

Mehrgitter-Verfahren gemischter Genauigkeit auf **GPUs**

Daniel Fink Vortrag

Bachelorarbeit

31. Oktober 2019

Agenda

- Motivation
- Zielsetzung
- Mehrgitterverfahren
- Gemischt genaue Mehrgitterverfahren
 - Theoretischer Speed-Up
 - Fehlerentwicklung
 - Experimenteller Speed-Up
- Fazit und Ausblick

- Was bedeutet gemischte Genauigkeit?
- → Verwendung unterschiedlicher Datentypen für geringere(n)
- Welche Datentypen gibt es?

Ausführungszeit
Speicherbedarf
Kommunikationsaufwand

Double	Single	Half
64 Bit lang $\epsilon \approx 10^{-16}$	32 Bit lang $\epsilon \approx 10^{-8}$	GE Bit lang

NVIDIA Tesla V100:

- Anwendungsbereich: Simulationen (Lösen von PDEs, ODEs, ...)
- Hier: Poisson-Gleichung

$$-\triangle\,u=f\quad\text{in}\quad\Omega=(0,1)\times(0,1)$$

$$u=g\quad\text{auf}\quad\partial\Omega$$
 wobei $u\in\mathcal{C}^2$ und $f,g\in\mathcal{C}$

- Anwendungsbereich: Simulationen (Lösen von PDEs, ODEs, ...)
- Hier: Poisson-Gleichung

$$-\triangle u = f \quad \text{in} \quad \Omega = (0,1) \times (0,1)$$
$$u = g \quad \text{auf} \quad \partial \Omega$$
wobei $u \in C^2$ und $f, g \in C$

- Vorgehen:
 - Diskretisieren (Hier: Finite Differenzen)

- Anwendungsbereich: Simulationen (Lösen von PDEs, ODEs, ...)
- Hier: Poisson-Gleichung

$$-\triangle u = f \quad \text{in} \quad \Omega = (0,1) \times (0,1)$$
$$u = g \quad \text{auf} \quad \partial \Omega$$
wobei $u \in C^2$ und $f, g \in C$

- Vorgehen:
 - Diskretisieren (Hier: Finite Differenzen)
 - \rightarrow (dünnbesetztes) Gleichungssystem Au = f

Systemmatrix $A \in \mathbb{R}^{n^2 \times n^2}$

- Anwendungsbereich: Simulationen (Lösen von PDEs, ODEs, ...)
- Hier: Poisson-Gleichung

$$-\triangle u = f \quad \text{in} \quad \Omega = (0,1) \times (0,1)$$
$$u = g \quad \text{auf} \quad \partial \Omega$$
wobei $u \in C^2$ und $f, g \in C$

- Vorgehen:
 - Diskretisieren (Hier: Finite Differenzen)
 - \rightarrow (dünnbesetztes) Gleichungssystem Au = f
 - Lösen mittels Mehrgitterverfahren
 - Hierarchischer Aufbau → gemischte Genauigkeit

Systemmatrix $A \in \mathbb{R}^{n^2 \times n^2}$

Zielsetzung

- Mehrgitterverfahren mit Double, Single und Half
- Problem wird in doppelter Genauigkeit gestellt
- Lösung soll am Ende in doppelter Genauigkeit vorliegen
- Vergleich mit MG-Verfahren in Double
- → Fehlerentwicklung und Ausführungszeit

Mehrgitterverfahren

Gemischte genaue MG-Verfahren

Horizontal-Verfahren

- V-Zyklus → Verbesserte Startlösung
- Ohnehin mehrere Iterationen notwendig
- → Half/Single-MG als Vorkonditionierer
- Wann ändert man den Datentyp?
- → Konvergenzrate oder feste Vorgabe

Zwei Verfahren

Single/Double → H2SMG-Verfahren

Half/Single/Double → H3SMG-Verfahren

Vertikal-Verfahren

- Größerer Diskretisierungsfehler auf groben Gittern
- → Double viel zu genau
- Wann ändert man den Datentyp?
- → Feste Vorgabe der einzelnen Level

Zwei Verfahren

Single/Double → V2SMG-Verfahren

Half/Single/Double → V3SMG-Verfahren

MG-Verfahren in Double

MG-Verfahren in Single

MG-Verfahren in Half

Ausführungszeiten MG-Verfahren

Theoretischer Speed-Up

H2SMG (Single/Double)

