EE61012 – Spring Semester 2024

Homework 1: Convex Optimization in Control and Signal Processing

Prof. Ashish Ranjan Hota Department of Electrical Engineering, IIT Kharagpur

Q 1.1: Bounded Set

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence that converges to $x^*\in X$. Show that the set $\{x_n\}_{n\in\mathbb{N}}=\{x_1,x_2,\ldots\}\subseteq X$ is bounded. Recall that a sequence converges if for every $\epsilon>0$, there exists $n\in\mathbb{N}$ such that $||x^*-x_m||\leq \epsilon$ for all $m\geq n$.

Q 1.2: Open and Closed Set

Is the set $X = \{x \in \mathbb{R}^2 | x_1 + x_2 = 1\}$ an open set? Is it a closed set?

Q 1.3: Convex Hull

Let $C = \{x \in \mathbb{R} | 1 \le x \le 2, 3 \le x \le 4\}$. Find the affine hull, conic hull, and convex hull of C.

Q 1.4: Convex Set

Let $x_0, v \in \mathbb{R}^n$. Let $C = \{x \in \mathbb{R}^n | x = x_0 + \alpha v, \alpha \ge 0\}$ be the set of points that lie on the ray originating from x_0 along the direction v. Is C an affine set? Is it a convex set? Is it a cone?

Q 1.5: Convex Set

Show that the set $C = \{x \in \mathbb{R}^2 | x_1 x_2 \ge 1, x_1 \ge 0, x_2 \ge 0\}$ is a convex set. Hint: If $a, b \ge 0$ and $0 \le \theta \le 1$, then $a^{\theta}b^{(1-\theta)} \le \theta a + (1-\theta)b$.

Q 1.6: Convex Set

Let $x \in \mathbb{R}^n$ and $F_0, F_1, \dots, F_n \in \mathbb{S}^n$ where \mathbb{S}^n is the set of symmetric matrices of dimension n. A linear matrix inequality (LMI) $F : \mathbb{R}^n \to \mathbb{S}^n$ is an expression of the form:

$$F(x) := F_0 + \sum_{i \in [n]} x_i F_i \le 0_{n \times n}.$$

Show that the set $\{x \in \mathbb{R}^n \mid F(x) \leq 0_{n \times n}\}$ is a convex set.

Q 1.7: Convex Set

Let $C \in \mathbb{R}^n$ be a compact (closed and bounded) convex set. For a scalar α , let $C(\alpha)$ be the set of all points in C whose first coordinate is closer to α than any other point. In other words, $C(\alpha) = \{x \in C | |x_1 - \alpha| \le |y_1 - \alpha|, \forall y \in C\}$. Is $C(\alpha)$ a convex set for any choice of C and α ?

Q 1.8: Separating Hyperplane

Let $C_1 = \{x \in \mathbb{R}^2 | x_1 \ge 0, x_2 \ge 0\}$, and let $C_2 = \{x \in \mathbb{R}^2 | x_1 \le 0, x_2 \le 0\}$. Find a hyperplane that separates C_1 and C_2 .

Q 1.9: Convex Function

Let $x_k \in \mathbb{R}^n, k = 1, 2, ..., T$. Let $x = [x_1^\top, x_2^\top, ..., x_k^\top]^\top \in \mathbb{R}^{nT}$ where $f : \mathbb{R}^{nT} \to \mathbb{R}$. Let $f(x) = \sum_{k=1}^T x_k^\top Q_k x_k$, where each Q_k is positive semi-definite. Then show that f is a convex function.

Q 1.10: Convex Function

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function. Show that

$$(\nabla f(x) - \nabla f(y))^\top (x - y) \geq 0, \quad \forall x, y \in \mathrm{dom} f.$$

Q 1.11: Convex Function

Suppose that g(x) is convex and h(x) is concave. Suppose the domain of both functions is a closed, convex set C such that both g(x) and h(x) are always positive. Prove that the function $f(x) = \frac{g(x)}{h(x)}$ is quasi-convex, i.e., all sub-level sets of f are convex sets.

Q 1.12: Convex Function

Determine whether the following functions $f_i: \mathbb{R}^2 \to \mathbb{R}$ are convex, concave or neither.

