HW4

Jingshi

2/14/2017

Question 6

a)

$$\hat{\Pr}(Y = A | X_1, X_2) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2}} = \frac{e^{-6 + 0.05 \times x_1 + 1 \times x_2}}{1 + e^{-6 + 0.05 \times x_1 + 1 \times x_2}} = \frac{e^{-6 + 0.05 \times 40 + 1 \times 3.5}}{1 + e^{-6 + 0.05 \times 40 + 1 \times 3.5}}$$

Calculated in R:

```
exp(-6+0.05*40+1*3.5)/(1+exp(-6+0.05*40+3.5))
```

[1] 0.3775407

As the output shows, the probability is 0.3775407.

b)

When
$$\hat{P}r(Y = A|X_2) = 0.5$$
, $odds = \frac{\hat{P}r(Y = A|X_2)}{1 - \hat{P}r(Y = A|X_2)} = \frac{0.5}{1 - 0.5} = 1$.
 $log \ odds = log \ 1 = 0 = -6 + 0.05 \times x_1 + 1 \times 3.5$
 $=> x_1 = 50$

Therefore, the student needs to study 50 hours.

Question 10

a)

```
library(ISLR)
help(Weekly)
summary(Weekly)
```

```
##
        Year
                      Lag1
                                        Lag2
                                                          Lag3
                 Min. :-18.1950
                                  Min. :-18.1950 Min. :-18.1950
##
   Min.
          :1990
##
   1st Qu.:1995
                 1st Qu.: -1.1540
                                   1st Qu.: -1.1540
                                                     1st Qu.: -1.1580
  Median:2000
                 Median : 0.2410
                                   Median : 0.2410
                                                     Median: 0.2410
          :2000
                       : 0.1506
##
  Mean
                 Mean
                                   Mean : 0.1511
                                                      Mean : 0.1472
##
   3rd Qu.:2005
                 3rd Qu.: 1.4050
                                   3rd Qu.: 1.4090
                                                      3rd Qu.: 1.4090
##
   Max.
          :2010
                 Max. : 12.0260
                                   Max.
                                          : 12.0260
                                                      Max. : 12.0260
##
        Lag4
                          Lag5
                                           Volume
  Min. :-18.1950
                    Min. :-18.1950
##
                                              :0.08747
                                       Min.
                                       1st Qu.:0.33202
   1st Qu.: -1.1580
                     1st Qu.: -1.1660
##
                     Median : 0.2340
                                       Median :1.00268
## Median : 0.2380
  Mean : 0.1458
                     Mean : 0.1399
                                       Mean
                                              :1.57462
   3rd Qu.: 1.4090
                     3rd Qu.: 1.4050
                                       3rd Qu.:2.05373
##
                     Max. : 12.0260
## Max. : 12.0260
                                       Max.
                                              :9.32821
```

```
##
        Today
                        Direction
##
           :-18.1950
                        Down: 484
    Min.
                        Up :605
    1st Qu.: -1.1540
    Median : 0.2410
##
    Mean
           : 0.1499
##
    3rd Qu.: 1.4050
    Max.
           : 12.0260
pairs (Weekly)
                             -15
                                                                -15 5
            -15
                                               -15
     Year
                                        Lag4
                                                                  Today
                                                                         Direction
        2010
  1990
                    -15
                                      -15
                                           5
                                                       0
                                                         4 8
                                                                        1.0 1.6
cor(Weekly[,1:8])
##
                  Year
                               Lag1
                                            Lag2
                                                        Lag3
                                                                      Lag4
## Year
           1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
          -0.03228927 1.000000000 -0.07485305 0.05863568 -0.071273876
## Lag1
          -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag2
## Lag3
          -0.03000649 \quad 0.058635682 \ -0.07572091 \quad 1.00000000 \ -0.075395865
          -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag4
          -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
## Lag5
## Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today
         -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
##
                  Lag5
                             Volume
```

-0.072499482 -0.08551314 0.059166717

0.060657175 -0.06928771 -0.071243639 -0.075675027 -0.06107462 -0.007825873

1.000000000 -0.05851741 0.011012698

0.011012698 -0.03307778 1.000000000

Volume -0.058517414 1.00000000 -0.033077783

Year

Lag1

Lag2 ## Lag3

Lag4 ## Lag5

Today

#plot(Weekly\$Volume~Weekly\$Year)

According to the output, most of the variales have very small correlations (less than 0.1 or even close to zero). However, the correlation between Year and Volume is noticeably large (0.84194162). As you can see from the scatter plot matrix, there is a strong positive relationship (increasing trend) between Volume and Year.

b)

```
model.fit<-glm(Direction ~ Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly, family=binomial)
summary(model.fit)
##
## Call:
  glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
       Volume, family = binomial, data = Weekly)
##
##
## Deviance Residuals:
##
      Min
                 1Q
                     Median
                                   3Q
                                           Max
## -1.6949 -1.2565
                     0.9913
                                        1.4579
                               1.0849
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
                           0.08593
## (Intercept) 0.26686
                                     3.106
                                             0.0019 **
## Lag1
              -0.04127
                           0.02641 - 1.563
                                             0.1181
## Lag2
               0.05844
                           0.02686
                                    2.175
                                             0.0296 *
## Lag3
               -0.01606
                           0.02666 -0.602
                                             0.5469
               -0.02779
                           0.02646
                                    -1.050
                                             0.2937
## Lag4
              -0.01447
                           0.02638 -0.549
## Lag5
                                             0.5833
## Volume
              -0.02274
                           0.03690 -0.616
                                             0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082
                                       degrees of freedom
## AIC: 1500.4
```

According to the output, the only predictor that appears to be significant is lag2 because it has a p-value (0.0296) lower than $\alpha = 0.05$.

$\mathbf{c})$

##

Number of Fisher Scoring iterations: 4

```
model.predict<-predict(model.fit, type = "response")
table(Weekly$Direction, model.predict>0.5)

##
## FALSE TRUE
## Down 54 430
## Up 48 557
```

According to the output, the overall fraction of correct predictions (accuracy) is $\frac{54+557}{54+48+430+557}=0.56107$. We have 48 false negative and 430 false positive (suppose Up is positive and Down is negative). The fraction of false positive is $\frac{430}{430+54}=0.88843$. The specificity is $\frac{54}{430+54}=0.11157$. The fraction of false negative is $\frac{48}{48+557}=0.07934$. The sensitivity is $\frac{557}{557+48}=0.92066$. The rate of missclassification = $\frac{48+430}{54+48+430+557}=0.43893$ which indicates that the model does not fit very well.

When the model guesses "up", it has a probability of $0.5643364 \ (=\frac{557}{430+557})$ to be correct; when the model guesses "down", it has a probability of $0.5294118 \ (=\frac{54}{54+48})$ to be correct.

d)

```
# fit the logistic regression model using a training data period from 1990 to 2008,
# with Lag2 as the only predictor.
model.fit2<-glm(Direction~Lag2,data=Weekly[Weekly$Year<2009,],family = binomial)</pre>
summary(model.fit2)
##
## Call:
  glm(formula = Direction ~ Lag2, family = binomial, data = Weekly[Weekly$Year <</pre>
##
       2009, ])
##
## Deviance Residuals:
##
      Min
               1Q
                   Median
                               3Q
                                       Max
  -1.536 -1.264
                    1.021
                            1.091
                                     1.368
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.20326
                           0.06428
                                      3.162 0.00157 **
## Lag2
                0.05810
                           0.02870
                                      2.024
                                            0.04298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1354.7 on 984 degrees of freedom
## Residual deviance: 1350.5 on 983 degrees of freedom
## AIC: 1354.5
##
## Number of Fisher Scoring iterations: 4
# make predictions based on the held out data (the data from 2009 and 2010)
model.predict2<-predict(model.fit2, Weekly[Weekly$Year>=2009,],type = "response")
# compute the confusion matrix for the held out data (the data from 2009 and 2010).
table(Weekly$Direction[Weekly$Year>=2009],model.predict2>0.5)
##
##
          FALSE TRUE
##
              9
     Down
                  34
     Uр
                  56
```

The overall fraction of correct predictions (accuracy) is $\frac{9+56}{9+34+5+56} = 0.625$ which is higher than the previous model. Its sensitivity is $\frac{56}{5+56} = 0.91803$. Its specificity is $\frac{9}{9+34} = 0.20930$.

