

planetmath.org

Math for the people, by the people.

category of quivers is concrete

Canonical name CategoryOfQuiversIsConcrete

Date of creation 2013-03-22 19:17:28 Last modified on 2013-03-22 19:17:28

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130) Entry type Theorem Classification msc 14L24 Let Q denote the category of all quivers and quiver morphisms with standard composition. If $Q = (Q_0, Q_1, s, t)$ is a quiver, then we can associate with Q the set

$$S(Q) = Q_0 \sqcup Q_1$$

where \Box denotes the disjoint union of sets.

Furthermore, if $F:Q\to Q'$ is a morphism of quivers, then F induces function

$$S(F): S(Q) \to S(Q')$$

by putting $S(F)(a) = F_0(a)$ if $a \in Q_0$ and $S(F)(\alpha) = F_1(\alpha)$ if $\alpha \in Q_1$.

Proposition. The category \mathcal{Q} together with $S: \mathcal{Q} \to \mathcal{SET}$ is a concrete category over the category of all sets \mathcal{SET} .

Proof. The fact that S is a functor we leave as a simple exercise. Now assume, that $F, G: Q \to Q'$ are morphisms of quivers such that S(F) = S(G). It follows, that for any vertex $a \in Q_0$ and any arrow $\alpha \in Q_1$ we have

$$F_0(a) = S(F)(a) = S(G)(a) = G_0(a);$$

$$F_1(\alpha) = S(F)(\alpha) = S(G)(\alpha) = G_1(\alpha)$$

which clearly proves that F = G. This completes the proof. \square

Remark. Note, that if $F: Q \to Q'$ is a morphism of quivers, then F is injective in (Q, S) (see http://planetmath.org/InjectiveAndSurjectiveMorphismsInConcreteCa entry for details) if and only if both F_0 , F_1 are injective. The same holds if we replace word "injective" with "surjective".