2. Übungsblatt

- 1. Sei das L-System $G = (\{F, -, +\}, -F, \{F \to F + F F F + F\})$ gegeben. Bestimmen Sie die Wörter, die sich ergeben, wenn man zwei Ableitungschritte durchführt. Welche graphische Repräsentation dieser Strings ergibt sich mit der Turtle-Interpretation für $\delta = 90^{\circ}$?
- 2. Sei $G = (\{0,1\}, N, P, S)$ eine Chomsky-Grammatik, wobei $N = \{S\}$ und $P = \{S \to \epsilon, S \to 0S0, S \to 1S1\}$.
 - i) Beschreiben Sie die Menge aller Wörter, die aus dem Startsymbol S erzeugt werden können. Geben Sie einige Beispiele an.
 - ii) Sei nun w ein beliebiges Wort, dass aus dem Startsymbol erzeugt werden kann. Beweisen Sie mit Hilfe eines Induktionsbeweises, dass dann für jedes Wort $w \in L(G)$ gilt $|w|_0 \equiv 0 \mod 2$ und auch $|w|_1 \equiv 0 \mod 2$.
- 3. Gegeben sei ein Alphabet Σ . Eine Sprache $L \subseteq \Sigma^*$ heißt entscheidbar, falls ein Algorithmus existiert, der für jede Eingabe stoppt und der für jedes $w \in \Sigma^*$ feststellt, ob entweder $w \in L$ oder $w \notin L$ gilt.

Entwerfen Sie Algorithmen (in Pseudocode), die zeigen, dass die Sprachen L_1 , **PRIM** und **COMPOSITE** entscheidbar sind:

- i) $\Sigma = \{a, b\}$ und $L_1 =_{\text{def}} \{v \in \Sigma^* \mid v = ww^R\}$, wobei $w^R =_{\text{def}} w_n w_{n-1} \dots w_2 w_1$ für $w = w_1 w_2 \dots w_{n-1} w_n$ (d.h. w^R ist das Spiegelbild von w).
- ii) $\Sigma = \{0, 1\}$, **PRIM** =_{def} $\{p \mid p \text{ ist Primzahl}\}$ und **COMPOSITE** = **PRIM**.
- 4. Gegeben sei die Grammatik $G_4 = (\{a, b, c\}, \{S, B\}, \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}, S)$. Geben Sie die Sprache $L(G_4)$ an. Hinweis: Zählen Sie zunächst einmal wie viele Buchstaben a, B und c nach einem beliebigen Ableitungsschritt auftreten (induktives Argument).

Besprechung in den Übungen am 3. Mai 2021.