Программная модель микропроцессора

Микропроцессор содержит 32 регистра.

- 16 пользовательских регистров;
- 16 системных регистров.

<u>Пользовательскими</u> называются регистры, которые используются при написании программ. Эти регистры делятся на:

- регистры данных;
- регистры указатели;
- сегментные регистры;
- регистр флагов;
- регистр указателя команды.

Системные регистры используются в защищенном режиме работы.

Регистры данных

Так как эти регистры физически находятся в микропроцессоре внутри арифметикологического устройства (АЛУ), то их еще называют *регистрами АЛУ*:

• eax/ax/ah/al (<u>Accumulator register</u>) — аккумулятор.

Применяется для хранения промежуточных данных. В некоторых командах

использование этого регистра обязательно;

• ebx/bx/bh/bl (<u>Base register</u>) — базовый регистр.

Применяется для хранения базового адреса некоторого объекта в памяти;

• ecx/cx/ch/cl (Count register) — регистр-счетчик.

Применяется в командах, производящих некоторые повторяющиеся действия.

• edx/dx/dh/dl (<u>Data register</u>) — регистр данных.

использование обязательно.

Так же, как и регистр аккумулятор, он хранит промежуточные данные. В некоторых командах его

Регистры указатели.

• esi/si (Source Index register) — индекс источника.

Этот регистр в цепочечных операциях содержит текущий адрес элемента в цепочке-

источнике;

• edi/di (<u>Destination Index register</u>) — индекс приемника (получателя).

Этот регистр в

цепочечных операциях содержит текущий адрес в цепочке-приемнике.

• esp/sp (<u>Stack Pointer register</u>) — регистр указателя стека.

Содержит указатель вершины стека в текущем сегменте стека.

• **ebp/bp** (<u>Base Pointer register</u>) — регистр указателя базы кадра стека.

Предназначен для организации произвольного доступа к

Сегментные регистры

Микропроцессор содержит шесть сегментных регистров: *cs, ss, ds, es, gs, fs*. Любая программа состоит из частей называемых *сегментами*. Для того чтобы указать на сегменты, к которым программа имеет доступ, предназначены *сегментные регистры*. В этих регистрах содержатся адреса памяти, с которых начинаются соответствующие сегменты. Логика обработки машинной команды построена так, что при выборке команды, доступе к данным программы или к стеку неявно используются адреса во вполне определенных сегментных регистрах. Микропроцессор поддерживает следующие типы сегментов:

- 1. *Сегмент кода*. Содержит команды программы. Для доступа к сегменту служит регистр **cs** (**code segment register**)
- 2. *Сегмент данных*. Содержит обрабатываемые программой данные. Для доступа к этому сегменту служит регистр ds (<u>data segment register</u>)
- 3. *Сегмент стека*. Работу со стеком микропроцессор организует по принципу: *последний записанный в эту область элемент выбирается первым*. Для доступа к этому сегменту служит регистр ss (stack segment register)
- 4. Дополнительный сегмент данных. Алгоритмы выполнения большинства машинных команд предполагают, что обрабатываемые ими данные расположены в сегменте данных, адрес которого находится в сегментном регистре ds. Если программе недостаточно одного сегмента данных, то можно использовать еще три дополнительных сегмента данных. Но в отличие от основного сегмента данных, адрес которого содержится в сегментном регистре ds, при использовании дополнительных сегментов данных их адреса требуется указывать явно. Адреса дополнительных сегментов данных должны содержаться в регистрах es, gs, fs (extension data segment registers).

Регистр флагов.

eflags/flags (flag register) — регистр *флагов*. Разрядность — 32/16 бит. Отдельные биты данного регистра называются флагами. Младшая часть этого регистра полностью аналогична регистру *flags* для i8086.

Флаги можно разделить на три группы:

- флаги состояния.
- флаг управления.
- системные флаги.

Флаги состояния.

Эти флаги могут изменяться после выполнения машинных команд и отражают особенности результата исполнения арифметических или логических операций. Это дает возможность анализировать состояние вычислительного процесса и реагировать

на него с помощью команд условных переходов и вызовов подпрограмм.

