```
# read the data
                                               import pandas as pd
                                               import numpy as np
In [1]: In [2]:
                                               import seaborn as sns
                                               import matplotlib.pyplot as plt
                                               file path="C:\\Users\\omkar\\OneDrive\\Do
                                               cuments\\Data science\\Naresh IT\\
                                               visa_df=pd.read_csv(file_path)
                                               visa df
# import the packages
Out[2]: case_id continent education_of_employee has_job_experience requires_job_traini 0 EZYV01 Asia High
                                           School N
                                   1 EZYV02 Asia Master's Y
                                  2 EZYV03 Asia Bachelor's N
                                  3 EZYV04 Asia Bachelor's N
                                  4 EZYV05 Africa Master's Y
                                         ... ... ... ...
          25475 EZYV25476 Asia Bachelor's Y
          25476 EZYV25477 Asia High School Y
          25477 EZYV25478 Asia Master's Y
          25478 EZYV25479 Asia Master's Y
          25479 EZYV25480 Asia Bachelor's Y
         25480 rows × 12 columns
                        value counts
In [ ]: In [4]:
                        visa_df['continent'].
# Continent colums
                        value_counts()
Out[4]: continent
         Asia 16861
         Europe 3732
         North America 3292
         South America 852
         Africa 551
         Oceania 192
         Name: count, dtype: int64
                         visa_df['case_status']
                         .value_counts()
In [5]:
Out[5]: case_status
         Certified 17018
         Denied 8462
         Name: count, dtype: int64
```

```
applicants how many got Visa
 In [ ]: In [7]:
                                 con1=visa df['continent']=='A
                                 sia'
                                 con2=visa_df['case_status']==
 #Q) out of all Asian
 applicants how many got Visa 'Certified' con=con1&con2
 # Out of all Europe
                                 len(visa_df[con])
 Out[7]: 11012
                            ue()
                            visa_df['continent'].valu
In [10]:
                            e_counts().keys()
visa_df['continent'].uniq
Out[10]: Index(['Asia', 'Europe', 'North America', 'South America', 'Africa',
           'Oceania'],
            dtype='object', name='continent')
                                   con3=visa_df['case_status']=='De
                                   nied'
In [22]:
# Generalised
lables=visa_df['continent'].uniq df[con1&con2]))
                                   certified_count.append(len(visa_
ue()
                                   denied_count.append(len(visa_df[
certified_count=[]
                                   con1&con3]))
denied_count=[]
for i in lables:
                                   pd.DataFrame(zip(lables,certifie
 con1=visa df['continent']==i
                                   d_count,denied_count),
con2=visa_df['case_status']=='Ce
rtified'
columns=['continent','certified'
,'denied'])
rtified'
Out[22]: continent certified denied O Asia 11012
           5849
           1 Africa 397 154
           2 North America 2037 1255
           3 Europe 2957 775
           4 South America 493 359
           5 Oceania 122 70
```

```
).set_index('contine
   Out[23]: certified denied continent
                  Asia 11012 5849
                 Africa 397 154
          North America 2037 1255
                Europe 2957 775
          South America 493 359
               Oceania 122 70
         In [28]:
col1=visa_df['conti (col1,col2) result1
nent']
col2=visa_df['case_
  Out[28]: case_status Certified Denied
              continent
                 Africa 397 154
                  Asia 11012 5849
                Europe 2957 775
```

North America 2037 1255

South America 493 359

Oceania 122 70

result1.plot(kin

localhost:8889/notebooks/OneDrive/Documents/Data science/Naresh IT/Data science/Batch-4_Oct9/EDA-Python/EDA-6-Bivariate and Multivari... 4/11

12/15/23, 12:29 PM EDA-6-Bivariate and Multivariate analysis - Jupyter Notebook

Out[36]: case_status Certified

education_of_employee Bachelor's Doctorate High

School Master's Bachelor's Doctorate Hig Scho

continent

Africa 81 43 23 250 62 11 4

Asia 4407 780 676 5149 2761 143 161

Europe 1040 788 162 967 259 58 32

North America 641 207 210 979 584 51 19 Oceania 38 19 19 46 28 3 1

South America 160 75 74 184 173 14 6

result2.plot(kin

In [37]: d='bar')

