Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

Отчёт по лабораторной работе № 5 ПОСЛЕДОВАТЕЛЬНЫЙ ИНТЕРФЕЙС SPI. ЖКИ. АКСЕЛЕРОМЕТР ВАРИАНТ 3

	Липский Г.В.
Проверил:	Ассистент кафедры ЭВМ
	Шеменков В.В

Студент группы 050503

Выполнил:

1 Цели работы

В ходе выполнения лабораторной работы необходимо изучить принципы организации последовательного интерфейса SPI и подключения устройств на его основе на базе микроконтроллера MSP430F5529.

2 Исходные данные к работе

Для выполнения лабораторной работы используется плата MSP-EXP430F5529 с использованием среды разработки Code Composer Studio. В процессе выполнения работы требуется написать программу, которая получает измерения акселерометра по оси Z и отражает их на экране в левом нижнем углу с поворотом текста на -90 градусов. По нажатию кнопки S1 зеркально отражает результат по вертикали, используя команды для ЖКИ.

Снять временные диаграммы всех линий интерфейса SPI (USCI B1).

Не допускается использовать иные заголовочные файлы, кроме msp430.h, а также использовать высокоуровневые библиотеки.

3 Теоретические сведения

3.1 Последовательный интерфейс SPI

Микроконтроллер MSP430F5529 содержит два устройства USCI (Universal Serial Communication Interface), каждый из которых имеет два канала. Первое из них, USCI_A поддерживает режимы UART (Universal Asynchronous Receiver/Transmitter), IrDA, SPI (Serial Peripheral Interface). Второе, USCI_B - режимы I2C (Inter-Integrated Circuit) и SPI.

Интерфейс SPI является синхронным дуплексным интерфейсом. Это значит, что данные могут передаваться одновременно в обоих направлениях и синхронизируются тактовым сигналом. Интерфейс поддерживает:

- обмен по 3 или 4 линиям;
- 7 или 8 бит данных;
- режим обмена: LSB (младший значащий бит) или MSB (старший значащий бит) первым;
 - режим ведущий (Master) / ведомый (Slave);
 - независимые для приема и передачи сдвиговые регистры;
 - отдельные буферные регистры для приема и передачи;
 - непрерывный режим передачи;
 - выбор полярности синхросигнала и контроль фазы;
 - программируемая частота синхросигнала в режиме Master;
 - независимые прерывания на прием и передачу;
 - операции режима Slave в LPM4.

Структура интерфейса SPI представлена на рисунке 3.1. Линии интерфейса:

- UCxSIMO — Slave In, Master Out (передача от ведущего к ведомому);

- UCxSOMI Slave Out, Master In (прием ведущим от ведомого);
- UCxCLK тактовый сигнал, выставляется Master-устройством;
- UCxSTE Slave Transmit Enable. В 4-битном протоколе используется для нескольких Master устройств на одной шине. В 3-битном не используется.

Рисунок 3.1 – Структура интерфейса SPI

Схема передачи данных начинает работу при помещении данных в буферный регистр передатчика UCxTXBUF. Данные автоматически помещаются в сдвиговый регистр (если он пуст), что начинает передачу по линии UCxSIMO. Флаг прерывания UCTXIFG устанавливается при перемещении данных в сдвиговый регистр и сигнализирует об освобождении буферного регистра, а не об окончания передачи. UCTXIFG требует локального и глобального разрешения прерываний UCTXIE и GIE,

автоматически сбрасывается при записи в буферный регистр передатчика UCxTXBUF.

Прием данных по линии UCxSOMI происходит автоматически и начинается с помещения данных в сдвиговый регистр приемника по спаду синхросигнала. Как только символ передан, данные из сдвигового регистра помещаются в буферный регистр приемника UCxRXBUF. После этого устанавливается флаг прерывания UCRXIFG, что сигнализирует об окончании приема. Аналогично, UCRXIFG требует локального и глобального разрешений прерываний UCRXIE и GIE, автоматически сбрасывается при чтении буферного регистра UCxRXBUF. Прием данных происходит только при наличии синхросигнала UCxCLK.

Сброс бита UCSWRST разрешает работу модуля USCI. Для Маsterустройства тактовый генератор готов к работе, но начинает генерировать сигнал только при записи в регистр UCxTXBUF. Соответственно, без отправления данных (помещения в буферный регистр передатчика), тактовой частоты на шине не будет, и прием также будет невозможен. Для Slaveустройства тактовый генератор отключен, а передача начинается с выставлением тактового сигнала Master-устройством. Наличие передачи определяется флагом UCBUSY = 1.

Поля полярности UCCKPL и фазы UCCKPH определяют 4 режима синхронизации бит (см. рисунок 3.2).

Рисунок 3.2 – Режимы синхронизации

Если UCMST = 1, для тактирования используется генератор USCI, источник входной частоты (ACLK или SMCLK) выбирается битами UCSSELx. 16 бит UCBRx (регистры UCxxBR1 и UCxxBR0) определяют делитель BRCLK входной тактовой частоты USCI: fBitClock = fBRCLK / UCBRx.

Состав и назначение регистров интерфейса SPI приведено в таблице 3.1,

а назначение полей — в таблице 3.2. Регистры всех каналов USCI в режиме SPI аналогичны, номер устройства (А или В) и номер канала (0 или 1) в именах указываются вместо хх, например, UCA0CTLO. Адреса регистров каналов USCI_B0 — 05E0h — 05FEh, USCI_A1 — 0600h — 061Eh, USCI_B1 — 0620h — 063Eh. После сброса поля всех регистров устанавливаются в 0, за исключением полей UCSWRST, UCTXIFG, которые устанавливаются в 1 (сброс и флаг готового буфера передатчика соответственно), и полей UCBRx, UCRXBUFx, UCTXBUFx, состояние которых не определено. Соответственно устанавливается 3-ріп режим, ведомый (Slave), 8 бит данных, LSB, активный высокий уровень синхросигнала, по фронту синхросигнала данные выставляются на шину, по спаду — читаются (захватываются).

