IIEE

Energy & Environment

Life Cycle Assessment

Petra Gsodam, Institute of Electricity Economics and Energy Innovation

29.04.2016

Content

- Material flow management
- Life Cycle Assessment (LCA)
- Life Cycle Assessment of photovoltaic systems
- Environmental performance of energy systems

Material flow management

Material flow management

- Efficiently manage materials (economic and ecologic)
- Cost savings
 - Material costs represent biggest cost factor in the manufacturing sector!
- Reasons
 - Scarcity of resources leads to rising costs
 - Manufacturing companies reduce vertical integration and use higher quality materials
 - Previous cost reduction programs focused largely on labour costs or on improvements in the organizational structure
- Lowering the cost of materials is essential in order to remain globally competitive

Material and energy balance

By accounting for material and energy entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure.

First law of thermodynamics!

Material and Energy Balances in BDF production

Used cooking oil, Capacity; 5t/d

Source: http://www.intechopen.com/books/liquid-gaseous-and-solid-biofuels-conversion-techniques/biofuel-sources-extraction-and-determination

11**=**1=

Steady-state processes

$$\Sigma \dot{m}_I = \Sigma \dot{m}_O$$

$$\Sigma \dot{E}_{I} = \Sigma \dot{E}_{O}$$

Dynamic processes

$$\Sigma \dot{m}_{I} = \Sigma \dot{m}_{O} - \frac{\Delta m_{S}}{\Delta t}$$

$$\Sigma \dot{E}_{I} = \Sigma \dot{E}_{O} - \frac{\Delta E_{S}}{\Delta t}$$

IIEE

Example: Material Flow Analysis

Raw Materials = 20 t/a, Recycling Rate = 0.70

Source: Stan 2.5

Stocks and flows

Mass / energy balance

Balance of flows (inputs/outputs)

- mineral resources [t]
- energy resources [kJ]
- products [t]
- residuals [t, kJ]

- ..

Balance of stocks

- soil sealing [m²]
- contaminated sites [m²]
- facilities [t]
- buildings [m², t]
- ..

Input-Output-Table

INPUT	Amount	Unit	state of matter	origin	etc.	Amount Unit state of matter origin etc.
I. materials						I. products
- raw materials						II. residuals
- additives						1. material
 operating material 	S					- solid
						- liquid
II. source of energy						- gas
-solid						2. energy
- liquid						- exhaust heat
-gas						- by convection
						- by radiation
						- by conduction
						- light
						- noise, vibration
						- ionising radiation

Combination of table and flow chart

Sankey-Diagrams

Actually used energy (efficiency factor actual used energy/energy input)

Examples see at www.sankey-diagrams.com

IIEE

14

Energy flow diagram Austria

System boundaries

- Boundaries between the technological system and nature
- Geographical area
- Time horizon
- Boundaries between the current life cycle and related life cycles of other technical systems

Material and energy balances

Sources of information

- Cost-accounting
- Purchase
- Accounting
- Asset management
- Responsible employees (e.g. special officers)
- Measurements, calculations, observation

Life cycle assessment (LCA)

What is a LCA?

Life-cycle assessment is a technique to assess
environmental impacts associated with all the stages of
a product's life from raw material extraction through
materials processing, manufacture, distribution, use, repair
and maintenance, and disposal or recycling.

Also known as

- Life cycle analysis
- Eco-Balance (Ökobilanz)
- Cradle-to-grave analysis

LCA

Source: www.sites.davidson.edu

LCA

Worldwatch Institute, Worldwatch Paper 166: Purchasing Power: Harnessing Institutional Procurement for People and the Planet, July 2003, www.worldwatch.org

LCA

Life Cycle Assessment in accordance with ISO 14040/14044

Goal and scope definition

Goal definition

- Intended application
 - Product development and improvement
 - Strategic planning
 - Public decision making
 - Marketing
 - ...
- Reasons for conducting the study
- Intended audience, communication

Scope definition

- Functional unit: reference to which inputs and outputs can be related
- Assumptions and limitations
- Critical review and other procedural aspects
- Define system boundaries based on goal and scope

Goal and scope definition

- Functional unit
 - Comparison on the basis of an equivalent (function)
 - Reference to which the inputs and outputs can be related
- Example
 - 1000 litres of milk packed in glass bottles or packed in carbon
 - Instead of 1 glass bottle versus 1 carton

Inventory analysis

- Data collection part of the LCA
- Inventory analysis is the LCA phase involving the compilation and quantification of inputs and outputs for a given product system throughout its life cycle.
- Involves creating an inventory of flow from and to nature for a product system
- Inventory flows
 - Inputs of water, energy, raw materials
 - Releases to air land, water
- Construct a flow model using data on inputs and outputs

Inventory analysis

Steps

- 1. Preparing for data collection
- Data collection
- 3. Calculation procedures
- 4. Allocation and recycling

