Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models DGM4MICCAI - 2023

Yuxin Zhang

Supervisors: Clément Huneau, Jérôme Idier, Diana Mateus

Nantes Université, École Centrale Nantes, LS2N, CNRS, UMR 6004, F-44000 Nantes, France

8 - October - 2023

Ultrasound Imaging

 $Source: https://www.biomecardio.com/files/Tracking_motions_in_the_body.pdf$

Ultrasound Imaging

 $Source: https://www.biomecardio.com/files/Tracking_motions_in_the_body.pdf$

Source: https://www.biomecardio.com/files/Tracking_motions_in_the_body.pdf

Inverse Problem Solving

Model-based

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \phi_{\text{reg}}$$

Ozkan et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018 Goudarzi et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022

Inverse Problem Solving

Model-based

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \phi_{\text{reg}}$$

Ozkan et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018 Goudarzi et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022

Learning-based

Perdios et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (accepted)

6 / 17

Inverse Problem Solving

Model-based

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \phi_{\text{reg}}$$

Ozkan et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018 Goudarzi et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022

Learning-based

Perdios et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (accepted)

7 / 17

Posterior \leftarrow Likelihood \times (Inverse Problem)

Prior (Diffusion Model)

$$y = Hx + n$$

- Song Y et al. Solving inverse problems in medical imaging with score-based generative models. ICLR, 2022
- Song J et al. Pseudoinverse-guided diffusion models for inverse problems. ICLR, 2023
- Chung H et al. Score-based diffusion models for accelerated MRI. Med Image Anal. 2022
- Chung H et al. Diffusion posterior sampling for general noisy inverse problems. ICLR, 2023

8 / 17

- Kawar B et al. Denoising diffusion restoration models. NeurIPS. 2022 (DDRM)

 $\hat{X} \leftarrow \frac{\text{Diffusion sampling process}}{\text{Noise}}$ noise

Yuxin Zhang (LS2N-SIMS) DGM4MICCAI - 2023 8 - October - 2023

X Diffusion sampling process noise

DDRM (Kawar et al. NeurIPS 2022) initially for natual images

Data Compressing & Noise Whitening

$$\mathbf{B}\mathbf{y} = \mathbf{x} + \text{colored } \mathbf{B}\mathbf{n}$$

$$\mathbf{CBy} = \mathbf{x} + \text{white } \mathbf{CBn}$$

10 / 17

Data Compressing & Noise Whitening

$$\mathbf{CBy} = \mathbf{VD}(\mathbf{CBH})$$
 $\mathbf{x} + \mathbf{white} \ \mathbf{CBn}$

Natural Images

VS

Ultrasound Images (SIGNED)

Pre-trained on:

Figure – the ImageNet dataset (1,281,167 images) (?)

Fine-tuned on:

Figure – Examples of the self-acquired dataset (800 images)

Test set: PICMUS dataset (?) gives the observation y.

 $Figure-Examples\ of\ PICMUS\ reconstructed\ ultrasound\ images$

	Resolution (FWHM [mm]↓)		Contrast
	Axial	Lateral	(CNR[dB] ↑)
Baseline	0.51	1.21	8.15
DRUS	0.26	0.69	12.9
WDRUS	0.25	0.62	11.95
Golden standard	0.49	0.59	12.05

13 / 17

75 transmissions (Slow acquisition)

Golden standard (DAS75)

Take-home message

Diffusion Inverse Problem Solver

Model-based

Learning-based

Ultrasound Inverse Problem Model

noise whitened

data compressed

Fine-Tuning from a Natural-Image Diffusion Model

Thank you!

16 / 17

${f B}$ and ${f C}$ in a simple case

$$*B = H^t$$

$${}^*\mathbf{C} = \mathbf{\Lambda}^{-\frac{1}{2}}\mathbf{V}^{\mathrm{t}}$$
, where $\mathrm{eig}(\mathbf{B}\mathbf{B}^{\mathrm{t}}) = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathrm{t}}$

$$\begin{aligned} &\operatorname{Cov}(\mathbf{CBn}) = \operatorname{E}\left[\mathbf{CBnn^tB^tC^t}\right] = \gamma^2\mathbf{CBB^tC^t} = \\ &\gamma^2\mathbf{CV\Lambda}\mathbf{V^tC^t} = \gamma^2\mathbf{I}_M \end{aligned}$$

In summary

$$y = Hx + n$$

$$By = BHx + Bn (DRUS)$$

$$By = CBHx + CBn (WDRUS)$$

ground truth (x) measurement (y)

By

CBy