Таблица 3.1 – Регистры интерфейса SPI

Регистр	Адрес канала А0	Назначение					
UCxxCTL0	05C1h	Регистры управления					
UCxxCTL1	05C0h						
UCxxBR0	0506h	Управление скоростью передачи					
UCxxBR1	0507h						
UCxxSTAT	050Ah	Регистр состояния					
UCxxRXBUF	050Ch	Буфер приемника					
UCxxTXBUF	050Eh	Буфер передатчика					
UCxxIE	05DCh	Разрешение прерываний					
UCxxIFG	05DDh	Флаги прерываний					
UCxxIV	05DEh	Вектор прерываний					

Таблица 3.2 – Поля регистров интерфейса SPI

d	Биты	Поле	Назначение	Определение флагов в msp430f5529.h
1	2	3	4	5
UCAx CTL0	7	UCCKPH	Фаза Ти (0 — изменение по первому перепаду, захват по второму, 1 — наоборот)	UCCKPH
	6	UCCKPL	Полярность Ти (0 — активный - высокий)	UCCKPL
	5	UCMSB	Порядок передачи: 0 — LSB, 1- MSB	UCMSB
	3	UCMST	Режим: 0 — Slave, 1 – Master	UCMST

Продолжение таблицы 3.2

Hpo,		ие таблицы 3.2	2.	
1	2	3	4	5
0	1-2	UCMODEx	Синхронный режим: 00 – 3pin SPI, 01 – 4pin	UCMODE_0
CC			STE активный низкий, 11 – I C	
UCAx	0	UCSYNC	Режим: синхронный - 1	UCSYNC
UCA xCTL 1	6-7	UCSSELx	Выбор источника Ти: 01 — ACLK, 10,11 - SMCLK	UCSSEL0, UCSSEL1
	0	UCSWRST	Разрешение программного сброса: 1 — логика интерфейса переводится в состояние сброса	UCSWRST
OCTABIN 0	0-7	UCBRx	Младший байт делителя частоты	UCA0BR0
OCTABIN 1	0-7	UCBRx	Старший байт делителя частоты	UCA0BR1
UCAX	7	UCLISTEN	Режим прослушивания — передача передается на прием	UCLISTEN
	6	UCFE	Флаг ошибки фрейма. При конфликте нескольких устройств на шине 4-pin	UCFE
	5	UCOE	Флаг ошибки перезаписи. Устанавливается, если происходит запись в регистр UCxRXBUF до чтения предыдущего значения	UCOE
	0	UCBUSY	Флаг приема/передачи	UCBUSY
UCAx RXBU F	0-7	UCRXBUF x	Буфер приемника	UCA0RXBUF
F	0-7	UCTXBUFx	Буфер передатчика	UCA0TXBUF
UCAX IE	1	UCTXIE	Разрешение прерывания передатчика	UCTXIE
J. IE	0	UCRXIE	Разрешение прерывания приемника	UCRXIE
UCAxI FG	1	UCTXIFG	Флаг прерывания передатчика	UCTXIFG
JU.	0	UCRXIFG	Флаг прерывания приемника	UCRXIFG
UCAxIV	0-15	UCIVx	Вектор прерываний	UCA0IV

Все поля регистров UCxxCTL0, UCxxBRx, а также поле UCSSELx регистров UCxxCTL1 и поле UCLISTEN регистров UCxxSTAT могут быть изменены только при UCSWRST = 1.

На экспериментальной плате MSP-EXP430F5529 к устройству USCI_B, канал 1, в режиме SPI подключен ЖКИ экран EA DOGS102W-6 разрешением 102 х 64 пикселя, а к устройству USCI_A, канал 0, в режиме SPI подключен 3-осевой акселерометр CMA3000-D01.

3.2 ЖКИ экран DOGS102W-6

ЖКИ экран DOGS102W-6 поддерживает разрешение 102 х 64 пикселя, с подсветкой EA LED39х41-W, и управляется внутренним контроллером UC1701. Ток потребления составляет 250 мкА, а частота тактирования до 33 МГц при 3,3 В. Контроллер поддерживает 2 параллельных 8-битных режима и последвательный режим SPI, поддерживает чтение данных (в SPI режиме только запись). Устройство содержит двухпортовую статическую DDRAM.

Рисунок 3.3 – Схема подключения ЖКИ экрана

Схема подключения экрана приведена на рисунке 3.3, соответствие выводов устройства выводам микроконтроллера MSP430F5529 и их назначение приведены в таблице 3.3

Таблица 3.3 – Соответствие выводов ЖКИ экрана

Выводы DOGS102W-6	Обозначение линии на схеме	Назначение	Вывод MSP430F5529	Требуемый режим
RST	LCD_RST	Сброс (= 0)	P5.7/TB0.1	P5.7
SDA	SIMO	SIMO данные	P4.1/ PM_UCB1SIMO/ PM_UCB1SDA	PM_UCB1SIMO
SCK	SCLK	Синхросигнал	P4.3/ PM_UCB1CLK/ PM_UCA1STE	PM_UCB1CLK
CD	LCD_D/C	Режим: 0 — команда, 1 — данные	P5.6/TB0.0	P5.6
CS0	LCD_CS	Выбор устройства (= 0)	P7.4/TB0.2	P7.4
ENA, ENB	LCD_BL_EN	Питание подсветки	P7.6/TB0.4	P7.6

Поскольку выбор устройства подключен к цифровому выходу, то управлять сигналом выбора устройства придется программно, фактически используется только 2 линии USCI микроконтроллера MSP430F5529 в режиме SPI.