Question 13

```
library(MASS)
data(Boston)
help(Boston)
# convert numeric data into binominal: FALSE = 0 and TRUE = 1
Boston$crim01 <- as.numeric(Boston$crim > median(Boston$crim))
# fit a logistic regression with all predictors.
boston.glm<-glm(crim01~. - crim01 -crim, data = Boston, family = binomial)
summary(boston.glm)
##
## Call:
## glm(formula = crim01 ~ . - crim01 - crim, family = binomial,
##
      data = Boston)
##
## Deviance Residuals:
      Min
               1Q
                   Median
                               3Q
                                       Max
## -2.3946 -0.1585 -0.0004 0.0023
                                    3.4239
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -34.103704 6.530014 -5.223 1.76e-07 ***
              ## zn
## indus
              -0.059389
                        0.043722 -1.358 0.17436
                                  1.077 0.28132
## chas
              0.785327 0.728930
## nox
             48.523782
                        7.396497 6.560 5.37e-11 ***
## rm
             -0.425596
                        0.701104 -0.607 0.54383
                        0.012221
                                  1.814 0.06963 .
## age
              0.022172
              ## dis
## rad
              0.656465
                        0.152452 4.306 1.66e-05 ***
## tax
              -0.006412  0.002689  -2.385  0.01709 *
                                  3.019 0.00254 **
## ptratio
               0.368716 0.122136
              ## black
## lstat
               0.043862 0.048981 0.895 0.37052
                                   2.497 0.01254 *
## medv
               0.167130
                        0.066940
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 701.46 on 505 degrees of freedom
## Residual deviance: 211.93 on 492 degrees of freedom
## AIC: 239.93
##
## Number of Fisher Scoring iterations: 9
# qet predictions
glm.predict<-predict(boston.glm, type = "response")</pre>
# compute the confusion matrix
table(Boston$crim01, glm.predict>0.5)
##
##
      FALSE TRUE
```

```
234
##
      0
                 19
                229
##
      1
           24
According to the summary of the model, zn, nox, dis, rad, tax, ptratio, black and medy are statistically
significant because their p-values are lower than \alpha = 0.05.
According to the confusion matrix, the rate of misclassification is \frac{24+19}{24+19+234+229} = 0.08498. The accuracy is \frac{229+234}{24+19+234+229} = 0.91502 which indicates a good fit. The sensitivity is \frac{229}{24+229} = 0.90514. The specificity is
\frac{234}{19+234} = 0.92490.
# now fit a logistic regression model with another set of predictors
boston.glm<-glm(crim01~zn+nox+dis+rad+tax+ptratio+black+medv, data = Boston, family = binomial)
summary(boston.glm)
##
## Call:
   glm(formula = crim01 ~ zn + nox + dis + rad + tax + ptratio +
##
        black + medv, family = binomial, data = Boston)
##
##
## Deviance Residuals:
                         Median
                                        3Q
##
        Min
                   1Q
                                                  Max
## -2.4400 -0.1918 -0.0008
                                    0.0025
                                              3.1885
##
##
   Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept) -28.347709
                                5.569863
                                           -5.089 3.59e-07 ***
## zn
                  -0.074499
                                0.029975
                                            -2.485 0.01294 *
## nox
                  44.180443
                                6.289746
                                             7.024 2.15e-12 ***
## dis
                   0.489849
                                0.194930
                                             2.513 0.01197 *
                   0.692116
                                0.137842
                                             5.021 5.14e-07 ***
## rad
## tax
                  -0.007448
                                0.002428
                                            -3.067
                                                     0.00216 **
                   0.272145
                                0.107311
                                             2.536
                                                     0.01121 *
## ptratio
## black
                  -0.013484
                                0.006331
                                            -2.130
                                                     0.03317 *
                   0.087913
                                0.030787
                                             2.856 0.00430 **
## medv
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
        Null deviance: 701.46
                                  on 505
                                           degrees of freedom
## Residual deviance: 221.78
                                 on 497 degrees of freedom
## AIC: 239.78
##
## Number of Fisher Scoring iterations: 9
# get predictions
glm.predict<-predict(boston.glm, type = "response")</pre>
# compute the confusion matrix
table(Boston$crim01, glm.predict>0.5)
##
##
        FALSE TRUE
```

According to the summary of the model, all the predictors are statistically significant because their p-values are all lower than $\alpha = 0.05$.

##

##

0

1

229

30

24

223

According to the confusion matrix, the rate of misclassification is $\frac{30+24}{229+24+30+223}=0.10672$. The accuracy is $\frac{229+223}{229+24+30+223}=0.89328$ which indicates a good fit. The sensitivity is $\frac{223}{30+223}=0.88142$. The specificity is $\frac{229}{24+229}=0.90514$.

```
# Now fit a LDA model
#library(MASS)
boston.lda<-lda(crim01~zn+nox+dis+rad+tax+ptratio+black+medv, data = Boston)
# get predictions
glm.predict<-predict(boston.lda, type = "response")
# compute the confusion matrix for the lda model
table(Boston$crim01, glm.predict$class)</pre>
```

According to the confusion matrix, the rate of misclassification is $\frac{59+6}{247+6+59+194}=0.12846$. The accuracy is $\frac{247+194}{247+6+59+194}=0.87154$ which indicates a good fit. The sensitivity is $\frac{194}{59+194}=0.76680$. The specificity is $\frac{247}{6+247}=0.97628$.

```
# Fit a KNN model by first split data into training and testing set.
set.seed(6)
n <- rnorm(nrow(Boston))
test <- n > quantile(n,0.80)
train <- !test
train.X <- cbind(Boston$zn, Boston$indus, Boston$chas)[train, ]
test.X <- cbind(Boston$zn, Boston$indus, Boston$chas)[test, ]
train.crim01 <- Boston$crim01[train]

# Now fit a KNN model with k = 6
library(class)
boston.knn<-knn(train.X, test.X, train.crim01, k = 6)

# compute the confusion matrix for the lda model
table(boston.knn, Boston$crim01[test])</pre>
```

```
## boston.knn 0 1
## 0 44 2
## 1 2 53
```

According to the confusion matrix, the rate of misclassification is $\frac{2+2}{44+2+2+53} = 0.03960$. The accuracy is $\frac{44+53}{44+2+2+53} = 0.96040$ which indicates a good fit. The sensitivity is $\frac{53}{2+53} = 0.96364$. The specificity is $\frac{44}{2+44} = 0.95652$.

Immage Classification Problem

}

Α.

Plot three 0's.
plot_digit(39)

this is a 0

this is a 0

plot_digit(58)

this is a 0

this is a 1

this is a 1

this is a 1

В.

(i)

```
# A function to check whether a pixel has a zero variability
isZero<-function(j){
  res = paste("True, pixel",j,"has a zero variability.")</pre>
```

```
for (i in 1 : 2115){
   if (images_df[i,j]!=0){
      res = paste("False, the variability of pixel",j,"is not zero.")
   }
 }
 print(res)
# Test to see if pixel 1 has a zero variability.
isZero(1)
## [1] "True, pixel 1 has a zero variability."
# Test to see if pixel 2 has a zero variability.
isZero(2)
## [1] "True, pixel 2 has a zero variability."
# Test to see if pixel 3 has a zero variability.
isZero(3)
## [1] "True, pixel 3 has a zero variability."
# Test to see if pixel 4 has a zero variability.
isZero(4)
## [1] "True, pixel 4 has a zero variability."
# Test to see if pixel 5 has a zero variability.
isZero(5)
## [1] "True, pixel 5 has a zero variability."
According to the output, the five features are 1, 2, 3, 4 and 5.
(ii)
# Test to see if pixel 100 has a zero variability.
isZero(100)
## [1] "False, the variability of pixel 100 is not zero."
# Test to see if pixel 101 has a zero variability.
isZero(101)
## [1] "False, the variability of pixel 101 is not zero."
# Test to see if pixel 102 has a zero variability.
isZero(102)
## [1] "False, the variability of pixel 102 is not zero."
# Test to see if pixel 103 has a zero variability.
isZero(103)
## [1] "False, the variability of pixel 103 is not zero."
# Test to see if pixel 104 has a zero variability.
isZero(104)
```

[1] "False, the variability of pixel 104 is not zero."

According to the output, the five features are 100, 101, 102, 103 and 104.

