Some complexity results for identifying codes in graphs

Florent Foucaud (LaBRI, Bordeaux)
Adrian Kosowski (LaBRI-INRIA, Bordeaux)
George Mertzios (Durham University, UK)
Reza Naserasr (LRI-CNRS, Orsay)
Aline Parreau (LIFL, Lille)
Petru Valicov (LRI, Orsay)

Clermont-Ferrand

November 14th, 2012

JGA 2012

The test cover problem

Definition - TEST COVER (mentioned in Garey, Johnson, 1979)

INPUT: a set system (i.e. hypergraph) (X, S)PROBLEM: find the minimum subset $T \subseteq S$ such that each element $x \in X$ belongs to a different set of sets in T.

The test cover problem

Definition - TEST COVER (mentioned in Garey, Johnson, 1979)

INPUT: a set system (i.e. hypergraph) (X, S)PROBLEM: find the minimum subset $T \subseteq S$ such that each element $x \in X$ belongs to a different set of sets in T.

Remark

Equivalently: for any pair x, y of elements of X, there is a set in \mathcal{T} that contains **exactly** one of x, y, i.e. the symmetric difference of the sets of tests covering x, y is **nonempty**.

General bounds

Theorem (Folklore)

Given a set system (X, S), a solution to TEST COVER has size at least $\log_2(|X|)$.

Proof: Must assign to each element of X, a distinct subset of \mathcal{T} . Hence $|X| \leq 2^{|\mathcal{T}|}$.

General bounds

Theorem (Folklore)

Given a set system (X, S), a solution to TEST COVER has size at least $\log_2(|X|)$.

Proof: Must assign to each element of X, a distinct subset of \mathcal{T} . Hence $|X| \leq 2^{|\mathcal{T}|}$.

Theorem (Bondy's theorem, 1972)

Given a set system (X, S), a minimal solution to TEST COVER has size at most |X|-1.

Proof: nice and short graph-theoretic argument.

Complexity results

Theorem (Garey, Johnson, 1979)

TEST COVER is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)

TEST COVER is NP-complete, even for set systems with a planar incidence graph.

Complexity results

Theorem (Garey, Johnson, 1979)

TEST COVER is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)

TEST COVER is NP-complete, even for set systems with a planar incidence graph.

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra, Ravi, Stougie, 2003)

MIN TEST COVER is $O(\log(|X|))$ -approximable, but NP-hard to approximate within $o(\log(|X|))$.

Proof: Reductions from and to MIN SET COVER.

Identifying codes, a special case of test covers

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Identifying codes, a special case of test covers

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \le 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a **separating code** in G: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Identifying codes, a special case of test covers

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \le 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a **separating code** in G: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a **dominating set** in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V(G),

 $N[u] \cap C \neq N[v] \cap C$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a **separating code** in G: $\forall u \neq v$ of V(G),

$$N[u] \cap C \neq N[v] \cap C$$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a **dominating set** in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V(G),

 $N[u] \cap C \neq N[v] \cap C$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V(G),

$$N[u] \cap C \neq N[v] \cap C$$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a **separating code** in G: $\forall u \neq v$ of V(G),

$$N[u] \cap C \neq N[v] \cap C$$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a **dominating set** in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a **separating code** in G: $\forall u \neq v$ of V(G),

$$N[u] \cap C \neq N[v] \cap C$$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a **dominating set** in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a **separating code** in G: $\forall u \neq v$ of V(G),

 $N[u] \cap C \neq N[v] \cap C$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a **dominating set** in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V(G),

 $N[u] \cap C \neq N[v] \cap C$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a **dominating set** in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V(G),

 $N[u] \cap C \neq N[v] \cap C$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a **dominating set** in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a **separating code** in G: $\forall u \neq v$ of V(G),

 $N[u] \cap C \neq N[v] \cap C$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a **dominating set** in G: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a **separating code** in G: $\forall u \neq v$ of V(G),

 $N[u] \cap C \neq N[v] \cap C$

Equivalently: $(N[u]\Delta N[v]) \cap C \neq \emptyset$

Computational problems

Definition - IDCODE

INPUT: graph G, integer k

QUESTION: does G have an identifying code of size at most k?

Theorem (Cohen, Honkala, Lobstein, Zémor, 1999)

IDCODE is NP-complete (reduction from 3SAT).

NP-completeness also holds for planar subcubic graphs, planar bipartite unit disk graphs, line graphs, etc.

Computational problems

Definition - MIN IDCODE

INPUT: graph G

PROBLEM: find a minimum-size identifying code of G

Theorem (Berger-Wolf, Laifenfeld, Trachtenberg, 2006)

MIN IDCODE is approximable within $O(\log(n))$, but NP-hard to approximate within $o(\log(n))$ (reduction from MIN SET COVER).

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

Theorem (F.)

- (X, S) has a test cover of size k if and only if G(X, S) has an identifying code of size $k + 3\lceil \log_2(|S| + 1) \rceil + 2$. Constructive.
- If MIN IDCODE has an α -approximation algorithm, then MIN TEST COVER has a 4α -approximation algorithm.

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

Theorem (F.)

- (X, S) has a test cover of size k if and only if G(X, S) has an identifying code of size $k + 3\lceil \log_2(|S| + 1) \rceil + 2$. Constructive.
- If MIN IDCODE has an α -approximation algorithm, then MIN TEST COVER has a 4α -approximation algorithm.

Proof: Build approximate id. code C with $|C| \le \alpha OPT_{ID}$ Build test cover T: $|T| \le \alpha OPT_{ID} - 3\log_2(|\mathcal{S}|) - 2$ $\le \alpha (OPT_{TC} + 3\log_2(|\mathcal{S}|) + 2) - 3\log_2(|\mathcal{S}|) - 2$ $\le \alpha OPT_{TC} + (\alpha - 1)3\log_2(|\mathcal{S}|)$ $< 4\alpha OPT_{TC}$

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

Theorem (F.)

