н теория сложности

literature:

- Arora Barak "Complexity Modern Approach" (1st part)
- Garry Johnson "Трудно разрешенные задачи"
- site: compendium of NP-complete problems

outline:

- NP-полнота
 - Концепция недетерминированных вычислений
- Сведения
 - Теорема Кука-Левина
- язык CNFSAT
 - <u>Теорема</u> $CNFSAT \in NPC$ _
 - <u>Teopema</u> CNFSAT o 3SAT
- $\underline{\text{Теорема}}IND \in NPC$
- диагональный метод
 - теоремы об иерархии
 - Теорема о ёмкости иерархии
 - Теорема о временной иерархии
 - <u>Теорема Бэйкера-Гилла-Соловэя (BGS)</u>
 - Теорема Ладнера
- coNP
- PSPACE и PSPACE полнота
 - $TQBF \in PSC$
 - <u>Teopema</u> $NSPACE(f(n)) \subset DSPACE(f(n)^2)$
 - Следствие. Теорема Сэвитча

н2 NР-полнота

Характеристики сложности вычисления.

Есть распознователи ($\Sigma^* o B$) и преобразователи ($\Sigma^* o \Sigma^*$)

- время: T(n) = O(f(n))
- память: S(n)
- random: R(n)

$$DTIME(f) = \{L \mid \exists \ program \ p : \}$$

$$1. x \in L \implies p(X) = 1, x \notin L \implies p(x) = 0$$

2.
$$n = |x| \implies T(p, x) = O(f(n))$$

$$h = (01)^* \in DTIME(n)$$

$$\widetilde{DTIME}(f) = \{h \mid \dots \}$$

палинромы:
$$Pal \in DTIME_{RAM}(n)$$

$$Pal \notin DTIME_{TM}(n)$$

$$P = \bigcup_{f-polynom} DTIME(f) = \bigcup_{i=0}^{\infty} DTIME(n^i)$$

```
p(n)q(n): p+q, p*q, p(q(n)) \ L_1L_2 \in P: L_1 \cup L_2 \in P, L_1 \cap L_2 \in P, \overline{L_1} \in P, L_1L_2 \in P, L_1^* \in P
```

НЗ концепция недетрминированных вычислений

Допускается $\iff \exists$ последовательность переходов, которая приводит к допуску недетерминировання программа p(x) допускает $\iff \exists$ последовательность недетерминированных выборов, приводящая к допуску p(x) не допускает $\iff \forall$ последовательности выборов не допуск $\text{def NTIME}(f) = \{L \mid \exists \text{ недетерминированная программа } p$ $p(x) - acc \iff x \in L; \ 2) \ T(p, x) = O(f(n))\}$

ех задача о гамильтоновом цикле

```
p(G)
vis[1..n]: arr of bool
s = 1
for i = 1..n
    u = ?{1..n}
    if (vis[u]) return false
    if (su not in EG) return false
    vis[u] = true
    s = u
if (s ≠ 1) return false
return true
```

 $\operatorname{\mathsf{ex}}[\operatorname{\mathsf{isComposite}}(\mathsf{z})],\, n = \lceil \log_B z
ceil$, где B - это основание системы счисления

```
a = ?{2..z-1} // T = logn
if z % a = 0 // poly(logn)
return true
return false
```

Hельзя свопнуть бранчи и сделать проверку на простоту, потому что это true и false не симметричны в недетерминированных вычислениях (нельзя даже isPrime(n): return !isComposite(n))

```
egin{aligned} 	ext{def NP} &= \cup_{f-polynome} \ NTIME(f), \ nondeterministic \ polynomial \ & 	ext{stat} \ P \subset NP \end{aligned}
```

неформально: класс P - класс задач, которые можно решить за полином, класс NP - класс задач, решение которых можно проверить за полином

 Σ_1 - класс языков, в которых можно формализовать класс решения, которое можно проверить за полином