(iii)

```
# The two features I pick are 100 and 101.
plot(images_df$X100,images_df$X101,col=ifelse(images_df$labels==1, "green", "grey"),
    main = "Scatter Plot of Feature 101 against 100")
legend(0, 250,pch=c(1,1), col=c("green", "grey"), c("--1", "--0"),cex=.6)
```

Scatter Plot of Feature 101 against 100

$\mathbf{C}.$

```
#install.packages("pROC")
library(pROC)

## Warning: package 'pROC' was built under R version 3.3.2

## Type 'citation("pROC")' for a citation.

##

## Attaching package: 'pROC'

## The following objects are masked from 'package:stats':

##

## cov, smooth, var

# The three pairs that I choose are 100 & 101, 101 & 102, 102 & 103
```

```
# firstly, fit a logistic regression of labels~X100+X101
c.glm1<-glm(labels~X100+X101, data = images_df, family = binomial)</pre>
# take a look at the summary
summary(c.glm1)
##
## Call:
## glm(formula = labels ~ X100 + X101, family = binomial, data = images_df)
## Deviance Residuals:
            10 Median
     Min
                               3Q
                                      Max
## -1.257 -1.257
                    1.100
                           1.100
                                    2.847
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                                    4.175 2.99e-05 ***
## (Intercept) 0.184251
                           0.044137
## X100
               -0.004841
                           0.003784 -1.279 0.20076
## X101
               -0.013184
                           0.004752 -2.774 0.00553 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 2920.6 on 2114 degrees of freedom
##
## Residual deviance: 2879.8 on 2112 degrees of freedom
## AIC: 2885.8
##
## Number of Fisher Scoring iterations: 5
# qet predictions
glm.predict<-predict(c.glm1, type = "response")</pre>
# compute the confusion matrix
table(images_df$labels, glm.predict>0.5)
##
##
       FALSE TRUE
          45 935
##
     0
     1
           9 1126
# compute roc
roc<-roc(images_df$labels, glm.predict)</pre>
# comput AUC
auc(roc)
```

Area under the curve: 0.5192

According to the summary of the model, the intercept and X101 are statistically significant because their p-values $(2.99 \times 10^{-5} \text{ and } 0.00553 \text{ separately})$ are less than $\alpha = 0.05$. The p-value of X100 is 0.20076 which is much larger than $\alpha = 0.05$ so that X100 is not statistically significant.

According to the confusion matrix, there are 9 false negatives and 935 false positives. The rate of miss-classification is $\frac{935+9}{935+9+45+1126}=0.44634$. The accuracy is $\frac{45+1126}{935+9+45+1126}=0.55366$. The sensitivity is $\frac{1126}{1126+9}=0.99207$. The specificity is $\frac{45}{935+45}=0.04592$.

The AUC is 0.5192.

```
# secondly, fit a logistic regression of labels~X101+X102
c.glm2<-glm(labels~X101+X102, data = images_df, family = binomial)</pre>
# take a look at the summary
summary(c.glm2)
##
## Call:
## glm(formula = labels ~ X101 + X102, family = binomial, data = images_df)
## Deviance Residuals:
             10 Median
     Min
                               3Q
                                      Max
## -1.291 -1.255 1.102
                           1.102
                                    2.870
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
                                       4.089 4.32e-05 ***
## (Intercept) 0.1804086 0.0441161
## X101
               -0.0173091 0.0057676 -3.001 0.00269 **
## X102
                0.0009502 0.0036140
                                      0.263 0.79261
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 2920.6 on 2114 degrees of freedom
##
## Residual deviance: 2881.6 on 2112 degrees of freedom
## AIC: 2887.6
##
## Number of Fisher Scoring iterations: 5
# qet predictions
glm.predict<-predict(c.glm2, type = "response")</pre>
# compute the confusion matrix
table(images_df$labels, glm.predict>0.5)
##
##
       FALSE TRUE
          40 940
##
     0
     1
           4 1131
# compute roc
roc<-roc(images_df$labels, glm.predict)</pre>
# comput AUC
auc(roc)
```

Area under the curve: 0.5182

According to the summary of the model, the intercept and X101 are statistically significant because their p-values $(4.32 \times 10^{-5} \text{ and } 0.00269 \text{ separately})$ are less than $\alpha = 0.05$. The p-value of X102 is 0.79261 which is much larger than $\alpha = 0.05$ so that X102 is not statistically significant.

According to the confusion matrix, there are 4 false negatives and 940 false positives. The rate of miss-classification is $\frac{940+4}{940+4+40+1131}=0.44634$. The accuracy is $\frac{40+1131}{940+4+40+1131}=0.55366$. The sensitivity is $\frac{1131}{1131+4}=0.99648$. The specificity is $\frac{40}{940+40}=0.04082$.

The AUC is 0.5182.

```
# thirdly, fit a logistic regression of labels~X102+X103
c.glm3<-glm(labels~X102+X103, data = images_df, family = binomial)</pre>
# take a look at the summary
summary(c.glm3)
##
## Call:
## glm(formula = labels ~ X102 + X103, family = binomial, data = images_df)
## Deviance Residuals:
            10 Median
     Min
                               3Q
                                      Max
## -1.252 -1.252 1.105
                           1.105
                                    2.074
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                                      3.933 8.39e-05 ***
## (Intercept) 0.173295
                           0.044061
## X102
               -0.008884
                           0.003065 -2.898 0.00375 **
## X103
               -0.001711
                           0.003101 -0.552 0.58096
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 2920.6 on 2114 degrees of freedom
##
## Residual deviance: 2899.4 on 2112 degrees of freedom
## AIC: 2905.4
##
## Number of Fisher Scoring iterations: 4
# qet predictions
glm.predict<-predict(c.glm3, type = "response")</pre>
# compute the confusion matrix
table(images_df$labels, glm.predict>0.5)
##
##
       FALSE TRUE
##
          38 942
     0
     1
           9 1126
# compute roc
roc<-roc(images_df$labels, glm.predict)</pre>
# comput AUC
auc(roc)
```

Area under the curve: 0.5155

According to the summary of the model, the intercept and X102 are statistically significant because their p-values (8.39 \times 10⁻⁵ and 0.00375 separately) are less than $\alpha = 0.05$. The p-value of X103 is 0.58096 which is much larger than $\alpha = 0.05$ so that X103 is not statistically significant.

According to the confusion matrix, there are 9 false negatives and 942 false positives. The rate of miss-classification is $\frac{942+9}{942+9+38+1126}=0.44965$. The accuracy is $\frac{38+1126}{942+9+38+1126}=0.55035$. The sensitivity is $\frac{1126}{1126+9}=0.99207$. The specificity is $\frac{38}{942+38}=0.03878$.

The AUC is 0.5155.

Among the three models the best model is the first model (c.glm1) because it has the lowest rate of misssclassification (0.44634) and the highest AUC value (0.5192).

D.

```
# fit a logistic regression of labels~X100+X101+X102+X103+X104
c.glm3<-glm(labels~X100+X101+X102+X103+X104,data=images_df, family = binomial)</pre>
# get predictions
glm.predict<-predict(c.glm3, type = "response")</pre>
# compute the confusion matrix
table(images_df$labels, glm.predict>0.5)
##
##
       FALSE TRUE
          52 928
##
     1
          12 1123
# compute roc
roc<-roc(images df$labels, glm.predict)</pre>
# comput AUC
auc(roc)
```

Area under the curve: 0.5228

According to the confusion matrix, there are 12 false negatives and 928 false positives. The rate of missclassification is $\frac{928+12}{928+12+52+1123}=0.44444$ which is lower than the best model in C. Additionally, the accuracy is $\frac{52+1123}{928+12+52+1123}=0.55556$ which is better than the best model in C. The sensitivity is $\frac{1123}{1123+12}=0.98943$. The specificity is $\frac{52}{928+52}=0.05306$.

The AUC is 0.5228 which is also better than the best model in C.

