98930 58881, BHOPAL

TEKO CLASSES, H.O.D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रघुबर राखे टेक।।

रचितः मानव धर्म प्रणेता

सद्गुरु श्री रणछोड़दासनी महाराज

STUDY PACKAGE

Subject: Mathematics Topic: Sequence & Progression

Index

- 1. Theory
- 2. Short Revision
- 3. Exercise (Ex. 3 + 2 = 5)
- 4. Assertion & Reason
- 5. Que. from Compt. Exams
- 6. 34 Yrs. Que. from IIT-JEE
- 7. 10 Yrs. Que. from AIEEE

Student's Name	:
Class	.
Roll No.	=

ADDRESS: R-1, Opp. Raiway Track, New Corner Glass Building, Zone-2, M.P. NAGAR, Bhopal 🖀: (0755) 32 00 000, 98930 58881, www.tekoclasses.com

TEKO CLASSES, H.O.D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)-32 00 000,

Properties & Solution of Triangle

1. Sine Rule:

In any triangle ABC, the sines of the angles are proportional to the opposite sides i.e.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

In any $\triangle ABC$, prove that $\frac{a+b}{c} = \frac{\cos\left(\frac{A-B}{2}\right)}{\sin\frac{C}{2}}$ Example:

Solution.

From sine rule, we know that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \text{ (let)}$$

$$\Rightarrow a = k \sin A, b = k \sin B \text{ and } c = k \sin C$$

$$\therefore \qquad \text{L.H.S.} = \frac{a+b}{c}$$

$$= \frac{k(\sin A + \sin B)}{k \sin C}$$

$$= \frac{\cos \frac{C}{2} \cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2} \cos \frac{C}{2}}$$

Hence L.H.S. = R.H.S.

In any $\triangle ABC$, prove that **Example:**

$$(b^2 - c^2) \cot A + (c^2 - a^2) \cot B + (a^2 - b^2) \cot C = 0$$

Solution. We have to prove that

 (b^2-c^2) cot A + (c^2-a^2) cot B + (a^2-b^2) cot C = 0 from **sine rule**, we know that

a = k sinA, b = k sinB and c = k sinC $(b^2 - c^2)$ cot A = k^2 (sin²B - sin²C) cot A \sin^2 B - \sin^2 C = \sin (B + C) \sin (B - C) $(b^2 - c^2)$ cot A = k^2 sin (B + C) \sin (B - C) cotA

$$\therefore \qquad (b^2-c^2)\cot A = k^2\sin A\sin (B-C)\frac{\cos A}{\sin A} \qquad \qquad \because \qquad \cos A = -\cos(B+C)$$
$$= -k^2\sin (B-C)\cos (B+C)$$

$$=-\frac{k^2}{2} [2\sin{(B-C)}\cos{(B+C)}]$$

$$\Rightarrow \qquad (b^2 - c^2) \cot A = -\frac{k^2}{2} [\sin 2B - \sin 2C] \qquad(i)$$

Similarly
$$(c^2 - a^2) \cot B = -\frac{k^2}{2} [\sin 2C - \sin 2A]$$
(ii)

and
$$(a^2 - b^2) \cot C = -\frac{k^2}{2} [\sin 2A - \sin 2B]$$
(iii)

adding equations (i), (ii) and (iii), we get $(b^2-c^2) \cot A + (c^2-a^2) \cot B + (a^2-b^2) \cot C = 0$

Hence Proved

cos

Self Practice Problems

In any $\triangle ABC$, prove that

1.
$$a \sin \left(\frac{A}{2} + B\right) = (b + c) \sin \left(\frac{A}{2}\right)$$
.

2.
$$\frac{a^2 \sin(B-C)}{\sin B + \sin C} + \frac{b^2 \sin(C-A)}{\sin C + \sin A} + \frac{c^2 \sin(A-B)}{\sin A + \sin B} = 0$$
 3.
$$\frac{c}{a-b} = \frac{\tan \frac{A}{2} + \tan \frac{B}{2}}{\tan \frac{A}{2} - \tan \frac{B}{2}}$$

2. Cosine Formula:

(i)
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 or $a^2 = b^2 + c^2 - 2bc \cos A = b^2 + c^2 + 2bc \cos (B + C)$

(ii)
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

(iii)
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

In a triangle ABC if a = 13, b = 8 and c = 7, then find $\sin A$ Example:

Solution.
$$\therefore$$
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{64 + 49 - 169}{2.8.7}$

$$\Rightarrow$$
 $\cos A = -\frac{1}{2}$

$$A = \frac{2\pi}{3}$$

$$\therefore \qquad \sin A = \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$$

In a $\triangle ABC$, prove that $a(b \cos C - c \cos B) = b^2 - c^2$ \therefore We have to prove $a(b \cos C - c \cos B) = b^2 - c^2$ \therefore from **cosine rule** we know that *Example: Solution.

