

LA IMPORTANCIA DE LA GEOTECNIA EN LOS PROYECTOS DE DRENAJE

PLUVIAL

MARCO NORMATIVO

2 GEOLOGÍA

HIDROGEOLOGÍA

4 GEOTECNIA

CASOS DE APLICACIÓN

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

LA IMPORTANCIA DE LA GEOTECNIA EN LOS PROYECTOS DE DRENAJE

PLUVIAL

MARCO NORMATIVO

2 GEOLOGÍA

HIDROGEOLOGÍA

4 GEOTECNIA

CASOS DE APLICACIÓN

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

Marco Normativo

- NTP E.050 "Suelos y Cimentaciones".
- NTP E.030 "Diseño Sismo resistente".
- NTP E.020 "Estabilización de Suelos y Taludes".
- Manual de Puentes del MTC (R.D. N°19-2018-MTC/14).
- Manual de Carreteras: Sección Suelos y Pavimentos (R.D. N°10-2014-MTC/14).
- International Leeve handbook CIRIA 731.
- International Cimmission on Large Dams (ICOLD) Bulletins.
- United States Department of the Interior Bureau of Reclamation Manuals & Guidelines.
- United States Army Corps of Engineers (USACE) manuals.
- Normas de estandarización internacionales (ASTM, UNE, BS, entre otros).

Guías Complementarias

- The SUDs Manual CIRIA C753.
- Guía Básica de Diseño de Sistemas de Gestión Sostenible de Aguas Pluviales en Zonas Verdes y otros espacios Libres – Área de Gobierno de Medio Ambiente y Movilidad, Madrid.
- Guía Básica para el Diseño de Sistemas Urbanos de Drenaje Sostenible en la ciudad de Valencia – Ayuntamiento de Valencia.
- AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2nd Edition.
- American Water Works Association (AWWA) Manual M45.
- Guideline on Groundwater monitoring for general reference purposes International Groundwater Resources Assessment Centre.

LA IMPORTANCIA DE LA GEOTECNIA EN LOS PROYECTOS DE DRENAJE

PLUVIAL

MARCO NORMATIVO

2 GEOLOGÍA

HIDROGEOLOGÍA

4 GEOTECNIA

CASOS DE APLICACIÓN

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

Geología

Tipologías de depósitos de suelos en zona de Costa en el Perú.

Se presentan 3 tipologías:

- Ciudad litoral (Paita).
- Ciudad atravesada por ríos (Lima).
- Ciudad con ríos en la periferia (Chiclayo).

Mapa Geológico de la Ciudad de Paita

Geología

Tipologías de depósitos de suelos en zona de Costa en el Perú.

Mapa Geológico de la Ciudad de Lima - Callao

Fuente: Boletín N° 43, INGEMMET

Mapa Geológico de la Ciudad de Chiclayo

Geología Regional

Identificación de las unidades litológicas a nivel regional.

Mapa Geológico Regional de la Ciudad de Sullana

Fuente: INGEMMET, 2017

Mapa Geomorfológico Regional de la Ciudad de Sullana

Geología Local

Identificación de la lito-estratigrafía local.

Mapeo Geológico Local de la Ciudad de Chiclayo

Mapeo Geológico Local de la Ciudad de Paita

Fuente: Elaboración propia

Geología Estructural

Identificación de sistema de fallas en la zona de estudio.

Peligros Geológicos e Hidrogeológicos

Identificación de peligros geológicos en la zona de estudio.

Mapa de peligros geológicos local en la ciudad de Chiclayo

Fuente: Elaboración propia

Listado de peligros geológicos:

- Tsunami
- Sismo
- Licuación
- Arenamiento

Listado de peligros hidrogeológicos:

- Inundación
- Erosión fluvial

LA IMPORTANCIA DE LA GEOTECNIA EN LOS PROYECTOS DE DRENAJE

PLUVIAL

MARCO NORMATIVO

2 GEOLOGÍA

HIDROGEOLOGÍA

4 GEOTECNIA

CASOS DE APLICACIÓN

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

Acuíferos

Formación geológica que contiene agua en cantidad apreciable y que permite que circule a través de ella con facilidad.

Acuífero libre

Acuífero confinado

Acuíferos

Acuitardo: Formación geológica que contiene agua en cantidad apreciable, pero que el agua circula a través de ello con dificultad.

Acuífero semiconfinado Superficie piezométrica (del Superficie freática(del acuífero acuífero semiconfinado) libre superior) . «semiconfinado».

Acuífero aluvial

Caracterización geoquímica

Determinación de las concentraciones de iones (sulfatos, cloruros, entre otros) perjudiciales para las estructuras de concreto.

