Khôlles de Mathématiques - Semaine 20

Hugo Vangilluwen, George Ober, Kylian Boyet

10 Mars 2024

Eléments inversibles de l'anneau $\mathbb{K}[X]$

$$\mathbb{K}[X]^{\times} = \left\{ \lambda X^0, \lambda \in \mathbb{K}^* \right\} \tag{1}$$

Démonstration. Soit P un élément inversible de $\mathbb{K}[X]$. Alors $\exists Q \in \mathbb{K}[X] : P \cdot Q = Q \cdot P = 1_{\mathbb{K}[X]}$. En prenant les degrés des polynômes, deg $P + \deg Q = 0$.

Or deg : $\mathbb{K}[X] \to \mathbb{N}$ donc deg $P = \deg Q = 0$. Donc $\exists \lambda \in \mathbb{K}^* : P = \lambda$.

Ainsi $\mathbb{K}[X]^{\times} \subset \{\lambda X^{0}, \lambda \in \mathbb{K}^{*}\}.$ Soit $\lambda \in \mathbb{K}^{*}$. Considérons $P = \lambda$. Posons $Q = \lambda^{-1}$ (car \mathbb{K} est un corps). $P \cdot Q = \lambda \lambda^{-1} = 1$ et $Q \cdot P = \lambda^{-1}\lambda = 1$ donc P est inversible. Ainsi $\{\lambda X^{0}, \lambda \in \mathbb{K}^{*}\} \subset \mathbb{K}[X]^{\times}$.

2 Théorème d'interpolation de lagrange

Le problème d'interpolation de Lagrange est, pour $n \in \mathbb{N}$ avec $a \in \mathbb{K}^{n+1}$ et $b \in \mathbb{K}^{n+1}$, l'ensemble des polynômes passant par tous les points de coordonnée (a_i, b_i) . C'est-à-dire l'ensemble des $P \in \mathbb{K}[X]$ vérifiant :

$$\forall i \in [0; n], P(a_i) = b_i \tag{2}$$

Il existe une unique solution P de degré $\leq n$ au problème d'interpolation de lagrange, et elle s'exprime de la manière suivante en posant

$$L_{i} = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{X - a_{j}}{a_{i} - a_{j}} \tag{3}$$

$$P = \sum_{i=0}^{n} b_i L_i \tag{4}$$

Démonstration. — Unicité

Supposons qu'il existe $(P,Q) \in \mathbb{K}_n[X]^2$ solutions du problème d'interpolation.

Alors $\forall i \in [0, n], \tilde{P}(a_i) = \tilde{Q}(a_i) = b_i$

Posons H = P - Q, alors, $\forall i \in [0, n], \tilde{H}(a_i) = \tilde{P}(a_i) - \tilde{Q}(a_i) = 0$.

De plus, $\deg H = \deg(P - Q) \leq \max \{\deg P, \deg Q\}$

Donc H est un polynôme de degré $\leq n$ avec |[0, n]| = n + 1 racines.

Donc H est le polynôme nul.

Existence Soit $i \in [0, n]$ fq Notons L_i une solution de degré $\leq n$ au problème Pb_i suivant :

$$(Pb_i) \begin{cases} \tilde{P}(a_0) = 0 \\ \vdots \\ \tilde{P}(a_{i-1}) = 0 \\ \tilde{P}(a_i) = 1 \\ \tilde{P}(a_n) = 0 \\ \vdots \\ \tilde{P}(a_n) = 0 \end{cases}$$

On remarque que $(a_0, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ sont n racines deux à deux distinctes de L_i . Or L_i est de degré $\leq n$ et n'est pas le polynôme nul $(\operatorname{car} \tilde{L}_i(a_i) = 0)$ donc $(a_0, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ sont les seules racines de L_i , toutes simples.

