorithms are implementations of the generic algorithm on how to maintain A and find the safe edge (u, v) for A.

How to recognize Safe Edges for A Related Notions

- 1. A *cut* (X, Y) of a graph G = (V, E) is a partition of the vertex set V into two sets X and Y = V X.
- 2. An edge $(u, v) \in E$ is said to **cross** the cut (X, Y) if $u \in X$ and $v \in Y$.
- 3. A cut (X, Y) respects a set A of edges if no edge in A crosses the cut.
- 4. An edge is a *light edge* crossing a cut if its weight is the minimum of any edge crossing the cut.

How to recognize Safe Edges for A

Theorem 23.1 Let G = (V, E) be a connected, undirected graph with real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let (X, Y) be any cut of G that respects A, and let (u, v) be a light edge crossing (X, Y). Then, edge (u, v) is safe for A.

Proof of Theorem 23.1

Proof: Let *T* be a MST including *A*. It suffices to consider two cases:

Case 1: T contains the light edge (u, v). We are done;

Case 2: T does not contain the light edge (u, v). In order to show that (u, v) is a safe edge for A, we shall construct another MST T' that includes $A \cup \{(u, v)\}$.

The edge (u, v) forms a cycle with the edges on the path p from u to v in T. Since u and v are on opposite sides of the cut (X,Y), there is at least one edge in T on the path p that also crosses the cut. Let (x, y) be any such edge. Since (x, y) is on the unique path from u to v in T, removing (x, y) breaks T into two components. Adding (u, v) reconnects them to form a new *spanning tree* $T' = T - \{(x, y)\} \cup \{(u, v)\}$.

It is easy to show that T' is a *minimum spanning tree*.

It also is easy to show that T' includes $A \cup \{(u, v)\}$.

A better understanding

```
GENERIC-MST(G, w)
```

```
1 A \leftarrow \emptyset

2 while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A

4 A \leftarrow A \cup \{(u, v)\}

5 return A
```

- A is always acyclic. Why?
- So, $G_A = (V,A)$ is a forest, and each connected component of which is a tree.
- Any safe edge (u, v) for A connects distinct connected component of G_A . Why?
- The while-loop is executed |V|-1 times. Why?

A Corollary

Corollary 23.2: Let G = (V, E) be a connected, undirected graph with real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C = (V_C, E_C)$ be a connected component in the forest $G_A = (V, A)$. If (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A.

Proof: The cut $(V_C, V-V_C)$ respects A, and (u, v) is a light edge for this cut. Therefore, (u, v) is safe for A.

Note: Kruskal and Prim's algorithms are based on the corollary.

Idea of the Kruskal

- 1. Initialize the forest, each vertex as a tree, $A \leftarrow \Phi$.
- 2. Find the least weight edge (u, v) that connects any two trees in the forest.
- 3. Add (u, v) to A and union the two tree into one tree, number of trees in the forest decreases 1.
- 4. Repeat step 2 and 3 until A forms a spanning tree.

Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A \leftarrow \emptyset

2 for each vertex v \in V[G]

3 do MAKE-SET(v)

4 sort the edges of E into nondecreasing order by weight w

5 for each edge (u, v) \in E, taken in nondecreasing order by weight

6 do if FIND-SET(u) \neq FIND-SET(v)

7 then A \leftarrow A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```


(a, d):1 (h, i):1 (c, e):1 (f, h):2 (g, h):2 (b, c):3 (b, f):3 (b, e):4 (c, d):5 (f, g):5 (e, i):6 (d, g):8 (a, b):9 (c, f):12

(a, d):1 (h, i):1 (c, e):1 (f, h):2 (g, h):2 (b, c):3 (b, f):3 (b, e):4 (c, d):5 (f, g):5 (e, i):6 (d, g):8 (a, b):9 (c, f):12

