第2节 三角形的各种线 (★★★)

内容提要

1. 中线问题:如图 1,在 $\triangle ABC$ 中, AD 是边 BC 上的中线,有关计算常采用下面的几种方法,这些方法在已知中线,或者求中线的问题中都可以尝试.

方法 1: 在左右两个三角形中计算 $\cos \angle ADB$ 和 $\cos \angle ADC$,利用 $\angle ADB$ 与 $\angle ADC$ 互补,建立方程求解.

方法 2: 借助 $\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$,并将其平方来计算目标.

方法 3:将 $\triangle ABC$ 补全为如图 2 所示的平行四边形 ABEC,转化到 $\triangle ABE$ 中完成相关的计算.

- 2. 比例线问题:如图 3,在 $\triangle ABC$ 中,D 在 BC 上但不是中点,且已知 BD 与 CD 的长度之比,这类问题可采用上面的方法 1 和方法 2 求解.
- 3. 角平分线问题:如图 4,在 $\triangle ABC$ 中, AD 是 $\angle BAC$ 的平分线,有关问题常用下面两种方法求解.

方法 1: 利用角平分线性质定理 $\frac{AB}{AC} = \frac{BD}{CD}$ 来研究 BD 和 CD 的比例关系,从而将问题转化为上述第 2 类问

题. 若是大题,角平分线性质定理可先用面积比来证明, $\frac{S_{\triangle ABD}}{S_{\triangle ACD}} = \frac{\frac{1}{2}AB \cdot AD \cdot \sin \angle BAD}{\frac{1}{2}AC \cdot AD \cdot \sin \angle CAD} = \frac{\frac{1}{2}BD \cdot h}{\frac{1}{2}CD \cdot h}$ (其中 h

为 ΔABC 的边BC上的高),所以 $\frac{AB}{AC} = \frac{BD}{CD}$.

方法 2: 如图 4, 设 $\angle BAC = 2\alpha$, 由 $S_{\triangle ABD} + S_{\triangle ACD} = S_{\triangle ABC}$ 可得 $\frac{1}{2}c \cdot AD \cdot \sin \alpha + \frac{1}{2}b \cdot AD \cdot \sin \alpha = \frac{1}{2}bc\sin 2\alpha$,

化简得 $(b+c)AD=2bc\cos\alpha$,很多时候我们可以运用这一关于b、c、AD和 α 的方程来解决问题.

典型例题

类型 I: 中线类问题

【例 1】在 $\triangle ABC$ 中, b=4 , $c=\sqrt{10}$, BC 边上的中线 AD=2 ,则 a= .

解法 1:如图 1,图中只有CD和BD未知,可利用 $\angle ADC$ 和 $\angle ADB$ 互补建立方程求解它们,

设 BD = CD = x ,由图可知 $\angle ADC = \pi - \angle ADB$,所以 $\cos \angle ADC = \cos(\pi - \angle ADB) = -\cos \angle ADB$,

从而
$$\frac{4+x^2-16}{2\times 2x} = -\frac{4+x^2-10}{2\times 2x}$$
,故 $x=3$,所以 $a=2x=6$.

解法 2: 已知 b 和 c,只要求出 $\cos A$,就能用余弦定理求 a,可将 \overrightarrow{AD} 用 \overrightarrow{AB} 和 \overrightarrow{AC} 表示,平方求出 $\cos A$,

因为 D 是 BC 的中点,所以 $\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$,故 $\left|\overrightarrow{AD}\right|^2 = \frac{1}{4}(\left|\overrightarrow{AB}\right|^2 + \left|\overrightarrow{AC}\right|^2 + 2\overrightarrow{AB} \cdot \overrightarrow{AC})$,

将已知条件代入可得 $4 = \frac{1}{4}(10+16+2\times\sqrt{10}\times4\times\cos A)$,故 $\cos A = -\frac{\sqrt{10}}{8}$,

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A = 36$, 所以 a = 6.

