ENGINEERING PHYSICS

SH 102

 Lecture
 : 4
 Year : I

 Tutorial
 : 1
 Part : I/II

Practical: 2

Course Objectives:

To provide students a concept and sound knowledge of physics with the emphasis in present day applications to apply them in relevant fields. The background of physics corresponding to Proficiency Certificate Level is assumed.

1 Oscillation (6 hours)

- 1.1 Physical pendulum
 - 1.1.1 Bar pendulum
 - 1.1.2 Interchangeability of point of suspension and point of oscillation
 - 1.1.3 Minimum time period in case of physical pendulum
 - 1.1.4 Torsion pendulum
- 1.2 Damped and Forced Oscillation
 - 1.2.1 Damped harmonic oscillator
 - 1.2.2 Difference between free and damped oscillator
 - 1.2.3 Energy in damped oscillation
 - 1.2.4 Relaxation time
 - 1.2.5 Forced oscillation and resonance
 - 1.2.6 Sharpness of resonance
 - 1.2.7 Quality factor

2 Acoustics (3 hours)

- 2.1 Introduction
 - 2.1.1 Threshold of hearing and loudness
 - 2.1.2 Reverberation and reverberation time
 - 2.1.3 Absorption coefficient
 - 2.1.4 Sabine's Law
 - 2.1.5 Conditions for good acoustics
- 2.2 Ultrasound
 - 2.2.1 Production (piezoelectric) of ultrasound and its applications
 - 2.2.2 Test of structure and materials
 - 2.2.3 Medical uses

3 Heat and Thermodynamics

(8 hours)

- 3.1 Quantity of Heat
 - 3.1.1 Calorific value of Foods and Fuels
 - 3.1.2 Bomb Calorimeter
 - 3.1.3 Specific heat of solid: Dulong Petit law, Einstein's law
- 3.2 Nature of Heat
 - 3.2.1 Degree of freedom
 - 3.2.2 Maxwell's law of equipartition of energy
 - 3.2.3 atomicity of gases
 - 3.2.4 Vander-Waal's equation of real gases
 - 3.2.5 Critical constants
- 3.3 Thermodynamics
 - 3.3.1 Laws of Thermodynamics
 - 3.3.2 Clapeyron latent heat equation
 - 3.3.3 Entropy and Third law of thermodynamics
 - 3.3.4 Negative energy
 - 3.3.5 Maxwell's thermodynamic relations
 - 3.3.6 Gibb's free energy and phase transitions
- 3.4 Heat and Mass Transfer
 - 3.4.1 Fourier's law of thermal conductivity
 - 3.4.2 Use of thermal conductivity in building sciences
 - 3.4.3 Thermal resistance
 - 3.4.4 Types of convection
 - 3.4.5 Law of diffusion
 - 3.4.6 Relation between Stefan's law and Newton's law of Cooling
 - 3.4.7 Pyrheliometer and Pyrometer

4 Optics (17 hours)

- 4.1 Geometrical optics
 - 4.1.1 Lens separation
 - 4.1.2 Chromatism in lens combination
- 4.2 Interference
 - 4.2.1 Interference in thin films (reflected and transmitted light)
 - 4.2.2 fringes produced by a wedge-shaped thin film
 - 4.2.3 Newton's rings (both reflected and transmitted case)
 - 4.2.4 Determination of wavelength of light and refractive index of liquid by using Newton's rings.
- 4.3 Diffraction
 - 4.3.1 Introduction: Fresnel and Fraunhoffer's diffraction
 - 4.3.2 Fraunhoffer's diffraction at single slit
 - 4.3.3 Intensity distribution in the diffraction pattern due to a single slit
 - 4.3.4 Multiple slits, diffraction grating
 - 4.3.5 X-ray diffraction, X-rays in material testing

4.4 Polarization

- 4.4.1 Introduction: double refraction, Nichol prism (construction and uses)
- 4.4.2 Retardation plate (quarter and half wave plates), plane, elliptical and circular polarized light (theoretical and mathematical explanation)
- 4.4.3 Optical activity, specific rotation
- 4.5 Laser
 - 4.5.1 Introduction: Laser and ordinary light, properties of laser
 - 4.5.2 Induced absorption, spontaneous and Stimulated emission, active medium, population inversion, metastable state
 - 4.5.3 Pumping (types: optical, electrical, chemical and heating)
 - 4.5.4 He-Ne laser, semiconductor Laser
 - 4.5.5 Uses of laser
- 4.6 Fiber Optics
 - 4.6.1 Introduction: Propagation of light wave
 - 4.6.2 Types of optical fiber: step index and graded index
 - 4.6.3 Fiber transmission single and multimode, self focusing, acceptance angle and numerical aperture
 - 4.6.4 Applications