(a, d):1 (h, i):1 (c, e):1 (f, h):2 (g, h):2 (b, c):3 (b, f):3 (b, e):4 (c, d):5 (f, g):5 (e, i):6 (d, g):8 (a, b):9 (c, f):12

(a, d):1 (h, i):1 (c, e):1 (f, h):2 (g, h):2 (b, c):3 (b, f):3 (b, e):4 (c, d):5 (f, g):5 (e, i):6 (d, g):8 (a, b):9 (c, f):12

$$(a, d):1 (h, i):1 (c, e):1 (f, h):2 (g, h):2$$

 $(b, c):3 (b, f):3 (b, e):4 (c, d):5 (f, g):5$
 $(e, i):6 (d, g):8 (a, b):9 (c, f):12$

Correctness Proof of Kruskal

- 1. At any time, A is a subset of a MST
- 2. In the end, A is a MST

Proof of 1. (By induction on |A|)

- Basic step: |A|=0, A_0 (= \varnothing) of course is a subset of a MST.
- Inductive hypothesis: A_k is a subset of a MST.
- Inductive step: Let's consider A_{k+1} . Suppose the (k+1)th edge added to A_k is $e_{k+1}=(u,v)$. Without loss of generality, suppose $u \in C$, here C is a connected component of $G_k=(V,A_k)$. Since (u,v) is the smallest remaining edge, it must be a light edge connecting C to some other component of $G_k=(V,A_k)$, so it is safe for A_k . Hence A_{k+1} is subset of a MST.

Correctness Proof (Continued)

Proof of 2. By 1, in the end, A is a subset of a MST T. By contradiction suppose that A is not a MST. Then, $T-A \neq \emptyset$. Suppose $e_i \in T-A$. e_i must have larger weight than each edge in A, since otherwise e_i should have been added to A. Then, after all the edges in A have been chosen, since $e_i \cup A$ do not contain a cycle, there must be a time that e_i is considered. e_i should be added to A at that time.

A contradiction.

Idea of the Prim

- 1. Start from a vertex *r*, add *r* to a vertex set *U* which is initialized to empty.
- 2. Find the least weight edge (u,v), $u \in U$, $v \in V-U$, add (u,v) to A, and add v to U.
- 3. Repeat 2 until A forms a spanning tree or U = V.

Prim's Algorithm

```
MST-PRIM(G, w, r)
      for each u \in V[G]
            do key[u] \leftarrow \infty
                \pi[u] \leftarrow \text{NIL}
     key[r] \leftarrow 0
 5 Q \leftarrow V[G]
      while Q \neq \emptyset
            do u \leftarrow \text{EXTRACT-MIN}(Q)
 8
                for each v \in Adj[u]
 9
                      do if v \in Q and w(u, v) < key[v]
10
                             then \pi[v] \leftarrow u
11
                                    key[v] \leftarrow w(u, v)
```


Loop invariant

- Key[u] is the minimum weight of the edges connect a vertex u in Q to vertices in U=V-Q.
- $\pi[u]$ is right such a vertex in U.
- The three loop invariant:
 - $A = \{(v, \pi[v]) | v \in V \{r\} Q\}$
 - The vertices already placed into the MST are those in U=V-Q
 - For all vertices $v \in \mathbb{Q}$, if $\pi[v] \neq NIL$, then $\text{key}[v] < \infty$ and key[v] is the weight of a light edge $(v,\pi[v])$ connecting v to some vertex already placed into the MST.

Correctness Proof

Similar to that of Kruskal's.

1: each time we add a safe edge (a light edge crossing (U, Q)).

2: in the end, if A is not a MST, then Q is not empty, and (U, Q) is a cut that respects A. Since G is connected, we can find a light edge crossing (U, Q), which is safe for A. A contradiction.

Conclusion

- The Minimum Spanning Tree Problem
- A Generic Algorithm
- Kruskal's Algorithm
- Prim's Algorithm

Homework

- 23.1-5, 23.2-1, 23.2-8.
- Problem 23-3, 23-4(not compulsory)