ENG 301 Engineering Mathematics III

Lecture by: Engr. O. D. Adigun

LINEAR ALGEBRA

SYSTEMS OF LINEAR EQUATIONS

WRITING SYSTEMS

$$20x+35Y=70$$
 $1X_1+X_1=5$
 $3\times_1-2X_2=10$
 $3\times_2-2X_2=10$

WRITING SYSTEMS

 $2X_1+3X_2=510$
 $3\times_2-2X_2=10$
 $3\times_1-2X_2=10$
 $3\times_1-2X_1=10$
 $3\times_1-2X_1=10$

TERMINOLOGY LINEAR EQUATION - An equation that can be written as ax, +9ex2+93x3+...+ an xn = b where a, az, ...an, b are real or complex numbers. SYSTEM OF LINEAR EQUATIONS - A collection of two or more linear equations vising the same variables. SOLUTION - A list of numbers (5,52,53...) that makes each equation in the system true when substituted for x,1x2, x3... respectively. SOLUTION SET - The set of all possible solutions to a system.

PRACTICE

SOLVE THE GIVEN SYSTEM OF EQUATIONS USING ELIMINATION

$$X_1 - 2x_1 + x_3 = 0$$

 $2x_1 - 8x_3 = 8$
 $-4x_1 + 5x_2 + 9x_3 = -9$

(29,16,3)

PRACTICE

SOLVE THE GIVEN SYSTEM OF EQUATIONS USING ELIMINATION.

4x1-8x2+ 43=0 -4x1+5x2+ 9x3=-9

PRACTICE

SOLVE THE GIVEN SYSTEM OF EQUATIONS USING ELIMINATION.

$$4(x_1 - 2x_2 + x_3 = 0) \rightarrow 2x_2 - 8x_3 = 8$$

$$2x_2 - 8x_3 = 8$$

$$-4x_1 + 5x_2 + 9x_3 = -9$$

4x1-8x2+ 43=0 - x1+5x2+ 9x3=-9

PRACTICE

SOLVE THE GIVEN SYSTEM OF EQUATIONS USING ELIMINATION

$$\begin{array}{c}
4(x_1 - 2x_2 + x_3 = 0) \\
2x_1 - 8x_3 = 8
\end{array}$$

$$\begin{array}{c}
3(2x_2 - 8x_3 = 8) \\
2(-3x_2 + 13x_3 = -9)
\end{array}$$

$$\begin{array}{c}
-4x_1 + 5x_2 + 9x_3 = -9
\end{array}$$

$$\begin{array}{c}
3(2x_2 - 8x_3 = 8) \\
2(-3x_2 + 13x_3 = -9)
\end{array}$$

$$\begin{array}{c}
-4x_1 + 5x_2 + 9x_3 = -9
\end{array}$$

$$\begin{array}{c}
2x_3 = 6 \\
x_3 = 3
\end{array}$$

$$2 \times_{2} - 8 \times_{3} = 8$$

$$2 \times_{2} - 8(3) = 9$$

$$2 \times_{2} - 24 = 8$$

$$2 \times_{2} = 32$$

$$\times_{1} - 2(16) + 3 = 0$$

$$\times_{1} - 32 + 3 = 0$$

$$\times_{1} - 32 + 3 = 0$$

$$\times_{1} - 32 + 3 = 0$$

$$\times_{1} = 29$$

LINEAR ALGEBRA

SULVE SYSTEMS USING AUGMENTED MATRICES AND ROW OPERATIONS

```
REPLACEMENT - REPLACE ONE ROW BY THE SUM OF ITSELF
AND A MULTIPLE OF ANOTHER ROW

[2 4 | 8]
INTERCHANGE - INTERCHANGE (SWAP) TWO ROWS

[2 4 | 8]
I 0 | 9]

SCALING - MULTIPLY A ROW BY A NON-ZERO CONSTANT

[2 4 | 8]
I 0 | 9]
```

```
REPLACEMENT - REPLACE ONE ROW BY THE SUM OF ITSELF AND A MULTIPLE OF ANOTHER ROW

\begin{bmatrix}
2 & 4 & 1 & 8 \\
1 & 0 & 1 & 9
\end{bmatrix}
\xrightarrow{-2R_2 + R_1 \to R_2}
\begin{bmatrix}
2 & 4 & 1 & 8 \\
0 & 4 & -10
\end{bmatrix}

INTERCHANGE - INTERCHANGE (SWAP) TWO ROWS

\begin{bmatrix}
2 & 4 & 1 & 8 \\
1 & 0 & 1 & 9
\end{bmatrix}
\xrightarrow{R \to R_2}
\begin{bmatrix}
1 & 0 & 1 & 9 \\
2 & 4 & 1 & 8
\end{bmatrix}

SCALING - MULTIPLY A ROW BY A NON-ZERO CONSTANT

\begin{bmatrix}
2 & 4 & 1 & 8 \\
1 & 0 & 1 & 9
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_1 \to R_1}
\begin{bmatrix}
1 & 2 & | 4 \\
1 & 0 & | 9
\end{bmatrix}
```

