ТМП ДЗ №1

Максим Щемилкин А-05-19

30 марта 2022

1 Построить конечный автомат, распознающий язык

1. $L = \{w \in \{a, b, c\}^* \mid |w|_c = 1\}$

 $2. \ L = \{w \in \{a,b\}^* \quad |w|_a \leq 2, |w|_b \geq 2\}$

Это решение получается через перебор первых 4 символов. Такой же результат можно получить через произведение двух грамматик:

$$L_1 = \{ w \in \{a, b\}^* \mid w|_a \le 2 \}, \quad L_2 = \{ w \in \{a, b\}^* \mid w|_b \ge 2 \}$$

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	13
21	31	22
22	32	23
23	33	23
31		32
32		33
33		33

3.
$$L = \{w \in \{a, b\}^* \mid |w|_a \neq |w|_b\}$$

Нет такого конечного автомата

$$4.\ L=\{w\in\{a,b\}^*\quad ww=www\}$$

Это возможно только для языка, состоящего из пустого слова, так как при $|w|>0ww\neq www$. Можем построить недерминированный KA:

2 Построить KA, используя прямое произведение

1.
$$L_1 = \{ w \in \{a, b\}^* \mid |w|_a \ge 2 \land |w|_b \ge 2 \}$$

Разобьем на 2 автомата:

$$L_1 1 = \{ w \in \{a, b\}^* \mid w|_a \ge 2 \}, \quad L_1 2 = \{ w \in \{a, b\}^* \mid w|_b \ge 2 \}$$

Значит, $L=L_11\wedge L_12$. Имеем $\Sigma=a,b,s=11,T=33$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	13
21	31	22
22	32	23
23	33	23
31	31	32
32	32	33
33	33	33

 $2. \ L_2 = \{w \in \{a,b\}^* \quad |w| \geq 3 \wedge |w| \quad odd\}$ Разобьем на 2 автомата:

$$L_2 1 = \{ w \in \{a, b\}^* \mid |w| \ge 3 \}, \quad L_2 2 = \{ w \in \{a, b\}^* \mid |w| \quad odd \}$$

Значит, $L=L_21 \wedge L_22$. Имеем $\Sigma=a,b,s=11,T=42$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	22	22
12	21	21
21	32	32
22	31	31
31	42	42
32	41	41
41	42	42
42	41	41

Так как в вершину 12 попасть нельзя, можно автомат немного упростить:

 $3.\ L_3 = \{w \in \{a,b\}^* \ |w|_a \ \vdots \ 2 \wedge |w|_b \ \vdots \ 3\}$ Разобьем на 2 автомата:

$$L_31 = \{ w \in \{a,b\}^* \quad |w|_a \ \vdots \ 2\}, \quad L_32 = \{ w \in \{a,b\}^* \quad |w|_b \ \vdots \ 3\}$$

Значит, $L=L_31\wedge L_32$. Имеем $\Sigma=a,b,s=11,T=11$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	11
21	11	22
22	12	23
23	13	21

Получим:

4. $L_4 = \overline{L_3}$ Чтобы построить отрицание, нужно обратить конечные вершины, то есть получим:

5. $L_5 = L_2 \setminus L_3 = L_2 \wedge L_4$

Найдём пересечение двух языков:

 $L_5 = L_2 \wedge L_4$. Имеем $\Sigma = \{a,b\}, s = 11, T = 42$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	25	22
12	26	23
13	24	21
14	23	25
15	21	26
16	22	24
21	35	32
22	36	33
23	34	31
24	33	35
25	31	36
26	32	34
31	45	42
32	46	43
33	44	41
34	43	45
35	41	46
36	42	44
41	55	52
42	56	53
43	54	51
44	53	55
45	51	56
46	52	54
51	45	62
52	46	43
53	44	41
54	43	45
55	41	46
56	42	44

3 Построить минимальный ДКА по регулярному выражению

1. (ab + aba)*a

Недетерминированный КА по данному выражению:

Сочетания точек	По А	По В
1	3 6 10	
3 6 10		47
4 7	8 3 6 10	
8 3 6 10	3 6 10	47

Теперь можем нарисовать ДКА:

2. $a(a(ab)^*b)^*(ab)^*$

Недетерминированный КА по данному выражению:

Сочетания точек	По А	По В
1	2	
2	38	
38	4	69
4		5
69	38	
5	4	6
8		9
6	38	
9	8	

Теперь можем нарисовать ДКА:

Его можно минимизировать:

3.
$$(a + (a + b)(a + b)b)*$$

Недетерминированный КА по данному выражению:

