Exercises

(1) In each case, find the Laurent series of the function at its isolated singular point. Determine whether that point is a pole (determine its order), a removable singular point or an essential singularity. Finally, determine the corresponding residue.

(a)
$$z \exp\left(\frac{1}{z}\right)$$
; (b) $\frac{z^2}{1+z}$; (c) $\frac{\cos z}{z}$; (d) $\frac{1-\cosh z}{z^3}$; (e) $\frac{1}{(2-z)^3}$.

Suggestion 1: Use the know series

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}, \qquad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \qquad \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \qquad (|z| < \infty).$$

Suggestion 2: For part (b) notice that $z^2 = (z+1)^2 - 2z - 1 = (z+1)^2 - 2(z+1) + 1$

(2) Find the value of the integral

$$\int_C \frac{3z^3 + 2}{(z - 1)(z^2 + 9)} dz,$$

taken counterclockwise around the circle (a) |z-2|=2; (b) |z|=4. Ans. (a) πi ; (b) $6\pi i$.

(3) (Extra challenge) Use residues to evaluate the improper integral:

$$\int_0^\infty \frac{dx}{(x^2+1)^2}$$

Ans. $\pi/4$.