Introduction to Spectral Methods Numerical Solution of Poisson's Equation

Pablo Brubeck¹

¹Department of Physics Tecnologico de Monterrey

September 17, 2016

Outline

One dimension

Two Dimensions

Poisson's Equation

We are interested to find the function u(x, y, z) that satisfies the boundary value problem

$$\nabla^2 u = f$$

Subject to boundary conditions u(C) = g.

Where the laplacian operator is $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

When f = 0, we have Laplace's equation as a special case.

Poisson's Equation has many important applications.

- Electrostatics $\nabla^2 V = -\rho/\epsilon_0$
- Newtonian gravity $\nabla^2 \phi = 4\pi G \rho$
- ▶ Thermal equilibrium $\nabla^2 T = 0$
- ▶ Incompresible fluid flow $\nabla^2 v = 0, \nabla^2 p = f(\nu, V)$
- Mechanical Engineering
- Image processing
- Minimal area surfaces
- Surface reconstruction

Outline

One dimension

Two Dimensions

Poisson's Equation in one dimension

$$\frac{d^2u}{dx^2}=f(x)$$

Subject to $u(a) = g_1$ and $u(b) = g_2$

We must translate this continuous problem into a discrete one.

For the space coordinate $x \in [a, b]$, we choose n nodes $\{x_i\}_{i=1}^n$ on which we would like to know the value of $u(x_i) = u_i$.

Input
$$u_1$$
, u_n , $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, and $\vec{f} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}$; output $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$.

The discrete solution must solve the continuous problem.

Is there a way to express u(x) in terms of u_i ?

$$u(x) = \sum_{j} u_{j} \delta_{j}(x)$$

We introduce the cardinal functions $\delta_j(x)$.

$$u(x_i) = \sum_j u_j \delta_j(x_i) = u_i$$

$$\delta_j(x_i) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

This is how the cardinal functions look like.

Now differentiate the expansion in cardinal functions.

$$u'(x_i) = \sum_i u_j \delta'_j(x_i)$$

We have found a matrix $D_{ij} = \delta'_j(x_i)$ that operates as a derivative.

$$\frac{d}{dx}\vec{u} = D\vec{u}$$

$$\frac{d^2}{dx^2}\vec{u} = D^2\vec{u} = \vec{f}$$

Solve the system of linear equations.

$$D^2\vec{u} = \vec{f}$$

Recall that u_1 and u_n were given as boundary conditions.

$$\begin{bmatrix} D_{11}^2 & D_{1j}^2 & D_{1n}^2 \\ D_{i1}^2 & D_{ij}^2 & D_{in}^2 \\ D_{n1}^2 & D_{nj}^2 & D_{nn}^2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_j \\ u_n \end{bmatrix} = \begin{bmatrix} D_{11}^2 \\ D_{i1}^2 \\ D_{n1}^2 \end{bmatrix} u_1 + \begin{bmatrix} D_{1j}^2 \\ D_{ij}^2 \\ D_{nj}^2 \end{bmatrix} \begin{bmatrix} u_j \end{bmatrix} + \begin{bmatrix} D_{1n}^2 \\ D_{in}^2 \\ D_{nn}^2 \end{bmatrix} u_n = \begin{bmatrix} f_1 \\ f_i \\ f_n \end{bmatrix}$$

With i and j ranging from 2 to n-1.

We have n-2 unknowns, but still n equations.

Discard the first and last rows.

 $abla^2 u = f$ will not hold true at the boundary, but we will ensure the boundary conditions.

$$\begin{bmatrix} D_{ij}^2 \end{bmatrix} \begin{bmatrix} u_j \end{bmatrix} = \begin{bmatrix} f_i \end{bmatrix} - u_1 \begin{bmatrix} D_{i1}^2 \end{bmatrix} - u_n \begin{bmatrix} D_{in}^2 \end{bmatrix}$$
$$\begin{bmatrix} u_j \end{bmatrix} = \begin{bmatrix} D_{ij}^2 \end{bmatrix}^{-1} \begin{bmatrix} f_i - u_1 D_{i1}^2 - u_n D_{in}^2 \end{bmatrix}$$

With i and j ranging from 2 to n-1.

Cardinal functions are obtained from a mother function.

Let $\Psi_n(x)$ be a function with n roots on $\{x_i\}_{i=1}^n$, i. e. $\Psi_n(x_i)=0$. By expanding $\Psi_n(x)$ around its roots we can find a expression for $\delta_j(x)$.

$$\Psi_n(x) = 0 + (x - x_j)\Psi'_n(x_j) + (x - x_j)^2\Psi''_j(x) + O((x - x_j)^3)$$

$$\delta_j(x) = \frac{\Psi_n(x)}{(x - x_j)\Psi'_n(x_j)} = 1 + (x - x_j)\frac{\Psi''_j(x)}{\Psi'_n(x_j)} + O((x - x_j)^2)$$

Differentiate to obtain the elements of *D*.

$$D_{ij} = \delta'_j(x_i) = \frac{1}{x_i - x_j} \frac{\Psi'_n(x_i)}{\Psi'_n(x_j)}, \qquad i \neq j$$

The diagonal is a bit tricky.

$$D_{jj} = \delta'_j(x_j) = \frac{\Psi''_n(x_j)}{\Psi'_n(x_j)}$$

Let's code!

