Indian Institute of Technology Gandhinagar

CL 317 Process Synthesis, Design, and Simulation

Interim project report (mid-semester)

Conversion of CO₂ to Methanol

Group Members

Ishan Agarwal (22110100), Keshav Sobania (22110118), Kaushik (22110113) Susmita R (22110265), Anushri Sanodia (22110030), Ankit Singh (2211025) Bukke Ashwini Shankar (22110052)

Under the guidance of

Prof. Hari Ganesh

Introduction:

The increasing levels of carbon dioxide (CO₂) emissions have raised significant concerns about climate change and environmental sustainability. One promising approach to mitigating CO₂ accumulation is its utilization in chemical synthesis, particularly in the production of methanol through CO₂ hydrogenation. Methanol is a valuable chemical feedstock widely used in fuel production, energy storage, and the synthesis of formaldehyde, acetic acid, and other industrial chemicals.

This project focuses on modeling and simulating the methanol production process using Aspen Plus. A critical aspect of this study involves selecting an appropriate thermodynamic model to accurately describe phase equilibria and gas solubilities. The RKSMHV2 model was chosen due to its predictive capability and flexibility, and its performance was compared with other models, including NRTL, NRTL-RK, and Peng-Robinson, by generating Txy and Pxy diagrams.

Further, a process flow sheet was developed, incorporating a reactor (RPlug), compressors, and separation units to simulate the methanol synthesis process. The simulation results were analyzed to determine the methanol yield and evaluate the efficiency of different process configurations. This study aims to identify optimal thermodynamic models and process setups that enhance methanol production efficiency while addressing sustainability challenges related to CO₂ utilization.

System description:

Scheme 1:

- The model includes six components: carbon dioxide (CO₂), hydrogen (H₂), carbon monoxide (CO), methanol (CH₄O), nitrogen (N₂), and water (H₂O).
- To account for mixture properties, the RX MHV2 thermodynamic model is applied.

Reaction:

$$CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O$$

$$CO + H_2O \leftrightarrow CO_2 + H_2$$

Rxn No.	Reaction type	Stoichiometry	Delete
1	Kinetic	CO + 2 H2> CH3OH(MIXED)	×
2	Kinetic	CO2 + H2> CO(MIXED) + H2O(MIXED)	×
3	Kinetic	CO2 + 3 H2> CH3OH(MIXED) + H2O(MIXED)	×

Method used: PENG ROB

CO₂-to-Methanol Production Process:

1. CO₂ Compression and Mixing with Hydrogen

Carbon dioxide (CO₂) is compressed using a three-stage compressor to increase its pressure for efficient reaction. The compressed CO₂ is then mixed with hydrogen (H₂) to form a reactant mixture in the desired stoichiometric ratio for methanol synthesis.

2. Heating and Reactor Stage

The CO₂-H₂ mixture is heated to the required temperature for methanol synthesis. The heated gas is fed into an RPlug reactor, where the reaction occurs.

Rxn No.	Reaction type	Stoichiometry	Delete
1	Kinetic	CO + 2 H2> CH3OH(MIXED)	×
2	Kinetic	CO2 + H2> CO(MIXED) + H2O(MIXED)	×
3	Kinetic	CO2 + 3 H2> CH3OH(MIXED) + H2O(MIXED)	×

Inside the reactor, methanol and water are formed as products, along with some unreacted gases.

3. Cooling and Pressure Reduction

The reactor's product stream is cooled to condense methanol and water while keeping unreacted gases in vapor form. The pressure is reduced using a control valve, preparing the stream for separation.

4. Flash Separation

- The cooled stream undergoes further chilling to reach a lower temperature, enhancing phase separation.
- It enters a flash separator, where the mixture is split:
- 30% of the contents (mainly unreacted gases) are removed.
- 70% of the vapor is recycled to improve process efficiency.

5. Vapor Recompression and Condensation

- The recycled vapor is compressed and converted into liquid form.
- This liquid is then processed to extract methanol.

6. Distillation for Methanol Purification

The condensed liquid is sent to a distillation column where Methanol is obtained as the distillate and water and other impurities are removed as bottoms.

7. Final Methanol Compression

The methanol vapor is compressed to obtain liquid methanol, which is the final product ready for storage or further use.

