In the Claims:

Ī

In accordance with the Pre-OG Notice dated January 31, 2003 permitting amendments in a revised format, applicants provide the following listing of claims.

Claim 1 (currently amended): A compound having the formula (I): of formula

$$R_1$$
 R_2 R_2 R_2 R_2

or a pharmaceutically acceptable salt, ester, or solvate of the compound, wherein:

n is 1-3;

X is either 0 or S;

R₁ R¹ is selected from the group consisting of C₁-C₉ straight or branched chain alkyl, C₂-C₉ straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C_1 - C_{10} straight or branched chain alkyl, C_2 - C_{10} alkenyl or C_2 - C_{10} alkynyl;

 \mathbf{R}_2 \mathbf{R}^2 is a carboxylic acid or a carboxylic acid isostere;

and wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, or carboxylic acid isostere is optionally substituted with one or more substituents selected from \mathbb{R}_3 \mathbb{R}^3 and \mathbb{Z}_7 where ;

 \mathbf{R}_3 \mathbf{R}^3 and Z are independently hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulfhydryl, thioalkyl, alkylthio, sulfonyl, C_1 - C_6 straight

or branched chain alkyl, C₂-C₆ straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, or CO₂R⁷;

where R⁷ is hydrogen, or C₁-C₉ straight or branched chain alkyl or C₂-C₉ straight or branched chain alkenyl;

or a pharmaceutically acceptable salt, ester, or solvate thereof;

provided that \pm when n=1, and D is a bond $_7$ and R_2 R^2 is COOH, then R_1 R^1 is not C_1 - C_9 straight or branched chain alkyl, C_2 - C_9 straight or branched chain alkenyl, C_5 - C_7 cycloalkyl, C_5 - C_7 cycloalkenyl, phenylamine, 2-(3, 4-dichlorophenyl)ethyl, hydroxy, ethoxy, benzyl, or A_{f_1} A_{f_1} , where A_{f_1} A_{f_1} is 1-naphthyl, 2-naphthyl, 2-indolyl, 3-indolyl, 2-furyl, 3-furyl, 2-thiazolyl, 2-thienyl, 3-thienyl, 1-pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, or phenyl, and wherein said alkyl, alkenyl, cycloalkyl, cycloalkenyl, or A_{f_1} A_{f_1} are A_{f_1} are A_{f_2} optionally substituted with one or more substituents selected from the group consisting of A_{f_1} A_{f_2} are is optionally cycloalkyl, cycloalkenyl, A_{f_1} A_{f_2} are A_{f_1} are A_{f_2} are A_{f_2} are A_{f_3} are A_{f_4} are A_{f_4} are A_{f_5} are A_{f_5} and A_{f_5} and A_{f_5} are is optionally substituted with one or more substituents selected from the group consisting of A_{f_5} and A_{f_5} are A_{f_5} and A_{f_5} are is optionally, A_{f_5} and A_{f_5} are independent A_{f_5} and A_{f_5} are independe

further provided that \div when n=1, and D is a bond, and R_2 R_2^2 is the carboxylic acid isostere -CONZ(R³), and Z is hydrogen or C_1 - C_6 alkyl, and R³ is phenyl, or C_2 - C_6 straight or branched chain alkyl or alkenyl, wherein said alkyl is unsubstituted or substituted in one or more positions with A_{F2} A_{F2} as defined below, C_3 - C_8 cycloalkyl, cycloalkyl connected by methyl or a C_2 - C_6 straight or branched chain alkyl or alkenyl chain, C_1 - C_4 alkyl ester, or A_{F3} A_{F3} where A_{F3} A_{F3} is selected from the group consisting of 2-indolyl, 3-indolyl, 2-furyl, 3-furyl, 2-thiazolyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, or phenyl, having one to three substituents independently selected from the group consisting of hydrogen, halo, hydroxy, nitro, trifluoromethyl, C_1 - C_6 straight or branched alkyl, C_2 - C_6 straight or branched alkenyl, C_1 - C_4 alkoxy, C_2 - C_4 alkenyloxy, phenoxy, benzyloxy, and amino; wherein said alkyl ester is optionally substituted with phenyl; or R^3 is the fragment:

