Progettazione di algoritmi

Leonardo Ganzaroli

Indice

	Intr	oduzio	ne															1
1	Teo	ria dei	graf	fi														3
	1.1	Visite																5
	1.2	Studio	dei į	grafi														6
		1.2.1	Clas	ssifica	azion	e a	rch	i										6
		1.2.2	Ord	inam	ento													7
		1.2.3	Con	apone	enti													8
2	Alg	oritmi	\mathbf{Gre}	\mathbf{edy}														9
	2.1	Grafi p	pesat	i														10
		2.1.1	MS	Γ														11
3	Pro	gramm	nazio	ne d	linaı	nie	ca											12

Introduzione

Questi appunti sono derivanti principalmente dalle slide del corso di *Progettazione di algoritmi* che ho seguito durante la laurea Triennale di informatica all'università "La Sapienza".

N.B. Questo corso è il naturale proseguimento di *Introduzione agli algoritmi*, quindi molte cose saranno date per scontate.

1 Teoria dei grafi

N.B Se non meglio specificato |V(G)| = n, |E(G)| = m.

Definizione Un cappio è un arco di un vertice in se stesso.

Definizione Un multigrafo è un grafo che ammette archi ripetuti e cappi.

Definizione 2 vertici x, y collegati da un arco sono detti adiacenti, l'arco è detto incidente in x, y.

Definizione Un grafo è detto diretto se i suoi archi hanno un orientamento.

Definizione Il grado di un vertice (deg()) è pari al numero di archi incidenti in esso, se il grafo è diretto si distinguono grado entrante e uscente.

Per rappresentare un grafo ci sono 2 modi:

1. Matrice di adiacenza

 $M \in Matr_{n \times n}(\{0,1\})$ t.c.:

$$m_{i,j} = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{altrimenti} \end{cases}$$

2. Liste di adiacenza

 $\forall x \in V(G)$:

$$L_x = [v \in V(G) \mid (x, v), (v, x) \in E(G)]$$

Se il grafo è diretto ce ne sono 2 per vertice: L_x^{in}, L_x^{out} .

(x vertice)	Matrice	Liste				
Spaziale	$O(n^2)$	O(n+m)				
Verificare esistenza arco	O(1)	O(deg(x))				
Trovare adiacenti	O(n)	O(deg(x))				
Aggiungere/Rimuovere arco	O(1)	O(deg(x))				

Tabella 1: Costi

Definizione Una traccia è una passeggiata senza archi ripetuti.

Definizione Una cammino è una traccia senza vertici ripetuti.

Definizione Una passeggiata è detta chiusa se il primo vertice è anche l'ultimo, altrimenti si dice aperta.

Definizione Dati x, y vertici. y è visitabile da x ($x \to y$) se esiste una passeggiata da x a y.

Definizione Una passeggiata è detta Euleriana se contiene tutti gli archi ed ogni arco è presente una sola volta.

Teorema 1 (Eulero)

$$\exists \quad passeggiata \; Euleriana \; chiusa \; \iff \begin{cases} \forall \; v_1, v_2 \in V(G) \; \; \exists v_1 \to v_2 \\ \forall \; v \in V(G) \; \; \exists k \in \mathbf{Z} \; | \; deg(v) = 2k \end{cases}$$

Definizione Un grafo è fortemente connesso se $\forall x,y \in V(G) \ \exists \ 2$ cammini $|x \rightarrow y \land y \rightarrow x$.

Definizione Un'arborescenza è un albero diretto.

I grafi possono essere usati in molti ambiti, un esempio di applicazione è il seguente:

Figura 1: Labirinto \rightarrow Grafo

In questo modo basta trovare un cammino tra l'entrata e l'uscita per attraversarlo.

1.1 Visite

Algorithm 1 DFS (Ricorsiva)

```
G grafo, x nodo iniziale

Vis = \{x\}
DFS(G,x,Vis)
Return Vis
function DFS(G,x,Vis)
for y \in x.out do
if y \notin Vis then
Vis.add(y)
DFS(G,y,Vis)
end if
end for
end function
```

Il costo è O(n+m), effettua una visita in profondità (simile a quella di un albero).

