DSTVis: Towards Better Visual Analysis of UAVs' Spatio-temporal Data

- Supplementary Material -

This supplementary material provides additional information and results about the evaluation for our submitted paper titled DSTVis: Towards Better Visual Analysis of UAVs' Spatio-temporal Data.

This supplemental material includes a demonstration video and user research results, with data for visual analysis derived from the drone flight logs provided by Data Comets[1].

For the user study, we provide the post-study questionnaires and Research process photos.

Data Description

name	describe	uint	type
Roll Angular Rate	Desired quaternion for quaternion control		float32
Setpoint (Degs/s)			
Pitch Angular Rate	body angular rates in NED frame		float32
Setpoint (Degs/s)			
Yaw Angular Rate	body angular rates in NED frame		float32
Setpoint (Degs/s)			
Altitude Recorded	Altitude in 1E-3 meters above MSL, (millimetres)		int32
(Meters)			
Velocity (Meters/second)	GPS ground speed, (metres/sec)		float32
Noise (Per	GPS noise per millisecond		int32
Meters/second)			
Jamming Indicator	indicates jamming is occurring		int32
Altitude Estimated	Altitude AMSL, (meters)		float32
(Meters)			
Roll Angle Setpoint (Degs)	Quaternion rotation from NED earth frame to		float32
	XYZ body frame		
Pitch Angle Setpoint	Quaternion rotation from NED earth frame to		float32
(Degs)	XYZ body frame		
Yaw Angle Setpoint	Desired quaternion for quaternion control		float32
(Degs)			
Roll Angle Estimated	Quaternion rotation from NED earth frame to		float32
(Degs)	XYZ body frame		
Pitch Angle Estimated	Quaternion rotation from NED earth frame to		float32
(Degs)	XYZ body frame		
Yaw Angle Estimated	Quaternion rotation from NED earth frame to		float32
(Degs)	XYZ body frame		
Roll Anguler Rate	Bias corrected angular velocity about X body axis		float32
Estimated (Degs/s)	in rad/s		
Pitch Angular Rate	Bias corrected angular velocity about Y body axis		float32
Estimated (Degs/s)	in rad/s		
Yaw Angular Rate	Bias corrected angular velocity about Z body axis		float32
Estimated (Degs/s)	in rad/s		
Barometer Altitude	Altitude above MSL calculated from temperature		float32
(Meters)	compensated baro sensor data using an ISA		
	corrected for sea level pressure		
	SENS_BARO_QNH.		
Altitude Set Points			float32
(Meters)			
CPU Load (0 - 1)	float32 load		float32
Battery Remaining	From 1 to 0, -1 if unknown	0-1	float32
(0=Empty - 1=Full)			

Battery Current (Amps)	Battery current in amperes, filtered, 0 if	amperes	float32
	unknown		
Battery Discharged	Discharged amount in mAh, -1 if unknown	mAh	float32
(Milliamp Hours)			
Thrust Control (0=no			float32
thrust - 1=max			
thrust)control throttle			
Roll Control (-1 - 1)	control roll	-1-1	float32
Pitch Control (-1 - 1)	control pitch	-1-1	float32
Yaw Control (-1 - 1)	control yaw	-1-1	float32

REFERENCES

[1] Saffo, D., Leventidis, A., Jain, T., Borkin, M.A. and Dunne, C. (2020), Data Comets: Designing a Visualization Tool for Analyzing Autonomous Aerial Vehicle Logs with Grounded Evaluation. Computer Graphics Forum, 39: 455-468. https://doi.org/10.1111/cgf.13994