Códigos Cíclicos, 2da Clase

Daniel Penazzi

May 28, 2022

Tabla de Contenidos

Métodos de codificación

La clase pasada vieron con Diego el Teorema fundamental de códigos cíclicos, que era el siguiente:

Teorema

La clase pasada vieron con Diego el Teorema fundamental de códigos cíclicos, que era el siguiente:

Teorema

Sea g(x) el polinomio generador de un código cíclico C de longitud n. Entonces:

1 C esta formado por los multiplos de g(x) de grado menor que n:

$$C = \{p(x) : gr(p) < n\&g(x)|p(x)\}$$

La clase pasada vieron con Diego el Teorema fundamental de códigos cíclicos, que era el siguiente:

Teorema

- 1 C esta formado por los multiplos de g(x) de grado menor que n:
 - $C = \{p(x) : gr(p) < n\&g(x)|p(x)\}$
- **2** $C = \{v(x) \odot g(x) : v \text{ es un polinomio cualquiera}\}$

La clase pasada vieron con Diego el Teorema fundamental de códigos cíclicos, que era el siguiente:

Teorema

- 1 *C* esta formado por los multiplos de g(x) de grado menor que n: $C = \{p(x) : gr(p) < n\&g(x)|p(x)\}$
- **2** $C = \{v(x) \odot g(x) : v \text{ es un polinomio cualquiera}\}$
- gr(g(x)) = n k.

La clase pasada vieron con Diego el Teorema fundamental de códigos cíclicos, que era el siguiente:

Teorema

- 1 C esta formado por los multiplos de g(x) de grado menor que n: $C = \{p(x) : gr(p) < n\&g(x)|p(x)\}$
- **2** $C = \{v(x) \odot g(x) : v \text{ es un polinomio cualquiera}\}$
- gr(g(x)) = n k.
- 4 g(x) divide a $1 + x^n$

La clase pasada vieron con Diego el Teorema fundamental de códigos cíclicos, que era el siguiente:

Teorema

- 1 *C* esta formado por los multiplos de g(x) de grado menor que n: $C = \{p(x) : gr(p) < n\&g(x)|p(x)\}$
- **2** $C = \{v(x) \odot g(x) : v \text{ es un polinomio cualquiera}\}$
- gr(g(x)) = n k.
- 4 g(x) divide a $1 + x^n$
- $g_0 = 1$

El teorema fundamental de códigos cíclicos da lugar a dos formas de codificar y decodificar palabras.

- El teorema fundamental de códigos cíclicos da lugar a dos formas de codificar y decodificar palabras.
- Recordemos que por "codificar" entendemos el proceso de tomar las palabras de {0,1}^k y a cada una de ellas asignarle una palabra de C

- El teorema fundamental de códigos cíclicos da lugar a dos formas de codificar y decodificar palabras.
- Recordemos que por "codificar" entendemos el proceso de tomar las palabras de $\{0,1\}^k$ y a cada una de ellas asignarle una palabra de C
- El primer método usa directamente la propiedad 1).

- El teorema fundamental de códigos cíclicos da lugar a dos formas de codificar y decodificar palabras.
- Recordemos que por "codificar" entendemos el proceso de tomar las palabras de {0,1}^k y a cada una de ellas asignarle una palabra de C
- El primer método usa directamente la propiedad 1).
- Es decir, dada una palabra en $\{0,1\}^k$, la cual estará identificada con un polinomio u de grado menor a k, la palabra asociada en C es simplemente u(x)g(x).

- El teorema fundamental de códigos cíclicos da lugar a dos formas de codificar y decodificar palabras.
- Recordemos que por "codificar" entendemos el proceso de tomar las palabras de {0,1}^k y a cada una de ellas asignarle una palabra de C
- El primer método usa directamente la propiedad 1).
- Es decir, dada una palabra en $\{0,1\}^k$, la cual estará identificada con un polinomio u de grado menor a k, la palabra asociada en C es simplemente u(x)g(x).
- (producto usual, pues gr(u(x)g(x)) = gr(u) + gr(g) < k + n k = n).

■ Ejemplo: Sea C el código con longitud n = 7 y polinomio generador $g(x) = 1 + x^2 + x^3$, que corresponde a la palabra 1011000

- Ejemplo: Sea C el código con longitud n = 7 y polinomio generador $g(x) = 1 + x^2 + x^3$, que corresponde a la palabra 1011000
- La dimensión de C, de acuerdo con el teorema, es n = 7 3 = 4.

- Ejemplo: Sea C el código con longitud n = 7 y polinomio generador $g(x) = 1 + x^2 + x^3$, que corresponde a la palabra 1011000
- La dimensión de C, de acuerdo con el teorema, es n = 7 3 = 4.
- Por lo tanto C tiene $2^4 = 16$ palabras.

- Ejemplo: Sea C el código con longitud n = 7 y polinomio generador $g(x) = 1 + x^2 + x^3$, que corresponde a la palabra 1011000
- La dimensión de C, de acuerdo con el teorema, es n = 7 3 = 4.
- Por lo tanto C tiene $2^4 = 16$ palabras.
- Supongamos que queremos codificar la palabra $0110 \in \{0, 1\}^4$.

- Ejemplo: Sea C el código con longitud n = 7 y polinomio generador $g(x) = 1 + x^2 + x^3$, que corresponde a la palabra 1011000
- La dimensión de C, de acuerdo con el teorema, es n = 7 3 = 4.
- Por lo tanto C tiene $2^4 = 16$ palabras.
- Supongamos que queremos codificar la palabra $0110 \in \{0, 1\}^4$.
- Corresponde al polinomio $x + x^2$.

- Ejemplo: Sea C el código con longitud n = 7 y polinomio generador $g(x) = 1 + x^2 + x^3$, que corresponde a la palabra 1011000
- La dimensión de C, de acuerdo con el teorema, es n = 7 3 = 4.
- Por lo tanto C tiene $2^4 = 16$ palabras.
- Supongamos que queremos codificar la palabra $0110 \in \{0, 1\}^4$.
- Corresponde al polinomio $x + x^2$.
- Usando el primer método, simplemente hacemos

$$(x+x^2)(1+x^2+x^3) = x+x^3+x^4+x^2+x^4+x^5 = x+x^2+x^3+x^5$$

- Ejemplo: Sea C el código con longitud n = 7 y polinomio generador $g(x) = 1 + x^2 + x^3$, que corresponde a la palabra 1011000
- La dimensión de C, de acuerdo con el teorema, es n = 7 3 = 4.
- Por lo tanto C tiene $2^4 = 16$ palabras.
- Supongamos que queremos codificar la palabra $0110 \in \{0, 1\}^4$.
- Corresponde al polinomio $x + x^2$.
- Usando el primer método, simplemente hacemos

$$(x+x^2)(1+x^2+x^3) = x+x^3+x^4+x^2+x^4+x^5 = x+x^2+x^3+x^5$$

■ Que corresponde a la palabra 0111010.

