Universidade Federal de São João del-Rei

## Lista 4 - P1

#### Matemática 1 - Prof.ª Rafaela Bonfim

16 de setembro de 2025

- 1. Considerando as funções definidas por f(x) = 2x + 1,  $g(x) = x^2 x + 2$  e h(x) = 3 x, determine f(g(x)), g(f(x)) e g(f(h(x))).
- 2. Se f(x) = 2x + k e g(x) = mx + 1, para todo x real, determine os valores de k e m para que  $g \circ f$  seja a função identidade.
- 3. Uma função f real, do  $1^{0}$  grau, é tal que f(0) = 1 + f(1) e f(-1) = 2 f(0). Determine f(3).

Resposta:  $-\frac{5}{2}$ 

4. Determine o conjunto solução da inequação

$$\frac{(x-1)^9(-x+5)^4}{(2x-1)^6} \leqslant 0.$$

5. Determine o conjunto solução do sistema:  $\begin{cases} \frac{(2x-1)(3x-4)}{x} < 0 \\ \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-6)} \geqslant 0 \end{cases}$ 

Resposta:  $S = \{x \in \mathbb{R} : x < 0 \text{ ou } \frac{1}{2} < x < 1\}$ 

- 6. Seja f uma função quadrática tal que  $f(x) = ax^2 + bx + c$ ,  $a \neq 0$ . Sabendo que  $x_1 = -1$  e  $x_2 = 5$  são as raízes e que f(1) = -8, pede-se:
  - (a) determinar  $a, b \in c$
  - (b) calcular f(0)
  - (c) verificar se f(x) apresenta máximo ou mínimo, justificando sua resposta
  - (d) as coordenadas do ponto extremo item[(e)] o esboço do gráfico
- 7. Calcule o valor de m de modo que o valor máximo do trinômio  $-x^2 4mx 5$  seja o quádruplo do valor correspondente de x.

1

Resposta:  $m = -\frac{5}{2}$  ou  $m = \frac{1}{2}$ 

8. (a) Construa sobre o mesmo sistema cartesiano os gráficos das funções:

$$f(x) = -x^2 - 2x + 3 e g(x) = x^2 - 1$$

- (b) Calcule as coordenadas dos seus pontos de intersecção A e B
- (c) Mostre que, para qualquer que seja  $m \neq -1$ , A e B pertencem ao gráfico da função

$$h(x) = -\frac{(m-1)x^2 + 2mx - 3m + 1}{m+1}.$$

9. Determine m para que a função quadrática  $f(x) = (1-m)x^2 - (1+m)x + 2(m-4)$  seja negativa, qualquer que seja o valor de x.

**Resposta:**  $S = \{ m \in \mathbb{R} : \frac{11}{9} < m < 3 \}$ 

10. Na figura abaixo, a área do trapézio OABC é 11 vezes a área do triângulo OAC. Determine a abscissa do ponto A.



# Resposta: 3

11. Resolva as inequações:

(a) 
$$\frac{2x-1}{x^2-x} + \frac{2x+1}{x^2+x} - \frac{x^2+2x-1}{x^2-1} > 0$$

(b) 
$$\frac{(x^2 - 5x + 6)(x+1)(-2x+5)^3}{-x^2 + 16} \le 0$$

**Respostas:** (a)  $S = \{x \in \mathbb{R} : 0 < x < 2 \text{ e } x \neq 1\}$ 

**(b)** 
$$S = \{x \in \mathbb{R} : 4 < x \leqslant -1 \text{ ou } 2 \leqslant x \leqslant \frac{5}{2} \text{ ou } 3 \leqslant x < 4\}$$

12. Determine o domínio da função

$$f(x) = \sqrt{\frac{-x^2 + 1}{x^2 - 2x - 15}}.$$

2

**Resposta:**  $D_f = \{x \in \mathbb{R} : -3 < x \leqslant -1 \text{ ou } 1 \leqslant x < 5\}$ 

13. Resolva as inequações:

- (a) |x-1|+|x-2|>1
- (b)  $|x+3| |x-2| \ge 9$
- 14. Desenhe o gráfico da função f(x) = 2x + |x 2|x|.
- 15. A função real definida por f(x) = kx + m é impar, tal que  $k \in \mathbb{R}^*$ ,  $m \in \mathbb{R}$  e f(-1) = 3. Determine a soma das raízes da equação

$$f(f(x)) = f\left(\frac{-x^2}{3}\right).$$

## Resposta: 9

16. Seja  $f : \mathbb{R} \to \mathbb{R}$  uma função definida por y = f(x). Sabendo-se que f(0) = 3, f(1) = 2 e f(3) = 0, determine o valor de x tal que f(f(x+2)) = 3.

## Resposta: 1

- 17. Considerando as funções f(x) = x + 4 e  $g(x) = -\sqrt{x}$ , julgue os itens abaixo:
  - (a) g(f(9)) = -5
  - (b) O domínio de  $g \circ f \in [0, +\infty)$
  - (c) f(g(9)) = 1
  - (d)  $g(x^2) = (g(x))^2$ , para todo  $x \in D_g$
- 18. Dada a função  $f(x) = x^2 3x$ :
  - (a) determine algebricamente os pontos nos quais f(x) = 0
  - (b) determine algebricamente os pontos nos quais f(x) = -2
  - (c) esboce o gráfico da função, indicando os pontos que você obteve no item (b)
  - (d) determine graficamente as soluções da inequação  $f(x) \ge -2$
- 19. Dada a função  $f(x) = 5x 2x^2$ :
  - (a) determine algebricamente os pontos nos quais f(x) = 0
  - (b) determine algebricamente os pontos nos quais f(x) = 2
  - (c) esboce o gráfico da função, indicando os pontos que você obteve no item (b)
  - (d) determine graficamente as soluções da inequação  $f(x) \geqslant 2$
- 20. Dada a função  $f(x) = -2x^2 + 9x$ :
  - (a) determine algebricamente os pontos nos quais f(x) = 0
  - (b) determine algebricamente as soluções da inequação  $f(x) \geqslant 9$
  - (c) determine algebricamente o ponto de mínimo ou máximo de f
  - (d) esboce o gráfico da função

- 21. Dada a função  $f(x) = -3x^2 + 15x$ :
  - (a) determine algebricamente os pontos nos quais f(x) = 0
  - (b) determine algebricamente as soluções da inequação  $f(x) \ge 12$
  - (c) determine algebricamente o ponto de mínimo ou máximo de f
  - (d) esboce o gráfico da função
- 22. Dada a função  $f(x) = 15x^2 + x 2$ :
  - (a) determine algebricamente os pontos nos quais f(x) = 0
  - (b) determine algebricamente as soluções da inequação  $f(x) \leqslant -2$
  - (c) determine algebricamente o ponto de mínimo ou máximo de f
- 23. Esboce o gráfico e detrmine o ponto de mínimo ou máximo de cada função:
  - (a) f(x) = (x-1)(x+2)

- (c)  $f(x) = x^2 3x + 4$
- (b) f(x) = (-3 x)(x + 3)
- (d)  $f(x) = -2x^2 + 3x + 2$