Our Video Recording Link - Click Here! (Please select 1080p Quality)

WQD7005 DATA MINING — GROUP PROJECT

HOUSE PRICE PREDICTION

GROUP 5

Name	Matric Number
Jasmeen Kah Ying Bong	S2142739
Hii Yew Han	S2037987
Dinesh V M Ramachandran	S2119167
Aw Yeong Fung Mun	17197465
Lee Ziteng Nicholas	S2132376

METHODOLOGY

Sample	Identification of variables or factors (both dependent and independent) impacting the process is the aim of the first stage of the process.
Explore	Univariate and multivariate analysis are carried out in order to investigate interrelated relationships between data items and to find data gaps.
Modify	Business logic is used to derive the lessons discovered during the exploration phase from the data gathered during the sample phase.
Model	Employs a variety of data mining techniques to create a projected model of how this data achieves the process's final, desired result.
Assess	The model's applicability and dependability to the subject under study are assessed.

MODIFY - DATA MODIFICATION

To perform classification, we have created a new attributes named price_range If price <= median value of price, price_range = 0

If price > median value of price, price_range = 1

MODIFY - INCONSISTENT DATA

Replace Inconsistent Data with Correct Value using Talend

Inconsistent yr_built value	After replacement
192102	1921
19570522	1957
190810	1908
19310401	1931
192703	1927
19590731	1959
191006	1910

MODIFY - NOISY DATA & INCOMPLETE DATA

Use the Limits Method to replace Noisy Data and Incomplete Data with missing value

Variable	Error Type	Limits method
bathrooms		
bedrooms		
sqft_above		
price		
lat		
long	Noisy	Extreme Percentiles
sqft_living15		
sqft_lot15		
sqft_living		
sqft_lot		
sqft_basement		
bathrooms	Incomplete	Mean

MODIFY - NOISY DATA & INCOMPLETE DATA

We padded incomplete and missing data with mean. Imputation summary showing imputed variable and impute value

Variable Name	Impute Method	Imputed Variable	Impute Value	Role	Measurement Level	Label	Number of Missing for TRAIN
REP_bathrooms	MEAN	IMP_REP_bathrooms	2.10748	BINPUT	INTERVAL	Replacement bathr	178
REP_bedrooms	MEAN	IMP_REP_bedrooms	3.35945	8INPUT	INTERVAL	Replacement bedro	75
REP_lat	MEAN	IMP_REP_lat	47.5607	9INPUT	INTERVAL	Replacement lat	215
REP_long	MEAN	IMP_REP_long	-122.21	SINPUT	INTERVAL	Replacement long	214
REP_price	MEAN	IMP_REP_price	528856.	BINPUT	INTERVAL	Replacement price	216
REP_sqft_above	MEAN	IMP_REP_sqft_above	1774.2	2INPUT	INTERVAL	Replacement sqft	201
REP_sqft_basement	MEAN	IMP_REP_sqft_bas	282.150	9INPUT	INTERVAL	Replacement sqft	103
REP_sqft_living	MEAN	IMP_REP_sqft_living	2063.34	4INPUT	INTERVAL	Replacement sqft_li	200
REP_sqft_living15	MEAN	IMP_REP_sqft_livin	1978.33	1INPUT	INTERVAL	Replacement sqft_li	213
REP_sqft_lot	MEAN	IMP_REP_sqft_lot	13092.9	9INPUT	INTERVAL	Replacement sqft_lot	214
REP_sqft_lot15	MEAN	IMP_REP_sqft_lot15	11534.1	6INPUT	INTERVAL	Replacement sqft_l	213

MODIFY -- DATA TRANSFORMATION

Apply normalisation

- it lessens skewness
- it is advantageous for machine learning algorithms that assume the feature variable has a normal distribution, lowering the level of measurement while keeping the ratio constant
- it enhances the model's training efficiency

