DCC006: Organização de computadores I

Trabalho Prático #2

Professor: Omar Paranaíba Vilela Neto Monitor: Pedro Arthur R. L. Silva

Antes de começar seu trabalho, leia todas as instruções abaixo.

- O trabalho pode ser feito em grupos compostos por até 3 alunos.
- Cópias de trabalho acarretarão em devida penalização às partes envolvidas.
- Entregas após o prazo serão aceitas, porém haverá uma penalização. Quanto maior o atraso maior a penalização.
- O objetivo desse trabalho é te familiarizar com a Linguagem de Descrição de Hardware Verilog, utilizando para isso uma versão modificada do simulador DigitalJS, que pode ser encontrada através do seguinte link: 150.164.9.98:4200. Essa versão modificada do simulador já contém a implementação do caminho de dados do RISC-V com ciclo único. As suas tarefas nesse trabalho consistirão em alterar o caminho de dados fornecido a fim de incluir mais operações e módulos.
- Você deve entregar um único arquivo zip, contendo o arquivo Verilog com a implementação do caminho
 de dados com as funções pedidas a seguir. Note que todas as funções devem estar no mesmo caminho de
 dados, ou seja, o trabalho é incremental, você deve entregar somente um caminho de dados contendo
 todas as funções solicitadas.
- No mesmo arquivo zip contendo o caminho de dados, você deve enviar um relatório, em pdf, explicando suas decisões de projeto e contendo **nome e matrícula de todos os integrantes do grupo.**
- Cada grupo deve fazer somente uma submissão. Ou seja, cada grupo terá um aluno responsável por fazer a submissão do trabalho no *Moodle*.

Problema 1: ORI - Bitwise or immediate

(2.0 pontos)

(Entrega: 05/10/2020)

#Para mais informações sobre o funcionamento dessa instrução confira a documentação do RISC-V https://github.com/riscv/riscv-isa-manual/releases/latest

Problema 2: SLLI - Shift Left Logical Immediate

(2.0 pontos)

#Para mais informações sobre o funcionamento dessa instrução confira a documentação do RISC-V https://github.com/riscv/riscv-isa-manual/releases/latest

Problema 3: LUI - Load Upper Immediate

(2.0 pontos)

#Para mais informações sobre o funcionamento dessa instrução confira a documentação do RISC-V https://github.com/riscv/riscv-isa-manual/releases/latest

Problema 4: LWI - Load With Increment

(2.0 pontos)

Implemente a seguinte instrução:

lwi rd, rs1, rs2

Interpretação: Reg[rd] = Mem[Reg[rs1] + Reg[rs2]]

#Atribua os valores que achar necessário para implementação da função, mas lembre-se de documentar bem as suas decisões

#Esse problema é baseado na questão 4.11 do livro Computer Organization and Design, RISC - V Edition, que é parte da bibliografia utilizada na disciplina.

Problema 5: SWAP (2.0 pontos)

Implemente a seguinte instrução:

swap rs1, rs2

Interpretação: Reg[rs1] = Reg[rs2]; Reg[rs2] = Reg[rs1]

#Atribua os valores que achar necessário para implementação da função, mas lembre-se de documentar bem as suas decisões

#Esse problema é baseado na questão 4.12 do livro Computer Organization and Design, RISC - V Edition, que é parte da bibliografia utilizada na disciplina.

Problema 6: SS - Store Sum

(2.0 pontos)

Implemente a seguinte instrução:

ss rs1, rs2, imm

Interpretação: Mem/Reg/rs1/=Reg/rs2/+imm

#Atribua os valores que achar necessário para implementação da função, mas lembre-se de documentar bem as suas decisões

#Esse problema é baseado na questão 4.13 do livro Computer Organization and Design, RISC - V Edition, que é parte da bibliografia utilizada na disciplina.

Problema 7: BLT - Branch on Less Than

(2.0 pontos)

#Para mais informações sobre o funcionamento dessa instrução confira a documentação do RISC-V https://github.com/riscv/riscv-isa-manual/releases/latest

Problema 8: BGE - Branch on Greater Than or Equal

(2.0 pontos)

#Para mais informações sobre o funcionamento dessa instrução confira a documentação do RISC-V https://github.com/riscv/riscv-isa-manual/releases/latest

Problema 9: J - Jump

(4.0 pontos)

#Para mais informações sobre o funcionamento dessa instrução confira a documentação do RISC-V https://github.com/riscv/riscv-isa-manual/releases/latest

31		25	24	20	19	15	14	12	11		7	6		0	
			imm[3	1:12]						$^{\mathrm{rd}}$			opcode		$\mathbf{Type}\text{-}\mathbf{U}$
		im	m[20 10:	1 11 19:12]						rd			opcode		$\mathbf{Type}\text{-}\mathbf{UJ}$
		imm[11:0]			:	rs1	fun	ct3		$^{\mathrm{rd}}$			opcode		Type-I
	imm[12 10:	5]	1	·s2	:	rs1	fun	ct3	imr	n[4:1 1	l1]		opcode		$_{\mathrm{Type-SB}}$
	imm[11:5]		1	·s2	:	rs1	fun	ct3	in	nm[4:0])]		opcode		$\mathbf{Type}\text{-}\mathbf{S}$
	funct5	funct2	1	·s2	:	rs1	fun	ct3		rd			opcode		$_{\mathrm{Type-R}}$

