卒業論文「双対作用素と Schauder の定理」【詳細版】

中橋健太郎 *

概要

この PDF は卒業論文で, 紹介しきれなかった定義や命題の証明の付け加えたものである. 随時, 加筆修正を行う予定である. また, これとは別に, 1 年間ゼミで勉強したことをまとめたものを作ろうと思っている (予定は未定).

最終更新日: 2021 年 2 月 10 日

目次

	從事項	2
1.1 線	型空間	2
1.1.1	点列の収束, Cauchy 列	3
1.1.2	Banach 空間, Hilbert 空間	Ę
1.2 Ha	ıhn-Banach の定理	5
1.2.1	順序関係,極大元	Ę
1.2.2	Hahn-Banach の定理	6
1.3 線	型作用素	8
1.4 双	対空間	10
1.4.1	双対の記号	11
1.4.2	二重双対空間	12
1.4.3	双対空間の例	12
2 双 范	· 対作用素	12
2.1 双范	対作用素の定義	12
2.2 Scl	hauder の定理	13
2.2.1	コンパクト作用素	13
2.2.2	Ascoli-Arzelà の定理	13
2.2.3	双対作用素のコンパクト性	13

^{*} 岡山理科大学理学部応用数学科 (2020 年度所属)

1 基礎事項

1.1 線型空間

定義 1.1 (線型空間). $\mathbf K$ を可換体とする. 空でない集合 V が次の性質を満たすとき, V は $\mathbf K$ 上の線型空間 (linear space) あるいはベクトル空間 (vector space) という:

- (V_1) 任意の $x,y \in V$ に対して、和 $x+y \in V$ が一意に定まる。また、任意の $\alpha \in \mathbf{K}$ と任意の $x \in V$ に対して、スカラー倍 $\alpha x \in V$ が一意に定まる。
- (V_2) 任意の $x, y, z \in V$, 任意の $\alpha, \beta \in \mathbf{K}$ に対して, 以下が成り立つ:

$$(x+y)+z=x+(y+z)$$
 (和の結合律)
$$x+y=y+x$$
 (和の可換律)
$$\alpha(x+y)=\alpha x+\alpha y$$
 (和に関するスカラー倍の分配律)
$$(\alpha+\beta)x=\alpha x+\beta x$$
 (**K** の和に関するスカラー倍の分配律)
$$(\alpha\beta)x=\alpha(\beta x)$$

- (V_3) ある $0 \in X$ があって、任意の $x \in V$ に対して、x + 0 = x = 0 + x.
- (V_4) 任意の $x \in V$ に対して、ある $x' \in V$ が存在し、x + x' = 0 = x' + x.
- (V_5) **K** の積における単位元 $1 \in \mathbf{K}$ と任意の $x \in V$ に対して, 1x = x.

また, 線型空間 V の部分集合 $W \subset V$ が**部分空間 (部分線型空間, 部分ベクトル空間**ともいう) であるとは,

$$(S_1)$$
 $W \neq \emptyset$, (S_2) $x, y \in W \Rightarrow x + y \in W$, (S_3) $\alpha \in \mathbf{K}, x \in W \Rightarrow \alpha x \in W$

を満たすことをいう.

注意 1.2.

 $(V_3),\ (V_4)$ における $0\in V,\ x'\in X$ は一意的に存在する。実際, $0\in V$ の他に $0'\in V$ があったとすると, 0=0+0'=0' となる。同様に $x'\in V$ の他に $x''\in V$ があったとすると, x'=x'+0=x'+(x+x'')=(x'+x)+x''=0+x''=x'' となる。よって, $0\in V$ のことを線型空間 V の零元あるいは**和に関する単位元**という。 $x'\in V$ を $x\in V$ のマイナス元あるいは**和に関する逆元**といい,-x:=x' と表す。任意の $x,y\in V$ に対して,x+(-y)=:x-y とかく。

また, V の部分空間 W は $0 \in W$ である.実際, $W \neq \varnothing$ より, ある元 $x \in W$ が取れ, (S_3) から $-x \in W$ がわかり, (S_2) により $W \ni x + (-x) = 0$ がわかる.このことから W もまた線型空間であることがわかる.

例 1.3. (a)
$$\mathbf{K} = \mathbf{R}, V = \mathbf{R}^n$$
 のとき、 $\alpha \in \mathbf{R}, \ \boldsymbol{x} = (\xi_1, \dots, \xi_n) = (\xi_i)_{i=1}^n, \boldsymbol{y} = (\eta_i)_{i=1}^n \in \mathbf{R}^n$ に対して、演算を $\boldsymbol{x} + \boldsymbol{y} := (x_i + y_i)_{i=1}^n, \qquad \alpha \boldsymbol{x} := (\alpha \xi_i)_{i=1}^n$

と定めれば、 \mathbf{R}^n は \mathbf{R} 上の線型空間である.

(b) $\mathbf{K} = \mathbf{R}, V = \mathsf{Mat}(n; \mathbf{R}) := \{A \mid A : n 次正方行列\}$ のとき, $\alpha \in \mathbf{R}, \ X = (\xi_{ij})_{i,j}, Y = (\eta_{ij})_{i,j} \in \mathsf{Mat}(n; \mathbf{R})$ に対して、演算を

$$X + Y := (\xi_{ij} + \eta_{ij})_{i,j}, \qquad \alpha X := (\alpha \xi_{ij})_{i,j}$$

と定めれば、 $Mat(n; \mathbf{R})$ は \mathbf{R} 上の線型空間である.

(c) $\mathbf{K} = \mathbf{R}, V = C([0,1], \mathbf{R}) := \{ f : [0,1] \to \mathbf{R} \mid f \text{ は連続} \}$ のとき, $\alpha \in \mathbf{R}, f, g \in C([0,1], \mathbf{R})$ に対して, 演算を

$$f+g:[0,1]\ni x\longmapsto f(x)+g(x)\in\mathbf{R},\qquad \alpha f:[0,1]\ni x\longmapsto \alpha f(x)\in\mathbf{R}$$

と定めれば, $C([0,1], \mathbf{R})$ は \mathbf{R} 上の線型空間である.

以後, 可換体 K は実数全体 R あるいは複素数全体 C であるとする.

定義 1.4 (距離空間). X を空でない集合とする. 写像 $d: X \times X \longrightarrow \mathbf{R}$ が次を満たすとき, d は X 上の距離という:

- $(M_1) \ d(x,y) \geqslant 0.$ [非負値性 (正値性)]
- (M_2) d(x,y) = 0 \iff x = y. [等号成立条件]
- $(M_3) \ d(x,y) = d(y,x).$ [対称性]
- $(M_4) \ d(x,z) \leqslant d(x,y) + d(y,z).$ [三角不等式]

距離 d が定まっている集合 X を**距離空間 (metric space)** といい, X = (X, d) とかく.

1.1.1 点列の収束, Cauchy 列

定義 1.5 (点列の収束, Cauchy 列). 距離空間 X=(X,d) 内の点列 $\{x_n\}_{n=1}^\infty$ が $x\in X$ に収束するとは、任意の $\varepsilon>0$ に対して、ある $N\in {\bf N}$ が存在して、N 以上のすべての自然数 n に対して、 $d(x_n,x)<\varepsilon$ が成り立つことをいう。また、 $\{x_n\}_{n=1}^\infty$ が Cauchy 列であるとは、任意の $\varepsilon>0$ に対して、ある $N\in {\bf N}$ が存在して、N 以上の自然数 n,m に対して、 $d(x_n,x_m)<\varepsilon$ が成り立つことである.

注意 1.6. 収束列ならば Cauchy 列である。実際, $\{x_n\}_{n=1}^{\infty}$ を収束列としその極限を $x \in X$ とすると, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}: \forall n \in \mathbb{N}, n \geqslant N \Rightarrow d(x_n, x) < \varepsilon/2$ である。距離の三角不等式, 対称性を用いれば, N 以上の任意の自然数 n, m に対して, $d(x_n, x_m) \leqslant d(x_n, x) + d(x, x_m) < \varepsilon$ となる。ただし, 逆は成り立つとは限らない。距離空間 X 内の任意の Cauchy 列が X 内の点に収束するとき, X は完備 (complete) であるという。また, X の部分集合 A 内の任意の Cauchy 列が A 内で収束するとき, A は完備であるという。

定理 1.7. 完備距離空間 X = (X, d) と、その部分集合 A について以下が成り立つ:

A: 完備 \iff A: 閉集合.

