从回旋加速器到资米梦想: 探幽入微之路

1、回旋加速器

密封在真空中的 两个金属盒(D_1 和D₂)放在电磁 铁两极间的强磁 场中,两盒间接 有交流电源,它 在缝隙里的交变 电场用以加速带 电粒子。

交变电场的周期恰好为回 旋周期时 — 粒子绕过半 圈恰好电场反向,粒子又 被加速。

因为回旋周期与半径无关, 所以粒子可被反复加速。

回旋频率

$$f = \frac{1}{T} = \frac{qB}{2\pi m}$$

动画演示

$$T = 2\pi \frac{m}{qB}$$

当粒子到达半圆边缘时, 粒子的最大速率为 (*R*₀为最大半径)

$$v = \frac{qBR_0}{m}$$

$$R = \frac{mv_0}{qB}$$

粒子最大动能

$$E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}m\left(\frac{BqR_{0}}{m}\right)^{2} = \frac{q^{2}B^{2}R_{0}^{2}}{2m}$$

1932年,E.O. Lawrence 建造的第一台回旋加速器

1932年劳伦斯研制第一台回旋加速器的D型室. 此加速器可将质子和氘核加速到0.8MeV的能量

美国物理学家劳伦斯于1934年研制成功第一台实用加速器,于1939年获诺贝尔物理学奖。

回旋加速器一般只能将质子加速到25MeV左右。

考虑到狭义相对 论效应发展的同 步回旋加速器可 以将提高到1GeV。

欧洲核子研究中心CERN,大环是直径27km的大型强子对撞机LHC,中环是质子同步加速器。加速能量为14TeV。

欧洲大型强子对撞机工作原理示意图

模拟宇宙大爆炸发生时的状态,有助人类进一步探索宇宙起源之谜

Francois Englert和Peter W. Higgs的发现获得 2013年诺贝尔物理学奖

标准粒子模型理论中共预言了62种基本粒子的存在,希格斯玻色子正是该理论依赖的基石。作为物质的质量之源, Higgs粒子被叫做"上帝粒子"

The Standard Model

Binding of nuclei and radioactivity require two additional short-range forces:

- Strong Interactions: Keep nucleus bound.
- Week interactions: Allow beta decay of nuclei

3 families of matter (chiral fermions)

Quarks:
$$Q_L \equiv \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
, d_R , u_R

Leptons:
$$L_L \equiv \begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix}$$
, e_R , ν_R ?

3 types of gauge bosons (spin 1)

$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$

- Strong (8 masless gluons, g)
- Electromag. (1 massless photon γ)
- Weak (3 massive Z, W⁺, W⁻)
- 1 Higgs boson (spin 0) needed for SSB

$$\mathcal{L} = -\frac{1}{4} \sum_{C=1}^{8} G_{\mu\nu}^{C} G^{C\mu\nu} - \frac{1}{4} \sum_{a=1}^{3} W_{\mu\nu}^{a} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$+ D^{\mu} H^{\dagger} D_{\mu} H - V(H^{\dagger} H)$$

$$+ \sum_{n,i,\alpha} i Q_{ni\alpha}^{\dagger} \bar{\sigma}^{\mu} D_{\mu} Q_{n}^{i\alpha} + \sum_{n,i} i U_{n}^{\dagger i} \bar{\sigma}^{\mu} D_{\mu} U_{ni} + \sum_{n,i} i D_{n}^{\dagger i} \bar{\sigma}^{\mu} D_{\mu} D_{ni}$$

$$+ \sum_{n,\alpha} i L_{n\alpha}^{\dagger} \bar{\sigma}^{\mu} D_{\mu} L_{n}^{\alpha} + \sum_{n} i E_{n} \bar{\sigma}^{\mu} D_{\mu} E_{n}$$

$$+ \mathcal{L}_{Yukawa} + \mathcal{L}_{LLHH}.$$

Here $G_{\mu\nu}^C$, $W_{\mu\nu}^a$, and $B_{\mu\nu}$ are canonically normalized tension fields for the SU(3), SU(2), and U(1) gauge symmetries,

$$G_{\mu\nu}^{C} = \partial_{\mu}G_{\nu}^{C} - \partial_{\nu}G_{\mu}^{C} - g_{3}f^{CDE}G_{\mu}^{D}G_{\nu}^{E},$$

$$W_{\mu\nu}^{a} = \partial_{\mu}W_{\nu}^{a} - \partial_{\nu}W_{\mu}^{a} - g_{2}F\epsilon^{abc}W_{\mu}^{b}W_{\nu}^{c},$$

