If an investor is indifferent between a sum of money today and a different sum of money in the future, the two sums are said to be **economically equivalent**.

• Example: If Logan would have to toss a coin to choose between \$500 on 01/01/2017 or \$550 on 01/01/2018 then \$500 on 01/01/17 is economically equivalent to \$550 on 01/01/2018.

Equivalence calculations using a single sum of money

Compounding (see E6) is used to find what a current sum would be worth at a future date—i.e. what is the *economically equivalent* amount 5 years from now?

Question: Suppose Heeral deposits \$2,042 in a bank which pays an interest rate of 8%. How much money will she have in 5 years?

IMPORTANT: interest rates must be converted to *decimal form* for ALL problems. Method: Divide the stated i by 100 (8/100 = 0.08)

Answer:

$$F = P(1 + i)^{N}$$

$$F = $2,042(1 + 0.08)^{5}$$

$$F = $3,000$$

We say that \$2,042 today is equivalent to \$3,000 in 5 years at 8% interest

If i = 5%, are these two sums (\$2,042 and \$3,000) still equivalent?

- o No! A lower i means \$2,042 will be on a slower growth path
 - (At i = 5%, \$2,042 is equivalent to \$2,606 in 5 years)

APPENDIX C: COMPOUND IN TEKEST TABLES

Techniques for solving equivalence problems (which get harder as the term progresses)

A calculator—fine for simple problems/more accurate than factor tables

Factor Tables (see sample factor table): Developed to make equivalence problems quicker to solve.

- Engineering economics textbook include them, usually as an appendix
- Available from NCEES: https://ncees.org/engineering/fe/ (pg. 127 of Reference Handbook)
- Available on D2L under "Course Content," Module, "FACTOR TABLES."
- Easiest method if available, and essential to learn for FE exam candidates!

Uniform Payment Series Arithmetic Gradient Single Payment Present Sinking Capital Present Gradient Gradient Compound Compound Fund Worth Uniform Present Recovery Factor Factor Factor Factor Factor Factor Series Worth Find F Find P Find A Find A Find F Find P Find A Find P Given P Given F Given F Given P Given A Given A Given G Given G 1.080 .9259 1.0000 1.0800 1.000 0.926 0 1.166 .8573 .4808 .5608 2.080 1.783 0.481 0.857 1.260 .7938 .3080 .3880 3.246 2.577 0.949 2.445 1.360 .7350.2219 3019 4.506 3.312 1.404 4.650 7.372

Using factor tables to solve Heeral's problem:

- Find the table for i = 8% (notice 8% at the top of the sample table.)
- Find the column labeled **F/P**. Read this as "Find F, given P".
 - Find the row, N = 5 \rightarrow The factor F/P = 1.469

Solve for F: F = P(F/P,i,N) = \$2,042(1.469) = \$3,000

(Factors in Factor Tables are rounded, so answers will have small discrepancies with calculator answers. Don't worry about this, economic equivalence answers are not very precise, partly to avoid *spurious accuracy*. (The pretense of accuracy when accuracy is impossible is as bad as inaccuracy when accuracy is possible and necessary.)

Discounting tells us what a future sum would be worth *today* (i.e. Find P given F)

We know: $F = P(1 + i)^{N}$ Rearrange to express P as a function of F: $P = F(1 + i)^{-N}$

(Not sure why the exponent has a negative sign? See Khan Academy video: https://www.khanacademy.org/math/pre-algebra/pre-algebra-exponents-radicals/pre-algebra-negative-exponents/v/negative-exponents)

Let's reimagine Heeral's problem: Suppose Heeral wants to have \$3,000 saved in 5 years and the bank is offering an interest rate of 8%. How much money will she need to deposit today to achieve her goal?

- Using the expression for P as a function of F (above), and a calculator-- \$2,042
- Look at the **Sample Factor Table** and use column: **P/F** which means, "Find P given F".
 - \circ For i = 8% (0.08 in decimal form) and N = 5, the factor for P/F = .6806
 - o Solve for P: P = F(P/F, i, N) = \$3,000(0.6806) = \$2,041.80, or \$2,042 with rounding.

Interesting questions that can be answered using discounting:

- Will the **discounted** present value of the *excess of my expected salary over that of a high school graduate* justify my upfront college costs?
- What is the economic impact of a project with massive upfront costs, and benefits that play out over decades-- like a new Columbia River crossing?

Are these sums also equivalent in the intervening years?

The **future worth** of the cash flow is \$2,042 and the **present worth** is \$3,000. How about Year 3?

Let V_n = an equivalent sum of money at the end of a specified period, N, that considers the time value of money. (Note: $P = V_0$ and $F = V_N$).

1. What is \$2,042 worth when N = 3? Find V_3 :

$$V_3 = P(F/P, 8\%, 3)$$

Look up (F/P,i,N) for i = 8% and N = 3 in sample factor table. (F/P,8%,3) = 1.260.

$$V_3 = $2,042(1.260) = $2,572.92$$

2. What is \$3,000 worth 2 years prior? (N = 2 because Year 3 is 2 years prior to Year 5)

$$V_3 = F(P/F,i,N)$$

Look up (P/F, i, N) for i = 8% and N = 2 in sample factor table. (P/F, 8%, 2) = 0.8573.

$$V_3 = \$3,000(0.8573) = \$2,571.90$$

(Rounding again, but close enough)

Therefore, cash flows that are equivalent at F and P are also equivalent at any point between F and P.