離散最適化基礎論 第9回

幾何的被覆問題(3):局所探索法(準備)

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2017年12月22日

最終更新: 2017年12月22日 10:56

主題

離散最適化のトピックの1つとして<mark>幾何的被覆問題</mark>を取り上げ、 その<mark>数理</mark>的側面と計算的側面の双方を意識して講義する

なぜ講義で取り扱う?

- ▶ 「離散最適化」と「計算幾何学」の接点として重要な役割を 果たしているから
- ▶ 様々なアルゴリズム設計技法・解析技法を紹介できるから
- ▶ 応用が多いから

スケジュール 前半

1 幾何的被覆問題とは?	(10/6)
★ 国内出張のため休み	(10/13)
2 最小包囲円問題 (1):基本的な性質	(10/20)
3 最小包囲円問題 (2): 乱択アルゴリズム	(10/27)
★ 文化の日のため休み	(11/3)
4 クラスタリング (1) : <i>k</i> -センター	(11/10)
5 幾何ハイパーグラフ (1): VC 次元	(11/17)
★ 調布祭 のため 休み	(11/24)
$oldsymbol{6}$ 幾何ハイパーグラフ $(2):arepsilon$ ネット	(12/1)

スケジュール 後半 (予定)

W = 11 1 = ==== 1	
7 幾何的被覆問題 (1):線形計画法の利用	(12/8)
🔞 幾何的被覆問題 (2):シフト法	(12/15)
g 幾何的被覆問題 (3):局所探索法 (準備)	(12/22)
🔟 幾何的被覆問題 (4):局所探索法	(1/5)
⋆ センター試験準備 のため 休み	(1/12)
💶 幾何ハイパーグラフ (3) : $arepsilon$ ネット定理の証明	(1/19)
left 幾何アレンジメント (1) :合併複雑度と $arepsilon$ ネット	(1/26)
幾何アレンジメント (2):合併複雑度の例	(2/2)
14 最近のトピック	(2/9)
15 期末試験	(2/16?)

注意:予定の変更もありうる

幾何的被覆問題に対する近似アルゴリズム

局所探索法 (local search) を利用したもの

▶ これの準備のために「平面的分離集合定理」を紹介

今回紹介する内容は主に次の論文に基づく

N. Alon, P. Seymour, and R. Thomas: Planar separators, SIAM Journal on Discrete Mathematics 7 (1994) 184−193.

平面的分離集合定理 (planar separator theorem) 自体は次の論文による

▶ R. J. Lipton and R. E. Tarjan: A separator theorem for planar graphs, SIAM Journal on Applied Mathematics **36** (1979) 177–189.

- 1 平面的グラフ
- 2 Menger の定理
- 3 平面的分離集合定理
- 4 平面的分離集合定理の再帰的適用
- 5 今日のまとめ

グラフといったら

頂点集合 V と辺集合 E の組 (V, E) のこと

- ▶ Vは (たいてい) 有限集合
- ► *E* は *V* の要素の組の集合

V の要素は<mark>頂点</mark> (vertex)

E の要素は辺 (edge)

例:

- $V = \{1, 2, 3, 4, 5\}$
- $E = \{\{1,2\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{4,5\}\}$

グラフの描画

無向グラフ G = (V, E)

グラフの描画とは?

グラフ G の描画とは、平面上に次のように G を表現したもの

- ▶ 各頂点 v ∈ V は平面上の点
- ▶ 各辺 {u, v} ∈ E は u と v を表す点を結ぶ (自己交差のない) 曲線

グラフの平面描画

無向グラフ G = (V, E)

グラフの平面描画とは?

グラフGの平面描画とは、Gの描画で、 辺を表す曲線どうしが端点以外に共有点を持たないこと

平面描画のことを平面グラフ (plane graph) とも呼ぶ

平面的グラフ

無向グラフ G = (V, E)

平面的グラフとは?

G が平面的 (planar) であるとは、G が平面描画を持つこと

例: K_4 は平面的グラフである

K₄ の非平面描画

K4 の平面描画

平面的グラフ:平面的ではない例

無向グラフ G = (V, E)

平面的グラフとは?

G が平面的 (planar) であるとは、G が平面描画を持つこと

平面的ではない例

平面的グラフの辺の数

平面的グラフ G = (V, E)

平面的グラフの性質 (1)

 $|V| \ge 3 \, \mathcal{O} \, \mathcal{E}$

$$|E| \le 3|V| - 6$$

- ► |*V*| = 8
- ► |*E*| = 15
- $|V| 6 = 3 \cdot 8 6 = 18$

平面的グラフ G = (V, E)

極大平面的グラフとは?