Временные диаграммы обмена с устройством приведены на рисунке 3.4. ЖКИ поддерживает только запись, формат передачи MSB, чтение данных по фронту синхросигнала, Slave. Сигнал CD определяет, что передается в текущем байте — команда или данные, он считывается при передаче последнего бита.

Компаратор в составе MSP430F5529 обладает следующими возможностями: прямое иринварсное сравнение; программное подключение RC-фильтра на выходе; выход подключается ко входу таймера А; программный выбор каналов (из 16 возможных); использование прерываний; программируемый генератор опорного напряжения.

Структура компаратор представлена на рис 4.4, а принцип работы фильтрации на выходе — на рис. 4.5.

Рисунок 3.4 Временная диаграмма обмена с ЖКИ

Формат команд ЖКИ представлен в таблице 3.4.

Таблица 3.4 – Команды контроллера ЖКИ

1 40	лица	ι).	- -	. 1/	Оман	дь	I KUH	трол	лера жки
Вход СD		Ко	д к	ома	анды,	по	битно		Описание
B	7	7 6 5 4 3 2 1 0						0	
1		Биты данных D[70]					70]		Запись одного байта данных в память
	0	0	0	0		CA	[30]		Установка номера столбца СА=0131. Двухбайтная
	0	0 0 1 CA[74]							команда, младший полубайт передается первым байтом команды, старший полубайт — вторым. После сброса = 0
	0	0	1	0	1		PC[2.	0]	Управление питанием. $PC[0]$ — усилитель, $PC[1]$ — регулятор, $PC[2]$ — повторитель. 0 — отключено, 1 — включено. После сброса = 0
	0	1			SL	L[50]			Установка начальной линии скроллинга SL=063. После сброса = 0 (без скроллинга)
	1	0	1	1		PA[30]			Установка номера страницы РА=07. После сброса = 0
	0	0	1	0	0		PC[5.	3]	Установка уровня внутреннего резисторного делителя PC=[07]. Используется для управления контрастом. После сброса = 100
	1	0	0	0	0	0	0	1	Регулировка контраста. Двухбайтная команда.
	0	0			PM	[5.	.0]		РМ=063. После сброса = 100000
									Включение всех пикселей. 0 – отображение
0	1	0	1	0	0	1	0	Cl	содержимого памяти, 1 — все пиксели включены (содержимое памяти сохраняется). После сброса = 0
	1	0	1	0	0	1	1	C0	Включение инверсного режима. 0 — нормальное отображение содержимого памяти, 1 — инверсное. После сброса = 0
	1	0	1	0	1	1	1	C2	Отключение экрана. 0 — экран отключен, 1 — включен. После сброса = 0
	1	0	1	0	0	0	0	MX	Порядок столбцов при записи в память 0 — нормальный (SEG 0-131), 1 — зеркальный (SEG 131-0). После сброса = 0
	1	1	0	0	MY	0	0	0	Порядок вывода строк 0 — нормальный (СОМ 0-63), 1 — зеркальный (СОМ 63-0). После сброса = 0
	1	1	1	0	0	0	1	0	Системный сброс. Данные в памяти не изменяются
	1	0	1	0	0	0	1	BR	Смещение напряжения делителя: $0-1/9$, $1-1/7$. После сброса = 0
	1	1	_1	1	1	0	1	0	Расширенное управление. ТС — температурная
	ТС	0	0	1	0 0 WC WP				компенсация $0 = -0.05$, $1 = -0.11\%$ /°C; WC — циклический сдвиг столбцов $0 = \text{нет}$, $1 = \text{есть}$; WP — циклический сдвиг страниц $0 = \text{нет}$, $1 = \text{есть}$. После сброса $TC = 1$, $WC = 0$, $WP = 0$

Поля PC[2..0], C1, C0, C2, MX, BR при программном сбросе не устанавливаются. Поскольку контроллер поддерживает больше столбцов (132), чем у экрана (102), то можно задать пиксель за его границами. По этой же причине в зеркальном режиме номера столбцов соответствуют диапазону 30—131. Зеркальный режим столбцов (бит МХ) не оказывает влияния на порядок вывода столбцов, поэтому данные, уже имеющиеся в памяти, будут отображаться одинаково в обоих режимах. При зеркальном режиме изменяется адрес записи байта в память. Подробнее режимы ориентации экрана (и вывода строк и столбцов) изображены на рисунке 3.5.Так, например,

в режиме MX=0, MY=0, SL=0 (Прямой вывод без скроллинга), чтобы получить изображение, приведенное на рисунке, в столбец 1 страницу 0 должно быть записано значение 11100000b, а в столбец 2 страницу 0 — значение 00110011b.

