Performance e Estabilidade em Processamento Paralelo

Integrantes:

Alexandre Gomes de Siqueira Elena Balachova Everton Kazuo Iwamoto Flávio Monteiro Wanderley Diego Roiuk

Tópicos Abordados

- Introdução
- Como medir a performance
- Speedup e eficiência
- Limites práticos do Speedup
- Efeitos de compilador e software
- Níveis de performance
- Tamanho dos dados
- Estabilidade
- Conclusão

Introdução

- O que é performance?
 - É uma métrica (grandeza) que fornece uma imagem da capacidade de trabalho (o que pode ser esperado) do elemento considerado.
- Por que estudar performance?
 - Pode levar a sistemas melhores.

Como medir a performance

- Existem diferentes métodos de medição.
 - MIPS (Micro instructions per second)
 - MFlops (megafloating point operations per second)
 - Tempo de execução
 - Tempo de resposta
 - Throughput (número de tarefas processadas em um determinado tempo)
 - o percentual de utilização do processador
 - Speedup

Como medir a performance

Performance

Performance relativa

Speedup

Eficiência

Speedup e eficiência

- Speedup: $Sp(P,N) = \underline{T(1, N)}$ T(P, N)
 - Onde: P = no de processadores

 N = qde de dados ou tam do problema
- Eficiência: E(P, N) = Sp(P, N)P

Speedup e eficiência

- Speedup ideal
 - dificilmente atingido
 - Arquiteturais
 - Algorítmicas
 - Software de sistema
- Speedup real
- Super Speedup

Sp

- Quão próximo da linha de performance ideal pode-se ficar enquanto p aumenta?
- A partir de qual valor de p a performance cai sensivelmente?
- Que mudanças podem ser feitas para melhorar essa relação entre performance e nº de processadores?

 Mudar a arquitetura de hardware para remover gargalos

Melhorar o software de sistema

Algoritmos melhores

Efeitos de compilador e software

 A performance é extremamente sensível à estrutura do software

Compiladores em 3 (três) níveis

- Não há garantia de performance
 - Re-escrever o programa
 - Utilizar bibliotecas otimizadas

Níveis de Performance

Nome	Speedup
Alta performance	<u>P</u> <= Sp <=P
Mínima alta performance	Sp = <u>P</u> 2
Performance intermediaria	<u>P</u> <= Sp <= <u>P</u> 2log(P) 2
Nível threshold	$Sp = \underline{P}$ $2log(P)$
Performance inaceitável	1 <= Sp < <u>P</u> 2log(P)

Tamanho dos dados

- Definidos pelo usuário
 - SUDS (small user-defined data size)
 - Tipicamente usados para debugar
 - LUDS (large user-defined data size)
 - MUDS (medium user-defined data size)
 - Entre SUDS e LUDS
 - Usado para medições

Tamanho dos dados

- Definidos para arquitetura
 - SADS (small architecture-defined data size)
 - O speedup se encontra no nível de threshold
 - MADS (medium architecture-defined data size)
 - LADS (large architecture-defined data size)
 - Performance cai substancialmente

Paralelismo na prática

- Performance alcançada
 - Suficiente e eficiente

- Performance estável
- Portabilidade e fácil programação
- Escalabilidade do sistema
- Possível re-implementação

Estabilidade

 Seja um conjunto de computações similiares que podem variar entre K códigos e/ou variar o tamanho dos dados N, para os códigos, temos:

$$St(P,N_i,K,e) = \frac{min \ perf(P,N_i,K \ codigos)}{max \ perf(P,N_i,K \ codigos)}$$

$$1 \le i \le f(k)$$
 $0 < St(P,N_i,K,e) \le 1$

- Estabilidade de tamanho dos dados
 - St(P,n,1)
- Estabilidade de programa
 - St(P,k)

- Parâmetro de instabilidade
 - $\pi^{in} \ge 1$
- Parâmetro de estabilidade
 - $\pi^{st} = 1/\pi^{in}$

- Estável se:
 - $1/6 = \pi^{st} \le St(P,K)$

Década	Sistema	Perfect Baseline Instability
1970	VAX 780	5
	DEC 6000-410	4.7
1980	STARDENT 3010	5.1
	SUN SPARC 2	5.37
1990	IBM RS6000	5

Tabela 1 – Perfect Workstation Instability

Workstation (1993)	SPECratio Instability
DEC 3000 Model 500X	7.77
HP 9000 Model G/H/160	3.70
IBM RS 6000-POWERstation 370/375	4.84
Motorola Series 900	5.19
SGI INDIGO 2	4.56
SUN SPARCstation 10 Model 40	4.16

Tabela 2 – SPEC Workstation Instability

Conclusão

- Medir performance não é uma tarefa simples
- Importância de medir performance em processamento paralelo
- Fatores (Parâmetros) que afetam a performance
- Relacionamento entre Performance e Estabilidade

Bibliografia

- High Performance Computing David J. Kuck 1996
- http://www.csam.iit.edu/~sun/note546/node26.html
- Avaliação de Desempenho de Hardware Carromeu, C., Ogatha, F. K. S., Curvo, R. C. - 2002
- http://www.deec.uc.pt/~jorge/aulas_smp/smp_t_Ch07.pdf
- http://gec.di.uminho.pt/discip/TextoAC/cap10.html
- http://www.geocities.com/Area51/pthztoro/pinguim/parallel_r
- Performance Analysis and Prediction of Large-Scale Scientific Applications – Hoisie, A., Harvey, W. – 2002
- http://mairinque.ime.usp.br/~gubi/cursos/431/apostila
- Programação Paralela Simone de Lima Martins 2002
- Computação Paralela Santana, R. H. C., Santana, M. J.,
 Souza, M. A., Souza, P. S. L., Piekarski, A. E. T. 1997