Algèbre

Étienne Fouvry

6 février 2016

Première partie

Groupe, anneaux, idéaux, corps

I.1 Groupe

Définition 1 (Loi de composition interne). Est appelée loi de composition interne toute application φ :

$$\varphi: X \times X \quad \to \quad X$$
$$(x,y) \quad \mapsto \quad \varphi(x,y)$$

On insère souvent un symbole à la place de φ :

$$\varphi(x,y) = x * y \in X$$

L'addition usuelle est une loi de composition interne dans $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^k$. La composition (\circ) est une loi de composition interne sur $\mathcal{F}(E, E)$.

Soit $X = \mathcal{P}(E)$. L'union (\cup) , l'intersection (\cap) sont des lois de composition interne.

Le produit scalaire $a.b := \begin{cases} (\mathbb{K}^n)^2 \to \mathbb{K} \\ (a,b) \mapsto \sum_{i=0}^n a_i b_i \end{cases}$ n'est pas une loi de composition interne.

Définition 2 (Groupe). Soit G un ensemble muni d'une loi de composition interne *.

On dit que (G,*) est un groupe si :

- * admet un élément neutre
- * est associative
- Pour tout élément de G il en existe un inverse pour *.

 $(\mathbb{Z},+),(\mathbb{R},+),(\mathbb{Q},+),(\mathbb{C},+),(\mathbb{Q}^*,\times),(\mathbb{R}^*,\times),(\mathbb{C}^*,\times),(\{\pm 1\},\times)$ sont tous des groupes, mais (\mathbb{Z}^*,\times) n'en est pas un.

0 n'a jamais d'inverse.

 $(\mathcal{B}(E) = \{\text{bijections de } E\}, \circ) \text{ est un groupe.}$

 $(\mathbb{D}, +)$ est un groupe additif. $(\mathbb{D} \setminus \{0\}, \times)$ n'en est pas un.

Définition 3 (Commutativité). * sur X non vide est dite commutative si

$$\forall x, y \in X, x * y = y * x$$

Définition 4 (Groupe abélien). Un groupe (G, *) où * est commutative est dit groupe commutatif ou groupe abélien.

 $(\mathcal{GL}(\mathbb{R}^2), \circ)$ est non abélien.

Notation additive Lors qu'un groupe (E, +) est abélien, alors il est usuel de noter son élément neutre 0 et les inverses -x.

Définition 5 (Sous-groupe). Soit (G,*) un groupe, $H \subseteq G$, $H \neq \emptyset$. (H,*) est un sous-groupe de G si * est interne à H et (H,*) est un groupe.

 $(\mathbb{Z},+)$ est un sous-groupe $(\mathbb{C},+)$.

Caractérisation Soit (G, *) un groupe, $H \subseteq G$, $H \neq \emptyset$. Alors (H, *) est un sous-groupe si $\begin{cases} \forall x, y \in H, x * y \in H \\ \forall x \in H, x^{-1} \in H \end{cases}$ ou $\forall x, y \in H, xy^{-1} \in H$.

Proposition 1 (Unicité de l'élément neutre). Soit (G,*) un groupe. Alors il existe un unique élément neutre e.

Démonstration.

$$\forall x \in G : x * e = e * x = e' * x = x * e' = x$$

$$\begin{cases} xe &= xe' \\ ex &= e'x \end{cases} \iff x^{-1}xe = x^{-1}xe' \iff e = e'$$

Proposition 2 (Unicité de l'inverse). Soit (G,*) un groupe. Alors $\forall x \in G, \exists! x^{-1} : x * x^{-1} = x^{-1} * x = e$.

Définition 6 (Groupe produit). Soient (G, *), (G', *') deux groupes. Alors on définit le groupe produit par : $(G \times G', * \times *' = \square)$

I.1.1 Morphisme de groupes

Définition 7. Soient (G, *), (G', *') deux groupes.

On appelle morphisme de (G,*) dans (G',*') une application $\varphi:G\to G'$ telle que

$$\forall x,y \in G, \varphi(x*y) = \varphi(x)*'\varphi(y)$$

On a alors $\varphi(1_G) = 1_{G'}$ et $\varphi(x^{-1}) = \varphi(x)^{-1}$.

I.2 Anneaux

Définition 8 (Anneau). Soit A un ensemble non vide muni de deux lois de composition + et *.

On dit que (A, +, *) est un anneau si :

- -(A, +) est un groupe abélien
- * est associative
- * est distributive par rapport à +
- Il existe un élément neutre pour *

 $(\mathbb{Z}, +, \times), (\mathbb{R}, +, \times)$ sont des anneaux, $(\mathcal{M}_n, +, \times)$ aussi, mais non commutatif.

Définition 9 (Sous-anneau). Soit (A, +, *) un anneau.

On dit que (B, +, *) est un anneau si:

- $-\emptyset \neq B \subseteq A$
- (B,+) est un sous-groupe additif
- B est laissé stable par *
- $-e_A \in B$

Définition 10 (Corps). Un anneau (A, +, *) est un corps si :

- --#A > 2
- $\quad \forall x \in A \setminus \{0_+\}, \exists x^{-1} \ pour *$

Définition 11 (Intégrité). Un anneau (A, +, *) est intègre si $x * y = 0 \iff x = 0 \lor y = 0$.