Aparentemente (yo no sé de esto, ustedes deben saberlo de Organización/Arquitectura de computadoras) multiplicar polinomios es algo que se "programa" fácilmente en hardware y es muy rápido

- Aparentemente (yo no sé de esto, ustedes deben saberlo de Organización/Arquitectura de computadoras) multiplicar polinomios es algo que se "programa" fácilmente en hardware y es muy rápido
- En software es mas díficil pero pej tengo entendido que en los chips de Intel vienen instrucciones especiales para realizar esto mas fácilmente.

- Aparentemente (yo no sé de esto, ustedes deben saberlo de Organización/Arquitectura de computadoras) multiplicar polinomios es algo que se "programa" fácilmente en hardware y es muy rápido
- En software es mas díficil pero pej tengo entendido que en los chips de Intel vienen instrucciones especiales para realizar esto mas fácilmente.
- Un problema con este método es la decodificación.

- Aparentemente (yo no sé de esto, ustedes deben saberlo de Organización/Arquitectura de computadoras) multiplicar polinomios es algo que se "programa" fácilmente en hardware y es muy rápido
- En software es mas díficil pero pej tengo entendido que en los chips de Intel vienen instrucciones especiales para realizar esto mas fácilmente.
- Un problema con este método es la decodificación.
- Observemos que la palabra codificada 0110 no "aparece" en la palabra código 0111010

- Aparentemente (yo no sé de esto, ustedes deben saberlo de Organización/Arquitectura de computadoras) multiplicar polinomios es algo que se "programa" fácilmente en hardware y es muy rápido
- En software es mas díficil pero pej tengo entendido que en los chips de Intel vienen instrucciones especiales para realizar esto mas fácilmente.
- Un problema con este método es la decodificación.
- Observemos que la palabra codificada 0110 no "aparece" en la palabra código 0111010
- Esto ocurre en general, salvo casualidad.

- Aparentemente (yo no sé de esto, ustedes deben saberlo de Organización/Arquitectura de computadoras) multiplicar polinomios es algo que se "programa" fácilmente en hardware y es muy rápido
- En software es mas díficil pero pej tengo entendido que en los chips de Intel vienen instrucciones especiales para realizar esto mas fácilmente.
- Un problema con este método es la decodificación.
- Observemos que la palabra codificada 0110 no "aparece" en la palabra código 0111010
- Esto ocurre en general, salvo casualidad.
- ¿Por qué?

■ Supongamos que codificamos 10...0, 01...0, etc de $\{0,1\}^k$.

- Supongamos que codificamos 10...0, 01...0, etc de $\{0,1\}^k$.
- Es decir, queremos codificar $1, x, ..., x^{k-1}$.

- Supongamos que codificamos 10...0, 01...0, etc de $\{0,1\}^k$.
- Es decir, queremos codificar $1, x, ..., x^{k-1}$.
- Las palabras codificadas serán $g(x),xg(x),...,x^{k-1}g(x)$

- Supongamos que codificamos 10...0, 01...0, etc de $\{0,1\}^k$.
- Es decir, queremos codificar $1, x, ..., x^{k-1}$.
- Las palabras codificadas serán $g(x),xg(x),...,x^{k-1}g(x)$
- Las cuales son claramente LI pues los grados son todos distintos.

- Supongamos que codificamos 10...0, 01...0, etc de $\{0,1\}^k$.
- Es decir, queremos codificar $1, x, ..., x^{k-1}$.
- Las palabras codificadas serán $g(x),xg(x),...,x^{k-1}g(x)$
- Las cuales son claramente LI pues los grados son todos distintos.
- Es decir, $\{g(x), xg(x), ..., x^{k-1}g(x)\}$ es una BASE de C.

- Supongamos que codificamos 10...0, 01...0, etc de $\{0,1\}^k$.
- Es decir, queremos codificar $1, x, ..., x^{k-1}$.
- Las palabras codificadas serán $g(x),xg(x),...,x^{k-1}g(x)$
- Las cuales son claramente LI pues los grados son todos distintos.
- Es decir, $\{g(x), xg(x), ..., x^{k-1}g(x)\}$ es una BASE de C.
- Esto da una matriz generadora, que tiene la forma: (recordemos que $g_0 = 1 = g_{n-k}$

$$G = \begin{bmatrix} 1 & g_1 & \dots & \dots & g_{n-k-1} & 1 & 0 & \dots & 0 \\ 0 & 1 & g_1 & \dots & \dots & g_{n-k-1} & 1 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 1 \dots & 0 \\ 0 & 0 & \dots & 1 & g_1 & \dots & \dots & g_{n-k-1} & 1 \end{bmatrix}$$

Por ejemplo, con $g(x) = 1 + x^2 + x^3$ y n = 7:

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Esta matriz no "tiene" la identidad en ningún lado.

Por eso decodificar no es tan fácil como cuando se tiene una matriz generadora con la identidad.

- Por eso decodificar no es tan fácil como cuando se tiene una matriz generadora con la identidad.
- Para decodificar una palabra, hay que dividirla por g(x).

Matriz generadora correspondiente al primer método de codificación

- Por eso decodificar no es tan fácil como cuando se tiene una matriz generadora con la identidad.
- Para decodificar una palabra, hay que dividirla por g(x).
- Esto tambien se hace fácil en hardware, pero no tan fácil en software.

Matriz generadora correspondiente al primer método de codificación

- Por eso decodificar no es tan fácil como cuando se tiene una matriz generadora con la identidad.
- Para decodificar una palabra, hay que dividirla por g(x).
- Esto tambien se hace fácil en hardware, pero no tan fácil en software.
- Por eso el segundo método que daremos, menos intuitivo que el primero, es preferible, pues da origen a una matriz generadora que si tiene la identidad, haciendo que decodificar sea muy fácil.

■ Por el teorema, los elementos de *C* son los múltiplos de *g* de grado menor que *n*.

- Por el teorema, los elementos de C son los múltiplos de g de grado menor que n.
- Dado un polinomio cualquiera p(x) de grado menor que n, observemos que:

- Por el teorema, los elementos de C son los múltiplos de g de grado menor que n.
- Dado un polinomio cualquiera p(x) de grado menor que n, observemos que:
 - $(p(x) \mod g(x)) + p(x)$ es múltiplo de g !

