Machine-to-Machine (M2M)

Guilherme S. Mazzariol - RA 138466 MO809 - Prof.: L.E. Buzato Novembro/2016

- Máquinas que se comunicam entre si e trocam informações com servidores remotos
- Comunicação M2M, facilitador para:
 - Cidades inteligentes
 - Hospitais
 - Fábricas inteligentes

Comunicação máquina a máquina

O que é preciso para que uma

prevaleça?

Tecnologias de Comunicação

Tecnologias que conectem de forma eficiente a maquinaria em:

- Distâncias variadas
- De forma flexível
- Com alta segurança
- Robustez e disponibilidade
- A baixo custo

Logística auto-organizada

Difícil:

- Número de variantes do produto aumenta
- Volumes da produção flutuam

Risco de escassez de fornecedores ou erros na cadeia de abastecimento se intensificam com a complexidade

M₂M

Solução registrar e rastrear:

- Material
- Paletes
- Caminhões, etc.

M2M globalmente

Cisco e a Ericsson calculam que até 2020, 100 bilhões de dispositivos comunicarão M2M

Tecnologias com Fio

- Amplamente utilizadas na comunicação M2M
- Estáticas em sua configuração
- Caro quando necessita-se de mudanças
- Infraestrutura e topologia bem projetadas

Tecnologias sem Fio

- RFID, WLAN

- Rentáveis
- Sem problemas para instalar e operar (base global)

Que tecnologias sem fio estão disponíveis para atender a que tipo de demandas de quais aplicativos?

Quais são os critérios para escolher entre as diferentes tecnologias sem fio atualmente no mercado?

Quais tecnologias são fáceis e econômicas para engenharia, construção e operação?

Comunicação em uma fábrica inteligente

- Protocolos M2M sem fio cada vez mais usados
- Convenientes para instalar, usar, manter e aprimorar
- Interfaces entre máquinas dependem do segmento:

Automotiva:

Redes de controle de área (CANs) dentro de carros

Energia:

M-Bus para ler medidores remotamente

- Tecnologias M2M com fio são amplamente utilizadas:
 - Robustez e disponibilidade
 - Exigidas em ambientes críticos (risco de segurança)

- Tecnologias M2M sem fio:
 - Redução do custo de implantação
 - Fornece acesso a locais remotos/difíceis
 - Não possui cabos

- Tecnologias M2M sem fio:
- 2.4GHz, 5GHz e 868MHz
- IEEE 802.11 para LAN sem fio
- IEEE 802.15.1 para WPAN / Bluetooth
- IEEE 802.15.4 para PANs de baixa taxa

- IPv6: facilitou a comunicação M2M ao resolver o problema do espaço de endereçamento
 - não é eficiente para aplicativos com restrições de energia
- MQTT: protocolo simples e leve, dispositivos restritos e baixa largura de banda, redes de alta latência com necessidades de baixa confiabilidade
- CoAP: traduz HTTP para sensores e switches
- DDS (Data Distribution Service) é um middleware M2M específico que oferece cobertura, taxa de dados e uso

	Use cases	Sector	Range	Through- put	Infrastructure needs	Efficiency	Chip size
LTE	Wireless communi- cation for mobiles and data terminals	IT and com- munication	10 km	150 Mbit/s	Complex infrastruc- ture from provider	High	Small
WLAN	Wider Internet access	Multiple sectors	100 m	600 Mbit/s	Router, access points	High	Medium
Bluetooth	Product interface	Consumer	100 m	706.25 kbits/s	No special infra- structure, point to point (p2p)	Low	Small
ZigBee	Device control	Consumer and indus- trial equip- ment	100 m	250 kbit/s	Access points	Low	Large
Wireless HART	Sensors and actua- tors	Process, industry	250 m	2 measure- ment	HART gateway to the fieldbus	High	Large
Industrial WLAN	Sensors and actua- tors	Process, industry	100 m	450 Mbits/s	Access points, gate- ways to the fieldbus	High	Large
En0cean	Energy harvesting, smart homes	Building, automation	30 m	125 kB/s	Transceiver modules	Very low	Large
RFID	Non-contact identi- fication and tracing	Many indus- tries	6 m	100 kbit/s	Tags, scanner	Very low	Very small
NFC S. Mazzariol, No	Radio communica- tion vembro/2016	Smart- phones	10 cm	424 kbits/s	Smartphones, tags	Very low	Very small

	Integration effort	Cost	poten- tial	Encoding	Market Readiness	URL
LTE	High	Low	Low	AES128	Mature for wide usage	www.3gpp.org/technologies/ keywords-acronyms/98-lte
WLAN	Very high	Low	High	WPA2	Mature for wide usage	www.radio-electronics.com/ info/wireless/wi-fi/ieee-802 -11n.php
Bluetooth	Low	Low	High	AES128	Mature for wide usage	www.bluetooth.com/Pages/ what-is-bluetooth-technology. aspx
ZigBee	High	High	High	AES128	Mature for wide usage	www.zigbee.org/About/ AboutTechnology/Standards. aspx
Wireless HART	Low	High	Low	AES128	Niche markets	www.hartcomm.org/protocol/ training/training_resources_ wihart.html
Industrial WLAN	Very high	High	High	WPA2	Niche markets	https://a248.e.akamai.net/ cache.automation.siemens. com/dnl/TM/TM0MTMzAAAA 90880063_HB/22681042_ Aufbau_IWLAN_D0KU_V30_ en.pdf
En0cean	High	Low	Medium	ARC4 or AES	Certain sectors	www.enocean.com/fileadmin/ redaktion/pdf/articles/ perpetuum_radio_standards_ en.pdf
RFID	Low	Low	Low	Not required	Mature for wide usage	www.rfid-journal.de/rfid -technik.html
NFC	Low	Low	Low	Not required	Upcoming	www.nfc24.info

Avanços recentes nas comunicações M2M em redes 4G e evolução para 5G

Desafios a serem abordados:

- Método de acesso para dispositivos envolvendo a comunicação M2M com a infra-estrutura (WLAN, Bluetooth, GPRS, 3G, LTE-A, WiMAX, etc.)
- Qualidade de Serviço (QoS)
- Gerenciamento de grupo eficiente de dispositivos MTC
- Sobrecarga de canal de acesso aleatório físico
- Acesso aleatório oportunista
- Mecanismo de gerenciamento de mobilidade de grupo em um ambiente MTC
- Controle de carga, reduzindo o custo do dispositivo, permitindo a vida da bateria ultra-longa, melhorando a cobertura
- Provisionamento de loT com implantação densa de dispositivos MTC
- Melhorias para os sistemas 5G

Desenvolvimentos LTE para M2M

- Controle de sobrecarga
- Suporte de rede para dispositivos M2M
- Redução de custo do dispositivo
- Economia de energia para vida útil de bateria ultra-longa
- Sobrecarga de sinalização
- Aprimoramento de cobertura

LTE Release	Feature
Rel-11 (2012)	UE power preference indication RAN overload control
Rel-12 (2014)	 Low-cost UE category (Cat-0) Power saving mode for UE UE assistance information for eNB parameter tuning
Rel-13 (expected 2016)	 Low-cost UE category Coverage enhancement Power saving enhancement

Recursos LTE para serviços M2M

Diferenciação do acesso humano e da máquina:

- Acesso controlado por tempo dos dispositivos M2M
- Limitando os serviços aos dispositivos M2M
 - comportamento n\u00e3o estiver alinhado com os recursos do M2M
- Suporte de rede para dispositivos M2M
- A priorização de agendamento
 - agendamento com base na categoria UE
- Agendamento semi-persistente
 - para reduzir a sobrecarga

Dispositivos de Baixo Custo

Device Capability	Rel-8 Cat-4	Rel-8 Cat-1	Rel-12 Cat-0	Rel-13 Low-cost
Downlink peak rate	150 Mbps	10 Mbps	1 Mbps	1 Mbps
Uplink peak rate	50 Mbps	5 Mbps	1 Mbps	1 Mbps
Max No of downlink spatial layers	2	1	1	1
Number of device RF receiver chains	2	2	1	1
Duplex mode	Full Duplex	Full Duplex	Half (Optional)	Half (Optional)
Device bandwidth	20 MHz	20 MHz	20 MHz	1.4 MHz
Max Tx power	23 dBm	23 dBm	23 dBm	~20 dBm
Modem complexity relative to Cat-1	125%	100%	50%	25%

Comparação de dispositivos LTE FDD

Melhoria da Cobertura

Cobertura LTE - MCL em Decibel

LTE	PUCCH	PRACH	PUSCH	PDCCH	PBCH	PDSCH
FDD 2Tx-2Rx	147.2	141.7	140.7	146.1	149.0	145.4
TDD 8Tx-8Rx	149.4	146.7	147.4	146.9	149.0	148.1