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu},$$

$$(9)$$

- [1] K. Harigaya and Y. Nomura, "Composite Models for the 750 GeV Diphoton Excess," arXiv:1512.04850 [hep-ph]
- Y. Mambrini, G. Arcadi, and A. Djouadi, "The LHC diphoton resonance and dark matter," arXiv:1512.04913 [hep-ph].
- [3] M. Backovic, A. Mariotti, and D. Redigolo, "Di-photon excess illuminates Dark Matter," arXiv:1512.04917 [hep-ph]
- A. Angelescu, A. Djouadi, and G. Moreau, "Scenarii for interpretations of the LHC diphoton excess: two Higgs doublets and vector-like quarks and leptons," arXiv:1512.04921 [hep-ph].
- [5] Y. Nakai, R. Sato, and K. Tobioka, "Footprints of New Strong Dynamics via Anomaly," arXiv:1512.04924 [hep-ph].
- [6] S. Knapen, T. Melia, M. Papucci, and K. Zurek, "Rays of light from the LHC." arXiv:1512.04928 [hep-ph].
- [7] D. Buttazzo, A. Greljo, and D. Marzocca, "Knocking on New Physics' door with a Scalar Resonance," arXiv:1512.04929 [hep-ph]
- [8] A. Pilaftsis, "Diphoton Signatures from Heavy Axion Decays at LHC," arXiv:1512.04931
- [9] R. Franceschini, G. F. Giudice, J. F. Kamenik, M. McCullough, A. Pomarol, R. Rattazzi M. Redi, F. Riva, A. Strumia, and R. Torre, "What is the gamma gamma resonance at 750 GeV?," arXiv:1512.04933 [hep-ph].
- [10] S. Di Chiara, L. Marzola, and M. Raidal, "First interpretation of the 750 GeV di-photon resonance at the LHC," arXiv:1512.04939 [hep-ph].
- [11] T. Higaki, K. S. Jeong, N. Kitajima, and F. Takahashi, "The QCD Axion from Aligned Axions and Diphoton Excess," arXiv:1512.05295 [hep-ph].
- [12] S. D. McDermott, P. Meade, and H. Ramani, "Singlet Scalar Resonances and the Diphoton Excess," arXiv:1512.05326 [hep-ph]
- Possible ~ 750 GeV Particle Decaying into γγ," arXiv:1512.05327 [hep-ph].
- LHC run 2 data," arXiv:1512.05328 [hep-ph].
- [15] B. Bellazzini, R. Franceschini, F. Sala, and J. Serra, "Goldstones in Diphotons." arXiv:1512.05330 [hep-ph].
- [16] R. S. Gupta, S. Jager, Y. Kats, G. Perez, and E. Stamou, "Interpreting a 750 GeV

superpartner," arXiv:1512.05333 [hep-ph].

- Diphoton Resonance," arXiv:1512.05332 [hep-ph]. [17] C. Petersson and R. Torre, "The 750 GeV diphoton excess from the goldstino
- [18] E. Molinaro, F. Sannino, and N. Vignaroli, "Strong dynamics or axion origin of the diphoton excess," arXiv:1512.05334 [hep-ph].
- [19] A. Falkowski, O. Slone, and T. Volansky, "Phenomenology of a 750 GeV Singlet," arXiv:1512.05777 [hep-ph].
- [20] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze, and T. Li, "Interpretation of the diphoton excess at CMS and ATLAS," arXiv:1512.05439 [hep-ph].
- [21] Q.-H. Cao, Y. Liu, K.-P. Xie, B. Yan, and D.-M. Zhang, "A Boost Test of Anomalous Diphoton Resonance at the LHC," arXiv:1512.05542 [hep-ph].
- [22] S. Matsuzaki and K. Yamawaki, "750 GeV Diphoton Signal from One-Family Walking Technipion," arXiv:1512.05564 [hep-ph].
- [23] A. Kobakhidze, F. Wang, L. Wu, J. M. Yang, and M. Zhang, "LHC diphoton excess

