Modelos de Computación: Relación de problemas 1

David Cabezas Berrido

Ejercicio 17. Autómata finito determinista que reconoce el lenguaje

 $L_1 = \{u \in \{0,1\}^* \mid \text{el número de 1's no es múltiplo de 3}\}$

 $L_2 = \{u \in \{0, 1\}^* \mid \text{el número de 0's es par}\}$

Ahora sólo tenemos que intersecar los dos autómatas para formar el deseado, el que reconoce el lenguaje

 $L_3 = \{u \in \{0,1\}^* \mid \text{el número de 1's no es múltiplo de 3 y el número de 0's es par}\}$

Ejercicio 22. Para hallar la expresión regular que representa el lenguaje aceptado por el autómata

usaremos el algoritmo visto en clase (sólo mostraré un par de iteraciones)

$$r_{11}^{3} + r_{13}^{3}$$

$$r_{11}^{2} + r_{13}^{2}(r_{33}^{2})^{*}r_{31}^{2} + r_{13}^{2} + r_{13}^{2}(r_{33}^{2})^{*}r_{33}^{2}$$

$$\varepsilon + (a+b)a^{*}b(a(a+b)a^{*}b)^{*}a + (a+b)a^{*}b(a(a+b)a^{*}b)^{*}$$

$$\varepsilon + (a+b)a^{*}b(a(a+b)a^{*}b)^{*}(a+\varepsilon)$$

Ejercicio 23. Para probar que $B_n = \{a^k \mid k \text{ es múltiplo de n}\} = \{a^{kn} \mid k \in \mathbb{N}\}$ es regular para todo n, construiremos un autómata finito determinista que lo reconozca. $B_0 = \{\varepsilon\}$ es trivialmente regular, lo reconoce el autómata

 $B_1 = \{a\}^*$ es reconocido por

 B_2 = palabras sobre $\{a\}^*$ con número par de a's es reconocido por

 B_3 por

De esta forma, $M_n = (\{q_0, \dots, q_{n-1}\}, \{a\}, q_0, \delta_n, \{q_0\})$ con $\delta_n(q_i, a) = q_{(i+1)\%n} \ \forall i = 0, \dots, n-1$ es un autómata finito determinista que reconoce el lenguaje $B_n \ \forall n \geq 2$.