TD 3: ENTHALPIE LIBRE DE REACTION ET EOUILIBRE CHIMIOUE

Référence : MP EZZINE Youssef Version du: 03/12/2018 Page 1

Exercice 1 : Enthalpie libre standard de la synthèse de l'eau

Soit la réaction d'équation : $H_{2}\left(\,g\,\right)+\frac{1}{2}\,O_{2}\left(\,g\,\right)=\,H_{2}O\left(\,g\,\right)$

$$\Delta_r H^0\left(298K\right) = -241,8 \; kJ.mol^{-1}$$

- a) Déterminer l'enthalpie libre standard de cette réaction à 298 K;
- **b**) Déterminer celle à 1 000 K de trois façon différentes.

Données à 25°C en J.K⁻¹.mol⁻¹:

	$O_{2}\left(g\right)$	$H_{2}\left(g\right)$	$H_2O\left(g\right)$
S_m^0	205,0	130,6	188,7
C^0_{pm}	31,2	28,3	33,6

Les capacités thermiques standard molaires seront supposées constantes par rapport à la température.

Exercice 2 : Synthèse du méthanol

La réaction de synthèse industrielle du méthanol, en présence d'un catalyseur, est modélisée par l'équation de réaction : $CO\left(g\right) + 2H_2\left(g\right) = CH_3OH\left(g\right)$

- **1.** Déterminer l'enthalpie standard de réaction, l'entropie standard de réaction et l'enthalpie libre standard de réaction de cette synthèse à 298 K.
- **2.** En supposant l'enthalpie standard de réaction et l'entropie standard de réaction indépendantes de la température, déterminer l'enthalpie libre standard de réaction de cette synthèse à 650 K.
- **3.** Exprimer l'enthalpie standard de réaction et l'entropie standard de réaction en fonction de la température. Calculer leurs valeurs à 650 K ainsi que celle de l'enthalpie libre standard de réaction. Conclure.
- **4.** Calculer la constante d'équilibre thermodynamique K° à 650 K dans le cas du 2. et du 3. Conclure.

On donne à 298 K:

	CO(g)	$H_{2}\left(g\right)$	$CH_3OH\left(g ight)$
$S_m^0 \left(J.K^{-1}.mol^{-1}\right)$	197,7	130,7	238,0
$C_{pm}^{0}\left(J.K^{-1}.mol^{-1}\right)$	28,6	27,8	38,4
$\boxed{ \Delta_f H^0 \left(kJ.mol^{-1} \right) }$	-110,5	0	-201,2

TD 3: ENTHALPIE LIBRE DE REACTION ET EOUILIBRE CHIMIOUE

Référence : MP EZZINE Youssef Version du: 03/12/2018 Page 2

Exercice 3 : Vaporéformage du méthane (d'après Mines-Ponts)

Le dihydrogène peut être obtenu par électrolyse de l'eau, mais sa production la plus importante en tonnage est issue du vaporéformage du méthane. Cette transformation, réalisée à 800 °C sous une pression de 35 bars, peut être décrite par l'équation de réaction suivante :

$$CH_4 + 2H_2O = CO_2 + 4H_2$$

Dans les conditions opératoires, tous les constituants sont sous forme gazeuse.

On donne les enthalpies standard de formation suivantes à 298 K :

, s thin in pres sum und ut reminister sum to united ut = , o ii .					
	$CH_4(g)$	$H_2O(g)$	$CO_{2}\left(g\right)$	$H_{2}(g)$	
$\boxed{ \Delta_f H^0 \left(kJ.mol^{-1} \right)}$	-74	-242	-393	0	

- 1. Pourquoi l'enthalpie standard de formation du dihydrogène est-elle nulle ?
- 2. Calculer à T=298~K la valeur de l'enthalpie standard de réaction attachée à l'équation de réaction du vaporéformage. Quelle approximation faut-il faire pour considérer que sa valeur ne dépend pas de la température ?
- **3.** Quel est le signe de l'entropie standard de réaction attachée à l'équation de réaction du vaporéformage ? Justifier qualitativement la réponse. En déduire, dans le cadre de l'approximation indiquée à la question 2, qu'il existe une température d'inversion.