	63	Адрес																100000000000000000000000000000000000000	r-0			(-1	
PA[3:0]	0	строки	302	_	_	_	_	_	_		_		_	_	_	_	_	SL-D	SL-16	SL-0	SL-0	SL-25	
	DO	00H			-8	- 33	- 59		7/	8			\vdash			- 3	- 2	C1	C49	C64	C48	C25	C9
	D1	01H			=6	_33	-33		35	-	Н	0	⊢	-			- 534	C2	C50	C63	C47	C24	C8
	D2	02H				- 83	- 5		- 3		Н	CTOSHVIUS O	⊢	-	-	-	-	C3	C51	C62	C46	C23	C7
0000	D3	03H 04H		8		- 8	- 00	-				SHAND	⊢	-	-	Н		C4 C5	C52 C53	C61	C45	C22	C6 C5
	D5	05H	- 2			- 10	- 70	0.	0.	0		100	⊢		- 3			C6	C54	C59	C43	C20	C4
	D6	06H	9	- 3		- 8	- 32					C	\vdash				15	C7	C55	C58	C42	C19	C3
	D7	07H	-	-		- 65	- 650		-	-	Н		Н	-			-	C8	C56	C57	C41	C18	C2
- 19	DO	08H			-								-	_	_	-	-	C9	C57	C56	C40	C17	C1
	D1	09H	1	7				_					⊢			Н		C10	C58	C55	C39	C16	-
	D2	DAH	3	- 0	- 5	- (3)	(3)	8	8	× -		CTDarting 1	\vdash	- 1	- 0			C11	C59	C54	C38	C15	_
10000	D3	OBH		_	- 27	180	78		33	5		Miles	Н	1 3	. 8	- 30	- 22	C12	C60	C53	C37	C14	
0001	D4	OCH	1	┪							Н	- alth	⊢		Н	Н		C13	C61	C52	C36	C13	_
	D5	DDH	1	_	13	- 10	10	100	33			CIR	\vdash				10	C14	C62	C51	C35	C12	
	D6	DEH	1	7	7	-	-				Н	~	Н			Н	- 1	C15	C63	C50	C34	C11	-
	D7	DFH	- 33	- 0	- 5-1	- (3)	- (5)	3	0	97.	9			1 1	- 3	- 13	- 5	C16	C64	C49	C33	C10	
	DO	10H	ı	7	- 8	- 8	- 6		5	2						- 33	- 22	C17	C1	C48	C32	C9	
	D1	11H	l T	┪				-			П	CTORHAND 2	Н			Н		C18	C2	C47	C31	C8	-
	D2	12H	1	_	- 0	177	133	55	55		1 1	.0	Н				- 0	C19	C3	C46	C30	C7	
	D3	13H	1	┪	7	-			-		П	MALA	т			Г	-	C20	C4	C45	C29	C6	
0010	D4	14H		_	- 8	- 15	- 10		3)	8		100	г			- 3	- 9	C21	C5	C44	C28	C5	- 12
	D5	15H		- 3	3	- 83	- 83	3	3	0	8	C.	$\overline{}$		- 2		- 6	C22	C6	C43	C27	C4	
	D6	16H	1	_							ш		Н			Н		C23	C7	C42	C26	C3	
	D7	2FH 30H	8	-	-	-	- 75		-	23.			Н					C48	C32	C17	C1	C42	C2
- 29	DO	30H	- 1	- 3	- 31	18	18	8	8	<u> </u>			П		- 3	-6	- 37	C49	C33	C16	3	C41	C25
	D1	31H		-0	- 11	233	-(3	3	3	8)			2 3	ï	- 8	- 2	C50	C34	C15	1	C40	C24
	D2	32H		- 8	- 23	-8	- 6	3	8-	82	8	0				- 8	- 57	C51	C35	C14	4	C39	C23
0110	D3	33H			-33	33	-8	9)_	8	è-	\subseteq	WILL		1 3		-3	-8	C52	C36	C13	-	C38	C22
	D4	34H	L	_								CTORHVILLA	ᆫ					C53	C37	C12	-	C37	C2
	D5	35H		- 2	-33	23	- 88	33.	2	Ž-1	3	CIT	\Box	1 1	7	- 82	-35	C54	C38	C11	-	C36	C20
	D6	36H	1	4	- 3	- (3)	- (3)		3	8			⊢			\mathbf{L}		C55	C39	C10	-	C35	C15
- 24	D7	37H	1		7		- (3)		8	×-			_				- 3	C56	C40	C9		C34	C18
	D0	38H	3	-1	-39	- 33	- 33	35	85	3			⊢				-39	C57	C41	C8	-	C33	C17
	D1	39H	-	4	_	٠,	_	_		_	Н	1	⊢		μ,	\vdash	_	C58	C42	C7		C32	C16
	D2	3AH	1	4	- 6	-8	- 18		8	3		.0	\vdash		-	- 5		C59	C43	C6		C31	C15
0111	D3	3BH	-	-1		- 20	- 200		0.		Н	CTDahwaa	\vdash		-			C60	C44	C5	-	C30	C14
ecce.	D4	3CH	1			- 22	100					100	\vdash		- 3			C61	C45	C4		C29	C13
	D5	3DH	1	+	- 6	- 3	- 00	-	97	2	Н	0.	Н	1	-	8	47	C62	C46	C3		C28	C12
	D6	3EH 3FH	3	-	- /-	- 9	92	C.	C				\vdash		-	\vdash	11	C63	C47	C2		C27	C11
4000		4DH	-	-	-			-				Страница 8	-	-	-	-	-					CIC	_
1000	D0	40H	200	_		_		_				страница о			_		щ,	CIC	CIC	CIC 65	CIC 49	65	CIC
			Г	75	SE.	23	x	102	92	15	8		128	129	30	131	G132			03		UX	
		~	0	SEG	SEG2	SEG3	SEGA	SEGS	SEG	SEG7	SEG		SEG 128	SEG 129	SEG 130	SEG131	SEG1						
		X		SEG 132	SEG131	SEG 130	SEG129	SEG 128	SEG127	SEG 126	SEG 125		SEGS	SE GA	SECO	SEG2	SEG1		(5)				
			-	8	9	8	8	9	9	8	8		w	W	W	iii	iii						

Рисунок 3.5 – Режимы ориентации экрана и вывода строк и столбцов

Для того, чтобы занесенное в память изображение при перевороте экрана «вверх ногами» выглядело точно так же, следует сместить нумерацию колонок на 30 позиций (при этом режим на зеркальный не меняется), а вывод строк изменить на зеркальный (см. рисунок 3.6).

