Informatique en PCSI et MPSI
Champollion 2013-2014
Méthodes d'Analyse Numérique
Implémentation et Application en Python
Équations différentielles ordinaires

A. HASSAN

19 février 2014

Résolution des équation différentielles ordinaires (EDO)

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Le Problème

Soit I un intervalle de \mathbb{R} , \mathcal{D} un ouvert de \mathbb{R}^n et f une fonction **connue** de $\mathbb{R}^n \times I \longrightarrow \mathbb{R}^n$. On cherche $y: I \to \mathbb{R}^n$ telle que

$$y'(t) = f(y(t);t) \text{ où } f(y(t);t) = \begin{bmatrix} f_1(y_1(t), \dots, y_n(t);t) \\ \vdots \\ f_n(y_1(t), \dots, y_n(t);t) \end{bmatrix} \text{ et } y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix}$$

Ce type d'équations s'appelle **Équation résolue en** y'.

Par contre sin(t.y' + cos(y' + y)) = t.y + y' n'est pas résolue en y'.

I.e. Impossible d'écrire y' = f(t, y) (avoir y' explicitement en fonction de t et y) **Ordinaire** : la dérivation est effectuée par rapport à t uniquement.

Équation aux dérivées partielles(EDP) :
$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}$$
, fonction inconnue

T(t, x, y) (Équation de la chaleur ou de la diffusion)

Le Problème (suite)

Problème de Cauchy (ou de la condition initiale):

Trouver
$$t \mapsto y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix}$$
 de $I \longrightarrow \mathbb{R}^n$ telle que

$$\begin{cases} y(t_0) = y_0 \\ y'(t) = f(y(t); t) \end{cases}$$

Problème des conditions aux limites

Cas où l'on dispose d'informations sur y à des valeurs différentes de t.

Conditions initiales

$$\begin{cases} y_1'(t) = -y_1(t) + y_2(t) + \sin(t) \\ y_2'(t) = 2y_1(t) - 3y_2(t) \\ (y_1(0); y_2(0)) = (0, 3) \end{cases}$$

Conditions aux limites

$$\begin{cases} y_1'(t) = -y_1(t) + y_2(t) + \sin(t) \\ y_2'(t) = 2y_1(t) - 3y_2(t) \\ (y_1(0); y_2(0)) = (0, 3) \end{cases} \begin{cases} y_1'(t) = -y_1(t) + y_2(t) + \sin(t) \\ y_2'(t) = 2y_1(t) - 3y_2(t) \\ y_1(0) = 2 \\ y_2(\frac{\pi}{4}) = -1 \end{cases}$$

Problème de Cauchy

Sauf quelques cas particuliers, il est presque impossible de trouver des solutions analytiques(i.e. se ramener à un calcul de primitives).

On cherche des solutions approchées, donc Résolutions numériques.

Principe : Si l'on connaît y à l'instant (abscisse) t, comment obtenir y à l'instant t+h, y(t+h), puis recommencer avec y(t+h)?

-

Choisir h assez petit et utiliser les Développements limités

$$y(t+h) = y(t) + hy'(t) + \frac{1}{2}h^2y''(t) + \dots + o(h^n) \xrightarrow{y'(t) = f(t,y(t))}$$
$$= y(t) + \Phi(t,h,f(y,t)) + o(h^n)$$

On cherche $\Phi(t,h,f(y,t))$ de telle sorte l'ordre de $o(h^n)$ soit le plus élevé possible (en minimisant le coût et la complexité des calculs).

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924) Implémentation en Python

Méthodes de résolution : Ordres 1 et 2

- Le **plus souvent** $h = (t_f t_0)/N$ où $[t_0; t_f]$ désigne l'intervalle de résolution et N le nombre de sous-intervalles.
- Sinon : On considère $T = \{t_0; t_1; \dots; t_{n-1}; t_n\}$ et $h_i = (t_{i+1} t_i)$

Ainsi y(t) est l'estimation courante en t et y(t+h) l'estimation au pas suivant

Pour $n = 1 \Rightarrow$ Méthode d'Euler (ou Runge Kutta d'ordre 1).

$$y(t+h) \approx y(t) + hf(t,y(t))$$

Pour $n = 2 \Rightarrow$ Méthode de Runge Kutta d'ordre 2.

