2. SUCESIONES DE NUMEROS NATURALES

2.1. Sucesiones numéricas: definición. Limite de una sucesión. Propiedades algebraicas. . Indeterminaciones begannes calass commun et deixeus anu de man(no).

Una sucesión de números reales es una aplicación de N en IR.

$$n \rightarrow a(n) = a_n$$

8. Teorema de compressión (del sadidusich) notación: el conjunto imagen: "comjunto de términos de la sucesión". Inoch to the me and and bus on E

(an) ne IN, (an) no, 1 . as mil = no mil v astronomo noz (a) . (as) La imagen del 1: a, "primer término de la sucesión

an: término general de la sucesión o término n-ésimo de la sucesión.

Ejemplo1:
$$a: N \longrightarrow \mathbb{R}$$

 $n \longrightarrow a_n = n$

(1,2,3,4,...)

Ejemplo 2: a: $N \longrightarrow \mathbb{R}$ succession oscilante $n \longrightarrow a_n = (-1)^n$

Ejemplo 3: a: IN $\longrightarrow \mathbb{R}$ $n \longrightarrow a_n = \frac{1}{n}$

department que la la P. som limites de an. sucesión convergente o decreciente

$$n \longrightarrow a_n = \frac{1}{n}$$

Jack e 11 fd. Na Nas, lan-falce. Ejemplo 4: a: IN -> R

$$n \longrightarrow a_n = (-1)^n \cdot n$$

$$(-1,2,-3,4,...)$$

Formas precuentes de dar una sucesión

1. Dande el término general: an = 2n.

2. Dando la primeros términos de la sucesión: 2,4,6,8,...

3. por recurrencia: \ a=2-11/1/3+1-12/2 10 (3+1)

 $q = (3 + \epsilon k, 3 - \epsilon k) \cap (3 + \epsilon k, k + \epsilon k) = p$ límite de una sucesion

(an) ne N sucesión de números reales} → l és el límite de la sucesión (an) ⇔

⇔ 48>0, ∃neeN tq. Vn>, ne, lan-l16E.

$$a_n \rightarrow l$$
 $n \rightarrow t$

$$an \longrightarrow l$$

(an) sucesión de números reales es convergente ↔ FlER tq. l=lím an Propiedades aboyant improve and ab stimil inclinitate a assistment as molecular 1. (an) ne n es una sucesión de números reales convergente - su límite es único. 2. (an)n, (bn)n des sucesiones de números reales convergentes. si ∃no∈ N tq. Yn, no an ≤ bn ⇒ lim an ≤ lim bn. 3. Teorema de compresión (del samdwich) (an)n, (bn)n, (cn)n. 3 sucesiones de números reales. InoelN tq. Vn >, no, an & bn & cn. (an), (cn) son convergentes y lim an = lim cn = leth ⇒ (bn) es convergente y lim bn = 1. an 4 bn 4 Cn Elemplatt a: N + + W. aliegranib roissuns 17 = 430 4 14 (... , D, E, S, E) Demostación Ejemple 21 or ld - > E. 1. (an) sucesión de números reales convergente. Demostración por reducción al absurdo (RA). Suponemos que la, le E Don límites de an. Veremos que l=12. Floring 8: 0: IV - TR. 0 4D \$ 11 Por ser la, le, limites de an: Jerse N tq. Vn > nze, lan-lile. General at IV - P. (L₂) (..., P₁, 8=, C₁, L-) tomando E< 12-121 me = max 1 mie, mie 1 . 115 = 110 : laterage animit la abrod .1 2. harde la primence férmine de la sueside : 2,4,6,8, ... ∀n>nε, ane(l1-ε, l1+ε) n(l2-ε, l2+ε). y si l+ + l2 ⇒ (l+-E, l+E) ∩ (l2-E, l2+E) = Ø CONTRADICCIÓN (an) ne as suession de niemano missing all at stimit lad 1 4. es yes a see of the ne lan-like. no miled no miled 1-110

1. (an) n sucesión de números reales. El límite de an es + os 😝

· lim on a si boto, busto Vn.

$$a_n \rightarrow +\infty$$

- 2. llm an = w + M>O, Bnn EIN tq. Vn, nn, an 4-M.
- 3. lim an = 20 (AM>O, In MEIN tq. Vn>, nm, lanl>M y (an) tiene infinitos (infinito sin signo)

terminos positivos e infinitos términos negativos.

