DIRECT RL: МОНТЕ-КАРЛО И TD-ОБУЧЕНИЕ

Сергей Николенко
Академия MADE — Mail.Ru
25 сентября 2021 г.

Random facts:

- 25 сентября 1066 г. Гаральд Гардерада вместе с Тостигом Годвинсоном потерпел сокрушительное поражение при Стэмфорд-Бридж, и попытка норвежского завоевания Англии провалилась
- 25 сентября 1493 г. Христофор Колумб отправился в своё второе путешествие к Америке, а 25 сентября 1513 г. Васко де Бальбоа со своим отрядом пересек Панамский перешеек и стал первым европейцем, достигшим Тихого океана
- 25 сентября 1818 г. английский врач Джеймс Бландел впервые провёл операцию по переливанию крови от человека к человеку
- 25 сентября 1962 г. Фидель Кастро заявил, что СССР намерен создать на Кубе базу для своего флота; рыболовного, разумеется
- 25 сентября 1968 г. в первый и пока единственный раз британский хит-парад возглавила русская песня романс «Дорогой длинною»; правда, называлась она «Those Were the Days» и исполнялась Мэри Хопкин со словами Джина Раскина

Обучение с подкреплением,

- В прошлый раз мы ввели основные понятия динамики марковских процессов принятия решений:
 - собственно динамику процесса:

$$p\left(s^{\prime},r\mid s,a\right)=p\left(S_{t}=s^{\prime},R_{t}=r\mid S_{t-1}=s,A_{t-1}=a\mid;\right)$$

 \cdot награды за каждый эпизод, начиная со времени t:

$$G_t = R_{t+1} + \gamma G_{t+1} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1};$$

Обучение с подкреплением

 \cdot Определили функции значений V и Q

$$\begin{split} V_{\pi}(s) &= \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right], \\ Q_{\pi}(s, a) &= \mathbb{E}_{\pi}\left[G_t \mid S_t = s, A_t = a\right] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right] \end{split}$$

• Выписали уравнения Беллмана и научились их решать.

Основные задачи

- Теоретически всё готово, но у нас много проблем:
 - уравнения знаем, но пока не знаем, как их решать, то есть как найти V^π для данного π ?
 - \cdot разных стратегий очень, очень много как найти оптимальную стратегию поведения агента в данной модели и соответствующие V^* ?
 - \cdot но уравнений тоже не знаем в реальности обычно P и R не даны, их тоже нужно обучить; как?
 - более того, их обычно даже записать не получится, слишком уж много состояний в любой реальной задаче... что делать?

• Давайте есть слона по частям...

Итеративное решение (по стратегиям)

- Ищем оптимальную стратегию итеративным алгоритмом.
- PolicyIteration инициализировать π , потом, пока $\pi \neq \pi'$, повторять:
 - вычислить значения состояний для стратегии π , решив систему линейных уравнений

$$V^{\pi}(s) := \sum_{a} \pi(s,a) \sum_{s' \in S} P^{a}_{ss'} \left(R^{a}_{ss'} + \gamma V^{\pi}(s') \right); \label{eq:Vpi}$$

• улучшить стратегию на каждом состоянии:

$$\pi'(s) := \arg\max_{a} Q^{\pi}(s,a) = \arg\max_{a} P^{a}_{ss'} \left(R^{a}_{ss'} + \gamma V^{\pi}(s') \right);$$

• Почему оно сходится?

Итеративное решение (по стратегиям)

- Сходится, т.к. на каждом шаге строго улучшаем целевую функцию, а всего существует конечное число $(|A|^{|S|})$ стратегий.
- Но, конечно, это медленно, надо V^{π} пересчитывать; проще делать на каждой итерации ровно один шаг пересчёта V^{π} , а потом сразу выбирать жадную стратегию:

$$V_{k+1}(s) := \max_{a} \sum_{s' \in S} P^a_{ss'} \left(R^a_{ss'} + \gamma V_k(s') \right). \label{eq:Vk+1}$$

• Это называется value iteration.

