

GEODÉSICAS I

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 29) 03.MAY0.2022

Sea S una superficie. Dado que \mathbb{R}^3 es un espacio métrico, las vecindades más fáciles de construir para S son los llamados vecindarios métricos

$$B_{\delta}(S) = \{ \mathbf{p} \in \mathbb{R}^3 : \operatorname{dist}(\mathbf{p}, S) < \delta \},$$

donde $dist(\mathbf{p}, S) = \inf_{\mathbf{q} \in S} |\mathbf{p} - \mathbf{q}|$.

Está claro que $B_{\delta}(S)$ es una vecindad abierta de S para cada $\delta >$ 0. Una primera observación es que estas vecindades consisten en segmentos de líneas normales con longitud 2δ centrada en los puntos de la superficie. (Lema 4.23 en el libro de Montiel y Ros).

Esta descripción geométrica de las vecindades métricas de un superficie sugiere lo siguiente:

Si podemos arreglar que los segmentos de rectas normales involucradas no se cruzan, entonces podremos establecer que estos vecindarios son productos topológicos de la superficie y un intervalo de \mathbb{R} . Esto, de hecho, puede hacerse si el radio es lo suficientemente pequeño.

Para una superficie orientable S, esto se puede hacer mediante el mapa $F: S \times \mathbb{R} \to \mathbb{R}^3$, dado por

$$F(\mathbf{p},t) = \mathbf{p} + tN(\mathbf{p}), \ \forall (\mathbf{p},t) \in S \times \mathbb{R},$$

donde $N: S \to S^2 \subset \mathbb{R}^3$ es un mapa de Gauss de S. Este mapa F es diferenciable, y envía cada par (\mathbf{p},t) al punto a la distancia t en la línea normal de S en \mathbf{p} , en el lado de la superficie a la que apunta $N(\mathbf{p})$. De ahí que

$$F(S \times (-\delta, \delta)) = N_{\delta}(S) = \bigcup_{\mathbf{p} \in S} N_{\delta}(\mathbf{p}), \ \forall \delta > 0.$$

Ahora, que los segmentos normales de radio δ no se toquen entre sí es equivalente a que el mapa F sea inyectivo en $S \times (-\delta, \delta)$.

Definición

La unión $N_{\delta}(S)$ de todos los segmentos normales de radio $\delta >$ 0 centrados en los puntos de una superficie orientable S se llama la **vecindad tubular** de radio $\delta >$ 0 si esta es abierta como un subconjunto de \mathbb{R}^3 . En ese caso, el mapa $F: S \times (-\delta, \delta) \to N_{\delta}(S)$ es un difeomorfismo.

 $N_{\delta}(S)$ viene acompañado de dos proyecciones $\pi_1: N_{\delta}(S) \to S$ dada por $(\mathbf{p}, t) \to \mathbf{p}$, y $\pi_2: N_{\delta}(S) \to \mathbb{R}^3$ dada por $(\mathbf{p}, t) \to tN(\mathbf{p})$. Las superficies $S^t = S + tN = \pi_2(\cdot, t)$ son las superficies paralelas a S.

La vecindad tubular $N_{\delta}(S)$.

Vecindad tubular de una superficie.

(Para más detalles, ver capítulo 4 de libro de Montiel y Ros.)

Queremos estudiar ahora las curvas sobre una superficie S que minimizan (localmente) la longitud de arco.

Definición

Sea $S \subset \mathbb{R}^3$ superficie regular, y sea $\alpha : [a,b] \to S$, una curva sobre S. Una **variación** de la curva α es un mapa diferenciable $F : [a,b] \times (-\varepsilon,\varepsilon) \to S$ tal que $F(s,o) = \alpha(s)$, $\forall s \in [a,b]$.

Para cada $t \in (-\varepsilon, \varepsilon)$, tenemos una curva $F_t : [a, b] \to S$ dada por $F_t(s) = F(s, t)$. F_t se llama una **curva longitudinal** de la variación F.

Cuando todas estas curvas tiene extremos comunes, esto es, $F(a,t) = \mathbf{p}$, $F(b,t) = \mathbf{q}$, $\forall t \in (-\varepsilon,\varepsilon)$, decimos que la variación F es **propia**.

Variación de una curva α sobre S.

