Roll Number_	

Thapar Institute of Engineering and Technology, Patiala

Department of Computer Science and Engineering

EST

B.E. (Third Year), Semester: VI

Date: 28-05-2022

Time: 2 hr

Couse Name (Code): Predictive Analytics using Statistics (UCS654)

Max Marks: 35

Course Instructor(s): Dr. Prashant Singh Rana, Dr. Suresh Chandra Raikwar

Note: Attempt all questions. Answer must be in brief and make suitable assumption (if any). No marks for incorrect/steps calculations and formula writing.

Q1(a)	Consider a d	istribution	with a para	meter θ. A	Assume θ ₁ is	s an unbias	ed estimate	of θ. Prove	[4]
	that $\widehat{\theta_2}$ [def								
Q1(b)	Assume X_1 , from a distri $P_{X_i}(x; \theta) =$ Find the esti	bution witl (1 – θ) ^{x–}	n probabilit * θ, where	y defined e θ is the p	as: parameter of	the distrib	ution.		[3]
Q2(a)	Assume X ₁ , variance(S _n limit theorer	() = 2n, th	X _n be nen show the	i.i.d. N(0 nat lim P	$(S_n \le a) =$	variables. 0, for any	If $S_n = \sum_{a>0, by us}$	$\sum_{i=1}^{n} X_i^2$ and sing central	[3]
Q2(b)	The guarant standard dev 90% of the should be th z=1.28 is 0.4	viation of I bulbs do n e minimur	125 hours. lot fall shor	t is propo t of the g	sed to samp uaranteed av	ole the outpose of th	out so as to more than	assure that 2.5%. What	[4]
Q3	1 22 2 2	port = 50%	les for the go, Confidence, Confidence	ce = 75%	w transactio	n dataset w	rith followi	ng	[3.5 * 2]
			Transactio	on ID	Items Purc	hased			
		-	1	1	A1, A2, A3	3, A4, A6			
			2		A1, A2, A4	4, A7			
			3		A1, A5, A6	6, A8			
			4		A1, A4, A5	5, A7	19		
1			5		A2, A4, A5	5			
			6		A5, A6, A7	7, A8			
O4(a)	Calculate th	e Provimit	v Messures	(Symmat	ric dictance	Acymmet	ric distance	Coherence	[27
Q4(a)	Calculate th						ric distance	, Coherence	[3]
Q4(a)							X6	X7	[3]

(i) Calculate the document-term frequency matrix for given below documents (remove Q4(b) [2+the stop words). 2] Doc1 Predictive Analytics used Big Data, Data Mining and Data Science Top LinkedIn Groups for Analytics Big Data Mining and Data Science Doc2 Doc3 Introduction to Data Science a free online course on Coursera already started (ii) Calculate the cosine similarity between above three given documents. Q5 Considered five prediction models M1 to M5 of classification and regression. In Table-1 [2* and Table-2, M1 to M5 are predicted values from five different models. Apply the 3.5] ensemble approach to calculate the accuracy for M1, M2, M3, M4, M5 and ensemble model. Fill the accuracy table given below (right side). Note: Use voting for classification and average for regression model. Accuracy for Classification models M1 M2 M3 M4 M5 Ensemble

Actual	MI	M2	M3	M4	M5	Actual	Ml	M2	M3	M4	M5
0	0	0	1	1	1	5.13	6.84	6.29	6.76	10.08	5.38
0	0	0	0	0	1	8.83	9.18	9.44	6.22	9.6	5.07
0	1	0	0	1	0	9.46	7.61	7.86	9.05	5.46	7.3
1	1	1	1	0	0	9.35	7.83	5.89	8.64	5.65	10.89
0	0	0	1	0	0	10.15	7.04	7.4	9.43	8.06	10.12
1	0	1	1	1	0	7.36	8.15	10.09	5.7	6.66	10.66
1	1	1	0	1	1	8.39	5.46	8.52	5.77	6.72	7.7
1	1	0	0	1	0	6.48	8.69	7.77	5.83	10.41	9.29
1	0	1	0	1	0	10.87	8.64	6.09	7.77	5.19	5.52
1	0	1	1	0	1	9.64	10.96	8.13	6.27	9.99	8.96
Tab	le 1: (Classifi	cation	Model			Table	2: Regre	ssion M	Iodel	

