

SUBJECT INDEX

- Abies*, role in interglacials 589–90
Achenheim 103–7
 Adriatic Basin pollen record
 methods of analysis 415
 results 415–17
 results discussed 417–21
 Aeolian sand dating 25–31, 40–2, 75–8, 80–3, 85–91
 Alaska, IRSL site 133
 Albaida, Puerto de 55–6
 Albedo and GCM 292
 Alberta *see* Dinosaur Park
Alces alces 331
 Aluminium centres in quartz 257–63
 Amazon Basin, sediment dating 71
Ambystoma spp. 347
 Amersfoort Interstadial 589
 Amino acids
 in dating
 Clava Shelly Formation 769
 land snails 666, 677–8
 in stratigraphy
 Maryland Shelf 309–14
 Svalbard 636–7
 Amphibian fossils 345, 346–9, 349
 Anden Formation 121, 123
 Anna 58–60
 Antarctic marine ^{14}C levels 697
 factors affecting 697–8
 fish 705
 krill 705
 penguins 704
 seals 703
 seaweed 701–3
 shells 701–3
 whales 703–4
Apalone spp. 347
 Aragonite dating and ESR
 corals (fossil) 197–202, 203–6
 corals (modern) 192–5
 Archaeological dating
 methods 148–8
 results 149–51
Archidiskodon 338
 Arid period dating 25
 Ariendorf 94–5
 Arthropods 778
Arvicola spp. 338, 340
 Ash dating 15
 Assemblage zone 329
 Atlantic Coast (USA) stratigraphy 303–14
 Atlantic Ocean (North)
 ^{14}C correction factors 698
 circulation indicators
 ^{18}O 401–2
 salinity/density 403–6
 Last Glacial reconstruction 407–10
 Younger Dryas reconstruction 410–11
 Atmospheric circulation modelling 285, 497
 Autecology, role of 593
 Aven d'Orgnac Cave studies 619

 Bahama Islands 226
 speleothem studies 617
 Baoji loess
 climatic interpretation 279–80
 particle size analysis 278–9
 stratigraphy 276–8
 Barbados, marine terraces 692, 693
 Barton 8, 11
 Bavelian pollen spectrum 587
 Bearbrook 507, 529
 Bedrock tectonization 546

 Belcroute 45, 49
 Belgium, IRSL sites 133
 Bembridge 8, 11
 Bergmann's rule 334
 Bermuda, speleothem studies 617
 Biogeography
 case study
 malacology 597–8
 results interpreted 598–600
 sites 596–7
 causal 594–6
 descriptive 593–4
 Biome defined 595
 Biota defined 595
 Bobbing 8
 Body size, factors affecting 334–5
 Boisjour 15, 17
 Bolbaite 58–60
 Bone dating and ESR
 methods 251–4
 results 254–5
 Bosporus Peninsula 219, 220
 Bovetto 45, 48
 Boxgrove 7, 10, 11
 Brazeau 521–2
 Brean Down 150
 Breidavik Group
 facies analysis 739–41
 foraminiferal stratigraphy 741–4
 lithostratigraphy 734–9
 molluscan stratigraphy 744–51
 palaeoenvironment analysis 751–4
 setting 733
 Bricearth dating 7–12
 British Columbia seismic studies 563–7
 Brirup Interstadial 589
Bruckenthalia 438
Bufo spp. 348
 Bugarra 58–60

 ^{13}C
 core measurements in Pacific Ocean
 methods 388
 results 388–95
 results discussed 397–9
 setting 387–8
 statistical analyses 395–7
 land snails 674–6
 speleothems 612

 ^{14}C
 Antarctic marine water 697
 factors affecting 697–8
 fish 705
 krill 705
 penguins 704
 seals 703
 seaweed 701–3
 shells 701–3
 whales 703–4
 Atlantic Ocean (North) 698
 Champlain Sea study 518–20
 Clava Shelly Formation 769
 Dinosaur Park study 551
 land snails 665–6
 Pyrenees study 450–1, 452
 speleothems 610
 Svalbard 634–5
 Calcite dating 121–5, 128
 Canada
 seismic studies 560–7
 speleothem studies 614, 620
 see also Dinosaur Park

- Canis lupus* 331
Cape May Formation 319, 323
Capreolus capreolus 334
 Carbon dioxide
 in ice cores 381–2, 383–4
 levels and GCM 292
 Pacific Ocean cores
 methods 388
 results 388–95
 results discussed 397–9
 setting 387–8
