TESTUL nr. 4

1. Să se aducă la forma cea mai simplă expresia:

$$E = \sqrt{2} \sqrt{2 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{2}}} \cdot \sqrt{2 - \sqrt{2 + \sqrt{2}}}$$
a) $\sqrt{2}$; b) 2; c) 1; d) $2\sqrt{2}$; e) $2 - \sqrt{2}$; f) $\frac{1}{2}$.

2. Care dintre următoarele afirmații este adevărată dacă: $A = \sqrt{6}$, $B = \sqrt{12}$. $C = \sqrt{8}$. $D = \sqrt{20}$

a)
$$B < C < D < A$$
; b) $B < D < C < A$; c) $C < D < B < A$;

d)
$$C < B < D < A$$
; c) $D < B < C < A$; f) $D < C < B < A$.

3. Să se afle două numere nenule x și y astfel ca: suma, produsul și diferența dintre pătratele lor să fie egale. Se vor determina toate soluțiile dacă există mai multe.

a)
$$\left(\frac{1+\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right)$$
 si $\left(\frac{1}{2}, \frac{3}{2}\right)$; b) $\left(\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right)$; c) $\left(\frac{1-\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right)$; d) $\left(\frac{3+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$ si $\left(\frac{3-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right)$; e) $\left(-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right)$ si $\left(\frac{\sqrt{5}}{2}, -\frac{\sqrt{5}}{2}\right)$; f) $\left(\frac{1+\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right)$.

4. Să se afle toate valorile $x \in \mathbb{R}$, soluții ale inecuației $\sqrt{25-x^2} \le \frac{12}{x}$

a)
$$x \in (0,5]$$
; b) $x \in (0,4) \cup (5,8)$; c) $x \in (0,3) \cup (4,\infty)$;

c)
$$x \in (0,3) \cup (4,\infty)$$
;

d)
$$x \in (0,3] \cup [4,5];$$

e)
$$x \in [0,5);$$

d)
$$x \in (0,3] \cup [4,5]$$
; e) $x \in [0,5)$; f) $x \in (0,4] \cup (5,\infty)$.

5. Fie matricea $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & \alpha \\ 0 & 0 & 1 \end{bmatrix}$, $\alpha \in \mathbb{R}$. Să se determine A^{2n+1} pentru orice

neN.

a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & \alpha \\ 0 & 0 & -1 \end{pmatrix}$$
; b) $\begin{pmatrix} 1 & 2 & 3+2\alpha \\ 0 & 0 & -\alpha \\ 0 & 0 & 1 \end{pmatrix}$; c) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -\alpha \\ 0 & 0 & -1 \end{pmatrix}$; d) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & \alpha \\ 0 & 0 & 1 \end{pmatrix}$; e) $\begin{pmatrix} 1 & -2 & 3 \\ 0 & 0 & \alpha \\ 0 & 0 & 1 \end{pmatrix}$; f) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -\alpha \\ 0 & 0 & 1-\alpha \end{pmatrix}$.

 O progresie geometrică are 10 termeni, primul fiind 3 și ultimul 1536. Să se afle rația și suma progresiei.

- s) 3 si 1024;
- b) 2 și 1024;
- c) 2 si 3069;

- d) 3 si 3072:
- e) 2 și 2048;
- f) 3 și 2048.

7. Să se rezolve ecuação f(f(x)) = 1 unde $f(x) = \frac{a+bx}{b+ax}$, cu $a \neq b$.

a) 1; b)
$$\frac{a}{b}$$
; c) $-\frac{b}{a}$; d) $\frac{b}{a}$; e) $-\frac{a}{b}$; f) $\frac{1}{a+b}$.

$$\mathbf{c}) - \frac{b}{a}$$

d)
$$\frac{b}{a}$$

e)
$$-\frac{a}{b}$$
;

$$f) \frac{1}{a+b}.$$

8. Să se exprime $b = \log_{40} 100 \text{ prin } a = \log_{10} 25$

a)
$$\frac{2a}{1+2a}$$
;

b)
$$\frac{4a}{3+2a}$$
;

c)
$$\frac{a}{1+2a}$$
;

d)
$$\frac{2a+1}{3+2a}$$

a)
$$\frac{2a}{1+2a}$$
; b) $\frac{4a}{3+2a}$; c) $\frac{a}{1+2a}$; d) $\frac{2a+1}{3+2a}$; e) $\frac{2(1+2a)}{3+2a}$; f) $\frac{4(1+a)}{3+2a}$.

f)
$$\frac{4(1+a)}{3+2a}$$

9. Să se determine valoarea determinantului $D = \begin{vmatrix} b & c & a \\ c & a & b \end{vmatrix}$ a) (a+b+c)(ab+bc+ca); b) $(a+b+c)(a^2+b^2+c^2)$;

a)
$$(a+b+c)(ab+bc+ca)$$

b)
$$(a+b+c)(a^2+b^2+c^2)$$

c)
$$abc(a+b+c)$$
; d) $-\frac{(a+b+c)}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$;

c)
$$2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$$
; f) $(a+b+c)(a-b+c)^2$.