Solve Poisson's equation

$$\frac{d^2u}{dx^2}=1000\cos(5\pi x)e^{-x^2}$$

with boundary conditions u(-1) = 2, u(1) = -1.

```
1 [D,x]=chebD(n); D2=D*D; % Differentiation matrix and nodes
2 f=1000*cos(5*pi*x).*exp(-x.^2); % Source term
3 u=zeros(n,1); u([1,n])=[-1,2]; % Impose boundary conditions
4 % Solve and plot
5 u(2:n-1)=D2(2:n-1,2:n-1)\(f(2:n-1)-D2(2:n-1,[1,n])*u([1,n]));
6 plot(x,u);
```

Here is our solution.

Outline

One dimension

Two Dimensions

Poisson's Equation in two dimensions

Our domain of solution will be the rectangle $[a, b] \times [c, d]$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$

Subject to boundary conditions

$$u(x,y) = \begin{cases} g_1(y), & x = a \\ g_2(y), & x = b \\ h_1(x), & y = c \\ h_2(x), & y = d \end{cases}$$

In 2D we use matrices for u and f.

$$u(x_i, y_j) = u_{ij}$$

$$f(x_i, y_j) = f_{ij}$$

$$u(x, y) = \sum_{k,l} u_{kl} \delta_k(x) \delta_l(y)$$

Multiplying times D does the job of partial derivatives.

$$\frac{\partial u}{\partial x} = DU = \begin{bmatrix} Du_{i1} & Du_{ij} & Du_{in} \end{bmatrix}$$

$$\frac{\partial u}{\partial y} = UD^{\mathsf{T}} = \begin{pmatrix} DU^{\mathsf{T}} \end{pmatrix}^{\mathsf{T}} = \begin{bmatrix} (Du_{1i})^{\mathsf{T}} \\ (Du_{ji})^{\mathsf{T}} \\ (Du_{ni})^{\mathsf{T}} \end{bmatrix}$$

$$\nabla^2 u = D^2 U + U(D^2)^{\mathsf{T}}$$

Now solve the system of linear equations.

$$D^2U + U(D^2)^{\mathsf{T}} = F$$

Boundary conditions are the tricky part.

$$U = \tilde{U} + U_B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & u_{ij} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} u_{11} & u_{1j} & u_{1n} \\ u_{i1} & 0 & u_{in} \\ u_{n1} & u_{nj} & u_{nn} \end{bmatrix}$$

$$D^2 \tilde{U} + \tilde{U}(D^2)^T = F - D^2 U_B - U_B (D^2)^T = \tilde{F}$$

Discard first and last rows and columns.

 $abla^2 u = f$ will not hold true at the boundary, but we will ensure the boundary conditions.

$$(D_{ij}^2)\tilde{U}_{ij} + \tilde{U}_{ij}(D_{ij}^2)^\mathsf{T} = \tilde{F}_{ij}$$

With i and j ranging from 2 to n-1.

Now we just have to solve $(n-2)^2 \times (n-2)^2$ system of linear equations.

Matrix inversion does not help.

A matrix equation of the form AX + XB = C is known as a Sylvester equation.

There's a built-in MATLAB function that solves them.

This algorithm uses the Schur decomposition to solve a block-triangular matrix very efficiently.

Another example

Solve Laplace's equation on $(x,y) \in [-1,1] imes [-1,1]$ $\nabla^2 u = 0$

with boundary conditions

$$u(x,y) = \begin{cases} \sin^4(\pi x), & y = 1 \text{ and } -1 < x < 0, \\ \frac{1}{5}\sin(3\pi y), & x = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Let's code again!

```
1 [D,x]=chebD(n); D2=D*D; y=x';
[xx, yy] = ndgrid(x);
3
4 % Boundary conditions
g = [0.2*sin(3*pi*v); 0*v];
6 h=[(x<0).*sin(pi*x).^4, 0*x];
7 uu=zeros(n);
uu([1 n],:)=a;
9 uu(:,[1 n])=h;
10
   % Solve Laplace's equation
11
12 F=zeros(n):
13 RHS=F-D2(:,[1 n])*g-h*D2(:,[1 n])';
  uu(2:n-1, 2:n-1)=sylvester(D2(2:n-1, 2:n-1), ...
14
  D2(2:n-1, 2:n-1)', RHS(2:n-1, 2:n-1);
15
16
17
   surfl(xx,yy,uu,'light'); colormap(jet(256));
18
   shading interp; axis square;
```

Here is our solution.

