Telecom User Churn Prediction using ML

Introduction

The churn rate/customer churn, is the rate at which customers stop doing business with an entity.

The churn rate of a company is a reflection on the quality of the service the business is providing.

In order to optimize the company performance & revenue, a good churn predictive model is required.

Customer Churn Prediction Model

> Telecom industry churn data set is integrated with ML framework.

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	Phone Service	MultipleLines	InternetService	Online Security	 DeviceProtection
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	 No
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	 Yes
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	 No
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	 Yes
4	9237-HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	 No

➤ Writing an algorithm to award long run customers considering tenure.

Pipeline

- ➤ Pipeline is used to limit data pre-processing and fit-transform multiple times.
- Logistic Regression, XGBoost, ADBoost, Decision Tree, Random Forest and Support Vector machine are used.

Cross Validation

> To avoid overfitting we used stratified cross validation

Neural Networks and Confusion Matrix

- Keras Sequential Models are used with an epoch of 100
- We have used Adam to optimize learning rate

Model Testing & Accuracy

Model	Accuracy Score Obtained	Recall Score Obtained			
Decision tree	73.91%	82.24%			
Logistic Regression	82.1%	91.2%			
Random Forest	79.77%	91.5%			
XG Boost	82.51%	92.03%			
ADA Boost	82.01%	91.9%			
SVC	82.37%	91.45%			
XG Boost with Hyper Parameter Tuning	80.50%	92.03%			
Logistic Regression with Cross validation	82.50%	87.03%			
Ensemble Learning using Max Voting	82.23%	91%			
Neural Network Modeling	76%	87%			

Predicting tenure and awarding long run customers

➤ Linear Regression is used to predict the tenure with 85% accuracy.

➤ Based on tenure predicted discount is given.

If tenure is between 12 to 24 months we have given 10% and greater than 24 months we have given 15% discount.