Ε.

```
# fit a logistic regression with all features
e.glm<-glm(labels~., data = images_df, family = binomial)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
# take a look at the long summary
summary(e.glm)
##
## glm(formula = labels ~ ., family = binomial, data = images_df)
##
## Deviance Residuals:
                               Median
                                                30
                                                           Max
         Min
                       1Q
## -1.459e-05 -2.110e-08
                            2.110e-08
                                        4.485e-07
                                                     2.148e-05
## Coefficients: (286 not defined because of singularities)
```

##			Std. Error z		
##	(Intercept)	2.903e+00	8.495e+04	0	1
##	X1	NA	NA	NA	NA
##	X2	NA	NA	NA	NA
##	ХЗ	NA	NA	NA	NA
##	X4	NA	NA	NA	NA
##	X5	NA	NA	NA	NA
##	Х6	NA	NA	NA	NA
##	Х7	NA	NA	NA	NA
##	Х8	NA	NA	NA	NA
##	Х9	NA	NA	NA	NA
##	X10	NA	NA	NA	NA
##	X11	NA	NA	NA	NA
##	X12	NA	NA	NA	NA
##	X13	NA	NA	NA	NA
##	X14	NA	NA	NA	NA
##	X15	NA	NA	NA	NA
##	X16	NA	NA	NA	NA
##	X17	NA	NA	NA	NA
##	X18	NA	NA	NA	NA
##	X19	NA	NA	NA	NA
##	X20	NA	NA	NA	NA
##	X21	NA	NA	NA	NA
##	X22	NA	NA	NA	NA
##	X23	NA	NA	NA	NA
##	X24	NA	NA	NA	NA
##	X25	NA	NA	NA	NA
##	X26	NA	NA	NA	NA
##	X27	NA	NA	NA	NA
##	X28	NA	NA	NA	NA
##	X29	NA	NA	NA	NA
##	X30	NA	NA	NA	NA
##	X31	NA	NA	NA	NA
##	X32	NA	NA	NA	NA
##	Х33	NA	NA	NA	NA
##	X34	NA	NA	NA	NA
##	X35	NA	NA	NA	NA
##	X36	NA	NA	NA	NA
##	X37	NA	NA	NA	NA
##	X38	NA	NA	NA	NA
##	X39	NA	NA	NA	NA
	X40	NA	NA	NA	NA
##	X41	NA	NA	NA	NA
##	X42	NA	NA	NA	NA
##	X43	NA	NA	NA	NA
	X44	NA	NA	NA	NA
	X45	NA	NA	NA	NA
	X46	NA	NA	NA	NA
	X47	NA	NA	NA	NA
	X48	NA	NA	NA	NA
	X49	NA	NA	NA	NA
	X50	NA	NA	NA	NA
	X51	NA	NA	NA	NA
	X52	NA	NA	NA	NA

##	X53	NA	NA	NA	NA
##	X54	NA	NA	NA	NA
##	X55	NA	NA	NA	NA
##	X56	NA	NA	NA	NA
##	X57	NA	NA	NA	NA
##	X58	NA	NA	NA	NA
##	X59	NA	NA	NA	NA
##	X60	NA	NA	NA	NA
##	X61	NA	NA	NA	NA
##	X62	NA	NA	NA	NA
##	X63	NA	NA	NA	NA
##	X64	NA	NA	NA	NA
##	X65	NA	NA	NA	NA
##	X66	NA	NA	NA	NA
##	X67	NA	NA	NA	NA
##	X68	2.268e-01	2.738e+04	0	1
##	X69	-1.449e-01	2.759e+04	0	1
##	X70	1.617e-01	2.108e+04	0	1
##	X71	-3.743e-02	5.474e+03	0	1
##	X72	NA	NA	NA	NA
##	X73	NA	NA	NA	NA
##	X74	NA	NA	NA	NA
##	X75	NA	NA	NA	NA
##	X76	1.101e-01	3.584e+03	0	1
##	X77	NA	NA	NA	NA
##	X78	NA	NA	NA	NA
##	X79	NA	NA	NA	NA
##	X80	NA	NA	NA	NA
##	X81	NA	NA	NA	NA
##	X82	NA NA	NA NA	NA	NA
##	X83	NA NA	NA NA	NA	NA
##	X84	NA NA	NA NA	NA NA	NA NA
##	X85	NA NA			NA NA
##	X86	NA NA	NA NA	NA NA	NA NA
			NA NA		
##	X87	NA NA	NA NA	NA NA	NA NA
##	X88	NA NA	NA NA	NA NA	NA
##	X89	NA NA	NA NA	NA NA	NA
	X90	NA	NA NA	NA	NA
##	X91	NA NA	NA NA	NA NA	NA
##	X92	NA	NA	NA	NA
##	X93	NA	NA	NA	NA
##	X94	-2.887e-01	2.545e+04	0	1
##	X95	9.718e-02	6.589e+03	0	1
##	X96	-2.445e-02	5.255e+03	0	1
##	X97	-4.224e-02	4.146e+03	0	1
##	X98	1.605e-02	2.771e+03	0	1
##	X99	-6.050e-03	2.318e+03	0	1
##	X100	1.542e-02	1.573e+03	0	1
##	X101	-2.892e-02	1.363e+03	0	1
##	X102	-5.882e-03	1.620e+03	0	1
##	X103	-1.043e-02	1.549e+03	0	1
	X104	8.204e-03	1.877e+03	0	1
##	X105	-3.367e-02	2.464e+03	0	1
##	X106	1.783e-02	3.973e+03	0	1

##	X107	-1.382e-02	5.855e+03	0	1
##	X107 X108	1.723e-01	8.893e+03	0	1
##	X100	-4.518e-01	1.585e+04	0	1
##	X110	4.516e 01 NA	NA	NA	NA
##	X110 X111	NA NA	NA	NA	NA
##	X111 X112	NA NA	NA NA	NA NA	NA NA
##	X112 X113	NA NA		NA NA	NA NA
##			NA		
##	X114	NA NA	NA	NA NA	NA
##	X115 X116	NA 2.327e-01	NA 0.039a.03	NA	NA 1
##	X110 X117	2.327e-01 NA	9.938e+03 NA	O M A	1 NA
##				NA	
	X118	3.883e-03	3.805e+03	0	1
##	X119	1.310e-01	3.768e+03	0	1
##	X120	-1.486e-01	1.244e+04	0	1
##	X121	-2.502e-02	1.623e+04	0	1
##	X122	-1.921e-02	2.893e+03	0	1
##	X123	1.005e-02	1.521e+03	0	1
##	X124	-1.560e-02	1.126e+03	0	1
##	X125	8.021e-03	7.765e+02	0	1
##	X126	-8.455e-03	4.745e+02	0	1
##	X127	5.466e-03	4.069e+02	0	1
##	X128	-1.039e-03	3.446e+02	0	1
##	X129	-9.235e-03	3.776e+02	0	1
##	X130	6.547e-03	4.050e+02	0	1
##	X131	-5.855e-03	4.964e+02	0	1
##	X132	-1.031e-02	4.814e+02	0	1
##	X133	8.397e-03	6.157e+02	0	1
##	X134	-1.060e-02	8.594e+02	0	1
##	X135	-7.675e-03	1.272e+03	0	1
##	X136	-3.657e-02	2.345e+03	0	1
##	X137	2.493e-02	3.020e+03	0	1
##	X138	5.464e+01	6.680e+06	0	1
##	X139	NA	NA	NA	NA
##	X140	NA	NA	NA	NA
##	X141	NA	NA	NA	NA
##	X142	NA	NA	NA	NA
##	X143	NA	NA	NA	NA
##	X144	NA	NA	NA	NA
##	X145	NA	NA	NA	NA
##	X146	-6.702e-01	9.708e+04	0	1
##	X147	2.848e-01	4.550e+04	0	1
##	X148	-2.479e-03	7.953e+03	0	1
##	X149	8.590e-02	3.196e+03	0	1
##	X150	-3.101e-02	2.127e+03	0	1
##	X151	1.307e-02	1.217e+03	0	1
##	X152	-7.081e-03	9.184e+02	0	1
##	X153	-7.648e-03	6.075e+02	0	1
##	X154	-1.312e-03	4.480e+02	0	1
##	X155	-5.251e-03	4.288e+02	0	1
##	X156	4.349e-03	3.782e+02	0	1
##	X157	-1.411e-02	3.980e+02	0	1
##	X158	4.773e-03	3.946e+02	0	1
##	X159	3.861e-03	4.400e+02	0	1
##	X160	-2.225e-03	4.986e+02	0	1

