Microprocessor Interfacing INEL-4217 First Partial Exam

Name	Clave	ID#	Sec
Part One:	Theory (40%)		
NOTE: 1	his part of the exam mus	be completed without any aid material.	
1.1 Discu disad	ess the difference between vantages of each. (20%)	semi-synchronous and asynchronous buses.	Point out advantages and
1.2 Expla diagra	in the style used by Mount to clarify your explana	orola in the design of its basic control bus. ions. (20%)	Use a simplified timing
7.4	requires more Asqueh: No de	devices spected to finish on time, assert RDY or wait vice is spected to finish our ssert DTACK signal.	signal.
		Requires moless hardware, devices need to drive wait deta is prove to be garbied accesses. Dota confidence is high sim on be included to detect error walid tectures. However very vired since accessional olderices. (also walchder)	edoniel. However a 'unpolid address LCK 13 required from the devices. LCK 13 required from the devices.

1.2 The MOTO style uses separated signals for providing access time and transfer direction. Address & Data buses are demy

E - Indicates acress time end with H-r L transition

Pho -> Transfer dérection. Carries no timing into

B - assertéd fei valid address

access time: address valid to Hal transition of E

INEL 4217 First Partial Exam

Name	ID#	Sec
Part Two: Problems (60%)		

NOTE: The usage of aid materials is allowed for completing this part.

Given the schematic in Figure 1, perform the following analyses using information extracted from the attached data sheets:

- 2.1 Perform a complete DC bus loading analysis for all devices in the schematics. Based on your analysis, give your recommendations about line interconnections (i.e. where might be drivers needed, if any). Also indicate how much supply current will require this circuit to operate. (35%)

 NOTE: Make sure of showing all the computations you made to perform your analysis. Recommendations without support computations will not be considered.
- 2.2 Perform a timing analysis for the all accesses in the system. To simplify your computations, assume that all propagation delays, set-up, and hold times are negligible. Based on the results of your analysis, give your timing recommendations about the circuit. (25%)

NOTE: Here again, only recommendations based on your computations will be considered.

ABSOLUTE MAXIMUM RATINGS*

Storage Temperature-65°C to +150°C Voltage on EA/Vpp Pin to Vss ... -0.5V to +21.5V Ambient Temperature Under Bias0°C to 70°C Voltage on Any Other Pin to V_{SS} -0.5V to +7V Power Dissipation....1.5W

NOTICE: This is a production data sheet. The specifications are subject to change without notice.

•WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the Properties of Conditions is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Operating Conditions: T_A (Under Bias) = 0°C to +70°C; V_{CC} = 5V \pm 10%; V_{SS} = 0V

D.C. CHARACTERISTICS (Under Operating Conditions)

;	.c. Circumo Lantol Ico (orige Operaning Contonions)	(e) (-
Symbol	Parameter	Ĕ	Max	Units	Test Conditions
VIL	Input Low Voltage (Except EA Pin of 8751H & 8751H-8)	-0.5	0.8	>	
V _{IL1}	Input Low Voltage to EA Pin of 8751H & 8751H-8	0	0.7	>	
Y H	Input High Voltage (Except XTAL2, RST)	2.0	V _{CC} + 0.5	>	
VIH1	Input High Voltage to XTAL2, RST	2.5	V _{CC} + 0.5	>	XTAL1 = V _{SS}
Vol.	Output Low Voltage (Ports 1, 2, 3)*		0.45	>	lot = 1.6 mA
Vol1	Output Low Voltage (Port 0, ALE, PSEN)*				
	8751H, 8751H-8	·	0.60	>>	lot = 3.2 mA
	All Others		0.45	>	lot = 3.2 mA
V _{OH}	Output High Voltage (Ports 1, 2, 3, ALE, PSEN)	2.4		>	OH = -80 µA
Vон1	Output High Voltage (Port 0 in External Bus Mode)	2.4	-	>	Іон = −400 μА
긡	Logical 0 Input Current (Ports 1, 2, 3, RST) 8032AH, 8052AH All Others		800 500	E E	V _{IN} = 0.45V V _{IN} = 0.45V
<u>-</u>	Logical 0 Input Current to EA Pin of 8751H & 8751H-8 Only		- 15	ΨW	$V_{IN} = 0.45V$
112	Logical 0 Input Current (XTAL2)		-3.2	шA	V _{IN} = 0.45V
ב	Input Leakage Current (Port 0) 8751H & 8751H-8 All Others		± 100 ± 10	A A A	0.45 × VIN × VCC 0.45 × VIN × VCC
<u>=</u>	Logical 1 Input Current to EA Pin of 8751H & 8751H-8		500	μA	V _{IN} = 2.4V
Ē	Input Current to RST to Activate Reset		500	μĄ	V _{IN} < (V _{CC} - 1.5V)
<u>8</u>	Power Supply Current: 8031/8051		160	ΑЩ	
	8031AH/8051AH		125	Ψ	Ali Outputs
-	8751H/8751H-8		175 250	A A	Disconnected; $\overline{EA} = V_{CC}$
Clo	Pin Capacitance		10	冶	Test freq = 1 MHz