Methodology:

Flowsheet designed:

PARAMETERS FOR FEED:

Preliminary results:

Results obtained:

We can see the molar flow rates, mole fractions, mass flow rates, temperature, etc in the results obtained below:

		Units	-	S39 •	S40 ▼	S41 ▼	S42 ▼	S43 ▼	S44 ▼	S46 ▼	S47
-	MIXED Substream										
	Phase					Vapor Phase	Liquid Phase		Liquid Phase	Vapor Phase	Vapor Phase
	Temperature	С	6	36.2394	34.5038	37	37	67	99.5776	75.5411	92.54
	Pressure	bar	8	10	1.2	1.2	1.2	1.1	1	1	
	Molar Vapor Fraction		1	0.0212589	0.028399	1	0	0.00113507	0	1	
	Molar Liquid Fraction		0	0.978741	0.971601	0	1	0.998865	1	0	
	Molar Solid Fraction		0	0	0	0	0	0	0	0	
	Mass Vapor Fraction		6	0.00387181	0.00939658	1	0	0.00104858	0	1	
	Mass Liquid Fraction		6	0.996128	0.990603	0	1	0.998951	1	0	
	Mass Solid Fraction		0	0	0	0	0	0	0	0	
	Molar Enthalpy	cal/mol	2	-60380.2	-60380.2	-11036.2	-61803.1	-61171.4	-66942.7	-50284.9	-5010
	Mass Enthalpy	cal/gm	8	-2353.06	-2353.06	-1218.67	-2362.55	-2338.4	-3715.89	-1794.47	-178
	Molar Entropy	cal/mol-K	4	-47.963	-47.8319	-2.33282	-49.0035	-47.0595	-35.0263	-22.3681	-22.23
	Mass Entropy	cal/gm-K	6	-1.86915	-1.86404	-0.257601	-1.87326	-1.79895	-1.94425	-0.79823	-0.7933
	Molar Density	mol/cc	7	0.0104668	0.00155067	4.66039e-05	0.0240863	0.0139423	0.0393429	3.49964e-05	4.00677e-

Materi	ial Heat Load Work	Power Vol.% Cur	ves Wt. % Curves	Petroleum I	Polymers Solids						
		Units	S7 ▼	S8 ·	S9 •	S11 ▼	S12 ▼	S13 ▼	S14 ▼	S29 ▼	
>	Phase		Vapor Phase	Vapor Phase	Vapor Phase	Vapor Phase	Vapor Phase	Vapor Phase	Vapor Phase	Vapor Phase	
•	Temperature	С	168.312	38	156.084	150.384	151.425	136.355	210	284	
	Pressure	bar	28.3	28.3	78	78	78	78	75	75	
)	Molar Vapor Fraction		1	1	1	1	1	1	1	1	
>	Molar Liquid Fraction		0	0	0	0	0	0	0	0	
	Molar Solid Fraction		0	0	0	0	0	0	0	0	
•	Mass Vapor Fraction		1	1	1	1	1	1	1	1	
	Mass Liquid Fraction		0	0	0	0	0	0	0	0	
•	Mass Solid Fraction		0	0	0	0	0	0	0	0	
>	Molar Enthalpy	cal/mol	-72537.3	-73807.4	936.797	-72891.3	-17629.9	-15226.1	-14655.7	-30699.8	
•	Mass Enthalpy	cal/gm	-1849.97	-1882.36	464.709	-1859	-1550.61	-1490.29	-1434.47	-1749.44	
>	Molar Entropy	cal/mol-K	4.7542	1.34559	-6.10952	1.96854	-2.96662	-3.41561	-2.05485	-14.3075	
>	Mass Entropy	cal/gm-K	0.12125	0.0343176	-3.03069	0.050205	-0.260924	-0.334313	-0.201125	-0.815316	
>	Molar Density	mol/cc	0.000780563	0.00119453	0.00210593	0.00230729	0.00215961	0.00223572	0.00181995	0.00174801	
•	Mass Density	gm/cc	0.0306059	0.0468374	0.0042453	0.0904689	0.0245541	0.0228419	0.0185941	0.0306747	
	Fallandan Flann	.,	F 03734 - 07	F 40554 . 07	103530	F 00400 - 07	100027 .07	105022 . 07	170107 .07	F 04444 - 07	-1

Molar flow rate and Mass flow rate:

