برقى ومقناطيسيات

خالد خان بوسفز کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالو جی،اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

•		<u> </u>	-
1	مقداری اور سمتیه	1.1	
2	سمتي الجبرا	1.2	
3	كارتيسي محدد	1.3	
5	اكائبي سمتيات	1.4	
9	ميداني سمتيم	1.5	
9	سمتى رقبہ	1.6	
10	غیر سمتی ضرب	1.7	
14	سمتی ضرب یا صلیبی ضرب	1.8	
17	گول نلكى محدد	1.9	
20	1.9.1 نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کے ساتھ غیر سمتی ضرب		
20	1.9.2 نلکی اور کارتیسی اکائی سمتیات کا تعلق		
25	1.9.3 نلكي لامحدود سطحين		
27	کروی محدد	1.10	
37	کا قانون	كولومب	2
37	قوت کشش یا دفع	2.1	
41	برقبی میدان کی شدت	2.2	
44	یکسان چارج بردار سیدهی لامحدود لکیر کا برقی میدان	2.3	
49	يكسان چارج بردار بموار لامحدود سطح	2.4	
53	چارج بردار حجم	2.5	
54	مزید مثال	2.6	
61	برقی میدان کے سمت بہاو خط	2.7	
63	سوالات	2.8	

iv		عنمان

65																																									بلاو	. پھي	اور	ون	کا قان	س ک	گاؤ.	3
65																																										رج	چار	کن .	ساك		3.1	
65			•																																						جربہ	ا تج	کا	<u>ا</u> کے	فيراد		3.2	
66					٠	٠			•												٠									•											زن	قانو	کا	س	گاؤ		3.3	
68																																					ل	مما	است	کا	نون	ے قا	کے	س	گاؤ		3.4	
68																																	•	•					رج	چا	قطہ	i		3.4	4.1			
70																															į	طح	سبا	وی	کرو	ٔ ر	بردا	ج	چار	اں	بکس	ی		3.4	4.2			
70																												ر	لكي	ود	حد	لام	ی ا	لھے	سيا	ار ،	بردا	ج	چار	اں	بکس	ی		3.4	1.3			
71									•																																ر	، تار	ری	محو	<u>ب</u> م ،		3.5	
73																																	لح	سط	د	بدو	مح	Υ_	موا	ار ۽	ا برد	ارج	چا	ساں	یکس		3.6	
73					•	•			•																				(للاق	اط	کا	ون	قان	ے	5	رس	گاؤ	ا پر	ج	ے ح	و ڻو	چ	ائى	انتم		3.7	
76																																												دو	پهيا		3.8	
78					•	•																												ن	وان	ساو	, م	کی	لاو	پهي	میں	دد د	حد	ی م	نلك		3.9	
80					•	•																																ات	ساو	ے م	مومي	، ع	کی	(و َ	پهيا	3	.10	
																																										٠,	هيلا	ئلہ پ	fa	3	.11	
82	•					•	•	•	•	•	•	•	•	•	•	•			•	•	٠	٠	•	٠	•		•	•	•	•		•)-		•		_		
	•					•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠	•	•	•	•																		
85	•					•	•	•		•	•	•	•																													و	دبار		ور بر	ئی ا	توانا	4
85 85																													•												م	و ِ کا	دباو اور	ائی	ور بر توانا	ئی ا	توانا: 4.1	4
85 85 86																																									أم	و کاا ملہ	دباور اور تک	ائی ری	ور بر توانا لکیر	ئی ا	توانا: 4.1 4.2	4
85 85 86 91			•				•																														•				۴.	و كا مله	دباور اور تک	ائی ری د ب	ور بر توانا لکیر برقی	ئی ا	توانا: 4.1	4
85 85 86 91																																		او	دبا	٠	برق			۔	ُم قطہ	و كاد مله د	دباور اور تک	ئى رى دبر 4.3	ور بر توانا لکیر برقی	ئی ا	توانا: 4.1 4.2	4
85 85 86 91 92						 																							٠.		رقىي	٠.	٠.	سے	دبا	نی	برق	. كا	 چار		م قطہ کیر	و كا مله ن	دباور تک باو	ئى رى دب 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانا: 4.1 4.2	4
85 85 86 91 92 93		 		 		 																							او	٠.	رقى	٠	پيد او	سے دبا	دبا قى	نی نت برز	برق كثاف	کا تار		ی د	م كير: م م	و کاد ملہ دملہ د	دباور اور تک	ائی ری 4.3 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانانا 4.1 4.2 4.3	4
85 85 86 91 92		 		 		 																							او	٠.	رقى	٠	پيد او	سے دبا	دبا قى	نی نت برز	برق كثاف	کا تار		ی د	م كير: م م	و کاد ملہ دملہ د	دباور اور تک	ائی ری 4.3 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانانا 4.1 4.2 4.3	4
85 85 86 91 92 93		 		 		 																							٠ ٠ ٠	٠.	رقى	٠	بيد او	بے دبا	دبا قى او	نی بره دب	برة كثاف	کا تار		ی حور	م تقطم حکیر جارج	و مله مله ن	دباور تک تک	ری ری 4.3 4.3	ور بر توانا لکیر برقی 3.1 3.2	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94		 		 		 																								٠.	رقى	٠	بيد او	سے دبا	دبا قى او	نی برهٔ دب	برة كثاة كا	کا تار ، بر		ی چا حور حوں لموان	م م كير م م جارج خدر	و کاللہ ممللہ د کی	دباور اور تک باو	ائی ری 4.3 4.3 لاد :	ور بر توانانا لکیبرقی برقی 3.2 متعا	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98		 				 																							٠			٠	پيد او	او بے دبا	دبا قى او لواد	نی برز دب	برة كثاف	. کا تار ، می		ی . یی . یوں یوں لوان	م تقطه عارج عارج للكي	و کاا ملہ نہ چ	دبارا تک نقط	ائی دبر 4.3 4.3 د ن	ور بر توانا برقح 3.1 3.2 متعا	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98																													٠	٠	٠	٠	او	سے دبا دبا	دبا قى او ىلواا	ئى برۇ دى	برة كثاف	کا تار ، می			م م حم م م م م م م م م م م م م م م م م	و کا	دبارا تک باو	ائی ری 4.3 4.3 4.3 4.3 4.5	ور بر توانا برقی 3.1 3.3 متعا برقی	نی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98 102																															٠		پيد او	سے دبا ن	دبا قى او ىلوا	نی برز دب	برة كثافا كا	کا تار کا تار ، بر بر ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،			م محير . حم م بارج بارج کروء کروء	و كا. مالم مالم	اور تک تک باو	ائی ری دبر 4.3 4.3 4.3 4.4 2.4	ور بر توانا برقی 3.1 3.2 متعا برقی	نی ا	توانا: 4.1 4.2 4.3	4

v عنوان

115	، ذو برق اور کپیسٹر	موصل،	5
115	برقمی رو اور کتافت برقمی رو	5.1	
117	استمراری مساوات	5.2	
119	موصل	5.3	
124	موصل کے خصوصیات اور سرحدی شرائط	5.4	
127	عکس کی ترکیب	5.5	
130	نيم موصل	5.6	
131	خو برق	5.7	
136	کامل ذو برق کے سرحد پر برقی شرائط	5.8	
140	موصل اور ذو برقی کے سرحدی شرائط	5.9	
140	كپيسٹر	5.10	
142	5.10.1 متوازی چادر کپیسٹر		
143	5.10.2 بم محوری کپیسٹر		
143	5.10.3 بم کوه کپیسٹر		
145	سلسلہ وار اور متوازی جڑے کپیسٹر	5.11	
146	دو متوازی تاروں کا کپیسٹنس	5.12	
155	اور لاپلاس مساوات	پوئسن	6
157	مسئلہ یکتائی	6.1	
	۔ لاپلاس مساوات خطی ہے	6.2	
	نلکی اور کروی محدد میں لاپلاس کی مساوات	6.3	
160	۔ لاپلاس مساوات کے حل	6.4	
	۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	6.5	
	پر میں وات کا ضربی حل	6.6	
	عددی دہرانے کا طریقہ	6.7	

vi

183	ناطیسی میدان	' ساكن مق
183	بايوڭ-سيوارڭ كا قانون	7.1
187	ایمپیئر کا دوری قانون	7.2
191	گردش	7.3
198	7.3.1 نلكى محدد ميں گردش	
204	7.3.2 عمومی محدد میں گردش کی مساوات	
205	7.3.3 کروی محدد میں گردش کی مساوات	
206	مسئلہ سٹوکس	7.4
210	مقناطیسی بهاو اور کثافت مقناطیسی بهاو	7.5
216	غیر سمتی اور سمتی مقناطیسی دباو	7.6
221	ساکن مقناطیسی میدان کرے قوانین کا حصول	7.7
222	7.7.1 سمتی مقناطیسی دباو	
	7.7.2 ايمپيئر كا دوري قانون	
223	J -35 J4.	
223		ا مقناطيسي
227		
227 227	، فوتیں، مقناطیسی مادمے اور امالہ	8.1
227227228	ی قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1
227227228231	ی قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3
227227228231232	ی قوتیں، مقناطیسی ماد نے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4
227 227 228 231 232 237	ی قوتیں، مقناطیسی ماد نے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4
227 227 228 231 232 237 238	ر قوتیں، مقناطیسی مادیے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5
227 227 228 231 232 237 238 241	ر قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5
227 227 228 231 232 237 238 241 242	ر قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5 8.6 8.7
227 228 231 232 237 238 241 242 245	ر قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8

vii

253	نے ساتھ بدلتے میدان اور میکس ویل کے مساوات	وقت کے	9
253	فيرالخُ ے کا قانون	9.1	
259	انتقالی برقمی رو	9.2	
263	میکس ویل مساوات کی نقطہ شکل	9.3	
264	میکس ویل مساوات کی تکمل شکل	9.4	
266	تاخیری دباو	9.5	
271	امواج	مستوى	10
271	خالی خلاء میں برقی و مقناطیسی مستوی امواج	10.1	
272	برقی و مقناطیسی مستوی امواج	10.2	
279	10.2.1 خالی خلاء میں امواج		
281	10.2.2 خالص یا کامل ذو برق میں امواج		
283	10.2.3 ناقص یا غیر کامل ذو برقی میں امواج		
286	پوئنٹنگ سمتیہ	10.3	
290	موصل میں امواج	10.4	
296	انعکاس مستوی موج	10.5	
302	شرح ساکن موج	10.6	
309	تار	تر سیلی	11
309	ترسیلی تار کے مساوات		
	ترسیلی تار کے مستقل		
	11.2.1 بم محوری تار کے مستقل		
	11.2.2 دو متوازی تار کے مستقل		
	11.2.3 سطح مستوی ترسیلی تار		
	ترسیلی تار کے چند مثال	11.3	
	ترسیمی تجزیه، سمته نقشہ		
	11.4.1 سمته فراوانی نقشه		
	تجرباتی نتائج پر مبنی چند مثال	11.5	

337	يب موج	12 تقطي
337	۱۲ خطی، بیضوی اور دائری تقطیب	2.1
340	.1 ییضوی یا دائری قطبی امواج کا پوئنٹنگ سمتیہ	2.2
343	هی آمد، انعکاس، انحراف اور انکسار	13 ترچا
343	.1 ترچهی آمد	3.1
354	. 1 ترسیم بائی گن	3.2
357	ج اور گهمکیا	14 مويج
357	1 برقی دور، ترسیلی تار اور مویج کا موازنہ	4.1
358	۔ 1 دو لامحدود وسعت کے مستوی چادروں کے موبیج میں عرضی برقی موج	4.2
364	1 کهوکهلا مستطیلی مویج	4.3
373	14.3.1 مستطیلی مویج کے میدان پر تفصیلی غور	
379	. 1 مستطیلی مویج میں عرضی مقناطیسی TM _{mn} موج	4.4
384	1 كهوكهلى نالى مويج	4.5

15 سوالات

387

عنوان

مویج اور گهمکیا

اب تک ہم صرف عرضی برقی ومقناطیسی 'TEMامواج کی بات کرتے آرہے ہیں جن میں برقی اور مقناطیسی دونوں میدان سمت حرکت کے عمود کی ہوتے ہیں۔اس باب میں ترسیلی تاریر بحث کو آگے بڑھاتے ہوئے ایسے امواج پر غور کیا جائے گا جن میں برقی یامقناطیسی میدان سمت حرکت کی جانب بھی جزور کھتے ہوں۔وہ ترسیلی تار جو صرف اس طرح کے امواج کو گزار سیکھیں میوج 2 کہلاتے ہیں۔

دو لا محدود جسامت کے مستوی سطوں کے موتج سے بات شروع کرتے ہوئے کھو کھلے مستطیلی اور نکلی موتج تک بات بڑھائی جائے گی۔ان موتج میں میدان کے اشکال، ان کے منقطع طول موج اور دیگر اقسام کے موتج پر میں میدان کے اشکال، ان کے منقطع طول موج اور تقلیلی مستقل حاصل کئے جائیں گے۔اس کے بعد ایک تار پر بیرونی موج اور دیگر اقسام کے موتج پر غور کیا جائے گا۔ آخر میں موصل کے بند ڈبوں میں قید امواج پر غور کیا جائے گا جنہیں گھمکیا کہتے ہیں۔

