

Cursul #3

Acces Control Lists (ACL)

Cuprins

- Ce este un ACL?
- Funcționarea ACL-urilor
- Tipuri de liste de acces
- Exemple de configurare

Access Lists

Ce este un Access List?

- Un set de condiții specificate de către administrator pentru identificarea unor anumite tipuri de trafic
- Traficul identificat poate fi
 - Filtrat
 - Alterat
 - Controlat
 - Asociat cu alte acțiuni
- În funcție de acțiunea dorită, traficul trebuie identificat după anumite criterii

Utilități ale ACL-urilor

- Filtrarea și monitorizarea traficului
 - Cea mai des folosită aplicație a ACL-urilor
 - Remember iptables –t filter
 - Permiterea sau respingerea traficului
 - Inspecția mai avansată a traficului identificat

Utilități ale ACL-urilor

- Marcarea și alterarea traficului
 - Remember iptables -t mangle and -t nat
 - QoS
 - Pasul 1: traffic tagging
 - Pasul 2: traffic policing și traffic shaping
 - NAT
 - Criptare

Utilități ale ACL-urilor

- Asocierea cu accesul la alte servicii
 - Accesul la terminale virtuale (ssh/telnet/http)
 - Controlul actualizărilor protocoalelor de rutare
 - Policy based routing (vom vedea în curs 10)

Criterii de identificare a traficului

- Adresă IP
 - Sursă
 - Destinație
- Protocol
 - IPv4, IPv6, IPX, AppleTalk
 - TCP, UDP
 - ICMP
- Port sau tip
 - Port sursă sau destinație la TCP sau UDP
 - Tip de mesaj ICMP

ACL-uri pentru filtrare

Dezavantaje?

- Timp de latență mai mare
- Încărcare suplimentară a echipamentului

	Router dedicat	Firewall dedicat
Principala funcție	Rutare	Filtrare
Alte funcții	Permite implementarea funcțiilor de filtrare	Poate ruta, dar suportă mult mai puține facilități
Criptare	Nu oferă implicit	Criptare HW la rate foarte mari
Luare de decizii	Protocoale de nivel 3 și 4	Protocoale de nivel 3-7
SSH	-	Server SSH integrat

Dar ce este un Firewall?

• Un firewall constă în una sau mai multe mașini care au ca scop prevenirea accesului neautorizat la o rețea.

- Acestea controlează accesul la servicii atât din cât și în rețeaua internă
- ACL-urile sunt folosite pentru a crea firewall-uri între rețeaua internă și cea externă
- Demilitarized Zone (DMZ) conține servicii disponibile din Internet
- Ruterele firewall trebuie plasate între rețeaua internă și lumea exterioară

Definiția unui ACL

- O listă de acces conține intrări/reguli pentru controlul accesului
- Fiecare regulă
 - Identifică diferite tipuri de trafic pe baza unor criterii
 - Specifică acțiunea care trebuie luată în cazul în care criteriul a fost îndeplinit (există match)
 - Permite traficul : *permit*
 - Oprește traficul : *deny*

Parcurgerea unui ACL

- Regulile sunt testate secvențial, linie cu linie, de sus în jos, până se găsește o regulă care să facă match, sau până la sfârșitul listei
 - La match, se aplică acțiunea, și restul ACL-ului nu se mai verifică

!Dacă nu se găsește niciun match, se ajunge la finalul fiecărui ACL , unde există un implicit *deny any*

Aplicarea unui ACL

- ACL-urile de filtrare se pot aplica
 - Pentru fiecare protocol rutat de layer 3 (IP, IPv6 etc.)
 - Pentru fiecare interfață
 - Pentru fiecare direcție
 - Inbound, pentru traficul ce intră
 - Outbound, pentru traficul ce iese

Exercițiu: Aplicarea unui ACL

- Un ruter cu 2 interfețe rulează dual stack (IPv4, IPv6)
- Care este nr. maxim de ACL-uri de filtare ce pot fi aplicate?
 - R: 2 (interfețe) x 2 (protocoale rutate) x 2 (in și out)

Funcționarea ACL-urilor

- Liste de acces standard
- Liste de acces extinse
- Liste de acces cu nume
 - Standard
 - Extinse
- Reflexive ACLs
- Time-based ACLs

- Liste de acces standard
- Liste de acces extinse
- · Liste de acces cu nume
 - Standard
 - Extinse
- Reflexive ACLs
- Time-based ACLs

- Identificate printr-un număr între 1 și 99, sau 1300-1999 în IOS-urile mai recente
- Acceptă sau respinge o întreagă suită de protocoale
- Verifică doar sursa pachetului
- Trebuie plasate în rețea cât mai aproape de **destinație**.