$$K_1 = h.f(t, y(t))$$

 $K_2 = h.f(t + \frac{1}{2}h; \frac{1}{2}K_1 + y(t))$
 $y(t+h) \approx y(t) + K_2$

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2

Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Principe de la méthode :

Chercher une solution approchée de $\begin{cases} y' = f(t;y) \\ y_0 = y(t_0) \end{cases}$ sur l'intervalle $I = [t_0; t_f]$

pas d'intégration : $h = (\frac{t_f - t_0}{N})$ où

$$h = (t_{i+1} - t_i) \Rightarrow y(t_i + h) \approx y(t_i) + h_i \cdot f(y(t_i), t_i)$$

Géométriquement: Remplacer la courbe sur $[t_i; t_i + h]$ par la tangente. Si $M_n(t_n; y_n)$ est le point courant de la courbe "solution", le nouveau point : $M_{n+1}(t_n + h; y_n + hf(t_n, y_n))$.

Algorithme d'Euler (Runge Kutta d'ordre un)

```
Euler (f, y_0, t_0, t_f, N)
Entrées: f
                              fonction données
                  (t_0; y_0) point initial
                         t_f abscisse final
                         N nombre de points de [t_0; t_f]
Sorties: Ly liste des ordonnées y_k, k = 0; 1; \cdots; N
h \leftarrow \frac{(t_f - t_0)}{N}
L_y \leftarrow y_0, L_t \leftarrow t_0
pour k de 1 à N faire

\begin{vmatrix}
y_0 \leftarrow y_0 + h.f(t_0, y_0) \\
t_0 \leftarrow t_0 + h \\
L_y \leftarrow L_y, y_0; \\
L_t \leftarrow L_t, t_0
\end{vmatrix}

                                                                   # stocker les solutions
                                                                   # stocker les abscisses
retourner L_y et L_t
```

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Implémentation de l'algorithme d'Euler

- 1. On charge les modules numpy (ou scipy) pour les calculs numériques et matplotlib.pyplot (ou pylab) pour les graphiques.
- 2. La fonction $(y;t) \mapsto f(y;t)$ est définie au préalable.
- 3. On rappelle que $y_0 = y(t_0) \in \mathbb{R}^n$ éventuellement

```
1 import numpy as np
  import matplotlib.pyplot as mp
  ##
3
  def Euler(f, t0, y0, tf, N):
                           # definiton du pas fixe
      h = . . . . . . . . .
5
      # sinon h=t[i+1]-t[i]
      Ly, Lt = [...], [...] # stockage du point initial
7
      for k in ..... # A la limite Lt peut etre donne ailleurs
8
    prevoir que y0 peut etre vectoriel
          10
          t0+=......
11
12
13
      return array(Lt), array(Ly)
14
  ##
15
```

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Implémentation de la méthode d'Euler en Python

- On charge les modules numpy (ou scipy)pour les calculs numériques et matplotlib.pyplot (ou pylab) pour les graphiques
- La fonction $(y;t) \mapsto f(y;t)$ est définie au préalable.
- On rappelle que $y_0 = y(t_0) \in \mathbb{R}^n$ éventuellement

Version pédagogique

```
1 import numpy as np
  import matplotlib.pyplot as mp
  def Euler(f, t0, y0, tf, N):
      h=(tf-t0)/N
  # definition du pas fixe
      # sinon h=t[i+1]-t[i]
      Ly, Lt = [y0], [t0]
  # stockage du point initial
       for k in range(N):
  # A la limite Lt peut etre donne ailleurs
  # prevoir que y0 peut etre vectoriel
           y0=y0+h*np.array(f(t0,y0))
10
           t0+=h
11
           Ly.append(y0)
12
           Lt.append(t0)
13
       return np.array(Lt),np.array(Ly)
14
```

Version optimisée

```
1 import numpy as np
2 def euler(dXdt,X0,t):
      n=len(t)
      X=np.zeros((len(t),)+np.shape(X0))
      X[0]=X0
      for i in range(n-1):
          h=(t[i+1]-t[i])
          X[i+1]=X[i]+dXdt(X[i],t[i])*h
      return X
9
```

Runge Kutta d'ordre 4 (RK4)

