: 2H

EMD 3. Juin 2006

Documents interdits (sauf le formulaire des développements en séries

entières)

Exercice 1: (3 points)

Soit la suite de fonctions définie par:

$$f_n(x) = \frac{nx}{1 + n|x|}.$$

- 1) Etudier sa convergence simple sur \mathbb{R} .
- 2) Dans \mathbb{R}_+ donner les domaines où la convergence est uniforme.
- 3) Déduire les domaines où il ya convergence sur \mathbb{R} .

Exercice 2: (5,5 points)

Soit la fonction F définie par :

$$F(x) = \sum_{n>0} \frac{e^{nx} \sin(nx)}{e^{2nx} + 1}, \ x > 0.$$

- 1) Montrer que F est bien définie dans \mathbb{R}_+^* .
- 2) Etudier la continuité puis la dérivabilité de F dans \mathbb{R}_{+}^{*} .

Exercice 3: (6 points)

Soit la série entière
$$\sum_{n\geq 0} \left(\frac{1}{(2n)!} + n^2 4^n\right) x^n.$$

- 1) Déterminer son rayon ainsi que son domaine de convergence.
- 2) Calculer sa somme.

Exercice 4: (6 points)

Soit la fonction 2π -périodique définie par :

$$f(x) = e^{|x|+1}, \ x \in [-\pi, \pi]$$

- 1) Développer f en série de Fourier.
- 2) Déduire les valeurs des séries numériques

$$S_1 = \sum_{n \ge 1} \frac{(-1)^n}{n^2 + 1} \text{ et } S_2 = \sum_{n \ge 1} \frac{1}{n^2 + 1}.$$
Bon courage

Un corrigé:

Exercise 1:
$$nx$$

Soit $f_n(x) = \frac{1}{1 + n|x|}$.

1) Etudier sa convergence simple sur \mathbb{R} ie calculons (si elle existe) $\lim_{x \to \infty} f_n(x)$.

$$\rightarrow$$
 2ème cas: $x < 0$: $\lim_{x \to \infty} f_n(x) = \lim_{x \to \infty} \frac{nx}{nx} = -1$.

$$\rightarrow$$
 3ème cas: $x = 0$: $\lim_{n \to +\infty} f_n(0) = \lim_{n \to +\infty} 0 = 0$.

Donc $f_n \longrightarrow f$ simplement sur \mathbb{R} telle que $f(x) = \begin{cases} 1 \text{ si } x > 0 \\ -1 \text{ si } x < 0 \\ 0 \text{ si } x = 0 \end{cases}$

2) Dans \mathbb{R}_+ on a $f_n \longrightarrow f$ simplement telle que $f(x) = \begin{cases} 1 \text{ si } x > 0 \\ 0 \text{ si } x = 0 \end{cases}$

 \bigstar On remarque que f est discontinue en "0" et toutes les f_n sont continues sur \mathbb{R} (comme rapport et somme de fonctions continues), d'où il n y a pas de convergence uniforme sur tout domaine contenant un voisinage de "0" ie sur tout [0, a], a > 0(ou [0, a[ou]0, a[).

(ou
$$[0, a[$$
 ou $]0, a[$).
 \bigstar Testons la convergence uniforme sur $[a, +\infty[$, $a > 0 :$
Posons $g_n(x) = |f_n(x) - f(x)| = \left|\frac{nx}{1+nx} - 1\right| = \frac{1}{1+nx}$, or $\left(\frac{1}{1+nx}\right)$ est décroissante en tant que fonction en x , ce qui implique $\sup_{x \in [a, +\infty[} g_n(x) = g_n(a) = 1$

 $\frac{1}{1+na}$, et on a $\lim_{n \to +\infty} \frac{1}{1+na} = 0 \implies f_n \to f$ uniformément sur tout

3) Pour déduire les domaines où il ya convergence sur \mathbb{R} , il suffit de remarquer que f_n est impare $\forall n \in \mathbb{N}$ donc on a des résultats analogues sur \mathbb{R}_- : pas de convergence uniforme sur tout [a,0], a<0, et $f_n \longrightarrow f$ uniformément sur tout $]-\infty,a], a>0.$

Exercice 2:

Soit la fonction
$$F / F(x) = \sum_{n \ge 0} \frac{e^{nx} \sin(nx)}{e^{2nx} + 1}, \ x > 0.$$

1) Montrons que F est bien définie dans \mathbb{R}_{+}^{*} .

