Discrete Mathematics CHAPTER 01 논리와 명제

본 강의자료는 강의의 편의를 위해 교수님들께 제공되는 자료입니다. 자료의 글과 그림은 저작권이 저자에게 있으므로 **대중적인 배포를 할 수 없음**을 유의해주시길 바랍니다.

학습개요

- 기본 개념
 - ◆ 수학적 논리를 통해 명제의 개념을 파악한다
 - ◆ 명제의 참과 거짓을 판별한다
- 논리연산자와 진리표
 - ◆ 다양한 논리연산자를 익힌다
 - ◆ 진리표를 통해 명제의 진리값을 구한다
- 논리적 동치
 - ◆ 논리적 동치법칙을 익힌다
 - ◆ 논리적 동치를 이용하여 명제를 단순화한다
- 한정기호
 - ◆ 논의영역을 통해 명제함수의 참과 거짓을 판별한다

Section 01 기본 개념 (1)

정의 1.1

참(true) 또는 거짓(false)을 명확히 구분할 수 있는 문장(statement)이나 수식을 명제 (proposition)라고 한다. 또한 명제에서 참 또는 거짓으로 나타내는 값을 진리값(truth value)이라고 한다.

●명제

- ◆ 논리의 기본 구성 요소
- ◆ 진리값이 참이면 T(true), 거짓이면 F(false)

Section 01 기본 개념 (2)

예제 1.1

다음 문장들이 명제인지 아닌지를 판별하여라.

- $(1) 2 \times 4 = 3$
- (2) 이솝우화는 재미있다.
- (3) x+y=7
- (4) 지구는 태양계의 행성이다.

- (1) 거짓인 문장이므로 명제다.
- (2) 이솝우화를 읽은 사람에 따라서 참과 거짓이 다르게 판별될 수 있는 문장 이므로 명제가 아니다.
- (3) *x*와 *y*에 주어진 값을 알 수 없으므로 참과 거짓을 판별할 수 없는 문장이다. 따라서 명제가 아니다.
- (4) 참인 문장이므로 명제다.

Section 02 논리연산자와 진리표 (1)

● 부정

정의 1.2

문장 p가 명제일 때 not p도 명제다. 이를 명제 p의 부정(negation)이라고 하며, $\neg p$ 또는 $\sim p$ 로 나타낸다.

р	¬ <i>p</i>
T	F
F	Т

◆ 비트의 부정

х	¬ <i>x</i>
1	0
0	1

Section 02 논리연산자와 진리표 (2)

예제 1.3

다음 명제 p에 대한 부정을 구하여라.

p: 3은 홀수다.

풀이

명제 p의 부정 $\neg p$ 는 '3은 홀수가 아니다'다.

예제 1.4

다음 비트열(bit stream)에 대한 부정을 구하여라.

11001100 11110000

풀이

각각의 비트를 부정한 결과는 다음과 같다.

00110011 00001111

Section 02 논리연산자와 진리표 (3)

● 논리곱

정의 1.3

문장 p와 q가 명제일 때 p and q도 명제다. 이를 명제의 논리곱(conjunction)이라고 하고, $p \land q$ 로 나타낸다.

р	q	p∧q
Τ	T	Т
T	F	F
F	T	F
F	F	F

Section 02 논리연산자와 진리표 (4)

예제 1.6

명제 p, q에 대하여 $q \land \neg p$ 의 진리값을 구하여라.

p q	$\neg p$	q∧¬p
T T	F	F
T F	F	F
F T	T	Т
F F	Т	F

Section 02 논리연산자와 진리표 (5)

● 논리합

정의 1.4

문장 p와 q가 명제일 때 p or q도 명제다. 이를 명제의 논리합(disjunction)이라고 하고, $p \lor q$ 로 나타낸다.

р	q	p∨q
Т	T	Т
Т	F	Т
F	T	Т
F	F	F

Section 02 논리연산자와 진리표 (6)

예제 1.10

명제 p, q에 대하여 $(\neg q \lor p) \land \neg p$ 의 진리값을 구하여라.

р	q	¬ q	$\neg q \lor p$	¬p	(¬q∨p)∧¬p
T	T	F	T	F	F
T	F	Т	T	F	F
F	T	F	F	Т	F
F	F	T	T	Т	Т

Section 02 논리연산자와 진리표 (7)

● 배타적 논리합

정의 1.5

문장p와q가 명제일 때p exclusive-orq도 명제다. 이를 명제의 배타적 논리합(exclusive or) 이라고 하고, $p \oplus q$ 로 나타낸다.

