```
Halting Problem
                                      def foo (bar: List[int]) -> int:
   Will a program P
                                               neturn len (bar)
    halt given input x?
                       dof body:

if x=0:

while Truck f_{00}([1,2,3])

else:

Nothern None f_{00}([1,2,3])
                                             is not a List[int]
  Test Halt (P, x)
       ("yes" if P(x) termindes in finite # of steps
                                           int foo(List(Integer) bar){
                                           return barsize();
       I'm" if I(x) inf books
      TestHalt (bez, 1) → "ys"
  Text Halt is uncomputable!
                                                                           Foo is not comp.
Proof: Assume Test Halt is computable.
                                                                    Pf: We Foo to write TestHalt.
                                                                              Foo comp => TextHalt comp

TextHalt comp

Too comp
          def Turing (P):
                if Testflalt, (P, P) == "yes":

while True;

pars # inf working.
             else:

return None # hart
            Twing (Twing) halts. X
                                                     Text Halt (Turiny, Turiny)
            Twing (Twing) a loops. X
                  (Test Halt computable => Turing computable) A (Turing computable)
                                        - Testialt computable
```

Computer Science Mentors 70

Amogh Gupta, Sylvia Jin, Aekus Bhathal, Abinav Routhu, Debayan Bandyopadhyay Roast us here: https://tinyurl.com/csm70-feedback20

Computability

1. Say that we have a program M that decides whether any input program halts as long as it prints out the string "ABC" as the first operation that it carries out. Can such a program exist? Prove your answer.

2. (a) Is it possible to write a program that takes a natural number *n* as input, and finds the shortest arithmetic formula which computes *n*? For the purpose of this question, a formula is a sequence consisting of some valid combination of (decimal) digits, standard binary operators (+, ×, the "^" operator that raises to a power), and parentheses. We define the length of a formula as the number of characters in the formula. Specifically, each operator, decimal digit, or parentheses counts as one character.

(*Hint*: Think about whether it's possible to enumerate the set of possible arithmetic formulas. How would you know when to stop?)

$$n = 98763335$$
 $n = 100000$
 10000
 1005
 10000

(b) Now say you wish to write a program that, given a natural number input *n*, finds another program (e.g. in Java or C) which prints out *n*. The discovered program should have the minimum execution-time-plus-length of all the programs that print *n*. Execution time is measured by the number of CPU instructions executed, while "length" is the number of characters in the source code. Can this be done?

(*Hint*: Is it possible to tell whether a program halts on a given input within *t* steps? What can you say about the execution-time-plus-length of the program if you know that it does not halt within *t* steps?)

$$N = 10000$$

print (10000")

 $14 + 46 = 60 = 60$
 $14 = 60 - 60$

3.	(a)	Explain why the notion of the "smallest positive integer that cannot be defined in under 280 characters" is paradoxical.
	(b)	Prove that for any length n , there is at least one string of bits that cannot be compressed to less than n bits.
	(c)	Say you have a program K that outputs the Kolmogorov complexity of any input string. Under the assumption that you can use such a program K as a subroutine, design another program P that takes an integer n as input, and outputs the length- n binary string with the highest Kolmogorov complexity. If there is more than one string with the highest complexity, output the one that comes first lexicographically.
	(d)	Let's say you compile the program P you just wrote and get an m bit executable, for some $m \in \mathbb{N}$ (i.e. the program P can be represented in m bits). Prove that the program P (and consequently the program K) cannot exist.
		(Hint Consider what bannons when D is given a year large input a)
		(Hint: Consider what happens when P is given a very large input n .)
		(Hint: Consider what happens when P is given a very targe input n.)
		(Hint: Consider what happens when P is given a very targe input n.)
		(Hint: Consider what happens when P is given a very targe input n.)
		(Amt: Consider what happens when P is given a very targe input n.)
		(Annt: Consider what happens when P is given a very targe input n.)
		(Hint: Consider what happens when P is given a very targe input h.)
		(mint: Consider what happens when P is given a very targe input n.)
		(Mint: Consider what happens when P is given a very large input II.)
		(rimt: Consider what happens when r is given a very targe input n .)