LINEAR ALGEBRA

VECTOR SPACES AND SUBSPACES

Definition. A (real) $vector\ space$ is a set V (whose elements are called vectors) together with

- (1) an operation called *vector addition*, which for each pair of vector $\vec{x}, \vec{y} \in V$ produces another vector in V denoted $\vec{x} + \vec{y}$, and
- (2) an operation called multiplication by a scalar (a real number), which for each vector $\vec{x} \in V$, and each scalar $c \in \mathbb{R}$ produces another vector in V denoted $c\vec{x}$.

Furthermore, the two operations must satisfy the follow axioms:

- (1) For all vectors \vec{x}, \vec{y} , and $\vec{z} \in V$, $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$.
- (2) For all vectors \vec{x} and $\vec{y} \in V$, $\vec{x} + \vec{y} = \vec{y} + \vec{x}$.
- (3) There exists a vector $\vec{0} \in V$ with the property that $\vec{x} + \vec{0} = \vec{x}$ for all vectors $\vec{x} \in V$.
- (4) For each vector $\vec{x} \in V$, there exists a vector denoted $-\vec{x}$ with the property that $\vec{x} + -\vec{x} = \vec{0}$.
- (5) For all vectors \vec{x} and $\vec{y} \in V$ and all scalars $c \in \mathbb{R}$, $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$.
- (6) For all vectors $\vec{x} \in V$, and all scalars c and $d \in \mathbb{R}$, $(c+d)\vec{x} = c\vec{x} + d\vec{x}$.
- (7) For all vectors $\vec{x} \in V$, and all scalars c and $d \in \mathbb{R}$, $(cd)\vec{x} = c(d\vec{x})$.
- (8) For all vectors $\vec{x} \in V$, $1\vec{x} = \vec{x}$.

Examples. Some simple vector spaces:

- \mathbb{R}^n is the vector space of ordered *n*-tuples of real numbers. Note: $\dim(\mathbb{R}^n) = n$
- $P_n(\mathbb{R})$ is the vector space of polynomials of degree less than or equal to n. Note: $\dim(P_n(\mathbb{R})) = n + 1$.
- $M_{m \times n}(\mathbb{R})$ is the vector space of $m \times n$ matrices with real entries. Note: $\dim(M_{m \times n}(\mathbb{R})) = mn$.

Definition. Let V be a vector space and let $W \subseteq V$ be a subset. Then W is a (vector) *subspace* of V if W is a vector space itself under the operations of vector sum and scalar multiplication from V.

Notes. The empty set \emptyset is not a vector space. Instead the smallest vector space is the trivial space, $\{\vec{0}\}$. Every vector space V has two obvious subspaces: the trivial subspace $\{\vec{0}\} \subseteq V$, and the improper subspace $V \subseteq V$.

Theorem (Subspace Theorem). Let V be a vector space. A subset $W \subseteq V$ is a subspace if it satisfies the following properties:

- (1) $W \neq \emptyset$
- (2) For all $\vec{x}, \vec{y} \in W$ and all $c \in \mathbb{R}$, we have $c\vec{x} + \vec{y} \in W$.

Definition. Let V be a vector space, and let $S = \{\vec{v}_1, \dots, \vec{v}_n\} \subseteq V$ be a finite set of vectors in V.

1

- A linear combination of elements of S is an expression $a_1\vec{v}_1 + \cdots + a_n\vec{v}_n$ for some scalars $a_1, \ldots, a_n \in \mathbb{R}$.
- The span of S, denoted Span(S), is the set of all linear combinations of elements of S. That is,

$$\operatorname{Span}(S) = \{a_1 \vec{v}_1 + \cdots + a_n \vec{v}_n \mid a_1, \dots, a_n \in \mathbb{R}\}.$$

- We define $\operatorname{Span}\emptyset = \{\vec{0}\}.$
- If Span(S) = W, we say that S spans W.

Theorem. Let V be a vector space and let S be any subset of V. Then $\mathrm{Span}(S)$ is a subspace of V.

Theorem. If W is a subspace and $S \subseteq W$, then $\mathrm{Span}(S) \subseteq W$.

Definition. The set S is linearly dependent if there exists scalars $a_1, \ldots, a_n \in \mathbb{R}$ that are not all zero such that $a_1\vec{v}_1 + \cdots + a_n\vec{v}_n = \vec{0}$. S is linearly independent if it is not linearly dependent. Equivalently, for any scalars $a_1, \ldots, a_n \in \mathbb{R}$ such that $a_1\vec{v}_1 + \cdots + a_n\vec{v}_n = \vec{0}$, we must have $a_1 = \cdots = a_n = 0$.

Definition. The set $S \subseteq V$ is a basis for V if S is linearly independent and $\mathrm{Span}(S) = V$.

Definition. The *dimension* of V is the number $\dim(V)$ of elements in a basis for V. If V has no finite basis, we say $\dim(V) = \infty$.

Theorem. Any two bases of V have the same number of elements.

Fact. The three kinds of row reduction steps are

- (1) Switching two rows.
- (2) Multiplying a row by a nonzero scalar.
- (3) Adding a multiple of one row to another.

Definition. A matrix is in *echelon form* if it satisfies all of the following conditions:

- (1) If a row is not a zero row (i.e., all entries of that row are zeros), then the first nonzero entry is a 1 (called the *pivot*).
- (2) If a column contains a pivot, then all other entries in that column are 0.
- (3) If a row contains a pivot, then each row above contains a pivot further to the left. This also implies that zero rows, if any, appear at the bottom.

Variables corresponding to the pivots are called *pivot variables*. All other variables are called *free variables*.

Definition. A homogeneous system of linear equations is when all the linear combinations equal 0. A system is *inhomogeneous* otherwise.

Definition. The *nullspace* of a matrix A is the solution set of its corresponding homogeneous system of equations. The basis of the nullspace of A is the set of vectors that the free variables end up multiplied by in the solution.

Definition. The *column space* of a matrix A is the span of its columns. If B is the echelon form of A, then the columns of A corresponding to the columns of B with pivots form a basis of the column space.