Log 10 Transformation

MODIFY -- DATA TRANSFORMATION

After Log10 Transformation

MODIFY -- DATA TRANSFORMATION

After Log10 Transformation

MODIFY -- EXAMINING EXPORTED DATA

Bathrooms variables – no more missing data

MODITY -- EXAMINING EXPORTED DATA

yr_built variable -> no more inconsistent data

yr_built	≡	yr_built_substring≣
	integer	integer
	1968	1968
	1978	1978
	1994	1994
	1996	1996
	1912	1912
	191006	1910
	1976	1976

yr_built_substring≣
integer
1952
1954
2005
1983
1976
1959
1908
1955

MODITY -- EXAMINING EXPORTED DATA

yr_built variable -> no more inconsistent data

yr_built <u>≡</u> integer	yr_built_substring≣ integer
1968	1968
1918	1918
192703	1927
1960	1960
1959	1959
1928	1928
1997	1997

≡ y integer	r_built_substring≡ integer
1964	1964
1945	1945
1996	1996
19310401	1931
1968	1968
1995	1995
1981	1981

yr_built	≡	yr_built_substring≣
	integer	integer
	1310	1510
	2004	2004
	1976	1976
	190810	1908
	2005	2005
	1966	1966
	1904	1904
	1926	1926

yr_built ≡	yr_built_substring≣
integer	integer
2002	2002
1981	1981
1990	1990
19570522	1957
1980	1980
2005	2005
1952	1952
1967	1967

MODIFY - EXAMINING EXPORTED DATA

bathrooms variable, bedrooms variable, sqft_above variable, price variable, lat variable, long variable, sqft_living15 variable, sqft_lot15 variable, sqft_living variable, sqft_lot variable and sqft_basement variable -> some of them still have outliers

To maintain the originality of the dataset to prevent overfitting, we decide to keep the remaining outliers.

MODIFY -TRAINING & VALIDATION DATA

Name	Drop	Role	Level
LG10_IMP_REP_bathrooms	Yes	Input	Interval
LG10_IMP_REP_bedrooms	No	Input	Interval
LG10_IMP_REP_lat	No	Input	Interval
LG10_IMP_REP_long	Yes	Input	Interval
LG10_IMP_REP_price	Yes	Input	Interval
LG10_IMP_REP_sqft_above	Yes	Input	Interval
LG10_IMP_REP_sqft_basement	Yes	Input	Interval
LG10_IMP_REP_sqft_living	No	Input	Interval
LG10_IMP_REP_sqft_living15	Yes	Input	Interval
LG10_IMP_REP_sqft_lot	Yes	Input	Interval
LG10_IMP_REP_sqft_lot15	No	Input	Interval
condition	No	Input	Ordinal
date	Yes	Time ID	Nominal
floors	Yes	Input	Interval
grade	No	Input	Ordinal
id	Yes	ID	Interval
price_range	No	Target	Binary
view	No	Input	Ordinal
waterfront	No	Input	Binary
yr_built	Yes	Input	Interval
yr_renovated	No	Input	Interval
zipcode	Yes	Input	Interval

Data Set Allocations
Training 50.0
Validation 50.0
Test 0.0

- The modified dataset exported from Talend
- Imported to SAS Enterprise Miner with the specified roles and levels.
- The modified dataset is partitioned into 50:50 training and validation data.

MODEL: DECISION TREE

- A supervised model
- Tree-based structure, consists of a root node, internal nodes, branches, leaf nodes
- Simple and can manage a high volume of data (21,613 rows in this study).

MODEL: DECISION TREE

Interesting findings:

- 1. About 33 decision rules.
- Latitude has a high level of information gain, selected as the root node.
- 3. Shortest split is after 3 layers.
- 4. When the grade is high, the price range is more likely to be high.

