

$$\Sigma = \{\mathtt{A},\mathtt{B},\ldots,\mathtt{Z},\mathtt{a},\mathtt{b},\ldots,\mathtt{z}, \lrcorner\}$$

$$T = {\tt Bart_played_darts_at_the_party}$$

$$P = art$$

$$\Sigma = \{\mathtt{A},\mathtt{B},\ldots,\mathtt{Z},\mathtt{a},\mathtt{b},\ldots,\mathtt{z}, \llcorner\}$$

$$T = {\tt Bart_played_darts_at_the_party}$$

$$P = art$$

$$T = Bart_played_darts_at_the_party$$

$$P = art$$

$$\Sigma = \{\mathtt{A},\mathtt{C},\mathtt{G},\mathtt{T}\}$$

$$T = \texttt{ACGTGCTTGCAGTGTGCATTACCTGAGTGC}...$$

$$P = \mathsf{GTG}$$

$$T = Bart_played_darts_at_the_party$$

$$P = art$$

$$\Sigma = \{\mathtt{A},\mathtt{C},\mathtt{G},\mathtt{T}\}$$

$$T = \texttt{ACGTGCTTGCAGTGTGCATTACCTGAGTGC}...$$

$$P = \mathsf{GTG}$$

One-shot:

- Both the text and the pattern are part of the input
- Algorithm design problem

One-shot:

- Both the text and the pattern are part of the input
- Algorithm design problem

Repeated:

- The text is **static** and known beforehand (can be preprocessed)
- Patterns are revealed on-demand
- We want to answer each query as quickly as possible
- Data structure design problem

One-shot:

- Both the text and the pattern are part of the input
- Algorithm design problem

Repeated:

- The text is **static** and known beforehand (can be preprocessed)
- Patterns are revealed on-demand
- We want to answer each query as quickly as possible
- Data structure design problem

Data structure to store a dynamic collection of k strings over an alphabet Σ

```
\Sigma = \{ \texttt{A}, \texttt{D}, \texttt{E}, \texttt{G}, \texttt{R}, \texttt{S}, \texttt{T} \} \{ \texttt{RAD}, \texttt{RADAR}, \texttt{RAGE}, \texttt{RAGE}, \texttt{RAGS}, \texttt{RATE} \}
```

- Insert(T): add T to the collection of strings
- **Delete**(T): remove T from the collection of strings
- Find(P): return whether P is in the collection

Data structure to store a dynamic collection of k strings over an alphabet Σ

```
\Sigma = \{ \texttt{A}, \texttt{D}, \texttt{E}, \texttt{G}, \texttt{R}, \texttt{S}, \texttt{T} \} \{ \ \texttt{RAD} \,, \ \ \texttt{RADAR} \,, \ \ \texttt{RAGE} \,, \ \ \texttt{RAGS} \,, \ \ \ \texttt{RATE} \ \}
```

- Insert(T): add T to the collection of strings
- **Delete**(T): remove T from the collection of strings
- Find(P): return whether P is in the collection

Obs: A string comparison requires time O(string length). Binary searching requires time $O(\text{max string length} \cdot \log k)$

Data structure to store a dynamic collection of k strings over an alphabet Σ

```
\Sigma = \{ \texttt{A}, \texttt{D}, \texttt{E}, \texttt{G}, \texttt{R}, \texttt{S}, \texttt{T} \} \{ \texttt{RAD}, \texttt{RADAR}, \texttt{RAGE}, \texttt{RAGE}, \texttt{RAGS}, \texttt{RATE} \}
```

- Insert(T): add T to the collection of strings
- **Delete**(T): remove T from the collection of strings
- Find(P): return whether P is in the collection
- ullet Count/return the strings in the collection that start with P

Data structure to store a dynamic collection of k strings over an alphabet Σ

```
\Sigma = \{ \texttt{A}, \texttt{D}, \texttt{E}, \texttt{G}, \texttt{R}, \texttt{S}, \texttt{T} \} \{ \texttt{RAD}, \texttt{RADAR}, \texttt{RAGE}, \texttt{RAGE}, \texttt{RAGS}, \texttt{RATE} \}
```

- Insert(T): add T to the collection of strings
- **Delete**(T): remove T from the collection of strings
- Find(P): return whether P is in the collection
- ullet Count/return the strings in the collection that start with P
- **Predecessor**(T): return the largest string in the collection that is "not smaller than" T (w.r.t. the lexicopraphic order)

Data structure to store a dynamic collection of k strings over an alphabet Σ

```
\Sigma = \{ \texttt{A}, \texttt{D}, \texttt{E}, \texttt{G}, \texttt{R}, \texttt{S}, \texttt{T} \} \{ \texttt{RAD}, \texttt{RADAR}, \texttt{RAGE}, \texttt{RAGE}, \texttt{RAGS}, \texttt{RATE} \}
```

- **Insert**(T). add T to the collection of strings
- **Delete**(T): remove T from the collection of strings
- Find(P): return whether P is in the collection
- ullet Count/return the strings in the collection that start with P
- **Predecessor**(T): return the largest string in the collection that is "not smaller than" T (w.r.t. the lexicopraphic order)