解法 3:借助平行四边形对角线互相平分的性质,可将 $\triangle ABC$ 补全为如图 2 所示的平行四边形 ABEC,

由图可知, $CE = AB = \sqrt{10}$,AE = 2AD = 4,

在
$$\Delta ACE$$
 中, $\cos \angle ACE = \frac{AC^2 + CE^2 - AE^2}{2AC \cdot CE} = \frac{\sqrt{10}}{8}$,所以 $\cos A = \cos(\pi - \angle ACE) = -\cos\angle ACE = -\frac{\sqrt{10}}{8}$,

在 ΔABC 中, 由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A = 36$, 故 a = 6.

答案: 6

【**反思**】中线有关的计算常用上面的三种方法,后续变式都可一题多解,为了篇幅简洁,后两题都用解法 1 作答,解法 1 可称为"双余弦法".

【变式 1】在 $\triangle ABC$ 中, 角 A, B, C 的对边分别为 a, b, c, 且 $\frac{\sin B + \sin C}{\sin A - \sin C} = \frac{a}{b-c}$.

- (1) 求*B*;
- (2) 若 D 为边 AC 的中点,且 a=3 , c=4 ,求中线 BD 的长.

解: (1)(所给等式可边化角,也可角化边,但若边化角,则下一步按角化简不易,故角化边)

因为
$$\frac{\sin B + \sin C}{\sin A - \sin C} = \frac{a}{b - c}$$
,所以 $\frac{b + c}{a - c} = \frac{a}{b - c}$,从而 $(b + c)(b - c) = a(a - c)$,故 $a^2 + c^2 - b^2 = ac$,

所以
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{ac}{2ac} = \frac{1}{2}$$
, 结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{3}$.

(2) (如图, ΔABC 已知两边及夹角,可先由余弦定理求第三边)

由余弦定理,
$$b^2 = a^2 + c^2 - 2ac\cos B = 9 + 16 - 2 \times 3 \times 4 \times \cos\frac{\pi}{3} = 13$$
,所以 $b = \sqrt{13}$,故 $AD = CD = \frac{\sqrt{13}}{2}$,

(只有 BD 未知了,可用"双余弦法"求 BD)设 BD=x,由图可知 $\angle BDC=\pi-\angle BDA$,

所以
$$\cos \angle BDC = \cos(\pi - \angle BDA) = -\cos \angle BDA$$
,故 $\frac{x^2 + \frac{13}{4} - 9}{2x \cdot \frac{\sqrt{13}}{2}} = -\frac{x^2 + \frac{13}{4} - 16}{2x \cdot \frac{\sqrt{13}}{2}}$,解得: $x = \frac{\sqrt{37}}{2}$,即 $BD = \frac{\sqrt{37}}{2}$.

【变式 2】在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c,且 a=2, $\frac{a^2+c^2-b^2}{4a\cos A}=\frac{\tan A}{\tan B}$.

- (1) 若 $\triangle ABC$ 的面积 S 满足 $S = 2\cos A$,求角 A;
- (2) 若边 BC 上的中线为 AD, 求 AD 长的最小值.

解: (1) (看到所给等式中的 $a^2 + c^2 - b^2$, 想到余弦定理)

由余弦定理, $b^2 = a^2 + c^2 - 2ac\cos B$, 所以 $a^2 + c^2 - b^2 = 2ac\cos B$,

代入
$$\frac{a^2+c^2-b^2}{4a\cos A} = \frac{\tan A}{\tan B}$$
可得 $\frac{2ac\cos B}{4a\cos A} = \frac{\tan A}{\tan B}$,故 $\frac{c\cos B}{2\cos A} = \frac{\sin A\cos B}{\cos A\sin B}$ ①,(可约去 $\frac{\cos B}{\cos A}$,再角化边)

由题意, $A \neq \frac{\pi}{2}$, $B \neq \frac{\pi}{2}$, 所以 $\cos A \neq 0$, $\cos B \neq 0$, 故在式①中约掉 $\frac{\cos B}{\cos A}$ 可得 $\frac{c}{2} = \frac{\sin A}{\sin B}$,

所以
$$\frac{c}{2} = \frac{a}{b}$$
,故 $bc = 2a = 4$,所以 $S = \frac{1}{2}bc\sin A = 2\sin A$,

由题意, $S = 2\cos A$,所以 $2\sin A = 2\cos A$,故 $\tan A = 1$,结合 $0 < A < \pi$ 可得 $A = \frac{\pi}{4}$.

