Bounded t-Structures on the category of perfect complexes

Amnon Neeman

Australian National University amnon.neeman@anu.edu.au

12 September 2022

Overview

1 The papers that introduced me to the subject

2 t-structures: example and formal definition

Something about the proof

Mumford's view of algebraic geometry, in pictures

Mumford's view of algebraic geometry, in pictures

Mumford's view of algebraic geometry, in pictures

My introduction to noncommutative geometry

- Dmitri O. Orlov, Smooth and proper noncommutative schemes and gluing of DG categories, Adv. Math. **302** (2016), 59–105.
- Alice Rizzardo, Michel Van den Bergh, and Amnon Neeman, *An example of a non-Fourier-Mukai functor between derived categories of coherent sheaves*, Invent. Math. **216** (2019), no. 3, 927–1004.

My introduction to noncommutative geometry

- Alexei I. Bondal and Michel Van den Bergh, *Generators and representability of functors in commutative and noncommutative geometry*, Mosc. Math. J. **3** (2003), no. 1, 1–36, 258.
- Dmitri O. Orlov, Smooth and proper noncommutative schemes and gluing of DG categories, Adv. Math. **302** (2016), 59–105.
- Alice Rizzardo, Michel Van den Bergh, and Amnon Neeman, *An example of a non-Fourier-Mukai functor between derived categories of coherent sheaves*, Invent. Math. **216** (2019), no. 3, 927–1004.

My introduction to noncommutative geometry

Alice Rizzardo, Michel Van den Bergh, and Amnon Neeman, *An example of a non-Fourier-Mukai functor between derived categories of coherent sheaves*, Invent. Math. **216** (2019), no. 3, 927–1004.

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

•

$$\mathbf{D}(A)^{\leq 0} = \{A^* \in \mathbf{D}(A) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Let $\mathcal A$ be an abelian category. We define two full subcategories of $\mathbf D(\mathcal A)$:

•

$$\mathbf{D}(\mathcal{A})^{\leq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

$$\cdots \longrightarrow Y^{-2} \longrightarrow Y^{-1} \longrightarrow Y^0 \longrightarrow Y^1 \longrightarrow Y^2 \longrightarrow \cdots$$

Let $\mathcal A$ be an abelian category. We define two full subcategories of $\mathbf D(\mathcal A)$:

•

$$\mathbf{D}(\mathcal{A})^{\leq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Put
$$I = \text{Im}(Y^{-1} \to Y^0)$$
, and $Q = Y^0/I$.

$$\cdots \longrightarrow Y^{-2} \longrightarrow Y^{-1} \longrightarrow Y^0 \longrightarrow Y^1 \longrightarrow Y^2 \longrightarrow \cdots$$

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

$$\mathbf{D}(\mathcal{A})^{\leq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

 $\mathbf{D}(A)^{\geq 0} = \{A^* \in \mathbf{D}(A) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$

Put
$$I = \text{Im}(Y^{-1} \to Y^0)$$
, and $Q = Y^0/I$.

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

•

$$\mathbf{D}(\mathcal{A})^{\leq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Definition

- \bullet $\mathcal{T}^{\leq 0}[1] \subset \mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 0} \subset \mathcal{T}^{\geq 0}[1]$
 - $\bullet \operatorname{Hom}\left(\mathcal{T}^{\leq 0}[1], \mathcal{T}^{\geq 0}\right) = 0$
 - For every object $B \in \mathcal{T}$ there exists a triangle $A \longrightarrow B \longrightarrow C \longrightarrow$ with $A \in \mathcal{T}^{\leq 0}[1]$ and $C \in \mathcal{T}^{\geq 0}$.

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

•

$$\mathbf{D}(A)^{\leq 0} = \{A^* \in \mathbf{D}(A) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Definition

- ullet $\mathcal{T}^{\leq 0}[1] \subset \mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 0} \subset \mathcal{T}^{\geq 0}[1]$
- $\bullet \operatorname{Hom}\left(\mathcal{T}^{\leq 0}[1], \mathcal{T}^{\geq 0}\right) = 0$
- For every object $B \in \mathcal{T}$ there exists a triangle $A \longrightarrow B \longrightarrow C \longrightarrow$ with $A \in \mathcal{T}^{\leq 0}[1]$ and $C \in \mathcal{T}^{\geq 0}$.

