Solution

Section 1.5 – Transpose, Diagonal, Triangular, and Symmetric Matrices

Exercise

Solve Lc = b to find c. Then solve Ux = c to find x. What was A?

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

$$Lc = b$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

$$\Rightarrow \begin{cases}
c_1 = 4 \\
c_1 + c_2 = 5 \Rightarrow |c_2| = 5 - 4 = 1 \\
c_1 + c_2 + c_3 = 6 \Rightarrow |c_3| = 6 - 4 - 1 = 1
\end{cases}$$

$$c = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$$

$$Ux = c$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x + y + z = 4 \\ y + z = 1 \end{cases} \rightarrow \begin{cases} x = 3 \\ y = 0 \end{cases}$$

$$x = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

$$Lc = b \Rightarrow LUx = b$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
3 \\
0 \\
1
\end{pmatrix} =
\begin{pmatrix}
4 \\
5 \\
6
\end{pmatrix}$$

Find L and U for the symmetric matrix

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}$$

Find four conditions on a, b, c, d to get A = LU with four pivots

Solution

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a & a & a & a \\ 0 & b-a & b-a & b-a \\ 0 & 0 & c-b & c-b \\ 0 & 0 & 0 & d-c \end{bmatrix}$$

Exercise

Determine whether the given matrix is invertible

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

Solution

The matrix is a diagonal matrix with nonzero entries on the diagonal, so it is invertible.

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Exercise

Find
$$A^2$$
, A^{-2} , and A^{-k} by inspection $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$

$$A^{2} = \begin{bmatrix} 1^{2} & 0 \\ 0 & (-2)^{2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A^{-2} = \begin{bmatrix} 1^{-2} & 0 \\ 0 & (-2)^{-2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$$

$$A^{-k} = \begin{bmatrix} 1^{-k} & 0 \\ 0 & (-2)^{-k} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{(-2)^{k}} \end{bmatrix}$$

Find A^2 , A^{-2} , and A^{-k} by inspection $A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$

$$A^{2} = \begin{bmatrix} \left(\frac{1}{2}\right)^{2} & 0 & 0\\ 0 & \left(\frac{1}{3}\right)^{2} & 0\\ 0 & 0 & \left(\frac{1}{4}\right)^{2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{4} & 0 & 0\\ 0 & \frac{1}{9} & 0\\ 0 & 0 & \frac{1}{16} \end{bmatrix}$$

$$A^{-2} = \begin{bmatrix} \left(\frac{1}{2}\right)^{-2} & 0 & 0 \\ 0 & \left(\frac{1}{3}\right)^{-2} & 0 \\ 0 & 0 & \left(\frac{1}{4}\right)^{-2} \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 16 \end{bmatrix}$$

$$A^{-k} = \begin{bmatrix} \left(\frac{1}{2}\right)^{-k} & 0 & 0\\ 0 & \left(\frac{1}{3}\right)^{-k} & 0\\ 0 & 0 & \left(\frac{1}{4}\right)^{-k} \end{bmatrix}$$
$$= \begin{bmatrix} 2^k & 0 & 0\\ 0 & 3^k & 0\\ 0 & 0 & 4^k \end{bmatrix}$$

Find
$$A^2$$
, A^{-2} , and A^{-k} by inspection $A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

$$A^2 = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 16 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

$$A^{-2} = \begin{bmatrix} \frac{1}{4} & 0 & 0 & 0\\ 0 & \frac{1}{16} & 0 & 0\\ 0 & 0 & \frac{1}{9} & 0\\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$$

$$A^{-k} = \begin{bmatrix} (-2)^{-k} & 0 & 0 & 0\\ 0 & (-4)^{-k} & 0 & 0\\ 0 & 0 & (-3)^{-k} & 0\\ 0 & 0 & 0 & (2)^{-k} \end{bmatrix}$$

Decide whether the given matrix is symmetric $\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$

Solution

Not symmetric, since $a_{12} \neq a_{21}$ $(1 \neq -1)$

Exercise

Decide whether the given matrix is symmetric $\begin{bmatrix} 2 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & 7 \end{bmatrix}$

Solution

Symmetric

Exercise

Decide whether the given matrix is symmetric $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$

Solution

Not symmetric, since $a_{13} = 1 \neq 3 = a_{31}$

Exercise

Find all values of the unknown constant(s) in order for A to be symmetric

$$A = \begin{bmatrix} 2 & a - 2b + 2c & 2a + b + c \\ 3 & 5 & a + c \\ 0 & -2 & 7 \end{bmatrix}$$

$$\begin{cases} a-2b+2c=3\\ 2a+b+c=0\\ a+c=-2 \end{cases} \to a=11, b=9, c=-13$$

Find a diagonal matrix A that satisfies the given condition $A^{-2} = \begin{vmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{vmatrix}$