р	q	p⊕q
T	Τ	F
T	F	T
F	T	T
F	F	F

Section 02 논리연산자와 진리표 (8)

예제 1.12

명제 p, q에 대하여 $\neg q \oplus p$ 의 진리값을 구하여라.

р	q	¬q	¬q⊕p
Т	T	F	T
T	F	T	F
F	T	F	F
F	F	T	T

Section 02 논리연산자와 진리표 (9)

예제 1.13

컴퓨터 프로그래밍 언어 C에서는 비트연산자 &, \, ^를 제공한다. 이때 &는 논리곱 AND 연산을, \는 논리합 OR 연산을, ^는 배타적 논리합 XOR 연산을 수행한다. 각 비트열(bit stream)별로 다음 연산에 대한 결과를 구하여라.

- (1) 1010 1010 & 0011 1110
- (2) 1101 1001 | 1011 1011
- (3) 0101 0110 ^ 1010 1110

풀이

비트연산은 각 비트별로 연산을 수행한다.

- (3) 0101 0110 ^ 1010 1110 1111 1000

Section 02 논리연산자와 진리표 (10)

함축

정의 1.6

문장 p와 q가 명제일 때 p implies q도 명제다. 이를 명제의 함축(implication)이라고 하고, $p \rightarrow q$ 로 나타낸다.

р	q	p→q
Т	T	Т
Т	F	F
F	T	Т
F	F	Т

Section 02 논리연산자와 진리표 (11)

예제 1.17

명제 p, q가 주어졌을 때 $(\neg p \rightarrow q) \land (q \rightarrow p)$ 의 진리표를 구하여라.

p	q	¬ <i>p</i>	¬p→q	q→p	$(\neg p \rightarrow q) \land (q \rightarrow p)$
T	T	F	T	T	Т
T	F	F	T	T	Т
F	T	T	T	F	F
F	F	Т	F	T	F

Section 02 논리연산자와 진리표 (12)

- 명제의 함축
 - $\bullet p \rightarrow q$
- 조건명제(conditional proposition)
 - ◆ 'if p then q'라고 표현
- 충분조건과 필요조건
 - - 'p 는 q 의 충분조건(p is sufficient for q)'
 - ' $q \vdash p$ 의 필요조건(q is necessary for p)'

Section 02 논리연산자와 진리표 (13)

예제 1.18

명제 'x가 4의 배수면 x는 2의 배수다'의 필요조건, 충분조건 관계를 확인하여라.

풀이

명제 'x가 4의 배수면 x는 2의 배수다'는 다음과 같은 두 개의 문장으로 나눌수 있다.

p: *x*는 4의 배수다.

q: x는 2의 배수다.

즉 주어진 명제 'x가 4의 배수면 x는 2의 배수다'는 $p \rightarrow q$ 인 조건명제며, 진리 값은 참이다. 따라서 'x는 4의 배수다'는 'x는 2의 배수다'의 충분조건이며, 'x는 2의 배수다'는 'x는 4의 배수다'의 필요조건이다.

Section 02 논리연산자와 진리표 (14)

● 쌍조건문

정의 1.7

문장 p와 q가 명제일 때 p if and only if q도 명제다. 이를 명제의 쌍조건문(biconditional) 이라고 하고, $p \leftrightarrow q$ 로 나타낸다.

р	q	p⇔q
T	T	Т
T	F	F
F	T	F
F	F	Т

Section 02 논리연산자와 진리표 (15)

예제 1.22

명제 p, q에 대하여 합성명제 $(p \rightarrow q) \leftrightarrow (p \lor \neg q)$ 의 진리표를 구하여라.

p	q	p→q	$\neg q$	p∨¬q	$(p \rightarrow q) \leftrightarrow (p \lor \neg q)$
T	T	T	F	T	Т
T	F	F	T	T	F
F	T	T	F	F	F
F	F	T	Т	T	Т

Section 02 논리연산자와 진리표 (16)

