Claims

1. Compounds of the general formula (II)

$$R_3$$
 R_2
 R_1
 R_5
 R_6
 R_6
Formula (II)

in which R_1 , R_2 either are the same or different and represent

- hydrogen, F, Cl, Br, I, CN, NC, OH, SH, NO $_2$, SO $_3$ H, NH $_2$, CF $_3$, or
- substituted or unsubstituted straight or branched lower ($C_1\text{-}C_6$) alkyl or alkoxy or
- an amino group substituted by one or more substituted or unsubstituted straight or branched lower (C_1-C_6) alkyl or alkyl carbonyl or alkoxy carbonyl group or
 - a COOH, COO alkyl, CONH, CON alkyl group or
 - $-(CH_2)_n-Cl$, $-(CH_2)_n-Br$, $-(CH_2)_n-OH$, $-(CH_2)_n-COOH$,

 $-(CH_2)_n-CN$, $-(CH_2)_n-NC$, in which

• R_1-R_2 may together form -CH=CH-CH=CH-, -O-(CH₂)_n-O-, with n = 1 to 3;

 R_3 is OCH_3 or the same as R_1 , or

 R_2-R_3 can jointly form: $-O-(CH_2)_n-O-$, with N=1 to 3;

 R_4 , R_5 : are both hydrogen or, alternatively, any combination of hydrogen or an alkyl, alkenyl, alkinyl, or

- \bullet S-R8, wherein R8 is hydrogen or a substituted or unsubstituted straight or branched lower (C1-C10) alkyl group
 - SO-R₈, SO₂R₈

- OH, O-protective group
- O-CS-N-R₈ (thiourethanes)
- O-CO-N-R₉, wherein R₉ has the following meaning:

 \bullet O-CO-R8, including esters with a substitution pattern of amino acids as follows

- R_4 , R_5 may jointly be hydrazone (=N-NH- R_{10} , =N-N(R_{10} , R_{11}), oximes (=N-O- R_{11}), wherein R_{10} is hydrogen, a substituted or unsubstituted straight or branched lower (C_1 - C_6) alkyl or alkyl carbonyl or alkyl carbonyloxy group as well as a sulfonic acid group, and R_{11} is hydrogen, a substituted or unsubstituted straight or branched lower (C_1 - C_6) alkyl or alkyl carbonyl group, as well as a sulfonic acid group;
 - R₄ and R₅ may also be:

wherein Y_1 , Y_2 = O, S, NH or N-R₁₀ (excess valences in each case are -H)

- wherein, in the event that R_4 is not H, R_5 can also be OH and, in the event that R_5 is not H, R_4 can also be OH. G_1 , G_2 : jointly or separately have the meaning:
- -C(R_{13} , R_{14})-, wherein R_{13} , R_{14} can be hydrogen, OH, a substituted or unsubstituted straight or branched lower alkyl, aryl, alkoxy or aryloxy group or jointly an alkyl spiro group (C_3 to C_7 spiro ring).
 - G_1 and G_2 may jointly represent

with m = 1 to 7

 G_3 : represents CH_2 or =CO

 R_6 represents a group $-(G_4)_p-(G_5)_q-G_6$ with p, q = 0-1, in which G_4 satisfies the following definition

• $-(CH_2)_s$ -, $-C(R_{15}, R_{16})$ - $(CH_2)_s$ -, with R = 1 to 6 and R_{15} , R_{16} = hydrogen, or substituted or unsubstituted straight or branched lower alkyl, cycloalkyl, or aryl groups

