Algorithmique 1

Sylvain Daudé

HAI101I / HA8203I

Organisation

- 12h cours, 18h TD, 15h TP
- Evaluation :
 - Un examen intermédiaire en amphi : 25%
 - Une note de TD-TP: 25%
 - Un examen final en amphi : 50% avec règle du max
 - Seconde session complète à 100%

Cadre du cours

Objet du cours

Ce cours porte sur les algorithmes récursifs et itératifs ainsi que leur efficacité (*complexité en temps*). Deux sections sont dédiées aux algorithmes de recherche et de tri. Une synthèse du cours est disponible en ligne sur Moodle.

Principale référence

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction à l'algorithmique*. Ed. Dunod.

Cet ouvrage de référence est disponible en ligne gratuitement. Il vous sera utile pendant tout votre cursus.

Plan

- Généralités
- Structures linéaires
- Arrêt d'un algorithme
- Validité d'un algorithme
- Complexité en temps d'un algorithme
- Algorithmes de recherche dans un tableau
- Algorithmes de tri

Plan

- Généralités
- Structures linéaires
- Arrêt d'un algorithme
- Validité d'un algorithme
- Complexité en temps d'un algorithme
- 6 Algorithmes de recherche dans un tableau
- Algorithmes de tri

Algorithme

Définition d'un algorithme

Algorithme : séquence de calcul bien définie, en réponse à un problème, selon un nombre fini d'opérations.

- S'il renvoie un résultat principal, c'est une fonction, sinon une procédure.
- Les effets de l'algorithme autres que le résultat principal (affichages, modification de l'environnement...) sont les effets de bord.

Remarques

- Certains problèmes sont bien posés mais trop complexes pour un algorithme ("indécidables" ou "incalculables"). Exemple : problème de l'arrêt.
- Certains algorithmes nécessiteraient trop de ressources pour être concrètement utilisés. Exemple : le jeu d'échecs : 300 millions d'années pour connaître les conséquences de chaque coup.
- Dans ces deux cas, on adopte des méthodes approchées, les heuristiques.

Vocabulaire sur un exemple en pseudo-code

Sylvain Daudé (UM - FDS) Algorithmique 1 7

Algorithme itératif et récursif

Définitions

- Algorithme itératif : contient au moins une boucle (pour, tant que).
- Algorithme récursif : partiellement défini à partir de lui-même et d'un cas de base.

Attention

Un algorithme peut être ni itératif ni récursif, les deux à la fois ou seulement un des deux : tout est possible.

Exemple d'algorithme itératif en pseudo-code

```
FONCTION: FactIt (E n: entier): entier
SPÉCIFICATIONS: n \in \mathbb{N}. Renvoie n! = 1 \times 2 \times ... \times n avec 0! = 1
Variable: res: entier
DÉBUT
   res \leftarrow 1
   pour i de 1 à n faire
       res ← res * i
   fin pour;
   Renvoyer res
FIN
```

Exemple d'algorithme récursif en pseudo-code

```
FONCTION: FactRec (E n: entier): entier
SPÉCIFICATIONS: n \in \mathbb{N}. Renvoie n! = 1 \times 2 \times ... \times n avec 0! = 1
DÉBUT
   si n=0 alors
       Renvoyer 1
   sinon
       Renvoyer n \times FactRec(n-1)
   fin si;
FIN
```

Sylvain Daudé (UM - FDS) Algorithmique 1 10/

Définitions

- Type : catégorie d'une valeur : entier, nombre, booléen, tableau...
- Constante: valeur invariable ayant un type: 5, 'c', "Peachy".
- Variable : triplet (nom, type, valeur). Nom et type définis à la déclaration, valeur affectée dans un deuxième temps (par exemple dans le corps).
 - **Environnement**: ensemble de variables (notamment). Un environnement peut contenir des sous-environnements.
 - Portée d'une variable : ensemble des environnements où elle existe.
- Appel d'algorithme : nom de l'algorithme suivi de valeurs pour les paramètres, les arguments, entre parenthèses. A pour valeur le résultat principal de l'algorithme si c'est une fonction. Appel récursif : appel d'un algorithme par lui-même.
- Opération : application d'un opérateur à des opérandes : 3*8, x←3.
- Expression: tout ce qui a une valeur: formule contenant constantes, noms de variables, paramètres, appels d'algorithmes et opérations ayant une valeur. A pour valeur le résultat de la formule.
- **Instruction**: une ligne du corps de l'algorithme (affectation, appel, renvoi d'une valeur) ou un bloc de lignes (si, pour, tant que).

Trouver les types, constantes, variables, appels, opérations, expressions, instructions

```
FONCTION: Puislt (Ex: nombre,
En: entier): nombre
Variable: res: nombre
DÉBUT
   res ← 1
   pour i de 1 à n faire
      res \leftarrow res * x
   fin pour;
   Renvoyer res
FIN
```

```
FONCTION: PuisRec (Ex: nombre,
En: entier): nombre

DÉBUT
si n = 0 alors
Renvoyer 1
sinon
Renvoyer
x* PuisRec(x,n-1)
fin si;
FIN
```

A vous de jouer!

Correction

- types : nombre, entier
- constantes: 0, 1
- variables : res
- appels : PuisRec(x,n-1) (appel récursif)
- opérations : res←1 (affectation), res*x, res←res*x, n=0, n-1, x * PuisRec(x,n-1)
- expressions : tous les précédents sauf affectations, x, n (paramètres), i (indice de boucle)
- instructions : affectations, lignes Renvoyer, blocs Pour et Si

Attention!

L'indice de boucle et les paramètres ne sont pas des variables.

Sylvain Daudé (UM - FDS) Algorithmique 1 13/

Opérateurs en pseudo-code et python

- Opérateurs de calcul : + * / ^ (puissance) div (quotient) mod (reste)
- Opérateurs de comparaison : $= \neq < \leq > \geq$
- Opérateurs logiques : non, et, ou. Evaluation paresseuse :
 - dans "a et b", si a est faux, b n'est pas évalué
 - dans "a ou b", si a est vrai, b n'est pas évalué.
- Opérateur ternaire ou conditionnel : cond(a,b,c) : vaut b si a est vrai, c si a est faux. b et c doivent être du même type. Utilise l'évaluation paresseuse.
- Affectation: variable ← expression. N'a pas de valeur.
- En Python : $\hat{}$ devient **, div //, mod %, = ==, \neq ! =, \leq <=, \geq >=, non not, et and, ou or, cond(a,b,c) b if a else c, \leftarrow =

Sylvain Daudé (UM - FDS) Algorithmique 1 14/

A vous de jouer!

Les expressions suivantes sont-elles correctes ? Si oui, quel est leur type et leur valeur ?

- 1+5*2 entier, 11
- 1+5/2 nombre, 3.5
- 8 div 3 + 7 mod 5 entier, 4
- 5.0 mod 2 erreur
- 1=5*2 booléen, false
- true et (true ou false) booléen, true
- true ou 3 erreur
- true ou (5/0=1) booléen, true
- cond(5 mod 2 = 1, 8, 15) entier, 8
- cond(5 div 2 = 1, true, 0) erreur
- cond(5 div 2 = 2, cond(5 mod 2 = 0, 3, 8), 11) entier, 8

Instruction conditionnelle

Définition

Une *instruction conditionnelle* modifie le déroulement de l'algorithme selon qu'une condition est vérifiée ou non.

Syntaxe

```
si a alors
instructions I
sinon si b1 alors
instructions SS1
...
sinon si bn alors
instructions SSn
sinon
instructions S
fin si;
```

```
En Python:

if a:
    Instructions I

elif b1:
    Instructions SS1
(...)

elif bn:
    Instructions SSn

else:
    Instructions S
```

A vous de jouer!

Qu'affichent les blocs d'instructions suivants?