- [35] P. Agrawal, J. Fan, B. Heidenreich, M. Reece, and M. Strassler, "Experimental Considerations Motivated by the Diphoton Excess at the LHC," arXiv:1512.05775
- [36] C. Csaki, J. Hubisz, and J. Terning, "The Minimal Model of a Diphoton Resonance: Production without Gluon Couplings," arXiv:1512.05776 [hep-ph].
- [37] D. Aloni, K. Blum, A. Dery, A. Efrati, and Y. Nir, "On a possible large width 750 GeV diphoton resonance at ATLAS and CMS," arXiv:1512.05778 [hep-ph].
- [38] Y. Bai, J. Berger, and R. Lu, "A 750 GeV Dark Pion: Cousin of a Dark G-parity-odd WIMP," arXiv:1512.05779 [hep-ph].
- E. Gabrielli, K. Kannike, B. Mele, M. Raidal, C. Spethmann, and H. Veermae, "A SUSY Inspired Simplified Model for the 750 GeV Diphoton Excess," arXiv:1512.05961
- [40] R. Benbrik, C.-H. Chen, and T. Nomura, "Higgs singlet as a diphoton resonance in a vector-like quark model," arXiv:1512.06028 [hep-ph].
- [41] J. S. Kim, J. Reuter, K. Rolbiecki, and R. R. de Austri, "A resonance without resonance: scrutinizing the diphoton excess at 750 GeV," arXiv:1512.06083 [hep-ph].
- [42] A. Alves, A. G. Dias, and K. Sinha, "The 750 GeV S-cion: Where else should we look for it?," arXiv:1512.06091 [hep-ph].
- [43] E. Megias, O. Pujolas, and M. Quiros, "On dilatons and the LHC diphoton excess," arXiv:1512.06106 [hep-ph].
- Diphoton Excess, Beyond Effective Operators," arXiv:1512.06107 [hep-ph].
- [45] J. Bernon and C. Smith, "Could the width of the diphoton anomaly signal a three-body decay ?," arXiv:1512.06113 [hep-ph].
- [46] W. Chao, "Symmetries Behind the 750 GeV Diphoton Excess," arXiv:1512.06297
- [13] J. Ellis, S. A. R. Ellis, J. Quevillon, V. Sanz, and T. You, "On the Interpretation of a [47] M. T. Arun and P. Saha, "Gravitons in multiply warped scenarios at 750 GeV and beyond." arXiv:1512.06335 [hep-ph]
- [14] M. Low, A. Tesi, and L.-T. Wang, "A pseudoscalar decaying to photon pairs in the early [48] C. Han, H. M. Lee, M. Park, and V. Sanz, "The diphoton resonance as a gravity mediator of dark matter," arXiv:1512.06376 [hep-ph].
 - [49] S. Chang, "A Simple U(1) Gauge Theory Explanation of the Diphoton Excess," arXiv:1512.06426 [hep-ph].
 - [50] I. Chakraborty and A. Kundu, "Diphoton excess at 750 GeV: Singlet scalars confront naturalness," arXiv:1512.06508 [hep-ph].
 - [51] R. Ding, L. Huang, T. Li, and B. Zhu, "Interpreting 750 GeV Diphoton Excess with R-parity Violation Supersymmetry," arXiv:1512.06560 [hep-ph].
 - [52] H. Han, S. Wang, and S. Zheng, "Scalar Dark Matter Explanation of Diphoton Excess at LHC," arXiv:1512.06562 [hep-ph].
 - [53] X.-F. Han and L. Wang, "Implication of the 750 GeV diphoton resonance on two-Higgs-doublet model and its extensions with Higgs field," arXiv:1512.06587
 - Di-photon Excess," arXiv:1512.06670 [hep-ph].
 - photon-jets in Hidden-Valley-like models," arXiv:1512.06671 [hep-ph].

