Consider a machine with 64 MB physical memory and a 32 bit virtual address space. If the page size is 4 KB, what is the approximate size of the page table?

- 1. 16 MB
 - 2. 8 MB
 - 3. 2 MB
 - 4. 24 MB

Solution-

Given-

- Size of main memory = 64 MB
- Number of bits in virtual address space = 32 bits
- Page size = 4 KB

We will consider that the memory is byte addressable.

Number of Bits in Physical Address-

Size of main memory

- = 64 MB
- $= 2^{26} B$

Thus, Number of bits in physical address = 26 bits

Number of Frames in Main Memory-

Number of frames in main memory

- = Size of main memory / Frame size
- = 64 MB / 4 KB
- $= 2^{26} B / 2^{12} B$
- $=2^{14}$

Thus, Number of bits in frame number = 14 bits

Number of Bits in Page Offset-

Process Size-

Number of bits in virtual address space = 32 bits

Thus,

Process size

 $= 2^{32} B$

= 4 GB

Number of Entries in Page Table-

Number of pages the process is divided

- = Process size / Page size
- = 4 GB / 4 KB
- = 2²⁰ pages

Thus, Number of entries in page table = 2^{20} entries

Page Table Size-

Page table size

- = Number of entries in page table x Page table entry size
- = Number of entries in page table x Number of bits in frame number
- $= 2^{20} \times 14 \text{ bits}$
- = 2^{20} x 16 bits (Approximating 14 bits \approx 16 bits)
- $= 2^{20} \times 2 \text{ bytes}$
- = 2 MB

Thus, Option (C) is correct.