Correction: 5

```
Variable: i : entier
```

```
\begin{array}{c} \textbf{D\'EBUT} \\ \textbf{i} \leftarrow \textbf{0} \\ \textbf{si} \ \textbf{i} < \textbf{3} \ \textbf{alors} \\ \textbf{i} \leftarrow \textbf{5} \\ \textbf{fin si;} \\ \textbf{si} \ \textbf{i} \geq \textbf{4} \ \textbf{alors} \\ \textbf{i} \leftarrow \textbf{7} \\ \textbf{fin si;} \\ \textbf{afficher i} \\ \textbf{FIN} \end{array}
```

Correction: 7

Boucle tant que

Définition

Une boucle *tant que* est une instruction qui répète un bloc d'instructions tant qu'une certaine condition est vraie. On utilise une boucle *tant que* lorsque le nombre d'itérations n'est pas connu à l'avance.

Syntaxe

tant que expression faire instructions

fin tq;

En Python:

while expression:

instructions

Remarque

La boucle Tant que est plus générale que la boucle Pour.

A vous de jouer!

Que renvoient les blocs d'instruction suivants?

```
Variable: i : entier
DÉBUT
   i \leftarrow 0
   tant que 2 * i + 1 < 10 faire
       i ← i+1
   fin tq;
   Renvoyer i
FIN
```

Correction: 5

```
DÉBUT
   i ← 5
   tant que i \neq 0 faire
      i ← i-2
   fin tq;
   Renvoyer i
FIN
```

Variable: i: entier

Correction: Rien! (boucle infinie)

Sylvain Daudé (UM - FDS) Algorithmique 1

Boucle pour

Définition

Une boucle *pour* est une instruction qui répète (ou itère) un bloc d'instructions. Les itérations sont repérées par un *indice de boucle*. Il y a autant d'itérations que de valeurs de l'indice. On l'utilise lorsque le nombre d'itérations est connu à l'avance.

Syntaxe

```
pour i de a à b [par pas de c] faire
  instructions
fin pour;
# Par défaut, c=1;
# Pas d'itération si i dépasse strictement la valeur b.
En Python:
for i in range (a, B, c):
  Instructions
# Par défaut, a=0 et c=1;
# Pas d'itération si i dépasse ou prend la valeur B
```

Qu'affichent les blocs d'instruction suivants?

```
DÉBUT

pour i de 1 à 5 faire

afficher 10 - 2*i

fin pour;

FIN
```

Correction: 86420

```
DÉBUT

pour i de 1 à 5 faire

pour j de 6 à 3 par

pas de -2 faire

afficher i*j

fin pour;

fin pour;
```

Correction: 6 4 12 8 18 12 24 16 30 20

Plan

- Généralités
- Structures linéaires
- Arrêt d'un algorithme
- Validité d'un algorithme
- 6 Complexité en temps d'un algorithme
- 6 Algorithmes de recherche dans un tableau
- Algorithmes de tri

Structures linéaires

Définition

Dans ce cours, les "structures linéaires" (tableaux 1D, listes, piles, files) contiennent des données de même type "alignées" les unes derrière les autres.

- tableaux 1D
- listes
- piles
- files

Tableaux 1D (statiques)

Définition

Un tableau 1D statique contient un nombre fixe d'éléments appelé *taille* du tableau. Chaque élément du tableau est repéré par un entier naturel situé entre 0 et la taille du tableau -1, appelé l'*indice* de l'élément. Un tableau ne peut pas être vide.

Exemple de représentation

Si le tableau T contient les valeurs 1, 6 et 10 dans cet ordre, on peut le noter

[1,6,10] et le représenter ainsi :
$$T[i]$$
 1 6 10 0 1 2

On a taille(T)=3, T[0]=1, T[1]=6, T[2]=10.

A vous de jouer!

Ecrire la valeur du tableau T après les étapes suivantes

```
Variable : T : tableau de 5 nombres  [?,?,?,?]  T[0] \leftarrow 1 [1,?,?,?] Pour i de 1 à 4 faire  T[i] \leftarrow 2^*T[i-1]  finPour  [1,2,4,8,16]  T[5] \leftarrow 32  Erreur
```

Sylvain Daudé (UM - FDS) Algorithmique 1 25/1

```
PROCÉDURE:
```

doubleTab (ES T : tableau d'entier)

SPÉCIFICATIONS:

Double les valeurs de T.

DÉBUT

```
pour i de 0 à Taille(T)-1 faire T[i] \leftarrow 2^*T[i] fin pour;
```

FIN

```
FONCTION: creeTabCarres
(E n : entier) : tableau d'entier
SPÉCIFICATIONS : Crée le
tableau des n premiers carrés (n \in \mathbb{N})
Variable: T: tableau de n entiers
DÉBUT
   pour i de 0 à Taille (T) -1 faire
      T[i] \leftarrow i*i
   fin pour;
   Renvoyer T
FIN
```

A vous de jouer! Compléter la fonction.

```
FONCTION: compteEgaux(E e: entier,
E T: tableau d'entiers): entier
SPÉCIFICATIONS: Calcule et renvoie
le nombre d'éléments de T égaux à e.
Variable : cpt : entier
DÉBUT
   cpt \leftarrow 0;
   pour i de 0 à taille (T) -1 faire
      si T[i]=e alors
          cpt \leftarrow cpt + 1
      fin si:
   fin pour;
   Renvoyer cpt
FIN
```

Tableaux en Python

- Création : T=[4,6,17] ou T=[0]*3 ou T=[i*i for i in range(n)]
- Accès à un élément : T[i]
- Taille du tableau : len(T)

Listes

Définition

Une liste est soit vide, soit constituée d'un élément, sa tête, suivie d'une liste, sa queue.

- Constantes : la liste vide []
- Fonctions prédéfinies :
 - Tête d'une liste non vide : FONCTION : tête(E liste) : élément
 - Queue d'une liste non vide : FONCTION : queue(E liste) : liste
 - Construction avec tête et queue : FONCTION : cons (<u>E</u> élément, <u>E</u> liste) : liste
 - Test qu'une liste est vide : Fonction : estVide(E liste) : booléen

Exemple

- $\bullet \ L \leftarrow cons \ (1, cons \ (2, cons(3, [] \))) \longrightarrow L \ vaut \ [1, 2, 3], \ t\hat{e}te \ 1, \ queue \ [2,3]$
- A ← tête(queue(queue(L))) ——> A vaut 3
- Test si L a au moins 2 éléments -----> non(estVide(L)) et non estVide(queue(L))

A vous de jouer!

Ecrire la valeur de la liste L après les étapes suivantes

```
Variable: L: liste d'entiers
L \leftarrow cons(2,[])
                                                      [2]
L \leftarrow cons(t\hat{e}te(L), queue(L))
                                                      [2]
L \leftarrow cons(3,L)
                                                      [3,2]
Pour i de 1 à 5 faire
  L \leftarrow cons(i,L)
finPour
                                                      [5,4,3,2,1,3,2]
L \leftarrow \text{queue}(\text{queue}(L))
                                                      [3,2,1,3,2]
L \leftarrow cons(L[2], [])
                                                      erreur : L[2] illégal
L \leftarrow cons([], 5)
                                                      erreur : usage : cons(élément, liste)
```

Sylvain Daudé (UM - FDS) Algorithmique 1

```
FONCTION:
longueur (E L : liste d'entier) : entier
SPÉCIFICATIONS:
Renvoie la longueur de la liste L.
Variable: cpt: entier, M: liste d'entiers
DÉBUT
   cpt, M \leftarrow 0, L;
   tant que non estVide (M) faire
       cpt, M \leftarrow cpt+1, queue(M)
   fin tq;
   Renvoyer cpt
FIN
```

Utilisation des listes : exemple récursif

FONCTION : doubleListe (\underline{E} L : liste d'entier) : liste d'entier

SPÉCIFICATIONS:

Renvoie une nouvelle liste contenant les valeurs de L doublées.

```
DÉBUT

si estVide(L) alors

Renvoyer[]

sinon

Renvoyer

cons(2*tête(L),doubleListe(queue(L)))

fin si;

FIN
```

```
FONCTION: cptEgauxLIte (E e:
entier, E L : liste d'entiers) : entier
SPÉCIFICATIONS : Compte le nombre
d'éléments de L égaux à e (itératif)
Variable: cpt: entier; M: liste d'entiers
DÉBUT
   M,cpt \leftarrow L,0;
   tant que non estVide (M) faire
       si tête (M) =e alors
            cpt \leftarrow cpt+1
       fin si;
        M \leftarrow queue(M)
   fin tq;
```

Renvoyer cpt

FIN

```
FONCTION: cptEgauxLRec (\underline{E} e: entier, \underline{E} L: liste d'entiers): entier
```

SPÉCIFICATIONS : Compte le nombre d'éléments de L égaux à e (récursif)

```
DÉBUT

si estVide (L) alors
Renvoyer 0
sinon si tête (L) =e alors
Renvoyer 1+
cptEgauxLRec(e,queue(L))
sinon
Renvoyer
cptEgauxLRec(e,queue(L))
fin si;
FIN
```

Listes en Python

Remarque

En Python, les listes sont représentées par des tableaux.