RV32I Base Integer Instruction Set												
		simm[31:12]	-		rd	0110111	LUI rd, imm					
		simm[31:12]			rd	0010111	AUIPC rd, offset					
	sin	nm[20 10:1 11 19:12]			rd	1101111	JAL rd, offset					
5	simm[11:0]	rs1	000	rd	1100111	JALR rd, rs1, offset					
simm[12 10:	:5]	rs2	rs1	000	simm[4:1 11]	1100011	BEQ rs1, rs2, offset					
simm[12 10:	:5]	rs2	rs1	001	simm[4:1 11]	1100011	BNE rs1, rs2, offset					
simm[12 10:	:5]	rs2	rs1	100	simm[4:1 11]	1100011	BLT rs1, rs2, offset					
simm[12 10:	:5]	rs2	rs1	101	simm[4:1 11]	1100011	BGE rs1, rs2, offset					
simm[12 10:	:5]	rs2	rs1	110	simm[4:1 11]	1100011	BLTU rs1, rs2, offset					
simm[12 10:	:5]	rs2	rs1	111	simm[4:1 11]	1100011	BGEU rs1, rs2, offset					
5	simm[11:0	<u>.</u>	rs1	000	rd	0000011	LB rd, offset(rs1)					
5	simm[11:0		rs1	001	rd	0000011	LH rd, offset(rs1)					
5	simm[11:0]	rs1	010	rd	0000011	LW rd, offset(rs1)					
5	simm[11:0]	rs1	100	rd	0000011	LBU rd, offset(rs1)					
5	simm[11:0)]	rs1	101	rd	0000011	LHU rd, offset(rs1)					
simm[11:5]	rs2	rs1	000	simm[4:0]	0100011	SB rs2, offset(rs1)					
simm[11:5]	rs2	rs1	001	simm[4:0]	0100011	SH rs2, offset(rs1)					
simm[11:5]	rs2	rs1	010	simm[4:0]	0100011	SW rs2, offset(rs1)					
5	simm[11:0)]	rs1	000	rd	0010011	ADDI rd, rs1, imm					
5	simm[11:0]	rs1	010	rd	0010011	SLTI rd, rs1, imm					
5	simm[11:0)]	rs1	011	rd	0010011	SLTIU rd, rs1, imm					
5	simm[11:0]	rs1									
5	simm[11:0]	rs1	110	rd	0010011	ORI rd, rs1, imm					
5	simm[11:0)]	rs1	111	rd	0010011	ANDI rd, rs1, imm					
00000	00	shamt[4:0]	rs1	001	rd	0010011	SLLI rd, rs1, imm					
00000	00	shamt[4:0]	rs1	101	rd	0010011	SRLI rd, rs1, imm					
01000	00	shamt[4:0]	rs1	101	rd	0010011	SRAI rd, rs1, imm					
00000	00	rs2	rs1	000	rd	0110011	ADD rd, rs1, rs2					
01000	00	rs2	rs1	000	rd	0110011	SUB rd, rs1, rs2					
00000	00	rs2	rs1	001	rd	0110011	SLL rd, rs1, rs2					
00000	00	rs2	rs1	010	rd	0110011	SLT rd, rs1, rs2					
00000	00	rs2	rs1	011	rd	0110011	SLTU rd, rs1, rs2					
00000	00000 00 rs2		rs1	100	rd	0110011	XOR rd, rs1, rs2					
00000	00000 00 rs2		rs1	101	rd	0110011	SRL rd, rs1, rs2					
01000	01000 00 rs2		rs1	101	rd	0110011	SRA rd, rs1, rs2					
00000 00 rs2			rs1	110	rd	0110011	OR rd, rs1, rs2					
00000	00	rs2	rs1	111	rd	0110011	AND rd, rs1, rs2					
0000 pred	pred	pred succ	00000	000	00000	0001111	FENCE pred, succ					
0000000		00000	00000	001	00000	0001111	FENCE.I					

31		25	24	20	19		15	14	12	11	7	6		0	
		imm[11:0				rs1		fun	ct3		rd		opcode		Type-I
	imm[11:	:5]		rs2		rs1		fun	ct3	in	nm[4:0]		opcode		Type-S
fu	ınct5	funct2		rs2		rs1		fun	ct3		$^{\mathrm{rd}}$		opcode		Type-R

RV64I Base Integer Instruction Set (in addition to RV32I)

