

- Grouped Censored Data
- Static Life Estimation
- Non-parametric confidence intervals

Singly Censored Data

Twenty units are placed on test for 72 hours with the following failures times recorded: 1.5, 3.2, 11.7, 26.4, 39.1, 56.0, 61.3

		ι .
TIME	RELIABILITY	CUM PROB (CDF)
0	1	0
1.5	.952381	4.761904E-02
3.2	.9047619	9.523809E-02
11.7	.8571429	.1428571
26.4	.8095238	.1904762
39.1	.7619048	.2380952
56	.7142857	.2857143
61.3	.6666667	.3333333

 $R(t_i) = 1 - i/(20+1)$

Cannot compute a mean or variance

Ungrouped Censored Data

A sample consists of a set of ordered failure times plus censored times:

$$t_1, t_2, t_3^+, \dots t_i, t_{i+1}^+, \dots, t_n$$

Method

complete data

Product Limit Estimator Kaplan-Meier Rank adjustment

$$\hat{R}(t_i) = 1 - i / (n+1)$$

$$\hat{R}(t_i) = 1 - i / n$$

$$\hat{R}(t_{i-1}) = \frac{n+2-i}{n+1}$$
 and $\frac{\hat{R}(t_i)}{\hat{R}(t_{i-1})} = \frac{n+1-i}{n+2-i}$

then
$$\hat{R}(t_i) = \frac{n+1-i}{n+2-i} \hat{R}(t_{i-1})$$

however
$$\hat{R}(t_i^+) = \hat{R}(t_{i-1})$$

$$\hat{R}(t_i) = \left(\frac{n+1-i}{n+2-i}\right)^{\delta_i} \hat{R}(t_{i-1}) \quad \text{where} \\ \delta_i = \begin{cases} 1 \text{ if failure occurs at time } t_i \\ 0 \text{ if censoring occurs at time } t_i \end{cases}$$

The following failure and censor times (in operating hours) were recorded on 10 turbine vanes. Censoring was a result of failure modes other than fatigue or wear out. Determine an empirical reliability curve. 150, 340+, 560, 800, 1130+, 1720, 2470+, 4210+, 5230, 6890

200, 000, 1130+, 1720, 2470+, 4210+, 3230, 0090					
i	t_i	(11-i)/(12-i)	$R(t_i)$		
1	150	10/11	R(150) = 10/11x1 = .9090		
2	340+	9/10			
3	560	8/9	$R(560) = 8/9 \times .9090 = .8081$		
4	800	7/8	$R(800) = 7/8 \times .8081 = .7071$		
5	1130+	6/7			
6	1720	5/6	R(1720) = 5/6 x. 7071 = .5892		
7	2470+	4/5			
8	4210+	3/4			
9	5230	2/3	$R(5230) = 2/3 \times .5892 = .3928$		
10	6890	1/2	$R(6890) = 1/2 \times 3928 = .1964$		

Kaplan-Meier PLE

Begin with with $R(t_0=0) = 1$

$$R(t_i) = R(t_i | t_{i-1}) R(t_{i-1})$$

$$= (n_{i-1} - 1) / n_{i-1} R(t_{i-1})$$

$$= (1 - 1 / n_{i-1}) R(t_{i-1})$$

Kaplan-Meier PLE

$$\hat{R}(t) = \prod_{[j:t_j \leq t]} \left(1 - \frac{1}{n_j} \right)$$

For $0 \le t < t_1$, R(t) = 1

$$\hat{V}ar[\hat{R}(t)] = \hat{R}(t)^2 \sum_{[j:t_j < t]} \frac{1}{n_j(n_j - 1)}$$

j	t_j	n _j	$1-1/n_{j}$	$\hat{R}(t_j + 0)$	Std Dev
1 2	150 340+	10	9/10	$R(150) = 9/10 \times 1.0 = .90$.095
3	560	8	7/8	$R(560) = 7/8 \times .90 = .7875$.134
4	800	7	6/7	$R(800) = 6/7 \times .7875 = .675$.155
5	1130+				
6	1720	5	4/5	$R(1720) = 4/5 \times .675 = .54$.173
7	2470+				
8	4210+				
9	5230	2	1/2	$R(5230) = 1/2 \times .54 = .27$.210
10	6890	1	0	$R(6890) = 0 \times .3928 = 0$	

