Disciplina: Planejamento e Gestão de Projetos

Estimativa nos métodos ágeis

Planning Poker

Dificuldades em realizar estimativas

- Variação de habilidades entre os membros da equipe
- Complexidade técnica difícil de ser avaliada antes do desenvolvimento
- Interrupções que ocorrem de forma frequente

Planning poker

- É uma técnica de estimativa usada por equipes ágeis
- Chegar a um consenso sobre o esforço para desenvolvimento das tarefas
- É uma forma de estimar o trabalho de maneira colaborativa e transparente

Planning Poker

As cartas:

- Sequencia de Fibonacci: 1,2,3,5,8,13,.....
- Carta 0: isso já está pronto
- Carta ?: dúvida sobre o que fazer
- Carta café: vamos dar uma pausa

Planning Poker

Técnica de estimativa muito utilizada nos métodos ágeis

Todas pessoas do time de desenvolvimento participam da estimativa

- Visa o comprometimento dos membros da time
- Todos são responsáveis pela sua concretização da execução conforme a estimativa realizada

Deve haver um consenso

Evita/minimiza a influência de alguns membros do time

Planning Poker Como fazer?

1. Coloque o elemento (tarefa) a ser estimado no centro da mesa

- Um desenvolvedor deverá fazer uma breve explicação da funcionalidade.
- A equipe poderá fazer perguntas e discutir sobre a tarefa que será estimada: importante para esclarecer dúvida e diminuir o risco
- **2. Cada membro seleciona uma carta** com sua estimativa e deixa sobre a mesa virada para baixo. Todas viram a carta ao mesmo tempo.
- 3. Todas as cartas são virada para cima ao mesmo tempo
- Neste momento nenhum membro precisa argumentar a razão da sua escolha
- Raramente cartas iguais aparecem. Isso é normal!!!
- 4. Pessoas com as estimativas mais altas e mais baixas justificam as suas estimativas
- A grupo faz uma nova discussão sobre a tarefa a ser desenvolvida
 - → O processo se repete até que o consenso seja obtido.

Planning Poker

Exemplo

1

2

3

Velocidade do time

Velocidade:

É o número de story points que um time consegue implementar numa iteração

Tamanho das histórias

Story points:

Unidade (inteiro) para comparação do tamanho de histórias. Exemplo de escala: 1, 2, 3, 5, 8, 13

História	Story Points
Cadastrar usuário	8
Postar perguntas	5
Postar respostas	3
Tela de abertura	5
Gamificar perguntas e respostas	5
Pesquisar perguntas e respostas	8
Adicionar tags em perguntas e respostas	5
Comentar perguntas e respostas	3

Estimativa em Pontos X horas

Pontos: Identificar o tamanho da história e a velocidade da equipe.

Utilizado para estimar o Product Backlog

Horas: Identificar o tempo para execução das tarefas

Utilizado para estimar o Sprint Backlog

Ferramenta para realizar estimativas de forma on-line:

https://planningpokeronline.com/new-game/

Atividade – Definir tarefas do Sprint Backlog e Estimar com planning poker

Para definir o escopo da sprint baseado na estimativa

1º) Número usuários da equipe

3°) Número de dias da sprint

5 pessoas

2:30

5 pessoas X 2:30 = 12:30 por dia

3 dias

Total de horas =

Número usuários da equipe

Tempo por desenvolvedor

Número de dias da sprint

> **Total de horas** $= 3 \times 5 \times 2:30$ = 37h30

5 pessoas X 2:30 (por pessoa) X 3 dias = 37:30 total de trabalho

Número de horas da Sprint 3 dias de trabalho com time com 3 pessoas

Buffer de 20% (erro de estimativa)

Soma das
estimativas de todas
as tarefas do sprint
backlog

Número de pessoas	Número de horas por pessoa	Dias da sprint	Tempo total da Sprint	Buffer	Soma das estimativas da equipe
5	2:30	3	37:40	20%	30:00
4	2:30	3	30:00	20%	24:00
3	2:30	3	22:30	20%	18:00

Ferramenta para realizar estimativas de forma on-line:

https://planningpokeronline.com/new-game/

Create custom deck

Deck name

My custom deck

Deck values

0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,>=6

i Enter up to 3 characters per value, separated by commas.