					`		,	
	s	simm[11:0)]	rs1	110	rd	0000011	LWU rd, offset(rs1)
Ì	s	simm[11:0]	rs1	011	rd	0000011	LD rd, offset(rs1)
ĺ	simm[11	:5]	rs2	rs1	011	simm[4:0]	0100011	SD rs2, offset(rs1)
Ì	00000	0	shamt[5:0]	rs1	001	rd	0010011	SLLI rd, rs1, imm
ĺ	00000	0	shamt[5:0]	rs1	101	rd	0010011	SRLI rd, rs1, imm
Ì	01000	0	shamt[5:0]	rs1	101	rd	0010011	SRAI rd, rs1, imm
ĺ	S	simm[11:0)]	rs1	000	rd	0011011	ADDIW rd, rs1, imm
ĺ	000000	0	shamt[4:0]	rs1	001	rd	0011011	SLLIW rd, rs1, imm
ĺ	000000	0	shamt[4:0]	rs1	101	rd	0011011	SRLIW rd, rs1, imm
ĺ	010000	0	shamt[4:0]	rs1	101	rd	0011011	SRAIW rd, rs1, imm
Ì	00000	00	rs2	rs1	000	rd	0111011	ADDW rd, rs1, rs2
ĺ	01000	00	rs2	rs1	000	rd	0111011	SUBW rd, rs1, rs2
Ì	00000	00	rs2	rs1	001	rd	0111011	SLLW rd, rs1, rs2
ĺ	00000	00000 00 rs2		rs1	101	rd	0111011	SRLW rd, rs1, rs2
ĺ	01000	01000 00 rs2			101	rd	0111011	SRAW rd, rs1, rs2

RV128I Base Integer Instruction Set (in addition to RV64I)

s	imm[11:0])]	rs1	111	rd	0000011	LDU rd, offset(rs1)
s	imm[11:0)]	rs1	010	rd	0001111	LQ rd, offset(rs1)
simm[11	:5]	rs2	rs1	100	simm[4:0]	0100011	SQ rs2, offset(rs1)
00000	sh	amt[6:0]	rs1	001	rd	0010011	SLLI rd, rs1, imm
00000	sh	amt[6:0]	rs1	101	rd	0010011	SRLI rd, rs1, imm
01000	sh	amt[6:0]	rs1	101	rd	0010011	SRAI rd, rs1, imm
S	imm[11:0)]	rs1	000	$^{\mathrm{rd}}$	1011011	ADDID rd, rs1, imm
000000		shamt[5:0]	rs1	001	rd	1011011	SLLID rd, rs1, imm
000000		shamt[5:0]	rs1	101	rd	1011011	SRLID rd, rs1, imm
010000		shamt[5:0]	rs1	101	rd	1011011	SRAID rd, rs1, imm
00000	00	rs2	rs1	000	rd	1111011	ADDD rd, rs1, rs2
01000	00	rs2	rs1	000	rd	1111011	SUBD rd, rs1, rs2
00000	00	rs2	rs1	001	rd	1111011	SLLD rd, rs1, rs2
00000	00	rs2	rs1	101	rd	1111011	SRLD rd, rs1, rs2
01000	00	rs2	rs1	101	rd	1111011	SRAD rd, rs1, rs2

RV32M Standard Extension for Integer Multiply and Divide

				0	1 0	
00000	01	rs2	rs1	000	rd	0110011
00000	01	rs2	rs1	001	rd	0110011
00000	01	rs2	rs1	010	rd	0110011
00000	01	rs2	rs1	011	rd	0110011
00000	01	rs2	rs1	100	rd	0110011
00000	01	rs2	rs1	101	rd	0110011
00000	01	rs2	rs1	110	rd	0110011
00000	01	rs2	rs1	111	rd	0110011

MUL rd, rs1, rs2 MULH rd, rs1, rs2 MULHSU rd, rs1, rs2 MULHU rd, rs1, rs2 DIV rd, rs1, rs2 DIVU rd, rs1, rs2 REM rd, rs1, rs2 REMU rd, rs1, rs2

31	25	24 20	19 15	14 12	11 7	6 0	
funct5	funct2	rs2	rs1	funct3	rd	opcode	Type-R

RV64M Standard Extension for Integer Multiply and Divide (in addition to RV32M)

00000	01	rs2	rs1	000	$^{\mathrm{rd}}$	0111011
00000	01	rs2	rs1	100	rd	0111011
00000	01	rs2	rs1	101	rd	0111011
00000	01	rs2	rs1	110	$^{\mathrm{rd}}$	0111011
00000	01	rs2	rs1	111	rd	0111011

MULW rd, rs1, rs2 DIVW rd, rs1, rs2 DIVUW rd, rs1, rs2 REMW rd, rs1, rs2 REMUW rd, rs1, rs2

RV128M Standard Extension for Integer Multiply and Divide (in addition to RV64M)

00000	01	rs2	rs1	000	rd	1111011
00000	01	rs2	rs1	100	rd	1111011
00000	01	rs2	rs1	101	rd	1111011
00000	01	rs2	rs1	110	rd	1111011
00000	01	rs2	rs1	111	rd	1111011

MULD rd, rs1, rs2 DIVD rd, rs1, rs2 DIVUD rd, rs1, rs2 REMD rd, rs1, rs2 REMUD rd, rs1, rs2

LR.W~aqrl,~rd,~(rs1)

