Multi-output Classifier Chain applied to Cardiotocography Dataset

DS 397: Advanced Computational Methods in Data Science

Enrick Cavas Jose Aries De Los Santos Christian James Galotera Jayrah Bena Riñon

June 15, 2024

University of the Philippines Diliman

Presentation Outline

Exploratory Data Analysis

Dimensionality Reduction

Process Flow

Artificial Neural Network

Light Gradient Boosting Machine

Results and Discussion

Cardiotocography Dataset

Cardiotocography

Donated on 9/6/2010

The dataset consists of measurements of fetal heart rate (FHR) and uterine contraction (UC) features on cardiotocograms classified by expert obstetricians.

Dataset Characteristics

Multivariate

Feature Type

Real

Subject Area

Health and Medicine

Instances

2126

Associated Tasks

Classification

Features

21

21 Features of the Cardiotocography Dataset

- LB FHR baseline (beats per minute)
- AC of accelerations per second
- FM of fetal movements per second
- UC of uterine contractions per second
- DL of light decelerations per second
- DS of severe decelerations per second
- DP of prolongued decelerations per second
- ASTV percentage of time with abnormal short term variability
- MSTV mean value of short term variability
- ALTV percentage of time with abnormal long term variability

- MLTV mean value of long term variability
- Width width of FHR histogram
- Min minimum of FHR histogram
- Max Maximum of FHR histogram
- Nmax of histogram peaks
- Nzeros of histogram zeros
- Mode histogram mode
- Mean histogram mean
- Median histogram median
- Variance histogram variance
- Tendency histogram tendency

2 Targets of the Cardiotocography Dataset

CLASS - FHR pattern class code (1 to 10)

- √ calm sleep
- ✓ REM sleep
- √ calm vigilance
- √ active vigilance
- √ shift pattern (A or Susp with shifts)
- √ accelerative/decelerative pattern (stress situation)
- √ decelerative pattern (vagal stimulation)
- \checkmark largely decelerative pattern
- √ flat-sinusoidal pattern (pathological state)
- √ suspect pattern

NSP - fetal state class code

- ✓ N = normal
- \checkmark S = suspect
- \checkmark P = pathological

Dimensionality Reduction

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Kernel Principal Component Analysis (KPCA)

Model 1: Independent Classifier

13/27

Preprocessing step for Model 2 and 3

Model 2 : Chain Classifier using One-hot Encoded Initial Prediction

Model 3 : Chain Classifier using Prediction Probability of Initial Prediction

Artificial Neural Network with KPCA input layer Predict Normal, Suspect, Pathological

Artificial Neural Network Predict Normal, Suspect, Pathological

Artificial Neural Network Predict FHR Class Pattern

Artificial Neural Network with FHR Class Pattern as a Feature

Light Gradient Boosting Machine

Light Gradient Boosting Machine

Light Gradient Boosting Machine

N number of trees will be created, representing the number of classes in the y vector. These trees will be boosted multiple times as defined in the parameters

Specific steps taken

- Pipeline is created with a standard scaler and lightGBM.
- For the variable parameters (e.g. n_estimators, learning_ratg, num_leaves, max_depth, min_child_samples, etc.) pipeline was optimized using Optuna to get the best input parameters.
- To address class imbalance, the is_unbalance is set to True
- To ensure the model doesn't overfit, the following parameters were fixed:
 - boostin ='dart'
 - number_of boosting_round = 100
 - early stopping_round = 10

^{*} Same steps and parameters were applied both for FHR and NSP models

Results and Discussion

Performance Metrics by Model

Confusion Matrix

Feature Importance

Feature Importance

Simulations

https://colab.research.google.com/drive/
10IAjgEyDyylk7fmIsE6sPd9qNrEUXkaG?usp=sharing

THANK YOU VERY MUCH FOR LISTENING!