

5. MAGNETOSTATICS

7e Applied EM by Ulaby and Ravaioli

Chapter 5 Overview

Chapter Contents

	Overview, 236
5-1	Magnetic Forces and Torques, 237
5-2	The Biot-Savart Law, 244
5-3	Maxwell's Magnetostatic Equations, 25
TB10	Electromagnets, 256
5-4	Vector Magnetic Potential, 259
5-5	Magnetic Properties of Materials, 260
5-6	Magnetic Boundary Conditions, 264
5-7	Inductance, 265
TB11	Inductive Sensors, 268
5-8	Magnetic Energy, 271
	Chapter 5 Summary, 272
	Problems, 274

Objectives

Upon learning the material presented in this chapter, you should be able to:

- Calculate the magnetic force on a current-carrying wire placed in a magnetic field and the torque exerted on a current loop.
- Apply the Biot-Savart law to calculate the magnetic field due to current distributions.
- Apply Ampère's law to configurations with appropriate symmetry.
- 4. Explain magnetic hysteresis in ferromagnetic materials.
- Calculate the inductance of a solenoid, a coaxial transmission line, or other configurations.
- Relate the magnetic energy stored in a region to the magnetic field distribution in that region.

Electric vs Magnetic Comparison

Table 5-1: Attributes of electrostatics and magnetostatics.

Attribute	Electrostatics	Magnetostatics
Sources	Stationary charges $\rho_{\rm v}$	Steady currents J
Fields and Fluxes	${f E}$ and ${f D}$	H and B
Constitutive parameter(s)	$arepsilon$ and σ	μ
Governing equations		
• Differential form	$\nabla \cdot \mathbf{D} = \rho_{\mathbf{v}}$	$\nabla \cdot \mathbf{B} = 0$
	$\nabla \times \mathbf{E} = 0$	$\nabla \times \mathbf{H} = \mathbf{J}$
• Integral form	$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$
	$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$	$\oint_C \mathbf{H} \cdot d\mathbf{l} = I$
Potential	Scalar V , with $\mathbf{E} = -\nabla V$	Vector A , with $\mathbf{B} = \nabla \times \mathbf{A}$
Energy density	$w_{\rm e} = \frac{1}{2} \varepsilon E^2$	$w_{\rm m} = \frac{1}{2}\mu H^2$
Force on charge q	$\mathbf{F}_{\mathbf{e}} = q\mathbf{E}$	$\mathbf{F}_{\mathbf{m}} = q\mathbf{u} \times \mathbf{B}$
Circuit element(s)	C and R	L

4

Note the sign of q

- Magnetic force $\mathbf{F}_{\mathrm{m}} = q\mathbf{u} \times \mathbf{B}$ (N)
- Electromagnetic (Lorentz) force Tesla(T)

$$\mathbf{F} = \mathbf{F}_{e} + \mathbf{F}_{m} = q\mathbf{E} + q\mathbf{u} \times \mathbf{B} = q(\mathbf{E} + \mathbf{u} \times \mathbf{B}).$$

• Three PMW differences between **F**_e and **F**_m

- Whereas the electric force is always in the direction of the electric field, the magnetic force is always perpendicular to the magnetic field.

 Perpendicular
- 2. Whereas the electric force acts on a charged particle whether or not it is moving, the magnetic force acts on it only when it is in motion.

 Moving
- 3. Whereas the electric force expends energy in displacing a charged particle, the magnetic force does no work when a particle is displaced.

(b)

Figure 5-1: The direction of the magnetic force exerted on a charged particle moving in a magnetic field is (a) perpendicular to both **B** and **u** and (b) depends on the charge polarity (positive or negative).