RV32A Standard Extension for Atomic Instructions

00010	aq	rl	00000	rs1	010	rd	0101111
00011	aq	rl	rs2	rs1	010	rd	0101111
00001	aq	rl	rs2	rs1	010	rd	0101111
00000	aq	rl	rs2	rs1	010	rd	0101111
00100	aq	rl	rs2	rs1	010	rd	0101111
01000	aq	rl	rs2	rs1	010	rd	0101111
01100	aq	rl	rs2	rs1	010	rd	0101111
10000	aq	rl	rs2	rs1	010	rd	0101111
10100	aq	rl	rs2	rs1	010	rd	0101111
11000	aq	rl	rs2	rs1	010	rd	0101111
11100	aq	rl	rs2	rs1	010	rd	0101111

SC.W aqrl, rd, rs2, (rs1)
AMOSWAP.W aqrl, rd, rs2, (rs1)
AMOADD.W aqrl, rd, rs2, (rs1)
AMOADR.W aqrl, rd, rs2, (rs1)
AMOOR.W aqrl, rd, rs2, (rs1)
AMOOR.W aqrl, rd, rs2, (rs1)
AMOAND.W aqrl, rd, rs2, (rs1)
AMOMIN.W aqrl, rd, rs2, (rs1)
AMOMAX.W aqrl, rd, rs2, (rs1)
AMOMINU.W aqrl, rd, rs2, (rs1)
AMOMINU.W aqrl, rd, rs2, (rs1)

RV64A Standard Extension for Atomic Instructions (in addition to RV32A)

00010	aq	rl	00000	rs1	011	rd	0101111
00011	aq	rl	rs2	rs1	011	rd	0101111
00001	aq	rl	rs2	rs1	011	rd	0101111
00000	aq	rl	rs2	rs1	011	$^{\mathrm{rd}}$	0101111
00100	aq	rl	rs2	rs1	011	rd	0101111
01000	aq	rl	rs2	rs1	011	rd	0101111
01100	aq	rl	rs2	rs1	011	rd	0101111
10000	aq	rl	rs2	rs1	011	rd	0101111
10100	aq	rl	rs2	rs1	011	rd	0101111
11000	aq	rl	rs2	rs1	011	rd	0101111
11100	aq	rl	rs2	rs1	011	$^{\mathrm{rd}}$	0101111

LR.D aqrl, rd, (rs1)
SC.D aqrl, rd, rs2, (rs1)
AMOSWAP.D aqrl, rd, rs2, (rs1)
AMOADD.D aqrl, rd, rs2, (rs1)
AMOXOR.D aqrl, rd, rs2, (rs1)
AMOOR.D aqrl, rd, rs2, (rs1)
AMOAND.D aqrl, rd, rs2, (rs1)
AMOMIN.D aqrl, rd, rs2, (rs1)
AMOMIN.D aqrl, rd, rs2, (rs1)
AMOMIN.D aqrl, rd, rs2, (rs1)
AMOMINU.D aqrl, rd, rs2, (rs1)
AMOMINU.D aqrl, rd, rs2, (rs1)
AMOMAXU.D aqrl, rd, rs2, (rs1)

31	25	24	20	19		15	14	12	11		7	6		0	
funct5	funct2	rs2			rs1		fun	ct3		rd			opcode		Type-R
	imm[11:0]					rs1			rd		opcode			Type-I	
imm[11	:5]	rs2			rs1		fun	ct3	in	nm[4:0]			opcode		Type-S
rs3	funct2	rs2			rs1		fun	ct3		rd			opcode		Type-R4

RV128A Standard Extension for Atomic Instructions (in addition to RV64A)

						(,
00010	aq	rl	00000	rs1	100	rd	0101111
00011	aq	rl	rs2	rs1	100	rd	0101111
00001	aq	rl	rs2	rs1	100	rd	0101111
00000	aq	rl	rs2	rs1	100	rd	0101111
00100	aq	rl	rs2	rs1	100	rd	0101111
01000	aq	rl	rs2	rs1	100	rd	0101111
01100	aq	rl	rs2	rs1	100	rd	0101111
10000	aq	rl	rs2	rs1	100	rd	0101111
10100	aq	rl	rs2	rs1	100	rd	0101111
11000	aq	rl	rs2	rs1	100	rd	0101111
11100	aq	rl	rs2	rs1	100	rd	0101111

LR.Q aqrl, rd, (rs1)SC.Q~aqrl,~rd,~rs2,~(rs1)AMOSWAP.Q~aqrl,~rd,~rs2,~(rs1)AMOADD.Q aqrl, rd, rs2, (rs1) AMOXOR.Q aqrl, rd, rs2, (rs1) $\rm AMOOR.Q~aqrl,~rd,~rs2,~(rs1)$ $\rm AMOAND.Q~aqrl,~rd,~rs2,~(rs1)$ AMOMIN.Q~aqrl,~rd,~rs2,~(rs1)AMOMAX.Q aqrl, rd, rs2, (rs1) AMOMINU.Q aqrl, rd, rs2, (rs1) AMOMAXU.Q aqrl, rd, rs2, (rs1)