 statistical analyses 395–7
 Carbon isotopes *see* ^{13}C , ^{14}C
 Carbonate dating and ESR
 calcite 177–8
 corals (fossil) 197–202, 203–6
 corals (modern) 192–5
 environment effects 169
 foraminifera 177–8
 Mg level effects 170
 Cascade Cave speleothem studies 614
 Casselman 508, 530
 Castiglione Crater Lakes 353–4
 sediment studies
 methods 354–5
 results 355–9
 results discussed 359–61
 Castle Bromwich 150
 Castleguard Cave studies 614
 Cave calcites *see* Speleothems
Cervus elaphus 330, 333, 334
Chaine-des-Puys 13
 Champlain Sea 503, 518–20, 560–3
 Channel Islands, TL sites 45, 49
 Chelford Sands Formation 79–80
Chelydra spp. 347, 348
 Chilting Copse 8, 11
 China
 Baoji section 276
 climatic interpretation 279–80
 particle size analysis 278–9
 stratigraphic correlations 276–8
 IRSL sites 133
 loess plateau 275
 Chowan River Formation 319, 323
Chrysanthemum spp. 347, 348
 Clava Shelly Formation
 biostratigraphy 768–9, 776–8
 dating 769
 glaciectonics 767–8
 history of research 759
 lithostratigraphy 762–7
 origins 769–71
 rafting model 771–3
 setting 759–62
 Clay index (CI) 429
 Clay mineralogy, Grande Pile 426, 429
 Climate change
 atmospheric composition 384–5
 modelling
 2-D coupled 483–7
 3-D
 components 497–8
 experiment 498–500
 strategy 496–7
 equilibrium GCM 481–2
 model modifications 487–8
 transient response 482–3
 orbital forcing 179–80
 reconstruction 428–9
Coelodonta antiquitatis 333
Coir'a' Ghrunda 787–9
Coire na Creiche 789–92
 Colchester Formation 366, 368, 369, 371
Coluber spp. 348
 Coral dating by U series
 data collection 687–90
 distributed error frequency curve 690–3
 Core dating 115–19
 Cova Negra 54–5
 Cover sand dating 85–91
Crocuta crocuta 331
 Cromerian 585–6
 pollen spectrum 587
Crotalus spp. 348
 Crystal Cave speleothem studies 617
 D/H isotopes, land snails 678–9
Dama dama 331, 332
 Deep sea core analysis
 AD measurement 183–6
 methods and dose rate 182–3
 results 186–7
 Deglaciation modelling 503–4
 methods 504
 results
 ^{14}C data 518–20
 environmental succession 510–11
 glacio-lacustrine environment 508
 glacio-marine environment 508–10
 microfaunal significance 504–7, 511–14
 outwash fans 520–2
 sequence of events 514–17
 Delaware Shelf stratigraphy 303–4
 Density and Atlantic Ocean circulation 403–6
 Depositional environment analysis 153, 156–8
 Deschênes, Lac 512, 533
 Desert sand *see* Dune sand
 Devès Plateau
 climatic reconstruction 444–5
 pollen record 442
 setting 439
 statistical data analysis 442–3
 Devil's Hole speleothem studies 621–4
Dicerorhinus sp. 332, 329, 331
 Dinoflagellates 776
 Dinosaur Park
 bedrock tectonization 546
 chronology 550–3
 lithofacies associations 540–6
 interpretation 546–50
 setting 535–7
 stratigraphy 537–40
 Distributed error frequency curve 690–3
 Drayton 150
 Drumlins 729–30, 797–8
 Dune sand dating 25–31, 40–2, 75–8, 80–3, 85–91
 Ease Gill Cavern speleothem studies 624, 631
 Eccentricity, orbital 571
 Eemian 45, 332
 pollen spectrum 588
 Svalbard
 age interpretations 657–9
 dating methods 634–7
 depositional environment 655–7
 facies descriptions 637–41
 stratigraphy 641–55
 summary 659–61
Elaphe spp. 348
 Electron spin resonance *see* ESR
 Ellesmere Island 698
Emydoidea spp. 347, 348
Equus caballus 332, 334
 ESR
 bone dating
 methods 251–4
 results 254–5
 carbonate dating
 accumulated dose determination 175–6
 dose response curve 173–5