NOTE:

Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{CL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

MCS®-51

A.C. CHARACTERISTICS Under Operating Conditions;

Load Capacitance for Port 0, ALE, and PSEN = 100 pF;

Load Capacitance for All Other Outputs = 80 pF

Charles	Compression	12 MHz Oscillator	scillator	Variable	Variable Oscillator	1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. Win	Max	Min	Max	SIES
1/TCLCL	Oscillator Frequency			3.5	12.0	MHz
TLHIL	ALE Pulse Width	127		2TCLCL-40		SU
TAVLL	Address Valid to ALE Low	43		TCLCL-40		SU
TLLAX	Address Hold after ALE Low	48		TCLCL-35		ηs
TLLIV	ALE Low to Valid Instr In 8751H All Others		183 233		4TCLCL 150 4TCLCL 100	SU SU
TLLPL	ALE Low to PSEN Low	58		TCLCL-25		SE
ТРСРН	PSEN Pulse Width 8751H All Others	190		3TCLCL - 60		su so
TPLJV	PSEN Low to Valid Instr In 8751H All Others		100		3TCLCL 150 3TCLCL 125	SI SI
TPXIX	Input Instr Hold after PSEN	0		0	1	SL
TPXIZ	Input Instr Float after PSEN		63		TCLCL-20	ns.
TPXAV	PSEN to Address Valid	75		TCLCL-8		SU
TAVIV	Address to Valid Instr In 8751H All Others		267 302	·	STCLCL - 150 STCLCL - 115	នក
TPLAZ	PSEN Low to Address Float		8		20	รูบ
TRURH	RD Pulse Width	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100		SL
TRLDV	RD Low to Valid Data In		252		5TCLCL-165	su .
TRHDX	Data Hold after RD	0		0		SI
TRHDZ	Data Float after RD		97		2TCLCL-70	SU
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ПS
TAVDV	Address to Valid Data In		585		9TCLCL - 165.	SU
TLLWL	ALE Low to RD or WR Low	. 200	300	3TCLCL-50	3TCLCL + 50	SII .
TAVWL	Address to RO or WR Low	203		4TCLCL-130		. ns
TQVWX	Data Valid to WR Transition 8751H	13		TCLCL-70		ย
	S S S S S S S S S S S S S S S S S S S	62		ומדמר פמ		LIS
CVWI	Data Valid to WR High	433		7TCLCL-150		ns
XMHOX	Data Hold after WR	33		TCLCL-50		us
TRLAZ	RD Low to Address Float		20		20	ns
WHE	RD or WR High to ALE High 8751H All Others	33 43	133	TCLCL 50 TCLCI 40	TOLCL + 50 TOLCL + 40	. Sn
				2	2	2

NOTE:
This table does not include the 8751-8 A.C. characteristics (see next pags).

