FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO F/G 9/5
THE USE OF A LOGARITHMIC AMPLIFIER IN DESIGNING AN ALTERNATE-PE--ETC(U)
AUG 77 L D VILESOV, E D LAPCHIK
FTD-ID(RS)T-1502-77 NL AD-A051 472 UNCLASSIFIED | OF | ADA 051472 END DATE FILMED 4 -78

FTD-ID(RS)T-1502-77

FOREIGN TECHNOLOGY DIVISION

THE USE OF A LOGARITHMIC AMPLIFIER IN DESIGNING AN ALTERNATE-PERIOD COMPENSATOR FOR PASSIVE JAMMING

by

L. D. Vilesov, E. D. Lapchik, et al.

Approved for public release; distribution unlimited.

EDITED TRANSLATION

FTD-ID(RS)T-1502-77

25 August 1977

FTD

MICROFICHE NR: 24D-77-C-00/102

THE USE OF A LOGARITHMIC AMPLIFIER IN DESIGNING AN ALTERNATE-PERIOD COMPENSATOR FOR PASSIVE **JAMMING**

By: L. D. Vilesov, E. D. Lapchik, et al.

English pages: 8

Trudy Leningradskiy Institut Aviatsionnogo Privorostroyeniya, Leningrad, No. 55, Source:

1958, PP. 208-212

Country of origin: USSR

Translated by: John A. Miller

Requester: FTD/ETWR

Approved for public release; distribution unlimited

AGGESSION IN

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD

ID(RS)T-1502-77

Date 25 Aug 19 77

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block Italic	Transliteration
Аа	A a	A, a	P p P p	R, r
Бб	B 8	B, b	C c C c	S, s
Вв	B .	V, v	Тт Т т	T, t
Гг	Γ:	G, g	уу у у	U, u
Дд	Д д	D, d	Ф ф	F, f
Еe	E .	Ye, ye; E, e*	X × X x	Kh, kh
ж ж	ж ж	Zh, zh	Цц Ц 4	Ts, ts
3 э	3 ;	Z, z	4 4 4 4	Ch, ch
Ии	Hu	I, i	ш ш ш	Sh, sh
Йй	Яü	У, у	Щщ Щ щ	Sheh, sheh
Н н	KK	K, k	ъъ 3 т	"
J n	ЛА	L, 1	ы ы	Ү, у
M M	Мм	M, m	b ь ь ь	•
Нн	H ×	N, n	Ээ 🧿 ,	E, e
0 0	0 0	0, 0	M H D	Yu, yu
Пп	Пп	P, p	Яя Яя	Ya, ya

^{*}ye initially, after vowels, and after ъ, ъ; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

GREEK ALPHABET

Alpha	Α	α	•	Nu	N	ν	
Beta	В	β		Xi	Ξ	ξ	
Gamma	Γ	Υ		Omicron	0	0	
Delta	Δ	8		Pi	П	π	
Epsilon	E	ε	•	Rho	P	ρ	•
Zeta	Z	ζ		Sigma	Σ	σ	5
Eta	Н	η		Tau	T	τ	
Theta	Θ	θ	\$	Upsilon	T	υ	
Iota	I	ι		Phi	Φ	φ	φ
Kappa	K	n	K	Chi	X	χ	
Lambda	٨	λ		Psi	Ψ	Ψ	
Mu	М	μ		Omega	Ω	ω	

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russ	sian	English
sin		sin
cos		cos
tg		tan
ctg		cot
sec		sec
cose	ec	csc
sh		sinh
ch		cosh
th		tanh
cth		coth
sch		sech
csch	ı	csch
arc	sin	sin ⁻¹
arc	cos	cos-1
arc	tg	tan-1
arc	ctg	cot-1
arc	sec	sec-1
arc	cosec	csc ⁻¹
arc	sh	sinh ⁻¹
arc	ch	cosh-1
arc	th	tanh-1
arc	cth	coth ⁻¹
arc	sch	sech-1
arc	csch	csch ⁻¹
	<u>—</u>	
rot		curl
lg		log

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

THE USE OF A LOGARITHMIC AMPLIFIER IN DESIGNING AN ALTERNATE-PERIOD COMPENSATOR FOR PASSIVE JAMMING

L. D. Vilesov, E. D. Lapchik, A. P. Lukoshkin, Yu. Ye. Monakhov, and A. A. Chude

ABSTRACT We examine the question of using a logarithmic receiver in designing alternate-period compensation of passive jamming. We give an estimate of the detection efficiency. END ABSTRACT

1. OPERATING PRINCIPLE

The use of alternate-period subtraction at the output of a linear receiver makes it possible to detect weak signals from moving targets against a background of passive jamming. As a rule, a

requirement for assuring a given dynamic range is imposed on such a system. One way of satisfying this requirement is to replace the linear receiver with a logarithmic one.

