The Mystery of 1^{π} Wrestling with Complex Exponentiation

Matt McCarthy

June 2016

Problem. Find what step is wrong in the following statements.

$$1 = 1^{\pi}$$

$$= (e^{2i\pi})^{\pi}$$

$$= e^{2i\pi^{2}}$$

$$= \cos 2\pi^{2} + i \sin 2\pi^{2}$$

$$\approx 0.6296 + 0.7768i$$

1 Background

1.1 Complex Logarithms

In \mathbb{R} we can define logarithms in various ways such as the inverse of the exponential or as

$$\ln x = \int \frac{1}{x} dx.$$

However, in \mathbb{C} the original definition (inverse of the exponential) fails since

$$e^{i\theta} = e^{i\theta + 2ki\pi}$$

where $k \in \mathbb{Z}$. Essentially, the exponential is a bijection between \mathbb{R} and $(0, \infty)$ and is thus invertible. When we move to \mathbb{C} , the exponential function loses its injectivity since multiple domain elements get mapped to a single element in the range. However, defining logarithms as the antiderivative of 1/x still works.

Definition 1. Let $z \in \mathbb{C}$. Then $\log z$ is defined as

$$\log z := \ln|z| + i \arg z.$$

If $\arg z \in (-\pi, \pi]$ we say it is the *principal logarithm* of z.

Corollary 1.

$$\frac{d}{dz}\log z = \frac{1}{z}$$

As we can see by the definition, the complex logarithm is *multivalued*, thus if we want it to be well-defined we need to restrict the argument of the input to an open interval of length 2π .

1.2 Exponentiation with a Complex Base

Because of these problems with the logarithm, exponentiation becomes less straightforward. In the complex world, exponentiation is defined as follows.

Definition 2. Let $z, w \in \mathbb{C}$ with $w \neq 0$. Then

$$w^z = e^{z \log w}.$$

However, this definition is equivalent to

$$w^z = e^{z(\ln|w| + i\arg w)}.$$

Thus, due to the properties of the complex logarithm, exponentiation in the complex plane is also multivalued. When exponentiating, the following are true.

- 1. z^w is single-valued iff $w \in \mathbb{Z}$.
- 2. $z^{m/n}$ has n distinct values for $m, n \in \mathbb{Z}$ with n > 0 and gcd(m, n) = 1.
- 3. z^x has infinitely many values if x is irrational.

2 Solution

Problem. Find what step is wrong in the following statements.

$$1 = 1^{\pi}$$

$$= (e^{2i\pi})^{\pi}$$

$$= e^{2i\pi^{2}}$$

$$= \cos 2\pi^{2} + i \sin 2\pi^{2}$$

$$\approx 0.6296 + 0.7768i$$

The problem is

$$1^{\pi} = 1$$
.

By definition of complex exponentiation we have

$$1^{\pi} = e^{\pi \log 1}.$$

However

$$\log 1 = \ln |1| + i \arg 1 = 0 + 2ki\pi$$

for $k \in \mathbb{Z}$. Thus,

$$1^{\pi} = e^{2ki\pi^2}$$

Since π is irrational, there are infinitely many values that 1^{π} can take. The only value of k that yields an answer of 1 is k = 0.

References

[1] John M. Howie. Complex Analysis. Springer. ISBN: 978-1-85233-733-9.