22 条件类型概要

周爱民 (Aimingoo)

目录

- 1 条件类型的基本语法
- 2 条件类型连用,以及它与三元表达式的语义区别
- 3 条件类型中左侧操作数(L)的特殊性
- 4 总结

- ① 22 条件类型的概要
 - 23 赋值兼容性的再说明(应用:统一"兼容性"的具体做法)
 - 24 条件类型用作其它表达式类型的操作数 (X、Y)
 - 25 在条件表达式的操作数中使用其它表达式类型(L、R)
 - 26 分布式条件类型的应用
- 1 27 推断 (infer)
- ① 28 约束(constraint)

E: 条件类型与赋值兼容性

表达式类型

- 1、作为表达式,自身要求值(表达式求值)
- 2、作为表达式类型,要参与其它运算符的运算(操作数)

类别	名称	运算符	(注)	求值结果	优先级
语法(上下文受限)	分组/括号	()			10
	模板变量	\${T}			10
	展开	···T	(注8)		10
	映射	x in X as T			10
	模板字面字符串类型				9
	元组类型	[]	(注7)		9
	映射类型(注3)	{ }			9
表达式	类型查询	typeof V	(* V是变量名)	任意类型	8
	索引访问 (类型)	T[K]	(* T和K都被立即求值)	联合 (包括任何单类型)	7
	键名查询	keyof T	(* T被立即求值)	联合 (包括任何单类型)	6
	交叉类型	A & B		单类型	5
	联合类型(注2)	A B		联合 (包括单类型或或交叉得	4
	条件类型	extends		X, Y, X Y	3
		(保留)			2
语法 (上下文受限)	断言、标注等	as, <>, :			1
	约束	extends ···			1
	別名/缺省值(注6)	=			1
		(保留, 例如,号等)			0

表达式类型的三种运算语义

- 1、作为表达式,自身要求值(表达式求值)
- 2、作为表达式类型,要参与其它运算符的运算(操作数)
- 3、作为变量的类型声明,要接受其它类型的赋值(赋值兼容性)

Lextends R?X:Y;

L: 左操作数(Source)

R: 右操作数(Target)

X: True 分支

Y: False 分支

总结

- 1. 条件类型的基本语法及其求值结果
 - ▶ 基本语法 `L extends R ? X : Y`
 - 求值结果包括: never、X、Y、X | Y、X = L = L & R
- 2.条件类型的特殊之处在于它的 True/False 分支都是被作为类型表达式求值的
 - ▶ 这意味着结果可能是惰性的或未完全求值的
 - ▶ 没有取反运算,但是可以通过交换条件类型的两个分支来获得相同效果
- 3. 裸类型参数与分布式条件类型
 - ▶ Union types 与 never type
 - any

作业

>使用条件类型来分别得到一个接口的签名和成员列表

```
// 可以写成泛型工具Signs<T>和Keys<T>
type T = {
    [k: string|symbol|number]: string | number;
    a: string;
    b: number;
    c: 1;
}
type keys = ...
type signs = ...
```


THANKS