● 역, 이, 대우

정의 1.8

명제 p, q에 대하여 $p \rightarrow q$ 일 때 $q \rightarrow p$ 를 명제의 역(converse), $\neg p \rightarrow \neg q$ 를 명제의 이 (inverse), $\neg q \rightarrow \neg p$ 를 명제의 대우(contraposition)라고 한다.

p q	p→q	q→p	$\neg p \rightarrow \neg q$	¬q→¬p
T T	Т	Т	Т	T
T F	F	Т	T	F
F T	T	F	F	Т
F F	Т	Т	Т	Т

Section 02 논리연산자와 진리표 (17)

예제 1.23

명제 p, q가 다음과 같이 주어졌을 때 명제의 함축에 대한 역, 이, 대우를 구하여라.

p: 1바이트(byte)는 8비트(bit)다.

q: 1킬로바이트(KB)는 1024바이트(byte)다.

Section 02 논리연산자와 진리표 (18)

풀이

명제의 역, 이, 대우를 구하기 위해 명제의 함축을 구해보자. 명제 p, q에 대한 함축 $p \rightarrow q$ 는 다음과 같다.

1바이트가 8비트면 1킬로바이트는 1024바이트다.

- 이에 대해 명제의 역, 이, 대우를 각각 구해보자.
- •명제의 역 $q \rightarrow p$ 는 다음과 같다. 1킬로바이트가 1024바이트면 1바이트는 8비트다.
- •명제의 이 $\neg p \rightarrow \neg q$ 는 다음과 같다. 1바이트가 8비트가 아니면 1킬로바이트는 1024바이트가 아니다.
- •명제의 대우 $\neg q \rightarrow \neg p$ 는 다음과 같다. 1킬로바이트가 1024바이트가 아니면 1바이트는 8비트가 아니다.

Section 02 논리연산자와 진리표 (19)

예제 1.25

다음 명제의 대우를 구하고 참, 거짓을 판별하여라.

실수 a, b에 대하여 ax=bx면 a=b다.

풀이

주어진 명제는 'p: ax=bx'와 'q: a=b'로 나눌 수 있다. 즉 명제의 함축 $p \rightarrow q$ 가 된다. 이때 대우 $\neg q \rightarrow \neg p$ 는 '실수 a, b에 대하여 $a \neq b$ 면 $ax \neq bx$ 다'며, x=0 일 때 성립하지 않으므로 거짓인 명제다.

Section 03 논리적 동치(1)

정의 1.9

합성명제를 구성하고 있는 명제의 진리값에 상관없이 합성명제의 진리값이 항상 참이면 이를 항진명제(tautology)라고 한다. 이와는 반대로 합성명제의 진리값이 항상 거짓이면 이를 모순명제(contradiction)라고 한다.

예제 1.28

다음 명제의 진리값을 구하여라.

$$(1) [p \land (p \rightarrow q)] \rightarrow q$$

$$(2) p \land \neg (\neg p \lor p)$$

Section 03 논리적 동치 (2)

풀이

(1) $p q p \rightarrow q p \wedge (p \rightarrow q) [p \wedge (p \rightarrow q)] \rightarrow q$ T T T T T T

T F F T T

F T T

F T T

F T T

(2)	p	¬ <i>p</i>	¬(¬ <i>p</i> ∨ <i>p</i>)	<i>p</i> ∧¬(¬ <i>p</i> ∨ <i>p</i>)
	T	F	F	F
	T	F	F	F
	F	Т	F	F
	F	T	F	F

Section 03 논리적 동치 (3)

정의 1.10

합성명제의 진리값이 서로 같은 경우 이를 논리적 동치(logical equivalence)라고 하며, $p \equiv q$ 로 나타낸다.

논리적 동치법칙			
$p \land p \equiv p$	$p \lor p \equiv p$	멱등법칙(idempotent laws)	
$p \wedge T \equiv p$	$p \lor F \equiv p$	항등법칙(identity laws)	
$p \lor T \equiv T$	$p \land F \equiv F$	지배법칙(domination laws)	
$p \lor \neg p \equiv T$	$p \land \neg p \equiv F$	부정법칙(negation laws)	

Section 03 논리적 동치 (4)

