# CHEMISTRY-THEORY (CYI 101)

UNIT – III (Inorganic Chemistry) Instructor: Dr. C. Haldar



Department of Chemistry Time: 3.00 PM-3.50 PM (Friday)

## **Evaluation and Study Material**

#### **Examination/Class tests/others**

- See Academic Calendar
- Will be informed time to time

#### **Course Material**

- What the instructor teaches!
- Books: Inorganic chemistry: Huheey, Keiter and Keiter Inorganic Chemistry: Housecroft and Sharpe

## What is a Transition Metal?

| 1<br>1<br><b>H</b>                                  | IUPAC Periodic Table of the Elements                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                       |                                          |                                         |                                           |                                      |                                            |                                           |                                        | 18<br>2<br><b>He</b>                |                                                   |                            |                                                       |                                                   |                                       |
|-----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------------------|----------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------|
| hydrogen<br>1.008<br>[1.0078, 1.0082]               | 2 Key: 13 14 15 16 17                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                       |                                          |                                         |                                           |                                      |                                            |                                           |                                        |                                     |                                                   | helium<br>4.0026           |                                                       |                                                   |                                       |
| 3<br><b>Li</b><br>lithium<br>6.94<br>[6.938, 6.997] | Be<br>beryllium                                           | Be symbol name conventional albertic weight some state of the convention |                                                |                                       |                                          |                                         |                                           |                                      |                                            |                                           |                                        | 10<br><b>Ne</b><br>neon<br>20.180   |                                                   |                            |                                                       |                                                   |                                       |
| 11 <b>Na</b> sodium 22.990                          | 12<br><b>Mg</b><br>magnesium<br>24305<br>[24.304, 24.307] | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                              | 5                                     | 6                                        | 7                                       | 8                                         | 9                                    | 10                                         | 11                                        | 12                                     | 13<br>Al<br>aluminium<br>26.982     | 14<br>Si<br>silicon<br>28.085<br>[28.084, 28.086] | 15 P<br>phosphorus         | 16<br><b>S</b><br>sulfur<br>32.06<br>[32.059, 32.076] | 17<br>CI<br>chlorine<br>35.45<br>[35.446, 35.457] | 18<br><b>Ar</b><br>argon<br>39.948    |
| 19<br><b>K</b><br>potassium                         | 20<br>Ca<br>calcium                                       | 21<br>Sc<br>scandium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22<br><b>Ti</b><br>titanium                    | 23<br><b>V</b><br>vanadium            | Cr<br>chromium                           | 25<br><b>Mn</b><br>manganese            | Fe<br>iron                                | 27<br>Co<br>cobalt                   | 28<br><b>Ni</b><br>nickel                  | Cu<br>copper                              | 30<br><b>Zn</b><br>zinc                | 31<br><b>Ga</b><br>gallium          | 32<br><b>Ge</b><br>germanium                      | 33<br>As<br>arsenic        | 34<br>Se<br>selenium                                  | 35<br><b>Br</b><br>bromine<br>79.904              | 36<br><b>Kr</b><br>krypton            |
| 39.098<br>37<br><b>Rb</b><br>rubidium               | 38<br><b>Sr</b><br>strontium                              | 44.956<br>39<br><b>Y</b><br>yttrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.867<br>40<br><b>Zr</b><br>zirconium         | 50.942<br>41<br><b>Nb</b><br>niobium  | 51.996<br>42<br><b>Mo</b><br>molybdenum  | 54.938<br>43<br><b>Tc</b><br>technetium | 55.845(2)<br>44<br><b>Ru</b><br>ruthenium | 58.933<br>45<br><b>Rh</b><br>rhodium | 46<br>Pd<br>palladium                      | 63.546(3)<br>47<br><b>Ag</b><br>silver    | 65.38(2)<br>48<br><b>Cd</b><br>cadmium | 69.723<br>49<br><b>In</b><br>indium | 72.630(8)<br>50<br><b>Sn</b><br>tin               | 51<br>Sb<br>antimony       | 78.971(8)<br>52<br><b>Te</b><br>tellurium             | [79.901, 79.907]<br>53<br>I<br>iodine             | 83.798(2)<br>54<br><b>Xe</b><br>xenon |
| 55<br><b>Cs</b><br>caesium                          | 56<br><b>Ba</b><br>barium                                 | 88.906<br>57-71<br>lanthanoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91.224(2)<br>72<br><b>Hf</b><br>hafnium        | 92.906<br>73<br><b>Ta</b><br>tantalum | 95.95<br>74<br><b>VV</b><br>tungsten     | 75<br><b>Re</b><br>rhenium              | 76<br><b>Os</b><br>osmium                 | 77<br><b>Ir</b><br>iridium           | 78 <b>Pt</b> platinum                      | 79<br><b>Au</b><br>gold                   | 80<br><b>Hg</b><br>mercury             | 81<br>TI<br>thallium<br>204.38      | 82<br><b>Pb</b><br>lead                           | 83<br><b>Bi</b><br>bismuth | 84<br><b>Po</b><br>polonium                           | 85<br><b>At</b><br>astatine                       | 86<br><b>Rn</b><br>radon              |
| 87<br>Fr<br>francium                                | 88<br><b>Ra</b><br>radium                                 | 89-103<br>actinoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 178.49(2)<br>104<br><b>Rf</b><br>rutherfordium | 180.95<br>105<br><b>Db</b><br>dubnium | 183.84<br>106<br><b>Sg</b><br>seaborgium | 186.21<br>107<br><b>Bh</b><br>bohrium   | 190.23(3)<br>108<br><b>HS</b><br>hassium  | 192.22<br>109<br>Mt<br>meitnerium    | 195.08<br>110<br><b>DS</b><br>darmstadtium | 196.97<br>111<br><b>Rg</b><br>roentgenium | 112<br>Cn<br>copernicium               | 113<br><b>Nh</b><br>nihonium        | 207.2<br>114<br><b>FI</b><br>flerovium            | 115<br>MC<br>moscovium     | 116<br>LV<br>livermorium                              | 117<br><b>Ts</b><br>tennessine                    | 118<br><b>Og</b><br>oganesson         |



