Requirements for TE

Computing paths that comply with a set of constraints

Enforcing traffic to be forwarded along these paths

By decoupling service from transport, MPLS is fundamental to support TE requirements

Constraint-based routing

- A set of **algorithms** and **protocols** that enable a router to compute a path to a destination which
 - is optimal with respect to a certain scalar metric
 - does not violate a set of constraints

- Traditional IP routing path computation is only driven by cost optimization (objective)
 - Cost measures need to be overloaded to enable IP traffic engineering

Type of constraints

Performance constraints

- a path with certain minimum available bandwidth on each traversed link
- a path with a maximum number of hops
- a path optimizing a specific TE metric

Administrative constraints

- include only links that are tagged with specific attributes
- exclude from the path a specific hop

Complex combinations

place two related LSPs on different links

Type of constraints

Find route & set-up a route for 20 Mb/s from POP1 to POP4

Constraint-based routing

- 1. Link characterization (in a consistent manner)
 - Cost and attributes
- 2. Extended routing protocol
 - To convey the enriched link characterization
- 3. Constraint-based path computation algorithm
 - Constrained Shortest Path First (CSPF)

Link characterization

Traffic Engineering Metric

- Specifies the link metric (i.e., the cost) for traffic engineering purposes
- This metric may be different than the standard
 OSPF link metric
- Typically, the metric is assigned by a network administrator

Link characterization

- Maximum Bandwidth, i.e., the link bandwidth that is usable
- Maximum Reservable Bandwidth, i.e., the amount of bandwidth that can be reserved on a link
 - This is normally configured to be smaller than (or equal to) the Maximum Bandwidth, unless the administrator wants the link to be oversubscribed
- Unreserved Bandwidth, i.e., the amount of bandwidth still available on the link (per priority level)

Link characterization

- Administrative Group (or color)
 - A link can be a member of up to 32 groups

Constraint-based routing

- 1. Link characterization (in a consistent manner)
 - Cost and attributes
- 2. Extended routing protocol
 - To convey the enriched link characterization
- 3. Constraint-based path computation algorithm
 - Constrained Shortest Path First (CSPF)

Extended routing protocols

 Link attributes must be advertised as part of routing information by the routing protocol

Link-state vs. Distance-vector?

- Existing link-state protocols have been
 extended to support contraint-based routing
 - OSPF → OSPF-TE
 - IS-IS \rightarrow IS-IS-TE

OSPF-TE [rfc 3630]

- Traffic Engineering LSA. Similar to Router LSA, it describes
 - Routers
 - Point-to-point links
 - Connections to multi-access networks

Limitations

- Only Opaque LSAs of Type 10 is used, that has area wide flooding scope
- Only the reservation state of p2p links is captured

OSPF-TE [rfc 3630]

The LSA payload consists of one of two top-level TLV triplets:

- 1. Router Address: specifies a stable IP address; this is typically implemented as a *loopback address*
- 2. Link: describes a single link, using a set of sub-TLV triplets
 - 1. Link type (1 octet): p2p or multi-access
 - 2. Link ID (4 octets)
 - 3. Local interface IP address (4 octets)
 - 4. Remote interface IP address (4 octets)
 - **5.** Traffic engineering metric (4 octets)
 - **6. Maximum bandwidth** (4 octets)
 - 7. Maximum reservable bandwidth (4 octets) for each setup pritority
 - 8. Unreserved bandwidth (32 octets)
 - Administrative group (4 octets)

- Each router has knowledge of the values of all attributes of all links in a single area
- Link attributes are stored in the Traffic Engineering Database (TED)
 - Static link attributes
 - Maximum Bandwidth or Administrative Groups
 - Dynamic link attributes
 - Unreserved bandwidth

When to distribute link state updates?

- Link status change, as with regular OSPF
 - State of the interface (up/down)
 - Manual configuration change

TE-related status change

 Change in the Unreserved Bandwidth: a router can be configured so that flooding is triggered only if the UB crosses certain thresholds

- TE-related status change
 - LSP setup failure

Periodic

 Needed to complement changes that do not trigger an update (180s by default on Cisco routers)

- Thesholds help reducing control traffic overhead
- TEDs are not 100% up to date and therefore path computation is not always accurate

Constraint-based routing

- Link characterization (in a consistent manner) beyond the cost
 - Attributes

2. Extended routing protocol

To convey the enriched link characterization

3. Constraint-based path computation algorithm

Constrained Shortest Path First (CSPF)

Constraint-based path computation

- Constrained Shortest Path First algorithm is used
 - Path metric
 - Local (LSP specific) constraints on link attributes
 - TED content
- Enhanced version of Dijkstra's algorithm (SPF)
 - apply the constraints to all the links in the TED, so as to obtain a "pruned" network graph
 - apply SPF on the pruned network graph so as to find the Shortest Path Tree that connects the source to any reachable destination

CSPF example

{Cost, Unreserved bandwidth, [Groups]}

LSP: R1→R8, 60Mb/s, exclude Group 3

CSPF example

{Cost, Unreserved bandwidth, [Groups]}

LSP: R1→R8, 60Mb/s, exclude Group 3

CSPF example

{Cost, Unreserved bandwidth, [Groups]}

LSP: R1→R8, 60Mb/s, exclude Group 3

Tie-breaking rules

- 1. Largest minimum Unreserved Bandwidth first: the path with the largest minimum Unreserved Bandwidth is selected
- 2. Smallest minimum Unreserved Bandwidth first: the path with the smallest minimum Unreserved Bandwidth is selected
- 3. Random

Requirements for TE

Computing paths that comply with a set of constraints

Enforcing traffic to be forwarded along these paths

By decoupling service from transport, MPLS is fundamental to support TE requirements