Russia contest 12

Created: 5/4/2025 22:28 Updated: 5/4/2025 22:31 Exported: 5/4/2025 22:30

🔼 Bài A. Truy đuổi Chim Cánh Cụt

Tên file vào: chuẩn
Tên file ra: chuẩn

 Giới hạn thời gian: 1 giây 💾 Giới hạn bộ nhớ: 256 MB

♥ Đề bài (dịch tiếng Việt):

Bruce Wayne đang truy đuổi trợ thủ của Falcone — kẻ có biệt danh là **Chim Cánh Cụt** — trên một mặt phẳng, bằng chiếc Batmobile.

Tuy nhiên, do một vụ nổ, chiếc Batmobile bị hư hại và chỉ có thể di chuyển theo hai hướng:

- Tiến thẳng lên (trục Oy) 1 đơn vị, tốn `a` đơn vị nhiên liệu <a>5
- Sang phải (trục Ox) 1 đơn vị, tốn `b` đơn vị nhiên liệu <a>5

Ban đầu, Batmobile ở tọa độ **(0, 0)** và có **f đơn vị nhiên liệu**. Mỗi bước đi đều tiêu tốn nhiên liệu tương ứng. Khi hết nhiên liệu, Batmobile không thể tiếp tục di chuyển.

A Yêu cầu: Với lượng nhiên liệu ban đầu, hãy tính số lượng điểm nguyên (x, y) mà Batmobile có thể đi đến được.

Có t vũ trụ song song, bạn cần giải bài toán này cho mỗi vũ trụ riêng biệt.

📥 Input

- Dòng đầu tiên: số nguyên 't' số lượng vũ trụ song song $1 \leq t \leq 500$
- `t` dòng tiếp theo, mỗi dòng chứa ba số nguyên `a`, `b`, `f`:
 - `a`: nhiên liệu để đi lên 1 đơn vị
 - 'b': nhiên liệu để đi phải 1 đơn vị
 - `f`: lượng nhiên liệu ban đầu $1 \leq a,b,f \leq 10^9$

📤 Output

In ra `t` dòng, mỗi dòng là một số nguyên — số lượng điểm nguyên (x, y)
 Batmobile có thể đến được trong vũ trụ tương ứng.

★ Giải thích thêm

Batmobile bắt đầu từ (0, 0). Mỗi điểm đến có dạng (x, y), với:

- Tổng chi phí để đến (x, y) là: `a*y + b*x`
- Điều kiện: `a*y + b*x ≤ f`

Bạn cần đếm tất cả các cặp số nguyên không âm (x, y) thỏa mãn điều kiện trên.

Ví dụ

Input

```
3
3 2 9
1 4 17
1 1 8
```

Output

```
12
50
45
```

Input

```
4
8 1 22
5 5 3
4 2 3
1 1 1
```

Output

```
45
1
2
3
```

💣 Tóm tắt Subtasks

Subtask	Số điểm	Giới hạn bổ sung	Yêu cầu phụ thuộc
1	15	$t \le 5$, a, b, $f \le 10$	Không
2	15	t ≤ 100, a, b, f ≤ 100	Phải hoàn thành subtask 1
3	14	f chia hết cho a và b	Không
4	20	a > 10^5	Không
5	18	a = 1 với mọi bộ	Không
6	18	Không giới hạn	Phải hoàn thành 1-5

Bạn có muốn mình viết luôn code cho bài này không?

B Bài B. Trận Đại Hồng Thủy

Tên file vào: chuẩn
Tên file ra: chuẩn

Giới hạn thời gian: 1 giây
Giới hạn bộ nhớ: 256 MB

🜊 Đề bài (dịch tiếng Việt)

Hệ thống cấp nước tại thành phố Gotham gồm `n` hệ thống con, mỗi hệ thống gồm một số tháp nước độc lập.

Hệ thống con thứ `i` gồm `b_i` tháp, mỗi tháp hiện chứa `a_i` đơn vị nước.

