Introduction Formal Methods

Application of theoretical computer science fundamentals

- Logic calculi
- Formal languages
- Automata theory
- Program semantics
- Type systems
- Algebraic data types

Formal Language

- Set of strings of symbols
- · Constrained by specific rules
- Programming languages
- Usage: Specify, invent, transform, analyse, verify, reason about programming languages
- Informal: living natural languages

Execution-based vs. Rule-based thinking

	Execution-based thinking	Rule-based thinking
Basis	Implementation	Rule-based calculus
Focus	Execution runs	Properties
Example 0	Counting with one's fingers	Algebra
Example 1	Truth tables	Propositional calculus
Example 2	Debugging / Test cases	Reasoning about program correctness
First steps	Initially easy to visualize	Needs mental training
Abstraction	Low degree of abstraction possible	High degree of abstraction possible
Scalability	Limits the complexity of problems that can be solved (e.g. truth table with 20 variables)	Allows larger and more complex problems to be solved

Programming Paradigms

Imperative

- Befehlend
- \bullet Focuses on \mathbf{how} a program operates
- Commands change a program's state

Common building blocks:

- $\bullet \ \ \text{Assignment:} \ x := x+1$
- $\bullet \;$ Sequential composition: $(\ldots;\ldots)$
- Conditional execution: (if...then...else)
 Repetition: (while...do...) / (goto...)

Von Neumann architecture

Declarative

- \bullet Expresses the logic of a computation without describing its control flow
- Describes what the program should accomplish
- how left to the language's implementation
- eliminates / minimises side effects

Examples:

- Spreadsheets
- Regular expressions
- Query languages
- Functional programming languages
- Logic programming

Functional Programming Introduction

Basic Features

- Referential transparency
- Functions as first-class citizens
- ullet Higher-order functions
- Algebraic data types
- Pattern matching
- Recursion
- Types & type inference
- Haskell specific: Type classes, Functors, Applicatives, Monads

What is FP?

- Declarative programming paradigm
- $\bullet\,$ Foundation: Chruch's Lambda calculus
- Pure: No (or controlled) mutable state
- Pure: Expressions are by default side effect free

Why functions?

- Simple concept and properties
- High level of abstraction possible
- Powerful reasoning more easily possible

Why use FP?

- Easier to reason about
- Easier to write
- Easier to get right

No Mutable State

- Referential Transparency: WYSIWYG for programmers
- f(x) only depends on the def. of f and the value of x
- No mutable variables
- ullet No assignments
- $\bullet~$ No imperative control structures
- All data structures are immutable

Problem with mutable state

- \bullet Every statement can potentially change the underlying state of the program
- Executions of a statement can depend on previously executed statements

Functions are first-class Citizens

- just like any other values: 1, true
- Can be anonymous: $(\lambda x.x + 1)$
- Can be input/output to other functions

• Can be composed in powerful ways fog

More FP in the future

- Increased expectations on reliability of software
- Increased demands on scalability, complexity, performance
- FP can surpass the limitations of the mainstream
- $\bullet~{\rm FP}$ is an active area of applied research
- Increased adoption of FP features in mainstream languages (generics)

Haskell Introduction

Standard Prelude

Select the first element of a list

head [1,2,3,4,5]

Remove the first element of a list

tail [1,2,3,4,5]

[2,3,4,5]

Select the nth element of a list

[1,2,3,4,5] !! 2

Select the first n elements of a list

take 3 [1,2,3,4,5]

[1,2,3]

Remove the first n elements from a list

drop 3 [1,2,3,4,5] [4,5]

Calculate the length of a list

length [1,2,3,4,5]

Calculate the sum of a list of numbers

sum [1,2,3,4,5]

Calculate the product of a list of numbers

product [1,2,3,4,5] 120

Append two lists

[1,2,3] ++ [4,5] [1,2,3,4,5]

Reverse a list

reverse [1,2,3,4,5] [5,4,3,2,1]

Function Application Syntax

fab+c*d

- Function application is denoted using space
- Multiplication is denoted using *
- Function application has higher prio than other operators

Mathematics	Haskell
f(x)	f x
f(x,y)	fxy
f(g(x))	f (g x)
f(x,g(y))	f x (g y)
f(x) g(y)	fx*gy

