四极杆质谱原理和技术

Introduction to quadrupole MS theory & technology

徐国宾 / 杨芃原 教授 hoggyxu@gmail.com

复旦大学化学系 Biomass.fudan.edu.cn

四极杆质谱的基本原理

四极杆分析器的基本要素

简单的四极杆结构示意图

- 电场分析器
 - 直流电压 U
 - 交流电压 V sin ωt
- 电场结构
 - 四极场 quadrupolar
- 电极
 - 圆柱、双曲线
 - 场半径 r₀

四极场的结构

四极杆分析器内部的电势呈马鞍面

• 四极场内部的电势

- $\bullet \qquad \qquad \phi_{x, y} = A(x^2 y^2) + C.$

四极场的性质

四极杆分析器内部的电势呈马鞍面

- 沿着 x 和 y 轴对称
- 等电势面是一个马鞍面
- (0,0)点电势为 0V,而 且是等电势马鞍面的鞍点
- 带电粒子在其中受到的 x 方向的作用力与粒子和 x 轴的距离成正比

离子在四极场中的运动

离子在x方向感受到的电场可以表示为

$$\left(\frac{d\phi}{dx}\right)_{y} = \frac{\phi_0 x}{r_0^2}$$

这样离子受到的电场力可以表示为:

$$F_x = -e \left(\frac{d\phi}{dx} \right)_y = -e \frac{\phi_0 x}{r_0^2}$$

结合牛顿第二定律,加入加速度的方程:

$$F_x = ma_a = m \left(\frac{d^2 x}{dt^2} \right) = -e \frac{\phi_0 x}{r_0^2}$$

将电场和加速度展开后,整理,可得,

$$\left(\frac{d^2x}{dt^2}\right) + \left(\frac{2eU}{mr_0^2} + \frac{2eV\cos\Omega t}{mr_0^2}\right)x = 0$$

描述离子运动的马修方程

马修方程和离子的运动方程可以很好的对应起来

 \acute{E} mile Léonard Mathieu ($1835 \sim 1890$) 法国数学家,研究了鼓的震动,给出了 微分方程和解

$$\frac{d^2u}{d\xi^2} + (a_u - 2q_u \cdot \cos 2\xi)u = 0$$

$$\xi = \frac{\Omega \cdot t}{2}$$

对应离子运动特征参数

$$a_x = -a_y = \frac{8eU}{mr_0^2 \Omega^2}$$

$$q_x = -q_y = \frac{-4eV}{mr_0^2\Omega^2}$$

- a对应着直流的强度
- q对应着交流的强度

马修方程的解和稳定区

马修方程的稳定区

只有在稳定区内的运动形式在 空间上才是有限的——

稳定高于一切!

四极杆的稳定区

四极杆的稳定区示意图

- 离子需要在 x 和 y 方向都稳定才 能通过四极杆
- 稳定区上下对称
- 特殊点:
 - (0.908,0)LMCO,低质量歧视
 - (0,0) Zero blast,氢的不准确
 - (0.706, 0.237) 四极杆工作点

利用稳定区筛选离子

- 目标:只让单一的 m/z 离子通过 四极杆
- 原理: mass selective instability
- 技术: (0.706, 0.237)
 - 通过a, q计算U, V
 - $a_x = -a_y = \frac{8eU}{mr_0^2 \Omega^2}$
 - $q_x = -q_y = \frac{-4eV}{mr_0^2\Omega^2}$
 - •
 - •

离子在四极杆中的稳定性

离子顺利的通过四极杆质量分析器

离子没有能够顺利的通过四极杆、逐死在四极杆的表面上

四极杆工作曲线

四极杆窗口宽度

实际上工作线并没有通过稳定区顶点

- 如果直流强度超过16.8%,那么直线的斜率会太大,不能通过稳定区域,这时没有离子能够通过四极杆质量分析器
- 反之,离子选择的纯度会下降, 顶点附近的其他 m/z 的离子也会 通过四极杆,四极杆的分辨力会 下降,但是总的信号强度会增 加。

四极杆的 TUNE 微调

四极杆微调电路的一部分

• 通过微调 2% 的 U 可以调整出 20u、 5u、 1u、单位分辨以及高分辨、无通过等多种峰宽 信号强度

2009-1 V1 分辨力 biomass.fudan.edu.cn

四极杆的 AutoTune

· 调整每个 m/z 对应的 tune 值,使四极杆质 谱图的峰形对称、峰 强达到标准、分辨力 达到统一宽度

四极杆质谱技术

四极杆分析器的电极

外形

• 双曲线

• 圆柱面

圆柱四极杆与双曲面四极杆的比较

- 四极场 99% 的相同
- 加工难度
 - 双曲面 > 圆柱
- 加工精度
 - 圆柱 > 双曲面

高阶场对四极杆的影响

- 圆柱型电极的影响
 - 多一个自由度 r/ro
 - 传统采用 1.1487
 - 实际上可以在 1.12~1.16 之间
 - 四极场不纯
 - 特殊的位置可以起到增强灵敏度或分辨力的效果

四极杆粗细的影响

2 x ro 直径	用途	
6mm	9000u 科研 450u 以下高灵敏度小分子分 析	
8 \sim 9mm	常见的 30 ~ 3000u 有机分 子分析	
12mm	10 ~ 1500u 高分辨的较小有机分子分析	
16 ∼ 20mm	1~50u 超高分辨气体分析	

- 增大四极杆直径有利于
 - 分辨力提高
 - 灵敏度提高
- 增大四极杆不利于
 - 大质量范围的使用
 - 高压射频的制作

四极杆长度的影响

- 四极杆原理中认为四极杆是无限长的
- 一般采用 r0 的 30 ~ 60 倍作为 长度
- 一般的 9mm 四极杆
 - 最短的有 127mm
 - 最长的有 240mm
- 某些 16mm 四极杆会长达 400mm
- 四极杆越长加工越困难,但是离子震动的次数多,分辨力越好

