Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	1 2	I	II
			
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	$\begin{vmatrix} 4 \end{vmatrix}$		
	5		<u> </u>
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur			_
	7		
Mathematik für Physiker 3			_
(Analysis 2)	8		
Prof. Dr. H. Spohn			
45 A 2044 00 00 40 00 IV	\sum		
17. August 2011, 08:30 – 10:00 Uhr			
Hörsaal: Platz:	I .	 Erstkorrek	 ctur
Hinweise:	 TT		
Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		Zweitkorre	ektur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter			
Erreichbare Gesamtpunktzahl: 65 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			

Vorzeitig abgegeben um

 $Be sondere\ Bemerkungen:$

1. I didine di bici ding dai begemange	1.	Parametrisierung	auf	Bogenlänge
--	----	------------------	-----	------------

Parametrisierung auf Bogenlänge (4 Punkte) Geben Sie explizit eine Parametrisierung auf Bogenlänge, $\tilde{\gamma}: \mathbb{R} \to \mathbb{R}^2$, der Kettenlinie $\gamma: \mathbb{R} \to \mathbb{R}^2$, $\gamma(t) = (t, \cosh t)$, an.

 $\tilde{\gamma}(s) =$

2. Kettenregel (6 Punkte) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei total differenzierbar. Zeigen Sie, dass die Funktion $g: \mathbb{R}^3 \to \mathbb{R}$,

$$g(x, y, z) = -y + f(x^2 + y^2, ze^{-x})$$

auf \mathbb{R}^3 die Gleichung

$$y\frac{\partial g}{\partial x} - x\frac{\partial g}{\partial y} + yz\frac{\partial g}{\partial z} = x$$

erfüllt.

2	Taylorformel
Э.	Tavioriorinei

(8 Punkte)

Gegeben ist die Funktion $f(x,y) = \frac{x}{1-(xy)^2}$.

(a) Geben Sie die Taylorentwicklung von f im Nullpunkt mindestens bis zur fünften Ordnung an. HINWEIS: Geometrische Reihe

f(x,y) =

(b) Wie lautet $\partial_x^3 \partial_y^2 f(0,0)$?

 $\square -12 \quad \square -1 \quad \square -\frac{1}{12} \quad \square \ 0 \quad \square \ \frac{1}{12} \quad \square \ 1 \quad \square \ 12$

(c) Wie lautet $\partial_x^2 \partial_y^3 f(0,0)$?

 $\square -12 \quad \square -1 \quad \square -\frac{1}{12} \quad \square \ 0 \quad \square \ \frac{1}{12} \quad \square \ 1 \quad \square \ 12$

4. Implizit definierte Funktionen

(8 Punkte)

Sei $f(x,y) = 3y^5 - 5xy^3 + 10x^4$ für x, y > 0.

(a) In welchem Punkt $(x_0, y_0) \in \mathbb{R}^+ \times \mathbb{R}^+$ ist f(x, y) = 0 **nicht** explizit nach y auflösbar, d.h. es gibt keine stetig differenzierbare Funktion $g: U \to V$, mit offenen Intervallen U, V, die x_0 , bzw., y_0 enthalten, so dass f(x, g(x)) = 0 für $x \in U$?

 $(x_0, y_0) =$

(b) In welchem Punkt $(x_1, y_1) \in \mathbb{R}^+ \times \mathbb{R}^+$ gilt für die implizit durch f(x, y) = 0 definierte Auflösung nach y, y = g(x), dass $g'(x_1) = 0$.

 $(x_1, y_1) =$

Se	extrema mit Nebenbedingungen (14 Punkte) ei $g: \mathbb{R}_0^+ \to \mathbb{R}$ eine C^1 -Funktion mit $g'(t) > 0$ für $t \ge 0$ und $h: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $h(x) = g(\ x\)$. inden Sie die globalen Maxima und Minima von h unter der Nebenbedingung $5x_1^2 + 4x_1x_2 + 2x_2^2 = 5$.

6. Vektorfelder

(8 Punkte)

(a) Zeigen Sie für $f:\mathbb{R}^3\to\mathbb{R},\,v:\mathbb{R}^3\to\mathbb{R}^3$, jeweils stetig partiell differenzierbar, dass

$$\nabla \times (fv) = \nabla f \times v + f \nabla \times v.$$

(b) Berechnen Sie $\nabla \times w(x)$ für $x \neq 0$ mit $w(x_1, x_2, x_3) = ||x|| \begin{pmatrix} x_2 \\ x_1 \\ x_3 \end{pmatrix}$.

7. Differentialgleichungssystem

(10 Punkte)

Gegeben ist das Differentialgleichungssystem:

$$\dot{x}_1(t) = -x_1(t) + 2x_2(t),$$

$$\dot{x}_2(t) = -x_2(t).$$

(a) Das System ist linear, $\dot{x}=A\,x$ mit einer 2×2 -Matrix A und der vektorwertigen Funktion $x(t)=\binom{x_1(t)}{x_2(t)}$. Wie lautet A?

A=

(b) Welche Dimension hat der Lösungsraum von $\dot{x} = Ax$?

 $\square \ 0 \qquad \square \ 1 \qquad \square \ 2 \qquad \square \ 3 \qquad \square \ 4 \qquad \square \ 5$

(c) Wie lautet das Matrixexponential von A?

 $e^{At} =$

(d) Bestimmen Sie die Lösung x(t) des Anfangswertproblems

$$\dot{x} = Ax, \ x(0) = v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

x(t) =

8. Trennbare Differentialgleichung

(7 Punkte)

Gegeben ist das Anfangswertproblem (AWP) $\dot{x}=1+|x|$, x(0)=0 mit $x(t)\in\mathbb{R}$.

(a) Bestimmen Sie eine Lösung dieses AWPs auf ganz $\mathbb{R}.$

$$x(t) =$$

(b) Ist diese Lösung eindeutig? Begründen Sie Ihre Antwort.