- [56] D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, S. Raychaudhuri, and T. Samui, "Radion Candidate for the LHC Diphoton Resonance," arXiv:1512.06674 [hep-ph].
- [57] T.-F. Feng, X.-Q. Li, H.-B. Zhang, and S.-M. Zhao, "The LHC 750 GeV diphoton excess supersymmetry with gauged baryon and lepton numbers," arXiv:1512.06696 [hep-ph].
- [58] O. Antipin, M. Mojaza, and F. Sannino, "A natural Coleman-Weinberg theory explains tl diphoton excess," arXiv:1512.06708 [hep-ph].
- [59] F. Wang, L. Wu, J. M. Yang, and M. Zhang, "750 GeV Diphoton Resonance, 125 GeV Higgs and Muon g-2 Anomaly in Deflected Anomaly Mediation SUSY Breaking Scenario, arXiv:1512.06715 [hep-ph].
- [60] J. Cao, C. Han, L. Shang, W. Su, J. M. Yang, and Y. Zhang, "Interpreting the 750 GeV diphoton excess by the singlet extension of the Manohar-Wise Model," arXiv:1512.0672
- [61] F. P. Huang, C. S. Li, Z. L. Liu, and Y. Wang, "750 GeV Diphoton Excess from Cascade Decay," arXiv:1512.06732 [hep-ph].
- [62] W. Liao and H.-q. Zheng, "Scalar resonance at 750 GeV as composite of heavy vector-like fermions," arXiv:1512.06741 [hep-ph].
- [63] J. J. Heckman, "750 GeV Diphotons from a D3-brane," arXiv:1512.06773 [hep-ph].
- [64] M. Dhuria and G. Goswami, "Perturbativity, vacuum stability and inflation in the light o 750 GeV diphoton excess," arXiv:1512.06782 [hep-ph].
- [44] L. M. Carpenter, R. Colburn, and J. Goodman, "Supersoft SUSY Models and the 750 GeV [65] X.-J. Bi, Q.-F. Xiang, P.-F. Yin, and Z.-H. Yu, "The 750 GeV diphoton excess at the LH and dark matter constraints," arXiv:1512.06787 [hep-ph].
 - [66] J. S. Kim, K. Rolbiecki, and R. R. de Austri, "Model-independent combination of diphote constraints at 750 GeV," arXiv:1512.06797 [hep-ph].
 - [67] L. Berthier, J. M. Cline, W. Shepherd, and M. Trott, "Effective interpretations of a diphoton excess," arXiv:1512.06799 [hep-ph].
 - [68] W. S. Cho, D. Kim, K. Kong, S. H. Lim, K. T. Matchev, J.-C. Park, and M. Park, "The 750 GeV Diphoton Excess May Not Imply a 750 GeV Resonance," arXiv:1512.06824
 - [69] J. M. Cline and Z. Liu, "LHC diphotons from electroweakly pair-produced composite pseudoscalars," arXiv:1512.06827 [hep-ph].
 - [70] M. Bauer and M. Neubert, "Flavor Anomalies, the Diphoton Excess and a Dark Matter Candidate," arXiv:1512.06828 [hep-ph].
 - [71] M. Chala, M. Duerr, F. Kahlhoefer, and K. Schmidt-Hoberg, "Tricking Landau-Yang: Hc to obtain the diphoton excess from a vector resonance," arXiv:1512.06833 [hep-ph].
 - [72] D. Barducci, A. Goudelis, S. Kulkarni, and D. Sengupta, "One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance," arXiv:1512.06842 [hep-ph].
 - [73] G. M. Pelaggi, A. Strumia, and E. Vigiani, "Trinification can explain the di-photon and di-boson LHC anomalies," arXiv:1512.07225 [hep-ph].
 - M.x. Luo, K. Wang, T. Xu, L. Zhang, and G. Zhu, "Squarkonium/Diquarkonium and the [74] S. M. Boucenna, S. Morisi, and A. Vicente, "The LHC diphoton resonance from gauge symmetry," arXiv:1512.06878 [hep-ph].
 - J. Chang, K. Cheung, and C.-T. Lu, "Interpreting the 750 GeV Di-photon Resonance using [75] C. W. Murphy, "Vector Leptoquarks and the 750 GeV Diphoton Resonance at the LHC," arXiv:1512.06976 [hep-ph].
 - [76] A. E. C. Hernández and I. Nisandzic, "LHC diphoton 750 GeV resonance as an indication of $SU(3)_c \times SU(3)_L \times U(1)_X$ gauge symmetry," arXiv:1512.07165 [hep-ph].

