## 7jx5nv7uf

## December 22, 2024

```
[1]: import pandas as pd
      import seaborn as sns
     from matplotlib.pyplot import show
      import matplotlib.pyplot as plt
 [4]:
      a=pd.read_csv("C:/Users/suraj/Documents/Python Classes/PV22/covid_19_data.csv")
 [6]: a.fillna(method='pad',inplace=True)
     C:\Users\suraj\AppData\Local\Temp\ipykernel_15528\3562668113.py:1:
     FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a
     future version. Use obj.ffill() or obj.bfill() instead.
       a.fillna(method='pad',inplace=True)
 [7]: a.isnull().sum()
 [7]: SNo
                         0
      ObservationDate
                         0
      Province/State
                         0
      Country/Region
                         0
      Last Update
      Confirmed
     Deaths
                         0
      Recovered
                         0
      dtype: int64
 [9]: # What is the total number of confirmed cases worldwide
      a['Confirmed'].sum()
 [9]: 26252051758.0
[10]: # How many deaths have been reported globally
      a['Deaths'].sum()
```

[10]: 624013017.0

```
[11]: # What is the total number of recovered cases worldwide a['Recovered'].sum()
```

[11]: 15450237912.0

```
[12]: # How many countries/regions are represented in the dataset a['Country/Region'].nunique()
```

[12]: 229

```
[13]: # What is the trend of confirmed cases over time globally
a['ObservationDate'] = pd.to_datetime(a['ObservationDate'])
global_trend = a.groupby('ObservationDate')['Confirmed'].sum().reset_index()
plt.plot(global_trend['ObservationDate'], global_trend['Confirmed'])
plt.xlabel('Date', fontsize=10)
plt.ylabel('Number of Confirmed Cases', fontsize=10)
```

[13]: Text(0, 0.5, 'Number of Confirmed Cases')



```
[14]: # Which province/state has reported the highest number of confirmed cases
      b = a.groupby('Province/State')['Confirmed'].sum().reset_index()
      highest = b.loc[b['Confirmed'].idxmax()]
      highest
[14]: Province/State
                        Zuid-Holland
      Confirmed
                        7745979414.0
     Name: 735, dtype: object
[15]: # Which country/region has the highest number of deaths
      b = a.groupby('Country/Region')['Deaths'].sum().reset_index()
      highest_deaths = b.loc[b['Deaths'].idxmax()]
      highest_deaths
[15]: Country/Region
      Deaths
                        123303762.0
     Name: 214, dtype: object
[16]: # How does the number of confirmed cases vary across different provinces/states
      b = a.groupby('Province/State')['Confirmed'].sum().reset_index()
      b = b.sort_values(by='Confirmed', ascending=False)
      b
[16]:
                 Province/State
                                     Confirmed
      735
                    Zuid-Holland 7.745979e+09
                      California 6.969008e+08
      88
      365
                     Maharashtra 6.811869e+08
      171
                         England 6.662275e+08
      630
                           Texas 5.520409e+08
      . .
            Jervis Bay Territory 0.000000e+00
      278
                       Recovered 0.000000e+00
      526
      173
            External territories 0.000000e+00
      404 Montgomery County, TX 0.000000e+00
                 American Samoa 0.000000e+00
      17
      [736 rows x 2 columns]
[17]: # What is the trend of deaths over time globally
      a['ObservationDate'] = pd.to_datetime(a['ObservationDate'])
      global_trend = a.groupby('ObservationDate')['Deaths'].sum().reset_index()
      plt.plot(global_trend['ObservationDate'], global_trend['Deaths'])
      plt.xlabel('Date', fontsize=10)
      plt.ylabel('Number Of Deaths', fontsize=10)
```

[17]: Text(0, 0.5, 'Number Of Deaths')



```
[18]: # Which country/region has the highest number of recovered cases
b = a.groupby('Country/Region')['Recovered'].sum().reset_index()
highest_recovered = b.loc[b['Recovered'].idxmax()]
highest_recovered
```

