

Sobre o OCR

• O que é exatamente o OCR?

Todo e qualquer algoritmo onde temos o intuito de extrair o conteúdo escrito dentro de imagens em texto.

Exemplos de OCR

an input object image into a sequenc usually essential. For example, Grav set of geometrical or image features f while Su and Lu [33] convert word i HOG features. The preprocessing s the subsequent components in the pip systems based on RNN can not be tra

Exemplos de OCR

Figura. Conjunto de imagens do dataset SVHN.

OCR combinado com bancos de dados

Figura. Identificação de modelos de carros usando OCR e bancos de dados externos.

Abordagens mais usadas em OCR

Detecção por Regiões (Faster R-CNN, R-FCN)

Achamos as partes da imagem que contém o conteúdo de interesse para o OCR, e depois usamos um classificador para o conteúdo.

Single Shot Detectors (SSD, YOLO)

Tanto as regiões (boundary box) e a classe do conteúdo são detectados ao mesmo tempo, em um único processo.

Vantagens e Desvantagens

Detecção por Regiões (Faster R-CNN, R-FCN)

Modelos mais precisos, que demandam maior tempo de processamento e portanto não são indicados para inferência real-time.

Single Shot Detectors (SSD, YOLO)

Modelos menos precisos e mais leves, podendo portanto gerar inferências em menos tempo (até mesmo real-time response, dependendo da aplicação específica).

Vantagens e Desvantagens

Detecção por Regiões (Faster R-CNN, R-FCN)

Modelos mais precisos, que demandam maior tempo de processamento e portanto não são indicados para inferência real-time.

Single Shot Detectors (SSD, YOLO)

Modelos menos precisos e mais leves, podendo portanto gerar inferências em menos tempo (até mesmo real-time response, dependendo da aplicação específica).

Muitas dessas abordagens usam CNNs!

Principais técnicas de ML em OCR

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	1
1	0	0
0	1	1

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

Feature Map

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

	0	0	1
\otimes	1	0	0
	0	1	1

Input Image

Feature Detector

Feature Map

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

	0	0	1
\otimes	1	0	0
	0	1	1

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Input Image

Feature Detector

Feature Map


```
[0.0, 0.0, 3.0, 3.0, 0.0, 0.0]

[0.0, 0.0, 3.0, 3.0, 0.0, 0.0]

[0.0, 0.0, 3.0, 3.0, 0.0, 0.0]

[0.0, 0.0, 3.0, 3.0, 0.0, 0.0]

[0.0, 0.0, 3.0, 3.0, 0.0, 0.0]

[0.0, 0.0, 3.0, 3.0, 0.0, 0.0]
```


Técnicas de Downsampling - Pooling

1	1	2	4	may pool with 2v2		
5	6	7	8	max pool with 2x2 window and stride 2	6	8
3	2	1	0		3	4
1	2	3	4			

Resumo das principais operações em CNN

Convolução

Gerar Feature Maps e reconhecer padrões específicos de grupos de pixels (geralmente com padding e com stride = 1)

Downsampling e Pooling

Redução de dimensionalidade dos Feature Maps e preservação de informação (geralmente sem padding e com stride > 1)

Padding

Basicamente, significa colocar zeros ao redor dos inputs, para manter a dimensão do input e output de uma operação de convolução

Arquiteturas típicas de CNNs

Datasets mais utilizados

• **VOC**

O acrônimo de Visual Object Classes é um conjunto de dados (imagens) de diferentes categorias.

MNIST Database

Banco de dados de dígitos manuscritos para treinos e testes de modelos de Machine Learning

SVHN (Street View House Number)

Em termos do tipo de imagens, é similar ao MNIST, mas com imagens mais "realistas"

Comparativo do MNIST e SVHN

Começando a trabalhar com OCR em Python

O framework Keras

Comentários Finais

- Muitas bibliotecas de processamento de imagens e OCR são baseadas em C++/CUDA, exigindo um esforço adicional de OS, Hardware e requerimentos para uso (como por exemplo, GPUs)
- Conteúdos desse seminário estão disponíveis em repositório do GitHub (https://github.com/gabogomes/ocr-fgv) e no Google Drive