Tópicos Avançados em Computação I (Criptografia)

Códigos de Autenticação de Mensagens

Prof. Dr. Ewerton R. Andrade – ewerton.andrade@unir.br

Nos episódios anteriores...

- Confidencialidade
 - Capacidade de prevenir vazamento de informações

"Seu saldo é R\$10.000,00"

"Hlaafd7Y(@&fhF23%7"

"Seu saldo é R\$10.000,00"

Nos episódios anteriores...

- Integridade
 - Capacidade de verificar se informação foi alterada

Integridade: redundância

- Exemplo prático (não-criptográfico):
 - RG/CPF: usa Dígito verificador (DV)
 - Método: "mod 11"
 - Dígito é multiplicado por sua posição, indo do menos significativo (peso 2) até o mais significativo
 - Os resultados são somados
 - DV: resto da divisão desta soma por 11

Exemplo simplificado

Entrada:	2	3	5	9	2	
Posição:	6)x	5 / X	4) ×	3)×	2 / X	
Multiplicação:	12	15	20	27	4	
Soma:	78					
DV:	78 mod 11 = 1					

Integridade: redundância

- Exemplo prático (não-criptográfico):
 - CD/DVD: usa Cyclic Redundancy Check (CRC)

- Se Dados forem alterados (ex.: CD riscado)
 - Função Verificação (Dados) ≠ CRC
 - Computador acusa erro de leitura!

Códigos de Autenticação

Nos episódios anteriores...

Autenticidade

 Capacidade do receptor em verificar quem é o emissor da mensagem

Usar hash?

- Hash sozinho não funciona...
 - Qualquer pessoa (incluindo intruso) pode calcular o hash da mensagem falsa...
 - O fato da mensagem estar íntegra não significa que foi o banco quem a enviou...

Estratégia

- Usar <u>redundância dependente de chave</u>
 - Apenas origem e destino conhecem a chave e conseguem calcular redundância corretamente
 - Também garante integridade (alteração na mensagem detectada como no caso das funções de hash)

Códigos de Autenticação

- Redundâncias anexadas a mensagens de modo a detectar alterações (*integridade*) e garantir a autenticidade do remetente.
 - Chamada de "tag (etiqueta) de autenticação"
- Dependem da mensagem e também de uma informação secreta, compartilhada entre o remetente e o destinatário.
 - Propriedades de segurança: semelhantes a hash + incapacidade do atacante em recuperar a chave

Códigos de Autenticação: uso

- Envio de mensagem autenticada
 - K: chave simétrica compartilhada
 - T: tag → garante integridade e autenticidade

Construções Comuns

- Cifras de bloco:
 - CBCMAC (FIPS 113, ANSI X9.17).
 - CMAC (NIST SP 800-38B).
 - Vantagem: espaço de código (aproveitam implementações existentes de cifras de bloco).
- Funções de hash:
 - HMAC (FIPS 198).
 - Vantagem: velocidade de operação (funções de hash puras).
- As duas estratégias são bastante usadas na prática

Cuidados de Uso

- Uma mesma chave <u>não</u> deve ser utilizada para cifrar e autenticar mensagens
- Cada algoritmo tem suas próprias restrições de segurança
 - Número máximo de mensagens que podem ser autenticadas usando uma mesma chave
 - Tamanho máximo da mensagem autenticada
 - Uso apenas com mensagens de tamanho fixo (ex.: CBC-MAC) ou de qualquer tamanho (ex.: CMAC e HMAC)

MAC + cifra (uso no TLS)

- Mensagem confidencial (C) e autenticada (T)
 - K e K': chaves compartilhadas <u>diferentes</u>
 - Serviços: confidencialidade (cifra simétrica), integridade e autenticidade (algoritmo de MAC)

Assinaturas Digitais?

- Um código de autenticação pode garantir Integridade e Autenticidade.
- Não pode garantir irretratabilidade, pois tanto o remetente quanto o destinatário conhecem a mesma chave.
 - Não é possível provar para um terceiro quem de fato gerou o código de autenticação!
- Numa assinatura digital verdadeira, apenas o remetente conhece a chave de assinatura.

