Cryptography and Network Security: Principles and Practice

Eighth Edition

Chapter 2

Introduction to Number Theory

Divisibility

- We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers
- b divides a if there is no remainder on division
- The notation $b \mid a$ is commonly used to mean b divides a
- If $b \mid a$ we say that b is a **divisor** of a

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24

13 | 182; - 5 | 30; 17 | 289; - 3 | 33; 17 | 0

Properties of Divisibility (1 of 2)

- If $a \mid 1$, then $a = \pm 1$
- If $a \mid b$ and $b \mid a$, then $a = \pm b$
- Any $b \neq 0$ divides 0
- If a | b and b | c, then a | c

If b | g and b | h, then b | (mg + nh) for arbitrary integers m and n

Note

Fact 1: The integer 1 has only one divisor, itself.

Fact 2: Any positive integer has at least two divisors, 1 and itself (but it can have more).

Properties of Divisibility (2 of 2)

- To see this last point, note that:
 - If $b \mid g$, then g is of the form $g = b * g_1$ for some integer g_1
 - If $b \mid h$, then h is of the form $h = b * h_1$ for some integer h_1
- So:
 - $mg + nh = mbg_1 + nbh_1 = b * (mg_1 + nh_1)$ and therefore b divides mg + nh

$$b = 7$$
; $g = 14$; $h = 63$; $m = 3$; $n = 2$
7 | 14 and 7 | 63.
To show 7 (3 * 14 + 2 * 63),
we have (3 * 14 + 2 * 63) = 7(3 * 2 + 2 * 9),
and it is obvious that 7 | (7(3 * 2 + 2 * 9)).

Division Algorithm

 Given any positive integer n and any nonnegative integer a, if we divide a by n we get an integer quotient q and an integer remainder r that obey the following relationship:

$$a = qn + r$$

$$0 \le r < n; q = [a/n]$$

Figure 2.1 The Relationship a = qn + r; $0 \le r < n$

Euclidean Algorithm

- One of the basic techniques of number theory
- Procedure for determining the greatest common divisor of two positive integers
- Two integers are relatively prime if their only common positive integer factor is 1

Greatest Common Divisor (GCD)

- The greatest common divisor of a and b is the largest integer that divides both a and b
- We can use the notation gcd(a,b) to mean the greatest common divisor of a and b
- We also define gcd(0,0) = 0
- Positive integer c is said to be the gcd of a and b if:
 - c is a divisor of a and b
 - Any divisor of a and b is a divisor of c
- An equivalent definition is:

gcd(a,b) = max[k, such that k | a and k | b]

GCD

- Because we require that the greatest common divisor be positive, gcd(a,b) = gcd(a,-b) = gcd(-a,b) = gcd(-a,-b)
- In general, gcd(a,b) = gcd(|a|, |b|)

$$gcd(60, 24) = gcd(60, -24) = 12$$

- Also, because all nonzero integers divide 0, we have gcd(a,0) = | a |
- We stated that two integers a and b are relatively prime if their only common positive integer factor is 1; this is equivalent to saying that a and b are relatively prime if gcd(a,b) = 1

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

Figure 2.2 Euclidean Algorithm

Figure 2.3 Euclidean Algorithm Example: gcd(710, 310)

Same GCD

2.1.4 Continued

Note

Greatest Common Divisor

The greatest common divisor of two positive integers is the largest integer that can divide both integers.

Note

Euclidean Algorithm

Fact 1: gcd(a, 0) = a

Fact 2: gcd(a, b) = gcd(b, r), where r is

the remainder of dividing a by b

Euclidean Algorithm

$$r_{1} \leftarrow a; \quad r_{2} \leftarrow b; \quad \text{(Initialization)}$$

$$\text{while } (r_{2} > 0)$$

$$\{$$

$$q \leftarrow r_{1} / r_{2};$$

$$r \leftarrow r_{1} - q \times r_{2};$$

$$r_{1} \leftarrow r_{2}; \quad r_{2} \leftarrow r;$$

$$\}$$

$$\text{gcd } (a, b) \leftarrow r_{1}$$

a. Process

b. Algorithm

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Find the greatest common divisor of 2740 and 1760.