14.1 برقی دور، ترسیلی تار اور مویج کا موازنه

کم تعدد پر برقی د باو، برقی رو، مزاحمت وغیرہ عملی متغیر ہیں جنہیں استعال کرتے ہوئے برقی ادوار حل کئے جاتے ہیں۔ان تعدد پر تمام مزاحمت یار کاوٹ کو نقطہ نما تصور کیا جاتا ہے۔یوں تارکے ایک سرے پر منبع برقی د باولا گو کرتے ہوئے تارکے دوسرے سرے پر مزاحمت میں برقی روحاصل کی جاسکتی ہے۔

قدر زیادہ تعدد پر انہیں حقائق کو ترسلی تارپر لا گو کیا جا سکتا ہے۔ایسا کرتے وقت ترسلی تار کی مزاحمت یا مالیہ تار کی لمبائی پر تقسیم شدہ تصور کرنالازم ہے۔ساتھ ہی ساتھ ترسلی تارپر برقی دباوکی رفتار پر بھی نظر رکھنی ہوتی ہے۔

اب موصل کھو کھلے نکلی یا مستطیلی نالی پر مبنی نظام کی بات کرتے ہیں۔کیا ایسی نالی برتی و مقناطیسی طاقت منتقل کرنے کی صلاحیت رکھتی ہے؟اگر ہماری معلومات برتی ادوار یا ترسیلی تاریک محدود ہوتی تب اس سوال کا جواب ہیہ ہے کہ ایسا ممکن نہیں ہے کیونکہ برتی طاقت کے منتقلی کے لئے دو تار ضروری ہیں۔البتہ اگر ہم شعاعوں کا علم رکھتے تب جواب ہوتا کہ ایسا ممکن ہے چونکہ شعاعیں سیدھی کھو کھلے نکلی سے گزر سکتی ہیں اور شعاعیں بلند تعدد (1016 Hz) کی برتی و مقناطیسی امواج ہی ہیں۔

transverse electromagnetic, TEM^1 waveguide²

باب 14. مويج اور گهمكيا

شكل 14.1: دو لامحدود وسعت كر متوازى موصل چادروں كا نظام.

اصل جواب ہے کہ ایسا امواج کے تعدد پر منحصر ہے۔ کم تعدد کے امواج نالی سے نہیں گزر سکتے جبکہ بلند تعدد کے امواج اس سے گزر سکتے ہیں۔ تعدد کے ان دو خطوں کے در میان ایسی تعدد ہوگی جس سے کم تعدد نالی سے نہیں گزرے گی اور جس سے زیادہ تعدد نالی سے گزرے گی۔اس تعدد کو پست انقطاعی تعدد کہا جاتا ہے۔

کھو کھلے نالی سے برقی و مقناطیسی طاقت کی منتقلی برقی ادوار حل کرنے کے علم سے ناقابل سمجھ مسلہ ہے۔کھو کھلے نالی میں طاقت کی منتقلی، نالی کے کھو کھلے جھے میں برقی اور مقناطیسی میدان پر غور سے سمجھا جا سکتا ہے جنہیں استعال کرتے ہوئے پوئٹنگ سمتیہ سے موج کی طاقت حاصل ہوتی ہے۔دراصل برقی و مقناطیسی طاقت نالی کے کھو کھلے جھے میں برقی اور مقناطیسی امواج سے منتقل ہوتا ہے ناکہ نالی کے موصل جھے میں۔برقی د باو اور برقی رواس منتقل کے محض اضافی اثرات ہیں۔

14.2 دو لامحدود وسعت كر مستوى چادرون كر مويج مين عرضي برقى موج

شکل 14.1 میں دولا محدود وسعت کے متوازی چادروں پر مبنی ترسیلی تار دکھائی گئی ہے جو ہا سمتی عرضی برقی و مقناطیسی موج گزار سکتی ہے۔ اس تار کی خاص خاصیت سے ہے کہ ایک مخصوص تعدد کے اوپر سے دیگر بلند درجی انداز 4کے امواج بھی گزار سکتی ہے۔ یوں ترسیلی تار سے شروع کرتے ہوئے موتح تک بحث کو پہنچانے کے لئے سے بہترین مثال ہے۔

ایی بلند درجی انداز کی بات کرتے ہیں جس میں برقی میدان ہر نقطے پر ہو سمق ہے جبکہ سمت حرکت ہے۔چو تکہ برقی میدان ست حرکت کے عمود کی ہے الہذااس انداز کو عرضی برقی انداز أو (TE) کہا جائے گا۔ا گرچہ اس موج میں برقی میدان عرضی ہے، مقناطیسی میدان عرضی اور طولی اجزاء پر مشتمل ہے۔کامل موصل چادروں کی صورت میں چادروں پر برقی میدان صفر ہو گا البتہ چادر سے دور اس کی پچھ بھی قیمت ممکن ہے۔ایی عرضی برقی انداز موج کے خصوصیات باآسانی یوں حاصل کئے جا سکتے ہیں کہ اسے دو عرضی برقی و مقناطیسی انداز TEM امواج کا مجموعہ تصور کیا جائے جو موصل چادروں کے درمیان بار بار انعکاس کرتی ہوں۔

آئیں پہلے شکل 14.2 پر غور کریں جہاں خالی خلاء میں ایک ہی تعدد کے دو سطحی TEM امواج کے ملاپ کی صورت حال دکھائی گئی ہے۔اس شکل میں امواج خطی قطبی تصور کئے گئے ہیں جن کا برقی میدان صفحہ کے عمودی فرض کیا گیا ہے۔موج الف کی شعاع اوپر بائیں ہاتھ سے نیچے دائیں ہاتھ کی طرف جبکہ موج ب کی شعاع نیچے بائیں ہاتھ سے اوپر دائیں ہاتھ کی جانب گامزن ہے۔یوں ان کا آپس میں ملاپ کسی زاویے پر ہوتا ہے۔شکل میں گہری سیاہی کی ٹھوس کیبر سے موج کی چوٹی جبکہ مہلکی سیاہی کے ٹھوس کیبر سے اس کا نشیب دکھایا گیا ہے۔یوں سطحی موج الف کی چوٹیاں اور نشیب، شعاع الف کے

low cutoff frequency higher order mode

شکل 14.2: دو عرضی برقی و مقناطیسی امواج خلاء میں مختلف سمتوں میں حرکت کر رہی ہیں۔

عمودی د کھائے گئے ہیں۔ گہری سیاہی کے ٹھوس کلیر کو برقی میدان کی چوٹی نضور کیا جائے۔ یوں اس کلیر پر برقی میدان زیادہ سے زیادہ قیت رکھتا ہے اور اس کی سمت صفحہ سے عمودی باہر جانب کو ہے۔اسی طرح ہلکی ٹھوس کلیر میدان کی نشیب کو ظاہر کرتی ہے لہٰذا یہاں میدان کی قیت زیادہ سے زیادہ ہو گی البتہ اس کی سمت صفحہ کے عمودی اندر جانب کو ہو گی۔ چوٹی اور نشیب کے در میان فاصلہ 20 کے برابر ہے۔

جس نقطے پر ایک موج کی چوٹی اور دوسری موج کا نشیب ملتے ہیں اس نقطے پر کل میدان صفر کے برابر ہو گا۔یوں جہاں گہری سیابی اور ہلکی سیابی کی رسلتے ہیں وہاں میدان صفر ہو گا۔شکل میں ہلکی سیابی میں ایک دو نقطہ دار لکیریں تھینچی گئی ہیں جن پر میدان صفر کے برابر ہے۔آپ غور کر کے تسلی کر لیس کہ ان لکیروں کے ہر نقطے پر برتی میدان صفر ہی ہے۔مزید آپ ذہن میں دونوں امواج کو حرکت دیتے ہوئے تسلی کر لیس کہ امواج کے حرکت کے باوجود ان دو لکیروں پر میدان صفر ہی رہتا ہے۔اسی طرح جن نقطوں پر دونوں امواج کی چوٹیاں آپس میں ملتی ہوں یا دونوں کے نشیب آپس میں ملتے ہوں وہاں میدان دگنا ہوگا ہے جہاں میدان دگنا ہیا جائے گا۔

صفر میدان دکھاتے نقطہ دار لکیر پر برقی میدان صفر کے برابر ہے للذاان پر موصل سطح کے سرحدی برقی میدان کا شرط پورااترتا ہے۔ یوں ان لکیروں پر، صفحہ کے عمودی موصل چادر رکھے جا سکتے ہیں۔البتہ ایبا کرنے سے موج کی سیدھی حرکت متاثر ہو گی چونکہ آمدی زاویے کے برابر، موصل سطح پر، انعکای زاویے سے موج انعکاس کرے گی۔ یوں موج موصل سطح سے گزر نہیں پائے گی۔ ہاں اگر دو موصل چادروں کے در میان ان امواج کو بھیجا جائے، تب یہ دونوں موصل سطحوں کے در میان بار بار انعکاس کرتی حرکت کریں گی۔شکل 14.3 میں ایباد کھایا گیا ہے۔ شکل 14.4 میں موت کی میں موج کی چوٹی اور نشیب یہ دکھائے گئے ہیں۔خالی خلاء میں طول موج کا تعلق بھی دکھایا گیا ہے۔ اس شکل میں موصل چادروں کے در میان میدان تھی ہو بہو شکل 14.2 میں موصل چادروں کے در میان میدان ہو بہو شکل 14.2 میں گھوس کئیر کے کی چوٹی اور ہلکی سیابی میں کئیر اس کا نشیب ہے۔موصل چادر پر بید دونوں مل کر صفر برتی میدان پیدا کرتے ہیں۔

اگرچہ ہم دو عدد عرضی برقی و مقناطیسی TEM امواج کی بات کرتے آ رہے ہیں، در حقیقت ان کا مجموعہ بلند در جی TE انداز کی موج ہے۔ بلند در جی انداز کے موج کی اہم خصوصیت ہیں ہیں موج کے اس کا طول موج ایک مخصوص حد سے کم ہونا لازم ہے۔ابیانہ ہونے کی صورت میں پیر موج کے سے نہیں گزر سکتی۔طول کی بیہ حد انقطاعی طول ، یکاری جاتی ہے۔ آئیں انقطاعی طول حاصل کریں۔

cutoff wavelength⁶

شکل 14.3: شعاعیں دو چادروں کے درمیان بار بار انعکاس کرتی حرکت کرتی ہیں۔

شكل 14.4: موجوں كى چوڻياں، نشيب، خالى خلاء اور مويج ميں طول موج۔

شکل 14.5: متوازی لامحدود وسعت کے چادروں کے مویج میں میدان کے اجزاء۔

شکل 14.5 میں TE موج کے دو TEM اجزاء دکھائے گئے ہیں جو اید اور "یہ سمت میں گامزن ہیں۔ دونوں جزو موصل چادر لیخی یہ محدد کے ساتھ θ زاویہ بناتے ہیں۔ برتی میدان صفحہ کے عمودی ہو محدد کی سمت میں ہے۔ چادروں کے در میان فاصلہ d ہے۔ نقطہ D پر موج "یہ کی چوٹی ہے لہذا یہاں برتی میدان E'_{y} مثبت قیمت رکھتا ہے جو صفحہ کے عمودی باہر کو ہے اور جسے گول دائرے میں بند نقطے سے ظاہر کیا گیا ہے۔ اس نقطے پر کیبر AD اہر کی چوٹی ظاہر کرتی ہے۔ عین اسی لمحہ نقطہ D پر موج "یہ کا نشیب ہے جسے گول دائرے میں بند صلیبی نشان سے ظاہر کیا گیا ہے۔ اس اہر کے نشیب کو ہلکی سیابی میں کلیم D سے ظاہر کیا گیا ہے۔ اس اہر کی چوٹی اور دو سرے اہر کا نشیب نقطہ A پر مل کر صفر میدان پیدا کرتے ہیں۔ ہم جانتے ہیں کہ عین دو چادروں کے در میان دونوں امواج کی چوٹیاں مل کر دگنا میدان پیدا کرتی ہیں۔ اس نقطے کو شکل میں B سے ظاہر کیا گیا ہے۔ یوں موج "یہ کا نشیب D پر جبکہ اس کی چوٹی B بر ہے۔ اس طرح ان نقطوں کے در میان فاصلہ طول موج کا چوٹھا حصہ ہو گا۔ اس طرح B اور B کیجی طول موج کے چوٹھائی برابر ہیں

$$BC = BC' = BD = \frac{\lambda_0}{4}$$

جہاں لا محدود خلاء میں TEM موج کا طول موج λ_0 ہے اور یہ خلاء اسی مادے سے بھری ہے جو دو چادروں کے در میان پایا جاتا ہے۔موصل چادر پر ایک موج کی کوئی بھی چوٹی اور دوسری موج کا کوئی بھی نشیب مل کر صفر میدان پیدا کر سکتے ہیں۔یوں مندرجہ بالا مساوات کی عمومی شکل

$$BC = \frac{n\lambda_0}{4}$$

ہے جہاں $n=1,2,3,\cdots$ ہو سکتے ہیں۔ جفت n کی صورت میں دو چادروں کے عین در میان برقی میدان صفر حاصل ہو گا جبکہ طاق n کی صورت میں یہاں میدان دگنا ہو گا۔ان حقائق ہر تفصیلاً جلد بات کی جائے گی۔شکل 14.5 میں تکون ABC سے

$$AB\sin\theta = \frac{b}{2}\sin\theta = \frac{n\lambda_0}{4}$$

ليعني

$$\lambda_0 = \frac{2b}{n}\sin\theta$$

 $\sin \theta = 1$ یعنی $\sin \theta = 1$ کے لئے مساوات 14.2 استعال کیا گیا۔اس مساوات کے تحت زیادہ صول موج $\Delta \lambda_{0c}$ کی قیمت $\delta = 1$ یعنی $\delta = 1$ کا استعال کیا گیا۔اس مساوات کے تحت زیادہ طول موج $\delta = 1$ کی قیمت $\delta = 1$ کا استعال کیا گیا۔اس مساوات کے تحت زیادہ طول موج کی قیمت $\delta = 1$ کا استعال کیا گیا۔اس مساوات کے تحت زیادہ طول موج کی قیمت $\delta = 1$ کا استعال کیا گیا۔

$$\lambda_{0c} = \frac{2b}{n}$$

n=1 ہوتی ہے جس سے n کی ہر قیت کے مقابل طول کی انقطاعی قیمت حاصل کی جاسکتی ہے۔ جب n=1 ہو تب

$$\lambda_{0c} = 2b$$

حاصل ہوتا ہے۔ یہ کم تر درج کی TE موج کا انقطاعی طول ہے جو ان چادروں کے در میان صفر کر سکتی ہے۔ یہ مساوات کہتا ہے کہ چادروں کے در میان فاصلہ کم از کم آدھے طول کے برابر ہوگا تو موج چادروں کے در میان سے گزر پائے گی۔

