Теория и реализация языков программирования.

Задание 4: Замкнутость регулярных языков, теорема Майхилла-Нероуда и минимальные автоматы

Сергей Володин, 272 гр.

задано 2013.09.23

Упражнение 1

1. Алгоритм конечен. Действительно, Q можно разделить не больше, чем на |Q| подмножеств, на каждом шаге происходит некоторое разделение.

Действительно, на каждом шаге на каждом символе количество подмножеств не уменьшается, так как $Q_{k,l}$ различно при разных k (значит, элементы из разных «старых» подмножеств попадут в разные «новые» подмножества).

А если количество подмножеств не увеличилось после $|\Sigma|$ разбиений, алгоритм завершается (по построению).

2. Докажем, что все состояния из одного подмножества эквивалентны. Предположим противное. Тогда

$$\exists q_1, q_2 \in Q_i \colon q_1 \not\sim_L q_2 \Rightarrow \forall x_1, x_2 \colon q_0 \xrightarrow{x_1} q_1, q_0 \xrightarrow{x_2} q_2 \hookrightarrow x_1 \not\sim_L x_2 \Rightarrow \exists w \in \Sigma^* \colon x_1 w \in L, x_2 w \notin L.$$

Фиксируем x_1, x_2, w . Тогда $\delta(q_1, w) \in F, \delta(q_2, w) \notin F$. Пусть |w| = n.

Если |w|=n=0, то получаем, что q_1 — принимающее, а q_2 — нет. Это противоречие, так как $q_1,q_2\in Q_i$, на первом шаге принимающие и не принимающие были разделены, и (как было доказано выше), состояния, лежащие в различных подмножествах в процессе выполнения алгоритма не могут оказаться в одном.

Пусть |w|=n>0. $w=w_1...w_n$. Тогда $(q_1,w)\vdash (q_1^1,w_2...w_n)\vdash ...\vdash (q_1^n,\varepsilon), q_1^n\in F$. Аналогично $(q_2,w)\vdash (q_2^1,w_2...w_n)\vdash ...\vdash (q_2^n,\varepsilon), q_2^n\notin F$. Поскольку $q_1,q_2\in Q_i,\,\delta(q_1,w_1)$ и $\delta(q_2,w_1)\in Q_j$ по условию окончания алгоритма. Значит, q_1^1 и q_2^1 лежат в одном подмножестве. Повторяя рассуждение, получаем, что q_1^n и q_2^n лежат в одном подмножестве, что невозможно (доказано выше), так как $q_1^n \in F, q_2^n \notin F$.

- 2.1. Получаем, что были склеены только эквивалентные состояния. Значит, язык, распознаваемый автоматом, не изменился.
 - 3. Докажем, что если некоторые два состояния q_1, q_2 исходного автомата были эквивалентны, они будут в одном подмножестве Q_i . Пусть иначе: они были разделены на некотором шаге.

Это не мог быть второй шаг, так как принимающее и не принимающее состояние не эквивалентны. Докажем это: пусть $F\ni q_1\sim_L q_2\notin F\Rightarrow \exists x_1\sim_L x_2\colon \delta(q_0,x_1)=q_1\in F, \delta(q_0,x_2)=q_2\notin F\Rightarrow x_1\in L, x_2\notin L.\ x_1\sim_L x_2\Rightarrow \forall w\in \Sigma^*\hookrightarrow x_1w\in L\Leftrightarrow x_1^*\hookrightarrow x_1^*$ $x_2w\in L$. Выберем w=arepsilon. Тогда $x_1\in L\Leftrightarrow x_2\in L$ — противоречие.

Значит, они были разделены на некотором последующем шаге. Найдем первый такой шаг, на котором некоторые эквивалентные состояния q_1,q_2 были разделены. Пусть при этом рассматривался символ σ : $q_1 \stackrel{\sigma}{\longrightarrow} q_a \in Q_a, q_2 \stackrel{\sigma}{\longrightarrow} q_b \in Q_a$ $Q_b, Q_a \neq Q_b$. Поскольку до этого эквивалентные состояния оставались в одном подмножестве, получаем, что q_a и q_b не эквивалентны (если это не так, то этот шаг не первый из таких, на котором эквивалентные состояния были разделены противоречие). Значит (доказано ранее), $\exists w \colon \delta(q_a, w) \in F, \delta(q_b, w) \notin F$. Тогда $\delta(q_1, \sigma w) \in F, \delta(q_2, \sigma w) \notin F \Rightarrow$ (доказано ранее) состояния q_1, q_2 не эквивалентны — противоречие.