探索基础物理学的未解之谜

- · 粒子是否有相对应的超对称(SUSY)粒子存在?
- 有更高维度的空间(Kaluza-Klein theory, extra-dimensions) 存在吗?
- 是否可以探测到和弦论预言有关的物理现象?
- 为何物质与反物质是不对称的?
- 宇宙有96%的质量是目前天文学上无法观测到的(暗物质),这些到底是什么?
- 为何万有引力比起其他三个基本作用力(电磁力,强作用力,弱作用力)差了这么多个数量级?
- 微型黑洞是否存在?
- 是否存在超出标准模型的物理?
- 模拟早期宇宙的物理性质
- •

3、中国的加速器

1958年6月30号中国第一个回旋加速器建成

北京正负电子对撞机:长度0.24公里,加速能量1-1.15GeV,改造后能量最大为4Gev

a) pion b) proton c) Z_c(3900)

2013年中国电子对撞机 发现4夸克物质

0, 252002 (2013)

PRL 110, 252002 (2013)

Study of $e^+e^- \to \pi^+\pi^- J/\psi$ and Observation of a Charged Charmoniumlike State at Belle

Z. O. Liu, ¹⁷ C. P. Shen, ³⁶,* C. Z. Yuan, ¹⁷ I. Adachi, ¹³ H. Aihara, ⁵⁹ D. M. Asner, ⁴⁶ V. Aulchenko, ³ T. Aushev, ²¹ T. Aziz, ⁵⁴ A. M. Bakich, 53 A. Bala, 47 K. Belous, 19 V. Bhardwaj, 38 B. Bhuyan, 15 M. Bischofberger, 38 A. Bondar, 3 G. Bonvicini, 65 A. Bozek, ⁴² M. Bračko, ^{31,22} J. Brodzicka, ⁴² T. E. Browder, ¹² P. Chang, ⁴¹ V. Chekelian, ³² A. Chen, ³⁹ P. Chen, ⁴¹ B. G. Cheon, 11 R. Chistov, 21 K. Cho, 26 V. Chobanova, 32 S.-K. Choi, 10 Y. Choi, 52 D. Cinabro, 65 J. Dalseno, 32,55 M. Danilov, 21,34 Z. Doležal, 4 Z. Drásal, 4 A. Drutskoy, 21,34 D. Dutta, 15 K. Dutta, 15 S. Eidelman, 3 D. Epifanov, 59 H. Farhat, 65 J. E. Fast, ⁴⁶ M. Feindt, ²⁴ T. Ferber, ⁶ A. Frey, ⁹ V. Gaur, ⁵⁴ N. Gabyshev, ³ S. Ganguly, ⁶⁵ R. Gillard, ⁶⁵ Y. M. Goh, ¹¹ B. Golob, ^{30,22} J. Haba, ¹³ K. Hayasaka, ³⁷ H. Hayashii, ³⁸ Y. Horii, ³⁷ Y. Hoshi, ⁵⁷ W.-S. Hou, ⁴¹ Y. B. Hsiung, ⁴¹ H. J. Hyun, ²⁸ T. Iijima, ^{37,36} K. Inami, ³⁶ A. Ishikawa, ⁵⁸ R. Itoh, ¹³ Y. Iwasaki, ¹³ D. Joffe, ²⁵ T. Julius, ³³ D. H. Kah, ²⁸ J. H. Kang, ⁶⁷ T. Kawasaki, ⁴⁴ C. Kiesling, ³² H. J. Kim, ²⁸ J. B. Kim, ²⁷ J. H. Kim, ²⁶ K. T. Kim, ²⁷ M. J. Kim, ²⁸ Y. J. Kim, ²⁶ K. Kinoshita, ⁵ J. Klucar, ²² B. R. Ko, ²⁷ P. Kodyš, ⁴ S. Korpar, ^{31,22} P. Križan, ^{30,22} P. Krokovny, ³ T. Kuhr, ²⁴ Y.-J. Kwon, ⁶⁷ J. S. Lange, ⁷ S.-H. Lee, 27 J. Li, 51 Y. Li, 64 J. Libby, 16 C. Liu, 50 P. Lukin, 3 D. Matvienko, 3 K. Miyabayashi, 38 H. Miyata, 44 R. Mizuk, 21,34 G. B. Mohanty, A. Moll, 32,55 R. Mussa, 20 E. Nakano, 45 M. Nakao, 13 H. Nakazawa, 39 Z. Natkaniec, 42 M. Nayak, 16 E. Nedelkovska, 32 N. K. Nisar, 54 S. Nishida, 13 O. Nitoh, 62 S. Ogawa, 56 S. Okuno, 23 S. L. Olsen, 51 Y. Onuki, 59 W. Ostrowicz, 42 C. Oswald, P. Pakhlov, 21,34 G. Pakhlova, 21 H. Park, 28 H. K. Park, 28 T. K. Pedlar, 68 R. Pestotnik, 22 M. Petrič, ²² L. E. Piilonen, ⁶⁴ M. Ritter, ³² M. Röhrken, ²⁴ A. Rostomyan, ⁶ H. Sahoo, ¹² T. Saito, ⁵⁸ Y. Sakai, ¹³ S. Sandilya, ⁵⁴ D. Santel, ⁵ T. Sanuki, ⁵⁸ Y. Sato, ⁵⁸ V. Savinov, ⁴⁸ O. Schneider, ²⁹ G. Schneil, ^{1,14} C. Schwanda, ¹⁸ R. Seidl, ⁴⁹ D. Semmler, ⁷ K. Senyo, ⁶⁶ O. Seon, ³⁶ M. E. Sevior, ³³ M. Shapkin, ¹⁹ T.-A. Shibata, ⁶⁰ J.-G. Shiu, ⁴¹ B. Shwartz, ³ A. Sibidanov, ⁵³ F. Simon, ^{32,55} P. Smerkol, ²² Y.-S. Sohn, ⁶⁷ A. Sokolov, ¹⁹ E. Solovieva, ²¹ M. Starič, ²² M. Steder, ⁶ M. Sumihama, ⁸ T. Sumiyoshi, ⁶¹ U. Tamponi, ^{20,63} K. Tanida, ⁵¹ G. Tatishvili, ⁴⁶ Y. Teramoto, ⁴⁵ K. Trabelsi, ¹³ T. Tsuboyama, ¹³ M. Uchida, ⁶⁰ S. Uehara, ¹³T. Uglov, ^{21,25} Y. Unno, ¹¹ S. Uno, ¹³ S. E. Vahsen, ¹² C. Van Hulse, ¹ P. Vanboefer, ³² G. Vamer, ¹² K. E. Varvell, ³³ V. Vorobyev, ³ M. N. Wagner, ⁷ C. H. Wang, ⁴⁰ M.-Z. Wang, ⁴¹ P. Wang, ¹⁷ X. L. Wang, ⁶⁴ M. Watanabe, ⁴⁴ Y. Watanabe, ²³ E. Won, ²⁷ B. D. Yabsley, ⁵³ J. Yamaoka, ¹² Y. Yamashita, ⁴³ S. Yashchenko, ⁶ Y. Yook, ⁶⁷ Y. Yusa, ⁴⁴ C. C. Zhang, ¹⁷ Z. P. Zhang, 50 V. Zhilich, 3 and A. Zupanc24

