TEST REPORT

Reference No. : WTS17S0990450E

FCC ID : 2ALR9-KDL-BT1713

Applicant.....: SHENZHEN G-KINDLY ELECTRONIC CO., LTD

Address...... 4F, No. 8 Fifth Road, Loucun First Industry Zone, GongMing Town,

GuangMing New District, Shenzhen, China

Manufacturer: SHENZHEN G-KINDLY ELECTRONIC CO., LTD

Address...... 4F, No. 8 Fifth Road, Loucun First Industry Zone, GongMing Town,

GuangMing New District, Shenzhen, China

Product Name.....: WIRELESS SPEAKER

Model No...... : KDL-BT1713 , BB742 , BB743 , BB744 , GG392

Standards..... : FCC CFR47 Part 15.247:2016

Date of Receipt sample : 2017-09-14

Date of Test : 2017-09-15 to 2017-09-21

Date of Issue..... : 2017-09-21

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Robin Zhou / Test Engineer

Approved by:

Reference No.: WTS17S0990450E Page 2 of 79

Laboratories Introduction 1

Waltek Services Test Group Ltd. is one of the largest and the most comprehensive third party testing organizations in China, our headquarter located in Shenzhen (CNAS Registration No. L3110, A2LA Certificate Number: 4243.01) and have branches in Foshan (CNAS Registration No. L6478), Dongguan (CNAS Registration No. L9950), Zhongshan, Suzhou (CNAS Registration No. L7754), Ningbo and Hong Kong, Our test capability covered four large fields: safety test. Electronic Magnetic Compatibility(EMC), reliability and energy performance, Chemical test. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CPSC(Consumer Product Safety Commission), CEC(California energy efficiency), IC(Industry Canada) and ELI(Efficient Lighting Initiative). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as UL, Intertek(ETL-SEMKO), CSA, TÜV Rheinland, TÜV SÜD, etc. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Waltek Services (Shenzhen) Co., Ltd.

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada	01140	IC ID \ VOC	2
Japan	CNAS	MIC-T \ MIC-R	-
Europe	── (Registration No.: L3110) ── A2LA	EMCD \ RED	-
Taiwan	Certificate No.: 4243.01)	NCC	-
Hong Kong	(Certificate No.: 4243.01)	OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	-
Singapore		IDA	-
Note:	•	•	•

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- IC Canada Registration No.: 7760A

B. TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	Ontional
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

2 Contents

		Page
	COVER PAGE	
1	LABORATORIES INTRODUCTION	
2	CONTENTS	
3	REVISION HISTORY	
4	GENERAL INFORMATION	6
	4.1 GENERAL DESCRIPTION OF E.U.T	
	4.2 DETAILS OF E.U.T	
	4.4 TEST MODE	
5	EQUIPMENT USED DURING TEST	8
	5.1 EQUIPMENTS LIST	8
	5.2 MEASUREMENT UNCERTAINTY	
	5.3 TEST EQUIPMENT CALIBRATION	
6	TEST SUMMARY	
7	CONDUCTED EMISSION	
	7.1 E.U.T. OPERATION	
	7.2 EUT SETUP	
	7.4 CONDUCTED EMISSION TEST RESULT	
8	RADIATED SPURIOUS EMISSIONS	
	8.1 EUT OPERATION	
	8.2 TEST SETUP	15
	8.3 SPECTRUM ANALYZER SETUP	
	8.4 TEST PROCEDURE	
	8.6 SUMMARY OF TEST RESULTS	
9	CONDUCTED SPURIOUS EMISSIONS	21
	9.1 Test Procedure	21
	9.2 TEST RESULT	22
10	BAND EDGE MEASUREMENT	32
	10.1 Test Procedure	
	10.2 TEST RESULT	
11	BANDWIDTH MEASUREMENT	39
	11.1 Test Procedure	
	11.2 TEST RESULT	
12	MAXIMUM PEAK OUTPUT POWER	
	12.1 TEST PROCEDURE	
10	12.2 TEST RESULT	
13	HOPPING CHANNEL SEPARATION	
	13.1 TEST PROCEDURE	
14	NUMBER OF HOPPING FREQUENCY	
14	14.1 Test Procedure	
	14.1 TEST PROCEDURE	

