第一章 集成运算放大器

序号	学号	姓名	

一、填空题

	对于一个理想运算放大器,其开环增益 A_{V} (也称为差分增益)
1	为,输入信号端口的输入阻抗为,输出信号端口的输
	出阻抗为。
2	依据从信号输入方式来分类,基本运算放大器可分为三种基本类型:
	即为放大器、放大器和放大器。
	对于理想放大器具有如下特性:同相输入端与反相输入端的电位相
3	等,这种特性称为; 同相输入端和反相输入端的输入电流
	为零,这种特性称为。
4	集成运算放大器的电源供电通常有两种方式,一种是采用正负对称电
	源供电,如 $V_{CC} = -V_{EE}$,此时各信号端口的直流电位为
	一种是采用单电源供电,如电源供电的电压为 $V_{\scriptscriptstyle DD}$,此时各信号端口的直流电
	位为。
5	电压比较器的作用是对两个输入模拟电压信号进行比较。电压比较器
	电路可以分为三种基本类型,即比较器、比较器和
	比较器。

二、分析计算题

- 1、某运算放大器电路如图 1 所示,运算放大器为理想的,且电阻值 R 为已知,设输入信号为 v_s 。试问:
- (1)当输入信号 v_s 仅接在端口 A 处,端口 B 接地,试求该放大器的电压增益 $G = \frac{v_o}{v_s}$,从 A 点看进去的输入阻抗 R_i ,输出阻抗 R_o 分别为多少?
- (2)当输入信号 v_s 仅接在端口 B 处,端口 A 接地,试求该放大器的电压增益 $G = \frac{v_o}{v_s}$,从 B 点看进去的输入阻抗 R_i ,输出阻抗 R_o 分别为多少?
- (3) 当输入信号 v_s 跨接在端口 A、B 处时,且要求 v_s 信号 A 端为正,B 端为负,试求

该放大器的电压增益 $G = \frac{v_o}{v_s}$,从 A、B 点看进去的输入阻抗 R_i ,输出阻抗 R_o 分别为多少?

- 2、在图 2 所示的运算放大器电路中,假设运算放大器试理想的,并且各电阻为已知值。
 - (1) 试写出输出函数的表达式(要求有过程)。
 - (2) 试求图中所示的输入阻抗 R_i 和输出阻抗 R_o 。

3、米勒积分器电路如图 3(a)所示,且初始输入电压和输出电压均为 0,时间常数为 $\tau = RC = 1mS$ 。若输入的波形如图 3(b)所示,试画出输出的波形(要求坐标对齐并标明数值)。

- 4、图 4 所示的电路为浮动负载(两个连接端都没接地的负载提供电压),这在电源电路中有很好的应用性,假设运算放大器是理想的。
- (1) 当节点 A 输入峰峰值为 1V 的正弦波 v_i 时,试画出节点 B、节点 C 对地时的电压波形,并画出 v_a 的波形。
- (2)电压增益 v_o/v_i 为多少?

- 5、图 5 为实用的单电源供电的自举式同相交流电压放大器电路,假设运算放大器是理想的。已知 $R_1=R_3=R_4=10K\Omega$, $R_2=50K\Omega$, $R_5=1M\Omega$ 。 $C_1=C_2=C_3=10\mu F$, $V_{CC}=+15V$ 。问:
- (1)放大器的各信号端口的直流电位为多少?电容 C_1 、 C_2 、 C_3 的作用是什么?
- (2)交流放大倍数 $\frac{v_o}{v_i}$ 为多少,输入阻抗 R_i 为多大?

6、在图 6 所示的电路中,比较器的输出电压的最大值为±10V。试画出个电路的电压传输特性曲线。

7、某运算放大器电路如图 7 所示,假设运算放大器是理想的。试写出输出电压与输入电压的关系表达式(要有分析过程),并写出 v_1 、 v_2 对应的输入阻抗 R_{i1} 、 R_{i2} 。

3

8、图 8 为具有高输入阻抗的反相放大器,假设运算放大器是理想的。已知 $R_1=90K\Omega$, $R_2=500K\Omega\,,\;\;R_3=270K\Omega\,,\;\; {\rm 试求}\,G=v_o/v_i\;{\rm 及输入阻抗}\,R_i\,.$

三、设计题

- 1、仅利用反相放大器设计一个实现函数 $v_o = v_1 + 2v_2 4v_3$ 的电路,要求对应 v_1 信号的输入阻抗为 $20k\Omega$ 。试画出电路实现原理图,并确定个各个电阻的取值。
- 2、仅利用反相放大器将 $v_i = 5\sin \omega t$ (V)的正弦信号的直流电平从 0 转变为-2V,即 $v_o = -2 + 5\sin \omega t$ (V),要求画出电路实现原理图,并合理确定个各个电阻的取值。