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

•

$$\mathbf{D}(\mathcal{A})^{\leq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Definition

- ullet $\mathcal{T}^{\leq 0}[1]\subset\mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 0}\subset\mathcal{T}^{\geq 0}[1]$
 - $\bullet \operatorname{Hom}(\mathcal{T}^{\leq 0}[1], \mathcal{T}^{\geq 0}) = 0$
 - For every object $B \in \mathcal{T}$ there exists a triangle $A \longrightarrow B \longrightarrow C \longrightarrow$ with $A \in \mathcal{T}^{\leq 0}[1]$ and $C \in \mathcal{T}^{\geq 0}$.

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

•

$$\mathbf{D}(\mathcal{A})^{\leq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Definition

- ullet $\mathcal{T}^{\leq 0}[1]\subset \mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 0}\subset \mathcal{T}^{\geq 0}[1]$
- $\operatorname{Hom}\left(\mathcal{T}^{\leq 0}[1], \mathcal{T}^{\geq 0}\right) = 0$
- For every object $B \in \mathcal{T}$ there exists a triangle $A \longrightarrow B \longrightarrow C \longrightarrow$ with $A \in \mathcal{T}^{\leq 0}[1]$ and $C \in \mathcal{T}^{\geq 0}$.

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

•

$$\mathbf{D}(A)^{\leq 0} = \{A^* \in \mathbf{D}(A) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Definition

- $\bullet \ \mathcal{T}^{\leq 0}[1] \subset \mathcal{T}^{\leq 0} \qquad \text{ and } \qquad \mathcal{T}^{\geq 0} \subset \mathcal{T}^{\geq 0}[1]$
- $\operatorname{Hom}\left(\mathcal{T}^{\leq 0}[1], \mathcal{T}^{\geq 0}\right) = 0$
- For every object $B \in \mathcal{T}$ there exists a triangle $A \longrightarrow B \longrightarrow C \longrightarrow$ with $A \in \mathcal{T}^{\leq 0}[1]$ and $C \in \mathcal{T}^{\geq 0}$.

Given an object $B \in \mathcal{T}$, the third property of a t-structure says that there exists an exact triangle

$$A \longrightarrow B \longrightarrow C \longrightarrow A[1]$$

with $A \in \mathcal{T}^{\leq 0}[1]$ and with $C \in \mathcal{T}^{\geq 0}$.

Given an object $B \in \mathcal{T}$, the third property of a t-structure says that there exists an exact triangle

$$A \longrightarrow B \longrightarrow C \longrightarrow A[1]$$

with $A \in \mathcal{T}^{\leq 0}[1]$ and with $C \in \mathcal{T}^{\geq 0}$.

This triangle is often written

$$B^{\leq -1} \longrightarrow B \longrightarrow B^{\geq 0} \longrightarrow B^{\leq -1}[1]$$

Notation

For $n \in \mathbb{Z}$ we adopt the shorthand

$$\mathcal{T}^{\leq n} = \mathcal{T}^{\leq 0}[-n] \ ,$$

$$\mathcal{T}^{\geq n} = \mathcal{T}^{\geq 0}[-n]$$
 .

Definition (Bounded t-Structures)

A t-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is called bounded if, for every object $X \in \mathcal{T}$, there exists an integer n > 0 with

$$X[n] \in \mathcal{T}^{\leq 0}$$
 and $X[-n] \in \mathcal{T}^{\geq 0}$.

Notation

For $n \in \mathbb{Z}$ we adopt the shorthand

$$\mathcal{T}^{\leq n} = \mathcal{T}^{\leq 0}[-n] \ ,$$

$$\mathcal{T}^{\geq n} = \mathcal{T}^{\geq 0}[-n]$$
.

Definition (Bounded t-Structures)

A t-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is called bounded if, for every object $X \in \mathcal{T}$, there exists an integer n > 0 with

$$X[n] \in \mathcal{T}^{\leq 0}$$

and
$$X[-n] \in \mathcal{T}^{\geq 0}$$
 .

