# **Das Matrix-Tree-Theorem**



Bachelorarbeit der Fakultät für Mathematik der Ludwig-Maximilians-Universität München

vorgelegt von

**Christopher Mann** 

geboren in Freising

München, den .....

# **Contents**

| 1 | Einleitung                         |                                                |   |  |  |  |
|---|------------------------------------|------------------------------------------------|---|--|--|--|
| 2 | Technische Lemmas und Definitionen |                                                |   |  |  |  |
| 3 | Das                                | Das Matrix-Tree-Theorem                        |   |  |  |  |
|   | 3.1                                | Tutte's Matrix-Tree-Theorem                    | 5 |  |  |  |
|   | 3.2                                | Kirchhoff's Matrix-Tree-Theorem                | 5 |  |  |  |
| 4 | Anz                                | ahl Spannbäume für bestimmte Graphenklassen    | 6 |  |  |  |
|   | 4.1                                | Der vollständige Graph $K_n$ (Satz von Cayley) | 6 |  |  |  |
|   | 4.2                                | vollständige multipartite Graphen              | 7 |  |  |  |
|   | 4.3                                | Cartesische Produkte von Graphen               | 7 |  |  |  |
|   | 4.4                                | $F_n$ (Fan)(Fächer?)                           | 7 |  |  |  |
|   | 4.5                                | $W_n$ (Räder)                                  | 7 |  |  |  |
|   | 4.6                                | circulant Graphs                               | 9 |  |  |  |
| L | eerzei                             | chen im Dokument!!!!!!!                        |   |  |  |  |

# 1 Einleitung

Kirchhoff, als "Erfinder" des MTT

Anwendungsgebiete außerhalb der Mathematik

Ausblick auf die Bachelorarbeit

# 2 Technische Lemmas und Definitionen

Wir beginnen damit, ein paar wichtige Begriffe und Notationen einzuführen.

**Definition 2.1** *Definition Laplacematrix*  $L_n$ 

die bleibt hier, da ist sie leicht zu finden

**Definition 2.0.1** *Definition Multigraph* 

die bleibt hier, im Kapitel "Tuttes..." stört das nur

Im Verlauf dieser Arbeit werden wir immer wieder die Anzahl der Spannbäume eines Graphen ausrechnen, daher definieren wir k(G) als die Anzahl der Spannbäume eines beliebigen Graphen G.

Das kam später dazu; ich bin noch unschlüssig ob ich die Definitionen lieber wie oben, oder wie hier als Text machen soll (Je nachdem, wie schnell ich mit dem Schreiben bin könnte ich noch Links in die Bachelorarbeit integrieren)

Definition out-branching (aboreszenz?)

#### 3 Das Matrix-Tree-Theorem

Nachdem wir nun alle notwendigen Lemmas und Definitionen beisammen haben, können wir mit dem wichtigsten Teil dieser Arbeit anfangen, dem Beweis des Matrix-tree-theorems selbst. Wir beweisen zuerst eine Version für gerichtete Multigraphen, bevor wir uns der Version für ungerichtete Graphen als einem Spezialfall davon widmen.

#### 3.1 Tutte's Matrix-Tree-Theorem

**Satz 3.1.1 (Tutte's Matrix-Tree-Theorem)** Sei D ein gerichteter Multigraph mit Kirchoffmatrix K(D). Die Anzahl der out-branchings aus dem Knoten i ist gleich der  $det(K_{\bar{i}}(D))$ .

#### **Beweis:**

Beweis schreiben

#### 3.2 Kirchhoff's Matrix-Tree-Theorem

**Satz 3.2.1** (**Kirchoff** 's **Matrix Tree Theorem**) Sei G ein ungerichteter Graph und  $L_n$  die dazugehörige Laplacematrix. Dann gilt:

- (1) Die Anzahl der Spannbäume von G gleich einem beliebigen Kofaktor von  $L_n$ .
- (2) Die Anzahl der Spannbäume von G ist gleich  $\frac{1}{n}\lambda_1...\lambda_{n-1}$ , wobei  $\lambda_1,...,\lambda_{n-1}$  die Eigenwerte von  $L_n$  sind, die ungleich null sind.

