Probability and Statistics for JMC Solutions 2a — Probability

- 1. A string of 4 letters is generated at random. Let E_j denote the event that the j^{th} letter is L.
 - (a) Describe the following events in words?
 - i. $E_1 \cap E_2 \cap E_3 \cap E_4 = \text{the string is LLLL}$
 - ii. $E_1 \cup E_2 \cup E_3 \cup E_4$ = the string has at least one L
 - iii. $\overline{E_1} \cap \overline{E_2} \cap \overline{E_3} \cap \overline{E_4} =$ the string has no L's
 - iv. $E_3 \cap E_4$ = the last two letters are LL (i.e. the string is ??LL, where ? can be any letter)
 - v. $E_1 \cap \overline{E_2}$ = the first letter is L and the second letter is definitely not an L (i.e. L*??, where * is not an L and ? can be anything)
 - (b) Write these events in set notation
 - i. L appears at least 3 times = $(E_1 \cap E_2 \cap E_3) \cup (E_1 \cap E_2 \cap E_4) \cup (E_1 \cap E_3 \cap E_4) \cup (E_2 \cap E_3 \cap E_4)$
 - ii. L appears exactly once $= (E_1 \cap \overline{E_2} \cap \overline{E_3} \cap \overline{E_4}) \cup (\overline{E_1} \cap E_2 \cap \overline{E_3} \cap \overline{E_4}) \cup (\overline{E_1} \cap \overline{E_2} \cap \overline{E_3} \cap \overline{E_4}) \cup (\overline{E_1} \cap \overline{E_2} \cap \overline{E_3} \cap \overline{E_4})$
 - iii. We do not have two L's in a row = $\overline{(E_1 \cap E_2) \cup (E_2 \cap E_3) \cup (E_3 \cap E_4)}$
- 2. Let S be a set and \mathcal{L} be a set of σ -algebras on S. Define

$$\mathcal{E}^* = \{ A \subseteq S : A \in \mathcal{F} \text{ for all } \mathcal{F} \in \mathcal{L} \}.$$

Show that \mathcal{E}^* is a σ -algebra.

We need to show \mathcal{E}^* obeys the three properties that define a σ -algebra.

- (1) S is a member of every \mathcal{F} in \mathcal{L} since each \mathcal{F} is a σ -algebra. Therefore $S \in \mathcal{E}^*$.
- (2) Consider any $A \in \mathcal{E}^*$. By definition of \mathcal{E}^* , $A \in \mathcal{F}$ for every \mathcal{F} in \mathcal{L} . Then, since each \mathcal{F} is itself a σ -algebra on S, \overline{A} must be a member of each \mathcal{F} . Then, by definition of \mathcal{E}^* , $\overline{A} \in \mathcal{E}^*$.
- (3) Consider A_1, A_2, \ldots which are all elements of \mathcal{E}^* . Then A_1 must be an element of all the \mathcal{F} 's in \mathcal{L} , and similarly for A_2, A_3, \ldots . But since each \mathcal{F} is a σ -algebra that contains all the A_i 's, each \mathcal{F} must contain the union of the A_i 's. The union of the A_i 's is in every \mathcal{F} and therefore also in \mathcal{E}^* .

3. Let P be a probability measure, S be a sample space and A_1 , A_2 , A_3 be events (subsets of S). Show that

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2 \cup A_3) - P((A_1 \cap A_2) \cup (A_1 \cap A_3))$$

= $P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_2 \cap A_3)$
- $P(A_1 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$

Use the identity that $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ for any events E and F. Write $A_1 \cup A_3 \cup A_3$ as the union of two sets A_1 and $(A_2 \cup A_3)$ and then apply the above identity. Use the distributive property of set intersection in the $P(A_1 \cap (A_2 \cup A_3))$ term to get the first equality. Then use the identity again to expand out the $P(A_2 \cup A_3)$ and $P((A_1 \cap A_2) \cup (A_1 \cap A_3))$ terms to get the second equality.

4. Suppose two events E and F are mutually exclusive. State the precise conditions under which they may also be independent.

If E and F are mutually exclusive it means they cannot both simultaneously occur, i.e. there is no outcome in their intersection: $E \cap F = \emptyset$. That means that $P(E \cap F) = \emptyset$ $P(\emptyset) = 0$. Independence means that $P(E \cap F) = P(E)P(F)$. Therefore, it they are mutually exclusive and independent we have 0 = P(E)P(F), which implies that at least one of E or F has probability 0. In words, if two events are mutually exclusive and have non-zero probability of occurring, then they cannot be independent.

- 5. What is the probability that a single roll of a die will give an odd number if
 - (a) no other information is given;

$$P(odd) = P(\{1, 3, 5\}) = \frac{|\{1, 3, 5\}|}{|\{1, 2, 3, 4, 5, 6\}|} = \frac{1}{2}.$$

(b) you are told that the number is less than 4.

