Teória čísel pre $\mathbf{Z}\check{\mathbf{S}}$

6. októbra 2023

Obsah

1	Čísl	la a ich základné typy
	1.1	Číslo a cifra
	1.2	Základné matematické operácie a ich vlastnosti
	1.3	Základné typy čísel
	1.4	Zápisy prirodzených čísel
	1.5	Cvičenie
2	Del	iteňosť celých a prirodzených čísel
	2.1	Definícia deliteľnosti
	2.2	Znaky deliteľnosti pre čísla 2, 3, 4, 5, 6, 8, 9, 10
	2.3	Zisťovanie všetkých deliteľov
	2.4	Cvčenia
	2.5	Prvočísla a prvočíselné rozklady
	2.6	Eratostenovo sito
	2.7	Prvočíselný rozklad prirodzeného čísla
	2.8	Cvičenia

3	Naj	väčší spoločný deliteľ a najmenší spoločný násobok	11
	3.1	Definície	11
	3.2	Hľadanie NSD	11
	3.3	Cvičenia na NSD	11
	3.4	Hľadanie nsn	11
	3.5	Cvičenia na nsn	12
4	Slov	vné úlohy na NSD a nsn	13
5	Rac	ionálne čísla a zlomky	16
	5.1	Definícia	16
	5.2	Rozširovanie zlomkov	16
	5.3	Cvičenia	16
	5.4	Operácie so zlomkami	18

1 Čísla a ich základné typy

1.1 Číslo a cifra

Do obrázku a textu pod ním doplň slová cifra a číslo podľa významu.

Definície:

- _____ je matematický objekt, ktorý sa používa na počítanie, meranie a označovanie.
- _____ je grafický objekt, ktorý sa používa na znázorňovanie čísel a môže nadobúdať hodnoty _____.

1.2 Základné matematické operácie a ich vlastnosti

Z tabuľky doplň slová do textu pod ňou. Do zátvoriek napíš názov danej operácie.

asociatívnosť	násobenie	sčitovanie	komutatívnosť
distributívnosť	delenie	odčitovanie	neutrálny prvok
sčí $tanec$	činiteľ	delenec	deliteľ
súčet	podiel	súčin	$\operatorname{rozdiel}$
menšenec	menšiteľ	opačné číslo	

Vlastnosti základných matematických operácií:

- a + b = b + a, a.b = b.a (_____)
- a.1 = 1.a = a, a + 0 = 0 + a = 0
- a-b=0, potom b sa nazýva ______.
- a.(x + y) = a.x + b.y (______)
- (a+b)+c=a+(b+c), (a.b).c=a.(b.c)

1.3 Základné typy čísel

Do textu nižšie doplň správne slová z nasledujúcej tabuľky:

prirodzené čísla celé čísla
$$\mathbb{N}$$
 \mathbb{Z} opačné \mathbb{N}_0 1, 2, 3 , -2, -1, 0, 1, 2, 3, . . .

•	sú čísla, ktoré vyjadrujú nenulový počet prvkov a na ich
	značenie používame znak Patria sem napríklad čísla
	Ak by sme ale chceli dať najavo, že počítame aj s nulou, použijeme značenie
	.
_	na anak sý taká čísla ktorá už nulu obsahujú Vyjadrujú

naopak ______ sú také čísla, ktoré už nulu obsahujú. Vyjadrujú totiž zmenu (rast alebo pokles) počtu prvkov. Obsahujú teda aj prirodzené čísla, nulu aj čísla k nim ______. Patria sem napríklad čísla ______
 a požívame pre ne značenie ______.

1.4 Zápisy prirodzených čísel

K nasledujúcim zápisom dopíš, aký majú názov.

- 543 ______.
- 5.100 + 4.10 + 3.1 -______.

1.5 Cvičenie.

V nasledujúcej tabuľke máš v každom riadku daný práve 1 typ zápisu čísla, tvojou úlohou je dopísať zápisy vo zvyšných stĺpcoch (v treťom stĺpci číslo v zátvorke vyjadruje deliteľa, ktorého máš použiť).