Solution

We have gcd (2740, 1760) = 20.

q	r_I	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

Find the greatest common divisor of 25 and 60.

Solution

We have gcd(25, 60) = 5.

q	r_{I}	r_2	r
0	25	60	25
2	60	25	10
2	25	10	5
2	10	5	0
	5	0	

Table 2.1 Euclidean Algorithm Example

Dividend	Divisor	Quotient	Remainder
a = 1160718174	b = 316258250	$q_1 = 3$	$r_1 = 211943424$
b = 316258250	$r_1 = 211943434$	$q_2 = 1$	$r_2 = 104314826$
$r_1 = 211943424$	$r_2 = 104314826$	$q_3 = 2$	$r_3 = 3313772$
$r_2 = 104314826$	$r_3 = 3313772$	$q_4 = 31$	$r_4 = 1587894$
$r_3 = 3313772$	$r_4 = 1587894$	$q_5 = 2$	$r_5 = 137984$
$r_4 = 1587894$	$r_5 = 137984$	$q_6 = 11$	$r_6 = 70070$
$r_5 = 137984$	$r_6 = 70070$	$q_7 = 1$	$r_7 = 67914$
$r_6 = 70070$	$r_7 = 67914$	$q_8 = 1$	$r_8 = 2156$
$r_7 = 67914$	$r_8 = 2156$	$q_9 = 31$	$r_9 = 1078$
$r_8 = 2156$	$r_9 = 1078$	$q_{10} = 2$	$r_{10} = 0$

Modular Arithmetic (1 of 3)

- The modulus
 - If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n; the integer n is called the modulus
 - Thus, for any integer a:

$$a = qn + r \quad 0 \le r < |n|; \quad q = [a/n]$$

 $a = [a/n] * n + (a mod n)$

11 mod 7 = 4; - 11 mod 7 = 3

Modular Arithmetic (2 of 3)

- Congruent modulo n
 - Two integers a and b are said to be congruent modulo n if (a mod n) = (b mod n)
 - This is written as $a = b \pmod{n}$
 - Note that if $a = 0 \pmod{n}$, then $n \mid a$

 $73 = 4 \pmod{23}$; $21 = -9 \pmod{10}$

Properties of Congruences

- Congruences have the following properties:
 - 1. $a = b \pmod{n}$ if $n \mid (a b)$
 - 2. $a = b \pmod{n}$ implies $b = a \pmod{n}$
 - 3. $a = b \pmod{n}$ and $b = c \pmod{n}$ imply $a = c \pmod{n}$
- To demonstrate the first point, if $n \mid (a b)$, then (a b) = k*n for some k
 - So we can write a = b + kn
 - Therefore, $(a \mod n) = (remainder when b + kn is divided by n) = (remainder when b is divided by n) = (b mod n)$

$$23 = 8 \pmod{5}$$
 because $23 - 8 = 15 = 5 * 3$
 $-11 = 5 \pmod{8}$ because $-11 - 5 = -16 = 8 * (-2)$
 $81 = 0 \pmod{27}$ because $81 - 0 = 81 = 27 * 3$

Modular Arithmetic (3 of 3)

- Modular arithmetic exhibits the following properties:
 - 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
 - 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
 - 3. $[(a \mod n) * (b \mod n)] \mod n = (a * b) \mod n$
- We demonstrate the first property:
 - Define $(a \mod n) = r_a$ and $(b \mod n) = r_b$. Then we can write $a = r_a + jn$ for some integer j and $b = r_b + kn$ for some integer k
 - Then:

(a + b) mod n =
$$(r_a + jn + r_b + kn)$$
 mod n
= $(r_a + r_b + (k + j)n)$ mod n
= $(r_a + r_b)$ mod n
= $[(a \text{ mod } n) + (b \text{ mod } n)]$ mod n

Remaining Properties

Examples of the three remaining properties:

```
11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5
```

Table 2.2 (a) Arithmetic Modulo 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Table 2.2 (b) Multiplication Modulo 8