[18]: Country/Region India
Recovered 2900589824.0

Name: 96, dtype: object

```
[19]: # How does the number of recovered cases vary across different countries/regions
b = a.groupby('Country/Region')['Recovered'].sum().reset_index()
b = b.sort_values(by='Recovered', ascending=False)
b
```

```
[19]: Country/Region Recovered
96 India 2.900590e+09
27 Brazil 2.313677e+09
172 Russia 7.907057e+08
212 Turkey 5.641706e+08
214 US 5.033710e+08
```

[229 rows x 2 columns]

```
[20]: # Is there a correlation between the number of confirmed cases and deaths a [['Confirmed', 'Deaths']].corr() sns.heatmap(a [['Confirmed', 'Deaths']].corr())
```

[20]: <Axes: >



```
[21]: # Is there a correlation between the number of confirmed cases and recovered

cases
a[['Confirmed','Recovered']].corr()
sns.heatmap(a[['Confirmed','Recovered']].corr())
```

[21]: <Axes: >



```
[91]: # What is the distribution of confirmed cases by country/region country_cases = a.groupby('Country/Region')['Confirmed'].sum().reset_index() sns.histplot(data=country_cases, x='Confirmed', bins=5, kde=True)
```

[91]: <Axes: xlabel='Confirmed', ylabel='Count'>



```
[81]: # How does the mortality rate vary across different countries/regions

country_data = a.groupby('Country/Region')[['Confirmed', 'Deaths']].sum().

reset_index()

country_data = country_data[country_data['Confirmed'] > 0]

country_data['Mortality Rate (%)'] = (country_data['Deaths'] /__

country_data['Confirmed']) * 100

country_data_sorted = country_data.sort_values(by='Mortality Rate (%)',__

ascending=False)

country_data_sorted.head(100)
```

| [81]: |     | Country/Region | Confirmed   | Deaths     | Mortality Rate (%) |
|-------|-----|----------------|-------------|------------|--------------------|
|       | 225 | Yemen          | 962066.0    | 237613.0   | 24.698202          |
|       | 123 | MS Zaandam     | 3824.0      | 848.0      | 22.175732          |
|       | 220 | Vanuatu        | 406.0       | 39.0       | 9.605911           |
|       | 137 | Mexico         | 460463678.0 | 43005509.0 | 9.339609           |
|       | 197 | Sudan          | 7632455.0   | 488709.0   | 6.403038           |
|       |     | •••            | •••         | •••        | •••                |
|       | 143 | Morocco        | 104557135.0 | 1823724.0  | 1.744237           |
|       | 35  | Cameroon       | 11346589.0  | 197906.0   | 1.744189           |
|       | 109 | Kenya          | 27728648.0  | 482736.0   | 1.740929           |
|       | 12  | Austria        | 97965875.0  | 1678309.0  | 1.713157           |

93 Hong Kong 2655935.0 45325.0 1.706555

[100 rows x 4 columns]

```
[89]:
             Country/Region
                               Confirmed
                                            Recovered Recovery Rate (%)
                 Uzbekistan
     219
                              22207571.0
                                           21035683.0
                                                               94.723025
      78
                      Ghana
                              20784664.0
                                           19586296.0
                                                               94.234364
      55
           Diamond Princess
                                306872.0
                                             288580.0
                                                               94.039209
                 Micronesia
      138
                                   129.0
                                                121.0
                                                               93.798450
      95
                    Iceland
                               1729527.0
                                            1621682.0
                                                               93.764480
      . .
      97
                  Indonesia 265186050.0 226416174.0
                                                               85.380122
      151
                    Nigeria
                              33407947.0
                                           28514090.0
                                                               85.351219
      150
                      Niger
                                                               85.229996
                               1047041.0
                                             892393.0
      172
                     Russia 930548849.0 790705716.0
                                                               84.971973
      165
                   Portugal 141962632.0 120619045.0
                                                               84.965348
```

