Posted: Fri., 2/7/2020 Due: Fri., 2/14/2020, 2:00 PM

1. In discussion we derived an expression for the signed distance d between an arbitrary point \underline{x} (or \underline{p}) and a hyperplane H given by $g(\underline{x}) = w_0 + \underline{w}^T \underline{x} = 0$, all in *nonaugmented* feature space. This question explores this topic further.

(a) Prove that the weight vector \underline{w} is normal to H.

Hint: For any two points \underline{x}_1 and \underline{x}_2 on H, what is $g(\underline{x}_1) - g(\underline{x}_2)$? How can you interpret the vector $(\underline{x}_1 - \underline{x}_2)$?

(b) Show that the vector \underline{w} points to the positive side of H. (Positive side of H means the d > 0 side.)

Hint: What sign does the distance d from H to $\underline{x} = (\underline{x}_1 + a\underline{w})$ have, in which \underline{x}_1 is a point on H?

- (c) Derive, or state and justify, an expression for the signed distance r between an arbitrary point $\underline{x}^{(+)}$ and a hyperplane $g(\underline{x}^{(+)}) = \underline{w}^{(+)T}\underline{x}^{(+)} = 0$ in *augmented* feature space. Set up the sign of your distance so that \underline{w} points to the positive-distance side of H.
- (d) In *weight* space, using augmented quantities, derive an expression for the signed distance between an arbitrary point $\underline{w}^{(+)}$ and a hyperplane $g(\underline{x}^{(+)}) = \underline{w}^{(+)T}\underline{x}^{(+)} = 0$, in which the vector $\underline{x}^{(+)}$ defines the positive side of the hyperplane.
- 2. For a 2-class learning problem with one feature, you are given four training data points (in augmented space):

$$\underline{x}_1^{(1)} = (1, -3); \ \underline{x}_2^{(1)} = (1, -5); \ \underline{x}_3^{(2)} = (1, 1); \ \underline{x}_4^{(2)} = (1, -1)$$

- (a) Plot the data points in 2D feature space. Draw a linear decision boundary **H** that correctly classifies them, showing which side is positive.
- (b) Plot the reflected data points in 2D feature space. Draw the same decision boundary; does it still classify them correctly?
- (c) Plot the reflected data points, as lines in 2D weight space, showing the positive side of each. Show the solution region.
- (d) Also, plot the weight vector \underline{w} of **H** from part (a) as a point in weight space. Is \underline{w} in the solution region?
- 3. (a) Let $p(\underline{x})$ be a scalar function of a *D*-dimensional vector \underline{x} , and f(p) be a scalar function of p. Prove that:

$$\nabla_{\underline{x}} f[p(\underline{x})] = \left[\frac{d}{dp} f(p)\right] \nabla_{\underline{x}} p(\underline{x})$$

i.e., prove that the chain rule applies in this way. [Hint: you can show it for the i^{th} component of the gradient vector, for any i. It can be done in a couple lines.]

- (b) Use relation (18) of DHS A.2.4 to find $\nabla_{\underline{x}} (\underline{x}^T \underline{x})$.
- (c) Prove your result of $\nabla_{\underline{x}}(\underline{x}^T\underline{x})$ in part (b) by, instead, writing out the components.
- (d) Use (a) and (b) to find $\nabla_{\underline{x}} \left[\left(\underline{x}^T \underline{x} \right)^3 \right]$ in terms of \underline{x} .
- 4. (a) Use relations above to find $\nabla_{\underline{w}} \|\underline{w}\|_2$. Express your answer in terms of $\|\underline{w}\|_2$ where possible. **Hint:** let $p = \underline{w}^T \underline{w}$; what is f?
 - (b) Find: $\nabla_{\underline{w}} |\underline{\underline{M}}\underline{w} \underline{b}|_2$. Express your result in simplest form. **Hint:** first choose p (remember it must be a scalar).
- 5. **[Extra credit]** For C > 2, show that total linear separability implies linear separability, and show that linear separability doesn't necessarily imply total linear separability. For the latter, a counterexample will suffice.