 environment effects 169–70, 177–8
 fading 176–7
 paramagnetic centre effects 165–9
 coral analysis (fossil)
 methods 197–9, 204
 results 199–200, 204–5
 results discussed 200–2, 205–6

- coral analysis (modern)
 methods 192
 results 192-5
 deep sea cores
 AD measurement 183-6
 methods and dose rate 182-3
 results 186-7
 mollusca studies 666
 methods 219-20, 225-8
 results 220-3, 228-9
 phosphorite study
 methods 209-11
 results 212-16
 quartz dating
 methods 257, 267-70
 results 257-63, 270-1
 tooth enamel studies
 methods
 field 233, 246
 lab 234-5, 246-7
 results 235-6, 247-50
 U/Th data compared 236-43
 theory 232-3, 245-6
- Estarrès
 pollen study 465
 setting 460-2
 stratigraphy 462
 vegetation dynamics 465-7
- Europe
 GCM for
 full glacial simulation 289-92
 Holocene simulation 292-3
 Late Glacial simulation 293-4
 present climate 287-9
- Extinctions 330-1
- Falkland Islands 699
 Fan deposits 520-2
 Faversham 8, 11
 Feldspar
 IRSL dating 136
 composition effects 140-2
 fading measurement 142-4
 fading problems 139-40
 OSL dating 128
 TL dating 71-3, 81-3
 bleaching 33-7
 blue TL 45-50
- Felis concolor* 334
 Ferring 8, 11
 Finglack Till Formation 763, 767
 Fish and ¹⁴C levels 705
 Flint dating 1-4
 Flowstone *see* Speleothems
 Fluid inclusion analysis, speleothems 613
 Fluted moraine 797-8
 Flutes, glacial
 field study 710-13
 fabric 718-23
 forms 715-16
 marginal character 713
 structure 716-17
 thermal regime 723-4
 mode of formation
 drumlin association 729-30
 history of research 709-10
 Lyngsdalen results 727-8
 modelling 724-7
- Fluvial sediments, TL dating 71-3
 Fluvioglacial sands, TL dating 80-3
 Foraminifera
 atmospheric record
 methods 388
 results 388-95
 results discussed 397-9
 setting 387-8
 statistical analyses 395-7
 Breidavik Group 741-4
- Clava Shelly Formation 776-7
 Late Glacial record 504-7, 511-14
 palaeotemperature analysis 801-2
 quantitative methods 802-3
 sensitivity of methods 803-17
- France
 cave studies 619
 ESR site 231
 TL sites 45, 49, 103-7
 see also Grande Pile; French Pyrénées
 Franklin Island 700
 Fraser River Delta seismic reflection study 564-7
 French Pyrénées
 pollen study
 ¹⁴C data 450-1
 sampling techniques 450
 sites 449-50
 Estarrès 460-7
 La Borde 451-8
 Ruisseau de Laurenti 458-60
 setting 449
 vegetation evolution 473-8
 Freshwater Bay 8, 11
 Furuvik Formation 736
- Gazella gazella* 331
 GCM 283, 285-6
 atmospheric circulation parameters 285
 boundary conditions 284-5
 climate simulations 286-7
 full glacial 289-92
 Holocene 292-3
 Late Glacial 293-4
 present day 287-9
- Geochelone crassiscutata* 345
 Geochemistry 358-9
 Germany
 IRSL sites 133
 TL sites 93-100, 109-12
 TL studies 19, 22, 23
 Gestalgar 58-60
 Giant land tortoise 345
 Glacial/interglacial cycles 751, 754
 Glaciation and GCM 289-92
 Glaciolfluvial environment
 sediments and IRSL dating 161-3
 transport and TL 33-7
 Glaciolacustrine sediment dating 117-19
 Glaciomarine sediments, TL dating 61-9
 Gleann Torra-mhichraig 789, 792-4
 Goring 8
 Grande Pile
 climatic reconstruction 428-9, 444-5
 loess layers 426
 organic carbon 428
 pollen record 426, 441-2, 446, 447
 climatic implications 433-5
 results discussed 437-8
 stratigraphy 431-3
 sedimentology 425-6
 setting 425, 439
 significance discussed 429-30
 statistical data analysis 442-3
Graptemys spp. 347
 Grasafjöll Formation 736
 Gräselberg 19, 22
