

Wining Space Race with Data Science

Sina Khodadadi

26 August 2023

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Introduction
- Summary of methodologies
- Data Collection & Data Wrangling
- EDA & Interactive Visual Analytics Methodology
- Predictive Analysis Methodology
- EDA with Visualization Results
- EDA With SQL Results
- Interactive Map with Folium Results
- Plotly Dashboard Results
- Predictive Analysis (Classification) Results
- Summary of all results

INTRODUCTION

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upwards of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

Problems you want to find answers

If we can determine if the first stage will land, we can determine the cost of a launch

Section 1 Methodology 5P4 EX

METHODOLOGY

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
 - Web Scrapping from SpaceX Wikipedia webpage
- Perform data wrangling
 - Hot Encoding data fields
 - Data Cleaning: Correcting and Cleaning null values & irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Different algorithm such as: Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Decision Tree model have been deployed and evaluated to find the best method.

Data Collection

There are two methods that data are collected:

1

Used SpaceX Rest API Returned SpaceX data Normalized data int a csv file

Data
Consolidation &
Wrangling

2

Got HTML Response from Wikipedia webpage

Used BeautifulSoup to extract Data

Normalized data int a csv file

Data Consolidation & Wrangling

PROGRAMMING LANGUAGE TRENDS

Data collection with SpaceX REST calls

35]:		FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	La
	4	1	2010- 06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	
	5	2	2012- 05-22	Falcon 9	525.0	LEO	CCSFS SLC 40	None None	1	False	False	False	
	6	3	2013- 03-01	Falcon 9	677.0	ISS	CCSFS SLC 40	None None	1	False	False	False	
	7	4	2013- 09-29	Falcon 9	500.0	РО	VAFB SLC 4E	False Ocean	1	False	False	False	
	8	5	2013- 12-03	Falcon 9	3170.0	GTO	CCSFS SLC 40	None None	1	False	False	False	
				***			***						
	89	86	2020- 09-03	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	2	True	True	True	5e9e3032383ecb6b

https://github.com/sinasorme/IBM-Data-Science-Capstone/blob/Module1/jupyter-labs-spacex-data-collection-api%20(2).ipynb

Data collection - Scraping

Web scraping process

2020 [edit]

In late 2019, Gwynne Shotwell stated that SpaceX hoped for as many as 24 launches for Starlink satellites in 2020, [490] in addition to 14 or 15 non-Starlink launches. At 26 launches, 13 of which for Starlink satellites, Falcon 9 had its most prolific year, and Falcon rockets were second most prolific rocket family of 2020, only behind China's Long March rocket family. [491]

[hide] Flight No.	Date and time (UTC)	Version, Booster ^[b]	Launch site	Payload ^[c]	Payload mass	Orbit	Customer	Launch outcome	Booster landing		
78	7 January 2020, 02:19:21 ^[492]	F9 B5 △ B1049.4	CCAFS, SLC-40	Starlink 2 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Success (drone ship)		
	Third large batch and se	cond operational flight	t of Starlink constell	lation. One of the 60 satellites included a test of	oating to make the satellite less reflecti	ive, and thus less likely to int	terfere with ground-based astronomical	observations.[493]			
	19 January 2020, 15:30 ^[494]	F9 B5 △ B1046.4	KSC, LC-39A	Crew Dragon in-flight abort test ^[495] (Dragon C205.1)	12,050 kg (26,570 lb)	Sub-orbital ⁽⁴⁹⁶⁾	NASA (CTS) ^[497]	Success	No attempt		
79	An atmospheric test of site. The test was previous forcewed flight. As a defend and flight forcewed flight. As a defend and flight forcewed flight.				:)	parachutes after reentry, and splashed down in the ocean 31 km (19 mi) downrange from the launch uperDraco engines on 20 April 2019. [419] The abort test used the capsule originally intended for the first tional stage — the second stage had a mass simulator in place of its engine.					
80	29 January 2020, 14:07 ^[501]		df.info	df.info()			SpaceX	Success	Success (drone ship)		
	Third operational and					ther was fished out of the ocean. ^[502]					
	17 February 2020,	< (class 'pa	andas.core.frame.Data	aFrame'>	150	SW		Failure		
		Da	_	x: 121 entries, 0 to nns (total 11 column: nn Non-Nul	s):						

#	Column	Non-Null Count	Dtype			
0	Flight No.	121 non-null	object			
1	Launch site	121 non-null	object			
2	Payload	121 non-null	object			
3	Payload mass	121 non-null	object			
4	Orbit	121 non-null	object			
5	Customer	120 non-null	object			
6	Launch outcome	121 non-null	object			
7	Version Booster	121 non-null	object			
8	Booster landing	121 non-null	object			
9	Date	121 non-null	object			
10	Time	121 non-null	object			
dtypes: object(11)						

memory usage: 10.5+ KB

https://github.com/sinasorme/IBM-Data-Science-Capstone/blob/Module1/jupyter-labs-webscraping%20(2).ipynb

SKILLS NETWORK

DATA Wrangling

https://github.com/sinasorme/IBM-Data-Science-Capstone/blob/Module1/IBM-DS0321EN-SkillsNetwork labs module 1 L3 labs-jupyter-spacexdata wrangling jupyterlite.jupyterlite.ipynb

EDA with Data Visualization

•For machine learning models we should get insight into the relationship between parameters. Therefore, various type of plots such as: Scatter plots, line charts, and bar plots are used to show the relation between different parameters.