## X161	1.748e-03	6.230e+02	0	1
## X162	-9.747e-03	9.466e+02	0	1
## X163	6.490e-03	1.209e+03	0	1
## X164	1.845e-03	1.834e+03	0	1
## X165	7.217e-02	4.733e+03	0	1
## X166	4.616e+01	5.516e+06	0	1
## X167	NA	NA	NA	NA
## X168	NA	NA	NA	NA
## X169	NA	NA	NA	NA
## X170	NA	NA	NA	NA
## X171	NA	NA	NA	NA
## X172	NA	NA	NA	NA
## X173	1.730e-01	6.924e+03	0	1
## X174	-1.770e-02	1.618e+04	0	1
## X175	-8.061e-02	1.977e+04	0	1
## X176	1.543e-03	4.157e+03	0	1
## X177	-1.180e-04	2.553e+03	0	1
## X178	1.481e-02	1.338e+03	0	1
## X179	-6.479e-04	1.013e+03	0	1
## X173	-2.236e-02	8.071e+02	0	1
## X181	8.236e-03	6.597e+02	0	1
## X181	-1.329e-02	5.129e+02	0	1
## X182	6.608e-03	4.560e+02	0	1
## X183	-6.164e-03	4.912e+02		1
			0	
	1.389e-02 -7.114e-03	4.486e+02 4.275e+02	0	1
## X186			0	1
## X187	-1.903e-02	5.159e+02	0	1
## X188	1.149e-02	5.276e+02	0	1
## X189	-7.317e-03	6.661e+02	0	1
## X190	1.421e-02	8.178e+02	0	1
## X191	-4.269e-03	1.007e+03	0	1
## X192	-3.431e-02	2.024e+03	0	1
## X193	-2.843e-02	5.141e+03	0	1
## X194	-3.228e+01	3.858e+06	0	1
## X195	NA	NA	NA	NA
## X196	NA	NA	NA	NA
## X197	NA	NA	NA	NA
## X198	NA	NA	NA	NA
## X199	NA	NA	NA	NA
## X200	NA	NA	NA	NA
## X201	-1.813e+00	5.731e+04	0	1
## X202	-6.315e-02	2.191e+04	0	1
## X203	4.119e-05	4.678e+03	0	1
## X204	-2.200e-02	1.831e+03	0	1
## X205	1.072e-02	1.807e+03	0	1
## X206	-2.026e-02	1.202e+03	0	1
## X207	1.190e-02	9.110e+02	0	1
## X208	7.846e-03	9.129e+02	0	1
## X209	2.299e-02	6.439e+02	0	1
## X210	-5.063e-03	5.254e+02	0	1
## X211	5.123e-03	4.676e+02	0	1
## X212	-1.624e-02	4.395e+02	0	1
## X213	-5.377e-03	4.240e+02	0	1
## X214	6.089e-03	4.800e+02	0	1

				_	
	X215	1.606e-02	5.495e+02	0	1
##	X216	1.685e-03	5.490e+02	0	1
##	X217	-1.567e-02	6.862e+02	0	1
##	X218	8.437e-04	6.538e+02	0	1
##	X219	-4.870e-03	1.138e+03	0	1
##	X220	1.856e-02	1.856e+03	0	1
##	X221	1.320e-02	3.109e+03	0	1
##	X222	-1.872e-01	3.054e+04	0	1
##	X223	NA	NA	NA	NA
##	X224	NA	NA	NA	NA
##	X225	NA NA	NA	NA	NA
##	X226	NA NA	NA	NA	NA
##	X227	NA NA	NA NA	NA NA	NA NA
##	X228	-1.127e+00		0	1
			1.308e+05		
##	X229	4.245e-01	5.606e+04	0	1
##	X230	5.153e-02	1.215e+04	0	1
##	X231	-5.483e-02	2.873e+03	0	1
##	X232	-1.927e-02	2.256e+03	0	1
##	X233	2.442e-02	1.670e+03	0	1
##	X234	-7.122e-04	1.105e+03	0	1
##	X235	-1.861e-02	8.892e+02	0	1
##	X236	-1.209e-02	7.580e+02	0	1
##	X237	-9.207e-03	6.698e+02	0	1
##	X238	-2.669e-03	5.480e+02	0	1
##	X239	-4.627e-04	4.755e+02	0	1
##	X240	1.681e-02	4.739e+02	0	1
##	X241	-1.556e-02	4.411e+02	0	1
##	X242	6.626e-03	5.112e+02	0	1
##	X243	-1.302e-02	5.277e+02	0	1
##	X244	2.761e-03	5.984e+02	0	1
##	X245	2.154e-03	6.789e+02	0	1
##	X246	1.881e-02	7.409e+02	0	1
##	X247	5.804e-03	1.066e+03	0	1
##	X248	-9.846e-03	1.644e+03	0	1
##	X249	8.118e-02	2.763e+03	0	1
##	X250	5.398e-02	4.774e+04	0	1
##	X251	NA	NA	NA	NA
##	X252	NA	NA	NA	NA
##	X253	NA	NA	NA	NA
##	X254	NA	NA	NA	NA
##	X255	NA	NA	NA	NA
##	X256	NA	NA	NA	NA
##	X257	-1.642e-01	4.502e+04	0	1
##	X258	6.284e-02	6.799e+03	0	1
##	X259	9.554e-03	2.287e+03	0	1
##	X260	7.198e-03	1.824e+03	0	1
##	X261	2.171e-04	1.024e+03	0	1
##	X261	5.713e-04	9.985e+02	0	1
##	X262 X263	-6.334e-04	9.965e+02 8.437e+02	0	1
##	X263	-5.053e-03	7.826e+02	0	1
##	X265	-4.283e-03	6.449e+02	0	1 1
##	X266	5.731e-03	5.081e+02	0	
##	X267	6.443e-03	5.364e+02	0	1
##	X268	-2.052e-02	5.033e+02	0	1

	X269	2.149e-02	5.304e+02	0	1
##	X270	-1.288e-02	5.426e+02	0	1
##	X271	-3.607e-03	6.441e+02	0	1
##	X272	5.289e-03	5.915e+02	0	1
##	X273	-8.320e-04	7.914e+02	0	1
##	X274	-2.548e-03	8.364e+02	0	1
	X275	-2.557e-02	1.313e+03	0	1
##	X276	2.493e-02	1.583e+03	0	1
	X277	-3.301e-02	2.217e+03	0	1
##	X277	-1.142e-01	2.046e+04	0	1
##					
	X279	NA	NA	NA	NA
##	X280	NA	NA	NA	NA
##	X281	NA	NA	NA	NA
##	X282	NA	NA	NA	NA
##	X283	NA	NA	NA	NA
##	X284	NA	NA	NA	NA
##	X285	2.296e-01	1.805e+04	0	1
##	X286	3.437e-02	3.122e+03	0	1
##	X287	-1.209e-02	2.584e+03	0	1
##	X288	9.994e-03	1.633e+03	0	1
##	X289	-1.717e-02	1.125e+03	0	1
##	X290	4.449e-02	1.000e+03	0	1
##	X291	1.686e-02	8.725e+02	0	1
##	X292	-9.371e-04	9.658e+02	0	1
##	X293	1.310e-02	6.485e+02	0	1
##	X294	9.793e-03	4.914e+02	0	1
##	X294 X295	-3.174e-03	4.914e+02 4.903e+02		1
				0	
##	X296	1.989e-02	6.213e+02	0	1
##	X297	-2.511e-02	5.415e+02	0	1
##	X298	1.071e-02	6.020e+02	0	1
##	X299	1.711e-02	7.212e+02	0	1
##	X300	2.737e-03	7.331e+02	0	1
##	X301	-2.695e-02	9.544e+02	0	1
##	X302	2.881e-03	8.902e+02	0	1
##	X303	1.322e-02	1.437e+03	0	1
##	X304	-4.868e-02	1.531e+03	0	1
##	X305	-4.274e-02	1.900e+03	0	1
##	X306	7.985e-02	1.182e+04	0	1
##	X307	NA	NA	NA	NA
##	X308	NA	NA	NA	NA
##	X309	NA	NA	NA	NA
##	X310	NA	NA	NA	NA
##	X311	NA NA	NA	NA	NA
##	X311	-1.018e-01	9.486e+03	0	
					1
##	X313	-1.409e-01	9.436e+03	0	1
##	X314	2.630e-02	3.123e+03	0	1
##	X315	-2.191e-02	1.910e+03	0	1
##	X316	9.742e-03	1.476e+03	0	1
##	X317	-3.289e-03	1.025e+03	0	1
##	X318	-1.884e-02	1.056e+03	0	1
##	X319	-2.912e-02	1.052e+03	0	1
##	X320	-2.584e-03	8.053e+02	0	1
##	X321	-1.362e-02	7.068e+02	0	1
##	X322	-7.740e-03	5.207e+02	0	1

