Linguaggi e Grammatiche Liberi da Contesto

N.Fanizzi-V.Carofiglio

Dipartimento di Informatica Università degli Studi di Bari

22 aprile 2016

- Linguaggi Liberi da Contesto
 - Alberi di Derivazione
 - Derivazioni Canoniche
 - Principio di sostituzione di sottoalberi
 - Pumping Lemma per linguaggi Liberi
 - Ambiguità
- 2 Esercizi

Grammatiche e Linguaggi Liberi da Contesto

- G = (X, V, S, P) è una grammatica libera da contesto sse: $v \longrightarrow w \in P$ dove $v \in V$.
- Il linguaggio L(G) si dice **linguaggio libero da contesto**.
- Il nome deriva dal fatto che un non terminale può essere sostituito indipendentemente dal contesto della forma di frase dove si trova.
- La sostituzione è sempre valida.
- Appartiene a questa categoria la maggior parte dei linguaggi di programmazione.

Alberi

Le derivazioni di una grammatica libera possono essere rappresentate graficamente da *alberi*

Albero: Grafo orientato, aciclico, connesso con al più un arco entrante per ogni nodo

La <u>frontiera</u> dell'albero è rappresentata dalle foglie lette da sinistra verso destra

La <u>lunghezza</u> di un cammino dalla radice ad una foglia è data dal numero di non terminali incontrati L'<u>altezza</u> dell'albero è data dalla lunghezza del cammino più lungo

Alberi di Derivazione

Data una grammatica libera G = (X, V, S, P) e $w \in X^*$ tale che $S \stackrel{*}{\Longrightarrow} w$ un albero di derivazione di w ha le seguenti proprietà:

- \bullet radice = S
- onodi interni = V
- **3** se il nodo interno è A e A_1, A_2, \ldots, A_k sono i figli del nodo A allora $\exists A \longrightarrow A_1 A_2 \cdots A_k \in P$

 w si ottiene leggendo e concatenando le foglie da sinistra a destra

Osservazioni.

Un albero di derivazione non impone alcun ordine nell'applicazione delle produzioni in sequenza per ottenere una derivazione

- data una derivazione esiste uno ed un solo albero che la rappresenta
- dato un albero di derivazione esistono più derivazioni possibili a seconda dell'ordine scelto per l'applicazione delle produzioni

Alberi di Derivazione Derivazioni Canoniche Principio di sostituzione di sottoalberi Pumping Lemma per linguaggi Liberi Ambiguità

Esempio. Data una grammatica libera G = (X, V, S, P) con $X = \{a\}, V = \{S, H\}$ e $P = \{S \xrightarrow{1} Ha, H \xrightarrow{2} HS, H \xrightarrow{3} a\}$ La stringa aaaa è in L(G), come dimostra l'albero:

Da cui la stringa si ricava sia tramite:

$$S \Longrightarrow_1 Ha \Longrightarrow_2 HSa \Longrightarrow_3 aSa \Longrightarrow_1 aHaa \Longrightarrow_3 aaaa$$

sia con:

$$S \Longrightarrow_1 Ha \Longrightarrow_2 HSa \Longrightarrow_1 HHaa \Longrightarrow_3 Haaa \Longrightarrow_3 aaaa$$

Derivazioni Canoniche

Data una grammatica G = (X, V, S, P) si dirà che la derivazione

$$S \Longrightarrow w_1 \Longrightarrow w_2 \Longrightarrow \cdots \Longrightarrow w_n = w$$

con
$$w_i = y_i A z_i$$
 e $w_{i+1} = y_i w_i z_i$, $i = 1, ..., n-1$ è una derivazione canonica destra (risp. canonica sinistra) sse per ogni $i = 1, ..., n-1$ risulta:

$$z_i \in X^*$$
 (risp. $y_i \in X^*$)

Esempio.

Considero la grammatica con produzioni:

$$P = \left\{ \begin{array}{ccc} S & \longrightarrow & 0B|1A \\ A & \longrightarrow & 0|0S|1AA \\ B & \longrightarrow & 1|1S|0BB \end{array} \right\}$$

Derivazione sinistra di 0011:

$$S \Longrightarrow 0B \Longrightarrow 00BB \Longrightarrow 001B \Longrightarrow 0011$$

Derivazione destra di 0011:

$$S \Longrightarrow 0B \Longrightarrow 00BB \Longrightarrow 00B1 \Longrightarrow 0011$$

Alberi di Derivazione Derivazioni Canoniche Principio di sostituzione di sottoalberi Pumping Lemma per linguaggi Liberi Ambiguità

Principio di sostituzione di sottoalberi

Iterando:

Alberi di derivazione si possono sostituire con sottoalberi alberi di pari radice (non terminale)

- La lunghezza delle parole così ottenute cresce in maniera costante (lineare) quindi un linguaggio con parole che crescono in modo esponenziale non può essere libero
- <u>Generalizzazione</u>: supposto di incontrare almeno due volte un non terminale *A* nell'albero di derivazione di *z*.
 - il sottoalbero più basso con radice A genera w
 - quello più alto genera vwx
 - sostituendo l'albero più alto con il più basso si ottiene una derivazione valida della stringa uwy
 - invece, sostituendo quello più basso con quello più alto si ottiene una derivazione della stringa uvvwxxy cioè uv²wx²y
 - iterando questa sostituzione si ottiene l'insieme

$$\{uv^nwx^ny\mid n\geq 0\}$$

Linguaggi Liberi da Contesto

Alberi di Derivazione Derivazioni Canoniche Principio di sostituzione di sottoalberi Pumping Lemma per linguaggi Liberi Ambiguità

Proposizione. Ogni linguaggio libero infinito deve contenere almeno un sottinsieme infinito di stringhe della forma

$$uv^nwx^ny \quad n \ge 0$$

Lemma. Data una grammatica G = (X, V, S, P) libera, supponiamo che

$$m = \max\{|w| \in \mathbb{N} \mid A \longrightarrow w \in P\}$$

Sia T_w un albero di derivazione per una stringa w di L(G). Se l'altezza di T_w è al più pari a $j \in \mathbb{N}$, allora $|w| \leq m^j$ **Dim.** Per induzione sull'altezza j:

(base)
$$j = 1 : |w| \le m = m^1$$

(passo) supponendo che il lemma valga per albero di altezza pari al più a j e la cui radice sia un non terminale, si deve dimostrare la tesi per j+1: Sia $A \longrightarrow v$, dove $v = v_1 v_2 \cdots v_k$, |v| = k, $k \le m$ la prod. che determina il livello più alto dell'albero Ogni simbolo $v_i \in v$, $i=1,\ldots,k$ può avere altezza al più uguale a j, essendo T_w in questo caso di altezza j+1 Per ipotesi di induzione, questi alberi hanno al più m^j foglie. Poiché $|v| = k \le m$ la stringa w frontiera di T_w avrà lunghezza:

$$|w| \le m^j + m^j + \dots + m^j = |v| \cdot m^j = k \cdot m^j \le m \cdot m^j = m^{j+1}$$

Pumping Lemma per linguaggi Liberi

Teorema uvwxy.

Sia L un linguaggio libero da contesto. Esiste una costante p dipendente solo da L, tale che se z è una parola di L di lunghezza maggiore di p (|z| > p), allora z può essere scritta come uvwxy in modo che:

- $|vwx| \leq p$
- ② al più uno tra $v \in x$ è la parola vuota $(vx \neq \lambda)$

Alberi di Derivazione Derivazioni Canoniche Principio di sostituzione di sottoalber Pumping Lemma per linguaggi Liberi Ambiguità

Dim. Sia *G* una grammatica che genera *L*

$$m = \max\{|v||A \longrightarrow v \in P\} \text{ e } k = |V|$$

Posto $p = m^{k+1}$, consideriamo $z \in L$ tale che |z| > p

Per il lemma: $|z| > p = m^{k+1}$ allora ogni albero di derivazione per z ha un'altezza maggiore di k+1, cioè esiste un cammino di lunghezza maggiore o uguale a k+2.

Ma k = |V| quindi sul cammino ci sono almeno due NT ripetuti o un NT che compare 3 volte. Sia A l'NT ripetuto più in alto

Siccome A è l'NT ripetuto più in alto non vi sono altri NT ripetuti almeno due volte sotto la A più in alto, quindi il cammino dalla A superiore ad una foglia ha lunghezza al più k+1

Chiamiamo vwx la stringa derivata dal sottoalbero radicato nella A superiore, dove w è la sottostringa derivata dall'A inferiore

- **1** Dal Lemma risulta: $|vwx| \le m^{k+1} = p$
- 2 Per assurdo se fosse $v = \lambda = x$ la sostituzione dell'albero radicato nell'A superiore con quello inferiore non provoca nessun cambiamento.
 - Ma in tal caso esiste un cammino di lunghezza inferiore. Si ottiene un albero di derivazione di z di altezza al più pari a k+1.

Assurdo.

Applicando il principio di sostituzione a z = uvwxy sostituiamo il sottoalbero radicato nell'A inferiore con quello dell'A superiore ottenendo: $uwy = uv^0wx^0y$ Con la sostituzione inversa: uv^2wx^2y e ripetendo i − 1 volte: uv^iwx^iy

Osservazioni.

- Dato un linguaggio generato da una grammatica non libera non si può escludere che esista una grammatica libera che lo generi
- se un linguaggio infinito non rispetta il Pumping Lemma dei linguaggi liberi non potrà essere generato da una grammatica libera
- quindi questo teorema fornisce una condizione necessaria (ma non sufficiente) perché un linguaggio sia libero
- Si può utilizzare per dimostrare (per assurdo) che un linguaggio non sia libero

Ambiguità

Una grammatica G libera da contesto si dice **ambigua** sse esiste una stringa x in L(G) che ha due alberi di derivazione differenti ovvero sse x ha due derivazioni sinistre (o destre)

Esempio. La grammatica libera G = (X, V, S, P) con

$$X = \{a, +\}, \qquad V = \{S\} \text{ e } P = \{S \longrightarrow S + S, \quad S \longrightarrow a\}$$

è una grammatica ambigua.