G が極大平面的グラフ (maximally planar graph) であるとは 平面的であるという性質を保ったまま,辺を追加できないこと

平面的グラフ G = (V, E)

極大平面的グラフとは?

G が極大平面的グラフ (maximally planar graph) であるとは 平面的であるという性質を保ったまま,辺を追加できないこと

平面的グラフ G = (V, E)

極大平面的グラフとは?

G が極大平面的グラフ (maximally planar graph) であるとは 平面的であるという性質を保ったまま,辺を追加できないこと

平面的グラフ G = (V, E)

極大平面的グラフとは?

G が極大平面的グラフ (maximally planar graph) であるとは 平面的であるという性質を保ったまま,辺を追加できないこと

平面的グラフ G = (V, E)

極大平面的グラフとは?

G が極大平面的グラフ (maximally planar graph) であるとは 平面的であるという性質を保ったまま,辺を追加できないこと

平面グラフの面

平面グラフ G = (V, E) (平面描画を想定)

平面グラフの面とは? (常識に基づく定義)

Gの面とは、Gの辺 (を表す曲線) で囲まれた平面上の領域のこと

G の面で非有界であるものを G の外面と呼ぶ

平面グラフの面

平面グラフ G = (V, E) (平面描画を想定)

平面グラフの面とは? (常識に基づく定義)

Gの面とは、Gの辺 (を表す曲線) で囲まれた平面上の領域のこと

G の面で非有界であるものを G の外面と呼ぶ

平面グラフの面

平面グラフ G = (V, E) (平面描画を想定)

平面グラフの面とは? (常識に基づく定義)

Gの面とは、Gの辺 (を表す曲線) で囲まれた平面上の領域のこと

Gの面で非有界であるものを Gの外面と呼ぶ

極大平面的グラフと三角形分割

極大平面的グラフ G = (V, E)

性質 (3)

極大平面的グラフGの任意の平面描画において, どの面もちょうど3つの辺で囲まれている

その意味で、極大平面的グラフのことを<mark>三角形分割</mark>と呼ぶこともある

- 平面的グラフ
- 2 Menger の定理
- ③ 平面的分離集合定理
- 4 平面的分離集合定理の再帰的適用
- 5 今日のまとめ

Menger の定理 (無向グラフ・頂点版)

無向グラフG=(V,E), $s,t\in V$, $\{s,t\}
ot\in E$

Menger の定理 (無向グラフ・頂点版)

s から t へ向かう道で, 内点素であるものの最大数 s と t を分離する 頂点集合の最小要素数

Menger の定理 (無向グラフ・頂点版)

無向グラフG=(V,E), $s,t\in V$, $\{s,t\}
ot\in E$

Menger の定理 (無向グラフ・頂点版)

s から t へ向かう道で, 内点素であるものの最大数 sとtを分離する 頂点集合の最小要素数

Menger の定理 (無向グラフ・頂点版)

無向グラフG=(V,E), $s,t\in V$, $\{s,t\}
ot\in E$

Menger の定理 (無向グラフ・頂点版)

s から t へ向かう道で, 内点素であるものの最大数 s と t を分離する 頂点集合の最小要素数

- 平面的グラフ
- ❷ Menger の定理
- 3 平面的分離集合定理
- 4 平面的分離集合定理の再帰的適用
- 5 今日のまとめ

無向グラフ G = (V, E), 実数 $\alpha \in [1/2, 1]$

α -分離集合とは?

 $G \, \mathcal{O} \, \alpha$ -分離集合 (α -separator) とは,

頂点部分集合 $S \subseteq V$ で、V-S が 2 つの部分 A,B に分かれ、次を満たす

- ▶ Aの頂点と Bの頂点を結ぶ辺が存在しない
- ▶ $|A| \leq \alpha |V|$ かつ $|B| \leq \alpha |V|$

無向グラフ G = (V, E), 実数 $\alpha \in [1/2, 1]$

α -分離集合とは?