لو بلند در جی ${
m TE}$ امواج کا کم تر در جہ کہا جاتا ہے۔n=2 اس سے ایک قدم بلند در جے کی موج کہلائے گی اور اس کا انقطاعی طول n=1 (14.6)

n=3ر ہوگا۔ یوں n=2 در جے کی TE موج کے گزرنے کا لئے چادروں کے در میان کم از کم فاصل موج کے طول کے برابر ضروری ہے۔ اسی طرح n=3 کے لئے $\lambda_{0c}=\frac{2b}{3}$ حاصل ہوتا ہے ، وغیرہ وغیرہ وغیرہ۔

مساوات 14.4 اور مساوات 14.3 کو ملا کر

$$\lambda_0 = \lambda_{0c} \sin \theta$$

شکل 14.6: طول موج اور انعکاس موج کرے زاویے۔ مختلف اقسام کرے رفتاروں کا آپس میں تعلق۔

$$\theta = \sin^{-1} \frac{\lambda_0}{\lambda_{0c}}$$

کھا جا سکتا ہے۔ یوں کسی بھی درجے کی موج کا انقطاعی زاویہ $90 = \theta$ حاصل ہوتا ہے۔ اس زاویے پر موج دونوں چادروں کے مابین، x تبدیل کئے بغیر، انعکاس کرتی رہتی ہے۔ یوں چادروں کے درمیان ساکن موج پیدا ہوتی ہے جو x سمت میں طاقت منتقل نہیں کر سکتی۔ اگر طول موج مرانقطاعی طول موج موج موج ہوگی اور موج، بار بار انعکاس کرتی ہوئی، چادروں کے درمیان x سمت میں حرکت کر پائے گی۔ جیسے شکل 14.6 میں دکھایا گیا ہے، طول موج مزید کم کرنے سے زاویہ مزید کم ہوتا ہے۔ آخر کار انتہائی کم طول موج پر صورت حال لا محدود خلاء میں موج کے حرکت مانند ہو جاتی ہے اور یہ شعاع کی طرح چادروں کے درمیان سیرھا گزرنے کے قابل ہو جاتی ہے۔

 v_0 امواج کی دوری رفتار v_0 لا محدود خلاء میں آزاد موج کی دوری رفتار v_0 المحدود خلاء میں v_0

$$v_0 = \frac{1}{\sqrt{\mu \epsilon}} \quad \left(\frac{\mathsf{m}}{\mathsf{s}}\right)$$

ہی ہے جہاں خلاء کا مقناطیسی مستقل µ اور اس کا برتی مستقل € ہیں۔شکل ۱4.6-د میں TE موج کی x سمت میں دوری رفتار ہ ہے۔TE موج کی چوٹی یا نشیب یا کوئی اور زاویائی نقطہ اس رفتار سے x سمت میں حرکت کرتا نظر آئے گا۔ان دواقسام کے رفتار کا تعلق شکل 14.6-د سے

$$\frac{v_0}{v} = \cos \theta$$

لکھا جا سکتا ہے جس سے

$$v = \frac{v_0}{\cos \theta} = \frac{1}{\sqrt{\mu \epsilon} \cos \theta} \qquad \frac{m}{s}$$

حاصل ہوتا ہے۔اس مساوات کے تحت جیسے جیسے طول موج کو انقطاعی طول موج کے قریب لایا جائے، ویسے ویسے TE موج کی دوری رفتار کی قیمت بڑھتی ہے حتٰی کہ عین λ_{0c} پر دوری رفتار لا محدود قیمت اختیار کر لیتی ہے۔اس کے برعکس جیسے جیسے طول موج کو کم کیا جائے، لینی جیسے جیسے θ کو کم کیا جائے، ویسے TE موج کی دوری رفتار ME کے دوری رفتار کے قریب ہوگی حتٰی کہ انتہائی کم طول موج لینی انتہائی بلند تعدد کے موج کی

phase velocity7

شكل 14.7: دوري اور مجموعي رفتار بالمقابل زاويه موج.

صورت میں یہ قیمت v_0 کے برابر ہو جائے گی۔ یوں موتج میں بند، بلند در جی موج کا دور ی رفتار TEM موج کے دوری رفتار سے زیادہ یااس کے برابر ممکن ہے۔طاقت کی منتقلی انعکاس کرتی موج کے مجموعی رفتار 8 سے ہوتی ہے جسے شکل میں 11 سے ظاہر کیا گیا ہے۔شکل 14.6-د سے

$$(14.12) u = v_0 \cos \theta$$

کھا جا سکتا ہے للذا طاقت کی منتقلی کی رفتار TEM کے رفتار سے کم یااس کے برابر ممکن ہے۔طاقت کسی صورت بھی TEM موج کی رفتار سے زیادہ رفتار پر منتقل کرنا ممکن نہیں ہے۔یہ حقیقت آئن سٹائن کے قانون کے عین مطابق ہے جس کے تحت کوئی بھی چیز رفتار شعاع سے تجاوز نہیں کر سکتی۔یاد رہے کہ TE موج کی دوری رفتار در حقیقت کسی چیز کی منتقلی نہیں کرتی للذااس کی قیت 70 سے بڑھ سکتی ہے۔مساوات 14.11 اور مساوات 14.12 کو ملا

$$(14.13) uv = v_0^2$$

حاصل ہوتا ہے۔

دو چادروں میں بند ہونے سے TEM موج کا تعدد تبدیل نہیں ہوتا۔اسی طرح ایسے دو یکساں تعدد کے امواج سے حاصل TE موج کا تعدد بھی وہی رہتا ہے۔چونکہ طول موج ضرب تعدد کا حاصل رفتار کے برابر ہوتا ہے لہذا مساوات 14.11 کو

$$f\lambda = \frac{f\lambda_0}{\cos\theta}$$

لکھا جا سکتا ہے جس سے

$$\lambda = \frac{\lambda_0}{\cos \theta}$$

حاصل ہوتا ہے جو بلند درجہ موج کے طول λ اور آزاد موج کے طول λ کا تعلق ہے۔

شکل 14.7 میں دوری رفتار بالمقابل زاویہ موج اور مجموعی رفتار بالمقابل زاویہ موج دکھائے گئے ہیں۔ جیسے جیسے 6 کی قیمت °90 کے قریب آتی ہے۔ ویسے ویسے دوری رفتار کی قیمت لامحدود جبکہ مجموعی رفتار کی قیمت صفر کے قریب تر ہوتی ہے۔

(ا) لامحدود متوازی چادر مویج سے مستطیلی مویج کا حصول۔

شكل 14.8: مستطيلي مويج كا حصول اور اس كا رقبه عمودي تراش.

حقیقت میں دو متوازی لا محدود وسعت 9 کے چادروں پر مبنی موتح کہیں نہیں پایا جاتا۔ حقیقی موتج عموماً گھو کھلے مستطیل یا گھو کھلے نالی کے اشکال رکھتے ہیں۔ چونکہ برقی میدان کے عمودی موصل چادر رکھنے سے میدان متاثر نہیں ہوتا للذا دو لا محدود وسعت کے متوازی چادر، جن کے در میان فاصلہ ط ہو، میں TE میں کے عمودی دو چادر رکھنے سے میدان میں کوئی تبدیلی رونما نہیں ہوگی، لیکن ایسا کرنے سے مستطیل موتئ حاصل ہوتا ہے۔ شکل 14.8 الف میں مستطیلی موتئ بنتا دکھایا گیا ہے جہاں ل فاصلے پر دو متوازی چادر رکھے گئے ہیں۔ مستطیل شکل کے علاوہ بقایا چادر ہٹانے سے مستطیل موتئ حاصل ہوتا ہے جسے شکل 14.8 میں کہ اگرچہ دو لا محدود چادروں کا موتئ تو استعال نہیں ہوتا لیکن اس کے ITامواج جوں کے تول مستطیل موتئ کے استعال کئے جا سکتے ہیں۔ موجودہ ITE مواج کے نقطہ نظر سے مستطیل کی لا لمبائی کچھ بھی ممکن ہے۔

لا محدود چادر کے موتج پر غور کرنے سے انقطاعی طول موج کے علاوہ دوری رفتار اور مجموعی رفتار کے مساوات بھی حاصل کئے گئے۔ دیگر بلند در جے کے امواج پر معلومات حاصل کرنے کی خاطر میکس ویل کے مساوات حل کرنا لازم ہے۔ آئیں مستطیل موتج کے لئے میکس ویل مساوات حل کرتے ہیں۔

14.3 كهوكهلا مستطيلي مويج

مستطیل موتج کے اطراف پر برقی اور مقناطیسی سرحدی شراکط، کارتیسی محدد میں نہایت آسانی سے لا گو گئے جا سکتے ہیں۔ ای لئے مستطیلی موتج کو کارتیسی کو کارتیسی کو کارتیسی محدد میں نہا ہوئے ہم سمت نظام میں میں نظام میں میکس ویل کے مساوات سے موج کی مساوات حاصل کرتے ہیں۔ موتج کو یہ محدد پر رکھتے ہوئے ہم سمت موج کو ای سم کا انتخاب کرتے ہیں۔ ای کے بعد بلند درجے موج کی قشم کا انتخاب کرتے ہیں۔ یوں ہم برقی میدان کا کو سمت موج کے عمود کی رہنے کے بابند رکھتے ہوئے عرضی برقی آ TE^{10} موج پر غور کر سکتے ہیں یا مقناطیسی میدان کو سمت موج کے عمود کی رہنے کے بابند رکھتے ہوئے عرضی مین ان سمت حرکت کے معود کی ہوتے ہیں۔ بابند درجی موج میں میدان سمت حرکت کے عمود کی ہوتے ہیں۔ اس کے ایک مورت میں ہوگا اور مقناطیسی میدان سمت حرکت کے عمود کی ہوتے ہیں۔ بابند درجی موج میں میدان سمت حرکت کے معرد کی ہوتے ہیں۔ اس کے بابند درجی موج میں میدان سمت حرکت کی سمت میں بھی بائے جاتے ہیں۔ اب عرضی برقی تا کہ تھی کی صورت میں ہوگا کے برابر نہیں ہو سکتا۔ اگر ہل بھی صفر کے برابر ہوتب موج TEM موج کی صورت میں کھا بہتر ثابت ہوتا ہے۔ حاصل موج پر سرحدی شرائط لا گو کرتے ہوئے اسے ہل کے لئے حل کیا جاتا ہے۔ حاصل معلومات عاصل ہوتی ہوتے ہو کے اور جے ہو کہ H اور H_x حاصل کئے جاتے ہیں۔ یوں برقی اور مقناطیسی میدان کے تمام کار تیسی اجزاء کی مکمل معلومات عاصل ہوتی ہو۔ یہ موج اس کیا جاتے ہیں۔ یوں برقی اور مقناطیسی میدان کے تمام کار تیسی اجزاء کی مکمل معلومات عاصل ہوتی ہے۔ یہ عمونی طریقہ کار ہے جے دیگر مسائل حل کرنے کے لئے بھی استعال کیا جاسکا ہے۔

اس طریقے کو مستطیلی موت کمیں TE موج کے لئے تفصلیلًا استعال کرتے ہیں۔ابیا کرنے کی خاطر مندرجہ ذیل قدم سلسلہ وار اٹھائے جائیں گے۔

 $^{^{}e}$ حقیقی دنیا میں لا محدود وسعت کے چادر نہیں پائے جاتے۔ transverse electric, TE^{10} transverse magnetic, TM^{11}