MCS®-51

270048-7 AB-A15 FROM PCH ŗ THHD2 P2.0-P2.7 OR A8-A15 FROM DPH THLDV THLAZ - TRLAH -EXTERNAL DATA MEMORY READ CYCLE - TAVOV -TLLWL -- TAYML -PORT 2 PORT 0 PSEX ALE 10

EXTERNAL DATA MEMORY WRITE CYCLE

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature

Temperature Under Bias-10°C to +70°C Strang Temperature Under Bias-10°C to +80°C -65°C to +125°C Storage Temperature All Inputs or Output Voltages with

Respect to Ground-0.6V to +6.25V -0.6V to +13.5V Respect to Ground Vpp Supply Voltage with Voltage on Pin 24 with

...... -0.6V to +14.0V During Programming Respect to Ground

NOTICE: This is a production data sheet. The specifications are subject to change without notice. *WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and ex-tended exposure beyond the "Operating Conditions" may affect device reliability.

CAPACITANCE(2) ($T_A = 25^{\circ}C$, f = 1 MHz) $5^{\circ}C^{\circ}C^{\circ}C^{\circ}$

2764A

. . .

Symbo	ol Parameter	(1) Typ	Max	a Tun	Conditions
ی	Input Capacitance	4	9	Я	VIN = 0V
CoCT	Output Capacitance	8	12	≟d	Volt = 0V

A.C. TESTING INPUT/OUTPUT WAVEFORM

2.0 OUTPUT 0.6	230864-3
TEST POINTS	
2.0	
 2.4 INPUT	

A.C. Testing; inputs are Driven at 2.4V for a Logic "1" and 0.45V for a Logic "0". Timing Measurements are made at 2.0V for a Logic "1" and 0.8V for a Logic "0".

A.C. TESTING LOAD CIRCUIT

A.C. WAVEFORMS

Vour = 0V to Voc

V_{IN} = 0V to V_{CC}

Conditions

둙 Ĕ Ε̈́ Ę

디베 Mex

돌

Output Leakage Current Vpp Current Read

Input Load Current

Parameter

Symbol

V_{CC} Current Standby

V_{CC} Current Active Input Low Vollage Input High Voltage

ISB CC⁽²⁾ 1.0 1_{pp}(2)

7 Ξ

D.C. CHARACTERISTICS 0°C < TA < +70°C

READ OPERATION

₽ 2 35 35

The state of the state of

` V_{PP} = 5.5V '>: CE = V_{IH} CE = OE = V_{II}

CE=CE=VIL Test Conditions

> ٤ 22 Ę 뫋 2

22

Ĭ

2764A-25 2764A

Max

Ī

Max

₹ 92 180

Ë

Parameter

Symbol

ğ ņ ğ

Address to Output Delay

CE to Output

2764A-20 2764A-2 Ę

2784A-1

Vcc±5% Vcc ± 10%

Versions(4)

A,C. CHARACTERISTICS 0°C < TA < +70°C

0E=V1 ΩE=V_{IL}

250 8

8 200

> 180 65 in in

52. ž

OE to Output Delay

OE High to Output Float

V_{CC} = 5.0V ± 0.25V

I_{ОН} = -400 µA

for = 2.1 mA

Vcc + ↑

2.0

3.8

Output High Voltage Output Low Voltage

Vpp Read Voltage

Vpp(2) νģ Ä

+0.8 0.45 8

NOTES

- 1. Typical values are for T_A = 25°C and nominal supply voltages. 2. This parameter is only sampled and is not 100% tested. 3. \overline{OE} may be delayed up to $t_C = t_O E$ after the falling edge of \overline{CE} without impact on $t_C E$.

1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}. 2. V_{PP} may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and I_{FP}. The maximum current value is with outputs O₀ to O₇ unloaded. 3. This parameter is only sampled and is not 100% tested. Output Data Float is defined as the point where data is no longer driven—see timing diagram on the following page. 4. Model Number Prefixes: No prefix = CERDIP.

