Sistemas Inteligentes

Escuela Técnica Superior de Informática Universitat Politècnica de València

Tema B2T5:

Representación estructurada. Modelos de Markov.

Índice

- 1 Representación estructurada: ejemplos de modelado sintáctico ▷ 1
 - 2 Modelos de Markov y gramáticas regulares estocásticas > 3

SIN-TemaB2T5 Modelos de Markov

Objetos estructurados en reconocimiento de formas

- La representación de objetos en un espacio vectorial puede suponer una importante pérdida de información en algunos problemas:
 - Reconocimiento del habla
 - Reconocimiento de texto manuscrito
 - Identificación de la lengua
 - Reconocimiento de actitud o predilección en texto o habla
 - Identificación del tema de un documento i
 - Reconocimiento de escenas en imágenes o vídeos
 - Reconocimiento de imágenes por cadena de contorno
 - . . .
- Representación estructurada:
 - Secuencias de longitud variable de vectores o de símbolos
 - Árboles, grafos, etc.
- Modelización: Modelos estructurales, por ejemplo, gramáticas estocásticas o modelos ocultos de Markov

DSIC – UPV Página B2T5.2

Índice

1 Representación estructurada: ejemplos de modelado sintáctico > 1

○ 2 Modelos de Markov y gramáticas regulares estocásticas > 3

DSIC – UPV Página B2T5.3

Modelos de Markov

Un *modelo de Markov* es una quíntupla $M = (Q, \Sigma, \pi, A, B)$ donde:

- Q es un conjunto de estados
 - En cada instante $t = 1, 2, \ldots, M$ está en uno de sus estados, denotado q_t
 - *Q* incluye un *estado final F*
- $lacktriangleq \Sigma$ es un *conjunto de símbolos "observables"* En cada instante $t=1,2,\ldots,\ M$ emite un símbolo, que se denota con y_t
- $\pi \in \mathbb{R}^Q$ es un *vector de probabilidades iniciales*: M elige q_1 según π
- $A \in \mathbb{R}^{Q \times Q}$ es una *matriz de probabilidades de transición (entre estados)*: M elige q_{t+1} basándose en q_t y A: $A_{q,q'} = P(q_{t+1} = q' | q_t = q)$
- $B \in \mathbb{R}^{Q \times \Sigma}$ es una *matriz de probabilidades de emisión (de símbolos)*: M elige y_t basándose en q_t y B: $B_{q,\sigma} = P(y_t = \sigma \mid q_t = q)$

Modelos de Markov: ejemplo

Representación Gráfica Equivalente:

Modelos de Markov (cont.)

Condiciones de normalización para π, A, B :

Probabilidad de estado inicial:

$$0 \le \pi_q \le 1$$
, $\sum_{q \in Q} \pi_q = 1$, $\pi_F = 0$

Probabilidades de Transición entre estados:

$$0 \le A_{q,q'} \le 1$$
, $\sum_{q' \in Q} A_{q,q'} = 1$, $A_{F,q} = 0$

■ Probabilidades de emisión de observables:

$$0 \le B_{q,\sigma} \le 1$$
, $\sum_{\sigma \in \Sigma} B_{q,\sigma} = 1$, $B_{F,\sigma} = 0$

Probabilidad de generar una cadena con un modelo de Markov

Probabilidad de que M genere la cadena $y = y_1 \dots y_m \in \Sigma^+$:

$$P(y \mid M) = \sum_{z \in Q^{+}} P(y, z)$$

$$= \sum_{q_{1}, \dots, q_{m} \in Q^{+}} P(q_{1}) \prod_{t=2}^{m} P(q_{t} \mid q_{t-1}) P(q_{F} \mid q_{m}) \cdot \prod_{t=1}^{m} P(y_{t} \mid q_{t})$$

$$= \sum_{q_{1}, \dots, q_{m} \in Q^{+}} \pi_{q_{1}} B_{q_{1}, y_{1}} \left(\prod_{t=2}^{m} A_{q_{t-1}, q_{t}} B_{q_{t}, y_{t}} \right) A_{q_{m}, q_{F}}$$

Se cumple:
$$0 \le P(y|M) \le 1$$
, $\sum_{y \in \Sigma^+} P(y|M) = 1$

Probabilidades calculadas con el modelo del ejemplo

Ejemplos de topologías de modelos de Markov

DSIC - UPV

Ejercicio

Sea M un modelo de estados $Q=\{1,2,3,4,5,F\}$; alfabeto $\Sigma=\{a,b\}$; probabilidades iniciales $\pi_1=1,\,\pi_2=\pi_3=\pi_4=\pi_5=0$; y probabilidades de transición y de emisión:

A	1	2	3	4	5	F
1		0.6	0.4			
2		0.01	0.59	0.4		
3				0.6	0.4	
4					1.0	
5					0.01	0.99

lacksquare	a	b
1	0.2	0.8
2	0.7	0.3
3	0.9	0.1
4	0.5	0.5
5	0.4	0.6

- 1. Representa gráficamente este modelo.
- 2. Calcula la probabilidad de que M genere la cadena aaab.

SIN-TemaB2T5 Modelos de Markov

Ejercicio (solución)

2) Hay 3 secuencias de estados que generan la cadena aaab

$$y=$$
 a a a a b $z_1=$ 1 2 3 5 F $P(y,z_1)=$ $(1\cdot 0.2)$ $(0.6\cdot 0.7)$ $(0.59\cdot 0.9)$ $(0.4\cdot 0.6)$ $0.99=0.010598$ $z_2=$ 1 2 4 5 F $P(y,z_2)=$ $(1\cdot 0.2)$ $(0.6\cdot 0.7)$ $(0.4\cdot 0.5)$ $(1\cdot 0.6)$ $0.99=0.009979$ $z_3=$ 1 3 4 5 F $P(y,z_3)=$ $(1\cdot 0.2)$ $(0.4\cdot 0.9)$ $(0.6\cdot 0.5)$ $(1\cdot 0.6)$ $0.99=0.012830$ $z_4=$ 1 3 5 F $P(y,z_4)=$ $(1\cdot 0.2)$ $(0.4\cdot 0.9)$ $(0.4\cdot 0.4)$ $(0.01\cdot 0.6)$ $0.99=0.000068$