

Statistical Methods for Decision Making Residency-II

For BABI Program¹

¹Great Lakes Institute of Management, Gurgaon

February 18, 2018

Recap of Day-I, Residency-II

- Revisited Sampling Distribution and CLT
- Point estimate and Interval Estimate
- Confidence Interval
- How to set up Null and alternative hypothesis
- Confidence interval approach of hypothesis testing
- Test statistic approach of hypothesis testing
- p-value approach of hypothesis testing

Note: Hypothesis Testing uses Sampling Distribution

Day-II of Residency-II

- Applications to Cash Transfer Study (including test of variance)
- Type-I error, Type-II error
- Power of the Test
- Test of association
- Poisson Distribution (if time permits)

Type-I and Type-II error

A **Type I error** occurs if we reject the null hypothesis H_0 (in favor of the alternative hypothesis H_A) when the null hypothesis H_0 is true. We denote $\alpha = P(Type\ I\ Error)$.

A **Type II error** occurs if we fail to reject the null hypothesis H_0 when the alternate hypothesis H_A is true. We denote $\beta = P(Type II Error)$.

The **power of a hypothesis test** is the probability of making the correct decision if the alternative hypothesis is true. That is, the power of a hypothesis test is the probability of rejecting the null hypothesis H_0 when the alternative hypothesis H_A is the hypothesis that is true.

Power, Type-I and Type-II errors

• Minimize the probability of committing a Type I error. That, is minimize $\alpha = P(Type\ I\ Error)$. Typically, a significance level of $\alpha \leqslant 0.05$ is desired.

3 Maximize the power (at a value of the parameter under the alternative hypothesis that is scientifically meaningful). Typically, we desire power to be 0.80 or greater. Alternatively, we could minimize $\beta = P(Type\ II\ Error)$, aiming for a Type II error rate of 0.20 or less.

Example: Cash Transfer

Say, you hypothesize that Below Poverty Level Families consume on average 2000 calories under public distribution system. So, your null hypothesis is

$$H_0: \mu = 2000 \ calories$$

The Alternative Hypothesis is:

$$\textit{H}_{\textit{A}}$$
: $\mu = 2400 \ \textit{calories}$

Cheat Sheet for Hypothesis Testing

1	Type of test	Test of mean μ or test of proportion p
2	Type of sample	one sample or two sample
3	Specify Null as	Status Quo
4	Specify Alternate as	Whatever you want to prove
5	Tails	If $H_a < \mu$ then left tail, $H_a > \mu$ is right tail , not equal is both
6	Confidence level	Fix the alpha (probability of type—I error)
7	Is sigma known? and/or Is $n > 30$?	If answer "Yes" to both, then Z otherwise t test
8	"critical values" or areas	Based on 6 and 7, find "critical values" or areas that define Left, Right or Both tails
9	Acceptance Region	Shade the area where H_a is "true"
10	Test Statistic	Calculate test statistics using fomula
11	Inference	If test statistic in the above step is in shaded portion then H_a holds, not otherwise

Reference:

http://www.math.wayne.edu/~bert/courses/1020/hypothesis.testing.pdf

Test For	Null Hypothesis (Ho)	Test Statistic	Distribution	Use When
Population mean (μ)	$\mu=\mu_0$	$\frac{(\bar{x} - \mu_0)}{s}$	Standard normal (Z)	n is at least 30
Population mean (μ)	$\mu=\mu_0$	$\frac{(\overline{x} - \mu_0)}{s}$	t _{e-1}	n is less than 30
Population proportion (p)	$\rho = \rho_0$	$\frac{\hat{p} - p_o}{\sqrt{\frac{p_o(1 - p_o)}{n}}}$	Standard normal (Z)	$n \times p_0$ and $n(1-p_0)$ are at least 5
Difference of two population means $(\mu_x - \mu_y)$	$\mu_{*}-\mu_{*}=0$	$\frac{(\overline{x} - \overline{y}) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	Standard normal (Z)	n_1 and n_2 are both at least 30
Mean of difference (before – after)	$\mu_{\mathscr{A}}=0$	$\frac{\overline{d}-0}{s}$	Standard normal (Z)	30 or more pairs of data
Mean of difference (before – after)	$\mu_{\mathscr{E}} = 0$	$\frac{\overline{d}-0}{s}$	t ₀₋₁	Less than 30 pairs of data
Difference of two population proportions $(p_1 - p_2)$	$p_1 - p_2 = 0$	$\frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_1}\right)}}$	Standard normal (Z)	$n \times \hat{p}$ and $n(1-\hat{p})$ are at least 5 for each group

Hypothesis testing

t-Test using R

The R-Command for t-Test:

t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95)

Source: https:

//www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test

Proportion test using R

prop.test(x, n, p = NULL, alternative = c("two.sided", "less", "greater"), conf.level = 0.95, correct = TRUE)

Source: https:

 $//{\tt www.rdocumentation.org/packages/stats/versions/3.4.3/topics/prop.test}$

Chi-Squared Distribution

Definition: The chi-squared distribution with r degrees of freedom is the distribution of a random variable that is the sum of the squares of r independent standard normal random variables. We $\hat{\mathbb{E}}_{\frac{1}{4}}$ Il call this distribution $\chi^2(r)$.

Definition: The mean of the chi-squared distribution is r (the same as degrees of freedom) and the variance is $2 \star r$.

Note: the value of the chi square statistic is sensitive to the sample size. Refer (http://uregina.ca/~gingrich/chl1a.pdf and http://uregina.ca/~gingrich/chl10.pdf

Chi-square Statistic

The chi-square statistic, denoted with the Greek χ^2 , is found by comparing the observed counts from a sample with expected counts derived from a null hypothesis. The formula for computing the statistic is

$$\chi^2 = \sum \frac{(Obeserved - Expected)^2}{Expected}$$

where the sum is over all cells of the table.

Chi-square Goodness-of-Fit Test

To test a hypothesis about the proportions of a categorical variable, based on a table of observed counts in k cells:

 H_0 : Specifies proportions, p_t , for each cell

 H_a : At least one p_l is not as specified

- Compute the expected count for each cell using n · p_l, where n is the sample size and p_l is given in the null hypothesis.
- · Compute the value of the chi-square statistic,

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$

Find the p-value for χ² using the upper tail of a chi-square distribution with k - 1 degrees of freedom.

The chi-square distribution is appropriate if the sample size is large enough that each of the expected counts is at least 5.

Chi-square goodness-of-fit test

Chi-square Test for Association

To test for an association between two categorical variables, based on a two-way table that has r rows as categories for variable A and c columns as categories for variable B:

Set up hypotheses:

H₀: Variable A is not associated with variable B

H_a: Variable A is associated with variable B

Compute the expected count for each cell in the table using

$$Expected count = \frac{Row total \cdot Column total}{Sample size}$$

Compute the value for a chi-square statistic using

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

Find a p-value using the upper tail of a chi-square distribution with (r-1)(c-1) degrees of freedom.

The chi-square distribution is appropriate if the expected count is at least five in each cell.

Happy Learning!!!