so that the objective function $J(w, \epsilon, \xi, b, \eta)$ is given by

$$J(w, \epsilon, \xi, b, \eta) = \frac{1}{2} w^{\top} w + (p+q) K_s \left(-\nu \eta + \frac{1}{p+q} \begin{pmatrix} \epsilon^{\top} & \xi^{\top} \end{pmatrix} \mathbf{1}_{p+q} \right).$$

Since we obtain an equivalent problem by rescaling by a common positive factor, theoretically it is convenient to normalize K_s as

$$K_s = \frac{1}{p+q},$$

in which case $K_m = \nu$. This method is called the ν -support vector machine.

Under the **Standard Margin Hypothesis** for (SVM_{s2'}), there is some support vector u_{i_0} of type 1 and some support vector v_{j_0} of type 1, and by the complementary slackness conditions $\epsilon_{i_0} = 0$ and $\xi_{j_0} = 0$, so we have the two active constraints

$$w^{\top}u_{i_0} - b = \eta, \quad -w^{\top}v_{j_0} + b = \eta,$$

and we can solve for b and η and we get

$$b = \frac{w^{\top}(u_{i_0} + v_{j_0})}{2}$$
$$\eta = \frac{w^{\top}(u_{i_0} - v_{j_0})}{2}.$$

Due to numerical instability, when writing a computer program it is preferable to compute the lists of indices I_{λ} and I_{μ} given by

$$I_{\lambda} = \{i \in \{1, \dots, p\} \mid 0 < \lambda_i < K_s\}, \qquad I_{\mu} = \{j \in \{1, \dots, q\} \mid 0 < \mu_j < K_s\}.$$

Then b and η are given by the following averaging formulae:

$$b = w^{\top} \left(\left(\sum_{i \in I_{\lambda}} u_i \right) / |I_{\lambda}| + \left(\sum_{j \in I_{\mu}} v_j \right) / |I_{\mu}| \right) / 2$$
$$\eta = w^{\top} \left(\left(\sum_{i \in I_{\lambda}} u_i \right) / |I_{\lambda}| - \left(\sum_{j \in I_{\mu}} v_j \right) / |I_{\mu}| \right) / 2.$$

Proposition 54.1 yields bounds on ν for the method to converge, namely

$$\max\left\{\frac{2p_f}{p+q}, \frac{2q_f}{p+q}\right\} \le \nu \le \min\left\{\frac{2p_m}{p+q}, \frac{2q_m}{p+q}\right\}.$$