Robert E. Heshing Jeropher Borbert B. Fadigan Susan E. Farley Nicholas Mesiti Philip E. Hansen* Blanche E. Schiller Wayne F. Reinke

* Patent Agent

David P. Miranda

HESLIN ROTHENBERG FARLEY & MESITI P.C.

INTELLECTUAL PROPERTY LAW

PATENTS • TRADEMARKS • COPYRIGHTS

Attorneys at Law
5 Columbia Circle
Albany, New York 12203
Telephone: (518) 452-5600
Facsimile: (518) 452-5579
www.hrfmlaw.com

August 23, 2005

Kathy Smith Dias David A. Pascarella Victor A. Cardona Lee Palmateer John Pietrangelo* Brett M. Hutton Stephen M. Hladik Edward Timmer Alana M. Fuierer John W. Boger

Of Counsel Martha L. Boden Jill M. Breedlove

Joseph L. Spiegel Poughkeepsie, NY

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Re: Correction of Mistake in Printed Patent

Under §1480 of the Manual of Patent

Examining Procedures

U.S. Patent No.:

6,919,347

Date of Patent: Inventor(s):

July 19, 2005 Ohlmeyer et al.

Our File No.:

1073.035A

Certificate

of Correction

Dear Sir:

Upon proofreading the sealed patent, we noticed errors made by the Patent Office.

Transmitted herewith is a proposed Certificate of Correction effecting a corrective amendment.

The patentee respectfully solicits the granting of the requested Certificate of Correction.

Respectfully submitted,

Edward Timmer, Esq. Registration No. 46,248

Attorney for Applicants

ET/cma
Enclosure

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.

6,919,347

DATED

July 19, 2005

INVENTOR(S)

Ohlmeyer et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claim 13

Col. 282, line 26, delete "A is $R^4R^5N-(O)$ -;" and insert --A is $R^4R^5N-(O)$ -;--

Claim 14

Col. 283, lines 26 thru 32 structure

Delete current structure and replace with

Claim 15

Col. 284, lines 5 thru 10 structure

Delete current structure and replace with

Claim 16

Col. 284, line 28, delete " A^1 is $R^4R^5N-C(O)$ -;" and insert -- A^1 is $R^4R^5N-C(O)$ -,--

Claim 19

Col. 286, line 21, delete "C— C_3 " in the second instance and insert $-C_1$ — C_3

Claim 26

Col. 288, lines 3 thru 10 structure

Delete current structure which has a "." after the letter "Q", and replace with

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} N \xrightarrow{N} Q$$

Claim 31

Col. 288, lines 57 thru 64

Delete current structure which has a "." after the letter "Q", and replace with

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} N \xrightarrow{N} Q$$

Claim 62

Col. 295, lines 41 thru 48

Delete current structure and replace with

MAILING ADDRESS OF SENDER:

Edward Timmer, Esq. Heslin Rothenberg Farley & Mesiti P.C. 5 Columbia Circle Albany, New York 12203 Telephone: (518) 452-5600 Facsimile: (518) 452-5579 PATENT NO.:

No. of add'l copies @ .50 per page

wherein J^1 and J^2 are independently chosen from H, F, Cl, CN, NO₂ and CH₃, and G is chosen from —CH₂—, $_{10}$ —CH₂CH₂—, —CH₂CH₂—, —OCH₂—, —CH₂O—, —CH₂CH₂O—, —OCH₂CH₂—, —O—, —N(lower alkyl)-, —N(lower alkyl)-CH₂—, —CH₂N(lower alkyl)-, —S—, —SO—, —SO₂—, —CH₂S—, —SCH₂—, —CH₂SO—, —SOCH₂—, —CH₂SO—, and $_{15}$ —SO₂CH₂—;

 R^5 is H or C_1 - C_3 -alkyl, with the proviso that both R^3 and R^5 cannot be alkyl;

R⁶ is aryl;

 R^7 is aryl or C_1 - C_3 -alkylaryl;

 R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 – C_4 -alkylaryl, C_1 – C_4 -alkylheteroaryl;