Ad es. w = a + a + a ottenibile con

Linguaggi Inerentemente Ambigui

Un linguaggio G si dice **inerentemente ambiguo** sse ogni grammatica che lo genera è ambigua

Esempio.

$$L = \{a^{i}b^{j}c^{k} \mid i, j, k > 0, (i = j) \lor (j = k)\}$$

Alberi di Derivazione Derivazioni Canoniche Principio di sostituzione di sottoalber Pumping Lemma per linguaggi Liberi Ambiguità

Esempio. G = (X, V, S, P)con $X = \{\text{if}, \text{then}, \text{else}, \text{a}, \text{b}, \text{p}, \text{q}\}, V = \{S, C\}$ $P = \{S \longrightarrow \text{if } C \text{ then } S \text{ else } S \mid \text{if } C \text{ then } S \mid \text{a} \mid \text{b}, C \longrightarrow \text{p} \mid \text{q} \}$ Si consideri w = if p then if then a else b

Per ottenere G' = (X, V', S, P') non ambigua usiamo la convenzione di associare ogni else alla if più vicina:

$$V' = V \cup \{S_1, S_2, T\} \ P' = \left\{egin{array}{l} S & \longrightarrow S_1 \mid S_2 \ S_1 & \longrightarrow ext{if C then S_1 else $S_2 \mid T$} \ S_2 & \longrightarrow ext{if C then $S \mid ext{if C then S_1 else $S_2 \mid T$} \ C & \longrightarrow p \mid q \ T & \longrightarrow ext{a} \mid b \end{array}
ight.$$

Esercizi.

Dimostrare che i seguenti linguaggi non sono liberi da contesto:

- $L = \{a^t \mid t \text{ primo}\}$
- $L = \{a^n b^n c^n \mid n > 0\}$
- $L = \{a^{n^2} \mid n \ge 0\}$
- $L = \{a^i b^j \mid i = 2^j, i, j \ge 0\}$
- $L = \{a^k b^r \mid k > 0, r > k^2\}$

Esercizio 2. Dimostrare che $L = \{a^n b^n c^n | n > 0\}$ non è libero

Supponiamo che L sia libero.

Vale il *Pumping Lemma* per un certo $p \in \mathbb{N}$.

Si consideri $z = uvwxy = a^p b^p c^p \in L$ tale che |z| = 3p > p ma |vwx| < p

Per vwx si hanno le seguenti possibilità.

In tutti questi casi si dimostra che $uv^2wx^2y \notin L$ quindi L non può essere libero.

• $vwx = a^k$, $0 < k \le p$ aggiungendo almeno a ed al più a^p si ottiene:

$$uv^2wx^2y = a^{p+k}b^pc^p$$

- $vwx = b^k$, $0 < k \le p$ analogamente
- $vwx = c^k$, $0 < k \le p$ analogamente

- $vwx = a^k b^r$, $0 < k + r \le p$ per la 2. del Pumping Lemma:
 - $v \neq \lambda, x \neq \lambda$: se $v \neq \lambda$ allora $v = a^{k'}$ perchè se fosse $v = a^k b^{r'}$ allora

$$uv^2wx^2y = a^{p-k}a^kb^{r'}a^kb^{r'}b^sc^p \notin L$$

con $p \le s \le 2(r - r') + p - r$ Analogamente $x \ne \lambda$ implica che $x = b^{r'}$ per cui:

$$uv^2wx^2y = a^{p+k'}b^{p+r'}c^p \notin L$$

- $\mathrm{per}\ k', r'>0$
- 2 $v \neq \lambda$, $x = \lambda$ per le considerazioni fatte: $v = a^{k'}$, $0 < k' \le k$ e

$$uv^2wx^2y=a^{p+k'}b^pc^p\not\in L$$

- $v = \lambda, x \neq \lambda$: analogamente
- $vwx = b^k c^r$, $0 < k + r \le p$ caso analogo al precedente

Esercizio 3. Dimostrare che $L = \{a^{n^2} \mid n \ge 0\}$ non è libero

Consideriamo $L = \{\lambda, a, aaaa, a^9, a^{16}, \ldots\}$ e supponiamo che sia libero.

Vale il *Pumping Lemma* per un certo $p \in \mathbb{N}$.

Considero allora $z = uvwxy = a^{p^2} \in L$ tale che $|z| = p^2 > p$

Anche $uv^2wx^2y \in L$ (per la 3. del Lemma)

Ma si osservi I catena di maggiorazioni:

$$|uv^2wx^2y| = |uvwxy| + |vx| = |z| + |vx| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$$
 rissumendo: $|uv^2wx^2y| < (p+1)^2$

Inoltre
$$|uv^2wx^2y| = |z| + |vx| > |z| = p^2$$

Perciò z ha una lunghezza compresa (non uguale) tra due quadrati successivi, ciò implica che $uv^2wx^2y \not\in L$.

Assurdo, quindi L non è libero