- liste vide : []
- tête(liste) : liste[0]
- queue(liste) : liste[1:]
- cons(élément, liste) : [élément]+liste
- estVide(liste) : not liste

Piles

Définition

Une pile est soit vide, soit constituée d'un élément, son sommet, suivi d'une pile. On accède à ce qui vient d'être empilé. La lecture du sommet est destructive.

- Constantes : la pile vide []
- Fonctions prédéfinies :
 - Suppression du sommet d'une pile non vide et retour de sa valeur :
 FONCTION : depiler(ES pile) : élément
 - Ajout d'un élément au sommet d'une pile :
 PROCÉDURE : empiler(E élément, ES pile)
 - Test qu'une pile est vide :

FONCTION: estVide(E pile): booléen

Exemple

- P ← []; empiler (1, P); empiler(2, P) → P vaut [1, 2] (sommet : 2)
- A ← depiler(P) —> A vaut 2, P vaut [1]

A vous de jouer!

Calculer la valeur de la pile P après chaque étape

```
Variable : P : pile d'entiers
P ← []
                                            Pour i de 1 à 3 faire
 empiler(i,P)
finPour
                                            [1,2,3]
empiler(depiler(P),P)
                                            [1,2,3]
empiler(P[1],P)
                                            erreur : P[1] illégal
empiler(P,4)
                                            erreur : usage : empiler(élt, pile)
P \leftarrow cons(3,P)
                                            erreur : cons illégal
depiler(P)
                                            [1,2]
depiler(P)
                                            [1]
depiler(P)
depiler(P)
                                            erreur: P est vide
```

Utilisation des piles : exemple

```
PROCÉDURE:
doublePile (ES P : pile d'entier)
SPÉCIFICATIONS:
Double les valeurs de P.
Variable: Q : pile d'entier
DÉBUT
   Q ← [];
   tant que non estVide (P) faire
      empiler(2*depiler(P), Q)
   fin tq;
   tant que non estVide (Q) faire
      empiler(depiler(Q), P)
   fin tq;
FIN
```

A vous de jouer! Compléter la fonction

```
PROCÉDURE: invPileIte (ES P: pile d'entier)
SPÉCIFICATIONS: Inverse l'ordre des valeurs de la pile P.
Variable: Q, R: pile d'entier
DÉBUT
   Q, R \leftarrow [], [];
   tant que non estVide (P) faire
      empiler(depiler(P), Q)
   fin tq;
   tant que non estVide (Q) faire
      empiler(depiler(Q), R)
   fin tq;
   tant que non estVide (R) faire
      empiler(depiler(R), P)
   fin ta:
FIN
```

Sylvain Daudé (UM - FDS)

Algorithmique 1

39/112

Piles en Python

Remarque

En Python, les piles sont représentées par des tableaux.

- pile vide : []
- depiler(P) : P.pop()
- empiler(e, P) : P.append(e)
- estVide(P) : not P

Files

Définition

Une file est soit vide, soit constituée d'un élément, sa tête, suivi d'une file, sa queue. On accède au premier élément enfilé. La lecture du sommet est destructive.

- Constantes : la file vide []
- Fonctions prédéfinies :
 - Suppression de la tête d'une file non vide et retour de sa valeur :
 - FONCTION: defiler(ES file): élément
 - Ajout d'un élément en fin de file :
 - PROCÉDURE : enfiler(E élément, ES file)
 - Test qu'une file est vide :
 - FONCTION: estVide(E file): booléen

Exemple

- $F \leftarrow []$; enfiler(1, F); enfiler (2, F); enfiler (3, F) \longrightarrow F = [1, 2, 3] (tête: 1)
- A ← defiler(F) —> A vaut 1, F vaut [2, 3]

A vous de jouer!

Calculer la valeur de la file F après chaque étape

```
Variable: F: file d'entiers
F ← []
                                              Pour i de 1 à 3 faire
  enfiler(i,F)
finPour
                                              [1,2,3]
enfiler(defiler(F),F)
                                              [2,3,1]
enfiler(F[1],F)
                                              erreur : F[1] illégal
enfiler(F,4)
                                              erreur : usage : enfiler(élt, file)
F \leftarrow cons(3,F)
                                              erreur : cons illégal
defiler(F)
                                              [3,1]
defiler(F)
                                              [1]
defiler(F)
defiler(F)
                                              erreur : F est vide
```

A vous de jouer! Compléter la fonction

```
PROCÉDURE: inverseFile (ES F: file d'entier)
```

SPÉCIFICATIONS: Inverse l'ordre des éléments de la file F

Variable: P: pile d'entier

```
DÉBUT
   P ← [];
   tant que non estVide (F) faire
      empiler(defiler(F), P)
   fin tq;
   tant que non estVide (P) faire
      enfiler(depiler(P), F)
   fin tq;
FIN
```

43/112

Files en Python

Remarque

En Python, les files sont représentées par des tableaux.

- file vide : []
- defiler(F): F.popleft() [utilise la collection deque]
- enfiler(e, F) : F.insert(0,e)
- estVide(F) : not F

Attention

Ne pas confondre pseudo-code et Python

En pseudo-code, même si les tableaux, listes, piles, files partagent la même notation, les opérateurs d'une structure ne fonctionnent pas sur les autres! C'est différent du Python!

Sylvain Daudé (UM - FDS) Algorithmique 1 45/112

Plan

- Généralités
- Structures linéaires
- Arrêt d'un algorithme
- Validité d'un algorithme
- 5 Complexité en temps d'un algorithme
- 6 Algorithmes de recherche dans un tableau
- Algorithmes de tr

Motivation

Un bon algorithme...

... est un algorithme qui se termine, c'est à dire qui effectue un nombre fini d'opérations. Cette section présente une méthode pour prouver qu'un algorithme se termine.

Sylvain Daudé (UM - FDS) Algorithmique 1

Arrêt d'un algorithme itératif

Méthode

Pour prouver qu'un algorithme itératif se termine, on prouve :

- qu'il y a un nombre fini d'itérations
- que chaque itération se termine.

Premier exemple de preuve d'arrêt

Exemple

```
FONCTION: F1 (En: entier): entier

Variable: res: entier

DÉBUT

res ← 1

pour i de 1 à n faire

res ← res * i

fin pour;

Renvoyer res

FIN
```

- Chaque itération contient 2 opérations donc se termine.
- i parcourt les indices 1 à n donc il y a un nombre fini d'itérations.
- Donc l'algorithme se termine.

Deuxième exemple de preuve d'arrêt

Exemple

```
FONCTION: F (E n: entier): entier

Variable: p, res: entier

DÉBUT
    p, res ← n, 0
    tant que p>0 faire
    p, res ← p div 2, res +1
    fin tq;

FIN
```

Renvoyer res

- Chaque itération contient 1 comparaison, 2 affectations et 2 opérations donc se termine.
- $p \in \mathbb{N}$ diminue strictement à chaque itération jusqu'à atteindre 0. Lorsqu'il atteint 0, la boucle se termine donc il y a un nombre fini d'itérations.
- Donc l'algorithme se termine.

F se termine-t-il?

FONCTION:

 $F(\underline{E} n : entier) : entier$

SPÉCIFICATIONS: Renvoie le chiffre des unités de $n \in \mathbb{N}$

Variable: i: entier

```
DÉBUT
i ← n
tant que i ≠ 0 faire
i ← i - 10
fin tq;
Renvoyer i
FIN
```

- Chaque itération contient 3 opérations donc se termine.
- Si n = 9 par exemple, i prend les valeurs 9, -1, -11, -21 ... et il y a un nombre infini d'itérations : l'algorithme ne s'arrête pas.
- Modification : remplacer la condition $i \neq 0$ par $i \geq 10$.

