SS 2018 Abgabe bis Mo. 14.05.2018, 17:30 Uhr

Aufgabe 2. Sei $R \in \{\mathbb{Q}, \mathbb{Z}, \mathbb{Q}[x]\}$. Programmiere eine GAP-Funktion normalize_column, die bei Eingabe einer Spalte $A \in R^{n \times 1}$ eine Matrix $U \in GL_n(R)$ zurückgibt, mit

$$UA = \begin{cases} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \text{sonst,}$$

mit d=1 falls $R=\mathbb{Q}$ bzw. $d=\operatorname{ggT}(A_{11},\ldots,A_{n1})$ falls $R=\mathbb{Z}$ oder $R=\mathbb{Q}[x]$. Hinweis: Benutze dafür die bereits programmierte Prozedur normalize_pair, sowie die Befehle NrRows, NonZeroRows, ShallowCopy, Remove, MatElm und die Prozedur:

```
normalize_pair_inflated := function( a, b, i, j, n, R )
    local U, u;

U := HomalgInitialIdentityMatrix( n, R );

u := normalize_pair( a, b, R );

SetMatElm( U, i, i, MatElm( u, 1, 1 ) );
SetMatElm( U, i, j, MatElm( u, 1, 2 ) );
SetMatElm( U, j, i, MatElm( u, 2, 1 ) );
SetMatElm( U, j, j, MatElm( u, 2, 2 ) );

return U;
end;
```