Итеративное решение (по стратегиям)

• Есть другие похожие методы – их всех объединяет подход, основанный по сути на чём-то вроде ЕМ-алгоритма с динамическим программированием.

• Это может быть достаточно эффективно даже для больших задач (с трюками, позволяющими не всё пространство исследовать).

Обучение с подкреплением

- В прошлый раз мы выписали уравнения Беллмана на V и Q и научились их решать.
- Теперь будем обучать одновременно и модель, и оптимальную стратегию; вознаграждения и переходы не даны.
- Начнём со стохастических алгоритмов (метода Монте-Карло); но начнём опять с простой задачи.
- Как обучить вознаграждения $V^{\pi}(s)$, ожидаемые от состояния s в эпизодической задаче?

• Да очень просто: будем накапливать данные и усреднять.

Алгоритм Monte Carlo estimation:

- · инициализировать случайно π и V(s), пустые списки $\mathrm{Ret}(s)$;
- повторять до сходимости:
 - сгенерировать эпизод $S_0, A_0, R_1, S_1, A_1, \dots, S_T$ по стратегии π ;
 - G := 0
 - для каждого $t = T 1, T 2, \dots, 0$:
 - $G := \gamma G + R_{t+1}$
 - \cdot если надо, то добавить G в $\mathrm{Ret}(S_t)$ и обновить $V(S_t) := \mathrm{Avg}(\mathrm{Ret}(S_t)).$
- «Если надо» скрывает тонкую разницу между first-visit и every-visit Monte Carlo.
- На выходе этот алгоритм выдаст V_{π} для данной π , которой порождаются эпизоды.

• Но вообще без модели гораздо удобнее оценивать Q_π . Сразу можно и стратегию обновлять, тот же policy iteration.

Алгоритм Monte Carlo control with exploring starts:

- · инициализировать случайно π и Q(s), пустые списки $\mathrm{Ret}(s)$;
- повторять до сходимости:
 - \cdot выбрать S_0,A_0 случайно так, чтобы $\forall\;(s,a)\quad p(s,a)>0$;
 - сгенерировать эпизод $S_0, A_0, R_1, S_1, A_1, \dots, S_T$ по стратегии π ;
 - G := 0
 - для каждого $t = T 1, T 2, \dots, 0$:
 - $G := \gamma G + R_{t+1}$
 - · если надо, то добавить G в $\mathrm{Ret}(S_t,A_t)$ и обновить:

$$\begin{split} Q(S_t, A_t) \coloneqq \operatorname{Avg}(\operatorname{Ret}(S_t, A_t)), \\ \pi(S_t) \coloneqq \operatorname{arg\,max}_a Q(S_t, a). \end{split}$$

- \cdot Этот алгоритм выдаст π_* и соответствующую ей функцию Q_* .
- Здесь важно предположение exploring starts, без него мы не исследуем все действия.

• А если оно не выполняется, придётся исследовать самим.

Алгоритм on-policy Monte Carlo control с мягкими стратегиями:

- · инициализировать случайно ϵ -мягкую π и Q(s), пустые $\mathrm{Ret}(s)$;
- повторять до сходимости:
 - выбрать S_0, A_0 случайно так, чтобы $\forall \ (s,a) \ p(s,a) > 0;$
 - \cdot сгенерировать эпизод $S_0, A_0, R_1, S_1, A_1, \dots, S_T$ по стратегии π ;
 - G := 0
 - для каждого t = T 1, T 2, ..., 0:
 - $G := \gamma G + R_{t+1}$
 - · если надо, то добавить G в $\mathrm{Ret}(S_t,A_t)$ и обновить:

$$\begin{split} Q(S_t,A_t) &:= \operatorname{Avg}(\operatorname{Ret}(S_t,A_t)), \\ a_* &:= \operatorname{arg\,max}_a Q(S_t,a), \\ \pi(a \mid S_t) &:= \begin{cases} 1 - \epsilon + \frac{\epsilon}{|A(S_t)|}, & \text{если } a = a_*, \\ \frac{\epsilon}{|A(S_t)|}, & \text{если } a \neq a_*. \end{cases} \end{split}$$

• Этот алгоритм умеет искать оптимальную мягкую π .