[100 rows x 4 columns]

```
[93]: # What is the trend of new confirmed cases over time globally
a['ObservationDate'] = pd.to_datetime(a['ObservationDate'])
df_grouped = a.groupby('ObservationDate')['Confirmed'].sum().reset_index()
df_grouped.sort_values('ObservationDate')
df_grouped.plot(x='ObservationDate', y='Confirmed', title='New Confirmed Cases_

Over Time Globally', xlabel='ObservationDate', ylabel='Confirmed')
```



| [95]: | Province/Sta               | te Confirmed  | Deaths    | Mortality Rate (%) |
|-------|----------------------------|---------------|-----------|--------------------|
| 66    | 8 Unkno                    | wn 8022663.0  | 4258506.0 | 53.080953          |
| 56    | 8 Santa Rosa County,       | FL 5.0        | 2.0       | 40.000000          |
| 33    | 8 Lee County,              | FL 6.0        | 2.0       | 33.333333          |
| 21    | <pre>3 Grant County,</pre> | WA 5.0        | 1.0       | 20.000000          |
| 52    | Baja Californ              | ia 10661120.0 | 1808573.0 | 16.964193          |
|       | •••                        | •••           | •••       | •••                |
| 49    | 2 Perm Kr                  | ai 9426150.0  | 341592.0  | 3.623876           |
| 60    | 1 Sormla                   | nd 3171168.0  | 114559.0  | 3.612518           |

```
95
                          Caqueta
                                     4000046.0
                                                  144258.0
                                                                      3.606409
       287
                            Junin
                                    10474345.0
                                                  372782.0
                                                                      3.559001
       [100 rows x 4 columns]
[97]: # How does the recovery rate vary across different provinces/states
       country_data = a.groupby('Province/State')[['Confirmed', 'Recovered']].sum().
        →reset_index()
       country_data = country_data[country_data['Confirmed'] > 0]
       country_data['Recovery Rate (%)'] = (country_data['Recovered'] /__
        country_data_sorted = country_data.sort_values(by='Recovery_Rate (%)',__
        →ascending=False)
       country_data_sorted.head(100)
[97]:
                                          Province/State
                                                           Confirmed
                                                                        Recovered \
                                                                 5.0
       656
                                                      US
                                                                            532.0
       668
                                                           8022663.0 619498477.0
                                                 Unknown
       527
                                  Repatriated Travellers
                                                              2431.0
                                                                           2431.0
       549
           Saint Helena, Ascension and Tristan da Cunha
                                                               882.0
                                                                            863.0
       494
                                                   Piaui
                                                          46545813.0
                                                                       45137476.0
       . .
       81
                                          Bryansk Oblast
                                                           7290010.0
                                                                        6680312.0
       246
                                               Hong Kong
                                                           2657986.0
                                                                        2434024.0
       698
                                         Voronezh Oblast
                                                          14490195.0
                                                                       13267047.0
       178
                             Falkland Islands (Malvinas)
                                                             11512.0
                                                                          10533.0
       194
                                                  Fujian
                                                            217053.0
                                                                         198430.0
            Recovery Rate (%)
                 10640.000000
       656
       668
                  7721.855910
       527
                   100.000000
       549
                    97.845805
       494
                    96.974299
       81
                    91.636527
       246
                    91.573996
       698
                    91.558789
       178
                    91.495830
       194
                    91.420068
       [100 rows x 4 columns]
[115]: # What is the trend of Recovered cases over time globally
       a['ObservationDate'] = pd.to_datetime(a['ObservationDate'])
       global_trend = a.groupby('ObservationDate')['Recovered'].sum().reset_index()
```

171

England

666227518.0

24042130.0

3.608697

```
plt.plot(global_trend['ObservationDate'], global_trend['Recovered'])
plt.title('Trend of Recovered Cases Over Time Globally')
plt.xlabel('Date', fontsize=10)
plt.ylabel('Number of Recovered Cases', fontsize=10)
```

[115]: Text(0, 0.5, 'Number of Recovered Cases')