Сочетания точек	По А	По В
1	12	2
12	123	23
2	3	3
3		1
123	123	123
23	3	13
13	12	12

Теперь можем нарисовать ДКА:

Он минимален

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$

По счастливому стечению обстоятельств удаётся сразу построить ДКА:

Кажется, он еще и минимальный. Победа! $5.\ (a+b)^+(aa+bb+abab+baba)(a+b)^+$ Недетерминированный КА по данному выражению:

Сочетания точек	По А	По В
1	2	2
2	13	17
13	26	24
17	28	26
26	1310	1710
24	135	17
28	13	179
1310	2610	2410
1710	2810	2610
135	26	246
179	286	26
246	13510	1710
286	1310	17910
2610	1310	1710
2410	13510	1710
2810	1310	17910
13510	2610	24610
17910	28610	2610
24610	13510	1710
28610	1310	17910

Теперь можем нарисовать ДКА:

Займёмся минимизацией:

 $0:\{1,2,13,17,26,24,28,135,179,246,286\}\{1310,1710,2610,...,28610\}$

 $1: \{1, 2, 13, 17, 24, 28, 135, 179\} \{26, 246, 286\} \{1310, 1710, 2610, ..., 28610\}$

 $2: \{1, 2, 24, 28\}\{13\}\{17\}\{135, 179\}\{26, 246, 286\}\{1310, 1710, 2610, ..., 28610\}$

 $3: \{1\}\{2\}\{24\}\{28\}\{13\}\{17\}\{135,179\}\{26,246,286\}\{1310,1710,2610,...,28610\}$

Таким образом, получится автомат:

4 Определить, является ли язык регулярным

1. $L = \{(aab)^n b (aba)^m \quad n \ge 0, m \ge 0\}$ Можем построить KA:

2. $L = \{uaav \mid u \in \{a,b\}^*, v \in \{a,b\}^*, |u|_b \ge |v|_a\}$

Пусть есть слово $w = b^n aaa^n, |w| \ge n.$

 Разобьём на w=xyz, где $x=b^i,y=b^j,z=b^{n-i-j}aaa^n,|xy|\leq n,|y|>0$ $w' = xy^k z = b^i b^{kj} b^{n-i-j} aaa^n$

В случае k=0 имеем $w=b^{n-j}aaa^n$ и это слово не входит в язык L. Значит, по невыполнению теореме о разрастании, язык L не регулярный.

3. $L=\{a^m w \mid w \in \{a,b\}^*, 1 \leq |w|_b \leq m\}$ Пусть есть слово $w=a^n b^n, |w| \geq n.$

Разобьём на w=xyz, где $x=a^{\overline{i}},y=a^{j},z=a^{n-i-j}b^{n},|xy|\leq n,|y|>0$ $w' = xy^k z = a^i a^{kj} \tilde{a^{n-i-j}} b^n$

В случае k=0 имеем $w=a^{n-j}b^n$ и это слово не входит в язык L. Значит, по невыполнению теореме о разрастании, язык L не регулярный.

4. $L = \{a^k b^m a^n \mid k = n \lor m > 0\}$

Пусть есть слово $w = a^n b a^n, |w| \ge n.$

Разобьём на w=xyz, где $x=a^i,y=a^j,z=a^{n-i-j}ba^n,|xy|\leq n,|y|>0$ $w' = xy^k z = a^i a^{kj} a^{n-i-j} b a^n$

В случае k=0 имеем $w=a^{n-j}ba^n$ и это слово не входит в язык L. Значит, по невыполнению теореме о разрастании, язык L не регулярный.

5. $L = \{ucv \mid u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$

Пусть есть слово $w = (ab)^n c(ab)^n = \alpha_1 \alpha_2 ... \alpha_{4n} \alpha_{4n+1}, |w| \ge n.$

Разобьём на w = xyz, где

 $x = \alpha_1 \alpha_2 \dots \alpha_i, \quad y = \alpha_{i+1} \alpha_{i+2} \dots \alpha_{i+j},$

 $z = \alpha_{i+j+1}\alpha_{i+j+2}...\alpha_{2n}c(ba)^n, |xy| \le n, |y| > 0$

 $w' = xy^k z = (\alpha_1 \alpha_2 ... \alpha_i)(\alpha_{i+1} \alpha_{i+2} ... \alpha_{i+j})^k (\alpha_{i+j+1} \alpha_{i+j+2} ... \alpha_{2n}) c(ba)^n$

В случае k>1 это слово не входит в язык L. Значит, по невыполнению теореме о разрастании, язык L не регулярный.