Elliptic Curve Cryptography

Python Presentation Night @ Virtual (PPN #85)

Sebastian Troncoso

What is Elliptic Curve Cryptography?

- ECC is a key-based technique for encrypting data. ECC focus on pairs of public and private keys for decryption and encryption of web traffic.
- ECC is an alternative technique to RSA.
- It is a powerful cryptography approach that required much smaller key sides in compare to RSA keys.

Security Comparison for Various Algorithm-key Size Combinations (Source: NSA) (7)

	Symmetric Encryption	Minimum Size (bits) of Public Keys			
Security Bits	Algorithm	RSA	ECC		
80	Skipjack	1024	160		
112	3DES	2048	224		
128	AES-128	3072	256		
192	AES-192	7680	384		
256	AES-256	15360	512		

Security Comparison for Various Algorithm-key Size Combinations (Source: NSA) (7)

Security Bits	Symmetric Encryption	Minimum Size (bits) of Public Keys			
	Algorithm	RSA	ECC		
80	Skipjack	1024	160		
112	3DES	2048	224		
128	AES-128	3072	256		
192	AES-192	7680	384		
256	AES-256	15360	512		

Who uses Elliptic Curve Cryptography?

- Google
- NSA
- Bitcoins
- Wikipedia
- Facebook

	Parameters:			ECDLP security:			ECC security:					
Curve	Safe?	field	equation	base	rho	transfer	disc	<u>rigid</u>	ladder	twist	complete	ind
Anomalous	False	True	True✓	True	True	False	False	True	False	False	False	False
M-221	True	True	True	True	True	True	True	True	True	True✓	True	True√
E-222	True✓	True	True✓	True	True	True✓	True	True	True	True	True✓	True
NIST P-224	False	True	True✓	True	True	True	True✓	False	False	False	False	False
Curve1174	True	True	True✓	True	True	True	True	True	True	True	True✓	True
Curve25519	True✓	True	True✓	True	True	True	True√	True✓	True	True	True✓	True√
BN(2,254)	False	True	True✓	True✓	True	False	False	True	False	False	False	False
brainpoolP256t1	False	True	True✓	True	True	True√	True✓	True✓	False	False	False	False
ANSSI FRP256v1	False	True✓	True✓	True✓	True	True✓	True	False	False	False	False	False
NIST P-256	False	True	True✓	True	True	True✓	True	False	False	True	False	False
secp256k1	False	True	True✓	True	True	True✓	False	True	False	True	False	False
E-382	True✓	True	True✓	True	True✓	True	True✓	True	True✓	True√	True✓	True√
M-383	True	True	True✓	True	True	True✓	True√	True	True√	True	True	True√
Curve383187	True	True	True✓	True	True	True	True	True	True	True✓	True	True
brainpoolP384t1	False	True	True✓	True	True	True✓	True	True	False	True	False	False
NIST P-384	False	True	True✓	True	True	True	True	False	False	True	False	False
Curve41417	True	True	True	True	True	True✓	True	True	True	True	True	True√
Ed448-Goldilocks	True	True	True	True	True	True	True	True	True	True	True	True√
M-511	True✓	True	True✓	True	True	True	True	True	True	True✓	True✓	True√
E-521	True√	True	True✓	True	True	True	True	True	True	True	True	True

Elliptic curves are the solution of the equation

$$y^2 = x^3 + ax + b$$

 $y^2 = x^3 - 3x + 5$

Given an integer n then it is "easy" to find nP

Given nP then it is extremely hard to find n

Elliptic Curve Discrete Logarithm Problem

Given a elliptic curve and a point P.

Pick a random an integer n

- n is the PRIVATE KEY
- nP is the PUBLIC KEY