四极杆预杆的作用

- 较长的四极杆难以加工
- 四极杆的两头由于存在透镜的干扰,电场并不符合四极场,分辨力较低
- 预杆可以延长四极杆的"有效长度"降低边沿场的干扰
- 有前预杆、后预杆
 - Pre-quad
 - post-quad

四极杆的预杆

预杆是现代 LCMS 中必备的部件,而且预杆多数采用了电源隔离技术

- 频率~ 1MHz
 - $500 \mathrm{kHz} \sim 10 \mathrm{MHz}$
- · 双次级线圈分别供给 x、y方向的两对杆子
- 相位相差 180 度
- 电压 0 ~ 10000Vpp
- 稳定度万分之1~5

• Agilent 安捷伦 GCMS

Sciex API 4000

- 提高射频电源频率:
 - 分辨力高、灵敏度高(震动次数多)
 - 功耗大,制作困难
- 提高射频电源电压强度:
 - 质量范围宽(大质量离子震动慢)
 - 功耗大、制作困难
 - 调谐和耐压问题

RF-only 四极杆

- 只有射频 V 没有直流 U
- 用于传输和冷却离子
- 可以做的很长—— 1m
- 存在 LMCO

RF-only 四极杆

低质量歧视

$$q_x = \frac{-4 \, eV}{mr_0^2 \Omega_0^2}$$

LMCO

- Lower mass cut off
- q=0.908 时的 m
- 如果离子在 RF-only 四 极杆中的 q 超过 0.908 时,将不能通过
- 小质量范围的离子不能 传输,消失了
- 采用 6 极杆或更高的

四极杆离子源

- 现有离子源:
 - ESI 电喷雾
 - EI (外)
 - CI (外)
- 要点
 - 离子成束
 - 能量较低 3 ~ 20eV (能量高分辨力差)

四极杆质谱检测器

- 通常使用打拿极和电子倍增器+模拟型号记录仪
 - 高能打拿极 **10kV** 将离子转换为二次电子
 - 电子倍增器 电子放大
 - **16bit** 采集卡 (动态范围好)
- 也可以采用电子倍增器 + 计数器
 - 倍增器工作在饱和模式
 - 计数器记录离子个数 (灵敏度高)

四极杆串联质谱技术

三重四极杆技术

TSQ Quantum 三重四极杆

- 四极杆串联技术
 - 两把高分辨四极杆 Q1、Q3 (筛选离子)
 - 一把传输四极杆 Q2 (打碎离子)
- 结合四极杆的优秀定量 能力和串级质谱的定性 能力
 - 精确的定量能力
 - 更低的假阳性率
 - 定性能力

三重四极杆基本功能

- Q1 可以筛选母离子 mz1
- Q2 通过碰撞碎裂打碎离子,形成碎片离子峰
- Q3 筛选子离子, 定量子离子碎片强度 mz2

三重四极杆工作模式

模式	Q1	Q2	Q3	用途和特点
Q1 扫描	扫描离子	不打碎,传输	无分辨,传输	了解样品基本 信息
子离子扫描	固定过滤母离子	打碎母离子	扫描子离子	研究母离子的结 构特征
母离子扫描	扫描母离子	打碎母离子	固定过滤子离子	筛选具有特征子 离子(结构)的 分子
中性丢失	扫描母离子	打碎离子	扫描子离子,与 母离子有特征差 异	筛选具有特征结 构的分子,此结 构不易形成子离 子
单离子监视 SIM	按表过滤离子	不打碎,传输	无分辨,传输	定量
多反应检测 MRM	按表过滤母离子	打碎母离子	按表过滤子离子	定量,假阳性低

MRM 假阳性率较低的原因

- 利用母离子和子离子的共同特征,定量选择性提高
- 例如:
 - 如果样品 A 母离子 697 和样品 B542 在打碎后都具有子离子 245
 - 如果直接以特征离子 245 定量 A697, 那么样品 B 就会对样品 A 的定量造成干扰
 - 而利用**离子对** 697-245 定量, B542 在 A697 通过 Q1 时无法通过 Q1 ,这样就排除了 B542 的干扰

四极杆飞行时间串联质谱

Qstar 四极杆飞行时间质谱

and above.

- 四极杆 -TOF 串联
 - Q1选择母离子
 - Q2 打碎母离子
 - TOF 高精度测量
- 定性能力非常好
 - Q1、Q2了解结构
 - TOF 高分辨定性 10000 以上分辨力

基于四极杆的线型离子阱技术

- 利用四极杆的 RF-only 模式囚禁离子
- 利用四极杆后端的狭缝,选择性激发离子
- 具有 MSn 串级功能和 四极杆优秀的定量能 力

Sciex QTrap

中国四极杆技术的发展

早期科学院的产品

KYKY 的石英双曲面镀钼技术

- ZQ402 四极杆质谱计
- 用于国防等气体检测

2007年北京东西电子的产品

- GCMS 3100 、 3110 两款 GCMS
- 基于安捷伦 5972 ~ 5973 的技术,检测器类似于菲尼根 DSQ
- 目前我国最接近于国际同类产品的产品

我们的四极杆技术

- 主要借鉴产品包括 5975 、 API4000 和普发 QMA410
- 2007年起发展了3代3种技术的产品,分别满足工业在线、GCMS、QTOF 3种专用质谱仪的需求。
- 专用化、低价位,走差异化的发展路线

The End

Contact: hoggyxu@gmail.com