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} \quad \& \quad \cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\therefore \quad \text{L.H.S.} = a \left\{ b \left(\frac{a^2 + b^2 - c^2}{2ab} \right) - c \left(\frac{a^2 + c^2 - b^2}{2ac} \right) \right\}$$

$$= \frac{a^2 + b^2 - c^2}{2} - \frac{(a^2 + c^2 - b^2)}{2}$$

$$= (b^2 - c^2)$$
Hence L.H.S. = R.H.S.

Proved

Proved

= R.H.S.

If in a $\triangle ABC$, $\angle A = 60^{\circ}$ then find the value of $\left(1 + \frac{a}{c} + \frac{b}{c}\right) \left(1 + \frac{c}{b} - \frac{a}{b}\right)$ Example:

 $\angle A = 60^{\circ}$ Solution.

$$\left(1 + \frac{a}{c} + \frac{b}{c}\right)\left(1 + \frac{c}{b} - \frac{a}{b}\right) = \left(\frac{c + a + b}{c}\right)\left(\frac{b + c - a}{b}\right)$$
$$= \frac{(b + c)^2 - a^2}{bc}$$
$$(b^2 + c^2 - a^2) + 2bc$$

$$= \frac{(b + c^2 - a^2) + 2bc}{bc}$$
$$= \frac{b^2 + c^2 - a^2}{bc} + 2$$

$$= 2 \left(\frac{b^2 + c^2 - a^2}{2bc} \right) + 2$$

$$= 2\cos A + 2 \qquad \qquad :: \angle A = 60^{\circ} \Rightarrow \cos A = \frac{1}{2}$$

 $\left(1 + \frac{a}{c} + \frac{b}{c}\right) \left(1 + \frac{c}{b} - \frac{a}{b}\right) = 3 \text{ Ans.}$

FREE Download Study Package from website: www.tekoclasses.com **Self Practice Problems:**

- The sides of a triangle ABC are $a, b, \sqrt{a^2 + ab + b^2}$, then prove that the greatest angle is 120°.
- In a triangle ABC prove that $a(\cos B + \cos C) = 2(b + c) \sin^2 \frac{A}{2}$ 2.

3. **Projection Formula:**

(i) $a = b \cos C + c \cos B$

o $\cos C + c \cos B$ (ii) $b = c \cos A + a \cos C$ (iii) $c = a \cos B + b \cos A$ In a triangle ABC prove that $a(b \cos C - c \cos B) = b^2 - c^2$ \therefore L.H.S. = $a(b \cos C - c \cos B)$ = $b(a \cos C) - c(a \cos B)$ (i) Example : Solution.

From **projection rule**, we know that

 $b = a \cos C + c \cos A$ $a \cos C = b - c \cos A$

c = a cosB + b cosA \Rightarrow $a \cos B = c - b \cos A$

Put values of a cosC and a cosB in equation (i), we get L.H.S. = b (b - ccos A) - c(c - b cos A) = $b^2 - bc \cos A - c^2 + bc \cos A$ = $b^2 - c^2$ = R.H.S.

Hence L.H.S. = R.H.S. Proved

Note: We have also proved a $(b \cos C - \cos B) = b^2 - c^2$ by using **cosine – rule** in solved ***Example. Example :** In a $\triangle ABC$ prove that $(b + c) \cos A + (c + a) \cos B + (a + b) \cos C = a + b + c$.

Solution. L.H.S. = $(b + c) \cos A (c + a) \cos B + (a + B) \cos C$

= b cos A + c cos A + c cos B + a cos B + a cos C + b cos C $(b \cos A + a \cos B) + (c \cos A + a \cos C) + (c \cos B + b \cos C)$ Hence L.H.S. = R.H.S. **Proved**

Self Practice Problems

In a \triangle ABC, prove that

1.
$$2\left(b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2}\right) = a + b + c.$$

2.
$$\frac{\cos B}{\cos C} = \frac{c - b \cos A}{b - c \cos A}$$

3.
$$\frac{\cos A}{\cos B + b \cos C} + \frac{\cos B}{a \cos C + c \cos A} + \frac{\cos C}{a \cos B + b \cos A} = \frac{a^2 + b^2 + c^2}{2abc}.$$

4. Napier's Analogy - tangent rule:

(i)
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$

(ii)
$$\tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}$$

(iii)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$$

FREE Download Study Package from website: www.tekoclasses.com Find the unknown elements of the \triangle ABC in which $a = \sqrt{3} + 1$, $b = \sqrt{3} - 1$, $C = 60^{\circ}$. Example:

∴
$$a = \sqrt{3} + 1$$
, $b = \sqrt{3} - 1$, $C = 60^{\circ}$
∴ $A + B + C = 180^{\circ}$

$$A + B + C = 180^{\circ}$$

From law of tangent, we know that

$$\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b} \cot \frac{C}{2}$$

$$= \frac{(\sqrt{3}+1)-(\sqrt{3}-1)}{(\sqrt{3}+1)+(\sqrt{3}-1)} \cot 30^{\circ}$$

$$\frac{2}{2\sqrt{3}} \cot 30^{\circ}$$

$$\Rightarrow \tan\left(\frac{A-B}{2}\right) = 1$$

$$\therefore \frac{A-B}{2} = \frac{\pi}{4} = 45^{\circ}$$

$$\Rightarrow A-B = 90^{\circ}$$
From equation (i) and (ii), we get
$$A = 105^{\circ} \quad \text{and} \quad B = 15^{\circ}$$

Now.

$$\therefore$$
 From **sine-rule**, we know that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$\therefore \qquad c = \frac{a \sin C}{\sin A} = \frac{(\sqrt{3} + 1) \sin 60^{\circ}}{\sin 105^{\circ}}$$

$$=\frac{(\sqrt{3}+1)\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}+1}{2\sqrt{2}}} \qquad \qquad : \qquad \sin 105^\circ = \frac{\sqrt{3}+1}{2\sqrt{2}}$$

$$\Rightarrow$$
 c = $\sqrt{6}$

$$\therefore$$
 c = $\sqrt{6}$, A = 105°, B = 15° **Ans.**

Self Practice Problem

1. In a
$$\triangle ABC$$
 if $b = 3$, $c = 5$ and $\cos (B - C) = \frac{7}{25}$, then find the value of $\tan \frac{A}{2}$.

Ans.
$$\frac{1}{3}$$

If in a $\triangle ABC$, we define $x = \tan\left(\frac{B-C}{2}\right)\tan\frac{A}{2}$, $y = \tan\left(\frac{C-A}{2}\right)\tan\frac{B}{2}$ and $z = \tan\left(\frac{A-B}{2}\right)\tan\frac{C}{2}$ 2. then show that x + y + z = -xyz

5. Trigonometric Functions of Half Angles:

(i)
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
; $\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$; $\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$

(ii)
$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$
; $\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$; $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$

(iii)
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{\Delta}{s(s-a)}$$
 where $s = \frac{a+b+c}{2}$ is semi perimetre of triangle.

(iv)
$$\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)} = \frac{2\Delta}{bc}$$

6. Area of Triangle (Δ)

$$\Delta = \frac{1}{2} \operatorname{ab} \sin C = \frac{1}{2} \operatorname{bc} \sin A = \frac{1}{2} \operatorname{ca} \sin B = \sqrt{s(s-a)(s-b)(s-c)}$$

In a $\triangle ABC$ if a, b, c are in A.P. then find the value of $\tan \frac{A}{2}$. $\tan \frac{C}{2}$. Example:

Solution.
$$\therefore$$
 $\tan \frac{A}{2} = \frac{\Delta}{s(s-a)}$ and $\tan \frac{C}{2} = \frac{\Delta}{s(s-c)}$

$$\therefore \quad \tan \frac{A}{2} \cdot \tan \frac{C}{2} = \frac{\Delta^2}{s^2(s-a)(s-c)} \qquad \qquad \therefore \quad \Delta^2 = s (s-a) (s-b) (s-c)$$

tan
$$\frac{A}{2}$$
 . tan $\frac{C}{2} = \frac{s-b}{s} = 1 - \frac{b}{s}$ (i)
it is given that a, b, c are in A.P.

$$\therefore \qquad s = \frac{a+b+c}{2} = \frac{3b}{2}$$

$$\therefore \frac{b}{s} = \frac{2}{3} \text{ put in equation (i)}$$

$$\therefore \tan \frac{A}{2} \cdot \tan \frac{C}{2} = 1 - \frac{2}{3}$$

$$\Rightarrow \tan \frac{A}{2} \cdot \tan \frac{C}{2} = \frac{1}{3} \quad A$$

Example: In a $\triangle ABC$ if b sinC(b cosC + c cosB) = 42, then find the area of the $\triangle ABC$.