Rank Adjustment Method

$$rank increment = \frac{(n+1) - (previous rank order)}{1 + nbr of units beyond present censored unit}$$

$$i_{ti} = i_{ti-1} + rank increment$$

$$\hat{R}(t_i) = 1 - \frac{i_{t_i} - 0.3}{n + 0.4}$$

		^
t _i Increment	Adj Rank (i)	$R(t_i)$
150	1	.933
340+		
560 (11-1)/(1+8) = 1.111	1+1.111 = 2.111	.826
800	2.111 + 1.111 = 3.222	.719
1130+		
1720 (11-3.222)/(1+5) = 1.2963	3.222+1.2963 = 4.518	.594
2470+		
4210+		
5230 (11-4.518)/(1+2)= 2.16	4.518 + 2.160 = 6.679	.387
6890	6.679 + 2.160 = 8.839	.179
	150 340+ 560 (11-1)/(1+8) = 1.111 800 1130+ 1720 (11-3.222)/(1+5) = 1.2963 2470+ 4210+ 5230 (11-4.518)/(1+2)= 2.16	150

Multiply censored comparison

Failure time	PLE	Kaplan -Meier	Rank Adj
150	.909	.90	.933
340+			
560	.808	.788	.826
800	.707	.675	.719
1130+			
1720	.589	.54	.594
2470+			
4210+			
5230	.393	.27	.387
6890	.196	0	.179

Example 12.9 - multiply censoring

		Unit	Failed <u>Component</u>	Failure <u>Time</u>
	mponents	#1	C1	352 hrs
in se	ries	#2	C2	521
		#3	C1	177
		#4	C1	67
		#5	C3	411
		#6	C2	125
		<i>#7</i>	C1	139
		#8	C1	587
		#9	C3	211
		#10	C1	379

Example 12.9 - multiply censoring

	<u>TIME</u>	<u>FACTOR</u>	Component 1 RELIABILITY
1 2	67 125 +	.9090909 1	.9090909
3	139	.8888889	.8080809
4	177	.875	.7070708
5	211 +	1	
6	352	.8333333	.5892256
7	379	.8	.4713805
8	411 +	1	
9	521 +	1	
10	587	.5	.2356903

Chapter 12 Data Collection and Empirical Methods

- Ungrouped Censored Data
- Grouped Censored Data
- Static Life Estimation
- Non-parametric confidence intervals

Grouped Censored Data Life Tables

Assume that the failure and censor times have been grouped into k+1 intervals of the form $[t_{i-1}, t_i)$, for i = 1, 2, ..., k+1; where $t_0 = 0$ and $t_{k+1} = \infty$.

Grouped Censored Data Life Tables

$$\begin{split} F_i &= \text{the number of failures in the ith interval} \\ C_i &= \text{the number of censors in the ith interval} \\ H_i &= \text{the number at risk at time } t_{i-1} \\ &\quad \text{where } H_i = H_{i-1} - F_{i-1} - C_{i-1} \text{ and } H'_i = H_i - C_i/2 \\ \text{Then } F_i/H'_i &= \text{conditional probability of a failure in the ith interval given survival to time } t_{i-1} \\ \text{and } p_i &= 1 - F_i/H'_i = \text{conditional probability of surviving the ith interval given survival to time } t_{i-1} \end{split}$$

$$\hat{R}_i = \left[1 - \frac{F_i}{H_{i'}} \right] x \, \hat{R}_{i-1}$$

$\left\{ \left\| \right\| \right\}$

Grouped Censored Data Life Tables

Number Number At Adj at Prob Interval Failures Censored Risk Risk Survival Reliability

Construct a life table for the engine of a fleet of 200 single engine aircraft having the following annual failures and removals (censors).

<u>Year</u>	<u>Failures</u>	<u>Removals</u>
1981	5	0
1982	10	1
1983	12	5
1984	8	2
1985	10	0
1986	15	6
1987	9	3
1988	8	1
1989	4	0
1990	3	1

YEA	<u>R</u> <u>Fi</u>	<u>Ci</u>	<u>Hi</u>	<u>H'i</u>	<u>pi</u>	<u>Ri</u>	Std Dev
1	5	0	200	200	.975	.975	.011
2	10	1	195	194.5	.949	.925	.019
3	12	5	184	181.5	.934	.864	.024
4	8	2	167	166	.952	.822	.027
5	10	0	157	157	.936	.770	.030
6	15	6	147	144	.896	.690	.033
7	9	3	126	124.5	.928	.640	.035
8	8	1	114	113.5	.930	.595	.036
9	4	0	105	105	.962	.572	.036
10	3	1	101	100.5	.970	.555	.036