定理 1.7 の証明.

- (\iff) A を閉集合であるとすると, $A=\overline{A}$ である.A 内の任意の Cauchy 列を $\{a_n\}_{n=1}^\infty$ とすると,X が完備であるから, $\{a_n\}_{n=1}^\infty$ は X 内に極限を持つ.その極限を a とする.また,閉包の定義から $a\in\overline{A}=A$ となる.よって,A は完備.//
- (⇒) 対偶を示す. A が閉集合でないとすると, $A \subseteq \overline{A}$ ということなので, A 内の点列 $\{a_n\}_{n=1}^{\infty}$ で $a \in X$ に収束するが $a \not\in A$ なるものが存在する. いま, 点列 $\{a_n\}_{n=1}^{\infty}$ は A 内の Cauchy 列であるが, A 内に極限を持たない. ゆえに A は 完備でない.

定義 1.8 (ノルム空間). 集合 X を K 上の線型空間とする.

写像 $\|\cdot\|: X \longrightarrow \mathbf{R}$ が次を満たすとき, $\|\cdot\|$ は X の**ノルム**であるという:

- $(N_1) ||x|| \geqslant 0.$ [非負値性 (正値性)]
- (N_2) ||x|| = 0 \iff x = 0. [等号成立条件]
- $(N_3) \|\alpha x\| = |\alpha| \|x\| \quad (\alpha \in \mathbf{K}).$
- $(N_4) \|x + y\| \le \|x\| + \|y\|$. [三角不等式]

ノルム $\|\cdot\|$ が定まっている線型空間 X を**ノルム空間 (norm space)** といい, $X=(X,\|\cdot\|)$ とかく. また, X のノルムであることを強調するために, $\|\cdot\|=\|\cdot\|_X$ と書くこともある.

注意 1.9. ノルム空間 X の元 x,y に対して, $\left|\|x\|_X - \|y\|_X\right| \leqslant \|x-y\|_X$ が成り立つ. 実際, $\|x\|_X \leqslant \|x-y\|_X + \|y\|_X$ $\|y\|_X$, $\|y\| \leqslant \|x-y\|_X + \|x\|$ からわかる. また, $d(x,y) := \|x-y\|_X$ によって距離空間となる.

命題 1.10. X をノルム空間とする. X が完備であるための必要十分条件は, X 内の任意の点列 $\{x_n\}_{n=1}^\infty$ に対して, $\sum_{n=1}^{\infty} \|x_{n+1} - x_n\|_X < \infty \text{ ならば } \{x_n\}_{n=1}^{\infty} \text{ は } X \text{ 内で収束する}.$

命題 1.10 の証明.

 (\Longrightarrow) X内の点列 $\{x_n\}_{n=1}^{\infty}$ について、

$$S := \sum_{n=1}^{\infty} \|x_{n+1} - x_n\|_X < \infty$$

と仮定する.また、

$$S_n := \sum_{k=1}^n \|x_{k+1} - x_k\|_X$$

とおくと、実数列 $\{S_n\}_{n=1}^\infty$ は S に収束する. つまり、 $\{S_n\}_{n=1}^\infty$ は Cauchy 列となるから、任意の $\varepsilon>0$ に対して、あ る $N \in \mathbb{N}$ が存在して、自然数 $n \geqslant N$ について、

$$||x_{n+2} - x_{n+1}||_X = |S_{n+1} - S_n| < \varepsilon$$

が成り立つ. よって, X 内の点列 $\{x_n\}_{n=1}^\infty$ は Cauchy 列となり, X の完備性から X 内に収束する.

 (\Leftarrow) $\{y_n\}_{n=1}^\infty$ を X 内の Cauchy 列とすると、各 $j\in \mathbf{N}$ に対して、 $2^{-j}>0$ であるから、ある $N_j\in \mathbf{N}$ が存在して、自然数 $\ell, \, k \geqslant N_j$ について $\|y_\ell - y_k\|_X < 2^{-j}$. ここで, n_j を $n_j > N_j$ かつ $n_j < n_{j+1}$ となるように定めれば, $\{y_n\}_{n=1}^\infty$ の 部分列 $\{y_{n_j}\}_{j=1}^{\infty}$ が作れる. 便宜上, $y_{n_j} =: x_j$ とおく. すると,

$$\sum_{j=1}^{\infty} \|x_{j+1} - x_j\|_X \leqslant \sum_{j=1}^{\infty} 2^{-j} = 1 < \infty$$

となる. よって, 点列 $\{x_j\}_{j=1}^\infty$ は X 内に収束する. その収束先を x とおく. $x_j=y_{n_j}$ だったので, $\{y_n\}_{n=1}^\infty$ の部分列 $\left\{y_{n_j}\right\}_{j=1}^\infty$ が x に収束するということである. $\left\{y_n\right\}_{n=1}^\infty$ は Cauchy 列だから, $\forall \varepsilon>0$ に対して, ある $N'\in \mathbf{N}$ があって 自然数 $n,m\geqslant N'$ に対して、 $\|y_n-y_m\|_X<arepsilon/2$ であり、また、部分列 $\left\{y_{n_j}
ight\}_{j=1}^\infty$ は x に収束するので、 $J\in {f N}$ があっ て、自然数 $j\geqslant J$ に対して、 $\|y_{n_j}-x\|_X<arepsilon/2$ となる.ここで、 $N:=\max(N',n_J)$ とすれば、自然数 $n\geqslant N$ に対 して,

$$||y_n - x||_X \le ||y_n - y_{n_j}||_X + ||y_{n_j} - x||_X < \varepsilon$$

が成り立つ. よって, $\{y_n\}_{n=1}^\infty$ は x に収束する. ゆえに, X は完備である.

定義 1.11 (内積空間). 集合 X を K 上の線型空間とする.

写像 $(\cdot|\cdot)$: $X\times X\longrightarrow \mathbf{K}$ が次を満たすとき, $(\cdot|\cdot)$ は X 上の**内積**であるという:

 $(I_1) (x | x) \ge 0.$

[非負値性 (正値性)]

[等号成立条件]

[共軛対称性]

$$\begin{split} &(\mathrm{I}_2)\ (x\,|\,x)=0 &\iff x=0.\\ &(\mathrm{I}_3)\ (x\,|\,y)=\overline{(y\,|\,x)}\ (\ \overline{}\ \mathrm{i}\ \mathrm{t}\ \mathrm{t}$$

[第1引数の線型性]

内積 $(\cdot|\cdot)$ が定まっている空間 X を**内積空間 (inner product space)** という.

注意 1.12. 内積空間 X の元 x, y, z と $\alpha \in \mathbf{K}$ に対して, $(x \mid y + z) = (x \mid y) + (x \mid z)$, $(x \mid \alpha y) = \overline{\alpha}(x \mid y)$ が成り立つ.

注意 1.13. 内積空間 X は、 $\|x\|_X:=\sqrt{(x\,|\,x)}$ と定めることによりノルム空間となる. これを示すには次の補題 (Schwarz の不等式) が必要である.

補題 1.14 (Schwarz の不等式). 内積空間 X の任意の元 x,y に対して, 次が成り立つ:

$$|(x | y)| \le ||x||_X ||y||_X. \tag{1.1}$$

補題 1.14 の証明. $t \in \mathbf{R}$ とする. 任意の $x, y \in X$ に対して,

 $0 \le \|x + ty\|_{X}^{2} = \|x\|_{X}^{2} + 2t \operatorname{Re}(x \mid y) + t^{2} \|y\|_{X}^{2} \le \|y\|_{X}^{2} t^{2} + 2 |(x \mid y)| t + \|x\|_{X}^{2}$

が成り立つ. これはtについての2次不等式とみれるので、

$$|(x | y)|^2 - ||x||_X^2 ||y||_X^2 \le 0 \qquad \Longleftrightarrow \qquad |(x | y)|^2 \le (||x||_X ||y||_X)^2$$

となる. $|(x|y)| \ge 0$, $||x||_X ||y||_X \ge 0$ より, (1.1) が成り立つ.

