1/2

Ouestion 1

On considère un graphe G=(V,E,w) orienté et pondéré par des longueurs, où $V\subseteq E\times E$ représente les arcs, et $w:E\to\mathbb{R}$ retourne la longueur de chaque arc. On suppose pour cette question que le graphe ne contient pas de cycle de longueur négative. Complétez l'algorithme suivant pour que d[x] représente la longueur du plus petit chemin entre s et x.

```
BellmanFord(G = (V, E, w), s):
\forall x \in V, d[x] \leftarrow \infty
d[s] \leftarrow 0 \quad \forall
\text{for } k \in V \text{ do } \forall
\text{for } (u, t) \in E \text{ do}
|\int_{\mathbb{R}^n} (\omega(u) < \omega(t))
d[t] \leftarrow \omega(\omega)
```

Question 2 Comment modifier l'algorithme ci-dessus afin de détecter la présence de cycles de longueur négative?

Question 3 Dans une représentation du graphe par matrice d'adjacence, quel est la complexité d'itérer sur tous les arcs avec une ligne telle que "for $(u, t) \in E$ do"?

Ш	Θ (V
	0/	V

Θ(V	+	E)

Θ(V	E
0(V	E

X	Θ(V	(2)
	0(V	2)

Θ(V	2	E	
0/	17	2	E	

	Dans les 3 prochaines questions on considède K_{11} , le graphe complet de 11 sommets. Question 4 Combien K_{11} possède-t-il d'arêtes :	Question 9 Quel est le coût de décider si un graphe est cordal?	
2/2		$ \begin{array}{c c} \Theta(V) & \square O(V) \\ \square \Theta(V \log V) & \square O(V \log V) \\ \square \Theta(V \log E) & \square O(V \log E) \\ \square \Theta(E \log V) & \square O(E \log V) \\ \square \Theta(V + E) \log V) & \square O(V + E) \log V) \end{array} $	0/
2/2	Question 5Le nombre chromatique de K_{11} est : $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$		0/.
7/7	Question 6 ♣ Cochez toute les affirmations correctes : K ₁₁ a un rayon égal à son diamètre K ₁₁ a un rayon strictement inférieur à son diamètre K ₁₁ ne possède pas de circuit eulérien K ₁₁ possède un circuit eulérien K ₁₁ est un graphe planaire K ₁₁ n'est pas un graphe planaire K ₁₁ est un graphe cordal K ₁₁ n'est pas un graphe cordal K ₁₁ n'est pas un graphe d'intervalles K ₁₁ n'est pas un graphe d'intervalles	 Question 10 ♣ Cochez toute les affirmations correctes : Tout graphe acyclique est un arbre. Dans un arbre, toutes les feuilles sont des sommets sympliciaux. Dans un graphe planaire il y a deux fois plus de faces que d'arêtes. Il existe des graphes d'intervalles qui ne sont pas cordaux. Il existe des graphes cordaux qui ne sont pas des graphes d'intervalles. Un graphe planaire est nécessairement cordal. Le nombre chromatique de tout graphe planaire est au moins 4. 	
0/2	 K₁₁ ne possède pas de stable de taille 7 K₁₁ possède un stable de taille 7 K₁₁ ne possède pas de clique de taille 7 K₁₁ possède une clique de taille 7 Question 7 On considère le graphe non-orienté dont la matrice d'adjacence suit. Combien possède-t-il d'arbres couvrants différents? 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 ✓ Un sommet est symplicial et seulement si ses voisins forment une clique. ☐ Un graphe de n sommets et e arêtes est planaire si et seulement si il vérifie e ≤ 3n − 6. ☐ Le nombre chromatique de tout graphe planaire est au plus 3. ✗ Un graphe planaire et son dual ont autant d'arêtes. ☒ Les sommets du centre d'un graphe sont les sommets d'excentricité minimale. ☐ L'algorithme de Dijkstra peut être vu comme un algorithme de programmation dynamique. ☐ L'excentricité d'un sommet est sa distance par rapport au centre du graphe ☒ L'algo de Floyd-Warshall calcule les distances entre toutes les paires de sommets d'un graphe. Question 11 La complexité optimale de l'algorithme de Dijkstra pour le calcul des plus court chemins est obtenue lorsque sa file de priorité est implémentée avec : 	1.8/
3/3	un graphe simple, on peut rendre le graphe planaire cordal complet.	☐ un tas binaire ☐ un tas de fibonnaci ☐ une liste triée ☐ un tableau trié	2/