U盘文件读写模块的串口连接说明

(版本: 2)

1、接口定义

模块具有两个外部接口: P1 是 USB 插座,可以直接插入 U 盘或者通过 USB 延长线连接 U 盘,当进行程序升级或者重新配置时应该通过 USB 对连线连接计算机的 USB 端口; P2 是 16 脚的双排针或者插座,用于连接单片机系统。

在串口方式下,单片机与模块的 P2 端口相连接,只需要使用高 8 脚 (第 9 脚到第 16 脚),其余引脚可以不连接。模块可以通过串行输入 SIN、串行输出 SOUT 连接到单片机的异步串口,除此之外,启动输入 STA#还应该连接到单片机的一个 I/0 引脚,而中断输出 INT#可以根据需要决定是否连接到单片机的中断引脚。

模块的串口是 1 位起始位、8 位数据位、1 位停止位的异步串口,串口的通讯波特率可以在功能配置时设定,如果未设定那么默认是 4800bps (与晶体 X2 的频率有关),单片机系统可以根据需要通过 CMD_BaudRate 命令设定更高的波特率。如果在功能配置时选择检查串口超时,那么在通过串口输入命令包时,模块会检查串口数据输入超时,如果连续两个数据字节之间的间隔大于串口输入超时时间,则模块将放弃该命令包。

4+1 线串口是指 GND、	CIM	CULT	STA#和可洗的 INT#	D2 引脚完义加下。
	O LIN	2001	3 A##H HI 775 BY IN I # •	

1.1 没中日走出 dibt off(6001、 67///[[]] 起前 1/// 1// 1/ 1// 1// 1// 1// 1// 1// 1/					
引脚号	引脚名称	类型	串口方式下的 P2 端口引脚说明		
16	GND	电源	公共接地端		
15	VCC	电源	5V 正电源输入端,电源供给电流大于 100mA,		
			需要外接电源退耦电容,容量不小于 200uF		
14	保留		悬空或者接高电平,建议接高电平		
13	STA#	输入	启动信号输入,下降沿有效,内置上拉电阻		
12	SIN	输入	串行数据输入,内置上拉电阻		
11	SOUT	输出	串行数据输出,带上拉开漏输出		
10	保留		悬空		
9	INT#	输出	中断请求输出,低电平有效,带上拉开漏输出		
1~8	保留		必须悬空		

为了节约单片机的 I/O 引脚,模块还支持三线制串口,在这种方式下,单片机与模块之间只需要连接 SIN 和 SOUT 两根信号线及公共地线,单片机通过串口发送两个同步码字节(57H、ABH)代替原来向模块的 STA#引脚提供的启动信号,实现与模块的命令同步。在通过串口输入两个同步码字节时,模块会检查串口数据输入超时,如果连续两个数据字节之间的间隔大于串口输入超时时间,则模块将放弃该同步码及命令包。

3 线串口是指 GND、SIN、SOUT, P2 引脚定义如下:

引脚名称	类型	串口方式下的 P2 端口引脚说明	
GND	电源	公共接地端	
VCC	电源	5V 正电源输入端,电源供给电流大于 100mA,需要外接电源退耦电容,容量不小于 200uF	
保留		悬空或者接高电平,建议接高电平	
保留		悬空或者接高电平	
SIN	输入	串行数据输入,内置上拉电阻	
	GND VCC 保留 保留	GND 电源 VCC 电源 保留 保留	

11	SOUT	输出	串行数据输出,带上拉开漏输出	
10	保留		悬空	
9	INT#	输出	悬空	
1~8	保留		必须悬空	

2、参考电路

以下参考电路都是以 MCS51 单片机为例,其它类型的单片机可以参考修改。

① 串口连接, 串口等待状态

图中的 P3 端口就是连接模块的端口。由于是串口连接,所以连接信号线较少,只需要三个信号线: SIN, SOUT 和 STA#,模块的中断信号线 INT#是可选的,如果采用中断通知方式,那么可以连接 INT0 或者 INT1,否则不必连接模块的 INT#信号线。建议参考该图,将模块端口的 14 脚(原并口的 CS#引脚)接 VCC,避免并口被选中。

② 三线制串口连接,串口等待状态

图中的 P4 端口就是连接模块的端口。由于是三线制串口连接,所以连接信号线最少,只需要两个信号线: SIN 和 SOUT,模块的中断信号线 INT#必须接低电平或者接地。建议参考该图,将模块端口的 14 脚(原并口的 CS#引脚)接 VCC,避免并口被选中。

