DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SUBJECT CODE: 19CS2109 COMPUTER NETWORKS AND SECURITY

ERROR DETECTION#2

Date of the Session://	Time of the Session:to
T	

Learning outcomes:

- General idea of what Error Control is. [stanford.edu]
- Understand the Error Detection methods like CRC and parity.

IN-TUTORIAL:

1. The message 110010011 is to be transmitted using the generator polynomial x³+1 to protect it from errors. Find the final data to be transmitted after performing CRC. Also check for errors on the received data using CRC.

Solution:

- 2. A bitstream 10011101 is transmitted using the standard CRC method. The generator polynomial is x^3+1
 - a. What is actual bit string transmitted?
 - b. Suppose the third bit from the left is inverted during transmission. How will receiver detect the error?

Solution:

2. Bit stream - 10011101

Generator polynomial =
$$x^3 + 1$$

= $1.x^3 + 0.x^4 + 0.x^4 + 1.x$

Generator - 1001

Message after adding 3 zero bits

10011101000

- a) Actual bit string transitted-10011101100
- b) Inverted third bit from left 10011101000

POST-TUTORIAL:

1. Consider the message M=101001011 and do the Cyclic Redundancy check for the above message using the following divisor polynomial $x^5 + x^3 + x^2 + 1$.

Solution:

10100101111100

190031187

NERELLA VENKATA RADHAKRISHNA

2. For the given message 11011101, find the even and odd parity and then write a python code.

Solution:

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation Marks Secured: out of
	Full Name of the Evaluator:
	Signature of the Evaluator Date of Evaluation: