Day 4 Talk 4: Discussion
Provide Lane:
(1) Turkes ample Kez and what does derived mean.
mass (of madriss)
(3) Grading on HF"
(1) open-classed strong theory
(5) abstrations & convertise , has to do al
(Uszul duality and mulaters. Lefticletz fibrates
immersed Logizngians
Curved Aco - structures:
06 A
homa (x, Y)
ud: ham (k, X) on whan (x, X,)
Branchi hama (x, x,)[2-2] (2 = 0).
4 A (4 a) = 0 chan (x,x)
Ex: E-M wide bundle of connection
Ext F-M under bundle of connection
$\mathbf{A} = \mathbf{O} \cdot (\mathbf{M} \cdot \mathbf{F}_{\mathbf{G}} \cdot \mathbf{M} \in \mathbf{N})$
4'- dy 42=1, 40=F

Attendancy, just consider rategory at all such subjects, of throw away obstrated grys.
<u> </u>
(Food call this "filtored" Are alg.)
You can do this be thicked complexes, at once, but
Vosion of this yer on do which hasn't really been written down.
unter down.
The convection of protectively that, induced convecting
on End bundle Fi flat - (18 when I HHar
DECCIAN)
on End bundle Is flat - (Harb of HHas pe (C2 (A A) beiting rental). dp = 0. of ender t
consider App (not convec)
06 (Asp3) = {(x, a) \ 40+4(x)+2(x, x)+-3
why is this important? = po
$(H,\omega) q(H) = 0$
(H, w) C(H) = 0 small, ble as hol. dishs of one a small, ble as hol. dishs of one a (A) L small, ble as hol. dishs of one a the short of the controlled by w((S)). A short of the controlled by w((S)).
(11) Lay = boundaries of
halo.discs

my 30 50 lue 40+41(5) 2
gradually, step by step-
Ex: L3 cH6, c,(H) = 0
H'(L) = H2(L) = 0
=> = () = (ni tos Edo suyun E ()
(i.o. can solve, to solve uniquely)
For other cases, generally an intim-them's space at paths/choices
physics: Objects (L. A E D'(L.R))
w/ =0, FA =0 (foguatee good conditors
physics: Objects (L, A E \(\Omega(L,R)\)) w _{L} = 0, FA = 0 (foguatee go or) considers in twisters or made() this is before indended connections. Actually, what is true is \(\frac{1}{2}\pi F_A = PD(40)\).
Actually, what is tree is = PD(40).
Max's examples form of correct p=const.oid=so con openionalise away. (c,(M)=f0, so not graded any more)
p=const. oid > 50 Car +translyke away.
(c,(M) fo, so not graded any more)

F) Jamesed Lagins (Juyce, ")
(lots of examples bexistace thus)
CF*(L, L) = C*(L) & (+) Z <x+y> (2xy)EL More complex 1(x)=1(y)</x+y>
(why where pairs? — *** (why where pairs? — *** (why where pairs? — ** (why
of holo discs + Mills claim: everything else is the same.
1.e. 4: H J43/2 / (im T(s) = x 3: R -2/
ex: (11) (1) Seams unabstracted to nated eye

Morally, think is all salitair to Maver-Caken as assing from isotypies?
Signs and gradings
Lo, L, CH
P={x:[0,1] -> M/u(0) FL, u(1) EL,}
P- U20/000
(1) H'(Uoo/Ooo) = Z> H'(F) obstration 2) H2(Uon/Ooo) = Z/2> H2(D; 2/2) obstration 2) H2(Uon/Ooo) = Z/2> H2(D; 2/2) obstration
La signs
(1) 2<, rel & HE (Mx [9]], Lo x 803 ~ L, x 813)
transgrassian 5
1+1(22) 1+1(22) 1+1(22)
(2) Wz (Lo) & Wz (Li) e H2 (Lo) & H2 (Li)
evaluation
++2(P; 7/2)
(suce various of facility Africally - Sugar incluse them.)

J-x ~ (TLo) x har (TL Thomas - Yau: apply this to uniquener special Logangian. This reproduces: the clustical grading in More theory. Signs: Pich a spin structure (not an and class, an spin structure) HF by (-1) -- rey messy-Families whole the P - 4/2 = Fredholm years 523 -> 52(4/v) == 72 x BOso

4 () M) ~~> J-op. on u *TM
with bandry values 120/MJ. on Lo, Ly. u : {0, l}r5^l → /1. compute using Atigah-Sunger Next obstration: H2(3; 2/2) -> H'(12P, 2/2) =-H'(2×BQQ, 2/2) deforment line of Fredholm opener m, (det ine bundle) If uvares, & you have a 1-pular. family of det-lines, what is the det. line bundle! touch a not family index thing. (Attych-Suger pl. 5)

Open-(10sed String Theory_
How does J=(-) fit into an O-C sto- themy?
Famal fleage
Open-closed: framed little disc opered.
$(00) (01) = \left\{ (0) \right\} = 5'$
$\frac{\mathcal{O}(2)}{2} = \frac{500}{500} = \frac{3}{7}$
$(\mathcal{I}(3) =$
spend by shouling disk Egother it, aligning maked
Algebrase H. (C): BV-algebra
7 quided vector space, deflective/
Δ2 V V [-1]
VXV ->V commutative, a scalative.

gen-inely new 3-Rold product
open-strong: cyclic Ass-structure
clocal-strangente: Cost Ft (chapendaging) field flow
Kantsarich - in general, some relativist between and
Manin, Giventa/
المراعات المعامد
strug sector
T W
still have V -+ CC*(W, W) Con FT homotopay BV
Con FT homo topy BV
If this is a quasi-is => Connes boundary operator vanishes
=> spectral sequence from [+(+*(w,w)[u]
to HC* (w,w) degoverates (comos 6).
is first differential).

We would like the speedal sequence
to degenerate anyway 1.e. gct a
mop of htopy CohFT's.
Kontrouch conjecture: If An strake "smooth"
get this degeneration.
inthin from Kithle glavely; degleration of
Hodge-delhan forms
On F, we have all these stuckes, in particular.
1-0 → [-,-]=0 on7.
i.o. V -> CC * (W, W) may of dglass
backet 80.
=> family of Ano-algebras over V
Chig Felenya category)
(restly well for, en, toric somether).
Cie. get a sheaf of Am cakes over V, bleer
Cie. get a sheaf of Am Cakessey over V, bleer at O isosoul Filmya Calegory)

con, e.g. déferm by c, uhich his some genetric significance. Ass (at storad deformation deg k prece or regale by 26. on the whole, insutisfactors. Contreally reconstruct V' form (C+ (h, h) In principle, known what you have to do to upgade htopy BV ~> (oh FT. Additional piece of into required (to do of Willing A)_ Frist mantestation is a power sero, In the variables on/volves in HC* (w, w). Gran W, have different chances of data, que different Confits. Group that acts on those is "Guestal's thisted loop group, " cf-Kern Costello."

here is also	solutely	aligher	gend be	edon of	14
		V	*		