| 57<br><b>La</b><br>lanthanum | 58<br><b>Ce</b><br>cerium            | 59<br>Pr<br>praseodymium<br>140.91 | 60 Nd neodymium                     | 61<br>Pm<br>promethium | 62<br><b>Sm</b><br>samarium<br>150.36(2) | 63<br>Eu<br>europium         | 64<br>Gd<br>gadolinium | 65<br><b>Tb</b><br>terbium   | 66<br>Dy<br>dysprosium  | 67<br>Ho<br>holmium     | 68<br><b>Er</b><br>erbium   | 69<br>Tm<br>thulium      | 70<br>Yb<br>ytterbium | 71<br>Lu<br>lutetium    |
|------------------------------|--------------------------------------|------------------------------------|-------------------------------------|------------------------|------------------------------------------|------------------------------|------------------------|------------------------------|-------------------------|-------------------------|-----------------------------|--------------------------|-----------------------|-------------------------|
| AC actinium                  | 90<br><b>Th</b><br>thorium<br>232.04 | 91<br>Pa<br>protactinium<br>231.04 | 92<br><b>U</b><br>uranium<br>238.03 | 93<br>Np<br>neptunium  | 94<br>Pu<br>plutonium                    | 95<br><b>Am</b><br>americium | 96<br>Cm<br>curium     | 97<br><b>Bk</b><br>berkelium | 98<br>Cf<br>californium | 99<br>Es<br>einsteinium | 100<br><b>Fm</b><br>fermium | 101<br>Md<br>mendelevium | 102<br>No<br>nobelium | 103<br>Lr<br>lawrencium |

## Color of transition metal complexes



Ruby: Al<sub>2</sub>O<sub>3</sub> With Impurity of Chromium

Sapphire:  $Al_2O_3$  with titanium and iron impurities are present together, and in the correct <u>valence</u> states, the result is a deep-blue color. Fe<sup>2+</sup> and Ti<sup>4+</sup> ions are substituted for  $Al^{3+}$ 







Emerald is a gemstone and a variety of the mineral beryl (Be<sub>3</sub>Al<sub>2</sub>(SiO<sub>3</sub>)<sub>6</sub>) colored green by trace amounts of chromium and sometimes vanadium

## Color of transition metal complexes



## **Naturally Occurring Coordination Compounds**



## d-orbitals



### **Crystal Field Theory**

- 1. This is an electrostatic model for transition metal complexes.
- 2. Ligands are considered as point charge.
- 3. The CFT does not provide for electrons to enter the metal orbitals, i.e. it does not consider any orbital overlap.
- 4. Predicts the pattern of splitting of d-orbitals.
- 5. Used to rationalize spectroscopic and magnetic properties.







