01.			Jo	hs			
		1	2	3	4	5	
	I	8	4	20	7	1	Conditions
	I	0	9	5	5	4	1. NO. 9 ROWS = NO. 9 columns 2. Matrix is minimization matrix
Mez	世	3	8	9	2	6	2. Matrix is minimization matrix
Σ	IV	4	3	1	0	3	
	I	9	5	8	9	5	
0	STEP.	1: (+	STEP2: COLUMN MINIMA
			T2.			J ₅	J1 J2 J3 J4 J5
	Mı		3		6		M1 7 3 0 6 0
	M2		9			4	M2 0 9 4 5 4
	M3		6			4	M3 1 6 6 0 4
	My	-	3			3	My 4 3 0 0 3
	M5	4	0	3	4	0	M5 4 0 2 4 0
	STEP	3:	Орті	MAL	ITY	Test	STEP 4: ASSIGNMENT
		JI		T ₃	Jy	75	J1 J2 J3 J4 J5
0	М		3	0	6	00	M1 7 3 0 6 0
	M2	0		4	5	4	M2 0 9 4 5 4
	Мз	1	6	G	0	4	M3 1 6 6 0 4
	Мц	-41	3	0	6	30	My 43003
	Ms		0	2	4	0-3	M5 4 0 2 4 0
		4			5		
		Opt	inal	1 30	luli	ion	STEPS: CALCULATION OF MINIMUM TIME
	No.	9 V	utic	al i	and		MEN JOB TIME
	H	of v	onta	l li	ne	= Addy	19 MI J5 1
						Mat	0 -
				5	2	5	M3 J2 2
							My J3 1 TOTAL = 9 this.
							Ms I2 5
	-		-	_	-		

02				Jobs				-		-									
		1	2		4	5	6				(0		ition	4.4					
	I	5	0		8	7	4			1				ws a	المسة	0.0	colu	Mn	8
	I	5	2		0	6	7			2.	N	Inta	2	is Mi	0 1 0 1	200	natri	X	
	TIL	3	4		3	5	2						- 1	(3) 10 001	00100				
200	I	3	9	7	2	7	6	П	TT										
2	I	9	8	7	8	4	5												
	V	1	8	7	4	2	3												
							Account 1												
	STE	P1:	Row	M	NIMA		STE	P2:	Cor	UMN	MI	NIM	4	STEP	3:	OPT	IMALI	TY	TEST
		Ji ·	J ₂ J	T3 J4	Js	JL		Ji	J2	J3	Ju	J5	JG		31	J2 :	J3 J4	Ts	TG
	Mı	5	0 (, 8	7	4	Mi	5	0	4	8	7	4	MI	5		4 8	_	43
	M2	5	2 3	3 0	6	7	M ₂	5	2	1	0	6	7	M2	5	2	1 0		7
	Мз	1	2 2	1	3	D	Мз	1	2	0	1	3	0	Мз	-1		0 1		00
	Мч	1	7 5	0	5	4	Мч	1	7	3	Đ	5	11	Мч	1	7			4
	MS	5	4 3	3 4	0 :		MS	5	4	1	4	0	1	MS		4			10
	M6	0	7 6	, 3	1 2		MG	0	7	4	3	1	2	Mb	0	7	4 3		25
																	(2		F1
	STE	P4: (PTIM	ALITY	TEST			STEP	5:	AS211	UNK	MENT			Non	- opt	inal	soli	ulion
				3 J4						J3									
	Mı	_		1 9			МІ			14				STE	96:		ULAT	_	
	M2		-	0			M2	_		0	1			1.			NIMUN		
	MB			0 2			M3			0	-					_			e.
	My			2 0		_	My	-	06			4	_		11			0	
	MS			1 5			MS			4 1		-		-				3	
	M6	9		4 4	6	2	Me	,	01	+ 4	1 -	7 1	_		13			2	
	0			Lalur											14 M5	J4 JE		4	
	U	JU MU	al	Solui	won										M6	Ji		1	
	00	0 1	Colu	040	- 014	00 0	nati.	,								TOTAL	10	2 Hu	_
	Non	0 -		avut 5	- UI	a of	natri	Α.							1	UIAL	. 1,	1 1/1	CE.

0.													
Q3.	DI D2 D3 D4 A												
	0 23 27 16 18 3												
	02 12 17 20 51 0												
	03 22 28 12 32 5												
	Reg. 22 35 25 41	123 = 123											
	PART I: VOGEL'S N	1ethod											
	01 23 27 16 18	Ava. P1 P2 P3 P4 P5 30 2 40 5 5 5 8 12 53 10 10 10 10 22											
	02 12 7 20 5	40 5 5 5 8 12											
	03 22 28 12 32	53 10 10 10 10 22											
	Reg. 22 35 25 41												
	P2 10 11 8 191 . M+n-1 = No. q allocation												
	P3 10 111 8 - 3+4-1 = 6												
	Py 10 - 8 - Above solution is pashble.												
	P5 10												
0	PART II: OPTIMATITY	TEST (MODI APPROACH)											
	Table 1: W+ V3 Table.												
	D1 D2 D3 D4	Lie CALCULATION OF MIN. TRAN. COST											
	01 8 13 -2 18	14 O D Unit Cost Total											
	02 12 17 2 22	-10 O1 D4 30 18 540											
	03 22 27 12 32	0 02 01 5 12 60											
	Vi 22 27 12 32	02 D2 35 17 595											
		03 D1 17 22 374											
	Table 2: Dig Table	03 D3 25 12 300											
	D1 D2 D3 D4	03 P4 11 32 352											
	0 15 14 8	TOTAL 2221											
	02 18 29												
	03 1	optimal solution											

