Programming assignment

- 1. Write a Python program to list the integer solutions for
 - (a) $x_1 + x_2 + x_3 = 10$, where $0 \le x_i$ for $1 \le i \le 3$;
 - (b) $x_1 + x_2 + x_3 + x_4 = 4$, where $-2 \le x_i$ for $1 \le i \le 4$.
- 2. In Theorem 2.20 of the lectures, it is shown that the Stirling numbers of the second kind satisfy the recursion

$$S(m+1,n) = S(m,n-1) + nS(m,n)$$

for $1 < n \le m$ with the initial conditions S(m,1) = 1, S(m,m) = 1, for $m \ge 1$.

- (a) Write a Python program that calculates $\frac{1}{m+n}S(m,n)$, based on this recursion, for (reasonably large) positive integers m,n.
- (b) Use the program to calculate $\frac{1}{17}S(12,5)$ and $\frac{1}{21}S(13,8)$.

Your clearly listed outputs should also be included in your submission.

Your submission should be uploaded on the course Canvas site by November the 17th at the latest.