ARM Processor an Introduction

Girish S Kumar

Basic Computer Architecture

Two Popular Computer Architecture

- Von Neumann
 Architecture
- Data and Instructions are accessed by processor through the SAME BUS

Harvard Architecture

 Data and Instructions are accessed by processor through Separate Buses

Von Neumann Architecture

Von Neuman architecture is also called Princeton Architecture was published in 1945 by Mathematician , physicist & Computer Scientist **John von Neumann**

Harvard Architecture

The Harvard architecture is a computer architecture with physically separate storage and signal pathways for instructions and data. The term originated from the Harvard Mark I relay-based computer, which stored instructions on punched tape (24 bits wide) and data in electromechanical counters.

Some time in 1936 or possibly in early 1937, the Harvard physician Howard Aiken started to make plans about an automatic calculation machine. IBM agreed to construct for Harvard an automatic computing plant comprising machines for automatically carrying out a series of mathematical computations adaptable for the solution of problems in scientific fields, the machine was called *ASCC* (Automatic Sequence Controlled Calculator), but later on it became also known as *Harvard Mark I*.

Instruction Set Architecture

Instruction set architecture (ISA), is the part of the computer architecture related to programming, including the native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception handling, and external I/O.

CISC

Where single instructions can execute several low-level operations (such as a load from memory, an arithmetic operation, and a memory store) or are capable of multi-step operations or addressing modes within single instructions.

Intel x86 Motorola 68K

RISC

A simplified instruction set provides higher performance also uses fewer cycles per instruction. Has specific instructions for data processing and moving data to and from memory All ARM Series

HOW did ARM Series Evolved from early days

Acorn Computers Ltd.

Originally ARM Comes from Acorn Risk Machine

Acorn was Computer design company based out of UK who build one of the early personal computer called BBC Microcomputer based on a 8-Bit processor (1982)

By 1983, Engineers who build BBC Micro begin to think of next steps to build a successor to take their **product to next**| level

What were the thoughts

Must deliver higher value that the existing BBC Micro

-A 16 Bit CPU

-With a good interrupt response may better than or comparable to that of 8-bit 6502, has to be identified

MOS Technology, Inc. also known as CSG (Commodore Semiconductor

Group), build 6502

What were the technical Challenges

- ❖All the 16 bit Microprocessors available in the market were CISC based and much slower than what they were looking for.
- Instructions were complex and tool multiple cycles to complete
- They long Interrupt latencies compared to 6508
- ❖It is not easy to build a new processor that can meet their expectations

This was the starting point of ARM

Three main guiding principles they Based on they started the design was

- A Load and store Architecture
- •Fixed length instructions (32 Bit length)
- •3 Address Instruction format

Two Address Instructions

MOV R1, R0 ADD R1, R2 MOV R2, R3 ADD R2, R5 MUL R1, R2 MOV R3, R1 LDR R0, =0xE000Ed88 STR r1, r[0]

Three Address Instructions

ADD R1, R0, R1 ADD R2, R3,R4 MUL R5, R1, R2

- •1990 as Advanced RISC Machines Ltd.(ARM), a joint venture of Apple Computer, Acorn Computer Group, and VLSI Technology.
- •In 1991, ARM introduced the ARM6 processor family,
- •and VLSI Technology became the initial licensee.
- •Today around 2 billion ARM based processors are shipped every year
- •ARM does not fabricate or sell any of these chips. Fabrication and selling by Semiconductor Companies who has partner with ARM. They design microprocessor, SoC and microcontrollers based on the design (IP) given by ARM
- •This is called Intellectual property licensing a very successful and practical model in developing processor designs (Synthesizable core)


```
module sync_ss (clk, async_in, reset);
input clk, async_in, reset;
                                                              Verilog
output synch_out;
                                                            Synthesizer
always @(posedge clk)
if (reset)
meta \leq 1'b0;
sync_out <= 1'b0;
else
meta <= async_in;
sync_out <= meta;</pre>
endmodule
                                                                       synch_out
                                               async_in
                                                            meta
                                                        R
                                               clock
                                               reset
```

sync_ss

What is a synthesizable core?

In Electronics a semiconductor intellectual property core, IP core, or IP block is a reusable unit of logic, cell, or <u>integrated circuit</u> layout design that is the <u>intellectual property</u> of a company

IP cores may be <u>licensed</u> to another company or can be owned and used by the owner itself. The term is derived from the licensing of the <u>patent</u> and/or source code <u>copyright</u> that exist in the design.