Asociado a una variación F, definimos $V:[a,b] \to \mathbb{R}^3$ por

$$V(s) = \frac{\partial F}{\partial t}(s, o) = \frac{d}{dt}F(s, t)\Big|_{t=o}.$$

V es también diferenciable, y además, $V(s) \in T_{\alpha(s)}S$, $\forall s \in [a,b]$. El mapa V se llama el **campo variacional** de F. Claramente, si F es propia, entonces V(a) = V(b) = 0.

Mostramos ahora que las variaciones y sus campos variacionales asociados mantienen una relación más profunda.

Proposición

Sea $\alpha:[a,b]\to S$ una curva diferenciable sobre S, y V : $[a,b]\to \mathbb{R}^3$ un mapa diferenciable tal que V(s) $\in T_{\alpha(s)}$ S, $\forall s\in [a,b]$. Entonces, existe $\varepsilon>0$ y una variación $F:[a,b]\times (-\varepsilon,\varepsilon)\to S$ de α cuyo campo variacional es V. Más aún, si V(a) = V(b) = 0, F puede elegirse propia.

<u>Prueba</u>: Como el trazo $K = \alpha([a,b])$ es un compacto en S, existe una vecindad $K \subset W \subseteq S$ y un número $\delta >$ o tales que existe una proyección diferenciable $\pi : N_{\delta}(W) \to W$ proveniente de la vecindad tubular $N_{\delta}(W)$.

Como $N_{\delta}(W)$ es un abierto en \mathbb{R}^3 que contiene al compacto K, existe $\varepsilon' > 0$ tal que dist $(\mathbf{p}, K) < \varepsilon' \Rightarrow \mathbf{p} \in N_{\delta}(W)$. Hacemos $\varepsilon = \frac{\varepsilon'}{1+M}$, $M = \sup_{s \in [a,b]} |V(s)|$.

Así, si $s \in (-\varepsilon, \varepsilon)$, se tiene

$$\operatorname{dist}(\alpha(s) + tV(s), K) \leq |tV(s)| = t|V(s)| \leq \varepsilon' M < \varepsilon, \ \forall s \in [a, b].$$

Luego $\alpha(s) + tV(s) \in N_{\delta}(W)$, $\forall (s,t) \in [a,b] \times (-\varepsilon,\varepsilon)$. Definimos la variación requerida como $F: [a,b] \times (-\varepsilon,\varepsilon) \to S$ como

$$F(s,t) = \pi(\alpha(s) + tV(s)), \ \forall [a,b] \times (-\varepsilon,\varepsilon).$$

F es diferenciable, y si t = 0, se tiene $F(s, 0) = \pi(\alpha(s)) = \alpha(s)$, ya que $\alpha(s) \in S$. El campo variacional es

$$\frac{\partial F}{\partial t}(s, o) = \frac{d}{dt}\pi(\alpha(s) + tV(s))\big|_{t=o} = D\pi_{\alpha(s)} \cdot V(s) = V(s),$$

ya que $\alpha(s) \in S$, $V(s) \in T_{\alpha(s)}S$, y $D\pi$, restricta al plano tangente sobre puntos de la superficie, es la identidad.

Finalmente, si V(a) = V(b) = 0, entonces

$$F(a,t) = \pi(\alpha(a) + tV(a)) = \pi(\alpha(a)) = \alpha(a),$$

para
$$t\in (-arepsilon,arepsilon)$$
. Análogamente $\mathit{F}(\mathit{b},\mathit{t})=\pi(lpha(\mathit{b})+\mathit{tV}(\mathit{b}))=lpha(\mathit{b})$, \Box

Definición

Sea $S \subset \mathbb{R}^3$ superficie orientable, $\mathbf{p} \in S$. Dado un vector \mathbf{v} anclado a \mathbf{p} , definimos la **componente tangencial** \mathbf{v}^T del \mathbf{v} en \mathbf{p} como la proyección de \mathbf{v} sobre el plano tangente T, y la **componente normal** como la proyección de \mathbf{v} sobre el segmento normal $\langle N(\mathbf{p}) \rangle$:

$$\mathbf{v}^T = \operatorname{proj}_{T_{\mathbf{p}}S} \mathbf{v}, \quad \mathbf{v}^\perp = \operatorname{proj}_{N(\mathbf{p})} \mathbf{v}.$$

Obs! Todo vector $\mathbf{v} \in \mathbb{R}^3$ se descompone como $\mathbf{v} = \mathbf{v}^T + \mathbf{v}^{\perp}$.