- میکس ویل مساوات سے شروع کریں۔
- موج کو وقت کے ساتھ سائن نمار ہنے کا پابند بنائیں۔
- موج کو x سمت کے ساتھ سائن نمار ہنے کا پابند بناتے ہوئے حرکی مستقل بروئے کار لائیں۔
- باند در جی موج کا انتخاب کریں۔ ہم TE موج کا انتخاب کرتے ہوئے $E_x=0$ اور $E_x=0$ کھیں گے۔
 - بقایا چار اجزاء لعنی H_y ، E_z ، E_y اور H_z کے مساوات H_x کی صورت میں ککھیں۔
 - موج کی مساوات H_x کی صورت میں حاصل کریں۔
- مستطیلی موت کے اطراف کے سرحدی شرائط لا گو کرتے ہوئے موج کی اس مساوات کو H_x کے لئے حل کریں۔
 - اور H_z اور H_z مساوات میں حاصل H_z پر کرتے ہوئے ان کی مساوات بھی حاصل کریں۔ H_z دین مساوات کی مساوات میں حاصل کریں۔

ان اقدامات سے مکمل حل حاصل ہو گا۔

آئیں پہلے قدم سے شروع کرتے ہوئے میکس ویل کے مساوات کو کار تیسی نظام میں لکھتے ہیں۔صفحہ 263 پر مساوات 9.26 اور مساوت 9.27

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

(14.15)
$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$

کار تیسی محدد میں

$$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} + \mu \frac{\partial H_x}{\partial t} = 0$$

$$\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} + \mu \frac{\partial H_y}{\partial t} = 0$$

$$\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} + \mu \frac{\partial H_z}{\partial t} = 0$$

أور

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - \sigma E_x - \epsilon \frac{\partial E_x}{\partial t} = 0$$

$$\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} - \sigma E_y - \epsilon \frac{\partial E_y}{\partial t} = 0$$

$$\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} - \sigma E_z - \epsilon \frac{\partial E_z}{\partial t} = 0$$

9.29 اور $m{B} = \epsilon m{E}$ کا استعال کیا گیا ہے۔اسی طرح خالی خلاء میں $ho_h = 0$ کیتے ہوئے مساوات 9.28 اور مساوات کار تیسی محدد میں کار تیسی محدد میں

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$\frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} = 0$$

لکھے جائیں گے۔

اب دوسرا قدم کہتا ہے کہ موج وقت کے ساتھ سائن نما تعلق رکھتا ہے جبکہ تیسرا قدم کہتا ہے کہ موج x فاصلے کے ساتھ بھی سائن نما تعلق رکھتا ہے۔ساتھ ہی ساتھ x سمت میں حرکی مستقل بھی بروئے کار لانا ہے۔ان دو اقدام کو استعال کرتے ہوئے میدان کے تمام اجزاء لکھتے ہیں۔یوں Ey اور Hx کو مثال بناتے ہوئے

(14.24)
$$E_{y} = E_{1}e^{j\omega t - \gamma x}$$

$$H_{x} = H_{1}e^{j\omega t - \gamma x}$$

لکھے جائیں گے جہاں

$$\gamma=\sigma$$
 کی مستقل $lpha=\beta$ مستقل $lpha=\sigma$ تقلیلی مستقل $eta=\sigma$ زاویائی مستقل $eta=\sigma$

ہیں۔مساوات 14.24 کے طرز پر بقایا میدان بھی لکھتے ہوئے مساوات 14.16

$$\left[\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} + j\omega\mu H_x\right]e^{j\omega t - \gamma z} = 0$$

یا

$$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} + j\omega \mu H_x = 0$$

کھا جائے۔اسی طرح مساوات 14.24 کے طرز پر بقایا میدان بھی لکھتے ہوئے مساوات 14.17 تا مساوات 14.23 بول لکھے جائیں گے۔

$$\frac{\partial E_x}{\partial z} + \gamma E_z + j\omega \mu H_y = 0$$

$$-\gamma E_y - \frac{\partial E_x}{\partial y} + j\omega \mu H_z = 0$$

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - (\sigma + j\omega\epsilon)E_x = 0$$

$$\frac{\partial H_x}{\partial z} + \gamma H_z - (\sigma + j\omega\epsilon)E_y = 0$$

$$(14.30) -\gamma H_y - \frac{\partial H_x}{\partial y} - (\sigma + j\omega \epsilon) E_z = 0$$

$$-\gamma E_x + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$(14.32) -\gamma H_x + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} = 0$$

مندرجہ بالا آٹھ مساوات میں ترسیلی تار کے برقی رکاوٹ Z اور برقی فراوانی Y کی طرز کے مستقل

$$(14.33) Z = -j\omega\mu (\Omega/m)$$

$$(14.34) Y = \sigma + j\omega\epsilon (S/m)$$

استعال کرتے ہوئے انہیں قدر حیوٹا لکھتے ہیں۔

$$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} - ZH_x = 0$$

$$\frac{\partial E_x}{\partial z} + \gamma E_z - ZH_y = 0$$

$$-\gamma E_y - \frac{\partial E_x}{\partial y} - ZH_z = 0$$

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - YE_x = 0$$

$$\frac{\partial H_x}{\partial z} + \gamma H_z - Y E_y = 0$$

$$-\gamma H_y - \frac{\partial H_x}{\partial y} - Y E_z = 0$$

$$-\gamma E_x + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$(14.42) -\gamma H_x + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} = 0$$

ید x ست میں حرکت کرتی موج کی عمومی مساوات ہیں۔

ا بھی تک نا تو موت کی شکل اور ناہی بلند درجی موج کا انتخاب کیا گیا ہے للذا چوتھے قدم کا اطلاق کرتے ہوئے TE قسم کا انتخاب کرتے ہیں جس کا مطلب ہے کہ E_x = 0 لیا جائے گا۔ایسا کرنے سے مندرجہ بالا مساوات

$$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} - ZH_x = 0$$

$$\gamma E_z - ZH_y = 0$$

$$-\gamma E_{y} - ZH_{z} = 0$$

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} = 0$$

$$\frac{\partial H_x}{\partial z} + \gamma H_z - Y E_y = 0$$

$$-\gamma H_y - \frac{\partial H_x}{\partial y} - Y E_z = 0$$

$$\frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$(14.50) -\gamma H_x + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} = 0$$

صورت اختیار کر لیتے ہیں۔

یانچویں قدم پر تمام مساوات کو H_x کی صورت میں لکھنا ہو گا۔ایسا کرنے کی خاطر پہلے مساوات 14.44 اور 14.45 سے

$$\frac{E_z}{H_y} = -\frac{E_y}{H_z} = \frac{Z}{\gamma}$$

کھتے ہیں۔اب $\frac{E_y}{H_y}$ یا $\frac{E_y}{H_z}$ کی شرح قدرتی رکاوٹ کی مانند ہے۔چونکہ مساوات 14.51 میں صرف عرضی اجزاء پائے جاتے ہیں لہٰذااس شرح کو عرضی-موج کی قدرتی رکاوٹ $\frac{E_y}{H_z}$ کہا جائے گا جہاں

(14.52)
$$Z_{yz} = \frac{E_y}{H_z} = -\frac{E_z}{H_y} = -\frac{Z}{\gamma} = \frac{j\omega\mu}{\gamma} \qquad (\Omega)$$

کے برابر ہے۔ مساوات 14.52 کو مساوات 14.48 میں پر کرتے ہوئے H_y کے لئے حل کرنے سے

$$(14.53) H_y = \frac{-1}{\gamma - YZ_{yz}} \frac{\partial H_x}{\partial y}$$

عاصل ہوتا ہے۔ اس طرح مساوات 14.52 کو مساوات 14.47 میں پر کرتے ہوئے H_z کے لئے حل کرنے سے

$$(14.54) H_z = \frac{-1}{\gamma - YZ_{yz}} \frac{\partial H_x}{\partial z}$$

حاصل ہوتا ہے۔اب مساوات 14.53 کو مساوات 14.52 میں پر کرتے ہوئے

$$(14.55) E_z = \frac{Z_{yz}}{\gamma - Y Z_{yz}} \frac{\partial H_x}{\partial y}$$

اور مساوات 14.54 کو مساوات 14.52 میں پر کرتے ہوئے

$$(14.56) E_y = \frac{-Z_{yz}}{\gamma - YZ_{yz}} \frac{\partial H_x}{\partial z}$$

حاصل ہوتے ہیں۔ مساوات 14.53 تا مساوات 14.56 تمام اجزاء کو H_x کی صورت میں پیش کرتے ہیں۔

چھے قدم پر ان مساوات سے موج کی مساوات کا حصول ہے۔اییا کرنے کی خاطر مساوات 14.53 کا y کے ساتھ تفرق اور مساوات 14.54 کا Z کے ساتھ تفرق اور مساوات 14.54 کا Z کے ساتھ تفرق لیتے ہوئے دونوں حاصل جواب کو مساوات 14.50 میں پر کرتے ہوئے

$$-\gamma H_x - \frac{1}{\gamma - YZ_{yz}} \left(\frac{\partial^2 H_x}{\partial y^2} + \frac{\partial^2 H_x}{\partial z^2} \right) = 0$$

یا

$$\frac{\partial^{2} H_{x}}{\partial y^{2}} + \frac{\partial^{2} H_{x}}{\partial z^{2}} + \gamma \left(\gamma - Y Z_{yz} \right) H_{x} = 0$$

حاصل کرتے ہیں جس میں

$$(14.57) k^2 = \gamma \left(\gamma - Y Z_{yz} \right)$$

پر کرتے ہوئے

$$\frac{\partial^2 H_x}{\partial y^2} + \frac{\partial^2 H_x}{\partial z^2} + k^2 H_x = 0$$

لکھا جا سکتا ہے۔مساوات 14.58 موج کے عرضی برقی موج کی عمومی مساوات ہے۔موج کا عمود کی تراش کسی بھی شکل کا ہو سکتا ہے۔ یہاں چھٹا قدم پورا ہوتا ہے۔ 14.3 كهوكهلا مستطيلي مويج

شكل 14.9: مستطيل مويج.

ساتویں قدم میں موتے کے اطراف کے سرحدی شرائط لاگو کرتے ہوئے موج کو حل کرنا ہے۔ شکل 14.9 میں کامل موصل چادروں سے بنایا گیا مستطیلی موتے دکھایا گیا ہے جس کی چوڑائی z_1 اور اونچائی y_1 ہے۔ موصل اور ہوا کے سرحدی برتی شرائط کے مطابق سرحد پر متوازی برتی میدان صفر ہوتا ہے لہذا موتے کے اطراف پر متوازی z_1 صفر ہوگا۔ یوں موتے کے پنجی اور بالائی سطحوں پر z_2 ہوگا۔ اس طرح موتے کے بائیں اور داغیں کھڑے سطحوں پر z_3 ہوگا۔ اب ان شرائط پر پورااتر تا مساوات 14.58 کا حل در کار ہے۔ علیحدگی متغیرات کا طریقہ یہاں قابل استعال ہے جس میں z_4 کو متغیرات کے حاصل ضرب کے طور پر لکھا جاتا ہے لینی

$$(14.59) H_{\chi} = \Upsilon Z$$

جہاں Y ایبا متغیر ہے جو صرف y پر منحصر ہے جبکہ Z ایبا متغیر ہے جو صرف z پر منحصر ہے۔اصل میں ان متغیر ہے جو صرف علیات کی ایسا متغیر ہے جو صرف z پر منحصر ہے۔اصل میں ان متغیر ہے جو کی علیات کم کرنے کی غرض سے انہیں Y اور Z ہی لکھا جائے گا۔مساوات 14.59 کے استعمال سے مساوات 14.58

$$Z\frac{\partial^2 Y}{\partial y^2} + Y\frac{\partial^2 Z}{\partial z^2} + k^2 YZ = 0$$

صورت اختیار کرلیتا ہے۔ دونوں اطراف کو YZ سے تقسیم کرتے ہوئے اسے یوں

$$\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} + \frac{1}{Z}\frac{\partial^2 Z}{\partial z^2} = -k^2$$