 Great Lakes herpetological records 345-9
 Great Wakering 8
 Greenland coastal waters 698
- Haizume Formation 121, 123
 Hard water effect 450-1
 Herpetological records 345, 346-9, 349
 Herzele 45, 49
 Highcliffe 8, 11
Hippopotamus amphibius 332
 Holbury 7, 10, 11

- Holocene simulation and GCM 292-3
 Holsteinian 45
 biogeography
 malacology 597-8
 results interpreted 598-600
 sites 594-6
 pollen spectrum 588
 Hoogeveen Interstadial 589, 590
 Hope Gap 7, 10, 11
 Hörgi Formation 736
 Howgate 8, 11
 Hummocky moraine
 classification 796-8
 debris transport 783-4
 history of research 781
 Skye case studies
 chaotic 792-4
 longitudinal 794-6
 transverse 784-92
 Hungary, IRSL sites 133
 Huon Peninsula coral study 197-202
 Hurdle Cliff 8, 11
 Hydrogen isotopes, land snails 678-9
- Ice sheets
 modelling 498
 size and GCM 292, 295
 Iceland
 Bredavik Group 733
 facies analysis 739-41
 foraminiferal stratigraphy 741-4
 lithostratigraphy 734-9
 molluscan stratigraphy 744-51
 palaeoenvironment analysis 751-4
 coastal waters 698
 Ichijuku Formation 121, 123
 Ilford 332
 Indian Ocean 698
 Inexpressible Island 700
 Infrared stimulated luminescence *see* IRSL
 Ingelborough Cave speleothem studies 624, 631
 Insolation 571
 GCM 292-3, 296
 monthly 572-3
 seasonal 576-8
 Interglacial characteristics 586-90
 Ipswichian Interglacial 332
 Irish Sea Basin, glaciation 377-9
 Ironshire Formation 319, 321
 IRSL
 composition effects 140-2
 core dating 115-19
 fading measurements 142-4
 fading problems 139-40
 glacioufuvial environment analysis 161-3
 method 133
 relation with TL 39-42
 signal stability 134-6
 Isernia la Pineta 245
 Italy
 ESR site 245
 TL sites 45, 48, 53-4
- James Ross Island 699
 Japan 257
 Jersey, TL sites 45, 49
 Jizodo Formation 121, 123
- K feldspar
 blue TL 45-50
 TL bleaching 33-7
 TL dating 71-3, 81-3
 Kame sediments, IRSL dating 161-3
 Kapp Ekhholm
 Eem/Weichsel cycle
 age interpretations 657-9
- dating methods 634-7
 depositional environment 655-7
 facies descriptions 637-41
 orbital effects 661-2
 stratigraphy 641-55
 summary 659-61
 setting 633-4
 Karlich, IRSL site 133
 Kedichem Formation 372
 Kent Island Formation 319, 320, 323
 Kesgrave Formation 363
 Kesgrave Group 367, 369
 Kootwijk Formation 86
 Kyleakin Hills 784-7
- La Borde
 pollen study 453-7
 setting 451
 stratigraphy 451-3
 vegetation dynamics 458
 La Chaise-de-Vouthon 231
 La Paul de Bubal
 pollen study 468-71
 setting 467
 stratigraphy 468
 vegetation dynamics 471
 Labrador Ice Sheet and GCM 293
 Lacustrine sediment analysis
 methods 354-5
 results 355-9
 results discussed 359-61
Lampropeltis spp. 348
 Land snails
 biogeography
 case study 596-8
 causal 594-6
 descriptive 593-4
 palaeoenvironment analysis
 amino acid racemization 677-8
 ^{13}C studies 674-6
 dating methods 665-6
 fossil species distribution 669-72
 future research 678-80
 modern species distribution 666-9
 morphological significance 672-4
 ^{18}O studies 676-7
 sampling methods 665
 Lanterne I zone 433
 Lanzhou, IRSL site 133
Larix, significance of 437-8
 Late Glacial simulation and GCM 293-4
 Laurentide ice sheet 346
 deglaciation model 503-4
 ^{14}C data 518-20
 environmental succession 510-11
 glacio-lacustrine environment 508
 glacio-marine environment 508-10
 microfaunal significance 504-7, 511-14
 outwash fans 520-2
 seismic data 560-3
 sequence of events 514-17