命題 1.15. 内積空間 X は, $\|x\|_X := \sqrt{(x|x)}$ と定めることによりノルム空間となる.

命題 1.15 の証明. $(N_1), (N_2), (N_3)$ は明らかであるから, (N_4) は $\operatorname{Re}(x \mid y) \leqslant |(x \mid y)|$ と Schwarz の不等式よりわかる. \square

注意 1.9, 命題 1.15 により, 内積空間はノルム空間となり, ノルム空間は距離空間となることがわかる. つまり,

内積空間 ⇒ ノルム空間 ⇒ 距離空間

である.

1.1.2 Banach 空間, Hilbert 空間

定義 1.16 (Banach 空間, Hilbert 空間). ノルム空間 X が距離 $d(x,y) = \|x-y\|_X$ により完備な空間となるとき, X を Banach 空間と呼ぶ. また, 内積空間 X がノルム $\|x\|_X = \sqrt{(x\,|\,x)}$ により Banach 空間となるとき, X を Hilbert 空間と呼ぶ.

1.2 Hahn-Banach の定理

1.2.1 順序関係,極大元

Hahn-Banach の定理を述べるまえに、集合論の復習をしておこう.

定義 1.17 (順序関係). 集合 A の二項関係 \preceq が次を満たすとき,A は順序関係 \preceq をもつという:

(**反射律**) 任意の $a \in A$ に対して, $a \preceq a$.

(推移律) 任意の $a,b,c \in A$ に対して, $a \leq b$ かつ $b \leq c$ ならば $a \leq c$.

(反対称律) 任意の $a,b \in A$ に対して, $a \leq b$ かつ $b \leq a$ ならば a = b.

また、順序集合 $A = (A, \preceq)$ が比較可能性の法則を満たす、すなわち、

$$a, b \in A \implies a \leq b \quad \sharp \, \hbar \, \mathsf{tt} \quad b \leq a$$

が成り立つとき、A は**全順序集合**という.

- $s \in A$ が $B \subseteq A$ の上界であるとは、任意の $x \in B$ に対して、 $x \preceq s$ となることである.
- $m \in A$ が A の極大元であるとは、任意の $x \in A$ に対して、 $m \preceq x$ ならば x = m となることである.
- A が**帰納的**であるとは、A の任意の全順序部分集合が上界を持つことである.

事実 1.18 (Zorn の補題). 空でない任意の帰納的順序集合は極大元を持つ.

Zorn の補題は選択公理 1) と同値な命題として知られている.

1.2.2 Hahn-Banach の定理

実線型空間における Hahn-Banach の定理が次である.

定理 1.19 (Hahn-Banach の拡張定理 1). E を R 上の線型空間, $G \subseteq E$ を部分空間とする.

写像 $p: E \to \mathbf{R}$ と線型写像 $g: G \to \mathbf{R}$ が

$$p(\lambda x) = \lambda p(x) \qquad (\forall x \in E, \ \forall \lambda \geqslant 0) \tag{1.2}$$

$$p(x+y) \leqslant p(x) + p(y) \qquad (\forall x, \forall y \in E)$$
 (1.3)

$$g(x) \leqslant p(x) \tag{1.4}$$

を満たすとき、g を拡張する、E 上の線型汎函数 $f: E \to \mathbf{R}$ (i.e., $\forall x \in G$, f(x) = g(x)) が存在して、

$$f(x) \leqslant p(x) \qquad (\forall x \in E) \tag{1.5}$$

を満たす.

定理 1.19 の証明.

次のような集合 P を考える.

$$P:=\left\{h \left| egin{array}{ll} h:D(h) o \mathbf{R},\ D(h)\ \mbox{it}\ E\ \mbox{o}$$
部分空間, $h\ \mbox{tk線型写像},\ G\subseteq D(h),\ h\ \mbox{it}\ g\ \mbox{o}$ 拡張であり,任意の $x\in D(h)\ \mbox{it}$ に対して $h(x)\leqslant p(x)$ $ight.$

P の二項関係を

$$h_1 \leq h_2$$
 \iff $D(h_1) \subseteq D(h_2)$ かつ h_2 は h_1 の拡張 (i.e., $h_2|_{D(h_1)} = h_1$)

と定めれば、これは順序関係である。 実際、 $D(h_1) = D(h_1)$ かつ $h_1 = h_1$ により反射律がわかり、 $h_1 \preceq h_2$ かつ h_2 かつ h_3 を仮定すれば $D(h_1) \subseteq D(h_2) \subseteq D(h_3)$ かつ任意の $x \in D(h_1)$ に対して、 $h_1(x) = h_2(x) = h_3(x)$ より推移律もわかり、 $h_1 \preceq h_2$ かつ $h_2 \preceq h_1$ を仮定すれば $D(h_1) \subseteq D(h_2) \subseteq D(h_1)$ より $D(h_1) = D(h_2)$ となり $h_1 = h_2$ が従い、反対称律も成り立つ。このことから $g \in P$ がわかるので $P \neq \varnothing$ 。また、P は帰納的である。実際、 $Q \subseteq P$ を全順序部分集合とし $Q = \{h_i \mid i \in I\}$ とする。写像 $u: D(u) \to \mathbf{R}$ を次のように定義する:

$$D(u) := \bigcup_{i=1}^{n} D(h_i) \; ; \; u|_{D(h_i)} = h_i.$$

すると、 $u\in P$ かつ u は Q の上界である。 実際,D(u) が E の部分空間であることは Q が全順序部分集合であることから 簡単にわかり $^{2)}$,u の線型性も同様にわかり $^{3)}$, $u\in P$ がわかる。 また u が Q の上界であることは,任意の $h_{i}\in Q$ $(i\in I)$ に対して, $D(h_{i})\subseteq D(u)$ かつ $u|_{D(h_{i})}=h$ となることからわかる。 よって,P は帰納的であることがわかった. Zorn の補題(事実 1.18)より P の極大元 $f\in P$ が存在する。 D(f)=E が示せれば主張が従う。 $D(f)\neq E$ を仮定し, $x_{0}\in E\setminus D(f)$ を取る.任意の $\xi\in \mathbf{R}$ に対して,

$$v_{\xi}: D(f) \oplus \mathbf{R} x_0 := \{x + \alpha x_0 \mid x \in D(f), \alpha \in \mathbf{R}\} \ni x + \alpha x_0 \mapsto f(x) + \alpha \xi \in \mathbf{R}$$

集合を意味し、 $\prod_{\lambda \in \Lambda} A_{\lambda} := \left\{ f: \Lambda \to \bigcup_{\lambda \in \Lambda} A_{\lambda} \middle| \forall \lambda \in \Lambda, \ f(\lambda) \in A_{\lambda} \right\}$ である。日本語でわかりやすく言えば、空でない無限個の集合の直積集合 は空集合でかいということである

 $^{^{(1)}}$ 選択公理とは,集合の列 $\{A_{\lambda}\}_{\lambda\in\Lambda}$ $(\Lambda:$ 無限集合)に対して, $A_{\lambda}\neq\varnothing$ $(\forall\lambda\in\Lambda)$ \implies $\prod_{\lambda\in\Lambda}A_{\lambda}\neq\varnothing$ という主張のことである.ここで, \prod は直積

 $x,y\in D(u)$ とすると、ある $j,k\in I$ があって $x\in D(h_j),\ y\in D(h_k)$ となる。 Q が全順序集合であることから $h_j\preceq h_k$ または $h_k\preceq h_j$ が成り立つので $D(h_j)\subseteq D(h_k)$ または $D(h_k)\subseteq D(h_j)$ が成り立つ。 $D(h_j)\subseteq D(h_k)$ としても一般性を失わないのでそうすると、 $x,y\in D(h_k)$ となり $D(h_k)$ は E の部分空間なので $\alpha,\beta\in\mathbf{R}$ に対して $\alpha x+\beta y\in D(h_k)\subseteq\bigcup D(h_i)$ が得られる。

 $^{^{(3)}}$ 記号は ↑ と同じとする。 $h_j \leq h_k$ とすると $h_k|_{D(h_j)} = h_j$ なので $\alpha u(x) + \beta u(y) = \alpha h_j(x) + \beta h_k(y) = \alpha h_k(x) + \beta h_k(y) = h_k(\alpha x + \beta y) = u(\alpha x + \beta y)$.