- 3.1. Получаем, что эквивалентные состояния, и только они, будут склеены. Также количество состояний ДКА не может быть меньше, чем количество классов эквивалентности по \sim_L (доказано в условии). Больше оно тоже быть не может, так как тогда бы в автомате были два эквивалентных состояния, что невозможно (они все были склеены). Значит, количество состояний построенного ДКА будет равно количеству классов эквивалентности по \sim_L .
 - 4. (Далее считаем Q_i за состояния). Установим биекцию между классами эквивалентности и состояниями минимального ДКА, которая сохраняет функцию переходов, т.е. построим изоморфизм $\varphi \colon \{Q_i\} \leftrightarrow \{C_i\}$. На классах эквивалентности функция переходов определяется так: $x_i \in C_i \Rightarrow \delta(C_i, \sigma) = C(x_i \sigma)$ (эта же функция является функцией переходов ДКА из доказательства теоремы 1 третьего задания). Выполним обход графа минимального ДКА и найдем слова x_i , по которым можно попасть в Q_i : $\delta(Q_0, x_i) = Q_i$. Определим $\varphi(Q_i) = C(x_i)$. Поскольку состояния Q_i попарно неэквивалентны (иначе бы они были склеены), слова x_i попарно не эквивалентны. Значит, $C(x_i)$ попарно различны, и φ инъективно. Но поскольку $|\{Q_i\}| = |\{C_i\}|$, оно биективно. Обозначим $C_i = C(x_i) = \varphi(Q_i)$. Докажем сохранение функции переходов:

Пусть $\delta(Q_i,\sigma)=Q_j$. Тогда $\delta(Q_0,x_j)=\delta(Q_0,x_i\sigma)=Q_j$. Поэтому $\forall w\in\Sigma^*\hookrightarrow L\ni x_jw\Leftrightarrow \delta(Q_0,x_jw)\equiv\delta(Q_j,w)\equiv\delta(Q_i,\sigma w)\equiv\delta(Q_i,\sigma w)\equiv\delta(Q_0,x_i\sigma w)\in F\Leftrightarrow x_i\sigma w\in L$. Значит, $x_j\sim_L x_i\sigma\Rightarrow C_j=C(x_j)=C(x_i\sigma)=\delta(C_i,\sigma)$. Обратно: $\delta(C_i,\sigma)=C_j\Rightarrow x_i\sigma\sim_L x_j\Rightarrow$ состояния $\delta(Q_0,x_i\sigma)$ и $\delta(Q_0,x_j)$ эквивалентны, а значит, что они совпадают (доказано ранее). Но $Q_j=\delta(Q_0,x_j)=\delta(Q_0,x_i\sigma)=\delta(\delta(Q_0,x_i),\sigma)=\delta(Q_0,x_i)$.

4.1. Таким образом доказано, что любой минимальный ДКА изоморфен в смысле сохранения функции переходов классам эквивалентности. Значит, любые два минимальные ДКА А, В для данного языка изоморфны между собой (можно построить изоморфизм $\varphi_{A,B}: Q^A \leftrightarrow Q^B$ как композицию изоморфизмов $Q^A \leftrightarrow \{C_i\}, \{C_i\} \leftrightarrow Q^B$).

Задача 1

Не очень формально: Состояниями ДКА будут классы эквивалентности, а переходы будут определны также, как в доказательстве теоремы 1 из третьего задания.

Будем искать представителей классов и запоминать их. Для всех найденных классов будем добавлять состояния. Сначала $F\ni C_1=C(\varepsilon)$. Определим C_1 как начальное. Рассмотрим $\sigma\in\Sigma$. Если $f(\sigma,\varepsilon)=1$, значит, σ лежит в том же классе, что и ε . Определим $\delta(C_1,\sigma)=C_1$. Это соответствует определению в теореме: $\varepsilon\in C_1$, $\varepsilon\sigma\in C_1$. Если же $f(\sigma,\varepsilon)=0$, то они лежат в разных классах. Значит, найден представитель нового класса. Запомним его, обозначим $C_2=C(\sigma)$. Добавим состояние C_2 . Определим $\delta(C_1,\sigma)=C_2$. Повторим для остальных $\sigma\in\Sigma$ (более подробно далее). Далее повторим рассуждение для всех добавленных состояний:

Заметим, что вместе с состоянием (т.е. классом) известен и представитель a_k его класса C_k (предположение индукции). Рассмотрим $\sigma \in \Sigma$. Если для всех найденных представителей $a_l \in C_l \hookrightarrow f(a_l, a_k \sigma) = 0$, то запомним $a_k \sigma$, добавим новое состояние $C(a_k \sigma)$. В любом случае, определим переход $\delta(C(a_k), \sigma) = C(a_k \sigma)$. Свойство $x_i \ni C_i \Rightarrow \delta(C_i, \sigma) = C(x_i \sigma)$ выполнено по построению.

