

بسمه تعالی طراحی مدارهای منطقی نیمسال اول ۱۳۹۸ تمرین پنجم

دانشكده مهندسي كامپيوتر

تحویل در روز سهشنبه مورخ ۱۳۹۸/۰۸/۲۱ ساعت ۵۵:۲۳ فقط از طریق سایت درس

نام و نامخانوادگی: شماره دانشجویی: استاد درس:

دستور کار:

- در فایل پاسخ تمرینات، فیلدهای نام و نام خانوادگی، شماره دانشجویی و استاد درس را پر کنید.
- دانشجویان میتوانند در حل تمرینات به صورت چندنفره با یکدیگر همفکری و بحث نمایند ولی هر شخص میبایست در نهایت جواب و استدلال خودش را به صورت انفرادی بنویسد. در صورت شباهت جوابهای دو یا چند نفر، تمامی افراد نمره منفی معادل ۱۰۰ دریافت میکنند.
 - تحویل تمرینات فقط به صورت الکترونیکی و در سایت درس خواهد بود.
- از ارسال تمرینها به صورت ایمیل، تلگرام، ... اجتناب نمایید. به تمرینهایی که از هر روشی غیر از سایت درس ارسال شوند نمرهای تعلق نخواهد گرفت و مشابه عدم تحویل تمرین است.
- برای تحویل نسخه الکترونیکی، تمرینات را قبل از موعد تحویل در صفحه ی درس در سایت کوئرا و فرمت $\underline{\mathbf{pdf}}$
- نام فایل ارسالی شما **باید** مطابق فرمت زیر باشد: **YourID_YourName_HW#.pdf** به عنوان مثال: **97123456_Vahid Amini_HW5.pdf** در صورت عدم رعایت این فرمت، تمرین شما تصحیح نخواهد شد.
 - پاسخها و روال حل مسائل را به صورت دقیق و شفاف بیان کنید.
 - پاسخ تمرینات میبایست به صورت خوانا و بدون خط خوردگی تهیه شود.
- اگر فکر میکنید سوالی چندین تفسیر دارد، با درنظر گرفتن فرضهای منطقی و بیان شفاف آنها در برگه، اقدام به حل آن نمایید.
- دانشجویان عزیز، تمرینات مشخصشده در «بخش اول: سؤالات اختیاری» برای تمرین بیشتر شما طراحی شده است و نیازی به تحویل جواب آنها نیست.
- برای دریافت تمرینهای اختیاری به کتاب موریس مانو که در fileserver قرار دارد مراجعه کنید و در صورت بروز ابهام یا سؤال در حل این تمرینها، در زمان کلاس حل تمرین، به تدریسیار خود مراجعه نمایید.

بسمه تعالی طراحی مدارهای منطقی نیمسال اول ۱۳۹۸ تمرین پنجم

دانشکده مهندسی کامپیوتر

تحویل در روز سهشنبه مورخ ۱۳۹۸/۰۸/۲۱ ساعت ۲۳:۵۵ فقط از طریق سایت درس

سوالهای اختیاری (نمرهای به حل این سوالها تعلق نمی گیرد و تنها به منظور تمرین بیشتر قرار دادهشدهاند)

سوالات ٣-٢١ الى ٣-٢٥ از فصل سوم كتاب مانو (ويرايش پنجم)

سوالات اصلی (حل این سوالات اجباری است و به آنها نمره تعلق می گیرد)

ا- توابع زیر را به سادهترین فرم SOP و SOP بیابید.

- $f_1(A, B, C, D, E) = \sum m(0, 1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 19, 20, 21, 22, 24, 25) + d(5, 7, 12, 15, 17, 23)$
- $f_2(A, B, C, D, E) = \sum m(1, 4, 6, 7, 9, 10, 12, 15, 17, 19, 20, 23, 25, 26, 27, 28, 30, 31) + d(8, 16, 21, 22)$

۲- مدار زیر را در نظر بگیرید. در این مدار تاخیر گیتهای AND و OR کا نانوثانیه و تاخیر گیت NOT نانوثانیه است. ورودیهای مدار در زمان ۴ از ۱۰۱ به ۱۰۱ تغییر می کنند، نمودار زمانی خروجی مدار را رسم کنید.

- ۳- مداری با چهار بیت ورودی و چهار بیت خروجی طراحی کنید به طوری که اگر عدد چهاربیتی ورودی کوچکتر یا مساوی ۷ باشد، خروجی یکی بیشتر از ورودی باشد و اگر ورودی بزرگتر از ۷ باشد، خروجی یکی کمتر از ورودی بشود. برای این توصیف ابتدا جدول صحت آن را رسم کنید. سپس با استفاده از جدول کارنو آن را ساده سازی کنید و به صورت مدار دو طبقه تمام NOR پیاده سازی کنید.
- ۴- مدار زیر را در نظر بگیرید. ورودیها در ابتدا WXYZ = 0.10 هستند. در زمان ۷ ورودیها به 0.00 تغییر می کنند. تاخیر گیتهای 0.00 تانوثانیه و تاخیر گیت 0.00 نانوثانیه است. نمودار زمانی یا شکل موج خروجیها را رسم کنید.

بسمه تعالی طراحی مدارهای منطقی نیمسال اول ۱۳۹۸ تمرین پنجم

دانشکده مهندسی کامپیوتر

تحویل در روز سهشنبه مورخ ۱۳۹۸/۰۸/۲۱ ساعت ۲۳:۵۵ فقط از طریق سایت درس

۵- مدارهای زیر را با استفاده از دیکدر مناسب و با خروجیهای فعال با صفر (Active Low) طراحی کنید. تعداد گیتهای مورد استفاده را به حداقل ممکن کاهش دهید.

- $f_1(x, y, z) = xy'z + yz$
- $f_2(w, x, y, z) = \sum m(2, 4, 6, 14)$
- $f_3(w, x, y, z) = \prod M(3, 4, 10, 13, 14)$
- $f_4(A, B, C, D) = \sum m(0, 1, 2, 3, 5, 7, 11, 13)$

سوالات امتیازی (حل این سوالات اختیاری است و به آنها نمره اضافه تعلق می گیرد)

hoبا استفاده از جدول کارنو و با کمترین تعداد گیت، مدار چند خروجی زیر را به صورت دو طبقه و تمام f_1 پیادهسازی کنید. توابع f_2 و f_3 خروجیهای یک مدار هستند که بخشی از مدار آنها مشترک هستند. از این بخش مشترک **باید** برای هر سه تابع استفاده کنید.

- $f_1(A, B, C, D) = \sum m(0, 1, 2, 7, 8, 9)$
- $f_2(A, B, C, D) = \sum m(0, 2, 6, 7, 8, 9, 10, 13, 15)$
- $f_3(A, B, C, D) = \sum m(0, 2, 6, 7, 8, 10)$

موفق باشيد

وحيد اميني