

Zero-Shot Based Diffusion Model in Image Restoration

preliminaries

DDPM: Denoising Diffusion Probabilistic Models

Forward:

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

Reverse:

$$x_{t-1} = rac{1}{\sqrt{lpha_t}} \left(x_t - rac{eta_t}{\sqrt{1-arlpha_t}} \epsilon_ heta
ight) + \sigma_t z \ \left(z \sim \mathcal{N}(0, \mathbf{I})
ight)$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \mathbf{z}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \mathbf{z}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return \mathbf{x}_0

DDIM: Denoising Diffusion Implicit Models

DDPM: Markov assumption → 慢

Reverse:

$$x_{prev} = \sqrt{lpha_{\overline{prev}}}(rac{x_t - \sqrt{1 - ar{lpha_t}}\epsilon_t}{\sqrt{ar{lpha_t}}}) + \sqrt{1 - lpha_{\overline{prev}}^- - \sigma^2}\epsilon_t + \sigma^2\epsilon$$

preliminaries

Forward:

stochastic differential eqaution (SDE) 从离散到连续

$$\mathrm{d} x_t = \underbrace{f(x_t,t)}_{\mathrm{drift\ coeff.}} \mathrm{d} t + \underbrace{g(t)}_{\mathrm{diffusion\ coeff.}} \mathrm{d} W_t,$$

漂移系数 扩散系数 Wiener process(布朗运动噪声)

Reverse:

$$dx_t = \left(f(x_t, t) - g^2(t) \underbrace{\nabla_{x_t} \log p_t(x_t)}_{\text{score}} \right) dt + g(t) dW_t,$$

方差保持型SDE(VP-SDE):
$$oldsymbol{s}_{ heta}(oldsymbol{x}_t,t) ~pprox ~
abla_{oldsymbol{x}_t} \log p(oldsymbol{x}_t|oldsymbol{x}_0)$$
 Denoising score matching

$$f(x,t) = -rac{1}{2}eta(t)x, \quad g(t) = \sqrt{eta(t)}$$

确定性ODE(常微分方程),是SDE的特例(扩散系数为零,消除随机性)

$$g(t) = 0, \quad f(x,t) = -rac{1}{2}eta(t)x + eta(t)
abla_x \log p_t(x) \qquad rac{\mathrm{d}x_t}{\mathrm{d}t} = \left(f(x_t,t) - rac{g^2(t)}{2}\underbrace{
abla_{x_t} \log p_t(x_t)}
ight)$$

$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = \left(\boldsymbol{f}(\boldsymbol{x}_t, t) - \frac{g^2(t)}{2} \underbrace{\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t)}_{\text{score}}\right)$$

$$x_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left(\frac{x_t + (1 - \alpha_t)\nabla_{x_t} \log p_t(x_t)}{\sqrt{\alpha_t}}\right)}_{=:\widehat{x}_0 = \text{predicted } x_0} + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \underbrace{\left(-\sqrt{1 - \alpha_t}\nabla_{x_t} \log p_t(x_t)\right)}_{\text{direction toward } x_t}$$

Problem formulation (degradation model):

Unconditional to conditional:

$$y = \mathcal{H}x + n$$

$$d\mathbf{x}_t = \left(\mathbf{f}(\mathbf{x}_t, t) - g^2(t) \underbrace{\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)}_{\text{score}}\right) dt + g(t) d\mathbf{W}_t,$$

$$dx_t = \left(f(x_t, t) - g^2(t) \underbrace{\nabla_{x_t} \log p_t(x_t | y)}_{\text{conditional score}} \right) dt + g(t) dW_t,$$

Reconstrution (贝叶斯):

$$\hat{\mathbf{x}} \sim p(\mathbf{x}|\mathbf{y})$$

 $\propto p(\mathbf{x})p(\mathbf{y}|\mathbf{x})$

$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\boldsymbol{y}) = \underbrace{\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t)}_{\text{score}} + \underbrace{\nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{y}|\boldsymbol{x}_t)}_{\text{measurements matching term}}$$