Posons
$$f_n(x) = \frac{e^{nx} \sin(nx)}{e^{2nx} + 1}$$
, on a $|f_n(x)| \le \frac{e^{nx}}{e^{2nx}}$ ie $|f_n(x)| \le \frac{1}{e^{nx}} = \left(\frac{1}{e^x}\right)^n$,

or
$$\sum_{n>0} \left(\frac{1}{e^x}\right)^n$$
 converge (série géométrique de raison $0<\frac{1}{e^x}<1$), donc d'après

le critère de comparaison $\sum_{n\geq 0} f_n$ converge simplement sur \mathbb{R}_+^* .

F est donc bien définie sur \mathbb{R}_{\perp}^* .

2) a) La continuité:

(1) Toutes les f_n sont de classe C^1 sur \mathbb{R}_+^* (car produit, composée, rapport et

2

somme de fonctions C^1).

(2) Etude de la convergence uniforme de $\sum_{n\geq 0} f_n$:

On a
$$|f_n(x)| \le \frac{1}{e^{nx}} \le \frac{1}{e^{na}} = \left(\frac{1}{e^a}\right)^n$$
, $\forall a \in [a, +\infty[, a > 0. \text{ Or } \sum_{n>0} \left(\frac{1}{e^a}\right)^n]$

converge (série géométrique), ce qui prouve (par W) que $\sum_{n>0} f_n$ converge nor-

malement donc uniformément sur tout $[a, +\infty[, a > 0.$

De (1) et (2) on obtient la continuité de F sur tout $[a, +\infty[$, a > 0. F est donc continue sur \mathbb{R}_{+}^{*} .

- b) La dérivabilité:
- (3) Etude de la convergence uniforme de $\sum_{r > 0} f'_r$:

On a :

$$f'_n(x) = \frac{[ne^{nx}\sin(nx) + ne^{nx}\cos(nx)] [e^{2nx} + 1] - 2ne^{2nx} [e^{nx}\sin(nx)]}{[e^{2nx} + 1]^2}$$

$$= \underbrace{\frac{ne^{nx} [\sin(nx) + \cos(nx)]}{e^{2nx} + 1}}_{g_n(x)} - \underbrace{\frac{2ne^{3nx} [\sin(nx)]}{[e^{2nx} + 1]^2}}_{h_n(x)}$$

Or
$$|g_n(x)| \le \frac{2ne^{nx}}{e^{2nx}} \le \frac{2n}{e^{nx}} \le \frac{2n}{e^{na}}$$
 et $|h_n(x)| \le \frac{2n}{e^{nx}} \le \frac{2n}{e^{na}}$, ceci $\forall a \in [a, +\infty[, a > 0.]$

La série numérique $\sum \frac{n}{e^{na}}$ converge pa la régle de l'ordre $(\lim_{n \to +\infty} n^2, \frac{n}{e^{na}} = 0)$.

Alors $\sum g_n$ et $\sum h_n$ convergent normalement (W) sur tout $[a, +\infty[, a > 0.$

ie $\sum f'_n$ converge normalement (par linéarité) donc uniformément sur tout $[a, +\infty[, a > 0.$

De (1) et (3) on obtient la dérivabilité de F sur tout $[a, +\infty[$, a > 0. F est donc dérivable sur \mathbb{R}^*_{\perp} .

Soit la s.e
$$\sum_{n\geq 0} \left(\frac{1}{(2n)!} + n^2 4^n\right) x^n$$
, posons $a_n = \frac{1}{(2n)!} > 0$; $b_n = n^2 4^n > 0$.

$$\Rightarrow \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{1}{(2n+2)!} \cdot \frac{(2n)!}{1} = \lim_{n \to +\infty} \frac{1}{(2n+2)(2n+1)} = 0,$$
 d'après le théorème de Hadamard $:R_a = +\infty, R_a$ étant le rayon de la s.e $\sum_{n \geq 0} a_n$.

$$\rightarrow \lim_{n \to +\infty} \frac{b_{n+1}}{b_n} = \lim_{n \to +\infty} \frac{(n+1)^2 4^{n+1}}{n^2 4^n} = \lim_{n \to +\infty} 4 \left(\frac{n+1}{n}\right)^2 = 4, \text{ d'après le }$$

théorème de Hadamard : $R_b = \frac{1}{4}$, R_b étant le rayon de la s.e $\sum_{n \ge 0} b_n$.

