第八讲 不等式中的归纳法

1.设 $a_1, a_2, ..., a_n$ 为非负数,求证:

$$\sqrt{a_1 + a_2 + \dots + a_n} + \sqrt{a_1 + a_2 + \dots + a_{n-1}} + \dots + \sqrt{a_1 + a_2} + \sqrt{a_1}$$

$$\geq \sqrt{n^2 a_1 + (n-1)^2 a_2 + \dots + 2^2 a_{n-1} + a_n}.$$

2.设整数
$$n \ge 2$$
 ,且实数 $x_1, x_2, \cdots, x_n \in [0,1]$,求证: $\sum_{1 \le k < l \le n} k x_k x_l \le \frac{n-1}{3} \sum_{k=1}^n k x_k$.

$$3, x_1 \ge 2x_2 \ge \dots \ge 2^{n-1}x_n \ge 0$$
, $\sum_{i=1}^n \frac{x_i}{\sqrt{i}} = 1$,证明: $\sum_{i=1}^n x_i^2 \le 1$.

4.已知
$$a_1, a_2, \cdots, a_n \ge 0$$
 ($n \ge 4$),求证: $4\sum_{i=1}^n a_{i+1} a_i \le (\sum_{i=1}^n a_i)^2$,其中 $a_{n+1} = a_1$.

5. 设集合 $\{x_1, x_2, \cdots, x_n\} = \{y_1, y_2, \cdots, y_n\} = \{1, 2, \cdots, n\}$,则 $\sum_{i=1}^n x_i y_i$ 的可能值有多少种?

6.已知正整数 a_1,a_2,\cdots,a_n 满足 $\sum_{i=1}^n\frac{1}{a_i}<1$,求证: 当 $\sum_{i=1}^n\frac{1}{a_i}$ 取得最大值时,有 $a_1=2$ 且 $a_{k+1}=a_1a_2\cdots a_k+1\ (k=1,2,\cdots,n-1)$

7.设n是正整数, x_1, x_2, \cdots, x_n 是正实数,若存在实数 $t \in (0,1)$,使得对任意 $1 \le i < j \le n$,

有
$$x_i x_j \le t^{|l-j|}$$
, 求证: $\sum_{i=1}^n x_i < \frac{1}{1-\sqrt{t}}$.

8.设正整数 $n \geq 2$, 实数 $a_1, a_2, \cdots, a_{n+1}$ 满足 $0 < a_1 < a_2 < \cdots < a_{n+1}$, 求证:

$$\sqrt[n]{a_1} - \sqrt[n]{a_2} + \sqrt[n]{a_3} - \cdots - \sqrt[n]{a_{2n}} + \sqrt[n]{a_{2n+1}} < \sqrt[n]{a_1 - a_2} + a_3 - \cdots - a_{2n} + a_{2n+1}.$$

9. 设正整数 $n \ge 2$, 实数 a_1, a_2, \dots, a_n 和 r_1, r_2, \dots, r_n 满足 $a_1 \le a_2 \le \dots \le a_n$ 以及 $0 \le r_1 \le r_2 \le \dots \le r_n$, 求证: $\sum_{i=1}^n \sum_{j=1}^n a_i a_j \min \{r_i, r_j\} \ge 0.$