

ANALYST'S LABORATORY COMPANION

THE ANALYST'S

LABORATORY COMPANION:

A COLLECTION OF TABLES AND DATA FOR THE USE OF PUBLIC AND GENERAL ANALYSTS, AGRICULTURAL, BREWERS, AND WORKS CHEMISTS, AND STUDENTS; TOGETHER WITH NUMEROUS EXAMPLES OF CHEMICAL CALCULATIONS AND CONCISE DESCRIPTIONS OF SEVERAL ANALYTICAL PROCESSES

ВŸ

ALFRED E. JOHNSON, B.Sc. Lond. F.LO., A.B.O.So.I.

FOURTH EDITION
(THOROUGHLY REVISED, WITH ADDITIONS)

LONDON

J. & A. CHURCHILL

7 GREAT MARLBOROUGH STREET

1912

469

543.0028 NIC

PREFACE TO THE FOURTH EDITION.

In this Edition I have adopted the International Atomic Weights for 1912, and have accordingly entirely re-calculated the gravimetric and volumetric factors, percentage compositions of commonly occurring compounds, etc. In all cases the full molecular weights, without any reduction, and seven-figure logarithms were used, the logarithms being finally reduced to five figures, which are sufficient for all practical purposes. above-mentioned tables have been considerably amplified; and the gravimetric and volumetric factors have been printed in larger type than heretofore, so as to secure greater ease and certainty in reference.

The section devoted to Weights and Measures has been entirely re-written in accordance with the most recent legislation on the subject. It should be noted that the legal Imperial Weights and Measures and the Imperial equivalents of Metric Weights and Measures are authorized, from time to time, by various "Orders in Council." Several useful approximations have been added. I have pleasure in recording my thanks to Major P. A. MacMahon, F.R.S., the Deputy Warden of the

Standards, for assistance kindly rendered in this section.

In the Water and Sewage section I have given a much fuller account of the determination of nitrates by the phenoldisulphonic acid method, which I have had in use for the past twenty-eight years; also an epitome of Chamot, Pratt, and Redfield's method of procedure. I made some comments on the latter in The Chemical News, 1911, 104, 235.

The section dealing with specific rotatory power and cupric reducing power of the carbohydrates has again been thoroughly revised, and, I believe, brought up to date. I am indebted to Dr. E. Frankland Armstrong for kindly examining my revise of this portion of the book.

The Kieldahl table has been re-calculated and extended.

The tables of constants of oils, fats, and waxes have been thoroughly revised.

Several new tables have been added, amongst which may be

mentioned the following:-

The melting points of metals, the coefficients of absorption of gases in water, standards for sewage effluents, amounts of dissolved oxygen in distilled water, tables showing the deficiencies both in non-fatty solids and in fat in milks in which these are below the minima allowed, the principal provisions of the recently issued Draft of "The Public Health (Milk and Cream) Regulations, 1912," etc.

It should be stated that in all cases where a factor does not exactly correspond to a seven-figure logarithm, the logarithm should be used where the highest accuracy is desired.

A. E. JOHNSON.

24 Parkdale, Wolverhampton, May 1912.

							PAG1
Atomic Weights for 1912,]
Logarithmic Tables, .		٠.					2
Densities of Gases,							7
Melting Points of Metals,			,				7
Gravimetric Factors,							. 8
Volumetric Factors, .							22
Nitrometer Analysis, .			•				28
Correction of Standard So.	lutions fo	or Ten	peratur	е			29
Coefficients of Absorption	of Gases	in Wa	ter,		·		29
Table of Reciprocals, .							80
Various Useful Factors and	d Data,						81
Notes on Logarithms, .							82
Computation,							85
Approximations, .							86
Indirect Analysis,						·	40
Percentage Composition of	common	l v oc c	arrin <i>e</i> C	narmol	nnds		42
Notes on Indicators,		٠.			,	•	52
Precipitating Powers of a fe	w Comn	on Re	agenta.		·	•	54
Weights and Measures,					•	•	55
Foreign Weights and their	English	Equiv	alenta.	į	•	•	62
Foreign Moneys and their				•		•	62
Densities of commonly occu	uring Su	batan	368.	·		•	68
Table of Freezing Mixtures,				•	•	••	64
Percentage into cwts., qrs.,		ner to	n etc	•	•	•	64
Drams per lb. into Percent			11, 010.,	•	•	•	65
1	, own	vii	•	•	•	•	UĐ

					PAGE
Barometric Tables,		•			66
Correction of Gaseous Volumes for Temp	erature,				67
Tension of Mercury Vapour,				•	70
Volume and Density of Water at Differen	nt Temp	erature	18,		71
Baumé's Hydrometer,	:				72
Specific Gravity Tables (Acids, etc.), .		٠.			78
Strength of Saturated Solutions, .					77
Glycerine Table,	•				78
Preparation of Reagents for Water Analy	y si s,				79
Water Analysis Tables,					81
Determination of Nitrates in Water, .					88
Water and Sewage Examination Results,					95
Standards for Sewage Effluents, .					96
Dissolved Oxygen in Distilled Water,					97
Tables for Beer Analysis,					98
Original Gravity of Beer,					100
Specific Rotatory Power,					101
Cupric Reducing Powers of the Carbohyo	irates,				109-
Alcohol Tables,					112
Diluted Spirits,	•				117
Correction of Alcohol for Temperature,	•••				118
Alcohol Calculations,	٠.				119
Phosphate Tables,					120
Nitrogen, Ammonia and Albuminoids Te	ble,				128
Kjeldahl Table,	•			٠.	180-
Factors for Calculating Nitrogenous Subs	tances,				181
Oils, Fats, and Waxes,					182
Constants of Oils, Futs, and Waxes, .					184
Reichert-Meisel Values,					187
Butter Analysis,					189
Sale of Butter Regulations (1902), .					141
Milk Analyses,	•				142
Sale of Milk Regulations, 1901, .					148

•			001	TENT	18.			i
	•							PAG
Preservatives in	Milk aı	ıd Ore	am,					14
Quinine, .		•						14
Coffee and Chico	ry,							14
Lead in Tartario	and Ci	t r io A	cids a	and in	Oream	of Tar	tar,	14
Food Preservativ	66,							149
Arsenic in Food,	•							149
Data in Heat and	l Ther	no-Ch	emist	ry,				150
Thompson's Calo	rim et er	·,						151
Electrical Unita,								158
Electro-Chemical	Equiv	alents						158
Thermometric Ta	-							155

INDEX,

161

CORRIGENDUM.

Page 23, line 13 from bottom, for 2 92436, read 2 92432.

THE

ANALYST'S LABORATORY COMPANION.

THE INTERNATIONAL ATOMIC WEIGHTS FOR 1912 (USED THROUGHOUT THIS WORK).

		0=16.			0 = 16.
Aluminium		. Al 27·1	Molybdenum		. Mo 96
Antimony .	:	Sb 120 2			Nd 144.8
Argon .	:	A 89 88			Ne 20:2
Arsenio .	:	. As 74.96	A** 1 1		Ni 58.68
Barium .		Ba 137-87	Niton (radium	emanation	Nt 222.4
Bismuth .	:	Bi 208			N 14.01
		. B 11	''		Os 190 9
Boron . Bromine .	•	. Br 79 92	<u>.</u>		O 16
Oadmium .		Od 112.4	Palladium		Pd 1067
	•	. Os 132.81			D 91104
Oæ-ium	•	. Ca. 40.07			Pt 195.2
Oak ium	•	. O 12	Potassium		K 89·1
Ourbon .	•	. Oe 140 25	Praseodymium		Pr 140 6
Cerium	•	. Cl 85.46	Radium .		Ra 226 4
Chlorine	•	. Cr 52	Rhodium		Rh 102.9
Ohromium	•	G F0-07	Rubidium		Rb 85.45
Cobalt .	•				Ru 101.7
Columbium	•	. Cb 93.5			Sa 150 4
Copper	•	. On 68.57	Samarium Scandium	• •	. So 44·1
Dysprosium		Dy 162.5			G 70.0
Erbium .		. Rr 167.7	Selenium.		. 81 28·8
Europium .	•	. E u 152			. Ag 107 88
Fluorine		. F 19	Silver .		. Na 23
Gadolinium		Gd 157 8	Sodium	• •	. Sr 87.68
Gallium .		Ga 699	Strontium		. S 82 07
Germanium		. Ge 72.5	Sulphur .		. Ta 181.5
Glucinum .		. Gl 9·1	Tantalum		. Te 127.5
Gold		. Au 197-2	Tellurium		. Th 159.2
Helium .		. He 8.99	Terbium .		. Tl 204
Hydrogen .		. H 1.008	Thallium		
Indium .		. In 114.8	Thorium.		. Th 282.4
Io ine .		. I 126.92	Thulium.		. Tm 168.5
Iridium .		. Ir 193·1	Tin.	-	. Sn 119
Iron		. Fe 55 84	Titaninm		. Ti 48.1
Krypton .		.Kr 82.92	Tungsten		. W 184
Lanthanum		. La 139	Uranium.	-	. U 238.5
Lead		. Pb 207·1	Vanadium		. V 51
Lithium .		. Li 6-94	Xenon .	• • .	X-180 ·2
Lutecium .		. Լո 174	Ytterbium (Ne	oytterbium	1) Y D 172
Magnesium		. Mg 24.82	Ytirium .		. Yt 89
Manganese.		. Mu 54.98	Zino .		. Zn 65.87
Mercury		. Hg 200.6	Zirconium		. Zr 90.6
A		•			

COMMON LOGARITHMS.

	0	1	8	8	4	ь	8	7	8	9	1	2	8	4	5	6	7	8	9
1:	0 1 04189 2 07918 3 11894 4 14618	04532 08279 11727	04922 08686 19057	05808 08091 12985	05690 09842 12710	06070 09691 18088	06446 10087 18854	06819 10380 18679	10721 18988	07555 11059 14801									
1	5 17009 3 20412 7 28045 3 25527 9 27875	20688 23800 25768	20952 28558 26007	21219 28805 26245	21484 24055 26482	21748 24804 26717	22011 24551 26951	22272 24797 27184	92681 25042 27616	92789 25285 27646									
2	0 80108 L 89292 2 84949 3 86178 4 88091	82428 84439 86861	92684 84685 86549	82888 84880 86786	38041 85025 86022	88944 85218 87107	88145 85411 87291	88646 85608 87475	88846 86798 87658	84044 85984 87840	90 19 18	40 89 87	61 58 65	81	101 97 92	127 121 116 111 106	141 185 129	168 154 148	182 174 166
2	89794 3 41497 7 48186 3 41716 3 40240	41664 48297 44871	41880 48457 45025	41996 48616 45179	42160 48775 45382	42825 48988 45484	42488 44091 45687	48851 44948 46788	42818 44404 45989	42975 44550 46090	16 16 15	88 82 80	49 47 48	68 66 68 61 59	82 79 76	95 91	115 111 107	181 126 128	148 142 187

COMMON LOGARITHMS - (continued).

	0	1	2	8	4	Б	6	7	. 8	9	1	9	8	4	5	6	7	8	θ
80		47857				48480	48572	48714	48855	48096									
81		49276 50051				51100	49909	60108	50248	50879	14	28	41	55	69	88	97		
82 83		51988				R0KU1	01922	01400	01087	51720	18	27	40	58	67	<u>80</u>	94	107	120
84		58275				58782	58908	54088	54158	58020 54288	18	31	38	50	68 68	78 76	91 88		117
85	54407	54581	54654	54777	54900	55028	55145	55267	55888	55509	12	24	87	49	ΑT	79	86	œ	110
36		55751				56229	56848	58467	56585	56708	12	24	86	48	59	71	88		107
87		56987				57408	57519	57634	57749	57864	12	21	85	46	58	69	81		104
88		58092								58995							79	90	102
89	DATOD	DANTR	מצמעט	DULBU	80550	99660	5977 0	59879	59088	60097	11	25	88	44	55	66	77	88	99
40					60688	60746	60853	60959	61066	61172	11	21	82	48	54	64	75	24	97
41					61700			62014			10	21	81	42	52	63	79		94
42					62787	62889	62941	03048	63144	68246								82	92
					68749					64246			80						90
44	04846	04444	04042	64640	64788	64836	64988	65031	65128	65225	10	20	29	89	49	59	68	78	88
45					65706			65992			10	16	29	88	48	67	67	78	86
					66652		66889	66932	67025	67117			28						
					67578		67761	67852	67948	68034	9	18	27	87	40	55	64		82
					68485			68753			9	18	27	36	45	54	68		81
49	OPOSO.	OPTOR	о⊌ши	09389	69878	69461	69548	69030	69728	09810	9	18	26	85	44	58	61	70	79
_		۱					!				_	_							

COMMON LOGARITHMS-(continued).

0	1	2								_	_	_			_			_
			8	4	5	6	7	8	9	1	2 8		4	5	в	7	8	9
1600 2428 3229 4036 4819 5587 6848	71684 72509 78820 74115 74896 75664 76418	71767 72591 78400 74194 74974 75740 76492	71850 72678 78480 74278 75051 75815 76567	71988 72754 78560 74851 75128 75891 76641	70829 71181 72016 72835 78640 74429 75205 75967 76716	70415 71265 72099 72916 78719 74507 75282 76042 76790	70601 71849 72181 72997 78799 74586 75358 76118 76864	70596 71488 72268 78078 78878 74668 75485 76198 76988	70672 71517 72846 78159 78957 74741 75511 76268 77019	91 81 81 81 81 81 81	7 24 7 24 7 24 6 24 6 25 6 25 5 25 5 25	8 8 8 8 8 8 8	34 33 32 32 31 30 30 30 30 30 30 30 30 30 30 30 30 30	43 42 41 41 40 89 88 87	- 52 51 50 48 47 48 45	60 59 58 57 56 55 54 53 52	69 67 66 64 68 61 69	77 76 74 78 78 70 68 67
9239 9934 90618 1291 11964 12607	79309 80003 80686 81858 82020 82672 83815	79879 80072 80754 81425 82086 82787 83878	79449 80140 80821 81491 82151 82802 88449	79518 80209 80889 81558 82217 82866 88504	78176 78888 79588 80277 80956 81624 82282 82930 88580	78247 78968 79657 80346 81028 81690 82847 82995	78819 79029 79727 80414 81090 81757 82418 88059	78890 79099 79796 80482 81158 81828 82478 88128	78462 79169 79865 80650 81224 81889 82548 88187	71 71 71 71 71 71 71	4 25 4 21 4 21 4 21 9 20 8 20 8 20 8 19	200000000000000000000000000000000000000	9 8 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	36 35 36 34 34 38 38 38	48 42 41 40 40 40 40 40 40 40 40 40 40 40 40 40	50 49 49 48 47 46 46	57 56 56 54 54 52 51	65 64 63 62 61 60 59
	600 2428 5239 1036 1819 5587 7815 3633 7815 3633 7816 3633 7816 3633 7816 3633 7816 7816 7816 7816 7816 7816 7816 7816	600 71684 72509 72509 600 74116 819 74896 6587 75684 604 877169 76418 77804 77169 77169 77804 77804 80036 618 80636 6291 81868 6291 81868 6291 81868 6291 82020 6207 82672 6207 82672	100 71834 71767 12428 72509 72591 12539 78529 78400 1036 74115 74194 1219 74596 74574 1219 74596 74574 1219 74596 74574 1216 77159 77252 1215 77159 77252 1215 77159 77252 1215 77159 77252 1215 77159 77252 1215 77159 77252 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215	100 71834 71767 71850 71842 71767 71850 72691 72673 72692 72692 72692 72692 72692 72692 72692 72692 72692 72692 72692 72692 72692 72692 72692 72692 72692 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262 77262	100 71834 71767 71850 71938 71250 71261 72773 72754 7250 72501 72573 72754 7252 72502 72501 72573 72754 7252 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 72502 7	1900 71834 71787 71850 71983 729018 729018 72902 72902 72904 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 72905 729	100 71894 71767 71850 71898 72006 72006 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007 72007	100 71894 71767 71850 71883 72016 72099 72181 72428 72509 72181 72508 72509 72181 72508 72509 72181 72508 72509 72181 72508 72509 72181 72508 72509 72181 72508 72509 72181 72508 72509 72181 72509 72181 72509 72181 72509 72181 72509 72181 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509 72509	1400 11834 11767 11850 11983 12016 78099 79181 72268 12016 72099 72016 72078 72016 72099 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078 72078	1800 71824 71767 71850 71983 72816 72827 72838 72846 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837 72837	1800 71834 71787 71850 71898 72016 72099 72181 72268 72246 72248 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259 72259	1800 71824 71787 71850 71898 72016 72099 72181 72268 72846 817 92	1705 1707 1707 1707 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1708	1800 71834 71767 71850 71938 72016 72031 72263 72263 72264 72363 72264 72363 72264 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263	1800 71834 71787 71850 71888 72016 72099 72181 72288 72248 71787 71850 71888 72016 72099 72181 72288 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248 72248	1200 71834 71767 71850 71983 72016 72099 72187 71287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287 72287	1200 71834 71767 71850 71883 72016 72039 72383 72384 817 25 83 41 51 5	1.00 1.684 17.767 7.1850 7.1885 7.2016 7.2009 72.181 7.228 7.2246 8.17 25 8.3 4.15 5.8 66 1.2828 7.2509 7.2850 7.2878 7.2876 7.2855 7.2916 7.2897 7.2878 7.2846 8.17 25 8.3 4.15 5.8 66 1.2859 7.8320 7.8400 7.8480 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.8450 7.84

COMMON LOGARITHES - (confusion)

				<u>`</u>		1002	CRUTHI	LD- (00	mannu	ea).									
	" <u> </u>	1	2	8	4	5	6.	7	8	9	1	9	8	4	Б	6	7	-8	9
70	84510	84572	84694	84606	84757	84810	04000	04040	95000	85065	_	_		_	_		_	_	
71	85126	85187	85248	R6800	85370	DK491	05401	OFFE	00000	80000	ŭ	13	18	25	21	87	48	49	55
72	85788	R5704	85854	85014	85974		COART	00000%	80012	85678	6	12	18	24	30	36	48	49	55
78	86989	88909	98451	88510	86570		00000	COTOR	80318	86278	6	12	18	24	80	36	42	48	54
74	86008	88090	97040	97000	87157	000000	. 00000	OCT/ S/	annen	AUDUM 1	A.	10	79	94	OA	OK	41	47	68
						01210	SIZIA	57882	57890	87448	6	12	17	28	90	95	47		
75	87506	87564	87022	87679	87787	87796	87800	azoro.	R7087	00004	Α.	т α	117	00	۰.				
76	88081	88188	88195	88252	88209	88366	89498	200750	DOLOG	88598		끊	1/	250	224	20	40		
77	88649	88705	88762	88818	88874		20000	80010	90000	89154	9	Τï	17	23	28	34	40		
78	89209	89265	89321	89370	89482	80497	ONLIN	CONTRACT.	00070	00104	0	īΪ	17	XX	28	34	89		
79	89763	80818	80878	80097	80080	00007	OCCOR	COULT	-000000	89708	σ.	īΤ	17	22	28	33			
90										90255							38	44	49
80	90309	90868	90417	90472	90526	90580	90634	90687	90741	90798	ĸ.	11	16	90	97	QQ	88	40	40
81	90849	90902	90956	91009	91062		91169	01222	01975	91328	× :	#	10	91	67 67	0Z	87		
82	91381	91434	91487	91540	91598	91645	91698	91761	01808	91855	χ.	17	TA	61	66	02 00	31	10	45
88	91908	91960	92012	92005	92117	92169	02221	02272	09894	92876	¥ :	**	10	21	ZG	02			
84	92428	92480	92581	92683	92634	09084	92787	09700	00810	000011								42	47
85											O.	τO	TD	ΣI	20	ŖΙ	86	41	40
86	92942	D0K00	93064	ARORA	98146	98197	98247	93298	98849	98899	5	10	15	20	25	80	86	41	48
87	98450	00000	PR001	98601	H8661	JH7/113	02760	-00000	anara	00000	5		15						
	98952	PHUUZ	04052	94101	94151	94201	94250	94300	94849	04890	5	īñ	15	90	OK.	ĒΩ	95		
88	0.23.20	סטברט	39404 7	HADH	HARA	U 104	04749	0.0700	04041	0.4000	5	īŏ	15	20	<u> </u>	<u>۵۵</u>	84		
89	94989	94 00 8	95036	95085	95184	95182	95281	95279	95339	06876	5	iñ	ĩă	19			84		
Ļ										20010			10	-19	-	20	04	oυ	22

LOGARITHMIO TABLES.

COMMON LOGARITHMS-(continued).

	Ú	1	2	8	4	5	8	7	8	9	1	2	8	4	5	6	7	8	9
90 91 92 98 94	95904 96879 96848	95952 96426 96895	96999 96473 96942	95569 96047 96590 90988 97451	96095 96567 97085	96142 96614 97081	96190 96661 97128	95761 96287 96708 97174 97685	96755 96755 97220	96882 96802 97267	6	9	14 14 14 14	19 19 19	24 28 28	28 28 28	84 88 88 88 88	88 88 87	48 49 49
95 96 97 98 99	98227 98677 99128	98272 98722 99167	98318 98767 99211	97909 98868 98811 99255 99695	98408 98856 99800	98458 98900 99844	98498 98945 99888	98091 98543 98989 99432 99870	98588 99084 99476	98682 99078 99520	5	8	18	18 18 18	29 22 22	27 27	82 81 81	85	
100 101 102 108 104	00880 01284	00475 00908 01826	00518 00945 01868	00561 00988 01410	01080	00647 01072 01494	00689 01115 01586	00808 00782 01167 01578 01996	00775 01199 01620	00817 01242 01662	4	8	18	17 17 17	21 21	. 26 . 25 . 25	80 80 29	84 84 84	89 89 88 88 88 87
105 106 107 108 109	02581 02988 08842	02572 02979 08888	02612 08019 08428	08060 08468	02894 08100	02735 08141 03548	02770 08181 03588	02407 02816 08222 08628 04021	02857 08262 08668	02808 08802 08708	4	8	3 12 3 12	16 16	2(2(32 32) 24) 24) 24	25	85 85 85	3 87 3 87 2 86 2 86 2 86

COMMON LOGARITHMS - (continued).

		0	1	2	8	4	5	6	7	8	9	15	8	4	5	8	7	9	9
11111	10 11 19 18	04582 04922 05808	04571 04961 05846	04610 04999 06886	04650 05088 05428	05077 05481	04727 05115 05500	04766 05154 05538	04805 06192 06576	04844 05281 05614	04498 04888 05269 05652 06032	48	112 112 111	16 15 15	19 19 19	28	27 27	81 81 81	
1111111	14 15 16 17 18	08070 08448 08819 07188	06108 06488 06856 07225	06145 06591 06893 07262	07298	06221	06258 06638 07004 07372	06296 06670 07041 07408	06333 06707 07078 07445	06871 06744 07115 07482	06408 06781 07151 07518 07882	4:	3 11 7 11 7 11 7 11	15 15 15 15	19 19 18 18	23 22 22 22 23 23	26 26 26 26	80 80 80 29	84 84 88 88 88
111111111111111111111111111111111111111	20 21 22 22 23	07918 08279 09686 08991	07954 08814 08672 09026	07990 08350 08707 09061	08027 08886 08748 09096	08068 08422 08778 09182 09482	08099 08458 08814 09167	08185 08493 08849 09202	08171 08529 08884 09287	08207 08565 03920 09272	08248 08000 08965 09807 09656	4	7 11 7 11 7 11 7 11	14 14 14	18 18 18	22 21 21 21 21	25 25 25	29 28 28	9 82 9 82 8 82 8 82 8 81
1 1 1 1 1	25 26 27 28 29	09691 10087 10380 10721	00728 10072 10415 10755	09760 10106 10449 10789	09795 10140 10488 10828	09880 10175 10517 10857 11198	10209 10551 10890	10248 10585 10924	10278 10619 10958	10312 10658 10992	10003 10346 10687 11025 11861	8	7 10 7 10	14	17	7 20 7 20 7 20	24 24 24	27 27 27	8 81 7 81 7 81 7 80 7 80

LOGARITHMIC TABLES.

COMMON LOGARITHMS-(continued).

	0	1	2	8	4	5	6	7	8	9	1	28	4	5	6	7	8	9
180					11.628	11561	11594	11628	11661	11.694	8	7 10	18	17	20			80
181				11826		11.898	11926	11959	11992	12024	8	710	18	17	20			80
182					12180	12222	12254	12237	12320	12852								20
188					12516					12678		710	18			28		
184	12710	12743	12776	12808	12840	12872	12905	12987	12960	18001	8 (510	18	16	19	28	26	99
185	18088	18066	18098	18180	18162	18194	18226	13258	18290	18822	8 (3 10	18	18	19	22	26	90
186	18854	18886	18418	18450	18481	18518	18545	18577	18609	18640	8	3 10	18			202		
187	18672	18704	18785	18767	18799	18880	18862	18898	18925	18956	8	8 8	18			22		
188	18988	14019	14051	14082	14114	14145	14176	14208	14289	14270	8	9 8	18			922		
189	14801	14888	14864	14895	14426	14457	14489	14520	14551	14582	8	9 6	12			22		
140	14818	14844	14675	14708	14787	14788	14700	14890	14980	14901	8 (3 9	12	7.6	10	22	_	
141					15045						8 6		12			21		
142					15851								12					
148										15806		5 5	12			21 21		
144					15957							3 9						
													12	ΤĐ	19	21	24	27
145					16256							3 9	12	15	18	21	24	27
146					16554								12	15	18	21	24	27
147	16782	16761	16791	16820	16850	16879	16909	10938	16967	16997	8	9	12	15	18	21		
148	17026	17056	17085	17114	17148	17178	17202	17281	17260	17289	8 (12			20		
149	17819	17848	17877	17406	17485	17464	17498	17522	17551	17580	8 6		12			20		
														_			_	

COMMON LOGARITHME (continued).

											_						_	
	0	1	2	8	4	Б	6	7	8	9	1	28	4	5	6	7	8	9
150	17609	17688	17667	17896	17725	17754	17782	17811	17840	17889	8	69	12	14	17	20	28	<u>-</u>
161	17898	17926	17955	17984	18018	18041	18070	18099	18127	18156	8	ě ě	īī					
152	18184	18218	18241	18270	18298	18827	18855	18884	18412	18441	8	ĕΘ	11			20	28	94
158	18469	18498	18526	18554	18588	18611	18689	18667	18696	18724			īī					
154	18752	18780	18908	18837	18865	18898	18921	18949	18977	19005		ō8	ü			20		
155	19088	19061	19089	19117	19145	19178	19201	19229	19257	19285	8	68	11	14	17	20	22	25
156	19812	19840	19368	19396	19424	19451	19479	19507	19686	19562	8	68	īī	14	17	10	29	헀
157	19590	19618	19845	19078	19700	19728	19756	19788	19811	19888	8	68	īī	14	17	19	22	死
158	19866	19898	19921	19948	19976	20008	20080	20058	20085	20112			īī					
159										20885		58				19		
160	20412	20489	20486	20498	20520	20548	20575	20802	20629	20656	8	58	114	14	16	19	22	24
161	20688	20710	20787	20768	20790	20817	20844	20871	20898	20925	8	58	11	18	16	19	29	24
162										21192		88				10		
168					21825							58				19		
164					21590							58				18		
165	21748	21775	21801	21827	21854	21880	21906	1 21982	21958	21985	8	58	10	18	16	18	21	•
166	22011	22037	22063	22089	22115	22141	22167	22194	22220	22246	8	58				18		
167										22505			10					
168	22531	22557	22583	22608	22634	22660	22686	22712	22787	22768	8		10					
100	22780	22814	22840	22866	22891	22017	22943	22068	22004	22010		58				18		
	_,							1			U		-0					

ľ

COMMON LOGARITHMS -(continued).

	0	1	2	8	4.	5	6	7	8	9	1	2	8	.4	5	6	7	8	9
170 171 172 173 174	23500 23558 23805	28325 28578 28830	28096 28850 28608 2865 24105	28376 28629 28880	28401 28654 28905	28426 28679 28980	28459 28704 28955	28228 28477 28729 28980 24229	28502 28754 24005	28528 28779 24030	8	5	8 8 8 8 7	10 10 10	18 18 18	15 15 15 15 15	18 18 18 18 18	20 20 20 20	28 28 28
176 176 176 177 178 179	24504 24551 24797 25042	24829 24576 24822 25066	94858 94601 94846 95091 95884	24878 24025 24871 25115	24408 24660 24896 25189	24428 24674 24920 25164	24452 24699 24944 26188	24477 24724 24069 25212 25455	24502 24748 24998 25287	94527 94778 95018 95961	5	2 6	77777	10 10 10	12 12 12	15 15 15 15 15	17 17 17 17 17	20 20 19	22 22 22
180 181 182 183 184	25768 26007 26245	25792 26081 26269	26293	25840 26079 26816	25624 25864 26102 26840 26576	25888 26120 26864	25912 26150 26887	25696 25985 26174 26411 26647	25959 26198 26485	25983 20221 26458	5		7777	9	19 19 19	14 14 14 14 14	17 17 17	19 19 19	22 21 21
185 186 187 188 189	26717 26961 27184 27416	26741 26975 27207 27489	26764 26998 27281 27462	26788 27021 27254 27485		27068 27800 27681	27091 27828 27554	26881 27114 27846 27577 27807	27188 27870 27600	27161 27898 27628	9	2 6	7 7 7	9	19 19 19	14 14 14 14 14	16 16 16	19 19 18	21 21 21

COMMON LOGARITHMS-(continued).

9 128 45 6 7 8 9

	-	-	_	-	-	_							
190 191 192 193 194 196 196 197 198	28108 28380 28558 28780 29008 29226 29447	28126 28858 28578 28808 29026 29248 29469	28825 29048 29270 29491	28171 28898 28623 28847 29070 29292 29518	28194 28421 28646 28870 29092	28217 28443 28668 28692 29115 29886 29557	28466 28601 28014 29187 29853 29579	28262 28488 28718 28987 20159 29880 29601	28285 28511 28785 28959 29181 29408 29628	98807 98588 98758 98981 99908 99425	2577724772477247	9 11 14 9 11 14 9 11 14 9 11 18 9 11 18 9 11 18 9 11 18 9 11 18 9 11 18	16 18 21 16 18 20 16 18 20 16 18 20 16 18 20 16 18 20 15 18 20 15 18 20 15 18 20
199	29885	29907	29929	29951	29978	29904	80016	80088	80060	80081	247	9 11 18	15 17 20
	Base of Common Logarithms = 10. Hyp. Log. $s = \frac{1}{M}$ Com. Log. s.				В	Base of Hyperbolic Legarithms = c=2.71828. Com. Log. s = M Hyp. Log. s.							
	Num	ber.		C	m. Lo	g.		Number. Com. Log.					og.
	e=271	828		0.	434 204	δ		7-	8-14159	,		0.497 14	199
. 1	$\frac{1}{M} = 2.30259 \qquad 0.862.2157$			T-895 0899				399					
_	M=0.484294 T-687 7848			$\frac{\pi}{6} = 0.52859$ T.718 9986				86					
1 00/ /050			√ <u>π</u> =:	1 7724	<u>. </u>		0-248 57	740					

DENSITIES OF GASES.
(The observed Densities are given in this Table.)

Name of Gas.	Formula.	Mole- cular Weight.	Weight of 1 litre at 0 0. and 760 mm. Bar	Logarithms.	Observer.
Acetylene, Ammonia, Atmospheric sir, Carbon monoxide, ,, dioxide, Chlorine, Ethylene, Hydrogen, Hydrogen chloride, sulphide, Mothene, Nitrogen, Nitrous oxide, Nitric oxide, ,, peroxide, Oxygen, Sulphur dioxide,	CH :: CCCL HOIS ON NO OSO,	28 44 70.92 28.032 2.016 86.468 84.086 16.032 28.02 44.02 80.01	(grams.) 1·189 0·7708 1·2928 1·2504 1·9769 8·2191 1·2787 0·0899 1·6892 1·5878 0·7209 1·2507 1·9777 1·8402 2·0580* 1·4290 2·9266	0·111 5318 0·097 0490 0·295 9847 0·105 0671 2·953 7597 0·116 8999 0·186 8999 0·196 1604 0·127 1696 0·812 3889 0·165 0822	Thomson Rayleigh, Gray

Note.—1 008 gram of hydrogen occupies 11 2125 litres at N.T.P. 1000 cubic feet of air at 62° F. weigh 76 08 lb.

MELTING POINTS OF METALS.

(The Values marked * are by Prof. W. C. Roberts-Auston.)

Metal.		Melting Point.	Me	tel	Metal.					
Aluminium, . Antimony, . Bismuth, . Cadmium, . Cobalt, . Copper, . Gold, . Iridium, . Iron (pig), . , (wrought). Lead, . Lithium, . Magnesium, .	: : : : : : : : : : : : : : : : : : : :	*0. 625* 682 270 820 1500 1054* 1950 1100-1200 1500-1600 828* 180 750	Manganese, Mercury (B. Nickel, Osmium, Palladium, Platfinum,† Potassium, Silver, Sodium, Steel, Tin, Zino,	P.	858° (0.),	* O. 1900 - 89 1427 2500 1500* 1775* 62:1 954* 97:6 1800-1400 282 415*			

[†] Dr Harker, F.R.S., of the National Physical Laboratory, gives 1710°.

^{*} Calculated

FACTORS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS.

To convert	Factor.	Logarithm (to be added).
", Al ₂ (NH ₄) ₂ (SO ₄), 24H ₂ (NH ₄) ₂ (SO ₄), ", Al ₂ K ₂ (SO ₄), 24H ₂ (Al ₂ (PO ₄), ", Al ₂ (NH ₄) ₂ (SO ₄), ", Al ₂ (NH ₄) ₂ (SO ₄), 24H ₂ (NH ₄) ₂ (SO ₄),	8·87425 9·28634 0 0·41837 3·71274	T·724 55 0·948 13 0·967 84 T·621 56 0·569 69 0·019 71
Ammonium (see under Nitrogr	n)	
Sb.S. ,, Si	0.71418	T·897 49 T·853 81 T·956 32
,, ,, As ₂ (0.51994 0.60400	I·715 95 I·781 04
,, As ₃	0.63730	
Ae_3S_8 ,, Ae_5	s ₂ 0.60911 0 ₈ 0.80413	T·784 70 T·905 33
	ALUMINIUM (Al = 27·1) Al ₂ O ₈ into "Al ₂ (NH ₄) ₂ (SO ₄), 24 H ₂ "Al ₂ (SO ₄), Al ₂ (SO ₄), Al ₂ (PO ₄) ₂ "Al ₂ O Al ₂ (NH ₄) ₂ (SO ₄), 24 H ₃ (Al ₂ (NH ₄) ₂ (SO ₄), 24 H ₃ (Al ₂ (NH ₄) ₂ (SO ₄), Ammonia-alum into Potash-alu Ammonium (see under Nithogh Antimony (Sb = 120·2) Sb ₂ O ₄ into St Sb ₂ S ₈ "Sb ₂ O Arsunio (As = 74·96) 2NH ₄ MgAsO ₄ , H ₃ O into Al ₂ "As ₂ O ₅ Mg ₂ As ₂ O ₇ "As ₃ O Mg ₂ As ₂ O ₇ "As ₃ O As ₂ O ₈ "As ₃ O As ₃ ₄ O As ₃ O As ₃ O As ₃ O As ₄ O	Aluminium (Al=27·1) Al ₂ O ₈ into Al ₂ 0·53033 " " Al ₂ (NH ₄) ₂ (SO ₄) ₄ 8·87425 " " Al ₂ K ₂ (SO ₄) ₄ 9·28634 Al ₂ (PO ₄) ₂ " Al ₂ O ₈ 0·41837 " " Al ₂ (NH ₄) ₂ (SO ₄) ₄ 3·71274 Ammonia-alum into Potash-alum Antimony (Sb=120·2) Sb ₂ O ₄ into Sb ₂ 0·78975 Sb ₂ S ₃ " Sb ₃ 0·71418 " " Sb ₂ O ₄ 0·90431 Arshnic (As=74·96) 2NH ₄ MgAsO ₄ H ₂ O into As ₂ 0·39384 " " As ₂ O ₈ 0·60400 Mg ₂ As ₂ O ₇ " As ₂ 0·48274 " " As ₃ O ₈ 0·63730 " " As ₂ O ₈ 0·75748 As ₂ O ₈ " As ₂ O 0·80411 As ₂ O ₈ " As ₂ O 0·80411 " " As ₂ O ₈ 0·60911 " " As ₂ O ₈ 0·60911 " " As ₂ O ₈ 0·60411 " " As ₂ O ₈ 0·60911 " " As ₂ O ₈ 0·80413

FACTORS AND THEIR LOGARITHMS BEQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment,		То	convert	Factor.	Logarithm (to be added).
	Babi	UM ($\mathbf{Ba} = 137.37)$		
Ba		into	Ba	0.58846	<u>T</u> ·769 72
,,	,,	,,	BaO	0.65700	I 817 57
"	"	"	$BaCO_8$	0.84548	<u>I</u> 927 11
"	"	,,	BaCl	0.89226	T·950 49
"	"	"	$BaCl_{2}, 2H_{2}O$	1.04662	0.019 79
*-					T-0-00
"	,,	,,	8	0.13738	T·137 92
"	,,	,,	SO ₈	0.34300	<u>T</u> 535 29
,,	,,	,,	80.	0.41154	I·614 41
"	"	"	$\mathbf{H}_{\mathbf{s}}\mathbf{SO}_{\mathbf{s}}$	0.42018	T·623 43
			~ ~ ~		T = 0.1
"	12	,,	CaSO ₄	0.58319	I·765 81
"	1)	"	$CaSO_{\mu}$ $2H_{\mu}O$	0.73754	I·867 79
			77 00 777 0	1.10100	0.075.00
"	**	"	FeSO, 7H,O	1.19100	0.075 90
"	"	"	PbSO ₄	1.29871	0.113 51
,,	,,	"	$\mathbf{M}_{\mathbf{g}}\mathbf{SO}_{\bullet}$	0.51572	I·712 42
"	"	,,	K ₂ SO ₄	0.74653	I·873 05
			M- 90	0.60080	T·784 33
"	73	"	Na ₂ SO ₄	0.60859	0.139 99
,,	93	"	$Na_2SO_4, 10H_2O$	1.38035	T·752 91
31	,,	"	$(NH_4)_2SO_4$	0.56612	
"	2BaSO ₄	17	FeS	0.25698	I·409 90
"	4Ba80	"	Al ₂ (NH ₄) ₂ (SO ₄) ₄	0.97129	I·987 35
			$24\mathrm{H_{9}O}$		
	DaCO		Ba	0.69600	T·842 61
"	BaCO ₈	"	BaO	0.77707	T-890 46
"	"	"	CO _s	0.30400	
"	"	"	008	0 00400	1 402 01
	Br	SMU	н (Bi=208)		•
Bi	Bi ₂ O ₈		into Bi.	0.89655	T-952 58
"	Bi ₂ S ₈		", Bi	0.81217	T-909 65
"			., 1		

FACTORS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIO ANALYSIS—continued.

Ele- ment		To convert		Factor.	Logarithm (to be added).
B ,,	$egin{array}{l} B_2O_8 & . \\ B_2O_8 & . \\ 2H_8BO_8 & . \end{array}$	ron (B=11 into	B ₂ 2H ₈ BO ₈ B ₂ O ₈	0·31428 1·77212 0·56430	T·497 32 0·248 49 T·751 51
Cd "	CADMI CdO CdS	(Cd = 1 into "	12·4) Cd Cd CdO	0·87539 0·77801 0·88877	T 942 20 T 890 99 T 948 79
Ca "	Calor CaO	TOM (Ca = 4) into	Ca CaCO _s	0·71464 1·78473 2·42804	T·854 09 0·251 57 0·385 26
))))))	1) 1) 1)	,, CaS	CaSO ₄ , 2H ₂ O CaCl ₂ CaH ₂ O ₂	3·07066 1·97949 1·32131	0·487 23 0·296 55 0·121 01
33 33	3CaO CaCl ₂	1) 1) 1)	$Ca_8P_2O_8$ CaO Cl_2	1·84466 0·50518 0·63897	0·265 92 1·703 45 1·805 48
" " " "	CaCO ₈	11 11 11	Ca CaO CO ₂ CO ₈	0·40042 0·56031 0·43969 0·59958	I·602 52 I·748 43 I·643 15 I·777 85
31 . 33	" "	,, CaS	CaSO ₄ 3O ₄ , 2H ₂ O	1-36045 1-72052	0·133 68 0·235 66
,, ,,	CaSO ₄	"	Ca CaO CaCO ₈	0·29433 0·41186 0·73505	T·468 83 T·614 74 T·866 32

FACTORS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To conv	rert	Factor.	Logarithm (to be added).
Ca	CALGIUM (C	a = 40.0	7) —continued.		
33	CaSO,	into	CaSO ₄ , 2H ₂ O	1.26467	0.101 98
"	,,	*1	so,	0.58814	I·769 48
	•	••			
,,	$Ca_8P_9O_8$	22	CaP_2O_6	0.63860	T·805 23
"	,,	,,	$C_{\mathbf{a}}\mathbf{H}_{\mathbf{a}}\mathbf{P}_{\mathbf{a}}\mathbf{O}_{\mathbf{a}}$	0.75472	T·877 79
"	"	٠,	$\begin{array}{c} \operatorname{CaH_{4}P_{2}O_{5}} \\ \operatorname{P_{2}O_{5}} \end{array}$	0.45789	T·66077
"		,,	$\mathbf{P}_{2}^{\mathbf{r}}$	0.20007	T·301 18
"	$C_{\mathbf{h}}\mathbf{H}_{4}^{\prime}\mathbf{P}_{9}O_{8}$,,	$Ca_8P_2O_8^2$	1.32500	0.12221
		•	0 2 0		
		ввом (С	(=12)		
\mathbf{C}	$CO_{\mathbf{g}}$	into	C	0.27273	T 435 73
,,	,,	,,	$CaCO_8$	2.27432	0.356 85
"	,,	17	$Na_{g}CO_{g}$	2.40910	0.381 85
,,	"	"	$NaHCO_8$	1.90927	0.280 87
			•		
,, '	"	,,	$PbCO_8$	6.07045	0.78322
"	200g	,,	$\mathbf{MnO}_{\mathbf{s}}^{\mathbf{s}}$	0.98784	T·994 69
,,	$O_{\mathbf{g}}\mathbf{H}_{\mathbf{g}}^{\mathbf{G}}O$,,	$C_2H_4O_2$	1.30368	0.115 17
		/01	05 (0)		
C1			=35.46)	1.00040	0.010.17
Cl	Cl	into	HCl	1.02843	0.012 17
,,	"	,,	NaCl	1.64862	0.217 12
"	"	1,7	KCl	2.10265	0.32277
	CI		$\mathbf{M}_{\mathbf{g}}\mathbf{Cl}_{\mathbf{o}}$	1.34292	0.128 05
13	Cl_2	"	$CaCl_{\circ}$	1 56500	0.128 05
"	"	"	Oacia	0.22560	T·353 35
,,	"	"	U	0 22000	1 303 30
	Cran	owner /	Cr = 52		
\mathbf{Cr}	Cr _g O _g	into	Cr ₂	0.68421	T·835 19
-			$K_{9}Cr_{9}O_{7}$	1.93553	0.286 80
"	"	,,	20,907	1 00000	0 200 00
	CORA	лт (Со:	= 58.97)		
Co	CoO	into	′ ~	0.78658	I-895 74
	300				-

FACTORS AND THEIR LOGARITHMS BEQUIRED IN GRAVIMETRIC ANALYSIS—continued.

	Ele- ment.		To convert		Factor.	Logarithm (to be added
	Cu "	Cori Cu CuO 2CuO	PER (Cu = 63:	CuO Cu Cu _s O	1·25170 0·79892 0·89946	0·097 50 T·902 50 T·953 98
	"	Cu _s O CuSCN	,, ,,	2CuO Cu	1·11178 0·52256	0·046 02 T·718 14
	F ,,	FLT CaF ₂	JOBINE (F = 1 into	9) F ₂ 2HF	0·48674 0·51256	I·687 30 I·709 75
	H	Hydro HCl	OGEN (H=1.0 into	008) Cl	0.97236	I 987 83
); ;;	HNO ₈ 2HNO ₈))))	$egin{array}{c} \mathbf{N} \\ \mathbf{NaNO_8} \\ \mathbf{N_2O_5} \end{array}$	0·22232 1·34898 0·85705	T·346 97 0·130 01 T·933 01
	" "	H ₂ SO ₄	,, (N)	H ₄) ₉ SO ₄ 2HOl SO ₈	1:34743 0:74359 0:81633	0·129 47 T·871 33 T·911 86
	"	$2\mathrm{C_2H_4O_2}$	" Ca(C	2H8O3)3	1.31695	0.119 57
	Fe	Fe	into "FeSC "Fe ₉ O	FeO FeCO ₅ FeS ₂ FeS ₂ FeS ₂ FeS ₂ FeS ₂ Ses H ₂ O Fe ₂ O ₃ Ses H ₂ O Fe ₂ O ₃ Ses H ₂ O	1·28653 2·07450 2·14864 4·97890 1·42980 1·59112 1·91375	0·109 42 0·316 91 0·332 16 0·697 13 0·155 28 0·201 70 0·281 89
_						

FACTORS AND THUR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To convert	Factor.	Logarithm (to be added).
Fe	IRON (Fe = Fe ₂	= 55.84)—continued. into Fe ₂ (PO ₄) ₂ ,, MnO ₂	2·70200 0·77838	0·431 69 T·891 19
))))	Fe_2O_8 $3Fe_2O_8$	$ \mathbf{Fe_2(PO_4)_2} $ $ \mathbf{Fe_2(PO_4)_2} $ $ \mathbf{2Fe_8O_4} $	0.69940 1.88978 0.96660	T·844 72 0·276 41 T·985 25
"	FeS 2FeS	,, Fe Fe ₂ O ₈	0.63520 0.90820	T-802 91 T-958 18
"	FeS_{9} $2{Fe(NH_{4})}$	S_{2} S_{3} S_{4} S_{2} S_{3} S_{4} S_{5} S_{5} S_{5} S_{6} S_{1} S_{2} S_{1}	0·53459 0·11083	T·728 02 T·044 68
	T	· /Db 007.1\		
Pb ,,		Dh∩	1.07726 0.86591 0.93281	0·032 32 I·937 47 I·969 79
"	3PbO , PbO ₂ ,	์ 19h	1·15840 0·86617	0·063 86 I·937 60
,, ,,	PbSO ₄ ,	, PbO	0.68312 0.73589 0.78890	I·834 49 I·866 81 I·897 02
" "	PbCrO ₄ ,	PbO	0.64098 0.69050 0.93832	I·806 84 I·839 16 I·972 35
" "	2PbCrO ₄ ,	$K_2Cr_2O_7$	0·23522 0·45528 0·79987	T·371 48 T·658 28 T·903 02

FACTORS AND THRIB LOGARITHMS REQUIRED IN GRAVIMETRIO ANALYBIS—continued.

Ele- ment.		To	convert	Factor.	Logarithm (to be added).
	Magn	ESIUM	(Mg=24·32)	•	
Mg	$MgCl_2$	into		0.42335	T·626 70
,,	"	"	Cl_{2}	0.74464	I·871 95
,,	MgO	,,	$MgCO_8$	2:09127	0.320 41
,,	,,	13	MgCl	2.36210	0.373 30
,,,	"	12	MgSO₄	2.98586	0.475 07
,,	,,	13	MgSO, 7H,0	6.11364	0.786 30
"	,,	, 11	$Mg(NO_8)_9$	3.67907	0.565 74
; 22	$Mg_2P_2O_7$	11	Mg_2	0.21839	T·339 23
"	,,,	"	$2 \mathrm{Mg} \ddot{\mathrm{O}}$	*0.36207	T.558 79
"	**	"	2MgCO ₈	0.75718	T·879 20
,,,	,,	1)	2MgCl	0.85524	1.932 09
,,	"	33	2MgSO.	1.08109	0.033 86
21	,,	"	2(MgSO, 7H ₂ O)	2.21356	0.345 09
,,	,,	,,	$P_{\mathbf{q}}$	0.27874	T 445 19
"	,,	"	$P_{\bullet}O_{\kappa}$	0.63793	Ī·804 77
"	"	"	$2H_8PO_4^{\circ}$	0.88060	I-944 78
,,	"	,,	CaH ₄ (PO ₄) ₂	1.05146	0.021 79
**	31	"	$Ca(PO_8)_2$	0.88968	T-949 23
,,	,,	. ,,	$\operatorname{Ca_8(PO_4)_2}$	1.39318	0.144 01
,,	$MgSO_4$		Mg	0.20201	T·305 37
,,	,,	,,	МgÖ	0.33491	T·524 93
		NESE	(Mn = 54.93)		
$\mathbf{M}\mathbf{n}$	Mn	in	to MnO	1.29128	0.111 02
"	\mathbf{MnO}	,	, Mn	0.77442	I·888 98
"	MnO_2	,	, Mn	0.63189	T·800 64

 $^{^{\}bullet}$ Or use the Pho-phate Table, pp. 121-128, subtracting from the $\rm Mg_2P_3O_7$ found the $\rm P_2O_5$ in it.

FACTORS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

T					
Ele- ment.		To convert		Factor.	Logarithm (to be added).
	MANGANI	sn (Mn = 54·	93)—contd.		1
Mn	MngO	into	3Mn	0.72027	I-857 49
,,	g-4	"	3MnO	0.93007	T·968 51
	•	,,		0 00001	1 000 01
,,	${f MnS}$,,	Mn	0.63138	T·800 29
, ,,	"	1)	${f MnO}$	0.81529	
,,	$MnSO_4$	"	Mn	0.36377	T 560 83
. ,,	"	"	$\mathbf{Mn}()$	0.46974	I·671 85
	Мπо	OURY (Hg=2	200-61	•	
$\mathbf{H}\mathbf{g}$	HgS	into	Hg	0.86217	I-935 59
"	— ₆ ~		$\mathbf{H}_{\mathbf{g}}^{\mathbf{n},\mathbf{g}}$	0.93093	T 968 92
	"	"	80	0 00000	1 200 32
,,	$Hg_{\mathfrak{g}}CL_{\mathfrak{g}}$,,	2 Hg	0.84978	T-929 31
"	"	"	$\mathbf{H}_{\mathbf{g}_{\mathbf{g}}}\mathbf{\breve{O}}$	0.88367	T·946 29
	_		-		
3.6		МОГАВОНИОМ			
Mo	Ammoniu	m phospho-	molybdate		
	(ariea	at 100° C.) i	TD (A)	0.0163	2.212 19
"		"	$P_{\mathfrak{g}}O_{\mathfrak{g}}$	0.0373	2.571 77
"		" шю	$Ca_8(PO_4)_2$	0.08147	∑ ·911 00
	Nia	KEL (Ni = 58	-68)		
Ni	NiO	into	Ni Ni	0.78575	I·895 29
				0.0010	1 000 10
		о дым (14 ·01)			
		иоини (18 С			
N	N	into	NH_8	1.21585	0.084 88
17	"	"	HNO,	4.49807	0.65303
,,	17	"	NaNO.	6.06780	0.783 03
,,	"	"	KNO ₈	7·2 1700	0.858 36
		A 11-	uminoids	6.25	0.705 00 °
"	**	,,	Caffeine	3.46395	0·795 88 ° 0·539 57
,,	"	"	Сепень	0 4000£	0 008 01

FACTORS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To 0011	Factor.	Logarithm (to be added).	
	NITROG AMMONIUM	(18:042		0.673 61	
N	N_{g}	into	(NH ₄) ₈ SO ₄	4·71642 3·85510	0.586 04
,,	$\ddot{N}_{9}O_{6}$	"	$\tilde{N}_{2}O_{5}$ N_{2}	0.25940	1.413 96
17	N ₂ O ₅	"	77.3	0 200 10	1 110 00
,,	33 33	,,	2 NaNO $_{8}$ 2 KNO $_{8}$	1·57397 1·87206	0·197 00 0·272 32
"	"))))	$Ca(NO_n)_{\mathfrak{g}}$	1.51907	0.181 58
"	"	,,	$Mg(NO_8)_2$	1.37326	0.137 75
"	NH ₃	;; ;;	N NH ₄ Cl (NH ₄) ₂ SO ₄	0.82247 3.14090 3.87912	T·915 12 0·497 05 0·588 73
11	NH₄Cl "	"	N NH ₈	0·26186 0·31838	T·418 07 T·502 95
))))	(NH ₄) ₂ SO ₄	" "	$rac{ ext{N}_{9}}{2 ext{NH}_{8}} \ ext{H}_{2} ext{SO}_{4}$	0·21202 0·25779 0·74221	I·326 39 I 411 27 I·870 53
		. ,,	01.04		
P	Рноврн Р ₂	orus (I into	P = 31.04) P_2O_5	2.28866	0.359 58
,, 1	P_2O_5	"	P_2	0.43694	T·640 42
,,	,,	"	$Ca_{3}(PO_{4})_{2}$	2.18391	0 339 23
,,	,,,	,,	$CaH_4(PO_4)_2$	1.64824	0.21702
Pt "	PLATIN (NH ₄) ₂ PtCl "		$=195\cdot2)$ $\begin{array}{c} N_2 \\ 2NH_8 \\ 2NH_4C1 \end{array}$	0.06310 0.07672 0.24098	2·800 04 2·884 92 1·381 97
29	,,	,,	$(NH_4)_2SO_4$	0.29761	T·473 65

FACTORS AND THRIB LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To conve	Factor.	Logarithm (to be added).	
	PLATINUM	(Pt=19			
Pt	K₂PtCl₀*	into	K,	0.16085	T·206 43
"	"	"	2KCI	0.30673	I·486 76
,	,,	,,	K ₂ O	0.19376	T·287 27
"	"	"	$K_{2}SO_{4}$	0.35846	T·554 44
,,	Pt .	1)	2NH₄Cl	0.54818	I·738 92
"	"	,,	$(NH_4)_9SO_4$	0.67703	I·830 60
	Potas	вітм (К	= 39·1)		
K	K	into	'KCl	1.90690	0.280 33
"	K_2	,,	$\mathbb{K}_2\mathcal{O}$	1.20460	0.080 84
"	KCl	13	Cl	0.47559	I·677 23
,,	,,	,,	KHC4H4O6	2.52320	0.401 95
,,	2 KCI	,,	K_{g} U	0.63171	T-800 52
"	"	"	$\mathbf{K_2SO_4}$	1.16866	0.067 69
٠,,	KClO ₄	,,	KCl	0.5381+	T·730 87
,,	2KClÕ₄	,,	$\mathbb{K}_{2}O$	0.3400+	T·531 44
,,	1)	,,	K_2SO_4	0.62887†	I·798 56

^{*}International methods of determining potash were adopted at the International Congress of Applied Chemistry held at Berlin, 1903 (see *Chemical News*, No. 2619,‡ Feb. 4, 1910). The platinochloride pp. is to be dried at 120-130° C., weighed warm, and the following factors (which are based on Berzelius's atomic weight Pt=197·2) used:—

Also reprinted in pamphlet form.

[†] These are the factors used in connection with the International perchloric soid method for determining potash (see note above).

FACTORS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To convert	Factor.	Logarithm (to be added).			
	Potassium (K = 39.1)—contd.						
ĸ	K ₂ O	into	2KCl	1.58301	0.199 49		
	-		K ₂ SO ₄	1.85000	0.267 17		
, »	"	"	2KNO.	2.14671	0.331 77		
1)	,,	,,	ZIII. Og	D I TOI I	0 001 11		
**	"	,,	$\mathbb{K}_2\mathrm{CO}_8$	1.46709	0.166 46		
,,	" into	2{KNaC ₄ H ₂ into 2K	O ₆ , 4H ₂ O}	5.99138	0.777 53		
>>	,,	into 2K	$HC_4H_4O_6$	3.99427	0.601 44		
,,	"	,,	2 K $\ddot{\mathrm{O}}$ H $\ddot{\mathrm{I}}$	1.19125	0.076 00		
•	2KOH		K ₂ O	0.83945	T 924 00		
"	K ₂ CO ₂	"	K ₂ O	0.68162	T·833 54		
,,	K ₂ SO ₄	"	$\mathbb{K}_{2}^{2}O$	0.54054	I·732 83		
**		" .	2KCl	0.85568	T·932 31		
"	KNO,	"	N	0.13856	I 141 64		
"	11108	**	±1	0 10000	1 111 01		
	Sir	LICON (Si $= 2$)	8·3)				
Si	SiO_{2}	into	Si	0.46932	T·671 47		
•	Stra	mr (Ag=107	7:88)				
Ag	AgBr	into	Br	0.42556	T·628 96		
-6	0				1 020 00		
,,	AgCl	,,	Αg	0.75262	I·876 57		
,,	,,	,,	CĬ	0.24738	T·393 37		
,,	"	"	HCl	0.25442	T·405 54		
"	,,	,,	$AgNO_8$	1.18522	0.073 80		
"	AgI	"	I	0.54055	T·732 83		
C /NT - CON							
Na	Na Na	odium (Na=2 into	va) NaCl	2.54174	0.408.10		
				1 34783	0.405 13		
"	Na ₂ Na ₂ O	"	$egin{aligned} \mathbf{Na_2O} \ \mathbf{2NaCl} \end{aligned}$	1.88580	0·129 63 0·275 50		
"	7. u2	"	211801	1 00000	0.210 00		

FACTORS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment,	To convert			Factor.	Logarithm (to be added).	
37.	Sodium		= 23)—contin			
Na	Na_2O	into			2.29145	0.360 11
"	"	"	Na	$^{1}CO_{g}$	1.70968	0.23291
"	"	*;	2N8	NO.	2.74226	0.438 11
,,	."	,,		нОв	1.29058	0.110 79
"	$Na_2B_4O_7$,,	Na ₂ B ₄ O ₇ , 10	H_2O	1.89109	0.276 71
,,	NaCl	,,		Cl	0.60657	T·782 88
,,	**	, ;	NaF	CO8	1.43702	0.157 46
"	2NaCl	,,	ì	Ogar	0.53028	T.724 50
**	"	"	Na.	CO_8	0.90660	I-957 42
"	Na_2CO_8	"		Va ₂ O	0.58491	I-767 09
,,	NaNO ₈	,,		N	0.16480	T·216 97
",	2NaOH	,,	1	Ta ₂ O	0.77484	Ī·889 21
"	Na_2CO_8	11	Na ₂ CO ₈ , 10	H.O	2.69811	0.431 06
"	Na SO	"	2 0	Мa,	0.32378	T.510 26
"	"	**	N	[a _g C	0.43640	1.639 89
_		TIUM	(Sr=87·63)			
\mathbf{Sr}	SrCO ₈		into	\mathbf{Sr}	0.59358	I·773 48
"	SrSO ₄		"	\mathbf{Sr}	0.47703	I·678 54
	Suli	HUR	(S = 32.07)			
8	80 ₈ is	uto	,	8	0.40052	T·602 63
99	11	,		804	1.70026	0.23052
"	"	,,	CaSO ₄ , 21	$O_{\mathbf{g}}$ E	2.15027	0.332 49
"	"	,,		SO ₄	1.22500	0.088 14
"	"	,	$(\mathrm{NH}_4)_2$	SO_4	1.65048	0.217 61

FACTORS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment		To convert	Factor.	Logarithm (to be added).			
	Sulphu	R (S = 32.07) -					
S	SO_8	` into	$\mathbb{K}_{2}\mathrm{SO}_{4}$	2.17647	0.337 75		
, 9 1	19	13	Na_2SO_4		0.24903		
17	1)	"	$MgSO_4$	1.50356	0.17712		
	Tin (Sn = 119)						
Sn	\mathbf{Sn}	into	SnO,	1.26891	0.103 43		
"	SnO_{g}	37	$\mathbf{S}\mathbf{n}$	0.78808	I·896 57		
	Zino (Zn = 65.37)						
$Z_{ m n}$	Z_{n}	into	$^{'}~Z{ m nO}$	1.24476	0.095 09		
,,	1)	22	$\mathbf{Z}_{\mathbf{n}}\mathbf{S}$	1.49059	0.173 36		
,,	21	39	$\mathbf{Z}_{\mathbf{n}}\mathrm{Cl}_{\mathbf{g}}$	2.08490	0.319 09		
	ZnO		Z_{n}	0.80337	T·904 91		
"	ZnS	"	$\frac{\mathbf{Z}\mathbf{n}}{\mathbf{Z}\mathbf{n}}$	0.67087	T-826 64		
"	உயல	"	2.11	0 01001	1 020 04		

Example.—1:327 grams of a substance gave 0.8470 gram $BaSO_4$: to find the percentages of SO_8 and S present respectively.

Since 1:327 grams give 0:847 gram BaSO, 100 grams will

give $\frac{.847 \times 100}{1.327} = \frac{.84.70}{1.327}$

Taking logs. Log. 84.70 = 1.927881.327 = 0.12287

(subtracting) 1.80501 Add log. (BaSO₄ into SO₂) 1.53529

 $1.34030 = 21.89 \text{ per cent. SO}_8.$ Add log. (SO₈ into S) 1.60263

0.94293 = 8.77 per cent. S.

Rule.—First find the weight of the pp. that 100 parts of substance would give, then add the log. of the factor to get percentage of substance sought.

Ele- ment.	To convert	Factor.	Logarithm (to be added).

VOLUMETRIC FACTORS.

Definition.—A Normal Solution of a reagent is one that contains in a litre that proportion of its molecular weight in grams which corresponds to one gram of available hydrogen or its equivalent.