Рисунок 3.6 – Ориентация экрана

Типичная последовательность инициализации выглядит следующим образом:

- -0x40 установка начальной строки скроллинга =0 (без скроллинга);
- 0хА1 зеркальный режим адресации столбцов;
- 0хС0 нормальный режим адресации строк;
- 0xA4 запрет режима включения всех пискселей (на экран отображается содержимое памяти);
 - 0хА6 отключение инверсного режима экрана;
 - 0хА2 смещение напряжения делителя 1/9;
 - 0x2F включение питания усилителя, регулятора и повторителя;
 - 0x27, 0x81, 0x10 установка контраста;
 - 0xFA, 0x90 установка температурной компенсации -0.11%/°С;
 - 0хАГ включение экрана.

Типичная последовательность действий при включении питания, входе и выходе в режим ожидания и при выключении питания изображены на рисунке 3.7. Контроллер ЖКИ при формировании сигнала сброса требует ожидания 5-10 мс, при включении питания ожидания не требуется.

Подробно о командах и работе с устройством можно прочитать в документации [23, 24].

Для работы с устройством на программном уровне вначале необходимо установить требуемый режим соответствующих выводов микроконтроллера, далее задать режим работы интерфейса USCI. После этого можно передавать команды на ЖКИ с учетом того, что уровень сигнала на части линий необходимо задавать вручную.

Рисунок 3.7 – Последовательность действий при включении/выключении ЖКИ и при входе/выходе в режим ожидания

3.3 Акселерометр СМА3000-D01

3-координатный акселерометр с цифровым выходом CMA3000-D01 обладает следующими возможностями:

- диапазон измерений задается программно (2g, 8g);
- питание 1.7 3.6 <u>B</u>;
- интерфейс SPI или I С задается программно;
- частота отсчетов (10, 40, 100, 400 Γ ц) задается программно;
- ток потребления в режиме сна 3 мкА;
- ток потребления при 10 отсчетах/сек 7 мкA, при 400 отсчетах/сек 70 мкA;
 - максимальная тактовая частота синхросигнала 500 КГц;
 - разрешение 18 mg (при диапазоне 2g), 71mg (при диапазоне 8g);
 - чувствительность 56 точек / g (при 2g), 14 точек / g (при 8g);

- режимы обнаружения движения и обнаружения свободного падения. Схема подключения акселерометра на макете MSP-EXP430F5529 приведена на рисунке 3.8, соответствие выводов устройства выводам микроконтроллера MSP430F5529 и их назначение приведены в таблице 3.5.

Рисунок 3.8 – Схема подключения акселерометра

Выводы СМА3000-D01	Обозначение линии на схеме	Назначение	Вывод MSP430F5529	Требуемый режим
VDD, DVIO	ACCEL_PWR	Напряжение питания	P3.6/TB0.6	P3.6
MISO	ACCEL_SOMI	Линия приема данных по интерфейсу SPI	P3.4 / UCA0RXD // UCA0SOMI	UCA0SOMI
INT	ACCEL_INT	Сигнал прерывания	P2.5/TA2.2	P2.5
CSB	ACCEL_CS	Выбор устройства	P3.5/TB0.5	P3.5
MOSI_SDA	ACCEL_SIMO	Линия передачи данных по интерфейсу SPI	P3.3 / UCA0TXD / UCA0SIMO	UCA0SIMO
SCK_SCL	ACCEL_SCK	Синхросигнал	P2.7 / UCB0STC / / UCA0CLK	UCA0CLK

стандартном режиме измерения акселерометр работает следующими сочетаниями диапазона измерений и частоты отсчетов: 2g — 400 Гц, 100 Гц; 8g — 400 Гц, 100 Гц, 40 Гц. В этом режиме используется фильтрация нижних частот, прерывание выставляется при готовности новых данных отключено И может быть программно. Флаг прерывания сбрасывается автоматически при чтении данных.

В режиме определения свободного падения допустимы следующие сочетания диапазона измерений и частоты отсчетов: 2g — 400 Гц, 100 Гц; 8g — 400 Гц, 100 Гц. Аналогично используется фильтр нижних частот,

прерывание выставляется при обнаружении свободного падения, при этом пороги срабатывания (время, ускорение) могут изменяться программно.

Режим определения движения использует только диапазон 8g с частотой отсчетов 10 Гц. В этом режиме происходит фильтрация по полосе пропускания 1,3 — 3,8 Гц, а прерывание выставляется при обнаружении движения. Пороги срабатывания (время, ускорение) могут изменяться программно, кроме того, может быть установлен режим перехода в режим измерения 400 Гц после обнаружения движения.

Сигнал сброса формируется внутренней цепью. После сброса читаются калибровочные и конфигурационные данные, хранящиеся в памяти. Бит PERR=0 регистра STATUS определяет успешность чтения этих данных. Запись последовательности 02h, 0Ah, 04h в RSTR регистр выполняет программный сброс устройства. После инициализации по сбросу акселерометр автоматически переходит в режим отключенного питания. Состояние регистров данных в этом режиме сохраняется. Программно этот режим устанавливается битами МОDE = 000b или 111b в CTRL регистре.

Состав и назначение регистров и отдельных полей регистров акселерометра приведены в таблицах 3.6 — 3.7.