Ciferný zápis	Rozvinutý zápis	Zápis pomocou zvyšku
	3.1000 + 0.100 + 4.10 + 9.1	(7)
221		(10)
		7.8 + 4
31		(5)
76		(12)
	6.100 + 2.10 + 7.1	(21)
		7.24 + 21
214		(15)
571		(20)
	3.100 + 4.10 + 7.1	(6)
	7.1000 + 9.100 + 7.10 + 1.1	(8)

2 Deliteňosť celých a prirodzených čísel

2.1 Definícia deliteľ nosti

Ak si zoberieme 2 celé čísla a, b, tak povieme, že číslo a je či	íslom b, ak
nám povýjde zvyšok 0. Hovoríme tiež, že b je	čísla
a. Matematické značnie je potom, $a b$ (a delí b). Inými slovami sa dá poveda	ať, že a delí
b, ak je b násobkom a-čka.	
Treba si dať ale pozor, číslo a nesmie byť rovné	
2.2 Znaky deliteľnosti pre čísla 2, 3, 4, 5, 6, 8, 9, 10.	
Pomocou učebnice alebo internetu doplň kritériá deliteľnosti pre spomänuté čísla.	prirodzené
1. pridrodzené číslo je deliteľné 2, ak	
2. pridrodzené číslo je deliteľné 3, ak	
3. pridrodzené číslo je deliteľné 4, ak	
4. pridrodzené číslo je deliteľné 5, ak	
5. pridrodzené číslo je deliteľné 6, ak	
6. pridrodzené číslo je deliteľné 8, ak	
7. pridrodzené číslo je deliteľné 9, ak	
8. pridrodzené číslo je deliteľné 10, ak	_·

2.3 Zisťovanie všetkých deliteľov

Predstav si, že nám niekto predostrie nejaké prirodzené číslo a chce od nás, aby sme mu povedali, koľko deliteľov dané číslo má, prípadne ešte aj, ktoré sú to čísla. Aký postup by sme na to mali zvoliť

2.4 Cvčenia

```
https://gymmoldava.sk/ICV/CELYWEB/1/delitelnost/delitelnostkviz.htm
https://gymmoldava.sk/ICV/CELYWEB/1/delitelnost/znakydelitelnosti.htm
https://gymmoldava.sk/ICV/CELYWEB/1/delitelnost/znakydelitelnosti2.htm
```

2.5 Prvočísla a prvočíselné rozklady

Z možností v texte vyber tie správne.

Prvočíslo/zložené číslo je také prirodzené číslo, ktoré má práve 2 delitele. Naopak, prirodzené číslo, ktoré má aspoň/najviac 3 delitele sa nazýva prvo-číslo/zložené číslo. Z toho dôvodu číslo 1 nie je ani prvočíslo, ani zložené číslo, keďže má len 1 deliteľa.

2.6 Eratostenovo sito

Na hľadanie všetkých prvočísel existuje postup, ktorý vymyslel už ujo Eratostenes z Kyrény v antickom Grécku. Funguje tak, že si najprv vytvoríme štvorcovú tabuľku $n \times n$. Postup pozostáva z 5 krokov:

- 1. Jednotku vyškrtni, ona nie je prvočíslom.
- 2. Dvojku zafarbi, ona je prvočíslom.
- 3. Vyškrtni všetky jej násobky (4, 6, 8, ...)
- 4. Zafarbi najmenšie nezvyškrtnuté číslo a opakuj s ním kroky 2 a 3.
- 5. Toto opakuj, kým nemáš hotovú celú tabuľku.

Teraz si tento postup vyskúšaj na štvorci 10×10 , teda máš nájsť prvočísla od 1 po 100.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Po vyfarbení by mala tabuľka vyzerať takto (zelené sú prvočísla):

2.7 Prvočíselný rozklad prirodzeného čísla

Do nasledujúceho textu doplň tieto slová: prvočísel, prvočíselný, prvočinitele.

Eratostenovo sito sa využíva dobre pri úlohách, kde chceme rozložiť prirodzené číslo n na súčin ______, takýto súčin sa potom nazýva ______ rozklad a jednotlivé činitele sa nazývajú ______.

