Introduction aux probabilités

Stephane Robin

Mots-clés

Expérience aléatoire :

dont le résultat est lié au hasard et non pas à un choix délibéré

exemple : effectuer le tirage d'une boule dans une urne

Issue:

résultat possible lors d'une expérience aléatoire

exemple : si dans une urne se trouvent 3 boules rouges et 5 boules bleues, une boule rouge est une issue, une boule bleue est une autre issue

Mots-clés

Evénément:

c'est ce dont on mesure les chances de succès. Un événement est constitué d'une ou plusieurs issues

exemple : tirer une boule rouge de l'urne

Probabilité d'un événement :

représente les chances qu'un événement se produise.

La probabilité d'un événement A se note p(A).

exemple : quelle est la probabilité d'obtenir pile en lançant une pièce de monnaie ?

Expérience aléatoire

On lance un dé à 6 faces et on regarde le nombre inscrit sur la face supérieure.

- Quel est le chiffre qui apparaît le plus souvent ?
- On réitère l'expérience de nombreuses fois. Que constate-t-on ?

Le résultat observé provient de la loi des grands nombres :

Si on répète une expérience aléatoire un grand nombre de fois, alors les fréquences de réalisation d'un événement se stabilisent autour de la probabilité théorique de cet événement.

Loi de probabilité

Ce que vous savez déjà :

```
probabilité qu'un événement se produise = \frac{\text{nbre de cas favorables}}{\text{nbre de cas possibles}}
```

 $0 \le \text{probabilité} \le 1$

(plus la probabilité d'un événement est proche de 1, plus l'événement a des chances de se produire)

Probabilité à 2 épreuves

Arbre de probabilités :

Dans le cas de 2 tirages **successifs**, on utilise un arbre de probabilités qui nous permet de recenser tous les cas possibles de façon méthodique. On parle de probabilité conditionnelle.

exemple : quelle est la probabilité d'obtenir une boule rouge puis une boule bleue lors

Découvrir les règles de calcul

Soit A et B deux événements non vides.

$$p(A \text{ et B}) = p_B(A).p(B)$$

où p_B(A) est la probabilité de A sachant que B se réalise.

Cette formule s'applique donc dans le cas de *probabilités conditionnelles*, comme par exemple dans le cas de tirages successifs.

Utilisation d'un tableau à 2 entrées

On utilise un tableau à double entrée pour réaliser une étude sur 2 caractères qui se croisent

Exercice 1:

Dans une bijouterie, on trouve 3 types de bijoux : des montres, des bracelets et des colliers. Chaque objet est soit en or soit en argent.

20 % des bijoux sont des montres, 40 % sont des colliers.

60 % des bijoux sont en argent et 75 % de montres sont en argent.

Il y a autant de colliers en argent que de colliers en or.

- Faire un tableau à double entrée avec le pourcentage de chaque type de bijou selon sa matière.
- On choisit un bijou au hasard. Quelle est la probabilité pour que ce soit une montre ou un bijou en or ?

Utilisation d'un tableau à 2 entrées

Exercice 2:

Nous avons vu au début de ce chapitre que lorsqu'on lance un dé à 6 faces, aucun chiffre n'apparaît plus souvent qu'un autre.

- Qu'en est-il lorsqu'on lance simultanément 2 dés à 6 faces et qu'on calcule la somme?
- Lorsqu'on réitère l'expérience de nombreuses fois, que constate-t-on ?
- Comment peut-on formaliser ce résultat ?