**Beweis:** Teil 1) des Kirchhoffs Matrix-Tree-Theorem folgt quasi direkt aus Tuttes Matrix-Tree-Theorem

Sei  $\vec{G}$  der gerichtete Graph, der entsteht, wenn man jede Kante in G als zwei gerichtete ansieht.

Wir betrachten einen beliebigen Knoten aus  $\vec{G}$ , der natürlich auch in G ist.

Da nach Definition jeder Knoten in jedem Spannbaum mit jedem anderen wegverbunden ist, korrespondiert jeder Spannbaum von G mit genau einem out-branching aus unserem Knoten in  $\vec{G}$ .

Da jede Kante in  $\vec{G}$  auch in die entgegengesetzte Richtung vorhanden ist, können wir schließen, dass  $L_n = K(\vec{G})$ , wobei  $L_n$  die Laplacematrix von G ist.

Jeder Kofaktor von  $L_n$  ist also gleich jedem Kofaktor von  $K(\vec{G})$ .

#### Beweis: es ist irrelevant, welchen Kofaktor vo Ln wir nehmen!

Wir folgern daraus mit Tuttes Matrix-Tree-Theorem, dass die Anzahl der Spannbäume in G gleich einem beliebigen Kofaktor von  $L_n$  ist.

Um Teil 2) zu zeigen, berufen wir uns auf ein bekanntes Ergebnis der linearen Algebra;

Das Produkt der Eigenwerte einer Matrix ist gleich der Summe seiner Hauptminoren. Das kann man zum Beispiel in [3] nachlesen.

Da  $L_n$  n Hauptminoren hat, folgt mit Teil 1), dass die Anzahl der Spannbäume von G ist gleich  $\frac{1}{n}\lambda_1 \dots \lambda_{n-1}$ , wobei  $\lambda_1, \dots, \lambda_{n-1}$  die Eigenwerte von  $L_n$  sind, die ungleich null sind.

Damit ist Kirchhoffs Matrix-Tree-Theorem bewiesen.

#### out-branching ersetzen

# 4 Anzahl Spannbäume für bestimmte Graphenklassen

Nachdem Kirchhoff's Matrix-Tree-Theorem nun bewiesen ist, werden wir damit im Folgenden Formeln für die Berechnung der Anzahl der Spannbäume für verschiedene Klassen von ungerichteten Graphen finden. Begegnen werden uns unter Anderem der vollständige Graph, multipartite Graphen, Räder und as Quadrat eines Kreises (Square of a cycle)). Dabei werden wir uns an der ein- oder anderen Stelle ein paar Eigenschaften bestimmter Matrizen, Determinanten, aber auch zum Beispiel von Chebychev-polynomen zunutze machen, da das Ausrechnen eines Kofaktors der Laplacematrix hier oft nicht der schnellste und intelligenteste Weg ist um ans Ziel zu kommen.

## 4.1 Der vollständige Graph $K_n$ (Satz von Cayley)

Als Einstieg soll der vollständige Graph mit n Knoten kurz  $K_n$  dienen.

**Satz 4.1.1 (Satz von Cayley)**  $K_n$  besitzt genau  $n^{n-2}$  verschiedene Spannbäume.

#### **Beweis:**

Ein sehr ähnlicher Beweis findet sich in [2]. Wir wollen das Matrix-Tree-Theorem verwenden und betrachten deshalb die Determinante der Matrix  $M_n \in M_{n-1}(\mathbb{Z})$ , die durch das Streichen der ersten Zeile und Spalte der Laplacematrix  $L_n \in M_n(\mathbb{Z})$  von  $K_n$  entsteht:

$$M_n := \begin{pmatrix} n-1 & -1 & \dots & \dots & -1 \\ -1 & n-1 & -1 & \dots & \dots & -1 \\ -1 & -1 & n-1 & -1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & \dots & \dots & \dots & -1 & n-1 \end{pmatrix}$$
 (1)

Da sich die Determinante durch elementare Zeilen- und Spaltenoperationen nicht ändert, dürfen wir die erste Spalte von allen anderen subtrahieren und erhalten:

$$det(M_n) := det \begin{pmatrix} n-1 & -n & \dots & \dots & -n \\ -1 & n & 0 & \dots & \dots & 0 \\ -1 & 0 & n & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & \dots & 0 & n \end{pmatrix}$$
 (2)

