

同济大学矩阵论课程模拟卷习题与讲解

前言

此为同济大学 2023 年春季学期研究生课程《矩阵论》的四张模拟卷的题目和答案。题目来源于授课老师,限于编者的水平,本书中错误与疏漏在所难免,恳请读者不吝指正,希望能和大家一起完成习题答案的编写。

2024年1月29日

目录

第一章	模拟卷一	1
第二章	模拟卷二	5
第三章	模拟卷三	6
第四章	模拟卷四	8

第一章 模拟卷一

题 1.1. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 2 \\ 1 & 1 & 3 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
,求不相容方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的最优最小二乘解。

$$m{R}$$
. 对矩阵 $m{A}$ 进行满秩分解,得: $m{A} = m{BC} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$,于是

$$oldsymbol{C}oldsymbol{C}^T = egin{pmatrix} 5 & 2 \ 2 & 2 \end{pmatrix} \quad oldsymbol{B}^Toldsymbol{B} = egin{pmatrix} 2 & 1 \ 1 & 5 \end{pmatrix}$$

$$A^{+} = C^{T}(CC^{T})^{-1}(B^{T}B)^{-1}B^{T}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 \\ 1 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

$$= \frac{1}{18} \begin{pmatrix} 4 & -4 & 2 \\ -5 & 8 & -1 \\ 3 & 0 & 3 \end{pmatrix}$$

$$x^* = A^+ \beta = \frac{1}{18} \begin{pmatrix} 4 & -4 & 2 \\ -5 & 8 & -1 \\ 3 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{18} \begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix}$$

题 1.2. 设
$$\mathbf{A} = \begin{pmatrix} 9 & -4 & -7 \\ -1 & 0 & 1 \\ 10 & -4 & -8 \end{pmatrix}$$
, 求 \mathbf{A} 的谱分解。

解. 特征值为 $\lambda_1 = -2$, $\lambda_2 = -1$, $\lambda_3 = 0$ 。其对应的特征向量分别是 $(1,0,1)^T$, $(1,-1,2)^T$, $(2,1,2)^T$ 。于是:

$$A = P\Lambda P^{-1}$$

$$= \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 1 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} -2 & \\ & -1 & \\ & & 0 \end{pmatrix} \begin{pmatrix} 4 & -2 & -3 \\ -1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

$$= -2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 4 & -2 & -3 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$$

题 1.3. 设 $\mathbf{A} = \begin{pmatrix} 9 & -6 & -7 \\ -1 & -1 & 1 \\ 10 & -6 & -8 \end{pmatrix}$,求可逆阵 \mathbf{P} 和若当 (Jordan) 标准型 \mathbf{J} ,使 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{J}$,

并求 e^{2At} 。

 \mathbf{R} . 特征值为 $\lambda_1=2,\lambda_2=\lambda_3=-1$,对应的若当标准型为 $\mathbf{J}=\begin{pmatrix}2&&&\\&-1&1\\&&-1\end{pmatrix}$,其中空白位

置全是 0。由于 $J = P^{-1}AP \Rightarrow PJ = AP$,不妨令 $P = (p_1, p_2, p_3)$,其中 P 为非奇异矩阵,则:

$$\begin{cases} \boldsymbol{A}\boldsymbol{p}_1 = 2\boldsymbol{p}_1 \\ \boldsymbol{A}\boldsymbol{p}_2 = -\boldsymbol{p}_2 \\ \boldsymbol{A}\boldsymbol{p}_3 = \boldsymbol{p}_2 - \boldsymbol{p}_3 \end{cases} \Rightarrow \begin{cases} \boldsymbol{p}_1 = (1,0,1)^T \\ \boldsymbol{p}_2 = (2,1,2)^T \\ \boldsymbol{p}_3 = (1,-1,2)^T \end{cases}$$

$$\mathbf{P} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 2 \end{pmatrix} \quad \mathbf{P}^{-1} = \begin{pmatrix} 4 & -2 & -3 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

