

De l'atome à la puce

Devoir surveillé n° 1

Durée : 2 heures Calculatrices autorisées (tous types) 2 feuilles de papier millimétré, et stylos de couleurs (bleu-rouge-vert-noir)

Les questions A, B et C sont indépendantes Vous devez expliquer le détail de votre raisonnement. Un résultat seul ne suffit pas.

On vous propose un problème général sur le silicium

A. L'atome de silicium (Si)

L'atome de silicium possède un noyau constitué, entre autres, de 14 protons.

- a. Combien l'atome de Si possède-t-il d'électrons?
- b. Etablir le diagramme énergétique électronique de l'atome de Si
- c. Montrer que l'atome de Si possède 4 électrons de valence

B. Le cristal de silicium

Soit un cristal de silicium dont la distance entre les sommets du cube est r = 5.43 Å.

- a. Calculer la distance d entre 2 atomes diagonalement opposés (sur l'une des grandes diagonales du cube)
- b. En déduire la distance b_0 entre l'atome origine (0,0,0) et celui de coordonnées (1/4,1/4,1/4).
- c. Quel est le nom du site qu'occupe l'atome de coordonnées (1/4,1/4,1/4)?
- d. En déduire la distance b'₀ entre l'atome du centre d'une des faces incluant l'origine, et l'atome de coordonnées (1/4,1/4,1/4).

- e. Représenter en 3D, sur un nouveau schéma, tous les atomes de silicium qui constituent son réseau de cristallisation. Prendre comme échelle 1 cm pour 1 Å. Représenter en rouge les atomes des faces, en bleu les atomes sur les sommets, et en vert les atomes à l'intérieur du cube. Faites une construction soignée.
- f. Représenter, sur ce schéma, le plan réticulaire passant par les points de coordonnées (1,0,0), (1,1,0) et (0,0,1). Nommer ce plan par ses indices de Miller (h k l).

C. Dopage n, et conductivité du silicium N.

Le silicium est, non dopé, un semi-conducteur intrinsèque. On négligera la présence d'éventuelles impuretés avant dopage. Sa conductivité intrinsèque est $\sigma_i = 2,5.10^{-4} \text{ S.m}^{-1}$.

- a. Citez deux éléments utilisables pour le doper n. A quelle colonne appartiennent-ils ? Combien ont-ils d'électrons de valence ?
- b. Calculer la concentration n d'atomes de dopant a introduite dans le Si pour qu'il possède une conductivité de 200 S.m⁻¹.

Donnée : On prendra la charge élémentaire $e = 1,6.10^{-19}$ C.

- c. Vérifier l'approximation faite en b.
- d. Calculer le % d'atomes de dopant par rapport au nombre d'atomes de Si, sachant qu'il y a 4,99.10²² atomes de Si par cm³.

Données : Dans le silicium, $\mu_p = 0.04 \text{ m}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ et $\mu_e = 0.14 \text{ m}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$

e. Faire le schéma énergétique des bandes de valence, interdite et de conduction, en faisant apparaître E_V, E_C, E_{Fi}, E_g. On considèrera, pour le Si intrinsèque, qu'il y a autant de porteurs de charges e⁻ (électrons) que h⁺ (trous) et donc que le niveau de Fermi est situé au milieu de la bande interdite.

Donnée : Pour le silicium, $E_g = 1,12 \text{ eV}$ à 25°C

- f. Rappeler les expressions des concentrations en électrons (n) et en trous (p) dans chacune des bandes.
- g. Calculer la variation de l'énergie de Fermi pour le silicium N de la question b., par rapport au silicium intrinsèque, pour une température de 25°C.
- h. Sur un nouveau schéma, positionner le niveau de Fermi E_{Fn} (respecter l'échelle).