Discrete Random Variables

random variable each outcome in the Sample space of a random experiment is a real number

if symbolic (usually X).

- an actual outcome is then lower case (x = 4.2 kg)

discrete random variable: finite or countably-infinite vange of real numbers ex # of defective parts, transmitted bits, etc.

probability distribution: describes probabilities associated with possible values of X

often a list of possible outcomes and associated probabilities

ex: three cell phone cameras tested for
flash recharge time; it is known
that they pass 80% of the time.
write a probability distribution for three
·· write a probability distribution for three independent cameras passing failing
First: Letermine the sample space of the
experiment
let's let p: pass f: fail
PPP fff pfp etc 1 oil pass all fail
this is basically a factorial experiment w
2 ^k outcomes, where k=3 cameras
either pass or fail
$2^{3} = 8$
· let X represent the # of passing corneras

#\	#2	#3	X	P
?	P	P	3	0.8.08.08=0.512
P	7	+	2	0.8.0.8.0.2 -0.128
P	ŧ	P	2	0.128
P	f	f	1	0.032
-	P	P	2	0.128
, t	P	f		0.032
£	t	P	1	0.032
t	+ 1	f	0	0.008
			. 01/	

" next: associate these outcomes with values of X

· now we need probabilities associated if each outcome because they're independent, we use multiplication rule P {PPP} = 0.8 · 0.8 · 0.8 = 0.512 or 51.2%

Known: they pass 80% of the time

this is - finally ! -

7 3 pf p3 = 0.8 · 0.2 · 0.8 = 0.128

this is a probability distribution

note: these probabilities add up to 1 or 100%

probability mass function

1) f(xi) = p(X = xi)2.) $f(xi) \ge 0$ (xi) = 1 or 100%