FDD : Frequency Division Duplex

TDD : Time Division Duplex

PUCCH: Physical Uplink Control Channe
PRACH: Physical Random Access Channel
PUSCH: Physical Uplink Shared Channel

PUSCH: Physical Downlink Control Channel
PBCH: Physical Broadcast Channel

PDSCH : Physical Downlink Shared Channel

Aumento da cobertura necessária

Device	РИССН	PRACH	PUSCH	PDSCH	РВСН	ЕРБССН	PSS/SSS
Category-1	8.5	14.0	15.0	10.3	6.7	9.6	6.4
Category-0	8.5	14.0	15.0	14.3	10.7	10.4	10.4
Rel-13 Low-cost	11.5	17.0	18.0	16.9	10.7	10.4	10.4

PUCCH: Physical Uplink Control Channe

PRACH: Physical Random Access Channel

PUSCH: Physical Uplink Shared Channel

PUSCH: Physical Downlink Control Channel

PBCH

: Physical Broadcast Channel

PDSCH

: Physical Downlink Shared Channel

EPDCCH

: Enhanced Physical Downlink Control Channel

PSS/SSS: Primary and secondary synchronization

signals

Technique	PUCCH	PRACH	PUSCH	ЕРБССН	РВСН	РDSCH	PSS/SSS
Repetition/subframe bundling	x	x	x	x	x	x	
PSD Boosting	x	X	x	x	X	x	X
Relaxed Requirement		X					X
Overhead reduction			,	X			
HARQ retransmission			x			x	
Multi-subframe channel estimation	x		x	x	x	x	
Multiple decoding attempts					x		
Increased reference signal density			x			x	

Potenciais técnicas de aumento de cobertura

Economia de Energia do Dispositivo

- Indicação de preferência de energia
 - Dispositivo indicar à rede que prefere um modo de operação de baixo consumo de energia
- Modo de poupança de energia (Rel-12)
 - UE permanece registado mas não alcançável pela rede para tráfego de terminação móvel
 - UE só irá acordar quando houver dados para enviar ou após a expiração do temporizador

Rel-11

Restrição de Acesso extendido

- Rel-13 (2016)

- redução do tempo de aquisição do sistema
- operação half duplex
- reduzir a sobrecarga do canal de controle
- reduzir as medições e os relatórios de medição, o aumento de cobertura configurável e os requisitos de relaxamento
- o dispositivo M2M também pode enviar informações de assistência sobre seu tipo/padrão de tráfego

Análise de Desempenho

Cenário de simulação com 19 locais (57 células)

Parameter	Macro-cell	
Inter-site distance	500 m, 1732 m	
Cellular Layout	Hexagonal grid, 19 cell sites, 3 sectors per site	
System Bandwidth	10 MHz	
M2M device Bandwidth	1.4 MHz	
Penetration Loss	20 dB +	
renetration Loss	potential 15 dB extra penetration loss	
Carrier Frequency	2 GHz	
Distance-dependent path loss	L= I + 37.6log10(R), R in kilometres I = 128.1 – 2GHz	
Power Control Setting	Fraction power control with Ks=0 α = 0.8, Po=-84	
Link Adaptation	On, MCS-based link adaptation	
Channel model	Typical Urban (TU)	
Channel Estimation	Non-ideal	
Scheduling	Proportional fairness (α =1.0, β =0.7), frequency non-selective	
Receiver	MMSE	

Parâmetros de simulação

Application	Message Size	Transaction Period	Capacity (devices per PRB)		
, ppilodion	(Bytes)	(Seconds)	Urban	Suburban	
Smart Meter	2017	9000	7.5e4	5.6e4	
Health Sensor	128	60	5.3e3	4.0e3	
Home Security	20	600	1.2e5	9.2e4	

Capacidade LTE por PRB para serviços M2M

Comunicação M2M em 5G

Banda Larga Móvel

- realidade virtual e aumentada
- resoluções mais altas
- TV 3D
- melhor qualidade de experiência e entrega de conteúdo inteligente
- Requisitos Importantes na comunicação M2M em 5G:
 - Máxima latência end-to-end permitida, retransmite menos de 5ms
 - Confiabilidade

Referências

Machine-to-Machine Communication

Recent Advancements in M2M Communications in 4G Networks and Evolution Towards 5G