Operating Systems Principles First Quiz, Section 1 Friday, September 22nd, 2017 Instructor: Ghassan Shobaki

Student Name:	Stude	nt Number:		_
Q1. Modern operating systems are writt for writing an operating system in a high				
Q2. In a time sharing OS, one proces Does the OS detect infinite loops?	s runs into an infinite loo	p. Answer tl	he following.	(12 points)
Does the OS terminate a process that ru	uns into an infinite loop?			
Will this cause other processes to hang'	? Why?			
Q3. Compare the monolithic and the loadable module OS structures by giving a <u>clear</u> advantage of each structure relative to the other. Explain each advantage in the provided space. (14 points) Advantage of monolithic relative to loadable modules				
Advantage of loadable modules relative	to monolithic			
Q4. The table below shows three events that may cause a transition in a process's state. For each event, the table shows the state transition that immediately follows the event and the queue in which the process gets placed after the transition. Fill in the missing entries in the table. If there is no queue, write none . (30 points)				
Causing Event	Transition		Queue after transition	
System call to read from keyboard	From State	To State	(if none, enter none)	-
System can to read from keyboard	Running	Ready		-
Scheduler dispatch	3	2 ,]

Q5. An OS running on a single CPU has the following two processes:

- P₁ consists of a 70-ms CPU burst followed by an I/O request followed by a 30-ms CPU burst
- P₂ consists of a 40-ms CPU burst followed by an I/O request followed by a 60-ms CPU burst Draw a complete timing diagram showing how a time-sharing operating system will handle these processes under the following assumptions:
- Both I/O requests go to the same device and each request takes 80 ms.
- The I/O device will start processing a queued request as soon as the current request is done (no delay).
- Whenever P₁ and P₂ are **both** ready, the scheduler will give the CPU to the process that did not get the last CPU time (fair alternation if **both** are ready). In the beginning, the CPU is given to P₁.
- The time quantum is 50 ms
- The kernel time (including initiation of I/O requests, scheduling and context switching) is 10 ms.
- The OS starts each I/O request right at the beginning of the kernel time.
- Ignore any delay or transition time that was ignored in class. (30 points) Show both the CPU and the I/O device in your diagram and make sure that you align the CPU time with the I/O time.