Up till recent years the atomic weights of elements were referred to hydrogen as unity. Now, however, oxygen = 16 is the standard of reference, and the present atomic weight of hydrogen is taken as 1 008. Hence, "one gram" in the above

definition must actually be taken as 1.008 gram.

Thus, a normal solution of hydrochloric acid contains 36:468 grams HCl per litre; and normal sulphuric acid 98:086

 $\frac{30000}{2}$ = 49.043 grams H₂SO₄ per litre. Potassium permanganate, K₂Mn₂O₈, in acid solution, yields 5 atoms of oxygen, equivalent to 10 atoms of hydrogen; hence a normal solution

of permanganate contains $\frac{316.06}{10} = 31.606$ grams per litre. Normal alkali solutions are such that a given volume requires

for neutralization an equal volume of a normal acid solution.

Logarithms. grams. $1 \text{ c.c.} = 0.049043 \text{ H}_{\odot}SO_{A}$ **2**·690 58 Normal H.SO. $= 0.048035 \, \text{SO}_{4}$. 2.681 56 $= 0.040035 \, \text{SO}_{2}$. . 2.602 44 2·561 91 Normal HCl 1 c.c. = 0.036468 HCl. 2.549 74 " = 0.03546 Cl Normal HNO. $1 \text{ c.c.} = 0.063018 \text{ HNO}_{\bullet}$ 2.799 46 . 2.799 46 . 2.792 46 $_{\rm N} = 0.06201 \text{ NO}_{\rm R}$. $_{,,} = 0.05401 \text{ N}_{\circ} \text{O}_{s}$. . 2.732 47 $. \quad \overline{2}.79951$ Normal H.C.O. $1 \text{ c.c.} = 0.063024 \text{ H}_{9}\text{C}_{9}\text{O}_{4}, 2\text{H}_{9}\text{O}_{2}$ $H_{o}C_{o}O_{A}$ $. \quad \overline{2.653} \ 29$ $1 \text{ c.c.} = 0.017034 \text{ NH}_{8}$. . 2.231 32 Normal acid " =0.03505 NH₂OH . 2.544 69 -0.101Na BAO T·004 32

,, = 0.19108 Na₀B₂O₇, 10H₂O T.281 22

VOLUMETRIO FACTORS—continued.

Normal acid (continued).	1 c.c.	$\begin{array}{l} \text{grams.} \\ = 0.028035 \\ = 0.037043 \\ = 0.050035 \end{array}$	$Cn(OH)_2$.	Logarithms. 2.447 70 2.568 71 2.699 27
	" "	= 0.085693 = 0.157757 = 0.098685	$Ba(OH)_2$, $8H_2O$	$\begin{array}{c} . \overline{2} \cdot 93295 \\ . \overline{1} \cdot 19799 \\ . \overline{2} \cdot 99425 \end{array}$
	"	=0.02016 = 0.04216		. 2·304 49 . 2·624 90
))))))))	= 0.098124	K ₂ CO ₈ . KHC ₄ H ₄ O ₆ K ₈ C ₆ H ₅ O ₇ , H ₂ C	2.991 78
	;; ;; ;;	= 0.040008 = 0.053 = 0.14308 = 0.084008	Na ₂ CO ₃ . Na ₂ CO ₃ 10H ₂ C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Normal KOH	1 c.c	. = 0.056108 = 0.0471		. $\overline{2}.74902$. $\overline{2}.67302$
Normal NaOH	1 c.c.	. = 0.040008 = 0.031	_	. $\overline{2}$ ·602 15 . $\overline{2}$ ·491 36
Normal Na ₂ CO ₈	1 c.c	0.053 0.030 0.022	Na ₂ CO ₈	. 2·724 28 . 2·477 12 . 2·342 42
Normal alkali	1 c.c	= 0.062024 = 0.0505	$^{\mathrm{B_{2}(l)}_{8}}$. $^{\mathrm{1}}\mathrm{H_{8}BO_{8}}$.	2.778 38 2.544 07 2.792 56 2.703 29 0 2.980 19

VOLUMETRIO FACTORS-continued.

Normal alkali (continued).	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\frac{N}{10}$ AgNO ₈	1 c.c. = 0.010788 Ag $\frac{2.03294}{2.23017}$ $\frac{2.03294}{2.23017}$
	,, =0.003546 Cl 354974 ,, =0.005846 NaCl 3.76686 ,, =0.0053502 NH ₄ Cl 3.72837
	,, = 0.011902 KBr
$\frac{\mathbf{N}}{10}$ Iodine	1 c.c = 0.0032035 SO_2 $3.505 62$,, = $0.0041043 \text{ H}_2\text{SO}_8$ $3.613 24$
	,, = $0.0126091 \text{ Na}_{2}SO_{8}$, $7 \text{ H}_{2}O$. $2.100 68$, = $0.0097151 \text{ K}_{2}SO_{8}$, $2 \text{H}_{2}O$. $3.987 45$
	,, = $0.024822 \text{ Na}_2\text{S}_2\text{O}_8$ $5\text{H}_2\text{O}$. $2.394.84$,, = $0.004948 \Delta\text{B}_4\text{O}_6$ $3.694.43$
$\frac{\mathbf{N}}{10}$ Dichromate	1 c.c. = 0.005584 Fe 3.746 95 ,, = 0.007184 FeO 3.856 37 ,, = 0.011584 FeCO ₈ 2.063 86
	$", = 0.015191 \text{ FeSO}_4 . \frac{2.18159}{7 \text{ H}_9 \text{O}} . \frac{2.44408}{2.44408}$

VOLUMETRIC FACTORS—continued.

$\frac{N}{10} \ \ Thiosulphate \ \ 1 \ c.c. = 0 \ \ 024822 \ \ Na_{2}S_{2}O_{5}, \ \ 5H_{2}O$		$\begin{array}{c} \underline{\text{Logarithms.}} \\ 2.394.84 \end{array}$
" = 0·012692 I		2 ·103 53
,, = 0.012692 I ,, = 0.003546 Cl ,, = 0.007992 Br		$\frac{2}{3}.54974$
$= 0.007992 \mathrm{Br}$	•	3.902 66
CALOIUM (Ca = 40.07)		
1 c.c. $\frac{N}{10}$ permanganate = 0.0028035 gram CaO		3.447 70
$_{\rm 0.0086086~gram~CaSO}$	•	0 000 21
$20H_{\rm s}$., normal oxalic acid $= 0.028035$ gram CaO Cryst. oxalic acid $\times 0.444 = {\rm CaO}$ Ferrous ammonium sulphate $\times 0.07143 = {\rm CaO}$	•	3.934 93
", normal oxade acid = 0.038035 gram CaO	•	2.447 70
Ferrous ammonium sulphete × 0:07143 = CaO	•	7.8K3.88
	•	2 000 00
CHLORINE (Cl = 35.46)		
1 c.c. $\frac{N}{10}$ silver solution = 0.003546 gram Cl.		3.54974
		3.766 86
", = 0.005846 gram NaCl 1 c.c. $\frac{N}{10}$ arsenious or thiosulphate solution	'n	
	ı.	T = 10 = 1
=0 003546 gram Ol .	•	3.049 74
Ohromium (Cr = 52)		
Metallic iron $\times 0.3104 = Cr$.		T·491 94
$\sim 0.5968 = \text{CrO}_3$. ;	I·775 86
$x \cdot 0.8780 = K_2 Cr_2 O_7$.		I·943 47
,, $\times 1.928 = PbCrO_4$. Ferrous ammonium sulphate $\times 0.0443 = Cr$.	. ;	0·285 19 2·646 40
	. ;	2·930 95
$0.1253 = K_{2}Cr_{2}O_{7}$ $0.1253 = K_{2}Cr_{2}O_{7}$ $0.2754 = PbCrO_{4}$		I 097 95
$ \times 0.2754 = PbCrO. $. 1	I∙439 96
• 41 • .•	. 7	3·522 84
", = $0.004903 \text{ gram } \text{K}_2\text{Cr}_2\text{O}_7$.		3 ·690 45

	Volumetrio	FAOTORS-	-continued.		rl4b:	
COPPER	(Cu = 63·57)			1	Logarith	шь
1 c.c.	$\frac{N}{10}$ solution = 0.006	357 gram	Cu		3 ⋅803	25
Iron Ferro	× 1·138 = coppe ous ammonium sulpi	or . nate × 0·16	. . $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$	-	0·056 T ·210	
Cyanos	HMN (CN = 26.01)					
1 c.c	$\frac{N}{10}$ silver solution =	= 0.005202	gram CN		3 ·716	17
"	,, =	= 0:005404 = 0:013022	gram HCN gram KCN		$\begin{array}{c} 3.732 \\ 2.114 \end{array}$	
21	$\frac{N}{10}$ iodine	= 0·003255	gram KCN	•	₹.512	55
Mete Ferr	IUM FERROUYANIDE (allie iron \times 7·563 = cous ammonium sulpum ferrocyanide	ryst. potas	sium ferrocyar	iide	0·878 0·033	
Meta Ferr fe	BIUM FERRIOVANIDE (blic iron × 5.895 = p ous ammonium sulp rricyanide	otassium thate $\times 1.6$	ferricyanide 84 = potassiun	ı	0·770 0·226	34
$\frac{N}{10}$ th	hiosulphate × 0:0329	2 = potass	ium ferricyan	ide	2.517	46
Gоло (1 с.с	(Au = 197.2) A normal oxalic acid	- 0.0657	gram gold		2∙817	57
	$(I = 126.92)$ a. $\frac{N}{10}$ thiosulphate =	0·012692	gram iodine		2·103	53
Iron (Fe = 55.84)					
1 0.0	$\frac{N}{10}$ permanganate,	dichromat	ю,			
	or thiosulph	ate =	0·005584 Fe		$\frac{3.746}{3.856}$	
" "	"		0·007184 FeC 0·007984 Fe ₂ 0			

VOLUMETRIC FACTORS—continued.		
LEAD $(Pb = 207.1)$		Logarithms.
1 c.c. $\frac{N}{10}$ permanganate = 0 010355 gram lead		2 ·015 15
1 c.c. normal oxalic acid = 0.10355 gram lead Metallic iron $\times 1.854$ = lead Ferrous ammonium sulphate $\times 0.265$ = lead	•	T·015 15 0·268 20 T·423 25
Manganese (Mn = 54.93)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	•	I·691 79 I·802 77 I·891 15 2·957 61 I·046 10 I·838 60
1 c.c. $\frac{N}{10}$ solution = 0.003547 gram MnO .		3·549 86
$,, \qquad ,, \qquad = 0.004347 \text{ gram MnO}_2 .$		3.638 19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T 708 86 T·840 33 2·302 33 2·319 31 2·433 80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2·732 39 T·004 75 T·575 30 T·780 68 T·508 40
SILVER $(Ag = 107.88)$		
1 c.c. $\frac{N}{10}$ NaCl = 0.010788 gram Ag		2 ·032 94
,, -0.016989 ,, AgNO ₈ .		2 ·230 17

VOLUMBTRIC FACTORS—continued.	Logarithms.
SULPHURETTED HYDROGEN (H ₂ S = 34.086)	TOBSET WITH .
1 c.c. $\frac{N}{10}$ arsenious solution = 0.002556 gram H_2S	. 3 ·407 56
Ferrous ammonium sulphate $\times 0.1522 = tin$.	
Factor for $\frac{N}{10}$ iodine or permanganate solution 0.00595	ı . ∃·774 52
Ferrous ammonium sulphate $\times 0.0836 = Zn$. $0.1041 = ZnO$	T-767 33 T-862 41 2-922 21 T-017 45 3-514 28
NITROMETER ANALYSIS.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T·796 34 0·127 17 0·229 81 0·382 40 0·449 39 0·579 88 0·654 70
$", ", = 3.7986 ", NaNO_8"$	0.188 82 0.579 62 0.718 45 0.525 25

_		Calibrating ments.	For use with Standard Soluti		
Tempera- ture * C.	Weight of 1 Litre of Water.	Volume of 1 Gram of Water.	Volume corresponding with 1 Litre at 15° C.	Volume of 1 c.c. reduced to 15° C.	
5	grams. 998 · 6	0.0. 1 ·0014	0.0.	1.0017	
	880 0	1 0014			
6 7 8	23	"	· <u>4</u>	1.0016	
7	"	**	∙б •7	1.0014	
8	"	13		1.0018	
9	200		.9	1.0011	
10	998-5	1.0015	999.0	1.0010	
11	998.4		2	1.0008	
12		1 0016	•4	1.0006	
18	•8	1.0017	•6	1·0004	
14	•2	1 0018	•8	1.0002	
15	•1	1.0019	1000-0	1.0000	
16	997-9	1:0021	-2	0.9998	
17	٠8	1.0022	•4	0.8888	
18	-7	1.0028	•6	0.9994	
19	•5	1.0025	·8	0.6993	
20	.8	1.0027	1001.1	0.9989	
21	•2	1.0028	-8	0.9987	
22	997 0	1.0080	- 6	0.9984	
23	8.966	1.0082	•8	0.9982	
24	•6	1.0084	1002.0	0.8880	
25	.8	1.0037	•9	0-9977	

CORFFICIENTS OF ABSORPTION OF GASES IN WATER.

~	1 volume	of Water	dissolves a	t 760 mm.	Pressure.	
Ges.	0° ().	4° O.	10° C.	15° C.	%0° O.	Observer.
Acetylene, Air *,	1·73 0·02882	1.58 0.02606	1:81 0:02265	1·15 0·02046	1.03 0.01870	Winkler
Ammonia,	1158.08	1048-23	898-67	770:29†	696:17	Roscoe and Dittmar
Carbon monoxide,	0.08537	0.08219	0.02816	0.02548	0.02819	Winkler
,, dioxide, .	1.718	1.478	1.194	1-019	0.878	Bohr and Bock
Chlorine, Hydrogen, , sulphide, Methane, Nitric oxide, Nitrous ,, Nitrogen, Oxygen, Sulphur dioxide,	8-0362 0-02148 4-8708 0-05478 0-07381 1-8052 0-02348 0-04890 79-789	0.02064 4.0442 0.05002 0.06628 1.1846 0.02180 0.04397 69.828	2.5852 0.01955 8.5858 0.04868 0.05709 0.9196 0.01857 0.08802 56.6.7.7	2.8681 0.01888 8.2328 0.08902 0.05147 0.7778 0.01682 0.08415	2.1565 0.01819 2.9058 0.03498 0.04706 0.6700 0.01542 0.03102	Schönfeld Winkler Schönfeld Hinrichs Winkler Ourius Winkler
* Caloula	ited from 1	itrogen ai	1d ox 543	1 Sc 1.0028 N12	Lib	B'lore

TABLE OF RECIPROCALS.

No.	Reciprocal.	No.	Reciprocal,	No.	Reciprocal.	No.	Reciprocal.
1	1	31	08226	61	•01689	91	•01099
2	- _{•5}	82	.03125	62	.01618	92	.01087
8	·38833	38	.08080	68	01587	98	•01075
4	-25	84	.02941	64	01563	94	·01064
5	-2	85	02857	65	.01589	95	.01058
6	•16667	86	.02778	66	.01515	96	.01042
7	·14286	87	.02708	67	·01498	97	01081
8	•125	88	·02682	68	.01471	98	·01020
9	-11111	89	·02564	69	-01449	99	·0 1010
10	•1	40	.025	70	.01429	100	·0 1
11	-09091	41	02489	71	.01409	101	.00980
12	.08333	42	.02881	72	.01389	102	.00980
18	.07692	48	02826	10	· •01870	108	·0 0971
14	.07143	44	·0227 8	74	.01821	104	00962
15	-06667	45	.02223	75	.01888	105	.0092
16	·0625	46	·02174	76	.01816	106	·00948
17	05882	4 7	.02128	77	·01299	107	.00985
18	.05556	48	-02088	78	01282	108	.00926
19	-05268	49	·020 41	79	·0126 6	109	00917
20	-05	50	.03	80	.0126	110	.00808
21	04762	51	.01961	81	·01285	111	·00 901
22	.04545	52	01928	82	.01220	112	:0 08 98
28	.04848	58	01887	83	·012 05	113	.00886
24	01167	54	01852	84	·011 9 1	114	·00877
25	•0 <u>4</u>	55	.01818	85	.01177	116	00870
2 6	.08846	56	01786	86	01168	116	.00862
27	·03704	57	·01754	87	01149	117	00855
28	.08571	58	.01724	88	01186	118	•00847
29	.08448	59	01695	89	01124	119	·00840
80	.03888	60	-01667	90	01111	120	*00888 }

Ex. 1.
$$\frac{100}{17} \times .01 = \frac{1}{17} = 0.05882$$
.

Ex. 2.
$$\frac{100}{48} \times .02 = \frac{1}{48} \times 2 = .02826 \times 2 = 0.04652$$
.

Ex. 3.
$$\frac{100}{82} \times .005 = \frac{1}{82} \times \frac{1}{2} = \frac{0.0122}{2} = 0.0061$$
.

Logarithms.

VARIOUS USEFUL FACTORS.

To convert :— Grams per litre int	o grains ounces (a lb. grains per grains per	·fluid	,, oz.	,	:	Multiplier, 487 00 0 99884 0 06248 0 48847	Logari 2:640 1:999 2:795 1:641 1:845	4754 4978 8778 9891
Grains per gallon i		er mil er lit	lion g	allon	8	1·2755 0·014286	0·105 2·154	
Percentage into gra Percentage into gra	ins per flui ins per lb.	d o z.	:	:	:	4·875 70	0.640 1.845	
Litres into cubic fe	et .					0.085821	2.548	0345
,, yards ,,	31 ·			:		0:008604 6:2279 168:152 lion gallons.	8.556 0.794 2.225	8888

^{*} Or divide by 70.

USRFUL DATA.

I. Areas and Volumes of Bodies.		_ -
Area of a circle $=\pi r^{a}$	r = radius $r = 8.1415926$	0.497 1499
Volume of a sphere $=\frac{4}{9}\pi r^3$	$\frac{4}{9}\pi = 4.1888$	0.622 0886
Volume of a cylinder = $\pi r^2 h$	r=radius of base	
Surface of sphere = 4272	$h = \text{height}$ $4\pi = 12.5664$	1.099 2099

II. Specific Gravity.

To convert :
(1) Degrees of Twaddell's hydrometer into sp. gr. (water = 1000)—multiply by 5 and add 1000
=1000)—multiply by 5 and add 1000
(2) Sp. gr. (water=1000) into degrees of Twaddell's hydrometer—subtract 1000 and divide by 5
(8) The sp. gr. of gases referred to atmospheric air as
unity = $\frac{84.52 \times \text{mol. wt.}}{1000} = \frac{\text{mol. wt.}}{28.97}$
$\frac{1000}{1000} = \frac{1000}{28.97}$

1 kilogrammetre = 7.2880 foot-pounds,				0.859	0100
	•	•	•	0 000	OIDO
1 foot-pound = 0.13825 kilogrammetres,				T	4004
1 1000 pound ~ 0 10020 knogrammetres.		-		I 140	KHUA

NOTES ON LOGARITHMS.

Definition.—The logarithm of a number N is the value of a which

satisfies the equation a=N, where a is some given number.

Thus if a be 10 (which is the base of Briggs' or the ordinary logarithms), the logarithm of 100 is 2, that of 1000 is 3; and that of any number between 100 and 1000 will be greater than 2 and less than 3, so that it may be represented by 2 followed by places of decimals.

By means of a table of logarithms two numbers may be multiplied together by adding their logarithms and divided by subtracting their logarithms, the result in each case being the number corresponding to the logarithm thus obtained. Also Involution, or raising of powers, is performed by multiplication of the logarithm of the number by the index of the power; and Evolution, or extraction of roots, by division of the logarithm of the number by the index of the root.

The integral part of a logarithm is called the *characteristic*, the decimal part the *mantissa*. The characteristic may be either positive or negative (a.g., 2, 2),* but the mantissa is always positive. The mantissa only are registered in the tables, the characteristics always

being found by the following simple rules :-

(1) For numbers greater than unity, the characteristic is one less

than the number of digits, and is positive.

(2) For numbers less than unity, the characteristic is one greater than the number of ciphers which precede the first significant figure, and is negative.*

Ex. Log. 437 58 -2 6410575 Log. 48 758 -1 6410575 Log. 48758 -0 6410575 Log. 48758 -1 6410575 Log. 043758 -2 6410575

Negative characteristics are calculated according to the ordinary rules of algebraic addition and subtraction. A few examples will show the methods employed.

(1) Addition-

+5 added to $\overline{8}$ gives +2.

+6 is increased to +7 by the 1 carried over from the mantissee, and +7 added to 2 gives +5.

*The negative sign is placed over the characteristic to indicate that it alone is negative. If placed in front, like an ordinary negative sign, both characteristic and mantissa would become negative.

NOTES ON LOGARITHMS-continued.

(1) Addition-continued.

Add 2.5632874 3.2465281

Add 3:3010300 2:9020029

B·8098155

4-2030329

Here the +1 carried over from the mantissæ is added to 3 giving 2, and 2 added to 2 gives 4.

(2) Subtraction-

Rula—Change the sign of the characteristic in the lower line, and add as above.

From 2:6847658 Subtract 8:2468548

From 2.8468587 Subtract 5.7654626

2.5813911

5.4879115

8 becomes, on changing its sign, +8, and this added to +2 gives +5.

Here 1 is carried over from the mantisse, and has to be subtracted from 2, giving 3: then changing the 5 into +5, and adding this to 3, we have +2.

From 5.6848252 Subtract 8.7856810

8.8986942

Here the 1 carried over subtracted from 5 gives 6; then changing 3 into+3 and adding it to 5, we have 3.

Proportional Parts.—When the logarithm of a number consisting of five figures or less is required, it can be found immediately in the tables; but if the numbers consist of more than five figures, a little calculation is required in order to find its correct logarithm. This calculation is greatly facilitated by the use of a table of proportional parts. It will be seen, on reference to the tables, that the differences between the logarithms of numbers differing by 1 in the fifth figure remain remarkably constant for a great many successive numbers, except at the beginning of the tables, where the changes are rather rapid. Thus, from 66500 to 67500 the difference between any two consecutive logarithms is uniformly 65: a.g., log. 66511 (=4.8228935) subtracted from log. 66512 (=4.8229000) gives 65. Suppose, then, we require the logarithm of a number consisting of six or seven figures, as for instance 66511:37, how do we proceed to find it?

Notes on Logarithms-continued.

This is done as follows:—First write down the next lower logarithm.

Log. 66511-4.8228985,

then, since the difference of 1 in the fifth figure makes a difference of 65 in the logarithm, a difference of 37 will make a difference of $65 \times 37 = 24$.

... Log. 66511 87 - 4 8228985 + 24 - 4 8228959.

In the table of proportional parts, however, the amount to be added for every tenth of a unit is recorded, and by this table the above result may be easily found thus:—

Conversely, the number to six, seven, or more figures corresponding to a given logarithm, is found by a method exactly the converse of that given above.

Example.—Find the number whose log. is 2.9324547.

2·9824585—log. 865·96			
12 10-	002		
20 -	0004		

2-9824547

855 9624 the number required.

In the above example the difference between the given log. and the next lower in the tables being 12, the required number will evidently lie between 855.962 and 855.963, since the proportional part for 2 is 10 and that for 3 is 15. Subtracting that for 2, namely 10, we have 2 left. Annex a cipher to the 2, since the figure to be found will occupy the next decimal place, and the number 20 thus obtained is the proportional part for the figure 4.

COMPUTATION.

The following examples will show some of the methods that may be used with great advantage for reducing labour in working out the results of analytical and other chemical work:—

Ex. 1. Multiply
$$237 \cdot 2 \text{ by } 0.9889 \\ 9889 = 1 - 0111$$
Hence $237 \cdot 2$

less the sum of 2372
 2372
 02372
 02372
 $234 \cdot 56708$.

Ex. 3. Multiply 182 76 by 5
=
$$182.76 \times \frac{10}{9} = \frac{1827.6}{9} = 913.8.$$

Ex. 5. Multiply 0.07964 by 25
$$= .07964 \times \frac{100}{4} = \frac{7.964}{4} = 1.991.$$

Similarly to multiply by 21 use the fraction 12.

$$Ex. 6. 247.68 \times 125 = 247.68 \times \frac{1000}{8} = \frac{247680}{8} = 30960.$$

Similarly to multiply by 12.5 use 18.9, and to multiply by 12.5, simply divide by 8.

Ex. 7. In like manner, to divide by 25, e.g. $\frac{5768}{25}$. This equals $\frac{5768 \times 4}{100} = 57.68 \times 4$ = 230.72.

APPROXIMATIONS.

In many cases the results of chemical investigations may be regarded as accurate to the second or third decimal place only: hence it is simply misleading (not to say deceptive) to calculate such results to the fourth or fifth place of decimals. In these cases the following methods of obtaining approximate results correct to the first or second place of decimals, will be found invaluable.

Rule for multiplication.—Write the multiplier backwards under the multiplicand, and multiply in the usual way, each digit of the multiplier being multiplied into the figure immediately above it, those to the right being ignored, except that next to it, from which

we get the amount to carry forward.

The amount to be carried forward is taken as the nearest multiple of ten. Thus

any number from 1 to 4 counts zero.

", ", 5 to 10 , 1 ", ", 10 to 14 , 1 ", ", 15 to 20 , 2 and so on.

Omit all decimal points at first, the position of the decimal point in the answer being fixed afterwards,* as shown in the examples below.

Ex. 8. Multiply 47:26 by 12:43, giving four figures in the answer.

In the second line $2 \times 6 = 12$: carry 1
,, third line $4 \times 2 = 8$
carry 1
,, fourth line $8 \times 7 = 21$
carry 2
-
•

^{* &}quot;When I calculate I saldom trouble my head about the position of the decimal point in my answer until everything else is finished. There are many clevarly-contrived rules shout the position of the decimal point, but we forget them in practical work. Better never learn them."—Prof. John Perry, F.B.S.

To find where to put the decimal point, we notice that as 47 is nearly 50, the result will be rather less than $50 \times 12 = 600$. Hence the answer is obviously 587.4.

If greater accuracy had been required, we should have proceeded

thus :—

Ex. 9. Multiply 3.72 by .0005962.

Here we make 3.72 the multiplier as it shortens the work.

5962 278	As 3.72 is nearly 4, the answer will be rather less than $.0006 \times 4 = .0024$.
17886	
4178	
119	Hence the result is '0022178, or '00222 correct
	to the fifth decimal place.
22178	-

Ex. 10. To find the number of feet in 726.422 metres, given that 1 metre = 3.2808 feet,

726422 80828	726 × 3 = 2178, 2883·245.	henoe	the	answer	is	clearly
2179266 145284 59114 581						
2888245	•					

Rule for division.—Proceed as in the ordinary way, but instead of adding zeros to the dividend cut off digits from the divisor, carrying forward a figure from the digit rejected, just as in multiplication.

Ex. 11. Divide 2.71828 by 3.1416.

8,1,4,1,6)271828 (86525

Since $\frac{2.7}{8} = 0.9$, the answer is evidently 0.86525.

——

_

Ex. 12. How many cubic feet would be occupied by 1897-6 gallons of water? (6.228 gallons occupy 1 cubic foot.)

6,2,2,8)18976 (8047

Note that as 292 is not divisible by 622, we put zero in the quotient and then divide by 62. The result is 804.7.

—

Ex. 13. How many litres correspond to 6279864 cubic inches? (1 litre=61.035 cubic inches.)

6,1,0,8,5)6279864 (1028896

> 6 882

Here, and in similar cases, proceed exactly as in ordinary division until all the figures in the dividend have been brought down, then begin to abbreviate. The result is seen at once to be 102889 6.

Examples requiring the use of Logarithms.

Rx 14. To find a factor to multiply the number of a.c. of normal sulphuric acid required to saturate 20 c.c. of gas-liquor so as to give ounces of H_2SO_4 required per gallon

Let x be the number of c.c. of normal sulphuric acid used.

Then x c.c. contain '049 x grams of H₂SO₄
'049 x grams for 20 c.c. will be

$$\frac{.049 \times 4545.96}{20}$$
 x grams H₂SO₄ per gallon

Or

$$\frac{-049 \times 4545 \cdot 96}{20 \times 28 \cdot 3495}$$
 counces H₂SO₄ per gallon.

To find the value of the fraction :-

The log thus obtained may now be abbreviated to 1.59425. Suppose that 32.8 c.c. of normal H_2SO_4 were required, then

1.11012 = 12.89 ounces H_2SO_4 per gallon.

Logarithms should not always be used in similar cases, since by cancelling out common factors in numerator and denominator some fractions reduce to very simple forms. Thus in a certain calculation the following factor was required:—

Ex. 15.
$$\frac{480 \times 20 \times 30}{144 \times 7000}$$
 which readily reduces to $\frac{2}{7}$.

INDIRECT ANALYSIS.

The methods used are best shown by examples.

Kx. 1. A mixture of chlorides of potassium and sodium weighs 0.9800 gram, and it contains 0.5633 gram of chlorine: to find the amount of each chloride present.

Hence the mixture contains

$$\frac{.742 \times 100}{.98}$$
 = 75.71% NaOl and 24.29% KOl.

The general rule in this case is found as follows:-

Let w= weight of mixed chlorides of sodium and potassium s= weight of chlorine and c= weight of NaCl present.

Then
$$6066x + 4756$$
 $(w - x) = s$
 $131x + 4756$ $w = s$

$$\frac{131}{4756}x = \frac{s}{4756} - w$$
or $27544x = 2 \cdot 1026s - w$
 $x = 3 \cdot 6305$ $(2 \cdot 1026s - w)$

Hence the rule :-

Multiply the weight of chlorine present by 2.1026, and subtract from the product the weight of the mixed chlorides. The remainder multiplied by 3.6305 will give the weight of sodium chloride present in the mixture.

 $\log 2.1026 = 0.32276$ $\log 3.6305 = 0.55997$

The above rule gives the best results when the chlorides present

are in approximately equal amounts.

Ex. 2. 0.9000 gram of a mixture of calcium and strontium carbonates yields 1.1892 grams of sulphates of calcium and strontium. What is the percentage composition of the mixture of carbonates?

Since
$$CaCO_3 = 100$$
 and $CaSO_4 = 136$
1 gram of $CaCO_3$ will yield 1 36 grams $CaSO_4$.
Similarly 1 , $SrCO_3$, 1.244 , $SrSO_4$.
(See p. 51.)

Hence the mixture consisted of

$$\frac{3 \times 100}{9}$$
 = 33.33% calcium carbonate
and 66.67% strontium carbonate.

MONLY OCCURRING COMPOUNDS.	
TIONS OF COM	nhydrous.
TAGB COMPOSE	$\mathbf{ed.} \mathbf{A} = \mathbf{a}_{1}$
ND PERCEN	C=crystalliz
. Wинентв, д	
MOLEOULAR	
FORMULA,	

_	Percentage Composition.	Al 20·30; Cl 79·70 Al 66·41; H ₂ O 34·59 Al 53·03; O 46·97 Al ₂ O ₂ 10·37; NH ₂ 3·76; SO ₂ 36·31; H ₂ O ₄ 10·77; K ₄ O 9·93; SO ₂ 86·31; H ₃ O ₄ 10·77; K ₄ O 9·93; SO ₂ 88·76;	N 82:35; H 17.75 NH ₈ 17:39; HBr 82:61 NH ₈ 82:62; CO ₂ 66:01; H ₂ O 11:47 NH ₈ 11:84; HC 68:16 NH ₈ 21:27; HNO ₈ 78:73 (A) NH ₈ 27:46; H ₄ C ₈ O ₄ 72:54 NH ₈ 26:78; P ₈ O ₅ 68:76; H ₂ O 20:46 NH ₈ 25:78; H ₈ SO ₄ 74:22 NH ₈ 25:78; H ₈ SO ₄ 74:22 NH ₈ 25:78; H ₈ SO ₈ 78:17;
A - sandy aroun.	Molecular Weight,	266 ·96 166 ·248 102 ·3 (C) 666 ·698 (A) 843 ·410 (O) 906 ·948 (A) 474 ·564 (O) 949 ·064 (A) 516 ·680	17.084 97.962 167.118 68.602 80.062 ((A) 142.100 182.182 76.122
O-orysmetrized	Formula.	Al ₂ Cl ₄ Al ₂ (OH) ₆ Al ₂ (OH) ₆ Al ₂ (SO ₄) _b 18H ₂ O Al ₂ (NH ₄) ₂ (SO ₄) _b 24H ₂ O Al ₂ K ₅ (SO ₄) _b 24H ₂ O	NH, NH,Br (NH,HCO,+ NH,O,0 NH,O, NH,O, (NH,N-C,O, H,O (NH,N-N-O, (NH,N-N-O, NH,CNS
	Маше.	Aluminum oblorido,	Ammonia, Ammonia, Ammoniam bromide, asrbonate, ohloride, mitrate, phosphate, phosphate, thiooyanate,

Sb 58·05; Cl 46·95 Sb 88·86; Ol 66·64 cl. 70·06	So 71 42; S 28 58	As 41 '34; Cl 58 '66 As 75 '75; O 24 '25	As 60.91; S 89.09 As 65.21; O 34.79	BaO 77 71; CO, 22-29	(C) BaOl ₂ 85·25; H ₂ O 14·75 (A) Ba 65·95; Ol 84·05	BaO 58.67; No. 41.88	BaO 48-61; Ho 51-39	BaO 65.70; SO, 34.30	Bi 66·16; Cl 83·94 Bi 89·66; O 10·84	Bi(NO ₁₎₃ 81·89; H ₂ O 18·61	B 31.48; O 68.57 B ₃ O ₈ 66.48; H ₂ O 48.57	
228 · 58 288 · 4	886·61	181 ·84 895 ·84	246·18 229-92	197-87	(C) 244·322 (A) 208·290	261.89	(C) 815.514	238.44	314·38 464	$\{(0)\ 484.11 \ (A)\ 394.09 \}$	70 62·024	
SBCI, SB,O,	2000 2000 2000 2000 2000 2000 2000 200	A8(1)8 A8(0)8	As.O.	BaCOs	BaCl., 2H.0	Ba(NO ₃)	Ba(OH), 8H,O	BaSO4	Bi@ Bi _s 0,	Bi(NO _{2)to} 6H ₂ O	B ₂ O ₃ H ₃ BO ₃	1
		• -		•	•	•		•	• •	•	• •	
Antimony trichloride, Antimonio axide,	Andmony tetroride, . , trisulphide,	Arsenic (As = 74.96) Arsenic trichlorids, Arsenious oxide.	Arsenic trisulphide, pentoxide,	BARIUM (Ba=187.87) Barium carbonste,	", ohloride, .	" nitrate,.	" hydroxide, .	" sulphate, .	Bismuth obloride, oxide,		Bordon (B=11) Bordo anhydride, acid,	

44
COMPOUNDS—continued.
MENTY OCCUBILING
COMPOSITIONS OF CO
B, AND PERCENTAGE
Moleoular Weight
FORMULA,

44		PERCENTAGE COMPOSITIONS.				
Formula, Molegoliar Weighth, and Percentage Compositions of commonity occurring Compounds—continued. $C=\operatorname{cystallized}, \Delta=\operatorname{anhydrons}.$	Percentage Composition.	CdOl, 91.05; H ₂ O 8.95 Cd 87.54; O 12.46 Cd 77.80; S 22.20	(A) Ca 86·10; Cl 69·90 CaO 56·08; CO ₂ 42·97 CaO 56·83; F 48·07 CaO 75·68; F 48·07 CaO 76·68; F 48·07 CaO 34·17; N ₂ O ₂ 65·88 Ca 71·46; O 28·54 (O) CaO 92·57; SO ₂ 46·51; H ₂ O 2a·94; P ₂ O ₂ 60·67; H ₂ O 28·94; P ₂ O ₂ 60·77; H ₂ O 15·39 CaO 54·21; P ₂ O ₂ 60·77; H ₂ O 15·39 CaO 54·21; P ₂ O ₂ 46·79	C 42-86; O 57-14 C 27-27; O 72-78		
лока от соммонь. А=anhydrons.	Molecular Weight,	{ (C) 201.336 } { (A) 183.920 } 128.4	((0) 219-086 100-07 100-07 74-086 ((0) 286-154 ((A) 186-140 ((A) 186-140 ((A) 186-140 284-182 810-29 810-29	28		
AND PERCENTAGE COMPOSE C=orystallized,	Formula	CdOl, Ho Odo CdS	CaClp, 6H ₂ O CaCO ₂ CaF ₃ Ca(ÖH ₃) Ca(NO ₂) ₂ 4H ₂ O CaO CaO CaO ₄ 2H ₂ O CaH ₃ (PO ₂) ₂ CaH ₃ (PO ₂) ₃	• 00 00		
Бовител, Молеотіле Weights ,	Name.	Cadmium chloride, oxide,	Caloum chloride,	Carbon (C=12) Carbon monoxide,		

	Phro.	BATAGH COMPOSITIONS.	. 4
Or 82-88; Ol 67-17 Or 68-42; O 81-68 Or ₂ O ₂ 88-75; SO ₂ 61-25	Co 45'40; Cl 54'60 CoO 81'68; N ₂ O ₅ 45'57; H ₂ O 22'80 Co 78'66; O 21'84	Cu 64·19; Cl 86·81 Cu 88·82; O 11·18 Cu 79·86; S 20·14 (A) Cu 47·27; Cl 62·73 Cu 79·89; O 20·11 Cu 66·47; S 38·58 Cu 0 81·86; SO ₂ 32·06; H ₂ O 86·08	H 2.76; Cl 97.24 H 1.25; Br 98.75 H 0.79; I 99.21 N ₀ 0,85.71; H ₂ O 14.29 SO ₈ 81.68; H ₂ O 18.87
816·76 152 892·21	129.89 { (C) 237.038 { (A) 182.990 } 74.97	198 06 143 14 159 21 ((1) 170 622) ((A) 184 490) 79 67 95 64 ((A) 159 64	86.468 80.928 127.928 63.018 98.086
Oracii, Oracii, Oracii,	CoCl., SH.O.	Cu _a Cu _a Cu _a O Cu _a S CuCu _a 2H _a O CuO CuS CuSO ₄ , 5H _a O	HCI HBr HI HNO, H ₂ SO ₄
Chromica (Cr=52) Chromic chloride, ,, oxide, ,, sulphate,	COBALT (Co=58.97) Cobaltons chloride,	Cuprous chloride, sxide,	Hydrogen chorde, hydrogen chorde, indide, indide, indide, indide, indide, indide,

EN COMPOSITIONS OF COMMONIX COURRING COMPOUNDS—continued.	llized. A=anhydrous,
BROKKTAG	0=orystal
E G	
₩плентв, л	
TOTAB	
MOLEC	
MTOTAR,	
FOR	

		PROBREMS COMPOSITIONS.
	Percentage Composition.	Fe 44.05; Cl 55.95 Fe 62.02; CO ₂ 37.98 Fe 77.73; O 22.27 Fe O 25.84; SO ₂ 28.80; H ₂ O 45.86 O 7028 gm. contains 0 1 gm. Fe Fe 63.52; S 36.48 Fe 69.94; O 30.06 Fe 72.86; O 27.64 Fe 69.94; O 30.06 Fe 72.86; O 27.64 Fe 66.94; O 30.06 Fe 72.86; CO 27.64 Fe 69.94; O 30.06 Fe 72.86; O 27.64 Fe 69.95; O 27.64 Fe 72.86; O 27.64 Fe 72.86; O 27.64 Fe 74.49; O 126.61 Fe 0 69.95; C 7.17 Fe 66.95; O 13.88 Fe 66.95; O 13.88 Fe 86.62; O 13.88
	Molecular Weight.	126.76 115.84 71.34 ((C) 278.022 (A) 161.910 ((A) 284.44 169.68 231.62 119.98 399.98 (A) 326.148 (A) 326.148 238.12 238.12 239.1 238.17 238.17 238.17 238.17 238.17
	Formula.	Fedi, Feoo, Feo, Feo, 7H,0 Feo, 7H,0 Feo, 7H,0 Feo, 6H,0 Feo, 6H,0 Feo, 7H,0 Feo, 7H,0
_	Name.	Inon (Re=56.84) Rerrous chloride, ,, aulphate, ,, aulphate, ,, aulphide, Tiferro chloride, Triferro tetroride, Iran Ganphide, Rerric sulphide, Rerric sulphide, Laad acetate, ,, carbonate, carbonate, ,, chromate,

			47					
	(A) Mg 25·54; Cl 74·46	MgO 47.82; CO, 52.18 Mg 60.82; O 89.68	(A) MgO 27-18; N ₂ O ₅ 72-82	MgO 16·36; SO, 32·48; H2O 51·16	MgO 36.21; P ₉ O ₅ 63.79	MnO 61.72; OO ₂ 88.28 (A) Mn 43.65; OI 56.85 Mn 77.44; O 22.56 (A) MnO 46.97; SO ₂ 53.03	Mn 63-14; S 50-50 Mn 63-19; O 86-81 Mn 69-59; O 80-41 Mn 72-08; O 27-97	Hg 84.98; Cl 15·02 Hg,O 74·88; NgO ₅ 19·25; H ₂ O 6·42 Hg 96·16; O 8·84 Hg 78·88; Cl 26·12
	(C) 208-886 \ (A) 95-240 {	40.82	(O) 256 486 (A) (A) 148 840	(C) 246·502 } (A) 120·390 }	$\left\{ \begin{pmatrix} \text{C} & 490.996 \\ \text{A} & 274.804 \\ 222.72 \end{pmatrix} \right\}$	$ \begin{cases} (C) \ 197 \ 914 \ \\ (A) \ 126 \ 850 \ \\ 70 \ 93 \ \\ (A) \ 241 \ 08 \ \\ (A) \ 151 \ 00 \end{cases} $	86-98 167-86 228-79	472-12 (G) 561-562 (A) 526-320 417-2 271-52
	MgCl., 6H.0	MgCO.	Mg(NO,), 6H,0	MgSO, 7H,0	Mg ₄ (NH ₄) ₄ (PO ₄) ₂ , 12H ₂ O Mg ₂ P ₂ O ₇	MnCO ₃ MnCi ₂ 4H ₂ O MnO MnSO ₄ , 5H ₂ O	Mrio Mrio Mrio Mrio Mrio	Hg,CJ, Hg,C Hg,O HgCJ,
MAGNESIUM (Mg=24.82)	Magnesium chloride,	" carbonate, oxide,	" nitrate,	" sulphate,	Magnesium ammonium phosphate Mg4(NH4)k(PO4)s 12H2O , pyrophosphate, . Mg4P2O7	MANGANESK (Mn = 54-98) Manganous carbonate, ,, cabloride, , oxide, sulphate,	Manganese dioxide,	Merourer (Hg = 200·6) Marourous obloride, " nitrate, " oxide, " oxide,

-continued.
Сомтнотиля
COOTERATION
OF COMMONLY
COMPOSITIONS O
PREOENTAGE (
A.N.D
W віснтв,
MOLECULAB
FORMULA,

	Percentage Composition.	Hg 04.92; N ₂ O ₅ 32.38; H ₂ O 2.70 Hg 92.91; O 7.39 Hg 86.22; S 18.78 HgO 78.01; SO ₂ 26.99 Ni 46.28; Cl 54.72 Ni 78.68; O 21.42 Ni 0 26.69; SO ₂ 28.51; H ₂ O 44.90 Ni 64.66; S 36.34 Ni 70.00, 89.88; H O 27.77	Pob 72-44; Ho 27-56 Pob 88-75; Ho 11-26 Pob 777; Ho 20-28 P 48-69; O 56-31	Pt 57.92; Cl 42.08 Pt 48.96; NH ₃ 7.67 (N 6.91) Pt 40.15; Cl 48.77; K 16.08 (KCl 80.67 = K ₂ O 19.98)
A=anhydrous.	Molecular Weight.	((C) 667'256 (A) 648'240 216'6 282'67 296'67 (A) 280'682 ((C) 280'682 ((A) 164'750 9 (C) 290'768	(A) 182700 (B) 182700 (B) 182064 (B) 183064 (B) 1783112 (B) 14208 (B) 14208	887·04 444·044 486·16
C=crystallized.	Formula.	2Hg(NO ₃), H ₂ O HgO HgSO ₄ HgSO ₄ NiO ₃ NiO ₆ 7H ₂ O NiSO ₆ 7H ₂ O NiSO ₇ HgO	HP(OH), HPPO, HPPO, HPPO, HPPO, PSO,	Proj _e (NH _b proje K _a proj _e
	Name.	Meroury (Hg=200.6)—contd. Mercuric nitrate, " sulphide, " sulphate, Nickel chloride, " monoxide, " sulphate, " sulphate, " increasely increa	PHOSPHORDS (P = 81 '04) Hypophosphorous add, Phosphoric " Phosphoric " Metaphosphoric " Pyroplosphoric " Phosphorus pentoxide,	Platinum tetrachloride, Ammonium platino-chloride, Potessium

	_		_	_	_		_		_													•						
					_		1										_	_					_		_	-		_
-			K 82.85; Br 67.15	K ₂ O 68·16; CO ₂ 81·84	K ₂ O 47.05; CO ₂ 43.95; H ₂ O 9.00	K 81.90; CI 28.93; O 39.17	K 52.44; Cl 47.56	K 60-05; CN 89-95	K20 48.61; CrO, 51.49	AgO 32 UZ ; CrO, 67 98 K 87 08 : Fe 1 x : 39 : ON 99 : OF	H ₂ O 12.80	K 35.68; Fe 16.96; CN 47.41	K2O 88-95; H2O 16:05	K 28.55; I 76.45	12 4 46.58; NgO, 58.42		K 88.01; O 16.99	70-02 Nun ; Mun C, 70-20	A 0 24:50 5 80 45:95	K 70-93 . S 90.50	20. 62 di 170 CL	20 46 48; SU, 82-97; H2O 18-55	A 40'23; CNS 59:77		St 46 98; O 58-07	-	Ag 57.44; Br 42.58	A8 10 40; C1 24.74
	-	121.88	20.611	7.887	100.108	99.771	00.47		2.467	f (C) 422-348)	$\widetilde{}$	829.2	201.99	100.02	101 11	00 11	168.09	174.97	186.178	110-27	(C) 194-302 \	(A) 158 270 (07 /8	0.00	9 00	1	148.84	
	KCH.O.	KBr	K.Co.	L HCO	KCIO.	KCI	KCN	K.Cro.	K.C.O.	K.Fe(CN), SH.O	T Fe(CN)	KOH KOH	KI	KNO.	KNO.	K,0	KMno,	K,50.	KHSO,	K. N	K,SO, 2H,O	KCNS		SiO.	•	Aor	Aggi	
VOTA89TUM (K = 89.1)	Potassium acetate,	", bromide,	" carbonate,	", bicarbonate,	., chlorate,	,, obloride,	" cyanide, .	,, chromate, .	", dichromate, .	" ferrooyanide,	", ferricvanida	", hydroxide	", iodide,	и, пітите,	" nifrite,	,, oxide,	permanganate, .	", Bulphate,	", blaulphate, .	sulphide,	" sulphite,	" thiogyanate,	SILIOON ($Si = 28.8$)	Silice,	STIVER (AG-107:99)	Silver bromide,	" chloride,	
_	<u> </u>	_	_	_	_								_				_	_						σũ	_	ďΩ		

t	
(
,	

50) PERCENTAGE COMPOSITIONS.							
Formula, Molecular Wrights, and Pergentage Compositions of commonly occurring Compounds—continued. $C = c_{1} + c_{2} + c_{3} + c_{4} + c_{4}$	Percentage Composition.	Ag 68·50; NO ₂ 86·50 Ag 87·06; S 12·94 Ag ₃ O 74·82; SO ₂ 25·98	Na ₂ O 87-76; Al ₃ O ₃ 63:34 (CiNo.O 18-99. B.O. 86-64.	8,0, 69-81	(C) May 21 61; CO 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Na. 0 86 90 ; CO 52 98 ; H 0 10 71 Na. 99 34 ; Ol 60 96 20 88 ; H 0 10 71	Na ₂ O 26 27 ; Olo 22 25 Na ₂ O 77 48 ; H ₂ O 22 52 Na ₂ O 44 7 ; N ₂ O ₈ 68 58 (N 16 48) Na ₂ O 44 93 ; N ₂ O ₈ 68 58	Na. 74.19; O 25.81 Na.O 17.81; P.O. 19.83; H.O 52.86
ггонз от соммонг: A=s nhydrous.	Molecular Weight.	169·89 247·88 811·88	(C) 186·072 164·2	(A) 202 (A) 202	(0) 200 10	84-008 58-46	40.008 85.01 89.01	(O) 358-240 (A) 142-048 (A)
and Pergentage Composit C=otystallized.	Formuls.	Ag'NO, Agg AggS	NaC4H ₂ O ₂ , 8H ₂ O Na ₂ Al ₂ O ₄	$Na_2B_4O_7$, $10H_2O$	Na ₂ CO ₃ , 10H ₂ O	Na HOO	NaOH NaNOs NaNOs	Ne. O. 12H2O
Pormula, Molecular Wrightis,	Name.	SILVER (Ag = 107.88)—contd. Silver nirste, sulphide,	Sodium acetate,	,, borate,	" carbonste,	bicarbonate, chloride,	hydroxide, nitrate, nitrite.	,, oxide, phosphate,

	PERCENTAGE COMPOSITIONS.								
Na 58 92; S 41.08 Na ₂ O 24.59; SO ₂ 25.41; H ₂ O 50.00 Na ₃ O 24.98; S 12.92; SO ₂ 25.81; H ₂ O 36.29	SrO 70:20; CO ₂ 29:80 Sr 32:86; Ol 26:60; H ₂ O 40:64 SrO 48:96; N ₃ O ₆ 51:04 Sr 44:56; O 15:44	S 60.05; O 49.95 S 40.05; O 59.95 H 6.91; S 94.09	Sn 52·67; Cl 81·89; H ₂ O 15·94 Sn 88·15; O 11·85 Sn 78·81; O 21·19	ZnO 64.90; OO ₃ 35.10 Zn 47.96; Cl 52.04 Zn 80.34; O 19.66 (O) ZnO 28.80; SO ₂ 27.85; H ₂ O 48.85 (A) ZnO 50.40; SO ₂ 49.60 Zn 67.09; S 82.91	H 11·19; O 88·81				
78.07 (C) 252.183 (A) 126.07 (C) 248.23 (A) 168.14	147.68. (C) 266.646 (A) 158.550 211.65 108.68	64-07 80-07 34-08 6	$ \left\{ \begin{pmatrix} \text{CO} & 226.962 \\ \text{(A)} & 189.92 \\ 185 \\ 151 \end{pmatrix} \right. $	125 37 186 29 81 37 (C) 287 552 (A) 161 44 97 44	18.016				
Ne ₂ S Ne ₂ SO ₂ , 7H ₂ O Ne ₂ S ₃ O ₃ , 5H ₂ O	BrCO _s SrCl _s , 6H _s O Sr(NO _s), SrO	800 800 80 80 80 80 80 80 80 80 80 80 80	SnCl ₂ , 2H ₂ O SnO, SnO,	ZnCO ₃ ZnCi ₂ ZnO ZnO ZnSo ₄ , 7H ₃ O H O	0				
SODIUM (Na = 28)—continued. Sodium sulphide, ,, sulphite, ,, thiosulphete, STRONTIUM (Sr = 87 68)	Stronthum carbonate, chloride, nitrate, oxide, Sullenge (S=82.07)	Sulphur dioxide, Sulphuretted hydrogen, Try (Sn = 119)	Stannous chloride, ,, oxide, Stannic oxide, ZINC (Zn = 65 · 37)	Zino carbonate, , chloride, ,, oxide, ,, sulphate, ,, sulphide, WATER.					

NOTES ON INDICATORS.

I.—Litmus solution.—A solution of a carbonate whilst being titrated should be boiled to expel the free CO₂, otherwise it is easy to overstep the exact point of neutrality. The titration cannot be done by gas-light.

According to B. Reinitzer (see Abstract, Analyst, 1894, p. 255) litmus is the most serviceable indicator, excelling methyl orange in sharpness of change of colour and sensitiveness, while it possesses an advantage over phenol-phthalein in being capable of being used in the presence of ammonium salts. Good litmus should be used; the solution must be boiled for seven or eight minutes and then neutralized with HCl, so that the wine-red colour remains even on further boiling: the solution is then cooled, and an equal volume of strong alcohol added. The stock solution should be kept in a bottle with a delivery pipette inserted through the cork. The final change of colour is sharpest when the liquid to be titrated is boiled for seven or eight minutes and then well cooled. Lungs has found (see Abstract Analyst. 1895, p. 65) that litmus is only twice as sensitive as methyl orange, against eight times as claimed by Reinitzer. With normal acid practically identical results are obtained, but methyl orange is preferable on account of its speed and the precantions to be observed in the use of litmus. It is only with decinormal acid that litmus is undoubtedly superior, and Reinitzer's method of titration must be observed. Whatever indicator be used, the fluid must be cold when titrated.

If it is desired to titrate carbonates, using litmus or phenolphthalein as indicator, the boiling should be carried out in vessels of porcelain, platinum or silver; for even Jena glass is attacked by hot soda solutions (Lunge).

II.—Methyl orange (the sodium salt of dimethyl-amido-azobenzene-sulphonic acid).

Solution.—One gram in a litre of distilled water.

Unlike litmus, this indicator is unaffected by CO₂, H₂S, boric, arsenious, hydrocyanic, oleic, stearic, palmitic, and carbolic acids, &c. It must not be used for organic acids; nor in the presence of nitrous acid or nitrites, which decompose it. It acts admirably with mineral acids, and with ammonia and its salts. Ordinary temperatures should be observed.

Colour reaction.—Faint yellow if alkaline, pink if acid.

The use of methyl orange is recommended by Lunge (1903) for all cases except that of weak acids, for which phenol-phthalein should be employed. The strength of solutions titrated should not be less than one-fifth normal.

As methyl orange is often adulterated with dextrin and other substances, every new lot purchased should be carefully tested, especially as to whether it gives a sharp change of colour with a mineral acid.

III.—Phenol-phthalein ($C_{80}H_{14}O_{4}$).

Solution.—Dissolve 4 grams in 600 c.c. of strong alcohol, then add gradually with constant stirring 400 c.c. of distilled water.

It is useless for the titration of free ammonia or its compounds, or for the fixed alkalies when salts of ammonia are present. Unlike methyl orange, it is specially useful in titrating all varieties of organic acids—viz., oxalic, acetic, citric, tartaric, &c. It may be used either in alcoholic solutions or in mixtures of alcohol and ether. It gives no colour with bicarbonates.

Colour reaction.—Colourless in neutral or acid liquids, but

rendered purple-red by faint excess of caustic alkali.

IV.—Cochineal solution.

Solution. - Digest one part of powdered cochineal with 10

parts of 25 per cent. alcohol.

It is not very much modified in colour by CO₂, and may be used by gas-light. Most useful in titrating solutions of the alkaline earths, such as lime and baryta-water. Inapplicable in the presence of even traces of Fe or Al compounds or acetates.

Colour reaction .- Turned violet by alkalies; the original

yellowish-red colour being restored by mineral acids.

V.—Phenacetolin.

Solution.—Two grams in a litre of alcohol.

This indicator may be used to estimate the amount of KHO or NaHO in the presence of K₂CO₃ or Na₂CO₃, or of CaO in the presence of CaCO₆.

Colour reaction.

With NH₃ and normal alkaline carbonates—dark pink.

bicarbonates —intense pink mineral acids —golden yellow.

VI.—Rosolic Acid (C₂₀H₁₀O₃).

Solution.—Two grams in a litre of 50 per cent. alcohol.

This indicator is excellent for all the mineral, but useless for the organic acids, except oxalic. It may be relied on for the neutralization of SO₂ with ammonia to normal sulphite.

Colour reaction.—The pale yellow colour is unaffected by

acids, but changed to violet-red by alkalies.

VII.—Lacmoid.

Solution.—Three grams may be dissolved in a litre of dilute alcohol, but Förster recommends the addition of 5 grams of naphthol green to the above. The effect is to produce a more decided blue colour with alkalies than is given by lacmoid alone.

Colour reaction, -Blue in alkaline, red in acid, solution.

VIII.—Congo Red.

Solution.—One gram in 100 c.c. of 10 per cent. alcohol. Specially useful in determining free mineral acids in the presence of most organic acids.

Colour reaction. - Red in alkaline solution, turning blue

with excess of acid.

Turmeric Paper—Digest one part of powdered turmeric with six parts of weak alcohol, filter, and steep some filter paper in the filtrate. The paper, when dry, must exhibit a fine yellow thit, and be readily wetted by aqueous finids. Cut into strips and keep in a well-stoppered bottle covered with black paper.

THE PRECIPITATING POWERS OF A FEW COMMON REAGENTS.

1. Ammonium oxalate. (NH₄)₂C₂O₄, OH₂.

40 grams per litre.

For 1 gram taken

10 c.c. will precipitate 15 78 per cent. CaCo.

28 17 , CaCO.

38 31 , CaSO.

,, 38·31 ,, CaSO₄. ,, 29·11 ,, Ca₃P₂O₅.

2. Barium chloride. BaOl, 2OH,

100 grams per litre.

For 1 gram taken

10 c.c. will precipitate 13:11 per cent. S.

33	22	32"/9	,,	BO8.
		40.16		H.SO ₄ . CaSO ₄ .
17	39		"	0.00
33	19	55·7 4	**	Caro

Hydrogen disodium phosphate. Na₂HPO₄, 12OH₂.
 100 grams per litre.

For 1 gram taken

10 a.c. will precipitate 11:17 per cent. MgO.

"23:46 , MgCO.

"38:51 , MgSO.

4. Magnesia Mixture.

Dissolve 40 grams of "Magnesia" in HCl, and add a solution of 200 grams of NH₄Ol in the least possible quantity of water. Add 0.960 ammonia till a slight precipitate forms, and filter. Make up the clear filtrate to 1500 c.c. with distilled water, and add 750 c.c. 0.960 ammonia. Shake well, allow to stand, and filter for use. This solution remains clear on diluting with fairly strong ammonia, and for 1 gram of a substance taken

10 a.c. will precipitate 60 per cent.* Ca.P.O.

Thus, if 1 gram of a Belgian Phosphate were taken for analysis, 10 a.a. would doubtless be sufficient to precipitate the P_2O_5 present, but 15 a.c. would be the proper amount to add, the excess being tested for in the filtrate in the usual way.

5. Ammonium molybdate solution.

Dissolve 50 grams of ammonium molybdate in 200 c.c. of 960 ammonia at a gentle heat, and pour into a mixture of 400 c.c. strong nitric acid, and 400 c.c. water contained in a beaker standing in water, adding the molybdate solution slowly with constant stirring. Allow the solution to stand, and filter for use.

100 c.c. will precipitate 0.10 gram P.O.

^{*} The strength of each batch should be determined and marked on the stock bottle. It usually comes out about 65 per cent.

I. IMPERIAL SYSTEM.

Avoirdupois Weight.

16 drams (dr.)=1 ounce (oz.) = 487.5 grains* log. $487.5 = 2.640.9781$
16 ounces	=1 pound (lb.)=7000 , log. 7000 =8.845 0980
14 pounds	=1 stone
28 ,,	=1 quarter
100 ,,	=1 cental
4 quarters	=1 hundredweight (owt.) = 112 lb. log. 112 = 2.049 2180
20 owbs.	$= 1 \text{ tor}$ $= 2240 \text{ lb} \cdot \log 2240 = 8.850 2480$

Note. -1 dram = 27.34875 grains (log. 1.436 8581).

24 grains (and its multiples 48, 72, 120, and 240 grains) are legal weights and are commonly called pennyweights.

Trou Weight.

1 troy ounce (oz. tr.)=480 grains* | log. 2.681 2412

Weights less than a troy ounce are expressed as decimals of an ounce, not in grains. For greater weights, ounces only are used, there being no troy pound.

Anothecaries' Weight.

20 grains* (gr.) =1 scruple (9) 8 scruples or 60 grains =1 drachm (3) 8 drachma or 480 grains=1 ounce (3)

Apothecaries' Measures.

60 minims (min.)=1 fluid drachm (fl. dr. or f 3) 8 fluid drachms = 1 fluid ounce (fl. oz. or / 3) 20 fluid ounces =1 pint (O) † 8 pints =1 gallon (O) \ddagger

Relations of Apothecaries' Measures to Weights.

	(All liquids to be measured at 62° Fah.)								
		Logarithms.							
1 minim is th	e measure o	f 0.911	grain we	sight o	f wate	ar	T-959 7868		
1 fluid drachr	~	54.687	grains	_			1 787 8881		
	••	487.5	g.u.ms	,,			2.640 9781		
1 fluid ounce	,,		"	,,					
1 pint	,,	8750	13	,,			8.942 0081		
1 gallon	"	700008	11	,,			4.845 0980		
- 6	"	·	"	• • • • • • • • • • • • • • • • • • • •					
1 pint = 84	-6820 mbia	inches					1.540 1151		
		THOHOD .		•	•				
1 gallon = 277		, .				•	2 443 2051		
1 gallon = 0.1	6057 cubic f	oot .			•		T·205 6614		
•	•								
Cubic inches	v 0:02888 =	nints					2.459 8849		
		- ,,		•	•	•			
Cubic feet	X 0 000004=	Griions.					8 556 7949		
Cubic feet	×6.228 =	gallons.					0.794 8886		
* The grain is common to Avoirdupois, Troy, and Apothecaries' Weights.									
				1000		· ~			

† O=octarius, i.s., one-eighth According to H. J. Chaney t C=(Roman) Congius.

One gallon once distilled water weighs 70000 5 grains.

twice 70000.0 well water weighs 70066-6

WRIGHTS AND MRASURES-continued.

