Biostat 216 Homework 4

Due Oct 30 @ 11:59pm

Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook or Quarto) to Gradescope in BruinLearn.

Q1.

Show the following claims.

- 1. If S_1 and S_2 are two vector spaces of same order, then their **intersection** $S_1 \cap S_2$ is a vector space.
- 2. If S_1 and S_2 are two vector spaces of same order, then their **union** $S_1 \cup S_2$ is not necessarily a vector space.
- 3. The **span** of a set of $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$, defined as the set of all possible linear combinations of \mathbf{x}_i s

$$ext{span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\} = igg\{\sum_{i=1}^k lpha_i\mathbf{x}_i: lpha_i \in \mathbb{R}igg\},$$

is a vector space in \mathbb{R}^n .

4. The null space of an matrix $\mathbf{A} \in \mathbb{R}^{m imes n}$ is a vector space.

Q2.

Let

$$\mathbf{A}_1 = egin{pmatrix} 1 & 3 & -2 \ 3 & 9 & -6 \ 2 & 6 & -4 \end{pmatrix}, \quad \mathbf{A}_2 = egin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix}.$$

1. Find the matrices ${f C}_1$ and ${f C}_2$ containing independent columns of ${f A}_1$ and ${f A}_2$.

- 2. Find a rank factorization $\mathbf{A} = \mathbf{C}\mathbf{R}$ of each of \mathbf{A}_1 and \mathbf{A}_2 .
- 3. Produce a basis for the column spaces of A_1 and A_2 . What are the dimensions of those column spaces (the number of independent vectors)? What are the ranks of A_1 and A_2 ? How many independent rows in A_1 and A_2 ?

Q3.

1. Show that an **orthocomplement set** of a set \mathcal{X} (not necessarily a subspace) in a vector space $\mathcal{V}\subseteq\mathbb{R}^m$

$$\mathcal{X}^{\perp} = \{\mathbf{u} \in \mathcal{V} : \langle \mathbf{x}, \mathbf{u} \rangle = 0 \text{ for all } \mathbf{x} \in \mathcal{X} \}$$

is a vector space.

2. Show that, if $\mathcal S$ is a subspace of a vector space $\mathcal V\subseteq\mathbb R^m$, then $\mathcal S=(\mathcal S^\perp)^\perp$.

Q4.

In this exercise, we show the fact

$$\operatorname{rank}(\mathbf{A} + \mathbf{B}) \le \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B})$$

for any two matrices ${f A}$ and ${f B}$ of same size in steps.

1. Show that the sum of two vector spaces \mathcal{S}_1 and \mathcal{S}_2 of same order

$$\mathcal{S}_1 + \mathcal{S}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 : \mathbf{x}_1 \in \mathcal{S}_1, \mathbf{x}_2 \in \mathcal{S}_2\}$$

is a vector space.

- 2. Show that $\dim(\mathcal{S}_1 + \mathcal{S}_2) \leq \dim(\mathcal{S}_1) + \dim(\mathcal{S}_2)$.
- 3. Show that $\mathcal{C}(\mathbf{A} + \mathbf{B}) \subseteq \mathcal{C}(\mathbf{A}) + \mathcal{C}(\mathbf{B})$.
- 4. Conclude that $rank(\mathbf{A} + \mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$.

Q5. Fundamental theorem of ranks

- 1. Show that $rank(\mathbf{A}) = rank(\mathbf{A}'\mathbf{A})$ and $rank(\mathbf{A}') = rank(\mathbf{A}\mathbf{A}')$. Hint: we did it in class, using rank-nullity theorem.
- 2. Show that $rank(\mathbf{A}) = rank(\mathbf{A}')$ using part 1. Hint: we showed this remarkable result using rank factorization in class. This question asks you to show it using part 1.

Q6.

1. If ${f A}$ and ${f B}$ are two matrices with the same number of rows, then

$$\mathcal{C}((\mathbf{A}\ \mathbf{B})) = \mathcal{C}(\mathbf{A}) + \mathcal{C}(\mathbf{B}).$$

2. If ${f A}$ and ${f C}$ are two matrices with the same number of columns, then

$$\mathcal{R}\left(egin{pmatrix} \mathbf{A} \ \mathbf{C} \end{pmatrix}
ight) = \mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{C})$$

and

$$\mathcal{N}\left(egin{pmatrix} \mathbf{A} \\ \mathbf{C} \end{pmatrix}
ight) = \mathcal{N}(\mathbf{A}) \cap \mathcal{N}(\mathbf{C}).$$