Dès lors,

$$\exists c \in \mathbb{K}^* : L_i = c \prod_{\substack{j=0\\j \neq i}}^n (X - a_j)$$

Pour trouver le c, remarquons que

$$\tilde{L}_i(a_i) = 1 \iff c \prod_{\substack{j=0\\j\neq i}}^n (a_i - a_j) = 1$$

$$\iff c = \prod_{\substack{j=0\\j\neq i}}^n \left(\frac{1}{a_i - a_j}\right)$$

Ainsi, s'il existe une solution au problème Pb_i c'est nécéssairement

$$L_i = \prod_{\substack{j=0\\j\neq i}}^n \left(\frac{X - a_j}{a_i - a_j}\right)$$

Réciproquement, cette solution est correcte puisque

$$\forall k \in [0, n], k \neq i, \tilde{L}_i(a_k) = \prod_{\substack{j=0\\j \neq i}}^n \left(\underbrace{a_k - a_j}_{a_i - a_j} \right) = 0$$

Et

$$\tilde{L}_i(a_i) = \prod_{\substack{j=0\\j\neq i}}^n \left(\frac{a_i - a_j}{a_i - a_j}\right) = \prod_{\substack{j=0\\j\neq i}}^n 1 = 1$$

Posons donc $P = \sum_{i=0}^{n} b_i Li$. Alors, par construction,

$$\forall k \in [0, n], \tilde{P}(a_k) = \sum_{i=0}^{n} \left(b_i \prod_{\substack{j=0 \ j \neq i}}^{n} \left(\frac{a_k - a_j}{a_i - a_j} \right) \right) = \sum_{i=0}^{n} \left(b_i \delta_{ki} \right) = b_k \delta_{kk} = b_k$$

Nous avons donc construit une solution unique au problème d'interpolation de Lagrange

3 Formule de Taylor dans $\mathbb{K}[X]$ (caractéristique nulle)

Soient P à coefficients dans \mathbb{K} et $a \in \mathbb{K}$. On a :

$$P = \sum_{n \in \mathbb{N}} \frac{\widetilde{P^{(n)}}(a)}{n!} (X - a)^n \tag{5}$$

Démonstration. Considérons le prédicat $\mathcal{P}(\cdot)$ défini sur \mathbb{N} par :

$$\mathcal{P}(n)$$
: " $\forall P \in \mathbb{K}_n[X], P = \sum_{k=0}^n \frac{\widetilde{P^{(k)}}(a)}{k!} (X-a)^k$ "

Initialisation : pour n = 0, soit $P \in \mathbb{K}_0[X]$.

$$\exists p_0 \in \mathbb{K} : P = p_0 X^0 \text{ et } \sum_{k=0}^0 \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k = \frac{\widetilde{P^{(0)}}(a)}{1} X^0 = p_0 X^0, \text{ donc } \mathcal{P}(0) \text{ vrai.}$$

Hérédité : Soit $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$. Soit $P \in \mathbb{K}_{n+1}[X]$. On a donc $\deg P' = \deg P - 1 \leq n$ donc $\mathcal{P}(n)$ s'applique à P' :

$$P' = \sum_{k=0}^{n} \frac{\widetilde{P'(k)}(a)}{k!} (X - a)^k = \left(\sum_{k=0}^{n} \frac{\widetilde{P(k+1)}(a)}{k!} \frac{(X - a)^{k+1}}{k+1} \right)',$$

donc:

$$\left(P - \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{k!} \frac{(X-a)^{k+1}}{k+1}\right)' = 0 \implies \exists \ \mu \in \mathbb{K} : \ P - \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{k!} \frac{(X-a)^{k+1}}{k+1} = \mu,$$

ainsi:

$$P = \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{(k+1)!} (X-a)^{k+1} + \mu = \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X-a)^{k} + \mu,$$

donc en a par φ_a :

$$\widetilde{P}(a) = \mu \implies P = \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k + \widetilde{P}(a) = \sum_{k=0}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k,$$

donc $\mathcal{P}(n+1)$ vrai. Ainsi par théorème de récurrence sur \mathbb{N} , $\mathcal{P}(n)$ est vrai pour tout $n \in \mathbb{N}$. \square

4 Caractérisation de la multiplicité d'une racine

Soit $P \in \mathbb{K}[X]$. Soit $a \in \mathbb{K}$.