 R^9 is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, $C_1\!-\!C_4\!-\!$ alkylcycloalkyl, $(C_1\!-\!C_4\!-\!$ alkoxy)alkyl, $(C_1\!-\!C_4\!-\!$ alkoxycarbonyl)alkyl, $(C_1\!-\!C_4\!-\!$ alkylthio)alkyl, $_{10}\!-\!C_4\!-\!$ alkylheterocyclyl, $_{10}\!-\!C_4\!-\!$ alkylheteroaryl;

R¹⁰ is H or C₁-C₃-alkyl; or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with —OH, CN, —COOH or —COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from —OH, —OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

10. A 2-pyrimidinamine according to claim 9 wherein Q is chosen from imidazolyl, pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.

11. A 2-pyrimidinamine according to claim 10 wherein A is R⁴R⁵N—C(O)—:

W is H, Cl, NHR⁹ or OR⁸;

 R^1 is chosen from alkyl and C_1 - C_3 -alkylcycloalkyl;

R², R³ and R⁵ are H;

 R^4 is C_1-C_4 -alkylaryl or C_1-C_4 -alkylheteroaryl;

 R^8 is C_1-C_4 -alkylaryl;

 R^9 is chosen from hydrogen, alkyl, fluoroalkyl, $(C_1-C_4-alkoxy)alkyl, \ (C_1-C_4-alkylthio)alkyl, \ C_1-C_4-alkylcycloalkyl, \ C_1-C_4-alkylaryl, heterocyclyl, \ C_1-C_4-alkylheterocyclyl; and$

m and n are zero.

12. A 2-pyrimidinamine according to claim 11 wherein W is NHR⁹ and

R9 is

wherein

R¹⁴ is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and R¹⁵ is chosen from H, OCH₃ and Cl.

13. A compound of formula

$$A \xrightarrow{(CH_2)_m} R^1 \xrightarrow{R^2} \overset{R^3}{\underset{(CH_2)_n}{|}} N \xrightarrow{N} Q$$

wherein:

20

A is $R^4R^5N+(O)$ —;

Q is is chosen from imidazolyl and pyrrolyl;

W is NHR9:

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;

R², R³ and R⁵ are H;

R⁴ and R⁹ are benzyl or substituted benzyl;

m is zero; and

n is zero.

14. A compound of formula

$$A \xrightarrow{(CH_2)_m} R^1 \xrightarrow{R^2} R^3 \xrightarrow{R^3} Z \xrightarrow{Q}$$

wherein:

45

55

two of X, Y and Z are N and the other of X, Y and Z is CH:

A is A¹ or A²;

 A^{1} is $R^{4}R^{5}N-C(O)$,

$$R^6$$
 R^6
 R^6

 A^2 is chosen from $R^7C(O)NH$ —, $R^7S(O)_2NH$ —, R^4NH —, and R^4O —;

Q is chosen from heteroaryl, aryl, —CH₂R¹³, —CH=N—OCH₃ and

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, -OR⁸, -SR⁸, -NR⁹R¹⁰ and -NHC(O)R¹¹, with the proviso that when Q is imidazolyl, W is not H, Cl, F or R⁸;

R¹ is chosen from alkyl, cycloalkyl, alkenyl, C₁-C₃alkylcycloalkyl, heterocyclyl, C₁-C₃alkylheterocyclyl, aryl, C₁-C₃-alkylaryl, heteroaryl, C_1-C_3 -alkylheteroaryl, $(C_1-C_3$ -alkyloxy)alkyl, $(C_1-C_3-alkyloxy)$ cycloalkyl, $(C_1-C_3-alkylthio)$ alkyl, $(C_1-C_3$ -alkylthio)cycloalkyl and $(C_1-C_3$ alkylsulfonyl)alkyl;

R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

 R^3 is H or C_1 - C_6 -alkyl, or, when n is zero, R^2 and R^3 taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

