

Cod	e :	15El	E21T

Register				
Number		,		

II Semester Diploma Examination, April/May-2017

ELECTRICAL CIRCUITS

Tim	e : :	3 На	ours Max. Ma	arks : 100
Note: (i) Ans		(i)	Answer any six questions from Part-A. Each question carries 5 mark	s.
		(ii)	Answer any seven questions from Part-B. Each questions carries 10	marks.
			PART – A	$6\times 5=30$
			(Answer any six questions from this section.)	
Ι.	Wŀ	at de	o you mean by an (i) active circuit and (ii) passive circuit?	5
2.	De	fine ((i) linear circuit & (ii) non-linear circuit.	5
3.	De	fine ((i) Magnetic circuit & (ii) Magneto-motive-force. Mention their units.	5
4.	Co	mpai	re magnetic circuit with an electric circuit.	5
5.	Sta	te an	d explain Maxwell's Cork Screw rule.	5
6.	De	fine :	(i) cycle and (ii) frequency of an alternating quantity. Mention their u	mits. 5
7.	Dra	ıw a	sinusoidal waveform & mark the following:	
	(i)	M	aximum value	
	(ii)	ln	stantaneous value	
	(iii) Ti	me period &	
	(iv)) Fr	equency.	5
8.	De	tine ((i) Inductive reactance and (ii) Capacitive reactance. Mention their uni	ts. 5
9.	Wr	ite tl	ne advantages of 3-phase system over single phase system.	5
			. 1 of 4	Turn over

PART - B

 $7 \times 10 = 70$

(Answer any seven questions from this section.)

10. Explain the star-delta-transformation with diagram.

10

11. State and explain Reciprocity theorem.

10

12. Find the current through 10 Ω Resistor, by applying Thevenin's theorem to the circuit given in the following circuit.

13. (a) State the law of reluctance.

3

(b) A coil of 2000 turns placed on an iron ring of mean circumference 0.3 m, takes a current of 0.5 A. If the area of cross section of the iron ring is 5 cm², find (i) field intensity (ii) flux density and (iii) total flux in the iron ring.

Take μ_y for iron = 3000.

7

14. (a) State and explain self induced e.m.f.

5

(b) State and explain mutually induced e.m.f.

5

15. (a) Define average value of an alternating current.

5

(b) Explain mid-ordinate method or graphical method of calculating the average value.

_

16. (a) A sinusoidal alternating current is represented by $i = 30 \sin 30 t$. Find

- (i) Maximum value
- (ii) current when t = 0.002 seconds passing through zero in the positive direction.
- (iii) R.M.S. value of current.

5

(b) Two impedances $z_1 = (4 + j6)$ and $z_2 = (6 + j4)$ are connected in series. Find the effective impedance and p.f. of the circuit.

5

15EE21T		3 of 4 1	167		
17.	(a)	Define (i) True power & (ii) Reactive power. Mention their units.			
	(b)	Define (i) Series resonance & (ii) Q-factor. Write their equations.	5		
18. ((a)	Derive the equation for power in a pure resistive circuit.	5		
	(b)	A series circuit consists of a resistance of 20 Ω an inductance of 0.5 H and a capacitance of 50 μF . If this is connected to a 250 V, 50 Hz supply. Find			
		(i) Inductive reactance			
		(ii) Capacitive reactance	5		
19. (a)	(a)	Prove that the line current is equal to the phase current in a 3-phase star	5		
	(b)	connected system. Three similar coils of 20 Ω resistance and 10 Ω inductive reactance are connected in delta. If a 400 V, 50 Hz supply is given to it, find	3		
		(i) Phase current			
		(ii) Line current			
		(iii) Power taken and			
		(iv) P.F. of the circuit.	5		

٠.