

Lecture - 16 Non Comparison based Sorting algorithms

Success is always inevitable with Hard Work and Perseverance

N. Ravitha Rajalakshmi

Learning Objective

- Comparison based Sorting algorithm and their complexity
- Linear time Sorting algorithms

Comparison based sorting algorithm

- Sorts objects by comparing pairs of them
- Ex: Selection sort , Merge Sort

Any comparison based sorting algorithm at least takes $\Omega(n \log n)$ comparisons to sort n objects

Why??

Visualization - Decision Tree

- Maximum number of comparisons is based on depth of the tree
- All we know about the tree is the number of leaves
- Number of leaves = Number of permutations

- For n elements , the number of permutations = n!
- Is it possible to relate depth and number of leaves in a binary tree?

- $d = 2^l$, l denote the number of leaves
- $l = \log(d)$
- Number of leaves = Number of permutations

$$l = \log(n!)$$

$$= \log(1 * 2 * 3 \cdots n)$$

$$= \log(1) + \log(2) + \log(3) + \cdots + \log(n)$$

$$\geq \log(n/2) + \cdots + \log(n)$$

$$\geq n/2 \log(n/2)$$

$$\Omega(n \log n)$$

Non-Comparison based sorting

- Imposes constraint over the input instance
- Counting sort
 - Frequency of occurrence of elements (Key)
- It is expected to know the range of array elements beforehand
- Smallest number of integers

Pause & Think

Index of elements

Index

6

Original Array

4

3

5

3

1 - 0

2 - 1

3 - 2, 3

4 - 4, 5

Sorted Array

3

3

5 - 6

Is there any relation between the cumulative count and index of element in sorted array?

Function Counting_Sort(A, n)

```
Count[k] = \{0\} B[0...n] = \{\}
# Populate frequency
for i in range(0,n)
      Count[A[i]]+=1
#Compute Cumulative Frequency
for i in range(1,k)
      Count[i] = Count[i] + Count[i-1]
for i in range(0,n)
      m = A[i] \# Element
       B[Count[m]-1] = m # Place element in its correct position
       Count[m]-=1 #Decrement Count
```

Time Complexity

- Assumption : Let the array contains elements from 1 to k
- Basic Operation : Addition and Assignment
- Input Size: n (number of elements in the array)
- Time Complexity = n + k + n = 0(n + k)

If the value of $k \le n$, then the time complexity = O(n)

Sorting Algorithm	Best	Average	Worst	Memory	Stable
Merge	$n \log n$	$n \log n$	$n \log n$	n	Yes
Quick	$n \log n$	$n \log n$	n^2	$\log n$	No
Неар	$n \log n$	$n \log n$	$n \log n$	1	No
Selection	n^2	n^2	n^2	1	Yes
Counting	n+k	n + k	n + k	n+k	No

Summary

Discussed Linear time sorting algorithm

Thank You Happ Learning

Success is always inevitable with Hard Work and Perseverance