Asociamos a cada variación $F:[a,b]\times (-\varepsilon,\varepsilon)\to S$ de la curva $\alpha=F_0$ una función $L_F:(-\varepsilon,\varepsilon)\to \mathbb{R}$ por

$$L_F(t) = \ell_a^b(F_t) = \int_a^b |F_t'(s)| ds = \int_a^b \left| \frac{\partial F}{\partial s}(s,t) \right| ds.$$

Esta es la **función de longitud** (de arco) de la varaición F. Observe que $L_F(O) = \ell_a^b(\alpha)$ para cada variación F.

Ahora suponga que α está parametrizada por longitud de arco. Definimos $G:[a,b]\times(-\varepsilon,\varepsilon)\to\mathbb{R}$ por

$$G(s,t) = \left| \frac{\partial F}{\partial s}(s,t) \right|.$$

G es continua y $G(s, 0) = |\alpha'(s)| = 1 > 0$, $\forall s \in [a, b]$. Por la continuidad de

G, existe δ con $0 < \delta < \varepsilon$ y tal que $|t| < \delta \Rightarrow G(s,t) > 0$, $\forall s \in [a,b]$. Entonces $G|_{[a,b]\times(-\delta,\delta)} > 0$ y diferenciable. En consecuencia, la longitud de la variación F, restricta a $L_F: [a,b]\times(-\delta,\delta) \to \mathbb{R}$ es diferenciable y

$$L'_F(t) = \frac{d}{dt} \int_a^b \left| \frac{\partial F}{\partial s}(s,t) \right| ds = \int_a^b \frac{\partial G}{\partial t}(s,t) ds,$$

para todo $t \in (-\delta, \delta)$.

El propósito ahora es calcular $L_F(o)$. Para ello, observe que

$$\frac{\partial G}{\partial t}(s, o) = \left\langle \frac{\partial F}{\partial s}, \frac{\partial^2 F}{\partial t \partial s} \right\rangle (s, o), \quad \forall s \in [a, b]. \tag{1}$$

(pues
$$\frac{\partial}{\partial t}G = \frac{\partial}{\partial t}|F'| = \frac{\partial}{\partial t}\langle F', F' \rangle^{1/2} = \frac{1}{2}\frac{2\langle \partial_t F', F' \rangle}{|F'|} = \langle \partial_{ts}^2 F, \partial_s F \rangle$$
).

Teorema (Primera variación de la longitud)

Sea $\alpha: [a,b] \to S$ una curva parametrizada por longitud de arco, y sea $F: [a,b] \times (-\delta,\delta) \to S$ una variación de α . Si L_F es la función de longitud, entonces

$$L'_{F}(O) = \langle V(b), \alpha'(b) \rangle - \langle V(a), \alpha'(a) \rangle - \int_{a}^{b} \langle V(s), \alpha''(s) \rangle ds.,$$

Prueba: De (1)
$$L'_{F}(o) = \int_{a}^{b} \left\langle \frac{\partial^{2} F}{\partial t \partial s}, \frac{\partial F}{\partial s} \right\rangle (s, o) ds$$

$$= \left\langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial s} \right\rangle |_{(a, o)}^{(b, o)} - \int_{a}^{b} \left\langle \frac{\partial F}{\partial t}, \frac{\partial^{2} F}{\partial s^{2}} \right\rangle (s, o) ds$$

$$= \left\langle V(b), \alpha'(b) \right\rangle - \left\langle V(a), \alpha'(a) \right\rangle - \int_{a}^{b} \left\langle V(s), \alpha''(s) \right\rangle ds$$

(Recordar que
$$\frac{\partial F}{\partial s}(s, o) = \alpha(s)$$
, $\frac{\partial^2 F}{\partial s^2}(s, o) = \alpha''(s)$, $\frac{\partial F}{\partial t}(s, o) = V(t)$).

Estamos interesados en caracterizar las geodésicas sobre S, esto es las curvas que localmente minimizan la longitud de arco. Esto lo podemos caracterizar en términos de la función de longitud L_F .

Corolario (Caracterización de las geodésicas)

Una curva regular $\alpha: [\mathbf{a}, \mathbf{b}] \to \mathbf{S}$ sobre una superficie \mathbf{S} tiene longitud crítica, esto es

$$L_F'(0) = 0,$$

para toda variación propia F si, y sólo si, $\alpha''(s) \perp \alpha(s)$, $\forall s \in [a, b]$, o equivalentemente $\alpha''(s) \in T_{\alpha(s)}S^{\perp}$.