RV32S Standard Extension for Supervisor-level Instructions

0000000 00000 00000 000 00000 1110011 ECALL	
OCCOUNT OCCOUNT OCCOUNT INTO THE ECILER	
0000000 00001 00000 000 00000 1110011 EBREAK	
0000000 00010 00000 000 00000 1110011 URET	
0001000 00010 00000 000 00000 1110011 SRET	
0010000 00010 00000 000 00000 1110011 HRET	
0011000 00010 00000 000 00000 1110011 MRET	
0111101 10010 00000 000 00000 1110011 DRET	
00010 00 00100 rs1 000 00000 1110011 SFENCE	.VM rs1
0001000 00101 00000 000 00000 1110011 WFI	
csr[11:0] rs1 001 rd 1110011 CSRRW	rd, csr, rs1
csr[11:0] rs1 010 rd 1110011 CSRRS r	d, csr, rs1
csr[11:0] rs1 011 rd 1110011 CSRRC r	d, csr, rs1
csr[11:0] $uimm[4:0]$ 101 rd 1110011 $CSRRWI$	$rd,\;csr,\;zimm$
csr[11:0] $uimm[4:0]$ 110 rd 1110011 $CSRRSI$	rd, csr, zimm
csr[11:0] $uimm[4:0]$ 111 rd 1110011 $csrci$	rd, csr, zimm

RV32F Standard Extension for Single-Precision Floating-Point

	simm[11:0]]	rs1	010	frd	0000111	FLW frd, offset(rs1)
simm[1]	1:5]	frs2	rs1	010	simm[4:0]	0100111	FSW frs2, offset(rs1)
frs3	00	frs2	frs1	rm	frd	1000011	FMADD.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1000111	FMSUB.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1001011	FNMSUB.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1001111	FNMADD.S rm, frd, frs1, frs2, frs3
00000	00	frs2	frs1	rm	frd	1010011	FADD.S rm, frd, frs1, frs2
00001	00	frs2	frs1	rm	frd	1010011	FSUB.S rm, frd, frs1, frs2
00010	00	frs2	frs1	rm	frd	1010011	FMUL.S rm, frd, frs1, frs2
00011	00	frs2	frs1	rm	frd	1010011	FDIV.S rm, frd, frs1, frs2
00100	00	frs2	frs1	000	frd	1010011	FSGNJ.S frd, frs1, frs2
00100	00	frs2	frs1	001	frd	1010011	FSGNJN.S frd, frs1, frs2

31	25	24	20	19	15	14	12	11	7	6		0	
funct5	funct2	rs2	}	1	rs1	fun	.ct3		rd		opcode		Type-R
	imm[11:0]			1	rs1	fun	.ct3		rd		opcode		Type-I
imm[11	:5]	rs2	}	1	rs1	fun	.ct3	im	m[4:0]		opcode		Type-S
rs3	funct2	rs2	}	1	rs1	fun	ct3		rd		opcode		Type- $R4$

RV32F Standard Extension for Single-Precision Floating-Point contd

00100	00	frs2	frs1	010	frd	1010011
00101	00	frs2	frs1	000	frd	1010011
00101	00	frs2	frs1	001	frd	1010011
01011	00	00000	frs1	$_{ m rm}$	frd	1010011
10100	00	frs2	frs1	000	rd	1010011
10100	00	frs2	frs1	001	rd	1010011
10100	00	frs2	frs1	010	rd	1010011
11000	00	00000	frs1	$_{ m rm}$	rd	1010011
11000	00	00001	frs1	rm	rd	1010011
11010	00	00000	rs1	rm	frd	1010011
11010	00	00001	rs1	rm	frd	1010011
11100	00	00000	frs1	000	rd	1010011
11100	00	00000	frs1	001	rd	1010011
11110	00	00000	rs1	000	frd	1010011

FSGNJX.S frd, frs1, frs2
FMIN.S frd, frs1, frs2
FMAX.S frd, frs1, frs2
FSQRT.S rm, frd, frs1
FLE.S rd, frs1, frs2
FLT.S rd, frs1, frs2
FEQ.S rd, frs1, frs2
FCVT.W.S rm, rd, frs1
FCVT.WU.S rm, rd, frs1
FCVT.S.W rm, frd, rs1
FCVT.S.WU rm, frd, rs1
FCVT.S.WU rm, frd, rs1
FCVT.S.WI rm, frd, rs1
FCVT.S.WI rm, frd, rs1
FCVT.S.S.S rd, frs1
FCLASS.S rd, frs1
FMV.S.X frd, rs1

RV64F Standard Extension for Single-Precision Floating-Point (in addition to RV32F)

11000	00	00010	frs1	$_{ m rm}$	rd	1010011
11000	00	00011	frs1	$_{ m rm}$	rd	1010011
11010	00	00010	rs1	rm	frd	1010011
11010	00	00011	rs1	rm	frd	1010011

FCVT.L.S rm, rd, frs1 FCVT.LU.S rm, rd, frs1 FCVT.S.L rm, frd, rs1 FCVT.S.LU rm, frd, rs1