Algorithm 2 BFS

```
G grafo, x nodo iniziale

Vis = \{x\}
Q = coda vuota
Q.enqueue(x)

while Q \neq \emptyset do
y = Q.dequeue()
for z \in y.out do
if z \notin V is then
Q.enqueue(z)
end if
end for
end while
```

Il costo è O(n+m), effettua una visita in ampiezza. Inserendo un opportuno array si possono trovare anche le distanze dei nodi da quello iniziale (numero di archi).

1.2 Studio dei grafi

1.2.1 Classificazione archi

Definizione Dato un contatore C incrementato ad ogni vertice visitato. Se si esegue una DFS si definisce $\forall x \in V(G)$:

- Tempo di visita di x (t(x))Valore di C quando x è aggiunto allo stack.
- Tempo di chiusura di x (T(x))Valore di C quando x è rimosso dallo stack.
- ullet Intervallo di visita di x

$$Int(x) = [t(x), T(x)]$$

Definizione Data A arborescenza generata da una DFS su G grafo. Si possono usare gli intervalli per catalogare gli archi $(u, v) \in E(G) - E(A)$:

• All'indietro

$$Int(u) \subseteq Int(v)$$

• In avanti

$$Int(u) \supseteq Int(v)$$

• Di attraversamento

$$Int(u) \cap Int(v) = \emptyset$$

Teorema 2 (Cicli)

$$\exists$$
 ciclo in $G \iff \exists$ arco all'indietro in G

 $\bf Definizione$ Un ponte è un arco che non appartiene a nessun ciclo.

1.2.2 Ordinamento

Definizione Un ordinamento topologico è un ordinamento dei vertici tale che ogni vertice viene prima dei vertici raggiungibili da esso.

2 possibili ordinamenti di questo grafo sono:

- 1. 1,2,3,6,4,5,7
- 2. 1,2,6,4,3,5,7

Teorema 3 (Cicli)

 \exists ordinamento topologico $\iff \nexists$ ciclo

Algorithm 3 Trova ordinamento DAG

```
\begin{split} \mathbf{L} &= \text{lista vuota} \\ & \mathbf{while} \ V(G) \neq \emptyset \ \mathbf{do} \\ & v = v \in V(G) \mid deg_{out}(v) = 0 \\ & \text{L.insert\_head(v)} \\ & \text{G.remove(v)} \\ & \mathbf{end \ while} \end{split}
```

Return L

G grafo

Se G è rappresentato con le liste ha costo O(n(n+m)).

1.2.3 Componenti

Definizione Dato G grafo. Un componente di G è un suo sottografo fortemente connesso e massimale.

I componenti di questo grafo sono:

- $H_1 = \{1, 2, 3, 4\}$
- $H_5 = \{5, 6, 8\}$
- {7}

Definizione La contrazione di un componente in un vertice (G/V(H)) è l'operazione con cui:

- Si rimuovono dal grafo i vertici del componente
- Si inserisce un vertice apposito
- Si sistemano gli archi

Figura 2: $G/V(H_5)$

2 Algoritmi Greedy

Definizione Un algoritmo è Greedy se cerca una soluzione ammissibile da un punto di vista globale attraverso la scelta della soluzione più conveniente ad ogni passo locale.

Per questo tipo di algoritmi è sempre necessario dimostrare la correttezza, per farlo si deve:

- 1. Dimostrare che l'output abbia le caratteristiche previste
- 2. Dimostrare (con induzione) che ogni istanza di output sia nella soluzione ottimale
- 3. Dimostrare che l'output finale sia la soluzione ottimale

Si supponga di dover effettuare un viaggio dalla località A alla località B con un'auto che ha un'autonomia di k chilometri e con serbatoio vuoto all'inizio. Lungo la strada ci sono n+1 distributori di benzina ciascuno distante dal precedente meno di k chilometri. Sia d_i la distanza che separa il distributore i dal distributore i+1, dove il distributore 1 è in A e il distributore n+1 è in B.