The IN, In, nze N con n, nz> m y anx 0 y anx 40? = (nd and) and .

•
$$\lim_{n \to \infty} (a_n b_n) = \pm \infty$$
, si $a \neq 0$.
• $\lim_{n \to \infty} \frac{dn}{bn} = 0$

· Um du ton

covered words

. Les in co + a da mil .

· Um but at a se aso.

· timenon o si ococi.

. Um (tenton) = to.

. Um (chida) = + w

. O = " na mall .

00 a = 100 and .

cat - mi mil .

O = hb mil .

(an) new es una sucesion:

- · Convergente: Fle TR tg. lim an = l. & Flim an
- · Divergente: lim an = +0,-00,0
- · Oscilante : I lim an.

Ejemples:

- 1. lim n = +0. divergente hacia +0.
- 2. Lim (-m) = -00. divergente hacia -00.
- 3. Um (-1) n = 0. divergente hacia o (sin signo).
- 4. lim = 0. convergente hacia O.
- S. & lim (-1) ". oscilante.
- 6.1,1,1,2,1,3,1,4,... I lim ⇒ oscilante
- 7. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a>1 \\ 2,2^2,2^3,2^4,... \Rightarrow \text{divergente.} \end{cases}$ a $\in \mathbb{R}$ 0. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{convergente.} \end{cases}$ 2. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,... \end{cases} \Rightarrow \text{convergente.} \end{cases}$ 2. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 2. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a>1 \\ 2,2^2,2^3,2^4,... \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a>1 \\ 2,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$ 3. $\lim_{n\to+\infty} a^n = \begin{cases} +\infty & \text{si } a=1 \\ 2,1,1,1,1,1,1,1,1,... \end{cases} \Rightarrow \text{divergente.} \end{cases}$

```
1. limites finitos
                     L (On) n succession de números reales. El limite de on es + as 43
  si liman=a i limbn=b; a, b & R: M can Magat .pd 14 + 80 E , O < AV +>
      · Lim (an + bn) = a + b
       · Lim (anbn) = ab
       · lim \frac{a_n}{b_n} = \frac{a}{b} si b \neq 0, b_n \neq 0 \ \forall n.
       . lim ba = ba si bibns O thenne och to an end .
       · lim logan = loga si an, a>O Vn.
                                                                  (ongla nla orlini/m)
  si lim an=a, lim bn= lim cn=+00 y lim dn=0, a=R:
2. limites infinitos.
     · lim (antbn) = + 00 san p second p second post on an Unash unt Many
     · lim (anbn) = ± as si a ≠ 0.
      • \lim \frac{an}{bn} = 0
     • \lim_{n \to \infty} \frac{bn}{an} = \pm \infty
                                                        : moisonus somu se mon (nd)
     · \lim \frac{dn}{an} = 0
                                         · Convengente: Ile V. tg. Ilm an = L. [
                                                * bivergente: lim on + + 0, - 0, m
      · lim anbn = + 00 si a>1.
                                                          , oscillante i E lim un.
      · lim bnan = + 00 si a > 0.
      · Um (n bn = +00
                                                                             Ejemples:
                                            1. lim an = + of . divergole hacia + oc.
      · Lim (+ (n + bn) = + 00.
       · lim (chbh) = + 00
      · lim an = + 00
                               3. Um (-1) no es. divergede haia es (sin signa).
      · Um bn = + xx
                                              4. Lim to conveyable have a.
      · Um dn = 0
      · lim an bn = 0 si 0 < a < 1.
                                                          S. J'lim (-1)". oscilanie.
      . Um bnan = 0 si a < 0.
                                            sholies & mil F. ... , +, +, 8, 1, 5, +, +, 1. &
       · Um cn-bn = 0.
                        y, lim an= (a+ o si a>1. 2,2,2,2,... → divergents.
                        alreprocures & f. ... t. t. t. t. t. t. a in is
                                                                           A 3.0
                                               - Lanala is o
                           21. a.c. - 1. - 1, 1, -1, 1, ... = cilante
                                      is a c-1. => divergentle.
```