RV32D Standard Extension for Double-Precision Floating-Point

8	simm[11:0)]	rs1	011	frd	0000111	FLD frd, offset(rs1)
simm[11	::5]	frs2	rs1	011	simm[4:0]	0100111	FSD frs2, offset(rs1)
frs3	01	frs2	frs1	rm	frd	1000011	FMADD.D rm, frd, frs1, frs2, frs3
frs3	01	frs2	frs1	rm	frd	1000111	FMSUB.D rm, frd, frs1, frs2, frs3
frs3	01	frs2	frs1	rm	frd	1001011	FNMSUB.D rm, frd, frs1, frs2, frs3
frs3	01	frs2	frs1	$_{ m rm}$	frd	1001111	FNMADD.D rm, frd, frs1, frs2, frs3
00000	01	frs2	frs1	rm	frd	1010011	FADD.D rm, frd, frs1, frs2
00001	01	frs2	frs1	$_{ m rm}$	frd	1010011	FSUB.D rm, frd, frs1, frs2
00010	01	frs2	frs1	rm	frd	1010011	FMUL.D rm, frd, frs1, frs2
00011	01	frs2	frs1	$_{ m rm}$	frd	1010011	FDIV.D rm, frd, frs1, frs2
00100	01	frs2	frs1	000	frd	1010011	FSGNJ.D frd, frs1, frs2
00100	01	frs2	frs1	001	frd	1010011	FSGNJN.D frd, frs1, frs2
00100	01	frs2	frs1	010	frd	1010011	FSGNJX.D frd, frs1, frs2
00101	01	frs2	frs1	000	frd	1010011	FMIN.D frd, frs1, frs2
00101	01	frs2	frs1	001	frd	1010011	FMAX.D frd, frs1, frs2
01000	00	00001	frs1	rm	frd	1010011	FCVT.S.D rm, frd, frs1
01000	01	00000	frs1	$_{ m rm}$	frd	1010011	FCVT.D.S rm, frd, frs1
01011	01	00000	frs1	$_{ m rm}$	frd	1010011	FSQRT.D rm, frd, frs1
10100	01	frs2	frs1	000	rd	1010011	FLE.D rd, frs1, frs2
10100	01	frs2	frs1	001	rd	1010011	FLT.D rd, frs1, frs2
10100	01	frs2	frs1	010	rd	1010011	FEQ.D rd, frs1, frs2

31	25	24	20	19	15	14	12	11	7	6	0	
funct5	funct2	rs	2	rs1		fun	.ct3	1	rd		opcode	Type-R
	imm[11:0]			rs1		fun	.ct3	1	rd		opcode	Type-I
imm[11	:5]	rs	2	rs1		fun	.ct3	imn	n[4:0]		opcode	Type-S
rs3	funct2	rs	2	rs1		fun	ct3	1	rd		opcode	Type-R4

RV32D Standard Extension for Double-Precision Floating-Point contd

110	00	01	00000	frs1	$^{ m rm}$	rd	1010011
110	00	01	00001	frs1	$_{ m rm}$	rd	1010011
110	10	01	00000	rs1	rm	frd	1010011
110	10	01	00001	rs1	$_{ m rm}$	frd	1010011
111	00	01	00000	frs1	001	rd	1010011

FCVT.W.D rm, rd, frs1 FCVT.WU.D rm, rd, frs1 FCVT.D.W rm, frd, rs1 FCVT.D.WU rm, frd, rs1 FCLASS.D rd, frs1

RV64D Standard Extension for Double-Precision Floating-Point (in addition to RV32D)

11000	01	00010	frs1	rm	rd	1010011
11000	01	00011	frs1	rm	rd	1010011
11100	01	00000	frs1	000	rd	1010011
11010	01	00010	rs1	rm	frd	1010011
11010	01	00011	rs1	rm	frd	1010011
11110	01	00000	rs1	000	frd	1010011
	11000 11100 11010 11010	11000 01 11100 01 11010 01 11010 01	11000 01 00011 11100 01 00000 11010 01 00010 11010 01 00011	11000 01 00011 frs1 11100 01 00000 frs1 11010 01 00010 rs1 11010 01 00011 rs1 11010 01 00011 rs1	11000 01 00011 frs1 rm 11100 01 00000 frs1 000 11010 01 00010 rs1 rm 11010 01 00011 rs1 rm	11000 01 00011 frs1 rm rd 11100 01 00000 frs1 000 rd 11010 01 00010 rs1 rm frd 11010 01 00011 rs1 rm frd

FCVT.L.D rm, rd, frs1 FCVT.LU.D rm, rd, frs1 FMV.X.D rd, frs1 FCVT.D.L rm, frd, rs1 FCVT.D.LU rm, frd, rs1 FMV.D.X frd, rs1