Long Measure.

Square Measure.

```
144 square inches=1 square foot
9 ,, feet=1 ,, yard
80½ ,, yards=1 ,, rod, pole, or perch
40 ,, poles=1 rood
4 roods=1 sore=4840 square yards
640 acres=1 square mile
```

Oubic or Solid Measure.

		inches=1 cub feet =1 "		8=3-287 5487 7=1-481 8688
7 11				Logarithms.
r on pic inc	n of water"	at 62° Fahr.	weighs 252.286 grains	2.401 8981
11	,,	,,) T·760 9150
1 cubic foo	. 11	**	0.086041 lb.	2·556 7951
1 cubic foo	t,,	11	996 458 oz. (av.	2.998 4587
,,	19	,,	62 2786 lb.	1.794 8888
	. ,,	"	28 2491 kilogram	9 1'451 0046
1 cubic ya	rd ,,	",	0.75068 tons	I·875 4546

Measures of Capacity.

```
4 gills = 1 pint
2 pints = 1 quart
4 quarts = 1 gallon
```

Ale, Beer, and Porter Measure.

The following measures between square brackets, though in common use, are not officially recognized:—

```
4 gills =1 pint

2 pints =1 quart

4 quarts =1 gallon

[9 gallons =1 firkin

2 firkins =1 kilderkin= 18 gallons

2 kilderkins=1 barrel = 86

3 ,, =1 hogshead= 54 ,,

8 hogsheads=1 butt = 108 ,,
```

Dry Measure.

```
2 pints =1 quart | 4 pecks =1 bushel
4 quarts =1 gallon | 8 bushels =1 quarter
2 gallons=1 peck | 4 quarters=1 chaldron
```

^{*} f.s., distilled water freed from air.

WEIGHTS AND MEASURES-continued.

II. WEIGHTS AND MEASURES OF THE METRIC SYSTEM.

Measures of Weight.

The metric standard of weight is the kilogram, which is represented by a certain iridio-platinum weight deposited with the Board of Trade.

One-thousandth part of this is the gram, which constitutes the practical unit of weight, the fractions and multiples of which are thus designated:—

0.1 gram = 1 decigram | 10 grams = 1 dekagram | 100 ,, = 1 hectogram | 100 ,, = 1 hectogram | 1000 ,, = 1 kilogram | 1000 ,, = 1 kilogram

Measures of Capacity.

The standard litre is the volume of a kilogram of pure water at 4° C. under standard barometric pressure.

The value of the litre in terms of the cubic centimetre has been the subject of numerous experiments. Very exact measurements made during the last few years have shown that

1 litre=1000 028 cubic centimetres (c.c., c. cm., or cm².).

Hence in all but the most refined experiments the volume of one cubic centimetre may be taken as one-thousandth part of that of the litre (s.c. one millilitre or mil*).

1 decilitre=100 c.c. | 1 centilitre=10 c.c.

Measures of Length.

The metre is represented by the length, at 0° C., of a certain iridioplatinum bar deposited with the Board of Trade. The fractions and multiples are as follows:—

TABLES FOR THE CONVERSION OF METRIC INTO IMPERIAL MEASURES AND vice verse.

A. Linear Measure. Metric into Imperial. Logarithms. 1 millimetre (mm.) = 0.0393701 inches . 2.595 1666 1 centimetre (cm.) = 0.398701I·595 1666 1 decimetre (dm.) = 8.9870110.595 1666 I metre (m.) =89.8701181.595 1666 = 8 280848 feet ,, 0.515 9855 = 1.093614 yards 0.038 8642 1 kilometre (km.) = 1093.61426, 8.038 8642 = 0.621872 mile I-793 8517

^{*** 88} cm. = 13 inches within 0.008 inch in deficiency.
127 cm. = 50 inches within 0.00005 inch in excess.

^{*} For pharmaceutical purposes the terms mil (=millilitre), decimil (0.1 mil) and centimil (0.01 mil) have been legalized and are in regular use.
† The prefix mioro always indicates a millionth part of the unit.

WRIGHTS AND MRASHRES-continued.

Weights and Mhasures—continued.								
1 inch = 2.540 ce 1 foot = 80.480 1 yard = 0.91439 1 mile = 1.6098	9 metre		Logarithms. 0.404 8887 1.484 0150 T.981 1887 0.206 6370 in deficiency.					
mm. Inch. 1 = '08987 2 = '07874 8 = '11811 4 = '15748 5 = '19685 6 = '28622 7 = '27659 8 = '81496 9 = '86488	tetres. Feet. 1 = 3.2808 2 = 6.5616 8 = 9.8424 4 = 18.1282 5 = 16.4040 6 = 19.6848 7 = 22.9656 8 = 26.2464 9 = 29.5272	Inches. mm. 1 = 25.4 2 = 50.8 8 = 76.2 4 = 101.6 5 = 127.0 6 = 152.4 7 = 177.8 8 = 203.2 9 = 228.6	Feet. Metres. 1 = 0.3048 2 = 0.6096 8 = 0.9144 4 = 1.2192 5 = 1.5240 6 = 1.8288 7 = 2.1886 8 = 2.4884 9 = 2.7482					
	B. Square M	Tara seriesa						
1 are (100 square metro), 1 square inch = 6.4516 1 square foot = 9.2908 1 square yard = 0.8881 1 sore = 0.4046	Metric into Imperia n ² , = 16.5 r centiare = 10.7 , = 1.18 ces = 119.6 , = 0.02 (mperial into Metric square centimetre square decimetre 26 square metres 8 hectare	1. 00 square inches 339 square feet . 960 square yards 0 ,,, 24711 acres .	1.081 9697 0.077 7812 2.077 7812 2.2077 7812 2.892 8908 0.968 0297 1.922 2717 1.1607 1117					
1 square mile (640 acr	38)= 209.00 Tectw	res	. 2.418 2998					
C. Cubic Measure and Measures of Capacity.								
1 subic centimetre (e.c	ard into Imperial, etc.) = 0.0610 cubic = 16.884 minim = 0.28157 fluid = 0.085196 fluid = 61.024 cubic it = 85.1960 fluid = 1.75980 pint = 0.2200 gallou = 2.75 bushels = 85.8148 cubic = 1.807954 cubic	inch	. 2.785 8298 . 1.227 7825 . 1.449 5864 . 2.546 4988 . 1.785 5007 . 1.546 4988 . 0.245 4638 . 1.342 4227 . 0.439 8827 . 1.547 9567 . 0.116 5924					

^{* * 25} litres = 44 pints within 0.005 pint in deficiency.
5 dekslitres = 11 gallons within 0.002 gallon in deficiency.

WEIGHTS AND MEASURES-continued.

o.c. Cubic Inch.	Litres. Fluid Ounces. Pints. Gallons.
1 = 0.061024	1 = 85.1960 = 1.7598 = 0.22
2 = 0.122048	2 = 70.3920 = 8.5196 = 0.44
8 = 0.183072	8 = 105.5880 = 5.2794 = 0.86
4 = 0.244096	4 = 140.7840 = 7.0892 = 0.88
5 = 0.805120	5 = 175.9800 = 8.7990 = 1.10
6=0.866144	$6 = 211 \cdot 1760 = 10 \cdot 5588 = 1 \cdot 82$
7=0.427168	7 = 246.8720 = 12.3186 = 1.54
8 = 0.488192	8=281.5680=14.0784=1.76
9=0.549216	9 = 816.7640 = 15.8882 = 1.98
	,

		Imperi	al into Me	trio.					Logarithms.
1 cubic inch		16 887 ou							1.214 4995
1 onbie foot		28 317 cn							1.452 0472
1 cubic yard	=	0.764558	c ubic m	etre		•			I.888 4076
·									
1 minim	=							,	<u>2</u> ·770 8520
1 fluid drachn			bi c centi i	metres					0.550 4780
1 fluid ounce		28 4128	,,				•		1.458 2084
1 pint		568 25	. ,,						2.754 5894
1 quart									0.088 8888
1 gallon	7	4.242968	l litres				•		0.657 6260

Ouble Inches. Ouble Centimetres.	Fluid Ounces, Cubic Centimetres.
1= 16.887	1 = 28.4123
2= 82.774	2= 56.8246
8 = 49.161	8= 85·2869
4= 65.548	4=118.6492
5 = 81.985	5=142.0612
6= 98.822	•
	6 = 170.4788
7=114.709	7=198.8861
8 = 131.096	$8 = 227 \cdot 2984$
9 = 147.488	9 = 255.7107
Distantia	Gallons, Litres.
Pints. Litres.	
1 = 0.56825	1 = 4.54596
2 = 1.18650	2 = 9.09192
8 = 1.70475	8=18.68788
4 = 2.27800	4=18.18884
5=2.84125	5=22*72980
6 = 3.40950	6 = 27.27576
7=8.97775	7 = 81.82172
8 = 4.54600	8=86*86768
0	0-00 00100

Note.—The following measure, though not recognized officially, is much used in certain trades:—1 barn gallon=17 pints=9.6602 litres.

9 = 40.91864

9=5.11425

WEIGHTS AND MHASURES -continued.

```
Metric into Imperial.
                                                        Logarithms.
 1 milligram = 0.01548 grain .
                                                        2·188 4824
1 centigram = 0.15432 grain .
                                                        T·188 4824
 1 \operatorname{decigram} = 1.54824 \operatorname{grains}.
                                                        0.188 4824
            =15 48286 grains.
 1 gram
                                                        1:188 4824
            = 0.564883 dram avoirdunois
   ,,
                                                        T·751 5789
            = 0.085274 ounce avoirdupois
   ,,
                                                        2.547 4547
            = 0 25721 drachm (apothecaries).
   ,,
                                                        I·410 2878
            = 0.0321507 ounce trov
                                                        2.507 1905
1 kilogram = 15482 3564 grains
                                                        4.188 4324
            = 85.2740 ounces avoirdupois
     ٠.
                                                        1.547 4547
            = 2 2046228 lb. .
     .,
                                                        0.848 8841
            =82.15074 ounces troy .
                                                        1.507 1910
1 quintal (100 kilog.)=1 968 owt. .
                                                        0.294 0251
1 tonne (1000 kilog.) = 0.9842 ton.
                                                        T-998 0884
  Grama, Graina.
                    Oz. (Av.).
                              0z (Troy).
                                                 Kilograms, Pounds,
    1 = 15.48286 = 0.035274 = 0.0821507
                                                   1 = 2.20462
    2= 80.86472=0.070548=0.0648014
                                                   2 = 4.40924
    8 = 46.29708 = 0.105822 = 0.0964521
                                                   3 = 6.61386
    4= 61.72944=0.141096=0.1286028
                                                   4 = 8.81848
    5= 77.16180=0.176370=0.1607585
                                                   5 - 11.02810
    6= 92.59416=0.211644=0.1929042
                                                   6 = 13.22772
    7=108-02652=0.246918=0.2250549
                                                   7 = 15.48234
    8=128.45888=0.282192=0.2572056
                                                   8=17:63696
   9=188.89124=0.817466=0.2898568
                                                   9 = 19.84158
              Imperial into Metric.
                                                       Logarithms.
1 grain
                         0.0648 gram
                                                       2∙811 5750
1 drachm (apoth.)
                        8.888 grams
                                                       0.589 7268
1 ounce troy
                       31 1035 grams
                                                       1:492 8098
1 dram avoirdupois =
                        1.772 grams
                                                       0.248 4687
1 ounce avoirdupois =
                       28.350 grams
                                                       1.452 5581
1 pound (16 oz.)
                   = 453.59243 grams .
                                                       2.456 6658
1 stone (14 lb.)
                        6.350 kilogram :
                   =
                                                       0.802 7787
1 quarter (28 lb.)
                   =
                       12.70 kilograms.
                                                       1:108 8037
1 cwt. (112 lb.)
                       50.80 kilograms .
                   =
                                                       1705 8687
                        0.5080 quintal .
                                                       T-705 8687
1 ton (20 cwt.)
                   =1016 0 kilograms
                                                       8:006 8987
     Grains. Gram.
                                         Ounces. (Av.)=Grams.
        1 = 0.06480
                                               1 = 28.35
        2 = 0.12960
                                              2 = 56.70
        8 = 0.19440
                                              8= 85.05
        4 = 0.25920
                                              4 = 118.40
        5 = 0.82399
                                              5 = 141.75
        6 = 0.88879
                                              6 = 170 \cdot 10
        7 = 0.45859
                                              7 = 198.45
        8 = 0.51839
                                              8 = 226.80
        9 = 0.58819
                                              9 = 255.15
       44 kilograms = 97 pounds within 0 004 lb. in excess.
      808
                   =668
                                          O .0008 1P
```

WRIGHTS AND MRASURES-continued.

Pounds to Kilograms.	Hundredweights to Kilograms.
$1 = 0.453\overline{5}9$	1 = 50.8
2 = 0.90718	2 = 101.6
8=1:86077	8 = 152.4
4 = 1.81436	4 = 208 - 2
5=2.26795	5 = 254.0
6 = 2.72154	6=804.8
7=3.17618	7=855.6
8=8.62872	8=406.4
9 = 4.08231	9 = 457.2

Ex. 1. How many c.c. are equivalent to 84 cubic inches? From the table on p. 59 8 cubic inches = 131 096 c.c. and 4 cubic inches = 65 548 c.c.

Ex. 2. How many grams are equivalent to 39 ounces (av.)?

80 = 850.59 = 255.15

1105 65 grams.

TABLE SHOWING THE SIGNS USED IN WRITING MEDICAL PRESCRIPTIONS.

d grain .	1 gr.	1 draohm		3 i, or 3 j.
1 , .	gr. j, or gr. i.	1 <u>1,</u>		3 isa.
1 1 ,,	gr. iss.	2 drachma		3 ii, or 3 ij.
2 grains	gr. ii, or gr. ij.	3,,		3 ii, or 3 ij. 3 iii, or 3 iij.
2 1 , , .	gr. iiss.	3 1		3 iiiss.
4 ,, .	gr. iv.	7 j		ž viiss.
0	gr. viii, or gr. viij.	aounce		₹ 8a.
a ,,	9 ss.	1 ,,		ži, or žj.
1 ,,	Эi, or Эj.	71		ž 189.
ī4 ,,	D iss.	i pint		Ōss.
2 soruples	n ii. or n ii.	1		0.

FOREIGN WEIGHTS AND THEIR ENGLISH EQUIVALENTS.

The Metric System is compulsory in Austria, Belgium, France, Germany, Greece, Italy, Luxemburg, the Netherlands, Portugal, Roumania, Spain, Switzerland, Turkey, and most of the South American Republics; optional in Great Britain, the United States, and Russia.

```
1 quintal = 100 kg = 1.968 owts.
1 metric ton = 1000 kg = 0.9842 ton.
= 1.1023 American short tons (2000 lb.)

Austria-Hungary . . . 1 pfund = 1.2846 lb.
Belgium . . . 1 livre = 1.102 ,,
Egypt . . . 1 cantar = 99.045 ,,
Germany . . . 1 pfund = 500 grams.
Russia . . . 1 pound = 0.9028 lb.
1 pood * (40 pounds) = 36.118 lb.

Sweden . . . 1 pound = 0.9377 lb.
Switzerland . . . 1 zollpfund = 500 grams.
Ohina . . . 1 tael = 1.838 oz. av.
1 chin = 16 tael = 1.838 lb.

Japan . . . . 1 kin (=160 mommé) = 1.9227 ,,
1 kwan = 8.2672 lb,
[1 koku (=100 sho) = 89.674 gallons.]
```

FOREIGN MONEYS AND THEIR ENGLISH EQUIVALENTS (IN 1912).

Austria-H China Denmark,		٠.	ınd	1 krone (=100 heller) 1 silver yuan or dollar (=	100	centa)		8. 0 2	d. 10 0
Sweden Egypt France Germany Holland India.	:		:	1 krone (=100 ore) . £E1 (=100 piastree) . 1 frano (=100 centimes) 1 mark (=100 pfennige) 1 florin (=100 cents) . 1 rupee (=16 annas) .		•	:	1 20 0 0 1	15 82 91 112 8
Italy . Japan . Mexico Russia Spain Turkey United Sta	· · · · · ·			1 lira (=100 centesimi) 1 yen (=100 sen) 1 peso (=100 centavos) 1 peso (=100 centavos) 1 peseta (=100 centimos) £T1 (=100 piastres) 1 dollar (=100 cents)				0 2 2 2 0 18 4	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 ⁶⁸ poods=2275 lb,=1 English ton nearly.

DENSITIES	OR	COMMONTA	OCCURRING	SUBSTANCES	(AT 15° C)
TATE OF LESS	UB	COMMUNICATI	OCCURRENCE	CULHELLY MURRI	TAT ID U.

				•	,
Agate .		. 2.6	Graphite .		2.2
A luminium		. 2.7	Gutta-percha		0.97
Aluminium bron	ıze .	. 8	Gурви т .		. 2.8
Amber .		. 11	Heavy spar		4.5
A mphibole		2.9-8.4	Haematite .	·	
Anhydrite		. 2.98	Iceland Spar	•	2.7
Anthracite		1.27-1.75	India-rubber	•	0.99
Antimony		. 6.7	Iodine .	•	5
Apatite .	•	. 8.8	Iron (cast).	•	7.2-7.5
Arragouite		. 8		٠.	7.8
Arsenic .		. 5.7	,, (wrought	') ·	
Bamboo .		. 0.4	Lead .	•	. 1.92
Basalt .		2.8		•	11.4
Beech-wood		0.69-8	Lime	•	. 8.2
Beeswax .			Lithium .	•	0.59
Diemakh	• •	. 0.96	Magnesium	•	. 1.74
Bismuth .		. 9.8	Mahogany .	•	. 56-85
Bitumen .		0.8-1.3	Marble .	•	2.7
Box-wood .		. 0.96	Mercury .		18.6
Bone		1.8-2	Mica .		. 2.7–8.1
Brass .		. 8	Milk (cows')		108
Brick		. 2·1	Nickel .		8· 3
Bromine	,	. 8	Oak (English)		0.98
Bronze coinage		. 8 ·6 6	Phosphorus (y	ellow)	. 1.84
Oadmium .		. 86		red)	2.2
Calamine .		. 8.4	Pine-wood .		0.56
Oalc-spar .		. 2.7	Platinum .		21.5
Ohalk (mean)		. 2.3	Potassium .		0.88
Oharcoal .		1.5	Pyrites (iron)	-	5
Chloroform		. 1.5	Pyrolusite .	·	4.9
Chrome alum		. 1.88	Pumice stone	•	2.2-2.5
Cinnabar .		. 8.1	Sand (dry)	•	4 4
Coal	•	1.25-1.83	Sea-water .	•	1.4
Cabalt	•	. 8.9	Selenite	•	1020
Copper .		. 8-9	Serpentine.	•	2.6
Claulte	• .	. 0.24	Silver .	•	10 5
Diamond .		. 8.5	Dilver .	Distal	1)10.85-10.88*
Dolomite .	• •	. 2.9	Slate		
Ebony .	• •	. 1.2		•	. 2'1-2'8
Elm (dry).	• •	. 0.59	Sodium .	•	. 0.97
			Spermaceti	•	0.94
Emery .	• •	. 4	Strontianite	•	8.6
Felspar .		2.4-2.6	Sugar (caue)	•	. 1.6
Fir (Riga)—dry	• •	. 0.75	Sulphur .		2.07
Fluor-spar.		. 8.2	Talc .		2.5
Galena .		. 7.6	Teak (Indian)		. 0.66
Glass (crown)		. 2.5	Tin		. 7.24-7.3
,, (flint)		2.9-3.22	Tinstone .		6.9
,, (Bohemian	ι) .	. 2.4	Turpentine		0 [.] 87
Glycerine		. 1-26	Willow-wood		0.4
Gold		. 19.8	Witherite .		4.8
,, (18 carat)		. 14.88	Wool .		. 1.6
,, coinage (Br	itish)	17 48*	Zinc		. 6.9-7.2
Granite		. 2.7	Zinc blende		4.16
* These values	were ki		the author by Dr	. T. K. 1	Rose, Chemist to

TABLE OF FREEZING MIXTURES.

A mixture of (parts by weight).	Temperature produced.
Snow or broken ice, 2; common salt, 1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 18° O. - 48° C. - 18° C. - 29° U. - 16° C. - 20° O.

Note.—The solids used should be finely powdered.

TABLE FOR THE CONVERSION OF PERCENTAGE INTO OWTS., QBS., AND LE. PER TON, AND INTO QBS. AND LE. PER GWT.

Per cent.		Per to	n,	Per	r owt.	Per cent.		Per t	on.	Pe	r awt.
	owt.	QPs.	ľb.	grs.	lb.		cwt.	qrs.	. 1b.	qrs.	1b.
1 2		•	22.4		1.15		5	38	5.8	1	4 48
2		1	16.8		2.24	80	ě			î	5.00
8 4 5	••	8	11.2		8-80	91	ě	- :-	22.4	ī	6.72
4	• •	8	5.8	••	4.48		đ	ï	16.8		7-84
5	1				5.60		6	2	11.8		8:96
6	1		22-4		6.72	84	6	9	5-6	1 1	10.08
7	1	1	10-8		7.84	85	7			î	11-20
8	1 1 1 1	2	11-2		8-06	88	Ż	- ::	22.4	î	12.82
9	1	8	5∙6		10.08	87	7	ï	16.8	i	18.44
10	2				11.20	88	7 7 7	2	11.8	î	14.26
11	2		22 4		12.87	89	Ż	8	5.0	i	10.68
12	2 2 2	1	10.8		18:44	40	8			ī	16.8
18	2	2	11.2		14.20	41	8		22.4	î	17.92
14	.2 8 8 8	8	5.6		15.68	42	8 8 8	ï	16.8	ī	19.01
15	8			••	16.8	43	8	2	11.8	î	20.10
16	8	••	22.4		17:92	44	8	8	5.6	î	21.28
17	8	1	10.8		19:04	45	Ď				22:40
18	8	2	11.8		20:16	48	9		22.4	1	23.52
19	8	8	5.6		21.28	47	9	1	16.8	ī	24 64
90 91	4	• •		••	22:40	48	θ	2	11.8	ī	25.76
27.	4		22.4	••	23 52	49	9	8	5.6	ĩ	26 88
22	4	1	16.8		24:04	50	10			2	20 00
23	4	2	11.5		25.76	51	10		22.4	<u> </u>	1.12
24	4	8	5.6		26.88	62	10	1	10.8	2	2.24
25	δ.			1		58	10	2	11-2	ž	8.36
26	5	• •	22.4	1	1.13	54	10	8	5.6	ž	4.48
27	5	1	16.8	1	2-24	55	11			2	5.60
28	5	8	11.5	1	3.86	66	11	••	22.4	2	6.72
									<u> </u>		
er cer		1.1	-8	-8			5	•в	7	·8	19
b. per		112		.8			56	672	.784	-896	1.008
b. per	MI	2-24	4.48	6.7	¥ 18	96 11	28 11	B-44	15.68	17:92	20.18

PERCENTAGES INTO OWTS., ETC., PER TON.

TABLE FOR THE CONVERSION OF PERCENTAGE INTO CWTS., QRS. LB. PRE TON, AND INTO QBS. AND LB. PRE CWT .-- continued

Per

Per cent.		Per ton	և 	Pe	ar ow		Per ent.		Per t	on.	Pe	rc
	cwt.	qrs.	1b.	qra.	11:) <u>.</u>		owt		lb.	QIB.	
57	11	1	16.8	2	7:	84	79	15	-8	5.6	-8	
58	11	2	11.2	ž		96	80	16	••		8.	
59 60	11 12		5-6	×	10		81	16	• •	82.4	8	
	12	••	00.4	×	11.		82	16	1 2 8	16.8	8	
61	12	•:	22.4	2	18.		88	16	2	11.3	8	
62	19	2	16-8	×	13.		84	16	8	5.6	8	1
68	12	z	11.5	×	14.		85	17		22.4	8	1
64	12	8	5.6	Z	15.		86	17			8	1
66	. 18	••	-i*.	X	16.		87	17	1 2 8	16-8	8	111111111111111111111111111111111111111
66	18	•:	22.4	X	17.		88	17	2	11.2	8	1
67	18	1 2 8	16.8		19.		89	17	8	5.6	888888888888888888888888888888888888888	1
68	18	Ä	11.5	2	20.		90	18	••		8	1
69	18	8	5.6	2	21.	28	91	18		22-4	8	1
70	14	••	٠ <u>٠</u> ٠.	2 2 2 2 8 8 8	22.		92	18	1 2 3	16.8	8	1
71	14	• • •	22.4	2	23		98	18	2	11-2	8	2
72	14	1	16.8	8	24		94	18	8	5.6	8	2
73	14	2	11.8	2	25		96	19			8	9999
74	14	8	5.6	2	26.	88	98	19		22 4	8	2
75	15			8			97	19	1	16.8	8 8 8	2
76	15	• • •	22.4	8		18	98	19	2	11.8	8	2
77	15	1	16.8	8		24	99	19	8	5.6	8	2
78	15	2	11.3	8	8.	86	100	20	••	••	4	
												_
Per o		1	.2		-8	-4		.Б	-6	-7	-8	1
lb. pe	er owt.	. 119		24.	386	448		-56	•672	784	896	
l lh. ne	er ton	9.94	4.45	ù IA∙	-79	R-OR	177	-9	18-44	1K-82	17:00	1 6

TABLE FOR THE CONVERSION OF DRAMS PER LB. INTO PERCENTAGE AND INTO LB. PER TON.

Per cent.	Lb. per ton (2240 lb.).	Drams per lb. (av.)	Per cent.	Lb. pa (2240
0.097688	2.187494	81	1:465	82 85
	4.87	41		87
293	6.60	4	1.758	89
	8.75 †	44	1.855	41
				48
				87
				181
	17:50			175
	19:08			218
	21 87	80		262
1.074	24.06	85	18:672	806
1.172	26-25	40	15.025	850
1-269	28:48	45	17:578	898
	0.007656 (or 0.1 nearly) .195 .293 .890025 * .488 .686 .683 .781 .879 .978 1.074 1.172	0-007668 (2240 lb.). 0-007668 (2-187404 (07 0-1 nearly) 195 4-87 293 6-60 380025 * 8-75 1-488 10-94 586 13-12 683 15-31 781 17-50 879 19-08 976 21-87 1-074 24-06 1-173 28-25	0.007656 (2240 lb.) per lb. (av.) 0.007656 (or 0.1 nearly) 195 4.87 4.1 293 6.50 4.1 380025 8.75 1 4.2 488 10.94 5 886 18.12 10 883 15.31 15 781 17.50 20 1781 17.50 20 1781 21.97 80 1074 24.06 35 10.74 24.06 35	0.097656 2.187494 83 1.405 (or 0.1 nearly) 4.87 4.1 1.562 195 4.87 4.1 1.680 293 6.50 4.1 1.788 380025 8.75 4.1 1.885 488 10.94 5 1.958 586 13.12 10 3.906 683 15.31 15 5.899 781 17.50 20 7.812 879 19.08 25 9.765 1976 21.87 80 11.719 1.074 24.06 35 13.672 1.172 28.25 40 16.025

1 307

487

17.578 19.581

^{*} Log. I.59176,

THE BAROMETER.

L. Inches into Millimetres.

Inches.	Mill- metres.	Inches.		lli- ires,	Loch	88,	Milli- metres.	Inch		Milli- netres.
27.5	698·49 701·03	28·4 ·5		1 ·35 3 ·89	29	8	744·21 746·75	80	- , .	'67 ·07 '69 ·61
•7	703.57	·6	720	3.48		5	749.29		4 7	72.15
•8	706.11	7		3.97		6	751.88			74.69
.9	708.65	-8		1.51		7	754.37			77 23
28.0	711 19	.8		-06		8	758 91			79.77
•1	713.78	29.0	786	5 5 9	1 '	8	759.45		8 7	82 31
•2	716-27	·1	738	13	80	0	761 .99		9 7	84 85
. 8	718.81	-2	741	l ·67	.	1	764.53			
Incl		.01	.02	-08	·04	0.	60. 9	-07	.08	.08
Mil	limetres,	25	.21	76	1.02	1.2	7 1.52	1 78	2.08	2.29

II. Millimetres into Inches.

Mm.	Inches.	Mm.	Inches.	Mm.	Inches.	Mm.	Inches,	Иm.	Inches.
700	27.56	718	28 27	735	28.94	752	29.61	769	80.28
701	.60	719	·31	736	.98	758	-65	770	.32
702	-64	720	.85	737	29.02	754	.69	771	-86
708	•68	721	-39	788	.08	755	-78	772	-89
704	.72	722	.43	739	.10	756	•76	778	.48
705	•78	728	47	740	.18	757	-80	774	47
706	.80	724	·50·	741	.17	758	·84	775	•51
707	·8 4	725	.54	742	.21	759	-88	776	.55
708	.88	726	.28	743	.25	760	.92	777	-59
709	491	727	.62	744	.29	761	•96	778	-68
710	.95	728	.66	745	.33	762	80.00	779	-67
711	-99	729	70	746	-87	768	.04	780	•71
712	28.03	780	.74	747	41	764	•08	781	-76
718	.07	781	·78	748	45	765	.12	782	•79
714	.11	782	.82	749	•49	766	•16	788	-88
715	.15	788	.86	750	.28	767	.20	78 4	87
716	•19	784	-90	751	•57	768	-24	785	91
717	23				٠,	, 00	27	700	91

TABLE FOR CORRECTION OF VOLUMES OF GASES FOR TEMPERATURE, GIVING THE DIVISOR FOR THE FORMULA.

$$\overline{V}^1 = \frac{\overline{V} \times \overline{B}}{760 \times (1 + \delta t)} \quad \delta = 008665$$

	760×	Log. [760×	ı	760×	Log. [780 x
	(1+&).	(1+4:)]	•	(1+84).	$(1+\delta t)$].
° O.			° 0.		
0.0	760-0000	2.8808186	4·0	771.1416	2.8871841
'n	760 2785	9727	•1	771 1410 771 4201	2'88/1841
•2	760.5571	2.8811818	.2	771 6987	4477
-8	760 8856	2908	-8	771 0507	6045
•4	761.1142	4498	•4	772.2558	7612
0.2	761 8927	6087	4.5	772.5848	9178
•6	761 6712	7675	6	772.8128	2.8880748
7	761.9498	9268	•7	778.0914	2308
•8	762:2288	2-8820850	•8	778.8699	3872
.9	762.5069	2487	٠9	778 6485	5486
1.0	762 7854	2.8824024	5.0	778 9270	2.8887000
•1	768.0689	5610	·i	774 2055	8568
•2	768 8425	7195	· <u>2</u>	774.4841	2.8890125
.3	768-6210	8779	.8	774.7626	1687
•4	768.8996	2 8880368	٠,	775.0413	8248
1.2	764 1781	1946	5.5	775 8197	4808
.6	764:4566	8528	•6	775.5982	6868
•7	764.7852	5111	•7	775 8768	7927
•8	765.0187	6692.	•8	776 1558	9486
.8	765 2928	8278	•9	776.4889	2-8901044
2.0	7 65 : 5708	2.8889854	6.0	776.7124	2.8902602
•1	765 8493	2.8841484	•1	776.9909	4159
•2	766 1279	8018	•2	777 2695	5716
-3	766 4064	4591	-8	777.5480	7272
•4	766 6850	6169	•4	777 -8266	8828
2.5	766-9635	7747	6.2	778:1051	2.8910388
.8	767 2420	2.8849824	-6	778 3836	1938
•7	767 5206	2.8850901	•7	778 6622	8492
.8	767-7991	2 4 77	•8	778·9 4 07	5045
-9	768-0777	4052	-9	779:2193	6597
8.0	768 3562	2.8855626	7.0	779 · 4 978	2.8918149
.1	768 6947	7199	•1	779 7768	9701
-2	768.9183	8772	•2	780.0549	2.8921252
-8	769 1918	2.8860845	-8	780 8884	2802
.4	769 4704	1918	•4	780:6120	4852
8.2	769-7489	8490	7.5	780 8905	5901
·6	770-0274	5062	•6	781 1690	7450
.7	770.8060	6688	7	781 4476	8998
.8	770.5845	8208	-8	781 7261	2.8980546
·9	770.8681	9772	•9	782-0047	2098
_					

TABLE FOR CORRECTION OF VOLUMES OF GASES—continued.

1 782-5817 5186 6 795-0960 411 1 782-5817 5186 6 795-0960 411 1 782-5817 5186 6 795-0960 411 1 782-5817 5186 6 795-0960 411 1 782-5811 722 1 783-3974 9821 9 795-9817 87. 1 783-3974 9821 9 795-9817 87. 1 783-3974 9821 19 796-7878 87. 1 783-3954 2989 11 796-4887 17. 1 784-2330 4451 2 796-7878 88. 1 8 784-5115 5993 3 707-0458 48. 1 9 784-7901 7535 4 797-3244 68. 1 9 784-7901 7535 4 797-3244 68. 1 9 785-0886 2 89449076 13 6 797-6929 78. 1 785-3471 2-8950617 6 797-8814 98. 1 2 785-6257 2157 7 788-1600 2-90209. 2 785-0942 8697 8 798-4886 24. 2 785-6257 2157 7 788-1600 2-90209. 3 785-9042 8697 8 798-4887 24. 4 786-1828 5286 9 798-7171 39. 9-5 786-4613 6774 14-0 798-3956 2-90254. 6 786-7398 8311 1 799-2741 69. 1 787-0184 9848 2 799-5527 84. 2 8 787-2969 2-8961386 8 799-8812 99. 1 788-1825 5993 6 800-6688 45. 2 788-4111 7528 7 800-9454 60. 3 788-6886 9062 8 801-2239 75. 1 788-6886 9062 8 801-2239 75. 1 788-6886 9062 8 801-2239 75. 1 788-6886 9062 8 801-2239 75. 1 788-6898 2 2-8970595 9 801-5025 90. 10-5 789-2467 2128 15-0 801-7810 2-90405. 6 789-2467 2128 15-0 801-7810 2-90405. 1 789-6898 5192 2 802-8381 85. 1 790-9179 2-8981314 6 803-4522 96. 1 790-9179 2-898181 6 806-806 16. 1 2-90-8061 6 805-5 1 804-806 1	ı	760× (1+&).	Log. [760× (1+8')].		760× (1+81).	Log. [760 × (1+8t)].
8:0 782:2832 2:893840 12:5 794:817b 2:90020 11 782:5617 5186 6 795:0960 411 12 782:8403 6732 77 705:8746 57: 23 783:1188 8277 8 795:6531 72: 44 783:3974 9821 9 795:9817 87: 8:5 783:6859 2:8941865 13:0 796:2102 2:90102 66 783:9544 2908 17 796:4887 17: 7 784:2330 4451 2 796:7678 38: 8: 784:5115 5993 8 707:0458 48: 9: 784:7901 7535 4 797:3244 68: 9: 0 785:0868 2:8949076 13:6 707:6029 78: 1: 785:3471 2:8950617 6 797:8814 98: 1: 785:4471 2:8950617 6 797:8814 98: 1: 785:4613 6774 14:0 798:9956 2:90209: 1: 786:4613 6774 14:0 798:9956 2:90254 1: 786:7398 8311 1 799:2741 69: 1: 786:7398 8311 1 799:2741 69: 1: 786:7398 8311 1 799:2741 69: 1: 786:7398 8311 1 799:2741 69: 1: 788:7355 2921 4 800:1098 2:90314 10:0 787:8540 2:8961385 8 799:8812 99: 1: 788:7355 2921 4 800:1098 2:90314 10:0 787:8540 2:8961385 8 799:8812 99: 1: 788:982 2:8970595 9 801:5025 90: 1: 788:9682 2:8970595 9 801:5025 90: 1: 788:9682 2:8970595 9 801:5025 90: 1: 788:9682 2:8970595 9 801:5025 90: 1: 789:2467 2128 15:0 801:7810 2:90405 1: 789:2467 2128 15:0 801:7810 2:90405 1: 790:0834 2:897134 6 802:8952 65: 1: 790:0834 2:8979784 15:5 803:1737 80: 1: 790:9179 2:8981314 6 803:4522 96: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 803:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2890482 2 805:1235 86: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2: 791:1965 2848 7 805:7308 2:90510: 2:	· c					
11 782:5617 5186 6 795:0960 41 12 782:8403 6732 7 795:3746 57 3 783:1188 8277 8 795:9817 87 4 783:3974 9821 9 795:9817 87 8:5 783:6959 2*8941365 13:0 796:2102 2:90102 :6 783:9544 2908 1 796:4887 17 :7 784:2330 4451 2 796:7673 88 :8 784:5115 5993 3 797:0458 48 :9 784:7901 7535 4 797:8244 63 9.0 785:0686 2:8949076 18:5 797:0458 48 :1 785:9686 2:89450617 6 797:8814 98 :2 785:9627 2:157 7 798:1600 2:90209 :3 785:9042 8697 8 798:4385 24 :4		782 2832	2.8933640	12.5		2.9002674
-2 782-8403 6732 .7 795-8746 57. -3 783-1188 8277 -8 795-6851 72. -4 783-3974 9821 -9 795-9817 87. -6 783-9544 2908 -1 796-4887 17. -7 784-2330 4451 -2 796-7678 83. -8 784-7901 7535 -4 797-8244 63. -9 784-7901 7535 -4 797-8244 63. 9-0 785-6088 2:8949076 13:6 797-6029 78. -1 785-3471 2:8950617 -6 797-8814 93. -2 785-6257 2157 7 708-1600 2:90209 -3 785-9042 8697 8 798-4816 9. -4 786-1828 5286 9 798-7171 39. -5 786-4613 6774 14·0 798-9956 2:90254 -8			5186	•6		4196
3 783·1188 8277 '8 795·9817 72. 4 783·3974 9821 '9 795·9817 8.5 783·6959 2*8941365 13·0 796·2102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 2*90102 3*84*85 17*** 7*8*** 3*9*** 3*8*** 3*9*** 3*8*** 3*9*** 3*8*** 3*9*** 3*8*** 3*9*** <td></td> <td></td> <td>6732</td> <td>•7</td> <td></td> <td>5717</td>			6732	•7		5717
4 783:3974 9821 '9 795:9817 8/6 6 783:9544 2908 '1 796:2102 2:90102 6 783:9544 2908 '1 796:4887 17: 7 784:2330 4451 '2 796:7678 38 8 784:5115 5993 '3 797:0458 48 9 785:0686 2:8949076 18:5 797:0294 68 9-0 785:0686 2:8949076 18:5 797:0814 98 1 785:3471 2:8950617 '6 797:8814 98 2 785:6257 2157 7 708:1600 2:90209 3 785:9042 3697 8 798:4385 24 4 786:1628 5236 9 798:7171 39 9:5 786:4613 6774 14:0 798:9956 2:90254 6 786:7398 8311 '1 799:2711 69 7			8277	-8		7288
8:5 783:6959 2:8941865 13:0 786:2102 2:90102 6:6 783:9644 2908 1 796:4887 17: 7 784:2830 4451 2:796:7678 88. 8:8 784:5115 5998 3 797:0458 48: 9:9 784:7901 7535 4 797:8244 68. 9:0 785:0486 2:8949076 13:5 797:6029 78: 1 785:3471 2:8950617 6 797:6029 78: 1 785:3471 2:8950617 7 798:1600 2:90209: 3 785:9042 8697 8 798:4885 24: 4 786:1828 5236 9 798:7171 89:5 786:4613 6774 14:0 798:9956 2:90254: 6 786:7398 8311 1 799:2741 69:95627 84: 7 787:0184 9848 2 799:5527 84: 7 787:0184 9848 2 799:5527 84: 9 787:5755 2921 4 800:1098 2:90314: 10:0 787:8540 2:8964457 14:5 800:8888 2:90880: 1 788:46896 9062 8 801:2239 755: 1 788:9682 2:8970595 9 801:5025 90: 10:5 789:2467 2128 15:0 801:7810 2:90405: 6 789:5252 8660 1 802:0596 90: 10:5 789:2487 2128 15:0 801:7810 2:90405: 10:0 780:8088 2:8981314 6 802:8952 65: 11:0 790:809 8254 4 802:8952 65: 11:0 790:809 8254 4 802:8952 65: 11:0 790:809 8254 4 802:8952 65: 11:0 790:809 8254 4 802:8952 65: 11:0 790:809 8254 4 802:8952 65: 11:0 790:809 8254 16:0 804:5664 2:90556: 9 790:3609 8254 16:0 804:5664 2:90556: 11:5 792:0321 7428 16:0 804:5664 2:90556: 11:5 792:0321 7428 16:0 804:5664 2:90556: 11:5 792:0321 7428 16:0 804:5664 2:90556: 11:0 790:5892 2:8985900 9 804:2879 41: 11:5 792:0321 7428 16:0 804:5664 2:90556: 11:0 790:5892 2:8985900 9 804:2879 41: 11:5 792:0321 7428 16:0 804:5664 2:90556: 11:0 790:6894 2:8985900 9 804:2879 41: 11:5 792:0321 7428 16:0 804:5664 2:90556: 11:0 790:5892 2:8985900 9 804:2879 41: 11:5 792:0321 7428 16:0 804:5664 2:90556: 12:0 793:1468 8583 4 805:6806 16: 12:0 793:4248 2:8995058 16:5 805:9591 2:90601: 12:0 793:4248 2:8995058 16:5 805:9591 2:90601: 12:0 793:4248 2:8995058 16:5 805:9591 2:90601: 12:0 793:9819 8106 7 806:5162 611			9821	.8		8758
**6 783*9544 2908 11 796*4887 17 **7 784*2330 4461 2 796*7678 88 **8 784*5115 5993 3 797*0458 48 **9 784*7901 7635 4 797*3244 63 9.0 785*0686 2*8949076 13*5 797*6814 98 **1 785*3471 2*8950617 6 797*8814 98 **2 785*6257 2157 7 708*1600 2*90209 **3 785*9042 3697 8 798*4885 24 **4 786*1828 5286 9 798*7171 39.9 **5 786*4613 6774 14*0 798*9956 2*90254 **6 786*7398 8311 1 799*2741 69.7 **6 786*7398 8311 1 799*2741 69.7 **7 787*0184 9848 2 799*8812 99.9 <th< td=""><td></td><td></td><td>2.8941865</td><td>13.0</td><td></td><td>2 9010277</td></th<>			2.8941865	13.0		2 9010277
7 784 2930 4451 2 796 7678 38 8 784 5115 5998 3 797 0458 486 9 784 7901 7535 24 797 3244 689 9 0 785 0886 2 8949076 18 5 797 6029 786 1 785 3471 2 8950617 6 797 8814 98 2 785 6257 2157 7 798 1600 2 90209 3 785 9042 8697 8 798 4385 24 4 786 1828 5286 9 798 7171 89 9 5 786 4613 6774 14 0 798 9956 2 90254 6 786 7398 8311 1 799 2741 69 7 787 0184 9848 2 799 5527 846 8 787 2969 2 8961386 8 799 8312 99 9 787 5755 2921 4 800 1098 2 90314 10 0 787 8840 2 8864457 14 5 800 8888 2 90830 1 788 6896 9 962 8 801 2239 75 1 788 6896 9 962 8 801 2239 75 1 789 2487 2128 15 0 801 7810 2 90405 6 789 52487 2128 15 0 801 7810 2 90405 10 5 789 2487 2128 15 0 801 7810 2 90405 10 790 6894 2 8979784 15 5 809 31737 801 1 790 9179 2 8981314 6 803 4522 961 1 790 9179 2 8981314 6 803 4522 961 1 790 9179 2 8981314 6 803 4522 961 1 790 9179 2 8981314 6 803 4522 961 1 790 9179 2 8981314 6 803 4522 961 1 790 9179 2 8981314 6 803 4522 961 1 790 9179 2 8981314 6 803 4522 961 1 790 9179 2 8981314 6 803 4522 961 1 790 9179 2 8981314 6 803 4522 961 2 791 1985 2843 7 803 7308 2 90511 3 791 4750 4872 8 804 0093 2 96511 3 791 77536 2 8990482 2 805 1335 861 1 792 9106 8955 1 804 8449 71 1 5 792 9321 7428 16 0 804 5664 2 90556 1 7 792 5389 2 8895690 9 804 2879 41 11 5 792 9321 7428 16 0 804 5664 2 90556 1 7 792 5389 2 8895690 9 804 2879 41 11 5 792 9321 7428 16 0 804 5664 2 90556 1 7 792 5389 2 8895688 6 5 16 5 805 9591 2 90601 1 793 7033 6582 6 806 2376 461 2 793 9819 8106 7 806 5162 611				•1	796· 4 887	1796
** 784*5115			4451	.2	796 7678	8815
9 784-7901 7535 4 797-8244 63 9 0 785-0886 2:8949076 13:5 797-6029 78 1 785-3471 2:8950617 6 797-8814 93. 2 785-6257 2157 7 798-1600 2:90209 3 785-9042 3697 8 798-4385 24 4 786-1828 5236 9 798-7171 39. 9 5 786-4613 6774 14:0 798-9956 2:90254 6 786-7398 8311 1 799-2741 69. 7 787-0184 9348 2 799-5527 84 8 787-2969 2:8961385 3 799-8812 99. 9 787-5755 2921 4 800-1098 2:90314 10:0 787-8840 2:8964457 14:5 800-8888 2:90880 1 788-1825 5993 6 800-6668 45. 2 788-4111 7528 7 800-9454 60. 3 788-6896 9062 8 801-2239 76. 4 788-9682 2:8970596 9 801-5025 90. 10:5 789-5252 8660 1 802-0595 6 789-5252 8660 1 802-0595 7 789-8038 5192 2 802-8381 85. 8 790-0828 6728 8 802-8381 85. 9 790-3809 8254 4 802-8952 65. 11:0 790-6894 2:8978784 15:5 803-1787 80. 11:5 792-0321 7428 16:0 804-5664 2:905561 1:5 792-0321 7428 16:0 804-5664 2:905561 1:6 792-3106 8955 1 804-5664 2:905561 1:7 792-5892 2:8990482 2:890568 16:5 805-9591 2:90601 1:7 793-7038 6582 6886 268376 461			5993	٠3	797:0458	4838
9.0 785.0686 2.8949076 18.5 797.6029 78. 1 785.3471 2.8950617 6 797.8814 98. 2 785.6257 2157 7 798.1600 2.90209 3 785.9042 8697 8 708.4885 24. 4 786.1828 5236 9 798.7171 89. 9.5 786.4613 6774 14.0 798.9956 2.90254. 6 786.7398 8311 1 799.2741 69. 7 787.0184 9348 2 799.5527 84. 8 787.2969 2.8961385 3 799.8312 99. 9 787.5755 2921 4 800.1098 2.90314. 10.0 787.8740 2.8964457 14.5 800.8388 2.90380. 1 788.1325 5993 6 800.8388 2.90380. 1 788.1325 5993 6 800.6668 45. 2 788.4111 7528 7 800.9454 60. 3 788.6866 9062 8 801.2239 76. 4 788.9682 2.8970595 9 801.5025 90. 10.5 789.2467 2128 15.0 801.7810 2.90405. 6 789.5252 8660 1 802.0595 20. 7 789.8038 5192 2 802.3381 85. 8 790.3609 8254 4 802.8952 65. 11.0 790.6894 2.8979784 15.5 803.1737 80. 1 790.9179 2.8981314 6 803.4522 96. 2 791.1965 2843 7 803.4522 96. 1 790.9179 2.8981314 6 803.4522 96. 1 790.7636 2.8956900 9 804.2879 41. 11.5 792.0321 7428 16.0 804.6664 2.90556. 6 792.3106 8955 1 804.8449 71. 15.7 792.5892 2.8990482 2.895068 16.5 805.9551 2.90601. 9 793.1468 8558 4 805.2876 46.1 1.0 790.8694 2.8990482 1.0 804.2879 41. 11.5 792.0321 7428 16.0 804.6664 2.90556. 6 792.3106 8955 1 804.8449 71. 1 799.7038 6896 2.8990482 1.2805.1235 86.1 1.0 793.7038 2.8990482 1.2890482				•4		6850
1 785.3471 2.8950617 6 797.8814 98. 2 785.6257 2157 7 788.1600 2.90209 3 785.9042 8697 8 798.7171 39. 4 786.1828 5238 9 788.7171 39. 9.5 786.4613 6774 14.0 798.9956 2.90254 6 786.7398 8311 1 799.2741 69. 7 787.0184 9348 2 799.5527 84* 8 787.2669 2.8961385 8 709.8812 99. 9 787.5755 2921 4 800.1098 2.90314 10 787.840 2.8964457 14.5 800.8888 2.90380 1 788.1325 5993 6 800.668 45. 2 788.4111 7528 7 800.9454 60. 3 788.6896 9062 8 801.5025 90. 10.5				18.5	797:6029	7867
-2 785.6257 2157 .7 798.1600 2.90209 -3 785.9042 3697 8 798.4385 24 -4 786.1828 5286 9 798.7171 399 9-5 786.4613 6774 14.0 798.9956 2.90254 -6 786.7398 8811 .1 799.2741 69 -7 787.0184 9848 .2 799.5527 84 -8 787.2969 2.8961385 .8 799.8812 99 -9 787.5755 2921 -4 800.1098 2.90314 10-0 787.8540 2.8964457 14.5 800.8888 2.90880 -1 788.1925 5993 -6 800.6668 45.0 -2 788.4111 7528 7 800.9454 60 -3 788.6896 9062 -8 801.5025 90 10-5 789.2467 2128 15.0 801.7810 2.90405				· •6	797.8814	9884
-8 785-9042 8697 '8 798-4885 24 '4 786-1628 5236 '9 798-7171 39-95 '5 786-4613 6774 14-0 798-9956 2*90254 '6 786-7398 8311 '1 799-2741 69-78-751 '7 787-0184 9348 '2 790-5527 84' '8 787-2969 2*8961385 '8 799-8812 99-9 '9 787-5755 2921 '4 800-1098 2*90314' 10-0 787-8540 2*8964457 14-5 800-8888 2*90380 '1 788-1325 5993 6 800-6868 45 '2 788-4111 7528 '7 800-9454 60 '3 788-6896 9062 8 801-5239 75 '4 788-9682 2*8970595 '9 801-5025 90 10-5 789-5252 3660 '1 802-0595 6 <t< td=""><td></td><td></td><td></td><td>7</td><td>798.1600</td><td>2.9020900</td></t<>				7	798.1600	2.9020900
*4 788·1628 5296 9 798·7171 39: 9·5 786·4613 6774 14·0 798·3956 2·90254 ·6 786·7398 8311 ·1 799·2741 69: ·7 787·0184 9348 ·2 7799·5527 84' ·8 787·2969 2·8961385 ·8 799·8812 99: ·9 787·5755 2921 ·4 800·1098 2·90380 ·1 788·540 2·8964457 14·5 800·8888 2·90880 ·1 788·540 2·8964557 14·5 800·8888 2·90800 ·1 788·1325 5993 6 800·8688 45. ·2 788·4111 7528 ·7 800·9454 60. ·3 788·6896 9062 ·8 801·2239 76. ·4 788·9682 2·8970596 ·9 801·5025 90. ·6 789·5252 3660 ·1 802·0596 20.			8697	-8	798 4885	2415
9.5	-			-9	798:7171	8980
*6 786*7398 8311 *1 799*2741 69 *7 787*0184 9848 *2 799*5527 84* *8 787*2969 2*8961385 *8 799*8812 98* *9 787*5755 2921 4 800*1098 2*90314* 10*0 787*8540 2*8964457 14*5 800*8888 2*90880* *1 788*1825 5993 6 800*6868 45* *2 788*4111 7528 *7 800*9454 60* *3 788*6896 9062 *8 801*2239 75* *4 788*9682 2*8970595 *9 801*5025 90* *6 789*5252 3660 *1 802*0595 90* *6 789*5252 3660 *1 802*0596 90* 2*90405 *6 789*5252 3660 *1 802*0596 90* 3802*6166 50* *7 790*3809 8254 *4			6774	14.0	798-9956	2.9025444
.7 787-0184 9348 .2 799:5527 84' .8 787:2969 28961886 .8 799:8812 .993 .9 787:5755 2921 .4 800:1098 2:90314' 10-0 787:8740 2:8964457 14:5 800:8888 2:90880' .1 788:1825 5993 6 800:6668 45. .2 788:4111 7528 .7 800:9454 60. .3 788:6896 9062 .8 801:2239 75. .4 788:9682 2:8970595 .9 801:5025 90. 10:5 789:2467 2128 15:0 801:7810 2:90405. .6 789:2552 3660 .1 802:0595 20. .7 789:6038 5192 .2 802:3881 35. .8 790:0828 6728 .8 802:8952 65. .9 790:3609 8254 .4 802:8952 65. <				•1	799:2741	6957
8 787·2969 2·8961385 8 799·8812 99·9 9 787·5755 2921 4 800·1098 2·90314 10·0 787·8540 2·8964457 14·5 800·8888 2·90880 1 788·1325 5993 6 800·6668 45. 2 788·4111 7528 7 800·9454 60. 3 788·6886 9062 8 801·2239 76. 4 788·9682 2·8970596 9 801·5025 90. 10·5 789·2467 2128 15·0 801·5025 90. 6 789·5252 3660 1 802·0595 20 7 789·6038 5192 2 802·3881 35' 8 790·3859 8254 4 802·8166 50 9 790·3869 8254 4 802·8952 65 11·0 790·6894 2·89784 15·5 803·1737 80 12·791			9848	.2	799.5527	8470
-9			2.8961385	-8	799.8812	9988
10-0 787-8540 2.8964457 14·5 800·8888 2.90880 ·1 788·1325 5993 6 800·6868 45. ·2 788·4111 7528 ·7 800·9454 60. ·3 788·6896 9062 8 801·2239 75. ·4 758·9682 2.8970595 ·9 801·5025 90. ·6 789·2467 2128 15·0 801·7810 2.90405 ·6 789·5252 3660 ·1 802·0596 20 ·7 788·8038 5192 ·2 802·3881 35 ·8 790·3609 8254 ·4 802·8952 65 ·10 790·3609 8254 ·4 802·8952 65 ·10 790·3609 8254 ·4 802·8952 65 ·10 790·3609 2.8981314 ·6 803·4522 96 ·2 791·1965 2.898134 ·6 803·4522 96			2921	•4	800:1098	2.9031495
1 788·1325 5998 6 800·6668 45 2 788·4111 7528 7 800·9454 60 3 788·6896 9062 8 801·2239 75 4 758·9882 2·8970595 9 801·5025 90 10·5 789·2467 2128 15·0 801·7810 2·90405 6 6 789·5252 3660 1 802·0595 20 290405 20 7 789·8038 5192 2 802·3881 35 802·3881 35 8 790·0828 6728 3 802·3666 50 9 9 790·3609 8254 4 802·8952 65 11·0 790·6394 2·8979784 15·5 803·1737 80 12 791·1965 2·843 7 803·308 2·90511 2 791·1965 2·843 7 803·308 2·90511 3 791·4750			2.8964457	14.5	8888:008	2 9088007
-2 788-4111 7528 -7 800-9454 60-9454 -3 788-6896 9062 8 801-2239 76-95-96-96-96-96-96-96-96-96-96-96-96-96-96-			5993	-6	800.6668	4518
3 788-6896 9062 8 801-2239 75. 4 788-9682 2:8970595 9 801-5025 90. 10-5 789-2487 2128 15-0 801-7810 2:90405 6 789-5252 3660 1 802-0595 20 7 789-8038 5192 2 802-3881 35' 8 790-0823 6723 3 802-6166 50 9 790-3609 8254 4 802-8952 65' 11 0 790-6894 2:8979784 15-5 803-1737 80' 12 790-9179 2:8981314 6 803-4522 96' 2 791-1965 2843 7 803-7308 2:90511 3 791-4750 4872 8 804-0093 2:90511 3 791-7536 2:8985900 9 804-2879 41 11-5 792-0321 7428 16-0 804-5664 2:90556' 6			7528	•7	800.9454	6029
14 788-9682 2.8970595 -9 801.5025 90. 10.5 789-2467 2128 15.0 801.7810 2.90405 6 789-5252 3660 -1 802.0595 20 7 788-8038 5192 -2 802.8381 35 8 790-0823 6728 -3 802.6166 50 9 790.3609 8254 -4 802.8952 65 11.0 790.6894 2.8979784 15.5 803.1787 80 1 790.9179 2.8981314 -6 803.4522 96 -2 791.1985 2.8948 -7 807.7308 2.90511 -3 791.4750 4372 -8 804.0093 26 -4 791.7536 2.8985900 -9 804.2879 41 11.5 792.0321 7428 16.0 804.5664 2.90556 -6 792.8106 8955 -1 804.8449 71			9062	٠8	801.2239	7589
10·5 789·2467 2128 15·0 801·7810 2·90405 ·6 789·5252 3660 ·1 802·0595 20 ·7 789·8038 5192 ·2 802·3881 35° ·8 790·0823 6723 ·8 802·6166 50 ·9 790·3609 8254 ·4 802·8952 65° 11·0 790·6894 2·89·9784 15·5 803·1787 80° ·1 790·9179 2·8981314 ·6 803·4522 96° ·2 791·1965 2·848 ·7 803·7308 2·90511 ·3 791·4750 4872 ·8 804·0093 26° ·4 791·7536 2·8985900 ·9 804·2879 41° 11·5 792·0321 7428 16·0 804·8449 71° ·6 792·3106 8955 ·1 804·8449 71° ·7 792·5892 2·8990482 ·2 805·1235 86°			2.8970595	.9	801 .5025	9049
6 789.5252 3660 1 802.0595 20 .7 789.6038 5192 2 802.8381 35 .8 790.0828 6728 3 802.6166 50 .9 790.3609 8254 4 802.8952 65 11.0 790.6894 2.8979784 15.5 803.1787 80 .1 799.9179 2.8981314 6 803.4522 96 .2 791.1965 2848 .7 803.7308 2.90511 .3 791.4750 4872 .8 804.0093 26 .4 791.7636 2.8985900 .9 804.2879 41 11.5 792.0321 7428 16.0 804.6664 2.90556 .6 792.3106 8955 .1 804.8449 71 .7 792.5892 2.8990482 .2 805.1236 86 .8 792.8677 2008 .3 805.4020 2.90601 <		789-2467	2128	15.0	801.7810	2.9040558
.7 789 8038 5192 2 802 3881 85' .8 790 0823 6728 3 802 6166 50' .9 790 3609 8254 4 802 8952 65' 11 0 790 6394 2 8979784 15 5 803 1737 80' .1 790 9179 2 8981314 6 803 4522 96' .2 791 1985 2843 7 803 7308 2 90511 .3 791 4750 4872 8 804 0093 290511 .4 791 7536 2 8985900 9 804 2879 41 11 5 792 0321 7428 16 0 804 5664 2 90556' .6 792 3106 8955 1 804 8449 71' .7 792 5892 2 8990482 2 805 1235 86' .8 792 8677 2008 3 805 4020 2 90601 .9 793 1488 3538 4 805 6806 16' 12 <td></td> <td>789.5252</td> <td>8660</td> <td>.1</td> <td>802:0595</td> <td>2066</td>		789.5252	8660	.1	802:0595	2066
·8 790·0828 6728 ·8 802·6166 50. ·9 790·3609 8254 ·4 802·8952 65. ·1 790·6894 2·8979784 15·5 809·1737 80. ·1 790·9179 2·8981314 ·6 803·4522 96. ·2 791·1985 2848 ·7 803·7308 2·90511. ·4 791·4750 4872 ·8 804·0093 26. ·4 791·7536 2·8985900 ·9 804·2879 41. 11·5 792·0321 7428 16·0 804·5664 2·90556. ·6 792·3106 8955 ·1 804·8449 71. ·7 792·5892 2·8990482 ·2 805·1235 86. ·8 792·8677 2008 ·3 805·4020 2·90601 ·9 793·1468 3538 ·4 805·6806 16. 12·0 793·94248 2·8995058 16·5 806·9376 46.		789 -8038	5192	•2	802.3381	8574
·9 790·3609 8254 ·4 802·8952 65 11·0 790·6894 2·8979784 15·5 803·1737 80 ·1 790·9179 2·8981314 ·6 803·4522 96 ·2 791·1985 2·8981314 ·6 803·4522 96 ·3 791·4750 4872 ·8 804·0093 26 ·4 791·7536 2·8985900 ·9 804·2879 41 11·5 792·0321 7428 16·0 804·6664 2·90556 ·6 792·3106 8955 ·1 804·8449 71 ·7 792·5592 2·8990482 ·2 805·1235 86 ·8 792·8677 2008 ·3 805·4020 2·90601 ·9 793·4488 2·8995068 16·5 805·9591 2·90631 ·1 793·7033 6582 ·6 806·2376 46i ·1 793·9819 8106 ·7 806·5162 61		790.0828	6728	.8		5081
11·0 790·6894 2:8979784 15·5 808·1787 80 ·1 790·9179 2:8981314 6 803·4522 96 ·2 791·1965 2848 ·7 803·7308 2:90511 ·3 791·4750 4872 ·8 804·0093 26 ·4 791·7636 2:8985900 ·9 804·2879 41 11·5 792·0321 7428 16·0 804·6864 2·90556 ·6 792·3106 8955 ·1 804·8449 71 ·7 792·5892 2·8990482 ·2 805·1236 86 ·8 792·8677 2008 ·3 805·4020 2·90601 ·9 793·1468 8538 ·4 805·6806 16 12·0 793·4248 2·8995068 16·5 805·9591 2·90631 ·1 793·9819 8106 ·7 806·5162 61			8254	•4	802.8952	6588
1 790·9179 2·8981314 6 803·4522 961 2 791·1965 2848 7 803·7308 2·905110 3 791·4750 4872 8 804·0093 26 4 791·7536 2·8985900 9 804·2879 41 11·5 792·0321 7428 16·0 804·5664 2·90556 6 792·3106 8955 ·1 804·8449 71 7 792·5892 2·8990482 ·2 805·1235 86 8 792·8677 2008 ·3 805·4020 2·90601 9 793·1468 8538 4 805·6806 16 12·0 793·4248 2·8995058 16·5 805·9591 2·90631 1 793·7033 6582 ·6 806·2376 46 1 793·9819 8106 ·7 806·5162 61		790.6394	2.8979784	15.2	803:1787	8095
** 791.4750		790 9179	2 8981314			9601
.4 791.7536 2.89858900 9 804.2879 41. 11.5 792.0821 7428 16.0 804.6864 2.90556. .6 792.3106 8955 1 804.8449 71. .7 792.5892 2.8990482 2 805.1235 86. .8 792.8677 2008 -3 805.4020 2.90601. .9 793.1468 8538 4 805.6806 16. 12.0 793.4248 2.8995058 16.5 805.9591 2.90631. .1 793.7033 6582 6 806.2376 46. .2 793.9819 8106 .7 806.5162 61.	-2	791 1965	2843	•7	•	2.9051106
.4 791.7596 2.8985900 .9 804.2879 41. 11.5 792.0321 7428 16.0 804.6664 2.90556. .6 792.3106 8955 .1 804.8449 71. .7 792.5592 2.8990482 .2 805.1235 86. .8 792.6677 2008 .3 805.4020 2.90601. .9 793.1463 8538 .4 805.6806 16. 12.0 798.4248 2.8995068 16.5 805.9591 2.90631. .1 793.7033 6582 .6 806.2376 46. .2 793.9819 8106 .7 806.5162 61.	•8	791 4750	4872			2611
*** **********************************		791 - 7536	2.8985900			4115
-7 792·5592 2·8990482 -2 805·1235 86: -8 792·8677 2008 -3 805·4020 2·90601: -9 793·1468 8538 -4 805·6806 16: -12·0 798·4248 2·8995058 16·5 805·9591 2·90681: -1 793·7033 6582 -6 806·2376 46: -2 793·9819 8106 -7 806·5162 61:	11.5	792 0321	7428	16.0	804.2664	2.9055619
8 792·8677 2008 3 805·4020 2·90601: 9 798·1468 8538 4 805·6806 16: 12·0 798·4248 2·8995058 16·5 805·9591 2·90681: 1 798·7038 6582 6 806·2876 46: 2 798·9819 8106 7 806·5162 61:	-6	792:3106	8955	•1	804.8449	7122
.9 793·1468 8538 4 805·6806 16: 12·0 793·4248 2·8995058 16·5 805·9591 2·90631 .1 793·7033 6582 ·6 806·2876 46: .2 793·9819 8106 ·7 806·5162 61:		792.5892	2.8990482	•2		8625
12 0 793 4248 2 8995058 16 5 805 9591 2 90681 1 793 7033 6582 6 806 2876 46 2 793 9819 8106 7 806 5162 61	۰8	792.8677	2008	•3	805.4020	2.9060127
1 793 7033 6582 6 806 2876 466 2 793 9819 8106 7 806 5162 615	•9	793 1468	8538	•4		1628
2 793 9819 8106 7 806 5162 613	12.0	793:4248	2.8995058	16.5		2.9063129
	•1	793 7033	6582			4630
00 TO 1.00.0 0. 0000 100.107 0.	•2	793 9819				6180
	-8	794.2604	9629	٠8	806.7947	7630
·4 794·5390 2·9001152 ·9 807·0798 91	•4	794.5390	2.9001152	.8	807.0738	9129

TABLE FOR CORRECTION OF VOLUMES OF GASES-continued,

•	$780 \times (1+8t).$	Log. [780× (1+8)].		760× (1+81).	Log. [700× (1+&)].
° C.			° O.	· 	'
17:0	807:8518	2.9070628	21.5	819.8861	2 9187585
-: ·ĭ	807.6808	2126	9.	820.1646	9010
•2	807.9089	3624	٠7	820.4482	2.9140485
-8	808.1874	5121	·8	820.7217	1960
•4	808:4660	6618	٠,	821 0008	8484
17.5	808.7445	8114	22.0	821 2788	2.9144907
•8	809.0230	2.9079609	·1	821.5578	6880
7	809:3016	2.9081104	· <u>2</u>	821 .8859	7852
-8	809.5801	2598	-8	822 1144	9828
.9	809 . 8587	4092	•4	822:3930	2.9150794
18.0	810 1872	2.9085586	22.5	822:6715	2265
•1	810 4175	7079	•6	822 9500	8785
•2	810.6948	8571	7	828 2286	5205
-8	810.9728	2.9090068	•8	828.5071	6674
•4	811-2514	1554	-9	823.7857	8148
18.5	811 .5299	8045	28.0	824 0642	2.9159611
.8	811.8084	4585	•1	824.3427	2.9161079
•7	812:0870	6025	-2	824 6213	2546
-8	812:3655	7515	-8	824.8998	4018
.8	812.6441	9004	•4	825 1784	5479
19:0	812 9226	2.9100492	28.5	825 4569	6945
.1	818 2011	1980	•6	825 7854	8410
•2	818 4797	8467	•7	826.0140	9875
.8	818 7582	4954	. '8	826 2925	2.9171889
•4	814.0868	6440	.8	826 6711	2802
19.2	814.3153	7926	24.0	826 8496	2 9174265
∙6	814.6988	9411	•1	827 1281	5728
.7	814 8724	2.9110896	•2	827 4067	7190
-8	816 1500	2380	-8	827 6852	8652
.8	815 4925	8864	•4	827 9638	2.9180114
20.0	815.7080	2.9115347	24·5	828.2423	1575
•1	815 9865	6830	•6	828 5208	8085
.2	816.2651	8312	•7	828.7994	4495
.8	816.5486	9794	٠8	829 0779	5954
.4	816 8222	2.9121275	.8	829 8565	7412
20.5	817.1007	2756	25.0	829 6850	2.9188870
.6	817.3792	4236	·ī	829 9135	2.9190828
•7	817.6578	2.9125716	•2	830.1921	1785
•8	817 9363	7195	.8	880.4706	8242
9.	818:2149	8674	.4	830.7492	4699
21.0	818:4984	2.9180152	25.5	831 0277	2.9196155
·1	818-7719	1680	·6	881 8062	7610
·2 ·3	819:0505	8107	.7	881 5848	9065
	819:8290	4588	.8	881.8688	2.9200520
4	819.6076	6059	.6	881.1419	1974

TABLE FOR CORRECTION OF VOLUMES OF GASES-continued.