Solution.
$$\therefore$$
 b sinC (b cosC + c cosB) = 42(i) given

$$\Delta = \frac{1}{2} \text{ ab sinC}$$

$$\Delta = 21 \text{ sq. unit}$$

$$\Delta = 21 \text{ sq. unit} \qquad \qquad \textbf{Ans.}$$

In any $\triangle ABC$ prove that $(a + b + c) \left(\tan \frac{A}{2} + \tan \frac{B}{2} \right) = 2c \cot \frac{C}{2}$. Example:

Solution.
$$\therefore$$
 L.H.S. = $(a + b + c) \left(\tan \frac{A}{2} + \tan \frac{B}{2} \right)$

$$\therefore \qquad \tan\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \quad \text{and} \quad \tan\frac{B}{2} = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$$

$$\therefore \qquad \text{L.H.S.} = (a+b+c) \left[\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} + \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \right]$$
$$= 2s \sqrt{\frac{s-c}{s}} \left[\sqrt{\frac{s-b}{s-a}} + \sqrt{\frac{s-a}{s-b}} \right]$$

Ż.

$$= 2 \sqrt{s(s-c)} \left[\frac{s-b+s-a}{\sqrt{(s-a)(s-b)}} \right] \qquad \therefore \qquad 2s = a+b+c$$

$$\therefore \qquad 2s-b-a = c$$

$$= 2 \sqrt{s(s-c)} \left[\frac{c}{\sqrt{(s-a)(s-b)}} \right]$$

$$= 2c \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \qquad \therefore \qquad \cot \frac{C}{2} = \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$$

$$= 2c \cot \frac{C}{2}$$

Hence L.H.S. = R.H.S.

Proved

7. m - n Rule:

Example: If the median AD of a triangle ABC is perpendicular to AB, prove that $\tan A + 2\tan B = 0$.

From the figure, we see that $\theta = 90^{\circ} + B$ (as θ is external angle of $\triangle ABD$) Solution.

+ 1) cot (90 + B) = 1. cot 90° - 1.cot (A - 90°) - 2 tan B = cot (90° - A)

 $-2 \tan B = \tan A$ \Rightarrow

tan A + 2 tan B = 0Hence proved.

The base of a triangle is divided into three equal parts. If t_1 , t_2 , t_3 be the tangents of the angles subtended by these parts at the opposite vertex, prove that Example:

$$4\left(1+\frac{1}{t_2^2}\right) = \left(\frac{1}{t_1} + \frac{1}{t_2}\right) \left(\frac{1}{t_2} + \frac{1}{t_3}\right).$$

Solution.

Let point D and E divides the base BC into three equal parts i.e. BD = DE = DC = d (Let) and let α , β and γ be the angles subtended by BD, DE and EC respectively at their opposite vertex. $t_1 = \tan \alpha$, $t_2 = \tan \beta$ and $t_3 = \tan \gamma$ TEKO CLASSES, H.O.D. MATHS : SUHAG R. KARIYA Now in ∆ABC

BE: EC = 2d: d = 2:1

from **m-n rule**, we get $(2 + 1) \cot \theta = 2 \cot (\alpha + \beta) - \cot \gamma$

 $3\cot\theta = 2\cot(\alpha + \beta) - \cot\gamma$

again

in ∆ADC

DE : EC = x : x = 1 : 1

if we apply m-n rule in △ADC, we get $(1 + 1) \cot \theta = 1 \cdot \cot \beta - 1 \cot \gamma$

 $2\cot\theta = \cot\beta - \cot\gamma$(ii)

$$\begin{array}{l} \text{from (i) and (ii), we get} \\ & \frac{3\cot\theta}{2\cot\theta} = \frac{2\cot(\alpha+\beta)-\cot\gamma}{\cot\beta-\cot\gamma} \\ \Rightarrow & 3\cot\beta-3\cot\gamma=4\cot\left(\alpha+\beta\right)-2\cot\gamma \\ \Rightarrow & 3\cot\beta-\cot\gamma=4\cot\left(\alpha+\beta\right) \\ \Rightarrow & 3\cot\beta-\cot\gamma=4\left\{\frac{\cot\alpha.\cot\beta-1}{\cot\beta+\cot\alpha}\right\} \end{array}$$

 $3\cot^2\beta + 3\cot\alpha \cot\beta - \cot\beta \cot\gamma - \cot\alpha \cot\gamma = 4\cot\alpha \cot\beta - 4$

 $4 + 3cot^2\beta = cot\alpha cot\beta + cot\beta cot\gamma + cot\alpha cot\gamma$

 $\begin{array}{l} 4 + 4 \text{cot}^2\beta = \text{cot}\alpha \ \text{cot}\beta + \text{cot}\alpha \ \text{cot}\gamma + \text{cot}\beta \ \text{cot}\gamma + \text{cot}^2\beta \\ 4(1 + \text{cot}^2\beta) = (\text{cot}\alpha + \text{cot}\beta) \ (\text{cot}\beta + \text{cot}\gamma) \end{array}$

$$\Rightarrow 4\left(1+\frac{1}{\tan^2\beta}\right) = \left(\frac{1}{\tan\alpha} + \frac{1}{\tan\beta}\right) \left(\frac{1}{\tan\beta} + \frac{1}{\tan\gamma}\right)$$

Self Practice Problems:

In a \triangle ABC, the median to the side BC is of length $\frac{1}{\sqrt{11-6\sqrt{3}}}$ and it divides angle A into the angles of 30° and 45°. Prove that the side BC is of length 2 units.