where \underline{in} R_4 \underline{R}^4 is selected from the group consisting of straight or branched chain C_1 - C_8 alkyl optionally substituted with C_3 - C_8 cycloalkyl, benzyl, or A_{f_2} as defined below, and where in R2 R2 is COOZ or CONR6, where in R6 is selected from the group consisting of hydrogen, C1-C6 straight or branched alkyl, and C2-C6 straight or branched alkenyl, and wherein R5 is selected from the group consisting of phenyl, benzyl, C1-C6 straight or branched alkyl, and C2-C6 straight or branched alkenyl, where in said alkyl or alkenyl is optionally substituted with phenyl; then \mathbf{R}_1 is not C1-C9 straight or branched chain alkyl, C2-C9 straight or branched chain alkenyl, substituted thiophene, or C1-C4 alkoxy, wherein said alkyl or alkenyl is optionally substituted in one or more positions with C3-C8 cycloalkyl, C5-C7 cycloalkenyl, or Ar2 Ar2 as , where Ar2 is defined below, where in said alkyl, alkenyl, cycloalkyl or cycloalkenyl groups may be is optionally substituted with C1-C4 alkyl, C1-C4 C2-C4 alkenyl, or hydroxy, and where in Ar2 Ar2 is 1-naphthyl, 2-naphthyl, 2-indolyl, 3indolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, or phenyl, having one to three substituents selected from the group consisting of hydrogen, halo, hydroxy, nitro, trifluoromethyl, C1-C6 straight or branched alkyl, C2-C₆ straight or branched alkenyl, C₁-C₄ alkoxy, C₂-C₄ alkenyloxy, phenoxy, benzyloxy, and amino;

further provided that \div when n=1, and X is 0, and D is a bond, and $R_2 R^2$ is - CONH₂, then $R_1 R^1$ is not methyl, ethyl, iso-propyl, iso-butyl, iso-pentyl, 4-methylpentyl, indolyl, phenyl, or hydroxyphenyl;

further provided that \div when n=1, and X is 0, and D is a bond, and R_2 R^2 is cyano, then R_1 R^1 is not methyl;

further provided that:

when n = 2, and X is O, and D is a bond, and R₂ is CONZ(R³), and R₁ is ethoxy, then R³ or Z is not halo-substituted phenyl;

further provided that:

when n=2, and X is O, and D is a bond, and R₂ is CONZ(R³) and R₁ is substituted thiophene or tetrahydropyranoxy, or methoxy, then R³ or Z is not C₁-C₄ alkyl ester substituted ethyl;

further provided that:

when n = 2, and X is O, and D is a bond, and R_2 is CONZ(R^3) and R_1 is ethoxy, then R^3 or Z is not 4-chlorophenyl;

further provided that:

when n=2, and X is O, and D is a bond, and R₂ is CONZ(R³) and R₁ is cyclohexyl, then R³ or Z is not ethyl or propyl substituted with phenyl;

further provided that \div when D is CH₂, then \mathbb{R}_2 is not -OMe, -NHMe, or substituted -NHcyclohexyl; and

further provided that \div when D is CH₂, and \mathbf{R}_2 \mathbf{R}^2 is -OH, then \mathbf{R}_4 \mathbf{R}^1 is not phenyl or pyrrolidinemethanol \div

further provided that:

when n=2, and X is O, and D is a bond, and R_2 is COOH, then R_1 is not methyl, tert-butyl, 1,1-dimethyl-propyl, 1,1-dimethyl-propyl, methoxy, ethoxy, phenyl, tetrahydropyranoxy substituted C_4 - C_6 alkyl, 1-methyl-1-methoxyamide, 1-methylcyclohexyl, 3-iodophenyl, 3-methyl-ester-cyclopentyl, 1,1-dimethyl-6-phenyl-hex-3,5-dioxy, or trimethoxyphenyl.