Mit demselben Argument wie oben addieren wir zur ersten Zeile alle übrigen und es ergibt sich:

$$det(M_n) := det \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ -1 & n & 0 & \dots & \dots & 0 \\ -1 & 0 & n & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & \dots & 0 & n \end{pmatrix}$$
(3)

Wir berechnen den Wert dieser Determinante durch Entwicklung nach der ersten Zeile. Weil die Matrix  $M_n$  eine  $n-1 \times n-1$  Matrix ist, gilt:

$$det(M_n) = n^{n-2} (4)$$

Nach Kirchhoff's Matrix-Tree-Theorem ist genau das die Anzahl der Spannbäume des  $K_n$ 

#### 4.2 vollständige multipartite Graphen

## 4.3 Cartesische Produkte von Graphen

In diesem Teil zeigen wir, was im Bezug auf die Anzahl der Spannbäume geschieht, wenn man das kartesische Produkt von Graphen bildet.

**Lemma 4.1** eigenwerte kartesisches Produkt v. Graphen (Kronekersumme Aidb + idaB)

das ist eigentlich kein Lemma bleibt aber für den Moment so markiert

## 4.4 $F_n$ (Fan)(Fächer?)

Nun werden wir Fan-Graphen  $F_n$  betrachten. Diese entstehen wenn wir an einen Pfad-Graphen  $P_{n-1}$  einen weiteren Knoten so ankleben, dass er mit allen übrigen Knoten adjazent ist.

Wir wollen in diesem Kapital folgendes über die Anzahl der Spannbäume in Fan-Graphen zeigen:

(5)

Diesmal halten wir uns an einen Beweis von Bogdanowicz [1]

#### **4.5** $W_n$ (Räder)

Der vorletzte Stop auf unserer Reise sind die sogenannten Wheel-Graphen. Hier wird zu einem zyklischen Graphen  $C_n$  mit Knoten  $\{v_1,..,v_n\}$ ,  $n \ge 3$  ein weiterer Knoten z hinzugefügt, der mit allen anderen Knoten benachbart ist, sodass der Wheel-Graph  $W_n$  entsteht (Achtung:  $W_n$  hat n+1 Knoten).

Satz 4.2 Für die Anzahl der Spannbäume in einem Rad gilt:

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{6}$$

#### **Beweis:**

Um die Formel für die Berechnung der Anzahl der Spannbäume eines solchen Graphen herzuleiten, lassen wir von [4] inspirieren. Wir beobachten, dass wir den Fan-Graphen  $F_n$  bekommen, wenn wir die Kante  $v_1v_n$  aus  $W_n$  entfernen. Die Anzahl der Spannbäume von  $F_n$  kennen wir bereits von oben. Um die Anzahl der Spannbäume von Rädern zu berechnen, zeigen wir zuerst die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(7)

Um das zu tun, werden die Spannbäume von  $W_{n+1}$  in drei verschiedene Klassen einteilen, wie man auch in den Abbildungen unten sehen kann:

1) Alle Spannbäume, die die Kante  $v_{n+1}v_1$ , aber nicht die Kante  $v_{n+1}z$  enthalten; das sind genau so viele, wie die Spannbäume von  $W_n$ .

#### Grafik dazu

2)Alle Spannbäume, die die Kante  $v_{n+1}v_1$  nicht enthalten; das sind genau so viele, wie die Spannbäume von  $F_{n+1}$ .

#### Grafik dazu

3) Alle Spannbäume, die die Kante  $v_{n+1}v_1$  und die Kante  $v_{n+1}z$  enthalten; Wir beweisen im Folgenden, dass das so viele sind, wie die Spannbäume von  $F_n$ ;

Dafür werden wir zeigen, dass für die Anzahl der Spannbäume in Klasse 3 den gleichen rekursiven Formeln genügen wie die von  $F_n$ .

Quatsch: Sei also  $a_n$  die Anzahl der Spannbäume eines Graphen, der Knoten mit Label (<- deutsch) z und  $v_n$  enthält und sei  $b_n$  die Anzahl der Subgraphen, die aus genau zwei Komponenten bestehen, von denen eine den Knoten z und  $v_n$  enthält.