ω-ω, 0·ω, ω, 0, 1°, ω°

00-00

Generalmente se aplica:
$$a^2-b^2=(a+b)(a-b) \Leftrightarrow (a-b)=\frac{a^2-b^2}{a+b}=\frac{(a-b)(a+b)}{(a+b)}$$

otras veces se wiliza: $a_n - b_n = a_n \cdot b_n \left(\frac{1}{b_n} - \frac{1}{a_n}\right)$ $\lim_{n \to \infty} (3n^2 - 7n) = \lim_{n \to \infty} n \left(3n - 7\right) = \infty$

·
$$\lim_{n \to \infty} (3n^2 - 7n) = \lim_{n \to \infty} (3n - 7) = \infty$$

=
$$\lim_{n \to \infty} n^2 (3 - \frac{1}{n}) = \infty$$

si an es un polinamio cualquiera:

.
$$\lim (\sqrt{2n} - \sqrt{2n-5}) = \lim \frac{(\sqrt{2n})^2 - (\sqrt{2n-5})^2}{\sqrt{2n} + \sqrt{2n-5}} = \lim \frac{2h - 2h + 5}{\sqrt{2n} + \sqrt{2n-5}} = \lim \frac{5}{\sqrt{2n} + \sqrt{2n-5}} = 0$$

6. Calcula els limits de les successions:

$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) \cdot \sqrt{\frac{n+1}{2}} = \lim_{n \to \infty} \frac{(\sqrt{n+1})^2 - (\sqrt{n})^2}{\sqrt{n+1} + \sqrt{n}} \sqrt{\frac{n+1}{2}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \cdot \sqrt{\frac{n+1}{2}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{2} (\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{$$

 $\frac{\omega}{\omega}$, $\frac{0}{0}$ | si gnado p(n) > qnado $q(n) \Rightarrow l(m = +\infty \circ -\infty)$ $\frac{p(n)}{q(n)}$ | si gnado p(n) = qnado $q(n) \Rightarrow l(m = \text{cociente de los coeficientes de los términos de mayor opado.$ términos de mayor opado.

si grado p(n) < grado q(n) > lim = 0.

sino: dividir numerador y denominador por el término dominante. (simplificar).

$$\frac{3n^2+7n}{5n^3-3n} = \boxed{0}$$

•
$$\lim \frac{2^{n}-3^{n}}{2^{n}+3^{n}} = \lim \frac{3^{n}(\frac{2^{n}}{3^{n}}-1)}{3^{n}(\frac{2^{n}}{3^{n}}+1)} = \lim \frac{(\frac{2}{3})^{n}-1}{(\frac{2}{3})^{n}+1} = \frac{0-1}{0+1} = \boxed{-1}$$

1. Colculou els límits de les successions: a) lím $\frac{6n^3+4n+1}{2n} = \boxed{+\infty}$

ay lim
$$\frac{6n^3+4n+1}{2n} = 1+\infty$$

b)
$$\lim_{n^2-6n-2} \frac{1}{3n^2-9n} = \frac{1}{3}$$

9 um
$$\left(\sqrt{\frac{n+1}{2n+1}}\right)^{\frac{2n-1}{3n-1}} = \left(\sqrt{\frac{1}{2}}\right)^{\frac{2}{3}} = \left(\frac{1}{2}\right)^{\frac{1}{2} \cdot \frac{2}{3}} = \left(\frac{1}{2}\right)^{\frac{1}{3}} = \left(\frac{1}{2}\right)^{\frac{1}{3}} = \left(\frac{1}{2}\right)^{\frac{1}{3}}$$

Solution els limits:
$$\frac{3^{n}(\frac{2^{n}+3}{3^{n}+1})}{2^{n}-3^{n}} = \lim_{n \to \infty} \frac{3^{n}(\frac{2^{n}}{3^{n}}+1)}{3^{n}(\frac{2^{n}}{3^{n}}-1)} = \lim_{n \to \infty} \frac{(\frac{2}{3})^{n}+1}{(\frac{2}{3})^{n}-1} = \frac{0+1}{0-1} = \boxed{-1}$$

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

de la misma forma: an -> 0 -> lim (1+an) = e.