Useful GHCi Commands

Oscial Giver communes		
Command	Meaning	
:load <i>name</i>	load script name	
:reload	reload current script	
:set editor name	set editor to <i>name</i>	
:edit <i>name</i>	edit script <i>name</i>	
:edit	edit current script	
:type <i>expr</i>	show type of expr	
:?	show all commands	
:quit	quit GHCi	

Naming Requirements

- Function and argument names: begin with lowercase letter
- List arguments: s-suffix, by convention: xs, ns, nss

The Lavout Rule

- In a sequence of definitions, definitions must begin in the same column
- · Avoids the need for braces and semicolons

Types and Classes

Type

- Name for a collection of related values
- e.g. Bool = False|True
- Every well-formed expression has a type
- Type can be automatically calculated at compile time: type inference
- Removing the need for type checks at run time = ; safer /faster

Type Error

• Applying a function to one or more arguments of the wrong type

Basic Types

- Bool: logical values
- Char: single values
- String: strings of chars
- Int: fixed-precision int
- Integer: arbitrary-precision integers
- Float: floating-point numbers

- Sequence of values of the same type
- Type of a list says nothing about the length
- · Lists of lists possible

[['a'], ['b','c']] :: [[Char]]

Tuple Types

- Sequence of values of different types
- Type of a tuple encodes its size
- Type of components is unrestricted

(False, 'a', True) :: (Bool, Char, Bool)

Function Types

- Mapping from values of one type to values of another
- Argument and result types are unrestricted
- Functions with multiple arguments / results possible using lists / tuples

add :: $(Int, Int) \rightarrow Int$

$\mathsf{add}\;(\mathsf{x},\mathsf{y})\,=\mathsf{x}+\mathsf{y}$

Curried Functions

- Multiple input arguments typically implemented by returning functions as re-
- Functions that take their arguments one at a time
- Functions with more that two arguments can be curried by returning nested functions

add' :: $Int \rightarrow (Int \rightarrow Int)$

 $add' \times y = x + y$

Currying Conventions

- − > operator is right associative
- Rightmost type is the result
- Precending types are the input
- Consequence: Function application is left associative
- All functions in Haskell are normally defined in curried form

Polymorphic Functions

- Function type contains one or more type variables
- Type variables must begin with lowercase letters

length :: [a] -> Int

Overloaded Functions

- Function type contains one or more class constraints
- Class constraints are expressed as type classes
- Can be instantiated to any types that satisfy the constraints

(+) :: Num a => a -> a -> a

Type classes in Haskell:

- Num: Numeric types
- Eq: Equality types
- Ord: Ordered types
- (+) :: Num a => a -> a -> a

(==) :: Eq a => a -> a -> Bool

(<) :: Ord a => a -> a -> Bool

Defining Functions

Conditional Expressions

- Can be nested
- Must always have an else branch

abs :: Int -> Int

abs n = if n >= 0 then n else -n

Guarded Equations

- Make definitions using multiple conditions
- Easier to read

```
| n > = 0 = n
otherwise = -n
```

Pattern Matching

- Can be defined many different ways
- Some ways may be more efficient
- _: wildcard pattern, matches any argument
- Patterns are matched in order
- Patterns may not repeat variables

not :: Bool -> Bool

not False = True not True = False

List Patterns

- Non-empty lists are constructed by repeated use of cons operator: (:)
- Functions on lists can be defined using x: xs patterns

[1,2,3,4] = 1 : (2 : (3 : (4 : [])))

Lambda Expressions

- Used to define anonymous functions
- Can give a formal meaning to functions defined using currying

 $add \times y = x + y$

 $add = \langle x - \rangle (\langle y - \rangle x + y)$

Avoid naming functions that are only referenced once:

odds n = map f [0 ... n - 1]where

f x = x * 2 + 1odss $n = map (\x -> x * 2 + 1) [0 .. n - 1]$

- Prefix notation is used for function application
- Is Infix notation desired, one may use operators (e.g. +)
- Functions can be converted into operators using backticks: 'div'
- Operators can be converted to functions using brackets: (+)

List Comprehension

- Define functions in very compact manner
- Elegant way to perform iteration in declarative style

factors $n = [x \mid x < -[1 .. n], n 'mod' x == 0]$ prime n = factors n == [1, n]

primes $n = [x \mid x < -[2 .. n], prime x]$

• States how to generate values for a variable

x <- [1 .. 5]

Multiple Generators

- Order of generators changes order of elements
- Multiple generators act like nested loops