A vous de jouer ! 2/2

G se termine-t-il?

FONCTION:

FIN

 $G(\underline{E} a,b : entier) : entier$

SPÉCIFICATIONS: $a, b \in \mathbb{N}$ avec $a \le b$. Calcule quelque chose.

Variable: i: entier

```
DÉBUT i \leftarrow a tant que i < b faire i \leftarrow i + cond(i \mod 7 = 0, 3, 1) fin tq; Renvoyer i
```

- Chaque itération contient 6 opérations dont se termine.
- i progresse au moins d'une unité à chaque itération, donc finit par dépasser b. Comme les itérations s'arrêtent lorsque i ≥ b, il y a un nombre fini d'itérations.
- L'algorithme se termine.

Terminaison d'un algorithme récursif

Méthode

Pour prouver qu'un algorithme récursif se termine, on montre :

- qu'il y a un nombre fini d'appels récursifs ;
- qu'en dehors des appels récursifs, il y a un nombre fini d'opérations.

Sylvain Daudé (UM - FDS) Algorithmique 1 53/112

Exemple de preuve d'arrêt

Exemple

```
FONCTION: F2 (E n: entier): entier
```

SPÉCIFICATIONS: calcule la factorielle d'un entier $n \in \mathbb{N}$.

```
DÉBUT
   si n=0 alors
      Renvoyer 1
   sinon
      Renvoyer n*F2(n-1)
   fin si;
```

FIN

- $n \in \mathbb{N}$ décroît d'une unité à chaque appel et il y a un cas de base pour n=0, donc il y a un nombre fini d'appels récursifs.
- En dehors des appels récursifs, il y a un nombre borné d'opérations.
- L'algorithme se termine.

F se termine-t-il? Si oui, le prouver, sinon, corriger.

FONCTION: F (E n: entier): entier

SPÉCIFICATIONS : $n \in \mathbb{N}$.

Calcule 2n sans multiplication.

```
DÉBUT

si n = 0 alors

Renvoyer 0

sinon

Renvoyer 2+F(n+1)

fin si;
```

- En dehors des appels récursifs, il y a un nombre fini d'opérations élémentaires.
- n ∈ N augmente d'une unité à chaque appel donc n'atteint jamais 0.
- Modification : remplacer F(n+1) par F(n-1).

G se termine-t-il? Si oui, le prouver, sinon, corriger.

FONCTION:

 $G(\underline{E} a,b : entier) : entier$

SPÉCIFICATIONS: a, b $\in \mathbb{N}^*$ avec $a \le b$. Calcule quelque chose.

DÉBUT

```
si b mod a = 0 alors
Renvoyer a
sinon
Renvoyer G(a-1,b)
fin si;
```

FIN

- En dehors des appels récursifs, il y a un nombre fini d'opérations.
- a diminue de 1 à chaque appel, donc finit par atteindre 1 ou un diviseur plus grand.
 Il y a donc un nombre fini d'appels récursifs.
- L'algorithme se termine.

Plan

- Généralités
- Structures linéaires
- Arrêt d'un algorithme
- Validité d'un algorithme
- Complexité en temps d'un algorithme
- 6 Algorithmes de recherche dans un tableau
- Algorithmes de tri

Motivation

Un bon algorithme...

... est un algorithme valide, c'est à dire conforme aux spécifications. Cette section présente une méthode pour justifier qu'un algorithme est valide.

Sylvain Daudé (UM - FDS) Algorithmique 1 58/112

Validité d'un algorithme itératif

Vocabulaire

Trace d'un algorithme : suivi des valeurs des variables sur un exemple d'exécution.

Invariant de boucle : propriété censée être vraie à chaque itération.

Méthode

- chercher un invariant de boucle, souvent à partir d'une trace ;
- 2 écrire l'invariant à la fin des itérations.

Premier exemple de justification de validité

FONCTION:

F1 (\underline{E} n : entier) : entier

SPÉCIFICATIONS:

Calcule n! avec $n \in \mathbb{N}$

Variable: res: entier

DÉBUT

```
res ← 1

pour i de 1 à n faire

res ← res * i

fin pour;

Renvoyer res
```

FIN

var_i : valeur de var à la fin de l'itération i.

- **1** Invariant proposé : Inv_i : " $res_i = i$!".
- A la fin du pour, i = n donc, d'après l'invariant, la valeur renvoyée est res_n = n! : l'algorithme est valide.

Deuxième exemple de justification de validité

FONCTION:

Cube (\underline{E} n : entier) : entier

SPÉCIFICATIONS:

Calcule n^3 avec $n \in \mathbb{N}$.

Variable: A, B, C, Z: entier

DÉBUT

A, B, C, Z \leftarrow 1, 0, n, 0; tant que C > 0 faire $Z \leftarrow Z + A + B$; $B \leftarrow B + A + A + 1$; $A, C \leftarrow A+3, C-1$; fin tq;

Danue

Renvoyer Z

FIN

var_i : valeur de *var* à la fin de l'itération *i*.

Invariant difficile: "trace" pour n=4:

itération i	A_i	Bi	C_i	Z_i
0	1	0	4	0
1	4	3	3	1
2	7	12	2	8
3	10	27	1	27
4	13	48	0	64

Invariant proposé :

$$Inv_{i}:\begin{pmatrix}A_{i}\\B_{i}\\C_{i}\\Z_{i}\end{pmatrix}=\begin{pmatrix}3i+1\\3i^{2}\\n-i\\i^{3}\end{pmatrix}$$

Conclusion : à la fin du TantQue,

 $C_i = 0 = n - i \text{ donc } i = n.$

La valeur renvoyée est $Z_n = n^3$ l'algorithme est valide.

A vous de jouer! Compléter la preuve

```
FONCTION: somTab (<u>E</u> T: tableau d'entiers): entier
```

SPÉCIFICATIONS: Renvoie la somme des valeurs de T.

Variable: res: entier

```
DÉBUT

res ← T[0]

pour i de 1 à

taille(T)-1 faire

res ← res+T[i]

fin pour;

Renvoyer res
FIN
```

- Invariant : Inv_i : "res_i est la somme des valeurs T[0] à T[i]".
- ② A la fin du pour, l'algorithme renvoie $res_{n-1} = T[0] + ... + T[n-1]$: l'algorithme est valide.

Validité d'un algorithme récursif

Vocabulaire

 équation de récurrence : égalité reliant le résultat de l'algorithme avec celui des appels récursifs ;

Méthode

- "lire" les équations de récurrence sur l'algorithme ;
- énoncer le résultat censé être renvoyé ;
- prouver le résultat par récurrence ou induction.

FONCTION:

F2 (E n : entier) : entier

SPÉCIFICATIONS: calcule la factorielle d'un entier $n \in \mathbb{N}$.

DÉBUT

```
si n=0 alors
Renvoyer 1
sinon
Renvoyer n*F2(n-1)
fin si;
```

FIN

- Équation de récurrence : F2(0) = 1 et $F2(n) = n \times F2(n-1)$ pour n > 0.
- **?** Résultat de l'algorithme : P_n : "F2(n) = n!"
- Preuve :
 - Initialisation : Pour n = 0, on a F2(0) = 1 = 0! donc P_0 est vraie.
 - **Récurrence**: Pour n>0, on suppose P_{n-1} vrai, c'est à dire F2(n-1) = (n-1)! Alors $F2(n) = n \times F2(n-1) = n \times (n-1)! = n!$. Donc P_n est vrai.
 - **Conclusion**: pour tout $n \in \mathbb{N}$, F2(n) = n!
- L'algorithme est valide.

A vous de jouer! Compléter la preuve

FONCTION:

F4 (E n : entier) : entier)

SPÉCIFICATIONS: Renvoie la somme des entiers de 1 à n, avec $n \in \mathbb{N}^*$

DÉBUT

Renvoyer cond(n=1, 1, n+F4(n-1))

FIN

Équations de récurrence :

si n = 1 alors F4(n) = 1et si n > 1 alors F4(n) = n + F4(n - 1)

Résultat :

$$P_n$$
: "F4(n) = 1 + ... + n ".