Q5.		Wı	W2	W3	Requiremen	nt								
	A	5	7	8	70		Condi tions							
	В	4	4	6	70 30 50	1	Requirement Matrix shows	= A	raila	bility				
	С	6	7	+	50	2	Matrix shoul	d le	ni.	nimize				
	Availabi	lity 65	42	43										
			2.4											
	Part I	: 10	ogel's	Met	hod									
•		WI W	2 W	3 Reg	. P1 P2	P3 Rights	£ 0, 014	· -	+					
0	A	5 7	- 8 - 30	10	2 2	1	Feasibili	ty 1	est					
	0	4 4	7 ~ [43) 0 -	n	W+U-T =	70	. 6	A Uotal	w			
	Part I: Vogel's Method Wi W2 W3 Req. Pi P2 P3 Rig R A 5 4 5 8 70 2 2 1 Feasibility Test B 4 4 6 30 0 M+n-1 = NO:9 Allocation C 6 7 7 7 43 50 1 1 0 5 = 5 Ava 65 42 43													
	1000 05 42 45													
	Pi 1 31 1 P2 1 0 1 Above solution is prasible													
	P3 - 0 11													
	fa-													
	B Part II Optimality Test (MODI APPROACH)													
	Table 1: Ui+Vi Table													
0			W3			CACULATION OF MIN. TRANSPORT COST								
	A 5	7	7	7			WAREHOUSE							
	B 2	4		4										
	41-	7	_	7		A	WI	5	65	325				
	vj -	2 0	0			A	WZ	7	5	35				
						В	W2_	4	30	120				
	Table	2: 1	In To	ule		C	W2.	7		49				
	ı	NI W	2 W	3		C	W3	7	43					
	A		1					TOT	AL	830				
		2	2											
	C :			1										
		Optin	ral	soluti	en									

6				В	Man			z = 6x	+24
	MI	R. III	2	6	24		STO	z = 6x	J
	Me	the state of	6	2	211				≤ 24
	Profit	1	5	2		i gu	on to	2x+64 6x+24	624
	No.g	unit.	7	y	•			0	
	-								
		conve	eting	trans	mulities	inte	equa	lities	
	Man	12=	5a+24	+ psi	+0.90			0 0 1 1	
			(1032				1+S1 = 24
		For	intial	Soluti	0			0 1 2 2	+82 = 24
	nc=	= y = 0	(31 = 21	ion 1 S2	= 24			
		0							
				I	Limplex	Met	hood Tab	le .	
			CJ	5	2	0	0	Min.	
	0	VB	SU	2	y	SI	32	Ratio	
	CB	NR	24						
	0	SI				1	0	12	
				6 Kn	2	0	0	12	ē,
	0	SI	24 25	6 kn	2	0	1		ē.
	0	SI	24	6 Kn	2	0	1		2
	0	SI	24 25	6 kn 0 51kc	0 2	0 0	1 0 0		2,
	0	SI	24 21 NGR.	6 Kn 0 51 kc	2 0 2 Simpl	O O Lux Ta	1 0 0	Ly K	
	0 0	31	24 ZJ NCR.	6 kn 0 51kc II 5	2 0 2 Simpl	O O Lux Ta	1 0 0	4 K	2
	O O	S1 32	24 25 NCR.	6 kn 0 51 kc II 5	2 0 2 Simpl 2 4	O O O Lux Ta	1 0 0 ble - 0 52	Luns Ratio	
	0 0	31	24 25 NCR.	6 kn 0 51kc II 5	2 0 2 Simpl 2 y	0 0 0 lux Ta 0 51	1 0 0 ble - 0 52 -1/3	Luns Ratio	
	0 0	SI S2 VB SI	24 25 NCR.	6 Kn 0 51 Kc II 5 N 0	2 0 2 Simpl 2 4	O O O Lux Ta	1 0 0 ble - 0 52	Luns Ratio	

	TIE l'applex Talle
	III Simplex Table CI 5 2 0 0
	CB VB SU N Y SI S2.
	2 4 3 0 1 3/16 -1/16
	5 × 3 1 0 -1/16 7/48
	27 5 2 1/6 29/48
	NER 0 0 -1/6 -29/49
0	final all the value of the
(3	Since all the value of Ner are zero or negative so apove solution is optimal where n = 3 y = 3
	at alove souther is optimal while n = 3 y = 3
	Man 2= 5x+24
	= 21
0	