##	X323	1.258e-02	4.996e+02	0	1
##	X324	-2.100e-02	6.662e+02	0	1
##	X325	1.235e-02	5.196e+02	0	1
##	X326	3.430e-03	6.326e+02	0	1
##	X327	-2.130e-02	8.298e+02	0	1
##	X328	-5.051e-03	8.496e+02	0	1
##	X329	1.766e-02	9.275e+02	0	1
##	X330	4.007e-03	9.426e+02	0	1
##	X331	-3.036e-02	1.288e+03	0	1
##	X332	2.314e-03	1.650e+03	0	1
##	X333	1.433e-02	1.698e+03	0	1
##	X334	-2.464e-02	1.136e+04	0	1
##	X335	NA	NA	NA	ΝA
##	X336	NA	NA	NA	NA
##	X337	NA	NA	NA	NA
##	X338	NA	NA	NA	NA
##	X339	NA NA	NA NA	NA	NA
##	X340	-1.488e-01	5.818e+03	0	1
##	X341	-1.892e-02	4.379e+03	0	1
##	X342	5.822e-03	2.726e+03	0	1
##	X343	-2.256e-02	1.518e+03	0	1
##	X344	-9.293e-03	1.082e+03	0	1
##	X344 X345	7.306e-03	1.002e+03		1
		3.160e-02		0	
##	X346		1.117e+03	0	1
##	X347	3.868e-02	9.489e+02	0	1
##	X348	-6.826e-03	8.553e+02	0	1
##	X349	-7.193e-03	6.844e+02	0	1
##	X350	-1.588e-02	5.680e+02	0	1
##	X351	1.725e-02	5.655e+02	0	1
##	X352	2.493e-02	7.867e+02	0	1
##	X353	-1.664e-02	6.392e+02	0	1
##	X354	-2.719e-03	7.623e+02	0	1
##	X355	-1.256e-02	9.871e+02	0	1
##	X356	2.052e-02	1.028e+03	0	1
##	X357	-1.905e-02	1.045e+03	0	1
##	X358	-1.465e-02	9.832e+02	0	1
##	X359	3.236e-02	1.267e+03	0	1
##	X360	2.001e-02	1.891e+03	0	1
##	X361	-1.195e-02	1.993e+03	0	1
##	X362	-7.502e-03	9.372e+03	0	1
##	X363	NA	NA	NA	NA
##	X364	NA	NA	NA	NA
##	X365	NA	NA	NA	NA
##	X366	NA	NA	NA	NA
##	X367	NA	NA	NA	NA
##	X368	NA	NA	NA	NA
##	X369	-8.508e-03	3.469e+03	0	1
##	X370	2.577e-03	2.024e+03	0	1
##	X371	5.302e-02	1.534e+03	0	1
##	X372	1.095e-02	1.422e+03	0	1
##	X373	-2.364e-02	1.074e+03	0	1
##	X374	-3.081e-02	1.114e+03	0	1
##	X375	1.171e-02	1.048e+03	0	1
##	X376	-5.214e-03	9.365e+02	0	1

##	X377	1.275e-02	6.310e+02	0	1
##	X378	3.057e-03	5.830e+02	0	1
##	X379	1.552e-02	6.837e+02	0	1
##	X380	1.231e-03	7.947e+02	0	1
##	X381	6.598e-03	6.831e+02	0	1
##	X382	3.058e-02	8.894e+02	0	1
##	X383	-2.637e-03	1.108e+03	0	1
##	X384	-2.397e-02	1.150e+03	0	1
##	X385	-3.775e-03	1.179e+03	0	1
##	X386	-1.452e-02	1.177e+03	0	1
##	X387	-3.589e-02	1.203e+03	0	1
##	X388	-1.669e-02	1.833e+03	0	1
##	X389	9.258e-04	1.863e+03	0	1
##	X390	1.788e-02	1.071e+04	0	1
##	X391	1.700C 02 NA	NA	NA	NA
##	X392	NA NA	NA	NA NA	NA
##	X393	NA NA	NA NA	NA NA	NA
##	X394	NA NA	NA NA	NA NA	NA NA
##	X395	NA NA	NA NA	NA NA	NA NA
	X396				
##		NA	NA	NA	NA
##	X397	-2.049e-02	2.791e+03	0	1
##	X398	-1.619e-02	1.630e+03	0	1
##	X399	-4.268e-02	1.605e+03	0	1
##	X400	-4.893e-02	1.474e+03	0	1
##	X401	3.861e-03	9.924e+02	0	1
##	X402	1.507e-03	1.167e+03	0	1
##	X403	1.390e-02	1.006e+03	0	1
##	X404	-1.406e-02	9.836e+02	0	1
##	X405	2.559e-02	6.603e+02	0	1
##	X406	-1.759e-02	6.519e+02	0	1
##	X407	4.405e-02	8.187e+02	0	1
##	X408	-5.560e-03	7.225e+02	0	1
##	X409	-1.923e-04	7.457e+02	0	1
##	X410	-3.165e-02	1.241e+03	0	1
##	X411	-2.356e-02	1.095e+03	0	1
##	X412	-6.082e-03	1.025e+03	0	1
##	X413	2.631e-02	1.155e+03	0	1
##	X414	2.296e-02	1.109e+03	0	1
##	X415	2.547e-02	1.299e+03	0	1
##	X416	3.516e-02	1.629e+03	0	1
##	X417	1.599e-02	1.537e+03	0	1
##	X418	-1.810e-02	1.007e+04	0	1
##	X419	1.010e 02 NA	NA	NA	ΝA
##	X419 X420	NA NA	NA NA	NA NA	NA
##	X420 X421	NA NA	NA NA	NA	NA
##	X422	NA NA	NA NA	NA NA	NA NA
##	X423	NA NA	NA NA	NA	NA
##	X424	NA	NA	NA	NA 1
##	X425	-1.622e-02	2.124e+03	0	1
##	X426	-9.319e-03	1.336e+03	0	1
##	X427	2.856e-02	1.652e+03	0	1
##	X428	3.291e-02	1.462e+03	0	1
##	X429	-7.305e-03	1.125e+03	0	1
##	X430	-2.198e-02	1.097e+03	0	1

##	X431	-9.451e-03	9.749e+02	0	1
##	X432	4.065e-03	8.059e+02	0	1
##	X433	-2.089e-02	6.751e+02	0	1
##	X434	1.607e-02	6.401e+02	0	1
##	X435	1.101e-02	8.542e+02	0	1
##	X436	7.526e-03	6.035e+02	0	1
##	X437	1.220e-03	8.229e+02	0	1
##	X438	2.550e-02	1.218e+03	0	1
##	X439	1.043e-02	1.240e+03	0	1
##	X440	1.739e-02	9.015e+02	0	1
##	X441	-1.657e-02	9.392e+02	0	1
##	X442	-5.730e-03	1.029e+03	0	1
##	X443	-1.471e-02	1.367e+03	0	1
##	X444	-2.652e-02	1.556e+03	0	1
##	X445	-2.577e-02	1.739e+03	0	1
##	X446	1.416e-01	8.654e+03	0	1
##	X447	-8.720e-02	4.907e+03		1
				O N.A.	
##	X448	NA	NA	NA	NA
	X449	NA	NA	NA	NA
##	X450	8.321e-02	9.721e+03	0	1
##	X451	NA	NA	NA	NA
	X452	1.945e-01	2.537e+04	0	1
	X453	1.507e-02	2.441e+03	0	1
	X454	6.605e-04	1.369e+03	0	1
##	X455	-3.682e-02	1.307e+03	0	1
##	X456	-2.334e-03	1.337e+03	0	1
##	X457	-1.287e-02	1.077e+03	0	1
##	X458	-2.766e-02	1.035e+03	0	1
##	X459	-2.352e-02	8.791e+02	0	1
##	X460	-8.006e-03	8.339e+02	0	1
##	X461	5.935e-03	7.267e+02	0	1
##	X462	7.407e-03	6.838e+02	0	1
##	X463	-2.640e-03	6.998e+02	0	1
##	X464	-3.426e-03	5.826e+02	0	1
##	X465	5.419e-03	7.749e+02	0	1
##	X466	-4.465e-03	9.199e+02	0	1
##	X467	-2.883e-02	9.327e+02	0	1
##	X468	-2.110e-02	1.005e+03	0	1
##	X469	-2.143e-03	1.001e+03	0	1
##	X470	8.483e-03	9.767e+02	0	1
##	X471	-7.994e-03	1.225e+03	0	1
##	X472	3.032e-02	1.564e+03	0	1
##	X473	-3.245e-02	2.450e+03	0	1
##	X474	-2.928e-01	1.383e+04	0	1
##	X475	2.3200 01 NA	NA	NA	NA
##	X476	NA NA	NA	NA	NA
##	X477	NA NA	NA NA	NA NA	NA NA
##	X478	NA NA	NA NA	NA NA	NA NA
##	X479	NA 7 F13- 01	NA 1 200 - LOE	NA	NA 1
##	X480	-7.513e-01	1.209e+05	0	1
##	X481	-1.419e-02	2.364e+03	0	1
##	X482	2.265e-02	1.457e+03	0	1
##	X483	1.530e-02	1.438e+03	0	1
##	X484	-8.629e-03	1.167e+03	0	1