Таблица 3.6 – Регистры акселерометра

Регистр	Адрес	Чтение/ запись	Назначение
WHO_AM_I	0h	R	Идентификационный регистр
REVID	1h	R	Версия ASIC
CTRL	2h	RW	Регистр управления
STATUS	3h	R	Регистр состояния
RSTR	4h	RW	Регистр сброса
INT_STATUS	5h	R	Регистр состояния прерывания
DOUTX	6h	R	Регистр данных канала X
DOUTY	7h	R	Регистр данных канала Ү
DOUTZ	8h	R	Регистр данных канала Z
MDTHR	9h	RW	Регистр порога ускорения в режиме обнаружения движения
MDFFTMR	Ah	RW	Регистр порога времени в режимах обнаружения движения и свободного падения
FF_THR	Bh	RW	Регистр порога ускорения в режиме обнаружения свободного падения
I2C_ADDR	Ch	R	Адрес устройства для протокола I ² C

Выбор интерфейса (SPI или I^2C) осуществляется при помощи сигнала выбора кристалла, при этом I^2C может быть отключен программно. Акселерометр всегда работает в ведомом (Slave) режиме по 4-проводному

соединению. Физические эквиваленты измеренного значения каждого бита в зависимости от режима приведены на рисунке 3.9.

Таблица 3.7 – Отдельные поля регистров акселерометра

Регистр	Биты	Поле	Назначение						
	7	G_RANGE	Диапазон. 0 — 8g, 1 - 2g						
	6	INT_LEVEL	Активный уровень сигнала прерывания: 0 - высокий, 1 - низкий						
	5	MDET_EXIT	Переход в режим измерения после обнаружения движения						
	4	I2C_DIS	2 Выбор интерфейса I С: 0 — разрешен, 1 - запрещен						
			Режим:						
CTRL			000 — отключено питание						
			001 — измерение, 100 Гц						
			10 — измерение, 400 Гц						
	1-3	MODE[20]	11 — измерение, 40 Гц						
			100 — обнаружение движения, 10 Гц						
			101 — обнаружение свободного падения, 100 Гц						
			110 — обнаружение свободного падения, 400 Гц						
			111 — отключено питание						
	0	INT_DIS	Запрещение прерывания (1 - отключен)						
STATUS	3	PORST	Флаг состояния сброса. Чтение всегда сбрасывает в 0						
SIAIUS	0	PERR	Флаг ошибки четности EEPROM						
RSTR	0-7	RSTR	Запись 02h, 0Ah, 04h выполняет сброс устройства						
	2	FFDET	Флаг обнаружения свободного падения						
INT_STATUS	0-1	MDET[10]	Флаг обнаружения движения: 00 — нет, 01 - X , 10 - Y,11-Z						

Диапазон	G_RANGE	Частота отсчетов	В7	В6	B5	B4	В3	B2	B1	В0
2g	1	400 Hz, 100 Hz	s	1142	571	286	143	71	36	1/56 = 18 mg
2g	1	40 Hz, 10 Hz	S	4571	2286	1142	571	286	143	1/14 = 71 mg
8g	0	400 Hz, 100 Hz	s	4571	2286	1142	571	286	143	1/14 = 71 mg
8g	0	40 Hz, 10 Hz	s	4571	2286	1142	571	286	143	1/14 = 71 mg
s = знак		,								

Рисунок 3.9 – Физический эквивалент отдельных бит при измерении

Формат фрейма для одного обмена с устройством приведен на рисунке 3.10. Фрейм содержит 2 байта (16 бит). Первый байт содержит адрес регистра (первые 6 бит) и тип операции (R/W, 7 бит), 8 бит = 0. Второй байт содержит данные (при записи), и что угодно (при чтении). Поскольку тактовый сигнал выставляется на линию Master-устройством, то при чтении все-равно

необходимо выполнять холостую операцию записи. Данные заносятся в регистр по переднему фронту синхросигнала. При этом на линии MISO в первом байте первый бит не определен, второй — 0, потом 3 бита статуса сброса, далее следует 010, а второй байт при операции чтения содержит данные. При высоком CSB (устройство не выбрано), линия MISO находится в высокоимпедансном состоянии. Данные выставляются на MISO по заднему фронту, поэтому читать линию надо по переднему фронту. Пример операции чтения приведен на рисунке 3.11, а допустимые временные задержки — на рисунке 3.12.

Рисунок 3.10 – Формат фрейма

Рисунок 3.11 – Пример операции чтения данных

Рисунок 3.12 – Временные параметры обмена

На рисунке обозначены следующие временные соотношения, которые необходимы для нормального функционирования акселерометра:

- T_{LS1} время от CSB до SCK, не менее 0,8 мкс;
- T_{LS2} время от SCK до CSB, не менее 0,8 мкс;
- T_{CL} длительность низкого SCK, не менее 0,8 мкс;
- T_{CH} длительность высокого SCK, не менее 0,8 мкс;
- T_{SET} время установки данных (до SCK), не менее 0,5 мкс;
- T_{HOL} время удержания данных (от SCK до изменения MOSI), не менее 0.5 мкс:
 - TVAL1 время от CSB до стабилизации MISO, не более 0,5 мкс;
- T_{LZ} время от снятия CSB до высокоимпедансного MISO, не более 0,5 мкс;
 - TVAL2 время от спада SCK до стабилизации MISO, не более 0,75 мкс;
- T_{LH} задержка между SPI циклами (высокий CSB), не менее 22 мкс. На рисунке 3.13 приведена типичная последовательность действий при инициализации акселерометра.

Рисунок 3.13 – Типичная последовательность при инициализации СМА3000-D01

Подробно о командах и работе с устройством можно прочитать в документации [25, 26].

Для работы с устройством на программном уровне вначале необходимо установить требуемый режим соответствующих выводов микроконтроллера,

далее задать режим работы интерфейса USCI. После этого можно передавать команды на акселерометр с учетом того, что уровень сигнала на части линий необходимо задавать вручную.