(a)

 $F_{\rm m} = quB \sin \theta$

(because $\mathbf{F}_{m} \perp \mathbf{u}$, only moving direction changes, not speed)

Magnetic Force on a Current Element

d is the displacement vector in the direction of current

Differential force $d\mathbf{F}_{m}$ on a differential current $Id\mathbf{l}$:

$$d\mathbf{F}_{\mathrm{m}} = \frac{dq}{dt}(\mathbf{u}d\mathbf{t}) \times \mathbf{B} = Id\mathbf{l} \times \mathbf{B} \text{ (N)}$$
 (5.9)

For a closed circuit of contour C carrying a current I, the total magnetic force is

$$\mathbf{F}_{\mathrm{m}} = I \oint_{C} d\mathbf{l} \times \mathbf{B} \qquad (\mathrm{N}). \qquad (5.10)$$

If the closed wire in Fig. 5-3(a) (see the right figure) is resides in a uniform B, then B can be taken outside the integral in Eq. (5.10), in which case

$$\mathbf{F}_{\mathrm{m}} = I\left(\oint_{C} d\mathbf{l}\right) \times \mathbf{B} = 0. \tag{5.11}$$

This result, which is a consequence of the fact that the vector sum of the infinitesimal vectors dl over a closed path equals zero, states that the total magnetic force on any closed current loop in a uniform magnetic field is zero.

Figur

deflec

magnt Figure 5-3 In a uniform magnetic field, (a) the net force on a closed current loop is zero because the integral of the displacement vector $d\mathbf{l}$ over a closed contour is zero, and (b) the force on a line segment is proportional to the vector between right V the end point ($\mathbf{F}_{\rm m} = I\boldsymbol{\ell} \times \mathbf{B}$).

ced in a rosses), ero, (b) d to the

Torque

$$\mathbf{T} = \mathbf{d} \times \mathbf{F} \qquad (\mathbf{N} \cdot \mathbf{m})$$

d = moment arm

 $\mathbf{F} = \text{force}$

T = torque

d connects the rotation axis and the application point of **F**

Figure 5-5: The force **F** acting on a circular disk that can pivot along the z-axis generates a torque $\mathbf{T} = \mathbf{d} \times \mathbf{F}$ that causes the disk to rotate.

These directions are governed by the following **right-hand rule:** when the thumb of the right hand points along the direction of the torque, the four fingers indicate the direction that the torque tries to rotate the body.

Magnetic Torque on a Current Loop

• When **B** is in the plane of the loop

a rectangular conducting loop carries a current *I*.

$$\mathbf{F}_1 = I(-\hat{\mathbf{y}}b) \times (\hat{\mathbf{x}}B_0) = \hat{\mathbf{z}}IbB_0,$$

$$\mathbf{F}_3 = I(\hat{\mathbf{y}}b) \times (\hat{\mathbf{x}}B_0) = -\hat{\mathbf{z}}IbB_0.$$

No forces on arms 2 and 4 (because I // B)

Magnetic torque:

$$\mathbf{T} = \mathbf{d}_1 \times \mathbf{F}_1 + \mathbf{d}_3 \times \mathbf{F}_3$$

$$= \left(-\hat{\mathbf{x}} \frac{a}{2}\right) \times \left(\hat{\mathbf{z}}IbB_0\right) + \left(\hat{\mathbf{x}} \frac{a}{2}\right) \times \left(-\hat{\mathbf{z}}IbB_0\right)$$

$$= \hat{\mathbf{y}}IabB_0 = \hat{\mathbf{y}}IAB_0,$$

Figure 5-6: Rectangular loop pivoted along the y-axis: (a) front view and (b) bottom view. The combination of forces \mathbf{F}_1 and \mathbf{F}_3 on the loop generates a torque that tends to rotate the loop in a clockwise direction as shown in (b).

