Optical Networks

Marco Polverini

Network Infrastructures "Sapienza" University

A.A. 2023/24

Outline

Introduction to Optical Networks

Control and Management

Introduction to Optical Networks

Telecommunications Network Architecture

- ► Transport Networks (TNs) are public infrastructures operated by service providers named *carriers*
- Carriers provide a variety of services:
 - telephone and leased line services
 - interconnect Internet Service Providers
 - provide bulk bandwidth to other carriers

Different parts of a public network

- The network can be broken up into:
 - metro network: is the part of the network that lies within a large city or a region
 - metro access network: extends from a central office out to individual businesses or homes
 - interoffice network: connects groups of central offices within a city or region
 - long-haul: network interconnects cities or different regions
- Different parts of the network may be owned and operated by different carriers
- ► The nodes in the network are central offices, sometimes also called points of presence (POPs)
- Links between the nodes consist of fiber pairs and, in many cases, multiple fiber pairs
 - links in the long-haul network tend to be very expensive to construct
- Two topologies are used: ring and mesh

Services, Circuit Switching, and Packet Switching

- Service can be:
 - Connection oriented: sender and receiver connect each other before communication happen
 - Connectionless: source sends messages to the receiver whenever it has something to send
- Core devices work according to one of the following switching paradigm:
 - circuit switching: static multiplexing
 - packet switching: statistical multiplexing

Optical Networks

- Optical Networks (ONs) can deliver bandwidth in a flexible manner where and when needed
- Optical fiber
 - offers much higher bandwidth than copper cables
 - is less susceptible to various kinds of electromagnetic interference and other undesirable effects
- ► Two generations of optical networks
 - First generation
 - optics essentially used for transmission and simply to provide capacity
 - switching and other intelligent network functions handled by electronics
 - Second generation
 - routing, switching, and intelligence in the optical layer

Multiplexing Techniques

- Two ways of increasing the transmission capacity on a fiber:
 - ► Time Division Multiplexing (TDM)
 - increase the bit rate (requires higher-speed electronics)
 - many lower-speed data streams are multiplexed into a higher-speed stream
 - Wavelength Division Multiplexing (WDM)
 - transmit data simultaneously at multiple carrier wavelengths over a fiber
 - virtual fibers

Second-Generation Optical Networks

- Also known as wavelength routed networks
- ► Main idea
 - incorporate some of the switching and routing functions into the optical part of the network
- ► The network provides lightpaths to its users
- Lightpaths are optical connections
 - carried end to end from a source node to a destination node
 - over a wavelength on each intermediate link
- At intermediate nodes the lightpaths are switched from one link to another link
- Lightpaths may be converted from one wavelength to another wavelength

Second-Generation Optical Networks

Optical Line Terminals

- OLTs are used at either end of a point-to-point link to multiplex and demultiplex wavelengths
- ▶ It is composed by three functional elements:
 - Transponders
 - Wavelength multiplexers
 - Optical amplifiers
- Transponder (a.k.a. optical-to-electrical-to-optical, O/E/O) adapts the signal coming in from a client of the optical network, and vice versa
 - converts the signal into a wavelength that is suited for use inside the optical network (from 1.3 μ m to 1.55 μ m)
 - adds OTN overhead (OPU, ODU, OTU, FEC, etc.)
 - monitors the bit error rate of the signal at the ingress and egress points in the network
- ► OLT also terminates an optical supervisory channel (OSC)

Optical Line Terminals

- ► Transponders typically constitute the bulk of the cost, footprint, and power consumption in an OLT
- Therefore, reducing the number of transponders helps minimize both the cost and the size of the equipment deployed

Optical Add/Drop Multiplexers

 Optical add/drop multiplexers (OADMs) provide a cost-effective means for handling passthrough traffic in both metro and long-haul networks

OADM Architectures

Optical Crossconnects

- ➤ OXC enables reconfigurable optical networks, where lightpaths can be set up and taken down as needed
- OXCs allow to handle complex topologies and large number of wavelengths

