Pair dispersion toolbox

Thomas Basset

April 20, 2020

1 Why to use it?

For a given set of tracks, this MATLAB toolbox enables to compute pair dispersion statistics for positions and velocities.

2 How to use it?

As an example, we use the file $tracks_sample.mat$ available in the HDF5 storage toolbox (cf. $readme_hdf5_storage$). Once the distances $\Delta(t)$ and the velocity differences $\Delta v(t)$ for all pairs are computed, we can compute $\langle (\Delta(t) - \Delta_0)^2 \rangle \rangle = S_2(\Delta_0)t^2$ with Δ_0 the initial separation (first order approximation). Because $S_2(\Delta_0) = \frac{11}{3}C_2(\varepsilon\Delta_0)^{2/3}$ with $C_2 \simeq 2$ in homogeneous isotropic turbulence, we can extract ε ($\varepsilon \simeq 0.9 \,\mathrm{W/kg}$). For the velocities, we can compute the autocorrelation function for $\Delta v(t)$ and extract the integral time scale T then the parameter α defined as $\alpha = T/T_0$ with $T_0 = S_2(\Delta_0)/2\varepsilon$ (cf. Bourgoin JFM 2015 dedicated to pair dispersion for more details, this α problem is under investigation). The script $vun_pair_dispersion$ gives a run example.

3 Functions

help function name gives some documentation, especially input and output arguments. These functions are commented and designed to be easily modified.

- lagstats_onetrack: compute Lagrangian statistics for one track
- lagstats_tracks: compute Lagrangian statistics for all tracks with lagstats_onetrack and compute the mean over the tracks with meancell
- meancell: compute the mean of array cells of different lengths
- pairdisp_proc: compute $\Delta(t)$ and $\Delta v(t)$ for all pairs
- pairdisp_stats_d: compute $\langle (\Delta(t) \Delta_0)^2 \rangle$ for a given range of Δ_0
- pairdisp_stats_v: compute $\langle \Delta v(t+\tau)\Delta v(t)\rangle$ for a given range of Δ_0