Unidad I

Representación de la Información

- 1. Sistemas de Numeración
- 2. Unidades de Información
- 3. Representación Digital de Datos

Sistemas de Numeración

Contando objetos con dígitos

- Nuestros dígitos habituales son 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Son diez dígitos
- Nuestra base habitual es 10
- El mecanismo para contar es completamente general: ↓

Contar en base 10

- **1**,
- **2**,
- **3**,
- **...**,
- 9 ¡Se agotó la secuencia!

Se agotó la secuencia 1 vez

- **1**0,
- **1**1,
- **1**2,
- **...**,
- 19;Otra vez!

Se agotó la secuencia dos veces

- ,
- ,
- ,
- **...**,

Se agotó la secuencia nueve veces

- ,
- ,
- ,
- **-** ...,

Sistema posicional

- Vamos asignando a cada objeto los dígitos disponibles en el sistema
- Al acabarse los dígitos, volvemos a 0
- Pero anotamos que se agotó la secuencia con un 1 a la izquierda

Sistema posicional

- Cada vez que se agota la secuencia incrementamos la posición de la izquierda
- Al agotarse la secuencia a la izquierda:
 - Usamos una posición más a la izquierda
 - y volvemos a empezar con 0 en todas las demás posiciones

El mecanismo no depende de cuál sea la base

Preguntas

- 1. ¿Cómo se escribe la base, en un sistema de base 10?
- 2. ¿Cómo se escribe **la base al cuadrado**, en un sistema de base 10?
- 3. ¿Y al cubo?
- 4. ¿Y a la cuarta?
- 5. ¿Y lo mismo, pero en otras bases?

¿Cómo contar en base 5?

- Tengo cinco dígitos
- Los dígitos son 0, 1, 2, 3, 4
- ¿Cómo se escriben los números en base 5?
- ¿Cómo se escribe 5 en base 5?

Contemos en base 5

- **1**,
- **2**,
- **...**,
- 4 ¡Se agotó la secuencia!

Se agotó la secuencia una vez

- 0,
- 1,
- 2,
- 3,
- 14 ¡Se agotó la secuencia!

Se agotó la secuencia dos veces

- ,
- ,
- ,
- ,

Se agotó la secuencia cuatro veces

- ,
- ,
- ,
- ,
- 4

¿Cuánto valen estos números en base 5?

- ,
- 01,
- 02,
- 03,
- 04

¿Y en base 2?

- Tengo dos dígitos
- Los dígitos son 0, 1
- ¿Cómo se escriben los números en base 2?
- ¿Cómo se escribe 2 en base 2?

¿Y en base 16?

- Tengo dieciséis dígitos
- Los dígitos son 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... A, B, C, D, E, F
- ¿Cómo se escribe 16 en base 16?

Especificando la base

- Para evitar ambigüedades especificamos la base en forma suscripta
 - "Los $101_{(10)}$ Dálmatas"
 - "Los $101_{(2)}$ Dálmatas"

¿Preguntas?

¡Preguntas!

- 1. Dado un sistema posicional de base b, ¿cómo se escribe b en ese sistema?
- $2.\ {\sf ZY}\ b+1?$
- 3. ¿Y b^2 ?
- 4. ¿Cómo se escribe 26 en base 5?
- 5. ¿Cómo se escribe 17 en base 16, en base 5, en base 2, en base 10?
- 6. ¿A qué número me refiero cuando escribo 101?

Expresión general

Todo número n se escribe en base b como

$$n = x_k * b^k + \ldots + x_2 * b^2 + x_1 * b^1 + x_0 * b^0$$
 Con $0 \leq x_i < b$

$$2016 = 2 * 1000 + 0 * 100 + 1 * 10 + 6 * 1$$

Conversión de base

- De decimal a base b
- De base b a decimal
- lacksquare De base b_1 a b_2

De decimal a base b

Convertir $61_{(10)}$ a base 3

Número	Número/3	Resto
61	20	1
20	6	2
6	2	0

$$61_{(10} = 2 * 3^3 + 0 * 3^2 + 2 * 3 + 1$$

 $61_{(10} = 2021_{(3)}$

De base b a decimal

$$2021_{(3} = ?$$

Aplicamos la Expresión general

$$2*3^3 + 0*3^2 + 2*3 + 1 = 61_{(10)}$$

¿Más preguntas?

Humor para nerds

Humor para nerds

¡Más preguntas!

- 1. Si contáramos en base 2 con los dedos (dedo estirado = 1, dedo recogido = 0), ¿hasta qué número podríamos contar con una mano? ¿Y con las dos?
- 2. ¿Cómo sería un sistema posicional en base 6 con ambas manos? La derecha contando las unidades y la izquierda las "seisenas"...
- 3. ¿Hasta cuánto podríamos contar con este sistema?

Y más preguntas

El número $28_{(x}$ está en una base desconocida. Esa base, ¿puede ser...

- **.**..2?
- **...8**?
- **...10?**
- **...**16?

Conversión de base b_1 a base b_2

- Caso general
 - ullet De base b_1 a decimal, y de decimal a base b_2
- Casos especiales
 - Binario (base 2) ⇔ hexadecimal (base 16)
 - Binario ⇔ octal (base 8)

Equivalencias

Decimal	Binario	Octal	Hexa
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Equivalencias

Decimal	Binario	Octal	Hexa
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Equivalencias

Decimal	Binario	Octal	Hexa
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

Binario a hexadecimal

- Cada cuatro dígitos binarios representan un dígito hexadecimal
 - Agrupo los dígitos binarios de a cuatro y reemplazo cada grupo por el dígito hexadecimal equivalente: $11100010_{(2}=E2_{(16}$
 - Si es necesario, para obtener grupos de cuatro dígitos, completo con ceros a la izquierda:

$$100010_{(2} = 00100010_{(2} = 22_{(16)}$$

Hexadecimal a binario: procedimiento inverso

Binario a octal

- Cada tres dígitos binarios representan un dígito octal
 - Agrupo los dígitos binarios de a tres y reemplazo cada grupo por el dígito octal equivalente:

$$100010_{(2} = 42_{(8)}$$

• Si es necesario, para obtener grupos de tres dígitos, completo con ceros a la izquierda:

$$1100010_{(2} = 001100010_{(2} = 142_{(8)})$$

Octal a binario: procedimiento inverso

Resumen conversión de base

- 1. Decimal a base b
 - División iterativa por la base (último cociente y restos)
- 2. Base b a decimal
 - Calcular la suma de potencias de la base
- 3. Binario ⇔ hexa
 - Agrupar los dígitos binarios de a 4
- 4. Binario ⇔ octal
 - Agrupar los dígitos binarios de a 3

Y más preguntas

1.
$$AF3_{(16} = X_{(10} = 2803_{(10)})$$

2.
$$AF3_{(16} = X_{(2)} = 101011110011_{(2)}$$

$$3.36_{(8} = X_{(10} = 30_{(10)}$$

4.
$$36_{(8} = X_{(2} = 0111110_{(2)}$$

5.
$$101001101_{(2} = X_{(8} = 515_{(8)})$$

6.
$$101001101_{(2} = X_{(10} = 333_{(10)})$$

7.
$$101001101_{(2} = X_{(16} = 14D_{(16)})$$