 $\Sigma_1 = \{ L \mid \exists$ полином p, работающая за полином программа R(x, y) - детерминированная

```
x\in L\iff\exists\ y (называют сертификат): \ |y|\le p(|x|)\ and\ R(x,y)=1 x
otin L\implies\forall\ y\ (|y|\le p(|x|))\ R(x,y)=0\}
```

 ${f ex}$ гамильтонов цикл $Ham \in \Sigma_1$

```
R(G, y):
    y as arr[1..n] of int
    // we can add: y = ?arr[i..n] of {1..n} // O(n)
    vis = arr[1..n] of bool
    for i = 1..n
        if (y[i] y[i mod n+1] not in EG) return false
        if vis[y[i]] return false
        vis[y[i]] = true
    return true
```

```
Th NP=\Sigma_1 L\in NP,\,L\in\Sigma_1
```

неформально: NP — определение на языке недетерминированных формат, Σ_1 — определение на языке сертификатов

н2 сведения

def сводим В к А *по Тьюрингу*: A, B – языки, C – сложностный класс, $B \in C^A$ (C с *оракулом* A). не считая вызова функции isInA(x): Bool, остальные ограничения класса C учитываются.

 def сведение по Куку-Левину (Тьюрингу за полином) $B \in P^A$

 $egin{align*} extbf{def} & extbf{csedehue} & extbf{csedehue} & extbf{:} & extbf{csedehue} & extbf{:} & extbf{stable} & extbf{stable} & extbf{csedehue} & extbf{:} & extbf{stable} & extbf{csedehue} & extbf{:} & extbf{stable} & e$

```
\mathbf{ex}\ IND = \{\langle G,k 
angle | \mathbf{B} \ G\ d\ независимое множество размера \mathbf{k}\ \} CLIQUE = \{\langle G,k 
angle | \mathbf{B} \ G \exists \  клика размера \mathbf{k}\} IND \leq CLIQUE f(\langle G,k 
angle) = \langle \overline{G},k 
angle / / за полином \mathbf{B} \ G и множестве размера \mathbf{k} \iff \mathbf{B} \ \overline{G} \ \exists \  клика размера \mathbf{k} \ VCOVER = \{\langle G,k 
angle | \mathbf{B} \ G \ \exists \  вершинное покрытие размера \mathbf{k} \ \} IND \leq VCOVER f(\langle G,k 
angle) = \langle G,n-k 
angle , где \mathbf{n} - число вершин \mathbf{G}
```

```
\mathbf{ex}\;SUBSETSUM=\{\langle [x_1,x_2,\ldots,x_n],s
angle\;|\;\exists I\subset\{1,2,\ldots,n\},\sum_{i\in I}=s,x_i\in\mathbb{N}\} dp [i] [w] - можно ли первые і \Sigma=w // w - 2^{|s|} VCOVER\leq SUBSETSUM
```

пронумеруем вершины с единицы, рёбра – с нуля, битовыми масками каждой вершине сопоставляем рёбра

	6	5	4	3	2	1	0
x_1	1	0	0	0	0	1	1
x_2	1	0	0	0	1	1	0
x_3	1	0	1	1	1	0	0
x_4	1	1	1	0	0	0	0
x_5	1	1	0	1	0	0	1
S	3	2	2	2	2	2	2

 $x_6 = 1$

 $x_7 = 10$

 $x_8 = 100$

 $x_9 = 1000$

 $x_{10}=10000$

 $x_{11} = 100000$

 $f(\langle G,k \rangle)$, n - число вершин, m - число рёбер, s=k22...2, m двоек

f сводит VCOVER к SUBSETSUM

 \Rightarrow : в G \exists вершинное погрытие размера k

 $\Leftarrow: [x_1 \ldots, x_{n+n}], s \; \exists \;$ решение \Rightarrow в $G \; \exists \;$ вершинное покрытие размера k

def язык называется *NP-hard* (*NP-mpyдный*), если выполнены следующие условия:

$$\forall B \in NP : B \leq A$$

def A называется NP-complete (NP-полный), если:

1) $A \in NPH$

2) $A \in NP$

 $// NPC = NPH \cap NP$

ex BH_{1N} (bounded halting unary nondeterministic)

 $BH_{1N} = \{ \angle m, x, 1^t
angle \mid m$ – недетрминировання машина тьюринга, х – вход, t –

ограничение времени: ∃ последоватеьность недетерминировання выборов машины

Тьюринга m, что она допускается за t шагов: m(x) = 1

Th $BH_{1N} \leq NPC$

1. $BH_{1N} \in NPH$

 $A \in NP$

// <u>def по Карпу</u>

 m_A - недетерминировання машина Тьюринга, решающая A за полином $\ p(n)=cn^k$

 $f(x) = \langle m_A, x, q^{p(|x|)}
angle$

 $x \in A \iff \exists$ последовательность выборов $m_A(x) = 1$ (за p(|x|))

2. $BH_{1N} \in NP$

 $\mathbf{L} A \leqslant^k B, B \leqslant^k C \implies A \leqslant^k C$

$$x \stackrel{t}{
ightarrow} f(x) \stackrel{t}{
ightarrow} g(f(x))$$

 $\mathbf{con}\ A \in NPH, A \leqslant B \implies B \in NPH$

stat если $B\leqslant A$, $A\in NPH$

$$NP \stackrel{t}{
ightarrow} BH_{1N} \stackrel{t}{
ightarrow} SAT$$

 $egin{aligned} \mathsf{def} \ \overline{SAT} = \{\phi(x_q \ldots x_n) \mid \exists x_1 \ldots x_n \ \phi(x_1 \ldots x_n) = 1, \phi - \mathfrak{6} \, \emptyset \, \} \end{aligned}$

$$SAT \in NPC$$

$$BH_{1N} \leqslant SAT$$

$$\langle m, x, 1^t \rangle \stackrel{f}{\mapsto} \phi$$

 ϕ удовлетворяет $\iff \exists$ последовательность недетерминированных выборов m(x)=1, за время t

больше t шагов не будет, есть мгновенные описания машины $\alpha\#_q\beta$ дополним описания до длины t + 1

$$q_0 \vdash q_1 \vdash \ldots \vdash q_t$$

табло вычислений: первая строка - стартовое состояние, $i \to i+1, q_i \vdash q_{i+1}$, допуск: последовательность до $\#_{acc}$

 $\langle m, x, 1^t
angle \ \in BH_{1N} \iff \exists$ допускающее табло вычислений

количество состояний |Q|=z, множество ленточного алфавита $|PT|=y,\,z+y=k$ заведём $(t+1)^2k$ переменных, x_{ijc} – верно ли, что в табло в і-й ј-й ячейке записан символ 'с'

$$\phi(x_{ijc}) = C \wedge S \wedge T \wedge N$$

$$C = \land i, j = 0..t \lor_C ((\land \neg X_{ij\alpha}) \land X_{ijc})$$

$$S = X_{00\#_2} \wedge X_{01x_1} \wedge X_{02x_2} \wedge \ldots \wedge X_{0nx_n} \wedge X_{0(n+1)B} \wedge \ldots$$

$$T = X_{t0\#x} \vee X_{t1\#x} \vee \ldots \vee X_{tt\#x}$$

$$N=(\wedge_{i,j}\wedge_{c_1c_2c_3c_3
otin Q}X_{i-1,j-1,c_1}\wedge X_{i-1,j,c_2}\wedge X_{i,j+1,c_3}\wedge X_{i,j,c_4} o c_1=c_4)\wedge_{ijx}\wedge_{c_1...c_6...}$$
 допустимы

 $qed \square$

на язык CNFSAT

$$\operatorname{def} rac{CNFSAT}{} = \{\phi \mid \! \phi ext{ В КН} \Phi, \phi \in SAT \}$$

$$(x_i \vee \neg x_i...) \wedge (\vee \vee \vee) \wedge (\vee)$$

clause (клоз)

ex 2-SAT (ровно две) HornSAT (не более одной без отрицания)