laterial	Heat Load Wor	c Power Vol.% C	urves	Wt. % Curves	Petroleum Polyr	ners Solids					
		Units	-	S41 ▼	S42 ▼	S43 ▼	S44 ▼	S46 ▼	S47 ▼	S48 ▼	
	Mass Density	gm/cc	6	0.000422043	0.630085	0.364722	0.708774	0.000980674	0.00112278	0.551998	
	Enthalpy Flow	cal/sec	7	-384310	-7.15852e+07	-7.08535e+07	-1.44327e+07	-4.74026e+07	-4.72369e+07	-5.67601e+07	
	Average MW		3	9.05594	26.1595	26.1595	18.0153	28.0221	28.0221	28.0221	
-	Mole Flows	kmol/hr	7	125.362	4169.8	4169.8	776.154	3393.65	3393.65	3393.65	
	CO	kmol/hr	8	8.38541	0.155074	0.155074	8.37856e-171	0.155074	0.155074	0.155074	
	CO2	kmol/hr	8	0.038113	0.00788507	0.00788507	6.39999e-133	0.00788507	0.00788507	0.00788507	
	H2O	kmol/hr	3	3.4062	1746.13	1746.13	776.154	969.971	969.971	969.971	
	СНЗОН	kmol/hr	7	20.2649	2422.3	2422.3	1.5903e-34	2422.3	2422.3	2422.3	
	H2	kmol/hr	1	93.2669	1.21414	1.21414	4.59722e-170	1.21414	1.21414	1.21414	
-	Mole Fractions										
	CO		9	0.0668898	3.71897e-05	3.71897e-05	1.0795e-173	4.56953e-05	4.56953e-05	4.56953e-05	
	CO2		5	0.000304024	1.89099e-06	1.89099e-06	8.24577e-136	2.32348e-06	2.32348e-06	2.32348e-06	
	H2O		6	0.027171	0.418755	0.418755	1	0.285819	0.285819	0.285819	
	СНЗОН		8	0.161652	0.580915	0.580915	2.04895e-37	0.713775	0.713775	0.713775	
	H2		1	0.743983	0.000291174	0.000291174	5.92307e-173	0.000357767	0.000357767	0.000357767	
	M			4425.27	100000	100000	12002.6	75077	05007.0	05007.0	

	Units	CO2 *	H2 ▼	METHANOL ▼	S1 ▼	S3 *	S4 ▼	S5 ▼	S6 ▼	S7
 Mole Fractions 										
со		0.3	0	3.84611e-06	0	0.3	0.3	0.3	0.3	0.
CO2		0.7	0	3.13483e-06	0	0.7	0.7	0.7	0.7	0.
H2O		0	0	0.28413	0	0	0	0	0	
CH3OH		0	0	0.715847	0	0	0	0	0	
H2		0	1	1.57025e-05	0	0	0	0	0	
+ Mass Flows	kg/hr	98025	15000	95930.4		98025	98025	98025	98025	9802
- Mass Fractions										
CO		0.214311	0	3.83982e-06	0	0.214311	0.214311	0.214311	0.214311	0.21431
CO2		0.785689	0	4.91738e-06	0	0.785689	0.785689	0.785689	0.785689	0.78568
H2O		0	0	0.182444	0	0	0	0	0	
CH3OH		0	0	0.817546	0	0	0	0	0	
H2		0	1	1.12825e-06	0	0	0	0	0	
Volume Flow	I/min	1.02919e+06	103968	1995.48		516225	395887	173005	119147	52944.

∕later	ial Heat Load Work	Power Vol	.% Curves	Wt. % Curves	Petroleum	Polyme	rs Solids	1	1			
		Units		S8 •	S9	▼ S1	1 •	S12 ▼	S13 ▼	S14 ▼	S29 •	S30
	 Mole Fractions 											
	CO			0.3		0	0.3	0.0754457	0.0733278	0.0733278	0.0239478	0.023947
	CO2			0.7		0	0.7	0.17604	0.149522	0.149522	1.98718e-05	1.98718e-0
	H2O			0		0	0	0	7.88729e-05	7.88729e-05	0.256935	0.25693
	CH3OH			0		0	0	0	0.00048368	0.00048368	0.35963	0.3596
	H2			0		1	0	0.748514	0.776587	0.776587	0.359468	0.35946
	- Mass Flows	kg/hr		98025	1500	00	98025	113025	119581	119581	119581	11958
	CO	kg/hr		21007.8		0	21007.8	21007.8	24040.1	24040.1	4571	457
	CO2	kg/hr		77017.2		0	77017.2	77017.2	77019.9	77019.9	5.95953	5.9595
	H2O	kg/hr		0		0	0	0	16.6309	16.6309	31542.1	31542
	CH3OH	kg/hr		0		0	0	0	181.396	181.396	78524.3	78524
	H2	kg/hr		0	1500	00	0	15000	18323.3	18323.3	4938	493
	+ Mass Fractions											
	Volume Flow	l/min		34881.3	58888	.7	18058.7	76718.3	87252.7	107186	64972.8	21572
	+ Vapor Phase											

CONCLUSION FROM ASPEN SIMULATION:

The final methanol conversion is 0.715847 as shown in the desired methanol stream.

со	0.3	0	3.84611e-06
CO2	0.7	0	3.13483e-06

The final mole fractions of Carbon monoxide and Carbon dioxide is : $3.84 * 10^{-6}$ and $3.13 * 10^{-6}$. The conversion efficiency of CO is 99.96 % and CO2 is 99.99% from these results obtained from Aspen.

