Caleb Logemann MATH 520 Methods of Applied Math II Homework 1

Section 10.9

#3 Prove Proposition 10.1. Proposition 10.1 states that if T is bounded on its domain then it has a unique norm preserving extension to $\overline{D(T)}$. That is to say there exists a unique linear operator $S: \overline{D(T)} \subset X \to Y$ such that Sx = Tx for $x \in D(T)$ and ||S|| = ||T||.

Proof. Let $S: \overline{D(T)} \subset X \to Y$ be defined as follows.

$$Sx = \lim_{n \to \infty} (Tx_n)$$

where the sequence $\{x_n\}_{n=1}^{\infty}$ is any sequence in D(T) that converges to x. Note that for any $x \in \overline{D(T)}$, x is a limit point of D(T) so the sequence $\{x_n\}$ exists. Also since T is bounded it is also continuous, so the limit always exists.

Next I will show that S is linear. Consider $x_1, x_2 \in \overline{D(T)}$ and $c_1, c_2 \in \mathbb{C}$. Then there exists sequences in D(T), $\{a_n\}_{n=1}^{\infty}$ that converges to x_1 and $\{b_n\}_{n=1}^{\infty}$ that converges to x_2 . Now note that the sequence $c_1a_n + c_2b_{n=1}^{\infty}$ converges to $c_1x_1 + c_2x_2$ by the linearity of limits. Therefore

$$S(c_1x_1 + c_2x_2) = \lim_{n \to \infty} (T(c_1a_n + c_2b_n))$$

Because T is linear

$$S(c_1x_1 + c_2x_2) = \lim_{n \to \infty} (c_1T(a_n) + c_2T(b_n))$$

By the linearity of limits

$$S(c_1x_1 + c_2x_2) = c_1 \lim_{n \to \infty} (T(a_n)) + c_2 \lim_{n \to \infty} (T(b_n))$$

$$S(c_1x_1 + c_2x_2) = c_1S(x_1) + c_2S(x_2)$$

This shows that S is a linear operator.

Next I will show that Sx = Tx for $x \in D(T)$. Let $\{x_n\}_{n=1}^{\infty}$ converge to x in D(T), then because T is continuous, $\lim_{n\to\infty} (T(x_n)) = T(x)$. Therefore Sx = Tx.

Now I will show that ||S|| = ||T||. Consider the following, note that supremums are taken excluding the zero vector.

$$||S|| = \sup *[x \in \overline{D(T)}] \frac{||Sx||_Y}{||x||_X}$$

$$= \sup *[x \in \overline{D(T)}] \frac{||\lim_{n \to \infty} (Tx_n)||_Y}{||x||_X}$$

$$= \sup *[x \in \overline{D(T)}] \frac{\lim_{n \to \infty} (||Tx_n||_Y)}{||x||_X}$$

$$\leq \sup *[x \in \overline{D(T)}] \frac{\lim_{n \to \infty} (||T|| ||x_n||_X)}{||x||_X}$$

$$= \sup *[x \in \overline{D(T)}] \frac{||T|| ||x||_X}{||x||_X}$$

$$= \sup *[x \in \overline{D(T)}] ||T||$$

$$= ||T||$$

Therefore $||S|| \leq ||T||$. Also $D(T) \subset \overline{D(T)}$, therefore

$$||S|| = \sup *[x \in \overline{D(T)}] \frac{||Sx||_Y}{||x||_X}$$

$$\geq \sup *[x \in D(T)] \frac{||Sx||_Y}{||x||_X}$$

$$= \sup *[x \in D(T)] \frac{||Tx||_Y}{||x||_X}$$

$$= ||T||$$

Therefore $||S|| \ge ||T||$, and both of these inequalities imply that ||S|| = ||T||.

Finally note that this extension is unique suppose that there exists some other extension S' with the same properties. Consider $x \in \overline{D(T)}$, then there exists some sequence $\{x_n\}_{n=1}^{\infty} \in D(T)$ that converges to x. Now consider S'x since S' is linear and bounded it is continuous, so

$$S'x = \lim_{n \to \infty} (S'x_n) = \lim_{n \to \infty} (Tx_n) = Sx$$

because S'x = Tx for $x \in D(T)$. Therefore the extension is unique.

#6 Show that a linear operator $T: \mathbb{C}^N \to \mathbb{C}^M$ is always bounded for any choice of norms on \mathbb{C}^N and \mathbb{C}^M .

Proof. Let $T: \mathbb{C}^N \to \mathbb{C}^M$ be a linear operator. It is known that any linear operator from $\mathbb{C}^N \to \mathbb{C}^M$ can be expressed as a matrix multiplication, that is there exists matrix $A \in \mathbb{C}^{m \times n}$ such that Tx = Ax for every $x \in \mathbb{C}^N$.