Two ways. With conditional probability arithmetic:

 $P(\text{odd} \mid \text{less than } 4) = P(\text{odd and less than } 4)/P(\text{less than } 4) = \frac{2/6}{3/6} = \frac{2}{3}$.

Restricting sample space to outcomes less than 4:
$$P(\text{odd} \mid \text{less than 4}) = \frac{|\{1,3\}|}{|\{1,2,3\}|} = \frac{2}{3}$$
.

(a) What's the probability of getting two sixes with two dice?

There are 36 possibilities only one of which is two sixes so answer is $\frac{1}{36}$. Or use independence of two rolls:

2

P(6 on first
$$\cap$$
 6 on second) = P(6 on first)P(6 on second) = $\left(\frac{1}{6}\right)\left(\frac{1}{6}\right) = \frac{1}{36}$.

(b) What's the probability of getting a total of 3 with two dice?

There are 2 out of the 36 outcomes where the total is 3: $\{(1,2),(2,1)\}$. So probability is $\frac{2}{36} = \frac{1}{18}$.

7. Two students try to solve a problem they've been set. Student A has a probability of $\frac{2}{5}$ of being able to solve the problem, and student B has a probability of $\frac{1}{3}$. If both try it independently, what is the probability that the problem is solved?

Two ways.

P(solved) = 1 - P(not solved) = 1 - P(not solved by A and not solved by B) = 1 - P(not solved by A)P(not solved by B) = 1 - $(1 - \frac{2}{5})(1 - \frac{1}{3}) = 1 - (\frac{3}{5})(\frac{2}{3}) = \frac{3}{5}$. Or use $P(E \cup F) = P(E) + P(F) - P(E \cap F)$. P(solved) = P(solved by A) = P(solved by B) = P(solved by A) + P(solved by B) - P(solved by A) and solved by B) = $\frac{2}{5} + \frac{1}{3} - (\frac{2}{5})(\frac{1}{3}) = \frac{6}{15} + \frac{5}{15} - \frac{2}{15} = \frac{3}{5}$.

8. A straight line AB of unit length is divided internally at a point X, where X is equally likely to be found anywhere along AB. What is the probability that $|AX||XB| < \frac{3}{16}$? (|AX| is the length of the line segment from A to the internal point X and similarly for |XB|.)

Call the length of the left piece x (and x is constrained to be between 0 and 1). Then |AX||XB| = x(1-x) and the inequality becomes $x(1-x) < \frac{3}{16}$. so the inequality is satisfied when $x < \frac{1}{4}$ or $x > \frac{3}{4}$. Using the classical interpretation of probability, the probability that the inequality is satisfied is the "size of the region where x satisfies the inequality" divided by "size of the sample space". That is $\frac{(\frac{1}{4}-0)+(1-\frac{3}{4})}{1}=\frac{1}{2}$. Or, since the two regions are mutually exclusive,

$$P(|AX||XB| < \frac{3}{16}) = P(x < \frac{1}{4}) + P(x > \frac{3}{4}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

9. A fair die is thrown repeatedly until a six is obtained. Let A_k be the event that the first six occurs on the k^{th} throw. Assume that

$$P(A_k) = \frac{1}{6} \left(\frac{5}{6}\right)^{k-1}$$
 $k = 1, 2, 3, \dots$

Let B be the event that an even number of throws are required to obtain a six. Find P(B).

The event B is the union of the even A_i 's: $B = A_2 \cup A_4 \cup A_6 \cup ...$ Note that the A_i 's are a collection of pairwise disjoint events: there is no way that the first six appears on the ith throw and that the first six also appears on the jth throw (for $i \neq j$). Therefore,

$$P(B) = P(A_2 \cup A_4 \cup A_6 \cup ...)$$

$$= P(A_2) + P(A_4) + P(A_6) + ...$$

$$= \frac{1}{6} \left(\frac{5}{6}\right) + \frac{1}{6} \left(\frac{5}{6}\right)^3 + \frac{1}{6} \left(\frac{5}{6}\right)^5 +$$

This is the sum of geometric series with first term $\frac{1}{6} \left(\frac{5}{6} \right)$ and ratio between terms of $\left(\frac{5}{6} \right)^2$ (which is less than 1 so the sum converges). The result is

$$P(B) = \frac{\frac{1}{6} \left(\frac{5}{6}\right)}{1 - \left(\frac{5}{6}\right)^2} = \frac{5}{11}.$$

python simulation:

import numpy as np
#call toss(1) to return the number of tosses until the first six appears
toss = lambda n: n if np.random.rand()<1/6 else toss(n+1)</pre>

#simulate

 $\label{eq:k} $$ k = np.array([toss(1) for i in range(100000)]) $$ (k%2 == 0).sum()/len(k) $$$

Output is 0.45576.