Inclined Loop

- For a loop with N turns and whose surface normal is at angle ϑ (relative to the direction of B)
 - T: Maximum for parallel B ($\theta = 90^{\circ}$), Zero for perpendicular B ($\theta = 0$).

$$T = NIAB_0 \sin \theta. \tag{5.18}$$

The quantity NIA is called the *magnetic moment* m of the loop. Now, consider the vector

$$\mathbf{m} = \hat{\mathbf{n}} \, NIA = \hat{\mathbf{n}} \, m \qquad (A \cdot m^2), \qquad (5.19)$$

where $\hat{\mathbf{n}}$ is the surface normal of the loop and governed by the following right-hand rule: when the four fingers of the right hand advance in the direction of the current I, the direction of the thumb specifies the direction of $\hat{\mathbf{n}}$. In terms of \mathbf{m} , the torque vector \mathbf{T} can be written as

$$\mathbf{T} = \mathbf{m} \times \mathbf{B} \qquad (\mathbf{N} \cdot \mathbf{m}). \qquad (5.20)$$

Figure 5-7: Rectangular loop in a uniform magnetic field with flux density **B** whose direction is perpendicular to the rotation axis of the loop, but makes an angle θ with the loop's surface normal $\hat{\mathbf{n}}$.

Biot-Savart Law

Idl is known as "current element"

 $\widehat{\mathbf{R}}$ is from the current element to point P

• This law relates the magnetic field **H** at any point in space to the current *I* that generates **H**

- For most materials the flux and field are linearly related by $\mathbf{B} = \mu \mathbf{H}$
- Differential magnetic field dH generated by steady current I through differential length vector dl

$$d\mathbf{H} = \frac{I}{4\pi} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2}$$
 (A)

(A/m) ampere⋅m/m²

- \triangleright Magnitude: varies as R^{-2}
- \triangleright *Direction*: orthogonal to (*Id***l** \times **R**)

Figure 5-8: Magnetic field $d\mathbf{H}$ generated by a current element I $d\mathbf{l}$. The direction of the field induced at point P is opposite to that induced at point P'.

$$\mathbf{H} = \frac{I}{4\pi} \int_{l} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2} \qquad (A/m), \qquad (5.22)$$

9

Magnetic Field due to Distributed Current Densities

10

Currents (in A)

$$I = \int_{l} J_{s} \ dl \qquad I = \int_{S} \mathbf{J} \cdot d\mathbf{s}$$

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{s}$$

Current $I d\mathbf{l} \iff \mathbf{J}_{s} ds \iff \mathbf{J} dv$ Elements $(A/m) \cdot m^2$ $(A/m^2) \cdot m^3$ $(A) \cdot m$ $(in A \cdot m)$

$$\mathbf{H} = \frac{0}{4\pi} \int_{l} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2} \qquad (A/m), \qquad (5.22)$$

$$\mathbf{H} = \frac{1}{4\pi} \int_{S} \mathbf{J_s} \times \hat{\mathbf{R}} \frac{\hat{\mathbf{I}}}{R^2} ds \quad \text{(surface current)},$$

$$\mathbf{H} = \frac{1}{4\pi} \int_{\mathcal{V}} \mathbf{J} \times \hat{\mathbf{R}} \frac{\hat{\mathbf{Q}}}{R^2} d\mathcal{V} \quad \text{(volume current)}.$$

(b) Surface current density J_s in A/m

Step 1: determine the current element Idl, J_sds , or JdV

Step 2: determine the unit distance vector \hat{R}

Step 3: do the integral

Figure 5-9: (a) The total current crossing the cross section S of the cylinder is $I = \int_{S} \mathbf{J} \cdot d\mathbf{s}$. (b) The total current flowing across the surface of the conductor is $I = \int_I J_S dl$.