•	780 × (1+&¢).	Log. [760 × (1+81)].	•	760 × (1+8t).	Log. [760 × (1+86)].
°С.			° O.		
26.0	882.4204	2.9203427	28.1	888-2697	2.9283838
·1	832-6989	4880	•2	838-5483	5281
•2	882.9775	6888	٠8	838.8268	6728
.8	883 2560	7785	•4	839.1054	8165
٠4	888·584 6	9237	28.2	889.8889	2.9289606
26.5	888.8181	2.9210688	-8	889.6624	2.9241047
-6	884.0916	2139	•7	889.9410	2488
•7	884.8702	3589	·8	840.2195	8928
-8	834 6487	5038	٠,	840.4981	5368
٠9	834.9273	6487	29.0	840.7766	2.9246807
27:0	885:2058	2.9217986	1	841.0551	8246
.1	885.4848	9884	· <u>2</u>	841 8887	9684
•2	885.7629	2.9220882	٠.8	841 6122	2.9251122
-8	886.0414	2279	•4	841.8908	2559
•4	886.3200	8725	29.5	842 1698	8995
27 5	886.988	5171	- '6	842.4478	5481
•8	886.8770	6617	•7	842.7264	6866
7	887 1556	8062	·8	848.0049	8801
∙8	837 4841	9507	٠ğ	848.2885	9786
-9	887.7127	2.9280951	80 0	848.5620	2.9261171
28 0	887 9912	2.9232895	. 550	010 0020	T 97011/1

TENSION OF MERCURY VAPOUR (Ramsay and Young).

•a.	mm.	• o.	mm.	• 0	mm.
50	0.012	190	12:14	290	198 98
100	0.27	200	17:02	800	246.70
110	0.45	210	28 48	810	804.79
1 2 0	0.72	220	81 .96	820	873.28
180	1.14	280	42.92	880	454.28
140	1.76	240	56.92	840	546.72
150	2.68	250	74.59	850	658.52
160	4.01	260	96 66	860	785 11
170	2.30	270	12 8 ·91	000	100 11
180	8.54	280	157 .88		

VOLUME AND DENSITY OF WATRE AT DIFFERENT TEMPERATURES.*

Temp.	Sp. gr. of Water (at 0°=1).	Vol. of Water (at 0°=1).	Sp. gr. of Water (at 4°=1).	Vol. of Water (at 4°=1).
0°	1.000000	1.000000	999871	1.000129
ĭ	1.000057	0.999948	999928	1.000072
2	1.000087	999902	.999969	1.000081
8	1.000120	.99886	999991	1.000009
4	1.000120	999871	1.000000	1.000000
5	1.000129	999881	0.9999990	1.000010
8	1.000099	999901	999970	1.000080
7	1.000083	-999988	999938	1.000067
8	1.000012	-999985	999886	1.000114
ĝ	0.899928	1.000047	999824	1.000176
10	999876	1.000124	999747	1.000258
11	999784	1.000216	999655	1 000845
12	999678	1.000210	999549	1.000451
18	-999559	1.000441	999480	1.000570
15 14	•999429	1.000572	999299	1.000701
15	999429	1.000712	999160	1.000841
16	999131	1.000870	999002	1.000999
17	·998970	1.001081	998841	1.001160
18	998782	1.001219	998654	1.001848
19	1998588	1.001418	998460	1.001542
20	-998888	1 001415	998259	1.001744
20 21	998176	1.001828	998047	1.001957
21 22	·997958	1.002049	997826	1.002177
22	997988	1.002276	997601	1.002405
25 24	997495	1.002511	997867	1.002641
24 25	997249	1.002759	997120	1.002888
26 26	997249	1.008014	996866	1.003144
	996782	1.003278	996608	1.003408
27 28	996460	1.003558	996881	1.003682
28 29	996179	1.003885	996051	1.008965
29 80	995894	1.004128	995765	1.004258
80 85	0.99481	1.00572	0.99418	1.00598
40	0.99248	1.00757	0.99285	1.00778
45	0-99050	1.00958	0.99087	1.00974
50		1.01182	0.98819	1.01201
55		1.01426	0.98581	1.01442
60		1.01678	0.98838	1.01697
85		1.01921	0.98074	1 01971
70		1.02248	0.97794	1.02260
		1.02558	0.97498	1.02569
1 80		1.02874	0.97194	1 02890
85		1.03207	0.96879	1 03224
90		1.08554	0.96556	1.03574
90		1.08918	0.96219	1.08988
100		1.04299	0.98866	1.04815
100	, 0 80018		143 40	Tange to Weter St

This table may be utilized to reduce a sp. gr. taken with reference to water at one temperature to water at 4°C. Thus, let S_{15} be the sp. gr. of a substance referred to water at 15°C. as unity, then the sp. gr. (S_4) referred to water at 4° as unity will be $S_4 = S_{15} \times 99916 = S_{16}(1 - 90084)$.

BAUMÉ'S HYDROMETER: - Table for Liquids heavier than Water.*

* B.	· Tw.	Sp. gr.	* B.	· Tw.	8p. gr.	• B.	Tw.	8p. gr.
1	1.4	1.007	23	88	1.190	45	90.8	1.453
2	2.8	1.014	24	40	1.200	46	93.6	1.468
8	4.4	1.022	25	42	1.210	47	96.6	1.488
4	5.8	1.029	26	44	1.220	48	99.6	1.498
5	7.4	1.037	27	46.2	1.231	49	108	1.515
6	g	1 4045	28	48.2	I 241	50	106	1.580
7	10.2	1.052	29	50.4	1.252	51	109.2	1.546
8	12	1.080	80	52.6	1.263	52	112.6	1.263
9	18.4	1.067	81	54.8	1.274	58	116	1.580
10	15	1 075	82	57	1.285	54	110.4	1.597
11	16 ·6	1.088	88	59.4	1.297	55	128	1.615
12	18.2	1.091	84	61.6	1.308	56	127	1.635
18	20	1.100	35	64	1.320	57	180.4	1.652
14	21.6	1.108	86	66. 4	1 332	58	134.2	1.671
15	28 · 2	1.116	87	69	1.845	59	188.2	1.691
16	25	1.122	88	71 😘	1.357	60	142	1.710
17	26.8	1.134	89	74	1.870	61	146.4	1.782
18	28.4	1.142	40	76.6	1.888	62	150.8	1.753
19	80.4	1.152	41	79 4	1.397	68	155	1.775
20	82.4	1.162	42	82	1.410	64	159	1.795
21	84-2	1.171	48	84.8	1.424	65	164	1.820
22	86	1.180 ,	44	87.6	1.438	66	168.4	1.842

^{*} This is the Baume's hydrometer mostly used on the Continent of Europe; but other scales are in use there as well, and quite another scale for Baume's hydrometer is used in America (Lunge & Hurter, Alkai Makers' Handbook).

Table for Liquids lighter than Water

	11000	JOT LIQUIG	s ingrier than	w ater.	
* B.	Sp. gr.	• B.	Sp. gr.	* B.	8р. дт.
10	1.000	27	0.896	44	0.811
11	0.888	28	0.890	45	0.807
12	0.986 -	29	0.882	46	0.802
13	0.880	80	0.880	47	0.798
14	0.978	81	0.874	· 48	0.794
15	0.967	82	0.869	49	0.789
16	0.960	38	0.864	50	6.785
17	0.954	84	0.859	51	0.781
18	0.948	85	0.854	52	0.777
19	0.942	86	0.849	58	0.778
20	0.936	87	0.844	54	0.768
21	0.980	88	0.889	55	0.784
22	0.924	89	0.884	56	0.760
28	0·918	40	0.880	57	0.757
24	0.918	41	0.825	58	0.757
25	0.907	42	0.820	59	0.749
26	0.901	48	0.816	- 60	
		-0	0.010	· 00	0.745

Twaddelf's Hydrometer.—To convert degrees Twaddell into specific gravity (water= Twaddell into specific gravity (water = 1000): multiply the number by 5, and add 1000 to the product.

To reduce specific gravity (water = 1000) to Twaddell: deduct 1000, and divide the remainder by 5

TABLE SHOWING THE STRENGTH OF HYDROCHLORIC ACID OF DIFFERENT DENSITIES. (Lunge and Marchlewski.*)

					<u> </u>				•
1·010 2·14 22 1·080 16·15 174 1·145 28·81 828 1·015 8·12 82 1·085 17·13 186 1·160 29·67 340 1·020 4·18 42 1·090 18·11 197 1·165 80·55 858 1·025 5·15 58 1·095 19·06 209 1·165 81·52 866 1·030 6·15 64 1·100 20·01 220 1·165 32·49 879 1·035 7·15 74 1·106 20·97 232 1·170 33·46 892 1·040 8·16 85 1·110 21·92 248 1·175 84·42 404 1·045 9·16 96 1·115 22·86 255 1·180 35·89 418 1·050 10·17 10·7 1·120 23·82 267 1·185 36·81 480 1·065 11·18 118	at	per	HCl per	at	per	HOl per	at	per	Grams HCl per litre.
1.015 8.12 82 1.085 17.13 186 1.160 22.67 340 1.020 4.18 42 1.090 18.11 197 1.155 80.55 853 1.025 5.15 58 1.096 19.06 209 1.160 31.52 386 1.030 6.15 64 1.100 20.01 220 1.165 32.49 386 1.035 7.15 74 1.105 20.97 232 1.170 33.46 892 1.040 8.16 85 1.110 21.92 248 1.175 84.42 404 1.045 9.16 96 1.115 22.86 255 1.180 35.89 418 1.050 10.17 107 1.120 23.82 267 1.185 36.81 480 1.055 11.18 11.8 1.25 24.78 278 1.190 37.23 448 1.065 12.19 129	1.002	1.15	12	1.075	15.16	168	1.140	27 66	816
1 020 4 18 42 1 090 18 11 197 1 155 80 55 858 1 025 5 15 58 1 095 19 06 209 1 160 81 52 868 1 080 6 15 64 1 100 20 01 22 0 1 165 82 49 879 1 085 7 15 74 1 105 20 97 282 1 170 33 46 892 1 040 8 16 85 1 110 21 92 248 1 175 84 42 404 1 045 9 16 96 1 115 22 86 255 1 180 35 89 418 1 050 10 17 107 1 120 23 82 267 1 186 36 81 480 1 055 11 18 118 1 125 24 78 278 1 190 37 23 448 1 060 12 19 129 1 180 25 75 291 1 195 88 16 456 1 065 13 19 141	1.010	2.14	22	1.080	16.12	174	1.145	28.61	828
1.025 5.15 53 1.095 19.06 209 1.160 81.52 886 1.030 6.15 64 1.100 20.01 220 1.165 32.49 879 1.035 7.15 74 1.105 20.97 282 1.170 33.46 82 1.040 8.16 85 1.110 21.92 248 1.176 84.42 404 1.045 9.16 96 1.115 22.86 265 1.180 35.89 418 1.050 10.17 107 1.120 23.82 287 1.185 38.81 480 1.055 11.18 118 1.125 24.78 278 1.190 37.28 448 1.060 12.19 12.9 1.180 25.76 291 1.195 88.16 456 1.065 18.19 141 1.185 28.70 308 1.200 89.11 468	1.015	8.12	82	1.085	17:13	18 6	1.150	29 67	
1.080 6·16 64 1·100 20·01 220 1·165 32·49 879 1·085 7·15 74 1·105 20·97 282 1·170 33·46 892 1·040 8·16 85 1·110 21·92 248 1·175 84·42 404 1·045 9·16 96 1·115 22·86 265 1·180 35·89 418 1·050 10·17 107 1·120 23·82 267 1·185 36·81 480 1·055 11·18 118 1·125 24·78 278 1·190 37·23 448 1·080 12·19 129 1·180 25·75 291 1·195 88·16 458 1·065 18·19 141 1·185 26·70 808 1·200 89·11 469	1.020	4.18	42	1.090	18:11	197	1 155	80.55	858
1.085 7.16 74 1.108 20.97 282 1.170 33.46 892 1.040 8.16 85 1.110 21.92 243 1.175 84.42 404 1.045 9.16 96 1.115 22.86 255 1.180 36.89 418 1.050 10.17 10.7 1.120 23.82 267 1.185 36.81 480 1.055 11.18 11.8 1.125 24.78 278 1.190 37.23 486 1.065 12.19 129 1.180 25.75 291 1.195 88.16 458 1.065 18.19 141 1.185 26.70 808 1.200 89.11 469	1.025	5.15	53	1 095	19.06	209	1.160	81.52	866
1.040 8.16 85 1.110 21.92 248 1.175 84.42 404 1.045 9.16 96 1.115 22.86 255 1.180 85.89 418 1.050 10.17 107 1.120 23.82 267 1.185 86.81 480 1.055 11.18 118 1.125 24.78 278 1.190 87.23 480 1.065 12.19 129 1.180 25.75 291 1.195 88.16 458 1.065 13.19 141 1.185 26.70 808 1.200 89.11 469	1.080	6.12	64	1.100	20.01	220	1.165	32.49	
1.045 9.16 96 1.115 22.86 265 1.180 85.89 418 1.050 10.17 107 1.120 23.82 287 1.185 86.81 480 1.055 11.18 118 1.125 24.78 278 1.190 87.28 448 1.060 12.19 129 1.180 25.75 291 1.195 88.16 456 1.065 13.19 141 1.185 26.70 808 1.200 89.11 469	1.085	7:15	74	1.105	20.97	282	1.170	33'46	892
1·050 10·17 107 1·120 23·82 267 1·185 36·81 480 1·055 11·18 118 1·125 24·78 278 1·190 37·23 448 1·080 12·19 129 1·130 25·75 291 1·195 88·16 456 1·085 18·19 141 1·185 26·70 808 1·200 89·11 469	1.040	8:16	85	1.110	21.92	243	1.175	84.42	404
1.055 11.18 118 1.125 24.78 278 1.190 87.23 448 1.080 12.19 129 1.180 25.75 291 1.195 88.16 456 1.085 18.19 141 1.185 28.70 808 1.200 89.11 469	1.042	9.16	96	1.115	22.86	255	1.180	85.89	418
1.080 12.19 129 1.180 25.75 291 1.185 88.16 456 1.085 18.19 141 1.185 28.70 808 1.200 89.11 469	1.020	10.17	107	1.120	23.82	267	1.185	36.31	480
1.065 13.19 141 1.185 26.70 308 1.200 89.11 469	1.055	11 18	118	1.125	24.78	278	1.190	37.28	448
	1.080	12:19	129	1.130	25.75	291	1.192	88.16	456
1.070 14.17 152		19:19	141	1.185	26.70	808	1.200	89.11	469
	1.070	14.17	152						

* Alkali Makers' Handbook (Lunge and Hurter), p. 120.

TABLE SHOWING THE STRENGTHS OF NITRIC ACID OF DIFFERENT DENSITIES. (Lunge and Rev. *)

			<u> </u>		
8p. gr. at 15'/4".	HNO ₈ per cent.	Sp. gr. ab 15 /4".	HNOs per cent.	Sp. gr. at 15 /4".	HNOs per cent.
1.020	8:70	1.220	85.28	1.420	69.80
1.080	2.20	1.280	86.78	1.430	72.17
1.040	7.26	1 '240	38.29	1.440	74.68
1.050	8.99	1.250	89.82	1.450	77.28
1.080	10.68	1.260	41.84	1.460	79.98
1.070	12:38	1.270	42.87	1.470	82.90
1.080	13.95	1.280	44.41	1.480	86.02
1.090	15.28	1.290	45.95	1.490	89.60
1.100	17:11	1.300	47:49	1.200	94.09
1.110	18:67	1.810	49.07	1.502	95.08
1.120	20-23	1.820	50.71	1.504	96-00
1.180	21.77	1 .880	52.37	1.206	96.76
1.140	28 81	1.840	54.07	1.508	97.50
1.150	24.84	1.850	55.79	1.510	98:10
1-160	26.86	1:360	57.57	1.512	98.28
1.170	27.88	1.370	59.89	1.214	98.80
1.180	29.88	1 .380	61.27	1.216	99.21
1.190	80.88	1.890	63.23	1.518	99.46
1.200	32.36	1.400	65.30	1.520	99.67
1-210	88.82	1.410	67.50		

which agree closely with those tabulated above.

Note.—To get N₂O₅ subtract one-seventh from the percentage of nitric acid Thus, 1.450 sp. gr. = 77.28 - 11.04 = 68.24, N₂O₅.

* From Lunge's Sulphuric Acid and Alkali, Vol. I., third edition, 1903, pp. 99-101. The figures refer to chemically pure nitric acid; commercial acid, containing nitrous acid, etc., contains less real HNO₅ at the same density.

* Voley and Manley have recently published (see Jour. Soc. Chem. Ind., 1903 pp. 1227-1222) a table of densities of nitric acid from 1.885 to 1.521, the results of

Corrections for 1° C. (add when above 15°, subtract when below 15° C.).

8p. gr.	Correction.	Sp. gr.	Correction.
1:020-1:040	0.0002	1:281-1:810	0.0010
1 041-1 070	0.0008	1.311-1.350	0.0011
1.071-1.100	0.0004	1 351-1 365	0.0012
1.101-1.180	0.0002	1.866-1.400	0.0018
1.181-1.160	0.0008	1.401-1.485	0.0014
1.161-1.200	0.0007	1.486-1.490	0.0012
1.201-1.245	0.0008	1.491-1.500	0.0016
1 246-1 280	0.0008	1.501-1.520	0.0017

TABLE SHOWING THE STRENGTH OF SULPHURIC ACID OF DIFFERENT DENSITIES. (Lunge, Isler and Naef.*)

				·- 0,			
Sp. gr. at 15/4 C.	SO _S per cent.	H ₂ SO ₄ per cent.	Grams H ₂ 804 per litre.	Sp. gr. at 15°/4° O.	80 ₈ per cent.	H ₂ SO ₄ per cent.	Grams H ₀ SO ₄ per litre.
1.010	1.28	1:57	16	1.340	35.71	48-74	586
1.020	2.47	8.08	81	1.850	86.68	44.82	605
1.080	3 67	4.49	46	1.860	87.45	45.88	624
1.040	4.87	5.96	62	1.870	88.82	46.94	648
1.050	6.03	7.87	77	1.880	89.18	48.00	662
1.060	7.16	8.77	98	1.890	40.05	49.06	682
1.070	8.82	10.19	109	1.400	40.91	50.11	702
1.080	9.47	11.60	125	1.410	41.76	51.15	721
1.090	10.60	12.99	142	1.420	42.57	52.15	740
1.100	11.71	14 35	158	1.430	43.36	58·11	759
1.110	12.82	15.71	175	1.440	44 14	54:07	779
1.120	13.89	17 01	191	1.450	44.92	55·08	798
1.130	14.95	18.31	207	1.460	45.69	55 · P7	817
1.140	16.01	19 61	223	1.470	46.45	56.90	887
1.160	17:07	20.91	289	1.480	47 21	57.88	856
1.160	18:11	22.19	257	1.490	47 95	58.74	876
1.170	19:16	28.47	275	1.500	48.78	59·70	89 6
1.180	20.21	24.76	292	1.210	49.61	60.65	916
1.190	21 · 26	26:04	810	1.520	50.28	61.28	986
1.200	22.80	27.82	828	1.280	51 04	62.28	957
1.210	28.33	28.58	846	1.540	51·78	68.48	977
1.220	24:36	29·84	864	1.550	52.46	64 26	996
1.280	25.89	31.11	882	1.560	53.12	65.08	1015
1.240	26.35	82.28	400	1.570	28.80	65.80	1035
1.250	27:29	33·48	418	1.580	54 46	66.71	1054
1.260	28 ·22	34.57	435	1 590	55.18	67.59	1075
1.270	29.15	35 .71	454	1.600	22.93	68.21	1096
1.280	80.10	86.87	472	1.610	56 68	69.48	1118
1.290	81.04	88.03	490	1.620	57.40	70 82	1189
1.300	31 ·99	89.19	510	1.680	58 09	71 16	1160
1.810	32.94	40 ·85	529	1.840	58 77	71 99	1180
1.320	83 88	41.50	548	1.650	59.45	72.82	1202
1.880	84.80	42.66	567	1.660	60.11	78.64	1222
A T	In Chilmha		ad Albeld	Vol I thi	rd odiffer	1009 55	100 105

^{*} Lunge's Sulphuric Acid and Alkali, Vol. I., third edition, 1903, pp. 180-185.

TABLE SHOWING THE STRENGTH OF SULPHUBIC ACID OF DIFFERENT DENSITIES—continued.

Sp. gr. at 15'/4" C.	80s par cent.	H ₂ 80 ₄ per cent.	Grams H ₂ SO ₄ per litre.	Sp. gr. at 15"/4" O.	SO ₃ per cent.	H ₂ SO ₄ per cent.	Grams H ₂ SO ₄ per litre.
1:670	60:82	74.51	1244	1 790	69.96	85.70	1594
1.680	61.57	75.42	1267	1.795	70.45	86.80	1549
1.690	62.29	76.80	1289	1.800	70.94	86.90	1564
1.700	68.00	77:17	1312	1.802	71.50	87:60	1581
1.710	68.70	78.04	1884	1.810	72.08	88 -80	1598
1.720	64.43	78.93	1857	1.812	72.69	89.02	1621
1.780	65.14	79 80	1381	1.820	78.51	90.02	1689
1.740	65.86	80.68	1404	1.825	74.29	91.00	1661
1.750	66.58	81:56	1427	1.880	75.19	92:10	1685
1.760	67.80	82.44	1451	1.885	76.27	93 •48	1718
1.765	67.65	82.88	1468	1.840	78·04	95.60	1759
1.770	68.02	88.32	1475	1.840	80.98	99 20	1825
1-775	68:49	88.90	1489	1.841	79.19	97:00	1786
1.780	68.98	84.50	1504	1.841	80.16	98 20	1808
1.785	69.47	85.10	1519	1.8885	81.69	88.82	1838
	69.47			1.8885			

Note.—The maximum density does not colucide with the greatest strength, that is, pure monohydrated sulphuric acid, H₂SO₄. The maximum density is, at about 98 5 per cent., and from this point the densities decline to 100 per cent. H₂SO₄.

Cobrection for 1° C. (and when above 15°, subtract when below 15° C.).

Sp. gr.			(Correction.
1 170 (or less)		 		0.0008
1.170-1.450		 		0.0007
1.450-1.580		 		0.0008
1.580-1.750	-	 		0.0009
1.750-1.840	•••			0.0010
T 100-T 040		 	• • • •	

SPECIFIC GRAVITIES OF AQUEOUS AMMONIA. (Lunge and Wiernik.)

Specific gravity at 15° C.	NH ₂ per cent.	1 litre at 15°C. contains grams NH ₃ .	Specific gravity et 15° C.	NH ₃ per cent.	1 litre at 15° O. contains grams NH ₃ .
0.882	84.95	808.3	0.810	24.99	227 '4
884	84.10	801 4	912	24 .33	221 '9
.886	88 25	294.6	.914	23.68	216.8
*888	32:50	288 6	916	28.08	210.9
-890	81.75	282.6	·918	22.89	205.6
-892	81.05	277.0	920	21.75	200.1
-894	30.87	271.5	.922	21 · 12	194.7
-896	29.69	266.0	924	20:49	189·8
-898	29:01	260.5	.926	19:87	184.2
•900	28:33	255.0	.928	19:25	178.6
902	27.65	249.4	.930	18:64	178.4
904	26.98	248.9	.932	18.08	168·1
-906	26.81	288.8	·934	17.42	162.7
908	25.65	282.9	.986	16.82	157:4

SPECIFIC GRAVITIES OF AQUEOUS AMMONIA—continued.

Specific gravity at 15 0.	NH ₃ per cent.	1 litre at 15°C. contains ~ grams NH ₃ .	Specific gravity at 15° O.	NH ₃ per cent.	1litre at 15°C. contains grams NH ₃ .
0.938	16:22	152.1	0.P40	7:31	70.9
940	15.63	146.9	.972	6·80	66.1
942	15.04	141.7	·97 4	6.80	61.4
944	14.46	136.2	-976	5.80	8.83
-946	13.88	131.8	978	5.80	5 1 ·8
·948	18.31	126.2	•980	4.80	47.0
•950	12.74	121.0	982	4.30	42.2
.952	12.17	115.9	.984	8.80	87:4
*954 .	11.60	110.7	-986	8.80	82.5
-956	11.03	105.4	•988	2.80	27.7
-958	10.47	100.8	-990	2.81	22.9
-96 0	9.91	95.1	992	1 84	18.2
-962	9.35	89.9	•994	1 · 87	18.6
964	8.84	85.2	·996	0.91	9·1
-966	8.88	80.2	•998	0.45	4.5
968	7.82	75.7	1.000	0.00	0.0

SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM AND POTASSIUM HYDROXIDES AT 15°/4° O.

	E	IVDROXIDES	AT 15"/4" C).	
Sp. gr.	% NaOH.	% KOH.	8р. дт.	% ИнОН.	% кон.
1.010	0.86	1.18	1.280	25.04	29.00
1.020	1.69	2.28	1:290	25.96	29.96
1.080	2.60	8.86	1.800	26.85	80.91
1.040	8.20	4.44	1:310	27.85	81 .84
1.050	4.84	5.28	1.820	28:88	82.78
1.080	5.20	6.80	1.380	29· 80	88.70
1.070	6.18	7.68	1.840	80.74	84.63
1.080	7.05	8.76	1-350	81 .75	85.55
1.090	7:95	9.82	1.360	82.79	86.46
1.100	8.78	10.87	1.870	38.78	87:87
1.110	9.67	11 92	1.880	84.71	88:28
1.120	10.28	12.96	1.890	85.68	89.18
1.180	11.55	14.01	1.400	86.67	40.09
1.140	12:49	15 04	1.410	87.65	40.98
1.120	18.84	1 6 ·08	1.420	88.67	41 .87
1.160	14:19	17:10	1.480	89.67	42.76
1.170	15.06	18.18	1.440	40 68	48.68
1.180	16.00	19:15	1.450	41.70	44.50
1.190	16.91	20.17	1.460	42.75	45.37
1.200	17:81	21 · 17	1.470	48.80	46.23
1.210	18.71	22.16	1.480	44.85	47 09
1 220	19.65	23 · 17	1.490	45.89	47 .98
1.230	20.60	24.14	1.500	46.94	48.78
1 .240	21 ·47	25.18	1.210	48-00	49.64
1.250	22.88	26.10	1.520	49.05	50.48
1.260	23.28	27:07	1.580	50.10	51.82
1.270	24 · 18	28.04			

The above table is abbreviated from the very full tables given in Lunge's Technical Chemists' Handbook (1908).

STRENGTH OF SATURATED SOLUTIONS OF A FRW COMMON SALTS.*

		At 60° F.	
,	Sp. gr. of saturated solution.	C.c. of water dissolve 1 gram.	Grams in I litre of saturated solution.
Acid, chromic	1.710	0.28	1075.5
,, citric	1:3026	0.21	861.7
,, tartarie	1.81	0.71	766.1
Aluin, aminonia	1.0459	9.95	95.5
,, potash	1.048	9.70	97.7
Ammonium carbonate	1.094	8 94	221.5
,, chloride	1.077	2.8	472.4
Borax	1.0205	28.7	41.8
Oaloium chloride (anhyd.)	1.4096	1.41	584.6
(nari arron	1 .4098	0.82	774.2
Copper sulphate	1.198	2.79	814.8
Lead acetate	1.2554	2.37	872.5
Magnesium sulphate	1.2755	0.88	648.9
Mercurio ohloride	1.0472	17:9	55.4
Potassium acetate	1.406	0.28	1099.2
,, bicarbonate	1.1688	8.21	277.7
dichromata	1.066	9.93	97.5
, bromide	1.8615	1.59	525.7
ahlamta	1.038	16.53	59.2
hwdroto	1.553	0.847	942.9
iodido	1.7039	0.701	996.4
nitrata	1.1452	8.77	240.1
DATUS TO TO TO	1.0368	18.7	52.7
aulpha+a	1.0784	9.65	101.8
Sodium bicarbonate	1.0608	11.08	87.8
corbonata	1.1608	1.66	486.4
,, ablarida	1.204	2.8	816.8
phombuta	1.0489	6.91	182.6
" mulmhata	1.1114	2.68	802.7
Zino sulphate	1.452	0.85	880.0
ուս բարոստ	1 102	5 05	550 0

Note.—In all the above determinations the substances are calculated as of official (i.e., B.P.), not absolute, purity.

* H. G. Greenish in the *Pharm. Journal*, Dec. 28, 1903.

GLYCERINE TABLE.

Per cent. Glycer-ine.	8p. gr. 15° C. 59° F. 15° - 59°	Sp. gr. 20° C. 66° F. 20° = 68°	Per cent. Glycer- ine.	Sp. gr. 15° C. 15°.	Per cent. Glycer- ine.	Sp. gr. 15 0. 15.
100 99 98 97 96 95 94	1.26596 1.26385 1.26072 1.25809 1.25547 1.25285 1.25021 1.24756	1:26848 1:26085 1:26822 1:25560 1:25297 1:25084 1:24771 1:24508	74 78 72 71 70 69 68 67	1·19588 1·19309 1·19035 1·18761 1·18487 1·18212 1·17987 1·17662	40 85 80 25 20 15 10	1-10258 1-08908 1-07564 1-06286 1-04980 1-03652 1-02409 1-01189
92 91 90 89 88 87 86 85	1.24487 1.24217 1.28945 1.28678 1.28400 1.28128 1.22855 1.22888	1.24246 1.28988 1.28720 1.28449 1.28178 1.22907 1.22636 1.22866	66 65 64 68 62 61 60 59	1·17887 1·17113 1·16837 1·16561 1·16286 1·16011 1·15737 1·15462		8p. gr. 20° C. 20°
84 83 82 81 80 79 78 77 76	1.22810 1.22088 1.21766 1.21498 1.21221 1.20949 1.20677 1.20404 1.20181 1.19857	1·22094 1·21828 1·21552 1·21281 1·21010 1·20787 1·20464 1·20190 1·19917 1·19644	58 57 56 55 54 53 52 51 50	1.15187 1.14912 1.14687 1.14862 1.14088 1.18814 1.18589 1.18265 1.12990 1.11618	70 80 50 40 80 20	1 18298 1 15561 1 12881 1 10118 1 07469 1 04884 1 02891

The above table is a combination of W. W. J. Nicol's excellent tables for the two temperatures above specified, as given in the United States Disponentory, p. 658, and in Watte's Distinuary of Chemistry (most recent edition in each case). In the former work a complete table from 1-100°/, glycerine, at 15° C. is given. The following formula is useful:—

sp. gr. of dilute glycerine—1.000 = % by weight of glycerine. 002665

The divisor '00261 is more accurate, however, for mixtures containing between 80 and 60°/, glycerine, and '0025 for those below 80°/.

THE PREPARATION OF REAGENTS FOR WATER ANALYSIS.

Nessler's Solution.—First, dissolve 150 grams of stick potesh in 150 c.c. of water, and set aside to cool. Next, dissolve 62.5 grams of potassium iodide in about 250 c.c. of water in a 1200 c.c. beaker. transfer about 10 c.c. to a small beaker, and add gradually to the main bulk, with constant stirring, a cold saturated solution of mercuric chloride (of which about 500 c.c. will be required) until a permanent precipitate is obtained. Now add the potassium iodide solution in the small beaker, which should redissolve the precipitate, and continue adding cautiously mercuric chloride until a slight precipitate remains undissolved on stirring. Add the cold potash solution, transfer the whole to a litre flask, make up to the mark with water, and pour into a stoppered bottle. After standing about 12 hours the solution will have become clear, and should then be tested as follows: To 50 c.c. of ammonia-free water add 0.2 c.c. of standard ammonium chloride solution (=0.00001 gram NH2), mix, and then add 2 c.c. of Nessler's solution, when a yellow tinge should appear at once if the latter solution be properly made. If the Nessler's solution is not sensitive—which will be the case if it is perfectly colourless, instead of the proper greenish-yellow tint—a little more mercuric chloride solution should be added, the whole well mixed, allowed to settle, and tested again.

Some Nessler's solutions give a red precipitate when added to water. The art of making a thoroughly satisfactory Nessler's solution can

only be acquired by practice.

Alkaline permanganate solution.—Dissolve 200 grams of stick potash in water in a large porcelain dish and add a solution of 8 grams of potassium permanganate in water, using 1100 c.c. altogether. Boil rapidly until concentrated to about 900 c.c., add about 200 c.c. of hot distilled water, and continue boiling till the volume is reduced to a litre. When cool, pour at once into a bottle. Every fresh lot of solution made should be carefully tested before being used.

Standard solution of ammonium chloride.—Dissolve 1.5704 grams of pure dry ammonium chloride in a litre of ammonia-free water; of this take 100 c.c. and make up to a litre with water. Of this

latter solution

1 c.c.=0.00005 gram ammonia. 1.21 c.c.=0.00005 gram nitrogen.

When 500 c.c. of water are distilled,

1 c.c.=0.01 part NH₃ per 100,000. 1.21 c.c.=0.01 part N

The solution should be measured in a standard 1 c.c. pipette divided into hundredths.

Or, by dissolving 1.9094 gm. NH_4Ol in a litre of water, and diluting 100 c.c. of the solution to 1000 c.c., then of this latter solution

1 c.c. = 0.00005 gram ammoniacal nitrogen.

Standard silver nitrate solution.—Dissolve 2.4 grams of recryst, silver nitrate in a litre of water and standardize against a solution of pure sodium chloride containing 0.8243 gram per litre (1 c.c. = 0.0005 gram chlorine).

1 c.c. silver nitrate solution=0.0005 gram Cl, or when 50 c.c. of water are titrated,

1 c.c.=1 part combined chlorine per 100,000.

REAGENTS FOR DETERMINATION OF OXYGEN ABSORBED.

(i) Dilute sulphuric acid.—Add 1 vol. of pure sulphuric acid to 3 vols. of water, and drop in potassium permaneanate solution (ii) until the liquid retains a very faint pink tint after being kept at 80° F. for four hours.

(ii) Standard solution of potassium permanganate.—Dissolve 0.395

gram of recryst. potassium permanganate in I litre of water.

1 c.c. = 0.0001 gram available oxygen.

(iii) Potassium iodide solution.—Dissolve 1 part of the pure salt in 10 parts of water.

(iv) Sodium thiosulphate solution.—Dissolve 1 gram of the crystals

in I litre of water.

(v) Starch indicator.—One part of clean potato starch, or arrowroot, is mixed smoothly into an emulsion with cold water, then poured gradually into about 150 or 200 times its weight of boiling water, the boiling continued for a few minutes, then allowed to stand and settle thoroughly. The clear solution only is to be used as the indicator, of which only a few drops are necessary.

Lintner's soluble starch acts well as an indicator, as it gives at

once a clear solution in boiling water.

Thresh's starch solution (see p. 94) is also useful as an indicator.

REAGENTS REQUIRED FOR DETERMINATION OF HARDNESS.

Preparation of soap solution for Clark's test.—Weigh out 50 grams of commercial oleic acid in a beaker and add 100 c.c. of an alcoholic potash solution made by dissolving 20 grams of stick potash in 180 c.c. of industrial methylated spirit, and continue adding the same solution from a burette till a drop of the oleate just gives a red colour with phenol-phthalein spotted on a white tile—about 10 c.c. more being required. Measure the solution and make the volume to 400 c.c. by the addition of methylated spirit. 45 c.c. of the strong soap solution thus obtained are diluted with methylated spirit (2 vols.) and water (1 vol.) to a litre, allowed to stand for about 24 hours, filtered through a double Swedish filter, and standardized against standard calcium chloride

solution. The solution will be found to be a little too strong, and is diluted to exact strength, which is attained when 14-25 c.c. are required to form a permanent lather with 50 c.c. of the standard calcium chloride solution.

Standard colcium chloride solution.—Dissolve 0.2 gram of Icaland spar in dilute hydrochloric acid in a platinum dish, adding the acid gradually and having the dish covered with a large watch glass to prevent loss by spirting. When solution has taken place, rinse the glass into the dish, and evaporate to dryness on a waterbath: add water and again evaporate to dryness, and repeat this addition of water and evaporation two or three times in order to ensure complete expulsion of hydrochloric acid. Finally, take up the residue with distilled water, and make up the solution to 1 litre.

50 c.c. correspond to 0.01 gram CaCO₂.

TABLES BEQUIRED IN WATER ANALYSIS.

I. Tension of Aqueous Vapour in Millimetres of Mercury from 0° to 85° C.

	0° to 85° U.													
• a.	mm,	• 0.	mm.	٠٥.	mm,	• 0.	mm,	٠٥.	mm.					
0.0	4.800	2.5	5.491	5.0	6.584	7.5	7.751	10.0	9:165					
.1	-633	-8	·530	.1	-580	•6	804	-1	-227					
•2	·6 67	•7	•569	.2	6:25	•7	*857	-2	288					
.8	700	•8	.608	.3	•671	-8	.910	.8	.850					
•4	·78 3	-9	·647	•4	.717	٠9	.964	•4	412					
0.2	•767	8.0	5.687	5.2	763	8.0	8.017	10.2	474					
-6	·8 01	•1	•7 27	.6	'810	•1	.072	-6	537					
•7	· 8 36	-2	767	•7	•857	•2	126	7	· 6 01					
٠8	·871	•8	·807	.8	904	•8	181	-8	.665					
.8	905	4'	*848	.8	951	•4	.236	٠9	728					
1.0	4.940	8.2	•890	6.0	6.998	8.2	291	11.0	9.792					
•1	•975	∙6	1930	•1	7.047	•6	847	-1	.857					
•2	5.011	•7	.972	-2	.095	7	•404	•2	923					
.8	'047	•8	6.014	٠8	.144	-8	461	•8	.989					
•4	.082	-9	056	•4	.193	-9	.517	-4	10.054					
1.2	•118	4.0	6.097	6.5	.242	9.0	8.574	11.5	.120					
-6	155	•1	.140	-8	.292	•1	-632	.6	.187					
•7	•191	-2	·183	•7	.842	•2	-690	7	255					
۰8	.228	•8	•228	٠8	892	-8	·748	·8	322					
-9	265	•4	-2 70	-9	442	•4	•807	٠ğ٠	.339					
2.0	5.302	4.5	*813	7.0	7:492	9.5	*865	12.0	10.457					
•1	.840	•в	•857	.1	•541	•8	925	-1	.526					
-2	•378	. 7	•4 01	•2	.595	•7	985	. •2	596					
-8	· 4 16	-8	445	.8	.647	-8	9.045	•8	.665					
•4	454	-9	•4 90	•4	699	-9	.105	-4	1784					

TABLES REQUIRED IN WATER ANALYSIS. TABLE I .- continued.

							<u> </u>		
·a	mm.	• a.	mm	• 0.	mm.	• 0.	mm.	٠٥.	mm.
12.6	10.804	17:1	14.518	21.7	19:805	26.3	25.438	80.8	83.215
9.	-875	-· · <u>-</u> 2	.605	-8	.428	•4	.288	81.0	83.405
•7	-947	-8	·697	.9	.541	26.5	•788	•1	.596
-8	11.019	•4	790	22.0	19.659	•6	.891	-2	•787
-9	090	17.5	.882	•1	-780	.7	26.045	-8	.980
13.0	11.162	-8	.977	•2	-901	∙8	.198	•4	
10.0	-235	•7	15.072	-8	20.022	•9	.851		.868
•2	.808	-8	167	•4	.143	27.0	26.202	-6	
.3	.383	.9	262	22.5	.265	.1	·663 ·820	-7	.761
•4	.456		15.857	.6	•389	•2	•820	-8	.959
18.2	.230	-1	.454	-7	·514	-3	•079	٠.	85.159
9.	-605	•2	.552	-8	.689	•4	27:136	82.0	85.859
·ř	· 6 81	.8	.650	.8	.763	27.5	27·186 ·294 ·455 ·617	.1	
-ġ	.757	•4	.747	28.0	20.888	٠6	•455	-2	
٠9	832	18.5	.845	.1	21.016	•7			-962
14.0	11.908	-8	.945	-2		٠8	•778	•4	
.1	-986	·8 ·7	16:045	-18		-9	.989	82.5	
-2	12.064	∙8	.145	•4		28.0	28.101	.8	
•3	142	-9	•246	28.5	∙528	' 1	•267	7	788
•4	•220		16.846	-6	21.659	.3	· 438	-8	.991
14.2	•298	.1	•449	•7	•790	.8	599	.8	
.8	·878	•2	.552	-8	.921	•4	765	88.0	37.410
•7	•458	8	655	.9	22.053	28.5	.931 29:101 :271	.1	.621
.8	.538	4	758	24.0	22·184 ·319	.6	29.101	•2	.832
.8	.619	19.5	-861	.1					
15.0	12.699	.6	967	.2	.458	.8	.441		-258
.1	.781		17.078	-8		.9	.612	83.5	.478
-2	864	.8	179	4	.723	29.0	29.782	.6	-689
-8	.947	9.	285	24.5	-858	.1	956	٠7	.908
4	18.029	20.0	17.891	.0	996	•2	80.181	-8	89 124
15.5	112	1	.200		23.135	.8	.805		844
·8	·197		000	0	·273 ·411	•4	.418	84.0	89.565
·7	·281 ·366	·8 ·4	·717 ·826	-9	28.550	29.5	-004	·1 ·2 ·8	786
·8	'451	20.2	935	20 0	-692	·6 ·7	31.011	-2	40·007 -280
16.0	18.536		18.047	·1 ·2	884	.8	190	·8 ·4	*455
10.0	628	.7	15'047	.3	976	.9	.869	84.5	-680
•2	·710	.8	271		24.119	80.0	81 548		907
-8	·797	.9	.383	25.5	261	.1	729	-7	41.135
.4	·885	21.0		20.6	·406	•2	911	-8	364
16.2	972	1.	.610	7	·552	.8	82.094	-9	.595
.6	14.062	.2	·724	.8	-697	•4	278	85.0	·827
.7	14 002	.8	.839	٠,	-842	80.2	.463	00 0	Q#I
-8∙	241	٠,	954		24.988	.6	-650		
٠,	.331	27.5	10.080	•1	25.188	7	·837		
17.0	14.421	9.	19.069 -187	٠,	-288	•8			
		•	10,	-		J	50 040		

TABLES REQUIRED IN WATER ANALYSIS-continued.

II. Reduction of Cubic Continuetres of Nitrogen to Grams.

Log. $\frac{0.0012507}{(1+.003665\ t)\ 760}$ for each tenth of a degree from 0° to 80° C.

t.	0.0	0.1	0.2	0.8	0.4	0.2	0.8	0.7	0.8	0.9
° O. 0 1 2 8 4 5	6·21684 476 817 159 002 6·20845	618 459 301 148 986 829	602 443 285 127 970 818	586 427 269 112 955 798	570 411 253 098 939 782	554 395 287 080 923 766	539 379 221 065 908 751	523- 368- 205- 049- 892- 785-	507 847 189 038 876 719	491 882 174 018 861 704
6 7 8 9 10	6·20689 584 379 225 071 6·19917	678 518 864 210 056 902	658 508 348 194 040 887	642 487 888 179 025 872	627 472 817 168 009 856	611 456 802 148 994 841	596 441 286 132 979 826	580 425 271 117 963 811	565 410 255 101 948 796	549 894 240 086 932 780
12 18 14 15 16 17	6·19765 618 461 810 159 009	750 598 446 295 144 994	785 588 431 280 129 979	720 568 416 265 114 964	704 552 401 250 099 949	689 587 386 235 084 934	674 522 371 220 069 919	659 507 856 205 054 904	644 492 841 190 089 889	628 476 825 174 024 874
18 19 20 21 22 28	8·18859 710 562 414 266 119	844 695 547 899 251 104	829 680 532 884 236 089	814 665 517 869 221 075	799 650 502 854 206 060	784 685 487 889 191 045	769 620 472 824 176 081	754 606 458 310 162 016	789 591 448 295 147 002	724 576 428 280 132 987
24 25 26 27 28 29	8:17978 827 681 536 891 247	958 812 666 521 876 232	948 797 651 507 862 218	929 788 687 492 847 208	914 768 622 478 833 189	899 758 607 463 818 175	885 789 598 449 804 160	870 724 578 434 289 146	856 710 564 420 275 181	841 695 549 405 260 117

Tables required in Water Analysis—continued. III. Loss of Nitrogen by Evaporation of NH₃ with Sulphurous Acid.

Parts per 100,000.

NH ₃	Loss of N	NH ₃	Loss of N	NH ₃	Loss of N	NH ₃	Loss of N	NH ₃	Long of N	NH.	Loas of N
6·0 5·8	1.727 1.707 1.688	4·8 4·7 4·6	1.451 1.411 1.372	8·6 8·5 8·4	-977 -987 -898	2·4 2·3 2·2	·508 ·468 ·424	1.2	250	·09 ·08	·014 ·013
5·7 5·6 5·5	1.668 1.648 1.628	4·5 4·4 4·8	1.882 1.298 1.258	3·8 3·2 3·1	·858 ·819 •779	2·1 2·0 1·9	*884 *845 *838	1.0 0.9 .8	226 196 166	.07 .08 .05	·012 ·010 ·009
5·4 5·8 5·2	1.609 1.589 1.569	4·2 4·1 4·0	1·214 1·174 1·185	8·0 2·9 2·8	-740 -700 -661	1.8 1.7 1.6	821 809	-6 -5	186 106 1077 1062	•04 •08 •02	-007 -006 -004
5·1 5·0 4·9	1.549 1.580 1.490	8·9 8·8 8·7	1.095 1.056 1.016	2.7 2.6 2.5	·621 ·582 ·542	1.5 1.4 1.3	·285 ·274 ·262	·8 ·2 ·1	·047 ·082 0·17	•01 •009	·008 ·001

Loss of Nitrogen by Evaporation of NH₃ with Hydric Metaphosphate.

Parts per 100,000.

Volume evaporated.	NH ₃	Loss of N	Volume evaporated.	nH3	Loss of N	Volume evaporated.	NH3	Loss of N
100 a.a.	10.0	·488	100 c.c.	8.8	•424	100 a.c.	6.6	-865
	9.9	480		8.2	421		6.2	.361
1)	9.8	476	**	8 1	•417	"	8.4	.858
"	9.7	478	23			11		
"			11	8.0	414	"	6.8	·854
**	9.6	469	,,	7.9	410	,,	6-2	851
,,	9.5	• 4 66	,,	7.8	· 4 07	,,	6.1	.848
"	9.4	· 4 62	"	7.7	·408	"	6.0	845
"	9.8	· 4 59	,,	7.6	·400		5.9	1841
	9.2	455		7.5	-896	"	5.8	837
,,	9.1	452	",	7.4	.898	"	5.7	
"			11			,,		.888
,,	8.0	448	21	7.8	889	,,	5.6	.880
23	8-9	445	11	7.2	.386	11	5.2	*826
,,	8.8	· 44 1	,,	7.1	•882	11	5.4	.322
"	8.7	488	,,	7.0	.879		5.8	·818
	8.8	.484		6.9	·875	"	5.2	814
,,	8.2	·481	;,	6.8	.872	1)		
11			"			17	5.1	.810
>1	8.4	•428	1,	6.7	•868	,,	5.0	.806

TABLES REQUIRED IN WATER ANALYSIS. TABLE IV .- continued.

Volume evaporated.	NH ₃	Loss of N	Volume evaporated.	NH.	Loss of N	Volume evaporated.	NH2	Loss of N
100 a.c.	4.0987654444.83876548210	*802 •294 •291 •287 •275 •271 •262 •257 •262 •257 •242 •286 •281 •216	100 c.c.	29878548210987165482110	·211 ·205 ·200 ·195 ·190 ·184 ·169 ·164 ·158 ·148 ·148 ·148 ·127 ·127 ·122	250 c.c. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-9 -8 -7 -6 -5 -4 -8 -2 -1 -09 -08 -07 -08 -05 -04 -03 -02 -01	·096 ·080 ·070 ·060 ·050 ·040 ·080 ·010 ·009 ·008 ·007 ·005 ·005 ·004 ·008 ·009 ·009

V. Loss of Nitrogen by Evaporation of NH₃ with Sulphurous Acid.

Parts per 100,000.

N ns NH3	Loss of N	N as NH ₃	of N	N as NH ₃	Loss of N	N as NH,	Loss of N	N as NH ₃	Loss of N	N as NH ₃	Loss of N
5·0 4·9 4·8 4·7 4·6 4·5 4·4 4·3	1.741 1.717 1.698 1.669 1.645 1.621 1.598 1.574	3.9 3.8 3.7 3.6 3.5 3.4 3.8	1.425 1.878 1.830 1.282 1.284 1.186 1.138 1.090	2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2	946 -898 -850 -802 -754 -706 -658	1.9 1.8 1.7 1.6 1.5 1.4 1.8	·466 ·418 ·370 ·388 ·324 ·309 ·295 ·280	·9 ·8 ·7 ·6 ·5 ·4 ·8 ·2	-287 -217 -181 -145 -109 -075 -057 -088	.08 .07 .06 .05 .04 .08 .02	·017 ·015 ·018 ·011 ·009 ·007 ·005 ·008
4·2 4·1 4·0	1.550 1.521 1.478	8·0	1.042 .994	2·1 2·0	·562 ·514	1·1 1·0	266 252	·1 ·09	·020 ·018	008 007	·002

TABLES REQUIRED IN WATER ANALYSIS—continued.

VI. Loss of Nitrogen by Ecuporation of NH₃ with Hydric Metaphosphats.

Parts per 100,000.

Volume evaporated.	N as NH ₃	Loss of N	Volume evaporated.	N as NH ₂	Loss of N	Volume evaporated.	N as NH ₈	LOSS of N
100 c.c.	8-2	-482	100 a.a.	5.1	-852	100 c.c.	2.1	192
	8.1	·477		5.0	•347	,,	2.0	.186
11	8.0	478	, ,,	4.9	.348	"	1.9	·180
17	7.9	469	"	4.8	.838	"	1.8	.178
**	7.8	-465		4.7	.834	"	1.7	167
1)	7.7	.461	"	4.8	.329	"	1.6	.161
,,	7.8	456	,,	4.6	.824	"	1.5	.154
"	7.5	452	"	4.4	.319	,,	1.4	.148
37	7.4	.448	"	4.3	.815	"	1.3	142
,,	7.8	•444	"	4.2	.310	,,	1.2	.136
"	7.2	·440	"	4.1	-305	,,	1.1	$\cdot 129$
**	7.1	·435	"	4.0	.801	,,	1-0	123
"	7.0	·431	",	8.9	.296	"	9	·117
**	6.9	· 4 27	,,	3.8	.291	"	-8	.111
11	6.8	·428	"	8.7	286	250 c.c.	.7	.088
"	6.7	-419	"	8.6	281	,,	٠6	.073
"	8.8	.414	,,	8.2	277	"	-5	.061
"	6.2	·410	"	3.4	272	500° c. c.	•4	.049
,,,	6.4	-406	"	8.8	267	11	8	.086
"	6.8	402	"	3.2	.261	1000 0.0.	•2	.024
1,	6.2	-898	"	8.1	255	11	•1	.012
13	6.1	894	"	8.0	.249	"	.09	.011
"	6.0	-889	, ,,	2.8	.242	"	.08	.010
"	5.9	.885	,,	2.8	236	"	.07	.008
1)	5.8	881	"	2.7	.280	"	-06	.007
"	5.7	877	",	2.6	.223	"	.05	.006
"	5.6	·873	"	2.5	217	"	.04	.005
"	2.2	.368	"	2.4	211	"	.08	004
"	5.4	.364	"	2.3	205		.02	.002
"	5.3	.860	"	2.2	·198	11	.01	.001
"	5-2	.356	••			,,		

VII. Table of Hardness. (50 c.c. of water used.)

			(50 0.	or or wer	or usou.)			
Volume of Soap solu- tion.	CaCO ₃ per 100,000	Degrees of Hard- ness.*	Volume of Soap solu- tion.	OaCO, per 100,000	Degrees of Hard- ness	Volume of Soap solu- tion.	CaCO ₃ per 100,000	Degrees of Hard- ness.
0.0.			C.C.			<u> </u>		
0.7	0.00	0.00	1.3	0.95	0.67	1.9	1.82	1.27
0.8	0.16	0.11	•4	1.11	0.78	2.0	1.95	1.37
0.8	0.82	0.22	•5	1 .27	0.89	•1	2.08	1.46
1.0	0.48	0.34	-6	1.43	1.00	•2	2.21	1.55
.1	0.68	0.44	•7	1.56	1.09	-3	2.84	1.64
	0.79	0.22	-8	1.69	1.18	•4	2.47	1.78

TABLES REQUIRED IN WATER ANALYSIS. TABLE VII.—continued.

Volume of Soap solu-	CaCO ₂ per 100,000	Degrees of Hard- ness,*	Volume of Scap solu- tion.	CaCO, per 100,000	Degrees of Hard- ness.	Volume of Soap solu-	CaCO ₃ per 100,000	Degrees of Hard- ness.
tion.			шоп.			tion.		
0.0.			O. C.			G. Ca	,	
2.5	2.60	1.82	7.1	9.00	6.80	11.7	15.95	11.17
8	2.78	1.91	-2	9.14	6.40	·8	16.11	11.28
•7	2.86	2.00	· <u>8</u>	9.29	6.20	٠,	16-27	11.39
•8	2.99	2.09	•4	9.48	6.80	12.0	16.48	11.50
-9	8 12	2.18	•5	9.67	6.70	•1	16.59	11.61
8.0	8.25	2.28	•6	9.71	6.80	•2	16-75	11.78
'1	8.88	2.87	•7	9 86	6.90	-8	16.90	11.88
•2	8.21	2.46	-8	10.00	7.00	•4	17.06	11.94
•8	3.64	2.55	.8	10.15	7:11	•5	17.22	12.05
•4	8.77	2.64	8.0	10:30	7 21	•6	17:38	12.17
-5	8.90	2.73	.1	10.45	7:32	•7	17:54	12.28
.₿	4.08	2.82	•2	10.60	7.43	-8	17.70	12:39
.7	4.16	2.91	۰8	1075	7 58	.8	17.86	12.50
-8	4 -29	8.00	•₫	10.90	7.68	13.0	18 02	12.61
.9	4.48	8.10	:5	11.02	7.74	•1	18.17	12.72
4.0	4.57	8.20	-6	11.20	7.84	.3	18 38	12.83
.1	4.71	8.90	.7	11.95	7.95	-8	18.49	12.94
-2	4.86	8.40	•8	11.20	8.05	· <u>4</u>	18.65	18·0 6
-8	5.00	8.50	-9	11.65	8.16	-5	18.81	18.17
:4	5.14	8.60	9.0	11.80	8.26	•6	18.97	18.28
٠.٤	5.29	8.70	·1 ·2	11.95	8.37	·7	19.13	18.89
·6 ·7	5·43	8.80	-8	12:11	8.48	.8	19:29	18.50
-8	5·57 5·71	8·90 4·00	٠4	12·26 12·41	8.69 8.69	·9 14·0	19.44	18 ·6 1 18·72
-9	5.86	4 10	-₹	12.41	8.79	14.0	19·60 19·76	18.88
5.0	8.00	4.20	.6	12.71	8.90	.2	19.92	18.94
•1	6.14	4.30	·7	12.86	8.00	٠.5	20.08	14.08
.2	6.29	4.40	-8	13.01	9.11	•4	20.24	14.17
-3̄	6.48	4.50	٠ğ	18.16	9.21	٠ <u>۶</u>	20.40	14.28
•4	6.57	4.80	10.0	13.31	9.82	-8	20.56	14.39
٠5	6.71	4.70	·i	18.46	9.42	•7	20.71	14.50
-6	6.86	4.80	•2	18.61	9.53	•8∙	20.87	14.61
•7	7.00	4.90	-8	13.76	89.68	٠Ď	21.08	14.72
•8	7.14	5.00	•4	13.91	9.74	15.0	21.19	14.83
٠9	7 .29	5.10	٠5	14.06	9.84	•1	21.85	14.95
6.0	7.48	5.20	-6	14.21	9.95	•2	21.51	15.06
•1	7 . 57	5.80	•7	14.37	10.06	-8	21.68	15.18
•2	7.71	5.40	•8	14.52	10.16	•4	21 .85	15.30
-8	7 • 86	5.20	.9	14.68	10.28	•5	22.02	15.41
•4	8.00	5.80	11.0	14.84	10.39	•6	22·18	15.28
•5	8.14	5.70	.1	15.00	10.50	•7	22.85	15.65
•6	8.29	5.80	-2	15.18	10.61	٠8	22.52	15.76
7	8.48	2.80	-8	15.32	10.72	.8	22.69	16.88
-8	8.57	6.00	-4	15.48	10.84	16.0	22.86	16.00
_ 19	8.71	6.10	٠5	15.68	10.94			
7.0	8.86	6.20	-6	15.79	11.06			

^{*} Each degree of hardness indicates one grain of CaCO, per gallon.