Let A be an $n \times n$ symmetric matrix

- a) Show that A^2 is symmetric
- b) Show that $2A^2 3A + I$ is symmetric

Solution

a) The property of the transpose states that $(AB)^T = B^T A^T$

$$(A^{2})^{T} = (AA)^{T}$$

$$= A^{T} A^{T}$$

$$= (A^{T})^{2}$$

$$= A^{2}$$
A is symmetric

 $\therefore A^2$ is symmetric

b)
$$(2A^2 - 3A + I)^T = 2(A^2)^T - 3(A)^T + (I)^T$$

$$= 2(A^T)^2 - 3A^T + (I)^T$$

$$= 2A^2 - 3A + I$$
A and I are symmetric

 $\therefore 2A^2 - 3A + I$ is **Symmetric**

Exercise

Prove if $A^T A = A$, then A is symmetric and $A = A^2$

Solution

If
$$A^T A = A$$
, then

$$A^{T} = \begin{pmatrix} A^{T} A \end{pmatrix}^{T}$$
$$= A^{T} \begin{pmatrix} A^{T} \end{pmatrix}^{T}$$
$$= A^{T} A$$
$$= A \mid$$

So A is symmetric.

Since
$$A = A^{T}$$

$$AA = A^{T}A$$

$$A^{2} = A$$

A square matrix A is called **skew-symmetric** if $A^T = -A$. Prove

- a) If A is an invertible skew-symmetric matrix, then A^{-1} is skew-symmetric.
- b) If A and B are skew-symmetric matrices, then so are A^T , A + B, A B, and kA for any scalar k.
- c) Every square matrix A can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

Hint: Note the identity
$$A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$$

Solution

a)
$$(A^{-1})^T = (A^T)^{-1}$$

 $= (-A)^{-1}$ skew-symmetric
 $= -A^{-1}$

 $\therefore A^{-1}$ is also skew-symmetric

b) Let A and B are skew-symmetric matrices

$$(A^{T})^{T} = (-A)^{T}$$

$$= -A^{T}$$

$$(A+B)^{T} = A^{T} + B^{T}$$

$$= -A - B$$

$$= -(A+B)$$

$$(A-B)^{T} = A^{T} - B^{T}$$

$$= -A + B$$

$$= -(A-B)$$

$$(kA)^{T} = k(A)^{T}$$

$$= k(-A)$$

$$= -kA$$

c) We need to prove from the hint that $\frac{1}{2}(A + A^T)$ is symmetric and $\frac{1}{2}(A - A^T)$ is skew-symmetric

$$\frac{1}{2}(A+A^T)^T = \frac{1}{2}(A^T + (A^T)^T)$$
$$= \frac{1}{2}(A+A^T)$$

Thus $\frac{1}{2}(A+A^T)$ is symmetric

$$\frac{1}{2} \left(A - A^T \right)^T = \frac{1}{2} \left(A^T - \left(A^T \right)^T \right)$$
$$= \frac{1}{2} \left(A^T - A \right)$$
$$= -\frac{1}{2} \left(A - A^T \right)$$

Thus $\frac{1}{2}(A-A^T)$ is skew-symmetric

Exercise

Suppose R is rectangular (m by n) and A is symmetric (m by m)

- a) Transpose $R^T A R$ to show its symmetric
- b) Show why $R^T R$ has no negative numbers on its diagonal.

Solution

a)
$$(R^T A R)^T = ((R^T A) R)^T$$

 $= R^T (R^T A)^T$
 $= R^T A^T (R^T)^T$
 $= R^T A R$

b)
$$(R^T R)_{jj} = (column \ j \ of \ R).(column \ j \ of \ R)$$

$$= Product \ of \ the \ diagonal \ entry \ by \ itself.$$

$$= length \ squared \ of \ column \ j.$$

Exercise

If L is a lower-triangular matrix, then $\left(L^{-1}\right)^{T}$ is _____Triangular

$$\left(L^{-1}\right)^T$$
 is *upper* triangular.

 L^{-1} is a lower-triangular because L is.

The transpose carries the lower-triangular matrices to the upper-triangular (and vice versa).

