Operating System LAB-01 Prepared By

Md. Mustafizur Rahman Lecturer, CSE,DCC.

EXPERIMENT NO.1

CPU SCHEDULINGALGORITHMS FIRST COME FIRST SERVE(FCFS)

 AIM: To write a c program to simulate the CPU scheduling algorithm First Come First Serve (FCFS)

EXPERIMENT NO.1

DESCRIPTION

To calculate the average waiting time using the FCFS algorithm first the waiting time of the first process is kept zero and the waiting time of the second process is the burst time of the first process and the waiting time of the third process is the sum of the burst times of the first and the second process and so on. After calculating all the waiting times the average waiting time is calculated as the average of all the waiting times. FCFS mainly says first come first serve the algorithm which came first will be served first.

EXPERIMENT NO.1: ALGORITHM

- Step 1: Start the process
- Step 2: Accept the number of processes in the ready Queue
- Step 3: For each process in the ready Q, assign the process name and the burst time Step
- 4: Set the waiting of the first process as _0'and its burst time as its turnaround time Step
- 5: for each process in the Ready Q calculate
- a). Waiting time (n) = waiting time (n-1) + Burst time (n-1) b).
- Turnaround time (n)= waiting time(n)+Burst time(n)
- Step 6: Calculate
- a) Average waiting time = Total waiting Time / Number of process
- b) Average Turnaround time = Total Turnaround Time / Number of process
- Step 7: Stop the process

First-Come, First-Served (FCFS) Scheduling

<u>Process</u> <u>Burst Time</u>	
P_1	24
P_2	3
P_3	3

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

	P ₁	P ₂	P ₃
0	24	1 2	7 30

- □ Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- □ Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

The Gantt chart for the schedule is:

- □ Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- \square Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

EXPERIMENT NO.1: C PROGRAM

```
#include<stdio.h>
//#include<conio.h>
int main()
int bt[20], wt[20], tat[20], i, n;
float wtavg, tatavg;
//clrscr();
printf("\nEnter the number of processes -- ");
scanf("%d", &n);
for(i=0;i<n;i++)
printf("\nEnter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);
wt[0] = wtavg = 0;
tat[0] = tatavg = bt[0];
for(i=1;i<n;i++)
```


EXPERIMENT NO.1: C PROGRAM

```
wt[i] = wt[i-1] + bt[i-1];
tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];
printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");
for(i=0;i<n;i++)
printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg/n);
printf("\nAverage Turnaround Time -- %f", tatavg/n);
return 0;
//getch();
```


End of Lab 01

