		Created with OSCIAG®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

1 Input Parameters

Module		Column-to-Colum	nn Cover Plate Bolted Connection		
Main M	Main Module			Ioment Connection	
Bending Moment (kNm) *				23.0	
Shear Ford	e (kN) *			23.0	
Axial For	ce (kN)			23.0	
	Column Section	- Mechanical	Properties		
	Beam Sect	ion *		HB 225*	
	Materia	1 *		E 450 (Fe 590) E	
. Y	Ultimate Strengt	h, F_u (MPa)		590	
	Yield Strength,	F_y (MPa)		450	
	Mass, $m \text{ (kg/m)}$	46.52	$I_z \text{ (cm}^4)$	5430.0	
(B-t)/4	Area, $A \text{ (cm}^2)$	59.2	$I_y(\mathrm{cm}^4)$	1360.0	
Z Z D	D (mm)	225.0	r_z (cm)	9.57	
R2-\	B (mm)	225.0	r_y (cm)	4.79	
	t (mm)	8.6	$Z_z \text{ (cm}^3)$	483.0	
Y	T (mm)	9.1	$Z_y \text{ (cm}^3)$	121.0	
-	Flange Slope	94	$Z_{pz} \ (\mathrm{cm}^3)$	538.0	
	$R_1 \text{ (mm)}$	10.0	$Z_{py} \text{ (cm}^3)$	203.0	
	$R_2 \text{ (mm)}$	5.0			
	Bolt Details - Inp	out and Desig	n Preference		
Diameter	(mm) *		[8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39,		
Diminicoci	(11111)		42, 45, 48, 52, 56, 60, 64]		
Property	Class *		[3.6,4.6,4.8,5.6,5.8,6.8,8.8,9.8,10.9,12.9]		
Туро	e *		Bearing Bolt		
Bolt Te	ension		Non pre-tensioned		
Hole T	Гуре			Standard	
Slip Facto	Slip Factor, (μ_f)			0.3	
	Detailing -	Design Prefe	erence		
Edge Prepara	tion Method		Shea	Sheared or hand flame cut	
Gap Between C	Columns (mm)			3.0	
Are the Members Exposed	to Corrosive Influence	es?		False	

Plate Details - Input and Design Preference

		Created with OSdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Preference *	Outside
Material *	E 450 (Fe 590) E
Ultimate Strength, F_u (MPa)	590
Yield Strength, F_y (MPa)	450
Thickness (mm) *	[8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45,
Thickness (min)	50, 56, 63, 75, 80, 90, 100, 110, 120]

		Created with OSCIAG®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2 Design Checks

Design Status	Pass
---------------	------

2.1 Member Capacity

Check	Required	Provided	Remarks
Section Classification		Semi-Compact	
Section Classification		[Ref: Table 2, Cl.3.7.2 and 3.7.4, IS 800:2007]	
		$T_{ m dg} = rac{A_g f_y}{\gamma_{m0}}$	
Axial Capacity Member (kN)	$P_x = 23.0$	$=\frac{5920.0\times450}{1.1\times10^3}$	
		= 2421.82	
		[Ref. IS 800:2007, Cl.6.2]	
		$V_{d_y} = \frac{A_v f_y}{\sqrt{3} \gamma_{m0}}$	
Shear Capacity Member (kN)		$= \frac{206.8 \times 8.6 \times 450}{\sqrt{3} \times 1.1 \times 1000}$	
		= 420.06	
		[Ref. IS 800:2007, Cl.10.4.3]	
		$V_d = 0.6 \ V_{dy}$	
		$= 0.6 \times 420.06$	
Allowable Shear Capacity (kN)	$V_y = 23.0$	= 252.03	Pass
		[Limited to low shear]	
		$M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0}}$	
Plastic Moment Capacity (kNm)		$= \frac{0.9 \times 538000.0 \times 450}{1.1 \times 10^6}$	
		1.1×10^{6} = 197.59	
		_ 101.00	
		[Ref. IS 800:2007, Cl.8.2.1.2]	