Flight Number vs. Payload Mass

Flight Number vs. Launch Site

Payload Mass vs. Launch Site

Orbit vs. Success Rate

Flight Number vs. Orbit

Payload vs Orbit

Success Yearly Trend

EDA with SQL

- Displayed the names of the unique launch sites in the space mission
- •Displayed 5 records where launch sites begin with the string 'CCA'
- Displayed the total payload mass carried by boosters launched by NASA (CRS)
- Displayed average payload mass carried by booster version F9 v1.1
- •Listed the date when the first successful landing outcome in ground pad was achieved.
- •Listed the names of the boosters which have success in drone ship and have payload mass
- •greater than 4000 but less than 6000
- Listed the total number of successful and failure mission outcomes
- •Listed the names of the booster_versions which have carried the maximum payload mass. Use a subquery
- •Listed the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch site for the months in year 2015.
- •Ranked the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

Build an Interactive Map with Folium

With aim to finding an optimal location for building a launch site:

- Calculated the distances between a launch site to its proximities
- Marked down a point on the closest coastline using Mouse Position and calculated the distance between the coastline point and the launch site
- •Drew a PolyLine between a launch site to the selected coastline point
- Created a marker with distance to a closest city, railway, highway, etc.
- •Drew a line between the marker to the launch site

https://github.com/sinasorme/IBM-Data-Science-Capstone/blob/Module3/lab_jupyter_launch_site_location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

Dashboard with a selectable pie chart and a scatter plot.

- •Pie chart shows distribution of successful landings across all launch sites and can be selected to show individual launch site success rates.
- •The pie chart is used to visualize launch site success rate.
- •Scatter plot takes two inputs: All sites or individual site and payload mass on a slider between 0 and 10000 kg.
- •The scatter plot can help us see how success varies across launch sites, payload mass, and booster version category.

https://github.com/sinasorme/IBM-Data-Science-Capstone/blob/Module3/spacex_dash_app.py

Predictive Analysis (Classification)

Standardize the data

Use the function train_test_split to split the data X and Y into training and test data

Create different model objects then create a GridSearchCV

Calculate the accuracy on the test data using the confusion matrix

https://github.com/sinasorme/IBM-Data-Science-Capstone/blob/Module4/module_4_SpaceX_Machine_Learning_Prediction_Part_5.jupyterlite%20(1).ipynb

Results

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate.

https://github.com/sinasorme/IBM-Data-Science-Capstone/blob/Module4/module_4_SpaceX_Machine_Learning_Prediction_Part_5.jupyterlite%20(1).ipynb

Section 2 Insights Drawn from EDA 5P4 EX

Flight Number vs. Launch Site

•Launches from the site of CCAFS SLC 40 are significantly higher than lunches from other sites

Payload vs. Launch Site

•The majority of Pay Loads with lower Mass have been launched from CCAFS SLC 40

Success Rate vs. Orbit Type

ESL1, GEO, HEO and SSO orbits had the highest success rate.

Flight Number vs. Orbit Type

There is an increasing rate of VLEO launches in recent years.

Payload vs. Orbit Type

At ISS most of payloads were around 2000 At GTO most of payload were between 3000 and 7000

Launch Success Yearly Trend

•Success rate has increased incredibly in recent years

All Launch Site Names

```
In [6]:
         %sql select distinct launch_site from SPACEXTBL
        * sqlite:///my_data1.db
       Done.
Out[6]:
          Launch_Site
          CCAFS LC-40
          VAFB SLC-4E
           KSC LC-39A
         CCAFS SLC-40
                None
```