- a. $f_1(x_1, x_2) = x_1 x_2$ with domain $x_1 > 0, x_2 > 0$.
- b. $f_2(x_1, x_2) = -\frac{1}{x_1 x_2}$ with domain $x_1 > 0, x_2 > 0$.
- c. $f_3(x_1, x_2) = \frac{x_1^2}{x_2}$ with domain $x_1 \in \mathbb{R}, x_2 > 0$.
- d. $f_4(x_1, x_2) = x_1 \log \left(1 + \frac{\beta x_2}{x_1}\right)$ with domain $x_1, x_2 > 0$, and $\beta \in \mathbb{R}$ is a constant.
- e. $f_5(x) = -(\sum_{i=1}^n x_i^a)^{1/a}$ for $a \in (0,1)$.
- f. $f_6(x) = \min(0.5, x, x^2)$.

g.
$$f_7(x) = \max_{i \in \{1, 2, \dots, n\}} x_i - \min_{i \in \{1, 2, \dots, n\}} x_i$$
.

Q 1.13: Convex Function

If f is a convex function, then g(x,t) = tf(x/t) is also a convex function. You may use the epigraph definition of convex functions to show the above.

Q 1.14: Convex Optimization

Formulate an optimization problem to find the largest circle contained in the triangle $X := \{x \in \mathbb{R}^2 \mid x_1 \geq 0, x_2 \geq 0, 3x_1 + 4x_2 \leq 12\}$. Clearly state the decision variables, constraints and cost function. Determine if the problem is a convex optimization problem.

Q 1.15: Convex Optimization

Formulate an optimization problem to find the minimum distance between a circle $X_1 := \{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 1\}$ and the line $X_2 := \{x \in \mathbb{R}^2 \mid x_1 - x_2 = 2\}$. Clearly state the decision variables, constraints and cost function. Determine if the problem is a convex optimization problem.

Q 1.16: Midsem Spring 2022-23

Answer the following questions. Each question carries equal number of points.

- 1. Give an example of two convex sets whose union is not convex.
- 2. Let $f(x) = \frac{x^2+2}{x+2}$ with $dom(f) = (-\infty, -2)$. Is this function convex, concave or neither?
- 3. Show that a function is convex if and only if its epigraph is a convex set.
- 4. Consider an optimization problem with cost function $f(x) = -x_1 + x_2^2$ and constraint set $X = \{x \in \mathbb{R}^2 | -x_1^2 x_2^2 + 4 \le 0, x_1 + x_2 \ge -2\}$. Explain with justificiation whether this problem is a convex optimization problem or not.

Q 1.17: Midsem Spring 2022-23

Consider the set $X := \{x \in \mathbb{R}^n | ||x - z_0||_2 \le ||x - z_i||_2, i = 1, 2, ..., k\}$ where $z_0, z_1, ..., z_k \in \mathbb{R}^n$. Show that this set is a polyhendron and can be written as $X := \{x \in \mathbb{R}^n | Ax \le b\}$. Find A and b.

Q 1.18: Endsem Spring 2022-23

Consider the following optimization problem:

$$\begin{aligned} \text{maximize}_{x \in \mathbb{R}^1} & 2x - x^2 \\ \text{subject to} & 0 \le x \le 3. \end{aligned}$$

Is the above problem a convex optimization problem? Find a globally optimal solution of the above.

Q 1.19: Endsem Spring 2022-23

Determine if the following statements are true or false. If true, justify. If false, give a counter example.

- 1. A convex optimization problem can have at most one globally optimal solution.
- 2. A convex optimization problem must have at least one globally optimal solution.
- 3. Any optimization problem with an unbounded feasible region does not have an optimal solution.

Q 1.20: Endsem Spring 2022-23

Consider a function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x) = (x_1 + x_2^2)^2$ where $x = [x_1 x_2]$.

- 1. Compute the gradient of f.
- 2. At $x_0 = [0, 1]$, is the direction d = [1, -1] a descent direction, i.e., with directional derivative negative?
- 3. Find $\alpha > 0$ that minimizes $f(x_0 + \alpha d)$.