- Liste de acces standard
- Liste de acces extinse
- · Liste de acces cu nume
 - Standard
 - Extinse
- Reflexive ACLs
- Time-based ACLs

- Identificate printr-un număr între 100 și 199, sau 2000-2699 pentru IOS-urile recente
- Pot accepta sau respinge un protocol specific
- Verifică sursa pachetului, destinația, protocolul sau chiar portul
- Trebuie plasat în rețea cât mai aproape de **sursă**.

- Liste de acces standard
- Liste de acces extinse
- Liste de acces cu nume
 - Standard
 - Extinse
- Reflexive ACLs
- Time-based ACLs

- •Identificate printr-un nume configurat de administrator
- Pot fi standard sau extinse
- Oferă flexibilitate mai mare decât listele clasice standard sau extinse
- Recomandate să fie folosite față de cele clasice

Wildcard mask

- O mască ce se suprapune peste o adresă IP
- Identifică partea comună a unor adrese IP
- Reprezintă un șir de 32 de biți de 1 și 0
 - Bitul 0 face match
 - Bitul 1 ignoră valoarea bitului din IP
- Poate fi privită ca și inversul măștii de rețea, însă poate fi folosită și pentru a identifica altfel

Wildcard mask

- Se pot folosi 2 cuvinte cheie în ACL-uri:
 - any înseamnă adresa IP 0.0.0.0 și WM 255.255.255.255, toate IP-urile vor face match
 - host testează egalitatea cu o adresă de host, echivalent cu WM 0.0.0.0

Wildcard mask - exemplu

- În acest exemplu, ruterul va verifica doar primii 16 biți din adresele IP și îi va compara cu cei din adresa IP. Această declarație va permite traficul având ca sursă 172.16.*.*
 - Biţii de 0 fac match
 - Biții de 1 sunt ignorați

ACL-uri clasice

- Standarde sau Extinse
 - Tipul este dat de numărul (ID-ul) listei
- Grupate în funcție de numărul (ID) comun
- · Adăugate linie cu linie, dar întotdeauna la sfârșit
- Nu se poate șterge o singură linie din ACL

ACL-uri clasice standard

- Filtrează pachetele doar în funcție de sursă
- Numărul asociat unui astfel de ACL trebuie să fie între 1 și 99, sau, în versiunile mai recente de IOS, între 1300 și 1999

- Filtrează pachetele în funcție și de sursă și de destinație. De asemenea, pot filtra pachete și în funcție de protocol și de port
- Numărul asociat unui astfel de ACL trebuie să fie între 100 și 199; în versiunile mai recente de IOS se pot folosi și numere între 2000 și 2699

Permite în mod explicit tot traficul IP de la acest host către oricare altă destinație

- Filtrează pachetele în funcție și de sursă și de destinație. De asemenea, pot filtra pachete și în funcție de protocol și de port
- Numărul asociat unui astfel de ACL trebuie să fie între 100 și 199; în versiunile mai recente de IOS se pot folosi și numere între 2000 și 2699

Oprește tot traficul cu originea în rețeaua 10.0.0.0/24

- Filtrează pachetele în funcție și de sursă și de destinație. De asemenea, pot filtra pachete și în funcție de protocol și de port
- Numărul asociat unui astfel de ACL trebuie să fie între 100 și 199; în versiunile mai recente de IOS se pot folosi și numere între 2000 și 2699

Oprește în mod explicit accesul pe portul 23(Telnet) de la host-ul 172.16.6.1 la rețeaua 192.168.1.0/24

- Filtrează pachetele în funcție și de sursă și de destinație. De asemenea, pot filtra pachete și în funcție de protocol și de port
- Numărul asociat unui astfel de ACL trebuie să fie între 100 și 199; în versiunile mai recente de IOS se pot folosi și numere între 2000 și 2699

Permite Telnet-ul de la toate host-urile din rețeaua 172.16.6.0/24

Editarea unui ACL clasic

- Pentru a edita un ACL clasic standard sau extended:
 - Copiați ACL-ul într-un fișier text
 - Stergeți ACL-ul din fișierul de configurare al ruter-ului folosind 'no' și declarația ACL-ului
 - Faceți modificările necesare în fișierul text
 - Copiați pe ruter ACL-ul modificat, în global configuration mode

sau...