- Mỗi giây, mỗi tháp tăng thêm 1 đơn vi nước.
- Sau đúng `t_i` giây, hệ thống con thứ `i` xả nước xuống cống ⇒ tất cả tháp
 trong hệ thống đó lập tức về 0 nước và ngừng tăng mãi mãi.
- Trước khi bị bắt, tên Riddler đã **gài bom** lên tất cả tháp.

 Khi một tháp bị kích nổ **tại thời điểm** `t < t_i`, lượng nước đổ ra thành phố là `a_i + t`. (Nếu đã bị xả nước hoặc chưa kịp nổ thì sẽ không có nước nào đổ ra).
- Việc nổ một tháp không ảnh hưởng đến tháp khác trong cùng hệ thống.
- Mỗi giây, Riddler có thể kích nổ tối đa `k` tháp (hoặc ít hơn).

Mục tiêu:

Hãy tính toán **lượng nước tối đa** có thể **chảy ra đường phố**, nếu Riddler hành động tối ưu.

📥 Input

- Dòng đầu tiên: hai số nguyên `n` và `k` $1 \leq n \leq 10^5, 1 \leq k \leq 10^9$ số hệ thống con, và số tháp có thể kích nổ mỗi giây
- `n` dòng tiếp theo: mỗi dòng gồm 3 số nguyên `t_i`, `a_i`, `b_i` $1 \leq t_i, b_i \leq 10^9, 1 \leq a_i \leq 10^4$ thời điểm hệ thống i xả nước, lượng nước ban đầu mỗi tháp, số tháp trong hệ thống đó
- **∲ Đảm bảo:** Tổng tất cả `b_i` ≤ 10^9

📤 Output

Một số nguyên duy nhất — tổng lượng nước tối đa có thể đổ ra đường phố.

⊀ Giải thích thêm

Với mỗi tháp:

- Nếu nổ tại giây `t` (trước khi bị xả nước), sẽ thu được `ai + t` đơn vị nước.
- Nếu không nổ kịp trước `t₁`, tháp sẽ xả nước về 0 → không thu được gì.

Riddler có thể nổ tối đa `k` tháp mỗi giây ⇒ cần chọn thời điểm ưu tiên nổ những tháp quan trọng nhất, sắp xếp thứ tự nổ hợp lý để thu được nước nhiều nhất.

Ví dụ

Input

```
3 2
10 3 1
2 2 1
4 1 1
```

Output

19

Giải thích:

- Từng tháp nổ tại:
 - giây 9: 3 + 9 = 12

• giây 1: 2 + 1 = 3

• giây 3: 1 + 3 = 4 $\rightarrow Tổng = 19$

Input

3 1 10 3 7 2 2 3 4 1 1

Output

69

🎢 Tóm tắt Subtasks

Subtask	Điểm	Giới hạn thêm	Yêu cầu phụ thuộc
1	10	Tổng số tháp \leq 5, $t_i \leq$ 5, $k = 1$	Không
2	15	$k=1$, $b_i=1$, tất cả t_i khác nhau	Không
3	10	Tất cả t _i giống nhau	Không
4	20	$b_i = 1$ cho mọi i	Subtask 2
5	20	$t_i \leq 10^5$ cho mọi i	Subtask 1
6	25	Không giới hạn	Subtask 1–5

Bạn có muốn mình tiếp tục viết ý tưởng thuật toán và code mẫu cho bài này không?

C Bài C. Câu Đố Cứu Mạng

Tên file vào: chuẩn

🏋 Tên file ra: chuẩn

🎁 **Giới hạn thời gian:** 1 giây

💾 Giới hạn bộ nhớ: 256 MB

券 Đề bài (dịch tiếng Việt)

Tên Riddler đã bắt cóc công tố viên quận **Gil Colson**.

Để được tha mạng, Colson cần giải **ba câu đố**, trong đó hai câu đầu đã được Batman giúp giải.

Câu đố cuối cùng lại quá khó, bạn có thể giúp không?