کھا جا سکتا ہے۔اب بائیں ہاتھ پہلا جزو صرف ہر پر منحصر ہے جبہہ دوسرا جزو صرف z پر منحصر ہے۔یوں ہو کی تبدیلی سے صرف پہلے جزو میں تبدیلی کا امکان ہے لیکن پہلے جزو میں کسی بھی تبدیلی کے بعد مساوات کے دونوں اطراف برابر نہیں رہ سکتے۔اس طرح صاف ظاہر ہے کہ پہلے جزو میں ہو کے تبدیلی سے کوئی تبدیلی رونما نہیں ہو سکتی یعنی سے جزو نا قابل تبدیل مستقل قیت رکھتا ہے جسے ہم اللے۔ کستے ہیں۔اسی منطق سے دوسرا جزو بھی اٹل قیت رکھتا ہے جسے ہم اللہ کے کستے ہیں۔اسی منطق سے دوسرا جزو بھی اٹل قیت رکھتا ہے جسے ہم اللہ کے اللہ اللہ بیں۔یوں

$$\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} = -A_1$$

$$\frac{1}{Z}\frac{\partial^2 Z}{\partial z^2} = -A_2$$

ہوں گے للذا مساوات 14.61 سے

$$(14.64) A_1 + A_2 = k^2$$

حاصل ہوتا ہے۔مساوات 14.62 اور مساوات 14.63 ایک متغیرہ پر مبنی دو در جی تفرقی مساوات ہیں جن کا حل آپ جانتے ہی ہوں گے۔مساوات 14.62 کا حل تجربے سے

$$(14.65) Y = c_1 \cos b_1 y + c_2 \sin b_1 y$$

کھا جا سکتا ہے جہاں m_1 ، c_2 اور b_1 مساوات کے مستقل ہیں۔ مساوات 14.65 کو واپس مساوات 14.62 میں پر کرنے سے

$$b_1 = \sqrt{A_1}$$

حاصل ہوتا ہے۔ یوں مساوات 14.62 کا حل

$$(14.66) Y = c_1 \cos \sqrt{A_1} y + c_2 \sin \sqrt{A_1} y$$

ہے۔اسی طرح مساوات 14.63 کا حل

(14.67)
$$Z = c_3 \cos \sqrt{A_2} z + c_4 \sin \sqrt{A_2} z$$

ہے۔ان دو جوابات کو استعمال کرتے ہوئے مساوات 14.59 کو

(14.68)
$$H_x = \left(c_1 \cos \sqrt{A_1} y + c_2 \sin \sqrt{A_1} y\right) \left(c_3 \cos \sqrt{A_2} z + c_4 \sin \sqrt{A_2} z\right)$$

كھا جا سكتا ہے۔اسے مساوات 14.55 ميں پر كرنے سے

$$E_{z} = \frac{Z_{yz}}{\gamma - YZ_{yz}} \sqrt{A_{1}} \left(-c_{1} \sin \sqrt{A_{1}} y + c_{2} \cos \sqrt{A_{1}} y \right) \left(c_{3} \cos \sqrt{A_{2}} z + c_{4} \sin \sqrt{A_{2}} z \right)$$

حاصل ہوتا ہے۔متنطیل کا نچلا چادر y=y پر پایا جاتا ہے جس پر، برقی سرحدی شرط کے مطابق، $E_z=0$ ہو گالہذاy=y مندرجہ بالا مساوات صفر کے برابر ہو گا، جس سے

$$0 = \frac{Z_{yz}}{\gamma - YZ_{yz}} \sqrt{A_1} c_2 \left(c_3 \cos \sqrt{A_2} z + c_4 \sin \sqrt{A_2} z \right)$$

لعيني

$$(14.69) c_2 = 0$$

حاصل ہوتا ہے للذا

$$E_z = \frac{-Z_{yz}}{\gamma - YZ_{yz}} \sqrt{A_1} c_1 \sin \sqrt{A_1} y \left(c_3 \cos \sqrt{A_2} z + c_4 \sin \sqrt{A_2} z \right)$$

حاصل ہوتا ہے۔مستطیل کا بالائی چادر $y=y_1$ پایا جاتا ہے جس پر برقی سرحدی شرط کے مطابق متوازی برقی دباو صفر کے برابر ہو گا لہذا مندرجہ بالا مساوات میں y_1 پر کرتے ہوئے

$$0 = \frac{-Z_{yz}}{\gamma - YZ_{yz}} \sqrt{A_1} c_1 \sin \sqrt{A_1} y_1 \left(c_3 \cos \sqrt{A_2} z + c_4 \sin \sqrt{A_2} z \right)$$

حاصل ہوتا ہے۔اس مساوات کا ایک ممکنہ حل c_1 مساوی صفر ہے جس سے $H_x=0$ حاصل ہو گا۔اگرچہ یہ درست جواب ہے لیکن ہمیں زیادہ غرض حرکت کرتے موج سے ہے ناکہ ہر قتم کے میدان سے خالی موج کے سے، للذا ہم

(14.70)
$$c_1 \neq 0$$

لیتے ہیں۔یوں مندرجہ بالا مساوات سے

$$\sqrt{A_1}y_1 = n\pi$$

لعني

$$\sqrt{A_1} = \frac{n\pi}{y_1}$$

 $n=0,1,2,\cdots$ عاصل ہوتا ہے جہاں $n=0,1,2,\cdots$

(14.72)
$$H_x = n_1 \cos \frac{n\pi y}{y_1} \left(c_3 \cos \sqrt{A_2} z + c_4 \sin \sqrt{A_2} z \right)$$

ہو گا۔اس مساوات کو مساوات 14.56 میں پر کرنے سے

$$E_{y} = \frac{-Z_{yz}}{\gamma - YZ_{yz}} c_{1} \sqrt{A_{2}} \cos \frac{n\pi y}{y_{1}} \left(-c_{3} \sin \sqrt{A_{2}}z + c_{4} \cos \sqrt{A_{2}}z \right)$$

حاصل ہوتا ہے۔ مستطیل کا دایاں کھڑا چادر z=0 پر ہے، جہاں سر حدی شرط کے تحت متوازی برقی میدان صفر ہو گا لہذا

$$0 = \frac{-Z_{yz}}{\gamma - YZ_{yz}} c_1 c_4 \sqrt{A_2} \cos \frac{n\pi y}{y_1}$$

 $c_1
eq c_1 = 0$ حاصل ہوتا ہے۔اب چونکہ

$$(14.73) c_4 = 0$$

حاصل ہوتا ہے اور یوں

$$E_y = \frac{Z_{yz}}{\gamma - YZ_{yz}} c_1 c_3 \sqrt{A_2} \cos \frac{n\pi y}{y_1} \sin \sqrt{A_2} z$$

ہو گا۔ مستطیل کا بایاں کھڑا چادر $z=z_1$ پر پایا جاتا ہے جہال سرحدی شرائط کے تحت E_y ہو گا لہذا مندر جہ بالا مساوات میں بیہ حقائق پر کرتے ہوئے

$$0\frac{Z_{yz}}{\gamma - YZ_{yz}}c_1c_3\sqrt{A_2}\cos\frac{n\pi y}{y_1}\sin\sqrt{A_2}z_1$$

کھ جائے گا۔اب 0
eq 0 اور اس مساوات کا ایک مکنہ حل c_3 برابر صفر ہے جس سے H_x علاوہ تمام میدان صفر کے برابر حاصل ہوتے ہیں۔ہم چونکہ حرکت کرتے موج کی تلاش میں ہیں للذاہم اس مکنہ جواب کو رو کرتے ہوئے

$$(14.74)$$
 $c_3 \neq 0$

چنتے ہیں۔اس شرط کے ساتھ مندرجہ بالا مساوات سے

$$\sqrt{A_2}z_1 = m\pi$$

ليعني

$$\sqrt{A_2} = \frac{m\pi}{z_1}$$

 $c_1c_3=H_0$ ممکن ہے۔ یوں $c_1c_3=H_0$ کھیتے ہو

(14.77)
$$H_x(y,z) = H_0 \cos \frac{n\pi y}{y_1} \cos \frac{m\pi z}{z_1}$$

حاصل ہوتا ہے جو مقداری مساوات ہے۔اس مساوات میں وقت t اور x سمت میں حرکت کا کوئی ذکر نہیں ہے۔ یاد رہے کہ اصل میدان مساوات 14.24 کی طرز کا ہے جس میں بیہ معلومات بھی شامل ہیں لہٰذا

(14.78)
$$H_x(x,y,z,t) = H_0 \cos \frac{n\pi y}{y_1} \cos \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

لکھا جائے گا جو مکمل جواب ہے۔

آ تھویں قدم میں H_{x} کو مساوات 14.53 تا مساوات 14.56 میں پر کرتے ہوئے بقایا میدان حاصل کرتے ہیں لیعنی

$$H_y = \frac{\gamma H_0}{k^2} \frac{n\pi}{v_1} \sin \frac{n\pi y}{v_1} \cos \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

(14.80)
$$H_z = \frac{\gamma H_0}{k^2} \frac{m\pi}{z_1} \cos \frac{n\pi y}{y_1} \sin \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

(14.81)
$$E_z = -\frac{\gamma Z_{yz} H_0}{k^2} \frac{n\pi}{y_1} \sin \frac{n\pi y}{y_1} \cos \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

(14.82)
$$E_y = \frac{\gamma Z_{yz} H_0}{k^2} \frac{m\pi}{z_1} \cos \frac{n\pi y}{y_1} \sin \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

$$(14.83) E_{x} = 0$$

جہاں آخر میں $E_x=0$ بھی شامل کیا گیا ہے۔مساوات 14.78 تا مساوات 14.83 مستطیلی مون کے میں TE موج کا مکمل حل ہے۔ یہاں آٹھواں قدم پورا ہوتا ہے۔

p=1 ور p=1 کی صورت میں میدان شکل p=1 میں دکھائے گئے ہیں۔اب بھی میدان p=1 کی صورت میں میدان شکل p=1 کو گوگی اثر نہیں پایا جاتا۔ ساتھ ہی ساتھ p=1 ہیں میدان کا مکمل چکر، لیخی دو آدھے چکر، پائے جاتے ہیں۔ان سے آپ دیکھ سکتے ہیں کہ p=1 گوگی اثر نہیں پایا جاتا۔ ساتھ ہی ساتھ p=1 جالہ دیکھیں گے کہ p=1 ہوگل اسی طرح p=1 ہمیدان کے آدھے چکروں کی گنتی ہے۔ان مقائی کو سامنے رکھتے ہوئے بین درجی p=1 موج کو p=1 ہمان جاتا ہے۔ یوں شکل p=1 میں اس اسلام کے امواج p=1 جبکہ شکل p=1 موج کو سامنے p=1 موج کہ میں موج کہ موج کہ موج کہ موج کی تعداد p=1 مستطیلی موج کو گھروں کی تعداد p=1 ہمان کے رکھ کے اسی موج کے میں عموم کی خوا کہ کہا ہمانے کی جہاں کے پر آدھے چکروں کی تعداد p=1 ہمانے ہیں۔ مستطیلی موج کی میں عموم کے بین موج کو کام کی جاتا ہے۔ اس طرح مقناطیسی امواج p=1 ہملائے جاتے ہیں۔

شكل 14.10: بلند انداز TE امواج.

14.3.1 مستطیلی مویج کے میدان پر تفصیلی غور

بلند درجی TE₁₀ موج:

ماوات 14.78 ماوات 14.83 ميل
$$m=0$$
 اور $0=n$ اور $0=n$ اور 0 مندرجه ذيل TE $E_x=0$ مندرجه و يل څيلو کې څر ط TE $E_y=rac{\gamma Z_{yz}H_0}{k^2}rac{\pi}{z_1}\sinrac{\pi z}{z_1}e^{j\omega t-\gamma x}$ $E_z=0$ $H_x=H_0\cosrac{\pi z}{z_1}e^{j\omega t-\gamma x}$ $H_y=0$ $H_z=rac{\gamma H_0}{k^2}rac{\pi}{z_1}\sinrac{\pi z}{z_1}e^{j\omega t-\gamma x}$

ان میں پہلی مساوات، لینی $E_x=0$ در حقیقت TE موج کی تعریف ہے۔ان امواج کو شکل 14.10 الف میں و $E_x=0$ اور $E_x=0$ کی صورت میں دکھایا گیا ہے۔ان اشکال میں میدان بالمقابل $E_x=0$ دکھایا گیا ہے۔مندر جہ بالا مساوات میں کوئی میدان بھی $E_x=0$ بہن ہے لہذا $E_x=0$ میدان تبدیل نہیں ہوں گے۔ $E_x=0$ تمام اقسام کے بلند در جی امواج میں سب سے لمبی انقطاعی طول موج رکھتی ہے لہذا اس کی انقطاعی تعدد سب سے میدان تبدیل نہیں ہوں گے۔ $E_x=0$ تقطاعی تعدد سب سے میں میدان کو ظاہر کرنے کی میدان کو ظاہر کرنے کی میدان کو ظاہر کرنے کی کوشش کی گئی ہے۔ساتھ ہی ساتھ اس خطے کو گہر ارنگ بھی دے کر گھنے میدان کو ظاہر کیا گیا ہے۔شکل-ب میں مقناطیسی میدان کی سمت کو سمتی سے جبکہ میدان کو گہرے۔نگل۔ب میں مقناطیسی میدان کی سمت کو سمتی سے جبکہ میدان کو گہرے۔نگل۔ب میں مقناطیسی میدان کی سمت کو سمتی حبکہ حمیدان کو گہرے۔نگل۔ب میں مقناطیسی میدان کی سمت کو سمتیں حبکہ حمیدان کو گہرے۔نگل۔۔

بلند درجی TE₂₀ موج:

شکل 14.11 میں TE_{20} کے E_{y} اور H_{z} اشکال بھی د کھائے گئے ہیں۔

شکل 14.11: اور 120 کے E_y اور E_{20} میدان۔

بلند درجی TE₁₁ موج:

مساوات 14.78 تا مساوات 14.83 میں m=1 اور m=1 اور m=1 امواج حاصل ہوتے ہیں۔

$$E_{x} = 0$$

$$E_{y} = \frac{\gamma Z_{yz} H_{0}}{k^{2}} \frac{\pi}{z_{1}} \cos \frac{\pi y}{y_{1}} \sin \frac{\pi z}{z_{1}} e^{j\omega t - \gamma x}$$

$$E_{z} = -\frac{\gamma Z_{yz} H_{0}}{k^{2}} \frac{\pi}{y_{1}} \sin \frac{\pi y}{y_{1}} \cos \frac{\pi z}{z_{1}} e^{j\omega t - \gamma x}$$

$$H_{x} = H_{0} \cos \frac{\pi y}{y_{1}} \cos \frac{\pi z}{z_{1}} e^{j\omega t - \gamma x}$$

$$H_{y} = \frac{\gamma H_{0}}{k^{2}} \frac{\pi}{y_{1}} \sin \frac{\pi y}{y_{1}} \cos \frac{\pi z}{z_{1}} e^{j\omega t - \gamma x}$$

$$H_{z} = \frac{\gamma H_{0}}{k^{2}} \frac{\pi}{z_{1}} \cos \frac{\pi y}{y_{1}} \sin \frac{\pi z}{z_{1}} e^{j\omega t - \gamma x}$$

اس بلند درجی انداز میں صرف E_x ہر نقطے پر تمام او قات صفر کے برابر رہتا ہے۔ان میدان کو شکل 14.12 میں د کھایا گیا ہے۔

مستطیل موت کے عاصل حل میدان تمام مکنہ میدان ہیں جو کسی موت کی میں پائے جاسکتے ہیں۔ حقیقت میں کسی بھی موت کی میں پائے جانے والے امواج کا دارومدار موت کی کی جسامت، موج پیدا کرنے کا طریقہ اور موت کی میں ناہمواریوں پر ہے۔ کسی بھی نقطے پر موجود تمام میدانوں کا مجموعی میدان پایا جائے گا۔

والیس اینی گفتگو پر آتے ہوئے مساوات 14.64، مساوات 14.71 اور مساوات 14.76 کو ملا کر

$$(14.86) k^2 = \left(\frac{n\pi}{y_1}\right)^2 + \left(\frac{m\pi}{z_1}\right)^2$$

لکھا جا سکتا ہے جہال مساوات 14.53، مساوات 14.52 اور مساوات 14.57 سے

(14.87)
$$k^2 = \gamma^2 - j\omega\mu(\sigma + j\omega\epsilon)$$

کے برابر ہے۔ بے ضیاع ذو برق میں $\sigma=0$ لیا جا سکتا ہے۔ اس طرح مندرجہ بالا دو مساوات سے

$$\gamma = \sqrt{\left(\frac{n\pi}{y_1}\right)^2 + \left(\frac{m\pi}{z_1}\right)^2 - \omega^2 \mu \epsilon}$$

.14. كهوكهلا مستطيلي مويح

شكل TE₁₁: 14.12 ميدان.

حاصل ہوتا ہے۔

ایک مخصوص قیت سے کم تعدد پر جزر میں آخری جزو پہلے دواجزاء کے مجموعے سے کم ہو گالہذا ہ حقیقی ہو گا۔ حقیقی ہ کی صورت میں موج گھٹے گی اور بید موج کے گئے میں صفر نہیں کریائے گی۔

اسی طرح اس مخصوص قیت سے زیادہ تعدد پر γ خیالی عدد ہو گا لہٰذا مو یج میں موج صفر کرے گی۔

ان دو قیمتوں کے درمیان تعدد کی وہ قیمت ہوگی جس پر 0 = γ حاصل ہوتا ہے۔اس تعدد کو انقطاعی تعدد کے بیں۔انقطاعی تعدد سے بلند تعدد کے امواج، بغیر گھٹے، موج میں صفر نہیں کر پاتے۔

ان تین تعددی خطوں کو ایک جگه دوبارہ پیش کرتے ہیں۔

- کم تعدد لینی کم ω پر γ حقیقی ہوتا ہے۔ موت کے غیر شفاف ہوتا ہے جس میں امواج صفر نہیں کر سکتے۔
 - مخصوص در میانی تعدد پر $\gamma=0$ ہوتا ہے۔ یہ انقطاعی تعدد ہے۔
 - زیادہ تعدد پر γ خیالی ہوتا ہے۔ موتئے شفاف ہوتا ہے جس میں امواج صفر کر سکتے ہیں۔

مساوات 14.88 میں $\sqrt{\omega^2 \mu \epsilon}$ ورحقیقت ایسی لا محدود خطے کا زاویائی مستقل β_0 ہے جس میں وہی ذو برق ہو جو مو بج میں پایا جاتا ہے۔ یول ہم $\sqrt{\omega^2 \mu \epsilon}$ (14.89)

لکھ سکتے ہیں جہاں

$$eta_0 = \sqrt{\omega^2 \mu \epsilon} = rac{2\pi}{\lambda_0}$$
 لا محدود نخطے کا زاویائی مستقل λ_0 لا محدود نخطے میں طول موج $k = \sqrt{\left(rac{n\pi}{y_1}
ight)^2 + \left(rac{m\pi}{z_1}
ight)^2}$

ہیں۔ یوں انقطاعی تعدد سے بلند تعدد پر $eta_0>k$ ہوگا للذا

$$\gamma = \sqrt{k^2 - \beta_0^2} = j\beta$$

ہو گا جہاں

$$eta=rac{2\pi}{\lambda}=\sqrt{eta_0^2-k^2}$$
 موتج میں زاویائی متنقل موتج میں طول موج موتج میں طول موج

ہیں۔کافی بلند تعدد پر $k\gg \beta_0\gg 1$ ہو گا اور یوں موت کے زاویائی مستقل eta کی قیمت لا محدود خطے کے زاویائی مستقل eta کے قیمت کے قریب ہو گا۔اس کے برعکس انقطاعی تعدد سے کم تعدد پر $eta_0< k$ ہو گا جس سے

$$\gamma = \sqrt{k^2 - \beta_0^2} = \alpha$$

حاصل ہوتا ہے جہاں α تقلیلی مستقل ہے۔

کافی کم تعدد پر $k \gg eta_0 \ll k$ ہو گا لہٰذا تقلیلی مستقل کی قیت k کے قریب ہو گی۔

عين انقطا کي تعدد پر $eta_0=k$ هو گالمذا $\gamma=0$ هو گايوں انقطا کي تعدد پر

$$\omega^2 \mu \epsilon = \left(\frac{n\pi}{y_1}\right)^2 + \left(\frac{m\pi}{z_1}\right)^2$$

ہو گا جس سے انقطاعی تعدد 14

(14.93)
$$f_c = \frac{1}{2\sqrt{\mu\epsilon}}\sqrt{\left(\frac{n}{y_1}\right)^2 + \left(\frac{m}{z_1}\right)^2}$$
 (Hz)

اور انقطاعی طول موج

(14.94)
$$\lambda_{0c} = \frac{2\pi}{\sqrt{\left(\frac{n\pi}{y_1}\right)^2 + \left(\frac{m\pi}{z_1}\right)^2}} = \frac{2}{\sqrt{\left(\frac{n}{y_1}\right)^2 + \left(\frac{m}{z_1}\right)^2}} = \frac{2\pi}{k}$$
 (m)

يا

$$(14.95) k = \frac{2\pi}{\lambda_{0c}}$$

حاصل ہوتے ہیں جہاں λ_{0c} لامحدود خطے میں انقطاعی تعدد پر طول موج ہے جسے جھوٹا کر کہ انقطاعی طول موج 15 پکارا جاتا ہے۔ مساوات 14.93 اور مساوات 14.94 سے کھو کھلے مستطیلی موج کے کسی بھی TE_{mn} موج کا انقطاعی تعدد اور انقطاعی طول موج حاصل کیا جا سکتا ہے۔ مثال کے طور پر TE_{10} موج کا انقطاعی طول موج

$$\lambda_{0c} = 2z_1$$

حاصل ہوتا ہے جو وہی قیمت ہے جو مساوات 14.5 میں حاصل کی گئی تھی جہاں $z_1=b$ برابر ہے۔

انقطاعی تعدد سے بلند تعدد $(eta_0>k)$ پر

$$\beta = \sqrt{\beta_0^2 - k^2} = \sqrt{\omega^2 \mu \epsilon - \left(\frac{n\pi}{y_1}\right)^2 - \left(\frac{m\pi}{z_1}\right)^2}$$

$$\beta = \sqrt{\left(\frac{2\pi}{\lambda_0}\right)^2 - \left(\frac{2\pi}{\lambda_{0c}}\right)^2} = \beta_0 \sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}$$

لکھا جا سکتا ہے للذا موج میں طول موج

(14.99)
$$\lambda_{\text{Tr}} = \frac{2\pi}{\beta} = \frac{\lambda_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}}$$

شکل 14.13: مختلف بلند درجی امواج کے مستطیلی مویج میں دوری رفتار بالمقابل طول موج λ_0

 v_p اور مو یج میں دوری رفتار 16

$$v_p = \frac{\omega}{\beta} = \frac{v_0}{\sqrt{1 - \left(\frac{n\lambda_0}{2y_1}\right)^2 - \left(\frac{m\lambda_0}{2z_1}\right)^2}}$$

یا

$$v_p = \frac{v_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}}$$

حاصل ہوتے ہیں جہاں

$$v_0=rac{\omega}{eta_0}=rac{1}{\sqrt{\mu\epsilon}}$$
 لا محدود خطے میں دوری رفتار λ_0 لا محدود خطے میں طول موج λ_{0c} انقطاعی طول موج موج λ_{0c}

ہیں۔

شکل 14.13 میں مختلف بلند انداز امواج کے دوری رفتار بالمقابل طول موج λ_0 دکھائے گئے ہیں۔دوری رفتار کو لا محدود خطے کے دوری رفتار v_0 کی نسبت سے دکھایا گیا ہے۔ان اشکال میں مستطیلی موج کے دونوں اطراف برابر لمبائی $(y_1=z_1)$ کے تصور کئے گئے ہیں۔

مندرجہ بالا تجزیے میں موت کے اطراف کامل موصل کے تصور کئے گئے اور ساتھ ہی ساتھ موت کی میں بے ضیاع ذو برق بھراتصور کیا گیا۔اسی لئے انقطاعی تعدد سے بلند تعدد پر امواج بغیر گھٹے موت کی میں صفر کرتے ہیں۔ حقیقت میں موت کے کے اطراف کے موصل کی موصلیت اور ذو برق میں طاقت کی ضیاع سے $\gamma = \alpha + j\beta$ ہوگا للذا انقطاعی تعدد سے بلند تعدد کے امواج بھی صفر کے دوران کچھ نہ کچھ گھٹے ہیں۔

کھو کھے موتے جس میں صرف ہوا بھری ہو میں ذو برق یعنی ہواکا ضیاع قابل نظر انداز ہوتا ہے۔ایسے موتئ میں طاقت کا ضیاع صرف موتئ کے چادروں کی موصلیت کی بنا ہے۔موصل چادر مکمل طور پر کامل نہ ہونے کا مطلب لے کہ حقیقت میں چادر کے متوازی برقی میدان E_m صفر نہیں ہو گا۔ پھے موصل مثلاً تانبے کی بنی چادر میں E_m کی قیمت قابل نظر انداز ہوتی ہے۔یوں تانبے یادیگر اچھے موصل کے چادر سے بنی موتئ کے طول موج λ ناویائی مستقل α یا دوری رفتار v_p حاصل کرتے وقت موتئ کے چادر کو کامل ہی تصور کیا جاتا ہے۔ایسی صورت میں تقلیلی مستقل α کا تخمینہ علیحدہ طور پر لگا جاتا ہے۔

آخر میں مستطیلی مونج میں عرضی برقی موج کی رکاوٹ Z_{yz} مساوات 14.52 سے حاصل کرتے ہیں۔

$$Z_{yz} = \frac{j\omega\mu}{\gamma}$$

phase velocity¹⁶

انقطاعی تعدد سے بلند تعدد پر $\gamma=jeta$ ہوتا ہے للذا

(14.103)
$$Z_{yz} = \frac{\omega\mu}{\beta} = \frac{Z_z}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}} \qquad (\Omega)$$

ہو گا جہاں

$$Z_z=\sqrt{rac{\mu}{\epsilon}}$$
مون کی قدرتی رکاوٹ کی قدرتی رکاوٹ λ_0 لا محدود خطے میں طول موج λ_{0c} انقطاعی طول موج

 z_{yz} بالمان 14.13 کے برابر ہے المان شکل 2 z_{z} اور z_{z} اور z_{z} اور z_{z} اور z_{z} بالمان 14.13 کے برابر ہے لہذا شکل 14.13 کے برابر ہے۔

مثق 14.1: TE_{20} ، TE_{10} اور TE_{11} امواج کی انقطاعی طول موج مندرجہ ذیل منتظیلی موج کے لئے حاصل کریں۔

- ہواسے بھرامو یکے جس کے اطراف چار سنٹی میٹر اور دوسنٹی میٹر ہیں۔
- ہواسے بھرامو یج جس کے دونوں اطراف چارسٹٹی میٹر کے برابر ہیں۔