(Belle Collaboration)

¹University of the Basque Country UPV/EHU, 48080 Bilbao ²University of Bonn, 53115 Bonn ³Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090 ⁴Faculty of Mathematics and Physics, Charles University, 121 16 Prague ⁵University of Cincinnati, Cincinnati, Ohio 45221 ⁶Deutsches Elektronen-Synchrotron, 22607 Hamburg ⁷Justus-Liebig-Universität Gießen, 35392 Gießen 8Gifu University, Gifu 501-1193 9II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen ¹⁰Gyeongsang National University, Chinju 660-701 11 Hanyang University, Seoul 133-791 12University of Hawaii, Honolulu, Hawaii 96822 ¹³High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 14Ikerbasque, 48011 Bilbao ¹⁵Indian Institute of Technology Guwahati, Assam 781039 ¹⁶Indian Institute of Technology Madras, Chennai 600036 ¹⁷Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 ¹⁸Institute of High Energy Physics, Vienna 1050 ¹⁹Institute for High Energy Physics, Protvino 142281 ²⁰INFN-Sezione di Torino, 10125 Torino ²¹Institute for Theoretical and Experimental Physics, Moscow 117218 ²² J. Stefan Institute, 1000 Ljubljana ²³Kanagawa University, Yokohama 221-8686 ²⁴Institut für Experimentelle Kemphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe Kennesaw State University, Kennesaw, Georgia 30144 ²⁶Korea Institute of Science and Technology Information, Daejeon 305-806 Korea University, Seoul 136-713

