Current listing of claims:

Claim 1: (currently amended): A process for the preparation of a <u>an essentially pure</u> polymorph of 1-[terr-butyl-1-p-tolyl-1H-pyrazol-5-yl]-3 [4 (2-morpholinin-4-yl-ethoxy)naphthalen-1-yl]-urea 1-[terr-butyl-1-p-tolyl-1H-pyrazol-5-yl]-3-[4-(2-morpholin-4-yl-ethoxy)naphthalen-1-yl]-urea (1) by crystallization from an alcohol, said process comprising treating a crude 1-[terr-butyl-1-p-tolyl-1H-pyrazol-5-yl]-3-[4-(2-morpholinin-4-yl-ethoxy)naphthalen-1-yl]-urea 1-[terr-butyl-1-p-tolyl-1H-pyrazol-5-yl]-3-[4-(2-morpholin-4-yl-ethoxy)naphthalen-1-yl]-urea (1) with ethanol;

wherein the polymorph of (1) is has the following X-ray powder diffractogramm (XRPD), which is analyzed using an X-Ray Powder Diffractometer utilizing CuKα radiation (λ=1.5418Å), run at 40kV, 30mA:

Peak Position (°2θ)	Relative Intensity	d-Space (Å)
5.4	38	16.4
8.9	46	9.90
10.4	66	8.54
13.8	50	6.41
14.3	100	6.18
17.1	75	5.19
20.7	79	4.29
21.0	45	4.24
21.7	35	4.09
22.8	47	3.90

Claim 2 (original): The process according to claim 1, wherein crude (1) is treated with ethanol at a temperature from 0 °C to 80 °C.

Claim 3 (original): The process according to claim 2, wherein 1 part per weight of crude (1) is treated with 2 to 50 parts per weight ethanol.

Claim 4 (currently amended): A process for the preparation of a <u>an essentially pure</u> polymorph of 1-[tert-butyl-1-p-tolyl-1H-pyrazol-5-yl]-3-[4-(2-morpholin-4-yl-urea 1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-[tert-butyl-1-p-tolyl-1-[tert-butyl-1-[tert-butyl-1-[tert-butyl-1-[tert-butyl-1-[tert-butyl-1-[tert-buty

<u>yl-ethoxy)naphthalen-1-yl]-urea</u> (1) by crystallization from an alcohol, said process comprising:

- (a) dissolving crude (1) with ethanol,
- (b) adding seeding crystals of the pure polymorph of (1),
- (c) allowing the pure polymorph of (1) to crystallize,
- (d) adding water until the crystallization is almost completed,
- (e) separating of the pure polymorph of (1), and
- optionally washing the resulting pure polymorph of (1) with water and drying at elevated temperature and/or in vacuo;

wherein the polymorph of (1) is has the following X-ray powder diffractogramm (XRPD), which is analyzed using an X-Ray Powder Diffractometer utilizing $CuK\alpha$ radiation (λ =1.5418Å), run at 40kV, 30mA;

Peak Position (°2θ)	Relative Intensity	d-Space (Å)
5.4	38	16.4
8.9	46	9.90
10.4	66	8.54
13.8	50	6.41
14.3	100	6.18
17.1	75	5.19
20.7	79	4.29
21.0	45	4.24
21.7	35	4.09
22.8	47	3.90

Claim 5 (currently amended): A process for the preparation of a an essentially pure polymorph of 1-{terr+butyl-1-p-tolyl-1H-pyrazol-5-yl}-3 [4-(2-morpolinin-4-yl-ethoxy)naphthalen-1-yl]-urea 1-{terr-butyl-1-p-tolyl-1H-pyrazol-5-yl}-3-[4-(2-morpolin-4-yl-ethoxy)naphthalen-1-yl]-urea (1) by crystallization from an alcohol, said process comprisine:

(i) treating 1.01-1.1 mole of 4-amino—1-(2-morpholinoethoxy)naphthalene (2) with 1 mole of 5-(2,2,2-trichloroethoxycarbonyl)amino-3-tert-butyl-1-p-tolylpyrazole (3) in the presence of 1 mole of a secondary amine and a solvent consisting of DMSO and ethyl acetate to produce crude (1);

- (ii) isolating crude (1);
- (iii) washing crude (1) with ethyl acetate and
- (iv) treating the residue with ethanol;

wherein the polymorph of (1) is has the following X-ray powder diffractogramm (XRPD), which is analyzed using an X-Ray Powder Diffractometer utilizing CuK α radiation (λ =1.5418Å), run at 40kV, 30mA;

Peak Position (°2θ)	Relative Intensity	d-Space (Å)
5.4	38	16.4
8.9	46	9.90
10.4	66	8.54
13.8	50	6.41
14.3	100	6.18
17.1	75	5.19
20.7	79	4.29
21.0	45	4.24
21.7	35	4.09
22.8	47	3.90

Claim 6-9 (Cancelled).