Sei  $W_{n+1}$  der Graph, der aus der Vereinigung aller Spannbäume aus der Klasse 3) entsteht Wir sehen, dass sowohl für  $W_1$ , als auch für  $W_2$ , gilt, dass  $W_1 = W_2 = W_1$ .

Wir werden uns nun vor Augen führen, dass für  $F_{n+1}$  und  $W_{n+2}$   $A_n + 1 = 2a_n + b_n$  und  $A_n + 1 = a_n + b_n$  gilt.

Das veranschaulichen wir grafisch, wobei wir uns darüber im Klaren sind, dass der Knoten  $v_{n+1}$  in den Graphen  $F_{n+1}$  respektive  $W_{n+1}$  mit dem Knoten  $W_n$  in  $W_n$  respektive  $W_n$  correspondiert:

#### grafische Veranschaulichung davon, mit farbigen Kanten

Jeder Spannbaum von  $F_{n+1}$  beziehungsweise  $W_{n+1}$  entsteht nämlich entweder durch verbinden des Knoten  $V_{n+1}$  mit Quatsch ende

Sei  $a_n$  die Anzahl der Subgraphen von  $F_n$ , die aus genau zwei Komponenten bestehen, von denen eine den Knoten z und die andere  $v_n$  enthält. Wir definieren  $b_n$  als die Anzahl der Spannbäume in Klasse 3, die die Kanten  $v_nv_{n+1}$  und  $v_nz$  nicht enthalten. Die nachfolgende Abbildung verdeutlicht, dass  $k(F_{n+1}) = 2k(F_n) + a_n$  für  $n \ge 2$ .

#### Grafik Konstruktion von Fn+1 aus Fn, und diesmal stimmt der Beweis wirklich

#### Wenn die Grafik drin ist evtl noch ein-zwei Sätze dazu

Sei  $M_n$  die Menge der Spannbäume von  $W_{n+1}$  aus Klasse 3 Die nächste Grafik zeigt, dass  $|M_{n+1}| = |M_n| + b_n$  ist.

#### Grafik zur Konstruktion, damit ist das offensichtlich

#### Wenn die Grafik drin ist, evtl. noch ein-zwei Sätze dazu

Wir sehen leicht, dass  $k(F_2) = |M_2|$  und  $a_2 = b_2$ ; daraus schließen wir, dass die Anzahl der Spannbäume in Klasse 3 gleich  $k(F_n)$  ist, was wir zeigen wollten. Da jeder Spannbaum von  $W_{n+1}$  in genau einer der 3 Klassen ist, gilt die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(8)

Wir werden nun den Beweis per Induktion über  $n \in \mathbb{N}, n \ge 3$  vervollständigen, wobei uns natürlich zu Gute kommt, dass uns die Anzahl der Spannbäume von Fan-Graphen schon bekannt ist.

Für unseren Induktionsanfang sehen wir -zum Beispiel durch Anwendung von Kirchhoffs Matrix-Tree-Theorem- leicht, dass

$$k(W_3) = 16 = \left(\frac{3+\sqrt{5}}{2}\right)^3 + \left(\frac{3+\sqrt{5}}{2}\right)^3 - 2.$$
 (9)

Wir nehmen nun an, dass für ein  $n \in \mathbb{N}$  die Formel

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{10}$$

gilt.

Damit bleibt noch zu zeigen, dass

$$k(W_{n+1}) = \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} - 2. \tag{11}$$

Das werden wir nun einfach ausrechnen. Nachdem wir im vorherigen Kapitel herausgefunden haben, wieviele Spannbäume Fan-Graphen haben, setzen wir das und unsere Induktionsannahme in die Gleichung (8) ein, und erhalten:

$$k(W_{n+1}) = \frac{(3+\sqrt{5})^{n+1} - (3-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}} + \frac{(3+\sqrt{5})^n - (3-\sqrt{5})^n}{2^n\sqrt{5}} + (\frac{3+\sqrt{5}}{2})^n + (\frac{3-\sqrt{5}}{2})^n - 2$$
(12)