Example 5-2: Magnetic Field of Linear Conductor

11

Step 1: determine the current element Idl, J_sds , or JdV

Step 2: determine the unit distance vector \hat{R}

Step 3: express $Idl \times R$ in coordinates, then do the integral

Solution: From Fig. 5-10, the differential length vector $d\mathbf{l} = \hat{\mathbf{z}} dz$. Hence, $d\mathbf{l} \times \hat{\mathbf{R}} = dz \ (\hat{\mathbf{z}} \times \hat{\mathbf{R}}) = \hat{\boldsymbol{\phi}} \sin \theta \ dz$, where $\hat{\boldsymbol{\phi}}$ is the azimuth direction and θ is the angle between $d\mathbf{l}$ and $\hat{\mathbf{R}}$. Application of Eq. (5.22) gives

$$\mathbf{H} = \frac{I}{4\pi} \int_{z=-l/2}^{z=l/2} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2} = \hat{\mathbf{\phi}} \frac{I}{4\pi} \int_{-l/2}^{l/2} \frac{\sin \theta}{R^2} dz.$$
 (5.25)

Both R and θ are dependent on the integration variable z, but the radial distance r is not. For convenience, we will convert the integration variable from z to θ by using the transformations

$$R = r \csc \theta, \tag{5.26a}$$

$$z = -r \cot \theta, \tag{5.26b}$$

$$dz = r \csc^2 \theta \ d\theta. \tag{5.26c}$$

Figure 5-10: Linear conductor of length l carrying a current I. (a) The field $d\mathbf{H}$ at point P due to incremental current element $d\mathbf{l}$. (b) Limiting angles θ_1 and θ_2 , each measured between vector I $d\mathbf{l}$ and the vector connecting the end of the conductor associated with that angle to point P (Example 5-2).

Example 5-2: Magnetic Field of Linear Conductor (cont.)

$$\mathbf{H} = \hat{\mathbf{\Phi}} \frac{I}{4\pi} \int_{\theta_1}^{\theta_2} \frac{\sin \theta \ r \csc^2 \theta \ d\theta}{r^2 \csc^2 \theta}$$

$$= \hat{\mathbf{\Phi}} \frac{I}{4\pi r} \int_{0}^{\theta_2} \sin \theta \ d\theta$$

$$= \hat{\mathbf{\phi}} \frac{I}{4\pi r} (\cos \theta_1 - \cos \theta_2),$$

$$\cos \theta_1 = \frac{l/2}{\sqrt{r^2 + (l/2)^2}} \;,$$

$$\cos \theta_2 = -\cos \theta_1 = \frac{-l/2}{\sqrt{r^2 + (l/2)^2}}$$
.

(b)

Hence,

$$\mathbf{B} = \hat{\mathbf{\Phi}} \frac{\mu_0 I}{2\pi r} \qquad \text{(infinitely long wire)}. \tag{5.30}$$

▶ This is a very important and useful expression to keep in mind. It states that in the neighborhood of a linear conductor carrying a current I, the induced magnetic field forms concentric circles around the wire (**Fig. 5-11**), and its intensity is directly proportional to I and inversely proportional to the distance r. ◀

Example 5-3: Magnetic Field of a Loop

A circular loop of radius a carries a steady current I. Determine the magnetic field \mathbf{H} at a point on the axis of the loop, i.e. at (0, 0, z).

• Magnitude of dH due to current element Idl is

$$dH = \frac{I}{4\pi R^2} |d\mathbf{l} \times \hat{\mathbf{R}}| = \frac{I \ dl}{4\pi (a^2 + z^2)}$$

- $d\mathbf{H}$ is in the r–z plane, thereby components $d\mathbf{H}_{r}$ and $d\mathbf{H}_{z}$
- (1) dH_z due to dl and dl' add with each other
- (2) dH_r due to dl and dl' cancel with each other
- Hence only H_z exists for a pair of elements Idl and Idl, which is

$$d\mathbf{H} = \hat{\mathbf{z}} dH_z = \hat{\mathbf{z}} dH \cos \theta = \hat{\mathbf{z}} \frac{I \cos \theta}{4\pi (a^2 + z^2)} dl$$

Figure 5-12: Circular loop carrying a current *I* (Example 5-3).

Example 5-3: Magnetic Field of a Loop (cont.)

