

PRIMER PARCIAL

SERIES DE FOURIER										
TRIGONOMÉTRICA		EXPONENCIAL O COMPLEJA								
$f(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n sen(n\omega_0 t)]$		$f(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega}$	$C_n = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) e^{-jn\omega_0 t} dt$							
$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos(n\omega_0 t) dt$ a	$_{0} = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t)dt$	$ C_n = \sqrt{Re^2\{C_n\} + Im^2\{C_n\}}$								
$b_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \operatorname{sen}(n\omega_0 t) dt$	$\omega_0 = \frac{2\pi}{T}$	$\theta = \arctan \frac{Im\{C_n\}}{Re\{C_n\}}$								
TRANSFORMADA DE FOURIER										
DEFINICIÓN										
$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$		$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$								
PROPIEDADES $Si\ f(t) \leftrightarrow F(\omega)$										
LINEALIDAD		DESPLAZAMIENTO EN EL TIEMPO								
$\Rightarrow f_1(t) + f_2(t) \leftrightarrow F_1(\omega) + F_2(\omega)$		$\Rightarrow f(t \pm a) \leftrightarrow F(\omega)e^{\pm ja\omega}$, siendo $a \in \mathbb{R}$								
DIFERENCIACIÓN EN TIEMPO		ESCALAMIENTO								
$\Rightarrow \frac{d^n f(t)}{dt^n} \longleftrightarrow (j\omega)^n F(\omega)$		$\Rightarrow f(at) \leftrightarrow \frac{1}{ a }F(\omega)$, siendo $a \in \mathbb{R}$								
SIMETRIA			μ 							
SIMETRIA		DESPLAZA	AMIENTO EN FRECUENCIA							
$\Rightarrow F(t) \leftrightarrow 2\pi f(-a)$			1601							
-))		AMIENTO EN FRECUENCIA							
$\Rightarrow F(t) \leftrightarrow 2\pi f(-\alpha)$	CUENCIA	$\Rightarrow f(t)e^{\mp jat}$	AMIENTO EN FRECUENCIA $\leftrightarrow f(\omega \pm a)$, siendo $a \in \mathbb{R}$ MODULACIÓN							
$\Rightarrow F(t) \leftrightarrow 2\pi f(-\alpha)$ DIFERENCIACIÓN EN FREC	EUENCIA $F(\omega) \over \omega^n$	$\Rightarrow f(t)e^{\mp jat}$ $\Rightarrow f(t)\cos(\omega_0 t)$ $\Rightarrow f(t)\sin(\omega_0 t)$	AMIENTO EN FRECUENCIA $\leftrightarrow f(\omega \pm a), \text{ siendo } a \in \mathbb{R}$							
$\Rightarrow F(t) \leftrightarrow 2\pi f(-\alpha)$ DIFERENCIACIÓN EN FREC	CUENCIA $F(\omega)$ ω^n TABLAS DE TR	$\Rightarrow f(t)e^{\mp jat}$ $\Rightarrow f(t)\cos\left(\omega_{0}t\right)$ $\Rightarrow f(t)\sin\left(\omega_{0}t\right)$ ANSFORMADAS	AMIENTO EN FRECUENCIA $\leftrightarrow f(\omega \pm a), \text{ siendo } a \in \mathbb{R}$ $MODULACIÓN$ $\leftrightarrow \frac{1}{2}[F(\omega + \omega_0) + F(\omega - \omega_0)]$ $\leftrightarrow \frac{1}{2}[F(\omega + \omega_0) - F(\omega - \omega_0)]$							
$\Rightarrow F(t) \leftrightarrow 2\pi f(-a)$ DIFERENCIACIÓN EN FREC $\Rightarrow (-jt)^n f(t) \leftrightarrow \frac{d^n f}{d}$	CUENCIA $F(\omega) \over \omega^n$ TABLAS DE TR	$\Rightarrow f(t)e^{\mp jat}$ $\Rightarrow f(t)\cos\left(\omega_{0}t\right)$ $\Rightarrow f(t)\sin\left(\omega_{0}t\right)$ ANSFORMADAS $2\pi\delta(\omega)$	AMIENTO EN FRECUENCIA $\leftrightarrow f(\omega \pm a), \text{ siendo } a \in \mathbb{R}$ MODULACIÓN $\leftrightarrow \frac{1}{2}[F(\omega + \omega_0) + F(\omega - \omega_0)]$ $\leftrightarrow \frac{1}{2}[F(\omega + \omega_0) - F(\omega - \omega_0)]$ $e^{-at}u(t) \leftrightarrow \frac{1}{a+j\omega}, \text{ siendo } a > 0$							
$\Rightarrow F(t) \leftrightarrow 2\pi f(-a)$ DIFERENCIACIÓN EN FREC $\Rightarrow (-jt)^n f(t) \leftrightarrow \frac{d^n f(t)}{dt}$ $\delta(t) \leftrightarrow 1$	CUENCIA $F(\omega) \over \omega^n$ TABLAS DE TR	$\Rightarrow f(t)e^{\mp jat}$ $\Rightarrow f(t)\cos\left(\omega_{0}t\right)$ $\Rightarrow f(t)\sin\left(\omega_{0}t\right)$ ANSFORMADAS	AMIENTO EN FRECUENCIA $\leftrightarrow f(\omega \pm a), \text{ siendo } a \in \mathbb{R}$ $MODULACIÓN$ $\leftrightarrow \frac{1}{2}[F(\omega + \omega_0) + F(\omega - \omega_0)]$ $\leftrightarrow \frac{1}{2}[F(\omega + \omega_0) - F(\omega - \omega_0)]$							