$$a \text{ est une racine de } P \text{ de multiplicit\'e au moins } m \iff \begin{cases} P(a) = 0 \\ P'(a) = 0 \\ \dots \\ P^{(m-1)}(a) = 0 \end{cases} \tag{6}$$

$$a \text{ est une racine de } P \text{ de multiplicit\'e d'exactement } m \iff \begin{cases} P(a) = 0 \\ P'(a) = 0 \\ \dots \\ P^{(m-1)}(a) = 0 \\ P^{m}(a) \neq 0 \end{cases}$$
 (7)

Démonstration. • Supposons que a est une racine de P de multiplicité au moins m. Alors $\exists Q \in \mathbb{K}[X] : P = (X - a)^m Q$. D'après la formule de Leibniz, pour tout $k \in [0; m - 1]$,

$$\begin{split} P^{(k)} &= \sum_{i=0}^k \binom{k}{i} \left((X-a)^m \right)^{(k-i)} Q^{(i)} \\ &= \sum_{i=0}^k \binom{k}{i} \frac{m!}{(m-(k-i))!} (X-a)^{m-(k-i)} Q^{(i)} \\ &= \underbrace{(X-a)^{(m-k)}}_{\text{c'est un bien un polynôme}} \sum_{i=0}^k \binom{k}{i} \frac{m!}{(m-(k-i))!} (X-a)^i Q^{(i)} \end{split}$$

Donc $\forall k \in [0; m-1], P^{(k)}(a) = 0.$

• Supposons que $\forall k \in [0; m-1], P^{(k)}(a) = 0$. Appliquons la formule de Taylor a.

$$P = \sum_{n \in \mathbb{N}} \frac{P^{(n)}(a)}{n!} (X - a)^n$$

$$= \sum_{n=0}^{m-1} \underbrace{\frac{P^{(n)}(a)}{n!}}_{=0} (X - a)^n + \sum_{\substack{n \in \mathbb{N} \\ n \geqslant m}} \frac{P^{(n)}(a)}{n!} (X - a)^n$$

$$= (X - a)^m \sum_{\substack{n \in \mathbb{N} \\ n \geqslant m}} \frac{P^{(n)}(a)}{n!} \underbrace{(X - a)^{n-m}}_{\in \mathbb{K}[X] \ car \ n - m \in \mathbb{N}}$$

Donc $(X-a)^m|P$. Donc a est racine de P de multiplicité au moins m.

• Supposons que a est une racine de P de multiplicité exactement m. Nous pouvons appliquer le point précédent car la multiplicité est supérieur à m: $\forall k \in [0; m-1], P^{(k)}(a) = 0$.

Par l'absurde, si $P^{(m)}(a) = 0$ alors le point précédent donne que a a une multiplicité supérieur à m+1 donc $m \ge m+1$ ce qui est une contradiction.

Par conséquent, $P^{(m)}(a) \neq 0$.

• Supposons $\forall k \in [0; m-1], P^{(k)}(a) = 0$ et $P^{(m)}(a) \neq 0$. En reprenant le calcul précédent, pour k = m, en sachant que $(X - a)^{(m-k)} = X^0$,

$$P^{(m)} = {m \choose 0} \frac{m!}{0!} (X - a)^0 P + \sum_{i=1}^m {m \choose i} \frac{m!}{i!} (X - a)^i Q^{(i)}$$

D'où $P^{(m)}(a)=m!$ Q(a) donc $Q(a)=\frac{P^{(m)}(a)}{m!}$. Donc $Q(a)\neq 0$. Par l'absurde, supposons que $(X-a)^{m+1}|P$. Alors $\exists R\in\mathbb{K}[X]:P=(X-a)^{m+1}R$. Donc $(X-a)^{m+1}R=(X-a)^mQ$ d'où Q=(X-a)R. Nous obtenons Q(a)=0 ce qui est une contradiction avec Q(a)=0.

Donc a est une racine de P de multiplicité strictement inférieur à m+1 et, d'après le point précédent, supérieur à m. Donc a est une racine de P de multiplicité exactement m.

