Review recall $F_X = free group on X$

given a group G:

S sub G is a generating set
 iff no smaller subgroup of G contains S
 iff the homomorphism F_S to G is surjective

in this case:

R sub F_S is a set of relations wrt S
 iff ker(F_S to G) is the smallest kernel, i.e.,
 normal subgp of F_S, containing R

then we can speak of a presentation of G by generators and relations: $G = \langle S | R \rangle$ if $R = \emptyset$, then $G = F_S$ and we write $G = \langle S \rangle$ Rem any G has an "obvious" gen'ting set S:

[pause: what is it?]

take S = G itself

[but usually we prefer to study smaller S]

Ex take G = Z

what is a one-elt gen'ting set? [pause]

 $S = \{1\}$ works [but also another:]

 $S = \{-1\}$ also works

what is a two-elt gen'ting set without ± 1 ? [pause] [e.g.] $S = \{2, 3\}$

if S = {1}, then what is ker(F_S to Z)? [pause] it only contains the empty word

so we have the presentation Z = <1>

[note: even though $S = \{1\}$, not 1, we omit the $\{\}$]

if S = {2, 3}, then ker(F_S to Z) is much messier [e.g., it contains the word 2223^{-1}3^{-1} but this elt alone does not generate the kernel] [let's move to a similar but more useful ex]

<u>Ex</u> let $G = Z^2$ [under coordinate-wise +]

what is a generating set? [pause]

 $S = \{(1, 0), (0, 1)\}$ works

write a = (1, 0) and b = (0, 1)

what is ker(F_S to Z^2)? [pause]

elts of F_S are words in a, b, a^{-1}, b^{-1} if such a word contains

Ma's,

N b's,

 $M' a^{-1}$'s,

N' b^{-1}'s

then it is mapped to (M - M', N - N') in Z^2 , so

e.g., for any w, v in F_S, it contains
the <u>commutator</u> [w, v] := wvw^{-1}v^{-1}
[here w^{-1} means the group inverse to w]

Fact ([follows from] Munkres 69.3-69.4)

- {[w, v] | w, v in F_S} is a generating set for ker(F_S to Z^2)
- the kernel is the smallest normal subgp containing [a, b]

[defer proof for now]

altogether, get the presentation

$$Z^2 = \langle a = (1, 0), b = (0, 1) \mid aba^{-1}b^{-1}\rangle$$

Free Products [goal: Seifert–van Kampen:] given groups $G_1 = \langle S_1 \mid R_1 \rangle,$ $G_2 = \langle S_2 \mid R_2 \rangle:$

Df 1 the free product of
$$G_1$$
 and G_2 is $G_1 * G_2 = cup $S2 \mid R1$ cup $R2>$$

<u>Problem</u> a priori, G_1 * G_2 could depend on how we present G_1 and G_2

[to solve this issue:]

{hom's Φ : G to K}

Df 2 a free product of G_1, G_2 is a group G with maps I_1 : G_1 to G, I_2 : G_2 to G s.t., for any group K, we have a bijection

{pairs of hom's ϕ_1 : G_1 to K, ϕ_2 : G_2 to K} =

given explicitly by $\phi_1 = \Phi \circ \iota_1$ and $\phi_2 = \Phi \circ \iota_2$

Thm the free product in definition #2 is unique up to iso [in fact, "unique iso"]

<u>Pf</u> if (G, ı_1, ı_2), (G', ı'_1, ı'_2) both work

taking $\phi_k = \iota'_k$ above gives a hom Φ : G to G' s.t. $\iota'_k = \Phi \circ \iota_k$

taking $\phi_k = \iota_k$ above gives a hom Φ' : G' to G s.t. $\iota_k = \Phi' \circ \iota'_k$

substituting, $I_k = \Phi' \circ \Phi \circ I_k$ so under the defining bijection for G, id_G and $\Phi' \circ \Phi$ both correspond to (I_1 , I_2) [pause: what next?] so id_G = $\Phi' \circ \Phi$ similarly, id_{G'} = $\Phi \circ \Phi'$

so Φ and Φ' are each other's two-sided inverses \hdots

[thm + proof illustrate "category-theoretic" ideas]

<u>Lem</u> $G_1 * G_2$ in defn #1 satisfies defn #2

Pf left as exercise

 $\underline{\mathsf{Ex}}$ the free group F_2 is isomorphic to Z * Z

more generally, the free product is associative: F_n is isomorphic to Z * Z * ... * Z with n copies

<u>Ex</u> let $G = \{e, s\}$, the two-elt group how to write down elts of G * G? [pause]

need to distinguish two copies of s: say, "s" and "t"

 $G * G = \{e, s, t, st, ts, sts, tst, ...\}$

(Munkres §70) [but slightly changed notation]

 $\frac{Thm}{(Seifert-van Kampen)} \ \ take open inclusions \\ j_1: U_1 \ to \ X, \\ i \ 2: U \ 2 \ to \ X$

s.t. $X = U_1 \text{ cup } U_2$, $U := U_1 \text{ cap } U_2 \text{ is path-connected}$

let i_1 : U to U_1 and i_2 : U to U_2 be inclusion then for any x in U:

1) the homomorphism $\pi_{-}1(U_{-}1,\,x)*\pi_{-}1(U_{-}2,\,x) \text{ to } \pi_{-}1(X,\,x)$ arising from (j_{1,*}, j_{2,*}) via the defn of free product is <u>surjective</u>

the kernel of the homomorphism is the smallest normal subgp of the domain containing the elts of the form $i_\{1,^*\}([\gamma])^{-1}\}\ i_\{2,^*\}([\gamma])$ as we run over elts $[\gamma]$ in $\pi_1(U, x)$ [above, $i_\{k,^*\}([\gamma])$ in $\pi_1(U_k, x)$, but then we implicitly embed it into the free product]

Cor $\pi_1(X, x)$ is generated by the union of $\pi_1(U_1, x)$ and $\pi_1(U_2, x)$

Cor if there are open U_1, U_2 sub X s.t.

U_1, U_2 are simply-connected,

X = U_1 cap U_2,

U_1 cap U_2 is path-connected,

then X is simply-connected

[we stated the latter corollary in a previous class]

<u>Ex</u> take a figure-eight:

[draw]

take open U_1, U_2 s.t.

they deformation retract onto the two loops U_1 cap U_2 def. retracts onto the middle pt

[draw]

then
$$\pi_1(U_1, x) = \pi_1(U_2, x) = \pi_1(S^1) = Z$$

so
$$\pi_1(\text{figure-eight}, x) = Z * Z = F_2$$