IP cores are used as the building blocks within ASICs, FPGA or Soc designs

Soft IP	IP cores are typically offered as synthesizable <u>RTL</u> . Synthesizable cores are delivered in a <u>hardware</u> <u>description language</u> such as <u>Verilog</u>				
Hard IP	Hard cores, by the nature of their low-level representation, offer better predictability of chip performance in terms of timing performance and area.				
	Eg: Analog and mixed-signal logic are generally defined as a lower-level				

IP Vendors

Processor	Memory I/F	D/A and A/D	On-chip SRAMs	Peripherals
Altera - Nios II	Actel	S3 Group	ARM	Eureka Technology
ARM - ARM	Altera	Cadence Design Systems	ChipStart	Digital Blocks, Inc.
Cambridge Consultants -	ARM	Cosmic Circuits	Dolphin Integration	
Cortus	Barco Silex	Dolphin Integration	M31 Technology	
CEVA, Inc	Cadence Design Systems (through acquisition of Denali Software)	Omniphy	MoSys, Inc.	
Digital Blocks, Inc 8051 with Standard and Configurable Peripherals				
Dolphin Integration -	Eureka Technology		Synopsys	
8051, 80251	Faraday Technology		eSilicon	
EnSilica - eSi-RISC	Lattice Semiconductor			
Freescale and others - ColdFire				
IBM and others -				

What is a Debug Architecture?

In modern ARM processors include hardware debugging facilities, allowing software debuggers to perform operations such as halting, stepping, and break pointing of code starting from reset. These facilities are built using JTAG support (Joint Test Action Group (JTAG) is an electronics industry association formed in 1985 for developing a method of verifying designs and testing printed circuit boards after manufacture)

TheARM architecture defines basic debug facilities at an architectural level. These include breakpoints, watchpoints and instruction execution in a "Debug Mode

. Both "halt mode" and "monitor" mode debugging are supported. The actual transport mechanism used to access the debug facilities is not architecturally specified, but implementations generally include JTAG support.

There is a separate ARM "CoreSight" debug architecture,

Due to the different requirements of embedded systems, ARM had split the processor cores into three distinct families,

where the end application now determines both the nature and the design of the processors, but all of them go by the trade name of Cortex.

The Cortex-A, Cortex-R, and Cortex-M families continue to add new processors each year, generally based on performance requirements as well as the type of end application the cores are likely to execute

Series	Uses	Processor	Instruction Set Arch	
Cortex -A	Feature phone (non smart phone)	CortexA5	ARMv7A	
	Entertainment in a car (Video player + music)	Cortex A15 (TI OMAP)	ARMv7A	
	Raspberry Pi-1	ARM1176JZF-S BCM 2835 (32 bit)	ARMv6A	
	Raspberry Pi-2	Cortex-A7 cluster. Quad-core BCM 2836 (32 BIT)	ARMv7A	
	Raspberry Pi-3	Cortex A53 Quad Core BCM2837 (64 bit)	ARMv8A	

Series	Uses	Processor	Instructio n Set Arch
Cortex -R	Smallest Cortex-R processor Digi cams, Hard disk controllers wireless base band	Cortex-R4 TI (RM4, TMS570)	Armv7-R
	Cloud storage, Industrial and automotive (Used in is commonly used in high-volume, deeply embedded SoC applications, such as Industrial , automotive , Mass Storage	Cortex-R5 Scaleo OLEA Texas Instruments RM57 Xilinx ZynqMP	Armv7-R
	High performance, high energy efficiency, real- time responsiveness, advanced features Wireless Modem, Network Routers , Industrial, Automative Storage	Cortex-R7	Armv7-R
	The Cortex-R8 processor has the highest performance in its class of real-time processors. All the the above uses with better performance	Cortex-R8	Armv7-R
	Extended safety features, high performance, and hard real-time determinism. Used for Robotics , health care, building automation, Industrial and automotive	Cortex-R52	Armv8-R

Designed for high performance hard real-time and safety critical applications.

