INVERZNA PRESLIKAVA

Trditev 1 Naj bo $f: A \rightarrow B$. Potem je

- $(a) \ f^{-1} \ funkcija \ natanko \ tedaj, ko je f \ injektivna \ in$
- (b) f^{-1} je preslikava iz B v A, $f^{-1}: B \to A$, natanko tedaj, ko je f bijektivna.

Preslikavo f smemo smatrati kot relacijo, vsebovano v $A \times B$. Zato je f^{-1} relacija in velja $f^{-1} \subseteq B \times A$.

Za dokaz (a) je treba premisliti, da je f^{-1} funkcija (=enolična relacija) natanko tedaj, ko je f injektivna. Računajmo:

$$f^{-1}$$
 je enolična $\iff \forall x,y \in A, ; \forall z \in B : (zf^{-1}x \text{ in } zf^{-1}y \Rightarrow x = y)$
 $\iff \forall x,y \in A, \ \forall z \in B : (xfz \text{ in } yfz \Rightarrow x = y)$
 $\iff \forall x,y \in A, \ \forall z \in B : (z = f(x) \text{ in } z = f(y) \Rightarrow x = y)$
 $\iff \forall x,y \in A : (f(x) = f(y) \Rightarrow x = y)$
 $\iff f \text{ je injektivna}$

Sledi dokaz točke (b), privzamemo, da (a) velja.

$$f^{-1}: B \to A \iff f^{-1}$$
 enolična in $\mathcal{D}_{f^{-1}} = B$
 $\iff f$ injektivna in $\mathcal{Z}_f = B$
 $\iff f$ injektivna in f surjektivna
 $\iff f$ je bijektivna