として、 $D(v_{\xi}) = D(f) \oplus \mathbf{R} x_0$ 上の線型汎函数 v_{ξ} を定めると、 v_{ξ} は f の拡張である.このとき、

$$v_{\xi_0}(x + \alpha x_0) \leqslant p(x_0 + \alpha x_0) \qquad (\forall x \in D(f), \forall \alpha \in \mathbf{R})$$
 (1.6)

を満たす $\xi_0 \in \mathbf{R}$ が存在することを示す. いま, 任意の $x,y \in D(f)$ に対して,

となる. ゆえに,

$$\beta_1 := \sup \{ f(y) - p(y - x_0) \mid y \in D(f) \} \le \inf \{ p(x + x_0) - f(x) \mid x \in D(f) \} =: \beta_2$$

が成り立つから、実数の稠密性から $\beta_1 \leqslant \eta_0 \leqslant \beta_2$ なる $\eta_0 \in \mathbf{R}$ が存在する.このような $\eta_0 \in \mathbf{R}$ は (1.6) を満たす. $\alpha = 0$ のときは人間ならわかるので、まず $\alpha > 0$ のとき、

$$v_{\eta_0}(x + \alpha x_0) = f(x) + \alpha \eta_0$$

 $\leq f(x) + \alpha \left(p(\alpha^{-1}x + x_0) - f(\alpha^{-1}x) \right)$: β_2 は下限より.
 $= p(x + \alpha x_0)$: p の定義, f の線型性.

となるからよい.次に α <0のとき、

$$v_{\eta_0}(x + \alpha x_0) = f(x) + \alpha \eta_0$$

$$\leq f(x) + \alpha \left(f(-\alpha^{-1}x) - p(-\alpha^{-1}x - x_0) \right) \quad \because \quad \alpha < 0, \ \beta_1$$
は上限より.
$$= (-\alpha)p(-\alpha^{-1}x - x_0) = p(x + \alpha x_0) \qquad \because \quad -\alpha > 0, \ p \text{ の定義}, \ f \text{ の線型性}.$$

となる. よって、(1.6) を満たすような $\xi_0 \in \mathbf{R}$ が存在する. すると、このとき、 $f \preceq v_{\xi_0}$ であるが $f \neq v_{\xi_0}$ である. これは $f \not\in P$ の極大元としたことに矛盾. ゆえに、D(f) = E である.

定理 1.20 (Hahn-Banach の拡張定理 2). E を K 上の線型空間, $G \subseteq E$ を部分空間とする.

写像 $p: E \to [0,\infty)$ と G 上の線型写像 $g: G \to \mathbf{K}$ は

$$p(\lambda x) = |\lambda| \ p(x) \qquad (\forall x \in E, \ \forall \lambda \in \mathbf{K})$$

$$(1.7)$$

$$p(x+y) \leqslant p(x) + p(y) \qquad (\forall x, y \in E) \tag{1.8}$$

$$|g(x)| \leqslant p(x) \qquad (\forall x \in G) \tag{1.9}$$

を満たすとする. このとき、g を拡張する、E 上の線型汎函数 $f:E \to \mathbf{K}$ (i.e., $f|_G = g$) が存在して、

$$|f(x)| \le p(x) \qquad (\forall x \in E) \tag{1.10}$$

を満たす.

定理 1.20 の証明.

i. $\mathbf{K} = \mathbf{R}$ の場合:

p は (1.7) を満たすので当然 (1.2) も満たす.また,任意の $x \in G$ に対して, $g(x) \leqslant |g(x)| \leqslant p(x)$ となることから,定理 1.19 を適用すれば,E 上の線型汎函数 $f: E \to \mathbf{R}$ が存在して

$$f(x) = g(x) \quad (\forall x \in G), \qquad f(x) \leqslant p(x) \quad (\forall x \in E)$$

を満たす. また, (1.7) より任意の $x \in E$ に対して,

$$-f(x) = f(-x) \le p(-x) = |-1| p(x) = p(x)$$

が成り立つので、fは (1.10) を満たしている.

ii. $\mathbf{K} = \mathbf{C}$ の場合:E, G のスカラー値を実数に制限したものをそれぞれ、 $E_{\mathbf{R}}, G_{\mathbf{R}}$ と表す.

写像 $\mathrm{Re}:G\ni x\mapsto \mathrm{Re}\big(g(x)\big)\in\mathbf{R},\ \mathrm{Im}:G\ni x\mapsto \mathrm{Im}\big(g(x)\big)\in\mathbf{R}$ は $G_{\mathbf{R}}$ 上の実線型汎函数であるから、前半の証明 により $E_{\mathbf{R}}$ 上の実線型汎函数 $\widetilde{F}_1:E_{\mathbf{R}}\to\mathbf{R},\widetilde{F}_2:E_{\mathbf{R}}\to\mathbf{R}$ が存在して、

$$\left.\widetilde{F}_1\right|_{G_{\mathbf{R}}} = \operatorname{Re} g, \quad \left.\widetilde{F}_2\right|_{G_{\mathbf{R}}} = \operatorname{Im} g, \quad \left.\left|\widetilde{F}_i(x)\right| \leqslant p(x) \quad (\forall x \in E_{\mathbf{R}}, \ i = 1, 2)\right.$$

を満たす. また, E 上の新たな写像 \widetilde{f} : $E \to \mathbf{R}$ を

$$\widetilde{f}(a+ib) := \widetilde{F}_1(a) - \widetilde{F}_2(b) \qquad (\forall a, \forall b \in E_{\mathbf{R}})$$

で定めると、 \widetilde{f} は明らかに実線型であり、任意の $x \in G$ に対して、 $\widetilde{f}(x) = \operatorname{Re}(g(x))$ である. (g(x)) ここで $f: E \to \mathbb{C}$ を

$$f(x) := \widetilde{f}(x) - i \, \widetilde{f}(ix) \qquad (\forall x \in E)$$

により定めると、f は線型である。実際、任意の $x \in E$ に対して、

$$f(ix) = \widetilde{f}(ix) - i \, \widetilde{f}(i(ix)) \qquad \qquad :: f \, \mathcal{O}$$
定義.

$$= \widetilde{f}(ix) - i \, \widetilde{f}(-x) \qquad \qquad :: i^2 = -1.$$

$$= \widetilde{f}(ix) + i \, \widetilde{f}(x) \qquad \qquad :: f \, \mathcal{O}$$
実線型性

$$= -i^2 \, \widetilde{f}(ix) + i \, \widetilde{f}(x) \qquad \qquad :: 1 = -(-1) = -i^2.$$

$$= i \big(\widetilde{f}(x) - i \, \widetilde{f}(ix) \big) \qquad = i \, f(x)$$

であることから、任意の $x,y \in E$ 、 $\alpha = \alpha_1 + i\alpha_2 \in \mathbf{C}$, $\beta = \beta_1 + i\beta_2 \in \mathbf{C}$ $(\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbf{R})$ に対して、

$$f(\alpha x + \beta y) = \alpha_1 f(x) + \beta_1 f(y) + i f(\alpha_2 x) + i f(\beta_2 y)$$

= $(\alpha_1 + i\alpha_2)f(x) + (\beta_1 + i\beta_2)f(y)$
= $\alpha f(x) + \beta f(y)$

となる. また, 任意の $x \in G$ に対して

$$f(x) = \operatorname{Re}(g(x)) - i\operatorname{Re}(g(ix)) = \operatorname{Re}(g(x)) + i\operatorname{Im}(g(x)) = g(x)$$

であり、任意の $x \in E$ に対して、 $|f(x)| = \alpha f(x)$ かつ $|\alpha| = 1$ なる $\alpha \in \mathbb{C}$ を選べば δ

$$|f(x)| = \alpha f(x) = f(\alpha x) = \text{Re}(f(\alpha x)) = \widetilde{f}(\alpha x) \leqslant p(\alpha x) = |\alpha| \ p(x) = p(x)$$

となる. これが求めるものであった.