RV32Q Standard Extension for Quadruple-Precision Floating-Point

	simm[11:0]	rs1	100	frd	0000111	FLQ frd, offset(rs1)
simm[1	1:5]	frs2	rs1	100	simm[4:0]	0100111	FSQ frs2, offset(rs1)
frs3	11	frs2	frs1	rm	frd	1000011	FMADD.Q rm, frd, frs1, frs2, frs3
frs3	11	frs2	frs1	rm	frd	1000111	FMSUB.Q rm, frd, frs1, frs2, frs3
frs3	11	frs2	frs1	rm	frd	1001011	FNMSUB.Q rm, frd, frs1, frs2, frs3
frs3	11	frs2	frs1	rm	frd	1001111	FNMADD.Q rm, frd, frs1, frs2, frs3
00000	11	frs2	frs1	rm	frd	1010011	FADD.Q rm, frd, frs1, frs2
00001	11	frs2	frs1	rm	frd	1010011	FSUB.Q rm, frd, frs1, frs2
00010	11	frs2	frs1	rm	frd	1010011	FMUL.Q rm, frd, frs1, frs2
00011	11	frs2	frs1	rm	frd	1010011	FDIV.Q rm, frd, frs1, frs2
00100	11	frs2	frs1	000	frd	1010011	FSGNJ.Q frd, frs1, frs2
00100	11	frs2	frs1	001	frd	1010011	FSGNJN.Q frd, frs1, frs2
00100	11	frs2	frs1	010	frd	1010011	FSGNJX.Q frd, frs1, frs2
00101	11	frs2	frs1	000	frd	1010011	FMIN.Q frd, frs1, frs2
00101	11	frs2	frs1	001	frd	1010011	FMAX.Q frd, frs1, frs2
01000	00	00011	frs1	rm	frd	1010011	FCVT.S.Q rm, frd, frs1
01000	11	00000	frs1	rm	frd	1010011	FCVT.Q.S rm, frd, frs1
01000	01	00011	frs1	rm	frd	1010011	FCVT.D.Q rm, frd, frs1
01000	11	00001	frs1	rm	frd	1010011	FCVT.Q.D rm, frd, frs1
01011	11	00000	frs1	rm	frd	1010011	FSQRT.Q rm, frd, frs1
10100	11	frs2	frs1	000	rd	1010011	FLE.Q rd, frs1, frs2
10100	11	frs2	frs1	001	rd	1010011	FLT.Q rd, frs1, frs2
10100	11	frs2	frs1	010	rd	1010011	FEQ.Q rd, frs1, frs2
11000	11	00000	frs1	rm	rd	1010011	FCVT.W.Q rm, rd, frs1
11000	11	00001	frs1	rm	rd	1010011	FCVT.WU.Q rm, rd, frs1
11010	11	00000	rs1	rm	frd	1010011	FCVT.Q.W rm, frd, rs1
11010	11	00001	rs1	rm	frd	1010011	FCVT.Q.WU rm, frd, rs1
11100	11	00000	frs1	001	rd	1010011	FCLASS.Q rd, frs1

31	25	24	20	19	15	14	12	11	7	6)
funct5	funct2	r	$^{\circ}$ s2	rs1	-	fun	ct3		rd		opcode	Type-R

RV64Q Standard Extension for Quadruple-Precision Floating-Point (in addition to RV32Q)

11000	11	00010	frs1	rm	rd	1010011	FCVT.L.Q rm, rd, f
11000	11	00011	frs1	rm	rd	1010011	FCVT.LU.Q rm, rd,
11010	11	00010	rs1	rm	frd	1010011	FCVT.Q.L rm, frd,
11010	11	00011	rs1	rm	frd	1010011	FCVT.Q.LU rm, frd
11100	11	00000	frs1	000	rd	1010011	FMV.X.Q rd, frs1
11110	11	00000	rs1	000	frd	1010011	FMV.Q.X frd, rs1

frs1d, frs1 , rs1 rd, rs1

	15 13	12	10	9	7	6	5	4	2	1	0	
	funct3	imm8						rd'		op		Type-CIW
Г	funct3	imn	n3	rs1'		imm2		rd'		op		Type-CL
	funct3	imn	n3	rs1'		imm2		rs2'		op		Type-CS
Г	funct3	imm1	rd/rs1			imm5				op		Type-CI
	funct3	imm11								op		Type-CJ
Г	funct3	imn	mm3 rs1'		imm5			op		Type-CB		
Г	funct4	Í		rd/rs1				rs2		op		Type-CR
	funct3		imm6					rs2		op		Type-CSS