Requisitos para concreto expuesto a soluciones de sulfatos

Exposición a sulfatos	Sulfato soluble en agua (SO ₄) presente en el suelo, porcentaje en peso	Sulfato (SO₄) en el agua, ppm	Tipo de Cemento	Relación máxima agua - material cementante (en peso) para concretos de peso normal*	f'c mínimo (MPa) para concretos de peso normal y ligero*	
Insignificante	0,0 ≤ SO ₄ < 0,1	0 ≤ SO ₄ < 150	_	_	_	
Moderada**	0,1 ≤ SO ₄ < 0,2	150 ≤ SO ₄ < 1500	II, IP(MS), IS(MS), P(MS), I(PM)(MS), I(SM)(MS)	0,50	28	
Severa	0,2 ≤ SO ₄ < 2,0	1500 ≤ SO ₄ < 10000	V	0,45	31	
Muy severa	2,0 < SO ₄	10000 < SO ₄	Tipo V más puzolana***	0,45	31	

^{*} Cuando se utilicen las Tablas 4.2 y 4.4 simultáneamente, se debe utilizar la menor relación máxima agua-material cementante aplicable y el mayor f'c mínimo.

Fuente: NTP E060 "Concreto Armado"

Concentración ión Sulfato en zona de estudio

^{**} Se considera el caso del agua de mar como exposición moderada.

^{***} Puzolana que se ha comprobado por medio de ensayos, o por experiencia, que mejora la resistencia a sulfatos cuando se usa en concretos que contienen cemento tipo V.

Permeabilidad

Facilidad que un cuerpo ofrece a ser atravesado por un fluido.

Métodos para obtener el coeficiente de permeabilidad.

Ensayos de campo:

- Permeabilidad en zanja (carga constante, carga variable)
- Infiltrómetro de doble anillo
- Ensayo Lefranc (carga constante, carga variable)
- Ensayo Lugeon
- Pruebas de bombeo

Ensayos de laboratorio:

- Ensayo de permeabilidad de pared rígida.
- Ensayo de permeabilidad de pared flexible.

Ensayo de permeabilidad Lefranc

Permeabilidad

¿Qué ensayos aplicar?

Transmitividad

Es el parámetro que nos indica la facilidad del agua para circular horizontalmente por una formación geológica.

Esquema de caudal extraído

K = 30 m/día = 3.4 x 10E-04 m/sK = 15 m/día = 1.7 x 10E-04 m/s

Esquema prueba de bombeo

Fuente: Guide to Conducting Pumping Tests. British Columbia Government. 2015

Es el parámetro que nos indica la facilidad del agua para circular horizontalmente por una formación geológica.

Aspectos para considerar	Investigación		
1. Tipo de acuífero	Perforaciones, tomografía eléctrica, Ensayos de laboratorio (SUCS, W, porosidad)		
2. Parámetros hidráulicos del acuífero	Prueba de bombeo, ensayos de permeabilidad		
3. Nivel piezométrico (fluctuaciones del NP)	Instalación de piezómetros (periodos seco y húmedo, como mínimo), inventario de puntos de agua		
4. Agresividad química del agua	Extracción de muestras de agua y análisis químico		

Medición de niveles piezométricos.

Recopilación de información previa (ANA, boletines, tesis, junta de usuarios, entre otros).

Inventario de pozos en la Región de Lambayeque

Elaboración de mapas

Dirección de flujo de aguas subterráneas

LA IMPORTANCIA DE LA GEOTECNIA EN LOS PROYECTOS DE DRENAJE

PLUVIAL

MARCO NORMATIVO

2 GEOLOGÍA

HIDROGEOLOGÍA

4 GEOTECNIA

CASOS DE APLICACIÓN

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

Técnicas de exploración geotécnicas

Investigaciones geotécnicas

- Exploraciones geotécnicas a pozos abiertos (calicatas).
- Sondeos mediante perforaciones.
- Exploraciones con métodos de penetración (SPT, Cono Peck, DPL, CPTu).
- Ensayo presiométrico
- Exploraciones geotécnicas indirectas (SEV, tomografía eléctrica, MASW, refracción sísmica, microtremor, entre otros).

Técnicas de exploración geotécnicas - Directas

Calicatas

Cajas portatestigos

Perforación método rotativo

Sondeo SPT: "Wash-Boring"

Técnicas de exploración geotécnicas - Indirectas

Prospección geofísica eléctrica

Tomografía eléctrica

Perfil de tomografía eléctrica

Técnicas de exploración geotécnicas - Indirectas

Prospección geofísica sísmica

MASW 2D

Perfil Unidimensional MASW

Técnicas de exploración geotécnicas - Indirectas

Prospección geofísica sísmica - microtremor

Periodo fundamental del suelo

Ensayos de Laboratorio

Estándar:

- Granulometría por tamizado
- Límites de Atterberg
- Contenido de humedad
- Clasificación SUCS y/o AASHTO

Especiales

- Próctor (estándar, modificado)
- CBR
- Compresión Triaxial (CD, CU, UU)
- Compresión simple
- Consolidación
- Ensayos químicos

Ciudad de Paita

Zonificación en planta de la Ciudad de Paita

Ciudad de Chiclayo

Zonificación en planta de la Ciudad de Chiclayo

Perfil estratigráfico

Aspectos geotécnicos condicionantes

Paita

- Baja capacidad admisible
- Taludes de gran pendiente con presencia de viviendas.
- presencia Sin de nivel freático.
- Filtraciones debido a tuberías de agua y desagüe
- Arcillas expansivas en la zona de Paita baja.

