Assignment 3 Written Solution

Problem 1 | Problem 2

Problem 1:

First we note that $S = \{x \in \mathbb{Z} : (x > 10) \land (4 \mid x)\} = \{12, 16, 20, 24, 28, 32, ...\}$

To prove an infinite set S is countable, we need to prove that there is an enumeration consisting exactly of all elements of the set. Every position in the enumeration should correspond to a different element of the set and every element of the set should appear in it. Thus, we need to find a 1-1 correspondence between S and the set \mathbb{N}^+ = $\{1, 2, 3, 4, 5, ...\}$.

Part a: Consider the following enumeration of S: 12, 16, 20, 24, 28, 32, ...

This gives us a 1-1 correspondence between S and \mathbb{N}^+ (and the following two steps show that this it is a 1-1 correspondence):

Part b: Suppose $i \in \mathbb{N}^+$. Then the corresponding element of *S* that appears at position i is $4 \cdot (i + 2)$.

Note that since $i \in \mathbb{N}^+$, $4 \cdot (i + 2)$ will be a natural number greater than 10. Moreover, 4 divides $4 \cdot (i + 2)$, thus $4 \cdot (i + 2) \in S$.

Part c: Suppose $k \in S$. Then the position in the enumeration corresponding to k is (k/4) - 2.

Note that since $k \in S$, k is an integer greater than 10 and divisible by 4. This means $k = 4 \cdot n$ for some integer n and since k > 10, n > 2. Thus, (k/4) - 2 simplifies to an element of \mathbb{N}^+ .

Since we have given an enumeration of S and shown that it is a 1-1 correspondence between S and \mathbb{N}^+ , S is countable. \blacksquare

Problem 2:

Proof that $A\cap (B-C)=(A\cap B)-(A\cap C)$:

We will start with the right side.

	Justification
$(A\cap B)-(A\cap C)$	right side of equation
$=\{x:\ x\in (A\cap B)-(A\cap C)\}$	convert to set builder notation

$=\{x:x\in(A\cap B)\land x otin (A\cap C)\}$	definition of set difference
$=\{x:\ x\in (A\cap B)\wedge eg (x\in (A\cap C))\}$	definition of ∉
$=\{x:\ (x\in A\wedge x\in B)\wedge eg (x\in A\wedge x\in C))\}$	definition of intersection (∩)
$=\{x:\ (x\in A\wedge x\in B)\wedge (\lnot(x\in A)\lor\lnot(x\in C))\}$	DeMorgan's law
$=\{x:\ ((x\in A\wedge x\in B)\wedge \lnot (x\in A))\lor ((x\in A\wedge x\in B)\wedge \lnot (x\in C))\}$	distributive property
$=\{x:\ ((x\in B\wedge x\in A)\wedge \lnot (x\in A))\lor ((x\in A\wedge x\in B)\wedge \lnot (x\in C))\}$	commutative property
$=\{x:\ (x\in B\land (x\in A\land \lnot(x\in A)))\lor ((x\in A\land x\in B)\land \lnot(x\in C))\}$	associative property
$=\{x: (x\in B\wedge FALSE)ee((x\in A\wedge x\in B)\wedge eg(x\in C))\}$	complement property
$=\{x:FALSEee((x\in A\wedge x\in B)\wedge eg(x\in C))\}$	domination property
$=\{x: (x\in A\wedge x\in B)\wedge eg (x\in C)\}$	identity property
$=\{x:x\in A\wedge(x\in B\wedge\lnot(x\in C))\}$	associative property
$=\{x:\ x\in A\wedge (x\in B\wedge x otin C)\}$	definition of ∉
$=\{x:\ x\in A\wedge x\in (B-C)\}$	definition of set difference
$=\{x:\ x\in A\cap (B-C)\}$	definition of intersection (∩)
$=A\cap (B-C)$	convert from set builder notation

^{© 2020} Beck Hasti, hasti@cs.wisc.edu