We will only focus on the static case

Pretend that each string ends with a special "end marker" symbol \$

RAD RADAR RAG RAGE RAGS RATE

Pretend that each string ends with a special "end marker" symbol \$

RAD\$ RADAR\$ RAG\$ RAGE\$ RAGS\$ RATE\$

Pretend that each string ends with a special "end marker" symbol \$

RAD\$ RADAR\$ RAG\$ RAGE\$ RAGS\$ RATE\$

Build a tree in which:

• Edges are labelled with a symbol in $\Sigma \cup \{\$\}$ and are sorted

Pretend that each string ends with a special "end marker" symbol \$

RAD\$ RADAR\$ RAG\$ RAGE\$ RAGS\$ RATE\$

- Edges are labelled with a symbol in $\Sigma \cup \{\$\}$ and are sorted
- Each string T_i corresponds to a root-to-leaf path and vice-versa

Pretend that each string ends with a special "end marker" symbol \$

- Edges are labelled with a symbol in $\Sigma \cup \{\$\}$ and are sorted
- \bullet Each string T_i corresponds to a root-to-leaf path and vice-versa
- Satellite data is often useful, e.g.:
- Number of \$s in each subtree

Pretend that each string ends with a special "end marker" symbol \$

RAD\$ RADAR\$ RAG\$ RAGE\$ RAGS\$ RATE\$

- Edges are labelled with a symbol in $\Sigma \cup \{\$\}$ and are sorted
- Each string T_i corresponds to a root-to-leaf path and vice-versa
- Satellite data is often useful, e.g.:
- Number of \$s in each subtree
- Pointers to the first/last leaf in the subtree

Pretend that each string ends with a special "end marker" symbol \$

RAD\$ RADAR\$ RAG\$ RAGE\$ RAGS\$ RATE\$

Build a tree in which:

• Edges are labelled with a symbol in $\Sigma \cup \{\$\}$ and are sorted

• Each string T_i corresponds to a root-to-leaf path and vice-versa

• Satellite data is often useful, e.g.:

— Number of \$s in each subtree

— Pointers to the first/last leaf in the subtree

Pointers from leaves to strings

Pretend that each string ends with a special "end marker" symbol \$

RAD\$ RADAR\$ RAG\$ RAGE\$ RAGS\$ RATE\$

- Edges are labelled with a symbol in $\Sigma \cup \{\$\}$ and are sorted
- Each string T_i corresponds to a root-to-leaf path and vice-versa
- Satellite data is often useful, e.g.:
- Number of \$s in each subtree
- Pointers to the first/last leaf in the subtree`
- Pointers from leaves to strings
- Leaves arranged in a (doubly) linked list

Find(P):

ullet Walk down the tree matching the characters in P\$ with the edge labels

Find(P):

ullet Walk down the tree matching the characters in P\$ with the edge labels

 $P = \mathtt{RAG}$

Find(P):

• Walk down the tree matching the characters in P\$ with the edge labels

To count the number of strings that start with P:

Find the node corresponding to P

P = RAG

Find(P):

• Walk down the tree matching the characters in P\$ with the edge labels

To count the number of strings that start with P:

- ullet Find the node corresponding to P
- Return the number of \$s in the subtree (stored in the node)

 $P = \mathtt{RAG}$

Find(P):

• Walk down the tree matching the characters in P\$ with the edge labels

To count the number of strings that start with P:

- ullet Find the node corresponding to P
- Return the number of \$s in the subtree (stored in the node)
- ullet The actual matches can be listed in O(1) additional time per match by following pointers

Predecessor(T):

• Walk down a path $\langle v_0, v_1, v_2 \dots \rangle$ of the tree matching the characters in T\$ with the edge labels

Predecessor(T):

• Walk down a path $\langle v_0, v_1, v_2 \dots \rangle$ of the tree matching the characters in T\$ with the edge labels

- Walk down a path $\langle v_0, v_1, v_2 \dots \rangle$ of the tree matching the characters in T\$ with the edge labels
- If T\$ is found we are done
- Otherwise, stop at the node v_i matching the longest prefix $T_1T_2...T_i$

$$T$$
\$ = $T_1T_2T_3...$

T = RAG

- Walk down a path $\langle v_0, v_1, v_2 \dots \rangle$ of the tree matching the characters in T\$ with the edge labels
- If T\$ is found we are done
- Otherwise, stop at the node v_i matching the longest prefix $T_1T_2...T_i$
- Find the deepest ancestor of v_i of v_i (possibly v_i itself) such that T_i has a strict predecessor u w.r.t. v_i .

$$T\$ = T_1 T_2 T_3 \dots$$

$T = \mathtt{RAG}$

RADAR

- Walk down a path $\langle v_0, v_1, v_2 \dots \rangle$ of the tree matching the characters in T\$ with the edge labels
- If T\$ is found we are done
- Otherwise, stop at the node v_i matching the longest prefix $T_1T_2 \dots T_i$
- Find the deepest ancestor of v_j of v_i (possibly v_i itself) such that T_j has a strict predecessor u w.r.t. v_j .
- ullet Follow the pointers from u to the maximum string in its subtree

$$T\$ = T_1 T_2 T_3 \dots$$

 $T = \mathtt{RAG}$

R.ADAR

The strict predecessor of $\sigma \in \Sigma$ w.r.t. a node v, if it exists, is the child u of v such that (v,u) has the largest label that is smaller than σ