Exercise

True or False

- a) The block matrix $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ is automatically symmetric
- b) If A and B are symmetric then their product is symmetric
- c) If A is not symmetric then A^{-1} is not symmetric
- d) When A, B, C are symmetric, the transpose of ABC is CBA.
- e) The transpose of a diagonal matrix is a diagonal.
- f) The transpose of an upper triangular matrix is an upper triangular matrix.
- g) The sum of an upper triangular matrix and a lower triangular matrix is a diagonal matrix.
- h) All entries of a symmetric matrix are determined by the entries occurring on and above the main diagonal.
- *i)* All entries of an upper triangular matrix are determined by the entries occurring on and above the main diagonal.
- j) The inverse of an invertible lower triangular matrix is an upper triangular matrix.
- k) A diagonal matrix is invertible if and only if all of its diagonal entries are positive.
- l) The sum of a diagonal matrix and a lower triangular matrix is a lower triangular matrix.
- m) A matrix that is both symmetric and upper triangular must be a diagonal matrix.
- n) If A and B are $n \times n$ matrices such that A + B is symmetric, then A and B are symmetric.
- o) If A and B are $n \times n$ matrices such that A + B is upper triangular, then A and B are upper triangular.
- p) If A^2 is a symmetric matrix, then A is a symmetric matrix.
- q) If kA is a symmetric matrix for some $k \neq 0$, then A is a symmetric matrix.

Solution

a) False:
$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ \hline 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

b) False
$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$

c) True by definition.

d) True
$$(ABC)^T = C^T (AB)^T = C^T B^T A^T = CBA$$
 Since $A^T = A$, $B^T = B$, $C^T = C$

e) True Since a diagonal matrix must be square and have zeros off the main diagonal, its transpose is also diagonal.

135

f) False The transpose of an upper triangular matrix is lower triangular.

$$\mathbf{g)} \quad \mathbf{\textit{False}} \quad \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 1 & 4 \end{bmatrix}$$

- **h)** True The entries above the main diagonal determine the entries below the main diagonal in a symmetric matrix.
- i) True in an upper triangular matrix, the series below the main diagonal are all zeros.
- j) False The inverse of an invertible lower triangular matrix is lower triangular.
- k) False The diagonal entries may be negative, as long as they are nonzero.
- *True* Adding a diagonal matrix to a lower triangular matrix will not create nonzero entries above the main diagonal.
- *m) True* Since the entries below the main diagonal must be zero, so also must be the entries above the main diagonal.

n) False
$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$$
 which is symmetric

o) False
$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 0 & 4 \end{bmatrix}$$
 which is upper triangular.

$$p) \quad False \quad \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

q) True
$$(kA)^T = kA$$
 then
$$(kA)^T - kA = 0$$
$$kA^T - kA = 0$$
$$k(A^T - A) = 0 \text{ since } k \neq 0 \text{ then } A^T = A$$

Therefore, A is a symmetric matrix

Exercise

Find 2 by 2 symmetric matrices $A = A^{T}$ with these properties

- a) A is not invertible
- b) A is invertible but cannot be factored into LU (row exchanges needed)
- c) A can be factored into LDL^T but not into LL^T (because of negative D)

$$a) \quad A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 only need a zero in the diagonal.

c)
$$A = LDL^{T}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} a & 0 \\ a & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a & a \\ a & a+d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \rightarrow \begin{cases} a=1 \\ d=1 \end{cases}$$

$$LL^{T}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

A group of matrices includes AB and A^{-1} if it includes A and B. "Products and inverses stay in the group." Which of these sets are groups?

Lower triangular matrices L with 1's on the diagonal, symmetric matrices S, positive matrices M, diagonal invertible matrices D, permutation matrices P, matrices with $Q^T = Q^{-1}$. Invent two more matrix groups.

Solution

The lower triangular matrices L with 1's on the diagonal form a group.

Clearly the product of two is a third. The Gauss-Jordan method shows that the inverse of one is another.

The symmetric matrices don't form a group. An example of the 2 symmetric matrices A and B whose product is not symmetric

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \quad AB = \begin{bmatrix} 2 & 4 & 5 \\ 1 & 2 & 3 \\ 3 & 5 & 6 \end{bmatrix}$$

The positive matrices do not form a group.

$$M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 $M^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, the inverse is not symmetric.

The diagonal invertible matrices form a group.

The permutation matrices form a group.

The matrices with $Q^T = Q^{-1}$ form a group. If A and B are two matrices, then so are AB and A^{-1} ,

$$(AB)^T = B^T A^T = B^{-1} A^{-1} = (AB)^{-1}$$

 $(A^{-1})^T = (A^T)^{-1} = A^{-1}$

There are many more matrix groups. For example, given two, the block matrices $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ form a

third as A ranges over the first group and B ranges over the second.

