LINUX NETWORKING MODULE 6 ASSESSMENT SOLUTION

-BY SAKTHI KUMAR S

3. Given a network address of 10.0.0.0/24, divide it into 4 equal subnets. Calculate the new subnet mask. Determine the valid host range for each subnet. Assign IP addresses to devices in Packet Tracer and verify connectivity

Given Network: 10.0.0.0/24

• CIDR Notation: /24 (Subnet Mask: 255.255.255.0)

• Total Addresses in /24: $2^8 = 256$

Dividing into 4 Equal Subnets:

• New Subnet Mask: /26 (255.255.255.192)

• Each Subnet has:

 $64 \text{ total IPs } (2^{(32-26)} = 64)$

o 62 usable host IPs (Subtracting Network & Broadcast IPs)

Subnet	Network	Usable IP Range	Broadcast Address
	Address	_	
Subnet 1	10.0.0.0/26	10.0.0.1 - 10.0.0.62	10.0.0.63
Subnet 2	10.0.0.64/26	10.0.0.65 - 10.0.0.126	10.0.0.127
Subnet 3	10.0.0.128/26	10.0.0.129 - 10.0.0.190	10.0.0.191
Subnet 4	10.0.0.192/26	10.0.0.193 - 10.0.0.254	10.0.0.255

Topology:

PC NAME	ASSIGNED IP	SUBNET	DEFAULT	SUBNET
		MASK	GATEWAY	
PC0	10.0.0.10	255.255.255.192	10.0.0.1	10.0.0.0/26
PC1	10.0.0.20	255.255.255.192	10.0.0.1	10.0.0.0/26
PC2	10.0.0.70	255.255.255.192	10.0.0.65	10.0.0.64/26
PC3	10.0.0.80	255.255.255.192	10.0.0.65	10.0.0.64/26
PC4	10.0.0.130	255.255.255.192	10.0.0.129	10.0.0.128/26
PC5	10.0.0.140	255.255.255.192	10.0.0.129	10.0.0.128/26
PC6	10.0.0.200	255.255.255.192	10.0.0.193	10.0.0.192/26
PC7	10.0.0.210	255.255.255.192	10.0.0.193	10.0.0.192/26

Ping Tests and Tracert Test:

- From PC0, ping PC4: ping 10.0.0.130 and Traceroute to PC4: tracert 10.0.0.130
- From PC2, ping PC6: ping 10.0.0.200 and Traceroute to PC6: tracert 10.0.0.200
- From PC0, trace the route to PC7: tracert 10.0.0.210
- > Ping from Router1 to Router2 : ping 10.0.0.65, Router2 to Router1 : ping 10.0.0.1

Router>ping 10.0.0.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.0.0.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms