Semaine 14 - Espaces vectoriels

Valentin De Bortoli email : valentin.debortoli@gmail.com

Dans la suite k est un corps (on se limite à \mathbb{R} et \mathbb{C}) et E un k-espace vectoriel.

1 Opérations ensemblistes et espaces vectoriels

Soit F et G deux sous-espaces vectoriels de E.

- **1** A quelle condition $F \cup G$ est un sous-espace vectoriel?
- **2** A quelle condition $F \cap G = F + G$?
- **3** Soit A et B deux ensembles de E. Que peut-on dire de $Vect(A \cap B)$ et $Vect(A) \cap Vect(B)$?

2 Une égalité d'espaces

Soit F, F', G, G' quatre sous-espaces vectoriels de E tels que $F' \cap G' = F \cap G$.

1 Montrer que $F = (F + (G \cap F')) \cap (F + (G \cap G'))$.

3 Quelques sous-espaces vectoriels

- 1 Soit $E = \mathcal{F}([0,1])$ le \mathbb{C} -espace vectoriel des fonctions à valeurs complexes de [0,1]. Montrer que $F = \{f \in E, f(0) = -f(1)\}$ est un espace vectoriel. Trouver un supplémentaire de cet espace.
- 2 Soit $E = \mathcal{C}([0,1])$ le \mathbb{C} -espace vectoriel des fonctions continues à valeurs complexes de [0,1]. Montrer que $F = \{f \in E, \int_0^1 f(t) dt = 0\}$ est un espace vectoriel. Trouver un supplémentaire de cet espace.
- 3 Soit $E = \mathcal{C}([0,\pi])$ le \mathbb{C} -espace vectoriel des fonctions continues à valeurs complexes de $[0,\pi]$. Trouver un supplémentaire de $G = \text{Vect}(\sin,\cos)$.

4 Espace vectoriel et fonctions affines

- 1 Soit F l'ensemble des fonctions continues de [-1,1] affines sur [-1,0] et affines sur [0,1]. Montrer que F est un sous-espace vectoriel (de quel espace vectoriel ?).
 - **2** Trouver une base de F.

5 Une base de polynômes

1 Montrer que $(P_k)_{k \in [0,n]}$ avec $P_k = X^k (1-X)^{n-k}$ est une base de $\mathbb{R}_n[X]$.

6 Nombres réels et espace vectoriel

Le but de cet exercice est d'étudier \mathbb{R} comme \mathbb{Q} -espace vectoriel. On note $(p_n)_{n\in\mathbb{N}}$ l'ensemble des nombres premiers rangés par ordre croissant.

- 1 Montrer que $\forall N \in \mathbb{N}, \ (p_n)_{n \in \llbracket 1,N \rrbracket}$ est une famille libre de \mathbb{R} . En déduire qu'il n'existe pas de base finie de \mathbb{R} comme \mathbb{Q} -espace vectoriel.
- 2 Autre démonstration : si $(x_n)_{n \in [\![1,N]\!]}$ est une base de $\mathbb R$ comme $\mathbb Q$ -espace vectoriel en déduire que tout $x \in \mathbb R$ est racine d'un polynôme de degré N-1.
- **3** En considérant $2^{1/N}$ en déduire une contradiction (on admettra que X^n-2 est un polynôme irréductible de $\mathbb{Q}[X]$).

Remarque : en fait on peut même montrer en considérant la famille $(\sum_{n\geq 1}\frac{1}{10^{\lfloor a^n\rfloor}})_{a>1}$ que toute base de $\mathbb R$ comme $\mathbb Q$ -espace vectoriel est de cardinal celui de $\mathbb R$. L'existence d'une base de $\mathbb R$ est assurée par l'axiome du choix (bases de Hamel) mais n'est pas constructible.

7 Polynômes à valeurs entières

- 1 Montrer que $(P_k)_{k \in \llbracket 0,n \rrbracket}$ avec $\forall k \in \llbracket 1,n \rrbracket$, $P_k = \frac{X(X-1)...(X-k+1)}{k!}$ et $P_0 = 1$. Montrer que $(P_k)_{k \in \llbracket 0,n \rrbracket}$ base de $\mathbb{R}_n[X]$.
 - **2** Montrer que $\forall m \in \mathbb{Z}, \forall k \in [0, n], P_k(m) \in \mathbb{Z}$.
 - 3 En déduire la forme des polynômes de $\mathbb{R}_n[X]$ qui prennent des valeurs entières sur les entiers.

8 Divisibilité et sous-espace vectoriel

Soit A polynôme de $\mathbb{R}_n[X]$.

- 1 Montrer que $F = \{P \in \mathbb{R}_n[X], A|P\}$ est un sous-espace vectoriel.
- 2 Exhiber une base et un supplémentaire de cet espace.

9 Une équation polynômiale

- 1 Déterminer les polynômes de $\mathbb{R}_n[X]$ qui vérifient P(X+1) P(X) = 0.
- **2** Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_{n+1}[X]$ tel que P(0) = 0 et $P(X+1) P(X) = X^n$.

10 Une somme directe

- 1 Soit $i \in [0, n]$ et $F_i = \{P \in \mathbb{R}_n[X], \forall j \in [0, n] \setminus \{i\}, P(j) = 0, P(i) \neq 0\}$. Montrer que $F_i \cup \{0\}$ est un espace vectoriel.
 - **2** Montrer que $\mathbb{R}_n[X] = F_0 \oplus \cdots \oplus F_n$.