- Por el teorema, los elementos de C son los múltiplos de g de grado menor que n.
- Dado un polinomio cualquiera p(x) de grado menor que n, observemos que:
 - $(p(x) \mod g(x)) + p(x)$ es múltiplo de g !
- Pues por definición, $(p(x) \mod g(x))$ es el resto de dividir p por g, es decir, existe q tal que $p(x) = q(x)g(x) + (p(x) \mod g(x))$

- Por el teorema, los elementos de C son los múltiplos de g de grado menor que n.
- Dado un polinomio cualquiera p(x) de grado menor que n, observemos que:
 - $(p(x) \mod g(x)) + p(x)$ es múltiplo de g!
- Pues por definición, $(p(x) \mod g(x))$ es el resto de dividir p por g, es decir, existe q tal que $p(x) = q(x)g(x) + (p(x) \mod g(x))$
- Por lo tanto $(p(x) \mod g(x)) + p(x) = q(x)g(x)$ es un múltiplo de g.

- Por el teorema, los elementos de C son los múltiplos de g de grado menor que n.
- Dado un polinomio cualquiera p(x) de grado menor que n, observemos que:
 - $(p(x) \mod g(x)) + p(x)$ es múltiplo de g!
- Pues por definición, $(p(x) \mod g(x))$ es el resto de dividir p por g, es decir, existe q tal que $p(x) = q(x)g(x) + (p(x) \mod g(x))$
- Por lo tanto $(p(x) \mod g(x)) + p(x) = q(x)g(x)$ es un múltiplo de g.
- Asi que en vez de codificar una palabra multiplicandola por *g*, podemos usar este truco de arriba.

- Por el teorema, los elementos de *C* son los múltiplos de *g* de grado menor que *n*.
- Dado un polinomio cualquiera p(x) de grado menor que n, observemos que:
 - $(p(x) \mod g(x)) + p(x)$ es múltiplo de g!
- Pues por definición, $(p(x) \mod g(x))$ es el resto de dividir p por g, es decir, existe q tal que $p(x) = q(x)g(x) + (p(x) \mod g(x))$
- Por lo tanto $(p(x) \mod g(x)) + p(x) = q(x)g(x)$ es un múltiplo de g.
- Asi que en vez de codificar una palabra multiplicandola por g, podemos usar este truco de arriba.
- Pero hay que tener cuidado.

Lo primero que uno pensaria es decir, "bueno, dada una palabra $u \in \{0,1\}^k$, la miro como polinomio u(x) y la codifico como (u(x) mod g(x)) + u(x)"

- Lo primero que uno pensaria es decir, "bueno, dada una palabra $u \in \{0,1\}^k$, la miro como polinomio u(x) y la codifico como (u(x) mod g(x)) + u(x)"
- Pero esto esta MAL.

- Lo primero que uno pensaria es decir, "bueno, dada una palabra $u \in \{0,1\}^k$, la miro como polinomio u(x) y la codifico como (u(x) mod g(x)) + u(x)"
- Pero esto esta MAL.
- Cuando uno codifica una palabra u asignandole una palabra v del código, el procedimiento para asignar u → v debe ser tal que a dos u distintas se les asigne dos v distintos, si no luego no se puede decodificar.

- Lo primero que uno pensaria es decir, "bueno, dada una palabra $u \in \{0,1\}^k$, la miro como polinomio u(x) y la codifico como (u(x) mod g(x)) + u(x)"
- Pero esto esta MAL.
- Cuando uno codifica una palabra u asignandole una palabra v del código, el procedimiento para asignar u → v debe ser tal que a dos u distintas se les asigne dos v distintos, si no luego no se puede decodificar.
- Y la función $u(x) \mapsto (u(x) \mod g(x)) + u(x)$ no es inyectiva, no cumple con esa propiedad.

- Lo primero que uno pensaria es decir, "bueno, dada una palabra $u \in \{0,1\}^k$, la miro como polinomio u(x) y la codifico como (u(x) mod g(x)) + u(x)"
- Pero esto esta MAL.
- Cuando uno codifica una palabra u asignandole una palabra v del código, el procedimiento para asignar u → v debe ser tal que a dos u distintas se les asigne dos v distintos, si no luego no se puede decodificar.
- Y la función $u(x) \mapsto (u(x) \mod g(x)) + u(x)$ no es inyectiva, no cumple con esa propiedad.
- Ejemplo fácil: Si $k \le n k$, entonces:

- Lo primero que uno pensaria es decir, "bueno, dada una palabra $u \in \{0,1\}^k$, la miro como polinomio u(x) y la codifico como (u(x) mod g(x)) + u(x)"
- Pero esto esta MAL.
- Cuando uno codifica una palabra u asignandole una palabra v del código, el procedimiento para asignar u → v debe ser tal que a dos u distintas se les asigne dos v distintos, si no luego no se puede decodificar.
- Y la función $u(x) \mapsto (u(x) \mod g(x)) + u(x)$ no es inyectiva, no cumple con esa propiedad.
- Ejemplo fácil: Si $k \le n k$, entonces:
- $(u(x) \mod g(x)) + u(x) = u(x) + u(x) = 0$ para todo u(x) de grado menor que k!!!!

■ ¿Y entonces?

- ¿Y entonces?
- Entonces, un trick: primero codificamos u(x) con un p(x) que asegure que $u(x)(\mapsto p(x))\mapsto (p(x) \bmod g(x))+p(x)$ sea inyectiva.

- ¿Y entonces?
- Entonces, un trick: primero codificamos u(x) con un p(x) que asegure que $u(x)(\mapsto p(x))\mapsto (p(x) \bmod g(x))+p(x)$ sea inyectiva.
- Tomaremos $p(x) = u(x)x^{n-k}$.

- ¿Y entonces?
- Entonces, un trick: primero codificamos u(x) con un p(x) que asegure que $u(x)(\mapsto p(x)) \mapsto (p(x) \mod g(x)) + p(x)$ sea inyectiva.
- Tomaremos $p(x) = u(x)x^{n-k}$.
- Como gr(u) < k, entonces gr(p) < n.

- ¿Y entonces?
- Entonces, un trick: primero codificamos u(x) con un p(x) que asegure que $u(x)(\mapsto p(x)) \mapsto (p(x) \bmod g(x)) + p(x)$ sea inyectiva.
- Tomaremos $p(x) = u(x)x^{n-k}$.
- Como gr(u) < k, entonces gr(p) < n.
- Supongamos que $u \neq w$ pero que:

$$(u(x)x^{n-k} \mod g(x)) + u(x)x^{n-k} = (w(x)x^{n-k} \mod g(x)) + w(x)x^{n-k}$$

- ¿Y entonces?
- Entonces, un trick: primero codificamos u(x) con un p(x) que asegure que $u(x)(\mapsto p(x))\mapsto (p(x) \bmod g(x))+p(x)$ sea inyectiva.
- Tomaremos $p(x) = u(x)x^{n-k}$.
- Como gr(u) < k, entonces gr(p) < n.
- Supongamos que $u \neq w$ pero que:

$$(u(x)x^{n-k} \mod g(x)) + u(x)x^{n-k} = (w(x)x^{n-k} \mod g(x)) + w(x)x^{n-k}$$

■ Luego: $(u(x) + w(x)) x^{n-k} = (u(x) + w(x)) x^{n-k} \mod g(x)$.

