S. C. Ü. MÜHENDİSLİK FAKÜLTESİ 2018-2019 ÖĞRETİM YILI BAHAR DÖNEMİ BİL2114 OTOMATA TEORİSİ VİZE SORULAR - CEVAPLAR

1. i. $\Sigma = \{0,1\}$ alfabesi kullanılarak üretilen kelimelerden '101' altkelimesini <u>içermeyen</u> kelimeleri tanıyan bir deterministik sonlu otomata tasarlayınız. (10 puan).

ii. Yukarıda tasarladğınız otomatayı formal olarak gösteriniz. (Yani $M = (Q, \Sigma, \delta, q_0, F)$ de Q'nun, q_0 , ve F'nin ne olduğunu gösteriniz, δ icin geçiş tablosu yapınız) (10 puan)

$$Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0,1\} F = \{q_0, q_1, q_2\}$$

δ	0	1
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_0	q_3
q_3	q_3	q_3

2. $\Sigma = \{a, b\}$ alfabesi kullanılarak üretilen kelimelerden a ile başlayıp a ile biten yada b ile başlayıp b ile biten kelimeleri tanıyan bir <u>nondeterministik</u> sonlu otomata tasarlayınız. (15 puan).

- 3. $\Sigma = \{x, y, z\}$ alfabesi kullanılarak oluşturulan aşağıdaki diller için bir düzenli ifade bulunuz.
 - i. $L = \{w \in \{x, y, z\}^* \mid w \text{ bir adet } y \text{ harfi içerir } \}$ (5 puan) $\{x, z\}^* \ y \ \{x, z\}^*$
 - ii . $L = \{w \in \{x, y, z\}^* \mid w \text{ en az bir adet } y \text{ harfi içerir } \}$ $\{x, y, z\}^* y \{x, y, z\}^* \rightarrow (5 \text{ puan})$ $\{x, y, z\}^* y \{x, y, z\}^* \rightarrow (7 \text{ puan})$
 - iii. $L = \{w \in \{x, y, z\}^* \mid w \text{ en } fazla \text{ bir adet } y \text{ harfi içerir } \}$ (5 puan) $\{x, z\}^* \cup \{x, z\}^* y \{x, z\}^*$
- 4. Aşağıda verilen nondeterministik sonlu otomataya denk olan düzenli ifadeyi bulunuz (15 puan).

Öncelikle verilen NSO'yu genelledtirimis NSO'ya donusturelim:

Durum eksiltme yöntemiyle q_0 'ı eksiltelim:

 q_1 'i eksiltelim:

 q_2 'yi eksiltelim:

$$\rightarrow \underbrace{S} \underbrace{(b \cup ab^*a)(a \cup b)^*}_{F}$$

Aradığımız düzenli ifade: $(b \cup ab^*a)(a \cup b)^*$

5 Formal olarak $G = \{\{S, T\}, \{0,1\}, R, S\}$ ve R türetim kuralları aşağıdaki şekilde verilmiş olan grammerin türettiği dili bulunuz. (15 puan)

$$\begin{array}{c} S \rightarrow 0T0 \mid 1T1 \\ T \rightarrow 0T \mid 1T \mid \varepsilon \end{array}$$

 $S \to 0T0 \mid 1T1$ kuralından dolayı bu dilin kelimleri 0 ile başlayıp 0 ile biter yada 1 ile başlayıp 1 ile biter. $T \to 0T \mid 1T \mid \varepsilon$ kuralıyla verilen T degiskeni ise $\{0,1\}$ alfabesi kullanılarak üretilebilecek her kelimeyi üretir. Dolayısıyla başlangıç 0 harfi ile bitiş 0 harfi arasına her kelime girebilir veya başlangıç 1 harfi ile bitiş 1 harfi arasına her kelime girebilir. Sonuç olarak yukarida verilen türetim kurallarıyla 0 ile başlayıp 0 ile biten yada 1 ile başlayıp 1 ile biten kelimelerin dilini turetebiliriz.

6. Asagidaki pushdown otomata $L = \{a^i b^{2i} | i \ge 1\}$ dilini tanir. Bu otomatanın w = aabbbb kelimesini kabul ettiğini okunan her bir harf sonrasinda hangi durum yada durumlarin aktif olduğunu ve yığına ne eklendiğini bir tablo çizerek gösteriniz. (20 puan)

Okunan Harf	Aktif Durum	Yığın
-	q_0, q_1	\$
a	q_1	A,A,\$
a	q_1	A,A,A,A,\$
b	q_3	A,A,A,\$
b	q_3	A,A,\$
b	q_3	A,\$
b	q_3	\$
-	q_4	-