8. Radius of Circumcirice:

$$R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C} = \frac{abc}{4A}$$

In a $\triangle ABC$ prove that $sinA + sinB + sinC = \frac{s}{D}$ Example:

In a $\triangle ABC$, we know that Solution.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

$$\therefore \qquad \sin A = \frac{a}{2R}, \ \sin B = \frac{b}{2R} \ \ \text{and} \ \ \sin C = \frac{c}{2R}.$$

$$\therefore \qquad \sin A + \sin B + \sin C = \frac{a+b+c}{2R} \qquad \qquad \therefore \qquad a+b+c=2s$$

$$=\frac{2s}{2R} \qquad \Rightarrow \qquad sinA + sinB + sinC = \frac{s}{R}$$
 In a $\triangle ABC$ if $a=13$ cm, $b=14$ cm and $c=15$ cm, then find its circumradius.

Example:

Solution.
$$\therefore$$
 $R = \frac{abc}{4\Delta}$ (i)

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$\therefore \qquad s = \frac{a+b+c}{2} = 21 \text{ cm}$$

$$\Delta = \sqrt{21.8.7.6} = \sqrt{7^2.4^2.3^2}$$

$$\Delta = 84 \text{ cm}^2$$

$$\therefore R = \frac{13.14.15}{4.84} = \frac{65}{8} \text{ cm}$$

$$\therefore R = \frac{65}{8} \text{ cm}.$$

FREE Download Study Package from website: www.tekoclasses.com In a $\triangle ABC$ prove that $s = 4R \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}$ Example:

Solution.

$$\therefore R.H.S. = 4R \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}.$$

$$= \frac{abc}{\Delta} \cdot s \sqrt{\frac{s(s-a)(s-b)(s-c)}{(abc)^2}} \qquad \therefore \qquad \Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= s \qquad \Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

= L.H.S. Hence R.H.L = L.H.S. proved

In a $\triangle ABC$, prove that $\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} = \frac{4R}{A}$. Example:

Solution.
$$\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} = \frac{4R}{\Delta}$$

$$\therefore L.H.S. = \left(\frac{1}{s-a} + \frac{1}{s-b}\right) + \left(\frac{1}{s-c} - \frac{1}{s}\right)$$

$$= \frac{2s-a-b}{(s-a)(s-b)} + \frac{(s-s+c)}{s(s-c)} \qquad \therefore 2s = a+b+c$$

$$= \frac{c}{(s-a)(s-b)} + \frac{c}{s(s-c)}$$

$$= c \left[\frac{s(s-c) + (s-a)(s-b)}{s(s-a)(s-b)(s-c)}\right] = c \left[\frac{2s^2 - s(a+b+c) + ab}{\Delta^2}\right]$$

$$\therefore \qquad \text{L.H.S.} = c \left[\frac{2s^2 - s(2s) + ab}{\Delta^2} \right] = \frac{abc}{\Delta^2} = \frac{4R\Delta}{\Delta^2} = \frac{4R}{\Delta} \qquad \qquad \therefore \qquad R = \frac{abc}{4\Delta}$$

$$\Rightarrow \qquad abc = 4R$$

$$\therefore \qquad \text{L.H.S.} = \frac{4R}{\Delta}$$

Self Practice Problems:

In a $\triangle ABC$, prove the followings:

1. $a \cot A + b \cot B + \cos C = 2(R + r).$

2.
$$4\left(\frac{s}{a}-1\right)\left(\frac{s}{b}-1\right)\left(\frac{s}{c}-1\right)=\frac{r}{R}$$
.