5 Electrostatics (8 hours)

- 5.1 Electric Field
 - 5.1.1 Electric field due to a electric dipole (along axial line and equatorial line)
 - 5.1.2 Electric dipole in an external electric field
 - 5.1.3 Electric field due to linear electric quadrupole (along axial line)
 - 5.1.4 Electric field: a ring of charge, circular ring and disc of charge
- 5.2 Electric Potential
 - 5.2.1 Potential due to electric dipole
 - 5.2.2 Potential due to linear quadrupole
 - 5.2.3 potential due to continuous charge distribution, potential due to ring of charge and disc of charge
- 5.3 Capacitors
 - 5.3.1 Cylindrical Capacitor
 - 5.3.2 Charging and discharging of capacitor
 - 5.3.3 Capacitor with dielectrics: dielectrics and Gauss law
 - 5.3.4 High intensity electrostatic fields: uses and hazards (xerography, inkjet, precipitation)

6 Electromagnetism

(6 hours)

- 6.1 Electromagnetic induction
 - 6.1.1 Faraday's laws
 - 6.1.2 Induction and energy transformation
 - 6.1.3 Induced electric field
 - 6.1.4 Self-induction and mutual induction
 - 6.1.5 LR circuit
 - 6.1.6 Energy stored in a magnetic field and energy density
 - 6.1.7 Induced magnetic field: modified Ampere's law and displacement current
- 6.2 Eddy Current
 - 6.2.1 Introduction
 - 6.2.2 Applications: Induction cooker, Electric Guitar, Metal Detector and Eddy Current Breaking
 - 6.2.3 Cyclotron and Synchrotron

7 Electromagnetic waves

(6 hours)

- 7.1 Maxwell's Equations
 - 7.1.1 Differential and integral forms
 - 7.1.2 Conversion of Maxwell's equations from integral form to differential form and differential form to integral form
 - 7.1.3 Maxwell's equations in different media
- 7.2 Applications
 - 7.2.1 Wave equations: non conducting and conducting medium and free space
 - 7.2.2 Plane solution of wave equations, amplitude of electromagnetic waves, speed of electromagnetic waves, ratio of electric and magnetic fields
 - 7.2.3 Continuity equation
 - 7.2.4 Energy transfer and Poynting vector, Radiation pressure

8 Photon and matter waves

(6 hours)

- 8.1 Quantum Physics
 - 8.1.1 Inadequacy of classical mechanics and rise of quantum mechanics, Quantization of energy
 - 8.1.2 Group velocity and phase velocity, electrons and matter waves
 - 8.1.3 de-Broglie wavelength, its applications
 - 8.1.4 Heisenberg uncertainty principle and its applications
 - 8.1.5 Wave functions and its significance

- 8.2 Schrodinger wave equation
 - 8.2.1 Time dependent and independent equation
 - 8.2.2 Probability distribution
 - 8.2.3 One dimensional infinite potential well, particle in a box
 - 8.2.4 Barrier tunneling (reflection and transmission coefficient)

Laboratory

- To determine the acceleration due to gravity and radius of gyration of the given metal bar using bar pendulum.
- To determine the modulus of elasticity of the given material and moment of inertia of the circular disc about the wire as an axis passing through its center and perpendicular to its plane by using torsional Pendulum
- To determine the coefficient of thermal conductivity of a bad conductor by Lee's method
- 4. To determine the mechanical equivalent of heat by given method
- 5. To determine the wavelength of the sodium light using Newton's rings
- 6. To determine the wavelength of sodium light using wedge-shaped method
- 7. To determine the wavelength of LASER light using diffraction grating and hence determine the particle size of lycopodium power
- 8. To determine the focal length of two lenses when they are separated by some finite distance
- 9. To determine the chromatic aberration of a convex lens between red and blue colors
- To determine the capacitance of the given capacitor by the method of charging and discharging through resistor
- To plot the graph between frequency and current in LCR series circuit and hence determine the quality factor of the circuit
- To study the growth and decay of current in LR circuit then determine the self-inductance of the given inductor
- 13. To determine the dielectric constant of the given material

Reference

- Halliday, Resnick, Walker, "Fundamentals of Physics', John Wiley & Sons.
- Pokharel, Bhattarai, and Paudel "Fundamentals of Engineering Physics", Benchmark Publication.
- 3. Brij Lal and Subrahmanyam, "A text book of Optics", S. Chand Publisher.
- 4. Basudeva, A.S. 'Modern Engineering Physics", S. Chand Publisher.
- 5. Caur R. K. and Gupta, S. L., "Engineering Physics', Dhanpat Publisher.
- 6. Brij Lal and Subrahmanyam, 'Waves and Oscillation", S. Chand publisher.
- Brij Lal and Subrahmanyam, 'Heat and Thermodynamics", S. Chand publisher
- 8. Avadhanulu, Kshirsaga and Arun Murthy, A text Book of Engineering Physics, S. Chand publisher.