Отчет о выполнении лабораторной работы 1.4.2

Калашников Михаил, Б03-205

Цель работы: исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии.

Измерим период вынужденной прецессии гироскопа с помощью пяти грузиков различной массы. Нагружая гироскоп, измерим время, за которое ось гироскопа совершит целое количество оборотов и занесем в таблицу. Рассчитаем средний период обращения для каждого значения массы.

m = 335 g		$m = 273 \ g$		$m = 220 \ g$		$m = 176 \ g$		$m = 141 \ g$	
N	t, min								
7	03:36.26	4	02:32.40	2	01:39.03	2	01:57.51	2	02:24.89
3	01:33.80	2	01:14.80	2	01:39.05	2	01:57.40	2	02:26.50
3	01:32.83	3	01:54.60	2	01:39.54	2	01:58.87	2	02:25.44
4	02:03.49	3	01:54.90	2	01:39.46	2	01:59.25	2	02:26.96
6	03:05.77	3	01:55.44	2	01:34.55	2	01:57.88	2	02:24.88
$T = 31 \pm 0.1 \ s$		$T = 38 \pm 0.2 \ s$		$T = 49 \pm 0.5 \ s$		$T = 59 \pm 0.2 \ s$		$T = 73 \pm 0.2 \ s$	

Таблица 1: Измерения периода вынужденной прецессии гироскопа

На основе вычисленного периода определим угловую частоту прецессии Ω и построим график зависимости данной частоты от массы нагрузки гироскопа m. С помощью МНК определим коэффициент наклона прямой k.

$$\Omega = \frac{2\pi}{T}$$

$$\sigma_{\Omega} = \Omega \frac{\sigma_T}{T}$$

N	m, g	$\Omega, 10^3 \ s^{-1}$
1	335	203 ± 0.5
2	273	165 ± 0.8
3	220	128 ± 1.2
4	176	106 ± 0.3
5	141	86 ± 0.3

Таблица 2: Вычисление угловой частоты вынужденной прецессии гироскопа

Рис. 1: График зависимости $\Omega(m)$

$$k = (599, 9 \pm 2.6) \cdot 10^{-3} \ kg^{-1}s^{-1}$$

С другой стороны, коэффициент k может быть выражен следующим образом:

$$\Omega = \frac{mgl}{I_g\omega} = km$$

$$k = \frac{gl}{I_g\omega}$$

Момент инерции I_g определим с помощью крутильного маятник, измерив период колебаний гироскопа и сплошного цилиндра.

Масса цилиндра, m_c , g	1616.8 ± 0.1
Диаметра цилиндра d_c, mm	78 ± 0.1
Период колебаний цилиндра T_c, s	4.16 ± 0.01
Период колебаний гироскопа T_g , s	3.32 ± 0.01

Таблица 3: Вычисление момента инерции гироскопа

В таком случае момент инерции I_g может быть рассчитан следующим образом:

$$I_c = \frac{1}{2} m_c \frac{d_c^2}{4} = \frac{1}{8} m_c d_c^2$$

$$I_g = I_c \frac{T_g^2}{T_c^2} = \frac{1}{8} m_c d_c^2 \frac{T_g^2}{T_c^2}$$

$$\sigma_{I_g} = I_g \sqrt{\left(\frac{\sigma_{m_c}}{m_c}\right)^2 + \left(2\frac{\sigma_{d_c}}{d_c}\right)^2 + \left(2\frac{\sigma_{T_c}}{T_c}\right)^2 + \left(2\frac{\sigma_{T_g}}{T_g}\right)^2}$$

$$I_g = (786.1 \pm 6.4) \cdot 10^{-6} \ kg \cdot m^{-2}$$

Далее может быть найдена частота вращения гироскопа:

$$\nu = \frac{gl}{2\pi I_g k}, \ \sigma_{\nu} = \nu \sqrt{\left(\frac{\sigma_{I_g}}{I_g}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2}$$
$$\nu = 400.8 \pm 3.7 \ Hz$$

Измерения проведенные с помощью генератора и осциллографа возвращают значение:

$$\nu_0 = 390.9 \; Hz$$