Определение производной

Производной функции y = f(x)точке x_0 называется предел

отношения приращения функции этой точке В К

приращению

аргумента, когда

приращение

аргумента стремится

к нулю.

$$y' = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Производные элементарных функций

C' = 0, $C - $ константа	$(x^n)' = nx^{n-1}$	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$ $(x \neq 0)$	$(\sqrt{x})'$ $= \frac{1}{2\sqrt{x}}$ $(x > 0)$
$(\sin x)'$	$(\cos x)'$	$(a^x)'$	$(e^x)' = e^x$
$=\cos x$	$=-\sin x$	$=a^{x}\ln a$	

(tg x)'	$(ctg \ x)'$	$(\log_a x)'$	$(\ln x)' = \frac{1}{x}$	
$=\frac{1}{\cos^2 x}$	$=-\frac{1}{\sin^2 x}$	$=\frac{1}{x \ln a}$	(x > 0)	
		$\left (a > 0, a \neq 1, \right $		
		x > 0)		
Правила		(cu)'=cu',	(u+v)'=	
дифференцирования		u' + v',		
		$(uv)' = u'v + uv', \left(\frac{u}{v}\right)' =$		
		$\frac{u'v-uv'}{v^2}$		
Производная		$(f(u(x)))' = f'_u(u) \cdot u'_x(x)$		
сложной функции				
Монотонность		Функция возрастает на		
функции		промежутке,	если ее	
		производная положительна		
		на данном отрезке; функция		
		возрастает на промежутке,		
		если ее	производная	
		отрицательна на данном		
		отрезке.		

Необходимое	В точках экстремума		
условие экстремума	производная функции равна		
	нулю или не существует.		
Достаточное условие	Если функция непрерывна в		
экстремума	точке x_0 и ее производная		
	меняет знак при переходе		
	через точку, то x_0 является		
	точкой экстремума		
	функции. При этом, если		
	знак производной меняется		
	с минуса на плюс, то это –		
	точка минимума, а если с		
	плюса на минус – точка		
	максимума.		
Наибольшее и	Если функция непрерывна		
наименьшее значения	на отрезке и имеет на нём		
функции,	конечное число		
непрерывной на	критических точек (точек,		
отрезке	где производная равна нулю		
	или не существует), то эта		
	функция достигает		

наибольшего	или				
наименьшего значения	на				
данном					
отрезке либо в критических					
точках внутри отрезка, либо					
в концевых точках отрез	ка.				