Square planer complex (Sp)



- Six point negative charges (Ligands)
   representing the ligands are placed in an
   octahedral array around the central metal
   ion.
- The ligand and orbitals lie on the same axes.
- These charges interact strongly with the central metal ion.
- 1. The stability of the complex in large part from this attractive interaction between opposite charges.
- 2. There is a much smaller but very important secondary effect arising from the fact that electrons in different d orbitals interact with the ligands to different extents.
- Although this differential interaction is little more than about 10 per cent of the overall metal-ligand interaction energy, it has major consequences for the properties of the complex.







#### Splitting of *d*-orbital energies in an octahedral field of ligands.



The *d* orbitals split into two groups. The difference in energy between these groups is called the *crystal field splitting energy*, symbol  $\Delta_o$ .





- The overall stabilization of the  $t_{2g}$  orbitals equals the overall destabilization of the  $e_g$  set.
- Thus, the two orbitals in the  $e_g$  set are raised by 0.6  $\Delta_o$  with respect to the Barycentre while the three in the  $t_{2g}$  set are lowered by 0.4  $\Delta_o$ .
- The magnitude of  $\Delta_0$  is determined by the strength of the crystal field, the two extremes being called weak field and strong field.

 $\Delta_o$  (Weak field)  $< \Delta_o$  (Strong field)

# **Crystal Field Splitting Energy**

- In Octahedral field, configuration is: t<sub>2g</sub><sup>x</sup> e<sub>g</sub><sup>y</sup>
- Net energy of the configuration relative to the average energy of the orbitals is:

$$= (-0.4x + 0.6y)\Delta_{O}$$
$$\Delta_{O} = 10 Dq$$

$$d^1$$
  $t_{2g}$ 

# Crystal Field Splitting Energy In O<sub>h</sub> Field



When the  $4^{th}$  electron is assigned it will either go into the higher energy  $e_g$  orbital at an energy cost of  $\Delta_o$  or be paired at an energy cost of  $\mathbf{P}$ , the pairing energy.



Coulombic repulsion energy and exchange energy

# **Crystal Field Splitting Energy**



 $[Mn(H_2O)_6]^{3+}$ Weak Field Complex
the total spin (S) is  $4 \times \frac{1}{2} = 2$ High Spin Complex

Weak field d4



 $[Mn(CN)_6]^{3-}$  **Strong field Complex**total spin (S) is  $2 \times \frac{1}{2} = 1$  **Low Spin Complex** 

Strong field d<sup>4</sup>

# Placing electrons in d orbitals













#### Q. What is the CFSE of $[Fe(CN)_6]^{3-}$ ?





 $CN^{-} = S.F.L.$ 





CFSE = 5 x - 0.4 
$$\Delta_{\text{oct}}$$
 + 2P = - 2.0  $\Delta_{\text{oct}}$  + 2P

#### Q. If the CFSE of $[Co(H_2O)_6]^{2+}$ is -0.8 $\Delta_o$ , what spin state is it in?

$$C.N. = 6 :: O_h Co(II) :: d^7$$

H.S.



CFSE = 
$$(5 \text{ x} - 0.4 \Delta_{\text{oct}}) + (2 \text{ x} 0.6 \Delta_{\text{oct}})$$
  
=  $-0.8 \Delta_{\text{oct}}$ 



CFSE = 
$$(6 \text{ x} - 0.4 \Delta_{\text{oct}}) + (0.6 \Delta_{\text{oct}})$$
  
=  $-1.8 \Delta_{\text{oct}} + P$ 

#### Strong and weak ligands: Spectrochemical Series

#### Factors influencing the Magnitude of $\Delta_o$ for Octahedral complexes

#### 1. The nature of metal cation:

i) Oxidation state of the metal ion

```
[Ru(H_2O)_6]^{3+} 28600 cm<sup>-1</sup>

[Ru(H_2O)_6]^{2+} 19800 cm<sup>-1</sup>
```

ii) Different charges on the cation of different metals

$$[V(H_2O)_6]^{2+}$$
 12400 cm<sup>-1</sup> 3 $d^3$   
 $[Cr(H_2O)_6]^{3+}$  17400 cm<sup>-1</sup> 3 $d^3$ 

iii) Same charges on the cation but the number of d- electrons is different

```
[Co(H_2O)_6]^{2+} 9300 cm<sup>-1</sup> 3d^7
[Ni(H_2O)_6]^{2+} 8500 cm<sup>-1</sup> 3d^8
```

iv) Quantum number (n) of the d- orbitals of the central metal ion.

```
[Co(NH_3)_6]^{3+} 23000 cm<sup>-1</sup> 3d^6

[Rh(NH_3)_6]^{3+} 34000 cm<sup>-1</sup> 4d^6

[Ir(NH_3)_6]^{3+} 41000 cm<sup>-1</sup> 5d^6
```

