

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Plano Aula 5

Markus Stein 26 August 2019

Intevalos Bayesianos

Vimos até agora como obter ICs analiticamente e baseado em resultados de convergência (dos MLEs).

- Relembrando conceitos de Inferência Bayesiana: Seja $X = (X_1, ..., X_n)$ uma amostra aleatória de $X \sim f(x; \theta)$, para $x \in \mathcal{X}$ (suporte da distribuição) e $\theta \in \Theta$ (espaço paramétrico, no caso multiparamétrico θ).
 - Função de **verossimlhança**: Para X = x temos $L(\theta) = f(x; \theta)$;
 - Distribuição a priori: $\pi(\theta)$, ou dizemos que $\theta \sim \pi$;
 - Distribuição a posteriori: $\pi(\theta|\mathbf{x}) = \frac{L(\theta) \times \pi(\theta)}{\int_{\theta \in \Theta} L(\theta) \times \pi(\theta) d\theta}$.

Definição (Intervalo de Credibilidade): (Bolfarine e Sandoval, seção 5.5) Dizemos que $[t_1, t_2]$ é um intervalo de credibilidade para θ , com coeficiente de credibilidade $\gamma = 1 - \alpha$, se $\int_{t_1}^{t_2} \pi(\theta | \boldsymbol{x}) d\theta = \gamma$. + Intervalo simétrico (central) versus HPD ("highest probability a posteriori").

- Exemplo 1: Seja $X = (X_1, ..., X_n)$ uma amostra aleatória de $X \sim Normal(\mu, 1)$. Assuma uma distribuição a priori $\mu \sim Normal(\mu_0, 1)$. Encontre um intervalo de 95% credibilidade para μ .
- Exemplo 2: Seja $X = (X_1, ..., X_n)$ uma amostra aleatória de $X \sim Uniforme(0, \theta)$. Utilizando a priori $\pi(\theta)$ sendo a distribuição de Pareto, encontre o intervalo de credibilidade (1α) para θ .

Intervalos Boostrap

- Seja $X = (X_1, \dots, X_n)$ uma amostra aleatória de $X \sim f(x; \theta)$ para $\theta \in \Theta$ (ou θ).
- Podemos estimar θ através de $\hat{\theta}_{EMV}$ e gerar amostras $\boldsymbol{X}^* = (X_1^*, \dots, X_n^*)$ de $X^* \sim f(x; \hat{\theta}_{EMV})$.
- Se gerarmos X_1^*, \dots, X_B^* , B reamostras bootstrap de $f(x; \hat{\theta})$ e denotamos $\hat{\theta}_i^*$ o EMV reamostra j:
 - Viés: denote $\overline{\hat{\theta}^*}=\frac{1}{B}\hat{\theta}_j^*$ então $Vi\acute{e}s=\overline{\hat{\theta}^*}-\hat{\theta}_{EMV};$
 - Variância bootstrap: $Var_B^*(\hat{\theta}) = \frac{1}{B-1} \sum_{j=1}^B (\hat{\theta}_j^* \overline{\hat{\theta}^*})^2$;
 - Intervalo paramétrico versus percentil.
- continuação exemplo 1: Encontre um intervalo bootstrap (paramétrico) para μ.

[&]quot;Bootstrap é um técnica utilizada para se aproximar distribuições amostrais."

[&]quot;Sempre que fórmulas existirem, bootstrap tenderá a"concordar" com elas."

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Tarefa: Finalizar	lista	1 para	entregar.
-------------------	-------	--------	-----------

Leitura: "Uma senora toma chá" capítulo 11.