中国科学技术大学

2019—2020学年第二学期期末试卷

考试科目 时间序列分析 得分 _____

	所在系 姓名 学号
	考试时间: 2020年9月3日14:30—16:30
(34	分) 填空题(每题只有1空的每空3分,有两空的每空2分,答案请写在答题纸上):
1.	下面的过程,
	$X_t = \mu + \alpha \sum_{j < t} \varepsilon_j + \varepsilon_t, \epsilon \sim WN(0, \sigma^2)$
	是过程(hint: 填写ARIMA (p,d,q) , 确定 p,d,q).
2.	如下模型
	$(1-B)(1-B^4)(1-0.43B^4)Y_t = (1+0.22B)(1+0.88B^4)e_t$
	是一个周期为的季节模型, 记为
3.	设 Y_t 是个白噪声序列,模拟一条 $n=400$ 的 Y_t 序列.若我们进行研究其一阶协方 \dot{z}_1 的估计 $\dot{\gamma}_1$,则 $\dot{\gamma}_1$ 的95%的置信区间
4.	考虑如下的平稳过程, $EA = EB = EAB = 0$, $EA^2 = EB^2 = \sigma^2$,
	$X_t = A\cos(\omega t) + B\sin(\omega t), \omega \in [0, \pi]$
	证明基于 X_1, X_2, X_3 作最佳线性预测 $E[X_4 X_3, X_2, X_1] =$
5.	某一观测值序列最后4期的观测值为 $x_{t-3}=5$, $x_{t-2}=5.4$, $x_{t-1}=5.8$, $x_t=6.2$, 使用4期移动平均法预测 \hat{x}_{t+2}
6.	考虑ARCH(1)模型 $\epsilon_t = v_t \sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2}$, 其中 v_t 为高斯白噪声序列WN(0, 1)则 ϵ_t 的条件方差为
7.	$Y_t = \varphi_1 Y_{t-1} + \varphi_2 Y_{t-2} + \varepsilon_t$,已知 $\rho_1 = 0.4$, $\rho_2 = 0.2$,则 $\varphi_1 = $, $\varphi_2 = $
8.	零均值平稳列 X_t 满足称为非决定性序列, 非决定性序列平稳列满足称为纯非决定的.
9.	对于满足MA(q)模型
	$X_{4} = \mu + \epsilon_{4} - \theta_{1}\epsilon_{4} 1 - \cdots - \theta_{n}\epsilon_{4}$

的序列 $\{X_t, t = 0, \pm 1, \pm 2, \ldots\}$ 来说,已知 X_t, X_{t-1}, \ldots 时, X_{t+l} 的最佳线性预测 $\hat{X}_t(l)$ 为 $(0 < l \leq q)$ 的均方误差为______.

- **10.** 若 $\{X_t, t \in T\}$ 为白噪声序列,则协方差函数 $\gamma(s,t) = _____, t, s \in T, t \neq s.$
- 二. (12分) 考虑以ARMA(1,1)模型

$$(1 - 0.4B)X_t = (1 + 0.8B)\varepsilon_t, \quad \varepsilon_t \sim WN(0, \sigma^2),$$

计算 X_{t+k} 与 ε_t 的互相关系数函数 $\rho_{X,\varepsilon}(k)$. $(\rho_{X,\varepsilon}(k) = \frac{Cov(X_{t+k},\varepsilon_t)}{\sqrt{Var(X_{t+k})Var(\varepsilon_t)}})$

三. (20分) 设 $\{X_t, t = \pm 1, \pm 2, \ldots\}$ 是满足AR(2)模型

$$X_t = \frac{1}{9}X_{t-2} + \epsilon_t, \quad \epsilon_t \sim WN(0, \sigma^2)$$

的AR(2)序列. 求

- 1) 已知 X_t, X_{t-1}, \ldots 时, X_{t+l} 的最佳线性预测 $\hat{X}_t(l)$.
- 2) 试求1)中 $\hat{X}_t(l)$ 的均方误差 $E[e_t(l)^2]$, $l=1,2,\ldots$ (用 $\{X_t,t=\pm 1,\pm 2,\ldots\}$ 的自协方差函数表示.)
- (3)试求极限 $\lim_{l\to\infty} E[e_t(l)^2]$.
- 四. (18分) 设 Y_t 为t时段股票的收益, X_t 为这个时段的通货膨胀率, 假定GARCH-M模型为 $Y_t = 0.05 + 0.3X_t + 0.2h_t + \epsilon_t$, 其中 $\epsilon_t = v_t \sqrt{1 + 0.05\epsilon_{t-1}^2}$, $h_t = Var(\epsilon_t | \epsilon_{t-1}, ...)$ 和 v_t 为相互独立的N(0,1)随机变量. 求
 - (1) $E(Y_t|X_t=0.1,\epsilon_{t-1}=0.6)$ 为多少?
 - (2) $Var(Y_t|X_t = 0.1, \epsilon_{t-1} = 0.6)$ 为多少?
 - (3) Y_t 在给定 X_t 及 ϵ_{t-1} 下的分布是否为正态? 为什么?
- 五. (16分) 对于ARMA(1,1)模型

$$X_t = \phi_0 + \phi_1 X_{t-1} + \varepsilon_t - \theta_1 \varepsilon_{t-1}$$

- 1.试求模型的传递形式.
- 2.试求模型的逆转形式.
- 3.试求满足模型的ARMA(1,1)序列 $\{X_t, t = 0, \pm 1, \pm 2, \cdots\}$ 的均值和自协方差函数.