SOLVE THE SYSTEM (AGAIN)

THIS TIME USE AN AUGMENTED MATRIX AND ROW OPERATIONS

$$\begin{array}{c} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \end{array} \quad \begin{bmatrix} 1 - 2 & 1 & 1 & 0 \\ 0 & 2 - 8 & 1 & 8 \\ -1 & 5 & 9 & 1 - 9 \end{bmatrix}$$

(29,16,3)

SOLVE THE SYSTEM (AGAIN)

THIS TIME USE AN AUGMENTED MATRIX AND ROW OPERATIONS

$$X_1 - 2x_1 + x_3 = 0$$
 $2x_1 - 8x_3 = 8$
 $4x_1 - 8x_3 = 9$
 $4x_1 - 8x_2 = 9$
 $4x_1 - 8x_3 = 9$
 $4x_1 - 8x_2 = 9$

EXISTENCE AND UNIQUENESS

DETERMINE IF THE SYSTEM IS CONSISTENT (DOES A SOLUTION EXIST?)
IF SO, DETERMINE IF THE SOLUTION IS UNIQUE (JUST ONE SOLUTION?)

EXISTENCE AND UNIQUENESS

DETERMINE IF THE SYSTEM IS CONSISTENT (DOES A SOLUTION EXIST?)
IF SO, DETERMINE IF THE SOLUTION IS UNIQUE (JUST ONE SOLUTION?)

$$\begin{array}{c} 1 & -3/2 & 1 & 1/2 \\ 0 & 1 & -4 & 8 \\ \hline (4) & -8 & 12 & 1 \end{array} \xrightarrow{1/2} \xrightarrow{1/2$$

0x, +0x2+0x3 = 15

INCONSISTENT

LINEAR ALGEBRA

ROW REDUCTION AND ECHELON FORMS

ECHELON FORM VS. REDUCED ROW ECHELON FORM (RREF)

ECHELON: (PREVIOUSLY CALLED TRIANGLE FORM)

- 1) ALL NON-ZERD ROWS ARE ABOVE ALLZERO ROWS
- 2) EACH LEADING ENTRY OF A ROW IS IN A COLUMN TO THE RIGHT OF THE LEADING ENTRY OF THE ROW ABOVE IT.
- 3) ALL ENTRIES IN A COLUMN BELOW A LEADING ENTRY ARE ZEROS.

RREF - ALL CONDITIONS ABOVE AND !

- 4) THE LEADING ENTRY IN EACH NON-ZERO ROWS 1
- 5) EACH LEADING I IS THE ONLY NON-ZERO ENTRY
 IN THE COLUMN

ECHELON FORM VS. REDUCED ROW ECHELON FORM (RREF) ECHELON: (PREVIOUSLY CALLED TRIANGLE FORM) 1) ALL NON-ZERD ROWS ARE ABOVE ALLZERO ROWS 2) EACH LEADING ENTRY OF A ROW IS IN A COLUMN TO THE RIGHT OF THE LEADING ENTRY OF THE ROW ABOVE IT. 3) ALL ENTRIES IN A COLUMN BELOW A LEADING ENTRY ARE ZEROS. RREF - ALL CONDITIONS ABOVE AND: 4) THE LEADING ENTRY IN EACH NON-ZERO ROWS 5) EACH LEADING 1 IS THE ONLY NON-ZERO ENTRY IN THE COLUMN

PIVOT!