Tables required in Water Analysis—continued. VIII. Clark's Table of Hardness of Water.

Degrees of Hardness.	Measures of Soup solution.	Differences for the next 1° of Hardness.	Degrees of Hardness.	Measures of Sosp solution.	Differences for the next 1° of Hardness.
0 (distilled water) 1 . 2 8 4 5	1 4 8 2 5 4 7 6 9 6 11 6 18 6	1 8 2 2 2 2 2 0 2 0 2 0 2 0 2 0	8 9 10 11 12 18 14 15	17.5 19.4 21.8 23.1 24.9 26.7 28.5 80.8 82.0	1.9 1.8 1.8 1.8 1.8 1.8

Each measure equals 10 grains, the quantity of water operated upon equals 1000 grains, and each "degree of hardness" indicates 1 grain of calcic carbonate per gailon.

THE DETERMINATION OF NITRATES IN WATER BY PHENOL-DISULPHONIO ACID.

(Sprengel's method modified.)

Solutions required.

(1) Phenol-disulphonic Acid.—Mix together 2 parts by measure of phenol,* liquefied by heat, and 5 parts of pure concentrated sulphuric acid, and heat in a porcelain basin on the water-bath for about 8 hours, with occasional stirring. When cool, add 1½ volumes of water and ½ volume strong hydrochloric acid to each volume of the phenol-disulphonic acid.

Convenient quantities are 80 c.c. phenol, 200 c.c. H,SO₄; 420 c.c. water and 140 c.c. HOl, producing 840 c.c. of a light brown solution,

which is ready for immediate use.

(2) Standard Potassium Nitrate. -0.0722 gram KNO₈ crystals are dissolved in a litre of water. †

10 c.c. = 0.0001 gram N, or 1 part of N in 100,000 of water when 10 c.c. are evaporated.

(3) 10% ammonia (1 vol. 880+2 vols. water); or potash solution, made by dissolving 330 grams stick potash in one litre of water.

About 15 c.c. of either of the above to be used for each residue.

The determination is made as follows:—10 c.c. of the water under examination and 10 c.c. standard KNO₅ are pipetted into 15 c.c. beakers and evaporated nearly to dryness on a hot iron plate, the

* Calvert's No. 2 medical carbolic acid answers well.

[†] Or dissolve 0.7217 gram KNOg in a litre of distilled water. 1 c.c. of this may be used for a standard, but it is better to dilute 50 c.c. to 500 c.c. and measure out 10 c.c. of the latter for each set of determinations.

operation being completed on the top of the water-oven. To each residue 1 c.c. of the phenol-disulphonic acid solution is added, and the latter brought into contact with the whole of the residue in each beaker. This is done simply by rotating the beaker, held in an inclined position, until the entire residue has been moistened: no stirring rod is required. The beakers are then left on the top of the water-oven for 15 minutes and at the end of that time are at once filled up with cold water and removed to the workingbench, if a number of residues are being treated simultaneously. The standard solution is then rinsed into a 100 c.c. graduated cylinder, a slight excess (about 15 c.c.) of 10% ammonia or of caustic potash solution added, the 100 c.c. made up by the addition of water, and the yellow liquid transferred to a Nessler glass ($6 \times 1\frac{1}{6}$ ins.). Each of the other beakers is then successively treated in the same way and comparison made with the standard as in Nesslerizing. The colours are best compared when the Nessler glasses are held side by side at a short distance above a thick white filter paper.

The results obtained with the aid of Table IX. are only approximate when more than about 15 parts of nitric nitrogen per 100,000 of water are present. In all cases where the nitric nitrogen exceeds 1.5 parts per 100,000, it is necessary to make a second determination, using such a volume of water as to give a colour very nearly equal to that of the standard.* Thus, if a water showed 2 parts of nitric nitrogen per 100,000, 5 a.c. should be evaporated to dryness and treated as before; one giving 4 parts would really contain decidedly more, and 20 a.c. of the sample should be transferred to a 100 c.c. measuring flack, diluted to the mark with water, and 10 c.c. of the thoroughly mixed solution (-2 c.c. original water) evaporated down for a fresh determination. In the case of very good waters the solution and washings should be kept as small as possible, since a portion of the standard 100 c.c. will have to be poured into the cylinder in order to match the colours. Suppose that 0.25 part of nitric nitrogen is thus shown, then 40 c.c. of the water are measured into a larger beaker, evaporated to a small bulk, rinsed into a small beaker and evaporated to dryness, etc., as above; or 20 c.c. of the water may be taken and compared with a standard made by using only 5 c.c. of the KNO, solution. (This method is inapplicable in the presence of thiocyanates †).

Chamot, Pratt and Redfield ! have recently made a study of this method, and their results may briefly be summarized as follows:-

A modified phenol-sulphonic acid method.—Preparation of reagents required.

Phenol-disulphonic acid.—Dissolve 25 gm. of pure white phenol in 150 c.c. of pure concentrated sulphuric acid, add 75 c.c. of fuming sulphuric said (13%SO,), stir well, and heat for 2 hours at about 100° C.

If the second experiment is to be made the same day, the same standard, if covered with a beaker, can be used again.
† See H. Silvester, Journ. Soc. Chem. Ind., 1912, 31, 95.
‡ The Chemical News, 1911, 104, p. 148, et seq.

Standard silver sulphate.—4:3969 gm. of silver sulphate (free from nitrate) to the litre.

1 c.c.=1 c.c. of standard AgNO₈ (1.6486 gm. per litre) equivalent to 0.001 gram chlorine.

Method of procedure.—First determine the alkalinity, the chlorine and nitrite content, and the colour of the sample. Should

the colour be high, decolorize with "aluminium cream."

Measure out such a volume of the water (100 c.c. or less) as will contain about 1 part of nitric nitrogen per 100,000, fairly low colorimeter readings having been found most reliable. sufficient N/25 or N/50 sulphuric acid barely to neutralize the alkalinity, then enough standard silver sulphate solution to precipitate all but 0.5 mgm. of the chlorine. Heat to boiling, add a little aluminium cream, filter, and wash with small amounts of Evaporate the filtrates to dryness, add 2 c.c. of the disulphonic acid reagent, rubbing with a glass rod to ensure intimate contact. Should the residue be compact or vitreous in appearance from the presence of much magnesium or iron, place the evaporator on the water-bath for a few minutes. Dilute with water and add slowly KOH solution (10-12 normal) until the maximum colour is developed. Transfer to a colorimeter cylinder, filtering if necessary, and compare with a potassium nitrate or tripotassium nitrophenol disulphonate standard.

Should nitrites be present in excess of 0.1 part of nitrous nitrogen per 100,000, a slight error will be introduced. They should, therefore, be removed by heating the sample a few moments with a few drops of hydrogen peroxide (free from nitrates), repeatedly added, or dilute potassium permanganate may be added in the cold until a trace of pink appears and a correction applied to the final nitrate nitrogen reading due to the conversion of the nitrites to nitrates.

Directions for making permanent standards are given.

TABLES BEQUIRED IN WATER ANALYSIS-continued.

IX. Estimation of Nitrogen as Nitrates by Sprengel's Method (for waters containing more than one part of N in 100,000).

No. of c.c. of yellow solu-	Nitrogen (as Nitrates.	No. of c.c. of yellow solu-	Nitrogen as Nitrates.		
tion equal to the standard 100 c.c.	Parts per 100,000.	Grains per gallon,	tion equal to the standard 100 c.c.	Parts per 100,000.	Grains per gallon.	
100	1.00	0.70	50	2.00	1:40	
95	1.05	0.74	48	2.08	1.46	
90	ĩ·11	0.78	46	2.17	1.52	
85	1.18	0.88	45	2.22	1.55	
80	1.25	0.88	44	2.27	1.59	
78	1.28	0.80	42	2.38	1.67	
76	1.82	0.92	40	2.50	1.75	
75	1.88	0.98	88	2.63	1.84	
74 .	1.85	0.95	86	2.78	1.95	
72	1.89	0.97	85	2.86	2.00	
70	1.48	1.00	84	2-94	2.06	
68	1 · 47	1.03	82	8 · 18	2.19	
66	1.51	1.08	80	8.38	2.88	
65	1.54	1.08	28	3 ' 57	2.50	
64	1.22	1.09	26	8 · 85	2.70	
62	1.61	1.18	25	4.00	2.80	
60	1.67	1.17	24	4.17	2 92	
58	1.72	1 20	22	4.55	8.19	
56	1.78	1.25	20 .	5.00	8.20	
55	1.82	1.27	18	5.22	8.89	
54	1.85	1.30	16	6.25	4 .38	
52	1.92	1.84	15	6.67	4:67	

X. Table for the Conversion of Parts per 100,000 into Grains per Gallon.

Parts per 100,000.	Grains per gellon.	Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains per gailon.
1	0.7	9	6.8	17	11.9	25	17:5
2	1.4	10	7.0	18	12.6	26	18.2
8	2.1	11	7.7	19	13.3	27	18.9
4	2.8	12	8.4	20	14.0	28	19.6
5	8.2	18	9.1	21	14.7	29	20.8
в	4.2	14	9.8	22	15.4	80	21.0
7	4.9	15	10.2	23	16.1	81	21.7
8	5.6	16	11.2	24	16.8	82	22.4

TABLES BEQUIRED IN WATER ANALYSIS. TABLE X .- continued.

100,000.	Greins per gallon.	Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains per gallon.
88	28.1	78	54.6	123	86 1	168	117:6
84	28.8	79	55.8	124	86.8	169	118.8
85	24.5	80	56.0	125	87.5	170	119.0
86	25-2	81	56.7	126	88.2	171	119.7
87	25.9	82	57.4	127	88.9	172	120.4
88	26.6	88	58.1	128	89.6	178	121.1
89	27 ·8	84	58.8	129	80.3	174	121.8
40	28.0	85	59.5	180	91.0	175	122.5
41	28.7	86	60.2	181	91.7	176	128.2
42	29·4	87	60.9	182	92.4	177	123.9
48	80.1	88	61 6	188	98.1	178	124.6
44	80.8	89	62.8	134	98.8	179	125.8
45	81.2	90	63 0	185	94.5	180	126.0
46	82.2	91	68 · 7	186	95.2	181	126.7
47	82.9	92	64 4	187	95.9	182	127.4
48	88.6	93	65·1	188	96.6	188	128.1
49	84.8	94	65 ·8	189	97:8	184	128.8
50	85.0	95	66.2	140	98.0	185	129.5
51	85.7	96	67 2	141	98.7	186	130-2
52	86.4	97	67 -9	142	99.4	187	180.9
58	87.1	98	68.6	148	100.1	188	181.6
54	87.8	99	69 8	144	100.8	189	182.3
55	88.2	100	70.0	145	101.2	190	133.0
56	89.2	101	70.7	146	$102 \cdot 2$	191	188 .7
57	89.9	102	71.4	147	102-9	192	184.4
58	40.6	108	72.1	148	103.6	193	185.1
59 60	41.8 42.0	104	72.8	149	104.3	194	185.8
61	42.7	105	78.5	150	105.0	195	136.5
62	43.4	106	74.2	151	105.7	196	187 2
68	44.1	107	74.9	152	. 06 ·4	197	137 <i>-</i> 9
64	44.8	108 109	75.8	158	107.1	198	188 6
65	45.2	110	76.8	154	107.8	199	189 ·8
66	46-2	111	77:0	155	108.2	200	140.0
67	46-9	1112	77 <i>-</i> 7	156	109-2	201	140.7
68	47.6	113	78 ·4 79·1	157	109.9	202	141 4
69	48.3	114	79·1 79·8	158	110.6	208	142.1
70	49 0	115	80.2	159	111.8	204	142.8
71	49.7	116	81.2	160 161	112.0	205	148.5
72	50.4	117	81.9	162	112.7	208	144.2
78	51.1	118	82.6	168	118 4	207	144.9
74	51.8	119	83.8	164	114.1	208	145.6
75	52.5	120	84.0	165	114.8	209	146.8
76	58.2	121	84.7	166	115.5	210	147.0
77	58-9	122	85.4	167	116·2 116·9	$\frac{211}{212}$	147·7 148·4

TABLES REQUIRED IN WATER ANALYSIS. TABLE X .- continued.

Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains par gallon.
213	149.1	228	156.1	288	168.1	248	170 1
214	149.8	224	156 8	234	168.8	244	170 ·8
215	150.2	225	157.5	285	164.5	245	171 · 5
216	151.2	326	158.2	286	165.2	246	$172 \cdot 2$
217	151.9	227	158.9	287	165.9	247	172.9
218	152.6	228	159.6	288	166.6	248	178 '6
219	153.8	229	160.8	289	167.8	249	174.8
220	154.0	280	161.0	240	168.0	250	175.0
221	154.7	281	161.7	241	168.7		
222	155.4	282	162.4	242	169.4		

CALGULATION OF THE RESULTS OF WATER ANALYSIS.

Substance estimated.	Quantity of Water taken.	To get Grains per gallon.	Logarithms.
N as HNO ₃ (Orum)	250 c.c.	*c.c. of NO at N.T.P.×	
NH ₃ (copper sinc) ,, (aluminium)	100 a.a. 50 a.a.	grams of NH ₈ × 575·78 = N ,, ×1151·46 = N	2-760 2200 8-061 2500
O absorbed	250 c.c. +10 c.c. K ₂ Mn ₂ O ₈ 250 c.c. +15 c.c. K ₂ Mn ₂ O ₈	0.28 (8-W)†	
n	250 a.a. + 15 a.a. K ₂ Mn ₂ O ₈	0.58 (1.58 - W)†	
Total solids	250 a.c.	grams×280	2.447 1580

^{*} Or thus. Let v=vol. of NO obtained from 250 c.c. of the water.

b=height of Bar. w=tension of aqueous vapour at the observed temperature (see Table I.).

Then N in grains per gallon= $v \times \frac{0.012507}{760(1+0.0367 i)} \times (b-w) \times 140$.

For logs, of $\frac{.0012507}{760(1+.00367\ t)}$ for different values of t see Table II. Log. $140=2\cdot146\ 1280$.

[†] S=c.c. of $Na_2S_2O_3$ corresponding to 10 c.c. $K_2Mn_2O_3$.

Was , , required by the water under examination.

THRESH'S SOLUTION OF STARCH AND POTASSIUM IODIDE.

This solution is used by Dr Thresh in his method for the determination of nitrites in potable waters.*

It is made as follows:-

Starch in powder			0°2 gram.
Caustic potash			1 ,,
Potassium iodide			2 grams.
Water			200 c.c.

Add the starch to 10 c.c. of water, and when uniformly diffused add the caustic potash. Dissolve without the aid of heat and add the remainder of the water and the potassium iodide. Strain or filter. This solution keeps for months without appreciable change.

A useful test may be carried out as follows:-

Shake the sample of water vigorously in a bottle only partially filled, to saturate with air: pour 50 c.c. into a Nessler cylinder and add 1 c.c. of the above solution and then 1 c.c. of dilute sulphuric acid (1 vol. acid to 3 vols. water). Stir. Assuming the temperature to be about 60° F., if a dark blue tint develops instantaneously the water contains more than 0.1 part per 100,000 of nitrous nitrogen. If it becomes blue in a few seconds it contains about 0.01 per 100,000. If it requires more than ten seconds to develop it contains less than this amount.

Example of the Determination of Nitrates by Crum's Method.

0.5 gram of a substance containing nitrate of soda treated by Crum's method gave 13.6 c.c. of NO measured at 8°C. and 737 mm. Bar. To find the percentages of nitrogen and of sodium nitrate present.

Bar. 737 mm.

Tension of aqueous vapour at 8° C. = 8 mm. by Table L.

Pressure on the dry gas

729 mm.

NO contains half its volume of nitrogen.

Weight of nitrogen = $\frac{v}{2}$ $(b-w) \times \frac{0012507}{760 (1+00367t)}$ = $6.8 \times 729 \times \frac{0012507}{760 (1+00367 \times 8)}$ log. 6.8 = 0.83251

729 = 286273

log. fraction—by Table II." = 6.20379

3·89903 = 0·007926 gram Nitrogen in 0·5 gram ·007926 × 200 = 1·59% nitrogen

and by logs. 1.59 nitrogen=9.65% sodium nitrate.

* Chemical News, 1890, vol. 52, p. 204,

WATER AND SEWAGE EXAMINATION RESULTS.

(British Association Report, 1899.)

The Committee appointed by the British Association to devise a uniform system of recording the results of the chemical and bacteriological examination of water and sewage reported as follows:—

It is desirable that results of analysis should be expressed in parts per 100,000, except in the case of dissolved gases, when these should be stated as c.c. of gas at 0° C. and 760 mm. in 1 litre of water. This method of recording results is in accordance with that suggested by the Committee appointed in 1887 to confer with the Committee of the American Association for the advancement of science, with a view to forming a uniform system of recording the results of water analysis.

It is suggested that in the case of all nitrogen compounds the results be expressed as parts of nitrogen per 100,000, including the ammonia expelled on boiling with alkaline permanganate, which should be termed albuminoid nitrogen. The nitrogen will therefore

be returned as:

Ammoniacal nitrogen from free and saline ammonia.

(2) Nitrous nitrogen from nitrites.(3) Nitric nitrogen from nitrates.

(4) Organic nitrogen (either by Kjeldahl or by combustion, but the process used should be stated).

(5) Albuminoid nitrogen.

The total nitrogen of all kinds will be the sum of the first four determinations.

The Committee are of opinion that the percentage of nitrogen oxidized—that is, the ratio of (2) and (3) to (1) and (4)—gives sometimes a useful measure of the stage of purification of a particular sample. The purification effected by a process will be measured by the amount of oxidized nitrogen as compared with the total amount of nitrogen existing in the crude sewage.

In raw sewage and in effluents containing suspended matter, it is also desirable to determine how much of the organic nitrogen is

present in the suspended matter.

In sampling, the Committee suggest that the bottles should be filled nearly completely with the liquid, only a small air-bubble being allowed to remain in the neck of the bottle. The time at which a sample is drawn, as well as the time at which its analysis is begun, should be noted. An effluent should be drawn to correspond as nearly as possible with the original sewage, and both it and the sewage should be taken in quantities proportional to the rate of flow when that varies (s.g. in the emptying of a filter-bed).

In order to avoid the multiplication of analyses, the attendant at a sewage works (or any other person who draws the samples) might be provided with sets of twelve or twenty-four stoppered quarter-Winchester bottles, one of which should be filled every hour or every two hours, and on the label of each bottle the rate of flow at the time should be written. When the bottles reach the laboratory, quantities would be taken from each proportional to these rates of flow and mixed together, by which means a fair average sample for the twenty-four hours would be obtained.

The Committee were unable to suggest a method of reporting bacterial results, including incubator tests, that would be likely to

be acceptable to all workers.

The Committee consisted of Professor W. Ramsay (chairman), Sir W. Crookes, Professors F. Clowes, P. F. Frankland, and R. Boyce, and Dr Rideal (secretary).

STANDARDS FOR SEWAGE EFFLUENTS.

Various standards of purity or limits of impurity of sewage effluents have from time to time been put forward. These, however, have been superseded by the recommendations given in the Fifth Report of the Royal Commission on Sewage Disposal.* In this the Commissioners report that:—"The experiments which we have already made show that the mere estimation of the amount of organic matter in an effluent does not, by itself, afford a sufficiently reliable index as to the effect which that effluent will have on any stream into which it may be discharged (par. 320). Further on we read: "According to our present knowledge, an effluent can best be judged by ascertaining, first, the amount of suspended matter which it contains, and, second, the rate at which the effluent, after the removal of the suspended solids, takes up oxygen from water."

The recommendations given are as follows :-

"For the guidance of local authorities, we may provisionally state that an effluent would generally be satisfactory if it complied with the following conditions:—

(1) That it should not contain more than 3 parts per 100,000 of suspended matter; and

(2) That, after being filtered through paper, it should not absorb

(a) 0.5 part by weight per 100,000 of dissolved or atmospheric oxygen in 24 hours.

(b) 1.0 part by weight per 100,000 of dissolved or atmospheric

oxygen in 48 hours; or

(c) 1.5 part by weight per 100,000 of dissolved or atmospheric oxygen in 5 days."

Table giving the Amounts of Dissolved Oxygen in Distilled Water at Various Temperatures (Bar. 760 mm.).*

Temperature °C.	Oxygen (parts per 100,000).	Temperature O.	Oxygen (parts per 100,000).	Temperature °C.	Oxygen (parts per 100,000).
0	1.42	11	1.09	21	0.88
1	1.39	12	1.07	22	0.87
2	1.86	18	1.04	28	0.82
8 .	1.82	14	1.02	24	0.84
4	1 .28	15	1.00	25	0.82
5	1 -24	16	89.0	26	0.81
в	1.22	17	0.88	27	0.80
7	1.19	18	0.84	28	0-80
8	1.17	19	0.92	29	0.79
9	1.14	20	0.80	80	0.78
10	1.11				

^{*} Calculated from Roscoe and Lunt's table (Trans. Chem. Soc., 1889, 569) for temperatures from 5°-30° O. The values given for 0°-4° are based on determinations by Winkler's process.

TABLES REQUIRED IN THE ANALYSIS OF BEER.

Spirit Indication, with corresponding Degrees of Gravity lost in Mali Worts, by the "Distillation Process."

Degrees of Spirit Indi- cation.	-0	1	-3	-8	*	-5	·6 	7	·8 	-9
0	0.0	0.8	0.6	0.9	1.2	1.2	1.8	2.1	2.4	2.7
	8.0	8.8	8.7	4.1	4.4	4.8	5.1	5.6	5.9	6.2
1 2	8.8	7.0	7.4	7.8	8-2	8.6	8.0	9.4	8.6	10.2
8	10.7	11.1	11.5	12.0	12.4	12.9	18.8	18.8	14.2	14.7
	15.1	15.2	16.0	16.4	16.8	17.8	17.7	18.2	18.6	19:1
4 5	19.5	19.9	20.4	20.9	21.3	21.8	22-2	22.7	28 · 1	28 6
	24.1	24.6	25.0	25.5	26.0	26.4	26.9	27.4	27.8	28 2
6 7	28.8	29.2	29.7	80.2	80.7	81.2	81 .7	82.2	82.7	38.2
8	88.7	34.8	84.8	85.4	85.9	86.5	87.0	87.5	38.0	38.6
ě	89.1	89.7	40.2	40.7	41.2	41.7	42.2	42.7	43.2	48.7
10	44.2	44.7	45.1	45.6	46.0	46.2	47.0	47.5	48.0	48.
11	49.0	49.6	50.1	50.6	51.2	51.7	52.2	52.7	53.8	53.8
12	54.8	54.9	155.4	55.9	56.4	56.9	57.4	57 .9	58.4	59 1
18	59.4	60.0	60.5	61.1	61.6	62.2	62.7	63.8	8.88	64 8
14	64.8	65.4	65.9	66.2	67.1	67·6	68.2	68-7	8.69	69:1
15	70.5	71.1	71.7	72.8	72-9	78.5	74.1	74.7	75.8	751

Spirit Indication, with corresponding Degrees of Gravity lost in Malt Worts, by the "Evaporation Process."

Degrees of Spirit Indi- cation.	0	1	3	-8	•4	-5	•6	7	-8	-0
0		-8	•7	1.0	1.4	1.7	2.1	2.4	2.8	8.1
1	8.2	3.8	4 2	4.6	5.0	5.4	5.8	6.2	6.8	7.0
2	7.4	7.8	8.2	8.7	9.1	9.5	8.8	10.3	10.7	11.1
8	11.5	11.9	12.4	12.8	18.2	18.6	14.0	14.4	14.8	15.8
	15.8	16.2	16.6	17.0	17.4	17.9	18.4	18.8	19.8	19.8
<u>4</u> 5	20.8	20.7	21.2	21.6	22.1	22.5	28.0	23.4	23.9	24.8
6	24.8	25.2	25.6	26.1	26.6	27.0	27.5	28.0	28.5	29.0
7	29.5	80.0	80.4	30.9	31.8	81.8	82.8	82.8	88.88	83.8
8	34.8	84.9	85.2	86.0	36.6	37.1	37.7	88.8	88.88	89.4
ġ	40.0	40.6	41.0	41.5	42.0	42.5	48.0	48.5	44.0	44.4
10	44.9	45.4	46.0	46.5	47.1	47.6	48.2	48.7	49.3	49.8
11	50.8	20.8	51.4	51.9	52.5	58.0	28.2	54.0	54.5	55.0
12	55.6	56.2	56.7	57.3	57.8	58.8	58.9	59.4	59.9	60.5
18	61.0	61.6	62.1	62.7	63.2	63.8	64.8	64.9	65.4	66.0
14	66.2	67.0	67.6	68.1	68.7	69.2	8.69	70.4	70.9	71.4
15	72.0				•				•	•

Table for ascentaining the Value of the Acetic Acid.

Corresponding Degrees of "Spirit Indication."

Excess per cent. of Acetic Acid in the Beer.	-00	.01	-02	-08	-04	-05	.06	•07	•08	-09
•0	•••	•02	.04	.08	•07	.08	.09	-11	-12	
•1	14	15	'17	.18	·19	.21	22	.23	.24	·13 ·26
•2	.27	28	29	.81	.82	.88	.84	.35	·87	-88
•8	89	•40	•42	48	44	•46	•47	-48	.49	·51
•4	52	.23	•55	.56	. 57	.28	60	.61	.62	-64
•5	.62	-86	67	-69	.70	.71	72	-78	.75	•76
•6	.77	.78	.80	•81	.82	·84	-85	-86	-87	-89
•7	.80	91	.98	.94	•95	.97	•98	.99	1.10	1 02
8	1.08	1.04	1.05	1.07	1.08	1.09	1.10	1.11	1.18	1.14
.0	1.15	1.16	1.18	1.19	1.21	1.22	1.28	1.25	1.26	1.28
1.0	1.29	1.31	1.88	1.85	1.36	1.87	1.88	1.40	1.41	1.42

TABLE FOR SALT IN BEER

Salt in Grains per Gallon, corresponding to c.c. of Decinormal AgNO.**
25 c.c. of Beer to be employed.

o.c. NAgNO3	Grains NaCl per gallon.	0.0. NAgNO ₃	Grains NaCl per gallon.	0.0. NAgNO ₈	Grains NaCl per gallon.
0.1	1.64	2.2	86.04	4.2	68.80
0.2	8:28	2.8	87.67	4.8	70:48
0.8	4.91	2.4	89.81	4.4	
0.4	6.55	2.5	40.95		72.07
0.5	8.19	2.6	42.29	4.6	78.71
0.8	8.88	27		4.6	75.35
0.7	11.47		44.28	4.7	76.99
0.8	18:10	2.8	45.86	4.8	78·6 2
		2.9	47.50	4.8	80 <i>-</i> 26
0.8	14.74	8.0	49.14	5∙0	81 .90
1.0	16.88	3.1	50.78	5.1	88 54
1.1	18.03	8.2	52·42	5.2	85.18
1.2	19:66	3.8	54 05	5.8	86.81
1.8	21 29	8.4	55-69	5.4	88.45
1 •4	22.98	8.5	57 -88	5.5	90.09
1.2	24 . 57	8.6	58.97	5.6	91.78
1.6	26.21	8.7	60.61	5.7	98.87
1.7	27.85	8.8	62.24	5.8	95.00
1.8	29.48	8.8	68.88	5.9	
1.9	81.12	4.0	65.52		96.64
2.0	82.76	4.1		6.0	98.28
2.1		#.1	67:16	6.1	99.92
△ 1	84·4 0				

Nots.—The above table is useful in giving the amount of NaOl that may be present, calculated from the combined chlorine found. To obtain the actual amount of sodium chloride, the sodium present must also be determined.

* 1 c.c. = 0.00585 gm. NaCl.

Examples of the determination of "original gravity" of beer.
I. By the Distillation Process. Experimental data:—
Sp. or, of the spirit distillate at 60° F
Acidity (calculated as acetic acid)
Then 1000 - 989.40 = 10.60 spirit indication
0.15 - 0.10 = 0.05, which by Table
(p. 50) Shows 1
Total 10 68 ,, ,,
By Table (p. 98) 10.68 spirit indication = $47.0 + (.8 \times .5)$ = 47.40 degrees of gravity lost
Sp. gr. of extract residue=1018.76
1066 16 original gravity.
Or, omit taking the extract gravity and take that of the beer itself, whence a theoretical extract gravity can be found as follows:—Experimental data:—
$\overline{\text{Sp. gr. of the beer at 60}^{\circ}}$ F 1008-36
,, spirit distillate 989 40 Acidity 015%
1008:36 989:40
18.96 (less) 20 (a constant †)
Degrees of gravity lost (found as above) $ \begin{array}{r} 18.76 + 1000 = 1018.76, \text{ the extract gravity deduced.} \\ 47.40 \\ 1086.16 \text{ original gravity.} \end{array} $
II. By the Evaporation Process. Experimental data:—
Sp. gr. of the beer at 60° F 1009 70
Acidity (calculated as acetic acid) 0.26%
Then 1019 55 - 1009 70 = 9 85 spirit indication 0.26 - 10=0.16, which by Table (p. 99)
shows 0.22 ,, ,,
Total 10.07 ,, ,,
* Graham, Hofmann and Redwood calculated that the normal acidity of beer

^{*} Graham, Hofmann and Redwood calculated that the normal another of near is 0.10 per cent. expressed as acetic acid. In the calculation above we have to take into consideration only the acidity in excess of the normal amount.

† Representing the gain in density by condensation when the constituents of beer are mixed together; the gain in density varies from 0.15 to 0.25, the average being 0.2.

ORIGINAL GRAVITY CHAR By Table (p. 98) 10.07 spirit indication 4.9 + 4.1 BRARY

= 45.25 degrees gravity lost

sp. gr. of extract residue = 1019.55

1064.80 original gratify. N∩

Note.—The above examples are taken from J. A. Nettleton's Ordering

BLUNT'S MODIFICATION OF TABARTE'S FORMULA.

Tabarie's formula for indirectly determining alcohol in beer and wine from the sp. gr. of the original sample and of the boiled sample made up to the volume taken at the same temperature is

sp. gr. of alcohol boiled away = $\frac{S}{S_1}$

where S-sp. gr. of original liquid or "extract." boiled

Blunt has shown* that a more correct result is obtained by using the formula

sp. gr. of alcohol boiled away = $1 - (S_b - S)$ $=1+S-S_b$

This is fully confirmed by Hehner, who found "that in all cases the results obtained by subtraction are closer to those obtained by distillation than are those by Tabarie's formula and the results are better the greater the alcoholic strength." †

SPECIFIC ROTATORY POWER.

The specific rotatory power of an optically active substance in solution may be defined as the angle through which a plane polarized ray of light of definite refrangibility is rotated by a column one decimetre in length of a solution containing 1 gram of the substance in 1 c.c.

If the rotation is observed through a tube l decimetres in length, and the solution contains c grams of substances in 100 c.c., then, if a be the angle of rotation, the "specific rotatory power" is given by the formula

 $[a] = \frac{a \cdot 100}{1.6}$

The ray used and the temperature of the liquid are generally added, thus $[a]_{n}^{20} = 66.6^{\circ}$ means that the specific rotatory power for ray D 1 at the temperature of 20° C. is 66.6°.

The specific rotatory power (or "specific rotation") of liquid

carbon compounds is given by the formula

 $[a] = \frac{a}{1 d}$

Where l is the length of the observation tube in decimetres, d is the sp. gr. of the liquid referred to water at 4° C. as standard, in which case d expresses the weight in grams of 1 c.c.

* Analyst, 1891, 16, p. 221.

† Ibid., p. 223.

1 Sodlum flame.

In this country observations are commonly made at a temperature of 60° F., but on the Continent 20° C. is the "normal temperature" of observation. With many substances, however, a difference of 4.4° C. causes but little difference in the readings.

Molecular Rotation.—This term is applied to the product of the molecular weight (M) and specific rotation of a body divided by

100, and is represented by the symbol [M].

$$[\mathbf{M}] = \frac{\mathbf{M}}{100} [\mathbf{a}]$$

The divisor 100 is used simply to avoid the use of inconveniently large numbers. [M] expresses the rotation which would result if each c.c. of the solution contained 1 gram-molecule of the active

substance and the length of the liquid column were 1 mm.

Multirotation.—Freshly prepared solutions of a number of the sugars show a rotatory power different from that of the same solution on standing, undergoing either an increase or decrease until finally a constant value is reached. This phenomenon is termed multirotation or mutarotation.

Originally the term bi-rotation was used, as the observation was made that a dextrose solution when freshly prepared gave about

twice the reading of the same solution after standing.

At the ordinary temperature a period of from six to twenty-four hours is usually required, but by boiling the transformation to the stable form is completed in a few minutes.* Dextrose, lactose, and maltose show this behaviour, maltose giving with a freshly made solution a lower reading than that observed after standing for some

hours. Sucrose does not show this effect.

Observations are usually made with a polarimeter, such as Laurent's half-shadow instrument, for which homogeneous light, generally a sodium flame, is required; or with a Soleil-Ventzke-Scheibler Colour Saccharimeter, which is adapted for use with white light illumination from oil or gas lamps; or with a modern Half-shadow Saccharimeter, † in which the field of view is divided into two surfaces, each of which alternately becomes perfectly dark as the analyser is rotated, the point sought, and at which the reading is taken, being that at which the two surfaces show exactly the same degree of illumination or partial shadow. White light is used.

Specific rotatory power as determined by the (more or less obsolete) Soleil-Ventzke-Scheibler Colour Saccharimeter is indicated by [a], where j is the transition tint (i.e. from the blue to the red), and is the ray complementary to the medium yellow or jaune moyen—hence the j. This jaune moyen ray is the true medium

* The same result is also attained by adding a few drops of strong ammonia before making up the volume of the solution.

[†] In the latest type of polarimeter, the optical field is divided into 8 parts instead of 2, as in the half-shadow instruments. Such instruments are more accurate, the equality of the field being capable of a more delicate adjustment. These "have properly displaced the colour instruments completely: the part of these in saccharimetry has been played, and for good "(Dr. Schönrock).

yellow of the solar spectrum; its wave-length is 0 0005608 millimetres.* The Ventzke scale is such that 100 divisions equal the amount of rotation caused by a "normal sugar solution," 200 mm. in length, at 17.5° C. Ventzke proposed a method of preparing this solution which was intended to render the use of a balance unnecessary. He defined the normal sugar solution as a solution of pure sugar in water which should have at 17.5° C. the sp. gr. of 1 100, water at 17 5° being unity. To determine then the polarizing sugar of any substance, it would simply be necessary to prepare a solution of it having this density as shown by a hydrometer. But this method was soon abandoned, because the salts in the canesugars to be investigated have a density different from that of sugar itself, and hence cause erroneous results. As, however, the 100 point of many saccharimeters had already been fixed by aid of the normal sugar solution of 1 1 sp. gr., and as it was desirable not to change the scale once introduced, the concentration of the Ventzke normal solution at 17.5° was then determined, and it was found that 100 c.c. of such a solution contained 26 048 grams of sugar: thus the normal weight should be 26 048 grams.

The above remarks apply only to the original Ventzke instruments. Since 1900 the normal weight has been altered to 260 grams,

and the normal sugar solution is prepared as follows :--

26 grams of chemically pure dry sugar are dissolved in water at 20° C. in a flask graduated to contain 100 true c.c. The solution is made up to the mark, well mixed, filtered if necessary, and polarized in a 200-mm. tube at 20° C. The reading should be 100 scale-divisions, and each scale-division indicates 0.26 gram of sucrose.

FACTORS FOR THE CONVERSION OF [a] INTO al AND vice versa.

To convert $[a]_D$ into $[a]_1$, multiply by 1.111 (log. 0.04571) or addone-ninth.

To convert [a] into [a], multiply by 0.9 (log. I.95429) or subtract

Thus if
$$[a]_D = 202^\circ$$
, then $[a]_1 = 202 + 22 \cdot 4 = 224 \cdot 4^\circ$. $[a]_2 = 57^\circ$, then $[a]_2 = 57 - 5 \cdot 7 = 51 \cdot 3^\circ$.

[Landolf, gives
$$[a]_{1} = \frac{24.5}{21.72} [a]_{2} = 1.128 [a]_{2}$$
.
 $[a]_{2} = \frac{21.72}{24.5} [a]_{3} = 0.887 [a]_{3}$.

In the Soleil-Ventzke-Scheibler Saccharimeter 100 scale-divisions equal 88.43° for ray j, or

1 scale-division = 0.3843° a₁ (log. T.58467).

The wave-length of D is 589 μμ.

[According to Dr Schönrock*
100° Ventzke=34.68° for D at 17.5°C.

or 1° , $= 0.3468^{\circ}$

The number 0.3468 is called the factor of reduction.

"Landolt has actually found in the observation of a cane-sugar solution in a Schmidt and Haensch half-shadow saccharimeter, with a gas lamp, that a rotation of 100° V. corresponds to the rotation of 34.65° ±0.05° for sodium light. But if it is required accurately to measure the rotation of a sugar solution for sodium light, this must be done in a polarimeter actually illuminated by sodium light."*

The values representing specific rotation vary directly as the sp. gr. divisor (D) used. Thus, if 150° be the specific rotation of maltose for [a] 3-86 (that is, on the basis of the 3-86 divisor) the specific

rotation where the divisor 3.93 is used will be $\frac{150 \times 3.93}{3.86} = 152.7^{\circ}$.

The number of grams per 100 c.c. of a solution of a carbohydrate of which the sp. gr. (water=1000) is known is found by dividing the sp. gr. minus 1000 by a constant given in the subjoined table. This constant is usually denoted by D.

Table showing the Specific Rotatory Powers of the Principal Carbohydrates in 10 Per Cent. Solution at 20° C. (=68° F.).

Substance.	Formula.	Divisor to get grams per 100 c.c.†	Specific rotatory power (absolute.)	Specific rotatory power reduced to the common divisor 8-86.
Sucrose Dextrose (d-Glucose)	O ₁₉ H ₂₉ O ₁₁ C ₆ H ₁₉ O ₆	D 8·85 8·85	[a] _D [a] ₁ + 66.5° + 78.8° + 52.7° + 58.6°	[a]D3-86 [a]j3-86 + 66.6° + 74.0° + 52.8° + 58.7°
Leevulose (d-Fructose)	"	8.82	- 98.8° -104.2°	- 94.0° -104.5°
Invert Sugar	${^{\rm C_6H_{19}O_6}}_+ + {^{\rm C_6H_{12}O_6}}$	8.85	-20.55° - 22.8°	- 20.6° - 22.9°
Maltose	$O_{19}H_{29}O_{11}$	8.98	+188" +158.8°	+185.5° +150.6°
Dextrin	$(O_0H_{10}O_0)_n$	8 95.	+200° +223.2°	+195.4° +217.1°
Lactose (cryst.)	H ² O O ¹² H ²² O ¹¹ .	8.71	+ 52.5° + 58.8°	
Lactose (anhyd.)	C ₁₉ H ₂₈ O ₁₁	8.91	+ 55.8° + 61.4°	

Note.—At the meeting of the International Commission for unifying methods of sugar analysis, held in Paris in 1900, the normal temperature of +20°C, was adopted and all measuring vessels are required to be graduated in true c. at this temperature.

* Laudoit's Optical Rotation of Organic Substances, Part IV.

[†] For a complete series of correct divisors for various concentrations, the valuable papers by Brown, Morris and Millar in the Journ. Ohem. Soc., 1887, should be consulted. According to J. Heron, the common divisor 8:86 gives total solids correctly only in those cases where the sp. gr. of the solution lies between 1086 and 1040. For solutions containing more than 12 grams of solids per 100 c.c. the divisor 8:85 gives closer results.

The following values are given in Landolt's work already referred to :-

Substance.	Formula.	Strength of solution in grams per 100 c.c.	[a] _D .	
Cane-sugar Glucose (Dextrose)	O ₁₂ H ₂₂ O ₁₁ O ₆ H ₁₂ O ₆ *	10 1-15	+ 66.5 + 52.8	
Fructose (Laevulose)	11	10	- 98	
Invert Sugar Maltose	$O_6H_{12}O_6 + O_6H_{12}O_6$ $O_{12}H_{22}O_{11} +$	10 10	- 20·1 +187·5	
Lactose Galactose Raffinose	$C_{19}H_{29}O_{11}$. $H_{9}O$ $C_{6}II_{19}O_{6}$ $C_{19}H_{29}O_{12}$. $5H_{2}O$	1 - 36 1 - 15 or 20 10	+ 52.5 + 81 + 104.5	

SOLEIL-VENTZER-SCHEIBLER SACCHARIMETER 200-MM. TUBE USED: TRANSITION TINT.

I gram in 100 c.c.	Scale-divisions of de	viation at 20° O.;
of	For absolute divisors.	For 8.86 divisor
Cane-sugar	+ 8.848	+ 8.85
Dextrose	+ 8.05	+ 8.08
Laevalose	- 5.42	- 5.44
Invert sugar	- 1.19	- 1.18
Maltose	+ 7:98	+ 7.84
Lactose (cryst.) .	+ 8.08	•••
,, (anhyd.) .	+ 3.20	
Dextrin	+11.56	+11.80
Gallisin	•••	+ 4.85

To convert C ₁₂ H ₂₂ O ₁₁ into C ₁₂ H ₂₄ O ₁₂	$\frac{\text{Multiplier.}}{860 \cdot 192} = 1.058$	Logarithm.
$C_{12}H_{24}O_{12}$,, $C_{12}H_{22}O_{11}$	$\frac{342 \cdot 176}{860 \cdot 192} = 0.95$	I·97772
$O_{12}H_{20}O_{10}$,, $O_{12}H_{24}O_{12}$	$\frac{860.192}{824.16} = 1.111$	0.04577
$C_{12}H_{24}O_{19}$,, $C_{12}H_{20}O_{10}$	or add one- ninth 824:16 860:192=0.9 or deduct one-tenth	T-95428

^{*} When crystallized $C_0H_{12}O_6$, H_3O . † When crystallized $C_12H_{23}O_{11}.H_3O$. ‡ The number of scale-divisions are obtained by dividing the [a]; in each case by 19°215 (log. 1°28364). § When inverted this becomes -1°25.

The following examples show the methods employed in solving

problems connected with this subject.

Ex. I. To find a formula for calculating the amount of cane-sugar present in a mixture of cane-sugar and dextrose when the specific rotatory power (ray j) before and after inversion are known.

Let R_b be the specific rotatory power before inversion R_a be the specific rotatory power after inversion and let x be the percentage of cane-sugar present. Then 100-x is the percentage of dextrose present.

Hence 100 R_b =
$$73.8x + (100 - x) 58.6$$

and 100 R_a = $-24.0x + (100 - x) 58.6$
 \therefore 100 (R_b - R_a) = $97.8x$.
 $x = \frac{R_b - R_a}{-978}$.

Similarly when we have given the scale-degrees (D) before and after inversion, the 200-mm, tube being used—

Grams of cane-sugar per 100 c.c. of solution = $\frac{D_{\delta} - D_{\alpha}}{5.09}$.

Ex. II. Determination of cane-sugar in mixtures of cane- and

invert-sugar only.

The method now universally adopted is Herzfeld's modification of Clerget's process.* It is carried out as follows:—Dissolve the normal weight (26.048 † grams) of the sample to be examined in water and make up to 100 c.c., decolorizing and filtering if necessary, and polarize at 20° C. Transfer 50 c.c. of this solution to a 100-c.c. flask, add 5 c.c. strong (38%) hydrochloric acid and about 20 c.c. of water. Well shake the flask and immerse in a bath of water at the temperature of 70° C., at the same time putting a thermometer in the flask: when the temperature of the sugar solution has reached 68° – 70° C., which it should do in five minutes, the flask is kept in the water-bath at this temperature for five minutes longer, then taken out, cooled down quickly to the normal temperature, diluted with water to 100 c.c., polarized at 20° C., and the reading multiplied by two on account of the dilution of the liquid.

Herzfeld found that pure cane-sugar treated as above showed a change of rotation on a Soleil-Ventzke-Scheibler Saccharimeter of

132.66 divisions at 20° C. Hence—

Cane-sugar
$$\% = \frac{100 \text{ (direct-inverted reading)}^*}{132.66}$$

But, since the algebraical difference here becomes the sum of the two readinys without regard to sign, and 100/132.66 = 0.7539

Cane-sugar
$$\% = 0.7539 \times (\text{sum of readings})$$

[log. $0.7539 = 1.87729$].

^{*} This method is only applicable when other augars, inulins, starches, and glucosides, which are also inverted by acids, are not present. When such bodies are present, hydrolysis may be effected by the use of invertage.

† Now 26:0 grams.

If, instead of 20° C., the readings before and after inversion are made at t° C.,

Cane-sugar
$$\% = \frac{100 \text{ (direct—inverted reading)}}{142.66 - \frac{t}{2}}$$
.

Ex. III. Determination of dextrose and maltose from the cupric reducing power and optical activity (or "opticity") of a solution before and after fermentation.

As an example we may take a commercial "Glucose," which gave the following results:—

By fermentation dextrose and maltose are removed, and the differences between the cupric reductions and between the opticities before and after fermentation give measures of the amounts of the two sugars present. Hence, if D and M be the percentages of dextrose and maltose present respectively, we have (taking 62 as the K of maltose):—

$$62 M+100 D=7223 (i) \\ 138 M+52 7 D=3874 (ii)$$

$$(i) \times 138. \quad 8556 M+13800 D=996774 \\ (ii) \times 62. \quad 8556 M+3267 D=240188 \\ \hline 10533 D=756586 \\ D=\frac{756586}{10533}=71.83 \\ \hline From (i) \quad 62 M=7223-7183=40. \\ M=\frac{40}{62}=0.65. \\ \hline Result-Dextrose 71.83 \% \\ \hline Maltose 0.65 ...$$

POLARIMETER READINGS.—REDUCTION OF MINUTES TO DECIMALS OF A DEGREE.

Minutes	Decimal equiva- lent.	Minutes.	Decimal equiva- lent,	Minutes.	Decimal equiva- lent	Minutes.	Decimal equiva- lent.
1	·017	16	·267	81	·617	46	·7 8 7
2	.088	17	283	82	.588	47	·788
8	.02	18	•8	88	.55	48	. 8
4	.067	19	·817	84	∙567	49	·81 7
5	.088	20	.888	35	583	50	.888
6	1	21	·85	86	:6	51	·85
. 7	·117	22	·867	87	·617	52	·867
. 8	.188	28	.888	88	.683	58	'888
9	·15	24	· <u>4</u>	89	.65	54	.8
10	·167	25	· 4 17	40	667	55	.917
11	188	26	•483	4 1	.683	56	.888
12	•2	27	•45	42	·7	57	.95
13	217	28	467	48	717	58	967
14	.288	29	.488	44	·783	59	·988
15	-25	80	•5	45	·75		

POLARIMETER READINGS.—REDUCTION OF MINUTES TO OF A DEGREE.

Minutes	Decimal equiva- lent.	Minutes.	Decimal equiva- lent.	Minutes.	Decimal equiva- lent	Minu
1	·017	16	·287	81	·517	41
2	•088	17	-288	82	.588	4,
8	.02	18	.8	88	.22	48
4	.067	19	· 8 17	84	·567	41
5	.088	20	-888	85	.588	5(
6	•1	21	-85	86	:6	51
7	.117	22	-867	87	·617	52
8	·188	28	·888 ·	88	.688	58
9	.15	24	•4	89	·65	54
10	•167	25	· 4 17	40	-667	55
11	183	26	·433	41	·688	56
12	•2	27	•45	42	·7	57
18	217	28	· 46 7	43	.717	58
14	283	29	.488	44	·788	59
15	·25	80	۰.6	45	.75	

CUPRIC OXIDE REDUCING POWERS OF THE CARBOHYDRATES.

Definition.—"Dextrose being the type of reducing bodies and the substance for which the amount of cupric oxide reduced was first determined, I use it as the standard to which to refer all other reducing carbohydrates or mixtures of reducing with non-reducing ones. I take the cupric oxide reducing power (or 'cupric reducing power') of a body or mixture to be the amount of cupric oxide, calculated as dextrose, which 100 parts reduce: it is designated by the letter K."—(O'Sullivan).

Briefly, we may define "K" as the specific cupric reducing power of a substance referred to dextrose as standard (100). The divisor is often added; thus K8-86 = 25 means that the cupric reducing power of the substance is one-fourth that of dextrose when the solid

matter is determined by the 3.86 divisor.

Preparation of Fehling's Solution for Gravimetric Determinations.—Dissolve 34 64 grams of pure recrystallized copper sulphate in distilled water and make up the volume to 500 c.c. Then dissolve 173 grams Rochelle salt and 65 grams anhydrous sodium hydroxide in separate beakers, mix the solutions, and make up the volume with distilled water to 500 c.c. These two solutions are kept in separate bottles and are mixed in equal volumes, to form Fehling's solution.

immediately before use.

Method of making a determination of oupric reducing power.—Fifty c.c. of the freshly mixed Fehling's solution are placed in a beaker of about 250 c.c. capacity, and having a diameter of 7.5 cm. (=3 inches). This is placed in a boiling water-bath, and when the solution has attained the temperature of the water, the accurately weighed or measured volume of the sugar solution is added, and the whole made up to 100 c.c. with boiling distilled water. The beaker, which is covered with a clock glass, is then returned to the waterbath and the heating continued for exactly twelve minutes. The precipitated cuprous oxide is now rapidly filtered off through a Soxhlet tube, washed first with hot water, then with alcohol and ether, and finally dried. When dry, the cuprous oxide is reduced to metallic copper by gently heating in a stream of hydrogen, and weighed; or it may be oxidized in a stream of oxygen and weighed as OuO. Sometimes the CuoO is weighed as such, after being dried in a water oven (see O'Sullivan and Stern, Jour. Chem. Soc., 1896,

As spontaneous reduction of Fehling's solution invariably takes place, the amount of this must be carefully determined for every fresh batch of the solution and allowed for in each determination of cupric reducing power. It usually amounts to 0002 to 0003

gram CuO per 50 c.c. of Fehling's solution used.

It is of great importance, in making the above determination, that an amount of the reducing sugar is taken that will give a weight of OuO lying between 0.15 and 0.35 gram.

It must be carefully borne in mind that the values given in the following tables are correct only when the preparation of the Fehling's solution, and the manner of carrying out the determination of cupric reducing power conform exactly with the directions given on p. 109. It has been shown that the amount and nature of the alkali in Fehling's solution exercises a great influence on the quantity of copper reduced by a given weight of maltose or of the starch-transformation products; but with dextrose and laevulose the influence is far less. Glendinning has proved that an equivalent amount of potassium hydroxide may be substituted for the sodium compound without causing any alteration in the reducing power. In the case of dextrose and laevulose the variant which has the greatest influence is the state of dilution of the Fehling's solution. When the dilution is greater than that prescribed in the standard method, the reducing power is appreciably lower, and the greater the dilution the greater the difference.

The weights of the principal kinds of sugar which, it is generally assumed, will reduce 10 c.c. of Fehling's solution are as follows:—

10 c.c. Fehling's solution

=0.0500 gram of dextrose, laevulose or invert sugar. =0.0475 ,, ,, sucrose (after inversion)

=0.0678 , , lactose =0.0807 , , maltose

Rules to find the values of "K" when referred to different divisors.

When the true divisor is used to determine grams of sugar per 100 c.c., the K so obtained is called absolute. Frequently, however, Ks-ss—that is, the relative cupric reducing power when the divisor 3.86 is used to get grams of sugar per 100 c.c.—is required. Thus, 1.367 grams CuO = 1 gram of absolute maltose, then for 1 gram of 3.86 maltose we should have

$$1.367 \times \frac{3.86}{3.93} = 1.343$$
 gram CuO.

Let the true divisor to get grams per 100 c.c. be M, then

K absolute =
$$\frac{K_{8-86} \times M}{3.86}$$
.

Fehling's solution may not give correct results after keeping (say a few months), even when the tartrate component solution remains perfectly clear and apparently undecomposed. Decidedly low results have been obtained by the use of such a solution.

For gallisin Ks 86=42.

1 gram = 1.01 gram OuO (approximately).

FACTORS FOR THE DETERMINATION OF CARBOHYDRATES FROM THEIR CUPRIC OXIDE REDUCING POWERS.

Sugar.	Paotor.	Logarithm.	One gram of		Logarithm.
Dextrose, laevulose or invert sugar (CeH150g)	Cu × 0.5676 Cu ₂ O × 0.5648 Cu O × 0.4685	I-75408 I-70280 I-66668	Dexirose, lasynlose or invert sugar CoH1300	grama. =1.763 Cu =1.983 CugO =2.206 CuO	0°24598 0°29740 0°84843
Sucrose, O ₁₉ H ₂₀ O ₁₁ (after inversion)	Cu × 0.6892 Cu 0 × 0.4790 Cu 0 × 0.4508	1-78178 1-68080 1-68428	Sucrose, C ₁₉ H ₂₀ O ₁₁ (after inversion)	=1.864 Ou =2.088 Ou ₂ O =2.781 OuO	0.20822 0.51970 0.80672
Maltose, C ₁₉ H ₂₆ O ₁₁	Cu ₃ O × 0-9155 Cu ₃ O × 0-8188 OuO × 0 7814	I-96166 I-91018 I-80416	Maltoee, ClaHmO11	=1.092 Cu =1.280 Cu ₂ O =1.367 CuO	0.08884 0.08988 0.13684
Starch or Dexterin (after hydrolysis)	Cu ₂ O×0·5109 Cu ₂ O×0·4538 CuO×0·4081	I-70881 I-66688 I-61061	Starch or Dextrin (after hydrolynis)	=1.968 Cu =2.204 Cu ₂ 0 =2.460 Cu ₀ 0	0-291.69 0-24.817 0-88919
Lactoee* (anhydr.), (C ₁₉ H ₂₈ O ₁₁)	Cn×0-7240 Cn ₂ 0×0-6451 Cn ₀ 0×0-6734	I-85978 I-90825 I-76228	Lactone (anhydr.), $c_{12}H_{26}O_{11}$	=1.881 Cu =1.555 Cu ₂ 0 =1.729 Ou0	0-14027 0-19176 0-25777
Lactone" (cryst.), ChaHggOm, HgO "	Cu×0.7681 Cu ₂ O×0.6769 CuO×0.4088	I-88201 I-88068 I-78461	Lactone (cryst.), ClaHggOll, HgO	=1.812 Ou =1.477 Ou ₂ 0 =1.642 Ou	0-1170 0-16947 0-21549

Ra.—From a solution of 0.1 gram of sucrose, which has been inverted, 0.138 gram of CuO has been obtained. Then sucrose present— $-0.198 \times 4.308 - 0.086298 - 86.92$

From the above we get the following values of "K": \rightarrow Dextrose, K=100

Laevulose, ,, =100

Invert sugar, K = 100 Maltone,

9.74.9

Lactore (anhydr.) K=78.4, (oryst.) , =74.5

* For lactose (cryst.) H. W. T. Jones in 1886 (private communication to the author) found with an exceedingly pure sample the Cu0 factor 0.0687=0.5725 for the anhydrons sugar. Redewald and Tollenn's average factor is 0.6736. I have adopted the mean of these two values.

ALCOHOL TABLE. .

8p. gr. at 60 F.	Per cent, of Alcohol by weight,	Per cent. of Alcohol by volume.	Per cent, under Proof.	Sp. gr. as	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent. under Proof.
1.0000	0.00	0.00	100.00	9775	15.25	18.78	67·10
9995	0.26	0.88	99.42	9770	15.67	19-28	66:20
-9990	0.53	0.88	98.84	9765	16.08	19.78	65.84
-9985	0.79	0.99	98.26	9760	16.48	20-24	64.28
9980	1 06	1.34	97 66	9755	16.85	20.71	68.72
9975	1.37	1.78	96-97	9750	17.25	21.19	62.87
9970	1.69	2.12	96 29	9745	17:67	21.69	62.00
9965	2.00	2.51	95.60	9740	18.08	22.18	61.18
9960	2.28	2.88	95.00	9735	18.48	22.64	60:32
19955	2.56	3.21	94.40	9730	18.85	28.10	59.52
9950	2.88	3.55	93.78	9725	19.25	23.28	58.67
9945	8.12	8-90	93.16	9720	19.67	24.08	57.80
9940	8.41	4.27	92.50	9715	20.08	24.58	56.98
9985	8.71	4.68	91.87	9710	20.20	25.07	56.08
9980	4.00	5.00	91 23	9705	20.92	25.57	55.20
9925	4.81	5.89	90.55	9700	21 81	26 04	54.87
9920	4.62	5.78	89.87	9695	21 69	26.49	58.57
9915	4.94	6.17	89:20	.9690	22.08	26.95	52.77
9910	5.25	6.55	88.50	9685	22:46	27.40	51.98
.9902	5.56	6.94	87.84	9680	22 85	27.86	51.18
.9900	5.87	7:32	87.16	9675	28 23	28.81	50-88
9895	6-21	7.74	86.43	9670	28.62	28.77	49.60
9890	6.57	8.18	85.65	.9665	24.00	29 22	48.80
-9885	6.98	8.68	84.88	.9660	24.38	29.67	48.00
-9880	7:27	9.04	84 15	9655	24.77	80.13	47.20
9875	7.60	9.45	88.48	9650	25.14	80.57	46.44
-9870	7:93	9.86	82.70	9645	25.50	80.98	45.70
.9865	8-29	10.30	81.96	9640	25.86	81.40	44.97
.9860	8.64	10.73	81.20	9685	26.20	81.80	44.27
.9855	9.00	11 •17	80.42	9630	26.53	82.19	43.60
.8820	9.86	11.61	79.65	9825	26.87	82.58	42.90
·9845	9.71	12.05	78.90	9620	27 ·21	82.98	42-20
.9840	10.08	12:49	78.10	9615	27 . 57	88.89	41.47
·98 35	10.46	12.96	77:80	9610	27:93	88.81	40.74
.9830	10.82	18-48	76:46	9605	28 · 25	34.18	40.10
982 5	11 28	18.90	75.84	.8600	28.56	34.54	89.47
9820	11.62	14.37	74.82	9595	28 87	84.90	38 84
·9815	12.00	14.84	74.00	.9590	29:20	85.28	88 18
9810	12.38	15.80	78·18	9585	29.53	85-6 6	87.50
9805	12.77	15.77	72.36	-9880	29.87	86-04	86.88
.9800	18.12	16.24	71.54	9575	80.17	36.39	86.28
9795	13.54	16.70	70.78	·9570	80.44	86.70	35.68
'9790	13 92	17.17	69 90	9565	30.72	87.02	85.18
9785	14.36	17.70	68.97	.8560	81.00	87.34	84.57
·9780	14.82	18 -25	68.00	9555	81:81	87:69	83.95

ALCOHOL TABLE-continued.