Soit (t; y(t)) un point courant, y(t+h) est une estimation de la solution en t+h

Pour $n = 4 \Rightarrow$ Méthode ou Runge Kutta d'ordre 4.

$$K_{1} = h.f(y(t);t);$$

$$K_{2} = h.f(\frac{1}{2}K_{1} + y(t);t + \frac{1}{2}h)$$

$$K_{3} = h.f(y(t) + \frac{1}{2}K_{2};t + \frac{1}{2}h);$$

$$K_{4} = hf(y(t) + K_{3}:t + h)$$

$$y(t + h) \approx y(t) + \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4})$$

Il existe des méthodes à pas adaptatif (h n'est pas fixe).

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python Méthode de Runge-Kutta

d'ordre 4 en Python

Utilisation de la

commande odeint du module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Méthode de Runge-Kutta d'ordre 4 en Python

On charge au préalable le module numpy (ou scipy). La fonction f est pointée par dXdt .

```
1 import numpy as np
```

Voici un code de RK4:

```
def rk4(dXdt, X0, t):# Runge Kutta d'ordre 4
      Entrees:
                  : contient les points de la subdivision
          X 0
                  : les conditions initiales
                  : la fonction connue
          dXdt
      Sorties:
                  : Solutions approchees aux points de t """
8
      #import numpy as np
9
      n=len(t)
10
      X=np.zeros((len(t),)+np.shape(X0)) # on construit une matrice de 0
11
                                          # stocker les valeurs initiales
      X [0] = X0
12
      for i in range(n-1):
13
          k1=......
                                          \# k1 = f(y, t)
14
15
          h = . . . . . . . . . . . . . . . .
          k2=......
16
          k3=......
17
          k4=......
18
          X[i+1]=X[i]+... # on a deja divise h par 2
19
      return(X)
20
```

Méthode de Runge-Kutta d'ordre 4 en Python

On charge au préalable le module numpy (ou scipy)

```
1 import numpy as np
  Voici un code de RK4:
1 def rk4(dXdt, X0, t):# Runge Kutta d'ordre 4
       11 11 11
2
       Entrees:
3
                   : contient les points de la subdivision
           t
                   : les conditions initiales
           X 0
                   : la fonction connue
           dXdt
       Sorties:
7
                   : Solutions approchees aux points de t """
           Χ
      #import numpy as np
9
      n=len(t)
10
       X=np.zeros((len(t),)+np.shape(X0)) # on construit une matrice de 0
11
      X[0]=X0
                                             # stocker les valeurs initiales
12
      for i in range(n-1):
13
                                            # k1=f(y,t)
           k1=dXdt(X[i],t[i])
14
           h=(t[i+1]-t[i])/2
15
           k2=dX_dt(X[i]+h*k1,t[i]+h)
16
           k3=dX_dt(X[i]+h*k2,t[i]+h)
17
           k4=dX_dt(X[i]+2*h*k3,t[i]+2*h)
18
           X[i+1]=X[i]+h/3*(k1+2*k2+2*k3+k4)# on a deja divise h par 2
19
       return(X)
20
```

Utilisation de la commande odeint du module scipy.integrate

Le module scipy.integrate fournit la commande odeint qui est un "mix" de Runge Kutta d'ordre 4 avec des méthodes à pas adaptatif.

Syntaxe et utilisation :

- 1. chargement du module adéquat : from scipy.integrate import odeint
- 2. forme simplifiée :
 odeint(func,CondInit,t)
- 3. forme complète :

```
odeint(func, y0, t, args=(), Dfun=None,
col_deriv=0, full_output=0, ml=None,
rtol=None, atol=None, tcrit=None, h0=0.0,
hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0,
mxordn=12, mxords=5, printmessg=0)
```

Commande odeint (suite)

Forme simplifiée :

Ys=odeint(f, CondInit, t)

- 1. **f** pointe sur la fonction CONNUE f dans y'(t) = f(y(t), t). **Attention**: le premier argument de f est la fonction vectorielle inconnue y.
- 2. CondInit pointe sur le vecteur des conditions initiales

$$y(t_0) = \begin{bmatrix} y_1(t_0) \\ \vdots \\ y_n(t_0) \end{bmatrix}$$

3. It pointe sur les points définissant le découpage de l'intervalle de résolution $I = [t_0; t_0 + T]$

La solution Ys contient les valeurs des solutions approchées sur les différents points indiqués de *I*

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du module

scipy.integrate

Commande

(suite)

Exercice: L'équation de Van Der Pol (1924)

Exercice : L'équation de Van Der Pol (1924)

Il s'agit de l'équation différentielle

$$y'' + f(y^2 - 1)y' + y = 0 (f \ge 0)$$

Où $f.(y^2-1)$ représente un facteur d'amortissement non linéaire $(f \in \mathbb{R}_+)$.