Chapter 12 Data Collection and Empirical Methods

- Ungrouped Censored Data
- Grouped Censored Data
- Static Life Estimation
- Non-parametric confidence intervals

Static Life Estimation

- n units at risk for a time t_0 with r failures observed
- If an event of short duration is observed, t_0 may be omitted and the point reliability estimate is based simply on the number of failures r resulting from the application of n static loads
- A point estimate for the reliability is given by

$$\widehat{R}(t_0) = 1 - \frac{r}{n}$$

Static Life Estimation – interval estimation

From the binomial distribution:

$$\sum_{i=0}^{r} \binom{n}{i} (1 - R_L)^i (R_L)^{n-i} = \alpha / 2$$

$$\sum_{i=r}^{n} \binom{n}{i} (1 - R_U)^i (R_U)^{n-i} = \alpha / 2$$

 $\Pr\{R_L \le R(t_0) \le R_U\} = 1 - \alpha$, and we are $100(1 - \alpha)$ percent confident that the population static reliability falls between R_L and R_U

Static Life Estimation – interval estimation

From the relationship between the binomial and F distributions:

$$R_{L} = \left[1 + F_{1}\left(\frac{r+1}{n-r}\right)\right]^{-1}$$
 $R_{U} = \frac{F_{2}}{F_{2} + r/(n-r+1)}$
 $F_{1} = F_{\alpha/2,2r+2,2n-2r}$ $F_{2} = F_{\alpha/2,2n-2r+2,2r}$

 $F_{\alpha/2,n_1,n_2}$ is a value from the *F*-distribution having n_1 and n_2 degrees of freedom and having an upper-tail probability of $\alpha/2$.

It is desired to estimate the launch reliability of a booster rocket used to launch communication satellites into orbit. Twenty launches have been completed to date with one failure observed. Compute a 90 percent confidence interval for the rocket launch reliability.

Solution. With n = 20 and r = 1,

$$R = 1 - \frac{1}{20} = 0.95$$

$$F_{1} = F_{.05,4,38} = 2.62$$

$$F_{2} = F_{.05,40,2} = 19.47$$

$$R_{L} = \frac{1}{1 + (2.62)(2/19)} = 0.7838$$

$$R_{U} = \frac{19.47}{19.47 + 1/(20 - 1 + 1)} = 0.9974$$

Chapter 12 Data Collection and Empirical Methods

- Ungrouped Censored Data
- Grouped Censored Data
- Static Life Estimation
- Non-parametric confidence intervals

Nonparametric Confidence Intervals

Define Y_j to be a random variable, the fraction in a sample of size n that fail prior to t_i .

$$g(y_j) = \frac{n!}{(j-1)!(n-j)!} y_j^{j-1} (1-y_j)^{n-j}; \ 0 \le y_j \le 1; \ j = 1, ..., n$$

Nonparametric Confidence Intervals

If a $100(1-\alpha)$ percent confidence interval is desired for the fraction failing prior to the jth failure time, then define L_i and U_j so that

$$\int_{0}^{L_{j}} g(y_{j}) dy_{j} = \alpha / 2 \text{ and } \int_{U_{j}}^{1} g(y_{j}) dy_{j} = \alpha / 2$$

Therefore $\Pr\{L_j \leq Y_j \leq U_j\} = 1 - \alpha$.

For a sample size of 5 and $\alpha = .20$, Lj, U_j , and the median of Y_i are

j	L_{j}	median	U_{j}
1	0.0209	0.1294	0.3690
2	0.1122	0.3138	0.5839
3	0.2466	0.5000	0.7534
4	0.4161	0.6862	0.8878
5	0.6310	0.8706	0.9791

Based upon the failure times given in Example 12.2 with n = 10 and $\alpha = .10$, the following plotting positions are computed:

failure times	5% rank	Median	95% rank
0	0	0	0
15.4	0.0051	0.0670	0.2589
18.9	0.0368	0.1623	0.3942
20.1	0.0873	0.2586	0.5069
24.5	0.1500	0.3551	0.6066
29.3	0.2224	0.4517	0.6965
33.9	0.3035	0.5483	0.7776
48.2	0.3934	0.6449	0.8500
54.7	0.4931	0.7414	0.9127
72	0.6058	0.8377	0.9632
86.1	0.7411	0.9330	0.9949

Chapter 12

30

- Ungrouped Complete Data
- Grouped Complete Data
- Ungrouped Censored Data
- Grouped Censored Data
- Static Life Estimation
- Non-parametric confidence intervals