Critical Values of r When $\rho = 0$

The entries in this table are the critical values of r for a two-tailed test at α . For simple correlation, df = n-2, where n is the number of pairs of data in the sample. For a one-tailed test, the value of α shown at the top of the table is double the value of α being used in the hypothesis test.

\ α				
df	0.10	0.05	0.02	0.01
1	0.988	0.997	1.000	1.000
2	0.900	0.950	0.980	0.990
3	0.805	0.878	0.934	0.959
4	0.729	0.811	0.882	0.917
5	0.669	0.754	0.833	0.874
6.	0.621	0.707	0.789	0.834
7	0.582	0.666	0.750	0.798
8	0.549	0.632	0.716	0.765
9	0.521	. 0.602	0.685	0.735
10	0.497	0.576	0.658	0.708
11 -	0.476	0.553	0.634	0.684
12	0.458	0.532	0.612	0.661
13	0.441	0.514	0.592	0.641
14	0.426	0.497	0.574	0.623
15	0.412	0.482	0.558	0.606
16	0.400	0.468	0.542	0.590
17	0.389	0.456	0.528	0.575
18	0.378	0.444	0.516	0.561
19	0.369	0.433	0.503	0.549
20	0.360	0.423	0.492	0.537
25	0.323	0.381	0.445	0.487
30	0.296	0.349	0.409	0.449
35	0.275	0.325	0.381	0.418
40	0.257	0.304	0.358	0.393
45	0.243	0.288	0.338	0.372
50	0.231	0.273	0.322	0.354
60	0.211	0.250	0.295	0.325
70	0.195	0.232	0.274	0.302
80	0.183	0.217	0.256	0.283
90	0.173	0.205	0.242	0.267
100	0.164	0.195	0.230	0.254

From E. S. Pearson and H. O. Hartley, *Biometrika Tables for Statisticians*, vol. 1 (1962), p. 138. Reprinted by permission of the Biometrika Trustees.

For specific details about using this table to find: p-values, see pages 706-707; critical values, page 707.