 $[(x,y) \mid x < -[1,2,3], y < -[4,5]]$ [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

Dependant Generators

• Later generators can depend on variables, introduced by earlier generators $[(x,y) \mid x < -[1 .. 3], y < -[x .. 3]]$

Guards

• Restrict values produced by earlier generators

 $[x \mid x < -[1 .. 10], \text{ even } x]$

zip - Function

• Maps two lists to a list of pairs

zip :: [a] -> [b] -> [(a, b)]

String Comprehensions

- String: sequence of chars enclosed in double quotes
- Internally strings are represented as lists of chars
- Polymorphic list-functions can be applied to strings

"abc" :: String

['a', 'b', 'c'] :: [Char] Recursive Functions

- Some functions are simpler to define using recursion
- Properties can be proven using induction

Declaring Types and Classes

Type Declarations

- New name for an existing type
- Can make other types easier to read
- Can have type parameters
- Can be nested
- Cannot be recursive

```
type String = [Char]
type Pos = (Int, Int)
origin :: Pos
```

left :: Pos −> Pos left (x,y) = (x-1, y)

origin = (0, 0)

-- Type parameter -type Pair a = (a,a)

mult :: Pair Int -> Int mult (m,n)) m*n

-- Nested -type Trans = Pos -> Pos

Data Declarations

- Completely new type by specifying its values
- Values of new types can be used the same ways as built in types
- Constructors may also have parameters
- May also have type parameters

```
• Can be recursive
data Bool = False | True
data Answer = Yes | No | Unknown
-- Parameter --
data Shape = Circle Float | Rect Float Float
square :: Float -> Shape
square n = Rect n n
-- Type parameters --
data Maybe a = Nothing | Just a
-- Recursive --
data Nat = Zero | Succ Nat
```

Polymorphism

Succ (Succ (Succ Zero)) = 3

- 1. Ad-hoc Polymorphism: function with the same name denotes different implementations (function overloading / interfaces)
- 2. Parametric Polymorphism: Code written to work with many possible types 3. Subtype Polymorphism: one type can be substituted for another (subtype / supertype)

Type Classes

· Declared using class declarations Name of the declared narameter type class. Functions required for a class Eq a where (==), (/=) :: a -> a -> Boolx /= y = not (x == y)

Higher-Order Functions

A function is called higher-order if it takes a function as an argument or returns a function as a result.

Default implementation (optional

twice :: (a -> a) -> a -> atwice f x = f (f x)

Why are they useful?

- Common programming idioms can be encoded as functions within the lan-
- Domain specific languages can be defined as collections of higher-order func-
- Algebraic properties of higher-order functions can be used to reason about programs

```
Examples
```

Applies a function to every element of a list.

```
map :: (a -> b) -> [a] -> [b]
-- defined using list comprehension --
\mathbf{map} \ f \times \mathbf{s} = [f \times | \times < - \times \mathbf{s}]
-- defined using recursion --
\mathsf{map}\;\mathsf{f}\;\tilde{[]}=[]
map f(x : xs) = fx : map fxs
-- for example: --
map (+1) [1,3,5,7]
[2,4,6,8]
```

filter

Selects every element from a list that satisfies a predicate.

```
filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
-- defined using list comprehension --
filter p \times s = [x \mid x < -xs, p \times]
-- defined using recursion --
filter p [] = []
filter p(x : xs)
   | p x = x :  filter p xs
  otherwise = filter p xs
-- example --
filter even [1 .. 10]
[2,4,6,8,10]
```

A number of functions on lists can be defined using the following simple pattern of recursion:

```
f[] = v
f(x : xs) = x \oplus f xs
```

Some function \bigoplus is applied to the head of non-empty lists, and f to its tail. The value \mathbf{v} is typically the identity element of \bigoplus .

For example:

```
sum [] = 0
\mathbf{sum} \ (x : xs) = x + \mathbf{sum} \ xs
product [] = 1
product (x : xs) = x * product xs
and [] = True
and (x : xs) = x && and xs
```

The higher-order library function foldr (fold right) uses this pattern of recursion with the function \bigoplus and the value \mathbf{v} as arguments:

```
-- defined using recursion --
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f v [] = v
foldr f v (x : xs) = f x (foldr f v xs)
-- example --
sum = foldr(+)0
product = foldr (*) 1
and = foldr (&&) True
```