##	X485	1.927e-02	8.543e+02	0	1
##	X486	1.004e-02	8.906e+02	0	1
##	X487	6.914e-03	8.488e+02	0	1
##	X488	2.825e-02	7.087e+02	0	1
##	X489	7.320e-03	6.668e+02	0	1
##	X490	3.433e-03	6.912e+02	0	1
##	X491	-2.675e-03	6.182e+02	0	1
##	X492	-1.920e-02	6.830e+02	0	1
##	X493	-1.243e-02	6.128e+02	0	1
##	X494	9.029e-04	8.814e+02	0	1
##	X495	1.275e-02	9.432e+02		1
				0	
##	X496	-5.568e-04	9.288e+02	0	1
##	X497	2.432e-03	1.073e+03	0	1
##	X498	-1.410e-02	1.104e+03	0	1
##	X499	-2.544e-02	1.361e+03	0	1
##	X500	-4.842e-02	1.831e+03	0	1
##	X501	5.101e-02	3.108e+03	0	1
##	X502	5.790e-02	2.183e+04	0	1
##	X503	NA	NA	NA	NA
##	X504	NA	NA	NA	NA
##	X505	NA	NA	NA	NA
##	X506	NA	NA	NA	NA
##	X507	NA	NA	NA	NA
##	X508	3.519e-01	7.262e+04	0	1
##	X509	-1.435e-02	2.097e+03	0	1
##	X510	-2.209e-02	1.279e+03	0	1
##	X511	-1.844e-02	1.414e+03	0	1
##	X512	-5.933e-03	1.011e+03	0	1
##	X512	-1.704e-03	7.840e+02	0	1
##	X513	-1.453e-04	7.348e+02	0	1
##	X515	-3.628e-03	7.648e+02	0	1
##	X516	-1.462e-02	6.398e+02	0	1
##	X517	1.552e-02	6.256e+02	0	1
##	X518	2.765e-03	5.958e+02	0	1
##	X519	1.128e-02	4.964e+02	0	1
##	X520	4.699e-03	6.467e+02	0	1
##	X521	-3.542e-03	6.421e+02	0	1
##	X522	-1.830e-02	9.086e+02	0	1
##	X523	-1.430e-02	8.678e+02	0	1
##	X524	-6.651e-03	9.682e+02	0	1
##	X525	8.793e-03	1.040e+03	0	1
##	X526	6.003e-04	1.213e+03	0	1
##	X527	3.405e-02	1.454e+03	0	1
##	X528	3.536e-02	2.120e+03	0	1
##	X529	2.293e-02	4.675e+03	0	1
##	X530	4.012e-01	3.001e+04	0	1
##	X531	NA	NA	NA	NA
##	X532	NA	NA	NA	NA
##	X533	NA	NA	NA	NA
##	X534	NA	NA NA	NA	NA
##	X535	NA	NA NA	NA	NA
##	X536	NA NA	NA NA	NA	NA
##	X537	9.707e-03	2.339e+03	0	1
		-9.948e-03	1.152e+03		
##	X538	-9.9486-03	1.1520+03	0	1

##	X539	2.460e-02	1.103e+03	0	1
##	X540	5.787e-03	8.101e+02	0	1
##	X541	3.552e-03	7.600e+02	0	1
##	X542	-4.964e-03	5.915e+02	0	1
##	X543	-7.306e-04	6.910e+02	0	1
##	X544	1.438e-02	5.536e+02	0	1
##	X545	-2.548e-02	5.199e+02	0	1
##	X546	1.457e-02	5.333e+02	0	1
##	X547	1.224e-03	5.072e+02	0	1
##	X548	7.234e-03	5.072e+02 5.858e+02		1
				0	
##	X549	1.163e-02	6.423e+02	0	1
##	X550	-3.253e-04	7.430e+02	0	1
##	X551	1.120e-03	8.514e+02	0	1
##	X552	-3.503e-02	9.732e+02	0	1
##	X553	-8.627e-03	1.067e+03	0	1
##	X554	1.181e-03	1.281e+03	0	1
##	X555	-6.112e-02	2.532e+03	0	1
##	X556	-2.638e-02	2.313e+03	0	1
##	X557	2.675e-03	7.238e+03	0	1
##	X558	-8.343e-01	6.197e+04	0	1
##	X559	-7.513e-01	2.476e+04	0	1
##	X560	NA	NA	NA	NA
##	X561	NA NA	NA	NA	NA
##	X562	NA NA	NA NA	NA NA	NA NA
##	X563	NA	NA	NA	NA
##	X564	1.852e-02	2.728e+04	0	1
##	X565	-4.219e-02	2.173e+03	0	1
##	X566	3.156e-03	1.171e+03	0	1
##	X567	-2.890e-02	1.035e+03	0	1
##	X568	7.063e-03	7.814e+02	0	1
##	X569	5.807e-04	6.395e+02	0	1
##	X570	-2.057e-03	5.606e+02	0	1
##	X571	1.033e-02	6.471e+02	0	1
##	X572	-9.806e-03	5.242e+02	0	1
##	X573	1.228e-02	4.759e+02	0	1
##	X574	-2.610e-03	5.026e+02	0	1
	X575	4.497e-03	4.572e+02	0	1
##		-1.597e-03			
	X576		5.822e+02	0	1
##	X577	6.507e-03	6.073e+02	0	1
##	X578	-8.223e-03	7.979e+02	0	1
##	X579	8.688e-03	9.107e+02	0	1
##	X580	1.640e-02	1.022e+03	0	1
##	X581	-6.681e-03	1.303e+03	0	1
##	X582	-1.142e-02	2.097e+03	0	1
##	X583	-2.152e-02	2.504e+03	0	1
##	X584	5.660e-02	4.123e+03	0	1
##	X585	-1.501e-02	2.855e+04	0	1
##	X586	NA	NA	NA	NA
##	X587	NA	NA	NA	NA
##	X588	NA	NA	NA	NA
##	X589	NA	NA	NA	NA
##	X590	NA	NA	NA	NA
##	X591	NA NA	NA	NA	NA
##	X592	1.025e-02	6.842e+03	0	1

##	X593	9.289e-02	2.479e+03	0	1
##	X594	1.797e-03	1.134e+03	0	1
##	X595	4.283e-02	1.026e+03	0	1
##	X596	2.983e-03	7.835e+02	0	1
##	X597	-1.514e-03	6.272e+02	0	1
##	X598	-5.017e-03	6.376e+02	0	1
##	X599	-4.652e-03	5.296e+02	0	1
##	X600	-6.812e-03	4.817e+02	0	1
##	X601	1.238e-02	4.880e+02	0	1
##	X602	-1.111e-02	4.823e+02	0	1
##	X603	1.230e-02	4.726e+02	0	1
##	X604	1.749e-03	5.826e+02	0	1
##	X605	-2.944e-03	5.536e+02	0	1
##	X606	2.570e-02	7.403e+02	0	1
##	X607	2.724e-03	8.623e+02	0	1
##	X608	-1.435e-02	1.326e+03	0	1
##	X609	7.445e-02	1.338e+03		1
				0	
##	X610	3.745e-02	2.574e+03	0	1
##	X611	2.310e-02	3.789e+03	0	1
##	X612	-1.015e-01	3.695e+03	0	1
##	X613	8.179e-01	4.369e+04	0	1
##	X614	NA	NA	NA	NA
##	X615	NA	NA	NA	NA
##	X616	NA	NA	NA	NA
##	X617	NA	NA	NA	NA
##	X618	NA	NA	NA	NA
##	X619	NA	NA	NA	NA
##	X620	-1.333e-01	3.721e+04	0	1
##	X621	-1.046e-01	4.095e+03	0	1
##	X622	-2.180e-02	1.406e+03	0	1
##	X623	-7.354e-03	9.112e+02	0	1
##	X624	-5.157e-03	8.384e+02	0	1
##	X625	8.268e-03	6.697e+02	0	1
##	X626	-2.186e-03	5.907e+02	0	1
##	X627	-6.450e-03	4.872e+02	0	1
##	X628	5.676e-03	4.733e+02	0	1
##	X629	-7.352e-03	4.404e+02	0	1
##	X630	1.823e-03	4.325e+02	0	1
##	X631	6.319e-04	4.849e+02	0	1
##	X632	6.076e-03	5.656e+02	0	1
##	X633	-9.979e-03	6.289e+02	0	1
		-1.164e-02			
##	X634		8.703e+02	0	1
##	X635	2.198e-02	9.163e+02	0	1
##	X636	-1.016e-01	1.802e+03	0	1
##	X637	1.340e-02	2.134e+03	0	1
##	X638	-3.997e-02	3.491e+03	0	1
##	X639	1.852e-02	4.618e+03	0	1
##	X640	-4.730e-01	4.905e+04	0	1
##	X641	NA	NA	NA	NA
##	X642	NA	NA	NA	NA
##	X643	NA	NA	NA	NA
##	X644	NA	NA	NA	NA
##	X645	NA	NA	NA	NA
##	X646	NA	NA	NA	NA