PIVOT POSITION - CORRESPONDS TO LEADING I IN RREF

PIVOT COLUMN - THE COLUMN THAT CONTAINS THE PIVOT

PIVOT - NONZERO NUMBER IN PIVOT POSITION USED TO

CREATE ZEROS IN ROW OPERATIONS

THE ROW REDUCTION ALGORITHM

1. BEGIN AT LEFT MOST NONZERO COLUMN, WHICH IS A PIVOT COLUMN. SELECT A NONZERO ENTRY AS PIVOT AND INTERCHANGE, IF NECESSARY, TO MOVE THAT ENTRY INTO THE PIVOT POSITION (ROW 1).

$$X_1 = 3X_3 = 8$$

$$2x_1 + 2x_2 + 9x_3 = 7$$

$$x_2 + 5x_3 = -2$$

$$\begin{bmatrix} 1 & 0 & -3 & | & 8 \\ 2 & 2 & 9 & | & 7 \\ 0 & 1 & 5 & | & -2 \end{bmatrix}$$

THE ROW REDUCTION ALGORITHM

1. USE ROW OPERATIONS TO CREATE ZEROS IN ALL ENTRIES BELOW THE PLYOT.

$$\begin{bmatrix} \boxed{1} & 0 & -3 & | & 8 \\ \boxed{0} & 2 & 9 & | & 7 \\ \boxed{0} & 1 & 5 & | & -2 \end{bmatrix} \xrightarrow{-2R_1 + R_2 \to R_2} \begin{bmatrix} 1 & 0 & -3 & | & 8 \\ 0 & 2 & 15 & | & -9 \\ 0 & 1 & 5 & | & -2 \end{bmatrix}$$

THE ROW REDUCTION ALGORITHM

3. REPEAT THIS PROCESS FOR REMAINING ROWS, IGNORING ROWS YOU'VE ALREADY APPLIED ALGORITHM TO.

THE ROW REDUCTION ALGORITHM

4. ENSURE EACH PIVOT IS A 1 USING SCALING AS NECESSARY

THE ROW REDUCTION ALGORITHM

5. BEGINNING WITH THE RIGHTMOST PIVOT AND WORKING UPWARDS AND TO THE LEFT, USE ROW OPERATIONS TO

LINEAR ALGEBRA

SOLUTION SETS AND FREE VARIABLES

FREE VARIABLES CAN TAKE ON ANY VALUE. ONCE YOU CHOOSE A VALUE FOR YOUR PREE VARIABLE, IT WILL DETERMINE THE VALUES OF THE OTHER (BASIC) VARIABLES. LET $x_3 = 2$ $x_1 = 5(2) + 1 = 10 + 1 = 11$ $x_2 = 4 - 2 = 2$ $x_3 = 4 + (+6) = 10$

(11,2,2)

CONSISTENT SYSTEM WITH INFINITELY MANY SOLUTIONS

LINEAR ALGEBRA

VECTOR EQUATIONS

```
VECTOR - AN ORDERED LIST OF NUMBERS (MORE ON THIS IN CH. 4)

COLUMN VECTOR - A VECTOR WITH ONLY ONE COLUMN. WE OFTEN

USE THESE FOR ORDERED PAIRS, TRIPLES, ETC.

VECTORS IN R<sup>®</sup> - THE SET OF ALL VECTORS WITH 2 ENTRIES.

R - REAL NUMBERS 2-1 NUMBER OF ENTRIES

THIS IS THE SET OF ALL POINTS IN A PLANE.

OPERATIONS WITH VECTORS - SAME AS WITH OTHER MATRICES.

2[3] = [6] SCALAR - MULTIPLY VECTOR BY A CONSTANT

ADDITION - ADD CORRESPONING VALUES

MULTIPLICATION - NOPE! DIMENSIONS DON'T WORK.
```

OPERATIONS ON VECTORS EXAMPLE

IF
$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 AND $v = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ FIND $u + v$ AND

 $-2u + 4v$.

 $\begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \end{bmatrix}$
 $\begin{bmatrix} -4 \\ -6 \end{bmatrix} + \begin{bmatrix} -4 \\ 8 \end{bmatrix} = \begin{bmatrix} -8 \\ 2 \end{bmatrix}$

PARALLELOGRAM RULE FOR ADDITION

SOME CLARIFICATION

A VECTOR EQUATION $X_1a_1 + X_2a_2 + ... + X_na_n = b$ has the same solution set as the linear system whose augmented matrix is $[a_1, a_2 ... a_n][b_n]$. Therefore, a vector Equation only has a solution if the system is consistent. If $V_1, V_2, ... V_p$ are in \mathbb{R}^n , then the set of linear combinations is denoted span $\{V_1, V_2, ... V_p\}$ and is called the subset of \mathbb{R}^n spanned. Essentially span $\{V_1, V_2, ... V_p\}$ is all vectors that can be written in the form $C_1, V_2, ... V_p\}$ is all vectors that can be written in the

