

Differential and Integral Calculus 1 MS-A0111

P

Hakula

Orlich/Ardiyansyah Home Exam 1, 2020

Student ID: 887799

Note1

The due date is published on the course pages. Homework can be submitted only digitally. Instructions on labeling the answer sheets can be found on the course pages.

PROBLEM 1 Find the limit

$$\lim_{x \to 1} \frac{-\frac{31x^6}{1680} + \frac{43x^5}{80} - \frac{97x^4}{16} + \frac{1607x^3}{48} - \frac{1412x^2}{15} + \frac{7469x}{60} - \frac{408}{7}}{\frac{19x^5}{168} - \frac{383x^4}{168} + \frac{2819x^3}{168} - \frac{9385x^2}{168} + \frac{2291x}{28} - \frac{284}{7}}.$$

PROBLEM 2 Find the derivative of

$$f(x) = \sin(\tan(x))$$

at $x=2\pi$.

PROBLEM 3 Find the derivative of

$$f(x) = \sin(7x)\cos(5x)\tan(3x)$$

at $x = \frac{13\pi}{7}$.

PROBLEM 4 Find the Taylor polynomial of degree 5 of the function

$$f(x) = \cos(\sin(x))$$

about $a = \frac{8\pi}{7}$.

¹Published on 2020-09-30 19:30:12+03:00.

Figure 1: Dustpan design.

PROBLEM 5 Equal squares are cut out of two adjacent coners of a sheet metal having sides of length 7056 units. The three resulting flaps are bent up, as shown in Figure 1, to form the sides of a dustpan. Find the maximum volume of a dustpan made this way.