- На самом деле для ϵ -мягких стратегий тоже верен аналог policy improvement теоремы, и для ϵ -мягких стратегий метод policy iteration тоже вполне работает.
- Но это on-policy алгоритм, он найдёт мягкую стратегию, а в реальности шахматист, который играет как Магнус Карлсен 90% ходов, а 10% ходов делает случайно, вряд ли продвинется сильно дальше третьего разряда.
- Но ведь и исследовать тоже нужно! Хорошо было бы научиться исследовать по одной стратегии, а оценивать другую...

- ...и такой трюк действительно можно сделать!
- Вспомним сэмплирование со значимостями (importance sampling): если мы умеем брать сэмплы по распределению $q(\mathbf{x})$, а оценивать хотим ожидание по распределению $p(\mathbf{x})$, то можно сделать так:

$$\mathbb{E}_{p(\mathbf{x})}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x} = \int f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}q(\mathbf{x})d\mathbf{x} = \mathbb{E}_{q(\mathbf{x})}\left[f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\right].$$

• А у нас в качестве p и q выступают распределения на траекториях:

$$\begin{split} p\left(\operatorname{Traj}\mid\pi\right) &= p\left(A_{t}, S_{t+1}, A_{t+1}, \dots, S_{T-1}, A_{T-1}, S_{T}\mid\pi\right) = \\ &= \pi\left(A_{t}|S_{t}\right) p\left(S_{t+1}\mid S_{t}, A_{t}\right) \dots \pi\left(A_{T-1}|S_{T-1}\right) p\left(S_{T}\mid S_{T-1}, A_{T-1}\right) = \\ &= \prod_{k=t}^{T-1} \pi\left(A_{k}|S_{k}\right) p\left(S_{k+1}\mid S_{k}, A_{k}\right). \end{split}$$

• И получается, что для двух стратегий π , b (от слова behaviour) определить веса

$$\begin{split} \rho_{t:T-1}^{\pi,b} &= \frac{p\left(\text{Traj} \mid \pi\right)}{p\left(\text{Traj} \mid b\right)} = \frac{\prod_{k=t}^{T-1} \pi\left(A_{k} | S_{k}\right) p\left(S_{k+1} \mid S_{k}, A_{k}\right)}{\prod_{k=t}^{T-1} b(A_{k} \mid S_{k}) p\left(S_{k+1} \mid S_{k}, A_{k}\right)} = \\ &= \frac{\prod_{k=t}^{T-1} \pi\left(A_{k} | S_{k}\right)}{\prod_{k=t}^{T-1} b(A_{k} \mid S_{k})}, \end{split}$$

то неизвестные вероятности сократятся и останется, что когда мы порождаем эпизоды по b, нужно просто усреднять не G_t , а $\rho_{t:T-1}^{\pi,b}G_t$, и будут получаться оценки $\pi!$

• Единственное условие – покрытие (coverage): должно быть верно, что если $\pi\left(a|s\right)>0$, то и $b(a\mid s)>0$.

- Ещё есть тонкая разница между обычным importance sampling и взвешенным (weighted importance sampling):
 - в обычном мы берём оценку среднего через сэмплы

$$V(s) = \frac{1}{N} \sum_{t=1}^{N} \rho_{t:T-1}^{\pi,b} G_t,$$

• а во взвешенном ещё нормируем суммой весов

$$V(s) = \frac{\sum_{t=1}^{N} \rho_{t:T-1}^{\pi,b} G_t}{\sum_{t=1}^{N} \rho_{t:T-1}^{\pi,b}}.$$

• Вторая оценка смещённая, но сходится куда надо и у неё нормальная человеческая дисперсия.