1.3 線型作用素

定義 1.21 (線型作用素). X,Y をノルム空間とする.

写像 $T: X \to Y$ が次を満たすとき,T を**線型作用素** (linear operator) と呼ぶ:

$$\forall \alpha, \forall \beta \in \mathbf{K}, \quad \forall x, \forall y \in X, \qquad T(\alpha x + \beta y) = \alpha Tx + \beta Ty.$$

定義 1.22. *X*, *Y* をノルム空間とする.

線型作用素 $T:X\to Y$ が**有界**であるとは、ある定数 $K\geqslant 0$ が存在して、任意の $x\in X$ に対して、

$$||Tx||_Y \leqslant K ||x||_X$$

⁴⁾ 実際, x = a + ib $(a, b \in G_{\mathbf{R}})$ とすると, $\widetilde{f}(x) = (f)(a + ib) = \operatorname{Re}(g(a)) - \operatorname{Im}(g(b)) = \operatorname{Re}(g(a)) + \operatorname{Re}(ig(b)) = \operatorname{Re}(g(a)) + \operatorname{Re}(g(a))$

f(x) が実数の場合, $f(x) \geqslant 0$ なら $\alpha = 1$, f(x) < 0 なら $\alpha = -1$ とすればよい. また, f(x) が実数でなかった場合, $\alpha = |f(x)|/(\mathrm{Re}(f(x)) + i \mathrm{Im}(f(x)))$ とすればよい.

が成り立つことである.また,線型作用素 T が点 $x\in X$ で**連続**であるとは,x に収束する X 内の任意の点列 $\{x_n\}_{n=1}^\infty$ に対して、 $\|Tx-Tx_n\|_Y \to 0 \ (n \to \infty)$ が成り立つことである.

定理 1.23. X,Y をノルム空間, $T:X\to Y$ を線型作用素とする.このとき,以下は同値である.

(1) T は X 上で連続である. (2) T は原点で連続である. (3) T は有界である.

定理 1.23 の証明.

- $(1) \Longrightarrow (2)$ 自明.
- $(3)\Longrightarrow (1)$ 任意に $x\in X$ を固定する. x に収束する X 内の任意の点列を $\{x_n\}_{n=1}^\infty$ とする. まず, T の線型性か ら $\|Tx_n-Tx\|_Y=\|T(x_n-x)\|_Y$ であり、いま、T が有界なので、ある定数 $K\geqslant 0$ があって $\|T(x_n-x)\|_Y\leqslant T$ $K \|x_n - x\|_X$ となる. また, $\|x_n - x\|_X \to 0 \ (n \to \infty)$ であるから,

$$||Tx_n - Tx||_Y \leqslant K ||x_n - x||_X \to 0 \qquad (n \to \infty)$$

となる. よって, T は X 上で連続である.

(2) \Longrightarrow (3) 背理法で示す. T が有界でないとすると、任意の $n \in \mathbb{N}$ に対して、ある単位ベクトル $x_n \in X$ が存在し、

$$||Tx_n||_Y > n ||x_n||_X = n$$

が成り立つ. $y_n := \frac{1}{\sqrt{n}} x_n$ とおくと,

$$\|y_n - 0\|_X = \left\| \frac{1}{\sqrt{n}} x_n \right\|_X = \frac{1}{\sqrt{n}} \|x_n\|_X = \frac{1}{\sqrt{n}} \to 0 \quad (n \to \infty)$$

となるから $y_n \to 0 \ (n \to \infty)$ である. 一方,

$$||Ty_n - T0||_Y = ||Ty_n||_Y = \frac{1}{\sqrt{n}} ||Tx_n||_Y > \frac{1}{\sqrt{n}} \cdot n = \sqrt{n} \to \infty \quad (n \to \infty)$$

となることから, Ty_n が T0 に収束しないことがわかる. これは T が原点で連続であることに反する $(y_n \to 0 \ (n \to n))$ ∞) にもかかわらず Ty_n は T0 に収束しない). よって従う.

ノルム空間 X からノルム空間 Y への有界線型作用素全体を $\mathcal{B}(X,Y)$ で表す. すなわち,

$$\mathscr{B}(X,Y) := \{ T : X \to Y \mid \exists K \geqslant 0 \quad \text{s.t.} \quad \forall x \in X, \quad \|Tx\|_Y \leqslant K \|x\|_X \}$$

である. 特に Y = X のときは $\mathcal{B}(X)$ とかく. $\mathcal{B}(X,Y)$ は次の和・スカラー倍により線型空間をなす:

$$\forall x \in X, \qquad (T+S)x := Tx + Sx, \quad (\alpha T)x := \alpha Tx \qquad (T, S \in \mathcal{B}(X,Y), \ \alpha \in \mathbf{K}).$$

また、 $\mathscr{B}(X,Y)$ は次で定めるノルムによって、ノルム空間となる:

$$||T||_{\mathscr{B}(X,Y)} := \sup \left\{ \frac{||Tx||_Y}{||x||_X} \mid x \in X, \ x \neq 0 \right\} = \sup_{x \neq 0} \frac{||Tx||_Y}{||x||_X}$$
 $(T \in \mathscr{B}(X,Y)).$

定理 1.24. X をノルム空間, Y を Banach 空間とする. このとき, $\mathscr{B}(X,Y)$ は Banach 空間である.

定理 1.24 の証明

 $\{T_n\}_{n=1}^\infty$ を $\mathcal{B}(X,Y)$ 内の任意の Cauchy 列とすると、任意の $\varepsilon>0$ に対して、ある $N\in\mathbf{N}$ が存在して、N 以上の すべての自然数 n,m に対して, $\|T_n-T_m\|_{\mathscr{B}(X,Y)}<\varepsilon$ が成り立つ.また,任意の $x\in X$ に対して, $\|T_nx-T_mx\|_Y=$ $\|(T_n-T_m)x\|_Y=\|T_n-T_m\|_{\mathscr{B}(X,Y)}\|x\|_X<arepsilon\|x\|_X$ より、点列 $\{T_nx\}_{n=1}^\infty$ は Y 内の Cauchy 列であることがわか る. いま, Y は完備であるから $\{T_nx\}_{n=1}^\infty$ は収束する. その極限を Tx とかく. $^{6)}$ このとき, $T\in \mathscr{B}(X,Y)$ であり

 $^{^{(6)}}$ ここで注意すべきなのが「何か写像 T:X o Y があって Tx とかける収束先がある」という解釈ではなく「x に依存する収束先 y があり,それを x に依存していることを強調して Tx と書きましょう」というものである. もちろん, $x \in X$ に対応する $y \in Y$ なので T は確かに X から Y への 写像となっている.

