Problem D. Easy Number Challenge

Time limit 2000 ms **Mem limit** 262144 kB

Let's denote d(n) as the number of divisors of a positive integer n. You are given three integers a, b and c. Your task is to calculate the following sum:

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k).$$

Find the sum modulo $1073741824(2^{30})$.

Input

The first line contains three space-separated integers a, b and c ($1 \le a, b, c \le 100$).

Output

Print a single integer — the required sum modulo $1073741824 (2^{30})$.

Sample 1

Input	Output
2 2 2	20

Sample 2

Input	Output
5 6 7	1520

Note

For the first example.

- $d(1\cdot 1\cdot 1) = d(1) = 1$;
- $d(1\cdot 1\cdot 2) = d(2) = 2$;
- $d(1\cdot 2\cdot 1) = d(2) = 2$;
- $d(1\cdot 2\cdot 2) = d(4) = 3$;
- $d(2\cdot 1\cdot 1) = d(2) = 2$;
- $d(2\cdot 1\cdot 2) = d(4) = 3$;
- $d(2\cdot 2\cdot 1) = d(4) = 3$;
- $d(2\cdot 2\cdot 2) = d(8) = 4$.

So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.