Bézier Curves

CPSC 453 – Fall 2016 Sonny Chan

Today's Outline

- Motivation
- Quadratic Bézier curves
 - de Casteljau formulation
 - Bernstein polynomial form

How might we represent a

freeform shape?

The Goal:

Create a system that provides an accurate, complete, and indisputable definition of freeform shapes.

Parametric Segment by Linear Interpolation

$$\mathbf{p}(u) = \operatorname{lerp}(\mathbf{p}_0, \mathbf{p}_1, u)$$
$$= (1 - u)\mathbf{p}_0 + u\mathbf{p}_1$$

de Casteljau's Algorithm (quadratic)

$$\mathbf{p}_0^1 = \operatorname{lerp}(\mathbf{p}_0, \mathbf{p}_1, u)$$

$$\mathbf{p}_1^1 = \text{lerp}(\mathbf{p}_1, \mathbf{p}_2, u)$$

$$\mathbf{p}(u) = \operatorname{lerp}(\mathbf{p}_0^1, \mathbf{p}_1^1, u)$$

Bernstein Polynomials

$$b_{0,2}(u) = (1-u)^2$$

$$b_{1,2}(u) = 2u(1-u)$$

$$b_{2,2}(u) = u^2$$

Bernstein Form of a Quadratic Bézier

$$\mathbf{p}(u) = (1 - u)^{2} \mathbf{p}_{0} + 2u(1 - u)\mathbf{p}_{1} + u^{2} \mathbf{p}_{2}$$

$$= b_{0,2}(u)\mathbf{p}_{0} + b_{1,2}(u)\mathbf{p}_{1} + b_{2,2}(u)\mathbf{p}_{2}$$

$$= \sum_{i=0}^{2} b_{i,2}(u)\mathbf{p}_{i}$$

$$\mathbf{p}_{0}$$

Property #1:

endpoint interpolation

Endpoint Interpolation

Property #2:

endpoint tangents

Endpoint Tangents

$$\mathbf{p}'(0) = 2(\mathbf{p}_1 - \mathbf{p}_0)$$

Property #3:

convex hull

Convex Hull

Bézier Splines

of the 2nd degree

Splines are just curve segments joined together:

 G^1 continuity: $\mathbf{p}'(1) = s\,\mathbf{q}'(0), s \in \mathbb{R}^+$

Is it smooth?

To be continued...