accuracy = tf bler = 1.0 - a # Optimizer lr = tf.placel ADAM_op = tf GD_op = tf Adagrad_op = tf WARNING:tensor deprecated and Instructions ff non-resource vo WARNING:tensor deprecated and	nolder(dtype=tf.float32, shape=[]) tf.train.AdamOptimizer(learning_rate=lr).minimize(cross_entropy) tf.train.GradientDescentOptimizer(learning_rate=lr).minimize(cross_entropy) tf.train.RMSPropOptimizer(learning_rate=lr).minimize(cross_entropy) f.train.AdagradOptimizer(learning_rate=lr).minimize(cross_entropy) flow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/compat/v2_compat.py:11: disable_resource_variables (from tensorflow.python.ops.variable_scope) i will be removed in a future version. or updating: ariables are not supported in the long term flow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/training/rmsprop.py:192: calling Onesinit (from tensorflow.python.ops.init_ops) with dtype i will be removed in a future version.
WARNING:tensor is deprecated Instructions for Call initialize # disabling en import tensor tf.disable_v2_ #creating 9 se sess1 = tf.Ses sess2 = tf.Ses sess4 = tf.Ses sess4 = tf.Ses sess6 = tf.Ses sess6 = tf.Ses sess7 = tf.Ses sess8 = tf.Ses sess9 = tf.Ses sess7 - tf.Ses sess9 = tf.Ses sess1.run(tf.g sess3.run(tf.g sess5.run(tf.g sess6.run(tf.g sess7.run(tf.g sess7.run(tf.g sess7.run(tf.g sess7.run(tf.g sess7.run(tf.g sess7.run(tf.g sess7.run(tf.g sess7.run(tf.g	er instance with the dtype argument instead of passing it to the constructor flow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/training/adagrad.py:143: calling Constantinit (from tensorflow.python.ops.init_ops) with dty and will be removed in a future version. or updating: er instance with the dtype argument instead of passing it to the constructor rrors casued from tensorflow 2 so we can run our 1.x version Flow.compat.v1 as tfbehavior() sessions because we are training 3 batch_size x 3 different optimizers ssion()
def EbNo2Sigma '''Convert E ebno = 10** bits_per_con return 1.0/n 3]: # applying ada #creating empa loss1_ADAM=[] loss2_ADAM=[] loss3_ADAM=[] for i in range _, loss_val loss1_ADAM.a for i in range _, loss_val loss2_ADAM.a for i in range _, loss_val loss2_ADAM.a for i in range _, loss_val loss2_ADAM.a	<pre>global_variables_initializer()) a(ebnodb): abc/No in dB to noise standard deviation''' (ebnodb/10) mplex_symbol = k/(n/2) np.sqrt(bits_per_complex_symbol*ebno) am optimizer on different batch size and learning rates try lists to store the loss values for plotting it later e(num_iter):</pre>
#creating empa loss1_GD=[] loss2_GD=[] loss3_GD=[] for i in range _, loss_val loss1_GD.app for i in range _, loss_val loss2_GD.app for i in range _, loss_v loss3_GD	= sess4.run([GD_op, cross_entropy], feed_dict={batch_size: batch_size_1, noise_std: EbNo2Sigma(7.0), lr: LR}) pend(loss_val) e(num_iter):
loss1_RMSPro for i in range _, loss_val loss2_RMSPro for i in range _, loss_v loss3_RMS import math def calc_chann a = (math CC = B*a return CC # Calculating channel_capac:	<pre>e(num_iter):</pre>
BLER_QPSK_k8ns # creating 9 m snr_range = nm monte_carlo_bi	### ### ### ### ### ### ### ### ### ##
monte_carimonte_	ADAM Optimizer', fontsize=18, y=1.1) h batch size = 32 , 3, 1) range, monte_carlo_bler1/10, linewidth=2.0) range, BLER_QPSK_k8n8, linewidth=2.0) range, BLER_8PSK, linewidth=2.0) Autoencoder', 'QPSK','BLER_8PSK'], loc='upper right') og') og')
plt.subplot(1, plt.plot(snr_i plt.plot(snr_i plt.plot(snr_i plt.plot(snr_i plt.legend(['/ plt.yscale('legend', plt.ylim([1e-splt.xlabel('Elgend', plt.ylabel('Bather plt.ylabel('Bather plt.subplot(1, plt.plot(snr_i plt.plot(snr_i plt.plot(snr_i plt.plot(snr_i plt.legend(['/ plt.yscale('legend', plt.yscale('legend', plt.ylim([1e-splt.xlabel('Elgend', plt.ylabel('Bather plt.	range, BLER_QPSK_k8n8, linewidth=2.0) range, BLER_QPSK_k8n8, linewidth=2.0) range, BLER_BPSK, linewidth=2.0) Autoencoder', 'QPSK', 'BLER_8PSK'], loc='upper right') pg') block-error rate', fontsize=18) toch size = '+str(batch_size_2), fontsize=10) h batch size = 512 , 3, 3) range, monte_carlo_bler3/10, linewidth=2.0) range, BLER_QPSK_k8n8, linewidth=2.0) range, BLER_QPSK_k8n8, linewidth=2.0) range, BLER_BPSK, linewidth=2.0) Autoencoder', 'QPSK', 'BLER_8PSK'], loc='upper right') pg') block' block
