1 Introduction to Inner Product Spaces

Assume that $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.

1.1 Inner Products

Definition 1.1. Suppose V is a vector space over \mathbb{R} or \mathbb{C} .

An **inner product** on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that

- a) $\langle \cdot, \cdot \rangle$ is linear in the first component, i.e. $\langle cx+y, z \rangle = c \langle x, z \rangle + \langle y, z \rangle$ for all $x, y, z \in V$ and $c \in \mathbb{F}$.
- b) $\langle x,y\rangle = \langle \overline{y},x\rangle$ for all $x,y\in V$, where \overline{y} is a complex conjugate.
- c) $\langle x, x \rangle > 0$ for all non-zero x in V

Remark 1.2.

- If $\mathbb{F} = \mathbb{R}$, then by (b) we obtain $\langle x, y \rangle = \langle y, x \rangle$.
- By (b), $\langle x, x \rangle = \overline{\langle x, x \rangle} \Rightarrow \langle x, x \rangle \in \mathbb{R}$
- By (a), $\langle 0, x \rangle = 0$ for all x and thus by (b) $\langle x, 0 \rangle = 0$ for all x
- By (b), we obtain that $\langle \cdot, \cdot \rangle$ is **conjugate linear** in the second component, since

$$LHS = \overline{\langle cy + z, x \rangle} \tag{1}$$

$$= \overline{c\langle y, x \rangle + \langle z, x \rangle} \tag{2}$$

$$= \overline{c} \cdot \overline{\langle y, x \rangle} + \overline{\langle z, x \rangle} \tag{3}$$

$$= \overline{c}\langle x, y \rangle + \langle x, z \rangle = RHS \tag{4}$$

Example 1.3

If $V = \mathbb{F}^n$, define $\langle a, b \rangle = \sum_{i=1}^n a_i \cdot \overline{b_i}$, also known as a **standard inner product** on \mathbb{F}^n .

Check it!