VE 216 Signals & Systems

Lab Introduction

ZHU Yilun

Spring, 2020

Note: lab intro revised from slides by previous TAs

Outline

- Policy
- Lab content
 - Labone
 - Lab two
 - Lab three
- Q & A

General Policy: TBD

- Online (use Pretuos software) vs. Offline
- Individual vs. Group
- Time Arrangement

Grading Policy

- Labs will take 15% of overall grading
 - 5% for each lab
 - 3% depends on your in-lab performance
 - Attendance
 - Finish the experiment process (follow Lab Manual)
 - 2% depends on your pre/post lab report
- All detailed experiment procedural instructions are to be posted

Grading Policy

- Contents to be included in your pre-lab report
 - Solutions for (possibly) selected pre-lab exercises
- Contents to be included in your post lab report
 - Objectives
 - Theoretical background
 - Experiment procedures
 - Results (Figures)
 - Error analysis (Comparison with theoretical results)
 - Conclusion
 - No need to be so comprehensive as that in VP141/241

Lab 1 Content

- Lab One
- RC circuit
 - Step response
 - Pulse response
 - Ramp response
 - Sine response

$$+ \circ \longrightarrow R$$
 $V_{in}(t)$
 $C \longrightarrow V_{out}(t)$

$$RC\frac{dV_{out}(t)}{dt} + V_{out}(t) = V_{in}(t).$$

$$V_{out}(t) = V_0 e^{-t/RC} + \int_0^t \frac{1}{RC} e^{-(t-\tau)/RC} V_{in}(\tau) d\tau, \quad t \ge 0,$$

Lab one

- Step response $y_{\text{step}}(t) = \left(1 e^{-t/RC}\right) u(t)$
- Impulse response $h(t) = \frac{1}{RC}e^{-t/RC}$
- Ramp response

Lab 2 Content

- Lab Two: AM Radio
 - Will work on the receiver part
 - Overview:

Figure 3.5.1: AM Radio With "Special" Mixer

Image from UM PreLab 3

Unfortunately...

- Antenna is not available...
- Thus no use for Front-end Resonator, Mixer and IF Filter (only be discussed in your PreLabs).
- We will realize the Envelope Detector and the Amplifier.

AM: Time-domain Illustration

 $\mathbf{x}(t)$:

• $x(t)\cos(\omega_c t)$:

Freq. seems higher!

Time-domain Illustration

 $\mathbf{x}(t)$:

• $x(t)\cos(\omega_c t)$:

Freq. seems higher!

Frequency-domain Illustration

The frequency band has been shifted!

Demodulation

- Obviously, we need to recover (shift back) our signal to "baseband" so that they can be "heard" by us
- How?
 - Interestingly, the easiest way is to again multiply our "modulated" signal with $\cos{(\omega_c t)}$!

Demodulation: Illustration

■ Then we just need to low-pass filtering $W(\omega)$!

Demodulation in Real Life

- There are some practical problems if we directly shift our modulated signal back to baseband (centered at $\omega = 0$). (skip)
- In practice we first shift the signal to a lower frequency band (say, centered at $\omega_{IF} = 100kHz$). Then instead of low-pass filtering, we use a IF (bandpass) filter to get rid of the "image" bands.

IF Bandpass Filter: Illustration

 $-f_{LO} - f_c = -2f_c + f_{IF}$

±f_c: Center Freq. for modulated

signal

Figure 2.4.2: Using LO to Mix into IF Band when $f_{LO} = f_c - f_{IF}$

Figure 2.4.3: Using LO to Mix into IF Band when $f_{LO} = f_{IF} + f_c$

Envelope Detector

• You may notice that instead of directly obtaining our original signal in the first case, the output of the IF filter is still in the form $x(t)\cos(w_{IF}t)$: (in a highfreq. band)

We need to further "demodulate" it!

Envelope Detector

- The "brutal but smart" way: envelope detector.
- Based on the observation that the "envelope" of our modulated signal is (almost) what we want.

Image from UM PreLab 3

Envelope Detector: Principles

- Diode: conduct (like a wire) when voltage higher at the anode side. / No current at all when voltage higher at the cathode side.
- Capacitor: always prevent voltage changing abruptly (slowly discharge if C large)
- In one cycle, The diode conducts only during ∆T (Capacitor charging).
- Otherwise, Capacitor discharging. (See blackboard.)

Envelope Detector: Principles

■ If the time constant (discharging period) of the RC combination is much longer than signal period, the output willapproximately become the envelope and we obtain the "demodulated signal".

Problem with Envelope detectors

What will the output of the envelope detector be?

Unfortunately, The absolute value of our initial signal!

• However, we could solve the problem by adding a DC bias to our original signal (x(t) + A) before modulation, so that x(t) + A is always kept greater than zero.

Adding a DC Bias

- By keeping our signal before modulation positive, we could therefore fully recoverthis signal from an envelopedetector.
- Then we just use a capacitor to get rid of the additional DC bias!

Sample Results: Envelope Detector

Image from Ve216 Lab Introduction SU 2014

Sample Results: Amplifier

Image from Ve216 Lab Introduction SU 2014

Lab 2 Summary

- Prelab:
 - Lots of analysis on hardware, don't be too anxious about it
 - Contents on demodulation are very useful (actually I understood demodulation only after I have completed Prelab2)
- Lab process
 - I expect to build a "radio" to receive from radio station, e.g.: AM792 (kHz)
 - But no antenna available, so let's see a video!
 - MIT Video Lecture 14 (30:10 33:00 min)
 - Only need to build Envelop Detector, Amplifier

Lab 3 Content

- Lab Three: Feedback Control
- Overview:

Plant: the system to be controlled

Feedback Control

Key Elements:

- A measured Quantity that is to be regulated to a desired value—output
- An input—Can be varied so as to drive the output to desired value
- Controller—Determine how to adjust the input
- Plant—Whose output we want to control

Example: The Inverted Pendulum

https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/video-lectures/lecture-26-feedback-example-the-inverted-pendulum/

PID Feedback Control

PID Feedback Control

- P—Proportional
- I—Integral
- D—Differential

 Adjust the coefficient term to get a desired performance.

More Details will be covered in VE460

Come Back to This Lab

Plant

Proportional Controller

Figure 3.2.1: Proportional Controller

Differential Controller

Figure 3.2.2: Differential Controller

Integral Controller

Figure 3.2.3: Integral Controller

PID Controllers

• Proportional controller (Fig. 3.2.1):

$$\frac{V_o(s)}{V_i(s)} = K_p \text{ where } K_p = -\frac{R_f}{R_1}$$

• Differentiator controller (Fig. 3.2.2):

$$\frac{V_o(s)}{V_i(s)} = K_D s$$
 where $K_D = -RC$

• Integral controller (Fig. 3.2.3):

$$\frac{V_o(s)}{V_i(s)} = \frac{K_I}{s}$$
 where $K_I = -\frac{1}{RC}$

2-Degrees of Freedom PD Controller

$$C_1(s) = K_p \text{ and } C_2(s) = KDs$$

Figure 3.3.1: Two-Degree of Freedom Controller

Lab Circuitry

Figure 3.5.1: Op-Amp Realization of PD Controller with 2-Degrees of Freedom

Analysis

$$Y_B(s) = -X(s)$$

$$Y_C(s) = Y(s)$$

So at node A, we can get

$$\frac{-X(s)}{R_2} + \frac{Y(s)}{R_2} + Y(s)sC = \frac{-W(s)}{R_3}$$

$$W(s) = \frac{R_3}{R_2}(X(s) - Y(s)) - sCR_3Y(s)$$

So

$$K_P = \frac{R_3}{R_2}$$

$$K_D = CR_3$$

What You Wish vs. What You Get

- Need to add a capacitor to circuit
- Hope everything works fine in software

Example: The Inverted Pendulum

■ MIT Video Lecture 26 (29:30 – 33:30 min)