Let X be a scheme.

Example

- **1** $\mathbf{D}_{qc}(X)$ will be our shorthand for $\mathbf{D}_{qc}(\mathcal{O}_X\operatorname{-Mod})$. The objects are the complexes of sheaves of $\mathcal{O}_X\operatorname{-modules}$, and the only condition is that the cohomology must be quasicoherent.
- ② The objects of $D^{perf}(X)$ are the perfect complexes. A complex is *perfect* if it is locally isomorphic to a bounded complex of vector bundles.
- **3** Assume X is noetherian. The objects of $D^b_{coh}(X)$ are the complexes with coherent cohomology which vanishes in all but finitely many degrees.

Let X be a scheme, and $Z \subset X$ a closed subset.

Example

- **1** $\mathbf{D}_{qc,Z}(X) \subset \mathbf{D}_{qc}(X)$ will be the full subcategory with objects the complexes whose restriction to X-Z is acyclic.
- **2** $\mathbf{D}_{Z}^{\mathrm{perf}}(X) \subset \mathbf{D}^{\mathrm{perf}}(X)$ will be the full subcategory with objects the complexes whose restriction to X-Z is acyclic.
- **③** Assuming X is noetherian, $\mathbf{D}^b_{\mathsf{coh},Z}(X) \subset \mathbf{D}^b_{\mathsf{coh}}(X)$ will be the full subcategory with objects the complexes whose restriction to X Z is acyclic.

Self-dual

The definition of a *t*-structure is self-dual. If $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is a *t*-structure on \mathcal{T} then $((\mathcal{T}^{\geq 0})^{\operatorname{op}}, (\mathcal{T}^{\leq 0})^{\operatorname{op}})$ is a *t*-structure on $\mathcal{T}^{\operatorname{op}}$.

Self-dual

The definition of a *t*-structure is self-dual. If $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is a *t*-structure on \mathcal{T} then $((\mathcal{T}^{\geq 0})^{\operatorname{op}}, (\mathcal{T}^{\leq 0})^{\operatorname{op}})$ is a *t*-structure on $\mathcal{T}^{\operatorname{op}}$.

The t-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is bounded on \mathcal{T} if and only if the dual t-structure is bounded on \mathcal{T}^{op} .

Conjecture

Let X be a finite-dimensional, noetherian scheme. The category $\mathbf{D}^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if X is regular, in which case $\mathbf{D}^{\mathrm{perf}}(X) = \mathbf{D}^{b}_{\mathrm{coh}}(X)$.

Conjecture

Let X be a finite-dimensional, noetherian scheme. The category $\mathbf{D}^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if X is regular, in which case $\mathbf{D}^{\mathrm{perf}}(X) = \mathbf{D}^{b}_{\mathrm{coh}}(X)$.

This can be found as Conjecture 1.5 in

Let $\mathcal M$ be a model category with homotopy category $\mathcal T$, and assume $\mathcal T$ has a bounded t-structure. Antieau, Gepner and Heller proved:

- If the abelian category \mathcal{T}^{\heartsuit} is noetherian, then $K_n(\mathcal{M}) = 0$ for n < 0.
- **2** Unconditionally we have $K_{-1}(\mathcal{M}) = 0$.

Let $\mathcal M$ be a model category with homotopy category $\mathcal T$, and assume $\mathcal T$ has a bounded t-structure. Antieau, Gepner and Heller proved:

- If the abelian category \mathcal{T}^{\heartsuit} is noetherian, then $K_n(\mathcal{M}) = 0$ for n < 0.
- **2** Unconditionally we have $K_{-1}(\mathcal{M}) = 0$.

If \mathcal{A} is an abelian category, and $\mathcal{T} = \mathbf{D}^b(\mathcal{A})$ with the usual model structure, the vanishing in negative K-theory is due to Schlichting.

Corollary

Let X be a finite-dimensional, noetherian, separated scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\mathrm{perf}}(X)$ has no bounded t-structure.