En otras palabras, si y sólo si, su aceleración tangencial $\alpha''(s)^T$ es proporcional a la velocidad $\alpha(s)$. Si α está parametrizada por longitud de arco, esto es equivalente al hecho que $\alpha''(s)^T = 0$, $\forall s$.

<u>Prueba</u>: Suponga que está parametrizada por longitud de arco $|\alpha'(s)|^2 = 1$, y la aceleración $\alpha''(s)$ es perpendicular a $\alpha'(s)$, pues $2\langle\alpha''(s),\alpha'(s)\rangle = \frac{d}{ds}|\alpha'(s)|^2 = 0$, $\forall s$.

De ahí que las condiciones $\alpha''(s) \perp \alpha'(s)$ y $\alpha''(s)^T = 0$ sean equivalentes.

 (\Rightarrow) Por el Teorema de Primera Variación, si $L_F'(0)=0$ para toda variación propia de α , entonces

$$\int_a^b \langle V(s), \alpha''(s) \rangle \, ds = 0,$$

y de la proposición previa, existe una variación propia cuyo campo variacional es $V(s) = h(s)\alpha''(s)^T$, donde h es alguna función difefrenciable en [a,b], positiva en (a,b), y con h(a) = h(b) = 0. Luego,

$$\int_a^b h(s) |\alpha''(s)^{\mathsf{T}}|^2 ds = 0.$$

De ahí que $\alpha''(s)^T = o$, $\forall s$ y la aceleración $\alpha''(s) \in T_{\alpha(s)}S^{\perp}$.

(\Leftarrow) Recíprocamente, si la curva α está parametrizada por longitud de arco, y satisface $\alpha''(s)^T = 0$, $\forall s \in [a,b]$, entonces la fórmula de la primera variación de la longitud implica que

$$\int_a^b \langle V(s), \alpha''(s) \rangle \, ds = 0,$$

pues $V(s) \in T_{\alpha(s)}S$. Portanto, $L_F'(o) = o$ para toda variación propia F de α . \Box

Definición

Una curva diferenciable $\alpha: [a,b] \to S$ sobre una superficie regular S se llama una **geodésica** si

$$\alpha''(s) \perp T_{\alpha(s)}S, \quad \forall s \in [a, b].$$

Obs!:

- Desde el punto de vista físico, sobre la superficie, una geodésica es el camino de una partícula que no está sujeta a ninguna perturbación exterior, y actua sólo bajo las leyes de Newton.
- Una geodésica, puede o no satisfacer la propiedad de minimizar la longitud de arco desde *a* hasta *b*. (No lo requiere la definición).

Propiedad

Si $\alpha: [a,b] \to S$ es geodésica, entonces $\frac{d}{ds} |\alpha'(s)|^2 = 2\langle \alpha''(s), \alpha'(s) \rangle = 0$. Luego, toda geodésica posee rapidez (magnitud) constante. \Box

En consecuencia, toda geodésica o es una curva constante, o está parametrizada proporcionalmente a la longitud de arco.

Obs!

- Ser geodésica no es una propiedad geométrica (es una propiedad de curvas que depende de la parametrización). Al contrario, es una propiedad física.
- Si reparametrizamos una geodésica, la nueva curva obtenida también es geodésica si, y sólo si, la reparametrización es homotética.

Teorema (Invarianza por isometrías)

Sea $T: S \to S'$ una isometría local entre dos superficies S y S', y sea $\alpha: [a,b] \to S$ una curva diferenciable sobre S. Entonces α es una geodésica sobre S si, y sólo si, $\alpha' = T \circ \alpha$ es una geodésica sobre S'.

Prueba:

Si α es geodésica sobre S, sea $G:[a,b]\times (-\delta,\delta)\to S'$ una variación de α' sobre S', con $\delta>$ o. Entonces, $F=T^{-1}\circ G$ es una variación de α . Mas aún, como T^{-1} preserva longitudes, se tiene que

$$L_F(t) = \ell_a^b(F_t) = \ell_a^b(T^{-1} \circ G_t) = \ell_a^b(G_s) = L_G(t),$$

para todo $t \in (-\delta, \delta)$. Luego, $L'_G(O) = L'_F(O) = O$ y $\alpha' = T \circ \alpha$ es geodésica en S'. La recíproca se prueba igual, intercambiando S por S', y usando T^{-1} en lugar de T. \square

Ejemplo 1: (Geodésicas en el plano)

Sea $S = \{\mathbf{x} \in \mathbb{R}^3 : \langle \mathbf{x}, \mathbf{n} \rangle = \mathbf{0}\}$ el plano de los vectores ortogonales a un vector unitario fijo $\mathbf{n} \in \mathbb{R}^3$. Si $\alpha : [a,b] \to S$ es una curva diferenciable arbitraria en S, tenemos $\langle \alpha'(t), \mathbf{n} \rangle = \mathbf{0}$, para cada $t \in [a,b]$.

