

Trabajo Practico N°3

Cálculo de enlaces de telecomunicaciones

Alumno: Francisco Annoni.

Legajo:171483-1.

Fecha de entrega límite: 8/05/2022.

- Que sensibilidad mínima (expresada en mW) deberá tener un receptor para un enlace a través de una línea de transmisión de 2000 metros, donde la atenuación del cable coaxil empleado es de 0,5 db/100m. La potencia del transmisor que excita la línea es de 2 watts.
- Se requiere montar un enlace de fibra óptica uniendo dos equipos separados 25000 metros uno de otro. La potencia del transmisor es de 2,5 mW y la sensibilidad del receptor es de – 60 dBm. Cual será la especificación de atenuación máxima a requerir de la fibra que se debe emplear, expresada en dB/Km.
- Si se tiene un enlace de 1000 m entre un transmisor que entrega una potencia de 100w y un receptor con una sensibilidad de 1w y se pretende utilizar las siguientes líneas de transmisión, indicar cuándo se deberá utilizar amplificadores. Considerar en ambos casos dos conectores de 0,5 dB c/u.
 - a.) Usando coaxil fino RG 58 con At = 5 dB/100 m
 - b.) Usando coaxil grueso RG 218 con At = 0,8 dB/100 m.
 En caso necesario calcular la ganancia del amplificador correspondiente.

Respuestas:

Distancio: 2000 metros	Alemuociem: 0,5 dB
Distribution T_{x} $\frac{2000m}{600m}$ $\frac{9}{4x} = 2.40$ $\frac{0}{500m}$	Spx = ?'
(1) P(x (0/Bm)) = 10 x csp 2w 7w 1w	
(2) Alemanorismo : 2000 mm . 0,5	dB = 10 dB)
Prode = Perdidad + FD + Aleman	uion = [10 o/B]
(4) Formulo Gimal: Stx = 3,01 dsm - 10 ds =	$-7dBan = co P_1 -0.7dBan = P_1/1$

(2) NQB	
Di	Moncio: 25 000 milhos
	$f_{x} = 2,5 \text{mW}$ Standallidad = 60 dBm
	R_{x} $= 25000 \text{ m}$ $S_{Px} = 600 \text{ dB m}$
0	Ptx (dBm) = 10 x 600 2,5 mW = 3,97 dBm - 4 dB
(2)	P-7000 = 25000 x X 10000an
3	$P_{tx} - P_{t\overline{e}ol} = S_{TX}$
	4 dBm - [25000 1 X] = 60 dBm
	- 25 x X = -60 dBan - 4 dBan
	X = 2,56 dB/1000 m
	Alemnorian Moximo 1200 de: 2,560 dB

1000 m

0 colulomo PT300 = 2x 950000 + 1000 m + 0,8 100m P-180 = 9 dbm del volos re reputre 20 dBm - 9 dBm = 10 0/8m de un volos de 20 dBm - PdBm 6 FD) = 00Bm FD. +11 0Bm - FD = 00Bm (FD= 11 dBm)