Examples

- Electricity production by coal combustion
- Recycling of aluminium scrap
- Use of a passenger car

Inventory analysis

Source: https://commons.wikimedia.org/w/index.php?curid=33018258

Sources for generic LCI data

- BUWAL (Schweizerisches Bundesamt für Umwelt, Wald und Landschaft)
- APME (Association of Plastics Manufactures in Europe)
- ECOSOL (European LCI Surfactant Study Group with Administrative Support of the CEFIC/ECOSOL Sector Group)
- ProBas (Prozessorientierte Basisdaten für Umweltmanagement-Instrumente)
- GEMIS (Gesamt-Emissions-Modell Integrierter Systeme)

Life cycle impact assessment

- Evaluating the significance of potential environmental impacts based on the LCI flow results
- LCIA consists of the following mandatory elements:
 - 1. Selection of impact categories, category indicators, and characterization models;
 - 2. the **classification** stage, where the inventory parameters are sorted and assigned to specific impact categories; and
 - 3. impact measurement, where the categorized LCI flows are characterized, using one of many possible LCIA methodologies, into common equivalence units that are
 - 4. then summed to provide an overall impact category total (normalization).

ISO LCIA: Classification

- ISO definition: assignment of LCI results to impact categories
- Examples
 - CO₂ and CH₄ are assigned to climate change
 - Copper to water eco-toxicity

ISO LCIA: Characterization

- ISO definition: calculation of category indicator results
- Impact measurement

 $Indicator\ Result_{Cat} = \sum_{subs} CharFact_{cat,subs} \times InventoryResult_{subs}$

- Unit of characterisation results
 - kg CO₂equ (climate change)
 - kg SO₂equ (acidification)
 - ...

5 kg CO_2 , 3 kg CH_4 , GWP 1 x (5/1000) + 21 x (3/1000) = 0,068t CO_2 equ

ISO LCIA: Characterization

Example of a characterization/impact table

Impact category	Incandescent lamp	Fluorescent lamp
Climate change	120.000 kg CO ₂ -equ	40.000 kg CO ₂ -equ
Eco-toxicity	320 kg DCB-equ	440 kg DCB-equ
Acidification	45 kg SO ₂ -equ	21 kg SO ₂ -equ
Depletion of resources	0,8 kg antimony-equ	0,3 kg antimony-equ
etc.		

ISO LCIA: Normalization

- ISO definition: calculation of the magnitude of category indicator results to reference information
- Reference information (over a given period of time)
 - Area (e.g. Austria, Europe, the world)
 - Person (e.g. a Chinese citizen)
 - Product (e.g. the most frequently used product)
- Aim: better understand the relative magnitude for each indicator results of the product system under study:
 - Checking for inconsistencies
 - Providing and communicating information on the relative significance of the indicator results
 - Preparing for additional procedures

 $Normalized\ Indicator\ Result_{cat} = \frac{Indicator\ Result_{cat}}{Reference\ Value_{cat}}$

Methods for environmental impact assessment

Qualitative evaluation methods

- Verbal evaluation
- ABC-Analysis
- Value-benefit-analysis/decision matrix

Quantitative, non-monetary evaluation methods

- Critical volumes
- Cumulated energy demand (CED)
- Eco-points
- Material Input per Service Unit (MIPS)
- Sustainable Process Index (SPI)
- ECO-Indicator 99
- CML

Quantitative, monetary evaluation methods

- Costs of substitution
- Potential or compensatory price
- EPS-method

CML

- Evaluates impacts of emissions on environmental issues/impact categories
- Impact-oriented classification
 - Emissions are classified by environmental impact categories
 - Usually there is no aggregation but a development of an environmental profile
- Impact categories
 - Biotic/Abiotic resource depletion
 - Climate change
 - Stratospheric ozone depletion
 - Human toxicity, eco-toxicity (aquatic, terrestrial etc.)
 - Photo-oxidant formation
 - Acidification
 -

CML: Impact categories

Impact category	Category indicator	Characterisation model	Characterisation factor						
Abiotic depletion	Ultimate reserve in relation to annual use	Guinee and Heijungs 95	ADP ⁹						
Climate change	Infrared radiative forcing	IPCC model ³	GWP ¹⁰						
Stratospheric ozone depletion	Stratospheric ozone breakdown	WMO model ⁴	ODP ¹¹						
Human toxicity	PDI/ADI¹	Multimedia model, e.g. EUSES ⁵ , CalTox	HTP ¹²						
Ecotoxicity (aquatic, terrestrial, etc)	PEC/PNEC ²	Multimedia model, e.g. EUSES, CalTox	AETP ¹³ , TETP ¹⁴ , etc						
Photo-oxidant formation	Tropospheric ozone formation	UNECE ⁶ Trajectory model	POCP ¹⁵						
Acidification	Deposition critical load	RAINS ⁷	AP ¹⁶						
Eutrophication	Nutrient enrichment	CARMEN ⁸	EP ¹⁷						

