

Perbandingan Kasus Peubah Tunggal dan Peubah Ganda

	Peubah Tunggal	Peubah Ganda
Penduga titik parameter nilai tengah	Skalar	Vektor nilai tengah
Penduga selang nilai tengah	Selang Kepercayaan	Daerah (elips) Kepercayaan
Pengujian hipoteis nilai tengah satu populasi	Uji t-student	Uji T ² -Hotelling
Pengujian beda nilai tengah dua populasi	Uji t-student	Uji T ² -Hotelling
Pengujian beda nilai tengah beberapa populasi	ANOVA	MANOVA

Pengujian Hipotesis: Vektor Nilai Tengah

Bentuk Hipotesis

Hipotesis yang diuji dalam pengujian vektor nilai tengah populasi mirip seperti pada kasus univariate, yaitu:

H₀:
$$\mu = \mu_0$$
 vs H₁: $\mu \neq \mu_0$

Dengan,
$$\mu_0 = \begin{bmatrix} \mu_{10} \\ \mu_{20} \\ \vdots \end{bmatrix}$$

Statistika uji untuk vektor nilai tengah

Statistik uji yang dapat digunakan dalam pengujian vektor nilai tengah populasi adalah (1) T²-Hotelling dan (2) Wilk-lambda.

1. T²-Hotelling, sebagai berikut:

$$T^{2} = \left(\underline{\overline{X}} - \underline{\mu}_{0}\right) \left(\frac{1}{n}S\right)^{-1} \left(\underline{\overline{X}} - \underline{\mu}_{0}\right) = n\left(\underline{\overline{X}} - \underline{\mu}_{0}\right) S^{-1} \left(\underline{\overline{X}} - \underline{\mu}_{0}\right)$$

Dengan,

$$\underline{\overline{X}}_{(px1)} = \frac{1}{n} \sum_{j=1}^{n} \underline{X}_{j} \qquad S_{(pxp)} = \frac{1}{n-1} \sum_{j=1}^{n} (\underline{X}_{j} - \underline{\overline{X}})(\underline{X}_{j} - \underline{\overline{X}})'$$

2. Uji Wilk-Lambda, sering juga disebut uji rasio kemungkinan (likelihood ratio test)

$$\Lambda = \frac{\max_{\underline{\Sigma}} L(\underline{\mu}_{0}, \underline{\Sigma})}{\max_{\underline{\mu}, \underline{\Sigma}} L(\underline{\mu}, \underline{\Sigma})} = \left(\frac{\left|\hat{\underline{\Sigma}}\right|}{\left|\hat{\underline{\Sigma}}_{0}\right|}\right)^{n/2}$$

dengan,

$$L(\underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{np/2} |\hat{\Sigma}|^{n/2}} e^{-np/2}$$

$$L(\underline{\mu}_0, \Sigma) = \frac{1}{(2\pi)^{np/2} |\hat{\Sigma}_0|^{n/2}} e^{-np/2}$$

Hubungan Hotelling dengan Wilk - Lambda,

$$\Lambda^{2/n} = \left(1 + \frac{T^2}{n-1}\right)^{-1}$$

Daerah Penolakan Ho

Daerah penolakan untuk hipotesis nol dapat dihampiri dengan menggunakan sebaran F, sebagai berikut:

$$T^{2} = \left(\underline{\overline{X}} - \underline{\mu}_{0}\right) \left(\frac{1}{n}S\right)^{-1} \left(\underline{\overline{X}} - \underline{\mu}_{0}\right) > \frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha)$$

Untuk ukuran sampel besar maka T²-Hotelling dapat juga dihampiri dengan sebaran khi-kuadrat berderajat bebas p.

Makna Penolakan H₀

- Jika hipotesis nol ditolak itu artinya bahwa paling sedikit ada satu kombinasi linier peubah yang rata-ratanya berada diluar selang kepercayaan $(1-\alpha)$.
- Perlu uji lanjut, yaitu:
 - Daerah kepercayaan ganda, dapat disajikan dalam bentuk Ellips.
 - Selang kepercayaan simultan
 - Selang kepercayaan Bonferoni

ILUSTRASI

Perspirasi dari 20 wanita yang tergolong sehat dianalisa. Tiga komponen, yaitu X_1 = laju perspirasi, X_2 = kandungan sodium dan X_3 = kandungan potasium diukur

Ujilah apakah hipotesis H_0 : $\mu' = [4, 50, 10]$ lawan H_1 : $\mu' \neq [4, 50, 10]$ pada taraf nyata $\alpha = 0.10$

Ringkasan Data

$$\bar{x} = \begin{bmatrix} 4.640 \\ 45.400 \\ 9.965 \end{bmatrix}$$
 $S = \begin{bmatrix} 2.879 & 10.010 & -1.810 \\ 10.010 & 199.788 & -5.640 \\ -1.810 & -5.640 & 3.628 \end{bmatrix}$

$$S^{-1} = \begin{bmatrix} .586 & -.022 & .258 \\ -.022 & .006 & -.002 \\ .258 & -.002 & .402 \end{bmatrix}$$

Perhitungan T²-Hotelling

$$T^{2} = 20[4.640 - 4 \quad 45.400 - 50 \quad 9.965 - 10] \begin{bmatrix} .586 & -.022 & .258 \\ -.022 & .006 & -.002 \end{bmatrix} \begin{bmatrix} 4.640 - 4 \\ 45.400 - 50 \\ 9.965 - 10 \end{bmatrix} = 9.74$$

$$\frac{(n-1)p}{(n-p)}F_{p,n-p}(.10) = \frac{19(3)}{17}F_{3,17}(.10) = 3.353(2.44) = 8.18$$

Terlihat bahwa $T^2 = 9.74 > 8.18$, sehingga konsekuensinya kita tolak H_0 pada taraf nyata 10%.