H₃ Th CNFSAT in NPC

- 1. $CNFSAT \in NP$
- 2. $CNFSAT \in NPH$

$$SAT \leqslant CNFSAT$$
 $f \text{ (polynomial time)}$

$$\phi \in SAT \iff \psi = f(\psi) \in CNFSAT$$

базис: \land, \lor, \lnot

строим дерево разбора нашей формулы ϕ :

- если у neg сын neg, то можем удалить
- neg -> and/or => neg <- and/or -> neg neg

каждому поддереву соответствует преобразованная подформула $\phi_i(x_{i_1}\dots x_{i_k})$, хотим построить следующее: $\psi_i(x_{i_1}\dots x_{i_k},y_1\dots y_{i_t})$

$$\phi(\overline{X}) = 1 \implies \exists \overline{y} \psi(\overline{x}, \overline{y}) = 1$$

$$\phi(\overline{X}) = 0 \implies \forall \overline{y} \psi(\overline{x}, \overline{y}) = 0$$

вершина	brand new ψ			
X	$\phi=X,\psi=X$			
neg X	$\phi = \neg X, \psi = \neg X$			
and	$\phi_1 \wedge \phi_2, \psi_1 \wedge \psi_2$			
or	$\psi_1 \lor \psi_2$ не можем написать, потому что это не будет в КНФ новая переменная z: $(\psi_1 \lor z) \land (\psi_2 \lor \neg z)$			

получается, что число клозов равно числу листьев внутри каждого клоза число вхождений равно число переменных + или

#clauses = #leaves #entries = #vars + #or poly

 $\square qed$

H3 Th CNFSAT to 3SAT

 $3SAT = CNFSAT \wedge 3CNF$

- 1. $3SAT \in NP$
- 2. $3SAT \in NPH$ $CNFSAT \leq 3SAT$

ψ	X	
$(x ee y ee u) \wedge (x ee y ee eg u)$	$x \lor y$	
ok	$x \lor y$	
вспомогательные переменные		
k - 3 новые перменные:		
$(x_1 ee x_2 ee t_1) \wedge (\lnot t_1 ee x_3 ee t_2) \wedge (\lnot t_2 ee x_2 ee t_3) \wedge \ldots \wedge (\lnot t_{k-3} ee x_{k-1} ee x_k)$		
→	>	

 \square qed

3SAT - superstar

H2 Th IND in NPC

дана формула ϕ в ЗКНФ, мы хотим вывести граф G и число k, такие что ϕ удовлетворима тогда и только тогда, когда в графе есть независимое множество размера k

$$\phi \in 3SAT \iff \langle G, k \rangle \in IND$$

 $x_i o 2k + 2$ вершины

в ϕ k clauses, граф построим из k triangles в вершинах переменные, соответствующие claus'ам соединим переменные с их отрицанием

 $HAM=\{G\mid G$ — ориентированный граф, содержит Гамильтонов цикл $\}$ $HAM\in NP$ $HAM\in NPH$ $\phi(x_1x_2\ldots x_n)$ k clauses

где Х - это компонента предыдущего вида

н2 диагональный метод

нз теоремы об иерахии

$$DSPACE(f)=\{L\mid\exists$$
 программа р: $x\in L\implies p(x)=1$ $S(p,x)=O(f(n))\}$ $x
otin L\implies p(x)=0$ $PSACE=\cup_{p-polynom}DSPACE(p)$

Th NP subset PS subset EXP

thesis если р запускает q, q использует O(f) памяти, то p может тоже для этого использоватьO(f) памяти