на него с помощью команд условных переходов и вызовов подпрограмм.						
Мнемон	Флаг	Номер	Содержание и назначение			
ика		бита в				
флага		eflags				
cf	Флаг	0	1 — арифметическая операция произвела перенос из			
	переноса		старшего бита результата. Старшим является 7, 15			
	(Carry Flag)		или 31-й бит в зависимости от размерности			
			операнда;			
			0 — переноса не было			
pf Флаг 2 1 — 8 младших р		1 - 8 младших разрядов (этот флаг — только для 8				
	паритета		младших разрядов операнда любого размера)			
	(Parity Flag)		результата содержат четное число единиц;			
			0 — 8 младших разрядов результата содержат			
			нечетное число единиц			
af	Вспомогател	4	Только для команд работающих с ВСД-числами.			
	ьный флаг		Фиксирует факт заема из младшей тетрады			
	переноса		результата:			
	(Auxiliary		1 — в результате операции сложения был			
	carry Flag)		произведен перенос из разряда 3 в старший разряд			
			или при вычитании был заем в разряд 3 младшей			
			тетрады из значения в старшей тетраде;			
			0 — переносов и заемов в(из) 3 разряд(а) младшей			
			тетрады результата не было			
zf	Флаг нуля	6	1 — результат нулевой;			
	(Zero Flag)		0 — результат ненулевой			
sf	Флаг знака	7	Отражает состояние старшего бита результата			
	(Sign Flag)		(биты 7, 15 или 31 для 8, 16 или 32-разрядных			
			операндов соответственно):			
			1 — старший бит результата равен 1;			
			0 — старший бит результата равен 0			
of	Флаг	11	Флаг of используется для фиксирования факта			
	переполнени		потери значащего бита при арифметических			
	R		операциях:			
	(Overflow		1 — в результате операции происходит перенос			
	Flag)		(заем) в(из) старшего, знакового бита результата			
			(биты 7, 15 или 31 для 8, 16 или 32-разрядных			
			операндов соответственно);			
			0 — в результате операции не происходит переноса			
			(заема) в(из) старшего, знакового бита результата			

Флаг управления.

Обозначается **df** (Directory Flag). Используется цепочечными командами. Значение флага df определяет направление поэлементной обработки в этих операциях: от начала строки к концу (df = 0) либо наоборот, от конца строки к ее началу (df = 1).

Системные флаги

Управляют вводом/выводом, маскируемыми прерываниями, отладкой, переключением между задачами и виртуальным режимом 8086.

Мнем	Флаг	Номер	Содержание и назначение	
оника		бита в		
флага		eflags		
tf	Флаг	8	Предназначен для организации пошаговой работы	
	трассировки		микропроцессора.	
	(Trace Flag)		1 — микропроцессор генерирует прерывание с номером 1	
			после выполнения каждой машинной команды. Может	
			использоваться при отладке программ, в частности	
			отладчиками;	
			0 — обычная работа	
if	Флаг	9	Предназначен для разрешения или запрещения	
	прерывания		(маскирования) аппаратных прерываний (прерываний по	
	(Interrupt		входу INTR).	
	enable Flag)		1 — аппаратные прерывания разрешены;	
			0 — аппаратные прерывания запрещены	

Регистр-указатель команд

eip/ip (Instraction Pointer register). Имеет разрядность 32/16 бит и содержит смещение следующей подлежащей выполнению команды относительно содержимого сегментного регистра сѕ в текущем сегменте команд. Этот регистр непосредственно недоступен программисту, но загрузка и изменение его значения производятся различными командами управления, к которым относятся команды условных и безусловных переходов, вызова процедур и возврата из процедур. Возникновение прерываний также приводит к модификации регистра *eip/ip*.

Команды, устанавливающие значения флагов

Эти команды занимают один байт и выполняются два такта.

Команда	Назначение	Псевдокод	Описание
CLC	Сброс флага	CF := 0-	Обнуляет бит флага переноса
Clear Carry Flag	переноса		
CMC	Инвертирование	CF := NOT CF	Изменяет значение бита флага
Comlement Carry	флага переноса		переноса на обратное
Flag			
STC	Установка флаг	CF := 1	Устанавливает бит флага
Set Carry Flag	переноса		переноса в 1
CLD	Сброс флага	DF := 0	Обнуляет бит флага
Clear Direction	направления		направления. Обработка
Flag			цепочек будет производится
			от начала к концу.
STD	Установка флага	DF := 1	Устанавливает бит флага
Set Direction Flag	направления		направления в 1. Обработка
			цепочек будет производиться
			от конца к началу.
CLI	Сброс флага	IF := 0	Запрещает внешние
Clear Interrupt	разрешения		прерывания по входу INTR
Flag	прерываний		процессора
STI	Установка флага	IF := 1	Разрешает внешние
Set Interrupt Flag	разрешения		прерывания по входу INTR
	прерываний		процессора

Примечание. Процессор воспринимает сигнал прерывания не раньше, чем в конце выполнения следующей команды. Поэтому между командами

STI

CLI

Должна быть, по крайней мере, одна команда. Например, пустая операция NOP (No operation).