于是:

$$e^{At} = \mathbf{P}e^{\mathbf{J}t}\mathbf{P}^{-1}$$

$$= \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} e^{4t} \\ e^{-2t} & e^{2t} \\ e^{-2t} \end{pmatrix} \begin{pmatrix} 4 & -2 & -3 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 4e^{4t} - 2e^{2t} - 3e^{-2t} & -2e^{4t} + 2e^{-2t} & 3e^{4t} + 2e^{2t} + 3e^{-2t} \\ -e^{2t} & e^{-2t} & e^{2t} \\ 4e^{4t} - 2e^{2t} - 4e^{-2t} & -2e^{4t} + 2e^{-2t} & 3e^{4t} + 2e^{2t} + 4e^{-2t} \end{pmatrix}$$

题 1.4. 用矩阵函数求解常微分方程组初值问题的解

$$\begin{cases} \frac{dx_1}{dt} = -3x_1 + 4x_2 \\ \frac{dx_2}{dt} = -x_1 + x_2 + 1 \end{cases} \begin{cases} x_1(0) = 1 \\ x_2(0) = 0 \end{cases}$$

解. 由题意得: $\frac{dx}{dt} = Ax + b$, 其中 $A = \begin{pmatrix} -3 & 4 \\ -1 & 1 \end{pmatrix}$, $b = (0,1)^T$ 。矩阵 A 的特征值为 $\lambda_1 = \lambda_2 = -1$, $m_A(\lambda) = (\lambda + 1)^2$ 不妨设 $P(\lambda) = a_0 + a_1 \lambda$,则 $\begin{cases} P(\lambda) = P(-1) = a_0 - a_1 = e^{-t} \\ P'(\lambda) = P'(-1) = a_1 = te^{-t} \end{cases} \Rightarrow \begin{cases} a_0 = (1+t)e^{-t} \\ a_1 = te^{-t} \end{cases}$

$$e^{\mathbf{A}t} = P(\mathbf{A}) = (1+t)e^{-t}\mathbf{E} + te^{-t}\mathbf{A}$$

$$= \begin{pmatrix} (-2t+1)e^{-t} & 4te^{-t} \\ -te^{-t} & (2t+1)e^{-t} \end{pmatrix}$$

$$\begin{aligned} \boldsymbol{x}(t) &= e^{At}\boldsymbol{x}(0) + e^{At} \int_0^t e^{-Au}\boldsymbol{b}du \\ &= \begin{pmatrix} (-2t+1)e^{-t} & 4te^{-t} \\ -te^{-t} & (2t+1)e^{-t} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ &+ \begin{pmatrix} (-2t+1)e^{-t} & 4te^{-t} \\ -te^{-t} & (2t+1)e^{-t} \end{pmatrix} \int_0^t \begin{pmatrix} (2u+1)e^u & -4ue^u \\ ue^u & (-2u+1)e^u \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} du \\ &= \begin{pmatrix} -(4t+4)e^{-t} + 4 \\ -(2t+3)e^{-t} + 3 \end{pmatrix} \end{aligned}$$

题 1.5. 设 V 是二阶实方阵全体, $C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$,对任意 $A \in V$,令 $\mathcal{T}(A) = AC + CA$,证明 \mathcal{T} 是 V 的线性变换。

(1) 求
$$\mathcal{T}$$
 在 \mathbf{V} 的基 $\mathbf{B}_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{B}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{B}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{B}_4 = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}$ 下的矩奏表示。

- (2) 求 *T* 的特征值。
- (3) 判别 T 是否可对角化。

解. (1)

$$\mathcal{T} oldsymbol{B}_1 = egin{pmatrix} 2 & 0 \ 0 & 0 \end{pmatrix}, \mathcal{T} oldsymbol{B}_2 = egin{pmatrix} 4 & 2 \ 0 & 0 \end{pmatrix}, \mathcal{T} oldsymbol{B}_3 = egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}, \mathcal{T} oldsymbol{B}_4 = egin{pmatrix} 1 & 2 \ 1 & 1 \end{pmatrix}$$