Sp. gr. at 60° F.	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent.	Sp. gr. at 60° F.	Per cent. of Alcohol by weight,	Per cent. of Alcohol by volume.	Per cent under Proof.
·9550 .	81 .62	88.04	83:32	.0005			
9545	81.04	38.40	82.70	9325	48 48	51.07	50،10
9540	32.25	38.75		9320	43 71	51.82	10.02
9535	32.56	89·11	82.08	9315	48.95	51.58	9 .60
9580	32.87	39.47	81.46	9310	44 18	51 .82	9 -20
9525	33·18		80.84	9805	44 41	52 ·06	8.77
9520	88 47	89.81	30.24	.9300	44 64	52.29	8.86
9515	83.76	40.14	29.66	9295	44.86	52.53	7 .94
9510	84.05	40.47	29.08	9290	45 09	52.77	7 .52
9505		40.79	28.52	9285	45.32	53·01	7.10
.8200	84·29 84·52	41 05	28.06	9280	45.55	58.24	6.70
9495		41.32	27.60	9275	45 <i>-</i> 77	58.48	6.27
9490	84.76	41 58	27.13	9270	4 8 -00	58 72	₽.89
9485	85.00	41.84	26.67	9265	46.23	28.82	5.45
9480	85.25	42.12	26.20	·9260	46.46	54 19	5.03
	85.50	42.40	25.70	9255	46.68	54.48	4.62
·9475 ·9470	85.75	42.67	25 22	-9250	46.91	54.88	4.20
	86.00	42.95	24.74	9245	47.14	54 .90	8.80
9465	86.28	43 26	24 20	·9240	47:36	55·13	8.38
9460	86.56	49.56	28.66	9235	47.59	55:37	2.97
9455	36.83	43.87	23.12	.9230	47.82	55-60	2.56
9450	37·11	44 18	22.58	9225	48.05	55.88	2.15
9445	87.39	44.49	22 04	9220	48.27	56 07	1.74
9440	37 .67	44.79	21.50	9215	48 .50	56:30	1.33
*9485 *9480	87 .04	45.10	20.96	.9210	48.78	56.54	0.92
	88.22	45.41	20.43	9205	48:96	56.77	0.20
9425	38.50	45.71	19.89	9200	49.16	56.98	0.14
9420	38.78	46.02	19.96	9198	49.24	57. 08	Proof
9415	89.05	46.32	18.83	9195	49 39	57·20	0.25
9410	89 30	48.59	18.36	·9 190	49.64	57 ·45	0.68
9405	39.55	46 86	17.88	9185	49.86	57 ·69	1.10
·9400 ·9395	89.80	47 18	17.40	9180	50.09	57·92	1.21
	40.05	47.40	16.93	9175	50.80	58:14	1.89
.9380 .9380	40.80	47.67	16.46	9170	50 52	58.36	2.28
	40.55	47.94	15.98	9165	50·74	58.88	2.66
9380	40.80	48.21	15.50	9160	50.96	58.80	8.05
9375	41.05	48.48	15.04	9155	51.17	59·01	3·41
9370	41.30	48.75	14.57	9150	51.38	59.22	8.78
9865	41.55	49.02	14.10	9145	51.28	59.48	4.14
.9860	41.80	49.29	18.68	9140	51.79	59.63	4.20
9855	42 05	49.55	18 16	9135	₽5.00	59·84	4.87
9350	42.29	49.81	12.70	9130	52.28	60.07	5.27
9345	42.52	20.08	12.27	9125	52.45	60:30	5·67
9340	42.76	50.81	11.82	9120	52 68	60.52	6.07
.9332	48.00	50.67	11.88	9115	62.91	60.74	6:47
-9 880	48 - 24	50.82	10.94	·9110	58.13	60.97	6.86

ALCOHOL TABLE -continued.

Sp. gr. at 60° F.	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume,	Per cent.	6p. gr. at 60 F.	Per cent. of Alcohol by weight.	Per cent, of Alcohol by volume.	Per cent. over Proof.
•9105	58.85	61.19	7.23	-8880	68:26	70.77	24.02
9100	5 8 ⋅ 57	61.40	7 '61	-8875	68.48	70.97	24 87
9095	53.78	61.62	7 .99	-8870	68.70	71 · 17	24.78
.8080	54.00	61.84	8.86	-8865	68.91	71.38	25.09
9085	54-24	62.07	8.78	•8860	64.18	71.58	25 44
.9080	54.48	62.81	9.20	.8855	64.85	71 78	25.79
9075	54.71	62.55	9.62	.8820	64.57	71 98	26.15
9070	54.95	62.79	10.08	·8845	64.78	72 ·18	26 50
9065	55.18	68-02	10.44	·8840	65·00	72.88	26.85
9080	55.41	68.24	10.84	-8885	65.21	72:58	27.19
9055	55:64	68.46	11.24	.8830	65.42	72:77	27 52
19050	55.86	68.69	11.64	·8825	65.68	72.96	27 85
9045	56.09	63.91	12.08	-8820	65.88	78.15	28.19
9040	56.82	64.14	12.41	·881 <i>5</i>	66.04	78 84	28.52
-9086	56.55	64.86	12.80	·8810	66.56	78·54	28.87
9080	58.77	64.28	18.18	-8805	66.48	78 78	29.22
9025	67.00	64·80	18.57	·8800	66.70	78.98	29.57
9020	57.22	65.01	13.92	·879 5	66.91	74 18	29 92
•9015	57.42	65:21	14.27	-8790	67.13	74 38	80.26
9010	57:68	65.41	14 62	·8785	67.88	74 52	80.29
-9005	57.88	65.61	14.97	8780	67 54	74.70	80.85
-9000	₽8-0₽	65.81	15.88	8775	67 75	74.89	81.25
-8995	58 -2 7	66.08	15.72	8770	67.96	75.08	81.28
-8990	P8-P0	66 25	16.11	8765	68.17	75.27	81.90
-8985	58 ∙78	66:47	16 49	-8760	68.88	75.45	82.28
.8680		66.69	16 88	8755	68.28	75.64	82.66
·8975	59:17	66.90	17.25	8750	68.79	75.88	82.89
•8970	59.39	67:11	17 61	8745	69.00	76.01	88 21
·8965		67 82	17.98	8740	69-21	76.20	88 54
.8960		67 58	18 34	-8785	69.42	76.89	88.86
*8955		67.78	18.70	*8780	69 68	76.57	84.19
.8950		67.98	19.05	.8725	69.88	76.76	84.51
8945		68 18	19.89	.8720	70.04	76.94	84.84
18940		68.83	19.74	·8715	70.24	77.12	85.14
.8982		68.52	20.08	.8710	70.44	77:29	85.45
.8980		68.72	20.42	8705	70.64	77.46	86.76 86.07
-8925		68.91	20.77	·8700	70.84	77·64 77·82	86.87
-8920		69.11	21.11	8695	71.04		
·8915		69.80	21.45	.8690	71 · 25 71 · 46	78.00 78.18	86·69 87·01
8910		69.50	21.79	.8685	71.40	78:86	87.88
8905		69.71	22.16	8680		78.55	87.65
*8900		69.92	22.58	•867 5 •8670	72:09	78.78	87.98
*8895		70.14	22·91 23·29	-8665	72.80	78.98	88.82
8890		70·85 70·57	28.29	-8660		79.12	88.65
-8885	68.04	10.01	20 00	0000	1000	10 14	00 00

ALCOHOL TABLE-continued.

gr. 0° F.		Per cent. of Alcohol by volume.	Per cent.	Sp. gr. at 60 F.		Per cent. of Alcohol by volume.	Per cent.
855	72.74	79:81	88 99	8430	82.15	87:24	52.90
850	72.96	79.50	89.82	8425	82.85	87.40	58.16
845	78·17	79 68	89.64	*8420	82.54	87.55	58.48
B 4 0	78 88	79·86	89.96	8415	82.78	87.70	58.70
685	78.28	80.04	40.27	·8 4 10	82.92	87-85	58.96
680	78 79	80 -22	40.60	·8405	88.12	88.00	54.28
825	74.00	80.40	40.91	8400	83.81	88.16	54.20
620	74 28	80 60	41 26	8895	88 - 50	88.81	54.75
615	74.45	80.80	41.61	8890	88 .68	88:46	55.02
810	74.68	81.00	41.96	8885	88-88	88.61	55.28
805	74.91	81 .20	42.81	·8380	84.08	88.76	55.55
800	75.14	81 .40	42.66	8875	84 28	88.92	55.88
595	75.86	81.60	48.00	·8370	84.48	89.08	56.10
590	75.59	81.80	48 35	-8365	84.68	89 24	56 88
585	75.82	82.00	48 70	-8360	84.88	89.39	26.08
580	76.04	82.19	44.04	-8355	80.08	89.55	86.98
575	76.25	82.97	44.85	-8350	85.27	89.70	57 20
570	76 46	82.54	44.66	8345	85.46	89.84	57.45
565	76.67	82.72	44.97	·8340	85 65	89.99	67.71
560	76.88	82.90	45.28	·8885	85.85	90.14	57.97
555 550	77:08	88.07	45.60	·8330 ·8325	86.04	90.29	58-28
545	77-29 77-50	88 ·25 88 ·48	45.90	8820	86.28	90.48	58.48
540	77.71	88.60	46 20	8815	86.42	90.88	58.74
585	77.92	88.78	46.51 46.82	-8810	86 62 86 81	90.78	59.00
580	78.12	88.94	47.11	.8802	87 00	90·88 91·02	59·26 59·51
525	78.32	84.11	47.40	.8800	87.19	91.17	59.77
520	78.52	84.27	47.70	8295	87.38	91.81	60.02
515	78.72	84.44	47.98	·8290	87.58	91.46	60 28
510	78-92	84.60	48.27	·8285	87.77	91.60	60.58
505	79.12	84.77	48.56	·8280	87.96	91.75	60.79
500	79.82	84-98	48.84	8275	88.16	91.90	61.05
195	79.52	85.10	49.18	8270	88.36	92.05	61.82
90	79.72	85.26	49.38	8265	88.56	92.21	61.60
85	79.92	85.42	49.67	8260	88.76	92:36	61.86
80	80.18	85.59	50:00	8255	88.96	92.21	62.12
75	80.88	85.77	50.81	8250	89.16	92.66	62.88
70	80.54	85.94	50.61	8245	89.85	92.80	62.63
65	80.75	86.11	50.91	·8240	89.54	92.94	62.88
160	80.96	86.28	51.21	*8235	89.78	98.09	68 13
55	81.16	86.45	51.50	8230	89.92	93.23	68.88
120	81 .36	86.61	51 .78	8225	90.11	93.86	63.62
45	81.56	· 86 <i>·</i> 77	52.06	*8220	90.29	98.49	63 84
40	81.76	86.93	52.34	8215	90:46	98-62	64.06
85	81.96	87.09	52.62	· 82 10	90.64	98.75	64.80

ALCOHOL TABLE -continued.

Sp. gr. at 60° F.	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent.	Sp. gr. at 00° F.	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent.
-8205	90.82	93.87	64.51	.8065	95.86	97:89	70.67
8200	91.00	94-00	64.74	.8090	96.03	97.51	70.88
·8195	91.18	94.18	64.98	.8055	96.20	97.62	71.07
€ 8190	91.36	94.26	65.18	-8050	96.37	97-73	71 ·26
·8185	91.20	94.88	65:40	8045	96.53	97 88	71 45
·8180	91 71	94.21	65.62	8040	96.70	97.94	71 64
18175	91.89	94.64	65.85	-8035	96.87	98.05	71.88
·8170	92.07	94.76	88.07	.8030	97.03	98.16	72.02
·8165	92.26	94.90	66:30	8025	97:20	98:27	72.20
8160	92.44	95.03	66:53	8020	97:87	98:37	72.40
·8155	92.68	95.16	66.76	8015	97.58	98:48	72.58
·8150	92.81	95.29	67:00	.8010	97.70	98.29	72.77
*8145	98.00	95.42	67.23	8005	97.87	98.69	72.95
-8140	93.18	95.55	67.46	.8000	98 03	98-80	78 1 4
8185	93.87	95.69	67.70	7995	98.19	98.89	73.80
·8180	98.55	95.82	67.92	.7990	98:34	98.98	73.47
·8126	93.74	95.95	68 15	-7985	98.50	99 .07	78 64
·8120	93.92	80.98	68.88	•7980	98 66	99:16	73.81
8115	94.10	96 20	68.60	7975	98-81	99 26	73 97
8110	94.28	96.82	68.80	7970	98.97	99 85	74.14
·8105	94.45	96.48	69.00	7965	99:13	99.45	74.81
·8100	94.62	96.55	69:20	•7960	99-29	99 55	74.50
-8095	94.80	96.67	69.40	·795 5	99.45	99 65	74.66
.8090		96.78	69.61	7950	99.61	99.75	74.83
-8085	95.14	96-90	69.82	7945	99.78	99.86	75.01
·8080	95.82	97:02	70.08	.7940	99.94	99.96	75.18
·8075	95.50	97.15	70.25		Absolute		
·8070	95.68	97 -27	70.46	·7938	100.00	100.00	75.25

In "The Sale of Food and Drugs Act Amendment Act, 1879," section 6, it is enacted that Brandy, Whisky, or Rum may be reduced to 25° U.P. and Gin to 35° U.P.

 $^{25^{\}circ}$ U.P. = 0.9478 sp. gr., 42.78 per cent. alcohol by volume, 35.85 per cent. alcohol by weight

 $^{36^{\}circ}$ U.P.=0.9564 sp. gr., 37.08 per cent. alcohol by volume, 30.78 per cent. alcohol by weight.

[&]quot;Rectified spirit" (B.P. 1898) is alcohol of sp. gr. 0.8840. It contains 90 per cent. of alcohol by volume, 85.65 per cent. of alcohol by weight; 57.7° O.P.

[&]quot;Proof Spirit" is defined by statute (58 Geo. III. c. 28) as "that which at a temperature of 51° F. weighs exactly twelve-thirteenths of an equal measure of distilled water." The sp. gr. of proof spirit at 51° F. is 0.92808 (water at 51° F.=1). At 60° F./60° F. its sp. gr.

is 0°91984, and it contains 57°06 per cent. of alcohol by volume, 49°24 per cent. by weight.

By the "obscuration" of spirits is meant the difference between the apparent alcoholic strength, as shown by the hydrometer, and the true strength found after distillation.

Simple rules for finding the percentages of added water in the

case of diluted spirits.

L Brandy, Whisky, or Rum (25° U. P. allowed).

Let a sample be N° U. P.

Therefore in 100 volumes we have N volumes of water, and

(100 - N) volumes of proof-spirit.

Let x be the percentage of water by volume added to spirit of 25° U. P. to produce a sample N° U. P. Then equating amounts of water we have—

$$(100 - x) \frac{26}{100} + x = N.$$

$$25 - \frac{x}{4} + x = N.$$

$$\frac{8}{4} x = N - 25.$$

$$x = \frac{4(N - 25)}{2}.$$

Hence we have the following rule :-

To get percentage of added water by volume in the case of diluted brandy, whisky, or rum, increase the excess of degrees U. P. above 25 by one-third.

II. Gin (35° U. P. allowed).

Reasoning exactly as in I., we have-

$$(100 - x_1)\frac{85}{100} + x_1 - N_1.$$

$$85 - \frac{7}{20}x_1 + x_1 - N_1.$$

$$\frac{13}{20}x_1 - N_1 - 35.$$

$$x_1 - \frac{20}{13}(N_1 - 35).$$

$$x_2 - 1.54(N_1 - 35).$$

Hence the rule :--

To get percentage of added water by volume in diluted gin, multiply the excess of degrees U. P above 35 by 1.54.

^{*.*} The above rules I owe to Mr E. W. T. Jones, who discovered them empirically and used them simply for checking results obtained by the usual method of calculation from the percentage of alcohol present. The proofs I have given above established the accuracy of Rule I., and gave the correct fact r 1.54 in Rule II. in place of the 11 previously used for checking.—A. E. J.

CORRECTION OF SPECIFIC GRAVITY OF DILUTE ALCOHOL FOR TEMPERATURE.

Specific Gravity.	1° Fah.	1° O.	Specific Gravity.	1° Fah.	1° C.
·794—·864	0.00046	0.00088	-965966	0.00026	0.00047
·864—·889	45	81	·966— ·967	25	45
·889—·902	44	79	*967- ·968	24	48
·902-·912	48	77	968- 969	28	41
·912-·921	42	76	969- 970	22	40
·921-·928	41	74	·970- ·971	21	88
·928·985	. 40	72	971- 978	20	86
·985—·940	89	70	978- 974	19	84
·940·948	38	68	974- 975	. 18	82
·948·946	87	67	975- 976	17	81
·946·949	86	65	976- 977	16	29
949 951	35	68	·977- ·978	15	27
·951—·953	84	61	·978— ·980	14	25
·958·955	88	59	980- 981	18	28
·955—·957	82	58	981- 988	12	22
957-959	81	56	·988- ·985	11	20
959961	80	54	985- 987	10	18
·961962	29	52	·987- ·990	•00009	16
962-963	28	50	1990- 1995	8	14
968-965	27	49	995-1.000	7	18

Rule.—To obtain correct sp. gr. at 60° Fah. (-15.5° C.), multiply the factor given in the table opposite to the observed sp. gr. by the difference in temperature, and add if the recorded temperature is above 60° F., or subtract if it is below 60°.

Hz.—The sp. gr. at 60° Fah. of dilute alcohol of sp. gr. 0.952 at 64° Fah. is $0.952 + (0.00034 \times 4) = 0.95836$.

VARIOUS METHODS OF STATING ALCOHOLIC STRENGTES.

Based on Squibb's absolute alcohol of sp. gr. 0.7985,

Proof spirit containing 49.2 % of this alcohol, and having a sp. gr. of 0.9198,

and using c.c. to indicate the volume of 1 gram of water at 60° F., we have the formulæ given below.

Let S-sp. gr. at 60°/60° F.

% - grams of absolute alcohol per 100 grams.

10/v = grams of absolute alcohol per 100 c.c.

P = c.c. proof spirit per 100 c.c.

then

911
$$v/v = \sqrt{1985} - \frac{w/v}{S} - \frac{P \times \cdot 4525}{S}$$

 $v/v = v/v \times 1 \cdot 262 S - 1 \cdot 262 w/v = 0 \cdot 5708 P$
 $w/v = v/v \times S$ $-7985 v/v = 0 \cdot 4525 P$
 $P = v/v \times 2 \cdot 21 S - 1 \cdot 758 v/v = 2 \cdot 21 w/v$
grains per fluid ounce $-w/v \times 4 \cdot 3756$.

ALCOHOL CALCULATIONS.

Ez. 1. To find the quantity of water which must be added to spirit of 25° O.P. to reduce it to 20° U.P.—

100 volumes of spirit at 25° O.P. contain as much alcohol as 125 volumes of proof spirit.

100 volumes of spirit at 20° U.P. contain as much alcohol as 80 volumes of proof spirit.

Hence, 125 volumes of proof spirit are equivalent to 100 volumes of spirit of 25° O.P.

1 volume of proof spirit is equivalent to $\frac{100}{125}$ volumes of spirit of 25° O.P.

80 volumes of proof spirit are equivalent to $\frac{100 \times 80}{125}$ = 64 volumes of spirit of 25° O.P.;

that is, 100 volumes of spirit of 20° U.P. can be made by diluting

64 volumes of spirit of 25° O.P. with water.

Suppose, for example, 10 gallons at 20° U.P. are required, we take 6'4 gallons at 25° O.P., or 6 gallons 1 quart 1½ pints, and dilute with water to 10 gallons.

Ex. 2. To find the quantity of water which must be added to spirit of 60° O.P. to reduce it to 30° O.P.

100 volumes of spirit at 60% O.P. are equivalent to 160 volumes of proof spirit.

100 volumes of spirit at 30° O.P. are equivalent to 130 volumes of proof spirit.

Hence 160 volumes of proof spirit are equivalent to 100 volumes of spirit of 60° O.P.—

1 volume of proof spirit is equivalent to $\frac{100}{160}$ volumes of spirit of 60° O.P.

130 volumes of proof spirit are equivalent to $\frac{130 \times 100}{160}$ = 81½ volumes of spirit of 60° O.P.;

that is, 100 volumes of spirit of 30° O.P. can be made by diluting 81½ volumes of spirit of 60° O.P. with water.

Thus if 20 gallons are required we must take 16½ gallons of the strong spirit and dilute with water to 20 gallons.

Table showing the Amounts to be subtracted from the Values given in the Phosphate Table 80 that they may be in accordance with the International Atomic Weights of 1912.

Mg ₃ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	Pg
10.0	0.03	0.02	0.02	
15.0	0.02	0.08	0.08	0.008
20.0	0.07	0.02	0.08	0 011
25.0	0.08	0.08	0.04	0.018
80.0	0.09	0.07	0.02	0.018
85-0	0.11	0.08	0.08	0.019
40.0	0.13	0.09	0.07	0.021
45.0	0.12	0.10	0.07	0.025
20.0	91.0	0.12	80.0	0 027
55.0	0.18	0.18	0.09	0.029
60.0	0.19	0.13	0.10	0.088
65.0	0.51	0.14	0.11	0:035
70.0	0.23	0.15	0.12	0.038

Kx. 1. 2 grams of a sample of Superphosphate gave 0.3770 gram $Mg_{2}P_{2}O_{7}.$

From the Table 37·70 =
$$52 \cdot 64 \text{ Ca}_3 P_2 O_8$$

Correction (mean of ·11 and ·13)= 12
2) $52 \cdot 52$
26·26% Ca₃P₂O₈

 $Ex. 2. 1 \text{ gram of a Phosphate gave } 0.5500 \text{ gram } Mg_2P_2O_7.$

From the Table 55-00 Mg₂P₅O₇=35·18 P₂O₈=76·80 Ca₅P₂O₈. Correction (to be subtracted) $\frac{18}{18}$

 $35.09\% P_9 O_5 = 76.62 Ca_9 P_9 O_8$

TABLE FOR PHOSPHATES.

Mg ₂ P ₂ O ₇	OagPgOs	CaP ₂ O ₆	P90.	Pg	Mg ₂ P ₂ O	, Oa ₂ P ₂ O ₈	CaP _g O _g	P ₂ O ₅	P ₂
0.1	0.14	0.09	0.08	0.028	4.1	5.73	3.66	2.62	1.145
٠2	0.28	0 18	0.13	0.056	.2	5·87	8.75	2.69	1.178
•8	0.42	0.27	0.19	0.084	.8	6.00	8.84	2.75	1.201
٠ <u>4</u>	0.56	0.86	0.26	0.112	•4	6.14	8.93	2.82	1.229
٠ <u>5</u>	0.70	0.45	0.32	0.140	٠5	6 28	4.01	2.88	1.257
-6	0.84	0.54	0.38	0.168	•6	6.42	4.10	2.94	1.285
•7	0.88	0.62	0.45	0.196	•7	6.26	4.19	8 01	1:318
٠8	1.12	0.71	0.21	0.223	.8	6 .70	4 • 28	8.07	1.841
.9	1.26	0.80	0.28	0.251	.8	6.84	4.87	3.14	1.369
1.0	1.40	0.89	0.84	0.279	5.0	6.98	4 • 46	8.20	1.896
.1	1.24	0.88	0.70	0.807	.1	7.12	4.55	3.26	1.424
-3	1.68	1.07	0.77	0.882	•2	7 · 26	4.64	88.8	1.452
.8	1.82	1.16	0.88	0.868	.8	7.40	4.78	8.89	1.480
.4	1.96	1.25	0.80	0.391	'4	7.54	4.82	8.45	1.508
.2	2.09	1.84	0.96	0.419	٠5	7.68	4.91	8.52	1 586
·6	2.23	1.48	1.02	0.447	.6	7.82	2.00	8.28	1.284
•7	2.87	1.2	1.08	0.475	•7	7-96	5 08	8.65	1.592
.8	2.51	1.61	1.12	0.508	.8	8.10	5 ·17	8.71	1.620
.9	2.65	1.70	1.22	0.281	.9	8.24	5 .26	8-77	1.648
3.0	2.79	1.78	1.28	0.559	8.0	8.38	5.82	3 ·84	1.676
- 1	2.98	1.87	1.84	0.587	'1	8.62	5.44	3 90	1 704
.2	8.07	1.96	1.41	0.814	•2	8.66	5.58	8.97	1.732
·8	8-21	2.05	1.47	0.842	-8	8.80	5.62	4-08	1 760
·4	8.85	2.14	1.54	0.870	•4	8-94	5.71	4.09	1.787
٠.٤	3.49	2.28	1.60	0.698	- 5	9.08	5.80	4.16	1.815
·6 ·7	8.68	2.82	1.66	0.726	-6	9.22	2.89	4.22	1.848
	8.77	2.41	1.73	0.754	•7	9.86	5.98	4.29	1.871
.8	8.91	2.80	1.79	0.782	•8	9.20	8.07	4 35	1.899
.9	4.05	2.59	1.86	0.810	-9	9.64	6.12	4.41	1.927
8·0 ·1	4.19	2.68	1.92	0.888	7.0	9.77	6.24	4.48	1.955
	4.33	2.77	1.98	0.866	·1	9.91	6.83	4 54	1 983
·2 ·8	4.47	2.85	2.05	0.894	•2	10.05	6.42	4.81	2.011
4	4.61	2.94	2.11	0.922	•8	10.19	6.21	4.67	2.089
-5	4.75	8.08	2.18	0.950	•4	10.88	6.60	4.78	2.067
.6	4·89 5·03	8·12 8·21	2-24	0.978	·5	10.47	6.69	4.80	2.095
.7	5.17	8.30	2.30	1.008	·6	10.61	6.78	4.86	2.123
·8			2.37	1.033	•7	10.75	6.87	4.98	2.151
.9	5.31	8.39	2.48	1.061	-8	10.89	6.96	4.99	2.178
4·0	5.45	3.48	2.50	1.089	-9	11.03	7.08	5.05	2.206
***	<u>5.28</u>	8.57	2.56	1.117	8.0	11.17	7.14	5.12	2.234
Mg,P), 01	-02	-08	-04	.02	.08	-07	•08	-09
Ca, P,O	. 01	.08	-04	.08	•07	•08	·10	.11	.18
Ca.P.O Ca.P.O	'01	.02	-08	•04	-05	-05	.08	-07	-08
P ₀ O _x	01	.01	.02	-08	•08	.04	.05	-05	.08
P,	.00	3 .000	3 00	8 .011	-014	.017	.020	.022	.025
					·	<u> </u>			ــــــــــــــــــــــــــــــــــــــ

TABLE FOR PHOSPHATES—continued.

Mg ₂ P ₂ O ₇	Oa ₃ P ₂ O ₃	CaP ₂ O ₅	P ₂ O ₅	Pg	Mg2P2O7	CagP ₂ O ₂	CaP ₂ O ₄	Pg05	Pg
8.1	11.81	7:22	5.18	2.262	12.7	17.78	11.88	8.12	8.547
-2	11 45	7.81	5 . 25	2.290	-8	17:87	11.42	8.19	8.575
•8	11.20	7.40	5 31	2.318	. 9	18.01	11.21	8.25	8.603
.4	11 78	7:49	5.87	2.846	18.0	18:15	11.60	8.82	8 . 631
-5	11.87	7:58	5.44	2.874	.1	18:29	11.68	8.88	8.659
•6	12.01	7:67	5.50	2.402	•2	18.48	11.77	8.44	8 687
•7	12:15	7.76	5.67	2.430	.8	18.57	11.86	8.51	8.714
-8	12:29	7.85	5.68	2.458	'4	18.71	11.95	8.57	8.742
-9	12.48	7.94	5.69	2.486	•5	18.85	12.04	8.64	8.770
8.0	12.57	8.08	5.76	2.514	•6	18.99	12.18	8.70	8.798
•1	12.71	8.12	5.82	2.641	•7	19.18	12.22	8.76	8.826
-2	12.85	8.21	5·89	2.569	-8	19.27	12.81	8.83	8.854
•8	12.99	8.80	5.95	2.597	•9	19.41	12:40	8.89	8.882
•4	18.18	8.88	6.01	2.625	14.0	19.55	12.49	8.96	8.910
•5̄	18:27	8.47	6.08	2.658	·i	19.69	12.58	9.02	8.988
•6	18.41	8.56	6.14	2.681	-2	19.88	12.67	9.08	8.966
7	18.55	8.65	6.21	2.709	•8	19.97	12.76	9.15	8.994
-8	18.69	8.74	6.27	2.787	٠4	20.11	12.84	9.21	4.022
-9	18.83	8.83	6.83	2765	٠.5	20.25	12.98	9.28	4.050
10.0	18.96	8.92	6.40	2.793	٠.	20.89	13.02	9.84	4.078
·i	14.10	9.01	6.48	2.821	·7	20.58	18.11	9.40	4.102
-2	14.24	9.10	6.52	2.849	·ġ	20.67	18.20	9.47	4.188
· <u>8</u>	14 88	9.19	6.59	2.877	·õ	20.81	18.29	9.58	4.161
٠4	14.52	9.28	6.65	2.905	15.0	20.95	18.88	9.60	4.189
٠5	14.66	9.87	6.72	2 982	-·i	21.09	18.47	9.66	4.217
·6	14.80	9.45	6 78	2.960	-2	21.28	18.56	9.72	4.245
7	14.94	9.54	6.84	2.988	٠.8	21 87	18.65	9.79	4.278
-8	15.08	9.68	6.91	8.016	•4	21.50	13.74	9.85	4.801
٠9	15.22	9.72	6.97	8.044	٠5	21.64	18.88	9.92	4.329
11.0	15.86	9.81	7.04	8.072	-8	21.78	18.91	9.98	4.357
·1	15.20	8.80	7:10	8.100	•7	21.92	14.00	10.04	4.885
· <u>2</u>	15.84	86.6	7:16	8.128	•8	22.06	14.09	10.11	4.418
· <u>8</u>	15.78	10.08	7.28	8.156	-ğ	22.20	14.18	10.17	4.441
٠.4	15.92	10.17	7 .29	8.184	16-0	22.34	14.27	10.23	4.469
-5	16.08	10.26	7.86	8.212	·1	22.48	14.36	10.80	4.496
•6	16.50	10.85	7.42	8.240	·2	22.62	14.45	10.86	4.524
7	16.84	10.44	7.48	3.268	· <u>\$</u>	22.76	14.54	10.48	4.552
-8	16.48	10.23	7.55	8-296	.•4	22.90	14.68	10.49	4.280
٠,	16.62	10.61	7.61	8.824	•5	28.04	14.72	10.55	4.608
12.0	16.76	10.70	7.68	8.821	-8	28.18	14.81	10.62	4.636
·1	18.90	10.79	7.74	8.879	.7	23 82	14.89	10.68	4.664
-2	17:04	10.88	7.80	8.407	·8	28.46	14.98	10.75	4.692
•ŝ	17.18	10.97	7.87	8.485	-9	28.60	15.07	10.81	4.720
.4	17:82	11.08	7.93	8.463	17.0	28.74	15.16	10.87	4-720
·5	17.46	11.15	8.00	8.491	·1	28.88	15.25	10.94	
.6	17.60	11.24	8.06	8.219	-2	24.02	15.84		4.776
U	11 00	TI AT	3 00	O DID	•	2 % UZ	10 04	11.00	4.804

TABLE FOR PHOSPHATES-continued.

Mg ₃ P ₃ O ₃	Ca ₃ I	PgO ₈	CaP	90. F	₂ O ₅]	P ₂ 1	Mg₂P₂O,	0a3P30	OaP ₂ O ₆	P2O4	Pg
17:3	24	16	15	48 1	.07	4	882	21 .8	29.74	19.00	18-62	5.949
•4	24	.80	15		1.18	4	860	•4	29.88	19:09	13.69	5.977
•5	24		15		l·19		887	•5	80.02	19.18	13 75	8.002
•6		58	15		1.26		915	•₿	80.16	19:27	18.82	6.088
•7	24		15		.82		948	7	30.80	19.35	18.88	6.060
-8		86	15		.88		971	•8	80.44	19:44	18.94	6.088
.9		00	15		1.46		999	.9	80.58	19.58	14 01	6.116
18.0		14			61		027	22·0 ·1	80·72 80·86	19.62 19.71	14·07 14·14	6·144 6·172
·1 ·2	25 25				l∙68 l•64		.088 .088	.2	81.00	19.80	14.50	6.200
.8		.22			1.71		111	-8	81.14	19.89	14.26	6-228
•4		.69			.77		189	•4	81-28	19.98	14.88	6.256
٠.		-88			88		167	•5̄	81.42	20.07	14.39	6.284
•6		.97			.90		195	-8	81.56	20.16	14.48	6.812
7		·ĭi			96		223	٠7	81.70	20-25	14.52	6.840
·8		25			2.08		250	•8∙	81.84		14.58	6.868
-9		-89			5.09		278	.9	81.98	20.48	14.65	6.896
19.0		58	16	95 1	2.15	5	808	28.0	82 12	20.51	14.71	6.428
.1	26	·67			2.22	5	984	•1	82:26	20.60	14.78	6.451
-23		·81			2.28		862	•2	82:40	20:69	14.84	6.479
.8		95			2.85		-390	.8	82.54		14 90	6.202
٠ <u>4</u>		.09			2 41		·418	•4	82 68	20 87	14.97	6.282
-5		28			2.47		446	•5	82.82		15.08	6.268
•6		87			2.54		474	∙ტ	32.96		16.10	6.891
•7		·51			2.60		.502	7	83.09	21.14	15.16	6.619
-8		.65			2.67		530	-8	38-28	21.23	15.22	6.647
.9		79			2.78		558	.9	88.87	21.82	15.29	6.676 6.708
20.0		.08			2.79		586	24.0	88·51 88·65	21·41 21·50	15·85 15·42	6.781
·1 ·2		·07 ·21			2·86 2·92		·614 ·642	·1 ·2	88.79		15.48	6.759
.8		35			2.99		.669	-8	88.88		15.24	6787
.4		49			B·05		697	.4	34.07	21.78	15.61	6.814
.5		.48			B·11		·725	-₹	34.21		15.67	6.842
·8		.77			8.18		·758	-6	34.35		15.74	6.870
٠,		·91			B·24		·781	· 7	84.49		15.80	6.898
-8		.05			8.81		809	٠ġ	84.63		15.86	6.926
-Ď		·19			8.87		·887	-9	34.77		15.98	6.954
21.0		.32			8.48		1865	25.0	84-91		15.99	6.982
·i		46			8.20		898	•1	85.05	22.89	16:06	7.010
-2		.60			8.26		921	•2	35.19	22:48	16.13	7.088
Mg.P.	.O.	-0:	1	.02	1 .	18	·04	.02	.08	.07	.08	-09
Mg ₂ P ₂ Ca ₂ P ₂	5. ′	•0:		.08		4	-06	-07	.08	•10	•11	18
CaP.C	٠,	.0:		.02		8	.04	.05	.05	-06	07	•08
P.O.	٠ ا	.0:	1	.01	-0	2	.08	.08	.04	-05	.05	•06
$\mathbf{P}_{\mathbf{s}}$.00	08	.008	1 .0	80(.011	.014	. 01	7 020	.022	025

TABLE FOR PHOSPHATES—continued.

Mg ₃ P ₂ O ₇	Ca ₃ P ₂ O ₁	Ca.P ₂ O	P ₂ O ₃	P ₃	Mg ₂ P ₃ O ₃	Cu ₈ P ₂ O ₅	OaP ₂ O ₆	P ₂ O ₅	P ₂
25.8	35·83	22.57		7.088	29.9	41.75	26.67	19:13	8.351
•4	85.47	22.66		7.094	80.0	41.89	26.76	19.19	8.378
•5	85.61	22.74		7.122	•1	42.08	26.85	19.25	8.406
<u>.</u> 6	85.75	22 83		7:150	•2	42.17	26.94	19:32	8.484
-7	85-89	22.92		7 178	.8	42.31	27:08	19.38	8.462
-8	86.08	28 01	16.20	7 205	٠4	42.45	27 ·11	19.45	8.490
.6	86.17	28.10	16.57	7.283	5	42.59	27 ·2 0	19.51	8.518
26.0	86.81	29.19	16.68	7.261	∙6	42.78	27:29	19:57	8.546
·1 ·2	86.45	28 28	16.70	7:289	7	42.87	27.38	19.64	8.574
	36.59	28.37	16.76	7.317	-8	48.01	27 47	19.70	8.602
·8 ·4	86.78	29.46	16.82	7.845	.9	43.15	27.56	19.77	8.630
.2	86.87	28.55	16.89	7.878	81.0	48.29	27.65	19.88	8.628
.8	87·00 87·14	28.64	16.95	7.401	•1	48.48	27 74	19 89	8.686
٠7	37.14	23 ·72 23 ·81	17.02	7.429	.2	48.57	27.88	19.96	8.714
.8	87·42	28.90	17·08 17·14	7·457 7·485	.8	48.71	27.92	20.02	8.742
۰,	87.56	28.99	17:21	7.480	:4	48.85	28.01	20.09	8 769
27.0	37.70	24.08	17.27	7.541	.6	48.99 44.18	28:10	20.18	8.797
~·ĭ	87.84	24.17	17.88	7.569	·6 ·7	44.18	28.18	20.21	8 825
· <u>2</u>	87.98	24.26	17.40	7.597	۰,8	44.41	28·27 28·36	20.28	8.858
-8	38.12	24.85	17:46	7.624	.9	44.55	28.45	20·34 20·41	8.881 8.909
•4	38.26	24.44	17.53	7.652	32.0	44.69	28.24	20.47	8.937
•5	88.40	24.53	17.59	7.680	·1	44.82	28.63	20.53	8.965
•6	88.54	24.62	17.65	7.708	·2	44.96	28.72	20.60	8.998
•7	88.68	24.71	17.72	7.786	.8	45.10	28.81	20.66	9.021
-8	88.82	24.80	17.78	7.764	•4	45.24	28.90	20.72	9.049
.8	38.96	24 · 88	17.85	7.792	•5	45.38	28.99	20.79	9.077
28.0	89.10	24.97	17:91	7.820	.6	45.52	29 08	20.85	9.105
•1	89 24	25.06	17 .97	7.848	7	45.66	29 17	20.92	9.188
•2	89.38	25.15	18.04	7 ·876	٠8	45.80	29 . 26	20.98	9.160
-8	39.52	25 24	18.10	7.904	-9	45.94	29.84	21.04	9.188
4	89.66	25.33	18.17	7 932	88.0	46.08	29.43	21.11	9.216
.2	89.80	25.42	18.23	7 959	•1	46 22	29 52	21 · 17	9.244
·8 ·7	39.94	25.51	18 29	7.987	-2	46.86	29 .61	21.24	9 272
.8	40.08	25.60	18.36	8.012	3	46.50	29 70	21 .80	9.800
.8	40·22 40·86	25·69 25·78	18.42	8.043	'4		29 79	21.36	9.328
29.0	40.50	25.87	18:49	8.071	٠5		29.88	21 48	9.356
1		25.95	18 55	8.099	·6		29 .97	21 49	9.884
-2		26.04	18.61	8.127	·7		80.08	21 56	9.412
·ŝ			18.68 18.74	8·155 8·183	·8 ·9		30.15	21.62	9.440
		26.22	18.81	8.211			80.24	21.68	9.468
		26.81	18.87	8 239			80.38	21.75	9.496
•8		26.40	18.98	8 267			80:41	21.81	9.523
-		26 49	19.00	8.295				21.88	9.551
		26.28	19.08	8.323				21.94	9.579
-		_,,,,,	-5 00	J, 020	7	±0 0±	90.09	22.00	9.607

PHOSPHATE TABLE.

TABLE FOR PHOSPHATES-continued.

Mg ₂ P ₂ O,	Ca ₂ P ₂ O ₅	CaP ₂ O ₄	PgC) ₅]	P ₂ 1	Mg ₂ P ₂ O ₇	Ca ₈ P ₉ O ₈	CaP ₂ O ₂	P ₂ O ₅	Pg
34.5	48.18	80-77	22 ·	07 9	635	88.2	53.76	84.34	24.68	10.752
-8	48.82	80.86	22	18 9	663	-6	53.90	84.48	24.69	10.780
•7	48.46	80.95	22 :		·691	٠7	54 04	84.52	24.75	10.808
-8	48.6 0	31 04	22	26 9	·719	• •8	54·18	84.61	24.82	10.836
.8	48.74	81 13	22	32 ·9	747	.8	54.32	84.70	24.88	10.864
35.0	48.87	81.22	22		•775	8 9·0	54.46	34 <i>:</i> 78	24 .95	10.892
.1	49.01	81 .81	$22 \cdot$		·803	.1	54.60	84.87	25.01	10.920
·2	49.15	81.40	$22 \cdot$		·831	•2	54.74	84.86	25 07	10.948
.8	49.29	81.49	$22 \cdot$		859	.8	54.88	35.02	25.14	10.976
•4	49.48	31.57	22		887	٠4	55·02	85.14	25.20	11.004
-5	49 57	81.66	$22 \cdot$		·914	٠5	55.16	35 23	25.27	11.032
-8	49.71	81.75	$22 \cdot$		942	•8	55.30	35.32	25 33	11.060
•7	49.85	81 .84	22		970	٠7	55.44	35.41	25:39	11.087
۰8	49.99	81 .93	22:		-998	٠8	55 58	85.20	25 46	11.112
•9	50.18	82.02	$22 \cdot$		026	.9	55.72	35·59	26.62	11.148
86.0	50.27	82.11	$23 \cdot$	UB 10	.054	40.0	55.86	35.68	25.59	11:171
.1	50.41	32.20	23 ·		·082	٠1 ر	26.00	85.77	25 65	11.199
•2	20.22	32 29	$23 \cdot$		·110	.2 ,	56 14	85.85	25.71	11.227
.3	20.69	32.38	$23 \cdot$		188	.3	56.28	35.94	25.78	11-255
•4	20.88	82.47	28 ·		166	•4	56.42	86.03	25.84	11.288
٠5	50·9 7	82.55	$28 \cdot$		·194	.2	56.65	86.12	25.91	11.811
∙6	51.11	32.64	23 ·		222	-8	56.69	86.21	25 97	11.339
•7	51.25	32.78	23.		.250	•7	56 83	86.30	26 08	11.867
.8	51.39	32.82	$23 \cdot$		·278	-8	56 97	36.39	26 10	11 895
.8	51 53	32.91	28.		.808	.8	57 11	86.48	26.16	11.428
87 0	51 67	99 00	23 ·		888	41.0	57 25	86.57	26.23	11.451
•1	51.81	38.09	28 ·		861	.1	57.89	36.88	26.29	11.478
· ·2	81.95	33 18	23		389	•2	57.58	36.75	26 35	11.208
-8	25.08	33 .27	23.		•417	.3	57.67	86.84	26 42	11.584
•4	52·23	33.36	23		445	•4	57 81	36.93	26.48	11 562
٠5	52.87	88 45	23		473	-5	57.95	37.01	26.22	11.590
.8	52.51	88.54	24		·501	∙6	58.09	37.10	26.61	11.618
.7	52.64	88.62	$24 \cdot$		529	.7	58.28	37.19	26.67	11.646
-8	52.78	33.71	24		.657	.8	58:37	37.28	26.74	11.674
.9	52.92	88.80	24		.585	. 9	58.21	37.87	26.80	11.702
38.0	63.08	88 89	24		613	42.0	58.65	87.46	26.87	11.730
.1	58.20	88.88	24		641	.1	58.79	87.65	26.98	11.758
.5	53.84	84.07	24		.669	•2	28.83	87.64	26.99	11.786
.3	53.48	84 16	24.		696	•3	59.07	87.78	27.06	11.814
•4	58-62	84.25	24	56 10	•724	•4	59.21	87.82	27 12	11.842
MgaP	0. 0	1 1	02	.03	·04	.02	-06	.07	.08	-09
$Ca_{i}P_{i}$	0 0		08	.04	.08	.07	.08	-10	·11	·18
Ca P _a C	o		02	.03	.04	-05	.05	.06	.07	-08
P ₀ O _x	" ·ŏ		01	02	.03	-08	·04	.05	-05	.06
P.	•0	08 1	300	.008	.011	.014	017	.020	.022	.025
					<u> </u>			<u> </u>	<u> </u>	<u> </u>

TABLE FOR PHOSPHATES continued.

Mg ₂ P ₃ O ₇	CagPgOg	CaP ₂ O ₆	PgOs	Pg	Mg ₂ P ₂ O ₁	Ca ₃ P ₂ O ₆	CaP ₃ O ₄	P ₂ O ₃	Pg
42.5	59.35	87 91	27.19		47.1	65-77	42.01	80.18	18.154
. 6	59.49	88.00	27 25	11.897	•2	65 91	42.10	30-19	18:182
•7	59.68	88.08	27 81	11.925	•8	66 05	42 19	80.26	18-210
-8	59.77	88.17	27.88	11.958	· <u>4</u>	66.19	42 28	30.82	18.288
. 9	59.91	88.26	27.44		٠.6	66.88	42.87	80.88	18.266
48·0	60.05	88.85	27.51	12.009	.6	66.47	42.45	80.45	18-294
.1	60.18	88.44	27.57	12.087	•7	66.61	42.54	80.21	18.322
•2	60.82	88.28	27.68	12.065	•8	66.75	42.68	80.28	18.850
•8	60.46	38.62	27 70	12.093	.9	66.89	42.72	80.64	18.878
.4	60.60	88.71	27.76	12:121	48 0	67.08	42.81	80.70	18.405
.2	60.74	88.80	27.83	12:149	1	67.17	42.90	80.77	18.488
-6	60.88	88.89	27.89	12:177	.2	67.81	42.99	80.88	18.461
-7	61.02	88.98	27.95	12.205	•8	67 45	48.08	80.80	13.489
·8	61:16	89.07	28.02	12.282	:4	67 59	48.17	80 96	18.517
-9	61.80		28:08	12.260	.6	67.78	48.26	81.02	18.545
44.0	61.44	89:24	28·14 28·21	12.288	∙8 • 7	67:87	48.85	81-09	18.578
·1	61.58	89·33 89·42	28.27	12:816 12:844		68:00	48.44	81.18	18:601
·2	61·72 61·86	39.51	28.84	12.372	·8 •9	68·14 68·28	48.68	81.22	18.629
·8 ·4	62.00	88.60	28.40	12.400	49.0	68:42	48.61 48.70	81.28	18.657
.5	62.14	89.69	28.46	12.428	49·0		48.79	81·84 81·41	18.685 18.718
.6	62.28	89.78	28.58	12.456	.2	68.70	48.88	81.47	18 718
٠7	62.42	89.87	28.59	12.484	-8	68.84	48.97	31.28	18.769
۰,8	62.56	39.96	28.66	12.512	٠,	68.88	44.08	81.60	13 709
٠,	62.70	40.05	28.72	12.540	-5	69.12	44.12	81.66	18.824
45.0	62.84	40.14	28.78	12.568	-6	69.26	44.24	81.78	18.852
-0 ŭ	62.98	40.28	28-85	12.596	•7	69.40	44.88	81.79	18.880
-2	68.12	40.81	28.91	12.624	-8	69.54	44.42	81.85	18.908
∙8̄	68-26	40.40	28.98	12.651	٠,	69.68	44.21	81.92	13.986
٠,	63.40	40.49	29.04	12.679	£0.0	69.82	44.60	81.98	18.964
۰۶	68.24	40.28	29.10	12.707	·1	69.96	44.68	82.05	13.992
∙6	63.68	40.67	29.17	12.785	٠2	70.10	44.77	82.11	14.020
7	63 82	40.76	29 23	12.768	٠.8	70 24	44 86	82.17	14 048
•8	68.88	40.85	29.80	12 791	•4	70.88	44.95	82-24	14.076
٠ğ	64.10	40.94	29.86	12.819	۰5	70.52	45.04	82.80	14 104
46.0	64-28	41.08	29.42	12.847	-6	70.66	45.18	82.87	14.182
•1	64 37	41.12	29.49	12.875	•7	70.80	45.22	82.48	14.160
· 2	64.51	41.21	29.55	12.903	•8	70.94	45.81	82.49	14.187
-8	64.65	41.80	29 -62	12.981	٠9	71.08	45.40	82.56	14.215
•4	64.79	41.38	29.68	12.959	51.0	71.22	45.49	82.62	14.248
·5	64 98	41.47	29.74	12.987	•1	71.86	45.58	82.69	14.271
-6	85.07	41.56	29.81	13.015	-2		45.67	82.75	14.299
•7	65.21	41.65	29.87	18 042	•8		45.76	82.81	14.827
-8	65.85	41.74	29.94	18.070	•4		45.84	82.88	14.855
-9	65.49	41 .88	80.00	13 098	•5		45.98	32.94	14 888
47· 0	65.63	41.92	30.06	18:126	-6	72.05	46.02	88.01	14.411
			-						

TABLE FOR PHOSPHATES-continued.

Mg ₂ P ₂ O ₇	CagI	? , 0,	CaP	*O*	PgOs		P _g	Mg ₂ P ₅ O ₇	OngPgOa	OaP ₂ O ₄	PgO,	P
51.7	72	19	46	11 8	8-07	14	•489	55-7	77.78	49.68	85.68	15.226
•8	72	88			81.8	14	· 4 67	-8	77 - 92	49.77	85.69	15.584
٠9	72	47	46	·29 8	8.20	14	·495	-9	78:06	49.86	85.78	15.612
53.0	72	·61	46	.38 8	8.26	14	528	56.0	78 · 20	49.95	85.82	15.640
•1	72	75			88.88		•551	•1	78.84	50.04	85.88	15.668
•2	72				8.89		•579	•2	78:48	50.12	85.95	15.696
-8	78				8.45		-606	-8	78.62	50.21	86.01	15 724
•4	78				8.52		·684	•4	78.76	50.80	86.08	15.751
•5	78				87.88		·662	٠٤	78-90	50.39	86.14	15.779
-8	78				8.65		-690	•6	79.04	50 48	86-20	16.807
•7	78				8.71		·718	•7	79·18	50·57	86 27	15.835
-8	78				8.77		746	•8	79 82	50.66	86.98	15.868
-8	78				88.84		774	.8	79 46	50.75	86.40	15 891
58.0	74				13-90		·802	57:0	79.60	50.84	86.46	15 919
•1	74				18 97		•880	•1	79.74	20.88	86.52	16.947
•2	74				14 08		-858	•2	79.87	51 02	86.59	15.975
•8	74				14.08		886	۰8	80.01	51.11	86.65	16.008
•4	74				14.16		914	·4	80.12	51.20	86.72	16.081
-5	74				14 -22		941	•5	80.29	51 28	86.78	16 059
-6		•85			14 29		969	•6	80 48	51.87	36.84	16.087
•7	74				4.85		997	.7	80 57	51.46	86.91	16 115
-8		.18			4.41		025	•8	80.71	51.55	86.97	16.142
.9		27			14.48		.058	-9	80.85	51.64	87.04	16.170
54.0	75				4 54		081	58.0	80.99	51.78	87.10	16.198
•1		.22			4.61		109	•1	81.18	51.82	87.16	16 226
-2		.69			34.67		187	•2	81 27	51.91	87.28	16.254
-8	75				4.78		165	-8	81.41	52.00	37.29	16.282
•4	75				34.80		198	•4	81.22	52.09	87 86	16.310
•5		.10			86.48		221	٠5	81.69	52.18	87.42	16.838
•6		.24			34.98		249	.6	81.88	52.27	87 48	16.866
-7		.38			34.99		.277	•7	81 .97	52 85	87.55	16 894
-8		•52			35 ·05		305	•8	82.11	52.44	87.61	16.422
.9		-66			35.12		.388	.9	82.25	52.58	37 68	16.450
55.0		-80			35.18		.860	59.0	82:39	52.62	87.74	16.478
1		-94			35.24		.388	.1	82.58	52.71	87.80	16.202
•2		-08			35 31		416	•2	82.67	52.80	87.87	16.538
-8		22			35 87		444	•8	82.81	52.89	87.98	16.261
•4		-86			35.44		472	•4	82.95	52.98	88.00	16.289
٠ <u>۶</u>		•50			92.20		.200	•5	88.09	53.07	88.06	16.617
-6	77	·6 4	49	.29	35.26	15	-528	•6	88.28	58-16	88.12	16.645
Mg.P.	0.	.0	1	.02	1 .	08	·04	.05	.08	-07	.08	.09
Mg ₂ P ₂ Ca ₃ P ₄ (b.	٠ŏ		.08		04	.08	•07	•08	·10	11	.18
Oa P. C).	٠ō		-02		08	.04	05	-05	-06	.07	-08
P.O.	•	١٠ŏ		.01		02	.08	.08	.04	.02	.05	.08
P.			08	.000	3 4	800	011	. 014	.017	.020	.022	.025
-		j		١	_ I _		I	1	Į			

TABLE FOR PHOSPHATES -- continued.

Mg ₂ P ₂ O ₇	Oa₃P₂O8	OaP ₂ O ₆	P ₂ O ₅	P ₂	Mg ₃ P ₂ O ₇	OagP ₂ O	OnP ₂ O ₆	P205	P ₂
ŏ 9∙7	88.87	53.25	88.19	16.673	61.0	85.18	54.41	89.02	17:086
۰8	88.51	58.84	88.25	16.701	62	86.28	55.30	39 66	17.815
.8	89.65	58.48	88.82	16.729	68	87.97	56-19	40.30	17.595
60.0	83 78	58.51	38.88	16.757	64	89.87	57.08	40.94	17.874
' 1	88.92	53.60	38.44	16.785	65	90.77	57-97	41.58	18.158
•2	84:06	59.69	38.21	16.818	66	92.16	58.87	42 22	18:433
.8	84.20	53.78	88:57	16.841	67	93.56	59.76	42.86	18.712
•4	84.34	53.87	38.68	16.869	68	94.98	60'65	48.50	18.991
.2	84.48	53.96	38.70	16.896	69	96.35	61.54	44.14	19:270
'в	84.62	54.05	8876	16.924	70	.97.75	62.43	44.78	19.550
•7	84.76	54.14	38.88	16.952	. 71	99.14	68.89	45.41	19.829
•8	84.90	54 28	38-89	16.980		100.00	68.87	45.81	20.000
.8	85 04	54.82	38.95	17.008	٠.				

Table for the Conversion of Nitrogen into Ammonia and Albuminoids (= $N \times 6.25$).

N.	NH ₈ .	Albumin- olds (N×6°25).	N.	NE	la.	bumin- olds ×625).	N.	NE	īa.	bumin- oids ×6·25).
0·1 2 8	0·12 ·24 ·36	0.68 1.25 1.88	1.9 2.0	2 ·4 2 ·6	18	11·88 12·50 18·13	8·7 ·8	4.7	31 5 78 5	28·18 23·75 24·88
·4 •5	·49 ·61	2·50 3·18	·2			18.75	4.0			25.00
•ĕ	.73	8.75	.4			L4·38 L5·00	·1			25·63 26·25
•7	-85	4.88	•5			5.68	.9			26.88
-8	-97	5.00	•6			6-25	•4			27.50
•9	1.09	5.63	.7			6.88	۰5			28.18
1.0	1.21	6.25	٠8	3.4	0 :	17.50	٠6			28.75
.1	1.34	6.88	-9		52	18:18	•7			29.88
•2	1 46	7.50	8.0			18:75	۰8	5.8	33 8	30.00
.8	1.68	8.18	•1			19.88	•9	5.5	5 8	89.08
•4	1.70	8.75	.2			30.00	5.0	8.0	8 8	25 11
•5	1.82	9.38	.8			89.02	•1	6.2		31 88
·6	1.94	10.00	•4			31.25	•2			32·50
•7 •8	2.06	10.63	.5			21.88	. 8			38 18
°	2:19	11.25	.6	4.8	57 2	22.50	· •4	6.5	7 8	33.75
N NH ₃ Album	inoids	·01 ·01 ·06	.02 .02 .18	·08 ·04 ·19	·04 ·05 ·25	.05 .06 .81	·06 ·07 ·38	·07 ·09 ·44	·08. ·10 ·50	·09 ·11 ·56

TABLE FOR THE CONVERSION OF NITBOGEN INTO AMMONIA AND ALBUMINOIDS—continued.

N.	NH3.	Albumin- oids (N×6-25).	N.	NH,		Ubumin- oids N×6·25).	N.	N	Н	Album olds (N×6%	ī —
5.2	6.69	84.88	9·1	11 .0	8	56.88	12.6	1.5	.82	78.7	
.8	6.81	85.00	• 2			57.50	- 7		44	79.8	
.7	6.93	35.68	.8	11.8		58.18	·á		-56	80.0	
•8	7.05	86.25	•4	11.48		58.75	- 9		.68	80.8	
-9	7:17	86.88	-5	11.58		59.88	18.0	15	·81	81.2	
6.0	7:80	87,50	.6	11.67	,	60.00	·1		.98	81.8	
•1	7.42	88.18	.7	11.78		60.68	.2		.05	82.5	
•2	7.54	88.75	•8	11.99		61.25	-8		.17	88.1	
.8	7.66	89 88	٠9	12.04		61.88	-4		·29	88 7	
•4	7.78	40.00	10.0	12.16		62:50	.2		41	84 .8	
•5	7.90	40.68	•1	12.28		63.18	-8		44	85.0	
-6	8.02	41.25	•2	12:40		63:75	•7	16		85.6	
.7	8.15	41.88	.8	12.52		64.88	-8	16		86.2	
-8	8.27	42.50	•4	12.64		65.00	.9	18		86.88	
.8	8.89	48.18	٠5	12.77		65 68	14.0	17		87.50	
7.0	8.21	48.75	.8	12.89		66 25	1	17:		88 1	
·1	8.63	44 .88	7	18:01		66.88	٠ <u>2</u>	17		88-78	
•2	8.75	45 00	•8	18.18		67:50	.8	17		89-88	
.8	8.88	45 68	.9	18:25		68:18	•4	17		90.00	
•4	8.00	46 25	11.0	18:87		68.75	٠5	17.		90.68	
٠5	9.12	46 88	•1	18.50		69.88	-6	17		91.20	
-6	9.24	47:50	-2	18:62		70-00	•7	17		91.88	
-7	9:36	48.18	•8	18.74		70.68	-8	17.		92.50	
-8	9 48	48.75	-4	18.86		71.25	٠.	18		98.18	
•9	9.61	49.38	•5	13 98		71 88	15.0	18.		93.75	
8.0	9.73	50.00	•6	14.10		72.50	•1	18		94.88	
•1	9.85	50.63	.7	14 28		78:13	.2	18		95.00	
•2	9.97	51·25	-8	14.85		73 -75	•8	18	60	95 68	
٠8	10.09	51.88	.9	14.47		74.88	•4	18		96.25	
٠4	10.21	52.20	12.0	14.29		75 00	•5	18		96.88	
٠5	10.88	53.13	•1	14.71		75 68	.8	18		97.50	
-6	10.46	58.75	.3	14.83		76.25	•7	19		98.18	
-7	10.28	54.38	-8	14.95		76.88	·š	19 -		98.75	
•8	10.70	55.00	•4	15.08		77:50	•9	19		99.88	
-9	10.82	55.68	٠5	15 20		78.18	16.0	19		100.00	
9.0	10 ·94	56-25					•			-00 00	
N		-01	.02	-08	04	-05	-06	.07	.08	, , , ,	-
ÑН,		01	.02		05	06	-07	.09			
Albun	inoids	-08	.18		25	-81	-88	.44	1.10		
		""			20	"	00	24	الد ا	ם פיייין י)

TABLE FOR KJELDAHL PROCESS: 1 GRAM OF SUBSTANCE BEING USED.

o.c. N/5 sold used.	χN.	χ NH ₃ .	c.c. N/c scid used.	5 X	N.	χ NH,	c.c. N/s scid used.	5 %	N.	χ NH _s .
1	0.28	0.84	25	7	01	8:52	49	18	78	16.69
2	0.56	0.68	26	7	.29	8.86	50	14	.01	17:04
8	0.84	1.02	27	7	.57	9.20	51	14	•29	17.88
4	1.12	1.86	28	7	-85	9.54	52	14	. 57	17.72
Ē	1.40	1.70	29	8	.18	9.88	58	14	-85	18.06
	1.68	2.04	80	8	41	10.22	54	15	·18	18.40
6 7	1.96	2.88	81	8	-69	10.56	55	15	41	18.74
8	2.24	2.78	82	8	.97	10.90	58	15	-69	19.08
9	2.52	8.07	83		.25	11-24	57	15	•97	19.42
10	2.80	8.41	84	9	.28	11.28	58	16	•25	19.76
11	8.08	8.75	85	9	•81	11.92	59	16	.28	20.10
12	8.86	4.09	86	10	.09	12.27	60	16	·81	20.44
18	8.64	4.48	87	10	.37	12.61	61	17	09	20.78
14	8.92	4.77	88	10	.65	12.95	62	17	·87	21.12
15	4.20	5.11	89	10	.68	18.29	68	17	-65	21 46
16	4.48	5.45	40	11	.21	13.68	64	17	.88	21.80
17	4.76	5.79	41	11	-49	18 97	65	18	•21	22.15
18	5.04	6.18	42	11	.77	14.81	66	18	•49	22:49
19	5.83	6.47	48	12	.05	14.65	67 .	. 18	•77	22.88
20	5.60	6.81	44	12	.33	14.99	68	19	.05	28.17
21	5.88	7:15	45	12	.61	15.88	69	19	•38	23.51
22	6.16	7.50	46	12	.89	15.67	70		·61	28.85
28	6.44	7.84	47	18	•17	16.01	71	19	-89	24.19
24	6.72	8.18	48	18	•45	16.82	72	20	·17	24.58
c.c. N/	5 acid	0.1	0.3	0.8	0.4	l 0.8	0.6	0.7	0.8	0.9
% N		-08	-08	•08	•11	14	•17	·20	.22	25
% NH,		.08	-07	·10	·14	- 17	20	-24	•27	-81

FACTORS FOR CALCULATING VARIOUS NITROGRNOUS SUBSTANCES.

	Multiply Nitrogen by	Logarithm.	Authority.
Albuminoids. Albumin Casein Proteins of cheese ,, milk ,, dried milk	6 25 6 89 6 89 6 89 6 89 6 87	0.79588 0.80550	Richmond
Gelatin	5.5	0.74086	Allen and Searle: Mitchell
Proteins in meat-extract Hide substance (from	6.88	0.80140	Allen and Searle
nitrogen in leather) .	5.62	0.74958	J. G. Parker

The comparative values of feeding stuffs * are frequently expressed in terms of "food units," which are calculated as follows:—

Multiply the sum of the percentages of oil and albuminoids by 2½ and add the percentage of "digestible carbohydrates." The result gives the percentage of food units.

Eas. Two linseed cakes contained

0'1		A	В
Oil		14:36	10.08
Albuminoids		27:42	28.50
Digestible carbohydrates Hence we have	•	32.59	34.13

B 10.06 28.50

 $38.56 \times 2\frac{1}{2} = 96.40 + 34.13 = 130.5$.

