CHAPTER 3

LOGIC CIRCUITS

Unit Objectives:

- Understand the significance of logic gates.
- Explain the rules and usage of boolean Algebra.
- Discuss the process of implementation of Boolean Algebra.
- Explain the significance of function simplification and Karnaugh maps.

LOGIC CIRCUITS

- ➤ Are electronic devices used in computers to perform logic operations on 1 or more input signals.
- ➤ Inputs and outputs to digital computers are in one of the 2 possible states / Voltage levels which are represented by 0's or 1's
- ➤ If the higher voltage is associated with 1 and lower voltage with a 0, the circuit is said to be based upon **positive logic.**
- ➤ If the lower voltage is associated with a 1 and higher voltage with 0, the circuit is said to be based on **negative logic**.

LOGIC CIRCUITS

- Any variable that can take on two states e.g. (0/1, True/false; on/off) is called a logical variable.
- ➤ A circuit whose inputs and outputs are described by logical variables is called a logical network.

Logical Networks

There are two types of logical networks:

Combinatorial networks: Their outputs depend on the current inputs.

Sequential Networks: Their outputs depend on both the current state of the network as well as the inputs

- A combinatorial circuit with only one output is called a logic gate. They accept logical values at their inputs and they produce corresponding logical values at their outputs.
- ➤ It performs a logical operation on one or more binary inputs and produces a single binary output.
- A table listing all the outputs for the various inputs is called a truth table.
- All combinatorial circuits can be constructed from the 7 most common logic gates.

1. The inverter(NOT) Gate:

When the input is 1 the output is 0 and vice versa.

Λ	Λ	
A	A	_
		Α

0

2. The AND Gate:

Input		Output
Α	В	AB
0	0	0
0	1	0
1	0	0
1	1	1

The output is 1 if all the inputs are 1's

3. The OR Gate:

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

- The output is 0 if all the inputs are 0's.
- If an inverter is combined with another logic gate, the presence of the inverter is indicated by placing a small circle at the affected input or output.

4. The NAND (NOT AND) Gate

Α	В	AB
0	0	1
0	1	1
1	0	1
1	1	0

The output is 0 if all the inputs are 1's.

5. The NOR (NOT OR) Gate

The output is 1 if all the inputs are 0's.

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

LOGIC GATES

6. The EXCLUSIVE OR Gate

Α	В	AOB
0	0	0
0	1	1
1	0	1
1	1	0

The output is 0 if all the inputs are the same

7. The EXCLUSIVE NOR Gate

Α	В	A B
0	0	1
0	1	0
1	0	0
1	1	1

The output is 1 if all the inputs are the same.

Complex Logic gates

- Logic circuits can be built by combining several of the elementary logic gates.
- A graphical illustration of a logic circuit is called a logical diagram

• Two logic networks that have the same input/output characteristics are said to be equivalent.

Prove that $AC + BC = (A + \overline{B})C$

NOTE:

The best way to prove equivalence is to use the truth tables.

Α	В	C	В	AC	BC	AC + B	BC + B	$(A + \overline{B})C$
0	0	0	1	0	0	0	1	O
0	0	1	1	0	1	1	1	1
0	1	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	0	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	0	0	0	1	0
1	1	1	0	1	0	\1/	1	1
						\ /		

BOOLEAN ALGEBRA

It is a mathematical structure that consists of a set containing only a 0 and 1, the unary operator (complementation) and the binary operation of addition and multiplication. **Subtraction and Division** are not defined in Boolean algebra

	<u> </u>
Α	= <u>A</u>
AA	= A
A + A	= A
A . 0	= 0
A + 0	= A
A . 1	= A
A + 1	= 1
$A.\overline{A}$	= 0
$A + \overline{A}$	= 1
AB	= BA
A + B	= B + A
(AB)C	= A(BC)
A + (B +	C) = (A + B) + C

$$A(B + C) = AB + AC$$

$$(B + C)A = BA + CA$$

$$\overline{A + B} = \overline{A B}$$

$$AB = A + B$$

$$AB + AB = A$$

$$A + AB = A$$

$$(A + B)B = AB$$

$$(A + B) (A + B) = AB$$

$$(A + B) (A + C) = A + BC$$

$$A(A + B) = AB$$

$$AB + AB = AB$$

$$AB + BB$$

$$AB + BB$$

$$AB + AB = AB$$

$$AB + BB$$

$$AB + AB = AB$$

$$AB + BB$$

$$AB +$$

Why Boolean Algebra?

- Its used to simplify logic expressions without changing its functionality.
- Used to prove equivalence of logic networks.

Example 1: Simplify the circuit below using Boolean Algebra.

Example 2:

$$ABC + BC + AB$$

$$= C(AB + B) + AB$$

$$= C(\overline{A} + B) + AB$$

$$= AC + BC + AB$$

$$=\overline{A}C + (\overline{A} + A)BC + AB$$

$$= AC + ABC + ABC + AB$$

$$= AC(1+B) + AB(C+1)$$

$$= AC + AB$$

Prove that ABC + ABC + ABC + ABC is equivalent to BC + AC + AB.