R⁴ is

having the R configuration at the carbon indicated with an asterisk, wherein J^1 and J^2 are independently chosen from H, F, Cl, CN, NO₂ and CH₃, and G is chosen from —CH₂—, -CH₂CH₂-, -CH₂CH₂CH₂-, -OCH₂-, -CH₂O-, -CH₂CH₂O-, -OCH₂CH₂-, -O-, -N(lower alkyl)-, -N(lower alkyl)-, -CH₂N(lower alkyl)-, -S-, -SO-, $-SO_2-$, $-CH_2S-$, $-SCH_2-$, $-CH_2SO-$, $-SOCH_2-$, $-CH_2SO_2-$, and 40 $-SO_2CH_2-$;

R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;

R⁶ is aryl;

 R^7 is aryl or C_1 – C_3 -alkylaryl;

R⁸ is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1-C_4 -alkylaryl, C_1-C_4 -alkylheterocyclyl and C_1-C_4 alkylheteroaryl;

R9 is chosen from H, alkyl, alkenyl, substituted alkyl, 50 cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1 - C_4 -alkylcycloalkyl, (C_1 - C_4 -alkoxy)alkyl, (C_1 - C_4 alkoxycarbonyl)alkyl, (C1-C4-alkylthio)alkyl, heterocyclyl, C₁-C₄-alkylheterocyclyl, C₁-C₄alkylaryl, and C₁-C₄-alkylheteroaryl;

 R^{10} is H or C_1 - C_3 -alkyl; or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO2 or NR¹², said ring optionally substituted with —OH, —CN, —COOH or —COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from —OH, —OTHP, 1-imidazolyl, and 65 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

15. A pyrimidine according to claim 9 wherein R⁴ is

having the R configuration at the carbon indicated with an asterisk.

16. A compound of formula

$$A \xrightarrow{(CH_2)_m} R^1 \xrightarrow{R^2} \xrightarrow{R^3} X \xrightarrow{Z} Q$$

two of X, Y and Z are N and the other of X, Y and Z is

wherein:

45

should be some of CH; A1 is R4R5N-

A² is chosen from R⁷C(O)NH—, R⁷S(O)₂NH—, R^4NH —, and R^4O —; Q is chosen from aryl, —CH₂R¹³, —CH=N—OCH₃ and

heteroaryl other than 1-imidazolyl and 1-triazolyl;

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, —OR⁸, —SR⁸, —NR⁹R¹⁰ and —NHC(O)R¹¹, with the proviso that when Q is imidazolyl, W is not H, Cl, F or R8;

 R^1 is chosen from alkyl, cycloalkyl, alkenyl, C_1 - C_3 alkylcycloalkyl, heterocyclyl, C_1-C_3 -alkylheterocyclyl, aryl, C_1-C_3 -alkylheteroaryl, $(C_1-C_3$ -alkylheteroaryl, $(C_1-C_3$ -alkyloxy)alkyl, $(C_1-C_3-alkyloxy)$ cycloalkyl, $(C_1-C_3-alkylthio)$ alkyl, $(C_1-C_3-alkylthio)$ cycloalkyl and $(C_1-C_3-alkylthio)$ alkylsulfonyl)alkyl;

 R^2 is H or C_1 – C_3 -alkyl, or R^1 and R^2 taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

 R^3 is H or C_1 - C_6 -alkyl, or, when n is zero, R^2 and R^3 taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle:

 R^4 is chosen from H, aryl, heteroaryl, C_1-C_4 -alkyl substituted with from one to three aryl or heteroaryl residues,

$$\begin{array}{c}
J^1 \\
\downarrow \\
J^2
\end{array}$$
and
$$\begin{array}{c}
G \\
\downarrow \\
J^2
\end{array}$$

wherein J¹ and J² are independently chosen from H, F, Cl, CN, NO₂ and CH₃, and G is chosen from —CH₂—, —CH₂CH₂—, —CH₂CH₂—, —OCH₂—, CH₂O—, —CH₂CH₂O—, —OCH₂CH₂—, —O—, —N(lower alkyl)-, —N(lower alkyl)-CH₂—, —CH₂N(lower alkyl)-, —S—, —SO—, —SO₂—, —CH₂S—, —SCH₂—, —CH₂SO—, —SOCH₂—, —CH₂SO—, and 20—SO₂CH₂—;

