

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, иску	усственный интелект и системы управления»
КАФЕДРА «Программное обеспече	ение ЭВМ и информационные технологии»

Отчёт по лабораторной работе № 1 по курсу «Моделирование»

Тема _	Распределение случайных величин
Студе	нт _ Волков Г.В.
Групп	а_ИУ7-71Б
	та (баллы)
Препо	даватель Рудаков И.В.

Задание

Описать распределения и реализовать программу для построения графиков функции распределения и функции плотности распределения для следующих распределений:

- гиперэкспоненциальное распределение;
- равномерное распределение.

Равномерное распределение

Равномерное распределение — распределение случайной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке всюду постоянна.

Равномерное распределение обозначают $X \sim R(a, b)$, где a, b $\in \mathbb{R}$.

Функция распределения равномерной непрерывной случайной величины:

$$F(x) = \begin{cases} 0, \text{ при } x \ge a \\ \frac{x-a}{b-a}, \text{ при } a \le x \le b \\ 1, \text{ при } x > b \end{cases} \tag{1}$$

Плотность распределения равномерной непрерывной случайной величины:

$$f(x) = \begin{cases} \frac{1}{b-a}, \text{ при } a \le x \le b \\ 0, \text{ иначе} \end{cases}$$
 (2)

Гиперэкспоненциальное распределение

Гиперэкспоненциальное распределение имеет функцию распределения вида:

$$F_X(x) = \begin{cases} \sum_{i=1}^n F_{Y_i}(y, \lambda_i) * p_i, \text{ при } x \ge 0 \\ 0, \text{ иначе} \end{cases}$$
 (3)

и функцию плотности вида:

$$f_X(x) = \begin{cases} \sum_{i=1}^n f_{Y_i}(y, \lambda_i) * p_i, \text{ при } x \ge 0\\ 0, \text{ иначе} \end{cases}$$
(4)

где:

— $F_{Y_i}(y,\lambda)$ - функция распределения экспоненциальной случайной величины Y_i с параметром $\lambda_i>0$, имеющая вид:

$$F_X(x,\lambda) = \begin{cases} 1 - e^{-\lambda x}, \text{ при } x \ge 0\\ 0, \text{ иначе} \end{cases}$$
 (5)

— $f_{Y_i}(y,\lambda)$ - функция плотности распределения экспоненциальной случайной величины Y_i с параметром $\lambda_i>0$, имеющая вид:

$$f_X(x,\lambda) = \begin{cases} \lambda e^{-\lambda x}, \text{ при } x \ge 0\\ 0, \text{ иначе} \end{cases}$$
 (6)

— p_i — вероятность того, что случайная величина X будет иметь экспоненциальное распределение с параметром $\lambda_i, p_i > 0$ и $\sum_{i=1}^n p_i = 1$.

Результаты работы программы

Рисунок 1 — График функции равномерного распределения при а = 1, b = 5

Рисунок 2 – График функции плотности равномерного распределения при а = 1, $b=5\,$

Рисунок 3 — График функции гиперэкспоненциальное распределения при $\lambda=[0.01,\,0.1,\,0.05],\, p=[0.6,\,0.1,\,0.3]$

Рисунок 4 — График функции плотности гиперэкспоненциальное распределения при $\lambda=[0.01,\,0.1,\,0.05],\, p=[0.6,\,0.1,\,0.3]$