UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea			
Facultatea			

Numărul legitimației de bancă

Numele

Prenumele tatălui

Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

VARIANTA A

1. Să se determine $x \in \mathbb{R}$ astfel încât $\sqrt{x^2 + 5} = x + 1$. (5 pct.)

a)
$$x = -2$$
; b) $x = 4$; c) $x = 0$; d) $x = 2$; e) $x = 3$; f) $x = -1$.

- 2. Valoarea determinantului $\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix}$ este: (5 pct.)
 - a) 13; b) 18; c) 0; d) 11; e) 1; f) 14.
- 3. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$. Să se calculeze f'(1). (5 pct.)
 - a) 1; b) 3e; c) e^2 ; d) 3+e; e) 1+e; f) 2e.
- 4. Să se calculeze $C_5^0 + C_5^2 + C_5^4$. (5 pct.)
 - a) 6; b) 8; c) 18; d) 16; e) 24; f) 20.
- 5. Să se rezolve ecuatia $2^{x+3} = 16$. (5 pct.)

a)
$$x = 1$$
; b) $x = -3$; c) $x = 5$; d) $x = -4$; e) $x = 11$; f) $x = -1$.

- 6. Să se calculeze modulul numărului complex $z = \frac{3+4i}{6-8i}$. (5 pct.)
 - a) 3; b) 4; c) 6; d) $\frac{1}{2}$; e) 8; f) 11.
- 7. Produsul soluțiilor reale ale ecuației |x+1|=2 este: (5 pct.)
 - a) 12; b) 0; c) -3; d) 1; e) 4; f) -5.
- 8. Să se afle $m \in \mathbb{R}$ astfel încât x = 1 să fie soluție a ecuației 3x + m 2 = 0. (5 pct.)
 - a) m = 0; b) m = 7; c) m = -1; d) m = 4; e) m = 1; f) m = -5.
- 9. Să se rezolve inecuația $x^2 3x + 2 \le 0$. (5 pct.)
 - a) $x \in [0,1]$; b) $x \in \emptyset$; c) $x \in [1,2]$; d) $x \ge 5$; e) $x \in [-4,1]$; f) $x \in [2,5]$.

10. Dacă x_1 și x_2 sunt soluțiile ecuației $2x^2 - 3x + 1 = 0$, atunci $x_1 + x_2$ este: (5 pct.)

a)
$$-\frac{1}{2}$$
; b) 1; c) $\frac{1}{2}$; d) $-\frac{2}{3}$; e) $\frac{3}{2}$; f) 0.

- 11. Fie $(a_n)_n$ o progresie aritmetică astfel încât $a_1 + a_3 = 6$ și $a_3 a_1 = 4$. Să se calculeze a_5 . (5 pct.)
 - a) 15; b) 7; c) 10; d) 11; e) -5; f) 9.
- 12. Să se rezolve inecuația $2x-3 \le 4x$. (5 pct.)

a)
$$x \in (0, \infty)$$
; b) $x \in \emptyset$; c) $x \in (-1, 2)$; d) $x \in \left[-\frac{3}{2}, +\infty\right]$; e) $x \in \left(\frac{4}{3}, +\infty\right)$; f) $x \in (0, 1)$.

13. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arccos \frac{1-x^2}{1+x^2} + \arcsin \frac{2x}{1+x^2}$.

Să se calculeze $S = f(-\sqrt{3}) + f(-\ln 2) + f(1) + f(\ln 3)$. (5 pct.)

a)
$$\frac{9\pi}{4}$$
; b) $\frac{8\pi}{3}$; c) $\frac{13\pi}{6}$; d) $\frac{7\pi}{3}$; e) $\frac{11\pi}{4}$; f) $\frac{13\pi}{4}$.

- 14. Fie polinomul $f = X^3 5X^2 + 4X$ și fie T suma pătratelor rădăcinilor sale. Atunci: (5 pct.)
 - a) T = 15; b) T = 17; c) T = 14; d) T = 0; e) T = -11; f) T = 11.
- 15. Să se calculeze $E = \lg^3 5 + \lg^3 20 + \lg 8 \cdot \lg 0,25$. (5 pct.)

a)
$$E = \frac{1}{4}$$
; b) $E = 7$; c) $E = 13$; d) $E = 2$; e) $E = \frac{1}{5}$; f) $E = 5$.

16. Să se calculeze $l = \lim_{t \to \infty} \int_1^t \frac{1}{x(x^2 + 1)} dx$. (5 pct.)

a)
$$l = 1$$
; b) $l = 1 + \ln 2$; c) $l = \frac{1}{4}$; d) $l = 3 \ln 2$; e) $l = \frac{11}{4}$; f) $l = \ln \sqrt{2}$.

- 17. Fie $A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$; să se calculeze determinantul matricei A^2 . (5 pct.)
 - a) 1; b) 0; c) 3; d) 2; e) 4; f) -1.
- 18. Fie S multimea soluțiilor reale și strict pozitive ale ecuației $x + \frac{1}{x} = \int_{0}^{x} e^{t^2} dt$. Atunci: (5 pct.)
 - a) $S \subset \mathbb{N}$; b) $S = \emptyset$; c) $S \subset (2,3)$; d) $S \cap (0,1) \neq \emptyset$; e) $S \cap (1,2) \neq \emptyset$; f) $S \cap (2,\infty) \neq \emptyset$.