Reinforcement Learning - CS6700PA2 REPORT

K Pawan Prasad, Roll Number: ME16B179

March 2020

1 Question 1: Building the Environment

Origin of grid is set at top left corner:

Therefore Coordinates of Goals A, B and C are: (0,11), (2,9), (6,7) respectively Start Points are: (5,0), (6,0), (10,0), (11,0)

Wind effect is switched off when implementing algorithm for Goal C

2 Question 2: Q-Learning

We implement the algorithm over 50 runs and plot average rewards/steps vs episodes for the same. The following are the parameter settings:

$$\alpha = 0.1 \ \epsilon = 0.1 \ \gamma = 0.9$$

The number of episodes has been fine-tuned and set to **700**. Even larger runs produced better rewards at the cost of program running time.

2.1 Plots: Goal A

2.1.1 Policy Map: Goal A

2.2 Plots: Goal B

2.2.1 Policy Map: Goal B

2.3 Plots: Goal C

2.3.1 Policy Map: Goal C

3 Question 3: SARSA

We implement the algorithm over 50 runs and plot average rewards/steps vs episodes for the same. The following are the parameter settings:

$$\alpha = 0.1 \ \epsilon = 0.1 \ \gamma = 0.9$$

The number of episodes has been fine-tuned and set to **700**. Even larger runs produced better rewards at the cost of program running time.

3.1 Plots: Goal A

3.1.1 Policy Map: Goal A

3.2 Plots: Goal B

3.2.1 Policy Map: Goal B

3.3 Plots: Goal C

3.3.1 Policy Map: Goal C

4 Question 4: SARSA- λ

The comparison plots after 25 learning trials are shown for the following values of Lambda:

$$\lambda = \{ 0, 0.3, 0.5, 0.9, 0.99, 1.0 \}$$

4.1 Comparison Plots: Goal A

We observe from the above 2 plots that the best setting is $\lambda = 1$. We provide the individual plots and policy map for the same:

4.2 Comparison Plots: Goal B

We observe from the above 2 plots that the best setting is $\lambda = 1$. We provide the individual plots and policy map for the same:

4.3 Comparison Plots: Goal C

We observe from the above 2 plots that the best setting is $\lambda = 0.3$. We provide the individual plots and policy map for the same:

5 PART 2: Policy Gradients

5.1 The environments

The step function has been completed to update the current state and also obtain the corresponding reward in Chakra and vishamC worlds. (Refer the respective .py files)

A reward of +5 has been allotted if the new state is within some given tolerance around origin, else the reward is negative of norm.

5.2 The Roll- out function

In the chakra_get_action method, the action steps in x and y have been clipped, that is, if the step size is greater than 0.025 then we clip it to 0.025.

Also added is the include_bias method