Page: 8 of 21 PROPRETIES OF TRIANGLE If α , β , γ are the distances of the vertices of a triangle from the corresponding points of contact with the 3. incircle, then prove that $\frac{\alpha\beta y}{\alpha+\beta+v}=r^2$

9. Radius of The Incircle:

(i)
$$r = \frac{\Delta}{s}$$
 (ii) $r = (s-a) \tan \frac{A}{2} = (s-b) \tan \frac{B}{2} = (s-c) \tan \frac{C}{2}$

(iii)
$$r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}}$$
 & so on (iv) $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

10. Radius of The Ex-Circles:

(i)
$$r_1 = \frac{\Delta}{s-a} : r_2 = \frac{\Delta}{s-b} : r_3 = \frac{\Delta}{s-c}$$
 (ii) $r_1 = s \tan \frac{A}{2} : r_2 = s \tan \frac{B}{2} : r_3 = s \tan \frac{C}{2}$

$$\begin{aligned} & \text{(iii) } \ r_{_{1}} = \frac{a \cos \frac{B}{2} \, \cos \frac{C}{2}}{\cos \frac{A}{2}} \quad \& \ \text{so on} \qquad \qquad \\ & \text{(iv) } \ r_{_{1}} = 4 \ R \, \sin \frac{A}{2} \, . \, \cos \frac{B}{2} \, . \, \cos \frac{C}{2} \\ & \text{Example :} \qquad \qquad \\ & \text{In a $\triangle ABC$, prove that} \qquad r_{_{1}} + r_{_{2}} + r_{_{3}} - r = 4R = 2a \, \text{cosecA} \end{aligned}$$

Solution.
$$\therefore L.H.S = r_1 + r_2 + r_3 - r$$

$$= \frac{\Delta}{s-2} + \frac{\Delta}{s-b} + \frac{\Delta}{s-c} - \frac{\Delta}{s}$$

$$= \Delta \left(\frac{1}{s-a} + \frac{1}{s-b} \right) + \Delta \left(\frac{1}{s-c} - \frac{1}{s} \right)$$

$$= \Delta \left[\left(\frac{s - b + s - a}{(s - a)(s - b)} \right) + \left(\frac{s - s + c}{s(s - c)} \right) \right]$$
$$= \Delta \left[\frac{c}{(s - a)(s - b)} + \frac{c}{s(s - c)} \right]$$

$$= c\Delta \left[\frac{s(s-c) + (s-a)(s-b)}{s(s-a)(s-b)(s-c)} \right]$$

$$= c\Delta \left[\frac{2s^2 - s(a+b+c) + ab}{\Delta^2} \right]$$
abc

$$\therefore \quad a+b+c=2$$

$$\frac{\overline{\Omega}}{\overline{\Omega}}$$
 ::

$$\frac{a}{\sin A} = 2R = a \cos A$$

MATHS : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 98930 58881, BHOPAL

Example:

Solution.
$$\therefore$$
 $\Delta = 96$ sq. unit $r_1 = 8$, $r_2 = 12$ and $r_3 = 24$

$$\therefore \qquad r_1 = \frac{\Delta}{s-a} \qquad \Rightarrow \qquad s-a = 12 \qquad \qquad \dots \dots \dots (i)$$

$$\therefore \qquad r_2 = \frac{\Delta}{s - b} \qquad \Rightarrow \qquad s - b = 8 \qquad \qquad \dots \dots (ii)$$

$$r_3 = \frac{\Delta}{s-c}$$
 \Rightarrow $s-c=4$ (iii)

adding equations (i), (ii) & (iii), we get

98930 58881, BHOPAL

3s - (a + b + c) = 24s = 24perimeter of $\triangle ABC = 2s = 48$ unit.

Self Practice Problems

In a \triangle ABC prove that

- 1. $r_1 r_2 + r_2 r_3 + r_3 r_1 = S^2$
- 2. $rr_1 + rr_2 + rr_3 = ab + bc + ca - s^2$
- If A, A_1 , A_2 and A_3 are the areas of the inscribed and escribed circles respectively of a ΔABC , then prove 3. that $\frac{1}{\sqrt{A}} = \frac{1}{\sqrt{A_1}} + \frac{1}{\sqrt{A_2}} + \frac{1}{\sqrt{A_2}}$.
- $\frac{r_1-r}{a}+\frac{r_2-r}{b}=\frac{c}{r_2}.$ 4.

11. Length of Angle Bisectors, Medians & Altitudes :

(i) Length of an angle bisector from the angle A = $\beta_a = \frac{2bc \cos \frac{A}{2}}{b+c}$

- (ii) Length of median from the angle A = $m_a = \frac{1}{2} \sqrt{2b^2 + 2c^2 a^2}$
- (iii) Length of altitude from the angle A = $A_a = \frac{2\Delta}{a}$

NOTE:
$$m_a^2 + m_b^2 + m_c^2 = \frac{3}{4} (a^2 + b^2 + c^2)$$

Example:

Solution.

$$AD^{2} = \frac{1}{4} (2b^{2} + 2c^{2} - a^{2}) = m_{1}^{2}$$
(i)

:
$$\ln \triangle ABD$$
, $AE^2 = m_2^2 = \frac{1}{4} (2c^2 + 2AD^2 - \frac{a^2}{4})$ (ii)

