Fog Computing for Mobile Cloud

Outline

- Fog Computing Definitions
- Why Fog Computing?
- Fog Computing System Architectures
- Fog Computing Advantages
- Fog Computing Characteristics
- Fog Computing Applications
- Fog Computing Security Issues
- Conclusion

Fog Computing Definition

Fog computing definition (1/2)

What is Fog computing?

- It is a term introduced by Cisco to ease wireless data transfer to distributed devices in IoT paradigm.
- New paradigm that extend cloud virtualized resources and servic es to edge of network.
- Data, computation and resources runs closer to user location inst ead of cloud.
- Developed to deal with the demands of continuous increasing n o. of IoT devices.
- Efficient platform for the internet of things (IoT)
- It keeps data right where the IoT need it

Fog computing definition (2/2)

- Cisco define fog computing as:?
 - It is a term introduced by Cisco to ease wireless data transfer to distributed devices in IoT paradigm.
- Other definition
 - Extending the traditional cloud computing paradigm t o the edge of network, enabling creation of refined a nd better applications or services.
 - Highly virtualized platform, which provides computati on, storage, and networking services between end no de in IoT and traditional clouds.

Why Fog Computing?

Cloud Computing Limitation

- Cloud computing suffer from
 - High latency
 - Client access link
 - Security shortcoming
 - Not supporting all variety of device with capacity and network restriction
 - memory, storage, processing, bandwidth etc.
 - Not ideal for delay-sensitive application or services
 - High capacity (bandwidth)
 - Connectivity to cloud is pre-requisite of cloud computing
 - Long distance between client devices and server-long delay

Cloud Computing Limitation—Solution

- Fog Computing can
 - Reduce data movement across network
 - Reduce congestion
 - Eliminate bottlenecks
 - Centralized computing system
 - Enhancing Security of encrypted data
 - Data closer to end-user.
 - Local processing
 - Reduces core network load and easy the burden of processing data.
 - Empower devices with capacity and network restrictions
 - Memory, storage, processing, bandwidth, etc.

Comparison between Fog and Cloud

Requirments	Fog Comuting	Cloud Computing
Latency	Low	High
Security	Can be defined	undefined
Delay jitter	Very low	High
No. of server nodes	Very large	Few
Support for mobility	Supported	Limited
Real time interaction	Supported	Supported
Location of server node	At the edge of network	Within the internet
Location awareness	Yes	No
Attack on data enrouter	Very less probability	High probability
Distance between client and server	One hop	Multiple hops
Geographical distribution	Distributed	Centralized

Fog Computing System Architectures

System Architecture-Cisco

System Architecture—Others (1/3)

The Internet of Thing Architecture and Fog Computing

System Architecture—Others (2/3)

System Architecture—Others (3/3)

Fog Computing Advantages

Fog Computing Advantages

- Bringing data closer to user location
- Efficient support for mobility and IoT
- Seamless integration with other services
- Easy adaption of Fog computing concept
- Provides fast respond for delay-sensitive application and services

Fog Computing Characteristic

Fog Computing Characteristics

Real-Time Interactions

Needed for speedy services

Geographical distribution

 Services and application widely distributed. Mobility supports

 Provide mobility techniques such as decouple host identity to location identity. Location awareness

 Support endpoint with best services at the edge of network.

Security

Support Strong Security Programmability

Support Multiple applications Heterogeneity

 Implement fog node in wide environment Interoperability

 Ability to interoperability to support wide range of services

Fog Computing Applications

Fog Computing Applications

- IoT
- Smart Grid
- Smart Cities
- Health Care
- Wireless Sensor
- Connected Cars
- Smart Traffics Lights
- Software Defined Networks (SDN)
- Decentralized Smart Building Control

Fog Computing Applications (1/9)

- IoT
 - Fog computing can
 - Support the rapid growth of internet connected devices
 - Connect variety of smart devices to internet

Fog Computing Applications (2/9)

Smart Grid

- Fog computing can
 - Allow fast machine-tomachine handshakes
 - Allow fast human-tomachine interactions (HMI)

Fog Computing Applications (3/9)

Smart Cities

- Fog computing can
 - Support new advanced City Services, applications, etc.
 - Obtaining Sensor data
 - Integrate all mutually independent network entities within.

Fog Computing Applications (4/9)

Health Care

- Fog computing can provides
 - Fast collection and storing of data
 - Fast analysis of critical data and act on it.
 - Easy access by all party (Doctor, nurse, etc.)
 - Daily in the hours monitoring of person health care

Fog Computing Applications (5/9)

- Wireless Sensor
 - Fog computing can
 - Improve wireless sensor performance
 - Fast collection of data sensor
 - Fast respond time

Fog Computing Applications (6/9)

Connected Cars

 The communication between cars, access points and traffics lights can be safer and efficient.

Fog Computing Applications (7/9)

- Smart Traffic Lights
 - It can warning drivers if
 - Pedestrian are in their path
 - Changes of traffics lights
 - Not paying attention to other cars

Fog Computing Applications (8/9)

- Software Defined Networks (SDN)
 - Can resolve issues in
 - Vehicular networks
 - Intermittent connectivity
 - Collision and High Packet Loss rate

^{*} indicates one or more instances | * indicates zero or more instances

Fog Computing Applications (9/9)

- Decentralized Smart Building Control
 - Help Smart Cities and Building to
 - Manage energy consumption (heating, ventilation, air conditioning, lights, etc.)
 - Manage/control smart home appliances
 - Remote monitoring indoor and outdoor for security

Fog Computing Security Issues

Security and Privacy Issues

Conclusion

- Fog computing new paradigm that can extend cloud computing virtualized resources and application to the edge of network.
- Help to overcome cloud computing shortages and issues.
- Empower smart devices to overcome their restrictions.
- Improve the performance of many services and applications.