Математическая логика

Замкнутые классы. Часть 2

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
Π/Π	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизъюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Отношение предшествования

Определение:

Для двух наборов $\tilde{\alpha} = (\alpha_1, ..., \alpha_n)$ и $\tilde{\beta} = (\beta_1, ..., \beta_n)$ выполнено отношение предшествования $\tilde{\alpha} \prec \tilde{\beta}$, если $\alpha_1 \leq \beta_1, ..., \alpha_n \leq \beta_n$.

Например, $(0,1,0,1) \prec (1,1,0,1)$.

Свойство предшествования:

Если $\tilde{\alpha} \prec \tilde{\beta}$ и $\tilde{\beta} \prec \tilde{\gamma}$, то $\tilde{\alpha} \prec \tilde{\gamma}$.

Определение:

Функция $f(x_1,...,x_n)$ называется монотонной, если для любых двух наборов $\tilde{\alpha}$ и $\tilde{\beta}$, таких, что $\tilde{\alpha} \prec \tilde{\beta}$ имеет место неравенство $f(\tilde{\alpha}) \leq f(\tilde{\beta})$.

Функция, равная монотонной функции, также является монотонной.

$f \in M$	$f \not\in M$

Заполните таблицу

$f \in M$	$f \not\in M$
0, 1	$x \rightarrow y$
\mathcal{X}	$x \mid y$
$x \lor y$	$x \downarrow y$ (1000)
$x \cdot y$	$x \oplus y$

Класс M

Докажем, что класс M является замкнутым.

Пусть $\Phi = f(f_1,...,f_m)$ и функции $f, f_1,...,f_m$ являются монотонными. Для каждой функции $f, f_1,...,f_m$ введем наборы, которые можно получить из набора переменных для внешней функции.

Функция	Наборы
f	$\tilde{x} = (x_1, x_2, \dots, x_n)$
f_1	$\tilde{x}_1 = \left(x_{1_1}, \dots, x_{1_n}\right)$
• • •	• • •
f_i	$\tilde{x}_i = \left(x_{i_1}, \dots, x_{i_n}\right)$
• • •	• • •
f_m	$\tilde{x}_m = \left(x_{m_1}, \dots, x_{m_n}\right)$

Класс M

Подставляем набор $\tilde{x} = (x_1, x_2, ..., x_n)$ функцию Φ , получаем, что $\Phi(\tilde{x}) = f(\tilde{x})$.

Начнем рассматривать наборы с внутренних функций.

Т.к. функции $f_1,\dots,f_m\in M$, то при $\tilde{\alpha}\prec\tilde{\beta}$ будет верно следующее неравенство: $f_i\left(\tilde{\alpha}_i\right)\leq f_i\left(\tilde{\beta}_i\right)$, $i=1,\dots,m$.

Kласс M

Вычисляем значения на всех наборах внутренних функций, которые являются аргументами в предшествующих наборах

$$(f_1(\tilde{\alpha}_1),...,f_m(\tilde{\alpha}_m)) \prec (f_1(\tilde{\beta}_1),...,f_m(\tilde{\beta}_m))$$

монотонной функции f . Таким образом, при $\tilde{\alpha} \prec \tilde{\beta}$ получаем, что

$$\Phi(\tilde{\alpha}) = f(\tilde{\alpha}) = f(f_1(\tilde{\alpha}_1), ..., f_m(\tilde{\alpha}_m)) \leq
\leq f(f_1(\tilde{\beta}_1), ..., f_m(\tilde{\beta}_m)) = \Phi(\tilde{\beta}),$$

т.е. $\Phi(\tilde{\alpha}) \leq \Phi(\tilde{\beta})$ и функция Φ – монотонна, т.е. класс M замкнут.

Соседние наборы

Будем называть наборы $\tilde{\alpha}$ и $\tilde{\beta}$ соседними, если они отличаются в одной позиции, т.е.

$$\tilde{\alpha} = (\alpha_1, ..., \alpha_{i-1}, \alpha_i, \alpha_{i+1}, ..., \alpha_n),$$

$$\tilde{\beta} = (\alpha_1, ..., \alpha_{i-1}, \bar{\alpha}_i, \alpha_{i+1}, ..., \alpha_n).$$

Лемма о немонотонной функции

Если $f(x_1,...,x_n) \notin M$, то из нее путем подстановки констант 0 и 1 и функции x можно получить функцию \overline{x} .

Пример на лемму о немонотонной функции

Если функция f(x,y)=(1011) не является монотонной, получите \overline{x} , подставляя в функцию f константы 0, 1, x.

Решение: Для доказательства немонотонности необходимо найти пары предшествующих наборов $\tilde{\alpha} \prec \tilde{\beta}$, где $f(\tilde{\alpha}) > f(\tilde{\beta})$. В таблице пары наборов частично упорядочены.

Пример на лемму о немонотонной функции

x y	f(x,y)
0 0	1
0 1	0
1 0	1
1 1	1

Пример на лемму о немонотонной функции

Заметим, что $(0,0) \prec (0,1)$, но f(0,0) > f(0,1), следовательной функция не является монотонной, и из нее можно получить отрицание.

$$\begin{cases} f(0,0) = 1, \\ f(0,1) = 0 \end{cases} \Rightarrow f(0,x) = \overline{x}.$$

Заметим, что возможно не единственное представление \overline{x} .