por lo tanto:
$$an \rightarrow 1$$

$$bn \rightarrow +\infty$$

$$= \lim_{n \rightarrow +\infty} \lim_{n \rightarrow$$

$$\lim_{n \to \infty} \left(\frac{n^2 + n}{n^2 - 7} \right)^{2n} = \lim_{n \to \infty} 2n \cdot \left(\frac{n^2 + n}{n^2 - 7} - 1 \right) = \lim_{n \to \infty} 2n \cdot \frac{n^2 + n}{n^2 - 7} = \lim_{n \to \infty} \frac{2n^2 + 14n}{n^2 - 7} = \lim_{n \to \infty} \frac{2n}{n^2 - 7} =$$

Hay des posibilidades:

1. se pasa a la forma
$$\frac{0}{0}$$
 o $\frac{\infty}{\infty}$.

1. se pasa a la forma
$$\frac{0}{0} \circ \frac{\infty}{\infty}$$
.

 $an \to 0$
 $bn \to \infty$
 $\Rightarrow \lim_{n \to \infty} anbn = \lim_{n \to \infty} \lim_{n \to \infty} \frac{1}{bn}$
 $\cos \lim_{n \to \infty} \frac{bn}{an} \to \frac{\infty}{an}$

2. se pasa a la forma 100:

0 = 10 mil = 1 > 0 = 10 mil = 1/2 mil = 1/2 mil = 10 mil =

Se toman logaritmos y se pasa a la indeterminación 0.00.

3. Criteria útiles

· criterio de la raiz-cociente: (an ≠0, ∀n>, no y lin
$$\frac{|a_n|}{|a_n-1|} = \ell$$
) \Rightarrow lin $\sqrt[n]{|a_n|} = \ell$.

· criterio del cociente:
$$(an \neq 0. \forall n \geq n_0 \text{ y lim } \frac{|a_n|}{|a_n-1|} = \ell < 1) \Rightarrow \text{lim } a_n = 0$$

6. Calculeu els límits de les successions:

d)
$$\lim_{n \to \infty} \frac{2^n}{n!} = 0$$
 (criterio del cociente)

$$\lim \frac{|a_n|}{|a_{n-1}|} = \lim \frac{\frac{2^n}{n!}}{\frac{2^{n-1}}{(n-1)!}} = \lim \frac{2^n \cdot (n-1)!}{2^{n-1} \cdot n!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!} = \lim \frac{2 \cdot 2^{n-1} \cdot (n+1)!}{2^{n-1} \cdot n \cdot (n+1)!}$$

4. Calculeu els limits de les successions:

$$\lim_{|a_{n-1}|} \frac{|a_{n}|}{|a_{n-1}|} = \lim_{n \to \infty} \frac{n}{n-1} = 1 \Rightarrow \lim_{n \to \infty} \frac{n}{n-1}$$
 (criterio de la raiz-cociente).

by lim nª Va ER.

$$\lim_{n\to+\infty} n^{\alpha} = \begin{cases} +\infty & \text{si } \alpha>0 \\ 1 & \text{si } \alpha=0 \end{cases} \left(n^{\alpha} \text{ as la successió } 1,1,1,\dots\right)$$

$$0 & \text{si } \alpha<0 \end{cases} \left(+\infty^{\alpha} = \frac{1}{+\infty^{|\alpha|}} = \frac{1}{+\infty} = 0\right).$$

3. Feu us dels criteris de l'imit zero per calcular:

a)
$$\lim_{n\to+\infty} \frac{a^n}{n!}$$
, $|a|>1$.

criterio del cociente \Rightarrow $\lim_{|an-1|} \frac{|a_n|}{|an-1|} = \lim_{|an-1|} \frac{a^n}{a^{n-1}} = \lim_{|an-1|} \frac{a^n}{a^{n-1}} \cdot n!$

$$= \lim_{n\to+\infty} \frac{a \cdot a^{n-1} \cdot (n-1)!}{a^{n-1} \cdot n \cdot (n-1)!} = \lim_{n\to+\infty} \frac{a^n}{a^n} \cdot n!$$

2.2. Sucesiones acotadas. Sucesiones monótoras. Teorema de la convergencia monótora. El número e.

- (an) new succesion de números reales es una succesión acatada

 ⇒ ∃k∈R tq. ∀n∈N, [an] ≤k ⇔ ∃k, l∈R tq. ∀n∈N, k≤an≤l.