Launch Site Names Begin with 'CCA'

```
In [7]:
          %sql select * from SPACEXTBL where Launch Site like 'CCA%' limit 5
        * sqlite:///my_data1.db
       Done.
Out[7]:
                                                                 Payload PAYLOAD_MASS_KG_ Orbit Customer Mission_Outcome Landing
               Date
                               Booster Version Launch Site
                        (UTC)
                                                                  Dragon
                                                  CCAFS LC-
                                                               Spacecraft
         06/04/2010 18:45:00
                                                                                            0.0
                                                                                                  LEO
                                                                                                                                     Failure (
                                  F9 v1.0 B0003
                                                                                                          SpaceX
                                                                                                                             Success
                                                             Qualification
                                                                     Unit
                                                                  Dragon
                                                              demo flight
                                                                  C1, two
                                                                                                            NASA
                                                  CCAFS LC-
                                                                                                  LEO
         12/08/2010 15:43:00
                                  F9 v1.0 B0004
                                                                CubeSats.
                                                                                                           (COTS)
                                                                                                                                      Failure ()
                                                                                                                             Success
                                                                 barrel of
                                                                                                             NRO
                                                                  Brouere
                                                                  cheese
                                                                  Dragon
                                                  CCAFS LC-
                                                                                                  LEO
                                                                                                            NASA
         22/05/2012
                       7:44:00
                                  F9 v1.0 B0005
                                                              demo flight
                                                                                          525.0
                                                                                                                             Success
                                                                                                                                            N
                                                                                                  (ISS)
                                                                                                           (COTS)
                                                         40
                                                                      C2
                                                  CCAFS LC-
                                                                  SpaceX
                                                                                                  LEO
                                                                                                            NASA
         10/08/2012
                       0:35:00
                                  F9 v1.0 B0006
                                                                                          500.0
                                                                                                                                            N
                                                                                                                             Success
                                                                   CRS-1
                                                                                                  (ISS)
                                                                                                            (CRS)
                                                  CCAFS LC-
                                                                  SpaceX
                                                                                                  LEO
                                                                                                            NASA
                                                                                          677.0
         03/01/2013 15:10:00
                                  F9 v1.0 B0007
                                                                                                                                            N
                                                                                                                             Success
                                                                   CRS-2
                                                                                                  (ISS)
                                                         40
                                                                                                            (CRS)
```


Total Payload Mass

```
In [8]:
         %sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL where Customer = 'NASA (CRS)';
       * sqlite:///my_data1.db
      Done.
Out[8]: sum(PAYLOAD_MASS_KG_)
                          45596.0
```

Average Payload Mass by F9 v1.1

```
In [9]:
         %sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where Booster_Version = 'F9 v1.1';
        * sqlite:///my data1.db
       Done.
Out[9]: avg(PAYLOAD_MASS_KG_)
                          2928.4
```

First Successful Ground Landing Date

```
In [10]:
          %sql select min(Date) from SPACEXTBL where Landing_Outcome = 'Success (ground pad)';
         * sqlite:///my_data1.db
        Done.
Out[10]:
          min(Date)
         01/08/2018
```

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql select booster_version from SPACEXTBL where "Landing_Outcome"='Success (drone ship)' and PAYLOAD_MASS__KG_ between 4000 and 6000

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

```
In [21]:
           %sql select distinct Booster Version from SPACEXTBL where PAYLOAD MASS KG = (select max(PAYLOAD MASS KG ) from SPACE
         * sqlite:///my data1.db
        Done.
Out[21]: Booster_Version
             F9 B5 B1048.4
             F9 B5 B1049.4
             F9 B5 B1051.3
             F9 B5 B1056.4
             F9 B5 B1048.5
             F9 B5 B1051.4
             F9 B5 B1049.5
             F9 B5 B1060.2
             F9 B5 B1058.3
             F9 B5 B1051.6
             F9 B5 B1060.3
             F9 B5 B1049.7
```


2015 Launch Records

%sql select substr(Date, 4, 2) as month, "Landing_Outcome", Booster_Version , Launch_Site from SPACEXTBL where "Landing_Outcome" = 'Failure (drone ship)' and substr(Date,7,4)='2015'

Out[24]:	month	Landing_Outcome	Booster_Version	Launch_Site	
	10	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40	
	04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40	

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

•%sql SELECT "Landing_Outcome", count(*) AS count, RANK() OVER (ORDER BY count(*) DESC) AS rank FROM SPACEXTBL WHERE "Landing_Outcome" like 'Success%' and Date between '04-06-2010' and '20-03-2017' GROUP BY "Landing_Outcome" ORDER BY count DESC

```
%sql SELECT "Landing Outcome", count(*) AS count, RANK() OVER (ORDER BY count(*) DESC) AS rank FROM SPACEXTBL WHERE Da
         * sqlite:///my_data1.db
            Landing_Outcome count rank
Out[35]:
                      Success
                  No attempt
           Success (drone ship)
          Success (ground pad)
            Failure (drone ship)
                       Failure
             Failure (parachute)
             Controlled (ocean)
                  No attempt
```

Section 3 Launch Sites Proximities Analysis 5P4 EX

Folium Map Screenshot 1

Folium Map Screenshot 2

Folium Map Screenshot 3

Section 4
Build a Dashboard with Plotly Dash

DASHBOARD

DASHBOARD TAB 1

DASHBOARD TAB 2

DASHBOARD TAB 3

Classification Accuracy

Confusion Matrix

Conclusions

- The Decision Tree model has the best prediction accuracy.
- Low weighted payloads has a better success rate than the heavier payloads.
- The success rates for SpaceX launches have increased significantly in recent years.
- KSC LC 39A had the most successful launches among all other sites.
- Orbit GEO, HEO, SSO, ES L1 had the best Success Rate.

APPENDIX

Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project