Всего переходов конечное число (так как состояний конечное число), и на каждом шаге определяются переходы из состояния. Поэтому эта часть алгоритма завершится за конечное время.

Имеем построенный автомат со свойством: $\delta(q_0, w) = C(w)$. Выполним обход графа автомата, найдем пути до всех состояний, попутно «собирая» слова w, по которым туда можно попасть. Используя g(w), пометим эти состояния принимающими, если g(w) = 1. Тогда $\delta(q_0, w) \in F \Leftrightarrow g(w) = 1 \Leftrightarrow w \in L$.

Более формально: $L \subset \Sigma^* \in \mathsf{REG}, \Sigma^* / \sim_L = \{C_i\} \equiv \{C_1, ..., C_n\}$ (n неизвестно, C_i попарно различны). $f \colon \Sigma^* \times \Sigma^* \longrightarrow \{0, 1\} - \mathsf{задана}, f(x,y) = 1 \Leftrightarrow x \sim_L y$. Построим ДКА $\mathcal{A} \colon L(\mathcal{A}) = L$.

 $Q\stackrel{\scriptscriptstyle
m def}{=}\{C_i\},q_0\stackrel{\scriptscriptstyle
m def}{=}C(arepsilon)$. Докажем, что на n-м шаге нижеописанного алгоритма выполняется

 $P(n) = [\forall i \in \overline{1, n} \hookrightarrow \text{найдены } x_i \in C_i, \forall \sigma \in \Sigma \hookrightarrow \text{ определены } \delta(C_i, \sigma) = C_j \Leftrightarrow C_i \sigma \in C_j].$

1. (n=1). $\Sigma^* \ni \varepsilon$ принадлежит какому-то классу. Без ограничения общности $\varepsilon \in C_1$. Рассмотрим все $\sigma_k \in \Sigma$. Если $f(\varepsilon, \sigma_k) = 1$, то x

Задача 2

Задача 3

Пусть x, y — PB. Ответим на вопрос $L(x) \stackrel{?}{=} L(y)$.

- 1. Построим по x, y НКА A, B.
- 2. Построим по A, B ДКА A', B'
- 3. Построим по A', B' минимальные ДКА $\mathcal{A}'', \mathcal{B}''$.
- 4.1 В случае, если $L(\mathcal{A}'') = L(\mathcal{B}'')$, они будут изоморфны (в смысле сохранения функции перехода, доказано в упражнении), что можно проверить одновременным обходом их графов.
- 4.2 Иначе тот же обход графов покажет, что автоматы различны.

Данный алгоритм не является эффективным, так как количество состояний построенного в (2) ДКА может экспоненциально зависеть от количества состояний НКА, и каждое состояние нужно как минимум создать за O(1), а количество состояний НКА не меньше, чем длина PB.

Задача 4

1. $\Sigma = \{0,1\}$. Докажем, что $L(\mathcal{A}) = L$, $L_1 \equiv L = \{w \mid |w|_1 = 2t, t \in \mathbb{Z}\}$, ДКА \mathcal{A} :

Докажем утверждение $P(n) = [\forall w \in \Sigma^* : |w| = n \hookrightarrow (q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2)].$

- (a) Докажем P(0). Поскольку $|w| = 0 \Rightarrow w = \varepsilon$, $P(0) = \left[q_0 \xrightarrow{\varepsilon} q_i \Rightarrow i = |\varepsilon|_1 \mod 2\right]$. Поскольку $\delta(q_0, \varepsilon) = q_{\underline{0}}$, и $\underline{0} = |\varepsilon|_1$, получаем P(0)
- (b) Пусть доказано P(n), докажем P(n+1). $P(n) = \left[\forall w \in \Sigma^* \colon |w| = n \hookrightarrow \left(q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2 \right) \right]$. Фиксируем $w \in \Sigma^*, |w| = n+1, w = w_0 \sigma, |w_0| = n, |\sigma| = 1$. \mathcal{A} полный $\Rightarrow (q_0, w) \equiv (q_0, w_0 \sigma) \vdash^* (q_i, \sigma) \vdash (q_j, \varepsilon)$. $|w_0| = n \overset{P(n)}{\Rightarrow} i = |w_0|_1 \mod 2$. $i \in \{0, 1\}, \sigma \in \{0, 1\} \Rightarrow$ рассмотрим четыре случая:
 - a. $(i = 0, \sigma = 0)$. $(q_0, w_0 0) \vdash^* (q_0, 0) \vdash (q_0, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_0 \Rightarrow j = 0$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |0|_1 \mod 2 = 0 + 0 = 0$ a. $(i = 0, \sigma = 0)$. $|w|_1 \mod 2 = |w|_1 \mod 2 = 0$.