- 1. Préciser à quoi correspond le cas f = 0? $f \neq 0$ et $a \neq 0$?.
- 2. Écrire l'équation de Van der Pol sous forme d'une équation vectorielle de premier ordre.
- 3. Montrer que 0 est le seul point d'équilibre et qu'il n'est pas stable.
- 4. Expliquer qualitativement le comportement lorsque $y \approx 0$ ou bien lorsque y croît.

Pour les simulations on prend

$$(y_0; y_0') \in \{r(\cos(\frac{k\pi}{5}); \sin(\frac{k\pi}{5})) : k \in [0, 9] \text{ et } r \in \{1; 3\}\}$$

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Implémentation en Python

Préambule

```
## modules a charger
from scipy import *
from matplotlib.pyplot import *
from scipy.integrate import odeint
```

Programmation du système correspondant à l'équation de Van Der Pol :

Simulation et utilisation de odeint :

```
1 t=linspace(....)
2 ci=[...,...]
3 Ys=odeint(..., ...., .....)
```

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Exploitation graphique

```
Réponses Temporelles Si Y(t) = \begin{vmatrix} y_1(t) \\ y_2(t) \end{vmatrix} solution de
```

Y' = f(Y, t). Les courbes temporelles correspondent aux courbes $(t; y_1(t))$ et $(t; y_2(t))$

Portraits de phase : Le portrait de phase correspond la trajectoire $M(t) = (y_1(t); y_2(t))$

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Implémentation en Python

Exploitation graphique

Exploitation graphique: Champs de vecteurs

On voudrait en chaque point M du plan faire apparaître un vecteur \vec{v} tangent à la courbe intégrale passant par ce point (i.e. \vec{v} colinéaire à (1; f(y, t)) dans notre cas)

```
1 ## Creation des champs de vecteurs
_{2} x=linspace(-4,4,20)
                             # subdiviser l'intervalle de x [-4;4]
                             # subdiviser l'intervalle de y [-4;4]
3 y=linspace(-4,4,20)
4 X1, Y1=meshgrid(x,y)
                             # grille de noeuds en x, y
5 dX,dY=VdPol([X1,Y1],0)
                             # generer les vecteurs tangents
6 M=hypot(dX,dY)
                             # normalisation
7 M\Gamma M = = 0 T = 1.
                             # Normes d'eventuels vecteurs nuls
8 dX /= M
                             # remplaces par 1 avant division
9 \text{ dY } /= M
10  quiver(Y1, X1, dY, dX, M)
                             # generation du champs de vecteurs
11 show()
12 ##
```

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Solution

```
1 ## Resolution de l'equation de Van der Pol y'' + f * (y^2 - 1)y' + y = 0
  def VdPol(y,t):#
       """ Attention d'abord y(t) puis t """
3
      f = 1
    v = y [0];
5
  vp=y[1];
6
      vpp=f*(1-v**2)*vp-v # y'' = -y + f(1-y^2)y'
7
      return array([vp,vpp])
8
9 ##
10 t=linspace (0, 20, 1000) # on simule sur 1000 points de T = [0; 20]
11 # genere des conditions initiales
12 ci=array([[0.5*cos(k*pi/5),0.5*sin(k*pi/5)] for k in range(10)])
ci2=array([[2.5*cos(k*pi/5),2.5*sin(k*pi/5)] for k in range(10)])
14 #
  for i in range(10):
15
      Ys=odeint(VdPol,ci[i],t)
16
      Yys=odeint(VdPol,ci2[i],t)
17
                             # recuperer les reponses temporelles
      Vp=Ys[:,1]; V=Ys[:,0]
18
                         # le portrait de phase (rouge)
      plot(Vp,V,'r')
19
      plot(Yys[:,1], Yys[:,0], 'g') # encore des portraits de phases
20
      plot(ci[:,0],ci[:,1],'o')
21
       plot(ci2[:,0],ci2[:,1],'ob')
22
title("Trajectoires_de_Van_der_Pol:__y'' + f(y^2 - 1)y' + y = 0")
24 xlabel("Apparition_du_cycle_limite"); grid()
25 savefig("G:\\Azzam\\MyPython\\TpChampollion\\VanDerPol.eps")
26 show()
```