 $G \, \mathcal{O} \, \alpha$ -分離集合 (α -separator) とは,

頂点部分集合 $S \subseteq V$ で、V - S が 2 つの部分 A, B に分かれ、次を満たす

- ▶ Aの頂点と Bの頂点を結ぶ辺が存在しない
- ▶ $|A| \le \alpha |V|$ かつ $|B| \le \alpha |V|$

平面的分離集合定理 (Planar separator theorem)

平面的グラフ G = (V, E)

平面的分離集合定理

(Lipton, Tarjan '79)

平面的グラフGには2/3-分離集合Sで, $|S| = O(\sqrt{|V|})$ を満たすものが必ず存在する

これが成り立つのは, 平面的グラフの場合

証明 (Alon, Seymour, Thomas ('94) による):

▶ 辺を追加して、Gを極大平面的グラフにする

そのようにしたグラフの分離集合は、もとの G の分離集合でもある

▶ 都合上, $k = |\sqrt{2|V|}|$ とする

証明 (Alon, Seymour, Thomas ('94) による):

▶ 辺を追加して, Gを極大平面的グラフにする

そのようにしたグラフの分離集合は、もとの G の分離集合でもある

▶ 都合上, $k = |\sqrt{2|V|}|$ とする

次の性質を満たす閉路 C を考える (閉路の内側の頂点集合を A(C),外側の頂点集合を B(C) とする)

- **1** |V(C)| ≤ 2k
- $|B(C)| < \frac{2}{3}|V|$
- **3** その2つの条件を満たすCの中で、|A(C)| |B(C)|を最小とする

そのような閉路 *C* は必ず存在する

次の性質を満たす閉路であ考える

(閉路の内側の頂点集合を A(C), 外側の頂点集合を B(C) とする)

- $|V(C)| \leq 2k$
- $|B(C)| < \frac{2}{3}|V|$
- 3 その2つの条件を満たす C の中で、|A(C)| |B(C)| を最小とする

そのような閉路 С は必ず存在する

次の性質を満たす閉路 *C* を考える

(閉路の内側の頂点集合を A(C), 外側の頂点集合を B(C) とする)

- $|V(C)| \leq 2k$
- $|B(C)| < \frac{2}{3}|V|$
- 3 その2つの条件を満たす C の中で、|A(C)| |B(C)| を最小とする

そのような閉路 С は必ず存在する

次の性質を満たす閉路 C を考える

(閉路の内側の頂点集合を A(C), 外側の頂点集合を B(C) とする)

- $|V(C)| \leq 2k$
- $|B(C)| < \frac{2}{3}|V|$
- 3 その2つの条件を満たす C の中で、|A(C)| |B(C)| を最小とする

そのような閉路 C は必ず存在する

次の性質を満たす閉路 C を考える

(閉路の内側の頂点集合を A(C), 外側の頂点集合を B(C) とする)

- $|V(C)| \leq 2k$
- $|B(C)| < \frac{2}{3}|V|$
- 3 その2つの条件を満たす C の中で、|A(C)| |B(C)| を最小とする

そのような閉路 С は必ず存在する

<u>背理法</u>: $|A(C)| \ge \frac{2}{3} |V|$ と仮定する

- ▶ $u, v \in V(C)$ に対して,d(u, v) で G における u, v 間の距離を表す
- ▶ 同様に, c(u,v) で C における u,v 間の距離を表す

観察1

任意の $u, v \in V(C)$ に対して,c(u, v) = d(u, v)

<u>背理法</u>: $|A(C)| \ge \frac{2}{3} |V|$ と仮定する

- ▶ $u,v \in V(C)$ に対して,d(u,v) で G における u,v 間の距離を表す
- ▶ 同様に, c(u, v) で C における u, v 間の距離を表す

観察1

任意の $u, v \in V(C)$ に対して、c(u, v) = d(u, v)

<u>背理法</u>: $|A(C)| \ge \frac{2}{3} |V|$ と仮定する

- ▶ $u,v \in V(C)$ に対して,d(u,v) で G における u,v 間の距離を表す
- ▶ 同様に, c(u, v) で C における u, v 間の距離を表す

観察1

任意の $u, v \in V(C)$ に対して、c(u, v) = d(u, v)

<u>背理法</u>: $|A(C)| \ge \frac{2}{3} |V|$ と仮定する

- ▶ $u,v \in V(C)$ に対して,d(u,v) で G における u,v 間の距離を表す
- ▶ 同様に, c(u, v) で C における u, v 間の距離を表す

観察1

任意の $u, v \in V(C)$ に対して、c(u, v) = d(u, v)

観察1

任意の $u, v \in V(C)$ に対して,c(u, v) = d(u, v)

d(u,v) < c(u,v) を満たす u,v の中で、d(u,v) が最小のものを考える

▶ *d*(*u*, *v*) を達成する道 *P* は *C* を通らない

(なぜ?)