Conditional reverse formlation:

$$dx_t = (f(x_t, t) - g^2(t)) (\nabla_{x_t} \log p_t(x_t) - \nabla \log p(y|x_t)) dt + g(t) dW_t.$$

Solution:

$$p_t(\boldsymbol{y}|\boldsymbol{x}_t) = \int p(\boldsymbol{y}|\boldsymbol{x}_0)p(\boldsymbol{x}_0|\boldsymbol{x}_t)\mathrm{d}\boldsymbol{x}_0.$$

数据分布(pretrain model) unconditional model(已知) 条件分数 time-dependent classifier

Problem formulation (degradation model):

$$y = \mathcal{H}x + n$$

Reconstrution (贝叶斯):

$$\hat{\mathbf{x}} \sim p(\mathbf{x}|\mathbf{y})$$

 $\propto p(\mathbf{x})p(\mathbf{y}|\mathbf{x})$

Maximum A Posteriori (MAP) estimation:

(最大后验估计)

$$\hat{\mathbf{x}} = \operatorname*{arg\,max} \log p(\mathbf{y}|\mathbf{x}) + \log p(\mathbf{x})$$

Problem transformation:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2\sigma_n^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{x})$$
data term prior term

Solution (HQS):

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \ \frac{1}{2\sigma^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{z}) \quad s.t. \quad \mathbf{z} = \mathbf{x}$$

$$\begin{cases} \mathbf{z}_k = \underset{\mathbf{z}}{\operatorname{arg\,min}} \underbrace{\frac{1}{2(\sqrt{\lambda/\mu})^2} \|\mathbf{z} - \mathbf{x}_k\|^2 + \mathcal{P}(\mathbf{z})}_{\text{consistence}} \\ \mathbf{x}_{k-1} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \underbrace{\frac{1}{2(\sqrt{\lambda/\mu})^2} \|\mathbf{z} - \mathbf{x}_k\|^2 + \mathcal{P}(\mathbf{z})}_{\text{consistence}} \end{cases}$$

Solution (HQS):

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \ \frac{1}{2\sigma^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{z}) \quad s.t. \quad \mathbf{z} = \mathbf{x}$$
引入辅助变量 \mathbf{z}

on (HQS):
$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\arg\min} \ \frac{1}{2\sigma^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{z}) \quad s.t. \quad \mathbf{z} = \mathbf{x}$$

$$\exists \lambda \text{ \mathbb{A} \mathbb{A} \mathbb{B} \mathbb{B} \mathbb{Z}} \begin{cases} \mathbf{z}_k = \underset{\mathbf{z}}{\arg\min} \frac{1}{2(\sqrt{\lambda/\mu})^2} \|\mathbf{z} - \mathbf{x}_k\|^2 + \underbrace{\mathcal{P}(\mathbf{z})}_{\text{prior}} \quad \mathbf{Eq. 1} \\ \mathbf{x}_{k-1} = \underset{\mathbf{x}}{\arg\min} \underbrace{\|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \underbrace{\mu\sigma_n^2 \|\mathbf{x} - \mathbf{z}_k\|^2}_{\text{consistence}} \quad \mathbf{Eq. 2} \end{cases}$$

Eq.1: 相当于需要在xk中引入数据先验,相当于使用扩散模型预测一个符合数据分布的x0

$$\mathbf{x}_0^{(t)} = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t + (1 - \bar{\alpha}_t) \mathbf{s}_{\theta}(\mathbf{x}_t, t))$$

Eq.2: 相当于对齐项,也就是需要符合y=H(x)+n这样的退化过程(条件分布)

等同于求
$$p_t(y|x_t) = \int p(y|x_0)p(x_0|x_t)dx_0.$$

Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model

Range null space decomposition

$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}\equiv\mathbf{A}$$
.
伪逆

$$\mathbf{x} \equiv \mathbf{A}^{\dagger} \mathbf{A} \mathbf{x} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}.$$
Range space Null space

$$\mathbf{A}\mathbf{x} \equiv \mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}\mathbf{x} + \mathbf{A}(\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{x} \equiv \mathbf{A}\mathbf{x} + \mathbf{0} \equiv \mathbf{y}.$$