X	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Table 2.2 (c) Additive and Multiplicative Inverse Modulo 8

w	-w	w^{-1}
0	0	<u> </u>
1	7	1
2	6	10-10
3	5	3
4	4	1 - 1
5	3	5
6	2	s s—_s
7	1	7

Table 2.3 Properties of Modular Arithmetic for Integers in Z_n

Property	Expression
Commutative Laws	$(w + x) \mod n = (x + w) \mod n$ $(w \times x) \mod n = (x \times w) \mod n$
Associative Laws	$[(w + x) + y] \mod n = [w + (x + y)] \mod n$ $[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
Distributive Law	$[w \times (x + y)] \bmod n = [(w \times x) + (w \times y)] \bmod n$
Identities	$(0 + w) \mod n = w \mod n$ $(1 \times w) \mod n = w \mod n$
Additive Inverse (-w)	For each $w \boxplus Z_n$, there exists a z such that $w + z = 0 \mod n$

2.1.4 Continued

Properties

Property 1: if a|1, then $a = \pm 1$.

Property 2: if a|b and b|a, then $a = \pm b$.

Property 3: if b|a and c|b, then c|a.

Property 4: if a|b and a|c, then $a|(m \times b + n \times c)$, where m and n are arbitrary integers

Extended Euclidean Algorithm

Given two integers *a* and *b*, we often need to find other two integers, *s* and *t*, such that

$$s \times a + t \times b = \gcd(a, b)$$

The extended Euclidean algorithm can calculate the gcd (a, b) and at the same time calculate the value of s and t.