Derivando dos veces, entonces $\langle \alpha''(t), \mathbf{n} \rangle = \mathbf{0}$, es decir, $\alpha(t) \in S = T_{\alpha(t)}S$, $\forall t \in [a,b]$. En particular $\alpha''(s)^T = \alpha''(s)$ Por tanto, α es geodésica si, y sólo si, $\alpha'' = (\alpha'')^T = \mathbf{0}$. Ya sabemos que la solución a esta EDO es, $\alpha(t) = t\mathbf{p} + \mathbf{q}$.

Por lo tanto, las geodésicas de un plano son sólo sus rectas (o segmentos de recta) parametrizadas proporcionalmente a la longitud del arco.

Ejemplo 2: (Geodésicas en la esfera)

Sea $\alpha: [a,b] \to S_r^2$ una curva diferenciable sobre la esfera de radio r > 0, S_r^2 , parametrizada por longitud de arco.

Tenemos $|\alpha(t) - \mathbf{p}|^2 = r^2$, para todo t. Diferenciando dos veces esta expresión, $2\langle \alpha'(t), \alpha(t) - \mathbf{p} \rangle = 0 \Rightarrow 2(\langle \alpha''(t), \alpha(t) - \mathbf{p} \rangle + \langle \alpha'(t), \alpha'(t) \rangle) = 0 \Rightarrow \langle \alpha''(t), \alpha(t) - \mathbf{p} \rangle = -1$. Como el plano $T_{\alpha(t)}S_r^2$ es el complemento ortogonal de $\alpha(s) - \mathbf{p}$, entonces

$$\alpha''(t)^{\mathsf{T}} = \alpha''(t) + \frac{1}{r^2}(\alpha(t) - \mathbf{p}).$$

Luego, α es geodésica \Leftrightarrow

$$r^2 \alpha''(t) + \alpha(t) - \mathbf{p} = \mathbf{0}, \ |\alpha'(t)|^2 = 1.$$

Las soluciones a esta ecuación son

$$\alpha(t) = \mathbf{p} + \mathbf{c}_1 \cos(\frac{t}{r}) + \mathbf{c}_2 \sin(\frac{t}{r}), \quad \text{con } |\mathbf{c}_1|^2 = r^2, \ |\mathbf{c}_2|^2 = 1, \ \langle \mathbf{c}_1, \mathbf{c}_2 \rangle = 0.$$

Así, las geodésicas en S² corresponden a los grandes círculos con rapidez constante (círculos por el ecuador de la esfera).

Geodésicas en un plano.

Geodésicas en una esfera.

Ejemplo 3: (Geodésicas en el cilindro)

Aquí usaremos isometría local entre un cilindro y un plano (ya vimos que

las geodésicas son invariantes por isometría).

Bajo la isometría usual, las rectas del plano se convierten en rectas verticales o hélices sobre el cilindro.

Al transformar las rectas del plano sobre el cilindro, estas se vuelven rectas verticales o hélices. Estas son las dos posibles geodésicas sobre un cilindro.

También es posible mostrar esto de forma analítica: Sea $\alpha(t) = (x(t), y(t), z(t))$ una curva sobre el cilindro (de radio 1), entonces α es geodésica \Leftrightarrow

$$(x',y',z') \perp T_{(x,y,z)}S \Leftrightarrow (x'',y'',z'') = k(x,y,o),$$

y es posible mostar que en el caso $\alpha(o) = (1, o, o)$ esto conduce a

$$z(t) = bt$$
, $x''(t) + a^2x(t) = 0$, $y''(t) + b^2y(t) = 0$, $a^2 + b^2 = 1$.

Las soluciones son de la forma

$$\alpha(t) = (\cos at, \sin at, bt), \quad a^2 + b^2 = 1.$$