Лемма о немонотонной функции

Если $f(x_1,...,x_n) \not\in M$, то из нее путем подстановки констант 0 и 1 и функции x можно получить функцию \overline{x} .

Доказательство. Докажем сначала, что найдутся соседние наборы $\tilde{\alpha}$ и $\tilde{\beta}$: $\tilde{\alpha} \prec \tilde{\beta}$ и $f(\tilde{\alpha}) > f(\tilde{\beta})$.

Лемма о немонотонной функции

Пусть $\tilde{\alpha}$ и $\tilde{\beta}$ — соседние по i -й координате, т.е. $\tilde{\alpha} = (\alpha_1, \dots, \alpha_{i-1}, 0, \alpha_{i+1}, \dots, \alpha_n),$ $\beta = (\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n)$. Если $f(\tilde{\alpha}) > f(\tilde{\beta})$, то $f(\tilde{\alpha}) = 1$ и $f(\tilde{\beta}) = 0$. Введем функцию $\phi(x) = f(\alpha_1, ..., \alpha_{i-1}, x, \alpha_{i+1}, ..., \alpha_n)$. Имеем $\phi(0) = f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) = f(\tilde{\alpha}) = 1$ и $\phi(1) = f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n) = f(\tilde{\beta}) = 0.$ Следовательно $\phi(0) = 1$, a $\phi(1) = 0$, т.е. $\phi(x) = \overline{x}$. \square

Класс L

Класс L - класс всех линейных функций вида $f(x_1,...,x_n)=\alpha_0\oplus\alpha_1x_1\oplus...\oplus\alpha_nx_n$, где $\alpha_i=\{0,1\}$, $i=\overline{0,n}$.

Класс L замкнут, т.к. линейная комбинация линейных выражений является линейным выражением.

Класс L

$f \in L$	$f \not\in L$		

Заполните таблицу

Класс L

$f \in L$	$f \notin L$
0, 1	$x \to y = xy \oplus x \oplus 1$
\mathcal{X}	$x \vee y$
$\overline{x} = x \oplus 1$	$x \downarrow y$
$x \oplus y$	$x \cdot y$

Если $f(x_1,...,x_n) \not\in L$, то из нее путем подстановки констант 0 и 1 и функций x и \overline{x} , а также, быть может, путем навешивания отрицания над f можно получить конъюнкцию двух переменных, например, $x_1 \cdot x_2$.

Замечание: Нелинейность функции можно проверить через полином Жегалкина. Встретилась конъюнкция — функция не является линейной.

Доказательство леммы в виде алгоритма.

1) Возьмем ПЖ для нелинейной функции f:

$$f(x_1,...,x_n) = \beta_0 \oplus ... \oplus \beta_{2^n-1} x_1 x_2 ... x_n$$
.

В силу нелинейности в нем найдется конъюнкция, например, $x_1 x_2$. Тогда полином можно записать следующим образом

$$f(x_1,...,x_n) = x_1x_2f_1(x_3,...,x_n) \oplus x_1f_2(x_3,...,x_n) \oplus \oplus x_2f_3(x_3,...,x_n) \oplus f_4(x_3,...,x_n)$$
, причем $f_1(x_3,...,x_n) \not\equiv 0$, иначе конъюнкцию выразить невозможно.

2) Выберем такие $\alpha_3,...,\alpha_n$, чтобы $f_1(\alpha_3,...,\alpha_n) \equiv 1$. $(\alpha_3,...,\alpha_n)$ - любой конкретный набор переменных $(x_3,...,x_n)$, состоящий из 0 и 1.

Переходим к построению функции $\varphi(x_1, x_2)$, которая образуется из f с помощью коэффициентов α , β и γ . Тогда $\varphi(x_1, x_2) = f(x_1, x_2, \alpha_3, ..., \alpha_n) = x_1 x_2 \oplus \alpha x_1 \oplus \beta x_2 \oplus \gamma$, где α , β , γ — константы, равные 0 или 1.

Узнаем константы α , β и γ .

Если $\alpha = 1$, то вторая переменная в конъюнкции входит в ответ с отрицанием, т.е. \overline{x}_2 .

Если $\beta = 1$, то первая конъюнкция входит в ответ с отрицанием, т.е. \overline{x}_1 .

Если $\alpha\beta \oplus \gamma = 1$, то над функцией f навешивается общее отрицание.

3) Рассмотрим проверочную функцию $\psi(x_1, x_2)$, получаемую из $\varphi(x_1, x_2)$:

$$\psi(x_1, x_2) = \varphi(x_1 \oplus \beta, x_2 \oplus \alpha) \oplus \alpha\beta \oplus \gamma$$
.

