BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

2. Opis układu pomiarowego

Ćwiczenie wykonywane jest ze wskazaną przez wykładowcę diodą w dwóch różnych układach pomiarowych służących do mierzenia charakterystyki I-U w kierunku przewodzenia i zaporowym. W obydwu układach wykorzystuje się te same elementy obwodu.

Pomiar charakterystyki I-U diody w kierunku przewodzenia przeprowadza się w układzie pomiarowym przedstawionym na rysunku a). W skład układu wchodzą: zasilacz, badana dioda, woltomierz cyfrowy, amperomierz oraz rezystor zabezpieczający R_z . Amperomierz w tym układzie pomiarowym wskazuje sumę prądów płynących w diodzie i przez woltomierz. Trzeba jednak zauważyć, że rezystancja wewnętrzna woltomierza cyfrowego jest znacznie większa w porównaniu z małą rezystancją diody spolaryzowanej w kierunku przewodzenia, a więc prąd płynący przez woltomierz jest znacznie mniejszy niż prąd płynący przez diodę. W ten sposób amperomierz praktycznie mierzy prąd płynący przez diodę.

Pomiar charakterystyki diody w kierunku zaporowym przeprowadza się w układzie pomiarowym przedstawionym na b). W tym układzie pomiarowym woltomierz wskazuje sumę napięć na diodzie i na amperomierzu. Ponieważ rezystancja wewnętrzna amperomierza jest bardzo mała w porównaniu z rezystancją diody spolaryzowanej zaporowo, spadek napięcia na amperomierzu można pominąć w porównaniu ze spadkiem napięcia na diodzie i praktycznie woltomierz wskazuje napięcie na diodzie.

Schematy układów do wyznaczania charakterystyki I - U diody: a) w kierunku przewodzenia, b) w kierunku zaporowym.

3. Przeprowadzenie pomiarów

A. Pomiar charakterystyki diody w kierunku przewodzenia

- 1. Zmontować obwód według schematu na rysunku **a**). Do pomiaru natężenia i napięcia prądu podłączyć odpowiedni miernik.
- 2. Ustawić amperomierz i woltomierz na największy zakres.
- 3. Na zasilaczu ustawić najmniejsze możliwe napięcie, następnie włączyć zasilacz.
- 4. Zmniejszyć zakres woltomierza (np. do 1 V), tak by wskazania go nie przekraczały.
- 5. Wykonać pomiary natężenia prądu dla napięć od 600 mV do 900 mV co 20 mV. Napięcie zwiększać regulując napięcie wyjściowe zasilacza. Zwiększać zakres amperomierza, tak by wskazania go nie przekraczały.

B. Pomiar charakterystyki diody w kierunku zaporowym

- 1. Zmontować obwód według schematu na rysunku **b**). Do pomiaru natężenia i napięcia prądu podłączyć odpowiedni miernik.
- 2. Ustawić amperomierz i woltomierz na największy zakres.
- 3. Na zasilaczu ustawić najmniejsze możliwe napięcie, następnie włączyć zasilacz.
- 4. Zmniejszyć zakres woltomierza (np. do 100 V), tak by wskazania go nie przekraczały.
- 5. Wykonać pomiary natężenia prądu dla napięć: 0,5, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50 V. Napięcie zwiększać regulując napięcie wyjściowe zasilacza. Zwiększać zakres amperomierza, tak by wskazania go nie przekraczały.

4. Opracowanie wyników pomiarów

Wykonanie wykresu (1)

charakterystyki prądowo-napięciowej diody w kierunku przewodzenia

- 1. Nanieść punkty pomiarowe (wraz z niepewnościami) charakterystyki prądowo–napięciowej diody dla kierunku przewodzenia (Wykres 1). Dobrać odpowiednio skale dla osi prądu i napięcia.
- 2. Wyznaczyć rezystancje różniczkowe diody dla dwóch wybranych napięć. Rezystancja różniczkowa w danym punkcie wykresu jest równa współczynnikowi kierunkowemu stycznej do wykresu. Narysować styczne do charakterystyki i oszacować wartość ich współczynników kierunkowych.

