The (s,1) = elevator $\pi^*(s_1) = elevator$ $\pi^*(s_2) = escalator$

Sr elevator/escalator

Se elevator/escalator

gal - weits c?

51 (51) = escalator

Ti*(SK) = escalator

$$C(^{n}(s)) = R(s) + \frac{1}{2} \sum_{s'} T(s, \lambda(s), s') u^{n}(s') \qquad : \beta b \ (C) (e^{n}(s)) = \frac{1}{2} u^{n}(R) + \frac{1}{2} u^{n}(R) + \frac{1}{2} u^{n}(R))$$

$$= u^{n}(R) = \frac{1}{1-2} + \frac{1}{2} u^{n}(R) + \frac{1}{2} u^{n}(R)$$

$$C(^{n}(R)) = \frac{1}{1-2} u^{n}(R) = \frac{1}{1-2} u^{n}(R$$

M(D) = aig man (p:-1+ . Ix (-1.), W:-1+ . 9x did) J4(0): W

Sample
$$1 = (D_1 w_1 D_1 - Y)$$

 $1 = (D_1 w_1 R_1 v_1)$
 $1 = (R_1 P_1 M_1 V_1)$
 $1 = (M_1 P_1 R_1 V_1)$
 $1 = (M_1 P_1 R_1 V_1)$

$$Q(D,W) = 0 + 1/((-1+c-c)) = -1$$

$$Q(D,W) = -1 + 1/((1+c-c)) = -1$$

$$Q(R,D) = 0 + 1/((1+c-c)) = 1/(2$$

$$Q(M,D) = 0 + 1/((1+1/(2-c))) = 1/(2)$$

M-D	R-P	0-~
0	0	o - l
6	0	+1
0	'/r (+1
1/2	1/4	4