Preview

This is a preview of how your deck will look.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5

>=6

Disciplina: Planejamento e Gestão de Projetos

Melhoria da qualidade e do processo de testes através de

BDD (Behavior Driven Development)

Execução da Sprint Planejamento da Sprint DESCRIÇÃO DAS **HISTÓRIA BDDs** ID **HORAS TEMPO TEMPO TEMPO TEMPO DIFERENÇA** TAREFA **TAREFAS HIST.** (Product **ESTIMADAS TESTES RETRAB** DESENVOL **TOTAL ESTIMATIVA** (Sprint Backlog) Backlog) (PO) ALHO VIMENTO (TOT) (TT) (TD) (TR) Como =TD+TT =TOT-TE Preciso +TR lPara 2 4 lComo 5 **IPreciso** 6 lPara **SOMA OMA SOMA SOMA** Cada história terá um conjunto de **Estimativas BDDs**

Gestão de projetos – 10 áreas

Integração:

Desenvolvimento do plano do projeto

Custos:

Estimativa de custo/orçamento do projeto

Comunicação:

Planejamento da distribuição de informação, análise de desempenho

Escopo:

Inicialização, planejar o que fazer, como fazer, porque fazer e pra quem

Qualidade:

Planejar a garantia e controle da qualidade

Risco:

Identificação do risco, quantificação e controle

Partes interessadas:

Identificação e controles dos interesses dos vários envolvidos no projeto

Tempo:

Definição e sequenciamento das atividades

Recursos Humanos:

Planejamento organizacional, montagem da equipe

Aquisições:

Planejamento de contratações, administração de contratos e fornecedores

Fluxo do SCRUM **Entregar software Objetivo da Sprint Funcionando** (Promessa) (Cumprimento da promessa) Reunião Revisão **Planejamento** Retrospectiva diária da Sprint da Sprint da Sprint 24 horas Sprint Visão **Produto** Backlog Backlog Sprint Produto 2-4 Semanas

Modelo em V

BDD (Behavior Driven Development ou Desenvolvimento guiado por comportamento)

Seu foco é **realizar testes** a partir de um **conjunto de cenários (exemplos)** que descrevem como a aplicação ou unidade de código deverá se comportar em determinada situação

Princípios:

- Tudo é comportamento
- Foco no valor de negócio
- Faça o suficiente (evitar detalhamento exagerado)

Para acompanhar e/ou consultar as minhas compras

Quais os possíveis cenários (comportamento) que poderá ocorrer?

- → Cenário 1) Um usuário válido pode acessar o sistema Ou
- → Cenário 2) Um usuário inválido não deve ter acesso e mostrar mensagem de erro
 Ou
- → Cenário 3) Um usuário suspeito deve ser bloqueado ao tentar acessar o sistema

Para acompanhar e/ou consultar as minhas compras

Cenário 1: Usuário tem acesso ao sistema

Dado

Quando

Então

<Um estado inicial conhecido
/ algum contexto inicial>

Eu sou um usuário tentando acessar o sistema

<Um determinado evento ocorre>

Informou um usuário existente
E
Informou uma senha válida

<O que deve ocorrer>

Registrar log de acesso
E
Direcionar para tela inicial do usuário

Para acompanhar e/ou consultar as minhas compras

Cenário 2: Usuário não tem acesso ao sistema

Dado

Quando

Então

<Um estado inicial conhecido
/ algum contexto inicial>

Eu sou um usuário tentando acessar o sistema

<Um determinado evento ocorre>

Informou um usuário não existente Ou Informou uma senha inválida <O que deve ocorrer>

Mostra mensagem ao usuário "Login ou senha inválidos"

Para acompanhar e/ou consultar as minhas compras

Dado

Quando

Então

<Um estado inicial conhecido
/ algum contexto inicial>

<Um determinado evento ocorre>

<O que deve ocorrer>

Eu sou um usuário tentando acessar o sistema Tentou acessar por mais de 3 vezes
Ou Informar caracteres que se caracterizem como tentativa de invasão

Bloquear usuário

BDD (Behavior Driven Development ou Desenvolvimento guiado por comportamento)

Cenários

Cada cenário descreve uma ação que será aferida e testada.

Devem conter **passos lógicos** e **simples** de como obter um resultado específico a partir de uma sequência de ações

- Cenário < descrição do teste>
- Dado <um estado conhecido>
- Quando <um determinado evento ocorre>
- Então <o que deve ocorrer>

Como <ator> professor Preciso <requisito/funcionalidade> realizar o fechamento do diário Para <finalidade> encerrar o semestre letivo

Cenário 1: Aluno reprovou por nota ou falta

- Dado <estado conhecido>: o aluno possui média inferior a 6,0
 OU a frequência é inferior a 75%
- Quando <um determinado evento ocorre>: ao fechar diário de classe
- Então <o que deve ocorrer>: atualiza reprovação do aluno na diário de classe