- Walk down a path $\langle v_0, v_1, v_2 \dots \rangle$ of the tree matching the characters in T\$ with the edge labels
- If T\$ is found we are done
- Otherwise, stop at the node v_i matching the longest prefix $T_1T_2...T_i$
- Find the deepest ancestor of v_j of v_i (possibly v_i itself) such that T_j has a strict predecessor u w.r.t. v_j .
- ullet Follow the pointers from u to the maximum string in its subtree

$$T\$ = T_1 T_2 T_3 \dots$$

 $T = \mathtt{RAG}$

RADAR

The strict predecessor of $\sigma \in \Sigma$ w.r.t. a node v, if it exists, is the child u of v such that (v,u) has the largest label that is smaller than σ

Predecessor(T):

- Walk down a path $\langle v_0, v_1, v_2 \dots \rangle$ of the tree matching the characters in T\$ with the edge labels
- If T\$ is found we are done
- Otherwise, stop at the node v_i matching the longest prefix $T_1T_2...T_i$
- Find the deepest ancestor of v_j of v_i (possibly v_i itself) such that T_j has a strict predecessor u w.r.t. v_j .
- ullet Follow the pointers from u to the maximum string in its subtree

Depends on how the tree is stored

Representing Tries

Array (dense)

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Representing Tries

Array (dense)

Space: $O(|\Sigma|)$

Time to find a symbol's edge: O(1)

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (dense)

Space: $O(|\Sigma|)$

Time to find a symbol's edge: O(1)

Time to find predecessor: $O(|\Sigma|)$

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (dense)

Space: $O(|\Sigma|)$

Time to find a symbol's edge: O(1)

Time to find predecessor: $O(|\Sigma|)$

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (dense)

Space: $O(|\Sigma|)$

Time to find a symbol's edge: O(1)

Time to find predecessor: O(1)

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (dense)

Space: $O(|\Sigma|)$

Time to find a symbol's edge: O(1)

Time to find predecessor: O(1)

Overall space: $O(|\Sigma| \cdot n)$

Overall time: O(|P|)

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (sparse)

$$a: \begin{array}{c|c} D & \bullet & G & \bullet & T & \bullet \\ \hline b & c & d & \end{array}$$

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (sparse)

Balanced Binary Search Tree

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (sparse)

Balanced Binary Search Tree

Space: O(#children)

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (sparse)

Balanced Binary Search Tree

Space: O(#children)

Time to find a symbol's edge/predecessor: $O(\log \# \text{children}) = O(\log |\Sigma|)$

$$n = \# \mathsf{nodes} = O\left(\sum_{i} |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Array (sparse)

Balanced Binary Search Tree

Space: O(#children)

Time to find a symbol's edge/predecessor: $O(\log \# \text{children}) = O(\log |\Sigma|)$

$$n = \#\mathsf{nodes} = O\left(\sum_i |T_i|\right)$$

$$\Sigma = \{\mathtt{A},\mathtt{D},\mathtt{E},\mathtt{G},\mathtt{R},\mathtt{S},\mathtt{T}\}$$

Overall space: O(n)

Overall time: $O(|P| \log |\Sigma|)$

Weight-Balanced BSTs

 $n = \#nodes = O\left(\sum_{i} |T_{i}|\right)$

Each vertex of the trie has a weight equal to the number of leaves in its subtree

Recursively construct a binary search tree by splitting the children in the trie so that the sum of their weights is as balanced as possible

3

1

Weight-Balanced BSTs

 $n = \#nodes = O\left(\sum_{i} |T_{i}|\right)$

Each vertex of the trie has a weight equal to the number of leaves in its subtree

Recursively construct a binary search tree by splitting the children in the trie so that the sum of their weights is as balanced as possible

Weight-Balanced BSTs

 $n = \#nodes = O\left(\sum_{i} |T_{i}|\right)$

Each vertex of the trie has a weight equal to the number of leaves in its subtree

Recursively construct a binary search tree by splitting the children in the trie so that the sum of their weights is as balanced as possible

Weight-Balanced BSTs

 $n = \#nodes = O\left(\sum_{i} |T_{i}|\right)$

Each vertex of the trie has a weight equal to the number of leaves in its subtree

Recursively construct a binary search tree by splitting the children in the trie so that the sum of their weights is as balanced as possible

Space: O(#children)

Overall space: O(n)

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

Imagine the leaves in the subtree of \boldsymbol{v} as consecutive segments with length equal to their weight

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

Imagine the leaves in the subtree of \boldsymbol{v} as consecutive segments with length equal to their weight

If the interval $\left[\frac{1}{3}w(v), \frac{2}{3}w(v)\right]$ contains more than one segment:

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

Imagine the leaves in the subtree of \boldsymbol{v} as consecutive segments with length equal to their weight

If the interval $\left[\frac{1}{3}w(v), \frac{2}{3}w(v)\right]$ contains more than one segment:

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

Imagine the leaves in the subtree of \boldsymbol{v} as consecutive segments with length equal to their weight

If the interval $\left[\frac{1}{3}w(v), \frac{2}{3}w(v)\right]$ contains more than one segment:

ullet the weight of each children of v is at most $\frac{2}{3}w(v)$

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

If the interval $[\frac{1}{3}w(v), \frac{2}{3}w(v)]$ contains a single segment, let x be the

corresponding leaf

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

If the interval $[\frac{1}{3}w(v), \frac{2}{3}w(v)]$ contains a single segment, let x be the

corresponding leaf

• v splits the segments immediately before/after x.