MII	ML	IVLS	1014	MIS	Model
					-

			error)		
Ml	M2	М3	M4	M5	Ensemble Model

Roll Number	
-------------	--

Thapar Institute of Engineering and Technology, Patiala

Department of Computer Science and Engineering

Quiz-II

B.E. (Third Year), Semester: VI

Date: 28-05-2022

Time: 10 Min

Couse Name (Code): Predictive Analytics using Statistics (UCS654)

Max Marks: 10

Course Instructor(s): Dr. Prashant Singh Rana, Dr. Suresh Chandra Raikwar

Note: Attempt all questions. Submit this exam before taking theory exam. No negative marking. No Correction allowed (Zero marks will be awarded for over written or modified answer(s)).

	Write your correct answer	lere
Q1	A random sample of size 15 has 50 as mean, the sum of squared deviations from mean is 130. Consider the following statements, related to the test to be preferred? S1: We should prefer t-test since population standard deviation is not known. S2: We should prefer t-test since sample size is small. Which of the following statement(s) is(are) true? A. S1 is true and S2 is false C. S1 is false and S2 is true B. Both S1 and S2 are true D. Both S1 and S2 are false	
Q2	The test statistic for a two-sided significance test for a population mean is z = 2.12. The corresponding P-value is: A) pnorm(2.12) B) pnorm(-2.12) C) 2*pnorm(2.12) D) 2*pnorm(-2.12)	
Q3	It is believed that 15% of all students taking a particular course receive "A" grade. In a sample of 200 students, it is found that 35 made an "A". Then, the test statistic (with 4 significant digits) for testing that the true proportion is 15% is: A) Z = 0.9901 B) Z = 39.22 C) Z = 0.9311 D) Z = 39.11	
Q4	If the heights of women are normally distributed with a mean of 64 inches, which of the following is the highest? The probability of randomly choosing: A) One woman and finding that her height is between 63 and 65 inches B) 15 women and finding that their mean height is between 63 and 65 inches C) 100 women and finding that their mean height is between 63 and 65 inches D) All of these events have the same probability	
Q5	If C is the region of rejection and T is the test statistic, then which of the following is/are FALSE regarding Type II errors? A. Type II error is $Pr(T \in C H_0 \text{ is true})$ B. Type II error is $Pr(T \notin C H_0 \text{ is true})$ C. Type II error is $Pr(T \notin C H_0 \text{ is false})$ D. Type II error is $Pr(T \notin C H_0 \text{ is false})$	
Q6	A test of H0: $\mu=0$ versus Ha: $\mu>0$ is conducted on the same population independently by two different researchers. They both use the same sample size and the same value of $\alpha=0.05$. Which of the following will be the same for both researchers? A. The p-value of the test B. The power of the test if the true $\mu=6$ C. The value of the test statistic D. The decision about whether or not to reject the null hypothesis	
Q7	If the third moment about the mean is zero, then the distribution is: A. Positively skewed B. Negatively skewed C. Symmetrical D. Asymmetrical	

Q8	Suppose X is normally distributed with mean 5 and standard deviation 0.4. Using the standard transformation $Z = (X - \mu)/\sigma$, we have noted that $P(X \le a) = P(Z \le 1.3)$. What is the value of a, correct to two decimal places? A. 5.52 B. 5.50 C. 4.50 D. 4.52					
Q9	Consider an n-bit binary number X, representing standard deviation of some observations. S1: If each observation is multiplied by 4, then the Least Significant Bit of X will be set to zero. S2: If each observation is multiplied by 4, then the Most Significant Bit of X will be set to one. Which of the following statement(s) is(are) true? A. S1 is true and S2 is false B. S1 is false and S2 is true C. Both S1 and S2 are true D. Both S1 and S2 are false					
Q10	If a random sample of size 36 is drawn from a population with a mean 63 and variance 81, then $P(Xbar > 66.75)$ is: [Given that $P(Z < 2.5) = 0.9938$, $P(Z < 1.96) = 0.9750$] A) 0.9938 B) 0.0062 C) 0.9750 D) 0.0250					