

Inferential statistics

Section No. (4)

Chapter (3): Correlation Coefficient

FACULTY OF COMMERCE Presented by

Ghidaa abobakr Hamouda

Assistant Lecturer in Department of Insurance, Statistics and Mathematics

Choose the correct answer

In a study of the relationship between the grade of 8 students in statistics and accounting, the following data was obtained. Using a 95% confidence level, can we conclude that there is positive correlation in the population?

statistics	C	E	В	A	C	C	A	D
accounting	D	F	С	A	В	C	В	D

1) The appropriate correlation coefficient between two variables

a) Cramer b) spearman c) chi-square d) Pearson

2) The correlation coefficient between two variables =

$$r_{\rm s} = 1 - \frac{6\sum_{i=1}^{n} d^2}{n(n^2 - 1)} = 0.85$$

a) 0.08 b) 0.87 c) 0.97 d) 0.85

3) The direction and strength of the relation between two variables

a) positive	b) positive	c) negative	d) negative
weak	strong	weak	strong

4) Scatter plot between two variables

1		
a) Monotonically increasing	b) Monotonically decreasing	Not monotonic

5) State the null and alternate hypothesis

$H0: \rho_s = 0$	H0: $\rho_s \neq 0$	H0: $\rho_s \leq 0$	H0: $\rho_s \geq 0$
H1: $\rho_s \neq 0$	H1: $\rho_s = 0$	H1: $\rho_s > 0$	H1: $\rho_s < 0$

6) Choose the appropriate test to test Is the correlation coefficient is significantly different from zero

a) t-	b) chi-square	c) F-distribution	d) Z-
distribution	b) ciii-square	c) r-distribution	distribution

7) The hypothesis is...

8) The value of the test statistics

$$t = \frac{r_s\sqrt{n-2}}{\sqrt{1-r_s^2}} = \frac{0.85*\sqrt{6}}{\sqrt{1-0.7225}} = 3.95$$

a) 0.095	b) 0.5	c) 0.95	d) 3.95

9) The critical value is

		One tilled te.	**	I no unico u	V DE	
			Confide	ence Int <mark>erval</mark> s	3	
Degree	0.20	0.10	0.05	0.02	0.01	0.001
of Freedom		Level of	significance	for One-Taile	d Test (Alph	a)
riccuom	0.10	0.05	0.02	0.01	0.001	0.0005
(df)		Leve of	significance	for Two-Taile	ed Test (Alph	a)
	0.20	0.10	0.05	0.02	0.01	0.001
1	3.0777	6.3188	12.7062	31.8205	63.6567	636.6192
2	1.8856	2.9200	4.3027	6.9646	9.9248	31.5991
3	1.6377	2.3534	3.1824	4.5407	5.8409	12.9240
4	1.5332	2.1318	2.7764	3.7469	4.6041	8.6103
5	1.4759	2.0150	2.5706	3.3649	4.0321	6.8688
6	1.4300	1.9432	2.4469	3.1427	3.7074	5.9588

 $t_{(\alpha,n-2)} = t_{(0.05,6)} = 1.94$ (a) 0.095 | b) 0.5 | c) 0.95 | d) 1.94

10) The decision rule is

ı				
	a) correlation is	b) don't reject H0	c) correlation is	d) reject H1
	significant	b) don t reject 110	insignificant	d) reject iii

A sample of 6 children was selected, data about their age (in years) and weight (in kilograms) was recorded as shown in the following table. Data don't follow normal distribution. can we conclude that the correlation in the population is less than zero?

Correlations

			age	weight
		Correlation Coefficient	1.000	.882**
	age	Sig. (1-tailed)		.010
Spearman's rho		N	6	6
Speaman's mo		Correlation Coefficient	.882**	1.000
	weight	Sig. (1-tailed)	.010	
		N	6	6

^{**.} Correlation is significant at the 0.01 level (1-tailed).

11) The appropriate correlation coefficient between two variables

a) Cramer b) spearman	c) chi-square	d) Pearson
-----------------------	---------------	------------

12) The correlation coefficient between two variables =

a) 0.08 b) - 0.97 c) 0.97 d) 0.882

13) The direction and strength of the relation between two variables

	· · · · · · · · · · · · · · · · · · ·		
a) positive	b) positive	c) negative	d) negative
weak	strong	weak	strong

14) State the null and alternate hypothesis

$H0: \rho_s = 0$	H0: $\rho_s \neq 0$	H0: $\rho_s \leq 0$	H0: $\rho_s \geq 0$
H1: $\rho_s \neq 0$	H1: $\rho_s = 0$	H1: $\rho_s > 0$	H1: $\rho_s < 0$

15) Choose the appropriate test to test Is the correlation coefficient is significantly different from zero

a) tdistribution
b) chi-square
c) F-distribution
d) Zdistribution

16) The hypothesis is...

a) One- Tailed b) Two-Tailed c)Zero d) mean

17) The p-value is

a) 0.095 b) 0.5 c) 0.95 d) 0.01

18) The decision rule is

p-value ≤ 0.01

a) correlation is significant	b) don't reject H0	c) correlation is insignificant	d) reject H1	