Question 1

Part A

Part B

1. 250 Hz: ayar every 4 samples:
$$\frac{1}{4}$$
 = 250 Hz $\sqrt{}$

2. 333 Hz: cycle every 3 samples:
$$\frac{1 \text{ kHz}}{3} = 333 \text{ Hz} \text{ V}$$

3. 667 Hz: again every 3 samples:
$$\frac{1 \text{ kHz}}{3} = 333 \text{ Hz}$$

Question 2

(a)
$$T_S = \frac{1}{f_S}$$

= $\frac{1}{44. \text{kHz}}$
= $\frac{1}{22.7 \text{MS}}$

(b)
$$V_{rms} = \frac{2}{\sqrt{2}} \Pi Aft_{rms}$$

(c) trms
$$\leq \frac{\sqrt{2}}{\sqrt{1}f(2^{D}-1)}$$

$$2^{D}-1 \leq \sqrt{2}$$
TF trms

$$2^{p} \leq \frac{\sqrt{2}}{11 \text{ ft/ms}} + 1$$

$$z^{P} \leq \frac{\sqrt{2}}{\text{liftrms}} + 1$$

$$D \leq 6002 \left(\frac{\sqrt{2}}{\text{liftrms}} + 1 \right)$$

$$N$$
 $D \leq 6$ bits

question 3

(a)
$$\frac{50 \text{KHz}}{128} = \frac{391 \text{Hz}}{}$$

(b) Nyquist frequency is the nighest identifiable:

- (c) 1 sampling freq + = # FFT bins \rightarrow bin spacing increases. Bins get further apart: FFT freq. axis goe's from [0, fs) and it splits into N bins. $1\frac{fs}{N} = 1$ spacing
- (d) $461-441 \rightarrow 21$ Hz of distinguishability Bin spacing $< 5 \cdot 21 < 105$ Hz $f_S \le 128 (105) \le 18.44 \text{ kHz}$