 R^5 is H or C_1 - C_3 -alkyl, with the proviso that both R^3 and R^5 cannot be alkyl;

R⁶ is aryl;

 R^7 is aryl or C_1 – C_3 -alkylaryl;

 R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 – C_4 -alkylaryl, C_1 – C_4 -alkylheteroaryl;

 R^9 is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1 - C_4 -alkylcycloalkyl, $(C_1$ - C_4 -alkoxy)alkyl, $(C_1$ - C_4 -alkoxycarbonyl)alkyl, $(C_1$ - C_4 -alkylthio)alkyl, heterocyclyl, C_1 - C_4 -alkylheterocyclyl, C_1 - C_4 -alkylheteroaryl;

R10 is H or C1-C3-alkyl, or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with —OH, —CN, —COOH or —COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from —OH, —OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

17. A 4-pyrimidinamine according to claim 16, wherein Z is CH, having the formula

$$A \xrightarrow{(CH_2)_m} R^1 \xrightarrow{R^2} \stackrel{R^3}{\underset{N}{\downarrow}} \qquad Q$$

18. A 4-pyrimidinamine according to claim 17 wherein Q is chosen from methylimidazolyl, pyrrolyl, methylpyrrolyl, pyrazolyl, methylpyrazolyl, furanyl, methylfuranyl, thienyl, oxazolyl, thiazolyl, pyridinyl, quinolinyl, 1-methylpyrimidin-2-onyl, phenyl, fluorophenyl, 65 hydroxymethyl, 2-imidazolyl, tetrahydropyranyloxymethyl, imidazolylmethyl, pyrrolylmethyl, —CH=N—OCH₃ and

19. A 4-pyrimidinamine according to claim 18 wherein: Q is chosen from pyrrol-1-yl, imidazol-1-yl, furan-3-yl,

Q is chosen from pyrrol-1-yl, imidazol-1-yl, turan-3-y 2-methylimidazol-1-yl and 4-methylimidazol-1-yl;

A is R^4R^5N —C(O)—;

W is Cl, NRH⁹, N(CH₃)R⁹, OR⁸, SR⁸, R⁸, morpholin-4-yl,

$$-N$$
 SO_2 or $-N$ $N-R^{12}$

 R^1 is chosen from alkyl, cycloalkyl, C_1 - C_3 -alkylaryl, C_1 - C_3 -alkylcycloalkyl, C- C_3 -alkylheterocyclyl, C_1 - C_3 -alkylheteroaryl;

R², R³ and R⁵ are H;

 R^8 is C_1 – C_4 -alkylaryl;

 R^9 is chosen from hydrogen, alkyl, substituted alkyl, $(C_1-C_4)\text{-alkoxy},\ C_1-C_4\text{-alkylcycloalkyl},\ C_1-C_4\text{-alkylaryl},\ heterocyclyl,\ C_1-C_4\text{-alkylheteroaryl},\ C_1-C_4\text{-alkylheterocyclyl};\ and$

m and n are zero.

 $20.\ A\ 4\text{-pyrimidina}mine\ according\ to\ claim\ 19\ wherein\ W$ is NHR^9 and

R⁹ is chosen from hydrogen; methyl; ethyl; 2,2,2-trifluoroethyl; allyl; cyclopropyl; 2-cyanoethyl; propargyl; methoxy; methoxyethyl; cyclopropyl; cyclopropylmethyl; (methylthio)ethyl; 3-methoxypropyl; 3-pyridyl; 2-(3-pyridyl)ethyl; 2-(2-pyridyl)ethyl; 3-pyridylmethyl; 4-pyridylmethyl; 4-pyridylmethyl-Noxide; 2-pyridazinylmethyl; sulfolan-3-yl; 3-tetrahydrofuranyl; 2-tetrahydrofuranylmethyl; 3-(1-imidazolyl)propyl; 1-t-butoxycarbonyl-4-piperidinyl; 1-t-butoxycarbonyl-4-piperidinyl; 2-(hydroxyimino)propyl; 2-(methoxyimino)propyl; 2-oxo-1-propyl; and

wherein

35

40

45

55

60

R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, OH, SO₂CH₃, N(CH₃)₂ and COOH; R¹⁵ is chosen from H, OCH₃ and Cl; and

p is 1 or 2.