Speed-Up hängt maßgeblich ab von

$$\alpha = \frac{\textit{Anzahl Single - Iterationen}}{\textit{Anzahl gesamter Iterationen}}$$

•
$$Speed - Up = \frac{d_{T_{vz}}}{\alpha ST_{vz} + (1-\alpha)} \frac{d_{T_{vz}}}{d_{T_{vz}}}$$

		Problemgröße		
		8 12		
	1,00	1,88	1,85	
	0,75	1,54	1,53	
α	0,50	1,30	1,30	
	0,25	1,13	1,13	

H3SMG (Half/Single/Double)

Speed-Up hängt maßgeblich ab von α und

$$\beta = \frac{Anzahl\ Half-Iterationen}{Anzahl\ gesamter\ Iterationen}$$

• Speed –
$$Up = \frac{d_{T_{vz}}}{\beta h_{T_{vz}} + \alpha ST_{vz} + (1 - \alpha - \beta) d_{T_{vz}}}$$

		Problemgröße	
		8 12	
	(1,0;0,0)	3,34	3,24
	(0,8 ; 0,2)	2,89	2,82
(α;β)	(0,6;0,2)	2,06	2,03
	(0,4;0,4)	1,88	1,85
	(0,2 ; 0,6)	1,73	1,71

H2SMG-Verfahren

H2SMG-Verfahren

H2SMG-Verfahren

Level	Exp. Speed-Up	Theo. Speed-Up	$ \Delta_{rf} $
6	1,05	1,58	8,80E-08
8	1,07	1,56	8,72E-07
10	1,09	1,33	2,29E-07
12	1,25	1,24	2,22E-07

H3SMG-Verfahren

H3SMG-Verfahren

Level	Exp. Speed-Up	Theo. Speed-Up	$ \Delta_{rf} $
6	1,05	1,87	5,73E-08
8	1,06	1,81	5,23E-06

Theoretischer Speed-Up

V2SMG (Single/Double)

Speed-Up hängt maßgeblich ab von

 k_s = Level des Wechsels von Single auf Double

•
$$Speed - Up = \frac{d_{T_{vz}}}{ds_{T_{vz}}(k_s)}$$

		Problemgröße	
		8	12
	12		1,90
	11		1,13
	10		1,03
$ k_s $	9		1,00
	8	1,91	
	7	1,14	
	6	1,03	

V3SMG (Half/Single/Double)

- Speed-Up hängt maßgeblich ab von k_s und $k_h = Level \ des \ Wechsels \ von \ Half \ auf \ Single$
- Speed $Up = \frac{d_{T_{vz}}}{dsh_{T_{vz}}(k_h,k_s)}$

		Problemgröße	
		8	12
	(12;11)		2,10
	(12;10)		1,95
	(11 ; 10)		1,15
$(k_s; k_h)$	(11 ; 9)		1,14
	(8;7)	2,27	
	(8;6)	2,13	
	(7;6)	1,30	

V2SMG-Verfahren

V2SMG-Verfahren

Konfiguration	Exp. Speed-Up	Theo. Speed-Up	$ \Delta_{rf} $
8d,7s	1,06	1,92	1,23E-12
10d,9 s	1,07	1,91	1,22E-12
12d,11s	1,21	1,90	1,30E-12

V3SMG-Verfahren

V3SMG-Verfahren

Konfiguration E	xp. Speed-Up	Theo. Speed-Up	$ \Delta_{rf} $
8d,7s,6h	1,06	2,27	6,76E-7
10d,9s,7h	1,07	1,96	5,14E-7
12d,11s,8h	1,20	1,91	3,04E-7

Fazit und Ausblick

Fazit

- Kaum Auswirkungen auf den relativen Fehler
- Diskretisierungsfehler verhält sich wie erwartet
- Lässt sich auf alle (F)-MG-Verfahren übertragen
- Sehr viel Potential f
 ür weitere Untersuchungen
- Abbruchkriterien für den Wechsel sind schwer zu definieren
- Problemgröße ist zum Teil eingeschränkt (H3SMG)
- Feintuning für die einzelnen Datentypen erforderlich
- Programmierung technisch deutlich aufwändiger

Ausblick

- Verwendung als gemischt genauer Vorkonditionierer
- Größerer Speed-Up für Mittelklasse-Grafikkarten
- Kombination mit emulierten Datentypen (z.B. Quadruple)
- Gemischt genauer 9-Punkte Stencil
- FPGAs mit beliebiger Genauigkeit
- LR-Zerlegung mit Tensor-Core auf unterstem Level