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

If the interval $\left[\frac{1}{3}w(v), \frac{2}{3}w(v)\right]$ contains a single segment, let x be the

corresponding leaf

ullet v splits the segments immediately before/after x.

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

If the interval $\left[\frac{1}{3}w(v), \frac{2}{3}w(v)\right]$ contains a single segment, let x be the

corresponding leaf

- ullet v splits the segments immediately before/after x.
- Let v' be the child of v that contains x and let v'' be the other child
- $\bullet \ w(v'') \le \frac{1}{3}w(v).$

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

If the interval $\left[\frac{1}{3}w(v), \frac{2}{3}w(v)\right]$ contains a single segment, let x be the

corresponding leaf

ullet v splits the segments immediately before/after x.

- $\bullet \ w(v'') \le \frac{1}{3}w(v).$
- x is the first or last leaf in the subtree of v' and $w(x) \geq \frac{1}{2}w(v')$

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

If the interval $[\frac{1}{3}w(v), \frac{2}{3}w(v)]$ contains a single segment, let x be the

corresponding leaf

• v splits the segments immediately before/after x.

- Let v' be the child of v that contains x and let v'' be the other child
- $\bullet \ w(v'') \le \frac{1}{3}w(v).$
- x is the first or last leaf in the subtree of v' and $w(x) \geq \frac{1}{2}w(v')$
- One child of v' is x and the other child weighs $\leq \frac{1}{2}w(v') \leq \frac{1}{2}w(v)$

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

Traversing two edges of a weight-balanced BST either:

 Brings us to the next node in the trie, i.e., we advance one character into P; or

Can only happen O(|P|) times

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

Traversing two edges of a weight-balanced BST either:

 Brings us to the next node in the trie, i.e., we advance one character into P; or

Can only happen O(|P|) times

• Reduces the weight (i.e, the number of leaves in the trie reachable from the current node) by 2/3

Can only happen $O(\log_{3/2} \# \text{leaves}) = O(\log k)$ times

Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy $w(u) \leq \frac{2}{3}(v)$ or are leaves.

Traversing two edges of a weight-balanced BST either:

 Brings us to the next node in the trie, i.e., we advance one character into P; or

Can only happen O(|P|) times

• Reduces the weight (i.e, the number of leaves in the trie reachable from the current node) by 2/3

Can only happen $O(\log_{3/2} \# \text{leaves}) = O(\log k)$ times

Overall space: O(n) Overall time: $O(|P| + \log k)$

	Space	Query Time
Array (dense)	$O(\Sigma \cdot n)$	O(P)
Array (sparse) / BST	O(n)	$O(P \log \Sigma)$
Weight-balanced BST	O(n)	$O(P + \log k)$

	Space	Query Time
Array (dense)	$O(\Sigma \cdot n)$	O(P)
Array (sparse) / BST	O(n)	$O(P \log \Sigma)$
Weight-balanced BST	$O(\underline{n})$	$O(P + \log k)$
Optimal		

	Space	Query Time
Array (dense)	$O(\Sigma \cdot n)$	O(P)
Array (sparse) / BST	O(n)	$O(P \log \Sigma)$
Weight-balanced BST	$O(\underline{n})$	$O(P + \log k)$
		Can we get rid of this term?

	Space	Query Time
Array (dense)	$O(\Sigma \cdot n)$	O(P)
Array (sparse) / BST	O(n)	$O(P \log \Sigma)$
Weight-balanced BST	$O(\underline{n})$	$O(P + \log k)$
		Can we get rid of this term?
		Almost
Optimal		

We can use a similar technique to the one we encountered while designing level ancestor oracles

We can use a similar technique to the one we encountered while designing level ancestor oracles

Find the set M of all maximally deep vertices with at least $|\Sigma|$ descendants

We can use a similar technique to the one we encountered while designing level ancestor oracles

Find the set M of all maximally deep vertices with at least $|\Sigma|$ descendants

We can use a similar technique to the one we encountered while designing level ancestor oracles

Find the set M of all maximally deep vertices with at least $|\Sigma|$ descendants

Split the trie into a tree T' containing all the ancestors of the vertices in M and several bottom-trees in $T \setminus T'$.

We can use a similar technique to the one we encountered while designing level ancestor oracles

Find the set M of all maximally deep vertices with at least $|\Sigma|$ descendants

Split the trie into a tree T' containing all the ancestors of the vertices in M and several bottom-trees in $T \setminus T'$.

We can use a similar technique to the one we encountered while designing level ancestor oracles

Find the set M of all maximally deep vertices with at least $|\Sigma|$ descendants

Split the trie into a tree T' containing all the ancestors of the vertices in M and several bottom-trees in $T \setminus T'$.

