		Geometry:		Physics:	
Run title> hybr	id scenario example	R_0	= 9.656 m	I_{p}	= 16.64 MA
PROCESS Version> 1.0.3	16	a	= 3.115 m	Vacuum B_T at R_0	= 5.924 T
Date:> 24/0	9/2019	Α	= 3.1	q 95	= 4.5
Time:> 14:4	3	K ₉₅	= 1.65	$oldsymbol{eta}_{N}$, thermal	$= 2.185 \% \text{ m T MA}^{-1}$
User:> apea	arce	δ_{95}	= 0.3333	$oldsymbol{eta}_N$, total	$= 2.768 \% \text{ m T MA}^{-1}$
Optimising:> Plasma major radius		Surface area	$= 1655 \text{ m}^2$	$oldsymbol{eta}_{P}$, thermal	= 1.269
Plasma composition:		Plasma volume	$= 3109 \text{ m}^3$	$oldsymbol{eta}_P$, total	= 1.608
Number densities relative to e	lectron density:	No. of TF coils	= 16	< t _e >	= 13.75 keV
D + T	= 0.8389	inboard blanket+shield	= 1.055 m	< n _e >	$= 5.916e + 19 m^{-3}$
Не	= 0.0663	ouboard blanket+shield	= 1.782 m	$< n_{\rm e, line} > /n_{\rm G}$	= 1.2
Xe	= 0.0005182	Fusion power	= 1911 MW	$T_{e0}/< T_e >$	= 2.314
W	= 5e-05			$n_{\rm e0}/ < n_{\rm e, vol} >$	= 1.315
				$Z_{ m eff}$	= 2.539
Colour Legend: ITR				$n_Z/ < n_{\rm e, vol} >$	= 0.0005682
OP				$ au_{ m e}$	= 3.602 s
				H-factor	= 1.2
				Scaling law	= IPB98(y,2)
Coil currents etc:	- 11 26 MA	Power flows:	_ 0.0490 MW m=2	Neutral Beam Current Drive:	_ 121 MW
PF 1 PF 3	= 11.26 MA = -8.243 MA	Nominal neutron wall load Normalised radius of 'core' regi	= 0.8489 MW m ⁻²	Steady state auxiliary power	= 121 MW = 50 MW
FF 3	= -6.243 MA = -5.373 MA	Electron density at pedestal	$= 4.641e + 19 \text{ m}^{-3}$	Power for heating only Bootstrap fraction	
DEE			= 4.0410+19 111	DOUISITAD ITACITOTI	
PF 5				•	= 0.434
Startup flux swing	= 370.7 Wb	r/a at density pedestal	= 0.94	Auxiliary fraction	= 0.226
Startup flux swing Available flux swing	= 370.7 Wb = -522.3 Wb	r/a at density pedestal Helium fraction	= 0.94 = 0.0663	Auxiliary fraction Inductive fraction	= 0.226 = 0.34
Startup flux swing	= 370.7 Wb	r/a at density pedestal Helium fraction Core radiation	= 0.94 = 0.0663 = 123.6 MW	Auxiliary fraction Inductive fraction NB gamma	= 0.226 = 0.34 = $0.3021 \ 10^{20} \ A \ W^{-1} \ m^{-2}$
Startup flux swing Available flux swing	= 370.7 Wb = -522.3 Wb	r/a at density pedestal Helium fraction Core radiation Total radiation	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW	Auxiliary fraction Inductive fraction NB gamma NB energy	= 0.226 = 0.34 = $0.3021 \ 10^{20} \ A \ W^{-1} \ m^{-2}$ = $1000 \ keV$
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn	= 370.7 Wb = -522.3 Wb = 2 hrs	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor	= 0.226 = 0.34 = 0.3021 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. 1	= 370.7 Wb = -522.3 Wb = 2 hrs rip.) = 13.15 T	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Ro Pdiv Ro Pdiv	= 0.226 = 0.34 = 0.3021 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. 1	= 370.7 Wb = -522.3 Wb = 2 hrs rip.) = 13.15 T = 0.5972	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW = 209.2 MW	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{\langle n \rangle R_0}$	= 0.226 = 0.34 = 0.3021 10^{20} A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹ = 36.62 ×10 ⁻²⁰ MW m ²
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. I I/I _{crit} TF Temperature margin	= 370.7 Wb = -522.3 Wb = 2 hrs rip.) = 13.15 T = 0.5972 = ERROR! Var missing	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW = 209.2 MW = 119.5 MW	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{< n > R_0}$ $\frac{P_{\text{div}}}{P_{\text{LH}}}$	= 0.226 = 0.34 = 0.3021 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹ = 36.62 ×10 ⁻²⁰ MW m ² = 1.75