- Initialisation: Pour n = 1, F(n) = 1
 qui est bien la somme de 1 à 1.
 Donc P₁ est vrai.
- Récurrence : Pour n > 1, on suppose P_{n-1} vrai : $F4(n-1) = 1 + \ldots + n - 1$. Comme F4(n) = n + F4(n-1), $F4(n) = 1 + \ldots + n$. Donc P_n est vrai.
- Conclusion : pour tout $n \in \mathbb{N}$, F4(n) renvoie la somme des entiers de 1 à n.
- L'algorithme est valide.

Plan

- Généralités
- 2 Structures linéaires
- Arrêt d'un algorithme
- Validité d'un algorithme
- Complexité en temps d'un algorithme
- 6 Algorithmes de recherche dans un tableau
- Algorithmes de tr

Motivation et problématique

Un bon algorithme...

... est un algorithme efficace, c'est à dire qu'il effectue un nombre raisonnable d'opérations (et utilise un espace de calcul raisonnable).

Problématiques

- Comment compter les opérations ?
 - Sur machine, une multiplication et une addition ont des durées différentes.
- Et si le nombre d'opérations est variable selon les paramètres ?
 - Il faut plus d'opérations pour traiter une grande image qu'une petite.
- Qu'est-ce qu'un nombre raisonnable d'opérations ?
 - 10000 opérations pour calculer un coup d'échecs, c'est très raisonnable...
 - mais pour afficher "bonjour" c'est énorme!

Comptage des opérations

Simplifications

- Toutes les opérations élémentaires (affectation, addition, appel...) sont comptées à égalité;
- on suppose que le nombre d'opérations dépend d'un unique entier n appelé taille de l'entrée;
- si, pour un même n, le nombre d'opérations dépend aussi de la configuration des données, on étudie uniquement celle qui génère le plus d'opérations, appelée pire cas;
- on note T_n le nombre d'opérations obtenu. C'est une suite.

Définitions

- Le nombre d'opérations est appelé complexité en temps de l'algorithme ou, par commodité, complexité;
- il existe aussi la complexité en espace, qui mesure l'espace occupé par les variables et sort du cadre de ce cours.

A vous de jouer (1)

Calculer T_n

```
FONCTION: F1 (En: entier): entier

Variable: res: entier

DÉBUT

res ← 1

pour i de 1 à n faire

res ← res * i

fin pour;

Renvoyer res

FIN
```

- 1 affectation + n itérations contenant 1 affectation + 1 multiplication
- Donc $T_n = 2n + 1$

69/112

A vous de jouer (2)

Calculer T_n dans le pire cas (distinguer n pair et n impair)

```
FONCTION:
F4 (E n : entier) : entier
Variable: som: nombre
DÉBUT
   som \leftarrow 0
   pour i de 1 à n faire
       si i mod 2 = 1 alors
          som \leftarrow som + i*i
       sinon
          som \leftarrow som + i
       fin si;
   fin pour;
   Renvoyer som
FIN
```

- Nb opérations: 1 affectation,
 n itérations composées
 d'1 modulo, 1 comparaison,
 1 affectation, 1 somme
 et éventuellement 1 produit
- donc 1 + (5+4+5+4+...) (n termes)
- Si n est pair: $1 + 5\frac{n}{2} + 4\frac{n}{2} = 4,5n+1$
- Si n est impair : $1 + 5\frac{n+1}{2} + 4\frac{n-1}{2} = 4, 5n + 1, 5$
- Pire cas : $T_n = 4,5n+1,5$

Comptage pour un algorithme récursif

Problématique

- Lorsqu'on appelle un algorithme récursif, il effectue des opérations.
- Puis il s'appelle, et les appels effectuent des opérations.
- Puis ces appels font des appels, qui effectuent des opérations...

Solution

- T_n = opérations de l'algorithme + opérations faites dans ses appels
- T_n est une suite définie par une équation de récurrence, il reste à l'exprimer directement en fonction de n.

FONCTION:

F2 (E n : entier) : entier

SPÉCIFICATIONS : calcule la factorielle d'un entier $n \in \mathbb{N}$.

```
DÉBUT
si n=0 alors
Renvoyer 1
sinon
Renvoyer n*F2(n-1)
fin si;
FIN
```

- Cas de base : si n=0, 1 comparaison : $T_0 = 1$
- Équation de récurrence : si n>0 :
 1 comparaison, 1 multiplication,
 1 appel, 1 soustraction + les opérations de F2(n-1) : T_n = 4 + T_{n-1}
- **Résolution :** T_n est une suite arithmétique : $T_n = 4n + 1$.

Un exemple où la taille de l'entrée est divisée

```
FONCTION: F5 (E n: entier):
            booléen
SPÉCIFICATIONS: détermine si
n \in \mathbb{N}^* est une puissance de 2.
DÉBUT
   si n=1 alors
      Renvoyer true
   sinon si n mod 2 = 1 alors
      Renvoyer false
   sinon
      Renvoyer F5(n div 2)
   fin si:
FIN
```

- Cas de base : $T_1 = 1$ et si n est impair >1, $T_n = 3$
- Equation de récurrence :
 si n est pair > 1 : 5 opérations +
 celles de F5(n div 2) :
 T_n = 5 + T_{n div 2}
- **Pire cas :** n>1 est toujours pair, c'est à dire qu'au départ $n = 2^k$, ou encore $k = log_2(n)$.
- Résolution: Depuis le cas de base, on ajoute 5 autant de fois que n = 2^k peut être divisé par 2, c'est à dire k fois:
 T_n = 1 + 5k = 1 + 5loq₂(n)

A vous de jouer!

Complexité en soustractions ? Compléter le raisonnement.

FONCTION: estPair (En: entier): booléen

DÉBUT

Renvoyer cond(n=0, true, cond(n=1, false, estPair(n-2)))

FIN

- Cas de base : $T_0 = T_1 = 0$
- Equation de récurrence : si n>1 alors $T_n = 1 + T_{n-2}$
- Résolution : Valeurs de T_n : 0, 0, 1, 1, 2, 2, Généralisation : $T_n = n \, div \, 2$

Outils mathématiques

Suites, comportement asymptotique

- T_n est une **suite numérique**, notée T_n , **positive** et souvent **croissante**.
- On la caractérise en comparant sa croissance à celles de suites de référence positives croissantes ("comparaison asymptotique").

Domination de suites numériques

Idée générale

On divise T_n par une suite de référence R_n et on fait tendre n vers $+\infty$.

- si T_n/R_n tend vers 0 alors T_n est **strictement dominée** par R_n . On note $T_n = o(R_n)$.
- si T_n/R_n tend vers $+\infty$ alors T_n domine strictement R_n . On note $T_n = \omega(R_n)$.
- si T_n/R_n tend vers un nombre strictement positif, ou est borné entre deux nombres strictement positifs, alors T_n est équivalente à R_n ou de l'ordre de complexité R_n. On note T_n = θ(R_n).
- sinon, T_n n'est **pas comparable** à R_n . C'est rare.

Attention

"Equivalentes" ne veut pas dire "identiques" : si $T_n = 1000000R_n$ ou $T_n = R_n + 1000000$ alors T_n et R_n sont équivalentes !

Domination de suites numériques - suite

Vocabulaire

Domination stricte ou équivalence = **domination au sens large**.

On utilise la majuscule de la domination stricte : $T_n = O(R_n)$ ou $T_n = \Omega(R_n)$.

Non comparable

Sylvain Daudé (UM - FDS) Algorithmique 1 77/11

Complexités comparées

Catégories de complexité

Un algorithme est dit:

- à coût constant $siT_n = \theta(1)$; exemple : formule
- **logarithmique** si $T_n = \theta(log(n))$; exemple : recherche dans un tableau trié
- **linéaire** si $T_n = \theta(n)$; exemple : recherche du maximum d'un tableau
- **semi-linéaire** si $T_n = \theta(nlog(n))$; exemple : tri fusion d'un tableau
- quadratique si $T_n = \theta(n^2)$; exemple : tri bulle d'un tableau
- **polynomial** si $T_n = O(n^a)$ avec a entier naturel; exemple: recherche d'un chemin entre deux sommets d'un graphe
- **exponentiel** si $T_n = \theta(a^n)$ avec a > 1. exemple: parcours de tous les chemins d'un graphe

A vous de jouer!