Storing the top tree:

The number of leaves of T' is at most $\frac{n}{|\Sigma|}$

Fact: A tree with ℓ leaves has at most $\ell-1$ branching nodes (i.e., nodes with at least 2 children)

Storing the top tree:

The number of leaves of T' is at most $\frac{n}{|\Sigma|}$

Fact: A tree with ℓ leaves has at most $\ell-1$ branching nodes (i.e., nodes with at least 2 children)

• Store leaves using dense arrays

Space
$$O(|\Sigma| \cdot \frac{n}{|\Sigma|}) = O(n)$$

Storing the top tree:

The number of leaves of T' is at most $\frac{n}{|\Sigma|}$

Fact: A tree with ℓ leaves has at most $\ell-1$ branching nodes (i.e., nodes with at least 2 children)

- Store leaves using dense arrays
- Store branching nodes using dense arrays

Space
$$O(|\Sigma| \cdot \frac{n}{|\Sigma|}) = O(n)$$

$$O(|\Sigma| \cdot \frac{n}{|\Sigma|}) = O(n)$$

Storing the top tree:

The number of leaves of T' is at most $\frac{n}{|\Sigma|}$

Fact: A tree with ℓ leaves has at most $\ell-1$ branching nodes (i.e., nodes with at least 2 children)

Space

- Store leaves using dense arrays
- Store branching nodes using dense arrays

- $O(|\Sigma| \cdot \frac{n}{|\Sigma|}) = O(n)$
- $O(|\Sigma| \cdot \frac{\overline{n}}{|\Sigma|}) = O(n)$
- Store the unique child of each non-branching nodes explicitly O(n)

Storing the top tree:

The number of leaves of T' is at most $\frac{n}{|\Sigma|}$

Fact: A tree with ℓ leaves has at most $\ell-1$ branching nodes (i.e., nodes with at least 2 children) Space

- Store leaves using dense arrays
- Store branching nodes using dense arrays

$$O(|\Sigma| \cdot \frac{n}{|\Sigma|}) = O(n)$$

$$O(|\Sigma| \cdot \frac{\overline{n}}{|\Sigma|}) = O(n)$$

• Store the unique child of each non-branching nodes explicitly O(n)

Time to find the next node O(1)

Storing the top tree:

The number of leaves of T' is at most $\frac{n}{|\Sigma|}$

Fact: A tree with ℓ leaves has at most $\ell-1$ branching nodes (i.e., nodes with at least 2 children)

Space

• Store leaves using dense arrays

$$O(|\Sigma| \cdot \frac{n}{|\Sigma|}) = O(n)$$

Store branching nodes using dense arrays

$$O(|\Sigma| \cdot \frac{\overline{n}}{|\Sigma|}) = O(n)$$

• Store the unique child of each non-branching nodes explicitly O(n)

Time to find the next node O(1)

Storing the bottom trees:

Store each bottom tree using a weight-balanced BST

Total space of all bottom trees: O(n)

Storing the top tree:

The number of leaves of T' is at most $\frac{n}{|\Sigma|}$

Fact: A tree with ℓ leaves has at most $\ell-1$ branching nodes (i.e., nodes with at least 2 children) **Space**

- Store leaves using dense arrays
- $O(|\Sigma| \cdot \frac{n}{|\Sigma|}) = O(n)$ $O(|\Sigma| \cdot \frac{n}{|\Sigma|}) = O(n)$ Store branching nodes using dense arrays
- Store the unique child of each non-branching nodes explicitly O(n)

Time to find the next node O(1)

Storing the bottom trees:

- Store each bottom tree using a weight-balanced BST Total space of all bottom trees: O(n)
- ullet Each bottom tree has at most $|\Sigma|$ leaves Time to navigate a bottom tree: $O(|P| + \log |\Sigma|)$

Representing Tries: Recap

Space	Query Time
$O(\Sigma \cdot n)$	O(P)
O(n)	$O(P \log \Sigma)$
O(n)	$O(P + \log k)$
O(n)	$O(P + \log \Sigma)$
	$O(\Sigma \cdot n)$ $O(n)$

Can be made dynamic with a time complexity of $O(|T| + \log |\Sigma|)$ per insertion/deletion of T

Sort a collection of k strings T_1, T_2, \ldots, T_k over Σ

$$L = \max_{i=1,\dots,k} |T_i|$$

Obs: A string comparison requires time O(L). Naive sorting algorithm take time $O(Lk \log k)$ or O(Lk)

Sort a collection of k strings T_1, T_2, \ldots, T_k over Σ

$$L = \max_{i=1,\dots,k} |T_i|$$

Obs: A string comparison requires time O(L). Naive sorting algorithm take time $O(Lk \log k)$ or O(Lk)

- Create an empty trie
- For i = 1, ..., k:
 - Insert T_i into the trie
- An in-order visit of the trie returns the strings in lexicographic order

Sort a collection of k strings T_1, T_2, \ldots, T_k over Σ

$$L = \max_{i=1,\dots,k} |T_i|$$

Obs: A string comparison requires time O(L). Naive sorting algorithm take time $O(Lk \log k)$ or O(Lk)

- Create an empty trie
- For i = 1, ..., k:
 - Insert T_i into the trie

Time

$$O\left(\sum_{i=1}^{k} (|T_i| + \log |\Sigma|)\right)$$

 An in-order visit of the trie returns the strings in lexicographic order

Sort a collection of k strings T_1, T_2, \ldots, T_k over Σ

$$L = \max_{i=1,\dots,k} |T_i|$$

Obs: A string comparison requires time O(L). Naive sorting algorithm take time $O(Lk \log k)$ or O(Lk)

- Create an empty trie
- For i = 1, ..., k:
 - Insert T_i into the trie

Time

$$O(n + k \log |\Sigma|))$$

 An in-order visit of the trie returns the strings in lexicographic order

Sort a collection of k strings T_1, T_2, \ldots, T_k over Σ

$$L = \max_{i=1,\dots,k} |T_i|$$

Obs: A string comparison requires time O(L). Naive sorting algorithm take time $O(Lk \log k)$ or O(Lk)