Postup pri zisťovaní prvočíselného rozkladu je nasledovný, ukážeme si to na príklade s číslom 126.

Budeme postupne zostrojovať tabuľku s 2 stĺpcami, kde si naľavo budeme písať jednotlivé prvočísla a do pravého si budeme písať medzivýsledky po delení danými prvočíslami. Na začiatku teda máme prázdnu tabuľku:

Budeme teraz postupovať, kým nebudeme mať napravo medzivýsledok 1. Prvočísla na test deliteľnosti si môžeme vyberať v ľubovoľnom poradí, ale najlepšie si zvoliť poradie od najväčšieho albo najmenšieho, my si to ukážeme od najmenšieho. Prvé prvočíslo, ktoré máme v site, je 2. 126 je deliteľné 2, keďže sa končí na párnu

Prvé prvočíslo, ktoré máme v site, je 2. 126 je deliteľné 2, keďže sa končí na párnu cifru, preto si naľavo napíšeme číslo 2 a napravo napíšeme výsledok $126 \div 2$, čo je 63. Máme teraz takúto tabuľku:

126		
63	2	

Keďže 63 nie je 1, tak pokračujeme, 63-ka už dvojkou nie je deliteľná, lebo je nepárna, takže skúšame ďalšie číslo, zo sita, čo je 3-ka. Ciferný súčet 63 je 9, čo je deliteľné 3-mi, takže si 3-ku zapíšeme do pravého stĺpca a naľavo napíšeme $63 \div 3$.

126		
63	2	
21	3	

21je tiež deliteľná 3-mi, tak si zapíšeme ďalšú 3-ku do tabuľky a vydelíme 21-ku 3-mi.

7 už nie je deliteľná 3-mi, preto sa presúvame na ďalšie číslo zo sita, ktorým je 5-ka. 7 nekončí na 5 ani 0, takže nie je deliteľná 5-mi. Preúvame sa teda na číslo 7 a ním je deliteľná, keďže kažé číslo je deliteľné samé sebou. Dopíšeme si teraz 7 napravo a naľavo 7×7 .

126		
63	2	
21	3	
7	3	

126		
63	2	
21	3	
7	3	
1	7	

Keďže máme už v ľavom stĺpci 1-ku, sme hotoví. V pravom stĺpci máme teraz prvočíselný rozklad čísla 126. Teda 126=2.3.3.7.

2.8 Cvičenia

Rozlož každé číslo na prvočíselný rozklad.

 $https://cs.khanacademy.org/math/6-trida/xe43e34898edf07f6:delitele-a-nasobky/xe43e34898edf07f6:prvociselny-rozklad/e/prime_factorization$

- 26
- 60
- 49
- 8
- 54
- 420
- 1024
- 125
- 300
- 198
- 42
- 36

- 422
- 48

3	Najväčší	spoločný	deliteľ	\mathbf{a}	najmenší	spoločný	ná
	sobok						

3.1 Definície

K názvom doplň definície pojmov.

- \bullet najväčší spoločný deliteľ 2 prirodzených čísel (NSD)
- $\bullet\,$ najmenší spoločný násobok 2 prirodzených čísel (nsn)

3.2 Hľadanie NSD

Zisti postup na hľadanie NSD pre 2 prirodzené čísla a postup zapíš nižšie.

Pomôcka: https://youtu.be/-zYLo1FbWC0

Postup:

- 1.
- 2.
- 3.
- 4.

3.3 Cvičenia na NSD

https://gymmoldava.sk/ICV/CELYWEB/1/delitelnost/NSD.htm

3.4 Hl'adanie nsn

Zisti postup na výpočet nsn 2 priodzených čísel (zrejme sa veľmi líšiť nebude od toho na NSD).

Postup:

- 1.
- 2.
- 3.
- 4.

3.5 Cvičenia na nsn

 $\verb|https://gymmoldava.sk/ICV/CELYWEB/1/delitelnost/nsn.htm|\\$

 $\verb|https://gymmoldava.sk/ICV/CELYWEB/1/delitelnost/delitelnostkviz.htm|$

4 Slovné úlohy na NSD a nsn

Budeme riešiť slovné úlohy pre nsn a NSD. Na začiatok si treba uvedomiť ich základné vlastnosti.