¹ PDI/ADI Predicted daily intake/Aceptable daily intake

² PEC/PNEC Predicted environmental concentrations/Predicted no-effects concentrations

³ IPCC Intergovernmental Panel on Climate Change

⁴ WMO World Meteorological Organization

⁵ EUSES European Union System for the Evaluation of Substances

⁶ UNECE United Nations Economic Commission For Europe

⁷ RAINS Regional Acidification Information and Simulation

⁸ CARMEN Cause Effect Relation Model to Support Environmental Negotiations

⁹ ADP Abiotic depletion potential

¹⁰ GWP Global warming potential

¹¹ ODP Ozone depletion potential

¹² HTP Human toxicity potential

¹³ AETP Aquatic ecotoxicity potential

¹⁴ TETP Terrestrial ecotoxicity potential

CML: Example

- 1. Selection of the considered environmental impacts
 - Emission of 1.000t CH₄
- 2. Classification by a certain environmental impact category (classification)
 - Category: greenhouse effect
- 3. Form index values for each category (characterization)
 - Greenhouse effect with Global Warming Potential (GWP)
 - CH₄ has a 21 times stronger impact than CO₂; therefore 21.000t
 CO₂equ
- 4. Compare to benchmarking value (normalization)
 - Austria 2006: 93*106t CO₂equ
 - Share of our emission: 2,3*10⁻⁴ CO₂equ

CML: Example

Cumulated energy demand

- Energy as a measurement for the environmental impact
- Total amount of primary energy required during the production, use and disposal of a product or service or the required amount of energy originally related to a good

$$CED = CED_{Production} + CED_{Use} + CED_{Disposal}$$

CED_{Production}

- Electricity 3,19 MJ_{Prim}/MJ_{Sec}
- Steel 27,1 MJ/kg
- Aluminum 154,7 MJ/kg

CED_{Use}

Diesel 48,5 MJ/kg

Excurse: offshore wind farm alpha ventus

- Start of operation: April 27, 2010
- 250 Mio €, 4.100 €/kW
- Power generation
 - Units operational: 12 x 5 MW
 - Nameplate capacity: 60 MW
- Energy fed into the grid
 - Annual average 2011-2014: 248,76 GWh

11**=**=

CED of alpha ventus per life cycle phase

Source: Energiewirtschaftliche Tagesfragen

Eco-points/ecological scarcity method

- Energy and material flows refer to ecological scarcity
- Eco-factors express the distance between the current and the target state in regard to the respective substance
- The less eco-points a process causes the better its ranking
- Eco-factor

$$EF = \left(c * \frac{1}{Fc_i} * \frac{F_i}{Fc_i}\right)$$

Eco-points

$$EP = EF * emission (consumption)$$

[EP/g]

*c...*constant (10¹²)

 F_{i} ...current flow

*Fc_i...*critical flow, scarcity

Eco-points

Material Input per Service (MIPS)

- Environmental issues are related to the extend of material flows
- Measure of raw material intensity

$$MIPS = {}^{MI}/{}_{S}$$
 $Material\ Intensity\ MI = \sum P_i * MI_i$
 $Service\ Unit\ S = n * p$

P_i...mass of substance i

*MI*_i...material intensity of substance i, "ecological backpack"

n...number of services/uses

p...number of persons that can use the product simultaneously

Eco-Indicator 99

Damage oriented environmental impact assessment (endpoint)

- Three types of damage
 - Human health
 - Number and duration of illnesses and losses in people's lifetimes caused by climate change, depletion of the ozone layer, carcinogenic substances
 - Measured in DALY: disability adjusted life years
 - Indicator of the world bank and WHO
 - Includes deaths and illnesses caused by:
 - Respiratory and carcinogenic effects
 - Effects caused by climate change, depletion of ozone layer and radioactive radiation
 - Quality of ecosystems
 - Biodiversity or the loss in biodiversity due to eco-toxicity, acidification, eutrophication, land consumption
 - Resources
 - Additional energy consumption that will be required in future to extract difficultly accessible resources

11**=**= 46

Eco-Indicator 99

Source: http://openwetware.org/wiki/Ecost

Sustainable Process Index (SPI)

- Developed by Krotscheck & Narodoslawsky (1995), TUG
- Based on the assumption that a sustainable society is built only on solar exergy.
- Surface area is needed for the conversion of energy into products and services. Due to the fact that surface area is finite on earth, it is a limited resource.
- Area is the underlying dimension of the SPI, the more area a process needs to fulfil a service, the more it 'costs' from a sustainable point of view.