Wykonanie wykresu (2)

charakterystyki prądowo-napięciowej diody w kierunku zaporowym

- 3. Nanieść punkty pomiarowe (wraz z niepewnościami) charakterystyki prądowo–napięciowej diody dla kierunku zaporowego (Wykres 2). Dobrać odpowiednio skale dla osi prądu i napięcia.
- 4. Wyznaczyć rezystancje różniczkowe diody dla dwóch wybranych napięć. Rezystancja różniczkowa w danym punkcie wykresu jest równa współczynnikowi kierunkowemu stycznej do wykresu. Narysować styczne do charakterystyki i oszacować wartość ich współczynników kierunkowych.
- 5. Oszacować na wykresie wartość ${\cal I}_{\it S}$ dla której wartość prądu nie ulega zmianie mimo zmiany wartości napięcia.

Wykonanie wykresu (3)

logarytmicznej charakterystyki prądowo-napięciowej diody w kierunku przewodzenia

- 6. W punkcie 7 wykonać wykres (3) ln $I = \left(\frac{e}{\beta k T}\right) U + \ln I_S$ gdzie:
 - I_s tzw. prąd nasycenia (wyznaczany w punkcie 12), e ładunek elementarny, k stała Boltzmanna, β współczynnik proporcjonalności (wyznaczany w punkcie 8) między składową prądu dyfuzyjnego (β = 1)i rekombinacyjnego (β = 2), T temperatura termodynamiczna (przyjmujemy temperaturę otoczenia w czasie pomiarów).
 - Zwrócić szczególną uwagę na to, aby oś ln Iprzechodziła przez punkt U = 0. Nanoszenie niepewności pomiarowych nie jest konieczne.
- 7. Metodą najmniejszych kwadratów wyznaczyć parametry prostej $y = \overline{a}x + \overline{b}$, gdzie x = U, $y = \ln(I)$, oraz ich niepewności:

$$\overline{a} = \frac{\left(\sum_{i=1}^{n} x_{i}\right) \cdot \left(\sum_{i=1}^{n} y_{i}\right) - n \cdot \left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}\right)^{2} - n \cdot \left(\sum_{i=1}^{n} x_{i}^{2}\right)} \qquad \overline{b} = \frac{\left(\sum_{i=1}^{n} y_{i}\right) - \overline{a} \cdot \left(\sum_{i=1}^{n} x_{i}\right)}{n}$$

$$u(\overline{a}) = \sigma_{\overline{a}} = \sqrt{\frac{n}{n-2} \cdot \frac{\left(\sum_{i=1}^{n} y_{i}^{2}\right) - \overline{a} \cdot \left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right) - \overline{b} \cdot \left(\sum_{i=1}^{n} y_{i}\right)}{n \cdot \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}} \qquad u(\overline{b}) = \sigma_{\overline{b}} = \sigma_{\overline{a}} \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}$$

Przy wyznaczaniu parametrów prostych zaleca się wykonanie tabeli zawierającym kolumny z poszczególnymi wartościami: x_i , y_i , x_i^2 , y_i^2 , $x_i \cdot y_i$ oraz ich sumy w celu uniknięcia błędów

przy przetwarzaniu wartości zmierzonych.

Prostą wraz z wyznaczonymi parametrami nanieś na wykres (3).