3.4 Измерение

Линии интерфейса SPI (USCI_B1) микроконтроллера выведены на разъем J5, и их можно наблюдать с помощью внешних приборов, например, осциллографа либо мультиметра. По каналу B1 подключен ЖКИ экран. Состав этих выводов указан в таблице 3.8. Уровень сигнала на линии можно измерить, подключив щупы осциллографа к соответствующему выводу разъема и GND разъема J5.

Таблица 3.8 – Выводы разъема J5

Vcc	P7.0, CB8, A12
P4.2, UCB1SOMI, UCB1SCL - SD	P7.1, CB9, A13
P4.1, UCB1SIMO, UCB1SDA – LCD/SD	P7.2, CB10, A14
P4.3, UCB1CLK, UCA1STE – LCD/SD	P7.3, CB11, A15
P4.0, UCB1STE, UCA1CLK – RF	P4.1, UCB1SIMO, UCB1SDA – LCD/SD
P3.7, TB0OUTH, SVMOUT – SD	P4.2, UCB1SOMI, UCB1SCL - SD
GND	P7.7, TB0CLK, MCLK

4. Выполнение работы

4.1 Листинг кода

```
#include <msp430.h>
int mode = 0;
unsigned char number[12] [8] = { \{0x00,0xf0,0x90,0x90,0x90,0x90,0x90,0xf0\},
\{0x00,0xf0,0x80,0x80,0xf0,0x10,0x10,0xf0\},
\{0x00,0xf0,0x80,0x80,0xf0,0x80,0x80,0xf0\}
\{0x00,0x90,0x90,0x90,0xf0,0x80,0x80,0x80\}
\{0x00,0xf0,0x10,0x10,0xf0,0x80,0x80,0xf0\},\
{0x00,0xf0,0x10,0x10,0xf0,0x90,0x90,0xf0},
{0x00,0xf0,0x80,0x80,0x80,0x40,0x20,0x10},
\{0x00,0xf0,0x90,0x90,0xf0,0x90,0x90,0xf0\},
\{0x00,0xf0,0x90,0x90,0xf0,0x80,0x80,0xf0\}
char cma3000 SPI(unsigned char byte1, unsigned char byte2) {
  char indata;
  P3OUT &= ~BIT5;
                                              //P3.5 SET "0" IS START SPI OPERATION
  indata = UCA0RXBUF;
  while(!(UCA0IFG & UCTXIFG));//WAIT TXIFG == TXBUF IS READY FOR NEW DATA
                                      //START SPI TRANSMIT. SEND FIRST BYTE
  UCA0TXBUF = byte1;
  while(!(UCA0IFG & UCRXIFG));//WAIT RXIFG == RXBUF HAVE NEW DATA
  indata = UCA0RXBUF;
while(!(UCA0IFG & UCTXIFG));//WAIT TXIFG == TXBUF IS READY FOR NEW DATA
  UCA0TXBUF = byte2; //START SPI TRANSMIT. SEND SECON while(!(UCA0IFG & UCRXIFG));//WAIT RXIFG == RXBUF HAVE NEW DATA
                                      //START SPI TRANSMIT. SEND SECOND BYTE
  indata = UCA0RXBUF;
                                      //READ SPI DATA FROM ACCEL. IN 2 BYTE IN READ COMMAND
  while(UCA0STAT & UCBUSY);
                                      //WAIT UNTIL USCI_A0 SPI INTERFACE IS NO LONGER BUSY //P3.5 SET "1" IS STOP SPI OPERATION
  P3OUT |= BIT5;
  return indata;
```

```
void DOGS102_SPI(unsigned char byte) {
        while (!(UCB1IFG & UCTXIFG));
        P7OUT &= ~BIT4;
                                                                 // CS=0, Начало SPI операции.
        UCB1TXBUF = byte;
                                                         // Начало передачи.
        while (UCB1STAŤ & UCBUSY);
        P7OUT |= BIT4;
void SetPos(char row, char page) {
        P5OUT &= ~BIT6;
                                                                 // Режим команды
        char low = row & 0xF;
        char high = row >> 4;
        DOGS102 SPI(low);
        DOGS102^{-}SPI(0x10 | high);
        page \&= 0xF;
        DOGS102_SPI(0xB0 | page);
}
void SetData(char data) {
  P5OUT |= BIT6;
                                                // Режим данных
  DOGS102_SPI(data);
void SetCmd(char cmd)
        P5OUT &= \simBIT6;
                                                         // Режим команды
        DOGS102 SPI(cmd);
void PutSymbol(int symbol, int position) {
        char page, row;
        switch(position) {
                case 0: page = -1; break;
                case 1: page = 0; break;
                case 2: page = 1; break;
                case 3: page = 2; break;
        if (!mode) {
                row = 132;
        } else {
                row = 102;
        int i, j = 0;
        for (i = row; i > row - 8; i--, j++) {
                SetPos(i, page);
                int data = number[symbol][j];
SetData(data);
        }
}
int main(void) {
  WDTCTL = WDTPW | WDTHOLD;
                                        // Stop watchdog timer
  TA0CCR0 = 0x2000;
  TAOCTL = TASSEL_SMCLK + MC_UP + TACLR + ID_1;
  TA1CCR0 = 0xFFFF;
  TA1CCTL0 = CCIE;
  TA1CTL = TASSEL SMCLK + MC UP + TACLR + ID 4;
        P1DIR &= ~BIT7;
        P1REN = BIT7;
        P1OUT = BIT7;
        P1IE |= BIT7;
P1IES |= BIT7
        P1IFG &= ~BIT7;
        // Сигнал прерывания акселерометра
                               //P2.5(CMA3000 PIN INT) INPUT
//P2.5(CMA3000 PIN INT) PULL-UP RESISTOR
        P2DIR &= ~BIT5;
        P2OUT \models BIT5;