- Create an empty trie
- For i = 1, ..., k:
 - Insert T_i into the trie

Time

$$O(n + k \log |\Sigma|))$$

• An in-order visit of the trie returns the strings in O(n) lexicographic order

Sort a collection of k strings T_1, T_2, \ldots, T_k over Σ

$$L = \max_{i=1,\dots,k} |T_i|$$

Obs: A string comparison requires time O(L). Naive sorting algorithm take time $O(Lk \log k)$ or O(Lk)

- Create an empty trie
- For i = 1, ..., k:
 - Insert T_i into the trie

Time

$$O(n + k \log |\Sigma|))$$

• An in-order visit of the trie returns the strings in O(n) lexicographic order

Overall time:
$$O(n + k \log |\Sigma|)$$

Among all the destinations that match, a packet gets routed to the one with the most specific rule

Packet

Src: 192.168.42.10

Dst: 101.167.200.15

Routing Table

Destination	Interface
169.0.0.0/11	eth1
169.48.0.0/12	ppp0
169.128.0.0/10	eth1
169.160.0.0/11	eth0
96.0.0.0/3	tun1
96.0.0.0/5	tun0
100.0.0.0/8	eth0
127.0.0.0/8	lo
default	wlan0

Among all the destinations that match, a packet gets routed to the one with the most specific rule

Packet

Src: 192.168.42.10

Dst: 0110010110100111...

Routing Table

Destination	Interface
10101001000\$	eth1
101010010011\$	ppp0
1010100110\$	eth1
10101001101\$	eth0
011\$	tun1
011000\$	tun0
01100100\$	eth0
01111111\$	lo
\$	wlan0

Among all the destinations that match, a packet gets routed to the one with the most specific rule

Packet

Src: 192.168.42.10

Dst: 0110010110100111...

Routing Table

Destination	Interface
10101001000\$	eth1
101010010011\$	ppp0
1010100110\$	eth1
10101001101\$	eth0
011\$	tun1
011000\$	tun0
01100100\$	eth0
01111111\$	lo
\$	wlan0

Among all the destinations that match, a packet gets routed to the one with the most specific rule

Packet

Src: 192.168.42.10

Dst: 0110010110100111...

P

Routing Table

Destination	Interface
10101001000\$	eth1
101010010011\$	ppp0
1010100110\$	eth1
10101001101\$	eth0
011\$	tun1
011000\$	tun0
01100100\$	eth0
01111111\$	lo
\$	wlan0

Given a pattern P we want the longest string in our collection that appears as a prefix of P

Build a trie T with all the addresses in the routing table.

ullet Find the node v corresponding to the maximal prefix that matches P

Build a trie T with all the addresses in the routing table.

ullet Find the node v corresponding to the maximal prefix that matches P

- ullet Find the node v corresponding to the maximal prefix that matches P
- Walk up the tree searching for the deepest ancestor u of v incident to a "\$" edge towards a leaf ℓ

- ullet Find the node v corresponding to the maximal prefix that matches P
- Walk up the tree searching for the deepest ancestor u of v incident to a "\$" edge towards a leaf ℓ
- ullet Route the packet towards the interface stored in ℓ

- ullet Find the node v corresponding to the maximal prefix that matches P
- Walk up the tree searching for the deepest ancestor u of v incident to a "\$" edge towards a leaf ℓ
- ullet Route the packet towards the interface stored in ℓ

- ullet Find the node v corresponding to the maximal prefix that matches P
- Walk up the tree searching for the deepest ancestor u of v incident to a "\$" edge towards a leaf ℓ
- ullet Route the packet towards the interface stored in ℓ

- ullet Find the node v corresponding to the maximal prefix that matches P
- Walk up the tree searching for the deepest ancestor u of v incident to a "\$" edge towards a leaf ℓ
- ullet Route the packet towards the interface stored in ℓ

- ullet Find the node v corresponding to the maximal prefix that matches P
- Walk up the tree searching for the deepest ancestor u of v incident to a "\$" edge towards a leaf ℓ
- ullet Route the packet towards the interface stored in ℓ

Build a trie T with all the addresses in the routing table.

- ullet Find the node v corresponding to the maximal prefix that matches P
- Walk up the tree searching for the deepest ancestor u of v incident to a "\$" edge towards a leaf ℓ
- ullet Route the packet towards the interface stored in ℓ

Time: O(address length)

Contract non-branching paths to a single edge labelled with the corresponding substring

Contract non-branching paths to a single edge labelled with the corresponding substring

Contract non-branching paths to a single edge labelled with the corresponding substring

Contract non-branching paths to a single edge labelled with the corresponding substring

Previous constructions apply

Use the first character on each edge as the key

Store edge labels as indices in the input strings

Back to String Matching

Problem: Given an alphabet Σ , a text $T \in \Sigma^*$ and a pattern $P \in \Sigma^*$, find some occurrence/all occurrences of P in T.

$$\Sigma = \{\mathtt{A},\mathtt{B},\ldots,\mathtt{Z},\mathtt{a},\mathtt{b},\ldots,\mathtt{z}, \lrcorner\}$$

$$T = Bart_played_darts_at_the_party$$

$$P = art$$

Want: A data structure that can preprocesses T and answer string matching queries

