MOCK SET I EXAMINATIONS 2019

Uganda Advanced Certificate of Education

CHEMISTRY PAPER

P525/2

Time: 2 Hours

Instructions to Candidates

- Answer five questions, including three from section A and any two from section B.
- Additional questions answered will not be marked.
- Begin each question of fresh page.
- Mathematical tables and graph papers are provided.
- Non programmable scientific electronic calculator may be used.
- Illustrate your answer with questions where applicable (H = 1, C = 12, O = 16, N = 14, S = 32)

SECTION A:

1. (a) (i) What is meant by the term **solvent extraction**?

(01mk)

ii) State three limitations of solvent extraction.

 $(1 \frac{1}{2} \text{ mks})$

iii) State why in solvent extraction, small portions are preferred to big volumes.

(02mks)

- b) 0.9656 g of Iodine was shaken with a mixture of 50 cm³ of trichloromethane and 50cm³ of water in a separating funnel for some time until equilibrium was attained at 25°C. After the layers had settled, 25 cm³ of the aqueous layer required 4.4 cm³ of 0.01M sodium thiosuphate solution using starch as an indicator.
- i) Determine the distribution coefficient of Iodine between trichloromethane and water at 25°C. (5 ½ mks)
- ii) If 50 cm³ of trichloromethane layer in (b) (i) above was again shaken with 100 cm³ of water at 25°C, determine the mass of Iodine that remained in the trichloromethane layer.

 (03mks)
- iii) Explain why trichloromethane is a better solvent in the extraction of iodine than water. (02mks)
- iv) Describe briefly how the formula of the silver complex [Ag (NH₃)₂]⁺ can be determined in the laboratory. (05mks)
- 2. (a) What is meant by the terms;

i) Initial rate (01mk)

ii) Activated complex (01mk)

b) The rate equation for the reaction

$$S_2O_{8 \text{ (aq)}}^{2-} + 2I_{(aq)}^{-} \longrightarrow 2SO_{4 \text{ (aq)}}^{2-} + I_{2 \text{ (aq)}} \text{ is Rate} = K [S_2O_8^{2-}] [I^{-}]$$

- i) State how the rate would be affected if the concentrations of the reactants are both doubled. (01mk)
- ii) Describe an experiment to determine the order of the reaction with respect to $S_2O_8^{2-}$ in the laboratory.
- c) The table below shows the kinetic data for the reaction between potassium Iodide and potassium peroxosulphate.

Time (min)	$[S_2O_8^{2-}]$ moldm ⁻³
30	0.190
60	0.130
90	0.082
120	0.053
150	0.035

Plot a graph of $10g_{10}[S_2O_8^{2-}]$ against time and use it to determine;

- i) The initial concentration of $S_2O_8^{2-}$ (01mk)
- ii) The rate constant of the reaction and state its units. (03mks)
- d) State and explain one factor that affects the activation energy of the reaction.

(03mks)

- 3. (a) Write the name and formula of the ore from which aluminum metal is extracted. (02mks)
 - b) Outline the steps used in the extraction of aluminum from its ore. Your answer should include all the necessary equations (No diagram is required). (8 marks)
 - c) In the extraction of aluminum, state
 - i) Why a low voltage is used. (01mk)
 - ii) One disadvantage involved (01mk)
 - d) State **two** uses of aluminum in relation to its properties. (02mks)
 - e) How and under what conditions does aluminum react to form aluminum chloride, Al₂Cl₆? (02mks)
 - (f) State why soap is not used in washing aluminum source pans

 (3 marks)

 Illustrate your answer using equations
- 4. (a) A compound M, $C_7H_{14}O_2$ reacted with sulphuric acid on heating to form compounds P, $C_4H_{10}O$ and $C_3H_6O_2$. P reacted with sodium with effervescence but had no effect on litmus paper.
 - i) Write the names and structural formulae of all the possible isomers of **P**. (04mks)
 - ii) Name a reagent that can be used to distinguish between the isomers in (i) and state what would be observed if the isomers are reacted with the reagent. (04mks)

- b) P reacted with acidified dichromate solution to give W, which formed a yellowsolid when reacted with alkaline iodine solution;
- i) Identify **P**, **W** and the **yellow solid**.

(03mks)

- ii) Name the reagent that can be used to identify the functional group in **P**. (01mk)
- c) Write equations and indicate a mechanism for the reaction between P and;

i) Concentrated orthophosphoric acid

(04mks)

ii) Ethanoyl chloride

(03mks)

SECTION B

Attempt two questions from this section.

- 5 Using equations only, show how the following inter conversions of compounds can be carried out in the laboratory.
 - a) Ethanol to methylpropanoate.

(4 Marks)

b) Butane-1,4-dioic acid from bromoethane.

(3 ½ Marks)

c) C₆H₅NHCH₃ from benzene.

(4 ½ Marks) (4 Marks)

d) (CH₃)₂COHCH₂CH₃ from 1-chloropropane.
e) Nylon-6,6 from cyclohexene

(4 Marks)

- 6. Explain the following observations;
- a) Ice is less dense than water and floats on water.

(04mks)

- b) Methanioc acid reacts with ammoniacal silver nitrate solution, whereas ethanoic acid does not. (04mks)
- c) The first electron affinity of the halogens decrease down the group, however the first electron affinity of fluorine is abnormally high. (04mks)
- d) When ammonia solution is added to silver nitrate solution, a brown precipitate soluble in excess ammonia is formed. (04mks)
- e) The boiling point of ethanol is 78°C whereas that of methoxymethane is 24°C yet both ethanol and methoxymethane have the same molecular mass. (04mks)
- 7. The atomic numbers and melting points of the oxides of period 3 elements are shown in the Table below.

Element	Na	Mg	Al	Si	P	S	Cl
Atomic number	11	12	13	14	15	16	17
Oxide	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	SO ₃	Cl ₂ O ₇
Melting point °C	1275	2827	2007	1607	560	30	-91

a) i) Plot a graph of melting points of oxides against atomic number of elements.

(4mks)

ii)Explain the shape of the graph.

 $(6\frac{1}{2} \text{ marks})$

b) Write	equation to show th	ne reaction between,	
i)	Water and P ₂ O	95	(1½ marks)
ii)	Sodium hydrox	xide and	
	Al_2O_3	(2½marks)	
	SiO_2	$(2\frac{1}{2} \text{ marks})$	
	SO_3	(1½ marks)	
iii)	Hydrochloric a	acid and Al ₂ O ₃	$(1\frac{1}{2}$ marks)
8.(a) Explain wh	at meant by the ter	ms	
(i) Enthal	py of solution		(2 marks)
(ii) Enthal	lpy of hydration		(2 marks)
(b) State two	factors that affect t	the enthalpy of hydration.	(2 marks)
(c) Describe l	now you would det	ermine the standard enthalpy of	solution of potassium
iodide.			(7 marks)
(d) The lattice	e energy of potassi	um iodide is +649 Kjmol ⁻¹ . The	enthalpy of hydration of
potassium	ion is – 321 Kjmo	ol^{-1} and that of iodide ions is - 29	96 Kjmol ⁻¹
(i) Determ	nine the enthalpy of	f solution of potassium iodide	(2 marks)
(ii) Explai	in why potassium i	odide is soluble in water	(2 marks)
(iii) Sketc	h a potential energ	y diagram for the dissolution of	potassium iodide in b (ii)
above			(3 marks)