5 Identification de $\mathbb{K}[X]$ à $\mathbb{K}[x]$, par l'injectivité de Φ

 $D\acute{e}monstration$. Montrons que l'application Φ définie comme suit est injective :

$$\Phi: \left| \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathcal{F}(\mathbb{K}, \mathbb{K}) \\ P & \longmapsto & \widetilde{P} \end{array} \right..$$

Soit donc $P \in \ker \Phi$, on a :

$$\Phi(P) = \widetilde{0} \implies \widetilde{P} = \widetilde{0} \text{ sur } \mathbb{K} \implies P = 0_{\mathbb{K}[X]},$$

donc $\ker \Phi \subset \{0_{\mathbb{K}[X]}\}.$

Réciproquement, on calcule l'image du polynôme nul par Φ :

$$\Phi(0_{\mathbb{K}[X]}) = \widetilde{0},$$

donc $0_{\mathbb{K}[X]} \in \ker \Phi$, ainsi on a l'égalité ensembliste et donc cela suffit.

6 Pour $P = (X - x_1)(X - x_2)(X - x_3)$, exprimer $x_1^3 + x_2^3 + x_3^3$ en fonction des fonctions symétriques élémentaires

Les fonctions symétriques élémentaires $(\sigma_k)_{k \in [0:n]}$ pour une famille $(x_k)_{k \in [1:n]}$ sont définies par

$$\sigma_k = \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} \prod_{j=1}^k x_{i_j} \tag{8}$$

П

Démonstration. Sous forme développée, $P = X^3 - (x1 + x_2 + x_3)X^2 + (x_1x_2 + x_1x_3 + x_2x_3)X - x_1x_2x_3 = X^3 - \sigma_1X^2 + \sigma_2X - \sigma_3$. Comme x_1, x_2, x_3 sont racines de P, nous avons les trois égalité suivantes :

$$0 = P(x_1) = x_1^3 - \sigma_1 x_1^2 + \sigma_2 x_1 - \sigma_3$$

$$0 = P(x_1) = x_2^3 - \sigma_1 x_2^2 + \sigma_2 x_2 - \sigma_3$$

$$0 = P(x_1) = x_3^3 - \sigma_1 x_3^2 + \sigma_2 x_3 - \sigma_3$$

En sommant ces trois équation,

$$0 = x_1^3 + x_2^3 + x_3^3 - \sigma_1(x_1^2 + x_2^2 + x_3^2) + \sigma_2(x_1 + x_2 + x_3) - 3\sigma_3$$

Cherchons la somme des carrés.

$$(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

$$\implies x_1^2 + x_2^2 + x_3^2 + x_1x_2 = \sigma_1^2 - 2\sigma_2$$

Ainsi

$$x_1^3 + x_2^3 + x_3^3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3$$

7 Expression de S_2 , S_{-1} et S_{-2} à l'aide des fonctions élémentaires symétriques.

Les sommes de Newton $(S_k)_{k\in\mathbb{Z}^*}$ pour une famille $(x_k)_{k\in\mathbb{N}^*}$ sont définies par (sous réserve d'existence pour k<0) :

$$S_k = \sum_{i=1}^n x_i^k \tag{9}$$

Démonstration.

$$\sigma_{1}^{2} = \left(\sum_{i=1}^{n} x_{i}\right)^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} x_{i} x_{j}$$

$$\implies S_{2} = \sigma_{1}^{2} - 2\sigma_{2}$$

$$S_{-1} = \sum_{i=1}^{n} \frac{1}{x_{i}} = \frac{\sum_{i=1}^{n} \prod_{\substack{j=1 \ j \neq i \ j \neq i}}^{n} x_{j}}{\prod_{i=1}^{n} x_{i}} = \frac{\sigma_{n-1}}{\sigma_{n}}$$

$$S_{-2} = \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$$

$$= \left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{2} - 2 \sum_{1 \leq i < j \leq n} \frac{1}{x_{i}} \frac{1}{x_{j}}$$

$$= \frac{\sigma_{n-1}^{2}}{\sigma_{n}^{2}} - 2 \frac{\sum_{1 \leq i < j \leq n} \prod_{\substack{k=1 \ k \notin \{i,j\}}}^{n} \frac{1}{x_{j}}}{\sigma_{n}}$$

$$= \frac{\sigma_{n-1}^{2} - 2\sigma_{n-2}\sigma_{n}}{\sigma_{n}^{2}}$$