MEng Final Year Project

Distributed Optimization in Multi-agent Systems with Coupling Constraints

Alexander Popov

Distributed Optimization

General optimization problem:

$$\min_{x} f(x) \qquad \text{subject to} \quad \begin{cases} c^{j}(x) = 0, & j \in \mathcal{P} \\ c^{j}(x) \leq 0, & j \in \mathcal{Q} \end{cases}$$

• General local problem P_i in distributed optimization scheme:

$$\min_{\{x_{ji}, j \in \mathcal{S}_i\}} \sum_{j \in \mathcal{S}_i} f_j(x_{ji})$$
s.t. $c_i^l(\{x_{ji}, j \in \mathcal{S}_i\}) = 0, \quad l \in \mathcal{P}_i$

$$c_i^l(\{x_{ji}, j \in \mathcal{S}_i\}) \leq 0, \quad l \in \mathcal{Q}_i$$

• Each local problem extracts the solution $x_i^*=x_{ii}^*$ and the solution to the global problem can then be assembled:

$$x^* = (x_1^*, \dots, x_N^*)$$

Optimization Over Graphs

- Graph: $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$
- Neighbours: $\mathcal{N}_i = \{j \mid (i,j) \in \mathcal{E}\}$
- Neighbourhood: $\mathcal{S}_i = \{i\} \cup \mathcal{N}_i$

Staged Optimization Over Connected Dominating Sets

• Converging to consensus: $x_{ij}^* \to z_i^*, \ x_{ik}^* \to z_i^*$

• Instead, just copy: $x_{ik}^* \triangleq x_{ij}^*$

ROOT PROBLEM

$$\min_{\{x_{jv_0}, j \in \mathcal{S}_{v_0}\}} \sum_{j \in \mathcal{S}_{v_0}} f_j(x_{jv_0})$$
s.t. $c_{v_0}^l(\{x_{jv_0}, j \in \mathcal{S}_{v_0}\}) = 0, \quad l \in \mathcal{P}_{v_0}$

$$c_{v_0}^l(\{x_{jv_0}, j \in \mathcal{S}_{v_0}\}) \leq 0, \quad l \in \mathcal{Q}_{v_0}$$

$$\min_{\{x_{ji}, j \in \bar{\mathcal{S}}_i\}} \sum_{j \in \bar{\mathcal{S}}_i} f_j(x_{ji})$$
s.t. $c_i^l(\{x_{ji}, j \in \bar{\mathcal{S}}_i\}, x_i^*, x_{p_i i}^*) = 0, \quad l \in \bar{\mathcal{P}}_i$

$$c_i^l(\{x_{ji}, j \in \bar{\mathcal{S}}_i\}, x_i^*, x_{p_i i}^*) \leq 0, \quad l \in \bar{\mathcal{Q}}_i$$

$$\min_{\{x_{jv_k}, j \in \bar{\mathcal{S}}_{v_k}\}} \sum_{j \in \bar{\mathcal{S}}_{v_k}} f_j(x_{jv_k})$$
s.t. $c_{v_k}^l(\{x_{jv_k}, j \in \bar{\mathcal{S}}_{v_k}\}, \{x_{jv_k}^*, j \in \mathcal{F}_{k-1}\}) = 0, \quad l \in \bar{\mathcal{P}}_{v_k}$

$$c_{v_k}^l(\{x_{jv_k}, j \in \bar{\mathcal{S}}_{v_k}\}, \{x_{jv_k}^*, j \in \mathcal{F}_{k-1}\}) \leq 0, \quad l \in \bar{\mathcal{Q}}_{v_k}$$

CDS Branch Sweep (for trees with neighbourhood coupling)

CDS Path Sweep (for graphs with a CDS-induced path)

Characteristics of the sweeping algorithms

- For both algorithms, a single exact sweep limits class of problems for which feasibility is guaranteed.
- The increasing complexity in CDS-PS problems can be alleviated with an external active set strategy.
- Ensure efficient communication protocol with a more continuous flow of information.

Results: CDS-BS

Results: CDS-BS

Results: CDS-PS

Algorithm	f^*	Time (s)
Centralized	13.277	160.4
CDS-PS	13.631	199.0
CDS-PS, EAS	13.294	24.40

Node	n_k	$ \mathcal{Q} $	$ \mathcal{W} $	$ \mathcal{A} $	t(s)	$\%t_c$
2	3	7010	331	21	7.04	5.86
3	4	6511	515	53	7.68	17.7
6	5	4007	390	9	5.45	32.7
7	4	4508	172	4	4.08	22.3