Similarly in
$$\triangle ADC$$
, $AF^2 = m_3^2 = \frac{1}{4} \left(2AD^2 + 2b^2 - \frac{a^2}{4} \right)$ (iii)

$$\therefore m_2^2 + m_3^2 - 2m_1^2 = \frac{a^2}{8}$$

12. The Distances of The Special Points from Vertices and Sides of Triangle:

(i) Circumcentre (O) :
$$OA = R \& O_a = R \cos A$$

(ii) Incentre (I) :
$$IA = r \csc \frac{A}{2} \& I_a = r$$

(iii) Excentre (
$$I_1$$
) : $I_1 A = r_1 \csc \frac{A}{2} \& I_{1a} = r_1$

(iv) Orthocentre (H) :
$$HA = 2R \cos A \& H_a = 2R \cos B \cos C$$

(v) Centroid (G) :
$$GA = \frac{1}{3}\sqrt{2b^2 + 2c^2 - a^2}$$
 & $G_a = \frac{2\Delta}{3a}$

If x, y and z are respectively the distances of the vertices of the $\triangle ABC$ from its orthocentre, Example: then prove that

(i)
$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$$
 (ii) $x y + z = 2(R + r)$

Solution.
$$\therefore$$
 $x = 2R \cos A, y = 2R \cos B, z = 2R \cos C$ and $a = 2R \sin A, b = 2R \sin B, c = 2R \sin C$

$$\therefore \frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \tan A + \tan B + \tan C \qquad(i)$$

&
$$\frac{abc}{xyz}$$
 = tanA, tanB. tanC(ii)

: We know that in a ΔABC
$$\Sigma tanA = \Pi tanA$$

: From equations (i) and (ii), we get

$$\frac{x}{x} + \frac{y}{y} + \frac{z}{z} = \frac{ass}{xyz}$$

$$\therefore x + y + z = 2R (\cos A + \cos B + \cos C)$$

: in a
$$\triangle ABC$$
 $\cos A + \cos B + \cos C = 1 + 4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$

$$\therefore x + y + z = 2R \left(1 + 4\sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2} \right)$$

$$= 2 \left(R + 4R\sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2} \right) \qquad \therefore \qquad r = 4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

$$\therefore x + y + z = 2(R + r)$$

Self Practice Problems

1. If I be the incentre of
$$\triangle ABC$$
, then prove that IA . IB . IC = abc $\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}$

Example: If x, y and z are respectively the distances of the vertices of the
$$\triangle ABC$$
 from its orthocentre, then prove that

(i) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$ (ii) $x y + z = 2(R + r)$

Solution.

(i) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$ (ii) $x y + z = 2(R + r)$

Solution.

(ii) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$ (iii) $x y + z = 2(R + r)$

Solution.

(i) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$ (ii) $x y + z = 2(R + r)$

Solution.

(ii) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$ (iii) $x y + z = 2(R + r)$

Solution.

(iii) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$ and $\frac{a}{x} + \frac{a}{y} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$ and $\frac{a}{x} + \frac{a}{y} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$

(iv) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$ (iii) $\frac{a}{x} + \frac{a}{y} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (iv) $\frac{a}{x} + \frac{a}{y} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (iv) $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ and $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (ii) $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ and $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (iii) $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ and $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (iii) $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ and $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (iii) $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (iv) $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (iv) $\frac{a}{x} + \frac{a}{y} + \frac{a}{z} = \frac{abc}{xyz}$ (iii) $\frac{a}{x} + \frac{a}{x} + \frac{a}{z} = \frac{abc}{xyz}$ (iv) $\frac{a}{x} + \frac{a}{x} + \frac{a}{x} = \frac{abc}{xyz}$ (iv) $\frac{a}{x} + \frac{a}{x} + \frac{a}{x} = \frac{abc}{xyz}$ (iv) $\frac{a}{x} + \frac{a}{x} + \frac{a}{x} = \frac{abc}{x} + \frac{a}{x} = \frac{abc}$

that
$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{4xyz}$$

13. Orthocentre and Pedal Triangle:

The triangle KLM which is formed by joining the feet of the altitudes is called the Pedal Triangle. (i) Its angles are π – 2A, π – 2B and $\dot{\pi}$ – 2C.

(ii) Its sides are a
$$cosA = R sin 2A$$
,
b $cosB = R sin 2B$ and
c $cosC = R sin 2C$

(iii) Circumradii of the triangles PBC, PCA, PAB and ABC are equal.

