Name: Imran Warfa ID: 500899229 M2 D2 D1 > D2 High bias = Underfitting 1 Layers = Noverfitting 6.) PAI = [2,10] A8, A4, A6, A5, A3 = $\int (4+5+6+7+8)/5, (9+8+4+5+4)/5$ >> [6,6] Cluster 2 Cluster 3: [(1+2)/2, (2+5)/2]

Al = [2, 10], A8 = [4, 9], A4 = [5,8]
Cluster | Center =
$$[(2+4+5)/3, (10+9+8)/3]$$

= $[(3,67,9)]$

Cluster 2 (enter =
$$[(6+7+8)/3, (4+5+4)/3]$$

= $[7, 4.33]$

Cluster 3: A2, A7

$$A2 = [2, 5], A7 = [1, 2]$$

(luster 3 (enter =
$$[(2+1)/2, (5+2)/2]$$

= $[1.5, 3.5]$

a vestion 8 en next page

Red

_						
	0	0	0	0	C	0
	0	2	0	0		0
	0	0	1	0	2	0
	0	2	١	0	1	0
	0	1	0	2	0	0
Ì	0	0	0	0	0	0
	-					

F	Filter-Red							
	2	0	0					
	0	- 1	0					
	2	1	0					

6 reen

								_
0	0	10	TC		0		C	2
0	0	2	1		2		\subset	2
0	\·	١	1		0		0	
0	0	0	2		2	Ī	C	1
0	2	0	0	-	2	(2	
\circ	0	0	0	C	0]	(

next

1st Run:
$$0+0+0$$

 $+0+1+0$
 $+0+0+0=1$
 $4+1+1=6$

$$3^{rd}$$
 Run: $0+0+0$
 $+0+2+0$
 $+0+0+2=6$
 $6+2+1=9$

4th Run:
$$0+0+0$$
 $+0+1+0$
 $+0+0+0=4$
 $+0+2+6=3$
 $3+4+1=8$

is the convolution

<u>P</u>.

9	8
6	9

9.
$$\chi = 1$$
, $\gamma = 4$, $f(z) = 7$ for all neurons, $\chi = 0.1$, $\psi = \omega_1 = \omega_2 = \omega_3 = \omega_4 = \omega_5 = 1$

@ Find initial even

50270

$$z_1 = \omega_1 x_1 = x_1$$

 $z_2 = \omega_3 z_1 + \omega_2 \cdot 1 = z_1 + 1 = x_1 + 1$

$$\hat{y} = z_2 \omega_5 + \omega_4 \cdot 1$$

= $(1) \cdot (x_1 + 1) + 1 = x_1 + 2 = \hat{y}$

$$g = (1) + 2 = 3$$

Error =
$$\frac{1}{2}(\hat{y} - y)^2$$

= $\frac{1}{2}(3 - 4)^2 = \frac{1}{2}$

$$\frac{\partial E}{\partial \omega_{5}} = \frac{\partial E}{\partial \dot{y}} \cdot \frac{\partial \dot{y}}{\partial \omega_{5}}$$

$$\frac{\partial \dot{y}}{\partial \omega_{5}} = \frac{\partial \dot{y}}{\partial \dot{y}} \cdot \frac{\partial \dot{y}}{\partial \omega_{5}}$$

$$\frac{\partial \dot{y}}{\partial \omega_{5}} = \frac{\partial \dot{z}}{\partial \omega_{5}} + \omega_{4} \cdot 1$$

$$\frac{\partial E}{\partial \omega_5} = (g - y)(z_2)$$
$$= -(x_1 + 1) = -2$$

$$W_{5}_{new} = W_{5}_{old} - J_{0.1} = \frac{3E}{3W_{5}}$$

$$= 1 - (0.1)(-2) = 1.2$$

$$\frac{\partial E}{\partial \omega_4} = \frac{\partial E}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \omega_4} \rightarrow 1$$

$$= (-1) \cdot 1 = -1$$

$$\omega_{4\text{new}} = \omega_{4} dd - \omega_{3\omega_{4}}$$

$$= (1) - (0.1)(-1) = |\underline{1}|$$

3 Update
$$\omega_3$$

$$\frac{\partial E}{\partial \omega_3} = \frac{\partial E}{\partial \hat{g}} \cdot \frac{\partial \hat{G}}{\partial z_2} \cdot \frac{\partial z_2}{\partial \omega_3}$$

The state
$$\omega_{2}$$
 and ω_{5} and ω_{5} and ω_{5} and ω_{2} and ω_{5} and ω_{5}

$$= 1 - (0,1)(-1) = \frac{1.1}{1}$$

(5) Update
$$\omega_1$$
 ω_2 ω_3 ω_3 ω_4 ω_5 ω_5 ω_5 ω_5 ω_6 ω_7 ω_7 ω_7 ω_7 ω_8 ω_8

$$= 1 - (0.1)(-1) = 1.1$$

$$Z_1 = \omega_1 \times_1 = (1.1)(1) = 1.1$$

 $Z_2 = \omega_3 Z_1 + \omega_2 \cdot 1 = (1.1)(1.1) + 1.1 = 2.31$

$$\hat{y} = 72.05 + 64.1$$

= (2.31)(1.2) + 1.1 = 3.872

Error =
$$\frac{1}{2}(\hat{y}-y)$$

= $\frac{1}{2}(3.872-4)^2 = 8.192.10^{-3}$