可以取任何值,都能符合y=Ax

$$\mathbf{x} \equiv \mathbf{A}^{\dagger} \mathbf{A} \mathbf{x} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}. \quad \hat{\mathbf{x}} = \mathbf{A} \mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \hat{\mathbf{x}}$$

Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model

From DDIM:

$$p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \qquad \mu_t(\mathbf{x}_t,\mathbf{x}_0) = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta}{1-\bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}\mathbf{x}_t, \quad \sigma_t^2 = \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t,$$

$$\mathbf{A}\hat{\mathbf{x}}_{0|t} \equiv \mathbf{A}\mathbf{A}^{\dagger}\mathbf{y} + \mathbf{A}(\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{x}_{0|t} \equiv \mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}\mathbf{x} + \mathbf{0} \equiv \mathbf{A}\mathbf{x} \equiv \mathbf{y}.$$

$$\mathbf{Diffusion prior}$$

consistency

Core: xt-1 is the noisy version of x0t

Algorithm 1 Sampling of DDNM

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: for t = T, ..., 1 do

Diffusion prior

- $\mathbf{x}_{0|t} = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{x}_t \mathcal{Z}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) \sqrt{1 \bar{\alpha}_t} \right)$
- $\hat{\mathbf{x}}_{0|t} = \mathbf{A}^{\dagger} \mathbf{y} + (\mathbf{I} \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0|t}$ $\mathbf{x}_{t-1} \sim p(\mathbf{x}_{t-1} | \mathbf{x}_t, \hat{\mathbf{x}}_{0|t})$ consistency
- 6: return \mathbf{x}_0

Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model

With Gaussian Noise: y=Ax+n

$$\hat{\mathbf{x}}_{0|t} = \mathbf{A}^{\dagger}\mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{x}_{0|t}.$$

$$\hat{\mathbf{x}}_{0|t} = \mathbf{A}^{\dagger}\mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{x}_{0|t} = \mathbf{x}_{0|t} - \mathbf{A}^{\dagger}(\mathbf{A}\mathbf{x}_{0|t} - \mathbf{A}\mathbf{x}) + \mathbf{A}^{\dagger}\mathbf{n}, \quad \text{不符合consistency}$$

Solution: 利用扩散模型本身的denoiser来去除值域中的噪声 n: 保证含噪图 xt-1 中的噪声方差和原始定义的噪声方差一致,这样对于denoiser来说,面临的噪声就是不变的

$$\hat{\mathbf{x}}_{0|t} = \mathbf{x}_{0|t} - \sum_t \mathbf{A}^\dagger (\mathbf{A} \mathbf{x}_{0|t} - \mathbf{y}),$$
 Scale the range null space $\hat{p}(\mathbf{x}_{t-1}|\mathbf{x}_t,\hat{\mathbf{x}}_{0|t}) = \mathcal{N}(\mathbf{x}_{t-1};\boldsymbol{\mu}_t(\mathbf{x}_t,\hat{\mathbf{x}}_{0|t}))$ Scale the noise Close to I

- 1. Consistency
- Rescale the variance of noise
- 2. Preserve null space

$$\mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \sigma_t^2 \mathbf{I})$$