		Created with Osdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Moment Deformation Criteria (kNm)		$M_{dc} = \frac{1.5Z_e f y}{\gamma_{m0} \times 10^6}$ $= \frac{1.5 \times 483000.0 \times 450}{1.1 \times 10^6}$ $= 296.39$	
		[Ref. IS 800:2007, Cl.8.2.1.2]	
		$M_{dz} = \min(M_{dz}, M_{dc})$ = $\min(197.59, 296.39)$	
Moment Capacity Member (kNm)	$M_z = 23.0$	= 197.59	
		[Ref. IS 800:2007, Cl.8.2]	

2.2 Load Consideration

Check	Required	Provided		Remarks
		I.R. axial	$=P_{\rm x}/T_{\rm dg}$	
			=23.0/2421.82	
			= 0.0095	
		I.R. momen	$t = M_z/M_{d_z}$	
Interaction Ratio			=23.0/197.59	
			= 0.1164	
		I.R. sum	= I.R. axial + I.R. momen	nt
			= 0.0095 + 0.1164	
			= 0.1259	

	Create		ated with Osdag®
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Minimum Required Load	if I.R. axial < 0.3 and I.R. moment < 0.5 $P_{\rm xmin} = 0.3T_{\rm dg}$ $M_{\rm zmin} = 0.5M_{\rm dz}$ elif sum I.R. $<= 1.0$ and I.R. moment < 0.5 if $(0.5-{\rm I.R.}$ moment) $< (1-{\rm sum}$ I.R.) $M_{\rm zmin} = 0.5 \times M_{\rm dz}$ else $M_{\rm zmin} = M_{\rm z} + ((1-{\rm sum} \ {\rm I.R.}) \times M_{\rm dz})$ $P_{\rm xmin} = P_{\rm x}$ elif sum I.R. $<= 1.0$ and I.R. axial < 0.3 if $(0.3-{\rm I.R.}$ axial) $< (1-{\rm sum} \ {\rm I.R.})$ $P_{\rm xmin} = 0.3T_{\rm dg}$ else $P_{\rm xmin} = P_{\rm x} + ((1-{\rm sum} \ {\rm I.R.}) \times T_{\rm dg})$ $M_{\rm zmin} = M_{\rm z}$ else $P_{\rm xmin} = P_{\rm x}$ $M_{\rm zmin} = M_{\rm z}$ Note: AL is the user input for load	$M_{ m zmin} = 98.8$ $P_{ m xmin} = 726.55$ [Ref. IS 800:2007, Cl.10.7]	
Applied Axial Force (kN)	$P_x = 23.0$	$P_u = \max(P_x, P_{xmin})$ $= \max(23.0, 726.55)$ $= 726.55$	

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$	
		$= \min(0.15 \times 420.06, \ 40.0)$	
		=40.0	
Applied Shear Force	$V_y = 23.0$	$V_u = \max(V_y, V_{y_{\min}})$	
(kN)		$= \max(23.0, 40.0)$	
		= 40.0	
		[Ref. IS 800:2007, Cl.10.7]	
		$M_u = \max(M_z, M_{z\min})$	
		$= \max(23.0, 98.8)$	
Applied Moment	$M_z = 23.0$	= 98.8	
(kNm)			
		[Ref. IS 800:2007, Cl.8.2.1.2]	
		$A_w = \text{Axial force in web}$	
		$=\frac{(D-2T)tAu}{A}$	
		$= \frac{(225.0 - 2 \times 9.1) \times 8.6 \times 726.55}{}$	
		5920.0	
		= 218.27 kN	
Force Carried by Web			
		$M_w = \text{Moment in web}$	
		$=rac{Z_wMu}{Z}$	
		Z 61298.28×98.8	
		$={538000.0}$	
		= 11.26 kNm	

		Created with OSCIAG®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$A_f = \text{Axial force in flange}$ $= \frac{AuBT}{A}$ $= \frac{726.55 \times 225.0 \times 9.1}{5920.0}$ $= 251.28 \text{ kN}$	
Force Carried by Flange		$M_f = \text{Moment in flange}$ $= Mu - M_w$ $= 98.8 - 11.26$ $= 87.54 \text{ kNm}$	
		$F_f = \text{flange force}$ $= \frac{M_f \times 10^3}{D - T} + A_f$ $= \frac{87.54 \times 10^3}{225.0 - 9.1} + 251.28$ $= 656.74 \text{ kN}$	

