

Modele Manualne - proces

- 1. Ręczne testowanie pojedynczych modeli
- 2. Stworzenie pierwszego pipeline'u
- 3. Rozbudowane pipeline'y
- 4. Zmniejszanie pipeline'ów
- 5. Alternatywne metody ekstrakcji feature'ów

Modele Manualne rezultaty

Skład ensemble	Ensemble	Train- Test split	Preprocessing	Test score	Optymalizacja hiper- parametrów
KNeighborsClassifier x2 ExtraTreesClassifier x2 BaggingClassifier(KNeighborsClassifier) x2	VotingClassifier	80-20	PCA	0.9025	RandomizedSearchCV
KNeighborsClassifier x2 ExtraTreesClassifier x2 BaggingClassifier(KNeighborsClassifier) x2	VotingClassifier	80-20	PCA XGBoost	0.9200	RandomizedSearchCV
KNeighborsClassifier x3 RandomForestClassifier x3 SVC x3 ExtraTreesClassifier x3 XGBClassifier x2	VotingClassifier	67-33	PCA SelectFpr SelectFdr	0.8621	RandomizedSearchCV
KNeighborsClassifier x3 RandomForestClassifier x3 SVC x3 ExtraTreesClassifier x3 XGBClassifier x2	VotingClassifier	80-20	PCA SelectFpr SelectFdr	0.8925	RandomizedSearchCV
KNeighborsClassifier x3 RandomForestClassifier x3 SVC x3 ExtraTreesClassifier x3 BaggingClassifier(KNeighborsClassifier) x3 DecisionTreeClassifier x3	VotingClassifier	67-33	PCA SelectFpr SelectFdr	0.8667	BayesSearchCV
KNeighborsClassifier x2 RandomForestClassifier x2 SVC x2 ExtraTreesClassifier x2 XGBClassifier x2 final estimator: VotingClassifier	StackingClassifier	80-20	PCA SelectFpr SelectFdr	0.8675	BayesSearchCV

Modele Manualne - zwycięzca

```
dimgrid=[
pipe = Pipeline([
    ('reduce_dim', 'passthrough').
                                                                      'reduce_dim': [PCA(svd_solver='full')],
                                                                      'reduce_dim__n_components': [4,5,6,7,8,499],
    ('clf', VotingClassifier(
             voting='soft',
             verbose=True.
                                                                      'reduce_dim': [XGBFeatureExtractor()],
                                                                      'reduce_dim__n_components': [4, 6, 7, 20, 50, 100],
             estimators=[
                                                                      'reduce_dim_xgb_params': [{'n_estimators': 100, 'max_depth': 3, 'learning_rate': 0.1},
             ('knn1', KNeighborsClassifier()).
                                                                      {'n_estimators': 200, 'max_depth': 5, 'learning_rate': 0.2}],
             ('knn2', KNeighborsClassifier()),
             ('et1', ExtraTreesClassifier()).
             ('et2', ExtraTreesClassifier()),
             ('bc1', BaggingClassifier(KNeighborsClassifier(), random_state=4)),
             ('bc2', BaggingClassifier(KNeighborsClassifier(), random_state=4))
                                                                            model_distributions=[
```

Modele Automatyczne - proces

- Testowanie 4 frameworków: AutoGluon, AutoSklearn, MIJar oraz TabPFN na kilku preprocessingach ze średnimi limitami czasowymi.
- 2. Odrzucenie AutoSklearna i MlJara
- 3. Wydłużanie czasu dla AutoGluona i eksperymentacja z preprocessingiem dla obu.

Modele Automatyczne - rezultaty

Framework	Preprocessor	Train-	Test score	Learning time Li-
		Test	(balanced	mit (hours)
		split	accuracy)	
AutoGluon	PCA(5)	80-20	0.9025	4
AutoGluon	PCA(7)	80-20	0.8825	4
AutoGluon	PCA(20)	80-20	0.855	4
AutoGluon	PCA(50)	80-20	0.875	4
AutoGluon	XGBoost	80-20	0.89	4
AutoGluon	PCA(7)	67-33	0.87	4
AutoGluon	PCA(20)	67-33	0.86	4
AutoGluon	PCA(50)	67-33	0.83	4
TabPFN	PCA(5)	80-20	0.9025	None
TabPFN	PCA(5)	67-33	0.89	None
TabPFN	XGBoost	80-20	0.6725	None

Modele Automatyczne - zwycięzca

AutoGluon	PCA(5)	80-20	0.9025	4
TabPFN	PCA(5)	80-20	0.9025	None

Wnioski

- Modele manualne > Modele automatyczne
- Podział zbioru treningowego ma znaczenie
- Ensemble czasem mniej modeli znaczy lepiej
- Dobry preprocessing jest ważny
- Od pewnego momentu podnoszenie limitu czasu jest bezcelowe

Dziękujemy za uwagę