Another example is the set of all products cP where c is a nonzero scalar and P is a permutation matrix of given size.

Exercise

Write $A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$ as the product *EH* of an elementary row operation matrix *E* and a symmetric matrix *H*.

Solution

$$A = EH$$

$$E^{-1}A = E^{-1}EH$$

$$E^{-1}A = H$$

An elementary row operation matrix has the form $E = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$

The inverse is:
$$E^{-1} = \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \\ -x+4 & -2x+9 \end{pmatrix}$$

Since matrix H is symmetric, therefore:

$$-x + 4 = 2$$
$$x = 2$$

$$\begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
Elementary Symmetric

When is the product of two symmetric matrices symmetric? Explain your answer.

Solution

AB is symmetric iff $AB = (AB)^T$

$$AB = (AB)^{T}$$

$$= B^{T}A^{T}$$

$$= BA$$
A and B are symmetric

AB is symmetric iff A and B commute

Exercise

Express
$$\left(\left(AB\right)^{-1}\right)^T$$
 in terms of $\left(A^{-1}\right)^T$ and $\left(B^{-1}\right)^T$

Solution

$$\left(\left(AB \right)^{-1} \right)^T = \left(B^{-1}A^{-1} \right)^T$$
$$= \left(A^{-1} \right)^T \left(B^{-1} \right)^T$$

Exercise

Exercise

Find the transpose of the given matrix: $\begin{bmatrix} 8 & -1 \\ 3 & 5 \\ -2 & 5 \\ 1 & 2 \\ -3 & -5 \end{bmatrix}$

Solution

$$A^{T} = \begin{bmatrix} 8 & 3 & -2 & 1 & -3 \\ -1 & 5 & 5 & 2 & -5 \end{bmatrix}$$

Exercise

Show that if A is symmetric and invertible, then A^{-1} is also symmetric.

Solution

A is symmetric and invertible, then $A = A^{T}$ $AA^{-1} = I$

$$\left(A^{-1}\right)^T = \left(A^T\right)^{-1}$$
$$= A^{-1}$$

 $\Rightarrow A^{-1}$ is symmetric.

Exercise

Prove that $(AB)^T = B^T A^T$

Solution

Let
$$A = \begin{bmatrix} a_{ik} \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{kj} \end{bmatrix}$

Then the ij-entry of AB is:

$$a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{im}b_{mj}$$

The reverse order, ji-entry of $(AB)^T$

Column j of B becomes row j of B^T , and row i of A becomes column i of A^T .

Thus, the *ij*-entry of $B^T A^T$ is:

$$(b_{1j}, b_{2j}, ..., b_{mj})(a_{i1}, a_{i2}, ..., a_{im})^T = b_{1j}a_{i1} + b_{2j}a_{i2} + ... + b_{mj}a_{im}$$

Thus
$$(AB)^T = B^T A^T$$

Exercise

For the given matrix, compute A^T , $\left(A^T\right)^{-1}$, A^{-1} , and $\left(A^{-1}\right)^{T}$, then compare $\left(A^T\right)^{-1}$ and $\left(A^{-1}\right)^{T}$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^T = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{matrix} R_1 - 2R_2 \\ \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & 1 & -2 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_3} R_1 - 2R_3$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad (A^T)^{-1} = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_1} R_3 - 3R_1$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 2 & 1 & -3 & 0 & 1 \end{bmatrix} \quad R_3 - 2R_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\left(A^{-1} \right)^T = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}$$

Show that a 2×2 lower triangular matrix is invertible if and only if $a_{11}a_{22} \neq 0$ and in this case the inverse is also lower triangular.

Solution

Let A to be the lower triangular matrix

$$A = \begin{pmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{pmatrix}$$

 $det(A) = a_{11}a_{22} \neq 0$ is invertible iff $a_{11}a_{22} \neq 0$ and then

$$A^{-1} = \frac{1}{a_{11}a_{22}} \begin{pmatrix} a_{22} & 0\\ -a_{21} & a_{11} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{a_{11}} & 0\\ -\frac{a_{21}}{a_{11}a_{22}} & \frac{1}{a_{22}} \end{pmatrix}$$

Let A be any 2×2 diagonal matrix. Give a necessary and sufficient condition on the diagonal entries so that A has an inverse. Compute the inverse of any such matrix.

Solution

$$\text{Let } A = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & 0\\ 0 & \frac{1}{a_{22}} \end{pmatrix}$$

So, A^{-1} exists when both entries on the main diagonal are nonzero.