How to Add Capacity

- 1. Add more workers
- 2. Add a second shift
- 3. Overtime ------ Probably the most frequently used method of adjusting capacity in the short term
- 4. Outsource also called Offloading

Capacity

•	Industry	Primary Resource	Output
---	----------	------------------	--------

- Automobile Hours Cars
- Steel Furnace Size Tons of Steel
- Oil Refinery Refinery Size Barrels
- Wheat Farm Acres Bushels
- Dairy Farm # of Cows Pounds
- Restaurant # of Seats Meals
- Theater Seats Tickets
- Hospital Beds Occupied Beds

Concepts of Capacity

- Design Capacity
- Effective Capacity
- Actual Output

Measurements

- efficiency = actual output/effective capacity
- utilization = actual output/design capacity

Constant Demand

Time

Seasonal Demand

Factors that Determine Capacity

- 1. Demand for Goods or Services
- 2. Facility Layout
- 3. Inputs---- material or customers
- 4. Resources ---- people machines etc.

Dr. Eli Goldratt

Hikers at 8:00 A.M.

Hikers at 10:00 A.M.

Hikers at Noon

Hikers at 1:00 P.M.

Where is the largest gap?

Balanced Line

Ground Covered=Finished Goods

What is Happening to Total WIP Over Time?

Unbalanced Line

What to Do With Herbie

- 1. Put Herbie at the front of the pack
- 2. Off-Load (Out-Source)
- 3. Tie a rope around the waist of each scout
- 4. Tie a rope from the first (lead) scout to Herbie

Tie a Rope from the Lead Scout to Herbie

- Drum-Buffer-Rope
- TOC approach to Scheduling

- Two Important Statistical Concepts
- Statistical Fluctuations
- Statistical Dependence

Balanced Line

Plant Performance									
	Qty	Qty	Cum.	Plant	Qty				
Period	Expected	Actual	Late	WIP	Overtime				
1	3.5	4	0	20	0				
2	3.5	1	2.5	24	0				
3	3.5	2	4	23	0				
4	3.5	2	5.5	27	0				
5	3.5	2	7	28	0				
6	3.5	1	9.5	29	0				
7	3.5	1	12	31	0				
8	3.5	3	12.5	31	0				
9	3.5	5	11	28	0				
10	3.5	4	10.5	28	0				
11	3.5	5	9	27	0				
12	3.5	2	10.5	26	0				
13	3.5	4	10	24	0				
14	3.5	3	10.5	25	0				
15	3.5	5	9	26	0				
16	3.5	3	9.5	27	0				
17	3.5	2	11	28	0				
18	3.5	2	12.5	27	0				
19	3.5	3	13	27	0				
20	3.5	5	11.5	23	0				
21	3.5	1	14	27	0				
22	3.5	4	13.5	27	0				
23	3.5	1	16	31	0				

3.5 3.5 18.5

	Plant Performance						
		Qty	Qty	Cum.	Plant	Qty	
	Period	Expected	Actual	Late	WIP	Overtime	
	26	3.5	3	21.5	31	0	
	27	3.5	1	24	31	0	
	28	3.5	4	23.5	33	0	
	29	3.5	5	22	33	0	
	30	3.5	3	22.5	34	0	
	31	3.5	2	24	36	0	
	32	3.5	5	22.5	32	0	
Balanced Lin	e 33	3.5	2	24	36	0	
Balanceu -	34	3.5	6	21.5	33	0	
	35	3.5	2	23	32	0	
	36	3.5	3	23.5	31	0	
	37	3.5	1	26	31	0	
	38	3.5	5	24.5	29	0	
	39	3.5	2	26	28	0	
	40	3.5	6	23.5	24	0	
	41	3.5	5	22	22	0	
	42	3.5	1	24.5	25	0	
	43	3.5	1	27	29	0	
	44	3.5	1	29.5	32	0	
	45	3.5	3	30	35	0	
	46	3.5	1	32.5	36	0	
	47	3.5	4	32	37	0	
	48	3.5	2	33.5	38	0	
	49	3.5	6	31	34	0	
	50	3.5	3	31.5	35	0	
	Total	175	144				

Balanced Line?

- What happens to WIP over time?
- Increases
- What happens to promised deliveries?
- Behind schedule

How to Improve this Process?

Proposal A

Total Labor Saved = 9 minutes

Proposal B

Total Labor Increase = 2 Minutes

Where Would You Try To Reduce Set-Up?