Total H-field due to the entire current loop

$$\mathbf{H} = \hat{\mathbf{z}} \frac{I \cos \theta}{4\pi (a^2 + z^2)} \oint dl = \hat{\mathbf{z}} \frac{I \cos \theta}{4\pi (a^2 + z^2)} (2\pi a). \quad (5.33)$$

Upon using the relation $\cos \theta = a/(a^2 + z^2)^{1/2}$, we obtain dH'_{θ}

$$\mathbf{H} = \hat{\mathbf{z}} \frac{Ia^2}{2(a^2 + z^2)^{3/2}}$$
 (A/m). (5.34)

At the center of the loop (z = 0), Eq. (5.34) reduces to

$$\mathbf{H} = \hat{\mathbf{z}} \frac{I}{2a} \qquad \text{(at } z = 0\text{)},$$

and at points very far away from the loop such that $z^2 \gg a^2$, Eq. (5.34) simplifies to

$$\mathbf{H} = \hat{\mathbf{z}} \frac{Ia^2}{2|z|^3} \qquad \text{(at } |z| \gg a\text{).}$$
 (5.36)

"igure 5-12: Circular loop carrying a current I (Example 5-3).

The axial H-field decay so fast with $|z|^3$ that your handphone has to be placed very close to the charging pad!

Magnetic Dipole

Figure 5-13: Patterns of (a) the electric field of an electric dipole, (b) the magnetic field of a magnetic dipole, and (c) the magnetic field of a bar magnet. Far away from the sources, the field patterns are similar in all three cases.

- Definition: <u>a small current loop</u>, regardless of its shape
- How small: the dimension of the loop is <u>much smaller</u> than the distance where you want to evaluate its field.
- Why dipole: because a loop exhibits a magnetic field pattern similar to the electric field of an electric dipole, it is called a magnetic dipole

Forces on Parallel Conductors

16

Two wires closely placed with each other

$$\mathbf{B}_1 = -\hat{\mathbf{x}} \, \frac{\mu_0 I_1}{2\pi d} \, . \tag{5.39}$$

The force \mathbf{F}_2 exerted on a length l of wire I_2 due to its presence in field \mathbf{B}_1 may be obtained by applying Eq. (5.12):

$$\mathbf{F}_{2} = \underline{I_{2}l\hat{\mathbf{z}}} \times \mathbf{B}_{1} = I_{2}l\hat{\mathbf{z}} \times (-\hat{\mathbf{x}}) \frac{\mu_{0}I_{1}}{2\pi d}$$
Current element × Field
$$= -\hat{\mathbf{y}} \frac{\mu_{0}I_{1}I_{2}l}{2\pi d}, \qquad (5.40)$$

and the corresponding force per unit length is

$$\mathbf{F}_2' = \frac{\mathbf{F}_2}{l} = -\hat{\mathbf{y}} \, \frac{\mu_0 I_1 I_2}{2\pi d} \,. \tag{5.41}$$

A similar analysis performed for the force per unit length exerted on the wire carrying I_1 leads to

$$\mathbf{F}_1' = \hat{\mathbf{y}} \, \frac{\mu_0 I_1 I_2}{2\pi d} \,. \tag{5.42}$$

- Separation *d*, *infinitely long*
- Currents I_1 and I_2 along z
- \mathbf{B}_1 at I_2 by $\mathbf{\hat{z}}I_1l$, \mathbf{B}_2 at I_1 by $\mathbf{\hat{z}}I_2l$.

Figure 5-14: Magnetic forces on parallel current-carrying conductors.

Parallel wires attract if their currents are in the same direction, and repel if currents are in opposite directions

Gauss's Law for Magnetism

Gauss's Law for Electricity

$$\nabla \cdot \mathbf{D} = \rho_{\mathbf{v}} \quad \longleftrightarrow \quad \oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q.$$

Electrostatics

Gauss's Law for Magnetism

$$\nabla \cdot \mathbf{B} = 0 \quad \longleftrightarrow \quad \oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0.$$

Zero at the right-hand side means that magnetic monopole (charge) does not exist in nature, but magnetic dipole exists.

