Лекция 9

Теория формальных языков (I)

(Конспект: А. Ю. Волков)

Эта лекция почти целиком состоит из определений.

9.1 Формальные языки

Будем называть $an\phi aвитом$ произвольное конечное множество (например, $\{0,1\}$ — алфавит). Строкой в алфавите Σ будет называться конечная последовательность его элементов (пустой строкой, обозначаемой ϵ , будет называться последовательность из нуля элементов).

Языком в алфавите Σ называется множество некоторых строк в алфавите Σ . Например: $\{\epsilon,1,00,01\}$. Или: $\{\underbrace{0\dots01\dots1}|n\in\mathbb{N}\}$.

Далее определим *регулярные выражения* в алфавите Σ . Они будут определяться индуктивно:

- \emptyset регулярное выражение;
- $\{\epsilon\}$ регулярное выражение;
- $\{a\}$ регулярное выражение (для каждого $a \in \Sigma$);
- Если A, B регулярные выражения, то $A \cup B$ тоже регулярное выражение;
- Если A, B регулярные выражения, то $A \cdot B$ тоже регулярное выражение;
- Если A регулярное выражение, то A^* тоже регулярное выражение.

Это определение исчерпывает все возможные регулярные выражения.

Каждое регулярное выражение определяет некоторый язык. Для большинства пунктов определения очевидно, какой язык имеется в виду; оставшиеся пункты:

- для данных языков A и B язык $A \cdot B$ состоит из строк вида ab, где $a \in A, b \in B$ (значок операции "точка" конкатенации строк часто опускается);
- $A^* = \{\epsilon\} \cup A \cup A \cdot A \cup A \cdot A \cdot A \dots$ (все конечные $A \cdot \dots \cdot A$).

Например, $(\{0\} \cup \{11\})^* \cdot \{000\}$ обозначает множество всех последовательностей нулей и пар единиц, заканчивающихся на три нуля.

9.2 Формальные грамматики

Формальной грамматикой называется упорядоченная четверка (N, Σ, S, R) , где

- N множество нетерминальных символов (будут обозначаться заглавными латинскими буквами),
- Σ множество *терминальных* символов (будут обозначаться маленькими латинскими буквами и цифрами),
- S стартовый символ $(S \in N)$,
- $R \subseteq (N \cup \Sigma)^* N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$ множество правил (вида $\alpha \to \beta$, где α, β произвольные строки терминалов и нетерминалов, но α содержит хотя бы один нетерминал).

Пример 9.1.
$$N=\{S,A\},\ \Sigma=\{0,1\}.$$
 Правила: $S\to 0S1,\ 0S\to 1A,\ A\to\epsilon.$

Для данной грамматики введем отношение выводимости:

- $\gamma \Rightarrow \delta$, если $\gamma = \gamma_1 \alpha \gamma_2$, $\delta = \gamma_1 \beta \gamma_2$ и существует правило $\alpha \to \beta$ из R;
- \Rightarrow^* транзитивно-рефлексивное замыкание \Rightarrow .

Пример 9.2. Продолжая пример 9.1: $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 01A11 \Rightarrow 0111; S \Rightarrow^* 01A11, S \Rightarrow^* 0111; S \Rightarrow^* S.$

Строка α , для которой $S \Rightarrow^* \alpha$, называется выводимой в данной грамматике. Язык L(G), порождаемый грамматикой G, состоит из всех строк терминалов, выводимых в ней, т.е. $L(G) = \{\alpha \in \Sigma^* | S \Rightarrow^* \alpha\}$.

Пример 9.3. В примере 9.2 указано три выводимых строки, но лишь одна из них (0111) попадает в язык, порождаемый рассматриваемой грамматикой (туда еще много строк попадает: он бесконечный).

Контекстно-зависимой (неукорачивающей) грамматикой называется грамматика, для каждого правила которой правая часть— не короче левой.

Грамматика называется бесконтекстной (контекстно-свободной), если все ее правила имеют вид $A \to \alpha \ (A \in N)$ (т.е. у каждого правила слева — ровно один символ).

Грамматика называется *праволинейной*, если каждое ее правило имеет вид $A \to \alpha, \ A \to \alpha B$ (где $\alpha \in \Sigma^*; \ A, B \in N$). (Замечание: не забудем, что $\epsilon \in \Sigma^*$.)

Две грамматики называются *эквивалентными*, если они порождают одинаковые языки.

Лемма 9.1. Для любой праволинейной грамматики G_1 , такой что $\epsilon \notin L(G_1)$, существует грамматика G_2 , эквивалентная G_1 , в которой имеются только правила вида $A \to a$ и $A \to aB$ (где $a \in \Sigma$; $A, B \in N$).

Доказательство. Введем обозначение \to^* для транзитивно-рефлексивного замыкания отношения \to . Пусть $S(A) = \{B \neq A \mid B \to^* A\}; S(\epsilon) = \{A \mid A \to^* \epsilon\}.$

Будем заменять правила G_1 :

- для каждого правила $A \to \gamma$, где $\gamma \notin N$, и для каждого $B \in S(A)$, добавим правило $B \to \gamma$;
- для каждого правила $A \to \gamma B$, где $\gamma \neq \epsilon$, и для каждого $B \in S(\epsilon)$, добавим правило $A \to \gamma$;
- ullet выкинем все правила вида $A \to B, \ A \to \epsilon$ (где $A, B \in N$).

Далее, если осталось правило $A \to ab\gamma$ (где $a, b \in \Sigma$), заменим это правило на два правила: $A \to aZ$, $Z \to b\gamma$, введя новый нетерминал Z. Так, постепенно укорачивая правила, мы заменим все правила на правила вида, требуемого в условии леммы.

Легко убедиться в том, что полученная грамматика эквивалентна исходной. \Box

9.3 Конечные автоматы

Hedemepминированный конечный автомат — упорядоченная пятерка $(Q, \Sigma, q_S, F, \delta)$, где

- Q конечное множество состояний,
- Σ алфавит,
- $q_S \in Q$ стартовое состояние,
- $F \subseteq Q$ множество конечных состояний,
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$ функция перехода.

Обозначение: будем писать $q_1 \xrightarrow{a} q_2$, если $q_2 \in \delta(q_1, a)$ (здесь $a \in \Sigma \cup \{\epsilon\}$).

Недетерминированному конечному автомату дают строку в алфавите Σ ; он, по очереди считывая ее символы, переходит из своего текущего состояния q (начинает он с $q=q_S$) в одно из состояний из множества $\delta(q,a)$ (считав символ $a\in\Sigma$) или одно из состояний из множества $\delta(q,\epsilon)$ (не считав ничего — такой переход называется ϵ -nepexodom).

Если таким образом он <u>может</u>¹ попасть в одно из состояний из F (полностью считав данную ему строку и, быть может, сделав несколько ϵ -переходов), то говорят, что он npuhumaem данную строку. Множество всех строк в алфавите Σ , принимаемых данным автоматом \mathcal{A} , называется numaemaim numaemai

(Продолжение секции 9.3 следует...)

 $^{^{1}}$ На каждом шаге у него может быть несколько возможностей; нас интересует "наилучший вариант".