- b. $(i = 0, \sigma = 1)$. $(q_0, w_0 1) \vdash^* (q_0, 1) \vdash (q_1, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_1 \Rightarrow j = 1$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |1|_1 \mod 2 = 0 + 1 = 0$ $1 \Rightarrow 1 = j = |w|_1 \mod 2 = 1.$
- c. $(i = 1, \sigma = 0)$. $(q_0, w_0 0) \vdash^* (q_1, 0) \vdash (q_1, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_1 \Rightarrow j = 1$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |0|_1 \mod 2 = 1 + 0 = 1$ $1 \Rightarrow 1 = j = |w|_1 \mod 2 = 1.$
- d. $(i = 1, \sigma = 1)$. $(q_0, w_0 1) \vdash^* (q_1, 1) \vdash (q_0, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_0 \Rightarrow j = 0$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |1|_1 \mod 2 = (1+1) \mod 2 = 0$.

Таким образом, $\forall n \in \mathbb{N} \cup \{0\} \hookrightarrow P(n) \Rightarrow \forall n \in \mathbb{N} \cup \{0\} \hookrightarrow [\forall w \in \Sigma^* \colon |w| = n \hookrightarrow (q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2)] \Rightarrow$ $\forall w \in \Sigma^* \hookrightarrow q_0 \xrightarrow{w} q_{|w|_1 \mod 2}. \text{ Пусть } w \in L \Leftrightarrow |w|_1 \mod 2 = 0 \Leftrightarrow q_0 \xrightarrow{w} q_0 \Leftrightarrow w \in L(\mathcal{A}) \blacksquare$

2. $\Sigma = \{0,1\}$. $L_2 = \{w \mid |w|_0 = 2t+1, t \in \mathbb{Z}\}$. Воспользуемся результатом (4.1) и построим ДКА \mathcal{B} :

Поменяем в автомате из (4.1) нули и единицы местами. Получим \mathcal{A}' . Очевидно, \mathcal{A}' будет распознавать все слова, в которых четное количество нулей. A' полный, и все состояния достижимы из q_0 .

Поэтому, переопределив $F'' = Q'' \setminus F$, получим $A'' \equiv \mathcal{B}$, который распознает все слова, в которых нечетное количество нулей.

3. Поскольку $L_3 = \{$ слова из 0 и 1, в которых четное число единиц и нечетное число нулей $\} =$ $=\{$ слова из 0 и 1, в которых четное число единиц $\}\cap\{$ слова из 0 и 1, в которых нечетное число нулей $\}\equiv L_1\cap L_2$, построим $C: L(C) = L_3$ по алгоритму, который докажем далее, в (4.4):

4. Дано: Σ — алфавит, $\mathcal{A} = (Q^{\mathcal{A}}, \Sigma, q_0^{\mathcal{A}}, \delta^{\mathcal{A}}, F^{\mathcal{A}})$, $\mathcal{B} = (Q^{\mathcal{B}}, \Sigma, q_0^{\mathcal{B}}, \delta^{\mathcal{B}}, F^{\mathcal{B}})$ — полные ДКА, в которых все состояния достижимы из начальных. $\Sigma^* \supset L^{\mathcal{A}} = L(\mathcal{A}), \Sigma^* \supset L^{\mathcal{B}} = L(\mathcal{B})$. Задача: построить ДКА $\mathcal{C} = (Q^{\mathcal{C}}, \Sigma, q_0^{\mathcal{C}}, \delta^{\mathcal{C}}, F^{\mathcal{C}})$: $L(\mathcal{C}) = L^{\mathcal{A}} \cap L^{\mathcal{B}}$.

Определим $Q^{\mathcal{C}} = Q^{\mathcal{A}} \times Q^{\mathcal{B}}$ — множество всех пар состояних исходных автоматов.

Для краткости будем обозначать $Q^{\mathcal{C}} \ni (q_i^{\mathcal{A}}, q_j^{\mathcal{B}}) \stackrel{\text{def}}{\equiv} q_j^i$.

Определим $q_0^{\mathcal{C}} \stackrel{\text{def}}{=} q_0^0, F^{\mathcal{C}} = \{q_j^i | q_i^{\mathcal{A}} \in F^{\mathcal{A}} \land q_j^{\mathcal{B}} \in F^{\mathcal{B}}\}$ Определим $\delta^{\mathcal{C}}(q_j^i, \sigma) = \left(\delta^{\mathcal{A}}(q_i^{\mathcal{A}}, \sigma), \delta^{\mathcal{B}}(q_j^{\mathcal{B}}, \sigma)\right)$

Докажем утверждение

$$P(n) = \left[\forall w \in \Sigma^* \colon |w| = n \hookrightarrow q_0^0 \xrightarrow{w} \left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w), \, \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w) \right) \right]$$

а. (n=0) $\Sigma^* \ni w, |w| = 0 \Rightarrow w = \varepsilon$. Тогда $\delta^{\mathcal{C}}(q_0^0, \varepsilon) \stackrel{\text{по опр.}}{=} (\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, \varepsilon), \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, \varepsilon))$, как и требовалось.

b. (n=1) $\Sigma^* \ni w, |w|=1 \Rightarrow w=\sigma \in \Sigma$. Тогда $\delta^{\mathcal{C}}(q_0^0,w)=\delta^{\mathcal{C}}(q_0^0,\sigma) \stackrel{\text{по orp.}}{=} \left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}},\sigma),\delta^{\mathcal{B}}(q_0^{\mathcal{B}},\sigma)\right)$, как и требовалось.

с. (n+1). Пусть P(n). Докажем P(n+1). Фиксируем $\Sigma^* \ni w : |w| = n+1$. Тогда $w \equiv w_0 \sigma, |w_0| = n \sigma \in \Sigma$. $\delta^{\mathcal{C}}(q_0^0, w) = 0$ $\delta^{\mathcal{C}}(q_0^0, w_0 \sigma) \ \equiv \ \delta^{\mathcal{C}}(\delta^{\mathcal{C}}(q_0^0, w_0), \sigma) \ \stackrel{P(n)}{=} \ \delta^{\mathcal{C}}(\left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w_0), \, \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w_0)\right), \sigma) \ \stackrel{\text{\tiny no onp.}}{=} \ \left(\delta^{\mathcal{A}}(\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w_0), \sigma), \delta^{\mathcal{B}}(\delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w_0), \sigma)\right) \ \stackrel{\text{\tiny cs-bo}}{\underset{\delta^{\mathcal{A}}}{\longleftarrow}} \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w_0), \sigma$ $(\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w), \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w)) \Rightarrow P(n+1).$

Получаем $w \in L^{\mathcal{A}} \cap L^{\mathcal{B}} \Leftrightarrow w \in L(\mathcal{A}) \cap L(\mathcal{B}) \Leftrightarrow \begin{cases} w \in L(\mathcal{A}) \\ w \in L(\mathcal{B}) \end{cases} \Leftrightarrow \begin{cases} \delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w) \in F^{\mathcal{A}} \\ \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w) \in F^{\mathcal{B}} \end{cases} \Leftrightarrow \left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w), \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w)\right) \in F^{\mathcal{C}} \Leftrightarrow 0$ $\delta^{\mathcal{C}}(q_0^0, w) \in F^{\mathcal{C}} \Leftrightarrow w \in L(\mathcal{C}) \blacksquare$

Задача 5

Исходный автомат \mathcal{A} :

Пополним автомат \mathcal{A} до \mathcal{A}' и удалим недостижимые из q_0 состояния: добавим $q_4 \in Q', q_4 \notin F'$, в него направим недостающие переходы:

 $L(\mathcal{A}') = L(\mathcal{A})$, так как $x \in L(\mathcal{A}) \Rightarrow x \in L(\mathcal{A}')$, потому что $Q \subset Q'$, F = F', $\delta \subset \delta'$. $x \notin L(\mathcal{A}) \Rightarrow$ либо $q_0 \xrightarrow{x} q \notin F$, но тогда $q_0 \xrightarrow{x} q \notin F' \Rightarrow x \notin L(\mathcal{A}')$, либо $\delta(q_0, x) = \emptyset$, тогда $\delta'(q_0, x) = q_4$, потому что был выполнен переход в q_4 , которого не было в \mathcal{A} (по построению, добавлены переходы только в q_4), и при обработке последующих символов \mathcal{A}' остается в q_4 .

Построим A'': $L(A'') = \overline{L(A')} \equiv \overline{L(A)}$ по полному автомату A', определив $F'' \stackrel{\text{def}}{=} Q' \setminus F'$:

Далее построим по \mathcal{A}'' минимальный \mathcal{A}''' по алгоритму:

Задача 6