Results without noise

ImageNet	4× SR	Deblurring	Colorization	CS 25%	Inpainting
Method	PSNR↑/SSIM↑/FID↓	PSNR↑/SSIM↑/FID↓	$Cons \downarrow / FID \downarrow$	PSNR↑/SSIM↑/FID↓	PSNR↑/SSIM↑/FID↓
$\mathbf{A}^{\dagger}\mathbf{y}$	24.26 / 0.684 / 134.4	18.56 / 0.6616 / 55.42	0.0 / 43.37	15.65 / 0.510 / 277.4	14.52 / 0.799 / 72.71
DGP	23.18 / 0.798 / 64.34	N/A	- / 69.54	N/A	N/A
ILVR	27.40 / 0.870 / 43.66	N/A	N/A	N/A	N/A
RePaint	N/A	N/A	N/A	N/A	31.87 / 0.968 / 12.31
DDRM	27.38 / 0.869 / 43.15	43.01 / 0.992 / 1.48	260.4 / 36.56	19.95 / 0.704 / 97.99	31.73 / 0.966 / 4.82
DDNM(ours)	27.46 / 0.870/ 39.26	44.93 / 0.994 / 1.15	42.32 / 36.32	21.66 / 0.749 / 64.68	32.06 / 0.968 / 3.89
CelebA	4× SR	Deblurring	Colorization	CS 25%	Inpainting
Method	PSNR↑/SSIM↑/FID↓	PSNR↑/SSIM↑/FID↓	Cons↓/FID↓	PSNR↑/SSIM↑/FID↓	PSNR↑/SSIM↑/FID↓
$\mathbf{A}^{\dagger}\mathbf{y}$	27.27 / 0.782 / 103.3	18.85 / 0.741 / 54.31	0.0 / 68.81	15.09 / 0.583 / 377.7	15.57 / 0.809 / 181.56
PULSE	22.74 / 0.623 / 40.33	N/A	N/A	N/A	N/A
ILVR	31.59 / 0.945 / 29.82	N/A	N/A	N/A	N/A
RePaint	N/A	N/A	N/A	N/A	35.20 / 0.981 /14.19
DDRM	31.63 / 0.945 / 31.04	43.07 / 0.993 / 6.24	455.9 / 31.26	24.86 / 0.876 / 46.77	34.79 / 0.978 /12.53
DDNM(ours)	31.63 / 0.945 / 22.27	46.72 / 0.996 / 1.41	26.25 / 26.44	27.56 / 0.909 / 28.80	35.64 / 0.982 /4.54

Table 1: Quantitative results of zero-shot IR methods on **ImageNet**(*top*) and **CelebA**(*bottom*), including five typical IR tasks. We mark N/A for those not applicable and **bold** the best scores.

Figure 3: Qualitative results of zero-shot IR methods.

Results with noise

With noise

JPEG compression

Old photo restoration

Decomposed diffusion sampler for accelerating large-scale inverse problems

Algorithm 1 Conjugate Gradient (CG)

```
Require: A, y, x_0, M

1: r_0 \leftarrow b - Ax_0

2: p_0 \leftarrow b_0

3: for i = 0: K - 1 do

4: \alpha_k \leftarrow \frac{r_k^\top r}{p_k^\top A p_k}

5: x_{k+1} \leftarrow x_k + \alpha_k p_k

6: r_{k+1} \leftarrow r_k - \alpha_k A p_k

7: \beta_k \leftarrow \frac{r_k^\top r}{r_k^\top r_k}

8: p_{k+1} \leftarrow b_{k+1} + \beta_k p_k

9: end for

10: return x_K
```

```
Algorithm 2 DDS (PI MRI; VP; noiseless)
Require: \epsilon_{\theta^*}, N, \{\alpha_t\}_{t=1}^N, \eta, \boldsymbol{A}, M
   1: \boldsymbol{x}_N \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})
   2: for t = N : 2 do
                   \hat{\boldsymbol{\epsilon}}_t \leftarrow \boldsymbol{\epsilon}_{\theta^*}(\boldsymbol{x}_t)
                   ➤ Tweedie denoising
                                                                                                                              Diffusion prior
                    \hat{\boldsymbol{x}}_t \leftarrow (\boldsymbol{x}_t - \sqrt{1 - \bar{\alpha}_t} \hat{\boldsymbol{\epsilon}}_t) / \sqrt{\bar{\alpha}_t}
   5:
   6:
                   \hat{\boldsymbol{x}}_t' \leftarrow \mathtt{CG}(\boldsymbol{A}^*\boldsymbol{A}, \check{\boldsymbol{A}}^*\boldsymbol{y}, \hat{\boldsymbol{x}}_t, M)
   7:
                                                                                                                               consistency
                   \epsilon \sim \mathcal{N}(\mathbf{U}, \mathbf{I})
                   ▶ DDIM sampling
                  x_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \hat{x}'_t - \sqrt{1 - \bar{\alpha}_{t-1} - \eta^2 \tilde{\beta}_t^2 \hat{\epsilon}_t + \eta \tilde{\beta}_t \epsilon}
 11: end for
 12: x_0 \leftarrow (x_1 - \sqrt{1 - \bar{\alpha}_1} \epsilon_{\theta^*}(x_1)) / \sqrt{\bar{\alpha}_1}
 13: return x_0
```