 Lava dating 13-17
 Lepe Point 7, 8, 10, 11
 Les Echets
 climatic reconstruction 444-5
 pollen spectrum 442
 setting 439
 statistical data analysis 442-3
 Lineage zone 333
 Linexert glaciation 425
 Lishi loess 275
 Lithostratigraphy
 Bredavik Group 734-9
 Maryland Shelf 309-14
 Little Oakley 334
 Loess
 Baoji section 275
 climatic interpretation 289-80

- particle size analysis 278–9
stratigraphic correlations 276–8
- dating
IRSL dating 134–6
TL dating 19–23, 93–100, 103–7, 109–12
- Grande Pile 425–6
see also Brickearth
- Lost John's Pothole speleothem studies 625, 631–2
- Lutra canadensis* 334
- Lyngsdalen flute study
field relations
 fabric 718–23
 forms 715–16
 marginal character 713
 structure 716–17
thermal regime 723–4
setting 710–13
- mode of formation
drumlin association 729–30
field evidence 727–8
history of research 709–10
modelling 724–7
- Maar dating 15
- Magnesium in speleothems 618–19
- Magnetic susceptibility, loess 277–8
- Maidenhead Formation 363, 366, 368
- Maidstone 9
- Malacology
case study 597–8
causal 594–6
descriptive 593–4
see also Molluscs; Snails
- Malan loess 275
- Mammalian fossil evidence
distribution factors 329–33
evolution 333–7
geographical distribution 338–41
taxonomy 337–8
- Mammuthus* spp. 330–1, 332, 333, 335, 338
- Mána Formation 736
- Marine terraces and sea level evidence 692, 693
- Maryland Shelf stratigraphy 303
 amino acid 309–14
 correlations 317–22
 palaeoclimate analysis 314–17
 sea level interpretations 322–5
 seismic 305–9
- Mathematical modelling *see* Modelling
- Maxwell Quarry 511, 532
- Megaloceras giganteus* 330
- Melisey I Stadial 432, 433
- Mendip Hills speleothem studies 616–17
- Methane in ice cores 382, 384
- Microtus oeconomus* 334
- Middle Thames Gravel Formation 363
- Milankovitch theory 571–2
 ice sheet modelling 575–6
 transient responses 576–8
 prediction of cycles 574
- pre-Quaternary signals 574–5
- supporting observations
 balancing signals 573
 insolation 572–3
 phase coherence 573–4
 precession 572
- Mimomys* spp. 338, 340
- Mineralogy 356–8
- Miyazaki Plain 219, 220
- Modelling
climate
 2-D coupled model 483–7
 3-D model
 components 497–8
 experiment 498–500
 strategy 496–7
 equilibrium GCM 481–2
 model modifications 487–8
 transient response model 482–3
- deglaciation 503–4
methods 504
results
 ¹⁴C data 518–20
 environmental succession 510–11
 glacio-lacustrine environment 508
 glacio-marine environment 508–10
 microfaunal significance 504–7, 511–14
 outwash fans 520–2
 sequence of events 514–17
- Moraines *see* Hummocky moraine
- Mollusca studies
- Breidavik Group 744–51
- Clava Shelly Formation 778–9
- ESR
 methods 219–20, 225–8
 results 220–3, 228–9
- stratigraphic records 355, 356
- Monticello 53–4
- Mus* spp. 330
- ¹⁵N isotope levels, land snails 679
- Naganuma Formation 121, 123
- Nannofossils 776
- Nassawadox Formation 319, 320, 321, 323
- Naura Island phosphorite study 209, 213–16
- Nerodia* spp. 347, 348
- Neschers 14, 17
- Netherlands, TL sites 85–6
- Nettlebed Formation 363, 366, 368, 369, 370
- Nevada, speleothem studies 621–4
- New Guinea coral study 197–202
- New Jersey Shelf stratigraphy 303–4
- New Zealand
 bone dating 251
 marine terrace dates 40–2
 pyroclastics dating 267
 speleothem studies 619
- Nitrogen isotopes, land snails 679
- Nitrous oxide in ice cores 383
- North Atlantic Current 755
- North Carolina Shelf stratigraphy 305