14. Excentral Triangle:

The triangle formed by joining the three excentres I_1 , I_2 and I_3 of Δ ABC is called

the excentral or excentric triangle. (i)
$$\Delta$$
 ABC is the pedal triangle of the Δ I₁ I₂I₃. (ii) Its angles are

$$\frac{\pi}{2} - \frac{A}{2}, \frac{\pi}{2} - \frac{B}{2} & \frac{\pi}{2} - \frac{C}{2}.$$

- Its sides are $4 R \cos \frac{A}{2}$ (iii) $4 R \cos \frac{B}{2} & 4 R \cos \frac{C}{2}$
- $II_{1} = 4R \sin \frac{A}{2};$ (iv) $II_2 = 4 R \sin \frac{B}{2}$; $II_3 = 4 R \sin \frac{C}{2}$.
- (v) orthocentre of the excentral $\Delta I_1 I_2 I_3$

15. Distance Between Special Points :

(i) Distance between circumcentre and orthocentre $OH^2 = R^2 (1 - 8 \cos A \cos B \cos C)$

(ii) Distance between circumcentre and incentre

$$OI^2 = R^2 \left(1 - 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right) = R^2 - 2Rr$$
 (iii) Distance between circumcentre and centroid

$$OG^2 = R^2 - \frac{1}{9}(a^2 + b^2 + c^2)$$

FREE Download Study Package from website: www.tekoclasses.com In I is the incentre and I_1 , I_2 , I_3 are the centres of escribed circles of the $\triangle ABC$, prove that (i) II_1 . II_2 . II_3 = $16R^2r$ (ii) $II_1^2 + I_2I_3^2 = II_2^2 + I_3I_1^2 = II_3^2 + I_1I_2^2$ Example:

Solution. We know that

$$II_1 = a \sec \frac{A}{2}$$
, $II_2 = b \sec \frac{B}{2}$ and $II_3 = c \sec \frac{C}{2}$

$$\therefore I_1I_2 = c. \csc \frac{C}{2}, I_2I_3 = a \csc \frac{A}{2} \text{ and } I_3I_1 = b \csc \frac{B}{2}$$

: II₁. II₂. II₃ = (2R sin A) (2R sin B) (2R sin C)
$$\sec \frac{A}{2} \sec \frac{B}{2} \sec \frac{C}{2}$$

$$=8R^3\cdot\frac{\left(2\sin\frac{A}{2}\cos\frac{A}{2}\right)\left(2\sin\frac{B}{2}\cos\frac{B}{2}\right)\left(2\sin\frac{C}{2}\cos\frac{C}{2}\right)}{\cos\frac{A}{2}\cdot\cos\frac{B}{2}\cdot\cos\frac{C}{2}}$$

$$= 64R^3 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \qquad \qquad : \qquad r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

$$: \qquad II_1 . II_2 . II_3 = 16R^2r \qquad \qquad \textbf{Hence Proved}$$

(ii)
$$II_{1}^{2} + I_{2}I_{3}^{2} = II_{2}^{2} + I_{3}I_{1}^{2} = II_{3}^{2} + I_{1}I_{2}^{2}$$

$$: II_{1}^{2} + I_{2}I_{3}^{2} = a^{2} \sec^{2} \frac{A}{2} + a^{2} \csc^{2} \frac{A}{2} = \frac{a^{2}}{\sin^{2} \frac{A}{2} \cos^{2} \frac{A}{2}}$$

$$a = 2 R \sin A = 4R \sin \frac{A}{2} \cos \frac{A}{2} \qquad \therefore \qquad II_{_{1}}^{^{2}} + I_{_{2}}I_{_{3}}^{^{2}} = \frac{16 R^{2} \sin^{2} \frac{A}{2} \cdot \cos^{2} \frac{A}{2}}{\sin^{2} \frac{A}{2} \cdot \cos^{2} \frac{A}{2}} = 16R^{2}$$
Similarly we can prove $II_{_{2}}^{^{2}} + I_{_{3}}I_{_{1}}^{^{2}} = II_{_{3}}^{^{2}} + I_{_{1}}I_{_{2}}^{^{2}} = 16R^{2}$
Hence $II_{_{1}}^{^{2}} + I_{_{3}}I_{_{2}}^{^{2}} = II_{_{3}}^{^{2}} + I_{_{1}}I_{_{2}}^{^{2}} = 16R^{2}$

Similarly we can prove $II_2^2 + I_3I_1^2 = II_2^2 + I_1I_2^2 = 16I_1^2 + I_2I_3^2 = II_2^2 + I_3I_1^3 = II_3^3 + I_1I_2^2$

Self Practice Problem:

In a $\triangle ABC$, if b = 2 cm, c = $\sqrt{3}$ cm and $\angle A = \frac{\pi}{6}$, then find distance between its circumcentre and 1. incentre.

Ans.
$$\sqrt{2-\sqrt{3}}$$
 cm