- ¿Y entonces?
- Entonces, un trick: primero codificamos u(x) con un p(x) que asegure que $u(x)(\mapsto p(x))\mapsto (p(x) \bmod g(x))+p(x)$ sea inyectiva.
- Tomaremos $p(x) = u(x)x^{n-k}$.
- Como gr(u) < k, entonces gr(p) < n.
- Supongamos que $u \neq w$ pero que:

$$(u(x)x^{n-k} \mod g(x)) + u(x)x^{n-k} = (w(x)x^{n-k} \mod g(x)) + w(x)x^{n-k}$$

- Luego: $(u(x) + w(x)) x^{n-k} = (u(x) + w(x)) x^{n-k} \mod g(x)$.
- Pero el polinomio de la derecha tiene grado menor que gr(g) = n k, mientras que el polinomio de la izquierda tiene grado mayor o igual a n k, absurdo.

Entonces este método sirve para codificar.

- Entonces este método sirve para codificar.
- Mas aún, justamente como en $(u(x)x^{n-k} \text{mod } g(x)) + u(x)x^{n-k}$ la parte $u(x)x^{n-k}$ tiene grado mayor o igual que n-k mientras que $(u(x)x^{n-k} \text{mod } g(x))$ tiene grado menor que gr(g) = n-k (esto es lo que usamos en la pag. anterior para probar inyectividad) entonces la parte $u(x)x^{n-k}$ queda inalterada por la parte $(u(x)x^{n-k} \text{mod } g(x))$

- Entonces este método sirve para codificar.
- Mas aún, justamente como en $(u(x)x^{n-k} \mod g(x)) + u(x)x^{n-k}$ la parte $u(x)x^{n-k}$ tiene grado mayor o igual que n-k mientras que $(u(x)x^{n-k} \mod g(x))$ tiene grado menor que gr(g) = n-k (esto es lo que usamos en la pag. anterior para probar inyectividad) entonces la parte $u(x)x^{n-k}$ queda inalterada por la parte $(u(x)x^{n-k} \mod g(x))$
- Por lo tanto mirando los coeficientes de grado mayor o igual a n-k, podemos recuperar $u(x)x^{n-k}$ y de ahi recuperar u(x).

- Entonces este método sirve para codificar.
- Mas aún, justamente como en $(u(x)x^{n-k} \mod g(x)) + u(x)x^{n-k}$ la parte $u(x)x^{n-k}$ tiene grado mayor o igual que n-k mientras que $(u(x)x^{n-k} \mod g(x))$ tiene grado menor que gr(g) = n-k (esto es lo que usamos en la pag. anterior para probar inyectividad) entonces la parte $u(x)x^{n-k}$ queda inalterada por la parte $(u(x)x^{n-k} \mod g(x))$
- Por lo tanto mirando los coeficientes de grado mayor o igual a n-k, podemos recuperar $u(x)x^{n-k}$ y de ahi recuperar u(x).
- Asi que decodificar es muy fácil.

- Entonces este método sirve para codificar.
- Mas aún, justamente como en $(u(x)x^{n-k} \mod g(x)) + u(x)x^{n-k}$ la parte $u(x)x^{n-k}$ tiene grado mayor o igual que n-k mientras que $(u(x)x^{n-k} \mod g(x))$ tiene grado menor que gr(g) = n-k (esto es lo que usamos en la pag. anterior para probar inyectividad) entonces la parte $u(x)x^{n-k}$ queda inalterada por la parte $(u(x)x^{n-k} \mod g(x))$
- Por lo tanto mirando los coeficientes de grado mayor o igual a n-k, podemos recuperar $u(x)x^{n-k}$ y de ahi recuperar u(x).
- Asi que decodificar es muy fácil.
- Veamos un ejemplo.

Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$

- Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$
- $u(x)x^{n-k} = (x+x^2)x^3 = x^4 + x^5$

- Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$
- $u(x)x^{n-k} = (x+x^2)x^3 = x^4 + x^5$
- Debemos calcular $(x^4 + x^5) \mod g(x)$.

- Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$
- $u(x)x^{n-k} = (x+x^2)x^3 = x^4 + x^5$
- Debemos calcular $(x^4 + x^5) \mod g(x)$.
- En principio debemos dividir $x^4 + x^5$ por g(x) y obtener el resto, pero hay una forma mas fácil.

- Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$
- $u(x)x^{n-k} = (x+x^2)x^3 = x^4 + x^5$
- Debemos calcular $(x^4 + x^5) \mod g(x)$.
- En principio debemos dividir $x^4 + x^5$ por g(x) y obtener el resto, pero hay una forma mas fácil.
- Ciertamente $g(x) \mod g(x) = 0$.

- Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$
- $u(x)x^{n-k} = (x+x^2)x^3 = x^4 + x^5$
- Debemos calcular $(x^4 + x^5) \mod g(x)$.
- En principio debemos dividir $x^4 + x^5$ por g(x) y obtener el resto, pero hay una forma mas fácil.
- Ciertamente $g(x) \mod g(x) = 0$.
- Es decir $(1 + x^2 + x^3) \mod g(x) = 0$.

- Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$
- $u(x)x^{n-k} = (x+x^2)x^3 = x^4 + x^5$
- Debemos calcular $(x^4 + x^5) \mod g(x)$.
- En principio debemos dividir $x^4 + x^5$ por g(x) y obtener el resto, pero hay una forma mas fácil.
- Ciertamente $g(x) \mod g(x) = 0$.
- Es decir $(1 + x^2 + x^3) \mod g(x) = 0$.
- Por otro lado, como $gr(1 + x^2) < gr(g)$ entonces tenemos que $(1 + x^2 + x^3) \mod g(x) = 1 + x^2 + (x^3 \mod g(x))$.

- Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$
- $u(x)x^{n-k} = (x+x^2)x^3 = x^4 + x^5$
- Debemos calcular $(x^4 + x^5) \mod g(x)$.
- En principio debemos dividir $x^4 + x^5$ por g(x) y obtener el resto, pero hay una forma mas fácil.
- Ciertamente $g(x) \mod g(x) = 0$.
- Es decir $(1 + x^2 + x^3) \mod g(x) = 0$.
- Por otro lado, como $gr(1 + x^2) < gr(g)$ entonces tenemos que $(1 + x^2 + x^3) \mod g(x) = 1 + x^2 + (x^3 \mod g(x))$.
- Asi, $1 + x^2 + (x^3 \mod g(x)) = 0$

- Tomemos como antes n = 7, polinomio generador $g(x) = 1 + x^2 + x^3$ y $u(x) = 0110 = x + x^2$
- $u(x)x^{n-k} = (x + x^2)x^3 = x^4 + x^5$
- Debemos calcular $(x^4 + x^5) \mod g(x)$.
- En principio debemos dividir $x^4 + x^5$ por g(x) y obtener el resto, pero hay una forma mas fácil.
- Ciertamente $g(x) \mod g(x) = 0$.
- Es decir $(1 + x^2 + x^3) \mod g(x) = 0$.
- Por otro lado, como $gr(1 + x^2) < gr(g)$ entonces tenemos que $(1 + x^2 + x^3) \mod g(x) = 1 + x^2 + (x^3 \mod g(x))$.
- Asi, $1 + x^2 + (x^3 \mod g(x)) = 0$
- Por lo tanto $x^3 \mod g(x) = 1 + x^2$.

Como $x^3 \mod g(x) = 1 + x^2$ entonces multiplicando por x tenemos:

- Como $x^3 \mod g(x) = 1 + x^2$ entonces multiplicando por x tenemos:
- $x^4 \mod g(x) = x(1+x^2) \mod g(x) = (x+x^3) \mod g(x)$

- Como $x^3 \mod g(x) = 1 + x^2$ entonces multiplicando por x tenemos:
- $x^4 \mod g(x) = x(1+x^2) \mod g(x) = (x+x^3) \mod g(x)$
- Volviendo a usar que $x^3 \mod g(x) = 1 + x^2$ obtenemos

- Como $x^3 \mod g(x) = 1 + x^2$ entonces multiplicando por x tenemos:
- $x^4 \mod g(x) = x(1+x^2) \mod g(x) = (x+x^3) \mod g(x)$
- Volviendo a usar que $x^3 \mod g(x) = 1 + x^2$ obtenemos
- $x^4 \mod g(x) = x + (1 + x^2) = 1 + x + x^2.$

- Como $x^3 \mod g(x) = 1 + x^2$ entonces multiplicando por x tenemos:
- $x^4 \mod g(x) = x(1+x^2) \mod g(x) = (x+x^3) \mod g(x)$
- Volviendo a usar que $x^3 \mod g(x) = 1 + x^2$ obtenemos
- $x^4 \mod g(x) = x + (1 + x^2) = 1 + x + x^2.$
- Y volviendo a multiplicar por x:

- Como $x^3 \mod g(x) = 1 + x^2$ entonces multiplicando por x tenemos:
- $x^4 \mod g(x) = x(1+x^2) \mod g(x) = (x+x^3) \mod g(x)$
- Volviendo a usar que $x^3 \mod g(x) = 1 + x^2$ obtenemos
- $x^4 \mod g(x) = x + (1 + x^2) = 1 + x + x^2.$
- Y volviendo a multiplicar por x:
- $x^5 \mod g(x) = x + x^2 + x^3 \mod g(x) = x + x^2 + 1 + x^2 = 1 + x.$

- Como $x^3 \mod g(x) = 1 + x^2$ entonces multiplicando por x tenemos:
- $x^4 \mod g(x) = x(1+x^2) \mod g(x) = (x+x^3) \mod g(x)$
- Volviendo a usar que $x^3 \mod g(x) = 1 + x^2$ obtenemos
- $x^4 \mod g(x) = x + (1 + x^2) = 1 + x + x^2.$
- Y volviendo a multiplicar por x:
- $x^5 \mod g(x) = x + x^2 + x^3 \mod g(x) = x + x^2 + 1 + x^2 = 1 + x.$
- Por lo tanto $(x^4 + x^5) \mod g(x) = 1 + x + x^2 + 1 + x = x^2$.

■ Entonces $u(x) = x + x^2$ se codifica como:

- Entonces $u(x) = x + x^2$ se codifica como:
- $(x^4 + x^5) \bmod g(x) + (x^4 + x^5) = x^2 + x^4 + x^5.$

- Entonces $u(x) = x + x^2$ se codifica como:
- $(x^4 + x^5) \bmod g(x) + (x^4 + x^5) = x^2 + x^4 + x^5.$
- Es decir, la palabra 0110 como la palabra 0010110

- Entonces $u(x) = x + x^2$ se codifica como:
- $(x^4 + x^5) \mod g(x) + (x^4 + x^5) = x^2 + x^4 + x^5.$
- Es decir, la palabra 0110 como la palabra 0010110
- Oberven que 0110 "está" en 0010110

- Entonces $u(x) = x + x^2$ se codifica como:
- $(x^4 + x^5) \mod g(x) + (x^4 + x^5) = x^2 + x^4 + x^5.$
- Es decir, la palabra 0110 como la palabra 0010110
- Oberven que 0110 "está" en 0010110

- Entonces $u(x) = x + x^2$ se codifica como:
- $(x^4 + x^5) \bmod g(x) + (x^4 + x^5) = x^2 + x^4 + x^5.$
- Es decir, la palabra 0110 como la palabra 0010110
- Oberven que 0110 "está" en 0010110
- Que es lo que habiamos explicado antes.

- Entonces $u(x) = x + x^2$ se codifica como:
- $(x^4 + x^5) \bmod g(x) + (x^4 + x^5) = x^2 + x^4 + x^5.$
- Es decir, la palabra 0110 como la palabra 0010110
- Oberven que 0110 "está" en 0010110
- Que es lo que habiamos explicado antes.
- Asi que de 0010110 es fácil recuperar u: basta mirar los últimos 4 bits.

- Entonces $u(x) = x + x^2$ se codifica como:
- $(x^4 + x^5) \bmod g(x) + (x^4 + x^5) = x^2 + x^4 + x^5.$
- Es decir, la palabra 0110 como la palabra 0010110
- Oberven que 0110 "está" en 0010110
- Que es lo que habiamos explicado antes.
- Asi que de 0010110 es fácil recuperar u: basta mirar los últimos 4 bits.
- En general, hay que mirar los últimos *k* bits, por la explicación que habiamos dado antes.

17 / 28

Daniel Penazzi Códigos Cíclicos2 May 28, 2022

Todo esto parece mucho calculo para codificar una palabra, y lo es.

