ANSWER BOOKLET LIVRET DE RÉPONSES **CUADERNILLO DE RESPUESTAS**

del

Candid		er: / Numéro de session du convocatoria del alumno:	
At the star	rt of each answer to a q vez son numéro à la mai	uestion, write the question number in dans la case appropriée / Al comic Example 27 2 7 Ejemplo 27	in the box using your normal hand writing / Avant de répondre à une question de cada respuesta, escriba a mano el número de pregunta en la casilla. Example Ejemplo 3
0	<u>(a)</u>		<u> </u>
		MANN	$f(x) = \sqrt{x^2 - 1}$
		(-2,1.73)	(2,1.73) AI AO
		(01-1)-	(6,1) 2
	(b)(i)	$x = \sqrt{y^2 + y^2}$ $y^2 + y^2 = x^2 + y^2$ $y^2 = x^2 + y^2$	
		$y = \sqrt{x^2 + 1}$ $f'(x) = \sqrt{x^2 + 1}$	3
	(ii)	Domain: E	(X7/ 32 }.
		0	19 € -1, 971}
		DOMOIN: 3 X	0 \ x \ \ 1.73 \ \

	$V = \pi \int_{0}^{k} (x^{2}+1) dy$
-	$= \pi \left[\frac{1}{3}y^3 + y\right]_0^{h}$
-	$= \pi \left(\frac{1}{3}h^3 + h - 0\right)$ $= \pi \left(\frac{1}{3}h^3 + h\right)$
	$(ii) \qquad \qquad \forall = \pi \left(\frac{1}{3} h^3 + h\right)$
	$\frac{dV_{th}}{dt} = \pi \pi h + \pi$
	$\frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{3}{100} \frac{1}{100} \frac{1}{100} \frac{3}{100} \frac{1}{100} \frac{3}{100} \frac{1}{100} \frac{3}{100} \frac{1}{100} \frac{3}{100} \frac{1}{100} \frac{3}{100} \frac{3}$
	$= \frac{11}{h \cdot 3} \frac{3}{h^2}$
	$= \prod_{n \to \infty} \left(\frac{1}{3/n^3} \right)$ $\therefore \sqrt{\max} = \infty$
	VMAX OCCURS at h= 1.73
	: $V_{MAX} = \pi \left(\frac{1}{3}(1.73)^{3} + 1.73\right)$ = 10.857 : $V_{MAX} \approx 10.9 \text{ m}^{3} \checkmark 2$

	(d) dV/dt = 0.4
الـ	at t=0, V=0
	If $\frac{d}{dt} = 0.4$, for
	V = 0.46
	:. 0.4t = 10.9857
7	: t = 27.142S = 2 : t = 27.1 s
-	0.07
	(e) $6.46 = \frac{10.857}{2}$
	:. t = 13,57125
	$V = \pi \left(\frac{1}{3}h^3 + h \right)$
	$\frac{dV}{dt} = \frac{\pi}{3}(3)h^2 dh + \pi dh M$
	$= \frac{dh}{dt} \left(\pi h^2 + \pi \right) \sqrt{A}$
	O. 4 = dh/L (Th2+11)
	M M
7	Who V= 5.4285, 5.4285 = TV (3h +h) = h = 1.18011 M In Susselle 3
الـ	<u> </u>
	= 0.4 = at (TI (1.18611) 2+17) VM
	dh/at = 0.0532 VMs-1 Al

