ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 6

дисциплина: Архитектура компьютера

Мошаров Денис Максимович

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Порядок выполнения лабораторной работы	6
	3.2 Ответы на вопросы	12
	3.3 Задание для самостоятельной работы	12
4	Выводы	16

Список иллюстраций

3.1	Создаем каталог
3.2	Заполняем программу
3.3	Результат
	Подмена
3.5	Результат
3.6	Заполняем
3.7	Результат
	Подмена
3.9	Результат
3.10	Меняем
3.11	Результат
3.12	Пишем программу
3.13	Результат
	Меняем выражение
3.15	Результат
3.16	Пишем программу
3 17	Результат

1 Цель работы

Научиться писать и анализировать ассемблерный код с арифметическими операциями и понять синтаксис. Работа поможет развить навыки низкоуровневого программирования и понимания работы процессора.

2 Задание

Написать несколько программ для вычислений.

3 Выполнение лабораторной работы

3.1 Порядок выполнения лабораторной работы

Создайте каталог для программ лабораторной работы № 6, перейдите в него и создайте файл lab6-1.asm

```
dmmosharov@dmmosharov:~$ mkdir ~/work/arch-pc/lab06
dmmosharov@dmmosharov:~$ cd ~/work/arch-pc/lab06
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ touch lab6-1.asm
```

Рис. 3.1: Создаём каталог

Рассмотрим примеры программ вывода символьных и численных значений. Программы будут выводить значения записанные в регистр eax

```
; ---- Вычисление выражения
mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
div ebx ; EAX=EAX/5, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
```

Рис. 3.2: Заполняем программу

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./lab6-1 j
```

Рис. 3.3: Результат

Изменим текст программы и вместо символов, запишем в регистры числа.

Рис. 3.4: Подмена

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./lab6-1
dmmosharov@dmmosharov:~/work/arch-pc/lab06$
```

Рис. 3.5: Результат

Преобразуем текст программы из Листинга 6.1 с использованием этих функций.

```
; ---- Вычисление выражения
mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
div ebx ; EAX=EAX/5, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
```

Рис. 3.6: Заполняем

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./lab6-2
106
```

Рис. 3.7: Результат

Изменим символы на числа

Рис. 3.8: Подмена

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./lab6-2
10
```

Рис. 3.9: Результат

Замените функцию iprintLF на iprint. Создайте исполняемый файл и запустите его.

Рис. 3.10: Меняем

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./lab6-2
10dmmosharov@dmmosharov:~/work/arch-pc/lab06$
```

Рис. 3.11: Результат

В качестве примера выполнения арифметических операций в NASM приведем программу вычисления арифметического выражения f(x) = (5 * 2 + 3)/3

```
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,3 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 3.12: Пишем программу

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./lab6-3
Результат: 4
Остаток от деления: 1
```

Рис. 3.13: Результат

Измените текст программы для вычисления выражения f(x) = (4*6+2)/5. Создайте исполняемый файл и проверьте его работу.

```
; ---- Вычисление выражения
mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
div ebx ; EAX=EAX/5, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
```

Рис. 3.14: Меняем выражение

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
```

Рис. 3.15: Результат

Рассмотрим программу вычисления варианта задания по номеру студенческого билета

```
; Программа вычисления варианта
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите № студенческого билета: ',0
гем: DB 'Ваш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,х ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax, rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 3.16: Пишем программу

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./variant
Введите № студенческого билета:
1114425
Ваш вариант: 6
```

Рис. 3.17: Результат

3.2 Ответы на вопросы

- 1. Строка "moveax.rem" и строка "call sprint" отвечают за вывод на экран сообщения 'Ваш вариант:'.
- 2. Эти инструкции используются для чтения строки с вводом данных от пользователя. Начальный адрес строки сохраняется в регистре есх, а количество символов в строке (максимальное количество символов, которое может быть считано) сохраняется в регистре edx. Затем вызывается процедура sread, которая выполняет чтение строки.
- 3. Инструкция "call atoi" используется для преобразования строки в целое число. Она принимает адрес строки в регистре еах и возвращает полученное число в регистре еах. Строка "хогеdх.edх" обнуляет регистр. edх перед выполнением деления. Строка "movebx,20" загружает значение 20 в регистр ebx. Строка "divebx" выполняет деление регистра еах на значение регистра ebx с сохранением частного в регистре еах и остатка в регистре edx,
- 4. Остаток от деления записывается в регистр edx.
- 5. Инструкция "inc edx" используется для увеличения значения в регистре edx на
- 6. В данном случае, она увеличивает остаток от деления на 1. 13
- 7. Строка "moy eax.edx" передает значение остатка от деления в регистр eax. 36 Строка "call iprintLF" вызывает процедуруіргіntLF для вывода значения на экран вместе с переводом строки.

3.3 Задание для самостоятельной работы

Написать программу вычисления выражения y = f(x). Программа должна выводить выражение для вычисления, выводить запрос на ввод значения x, вычислять заданное выражение в зависимости от введенного x, выводить результат

вычислений. Создайте исполняемый файл и проверьте его работу для значений х1 и х2

```
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите х: ',0
div: DB 'Результат: ',0
SECTION .bss
rez: RESB 80
x: RESB 80
SECTION .text
GLOBAL _start
start:
mov eax, msg
call sprintLF
mov ecx,x
mov edx,80
call sread
mov eax,x
call atoi
add eax,2
mul eax
mov [rez],eax
mov eax, div
call sprint
mov eax,[rez]
call iprintLF
```

```
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./rabota
Введите х:
2
Результат: 16
dmmosharov@dmmosharov:~/work/arch-pc/lab06$ ./rabota
Введите х:
8
Результат: 100
dmmosharov@dmmosharov:~/work/arch-pc/lab06$
```

4 Выводы

В работе были изучены арифметические операции в языке ассемблера NASM.Был рассмотрен синтаксис и были написаны и проанализированы программы на ассемблере, которые используют арифметические операции для решения различных задач.