CANS1D モデルパッケージ md_cndtb

単純熱伝導

ver. 0

1 はじめに

このモデルパッケージは単純熱伝導問題をシミュレーションするためのものである。本コードでは、原点付近に置いた点源のエネルギーが熱伝導によってひろがっていくようすを追跡する。

2 仮定と基礎方程式

仮定は以下のとおり。(1) 1 次元の熱伝導方程式を解く。(2) 流路は断面積一様。 計算領域は $x \in [0,L]$ で、x=0 に初期点源をおく。基礎方程式は

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} \right) + \frac{\partial}{\partial x} \left(-\kappa \frac{\partial T}{\partial x} \right) = 0 \tag{1}$$

$$p = \frac{k_{\rm B}}{m} \rho T \tag{2}$$

ここで、 γ は比熱比でパラメータ。 κ は熱伝導係数、他の記号は通常の意味。熱伝導係数は、Spitzer モデルを採用し

$$\kappa = \kappa_0 T^{\frac{5}{2}} \tag{3}$$

 κ_0 は定数でパラメータ。 ρ は解かないで時間・空間的に一定値。

3 無次元化

数値計算では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、時間の単位はそれぞれ L、 $\tau_0\equiv L/C_{\rm S0}$ 。ここで L、 $C_{\rm S0}$ は、計算領域長、点源音速。密度と圧力とは点源の初期値 ρ_0 、 p_0 で無次元化する。

4 初期条件と境界条件

初期分布は以下のようなものである。

$$p = p_0 \exp\left(-x^2/w_0^2\right) \tag{4}$$

パラメータは $w_{\rm e}$ である。

境界条件はx = -0.5L、x = 0.5L とでともに

$$\partial \rho / \partial x = 0, \quad \partial \rho / \partial x = 0, \quad V_x = 0,$$
 (5)

5 パラメータ

表1参照。

パラメータ	変数	無次元値
非熱比	γ	5/3
定熱電導率	κ_0	1.
点源幅	w_{e}	0.3
計算領域長	L	1
密度	$ ho_0$	1
圧力	p_0	1

表 1: パラメータと無次元化単位

6 グリッド

グリッド点は $i \in [1, 201]$ 。グリッド間隔は、0.05。

- 7 計算結果
- 8 参考文献

(横山央明)

図 1: 計算結果