観察1

任意の $u, v \in V(C)$ に対して,c(u, v) = d(u, v)

d(u,v) < c(u,v) を満たす u,v の中で、d(u,v) が最小のものを考える

▶ *d*(*u*, *v*) を達成する道 *P* は *C* を通らない

(なぜ?)

観察1

任意の $u, v \in V(C)$ に対して,c(u, v) = d(u, v)

 $C \cup P$ が新たに作る閉路を C_1, C_2 として, $|A(C_1)| \ge |A(C_2)|$ とする

ト このとき、 $|V(C_1)| > |V(P)| - 2$ と仮定 $|A(C)| \ge \frac{1}{3} |V|$ より、 $|A(C_1)| + |V(C_1)| > \frac{1}{2} (|A(C_1)| + |A(C_2)| + |V(P)| - 2) = \frac{1}{2} |A(C)| \ge \frac{1}{3} |V|$

観察1

任意の $u, v \in V(C)$ に対して、c(u, v) = d(u, v)

 $C \cup P$ が新たに作る閉路を C_1, C_2 として, $|A(C_1)| \ge |A(C_2)|$ とする

- ▶ つまり, $|B(C_1)| = |V| (|A(C_1)| + |V(C_1)|) < \frac{2}{3}|V|$
- ▶ t, d(u,v) < c(u,v) $to T, |V(C_1)| < |V(C)| \le 2k$

観察1

任意の $u, v \in V(C)$ に対して,c(u, v) = d(u, v)

- ト ゆえに、 $|A(C)| |B(C)| \le |A(C_1)| |B(C_1)|$ となり、 $|A(C)| > |A(C_1)|$ なので、 $|B(C)| > |B(C_1)|$ となる
- ▶ これは構成に矛盾

(観察1の証明終了)

観察 2

$$|V(C)|=2k$$

背理法: |V(C)| < 2k であると仮定する

- ightharpoonup C の任意の辺 e を選んで、それが C の内部に作る面を考える
- ▶ その面の e に接続しない頂点を v とする

観察 2

$$|V(C)|=2k$$

背理法:|V(C)| < 2k であると仮定する

- 観察1より、v ∉ V(C)
- ▶ したがって, Cの選び方に矛盾

(観察2の証明終了)

観察 2

$$|V(C)|=2k$$

背理法:|V(C)| < 2k であると仮定する

- 観察1より、v ∉ V(C)
- ▶ したがって, Cの選び方に矛盾

(観察2の証明終了)

観察 2

$$|V(C)|=2k$$

背理法:|V(C)| < 2k であると仮定する

- 観察1より、v ∉ V(C)
- ▶ したがって、Cの選び方に矛盾

(観察2の証明終了)

Cの頂点を反時計回り順に $v_0, v_1, \ldots, v_{2k-1}$ とする

▶ 新たに頂点 s, t を考え,s と $v_0, v_1, ..., v_k$ を辺で結び,t と $v_k, v_{k+1}, ..., v_{2k-1}, v_0$ を辺で結ぶ

Cの頂点を反時計回り順に $v_0, v_1, \ldots, v_{2k-1}$ とする

▶ 新たに頂点 s, t を考え,s と $v_0, v_1, ..., v_k$ を辺で結び,t と $v_k, v_{k+1}, ..., v_{2k-1}, v_0$ を辺で結ぶ

観察3

sと t を結ぶ内点素な道が k+1 本存在する

Menger の定理を思い出して、観察3を証明する

観察3

sと t を結ぶ内点素な道が k+1 本存在する

Menger の定理を思い出して、観察3を証明する

観察3

sと t を結ぶ内点素な道が k+1 本存在する

背理法:内点素な道が k 本以下しかないと仮定する

- \blacktriangleright s と t を分ける頂点集合 S で、要素数 k 以下のものが存在 (Menger)
- \triangleright $v_0, v_k \in S$

観察3

sとtを結ぶ内点素な道がk+1本存在する

背理法:内点素な道が k 本以下しかないと仮定する

- ightharpoonup $s \ b \ t$ を分ける頂点集合 S で、要素数 k 以下のものが存在 (Menger)
- \triangleright $v_0, v_k \in S$

観察3

sとtを結ぶ内点素な道がk+1本存在する

このとき、S は v_0 と v_k を結ぶ道を構成する

(なぜ?)

観察3

sとtを結ぶ内点素な道がk+1本存在する

このとき、S は v_0 と v_k を結ぶ道を構成する

(なぜ?)

観察3

sとtを結ぶ内点素な道がk+1本存在する

このとき、S は v_0 と v_k を結ぶ道を構成する

(なぜ?)