- 1. NSD vždy delí obe čísla, takže musí platiť, že $NSD(a,b) \leq a$ a zároveň $NSD(a,b) \leq b$.
- 2. Podobne pri nsn, ten je vždy deliteľný oboma číslami, takže musí platiť $nsn(a,b) \ge a$ a $nsn(a,b) \ge b$.

K nasledujúcim obrázkom dopíš, kde sa využije NSD a nsn. Na prvom sa snažíme 2 skupinky rozdeliť do čo najväčších skupín rovnomerne (teda chceme do každej kôpky dať fialovej rovnaké kúsky a zo zelenej tiež rovnaké). V druhom prípade chceme 2 skupiny spojiť do čo najmenšej skupiny (takže túto skupinu vieme rozdeliť do týchto 2 skupín).

Teraz si ukážeme nejaké vzorové príklady.

Príklad 1. Babička má 8 lízaniek a 28 cukríkov a chce vedieť, do najviac koľkých balíčkov ich vie rozdeliť. Poraďme babičke! :)

Riešenie: Keďže chceme rozdelovať veci do skupín, hľadáme NSD(8, 28). To číslo už dopočítaj a dopíš sem: _____.

Príklad 2. Máme 2 lode, obe vyrážajú z prístavu o 11:00. Loď A vyráža každých 15 minút a loď B každých 25 minút. Zisti, kedy sa prvýkrát stretnú.

Riešenie: V časovom úseku, kedy sa stretnú, každá z nich už niekoľkokrát vyrazila. Z toho vyplýva, že dĺžku tohoto úseku vieme vydeliť 15-timi aj 25-timi. Takže nás zaujíma nsn(15, 25), ten túto podmienku spĺňa. Výsledkom je potom číslo ______.

Príklad 3. Anička má 20 jabĺk a 30 marhúľ a chce z nich urobiť koláče. Ale chce ich vyrobiť čo najviac. Koľko ich vie upiecť?

Riešenie: Anička chce vlastne deliť ovocia na skupiny, takže chce vedieť NSD(20, 30), to bude počet koláčov, do koľých ich vie najviac rozdeliť. Výsledok je ______

Príklad 4. Keď učiteľ telocviku nechá nastúpiť študentov do 6-radu a 8-radu, nikto nevystáva. Koľko študentov je v triede?

Riešenie: Keďže ich vie rozdeliť do 6-radu aj 8-radu, tak tento počet musí byt
deliteľný 6-mi aj 8-mi, preto hľadané číslo je nsn(6, 8). Výsledok je
Príklad 5. Ferko má 24 modrých pier, 16 zelených a 44 červených. Chce vedieť, na
koľko skupín ich vie najviac rozdeliť. Koľko ich bude? Koľko pier daných farieb bude
v skupinách?
Riešenie: Opäť delíme veci do meších skupiniek, takže hľadáme NSD(24, 16, 44),
čo je Ak chceme vedieť, koľko bude v skupinách, vydelíme počty NSD-
čkom. Modrých pier:, zelených: a červených:
Príklad 6. 3 lode vyrážajú každých 12, 15 a 20 minút. Prvýkrát vyrážajú o 12:30
Kedy sa prvýkrát stretnú?
Riešenie: Hľadáme časový úsek, kam sa zmestí 12, 15 aj 20 minút, takže hľadáme
nsn(12, 15, 20). Výsledok je: Teda prvýkrát sa stretnú
Príklad 7. Zoberme si lode z predchádzajúcej úlohy. Zaujíma nás, koľkokrát sa
stretnú do 18:00.
Riešenie: Zaujíma celočíselný podiel úseku od 12:30 do 18:00. Keď zistíme túto
dĺžku v minútach, urobíme len celočíselný podiel tohto čísla a nsn z predchádzajúcej
úlohy (urobíme delenie so zvyškom a výsledkom je len celá časť). Takže sa stretnú
krát.

