GUIDEWIRE DEVTrails University Hackathon

KUBERNETES FAILURE PREDICTION & ANOMALY DETECTION

Team Name: GDSquared

OVERVIEW & MOTIVATION

• Background:

- Kubernetes clusters power critical applications but are prone to failures
- Failures can include pod/node issues, resource exhaustion, network problems, and service disruptions

• Motivation:

- Reduce downtime, optimize resource usage, and enhance reliability
- Leverage machine learning to predict failures and detect anomalies

OBJECTIVES

- Build a model to predict failures (failed events)
- Detect anomalies in resource usage and logs
- Create a reproducible data pipeline and modeling framework

DATA & FILE STRUCTURE

- Dataset:
 - Derived from Google Cluster Dataset 2019.
 - Includes metrics such as CPU usage, memory usage, event logs, etc.
- Repository Structure:
 - o data: Contains dataset links
 - o models: Contains saved failure and anomaly prediction models
 - o presentation: Contains this presentation file
 - o src: Contains three notebooks:
 - Preprocessing & feature engineering
 - Training various ML models
 - Advanced anomaly detection and prediction

```
data
   dataset.txt
models
 best_model_final.pkl
   best_model_anomaly.pkl
presentation
Project_Presentation.pptx
src
   K8_preprocessing.ipynb
    K8_model_training&evaluation-1.ipynb
    K8_model_training&evaluation-11.ipynb
```

DATA PREPROCESSING

- Time Conversion:
 - Converting timestamps to datetime objects
 - Extracting hour, day, weekend indicators
- Feature Engineering:
 - Deriving metrics (memory_utilization, memory_pressure, cache_ratio)
 - Extracting CPU distribution statistics (mean, std, max, p95)
- Anomaly Detection:
 - Using Isolation Forest to add an anomaly flag

MODEL TRAINING OVERVIEW

- Static Models:
 - Logistic Regression, Random Forest, Decision Tree, XGBoost
 - Looping over targets (failed and is_anomaly)
- Evaluation:
 - Confusion matrix and classification reports
 - Weighted F1 scores to select best models
- Saving Best Models:
 - Models are saved as pickle files for later use

EXPERIMENTATION & RESULTS

DISCUSSION

- Key Observations:
 - "For predicting 'failed', Random Forest achieved the best performance with a F1-score of 0.9979. For predicting 'is_anomaly', XGBoost model yielded the highest F1-score of 0.9995."
- Challenges:
 - Data imbalance and feature scaling issues
 - Threshold tuning for different failure types
- Learnings:
 - Importance of robust preprocessing and feature engineering
 - Benefits of using multiple models and automated model selection

CONCLUSION

- Summary:
 - Developed a complete ML pipeline for predicting failures and detecting anomalies
 - Successfully trained multiple models and selected the best-performing ones
- Impact:
 - Potential to reduce downtime and improve resource allocation in Kubernetes environments