 $\Delta_{\rm o}$  increases about 30% to 50% from 3d<sup>n</sup> to 4d<sup>n</sup>. And by about same amount again from 4d<sup>n</sup> to 5d<sup>n</sup>.

# **Crystal Field Splitting Energy (CFSE)**

| $d^n$    | High-spin = weak         | field                       | Low-spin = strong field  |                                 |  |  |  |
|----------|--------------------------|-----------------------------|--------------------------|---------------------------------|--|--|--|
|          | Electronic configuration | CFSE                        | Electronic configuration | CFSE                            |  |  |  |
| $d^1$    | $t_{2g}^{1}e_{g}^{0}$    | $-0.4\Delta_{\rm oct}$      |                          |                                 |  |  |  |
| $d^2$    | $t_{2g}^{2}e_{g}^{0}$    | $-0.8\Delta_{\mathrm{oct}}$ |                          |                                 |  |  |  |
| $d^3$    | $t_{2g}^{3}e_{g}^{0}$    | $-1.2\Delta_{\mathrm{oct}}$ |                          |                                 |  |  |  |
| $d^4$    | $t_{2g}^{3}e_{g}^{1}$    | $-0.6\Delta_{\mathrm{oct}}$ | $t_{2g}^{4}e_{g}^{0}$    | $-1.6\Delta_{\rm oct} + P$      |  |  |  |
| $d^5$    | $t_{2g}^{3}e_{g}^{2}$    | 0                           | $t_{2g}^{5}e_{g}^{0}$    | $-2.0\Delta_{\rm oct} + 2P$     |  |  |  |
| $d^6$    | $t_{2g}^{4}e_{g}^{2}$    | $-0.4\Delta_{\rm oct}$      | $t_{2g}^{6}e_{g}^{0}$    | $-2.4\Delta_{\rm oct} + 2P$     |  |  |  |
| $d^7$    | $t_{2g}^{5}e_{g}^{2}$    | $-0.8\Delta_{\rm oct}$      | $t_{2g}^{6}e_g^{1}$      | $-1.8\Delta_{\mathrm{oct}} + P$ |  |  |  |
| $d^8$    | $t_{2g}^{6}e_{g}^{2}$    | $-1.2\Delta_{\text{oct}}$   |                          |                                 |  |  |  |
| $d^9$    | $t_{2g}^{6}e_g^{3}$      | $-0.6\Delta_{\mathrm{oct}}$ |                          |                                 |  |  |  |
| $d^{10}$ | $t_{2g}^{6}e_{g}^{4}$    | 0                           |                          |                                 |  |  |  |

## **Tetrahedral Field**



## **Tetrahedral Field**





### **Tetrahedral Field**



$$\Delta_{t} < \Delta_{o}$$

$$\Delta_{t} = 0.45 \Delta_{o}$$

For the same metal and ligands and the same internuclear distances

Crystal field splitting favors the formation of octahedral complexes

#### Distortions of Octahedral Complexes



### Distortions of Octahedral Complexes: Jahn-Teller effect

'Any non-linear molecule having an orbitally degenerate electronic configuration is unstable, and the system undergo distortion to remove the degeneracy.'

 $\mathbf{e}_{\mathsf{g}}$  $x^2 - y^2$  $z^2$  $x^2-y^2$ ху  $t_{2g}$ ху z compression z elongation 2 short 4 long 2 long 4 short

#### Distortions of Octahedral Complexes





Ni<sup>2+</sup>: Only one way of filling the orbitals; not degenerate and no Jahn-Teller Distortion



Cu<sup>2+</sup>: Two ways of filling the e<sub>g</sub> orbitals; there is degeneracy and Jahn-Teller Distortion is observed

#### Distortions of Octahedral Complexes





## Jahn-Teller Distortion in d<sup>9</sup> Complexes



 $\Delta o \gg \delta 1 > \delta 2$ .