Extended Euclidean algorithm, part a

a. Process

Extended Euclidean algorithm, part b

```
r_1 \leftarrow a; \qquad r_2 \leftarrow b;
 s_1 \leftarrow 1; \qquad s_2 \leftarrow 0;
                                        (Initialization)
t_1 \leftarrow 0; \qquad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
     r \leftarrow r_1 - q \times r_2;
                                                        (Updating r's)
     r_1 \leftarrow r_2; r_2 \leftarrow r;
     s \leftarrow s_1 - q \times s_2;
                                                        (Updating s's)
     s_1 \leftarrow s_2; s_2 \leftarrow s;
     t \leftarrow t_1 - q \times t_2;
                                                        (Updating t's)
    t_1 \leftarrow t_2; \ t_2 \leftarrow t;
   \gcd(a, b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```


Given a = 161 and b = 28, find gcd (a, b) and the values of s and t.

Solution

We get gcd (161, 28) = 7, s = -1 and t = 6.

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	- 5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	-5 6	-23
	7 0		-1 4		6 −23	

Given a = 17 and b = 0, find gcd (a, b) and the values of s and t.

Solution

We get gcd (17, 0) = 17, s = 1, and t = 0.

•	q	r_{I}	r_2	r	s_I	s_2	S	t_1	t_2	t
		17	0		1	0		0	1	

Example

Given a = 0 and b = 45, find gcd (a, b) and the values of s and t.

Solution

We get gcd (0, 45) = 45, s = 0, and t = 1.

q	r_1	r_2	r	s_I	s_2	S	t_1	t_2	t
0	0	45	0	1	0	1	0	1	0
	45	0		0	1		1	0	

Additional: Running Extended Euclidean Algorithm Manually

Given a = 80 and b = 62, find gcd (a, b) and the values of s and t.

Solution

gcd(80,62) = s*(80) + t*(62) proceeds as:

	in equation form	in row form		
row1	80 = 1(80) + 0(62)	80 1 0		
row2	62 = 0(80) + 1(62)	62 0 1		
row1 − 1* row2 	18 = 1(80) - 1(62)	18 1 -1		
row2 − 3* row3	8 = -3(80) + 4(62)	8 -3 4		
row3 − 2* row4	2 = 7(80) - 9(62)	2 7 -9		
row4 − 4* row5	0 = -31(80) + 40(62)	0 -31 40		

$$gcd(80,62) = 2 = 7*(80) + (-9)*(62)$$

Table 2.4 Extended Euclidean Algorithm Example

i	r_i	\boldsymbol{q}_i	$\boldsymbol{X_i}$	\boldsymbol{y}_i
-1	1759		1	0
0	550		0	1
1	109	3	1	-3
2	5	5	- 5	16
3	4	21	106	-339
4	1	1	-111	355
5	0	4		

Result: d = 1; x = -111; y = 355

Multiplicative Inverses

Note

The extended Euclidean algorithm finds the multiplicative inverses of b in Z_n when n and b are given and gcd (n, b) = 1. The multiplicative inverse of b is the value of t after being mapped to Z_n .

Continued

Figure 2.15 Using extended Euclidean algorithm to find multiplicative inverse

$$r_{1} \leftarrow n; \quad r_{2} \leftarrow b;$$

$$t_{1} \leftarrow 0; \quad t_{2} \leftarrow 1;$$
while $(r_{2} > 0)$

$$q \leftarrow r_{1} / r_{2};$$

$$r \leftarrow r_{1} - q \times r_{2};$$

$$r_{1} \leftarrow r_{2}; \quad r_{2} \leftarrow r;$$

$$t \leftarrow t_{1} - q \times t_{2};$$

$$t_{1} \leftarrow t_{2}; \quad t_{2} \leftarrow t;$$
}
if $(r_{1} = 1)$ then $b^{-1} \leftarrow t_{1}$

b. Algorithm

Continued Example 2.25

Find the multiplicative inverse of 11 in Z_{26} .

Solution

q	r_1	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	- 7
3	3	1	0	5 -7	26
	1	0		-7 26	

The gcd (26, 11) is 1; the inverse of 11 is -7 or 19.

Continued Example 2.26

Find the multiplicative inverse of 23 in Z_{100} .

Solution

q	r_1	r_2	r	t_{I}	t_2	t
4	100	23	8	0	1	-4
2	23	8	7	1	-4	19
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13	100	

The gcd (100, 23) is 1; the inverse of 23 is -13 or 87.

Continued Example 2.27

Find the inverse of 12 in Z_{26} .

Solution

q	r_I	r_2	r	t_1	t_2	t
2	26	12	2	0	1	-2
6	12	2	0	1	- 2	13
	2	0		-2	13	

The gcd (26, 12) is 2; the inverse does not exist.

Prime Numbers

- Prime numbers only have divisors of 1 and itself
 - They cannot be written as a product of other numbers
- Prime numbers are central to number theory
- Any integer a > 1 can be factored in a unique way as

$$a = p_{1 \ 1}^{a} * p_{2 \ 2}^{a} * \dots * p_{pt \ t}^{a}$$