Claim 2 (currently amended): The compound of claim 1, wherein \mathbf{R}_2 \mathbf{R}^2 is a carbocycle or heterocycle containing any combination of CH_2 , O, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are <u>is</u> optionally substituted in one or more positions with \mathbf{R}^3 .

Claim 3 (currently amended): The compound of claim 1, wherein \mathbb{R}_2 is selected from the group consisting of:

B

where \underline{in} the atoms of said ring structure \underline{may} be \underline{is} optionally substituted at one or more positions with R^3 .

Claim 4 (canceled)

R

Claim 5 (currently amended): The compounds, (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-hydroxymethylpyrrolidine; (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-pyrrolidinetetrazole; (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-pyrrolidinecarbonitrile; and (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-aminocarbonyl piperidine; and compounds 1-25, 27, 28, 31-33, and 35-136 1, 3, 5, 8, 11, 14, 17, 21, 24-32, 34, 38-40, 44, 45, 47-52, 62, 64-68, 73-98, 101, 102, 106, 108-117 and 119-137 of Tables I, II, and III.

Claim 6 (original): The compound 1-{2-[3-(4-Fluorophenyl)(1,2,4-oxadiazol-5-yl)] pyrrolidinyl}-3,3-di-methylpentane-1,2-dione.

Claim 7 (original): The compound 3,3-Dimethyl-1-[2-(3-methyl(1,2,4-oxadiazol-5-yl))pyrrolidinyl]pentane-1, 2-dione.

Claim 8 (canceled)

Claim 9 (currently amended): The pharmaceutical composition of claim 8, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere comprises A pharmaceutical composition comprising:

(i) a compound of formula (!) I

$$R_{\perp}$$
 R_{\perp} R_{\perp}

or a pharmaceutically acceptable salt, ester, or solvate of the compound, wherein:

n is 1-3;

X is either O or S;

 \mathbf{R}_1 is selected from the group consisting of C₁-C₉ straight or branched chain alkyl or alkenyl, C₂-C₉ straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C₁-C₁₀ straight or branched chain alkyl, C₂-C₁₀ alkenyl or C₂-C₁₀ alkynyl;

 \mathbf{R}_2 \mathbf{R}^2 is carboxylic acid or a carboxylic acid isostere;

and wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, or heterocycle is optionally substituted with one or more substituents selected from R^3 , where R^3 is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulfhydryl, thioalkyl, alkylthio, sulfonyl, C_1 - C_6 straight or branched chain alkyl, C_2 - C_6 straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO_2R^7 wherein R^7 is hydrogen, or C_1 - C_9 straight or branched chain alkyl or C_2 - C_9 straight or branched chain alkenyl; and

or a pharmaceutically acceptable salt, ester, or solvate thereof

(ii) a pharmaceutically acceptable carrier.

Claim 10 (currently amended): The pharmaceutical composition of claim 9, wherein \mathbb{R}_2 \mathbb{R}^2 is a carbocycle or heterocycle containing any combination of \mathbb{CH}_2 , 0, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are is optionally substituted in one or more positions with \mathbb{R}^3 .

Claim 11 (currently amended): The pharmaceutical composition of claim 9, wherein \mathbf{R}_2 is selected from the following group:

Cont

where \underline{in} the atoms of said ring structure \underline{may} be \underline{is} optionally substituted at one or more positions with R^3 .

Claim 12 (canceled)

Claim 13 (currently amended): The pharmaceutical composition of claim 9, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere compound is selected from the group consisting of compounds 1-139 1, 3, 5, 8, 11, 14, 17, 21, 24-32, 34, 38-40, 44, 45, 47-52, 62, 64-68, 73-98, 101, 102, 106, 108-117 and 119-137 of Tables I, II and III.

Claims 14-82 (canceled)