Lecture 15

PD imaging and MRI magnets

Read section 5.14 from Smith and Webb for magnets

Some facts about T_1 and T_2 weighing

T₁ weighting:

- Fluids are dark (why?- homework), normal tissue is mid-grey or bright.
- Clear boundaries between the different tissues seen. Anatomy scans.

 T_I -weighted (TR = 600, TE = 11)

T₂ weighting:

- Fluids are bright, normal tissue is dark.
- Abnormal collections of fluid are also bright. Pathology scans.

 T_2 -weighted (TR = 3800, TE = 102)

Proton density and contrast

Proton density (PD)

- <u>Proton density</u>: Total number of excitable spins (N) in the imaged volume.
- Decides the maximum signal that can be obtained from a particular tissue. N gives a measure of M_o.

Tissue	Proton density (a.u.)	
Grey matter	85	
White matter	70	
CSF	100	
Metastasis	85	
Fat	100	

How will you choose T_R and T_E for proton density weighing?

- Choose very long TR (2500 ms) and very short TE (15 ms) to eliminate T₁ and T₂ dependency.
- Works comparatively better for fat and CSF (high PD. Why though?)

$$\boldsymbol{M}_0 = \frac{N(\gamma\hbar)^2 B_0}{4kT}$$

Compare how CSF and fat look in all three images

 T_I -weighted (TR = 600, TE = 11)

Density-weighted (TR = 3000, TE = 17)

 T_2 -weighted (TR = 3800, TE = 102)

	T_1	T_2
CSF	2400	200
Fat	270	80

Superconducting magnet (B_o)

- Must be spatially homogeneous. Why?
- Temporally stable (drift ~ 1ppb) during MRI (~ 40 min)

Typically 1.5T - 3T

Solenoid (homogeneous field at the centre)

- For $B_o \sim 3T$, I = 350A. Could the high current lead to a problem?

Solution: Ti-Nb in a Cu matrix

Cooling needed

- Shielding: reduce effect of 'stray field' outside magnet.
- Passive: put magnet in carbon-steel enclosure
- Active: shim coils

RF coil (B₁)

• Same coil transmits and receives the signal.

• Highest efficiency by matching the size of the coil to the body part being imaged.

Body coil: abdominal imaging

Knee coil

Head coil with mirror (for fMRI)

- We now understand why the steady (1.5T) and the RF magnets (~ mT) are there.

- But why do we need the third magnet in the MRI set-up?

What magnetic fields do we have?

- Steady magnetic field, B_o (initially aligns spins)
- RF magnetic field, B₁ (excites aligned spins)
- Spatial information

Gradient coils

Sections 5.8 and 5.9 from Smith and Webb

Localizing the signal

We still don't have a way to distinguish the magnetic resonance signals coming from protons in different locations in the body. We need to localize the signal.

Pulsed gradients(~ milliseconds)

- $G (\sim 10 \text{ mT/m}) << B_o (\sim 1.5 \text{ T})$
- Over 30 cm, total field variation is $\sim 3\text{mT} (0.2\% \text{ of B}_0)$
- Expressed in units of change in resonant frequency per cm (Hz/cm). For protons 10 mT/m = 4,258 Hz/cm.