(2) (已知了bc=4, 故先把AD用b和c表示,可由 $\angle ADB$ 与 $\angle ADC$ 互补建立方程求AD)

由题意,
$$BD = CD = 1$$
,如图,在 ΔABD 中, $\cos \angle ADB = \frac{AD^2 + BD^2 - AB^2}{2AD \cdot BD} = \frac{AD^2 + 1 - c^2}{2AD}$,

在
$$\Delta ADC$$
 中, $\cos \angle ADC = \frac{AD^2 + CD^2 - AC^2}{2AD \cdot CD} = \frac{AD^2 + 1 - b^2}{2AD}$,

因为 $\angle ADB = \pi - \angle ADC$,所以 $\cos \angle ADB = \cos(\pi - \angle ADC) = -\cos \angle ADC$,

从而
$$\frac{AD^2 + 1 - c^2}{2AD} = -\frac{AD^2 + 1 - b^2}{2AD}$$
, 故 $AD^2 = \frac{b^2 + c^2}{2} - 1$, 由(1)知 $bc = 4$,

所以 $AD^2 = \frac{b^2 + c^2}{2} - 1 \ge bc - 1 = 3$,故 $AD \ge \sqrt{3}$,当且仅当 b = c = 2 时取等号,所以 $AD_{\min} = \sqrt{3}$.

类型 II: 比例线有关的问题

【例 2】在 $\triangle ABC$ 中, $b=2\sqrt{3}$, c=2 , D 为边 BC 上一点, BD=3CD , 若 $AD=\sqrt{7}$, 则 a=____.

解法 1:如图,边长中仅有 BD 和 CD 未知,可利用 $\angle ADB$ 和 $\angle ADC$ 互补建立方程求解它们,

由题意,可设CD = x(x > 0),则BD = 3x,由图可知, $\angle ADB = \pi - \angle ADC$,

所以
$$\cos \angle ADB = \cos(\pi - \angle ADC) = -\cos\angle ADC$$
,故 $\frac{7 + 9x^2 - 4}{2 \times \sqrt{7} \times 3x} = -\frac{7 + x^2 - 12}{2 \times \sqrt{7} \times x}$,解得: $x = 1$,所以 $a = 4$.

解法 2: 给出了 BD 和 CD 的比值关系,就能把 \overline{AD} 用 \overline{AB} 和 \overline{AC} 表示,

因为
$$BD = 3CD$$
,所以 $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = \overrightarrow{AB} + \frac{3}{4}(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$,

由于 $|\overrightarrow{AD}|$ 、 $|\overrightarrow{AB}|$ 、 $|\overrightarrow{AC}|$ 均已知,故将上式平方可求得 $|\overrightarrow{AB}|$ 与 $|\overrightarrow{AC}|$ 的夹角 $|\overrightarrow{AC}|$

所以
$$|\overrightarrow{AD}|^2 = \frac{1}{16} |\overrightarrow{AB}|^2 + \frac{9}{16} |\overrightarrow{AC}|^2 + \frac{3}{8} |\overrightarrow{AB} \cdot \overrightarrow{AC}|$$
,故 $7 = \frac{1}{16} \times 4 + \frac{9}{16} \times 12 + \frac{3}{8} \times 2 \times 2\sqrt{3} \times \cos A$,解得: $\cos A = 0$,

所以 $A = 90^{\circ}$,故 $a = \sqrt{b^2 + c^2} = 4$.

答案: 4

【反思】当D不再是中点,而是三等分点、四等分点这些情况时,双余弦、向量的方法仍然适用.

【变式】(2022 •全国甲卷)在 $\triangle ABC$ 中,内角 A,B,C 的对边分别为 a,b,c,点 D 在边 BC 上, $\angle ADB=120^\circ$, AD=2 , CD=2BD , 当 $\frac{b}{c}$ 取得最小值时, BD=_____.

