## ADVANCING ARRHYTHMIA DETECTION IN MICRO ECG THROUGH CONVOLUTIONAL NEURAL NETWORKS

|         | ORIGINALITY REPORT         |                      |                  |                     |
|---------|----------------------------|----------------------|------------------|---------------------|
| SIMILA  | 4% ARITY INDEX             | 12% INTERNET SOURCES | 10% PUBLICATIONS | %<br>STUDENT PAPERS |
| PRIMARY | Y SOURCES                  |                      |                  |                     |
| 1       | app.cafe                   | eprozhe.com          |                  | 2%                  |
| 2       | www.fro                    | ntiersin.org         |                  | 2%                  |
| 3       | towards<br>Internet Source | datascience.cor      | n                | 1 %                 |
| 4       | par.nsf.g                  |                      |                  | 1 %                 |
| 5       | github.c                   |                      |                  | 1 %                 |
| 6       | www.ncl                    | oi.nlm.nih.gov       |                  | <1%                 |
| 7       | WWW.MC                     | -                    |                  | <1 %                |
| 8       | pdfs.sen                   | nanticscholar.or     | g                | <1 %                |
| 9       | Studies in Publication     | in Big Data, 201     | 5.               | <1%                 |

| 10       | dokumen.pub<br>Internet Source                                                                                                                                                                                                                            | <1%             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 11       | vdocument.in Internet Source                                                                                                                                                                                                                              | <1%             |
| 12       | upload.indiacode.nic.in Internet Source                                                                                                                                                                                                                   | <1%             |
| 13       | Hanna Vitaliyivna Denysyuk, Rui João Pinto,<br>Pedro Miguel Silva, Rui Pedro Duarte et al.<br>"Algorithms for automated diagnosis of<br>cardiovascular diseases based on ECG data: A<br>comprehensive systematic review", Heliyon,<br>2023<br>Publication | <1%             |
|          |                                                                                                                                                                                                                                                           |                 |
| 14       | www.coursehero.com Internet Source                                                                                                                                                                                                                        | <1%             |
| 15       |                                                                                                                                                                                                                                                           | <1 %<br><1 %    |
| 14<br>15 | Xinyi Wu, Zouheir Rezki. "Heart Arrhythmia<br>Classification Using Electrocardiogram<br>Signals", GLOBECOM 2022 - 2022 IEEE Global<br>Communications Conference, 2022                                                                                     | <1 %<br><1 %    |
| _        | Xinyi Wu, Zouheir Rezki. "Heart Arrhythmia Classification Using Electrocardiogram Signals", GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022 Publication                                                                                  | <1% <1% <1% <1% |

| 19 | Mengze Wu, Yongdi Lu, Wenli Yang, Shen<br>Yuong Wong. "A Study on Arrhythmia via ECG<br>Signal Classification Using the Convolutional<br>Neural Network", Frontiers in Computational<br>Neuroscience, 2021<br>Publication | <1% |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 20 | essay365.x10.mx Internet Source                                                                                                                                                                                           | <1% |
| 21 | acikbilim.yok.gov.tr Internet Source                                                                                                                                                                                      | <1% |
| 22 | berlmathges.de Internet Source                                                                                                                                                                                            | <1% |
| 23 | dspace.bracu.ac.bd Internet Source                                                                                                                                                                                        | <1% |
| 24 | pubmed.ncbi.nlm.nih.gov Internet Source                                                                                                                                                                                   | <1% |
| 25 | dspace.library.uvic.ca:8080 Internet Source                                                                                                                                                                               | <1% |
| 26 | Bashar Rajoub. "Machine learning in biomedical signal processing with ECG applications", Elsevier BV, 2020 Publication                                                                                                    | <1% |
| 27 | Carmine Liotto, Alberto Petrillo, Stefania<br>Santini, Gianluca Toscano, Vincenza Tufano.<br>"A multiclass CNN cascade model for the<br>clinical detection support of cardiac                                             | <1% |