Out[37]: <Axes: xlabel='continent'>

Numerical vs Numerical

localhost:8889/notebooks/OneDrive/Documents/Data science/Naresh IT/Data science/Batch-4_Oct9/EDA-Python/EDA-6-Bivariate and Multivari... 6/11 12/15/23, 12:29 PM EDA-6-Bivariate and Multivariate analysis - Jupyter Notebook

```
In [38]: #(1,11),(2,12),(3,13),
x=[1,2,3,4,5] (4,14),(5,15)
y=[11,12,13,14,15] plt.scatter(x,y)
```



```
Out[40]: [100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

localhost:8889/notebooks/OneDrive/Documents/Data science/Naresh IT/Data science/Batch-4_Oct9/EDA-Python/EDA-6-Bivariate and Multivari... 7/11 12/15/23, 12:29 PM EDA-6-Bivariate and Multivariate analysis - Jupyter Notebook

```
x,y)
In [44]: plt.plot(x,y
plt.scatter( )
```

Out[44]: [<matplotlib.lines.Line2D at 0x127d5a68690>]

Scatter plots for only numerical analysis

Scatter plots provides an idea , both variables are related or not related

Postivie relation

Increase in the curve

Negative relation

Decrease in the curve

No realtion

Neither increase nor Decrease

s)

num=[i for i in dtypes if

In [48]: dtypes[i]!='0'] num

dtypes=dict(visa_df.dtype

Out[48]: ['no_of_employees', 'yr_of_estab', 'prevailing_wage']

localhost:8889/notebooks/OneDrive/Documents/Data science/Naresh IT/Data science/Batch-4_Oct9/EDA-Python/EDA-6-Bivariate and Multivari... 8/11 12/15/23, 12:29 PM EDA-6-Bivariate and Multivariate analysis - Jupyter Notebook

```
col2=visa_df['prevai
In [49]: ling_wage']
col1=visa_df['no_of_ plt.scatter(col1,col
employees'] 2)
```

Out[49]: <matplotlib.collections.PathCollection at 0x127d862f3d0>

In [51]: #Covariance-matrix

#How many numerical
variables are there : 3
no_employee yr wage
#no_employee var cov cov

#yr cov var cov #age cov

cov var

Denoted with r r range from -1 to 1 postive relation range = (0,1] negative relation range = [-1,0) no relation = 0

localhost:8889/notebooks/OneDrive/Documents/Data science/Naresh IT/Data science/Batch-4_Oct9/EDA-Python/EDA-6-Bivariate and Multivari... 9/11 12/15/23, 12:29 PM EDA-6-Bivariate and Multivariate analysis - Jupyter Notebook

```
visa_df.corr(numeric_only=True) #
applicable for yo need to see numeric_on
```

```
# in the data frame we have both cat and
numerical column # correlation applicable
for only numerical column
# Explicitly mention numeric= True
```

```
# If people has pandas old version
# they dont have numeric_only argument
# for them visa_df.corr() works
```

```
Out[55]: no_of_employees yr_of_estab prevailing_wage no_of_employees

1.000000 -0.017770 -0.009523 yr_of_estab -0.017770 1.000000 0.012342

prevailing_wage -0.009523 0.012342 1.000000

pd.__version__ #
double underscore

Out[53]: '2.0.3'

install

In []:
#pip unisntall

pandas ==2.0.3

pandas #pip
```

localhost:8889/notebooks/OneDrive/Documents/Data science/Naresh IT/Data science/Batch-4_Oct9/EDA-Python/EDA-6-Bivariate and Multiva... 10/11 12/15/23, 12:29 PM EDA-6-Bivariate and Multivariate analysis - Jupyter Notebook

```
plt.scatter(visa_df['yr_of_estab'],
In [56]: visa_df['prevailing_wage'])
```

Out[56]: <matplotlib.collections.PathCollection at 0x127da424610>