21. A 4-pyrimidinamine according to claim 19 wherein W is

$$-N$$
 N $-R^{12}$ and

R¹² is t-butoxycarbonyl, methoxyacetyl or phenyl. 22. A 4-pyrimidinamine according to claim 16 wherein Z is CH; 10

25

A is

R¹ is chosen from n-butyl; cyclohexylmethyl; cyclopentylmethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-chlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl;

R² and R³ are H;

Q is pyrrolyl;

W is NHR9; and

R9 is alkyl, cycloalkyl or

wherein

R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and 30 R¹⁵ is chosen from H, OCH₃ and Cl.

23. A pyrimidine according to claim 16 wherein:

A is $R^4R^5N-C(O)$;

R¹ is chosen from isopropyl; n-butyl; cyclohexylmethyl; cyclopentylmethyl; naphthylmethyl; cyclohexylethyl; 35 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-methoxybenzyl; 4-chlorobenzyl; 3,4-dichlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranylmethyl; 4-pyranylmethyl; 40 R², R³ and R⁵ are H;

R⁴ is pyridinyl, pyridinylmethyl, indanylmethyl, furanylmethyl, tetrahydronaphthalenyl, substituted phenyl, or

R¹⁶ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, CH₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

R¹⁷ is chosen from H, OCH₃, F and Cl.

24. A pyrimidine according to claim 16 wherein R⁴ is

$$J^1$$
 G

25. A pyrimidine according to claim 24, wherein one of J¹ and J² is H and the other is H, Cl or CN and G is chosen from 65—CH₂—, —CH₂CH₂—, —OCH₂—, —O— and —CH₂N (lower alkyl)-.

26. A 2-pyrimidinamine according to claim 16, wherein Y is CH, having the formula

$$A \xrightarrow{(CH_2)_m} R^1 \xrightarrow{R^2} N \xrightarrow{R^3} N \xrightarrow{(CH_2)_m} N \xrightarrow{N} 0.$$

27. A 2-pyrimidinamine according to claim 26 wherein Q is chosen from pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.

28. A 2-pyrimidinamine according to claim 27 wherein A is R⁴R⁵N—C(O)—;

W is H, Cl, NHR9 or OR8;

R¹ is chosen from alkyl and C₁-C₃-alkylcycloalkyl;

R², R³ and R⁵ are H;

 R^4 is C_1 - C_4 -alkylaryl or C_1 - C_4 -alkylheteroaryl;

 R^8 is C_1 – C_4 -alkylaryl;

 R^9 is chosen from hydrogen, alkyl, fluoroalkyl, $(C_1-C_4-alkoxy)alkyl, \ (C_1-C_4-alkylthio)alkyl, \ C_1-C_4-alkylcycloalkyl, <math display="inline">C_1-C_4-alkylaryl,$ heterocyclyl, $C_1-C_4-alkylheterocyclyl,$ and m and n are zero.

 $29.\ A$ 2-pyrimidinamine according to claim 28 wherein W is NHR 9 and

R9 is

wherein

45

60

R¹⁴ is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and R¹⁵ is chosen from H, OCH₃ and Cl.

30. A 2-pyrimidineamine according to claim 26 wherein \mathbf{R}^4 is

$$J^1$$
 J^2

one of J^1 and J^2 is H and the other is H, Cl or CN and G is chosen from $-CH_2-$, $-CH_2CH_2-$, $-OCH_2-$, -O- and $-CH_2N$ (lower alkyl)-.