Portrait de phase

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Solution(suite)

Réponses temporelles :

```
subplot(221)
plot(t,Vp); grid();
title("_évolution_de_y'(t)")
subplot(222)
plot(t,V); grid();
title("_évolution_de_y(t)")
subplot(212)
plot(Vp,V); grid();
title("_portrait_de_phase_correspondant")
show()
savefig("C://Users//David//Desktop//Info//Python//Cours//analysenum//RepTempo.eps")
```

A. Hassan@Champollion PCSI-MPSI – 22

Solution: Graphiques(suite)

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Solution: Champs de vecteurs

```
1 clf()
2 x=linspace(-4,4,30)
3 y=linspace(-4,4,30)
4 X1,Y1=meshgrid(x,y)
5 dX,dY=VdPol([X1,Y1],0)
6 M=hypot(dX,dY)
7 M[M==0]=1.0
8 dX /= M
9 dY /= M
10 #
11 quiver(Y1,X1,dY,dX,M)
12 show()
13 savefig("C://Users//David//Desktop//Info//Python//Cours//analysenum//ChampVdPol.eps")
```


Solution: Superposition Portrait de phase/ champs de vecteurs

Exemple: Le pendule simple (non amorti)

Soit une masse m suspendu à un point fixe par un fil non extensible de longueur ℓ . Les lois de la mécanique impliquent :

$$m\ell^2\theta'' = -mg\ell\sin(\theta) \iff \theta'' = -\frac{g}{l}\sin(\theta)$$

- 1. θ angle de l'écart avec la verticale en radians, $\theta'(t)$ (resp. $\theta''(t)$) vitesse (resp. accélération)angulaire
- 2. ℓ longueur en mètre.
- 3. g accélération de la pesanteur en m.s $^{-2}$
- 4. À l'instant t = 0, $\theta = \theta_0$ écart par rapport à la verticale et $\theta'_0 = 0$ (vitesse initiale nulle)

Question: Trouver la loi du mouvement $t \mapsto \theta(t)$?

Pas de solution exprimable à l'aide des fonction usuelles (composées de $\exp()$ et de $\ln()\dots)$, (on démontre même que cela est impossible).

Remarque : Résolution pour des "petits" θ :

$$\xrightarrow{\sin(\theta)\approx\theta} \theta(t) = \theta_0 \cos(\omega t) \text{ où } \omega = \sqrt{\frac{g}{\ell}}$$

Traitement

On cherche une fonction $y : \mathbb{R}_+ \longrightarrow I \times \mathbb{R}$ où $I = [-\pi; \pi]$ où

$$y = \begin{bmatrix} \theta \\ \theta' \end{bmatrix}$$
 où $\begin{cases} \theta \text{ position angulaire} \\ \theta' \text{ vitesse angulaire} \end{cases}$

$$y' = \begin{bmatrix} \theta' \\ \theta'' \end{bmatrix} = \begin{bmatrix} \frac{\theta'}{-\frac{g}{\ell}} \sin(\theta) \end{bmatrix} = \begin{bmatrix} \frac{y_2}{-\frac{g}{\ell}} \sin(y_1) \end{bmatrix}$$

Donc

$$f: I \times \mathbb{R} \longrightarrow \mathbb{R} \times \mathbb{R}$$

 $(x_1; x_2) \mapsto (x_2; -\frac{g}{\ell} \sin(x_1))$

L'équation devient (Problème de Cauchy) :

$$y' = f(y)$$
 avec $y(0) = \begin{bmatrix} \theta_0 \\ 0 \end{bmatrix}$

Équation différentielle **autonome**(stationnaire) : f ne dépend pas de t **explicitement**.

