					_		
$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2 k^2}{(1+2 k^2)^2 t_1}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_1^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$ \tau_1^{\#1} + \alpha $	$\tau_1^{\#2} +^{\alpha}$

$f_{1}^{#2}$	0	0	0	ikt_1	0	0	0	
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	
$\omega_{1^{\text{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	- <i>īkt</i> 1	
$\omega_{1}^{\#1} \ \omega_{1}^{\#2} \ \omega_{1}^{\#2} \ f_{1}^{\#1} lpha eta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_{1}^{\#2}_{+}{}_{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#^2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$	
	3	3	f	J	3	+	+	

	#	Ι	τ	3	3	3	2	16	
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2\bar{l}k\sigma_{0+}^{\#1} == 0$	$\tau_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2\overline{\imath}k\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:	

	$\omega_{0^+}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}\dagger$	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$

0^{-0}	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	$\sigma_{2^{-}}^{\#1} lpha eta \chi$	0	0	2
, 0	0	0	0	0	О			
+ ⁰	$i \sqrt{2} k$ $(1+2k^2)^2 t_1$	$\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	$\tau_2^{\#1}_{2^+}\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	
ر ₀ +	$\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1} = -$	0	0	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	
	$\sigma_{0}^{#1} + \frac{1}{2}$	$\tau_{0}^{#1} + \frac{1}{0}$	τ ^{#2} †	$\sigma_{0^-}^{\#1} +$		$\sigma_2^{\#1} + \alpha^{\beta}$	$\tau_{2}^{\#1} + \alpha \beta$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

_	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\lambda}$
$p_{2}^{\#1} + \alpha^{\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$^{+1}_{2}$ $^{+}$ $^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\frac{1}{2}$ † $\frac{\alpha\beta\chi}{2}$	0	0	<u>t</u> 1 2

 $\frac{\text{Unitarity conditions}}{r_2 < 0 \&\& t_1 < 0}$

(No massless particles)