Important Points in Geometry

- 1. G the centroid (\bigcap medians).
- 2. I the incenter. $(\cap bisectors)$
- 3. O the circumcenter. (\cap perpendicular bisectors)
- 4. H the orthocenter. (\bigcap altitudes)
- 5. I_a, I_b, I_c the excenters. (\bigcap two exterior bisectors with a third interior one).
- 6. N Nagel's point. (\bigcap of cevians joining vertices with the point of tangency between the opposite side and excircle).
- 7. R Gergonne's point. (\bigcap of cevians joining vertices with the point of tangency between the opposite side and incircle).
- 8. W Euler's point. (center of Euler's circle)
- 9. Brocard's point. The Brocard's point. (Unique point P inside $\triangle ABC$ so that $\angle PBC = \angle PCA = \angle PAB$).
- 10. ω center of circle around the podar triangles of two isogonic points M, N.
- 11. K Lemoine's point. (\bigcap of symmedians)
- 12. N' Nagel's second point. (\cap of perpendiculars from excenters to sides).
- 13. S Spiecker's point. (incenter of the median triangle).
- 14. T Toricelli's point. (unique point T inside $\triangle ABC$ so that $\angle BPC = \angle CPA = \angle APB = 120$).
- 15. M Miquel's point. (\bigcap of circumcircles of big triangles in the complete quadrilateral).
- 16. Brianchon's point. (\cap of main diagonals of a circumscribed hexagon).
- 17. M Mathot's point. (\bigcap of the perpendiculars from the midpoints of sides of cyclic quadrilaterals to the opposite sides).

Properties:

- 1. $2\overrightarrow{OG} = \overrightarrow{GH}$.
- 2. $\overrightarrow{OG} = \overrightarrow{GM}$ in a cyclic quadrilateral where M is Mathot's point.
- 3. $\overrightarrow{OW} = \overrightarrow{WH}$ where W is Euler's point.

- 4. $\overrightarrow{IG}=2\overrightarrow{GS}=\overrightarrow{SN},$ where I is the incenter, G the centroid, S Spiecker's point and N Nagel's point.
- 5. The angle PBC is at most 30, where P is Brocard's point.
- 6. Prove that T minimizes the expression XA + XB + XC for X inside triangle ABC. T is Toricelli's point.
- 7. If M and N are isogonic then $M\omega = \omega N$.
- 8. Miquel's point lies on the circumcircles of the small triangles in the complete quadrilateral.
- 9. Miquel's point lies on the outer diagonal of the quadrilateral if and only if this is cyclic.

Compiled by Andrei Jorza