31. A 4-pyrimidinamine according to claim 16, wherein X 55 is CH, having the formula

$$A \xrightarrow{(CH_2)_m} R^1 \xrightarrow{R^2} R^3 \xrightarrow{N} Q.$$

$$N \xrightarrow{N} Q.$$

$$N \xrightarrow{N} Q.$$

32. A 4-pyrimidinamine according to claim 31 wherein Q is pyrrolyl and m and n are zero.

60. The method of treating pain or hyperalgesia according to claim 59 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-2 inhibitor.

61. The method of treating pain or hyperalgesia according to claim 59 wherein said cyclooxygenase inhibitor is a 5 selective cyclooxygenase-1 inhibitor.

62. A method of treating post-capillary resistance or diabetic symptoms associated with insulitis comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of formula

wherein:

two of X, Y and Z are N and the other of X, Y and Z is CH;

A is A^1 or A^2 ; A^1 is R^4R^5N —(O)—,

 A^2 is chosen from $R^7C(O)NH$ —, $R^7S(O)_2NH$ —, R^4NH —, and R^4O —;

Q is chosen from heteroaryl, aryl, —CH₂R¹³, —CH=N—OCH₃ and

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, —OR⁸, —SR⁸, —NR⁹R¹⁰ and —NHC(O)R¹¹, with the proviso that when Q is imidazolyl, W is not H, Cl, F or R⁸;

 R^1 is chosen from alkyl, cycloalkyl, alkenyl, $C_1-C_3-alkylcycloalkyl,\ heterocyclyl,\ C_1-C_3-alkylheterocyclyl,\ aryl,\ C_1-C_3-alkylaryl,\ heteroaryl,\ C_1-C_3-alkylheteroaryl,\ (C_1-C_3-alkyloxy)alkyl,\ (C_1-C_3-alkyloxy)cycloalkyl,\ (C_1-C_3-alkylthio)cycloalkyl \ and\ (C_1-C_3-alkylsulfonyl)alkyl;$

R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing 60 O, S or NR¹²;

R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

R⁴ is chosen from H, aryl, heteroaryl, C₁-C₄-alkyl substituted with from one to three aryl or heteroaryl

residues.

wherein J^1 and J^2 are independently chosen from H, F, Cl, CN, NO₂ and CH₃ and G is chosen from —CH₂—, —CH₂CH₂—, —CH₂CH₂—, —OCH₂—, —CH₂O—, —CH₂CH₂O—, —OCH₂CH₂—, —O—, —N(lower alkyl)-, —N(lower alkyl)-, —CH₂N(lower alkyl)-, —S—, —SO—, —SO₂—, —CH₂S—, —SCH₂—, —CH₂SO—, and —SO₂CH₂—;

R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;

R⁶ is aryl;

 R^7 is aryl or C_1 – C_3 -alkylaryl;

 R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1-C_4 -alkylaryl, C_1-C_4 -alkylheteroaryl;

 R^9 is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, $C_1\!-\!C_4\!-\!$ alkylcycloalkyl, $(C_1\!-\!C_4\!-\!$ alkoxycarbonyl)alkyl, $(C_1\!-\!C_4\!-\!$ alkylthio)alkyl, heterocyclyl, $C_1\!-\!C_4\!-\!$ alkylheterocyclyl, $C_1\!-\!C_4\!-\!$ alkylaryl, and $C_1\!-\!C_4\!-\!$ alkylheteroaryl;

 R^{10} is H or C_1-C_3 -alkyl; or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with —OH, —CN, —COOH or —COOCH₃;

R¹¹ is aryl;

35

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from —OH, —OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

63. The method according to claim 62 wherein said diabetic symptoms associated with insulitis comprise hyperglycemia, diuresis, proteinuria and increased nitrile and kallikrein urinary excretion.

64. A method of treating edema comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of formula I

$$A \underbrace{ (CH_2)_m}^{R^1} \underbrace{ (CH_2)_n}^{R^2} \underbrace{ (CH_2)_n}^{R^3} \underbrace{ (CH_2)_n}^{Q}$$

wherein:

65 two of X, Y and Z are N and the other of X, Y and Z is CH;

A is A^1 or A^2 ;