2.3.7 To Draw Common Line Tangents to Given Two Circles

(a) Open Belt Tangent

- Draw circles with O_1 and O_2 as their centers, R_1 and R_2 as their radii respectively. The relative positions of O_1 and O_2 are also given. (Figure 2.36(a))
- Draw a circle with O₂ as center and R₂ R₁ as radius. (Figure 2.36(b))
- Join O₁ and O₂ and draw it perpendicular to locate its midpoint A. (Figure 2.36(c))
- With A as center and O₁A (= O₂A) as radius draw a circle which intersects the circle with radius R₂ R₁ at point B. (Figure 2.36(d))
- Join O₂ and B and extend it to get point of tangency T₂ on the circle with radius R₂. (Figure 2.36(e))

56 Engineering Drawing - I

- Draw a straight line passing through O1 and parallel to O2T2 intersecting the circle with radius R₁ at point T₁, which is the other required point of tangency. (Figure 2.36(f))
- Joint T₁ and T₂ to get the required tangent (Figure 2.36(g))
- Repeat the same procedure to get the tangent on the bottom side. (Figure 2.36(h))

(b) Cross Belt Tangent

- Draw circles with O₁ and O₂ as their centers, R₁ and R₂ as their radii respectively. The relative positions of O_1 and O_2 are also given. (Figure 2.37(a))
- Draw a circle with O_2 as center and $R_1 + R_2$ as radius. (Figure 2.37(b))
- Join O1 and O2 and draw it perpendicular to locate its midpoint A. (Figure 2.37(c))
- With A as center and O1A (= O2A) as radius draw a circle which intersects the circle with radius $R_1 + R_2$ at point B. (Figure 2.36(d))
- Join O2 and B and which intersect the circle with radius R2 at point of tangency T₂. (Figure 2.37(e))
- Draw a straight line passing through O1 and parallel to O2T2 intersecting the circle with radius R₁ at point T₁, which is the other required point of tangency. (Figure
- Joint T₁ and T₂ to get the required tangent. (Figure 2.37(g))
- Repeat the same procedure to get the other tangent on the opposite side. (Figure 2.37(h))