5 Racionálne čísla a zlomky

5.1 Definícia

Do definície dopíš nasledovné slová: **celých čísel, nule, čitateľ, menovateľ, pomer, zlomok**,a zisti, aké značenie sa používa pre racionálne čísla.

Definícia: Racionálne číslo je také číslo, ktoré vieme zapísať ako	2
x a y , zápisujeme to ako $\frac{x}{y}$, tento tvar sa potom nazýva	
Číslo x sa nazýva (lebo ho prečítame prvé) a y sa nazýva (lebo	
dáva zlomku meno) treba si dať ale potom pozor na to, že menovateľ nesmie byť rovn	ý
Značenie pre racionálne čísla je	 lebo vvný
Z tabuľky doplň slová do textu na správne miesta.	
základnom súdeliteľné nesúdeliteľné	
rozširovanie krátenie $\mathbb Q$	
\bullet zlomok $\frac{x}{y},$ kde NSD(x, y) = 1, sa nazýva zlomok v tvare.	
• vynásobenie čitateľa aj menovateľa rovnakým nenulovým číslom sa nazýva	a
Uvedom si, že táto operácia nemení hodnotu zlomku.	
• opačná operácie, teda vydelenie čiateľa aj menovateľa tým istým nenulovýn	<u>1</u>

5.2 Rozširovanie zlomkov

číslom, sa nazýva _____.

5.3 Cvičenia

Vyššie bolo spomenuté krátenie a rozširovanie zlomkov, Okrem toho sme si definovali aj zlomok v základnom tvare. Ale čo, ak zlomok v základnom tvare nie je? Existuje na to veľmi jednoduchý postup:

- 1. Nájdi ľubovoľného spoločného deliteľa čitateľa a menovateľa.
- 2. Vykráť zlomok týmto deliteľom.
- 3. Ak je zlomok v základnom tvare, sme hotoví. Inak znovu aplikuj rovnaký postup.

V nasledujúcej tabuľke máš dané zlomky a celé nenulové čísla, ktorými ich máš rozšíriť v zátvorkách. Do druhého stĺpca zapíš výsledky.

$\frac{5}{3}$ (-3)	
$\frac{-7}{2}$ (23)	
$\frac{9}{-31}$ (11)	
$\frac{3}{-83}$ (-6)	
$\frac{22}{21}$ (4)	
$\frac{51}{13}$ (36)	
$\frac{16}{93}$ (7)	

Teraz budeš mať v tabuľke zlomky a tvojou úlohou je ich previesť do základného tvaru, okrem NSD využi krátenie, ak bude čitateľ aj menovateľ záporný. Kladné čísla sú pri zlomkoch preferované.

5.4 Operácie so zlomkami

- 1. **Sčitovanie/odčitovanie s rovnakými menovateľmi**: V tomto prípade ide o jednoduchý postup, keďže sa oba zlomky skladajú z rovnako veľkých častí. Máme teda 2 zlomky $\frac{x}{m}$ a $\frac{y}{m}$, ich súčet je potom súčet čitateľov $\frac{x+y}{m}$ (pri rozdieli tam je len rozdiel čitateľov).
- 2. Násobenie zlomkov: $\frac{a}{b} \times \frac{x}{y} =$
- 3. Delenie zlomkov: $\frac{a}{b} \div \frac{x}{y} =$
- 4. Sčitovanie a odčitovanie zlomkov s rôznymi menovateľ mi: Máme 2 zlomky $\frac{a}{b}, \frac{x}{y}$ a chceme ich sčítať, keď že nemáme rovnaké menovatele, nemôžeme len tak sčítať čitatele. V tomto prípade sa postupuje rak, že to prevedieme na spoločný menovateľ, ktorým bude číslo $b \times y$. Dostaneme teda rovnosť $\frac{a}{b} + \frac{x}{y} = \frac{nieo}{b \times y}$. Chceme vedieť, čo je nič, aby sme pri daných 2 zlomkoch dosiahli menovateľ $b \times y$, prvý zlomok rozšírime číslom y a druhý číslom b. Následne teda dostaneme:

$$\frac{a \times y}{b \times y} + \frac{x \times b}{y \times b} = \frac{a \times y + x \times b}{b \times y}.$$