Table 2.1 Fourier-transform theorems

Property	Mathematical description	
1. Linearity	$ag_1(t) + bg_2(t) \rightleftharpoons aG_1(f) + bG_2(f)$ where a and b are constants	
2. Dilation	$g(at) \rightleftharpoons \frac{1}{ a }G\left(\frac{f}{a}\right)$ where a is a constant	
3. Duality	If $g(t) \rightleftharpoons G(f)$, then $G(t) \rightleftharpoons g(-f)$	
4. Time shifting	$g(t-t_0) \rightleftharpoons G(f)\exp(-j2\pi f t_0)$	
5. Frequency shifting	$g(t) \exp(-j2\pi f_0 t) \rightleftharpoons G(f - f_0)$	
6. Area under $g(t)$	$\int_{-\infty}^{\infty} g(t) \mathrm{d}t = G(0)$	
7. Area under $G(f)$	$g(0) = \int_{-\infty}^{\infty} G(f) \mathrm{d}f$	
8. Differentiation in the time domain	$\frac{\mathrm{d}}{\mathrm{d}t}g(t) \rightleftharpoons \mathrm{j}2\pi fG(f)$	
9. Integration in the time domain	$\int_{-\infty}^{t} g(\tau) d\tau \rightleftharpoons \frac{1}{j2\pi f} G(f) + \frac{G(0)}{2} \delta(f)$	
10. Conjugate functions	If $g(t) \rightleftharpoons G(f)$, then $g^*(t) \rightleftharpoons G^*(-f)$	
11. Multiplication in the time domain	$g_1(t)g_2(t) \rightleftharpoons \int_{-\infty}^{\infty} G_1(\lambda)G_2(f-\lambda)d\lambda$	
12. Convolution in the time domain	$\int_{-\infty}^{t} g_1(\tau) g_2(t-\tau) d\tau \rightleftharpoons G_1(f) G_2(f)$	
13. Correlation theorem	$\int_{-\infty}^{\infty} g_1(t)g_2^*(t-\tau) d\tau \rightleftharpoons G_1(f)G_2^*(f)$	
14. Rayleigh's energy theorem	$\int_{-\infty}^{\infty} g(t) ^2 dt = \int_{-\infty}^{\infty} G(f) ^2 df$	
15. Parseval's power theorem for periodic signal of period T_0	$\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} g(t) ^2 dt = \sum_{n=-\infty}^{\infty} G(f_n) ^2, f_n = n/T_0$	

Table 2.2 Fourier-transform pairs and commonly used time functions

Time function	Fourier transform	Definitions
1. $\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$	Unit step function:
$2. \operatorname{sinc}(2Wt)$	$\frac{1}{2W}\operatorname{rect}\left(\frac{f}{2Wf}\right)$	$u(t) = \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}$
3. $\exp(-at)u(t)$, $a > 0$	$\frac{1}{a+\mathrm{j}2\pi f}$	0, t < 0
4. $\exp(-a t), a > 0$	$\frac{2a}{a^2 + (2\pi f)^2}$	Dirac delta function: $\delta(t) = 0$ for $t \neq 0$ and
5. $\exp(-\pi t^2)$	$\exp(-\pi f^2)$	$\int_{-\infty}^{\infty} \delta(t) \mathrm{d}t = 1$
6. $\begin{cases} 1 - \frac{ t }{T}, & t < T \\ 0, & t \ge T \end{cases}$	$T \operatorname{sinc}^2(fT)$	Rectangular function: $rect(t) = \begin{cases} 1, & -\frac{1}{2} < t \le \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$
7. $\delta(t)$	1	0, otherwise
8. 1	$\delta(f)$	Signum function:
9. $\delta(t-t_0)$	$\exp(-\mathrm{j}2\pi f t_0)$	$\operatorname{sgn}(t) = \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$
$10. \exp(\mathrm{j}2\pi f_c t)$	$\delta(f-f_c)$	$\operatorname{sgn}(t) = \left\{ \begin{array}{ll} 0, & t = 0 \\ -1, & t < 0 \end{array} \right.$
11. $\cos(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$	Sinc function:
$12. \sin(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)-\delta(f+f_c)]$	$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$
13. sgn(<i>t</i>)	$\frac{1}{\mathrm{j}\pi f}$	Gaussian function: $g(t) = \exp(-\pi t^2)$
14. $\frac{1}{\pi t}$	−j sgn(f)	$g(t) = \exp(-\pi t)$
15. <i>u</i> (<i>t</i>)	$\frac{1}{2}\delta(f) + \frac{1}{\mathrm{j}2\pi f}$	
$16. \sum_{i=-\infty}^{\infty} \delta(t-iT_0)$	$f_0 \sum_{n=-\infty}^{\infty} \delta(f - nf_0), f_0 = \frac{1}{T_0}$	