- Northern Drift Formation 363, 364
- Northfleet 7, 10, 11
- Norway *see* Lyngsdalen
- Norwegian Sea circulation
 Last Glacial 407–9
 modern 406–7
- ¹⁸O
 Atlantic circulation indicators 401–2
 land snails 676–7
 palaeoclimate analysis
 China 276–7
 England 624–8
 Nevada 621–4
 Vancouver Island 620
 palaeotemperature indicators 612–14
 stage correlations 590
- Oakwood Till 79–80
- Obliquity, orbital 571
- Ocean modelling 498
- Ognon zones 433
- Okanagan Valley seismic reflection study 563–4
- Okataina Volcanic Centre 267
- Olduvai event 738
- Omar Formation 319, 321, 323
- Onikoube caldera 257
- Ontario Lake Basin 503
- Optical dating *see* OSL
- Orbital forcing 571
 climatic impact 279–80
 latitude effects 661–2
 prediction of cycles 574
- supporting observations
 balancing signals 573
 insolation 572–3

- phase coherence 573-4
precession 572
- Organic carbon
 Grande Pile 425, 426
 in speleothems 619
- Origination 330
- OSL
 applications
 sediment dating
 methods 153-6
 results 157-8
 Svalbard case study 635-6
 use in archaeology
 methods 148-9
 results 149-51
- eviction 128, 129, 130
- method 127
- problems 127
- recuperation 130, 131
- thermal stability 128
- Ostracoda
 Clava Shelly Formation 777-8
 Late Glacial 504-7, 511-14
- Oxygen isotope analysis *see* ^{18}O
- Pacific Ocean core analyses
 methods 388
 results 388-95
 results discussed 397-9
 setting 387-8
 statistical analyses 395-7
- Palaeo-Bio-Sedimentoclimatic Component (PBSC) 428
- Palaeo-Bioclimatic Component (PBC) 426
- Palaeo-Bioclimatic operator (PBO) 426
- Palaeoclimate analysis 359-61
 glacial cycles 614-17
 Maryland Shelf 314-17
 Mg in calcite 618-19
 ^{18}O analysis 619-28
 palaeotemperatures 612-14
 sea level effects 617-18
 speleothem development 609-10
- Palaeoloxodon antiquus* 332
- Palaeosols
 aeolian sand 85-91
 lacustrine deposits 356
 river terraces 53-60
- Palaeotemperature analysis
 Maryland Shelf case study 314-17
 Mg in calcite 618-19
 stable isotopes 612-14
 see also Sea surface temperature
- Panthera leo* 331, 333
- Paramagnetic centres in ESR
 characteristics 165-6
 identification 166-9
 physical nature 169
- Pegwell Bay 7, 8, 11
- Penguins and ^{14}C levels 704
- Pensauken Formation 319, 323
- Peru, sediment dating 71
- Phantomoden Interstadial 639, 646, 647-51
- Phosphorite and ESR
 methods 209-11
 results 212-16
- Photoluminescence (PL) 33, 36
- Phototransferred thermoluminescence (PTTL) 128
- PL 33, 36
- Po Plain 53-4
- Pollen spectra
 as climate proxy
 local studies
 Estarrès 460-7
 Grande Pile 428-9
 La Borde 451-8
 La Paul de Bubal 467-71
 Ruisseau de Laurenti 458-60
 methods 415
 results 415-17
- results discussed 417-21
 speleothem studies 619
- Bavelian 587
- Cromerian 587
- Eemian 588
- Holsteinian 588
- Saalian 588
- Waalian 586
- Polynesian settlement dating 251
- Portelet 45, 49
- Præstigian 584
- Precession, orbital 571, 572
- Precipitation reconstruction 428-9
- Pseudemys* spp. 347
- PTTL 128
- Puy de Dôme 13
- Pyrénées
 pollen study
 ^{14}C data 450-1
 sampling techniques 450
 sites 449-50
 Estarrès 460-7
 La Borde 451-8
 La Paul de Bubal 467-71
 Ruisseau de Laurenti 458-60
 setting 449
 vegetation evolution 473-8
- Pyroclastic dating 15
- Quartz
 ESR dating
 methods 257, 267-70
 results 257-63, 270-1
- OSL dating 128
- TL dating
 sediments 71-3, 75-8, 81-3
 volcanic events 13-17
- Quaternary
