Hypothesis testing for two populations

Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lectures 28-29

ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author

Overview

What if we are interested in testing what the difference between two means is?

- \blacksquare μ_1 : unknown mean of population 1.
- \blacksquare μ_2 : unknown mean of population 1.

- **1** normally distributed populations with known variances σ_1^2 , σ_2^2 .
- 2 normally distributed populations with unknown variances that are known to be equal, that is unknown $\sigma_1^2 = \sigma_2^2$.
- an normally distributed populations with unknown variances that are not known to be equal, that is unknown $\sigma_1^2 \neq \sigma_2^2$.

What if we are interested in testing what the difference between two means is?

- \blacksquare μ_1 : unknown mean of population 1.
- \blacksquare μ_2 : unknown mean of population 1.

- **1** normally distributed populations with known variances σ_1^2, σ_2^2 .
- 2 normally distributed populations with unknown variances that are known to be equal, that is unknown $\sigma_1^2 = \sigma_2^2$.
- an normally distributed populations with unknown variances that are not known to be equal, that is unknown $\sigma_1^2 \neq \sigma_2^2$.

What if we are interested in testing what the difference between two means is?

- \blacksquare μ_1 : unknown mean of population 1.
- \blacksquare μ_2 : unknown mean of population 1.

- **1** normally distributed populations with known variances σ_1^2, σ_2^2 .
- 2 normally distributed populations with unknown variances that are known to be equal, that is unknown $\sigma_1^2 = \sigma_2^2$.
- an normally distributed populations with unknown variances that are not known to be equal, that is unknown $\sigma_1^2 \neq \sigma_2^2$.

What if we are interested in testing what the difference between two means is?

- \blacksquare μ_1 : unknown mean of population 1.
- \blacksquare μ_2 : unknown mean of population 1.

- **1** normally distributed populations with known variances σ_1^2, σ_2^2 .
- 2 normally distributed populations with unknown variances that are known to be equal, that is unknown $\sigma_1^2 = \sigma_2^2$.
- an normally distributed populations with unknown variances that are not known to be equal, that is unknown $\sigma_1^2 \neq \sigma_2^2$.

What if we are interested in testing what the difference between two means is?

- \blacksquare μ_1 : unknown mean of population 1.
- \blacksquare μ_2 : unknown mean of population 1.

- **1** normally distributed populations with known variances σ_1^2, σ_2^2 .
- 2 normally distributed populations with unknown variances that are known to be equal, that is unknown $\sigma_1^2 = \sigma_2^2$.
- 3 normally distributed populations with unknown variances that are not known to be equal, that is unknown $\sigma_1^2 \neq \sigma_2^2$.

Means with known σ_1, σ_2

Null hypothesis:

Test statistic:

$$H_0: \mu_1 - \mu_2 = \Delta_0.$$
 $Z_0 = \frac{(X_1 - X_2) - \Delta_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}.$ $Z_0 \sim \mathcal{N}(0, 1).$

H_1	Rejection region	<i>P</i> -value
$\mu_1 - \mu_2 \neq \Delta_0$	$ Z_0 > Z_{\alpha/2}$	$ \begin{array}{ c c }\hline 2\cdot (1-\Phi(Z_0))\\ 1-\Phi(Z_0) \end{array}$
$\mu_{ extsf{1}} - \mu_{ extsf{2}} > \Delta_{ extsf{0}}$	$Z_0 > Z_{\alpha}$	$1-\Phi(Z_0)$
$\mu_{1}-\mu_{2}<\Delta_{0}$	$Z_0 < -z_{\alpha}$	$\Phi(Z_0)$

Means with unknown $\sigma_1 = \sigma_2 = \sigma$

First, define a pooled estimator for the variance:

$$s_p^2 = \frac{(n_1 - 1) s_1^2 + (n_2 - 1) s_2^2}{n_1 + n_2 - 2}.$$

Null hypothesis:

Test statistic:

$$H_0: \mu_1-\mu_2=\Delta_0.$$

$$T_0 = \frac{(\overline{X}_1 - \overline{X}_2) - \Delta_0}{s_p \sqrt{1/n_1 + 1/n_2}}$$

$$T_0 \sim T_{n_1+n_2-2}.$$

Means with unknown $\sigma_1 = \sigma_2 = \sigma$

First, define a pooled estimator for the variance:

$$s_p^2 = \frac{(n_1 - 1) s_1^2 + (n_2 - 1) s_2^2}{n_1 + n_2 - 2}.$$

Null hypothesis:

Test statistic:

$$H_0: \mu_1-\mu_2=\Delta_0.$$

$$T_0 = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \Delta_0}{s_p \sqrt{1/n_1 + 1/n_2}}.$$

$$T_0 \sim T_{n_1+n_2-2}.$$

H_1	Rejection region	<i>P</i> -value
$\mu_1 - \mu_2 \neq \Delta_0$	$ T_0 > t_{\alpha/2,n_1+n_2-2}$	$2 \cdot (1 - T_{n_1 + n_2 - 2}(T_0))$
$\mu_{ extsf{1}} - \mu_{ extsf{2}} > \Delta_{ extsf{0}}$	$T_0 > t_{\alpha,n_1+n_2-2}$	$1 - T_{n_1 + n_2 - 2}(T_0)$
		$T_{n_1+n_2-2}(T_0)$

Means with unknown $\sigma_1 \neq \sigma_2$

We can no longer calculate a pooled estimator for the variance: instead, we need to use the two sample standard deviations in the place of the actual ones.