解析:如图,若设BD=x,CD=2x,则可在 ΔABD 和 ΔACD 中用余弦定理分别建立c和b与x的关系,从而将 $\frac{b}{c}$ 用x表示,化为单变量函数求最值,

在 ΔABD 中,由余弦定理, $c^2 = x^2 + 2^2 - 2x \cdot 2 \times \cos 120^\circ = x^2 + 2x + 4$,

在 $\triangle ACD$ 中, $\angle ADC = 180^{\circ}$ - $\angle ADB = 60^{\circ}$,由余弦定理, $b^2 = (2x)^2 + 2^2 - 2 \times 2x \times 2 \times \cos 60^{\circ} = 4x^2 - 4x + 4$,

我们发现 $\frac{b^2}{c^2}$ 是一个" $\frac{-$ 次函数"的结构,可通过拆项化为" $\frac{-$ 次函数"的结构,

$$\text{Figs.} \frac{b^2}{c^2} = \frac{4x^2 - 4x + 4}{x^2 + 2x + 4} = \frac{4(x^2 + 2x + 4) - 12x - 12}{x^2 + 2x + 4} = 4 - \frac{12(x + 1)}{x^2 + 2x + 4} = 4 - \frac{12(x + 1)}{(x + 1)^2 + 3}$$

$$=4-\frac{12}{(x+1)+\frac{3}{x+1}} \ge 4-\frac{12}{2\sqrt{(x+1)\cdot\frac{3}{x+1}}} = 4-2\sqrt{3},$$

当且仅当 $x+1=\frac{3}{x+1}$ 时取等号,此时 $x=\sqrt{3}-1$,故当 $\frac{b}{c}$ 取得最小值时, $BD=\sqrt{3}-1$.

答案: √3-1

【反思】比例线问题常用双余弦、向量两种方法求解,但具体选哪种,还需看实际情况. 例如本题若将 \overrightarrow{AD} 用 \overrightarrow{AB} 和 \overrightarrow{AC} 表示,则 $\angle ADB = 120^\circ$ 这条件就不方便使用了,故本题应选择双余弦的方法.

类型III: 角平分线有关的问题

【例 3】在 $\triangle ABC$ 中,角 A、B、C 的对边分别为 a、b、c,已知 b=2 , c=4 , $\angle BAC=120^\circ$, $\angle BAC$ 的角 平分线交边 BC 于点 D ,则 AD= .

解析:要求AD,可用小三角形面积之和等于大三角形面积来建立关于AD的方程,

因为 $\angle BAC = 120^{\circ}$,AD 是 $\angle BAC$ 的平分线,所以 $\angle CAD = \angle BAD = 60^{\circ}$,

又
$$S_{\Delta ACD} + S_{\Delta ABD} = S_{\Delta ABC}$$
,所以 $\frac{1}{2} \times 2 \times AD \times \sin 60^{\circ} + \frac{1}{2} \times 4 \times AD \times \sin 60^{\circ} = \frac{1}{2} \times 2 \times 4 \times \sin 120^{\circ}$,解得: $AD = \frac{4}{3}$.

答案: $\frac{4}{3}$

【反思】利用小三角形面积之和等于大三角形面积建立方程的方法可称为"等面积法",常解决已知或求顶角的平分线的相关问题.

【变式 1】在 $\triangle ABC$ 中,角 $A \setminus B \setminus C$ 的对边分别为 $a \setminus b \setminus c$,已知 b=2 , c=4 , $\angle BAC$ 的角平分线交边 BC 于点 D,且 AD=2 ,则 $\cos \angle BAC=$ _____.

解析:如图,借助"等面积法"可建立关于 α 的方程,求出 α ,两倍即为 $\angle BAC$,

由题意,可设
$$\angle CAD = \angle BAD = \alpha$$
,因为 $S_{\triangle ACD} + S_{\triangle ABD} = S_{\triangle ABC}$,

所以
$$\frac{1}{2} \times 2 \times 2 \times \sin \alpha + \frac{1}{2} \times 2 \times 4 \times \sin \alpha = \frac{1}{2} \times 2 \times 4 \times \sin 2\alpha$$
,整理得: $3 \sin \alpha = 2 \sin 2\alpha$,

所以 $3\sin\alpha = 4\sin\alpha\cos\alpha$ ①,显然 α 为锐角,从而 $\sin\alpha > 0$,故在式①中约掉 $\sin\alpha$ 可得 $\cos\alpha = \frac{3}{4}$,

所以
$$\cos \angle BAC = \cos 2\alpha = 2\cos^2 \alpha - 1 = \frac{1}{8}$$
.

