班级	学号	姓名	教师签字一个人为一种
实验日期_	2023.12.14	_预习成绩	总成绩

实验名称 用惠斯通电桥测电阻

一. 实验目的

利用惠斯通电桥测试线性无件的阻值及电桥灵敏度。

二. 实验预习

绘制惠斯通电桥电路图,并说明平衡时满足条件。

平衡时, 检流计电流为0,

$$R = \frac{r_x}{r_R} R = NR$$

三. 实验现象及数据记录

1.惠斯通电桥测量电阻

电阻 (阻值)	N	$R_s(\Omega)$	$R_{x}\left(\Omega\right)$	$\Delta R_s (\Omega)$	△n(格)	S (格)
1 ΚΩ	1	987,5	987.5	0.4	9.0	2.22 ×104
10 ΚΩ	1	9848.9	9848.9	8.0	9.8	1.206×104

OR

2.惠斯通电桥灵敏度测量

N	$R_s(\Omega)$	$R_x(\Omega)$	$\Delta R_s (\Omega)$	△n (格)	S(格)
0.01	99987.7	999.877	3000:0	8-29	296.63
0.1	9898.7	989.87	600.0	(1.0	181.48
1	994.5	994.3	20.0	10.6	527.08
10	102,2	1022	7.0	9.2	134.32
100	11.0	1100	4.0	7.9	27.225

教师	姓名
签字	PRA

四. 实验结论及现象分析

对比不同 N 值下,惠斯通电桥灵敏度变化,并分析其他可能影响惠斯通电桥灵敏度参量。

由实验数据记录可知,N 值等于 1 时,电桥的灵敏度最高,N 值越远离 1,则灵敏度越低。

其他会影响电桥灵敏度的因素包括:

- 1. 检流计的灵敏度。检流计的灵敏度越高,电桥的灵敏度也越高。
- 2. 电源电压。适当提高电源电压可以增大电桥灵敏度。

五. 讨论问题

1. 电桥测电阻为什么不能测量小于1Ω的电阻?

实验装置中的导线也有一定的电阻(约 $10^{-5}\sim10^{-2}\Omega$),当测量小于 1Ω 的电阻时,导线的电阻值就会造成较大的测量误差。

2. 用什么方法保护电流计,不至于因电流过大而损坏?

首先使用较小的灵敏度进行测量,当电流计无法检测出电流变化时再调高灵敏度继续测量;在接通电流计时通过点按开关的方式,防止大电流持续经过电流计使其损坏。

3. 当电桥平衡后,若互换电源和检流计位置,电桥是否仍然平衡?并证明。

电桥仍然平衡。证明:

在原本的实验装置中, 电桥平衡时, 满足等式:

$$\frac{R_x}{R_s} = \frac{R_1}{R_2}$$

将电源和检流计位置互换后, 电路变为:

对于这个电桥, 其平衡条件为

$$\frac{R_s}{R_2} = \frac{R_x}{R_1}$$

这个等式与前面的等式是等效的,因此电桥仍然会平衡。