LINEAR ALGEBRA

LINEAR COMBINATIONS

LINEAR COMBINATIONS EXISTENCE

IF
$$V = \begin{bmatrix} -\frac{1}{5} \end{bmatrix}$$
 AND $V_2 = \begin{bmatrix} \frac{2}{5} \end{bmatrix}$, Deter MINE whether $b = \begin{bmatrix} \frac{1}{4} \end{bmatrix}$

CAN BE WRITTEN AS A LINEAR COMBINATION OF V. AND VZ,

THEN DETERMING THE WEIGHTS SUCH THAT $C_1 V_1 + C_2 V_2 = b$.

 $C_1 V_1 + C_2 V_2 = b$
 $C_1 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{5} \end{bmatrix} \cdot C_1 \begin{bmatrix} \frac{2}{5} \\ \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_1 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{5} \end{bmatrix} \cdot C_2 \begin{bmatrix} \frac{2}{5} \\ \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_1 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{5} \end{bmatrix} \cdot C_2 \begin{bmatrix} \frac{2}{5} \\ \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_1 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{5} \end{bmatrix} \cdot C_2 \begin{bmatrix} \frac{2}{5} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_2 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_3 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_4 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_4 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_4 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_4 \begin{bmatrix} -\frac{1}{4} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$
 $C_4 \begin{bmatrix} -\frac{1}{4} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{bmatrix}$

MORE SPAN TALK

15 b IN FIRE PLANE CREATED BY SPAN
$$\{a_1, a_2\}$$
 IF

 $\vec{a}_1 = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{3} \end{bmatrix}$, $\vec{a}_2 = \begin{bmatrix} -\frac{5}{3} \\ -\frac{13}{3} \end{bmatrix}$ AND $\vec{b} = \begin{bmatrix} -\frac{3}{8} \\ -\frac{1}{8} \end{bmatrix}$
 $\begin{bmatrix} -\frac{1}{2} & -\frac{13}{3} \\ -\frac{1}{3} & -\frac{3}{3} \end{bmatrix}$
 $\begin{bmatrix} \frac{1}{2} & \frac{5}{3} & -\frac{3}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$
 $\begin{bmatrix} \frac{1}{2} & \frac{5}{3} & -\frac{3}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$
 $\begin{bmatrix} \frac{1}{2} & \frac{5}{3} & -\frac{3}{3} \\ 0 & -\frac{15}{3} & \frac{1}{3} \end{bmatrix}$
 $\begin{bmatrix} \frac{1}{2} & \frac{5}{3} & -\frac{3}{3} \\ 0 & -\frac{15}{3} & \frac{1}{3} \end{bmatrix}$
 $\begin{bmatrix} \frac{1}{2} & \frac{5}{3} & -\frac{3}{3} \\ 0 & 0 & -\frac{2}{3} \end{bmatrix}$

NO SIL.

PRACTICE

A MINING COMPANY HAS TWO MINES. ONE DAYS OPERATION AT MINE 1 PRODUCES ORE THAT CONTAINS 20 METRIC TONS OF COPPER AND 550 KG OF SILVER. MINE 2 PRODUCES 30 METRIC TONS OF COPPER AND 500 KG OF SILVER. HOW MANY DAYS SHOULD EACH MINE OPERATE TO PRODUCE 150 TONS COPPER AND 2825 KG SILVER

THE SAME - BUT DIFFERENT

SYSTEM OF FOUNTIONS:

$$2 \times_1 + 3 \times_2 - \times_3 = 3$$

$$2 \times_2 + 3 \times_3 = 4$$

AUGMENTED MATRIX:

$$\begin{bmatrix} 2 & 3 & -1 & | & 3 \\ 0 & 2 & 3 & | & 4 \end{bmatrix}$$

VECTOR FOUNTION: $X_1 a_1 + X_2 a_2 + ... + X_n a_n = b$

$$\times_1 \begin{bmatrix} 2 & 3 & -1 & | & 3 \\ 0 & 2 & 3 & | & 4 \end{bmatrix}$$

MATRIX EQUATION: $A \times_2 b$

$$\begin{bmatrix} 2 & 3 & -1 & | & X_1 \\ 0 & 2 & 3 & | & X_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$