

Computer Fundamentals

Agenda

- ► Introduction
- What is Computer
- ► How computers work
- Operating Systems

Introduction

Were you able to finish preclass material?

Introduction

How long did it take to finish it?

Question:

Think outside of the box and tell me a computer not in traditional sense.

A computer is...

a device that accepts data or **input** and **store** it to somewhere. Then **processes** this data in someway to automatically produce a **result or output**.

Colossus computer

1943 - 1945

ENIAC (Electronic Numerical Integrator And Computer)

1955

TRANSISTORS

1956 Nobel Prize in Physics

- Semi-conductor
- Cheap
- Small
- Very low energy consumption

IBM's 5nm transistors

TRANSISTORS

Central Processing Unit (Brain of the Computer)

4.6 GHz = 4.6 Billion cycles per second

1950s Silicon Transistor

1 Transistor

1960s TTL Quad Gate

16 Transistors

1970s

8-bit Microprocessor

4500 Transistors

1980s

32-bit Microprocessor

275,000 Transistors

1990s

32-bit Microprocessor

3,100,000 Transistors

2000s

64-bit Microprocessor

592,000,000 Transistors

2010s

3072-Core GPU

8,000,000,000 Transistors

DATE	CPU	# of transistors
1972	Intel 8008	3,500
1982	Intel 80286	134,000
1993	Pentium	3,100,000
2000	Pentium 4	42,000,000
2012	Quad-Core + GPU Core i7	1,400,000,000
2020	Apple M1 Chip	16,000,000,000
2022	Apple M2 Chip	20,000,000,000
2022	Apple M1 Ultra	114,000,000,000

Intel i9-12900K CPU die photo

Total Cores :16
8 Performance-cores,
8 Efficient-cores
Cache : 30 MB

Intel i7-3960x CPU die

- System on a chip (SoC
- 5-nanometer process
- 16 billion transistors
- 8-core CPU
- 8-core GPU
- 16-core neural engine

Apple M1 die photo

RAM (Random Access Memory)

- Temporary
- Fast
- Expensive

Hard Drive

- Moving Parts
- Slow
- Cheap
- Vulnerable

Hard Disk Drive (HDD) vs SSD vs NVMe

Magnetic-SATA3

SSD - NVMe

33

Question: How about NVMe vs RAM?

Computer memory fundamentals

https://www.youtube.com/watch?v=p3q5zWCw8J4

Hard Drive

Hard Drive vs RAM

GPU (Graphical Processing Unit)

The GeForce RTX 3050's GA106 GPU

Mainboard or Logic Board

New Generation motherboard (Intel i9)

Input and Output Devices

Students, write your response!

Pear Deck Interactive Slide

Do not remove this bar

Communication Devices

Wireless Adapter

Network Interface Card

Virtual Reality / Augmented Reality / Mixed Reality

???

Drag your dot to how you are feeling:

Operating Systems

THANKS! > 1

Any questions?

