

Pres. 1 – Aplicaciones Lógica Combinacional.

Electrónica Digital y Microcontroladores 09-07-2021

OBJETIVOS

- Diseñar circuitos fundamentales de lógica combinacional utilizando alguno de los métodos estudiados en clase:
 - Minitérminos o Maxitérminos.
 - Mapas de Karnaugh.
- Realizar una simulación del circuito utilizando el programa Logisim-evolution.
- Presentar aplicaciones de los diseños lógicos estudiados.

1. INSTRUCCIONES

En parejas, presente una de las aplicaciones de circuitos combinacionales utilizando alguno de los métodos estudiados en clases. La duración de su presentación debe durar entre 5 a 10 min.

2. APLICACIONES

RESTADOR BINARIO.

Diseñe un circuito restador (sin considerar restas con resultados negativos), para números de 3 bits cada uno.

- Referencias sugeridas:
 - o Diseño digital Morris Mano 3era edición, sección 4.

MULTIPLICADOR BINARIO.

Diseñe un circuito que permita multiplicar dos números binarios de 2bits cada uno.

- Referencias sugeridas:
 - o Diseño digital Morris Mano 3era edición, sección 4.6 Multiplicador Binario.

COMPARADORES.

Diseñe con comparador de 1 bits.

- Referencias sugeridas:
 - Diseño digital Morris Mano 3era edición, sección 4.9.
 - Sistemas Digitales y Tecnologías digitales José Angulo Usategui, Sección 4.8 Comparadores.

DETECTOR DE PARIDADES.

- Referencias sugeridas:
 - Sistemas Digitales y Tecnologías digitales José Angulo Usategui, Sección 4.9
 Generador/Detector de Paridad.

CODIFICADOR.

De un ejemplo de un diseño de un codificador con y sin prioridad. Por ejemplo, con codificador de 4:2 con y sin prioridad.

- Referencias sugeridas:
 - Diseño digital Morris Mano 3era edición, sección 4.9.
 - Sistemas Digitales y Tecnologías digitales José Angulo Usategui, Sección 4.4 Codificadores.
- Aplicación (elijan una):
 - o Implementación de minitérminos con decodificador.
 - o teclado numérico (0, 1, 2, 3, ..., 9) a binario.

DECODIFICADOR.

Diseñe un decodificador simple con y sin entraba habilitadora. Muestre como conectar estos codificadores en cascada para obtener más entradas.

- Referencias sugeridas:
 - o Diseño digital Morris Mano 3era edición, sección 4.8.
 - o Sistemas Digitales y Tecnologías digitales José Angulo Usategui, Sección 4.5 Decodificadores.

MULTIPLEXOR (MUX).

Diseñe un multiplexor (MUX) con y sin entrada habilitante. Muestre el símbolo utilizado para este circuito combinacional y como realizar conexiones en cascadas usando MUX.

- Referencias sugeridas:
 - o Diseño digital Morris Mano 3era edición, sección 4.8.
 - o Sistemas Digitales y Tecnologías digitales José Angulo Usategui, Sección 4.6 Multiplexores.
- Aplicación: Implementación de funciones booleanas.

DEMULTIPLEXOR (DMUX).

Diseñe un demultiplexor (DMUX) con y sin entrada habilitante.

- Referencias sugeridas:
 - Sistemas Digitales y Tecnologías digitales José Angulo Usategui, Sección 4.7 Demultiplexores.
- Aplicación: Elemento triestado.

DISPLAY DE 7 SEGMENTOS.

Diseñe un circuito que como entrada se introduzca un numero en codificación BCD y muestre el número decimales en un display de 7 segmentos.

- Referencia sugerida:

 Fundamentos de sistemas digitales – Thomas L. Floyd. Aplicación a los sistemas digitales "El displays de 7 segmentos" pág. 252.

3. FECHA PRESENTACIÓN Y EVALUACIÓN.

Las presentaciones serán el día 30/07/2021 en el horario de clases. Puede realizar su presentación de dos formas:

- 1. De manera sincrónica en el horario de clases.
- 2. Se forma asincrónica enviando un video con su exposición un día 29/07/2021

La presentación equivaldrá a una nota a los trabajos del curso.

4. EVALUACIÓN

Actividad	Puntaje	Puntaje	Comentario
		Obtenido	
Definición			
Tabla de verdad			
Función Lógica			
Circuito Lógico			
Simulación			
Aplicación			
TOTAL			
NOTA			

Observaciones		