MODEL: DECISION TREE

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
price_range		_NOBS_	Sum of Frequencies	10806	10807	_
price_range		_MISC_	Misclassification Rate	0.117897	0.12751	
price_range		_MAX_	Maximum Absolute Error	0.981655	0.981655	_
price_range		_SSE_	Sum of Squared Errors	1884.061	2050.38	
price_range		_ASE_	Average Squared Error	0.087177	0.094863	
price_range		_RASE_	Root Average Squared Error	0.295257	0.307999	
orice_range		_DIV_	Divisor for ASE	21612	21614	
price_range		_DFT_	Total Degrees of Freedom	10806		

Statistical Output:

- The misclassification rate= 0.12751
- Accuracy= 0.87249

Variable Name	Label	Number of Splitting Rules	Importance	Validation Importance	Ratio of Validation to Training Importance
REP_LG10_IMP_REP_lat	Replacement: Transformed: Imputed: Replac	11	1.0000	1.0000	1.0000
REP_LG10_IMP_REP_sqft_living	Replacement: Transformed: Imputed: Replac	9	0.8081	0.8390	1.0383
grade		5	0.2468	0.2648	1.0733
REP_LG10_IMP_REP_sqft_lot15	Replacement: Transformed: Imputed: Replac	4	0.2153	0.2150	0.9984
view		3	0.1921	0.1637	0.8525
REP_LG10_IMP_REP_bedrooms	Replacement: Transformed: Imputed: Replac	0	0.0000	0.0000	
REP_yr_renovated	Replacement: yr_renovated	0	0.0000	0.0000	
condition		0	0.0000	0.0000	
waterfront		0	0.0000	0.0000	

Variable importance:

• Top 3 variables are latitude, sqft_living, grade.

MODEL: GRADIENT BOOSTING

- Used for both regression and classification tasks.
- An ensemble of weak predictors, which are usually decision trees.
- Each new tree is built to improve on the deficiencies of the previous trees and this concept is called *boosting*.
- Helps in reducing bias error in the model.

MODEL: GRADIENT BOOSTING

Statistical Output:

- The misclassification rate= 0.1191
- Accuracy= 0.8809

Variable Name	Label	Number of Splitting Rules	Importance	Validation Importance	Ratio of Validation to Training Importance
LG10_IMP_REP_lat	Transformed: Imputed:	82	1	1	
LG10_IMP_REP_sqft_living	Transformed: Imputed:	35	0.751581	0.785669	1.045356
grade		14	0.601595	0.668711	1.111564
view		7	0.154703	0.151371	0.978463
LG10_IMP_REP_sqft_lot15	Transformed: Imputed:	12	0.141388	0.149133	1.054778
LG10_IMP_REP_bedrooms	Transformed: Imputed:	0	0	0	
yr_renovated		0	0	0	
waterfront		0	0	0	
condition		0	0	0	

Variable importance:

• Top 3 variables are latitude, sqft_living, grade.

For **classification and predictive** analytics.

Commonly used algorithm for solving **Binary Classification** problems.

Predicts a dependent variable by analyzing the **relationship** between one or more existing independent variables.

The advantage is the ability to use more than one continuous attribute **simultaneously**.

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
price_range		_AIC_	Akaike's Information	9272.608		
price_range		_ASE_	Average Squared Error	0.138747	0.138657	
price_range		_AVERR_	Average Error Function	0.425995	0.427032	
price_range		_DFE_	Degrees of Freedom	10773		
price_range		_DFM_	Model Degrees of Fr	33		
price_range		_DFT_	Total Degrees of Fre	10806		
price_range		_DIV_	Divisor for ASE	21612	21614	
price_range		_ERR_	Error Function	9206.608	9229.877	
price_range		_FPE_	Final Prediction Error	0.139597		
price_range		_MAX_	Maximum Absolute E	0.99586	0.999712	
price_range		_MSE_	Mean Square Error	0.139172	0.138657	
price_range		_NOBS_	Sum of Frequencies	10806	10807	
price_range		_NW_	Number of Estimate	33		
price_range		_RASE_	Root Average Sum of	0.372487	0.372367	
price_range		_RFPE_	Root Final Prediction	0.373627		
price_range		_RMSE_	Root Mean Squared	0.373057	0.372367	
price_range		_SBC_	Schwarz's Bayesian	9513.107		
price_range		_SSE_	Sum of Squared Errors	2998.597	2996.932	
price_range		_SUMW_	Sum of Case Weight	21612	21614	
price_range		_MISC_	Misclassification Rate	0.201832	0.202461	

