1 Reproducing Kernel Hilbert Space

Definition 1.1 (Reproducing Kernel). Let E be a nonempty set. A function K defined by

$$K: E \times E \ni (x,y) \mapsto K(x,y) \in \mathbb{F}$$

is called a reproducing kernel of a Hilbert space H of functions on E if it satisfies the following conditions:

- (a) $K(\cdot, x) \in H$ for every $x \in E$
- (b) $\langle f, K(\cdot, x) \rangle_H = f(x)$ for every $x \in E$ and every $f \in H$.

Such Hilbert space is called a reproducing kernel hilbert space (RKHS, for short), and is denoted by (H(E), K) or (H, K).

Theorem 1.2. A Hilbert space H of functions on a nonempty set E admits a reproducing kernel K if and only if all evaluation functionals $\{ev_x\}_{x\in E}$ are continuous on H.

Proof. Suppose (H, K) is a RKHS. For $x \in E$ and for $f \in H$ we have

$$|ev_x(f)| = |f(x)| = |\langle f, K(\cdot, x) \rangle| \le ||f|| \, ||K(\cdot, x)|| \le ||f|| \, K(x, x)^{1/2} \to 0$$

as $||f|| \to 0$. Thus, ev_x is continuous linear functional (with norm $K(x,x)^{1/2}$).

Conversely, if $\operatorname{ev}_x: H\ni f\mapsto f(x)\in \mathbb{F}$ is continuous, then, by Riesz's representation theorem, there exists $r_x\in H$ such that

$$\langle f, r_x \rangle = f(x)$$

for every $f \in H$. If this happens for every $x \in E$, then $K(x,y) := r_x(y)$ is a reproducing kernel of H.

Corollary 1.3. Every convergent sequence in RKHS converges pointwise to the same limit.

Proof. $|f_n(x) - f(x)| = |\operatorname{ev}_x(f_n - f)| \to 0$ when $f_n \to f$ in norm by continuity of evaluation functional.

Definition 1.4. (Positive definite function) Let E be a nonempty set. A function $K: E \times E \to \mathbb{C}$ is called positive definite if for any $n \in \mathbb{N}$ and for any $a \in \mathbb{C}^n$ and $x \in E^n$ there holds

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i \overline{a_j} K(x_i, x_j) \ge 0,$$

where \bar{c} is the complex conjugate of c.

Proposition 1.5. Suppose φ is a mapping of a set E into a Hilbert space H. Then the mapping $K: E \times E \ni (x,y) \mapsto \langle \varphi(x), \varphi(y) \rangle \in \mathbb{C}$ is positive definite.

Proof. For a and x taken as in the definition, we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i \overline{a_j} K(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i \overline{a_j} \langle \varphi(x_i), \varphi(x_j) \rangle = \left\| \sum_{i=1}^{n} a_i \varphi(x_i) \right\|^2 \ge 0.$$

Proposition 1.6. Every reproducing kernel is positive definite.

Proof.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a_{j}} K(x_{i}, x_{j}) = \|\sum_{i=1}^{n} K(\cdot, x_{i})\|^{2}$$
.

Proposition 1.7. Every positive definite function $K: E \times E \to \mathbb{C}$ satisfies

- (a) $K(x,x) \ge 0$ for every $x \in E$
- (b) $K(x,y) = \overline{K(y,x)}$ for every $x,y \in E$
- (c) \overline{K} is also positive definite
- (d) $|K(x,y)| \le K(x,x)K(y,y)$ for every $x,y \in E$.

Proof. (a) and (c) clearly hold. For $\alpha, \beta \in \mathbb{C}$ and $x, y \in E$, we have

$$g(\alpha, \beta) := |\alpha|^2 K(x, x) + \alpha \overline{\beta} K(x, y) + \overline{\alpha} \beta K(y, x) + |\beta|^2 K(y, y) \ge 0.$$

Choose $\alpha = \beta = 1$ and $\alpha = i$, $\beta = 1$ to get

$$K(x,y) + K(y,x) = g(1,1) - K(x,x) - K(y,y) =: A \in \mathbb{R}$$
$$iK(x,y) - iK(y,x) = g(i,1) - K(x,x) - K(y,y) =: B \in \mathbb{R}.$$

Therefore,

$$2K(y,x) = A + iB$$
$$2K(x,y) = A - iB.$$

which proves (b). Finally, for $x, y \in E$ with $K(x, y) \neq 0$ and for $r \in \mathbb{R}$, (b) gives

$$0 \ge g(r, K(x, y)) = r^2 K(x, x) + 2r |K(x, y)|^2 + |K(x, y)|^2 K(y, y).$$

As RHS is quadratic in r, it has to satisfies

$$|K(x,x)|^4 - |K(x,y)|^2 K(x,x)K(y,y) \le 0,$$

from which (c) follows.