答案: $\frac{1}{8}$

【变式 2】已知 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c,若 $A = \frac{2\pi}{3}$,点 D 在 BC 上,且 AD 平分角 A, AD=1,则 a 的最小值为_____.

解析:已知A,要求a的最小值,可先用余弦定理把a用b和c表示,

由余弦定理,
$$a^2 = b^2 + c^2 - 2bc\cos A = b^2 + c^2 + bc$$
 ①,

表示的结果有b和c两个变量,要求最值需先找b,c的关系,可用等面积法建立方程,

如图,因为 $A = \frac{2\pi}{3}$,且 AD 是角 A 的平分线,所以 $\angle CAD = \angle BAD = \frac{\pi}{3}$,

由图可知, $S_{\Delta ACD} + S_{\Delta ABD} = S_{\Delta ABC}$,所以 $\frac{1}{2}b\sin\frac{\pi}{3} + \frac{1}{2}c\sin\frac{\pi}{3} = \frac{1}{2}bc\sin\frac{2\pi}{3}$,整理得:b + c = bc ②,

由式②想到将式①配方,调整为b+c和bc的形式,

由式①可得 $a^2 = b^2 + c^2 + bc = (b+c)^2 - bc$,将式②代入可得 $a^2 = b^2 c^2 - bc$ ③,

下面先求 bc 的范围,可由式②来分析,由②可得 bc = $b+c \ge 2\sqrt{bc}$,所以 bc ≥ 4 ,

当且仅当b=c=2时取等号,由式③知 $a^2=(bc-\frac{1}{2})^2-\frac{1}{4}$,

所以当bc = 4时, a^2 取得最小值 12,故 a 的最小值为 $2\sqrt{3}$.

答案: 2√3

【变式 3】在 $\triangle ABC$ 中,角 A,B,C 的对边分别为 a,b,c,已知 $A = \frac{2\pi}{3}$,若 D 为边 BC 上一点,且 $DA \perp BA$, BD = 4DC, 求 $\cos C$.

解法 1: (只要找到 b 和 c 的比值,对 A 用余弦定理就能把三边统一起来,求出 $\cos C$,可利用小三角形面积之比来寻找)如图,因为 $A = \frac{2\pi}{3}$, $DA \perp BA$,所以 $\angle BAD = \frac{\pi}{2}$, $\angle CAD = \frac{\pi}{6}$,

因为
$$\frac{S_{\triangle ABD}}{S_{\triangle ACD}} = \frac{\frac{1}{2}c \cdot AD}{\frac{1}{2}b \cdot AD \cdot \sin \frac{\pi}{6}} = \frac{\frac{1}{2}BD \cdot h}{\frac{1}{2}DC \cdot h}$$
 (其中 h 为 $\triangle ABC$ 的 BC 边上的高),所以 $\frac{2c}{b} = \frac{BD}{DC} = 4$,故 $c = 2b$,

(接下来把 a 也用 b 表示) 由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A = b^2 + c^2 + bc$,

将
$$c = 2b$$
 代入上式可得 $a^2 = 7b^2$, 所以 $a = \sqrt{7}b$, 故 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{7b^2 + b^2 - 4b^2}{2\sqrt{7}b^2} = \frac{2\sqrt{7}}{7}$.