RV32C Standard Extension for Compressed Instructions

	NV 32C Sta		tension for Com	presseu msi			_
000	nzuimm[5:4 9:6 2 3]				rd'	00	C.ADDI4SPN rd, rs1, imm
001	uimm[[5:3]	rs1'	uimm[7:6]	frd'	00	C.FLD frd, offset(rs1)
010	uimm[rs1'	uimm[2 6]	rd'	00	C.LW rd, offset(rs1)
011	uimm		rs1'	uimm[2 6]	frd'	00	C.FLW frd, offset(rs1)
101	uimm[rs1'	uimm[7:6]	frs2'	00	C.FSD frs2, offset(rs1)
110	uimm[rs1'	uimm[2 6]	rs2'	00	C.SW rs2, offset(rs1)
111	uimm[[5:3]	rs1'	uimm[2 6]	frs2'	00	C.FSW frs2, offset(rs1)
000	0		00000		00000	01	C.NOP
000	nzsimm[5]	rs	$s1/rd \neq 0$	nzs	imm[4:0]	01	C.ADDI rd, rs1, imm
001			simm[11 4 9:8 10 6 '			01	C.JAL rd, offset
010	simm[5]		$s1/rd \neq 0$		mm[4:0]	01	C.LI rd, rs1, imm
011	nzsimm[9]		s1/rd=2	nzsim	m[4 6 8:7 5]	01	C.ADDI16SP rd, rs1, imm
011	nzsimm[17]	re	$l \neq \{0,2\}$		mm[16:12]	01	C.LUI rd, imm
100	0	00	rs1'/rd'	nzu	imm[4:0]	01	C.SRLI rd, rs1, imm
100	0	01	rs1'/rd'		imm[4:0]	01	C.SRAI rd, rs1, imm
100	nzsimm[5]	10	rs1'/rd'	nzs	imm[4:0]	01	C.ANDI rd, rs1, imm
100	_	011 rs1'/rd'		00	rs2'	01	C.SUB rd, rs1, rs2
100	011	rs1'/rd'		01	rs2'	01	C.XOR rd, rs1, rs2
100	011		rs1'/rd'	10	rs2'	01	C.OR rd, rs1, rs2
100	011		rs1'/rd'	11	rs2'	01	C.AND rd, rs1, rs2
	100 111		rs1'/rd'	00	rs2'	01	C.SUBW rd, rs1, rs2
100	111			01	rs2'	01	C.ADDW rd, rs1, rs2
101			simm[11 4 9:8 10 6 '	7 3:1 5]		01	C.J rd, offset
110	simm[8			simm[7:6 2:1 5]		01	C.BEQZ rs1, rs2, offset
111	simm[8	8 4:3] rs1'		simm[7:6 2:1 5]		01	C.BNEZ rs1, rs2, offset
000	0	rs	$s1/rd \neq 0$	nzuimm[4:0]		10	C.SLLI rd, rs1, imm
001	uimm[5]	imm[5] frd		uimm[4:3 8:6]		10	C.FLDSP frd, offset(rs1)
010	uimm[5]	$uimm[5] rd \neq 0$		uimm[4:2 7:6]		10	C.LWSP rd, offset(rs1)
011	011 uimm[5]		frd		uimm[4:2 7:6]		C.FLWSP frd, offset(rs1)
100	100 rd"		rs1		00000		C.JR rd, rs1, offset
1000			$rd \neq 0$	1	$rs2 \neq 0$	10	C.MV rd, rs1, rs2
100	100 1		00000		00000	10	C.EBREAK
100	rd"		rs1	00000		10	C.JALR rd, rs1, offset
1001		rs	$s1/rd \neq 0$	1	$rs2 \neq 0$	10	C.ADD rd, rs1, rs2
101		uimm[5:3	1		frs2	10	C.FSDSP frs2, offset(rs1)
110		uimm[5:2 '			rs2	10	C.SWSP rs2, offset(rs1)
111		uimm[5:2]	7:6]		frs2	10	C.FSWSP frs2, offset(rs1)

15	13	12	10	9	7 6	5 4	2	1	0
	funct3	imr	n3	rs1'	imm2	rd'		op	Type-CL
	funct3	imr	n3	rs1'	imm2	rs2'		op	Type-CS
	funct3	imm1		rd/rs1		imm5		op	Type-CI
	funct3	imr	n3	rs1'		imm5		op	Type-CB
	funct3		imm6			rs2		op	Type-CSS

RV64C Standard Extension for Compressed Instructions (in addition to RV32C)

011	uimm	[5:3]	rs1'	uimm[7:6]	rd'	00	C.LD rd, of
111	uimm	[5:3]	rs1'	uimm[7:6]	rs2'	00	C.SD rs2, c
001	simm[5]	r	$s1/rd \neq 0$	si	mm[4:0]	01	C.ADDIW
100	nzuimm[5]	00	rs1'/rd'	nzu	imm[4:0]	01	C.SRLI rd,
100	nzuimm[5]	01	rs1'/rd'	nzu	imm[4:0]	01	C.SRAI rd,
000	nzuimm[5]	r	$s1/rd \neq 0$	nzu	imm[4:0]	10	C.SLLI rd,
011	uimm[5]	$rd \neq 0$		uimm[4:3 8:6]		10	C.LDSP rd
111		uimm[5:3	8:6]		rs2	10	C.SDSP rs2

C.LD rd, offset(rs1)
C.SD rs2, offset(rs1)
C.ADDIW rd, rs1, imm
C.SRLI rd, rs1, imm
C.SRAI rd, rs1, imm
C.SLLI rd, rs1, imm
C.LDSP rd, offset(rs1)
C.SDSP rs2, offset(rs1)

RV128C Standard Extension for Compressed Instructions (in addition to RV64C)

001	$\operatorname{uimm}[5:4]$	4 8]	rs1'	$ \operatorname{uimm}[7:6] $	rd	00	C.LQ rd, offset(rs1)
101	uimm[5:4	4 8]	rs1'	uimm[7:6]	rs2'	00	C.SQ rs2, offset(rs1)
001	uimm[5]	uimm[5] rd		$\operatorname{uimm}[4 9:6]$		10	C.LQSP rd, offset(rs1)
101	uimm[5:4 9:6]				rs2	10	C.SQSP rs2, offset(rs1)