        P2REN |= BIT5;
                               //P2.5(CMA3000 PIN INT) ENABLE RESISTOR
                             //P2.5(CMA3000 PIN INT) ÍNTERRUPT ENABLE
        P2IE |= BIT5;
        P2IES &= ~BIT5;
                                //P2.5(CMA3000 PIN INT) EDGE FOR INTERRUPT : LOW-TO-HIGH
```

```
P2IFG &= ~BIT5;
                                //P2.5(CMA3000 PIN INT) CLEAR INT FLAG
        // Выбор устройства
        P3DIR |= BIT5;
                              //P3.5(CMA3000 PIN CSB) SET AS OUTPUT
        P3OUT = BIT5;
                              //P3.5(CMA3000 PIN CSB) SET "1" IS DISABLE CMA3000
        // Синхросигнал
       P2DIR = BIT7;
P2SEL = BIT7;
                              //P3.5(CMA3000 PIN SCK) SET AS OUTPUT
                              //DEVICE MODE: P2.7 IS UCA0CLK
        // Линия передачи по SPI и Линия приема по SPI
        P3DIR |= (BIT3 | BIT6); //P3.5 & P3.6(CMA3000 PIN MOSI, PWR) SET AS OUTPUT
       P3DIR &= ~BIT4; //P3.4(CMA3000 PIN MISO) SET AS INPUT
P3SEL |= (BIT3 | BIT4); //DEVICE MODE : P3.3 - UCA0SIMO, P3.4 - UCA0SOMI
        P3OUT |= BIT6;
                               //P3.6(CMA3000 PIN PWR) SET "1" IS POWER CMA3000
  P5DIR
                |= BIT6 | BIT7;// CD и RST устанавливаем на выход.
                = BIT4 | BIT6;// CS и ENA устанавливаем на выход.
  P7DIR
                = BIT4 | BIT6;// CS & ENA no select on bkLED.
  P7OUT
  P4DIR
                = BIT1 | BIT3; // SCK и SDA устанавливаем на выход.
                |= BIT1 | BIT3;// Режим устройста для SCK и SDA = UCB1SIMO & UCB1CLK
  P4SEL
  P5OUT
                %= ~ВІТ7;// Сброс при нуле.
    delay_cycles(25000);
  P5OUT
                |= BIT7;// Снимаем флаг сброса.
   delay_cycles(125000);
  // для акселерометра
  UCA0CTL1 = UCSWRST;
  UCA0CTL0 = UCSYNC | UCMST | UCMSB | UCCKPH; // sync Master MSB
  UCA0CTL1 |= UCSWRST | UCSSEL_SMCLK; // выбор источника ТИ
  UCA0BR0 = 0x30; // младший байт делителя частоты
  UCA0BR1 = 0:
  UCA0MCTL = 0;
  UCA0CTL1 &= ~UCSWRST;
  // для ЖКИ
  UCB1CTL1 |= UCSWRST;// Сброс логики интерфейса.
  UCB1CTL0 = UCSYNC | UCMST | UCMSB | UCCKPH;// Синхронный режим, тактирование генератором
  UCB1CTL1 |= UCSWRST | UCSSEL SMCLK;
  UCB1BR0
               = 0x30;// Деление частоты, младшая и старшая части.
  UCB1BR1
  UCB1CTL1 &= ~ÚCSWRST;// Снимаем бит сброса и разрешаем работу модуля
  P5OUT &= ~BIT6; // Режим: команда
  DOGS102 SPI(0x2F); //Power On
  DOGS102 SPI(0xAF); //Display On
  int i, j; for (i = 30; i < 132; ++i) { (i = 30; i < 132; ++j) {
        SetPos(i, j);
        SetData(0);
  cma3000_SPI(0x4, 0);
    delay cycles(1250);
  \overline{\text{cm}}a300\overline{\text{0}} SPI(0xA, BIT7 | BIT4 | BIT2);
    delay_cycles(25000);
    bis SR register(GIE);
    no operation();
        return 0;
#pragma vector= TIMER0_A0_VECTOR
__interrupt void TIMER0_AO_ISR(void) {
        if(!(P1IN \& BIT7)) {
                        PutSymbol(11,0);
                        PutSymbol(11,1);
                        PutSymbol(11,2);
                        PutSymbol(11,3);
                        // меняем режим адресации
                        if(mode)
                                SetCmd(0xA0);
                        else {
                                SetCmd(0xA1);
```

}

```
mode = !mode;
            P1IE |= BIT7;
TA0CCTL0 &= ~CCIE;
             TA0CCTL0 &= ~CCIFG;
#pragma vector = PORT1_VECTOR
__interrupt void PORT1_ISR(void) {
   P1IE &= ~BIT7;
TA0CCTL0 = CCIE;
TA0CTL |= TACLR;
P1IFG &= ~BIT7;
#pragma vector = TIMER1_A0_VECTOR
__interrupt void TIMER1_AO_ISR(void) {
    int symbol, i;
            signed char value;
value = cma3000_SPI(0x18, 0); //0x18 - X
            if(value \leq 0) {
                         PutSymbol(10,0); value *= -1;
            else {
                         PutSymbol(11,0);
            for ( i = 3; i > 0; i--) {
symbol = value % 10;
                         value /= 10;
                         PutSymbol(symbol,i);
            P2IFG &= ~BIT5;
}
```

4 Выводы

В ходе лабораторной работы были изучены принципы организации последовательного интерфейса SPI и подключения устройств на его основе на базе микроконтроллера MSP430F5529. В результате выполнения работы была написана программа, выводящие данные акселерометра на ЖКИ и проанализированы диаграмма работы интерфейса SPI ЖКИ