• -O- or -NR₁₅

wherein
$$s=1-4$$
, and $t=0-4$

that is an ortho, meta or para disubstituted aromatic

 G_7

wherein $G_7=NR_{15}$, O or S,

 G_5 can be identical with or different from G_4 and, in the event that P=1, additionally represents $-S_-$, G_6 fulfills the following definition:

$$R_{17}$$
 R_{18}
 R_{19}
 R_{20}
 R_{19}
 R_{20}
 R_{20}

- \cdot R₁₇, R₁₈, R₁₉ and R₂₀ individually or jointly are the same or different, and are hydrogen, substituted or unsubstituted straight or branched lower alkyl, cycloalkyl or aryl groups, where R₁₇ and R₁₈ and R₁₉ and R₂₀ can jointly form a cycloalkyl group (with a ring size of 3-8)
 - $G_8 = O$, S, NH, $NR_{21} (CH_2)_n -$,
- R_{21} = CHO, COOR₁₇ or a heteroaryl group, which is unsubstituted or substituted identically or differently by one or several F, Cl, Br, I, NO₂, OH, alkyl, alkyloxy, CN, NC or CF₃, CHO, COOH, COO alkyl, SO₃H, SH or S-alkyl groups, or
- a methyl group, which is substituted by 1-3 phenyl groups, which are unsubstituted or substituted identically or differently by one or more F, Cl, Br, I, NO_2 alkyl, alkyloxy, CN, NC or CF_3 groups,

wherein G₈ can also be:

$$(CH_2)s$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(CH_2)s$$

$$(CH_2)s$$

$$(CH_2)s$$

$$(CH_2)s$$

$$(CH_2)s$$

$$(CH_2)s$$

$$(CH_2)s$$

$$(CH_2)m$$

$$(CH_$$

- a substituted or unsubstituted straight or branched lower alkyl, alkenyl, alkinyl, cycloalkyl or aryl groups,
- $-O-R_{17}$, $-NR_{17}R_{18}$, phthalamido, -CN or -NC; R_7 is identical with R_6 or represents $-O-^{(-)}$ (N-oxide) or a free electron pair (e-pair), wherein R_6 and R_7 can also form a common ring, 3 to 8 carbon atoms in size and
- X exists only if, and represents an ion of a pharmacologically unstable inorganic or organic acid, where R_5 and R_6 are present and the nitrogen atom thus carries a positive charge; and
- Z = N or N $^{+}$ in the event that R $_4$ and R $_7$ are present jointly and R $_7$ is not O $^{-}$.--

2. Compounds having the general formula (III):

wherein R₂₂

Formula (III)

- is a (hetero) aryl group, which is unsubstituted or substituted identically or differently by one or several F, Cl, Br, I, NO₂, NH₂, OH, alkyl, alkoxy, CN, NC or CF₃, COOH, COOalkyl, SO₃H, SH or S-alkyl groups or
- a methyl group, which is substituted by two phenyl groups, which are substituted identically or differently by one or more F, Cl, Br, I, NO₂, NH₂, OH, alkyl, alkoxy, CN, NC or CF₃, CHO, COOH, COOalkyl, SO₃H, SH or S-alkyl groups,

 $R_{17},\ R_{18},\ n,\ s$ having the meanings given for the general formula (I) and

$$R_{23} = -(G_5)_q - (G_4)_p - G_9$$

wherein G_4 and G_5 have the meanings given for the general formula (I) and G_9 is defined as F, Cl, Br, I, OH, O-ts, O-ms, O-triflate, COOH COCl CHO, $-O-R_{17}$, $-NR_{17}R_{18}$, phthalimido, -CN or -NC or by other groups suitable for nucleophilic substitutions, addition reactions, condensation reactions, etc.

3. A compound of claim 2 having the formula:

4. A compound of claim 2 having the formula:

- 5. A composition consisting essentially of a compound according to claim 2, in admixture with a pharmaceutically acceptable excipient.
- 6. A method for the treatment of Alzheimer's disease, comprising administering to a human patient in need thereof a pharmaceutically acceptable amount of a compound as claimed in claim 2.
- 7. A method for the treatment of trisomy 21, comprising administering to a human patient in need thereof a pharmaceutically acceptable amount of a compound as claimed in claim 2.