Magnetostatics

Ampère's Law

$$\nabla \times \mathbf{E} = 0 \quad \Longleftrightarrow \quad \oint_{C} \mathbf{E} \cdot d\boldsymbol{\ell} = 0.$$

$$\nabla \times \mathbf{H} = \mathbf{J} \quad \Longleftrightarrow \quad \oint_{C} \mathbf{H} \cdot d\boldsymbol{\ell} = I$$

$$\text{Not Conservative}$$

$$\text{unless } I = 0$$
The sign convention for the direction of the contour path C in Ampere's law is taken so that

The sign convention for the direction of the contour path C in Ampere's law is taken so that I and H satisfy the <u>right-hand rule</u> defined earlier in connection with the Biot—Savart law. That is, if the direction of I is aligned with the direction of the thumb of the right hand, then the direction of the contour C should be chosen along that of the other four fingers.

Figure 5-16: Ampère's law states that the line integral of **H** around a closed contour C is equal to the current traversing the surface bounded by the contour. This is true for contours (a) and (b), but the line integral of **H** is zero for the contour in (c) because the current I (denoted by the symbol \odot) is not enclosed by the contour C.

(c)

Internal Magnetic Field of a Long Wire

(5.49a)

Current *I* along infinitely long wire. Find **H** at *r* from the wire for (a) $r \le a$ (inside the wire) and (b) $r \ge a$ (outside the wire)

(a) $r \leq a$

$$\oint_{C_1} \mathbf{H}_1 \cdot d\mathbf{l}_1 = I_1, \quad \oint_{C_1} \mathbf{H}_1 \cdot d\mathbf{l}_1 = \int_0^{2\pi} H_1(\hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}}) r_1 \ d\phi = 2\pi r_1 H_1$$

The current I_1 flowing through the area enclosed by C_1 is equal to the total current I multiplied by the ratio of the area enclosed by C_1 to the total cross-sectional area of the wire:

$$I_1 = \left(\frac{\pi r_1^2}{\pi a^2}\right) I = \left(\frac{r_1}{a}\right)^2 I.$$

Equating both sides of Eq. (5.48) and then solving for \mathbf{H}_1 yields

$$\mathbf{H}_1 = \hat{\mathbf{\phi}} H_1 = \hat{\mathbf{\phi}} \frac{r_1}{2\pi a^2} I$$
 (for $r_1 \le a$).

Contour C_2 for $r_2 \ge a$ Contour C_1 for $r_1 \leq a$ (a) Cylindrical wire (b) Wire cross section Cont.

External Magnetic Field of Long Conductor

(b) $r \ge a$

(b) For $r = r_2 \ge a$, we choose path C_2 , which encloses all the current I. Hence, $\mathbf{H}_2 = \hat{\mathbf{\phi}} H_2$, $d\boldsymbol{\ell}_2 = \hat{\mathbf{\phi}} r_2 d\phi$, and

$$\oint_{C_2} \mathbf{H}_2 \cdot d\mathbf{l}_2 = 2\pi r_2 H_2 = I,$$

$$H(a) = \frac{I}{2\pi a}$$

 $H(a) = \frac{I}{2\pi a}$ H_1 H_2

which yields

$$\mathbf{H}_2 = \hat{\mathbf{\phi}} H_2 = \hat{\mathbf{\phi}} \frac{I}{2\pi r_2}$$
 (for $r_2 \ge a$). (5.49b)

Magnetic Field of Toroid

Applying Ampere's law over contour C:

$$\oint_C \mathbf{H} \cdot d\boldsymbol{\ell} = I$$

Ampere's law states that the line integral of **H** around a closed contour C is equal to the current traversing the surface bounded by the contour.

$$\oint_C \mathbf{H} \cdot d\mathbf{l} = \int_0^{2\pi} (-\hat{\mathbf{\phi}}H) \cdot \hat{\mathbf{\phi}}r \ d\phi = -2\pi r H = -NI.$$

Hence, $H = NI/(2\pi r)$ and

$$\mathbf{H} = -\hat{\mathbf{\phi}}H = -\hat{\mathbf{\phi}}\frac{NI}{2\pi r} \qquad \text{(for } a < r < b\text{)}.$$

The magnetic field outside the toroid is zero. Why?

