Exercise 1

Pham Thi Thai - T00727094

2024-01-22

```
# The Iris Flower Dataset
head(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                        1.4
                                                    0.2 setosa
## 2
              4.9
                          3.0
                                        1.4
                                                    0.2 setosa
## 3
              4.7
                          3.2
                                        1.3
                                                    0.2 setosa
                          3.1
                                        1.5
                                                    0.2 setosa
## 4
              4.6
## 5
              5.0
                          3.6
                                        1.4
                                                    0.2 setosa
## 6
              5.4
                          3.9
                                        1.7
                                                    0.4 setosa
# Numeric summaries
mean <- lapply(iris[, 1:4], mean)</pre>
sd <- lapply(iris[, 1:4], sd)</pre>
mean(iris$Sepal.Length)
## [1] 5.843333
cbind (mean, sd)
                mean
                         sd
## Sepal.Length 5.843333 0.8280661
## Sepal.Width 3.057333 0.4358663
## Petal.Length 3.758
                         1.765298
## Petal.Width 1.199333 0.7622377
summary(iris$Species)
##
       setosa versicolor virginica
                      50
##
           50
                                 50
# Simple graph
plot (iris$Sepal.Width, iris$Sepal.Length)
```


Histogram of Sepal Width


```
# Barchart
library (ggplot2)
ggplot (data = iris) +
  geom_bar (aes(x = Species, fill = Species)) +
  xlab("Species") + ggtitle("Bar Chart of Species")
```



```
# Boxplot
library (ggplot2)
ggplot (data = iris) +
  geom_boxplot (aes(x = Species, y = Sepal.Length, fill = Species)) +
  xlab ("Species") + ylab("Sepal Length") +
  ggtitle("Boxplot of Sepal Length for Species")
```

Boxplot of Sepal Length for Species

`geom_smooth()` using formula = 'y ~ x'

Sepal Length-Width Scatterplot

`geom_smooth()` using formula = 'y ~ x'

Sepal Length-Width Scatterplot

$geom_smooth()$ using method = 'loess' and formula = 'y ~ x'

Sepal Length-Width Scatterplot


```
```r
Date in R
xd <- as.Date("2012-07-27")</pre>
weekdays(xd)
[1] "Friday"
Install and load package for financial data
pkg_list = c('quantmod', 'zoo', 'tseries', 'PEIP', 'gridExtra', 'moments')
Install packages if needed
for (pkg in pkg_list)
 # Try loading the library.
 if (! library(pkg, logical.return=TRUE, character.only=TRUE))
 {
 # If the library cannot be loaded, install it; then load.
 install.packages(pkg)
 library(pkg, character.only=TRUE)
 }
}
Warning: package 'quantmod' was built under R version 4.3.2
Loading required package: xts
```

## Loading required package: zoo

```
Warning: package 'zoo' was built under R version 4.3.2
##
Attaching package: 'zoo'
The following objects are masked from 'package:base':
##
 as.Date, as.Date.numeric
##
Loading required package: TTR
Warning: package 'TTR' was built under R version 4.3.2
Registered S3 method overwritten by 'quantmod':
##
 method
 from
##
 as.zoo.data.frame zoo
Warning: package 'tseries' was built under R version 4.3.2
Warning: package 'PEIP' was built under R version 4.3.2
Warning: package 'gridExtra' was built under R version 4.3.2
Stock Prices
start.date = '2019-12-1' # starting date of stock
end.date = '2022-12-1' # ending date of stock
Download the selected stocks from Yahoo finance
getSymbols(c('AAPL','MSFT','IBM', "GOOG","AMZN","TSLA"),
 src = "yahoo", from = start.date, to = end.date)
[1] "AAPL" "MSFT" "IBM" "GOOG" "AMZN" "TSLA"
stocks <- merge(AAPL = AAPL[, "AAPL.Adjusted"], MSFT = MSFT[, "MSFT.Adjusted"],
 IBM = IBM[, "IBM.Adjusted"], GOOG = GOOG[, "GOOG.Adjusted"],
 AMZN = AMZN[, "AMZN.Adjusted"], TSLA = TSLA[, "TSLA.Adjusted"])
names(stocks)<-c("Price.APPLE","Price.MSFT","Price.IBM","Price.GOOG",</pre>
 "Price.AMZN", "Price.TSLA")
Data
options(width = 70)
head(stocks)
 Price.APPLE Price.MSFT Price.IBM Price.GOOG Price.AMZN
 64.33828 144.1121 104.3364 64.4960
2019-12-02
 89.0800
2019-12-03 63.19112 143.8808 103.7162
 64.7640
 88.4980
2019-12-04 63.74888 144.4012 103.6142 66.0270
 88.0345
2019-12-05
 64.68410 144.4782 103.5514
 66.4065
 87.0240
 146.2321 104.5797
2019-12-06
 65.93359
 67.0310
 87.5800
2019-12-09
 65.01053 145.8563 105.1292 67.1780
 87.4755
 Price.TSLA
2019-12-02
 22.32467
2019-12-03
 22.41333
2019-12-04
 22.20200
2019-12-05
 22.02467
2019-12-06
 22.39267
2019-12-09
 22.63533
tail(stocks)
```

Price.APPLE Price.MSFT Price.IBM Price.GOOG Price.AMZN

##

```
2022-11-22
 149.3452
 242.8764 142.0453
 97.33
 93.20
2022-11-23
 94.13
 150.2303
 245.4040 141.7119
 98.82
 147.2867
 93.41
2022-11-25
 245.3148 141.3498
 97.60
2022-11-28
 143.4184
 239.6352 139.2635
 96.25
 93.95
2022-11-29
 140.3853
 238.2178 139.5588
 95.44
 92.42
2022-11-30
 147.2072
 252.8976 141.8548
 101.45
 96.54
##
 Price.TSLA
 169.91
2022-11-22
2022-11-23
 183.20
2022-11-25
 182.86
2022-11-28
 182.92
2022-11-29
 180.83
2022-11-30
 194.70
nrow(stocks)
```

## [1] 756

```
Plot Stock Prices
plot(stocks, legend.loc=1)
```



Dec 02 2019 Jun 01 2020 Dec 01 2020 Jun 01 2021 Dec 01 2021 Jun 01 2022 Nov 30 2022

```
Log Returns
return.cc = diff(log(stocks)) #calculate log returns
plot(return.cc, legend.loc=1)
```



Dec 02 2019 Jun 01 2020 Dec 01 2020 Jun 01 2021 Dec 01 2021 Jun 01 2022 Nov 30 2022