Statistical Output:

- The misclassification rate = 0.2025
- <u>Accuracy= 79.76%</u>

~	T		
HMMG	Datio	Estima	9 1
uuus	Kacto		1660

	price_	Point
Effect	range	Estimate
LG10_IMP_REP_bathrooms	1	4.283
LG10_IMP_REP_bedrooms	1	0.103
LG10_IMP_REP_lat	1	
LG10_IMP_REP_long	1	29.239
LG10_IMP_REP_sqft_above	1	9.406
LG10_IMP_REP_sqft_basement	1	1.464
LG10_IMP_REP_sqft_living	1	3.435
LG10_IMP_REP_sqft_living15	1	57.098
LG10_IMP_REP_sqft_lot	1	0.873
LG10_IMP_REP_sqft_lot15	1	0.452
condition 1 vs 5	1	0.412
condition 2 vs 5	1	0.357
condition 3 vs 5	1	0.583
condition 4 vs 5	1	0.629
floors	1	1.962

Odds ratio measures how strong is the <u>association</u> of an event with exposure.

Based on the output of Odds Ratio Estimates we found that:

- 1) Sqft_living 15 has 57 times the odds of having a higher price range than a lower price range level.
- 2) Long(Longitude) has **29 times** the odds of having a higher price range than a lower price range level.
- 3) Sqft_above has <u>9 times</u> the odds of having a higher price range than lower price range level.

MODEL: NEURAL NETWORK

A neural network

- machine learning process (deep learning)
- collection of algorithms that employ linked neurons in a layered framework.

MODEL: NEURAL NETWORK

Hidden layers	Misclassification rate (Accuracy in percentage)
3	0.11363 (88.64%)
4	0.113723 (88.63%)
5	0.111872 (88.81%)
10	0.122791 (87.72%)
15	0.115758 (88.42%)
20	0.138244 (86.18%)
25	0.152679 (84.73%)
30	0.143888 (85.61%)
35	0.13445 (86.56%)
40	0.150828 (84.92%)

Generate neural network:

3- layer	20-layer
4- layer	25-layer
5- layer	30-layer
10-layer	35-layer
15-layer	40-layer
20-layer	-

Odds Ratio Estimates

		price_	Point
Effect		range	Estimate
LG10_IMP_REP_bathrooms		1	4.283
LG10_IMP_REP_bedrooms		1	0.103
LG10_IMP_REP_lat		1	
LG10_IMP_REP_long		1	29.239
LG10_IMP_REP_sqft_above		1	9.406
LG10_IMP_REP_sqft_basement		1	1.464
LG10_IMP_REP_sqft_living		1	3.435
LG10_IMP_REP_sqft_living15		1	57.098
LG10_IMP_REP_sqft_lot		1	0.873
LG10_IMP_REP_sqft_lot15		1	0.452
condition	1 vs 5	1	0.412
condition	2 vs 5	1	0.357
condition	3 vs 5	1	0.583
condition	4 vs 5	1	0.629
floors		1	1.962

Odds ratio measures on how strongly an event is associated with exposure in this scenario would be the price range.

Based on the output of Odds Ratio Estimates we found that:

- 1) Sqft_living 15 has **57 times** the odds of having higher price range than lower price range level.
- 2) Long(Longitude) has **29 times** the odds of having higher price range than lower price range level.
- 3) Sqft_above has **9 times** the odd of having higher price range than lower price range level.