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Exemples : Résolution de y'' + y = 0 (petite oscillation du pendule)

On dispose d'une solution exacte de y'' + y = 0 (n'est-ce pas?) où (y(0); y'(0)) = (a, b): $y(t) = a\cos(t) + b\sin(t)$

```
1 ## Un exemple: y''+y=0
  def f(y,t):# definition de la fonction vectorielle
       """ y(1) = ypp,
           v(2) = vp """
      return(np.array([-y[1] , y[0] ]))
  t=np.linspace(0,30,1000) # découpage de l'intervalle [0,10] en 1000
9 # utilisation des méthodes d'Euler et RK4 programmées
10 # cond. init.(y'(0), y(0)) = (0, 1)
11 ci=np.array([0,1])
12 # solution par Euler
13 sol1=euler(f,ci,t)
14 # solution par RK4
15 sol2=rk4(f,ci,t)
16 # solution exacte de y''+y=0
17 solexact=np.cos(t)# y(t) = \cos(t)
# utilisation de la methode odeint de numpy.integrate
19 sol3=sint.odeint(f,ci,t)
20 #
```

```
1 # Exploitation graphique
2 py.subplot(211)
py.title("Comparaison: _Euler(rouge), _solution _exacte(noir) _de y'' + y = 0")
4 py.plot(t,sol1[:,1],color='red')
5 py.plot(t,solexact,color='black')
6 #
7 pv.subplot(212)
py.title("Comparaison: RK4(rouge), solution exacte de y'' + y = 0")
9 py.plot(t,sol2[:,1],color='red')
py.plot(t,solexact,color='black')
py.grid(True)
py.savefig("edo1.eps")# sauvegarder l'image dans un fichier, SI JE VEUX
13 py. subplot (111)
py.title("Comparaison:_numpy.odeint(rouge),_solution_exacte_de_y'' + y = 0")
py.plot(t,sol3[:,1],color='red')
py.plot(t,solexact,color='black')
17 py.grid(True)
18 py.savefig("edo2.eps")
```

A. Hassan@Champollion

Résultats graphiques

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Résultats graphiques

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

module

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Pendule simple : $y'' + \omega^2 \sin(y) = 0$

Cette fois on ne fait pas l'approximation $\sin(y) \approx y$. Pas de solution exacte simple, la comparaison avec la solution "petits angles" donne :

```
## Resolution de y''+sin(y)=0
def f(y,t):
    return(np.array([-np.sin(y[1]) , y[0] ]))
```


Résultats graphiques

Construction du portrait de phases

```
1 t = np.linspace(0,7,300)
2 #On stocke pour plusieurs cond init.
  courbes=[\
      ([0,1],t),\
  ([0,2],t),\
    ([0,4],t),\
      ([0,5],t)]
7
8
  for i in range(len(courbes)):
      sol=sint.odeint(f,courbes[i][0],courbes[i][1])
10
      py.plot(sol[:,0],sol[:,1])# portrait de phase
11
12 #dessin du champs de vecteurs
13 #creation d'une grille
14 x = np.linspace(-5, 5, 20)
15 y=np.linspace(-5,5,20)
16 X, Y=py.meshgrid(x,y)
17 #calcul des vecteurs du champ
18 DX, DY=f([X,Y],0)
19 #normalisation
20 N=py.hypot(DX,DY)
DX/=N; DY/=N
22 #dessin du champ le dernier paramètre permet\
23 #de coloriser en fonction de la norme
24 py.quiver(X,Y,DX,DY,N)
py.title("champs_et_portrait_de_phase_correspondant_a_y'' + y = 0")
26 py.grid()
py.savefig("phase1.eps")
```

Portrait de phase de y'' + y = 0: Visualisation

Portrait de phase de $y'' + \sin(y) = 0$: Visualisation

Attracteur de Lorenz(vers 1963)

Les équations de Lorentz, basées sur la mécanique des fluides (équations de Navier-Stokes), modélisent entre autre, l'évolution atmosphérique et expliquent (en partie= les difficultés à rencontrées lors des prévisions météorologiques :

$$x'(t) = \sigma(y(t) - x(t))$$

$$y'(t) = \varrho x(t) - y(t) - x(t)z(t)$$

$$z'(t) = x(t)y(t) - \beta z(t)$$

$$\sigma \approx 10, \quad \beta \approx 2.66 \quad \varrho \approx 30$$

Où σ : (dépend de la viscosité et la conductivité thermique)

x(t) : est proportionnel au taux de convection.