Comme $R_a \neq R_b \Longrightarrow R = \inf(R_a, R_b) = \frac{1}{4} \Longrightarrow \Delta =] - \frac{1}{4}, \frac{1}{4}[$ est l'intervalle de

b) Déterminons le domaine de convergence D, ie étude aux bornes.

$$\rightarrow \sum_{n\geq 0} a_n x^n$$
 converge en $\pm \frac{1}{4}$ puisque son rayon est $R_a = +\infty \implies D_a =$

$$]-\infty,+\infty[$$

$$|-\infty,+\infty|$$
. $\Rightarrow \sum_{n\geq 0} b_n x^n$ diverge en $\pm \frac{1}{4}$ puisque CN non verifiée: $\lim_{n\longrightarrow +\infty} n^2 4^n \left|\pm \frac{1}{4}\right| = +\infty \neq 0$.

La s.e donnée diverge donc en $\pm \frac{1}{4}$ par linéarité $\Longrightarrow D =]-\frac{1}{4},\frac{1}{4}[$.

2) Calculons sa somme
$$S$$
.
$$S(x) = \sum_{n\geq 0} \frac{1}{(2n)!} x^n + \sum_{n\geq 0} n^2 4^n x^n = S_1(x) + S_2(x) \text{ ce partage est possible car les deux s.e sont convergentes sur } D.$$

 \bigstar Calculons $S_1(x)$:

$$Arr$$
 Si $x \ge 0$ posons $x = (\sqrt{x})^2$ et donc $S_1(x) = \sum_{n>0} \frac{(\sqrt{x})^{2n}}{(2n)!} = ch(\sqrt{x})$.

$$\Rightarrow$$
 Si $x < 0$ posons $x = -(\sqrt{-x})^2$ et donc $S_2(x) = \sum_{n \ge 0} (-1)^n \frac{(\sqrt{-x})^{2n}}{(2n)!} =$

$$\cos\left(\sqrt{-x}\right)$$

$$\cos\left(\sqrt{-x}\right).$$
On obtient: $S_1(x) = \begin{cases} ch\left(\sqrt{x}\right) & \text{si } x \ge 0.\\ \cos\left(\sqrt{-x}\right) & \text{si } x < 0. \end{cases}$

On a que $n(n-1) = n^2 - n \Longrightarrow n^2 = n(n-1) + n$, on remplace dans $S_2(x)$:

$$S_{2}(x) = \sum_{n\geq 0} (n(n-1)+n)(4x)^{n}$$

$$= (4x)^{2} \sum_{n\geq 2} n(n-1)(4x)^{n-2} + (4x) \sum_{n\geq 1} n(4x)^{n-1}$$

$$= (4x)^{2} \cdot \left(\frac{1}{1-X}\right)_{/X=4x}^{"} + (4x)\left(\frac{1}{1-X}\right)_{/X=4x}^{"}$$

$$= (4x)^{2} \cdot \frac{2}{(1-4x)^{3}} + (4x)\frac{1}{(1-4x)^{2}}$$

Conclusion:
$$S(x) = \begin{cases} ch(\sqrt{x}) + \frac{32x^2}{(1-4x)^3} + \frac{4x}{(1-4x)^2} & \text{si } x \ge 0. \\ \cos(\sqrt{-x}) + \frac{32x^2}{(1-4x)^3} + \frac{4x}{(1-4x)^2} & \text{si } x < 0. \end{cases}$$

Exercice 4:

Soit $f(x) = e^{|x|+1}$, $x \in [-\pi, \pi]$ 2π -périodique.

- 1) Développons f en série de Fourier.
- a) Existence et convergence de F(f):

 \bigstar f est continue sur $[-\pi, \pi]$ car c'est la composée et la somme de fonctions continue, de plus $f(-\pi) = f(\pi)$ et f est 2π -périodique, alors f est continue sur \mathbb{R} (elle est en particulier localement intégrable). Donc F(f) existe.

 $\bigstar f$ est C^1 par morceaux sur \mathbb{R} : $f_{/]0,\pi[}(x) = e^{x+1}$ est C^1 , de même sur $]-\pi,0[$ par parité.