CE-CE-VIL

CE=V_IL

8

c 0

. .

Output Hold from Address, CE or OE Whichever

OH 3 t_{0F}(3)

Occurred First

NOTES:

5116S/L

ABSOLUTE MAXIMUM RATINGS*

to Ground (Vin, Vout)-0.3V to +7V Power Dissipation (P_D)1.0W Storage Temperature (Tstg) -55°C to +150°C Voltage on Any Pin Relative

NOTICE. This is a production data sheet. The specifications are subject to change without notice.

Maximum Ratings" may cause permanent damage. These are stress ratings only, Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability. *WARNING: Stressing the device beyond the "Absolute

DC Continuous Output Current (Ios).....50 mA

RECOMMENDED OPERATING CONDITIONS Voltage referenced to VSS, TA = 0°C to 70°C

Symbol	Parameter	Min	Tvo	Max	ii.
V _{CC}	Supply Voltage	4.5	5.0	5.5	>
v SS	Ground		0	0	>
ΛįΗ	Input High Voltage	2.2	1	6.0.+32V	۸
V _{IL}	Input Low Voltage	-0.3		0.8	>

NOTE: 1. During transitions, the inputs may undershoot to -3.5V for periods less than 20 ns.

CAPACITANCE TA = 25°C, f = 1.0 MHz

Symbol	Parameter	Min.s	Min.s Max	Unit 10
GINT	Input Capacitance (V _{IN} = 0V)	1	9)288	pF
Cour	Output Capacitance ($V_{OUT}=0V$)	Eghte 1.		ρF

This parameter is sampled and not 100% tested,

D.C. AND OPERATING CHARACTERISTICS

4.5

.

Themselves to self-file

Recommended Operating Conditions unless otherwise noted

						The state of the s
Symbol	Parameter	Min.	Тур	Max	Max Units	Test Conditions
1001	Operating Current	17	30	40	γш.	$V_{CC} = Max, \overline{CS} = V_{1L}$
	-	-				Outputs open
. 2001	Dynamic Current.		30	90	Υш	Toyo = Min, Vcc = Max
						Outputs open
-BSI				ю	, mA	<u>CS</u> = V _{IH}
lsB1	Standby STD		4	50	An	$\overline{CS} \ge V_{CC} - 0.2V$
	7	-	0.2*	2	i.	$V_{IN} = GND$ to V_{CC}
	Input Load Current	-		-	Υ'n	V _{CC} = Max
İ						V _{IN} = GND to V _{CC}
01	Output Leakage			l,	μĄ	CS = VIH, VCC = Max
		-				$V_{OUT} = GND$ to V_{CC}
VOH	Output High Voltage	2.4			>	l _{OH} = -1.0 mA
VOL	Output Low Voltage			0.4	,>	$l_{OL} = 2.1 \text{mA}$
1						

*TA = 25°C

in to

test test test test

5116S/L

Base Make Make

A.C. TEST CONDITIONS

Output Load1 TTL Load + 100 pF Input Pulse Levels0.8V to 2.4V

Input Rise and Fall Times......10 ns

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 10\%$

READ CYCLE

Symbol	Darameter	5116	51165-10	5116	51165-12	Unit
		Min	Max	Min	Мах	
thc ' '	READ Cycle Time	. 100		120		เกร
tAA	· Address Access Time ·		100		120	su
tACS	Chip Select Access Time		100		120	su
но,	Output Hold from Address Change	10		10	•	กร
torz	Chip Selection to Output in Low Z	10	•	10		กร
tcHZ	Chip Deselection to Output in High Z	0	40	0 10 10 10 10 10 10 10 10 10 10 10 10 10	40	: M ^s su √
toe	Output Enable Access Time ·	40	1	1 50°°°°	egin old malandar. Alfin ald political) su ု
torz	Output Enable to Output in Low Z	10	-	10		ย
ZHO ₁	Output Enable to Output in High Z	0	40	0	40	Su .

