

الامتحان الوطنى الموحد للبكالوريا المسالك الدولية - خيار فرنسية الدورة العادية 2017 - الموضوع -

+.XMV &+ I NEAO &O V 80E8++2 °X×8999 V N 800 NEA 919 N 91 N N N N S O 8 N S

المركز الوطني للتقويم والامتحانات والتوجية **NS 22F**

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية _ خيار فرنسية	الشعبة أو المسلك

INSTRUCTIONS GENERALES

- L'utilisation de la calculatrice non programmable est autorisée ;
- Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

- L'épreuve est composée de trois exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Géométrie dans l'espace.	3 points
Exercice 2	Calcul de probabilités.	3 points
Exercice 3	Nombres complexes.	3 points
Problème	Etude d'une fonction numérique, calcul intégral et suites numériques.	11 points

- Concernant le problème, In désigne la fonction logarithme népérien.

0.75

0.25

0.75

0.75

1.5

1

Exercice 1 (3 points)

Dans l'espace rapporté à un repère orthonormé direct $\left(0,\vec{i},\vec{j},\vec{k}\right)$, on considère le plan $\left(P\right)$ passant par le point $A\left(0,1,1\right)$ et dont $\vec{u}\left(1,0,-1\right)$ est un vecteur normal et la sphère $\left(S\right)$ de centre le point $\Omega\left(0,1,-1\right)$ et de rayon $\sqrt{2}$

- 0.5 1) a) Montrer que x-z+1=0 est une équation cartésienne du plan (P)
 - b) Montrer que le plan (P) est tangent à la sphère (S) et vérifier que B(-1,1,0) est le point de contact.
 - 2) a) Déterminer une représentation paramétrique de la droite (Δ) passant par le point A et orthogonale au plan (P)
 - b) Montrer que la droite (Δ) est tangente à la sphère (S) au point C(1,1,0)
 - 3) Montrer que $\overrightarrow{OC} \wedge \overrightarrow{OB} = 2\overrightarrow{k}$ et en déduire l'aire du triangle OCB

Exercice 2 (3 points)

Une urne contient huit boules indiscernables au toucher portant chacune un nombre comme indiqué sur la figure ci-contre.

On tire au hasard, simultanément, trois boules de l'urne.

- 1) Soit A l'événement : « Parmi les trois boules tirées, aucune boule ne porte le nombre 0 » et B l'événement : « Le produit des nombres portés par les trois boules tirées est égal à 8 » Montrer que $p(A) = \frac{5}{14}$ et que $p(B) = \frac{1}{7}$
- 2) Soit X la variable aléatoire qui à chaque tirage associe le produit des nombres portés par les trois boules tirées.
- **o. 5 a) Montrer que** $p(X = 16) = \frac{3}{28}$
 - b) Le tableau ci-contre concerne la loi de probabilité de la variable aléatoire $\,X\,$

\mathcal{X}_{i}	0	4	8	16
$p(X=x_i)$				$\frac{3}{28}$

Recopier sur votre copie et compléter le tableau en justifiant chaque réponse.

0.25

0.5

0.5

0.75

0.5 0.5

0.25

1

0.5

Exercice 3 (3 points)

On considère les nombres complexes a et b tels que $a = \sqrt{3} + i$ et $b = \sqrt{3} - 1 + (\sqrt{3} + 1)i$

- 1) a) Vérifier que b = (1 + i)a
 - b) En déduire que $|b| = 2\sqrt{2}$ et que $\arg b = \frac{5\pi}{12}$ $[2\pi]$
 - c) Déduire de ce qui précède que $\cos \frac{5\pi}{12} = \frac{\sqrt{6-\sqrt{2}}}{4}$
 - 2) Le plan complexe est rapporté à un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$

On considère les points A et B d'affixes respectives a et b et le point C d'affixe c telle que $c=-1+i\sqrt{3}$

- a) Vérifier que c=ia et en déduire que OA=OC et que $\left(\overline{\overrightarrow{OA},\overrightarrow{OC}}\right)\equiv\frac{\pi}{2}\left[2\pi\right]$
- b) Montrer que le point B est l'image du point A par la translation de vecteur \overrightarrow{OC}
- c) En déduire que le quadrilatère OABC est un carré.

Problème (11 points)

- I- Soit g la fonction numérique définie sur l'intervalle $\left]0,+\infty\right[$ par : $g(x)=x^2+x-2+2\ln x$
- 1) Vérifier que g(1) = 0
 - 2) A partir du tableau de variations de la fonction $\,g\,$ ci-dessous :

X	0 +∞
g'(x)	+
g(x)	

Montrer que $g(x) \le 0$ pour tout x appartenant à l'intervalle [0,1] et que $g(x) \ge 0$ pour tout x appartenant à l'intervalle $[1,+\infty[$

II-On considère la fonction numérique f définie sur l'intervalle $\left]0,+\infty\right[$ par: $f(x)=x+\left(1-\frac{2}{x}\right)\ln x$

Soit (C) la courbe représentative de la fonction f dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$ (unité: 1cm)