Reference No.: WTS17S0990450E Page 4 of 79

15	DWE	LL TIME	59
	15.1 15.2	TEST PROCEDURETEST RESULT	
16	ANTE	ENNA REQUIREMENT	
17	FCC	ID: 2ALR9-KDL-BT1713 SAR EVALUATION	66
	17.1 17.2 17.3	REQUIREMENTSTHE PROCEDURES / LIMITRESULT: COMPLIANCE	66
18	PHOT	TOGRAPHS-MODEL KDL-BT1713TEST SETUP	67
	18.1 18.2	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUPPHOTOGRAPH - SPURIOUS EMISSIONS RADIATED TEST SETUP	
19	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	69
	19.1 19.2	Model KDL-BT1713–External Photos	

Reference No.: WTS17S0990450E Page 5 of 79

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS17S0990450E	2017-09-14	2017-09-15 to 2017-09-21	2017-09-21	original	-	valid

Reference No.: WTS17S0990450E Page 6 of 79

4 General Information

4.1 General Description of E.U.T

201101 di				
Product Name	: WIRELESS SPEAKER			
Model No.	: KDL-BT1713 , BB742 , BB743 , BB744 , GG392			
Model Description	: Only the color, model names and brand names are different for different market requirement. The model KDL-BT1713 is the tested sample.			
Hardware Version	: V1.0			
Software Version	: V1.2			

4.2 Details of E.U.T

Operation Frequency	: 2402~2480MHz
Max. RF output power	: 0.21dBm
Type of Modulation	: GFSK,Pi/4 DQPSK,8DPSK
Antenna installation	: PCB Printed Antenna
Antenna Gain	: 0dBi
Technical Data	: DC 3.7V, 1800mA by Lithium Battery; Charging: DC 5V by USB from PC

4.3 Channel List

Bluetooth Classic mode

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests; the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Charging +Transmitting	2402MHz	2441MHz	2480MHz

5 Equipment Used during Test

5.1 Equipments List

Condu	cted Emissions					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-12	2018-09-11
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-12	2018-09-11
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-12	2018-09-11
4.	Cable	LARGE	RF300	-	2017-09-12	2018-09-11
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP	100091	2017-04-29	2017-04-28
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2017-04-09	2018-04-08
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2017-04-09	2018-04-08
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-09-12	2018-09-11
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2017-04-09	2018-04-08
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2017-04-13	2018-04-12
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2017-04-13	2018-04-12
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2017-04-13	2018-04-12
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2017-04-13	2018-04-12
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2017-04-13	2018-04-12
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2017-04-13	2018-04-12
4	Cable	HUBER+SUHNER	CBL2	525178	2017-04-13	2018-04-12
RF Co	nducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2017-09-12	2018-09-11

Reference No.: WTS17S0990450E Page 9 of 79

5.2 Measurement Uncertainty

Parameter	Uncertainty			
Radio Frequency	± 1 x 10 ⁻⁶			
RF Power	± 1.0 dB			
RF Power Density	± 2.2 dB			
Radiated Spurious Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)			
Radiated Spurious Effissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)			
Conducted Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)			
Confidence interval: 95%. Confidence factor:k=2				

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS17S0990450E Page 10 of 79

6 Test Summary

Test Items	Test Requirement	Result		
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	Pass		
Conducted Spurious emissions	15.247(d)	Pass		
Band edge	15.247(d) 15.205(a)	Pass		
Conduct Emission	15.207	Pass		
Bandwidth	15.247(a)(1)	Pass		
Maximum Peak Output Power	15.247(b)(1)	Pass		
Frequency Separation	15.247(a)(1)	Pass		
Number of Hopping Frequency	15.247(a)(1)(iii)	Pass		
Dwell time	15.247(a)(1)(iii)	Pass		
Antenna Requirement	15.203	Pass		
SAR Evaluation	1.1307(b)(1)	Pass		
Note: Pass=Compliance; Fail=Not Compliance; N/A=Not Applicable.				