観察3

sとtを結ぶ内点素な道がk+1本存在する

このとき、S は v_0 と v_k を結ぶ道を構成する

(なぜ?)

観察3

sとtを結ぶ内点素な道がk+1本存在する

このとき、S は v_0 と v_k を結ぶ道を構成する

(なぜ?)

観察3

sとtを結ぶ内点素な道がk+1本存在する

このとき、S は v_0 と v_k を結ぶ道を構成する

(なぜ?)

観察3

sとtを結ぶ内点素な道がk+1本存在する

このとき、S は v_0 と v_k を結ぶ道を構成する

(なぜ?)

観察3

sとtを結ぶ内点素な道がk+1本存在する

このとき、S は v_0 と v_k を結ぶ道を構成する

(なぜ?)

点素な道の上にある頂点を数えると

$$|V| \ge \sum_{i=0}^k \min\{2i+1, 2(k-i)+1\} \ge \frac{1}{2}(k+1)^2$$

▶ しかし、 $k \le \sqrt{2|V|}$ より、 $|V| > \frac{1}{2}(\sqrt{2|V|})^2 = |V|$ となり矛盾

- 1 平面的グラフ
- 2 Menger の定理
- ③ 平面的分離集合定理
- 4 平面的分離集合定理の再帰的適用
- 6 今日のまとめ

平面的分離集合定理 (再掲)

平面的グラフ G = (V, E)

平面的分離集合定理

(Lipton, Tarjan '79)

平面的グラフGには2/3-分離集合Sで, $|S| = O(\sqrt{|V|})$ を満たすものが必ず存在する

これが成り立つのは, 平面的グラフの場合

平面的分離集合定理の再帰的適用:領域と境界

領域 (region) とその境界 (boundary)

領域 $R \subseteq V$ の境界とは,V - R に隣接頂点を持つ R の頂点の集合

平面的分離集合定理の再帰的適用:領域と境界

領域 (region) とその境界 (boundary)

領域 $R \subseteq V$ の境界とは、V-R に隣接頂点を持つ R の頂点の集合

平面的グラフ G=(V,E),自然数 $r\geq 1$

定理

(Frederickson '87)

次のように領域へ分解できる

- ightharpoonup 各領域の頂点数 $\leq r$,領域の数 = O(|V|/r)
- ▶ b(v) で頂点 v が含まれる境界の数を表すと

$$\sum_{v \in V} b(v) = O(|V|/\sqrt{r})$$

平面的分離集合定理の再帰的適用:証明 (1)

次のような手順を考える

- 1 頂点数が r 以下ならば停止
- **2** そうでなければ、G に平面的分離集合定理を適用し、分離集合 S とそれによって分けられた A, B を得る
- 3 得られた $A \cup S$ と $B \cup S$ が誘導する部分グラフを 新たに G として再帰

頂点数が r 以下ならば即停止をするので,領域の数は O(|V|/r)

証明すべきこと

$$\sum_{v\in V}b(v)=O(|V|/\sqrt{r})$$

平面的分離集合定理の再帰的適用:証明 (2)

頂点数 n の平面的グラフ G = (V, E) に対して

$$B(n) = \sum_{v \in V} b(v)$$

とすると,次の再帰式が成り立つ

▶ n < r のとき

$$B(n)=0$$

▶ n > r のとき

$$B(n) \le 2\sqrt{2n} + \max_{1/3 \le \alpha \le 2/3} \{B(\alpha n + 2\sqrt{2n}) + B((1-\alpha)n + 2\sqrt{2n})\}$$

これを解いて、 $B(n) = O(n/\sqrt{r})$ を導けばよい (演習問題)

- 平面的グラフ
- 2 Menger の定理
- ③ 平面的分離集合定理
- 4 平面的分離集合定理の再帰的適用
- 5 今日のまとめ

幾何的被覆問題に対する近似アルゴリズム

局所探索法 (local search) を利用したもの

▶ これの準備のために「平面的分離集合定理」を紹介

今回紹介する内容は主に次の論文に基づく

N. Alon, P. Seymour, and R. Thomas: Planar separators, SIAM Journal on Discrete Mathematics 7 (1994) 184−193.

平面的分離集合定理 (planar separator theorem) 自体は次の論文による

▶ R. J. Lipton and R. E. Tarjan: A separator theorem for planar graphs, SIAM Journal on Applied Mathematics **36** (1979) 177–189.

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

- 1 平面的グラフ
- 2 Menger の定理
- 3 平面的分離集合定理
- 4 平面的分離集合定理の再帰的適用
- 5 今日のまとめ