

Introduction to Data Science

Welcome to the world of data science! This presentation will guide you through the basics of data science and its applications in various fields.

What is Data

Science?

Statistics plinary field that involves extracting knowledge and insights from data. It combines computer science, statistics, mathematics, and domain expertise to solve real-world problems.

Data Collection

Gathering raw data from various sources.

Data Analysis

Exploring, transforming, and visualizing data to uncover patterns.

Data Cleaning

Dealing with missing values, outliers, and inconsistent data.

Data Modeling

Building predictive models to forecast outcomes and make decisions.

The Data Science

Process is iterative, involving several steps to extract meaningful insights from data.

Define the Problem

Clearly define the business problem you want to solve.

2 Data Acquisition

Collect relevant data from various sources.

Data Exploration

Analyze data to understand its characteristics.

Λ Model Building

Develop predictive models to solve the problem.

5 Model Evaluation

Assess the performance of the model.

6 Deployment

Implement the model to make predictions.

Data Collection and

Preprocessing aw data from different sources, such as databases, APIs, and web scraping.

Data Sources	Data Cleaning	Data
Databases, APIs, social	Handling missing values,	Transformation Converting data into a
media, web scraping.	outliers, and inconsistent	format suitable for
	data.	analysis.

Exploratory Data

data characteristics and discover patterns.

Descriptive Statistics

Summarizing data using measures like mean, median, and standard deviation.

Data

graphs to visualize data trends and relationships.

Hypothesis

Evaluatung

hypotheses about the data using statistical tests.

Machine Learning

Fundamentals to learn from data without explicit programming, enabling them to make predictions and decisions.

Data Input

Provide the

model with

training data.

Model

Training learns

patterns from the

data.

Model

Evaluation

Assess the

model's

performance on

unseen data.

Model

Deployment

Use the trained

model to make

predictions.

Supervised and Unsupervised

Learning agorithms can be categorized into supervised and unsupervised learning, based on the type of data and task.

Туре	Description	Example
Supervised	Training with labeled data to make predictions.	Predicting house prices based on features.
Unsupervised	Discovering patterns in unlabeled data.	Clustering customers into different groups.

Applications of Data

Science evolutionized various industries by providing insights and solutions to complex problems.

Healthcare

personalized

discovery.

medicine, drug

Disease prediction,

Fraud detection, risk assessment, investment strategies.

Marketing

Targeted advertising, customer segmentation, campaign optimization.

E-commerce

Personalized recommendations, inventory management, price optimization.

Structured & Unstructured

Structure, like text documents or social media posts.