Daerah (ellips) Kepercayaan bagi Vektor Nilai Tengah

Daerah (ellips) Kepercayaan

Suatu daerah kepercayaan $100(1-\alpha)\%$ bagi nilai tengah suatu sebaran normal ganda p adalah suatu elips yang ditentukan oleh semua μ sedemikian rupa sehingga

$$n(\underline{\overline{X}} - \underline{\mu})S^{-1}(\underline{\overline{X}} - \underline{\mu}) \leq \frac{(n-1)p}{(n-p)}F_{p,n-p}(\alpha)$$

di mana

$$\underline{\underline{X}}_{(px1)} = \frac{1}{n} \sum_{j=1}^{n} \underline{X}_{j} \qquad S_{(pxp)} = \frac{1}{n-1} \sum_{j=1}^{n} (\underline{X}_{j} - \underline{\overline{X}}) (\underline{X}_{j} - \underline{\overline{X}})$$

dan $x_1, x_2, ..., x_n$ adalah pengamatan contoh.

ILUSTRASI

$$\overline{X} = \begin{bmatrix} .564 \\ .603 \end{bmatrix} S = \begin{bmatrix} .0144 & .0117 \\ .0117 & .0146 \end{bmatrix} S^{-1} = \begin{bmatrix} 203.018 & -163.391 \\ -163.391 & 200.228 \end{bmatrix}$$

ellips kepercayaan 95% bagi μ terdiri dari semua nilai (μ_1 , μ_2) yang memenuhi

$$42[.564 - \mu_{1} \quad .603 - \mu_{2}] \begin{bmatrix} 203.018 & -163.391 \\ -163.391 & 200.228 \end{bmatrix} \begin{bmatrix} .564 - \mu_{1} \\ .603 - \mu_{2} \end{bmatrix} \le \frac{2(41)}{40} F_{2,40}(.05)$$

Mencari Akar dan Vektor Ciri

Pasangan akar ciri dan vektor ciri bagi S adalah

$$\lambda_1 = .026$$
 $\underline{\mathbf{e}}_1' = [.704, .710]$
 $\lambda_2 = .002$ $\underline{\mathbf{e}}_2' = [-.710, .704]$

Pusat ellips tersebut pada titik [.564, .603]

Hitung Panjang Sumbu

setengah dari panjang sumbu mayor dan minornya masing-masing adalah:

$$\sqrt{\lambda_1} \sqrt{\frac{p(n-1)}{n(n-p)}} F_{p,n-p}(\alpha) = \sqrt{.026} \sqrt{\frac{2(41)}{(42)(40)}} (3.23) = .064$$

$$\sqrt{\lambda_2} \sqrt{\frac{p(n-1)}{n(n-p)}} F_{p,n-p}(\alpha) = \sqrt{.002} \sqrt{\frac{2(41)}{(42)(40)}} (3.23) = .018$$

Sumbu-sumbu tersebut teletak sepanjang $\underline{\mathbf{e}}_1' = [.704, .710]$ dan $\underline{\mathbf{e}}_2' = [-.710, .704]$

Menggambar Ellips Kepercayaan

Menggambar Elips Kepercayaan

- Selang kepercayaan simultan Selang kepercayaan simultan (1- α)100% untuk $\frac{\mu}{2}$ artinya selang kepercayaan ini berlaku utnuk seluruh kombinasi linier dari x yang diamati.
- Konsepnya menggunakan ragam bersama, sebaran bersama.

$$\underline{\ell'}\underline{\overline{x}} \pm cS_{\underline{\ell'}\underline{\overline{x}}}$$

dimana
$$c = \sqrt{\frac{(n-1)p}{(n-p)}} F_{(\alpha;p,n-p)}$$

$$S_{\underline{\ell}'\underline{x}} = \sqrt{\frac{1}{n}\,\underline{\ell}'S\,\underline{\ell}}$$

Penentuan Nilai ℓ'

- Misal selang kepercayaan simultan untuk setiap parameter dari peubah x_1 dan x_2
 - untuk μ_1 $1 \mu_1 + 0 \mu_2 = (1 0) \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ $\underline{\ell'}$

- untuk
$$\mu_2$$
0 μ_1 + 1 μ_2 = (0 1) $\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$

Selang Kepercayaan Bonferroni

- Konsepnya mirip dengan selang kepercayaan pada kasus univariat.
- Dalam selang kepercayaan bonferroni nilai α dibagi dengan banyaknya selang kepercayaan yang ingin dibuat.
- Secara umum dapat dituliskan:

$$x_i \pm t_{n-1} \left(\frac{\alpha}{2p}\right) \sqrt{\frac{S_{ii}}{n}}, \quad i = 1, 2, ..., p$$

dimana p = banyaknya peubah S_{ii} = ragam peubah ke-i