Воспользуемся выражением для $\varphi(x_1, x_2)$

$$\varphi(x_1 \oplus \beta, x_2 \oplus \alpha) \oplus \alpha\beta \oplus \gamma =$$

$$= (x_1 \oplus \beta)(x_2 \oplus \alpha) \oplus \alpha(x_1 \oplus \beta) \oplus \beta(x_2 \oplus \alpha) \oplus \gamma \oplus \alpha\beta \oplus \gamma =$$

$$= x_1 x_2 \oplus \alpha x_1 \oplus \beta x_2 \oplus \alpha \beta \oplus \alpha x_1 \oplus \alpha \beta \oplus$$
$$\oplus \beta x_2 \oplus \alpha \beta \oplus \gamma \oplus \alpha \beta \oplus \gamma = x_1 x_2.$$

Следовательно, $\psi(x_1, x_2) = x_1 x_2$. \square

Пример по лемме о нелинейной функции

Проверить, является ли функция $f(x,y) = x \to y$ линейной.

В противном случае представить конъюнкцию.

Пример по лемме о нелинейной функции

Решение:

1)
$$f(x,y) = x \rightarrow y = xy \cdot 1 \oplus x \cdot 1 \oplus y \cdot 0 \oplus 1$$
.
 $f_1 \qquad f_2 \qquad f_3 \qquad f_4$
 $f_1 \equiv 1$

Пример по лемме о нелинейной функции

2)
$$\varphi(x,y) = xy \oplus \alpha x \oplus \beta y \oplus \gamma = xy \oplus x \oplus 1$$
, откуда

$$\alpha = 1$$
, $\beta = 0$ и $\alpha\beta \oplus \gamma = 1$, т.е. $x \cdot y = f(x, \overline{y})$.

3) Проверка.

$$\psi(x,y) = \varphi(x \oplus \beta, y \oplus \alpha) \oplus \alpha\beta \oplus \gamma = \varphi(x,y \oplus 1) \oplus 1$$
$$= x(y \oplus 1) \oplus x \oplus 1 \oplus 1 = xy \oplus x \oplus x = xy$$

И, действительно,
$$\overline{f(x, \overline{y})} = \overline{x} \to \overline{y} = \overline{\overline{x}} \vee \overline{y} = x \cdot y$$
.

Функции из 5 классов

Отметим, что классы T_0 , T_1 , S, M и L попарно различны.

	T_0	T_1	S	M	L
0					
1					
\mathcal{X}					
\overline{x}					
$x \cdot y$					

Заполните таблицу

Функции из 5 классов

Отметим, что классы T_0 , T_1 , S, M и L попарно различны.

	T_0	T_1	S	M	L
0	+	ı	ı	+	+
1	ı	+	ı	+	+
\mathcal{X}	+	+	+	+	+
\overline{x}	ı	ı	+	ı	+
$x \cdot y$	+	+	ı	+	-

Для того чтобы система функций $F = \{f_1, \dots, f_n\}$ была полной, необходимо и достаточно, чтобы она не содержалась целиком ни в одном из пяти замкнутых классов T_0 , T_1 , S, M и L.

Доказательство.

Необходимость. Пусть F — полна, т.е. $[F] = P_2$. Предположим, что F содержится в одном из замкнутых классов, который обозначим через F', т.е. $F \subseteq F'$. Но тогда $P_2 = [F] \subseteq [F'] = F'$ — противоречие.

Достаточность. Пусть F не содержится ни в одном из пяти замкнутых классов. Тогда из можно выделить подсистему, содержащую функций f_i, f_i, f_k, f_m, f_l , которые содержатся соответственно в классах T_0 , T_1 , S, M, L. Пусть эта подсистема будет $F' = \{f_i, f_i, f_k, f_l, f_m\}.$

Можно считать, что все эти функции зависят от одинакового числа переменных.

1) Построим при помощи функций f_i , f_j и f_k константы 0 и 1. Рассмотрим $f_i \notin T_0$.

Если
$$f_i(1,...,1)=1$$
, то $\varphi(x)=f_i(x,...,x)$ есть **константа 1**, т.к. $\varphi(0)=f_i(0,...,0)=1$, в силу того, что $f_i \notin T_0$ и $\varphi(1)=f_i(1,...,1)=1$.

Константу 0 получаем из f_i : $f_i(1,...,1) = 0$.

Если
$$f_i(1,...,1) = 0$$
, то $\varphi(x) = f_i(x,...,x)$ есть \overline{x} , т.к. $\varphi(0) = f_i(0,...,0) = 1$, $\varphi(1) = f_i(1,...,1) = 0$. Возьмем $f_k(f_k \notin S)$. Из леммы о несамодвойственной функции мы можем получить константу 0 или 1, а т.к. у нас есть функция \overline{x} , то мы можем получить и вторую константу.

2) Имея константу 0 и 1 и функцию f_m $(f_m \not\in M)$, мы по лемме о немонотонности функции можем получить функцию \overline{x} .

3) Имея константы 0 и 1, функцию \bar{x} и функцию f_l ($f_l \notin L$) мы по лемме о нелинейной функции можем получить конъюнкцию двух переменных $x \cdot y$.

Таким образом, мы при помощи формул над F' (а значит и над F) получили функции \overline{x} и $x_1 \cdot x_2$, что доказывает достаточность. \square

Тема следующей лекции:

«Исчисление высказываний».