

DATA LOADING

#Data Loading
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

How My Data Looks

df = pd.read_csv("/content/haberman.csv", header = None)
print(df)

```
\overline{2}
                      3
          30
                      1
     1
          30
               62 3
          30
               65
     3
               59
          31
                       1
          31
               65
          75
     301
               62 1
                      1
     302
          76
               67
                      1
     303
          77
               65
                      1
                      2
     304
          78
               65
                   1
     305
          83
               58
                  2
     [306 rows x 4 columns]
```

Attribute Information:

Patient's age (numerical) at the time of the procedure The patient's year of surgery (numerical year - 1900) The number (numerical) of positive axillary nodes found

Status of survival (class attribute) 1 = The patient lived for five years or more 2: The patient passed away in five years.

df.head()

→		0	1	2	3
	0	30	64	1	1
	1	30	62	3	1
	2	30	65	0	1
	3	31	59	2	1
	4	31	65	4	1

IS THERE ANY STEP I NEED TO TAKE TO AVOID DATA REDUNDANCY?

df = pd.read_csv("/content/haberman.csv", header = None, names=['Age','Year','Nodes','Sur
print(df)

\rightarrow		Age	Year	Nodes	Survival
	0	30	64	1	1
	1	30	62	3	1
	2	30	65	0	1
	3	31	59	2	1
	4	31	65	4	1
	301	75	62	1	1
	302	76	67	0	1
	303	77	65	3	1
	304	78	65	1	2
	305	83	58	2	2

[306 rows x 4 columns]

df.head()

→		Age	Year	Nodes	Survival
	0	30	64	1	1
	1	30	62	3	1
	2	30	65	0	1
	3	31	59	2	1
	4	31	65	4	1

What is the dimension of my data?

```
df.shape

→ (306, 4)
```

What is the datatype of my columns?

What is the mathematical overview of my dataset?

df.describe()

→		Age	Year	Nodes	Survival
	count	306.000000	306.000000	306.000000	306.000000
	mean	52.457516	62.852941	4.026144	1.264706
	std	10.803452	3.249405	7.189654	0.441899
	min	30.000000	58.000000	0.000000	1.000000
	25%	44.000000	60.000000	0.000000	1.000000
	50%	52.000000	63.000000	1.000000	1.000000
	75%	60.750000	65.750000	4.000000	2.000000
	max	83.000000	69.000000	52.000000	2.000000

Is there any null value in my dataset?

```
df.isnull().sum()
```

```
Age 0
Year 0
Nodes 0
Survival 0
dtype: int64
```

Is there any duplicated?

```
df.duplicated().sum()

→ 17
```

Is there any co-relation in my dataset?

```
df.corr()["Age"]

→ Age 1.000000

Year 0.089529

Nodes -0.063176

Survival 0.067950

Name: Age, dtype: float64
```

DATA MANIPULATION

```
df['Survival']=df['Survival'].map({1:"Yes",2:"No"})
df
```

,		_
_	4	÷
	-	

	Age	Year	Nodes	Survival
0	30	64	1	Yes
1	30	62	3	Yes
2	30	65	0	Yes
3	31	59	2	Yes
4	31	65	4	Yes
301	75	62	1	Yes
302	76	67	0	Yes
303	77	65	3	Yes
304	78	65	1	No
305	83	58	2	No

306 rows × 4 columns

df.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 306 entries, 0 to 305 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Age	306 non-null	int64
1	Year	306 non-null	int64
2	Nodes	306 non-null	int64
3	Survival	306 non-null	object

dtypes: int64(3), object(1)

memory usage: 9.7+ KB

df['Survival'] = df['Survival'].astype('category')

df.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 306 entries, 0 to 305 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Age	306 non-null	int64
1	Year	306 non-null	int64
2	Nodes	306 non-null	int64
3	Survival	306 non-null	category

dtypes: category(1), int64(3)

memory usage: 7.7 KB

df.shape[0]

→ 306

df.shape[1]

→ 4

df['Survival'].value_counts(normalize=True)

Yes 0.735294 No 0.264706

Name: Survival, dtype: float64

Univarient Analysis

import seaborn as sns

CATEGORICAL ANALYSIS

sns.countplot(df["Survival"])

<Axes: xlabel='count', ylabel='Survival'>

df["Survival"].value_counts().plot(kind="bar")

df["Survival"].value_counts().plot(kind="pie",autopct="%.2f")

Numerical Data

(array([43., 99., 96., 59., 9.]),
array([30., 40.6, 51.2, 61.8, 72.4, 83.]),
⟨BarContainer object of 5 artists⟩)

sns.distplot(df["Age"])

<ipython-input-182-cf0334540b62>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df["Age"]) <Axes: xlabel='Age', ylabel='Density'>

sns.boxplot(df["Nodes"])

Multivarient Analysis

Numerical-Numerical

sns.scatterplot(x="Age", y="Nodes", data=df,hue="Year")

Numericl-Categorical

sns.barplot(x = "Age", y = "Survival", data = df)

sns.boxplot(x="Age",y="Survival",data=df)

<Axes: xlabel='Age', ylabel='Survival'>

sns.distplot(df["Age"],hist=False)
sns.distplot(df["Nodes"],hist=False)

<ipython-input-196-39b0852b716c>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).