L2-CHEMR

NERE RENEWER RENEW RENEW

Mātai Matū, Kaupae 2, 2022

TE PUKAPUKA RAUEMI

Tirohia tēnei pukapuka hei whakatutuki i ngā tūmahi kei ō Pukapuka mō ngā Tūmahi me ngā Tuhinga.

Tirohia kia kitea ai e tika ana te raupapatanga o ngā whārangi 2–5 kei roto i tēnei pukapuka, ka mutu, kāore tētahi o aua whārangi i te takoto kau.

E ĀHEI ANA TŌ PUPURI KI TĒNEI PUKAPUKA HEI TE MUTUNGA O TE WHAKAMĀTAUTAU.

Ngā tikanga tātai mō 91164: Te whakaatu māramatanga ki te honohono, ki te hanganga, ki ngā āhuatanga me ngā huringa pūngao

$$n=cV$$
 $\Delta_r H=\Sigma$ ngā pūngao hononga $-\Sigma$ ngā pūngao hononga (ngā hononga i pakaru) (ngā hononga i hangaia)
$$n=\frac{m}{M}$$

Ngā tikanga tātai mō 91166: Te whakaatu māramatanga ki te tauhohehohe matū

pH =
$$-\log[H_3O^+]$$
 [H_3O^+] = 10^{-pH}
 $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14}$ i to 25 °C

Formulae for 91164: Demonstrate understanding of bonding, structure, properties and energy changes

$$n = cV$$
 $\Delta_r H = \Sigma$ bond energies (bonds broken) – Σ bond energies (bonds formed)

$$n = \frac{m}{M}$$

Formulae for 91166: Demonstrate understanding of chemical reactivity

pH =
$$-\log[H_3O^+]$$
 [H_3O^+]= 10^{-pH}
 $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14}$ at 25 °C

TE TAKA PŪMOTU

18 He 4.0	0 Ne 20.2	8 Ar	40.0	Kr	83.8		Xe 131		Rn	18	Og	
2		18	6	<u>ე</u>		54		98) [
I	$\begin{vmatrix} 9 \\ \mathbf{F} \\ 19.0 \end{vmatrix}$	17 C	35.5	Br	79.9	53	1 127	85	At	117	L	
16	8 O 16.0	16 S	32.1	Se	79.0	52	Te 128	84	P0	116	Lv	
15	7 N 14.0	15 P	31.0	SS As	74.9	51	Sb 122	83	Bi	202	Mc	
14	6 C 12.0	14 Si	28.1	32 Ge	72.6	50	Sn 119	82	Pb	114	E	
13	5 B 10.8	13 Al	27.0	Ga Ga	69.7	49	In 115	81	II S	113	Nh	
·			12	30 Zn	65.4	48	Cd 112	80	Hg	112	Cn	277
			11	Cu	9.89	47	\mathbf{Ag} 108	62	Au	1111	Rg	272
; mol-1			01	, N	58.7	46	Pd 106	78	Pt	110	Ds	271
Papatipu <i>Molar</i> / g mol ⁻¹			9	C0	58.9	45	Rh 103	77	Ir	192	Mt	268
Papatipu			8	20 Fe	55.9	44	Ru 101	9/	Os	108	Hs	265
1 H 1.0			7 30	Mn (54.9	43	Tc 98.9	75	Re	107	Bh	264
Tau Iraoho	l		9	$\frac{1}{\mathbf{Cr}}$	52.0	42	Mo 95.9	74	≥ 5	106	S	263
Tau							Nb 92.9					
			4 (7. Ti	47.9	40	Zr 91.2	72	Hf	104	Rf	261
			3	Sc	45.0	39	Y 88.9	71	Lu	103	Lr	262
~	4 Be 9.0	12 Mg	ω.			38	Sr 87.6	99	Ba	/21	Ra	226
I	3 Li 6.9	11 Na	23.0	19 K	39.1	37	Rb 85.5	55	Cs	87	Fr	

70	Yb	173	102	No	259
69	Tm	169	101	Md	258
89	Er	167	100	Fm	257
29	Ho	165	66	Es	252
99	Dy	163	86	Ct	251
65	Tp	159	26	Bk	249
64	Вd	157	96	Cm	244
63	Eu	152	95	Am	241
62	Sm	150	94	Pu	239
61	Pm	147	93	Np	237
09	Nd	144	92	Ω	238
59	Pr	141	91	Pa	231
58	Ce	140	06	$\mathbf{T}\mathbf{h}$	232
57	La	139	68	Ac	227
To Damaga	Lanthanide		To Donnens	10 Ivaupapa Actinido	

PERIODIC TABLE OF THE ELEMENTS

[
18	2	He	4.0	10	Ne	20.2	18	Ar	40.0	36	Kr	83.8	54	Xe	131	98	Rn	222	118	$_{\rm go}$	
			17	6		19.0	17	C	35.5	35	Br	79.9	53	Ι	127	85	At	210	117	Ls	
			91	8	0	16.0	16	S	32.1	34	Se	79.0	52	Te	128	84	P0	210	116	$L_{\mathbf{v}}$	
			15	7	Z	14.0	15	Ь	31.0	33	As	74.9	51	$\mathbf{S}\mathbf{p}$	122	83	Bi	209	115	Mc	
			14	9	C	12.0	14	Si	28.1	32	Ge	72.6	50	Sn	119	82	Pb	207	114	I	
			13	5	В	10.8	13	Al	27.0			69.7			115	81	П	204	113	Nh	
									12	30					112	80	$_{ m Hg}$	201	112	Cn	277
									II	29	Cu	63.6	47	\mathbf{Ag}	108	79	Au	197	1111	\mathbf{Rg}	272
			ol^{-1}						0I	28	Z	58.7	46	Pd	106	78	Pt	195	110	Ds	271
			Molar mass/g mol ⁻¹						6	27	Co	58.9	45	Rh	103	77			1(Mt	268
			Molar n						8	2	Fe		4		101			190		Hs	`
	1	Н	1.0						_	25	Mn	54.9	43	Tc	92.9 95.9 98.9	75	Re	186	107	Bh	264
	Atomic number 1								9	24	Cr	52.0	42	Mo	95.9	74	*	184	106	S	263
	Atomic								5	23	>	50.9	41	N _P	92.9	73	\mathbf{Ia}	181	105	Db	262
									4	22	Τi	47.9	40	\mathbf{Zr}	91.2	72	Ht	179	104	Rf	261
									3	21	Sc	45.0	39	Y	88.9 91.2	71	Lu	175	103	Lr	262
			7	4		0.6	12		24.3	20	Ca	40.1	38	Sr	87.6	99	Ba	137	88	Ra	226
			I	3	Ľ	6.9	11	Na	23.0	19	K	39.1	37	Rb	85.5	55	Cs	133	87	Fr	223

	57	58	59	09	61	62	63	64	65	99	29	89	69	70	
anthanide	La	Ce	Pr	Nd	Pm	Sm	Eu	Сd	Tb	Dy	Ho	Εľ	Tm	ΧÞ	
Series	139	140	141	144	147	150	152	157	159	163	165	167	169	173	
	68	06	91	92	93	94	56	96	26	86	66	100	101	102	
Actinide	Ac	Th	Pa	n	N_{p}	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
Series	227	232	231	238	237	239	241	244	249	251	252	257	258	259	

English translation of the wording on the front cover

Level 2 Chemistry 2022

RESOURCE BOOKLET

Refer to this booklet to answer the questions in your Question and Answer Booklets.

Check that this booklet has pages 2–5 in the correct order and that neither of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.