 -k≤an≤k
- · sucesión acotada superiormente (3l ER tg. Vne N, an & l.
- · sucesión acotada inforiormente (] ILER tg. Vn EN, K = an
- · sucesión monétoma (> treIN, (an+1 an) tienen todos el mismo signo.
 - creciente (> Vn & IN, an & an+1
 - decreciente (\ \tau \ n \ N , an >, an+1
 - estrictamente creciente (> Vn = IN, an 4 an+1
 - estictamente decreciente (Vn EIN, an > an+1

Ejemples:

- 1. ((-1)") nein acotada VneN, -1 & (-1)" & 1 -> Sucesión no monótona.
- 2. (n) new. acotada inferiormente (inf(n) new = 1). -> Sucesión estrictamente creciente
- 3. $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ acotada (inf=0, sup=1) \rightarrow sucesión estrictamente decreciente.
- 4. (-2) sucesión no acotada sucesión monótona.

Teorema de la convergencia monótora

(an) new sucesión de números reales.

1. si ((an) está acotada superiormente (inferiormente) (an) es creciente (decreciente)

1. pass bosse (n=1) ⇒ (an) es convergente y lim an = supfantne IN 4 of (inf)

2 m of est a man & sty a mo sk & other and s & ot end : 2H

Ejemplo:

(an) new definida por: a=12, an+1=12+an, 7n>,1.

Veremos que es convergente y calcularemos su lim

a= 12

az=12+12

a3= V2+ V2+ 12

1) la sucesión es creciente Vn, ansan+1 demostración por inducción.

1. pas base (n=1) a, ≤ a2 ⇔ 12 ≤ √2+√2. Cert.

2. pas inductiu

tenemos: an & an+1

queremos: an+1 & an+2

HI: an & an+1 => 2+ an & 2+ an+1 => 12+ an & 12+ an+1 => Fak +2 Leah aran T Leah aran

⇒ an+1 = an+2. Cent.

② la sucesión está acotada superiormente.

· Vn an 42.

demostración por inducción.

1. pas base (n=1)

0,42 € √2 € 2.

2. pas inductiu

tenemos: an 62.

queremos: an+1 & 2.

HI: $an \le 2 \Rightarrow 2 + an \le 2 + 2 \Rightarrow \sqrt{2 + an} \le \sqrt{4} \Rightarrow an \ne 1 \le 2$. (ext.

1. pos pose (n=1)
0.5 2 42 42 5 2.

L. pas industria fenemas: An & Z.

queremes: and & 2.

HI: anse = 2+anse2+2 + 12+an sile = anise2. Cent.

Ejemplo (continuación)

(an) new definida por: a=12, an+1=12+an, 4n,1.

(an) creciente y acotada superiormente ⇒ (an) convergente ⇒ I lím an ∈ R.

· Cálculo del Umite de an. 1+00+5 2+00+5 = 1,00 2 00 = 1+00 + 00 : ZH

sea liman = 1 = 1 lim an+1 = 1. por definición de la sucesión: an+1 = V 2+an.

 $a_{n+1} = \sqrt{2+a_n} \Rightarrow \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{2+a_n} \Rightarrow l = \sqrt{2+l} \Rightarrow l^2 = 2+l \Rightarrow l^2 - 1 - 2 = 0$

$$l = \frac{1 \pm \sqrt{1+8}}{2} = \frac{1 \pm \sqrt{9}}{2} = \frac{1 \pm 3}{2}$$

$$l = \frac{1 \pm \sqrt{1+8}}{2} = \frac{1 \pm \sqrt{9}}{2} = \frac{1 \pm 3}{2}$$

$$l_2 = \frac{-2}{2} = \frac{1}{2}$$

$$l_3 = \sqrt{2}$$

$$l_4 = \frac{1}{2} = 2$$

$$l_4 = \frac{1}{2} = 2$$

$$l_5 = \frac{-2}{2} = 1$$

$$l_6 = \sqrt{2}$$

$$l_8 = \sqrt{2}$$

$$l_$$

. whuchniseg .S

forcement days days

liman=2

5. Signi fant una successió tal que a== 2 i 3 an+1 = 2 + an3. l= con mil + l= po mil

$$(an) \int_{0}^{a_{1} = -\frac{2}{3}} (an) \int_{0}^{a_{1} = -\frac{2}{3}} (an) \int_{0}^{a_{1} = -\frac{2}{3}} (an) \int_{0}^{a_{2} = -\frac{2}{3}} (an$$

a) Proven que -25 an & 1, par a tot n>1.

demostación por inducción.

$$-2 \le \alpha_1 \le 1 \iff -2 \le -\frac{2}{3} \le 1$$
. cert.