2.3 Flange Bolt Check

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 22.0	
Property Class	Bolt Grade Optimisation	8.8	
Bolt Ultimate Strength (N/mm2)		$f_{ub} = 830.0$	
Bolt Yield Strength (N/mm2)		$f_{yb} = 660.0$	
Nominal Stress Area (mm2)		$A_{nb} = 303 \; (Ref \; IS \; 1367 - 3 \; (2002))$	
Hole Diameter (mm)		$d_0 = 24.0$	
Min. Plate Thickness (mm)	T = 9.1	$t_{fp} = 10.0$	Pass
No. of Bolt Columns		$n_c = 2$	
No. of Bolt Rows		$n_r = 6$	

		Created with OSdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$p_{\min} = 2.5d$		
	$= 2.5 \times 22.0$		
Min. Pitch Distance	= 55.0	55	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 9.1, 300)$		
	$= \min(291.2, 300)$		
Max. Pitch Distance	= 291.2	55	Pass
(mm)		00	1 ass
()	Where, $t = \min(10.0, 9.1)$		
	[Ref. IS 800:2007, Cl.10.2.3	3]	
	$p_{\min} = 2.5d$		
	$= 2.5 \times 22.0$		
Min. Gauge Distance	= 55.0	0	
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 9.1, 300)$		
	$= \min(291.2, 300)$		
Max. Gauge Distance	= 291.2	0	
(mm)			
	Where, $t = \min(10.0, 9.1)$		
	[Ref. IS 800:2007, Cl.10.2.3]	
	$e_{\min} = 1.7d_0$		
	$= 1.7 \times 24.0$		
Min. End Distance	= 40.8	45	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 10.0 \times \sqrt{\frac{250}{450}} = 89.44$ $e_2 = 12 \times 9.1 \times \sqrt{\frac{250}{450}} = 81.39$ $e_{\text{max}} = \min(e_1, \ e_2) = 81.39$ [Ref. IS 800:2007, Cl.10.2.4.3]	45	Pass
Min. Edge Distance (mm)	$e_{\min} = 1.7d_0$ = 1.7 × 24.0 = 40.8 [Ref. IS 800:2007, Cl.10.2.4.2]	49.1	Pass
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 10.0 \times \sqrt{\frac{250}{450}} = 89.44$ $e_2 = 12 \times 9.1 \times \sqrt{\frac{250}{450}} = 81.39$ $e'_{\text{max}} = min(e_1, \ e_2) = 81.39$ [Ref. IS 800:2007, Cl.10.2.4.3]	49.1	Pass
Shear Capacity (kN)		$V_{\rm dsb} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{830.0 \times 1 \times 303}{1000 \times \sqrt{3} \times 1.25}$ $= 116.16$ [Ref. IS 800:2007, Cl.10.3.3]	

		Created with OSdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Bearing Capacity (kN)		$V_{\text{dpb}} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$ $= \frac{2.5 \times 0.51 \times 22.0 \times 9.1 \times 590}{1000 \times 1.25}$ $= 120.48$ [Pof. IS 800,2007, Cl. 10.3.4]	
Bolt Capacity (kN)		[Ref. IS 800:2007, Cl.10.3.4] $V_{\rm db} = \min (V_{\rm dsb}, V_{\rm dpb})$ $= \min (116.16, 120.48)$ $= 116.16$ [Ref. IS 800:2007, Cl.10.3.2]	
Long Joint Reduction Factor	$ \mbox{if $l_j \geq 15d$ then $V_{\rm rd} = \beta_{lj}V_{\rm db}$ } $	$l = ((n_c \text{ or } n_r) - 1) \times (p \text{ or } g)$ $l_c = 2 \times \left(\left(\frac{6}{2} - 1 \right) \times 55 + 45 \right) + 3.0$ $= 313.0$ $l_r = 2 \times \left(\left(\frac{2}{2} - 1 \right) \times 0 + 49.1 \right)$ $+ 10.0) + 8.6 = 126.8$ $l = 313.0$ $15d = 15 \times 22.0 = 330.0$ $\text{since, } l < 15d$ $\text{then } V_{\text{rd}} = V_{\text{db}}$ $V_{\text{rd}} = 116.16$ [Ref. IS 800:2007, Cl. 10.3.3.1]	