Wyznaczenie współczynnik proporcjonalności β i jego niepewności

8. Na podstawie współczynnika kierunkowego wyznaczonej prostej $\ln I = \left(\frac{e}{\beta \ k \ T}\right) U + \ln I_s$

wyznaczyć współczynnik
$$\beta = \frac{e}{\overline{a} \text{ k T}}.$$

9. Wyznaczyć niepewność standardową złożoną względną
$$u_{c,r}(\beta) = \sqrt{\left(\frac{u(\overline{a})}{\overline{a}}\right)^2 + \left(\frac{u(T)}{T}\right)^2}$$

- $u_{c}(\beta) = \beta \sqrt{\left(\frac{u(\overline{a})}{\overline{a}}\right)^{2} + \left(\frac{u(T)}{T}\right)^{2}}$
- 10. Wyznaczyć niepewność standardową złożoną
- 11. Wyznaczyć niepewność rozszerzoną $U(\beta) = 2 \cdot u_c(\beta)$.

Wyznaczenie prądu nasycenia i jego niepewności

- 12. Na podstawie wyrazu wolnego wyznaczonej prostej współczynnik $I_S = \exp(\overline{b})$. wyznaczyce wyznaczonej prostej wyznaczyce wyznaczych wyznaczyce wyznaczyce wyznaczych wyznacz
- 13. Wyznaczyć niepewność standardową $u(I_s) = \exp(\overline{b})u(\overline{b})$
- 14. Wyznaczyć niepewność rozszerzoną $U(I_s) = 2 \cdot u_c(I_s)$.

5. Podsumowanie

1. Zgodnie z regułami prezentacji wyników zestawić wyznaczone wielkości:

 $(I_S, u(I_S), u_r(I_S), U(I_S))$ oraz wartości odniesienia,

$$(\beta, u(\beta), u_r(\beta), U(\beta))$$
 oraz wartości odniesienia $\Delta \beta = |\beta_{\text{max}} - \beta_{\text{min}}|$,

wszystkie wyznaczone wartości rezystancji różniczkowych.

- 2. Przeanalizować uzyskane rezultaty:
- a) czy spełniona jest relacja $u_r(I_s) < 0.1$,
- b) która z niepewności pomiarowych ma największy wpływ na niepewność $u_{c,r}(\beta)$
- c) czy spełniona jest relacja $u_r(\beta) < 0.1$
- d) czy spełniona jest relacja $\Delta \beta < U(\beta)$,
- e) wzajemnych relacji wartości wyznaczone wartości rezystancji różniczkowych,
- f) rozkład punktów na charakterystyce względem wyznaczonej prostej (wykres 3), pod kątem występowania i przyczyn błędów grubych, systematycznych i przypadkowych.
- 3. Synteza.
- a) Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych oraz ich przyczyn.
- b) Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- c) Wyjaśnić czy cele ćwiczenia zostały osiągnięte.

6. Przykładowe pytania

Zamieszczone są na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

Zadania dodatkowe do wyznaczenia i analizy:

$$R^{2} = \frac{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})(m_{i} - \overline{m})\right]^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \sum_{i=1}^{n} (m_{i} - \overline{m})^{2}}.$$

- 1. Wyznaczyć i zapisać na wykresie współczynnik korelacji i=1 . Jego wartoś poddać analizie i syntezie.
- 2. Porównać wartości *I_S*: oszacowaną z wykresu (2) i wyznaczoną z wykresu (3). Wyciągnąć wnioski.

Zespół w składzie
cele ćwiczenia: a) wyznaczenie parametru I_{S_i} b) wyznaczenie parametru β_i c) określenie charakterystyki prądowo-napięciowej diody;
3.1 Wartości teoretyczne wielkości wyznaczanych lub określanych wraz z niepewnościami:
3.2 Parametry stanowiska (wartości i ich niepewności):
3.3 Pomiary i uwagi do ich wykonania.
Niepewność pomiaru napięcia
Niepewność pomiaru natężenia
Temperatura otoczenia i jej niepewność

Kierunek przewodzenia, dioda nr		Kierunek zaporowy, dioda nr	
U [mV]	I []	U [V]	I []
600		0,5	
620		1	
640		2	
660		4	
680		6	
700		8	
720		10	
740		12	
760		14	
780		16	
800		18	
820		20	
840		25	
860		30	
880		35	
900		40	
		45	
		50	