جوابات: يبلا موتي 3.577 cm ،4 cm ،8 cm ،2 cm ،2 cm ،4 cm ،8 cm جوابات: يبلا موتي

14.4 مستطیلی مویج میں عرضی مقناطیسی TMmn موج

 TM_{mn} کے میں عرضی مقناطیسی موجی ہوگی۔ انہیں آٹھ قدم سے شکل 14.9 کے مستطیلی موجی میں عرضی مقناطیسی موجی ہوتی ہیں عرضی بی ماصل کئے جاتے ہیں۔ فرق صرف اتنا ہے کہ یہاں $H_x=0$ فرض کر کے مسئلہ حل کیا جاتا ہے۔ TM_{mn} موجی کہتے ہی اس موجی کو ہیں جن میں $H_x=0$ ہو۔ آئیں TM_{mn} حاصل کرنے کے اہم نکات کا تذکرہ کریں۔

موج حاصل کرنے کے پہلے تین قدم میں کوئی تبدیلی نہیں پائی جاتی للذا مساوات 14.14 تا مساوات 14.42 جوں کے توں استعال کئے جائیں گے۔ چوتھے قدم میں $H_x=0$ پر کرنے سے

$$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = 0$$

$$\frac{\partial E_x}{\partial z} + \gamma E_z - ZH_y = 0$$

$$-\gamma E_y - \frac{\partial E_x}{\partial y} - ZH_z = 0$$

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - YE_x = 0$$

$$\gamma H_z - \Upsilon E_v = 0$$

$$(14.109) -\gamma H_y - Y E_z = 0$$

$$-\gamma E_x + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$\frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} = 0$$

حاصل ہوتا ہے۔ مساوات 14.108 اور مساوات 14.109 سے

$$Z_{yz} = \frac{E_y}{H_z} = -\frac{E_z}{H_y} = \frac{\gamma}{\Upsilon}$$

ککھا جا سکتا ہے۔اس مساوات کا مساوات 14.52 کے ساتھ موازنہ کریں۔ا گرچہ دونوں جگہ Z_{yz} کی تعریف $\frac{E_y}{H_2}$ ہی ہے لیکن دونوں جگہ اس شرح کی قیمت مختلف ہے۔ کیبیں سے آپ تو قع کر سکتے ہیں کہ TM_{mn} موج کی رکاوٹ TE_{mn} کے رکاوٹ سے مختلف ہو گی۔

یا نچویں قدم میں تمام میدان کو E_x کی صورت میں حاصل کرناہے۔مساوات 14.112 کو مساوات 14.105 میں پر کرتے ہوئے H_y کے لئے حل کرتے ہوئے E_x

(14.113)
$$H_y = \frac{Y}{\gamma^2 + YZ} \frac{\partial E_x}{\partial z}$$

اور اسی طرح مساوات 14.112 کو مساوات 14.106 میں پر کرتے ہوئے H_z کے لئے حل کرتے ہوئے

$$(14.114) H_z = \frac{-Y}{\gamma^2 + YZ} \frac{\partial E_x}{\partial y}$$

حاصل ہوتے ہیں۔ان دو مساوات اور مساوات 14.112 سے

$$E_y = \frac{-\gamma}{\gamma^2 + YZ} \frac{\partial E_x}{\partial y}$$

(14.116)
$$E_z = \frac{-\gamma}{\gamma^2 + YZ} \frac{\partial E_x}{\partial z}$$

لکھا جا سکتا ہے۔ یوں پانچواں قدم پورا ہوتا ہے۔

چھے قدم میں E_x کے موج کی مساوات حاصل کرنے کی غرض سے مساوات 14.115 کا y کے ساتھ تفرق اور مساوات 14.116 کا z کے ساتھ تفرق مساوات 14.110 میں پر کرتے ہوئے

$$-\gamma E_x - \frac{\gamma}{\gamma^2 + YZ} \frac{\partial^2 E_x}{\partial y^2} - \frac{\gamma}{\gamma^2 + YZ} \frac{\partial^2 E_x}{\partial z^2} = 0$$

ļ

$$\frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} + (\gamma^2 + YZ)E_x = 0$$

حاصل ہوتا ہے جسے

$$\frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} + k^2 E_x = 0$$

لکھا جا سکتا ہے جہاں

$$(14.118) k^2 = \gamma^2 + YZ = \gamma \left(\gamma + \frac{Z}{Z_{yz}} \right)$$

کے برابر ہے۔ مساوات 14.57 کے ساتھ موازنہ کرتے ہوئے آپ دیکھ سکتے ہیں کہ TM_{mn} اور TE_{mn} امواج کے گنلف قیمت رکھتے ہیں۔

ساتویں قدم پر مساوات 14.117 کا ایسا حل در کار ہے جو مستطیلی موج کے اطراف پر برقی اور مقناطیسی سرحدی شرائط پر پورااتر تا ہو۔ بالکل پہلے کی طرح حل کرتے ہوئے

$$(14.119) k^2 = \left(\frac{n\pi}{y_1}\right)^2 + \left(\frac{m\pi}{z_1}\right)^2$$

اور میدان

(14.120)
$$E_x = E_0 \sin \frac{n\pi y}{y_1} \sin \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

حاصل ہوتا ہے جسے باری باری مساوات 14.113 تا مساوات 14.116 میں پر کرتے ہوئے

(14.121)
$$H_y = \frac{YE_0}{\gamma^2 + YZ} \frac{m\pi}{z_1} \sin \frac{n\pi y}{y_1} \cos \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

$$H_z = \frac{-YE_0}{\gamma^2 + YZ} \frac{n\pi}{y_1} \cos \frac{n\pi y}{y_1} \sin \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

(14.123)
$$E_y = \frac{-\gamma E_0}{\gamma^2 + YZ} \frac{n\pi}{y_1} \cos \frac{n\pi y}{y_1} \sin \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

(14.124)
$$E_z = \frac{-\gamma E_0}{\gamma^2 + YZ} \frac{m\pi}{z_1} \sin \frac{n\pi y}{y_1} \cos \frac{m\pi z}{z_1} e^{j\omega t - \gamma x}$$

حاصل ہوتے ہیں۔ان جوابات کے ساتھ

$$H_x = 0$$
 موج ہونے کا شرط TM_{mn}

شامل کرتے ہوئے تمام میدان حاصل ہوتے ہیں۔

مساوات 14.120 تا مساوات 14.125 کے TM_{mn} امواج میں m یا n صفر کے برابر ہونے سے تمام میدان صفر ہو جاتے ہیں لہذا TM_{mn} کا کم سے متعدد کی موج TM_{11} ہے۔

بے ضیاع $\sigma=0$ ذو برق تصور کرتے ہوئے، مساوات 14.118، مساوات 14.119 اور مساوات 14.33 سے

$$\gamma = \sqrt{\left(\frac{n\pi}{y_1}\right)^2 + \left(\frac{m\pi}{z_1}\right)^2 - \omega^2 \mu \epsilon}$$

$$= \sqrt{k^2 - \beta_0^2}$$

اب 14. مویج اور گهمکیا 182. مویج اور گهمکیا

کھا جا سکتا ہے جہاں $\omega\sqrt{\mu\epsilon}$ لا محدود وسعت کے خطے میں موج کا زاویائی مستقل eta_0 ہے۔مندر جہ بالا مساوات میں $k>eta_0$ کی صورت میں

$$\gamma = \alpha + j\beta = \sqrt{k^2 - \beta_0^2}$$

ے 0 $\beta = 0$ اور $\alpha = sqrtk^2 - \beta_0^2$ ماصل ہوتا ہے۔ اس صورت میں موج صفر نہیں کر پائے گی۔ اس کے بر عکس $\alpha = sqrtk^2 - \beta_0^2$ (14.129) $\gamma = \alpha + j\beta = \sqrt{k^2 - \beta_0^2} = j\sqrt{\beta_0^2 - k^2}$

ے $\alpha=0$ حاصل ہوتا ہے۔اس صورت میں موج، بغیر گھٹے موج میں صفر کرے گی۔انقطاعی تعدد ان دو تعدد ی خطوں کے عین در میان پایا جائے گا جہال γ کی قیمت حقیقی سے خیالی ہوتے ہوئے صفر سے گزرے گی۔مساوات 14.126 میں $\gamma=0$ پر کرنے سے انقطاعی تعدد

(14.130)
$$\omega_c^2 \mu \epsilon = \left(\frac{n\pi}{y_1}\right)^2 + \left(\frac{m\pi}{z_1}\right)^2$$

 $f_c = \frac{1}{2\sqrt{\mu\epsilon}}\sqrt{\left(\frac{n}{y_1}\right)^2 + \left(\frac{m}{z_1}\right)^2}$

حاصل ہوتا ہے۔اس طرح انقطاعی طول موج

(14.132)
$$\lambda_{0c} = \frac{2\pi}{\sqrt{\left(\frac{n\pi}{y_1}\right)^2 + \left(\frac{m\pi}{z_1}\right)^2}} = \frac{2}{\sqrt{\left(\frac{n}{y_1}\right)^2 + \left(\frac{m}{z_1}\right)^2}} = \frac{2\pi}{k}$$

 $(14.133) k = \frac{2\pi}{\lambda_{0a}}$

حاصل ہوتا ہے۔ آپ دیکھ سکتے ہیں کہ TM_{mn} اور TE_{mn} امواج کے انقطاعی تعدد کے مساوات ہو بہوایک جیسے ہیں۔

انقطاعی تعدد سے بلند تعدد k > 0 کی صورت میں

$$\beta = \sqrt{\beta_0^2 - k^2} = \sqrt{\omega^2 \mu \epsilon - \left(\frac{n\pi}{y_1}\right)^2 - \left(\frac{m\pi}{z_1}\right)^2}$$

ہو گا جس سے مونج میں طول موج

(14.135)
$$\lambda_{\mathcal{E}, r} = \frac{2\pi}{\beta} = \frac{\lambda_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}}$$

اور مویج میں دوری رفتار

$$v_p = \frac{\omega}{\beta} = \frac{v_0}{\sqrt{1 - \left(\frac{n\lambda_0}{2y_1}\right)^2 - \left(\frac{m\lambda_0}{2z_1}\right)^2}}$$

$$= \frac{v_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}}$$

یا

١

حاصل ہوتے ہیں جہاں

$$v_0=rac{1}{\sqrt{\mu\epsilon}}$$
 لا محدود خطے میں دوری رفتار λ_0 لا محدود خطے میں طول موت λ_{0c} انقطاعی طول موت

ہیں۔ آپ دیکھ سکتے ہیں کہ TM_{mn} اور TE_{mn} کے دوری رفتار کے مساوات بھی ہو بہو یکسال ہیں۔

عرضی مقناطیسی موج کی رکاوٹ مساوات 14.112 سے

$$Z_{yz} = \frac{\gamma}{\gamma}$$

ے جو انقطاعی تعد د ہے بلند تعد د $\gamma = i \beta$ صورت میں

(14.137)
$$Z_{yz} = \frac{\beta}{\omega \epsilon} = Z_z \sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}$$

ہو گا جہاں

$$Z_z=\sqrt{rac{\mu}{\epsilon}}$$
مو جن کے ذو برق کی قدرتی رکاوٹ λ_0 لامحدود خطے میں طول موج λ_{0c} انقطاعی طول موج

کے برابر ہیں۔مساوات 14.137 کا مساوات 14.103 کے ساتھ موازنہ کرنے سے آپ دیکھ سکتے ہیں کہ TMmn اور TEmn امواج کی رکاوٹ مختلف ہیں۔

ہم نے دیکھا کہ ہربلند درجی انداز کا اپنا مخصوص انقطاعی تعدد ، رفتار اور رکاوٹ ہوتے ہیں۔اگر تعدد ۱ تنی ہو کہ مختلف بلند انداز موج کیمیں صفر کر سکتے ہوں تب میدان ان تمام میدانوں کا مجموعہ ہو گا جو موج میں پائے جاتے ہوں۔

جدول 14.1 مستطیلی مو بج میں TEmn موج کے متغیرات کے تعلق دیتا ہے۔ Z_{UZ} کے علاوہ یہی تعلق TM_{mn} کے لئے بھی درست ہیں۔

جدول 14.1: مستطیلی مویج میں TEmn امواج کے متغیرات کے تعلق۔

page

کھوکھلی نالی جس کا اندرونی رداس م ہو کے مسائل نکلی محدد میں باآسانی حاصل ہوتے ہیں للذاایسے موتئے میں TEmn یا TMmn امواج حاصل کرنے کی خاطر نکلی محدد ہی استعال کرتے ہیں۔ یہاں بھی صفحہ 364 پر دیے آٹھ قدم لیتے ہوئے جواب حاصل کیا جائے گا۔ نکلی موت کے محدد پر رکھا گیا ہے للذا اس میں امواج کے جانب حرکت کریں گے۔