where $p_1 < p_2 < \dots < p_t$ are prime numbers and where each a_i is a positive integer

This is known as the fundamental theorem of arithmetic

Table 2.5 Primes Under 2000

3 103 223 311 409 509 607 709 811 911 1013 1109 1213 1303 1423 1523 1607 1721 1811 190 5 107 227 313 419 521 613 719 821 919 1019 1117 1217 1307 1427 1531 1609 1723 1823 191 7 109 229 317 421 523 617 727 823 929 1021 1123 1223 1319 1429 1543 1613 1733 1831 193 11 113 233 331 431 541 619 733 827 937 1031 1129 1229 1321 1433 1549 1619 1741 1847 193 13 127 239 337 433 547 631 739 829 941 1033 1151 1231 1327 1439 1553 1621 1747 1861 194																				
5 107 227 313 419 521 613 719 821 919 1019 1117 1217 1307 1427 1531 1609 1723 1823 1919 7 109 229 317 421 523 617 727 823 929 1021 1123 1223 1319 1429 1543 1613 1733 1831 193 11 113 233 331 431 541 619 733 827 937 1031 1129 1229 1321 1433 1549 1619 1741 1847 193 13 127 239 337 433 547 631 739 829 941 1033 1151 1231 1327 1439 1553 1621 1747 1861 1948 17 137 241 349 543 557 641 743 839 947 1039 1153	2	101	211	307	401	503	601	701	809	907	1009	1103	1201	1301	1409	1511	1601	1709	1801	1901
7 109 229 317 421 523 617 727 823 929 1021 1123 123 1319 1429 1543 1613 1733 1831 193 11 113 233 331 431 541 619 733 827 937 1031 1129 1229 1321 1433 1549 1619 1741 1847 193 13 127 239 337 433 547 631 739 829 941 1033 1151 1231 1327 1439 1553 1621 1747 1861 1948 17 131 241 347 439 557 641 743 839 947 1039 1153 1231 1361 1447 1559 1627 1753 1867 195 19 137 251 349 443 563 643 751 853 953 1049 1163<	3	103	223	311	409	509	607	709	811	911	1013	1109	1213	1303	1423	1523	1607	1721	1811	1907
11 13 23 331 431 541 619 733 827 937 1031 1129 1229 1321 1433 1549 1619 1741 1847 193 13 127 239 337 433 547 631 739 829 941 1033 1151 1231 1327 1439 1553 1621 1747 1861 1948 17 131 241 347 439 557 641 743 839 947 1039 1153 1237 1361 1447 1559 1627 1753 1867 195 19 137 251 349 443 563 643 751 853 953 1049 1163 1249 1367 1451 1567 1637 1759 1871 197 23 139 257 353 449 569 647 757 857 967 1061 1181<	5	107	227	313	419	521	613	719	821	919	1019	1117	1217	1307	1427	1531	1609	1723	1823	1913
13 127 239 337 433 547 631 739 829 941 1033 1151 1231 1327 1439 1553 1621 1747 1861 1948 17 131 241 347 439 557 641 743 839 947 1039 1153 1237 1361 1447 1559 1627 1753 1867 195 19 137 251 349 443 563 643 751 853 953 1049 1163 1249 1367 1451 1567 1637 1759 1871 197 23 139 257 353 449 569 647 757 857 967 1061 1171 1259 1373 1453 1571 1667 1777 1873 197 29 149 263 359 457 571 653 761 859 971 1063 118	7	109	229	317	421	523	617	727	823	929	1021	1123	1223	1319	1429	1543	1613	1733	1831	1931
17 131 241 347 439 557 641 743 839 947 1039 1153 1237 1361 1447 1559 1627 1753 1867 195 19 137 251 349 443 563 643 751 853 953 1049 1163 1249 1367 1451 1567 1637 1759 1871 1977 23 139 257 353 449 569 647 757 857 967 1051 1171 1259 1373 1453 1571 1657 1777 1873 1979 29 149 263 359 457 571 653 761 859 971 1061 1181 1277 1381 1459 1579 1663 1783 1877 198 31 151 269 367 461 573 877 983 1069 1193 1283	11	113	233	331	431	541	619	733	827	937	1031	1129	1229	1321	1433	1549	1619	1741	1847	1933
19 137 251 349 443 563 643 751 853 953 1049 1163 1249 1367 1451 1567 1637 1759 1871 1977 23 139 257 353 449 569 647 757 857 967 1061 1171 1259 1373 1453 1571 1657 1777 1873 1979 29 149 263 359 457 571 653 761 859 971 1061 1181 1277 1381 1459 1579 1663 1783 1877 198 31 151 269 367 461 577 659 769 863 977 1063 1187 1279 1399 1471 1583 1667 1787 1879 199 37 157 271 373 463 587 661 773 877 881 991 1087 1289 1483 1693 1999 43 167 281 38	13	127	239	337	433	547	631	739	829	941	1033	1151	1231	1327	1439	1553	1621	1747	1861	1949
23 139 257 353 449 569 647 757 857 967 1051 1171 1259 1373 1453 1571 1657 1777 1873 1979 29 149 263 359 457 571 653 761 859 971 1061 1181 1277 1381 1459 1579 1663 1783 1877 198 31 151 269 367 461 577 659 769 863 977 1063 1187 1279 1399 1471 1583 1667 1787 1879 199 41 163 277 379 467 593 673 787 881 991 1087 1289 1483 1693 199 43 167 281 383 479 599 677 797 883 997 1091 1291 1487 1699 53 179	17	131	241	347	439	557	641	743	839	947	1039	1153	1237	1361	1447	1559	1627	1753	1867	1951
29 149 263 359 457 571 653 761 859 971 1061 1181 1277 1381 1459 1579 1663 1783 1877 198 31 151 269 367 461 577 659 769 863 977 1063 1187 1279 1399 1471 1583 1667 1787 1879 199 37 157 271 373 463 587 661 773 877 983 1069 1193 1283 1481 1597 1669 1789 1889 199 41 163 277 379 467 593 673 787 881 991 1087 1289 1483 1693 199 43 167 281 383 479 599 677 797 883 997 1091 1291 1487 1697 53 179 293 397 491 691 1097 1499 1499 1499 1499 1499 </td <td>19</td> <td>137</td> <td>251</td> <td>349</td> <td>443</td> <td>563</td> <td>643</td> <td>751</td> <td>853</td> <td>953</td> <td>1049</td> <td>1163</td> <td>1249</td> <td>1367</td> <td>1451</td> <td>1567</td> <td>1637</td> <td>1759</td> <td>1871</td> <td>1973</td>	19	137	251	349	443	563	643	751	853	953	1049	1163	1249	1367	1451	1567	1637	1759	1871	1973
31 151 269 367 461 577 659 769 863 977 1063 1187 1279 1399 1471 1583 1667 1787 1879 199 37 157 271 373 463 587 661 773 877 983 1069 1193 1283 1481 1597 1669 1789 1889 199 41 163 277 379 467 593 673 787 881 991 1087 1289 1483 1693 199 43 167 281 383 479 599 677 797 883 997 1091 1291 1487 1697 1699 1471 1489 1699 1699 1493 1499 1493 1499 1499 1499 1499 1499 1499 1499 1499 1499 1499 1499 1491 1499 1499 1491 1499	23	139	257	353	449	569	647	757	857	967	1051	1171	1259	1373	1453	1571	1657	1777	1873	1979
37 157 271 373 463 587 661 773 877 983 1069 1193 1283 1481 1597 1669 1789 1889 1999 41 163 277 379 467 593 673 787 881 991 1087 1289 1483 1693 1999 43 167 281 383 479 599 677 797 883 997 1091 1291 1487 1697 1699 1697 179 1489 1699	29	149	263	359	457	571	653	761	859	971	1061	1181	1277	1381	1459	1579	1663	1783	1877	1987
41 163 277 379 467 593 673 787 881 991 1087 1289 1483 1693 1998 43 167 281 383 479 599 677 797 883 997 1091 1291 1487 1697 47 173 283 389 487 683 887 1093 1297 1489 1699 53 179 293 397 491 691 1097 1493 1493 59 181 499 1499	31	151	269	367	461	577	659	769	863	977	1063	1187	1279	1399	1471	1583	1667	1787	1879	1993
43 167 281 383 479 599 677 797 883 997 1091 1291 1487 1697 47 173 283 389 487 683 887 1093 1297 1489 1699 53 179 293 397 491 691 1097 1493 59 181 499 1499 1499 61 191 197 193 71 197 193 79 193 199 83 199 190	37	157	271	373	463	587	661	773	877	983	1069	1193	1283		1481	1597	1669	1789	1889	1997
47 173 283 389 487 683 887 1093 1297 1489 1699 53 179 293 397 491 691 1097 1493 59 181 499 1499 61 191 197 71 197 197 73 199 83 199	41	163	277	379	467	593	673	787	881	991	1087		1289		1483		1693			1999
53 179 293 397 491 691 1097 1493 59 181 499 1499 61 191 193 71 197 197 73 199 199 83 199	43	167	281	383	479	599	677	797	883	997	1091		1291		1487		1697			
59 181 499 61 191 67 193 71 197 73 199 83 83	47	173	283	389	487		683		887		1093		1297		1489		1699			
61 191 67 193 71 197 73 199 83	53	179	293	397	491		691		18		1097				1493					
67 193 71 197 73 199 79	59	181			499			ļ							1499					
71 197 73 199 79	61	191																		
73 199 79 83	67	193			2															
79 83	71	197																		
83	73	199																		
	79																			
89	83						8 8		() ()					e k		65 2 6 3		9 9		
	89																			
97	97																			

Summary

- Understand the concept of divisibility and the division algorithm
- Understand how to use the Euclidean algorithm to find the greatest common divisor
- Present an overview of the concepts of modular arithmetic
- Explain the operation of the extended Euclidean algorithm
- Discuss key concepts relating to prime numbers

- Understand Fermat's theorem
- Understand Euler's theorem
- Define Euler's totient function
- Make a presentation on the topic of testing for primality
- Explain the Chinese remainder theorem
- Define discrete logarithms

Copyright

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.