DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps

Group 32

胡丞佑 張紀睿 張以廉

Outline

- Introduction
- Design Goal
- DendroMap Construction & Interaction
- Use Cases
- User Study
- Limitation and Future Work

Introduction

- importance of understanding datasets

 o we can build models efficiently and appropriately
- But images doesn't like those tabular data

 o lack many attributes

combine t-SNE & Grid

DendroMap

Design goal

- Overview of data Distributions
- Exploring at Multiple Levels of Abstraction
- Instance-Level Exploration
- Subgroup-level Analysis for ML

DendroMap Construction & Interactions

DendroMap Construction

Input: High-dimensional representation of images

Output: Dendrogram Tree, which will be displayed by DendroMap

Visualize System Overview

- A. Main Figure
- B. Settings
- C. Class Table
- D. Image Detail

DendroMap Demo

https://div-lab.github.io/dendromap/

Use Cases

Use Cases

- Examining Bias in Datasets
 - Using zooming function
 - Observe potential bias in the dataset
- Identifying Underperforming Subgroups
 - Zoom into underperforming clusters
 - o Use class table to observe majority class predicted and the performance of it
- Analyzing Classification Errors
 - Use "outline misclassified" and "focus misclassified" to focus on misclassified images
 - Use image detail window to see the label of the image

User Study

Baseline: t-SNE-Grid

• gridified version of t-SNE

Study Setup

Participants

20 students who have taken at least one AI or ML course.

Protocol

- evaluated both DendroMap and t-SNE-Grid.
- two visualizations and two datasets
- filled out a post-questionnaire form

#	Phase 1		Phase 2	
	Visualization	Dataset	Visualization	Dataset
1	t-SNE-Grid	Artifact	DendroMap	Organism
2	DendroMap	Artifact	t-SNE-Grid	Organism
2	t-SNE-Grid	Organism	DendroMap	Artifact
4	DendroMap	Organism	t-SNE-Grid	Artifact

Table 1. Four conditions for counterbalancing the orders of two interfaces in our within-subject design

Study Setup

- Dataset and Models.
 - o CIFAR-10 and CIFAR-100
 - ResNet50 model
- Tasks

#	Phase 1		Phase 2	
	Visualization	Dataset	Visualization	Dataset
1	t-SNE-Grid	Artifact	DendroMap	Organism
2	DendroMap	Artifact	t-SNE-Grid	Organism
3	t-SNE-Grid	Organism	DendroMap	Artifact
4	DendroMap	Organism	t-SNE-Grid	Artifact

Table 1. Four conditions for counterbalancing the orders of two interfaces in our within-subject design

- # Task Description
- 1. Categorizing images into groups across 40 classes
- 2. Categorizing images into groups for a single class
- 3. **Identifying groups** of images with high classification accuracy within a single class
- 4. Estimating the image count **distribution** over multiple groups within a single class
- 5. Searching for an image with a given text description
- 6. Searching for an image with a given visual description
- 7. Searching for an **anomalous** image with an incorrect class label

Table 2. Seven tasks designed to evaluate several grouping and searching tasks used in ML analysis

Results - Evaluation of task completion time

• No significant difference between t-SNE-Grid and DendroMap

Results - Evaluation of task responses

- Task 1
 - "Collectively exhaustive" property more with DendroMap than t-SNE-Grid.
- Task 2, 3
 - No significant difference.
- Task 4
 - Closer to the actual distribution when using DendroMap
- Task 5, 6
 - All the participants searched the correct images successfully.

- # Task Description
- 1. Categorizing images into groups across 40 classes
- 2. Categorizing images into groups for a single class
- 3. **Identifying groups** of images with high classification accuracy within a single class
- 4. Estimating the image count **distribution** over multiple groups within a single class
- 5. Searching for an image with a given text description
- 6. Searching for an image with a given visual description
- 7. Searching for an **anomalous** image with an incorrect class label

Table 2. Seven tasks designed to evaluate several grouping and searching tasks used in ML analysis

- Task 7
 - DendroMap is more helpful in finding potential anomalies in image datasets.

Results - Evaluation of post-questionnaires

Question	t-SNE-Grid	DendroMap
Easy to learn how to use	6.45	6.30
Easy to use	6.00	6.00
Helpful for overview	5.95	6.45°
Helpful for detailed analysis	5.15	6.05*
Helpful for finding specific images	5.10	5.75°
Helpful to identify image categories	5.70	6.20°
Helpful to discover new insights	5.25	6.00°
Confident when using the tool	5.85	6.05
Enjoyed using the tool	6.10	6.40
Would like to use again	5.80	6.65*

Table 3. Participants' average ratings for the two visualizations. DendroMap outscored t-SNE-Grid in 8 out of 10 questions. Bold indicates higher average ratings. ∗ and ∘ indicate 95% and 90% statistical significance in one-sided Wilcoxon signed-rank tests, respectively.

Limitation and Future Work

Limitation and Future Work

- Computational scalability of clustering
- Comparison with other tree construction methods.
- Interactive refinement of tree structures.
- Using interpretable attributes for tree construction
- Formalizing interaction operations.

Thanks for your listening