- Todo esto parece mucho calculo para codificar una palabra, y lo es.
- Pero uno no codifica UNA palabra.

- Todo esto parece mucho calculo para codificar una palabra, y lo es.
- Pero uno no codifica UNA palabra.
- Todos esos calculos sirven para todas las otras palabras.

- Todo esto parece mucho calculo para codificar una palabra, y lo es.
- Pero uno no codifica UNA palabra.
- Todos esos calculos sirven para todas las otras palabras.
- (en realidad, todavia nos faltaria calcular $x^6 \mod g(x)$.

- Todo esto parece mucho calculo para codificar una palabra, y lo es.
- Pero uno no codifica UNA palabra.
- Todos esos calculos sirven para todas las otras palabras.
- (en realidad, todavia nos faltaria calcular $x^6 \mod g(x)$.
- Por ejemplo si queremos codificar $1010 = 1 + x^2$, la codificación seria:

- Todo esto parece mucho calculo para codificar una palabra, y lo es.
- Pero uno no codifica UNA palabra.
- Todos esos calculos sirven para todas las otras palabras.
- (en realidad, todavia nos faltaria calcular $x^6 \mod g(x)$.
- Por ejemplo si queremos codificar $1010 = 1 + x^2$, la codificación seria:

$$(1+x^2)x^3 \mod g(x) + (1+x^2)x^3 = (x^3+x^5) \mod g(x) + x^3 + x^5$$

- Todo esto parece mucho calculo para codificar una palabra, y lo es.
- Pero uno no codifica UNA palabra.
- Todos esos calculos sirven para todas las otras palabras.
- (en realidad, todavia nos faltaria calcular $x^6 \mod g(x)$.
- Por ejemplo si queremos codificar $1010 = 1 + x^2$, la codificación seria:

$$(1+x^2)x^3 \mod g(x) + (1+x^2)x^3 = (x^3+x^5) \mod g(x) + x^3 + x^5$$

= $1+x^2+1+x+x^3+x^5$

- Todo esto parece mucho calculo para codificar una palabra, y lo es.
- Pero uno no codifica UNA palabra.
- Todos esos calculos sirven para todas las otras palabras.
- (en realidad, todavia nos faltaria calcular $x^6 \mod g(x)$.
- Por ejemplo si queremos codificar $1010 = 1 + x^2$, la codificación seria:

$$(1+x^2)x^3 \mod g(x) + (1+x^2)x^3 = (x^3+x^5) \mod g(x) + x^3 + x^5$$

(de los calculos que hicimos antes) = $1+x^2+1+x+x^3+x^5$

- Todo esto parece mucho calculo para codificar una palabra, y lo es.
- Pero uno no codifica UNA palabra.
- Todos esos calculos sirven para todas las otras palabras.
- (en realidad, todavia nos faltaria calcular $x^6 \mod g(x)$.
- Por ejemplo si queremos codificar $1010 = 1 + x^2$, la codificación seria:

$$(1+x^2)x^3 \mod g(x) + (1+x^2)x^3 = (x^3+x^5) \mod g(x) + x^3 + x^5$$
$$= 1+x^2+1+x+x^3+x^5$$
$$= x+x^2+x^3+x^5$$

Asi que 1010 se codifica como 0111010.

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.
- Lo sacamos multiplicando por x a $x^5 \mod g(x) = 1 + x$:

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.
- Lo sacamos multiplicando por x a $x^5 \mod g(x) = 1 + x$:
 - $x^6 \mod g(x) = x + x^2$

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.
- Lo sacamos multiplicando por x a $x^5 \mod g(x) = 1 + x$:
 - $x^6 \mod g(x) = x + x^2$
- Por lo tanto la codificación es:

$$x^3 \mod g(x) + x^4 \mod g(x) + x^6 \mod g(x) + x^3 + x^4 + x^6$$

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.
- Lo sacamos multiplicando por x a $x^5 \mod g(x) = 1 + x$:
 - $x^6 \mod g(x) = x + x^2$
- Por lo tanto la codificación es:

$$(1+x^2)+x^4 \mod g(x)+x^6 \mod g(x)+x^3+x^4+x^6$$

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.
- Lo sacamos multiplicando por x a $x^5 \mod g(x) = 1 + x$:
 - $x^6 \mod g(x) = x + x^2$
- Por lo tanto la codificación es:

$$(1+x^2)+(1+x+x^2)+x^6 \mod g(x)+x^3+x^4+x^6$$

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.
- Lo sacamos multiplicando por x a $x^5 \mod g(x) = 1 + x$:
 - $x^6 \mod g(x) = x + x^2$
- Por lo tanto la codificación es:

$$(1 + x^2) + (1 + x + x^2) + (x + x^2) + x^3 + x^4 + x^6$$

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.
- Lo sacamos multiplicando por x a x^5 mod g(x) = 1 + x:
 - $x^6 \mod g(x) = x + x^2$
- Por lo tanto la codificación es:

$$x^2 + x^3 + x^4 + x^6$$

- Asi que 1010 se codifica como 0111010.
- Un ejemplo mas: 1101.
- Tenemos $1 + x + x^3 \mapsto (x^3 + x^4 + x^6) \mod g(x) + x^3 + x^4 + x^6$
- Vamos a necesitar $x^6 \mod g(x)$.
- Lo sacamos multiplicando por x a x^5 mod g(x) = 1 + x:
 - $x^6 \mod g(x) = x + x^2$
- Por lo tanto la codificación es:

$$x^2 + x^3 + x^4 + x^6 = 0011101$$

El teorema dice que g(x) divide a $1 + x^n$.

- El teorema dice que g(x) divide a 1 + x^n .
- Les podemos pedir que verifiquen esto.

- El teorema dice que g(x) divide a 1 + x^n .
- Les podemos pedir que verifiquen esto.
- La idea no es que dividan.

- El teorema dice que g(x) divide a 1 + x^n .
- Les podemos pedir que verifiquen esto.
- La idea no es que dividan.
- En nuestro ejemplo, a partir de $x^6 \mod g(x) = x + x^2$, multiplicamos por x y obtenemos:

- El teorema dice que g(x) divide a 1 + x^n .
- Les podemos pedir que verifiquen esto.
- La idea no es que dividan.
- En nuestro ejemplo, a partir de $x^6 \mod g(x) = x + x^2$, multiplicamos por x y obtenemos:
- $x^7 \mod g(x) = x^2 + x^3 \mod g(x) = x^2 + 1 + x^2 = 1$

- El teorema dice que g(x) divide a 1 + x^n .
- Les podemos pedir que verifiquen esto.
- La idea no es que dividan.
- En nuestro ejemplo, a partir de $x^6 \mod g(x) = x + x^2$, multiplicamos por x y obtenemos:
- $x^7 \mod g(x) = x^2 + x^3 \mod g(x) = x^2 + 1 + x^2 = 1$
- Lo cual dice que $1 + x^7 \mod g(x) = 0$.

