Date of Issue: January 13, 2014

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Media Station				
Model	KS-700				
Trade Name	Arec				
Frequency band (Operating)	Buetooth: 2402 ~ 2480 MHz☐ Others				
Device category	☐ Portable (<20cm separation)☐ Mobile (>20cm separation)☐ Others				
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)				
Antenna Specification	EDI / Monopole Antenna P/N: WSS025 2.4GHz: Antenna Gain: 5.5 dBi (Numeric gain: 3.55)				
Maximum Tune up Power	Bluetooth Mode: 2.60 dBm (1.820 mW)				
Evaluation applied	✓ MPE Evaluation*☐ SAR Evaluation☐ N/A				

Date of Issue: January 13, 2014

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{377}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Date of Issue: January 13, 2014

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Bluetooth mode:

Cl	h.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
0)	2402	1.82	3.55	20	0.0013	1