2. pasinduching = el. Ett Philips &+ thitte

tenemos: -2 & an & 1

queremos: -2 = an+1 = 1.

HI:
$$-2 \le an \le 1 \Rightarrow (-2)^3 \le an^3 \le 1^3 \Rightarrow -8 \le an^3 \le 1 \Rightarrow 1$$

$$\Rightarrow 2-8 \le 2+a_n^3 \le 2+1 \Rightarrow -6 \le 2+a_n^3 \le 3 \Rightarrow \frac{-6}{3} \le \frac{2+a_n^3}{3} \le \frac{3}{3} \Rightarrow$$

$$\Rightarrow -2 \le \frac{2+an^3}{3} \le 1 \Rightarrow -2 \le an+1 \le 1$$
. (ext.

by Proven que fan 4 es

demostración por inducción.

1. pas base (n=1)

$$\begin{array}{c} a_{1} \leq a_{2} \iff -\frac{2}{3} \leq \frac{2+a_{1}^{3}}{3} \Leftrightarrow -\frac{2}{3} \leq \frac{2+\left(\frac{-2}{3}\right)^{3}}{3} \Leftrightarrow -\frac{2}{3} \leq \frac{2-\frac{8}{27}}{3} \Leftrightarrow \\ \Rightarrow -\frac{2}{3} \leq \frac{54-8}{27} \end{array}$$

$$\Leftrightarrow$$
 $-\frac{2}{3} \leq \frac{54-8}{27} \Leftrightarrow -\frac{2}{3} \leq \frac{46}{81} \text{ cert.}$

2. pas inductiu.

tenemos: ansan+1

. A queremos: an+1 & an+2 unas (as) + alumnosinges abadas y alraises (as)

HI: $a_n \leq a_{n+1} \Rightarrow a_n^3 \leq a_{n+1}^3 \Rightarrow 2 + a_n^3 \leq 2 + a_{n+1}^3 \Rightarrow \frac{2 + a_n^3}{3} \leq \frac{2 + a_{n+1}^3}{3} \Rightarrow \frac{2 + a_n^3}{3} \leq \frac{2 + a_{n+1}^3}{3} \Rightarrow \frac{2 + a_n^3}{3} \leq \frac{2 + a_{n+1}^3}{3} \Rightarrow \frac{2 + a_n^3}{3} \leq \frac{$

⇒ an+1 ≤ an+2. Cert.

9 Proven que pan 4 és convergent i calcular el sen limit.

(an) creixent (an) convergent.

Teorema de la convergencia monotona.

1=1 = 12+0n = 1 (m an+1 = 1/m 1/2+0n = 1 = 1

Cálculo del límite de an.

(an) convergente => Il & R tq. lim an = 1.

lim an=l => lim an+1 = l.

por definición de (an): $a_{n+1} = \frac{2+a_n^3}{3} \Rightarrow lm a_{n+1} = lim \frac{2+a_n^3}{3} \Rightarrow$

 $\Rightarrow l = \frac{2+l^3}{3} \Rightarrow 3l = 2+l^3 \Rightarrow l^3 - 3l + 2 = 0 \Rightarrow$

 $l = \frac{-1 \pm \sqrt{1+8}}{2} = \frac{-1 \pm \sqrt{9}}{2} = \frac{-1 \pm 3}{2}$ $l_2 = \frac{-1+3}{2} = \frac{2}{2} = 1$ $l_3 = \frac{-1-3}{2} = \frac{-4}{2} = -2$

 $\Rightarrow l=1 \text{ is } l=2 \Rightarrow \boxed{l=\lim a_n=1}$ $\Rightarrow q \cdot a_n=-\frac{2}{3}$ $\Rightarrow (a_n) \text{ creixent}$

- 25 2+00 1 2 + 00 - 25 an . 5 1 . Cent.