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. I I/I _{crit} TF Temperature margin CS Temperature margin	= 370.7 Wb = -522.3 Wb = 2 hrs rip.) = 13.15 T = 0.5972 = ERROR! Var missing = 6.066 K	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW = 209.2 MW = 119.5 MW = 3.062 years	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{\langle n \rangle R_0}$	= 0.226 = 0.34 = 0.3021 10^{20} A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹ = 36.62 ×10 ⁻²⁰ MW m ²
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. I I/Icrit TF Temperature margin CS Temperature margin Conduit Von Mises stress	= 370.7 Wb = -522.3 Wb = 2 hrs rip.) = 13.15 T = 0.5972 = ERROR! Var missing = 6.066 K = 5.038e+08 Pa	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW = 209.2 MW = 119.5 MW = 3.062 years = 2592 MW	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{< n > R_0}$ $\frac{P_{\text{div}}}{P_{\text{LH}}}$	= 0.226 = 0.34 = 0.3021 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹ = 36.62 ×10 ⁻²⁰ MW m ² = 1.75
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. I I/I _{crit} TF Temperature margin CS Temperature margin	= 370.7 Wb = -522.3 Wb = 2 hrs rip.) = 13.15 T = 0.5972 = ERROR! Var missing = 6.066 K	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW = 209.2 MW = 119.5 MW = 3.062 years = 2592 MW = 37.5 %	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Pairy Ro Pdiv Ro Pdiv Plut H* (non-rad. corr.) Costs	= 0.226 = 0.34 = 0.3021 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹ = 36.62 ×10 ⁻²⁰ MW m ² = 1.75 = 1.065
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. I I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress	= 370.7 Wb = -522.3 Wb = 2 hrs rip.) = 13.15 T = 0.5972 = ERROR! Var missing = 6.066 K = 5.038e+08 Pa = 5.8e+08 Pa	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW = 209.2 MW = 119.5 MW = 3.062 years = 2592 MW	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Ro Pdiv Ro Pdiv Ro Pdiv Ro Pdiv Ro Plasma H* (non-rad. corr.)	= 0.226 = 0.34 = 0.3021 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹ = 36.62 ×10 ⁻²⁰ MW m ² = 1.75
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. I I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress Allowable stress	= 370.7 Wb = -522.3 Wb = 2 hrs Fip.) = 13.15 T = 0.5972 = ERROR! Var missing = 6.066 K = 5.038e+08 Pa = 5.8e+08 Pa = 5.8e+08 Pa	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency Net cycle efficiency	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW = 209.2 MW = 119.5 MW = 3.062 years = 2592 MW = 37.5 % = 31.54 %	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Pairy Ro Pdiv Ro Pdiv Plut H* (non-rad. corr.) Costs	= 0.226 = 0.34 = 0.3021 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹ = 36.62 ×10 ⁻²⁰ MW m ² = 1.75 = 1.065
Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. I I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress Allowable stress	= 370.7 Wb = -522.3 Wb = 2 hrs Fip.) = 13.15 T = 0.5972 = ERROR! Var missing = 6.066 K = 5.038e+08 Pa = 5.8e+08 Pa = 5.8e+08 Pa	r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency Net cycle efficiency Gross electric power	= 0.94 = 0.0663 = 123.6 MW = 276.2 MW = 1461 MW = 1.519 MW = 209.2 MW = 119.5 MW = 3.062 years = 2592 MW = 37.5 % = 31.54 % = 972 MW = 200 MW	Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Pairy Ro Pdiv Ro Pdiv Plut H* (non-rad. corr.) Costs	= 0.226 = 0.34 = 0.3021 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 361.8 MW = 21.66 MW m ⁻¹ = 36.62 ×10 ⁻²⁰ MW m ² = 1.75 = 1.065