The **suffix tree** of T is the compressed trie of all the suffixes of T\$

$$\Sigma = \{\mathtt{A},\mathtt{B},\mathtt{N},\mathtt{S}\}$$
 $T = \mathtt{BANANAS}$

The **suffix tree** of T is the compressed trie of all the suffixes of T\$

```
\Sigma = \{ {	t A}, {	t B}, {	t N}, {	t S} \} T = {	t BANANAS} T = {	t BANANAS}
```

1 ANANAS\$

O BANANAS\$

The **suffix tree** of T is the compressed trie of all the suffixes of T\$

01234567

$$\Sigma = \{\mathtt{A},\mathtt{B},\mathtt{N},\mathtt{S}\}$$
 $T = \mathtt{BANANAS}$

- 7 \$
- 6 S\$
- 5 AS\$
- 4 NAS\$
- 3 ANAS\$
- 2 NANAS\$
- 1 ANANAS\$
- O BANANAS\$

Suffix Trees

The **suffix tree** of T is the compressed trie of all the suffixes of T\$

01234567

 $\Sigma = \{\mathtt{A},\mathtt{B},\mathtt{N},\mathtt{S}\}$ $T = \mathtt{BANANAS}$ 7 \$ 6 S\$ 5 AS\$ 4 NAS\$ 3 ANAS\$ 2 NANAS\$ 1 ANANAS\$

BANANAS\$

Label edges with indices into T

Label leaves with the index of the start of the corresponding suffix

Suffix Trees

The **suffix tree** of T is the compressed trie of all the suffixes of T\$

01234567

 $\Sigma = \{A, B, N, S\}$ T = BANANAS7 \$ 6 S\$ 5 AS\$ 4 NAS\$ 3 ANAS\$ 2 NANAS\$ 1 ANANAS\$ BANANAS\$

Label edges with indices into T

Label leaves with the index of the start of the corresponding suffix

Space: O(# nodes) = O(# leaves) = O(|T|)

Searching for a pattern P returns a compact representation of **all** occurrences of P in T

- ullet Find the node v corresponding to P
- ullet The occurrences of P are all and only the leaves in the subtree of v

Searching for a pattern P returns a compact representation of **all** occurrences of P in T

- ullet Find the node v corresponding to P
- ullet The occurrences of P are all and only the leaves in the subtree of v
- ullet Arrange leaves in a linked list to find the next match in O(1) time

Searching for a pattern P returns a compact representation of **all** occurrences of P in T

- ullet Find the node v corresponding to P
- ullet The occurrences of P are all and only the leaves in the subtree of v
- ullet Arrange leaves in a linked list to find the next match in O(1) time

Time: $O(|P| + \log |\Sigma| + \# \text{desired matches})$

Searching for a pattern P returns a compact representation of **all** occurrences of P in T

- ullet Find the node v corresponding to P
- ullet The occurrences of P are all and only the leaves in the subtree of v
- ullet Arrange leaves in a linked list to find the next match in O(1) time

Time: $O(|P| + \log |\Sigma| + \# \text{desired matches})$

Number of matches in time $O(|P| + \log |\Sigma|)$ (store # leaves in the subtree)

Find the longest string that appears at least twice in T as a substring:

Find the longest string that appears at least twice in ${\cal T}$ as a substring:

 Assign a length to each edge equal to the number of symbols in its label

Find the longest string that appears at least twice in T as a substring:

- Assign a length to each edge equal to the number of symbols in its label
- Find the deepest (w.r.t. edge lengths) node with at least two descendants

Find the longest string that appears at least twice in T as a substring:

- Assign a length to each edge equal to the number of symbols in its label
- Find the deepest (w.r.t. edge lengths) node with at least two descendants

Time: O(|T|)

Given indicies i and j, find the longest common prefix of T[i:] and T[j:]

• Look at the leaves u_i , u_j corresponding to T[i:] and T[j:]

Given indicies i and j, find the longest common prefix of T[i:] and T[j:]

- Look at the leaves u_i , u_j corresponding to T[i:] and T[j:]
- ullet Find the common prefix of the paths from the root to u_i and u_j

Given indicies i and j, find the longest common prefix of T[i:] and T[j:]

- Look at the leaves u_i , u_j corresponding to T[i:] and T[j:]
- ullet Find the common prefix of the paths from the root to u_i and u_j
- ullet This is the path from the root to the lowest common ancestor of u_i and u_j

Given indicies i and j, find the longest common prefix of T[i:] and T[j:]

- Look at the leaves u_i , u_j corresponding to T[i:] and T[j:]
- ullet Find the common prefix of the paths from the root to u_i and u_j
- ullet This is the path from the root to the lowest common ancestor of u_i and u_j

We already know how to answer LCA queries in constant time!

Given an occurrence T[i:j] of P in T, find all other occurrences of P:

ullet We want to quickly find the node that corresponds to P

Given an occurrence T[i:j] of P in T, find all other occurrences of P:

- ullet We want to quickly find the node that corresponds to P
- Start from the leaf corresponding to T[i:]

Given an occurrence T[i:j] of P in T, find all other occurrences of P:

- ullet We want to quickly find the node that corresponds to P
- Start from the leaf corresponding to T[i:]
- Walk **up** the tree for "|T| j" characters

Given an occurrence T[i:j] of P in T, find all other occurrences of P:

- ullet We want to quickly find the node that corresponds to P
- Start from the leaf corresponding to T[i:]
- Walk **up** the tree for "|T| j" characters
- This is a weighted level ancestor query!