MODEL: NEURAL NETWORK

Model Node	Model Descriptio n	Target Variable	Target Label	Selection Criterion: Valid: Misclassifi cation Rate
Neural3	5 layer N	price ran		0.111872
Neural	3 layer N	price ran		0.11363
Neural2	4 layer N	price ran		0.113723
Neural5	15 layer	price ran		0.115758
Neural9	10 layer	price ran		0.122791
Neural7	35 layer	price ran		0.13445
Neural10	20 layer	price ran		0.138244
Neural8	30 layer	price ran		0.143888
Neural6	40 layer	price ran		0.150828
Neural4	25 layer	price ran		0.152679

Statistical Output:

- Top 3 of neural network in house price prediction:
- 1. 5- layer
 Misclassification rate=0.111872
 Accuracy=88.81%
- 2. 3- layer
 Misclassification rate=0.11363
 Accuracy= 88.64%
- 3. 4- layer
 Misclassification rate=0.113723
 Accuracy= 88.63%

ASSESS

Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Train: Sum of Frequencies	Train: Misclassifica tion Rate	Selection Criterion: Valid: Misclassifica tion Rate
Υ	Boost	Boost	Gradient Bo	price_range	10806	0.1191	0.122421
	Tree	Tree	Decision Tr	price_range	10806	0.117897	0.12751
	Reg	Reg	Regression	price_range	10806	0.201832	0.202461

Comparison of models:

Gradient Boosting:

Misclassification rate=0.122421 (accuracy=88%)

Decision Tree:

Misclassification rate=0.12751 (accuracy=87.42%)

Logistic Regression:

Misclassification rate= 0.202461 (accuracy=79.75%)

ASSESS

Model Node	Model Descriptio n	Target Variable	Target Label	Selection Criterion: Valid: Misclassifi cation Rate
Neural3	5 layer N	price ran		0.111872
Neural	3 layer N	price ran		0.11363
Neural2	4 layer N	price ran		0.113723
Neural5	15 layer	price ran		0.115758
Neural9	10 layer	price ran		0.122791
Neural7	35 layer	price ran		0.13445
Neural10	20 layer	price ran		0.138244
Neural8	30 layer	price ran		0.143888
Neural6	40 layer	price ran		0.150828
Neural4	25 layer	price ran		0.152679

Comparison of neural network models:

- 1. 5- layer

 Misclassification rate=0.111872

 Accuracy=88.81%
- 2. 3- layer
 Misclassification rate=0.11363
 Accuracy= 88.64%
- 3. 4- layer
 Misclassification rate=0.113723
 Accuracy= 88.63%

ASSESS

Model	Model Descriptio n	Target Variable	Target Label	V N	Selection Criterion: /alid: /lisclassifi ation Rate
	5 layer N Gradient	•			0.111872 0.122421

Comparison of models:

- 1. 5- layer

 Misclassification rate=0.111872

 Accuracy=88.81%
- 2. Gradient Boosting
 Misclassification rate= 0.122421
 Accuracy= 87.75%

CONCLUSION

Number	Attributes	
1	grade	
2	lat	
3	sqft_living	
4	view	
5	waterfront	
6	condition	
7	yr_renovated	
8	sqft_lot15	
9	bedrooms	

SAS Enterprise Miner -> variable selection tool -> relevant variables

CONCLUSION

Interesting Patterns

Phase	Interesting Patterns
Exploration	 Higher grade level shows a high positive relationship with price. Longer boxplot body length and higher price were observed as the grade increased. Sqft_living shows a positive relationship with price. Sqft_living and sqft_above show a strong correlation coefficient, 0.8766.
Modeling Phase – Decision Tree	 Latitude is selected as the <u>root node</u> as it has a high level of information gain. Shortest split is <u>after 3 layers</u>. When the grade is high, the price range is more likely to be <u>high</u>.