##	X647	NA	NA	NA	NA
##	X648	NA	NA	NA	NA
##	X649	1.343e-01	4.653e+03	0	1
##	X650	-3.763e-03	1.802e+03	0	1
##	X651	1.746e-02	1.124e+03	0	1
##	X652	-1.096e-02	7.784e+02	0	1
##	X653	1.070e-05	6.224e+02	0	1
##	X654	-7.312e-03	5.404e+02	0	1
##	X655	5.874e-03	4.452e+02	0	1
##	X656	-3.974e-05	4.299e+02	0	1
##	X657	-1.070e-02	3.883e+02	0	1
##	X658	-3.786e-03	3.835e+02	0	1
##	X659	-2.533e-04	4.127e+02	0	1
##	X660	-2.951e-02	4.554e+02	0	1
##	X661	2.867e-02	6.193e+02	0	1
##	X662	-4.598e-03	8.618e+02	0	1
##	X663	7.300e-02	1.856e+03	0	1
##	X664	-3.461e-03	2.229e+03	0	1
##	X665	-5.124e-02	2.833e+03	0	1
##	X666	1.533e-01	1.073e+04	0	1
##	X667	-1.106e-01	8.462e+04	0	1
##	X668	3.561e+00	4.159e+05	0	1
##	X669	NA	NA	NA	NA
##	X670	NA	NA	NA	NA
##	X671	NA	NA	NA	NA
##	X672	NA	NA	NA	NA
##	X673	NA	NA	NA	NA
##	X674	NA	NA	NA	NA
##	X675	NA	NA	NA	NA
##	X676	NA	NA	NA	NA
##	X677	-1.504e-01	1.731e+04	0	1
##	X678	1.815e-03	2.677e+03	0	1
##	X679	-2.335e-02	1.231e+03	0	1
##	X680	1.079e-02	8.901e+02	0	1
##	X681	-1.175e-02	6.469e+02	0	1
##	X682	1.779e-02	6.037e+02	0	1
##	X683	-2.270e-02	6.139e+02	0	1
##	X684	3.281e-03	5.648e+02	0	1
##	X685	1.013e-02	5.052e+02	0	1
##	X686	-1.065e-02	4.503e+02	0	1
##	X687	6.623e-03	4.809e+02	0	1
##	X688	4.802e-03	5.484e+02	0	1
##	X689	-2.401e-02	7.078e+02	0	1
##	X690	1.997e-02	9.664e+02	0	1
##	X691	-5.122e-02	1.650e+03	0	1
##	X692	1.190e-01	7.667e+03	0	1
##	X693	-6.088e-02	5.290e+03	0	1
##	X694	-1.967e-01	5.054e+04	0	1
##	X695	1.169e-01	7.125e+04	O M A	1 NA
##	X696	NA NA	NA NA	NA NA	NA NA
## ##	X697	NA NA	NA NA	NA NA	NA NA
##	X698 X699	NA NA	NA NA	NA NA	NA NA
##	X700	NA NA	NA NA	NA NA	NA NA
ππ	AIOO	IVA	IVA	IVA	IVA

##	X701	NA	NA	NA	NA
##	X702	NA	NA	NA	NA
##	X703	NA	NA	NA	NA
##	X704	NA	NA	NA	NA
##	X705	NA	NA	NA	NA
##	X706	NA	NA	NA	NA
##	X707	1.214e+00	1.529e+05	0	1
##	X708	-1.191e+00	5.316e+04	0	1
##	X709	5.589e-01	3.128e+04	0	1
##	X710	2.752e-01	1.999e+04	0	1
##	X711	-9.701e-02	2.121e+04	0	1
##	X712	-9.234e-02	1.272e+04	0	1
##	X713	6.354e-02	4.142e+03	0	1
##	X714	1.547e-01	7.150e+03	0	1
##	X715	-1.231e-01	6.146e+03	0	1
##	X716	3.333e-02	3.071e+03	0	1
##	X717	1.982e-01	1.581e+04	0	1
##	X718	-4.929e-01	4.425e+04	0	1
##	X719	1.572e+00	3.762e+05	0	1
##	X720	NA	NA	NA	NA
##	X721	NA	NA	NA	NA
##	X722	NA	NA	NA	NA
##	X723	NA	NA	NA	NA
##	X724	NA	NA	NA	NA
##	X725	NA	NA	NA	NA
##	X726	NA	NA	NA	NA
##	X727	NA	NA	NA	NA
##	X728	NA	NA	NA	NA
##	X729	NA	NA	NA	NA
##	X730	NA	NA	NA	NA
##	X731	NA	NA	NA	NA
##	X732	NA	NA	NA	NA
##	X733	NA	NA	NA	NA
##	X734	NA	NA	NA	NA
##	X735	NA	NA	NA	NA
##	X736	NA	NA	NA	NA
##	X737	NA	NA	NA	NA
##	X738	NA	NA	NA	NA
##	X739	NA	NA	NA	NA
##	X740	NA	NA	NA	NA
##	X741	NA	NA	NA	NA
##	X742	NA	NA	NA	NA
##	X743	NA	NA	NA	NA
##	X744	NA	NA	NA	NA
##	X745	NA	NA	NA	NA
##	X746	NA	NA	NA	NA
##	X747	NA	NA	NA	NA
##	X748	NA	NA	NA	NA
##	X749	NA	NA	NA	NA
##	X750	NA	NA	NA	NA
##	X751	NA	NA	NA	NA
##	X752	NA	NA	NA	NA
##	X753	NA	NA	NA	NA
##	X754	NA	NA	NA	NA

```
## X755
                          NA
                                      NA
                                               NA
                                                          NA
                          NA
                                               NA
                                                          NA
## X756
                                      NA
## X757
                          NA
                                      NA
                                               NA
                                                          NA
## X758
                          NA
                                      NA
                                               NA
                                                          NA
## X759
                          NA
                                      NA
                                               NA
                                                          NA
## X760
                          NA
                                      NA
                                               NA
                                                          NA
## X761
                          NA
                                      NA
                                               NA
                                                          NA
## X762
                          NA
                                      NA
                                               NA
                                                          NA
## X763
                          NA
                                      NA
                                               NA
                                                          NA
## X764
                          NA
                                      NA
                                               ΝA
                                                          NA
## X765
                          NA
                                      NA
                                               NA
                                                          NA
## X766
                          ΝA
                                      NA
                                               ΝA
                                                          NA
## X767
                          NA
                                      NA
                                               NA
                                                          NA
## X768
                          ΝA
                                      NA
                                               ΝA
                                                          NA
## X769
                          NA
                                      NA
                                               NA
                                                          NA
## X770
                          NA
                                      NA
                                               NA
                                                          NA
## X771
                          NA
                                      NA
                                               NA
                                                          NA
## X772
                                      NA
                                               NA
                                                          NA
                          NA
## X773
                                      NA
                                               NA
                                                          NA
                          NA
## X774
                          NA
                                      NA
                                               NA
                                                          NA
## X775
                          NA
                                      NA
                                               NA
                                                          NA
## X776
                          NA
                                      NA
                                               NA
                                                          NA
## X777
                          NA
                                      NA
                                               NA
                                                          NA
## X778
                          NA
                                      NA
                                               NA
                                                          NA
## X779
                          NA
                                      NA
                                               ΝA
                                                          NA
## X780
                          NA
                                      NA
                                               NA
                                                          NA
## X781
                                                          NA
                          ΝA
                                      NA
                                               ΝA
## X782
                          NA
                                      NA
                                               NA
                                                          NA
## X783
                                      NA
                          NA
                                               ΝA
                                                          NA
## X784
                          NA
                                      NA
                                               NA
                                                          NA
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
        Null deviance: 2.9206e+03
                                      on 2114
                                                degrees of freedom
   Residual deviance: 1.8922e-08
                                      on 1616
                                                degrees of freedom
##
   AIC: 998
##
## Number of Fisher Scoring iterations: 25
```

The message "glm.fit: algorithm did not convergeglm.fit: fitted probabilities numerically 0 or 1 occurred" implies numerical problems which is caused by too many features or explanatory variables.

The estimated coefficients and standard errors of some features are NA's such as X1, X20, X10 and so on. This is due to that they have zero variability (so they are not important to the model). Meanwhile, other features have very small estimate coefficients, very large standard errors and p-values of 1 (so they are not statistically significant) such as X100, X109, X69 and so on. The approach fails because we can't choose all variables, we have to prune or eliminate those with variability of 0.