Figure 5-18: Toroidal coil with inner radius a and outer radius b. The wire loops usually are much more closely spaced than shown in the figure (Example 5-5).

Magnetic Boundary Conditions

By analogy, application of Gauss's law for magnetism, as expressed by Eq. (5.44), leads to the conclusion that

$$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0 \implies B_{1n} = B_{2n}. \tag{5.79}$$

Thus the normal component of **B** is continuous across the boundary between two adjacent media.

Boundary Conditions

$$\Delta h \rightarrow 0$$

$$\hat{\mathbf{n}}_2 \times (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{J}_s.$$

$$(\mathbf{H}_1 - \mathbf{H}_2) \cdot \hat{\boldsymbol{\ell}}_1 \ \Delta l = \mathbf{J}_s \cdot \hat{\mathbf{n}} \ \Delta l.$$

$$\hat{\boldsymbol{\ell}}_1 = \hat{\mathbf{n}} \times \hat{\mathbf{n}}_2$$

$$\hat{\mathbf{n}} \cdot [\hat{\mathbf{n}}_2 \times (\mathbf{H}_1 - \mathbf{H}_2)] = \mathbf{J}_s \cdot \hat{\mathbf{n}}$$

Surface currents can exist only on the surfaces of perfect conductors and superconductors. Hence, at the interface between media with finite conductivities, $J_s = 0$ and

$$H_{1t} = H_{2t}.$$
 (5.85)

Boundary Condition for Finite σ

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} = \sigma \vec{E} + \frac{\partial \vec{D}}{\partial t} \qquad \qquad \vec{J}_{S} = \int_{h_{1}}^{h_{2}} \vec{J}_{v} dh \approx \frac{\Delta h}{2} \vec{J}_{v}$$

$$\oint_{C} \vec{H} \cdot d\vec{l} = \sigma \oiint_{S} \vec{E} \cdot d\vec{s} + \frac{\partial}{\partial t} \oiint_{S} \vec{D} \cdot d\vec{s} \qquad \Delta h \to 0$$

$$\vec{J}_{S} = 0$$

$$\Delta h \to 0 \qquad \oint_{S} \vec{H} \cdot d\vec{l} = 0$$

Continuous

Solenoid

Inside the solenoid:

(a) Loosely wound solenoid

(b) Tightly wound solenoid

$$\mathbf{B} \simeq \hat{\mathbf{z}} \mu n I = \frac{\hat{\mathbf{z}} \mu N I}{l}$$
 (long solenoid with $l/a \gg 1$)

Inductance

Magnetic Flux

$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{s} \qquad (Wb).$$

Flux Linkage

$$\Lambda = N\Phi = \mu \; \frac{N^2}{l} IS \qquad \text{(Wb)}$$

Inductance

$$L = \frac{\Lambda}{I} = \frac{\Phi}{I} = \frac{1}{I} \int_{S} \mathbf{B} \cdot d\mathbf{s}.$$
 (5.96)

Solenoid

$$L = \mu \frac{N^2}{l} S \qquad \text{(solenoid)}, \qquad (5.95)$$

(a) Parallel-wire transmission line

(b) Coaxial transmission line

Figure 5-27: To compute the inductance per unit length of a two-conductor transmission line, we need to determine the magnetic flux through the area *S* between the conductors.