Donc d'après le théorème de Dirichlet F(f) converge normalement vers f ie $F(f)(x) = f(x) \ \forall x \in \mathbb{R}$.

b) Calcul des coefficients de F(f):

 $\bigstar f \text{ est paire} \implies b_n = 0 \ \forall n \ge 1.$

$$\star f \text{ est paire} \implies a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} e^{x+1} dx = \frac{2}{\pi} \left(e^{\pi+1} - e \right).$$

$$\bigstar$$
 f est paire $\implies a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx \ \forall n \ge 1 \text{ ie } a_n = \frac{2}{\pi} \int_0^{\pi} e^{x+1} \cos nx dx.$

Faisons une 1ére IPP: $\begin{cases} u = e^{x+1} \longrightarrow u' = e^{x+1} \\ v' = \cos nx \longrightarrow v = \frac{1}{n} \sin nx \end{cases}$, on a alors:

$$a_n = \frac{2}{\pi} \left(\frac{1}{n} \left[e^{x+1} \sin nx \right]_0^{\pi} - \frac{1}{n} \int_0^{\pi} e^{x+1} \sin nx dx \right)$$
$$= \frac{2}{\pi n} \int_0^{\pi} e^{x+1} \left(-\sin nx \right) dx$$

Faisons une 2ème IPP: $\left\{ \begin{array}{ccc} u=e^{x+1} & \longrightarrow & u'=e^{x+1} \\ v'=-\sin nx & \longrightarrow & v=\frac{1}{n}\cos nx \end{array} \right. , \text{ on a alors:}$

$$a_n = \frac{2}{\pi n} \left(\frac{1}{n} \left[e^{x+1} \cos nx \right]_0^{\pi} - \frac{1}{n} \int_0^{\pi} e^{x+1} \cos nx dx \right)$$
$$= \frac{2}{\pi n^2} \left((-1)^n e^{\pi+1} - e - \frac{\pi}{2} a_n \right)$$

On tire $a_n = \frac{2}{\pi n^2} \left((-1)^n e^{\pi + 1} - e \right) \cdot \frac{n^2}{n^2 + 1} = \frac{2e}{\pi} \cdot \frac{\left((-1)^n e^{\pi} - 1 \right)}{n^2 + 1} \ \forall n \ge 1.$ Conclusion:

$$F(f)(x) = \frac{e^{\pi+1} - e}{\pi} + \frac{2e}{\pi} \sum_{n \ge 1} \frac{(-1)^n e^{\pi} - 1}{n^2 + 1} \cdot \cos nx = e^{\pi+1} \ \forall x \in [0, \pi].$$

2) Déduisons les valeurs de
$$S_1 = \sum_{n\geq 1} \frac{\left(-1\right)^n}{n^2+1}$$
 et $S_2 = \sum_{n\geq 1} \frac{1}{n^2+1}$.

Remplaçons dans F(f)(x) x par 0 puis par π , on obtient alors le système suivant:

$$\begin{cases} e = \frac{e^{\pi+1} - e}{\pi} + \frac{2e}{\pi} \left(\sum_{n \ge 1} \frac{(-1)^n e^{\pi}}{n^2 + 1} - \sum_{n \ge 1} \frac{1}{n^2 + 1} \right) \\ e^{\pi+1} = \frac{e^{\pi+1} - e}{\pi} + \frac{2e}{\pi} \left(\sum_{n \ge 1} \frac{e^{\pi}}{n^2 + 1} - \sum_{n \ge 1} \frac{(-1)^n}{n^2 + 1} \right) \end{cases}$$

ie S_1 et S_2 vérifient:

$$\begin{cases} e^{\pi} S_1 - S_2 = \frac{\pi}{2e} \left(e - \frac{e^{\pi + 1} - e}{\pi} \right) \stackrel{\text{noté}}{=} c_1 \\ -S_1 + e^{\pi} S_2 = \frac{\pi}{2e} \left(e^{\pi + 1} - \frac{e^{\pi + 1} - e}{\pi} \right) \stackrel{\text{noté}}{=} c_2 \end{cases}$$

On résout le dérnier système et on trouve:

$$\begin{cases} S_1 = \frac{e^{\pi}c_1 + c_2}{e^{\pi} - 1} \\ S_2 = \frac{\left(e^{2\pi} - e^{\pi} + 1\right)c_1 + e^{\pi}c_2}{e^{\pi} - 1} \end{cases}$$