Named ACLs

- Nu mai sunt folosite numere pentru a diferenția ACL-uri, ci nume
 - Numele sunt mai intuitive decât numerele
 - 254 vs "DMZ_IN_FILTER"
- Este posibilă numerotarea regulilor ce sunt adăugate, pentru ca apoi să se poată face modificări fără a șterge complet lista

Named ACLs - Exemplu


```
R(config) #ip access-list extended FILTER_LAN_IN
R(config-ext-nacl) #20 permit ip any any
```

Dacă am uitat 2 reguli ce trebuiau definite înainte..

```
R(config-ext-nacl) #5 permit icmp host 10.0.0.0 any
R(config-ext-nacl) #10 deny icmp any any
```

Dacă am greșit regula de pe linia 5...

```
R config-ext-nacl) #no 5
R config-ext-nacl) #5 permit icmp host 10.0.0.1 any
```

După definire, pot aplica ACL-ul pe interfață

```
R(config) #interface fastEthernet 0/1
R(config-if) #ip access-group FILTER_LAN_IN in
```


Exemple de ACL-uri

• O listă de acces care să permită doar traficul de la stația 193.230.2.1

```
R(config)# access-list 1 permit host 193.230.2.1

Sau

R(config)# access-list 2 permit 193.230.2.1 0.0.0.0

Sau

R(config)# access-list 3 permit 193.230.2.1
```

Soluție folosind ACL extins

```
R(config)# access-list 101 permit ip host 193.230.2.1 any
```

10/12/21 33

Exemple de ACL-uri

 Construiți și aplicați pe interfața ethernet 1 o listă de acces ce va permite doar traficul inițiat de la adresele 11.2.2.90 și 11.2.2.91.

```
R(config) # acces-list 18 permit host 11.2.2.90
R(config) # acces-list 18 permit host 11.2.2.91
Sau
R(config) # acces-list 18 permit 11.2.2.90 0.0.0.1

R(config) # interface ethernet 1
R(config-if) # ip acces-group 18 in
```


Exemple de ACL-uri

Care este efectul următoarelor linii?

```
R(config) # interface ethernet 4
R(config-if) # ip access-group 199 out

R(config) # access-list 199 permit ip any any
R(config) # access-list 199 deny ip 106.45.0.0 0.0.255.255 any
R(config) # access-list 199 deny tcp any 44.7.12.224 0.0.0.15 eq
ftp
R(config) # access-list 199 deny udp 23.145.64.0 0.0.0.255 host
1.2.3.4 eq rip
```


Reflexive ACLs

 Problemă: Vrem să permitem accesul utilizatorilor din LAN 1 către Web Server, doar dacă traficul web a fost inițiat de o stație din LAN 1.

Soluție: "established"

established

- opțiune pentru o regulă dintr-o listă de acces extinsă
- filtrează pachete TCP care folosesc o conexiune deja stabilită (au bitul ACK sau RST setat)

```
R0(config) #ip access-list extended ALLOW_HTTP_OUT
R0(config-ext-nacl) #10 permit tcp 192.168.0.0 0.0.0.255
any eq www

R0(config) #ip access-list extended ALLOW_HTTP_IN
R0(config-ext-nacl) #10 permit tcp host 141.85.241.51 eq
www 192.168.0.0 0.0.0.255 established

R0(config) #interface Fa1/0
R0(config-if) #ip access-group ALLOW_HTTP_OUT out
R0(config-if) #ip access-group ALLOW_HTTP_IN in
```


Dezavantaje "established"

- Se verifică doar ACK și RST
- Funcționează doar pentru TCP (nu le putem folosi, spre ex. pt. a permite doar traficul ICMP care a originat în LAN1)
- Nu îl putem folosi în cazul unor aplicații care alterează dinamic portul sursă

Alternativa - Reflexive ACLs

- Filtrarea traficului pe baza informaţiilor de sesiune de la nivelurile superioare nivelului 3
- Se pot defini doar prin liste de acces extinse cu nume
- Utilizate în special pentru:
 - permiterea traficului outbound și limitarea traficului inbound la sesiunile care au originea în rețeaua ruterului pe care se aplică ACLul reflexiv

"Reflect" și "Evaluate"

- ACL-urile reflexive ACL-uri create dinamic pe baza unor reguli dintr-un ACL extins care au keyword-ul "reflect"
- Reflect trebuie asociat cu o regulă ce conține keyword-ul "evaluate"
 - evaluate forțează parcurgerea regulilor cu reflect și construirea
 ACL-ului dinamic care corespunde traficului ce vine ca răspuns la acestea

10/12/21 40

 Problemă: Vrem să permitem accesul utilizatorilor din LAN 1 către server pentru trafic HTTP și ICMP, doar dacă traficul a fost inițiat de o stație din LAN 1.