H4 Th о ёмкости иерархии

$$\frac{f}{g} \to 0 \text{ тогда } \exists L: L \in DSPACE(g) \backslash DSPACE(f)$$

$$h = \sqrt{fg}, \ \frac{h}{g} \to 0, \ \frac{f}{h} \to 0$$

$$n = |\langle p, x \rangle|$$

$$L = \{\langle p, x \rangle \mid \text{ неверно, что } (p(\langle p, x \rangle) = 1, \text{ использовав } h(n) \text{ памяти })\}$$

$$L \in DSPACE(g)$$
 Пусть $L \not\in DSPACE(f), \text{ q - разрешает L, используя } \leqslant cf(n), \text{ рассмотрим } n_0: h(n_0) > cf(n_0), n_0 > |q|$ рассмотрим $x: |\langle q, x \rangle| = n_0$
$$q(\langle q, x \rangle) = ?$$

$$q(\langle q, x \rangle) = q \implies \langle q, x \rangle \in L \implies !(q(\langle q, x \rangle) = 1 \text{ and } S(q, \langle q, x \rangle) \leqslant cf(n)\langle h(n_0)) \implies q(\langle q, x \rangle) = 0$$

$$q(\langle q, x \rangle) = 0 \implies \langle q, x \rangle \not\in L \implies q(\langle q, x \rangle) = 1$$

H4 Th о временной иерархии

DSPACE -> DTIME, память -> время

ломается немного первая часть, так что новое условие:

 $rac{f}{g} o 0, \exists h:rac{f}{h} o 0,rac{sim(h)}{g} o 0. \ \ (sim(h)=O(g))$ (где sim(f) - за сколько можно просимулировать программу, работающую за f) тогда

 $\exists L : L \in DTIME(g) \backslash DTIME(f)$

$$h=\sqrt{fg},~rac{h}{g}
ightarrow 0,~rac{f}{h}
ightarrow 0$$

$$n=|\langle p,x\rangle|$$

 $L=\{l \angle p,x
angle \mid$ неверно, что $(p(\langle p,x
angle))=1$, использовав h(n) времени $)\}$

 $L \in DTIME(q)$

Пусть $L \notin DTIME(f)$, q - разрешает L, используя $\leqslant cf(n)$, рассмотрим $n_0: h(n_0) > cf(n_0), n_0 > |q|$

рассмотрим $x: |\langle q, x \rangle| = n_0$

$$f = n^{\log_2 n} = 2^{(\log_2 n)^2}$$

$$a=2^{i}$$

$$f=n^{\log_2 n}=2^{(\log_2 n)^2}$$
 $g=2^n$ $rac{f}{g} o 0 \implies \exists L\in DTIME(g)ackslash DTIME(f)$ (первая часть $\implies L\in EXP$, вторая — $\implies L
otin P$)

H3 Th (Бейкер, Гилл, Соловэй) BGS

$$u = \{\langle p, x \rangle | \ p(x) = 1\}$$

 $uni(p,x)
ightarrow { t octahaвливается}$ ли ${ t p}$ на ${ t x}$

Вычисления с оракулом p^A – р с оракулом А

$$\exists$$
 оракул $A:p^A=NP^A$

$$\exists$$
 оракул $B:p^B
eq NP^B$

// релятивизуется, если доказательство остаётся верным, если всему фиксированному в программе добавить оракул

рассмотрим $A \in PSC$

$$p^A \stackrel{1}{\subset} NP^A \stackrel{2}{\subset} PS^A \stackrel{3}{\subset} PS \stackrel{4}{\subset} P^A.$$

- 1. любая недетерминировання программа частный случай детерминированной
- 2. релятивизуется
- 3. можем заменить вызов оракула на процедуру проверки
- 4. потому что взяли PSpace полный, любой сводится за полином и спросим у оракула

$$\mathsf{B} \ \ U_B = \{x \mid \exists y \in B \ \ |x| = |y|\}$$

$$\mathsf{L} \ \forall B \ U_b \in NP^B$$

Придумаем $B:U_B
otin P^B$

Теперь рассмотрим часть \exists оракул $B:p^B \neq NP^B$:

Построим последовательность программ q_1, q_2, q_3, \dots

 $T(q_i)$ - полином

 $orall L \in P: \exists i: q_i$ разрешает L

Рассмотрим все коды исходных программ, упорядочим их лексикографически и запустим

	n	$2n^2$	$3n^3$	 kn^k	
p_1					
p_2					
p_m				$p_m \mid TL = kn^k$	

каждая из этих программ работает за полином

нумеруем эту табличку по диагонали

получим счётное множество пронумерованных программ

если программа не успела завершиться за TL, то говорим, что q_i возвращает 0

так же можем занумировать все программы с оракулами: $q_1^ullet, q_2^ullet, \dots, q_n^ullet, \dots$

должны сделать $B:p^B \neq NP^B$

рассмотрим $B:U_B=\{x\mid \exists y:|x|=|y|,y\in B\}$

 $\mathsf{L} \, orall B : U_B \in NP^B$

ub(x) y ← недетерминированно Sigma^|x| return check(y)

Построить $B:U_B\notin p^B$ (если построим такое B, то теорема БГС доказана)

 $B_1:q_{\scriptscriptstyle 1}^{B_1}$ не распознавала U_{B_1}

запустим q_1 с оракулом и будем выступать в роли оракула

 $q_1^ullet(x_1)$: спрашивает оракула $?y_1 o NO$ (пишем в тар наши ответы)

 $?y_2 o NO \dots ?y_k o NO$

// выберем $x_{^{arphi}}: T(q_1,x_1) < 2^{|x_1|}$

если результат программы $YES: \ \forall z \ |z| = |x_1|: z
otin B_1$

 $NO:\ \exists z_1:q_1^ullet(x_1)$ не задала вопрос про $z_1,\ |z_1|=|x_1|;\ z_1\in B_1$

 $B_1 o B_2 \; q_1^{B_2}$ не распознаёт $U_{B_2}, q_2^{B_2}$ не распознаёт U_{B_2}

 $T(q_2^{ullet},x_2) < 2^{|x_2|}, |x_2| >$ максимальной длины, для которого известно принадлежность B_1

теперь запускаем $q_2(x_2)$: спрашивает у нас: если спрашивали уже про это слово, то я то же самое и отвечаю, если нет, отвечаю NO и записываю

 $B_k \; orall i \leqslant k : q_i^{B_k}$ не распознаёт U_{B_k}

опять находим x_k и запускаем

тот же самый подход, что и выше, при запуске

этот процесс продолжается до бесконечности

для ответа БГС возьмём $B = \cup_{k=1}^\infty B_k$

```
P \neq NP \implies \exists L : L \notin P, L \notin NPC, L \in NP
```

иллюстрация, не доказательство

Blowing Holes in SAT

координатная ось с итерированным логарифмом

$$1 \to 10 \to 10^{10} \to 10^{10^{10}}$$

выбираем нечётные промежутки

$$SAT0 = SAT \cap EVEN$$

$$EVEN = \{x \mid log_{10}^*|x|$$
 чётен $\}$

к нему сводится SAT:

$$\exists f: x \in SAT \iff f(x) \in SAT0$$

так же, как в теореме БГС, у нас есть последовательность $q_1,q_2,\ldots,q_n,\ldots$, так же запускаем программу p_i с таймером jn^j и так же занумеровали программу по диагонали: $f_1\ldots f_i\ldots$

все f_i работают за полином

$$L = SAT \ \cap \ EVEN \ (SAT \ \cap \ \{\phi \ | \ |\phi| \$$
в "чёрном" куске $\})$

рассмотрели первый чёрный кусок, префикса которого достаточно, чтобы программа q_1 не разрешала L за полином

теперь рассмотрим некст белый кусок: добъёмся того, чтобы сведение f_1 неправильно сводило SAT к нашему языку

занумеруем формулы по возрастанию длины и дальше лексикографически:

$$\phi_1,\phi_2,\ldots$$

$$\phi_1\stackrel{f_1}{
ightarrow} z_1$$

$$\phi_2 o z_2$$

. . .