READ CYCLE NO. 1(1)	NO. 1(1)	4		. 7 (1) (1) App 444	
 		± · ·	tro -	4430 E OVSKO 1446	1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
ADDRESS	*			* ***	
ī		44,	-	Service Control	i ester
· 13-		- X///		Selection of the select	
			- 10t	+HO1-+ C ENTRE AVIOLE	1881
IR	*//////	, torz	- torz(5)	Trouble to	
		t _{ACS} (5)	- `.	(s) ^{ZHO})	(5)
DATA OUT		, CLZ		DATA-VALID	
					240571-4

, J. P. Mary Ser.

WRITE CYCLE

Symbol	Parameter	511	65-10	5116	S-12	l l m le
		Min	Max	Min	Max	Ųnlt
twc	WRITE Cycle Time	100		120		ns
t _{CW}	Chip Selection to End of Write	65		70 -		ns
t _{AW} ,	Address Valid to End of Write	80		105		ns
t _{AS} ·	Address Set-Up Time	0		0		ns
twp	Write Pulse Width	60 .		70		ns
t _{WR}	Write Recovery Time	10	١.	10		ns
t _{DW}	Data Valid to End of Write	30	:11	35		ns
t _{DH}	Data Hold Time	10	,	10		ns
^t wnz	Write Enable to Output in High Z	0	30	0	35	ns
tow .	Output Active from End of Write	10	-	10		ns
^t онz	Output Disable to Output in High Z	0	40	0	40	ns

NOTES:

- NOTES:

 1. WE must be high during address transitions.

 2. A Write occurs during the overlap (twp) of a low OS and a low WE.

 3. All Write Cycle timings are referenced from the last valid address to the first transitioning address.

 4. During this period, I/O pins are in tri-state.

 5. If the OS low transition occurs simultaneously with the WE low transitions or after the WE transition, outputs remain in tri-

- state. δ . \overline{OE} is continuously low ($\overline{OE} = V_{IL}$). 7. $\overline{D_{OUT}}$ is the same phase of write data on this write cycle. 8. $\overline{D_{OUT}}$ is the read data of next address. 9. If \overline{OE} is low during this period, I/O pins are in output state. 10. Transition is measured at \pm 500 mV from steady state voltage.

Device Operation

The 5116S has two control inputs: Chip Select (\overline{CS}) and Write Enable (\overline{WE}). \overline{CS} is the power control pin and should be used for device operation. \overline{WE} is the data control pin and should be used to gate data at the I/O pins.

Standby Power

The 5116S is placed in a standby or reduced power consumption mode by applying a high (V_{IH}) to the $\overline{\text{CS}}$ input. When in standby mode, the device is deserbed and the instandard model in the standard model. lected and the outputs are in a high impedance state, independent of the WE input.

Table 1. Mode Selection Truth Table

CS	WE	ŌĒ	Mode	1/0	Power
Н	Χ	Х	Standby	High Z	Standby
L.	L	Х	Write	D _{IN}	Active
Γ.	Н	L	Read	Dout	Active
L	Х	Н	Read	High Z	Active

Write Mode

Write Cycles may be controlled by either \overline{WE} or \overline{CS} . In either case, both \overline{WE} and \overline{CS} must be high (V_{IH}) during address transitions. During a WE Controlled write cycle, CS must be held low (V_{IL}) while WE is low. Address transfers occur on the falling edge of WE and the data transfers on rising edge of WE. During a CS controlled cycle, WE must be held low (V_{IL}) while CS is low. The addresses are then transferred on the falling edge of CS and data on the rising edge of CS. Data, in both cases, must be valid for a time t_{DW} before the controlling input is brought high (V_{IH}) and remain valid for a time t_{DH} after the controlling input is high.

Read Mode

 \overline{CS} must be low (VIL) and \overline{WE} must be high (VIH) to activate a read cycle and obtain data at the outputs. Given stable addresses, valid data is available after a time tAA.