If $K_n(X)$ is nonzero for $n \leq -2$, then any bounded t-structure on $\mathbf{D}^{\mathrm{perf}}(X)$ cannot have a noetherian heart.

Corollary

Let X be a finite-dimensional, noetherian, separated scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\mathrm{perf}}(X)$ has no bounded t-structure.

If $K_n(X)$ is nonzero for $n \le -2$, then any bounded t-structure on $\mathbf{D}^{\mathrm{perf}}(X)$ cannot have a noetherian heart.

Corollary

Let X be a finite-dimensional, noetherian, separated scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\mathrm{perf}}(X)$ has no bounded t-structure.

If $K_n(X)$ is nonzero for $n \le -2$, then any bounded t-structure on $\mathbf{D}^{\mathrm{perf}}(X)$ cannot have a noetherian heart.

This can be found as Corollary 1.4 in

Conjecture

Let X be a finite-dimensional, noetherian scheme. The category $\mathbf{D}^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if X is regular, in which case $\mathbf{D}^{\mathrm{perf}}(X) = \mathbf{D}^{b}_{\mathrm{coh}}(X)$.

This can be found as Conjecture 1.5 in

Theorem

Let X be a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_Z^{\mathrm{perf}}(X)$ be the derived category whose objects are the perfect complexes on X whose restriction to X-Z is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X, in which case $\mathbf{D}_Z^{\mathrm{perf}}(X) = \mathbf{D}_{\mathbf{coh},Z}^b(X)$.

Theorem

Let X be a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_Z^{\mathrm{perf}}(X)$ be the derived category whose objects are the perfect complexes on X whose restriction to X-Z is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X, in which case $\mathbf{D}_Z^{\mathrm{perf}}(X) = \mathbf{D}_{\mathrm{coh},Z}^b(X)$.

Theorem

Let X be a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_Z^{\mathrm{perf}}(X)$ be the derived category whose objects are the perfect complexes on X whose restriction to X-Z is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X, in which case $\mathbf{D}_Z^{\mathrm{perf}}(X) = \mathbf{D}_{\mathrm{coh},Z}^b(X)$.

For the proof see

Amnon Neeman, *Bounded t-structures on the category of perfect complexes*, https://arxiv.org/abs/2202.08861.

It suffices to show that the inclusion $\mathbf{D}_Z^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathsf{coh},Z}^b(X)$ is an equivalence.

It suffices to show that the inclusion $\mathbf{D}_Z^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathsf{coh},Z}^b(X)$ is an equivalence.

Take $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}^{\mathrm{perf}}_{Z}(X)$.

It suffices to show that the inclusion $\mathbf{D}_Z^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathsf{coh},Z}^b(X)$ is an equivalence.

Take $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}^{\mathrm{perf}}_Z(X)$.

Resolving F by vector bundles, we may represent it as a complex

$$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^m \longrightarrow \cdots \longrightarrow \mathcal{V}^{n-1} \longrightarrow \mathcal{V}^n \longrightarrow 0 \longrightarrow \cdots$$

It suffices to show that the inclusion $\mathbf{D}_{Z}^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathrm{coh}\ Z}^{b}(X)$ is an equivalence.

Take $F \in \mathbf{D}^b_{\operatorname{coh} Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\operatorname{coh} Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}_{\mathbf{z}}^{\mathrm{perf}}(X)$.

Resolving F by vector bundles, we may represent it as a complex

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^b_{\mathbf{coh}}(X)^{\leq m}$.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^b_{\operatorname{coh}}(X)^{\leq m}$.

We have proved the existence of such triangles as long as the scheme X has the resolution property.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^b_{\operatorname{coh}}(X)^{\leq m}$.

We have proved the existence of such triangles as long as the scheme X has the resolution property.

For an unconditional proof, one needs to use ideas from

Alexei I. Bondal and Michel Van den Bergh, *Generators and representability of functors in commutative and noncommutative geometry*, Mosc. Math. J. **3** (2003), no. 1, 1–36, 258.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^b_{\operatorname{coh}}(X)^{\leq m}$.

We have proved the existence of such triangles as long as the scheme X has the resolution property.