- (X, S) has a test cover of size k if and only if G(X, S) has an identifying code of size $k + 3\lceil \log_2(|S| + 1) \rceil + 2$. Constructive.
- If MIN IDCODE has an α -approximation algorithm, then MIN TEST COVER has a 4α -approximation algorithm.

Corollary

It is NP-hard to approximate MIN IDCODE within $o(\log(n))$, even for bipartite graphs.

Similar reductions for split graphs and co-bipartite graphs.

co-bipartite graphs

Theorem (F.)

It is NP-hard to approximate MIN IDCODE within $o(\log(n))$, even for split graphs and even for co-bipartite graphs.

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

IDCODE for interval graphs

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov)

IDCODE is NP-complete for interval graphs. Reduction from 3-DIMENSIONAL MATCHING.

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov)

IDCODE is NP-complete for interval graphs. Reduction from 3-DIMENSIONAL MATCHING.

Definition - 3-DIMENSIONAL MATCHING

INPUT: three sets A, B, C with |A| = |B| = |C|, and a set T of triples of $A \times B \times C$.

QUESTION: is there a perfect 3-dimensional matching $M\subseteq T$, i.e. each element of $A\cup B\cup C$ belongs to eaxctly one triple of M?

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov)

IDCODE is NP-complete for interval graphs. Reduction from 3-DIMENSIONAL MATCHING.

Definition - 3-DIMENSIONAL MATCHING

INPUT: three sets A, B, C with |A| = |B| = |C|, and a set T of triples of $A \times B \times C$.

QUESTION: is there a perfect 3-dimensional matching $M\subseteq T$, i.e. each element of $A\cup B\cup C$ belongs to eaxctly one triple of M?

Theorem (Karp, 1972)

3-DIMENSIONAL MATCHING is NP-complete.

IDCODE for interval graphs - a P_5 as covering gadget

Main idea of the reduction: an interval can separate several pairs of intervals that are far away from each other (without affecting what lies in between).

IDCODE for interval graphs - a P_5 as covering gadget

Main idea of the reduction: an interval can separate several pairs of intervals that are far away from each other (without affecting what lies in between).

A small gadget to ensure that intervals are covered and separated:

IDCODE for interval graphs - transmitter gadget

Idea ("Transmitter gadget"): in order to separate $\{uv^1, uv^2\}$ and $\{vw^1, vw^2\}$, either:

- 1. take only v into the id. code, or
- 2. take both u, w and separate the three pairs $\{x_1, x_2\}$, $\{y_1, y_2\}$, $\{z_1, z_2\}$ "for free".

IDCODE for interval graphs - transmitter gadget

Idea ("Transmitter gadget"): in order to separate $\{uv^1, uv^2\}$ and $\{vw^1, vw^2\}$, either:

- 1. take only v into the id. code, or
- 2. take both u, w and separate the three pairs $\{x_1, x_2\}$, $\{y_1, y_2\}$, $\{z_1, z_2\}$ "for free".

IDCODE for interval graphs - the reduction

Idea: to separate pairs p, q, r, s we need the identifying vertices of some transmitter gadgets. Either take:

- 1. Tr(p,q) and Tr(r,s), but separate NO element pair a,b,c, or
- 2. Tr(p, r, b), Tr(q, r, c) and Tr(s, a) and separate all three element pairs "for free"

Definition - Unit interval graph

Intersection graph of intervals of the real line all having unit length. Equivalent to *proper* interval graphs (no interval properly contains another).

Definition - Unit interval graph

Intersection graph of intervals of the real line all having unit length. Equivalent to *proper* interval graphs (no interval properly contains another).

Observation

Our reduction creates interval graphs that are far from proper/unit.

Definition - Unit interval graph

Intersection graph of intervals of the real line all having unit length. Equivalent to *proper* interval graphs (no interval properly contains another).

Observation

Our reduction creates interval graphs that are far from proper/unit.

Question

What is the complexity of IDCODE for unit interval graphs?

Definition - Ladder graph L_m

 L_m is the grid graph $P_2 \square P_m$.

Definition - Cycle cover

Set $\mathcal S$ of cycles of graph G s.t. $\bigcup_{S\in\mathcal S} E(S)=E(G)$.

Definition - LADDER CYCLE COVER

INPUT: An integer m and an integer k, and a set S of cycles of L_m . QUESTION: Is there a set $S' \subseteq S$ of size k which is a cycle cover of L_m ?

Definition - LADDER CYCLE COVER

INPUT: An integer m and an integer k, and a set S of cycles of L_m . QUESTION: Is there a set $S' \subseteq S$ of size k which is a cycle cover of L_m ?

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov)

IDCODE for unit interval graphs of order n can be reduced to LADDER CYCLE COVER for L_{n+1} and an input of n cycles.

Idea: Only separation of pairs of *consecutive* intervals is necessary, and each interval separates two such pairs.

Definition - LADDER CYCLE COVER

INPUT: An integer m and an integer k, and a set S of cycles of L_m . QUESTION: Is there a set $S' \subseteq S$ of size k which is a cycle cover of L_m ?

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov)

IDCODE for unit interval graphs of order n can be reduced to LADDER CYCLE COVER for L_{n+1} and an input of n cycles.

Idea: Only separation of pairs of *consecutive* intervals is necessary, and each interval separates two such pairs.

Question

What is the complexity of LADDER CYCLE COVER?

Complexity of IDCODE for various graph classes

Complexity of IDCODE for various graph classes

Complexity of IDCODE for various graph classes