- El teorema dice que g(x) divide a $1 + x^n$.
- Les podemos pedir que verifiquen esto.
- La idea no es que dividan.
- En nuestro ejemplo, a partir de $x^6 \mod g(x) = x + x^2$, multiplicamos por x y obtenemos:
- $x^7 \mod g(x) = x^2 + x^3 \mod g(x) = x^2 + 1 + x^2 = 1$
- Lo cual dice que $1 + x^7 \mod g(x) = 0$.
- Esto sirve para chequear que no se hayan equivocado en alguna cuenta al hacer todas las congruencias

■ Una matriz generadora va a venir dada por la codificación de $1, x, x^2, ..., x^{k-1}$

- Una matriz generadora va a venir dada por la codificación de 1, x, x², ..., x^{k-1}
- Es decir, la matriz:

$$\begin{bmatrix} x^{n-k} \mod g(x) + x^{n-k} \\ x^{n-k+1} \mod g(x) + x^{n-k+1} \\ x^{n-k+2} \mod g(x) + x^{n-k+2} \\ x^{n-k+3} \mod g(x) + x^{n-k+3} \\ & \cdots \\ x^{n-1} \mod g(x) + x^{n-1} \end{bmatrix}$$

En nuestro ejemplo seria:

En nuestro ejemplo seria:

```
\begin{bmatrix} x^3 \mod g(x) & + & x^3 \\ x^4 \mod g(x) & + & x^4 \\ x^5 \mod g(x) & + & x^5 \\ x^6 \mod g(x) & + & x^6 \end{bmatrix}
```


En nuestro ejemplo seria:

$$\begin{bmatrix} 1+x^2 & + & x^3 \\ 1+x+x^2 & + & x^4 \\ 1+x & + & x^5 \\ x+x^2 & + & x^6 \end{bmatrix}$$

■ En nuestro ejemplo seria:

$$\begin{bmatrix} 1+x^2 & + & x^3 \\ 1+x+x^2 & + & x^4 \\ 1+x & + & x^5 \\ x+x^2 & + & x^6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

En nuestro ejemplo seria:

$$\begin{bmatrix} 1+x^2 & + & x^3 \\ 1+x+x^2 & + & x^4 \\ 1+x & + & x^5 \\ x+x^2 & + & x^6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Observemos que tiene la identidad a derecha, como tiene que ser de toda la discusión que hemos venido haciendo

Como esta matriz generadora es de la forma $[A|I_4]$, entonces una matriz de chequeo tendrá la forma $[I_3|A^t]$:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Como esta matriz generadora es de la forma $[A|I_4]$, entonces una matriz de chequeo tendrá la forma $[I_3|A^t]$:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Esta es la matriz de un código de Hamming.

Como esta matriz generadora es de la forma $[A|I_4]$, entonces una matriz de chequeo tendrá la forma $[I_3|A^t]$:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- Esta es la matriz de un código de Hamming.
- Se puede ver que todos los códigos de Hamming son (en algun orden de las columnas) códigos cíclicos.

Como esta matriz generadora es de la forma $[A|I_4]$, entonces una matriz de chequeo tendrá la forma $[I_3|A^t]$:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- Esta es la matriz de un código de Hamming.
- Se puede ver que todos los códigos de Hamming son (en algun orden de las columnas) códigos cíclicos.
- La matriz de chequeo con la identidad a izquierda se puede obtener directamente sin pasar por la generadora pues la columna j-ésima es x^j mod g(x), claramente de toda la discusión que hemos hecho. (ver la matriz de arriba)

■ Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $z^5 \bmod g(x) = x + x^3 + x^4 \bmod g(x)$

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $x^5 \mod g(x) = x + x^3 + x^4 \mod g(x)$
- Usando $x^4 \mod g(x) = 1 + x^2 + x^3$:

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $x^5 \mod g(x) = x + x^3 + x^4 \mod g(x)$
- Usando $x^4 \mod g(x) = 1 + x^2 + x^3$:
- $x^5 \mod g(x) = x + x^3 + 1 + x^2 + x^3 = 1 + x + x^2.$

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $x^5 \mod g(x) = x + x^3 + x^4 \mod g(x)$
- Usando $x^4 \mod g(x) = 1 + x^2 + x^3$:
- $x^5 \mod g(x) = x + x^3 + 1 + x^2 + x^3 = 1 + x + x^2.$
- $x^6 \mod g(x) = x + x^2 + x^3$

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $z^5 \bmod g(x) = x + x^3 + x^4 \bmod g(x)$
- Usando $x^4 \mod g(x) = 1 + x^2 + x^3$:
- $x^5 \mod g(x) = x + x^3 + 1 + x^2 + x^3 = 1 + x + x^2.$
- $x^6 \mod g(x) = x + x^2 + x^3$
- Por lo tanto, la matrix generadora con la identidad a derecha es la de la siguiente pagina

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $x^5 \mod g(x) = x + x^3 + x^4 \mod g(x)$
- Usando $x^4 \mod g(x) = 1 + x^2 + x^3$:
- $x^5 \mod g(x) = x + x^3 + 1 + x^2 + x^3 = 1 + x + x^2.$
- $x^6 \mod g(x) = x + x^2 + x^3$
- Por lo tanto, la matrix generadora con la identidad a derecha es la de la siguiente pagina
- Pero antes hagamos el Check:

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $x^5 \mod g(x) = x + x^3 + x^4 \mod g(x)$
- Usando $x^4 \mod g(x) = 1 + x^2 + x^3$:
- $x^5 \mod g(x) = x + x^3 + 1 + x^2 + x^3 = 1 + x + x^2.$
- $x^6 \mod g(x) = x + x^2 + x^3$
- Por lo tanto, la matrix generadora con la identidad a derecha es la de la siguiente pagina
- Pero antes hagamos el Check:
- $x^7 \mod g(x) = x^2 + x^3 + x^4 \mod g(x)$

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $x^5 \mod g(x) = x + x^3 + x^4 \mod g(x)$
- Usando $x^4 \mod g(x) = 1 + x^2 + x^3$:
- $x^5 \mod g(x) = x + x^3 + 1 + x^2 + x^3 = 1 + x + x^2.$
- $x^6 \mod g(x) = x + x^2 + x^3$
- Por lo tanto, la matrix generadora con la identidad a derecha es la de la siguiente pagina
- Pero antes hagamos el Check:
- $x^7 \mod g(x) = x^2 + x^3 + 1 + x^2 + x^3$