Optical Crossconnects

- An OXC provides several key functions in a large network:
 - service provisioning
 - provisioning of lightpaths in a large network in an automated manner (no manual patch panel connections)
 - reconfigure lightpaths to respond to traffic changes
 - protection
 - detect failures and rapidly reroute lightpaths around the failure
 - bit rate transparency
 - switch signals with arbitrary bit rates and frame formats
 - wavelength conversion
 - change the wavelength of an incoming signal before transmitting it
 - multiplexing and grooming
 - multiplexing and grooming capabilities to switch traffic internally at much finer granularities
 - this time division multiplexing has to be done in the electrical domain

The Optical Layer

- Network architectures can be organized by means of the ISO/OSI model
- A more realistic layered model for today's networks would employ multiple protocol stacks residing one on top of the other

Transparency and All-Optical Networks

- Lightpaths are service transparent
 - once the lightpath is set up, it can accommodate different types of services
 - e.g., the telephone network had this property (a channel can be used to transfer voice, data, fax, etc.)
- Advantages:
 - data is carried from its source to its destination in optical form
 - no optical-to-electrical conversions along the way
- Hard to realize:
 - analog signals require higher SNR with respect to digital ones
- Optical networks almost always include a fair amount of electronics

Transparency and All-Optical Networks

- Electronics plays a crucial role in performing the intelligent control and management functions
- Electronic is required
 - at the edge of the network
 - to adapt the signals entering the optical domain
 - in the core of the network
 - for regeneration and wavelength conversion

Transparency and All-Optical Networks

- Electronic regenerators reduce the transparency of the network
- ► Three types of electronic regeneration techniques for digital data
 - ▶ 1R: regeneration (can be seen as an Optical Amplifier)
 - PRO: supports analog signals
 - CONS: poor performance
 - 2R regeneration with reshaping
 - ▶ PRO: offers transparency to bit rates
 - CONS: limits the number of regeneration steps allowed due to the accumulated jitter
 - 3R regeneration with retiming and reshaping
 - ▶ PRO: produces a "fresh" copy of the signal
 - CONS: it eliminates transparency to bit rates and the framing protocols

Network Evolution

Figure 1.13 Evolution of optical fiber transmission systems. (a) An early system using LEDs over multimode fiber. (b) A system using MLM lasers over single-mode fiber in the 1.3 μ m band to overcome intermodal dispersion in multimode fiber. (c) A later system using the 1.55 μ m band for lower loss, and using SLM lasers to overcome chromatic dispersion limits. (d) A current-generation WDM system using multiple wavelengths at 1.55 μ m and optical amplifiers instead of regenerators. The P- λ curves to the left of the transmitters indicate the power spectrum of the siznal transmitted.

Control and Management

Management Framework

- Most functions of network management are implemented in a centralized manner by a hierarchy of management systems
- ▶ Due to latency, some management functions are performed in a decentralized manner (e.g., responding to failures and setting up and taking down connections)

Optical Layer Services and Interfacing

- Client layers can specify to the optical layer the following services during lightpath setup:
 - ▶ the endpoints to interconnect
 - the amount of bandwidth that is required
 - it can specify if an adaptation function is needed at the ingress or egress point
 - the targeted Bit Error Rate (BER)
 - the level of protection against failure events
 - requirements related to jitter and maximum end to end delay
- Enabling the delivery of these services requires a control and management interface between the optical layer and the client layer
 - ► The simple interface used today is through the management system
 - It works fine as long as lightpaths are set up fairly infrequently and remain nailed down for long periods of time

Layers within the Optical Layer

- ► The optical layer performs several functions (multiplexing, switching and routing, and performance monitoring)
- ► In order to help delineate management functions it is useful to further subdivide the optical layer into several sublayers:
 - Optical Channel layer (OCh):
 - takes care of end to end routing of the lightpaths
 - Optical Multiplex Section layer (OMS):
 - each link between OLTs or OADMs represents an optical multiplex section carrying multiple wavelengths
 - Optical Transmission Section layer (OTS):
 - link between two optical amplifier stages