即

$$\mathcal{T}(\boldsymbol{B}_1, \boldsymbol{B}_2, \boldsymbol{B}_3, \boldsymbol{B}_4) = (\boldsymbol{B}_1, \boldsymbol{B}_2, \boldsymbol{B}_3, \boldsymbol{B}_4) egin{pmatrix} 0 & -2 & -1 & -2 \\ 1 & 3 & 1 & rac{3}{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- (2) $\lambda_1 = \lambda_2 = 1, \lambda_3 = 2, \lambda_4 = 0$.
- (3) 可对角化,这是由于 $\lambda = 1$ 的特征值有至少两个线性无关的特征向量。

题 1.6. 设 \mathcal{T} 是 n 维线性空间 V 的线性变换且 $\mathcal{T}^2=3\mathcal{T}$,证明: $V=\mathrm{Im}\mathcal{T}\oplus\mathrm{Ker}\mathcal{T}$,其中 $\mathrm{Im}\mathcal{T}$ 是 \mathcal{T} 的像空间, $\mathrm{Ker}\mathcal{T}$ 是 \mathcal{T} 的核空间。

解. 由于 $\operatorname{Im} \mathcal{T}$ 和 $\operatorname{Ker} \mathcal{T}$ 均为 \mathbf{V} 的子空间,则 $\operatorname{Im} \mathcal{T} + \operatorname{Ker} \mathcal{T} \subset \mathbf{V}$ 。任取 $\boldsymbol{\alpha} \in \operatorname{Im} \mathcal{T} \cap \operatorname{Ker} \mathcal{T}$,则存在 $\boldsymbol{\beta} \in \mathbf{V}$,使得 $\boldsymbol{\mathcal{T}} \boldsymbol{\alpha} = \mathbf{0}$,于是 $3\boldsymbol{\alpha} = 3\boldsymbol{\mathcal{T}} \boldsymbol{\beta} = \boldsymbol{\mathcal{T}}(\boldsymbol{\mathcal{T}} \boldsymbol{\beta}) = \boldsymbol{\mathcal{T}} \boldsymbol{\alpha} = \mathbf{0}$,即 $\boldsymbol{\alpha} = \mathbf{0}$,此时 $\operatorname{Im} \mathcal{T} \cap \operatorname{Ker} \mathcal{T} = \{\mathbf{0}\}$,这说明 $\operatorname{Im} \mathcal{T}$ 和 $\operatorname{Ker} \mathcal{T}$ 构成直和。又因为 $\operatorname{dim}(\operatorname{Im} \mathcal{T} + \operatorname{Ker} \mathcal{T}) = \operatorname{dim}(\operatorname{Im} \mathcal{T}) + \operatorname{dim}(\operatorname{Ker} \mathcal{T}) = n$,所以 $\operatorname{Im} \mathcal{T} + \operatorname{Ker} \mathcal{T} = \mathbf{V}$ 。综上, $\operatorname{Im} \mathcal{T} \oplus \operatorname{Ker} \mathcal{T} = \mathbf{V}$ 。

第二章 模拟卷二

题 2.1. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 & 3 \\ 2 & -1 & 1 & 1 \\ 4 & 3 & -3 & 7 \end{pmatrix}$$
, 求 \mathbf{A} 的广义逆 \mathbf{A}^+ 。

题 2.2. 设 $\mathbf{A} = \begin{pmatrix} 3 & 1 & -2 \\ -7 & -2 & 9 \\ -2 & -1 & 4 \end{pmatrix}$,求可逆阵 \mathbf{P} 和若当 (Jordan) 标准型 \mathbf{J} ,使 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{J}$,

并求 $e^{\mathbf{A}t}$

题 2.3. 用矩阵函数求解下常微分方程组初值问题的解

$$\begin{cases} \frac{dx_1}{dt} = -3x_1 + 4x_2 + 1 \\ \frac{dx_2}{dt} = -x_1 + x_2 \end{cases} \begin{cases} x_1(0) = 2 \\ x_2(0) = 1 \end{cases}$$

