Numerical Methods for Finance: Problem Set 2

1. Suppose we want to price a fixed strike lookback put option which payoff is given by

$$\left(K - \min_{n=0,\dots,N} S_n\right)^+$$

using an N-period trinomial tree model (as defined in question 3, problem set 1). Assume further that the tree is symmetric such that ud = 1 and m = 1.

- (a) Write down the expression of s_k^n which represents all possible stock price values at time n under the N-period trinomial tree model. State the range of n and k clearly.
- (b) Define a suitable auxiliary variable to solve this pricing problem. With brief justifications, construct a grid for this auxiliary variable.
- (c) Identify how the time n + 1 value of your auxiliary variable is linked to its time n value as well as the time n stock price level S_n . Hence, derive the forward shooting grid function describing how the location index associated with the auxiliary variable in the trinomial tree evolves in each time time.
- (d) Write down the complete algorithm which solves for the time-zero value of the fixed strike lookback put option under the trinomial tree model. Define all the variables you use clearly.
- 2. Barrier option is a derivative instrument which payoff is contingent on whether the underlying stock has reached a particular barrier level or not. For example, an up-and-out barrier call option ceases to exist whenever the stock price ever reaches the barrier level B (where $B > S_0$) throughout the option's lifecycle. Its payoff is given by

$$(S_N - K)^+ 1_{(H_N < B)}$$

where $H_n := \max_{i=0,1,\dots,n} S_i$ represents the running maximum of the stock price up to time n. We now want to price this up-and-out barrier option using a standard binomial tree.

- (a) Take $I_n := 1_{(H_n < B)}$ as an auxiliary variable. Express I_n in terms of I_{n-1} and S_n .
- (b) Let $V_{k,i}^n$ be the fair option value at time n when the current stock price is $S_n = s_k^n = S_0 u^{n-k} d^k$ and the current value of the auxiliary variable is $I_n = i$. Using (a), write down the forward shooting grid function describing how the index i evolves in each time step.
- (c) What are the values of $V_{k,0}^n$ for each k and n? Hence show that

$$V_{k,1}^n = e^{-r\triangle t} [qV_{k,1}^{n+1} 1_{(s_k^{n+1} < B)} + (1-q)V_{k+1,1}^{n+1} 1_{(s_{k+1}^{n+1} < B)}].$$

3. In a similar setup as in question 2, consider a down-and-in barrier put option which payoff is given by

$$(K-S_N)^+ 1_{(L_N \leq B)}$$

where $L_n := \min_{i=0,1,\dots,n} S_i$ represents the running minimum of the stock price up to time n. Assume that $B < S_0$.

(a) Take $I_n := 1_{(L_n \leq B)}$ as an auxiliary variable. Express I_n in terms of I_{n-1} and S_n .

- (b) Let $V_{k,i}^n$ be the fair option value at time n when the current stock price is $S_n = s_k^n = S_0 u^{n-k} d^k$ and the current value of the auxiliary variable is $I_n = i$. Using (a), write down the forward shooting gird function describing how the index i evolves in each time step.
- (c) Write down the complete algorithm which solves for time-zero value of the down-and-in barrier put option.
- (d) Write down explicitly the recursive equation for $V_{k,1}^n$. Does it depend on $V_{\tilde{k},0}^{\tilde{n}}$ at all for any \tilde{n} and \tilde{k} ? Explain your results.
- 4. Implement the CRR binomial tree option pricing model for Asian options (which can potentially cover all the four variations of products we mention in the class) in a programming language of your choice.