Modélisation statistique — Régression linéaire multiple

Exercice 1 (Régression linéaire multiple)

On considère le modèle de régression linéaire multiple

$$Y = X\beta + \epsilon$$
,

avec $\beta \in \mathbb{R}^p$ inconnu et $\epsilon \sim \mathcal{N}(0, \Sigma)$. On suppose Σ connue et de rang plein (de rang n), mais pas nécessairement diagonale. On suppose de plus que $X \in \mathbb{R}^{n \times p}$ est de rang plein.

- 1) Considérons l'estimateur des moindres carrés ordinaire $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$. Calculer l'espérance et la matrice de variance-covariance de $\hat{\beta}$ sous les hypothèses données dans cet exercice.
- 2) Justifier l'existence d'une matrice Ω de taille $n \times n$ telle que $\Sigma = \Omega^{\top} \Omega$.
- 3) Montrer que $\Omega^{-1}X$ est de rang plein.
- 4) Soit $Y^* = \Omega^{-1}Y$, $X^* = \Omega^{-1}X$ et $\epsilon^* = \Omega^{-1}\epsilon$. Prouver que nous obtenons un nouveau modèle qui satisfait
 - (a) $\mathbb{E}[\epsilon_i^*] = 0$,
 - (b) $Var[\epsilon_i^*] = \sigma^2 > 0$ (erreurs de variance constante),
 - (c) $Cov(\epsilon_i^*, \epsilon_i^*) = 0$ pour tout $i \neq j$.
- 5) Déduisez un "meilleur" estimateur fonction de $X,Y,\Sigma.$ Nous désignons par $\hat{\beta}_G$ cet estimateur.
- 6) Calculer $\mathbb{E}(\hat{\beta}_G)$ et $\operatorname{Var}(\hat{\beta}_G)$.
- 7) Montrer que $\hat{\beta}_G$ est optimal parmi tous les estimateurs non biaisés T, c'est-à-dire que pour tout T

$$\operatorname{Var}(T) - \operatorname{Var}(\hat{\beta}_G)$$

est définie positive.

8) Conclure par une comparaison avec l'estimateur ordinaire des moindres carrés.

Exercice 2 (Régression ridge)

On considère le modèle linéaire Gaussien

$$Y = X\beta + \epsilon$$
,

où $Y \in \mathbb{R}^n$ est le vecteur de réponses, $X \in \mathbb{R}^{n \times p}$ est la matrice de design (prédicteurs), $\beta \in \mathbb{R}^p$ est le vecteur (inconnu) de coefficients de régression, et $\epsilon \sim \mathcal{N}(0, \sigma^2 I_n)$. Soit $\lambda > 0$, on définit l'estimateur de la régression ridge par :

$$\hat{\beta}_{\lambda}^{R} = \operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \|Y - X\beta\|^{2} + \lambda \|\beta\|^{2}.$$

1) Montrer que l'estimateur $\hat{\beta}_{\lambda}^{R}$ vérifie la relation

$$(X^{\top}X + \lambda I_p)\hat{\beta}_{\lambda}^R = X^{\top}Y.$$

- 2) Montrer que $X^{\top}X + \lambda I_p$ est inversible. En déduire une expression pour l'estimateur $\hat{\beta}_{\lambda}^{R}$.
- 3) Donner la limite de $\hat{\beta}_{\lambda}^{R}$ lorsque $\lambda \to 0$ et lorsque $\lambda \to \infty$.
- 4) Calculer le biais de l'estimateur ridge $\hat{\beta}_{\lambda}^{R}$.
- 5) Calculer la variance de l'estimateur ridge $\hat{\beta}_{\lambda}^{R}$.
- 6) Supposons que X est de rang plein (i.e. $X^{\top}X$ est de rang p). On souhaite comparer la variance de l'estimateur des moindres carrés classique $\hat{\beta}$ à l'estimateur ridge $\hat{\beta}_{\lambda}^{R}$.
 - (a) Rappeler la formule donnant l'expression de l'estimateur des moindres carrés.
 - (b) Définissons $P = \frac{1}{\lambda} X^{\top} X$. Montrer que

$$Cov(\beta) - Cov(\hat{\beta}_{\lambda}^{R}) = \sigma^{2} \frac{1}{\lambda} (P + I_{p})^{-1} [I_{p} + P^{-1} - P(P + I_{p})^{-1}].$$

- (c) Montrer que la matrice au membre de droite de l'équation ci-dessus est semidéfinie positive (i.e. $x^{\top}Ax \geq 0$ pour tout x).
- (d) Quel est selon vous l'avantage principal de l'estimateur ridge?