Consider the alternative definition of the norm of an operator

$$||T|| = \sup[||x|| = 1]||Tx||$$

I will let $S = \{x \in \mathbb{C}^N : \|x\| = 1\}$, which is commonly known as the unit sphere of the vector space. It is well known that the unit sphere of a finite dimensional vector space is a compact set and this is true for any norm chosen on that space. It is also well known that a continous function is bounded on every compact set. Since any norm on \mathbb{C}^M is continuous, the value of $\|Ax\|$ is bounded for any $x \in S$. This implies that

$$||T|| = \sup[x \in S]||Tx|| = \sup[x \in S]||Ax|| < \infty$$

Therefore the T is bounded for any choice of norms on \mathbb{C}^N and \mathbb{C}^M .

#7 If $T, T^{-1} \in \mathcal{B}(\mathbf{H})$ show that $(T^*)^{-1} \in \mathcal{B}(\mathbf{H})$ and $(T^*)^{-1} = (T^{-1})^*$.

Proof. Let **H** be a Hilbert Space and let $T, T^{-1} \in \mathcal{B}(\mathbf{H})$. Since $T \in \mathcal{B}(\mathbf{H})$ this implies that there exists a unique linear operator $T^* \in \mathcal{B}(\mathbf{H})$ such that $\langle Tu, v \rangle = |u, T^*v|$ for all $u, v \in \mathbf{H}$. First I will show that T^* is one-to-one so that $(T^*)^{-1}$ exists. Consider $x, y \in \mathbf{H}$ such that $T^*x = T^*y$ or equivalently $T^*(x-y) = 0$. Now consider any $u \in \mathbf{H}$.

$$0 = \langle u, T^*(x - y) \rangle = \langle Tu, x - y \rangle$$

Since $\langle Tu, x - y \rangle = 0$ for any $u \in \mathbf{H}$ this implies that x - y = 0 or x = y. Therefore T^* is one-to-one and $(T^*)^{-1}$ exists. Secondly I will show that $(T^*)^{-1} = (T^{-1})^*$. Consider the identity operator I which is defined as Ix = x for all $x \in \mathbf{H}$. Note that $T^{-1}T = I$. Also note that $I^* = I$ because $I \in \mathcal{B}(\mathbf{H})$ and

$$\langle Iu, v \rangle = \langle u, v \rangle = \langle u, Iv \rangle$$

for all $u, v \in \mathbf{H}$. This implies that $(T^{-1}T)^* = I$ or equivalently $T^*(T^{-1})^* = I$ because $T, T^{-1} \in \mathcal{B}(\mathbf{H})$. Now consider any $x \in \mathcal{B}(\mathbf{H})$

$$x = T^* (T^{-1})^* x$$
$$(T^*)^{-1} x = (T^{-1})^* x$$

This is because $(T^*)^{-1}$ is defined for any $x \in \mathbf{H}$. Since this is true for any x, this implies that $(T^*)^{-1} = (T^{-1})^*$. Now it is easy to see that since $||T|| = ||T^*||$ this implies that $||(T^*)^{-1}|| = ||T^{-1}|| < \infty$. Also since $(T^*)^{-1} = (T^{-1})^*$, this implies that $(T^*)^{-1}$ is linear. Therefore $(T^*)^{-1} \in \mathcal{B}(\mathbf{H})$. \square

#14 If $T \in \mathcal{B}(\mathbf{H})$ show that T^* restricted to R(T) is one-to-one.

Proof. Let **H** be a Hilbert space and let $T \in \mathcal{B}(\mathbf{H})$. Consider T^* restricted to R(T). In other words let S be a linear function such that D(S) = R(T) and $Sx = T^*x$ for every $x \in D(S)$. Let $x, y \in D(S) = R(T)$ such that Sx = Sy. Since S is linear this is equivalent to S(x - y) = 0, which implies that $x - y \in N(S)$. Note that $N(S) \subseteq N(T^*)$, so $x - y \in N(T^*)$. Also note that R(T) is a subspace of **H** so that $x - y \in R(T)$. It has already been stated that $R(T) \subset N(T^*)^{\perp}$, which implies that $x - y \in N(T^*)^{\perp}$. Since $x - y \in N(T^*)^{\perp}$ and $x - y \in N(T^*)$, x - y must be orthogonal to itself.

$$\langle x - y, x - y \rangle = 0$$
$$\|x - y\|^2 = 0$$
$$\|x - y\| = 0$$
$$x - y = 0$$
$$x = y$$

This follows since the only element of **H** with norm 0 is the zero element. This shows that when Sx = Sy then x = y. Therefore S is one to one or T^* is one to one when restricted to the range of T.