 $\|T_n-T\|_{\mathscr{B}(X|Y)} o 0 \ (n \to \infty)$ であることを示す.まず,T が線型作用素であることを示そう.任意の $x,y \in X$ に対して,

$$\begin{split} \|T(x+y)-(Tx+Ty)\|_{Y} &\leqslant \|T(x+y)-T_{n}(x+y)\|_{Y} + \|T_{n}x+T_{n}y-(Tx+Ty)\|_{Y} & \because T_{n}\mathcal{O}$$
線型性
$$&\leqslant \|T(x+y)-T_{n}(x+y)\|_{Y} + \|T_{n}x-Tx\|_{Y} + \|T_{n}y-Ty\|_{Y} \\ &\longrightarrow 0 \qquad (n\to\infty) & \because \|T_{n}z-Tz\|_{Y} \to 0 \end{split}$$

となるから、 $\|T(x+y)-(Tx+Ty)\|_{Y}=0$ より T(x+y)=Tx+Ty. 同様に、任意の $\alpha\in\mathbf{K},\ x\in X$ に対して、

$$||T(\alpha x) - \alpha T x||_Y \leqslant ||T(\alpha x) - T_n(\alpha x)||_Y + ||\alpha T_n x - \alpha T x||_Y$$

$$= ||T(\alpha x) - T_n(\alpha x)||_Y + |\alpha| ||T_n x - T x||_Y$$

$$\longrightarrow 0 \qquad (n \to \infty)$$

となることから, $T(\alpha x)=\alpha Tx$ がわかる.よって,T は線型作用素である.次に,T が有界であることを示そう. $x\in X$ を任意の固定する.このとき,N 以上のすべての自然数 n,m に対して,

右辺を $m \to \infty$ とすれば,

$$||T_n x - Tx||_Y \leqslant \varepsilon ||x||_Y \tag{1.11}$$

となる. $||Tx||_{Y} - ||T_nx||_{Y} \leq ||T_nx - Tx||_{Y}$ に注意すれば,

$$||Tx||_{Y} \le ||T_n x||_{Y} + \varepsilon ||x|| \le ||T_n||_{\mathscr{B}(X,Y)} ||x||_{X} + \varepsilon ||x||_{X} = (||T_n||_{\mathscr{B}(X,Y)} + \varepsilon) ||x||_{X}$$

が成り立つ. $T_n \in \mathcal{B}(X,Y)$ より $\|T_n\|_{\mathcal{B}(X,Y)} < \infty$ であり、 ε は任意であるから $\varepsilon = 1$ とでもすれば T が有界であることがわかる. よって、 $T \in \mathcal{B}(X,Y)$ である. 最後に、 T_n が T のノルム収束していることを示す.式 (1.11) より、 $x \neq 0$ のとき、両辺を $\|x\|_X$ $(\neq 0)$ で割り、 $x \neq 0$ における sup をとれば、

$$||T_n - T||_{\mathscr{B}(X,Y)} \leqslant \varepsilon$$

であることがわかる. いま、 ε は任意であったから、これは T_n が T にノルム収束していることにほかならない. ゆえに、 $\mathscr{B}(X,Y)$ は Banach 空間である.

1.4 双対空間

線型作用素 $T: X \to Y$ において, $Y = \mathbf{K}$ であるものを**線型汎函数**と呼ぶ。有界線型汎函数全体のなす集合 $\mathcal{B}(X, \mathbf{K})$ を X' で表し, X の**双対空間**と呼ぶ。 \mathbf{K} は完備であるから, ノルム空間 X の双対空間 X' もまた Banach 空間となる。ノルム空間に関する重要な結果として, 次の定理がある。これもまた, Hahn-Banach の定理と呼ばれる。

定理 1.25 (Hahn-Banach の拡張定理 3). E を K 上のノルム空間, $G \subseteq E$ を部分空間とする. このとき, 任意の $g \in G'$ に対して, 次を満たす $f \in E'$ が存在する:

$$f|_{G} = g$$
 かつ $||f||_{E'} = ||g||_{G'}$. (1.12)

定理 1.25 の証明. $p: E \to [0,\infty)$ を $p(x) := \|g\|_{G'} \|x\|_E$ で定めると、定理 1.19 の条件を満たすので、ある線型汎函数 $f: E \to \mathbf{K}$ が存在し、

$$f(x) = g(x) \qquad (\forall x \in G) \tag{1.13}$$

$$|f(x)| \le p(x) \qquad (\forall x \in E) \tag{1.14}$$

を満たす. (1.14) より $\|f\|_{E'} \leqslant \|g\|_{G'}$ を得る. よって $f \in E'$ である. また, (1.13) より, 任意の $x \in G$ に対して $|g(x)| = |f(x)| \leqslant \|f\|_{E'} \|x\|_E$ となるので, $\|g\|_{G'} \leqslant \|f\|_{E'}$ を得る. ゆえに $\|f\|_{E'} = \|g\|_{G'}$.

系 1.26. E を **K** 上のノルム空間とする. $x_0 \in E \setminus \{0\}$ に対して, 次を満たすような $f \in E'$ が存在する:

$$f(x_0) = ||x_0||_E \quad \text{for } ||f||_{E'} = 1.$$
 (1.15)

系 1.26 の証明. $\mathbf{K}x_0 := \{\alpha x_0 \mid \alpha \in \mathbf{K}\}$ とおくと、 $\mathbf{K}x_0$ は E の部分空間である.ここで、 $G := \mathbf{K}x_0$ とおき G 上の写像 $g: G \to \mathbf{K}$ を $g(\alpha x_0) := \alpha \|x_0\|_E$ で定めると、g は明らかに線型であり、任意の $\alpha x_0 \in \mathbf{K}x_0$ に対して $\|\alpha x_0\|_E = |\alpha| \|x_0\|_E = |\alpha| \|x_0\|_E = |g(\alpha x_0)|$ より $\|g\|_{G'} = 1$ を得るから $g \in G'$. よって、定理 1.20 により、ある $f \in E'$ が存在して、 $f(x_0) = g(x_0) = \|x_0\|_E$ かつ $\|f\|_{E'} = \|g\|_{G'} = 1$ となる.

系 1.27. $M \subseteq E$ を部分空間とする. このとき、次を満たすような $f \in E'$ が存在する:

$$f(m) = 0 \ (\forall m \in M) \qquad \text{find } f(x_0) = 1 \ (\forall x_0 \in E \setminus \overline{M}). \tag{1.16}$$

系 1.27 の証明. $x_0 \in E \setminus \overline{M}$ とする. $G := M \oplus \mathbf{K} x_0$ とし, $g : G \to \mathbf{K}$ を

$$g: M \oplus \mathbf{K} x_0 \ni m + \alpha x_0 \longmapsto \alpha \in \mathbf{K} \qquad (m \in M, \alpha \in \mathbf{K})$$

と定めると, g(m)=0 かつ $g(x_0)=1$ である. $g\in G'$ を示す. 線型性は明らかなので有界性を示す. $x_0\in E\setminus \overline{M}$ から

$$dist(x_0, M) := \inf \{ \|x_0 - m\|_E \mid m \in M \} > 0$$

がわかる. $x = m + \alpha x_0 \in G$ に対して, $\alpha = 0$ のときは明らかだから, $\alpha \neq 0$ を仮定すると,

$$||x||_E = ||m + \alpha x_0||_E = |\alpha| ||x_0 + \alpha^{-1}m||_E \ge |\alpha| \operatorname{dist}(x_0, M)$$

であるから,

$$|g(x)| = |\alpha| \leqslant \frac{||x||_E}{\operatorname{dist}(x_0, M)}$$

となる. よって g は有界. ゆえに, 定理 1.20 により $g \in G'$ を拡張した $f \in E'$ が得られる.

系 1.28. E をノルム空間とする. このとき, 任意の $x \in E$ に対して, 次が成り立つ:

$$||x||_{E} = \sup_{\substack{f \in E' \\ f \neq 0}} \frac{|f(x)|}{||f||_{E'}} = \sup_{\substack{f \in E' \\ ||f||_{E'} = 1}} |f(x)| = \sup_{\substack{f \in E' \\ ||f||_{E'} \leqslant 1}} |f(x)|.$$

$$(1.17)$$

系 1.28 の証明.

 $x \in E$ とする. x = 0 のときは明らかであるから $x \neq 0$ とする. いま, 任意の $f \in E'$ に対して, $|f(x)| \leq ||f||_{E'} ||x||_{E}$ より

$$\sup_{\substack{f \in E' \\ f \neq 0}} \frac{|f(x)|}{\|f\|_{E'}} \le \|x\|_E$$

を得る. また, $x \neq 0$ なので, 系 1.26 により, ある $f \in E'$ が存在して, $f(x) = \|x\|_E$ かつ $\|f\|_{E'} = 1$ が成り立つから,

$$\sup_{\substack{f \in E' \\ f \neq 0}} \frac{|f(x)|}{\|f\|_{E'}} \geqslant \frac{|f(x)|}{\|f\|_{E'}} = |f(x)| = \|x\|_{E}$$

を得る. ゆえに等号が成り立つ.