		Created with OSCIO	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	if $l_g \ge 5d$, then $V_{\rm rd} = \beta_{lg} V_{\rm db}$		
	if $l_g < 5d$ then $V_{\rm rd} = V_{\rm db}$		
		$l_g = \Sigma \left(t_p + t_{\text{member}} \right)$	
	$l_g \le 8d$	= 19.1	
Large Grip Length Re-	where,	5d = 110.0	
duction Factor	$l_g = \Sigma(t_{\rm ep} + t_{\rm member})$	8d = 176.0	
		since, $l_g < 5d$; $\beta_{lg} = 1.0$	
	$\beta_{lg} = 8d/(3d + l_g)$	[Ref. IS 800:2007, Cl.10.3.3.2]	
	but $\beta_{lg} \leq \beta_{lj}$		
	[Ref. IS 800:2007, Cl.10.3.3.2]		
	$V_{res} = \frac{2\sqrt{V_u^2 + A_u^2}}{bolts_{req}}$	$V_{\mathrm{rd}} = \beta_{lj} \beta_{lg} V_{\mathrm{db}}$	
Capacity (kN)	$= \frac{2 \times \sqrt{0.0^2 + 656.74^2}}{}$	$= 1.0 \times 1.0 \times 116.16$	Pass
		= 116.16	
	= 109.46		

2.4 Web Bolt Check

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 22.0	
Property Class	Bolt Grade Optimisation	8.8	
Min. Plate Thickness (mm)	t/2 = 4.3	$t_{wp} = 8.0$	Pass
No. of Bolt Rows		$n_r = 6$	
No. of Bolt Columns		$n_c = 2$	
Min. Pitch Distance (mm)	$p_{\min} = 2.5d$ $= 2.5 \times 22.0$ $= 55.0$ [Ref. IS 800:2007, Cl.10.2.2]	55	Pass

		Created with Osdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 8.0, 300)$		
	$= \min(256.0, 300)$		
Max. Pitch Distance	= 256.0	55	Pass
(mm)		50	1 835
	Where, $t = \min(8.0, 8.6)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$p_{\min} = 2.5d$		
	$= 2.5 \times 22.0$		
Min. Gauge Distance	= 55.0	55	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 8.0, 300)$		
	$= \min(256.0, 300)$		
Max. Gauge Distance	= 256.0	55	Pass
(mm)			
	Where, $t = \min(8.0, 8.6)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.7d_0$		
	$= 1.7 \times 24.0$		
Min. End Distance	=40.8	45	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 16.0 \times \sqrt{\frac{250}{450}} = 143.11$ $e_2 = 12 \times 8.6 \times \sqrt{\frac{250}{450}} = 76.92$ $e_{\text{max}} = \min(e_1, \ e_2) = 76.92$ [Ref. IS 800:2007, Cl.10.2.4.3]	45	Pass
Min. Edge Distance (mm)	$e_{\min} = 1.7d_0$ = 1.7 × 24.0 = 40.8 [Ref. IS 800:2007, Cl.10.2.4.2]	45	Pass
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 16.0 \times \sqrt{\frac{250}{450}} = 143.11$ $e_2 = 12 \times 8.6 \times \sqrt{\frac{250}{450}} = 76.92$ $e'_{\text{max}} = min(e_1, \ e_2) = 76.92$ [Ref. IS 800:2007, Cl.10.2.4.3]	45	Pass
Shear Capacity (kN)		$V_{\rm dsb} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{830.0 \times 2 \times 303}{1000 \times \sqrt{3} \times 1.25}$ $= 232.32$ [Ref. IS 800:2007, Cl.10.3.3]	