解法 2: (也可用 $\angle ADB$ 和 $\angle ADC$ 的正弦值相等来找 b 和 c 的关系,下面先在 ΔACD 中计算 $\sin \angle ADC$)

由题意,设
$$DC = x$$
,则 $BD = 4x$,在 ΔACD 中,由正弦定理,
$$\frac{DC}{\sin \angle CAD} = \frac{AC}{\sin \angle ADC}$$
 ④,

因为
$$A = \frac{2\pi}{3}$$
, $DA \perp BA$,所以 $\angle BAD = \frac{\pi}{2}$, $\angle CAD = \frac{\pi}{6}$,

代入式④可得
$$\sin \angle ADC = \frac{AC \cdot \sin \angle CAD}{DC} = \frac{b \sin \frac{\pi}{6}}{x} = \frac{b}{2x}$$
,(接下来在 $\triangle ABD$ 中计算 $\sin \angle ADB$)

在
$$\triangle ABD$$
 中, $\sin \angle ADB = \frac{AB}{BD} = \frac{c}{4x}$,因为 $\angle ADB = \pi - \angle ADC$,所以 $\sin \angle ADB = \sin(\pi - \angle ADC) = \sin(\Delta ADC)$,

从而 $\frac{b}{2x} = \frac{c}{4x}$,故c = 2b,接下来同解法 1.

【反思】AD不再是角平分线,但解法 1 的思路源于角平分线性质定理的推导过程,利用面积比得到边长比;解法 2 则抓住 ∠ADB 和 ∠ADC 互补,构造方程,这也是本节题型常用的建立等量关系的方法.

强化训练

1. (★★) 在 $\triangle ABC$ 中, a=4 , $b=3\sqrt{3}$, c=5 ,则 BC 边上的中线 AD 的长为_____.

2. $(2022 \cdot 厦门模拟 \cdot \star \star \star \star)$ 在 $\triangle ABC$ 中,内角 A,B,C 的对边分别为 a,b,c,若 $b\sin C + a\sin A = b\sin B + c\sin C$,则内角 $A = _____$;若 D 是边 BC 的中点,且 c = 2, $AD = \sqrt{13}$,则 $a = _____$.

《一数•高考数学核心方法》

3. (★★★) 在 $\triangle ABC$ 中, b=4, c=2,则 BC 边上的中线 AD 的长的取值范围是 .

4. $(\bigstar \star \star \star)$ 在 ΔABC 中,内角 A、B、C 的对边分别为 a、b、c,已知 b=4, $c=\sqrt{10}$,D 为 BC 边上一点, CD=2BD,若 AD=2,则 a= .

5. $(2023 \cdot 全国甲卷 \cdot ★★★)$ $\triangle ABC$ 中, $\angle BAC = 60^{\circ}$,AB = 2, $BC = \sqrt{6}$,AD 平分 $\angle BAC$ 交 BC 于点 D,则 $AD = _____$.

6. $(2022 \cdot 渭南模拟 \cdot \star \star \star \star)$ 在 ΔABC 中,角 A、B、C 的对边分别为 a、b、c,点 D 在边 BC 上,且 AD 平分 $\angle BAC$, $AD = \sqrt{3}$, $b\sin B - a\sin A = c(\sin B - \sin C)$, $\sin C = 3\sin B$,则 ΔABC 的面积为_____.

- 7.(2021・新高考 I 卷・★★★)记 $\triangle ABC$ 的内角 A、B、C 的对边分别为 a、b、c. 已知 $b^2 = ac$,点 D 在边 AC 上, $BD\sin \angle ABC = a\sin C$.
- (1) 证明: BD = b;
- (2) 若 AD = 2DC ,求 $\cos \angle ABC$.

- 8. $(2022 \cdot 南京模拟 \cdot \star \star \star \star)$ 在 ΔABC 中,角 A, B, C 的对边分别为 a, b, c, 已知 $2a\cos A + b\cos C + c\cos B = 0$.
- (1) 求角 A;
- (2) 若 $a = 2\sqrt{3}$,求 BC 边上的中线 AD 的长的最小值.
- 9. (2022•岳阳模拟•★★★)在 $\triangle ABC$ 中,角 A、B、C 的对边分别为 a、b、c,且 $\sqrt{3}a-2b\sin A=0$.
 - (1) 求B;
 - (2) 若 B 为钝角,且角 B 的平分线与 AC 交于点 D, $BD = \sqrt{2}$,求 ΔABC 的面积的最小值.