Reflexive ACLs - Exemplu

Definirea ACL-urilor

```
R0(config) #ip access-list extended OUTBOUND
R0(config-ext-nacl) #10 permit tcp 192.168.0.0 0.0.0.255 host
91.212.101.2 eq www reflect HTTPTRAFFIC
R0(config-ext-nacl) #20 permit icmp 192.168.0.0 0.0.0.255 host
91.212.101.1 reflect ICMPPTRAFFIC
R0(config) #ip access-list extended INBOUND
R0(config-ext-nacl) #20 evaluate HTTPTRAFFIC
R0(config-ext-nacl) #30 evaluate ICMPTRAFFIC
```


Reflexive ACLs - Exemplu

Aplicarea ACL-urilor pe interfață :

```
R0(config) #interface FastEthernet1/0
R0(config-if) #ip access-group OUTBOUND out
R0(config-if) # ip access-group INBOUND in
```


Time-based ACLs

- ACL-uri care se aplică în funcție de o constrângere temporală
- Se definește un interval de timp în care ACL-ul respectiv va fi aplicat
- Atât ACL-urile clasice (numbered ACLs), cât și cele cu nume (named ACLs) acceptă definirea constrângerilor temporale

- Comenzi pentru crearea de ACL-uri time-based:
 - Crearea unui interval de timp :

```
time-range time_range_name
```

Definirea intervalului temporal :

```
periodic day(s)_of_week hh:mm to [day(s)_of_week] hh:mm
```

sau

absolute start hh:mm DD Month YYYY end hh:mm DD Month YYYY

• Folosirea intervalului de timp într-un ACL (numbered sau named):

access-list <number> <extended definitions> time-range time range name

```
ip access-list extended <name>
<extended_definition> time-range time_range_name
```

10/12/21 45

Time-based ACLs - exemplu

Permiterea conexiunilor de telnet doar în timpul zilelor lucrătoare:

```
R(config) #time-range work_week
R(config-time-range) #periodic Monday 9:00 to Friday 18:00

R(config) #ip access-list ext timed_acl
R(config-ext-nacl) #10 permit tcp any 192.168.1.0
0.0.0.255 eq telnet time-range work_week
R(config-ext-nacl) #interface FastEthernet1/0
R(config-if) #ip address 192.168.1.1 255.255.255.0
R(config-if) #ip access-group timed_acl out
```

Verificarea unui time-entry:

```
R#show time-range
time-range entry: work_week (active)
periodic Monday 9:00 to Friday 18:00
used in: IP ACL entry
```


ACL remarks

- "Comentarii" introduse într-un ACL
 - Identificarea mai rapidă a rolului regulilor ce compun ACL-ul
- Exemplu :

```
R(config)# access-list 50 remark permit traficul spre A
R(config)# access-list 50 permit 172.16.0.0 0.0.255.255
R(config)# access-list 50 remark opresc traficul spre B
R(config)# access-list 50 deny 192.168.10.15
```

• Un comentariu este limitat la 100 de caractere

Log-uri

- Generează un mesaj ce cuprinde
 - nr. listei
 - dacă a fost acceptat/respins pachetul
 - sursa
 - nr. de pachete
- Mesajul este generat pentru primul pachet care corespunde unei reguli, iar apoi la intervale de 5 minute
- Keyword-ul **opțional** *log* la finalul unei intrări într-un ACL:

R(config)# access-list 50 permit 172.16.0.0 0.0.255.255 log

10/12/21 48

Verificarea ACL-urilor

 Comenzi de show pentru verificarea conţinutului și pentru poziţionarea ACL-urilor:

Comanda	Descriere
show ip interface	Informații privind numărul de ACL- uri de intrare și ieșire
show access-list	Afișează conținutul ACL-urilor configurate pe router
show ip access-list	Afișează conținutul ACL-urilor IPv4 configurate pe router
show running-config	Afișează, printre altele, poziționarea și conținutul ACL-urilor configurate

Sumar