$p \land q \equiv q \land p$	$p \lor q \equiv q \lor p$	교환법칙(commutative laws)
$p \lor (q \lor r) \equiv (p \lor q) \lor r$ $p \land (q \land r) \equiv (p \land q) \land r$		결합법칙(associative laws)
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor q) \lor $		분배법칙(distributive laws)
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$		드 모르간의 법칙(De Morgan's laws)
$p \rightarrow q \equiv \neg p \lor q$		함축법칙(implication conversion law)
$p \rightarrow q \equiv \neg q \rightarrow \neg p$		대우법칙(contraposition law)
$p \rightarrow q \equiv (p \land \neg q) \rightarrow F$		귀류법칙(reduction ad absurdum law)

Section 03 논리적 등치 (5)

예제 1.30

명제의 논리적 동치법칙 중 대우법칙 $p \rightarrow q \equiv \neg q \rightarrow \neg p$ 가 성립함을 증명하여라.

풀이 진리표를 이용하여 두 명제의 진리값이 같은지 보인다.

p q	p→q	$\neg q$	¬ <i>p</i>	¬ <i>q</i> →¬ <i>p</i>
T T	Т	F	F	T
T F	F	T	F	F
F T	Т	F	T	Т
FF	Т	Т	Т	Т

명제 $p \rightarrow q$ 와 $\neg q \rightarrow \neg p$ 의 진리값이 같으므로 두 명제는 서로 동치며, 대우법 칙이 성립한다는 사실을 알 수 있다.

Section 03 논리적 통치 (6)

예제 1.34

논리적 동치법칙을 이용하여 다음 명제가 동치임을 증명하여라.

$$(1) \neg p \lor (p \land q) \rightarrow q \equiv T$$

$$(2) (p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$$

풀이

$$(1) \neg p \lor (p \land q) \longrightarrow q \equiv \neg p \lor [\neg (p \land q) \lor q] \qquad (\because 함축법칙)$$

$$\equiv \neg p \lor (\neg p \lor \neg q \lor q) \qquad (\because 드 모르간의 법칙)$$

$$\equiv (\neg p \lor \neg p) \lor (\neg q \lor q) \qquad (\because 결합법칙)$$

$$\equiv \neg p \lor T \qquad \qquad (\because 멱등법칙, 부정법칙)$$

$$\equiv T \qquad \qquad (\because 지배법칙)$$

그러므로 명제 $\neg p \lor (p \land q) \rightarrow q$ 와 명제 T는 서로 동치다. 즉 항진명제다.

Section 03 논리적 통치 (7)

$$(2) (p \lor q) \rightarrow r \equiv \neg (p \lor q) \lor r \qquad (\because 함축법칙)$$

$$\equiv (\neg p \land \neg q) \lor r \qquad (\because 드 모르간의 법칙)$$

$$\equiv r \lor (\neg p \land \neg q) \qquad (\because 교환법칙)$$

$$\equiv (r \lor \neg p) \land (r \lor \neg q) \qquad (\because 분배법칙)$$

$$\equiv (\neg p \lor r) \land (\neg q \lor r) \qquad (\because 교환법칙)$$

$$\equiv (p \rightarrow r) \land (q \rightarrow r) \qquad (\because 함축법칙)$$

그러므로 명제 $(p \lor q) \rightarrow r$ 과 명제 $(p \rightarrow r) \land (q \rightarrow r)$ 은 서로 동치다.

Section 04 반정기호 (1)

정의 1.11

변수 x를 포함한 문장 P(x)와 논의영역 D가 있을 때 변수 x의 값이 D에 포함되면 문장 P(x)를 변수 x에 대한 명제함수(propositional function)라고 한다.

- 논의영역(universe of discourse)
 - ◆ 값이 정해지지 않은 변수나 객체가 포함된 문장의 참과 거 짓을 판별할 수 있는 범위

Section 04 반정기호 (2)

예제 1.35

다음의 문장들이 명제함수임을 설명하여라. 여기서 D는 논의영역을 나타낸다.

- $(1) x^2$ 은 짝수다(D: 양의 정수 집합).
- (2) 동요 가사에는 꽃 이름이 들어간다(D: 초등학교 음악 교과서).
- (3) 컴퓨터 프로그램을 이용하여 압축할 수 있다(D: 응용 소프트웨어).