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Bearing Capacity (kN)		$V_{\text{dpb}} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$ $= \frac{2.5 \times 0.51 \times 22.0 \times 8.6 \times 590}{1000 \times 1.25}$ $= 113.86$	
Bolt Capacity (kN)		[Ref. IS 800:2007, Cl.10.3.4] $V_{db} = \min (V_{dsb}, V_{dpb})$ $= \min (232.32, 113.86)$ $= 113.86$ [Ref. IS 800:2007, Cl.10.3.2]	
Bolt Force Parameter(s) (mm)	$l_n = \text{length available}$ $l_n = g (n_c - 1)$ $= 55 \times (2 - 1)$ $= 313.0$ $y_{\text{max}} = l_n/2$ $= 313.0/2$ $= 27.5$ $x_{\text{max}} = p(\frac{n_r}{2} - 1)/2$ $= 55 \times (\frac{6}{2} - 1)/2$ $= 55.0$		
Moment Demand (kNm)	$M_d = (V_u \times \text{ecc} + M_w)$ $\text{ecc} = \text{eccentricity}$ $M_w = \text{external moment acting on web}$ $= \frac{(40.0 \times 10^3 \times 101.5 + 11.26 \times 10^6)}{10^6}$ $= 15.32$		

		Created with OSdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Check Bolt Force (kN)	Required $vbv = V_u/((n_r/2) \times n_c)$ $= \frac{40.0}{(2 \times (6/2))}$ $= 6.67$ $tmh = \frac{M_d \times y_{\text{max}}}{\Sigma r_i^2}$ $= \frac{15.32 \times 27.5}{16.64}$ $= 25.32$ $tmv = \frac{M_d \times x_{\text{max}}}{\Sigma r_i^2}$ $= \frac{15.32 \times 55.0}{16.64}$ $= 50.63$ $abh = \frac{A_u}{((n_r/2) \times n_c)}$ $= \frac{218.27}{(2 \times (6/2))}$	Provided	Remarks
	$= 36.38$ $v_{res} = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(6.67 + 50.63)^2 + (25.32 + 36.38)^2}$ $= 84.2$		

Created with OSCIO		ated with Osdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$l = ((n_c \text{ or } n_r) - 1) \times (p \text{ or } g)$	
	if $l_j \ge 15d$ then $V_{\rm rd} = \beta_{lj} V_{\rm db}$	$l_c = 2 \times \left(\left(\frac{6}{2} - 1 \right) \times 55 + 45 \right) + 3.0$	
	if $l_j < 15d$ then $V_{\rm rd} = V_{\rm db}$	= 313.0	
	where,	$l_r = (2-1) \times 55 = 55$	
Long Joint Reduction Factor	$l_j = ((nc \text{ or } nr) - 1) \times (p \text{ or } g)$	l = 313.0	
ractor	$\beta_{lj} = 1.075 - l/(200d)$	$15d = 15 \times 22.0 = 330.0$	
	but $0.75 \le \beta_{lj} \le 1.0$	since, $l < 15d$	
	[Ref. IS 800:2007, Cl.10.3.3.1]	then, $V_{\rm rd} = V_{ m db}$	
		$V_{ m rd} = 113.86$	
		[Ref. IS 800:2007, Cl.10.3.3.1]	
	if $l_g \ge 5d$, then $V_{\rm rd} = \beta_{lg} V_{\rm db}$		
	if $l_g < 5d$ then $V_{\rm rd} = V_{\rm db}$		
		$l_g = \Sigma \left(t_p + t_{\text{member}} \right)$	
	$l_g \le 8d$ where,	= 24.6 $5d = 110.0$	
Large Grip Length Re-	$l_g = \Sigma(t_{ m ep} + t_{ m member})$	8d = 176.0	
duction Factor	vg = 2(vep + vmember)	since, $l_g < 5d$; $\beta_{lg} = 1.0$	
	$\beta_{lg} = 8d/(3d + l_g)$	[Ref. IS 800:2007, Cl.10.3.3.2]	
	but $\beta_{lg} \leq \beta_{lj}$		
	[Ref. IS 800:2007, Cl.10.3.3.2]	W 0.0 W	
Compositor (I-N)	94.9	$V_{\rm rd} = \beta_{lj}\beta_{lg}V_{\rm db}$	Dogg
Capacity (kN)	84.2	$= 1.0 \times 1.0 \times 113.86$ $= 113.86$	Pass
		= 113.86	

