••• معماری کامپیوتر (۱۱۰–۱۱–۱۱۱) بلسهی دهم

دانشگاه شهید بهشتی دانشکدهی مهندسی برق و کامپیوتر بهار ۱۳۹۱ لعمد معمودی ازناوه

-فهرست مطالب

- مروری بر مِلسہی پیش
 - تقسیم
 - *مم*یز شناور

1

Carry save adder-

Carry-save addition

Carry-save inputs

Carry-save addition

a. Carry-save addition.

EE 5324 - VLSI Design II - © Kia Bazargan

High-Radix Multipliers

- ضرب کنندههای سریع (ادامه...)

Multiplicand Multiplier

X

V

0, x, 2x, or 3x

Product

فبرك كننده حاك در فترح

(b) Partial-tree multiplier

- ضرب کنندههای آرایهای (ادامه...)

Our original dot-notation representing multiplication

Straightened dots to depict array multiplier to the left

ضرب ننده ک آرایها ک

در فصل بعد با مفصوص خط لوله بیشتر آشا خواصیص شد

- الگوريتم ضرب Booth (ادامه...)

x_i	x_{i-1}	Operation	Comments	y_i
0	0	shift only	string of zeros	0
1	1	shift only	string of ones	0
1	0	subtract and shift	beginning of a string of ones	$\bar{1}$
0	1	add and shift	end of a string of ones	1

Copyright Koren 2008

1111 1010	x 0	0000 0000
1111 0100	x -1	0000 1100
1110 1000	x 0	0000 0000
1101 0000	x +1	1101 0000
	Final Sum:	1101 1100 (-36)

-- الگوريتم ضرب Booth (ادامه...)

$$-6 \times -2 = 12$$

 1010×1110

1111 1010	x 0	0000 0000
1111 0100	x -1	0000 1100
1110 1000	x 0	0000 0000
1101 0000	x 0	0000 0000
	Final Sum:	0000 1100 (12)

- ضرب در MIPS

- دو ثبات سیودو بیتی برای ضرب پیشبینی شده است:
- HI: most-significant 32 bits
- LO: least-significant 32-bits

— دستورات

- mult rs, rt / multu rs, rt
 - انجام عملیات ضرب
- mfhi rd / mflo rd
 انتقال ممتوای HI/LO به ثباتهای مند منظوره
 - mul rd, rs, rt
 rd بنتقال قسمت کهارزش به

Dividend=Quotient X Divisor + Reminder

سفت افزار تقسیم

مدارهای تقسیم سریع

- نمی توان تقسیم را به صورت موازی انجام داد.
 - تفریق به صورت مشروط انج*اه می*شود.
- الگوریتههای سریعتر مانند SRT در هر مرمله
 چندین بیت خارج قسمت تولید میکنند.
- باز هم الگوریتم در گاههای متفاوت انجاه میشود.

- تقسیم در MIPS

برای نتیجهی تقسیم از ثباتهای HI و و LO استفاده میشود.

HI: 32-bit remainder

- LO: 32-bit quotient

– دستورات

- divu rs, rt / divu rs, rt
 سریز یا تقسیم بر صفر باید به صورت نرهافزاری چِک شود.
- برای دسترسی به نتایج میتوان از دستورات زیر استفاده کرد.
- mfhi, mflo

مميز شناور

- برای نمایش اعداد اعشاری و اعداد بسیار بزرگ از سیستی عددی میز شناور استفاده می شود.
 - m11619140
 - -h.VIVhV
 - $\circ \circ \circ \circ \circ \circ \circ = \circ , | \times | \circ^{-9}$

Copyright 2004 Koren

			· · · · ·
	IBM/370	DEC/VAX	Cyber 70
Word length (double)	32 (64) bits	32 (64) bits	60 bits
Significand+{hidden bit}	24 (56) bits	23 + 1 (55 + 1) bits	48 bits
Exponent	7 bits	8 bits	11 bits
Bias	64	64 128	
Base	16	2	2
Range of M	$\frac{1}{16} \le M < 1$	$\frac{1}{2} \le M < 1$	$1 \le M < 2$
Representation of M	Signed-magnitude	Signed-magnitude	One's complement
Approximate range	$16^{63} \approx 7 \cdot 10^{75}$	$2^{127} \approx 1.9 \cdot 10^{38}$	$2^{1023} \approx 10^{307}$
Approximate resolution	$2^{-24} \approx 10^{-7} (10^{-17})$	$2^{-24} \approx 10^{-7} (10^{-17})$	$2^{-48} \approx 10^{-14}$

-مميز شناور (ادامه...)

- در سال ۱۹۸۵ استاندارد IEEE Std 754 مطرم شد.
- این استاندارد واگرایی شیوههای به کار رفته برای نمایش ممیز شناور را کاهش داد.
- بدین ترتیب برنامههای نوشته شده برای مقاصد علمی قابل عمل شدند.
 - بر طبق این استاندارد، اعداد به دو شیوه نشان داده میشود:
- single
- double

single: 8 bits	single: 23 bits
double: 11 bits	double: 52 bits

S	Exponent	Fraction
---	----------	----------

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

Single: Bias = 127; Double: Bias = 1023

-مميز شناور (ادامه...)

- در سال ۱۹۸۵ استاندارد IEEE Std 754 مطرم شد.
- این استاندارد واگرایی شیوههای به کار رفته برای نمایش ممیز شناور را کاهش داد.
- بدین ترتیب برنامههای نوشته شده برای مقاصد علمی قابل عمل شدند.
 - بر طبق این استاندارد، اعداد به دو شیوه نشان داده میشود:
- single
- double

single: 8 bits	single: 23 bits
double: 11 bits	double: 52 bits

S	Exponent	Fraction
---	----------	----------

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

Single: Bias = 127; Double: Bias = 1023

Denormal Numbers

اعداد ناهنجار

Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- بدین ترتیب میتوان اعداد کوچِکتری را نیز نمایش داد.
 - در صورتی که بخش کسری را برابر صفر قرار دهیه:

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

بدین ترتیب رو نهایش برای و خواصیم داخت

Infinities and NaNs

اناعدد و بینهایت

- Exponent = 111...1, Fraction = 000...0 $-\pm\infty$
 - در مماسبات بعدی نیز قابل استفاده است.
- Exponent = 111...1, Fraction ≠ 000...0
 (Not-a-Number (NaN)) ناعدد
 - بیان گر مماسبات نادرست میباشد.
 - این اعداد نیز قابلیت استفاده در مماسبات بعدی را دارند.

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