E atualiza nota do aluno do histórico escolar

E registra reprovação do aluno no histórico escolar

Cenário 2: Aluno foi aprovado na disciplina

- Dado <estado conhecido>: o aluno possui média igual ou superior a 6,0
 E a frequência é igual ou superior a 75%
- Quando <um determinado evento ocorre>: ao fechar diário de classe
- Então <o que deve ocorrer>: atualiza aprovação do aluno na diário de classe

E atualiza nota do aluno do histórico escolar

E registra aprovação do aluno no histórico escolar

Como cliente do e-commerce Preciso adicionar produtos ao carrinho de compras Para poder comprá-los

Cenário 1: Adição de Produtos (comportamento padrão)

- Dado: que um cliente está na página de um produto e deseja adicioná-lo ao carrinho de compras
- Quando: adicionar produto ao carrinho (clicar no botão "Adicionar ao Carrinho")
- Então:
 - O sistema deve adicionar o produto ao carrinho de compras
 - **E** apresentar o produto no carrinho com: foto pequena, nome do produto, quantidade, valor unitário e valor total
 - **E** somar o valor do item ao valor dos demais produtos do carrinho
 - E apresentar opção de continuar comprando ou finalizar pedido

Cenário 2: *Adição de Produtos em Promoções*

- Dado: que um cliente está na página de um produto que possui uma promoção ativa
- Quando: adicionar produto ao carrinho (clicar no botão "Adicionar ao Carrinho")
- Então:
 - Adicionar o produto ao carrinho de compras
 - **E** apresentar o produto no carrinho com: foto pequena, nome do produto, quantidade, valor unitário sem desconto, valor após desconto aplicado e valor total
 - **E** somar o valor do item ao valor dos demais produtos do carrinho
 - E apresentar opção de continuar comprando ou finalizar pedido

Como cliente do banco Preciso retirar dinheiro de um caixa eletrônico Para evitar filas no banco

Cenário 1: Conta está com crédito positivo

- Dado: a conta está com crédito para realizar saque
 E o cartão é válido
- **Quando**: o cliente requisita dinheiro
- Então: verifique que a conta foi debitada

E verifique que o dinheiro é entregue

E verifique que o cartão é devolvido

Cenário 2: Conta não possui crédito suficiente para saque ou está negativa

- Dado: a conta não possui crédito suficiente para saque ou está negativa
 E o cartão é válido
- Quando: o cliente requisita dinheiro
- Então: mostrar mensagem ao cliente

E o dinheiro não é entregue

E verifique que o cartão é devolvido

Como leitor do blog Preciso ser capaz de deixar comentários Para que eu possa participar da conversa sobre o tópico

Cenário 1: Adicionar comentário à postagem no blog

- **Dado**: Dado que estou lendo um post de blog individual E eu estou conectado
- Quando: eu deixar um comentário
- Então: ele deve ser imediatamente visível contra a postagem do blog

Cenário 2: Notificar o autor de que um comentário foi adicionado

- **Dado**: sou o autor de uma postagem no blog
- Quando: alguém deixa um comentário em um de meus posts
- Então: eu preciso receber notificação de que alguém comentou

Pontos importantes sobre o BDD

- Prática de colaboração entre o PO e o time, baseado na análise do comportamento do usuário ao usar o sistema
- Não deve ser desenvolvido sozinho (só a equipe ou só o PO)
- Utilizar linguagem de negócio
- Momento em que devemos construir os BDDs:
 - Na reunião de Sprint planning
- Momento em que devemos testar os BDDs:
 - O BDD deve ser utilizado para guiar do desenvolvimento da história, garantindo que todos os comportamentos desejados sejam atendidos
 - Realizar teste funcional completo após história estar totalmente concluída

Execução da Sprint Planejamento da Sprint DESCRIÇÃO DAS **HISTÓRIA BDDs** ID **HORAS TEMPO TEMPO TEMPO TEMPO DIFERENÇA** HIST. (Product TAREFA **TAREFAS ESTIMADAS TESTES RETRAB** DESENVOL **TOTAL ESTIMATIVA** (Sprint Backlog) Backlog) (PO) ALHO VIMENTO (TOT) (TT) (TD) (TR) Como =TD+TT =TOT-TE Preciso +TR lPara 2 4 lComo 5 **IPreciso** 6 lPara **SOMA OMA SOMA SOMA** Cada história terá **Estimativas** um conjunto de **BDDs**

Atividade – 1°. Fazer o Sprint Backlog, BDDs e organizar por ordem de execução das tarefas, para 2 histórias

Planejamento da Sprint

Estimativa do tempo de execução