		Created with OSCIO ®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.5 Flange Plate Dimensions Check - Outside

Check	Required	Provided	Remarks
Min. Plate Height (mm)	min. flange plate height = beam width	225.0	Pass
	= 225.0		
	$2 \times \left[2e_{\min} + \left(\frac{n_r}{2} - 1\right)p_{\min}\right)\right]$		
	$+\frac{\mathrm{gap}}{2}$]		
Min. Plate Length (mm)	$= 2 \times [(2 \times 40.8 + (\frac{6}{2} - 1) \times 55.0$	403.0	Pass
	$=+\frac{3.0}{2}]$		
	= 386.2		
Min. Plate Thickness (mm)	T = 9.1	$t_{fp} = 10.0$	Pass
	plate area >=		
	1.05 X connected member area	plate area = $B_{fp} \times t_{ifp}$	
Plate Area Check (mm2)	=2149.88	$= 225.0 \times 10.0$	Pass
		= 2250.0	
	[Ref: Cl.8.6.3.2, IS 800:2007]		

2.6 Web Plate Dimensions Check

Check	Required	Provided	Remarks
	$0.6 \times (d_b - 2 \times t_f - 2 \times r_r)$ $= 0.6 \times (225.0 - 2 \times 9.1 - 2 \times 10.0)$		
Min. Plate Height (mm)	$= 0.6 \times (225.0 - 2 \times 9.1 - 2 \times 10.0)$ $= 135.0$	145	Pass
	[Ref. INSDAG, Ch.5, sec.5.2.3]		

		Created with OSdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Min. Plate Length (mm)	$2 \times \left[2e_{\min} + \left(\frac{n_r}{2} - 1\right)p_{\min}\right] + \frac{\text{gap}}{2}$ $= 2 \times \left[(2 \times 40.8 + \left(\frac{6}{2} - 1\right) \times 55.0\right]$ $= +\frac{3.0}{2}$ $= 386.2$	403.0	Pass
Min. Plate Thickness (mm)	t/2 = 4.3	$t_{wp} = 8.0$	Pass
Plate Area Check (mm2)	plate area >= 1.05 X connected member area = 1867.4 [Ref: Cl.8.6.3.2, IS 800:2007]	plate area = $2 \times W_{wp} \times t_{wp}$ = $2 \times 145 \times 8.0$ = 2320.0	Pass

2.7 Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)		$T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 225.0 \times 9.1$ $= \frac{2047.5 \times 450}{1.1 \times 10^3}$ $= 837.61$ [Ref. IS 800:2007, Cl.6.2]	
Flange Tension Rupture Capacity (kN)		$T_{\text{dn}} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{1 \times 0.9 \times (225.0 - 2 \times 24.0) \times 9.1 \times 590}{1.25}$ $= 684.23$ [Ref. IS 800:2007, Cl.6.3.1]	

		Cre	eated with Osdag®
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Flange Block Shear Capacity		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
(kN)		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 789.62$	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, \ T_{\rm dn}, \ T_{\rm db})$	
		$= \min(837.61, 684.23, 789.62)$	
Flange Tension Capacity (kN)	$F_f = 656.74$	= 684.23	Pass
		[Ref.IS 800:2007, Cl.6.1]	
		$T_{ m dg} = rac{A_g f_y}{\gamma_{m0}}$	
		$\gamma m0$	
		$A_g = lt = 206.8 \times 8.6$	
Web Tension Yielding Capac-			
ity (kN)		$=\frac{1778.48 \times 450}{1.1 \times 10^3}$	
		=727.56	
		[Ref. IS 800:2007, Cl.6.2]	
		$T_{\rm dn} = \frac{0.9 A_n f_u}{\gamma_{m1}}$	
		γ_{m1} 1 × 0.9 × (206.8 - 2 × 24.0) × 8.6 × 590	
Web Tension Duntum Come		$= \frac{1 \times 0.9 \times (206.8 - 2 \times 24.0) \times 8.6 \times 590}{1.25}$	
Web Tension Rupture Capacity (kN)		= 580.14	
		[Ref. IS 800:2007, Cl.6.3.1]	

