LØST OPPGAVE 6.331

6.331

En flåte som måler $6.0 \text{ m} \times 4.0 \text{ m}$, flyter på ei elv. Vi vil bruke flåten til å frakte en bil over elva med. Idet vi kjører bilen om bord, synker flåten 3.0 cm dypere i vannet. Finn tyngdekraften på bilen.

Løsning:

Når flåten ligger i vannet før bilen kjører om bord, se figur a ovenfor, er oppdriften på flåten $O_{\rm fl}$ like stor som tyngden på flåten $G_{\rm f}$, i følge Newtons 1. lov på flåten. Når bilen kjører om bord, virker det, i følge Newtons 1. lov på bilen, en kraft oppover fra flåten på bilen som er like stor som tyngden på bilen, $N_{\rm b} = G_{\rm b}$, se figur b. I følge Newtons 3. lov virker det da en kraft $N_{\rm f} = N_{\rm b}$ nedover på flåten fra bilen. Når flåten så synker d = 3.0 cm dypere, blir volumet av det ekstra vannet som fortrenges lik V = Ad, der A = 6.0 m · 4.0 m = 24 m² og flåten får en ekstra oppdrift $O_{\rm e} = O_{\rm f2} - O_{\rm f1}$, se figur c. I følge Arkimedes' lov er den ekstra oppdriften på flåten lik tyngdekraften på dette ekstra fortrengte vannet, $G_{\rm ev}$. Vi bruker Newtons 1. lov, $\Sigma F = 0$ på flåten i figur c:

$$N_{\rm f} + G_{\rm f} - O_{\rm f2} = 0$$
 der $G_{\rm f} = O_{\rm f1}$ og $N_{\rm f} = N_{\rm b} = G_{\rm b}$
 $G_{\rm b} + O_{\rm f1} - O_{\rm f2} = 0$ der $O_{\rm e} = G_{\rm ev} = m_{\rm v} g$ og $m_{\rm v} = \rho_{\rm v} V$
 $G_{\rm b} = \rho_{\rm v} V g$ der $V = Ad$
 $G_{\rm b} = \rho_{\rm v} Ad g$
 $= 1000 \, {\rm kg} \cdot 24 \, {\rm m}^2 \cdot 0,030 \, {\rm m} \cdot 9,81 \, {\rm N/kg} = 7,1 \, {\rm kN}$