Reference No.: WTS17S0990450E Page 11 of 79

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Frequency (MHz) Limit (dBµV)

Qsi-peak Average

0.15 to 0.5

66 to 56*

56 to 46*

 O.15 to 0.5
 66 to 56*
 56 to 46*

 0.5 t
 5
 60

 5 to 30
 60
 50

7.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Charging + Transmitting mode, the worst test data (GFSK modulation Low channel) were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

Remark: only the worst data (GFSK modulation Low channel mode) were reported

Live line:

Neutral line:

Reference No.: WTS17S0990450E Page 14 of 79

8 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist				
Frequency (MHz)	uV/m Distan		uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Charging + Transmitting mode, the worst test data (GFSK modulation) were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz. Anechoic 3m Chamber Antenna Elevation Varies From 1 to 4 m Turn Table From 0 ° to 360 ° 3m **EUT** 1.5m Turn Table **Absorbers** PC Spectrum Combining System Network Analyzer Spectrum Analyzer Setup

8.3

Below 30MHz

Sweep Speed	Auto
IF Bandwidth	10kHz
Video Bandwidth	10kHz
Resolution Bandwidth	10kHz

30MHz ~ 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	100kHz
Video Bandwidth	300kHz

Above 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	1MHz
Video Bandwidth	3MHz
Detector	Ave.
Resolution Bandwidth	1MHz
Video Bandwidth	10Hz

Reference No.: WTS17S0990450E Page 17 of 79

8.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

Reference No.: WTS17S0990450E Page 18 of 79

8.6 Summary of Test Results

Test Frequency: 9 KHz~30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data (GFSK modulation) were reported.

Frequency Receiver Reading	Detector	Turn table Angle	RX Antenna		Corrected	Corrected			
			Height	Polar	Factor	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Low	Channel				
36.64	44.38	QP	226	1.6	Н	-13.35	31.03	40.00	-8.97
36.64	43.51	QP	90	1.2	V	-13.35	30.16	40.00	-9.84
4804.00	56.17	PK	36	1.8	V	-1.06	55.11	74.00	-18.89
4804.00	43.29	Ave	36	1.8	V	-1.06	42.23	54.00	-11.77
7206.00	54.06	PK	18	1.9	Н	1.33	55.39	74.00	-18.61
7206.00	44.18	Ave	18	1.9	Н	1.33	45.51	54.00	-8.49
2327.44	46.45	PK	207	1.8	V	-13.19	33.26	74.00	-40.74
2327.44	39.99	Ave	207	1.8	V	-13.19	26.80	54.00	-27.20
2373.75	43.61	PK	68	1.5	Н	-13.14	30.47	74.00	-43.53
2373.75	38.99	Ave	68	1.5	Н	-13.14	25.85	54.00	-28.15
2488.48	44.69	PK	148	1.8	V	-13.08	31.61	74.00	-42.39
2488.48	37.52	Ave	148	1.8	V	-13.08	24.44	54.00	-29.56

	Receiver		Turn table Angle	RX Antenna		Corrected	Corrected		
Frequency	Frequency Reading De	Detector		Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF:	SK Middle	Channe	el			
36.64	43.34	QP	275	1.7	Н	-13.35	29.99	40.00	-10.01
36.64	44.96	QP	299	1.4	V	-13.35	31.61	40.00	-8.39
4882.00	55.65	PK	11	1.7	V	-0.62	55.03	74.00	-18.97
4882.00	44.40	Ave	11	1.7	V	-0.62	43.78	54.00	-10.22
7323.00	53.83	PK	3	1.9	Н	2.21	56.04	74.00	-17.96
7323.00	44.32	Ave	3	1.9	Н	2.21	46.53	54.00	-7.47
2310.13	46.04	PK	119	1.9	V	-13.19	32.85	74.00	-41.15
2310.13	37.48	Ave	119	1.9	V	-13.19	24.29	54.00	-29.71
2388.07	43.64	PK	349	1.9	Н	-13.14	30.50	74.00	-43.50
2388.07	36.41	Ave	349	1.9	Н	-13.14	23.27	54.00	-30.73
2499.82	44.18	PK	330	1.3	V	-13.08	31.10	74.00	-42.90
2499.82	38.54	Ave	330	1.3	V	-13.08	25.46	54.00	-28.54

