Lecture 1

Michael Brodskiy

Professor: M. Onabajo

September 4 — September 5, 2024

- Broad circuit categories:
 - Information processing \rightarrow cell phone, GPS, cable TV
 - Power delivery \rightarrow AC-to-DC power adapter, power amplifiers, EVs
- Applications
 - Communication systems
 - Medical electronics
 - Computers (digital signal processing)
 - Instrumentation
 - Control systems
 - Power systems
 - Toys
- Electronic circuits that are manufactured as integrated circuits (ICs)
 - "Chips" created with semiconductor device fabrication processes
- Semiconductor Industry
 - -1947
 - * First transistor was invented at Bell Laboratories by William Shockley, John Bardeem, and Walter Brattain
 - * "The basis of modern electronics"
 - -1958 1961
 - * Introduction of the integrated circuit by Jack Kilby (Texas Instruments) and Robert Noyce (Fairchild Semiconductor)
 - * Enabled miniaturization and mass production of chips

- Today
 - * Smallest dimensions of features in the silicon around 5 [nm]
 - * Up to >2.5 billion transistors per chip
 - * > \$300 billion global revenue

• Course Overview

- Amplifier concepts
- Study of electronic devices
 - * Operational amplifiers (Op-Amps)
 - * Diodes
 - * Bipolar junction transistors (BJTs)
 - * Metal-oxide-semiconductor field effect transistors (MOSFETs)
- Design and analysis of electronic circuits
 - * Analog amplifiers, rectifier circuits
 - * Digital logic

• Main Course Goals

- Understand the operation of fundamental electronic devices (op-amps, diodes, BJTs, MOSFETs)
- Analyze and design operational amplifier circuits and rectifier circuits
- Analyze and design amplifiers with BJTs and MOSFETs
- Be able to identify CMOS logic circuits (NOT, NAND, NOR), and analyze voltage transfer curves and propagation delays
- Simulate electronic circuits using PSPICE

• Review — Some Circuit Analysis Highlights

- Element combination rules (parallel, serial)
- Ohm's Law: I = V/R
- KVL for a circuit loop $\rightarrow \sum_{j} v_{j} = 0$
- KCL at a node $\rightarrow \sum_{j} i_{j} = 0$
- Superposition principle
 - * If input A produces response X and input B produces response Y, then input (A+B) produces response (X+Y)
 - * Holds only for linear circuits
 - * Very useful for circuits with multiple voltage and current sources
- Thévenin and Norton form of signal sources

- * Valid only in linear circuits
- Element Combination Rules
 - Resistors in series can be summed $(R_1 + R_2 + \cdots + R_n = R_t)$
 - Resistors in parallel can be summed via conductances $\left(G_x = \frac{1}{R_x}\right)$ can be combined to get $\to G_1 + G_2 + \cdots + G_n = G_t$
 - Voltages in series can be summed $(V_1 + V_2 + \cdots + V_n = V_t)$
 - Voltages in parallel will not occur, as it is illogical to place them in such a manner (and is the same reason current sources in series do not occur)
 - Current sources in parallel may be summed $(i_1 + i_2 + \cdots + i_n = i_t)$
- Analysis of Large Circuits
 - Write all expressions for the circuit
 - * At elements (Ohm's Law)
 - * At nodes (KCL)
 - * For loops (KVL)
 - Eliminate redundant equations (keep only independent equations)
 - Solve the system of equations for the unknown variables
- Thévenin and Norton Equivalent Representations
 - Thévenin to Norton transformation
 - * Set $I_s = V_s/R_s$ (short-circuit current), and $R_P = R_s$
 - Norton to Thévenin transformation
 - * Set $V_s = I_s R_s$ (open-circuit voltage), and $R_s = R_P$
 - In more complex cases, R_s and R_P are the equivalent resistances seen at terminals
- A circuit can be broken into "source" components by assuming an open circuit for current sources, and short circuit for voltage sources
- This gives us components which we can then sum up via the superposition principle:

Figure 1: Initial Circuit

Figure 2: Voltage Component

Figure 3: Current Component

• Amplification

- Voltage gain: $|A_v|$
 - * When $|A_v|$ is constant: linear amplifier
 - * When $|A_v|$ is not constant: non-linear amplifier
- Non-inverting amplifier: $v_o(t) = A_v v_i(t)$
- Inverting amplifier: $v_o(t) = -A_v v_i(t)$

• Voltage-Amplifier Model

Figure 4: Reference Figure for the Voltage-Amplifier Model

- Parameters

- * v_s is the input voltage source, which has a series resistance R_s
- * R_i and R_o are the input and output resistances, respectively
- * A_{vo} is the open-circuit voltage gain
- * R_L is the load resistance
- Remember: This is a simplified representation of an amplifier
- Current gain: $A_i = \frac{i_o}{i_i} = \frac{(v_o/R_L)}{(v_i/R_i)} = A_v(R_i/R_L)$
- Loaded voltage gain: $A_v = \frac{v_o}{v_i} \neq A_{vo}$
- Power gain: $G = \frac{P_o}{P_i} = \underbrace{\frac{V_o I_o}{V_i I_i}}_{\text{PMS}} = A_v A_i = A_v^2 \cdot \frac{R_i}{R_L}$
- For optimum voltage transfer, $R_L >> R_o$

• Loading Effects

- Refer to the same figure (Figure 4) as for the Voltage-Amplifier Mode

- Input signal attentuation: $v_i = v_s \left(\frac{R_i}{R_i + R_s}\right)$
- Output signal attentuation: $v_o = A_{vo}v_i \left(\frac{R_L}{R_L + R_o}\right)$
- Loaded voltage gain of the amplifier: $A_v = \frac{v_o}{v_i} = A_{vo} \left(\frac{R_L}{R_L + R_o} \right)$
- Voltage gain from source to load $A_{vs} = \frac{v_o}{v_s} = A_{vo} \left(\frac{R_i}{R_i + R_s} \right) \left(\frac{R_L}{R_L + R_o} \right)$

• Decibel Notation

- Use $20 \log(X)$ for voltages and currents
 - $* A_{vdB} = 20 \log(|A_v|)$
 - $* A_{idB} = 20 \log(|A_i|)$
- Use $10\log(X)$ for powers
 - $* G_{dB} = 10 \log(|G|)$
- Quantities in decibels are added when two or more amplifiers are connected in series (called "cascaded")