Remarque : la valeur de cette température d'inversion est de l'ordre de 630 °C.

Pour évaluer les besoins énergétiques associés au vaporéformage, on pose les hypothèses suivantes :

- la transformation est effectuée dans une enceinte fermée parfaitement adiabatique, à pression constante $P=35\ bar$, le méthane et la vapeur d'eau étant introduits en proportions stœchiométriques ;
- on suppose que la transformation est totale et que l'effet thermique dû à celle-ci se traduit uniquement par une baisse de la température des produits. Pour simplifier les calculs, les capacités thermiques molaires isobares $C_{pm}\left(CO_{2}\right)$ et $C_{pm}\left(H_{2}\right)$ sont prises constantes dans l'intervalle de température considéré.

On prendra :
$$C_{pm}^{0}\left(CO_{2}\right)=45\ J.mol^{-1}.K^{-1}$$
 et $C_{pm}^{0}\left(H_{2}\right)=27\ J.mol^{-1}.K^{-1}$.

4. Calculer la valeur approximative de la température finale du système dans le cadre de ces hypothèses.

Commenter.

Exercice 4 : Oxydation de CO par l'eau à l'état gazeux (d'après Centrale)

L'oxydation du monoxyde de carbone par l'eau en phase gazeuse est modélisée par l'équation de réaction : $CO\left(g\right) + H_2O\left(g\right) = CO_2\left(g\right) + H_2\left(g\right)$

1. Calculer $\Delta_r H^0$ à 1 100 K à partir des enthalpies standard de formation des réactifs et des produits.

TD 3: ENTHALPIE LIBRE DE REACTION ET EQUILIBRE CHIMIQUE

Référence : MP EZZINE Youssef Version du: 03/12/2018 Page 3

On donne à 1 100 K:

	CO(g)	$CO_{2}\left(g\right)$	$H_2O\left(g\right)$
$\boxed{ \Delta_f H^0 \left(kJ.mol^{-1} \right)}$	-112,5	-395,6	-248,2

La constante d'équilibre thermodynamique de la réaction diminue de 0,32 % quand la température augmente de 1 K à partir de 1 100 K.

- **2.** En se plaçant dans le cadre de l'approximation d'Ellingham, en déduire l'enthalpie standard de réaction à 1 100 K. Comparer à la valeur obtenue à la question précédente.
- **3.** Lorsque l'on ne se place plus dans l'approximation d'Ellingham, l'expression de l'enthalpie libre standard de réaction en fonction de la température vaut :

$$\Delta_r G^0\left(T\right) = -38420 + 63,4T - 3,2T \ln T \; \text{(avec T en K et en J.mol}^{-1}\text{)}.$$

Calculer, dans l'ordre qui vous convient le mieux $\Delta_r H^0 \left(1100\right)$, $\Delta_r S^0 \left(1100\right)$ et $\Delta_r C_v^0 \left(1100\right)$.

Exercice 5: Procédé DEACON

Il s'agit d'un procédé de fabrication du dichlore par oxydation catalytique du chlorure d'hydrogène. La réaction mise en jeu est :

$$4HCl\left(g\right) + O_{2}\left(g\right) = 2H_{2}O\left(g\right) + 2Cl_{2}\left(g\right) \quad (1)$$

Le tableau ci-dessous donne les valeurs de l'enthalpie libre standard $\Delta_r G^0(T)$ de la réaction (1) à différentes températures.

T(K)	600	800	1000	1200
$\boxed{\Delta_r G^0 \left(kJ.mol^{-1}\right)}$	-37,5	-11,8	13,9	39,7

L'enthalpie libre standard de la réaction (1) vérifie la relation suivante :

$$\Delta_r G^0\left(T\right) = A + BT$$

 $(T ext{ en Kelvin}), A ext{ et } B ext{ étant deux grandeurs constantes}.$

- 1. Calculez A et B et précisez leur unité. Indiquez le nom des grandeurs A et B.
- **2.** Précisez la formule littérale donnant la constante K^0 de la réaction (1) en fonction de la température T. Calculer K^0 à 750 K.
- 3. La figure ci-dessous reproduit deux droites (1) et (2) représentant la variation de l'enthalpie libre standard de formation de l'eau $\Delta_r G_a^0$ et celle du chlorure d'hydrogène $\Delta_r G_b^0$ en phase gazeuse en fonction de la température. Chaque réaction met en jeu une mole de dihydrogène.