Frequency Receiver Reading	Receiver	er	Turn	RX Antenna		Corrected	Corrected Amplitude	Limit	Margin
	Detector	table Angle	Height	Polar	Factor				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK High	Channel				
36.64	44.75	QP	354	1.7	Н	-13.35	31.40	40.00	-8.60
36.64	43.83	QP	316	1.6	V	-13.35	30.48	40.00	-9.52
4960.00	54.18	PK	217	1.0	V	-0.24	53.94	74.00	-20.06
4960.00	43.77	Ave	217	1.0	V	-0.24	43.53	54.00	-10.47
7440.00	54.11	PK	318	1.7	Н	2.84	56.95	74.00	-17.05
7440.00	43.72	Ave	318	1.7	Н	2.84	46.56	54.00	-7.44
2320.28	46.74	PK	326	1.1	V	-13.19	33.55	74.00	-40.45
2320.28	37.43	Ave	326	1.1	V	-13.19	24.24	54.00	-29.76
2364.09	44.28	PK	185	1.0	Н	-13.14	31.14	74.00	-42.86
2364.09	38.77	Ave	185	1.0	Н	-13.14	25.63	54.00	-28.37
2497.47	42.33	PK	336	1.2	V	-13.08	29.25	74.00	-44.75
2497.47	37.63	Ave	336	1.2	V	-13.08	24.55	54.00	-29.45

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not recorded

Reference No.: WTS17S0990450E Page 21 of 79

9 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

Reference No.: WTS17S0990450E Page 22 of 79

9.2 Test Result

9 KHz - 30MHz GFSK

Pi/4DQPSK

8DPSK

30MHz - 25GHz

GFSK Low Channel

GFSK Middle Channel

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel

Pi/4 DQPSK High Channel

8DPSK Low Channel

8DPSK Middle Channel

8DPSK High Channel

Reference No.: WTS17S0990450E Page 32 of 79

10 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

10.1 Test Procedure

- Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

10.2 Test Result

Reference No.: WTS17S0990450E Page 39 of 79

11 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

11.2 Test Result

Modulation	Test Channel	20dB Bandwidth(MHz)	99% Bandwidth(MHz)	
GFSK	Low	1.104	0.970	
GFSK	Middle	1.105	0.977	
GFSK	High	1.105	0.976	
Pi/4 DQPSK	Low	1.377	1.254	
Pi/4 DQPSK	Middle	1.375	1.244	
Pi/4 DQPSK	High	1.376	1.248	
8DPSK	Low	1.363	1.274	
8DPSK	Middle	1.359	1.265	
8DPSK	High	1.357	1.267	

Test plots

GFSK Low Channel

GFSK Middle Channel

Reference No.: WTS17S0990450E Page 45 of 79

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Test mode: Test in fixing frequency transmitting mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

12.2 Test Result

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)	
GFSK	Low	0.21	30	
GFSK	Middle	-0.70	30	
GFSK	High	-1.67	30	
Pi/4 DQPSK	Low	-1.54	21	
Pi/4 DQPSK	Middle	-2.50	21	
Pi/4 DQPSK	High	-3.47	21	
8DPSK	Low	-0.97	21	
8DPSK	Middle	-1.88	21	
8DPSK	High	-2.86	21	