Given an occurrence T[i:j] of P in T, find all other occurrences of P:

- ullet We want to quickly find the node that corresponds to P
- Start from the leaf corresponding to T[i:]
- Walk **up** the tree for "|T| j" characters
- This is a weighted level ancestor query!

We can answer weighted LA queries in $O(\log \log |T|)$ time!

Given an occurrence T[i:j] of P in T, find all other occurrences of P:

- ullet We want to quickly find the node that corresponds to P
- Start from the leaf corresponding to T[i:]
- Walk **up** the tree for "|T| j" characters
- This is a weighted level ancestor query!
- Link leaves to find the other occurrences in O(1) additional time each

We can answer weighted LA queries in $O(\log \log |T|)$ time!

Preprocess collection of documents T_1, T_2, \ldots, T_k to quickly find all documents that contain a pattern P

Preprocess collection of documents T_1, T_2, \ldots, T_k to quickly find all documents that contain a pattern P

Use the end symbol $\$_i$ for document T_i and build a suffix-tree with the suffxes of all the strings $T_i\$_i$

Preprocess collection of documents T_1, T_2, \ldots, T_k to quickly find all documents that contain a pattern P

Use the end symbol $\$_i$ for document T_i and build a suffix-tree with the suffxes of all the strings $T_i\$_i$

 $\mathtt{sausage}\$_1 \ \mathtt{sugar}\$_2 \ \mathtt{samosa}\$_3 \ \mathtt{salsa}\$_4$ $\$_2$ $\$_3$

Store an array A where A[i] poinst to the document of leaf i

Searching for a pattern P returns the interval A[i:j] containing all and only the leaves corresponding to the matches of P

Store an array A where A[i] poinst to the document of leaf i

Searching for a pattern P returns the interval A[i:j] containing all and only the leaves corresponding to the matches of P

Find all distinct documents (colors) in A[i:j]

Store an array A where A[i] poinst to the document of leaf i

Searching for a pattern P retuonly the leaves corresponding

Find all distinct documents (co

Time:

 $O(|P| + \log |\Sigma| + \# \text{ retrieved documents})$ via range minimum queries

Constructing Suffix Trees & Suffix Arrays

 $T = \mathtt{BANANAS}$

Sort all suffixes along with their start index

- 0 BANANAS\$
- 1 ANANAS\$
- 2 NANAS\$
- 3 ANAS\$
- 4 NAS\$
- 5 AS\$
- 6 S\$
- 7 \$

```
T = \mathtt{BANANAS}
```

Sort all suffixes along with their start index

- 7 \$
- 1 ANANAS\$
- 3 ANAS\$
- 5 AS\$
- 0 BANANAS\$
- 2 NANAS\$
- 4 NAS\$
- 6 S\$

```
T = \mathtt{BANANAS}
```

Sort all suffixes along with their start index

```
$
ANANAS$
ANAS$
AS$
BANANAS$
NANAS$
NAS$
S$
Suffix
array
```

```
T = \mathtt{BANANAS}
```

Length of the longest common prefix between adjacent suffixes (w.r.t. the sorted order) —

```
$
ANANAS$
ANAS$
AS$
BANANAS$
NANAS$
NAS$
S$
```

Suffix

array

 $T = \mathtt{BANANAS}$

Length of the longest common prefix between adjacent suffixes (w r t the sorted order) >

T = BANANAS

Length of the longest common prefix between adjacent suffixes (w.r.t. the sorted order) —

We can construct a suffix tree from the Suffix and LCP arrays

A construction similar to the one of cartesian trees yields the subtree of branching vertices

T = BANANAS

Length of the longest common prefix between adjacent suffixes (w.r.t. the sorted order) \

We can construct a suffix tree from the Suffix and LCP arrays

T = BANANAS

Length of the longest common prefix between adjacent suffixes (w.r.t. the sorted order) \

We can construct a suffix tree from the Suffix and LCP arrays

T = BANANAS

Length of the longest common prefix between adjacent suffixes (w.r.t. the sorted order) \

We can construct a suffix tree from the Suffix and LCP arrays

T = BANANAS

Length of the longest common prefix between adjacent suffixes (w.r.t. the sorted order) \

We can construct a suffix tree from the Suffix and LCP arrays

T = BANANAS

Length of the longest common prefix between adjacent suffixes (w.r.t. the sorted order) \

We can construct a suffix tree from the Suffix and LCP arrays

 $T = \mathtt{BANANAS}$

Length of the longest common prefix between adjacent suffixes (w.r.t. the sorted order) —

We can construct a suffix tree from the Suffix and LCP arrays

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

Construction time (from Suffix + LCP Arrays): O(|T|)

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

Construction time (from Suffix + LCP Arrays): O(|T|)

Suffix + LCP Arrays can be built in O(|T|) time

[J. Kärkkäinen, P. Sanders, ICALP'03]

Branching vertices are labelled with their *letter depth*, i.e., the number of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

Construction time (from Suffix + LCP Arrays): O(|T|)

Suffix + LCP Arrays can be built in O(|T|) time

[J. Kärkkäinen, P. Sanders, ICALP'03]

Suffix trees can be built in O(|T|) time!