10. Să se determine valorile $n \in \mathbb{N}$ pentru care are sens $C_{2n+1}^{n^2}$.

a) 0, 1 si 2;

b) 1 si 2; c) -1, 0, 1;

d) toate valorile naturale; e) n = 2; f) niciunul din răspunsurile anterioare nu este corect.

11. Să se determine valorile lui $m \in \mathbb{R}$ pentru care ecuația $x^3 + mx^2 + mx + 1 = 0$ are toate rădăcinile reale și strict negative.

a) $m \in [3, \infty)$; b) $m \in (-\infty, -1) \cup [3, \infty)$; c) $m \in (-1, 3)$;

d) $m \in (-1, \infty)$; e) $m \in (-1, 0] \cup (1, \infty)$; f) $m \in (0, 1]$.

12. Să se afic limita șirului (x_n)n∈N• definit prin relația de recurență $x_n = 2\sqrt{x_{n-1}}$ dacă $x_i = 2$.

a) 4:

b) $\sqrt{2}$; c) 2; d) $2\sqrt{2}$; e) $\frac{1}{\sqrt{2}}$; f) $4\sqrt{2}$.

13. Să se determine $\lim_{x \to \infty} \frac{[x] + [2x] + ... + [nx]}{x^2}$ (unde [] este partea întreagă).

a) x; b) 2x; c) $\frac{x}{2}$; d) $\frac{x-1}{2}$; e) 2(x-1); f) x-1

14. Să se găsească $\lim_{x\to 0} \frac{(2^x-1)\ln(1+\sin^2x)}{(\sqrt{1+x}-1)\operatorname{tg} 2x}$:

a) $\ln 2$; b) $\frac{\ln 2}{2}$; c) $\frac{1}{2}$; d) 0; e) $\frac{1}{e}$; f) \sqrt{e} .

15. Să se determine asimptotele orizontale ale funcției

$$f(x) = \frac{\sqrt{x^2 + x + 1}}{2x - 1}, \quad x \neq \frac{1}{2}:$$
a) $y = -\frac{1}{2}$ si $y = \frac{1}{2}$; b) $y = \frac{1}{2}$; c) $y = -\frac{1}{2}$;

d)
$$y = -\frac{1}{2}$$
 si $y = 2$; e) $y = -2$ si $y = -\frac{1}{2}$; f) $y = 2$ si $y = \frac{1}{2}$.

16. Se consideră funcțiile $f(x) = 2x \arctan x$ și $g(x) = \ln(1+x^2)$, $x \in [-1, 1]$. Să se stabilească semnul funcției h(x) = f(x) - g(x).

- a) h(x) < 0 pentru orice $x \in [-1, 1]$; b) $h(x) \ge 0$ pentru orice $x \in [-1, 1]$;
- c) h(x) = 0 pentru orice $x \in [-1, 1]$:
- d) $h(x) \le 0$ dacă $x \in [-1, 0]$ si h(x) > 0 dacă $x \in [0, 1]$:
- e) h(x) > 0 dacă $x \in [-1, 0]$ și $h(x) \le 0$ dacă $x \in [0, 1]$:
- f) niciunul din răspunsurile precedente nu este corect.

 $\alpha \in \mathbb{R}$ 17. Valorile lui pentru care derivata functiei $f(x) = \frac{x^2 - 3\alpha x + 2\alpha^2}{x + 1}$, $x \ne -1$ are o rădăcină dublă.

a)
$$\alpha = -1$$
; b) $\alpha = -\frac{1}{2}$; c) $\alpha = -1$ și $\alpha = -\frac{1}{2}$;

c)
$$\alpha = -1$$
 și $\alpha = -\frac{1}{2}$;

d)
$$\alpha = 1$$
 si $\alpha = \frac{1}{2}$; e) $\alpha \in \emptyset$;

f)
$$\alpha = \frac{1}{2}$$
.

18. Valoarea integralei $\int_{-1}^{1} \frac{|x|}{1+x^2} dx$:

- a) $2 \ln 2$; b) $\ln 2$; c) 0; d) $\frac{\ln 2}{2}$; e) $\frac{1}{2}$; f) $\ln 3$.