Decomposed diffusion sampler for accelerating large-scale inverse problems

Algorithm 3 DDS (PI MRI; VP; noisy) **Require:** $\epsilon_{\theta^*}, N, \{\alpha_t\}_{t=1}^N, \eta, \boldsymbol{A}, M, \gamma$

- 1: $x_N \sim \mathcal{N}(\mathbf{0}, I)$
- 2: **for** t = N : 2 **do**
- 3: $\hat{\epsilon}_t \leftarrow \epsilon_{\theta^*}(x_t)$
- 4: ▷ Tweedie denoising
- 5: $\hat{x}_t \leftarrow (x_t \sqrt{1 \bar{\alpha}_t} \hat{\epsilon}_t) / \sqrt{\bar{\alpha}_t}$
- 6: ▷ Data consistency
- 7: $A_{\text{CG}} \leftarrow I + \gamma A^* A$
- 8: $\mathbf{y}_{\text{CG}} \leftarrow \hat{\mathbf{x}}_t + \gamma \mathbf{A}^* \mathbf{y}$ 9: $\hat{\mathbf{x}}_t' \leftarrow \text{CG}(\mathbf{A}_{\text{CG}}, \mathbf{y}_{\text{CG}}, \hat{\mathbf{x}}_t, M)$
- 10: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- DDIM sampling 11:
- $x_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \hat{x}'_t \sqrt{1 \bar{\alpha}_{t-1} \eta^2 \tilde{\beta}_t^2} \hat{\epsilon}_t + \eta \tilde{\beta}_t \epsilon$
- 13: end for
- 14: $x_0 \leftarrow (x_1 \sqrt{1 \bar{\alpha}_1} \epsilon_{\theta^*}(x_1)) / \sqrt{\bar{\alpha}_1}$
- 15: return x_0

