Figure 5.3 Illustration of the decision regions for a multi-class linear discriminant, with the decision boundaries shown in red. If two points \mathbf{x}_A and \mathbf{x}_B both lie inside the same decision region \mathcal{R}_k , then any point $\widehat{\mathbf{x}}$ that lies on the line connecting these two points must also lie in \mathcal{R}_k , and hence, the decision region must be singly connected and convex.

hence corresponds to a (D-1)-dimensional hyperplane defined by

$$(\mathbf{w}_k - \mathbf{w}_j)^{\mathrm{T}} \mathbf{x} + (w_{k0} - w_{j0}) = 0.$$
 (5.8)

This has the same form as the decision boundary for the two-class case discussed in Section 5.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and convex. To see this, consider two points \mathbf{x}_A and \mathbf{x}_B both of which lie inside decision region \mathcal{R}_k , as illustrated in Figure 5.3. Any point $\hat{\mathbf{x}}$ that lies on the line connecting \mathbf{x}_A and \mathbf{x}_B can be expressed in the form

$$\widehat{\mathbf{x}} = \lambda \mathbf{x}_{\mathbf{A}} + (1 - \lambda)\mathbf{x}_{\mathbf{B}} \tag{5.9}$$

where $0 \le \lambda \le 1$. From the linearity of the discriminant functions, it follows that

$$y_k(\widehat{\mathbf{x}}) = \lambda y_k(\mathbf{x}_{\mathrm{A}}) + (1 - \lambda)y_k(\mathbf{x}_{\mathrm{B}}). \tag{5.10}$$

Because both \mathbf{x}_{A} and \mathbf{x}_{B} lie inside \mathcal{R}_k , it follows that $y_k(\mathbf{x}_{\mathrm{A}}) > y_j(\mathbf{x}_{\mathrm{A}})$ and that $y_k(\mathbf{x}_{\mathrm{B}}) > y_j(\mathbf{x}_{\mathrm{B}})$, for all $j \neq k$, and hence $y_k(\widehat{\mathbf{x}}) > y_j(\widehat{\mathbf{x}})$, and so $\widehat{\mathbf{x}}$ also lies inside \mathcal{R}_k . Thus, \mathcal{R}_k is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here, based on two discriminant functions $y_1(\mathbf{x})$ and $y_2(\mathbf{x})$, or else use the simpler but essentially equivalent formulation based on a single discriminant function $y(\mathbf{x})$.

5.1.3 1-of-K coding

For regression problems, the target variable t was simply the vector of real numbers whose values we wish to predict. In classification, there are various ways of using target values to represent class labels. For two-class problems, the most convenient is the binary representation in which there is a single target variable $t \in \{0,1\}$ such that t=1 represents class \mathcal{C}_1 and t=0 represents class \mathcal{C}_2 . We can interpret the value of t as the probability that the class is \mathcal{C}_1 , with the probability values taking only the extreme values of 0 and 1. For K>2 classes, it is convenient to use a 1-of-K coding scheme, also known as the one-hot encoding scheme, in which t is a vector of length K such that if the class is \mathcal{C}_j , then all elements t_k of t are zero

Section 5.1.1