DŦ Purchase Price = Rs 500 PVF @ 5% Rusale value = N'il Running Cost each year increases by 100 YEAR RUNNING PVF DISCOUNTED CUMULATIVE DISC TOTAL LUMULATIVE WEIGHTED COST Q 5%. PUF RUNNING COST RUNNING COST COST AVERAGE 1 0 1 1 500 500 0 0 2 1.952 0.952 96.2 5.95.2 100 95.2 304.91 9軸急 276.6 2.859 3 200 0.907 181.4 776.6 3.722 1036.6 0.863 258.9 4 278.5 300 535.6 4.544 5 0.822 328.8 1364.4 350.2 400 864.4 6 500 391.5 1755.9 5,328 329.5 1255.9 0.784 3627 7 1703.5 2203.5 6.074 600 447.6 0.746

08	Month	Sumbral	Failure	hobability								
	0	100	0	0								
	1	97	3	0.03								
	2	90	10	0.10								
	3	70	30	0.30								
	4	30	OF	0.70								
	5	15	86	0.85								
	6	0	100	1.00								
	$P_0 = 0$	-0.03 =	0.03									
	$P_1 = 0 - 0.03 = 0.03$ $P_2 = 0.10 - 0.03 = 0.07$											
	P3 = 0.30 - 0.10 = 0.20											
	P4 = 0.70 - 0.30 = 0.40											
	P5 = 0.85 - 0.70 = 0.15											
	PG = 1 - 0.85 = 0.15											
0												
	STEP 2: 1	No. OF BUL	B REPLAC	ED IN I'M WE	ek.							
	No = 10,000											
	N1 = (100	000x 0.03)=	360									
		0x0.07)+(300)										
	N3 = (15000	X 0.20)4 (300)	x0.07) + (709	(x 0.03) = 2042								
	N4 = (10000	x 0.40) + (300 x	0.20)+ (709X	0.07) + (2042 × 0.03)= 4171							
	NE = (12000)	(0.16) + (300x	0.40) + (709)	(0.20) + (2042 X 0.09)+(1171X0.03) = 2030							
	N6 = (10000x0.16)+(300x0.15) + (709x0.40)+(2042x0.20)+(4171x0.07)+(2030x0.03)= 25											

STEP 3 EXPECTED LIFE

→ 1x0.03 + 2x0.07 + 3x0.20 + 4x0.40 + 5x0.15 + 6x0.15

= 4.02 week

STEP4: EXPECTED NO. OF RESISTOR REPLACED

4.02

STEP5: AVERAGE COST OF INDIVIDUAL REPLACEMENT = 248.8

STEPG: CIROUP REPLACEMENT PERIOD

Month	No. of Replaced	Cumulative	Indiviual	Ci-P Cost	Total	Avuage
1	300	300	300	3500	3800	3800
2	709	1009	1509	3500	4509	2254.5
3	2042	3051	3051	3500	6551	82183.6
4	4171	7222	7222	3500	10722	2680.5
5	2030	9252	9252	3500	12752	2550.4
6	2590	11842	11842	3500	15342	2557

Resistor should be replaced after 3rd week

٩	ACTIVITY	DURATION	ACTIVITY	DURATION
	1-2	4	4-6	10
	1-3	12	5-7	10
	1-4	10	6-7	0
	2-4	18	6-8	8
	2-5	6	7-8	10
	3-6	8	8-9	6
	4 (2)	8 (5)	10 7	
	1		0/6) 6 >(9)

	CACULATI	0.1								
	CHLOCHII	UN								
	ACTIVITY	DURATION	ES	EF	LS	LFI	TF	FF	IF	
	1-2	4	0	4	0	4	0	0	0	
	1-3	12	0	12	2	14	2	0	0	
	1-4	10	0	10	1 2	12	2	2	2	
	2-4	8	4	12	4	12	0	0	0	
0	2-5	6	4	10	126	12	2	0	0	
	3-6	8	12	20	124	22	2	2	0	
	4-6	10	12	22	12	22	0	0	0	
	5-7	10	10	20	12	22	2	2	0	
	6-7	D	22	22	224	22	0	0	0	
	6-8	8	22	30	24	32	2	2	2	
	3-E	10	22	32	22	32	0	0	0	
	8-9	6	32	38	32	38	0	0	0	
0	+	arliest Star								
		arliest Fin								
		atest star								
		latest fine		ne						
	H	Total Float								
	FF =	Free Float								
	IF =	Independe	nt flu	oat						

010	ACTIVITY	GTIMA	TED DURATION I	N WEEK	Experted
			MOST LIKELY		Time
	1-2	1	1	7	2
	1-3	1	4	7	4
	1-9	2	2	8	3
	2-5	1	1	1_	1
	3-5	2	5	14	6
0	4-6	2	5	8	5
	5-6	3	6	15	ユ
	D 4 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 1 1 1 1 2	16 E=17 L=19	oject langth = 17 week	⊿ ·
0	Articity	Variance	Standard	Unidad	Diriation
	Activity	vanance.	Deviation	= JV	
	1-2	1		= 9 =	
	1-3	1	1	4	
	1-4	1			
	2-6	0			
	3-5	4	4		
	4-6	1			
	5-6	4	4		
			9		