1.4.1 双対の記号

以後, ノルム空間 X の元 x とその双対空間 X' の元 f における記号として $f(x) = \langle f, x \rangle = {}_{X'}\langle f, x \rangle_X$ とかく. また, 双対空間 X' の元を一般に x' などとかく. 系 1.26 より, 任意の $x' \in X'$ に対して, ${}_{X'}\langle x', x \rangle_X = 0$ ならば x = 0 である.

注意 1.29. 上記の下線部の部分は、ノルム空間 X の双対空間 X' の元が豊富にあることを意味する.

1.4.2 二重双対空間

ノルム空間 X に対して, X' の双対空間 (X')'=:X'' を X の二重双対空間と呼ぶ. X から X'' への写像 J_X を $X''\langle J_Xx,x'\rangle_{X'}:=X'\langle x',x\rangle_X$ により定めると, 系 1.28 から

$$||J_X x||_{X''} = ||x||_X$$

を得る. よって, J_X は等長線型である. J_X を**標準的単射**あるいは**標準対応**と呼ぶ. また, J_X が全射であるとき, X は**回帰 的**あるいは**反射的**であるという.

1.4.3 双対空間の例

双対空間の例を紹介する前に、Banach 空間の比較的わかりやすいと思われる例を紹介しておく. 微積分学・線型代数学の知識より、 \mathbf{R}^n や \mathbf{C}^n は Banach 空間である。それを自然に拡張した空間がある。数列空間と呼ばれるものである。任意に $1 \leq p \leq \infty$ を固定し、複素数列、あるいは実数列 $x = (\xi_1, \xi_2, \ldots) = (\xi_n)_{n=1}^{\infty}$ で、

$$||x||_{\ell^p} := \begin{cases} \left(\sum_{n=1}^{\infty} |\xi_n|^p\right)^{1/p} & (1 \leq p < \infty), \\ \sup\{|\xi_n| \mid n \in \mathbf{N}\} & (p = \infty) \end{cases}$$

が有限であるもの全体のなす集合を $\ell^p(\mathbf{N})$ で表す. 演算を

$$(\xi_n)_{n=1}^{\infty} + (\eta_n)_{n=1}^{\infty} := (\xi_n + \eta_n)_{n=1}^{\infty}, \quad \alpha(\xi_n)_{n=1}^{\infty} := (\alpha \xi_n)_{n=1}^{\infty} \qquad (\alpha \in \mathbf{K}, (\xi_n)_{n=1}^{\infty}, (\eta_n)_{n=1}^{\infty} \in \ell^p(\mathbf{N}))$$

により定める. ノルムは上述のとおりである. $\ell^p(\mathbf{N})$ は Banach 空間となる. 証明は, そもそもノルム空間となること自体そんなに自明でないので, ここでは省略する (が, いつかは加筆しようと思っている).

例 1.30 (数列空間の双対空間). $1 は <math>p^{-1} + q^{-1} = 1$ により定まる実数とする. このとき, $\ell^p(\mathbf{N})$ の双対空間は $\ell^q(\mathbf{N})$ と等長同型である. すなわち, $(\ell^p(\mathbf{N})) \stackrel{\mathrm{id}}{=} \ell^q(\mathbf{N})$ である.

2 双対作用素

以後, X,Y を \mathbf{K} 上のノルム空間とする. $T \in \mathcal{B}(X,Y)$ に対して, その双対作用素 $T' \in \mathcal{B}(Y',X')$ を定義する.

2.1 双対作用素の定義

補題 2.1. $T \in \mathcal{B}(X,Y)$ と $y' \in Y'$ に対して, 写像 $f: X \to \mathbf{K}$ を

$$f(x) := {}_{Y'}\langle y', Tx \rangle_{Y} \qquad (x \in X)$$

で定めると, $f \in X'$ である.

補題 2.1 の証明. まず、f は線型である。実際、任意の $x_1, x_2 \in X$ 、 $\alpha, \beta \in \mathbf{K}$ に対して、 $y' \in Y'$ と $T \in \mathscr{B}(X,Y)$ の線型性より $f(\alpha x_1 + \beta x_2) = {}_{Y'}\langle y', T(\alpha x_1 + \beta x_2)\rangle_Y = \alpha_{Y'}\langle y', Tx_1\rangle_Y + \beta_{Y'}\langle y', Tx_2\rangle_Y = \alpha_{f}(x_1) + \beta_{f}(x_2)$ となる。また、任意の $x \in X$ に対して $|f(x)| = |{}_{Y'}\langle y', Tx\rangle_Y| \leqslant ||y'||_{Y'} ||Tx||_Y \leqslant ||y'||_{Y'} ||T||_{\mathscr{B}(X,Y)} ||x||_X$ より $||f||_{X'} \leqslant ||y'||_{Y'} ||T||_{\mathscr{B}(X,Y)}$ を得る。 $y' \in Y'$ 、 $T \in \mathscr{B}(X,Y)$ より $||y'||_{Y'} < \infty$ かつ $||T||_{\mathscr{B}(X,Y)} < \infty$ となるので $||f||_{X'} < \infty$ である。よって $f \in X'$.

定義 2.2 (双対作用素). $T \in \mathcal{B}(X,Y)$ に対して、その双対作用素 $T': Y' \to X'$ を次で定める:

$${}_{X'}\langle T'y',x\rangle_X:={}_{Y'}\langle y',Tx\rangle_Y \qquad (y'\in Y',\ x\in X).$$

補題 2.1 より T' が well-defined であることがわかる.

定理 2.3. $T \in \mathcal{B}(X,Y)$ に対して、双対作用素 T' は $T' \in \mathcal{B}(Y',X')$ であって $\|T'\|_{\mathcal{B}(Y',X')} = \|T\|_{\mathcal{B}(X,Y)}$.

定理 2.3 の証明. 補題 2.1 より、任意の $y' \in Y'$ に対して $\|T'y'\|_{X'} \leqslant \|y'\|_{Y'} \|T\|_{\mathscr{B}(X,Y)}$ なので、 $\|T'\|_{\mathscr{B}(Y',X')} \leqslant \|T\|_{\mathscr{B}(X,Y)}$ を得る. よって $T' \in \mathscr{B}(Y',X')$. 逆向きは、T' の双対作用素 $T'' := (T')': X'' \to Y''$ を考える. まず、任意の $y' \in Y'$ に対して、 $Y''\langle J_Y(Tx), y' \rangle_{Y'} = Y'\langle y', Tx \rangle_Y = X'\langle T'y', x \rangle_X = X''\langle J_Xx, T'y' \rangle_{X'} = Y''\langle T''(J_Xx), y' \rangle_{Y'}$ であるから、

$$J_Y \circ T = T'' \circ J_X \tag{2.1}$$

を得る. 標準対応 J_X, J_Y の等長性より, 任意の $x \in X$ に対して

$$||Tx||_{Y} = ||J_{Y}(Tx)||_{Y''} = ||T''(J_{X}x)||_{Y''} \leqslant ||T''||_{\mathscr{B}(X'',Y'')} ||J_{X}x||_{X''} = ||T''||_{\mathscr{B}(X'',Y'')} ||x||_{X}$$

が成り立つので、 $\|T\|_{\mathscr{B}(X,Y)} \leqslant \|T''\|_{\mathscr{B}(X'',Y'')}$ を得る。また、前半の証明により $\|T''\|_{\mathscr{B}(X'',Y'')} \leqslant \|T'\|_{\mathscr{B}(Y',X')}$ となるので、 $\|T\|_{\mathscr{B}(X,Y)} \leqslant \|T'\|_{\mathscr{B}(Y',X')}$. ゆえに、 $\|T'\|_{\mathscr{B}(Y',X')} = \|T\|_{\mathscr{B}(X,Y)}$.

2.2 Schauder の定理

以下,ノルム空間 E に対して, $B_E:=\{x\in E\,|\,\|x\|_E\leqslant 1\}$ とする.また,K をコンパクト距離空間とし,K 上の複素数値連続函数全体のなす集合を C(K) で表す.