найдётся формула
$$\phi_x \stackrel{f_1}{ o} z_x : \phi_x \in SAT
eq z_x = f_1(\phi_x) \in L$$

найдётся такая ϕ_x потому, что если бы не нашлось, то получили бы противоречие в том, что SAT сводится за полиномальное время под действием f_1 к конечному языку

 z_x лежит либо в первом чёрном отрезке, либо во втором белом

$$n_2=max(n_1+1,|z_x|)$$

 $oldsymbol{Lemma}\ L \in NPC, F-$ конечный, $L \setminus F \in NPC$ $L \leqslant L \setminus F$

```
f(x):
    if x in F
        if x in L return YesWord
        else return NoWord
    else return x
```

построим BLACK:

- 1. $x \in BLACK$ зависит только ок |X|
- 2. $BLACK \in P$

разрешитель BLACK: (верно ли, что слова длины n принадлежат нашему языку, пусть работает за n)

```
black(x: String)
   a = black(|x|)
   return x in BLACK // основываясь на данных из массива а
black(n): List<Int>
// [n1, n2, ..., nk] - список всех границ, которые не превышают n
// ограничение по времени n^(большое число, пусть 100)
   if n = 0 return []
   a = black(n - 1)
    // black(n - 1) отработала за T ≤ (n - 1)^100, T_left ≥
n^99
   set Timer on n^99, if triggered return a
   if len(a) чётна:
        i = len(a) / 2 + 1
        for (phi - формула, |phi| \leq n):
            if (phi in SAT intersect BLACK \neq q_i(phi))
                return a ++ [n]
   else // len(a) нечётна
        i = (len(a) - 1) / 2 + 1
        for (phi - формула, |f_i(phi)| \leq n):
            if (phi in SAT \neq f_i(phi) in SAT intersect BLACK):
                return a ++ [n]
    return a
```

H2 CONP

```
 \begin{array}{l} \textbf{def } \overline{coNP} = L \mid \overline{L} \in NP \\ \\ \hline \textbf{ex } SAT \in NP, \\ \overline{SAT} \in coNP \\ \\ \hline \textbf{ects } \textbf{bce } \textbf{слова } \Sigma^*, \textbf{среди } \textbf{них } \textbf{есts } \textbf{булевы } \textbf{формулы } \textbf{и} \ \textbf{давайте } \textbf{рассматривать } \textbf{только} \\ \hline \textbf{булевы } \textbf{формулы, } \textbf{они } \textbf{делятся } \textbf{на } \overline{SAT} \textbf{ и } \textbf{на } \overline{SAT} \ \textbf{, } \textbf{ а } \textbf{на } \textbf{небулевы } \textbf{формулы } \textbf{забьём} \\ \hline \overline{SAT} = \{\phi \mid \forall \ \overrightarrow{x} \colon \phi(\overrightarrow{x}) = 0\} \\ \\ \hline \textbf{ex } FACTORIZATION = \{\langle n, x \rangle \mid \textbf{y} \ n \ \exists \ \textbf{простой } \textbf{делитель} \leqslant x\} \in NP \cap coNP \\ \textbf{(P candidate)} \end{array}
```

H2 PSpace и PSpace полнота

```
egin{aligned} \operatorname{def} & PS = \cup_{p-polynom} DSPACE(p) \ & P \subset NP \subset PS \subset EXP \ & \operatorname{def} & L \in \begin{subarray}{c} PSH \end{subarray} : orall A \in PS: & A \leqslant L \end{subarray} & L \end{subarray} & f(x) \in L) \ & \operatorname{def} & L \in \begin{subarray}{c} PSC \end{subarray} : 1) & L \in PSH \end{subarray} & 2) & L \in PS \end{aligned}
```

ех булевы формулы с квантора (матлог референс) $TQBF \text{ (True Quantified Boolean Formula)} = \{\phi \mid \phi - \text{булева формула с кванторами,} \\ Free(\phi) = \emptyset \ val(\phi) = 1\}$