Wir bringen fast alles auf einen Nenner, sortieren die Terme und bekommen

$$k(W_{n+1}) = \frac{(3+\sqrt{5}+2+2\sqrt{5})(3+\sqrt{5})^n}{2^{n+1}\sqrt{5}} - \frac{(3+\sqrt{5}+2-2\sqrt{5})(3-\sqrt{5})^n}{2^{n+1}\sqrt{5}} - 2$$
(13)

## zusammengehörige Terme farbig markieren

Ausrechnen führt uns zu

$$k(W_{n+1}) = \frac{3+\sqrt{5}}{2})^{n+1} + (\frac{3+\sqrt{5}}{2})^{n+1} - 2$$
(14)

Damit ist unser Induktionsbeweis abgeschlossen und wir haben gezeigt, dass unser Satz 6 über die Anzahl der Spannbäume in einem Rad gilt.

Rechnungen evtl. in equations packen

#### 4.6 circulant Graphs

Wir nennen einen Graphen circulant mit n Knoten, wenn für  $n \in \mathbb{N}$  und eine Menge  $I \subset \{1, ..., \lfloor \frac{n}{2} \rfloor\} \subset \mathbb{N}$  gilt, dass jeder Knoten v genau zu jedem Knoten  $(v+i)(\mod n)$  mit  $i \in I$  benachbart ist; wir bezeichnen solch einen Graphen kurz mit  $C_n^I$ .

Wir erinnern uns, dass eine  $n \times n$  Matrix zyklisch genannt wird, falls jede Spalte aus der vorherigen durch Anwendung der Permutation (1...n) hervorgeht. Das ist bei den Adjazenzmatrizen unserer circulant Graphs, aufgrund dessen, wann Konten benachbart sind, natürlich der Fall. Zu Gute kommt uns das bei der Berechnung der Anzahl von Spannbäumen in circulant Graphs, denn die Eigenwerte einer zyklischen Matrix sind wohlbekannt.Um die Formel für die Anzahl der Spannbäume überhaupt zu verstehen, müssen wir einen weiteren Begriff einführen.Nachdem wir nun alles beisammen haben, formulieren wir folgenden Satz:

Satz 4.6.1 Für die Anzahl der Spannbäume in circulant Graphs von Grad d gilt:

$$k\left(C_{n}^{I}\right) = \frac{1}{n} \prod_{j=1}^{n-1} \left(4 \sum_{i \in I} \sin^{2}\left(\frac{ij\pi}{n}\right)\right), falls \, d \, gerade \, ist \tag{15}$$

$$k\left(C_{n}^{I}\right) = \frac{1}{n} \prod_{j=1}^{n-1} \left(4\sum_{i \in I} \sin^{2}\left(\frac{ij\pi}{n}\right) - (-1)^{j} + 1\right), falls d ungerade ist$$
 (16)

# **Beweis:**

Wir beweisen den Satz wie [5].

# Beweis schreiben

Beispiel 4.6.2 ( $C_n^2$  - Das Quadrat eines Kreises)

Bild von einem Square of a cycle

Herleitung Formel

# References

- [1] Zbigniew Bogdanowicz. Formulas for the number of spanning trees in a fan. *Applied Mathematical Sciences (Ruse)*, pages 781 786, 01 2008.
- [2] Dietlinde Lau. Algebra und Diskrete Mathematik. Vol. 2, Lineare Optimierung, Graphen und Algorithmen, Algebraische Strukturen und Allgemeine Algebra mit Anwendungen. Springer, 2004.
- [3] Carl D. Meyer. *Matrix analysis and applied linear algebra*. SIAM, Society for Industrial and Applied Mathematics, 2005.
- [4] J Sedlacek. On the skeletons of a graph or digraph. *Proc. Calgary International Conference on Combinatorial Structures and their Applications, Gordon and Breach*, pages 387–391, 1970.
- [5] J. F. Wang and C. S. Yang. On the number of spanning trees of circulant graphs. *International Journal of Computer Mathematics*, 16(4):229–241, 1984.

# Selbständigkeitserklärung

| Ich versichere hiermit, die vorliegende Arbeit mit dem Titel                                                    |
|-----------------------------------------------------------------------------------------------------------------|
| Das Matrix-Tree-Theorem                                                                                         |
| selbständig verfasst zu haben und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet zu haben. |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
| Christopher Mann                                                                                                |
| München, den                                                                                                    |
|                                                                                                                 |