2.2.1 コンパクト作用素

ノルム空間 X,Y に対し、線型作用素 $T:X\to Y$ が**コンパクト**であるとは、 $T(B_X)$ の閉包 $\overline{T(B_X)}$ が Y についてコンパクト集合であることをいう。 X から Y へのコンパクト作用素全体のなす集合を $\mathscr{K}(X,Y)$ で表すと、コンパクト集合は有界なので、 $\mathscr{K}(X,Y)\subset \mathscr{B}(X,Y)$ である。線型作用素 $T:X\to Y$ がコンパクトであるための必要十分条件は、X の任意の有界点列 $\{x_n\}_{n\in\mathbb{N}}$ に対し、Y の点列 $\{Tx_n\}_{n\in\mathbb{N}}$ が収束部分列をもつことである。これは距離空間におけるコンパクト集合の特徴づけ(距離空間におけるコンパクト性は点列コンパクトと同値)と対角線論法によって示される(入来さんの卒論あるいはゼミノート参照)。

2.2.2 Ascoli-Arzelà の定理

C(K) の部分集合 S が**同程度連続**であるとは、任意の $y \in K, \varepsilon > 0$ に対して、y を含む開集合 U が存在して、任意の $f \in S$ に対して、 $x \in U$ のとき、 $|f(x) - f(y)| < \varepsilon$ が成り立つことである。また、S が一様有界であるとは、ある定数 M > 0 が存在し、任意の $f \in S$ に対して、 $\sup\{|f(x)| \mid x \in K\} \leqslant M$ が成り立つことである。C(K) に関する重要な結果として次の定理が知られている。

事実 2.4 (Ascoli-Arzelà の定理). K をコンパクト距離空間とする. C(K) の部分集合 S が一様有界かつ同程度連続ならば, S 内の任意の函数列 $\{f_n\}_{n\in\mathbb{N}}$ は K 上で一様収束する部分列をもつ.

2.2.3 双対作用素のコンパクト性

 $T \in \mathcal{B}(X,Y)$ の双対作用素 $T' \in \mathcal{B}(Y',X')$ のコンパクト性についての結果が次である.

定理 2.5 (Schauder の定理). X をノルム空間, Y を Banach 空間とする. このとき, 以下が成り立つ:

 $T \in \mathcal{K}(X,Y) \iff T' \in \mathcal{K}(Y',X').$

定理 2.5 の証明.

(⇒) $K := \overline{T(B_X)}$ とおくと、 $T \in \mathcal{K}(X,Y)$ より K はコンパクト集合である。また、集合 $\left\{y'|_K \mid y' \in B_{Y'}\right\}$ を $B_{K'}$ と表すと、 $B_{K'}$ は C(K) の部分集合である。このとき、 $B_{K'}$ は一様有界である。実際、任意の $z' \in B_{K'}$ 、 $z \in K$ に対して、 $|_{Y'}\langle z',z\rangle_Y| \leqslant \|z'\|_{Y'} \|z\|_Y \leqslant \|z\|_Y$ となる。いま、 $z \in K = \overline{T(B_X)}$ より、 B_X の点列 $\left\{x_n\right\}_{n \in \mathbb{N}}$ が存在し、任意の $\varepsilon > 0$ に対して、自然数 n を十分大きくとれば $\|z\|_Y - \|Tx_n\|_Y \leqslant \|z - Tx_n\|_Y < \varepsilon$ が成り立つ。すなわち、 $\|z\|_Y < \varepsilon + \|Tx_n\|_Y \leqslant \|T\|_{\mathscr{B}(X,Y)} + \varepsilon$ が成り立つ。 $\varepsilon > 0$ は任意だったので $\|z\|_Y \leqslant \|T\|_{\mathscr{B}(X,Y)}$ となる。よって、 $\|z'\|_{Y'} \leqslant \|T\|_{\mathscr{B}(X,Y)}$ となり、 $\|T\|_{\mathscr{B}(X,Y)}$ は z' に依らないので、 $B_{K'}$ は一様有界であることがわかる。また、 $B_{K'}$ は同

程度連続である。実際, 任意の $z_1 \in K$ と $\varepsilon > 0$ に対して, K の開集合 $B(z_1;\varepsilon)$ を取ると, $z_1 \in B(z_1;\varepsilon)$ であり, 任意の $z' \in B_{K'}$ に対して, $z_2 \in B(z_1;\varepsilon)$ のとき, $|_{Y'}\langle z', z_1\rangle_Y - _{Y'}\langle z', z_2\rangle_Y| = |_{Y'}\langle z', z_1 - z_2\rangle_Y| \leqslant ||z'||_{Y'}||z_1 - z_2||_Y \leqslant ||z_1 - z_2||_Y < \varepsilon$ となる。ここで, $B_{Y'}$ の任意の点列を $\{y'_n\}_{n \in \mathbb{N}}$ とすると, $B_{K'}$ は一様有界かつ同程度連続であるから, Ascoli-Arzelà の定理 (事実 2.4) より, K 上で一様収束する部分列 $\{y'_{n_j}\}_{j \in \mathbb{N}}$ が存在する。よって,

$$\begin{split} \left\| T' y_{n_{j}}' - T' y_{n_{k}}' \right\|_{X'} &= \sup_{x \in B_{X}} \left| \left| \left\langle T' \left(y_{n_{j}}' - y_{n_{k}}' \right), x \right\rangle_{X} \right| \quad \bigcirc T' \mathcal{O}$$
線型性.
$$&= \sup_{x \in B_{X}} \left| \left| \left\langle y_{n_{j}}' - y_{n_{k}}', Tx \right\rangle_{Y} \right| \qquad \bigcirc T' \mathcal{O}$$
定義.
$$&\leqslant \sup_{y \in K} \left| \left| \left| \left\langle y_{n_{j}}' - y_{n_{k}}', y \right\rangle_{Y} \right| \qquad \bigcirc T(B_{X}) \subseteq \overline{T(B_{X})} = K.$$

$$&\longrightarrow \quad 0 \quad (j, k \to \infty) \qquad \bigcirc \left\{ y_{n_{j}}' \right\}_{j \in \mathbf{N}} \ \text{は } C(K) \perp \mathcal{O} \text{ Cauchy } \mathcal{N}. \end{split}$$

を得る. したがって、 $\left\{T'y'_{n_j}\right\}_{j\in \mathbf{N}}$ は X' の Cauchy 列である. また、X' の完備性より、 $\left\{T'y'_{n_j}\right\}_{j\in \mathbf{N}}$ は収束列となる. ゆえに、T の双対作用素 T' はコンパクト作用素である.

(秦三) X の任意の有界点列を $\{x_n\}_{n\in \mathbb{N}}$ とすると、標準対応 J_X の等長性より、 $\{J_Xx_n\}_{n\in \mathbb{N}}$ は有界点列となる。いま、T' の双対作用素 $T'': X'' \to Y''$ を考えると、前半の証明により、T'' はコンパクト作用素となるので、 $\{T''J_Xx_n\}_{n\in \mathbb{N}}$ は 収束部分列 $\{T''J_Xx_{n_j}\}_{j\in \mathbb{N}}$ をもつ。また、定理 2.3 の証明中の式(2.1) により、 $\{J_YTx_{n_j}\}_{j\in \mathbb{N}}$ は収束列であるから、Cauchy 列となる。さらに、標準対応 J_Y の等長性から、 $\{Tx_{n_j}\}_{j\in \mathbb{N}}$ も Cauchy 列となる。仮定より Y は完備であったから $\{Tx_{n_j}\}_{j\in \mathbb{N}}$ は収束する。ゆえに、T はコンパクト作用素である。

参考文献

- [1] Haïm Brezis 著・藤田宏監訳・小西芳雄訳、「関数解析 その理論と応用に向けて」、産業図書.
- [2] 荷見守助・長宗雄・瀬戸道生共著、「関数解析入門 線型作用素のスペクトル」、内田老鶴圃.
- [3] 宮島静雄著,「関数解析」,横浜図書.
- [4] 内田伏一著,「集合と位相」,裳華房.