Source: TU Graz, Institute for Resource Efficient and Sustainable Systems http://spionexcel.tugraz.at/index.php?option=com_content&task=view&id=14&Itemid=28

SPI

- SPI as the ratio of the area a process/service needs and the average available area per person
- SPI << 1:
 <p>A process/service is very cheap from a sustainable point of view
- 0,001 < SPI < 1: The process/service can be used for a sustainable development
- SPI > 1:
 The process/service is too inefficient for sustainability, too expensive from a sustainable point of view

SPI

- Result: Overall ecological footprint A_{tot}
- Inputs divided into seven categories
 - Area consumption
 - Non renewables consumption
 - Renewables consumption
 - Fossil C consumption
 - Fmissions in air
 - Emissions in water
 - Emissions in soil

Source: TU Graz, Institute for Resource Efficient and Sustainable Systems http://spionexcel.tugraz.at/index.php?option=com_content&task=view&id=14&Itemid=28

IIEE

50

Source: http://www.sustainability.org.il/home/transportation-news/Ecological-footprint-comparison-of-different-means-oftransportation-based-on-Sustainable-Process-Index-SPI-methodology

11**=** =

SPI: Comparison of different means of transportation

www.sustainability.org.il/home/transportation-news/Ecological-footprint-comparison-of-different-means-of-transportation-based-on-Sustainable-Process-Index-SPI-methodology

Source:

Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems, IEA PVPS Task 12, Subtask 20, LCA Report IEA-PVPS T12-02:2011

Life Cycle Assessment of Photovoltaic Systems

LCA PV

- Consensus limited to four technologies
 - Mono- and multi-crystalline Si, CdTe and high concentration PV using III/V cells
- Detailed LCI data
 - Inputs and outputs during manufacturing of cell, wafer, module, and balance-of-system (structural- and electrical- components)
 - Operational data of rooftop and ground-mount PV systems and country-specific PV-mixes

Life Cycle of PV

Life-cycle starts from the extraction of raw materials (cradle) and ends with the disposal (grave) or recycling and recovery (cradle)

11**=** = 55

Material flow diagram

Advantages and disadvantages of PV cell technologies

- Mono-Si
 - High efficiency (25%)
 - High production effort
- Multi-Si
 - Low production effort compared to mono-Si
- Thin film cells (CdTe)
 - Advantages in diffuse light
- Organic cells
 - Low material losses during production
 - Degradation in the first 1000h

LCA PV

- Rooftop mounted PV systems
- Southern European irradiation of 1.700 kWh/m²/yr
- Performance ratio of 0.75
- 30 years lifetime

LCA indicators

- Energy Payback Time
- Greenhouse Gas emissions
- Criteria pollutant emissions (SO2, NOX)
- Heavy metal emissions

Energy Payback Time (EPBT)

= the period required for a renewable energy system to generate the same amount of energy that was used to produce the system itself

In terms of primary energy equivalent

$$EPBT = \frac{(E_{mat}E_{manuf}E_{trans}E_{inst}E_{EOL})}{(E_{agen}\eta_G) - E_{aoper}}$$

Primary energy demand to produce materials comprising PV system $E_{mat} =$

E_{manuf} = Primary energy demand to manufacture PV system

Primary energy demand to transport materials used during the life cycle $E_{trans} =$

Primary energy demand to install the system $E_{inst} =$

Primary energy demand for end-of-life management

Annual electricity generation

 $E_{EOL} = E_{agen} = E_{aoper} = E_{aoper} = E_{aoper}$ Annual energy demand for operation and maintenance in primary energy terms

Grid efficiency, the average primary energy to electricity conversion efficiency at the demand side $\eta_G =$

EPBT

Greenhouse Gas Emissions

- CO₂ equ using an integrated time horizon of 100 years
- Major emissions included as GHG emissions are:
 - CO_2 (GWP = 1)
 - CH_4 (GWP = 25)
 - N_2O (GWP = 298)
 - Chlorofluorocarbons (GWP = 4.750-14.400)

Greenhouse Gas Emissions

Comparison

Life-cycle CO₂ emissions of PV

11**=**=

Criteria Pollutant Emissions: NO_X

Criteria Pollutant Emissions: SO₂

11**=** = 65

Heavy Metal Emissions

11**=**=

Heavy Metal Emissions

IIEE

Environmental performance of energy systems

Environmental performance of energy systems

environmental impacts per MJ electricity

Source: http://www.esu-services.ch/projects/energy-supply/

IIEE 69

Environmental performance of energy systems

cumulative energy demand per MJ electricity

Eco-points

Thank you for your attention!

Petra Gsodam

Graz University of Technology
Institute of Electricity Economics and
Energy Innovation
Inffeldgasse 18
8010 Graz

Tel.: +43 316 873 7902 Fax: +43 316 873 107902

Email: petra.gsodam@TUGraz.at

Web: www.IEE.TUGraz.at