For an unconditional proof, one needs to use ideas from

- Alexei I. Bondal and Michel Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.
- Joseph Lipman and Amnon Neeman, *Quasi-perfect scheme maps and boundedness of the twisted inverse image functor*, Illinois J. Math. **51** (2007), 209–236.

For a proof that works in the relative context, that is given $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$ it produces a triangle

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with
$$E \in \mathbf{D}_Z^{\mathrm{perf}}(X)$$
 and $D \in \mathbf{D}_{\mathbf{coh},Z}^b(X)^{\leq m}$, see

Tag 36.14 in the Stacks Project.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}_Z^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\leq m}$.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}_Z^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}_{\mathbf{coh},Z}^b(X)^{\leq m}$.

Now: in the category $\mathbf{D}^b_{\mathbf{coh},Z}(X)$ there is a standard t-structure, and we may form truncations with respect to shifts of it. This gives, for every integer $\ell \in \mathbb{Z}$, a triangle

$$E^{\leq \ell} \longrightarrow E \longrightarrow E^{\geq \ell+1} \longrightarrow E^{\leq \ell}[1].$$

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}_{Z}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}_{\mathsf{coh},Z}^{b}(X)^{\leq m}$.

Now: in the category $\mathbf{D}^b_{\mathbf{coh},Z}(X)$ there is a standard t-structure, and we may form truncations with respect to shifts of it. This gives, for every integer $\ell \in \mathbb{Z}$, a triangle

$$E^{\leq \ell} \longrightarrow E \longrightarrow E^{\geq \ell+1} \longrightarrow E^{\leq \ell}[1].$$

The choice of E guarantees that, for $m < \ell < 0$, this triangle coincides with $D \longrightarrow E \longrightarrow F \longrightarrow D[1]$.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}_Z^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\leq m}$.

Now: in the category $\mathbf{D}^b_{\mathbf{coh},Z}(X)$ there is a standard t-structure, and we may form truncations with respect to shifts of it. This gives, for every integer $\ell \in \mathbb{Z}$, a triangle

$$E^{\leq \ell} \longrightarrow E \longrightarrow E^{\geq \ell+1} \longrightarrow E^{\leq \ell}[1].$$

The choice of E guarantees that, for $m < \ell < 0$, this triangle coincides with $D \longrightarrow E \longrightarrow F \longrightarrow D[1]$.

Now assume that the category $\mathbf{D}_{7}^{\mathrm{perf}}(X)$ has a bounded t-structure.

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $(\mathcal{T}_1^{\leq 0}, \mathcal{T}_1^{\geq 0})$ and $(\mathcal{T}_2^{\leq 0}, \mathcal{T}_2^{\geq 0})$ are declared equivalent if there exists an integer n>0 with

$$\mathcal{T}_1^{\leq -n} \subset \mathcal{T}_2^{\leq 0} \subset \mathcal{T}_1^{\leq n}$$
.

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $(\mathcal{T}_1^{\leq 0}, \mathcal{T}_1^{\geq 0})$ and $(\mathcal{T}_2^{\leq 0}, \mathcal{T}_2^{\geq 0})$ are declared equivalent if there exists an integer n>0 with

$$\mathcal{T}_1^{\leq -n} \subset \mathcal{T}_2^{\leq 0} \subset \mathcal{T}_1^{\leq n}$$
 .

We are given a bounded t-structure on $\mathbf{D}_Z^{\mathrm{perf}}(X)$, and we would like to compare it to the standard t-structure on $\mathbf{D}_{\mathrm{coh},Z}^b(X)$. For technical reasons this is easiest to do in $\mathbf{D}_{\mathrm{qc},Z}(X)$.

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $(\mathcal{T}_1^{\leq 0}, \mathcal{T}_1^{\geq 0})$ and $(\mathcal{T}_2^{\leq 0}, \mathcal{T}_2^{\geq 0})$ are declared equivalent if there exists an integer n > 0 with

$$\mathcal{T}_1^{\leq -n} \subset \mathcal{T}_2^{\leq 0} \subset \mathcal{T}_1^{\leq n}$$
.