<u>INNIBIRINYANAN BENYASARI PENANGUNYAN </u>

54LS/74LS373

DESCRIPTION

The "373" is an 8-Bit Transparent Latch with 3-state buffered outputs. The latch outputs follow the data inputs when the latch Enable

controlled by an active LOW Output Enable (\overline{OE}) input. A HIGH on the \overline{OE} input forces the eight outputs to the high impedance "off" state. When \overline{OE} is LOW, the latched or is HIGH, and they are stable when the Enable is LOW. The 3-state output buffers are

fransparent data appears at the outputs.

FEATURES

8-Bit transparent latch
 3-State output buffers.

Common Latch Enable Input with Common 3-state Output Enable hysteresis

independent latch and 3-state buffer control

operation See "363" for MOS compatible output

LOGIC SYMBOL

PIN CONFIGURATION

						8 P	Ē	
_	_	8	 	 	_	6	CMD 10	

ORDERING CODE (See Section 9 for further Package and Ordering Information)

PACKAGES	COMMERCIAL RANGES VCC=5V±5%; T _A =0°C to +70°C	MILITARY RANGES	
Plastic DIP	N74LS373N	m man man manyaki na pina man manyaki na pina man man manyaki na pina man man man man man man man man man m	
Ceramic DIP	N74LS373F	\$54LS373F	
Flatpak			

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE(a)

PINS	DESCRIPTION	54/74:	545/745	54LS/74LS
ш	Latch Enable (active HIGH) input IH (µA)			20
10.00	Parallei Data inputs I _{II} I (μA)			20 -0.4
O.€	Output Enable (active LOW) input IH (uA) In (mA)			200.4
00·02	3-State outputs IOH (mA)			-1/-2.6(a) 12/24(a)

a. The stanhad humbars indicats different parametric values for Military/Commercial lamparature ranges respectively.

FUNCTIONAL DESCRIPTION
The "373" is Octal Transparent Latch coupled to eight 3-state output buffers. The two sections of the device are controlled independently by Latch Enable (E) and Output Enable (OE) control gates.

The data on the D inputs transferred to the latch outputs when the Latch Enable (E) input is HiGH. The latch remains transparent to the data inputs while E is HiGH, and stores the data present one setup time beenable gate has about 400mV of hysteresis built in to help minimize problems that signal fore the HIGH-to-LOW enable transition. The and ground noise can cause on the latching operation.

active LOW Output Enable (OE) controls all eight 3-state buffers independent of the latch operation. When OE is LOW, the The 3-state output buffers are designed to drive heavily loaded 3-state buses, MOS latched or transparent data appears at the outputs, When $\overline{\text{OE}}$ is HIGH, the outputs are in the high impedance "off" state, which means they will neither drive nor load the memories, or MOS microprocessors. The

MODE SELECT -- FUNCTION TABLE

		INPUTS	L/A		OUTPUTS
STORE WOODS	믱	w	n O	INTERNAL REGISTER	40-00
Enable & read register		rг	ıπ	¬≭.	JI
Latch & read register			- c	٦x	H
Latch register & disable outputs	Ιх	د د	с	ıΙΤ	88

H = HIGH voltagal lavei

b = HIGH voltage one solup time prior to the HIGH-to-LOW enable transition

c = LOW voltage bevel

1 = LOW voltage tevel one solup time prior to the HIGH-to-LOW enable transition

(2) = High impedance foll* state

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE^(b)