 defining the base 583-4
 status of 583
 subdivisions of 584-6
 terrestrial stratigraphy
 history of studies 603-5
 potential of 606
 problems of 605-6
- Québec seismic studies 560-3
- Quyon seismic reflection study 560-3
- Radiocarbon *see* ^{14}C
- Rainfall reconstruction 428-9
- Raised beaches 45, 50
- Rajasthan desert 25
- Rana* spp. 347
- Range zone 329
- Rangifer tarandus* 331, 333
- Ravagnese 45, 48
- Recessional moraines 797
- Reculver 7, 8, 11
- Red thermoluminescence (RTL) 13-14
- Reptile fossils 345, 346-9, 349
- Reverian 584
- Rheindahlen 109-12
- Riba Roja 55-6
- River sediments, TL dating 71-3
- River terrace dating 53-60
- Rivière Landry 510, 532
- Rocourt, IRSL site 133
- Ross Sea 698, 700
- Rotoiti Breccia 267
- RTL 13-14
- Ruisseau de Laurenti
 pollen study 458-60
 setting 458
 stratigraphy 458
 vegetation dynamics 460
- Runnymead 150

- Saalian pollen spectrum 588
Saiga tatarica 331
 Saint Jacques 15, 17
 Salinity
 Atlantic Ocean circulation 403–6
 role in environment reconstruction 515
 San Salvador 226
 Sangamonian 345
 Sangatte 49
 Sea ice and GCM 292
 Sea level records
 marine terraces 687–90, 692, 693
 shelf sediments 322–5
 speleothem data 617–18
 Sea surface temperature estimation 801–2
 quantitative methods 802–3
 sensitivity of methods 803–4
 Imbrie and Kipp method 804–15
 modern analogue technique 815–17
 weighted averaging method 817
 Seals and ^{14}C levels 703
 Seaweed and ^{14}C levels 701–3
 Seismic reflection 557–8
 case studies 560–7
 equipment 558
 optimum offset method 558–9
 site characteristics 559
 theory 559–60
 Seismic stratigraphy, Maryland Shelf 305–9
 Selsey 8, 11
 Shawville seismic reflection study 563
 Shell dating 121–5, 701–3
 Shikawa Formation 121, 123
 Shine-down curve 127
 Shirley Formation 319, 323
 Sibling species 330
 Sinepuenix Formation 319, 321, 323
 Skye, Isle of
 hummocky moraine studies
 chaotic 792–4
 longitudinal 794–6
 transverse 784–92
 Sligachan 794–6
 Smectite, climatic significance 426, 429
 Snails
 biogeography
 case study 596–8
 causal 594–6
 descriptive 593–4
 palaeoenvironment analysis
 amino acid racemization 677–8
 ^{13}C studies 674–6
 dating methods 665–6
 fossil species distribution 669–72
 future research 678–80
 modern species distribution 666–9
 morphological significance 672–4
 ^{18}O studies 676–7
 sampling methods 665
 Snow-line modelling 497–8
 South Georgia 699
 South Shetland Islands 699
 Southend 8, 11
 Spain, TL sites 54–60
 Spanish Pyrénées
 pollen study
 ^{14}C data 450–1
 sampling techniques 450
 sites 449–50
 La Paul de Bubal 467–71
 setting 449
 vegetation evolution 473–8
 Sparrowhawk Point 510, 532
 Speciation, mammalian 340–1
 Speleothems
 dating 236–43
 glacial cycles links 614–17
 history of research 610–11
 introduction 609–10
 Mg content 618–19
 ^{18}O measures 619–28
 organic carbon content 619
 palaeotemperature measures 612–14
 pollen content 619
 sea level indicators 617–18
 U series dating 611–12
 Spitsbergen 61–2, 698
 St Césaire 509, 531
 St-Germain 432, 433
 St-Lambert 514, 534
 St Lawrence Lowland deglaciation model 503–4
 ^{14}C data 518–20
 environmental succession 510–11
 glacio-lacustrine environment 508
 glacio-marine environment 508–10
 microfaunal significance 504–7, 511–14
 outwash fans 520–2
 seismic data 560–3
 St-Lazare 521
 Stable isotopes *see* ^{13}C ; ^{18}O
 Stalactites *see* Speleothems