We are given a bounded t-structure on $\mathbf{D}_{Z}^{\mathrm{perf}}(X)$, and we would like to compare it to the standard t-structure on $\mathbf{D}_{\mathsf{coh},Z}^{b}(X)$. For technical reasons this is easiest to do in $\mathbf{D}_{\mathsf{ac},Z}(X)$.

We appeal to Theorem A.1 in

Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, *Construction of t-structures and equivalences of derived categories*, Trans. Amer. Math. Soc. **355** (2003), no. 6, 2523–2543 (electronic).

Theorem

Let \mathcal{T} be a triangulated category with coproducts, and let $\mathcal{A} \subset \mathcal{T}$ be a set of compact objects satisfying $\mathcal{A}[1] \subset \mathcal{A}$.

Let $\operatorname{Coprod}(\mathcal{A})$ be the smallest full subcategory of \mathcal{T} , containing \mathcal{A} and closed under coproducts and extensions.

Then $\left(\operatorname{Coprod}(\mathcal{A}),\operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ is a t-structure on \mathcal{T} .

This is Theorem A.1 in

Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, *Construction of t-structures and equivalences of derived categories*, Trans. Amer. Math. Soc. **355** (2003), no. 6, 2523–2543 (electronic).

It suffices to show that the standard t-structure on $\mathbf{D}_{\mathbf{qc},Z}(X)$ is equivalent to the t-structure generated by $\mathcal{A}=\mathbf{D}_Z^{\mathrm{perf}}(X)^{\leq 0}$, where generation is in the sense of Alonso, Jeremías and Souto.

It suffices to show that the standard t-structure on $\mathbf{D}_{\mathbf{qc},Z}(X)$ is equivalent to the t-structure generated by $\mathcal{A}=\mathbf{D}_Z^{\mathrm{perf}}(X)^{\leq 0}$, where generation is in the sense of Alonso, Jeremías and Souto.

We need to prove the inclusion

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq 0} \subset \mathsf{Coprod}(\mathcal{A}[-n])$$

for some integer n.

It suffices to show that the standard t-structure on $\mathbf{D}_{\mathbf{qc},Z}(X)$ is equivalent to the t-structure generated by $\mathcal{A}=\mathbf{D}_Z^{\mathrm{perf}}(X)^{\leq 0}$, where generation is in the sense of Alonso, Jeremías and Souto.

We need to prove the inclusion

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq 0} \subset \mathsf{Coprod}(\mathcal{A}[-n])$$

for some integer n.

Following Mumford, we pay particular attention to the case where X is a projective variety.

Pick any object $F \in \mathbf{D}_{ac}(X)^{\leq 0}$. Resolving it, we may produce an isomorph

$$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^m \longrightarrow \cdots \longrightarrow \mathcal{V}^{-1} \longrightarrow \mathcal{V}^0 \longrightarrow 0 \longrightarrow \cdots$$

where each V^i is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell > 0$.

Pick any object $F \in \mathbf{D}_{qc}(X)^{\leq 0}$. Resolving it, we may produce an isomorph

$$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^m \longrightarrow \cdots \longrightarrow \mathcal{V}^{-1} \longrightarrow \mathcal{V}^0 \longrightarrow 0 \longrightarrow \cdots$$

where each \mathcal{V}^i is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell > 0$.

Now $A = \mathbf{D}^{\operatorname{perf}}(X)^{\leq 0}$ for a bounded t-structure

$$\left(\mathbf{D}^{\mathrm{perf}}(X)^{\leq 0},\mathbf{D}^{\mathrm{perf}}(X)^{\geq 0}\right)$$

on the category $\mathbf{D}^{\mathrm{perf}}(X)$.

Pick any object $F \in \mathbf{D}_{ac}(X)^{\leq 0}$. Resolving it, we may produce an isomorph

$$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^m \longrightarrow \cdots \longrightarrow \mathcal{V}^{-1} \longrightarrow \mathcal{V}^0 \longrightarrow 0 \longrightarrow \cdots$$

where each \mathcal{V}^i is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell > 0$.