Descrivere un algoritmo greedy che preso in input la lista delle distanze d_1, \ldots, d_n dei distributori, seleziona un numero minimo di distributori in cui far rifornimento durante il viaggio.

Algorithm 4

```
d array distanze, k autonomia
R = \operatorname{array} \ di \ 0
\operatorname{aut} = 0
\operatorname{for} \ i=1 \ \operatorname{to} \ n \ \operatorname{do}
\operatorname{if} \ \operatorname{aut} < d[i] \ \operatorname{then}
\operatorname{aut} = k
R[i] = 1
\operatorname{end} \ \operatorname{if}
\operatorname{aut} -= d[i]
\operatorname{end} \ \operatorname{for}
\operatorname{Return} \ R
```

- Grazie all'IF ogni soluzione prodotta è ammissibile
- Induzione

```
Base: i=0, niente da provare
```

Sia R_i l'array R dopo l'*i*-esima iterazione, R^* la soluzione ottima.

Per ipotesi fino ad i coincidono, analizzo i casi non coincidenti in i + 1:

1. $R_{i+1}[i+1] = 1 \wedge R^*[i+1] = 0$

Non può essere i+1=n+1 perché ci sono massimo n iterazioni e R non avrebbe 1 in quella posizione.

Se i+1 < n+1 il fatto che venga scelto il distributore i+1 implica che l'autonomia non basti per arrivare a i+2, la soluzione sarebbe quindi sbagliata.

2. $R_{i+1}[i+1] = 0 \wedge R^*[i+1] = 1$

Non può essere i+1=n+1 altrimenti la soluzione avrebbe un rifornimento di troppo.

Se i+1 < n+1 il fatto che non venga scelto implica che c'è abbastanza autonomia per arrivare a i+2, quindi la soluzione avrebbe un rifornimento di troppo.

2.1 Grafi pesati

Definizione Un grafo pesato è un grafo in cui ogni arco ha associato un valore reale.

Definizione Il peso di un cammino (p()) è la somma dei pesi degli archi del cammino.

Definizione La distanza pesata tra 2 vertici $x, y \ (dist(x, y))$ è il cammino tra i 2 con peso minimo.

Algorithm 5 Dijkstra (Grafo non diretto)

```
dist = array di + \infty
Padri = array di -1
dist[u] = 0
                                                                  \triangleright u nodo iniziale
Padri[u] = u
H = \min\text{-Heap}
                                   ⊳ inizializzato con tutti i nodi, priorità=dist
while H \neq \emptyset do
   v = H.get_min()
                                                        ⊳ Rimuovi il nodo minore
   for w \in v.out do
       if dist[w] > dist[v] + p[v, w] then
           dist[w] = dist[v] + p(v, w)
           Padri[w] = v
           Aggiorna H
       end if
   end for
end while
Return dist, Padri
```

Il costo è $O((n+m)\log n)$.

2.1.1 MST

Definizione Un sottografo di un grafo connesso e non diretto è un albero di copertura se è aciclico e contiene tutti i nodi del grafo.

Definizione L'albero di copertura minima di un grafo (MST) è il suo albero di copertura la cui somma degli archi è la minima.

Algorithm 6 Kruskal

```
\mathrm{Sol} = \emptyset
\mathrm{Sort}(E(G))
\mathbf{for}\ e \in E(G)\ \mathbf{do}
\mathbf{if}\ \mathrm{Trova\_ciclo}(\mathrm{Sol} \cup e) == \emptyset\ \mathbf{then}
\mathrm{Sol.add}(e)
\mathbf{end}\ \mathbf{if}
\mathbf{end}\ \mathbf{for}
\mathrm{Return}\ \mathrm{Sol}
```

Algorithm 7 Prim

```
v = v \in V(G)
\operatorname{Sol} = \emptyset
R = \{v\}
\mathbf{while} \ R \neq V(G) \ \mathbf{do}
(x, y) = \min[w(a, b)] \ \operatorname{con} \ a \in R \land b \in V(G) - R
\operatorname{Sol.add}((x, y))
\operatorname{R.add}(y)
\mathbf{end} \ \mathbf{while}
\operatorname{Return} \operatorname{Sol}
```

Entrambi ritornano un MST del grafo, il costo è O(mn) per entrambi.

