Lecture 12 Uninformed Search Strategies

Artificial Intelligence

Dr. Ahmed Mateen

Agenda

- Depth Limited Search
- Iterative Deepening Search

Depth Limited Search (DLS)

- Same as DFS with level limitation or depth limit.
 - Search is limited up to some predetermined level ℓ .
 - Nodes at depth ℓ have no successors.
 - Alleviates the problem of unbounded trees

DLS = DFS + Limit for the level

Depth Limited Search (DLS)

- Select level
 - 2. Apply DFS up-to the selected level

Depth Limited Search (DLS)

- Limitation-> If goal node is located after the height limit, it will fail.
- Benefit-> Will not go into infinite loops.

• Same as depth-first search if $\ell = \infty$

Depth-Limited Search

- Complete
 - DLS search algorithm is complete if the solution is above the depth-limit.
- Time
 - O(bℓ)
- Space
 - O(bℓ)
- Optimal
 - Not even if $\ell > d$

Depth Limited Search

How to choose ℓ?

Sometimes based on knowledge of the

problem

Iterative Deepening Search (IDS)

- Iterative deepening depth-first search
 - Uses depth-first search
 - Finds the best depth limit
 - Gradually increases the depth limit; 0, 1, 2, ... until a goal is found

Iterative deepening depth first search

1'st Iteration----> A

2'nd Iteration----> A, B, C

3'rd Iteration----->A, B, D, E, C, F, G

Limit = 0

- Complete
 - Yes
- Time
 - O(bd)
- Space
 - O(bd)
- Optimal
 - Yes if step cost = 1

Lessons From Iterative Deepening Search

- Faster than BFS even though IDS generates repeated states
 - BFS generates nodes up to level d+1
 - IDS only generates nodes up to level d

 In general, iterative deepening search is the preferred uninformed search method when there is a large search space and the depth of the solution is not known

- Run two simultaneous searches
 - One forward from initial state
 - Forward Search
 - Other backward from the goal
 - Backward Search
- Divides one single search graph into two small subgraphs
- Search Stopping Criteria?
 - When these two graphs intersect each other

- Complete
 - Yes
- Time Complexity
 - O(b^{d/2})
- Space Complexity
 - O(b^{d/2})
- Optimal
 - Yes if both directions use BFS and if all step costs are identical

- Advantages
 - Bidirectional Search is fast
 - Bidirectional search requires less memory
- Disadvantages
 - Implementation of Bidirectional search is difficult
 - Goal state should be known in advance

Comparison

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time Space Optimal?	$\operatorname{Yes}^a O(b^d) \\ O(b^d) \\ \operatorname{Yes}^c$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon \rfloor}) O(b^{1+\lfloor C^*/\epsilon \rfloor})$ Yes	No $O(b^m)$ $O(bm)$ No	No $O(b^\ell)$ $O(b\ell)$ No	$egin{aligned} \operatorname{Yes}^a \ O(b^d) \ O(bd) \ \operatorname{Yes}^c \end{aligned}$	$\operatorname{Yes}^{a,d}$ $O(b^{d/2})$ $O(b^{d/2})$ $\operatorname{Yes}^{c,d}$