Example 5-7: Inductance of Coaxial Cable

The magnetic field in the region S between the two conductors is approximately

$$\mathbf{B} = \hat{\mathbf{\phi}} \; \frac{\mu I}{2\pi r}$$

Total magnetic flux through S:

$$\Phi = l \int_{a}^{b} B \, dr = l \int_{a}^{b} \frac{\mu I}{2\pi r} \, dr = \frac{\mu I l}{2\pi} \ln\left(\frac{b}{a}\right)$$

Inductance per unit length:

$$L' = \frac{L}{l} = \frac{\Phi}{lI} = \frac{\mu}{2\pi} \ln\left(\frac{b}{a}\right).$$

Figure 5-28: Cross-sectional view of coaxial transmission line (Example 5-7).

Magnetic Energy

Example 5-8: Magnetic Energy in a Coaxial Cable

Magnetic field in the insulating material is

$$H = \frac{B}{\mu} = \frac{I}{2\pi r}$$

The magnetic energy stored in the coaxial cable is

$$W_{\rm m} = \frac{1}{2} \int_{V} \mu H^2 \, dV = \frac{\mu I^2}{8\pi^2} \int_{V} \frac{1}{r^2} \, dV$$

$$w_{\rm m} = \frac{W_{\rm m}}{V} = \frac{1}{2}\mu H^2$$
 (J/m³).

$$W_{\rm m} = \frac{\mu I^2}{8\pi^2} \int_a^b \frac{1}{r^2} \cdot 2\pi r l \, dr$$
$$= \frac{\mu I^2 l}{4\pi} \ln \left(\frac{b}{a}\right)$$
$$= \frac{1}{2} L I^2 \qquad (J),$$

Summary

Chapter 5 Relationships

Maxwell's Magnetostatics Equations

Gauss's Law for Magnetism

$$\nabla \cdot \mathbf{B} = 0 \quad \Longleftrightarrow \quad \oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$$

Ampère's Law

$$\nabla \times \mathbf{H} = \mathbf{J} \quad \Longleftrightarrow \quad \oint_C \mathbf{H} \cdot d\boldsymbol{\ell} = I$$

Lorentz Force on Charge q

$$\mathbf{F} = q(\mathbf{E} + \mathbf{u} \times \mathbf{B})$$

Magnetic Force on Wire

$$\mathbf{F}_{\mathbf{m}} = I \oint_{C} d\mathbf{l} \times \mathbf{B} \qquad (N)$$

Magnetic Torque on Loop

$$\mathbf{T} = \mathbf{m} \times \mathbf{B}$$
 (N·m)
 $\mathbf{m} = \hat{\mathbf{n}} NIA$ (A·m²)

Biot-Savart Law

$$\mathbf{H} = \frac{I}{4\pi} \int \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2} \qquad (A/m)$$

Magnetic Field

Infinitely Long Wire
$$\mathbf{B} = \hat{\mathbf{\phi}} \frac{\mu_0 I}{2\pi r}$$
 (Wb/m²)

Circular Loop
$$\mathbf{H} = \hat{\mathbf{z}} \frac{Ia^2}{2(a^2 + z^2)^{3/2}}$$
 (A/m)

Solenoid
$$\mathbf{B} \simeq \hat{\mathbf{z}} \, \mu n I = \frac{\hat{\mathbf{z}} \, \mu N I}{l}$$
 (Wb/m²)

Vector Magnetic Potential

$$\mathbf{B} = \nabla \times \mathbf{A} \qquad (Wb/m^2)$$

Vector Poisson's Equation

$$\nabla^2 \mathbf{A} = -\mu \mathbf{J}$$

Inductance

$$L = \frac{\Lambda}{I} = \frac{\Phi}{I} = \frac{1}{I} \int_{S} \mathbf{B} \cdot d\mathbf{s}$$
 (H)

Magnetic Energy Density

$$w_{\rm m} = \frac{1}{2} \mu H^2 \qquad (J/\text{m}^3)$$