2016~2017 学年第二学期高等代数与解析几何 2-2 期中测试 命题人 取薇

1、设
$$A = \begin{pmatrix} -1 & -3 & 3 & -3 \\ -3 & -1 & -3 & 3 \\ 3 & -3 & -1 & 3 \\ -3 & 3 & -3 & 1 \end{pmatrix}$$
, 求可逆矩阵 T 使得 $T^{-1}AT$ 为对角矩阵。

2.
$$abla^{n} \begin{cases}
\alpha_{1} = (1,2,-1,-2) \\
\alpha_{2} = (3,1,1,1) \\
\alpha_{3} = (-1,0,1,-1)
\end{cases}$$
, $\begin{cases}
\beta_{1} = (2,5,-6,-5) \\
\beta_{2} = (-1,2,-7,3)
\end{cases}$

求 $\alpha_1,\alpha_2,\alpha_3$ 生成的子空间与 β_1,β_2 生成的子空间的交的维数和一组基。

3、矩阵
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & 5 \end{pmatrix}$$
, 求矩阵 A 的不变因子、初等因子和 Jordan 标准形。

- 4、在线性空间 $p^{2\times 2}$ 中定义变换 $\sigma(X) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} X \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, $\forall X \in p^{2\times 2}$ 。
 - (1) 证明 σ 是线性变换;
 - (2) 写出 $p^{2\times 2}$ 的一组基,并求出 σ 在这组基下的矩阵。
- 5、设 V 是复数域上的 n 维线性空间,而线性变换 σ 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的矩阵是一若尔当块,证明:
 - (1) V中包含 ε_1 的 σ -子空间只有V本身; (2) V中任一非零 σ -子空间都包含 ε_n 。
- 6、设 σ 是 n 维线性空间 V 中的线性变换, λ 是其 s 个互不相同的特征值, $i=1,2\cdots$ s。最小

多项式
$$m(x) = \prod_{i=1}^{s} (x - \lambda_i)$$
, $\diamondsuit f_i(x) = \frac{m(x)}{(x - \lambda_i)}$, $f_i(x) = \frac{m(x)}{(x - \lambda_i)}$, $W_i = f_i(\sigma)(V)$ \diamond

证明: $V = W_1 \oplus \cdots \oplus W_s$.

7、证明: 复数域上所有 n 阶 n-1 次幂零矩阵都相似。