2024/128作点, $\frac{2027|120172}{6.(2).2}-\frac{1}{(12+1)(3^2+4)}$ $\frac{6.(2).2}{(12+1)(3^2+4)}$ (清色) (12) (12) (12) (13) f(3)在上半平南台首为 3= i 和 3=2i Res[f(8), 2i] = fin (3/1)(3/2i) = -1/3(: f(x) 为1827 $=\frac{1}{2}\int_{-10}^{+10}\frac{x}{(x^2+1)}\frac{x}{(x^2+1)}dx$ $=\frac{1}{2}\times 2\pi i \times (\frac{1}{2}(1-\frac{1}{2}(1))=\frac{1}{2}\pi i$ (3).全f(8)=32,满足条件 イ(a) 在上半年分号と対 3-ai, 为二代似に. Res[f(a), ai]=(im dy 3=:)=1 1>aid(3+ai)=40i $= 2\pi i \times \frac{1}{40i} = \frac{\pi}{20}$

(1)全十(2)= 22+48+20 (3-(41-21)(3-(-41-2)) D中平南南一个一阶段至3=-2+4i (d)eix, -2+41 [m (2πί×(j+4ί)e(-4-)ί) Im (2TTix(=++1)e-4 (Cos(-2)+15in (-2)) X

(1)(至f(2)= 3 = 3
$(3^{2}+b^{2})^{2}$ $(3+bi)^{2}(3-bi)^{2}$
-118) 左半至有一門板之了=bi Res [f(2)e108, 2i]
Res [f(z)eias, 2i]
$=2\pi i \times \lim_{3\to bi} \frac{d}{ds} \left(\frac{3e^{i\alpha s}}{3+bij^2}\right)$
3->6. 0(8 (3+51)2)
=) Trix lin ([+1/03)e103. (2+bi) - 3e103. 2(3+bi)
$= 2\pi i \times \lim_{3 \to bi} \frac{(+ ias)e^{ias} \cdot (3+bi)^{2} - 3e^{ias} \cdot 2(3+bi)}{3 \to bi} \cdot (3+bi)^{4}$
- >Tix ((1-ab) e-ab 2hie-ab
$= 2\pi i \times (\frac{(1-ab)e^{-ab}}{(2bi)^2} + \frac{2bie^{-ab}}{(2bi)^3})$
: [] = = 1 In [Ros[fible ias, 21]]
2 In Living 1 and 1
- tix ((-ah) 2bi 10-ab
$= \pi \times \left(\frac{(-ab)}{(2bi)^2} - \frac{2bi}{(2bi)^3} \right) e^{-ab}$
$\frac{-71}{4b} \times e^{-ab} = \frac{\alpha e^{-ab}}{4b} = \frac{\alpha}{4b} e^{-ab}$