Layers within the Electronic Layer

- Optical channel transport unit (OTU)
 - delineate OTN frames
 - provide identification of the optical connection
 - monitor bit error rate (BER) performance
 - carry alarm indicators to signal failures
 - provide a communication channel between the end points of the optical connection
- Optical channel data unit (ODU)
 - as OTU, but at a higher layer
 - includes the Optical channel Payload Unit (OPU) sublayer that adapts client signals to the OTN frames

OTN Encapsulation

Layers within the Optical Layer

Performance and Fault Management

- ► The goal of performance management is to enable service providers to provide guaranteed quality of service to the users of their network
- ► This usually requires:
 - monitoring of the performance parameters for all the connections
 - taking any actions necessary to ensure that the desired performance goals are met
- Fault management involves:
 - detecting problems in the network
 - alerting the management systems appropriately through alarms
- ► Fault management also includes restoring service in the event of failures

BER and Optical Trace

► BER

- ► The bit error rate (BER) is the key performance attribute associated with a lightpath
- ► The BER can be detected only when the signal is available in the electrical domain, typically at regenerator or transponder locations
- Overhead inserted in OTN frames, which consists of parity check bytes, allows for BER computation

Optical Trace:

- Lightpaths pass through multiple nodes and through multiple cards within the equipment deployed at each node.
- It is desirable to have a unique identifier associated with each lightpath
- ► This identifier is called an optical path trace
- ► The trace enables the management system to identify, verify, and manage the connectivity of a lightpath

Alarm Management

- ▶ In a network, a single failure event may cause multiple alarms to be generated
 - ▶ in a network with 32 lightpaths on a given link, each traversing through two intermediate nodes, the failure of a single link could trigger a total of 129 alarms
- ► Alarm management it is required to identify the root-cause alarm of the failure and suppress the redundant alarms
 - Alarm suppression is accomplished by using a set of special signals, called the forward defect indicator (FDI) and the backward defect indicator (BDI)

Alarm Management: Example

- ► When a link fails, the node downstream of the failed link inserts an FDI signal downstream to the next node
- ► The FDI signal propagates rapidly, and nodes further downstream receive the FDI and suppress their alarms
- ► The node also sends a BDI signal upstream to the previous node, to notify that node of the failure
- FDI and BDI are sent at different sublayers of the optical layer

Optical Layer Overhead

 Supporting the optical path trace, defect indicators, and BER measurement requires the use of some sort of overhead in the optical layer

Optical Layer Overhead

Application	All-Optical Subnet		End-to-End	
	OSC	Pilot Tone	Rate-Preserving	
Trace	OTS	OCh	OTU ODU	
DIs	OTS OMS OCh	None	OTU ODU	
Performance nonitoring	None	Optical power	BER	
Client signal compatibility	Any	Any	Any	

Connection Management

- Connection management deals with setting up connections, keeping track of them, and taking them down when they are not needed anymore
- Two different approaches
 - client-server model
 - the client layer (IP, SDH, ATM, etc.) asks to the server layer the establishment of a connection (lightpath) without having knowledge of the internal structure of the optical network
 - centralized control
 - suitable as long as lightpaths are set up fairly infrequently
 - peer model
 - tight coupling between the client and optical layers: the optical layer primarily serves a single client (IP)
 - distributed control
 - useful if there is a need to set up and take down connections rapidly

Interaction with Other Layers

Overlay Model

Peer Model

Distributed Connection Management

- Distributed connection control has several components
 - topology management: each node in the network maintains a database of the network topology and the current set of resources available
 - OSPF-Traffic Engineering (OSPF-TE) used to distribute link state info
 - link management: nodes monitor the status of the link by exchanging periodic "hello"
 - ▶ BER can also be considered to assess the status of a link
 - route computation: routing algorithm applied on the topology database
 - signaling protocol: set of messages used to set up a connection once the path has been calculated
 - RSVP Traffic Engineering (RSVP-TE) and Constraint-based Routing LDP (CR-LDP)