Figure 1 shows the block diagram of a system for compensating for passive jamming with external coherence. We know that the basic disadvantage of a system with external coherence is the loss of signal in the absence of a background of interference reflections. However, if passive jamming is of an extended nature and is uniform, the use of a logarithmic receiver makes it possible to eliminate this disadvantage. For this purpose, at the input of the log receiver is linear stage 1 whose gain is switched at the repetition rate. Switching of 1 leads only to a change of the constant component of the interference at the output of log receiver 2, and has no effect on dispersion at the output, since dispersion at the ouput of logarithmic transformation is constant. The low-frequency change of the constant component is suppressed by upper-frequency filter 3. Compensator 4 subtracts two voltages: the undelayed (at the output of 3) and that delayed by a period (at the output of 5). With total alternate-period (or cross-period) correlation of interferene it is suppressed. If there is no noise, the signal of the previous period is not equal to that of the next period, since unit 1 changes the receiver gain during the period. Therefore, at the output of 4 in this case as well there is separation of the signal.

2. BASIC STATISTICAL CHARACTERISTICS AT THE COMPENSATOR OUTPUT

The signal of reflection from local objects is represented in the form of narrow-band random processes. Then, with action of a signal against a background of interference, considering the internal receiver noise, the input voltage

$$\xi(t) = \xi_{\alpha}(t) + \xi_{\alpha}(t) + \xi_{\alpha}(t), \tag{1}$$

where $\xi_m(t)$ is the voltage of internal receiver noise: $\xi_m(t)$ is the voltage of passive jamming: $\xi_n(t)$ is the signal voltage. $\xi_m(t)$, $\xi_m(t)$ and $\xi_n(t)$ are distributed by the normal law with zero mean, while their envelopes - $R_m(t)$, $R_n(t)$ and $R_n(t)$ - are distributed by the Rayleigh law. It is necessary to find the probability density at the output of the compensator that makes the transformation:

$$x = a \ln bR(t_1) - a \ln bR(t_2), \tag{2}$$

where t_1 and t_2 - two moments of time separated by the repetition period:

a and b - constants of the logarithmic receiver.

The probability density at the output of (2) is

$$W'(x) = \frac{2(1-\rho^2)}{a} \frac{\exp\left[\frac{2}{a}\left(x - a \ln\frac{\sigma_1}{\sigma_2}\right)\right] \left[1 + \exp\left(\frac{2}{a}\left(x - a \ln\frac{\sigma_1}{\sigma_2}\right)\right)\right]}{\left\{\left[\exp\left[\frac{2}{a}\left(x - a \ln\frac{\sigma_1}{\sigma_2}\right)\right] + 1\right]^2 - 4P^2 \exp\left[\frac{2}{a}\left(x - a \ln\frac{\sigma_1}{\sigma_2}\right)\right]\right\}},$$
(3)

where p - envelope of the correlation coefficient $\xi(t_1)$ and $\xi(t_2)$;

 σ_1^2 and σ_2^2 - dispersions $\xi(t_1)$ and $\xi(t_2)$.

The envelope of the correlation coefficient $\xi'(t_1)$ and $\xi(t_2)$ with a signal on the background of interference, considering internal receiver noise for optimum speeds:

$$P = \frac{\left|P_{11} \frac{\sigma_{m1}}{\sigma_{m1}} \cdot \frac{\sigma_{m2}}{\sigma_{m2}} - P_{c} \frac{\sigma_{c1}}{\sigma_{m1}} \cdot \frac{\sigma_{c2}}{\sigma_{m2}}\right|}{\left[\left[1 + \left(\frac{\sigma_{m1}}{\sigma_{m1}}\right)^{2} + \left(\frac{\sigma_{c1}}{\sigma_{m1}}\right)^{2}\right] \cdot \left[1 + \left(\frac{\sigma_{c2}}{\sigma_{m2}}\right)^{2} + \left(\frac{\sigma_{c2}}{\sigma_{m2}}\right)^{2}\right]\right]^{1/2}},$$
(4)

where P_n - envelope of correlation coefficient $\xi_n(t)$:

P. - envelope of correlation coefficient &.(1).

For average speeds:

$$P = \frac{P_n \frac{\mathbf{c}_{n1}}{c_{n1}} \cdot \frac{\mathbf{c}_{n2}}{\mathbf{c}_{n1}} + P_s \frac{\mathbf{c}_{s1}}{\mathbf{c}_{n1}} \cdot \frac{\mathbf{c}_{s2}}{\mathbf{c}_{n2}}}{\left\{ \left[1 + \left(\frac{\mathbf{c}_{n1}}{\mathbf{c}_{n1}} \right)^2 + \left(\frac{\mathbf{c}_{s1}}{\mathbf{c}_{n2}} \right)^2 \right] \left[1 + \left(\frac{\mathbf{c}_{n2}}{\mathbf{c}_{n2}} \right)^2 \left(\frac{\mathbf{c}_{s2}}{\mathbf{c}_{n2}} \right)^2 \right] \right\}^{1/2}} . \tag{5}$$