3 Programmazione dinamica

Definizione La programmazione dinamica è basata sulla risoluzione di un problema partendo dalle soluzioni dello stesso problema ma di dimensione inferiore.

Definizione La memoization consiste nel salvare in memoria i valori dati da una funzione per poterli usare successivamente senza ricalcolarli, si può usare solo se la funzione non ha effetti collaterali e dà sempre lo stesso output con un certo input.

Per fare ciò si usa una matrice.

Esempi:

• Knapsack Problem

Dati degli oggetti x_1, \ldots, x_n ognuno con un suo peso w_i ed un suo valore v_i trovare un sottoinsieme che massimizzi il valore totale tenendo il peso sotto la soglia W.

Si definisce la tabella T di dimensione $n+1\times W+1$ tale che:

 $T[k,x] = (\max \text{ valore trasportabile con uno zaino di capacità } x \leq W \text{ con i primi } k \text{ oggetti})$

Nello specifico:

$$T[k,x] = \begin{cases} 0 & \text{se } x = 0 \lor k = 0 \\ T[k-1,x] & \text{se } w_k > x \\ max(T[k-1,x],T[k-1,x-w_k] + v_k) & \text{se } w_k \le x \end{cases}$$

Per trovare la soluzione basta partire dalla cella in basso a destra e risalire una riga alla volta, nel caso T[k,x] > T[k-1,x] si aggiunge l'elemento corrente alla soluzione e ci si sposta verso sinistra di w_k colonne.

• Cammino peso max

Dato un DAG pesato e due vertici x,y trovare il cammino con peso massimo tra i 2.

Essendo un DAG con n vertici ci sono massimo n-1 archi, si definisce quindi la tabella $n \times n$ tale che:

T[k,z] =(peso max del cammino $x \to z$ passante per max k archi)

Nello specifico:

- -T[0,x]=0
- $\forall z \neq x \ T[0, z] = -\infty$
- $\ \forall \ k \in [0, n-1] \ T[k, z] = -\infty$ se \nexists cammino $x \to z$ lungo k
- -T[1,z]=w(x,z) se $\exists (x,z)\in E(G),\,T[0,z]$ altrimenti

Quindi:

$$T[k,z] = max(T[k-1,z], T[k-1,v_1] + w(v_1,z), \dots, T[k-1,v_h] + w(v_h,z))$$

Il cammino si trova con procedimento simile al precedente.

• CPM

Un progetto si può dividere in attività 1, 2, ..., n, ogni attività ha un suo tempo di svolgimento e possono esistere dipendenze tra 2 attività. Si vogliono sapere i tempi di inizio delle attività ed il tempo totale necessario.

Si segue il procedimento:

- 1. Costruire un DAG i cui nodi sono le attività e gli archi le dipendenze, il peso di quest'ultime è il tempo di esecuzione del nodo di partenza
- 2. Aggiungere un nodo Start con archi uscenti ad ogni altro nodo con costo 0
- 3. Il cammino con peso maggiore da *Start* ad un certo nodo fornisce il tempo di inizio per lo stesso
- 4. Il tempo totale è dato dal costo del cammino massimo all'ultimo nodo + il suo tempo di completamento

• Bellman-Ford

Trovare il cammino minimo tra 2 nodi in presenza di costi negativi (no cicli negativi).

Come visto in precedenza:

$$T[k,z]=$$
 (peso min cammino $x\to z$ passante per max k archi)

Nello specifico:

- -T[0,x] = 0
- $\forall z \neq x \ T[0, z] = +\infty$
- $\ \forall \ k \in [0,n-1] \ T[k,z] = +\infty$ se \nexists cammino $x \to z$ lungo k
- T[1,z]=w(x,z) se $\exists (x,z)\in E(G),\, T[0,z]$ altrimenti

Quindi:

$$T[k,z] = min(T[k-1,z], T[k-1,v_1] + w(v_1,z), \dots, T[k-1,v_h] + w(v_h,z))$$