Import Necessary Libraries

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn import metrics
import seaborn as sns
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from mlxtend.plotting import plot_decision_regions
```

Business Problem

Classify the Size Category using SVM

Data collection

```
In [5]: forest=pd.read_csv('forestfires (1).csv',sep=',')

Out[5]: month day FFMC DMC DC ISI temp RH wind rain ... monthfeb monthjan month

O mar fri 86.2 26.2 94.3 5.1 8.2 51 6.7 0.0 ... 0 0
```

:		month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	•••	monthfeb	monthjan	monthj
	0	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0		0	0	
	1	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0		0	0	
	2	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0		0	0	
	3	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2		0	0	
	4	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0		0	0	
Į.	512	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0		0	0	
į	513	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0		0	0	
į	514	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0		0	0	
į	515	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0		0	0	
	516	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0		0	0	

517 rows × 31 columns

6]:	forest.head()														
]:		month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain		monthfeb	monthjan	monthjul
-	0	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0		0	0	0
	1	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0		0	0	0
	2	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0		0	0	0
	3	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2		0	0	0
	4	mar	sun	89.3	51 3	102.2	9.6	11 4	99	1.8	0.0		0	0	0

Loading [MathJax]/extensions/Safe.js

```
In [8]:
           forest.shape
          (517, 31)
 Out[8]:
In [10]:
           forest[forest.columns[0:11]].describe().T
                                                               50%
                                                                       75%
                 count
                              mean
                                            std
                                                 min
                                                       25%
                                                                                max
Out[10]:
          FFMC
                  517.0
                          90.644681
                                       5.520111
                                                 18.7
                                                        90.2
                                                              91.60
                                                                      92.90
                                                                               96.20
           DMC
                  517.0 110.872340
                                      64.046482
                                                  1.1
                                                        68.6 108.30 142.40
                                                                              291.30
                  517.0 547.940039 248.066192
                                                  7.9 437.7 664.20 713.90
                                                                              860.60
             ISI
                  517.0
                           9.021663
                                       4.559477
                                                  0.0
                                                         6.5
                                                               8.40
                                                                      10.80
                                                                               56.10
                  517.0
                          18.889168
                                       5.806625
                                                  2.2
                                                        15.5
                                                              19.30
                                                                      22.80
                                                                               33.30
           temp
             RH
                  517.0
                          44.288201
                                      16.317469 15.0
                                                        33.0
                                                              42.00
                                                                      53.00
                                                                              100.00
                           4.017602
                                                               4.00
                                                                       4.90
                                                                                9.40
           wind
                  517.0
                                       1.791653
                                                  0.4
                                                         2.7
            rain
                  517.0
                           0.021663
                                       0.295959
                                                  0.0
                                                         0.0
                                                               0.00
                                                                       0.00
                                                                                6.40
           area
                  517.0
                          12.847292
                                      63.655818
                                                  0.0
                                                         0.0
                                                               0.52
                                                                       6.57 1090.84
In [11]:
           forest[forest.columns[0:11]].isnull().sum()
                    0
          month
Out[11]:
                    0
          day
          FFMC
                    0
          DMC
                    0
          DC
                    0
                    0
          ISI
                    0
          temp
                    0
          RH
                    0
          wind
          rain
                    0
                    0
          area
          dtype: int64
In [12]:
           corr = forest[forest.columns[0:11]].corr()
In [13]:
           plt.figure(figsize=(10,10))
           sns.heatmap(corr,annot=True)
```

Out[13]: <AxesSubplot:>

import warnings
warnings.filterwarnings('ignore')

Outlier check

```
In [16]: ax = sns.boxplot(forest['area'])
```


There are 3 outliers in data

```
In [17]:
           plt.rcParams["figure.figsize"] = 9,5
In [18]:
           plt.figure(figsize=(16,5))
           print("Skew: {}".format(forest['area'].skew()))
           print("Kurtosis: {}".format(forest['area'].kurtosis()))
           ax = sns.kdeplot(forest['area'], shade=True, color='g')
           plt.xticks([i for i in range(0,1200,50)])
           plt.show()
          Skew: 12.846933533934868
          Kurtosis: 194.1407210942299
            0.0200
            0.0175
            0.0150
            0.0125
            0.0100
            0.0075
            0.0050
            0.0025
            0.0000
                                  150 200 250 300 350 400
                                                        450
                                                           500
                                                               550
                                                                   600
                                                                      650
                                                                          700 750
```

The Data is highly Skewed and has large kurtosis value


```
In [21]:    num_columns = dfa.select_dtypes(exclude='object').columns.tolist()

In [23]:    plt.figure(figsize=(18,40))
    for i,col in enumerate(num_columns,1):
        plt.subplot(8,4,i)
        sns.kdeplot(forest[col],color='g',shade=True)
        plt.subplot(8,4,i+10)
        forest[col].plot.box()
    plt.tight_layout()
    plt.show()
    num_data = forest[num_columns]
    pd.DataFrame(data=[num_data.skew(),num_data.kurtosis()],index=['skewness','kurtosis'])
```


Loading [MathJax]/extensions/Safe.js 06 0.547498 -1.100445 2.536325 -0.331172 0.862904 0.571001 19.816344

 kurtosis
 67.066041
 0.204822
 -0.245244
 21.458037
 0.136166
 0.438183
 0.054324
 421.295964

Support Vestor Machine

```
In [25]: X = forest.iloc[:,2:30]
y = forest.iloc[:,30]

In [26]: mapping = {'small': 1, 'large': 2}

In [27]: y = y.replace(mapping)

In [28]: x_train,x_test,y_train,y_test = train_test_split(X,y,test_size = 0.20, stratify = y)
```

Linear

```
In [29]: model_linear = SVC(kernel = "linear")
    model_linear.fit(x_train,y_train)
    pred_test_linear = model_linear.predict(x_test)
    print("Accuracy:",metrics.accuracy_score(y_test, pred_test_linear))
```

Accuracy: 0.9903846153846154

Poly

```
In [30]:
    model_poly = SVC(kernel = "poly")
    model_poly.fit(x_train,y_train)
    pred_test_poly = model_poly.predict(x_test)
    print("Accuracy:",metrics.accuracy_score(y_test, pred_test_poly))
```

Accuracy: 0.7788461538461539

RBF

```
In [31]:
    model_rbf = SVC(kernel = "rbf")
    model_rbf.fit(x_train,y_train)
    pred_test_rbf = model_rbf.predict(x_test)
    print("Accuracy:",metrics.accuracy_score(y_test, pred_test_rbf))
```

Accuracy: 0.7596153846153846

Sigmoid

```
In [32]:
    model_sigmoid = SVC(kernel = "sigmoid")
    model_sigmoid.fit(x_train,y_train)
    pred_test_sigmoid = model_sigmoid.predict(x_test)
    print("Accuracy:",metrics.accuracy_score(y_test, pred_test_sigmoid))
```

Accuracy: 0.6826923076923077

```
In [36]:
          ytt = y_train.to_numpy()
In [37]:
          pca = PCA(n_components = 2)
In [38]:
          x_train2 = pca.fit_transform(x_train)
In [40]:
          model_linear.fit(x_train2,ytt)
         SVC(kernel='linear')
Out[40]:
In [41]:
          plot_decision_regions(x_train2,ytt, clf=model_linear)
          plt.show()
                                                                                1
          1000
                                                                                 2
           800
           600
           400
           200
                                                                     400
               -300
                       -200
                               -100
                                               100
In [ ]:
```