میس ویل کے گردش کے دو مساوات کو نکلی محدد میں لکھ کر

$$\left[\frac{1}{\rho}\frac{\partial E_z}{\partial \phi} - \frac{\partial E_{\phi}}{\partial z}\right] a_{\rho} + \left(\frac{\partial E_{\rho}}{\partial z} - \frac{\partial E_z}{\partial \rho}\right) a_{\phi} + \left[\frac{1}{\rho}\frac{\partial (E_{\phi}\rho)}{\partial \rho} - \frac{1}{\rho}\frac{\partial E_{\rho}}{\partial \phi}\right] a_z$$

$$= -\mu \left(\frac{\partial H_{\rho}}{\partial t} a_{\rho} + \frac{\partial H_{\phi}}{\partial t} a_{\phi} + \frac{\partial H_z}{\partial t} a_z\right)$$

$$\left[\frac{1}{\rho}\frac{\partial H_{z}}{\partial \phi} - \frac{\partial H_{\phi}}{\partial z}\right] a_{\rho} + \left(\frac{\partial H_{\rho}}{\partial z} - \frac{\partial H_{z}}{\partial \rho}\right) a_{\phi} + \left[\frac{1}{\rho}\frac{\partial (H_{\phi}\rho)}{\partial \rho} - \frac{1}{\rho}\frac{\partial H_{\rho}}{\partial \phi}\right] a_{z}$$

$$= \sigma \left(E_{\rho}a_{\rho} + E_{\phi}a_{\phi} + E_{z}a_{z}\right) + \epsilon \left(\frac{\partial E_{\rho}}{\partial t}a_{\rho} + \frac{\partial E_{\phi}}{\partial t}a_{\phi} + \frac{\partial E_{z}}{\partial t}a_{z}\right)$$

محددی اجزاء علیحدہ علیحدہ لکتے ہوئے مندرجہ ذیل چھ مساوات

$$\frac{1}{\rho} \frac{\partial E_z}{\partial \phi} - \frac{\partial E_\phi}{\partial z} = -\mu \frac{\partial H_\rho}{\partial t}$$

$$\frac{\partial E_{\rho}}{\partial z} - \frac{\partial E_{z}}{\partial \rho} = -\mu \frac{\partial H_{\phi}}{\partial t}$$

$$\frac{1}{\rho} \frac{\partial (E_{\phi} \rho)}{\partial \rho} - \frac{1}{\rho} \frac{\partial E_{\rho}}{\partial \phi} = -\mu \frac{\partial H_z}{\partial t}$$

$$\frac{1}{\rho}\frac{\partial H_z}{\partial \phi} - \frac{\partial H_{\phi}}{\partial z} = \sigma E_{\rho} + \epsilon \frac{\partial E_{\rho}}{\partial t}$$

$$\frac{\partial H_{\rho}}{\partial z} - \frac{\partial H_{z}}{\partial \rho} = \sigma E_{\phi} + \epsilon \frac{\partial E_{\phi}}{\partial t}$$

$$\frac{1}{\rho} \frac{\partial (H_{\phi} \rho)}{\partial \rho} - \frac{1}{\rho} \frac{\partial H_{\rho}}{\partial \phi} = \sigma E_z + \epsilon \frac{\partial E_z}{\partial t}$$

حاصل ہوتے ہیں جن کے ساتھ چارج سے خالی $ho_h=0$ خطے میں پھیلاو کے دو مساوات

$$\frac{1}{\rho}\frac{\partial(\rho E_{\rho})}{\partial\rho} + \frac{1}{\rho}\frac{\partial E_{\phi}}{\partial\phi} + \frac{\partial E_{z}}{\partial z} = 0$$

$$\frac{1}{\rho}\frac{\partial(\rho H_{\rho})}{\partial\rho} + \frac{1}{\rho}\frac{\partial H_{\phi}}{\partial\phi} + \frac{\partial H_{z}}{\partial z} = 0$$

مساوات 14.138 تا مساوات 14.145 کو وقت کے ساتھ اور z فاصلے کے ساتھ سائن نما تعلق کا پابند $(E_{\phi}=E_{1}e^{j\omega t-\gamma z})$ بناتے ہوئے

$$\frac{1}{\rho}\frac{\partial E_z}{\partial \phi} + \gamma E_{\phi} - ZH_{\rho} = 0$$

$$-\gamma E_{\rho} - \frac{\partial E_z}{\partial \rho} - ZH_{\phi} = 0$$

(14.148)
$$\frac{1}{\rho} \frac{\partial (E_{\phi} \rho)}{\partial \rho} - \frac{1}{\rho} \frac{\partial E_{\rho}}{\partial \phi} - ZH_z = 0$$

$$\frac{1}{\rho}\frac{\partial H_z}{\partial \phi} + \gamma H_\phi - \gamma E_\rho = 0$$

$$(14.150) -\gamma H_{\rho} - \frac{\partial H_{z}}{\partial \rho} - Y E_{\phi} = 0$$

(14.151)
$$\frac{1}{\rho} \frac{\partial (H_{\phi} \rho)}{\partial \rho} - \frac{1}{\rho} \frac{\partial H_{\rho}}{\partial \phi} - \Upsilon E_z = 0$$

(14.152)
$$\frac{1}{\rho} \frac{\partial (\rho E_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial E_{\phi}}{\partial \phi} + \frac{\partial E_{z}}{\partial z} = 0$$

$$\frac{1}{\rho} \frac{\partial (\rho H_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial H_{\phi}}{\partial \phi} + \frac{\partial H_{z}}{\partial z} = 0$$

حاصل ہوتا ہے جہاں

$$Z = -j\omega\mu$$
 (Ω/m) سلسله وار رکاوث
 $Y = \sigma + j\omega\epsilon$ (S/m) متوازی فراوانی
 $\gamma = \alpha + j\beta$ شرح ترسیل

ہیں۔

 $E_z=0$ یہاں ہم عرضی برقی یا عرضی مقناطیسی موج منتخب کرتے ہوئے آگے بڑھ سکتے ہیں۔ ہم مستخب کرتے ہوئے آگے بڑھتے ہیں۔ یوں TE_{mn} ہو گا جس سے

$$\gamma E_{\phi} - ZH_{\rho} = 0$$

$$-\gamma E_{\rho} - ZH_{\phi} = 0$$

(14.156)
$$\frac{E_{\phi}}{\rho} + \frac{\partial E_{\phi}}{\partial \rho} - \frac{1}{\rho} \frac{\partial E_{\rho}}{\partial \phi} - ZH_z = 0$$

$$\frac{1}{\rho}\frac{\partial H_z}{\partial \phi} + \gamma H_\phi - Y E_\rho = 0$$

$$-\gamma H_{\rho} - \frac{\partial H_z}{\partial \rho} - Y E_{\phi} = 0$$

$$\frac{H_{\phi}}{\rho} + \frac{\partial H_{\phi}}{\partial \rho} - \frac{1}{\rho} \frac{\partial H_{\rho}}{\partial \phi} = 0$$

$$\frac{E_{\rho}}{\rho} + \frac{\partial E_{\rho}}{\partial \rho} + \frac{1}{\rho} \frac{\partial E_{\phi}}{\partial \phi} = 0$$

$$\frac{H_{\rho}}{\rho} + \frac{\partial H_{\rho}}{\partial \rho} + \frac{1}{\rho} \frac{\partial H_{\phi}}{\partial \phi} + \frac{\partial H_{z}}{\partial z} = 0$$

 $E_{\phi}+
ho rac{\partial E_{\phi}}{\partial
ho}$ عاصل ہوتا ہے جہاں مساوات 14.148 میں $rac{\partial (E_{\phi}
ho)}{\partial
ho}$ تفرق کو کھول کر وکھول کر تاہم کھا گیا ہے۔ ایسا ہی بقایا تفرق کے ساتھ بھی کیا گیا ہے۔

 $Z_{
ho\phi}$ کی صورت میں لکھنے کی خاطر مساوات 14.154 اور مساوات 14.155 سے عرضی موج کی رکاوٹ تمام میدان کو H_z

$$Z_{\rho\phi} = \frac{E_{\rho}}{H_{\phi}} = -\frac{E_{\phi}}{H_{\rho}} = -\frac{Z}{\gamma} = \frac{j\omega\mu}{\gamma}$$

لیتے ہیں۔ مساوات 14.162 سے $E_{
ho}$ مساوات 14.157 میں پر کرتے ہوئے H_{ϕ} کے لئے حل کرتے ہوئے

(14.163)
$$H_{\phi} = -\frac{1}{\gamma - YZ_{\rho\phi}} \frac{1}{\rho} \frac{\partial H_z}{\partial \phi}$$

عاصل ہوتا ہے۔ اس طرح مساوات 14.162 سے E_{ϕ} مساوات 14.158 میں پر کرتے ہوئے H_{ρ} کے لئے حل کرتے ہوئے

(14.164)
$$H_{\rho} = -\frac{1}{\gamma - YZ_{\rho\phi}} \frac{\partial H_z}{\partial \rho}$$

حاصل ہوتا ہے۔مندرجہ بالا دو مساوات اور مساوات 14.162 سے

(14.165)
$$E_{\rho} = -\frac{Z_{\rho\phi}}{\gamma - YZ_{\rho\phi}} \frac{1}{\rho} \frac{\partial H_z}{\partial \phi}$$

(14.166)
$$E_{\phi} = \frac{Z_{\rho\phi}}{\gamma - Y Z_{\rho\phi}} \frac{\partial H_z}{\partial \rho}$$

کھے جا سکتے ہیں۔ یہ مساوات تمام میدان کو H_z کی صورت میں بیان کرتے ہیں۔

موج کی مقداری مساوات

باب 15

سوالات

باب 15. سوالات

 σ :15.1 جدول

$\sigma, \frac{S}{m}$	چیر	$\sigma, \frac{S}{m}$	چيز
7×10^4	گريفائٿ	6.17×10^{7}	چاندی
1200	سليكان	5.80×10^{7}	تانبا
100	فيرائث (عمومي قيمت)	4.10×10^{7}	سونا
5	سمندری پانی	3.82×10^{7}	المونيم
10^{-2}	چهونا پتهر	1.82×10^{7}	النگستان
5×10^{-3}	چکنی مٹی	1.67×10^{7}	جست
10^{-3}	تازه پانی	1.50×10^{7}	پيتل
10^{-4}	تقطیر شده پانی	1.45×10^{7}	نکل
10^{-5}	ریتیلی مٹی	1.03×10^{7}	لوبا
10^{-8}	سنگ مرمر	0.70×10^{7}	قلعى
10^{-9}	بيك لائث	0.60×10^{7}	كاربن سٹيل
10^{-10}	چینی مٹی	0.227×10^{7}	مینگنین
2×10^{-13}	بيرا	0.22×10^{7}	جرمينيم
10^{-16}	پولیسٹرین پلاسٹک	0.11×10^{7}	سٹینلس سٹیل
10^{-17}	كوارالس	0.10×10^{7}	نائيكروم

باب 15. سوالات

 $\sigma/\omega\epsilon$ and ϵ_R :15.2 جدول

σ/ωε	ϵ_R	چير
	1	خالي خلاء
	1.0006	ب وا
0.0006	8.8	المونيم اكسائذ
0.002	2.7	عنبر
0.022	4.74	بيك لائث
	1.001	كاربن ڈائى آكسائڈ
	16	جرمينيم
0.001	4 تا 7	شيشہ
0.1	4.2	برف
0.0006	5.4	ابرق
0.02	3.5	نائلون
0.008	3	كاغذ
0.04	3.45	پلیکسی گلاس
0.0002	2.26	پلاسٹک (تھیلا بنانے والا)
0.00005	2.55	پولیسٹرین
0.014	6	چینی مٹی
0.0006	4	پائریکس شیشہ (برتن بنانے والا)
0.00075	3.8	كوارثس
0.002	2.5 تا 3	ريز
0.00075	3.8	SiO ₂ سلیکا
	11.8	سليكان
0.5	3.3	قدرتی برف
0.0001	5.9	کھانے کا نمک
0.07	2.8	خشک مٹنی
0.0001	1.03	سٹائروفوم
0.0003	2.1	ٹیفلان
0.0015	100	ٹائٹینیم ڈائی آکسائڈ
0.04	80	مقطر پانی
4		سمندری پانی
0.01	1.5 تا 4	خشک لکڑی

μ_R :15.3 جدول

μ_R	چيز
0.999 998 6	بسمت
0.99999942	پيرافين
0.999 999 5	لکڑی
0.999 999 81	چاندى
1.00000065	المونيم
1.00000079	بيريليم
50	نکل
60	ڈھلواں لوہا
300	مشين سٹيل
1000	فيرائك (عمومي قيمت)
2500	پرم بھرت (permalloy)
3000	ٹرانسفارمر پتری
3500	سيلكان لوبا
4000	خالص لوبا
20 000	میو میٹل (mumetal)
30 000	سنڈسٹ (sendust)
100 000	سوپرم بهرت (supermalloy)

جدول 15.4: اہم مستقل

قيمت	علامت	چیر
$(1.6021892 \mp 0.0000046) \times 10^{-19} \mathrm{C}$	e	اليكثران چارج
$(9.109534 \mp 0.000047) \times 10^{-31} \mathrm{kg}$	m	اليكثران كميت
$(8.854187818 \mp 0.000000071) \times 10^{-12}\frac{F}{m}$	ϵ_0	برقی مستقل (خالی خلاء)
$4\pi 10^{-7} rac{ ext{H}}{ ext{m}}$	μ_0	مقناطیسی مستقل (خالی خلاء)
$(2.997924574 \mp 0.000000011) \times 10^8 \frac{\text{m}}{\text{s}}$	c	روشنی کی رفتار (خالی خلاء)

باب 15. سوالات