The relative values of A and B are thus

137 : 130.5, or 1.05 : 1.

It must be specially noticed that "food units" express the total intrinsic value of a feeding stuff—both as food, and as manure after it has passed through the animal.

^{*} Dyer, Fertilizers and Feeding Stuffs, p. 81.

[†] Best done by using the equivalent fraction $\frac{10}{4}$, thus $\frac{417.8}{4} = 104.45$.

OILS, FATS, AND WAXES.

Oils are neutral bodies of more or less viscous consistence, liquid at the ordinary temperature, combustible, lighter than water and insoluble in it, sometimes soluble in alcohol, and always soluble in Oils are classified as follows:—(i) fatty or fixed oils; (ii) essential or volatile oils; and (iii) mineral oils. The fatty or flast oils are simply liquid fata, and, in contradistinction to the members of the second class, decompose when heated. Essential oils have strong and characteristic odours, and are vapourizable without decomposition, usually with little or no residue. Many essential oils consist of hydrocarbons or other fluid bodies mixed with solid oxidized compounds. On cooling such, or by evaporation, the latter often crystallize out, the solid thus separating being termed the stearoptene, whilst the liquid is called the elasoptene. Mineral oils form a class somewhat by themselves, and include petroleum and oils distilled from peat, shale, etc.: they consist of mixtures of hydrocarbons.

Fats are the (neutral) triglycerides of the higher fatty acids. A great many fats may be considered as mixtures of the triglycerides of several fatty acids, as of tripalmitin, tristearin and triolein; but mixed esters of glycerol may also exist in fats, a.g., oleo-

palmito-butyrate in butter-fat.

Waxes are esters formed by the union of mono- or di-hydric alcohols with the higher fatty acids. The waxes, therefore, do not contain glycerol, and consequently, on being heated, do not emit the odour of acrolein, neither do they, on keeping, become rancid, owing to the stability of the esters of which they consist. Waxes are derived from both the animal and the vegetable kingdoms, beeswax being typical of the former, and carnaüba wax of the latter.

Japan wax consists chiefly of glycerides, and hence is classed among "fats": whilst sperm oil contains only a small amount of glycerides, but a large percentage of unsaponifiable matter, and is

classed among "waxea"

(1) The acid value is the measure of the amount of free fatty acids in a fat or wax. It gives the number of milligrams of potassium hydroxide required to neutralize the free fatty acids in one gram of a fat or wax.

(2) The suponification value, or Köttstorfer value, is the number of milligrams of potassium hydroxide required to saponify completely one gram of a fat or wax (or gives grams of KHO required for

1000 grams of a fat or wax).

(3) The seter value gives the number of milligrams of potassium hydroxide required for the saponification of the neutral esters in one gram of a fat or wax.

If a fat contains no free fatty acids, (3) is identical with (2); but in the more usual case, in which small quantities of free fatty acids are present, (3) is obtained by subtracting (1) from (2). (4) The iodine value gives the percentage of iodine absorbed by a fat or wax.

(5) The Hehner value gives the percentage of insoluble fatty acids

in a fat or wax. For most fats it lies between 95 and 97.

(6) The Reichert-Meissl value gives the number of c.c. of decinormal alkali (barium or potassium hydroxide) required to neutralize the distillate of volatile acids obtained from 5 grams of a fat or wax by the Reichert distillation process.

TABLES OF CONSTANTS OF OILS, FATS, AND WAXES.

I.—VEGETABLE OILS.

Batyro-refracto- meter (Zelist).	62-68:6 @ 80° C. 64 @ 80° C. 74-77:5 @ 80° C. 64 @ 80° C. 64 @ 80° C. 65 @ 64° C. 68:6 @ 40° C. 68:6 @ 80° C. 68:5 @ 80° C. 68:5 @ 80° C. 68:5 @ 80° C. 77-78 @ 80° C.
Olso-refractometer (Jean) @ 22° O.	+8 to +10·5 +4 to +7 +89 to +48 +16 to +88 +16 to +88 +84 to +87·6 +48 to +64 +26 +26 to +30 0 to +30 +7.6 to +11·6 +30 to +36 +13 to +11·7 +86 to +36 +36 to +36 +36 to +36 +36 to +36 +36 to +36
Iodine Value.	98-100 100-108 86-101 84-90 106-116 170-201 170-201 170-201 170-201 170-201 170-201 170-201 170-201 196-128 99-90 128-138 98-90 128-138 121-130 96-106 116-116
Seponifica- tion Value.	190-196 188-198 197-188 191-196 190-198 178-176 178-176 178-176 178-198 191-198 191-198 191-198 191-198 191-198 191-198 191-198 191-198 191-198 191-198 191-198 191-198 191-198
Hehner Value.*	88 88 88 88 88 88 88 88 88 88 88 88 88
Bolidifying Point (* 0.).	-10 to -20 -20 -20 -10 to +2 -10 to -13 -17 -17 -15 to -18 -16 to -20 -10 to -15 -17 -10 to -15 -17 -19 -10 -19 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
8p. gr. as 15:5/15:5° 0.	0-014 - 920 0-017 - 920 0-011 - 926 0-011 - 926 0-020 - 907 0-020 - 907 0-020 - 907 0-020 - 907 0-020 - 907 0-020 - 926 0-924 - 926 0-924 - 926
Name of Oil.	Almond (N-D)

Dedring. 8-Dessellering. N-Dessellering. Redessellering. Hebest as usually, Hebner value—insoluble The values recorded in this column include the unasponitable matter. Note.—In Zeiss's Butyro-refractometer a rise of temperature of 1° C. causes a lowering of 0°55 scale-division approximately.

TABLES OF CONSTANTS OF OILS, FATS, AND WAXES.

II. ≻Ампал. Опв.

Butyro-refracto- meter (Zelas).	74-78 @ 80° U.	58.5 (0) 80" ().	08@80°C	64-66 G 40° C.	• :	:
Olso-rafractometer Butyro-refracto- (Jean) @ 22° C. meter (Zelm).	+ 40 to + 48	0.0 to - 1	- 140 - 4	+ 80 to + 88	+ 20 to + 85	•
Iodine Value.	154-170	67-88	82-99	190-168	116-189	74-74-4
Sapouffica- tion Value.	179-190	108-198	194-199	189-196	187-164	194.76
Hehner Value.	9.96	18	0.90-9.76	96 88	87-97	:
Solidifying Point (C.).	0 to - 10	- 4 to + 10	- 8to - 4	- 2to - 8	:	0 to 1·6
8p. gr. @ 16·6/15·6° 0.	088880-0	0.918919	*0-914-917	0-924-920	0-916919	0-0175
	•	•	•	•	•	·
_		•	•	•		
뎔				•		
Name of Oil.	Cod liver .	Lard off	Neat's foot	Boal	Shark liver .	Sheep's foot.

III.—ARDKAL FAIS.

	Butyro-refracto- meter (Zeles).	56'5-57 @ 80°C.	49 @ 40° C.	:
	Oleo-refractometer Butyro-refracto- (Jean). meter (Zelm).	88-98 - 5 to - 13 @ 46 0. 56 6-57 @ 80 0.	- 16 to - 18 @ 45° C.	:
	Iodine Value.	88-88	40-47	3 2-93
	Hehner Sepontfloa- Value. tion Value.	196-203	194-200	108-196
	Hebner Value.	9 8 - 9 8	96-98	26
	Solidifying Point (°C.).	87 - 80	38 - 46	8 7 – 0 7
	8p. gr. @ 99/15·5· O.	198896-04	0-800901	0-878890
		•	•	•
		•	٠	
	f Fat	•		•
	Name of Fat.	-	ŧ	¶o[[
	Z		Tallo	ű E
		Lard	Beef Tallow	Mutton Tallow
•				_

* 908-5 (A 100° P/100° P.

+ 0-905--907 @ 100° E/100° F.

Tables of Constants of Olls, Fars, and Wakes.

IV.—Verestate Rats

		7	IV VEGETABLE FATS.	E FATS.				
Name of Fet.		8p. pr. @ 16 5/15 ·6 · O.	Melting Point ("C.).	Hebner Value.	Saponification Value.	Iodine Value.	Butyro-refracto- meter (Zelm).	
Oncoro butter	.	948- 796-0	80-84	:	198-196	83-48	46-48 (c) 40° C.	
Cocce-nut all	.	0-8108187*	72-87	00-7-88	252-988	8-2-0-5	38 40 5 @ 30° C.	
Јарап тах	.	966 796-0	80-4-66	9.06-08	214-228	4.5-11	:	
Nutzneg butter (maoe butter)	-	0-945998	19-97	:	164-161	38-83	61-67 @ 40° C.	
Pulm oil.		950- 1Z6-0	27-48	24.6-97	300-206	83-83	:	
Shes butter (Gelam butter) .	•	0-9176918	88-88	84.8	178-198	64-69	:	
		•	V. —WAXES.				•	
Name of Wax.		8p. gr. @ 16-6/16-6" Q.	Melting Point (°C.).	Acid Value.	Sepontfication Value.	Iodine Value.	Butyro-refracto- meter (Zelse).	
Beerwax		0.968968	88-89	18-81	90-100	7-18	48-0-45-8 @ 40° C.	
Carnatiba wax	•	0.996-1.000	88	87	70-84	18.6	66-7-69 @ 40° C.	
Ohinese wax (Insect wax) .		0.870	81-88	1.5	89 -08	174	:	
Spermacett		0-942960	63-49	0.0-1-8	122-130	I	:	
Sperm oult	.	0.876-884	:	:	184-144	81-87	46.2 @ 40° a	

A ± 100° T /100° T

Wool-fat (Lanolfn)

† Unespontfishle matter, 88-40%. Fatty adds 57-64%.

98-102

0-6-2-8

17 88

TABLE SHOWING REIGHERT-MRISSL VALUES FOR CERTAIN OILS, FATS, AND WAXES.

(c.c. N/10 alkali required by 5 grams.)

Almond oil Apricot kernel oil Arachie oil Beeswar Cacao butter Castor oil Cocos-nut oil Cod-liver oil Cotton seed oil Croton oil Lard	:	0.5 0.0 0.0–1.6 0.84–0.54 0.2–0.8 1.1 7.0–7.8 0.4–0.8 0.7–0.9	Linseed oil Maize oil Neat's foot oil Niger seed oil Nutmeg butter Olive oil Palm oil Rape oil Sesamé oil Sperm oil	,	. 0·0 · 4-4·5 0·9-1·2 0·11-0·68 · 1-4·2 · 0·6 0·8-1·9 0·0-0·8 · 1-2 · 0·6
Lard	•	0.8-0.77	Wheat oil :	•	. 0.6 , 2-8

ESSENTIAL OILS.

The following results were obtained in the laboratory of Schimmel & Co., and are considered to have been established with certainty.*

		•
	8p. gr. 15° C. /15°.	Rotation observed directly in 100 mm. tube with sodium light & 20° C.
Oil of bergamot . , , lemon , orange (sweet) , , (bitter)	0.888886 0.858861 0.848852	+ 9° to +15° not above 20° +59° to +67° not below 59° +96° to +98° not below 96° +92° to +98° not below 92° (limonene)

OILS AND FATS.

TABLE OF SAPONIFICATION VALUES.

5 Grams Saponified.

1 c.c. N/2 acid = 0.02805 gram KOH (log. $\overline{2}$.44793).

No. of c.c. N/2 acid used.	Saponification value.	No. of c.c. N/2 acid used.	Saponification value.
	+0.1 o.c. = +0.26		+0.1 c.c. = +0.28
80.0	168 80	81.0	178-91
-2	169.42	•2	175.08
•4	170.54	•4	176-15
•6	171 67	•6	177 <i>-</i> 28
•8	172.79	•8	178.40

^{*} From Landolt's Optical Rotating Power of Organic Substances.

OTIS AND FATS.

TABLE OF SAPONIFICATION VALUES-continued.

5 Grams Saponified.

1 c.c. N/2 acid=0.02805 gram KOH (log. 2.44798).

No. of c.c. N/2 acid used.	Saponification value.	No. of c.c. N/2 eald used.	Saponification value.
	+0.1 c.c = +0.26		+0.1 c.c. = +0.26
82.0	179.52	87.8	212.06
-2	180.84	88-0	213.18
	181-76	- 2	214.80
• <u>4</u> •6	182.89	-4	215.42
-8	184.01	- 6	216 55
88.0	185.18	•8	217:67
•2	186.25	89-0	218.79
٠4	187 -87	•2	219.91
-Ā	188.20	.4	221.08
∙6 •8	189.62	· 6	222.16
84·0	190.74	-8	228 28
.2	191.86	40.0	224.40
٠4	192.98	-2	225.52
₫	194-11	4	226 64
·8	195.28	•6	2 27·77
85·0	196.85	•8	228.89
2.2	197:47	41.0	280.01
٠4	198-59	· · · ·	
•€	199.72	1.0	5.61
·8	200.84	2.0	11-22
86.0	201:96	8.0	16.88
.2	208 08	4.0	22.44
٠ <u>4</u>	204-20	8-0	28.05
ء.	205.88	6.0	38·6 6
.8	208:45	7.0	89.27
87.0	207.57	8.0	44.88
.2	208.69	9.0	50:49
٠4	209.81	10.0	56.10
•6	210.94		

The Saponification Equivalent of a fat is the number of grams that would be saponified by 1 litre of a normal solution of any alkali. It is the quotient obtained by dividing 56108 by the saponification value.

SOLUBLE OR VOLATILE ACIDS IN BUTTER FAT.
5 Grams Butter Fat being taken.

0.6. N Alkali.	% Soluble or Volatile Acids.*	O.O. N Albrahl.	*/. Soluble or Volatile Acids.	N Alkahl.	*/. Solutile or Volstile Acids.
1.0	0.18	18.2	2:88	26 0	4.28
1.2	0.26	14.0	2.46	26.2	4.68
20	0.85	14.2	3.22	27-0	4.75
2.6	0.44	15.0	2.64	27.5	4.84
8.0	0.58	18.2	2.78	28.0	4-98
8.2	0.62	16.0	0.00	. 28.5	5.02
4.0	0.70	16.2	2.90	29.0	ŏ·10
4.5	0.79	17.0	2.99	29.5	5.19
5-0	0.88	17.5	8.08	80.0	5-28
5.5	0.97	18.0	8.17	80.2	5.87
6.0	1.06	18.5	8.26	81.0	5.48
6.2	1.14	19∙0	8.34	81.5	5.54
7.0	1.28	19.2	8.48	82.0	5.68
7.5	1.82	20.0	8.52	82.5	5.72
8.0	1.41	20.5	8.61	88.0	5.81
8.2	1.50	21.0	8.70	88.2	₽.80
8.0	1.58	21.5	8.78	84.0	5-98
9.2	1.67	22.0	8.87	84.2	6.07
10.0	1.76	22.5	8.96	85-0	6.16
10.2	1.85	28.0	4-05		
11.0	1.94	. 28.5	4.14	0.1	0.03
11.2	2.02	24.0	4-22	0-2	0 •04
12.0	2.11	24.5	4.81	0.8	0.02
12.5	2-20	25.0	4.40	0.4	0.07
18-0	2.29	25.5	4.49		

^{*} Calculated as Butyric Acid, $C_4H_8O_2=88$.

TABLE FOR THE DETERMINATION OF BUTTER-FAT IN MARGARINE. *

Nu	Reichert-V mber of the	Volln Mix	y ture.			Pe	rcent	ge of But	ter-Fat xture.
	4.0	•						10	
	4.8							11	
	4.6							12	
	4.9							18	
	5.2	•					•	14	
	5.5							15	
	5.9							16	
	6.5							17	
	6.2							18	
	6.8							19	
	7.1							20	

Note.—Since the above was issued margarine manufacturers have largely introduced cocoa-nut oil into their product, 40 per cent. or more being sometimes used. The volatile acids thus derived may cause an unduly high percentage of butter-fat to be recorded (see *The Analyst*, 1904, p. 208).

TABLE SHOWING THE VARIATIONS IN REIGHERT-WOLLNY NUMBER, ETC., OF BUTTER AND MARGARINE. †

		Margarine.		
Butyro - refractometer	Mean. 28 4 c.c. 87 75% 5 58%	Variations. 21 °2-35 c.c. 85 °6-89 °6% 4 °6-7 °0%	0·0-0·3 c.c. 95-96% trace	
(Zeiss) at 85° C. Iodine absorption . Sp. gr. 100° F./100° . Potash absorption .	46.0 87.4% 0.9117 22.58%	48·8-49 81·6-42·0% 0·9105-·9122 22·01-22·98%	52-56 50-60% 0:901-:908 19:1-19:6%	

THE INTERDEPENDENCE OF THE PHYSICAL AND CHEMICAL CRITERIA IN THE ANALYSIS OF BUTTER-FAT.

During 1901-2 over four hundred samples of butter were taken from farms or creameries in various parts of the United Kingdom, including the Orkneys, Shetlands and Hebrides, the samples being specially selected with the view of ascertaining by analysis the extent to which the chemical nature of butter-fat is dependent on the climatic influences to which the cows are exposed, on the nature and amount of the food supplied, and on the breed, period

^{*} From the Report of the official method for determining the percentage of butter-fat in margarine (see The Analyst, 1900, p. 810).
† By H. Droop Richmond, see Appendix XXI. to the Final Report of the Departmental Committee on Butter Regulations, 1904.

of lactation, and idiosyncrasy of the individual cow. Of the samples collected, 357 were fully analysed in the Government Laboratory, and the results, which are fully recorded in supplements to the report already referred to, form the subject of a paper with the above title * by Dr T. E. Thorpe, C.B., F.R.S. The results are summarized in the subjoined table:—

	857 samples examined.					
Butter-fat.	89 samples (10-9%)	290 samples (81.2%).	28 samples (7·9%).			
Reichert - Wolluy number Sp. gr. 100° F./100° F.	22.5 - 24.5 0.91019108	25.2 - 80.2 0.81108158	81 ·8 - 82 ·6 0 ·9125 - ·9180			
Saponification equiva- lent (Koettstorfer number) Butvro - refractometer	255 4 - 251 8 219 8 - 222 8	251:1 - 242:4 228:0 - 231:0	241 ·5 - 241 ·2 281 ·9 - 282 ·2			
(Zeiss) at 45° C Soluble acids †% . Insoluble acids % .	42-41.5 4.8-4.7 90.1-89.4	41.8 - 39.9 4.8 - 5.7 89.8 - 87.9	39·7 - 39·4 5·8 - 6·0 87·9 - 87·7			

Dr Thorpe makes the following comments:-

"It will be seen that, in a general sense, the relative density of butter-fat increases as the Reichert-Wollny number is augmented.\(\frac{1}{2}\) This would, of course, follow from the well-known fact that the glycerides of low molecular weight have a greater density than the glycerides of the higher fatty acids which occur in butter." . . . "Speaking broadly, the variations of the saponification numbers

Espeaking broadly, the variations of the saponification numbers are in inverse relation to those of the Reichert-Wollny values and the relative densities. The Zeiss numbers generally decrease in magnitude as the Reichert-Wollny values increase, but the rate of diminution is not regular." The control of th

BOARD OF AGRICULTURE RULES. Sale of Butter Regulations, 1902.

Where the proportion of water in a sample of butter exceeds 16 per cent., it shall be presumed for the purposes of the Sale of Food and Drugs Acts, 1875 to 1899, until the contrary is proved, that the butter is not genuine by reason of the excessive amount of water therein.

This regulation extends to Great Britain, and came into operation

on 15th May 1902.

Journ. Chem. Soc., 1994, pp. 248-256. † Calculated as butyric acid.

[†] These relations are deduced from curves plotted from the averages of the various analytical results.

The Departmental Committee on butter regulations, in their Final Report, dated 1st December 1903, recommend:—

(1) That the figure 24, arrived at by the Reichert-Wollny method, should be the limit below which a presumption should be raised that butter is not genuine.

(2) That the use of 10 per cent. of sesamé oil in the manufacture

of margarine be made compulsory.

(3) That steps should be taken to obtain international co-operation. Two members of the Committee, however, favoured the Reichert-Wollny number of 23 instead of 24. A third member, who did not sign the Report of the majority, stated in a separate report that he considered it would be "highly dangerous" to fix any limit at present.

CALCULATION OF THE RESULTS OF MILK ANALYSES.

According to the "Sale of Milk Regulations, 1901" (see p. 143), milk is to be presumed not to be genuine if the non-fatty solids fall below 8.5 per cent., or the milk-fat below 3 per cent.

The calculation of the amount of added water in the case of samples whose non-fatty solids fall below the above limit is made

as follows :---

Since 8.5 parts of non-fatty solids correspond to 100 parts of genuine (i.e., presumably genuine) milk, S parts of non-fatty solids correspond to $\frac{100}{8.5} \times S$ of genuine milk; and 100 parts of the watered sample will contain

$$100 - \frac{100 \text{ S}}{8.5} = \frac{100}{8.5} \text{ (8.5 - S) of added water.}$$

Since $\log \frac{100}{8.5} = 1.07058$, we have

log. of percentage of added water=1.07058+

log. (8.5 - per cent. of non-fatty solids found).

We will now consider two examples.

log. 0.9 1.95424

1.02482=log. 10.6 .. at least 10 per cent. of added water.

A mixture of 90 parts of genuine milk and 10 parts of added water should contain $\frac{90}{100} \times 3 = 2.7$ per cent. at least of fat. The sample contains 2.8 per cent., and hence contains proportionately a little more fat than that given in the Regulation.

Example II. 8.50 - 7.89 = 0.61. 1.07058 $\log 0.61 = 1.78533$

0.85591=log. 7.2 .. at least 7 per cent of added water.

A mixture of 93 parts of genuine milk and 7 parts of added water should contain 0.93 × 3 = 2.79 per cent. at least of fat. The sample contains only 2.25 per cent, and is, therefore, 100 (2.79 - 2.25) = 19 per cent. deficient in milk-fat as well.

Note.—The results given above can be expressed in a different way. Thus, in Ex. I. we have 90 parts of genuine milk mixed with 10 parts of water; or to 100 parts of milk 11·1 parts of water have been added—hence, on this view, the sample has been diluted with 11·1 per cent. of added water. Similarly, a milk that consisted of equal parts of milk and water would be said to be diluted with 100 per cent. of added water. Seeing, however, that the real issue at stake is the composition of the article supplied to the purchaser, the statement that a sample of "milk" contains, e.g., 90 per cent. of genuine milk and 10 per cent. of added water is considered decidedly preferable.

Board of Agriculture Rules. Sale of Milk Regulations, 1901.

Milk

1. Where a sample of milk (not being milk sold as skimmed, or separated, or condensed, milk) contains less than 3 per cent. of milk-fat, it shall be presumed for the purposes of the Sale of Food and Drugs Acts, 1875 to 1899, until the contrary is proved, that the milk is not genuine, by reason of the abstraction therefrom of milk-fat, or the addition thereto of water.

2. Where a sample of milk (not being milk sold as skimmed, or separated, or condensed, milk) contains less than 8.5 per cent. of milk-solids other than milk-fat, it shall be presumed for the purposes of the Sale of Food and Drugs Acts, 1875 to 1899, until the contrary is proved, that the milk is not genuine, by reason of the abstraction therefrom of milk-solids other than milk-fat, or the addition thereto of water.

Skimmed or Separated Milk.

3. Where a sample of akimmed or separated milk (not being condensed milk) contains less than 9 per cent. of milk-solids, it shall be presumed for the purposes of the Sale of Food and Drugs Acts, 1875 to 1899, until the contrary is proved, that the milk is not genuine, by reason of the abstraction therefrom of milk-solids other than milk-fat, or the addition thereto of water.

The above regulations extend to Great Britain, and came into

operation on 1st September 1901.

MILK ANALYSIS.

THE PRESENTAGE DEFICIENCY OF NON-FATTY SOLIDS IN MILK IN WHICH THESE ARE BELOW THE LEGAL OF 8.5 PER CENT.

Defi in N	clency .F.S.	% No	n-fatty lids.	% Defle	lency F.S.	% Non-fo Bolida			sficiency N.F.S.	
52	94	5	Б	85.2	39	7:0		1	7.65	
51			·6	84 1	12	•1		1	6.47	
50	59		•7	82.9	94	•2		1	5.29	
49	41		-8	31.7	76	•8		1	4.12	
48	24		•9	80.0	59 [.]	•4		1	2.94	
47	08	6 - 0		29 4	1	·5		11-76		
45.88		•1		28:2	24	•6		10.59		
44.71			-2	27.0	96	.7			9.41	
48	58	-8		25.8	38	-8			8-24	
42	85	•4		24.71		٠9			7.06	
41	18		٠5	23.	58	8.0		5.88		
40	00		•6	22:3	35	.1		4.71		
89	82		7	21 '1	18	· <u>2</u>			3.28	
87	65		-8	20.0	00	· <u>8</u>			2.85	
87.65 86.47 -			.9	18.8	32	•4		1.18		
·01	01 02		·0 4	-05	.08	-07		08	-09	
12 23		35	•47	-59	71	-82	-	94	1.06	

ple of "milk" containing 7.26% of non-fatty solids would ficiency of 15.29 - .71 = 14.58%.

% Deficiency

OWING THE DEFICIENCY IN FAT IN ORDAMED MILK. % Deficiency

Deficiency

in	Fat.	Х.М.	ilk-fat.	in F	at.	% Milk-i	at.	ln Fat.	
96	·67	1	. 1	68.	88	2.1		80.00	
98	-88		-2	60.	00	-2		26:67	
90	.00		•8	56.	67	.8		28 38	
86	·67		٠4	58	88	•4		20.00	
88	.88		∙5		00	٠.6		16.67	
80·00 ·6		·6	46	67	-6		18.88		
76 ·6 7			7	43	88	•7		10.00	
78	·88		-8		00	۰8		6 67	
70	.00		-9		86·67			8.88	
66	·67	2.0		33	38				
01	1 -02 -08 -04		.05	•06	.07	·08	.09		
38 0.67		1.00	1.33	1.67	2.00	2.88	2.67	8.00	

				1	BP:	ВС	IF	IO	G	R	ΔV	т	¥	O	7	MI	L	ζ.			
1086	9.00	9 6 6	9	84.0	ବ୍ୟ	ą.	'n	ç		æ	86.0	Ç	ģ	'n	÷	œ	8	5	ç	7	ήp
and 70 fan. (Wardf = 1000)	60.57	9	88-0		çı	÷	Å	é		Ģ	84.0	çq	ģ	, ře	ç	œ	ç	38.0	39	ąc.	þ
1088	9.	9 5	32.0	ŗ	హ	7	ů	Ģ	ţ-	ç	88-0	Ġ	ģ	ń	9	ģ	9	84.0	çv	÷	ń
1082	0.08	81.0		Ĉά	ŝo	7	'n	φ	4	P	82.0	çq	ç	ń	9	7	ç	98.0	Ġ4	ģ	7
1081	0.00	80.0	H	ça	Š.	7.	'n	۴	å	Ĝ	81.0	çq	÷	*	÷		δο	82.0	qq	çq	7
1080	0.66	3	ij	Ğd	÷	7.	æ	4	ထ	Ĝ	200	ŗ	÷	7	÷	ż	œ	Ģ	81.1	çq	ç
1029	98.0	? -	ċα	ఈ	7	ö	é	7	φ	Ģ	0.63	ŗ	ė	7	ė	÷	œ	ዮ	80.1	çq	÷
1028		· :																			
1027	1.96	- Ç4	çq	÷	7.	ń	9	7.	å	ç	27.0	۲	တ်	7	ė	ę	7	æ	28.0	ij	çq
1026	26.1	्रव १	şų	÷	.	ů	۴	7	œ	ç	26.0	ij	ð۵	హ	÷	ዏ	5 -	œ	27.0		ଟ୍ୟ
1026	24.1	çq	÷	7	ō	é	9.	.7	èο	ዮ	26.0	-	çı	ఈ	*	ņ	é	7	Ģ	26.0	7
1024	28.2	ģ	နာ	.₩	9	ę.	9.	<i>Ļ.</i>	œ	Ģ	24.0		ό́́́	హ	7	æ	မှ	ţ-	ም	26.0	ŗ
1028	22.5	ေ	ę.	*	ö	မှ	۲.	å	åo	Ģ	28 0	ŗ	ଦ୍ୟ	÷	7	÷	φ		œ	24.0	7
1022	21.2	÷	ఈ	*	ė	6	7	åo	ġ.	ዯ	220	ü	çq	စ်	7	•	စ္	۲.	œ	23	-
Fah. 1020 1021 1022 1028 1024 1025 1026 1027 1028 1039 1080 1081	20.5	÷	ė		÷	é	5	œ	ጭ	ġ	22.0		çq	ఈ	7	ۻ	မှာ	۲.	ŵ	22.0	
1020	19-2	÷	.	*	ė	ę.		œ	ም	ę,	8		ĠΊ	Ġ1	÷	*	ö	φ	ţ-	ç	21.0
Fah.	20	12	23	28	54	99	20	22	89	29	9	61	62	63	94	9	86	67	68	69	2

The observed sp. gr. is given at the top of each column, and the number in the column opposite to the temperature at which the sp. gr. was determined added to 1000 gives the sp. gr. at 60° F.
Ex. 1. Milk of which the sp. gr. is 1092 at 54° F. is 1081.8 at 60° F.
Ex. 2. Milk of which the sp. gr. is 1028 6 at 63° F. becomes 1000 + (28°4 + 0°6) = 1029 at 60° F.

PRESERVATIVES IN MILK AND CREAM.

The Local Government Board have recently issued a Draft of "The Public Health (Milk and Cream) Regulations, 1912," by which the addition of any preservative substance to milk (including separated, skimmed, condensed, and dried milk), or to cream containing less than 40 per cent. by weight of milk fat, is prohibited. The addition of any thickening substance* to cream, whether containing preservative or not, is also prohibited. These regulations will come into operation on June 1, 1912.

Oream containing 40 per cent or more by weight of milk fat may

contain no preservative substance other than

Hadrochlowide of Ominine

(i) Boric acid, borax, or a mixture of these preservative substances,—the article to be described, in such cases, as Preserved Cream, and the amount of preservative, calculated as boric acid (H₃BO₃), to be specified on the label thus: "Preserved Cream containing Boric Acid not exceeding—per cent." †

(ii) Hydrogen peroxide, in amount not exceeding 0.1 per cent. by weight—the cream being labelled "Preserved Cream Peroxidised."

These latter Regulations will not come into operation till January 1, 1913.

QUININE.

Sulphote of Owining

O ₂₀ H ₂₄ N ₂ O ₂ , HOl, 2H ₂ O. =396.712	$2[(O_{20}H_{24}N_{2}O_{2})_{2}H_{2}SO_{4}], 15H_{2}O.$ $= 1763.26$
Percentage composition.	Percentage composition.
$O_{oo}H_{od}N_{o}O_{o}$ 81 7	
C ₂₀ H ₂₄ N ₂ O ₂ . 81.7 HOl . 9.3	
H ₂ O 9.0	$H_{2}O$
100:0	100.00
100 (
Fo convert	Multiplier. Log. to be added.
$O_{20}H_{24}N_2O_2$ into $O_{20}H_{24}N_2O_2$ H	Ul. 2H ₂ O 1.2286 0.087 6462
,, ,, $2[(\mathring{O}_{20}H_{24}N_2\mathring{O}_2)_2]$	H_2SO_4], $15H_2O$ 1.860 0.188 4278

Tincture of Quinine, B.P. 1898, contains 2 grams of hydrochloride of quinine in 100 c.c.

^{*} i.e. sucrate of lime, gelatin, starch paste, etc.; but neither cane nor beet sugar shall be regarded as a preservative or as a thickening substance, † No mention is made of the maximum amount of borte acid that will be allowed,

E. W. T. JONES'S METHOD FOR THE ESTIMATION OF CHICORY IN MIXTURES OF COFFEE AND CHICORY.

The sample is dried in the water-oven, and 5 grams are weighed into a large porcelain dish. About 200 c.c. of water are added, and boiled for 15 minutes. After allowing a minute or two for settling, the liquid is strained through a piece of copper gauze placed in a funnel into a 250-cc measuring flask care being taken to disturb

(To FACE PAGE 146).

"The Public Health (Milk and Cream) Regulations, 1912," were issued on August 1, 1912. They differ from the Draft, as summarized on page 146, in the following respects:—

For "40 per cent." (of milk fat) read "35 per cent." For "June 1, 1912" read "October 1, 1912."

Paragraph (ii) should be

(ii) Hydrogen peroxide—the cream being labelled "Preserved Cream (Peroxide)."

$$x = \frac{E - 24}{46}$$

Putting x=1, we find E=24.46, and the table on page 148 is in this

way easily calculated.

Note.—By the above method E. W. T. Jones obtained the excellent results recorded in *The Analyst*, 1882, 7, 76, in the case of the Birkenhead "Coffee" samples.

LEAD IN TARTARIO AND CITRIO ACIDS AND IN CREAM OF TARTAR.

Dr MacFadden, in a Report to the Local Government Board,* recommends the adoption of a limit of 0.002 per cent. (approximately 4th grain per lb.) of lead as impurity in tartaric acid, citric acid, and cream of tartar.

^{*} Report (No. 2) on Lead and Americ in Tartario Acid, Oltric Acid and Cream of Tartar, 1907.

TABLE SHOWING THE PERCENTAGE OF CHICORY WITH COFFEE FROM THE PERCENTAGE OF AQUROUS EXTRACT.

Extract per cent.	Chicory per cent.	Extract per cent.	Chicory per cent.	Extract per cent.	cent.
24.46	1	40.10	85	55.28	68
-92	2	.56	86	.74	69
25.88	8	41.02	87	56.20	70
·84	4	-48	88	-66	71
26.80	5	.94	89	57:12	72
-76	6	42.40	40	•58	78
27:22	7	-86	41	58.04	74
- 68	8	48.82	42	.20	75
28.14	ğ	78	48	.96	76
-60	10	44.24	44	59.42	77
29.06	11	-70	45	-88	78
-52	12	45.16	46	60.84	79
-98	18	.62	47	-80	80
80-44	14	46.08	48	61.26	81
-90	15	.54	49	•72	82
81.86	16	47.00	50	62.18	88
-82	17	-46	51	·6 4	84
82.28	18	.92	52	68 10	85
-74	19	48.88	- 58	•56	86
88.20	20	.84	54	64.02	87
.66	21	49 -80	55	· 4 8	. 88
84.12	22	•76	56	.94	89
-58	28	50.22	57	65-40	90
85.04	24	-68	58	·8 6	91
-50	25	51 14	59	66:32	92
-96	26	-60	60	·78	93
86.42	27	52.06	61	67 · 24	94
-88	28	.52	62	•70	95
87.84	29	.88	63	68:16	96
.80	80	58.44	64	.62	97
88 26	81	-80	65	69.08	98
•72	82	54.36	66	.54	99
89 18	88	·8 2	67	70.00	100
•64	84				

FOOD PRESERVATIVES.

The Departmental Committee on Food Preservatives appointed in 1899 in their Report,* issued in 1901, make the following recommendations:—

(a) That the use of formaldehyde or formalin, or preparations thereof, in food or drinks, be absolutely prohibited, and that salicylic acid be not used in a greater proportion than I grain per pint in liquid food and I grain per pound in solid food. Its presence in all cases to be declared.

(b) That the use of any preservative or colouring matter whatever in milk offered for sale in the United Kingdom be constituted an offence under the Sale of Food and Drugs Acts.

(c) That the only preservative which it shall be lawful to use in cream be boric acid, or mixtures of boric acid and borax, and in amount not exceeding 0.25 per cent. expressed as boric acid. The amount of such preservative to be notified by a label upon the vessel.

(d) That the only preservative permitted to be used in butter and margarine be boric acid, or mixtures of boric acid and borax, to be used in proportions not exceeding 0.5 per cent.

expressed as boric acid.

(e) That in the case of all dietetic preparations intended for the use of invalids or infants, chemical preservatives of all kinds be prohibited.

(f) That the use of copper salts in the so-called greening of pre-

served foods be prohibited.

(g) That means be provided either by the establishment of a separate court of reference, or by the imposition of more direct obligation on the Local Government Board, to exercise supervision over the use of preservatives and colouring matters in foods, and to prepare schedules of such as may be considered inimical to the public health.

With regard to the recommendation marked (f), Dr Tunnicliffe, a member of the Committee, points out the value of appearance in rendering foods appetising, and recommends that not more than the equivalent of half a grain of metallic copper per pound should be allowed to be added, the actual amount used being declared.

ABSENIO IN FOOD.

In the Final Report of the Royal Commission appointed to inquire into Arsenical Poisoning, issued in November 1903, the Commissioners state (Part VIII., p. 50), that "In our view it would be entirely proper that penalties should be imposed under the Sale of Food and Drugs Acts upon any vendor of beer or any other liquid food, or of any liquid entering into the composition

* Report of Departmental Committee on Preservatives and Colouring Matters in Food, 1901, pp. xxx and xxxi.
† See also Circular issued by the Local Government Board, July 11, 1906 (reprinted in The Analyst, 1906, 31, 378).

of food, if that liquid is shown by an adequate test to contain $\frac{1}{10}$ th of a grain or more of arsenic in the gallon; and, with regard to solid food—no matter whether it is habitually consumed in large or in small quantities, or whether it is taken by itself (like golden syrup) or mixed with water or other substances (like chicory or 'carnos')—if the substance is shown by an adequate test to contain $\frac{1}{100}$ th grain of arsenic or more in the pound."

Note.—In the above "arsenic" is taken to mean arsenious oxide

 (Aa_iO_6) .

DATA IN HEAT AND THERMO-CHEMISTRY.

The C.G.S. unit of heat is the calorie, which is the quantity of heat required to raise 1 gram of water through 1° C.

A large or major calorie is the quantity of heat required to raise

1 kilogram of water through 1° C.

A British Thermal Unit (B.T.U.) is the quantity of heat required to raise 1 lb. of water through 1° Fah.

(large) calorie=3.968 B.T.U. (log. 0.59857).
 B.T.U.=0.252 (large) calories (log. I.40143).

The values of the mechanical equivalent of heat, that is, the number of units of mechanical work equivalent to one unit of heat, or Joule's equivalent (designated by the letter J), are usually taken to be as follows:—

777 foot-pounds are equivalent to 1 B.T.U. (lb. deg. Fah.).
1399 ,, ,, ,, 1 lb. deg. C.
426·3 kilogrammetres ,, ,, 1 kilogram-deg. C. or kilocalorie.
4180 joules* ,, ,, 1 gram-deg. C. or calorie.

The water for the heat units is supposed to be taken at 20° C. (68° F.) and the degree of temperature is supposed to be measured by the hydrogen thermometer.

Heat evolved in calories (water-gram-degrees) on burning 1

gram of :- $\mathbf{H}\mathbf{y}\mathbf{d}\mathbf{r}\mathbf{o}\mathbf{g}\mathbf{e}\mathbf{n}$ to water at 0° C. 34000 Carbon to carbon dioxide 8080 monoxide 2400 Conl 8300-6400 Anthracite 8000 Coke 7100-6860 Wood (with 20 per cent. water) 2750 (air-dried) 2900 (dried at 120° C.) . 3600 Peat (air-dried) 3000-3500 Lionite 3500-5000 The latent heat of water is 80 (gram-deg. C.) or 144 in B.T.U.

The latent heat of steam is 537 (gram-deg. C.) or 967 in B.T.U.

* The joule is the practical unit of work in the 0.G.S. system. It equals 10 million(or 107) absolute units of work (ergs).

THE DETERMINATION OF THE CALORIFIC POWER OF FURL BY THOMPSON'S CALORIMETER.

Although recent comparative experiments with different types of calorimeter * have conclusively proved the superiority of Mahler's Bomb Calorimeter above all other forms, still, owing to the expense of the instrument, it seems unlikely to come into general use at present. And since Thompson's Calorimeter is so largely used. the following details of manipulation are given, so that the best results the instrument is capable of giving may be obtained.

In the first place it should be noted that for coals of an anthracitic character, yielding more than 87 per cent of coke, or for coke itself, Thompson's Calorimeter is not suited as an indicator of their comparative calorific power, for the simple reason that some of the carbon is so graphitic in its nature that it will not burn perfectly when mixed with nitrate and chlorate of potash; but with bituminous and semi-bituminous coals the apparatus yields very satisfactory results.

Preparation of the sample of coal.—Sample the coal until an average portion passes through an 8-mesh sieve. Take about 20 grams of this and run through a 68-mesh sieve, taking care that the whole sample selected is thus treated. Then dry at 100° C.,

and use the dried coal for making the determination.

Preparation of the oxidizing mixture.—Potassium nitrate and chlorate are used in the proportion of 1 part of nitrate to 3 of These are first thoroughly dried, ground separately, and sifted through a 30-mesh sieve—a finer powder being prejudicial. The powders are then mixed in the proportions stated, and kept in a well-stoppered bottle.

Preparation of the wick.—Oxford cotton is soaked in a moderately strong solution of potassium nitrate, and dried. When dry, it should burn a little too quickly. It should then be rubbed between two pieces of cloth until it burns just freely enough. Four cotton strands are twisted together, cut into a inch lengths,

thoroughly dried, and put into a bottle.

The process. Before weighing out the coal, etc., read the temperature of the room, and regulate the temperature of the water used by the following table.

Temperature of room. 80° F. (26.7° C.) 72° (22.2° C.) 67° (19.4° C.) 60° (15.6° C.) 55° (12.8° U.) 50° (10° C.) 42° (5.6° C.)	Water ahould be at. 70° F. (21·1° C.) 64° (17·8° C.) 60° (16·6° C.) 54° (12·2° C.) 50° (10° C.) 48° (7·8° C.) 40° (4·4° C.)
--	---

See paper by Brame and Cowan, J.S.C.I., 1908, p. 1230.
 † The details given are condensed from the valuable paper by J. W. Thomas in the Chemical News, 25th March 1881, p. 135, with additions by the author.

accurate to measure out 2 litres, less 116 c.c., since 29,010 grains of water occupy 1884 c.c. A tall narrow cylinder with a single mark serves to measure the 116 c.c. to be withdrawn from the second litre before pouring in. Put a thermometer into the water and leave it there while weighing out the coal. 30 grains of the dried coal are intimately mixed with 330 grains of the oxidizing mixture; best with a spatula rather than in a mortar. Introduce the mixture into the cylinder (3½"×4"), pressing down in small portions at a time with a test-tube; do not tap. Put in the fuse, opening out its lower end in the mixture. Then read the thermometer, light the fuse and place the cylinder, with its stand and cover, quickly in the jar. The combustion should occupy between one and two minutes. At its conclusion the stopcock is opened and the whole moved up and down in the liquid with the thermometer, the latter being read three or four times, and its maximum reading noted. An example will show the mode of calculating results.

Temperature o	f room water	after combustion before combustion	:	•	:	60° F. 67·1 54·4
				Incre + 10*		12·7 1·27
Evaporative p	ower of	the coal, i.s. numb	er	of lb.	of	

 $13.97 \times 537 = 7502$ calories, i.e. grams of water heated 1° C. by 1

13.97

water at 212° F. evaporated by 1 lb. of the dried coal

gram of the coal. 13.97 × 967 = 13509 British Thermal Units, or number of 1b. of

water heated through 1° Fah, by 1 lb. of the coal.

The evaporative power of the coal in its original state can be calculated as follows:-

Suppose the above coal to have 11.5 per cent. of moisture, then 1 lb. contains 885 lb. of dry coal,

and 115 lb. of moisture, $.885 \times 13.97 = 12.36$.

The quantity of heat required to raise 0.115 lb. of water from 60° to 212° F., and to convert the boiling water into steam, is

 $(152+967) \times 115$ pound-degree Fah. units.

which has an evaporative power of

$$\frac{1119 \times 115}{967} = 0.13 \text{ lb.}$$

^{*} An addition of 10 per cent. is made to allow for the heat absorbed by the copper cylinder and stand and for carbon not completely burned. It has been found to be too small in most cases, and an increase to 15 per cent, has been suggested by Scheurer-Kestner.

Hence the evaporative power of the original coal is 12:36 - 13 = 12·23 lb.

Since $\frac{1119}{967}$ = 1.16, the amount to be finally deducted is obtained by simply multiplying this number by the amount of water contained in 1 lb. of coal.

When the ultimate analysis of a dry coal is known, the calorific value (in calories) can be approximately calculated by the following

formula :--

$$Q = \frac{1}{100} \left\{ 8140 \text{ C} + 34500 \left(\text{H} - \frac{(\text{O} + \text{N}) - 1}{8} \right) + 2220 \text{ S} \right\}$$

=81.4 C+43.125 \{ 8 \text{ H} - (\text{O} + \text{N}) + 1 \} + 22.2 \text{ S}.

Thus, the analysis of a dry coal gave

Hence
$$Q = 81.4 \times 90.09 + 43.125 \{ 8 \times 3.85 - 3.61 + 1 \} + 22.2 \times .77$$

$$=7333+1216+17$$

=8566

Mahler's calorimeter gave 8629 calories.

ELECTRICAL UNITS.

The ohm is the resistance offered to an unvarying electric current by a column of mercury at 0° C., 14.4521 grams in mass, of a constant cross-sectional area, and of a length of 106'3 cm.

The ampere is represented by the unvarying electric current which, when passed through a 10 per cent aqueous solution of silver nitrate, deposits silver at the rate of 0 001118 gram per

second.

The volt is the electrical pressure that, if steadily applied to a conductor whose resistance is one ohm, will produce a current of one ampere, and which is represented by 0.6974 $\left(\frac{1000}{1434}\right)$ of the electrical pressure at 15° C. between the poles of a standard Clark's Cell.

TABLE OF ELECTRO-CHEMICAL EQUIVALENTS.

			(In grams per	coulomb.	*)			
Hydrogen			0.000010884	Iron (ous)				0.0002902
Potassium			0.0004058	, (io)				0.0001985
Sodium	-		0.0002388	Nickel				0.0008048
Gold .	:		0.0006791	Zine				0 -000887
Silver .	•	•	0.001118	Lead				0.0010716
	•	•	0.0008281		-	•		
Copper (ic)	•	•	0.0006562	Oxygen				0.00008286
,, (оця)	•	•	0.0010874	Ohlorine		•	•	0.0003678
Mercury (ic)	•	•		Iodine	•	•	•	0.001814
,, (опв).		0.0020748		•	•	•	0.0008282
Tin (ic)			0.0003028	Bromine	•		•	
(ous)			0.0006116	Nitrogen	<i>:</i> .		_: .	0.0000485
The coulom	ի is են	0 Q	nantity of electr	city convey	M DAS	ourre	nt (n one ampere
1 /	- 1 - A	110	ON STITISTS SACC	mar.				

in one second (also called an ampere second).

The values given on p. 153 are obtained by multiplying 000010384 (the electro-chemical equivalent of hydrogen) by the fraction atomic weight of each element.

valency

The prefix meg-means a million times the unit to which it is prefixed.

The prefix micro- means a millionth part of the unit to which it is prefixed. Thus a megohm is a million ohms, and 1 microvolt is a millionth

of a volt. The watt is the power of a current of 1 ampere flowing under a

pressure of 1 volt. It equals 715 of one horse-power. 1 kilowatt=1000 watts=44,240 ft.-lb. per min. =1.34 horse-power.

1 electrical horse-power=746 watts=33,000 ft.-lb. per min. 1 B.T.U. =3,600,000 watt-seconds, or 3.6×10^8 watt-seconds.

1 kilowatt-hour=1 34 horse-power hours.

1 French or metric horse-power=75 kilogrammetres per sec.

=32,549 ft.-lb. per min.

=736 watts. =0.9863 British horse-power.

1 British horse-power = 1 01385 French horse-power (force de cheval).

Board of Trade Unit (B.T.U.). For commercial purposes electrical energy is measured in units of 1000 watt-hours each,

known as Board of Trade units.

1 B.T.U. = $\frac{1000}{746}$ = $1\frac{1}{3}$ horse power-hours.

RULES FOR THE CONVERSION OF THERMOMETRIC DEGREES FROM ONE SCALE INTO ANOTHER.

First subtract 82, then multiply by 5 and divide by 9. ° F. into ° C. First subtract 82, then multiply by 4 and divide by 9. ° F. into ° R. Multiply by 9 and divide by 5, then add 32.

Rules.

° C. into ° F. ° C. into ° R. Multiply by 4 and divide by 5.

Multiply by 9 and divide by 4, then add 82. ° R. into ° F. Multiply by 5 and divide by 4. ° R. into ° C.

Note.—Perhaps the simplest rule for the conversion of °C. into °F. is the following:—

Double the number of degrees, subtract one-tenth, then add 32.

 \mathbf{T} hus

To Convert

90° C. $90 \times 2 = 180 - 18 = 162 + 32 = 194$ ° F.

Conversion of the different Thermometric Scales. Table I.

