兰州大学信息科学与工程学院实验报告

实验	成绩:				
学生姓名:		杨添宝			
学	号:	320170941671			
年级专业:		2017 级计算机基地班			
指导	老师:	赵继平			

实验课程:_____计算机组成原理实验___

实验题目: _____微程序控制单元实验____

一、实验目的

- (1) 熟悉微程序控制器的原理
- (2) 掌握微程序编制、写入并观察运行状态

二、实验要求

按照实验步骤完成实验项目,掌握设置微地址、微指令输出的方法

三、实验说明

- 1. 微程序控制单元的构成: (如图 1)
- (1) 8 位微地址寄存器由 2 片 74LS161 组成
- (2) 3 片 6264 (3*8 位) 为微程序存储器
- (3) 24 位微指令锁存器由 3 片 74LS374 组成

2. 微程序控制单元原理: (如图 2)

- (1)由于本系统中指令系统规模不大、功能较简单,微指令可以采用全水平、不编码的方式,每一个微操作控制信号由 1 位微代码来表示, 24 位微代码至少可表示 24 个不同的微操作控制信号。如要实现更多复杂的操作可通过增加一些译码电路来实现。
- (2)增量方式来控制微代码的运行顺序, 每一条指令的微程序连续存放在微指令存储器 连续的单元中。
- (3)每一指令的微程序的入口地址是通过 对指令操作码的编码来形成的。在本系统内指 令码最长为8位,那么最多可形成256条指令。
- (4)在微程序存储器的 0 单元存放取指指 令,在启动时微地址寄存器清零,执行取指指

令。

- (5)每一段微程序都以取指指令结束,以取得下一条指令。
- (6) 在本系统内, MLD 为置微地址的控制信号, MCK 为工作脉冲。当

MLD=0、MCK 有上升沿时,把 MD0~MD7 的值作为微程序的地址,打入微地址寄存器。当 MLD=1、MCK 有上升沿时,微地址计数器自动加 1。

图 2

四、实验步骤

● 将 MD0~MD7、MLD 接入二进制的开关上,将 MCK、MOCK 分别接入脉冲单元上的 PLS1、PLS2 上。(请按下表接线)。

信号定义	接入开	关位号
MCK	PLS1	孔
моск	PLS2	孔
MD0	Н0	孔
MD1	H1	孔
MD2	Н2	孔
MD3	Н3	孔
MD4	H4	孔
MD5	Н5	孔
MD6	Н6	孔
MD7	Н7	孔
MLD	H23	孔

● 按启停单元中的停止按键,使实验平台处于停机状态。通过键盘把数据写入 微程序存储器中,例如微地址 0H 中输入 11H、11H、11H 三个字节、在 05H 中输入 55H、55H、55H 三个字节、在 06H 中输入 66H、66H、66H。键盘监 控的使用方法请参阅第 4 章《键盘监控》。

实验 1、微地址打入操作

- 按启停单元中的停止按键,使实验平台处于停机状态,此时微地址寄存器被 清零。
- 按启停单元中的运行按键,使实验平台处于运行状态。此时微程序存储器为读状态,微地址寄存器(74LS161)确定了当前微程序存储器的地址,并且输出 24 位微操作(M0~M23)。
- 按脉冲单元中的 PLS2 脉冲按键,在 MOCK 上产生一个上升沿,把当前微程序存储器输出的微指令打入微指令锁存器。可在 CPT-B 上的微指令指示灯显示出当前微指令,应为 11H, 11H, 11H。

● 置 MLD=0, 微代码的地址 MD0~MD7 (对应二进制开关 H0~H7) 为 05H (对 应开关如下表)。

H7	Н6	Н5	H4	Н3	H2	H1	Н0	H23
MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	MLD
0	0	0	0	0	1	0	1	0

- 按脉冲单元中的 PLS1 脉冲按键,在 MCK 上产生一个上升沿,把 MD0~MD7 打入 74LS161,微地址显示灯 MA0~MA7 将显示 05H,微程序存储器把 05H 单元的内容输出。
- 按脉冲单元中的 PLS2 脉冲按键,在 MOCK 上产生一个上升沿的脉冲,把当前微指令打入微指令锁存器,在 CPT-B 板上的微指令指示灯应显示 55H,55H,55H。

注意: 微代码由 3 片 74LS374 作为微指令锁存器,它的 OE 端已经接地,只要 MOCK 端上有上升沿,即可锁存并输出微代码。

实验 2、微地址+1 操作

- 置 MLD=1。
- 按启停单元中的运行按键,使实验平台处于运行状态。
- 按脉冲单元中的 PLS1 脉冲按键,在 MCK 上产生一个上升沿,微地址寄存器自动加 1。若原来微地址寄存器的值为 05H,那么当前的微地址显示灯 MA0~MA7 将显示 06H,同时微程序存储器输出 06H 单元中的内容。
- 按脉冲单元中的 PLS2 脉冲按键,在 MOCK 上产生一个上升沿,将微程序存储器的输出的微指令,打入微指令锁存器并输出,在 CPT-B 板上的微指令指示灯应显示 66H,66H,66H。

五、实验思考

1. 描述数据通路。

微程序控制单元由 8 位微地址寄存器、微程序存储器、24 位微指令锁存器组成。实验过程中,通过键盘把数据写入微程序存储器中,按脉冲单元中的 PLS2 脉冲键,在 MOCK 上产生一个上升沿,把当前微程序存储器输出的微指令打入微指令锁存器,可在 CPT-B 上的微指令指示灯显示出当前微指令。

2. 为什么微地址的设置有"打入"和"+1"两种情况?

微地址的设置与 MLD 的值有关,当 MLD 置 0 时,按下 PLS2 脉冲按键,在 MCK 上产生一个上升沿的脉冲,此时把 MD0-MD7 的值作为微程序的地址打入微地址寄存器;当 MLD 置 1 时,按下 PLS2 脉冲按键,在 MCK 上产生一个上升沿脉冲,此时微地址寄存器中的值自动加 1。

3. TC 连线(CEP、CET)起什么作用?

CEP、CET 是工作状态控制端,查功能表可知,当 CEP=0、CET=1 时具有保持功能;当 CEP=1、CET=1 时,具有计数功能。

4. 实验过程中测 D30、D31、D32、D33 芯片各引脚状态, 试分析各引脚状态值的控制作用。

D30、D31 是两片 74LS157, D32、D33 是两片 74LS161, 作为微地址寄存器, 输出 Q0-Q3 分别连接到 75LS157 的 1A-4A 端, MLD 控制工作状态, MCK 连接 CLK 端。当工作脉冲到来时,输出经过 74LS157 的选择输出到 6264 的 A0-A7 端, 作为微地址, 选择相应的微指令, 通过 D0-D7 分别输入到 3 片 74LS374 组成 24 位微指令锁存器。74LS157 的\(\overline{G}\), \(\overline{A}\)/B 控制 A, B 的选择。

5. 分析本实验过程中 D32、D33 各使用了哪些功能? D32 使用了同步置数功能; D33 使用了同步置数功能和计数器加 1 功能。

6. 分析 374 芯片的作用?

74LS374 是八 D 触发器(三态)。一个封装有八个 D 触发器供选用,置数全并行存取,缓冲控制输入。微代码由 3 片 74LS374 作为微指令锁存器,它的 OE 端已经接地,只要 MOCK 端上有上升沿,即可锁存并输出微代码。

*试分析 D30 中 OAB0-OAB3 可在何种情况下使用。

G为高电平时,控制 A, B 端的选择。Ā/B 为低电平时选择 A 端, 高电平时选择 B 端, 使用 OAB0-OAB3。