Step-1

Projection onto a line:

If a is a vector, then every point on a is a multiple of a.

So, the projection of a vector b onto a is $p = \hat{x}a$ such that the line from b to the closest point $p = \hat{x}a$ is the perpendicular to a.

It is given by;

$$p = \hat{x}a$$
$$= \frac{a^T b}{a^T a}a$$

Step-2

Given that q_1, q_2 and q_3 are orthonormal.

So, it follows that

$$\begin{aligned} q_1^T q_2 &= q_1^T q_3 \\ &= q_2^T q_3 \\ &= 0 \quad \hat{\mathbf{a}} \boldsymbol{\epsilon} |\hat{\mathbf{a}} \boldsymbol{\epsilon}| \ (1) \end{aligned}$$

Also,

$$q_1^T q_1 = q_2^T q_2$$
$$= q_3^T q_3$$
$$= 1$$

Suppose $xq_1 + yq_2$ is the combination closest to q_3 .

Then by the above definition, it follows that $xq_1 + yq_2$ is perpendicular to q_3

By (1), obtain
$$xq_1 + yq_2 = 0$$

Thus, the only vector which is a linear combination of q_1, q_2 and perpendicular to q_3 is zero.

 $\hat{A}\,\hat{A}\,\hat{A}\,\hat{A}$