Student Id'

Question :1 Kleene's Theorem

Find closure of give DFA, consider q0 as initial state.

Question: 2 Minimized Given DFA.

Question:3

Convert the following mealy machine in equivalent Moore machine.

Question 4: Mealy Machine

a. Design the Mealy/Moore Machine for the following scenario

ATM is a computerized machine that provides bank customers to gain access to their accounts using magnetic encoded plastic card and code number. It enables the customer to perform online

Old States
$$O$$
 $\{1\}$

$$= \frac{1}{2} (30) \cdot 20 \quad (31) \cdot 20 \quad (32) \cdot 21$$

$$+ \frac{1}{2} (30) \cdot 21 \quad (31) \cdot 20 \quad (32) \cdot 21$$

$$= (31) \cdot 20 \quad (32) \cdot 21 \quad (32) \cdot 21$$

$$= (32) \cdot 23 \quad (32) \cdot 24 \quad (31) \cdot 20$$

$$= (32) \cdot 24 \quad (33) \cdot 25 \quad (31) \cdot 20$$

Quest	מסים	# 02	To = (set of find states)
States	a	Ь	$\int X_0 = [0 \ 1 \ 2 \ 3 \ 4 \ 5 \] [6]$
10	1	2	$X_{1} = [0 \ 1 \ 2 \ 4] [3 \ 5] [6]$
+1	3	ч	$\pi_{1} = [04]$ [12] [35] [6]
+ 2	5	2	7 707 [2 5] [6]
+3	3	6	$T_{3} = [0 \ 4]$ [1] [2] [3 3] [6]
+ 4	4	2	T4 = [0"4] [1] [2] [3"5] [6]
+5	5	C	and Cab (5)
6	5	G	6
		*	→ (0,4) by
			6

Question # 03:

