目录

1. 基本语法	i
1.1. 图片	
1.2. box	
1.3. grid	
1.4. block	
1.5. 文献及引用	
参考文献	
2. packages 推荐	
2.1. showybox	
3. 其他一些有用的东西	

1. 基本语法

- 1.1. 图片
- 1.2. box
- 1.3. grid
- 1.4. block

1.5. 文献及引用

文献¹ 做了 XXX, 文献 2. Yin, S. et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nature Communications 12, 4873 (2021) 得到了 XXX。

参考文献

- 1. Pei, Z. et al. Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy. Nature Communications 14, 2519 (2023)
- 2. Yin, S. et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nature Communications 12, 4873 (2021)

脚本

A is a letter. B is a letter. C is a letter.

(3, 5, 9, 17)

2. packages 推荐

2.1. showybox 自定义盒子。 Hello world!

This is an important message!

Stokes' theorem

Let Σ be a smooth oriented surface in \mathbb{R}^3 with boundary $\partial \Sigma \equiv \Gamma$. If a vector field $F(x,y,z) = \left(F_x(x,y,z), F_y(x,y,z), F_z(x,y,z)\right)$ is defined and has continuous first order partial derivatives in a region containing Σ , then

$$\iint_{\Sigma} (\boldsymbol{\nabla} \times \boldsymbol{F}) \cdot \boldsymbol{\Sigma} = \oint_{\partial \Sigma} \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{\Gamma}$$

3. 其他一些有用的东西

这是一个 note

这是一个 warn

这是一个 info

这是一个 prof

这是一个 answer