P-x Diagram Analysis for CO₂ Solubility

Figure: P-x of CO2 in CH₃OH(Methanol) at 323.15K

Figure: P-x of CO2 in H20(water) at 323.15K.

In this study, the solubility of CO₂ in methanol and water was analyzed using three thermodynamic models: **RKSM V2**, **Peng-Robinson (PR)**, and **NRTL**. The predicted solubilities were compared against experimental data at **323.15 K** to assess the accuracy of these models.

Key Observations from P-x Diagrams:

1. CO₂ Solubility in Methanol:

- **RKSMHV2** provided the best solubility predictions, with minimal deviations from experimental values.
- **Peng-Robinson (PR)** under-predicted solubility, except for the CO₂-methanol system, where the results were more accurate.
- NRTL produced relatively accurate solubility estimates, particularly when Henry's constants were specified.

2. CO₂ Solubility in Water:

- **Both RKSMHV2 and NRTL overestimated solubility**, with RX MHV2 showing greater deviation.
- The solubility of CO₂ in water was significantly lower than in methanol, meaning these deviations had minimal impact on process simulation results.
- PR performed the worst for CO₂-water predictions, further confirming its limitations in handling polar systems.

Conclusion:

The analysis of P-x diagrams confirmed that RKSMHV2 is a **suitable thermodynamic model for methanol-based systems**, as it **accurately predicts CO₂ solubility in methanol while maintaining computational efficiency**. Despite its minor overestimation in water, the deviations do not significantly impact the overall process design. The results from this study align with previous literature, reinforcing the choice of RKSMHV2 for reactor and separation unit simulations.

T-x-y Diagram Analysis for Methanol-Water System

Figure: Comparison of RKSMHV2, NRTL, NRTL-RK, and Peng Robinson(T-xy diagram).

The phase equilibrium behavior of the methanol-water system was analyzed by generating T-x-y diagrams using four thermodynamic models: RKSMV2, NRTL, NRTL-RK, and Peng-Robinson (PR). The objective was to compare their accuracy in predicting vapor-liquid equilibrium (VLE) and determine the most suitable model for process simulation.

Key Observations from T-x-y Diagrams:

1. Overall Agreement Between Models:

- The **bubble point** (liquid-to-vapor transition) and **dew point** (vapor-to-liquid transition) curves were closely aligned for all models, confirming their reliability for VLE calculations.
- RKSMHV2, NRTL, and NRTL-RK provided **similar temperature predictions**, with minor deviations in composition regions.
- **Peng-Robinson showed slight deviations** in the vapor phase region, likely due to its cubic equation of state approach.

2. Model-Specific Differences:

- **Our State of the Point Temperatures:**
 - RKSMHV2 predicted slightly **lower bubble point temperatures** compared to NRTL models.
 - NRTL and NRTL-RK showed **higher bubble points**, likely due to their explicit treatment of molecular interactions.

Output Dew Point Temperatures:

- RKSMHV2 and Peng-Robinson predicted **higher dew point temperatures**, suggesting that equation-of-state models overestimate vapor-phase methanol concentrations.
- NRTL-based models provided **more accurate liquid-phase equilibrium data** due to their activity coefficient approach.

Conclusion:

The T-x-y diagram analysis confirms that all models provide reasonable phase equilibrium predictions, with RKSMHV2 emerging as the preferred choice due to its balance between predictive accuracy and computational efficiency. While NRTL-based models offer precise liquid-phase data, RKSMV2's ability to model polar and non-polar compounds without requiring binary interaction parameters makes it ideal for methanol-water and methanol-hydrogen systems.

This validation ensures that RKSMHV2 can be confidently used for reactor and separation unit simulations in Aspen Plus, supporting accurate process design and optimization.

Future Work:

For our future work, we plan to implement an optimized dual-stage reactor system that integrates both non-adiabatic and adiabatic reactors to enhance methanol synthesis efficiency. The first-stage non-adiabatic reactor will enable higher conversion at lower temperatures, while the second-stage adiabatic reactor will sustain reaction rates under reduced reactant concentrations.

We also aim to optimize heat recovery by effectively utilizing waste heat to generate steam, minimizing energy deficits, and improving overall process sustainability. This approach will not only enhance conversion efficiency but also reduce operational costs, making the process more economically and environmentally viable.

We also aim to design and develop and develop a flowsheet for the conversion of methanol to formaldehyde.

References:

(1)Chiou, H.-H.; Lee, C.-J.; Wen, B.-S.; Lin, J.-X.; Chen, C.-L.; Yu, B.-Y. Evaluation of Alternative Processes of Methanol Production from CO2: Design, Optimization, Control, Techno-Economic, and Environmental Analysis. *Fuel* 2023, *343*, 127856–127856. https://doi.org/10.1016/j.fuel.2023.127856.