Digital Design Process

- ➤ Determine all the input/output relationships that must be true for the network being designed and put them in convenient tabular form.
- Use the drawn up table to find Boolean expressions for each output.
- Simplify the expressions from 2 above
- ➤ Use the expressions resulting from step 3 to develop the desired logical diagram.

Three design tools

- Truth Table (To define a logical network)
- Boolean Expression (for minimization)
- Logic diagram (For the actual design)

Example

Design a three input network that will output a 1 if the majority of the inputs are 1's otherwise the output is zero

Step 1 (Draw a truth Table)

A	В	C	X	
0	0	0	0	X_0
0	0	1	0	X_1
0	1	0	0	X_2
0	1	1	1	X_3
1	0	0	0	X_4
1	0	1	1	X_5
1	1	0	1	X_6
1	1	1	1	X ₇

Boolean expression

Step 2 (Find the Boolean expression.)

There are two types of Boolean Expressions

1. SUM OF PRODUCTS (SOP's)

We form a product for each row for which the output is 1 and then add the products.

- A product is 1 if and only if all of its factors are 1
- A sum is 1 if at least one of its terms is a 1.

$$X_3 = \overline{A}BC$$
; $X_5 = A\overline{B}C$; $X_6 = AB\overline{C}$; $X_7 = ABC$
 $X = X_3 + X_5 + X_6 + X_7$

$$X = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Boolean expression

2. PRODUCT OF SUMS (POS)

A sum is formed for each row for which the output is zero then the sums are multiplied.

- A sum is 0 if all its terms are 0's.
- A product is 0 if at least one of its factors is 0.

$$X_0 = A + B + C; X_1 = A + B + C; X_2 = A + B + C; X_4 = \overline{A} + B + C$$

$$X = X_0 X_1 X_2 X_4 = (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(\overline{A} + B + C)$$

Step 3 Simplify the expression

$$ABC + ABC + ABC + ABC = BC + AC + AB$$

Digital Design Process

Step 4: Draw the logic diagram

MAXITERMS & MINITERMS

- The occurrence of a variable or its complement in an expression is called a literal.
- A term in the SUM OF PRODUCTS that includes a literal for every input is called a miniterm.
- A term in the PRODUCT OF SUMS that includes a literal for every input is called a maxiterm.
- e.g. in ABC + ABC + AC; ABC and ABC are miniterms, AC is not a miniterm.
- Similarly in (A +B+C)(A+B+C)(A+C), (A +B+C) and (A+B+C) are
 - maxiterms, (A+C) is not.

KARNAUGH MAPS

- A Karnaugh map is a truth table for a single output consisting of arrays of squares where each square corresponds to a row of a truth table. It is used in simplifying Boolean algebra expressions.
- The symbols at the top represent the variables associated with the columns and the symbols on the left represent the variables associated with the rows.
- The value of each output for each input is put in the corresponding square.
- For each 1 in the Karnaugh map there is a corresponding miniterm in the output's Sum of product expression and each 0 represents a maxiterm in the Product of Sums expression.

Two inputs

A

0 1

0 2

1 1 3

Three Inputs

	AB					
		00	01	11	10	
C	0	0	2	6	4	
	1	1	3	7	5	

Four Inputs

AB

		00	01	11	10
00		0	4	12	8
CD	01	1	5	13	9
	11	3	7	15	11
	10	2	6	14	10

Rules of Grouping in K-maps

- 1) A group must only contain 1s no 0s.
- 2) A group can only be horizontal or vertical not diagonal.
- 3) A group must contain 2ⁿ 1s i.e 1,2,4,8.
- 4) Each group should be as large as possible.
- 5) Groups may overlap
- 6) Groups may wrap around a table.
- 7) Every 1 must be in at least one group.
- 8) There should be as few groups as possible.

Α	В	С	X	Using Boolean Algebra
0	0	0	0	$X = \overline{ABC} + AB\overline{C} + ABC$
0	0	1	0	$=\overline{A}BC + ABC + AB\overline{C} + ABC$
0	1	0	0	= BC + AB
0	1	1	1	n Look for adjacent groups that include 2
1	0	0	0	miniterms where n is an integer. The larger the
1	0	1	0	group the greater is the reduction. AB
1	1	0	1	00 01 11 10 AB
1	1	1	1	C 0 0 0 1 0
				1 0 1 1 0 BC

Α	В	С	X	Using Boolean simplification:
0	0	0	0	ABC + ABC + ABC
0	0	1	0	$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
0	1	0	0	= BC + AC + AB
0	1	1	1	AB
1	0	0	0	00 01 11 10
1	0	1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	1	0	1	1 0 1 1 1 AC
1	1	1	1	BC

A function may be used to state where the output is 1 instead of drawing a Karnaugh map. e.g. for the above example $F(A,B,C) = \Sigma(3,5,6,7)$

$$F(A,B,C) = \Sigma(0,1,2,3,7)$$

More Examples

More Examples

THE DON'T CARE CASES

- For some designs some input combinations cannot occur.
 Their outputs are represented by X's in the Karnaugh Map and they may or may not be included in the prime implicants.
- They are called Don't Care Cases denoted by the function d(A,B,C) = Σ(....)

In the example above it is important to include the miniterm ABCD in but not ABCD

Reading Assignment 4:

 Read more about The Don't care cases as used in Karnaugh maps.