ME 119 Engineering Drawing

INTRODUCTION

Prof. Sushil Mishra, Department of Mechanical Engineering, IIT Bombay

Lectures: Fridays 9:30 AM - 11:00 AM

Labs: Tuesday 2:00 PM - 05:00 PM

Task for Labs shared through MS Teams after lectures

Lectures and Labs through MS Teams

Announcements and Lab submissions through MS Teams

For Labs

Use any drawing sheet as per your convenience, A4 or A3
Use separate drawing sheet for every question for A4

Scan or take photos of drawings merge in single file

Rename files : RollNumber_X

X is Lab number

Example : 210100001_1

Upload files in Dropbox anytime before end of Lab

For correcting a file uploaded by mistake, upload another file named RollNumber_Xa, RollNumber_Xb etc.

PENCIL

4H 3H 2H 1H HB B1 B2 B3 B4

Object lines :
 Dark lines (Visible and hidden)

Construction lines :
Lighter lines, Centre lines,
Dimension lines

Datum line: a reference point, surface, or axis on an object against which measurements are made. Phantom line: a imaginary position of the object/line

Basis of evaluation of Lab submissions: Correctness + Neatness + Viva

Basis of evaluation of tests:

Viva/quiz → Correctness → neatness.

Lecture No.	Topic	Lab No.	Topic	Weightage (%)
1	Orthographic projections	1	Orthographic projections	6.25
2	Projection of Points/ Lines			
	Additional lecture on Auxiliary Planes	2	Projection of Lines	6.25
3	Projection of Planes	3	Projection of Planes	6.25
4	Projection of Solids	4	Projection of Solids	6.25
	TEST 1		Labs 1 to 4	25
5	Sections of Solids	5	Sections of Solids	6.25
6	Development of Surfaces	6	Development of Surfaces	6.25
7	Intersection of Solids	7	Intersection of Solids	6.25
8	Isometric projections	8	Isometric projections	6.25
	TEST 2		Labs 5 to 8	25

Text Book: N. D. Bhatt and V. M. Panchal, Engineering Drawing, Charotar Publishers

Reference Books:

Warren J. Luzadder and Jon M. Duff, Fundamentals of Engineering Drawing, Prentice-Hall of India

Thomas E. French, Charles J. Vierck and Robert Foster, Engineering Drawing and Graphic Technology, McGraw Hill

Dhananjay A. Jolhe, Engineering Drawing, Tata McGraw Hill Publishing Co. Ltd.

M. B. Shah and B. C. Rana, Engineering Drawing, Dorling Kindersley (India) Pvt. Ltd., Pearson Education

Narayana. K. L., and Kannaiah, P. E., Engineering Graphics, Scitech Publications

ORTHOGRAPHIC PROJECTIONS

Vector**Stock**®

VectorStock.com/26638246

Perspective Projection

Oblique Projection

Methods of Projection

Multiview Orthographic Projections

• Orthographic Projection: The projectors are perpendicular to the projection plane

• Multiview Projection: More than one view of the object are shown

Orthographic Projection

Projectors are parallel to each other and perpendicular to the plane of projection

Two major reference or principal planes of projection

V.P. – vertical (frontal) plane

H.P. – horizontal plane

Projections are drawn from relevant **points**

Typically intersection of edges in 3D figure

Projection on V.P. – front view or elevation **Projection on H.P.** – top view or plan

Intersection of the V.P. and the H.P. is called the reference line and is denoted by xy

Note: Generally we will also need a side view

Ref: Engineering Drawing by N. D. Bhatt et. al

Orthographic Projection: Additional Points

- The HP and VP are **infinite in extent**
 - They extend to infinity towards both +ve and –ve directions of the respective axes
- Either AA or BB are opened out to get the multiview drawings on 2D plane
- Once one of the principal planes is opened out, the "location" of the 3D object is undefined (and irrelevant) on the 2D plane
- Main direction of observation (arrow) needs to be specified
 - This decides which view is the Front View

FIG. 8-2

First Angle Projection

- Object is between 2D plane ("paper") and observer
 - Front view (F.V.) is at center
 - Top view (T.V.) is at bottom
 - Left hand side view (L.H.S.V.) is on the right
 - Right hand side view (R.H.S.V.) is on the left

Third Angle Projection

- <u>2D Plane</u> ("paper") is between **object** and observer
 - Front view (F.V.) is at center
 - Top view (T.V.) is at top
 - Left hand side view (L.H.S.V.) is on the left
 - Right hand side view (R.H.S.V.) is on the right

First angle projection

Object lies between projection plane and observer Observer

https://technologystudent.com/designpr o/ortho1.htm

Third angle projection

Projection plane lies between object and observer

Observer

https://technologystudent.com/designpr o/ortho2.htm

Typical drawing sheet drawn in third angle projection

First angle projection	Third angle projection	
• Front view (FV) is above the top view (TV)	• Front is below the top view	
Left hand side view (LHSV) is on the right of front view	Left hand side view (LHSV) is on the left of front view	
Right hand side view (RHSV) is on the left of front view STATE PLAN VIEW FIRST ANGLE PROJECTION	• Right hand side view (RHSV) is on the right of front view THIRD ANGLE PROJECTION PLAN VIEW SIDE VIEW FRONT VIEW	
NAME: TITLE DATE:	NAME: TITLE DATE:	

In India, usually First Angle Projection is used

THIRD ANGLE PROJECTION

*X*1 20 10 10 10 10 **HIDDEN RHSV** FV **EDGES** 0 10 20 TV 30 D Y1 Note the method of dimensioning

(a)

DO NOT USE A MIXTURE OF STYLES WHILE DIMENSIONING