Chiclayo

- Zonificación dispersa (predominancia de arcillas zona Este, y arenas al Oeste)
- Presencia de nivel freático.
- Presencia de arcillas blandas (baja capacidad admisible).
- Sectores con agresividad química.
- Asentamientos por consolidación primaria.
- Efecto de subpresiones.
- Necesidad de sostenimiento en excavaciones.

Mapa de distribución de velocidades de corte Vs30 (m/s)

Peligro sísmico

Sección sísmica en planta

Sección sísmica A-A

Peligro sísmico

Mapa de Isoaceleraciones espectrales

LA IMPORTANCIA DE LA GEOTECNIA EN LOS PROYECTOS DE DRENAJE

PLUVIAL

MARCO NORMATIVO

2 GEOLOGÍA

HIDROGEOLOGÍA

GEOTECNIA

5 CASOS DE APLICACIÓN

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

SUDS

La tipología de los SUDS se basan en jardín inundable, cuenca seca y cuneta verde.

Sección típica de jardín inundable

Perfil típico de cuneta verde

Geotecnia

- Determinación del coeficiente de permeabilidad del suelo.
- Diseño de capa drenante.

Tanques de Retención

Estructuras subterráneas capaz de almacenar un volumen de diseño.

Tanque de retención en construcción

Geotecnia

- Determinación del proceso constructivo.
- Elección del método de abatimiento de nivel freático.
- Análisis de subpresión en losa inferior.

Esquema de tanque de retención

CASOS DE APLICACIÓN

Tanques de Retención

Muros pantalla

Descenso nivel freático con pozos de baja capacidad

Pilotes secantes

Colectores

Geotecnia

- Determinación de los rellenos estructurales.
- Elección del método de abatimiento de nivel freático.
- Elección del sistema de sostenimiento para excavación .

Colectores

Clasificación de rellenos para colectores

'		
Categoría de rigidez de suelo	Clasificación unificada de suelos	Clasificación AASHTO
SC1	Roca triturada: Con un contenido de arena ≤ 15%, un máximo de 25% de material pasante del tamiz 3/8" y un máximo de 5% finos (pasante del tamiz No. 200).	-
SC2	Suelos de partículas gruesas limpias: SW, SP, GW, GP o cualquier suelo que comience con uno de estos símbolos con un máximo de 12% finos (pasante del tamiz No. 200).	A1, A3
SC3	Suelos de partículas gruesas con finos: GM, GC, SM, SC o cualquier suelo que comience con uno de estos símbolos con un contenido de finos mayor al 12% Suelos arenosos o con grava de grano fino: CL, ML (o CL-ML, CL/ML, ML/CL) con un contenido de finos menor al 30%.	A-2-4, A-2-5, A-2-6, o A-4 o A-6 suelos con más del 30% retenido en un tamiz No. 200
SC4	Suelos de grano fino: CL, ML (o CL-ML, CL/ML, ML/CL) con un contenido de finos mayor al 30%	Suelos A-2-7, o A-4 o A-6 con 30% o menos retenido en un Tamiz nº 200
SC5	Suelos altamente plásticos y orgánicos: MH, CH, OL, OH, PT	A5, A7

Fuente: "American Water Works Association, Manual M45, Fiberglass Pipe Design", (AWWA, 2005)

Descenso nivel freático con Well points

Colectores

Análisis de estabilidad de excavaciones

Entibados Metálicos

LA IMPORTANCIA DE LA GEOTECNIA

EN LOS PROYECTOS DE DRENAJE

PLUVIAL

MARCO NORMATIVO

2 GEOLOGÍA

HIDROGEOLOGÍA

4 GEOTECNIA

CASOS DE APLICACIÓN

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

Modelamiento Numérico

Modelamiento numérico en tanque de retención

Evaluación de alternativas en taludes Evaluación de alternativas en taludes de Paita.

Condición natural del terreno

Evaluación de alternativas en taludes

Evaluación de alternativas en taludes de Paita.

Solución son geoceldas

Solución con geomantos

Elaboración de espectrogramas

Espectograma

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

Análisis Dinámicos de estructuras

Ajuste espectral de acelerogramas

Curvas de degradación de módulos de Corte y amortiguamiento

FORTALEZAS EN EL DISEÑO GEOTÉCNICO

Análisis Dinámicos de estructuras

Perfil Geosísmico - DEEPSOIL Soil Profile Definition Layer Properties Advanced Table View Current Soil Properties Layer Name Relieno

Acelerograma de diseño en superficie

Optimización en PYTHON

Optimizaciones mediante el código PYTHON:

- Dibujo automatizado de columnas de perfil estratigráfico en Autocad.
- Dibujo automatizado de perfiles unidimensionales de Vs en Autocad.
- Extracción automatizada de datos de hojas de cálculo.
- Elaboración de espectrograma de registros sísmicos.
- Extracción automatizada de datos de modelos desarrollados en PLAXIS.
- Inserción automatizada de elementos geométricos en modelos de PLAXIS.