3、接口操作

基本操作步骤是,单片机系统将命令码、后续参数长度(因为各命令码所需要的参数不等长)和参数写给模块,并通知其启动操作,模块执行完成后以中断方式通知单片机,并返回操作状态和操作结果。

因为接口操作看起来比较复杂,所以实际过程可以参考随模块一起提供的几个示例程序,直接用其中的 ExecCommand 子程序就可以了,不必理解下面的接口步骤说明。

串口方式的操作步骤是(请参考示例程序中的 ExecCommand 子程序):

- ① 基本概念: 串口通过双向异步串口交换数据,为了防止将命令当成数据,或者将数据当成命令,在单片机系统与模块之间应该采取同步措施。STA#的下降沿用于通知模块"命令码开始发送",INT#的下降沿用于通知单片机系统"状态码开始发送"。如果单片机的 I/0 引脚资源有限,也可以不连接模块的 INT#引脚。如果是三线制串口,那么单片机通过串口发送两个同步码字节代替向 STA#提供启动信号,而不必连接模块的 STA#引脚,从而可以节约单片机的 I/0 引脚。
- ② 单片机系统向模块的 STA#引脚产生低电平脉冲,通知模块启动操作,"命令码开始发送",要求低电平脉冲的宽度不小于 1uS。如果是三线制串口,那么单片机通过串口发送两个同步码字节代替向 STA#提供启动信号。
- ③ 单片机按以下顺序从串口输出:命令码、后续的参数的长度、以及可选的参数。 有些命令不需要任何参数,那么参数的长度就应该是0。
- ④ 模块检测到 STA#引脚的下降沿后,从串口依次接收命令码及可选的参数,然后分析命令码并执行。如果是三线制串口,那么模块以在 20mS 之内收到同个同步码字节作为 STA#下降沿的代替信号。
- ⑤ 对于以字节为单位的文件数据块读写操作请跳过此步骤,对于以扇区为单位的文件数据块读写操作还应该有以下步骤,每读写一个扇区的数据,以下过程就会重复8次,每次传输64字节的数据,共8次可以传输一个扇区的数据。
 - 如果是 CMD_FileRead 命令,模块将 INT#引脚输出低电平,然后通过串口输出请求读取数据的状态码 USB_INT_DISK_READ,状态码输出完成后,模块将 INT# 引脚恢复为高电平,然后从串口依次输出 64 字节的数据。单片机系统应该在收到状态码后,再从串口连续接收 64 字节的数据块。
 - 如果是 CMD_FileWrite 命令,模块将 INT#引脚输出低电平,然后通过串口输出请求写入数据的状态码 USB_INT_DISK_WRITE,状态码输出完成后,模块将 INT#引脚恢复为高电平,然后等待从串口输入数据。单片机系统应该在收到状态码后,从串口连续输出 64 字节的数据块。
 - 如果模块在数据读写过程中检测到错误,那么模块将 INT#引脚输出低电平,然后通过串口输出读写数据块失败重试状态码 USB_INT_DISK_RETRY,状态码输出完成后,模块将 INT#引脚恢复为高电平,然后从串口依次输出两字节的数据。单片机系统应该在收到状态码后,再从串口连续接收两字节的数据。这两字节是一个 16 位的数据,指定需要回改指针的字节数,大端时高字节在前,小端时低字节在前。用户端程序接收到 USB_INT_DISK_RETRY 状态码后,应该根据该 16 位数据回改文件数据缓冲区指针,以便重新发送或接收数据。
- ⑥ 模块执行完成,将 INT#引脚输出低电平,通知单片机系统命令操作完成,"状态码开始发送",然后通过串口输出操作状态码,状态码输出完成后,模块将 INT#引脚恢复为高电平。如果状态码为操作成功 ERR_SUCCESS,那么模块还从串口依

次输出后续的结果数据的长度、以及可选的结果数据。有些命令执行后没有结果数据返回,那么结果数据的长度就会是 0。

- ⑦ 单片机系统收到 INT#的下降沿中断(或者定期查询发现 INT#为低电平,或者未连接模块的 INT#引脚,而是从串口收到状态码)后,从串口获得返回的状态码及可选的结果数据。如果是三线制串口,那么由于未连接模块的 INT#引脚,所以单片机只能以串口收到操作状态码及结果作为操作结束。
- ⑧ 单片机系统根据需要可以转到步骤②发出下一个操作命令。

4、接口时序

测试条件: TA=25℃, VCC=5V

名称	参数说明	最小值	典型值	最大值	单位
TSTA	STA#输入启动信号脉冲宽度	1	2		uS
TT0	串口输入数据的间隔超时时间	25	40	100	mS