Decomposed diffusion sampler for accelerating large-scale inverse problems

Mask Pattern	Acc.		TV	Supervised U-Net Zbontar et al. 2018	E2E-Varnet Sriram et al. 2020	Jalal et al. (2100)	Score-MRI $(4000 \times 2 \times C^*)$	DPS (1000)	DDS VP (99)	DDS VP (49)	DDS VP (19
	200	PSNR [db]	27.32 ±0.43	31.77±0.89	32.96±0.59	32.49±2.10	33.25±1.18	30.56±0.66	34.88±0.74	34.61±0.32	32.73±2.04
Uniform 1D	× 4	SSIM	0.662 ± 0.17	0.846 ± 0.11	$0.856 {\pm} 0.11$	$0.868 {\pm} 0.08$	0.857 ± 0.08	$0.840 {\pm} 0.20$	0.954 ± 0.11	0.956 ± 0.08	0.927 ± 0.08
Cimoriii 12	0	PSNR [db]	25.02±2.21	29.51±0.37	31.98±0.35	32.19±2.45	32.01±2.30	30.29±0.33	31.62±1.88	30.16±1.19	30.33±2.35
	X 4 SSIM 0.662±0.17 0.846±0.11 0.856±0.01 0.868±0.08 0.857±0.08 0.840±0.20 0.954±0.11 0.956±0.08 X 8 PSNR [db] 25.02±2.21 29.51±0.37 31.98±0.35 32.19±2.45 32.01±2.30 30.29±0.33 31.62±1.88 30.16±1.18 8.376±0.08 0.835±0.06 0.821±0.15 0.811±0.15 0.811±0.15 0.811±0.15 0.811±0.15 0.811±0.15 0.811±0.15 0.812±0.15 0.81±0.09 35.12±1.37 35.15±0.33 0.83±0.00 0.963±0.15<	0.830 ± 0.04	0.891±0.16								
	133.00	PSNR [db]	30.55±1.77	32.66±0.26	34.15±1.40	33.98±1.25	34.25±1.33	32.47±1.09	35.12±1.37	35.15±0.39	34.63±1.95
Gaussian 1D	× 4	SSIM	0.789 ± 0.06	0.866 ± 0.12	0.878 ± 0.19	$0.881 {\pm} 0.12$	0.885 ± 0.08	0.838 ± 0.20	0.963±0.15	0.961 ± 0.06	0.957±0.09
		PSNR [db]	27.98±1.28	31.64±1.12	33.15±2.09	32.76±2.43	32.43±0.95	30.47±2.32	33.27±1.06	33.43±0.75	32.83±1.29
		0.747 ± 0.21	0.841 ± 0.09	$0.868 {\pm} 0.18$	0.870 ± 0.13	0.855 ± 0.13	$0.839 {\pm} 0.16$	0.937±0.07	0.947 ± 0.15	0.940 ± 0.09	
		PSNR [db]	29.20±2.37	24.51±0.69	20.97±1.24	30.97±1.14	31.43±1.23	29.65±1.26	33.99±1.30	34.55±1.69	32.55±1.54
Gaussian 2D	× 8	SSIM	0.781 ± 0.09	0.724 ± 0.10	0.642 ± 0.08	0.812 ± 0.17	0.831 ± 0.18	$0.795 {\pm} 0.12$	0.948 ± 0.13	0.956 ± 0.15	0.916 ± 0.14
	16	PSNR [db]	26.28±2.28	14.93±3.33	16.66 ± 4.02	27.34±1.97	29.17±0.98	26.30±1.34	27.86±1.67	25.75±1.77	25.66±2.03
	× 15	SSIM	0.547 ± 0.19	0.372 ± 0.29	0.435 ± 0.26	0.692 ± 0.13	0.704 ± 0.08	0.688 ± 0.11	0.732±0.10	0.695 ± 0.09	0.693 ± 0.08
	× 8	PSNR [db]	29.52±1.26	20.89±3.09	20.70±3.08	32.60±1.88	31.98±0.51	31.05±0.46	35.31±0.79	35.36±0.41	35.39±0.57
D Poisson disk	× 8	SSIM	0.562 ± 0.11	0.576 ± 0.10	0.592 ± 0.18	$0.833 {\pm} 0.05$	0.816 ± 0.07	0.811 ± 0.08	0.897 ± 0.07	0.875 ± 0.09	0.915 ± 0.11
L L OLLOWI WISK	16	PSNR [db]	26.19±2.36	16.01 ± 5.59	18.82±3.30	30.22±1.89	29.59±1.22	30.02±1.72	34.84±1.44	35.18±0.97	34.59±1.50
	× 15	SSIM	0.510 ± 0.20	0.537 ± 0.21	0.548 ± 0.19	0.749 ± 0.17	0.702 ± 0.15	0.753 ± 0.15	0.934 ± 0.06	0.931 ± 0.05	0.940±0.05

	Score-MRI	DDNM	DDS (ours)				
	20010 1/1111		1	3	5	10	
PSNR[db]	26.48	31.36	31.51	33.78	34.61	32.48	
SSIM	0.688	0.932	0.934	0.952	0.956	0.949	

Without Noise	With	out	No	oise
---------------	------	-----	----	------

Mask Pattern	Acc.		TV	DPS (1000)	DDS VP (49)
Uniform 1D	× 4	PSNR [db] SSIM	24.19 0.687	24.40 0.656	29.47 0.866
	× 8	PSNR [db] SSIM	23.02 0.638	24.60 0.666	26.77 0.827
VD Poisson disk	× 8	PSNR [db] SSIM	23.07 0.609	23.48 0.592	30.95 0.890
1 D I Olison Wisk	× 15	PSNR [db] SSIM	20.92 0.554	23.57 0.622	29.36 0.853

With Noise

Diffusion posterior sampling for general noisy inverse problems (DPS) 可以解决非线性逆问题

$$p_t(\boldsymbol{y}|\boldsymbol{x}_t) = \int p(\boldsymbol{y}|\boldsymbol{x}_0)p(\boldsymbol{x}_0|\boldsymbol{x}_t)\mathrm{d}\boldsymbol{x}_0.$$