Vol. Output LOW voltage VCC Min Volte I_CI = 12mA Min Max Unit Vol. VCC Min Voltage VCC = Min VOE = VII, VOE = VII, VOE = VII, VOE = Max NOT = 0.4 V		0 0 0	1		54,	54/74	545,	545/745	54LS/	54LS/74LS	
Output LOW voltage VCC = Min. VolE = VIm VolUT =		TANAMEIER	IEST CON	SNOLLIC	Hin	Мах	ΗÜ	Мах	Min		ENO.
VOE = VII. IOL = 24mÅ 0.5(c) Output HiGH voltage VCC = Main, VoE = VII. 2.4 Output short circuit current VCC = Max. VoUT = 0V -30 -100 Supply current VCC = Max. VoUT = 0V 44 44	ر د	Output LOW voltage	VCC Min	OL = 12mA	Ì					0.4	>
Output HiGH voltage VCC = Min. VDE = VIL 2.4 2.4 Output short circuit current VCC = Max. Volt = 0V -30 -100 Supply current VCC = Max Com -30 -40			VOE = VIL (OL = 24mA						0.5(a)	>
Supply current VCC = Max. VOUT = 0V = -30100 Supply current VCC = Max Com - 44	Y _O H	Output HiGH vollage	VCC = Min, V	Out Table					2.4		>
Supply current V _{CC} = Max Mil . 44	sol	Output short circuit current	VCC = Max. V	00T = 0V		ė.			930	-100	ĄĖ
CC MAA COB	٠ ر	Supply Supply		M	-					44	ĄE
	3		100 - Max	Š						40	ΨΨ

c. This parameter for Commercial Range only. b. For lamily dc characteristics, see inside front cover for S4.74 and 54H174H, and see inside back cover for 54S174S and 54LS174LS epecifications.

- 51/- 14 N:R| s - 45,84 HOP SEDECODER/DEMUEUPLEXTR

DESCRIPTION

The "138" is a HIGH speed 1-of-8 Decoder/Demultiplexer. The "138" is ideal for HIGH speed bipolar memory chip select adallow parallel expansion to a 1-of-24 decoder using only three "138" devices; or to a 1-of-32 decoder using four "138" devices and dress decoding. The multiple input enables one inverter,

FEATURES

- Demultiplexing capability
 Multiple input enable for easy expansion
 ideal for memory chip select decoding
 Direct replacement for Intel 3205

LOGIC SYMBOL

PIN CONFIGURATION

	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 - 1	E 6 6 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	\$ 040
Package and Ordering Information)	MILITARY RANGES VGC = 5V ± 10%; T _A = -55°C to -125°C		S54S138F • S54LS138F	S54S138W • S54LS138W
ORDERING CODE- (See Section 9 for further Package and Ordering Information)	COMMERCIAL HANGES	N74S138N • N74LS138N	N74S138F • N74LS138F	
CRDERING C	PACKAGES	Plastic DIP	Ceramic DIP	Flatpak

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE (a)

PINS	DESCRIPTION	54/74	54S/74S	54LS/74LS
Ao-A2	Address inputs البراس) Address inputs		50 -2.0	20 -0.36
E, E2	I _{IH} (μΑ) Enable (Active LOW) inputs		50 -2.0	20 -0.36
- Li	ال البارية HIGH! input البارية الباري		50 -2.0	20 -0.36
0-7	loH (μΑ) loL (πΑ)		-1000 20	-400 4/8(a)

The stashed numbers indicate different parametric values for Military/Commercial, lemperature ranges respectively.

FUNCTIONAL DESCRIPTION

abled provides eight mutually exclusive active LOW outputs (6-7). The device features three Enable inputs: two active LOW (E, E2) and one active HIGH (E₂) Every output will be HIGH unless E; and E₂ are LOW and E₃ is HIGH. This multiple Enable function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four "138's" and one in-The "138" decoder accepts three binary weighted inputs (Ao.A1.A2) and when enverter.

remaining Enable inputs as strobes. Enable inputs not used must be permanently fied to their appropriate active HIGH or active LOW The device can be used as an eight output demultiplexer by using one of the active LOW Enable inputs as the data input and the