When approximating $W\left(x\right)$ by the normal law, the formulas for F and D are simplified, and the detection equation has the form

$$D = 2 - \Phi\left\{\frac{c_0\Phi^{-1}[1 - 0.5F] + \beta}{s}\right\} - \Phi\left\{\frac{c_0\Phi^{-1}[1 - 0.5F] - \beta}{s}\right\},\tag{6}$$

where σ^2_0 - dispersion of x with no signal:

o? - dispersion of x with signal;

 β - increment of constant component at output of compensator, causing signal suppression:

$$\sigma_0^2 = \frac{2}{\pi} a^2 (1 - p_0^2), \tag{7}$$

$$e^2 = \frac{2}{\pi} a^2 (1 - p^2)$$
 (8)

$$\beta = 0.5a \left[\ln \frac{\sigma_{ax1}^2 + \sigma_{ax}^2 + \sigma_{ax}^2}{\sigma_{ax2}^2 + \sigma_{ax2}^2 + \sigma_{ax2}^2} - \ln \frac{\sigma_{ax1}^2 + \sigma_{ax}^2}{\sigma_{ax3}^2 + \sigma_{ax2}^2} \right]. \tag{9}$$

THE RESULTS OF THEORETICAL AND EXPERIMENTAL STUDIES

The detection efficiency was estimated for a noise-like pulsed

signal reflected from a moving target against a background of passive jamming, with consideration of internal receiver noise. The interperiod processing of the pulse train at the output of the compensator was done using a digital accumulator. Two adjacent pulses were considered to be uncorrelated, which is valid if we retune the frequency of the transmitter every two repetition periods.

The radiation pattern was approixmated by a rectangle. Calculations were performed for the following qualitative relationships:

signal/internal receiver noise ratio $\left(\frac{\sigma_s}{\sigma_{tot}}\right)^2 = 15 \text{ dB};$

signal correlation coefficient $P_s = 0.99$;

passive jamming correlation coefficient $P_{\rm m}$ = 0.99 and 0.97;

number of pulses in the sequence n = 32.

Figure 2 shows the theoretical characteristics of detection at the output of the discrete accumulator for optimum target speeds, where the phase of the signal changes by $(2n + 1)\pi$ with n = (0, 1, 2, ...). The probability of a false alarm is 10^{-2} . From the graphs we see that a signal can be detected with a probability D = 0.73 when

 $F=10^{-2}$ and $\left(\frac{G_0}{G_0}\right)^2=15$ dB. Experimental studies gave good confirmation of the theoretical results.

When designing the examined compensator it should be remembered that inaccuracy of the logarithmic characteristic of the amplifier should not exceed $10^{\circ}/_{\circ}$, while the signal delay time in the delay line should be matched with the period of the radiated signals.

CONCLUSIONS

- 1. The use of logarithmic amplifiers makes it possible to protect the passive jamming compensator from overloading. In this case its efficiency is insignificantly reduced. Detection is realized from the ratio $\left(\frac{\sigma_s}{\sigma_n}\right)^2 = -15 \, \mathrm{dB}$ when $F = 10^{-2}$.
- 2. The use of alternate-period keying of the gain in conjunction with a logarithmic amplifier makes it possible to eliminate signal dropout in systems with external coherence in the absence of reflections from local objects.

Fig. 1. Block diagram of the compensation system.

Fig. 2. Theoretical characteristics of detection.

£ig. 2.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1	1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
1	FTD-ID(RS)T-1502-77					
	THE USE OF A LOGARITHMIC AMPLIFIER IN DESIGNING AN ALTERNATE-PERIOD COMPENSATOR	5. TYPE OF REPORT & PERIOD COVERED Translation				
	FOR PASSIVE JAMMING	6. PERFORMING ORG. REPORT NUMBER				
	L. D. Vilesov, E. D. Lapchik, et al.	8. CONTRACT OR GRANT NUMBER(s)				
	9. PERFORMING ORGANIZATION NAME AND ADDRESS Foreign Technology Division Air Force Systems Command U. S. Air Force	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
	11. CONTROLLING OFFICE NAME AND ADDRESS	1958				
		13. NUMBER OF PAGES				
	14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)				
		UNCLASSIFIED				
1		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
	Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report)					
	18. SUPPLEMENTARY NOTES					
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)					
	20. ABSTRACT (Continue on reverse side if necessary and identify by block number)					
	09					

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION		MICROFICHE	ORGAN	MICROFICHE		
C043	DMATC DMAAC DIA/RDS-3C USAMIIA BALLISTIC RES LABS AIR MOBILITY R&D LAB/FIO	1 2 8 1 1	E053 E017 E404 E408 E410 E413	AEDC	1 1 1 1 1 2	
C535 C557 C591 C619 D008 H300 P005 P055	USAIIC FSTC MIA REDSTONE NISC USAICE (USAREUR)			CCN ETID NIA/PHS NICD	1 3 1 5	
NASA/		1				