BOCK-error rate 10-2 10-3 10-3 10-3 10-3 10-3 10-4 10-5 10-5 10-5 10-5 10-5 10-5 10-5 10-5	ADAM Optimizer Batch size = 256 Autoencoder OPSK BLER BPSK Date of Gradient Decent optimizer in different batch sizes Autoencoder vs BLER QPSK k8n8 vs BLER BPSK for Gradient Decent optimizer in different batch sizes
# subplot with plt.subplot(1, plt.plot(snr_i) plt.plot(snr_i) plt.plot(snr_i) plt.legend(['/ plt.yscale('le plt.ylam([1e-s plt.xlabel('El plt.ylabel('B) plt.plot(snr_i) plt.plot(snr_i) plt.plot(snr_i) plt.plot(snr_i) plt.plot(snr_i) plt.yscale('le plt.ylabel('El plt.ylabel('El plt.ylabel('El plt.ylabel('El plt.ylabel('El plt.ylabel('El plt.ylabel('B) plt.title('Bat # subplot with plt.subplot(1, plt.plot(snr_i) plt.plot(snr_i) plt.plot(snr_i) plt.ylabel('El plt.ylabel('El plt.plot(snr_i) plt.plot(snr_i) plt.plot(snr_i) plt.plot(snr_i) plt.plot(snr_i) plt.legend(['/ plt.yscale('le plt.ylabel('El plt.	'Oradient Decent Optimizer', fontsize=18, y=1.1) 'b batch size = 32 3, 1) 'range, BLER_OPSK_Kana, linewidth=2.0) 'range, BLER_OPSK_Kana, linewidth=2.0) 'valuemender', 'QPSK', 'BLER_OPSK'], loc='lower left') 'grid 'b batch size = 18 lock-error rate', fontsize=18) lock-error rate', fontsize=10, linewidth=2.0) range, BLER_OPSK_Kana, linewidth=2.0)
10 OPS	Gradient Decent Optimizer Batch size = 256 Batch size = 512 Batch size = 512 Batch size = 1024 Demoder opsk R_BPSK 2
plt.figure(figure) plt.suptitle(# subplot with plt.subplot(1, plt.plot(snr_n) plt.plot(snr_n) plt.plot(snr_n) plt.legend([', plt.yscale('legend', legend',	PRRSprop Optimizer', fontsize=18, y=1.1) h batch size = 32 3, 1) range, BLER_GPSK_klane, linewidth=2.0) range, BLER_GPSK_klane, linewidth=2.0) watcemcoder', 'QPSK', 'BLER_BPSK', loc='upper right') yar yar h batch size = istr(batch_size=18) lock-error rate', fontsize=18) lock-error rate, specific planewidth=2.0) range, BLER_GPSK_klanewidth=2.0)
plt.show() 10° 10-1 10-2 10-3 10-3 10-4 10-5 0 #comparing loss	RMSprop Optimizer Batch size = 256 Autoencoder OPSK BLER BPSK B
plt.plot(range plt.plot(range plt.legend(['A plt.xlabel('Ne plt.ylabel('Le	e(len(loss1_ADAM)), loss1_ADAM) e(len(loss1_RMSProp)), loss1_RMSProp) e(len(loss1_GD)), loss1_GD) ADAM', 'RMSProp','Gradient Decent'], prop={'size': 16}, loc='upper right'); umber of Iterations', fontsize=18) oss Value', fontsize=18) tch size = '+str(batch_size_1), fontsize=18)
, ,	Number of Iterations sees among different optimizers with similar batch size and learning rate
plt.plot(range plt.plot(range plt.legend(['A plt.xlabel('Ne plt.ylabel('Le plt.title('Bat plt.grid(True) plt.show()	e(len(loss2_ADAM)), loss2_ADAM, linewidth=2.0) e(len(loss2_RMSProp)), loss2_RMSProp, linewidth=2.0) e(len(loss2_GD)), loss2_GD, linewidth=2.0) ADAM', 'RMSProp','Gradient Decent'], prop={'size': 16}, loc='upper right'); umber of Iterations', fontsize=18) oss Value', fontsize=18) tch size = '+str(batch_size_2), fontsize=10)
plt.figure(fig	e(len(loss3_ADAM)), loss3_ADAM, linewidth=2.0)
<pre>plt.plot(range plt.plot(range plt.legend(['A plt.xlabel('Ne plt.ylabel('Le</pre>	e(len(loss3_RMSProp)), loss3_RMSProp, linewidth=2.0) e(len(loss3_GD)), loss3_GD, linewidth=2.0) ADAM', 'RMSProp','Gradient Decent'], prop={'size': 16}, loc='upper right'); umber of Iterations', fontsize=18) oss Value', fontsize=18) tch size = '+str(batch_size_3), fontsize=10)
Loss Value	

Number of Iterations

8000

10000

In [1]:

k = 8 M = 2**k n = 8

num_iter = 10000
batch_size_1 = 256

batch_size_2 = 512 batch_size_3 = 1024 LR = 0.001

Transmitter

Channel

y = x + noise

Loss function

Receiver

AUTOENCODER SYSTEM MODEL

import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

import numpy as np
import matplotlib.pyplot as plt

Number of information bits per message
Number of messages
Number of real channel uses per message

batch_size = tf.placeholder(tf.int32, shape=[])
s = tf.random.uniform(shape=[batch_size], minval=0, maxval=M, dtype=tf.int32)
s_one_hot = tf.one_hot(s, depth=M)

cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=s,logits=s_hat)

tx = tf.keras.layers.Dense(units=M,activation="relu")(s_one_hot)
tx = tf.keras.layers.Dense(units=n,activation=None)(tx)

noise_std = tf.placeholder(dtype=tf.float32, shape=[])
noise = tf.random.normal(shape=tf.shape(x), stddev=noise_std)

rx = tf.keras.layers.Dense(units=M, activation="relu")(y)
s_hat = tf.keras.layers.Dense(units=M, activation=None)(rx)

x = tx / tf.sqrt(tf.reduce_mean(tf.square(tx)))