## arrhythmia based on subject-exclusive ECG dataset", Biomedical Engineering Letters, 2022

Publication

| 28 | eprints.mdx.ac.uk Internet Source                                                                                                                                                                                                                          | <1%          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 29 | hdl.handle.net Internet Source                                                                                                                                                                                                                             | <1%          |
| 30 | Gilbert Roland, Dhana Sony. J, S. N. Padhi, S. Kayalvili, S Cloudin, Ashok Kumar. "An Automated System for Arrhythmia Detection using ECG records from MITDB", 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), 2022 | <1%          |
|    | Publication                                                                                                                                                                                                                                                |              |
| 31 | doaj.org Internet Source                                                                                                                                                                                                                                   | <1%          |
| 31 | doaj.org                                                                                                                                                                                                                                                   | <1 %<br><1 % |

| 34 | Annet Deenu Lopez, Liza Annie Joseph. "Classification of arrhythmias using statistical features in the wavelet transform domain", 2013 International Conference on Advanced Computing and Communication Systems, 2013 Publication                   | <1%               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 35 | Mohan Debarchan Mohanty, Bibhuprasad<br>Mohanty, Mihir N. Mohanty. "R-peak<br>detection using efficient technique for<br>tachycardia detection", 2017 2nd International<br>Conference on Man and Machine Interfacing<br>(MAMI), 2017<br>Publication | <1%               |
|    |                                                                                                                                                                                                                                                     |                   |
| 36 | kriyavikalpa.com Internet Source                                                                                                                                                                                                                    | <1%               |
| 36 |                                                                                                                                                                                                                                                     | <1 <sub>%</sub>   |
| _  | Internet Source  WWW.essays.se                                                                                                                                                                                                                      | <1%<br><1%<br><1% |
| 37 | www.essays.se Internet Source  S.T. Aarthy, J.L. Mazher Iqbal. "Modified parametric-based AlexNet structure to classify ECG signals for cardiovascular diseases", Measurement: Sensors, 2023                                                        |                   |



Internet Source

| 47 | mafiadoc.com<br>Internet Source      | <1%  |
|----|--------------------------------------|------|
| 48 | www.biorxiv.org Internet Source      | <1%  |
| 49 | www.kdd.org Internet Source          | <1 % |
| 50 | www.researchgate.net Internet Source | <1 % |
| 51 | zero.sci-hub.se Internet Source      | <1%  |

Exclude quotes On Exclude bibliography On Exclude matches < 10 words

## ADVANCING ARRHYTHMIA DETECTION IN MICRO ECG THROUGH CONVOLUTIONAL NEURAL NETWORKS

| GRADEMARK REPORT | VILIVEOTI LETVETIVO |
|------------------|---------------------|
| FINAL GRADE      | GENERAL COMMENTS    |
| /100             |                     |
| PAGE 1           |                     |
| PAGE 2           |                     |
| PAGE 3           |                     |
| PAGE 4           |                     |
| PAGE 5           |                     |
| PAGE 6           |                     |
| PAGE 7           |                     |
| PAGE 8           |                     |
| PAGE 9           |                     |
| PAGE 10          |                     |
| PAGE 11          |                     |
| PAGE 12          |                     |
| PAGE 13          |                     |
| PAGE 14          |                     |
| PAGE 15          |                     |
| PAGE 16          |                     |
| PAGE 17          |                     |
| PAGE 18          |                     |
| PAGE 19          |                     |
| PAGE 20          |                     |
|                  |                     |

| PAGE 21 |
|---------|
| PAGE 22 |
| PAGE 23 |
| PAGE 24 |
| PAGE 25 |
| PAGE 26 |
| PAGE 27 |
| PAGE 28 |
| PAGE 29 |
| PAGE 30 |
| PAGE 31 |
| PAGE 32 |
| PAGE 33 |
| PAGE 34 |
| PAGE 35 |
| PAGE 36 |
| PAGE 37 |
| PAGE 38 |
| PAGE 39 |
| PAGE 40 |
| PAGE 41 |
| PAGE 42 |
| PAGE 43 |
| PAGE 44 |
| PAGE 45 |
| PAGE 46 |

| PAGE 47 |
|---------|
| PAGE 48 |
| PAGE 49 |
| PAGE 50 |
| PAGE 51 |
| PAGE 52 |
| PAGE 53 |
| PAGE 54 |
| PAGE 55 |
| PAGE 56 |
|         |