456 188 4 236 6 408 167 1 208 9 360 145 8 182 2 455 188 235 407 166 7 208 8 859 145 8 181 7 454 187 6 234 4 406 166 2 207 8 858 144 9 181 1	FAHR.	Reaum.	Cent.	FAHB.	Reaum.	Cent.	FAHR.	Reaum.	Cent.
498 207·1 288·9 460 185·8 232·2 402 184·4 205·6 497 206·7 288·8 449 185·8 281·7 401 164 205 496 206·8 267·8 448 184·9 281·1 400 163·6 204·4 495 205·8 266·7 447 184·4 280·6 899 163·1 208·9 494 205·8 266·7 446 184 280·6 899 163·1 208·9 494 205·8 266·7 446 184 280·8 899 163·1 208·9 493 204·9 256·1 445 188·6 229·4 897 162·2 203·8 492 204·4 255·6 444 183·1 228·9 896 161·8 202·2 491 204·2 255·6 444 183·1 228·9 896 161·8 201·7 490 208·6 254·4 442 182·2 227·8 894 160·9 201·1 489 208·1 256·9 441 181·8 227·2 898 160·4 200·6 488 202·7 256·8 449 180·9 226·1 891 159·6 199·4 486 201·8 252·2 488 180·9 226·1 891 159·6 199·4 486 201·8 252·2 488 180·4 225·6 890 159·1 198·9 486 201·8 252·2 488 180·9 226·1 891 159·6 199·4 486 201·8 252·2 488 180·4 225·6 890 159·1 198·9 486 201·8 250·2 488 180·4 225·6 890 159·1 198·9 488 200·9 251·1 486 179·6 224·4 888 158·2 197·8 488 200·9 251·1 486 179·6 224·4 888 158·2 197·8 488 200·4 250·6 436·179·1 228·9 887 157·8 197·2 488 200·9 250·4 481 178·7 228·3 886 157·8 196·7 481 199·6 248·4 433 178·2 222·8 885 150·9 196·1 480 199·1 248·9 432 177·8 222·2 884 156·6 196·7 477 197·8 247·2 429 176·4 220·6 881 155·1 198·6 477 198·7 248·8 431 177·3 221·7 888 156·1 198·6 477 197·8 247·2 429 176·4 220·6 881 155·1 198·9 476 197·8 246·7 428 176·6 210·4 379 156·2 190·6 477 196·4 245·6 426 175·1 218·9 378 155·1 198·9 477 196·4 245·6 426 175·1 218·9 378 155·1 198·9 477 195·1 248·9 429 176·4 220·6 881 155·1 198·9 477 195·1 248·9 429 176·4 220·6 881 156·1 198·9 477 195·1 248·9 429 176·4 210·6 881 156·1 198·9 477 195·1 248·9 429 176·4 220·6 881 156·1 198·9 477 195·1 248·9 429 176·4 210·6 881 156·1 198·9 477 196·1 248·9 429 176·4 220·6 881 156·1 198·9 477 196·1 248·9 429 176·4 220·6 881 156·1 198·9 140·1 418 171·6 214·4 870 156·2 190·0 477 248·8 422 178·8 217·7 878 156·2 190·1 477 198·8 241·7 199·1 128·9 140·1 180·9 140·1 180·9 140·1 18									
497 208 7 258 8 449 185 8 281 7 401 184 206 496 208 2 257 8 448 184 9 281 1 400 163 6 204 4 495 205 8 257 2 447 184 4 280 6 899 163 1 208 9 494 205 8 256 7 446 184 280 898 162 7 203 8 493 204 9 256 1 445 188 6 229 4 897 162 2 202 8 492 204 4 255 6 444 183 1 228 9 896 161 8 201 7 490 208 6 254 4 442 182 2 227 8 895 161 8 201 7 490 208 6 254 4 442 182 2 227 8 895 161 8 201 7 490 208 6 254 4 442 182 2 227 8 894 160 9 201 1 489 208 1 255 9 441 181 8 226 7 899 160 200 1 487 202 2 252 8 439 180 9 226 1 891 159 6 120 200 487 202 2 252 8 439 180 9 226 1 891 159 6 120 200 486 201 8 252 2 488 180 4 225 6 890 159 1 193 9 485 201 3 251 7 437 180 225 889 158 7 188 8 484 200 9 251 1 436 179 6 224 4 888 158 2 197 8 488 200 4 250 6 435 179 1 228 9 887 157 8 197 2 482 200 250 484 178 7 228 8 886 158 2 197 8 483 200 4 250 6 435 179 1 228 9 887 157 8 197 2 484 200 9 250 484 178 7 228 8 886 158 7 198 8 484 200 9 250 484 178 7 228 8 886 158 7 198 8 485 200 250 484 178 7 228 9 887 157 8 197 2 482 200 250 484 178 7 228 8 86 157 8 198 198 1 480 199 1 248 9 432 177 8 222 8 885 150 9 188 1 480 199 1 248 9 432 177 8 222 8 885 150 9 188 1 480 199 1 248 9 432 177 8 222 8 885 150 9 188 1 480 199 1 248 9 432 177 8 222 8 885 150 9 188 1 477 197 8 247 8 430 176 9 221 7 388 155 199 6 14 4 477 197 8 247 8 420 176 4 220 6 381 155 1 198 9 475 196 9 246 1 427 175 6 210 4 379 154 2 199 6 479 198 7 248 8 421 177 8 221 7 388 155 199 4 471 195 1 248 9 423 178 8 210 7 37 153 8 191 7 472 195 6 244 4 42 174 2 217 8 87 153 8 191 7 473 196 242 42 8 421 172 9 216 1 378 153 8 191 7 474 196 2 242 8 421 172 9 216 1 378 153 8 191 7 475 196 9 246 1 427 175 6 210 4 379 154 2 190 6 467 193 8 241 7 419 172 215 8 71 150 7 188 8 467 193 8 241 7 419 172 215 8 71 150 7 188 8 468 191 6 239 4 11 188 170 2 212 8 867 148 9 186 7 468 191 6 239 4 11 188 170 2 212 8 867 148 9 186 7 468 191 6 289 4 11 188 170 2 212 8 867 148 9 186 7 468 191 6 289 4 11 188 9 211 7 865 148 186 7 469 184 2 240 6 17 77 1 213 8 368 149 8 186 7 460 192 2 240 6 17 70 1 288 8 111 1 364 147 1 188 9 467									
496 206 2 257 8 448 184 9 281 1 9 400 168 6 204 4 495 205 8 257 2 447 184 4 280 6 899 163 1 208 9 494 205 8 256 7 446 184 280 6 899 163 1 208 9 492 204 4 255 6 445 188 6 229 4 897 162 2 202 8 492 204 4 255 6 448 182 7 228 3 896 161 8 201 7 490 208 6 254 4 442 182 2 227 8 894 160 9 201 1 489 208 1 258 9 441 181 8 227 2 898 160 4 200 6 488 202 7 253 8 440 181 8 226 7 892 160 200 6 487 202 2 252 8 439 180 9 226 1 891 159 6 199 4 486 201 8 252 2 488 180 4 225 6 890 159 1 198 9 486 201 8 251 7 487 180 225 8 899 158 7 198 8 484 200 9 251 1 488 179 6 224 4 888 168 2 197 8 488 200 4 250 6 485 179 1 228 9 88 158 2 197 8 488 200 2 250 6 484 178 7 228 3 886 157 3 198 7 8 484 200 9 251 1 488 179 6 224 4 888 168 2 197 8 488 200 2 420 4 483 178 2 222 8 88 156 2 197 8 480 199 1 248 9 432 177 8 222 2 884 156 6 195 6 495 179 1 228 9 856 150 9 196 1 470 198 7 248 9 432 177 8 222 2 884 156 6 195 6 495 177 197 8 247 2 429 176 4 220 6 81 155 1 198 9 476 197 8 246 7 428 176 220 6 81 155 1 198 9 476 197 8 246 7 428 176 220 6 81 155 1 198 9 147 197 8 247 2 429 176 4 220 6 81 155 1 198 9 147 195 6 244 4 42 177 2 20 8 81 155 1 198 9 147 196 4 245 6 426 175 1 218 9 878 153 8 192 7 177 197 8 247 2 429 176 4 220 6 81 155 1 198 9 147 195 6 244 4 42 174 2 20 6 81 155 1 198 9 147 195 6 244 4 42 174 2 20 6 81 155 1 198 9 147 195 6 244 4 424 174 2 20 6 81 155 1 198 9 147 195 6 244 4 424 174 2 20 6 81 155 1 198 9 147 195 6 244 4 424 174 2 20 6 81 155 1 198 9 147 195 6 244 4 424 174 2 20 6 81 155 1 198 9 147 195 6 244 4 424 174 2 20 6 81 155 1 198 9 147 195 6 244 4 424 174 2 20 6 81 155 1 198 9 14 14 18 171 6 214 4 870 156 2 190 6 147 171 195 6 244 4 424 174 2 217 8 878 158 8 191 7 188 9 148 1 190 6 147 2 242 8 421 172 9 16 6 1 378 156 12 190 6 147 171 195 6 244 4 424 174 2 217 8 878 158 8 191 7 188 9 148 1 190 6 149 2 240 8 141 188 1 190 6 148 4 187 8 188 1 188 9 188 1 189 8 242 2 180 180 8 241 7 11 188 9 180 1 188 9 141 1 188 9 186 1 189 8 241 7 11 188 9 180 1 180 8 180 8 241 7 11 188 9 180 1 180 8 180 8 287 2 111 1 188 9 186 1 180 8 180 8 287									
495 206 8 257 2 447 184 4 280 899 163 1 208 9 494 205 8 256 7 446 184 280 898 162 7 203 8 498 204 9 256 1 445 188 6 229 4 897 162 2 202 8 492 204 4 255 6 444 188 1 228 9 896 161 8 202 2 491 204 255 448 182 7 228 8 896 161 8 201 7 490 208 6 254 4 442 182 2 22 7 8 894 160 9 201 1 489 208 1 253 9 441 181 8 227 2 898 160 4 200 6 488 202 7 253 8 440 181 8 226 7 892 160 200 487 202 2 252 8 439 180 9 226 1 891 159 6 199 4 486 201 8 252 2 488 180 4 225 6 890 159 1 198 9 486 201 8 251 7 487 180 225 8 88 158 7 198 3 484 200 9 251 1 496 170 6 224 4 888 158 2 197 8 488 200 4 250 6 485 179 1 228 9 887 157 8 197 2 482 200 250 484 178 7 228 8 86 157 8 196 7 481 199 6 249 4 483 178 2 222 8 88 156 6 157 8 196 7 481 199 6 249 4 483 178 2 222 8 88 156 150 9 196 1 480 199 1 248 9 432 177 8 222 2 884 156 4 195 6 479 198 7 248 8 431 177 8 221 7 88 156 195 1 476 197 8 247 2 429 176 4 220 6 881 155 1 198 9 477 197 8 247 2 429 176 2 221 1 822 155 6 194 4 477 197 8 246 7 428 176 220 6 881 155 1 198 9 478 196 246 1 427 175 6 219 4 879 156 2 199 164 2 479 196 246 1 427 175 6 219 4 879 156 2 199 154 2 471 196 2 246 1 427 176 6 219 4 879 156 2 199 191 1 471 195 1 248 9 432 177 8 221 7 88 156 194 4 477 197 8 246 7 428 176 220 8 81 155 1 198 9 475 196 9 246 1 427 175 6 219 4 879 156 2 199 191 1 471 195 1 248 9 422 178 8 216 7 874 162 190 6 470 194 7 248 8 421 172 9 216 1 878 151 6 189 4 477 196 2 240 4 16 170 7 218 8 86 149 3 186 7 466 192 2 241 1 418 171 6 214 4 870 150 7 188 8 467 193 8 241 7 419 172 215 871 150 7 188 8 468 191 6 239 4 11 188 9 211 7 86 148 186 7 468 191 6 239 4 11 188 9 211 7 86 148 9 186 7 469 194 2 242 8 421 172 9 216 1 878 151 6 189 9 460 190 2 287 8 412 168 9 211 7 865 148 186 7 469 188 8 237 2 411 168 4 210 8 663 147 1 188 9 468 189 8 286 7 410 168 210 862 211 7 865 148 186 7 469 189 8 236 6 408 167 7 208 9 360 145 8 182 2 455 188 9 38 66 1 408 167 7 208 9 360 145 8 182 2 456 188 4 235 6 408 167 7 208 9 360 145 8 181 186 6 456 188 4 236 6 408 167 7 208 9 360 145 8 181 186 6 45	497	206.7							
494 206·8 256·7 446 184 280 898 162·7 208·8 498 204·9 256·1 445 188·6 229·4 897 162·2 202·8 492 204·4 255·6 444 188·1 228·9 896 161·8 202·2 491 204 255·6 444 188·1 228·9 896 161·8 201·7 490 208·6 254·4 442 182·2 227·8 894 160·9 201·1 489 208·1 253·9 441 181·8 227·2 898 160·4 200·6 488 202·7 253·8 440 181·8 227·2 898 160·4 200·6 487 202·2 252·8 439 180·9 226·1 891 159·6 199·4 486 201·8 252·2 488 180·4 225·6 890 159·1 198·9 486 201·8 252·2 488 180·4 225·6 890 159·1 198·9 485 201·8 251·7 487 180 225 889 158·7 198·8 484 200·9 251·1 486 179·6 224·4 888 158·2 197·8 488 200·4 250·6 485 179·1 228·9 887 157·8 197·2 482 200 250 484 178·7 228·9 887 157·8 197·2 481 199·6 249·4 483 178·2 222·8 886 150·9 198·1 480 199·1 248·9 432 177·8 222·2 884 156·4 195·6 479 198·7 248·9 432 177·8 222·2 884 156·4 195·6 197·8 247·2 429 176·4 220·6 881 155·1 198·9 476 197·8 247·2 429 176·4 220·6 881 155·1 198·9 476 197·8 246·7 428 176 220 880 154·7 198·8 476 197·8 246·7 428 176·2 221·1 882 155·6 194·4 477 197·8 246·7 428 176 220 880 154·7 198·9 446 195·6 426·7 428 176·2 220 880 154·7 198·9 446 197·8 246·7 428 176·2 220·6 881 155·1 198·9 474 196·4 245·6 426 175·1 218·9 378 153·8 191·7 472 195·6 244·4 424 174·2 217·8 376 152·9 191·1 471 195·1 248·9 423 178·8 217·2 375 152·4 190·6 424·4 424 174·2 217·8 376 152·9 191·1 471 195·1 248·9 423 178·8 217·2 375 162·4 190·6 426·1 192·4 242·8 421 172·9 216·1 378 151·6 189·4 466 192·9 241·1 418 171·6 214·4 370 156·7 188·9 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 192·9 241·1 418 171·6 214·4 370 160·2 187·8 466 188·4 236·6 408 167·1 208·9 360 146·8 188·4 466 188·4 236·6 40		206 2				AUL I			
493 204-9 256·1 445 188·6 229·4 397 162·2 202·8 492 204·4 255·6 444 188·1 228·9 396 161·8 202·2 491 204 255 448 182·7 228·8 396 161·8 202·2 491 204 255 448 182·7 228·8 396 161·8 201·7 490 208·6 254·4 442 182·2 227·8 394 160·9 201·1 489 208·1 253·9 441 181·8 227·2 398 160·4 200·6 488 202·7 253·8 440 181·8 226·7 392 160 200 487 202·2 252·8 439 180·9 226·1 391 159·6 199·4 486 201·8 252·2 488 180·4 225·6 390 159·1 198·9 485 201·8 251·7 487 180 225·8 389 158·7 198·3 484 200·9 251·1 486 179·6 224·4 388 158·2 197·8 488 200·4 250·6 435·179·1 228·9 387 157·8 197·2 482 200 250 484 178·7 228·8 386 157·8 196·7 481 199·6 249·4 483 178·2 222·8 385 150·9 196·1 480 199·1 248·9 432 177·8 222·2 384 156·4 195·6 479 198·7 248·3 431 177·8 221·7 388 156·1 195·6 194·4 477 197·8 247·2 429 176·4 220·6 381 155·1 188·9 475 196·9 246·1 427 175·6 210·4 379 156·2 194·4 424 176·2 221·1 382 155·6 194·4 477 197·8 246·7 428 176 220·6 381 155·1 188·9 475 196·9 246·1 427 175·6 210·4 379 156·2 194·4 424 176·2 217·3 388 156·1 198·3 475 196·9 246·1 427 175·6 210·4 379 156·2 190·6 426·1 427 138·3 426·7 138·3 426·7 138·3 426·7 138·3 426·7 138·3 426·7 138·3		205.8				280.6			
492 204 4 255 6 444 183·1 228·9 896 161·8 202·2 491 204 255 448 182·7 228·8 895 161·8 201·7 490 208·6 254·4 442 182·2 227·8 894 160·9 201·1 489 208·1 253·9 441 181·8 227·2 898 160·4 200·6 488 202·7 253·8 440 181·8 226·7 892 160 200 487 202·2 252·8 439 180·9 226·1 891 159·6 199·4 486 201·8 251·7 437 180 225 889 168·7 198·8 484 200·9 251·1 486 170·6 224·4 888 156·2 197·8 488 200·4 250·6 435 179·1 228·9 887 157·8 197·2 482 200 250 484 178·7 228·8 886 157·3 196·7 481 199·6 249·4 483 178·2 222·8 885 156·9 196·1 480 199·1 248·9 432 177·8 222·2 884 156·4 195·6 479 198·7 248·8 481 177·8 221·7 888 156·4 195·6 479 198·7 248·8 481 176·9 221·1 882 156·6 194·4 477 197·8 247·2 429 176·4 220·6 381 155·1 198·9 476 197·8 246·1 427 176·6 210·4 379 154·2 192·8 477 196·4 245·6 426 176·1 218·9 378 153·8 192·2 478 196·2 244·4 424 174·2 217·8 378 152·2 190·6 479 198·7 248·8 421 172·9 216·1 378 152·2 190·6 479 198·7 248·8 422 178·8 210·6 381 155·1 198·9 476 197·8 246·1 427 176·6 210·4 379 154·2 192·8 477 196·4 245·6 426 176·1 218·9 378 153·8 192·2 478 196·2 244·4 424 174·2 217·8 378 152·9 191·1 471 196·1 248·9 423 178·8 217·7 3876 152·9 191·1 471 196·1 248·9 423 178·8 216·7 374 152 190·6 469 194·2 242·8 421 172·9 216·1 378 151·6 188·4 466 192·9 241·1 418 171·6 214·4 370 150·2 187·8 466 192·4 240·6 417 171·1 218·9 369 149·8 187·2 468 191·6 289·4 416 170·7 218·8 368 149·8 186·1 469 194·2 242·8 421 172·9 216·1 378 151·1 188·9 466 192·4 240·6 417 171·1 218·9 369 149·8 187·2 468 191·1 238·9 414 169·8 212·2 366 148·4 186·6 461 190·7 288·8 418 169·8 211·1 364 148·4 459 189·8 237·2 411 168·4 210·6 368 147·1 188·9 466 192·2 40·6 417 171·1 218·9 369 149·8 187·2 468 191·1 238·9 414 169·8 212·2 366 148·4 186·6 461 190·7 288·8 418 169·8 211·1 364 148·4 459 189·8 236·7 410 168 210 362 146·7 188·8 466 189·9 286·1 409 167·6 209·9 360 145·8 188·2 456 188·4 236·6 408 167·1 208·9 360 146·8 188·4 459 189·8 236·7 410 168 210 362 146·7 188·8 454 187·6 234·4 406 166·2 207·8 389 146·8 181·1									
491 204 255 448 182.7 228.8 895 161.8 201.7 490 208.6 254.4 442 182.2 227.8 894 160.9 201.1 489 208.1 258.9 441 181.8 227.2 898 160.4 200.6 488 202.7 258.8 440 181.8 226.7 892 160. 200 487 202.2 252.8 439 180.9 226.1 891 159.6 199.4 486 201.8 252.2 488 180.4 225.6 890 159.1 198.9 485 201.8 251.7 487 180 225 889 158.7 198.8 484 200.9 251.1 486 179.6 224.4 888 156.2 197.8 488 200.4 250.6 435 179.1 228.9 887 157.8 197.2 482 200 250 484 178.7 228.8 886 157.8 196.7 481 199.6 249.4 483 178.2 222.8 885 150.9 196.1 480 199.1 248.9 432 177.8 222.2 885 150.9 196.1 480 199.1 248.9 432 177.8 221.7 888 156. 195.6 478 198.2 247.8 430 176.9 221.1 883 155.6 195.4 477 197.8 247.2 429 176.4 220.6 381 155.6 194.4 477 197.8 246.7 428 176 220. 380 154.7 198.8 475 196.9 246.1 427 175.6 219.4 379 154.2 192.8 474 196.4 245.6 426 175.1 218.9 378 153.8 192.2 478 198 244.4 424 174.7 218.8 377 153.8 191.1 471 195.1 248.9 423 178.8 217.2 375 152.4 190.6 470 194.7 248.8 422 178.8 216.7 374 152 190.6 470 194.7 248.8 422 178.8 216.7 374 152. 190.6 470 194.7 248.8 422 178.8 216.7 374 152 190.6 470 194.7 248.8 422 178.8 216.7 374 152 190.6 470 194.7 248.8 422 178.8 216.7 374 152 190.6 468 192.9 241.1 418 171.6 214.4 370 150.2 187.8 466 192.9 241.1 418 171.6 214.4 370 150.2 187.8 466 192.9 241.1 418 171.6 214.4 370 150.2 187.8 466 192.9 241.1 418 171.6 214.4 370 150.2 187.8 467 198.8 241.7 419 172 216 371 150.7 188.8 468 191.6 288.4 415 170.2 218.8 368 149.8 186.1 469 194.2 240.6 417 171.1 218.9 369 149.8 186.1 460 190.2 287.8 412 168.9 211.1 364 147.1 188.9 461 190.7 288.8 413 169.8 211.2 366 148.4 185.6 461 190.7 288.8 413 169.8 211.2 366 148.4 185.6 461 190.7 288.8 413 169.8 211.2 366 148.4 185.6 461 190.7 288.8 413 169.8 211.1 364 147.1 188.9 465 188.4 236.6 408 167.1 208.9 360 145.8 186.7	493								
490 208·6 244·4 442 182·2 227·8 894 160·9 201·1 489 208·1 258·9 441 181·8 227·2 898 160·4 200·0 487 202·2 252·8 439 180·9 226·1 891 159·6 199·4 486 201·8 252·2 438 180·4 225·6 890 159·1 198·9 485 201·8 251·7 487 180 225·6 890 159·1 198·9 484 200·9 251·1 486 179·6 224·4 888 158·2 197·8 483 200·4 250·6 495·179·1 228·9 887·157·8 197·8 481 199·1 248·9 432 177·8 222·8 885·156·9 196·1 481 199·2 248·8 430·176·9 221·1 388·156·1 196·1 479 198·7 248·8 430·176·9 221·1 388·156·1 <td></td> <td>204.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		204.4							
489 208·1 258·9 441 181·8 227·2 898 160·4 200·6 488 202·7 258·8 440 181·8 226·7 892 160 200 487 202·2 252·8 439 180·9 226·1 891 159·6 199·4 486 201·8 252·2 488 180·4 225·6 890 159·1 198·9 485 201·8 251·7 487 180 225 889 158·7 198·8 484 200·9 251·1 486 179·6 224·4 888 156·2 197·2 482 200 250 484 178·7 228·8 386 157·8 196·7 481 199·6 249·4 483 178·2 222·8 386 156·4 196·7 481 199·6 248·8 431 177·8 221·7 388 156·6 196·1 479 198·7 248·8									
488 202.7 258.8 440 181.8 226.7 392 160 200 487 202.2 252.8 439 180.9 226.1 891 159.6 199.4 486 201.8 251.7 487 180 225 889 168.7 198.8 484 200.9 251.1 496 179.6 224.4 388 168.2 197.8 488 200.4 250.6 435 179.1 228.9 387 157.8 197.2 482 200 250 484 178.7 228.3 386 157.3 196.7 481 199.6 249.4 483 178.2 222.2 384 156.4 195.6 479 198.7 248.9 432 177.8 221.7 388 156.1 195.6 478 198.2 247.8 430 176.9 221.1 388 156.1 194.4 477 197.8 246.7									
487 202 2 255 8 439 180 9 226 1 891 159 6 199 4 486 201 8 252 2 488 180 4 225 6 390 159 1 198 9 485 201 8 251 7 487 180 225 889 158 7 198 3 484 200 9 251 1 486 179 6 224 4 388 156 2 197 8 482 200 250 484 178 7 223 8 386 157 3 196 7 481 199 6 249 4 483 178 2 222 8 385 156 9 196 1 480 199 1 248 9 432 177 8 222 2 385 156 9 196 1 470 198 7 248 8 431 177 3 221 7 388 156 195 195 6 478 198 2 247 8 430 176 9 221 1 382 155 6 195 6 478 198 2 247 8 430 176 9 221 1 382 155 6 195 6 476 197 8 247 2 429 176 4 220 6 </td <td></td> <td>208.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		208.1							
486 2018 252·2 488 180·4 225·6 890 159·1 198·9 485 2018 251·7 487 180 225·6 889 158·7 198·8 484 2009 251·1 486 179·6 224·4 888 158·2 197·8 488 200·4 250·6 495 179·1 228·9 887 157·8 197·2 482 200 250 484 178·7 223·8 886 157·8 196·7 481 199·6 249·4 493 178·2 222·8 885 156·9 196·1 480 199·1 248·9 432 177·8 222·2 884 156·4 195·6 479 198·7 248·8 491 177·8 221·7 888 156· 195·6 479 198·7 248·8 491 177·8 221·7 888 156· 195·6 477 197·8 247·2 429 176·4 220·6 881 155·1 198·9 476 197·8 246·7 428 176 220·6 881 155·1 198·9 477 199·8 246·7 428 176 220·6 881 155·1 198·9 476 197·8 246·7 428 176 220·6 881 155·1 198·9 477 196·4 245·6 426 176·1 218·9 878 153·8 192·2 478 196 246·1 427 176·6 210·4 879 154·2 192·8 474 196·4 245·6 426 176·1 218·9 878 153·8 192·2 478 196 246·1 427 176·6 210·4 879 154·2 192·8 471 195·6 244·4 424 174·2 217·8 876 152·9 191·7 471 196·1 248·9 423 178·8 216·7 374 152 190·6 469 194·2 242·8 421 172·9 216·1 878 151·6 188·9 467 198·8 242·2 420 172·4 215·6 872 151·1 188·9 467 198·8 242·2 420 172·4 215·6 872 151·1 188·9 467 198·8 242·2 420 172·4 216·8 871 150·7 188·8 468 192·9 241·1 418 171·6 214·4 870 150·2 187·8 468 191·6 289·4 415 170·2 212·8 867 148·9 188·1 468 191·1 238·9 414 169·8 212·2 866 148·4 186·6 190·2 287·8 412 168·9 211·1 864 147·6 188·4 469 190·2 287·8 412 168·9 211·1 864 147·6 188·4 460 190·2 287·8 412 168·9 211·1 864 147·6 188·4 461 190·7 288·8 418 169·8 211·2 866 148·4 186·6 461 190·7 288·8 418 169·8 211·1 864 147·6 188·4 465 188·4 236·6 408 167·1 208·9 360 146·8 188·9 465 188·9 286·1 409 167·6 209·4 861 146·2 182·8 465 188·9 286·1 409 167·6 209·4 861 146·2 182·8 465 188·4 236·6 408 167·1 208·9 360 146·8 182·8 465 188·4 236·6 408 167·1 208·9 360 146·8 182·8 465 188·4 236·6 408 167·1 208·9 360 146·8 182·8 465 188·4 236·6 408 167·1 208·9 360 146·8 182·9 465 188·4 236·6 408 167·1 208·9 360 146·8 182·9 465 188·4 236·6 408 167·1 208·9 360 146·8 182·9 465 188·4 236·6 408 167·1 208·9 360 146·8 182·9		202.7							
485 2018 251.7 487 180 225 389 158.7 198.8 484 2009 251.1 486 179.6 224.4 388 158.2 197.8 488 200.4 250.6 435 179.1 228.9 387 157.8 197.2 481 199.6 249.4 483 178.7 228.8 386 157.8 196.7 480 199.1 248.9 432 177.8 222.2 384 156.4 195.6 479 198.7 248.8 431 177.8 221.7 388 156.6 195.4 478 198.2 247.2 429 176.4 220.6 381 155.1 198.9 476 197.8 246.7 428 176 220.6 381 155.1 198.9 475 196.9 246.1 427 175.6 219.4 379 154.2 198.9 474 196.4 245.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
484 200 °9 251 °1 486 179 °6 224 °4 888 158 °2 197 °8 488 200 °4 250 °6 435 °179 °1 228 °9 887 °157 °8 197 °8 482 200 250 °484 °178 °2 222 °8 885 °157 °8 196 °7 481 199 °6 249 °4 483 °178 °2 222 °8 885 °157 °8 196 °1 480 199 °1 248 °9 432 °177 °8 222 °2 884 °156 °4 195 °6 479 198 °7 248 °8 431 °177 °8 222 °2 384 °156 °4 195 °6 478 198 °2 24 °8 430 °176 °9 221 °1 382 °155 °6 194 °4 477 197 °8 24 °2 °429 °176 °4 220 °6 381 °155 °1 193 °9 476 196 °9 24 °1 42 °6 176 °6 21 °4 379 °154 °2 192 °8 474 196 °4 24 °5 42 °6 175 °1 218 °8 377 °153 °8 192 °2 473 196 °2 24 °6									
488 200 4 250 6 435 179 1 228 9 887 157 8 197 2 482 200 250 484 178 7 228 8 886 157 3 196 7 481 199 6 249 4 483 178 2 222 8 885 150 9 196 1 480 199 1 248 9 432 177 8 222 2 884 156 4 195 6 479 198 7 248 8 431 177 3 221 7 883 156 6 195 6 478 198 2 247 8 430 176 9 221 1 382 155 6 194 4 477 197 8 246 7 428 176 220 380 154 7 198 9 476 197 8 246 7 428 176 220 380 154 7 198 8 475 196 9 246 1 427 175 6 210 4 379 154 2 192 8 473 196 2 245 6 426 175 7 218 9 378 153 8									
482 200 250 484 178.7 228.8 886 157.8 196.7 481 199.6 249.4 483 178.2 222.8 885 150.9 196.1 480 199.1 248.9 432 177.8 222.2 884 156.4 195.6 479 198.7 248.8 491 177.8 221.7 388 156 195.6 478 198.2 247.8 430 176.9 221.1 382 155.6 194.4 477 197.8 246.7 428 176 220 380 154.7 198.8 475 196.9 246.1 427 176.6 210.4 379 154.2 192.8 474 196.4 245.6 426 175.1 218.9 378 158.8 192.2 478 196 245.4 426 174.7 218.8 377 158.8 191.7 472 196.2 244.4									
481 199·6 249·4 483 178·2 222·8 885 150·9 196·1 480 199·1 248·9 432 177·8 222·2 384 156·4 195·6 479 198·7 248·8 431 177·8 221·7 888 156·6 194·4 478 198·2 247·2 429 176·4 220·6 381 155·1 198·9 476 197·8 246·7 428 176 220·6 381 155·1 198·9 476 197·8 246·7 428 176 220·6 381 155·1 198·9 475 196·9 246·1 427 175·6 210·4 379 154·2 192·8 474 196·4 245·6 426 176·1 218·9 378 153·8 192·2 473 196·6 245·4 426 174·7 218·8 377 153·8 191·7 471 196·1 248									
480 199·1 248·9 432 177·8 222·2 884 156·4 195·6 479 198·7 248·8 491 177·8 221·7 888 156·6 195 478 198·2 247·8 480 176·9 221·1 382 155·6 194·4 477 197·8 247·2 429 176·4 220·6 381 155·1 198·9 476 197·8 246·7 428 176 230 380 154·7 198·9 475 196·9 246·1 426 176·1 218·9 378 153·8 192·2 478 196·9 246·1 426 174·7 218·8 377 153·8 192·2 478 196 245 426 174·7 218·8 377 153·8 191·7 471 195·1 248·9 423 178·8 217·2 375 152·4 190·6 470 194·7 243·9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
479 188.7 248.8 431 177.8 221.7 888 156 195.4 478 188.2 247.8 430 176.9 221.1 382 155.6 194.4 477 197.8 247.2 429 176.4 220.6 381 155.1 198.9 476 197.8 246.7 428 176 220 380 154.7 198.8 475 196.9 246.1 427 175.6 219.4 379 154.2 192.8 474 196.4 245.6 426 175.1 218.9 378 153.8 192.2 473 196 246.4 426 174.7 218.8 377 153.8 191.7 472 195.6 244.4 424 174.7 218.8 377 153.8 192.7 470 194.7 248.8 422 178.8 217.2 375 152.4 190.6 470 194.7 248.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
478 188·2 247·8 430 176·9 221·1 882 155·6 194·4 477 197·8 247·2 429 176·4 220·6 381 155·1 193·9 476 197·8 246·7 428 176 220 380 154·7 198·8 475 196·9 246·1 427 176·6 210·4 379 154·2 192·8 474 196·4 245·6 426 175·1 218·9 378 158·8 192·2 478 196 245·4 426 174·7 218·8 377 158·8 192·2 478 196 244·4 424 174·2 217·8 376 152·2 190·1 470 194·7 243·8 422 178·8 217·2 376 152·4 190·6 460 194·2 242·8 421 172·9 216·1 372 151·1 188·9 467 198·8 242·2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
477 197 8 247 2 429 176 4 220 6 881 155 1 198 9 476 197 8 246 7 428 176 220 380 164 7 198 8 475 196 9 246 1 427 175 6 210 4 379 154 2 192 8 474 196 4 245 6 426 175 1 218 9 378 153 8 192 2 473 196 245 426 174 7 218 9 378 153 8 192 9 471 195 6 244 4 424 174 2 217 8 377 153 8 191 7 471 195 6 244 4 424 174 2 217 8 376 152 4 190 6 470 194 7 248 9 423 178 8 216 7 374 152 190 6 469 194 2 242 8 421 172 9 216 1 373 151 1 188 9 467 198 3 241 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
476 197.8 246.7 428 176 220 380 154.7 198.8 475 196.9 246.1 427 175.6 219.4 379 154.2 192.8 474 196.4 245.6 426 175.1 218.9 378 153.8 192.2 478 196 245 426 174.7 218.8 377 153.8 191.7 472 195.6 244.4 424 174.2 217.8 376 152.9 191.1 471 196.1 248.9 428 178.8 217.2 375 152.4 190.6 470 194.7 248.8 422 178.8 216.1 378 152.2 190.6 469 194.2 242.8 421 172.9 216.1 378 151.1 188.9 468 198.8 242.2 420 172.4 215.6 372 151.1 188.9 467 198.3 241.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
475 186.9 246.1 427 176.6 219.4 879 154.2 192.8 474 196.4 245.6 426 175.1 218.9 878 153.8 192.2 473 196 245.6 426 174.7 218.8 377 153.8 191.7 472 195.6 244.4 424 174.72 217.8 876 152.9 191.1 471 195.1 248.9 428 178.8 217.2 375 152.4 190.6 470 194.7 248.8 422 178.8 216.7 374 152 190.6 460 194.2 242.8 421 172.9 216.1 378 152.1 190.6 468 198.8 242.2 420 172.4 215.6 372 151.1 188.9 467 198.8 241.7 419 172 215 371 150.7 188.8 466 192.9 241.1<									
474 196.4 245.6 426 175.1 218.9 378 158.8 192.2 478 196 245 426 174.7 218.8 377 153.8 191.7 472 195.6 244.4 424 174.72 217.8 376 152.9 191.1 471 195.1 248.9 423 178.8 217.2 375 152.4 190.6 470 194.7 248.8 422 178.8 216.7 374 152 190 469 194.2 242.8 421 172.9 216.1 378 151.6 189.4 468 198.8 242.2 420 172.4 215.6 372 151.1 188.9 467 198.3 241.7 419 172 216 371 150.1 188.9 467 198.3 241.7 419 172 216 371 150.1 188.9 468 192.9 241.1									
478 196 245 426 174.7 218.8 377 158.8 191.7 472 196.6 244.4 424 174.2 217.8 876 152.9 191.1 471 196.1 248.9 428 178.8 217.2 376 152.4 190.6 470 194.7 248.8 422 178.8 216.1 374 152.1 190.6 469 194.2 242.8 421 172.9 216.1 378 151.6 189.4 468 198.8 242.2 420 172.4 215.6 372 151.1 188.9 467 193.8 241.7 419 172 216 371 150.7 188.8 466 192.9 241.1 418 171.6 214.4 370 150.2 187.8 466 192.9 240 416 170.7 218.3 368 149.8 187.2 464 192 240					175.6				
472 196.6 244.4 424 174.2 217.8 376 152.9 191.1 471 196.1 248.9 423 178.8 217.2 375 152.4 190.6 470 194.7 248.8 422 178.8 216.7 374 152 190.6 469 194.2 242.8 421 172.9 216.1 378 151.6 188.4 468 198.8 242.2 420 172.4 215.6 372 151.1 188.9 467 198.3 241.7 419 172 215 371 150.7 188.3 466 192.9 241.1 418 171.6 214.4 370 150.2 187.2 466 192.4 240.6 417 171.1 213.9 369 149.8 187.2 464 192 240 416 170.7 213.8 368 149.8 188.7 463 191.6 289.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
471 196.1 248.9 428 178.8 217.2 375 152.4 190.6 470 194.7 248.8 422 178.8 216.7 374 152.1 190.6 469 194.2 242.8 421 172.9 216.1 378 151.1 188.9 468 198.8 242.2 420 172.4 216.6 372 151.1 188.9 467 198.8 241.7 419 172 215 371 150.7 188.8 466 192.9 241.1 418 171.6 214.4 370 150.2 187.8 466 192.9 240.4 416 170.7 218.8 368 149.8 186.7 464 192.4 240.6 417 170.1 218.8 368 149.8 186.7 463 191.6 228.4 415 170.2 212.8 368 149.8 186.1 462 191.1 238									
470 194.7 248.8 422 178.8 216.7 374 152 190 469 194.2 242.8 421 172.9 216.1 378 151.6 189.4 468 198.8 242.2 420 172.4 215.6 372 151.1 188.9 467 198.8 241.7 419 172 216 371 150.7 188.8 466 192.9 241.1 418 171.6 214.4 37.0 150.2 187.8 465 192.4 240.6 417 171.1 213.9 369 149.8 187.2 464 192 240 416 170.7 213.8 368 149.8 187.4 463 191.6 238.9 414 169.8 212.2 366 148.4 186.1 461 190.7 238.8 418 169.8 211.7 365 148 186.6 461 190.7 238.8									
469 194*2 242*8 421 172*9 216*1 378 151*6 189*4 468 198*8 242*2 420 172*4 215*6 372 151*1 188*9 467 198*8 241*7 419 172 215 371 150*7 188*9 466 192*9 241*1 418 171*6 214*4 370 150*2 187*8 465 192*4 240*6 417 171*1 218*9 369 149*8 187*2 464 192 240 416 170*7 213*8 368 149*3 186*7 463 191*6 289*4 415 170*2 212*8 367 148*9 186*7 463 191*1 238*9 414 169*8 212*2 366 148*4 186*6 461 190*7 238*8 418 169*8 211*7 365 148 186*6 460 190*2 237*8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
468 193.8 242.2 420 172.4 215.6 372 151.1 188.9 467 198.8 241.7 419 172 216 871 150.7 188.8 468 192.9 241.1 418 171.6 214.4 370 150.2 187.8 465 192.4 240.6 417 171.1 218.9 869 149.8 187.2 464 192 240 416 170.7 218.3 368 149.8 186.7 468 191.6 289.4 415 170.2 212.8 367 148.9 186.7 462 191.1 288.9 414 169.8 212.2 366 148.4 185.6 461 190.7 288.3 418 169.8 211.7 365 148.4 185.4 450 189.2 237.2 411 168.9 211.7 364 147.6 184.4 459 189.8 237.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
467 198 8 241 7 419 172 215 871 150 7 188 8 466 192 9 241 1 418 171 6 214 4 870 150 2 187 8 466 192 4 240 6 417 171 1 213 9 869 149 8 187 2 464 192 240 416 170 7 218 8 868 149 8 186 7 463 191 6 239 4 415 170 2 212 8 867 148 9 186 1 462 191 1 238 9 414 169 8 212 2 366 148 4 185 6 461 190 7 238 8 413 169 8 211 7 365 148 18 186 6 461 190 7 238 7 412 168 9 211 1 364 147 6 184 4 459 189 8 237 2 411 168 9 211 1 364 147 1 188 9 458 189 3 236 7<									
486 192 9 241 1 418 171 6 214 4 87.0 150 2 187 8 465 192 4 240 6 417 171 1 213 9 869 149 8 187 2 464 192 240 416 170 7 213 8 868 149 8 186 7 468 191 6 289 4 415 170 2 212 8 867 148 9 186 1 462 191 1 238 9 414 169 8 212 2 866 148 4 185 6 461 190 7 238 8 418 169 8 211 7 365 148 185 6 461 190 7 237 8 412 168 9 211 7 365 148 1 185 6 460 190 2 237 8 412 168 9 211 1 364 147 1 183 18 459 189 8 237 2 411 168 9 211 1 364 147 1 183 9 458 189 3 236							872		
466 192.4 240.6 417 171.1 213.9 869 149.8 187.2 464 192 240 416 170.7 218.8 368 149.8 186.7 468 191.6 238.4 415 170.2 212.8 367 148.9 186.7 462 191.1 238.9 414 169.8 212.2 366 148.4 185.6 461 190.7 238.8 413 169.8 211.7 365 148 185.6 460 190.2 237.8 412 168.9 211.1 364 147.6 184.4 459 189.8 237.2 411 168.4 210.6 363 147.1 183.9 458 189.8 236.7 410 168 210 362 146.7 183.4 457 188.9 236.1 409 167.6 209.4 361 146.2 182.8 456 188.4 235.6 408 167.1 208.9 360 145.8 182.2 455 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
464 192 240 416 170.7 218.8 368 149.8 186.7 468 191.6 289.4 415 170.2 212.8 367 148.9 186.1 462 191.1 238.9 414 169.8 212.2 366 148.4 186.6 461 190.7 238.8 418 169.8 211.7 365 148. 185.4 460 190.2 237.8 412 168.9 211.1 364 147.6 184.4 459 189.8 237.2 411 168.4 210.6 363 147.1 183.9 458 189.8 286.7 410 168 210 362 146.7 183.9 458 189.8 286.1 409 167.6 209.4 361 146.2 182.8 456 188.4 235.6 408 167.1 208.9 360 145.8 182.2 455 188 235 407 166.7 208.9 360 145.8 181.7 454 187.6 234.4 406 166.2 207.8 358 144.9 181.1					171.6				
468 191-6 289-4 415 170-2 212-8 867 148-9 186-1 462 191-1 238-9 414 169-8 212-2 866 148-4 185-6 461 190-7 238-3 413 169-8 211-7 865 148 185-6 460 190-2 237-8 412 168-9 211-1 864 147-6 184-4 459 189-8 237-2 411 168-4 210-6 863 147-1 183-9 458 189-3 236-7 410 168-4 210-6 863 147-1 183-9 457 188-9 286-1 409 167-6 209-4 861 146-2 182-8 456 183-4 235-6 408 167-1 208-9 860 145-8 182-2 455 188-2 235-407 166-7 208-8 359 145-8 182-2 455 188-2 234-4 406 166-2 207-8 358 144-9 181-1									
462 191-1 238-9 414 169-8 212-2 866 148-4 185-6 461 190-7 238-8 418 169-8 211-7 865 148 186 460 190-2 237-8 412 168-9 211-1 364 147-6 184-4 459 189-8 237-2 411 168-4 210-6 868 147-1 183-9 458 189-3 236-7 410 168 210 362 146-7 183-8 457 188-9 236-1 409 167-6 209-4 361 146-2 182-8 456 188-4 235-6 408 167-1 208-9 360 145-8 182-2 455 188 235 407 166-7 208-8 359 145-8 181-7 454 187-6 234-4 406 166-2 207-8 358 144-9 181-1									
461 190.7 288.8 418 169.8 211.7 865 148 185 460 190.2 287.8 412 168.9 211.1 364 147.6 184.4 459 189.8 287.2 411 168.4 210.6 363 147.1 188.9 458 189.8 236.7 410 168 210 362 146.7 183.8 457 188.9 236.1 409 167.6 209.4 361 146.2 182.8 456 188.4 235.6 408 167.1 208.9 360 145.8 182.2 455 188 235 407 166.7 208.3 359 145.3 181.7 454 187.6 234.4 406 166.2 207.8 358 144.9 181.1								14819	
460 190 2 287 8 412 168 9 211 1 364 147 6 184 4 459 189 8 287 2 411 168 4 210 6 868 147 1 188 9 458 189 8 286 7 410 168 210 862 146 7 188 9 457 188 9 286 1 409 167 6 209 4 361 146 2 182 8 456 188 4 285 6 408 167 1 208 9 360 146 8 182 2 455 188 285 407 166 7 208 8 359 145 8 181 7 454 187 6 234 4 406 166 2 207 8 358 144 9 181 1								148'4	
459 189 8 237 2 411 168 4 210 6 868 147 1 188 9 458 189 3 286 7 410 168 210 862 146 7 188 8 457 188 9 286 1 409 167 6 209 4 861 146 2 188 8 456 188 4 235 6 408 167 1 208 9 860 145 8 182 2 455 188 235 407 166 7 208 8 359 145 8 181 7 454 187 6 234 4 406 166 2 207 8 358 144 9 181 1					168.8				
458 189 8 286 7 410 168 210 862 146 7 188 8 457 188 9 286 1 409 167 6 209 4 861 146 2 182 8 456 188 4 235 6 408 167 1 208 9 360 145 8 182 2 455 188 235 407 166 7 208 8 359 145 8 181 7 454 187 6 234 4 406 166 2 207 8 358 144 9 181 1									
457 188 9 286 1 409 167 6 209 4 361 146 2 182 8 456 188 4 235 6 408 167 1 208 9 360 145 8 182 2 455 188 235 407 166 7 208 3 359 145 3 181 7 454 187 6 234 4 406 166 2 207 8 358 144 9 181 1									
456 188 4 236 6 408 167 1 208 9 360 145 8 182 2 455 188 235 407 166 7 208 8 359 145 8 181 7 454 187 6 234 4 406 166 2 207 8 358 144 9 181 1									
455 188 235 407 166.7 208.8 859 145.8 181.7 454 187.6 234.4 406 166.2 207.8 858 144.9 181.1									
454 187.6 234.4 406 166.2 207.8 858 144.9 181.1									
404 10/0 204 4 400 100 5 110 111 100 a									
									180.6
458 187·1 288·9 405 165·8 207·2 857 144·4 180·6		187.1	28819	405	T00.8	207.7	907	144.4	100.0

Conversion of the different Thermometric Scales. Table I.—continued.

PAUR.	Reaum.	Cent.	FAHR.	Reaum.	Cent.	Рапи.	Reaum.	Cent.
356	144	180	808	122.7	158:3	260	101 .8	126.7
855	148.6	178 4	807	122.2	152.8	259	100.9	126.1
854	148.1	178.9	806	121 .8	152.2	258	100.4	125 6
858	142.7	178:3	805	121 .8	151.7	257	100	125
852	142.2	177:8	804	120 .9	151 1	256	99.6	124.4
851	141.8	177:2	808	120 ·4	150.6	255	99 1	128.9
850	141.8	176.7	802	120	150	254	98.7	123.8
849	140.9	176.1	801	119.6	149.4	253	98 2	122.8
848	140.4	175 ·6	800	119 1	148.9	252	97 .8	122-2
847	140	175	299	118.7	148 8	251	97:8	121 7
846	189 6	174·4	298	118.2	147 8	250	96.9	121 1
845	139 1	178.9	297	117 8	147.2	249	96.4	120.6
8 44	138 .7	173 · 3	296	117 8	146.7	248	96	120
848	188-2	172 8	295	116.9	146.1	247	95.6	119.4
842	187 8	172.2	294	116 4	145.6	246	95.1	118 9
841	187:3	171.7	293	116	145	245	94.7	118.3
840	186.9	171 1	292	115.6	144.4	244	94 -2	117.8
889	136.4	170.6	291	115.1	143.9	248	98.8	117:2
888	186	170	290	114.7	148.8	242	98.8	116.7
887	185.6	169· 4	289	114.2	142.8	241	92.9	116.1
886	185.1	168.9	288	118.8	142.2	240	92.4	115.8
885	184.7	168.3	287	118.8	141.7	289	92	115
884	184.2	167.8	286	112.9	141.1	288	91.6	114.4
888	183.8	167.2	285	112.4	140 6	237	91.1	118.9
882	183.3	166.7	284	112	140	286	90.7	118.8
881	182.9	166.1	283	111.8	189.4	285	90.2	112.8
330	182.4	165.6	282	111.1	138 9	234	89.8	112.2
829	132	165	281	110.7	138 8	288	89.8	111.7
828	131.6	184.4	280	110.2	187 8	232	88.9	111 1
827	181.1	163.9	279	109.8	187 2	281	88 - 4	110.6
326	180.7	163.3	278	109.8	186.7	280	88	110
825	180.2	162.8	277	108.9	186.1	229	87.6	109.4
824	129.8	162.2	276	108.4	185.6	228	87.1	108.9
828	129.3	161.7	275	108	185	227	86.7	108-8
822	128 9	161.1	274	107 6 107 1	184·4 188·9	226 225	86·2 85·8	107.8
821	128.4	160.6	278		188.8		85.8	107:2
820	128	160	272	106·7 106·2	182.8	224	84.9	106.7
319	127.6	159-4	271	105.8	182.2	228 222	84.4	106.1
818	127.1	158.9	270	105.8	181.7	221	84	105.8
817	126.7	158.8	269	104.9	181.1	220	88-6	105
816	126·2 125·8	157·8 157 <i>-</i> 2	268 267	104.4	180.6	220 219	88.1	104·4 103·9
815				104 4	180	219	82.7	
814	125 ·8 124·9	156.7	266 265	103.8	129·4	217	82-7	108.8
818 812	124.4	156·1 155·6	264	103.0	128.9	216	81.8	102.8
812	124 4	155	263	102.7	128.8	215	81.8	102·2 101·7
810	123.6	154.4	262	102.2	127.8	214	80.9	
808	123.0	153.9	261	101.8	127.2	214	80.4	101·1 100·6
908	179.1	TOO.A	201	101.0	TAI A	ΔIĐ	00 %	100.0

CONVERSION OF THE DIFFERENT THERMOMETRIC SCALES. TABLE L—continued.

FAHR.	Beaum.	Cént.	FAHB.	Resum.	Cent-	FAHR.	Resum.	Oent.
212	80.0	100.0	164	58.7	78.8	116	87.8	46.7
211	79.6	99.4	163	58.2	72.8	115	86.9	46.1
210	79 · 1	98-9	162	57·8	72 ·2	114	86.4	45.6
209	78 7	98.8	161	57.8	71.7	113	86.0	45.0
208	78-2	97 8	160	26.9	71.1	112	85.6	44 4
207	77.8	97.2	159	56.4	70.6	111	82.1	48.9
206	77.8	96.7	158	26.0	70.0	110	84.7	48.8
205	76.9	96.1	157	55.6	69.4	109	84.2	42.8
204	76.4	95.6	156	55.1	68.9	108	88.88	42.2
208	76.0	95.0	155	64.7	68.8	107	88.8	41.7
202 201	75·6 75·1	94·4 98·9	154 158	54.2	67.8	106	82.9	41.1
200	74·7	98.8	152	58·8 58·8	67 · 2 66 · 7	105 104	82·4 82·0	40.6
199	74.2	92.8	151	52.9	66.1	102	81.6	40.0
198	78.8	92.2	150	52·4	65.6	102	81.1	89.4
197	78.8	91.7	149	52.0	65.0	102	80.7	38 19
196	72.9	91.1	148	51.6	64.4	100	80-2	88 18 87 18
195	72.4	90.8	147	51.1	63.9	99	29.8	87.2
194	72.0	90.0	146	50.7	63.8	98	29.8	86 7
193	71.6	89.4	145	50-2	62.8	97	28.9	86.1
192	71.1	88 9	144	49.8	62-2	96	28.4	85.6
191	70.7	88.8	148	49.8	61.7	95	28.0	85.0
190	70-2	87.8	142	48.9	61.1	94	27.6	84.4
189	69.8	87-2	141	48-4	60.6	98	27.1	88.9
188	69.8	86.7	140	48.0	60.0	92	26.7	88.8
187	68.8	86.1	189	47 6	59· 4	91	26.2	82.8
186	68:4	85.6	138	47.1	58-9	90	25.8	32.2
185	68.0	85.0	187	46.7	58.8	89	25.3	81.7
184	67.6	84 4	186	46-2	57.8	88	24 9	81.1
188	67.1	88-9	185	45.8	67.2	87	24 • 4	80 ·6
182	66-7	88.8	134	45.8	56.7	86	24 0	80.0
181	66-2	82.8	188	44.9	56.1	85	2E 6	29 ·4
180	65.8	82.2	182	44.4	55.6	84	28 1	28.9
179	65-8	817	181	44.0	55.0	88	22.7	28.8
178	64-9	81.1	180	48.6	54.4	82	22-2	27-8
177	64.4	80.6	129 128	· 48·1	58.9	81	21 8	27 · 2
176	64.0	80.0	128	42.7	58.8	80	21.8	26.7
175 174	63·6 63·1	79·4 78·9	126	42·2 41·8	52·8 52·2	79	20.9	26.1
178		78.8	125	41.3		78 77	20·4 20·0	25 6
170	62.2	77.8	124	40.9	51·7 51·1	76	19.6	25.0
171	61.8	77.2	128	40.4	50·6	76 75	19.1	24.4
170		78.7	122	40.0	50.0	74 74	18.7	28·9 28·8
169		76.1	121	89.6	49.4	78	18-2	22.8
168		75.6	120	89.1	48.9	72	17.8	22-3
167		75.0	119	88-7	48.8	71	17.8	21.7
166		74.4	118	88.2	47.8	70	16.9	21.1
165		78.9	117	87.8	47.2	69		20.6
								200

Conversion of the different Thermometric Scales. Table I.—continued.

FAHR.	Reaum.	Cent.	ГАПВ.	Reaum.	Cent.	FAIIR.	Reaum.	Cent.
68	16.0	20:0	84	0.9	1.1	0	- 14 2	-17.8
67	15.6	19.4	88	0.4	0.6	- 1	- 14.7	- 18 8
66	15.1	18.9	32	0.0	0.0	- 2	-15.1	- 18.9
65	14.7	18.8	81	- 0.4	- 0.8	- 8	- 15.6	19· 4
64	14.2	17.8	80	- 0.8	- 1.1	4	– 16·0	– 20·0
- 63	18.8	17.2	29	- 1.3	- 17	- 5	– 16 4	- 20 6
62	18.8	$\overline{1}6\overline{7}$	28	- 1.8	- 2.2	– 6	- 16.9	- 21 1
61	12.9	16.1	27	- 2.2	- 2.8	- 7	-17.8	- 21 .7
60	12.4	15.6	26	- 2.7	- 8.8	– .8	– 17·8	- 22 ·2
59	12.0	15.0	25	- 8.1	- 8.8	- 9	- 18.2	- 22.8
58	11.6	14.4	24	- 8.6	- 4.4	- 10	- 18.7	- 28.8
57	11.1	18.9	23	- 4.0	- 5.0	-11	– 19·I	- 28 9
56	10.7	18.8	22	- 4.4	- 5.6	-12	- 19.6	- 24.4
55	10.2	12.8	21	- 4.9	- 6.1	- 18	- 20 0	-25 ·0
54	9.8	12-2	20	- 5.8	- 6.7	-14	- 20.4	- 25.6
58	9.3	117	19	·– 5·8	- 7.2	15	- 20.9	- 26.1
52	8.9	11 1	18	- 6.2	- 7.8	-16	- 21 ·8	- 26.7
51	8.4	10.6	17	- 6.7	- 8.8	- 17	- 21 ·8	- 27.2
50	8.0	10.0	16	- 7:1	- 8.9	-18	- 22:2	- 27.8
49	7.6	9.4	15	- 7.8	- 9.2	-19	- 22.7	- 28 8
48	7.1	8.8	14	- 8.0	-10.0	~ 20	- 28.1	- 28.9
47	6.7	8.8	13	- 8.4	-10.6	- 21	- 28 6	- 29.4
46	6.2	7.8	12	- 8.8	- 11 1	- 22	- 24 0	- 80.0
45	₽.8	7-2	11	- 9.8	– 11 ·7	– 28	- 24 · 4	- 80.6
44	5.8	6.7	10	- 9.8	- 12 2	- 24	- 24 '9	- 81.1
48	4.9	6.1	9	- 10 2	- 12.8	- 25	- 25.8	-81.7
42	4.4	5.6	8 7	-10.7	-13.8	- 26	- 25.8	- 82.2
41	4.0	50		-11.1	- 13.9	- 27	- 26.2	
40	8.6	4.4	6	- 11.6	-14.4	- 28	- 26.7	- 88.8
89	8.1	8.8	5	-12.0	-15.0	- 29	- 27:1	- 88.9
38	2.7	8.8	4	- 12.4	- 15.6	- 80	- 27:8	- 84.4
87	2.2	2.8	8	- 12.9	- 16.1	- 81	- 28 ·0	- 85.0
86	1.8	2.2	2	- 18:3	-167			
85	1.3	17	1	-13.8	-17:2			

CONVERSION OF THE DIFFERENT THREMOMETRIC SCALES. TABLE II.

CENT.	Reaum.	Fahr.	CENT.	Reaum.	Fahr.	Cmr.	Reaum.	Fahr.
260 259 258 257 256 255 254 258	208 207 · 2 206 · 4 205 · 6 204 · 8 204 208 · 2 202 · 4	500 498·2 496·4 494·6 492·8 491 489·2 487·4	252 251 250 249 248 247 246 245	201.6 200.8 200 199.2 198.4 197.6 196.8	485.6 488.8 482 480.2 478.4 476.6 474.8	244 248 242 241 240 239 288 287	195-2 194-4 198-6 192-8 192-191-2 190-4 189-6	471 · 2 469 · 4 467 · 6 465 · 8 464 462 · 2 460 · 4 458 · 6

THE RECEIVED TABLES.

CONVERSION OF THE DIFFERENT THERMOMETRIC SCALES. TABLE II.—continued.

Скит.	Reaum.	Fahr.	CRET.	Resum.	Fahr.	CENT.	Reaum.	Fahr,
286	188.8	456.8	188	150.4	870.4	140	112	284
285	188	455	187	149.6	868.6	189	111.3	282.2
284	187:2	453-2	186	148.8	866.8	188	110.4	280.4
233	186.4	451.4	185	148	865	137	109.6	278.6
232	185 6	449.6	184	147.2	868-2	186	108.8	276.8
231	184.8	447.8	183	146.4	361.4	185	108	275
280	184	446	182	145.6	859.6	184	107.2	278·2
229	183-2	444.2	181	144.8	857.8	133	108.4	271.4
228	182.4	442-4	180	144	856	182	105.6	269.6
227	181.6	440.6	179	143.2	854.2	181	104 8	267.8
226	180.8	488.8	178	142.4	852.4	180	104	266
225	180	487	177	141.6	350.6	129	103.2	264-2
224		435-2	176	140.8	848.8	128	102.4	262.4
228	178.4	488.4	175	140	847	127	101.6	260.6
. 222	177.6	481.6	174	189.2	845.2	126	100.8	258.8
221	176.8	429.8	178	138.4	848.4	125	100 8	257
220		428	172	137.6	841.6	124	99.2	255-2
219		426.2	171	136.8	839.8	123	98.4	258.4
218		424.4	170	186	888	122	97.6	251.6
217		422.6	169	185.3	886-2	121	96.8	249.8
216		420-8	168	184.4	884.4	120	96	249 8
215		419	167	188.6	882.6	119	95-2	
214		417:2	166	182.8	880.8	118	94.4	246.2
218		415.4	165	182	829	117	98.6	244·4 242·6
212		413.6	164	181-2	827.2	116	92.8	240.8
211		411.8	168	180.4	825.4	115	92	239
210		410	162	129.6	828.6	114	91.2	287.2
209		408.2	161	128.8	821.8	113	90.4	285.4
208		408.4	160	128	820	112	89.6	288.6
207		404.6	159	127.2	818:2	111	88.8	281.8
206		402.8	158	126.4	816.4	110	88	230
205		401	157	125 6	314.6	109	87.2	228-2
204		899 -2	156	124.8	812.8	108	86.4	226.4
208		897.4	155	124	811	107	85.6	224.6
202		895.6	154	128.2	809.2	106	84.8	222.8
201		898.8	158	122.4	807.4	105	84	221
200		892	152	121.6	805.6	103	83.2	219-2
199		890.2	151	120.8	808.8	108	82.4	217.4
198		888-4	150	120	802	102	81.6	215.6
		886.6	149	119.2	800.2	101	80.8	218.8
197		384.8	148	118.4	298.4	100	80	212
195		883	147	117.6	296.6	99	79.2	210-2
194		881.2	146	116.8	294.8	98	78-4	208.4
198		879.4	145	116 8	298	97	77.8	206.6
192		877.6	144	115.2	291·2	96	76.8	204.8
191		875.8	148	114.4	289.4	95	76	204 6
190		874	142	118.6	287.6	94	75.2	201-2
189		872-2	141	112.8	285.8	98	74.4	199.4
TOF	TOT.X	0/2/2	TÆT	1120	2000	80	122	TOO I

CONVERSION OF THE DIFFERENT THERMOMETRIC SCALES.

TABLE IL—continued.

			IABLE					7-1-
OEST.	Reaum.	Fahr.	OEET.	Reaum.	Fahr.	CENT.	Reaum.	Fahr.
92	73 .6	197.6	49	89.2	120.2	6	4.8	42.8
91	72.8	195.8	48	88· 4	118.4	5	4	41
90	72	194	47	87.6	116.6	4	8-2	89-2
89	71.2	192.2	46	86.8	114.8	8	2.4	87 4
88	70.4	190.4	45	86	118	2	1.8	85.6
87	69-6	188.6	44	85.2	111.2	1	0.8	88.88
86	68.8	186'8	48	84.4	109.4	0	0	82
85	68	185	42	83.6	107.6	- 1	- 0.8	80.2
84	67:2	183.2	41	82.8	105.8	- 2	-1.6	28 4
88	66.4	181.4	40	82	104	– 3	- 2.4	26.6
82	65.6	179 ⋅8	89	81-2	102.2	- 4	- 3 · 2	24 8
81	64.8	177.8	88	80.4	100.4	- 5	-4	23
80	64	176	37	29 6	98.6	– 6	– 4 ·8	21.2
79	68.2	174.2	86	28.8	96.8	-7	- 5.8	19 4
78	62.4	172.4	85	28	95	- 8	- 6 4	17.6
77	61-6	170.6	84	27 • 2	93.2	– 9	-7 -2	15.8
76	60.8	168.8	88	26.4	91.4	- 10	-8	14
75	60	167	82	25.6	89.6	- 11	~ 8.8	12.2
74	59-2	165.2	81 -	24.8	87:8	- 12	- 9.6	10.4
78	58· 4	163-4	80	24	86	-13	-10.4	8.6
72	57.6	161.6	29	23·2	84 2	-14	-11-2	6.8
71	56.8	159.8	28	22.4	82.4	15	-12	8
70	58	158 .	27	21.6	80.6	-16	-12.8	8.2
69	55.2	156 2	26	20.8	78.8	- 17	-13.6	1.4
68	54.4	154.4	25	20	77	-18	-14.4	~0.4
67	23.6	153.6	24	19.2	75.2	- 19	-15.2	- 2·2 - 4
66	52.8	150.8	23	18.4	78.4	- 20	-16	- 5·8
65	52	149	22	17.6	71.6	- 21	-16.8	-58 -7.6
64	51.2	147.2	21	16.8	69.8	- 22	- 17:6	- 9·4
68	50.4	145.4	20	16	68	- 23	-18.4	-11.2
62	49.6	148 6	19	15.2	66.2	24 25	- 19 2 - 20	-18
61	48.8	141.8	18	14·4 18·6	64·4 62·6	- 28 28	- 20·8	-14·8
60	48	140	17			- 20 - 27		- 16.6
59	47.2	188.2	16	12.8	60·8	- 27 28	- 21 ·6 - 22 · 4	-18.4
58	46.4	136.4	15	12 11 ·2	57·2	- 28 - 29	- 23·2	- 20.2
57	45.6	184 6	14		55.4	- 29 - 80	- 23 2 - 24	- 20 2 - 22
56	44.8	182·8 181	13 12	10 .4	53·6	- 80 81	- 24 - 24 8	- 23·8
55	44	129-2	12	8.8	£1.8	- 82	-24.8 -25.6	- 25·6
54	48.2	129-2	10	8.8	20	- 83 - 83	- 26·4	- 20 0 - 27 · 4
58	42.4		9	7·2	48·2	- 84	- 20 s	-29.2
52	41.6	125·6 123·8	8	6.4	46.4	-85	- 27 2 - 28	- 81
51 50	40·8 40	123 8	_	5.8	44.8	- 85	- 20	~ 0T
	±v	122	: 7		22 0		•	

469

INDEX.

						PAGE
Alcohol Calculations,						119
Alcohol, Correction for Temperatu	re, .					118
Alcohol Tables,	•			•		112
Alkaline Permanganate Solution,					-	79
Ammonia, ap. gr. of,						75
Ammonium Molybdate Solution,						54
Approximations,	•					86
Aqueous Vapour, Tension of, .						81
Areas and Volumes of Rodies, .						81
Arsenic in Food,		,				149
Atomic Weights,	•					1
Barn Gallon.						59
Barometric Tables,						66
Baumé's Hydrometer,					•	72
Beer Analysis Tables,						98
Beer, Original Gravity of, .					•	100
Bi-rotation,					•	102
Blunt's Modification of Tabarie's	Formula,					101
Butter Analysis Tables, .				•		139
Butter Regulations,	•					141
Calorie, the,				•		150
Calorific Power of Fuel,						151
Chicory in Coffee,	•	` .			•	147
Computation,						85
Oupric Reducing Power,					•	109
Data, Various Useful,				٠	•	81
Densities of Common Substances,						68
Drams per lb. into Percentage, .			•	•		65
Electrical Units,		•	•	•		158

							PAGE
Electro-chemical Equivalents,						•	158
Factors, Various Useful,					•	•	81
Fehling's Solution, .				•		•	109
Food Units,		•		•		•	131
Foreign Moneys and their Equ	ivaler	ıta,		•	•	• •	62
Foreign Weights and their Eq	nivale	nts,		•	•	•	62
Freezing Mixtures, .	•	•			•		64
Gallisin,		•	•	•		•	110
Gases, Coefficients of Absorption	on of,	in Wat	er,		•	•	29
Gases, Correction of Volumes i	or Te	mperatu	LTB,		•	•	67
Gases, Densities of, .		•			•		7
Glycerine, sp. gr. of,			•	•	•		78
Gravimetric Factors, .		•		•	•	•	8
Hardness of Water, Reagents	for,		•	•		•	80
Hardness of Water, Table of,		• •				• .	86
Heat, Data in,				•			150
Herzfeld's Method of Inversion	n,	-		•		•	106
Hydrochloric Acid, sp. gr. of,		•	•		•	•	78
Indicators, Notes on, .	:	•	•	•	•	•	52
Indirect Analysis, Examples	of,	•	•	•	•		40
Joule, the,						150 ((note)
"K," Values of,			•	•		•	111
Kjeldahl Table,		•	•	•	•	•	130
Latent Heat of Water and Ste			•	•	•	•	150
Lead in Citric and Tartaric A	cids,	•	•	•	•	•	147
Logarithmic Factors, Use of,		•		•	•	•	89
Logarithmic Tables, .		•	•	•		• .	2
Logarithms, Notes on,			•	•	•	•	32
Magnesia Mixture, .	•	•	•	•			54
Melting Points of Metals,		•	·	•	•	•	7
Mercury Vapour, Tension of,	•	•	•	•	•	•	70
Micron,		•	•		•	•	57
Міl	•	•	•	•	•	57	(note)
Milk Analyses, Calculation of	f Resu	dte of,	•	•	•	•	142
Milk Regulations,	•		•	•	•	•	148
Milk, sp. gr. of, .		•	•		•	•	145
Milk, Table giving Deficiency	of N	on-fatt	y Solid	is in,	•		144
Milk, Table giving Fat Defici	ency	in,	•	•	•	•	144

N	D	П	X.

353 3 5 4					P	AGB
Molecular Rotation,	•	• •	•			102
Multirotation or Mutarotation,		•				102
Nessler's Solution,		•	•			79
Nitrates by Crum's Method, Example	of,	•				94
Nitrates in Water, Determination of,		•				88
Nitrie Acid, sp. gr. of,			•			78
Nitrogen into Ammonia and Albumin	oids,					128
Nitrogen into Casein, Gelatin, etc,						181
Nitrogen, reduction of c.c. to grams,						83
Nitrometer Analysis,			-			28
Normal Solution, Definition of,						22
Obscuration of Spirits,						117
Oils, Fats, and Waxes, Constants of,						184
Oils, Fats, and Waxes, Definitions of,			-			182
Oxygen, Dissolved, amount of in Dist	illed V	Vater,				97
Parts per 100,000 into grains per gall	on,					91
Percentage Compositions, Table of,	•					42
Percentage into owts., qrs., and lb. pe	r ton,	etc.,				64
Phosphate Tables			_	_		121
Polarimeter Readings, reduction of m	in utes	to deci:	mals of	degree		108
Polarimeter Readings, reduction of m Potash, Caustic, sp. gr. of.	in utes	to deci:	mals of	degree		
Potash, Caustic, sp. gr. of, .						108
4 ·					· · ·	108 76
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc.						108 76 40
Potasi, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents,						108 76 40 54 61
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc Precipitating Powers of Reagents, Prescriptions, Signs used in Medical,			nation			108 76 40 54 61
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescrvatives in Food, Preservatives in Milk and Cream,			nation		146,	108 76 40 54 61 149
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescryatives in Food, Preservatives in Milk and Oream, Proof Spirit,			nation		146,	108 76 40 54 61 149 146
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescrvatives in Food, Preservatives in Milk and Oream, Proof Spirit, Proteins, Factors for,		Octormi	nation		146,	108 76 40 54 61 149 146 116
Potasi, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescrvatives in Food, Preservatives in Milk and Oream, Proof Spirit, Proteins, Factors for, Quiniue,			nation		146,	108 76 40 54 61 149 146 116
Potasi, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescrvatives in Food, Preservatives in Milk and Oream, Proof Spirit, Proteins, Factors for, Quiniue, Quiniue, Tincture of,		Octormi	nation		146,	108 76 40 54 61 149 146 116 131
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescrvatives in Food, Prescrvatives in Milk and Oream, Proof Spirit, Proteins, Factors for, Quinine, Quinine, Tincture of, Quintal,		Octormi	nation		146,	108 76 40 54 61 149 146 116 131 146 148
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescriptions in Food, Prescriptives in Milk and Oream, Proof Spirit, Proteins, Factors for, Quiniue, Quiniue, Quiniue, Reciprocals, Table of,		Octormi	nation		146,	108 76 40 54 61 149 146 116 181 146 146 60
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescriptions in Food, Prescriptives in Milk and Oream, Proof Spirit, Proteins, Factors for, Quinine, Quinine, Tincture of, Quintal, Reciprocals, Table of, Rectified Spirit,	irect I	Cotermi	nation		146,	108 76 40 54 61 149 146 118 191 146 148 60 80
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Ind Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescriptions in Food, Prescriptions in Milk and Oream, Proof Spirit, Proteins, Factors for, Quinine, Quinine, Tinoture of, Quintal, Reciprocals, Table of, Rectified Spirit, Reichert-Meisal Values of Oils and Face	irect I	Determi	nation	of,	146,	108 76 40 54 61 149 146 118 131 146 146 60 80 116
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescriptions in Food, Prescriptions in Milk and Oream, Proof Spirit, Proteins, Factors for, Quinine, Quinine, Tincture of, Quintal, Reciprocals, Table of, Rectified Spirit, Reichert-Meissl Values of Oils and Fasalt in Beer,	irect I	Cotermi	nation	of,	146,	108 76 40 54 61 149 146 118 131 146 146 60 80 116 137
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescriptions in Food, Prescriptives in Milk and Oream, Proof Spirit, Proteins, Factors for, Quiniue, Quiniue, Quiniue, Tincture of, Quintal, Reciprocals, Table of, Rectified Spirit, Reichert-Meissl Values of Oils and Fasalt in Beer, Saponification Equivalent,	irect I	Determi	nation	of,	146,	108 76 40 54 61 149 146 118 181 148 60 80 116 187 99
Potash, Caustic, sp. gr. of, Potassium and Sodium Chlorides, Inc. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Prescriptions in Food, Prescriptions in Milk and Oream, Proof Spirit, Proteins, Factors for, Quinine, Quinine, Tincture of, Quintal, Reciprocals, Table of, Rectified Spirit, Reichert-Meissl Values of Oils and Fasalt in Beer,	irect I	Determi	nation	of,	146,	108 76 40 54 61 149 146 118 181 146 60 80 116 187 99 188

·					PAG
Sewage Effluents, Standards for,					9
Soda, Caustic, sp. gr. of, .					7
Specific Rotatory Power,					10
Specific Rotatory Power, Exampl	es of,				10
Spirits, Rules for finding Dilution	n of, .				11
Standard Solutions, Correction for	r Tem	peratur	е, .		2
Starch Indicator,	,				8
Sulphuric Acid, sp. gr. of,					7
Thermo-Chemistry, Data in, .					15
Thermometric Degrees, Rules for	Conve	rsion o	f, .		15
Thermometric Tables,					15
Thompson's Calorimeter, .					15
Thresh's Starch Solution,					9
Ton, Metric,					6
Turmerio Paper,					5
Twaddell's Hydrometer,					8
Useful Factors and Data, .					8:
Volumetric Factors,					2
Water Analysis, Reagents for,					71
Water Analysis Results, Calculat	ion of,				98
Water Analysis Results, Method	of Reco	ording,			91
Water Analysis, Tables for, .					83
Water, Volume and Density at D	ifferent	Temp	e ra ture	8, .	7
Water, Weight of 1 cubic inch, fo					56