We can no longer calculate the actual degrees of freedom: we estimate the approximate degrees of freedom as

$$V = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

Means with unknown $\sigma_1 \neq \sigma_2$

We can no longer calculate a pooled estimator for the variance: instead, we need to use the two sample standard deviations in the place of the actual ones.

We can no longer calculate the actual degrees of freedom: we estimate the approximate degrees of freedom as

$$v = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}.$$

Means with unknown $\sigma_1 \neq \sigma_2$

Null hypothesis:

Test statistic:

$$H_0: \mu_1 - \mu_2 = \Delta_0.$$
 $T_0 = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \Delta_0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}.$ $T_0 \sim T_v.$

H_1	Rejection region	<i>P</i> -value
$\mu_1 - \mu_2 \neq \Delta_0$	$ T_0 > t_{\alpha/2,\nu}$	$2\cdot (1-T_{\nu}(T_0))$
$\mu_{1}-\mu_{2}>\Delta_{0}$	$T_0 > t_{\alpha, \nu}$	$1-T_{\nu}(T_0)$
$\mu_{1}-\mu_{2}<\Delta_{0}$	$T_0 < -t_{\alpha,\nu}$	$T_{\nu}(T_0)$

Ratio of variances

For two normally distributed populations with unknown variances σ_1^2 and σ_2^2 , we have:

Null hypothesis:

Test statistic:

$$H_0: \sigma_1^2 = \sigma_2^2.$$

$$F_0 = \frac{s_1^2}{s_2^2}.$$

$$F_0 \sim F_{n_1-1,n_2-1}.$$

H_1	Rejection region	
$\sigma_1^2 \neq \sigma_2^2$	$F_0 > f_{\alpha/2,n_1-1,n_2-1}$ or	
$\sigma_1^2 > \sigma_2^2 \ \sigma_1^2 < \sigma_2^2$	$F_0 > f_{\alpha/2,n_1-1,n_2-1}$ or $F_0 < f_{1-\alpha/2,n_1-1,n_2-1}$ $F_0 > f_{\alpha,n_1-1,n_2-1}$ $F_0 < f_{1-\alpha,n_1-1,n_2-1}$	

How about for the difference in the proportions of two populations $p_1 - p_2$?

- Let n_i , \hat{p}_i be the sample sizes and observed proportions.
- Assume that $n_i p_i$ and $n_i (1 p_i)$ are ≥ 30 .

Define a pooled proportion estimator:

$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}.$$

Why do we need this? Well, we somehow need to quantify the variance of the combined sample...

How about for the difference in the proportions of two populations $p_1 - p_2$?

- Let n_i , \hat{p}_i be the sample sizes and observed proportions.
- Assume that $n_i p_i$ and $n_i (1 p_i)$ are ≥ 30 .

Define a pooled proportion estimator:

$$\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}.$$

Why do we need this? Well, we somehow need to quantify the variance of the combined sample...

How about for the difference in the proportions of two populations $p_1 - p_2$?

- Let n_i , \hat{p}_i be the sample sizes and observed proportions.
- Assume that $n_i p_i$ and $n_i (1 p_i)$ are ≥ 30 .

Define a pooled proportion estimator:

$$\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}.$$

Why do we need this? Well, we somehow need to quantify the variance of the combined sample...

Null hypothesis:

Test statistic:

$$H_0: p_1 - p_2 = \Delta_0. \qquad Z_0 = \frac{(\hat{p}_1 - \hat{p}_2) - \Delta_0}{\sqrt{\hat{p}\left(1 - \hat{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}. \quad Z_0 \sim \mathcal{N}\left(0, 1\right).$$

H_1	Rejection region	
$p_1 - p_2 \neq \Delta_0$	$ Z_0 > Z_{\alpha/2}$	$\frac{2\cdot (1-\Phi(Z_0))}{1-\Phi(Z_0)}$
$p_1-p_2>\Delta_0$	$Z_0 > Z_{\alpha}$	$1-\Phi(Z_0)$
$p_1-p_2<\Delta_0$	$Z_0 < -z_{\alpha}$	$\Phi(Z_0)$

