Sprawozdanie ćwiczenia 4

Autor: Krzysztof Buczek

1. Zapoznać się z płytką UC-1 do badania układów scalonych TTL.

2. Zbadać tablicę logiczną dla następujących bramek logicznych NAND (7400), NOR (7402), Ex-OR (7486) mierząc poziomy odpowiednich napięć, a następnie sprawdzając je próbnikiem stanów logicznych.

Tablica logiczna NAND:

_		_	_
£	_	Ω.	h
1		a·	'n

a	b	f
0	0	1
0	1	1
1	0	1
1	1	0

Na wszystkich wykresach <u>V1</u> ma kolor **zielony**, <u>V2</u> kolor **niebieski**, a <u>wyjście</u> jest oznaczone kolorem **czerwonym**.

V1 = 0 V, V2 = 0 V, wyjście = 1 V:

V1 = 0 V, V2 = 1 V, wyjście = 1 V:

V1 = 1 V, V2 = 0 V, wyjście = 1 V:

V1 = 1 V, V2 = 1 V, wyjście = 0 V:

Tablica logiczna NOR:

$$f = \overline{a+b}$$

a	b	f
0	0	1
0	1	0
1	0	0
1	1	0

Tablica logiczna Ex-OR:

$$f = a \oplus b$$

a	b	f
0	0	0
0	1	1
1	0	1
1	1	0

3. Używając funktorów NAND (7400), NOR (7402) zbudować układ realizujący iloczyn logiczny, sumę logiczną, funkcję negacji. Sprawdzić tablicę logiczną funktorów używając próbnika stanów logicznych.

Iloczyn logiczny:

funktory NAND:

funktory NOR:

Tablica logiczna:

Wejście A	Wejście B	Wyjście
1	1	1
0	1	0
1	0	0
0	0	0

Suma logiczna:

funktory NAND:

funktory NOR:

Tablica logiczna:

Wejście A	Wejście B	Wyjście
1	1	1
0	1	1
1	0	1
0	0	0

Funkcja negacji:

funktory NAND:

funktory NOR:

Tablica logiczna:

Wejście A	Wyjście
1	0
0	1

- 4. Wyznaczyć średni czas propagacji impulsu przez bramkę mierząc okres drgań generatora zbudowanego z trzech bramek. Użyć do budowy generatora bramek serii podstawowej 7400. a potem bramek serii szybkiej 74S00. Porównaj wyniki.
- 5. Zbudować funkcję logiczną dla jednego wybranego segmentu (a, b, c, d, e, f, g) wskaźnika 7- segmentowego, którego zadaniem będzie wyświetlanie liczb w systemie ósemkowym.Z funktorów NAND (7400) zaprojektować i zmontować przerzutnik asynchroniczny R-S. Sprawdzić tabelę przejść.

Przedstawię układ realizujący funkcję logiczną dla segmentu c wskaźnika 7-segmentowego. Trzy kolejne bity tworzące liczbę od 0 do 7: A (pierwszy), B (drugi), C (trzeci).

Tablica

	С	В	А	Segment c
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Funkcja logiczna reprentująca powyższą taki układ:

$$F = \overline{B} * \overline{C} + \overline{B} * C + B * C + A * B = \overline{B} (\overline{C} + C) + BC + AB$$

$$= \overline{B} + B(A + C) = (\overline{B} + B)\overline{B} + A + C = \overline{B} + A + C =$$

$$= \overline{AB} + C = \overline{ABC}$$

Powyższą funkcję logiczną możemy zrealizować za pomocą ukladu:

6. Z funktorów NAND (7400) zaprojektować i zmontować przerzutnik asynchroniczny R-S. Sprawdzić tabelę przejść.

Układ zbudowany z funktorów NAND zapamiętuje stan na wyjściu, nawet jak stan na wejściu przestanie być podawany – stan pamiętania. Dzięki temu z przerzutników można budować pamięci. Przerzutnik działa od razu po otrzymaniu sygnału. Gdy na obu wejściach przerzutnika R-S mamy 1, to nazywamy ten stan niedozwolonym. Jest to niezgodne z logiką, gdyż wyjście Q jest wyjściem prostym, a drugie jest wyjściem zanegowanym. Wyjścia zawsze muszą być w przeciwnych stanach. Na wyjściu może być tylko albo 1 albo 0. Wejścia R I S są niezależne od stanu zegara, stąd bierze się określenie asynchroniczny.

Tabela przejść:

R	S	Q
0	0	stan pamiętania
1	0	0
0	1	1
1	1	stan niedozwolony

W moim przypadku przerzutnik działa w odwrotnej logice, gdyż sygnał powinien być odwrócony na wejściu. Wyjście Q1 powinno być zawsze sygnałem odwróconym wyjścia Q2.

Stan pamiętania, R = 1, S = 1:

R = 0, S = 1, Q2 = 1:

R = 1, S = 0, Q2 = 0:

Stan zabroniony R = 0, S = 0, Q1 = Q2 = 1;