- 1) Montrer que $\lim_{\substack{x\to 0 \\ x\to 0}} f(x) = +\infty$ et interpréter géométriquement le résultat.
- 0.25 2) a) Montrer que $\lim_{x \to \infty} f(x) = +\infty$
- b) Montrer que la courbe (C) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique celle de la droite (D) d'équation y=x

نة	الصف
$\overline{}$	4
4	

1

0.75

1

0.25

0.5

0.5

0.5

0.5

0.75

NS 22F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 - الموضوع - مادة: الرياضيات - مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية - خيار فرنسية

- 3) a) Montrer que $f'(x) = \frac{g(x)}{x^2}$ pour tout x appartenant à l'intervalle $]0, +\infty[$
 - b) Montrer que f est décroissante sur l'intervalle]0 , 1] et croissante sur l'intervalle [1 , $+\infty[$
- 0.25 c) Dresser le tableau de variations de la fonction f sur l'intervalle $\left]0,+\infty\right[$
- 0.5 4) a) Résoudre dans l'intervalle $]0, +\infty[$ l'équation $(1-\frac{2}{x})\ln x = 0$
- b) En déduire que la courbe (C) coupe la droite (D) en deux points dont on déterminera les coordonnées.
- c) Montrer que $f(x) \le x$ pour tout x appartenant à l'intervalle $\begin{bmatrix} 1 & , & 2 \end{bmatrix}$ et en déduire la position relative de la courbe (C) et la droite (D) sur l'intervalle $\begin{bmatrix} 1 & , & 2 \end{bmatrix}$
 - 5) Construire, dans le même repère (O, \vec{i}, \vec{j}) , la droite (D) et la courbe (C) (On admettra que la courbe (C) possède un seul point d'inflexion dont l'abscisse est comprise entre 2,4 et 2,5)
- 0.5 6) a) Montrer que $\int_{1}^{2} \frac{\ln x}{x} dx = \frac{1}{2} (\ln 2)^{2}$
 - b) Montrer que la fonction $H: x \mapsto 2\ln x x$ est une fonction primitive de la fonction $h: x \mapsto \frac{2}{x} 1$ sur l'intervalle $]0, +\infty[$
 - c) Montrer, à l'aide d'une intégration par parties, que $\int_{1}^{2} \left(\frac{2}{x} 1\right) \ln x \, dx = \left(1 \ln 2\right)^{2}$
 - d) Calculer, en cm^2 , l'aire du domaine plan limité par la courbe(C), la droite (D) et les droites d'équations x=1 et x=2
 - III-On considère la suite numérique (u_n) définie par :

$$u_0 = \sqrt{3}$$
 et $u_{n+1} = f(u_n)$ pour tout entier naturel n

- 1) Montrer par récurrence que $1 \le u_n \le 2$ pour tout entier naturel n
- 2) Montrer que la suite (u_n) est décroissante (on pourra utiliser le résultat de la question II-4)c))
- 3) En déduire que la suite (u_n) est convergente et déterminer sa limite.

الامتحان الوطنى الموحد للبكالوريا المسالك الدولية - خيار فرنسية الدورة العادية 2017

- عناصر الإجابة -

المركز الوطنى للتقويم والامتحانات والتوجية

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية _ خيار فرنسية	الشعبة أو المسلك

NR 22F

On prendra en considération les différentes étapes menant à la solution. On acceptera toute autre méthode correcte.

Exercice 1 (3 points)

- 1.25 1) a) 0.5
 - b) 0.25 pour $d(\Omega, (P)) = \sqrt{2}$, 0.25 pour (P) tangent à (S) et 0.25 pour la vérification.
- 1 2) a) 0.25
 - b) 0.5 pour la droite (Δ) est tangente à (S) et 0.25 pour C est le point de contact.
- 0.75 3) 0.5 pour le produit vectoriel et 0.25 pour l'aire est égale à 1

Exercice 2 (3 points)

- 1) 0.75 pour $p(A) = \frac{5}{14}$ et 0.75 pour $p(B) = \frac{1}{7}$ 1.5
- 1.5 2) a) 0.5
 - **b) 0.25 pour** $p(X=8) = \frac{1}{7}$, **0.25 pour** $p(X=4) = \frac{3}{28}$ et **0.5 pour** $p(X=0) = \frac{9}{14}$

Exercice 3 (3 points)

- 1.25 1) a) 0.25 pour la vérification
 - b) 0.25 pour le module de b et 0.25 pour un argument de b
- 2) a) 0.25 pour la vérification, 0.25 pour OA = OC et 0.25 pour $\left(\overrightarrow{OA}, \overrightarrow{OC}\right) = \frac{\pi}{2} \left[2\pi\right]$ 1.75

 - c) 0.25 pour OABC est un parallélogramme et 0.25 pour OABC est un carré.

0.75

NR22F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 - عناصر الإجابة - مادة: الرياضيات - مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية - خيار فرنسية

Problème (11 points)

3) 0.25 pour la suite (u_n) est convergente (décroissante et minorée),

0.25 pour (insister sur f est continue sur [1,2] et $f([1,2]) \subset [1,2]$)