Now $\mathcal{A} = \mathbf{D}^{\mathrm{perf}}(X)^{\leq 0}$ for a bounded t-structure

$$\left(\mathbf{D}^{\mathrm{perf}}(X)^{\leq 0}, \mathbf{D}^{\mathrm{perf}}(X)^{\geq 0}\right)$$

on the category $\mathbf{D}^{\mathrm{perf}}(X)$. Hence, given any integer N>0, we can find an integer M > 0 such that

$$\mathcal{O}(-\ell) \in \mathcal{A}[-M]$$
 for all $0 \le \ell \le N$.

Alexei I. Bondal and Michel Van den Bergh, *Generators and representability of functors in commutative and noncommutative geometry*, Mosc. Math. J. **3** (2003), no. 1, 1–36, 258.

Dmitri O. Orlov, *Smooth and proper noncommutative schemes and gluing of DG categories*, Adv. Math. **302** (2016), 59–105.

Let R be a commutative ring. The short exact sequence

$$0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow R \longrightarrow 0$$

gives a quasi-isomorphism of R with the complex

$$0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow 0$$

Let R be a commutative ring. The short exact sequence

$$0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow R \longrightarrow 0$$

gives a quasi-isomorphism of R with the complex

$$0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow 0$$

Tensoring together n+1 of these we deduce a quasi-isomorphism of R with the Koszul complex

$$\bigotimes_{i=0}^{n} \left(R[x_i] \xrightarrow{X_i} R[x_i] \right)$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

Tensoring this with itself $\ell > 0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

which has a brutal truncation

$$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

which has a brutal truncation

$$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

And this brutal truncation must be quasi-isomorphic to $\mathcal{O}(\ell) \oplus \mathcal{V}[n]$ for some vector bundle \mathcal{V} .

Applying the functor $(-)^{\vee} = \mathcal{RH}om(-,\mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0$$

Applying the functor $(-)^{\vee} = \mathcal{RH}om(-,\mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0$$

Thus if A[-M] contains

$$\mathcal{O}$$
, $\mathcal{O}(1)[-1]$, ..., $\mathcal{O}(n-1)[-n+1]$, $\mathcal{O}(n)[-n]$

then it must contain $\mathcal{O}(-\ell)$ for all $\ell \geq 0$.

Applying the functor $(-)^{\vee} = \mathcal{RH}om(-,\mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0$$

Thus if A[-M] contains

$$\mathcal{O}, \ \mathcal{O}(1)[-1], \ \ldots, \ \mathcal{O}(n-1)[-n+1], \ \mathcal{O}(n)[-n]$$

then it must contain $\mathcal{O}(-\ell)$ for all $\ell \geq 0$.

But then

$$\mathbf{D}_{\mathbf{qc}}(X)^{\leq 0} \subset \mathsf{Coprod}(\mathcal{A}[-M])$$
.

- Amnon Neeman, Strong generators in $\mathbf{D}^{\text{perf}}X$ and $\mathbf{D}^{b}_{\text{coh}}(X)$, Ann. of Math. (2) **193** (2021), no. 3, 689–732.
 - Amnon Neeman, Triangulated categories with a single compact generator and a Brown representability theorem, https://arxiv.org/abs/1804.02240.

Alexei I. Bondal and Michel Van den Bergh, *Generators and representability of functors in commutative and noncommutative geometry*, Mosc. Math. J. **3** (2003), no. 1, 1–36, 258.

Alexei I. Bondal and Michel Van den Bergh, *Generators and representability of functors in commutative and noncommutative geometry*, Mosc. Math. J. **3** (2003), no. 1, 1–36, 258.

Jack Hall and David Rydh, *Perfect complexes on algebraic stacks*, Compos. Math. **153** (2017), no. 11, 2318–2367.

- Alexei I. Bondal and Michel Van den Bergh, *Generators and representability of functors in commutative and noncommutative geometry*, Mosc. Math. J. **3** (2003), no. 1, 1–36, 258.
- Jack Hall and David Rydh, *Perfect complexes on algebraic stacks*, Compos. Math. **153** (2017), no. 11, 2318–2367.
- Amnon Neeman, *Bounded t-structures on the category of perfect complexes*, https://arxiv.org/abs/2202.08861.

Thank you!