- **3.1.** Écrivez les équations des réactions de formation considérées.
- **3.2.** Précisez le signe de l'entropie standard de chaque réaction $\Delta_r S_a^0$ et $\Delta_r S_b^0$.
- **3.3.** Associez à chaque réaction de formation une droite du document. Justifiez.

TD 3: ENTHALPIE LIBRE DE REACTION ET EOUILIBRE CHIMIOUE

Référence : MP EZZINE Youssef Version du: 03/12/2018 Page 4

3.4. Déterminez la relation entre l'enthalpie libre standard de la réaction de Deacon, $\Delta_r G_a^0$ et $\Delta_r G_b^0$.

Exercice 6 : À propos de la synthèse de l'ammoniac

Soit le système homogène dont la transformation chimique peut être modélisée par l'équation de réaction : $N_2\left(g\right)+3H_2\left(g\right)=2NH_3\left(g\right)$

- 1. Exprimer l'affinité chimique de la réaction définie par $\mathcal{A}=-\Delta_r G$ en fonction de $\Delta_r G^0\left(T\right)$, de la température, de la pression totale du système P et des fractions molaires des gaz.
- **2.** \dot{A} 450 K, $\Delta_r G^0$ (450) = -1,52 kJ.mol⁻¹
- a. Sous $P=p^0=1\ bar$, dans quel sens évolue le système si $x_{N\!H_3}=0,6$ et $x_{N_2}=x_{H_2}=0,2$?
- **b.** La température étant maintenue constante et égale à 450 K, à quelle pression faudraitil se placer pour que le système évolue dans le sens direct ?
- 3. On introduit, dans une enceinte maintenue à T=450~K et P=2~bars, 20 moles de H_2 , 20 moles de N_2 et 10 moles de N_3 .
- **a.** Dans quel sens évolue le système ?
- **b.** Même question, si P et T étant maintenues constantes, on introduit 50 moles d'argon ? L'argon est un gaz inerte.
- **4.** On introduit 1,0 mole de $\,N_2\,$ et 3,0 moles de $\,H_2\,$. Quel est l'avancement à l'équilibre, toujours à 450 K :
- **a.** sous une pression constante de 10 bars ;
- **b.** dans un réacteur de volume constant de 50 L. Calculer alors la valeur de la pression dans le réacteur.

Exercice 7 : Dissociation du pentachlorure de phosphore à l'état gazeux

Sous l'action de la chaleur, le pentachlorure de phosphore se dissocie en dichlore et en trichlorure de phosphore. La transformation peut être modélisée par l'équation de réaction :

$$PCl_{5}(g) = PCl_{3}(g) + Cl_{2}(g)$$

À la température T=500~K et sous $P=P^0$, la densité par rapport à l'air du mélange gazeux obtenu quand l'équilibre est réalisé vaut 4,62. Les masses molaires atomiques de Cl et P valent respectivement 35,5 et 31,0 g.mol⁻¹, la masse molaire de l'air est de 29,0 g·mol⁻¹.

- **1.** Déterminer :
- **a.** le coefficient de dissociation de PCl_5 dans ces conditions de température et de pression ;
- **b.** la constante d'équilibre de la réaction ;
- **c.** le coefficient de dissociation du pentachlorure de phosphore à la même température, mais sous une pression de 0,2 bar.
- 2. Quelle est la composition du mélange gazeux obtenu sous $P=P^0=1\ bar$ et à 500K, lorsqu'on part d'un mélange contenant 0,50 mol de PCl_5 et 0,50 mol de PCl_3 ?