Reduce from 1 hour to 10 minutes

Product Cost

- Traditional=
- Raw Material
- +Direct Labor
- +Variable Factory Overhead

- New Philosophies (TOC+JIT+TQM)
- =Raw Material

- Company with a capacity of 1,000 units a month has fixed costs of \$2,000 a month and labor costs of \$6 a unit. Materials costs are \$2 per unit. The company has been producing at 80 percent of capacity and selling its product for \$12. What is its net income? What would it be at 100 percent of capacity?
- What would its net income be at 120 percent of capacity if it is assumed that 20 percent more products could be produced on overtime at an extra \$3 labor cost per unit for all production above 100 percent? What would the net income be if production declines by 2 percent per hour because of the long hours? Should the company accept a contract which will call for 120 percent capacity for an extended period of time if the price is \$12 and if the company could not otherwise operate at 100 percent of capacity?

Net income at 80% capacity

Sales Revenue(800*12)	9,600
Fixed Costs	2,000
Labor Costs (800*6)	4,800
Material Costs (800*2)	1,600
Total Costs	8,400
Net Income	1,200

Net Income at 100 %

Sales Revenue (1,000 * 12)	12,000		
Fixed Costs	2,000		
Labor Costs (1,000 * 6)	6,000		
Material Costs (1,000 * 2)	2,000		
Total Costs	10,000		
Net Income	2,000		

Net Income at 120 %

Sales Rev	14,400			
Fixed Cos	2,000			
Labor Cos	sts (1,000*6)	7,800		
	+(200*9)			
Material	(1,200*2)	2,400		
Total Cost	12,200			
Net Incom	2,200			

Net Income at 120 % capacity with 2 % production decline .98*1,200 = 1,176 units

Sales Revenue (1,176*12)

14,112

Fixed Costs

2,000

Labor

(1,000*6)+(200*9) 7,800

Material (1,176 * 2)

2,352

Total costs

12,152

Net Income

1,960

- There are five products which are made on each of six types of equipment. The table on the next slide shows the operating times (in decimal hours) and the job setup times for each operation. In each block there are two times. The upper number is the job setup time and the lower number is the operating time per unit.
- How many of each kind of machine will be needed if the plant works at 170-hour month?

Product						
Equipment	1	2	3	4	5	
Mult-Au-Matic	.670		.761		.073	
	.036		.078		.097	
Vertical mill		.543	.790		.870	
		.097	.102		.105	
Turret lathe		.732			.839	
		.019			.021	
Forging machine	.521	.434			.768	
	.017	.049			.057	
Centerless grinder			.087	.161		
•			.036	.016		
Simplex mill	.617	.614	.911	.658		
•	.053	.073	.081	.077		
Quantity needed						
per month	700	2,300	1,400	100	300	
Manufacturing lot s	ize					
for each production	run 300	200	500	200	400	

Job Set-ups Actual Set-ups 1 700/300=2.33 3 2 2300/200=11.5 12 3 1400/500=2.8 3 4 100/200=.5 1 5 300/400=.75 1

Machine	1	2	3	4	5	Tot	Tot/170
Multi-Aumati	c 27.3		111.4		29.2	167.9	1
Vertical Mill		229.6	145.2		32.4	407.2	3
Turret Lathe		52.5			7.1	59.6	1
Forging Mch	13.5	118			17.9	149.4	1
Centerless G	Grd		50.7	1.8		52.3	1
Simplex Mill	38.9	175.3	116	8.4		338.6	2

Multi-Au-Matic

Product 3 set-ups=3*.761 = 2.283 run (1400*.078) =109.2 total =111.4

Total Load = 167.9

Machine	1	2	3	4	5	Tot	Tot/170
Multi-Aumati	c 27.3		111.4		29.2	167.9	1
Vertical Mill		229.6	145.2		32.4	407.2	3
Turret Lathe		52.5			7.1	59.6	1
Forging Mch	13.5	118			17.9	149.4	1
Centerless G	Grd		50.7	1.8		52.3	1
Simplex Mill	38.9	175.3	116	8.4		338.6	2

- Company XYZ needs to manufacture 3,000 pump housings a month, which requires grinding-machine time. The standard time for this operation is .17 hours per unit.
- A. How many machines will be needed if the company works 8 hours per day, 20 days per month at 100 % per cent efficiency with no scrap losses or lost machine time?
- B. What is the answer if the company realizes only 80% machine utilization from the machines and the operators are 105% efficient?
- C. How many housings should be started into production if the scrap rate is 7%? How many machines (using the production expectations calculated in B above) will be needed?

Pump Housing Problem

Required machines=load/available capacity =(units*time required)/capacity (in hours)

a. (3,000*.17)/(8*20) = 3.2 (4 required)

b. (3,000*.17)/(160*.8*1.05)=3.8 (4 required)

c. 3,000=1X-.07X

3,000=.93X

X=3,000/.93

X=3225.8 or 3,226 units

(.17*3,226)/(160*.8*1.05)=4.08 (5 required)⁴²