Series	Uses	Processor	Instruction Set Arch
	All small embedded system controllers starting with home appliances to industrial control	Cortex-M0	
		Cortex-M0+	ARMv6-M
		Cortex-M1	
		Cortex-M3	ARMv7-M
		Cortex-M4	A D.M7.E. M.
		Cortex-M7	ARMv7E-M
		Cortex-M23	$\Lambda D M_{\lambda} Q M$
		Cortex-M33	ARMv8-M

A system on a chip or system on chip (SoC or SOC) is an integrated circuit (IC) that integrates all components of a computer or other electronic system into a single chip. It may contain <u>digital</u>, <u>analog</u>, <u>mixed-signal</u>, and often radio-frequency functions—all on a single chip substrate. SoCs are very common in the mobile computing market because of their low power-consumption. A typical application is in the area of embedded systems.

A typical SoC consists of:

A microcontroller, microprocessor or digital signal processor (DSP) core – multiprocessor SoCs (MPSoC) having more than one processor core blocks including a selection memory of ROM, RAM, EEPROM and flash memory timing sources including oscillators and phase-locked <u>loops</u> peripherals including <u>counter</u>-timers, realtime <u>timers</u> and <u>power-on reset</u> generators external interfaces, including industry standards such as <u>USB</u>, <u>FireWire</u>, <u>Ethernet</u>, <u>USART</u>, <u>SPI</u> analog interfaces including ADCs and DACs voltage regulators and power management circuits

ARM SoC build by ST Microelectronics

A computer build using STMF32VG704

ARM Powered Products

ARMv8 is the first architecture series where 64 Bit instruction sets are introduced

ARM v8 features High level

- √ 64-Bit pointer and registers
- ✓ Fixed length (32bit) instructions
- √ Load/store architecture
- ✓ Little endian (big endian possible)
- √31 general purpose registers and zero register

New extensions provided with v8 arch

Jazelle is a Java hardware/software accelerator: "ARM Jazelle DBX (Direct Bytecode eXecution) technology for direct bytecode execution of Java". On Sofware side: Jazelle MobileVM is a complete JVM which is Multi-tasking, engineered to provide high performance multi-tasking in a very small memory footprint

Floating Point: for floating point operations

NEON: the ARM SIMD 128 bit (Single instruction, multiple data) engine and **DSP** the SIMD 32bit engine useful to make linear algebra operations

<u>Cryptographic Extension</u> is an extension of the SIMD support and operates on the vector register file. It provides instructions for the acceleration of encryption and decryption to support the following: AES, SHA1, SHA2-256.

Trust Zone: is a system-wide approach to security for a wide array of client and server computing platforms include payment protection technology, digital rights management, BYOD, and a host of secured enterprise solutions

New extensions provided with v8 arch

<u>Virtualization Extensions</u> with the Large Physical Address Extension (**LPAE**) enable the efficient implementation of virtual machine hypervisors for ARM architecture compliant processors.

The visualization extensions provide the basis for ARM architecture compliant processors to address the needs of both client and server devices for the partitioning and management of complex software environments into virtual machines.

The Large Physical Address extension provides the means for each of the software environments to utilize efficiently the available physical memory when handling large amounts of data

What is NEON SIMD

ARM NEON technology is an advanced SIMD (single instruction multiple data) architecture extension for the Arm Cortex-A series and Cortex-R52 processors.

ARM Cortex-M Series Family

Processor	ARM Architecture	Core Architecture	Thumb®	Thumb®-2	Hardware Multiply	Hardware Divide	Saturated Math	DSP Extensions	Floating Point
Cortex- M0	ARMv6- M	Von Neumann		Subset	1 or 32 cycle	No	No	Software	No
Cortex- M0+	ARMv6- M	Von Neumann	Most	Subset	1 or 32 cycle	No	No	Software	No
Cortex- M1	ARMv6- M	Von Neumann	Most	Subset	3 or 33 cycle	No	No	Software	No
Cortex- M3	ARMv7- M	Harvard	Entire	Entire	1 cycle	Yes	Yes	Software	No
Cortex- M4	ARMv7E- M	Harvard	Entire	Entire	1 cycle	Yes	Yes	Hardwar e	Optional

ARM7TDMI Data path Instructions Memory **Memory** Memory Read Instruction Write **Decoder** Register File R0 - R15 Rm MAC **Barrel** Rn Shifter **ALU R15 Update** Rd: Result Addr Register Incrementer

32 -Bit address

What is a Barrel Shifter

A barrel shifter is a combinational logic circuit with N data in puts,

N data outputs, and a set of control inputs that specify how to shift the data between input and output.