H3 TQBF in PSC

1. $TQBF \in PS$

построим дерево разбора и храним множество значений текущих свободных переменных

2. $TQBF \in PSH$

рассмотрим $L \in PS, \ L \leqslant TQBF$

m - машина Тьюринга, разрешающая L, детерминировання, $S(m,x)\leqslant p(n)$ // n=|x|

$$m(x)$$
 $q_o \vdash q_1 \vdash q_2 \vdash \ldots \vdash q_t$

$$f:x o \phi$$

$$\phi$$
 — истина $\iff m(x) = 1$

 X_{ijc} — ячейка (i,j) содержит символ c

$$Q_i = [X_{i0c_1}, X_{i1c_1}, \dots, X_{ip(n)c_1}, X_{i0c_2}, \dots, X_{ip(n)c_2}]$$

$$S(Q_0) \cap T(Q_t) \cap C \cap N$$

введём синтаскический сахар: $\exists (\forall) Q_i := \exists (\forall) X_{i0c_1}, \exists (\forall) \dots$

$$Q_i \vdash Q_{i+1}$$

$$\exists Q_0 \; \exists Q_1 \ldots \exists Q_t \; S(Q_0) \; \wedge \; T(Q_t) \; \wedge \; C \; \wedge \; Q_0 \vdash Q_1 \; \wedge \; Q_1 \vdash Q_2 \; \wedge \; \ldots \; \wedge \; Q_{t-1} \vdash Q_t$$

выведенная формула плоха её длиной: $Q(Q_0),\ T(Q_t),\ Q_0 \vdash Q_1$ имеют длину p(n), но последних кусков t, таким образом вся формула имеет длину $p(n)2^{q(n)},$ а это не полиномиальное сведение

$$Q \vdash R$$

 \vdash - булева формула от $2\left(p(n)+1\right)z$ аргументов

$$Q \vdash R := Q \vdash \underbrace{U_1 \vdash U_2 \ldots \vdash U_{2^m - 1} \vdash R}_{2^m}$$

$$\vdash_m = \vdash^{2^m}$$

$$Q \vdash_m R = \exists T (Q \vdash_{m-1} T \land T \vdash_{m-1} R)$$

$$Q \vdash_m R = \exists T \ \forall A \ \forall B \ (\neg(A \vdash_{m-1} B) \rightarrow (Q \neq A \lor B \neq T) \land (T \neq A \lor B \neq R))$$

$$len(m) = O(p(n)) + len(m-1) \implies len(m) = O(p(n) m)$$

// PS proof template: PS o TQBF o L

H3 Th NSPACE(f(n)) subset DSPACE(f(n)²)

$$f(n) \geqslant log(n)$$

$$NSPACE(f(n)) \subset DSPACE(f(n)^2)$$

Доказательство:

Пусть $L\in NSPACE(f(n))$ \exists недетерминирванная машина Тьюринга $x\in L\iff \exists$ последовательность недетерминированных выборов, m(x)=1 $S(m,x)\leqslant f(n),\ n=len(x)$

```
вход — лента машины Тьюринга со словом x рабочая — лента машины Тьюринга с f(n) конфигурация машины Тьбринга кодируется:(pos,work), где work=\alpha\#_p\beta, длина pos=log(n), а длина work=f(n)+1, и тогда вся длина пары — O(f(n))
```

Существует ли последовательность переходов длиной $2^{c\ f(n)}$, которая q_0 переводит в допускающую конфигурацию q_t

заведём функцию (можно ли достичь): $Reach(q_s,q_t,k)$ (можно ли из q_s перейти за 2^k шагов до q_t $(q_s \vdash^{2^k} q_t)$)

локальные переменные функции Reach занимают f(n), суммарно памяти нам понадобится $O(k \ f(n))$

```
inL(x):
    qs - стартовая конфигурация m
    for (qt - допускающая конфиграция m):
        if Reach(qs, qt, c * f(|x|)):
            return 1
    return 0
```

 q_s требует f(n) памяти вызов Reach требует $f(n)^2$ памяти локальная переменная q_t требует f(n) памяти

Н4 Следствие Th (Сэвитча)

PS = NPS