Trouver une suite de référence équivalente et la catégorie de complexité

- $T_n = 3n^3 5n + 2$ On a $T_n/n^3 \rightarrow 3$ donc $T_n = \theta(n^3)$: polynomial
- $T_n = 2^{n+1} 8n^3$ On a $T_n/2^n \rightarrow 2$ donc $T_n = \theta(2^n)$: exponential
- $T_n = 3nlog(n^2) + 5$ On a $T_n = 6nlog(n) + 2$ donc $T_n = \theta(nlogn)$: semi-linéaire
- $T_n = 2T_{n-1}$ T_n est une suite géométrique : $T_n = 2^nT_0 = \theta(2^n)$: exponentiel
- $T_n = T_{n-1} + n$ $T_n = n + ... + 1 + T_0 = \frac{n(n+1)}{2} + T_0 = \theta(n^2)$: quadratique
- $T_n = 3n + 1$ si n est pair et $T_n = 2n$ si n est impair T_n/n tend vers 3 pour les n pairs et vers 2 pours les n impairs, donc $T_n = \theta(n)$: linéaire.

Sylvain Daudé (UM - FDS) Algorithmique 1 79/112

Complexités comparées - suite

Propriétés

- ordre de domination stricte des suites de référence : 1, log(n), \sqrt{n} , n, nlog(n), n^2 , n^3 , 2^n , 3^n , n!
- tous les logarithmes sont du même ordre de grandeur : $log_{10}(n) = \theta(log_2(n)) = \theta(ln(n))$ etc.
- $o, O, \omega, \Omega, \theta$ sont transitives : si a = o(b) et b = o(c) alors a = o(c) et de même pour $O, \omega, \Omega, \theta$.
- $o, O, \omega, \Omega, \theta$ sont multiplicatives et additives sur les suites >0 : si a = o(a') et b = o(b') alors ab = o(a'b') et a + b = o(a' + b')et de même pour $O, \omega, \Omega, \theta$.

Sylvain Daudé (UM - FDS) Algorithmique 1 80/112

Algorithmes itératifs + boucles pour

Propriété

- Première analyse : si des boucles pour imbriquées contiennent un nombre borné d'opérations, alors leur complexité est du même ordre que le nombre d'itérations.
- Deuxième analyse : pour calculer les complexités exactes, on a :

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}; \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}; \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Exemple

```
DÉBUT
```

FIN

pour i de 1 à nfaire pour j de 1 à ifaire op élém fin pour; fin pour;

- Première analyse : i prend n valeurs, j prend i = O(n) valeurs, d'où $nO(n) = O(n^2)$ opérations.
- Deuxième analyse : nb d'op :

$$\sum_{i=1}^{n} \sum_{j=1}^{i} 1 = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^{2})$$

A vous de jouer!

Complexités en fonction de n?

- Pour i de 1 à n faire
 Pour j de 1 à n faire
 som ← som+1
- Pour i de 1 à n faire Pour j de 1 à n faire Pour k de 1 à n faire som ← som+1
- Pour i de 1 à n faire
 Pour j de i à n faire
 som ← som + 1
- i ← 0 ; TantQue i²<n faire
 i ← i+1
 </pre>

- Itérations à coût borné, n valeurs pour les deux pour : $T_n = \theta(n^2)$
- 2 Itérations à coût borné, n valeurs pour les trois pour : $T_n = \theta(n^3)$
- $\begin{array}{ll} \text{ 3} & T_n = \sum_{i=1}^n \sum_{j=i}^n 2 = \\ & 2 \sum_{i=1}^n n i + 1 = \\ & 2 \sum_{i'=1}^n i' = n(n+1) = \theta(n^2) \end{array}$
- $i^2 < n \text{ \'equivaut \'a } i < \sqrt{n}$ donc $T_n = 2 \left\lceil \sqrt{n} \right\rceil = \theta(\sqrt{n})$

82/112

Plan

- Généralités
- Structures linéaires
- Arrêt d'un algorithme
- Validité d'un algorithme
- Complexité en temps d'un algorithme
- 6 Algorithmes de recherche dans un tableau
- Algorithmes de tri

Algorithme de recherche linéaire

Principe

Pour chercher un élément e dans un tableau T non trié, on le parcourt case par case jusqu'à trouver e ou atteindre la fin du tableau.

Algorithme de recherche linéaire

```
FONCTION: RechLin(E e : nombre, E T : tableau de nombres) : entier
SPÉCIFICATIONS: Si T contient e, renvoie le premier indice de T qui
                   contient e. Sinon, renvoie -1.
Variable: i : entier
DÉBUT
   i \leftarrow 0
   tant que i < taille (T) et T[i] \neq e faire
      i ← i+1
   fin tq;
   si i=taille(T) alors
      Renvoyer -1
   sinon
      Renvoyer i
   fin si;
FIN
```

Sylvain Daudé (UM - FDS) Algorithmique 1 85/112

Complexité de la recherche linéaire

```
DÉBUT
    i ← 0
    tant que i < n et T[i]≠e faire
        i ← i+1
    fin tq;
    si i=taille(T) alors
        Renvoyer -1
    sinon
        Renvoyer i
    fin si;
FIN
```

Complexité: pire des cas pour $e \notin T$ en notant n=taille(T): n itérations à coût constant + opérations à coût constant = $\theta(n)$.

Algorithme de recherche dichotomique

Principe

Pour chercher un élément e dans un tableau \mathcal{T} trié, on compare e à la valeur au milieu du tableau puis on continue à le chercher dans la bonne moitié du tableau.

```
FONCTION: RechDic (E e : nombre, E T : tableau de nombres) : entier
SPÉCIFICATIONS: T trié. Renvoie le plus petit i tq T[i]=e ou -1.
Variable: deb, mil, fin: entier
DÉBUT
   deb, fin \leftarrow 0, taille(T)-1
   tant que deb≤fin faire
       mil ← (deb+fin) div 2
       si T[mil] <e alors
          deb \leftarrow mil+1
       sinon
          fin \leftarrow mil-1
       fin si;
   fin tq;
   Renvoyer cond(deb<taille(T) et T[deb]=e, deb, -1)
FIN
```

Trace de l'algorithme T=[1,2,3,3,3,4,6,9,10], e=3 ?

```
DÉBUT
   deb, fin \leftarrow 0, taille(T)-1
   tant que deb<fin faire
       mil ← (deb+fin) div 2
       si T[mil] <e alors
           deb \leftarrow mil+1
       sinon
           fin \leftarrow mil-1
       fin si;
   fin tq;
   Renvoyer
     cond(deb<taille(T) et
   T[deb]=e, deb, -1)
FIN
```

i	debi	mili	fin _i	$T[deb_ifin_i]$
0	0	?	8	[1,2,3,3, 3 ,4,6,9,10]
1	0	4	3	[1, 2 ,3,3]
2	2	1	3	[3 ,3]
3	2	2	1	

L'algorithme renvoie deb=2.

Trace de l'algorithme pour T=[1,2,3,3,3,4,6,9,10] et e=5 ?

```
DÉBUT
   deb, fin \leftarrow 0, taille(T)-1
   tant que deb<fin faire
       mil ← (deb+fin) div 2
       si T[mil] <e alors
           deb \leftarrow mil+1
       sinon
           fin \leftarrow mil-1
       fin si;
   fin tq;
   Renvoyer
     cond(deb<taille(T) et
   T[deb]=e, deb, -1)
```

FIN

i	debi	mili	fin _i	$T[deb_ifin_i]$
0	0	?	8	[1,2,3,3, 3 ,4,6,9,10]
1	5	4	8	[4, 6 ,9,10]
2	5	6	5	[4]
3	6	5	5	

deb = 6 et $T[deb] \neq 5$: l'algorithme renvoie -1.

```
DÉBUT
   deb, fin \leftarrow 0, taille(T)-1
   tant que deb≤fin faire
       mil ← (deb+fin) div 2
       si T[mil] <e alors
           deb ← mil+1
       sinon
          fin \leftarrow mil-1
       fin si:
   fin tq;
   Renvoyer
    cond(deb<taille(T) et
   T[deb]=e, deb, -1)
FIN
```

- fin-deb+1 est un entier naturel ;
- il décroît strictement à chaque itération ;

91/112

 le tant que s'arrête lorsqu'il vaut 0 ou moins.