Test plots

GFSK Low Channel

GFSK Middle Channel

Reference No.: WTS17S0990450E Page 51 of 79

13 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto;
 Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result

Modulation	Test Channel	Separation (MHz)	Result	
GFSK	Low	1.000	PASS	
GFSK	Middle	1.000	PASS	
GFSK	High	1.000	PASS	
Pi/4 DQPSK	Low	1.000	PASS	
Pi/4 DQPSK	Middle	1.000	PASS	
Pi/4 DQPSK	High	1.000	PASS	
8DPSK	Low	1.000	PASS	
8DPSK	Middle	1.000	PASS	
8DPSK	High	1.000	PASS	

Test plots

GFSK Low Channel

GFSK Middle Channel

Reference No.: WTS17S0990450E Page 56 of 79

Reference No.: WTS17S0990450E Page 57 of 79

14 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100 KHz. VBW = 300 KHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

14.2 Test Result

Test Plots:

79 Channels in total

Reference No.: WTS17S0990450E Page 59 of 79

15 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

15.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

15.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*0.4*79*(MkrDelta)/1000		
DH3	1600/79/4*0.4*79*(MkrDelta)/1000		
DH1	1600/79/2*0.4*79*(MkrDelta)/1000		
Remark: Mkr Delta is once pulse time.			

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.920	0.311	0.4
		middle	2.920	0.311	0.4
		High	2.920	0.311	0.4
Pi/4DQPSK	2DH5	Low	2.920	0.311	0.4
		middle	2.920	0.311	0.4
		High	2.920	0.311	0.4
8DPSK	3DH5	Low	2.920	0.311	0.4
		middle	2.920	0.311	0.4
		High	2.920	0.311	0.4

Remark: Only the worst-case is recorded.

Pi/4DQPSK 2DH5 Low Channel

Pi/4DQPSK 2DH5 Middle Channel

8DPSK 3DH5 Low Channel

Reference No.: WTS17S0990450E Page 65 of 79

16 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB Printed Antenna, the gain is 0dBi. meets the requirements of FCC 15.203.

Reference No.: WTS17S0990450E Page 66 of 79

17 FCC ID: 2ALR9-KDL-BT1713 SAR Evaluation

Test Requirement: FCC Part 1.1307

Evaluation Method FCC Part2.1093 & KDB 447498 D01 General RF Exposure Guidance v06

17.1 Requirements

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · [f(GHz)] 3.0 for 1-g SAR and 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

17.2 The procedures / limit

Conducted Peak power(dBm)	Conducted Peak power(mW)	Source-based time-averaged maximum conducted output power(mW)	Minimum test separation distance required for the exposure conditions (mm)	SAR Test Exclusion Thresholds Calculation Value	SAR Test Exclusion Thresholds Limit	Result
0.21	1.05	1.05	5	0.331	3.0	Compliance

Remark: Max. duty factor is 100%

Low Chanel: f=2402MHz=2.402GHz, so f(GHz)=1.550 High Chanel: f=2480MHz=2.480GHz, so f(GHz)=1.575

17.3 Result: Compliance

No SAR measurement is required.

18 Photographs-Model KDL-BT1713 Test Setup

18.1 Photograph – Conducted Emission Test Setup

18.2 Photograph - Spurious Emissions Radiated Test Setup

19 Photographs - Constructional Details

19.1 Model KDL-BT1713-External Photos

Reference No.: WTS17S0990450E Page 70 of 79

Reference No.: WTS17S0990450E Page 71 of 79

Reference No.: WTS17S0990450E Page 72 of 79

Reference No.: WTS17S0990450E Page 73 of 79

19.2 Model KDL-BT1713 - Internal Photos

Reference No.: WTS17S0990450E Page 75 of 79

Reference No.: WTS17S0990450E Page 76 of 79

Reference No.: WTS17S0990450E Page 77 of 79

Reference No.: WTS17S0990450E Page 78 of 79

Reference No.: WTS17S0990450E Page 79 of 79

=====End of Report=====