Binomial Heap

Binomial Heap - Definition

A binomial heap of n-elements is a collection of binomial trees with the following properties:

- . Each binomial tree is heap-ordered (parent is less than all children)
- . No two binomial trees in the collection have the same size
- . Number of trees will be O(lg n)

Key idea: Union in O(lg n) time

Comparison of Efficiency

Procedure	Binary (worst- case)	Binomial (worst- case)
Make-Heap	⊖(1)	⊖(1)
Insert	$\Theta(\lg n)$	$O(\lg n)$
Minimum	⊖(1)	$O(\lg n)$
Extract-Min	$\Theta(\lg n)$	$\Theta(\lg n)$
Union	$\Theta(n)$	$O(\lg n)$
Decrease-Key	$\Theta(\lg n)$	$\Theta(\lg n)$
Delete	$\Theta(\lg n)$	$\Theta(\lg n)$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Procedure	Binary heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
MAKE-HEAP	$\Theta(1)$	Θ(1)	Θ(1)
INSERT	$\Theta(\lg n)$	$O(\lg n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$O(\lg n)$	$\Theta(1)$
Extract-Min	$\Theta(\lg n)$	$\Theta(\lg n)$	$O(\lg n)$
Union	$\Theta(n)$	$O(\lg n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(1)$
DELETE	$\Theta(\lg n)$	$\Theta(\lg n)$	$O(\lg n)$

Figure 19.1 Running times for operations on three implementations of mergeable heaps. The number of items in the heap(s) at the time of an operation is denoted by n.

Binomial Trees

Tree B_k has 2^k nodes.

B_k has height k.

Children of the root of B_k are B_{k-1} , B_{k-2} , ..., B_0 from left to right.

Max degree of an n-node binomial tree is lg n.

Binomial Tree

Binomial tree.

. Recursive definition:

Binomial Tree

Useful properties of order k binomial tree $\mathbf{B}_{\mathbf{k}}$.

- Number of nodes = 2k.
- . Height = k.
- . Degree of root = k.
- . Deleting root yields binomial trees $\mathbf{B}_{\mathbf{k-1}},\,\dots\,,\,\mathbf{B}_{\mathbf{0}}.$

Proof.

. By induction on k.

Binomial Tree

A property useful for naming the data structure.

. B_k has $\binom{k}{i}$ nodes at depth i.

Binomial Heap: Properties

Properties of N-node binomial heap.

- . Min key contained in root of B_0, B_1, \ldots, B_k .
- . Contains binomial tree B_i iff b_i = 1 where $b_n \cdot b_2 b_1 b_0$ is binary representation of N.
- . At most $\lfloor \log_2 N \rfloor + 1$ binomial trees.
- . Height $\leq \lfloor \log_2 N \rfloor$.

Example Binomial Heap

Binomial heap of 29 elements 29 = 11101 in binary.

Binomial Heap

Binomial heap. Vuillemin, 1978.

- . Sequence of binomial trees that satisfy binomial heap property.
 - each tree is min-heap ordered
 - 0 or 1 binomial tree of order k

Binomial Heap: Implementation

Implementation.

- . Represent trees using left-child, right sibling pointers.
 - three links per node (parent, left, right)
- . Roots of trees connected with singly linked list.
 - degrees of trees strictly decreasing from left to right

Binomial Heap

Leftist Power-of-2 Heap

Minimum Operation

Where does the minimum have to be? How can we find minimum in general? Running time?

Union of 2 Binomial Heaps

Binomial Heap: Union

Create heap H that is union of heaps H' and H".

- . "Mergeable heaps."
- . Easy if H' and H" are each order k binomial trees.
 - connect roots of H' and H"
 - choose smaller key to be root of H

Binomial Heap: Union

Create heap H that is union of heaps H' and H".

. Analogous to binary addition.

Running time. O(log N)

. Proportional to number of trees in root lists $\leq 2(\lfloor \log_2 N \rfloor + 1)$.

19 + 7 = 26

_

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

- . Find root x with min key in root list of H, and delete
- . $H' \leftarrow$ broken binomial trees
- . H ← Union(H', H)

Running time. O(log N)

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

- . Find root x with min key in root list of H, and delete
- . H' ← broken binomial trees
- . H ← Union(H', H)

Running time. O(log N)

Binomial Heap: Decrease Key

Decrease key of node x in binomial heap H.

- . Suppose x is in binomial tree B_k .
- . Bubble node x up the tree if x is too small.

Running time. O(log N)

. Proportional to depth of node $x \leq \lfloor \log_2 N \rfloor$.

Binomial Heap: Delete

Delete node x in binomial heap H.

- . Decrease key of x to $-\infty$.
- . Delete min.

Running time. O(log N)

20

Binomial Heap: Insert

Insert a new node x into binomial heap H.

- . $H' \leftarrow MakeHeap(x)$
- . H ← Union(H', H)

Running time. O(log N)

Binomial Heap: Sequence of Inserts

Insert a new node x into binomial heap H.

- . If $N = \dots 0$, then only 1 steps.
- . If N =01, then only 2 steps.
- . If N =011, then only 3 steps.
- . If $N = \dots 0111$, then only 4 steps.

Inserting 1 item can take $\Omega(\log N)$ time.

. If N = 11...111, then $log_2 N$ steps.

But, inserting sequence of N items takes O(N) time!

- . $(N/2)(1) + (N/4)(2) + (N/8)(3) + ... \le 2N$
- . Amortized analysis.
- Basis for getting most operations down to constant time.

$$\sum_{n=1}^{N} \frac{n}{2^{n}} = 2 - \frac{N}{2^{N}} - \frac{1}{2^{N-1}} \\ \leq 2$$