Il y a donc un nombre fini d'itérations. Chaque itération se termine.

Donc l'algorithme se termine.

```
DÉBUT
   deb, fin \leftarrow 0, taille(T)-1
   tant que deb≤fin faire
       mil ← (deb+fin) div 2
       si T[mil] <e alors
           deb ← mil+1
       sinon
          fin \leftarrow mil-1
       fin si:
   fin tq;
   Renvoyer
    cond(deb<taille(T) et
   T[deb]=e, deb, -1)
FIN
```

- Notation : n : taille(T) ;
 expr_i : valeur de expr à la fin de l'itération i.
- Invariant (admis) : $0 \dots deb_i 1 \dots fin_i + 1 \dots n 1 \\ | \langle e | \rangle \geq e$
- Conclusion : En sortant du TantQue, deb = fin + 1 : $0 \dots deb 1 \ deb \dots n 1$
 - soit deb < n et T[deb] = e : alors deb est le premier indice où se trouve e.
 - sinon, c'est que $e \notin T$.
- Dans les deux cas, l'algorithme renvoie le bon résultat : l'algorithme est valide.

Complexité de l'algorithme dichotomique

```
DÉBUT
   deb, fin \leftarrow 0, taille(T)-1
   tant que deb<fin faire
       mil \leftarrow (deb+fin) div 2
       si T[mil] <e alors
           deb ← mil+1
       sinon
           fin \leftarrow mil-1
       fin si;
   fin tq;
   Renvoyer
   cond(deb<taille(T) et
     T[deb]=e, deb, -1)
FIN
```

- Si n = 2^k, dans le pire des cas où tout le tableau est <e :
 - fin deb + 1 est divisé par 2 à chaque itération jusqu'à 0.
 - Le nombre d'itérations est le nombre de fois où 2^k peut être divisé par 2 jusqu'à arriver à 0, c'est à dire $k + 1 = log_2(n) + 1$.
 - chaque itération est à coût constant donc complexité en θ(log(n)).
- Sinon, $2^k < n < 2^{k+1}$:
 - T est "compris" entre un tableau de taille 2^k et un de taille 2^{k+1}.
 - Complexité entre $\theta(k)$ et $\theta(k+1)$ donc $\theta(k)$.
 - $k < log_2(n) < k + 1$ donc $\theta(k) = \theta(log_2(n))$.
- L'algorithme est logarithmique.

A vous de jouer!

Modifier pour renvoyer le plus grand i tel que T[i] = e(ou -1 si $e \notin T$).

```
DÉBUT
   deb, fin \leftarrow 0, taille(T)-1
   tant que deb<fin faire
        mil ← (deb+fin) div 2
        si T[mil] <e alors
            deb ← mil+1
        sinon
            fin \leftarrow mil-1
        fin si:
   fin tq;
    Renvoyer
   cond(deb<taille(T) et T[deb]=e,
     deb, -1)
```

FIN

```
fin_i + 1 ... n - 1
0 \dots deb_i - 1
        < e
```

```
DÉBUT
    deb, fin \leftarrow 0, taille(T)-1
    tant que deb<fin faire
        mil ← (deb+fin) div 2
        si T[mil] <e alors
            deb \leftarrow mil+1
        sinon
            fin ← mil-1
        fin si;
   fin ta:
    Renvoyer
    cond(fin≥0 et T[fin]=e, fin, -1)
FIN
```

 $0 \dots deb_i - 1$

< e

 $fin_i + 1 \dots taille(T) - 1$

> e

Plan

- Généralités
- Structures linéaires
- Arrêt d'un algorithme
- Validité d'un algorithme
- Complexité en temps d'un algorithme
- Algorithmes de recherche dans un tableau
- Algorithmes de tri

Motivation du tri

Motivation

Trier permet de traiter plus efficacement ensuite.

On étudie 2 sortes de tris de tableaux 1D :

- par valeurs : les données à trier ne peuvent prendre que certaines valeurs : tri en $\Omega(n)$
- par comparaison : les données sont quelconques : tri en $\Omega(n \log n)$

Notation

n: taille du tableau à trier

Borne inférieure d'un tri de tableau

- Pour trier un tableau, il faut parcourir toutes ses cases.
- Donc sa complexité est au moins n, c'est à dire $\Omega(n)$.
- Il est possible de faire $\theta(n)$, par exemple lorsque les données ne peuvent prendre que certaines valeurs.
- L'ordre de complexité n est donc une borne inférieure pour un tri de tableau.

Tri par valeurs

```
PROCÉDURE : TriValeurs ( \underline{ES} T : tableau de nombre de taille n, \underline{E} p : entier)
```

SPÉCIFICATIONS: Les valeurs de T sont entre 0 et p-1. Trie T.

Variable:

Cpt : tableau de nombre de taille p i, k : entier

```
DÉBUT
    Initialiser Cpt avec des 0
    pour i de 0 à n-1 faire
        Cpt[T[i]] \leftarrow Cpt[T[i]] + 1
    fin pour;
   j,k \leftarrow 0,0
   tant que j<n faire
        si Cpt[k]=0 alors
            k \leftarrow k+1
        sinon
            T[i] \leftarrow k ; i \leftarrow i+1 ;
              Cpt[k] \leftarrow Cpt[k]-1
        fin si;
    fin tq;
FIN
```

Complexité : $\theta(p+n)$ ou $\theta(n)$ si p=O(n).

```
DÉBUT
    Initialiser Cpt avec des 0
    pour i de 0 à n-1 faire
        Cpt[T[i]] \leftarrow Cpt[T[i]] + 1
    fin pour;
    j,k \leftarrow 0,0
    tant que j<n faire
        si Cpt [k] = 0 alors
            \bar{k} \leftarrow k+1
        sinon
             T[i] \leftarrow k ; i \leftarrow i+1 ;
              Cpt[k] \leftarrow Cpt[k]-1
        fin si;
    fin tq;
FIN
```

i	j	k	Cpt	T			
Initialisation :							
?	?	?	[0,0,0,0]	[1,0,3,2,2,2]			
Во	Boucle pour :						
0	?	?	[0,1,0,0]	[1 ,0,3,2,2,2]			
1	?	?	[1 ,1,0,0]	[1, 0 ,3,2,2,2]			
2	?	?	[1,1,0, 1]	[1,0, 3 ,2,2,2]			
Ap	Après la boucle pour :						
?	0	0	[1 ,1,3,1]	[1,0,3,2,2,2]			
Boucle tant que :							
?	1	0	[0 ,1,3,1]	[0 ,0,3,2,2,2]			
?	1	1	[0 ,1,3,1]	[0,0,3,2,2,2]			
?	2	1	[0, 0 ,3,1]	[0,1,3,2,2,2]			
A la fin de l'algorithme :							
?	6	3	[0,0,0,0]	[0,1,2,2,2,3]			

Borne inférieure d'un tri par comparaison

- Dans le cas général, on doit comparer les valeurs entre elles pour les ordonner.
- Nombre de comparaisons nécessaires : au moins $n \log n/4$ (preuve dans le cours) donc complexité $\Omega(n \log n)$.
- If est possible de faire $\theta(n \log n)$, par exemple avec le tri fusion.
- L'ordre de complexité n log n est donc une borne inférieure d'un tri de tableau par comparaison.

```
PROCÉDURE : TriBulles (ES T : tableau de nombres de taille n)
```

SPÉCIFICATIONS: Trie le tableau T par ordre croissant.

```
DÉBUT

pour i de 0 à n-2 faire

pour j de n-1 à i+1 par pas de -1 faire

si T[j]<T[j-1] alors

T[j],T[j-1] ← T[j-1],T[j]

fin si;

fin pour;

fin pour;

FIN
```

Complexité : $\theta(n^2)$: ce tri n'est pas optimal.