DPS核心:
$$\nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{y}|\boldsymbol{X}_t = \boldsymbol{x}_t) \approx \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{y}|\boldsymbol{X}_0 = \mathbb{E}[\boldsymbol{X}_0|\boldsymbol{X}_t = \boldsymbol{x}_t]).$$
 $\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\boldsymbol{y}) = \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t) + \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{y}|\boldsymbol{x}_t)$

$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\boldsymbol{y}) = \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t) + \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{y}|\boldsymbol{x}_t)$$

 $p(y|x_t)$

- $=\int p(y|x_0,x_t)p(x_0|x_t)dx_0$
- $=\int p(y|x_0)p(x_0|x_t)dx_0$
- $=\mathbb{E}_{x\sim p(x_0|x_t)}[p(y|x_0)]$ 对从条件分布 $p(x_0|x_t)$ 中采样的 x_0 ,计算 $p(y|x_0)$ 的期望

$$\mathbb{E}_{x\sim p(x_0|x_t)}[p(y|x_0)]pprox p(y|\mathbb{E}_{x\sim p(x_0|x_t)}[x_0])=p(y|\hat{x}_0)$$

将原本应该积分的随机变量 x0 用它的期望值E(x0|xt)替代

将xt下取y的概率看作与从x0(xt)下取y的概率

Diffusion posterior sampling for general noisy inverse problems (DPS)

可以解决非线性逆问题

Why?
$$\mathbb{E}_{x\sim p(x_0|x_t)}[p(y|x_0)]pprox p(y|\mathbb{E}_{x\sim p(x_0|x_t)}[x_0])=p(y|\hat{x}_0)$$

詹森不等式:
$$J = \mathbb{E}[f(x)] - f(\mathbb{E}(x)) \le \frac{d}{\sqrt{2\pi\sigma^2}} e^{-1/2\sigma^2} \|\nabla_x A(x)\| m_1$$

$$\|\nabla_x A(x)\| := \max_x \|\nabla_x A(x)\| \quad m_1 := \int \|x_0 - \hat{x}_0\| p(x_0|x_t) \, dx_0$$
 有限值 有限值

噪声强度 σ 趋于无穷, 该上界会收敛于0,对 应于DPS能够在较大的 噪声强度下表现好

对于y=Ax+n,n为高斯噪声的情况下:

$$p(y|x_0) = rac{1}{\sqrt{\left(2\pi
ight)^n\sigma^{2n}}} \mathrm{exp}\left[-rac{\|y-A(x_0)\|_2^2}{2\sigma^2}
ight]$$

$$abla_{x_t} \log p_t(y|x_t) pprox -rac{1}{\sigma^2}
abla_{x_t} \|y - A(\hat{x}_0(x_t))\|_2^2$$

$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\boldsymbol{y}) = \underbrace{\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t)}_{\text{score}} + \underbrace{\nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{y}|\boldsymbol{x}_t)}_{\text{measurements matching term}}$$

$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\boldsymbol{y}) \simeq \boldsymbol{s}_{\theta^*}(\boldsymbol{x}_t,t) - \rho \nabla_{\boldsymbol{x}_t} \|\boldsymbol{y} - \mathcal{A}(\hat{\boldsymbol{x}}_0)\|_2^2,$$

Algorithm 2 DPS - Gaussian [8]

Require: $N, y, \{\zeta_i\}_{i=1}^N, \{\tilde{\sigma}_i\}_{i=1}^N$

- 1: $x_N \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** i = N 1 **to** 0 **do**
- 3: $\hat{s} \leftarrow s_{\theta}(x_i, i)$
- 4: $\hat{x}_0 \leftarrow \frac{1}{\sqrt{\bar{\alpha}_i}} (x_i + \sqrt{1 \bar{\alpha}_i} \hat{s})$
- 5: $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: $x'_{i-1} \leftarrow \frac{\sqrt{\alpha_i}(1-\bar{\alpha}_{i-1})}{1-\bar{\alpha}_i} x_i + \frac{\sqrt{\bar{\alpha}_{i-1}}\beta_i}{1-\bar{\alpha}_i} \hat{x}_0 + \bar{\sigma}_i z$
- 7: $x_{i-1} \leftarrow x'_{i-1} \zeta_i \nabla_{x_i} \|y \mathcal{A}(\hat{x}_0)\|_2^2$
- 8: **return** x_0