		IDENTIDADES TR	IGONOM	ÉTRICAS			
sen(2A) = 2s	sen(A)Cos(A)	$sen(A \pm B) = sen(A)cos(B) \pm cos(A)sen(B)$					
$cos(2A) = cos^2$	$^{2}(A) - sen^{2}(A)$	$cos(A \pm B) = cos(A)cos(B) \mp sen(A) sen(B)$					
$sen^2(A) = \frac{1}{2}[$	$[1-\cos{(2A)}]$	$sen(A)sen(B) = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$					
$\cos^2(A) = \frac{1}{2}[$	$[1+\cos{(2A)}]$	cos	$cos(A)cos(B) = \frac{1}{2}[cos(A - B) + cos(A + B)]$				
$sen(A)cos(B) = \frac{1}{2}[sen(A - B) + sen(A + B)]$			$sen\left(\frac{\pi n}{k}\right)$ ó $cos\left(\frac{\pi n}{k}\right)$, $k>1$ oscila entre diversos valores.				
$cos(2\pi n) =$	$1, \ \forall n \in \mathbb{Z}$	$sen(\pi n) =$	$=0$, $\forall n \in \mathbb{Z}$		$\cos(\pi n) = (-1)^n, \ \forall n \in \mathbb{Z}$		
$e^{\pm jA} = \cos\left(A\right)$	$A) \pm jsen(A)$	$cos(A) = \frac{1}{2}$	$\frac{e^{jA} + e^{-jA}}{2}$		$\operatorname{sen}(A) = \frac{e^{jA} - e^{-jA}}{2j}$		
TABLA DE INTEGRALES							
$\int a dt = at$	$\int t^n dt = \frac{1}{n+1}$	t^{n+1} , siendo $n \neq 1$	-1	$\int \frac{dt}{t} =$	= ln t	$\int \ln(t) dt = t * \ln t - t$	
	$a = \frac{1}{a}e^{at}$	$\int sen(at)dt =$	$= -\frac{1}{a}\cos(at) \qquad \int \cos(at)dt = -\frac{1}{a}\sin(at)$				
$\int sen(at) sen(bt) dt = \frac{sen[(a-b)t]}{2(a-b)} - \frac{sen[(a+b)t]}{2(a+b)}$			$\int \cos(at)\cos(bt)dt = \frac{\sin[(a-b)t]}{2(a-b)} + \frac{\sin[(a+b)t]}{2(a+b)}$				
$\int sen(at)\cos(bt)dt = -\frac{\cos[(a-b)t]}{2(a-b)} - \frac{\cos[(a+b)t]}{2(a+b)}$			$\int (t \pm a)e^{bt}dt = \frac{1}{b}(t \pm a)\cos(bt) - \frac{1}{b^2}e^{bt}$				
$\int (t \pm a)\cos(bt) dt = \frac{1}{b}(t \pm a)sen(bt) + \frac{1}{b^2}\cos(bt)$			$\int (t \pm a) \operatorname{sen}(bt) dt = \frac{1}{b} (t \pm a) \cos(bt) - \frac{1}{b^2} \operatorname{sen}(bt)$				
$\int e^{at} sen(bt) dt = \frac{e^{at}}{a^2 + b^2} [a sen(bt) - b cos (bt)]$			$\int e^{at}\cos(bt)dt = \frac{e^{at}}{a^2 + b^2}[a\cos(bt) + b\sin(bt)]$				
	TRA	NSFORMADA DE FU	NCIONES	POLINOMIA	ALES		
DIRECTA			INVERSA				
 Se deriva n veces a f(t) hasta obtener solamente funciones impulso o derivadas de funciones Impulso. Se escribe anal í ticamente a esta n – ésima derivada. Se aplica el operador TRANSFORMADA. Se aplica la propiedad de DIFERENCIACIÓN EN TIEMPO, para despejar a F(ω). 		 Se deriva n veces a F(ω) hasta obtener solamente funciones impulso o derivadas de funciones Impulso. Se escribe anal í ticamente a esta n – ésima derivada. Se aplica el operador TRANSFORMADA INVERSA. Se aplica la propiedad de DIFERENCIACIÓN EN FRECUENCIA, para despejar a f(t). 					