- Veamos otro ejemplo: $g(x) = 1 + x^2 + x^3 + x^4$, n = 7.
- k = 7 4 = 3.
- $x^4 \mod g(x) = 1 + x^2 + x^3.$
- $x^5 \mod g(x) = x + x^3 + x^4 \mod g(x)$
- Usando $x^4 \mod g(x) = 1 + x^2 + x^3$:
- $x^5 \mod g(x) = x + x^3 + 1 + x^2 + x^3 = 1 + x + x^2.$
- $x^6 \mod g(x) = x + x^2 + x^3$
- Por lo tanto, la matrix generadora con la identidad a derecha es la de la siguiente pagina
- Pero antes hagamos el Check:
- $x^7 \mod g(x) = x^2 + x^3 + 1 + x^2 + x^3 = 1$

$$\begin{bmatrix} x^4 \mod g(x) & + & x^4 \\ x^5 \mod g(x) & + & x^5 \\ x^6 \mod g(x) & + & x^6 \end{bmatrix}$$

$$\begin{bmatrix} 1 + x^2 + x^3 + x^4 \\ 1 + x + x^2 + x^5 \\ x + x^2 + x^3 + x^6 \end{bmatrix}$$

$$\begin{bmatrix} 1+x^2+x^3 & + & x^4 \\ 1+x+x^2 & + & x^5 \\ x+x^2+x^3 & + & x^6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1+x^2+x^3 & + & x^4 \\ 1+x+x^2 & + & x^5 \\ x+x^2+x^3 & + & x^6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Con matriz de chequeo:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Polinomio chequeador

■ Como g divide a $1 + x^n$, $\frac{1+x^n}{g(x)}$ es un polinomio, que se suele llamar el polinomio chequeador y lo denotaremos por h(x).

Polinomio chequeador

- Como g divide a $1 + x^n$, $\frac{1+x^n}{g(x)}$ es un polinomio, que se suele llamar el polinomio chequeador y lo denotaremos por h(x).
- Se llama asi pues si $p(x) \in C$, entonces, como p(x) = q(x)g(x) para algún q:

- Como g divide a $1 + x^n$, $\frac{1+x^n}{g(x)}$ es un polinomio, que se suele llamar el polinomio chequeador y lo denotaremos por h(x).
- Se llama asi pues si $p(x) \in C$, entonces, como p(x) = q(x)g(x) para algún q:
- $h(x) \odot p(x) = h(x)p(x) \mod (1 + x^n) = h(x)q(x)g(x) \mod (1 + x^n) = 0.$

- Como g divide a $1 + x^n$, $\frac{1+x^n}{g(x)}$ es un polinomio, que se suele llamar el polinomio chequeador y lo denotaremos por h(x).
- Se llama asi pues si $p(x) \in C$, entonces, como p(x) = q(x)g(x) para algún q:
- $h(x) \odot p(x) = h(x)p(x) \mod (1 + x^n) = h(x)q(x)g(x) \mod (1 + x^n) = 0.$
- La última igualdad pues $h(x)g(x) = 1 + x^n$ por definición de h.

■ Viceversa, si p de grado < n es tal que $h(x) \odot p(x) = 0$, entonces

- Viceversa, si p de grado < n es tal que $h(x) \odot p(x) = 0$, entonces
- $h(x)p(x) \mod (1+x^n) = 0$, es decir $1+x^n$ divide a h(x)p(x).

- Viceversa, si p de grado < n es tal que $h(x) \odot p(x) = 0$, entonces
- $h(x)p(x) \mod (1 + x^n) = 0$, es decir $1 + x^n$ divide a h(x)p(x).
- Por lo tanto existe q(x) con $h(x)p(x) = (1 + x^n)q(x)$.

- Viceversa, si p de grado < n es tal que $h(x) \odot p(x) = 0$, entonces
- $h(x)p(x) \mod (1 + x^n) = 0$, es decir $1 + x^n$ divide a h(x)p(x).
- Por lo tanto existe q(x) con $h(x)p(x) = (1 + x^n)q(x)$.
- Pero $1 + x^n = h(x)g(x)$ asi que h(x)p(x) = h(x)g(x)q(x)

- Viceversa, si p de grado < n es tal que $h(x) \odot p(x) = 0$, entonces
- $h(x)p(x) \mod (1 + x^n) = 0$, es decir $1 + x^n$ divide a h(x)p(x).
- Por lo tanto existe q(x) con $h(x)p(x) = (1 + x^n)q(x)$.
- Pero $1 + x^n = h(x)g(x)$ asi que h(x)p(x) = h(x)g(x)q(x)
- Simplificando h tenemos que p(x) = q(x)g(x) y por lo tanto $p \in C$.

- Viceversa, si p de grado < n es tal que $h(x) \odot p(x) = 0$, entonces
- $h(x)p(x) \mod (1 + x^n) = 0$, es decir $1 + x^n$ divide a h(x)p(x).
- Por lo tanto existe q(x) con $h(x)p(x) = (1 + x^n)q(x)$.
- Pero $1 + x^n = h(x)g(x)$ asi que h(x)p(x) = h(x)g(x)q(x)
- Simplificando h tenemos que p(x) = q(x)g(x) y por lo tanto $p \in C$.
- Asi que podemos "chequear" si un polinomio está en C o no "multiplicando" (modulo $1 + x^n$) por h(x) y viendo si da 0 o no

■ En los ejercicios, el polinomio generador se los daremos nosotros

- En los ejercicios, el polinomio generador se los daremos nosotros
- Es decir, no es que les demos un código y les vamos a pedir que calculen el polinomio generador (bueno, podria ser, pero sólo si es un código con pocas palabras) sino que les vamos a dar g(x) y el n, y les vamos a pedir que hagan varias cosas a partir de ellos.

- En los ejercicios, el polinomio generador se los daremos nosotros
- Es decir, no es que les demos un código y les vamos a pedir que calculen el polinomio generador (bueno, podria ser, pero sólo si es un código con pocas palabras) sino que les vamos a dar g(x) y el n, y les vamos a pedir que hagan varias cosas a partir de ellos.
- Pej, calcular h, o la dimensión de C.

- En los ejercicios, el polinomio generador se los daremos nosotros
- Es decir, no es que les demos un código y les vamos a pedir que calculen el polinomio generador (bueno, podria ser, pero sólo si es un código con pocas palabras) sino que les vamos a dar g(x) y el n, y les vamos a pedir que hagan varias cosas a partir de ellos.
- Pej, calcular h, o la dimensión de C.
- O dar matrices generadoras para el código, o codificar/decodificar palabras, usando algunos de los métodos que dimos.