题 2.4. 设 V 是二阶实方阵全体,,对任意 $A \in V$,令 $\mathcal{T}(A) = 2A^T - 3A$,证明 \mathcal{T} 是 V 的 线性变换。

(1) 求
$$\mathcal{T}$$
 在 \mathbf{V} 的基 $\mathbf{B}_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{B}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{B}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{B}_4 = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}$ 下的矩 阵表示。

- (2) 求 *T* 的特征值。
- (3) 判别 T 是否可对角化。

题 2.5. 设
$$\mathcal{T}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 5 \\ -1 & 0 & -2 \end{pmatrix}$$
, 求 $\operatorname{Im}\mathcal{T}$ 和 $\operatorname{Ker}\mathcal{T}$ 的基和维数。

题 2.6. 设 \mathcal{T} 是 n 维线性空间 \mathbf{V} 的线性变换, $\mathrm{rank}(\mathcal{T}) = r$ 且 $\mathcal{T}^2 = 3\mathcal{T}$,证明:存在 \mathbf{V} 的一组基,使 \mathcal{T} 在这组基下的矩阵为 $\begin{pmatrix} \mathbf{O} & \mathbf{O} \\ \mathbf{O} & 3\mathbf{E}_r \end{pmatrix}$,其中 \mathbf{E}_r 为 r 阶单位阵。

第三章 模拟卷三

题 3.1. 设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & -1 \\ 0 & 4 & 1 \end{pmatrix}$$
, 求矩阵 \mathbf{A} 的 LR 分解。

题 3.3. 设 $\mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ -4 & 3 & 4 \\ 1 & 0 & 1 \end{pmatrix}$, 求可逆阵 \mathbf{P} 和 \mathbf{A} 的若当 (Jordan) 标准型 \mathbf{J} , 使 $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{J}$,

题 3.4. 设 \mathcal{T} 为线性空间 $\mathbb{R}^{2\times 2}$ 上的变换, $\mathcal{T}(\boldsymbol{X}) = \boldsymbol{A}\boldsymbol{X}\boldsymbol{A}, \boldsymbol{X} \in \mathbb{R}^{2\times 2}$,其中 $\boldsymbol{A} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$,求线性变换 \mathcal{T} 在基 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\boldsymbol{A}_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\boldsymbol{A}_3 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $\boldsymbol{A}_4 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 下的矩阵,并求 \mathcal{T} 的特征值。

题 3.5. 用矩阵函数求解常微分方程组初值问题的解

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \begin{pmatrix} -5 & 1\\ -1 & -3 \end{pmatrix} \mathbf{x} \\ \mathbf{x}(t)|_{t=0} = (1,0)^T \end{cases}$$

题 3.6. 在线性空间 $\mathbb{R}^{2\times 2}$ 中,对于任意的 $A, B \in \mathbb{R}^{2\times 2}$,定义 A 与 B 的内积为 $(A, B) = \operatorname{tr}(A^TB)$, $V = \{A|A \in \mathbb{R}^{2\times 2}, \operatorname{tr}(A) = 0\}$ 为 $\mathbb{R}^{2\times 2}$ 的子集,其中 $\operatorname{tr}(A) = a_{11} + a_{22}$ 为 $A = (a_{ij})_{2\times 2}$ 的迹。

- (1) 证明: V 是 $\mathbb{R}^{2\times 2}$ 的子空间。
- (2) 求 V 的一组标准正交基,及 V 的正交补 V^{\perp} 。

题 3.7. 设 \mathcal{T} 是 n 维线性空间 \mathbf{V} 的线性变换, $\mathrm{rank}(\mathcal{T}) = r > 0$, $\mathcal{T}^2 = \mathcal{T}$,证明:

- (1) 存在 V 的一组基 $\alpha_1, \alpha_2, \dots, \alpha_n$,满足 $\mathcal{T}(\alpha_i) = \begin{cases} \alpha_i, 1 \leq i \leq r \\ \mathbf{0}, r \leq i \leq n \end{cases}$,其中 $\alpha_{r+1}, \dots, \alpha_n$ 是 $\mathrm{Ker}\mathcal{T}$ 的基。
- (2) 写出 \mathcal{T} 在基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 下的矩阵,以及 \mathcal{T} 的最小多项式。
- (3) $V = \operatorname{Im} \mathcal{T} \oplus \operatorname{Ker} \mathcal{T}$, 其中 $\operatorname{Im} \mathcal{T} \notin \mathcal{T}$ 的像空间, $\operatorname{Ker} \mathcal{T} \notin \mathcal{T}$ 的核空间。

第四章 模拟卷四

题 4.1. 设
$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ -1 & 0 \end{pmatrix}$$
,求 \mathbf{A} 的谱分解。

题 4.2. 设
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ -3 & 1 & -1 \\ 3 & 1 & 3 \end{pmatrix}$$
, 求 \mathbf{A} 的若当(Jordan)标准型 \mathbf{J} 。

题 4.3. 设 a_1, a_2, a_3 为内积空间 V 的一个标准正交基, $b_1 = a_1 + a_2, b_2 = a_2 - a_3, b_3 = a_3 + a_1$, $S = \langle b_1, b_2, b_3 \rangle$ 为由 b_1, b_2, b_3 生成的子空间。

- (1) 求 S 的维数。
- (2) 求 S 的一个标准正交基 (用 a_1, a_2, a_3 表示)。

题 4.4. 设
$$\boldsymbol{x} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
, 求 \mathbb{R}^3 中的初等反射矩阵 \boldsymbol{H} ,使 $\boldsymbol{H}\boldsymbol{x}$ 与 $\boldsymbol{\beta} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ 同方向。

题 4.5. 设方程
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, 其中 $\mathbf{A} = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \\ 0 & 3 & 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$

- (1) 求 \mathbf{A} 的满秩分解 (记为 $\mathbf{A} = \mathbf{BC}$)。
- (2) 说明方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 为矛盾方程。
- (3) 求方程 Ax = b 的长度最小的最小二乘解和最小二乘解通解。

题 4.6. 用矩阵函数求解常微分方程组初值问题的解

$$\begin{cases} \frac{dx_1}{dt} = x_1 - x_2 \\ \frac{dx_2}{dt} = 4x_1 - 3x_2 + 1 \end{cases} \begin{cases} x_1(0) = 1 \\ x_2(0) = 2 \end{cases}$$

题 4.7. 设 \mathcal{D} 是三维线性空间 $\mathbf{V} = \{(a_2t^2 + a_1t + a_0)e^t | a_2, a_1, a_0 \in \mathbb{R}\}$ 中的微分线性变换, $f_1 = t^2e^t, f_2 = te^t, f_3 = e^t$ 为 \mathbf{V} 的一个基。

- (1) 求 D 在该基下的矩阵。
- (2) 求 $Im\mathcal{D}$ 和 $Ker\mathcal{D}$, 其中 $Im\mathcal{D}$ 是 \mathcal{D} 的像空间, $Ker\mathcal{D}$ 是 \mathcal{D} 的核空间。

题 4.8. 设 $\mathbb{R}^{2\times 2}$ 是二阶实方阵在方阵运算下构成的线性空间,对任意 $A\in\mathbb{R}^{2\times 2}$,令 $\mathcal{T}(A)=A^T+A$,

- (1) 证明 \mathcal{T} 是 $\mathbb{R}^{2\times 2}$ 的线性变换。
- (2) 判断 T 是否可对角化,并说明理由。

题 4.9. 设 T 是线性空间 V 的线性变换且, $T^2=T$,证明: $V={\rm Im}T\oplus{\rm Ker}T$,其中 ${\rm Im}T$ 是 T 的像空间, ${\rm Ker}T$ 是 T 的核空间。