- Jinn-Liang Liu. Poisson's Equation in Electrostatics. http://www.nhcue.edu.tw/~jinnliu/proj/Device/3DPoisson.pdf. Abgerufen: Juni 2019.
- IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. http://www.dsc.ufcg.edu.br/~cnum/modulos/ Modulo2/IEEE754_2008.pdf. Abgerufen: Juni 2019.
- ufcg.edu.br/~cnum/modulos/Modulo2/IEEE754_2008.pdf. Abgerufen: Juni 2019. Thomas Jahn. "Implementierung numerischer Algorithmen auf CUDA-Systemen". Abgerufen: Juni 2019. Diplomarbeit. Universität Bayreuth.
- NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Programming Guide Vers http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_ Programming_Guide_1.0.pdf. Abgerufen: Mai 2019.
- The Khronos Group Inc. Khronos OpenCL Registry. https://www.khronos.org/registry/ OpenCL/. Abgerufen: Juni 2019.
- NVIDIA Corporation. Whitepaper NVIDIA's Next Generation CUDA™Compute Architecture: Fermi™. https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_ Compute_Architecture_Whitepaper.pdf. Abgerufen: Februar 2019.

- NVIDIA Corporation. NVIDIA Tesla V100 GPU Architecture. https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
 Abgerufen: Februar 2019.
- James H. Wilkinson. Rundungsfehler. pub-Springer:adr-B: pub-Springer, 1969.
- Cleve B. Moler. "Iterative Refinement in Floating Point". In: J. ACM 14.2 (Apr. 1967), S. 316–321. ISSN: 0004-5411. DOI: 10.1145/321386.321394. URL: http://doi.acm.org/10.1145/321386.321394.
- Alfredo Buttari et al. "Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems". In: The International Journal of High Performance Computing Applications 21.4 (2007), S. 457–466. DOI: 10.1177/1094342007084026. URL: https://doi.org/10. 1177/1094342007084026.
- Alfredo Buttari et al. "Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy". In: ACM Transactions on Mathematical Software 34 (Juli 2008). DOI: 10.1145/1377596.1377597.

- Dominik Göddeke, Robert Strzodka und Stefan Turek. "Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations". In: International Journal of Parallel, Emergent and Distributed Systems 22.4 (2007), S. 221–256. DOI: 10.1080/17445760601122076. URL: https://doi.org/10.1080/17445760601122076.
- Dominik Göddeke. Wissenschaftliches Rechnen. Vorlesungsskript. März 2017.
- Wolfgang Hackbusch. Multi-grid methods and applications. Springer, 1985.
- Dominik Göddeke. "Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations on GPU Clusters". Diss.
 Technische Universität Dortmund, Feb. 2010.
- NVIDIA Corporation. CUBLAS Library User Guide. https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf. Abgerufen: August 2019.
- NVIDIA Corporation. NVIDIA TESLA V100 GPU ACCELERATOR. https://images.nvidia. com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letterfnl-web.pdf. Abgerufen: Juni 2019
- NVIDIA Corporation. NVIDIA TESLA V100 GPU ACCELERATOR. https://www.anandtech.com/show/12576/nvidia-bumps-all-tesla-v100-models-to-32gb. Abgerufen: Juni 2019.

- T. Washio C.W. Oosterlee. On the Use of Multigrid as a Preconditioner. https://pdfs. semanticscholar.org/dcc1/9ad91450753e7f47157e323fade5c2b4e320.pdf. Abgerufen: Juli 2019.
- Osamu Tatebe. The Multigrid Preconditioned Conjugate Gradient Method. http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/research/paper/CM93-tatebe.pdf. Abgerufen: Juli 2019.

Bilder

- Scientific Datatype, https://cdn.icon-icons.com/icons2/539/PNG/512/atom_icon-icons.com_53030.png
- Graphical Datatype, https://icon-library.net/images/games-icon/games-icon-18.jpg
- Neural Network Datatype, https://icon-library.net/images/icon-artificial-intelligence/icon-artificial-intelligence-6.jpg
- Time Measurement, https://cdn2.iconfinder.com/data/icons/social-productivity-line-black-1/3/14-512.png
- Numerical Error, https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRF2dNX6SpaYge-O3CF-XLMrAI0I1hNNtXzwDAI4txzKA0EpuwH