Mô tả câu đố:

- 1. Riddler có một mảng số nguyên `a` gồm `n` phần tử.
- 2. Hắn xoay vòng mảng a sang trái `x` đơn vị.
 - \rightarrow Nghĩa là: `[a₁, a₂, ..., a_n]` trở thành `[a_{x+1}, a_{x+2}, ..., a_n, a₁, ..., a_x]`
- 3. Sau đó, tính mảng mới 'b' như sau:
 - Với mỗi chỉ số `i`, ta có:

$$b_i = a_i - a_{(i+x) \bmod n}$$

Arr Riddler chỉ đưa cho Colson mảng `b`, còn mảng `a` và giá trị `x` thì giấu kín. Bạn cần giúp Colson **tìm tất cả giá trị** `x` (1 ≤ x ≤ n - 1) **có thể** tạo ra mảng `b` từ một mảng `a` nào đó.

📥 Input

- Dòng đầu tiên: số nguyên $\mathbf{\hat{n}}$ $(1 \le n \le 10^6)$ độ dài mảng
- Dòng thứ hai: `n` số nguyên `b₁, b₂, ..., b_n` ($|b_i| \le 10^9$)

📤 Output

- In ra `n 1` số nguyên cách nhau bởi dấu cách
 - Số thứ `i` là `1` nếu tồn tại giá trị `x = i` hợp lệ, và `0` nếu không

/ Ví dụ

Input

3 -2 0 2

Output

1 1

Giải thích:

- Với `x = 1`: có thể tạo mảng `a = [2, 4, 4]`
- Với `x = 2`: có thể tạo mảng `a = [2, 2, 4]`

Input

```
6 -1 2 -3 -4 4 2
```

Output

```
1 1 0 1 1
```

Input

```
7 -1 1 -1 1 -1 1 -1
```

Output

```
0 0 0 0 0
```

Ý tưởng thuật toán (tóm tắt)

- Nhận xét: $b_i = a_i a_{(i+x) \bmod n}$
- Với mỗi `x` từ `1` đến `n 1`, kiểm tra xem có tồn tại `a` nào thỏa mãn hệ phương trình n phương trình theo định nghĩa trên không.

Ta có thể đưa về dạng:

$$a_i - a_{(i+x) mod n} = b_i \quad ext{v\'oi m\'oi } i = 0 o n-1$$

Xét chu trình $i \rightarrow (i + x) \% n \rightarrow ...$, ta được một hệ chu trình tuyến tính. Giải hệ đệ quy này và kiểm tra điều kiện cần để tồn tại nghiệm.

🧩 Tóm tắt Subtasks

Subtask	Điểm	Giới hạn bổ sung	Phụ thuộc
1	7	`n ≤ 5`, `	bi
2	8	`n` là số nguyên tố	Không
3	13	`n = 2^k` với k nguyên	Không
4	14	Tối đa 10 phần tử `b₁ ≠ 0`	Subtask 1
5	15	`n ≤ 1000`	Subtask 1
6	23	`n ≤ 10^5`	Subtask 5
7	20	Không giới hạn	Subtask 1-6

Bạn có muốn mình triển khai luôn hướng giải chi tiết và code Python/C++ cho bài này không?

D Bài D. Cái Bẫy Bất Thường

Tên file vào: chuẩn
Tên file ra: chuẩn

Giới hạn thời gian: 2 giây
Giới hạn bộ nhớ: 256 MB

Đề bài (dịch tiếng Việt)

Tên Riddler đã nghĩ ra một **cái bẫy mới** gồm `n` **phòng**, nối với nhau bằng `n - 1` **lối** đi, sao cho từ **bất kỳ phòng** `u` đến bất kỳ phòng `v` luôn chỉ có đúng một đường đi.

- ☐ **Thang máy đặc biệt** dùng để di chuyển giữa các phòng:
 - Mỗi lần di chuyển qua một lối đi `(u, v)` làm giảm độ bền thang máy đi `w` nếu
 có ít nhất 1 người trong đó.
 - Nếu **không chở người**, thang không bị giảm độ bền.
 - Thang máy chứa được tối đa `b` người.

Có `m` nhóm người bị nhốt trong bẫy.

Nhóm thứ `i` có:

- `c_i` người,
- bắt đầu tại phòng `x_i`,
- phải đến phòng `y_i`.

Mỗi người có thể tạm **xuống giữa đường để chờ** chuyến sau (không cần đi một mạch từ `x_i` đến `y_i`).

Riddler muốn thiết kế lộ trình để tất cả các nhóm đều đến nơi yêu cầu, sao cho:

"V Thang máy vừa đủ độ bền để đưa tất cả người đến nơi và bị phá hủy ngay sau đó

→ Tức là: tổng độ bền mất là nhỏ nhất có thể"

📥 Input

- Dòng 1: `n` `m` `b` số phòng, số nhóm người, sức chứa tối đa thang máy $2 \le n \le 10^5, 1 \le m \le 2 imes 10^5, 1 \le b \le 10^9$
- `n 1` dòng tiếp theo: mỗi dòng 3 số nguyên `u_i v_i w_i` có lối đi giữa phòng `u_i` và `v_i`, hao mòn thang máy là `w_i` nếu có người đi $1 \leq u_i, v_i \leq n, 0 \leq w_i \leq 10^4$ (Đảm bảo đồ thị là cây)
- `m` dòng tiếp theo: mỗi dòng 3 số nguyên `x_i y_i c_i` nhóm `i` bắt đầu từ phòng `x_i`, cần đến `y_i`, có `c_i` người $1 \leq x_i, y_i \leq n, 1 \leq c_i \leq 10^9$

📤 Output

 Một dòng duy nhất: tổng hao mòn tối thiểu cần thiết để đưa tất cả người về đích và phá hủy thang máy.

Input

4 3 5			
3 2 3			
3 4 0			
4 1 2			
1 2 9			
2 4 7			
3 4 12			

Output

16

Input

7 3 5
2 1 2
3 1 1
3 4 3
3 5 0
5 6 4
5 7 0
2 4 11
1 7 8
4 5 3

Output

22

📌 Giải thích thêm

Bài toán yêu cầu:

- Mô phỏng việc chia nhóm chở người sao cho:
 - Vátát cả đến đúng đích
 - V thang bị hỏng ngay sau khi xong nhiệm vụ
 - V tổng chi phí di chuyển (hao mòn) là nhỏ nhất

Điều cần tính:

- Với mỗi lối đi `(u, v)`, cần biết:
 - Tổng số lượt người đi qua đoạn này (trên hành trình từ `x_i` → `y_i`)
 - Mỗi lượt vận chuyển là tối đa `b` người → tính số chuyến
 - Mỗi chuyến chở người qua đoạn đó sẽ làm mất `wɨ` độ bền

🧩 Ý tưởng giải bài

- Gọi `f[u]` là tổng số người cần đi qua phòng `u` (theo hướng cây)
- 2. Mỗi nhóm đóng góp `+c` tại ` x_i ` và `-c` tại ` y_i `
- 3. Duyệt DFS từ gốc (ví dụ từ 1), cộng dồn các giá trị `f[u]` dọc xuống cây
- 4. Mỗi cạnh (u, v) sẽ có số lượng người cần đi qua = abs(f[v])
- 5. Số lượt đi: `ceil(abs(f[v]) / b)`→ Tổng hao mòn = `sô´lượt * wi`

Subtask	Điểm	Giới hạn thêm	Phụ thuộc
1	9	`n, m, b ≤ 3`, `ci ≤ 3`	Không
2	14	`n, m, b ≤ 50`, `ci ≤ 50`	Subtask 1
3	10	`n \le 10^4`, `c i \le 10^4`, `b = 10^9`	Không
4	16	Mỗi phòng nối với tối đa 2 phòng khác	Không
5	19	`n, m ≤ 500`	Subtask 2
6	12	`n ≤ 5000`	Subtask 5
7	20	Không giới hạn	Subtask 1-6

Bạn có muốn mình viết code Python hoặc C++ để giải bài này luôn không?