 $\begin{cases} y(t) \\ z(t) \end{cases}$: des gradients de températures horizontal et vertical

Résolutions des équations de Lorenz avec Python

```
1 import matplotlib.pyplot as mp
2 import numpy as np
3 from scipy.integrate import odeint
4 from mpl_toolkits.mplot3d import Axes3D # Module pour graphique 3D
  ## Attracteur de Lorentz
  sigma , rho , b = 10 ,30 ,2 # valeurs des parametres
7 fig =mp.figure()
  ax = fig.gca ( projection ='3d')
9 # v=[x,y,z] dans le modele de Lorenz
  def fLorenz(v , t ):
      return ([ sigma *(v[1]-v [0]), rho*v[0]-v [1]-v [0]*v [2] ,\
11
               v [0]* v [1] - b *v [2]])
12
  #
13
  def OrbiteLorenz ( ci,n,T):
      t = np.linspace (0, T, n + 1)
15
      for y0 in ci:
16
           values = odeint (fLorenz , y0 , t )
17
           ax.plot (values[:,0], values[:,1], values[:,2], label=str(y0))
18
  OrbiteLorenz ([[20 ,0 ,0] ,[10 ,0 ,0] ,[0.1 ,0 ,0]] ,1000 ,10)
  ax.legend ()
21 mp.savefig ("Lorenz.eps")
22 mp . show ()
```

Résolution des équation différentielles ordinaires (EDO)

Le Problème

Le Problème (suite)

Problème de Cauchy

Méthodes de résolution: Ordres 1 et 2 Méthode d'Euler ou RK1 (Runge-Kutta d'ordre 1)

Implémentation de l'algorithme d'Euler

Implémentation de la méthode d'Euler en Python

Runge Kutta d'ordre 4 (RK4)

Méthode de Runge-Kutta d'ordre 4 en Python

Méthode de Runge-Kutta d'ordre 4 en Python

Utilisation de la

commande odeint du

scipy.integrate

Commande

odeint (suite)

Exercice: L'équation de Van Der Pol (1924)

Impossible de prévoir à long terme l'état du système.

Le module NUMPY : quelques commandes

Vecteurs

Matrices

```
mat=[[a1,a2,..],[b1,b2,..]]
                                       # remplissage par lignes
     mat[i,j]
                                       \# m_{ii}
2
     mat.shape
                                       # renvoie le format de mat
                                       # extrait la ligne i de mat
    mat[i,:]
4
    mat[:,j]
                                       # extrait la colonne j de mat
5
     zeros([n,p]); zeros(n,p)
                                       # 0_{n\times p}
     m = eye(n,p)
                                       # m_{ii} = 1 si i = j, 0 sinon
7
                                       # matrice des uns (matrice d'Attila)
     ones([n,p])
     transpose (mat)
                                       # no comment
9
     reshape(mat,(m,q))
                                       # re-dimensionner : mat \in \mathcal{M}_{m \times a}(\mathbb{K})
10
                                       # transformer matrice en tableau
     asarray(mat)
11
     asmatrix(m)
                                       # transformer tableau -> matrice
12
                                       # det(mat) avec le module numpy.linalg
     det(mat)
13
                                       # mat^{-1} avec le module numpy.linalg
     inv(mat)
14
     eigvals(mat)
                                       # valeurs et vecteurs propres de mat avec le module nun
15
     eig(mat)
                                       # vecteurs propres avec le module numpy.linalg
16
```

Commandes NUMPY (suite)

Polynômes

```
P=poly1d([a,b,..]) # P(x) = ax^n + bx^{n-1} + \cdots
Pf=poly1d([a,b,..], True) # P_f(x) = (x-a)(x-b) + \cdots
P.order
P.roots; roots(P) # renvoie les racines complexes (approchees)
P.coeffs # renvoie les coefficients de P
P(x); polyval(P,x) # renvoie P(x) selon Horner
```

Opération sur les matrices (resp. vecteurs)

- 1. Combinaisons linéaires
- 2. Produit de matrices
- 3. inverse de matrices
- 4. Produit termes à termes
- 5. Produit tensoriel