 Stalagmites *see* Speleothems
 Ste-Monique-de-Nicolet 513, 534
 Sterksel Formation 372
 Sternotherus spp. 347, 348
 Stockport Formation 79–80
 Stratigraphy, modern approaches to 569
 Sturt Pond 9, 11
 Sudbury Formation 366, 369, 370–1
 Svalbard
 Eem/Weichsel cycle
 age interpretations 657–9
 dating methods 634–7
 depositional environment 655–7
 facies descriptions 637–41
 orbital effects 661–2
 stratigraphy 641–55
 summary 659–61
 setting 633–4
 Synecology, role of 593
 Tabb Formation 319, 323
 Tapiozuly, IRSL site 133
 Taxonomy and mammal classification 337–8
 Tegelen Formation 372
 Telscombe 8, 11
 Temperature
 Atlantic Ocean circulation 403–6
 profile reconstruction 428–9
 Tephra dating 15
 methods 257, 267–70
 results 257–63, 270–1
 Terrace dating 40–2
Terrapene spp. 348
 Tet glacier 451
 Thames River sediment studies
 correlations 371–3
 history of work 363–6
 lithology 370–1
 stratigraphy 366–70
Thamnophis spp. 348
 Thar desert 25
 Thermoluminescence dating *see* TL
 Thringingar Formation 736, 738
 Tiglian 585
 Titanium centres in quartz 257–63
 Tjörnes Peninsula *see* Breidavík Group
 TL dating
 aeolian sediments 25–31, 39–42, 75–8, 85–91
 bleaching experiments 33–7
 brickearth 7–12
 flint 1–4
 fluvial sediments 71–3
 glacial environment sediments 61–9, 635–6
 interstadial sediments 79–83
 loess 19–23, 93–100, 103–6, 109, 12
 marine sands 45–50
 river terraces 53–60

- shells 121–5
 volcanics 13–17
Toenchesberg 95–7
Tooth enamel studies and ESR
 methods
 field 233, 246
 lab 234–5, 246–7
 results 235–6, 247–50
 U/Th data compared 236–43
 theory 232–3, 245–6
Trafalgar Square 332
Traietta 45, 48
Transport and TL bleaching 33–7
Travertine *see* Speleothems
Trombacá 45, 48
Tuff dating
 methods 257, 267–70
 results 257–63, 270–1
Turbid water settling and TL 33–7
Twente Formation 85–6
Twin Elms 506, 528
Tyrrhenian 45, 50
- U series dating**
 data collection 687–90
 distributed error frequency curve 690–3
 land snails 666
 speleothems 236–43, 610, 611–12
Uffington 150
Umegase Formation 121, 123
Upwich 150
Urk Formation 372
Ursus spp. 334, 336
USA
 Atlantic Coast stratigraphy 303–14
 loess dating 133
 speleothem studies 621–4
- Vancouver Island speleothem studies 614, 620
Vegetation dynamics
 methods of analysis 415
Pyrénées
 evolution 473–8
 sampling techniques 450
- sites 449–50
Estarrés 460–7
La Borde 451–8
La Paul de Bubal 467–71
Ruisseau de Laurenti 458–60
results 415–17
 results discussed 417–21
Victoria Cave speleothem studies 625–8, 632
Virginia Shelf stratigraphy 304–5
Volcanic event dating 13–17
 methods 257, 267–70
 results 257–63, 270–1
Vosges *see* Grande Pile
- Waalian pollen spectrum** 586
Wachapreague Formation 319, 320, 321, 322, 323
Wallertheim 19, 23
Waterlain sediment dating 33–7, 61–9
Weddell Sea 698, 700
Weichselian sediments
Svalbard
 age interpretations 657–9
 dating methods 634–7
 depositional environment 655–7
 facies descriptions 637–41
 stratigraphy 641–55
 summary 659–61
Wellington 150
West Cotton 150
West Overton 150
Whales and ¹⁴C levels 703–4
Wiencke Island 699
Wind blown sand dating 25–31, 40–2, 75–8, 80–3, 85–91
Windermere Interstadial 617
Wisconsinan herpetological fossils 346–9
Wittering 8
Wucheng loess 275
- Yorkshire Dales speleothem studies** 614–16, 625–8, 631–2
Yorktown Formation 317, 319, 323
Younger Dryas Atlantic Ocean circulation 410–11
- Zircon OSL dating** 128