²⁸Kyungpook National University, Daegu 702-701 29 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015 ³⁰Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana ³¹University of Maribor, 2000 Maribor 32 Max-Planck-Institut für Physik, 80805 München 33School of Physics, University of Melbourne, Victoria 3010 34 Moscow Physical Engineering Institute, Moscow 115409 ³⁵Moscow Institute of Physics and Technology, Moscow Region 141700 ³⁶Graduate School of Science, Nagoya University, Nagoya 464-8602 ³⁷Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602 38 Nara Women's University, Nara 630-8506 ³⁹National Central University, Chung-li 32054 40 National United University, Miao Li 36003 ⁴¹Department of Physics, National Taiwan University, Taipei 10617 ⁴²H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 43 Nippon Dental University, Niigata 951-8580 Niigata University, Niigata 950-2181 45Osaka City University, Osaka 558-8585 ⁴⁶Pacific Northwest National Laboratory, Richland, Washington 99352 47 Panjab University, Chandigarh 160014 48 University of Pittsburgh, Pittsburgh, Pennsylvania 15260 ⁴⁹RIKEN BNL Research Center, Upton, New York 11973 50 University of Science and Technology of China, Hefei 230026 Seoul National University, Seoul 151-742 52 Sungkyunkwan University, Suwon 440-746 53 School of Physics, University of Sydney, New South Wales 2006 54Tata Institute of Fundamental Research, Mumbai 400005 ⁵⁵Excellence Cluster Universe, Technische Universität München, 85748 Garching ⁶Toho University, Funabashi 274-8510 57 Tohoku Gakuin University, Tagajo 985-8537 SaTohoku University, Sendai 980-8578 ⁵⁹Department of Physics, University of Tokyo, Tokyo 113-0033 Tokyo Institute of Technology, Tokyo 152-8550 61 Tokyo Metropolitan University, Tokyo 192-0397 62 Tokyo University of Agriculture and Technology, Tokyo 184-8588 63University of Torino, 10124 Torino ⁶⁴CNP, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 65Wayne State University, Detroit, Michigan 48202 66Yamagata University, Yamagata 990-8560 67Yonsei University, Seoul 120-749 68 Luther College, Decorah, Iowa 52101 (Received 30 March 2013; published 17 June 2013; publisher error corrected 19 June 2013)

The cross section for $e^+e^- \to \pi^+\pi^- J/\psi$ between 3.8 and 5.5 GeV is measured with a 967 fb⁻¹ data sample collected by the Belle detector at or near the Y(nS) (n = 1, 2, ..., 5) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of $\pi^+\pi^-J/\psi$ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parametrization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of $Y(4260) \rightarrow \pi^+ \pi^- J/\psi$ decays, a structure is observed in the $M(\pi^{\pm} J/\psi)$ mass spectrum with 5.2σ significance, with mass $M = (3894.5 \pm 6.6 \pm 4.5) \text{ MeV}/c^2$ and width $\Gamma = (63 \pm 24 \pm 26) \text{ MeV}/c^2$, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmoniumlike state.

DOI: 10.1103/PhysRevLett.110.252002

Y(4260) state was first observed by the BABAR ration in the initial-state-radiation (ISR) process • $\gamma_{\text{TSP}} \pi^+ \pi^- J/\psi$ [1] and then confirmed by the [2] and Belle experiments [3] using the same technique. Subsequently, a charged Z(4430) ± charmoniumlike state was reported in the $\pi^{\pm}\psi(2S)$ invariant mass spectrum of $B \to K\pi^{\pm}\psi(2S)$ [4] and two Z^{\pm} states were observed in the $\pi^{\pm} \chi_{c1}$ invariant mass distribution of

PACS numbers: 14.40.Rt, 13.25.Gv, 13.66.Bc, 14.40.Pq

中国的"大型对撞机"大辩论

在规划中,CEPC-SPPC项目将在50-100公里长的地下环形通道内,利用相同的隧道,建造两座超级对撞机:正负电子对撞机和质子对撞机。

该质子对撞机和LHC相似,都在环形通道内使用质子进行对撞。但该对撞机的通道长度将是LHC的2-4倍,对撞能级可达70-100TeV或100-140TeV,远超LHC的14TeV。中科院高能所建议的超大对撞机预算将高于200亿美元(1335亿人民币)。

环形正负电子对撞机 (25TeV) 超级质子对撞机 (50-70TeV)

费米梦想

费米曾在1954年提 出环绕地球建一台 加速器的设想,称 为费米的梦。其能 量可达数千TeV。

Fermi's Dream Accerlerator (ca. 1954)

Magnetic field 2T 8000km Cost $$170\times10^9$$ 5000TeV center of mass energy Time to construct 40 years

谢谢!