• А у первого варианта дисперсия очень большая, и может быть даже бесконечная! Пример:

• Итого вот какой алгоритм получается

Алгоритм on-policy Monte Carlo control с мягкими стратегиями:

- инициализировать ϵ -мягкую b, π , Q(s), пустые $\mathrm{Ret}(s)$ и c(s);
- повторять до сходимости:
 - сгенерировать эпизод $S_0, A_0, R_1, S_1, A_1, \dots, S_T$ по мягкой стратегии b;
 - G := 0, W := 1
 - для каждого $t = T 1, T 2, \dots, 0$:
 - $\cdot \ G := \gamma G + R_{t+1}$
 - $\cdot \ c(S_t,A_t) := c(S_t,A_t) + W$
 - · $Q(S_t, A_t) := Q(S_t, A_t) + \frac{W}{c(S_t, A_t)} \left(G Q(S_t, A_t)\right)$
 - $\pi(a \mid S_t) := \arg\max_a Q(S_t, a)$
 - \cdot если $A_t
 eq \pi(S_t)$, то перейти к следующему эпизоду
 - $W := \frac{W}{b(A_t|S_t)}$.
- А если убрать $rg \max$, то получится просто алгоритм оценки данной стратегии π .

- Общий принцип ТD-обучения: давайте обучать оценки состояний на основе обученных нами ранее оценок для последующих состояний.
- TD(0)-обучение: инициализировать V(s) и π произвольно, затем на каждом эпизоде обучения:
 - инициализировать s;
 - \cdot для каждого шага t в эпизоде:
 - выбрать A_t в состоянии S_t по стратегии π ;
 - сделать A_t , пронаблюдать результат R_{t+1} и следующее состояние S_{t+1} ;
 - $\cdot \ V(S_t) \coloneqq V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) V(S_t) \right).$

- Здесь по сути методы Монте-Карло и TD-обучение расходятся в том, как строить оценку для V(s):
 - МС-методы оценивают $V(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right]$, собирая статистику из G_t ;
 - \cdot а TD-методы оценивают на один шаг вперёд как $V(s) = \mathbb{E}_\pi \left[R_{t+1} + \gamma V_\pi(S_{t+1}) \mid S_t = s
 ight].$
- Смысл TD-обучения в том, чтобы использовать уже обученные закономерности для поиска более глубоких закономерностей.
- В результате обучение получится целенаправленным, обучается гораздо быстрее, чем другие стратегии.

· Здесь тоже есть on-policy и off-policy варианты

Алгоритм Sarsa (on-policy TD control):

- · инициализировать случайно Q(s,a);
- повторять до сходимости:
 - · инициализировать S_0 , выбрать A_0 по стратегии, полученной из Q (например, по ϵ -жадной стратегии);
 - · для каждого шага в эпизоде $t=0,\dots,T$:
 - сделать действие A_t , получить награду R_{t+1} , перейти в состояние S_{t+1} ;
 - · выбрать A_{t+1} по стратегии, полученной из Q (например, по ϵ -жадной стратегии);
 - · обновить Q:

$$Q(S_t, A_t) := Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right)$$

• Этот алгоритм умеет искать оптимальную мягкую π (т.е. опять нужно самому исследовать)

• A off-policy вариант называется Q-обучение; он ещё проще, и это была очень мощная идея, которая до сих пор определяет многое в RL (Watkins, 1989)

Алгоритм Q-learning (off-policy TD control):

- · инициализировать случайно Q(s,a);
- повторять до сходимости:
 - инициализировать S_0
 - · для каждого шага в эпизоде $t=0,\ldots,T$:
 - \cdot выбрать A_t по стратегии, полученной из Q (например, по ϵ -жадной стратегии);
 - · сделать действие A_t , получить награду R_{t+1} , перейти в состояние S_{t+1} ;
 - · обновить Q:

$$Q(S_t,A_t) := Q(S_t,A_t) + \alpha \left(R_{t+1} + \gamma \max_a Q(S_{t+1},a) - Q(S_t,A_t)\right)$$

• Этот алгоритм умеет искать оптимальную жёсткую π_* , делая ходы по мягкой стратегии

Спасибо!

Спасибо за внимание!