TRUTH TABLE

		Z.	NPUTS						OUTPUTS	uTs				
ıш	Щ 23	E3	Ψ	¥	AZ	lo) - -	101	lm	14	lıs	ψ	7	
I	×	×	×	×	×	Ι	I	I	I	Ι	x	x	Ξ	
×	I	×	×	×	×	I	I	x	r	I	I	x	I	
×	×	_+	×	×	×	I	T	I	x	ľ	ĸ	ĸ	I	
		r	٦	_	د	ب.	Ι	I	I	I	I	ľ	r	
	_4	T	r	نہ		I	ړ	Ľ	I	I	I	x	r	
'n	_,	I	_	I		Ι	T,	_	Œ	x	I	x	r	
_1	_3	I	r	Ι	_1	Ι	I	I	_1	I	r	ı	r	
_1	_1	r	_	د	I	r	I	I	x		T	X.	r	
ب	_	r	I	ı	I	Ι	T	I,	I	r		r	r	
3	۔	ı	_1	r.	r	Ι	I	x	Ι	I	I		r	
_	_	r	Ι	I	r	I	I	r	x	I	r	x	,,i	
OTES		-												
Î U	HIGH voltace level	GP IRVB										٠.		

HIGH voltage level
 LOW voltage level
 Don't care

1

LOGIC DIAGRAM

			= $-$	
			T	<u> </u>
				<u> </u>
			P	
		F		Ξ
₹ >0	Do-		Þ	<u> </u>
	- >∘		P	 E
₹ <u></u>				E
	 		 	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE ^(b)

() = Pin Number Vcc = Pin 16 GNO ≈ Pin 8

120	5	ΨΨ
54LS/74LS	Max	10
541.8	Min	
54S/74S	Max	7.4
548	Min	
54/74	Max	
25	Min	
THOIR CONTRACT	ובאו המשמח וכאו	Vcc = Max
111111111111111111111111111111111111111	PARAMEIER	Supply current
		lcc Sup

b. For lamily dc characteristics, use inside front cover for \$4/74 and 54H/74H, and see inside back cover for \$45/74S and \$415/74L\$ specifications.

L. y Caw.t	Ř
53	_
Standing	· i·
Note:	

NODESS AN : 19

SUPPLY CUR. = 5 50PPLY CUR. = 5 50PPLY CUR. = 5 Relomm = 25	Total		Wealtest driver our hows: Memory Jourson		Rom drives: Loads	3 REAL TWACT SULA	1 MC ACT. 10 MA
8061 Note: Standby Genramy	JOL JOH (I'st ITH (I)	8051 R23 1.6m 804 5004 1011 1011	* 8051 Palace 3,2m 400m 10M 10M 10M	* 51165 2.1 m 1m 1m 1 hd 60m	10M 10M	Bry 400 M. 0.36 m 20 M	2.6m 6.4m 20M -

Int - 400m

. AB-A7: Driver 7415373 LOAD RAME ROW address hars booking

423 MA < 2.1 MA) We problem

423点点 400 JA (10 ph 10 UN

3 RAIN JWACT 1 ROM THAFC 1 plc Ald. 1873 IN

2721 - 4M+ 10M= 14M4 < 24Mit (No ETIH= 4MM+ 10M=Hath < 2.6MM) problem

278 - 188 - 187 AIG - 1805/ 1805/ 188 - 188 AIGH - 188 UAB TZAN TOOM - 48-AND Driver P2 MC

8019 WILD 1964 John 18 18 STSC = 160 + 4 * 60 + 75 + 10140 = 525 mA the problem EIM-SIN- 1414 (B)

34 MR L. 400 MA 146 41 Shevi.

4 03 A A A A A A 20 UN

ALE & PSEN - Sugle load 1 ROM

POG WR LINES

All drives: LOADS

High state analysis.

Jac. Aur supply = 750mh BSV (win min)

Dur freq = 12 MHz Terch = 12 x 10 6

Program Read Tacc= TPLIN + TLLPL + TAVLL

Tace = 215 + 58 + 43 = 316 mS

Doctor Reach Tack = TRIRH+TLIML + TAUL Tock = 400 + 200 + 48 = 64305

Doto Wite Tace = Twint + Telent + Tayle = 1043 nS

ROW ACCESS FIRME

ひ、大角木っか

Read = 250 ns RAW Access time = 1165-12

Read = 12015

Waile = 18505

Tokip < The 3 ho problem