Advantage:

Figure 3: Conceptual illustration of the geometries of two different diffusion processes. Our method prevents the sample from falling off the generative manifolds when the measurements are noisy.

Algorithm 2 DPS - Gaussian [8]

Require: N, y, $\{\zeta_i\}_{i=1}^N$, $\{\tilde{\sigma}_i\}_{i=1}^N$

- 1: $x_N \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** i = N 1 **to** 0 **do**
- 3: $\hat{s} \leftarrow s_{\theta}(x_i, i)$ Sample x_i-1 from p(x)
- 4: $\hat{x}_0 \leftarrow \frac{1}{\sqrt{\bar{\alpha}_i}} (x_i + \sqrt{1 \bar{\alpha}_i} \, \hat{s})$
- 5: $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: $x'_{i-1} \leftarrow \frac{\sqrt{\alpha_i(1-\alpha_{i-1})}}{1-\bar{\alpha}_i} x_i + \frac{\sqrt{\bar{\alpha}_{i-1}\beta_i}}{1-\bar{\alpha}_i} \hat{x}_0 + \bar{\sigma}_i z$

condition

- 7: $x_{i-1} \leftarrow x'_{i-1} \zeta_i \nabla_{x_i} \|y \mathcal{A}(\hat{x}_0)\|_2^2$
- 8: return x_0

$$\begin{cases} \mathbf{z}_{k} = \arg\min_{\mathbf{z}} \frac{1}{2(\sqrt{\lambda/\mu})^{2}} \|\mathbf{z} - \mathbf{x}_{k}\|^{2} + \underbrace{\mathcal{P}(\mathbf{z})}_{\text{prior}} & \mathbf{Eq.1} \\ \mathbf{x}_{k-1} = \arg\min_{\mathbf{x}} \underbrace{\|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^{2}}_{\text{condition}} + \underbrace{\mu\sigma_{n}^{2}\|\mathbf{x} - \mathbf{z}_{k}\|^{2}}_{\text{consistence}} & \mathbf{Eq.2} \end{cases}$$

	SR (×4)		Inpaint (box) In		Inpaint (random)		Deblur (gauss)		Deblur (motion)	
Method	FID ↓	LPIPS ↓	FID ↓	LPIPS ↓	FID ↓	LPIPS ↓	FID ↓	LPIPS ↓	FID ↓	LPIPS ↓
DPS (ours)	39.35	0.214	33.12	0.168	21.19	0.212	44.05	0.257	39.92	0.242
DDRM (Kawar et al., 2022)	62.15	0.294	42.93	0.204	69.71	0.587	74.92	0.332	12	2
MCG (Chung et al., 2022a)	87.64	0.520	<u>40.11</u>	0.309	29.26	0.286	101.2	0.340	310.5	0.702
PnP-ADMM (Chan et al., 2016)	66.52	0.353	151.9	0.406	123.6	0.692	90.42	0.441	89.08	0.405
Score-SDE (Song et al., 2021b) (ILVR (Choi et al., 2021)	96.72	0.563	60.06	0.331	76.54	0.612	109.0	0.403	292.2	0.657
ADMM-TV	110.6	0.428	68.94	0.322	181.5	0.463	186.7	0.507	152.3	0.508

Table 1: Quantitative evaluation (FID, LPIPS) of solving linear inverse problems on FFHQ 256×256 -1k validation dataset. **Bold**: best, underline: second best.

Figure 4: Results on solving linear inverse problems with Gaussian noise ($\sigma = 0.05$).

Figure 6: Results on solving nonlinear inverse problems with Gaussian noise ($\sigma = 0.05$).