#### Jahn-Teller Distortion in d<sup>1</sup> Complexes



### $d^{1}$ Vs $d^{9}$



Distortions are more pronounced if the degeneracy occurs in an  $\mathbf{e}_{\mathrm{g}}$  orbital

#### **Distortions in Low-Spin Complexes**



#### **Distortions in High-Spin Complexes**



#### Magnetism

## Each electron has a magnetic moment owing to its:

spin angular momentum

orbital angular momentum



Orbital motion of e generates current and magnetic field

Spin motion of e about its own Axis also generates a magnetic field

- The magnetic moment  $\mu$  of a complex with total spin quantum number **S** is:
- $\mu = 2\{S(S+1)\}^{1/2} \mu_B$  ( $\mu_B$  is the Bohr magneton)
- $\mu_B = eh/4\pi m_e = 9.274 \times 10^{-24} J T^{-1}$
- Since each unpaired electron has a spin ½,
- $S = (\frac{1}{2})n$ , where n = no. of unpaired electrons
- $\mu = \{n(n+2)\}^{1/2} \mu_B$
- In d<sup>4</sup>, d<sup>5</sup>, d<sup>6</sup>, and d<sup>7</sup> octahedral complexes, magnetic measurements can very easily predict weak versus strong field.
- Tetrahedral complexes only high spin complexes result, for  $\Delta_t << \Delta_0$ .

# n = no. of unpaired electrons

$$\mu = \{n(n+2)\}^{1/2} \mu_B$$

| Ion                     | n | S   | μ/μ <sub>B</sub><br>Calculated | Experimental |
|-------------------------|---|-----|--------------------------------|--------------|
| <b>Ti</b> <sup>3+</sup> | 1 | 1/2 | 1.73                           | 1.7 – 1.8    |
| V <sup>3+</sup>         | 2 | 1   | 2.83                           | 2.7 – 2.9    |
| Cr <sup>3+</sup>        | 3 | 3/2 | 3.87                           | 3.8          |
| Mn <sup>3+</sup>        | 4 | 2   | 4.90                           | 4.8 – 4.9    |
| Mn <sup>2+</sup>        | 5 | 5/2 | 5.92                           | 5.9 - 6.3    |

Similar Calculation can be done for Low-spin Complex

# The origin of the color of the transition metal compounds



$$\Delta E = E_2 - E_1 = h\nu$$

Ligands influence  $\Delta_0$ , therefore the colour



The colour can change depending on a number of factors e.g.

- 1. Metal charge
- 2. Ligand strength





As  $Cr^{3+}$  goes from being attached to a weak field ligand to a strong field ligand,  $\Delta$  increases and the color of the complex changes from green to yellow.

#### **Limitations of CFT**

Considers Ligand as Point charge/dipole only

Does not take into account of the overlap of ligand and
metal orbitals

#### Consequence

e.g. Fails to explain why CO is stronger ligand than CN<sup>-</sup> in complexes having metal in low oxidation state

# **Ligand Field Theory: Concepts**

- Ligand Orbitals(LGO)are obtained by Linear Combination of Atomic Orbitals (LCAO)
- LGOs overlap with symmetry related Metal Orbitals









 $T_{2g}$  orbitals cannot form sigma bonds with the L<sub>6</sub> set. S = 0.

 $T_{\rm 2g}$  are non-bonding

#### **MO diagram of an Octahedral complex**



Fig 1.4.1 M.O. Diagram of  $\sigma$ -only octahedral complex

M ML<sub>6</sub> 6LGOs

#### **Metals in Low Oxidation States**

- In low oxidation states, the electron density on the metal ion is very high.
- To stabilize low oxidation states, we require ligands, which can simultaneously bind the metal center and also withdraw electron density from it.

# **Stabilizing Low Oxidation State: CO Can Do the Job**



# MO of $\pi$ -complex





### **Stabilizing Low Oxidation State: CO Can Do the Job**





Ni(CO)<sub>4</sub>], [Fe(CO)<sub>5</sub>], [Cr(CO)<sub>6</sub>], [Mn<sub>2</sub>(CO)<sub>10</sub>], [Co<sub>2</sub>(CO)<sub>8</sub>], Na<sub>2</sub>[Fe(CO)<sub>4</sub>], Na[Mn(CO)<sub>5</sub>]



#### $\boldsymbol{\sigma}$ orbital serves as a very weak donor to a metal atom