- (1) x 값이 2면 참이고, 3이면 거짓이 된다. 마찬가지로 양의 정수 D에 속하는 x에 대하여 참과 거짓을 구분할 수 있으므로 명제함수다.
- (2) '동요' 부분이 문장의 변수에 해당된다. 만약 '동요' 자리에 '퐁당퐁당'을 넣으면 거짓이 되지만 '무궁화'를 넣으면 참이 된다. 그러므로 명제함수다.
- (3) '컴퓨터 프로그램' 부분을 문장의 변수로 볼 수 있다. '컴퓨터 프로그램' 부분에 '윈집(WinZip)'을 넣으면 참이 되지만 '나모(namo)'를 넣으면 거짓이 된다. 나모는 웹 에디터(web editor)용 프로그램이다. 그러므로 이 문장 역시 명제함수다.

Section 04 반정기호 (3)

예제 1.38

명제함수 P(x, y)가 'x는 컴퓨터의 y다'일 때 다음 진리값을 구하여라.

- (1) *P*(디스켓, 보조기억장치)
- (2) *P*(마우스, 입력장치)
- (3) *P*(프린터, 주기억장치)

- (1) '디스켓은 컴퓨터의 보조기억장치다'는 참이므로 진리값은 T다.
- (2) '마우스는 컴퓨터의 입력장치다'는 참이므로 진리값은 T다.
- (3) '프린터는 컴퓨터의 주기억장치다'는 거짓이므로 진리값은 F다(프린터는 주기억장치가 아닌 출력장치다).

Section 04 반정기호 (4)

정의 1.12

P(x)를 논의영역 D를 갖는 명제함수라고 하자. 이때 'D에 속하는 모든 x에 대하여 P(x)는 참이다'라는 문장은 기호 ∀를 사용하여 다음과 같이 나타낸다.

$$\forall x P(x)$$

여기서 $\forall \exists P(x)$ 의 전칭기호(universal quantifier)라고 한다.

Section 04 반정기호 (5)

예제 1.40

다음은 전칭기호를 이용하여 표현한 값이다. 명제로 서술하여라.

- $(1) \neg (\forall x P(x))$
- $(2) \forall x \forall y P(x, y)$
- 풀이
- (1) 모든 x에 대하여 P(x)가 성립하는 것은 아니다. 즉 P(x)가 성립하지 않는 x가 존재한다.
- (2) 모든 x와 y에 대하여 P(x, y)가 성립한다.

Section 04 반정기호 (6)

정의 1.13

P(x)를 논의영역 D를 갖는 명제함수라고 하자. 이때 'D에 속하는 어떤 x에 대하여 P(x)가 참인 x가 존재한다'라는 문장은 기호 \exists 를 사용하여 다음과 같이 나타낸다.

 $\exists x P(x)$

여기서 \exists 를 P(x)의 존재기호(universal quantifier)라고 한다.

Section 04 반정기호 (7)

예제 1.42

다음은 존재기호를 이용하여 표현한 값이다. 명제로 서술하여라.

- $(1) \exists x (\neg P(x))$
- $(2) \exists x \forall y P(x, y)$
- 풀이
- (1) P(x)가 성립하지 않는 x가 존재한다.
- (2) 모든 y에 대하여 P(x, y)가 성립하는 x가 존재한다.

Section 04 반정기호 (8)

예제 1.45

실수 x, y에 대하여 명제함수 P(x, y)가 $x^2 \ge y^2$ 일 때 다음 명제의 진리값을 구하여라.

- $(1) \forall x \forall y P(x, y)$
- (2) $\exists x \forall y P(x, y)$
- (3) $\forall x \exists y P(x, y)$

- (1)x=1, y=2인 경우 $x^2 \ge y^2$ 가 성립하지 않으므로 $\forall x \forall y P(x, y)$ 의 진리값은 거짓(F)이다.
- (2) 모든 실수 y에 대하여 명제함수 $x^2 \ge y^2$ 를 만족하는 x는 존재하지 않는다. 그러므로 $\exists x \forall y P(x, y)$ 의 진리값은 거짓(F)이다.
- (3) y=0이면 모든 실수 x에 대하여 $x^2 \ge 0$ 이 성립한다. 그러므로 $\forall x \exists y P(x,y)$ 의 진리값은 참(T)이다.

Discrete Mathematics The End

본 강의자료는 강의의 편의를 위해 교수님들께 제공되는 자료입니다. 자료의 글과 그림은 저작권이 저자에게 있으므로 **대중적인 배포를 할 수 없음**을 유의해주시길 바랍니다.