A vous de jouer! Trace pour T=[5,6,2,4,3,1]

PROCÉDURE: TriBulles (ES

T : tableau de nombres de taille n)

SPÉCIFICATIONS : Trie le tableau

T par ordre croissant.

fin pour;

FIN

```
DÉBUT
  pour i de 0 à n-2 faire
   pour j de n-1 à i+1
    par pas de -1 faire
    si T[j]<T[j-1] alors
        T[j],T[j]
    fin si;
  fin pour;</pre>
```

i	j	T				
?	?	[5,6,2,4,3,1]				
0	5	[5,6,2,4, 1 , 3]				
0	4	[5,6,2, 1 , 4 ,3]				
0	3	[5,6, 1,2 ,4,3]				
0	2	[5, 1 , 6 ,2,4,3]				
0	1	[1,5 ,6,2,4,3]				
Le	Le plus petit est bien placé.					
1	5	[1,5,6,2, 3,4]				
1	4	[1,5,6, 2,3 ,4]				
1	3	[1,5, 2,6 ,3,4]				
1	2	[1, 2 , 5 ,6,3,4]				
Le	Les 2 plus petits sont bien placés.					

Les 2 plus petits sont bien placés. A la fin :

4 5 [1,2,3,4,**5,6**]

Tri fusion

Principe

- Algorithme de type "Diviser pour mieux régner" :
 - On trie chaque moitié du tableau
 - On fusionne les deux moitiés triées.
- Il faut 2 algorithmes : l'algorithme de tri et l'algorithme de fusion

Sylvain Daudé (UM - FDS) Algorithmique 1 103/112

```
\textbf{PROCÉDURE:} \ \text{fusion} \ (\underline{ES} \ T : tableau \ de \ nombre, \ \underline{\underline{E}} \ deb1, \ fin1, \ fin2 : entier)
```

SPÉCIFICATIONS: T[deb1..fin1] et T[fin1+1..fin2] triés. Trie T[deb1..fin2].

Variable: T1, T2: tab. de fin1-deb1+1 et fin2-fin1 nombres; i,j: entiers

```
DÉBUT
    recopier T[deb1..fin1] dans T1 et T[fin1+1..fin2] dans T2
   i,j \leftarrow 0,0
   pour k de deb1 à fin2 faire
       Si j > = taille(T2) ou (i < taille(T1) et T1[i] < = T2[j])
        alors
           T[k] \leftarrow T1[i] ; i \leftarrow i+1
       sinon
           T[k] \leftarrow T2[i] ; i \leftarrow i+1
       fin si;
   fin pour;
FIN
```

Sylvain Daudé (UM - FDS) Algorithmique 1 104/1

A vous de jouer! Trace de fusion([2,6,8,4,9], 0, 2, 4)

```
PROCÉDURE : fusion (\underline{ES} T: t. de nb, \underline{E} deb1,fin1,fin2: entier)
```

```
Variable: i,j: entiers; T1,T2: t. de fin1-deb1+1 et fin2-fin1 nb
```

DÉBUT

fin pour;

FIN

```
recopier T[deb1..fin1] dans T1 recopier T[fin1+1..fin2] dans T2 i,j \leftarrow 0,0 pour k de deb1 à fin2 faire si j>=taille(T2) ou (i<taille(T1) et T1[i]<=T2[j]) alors T[k] \leftarrow T1[i]; i \leftarrow i+1 sinon T[k] \leftarrow T2[j]; j \leftarrow j+1 fin si;
```

k	i	j	<i>T</i> 1	T2	Т
?	0	0	[2 ,6,8]	[4 ,9]	[?,?,?,?]
0	1	0	[2, 6 ,8]	[4 ,9]	[2 ,?,?,?,?]
1	1	1	[2, 6 ,8]	[4, 9]	[2,4,?,?,?]
2	2	1	[2,6, 8]	[4, 9]	[2,4, 6 ,?,?]
3	3	1	[2,6,8]	[4, 9]	[2,4,6, 8 ,?]
4	3	2	[2,6,8]	[4,9]	[2,4,6,8, 9]

105/112

```
PROCÉDURE: triFusionAux (ES T: tableau de nombre; E deb, fin: entier)
              : tableau de nombre
SPÉCIFICATIONS: Trie T entre les indices deb et fin.
Variable: mil: entier
DÉBUT
   si deb<fin alors
      mil ← (deb+fin) div 2
      triFusionAux(T,deb,mil)
      triFusionAux(T,mil+1,fin)
      fusion(T,deb,mil,fin)
   fin si;
FIN
```

A vous de jouer! Trace de triFusionAux([5,6,2,4,3,1],0,5)

```
PROCÉDURE: triFusionAux
```

(\underline{ES} T : tableau de nombre; \underline{E} deb, fin : entier) : tableau de nombre

Variable: mil: entier

DÉBUT

si deb<fin alors mil ← (deb+fin) div 2 triFusionAux(T,deb,mil) triFusionAux(T,mil+1,fin) fusion(T,deb,mil,fin) fin si;

FIN

Tri fusion : dernière procédure

Quelles valeurs de deb et fin faut-il choisir pour trier tout le tableau ?

deb=0, fin=taille(T)-1

D'où la dernière procédure du tri fusion :

PROCÉDURE : TriFusion(ES T : tableau de nombres)

SPÉCIFICATIONS: Trie T

DÉBUT

TriFusionAux(T,0,taille(T)-1)

FIN

Quelques tris célèbres

- **Tri par insertion :** pour k allant de 1 à taille(T)-1, T[k] est inséré parmi T[0] à T[k-1]. Adapté lorsque les données sont presque triées. Complexité : $\theta(n^2)$.
- Tri par sélection: pour k allant de 0 à taille(T)-2, on cherche le plus petit élément parmi T[k] à T[taille(T)-1] et on l'échange avec T[k]. Adapté pour de petits ensembles de données.

Complexité : $\theta(n^2)$.

 Tri par tas: On structure les données dans un arbre binaire dont les nœuds sont partiellement ordonnés ("tas"). Le sommet de l'arbre est le plus grand élément, on l'extrait et on refait un tas à partir des nœuds restants.

Complexité : $\theta(n \log n)$.

 Tri rapide ou tri par pivot : on sépare un tableau entre les éléments plus petits et plus grand qu'un certain élément du tableau ("pivot") et on trie chaque moitié récursivement.

Complexité : $\theta(n^2)$ dans le pire des cas, $\theta(n \log n)$ en moyenne.

A vous de jouer!

Donner les étapes de tri du tableau [1, 3, 5, 2, 9, 4, 0] par sélection et par insertion.

Sélection :

"pour k allant de 0 à taille(T)-2, on cherche le plus petit élément parmi T[k] à T[taille(T)-1] et on l'échange avec T[k]."

Insertion :

"pour k allant de 1 à taille(T)-1, T[k] est inséré parmi T[0] à T[k-1]."

```
[1, 3, 5, 2, 9, 4, 0]

[0, 3, 5, 2, 9, 4, 1]

[0, 1, 5, 2, 9, 4, 3]

[0, 1, 2, 5, 9, 4, 3]

[0, 1, 2, 3, 9, 4, 5]

[0, 1, 2, 3, 4, 9, 5]

[0, 1, 2, 3, 4, 5, 9]

[1, 3, 5, 2, 9, 4, 0]

[1, 3, 5, 2, 9, 4, 0]

[1, 3, 5, 2, 9, 4, 0]
```

[1, 2, 3, 5, 9, 4, 0] [1, 2, 3, 5, 9, 4, 0] [1, 2, 3, 4, 5, 9, 0] [0, 1, 2, 3, 4, 5, 9]

Deux propriétés des tris

- Un tri est stable s'il laisse les éléments égaux dans le même ordre.
 - utile pour trier successivement selon plusieurs critères ;
 - exemples : bulles, insertion, fusion ;
 - sinon, possibilité de mémoriser l'emplacement initial des éléments.
- Un tri est en place s'il ne nécessite pas d'espace supplémentaire important et modifie directement la structure à trier.
 - important si on dispose de peu de mémoire ;
 - exemples : bulles, sélection, insertion, tas.

Sylvain Daudé (UM - FDS) Algorithmique 1 111/112

Fin du cours

Merci pour votre attention!