		Created with OSdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Web Block Shear Capacity (kN)		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 752.57$	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$	
		$= \min(727.56, 580.14, 752.57)$	
Web Tension Capacity (kN)	$A_w = 218.27$	=580.14	Pass
		[Ref.IS 800:2007, Cl.6.1]	

2.8 Flange Plate Capacity Check for Axial Load - Outside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 225.0 \times 10.0$ $= \frac{2250.0 \times 450}{1.1 \times 10^3}$ $= 920.45$ [Ref. IS 800:2007, Cl.6.2]	
Tension Rupture Capacity (kN)		$T_{\rm dn} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{1 \times 0.9 \times (225.0 - 2 \times 24.0) \times 10.0 \times 590}{1.25}$ $= 751.9$ [Ref. IS 800:2007, Cl.6.3.1]	

		Created with OSdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$T_{\rm dbl1} = \frac{A_{\rm vg} f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Capacity (kN)		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 867.72$	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$	
		$= \min(920.45, 751.9, 867.72)$	
Flange Plate Tension Capacity (kN)	$F_f = 656.74$	= 751.9	Pass
		[Ref.IS 800:2007, Cl.6.1]	

2.9 Web Plate Capacity Check for Axial Load

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = 2lt = 2 \times 145 \times 8.0$ $= \frac{1160.0 \times 450}{1.1 \times 10^3}$ $= 949.09$ [Ref. IS 800:2007, Cl.6.2]	
Tension Rupture Capacity (kN)		$T_{\rm dn} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{2 \times 0.9 \times (145 - 2 \times 24.0) \times 8.0 \times 590}{1.25}$ $= 659.29$ [Ref. IS 800:2007, Cl.6.3.1]	

		Created with OSaag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Capacity (kN)		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 1400.13$	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, \ T_{\rm dn}, \ T_{\rm db})$	
		$= \min(949.09, 659.29, 1400.13)$	
Web Plate Tension Capacity (kN)	$A_w = 218.27$	=659.29	Pass
		[Ref.IS 800:2007, Cl.6.1]	

2.10 Web Plate Capacity Check for Shear Load

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{2 \times 145 \times 8.0 \times 450}{\sqrt{3} \times 1.1 \times 1000}$ $= 547.96$	
		[Ref. IS 800:2007, Cl.10.4.3]	
		$V_d = 0.6 \ V_{dy}$ = 0.6 × 547.96	
Allowable Shear Capacity (kN)	V = 23.0	= 328.77	Pass
		[Limited to low shear]	

		Created with Osdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks	
Shear Rupture Capacity (kN)	$V_{d_n} = \frac{0.75A_{v_n}f_u}{\sqrt{3}\gamma_{m1}}$ $= 2 \times \frac{(145 - (2 \times 24.0)) \times 8.0 \times 590}{\sqrt{3} \times 1.25}$ $= 317.2$ [Ref. AISC, sect. J4]			
Block Shear Capacity (kN)		$V_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $V_{\text{dbl2}} = \frac{0.9 A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $V_{\text{db}} = \min(V_{db1}, V_{db2}) = 1023.6$ [Ref. IS 800:2007, Cl.6.4]		
$V_d = \min(S_c, V_{d_n}, V_{d_b})$ $= \min(328.77, 317.2, 1023.6)$ Web Plate Shear Capacity $V_u = 40.0$ $= 317.2$ [Ref. IS 800:2007, Cl.6.1]		$= \min(328.77, 317.2, 1023.6)$ $= 317.2$	Pass	

		Created with OSdag®	
Company Name		Project Title	column to column cover plate bolted connec-
			tion
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

3 3D Views

4 Design Log

2025-01-21 20:17:06 - Osdag - WARNING - The defined factored load(s) are less than the minimum recommended value [Cl.10.7, IS 800:2007]

2025-01-21 20:17:06 - Osdag - INFO - The load values have been set as per the minimum recommendations of Cl.10.7, IS 800:2007

2025-01-21 20:17:06 - Osdag - INFO - : Overall Bolted Cover Plate Splice Connection design is SAFE