IOQM ASSIGNMENTS: BASIC NUMBER THEORY

PANKAJ AGARWAL (PAMATHSFAC@GMAIL.COM)

Exercise 1. Find all primes p such that p+2 and p^2+2p-8 are primes. (Albania, 2012)

Exercise 2. Let p and q be primes such that the numbers p+q and p+7q are both perfect squares. Find the value of p.

(HMMT-Algebra, 2002)

Exercise 3. Prove that the equation $x^2 = 2008! + y^2$ has no solutions in integers. (*Iberoamerican*, 2008)

Exercise 4. Find all pairs of positive integers (n, k) such that $n! + 8 = 2^k$. (Australia, 2018)

Exercise 5. If a, b and c are natural numbers such that $10! = a! \cdot 8! \cdot c!$, then find the number of solutions to the above equation.

(South Africa, Junior Maths Olympiad - 2014)

Exercise 6. Let p, q, r be distinct primes. Prove that p + q + r + pqr is composite. (Berkeley Maths Circle, 2009)

Exercise 7. Find all primes p and q such that $p + q = (p - q)^3$. (Russia, 2003)

Exercise 8. Find all primes p, q, r such that 15p + 7pq + qr = pqr. (Slovenia, 2010)

Exercise 9. Find all integers x for which $2x^2 - x - 36$ is the square of a prime number. (Croatia, 2001)

Exercise 10. Let P be a fixed prime number. Find all pairs (x, y) of positive integers satisfying P(x-3) = xy. (Estonia, 1996)

Exercise 11. The prime numbers p, q, r satisfy the equations pq+pr=80 and pq+qr=425. Find the value of p+q+r.

(Australia, Intermediate-2013)

Exercise 12. Find all triples (p, q, r) of primes such that pq = r + 1 and $2(p^2 + q^2) = r^2 + 1$. (RMO-2013)

Exercise 13. Find all prime numbers p such that $p^2 + 2007p - 1$ is also prime. (Berkeley Maths Circle - 2008)

Exercise 14. Find the triples of primes (a, b, c) such that a - b - 8 is prime. (*Hitotsubashi University*, 2014)

Exercise 15. Find all positive integers x, y, z such that $2^x + 2^y + 2^z = 2336$. (Vietnam, 1982)

Exercise 16. Suppose that n is a positive integer and let $d_1 < d_2 < d_3 < d_4$ be the four smallest positive divisors of n. Find all integers n satisfying this condition. (Balkan-1989; Iran-1999)

Exercise 17. Find all primes p such that $p^2 + 11$ has exactly six different divisors (including 1 and itself).

(Russia, 1995)

Exercise 18. The positive integer n is divisible by 24. Show that the sum of all the positive divisors of n-1 is also divisible by 24.

(Putnam -1969; Bosnia & Herzegovina - 2011)

Exercise 19. The digits of n strictly increase from left to right. Find the sum of the digits of 9n.

(Russia, 1999)

Exercise 20. Find the primes p, q, r, given that one of the numbers pqr and p + q + r is 101 times the other.

(Nordie, 2015)

Exercise 21. Let p, q be two consecutive odd prime numbers. Prove that p + q is a product of at least 3 natural numbers > 1 (not necessarily distinct). (Baltic Way, 1992)

Exercise 22. Find all prime numbers p, q, r satisfying $p^4 + 2p + q^4 + q^2 = r^2 + 4q^3 + 1$. (Turkey Junior National Olympiad, 2013)

Exercise 23. Find all prime numbers p, q, r such that p > q > r and the numbers p - q, p - r, and q - r are also prime. (Slovenia, 2010)

Exercise 24. Knowing that the numbers p, 3p + 2, 5p + 4, 7p + 6, 9p + 8, and 11p + 10 are all primes, prove that 6p + 11 is a composite number. (Czech and Slovak Olympiad, 2009)

Exercise 25. Let p and q be prime numbers. Show that $p^2 + q^2 + 2020$ is composite. (Kosovo, 2020)

Exercise 26. Let $1 = d_1 < d_2 < \cdots < d_n = n$ be the divisors of n. Find all values of n such that a given condition holds. (Mexico, 2008)

Exercise 27. Find all pairs of prime numbers (p,q) for which $7pq^2 + p = q^3 + 43p^3 + 1$. (Dutch, 2015)

Exercise 28. Solve $2a^2 + 3a - 44 = 3p^n$ in positive integers where p is a prime. (Turkey - Junior, 2019)

Exercise 29. Find all the positive integers x and y that satisfy the equation x(x-y) = 8y-7. (JBMO-Shortlist, 2008)

Exercise 30. Find all prime numbers p, q, r such that an additional condition holds. (*JBMO-Shortlist*, 2008)

Exercise 31. Find all primes p, q such that $2p^3 - q^2 = 2(p+q)^2$. (JBMO-Shortlist, 2011)

Exercise 32. Find all prime numbers p, q, r, k such that pq + qr + rp = 12k + 1. (*Iberoamerican*, 2016)

Exercise 33. Prove that there aren't any positive integer numbers x, y such that $x^2 + y^2 = 3z^2$.

(Conosur, 1992)

Exercise 34. Find all positive prime numbers p, q, r, s so that $p^2 + 2019 = 26(q^2 + r^2 + s^2)$. (Conosur, 2019)

Exercise 35. Find all positive prime numbers p, q, r such that p and q are primes and an additional condition holds.

(Centro American, 2011)

Exercise 36. Determine all triples (p, q, r) of positive integers, where p, q are primes, such that a condition holds.

(Centro American, 2018)

Exercise 37. Find all pairs of non-negative integers m and n that satisfy $3 \cdot 2^m + 1 = n^2$. (New Zealand - Camp Selection Problems, Junior-2011)

Exercise 38. Find all positive integers n for which 4n + 2007 is a perfect square. (Greece, 2007)

Exercise 39. Does there exist any integers a, b, c such that $a^2bc + 2$, $ab^2c + 2$, $abc^2 + 2$ are all perfect squares?

(China Western, 2013)

Exercise 40. How many primes p are there such that $2p^4 - 7p^2 + 1$ is the square of an integer?

(Turkey National Olympiad, 2001 - Round 1)

Exercise 41. If p and $p^2 + 2$ are prime numbers, at most how many prime divisors can $p^3 + 3$ have?

(Turkey National Olympiad, 2006 – Round 1)

Exercise 42. Find all triples of primes in the form (p, 2p + 1, 4p + 1). (Moldova, 2002)

Exercise 43. Prove that the equation $p^4 + q^4 = r^4$ does not have solutions in the set of prime numbers.

(Bosnia & Herzegovina - Regional, 2008)

Exercise 44. Find all pairs (x, y) of positive integers that satisfy the equation $x^2 - xy + 2x - 3y = 2013$.

(Lusophon, 2013)

Exercise 45. Find all positive integer solutions to $2x^2 + 5y^2 = 11(xy - 11)$. (Baltic Way, 1998)

Exercise 46. Let M and N be positive integers satisfying $MN^2 + 876 = 4MN + 217N$. Find the sum of all possible values of M. (Singapore - Junior Section, 2012)

Exercise 47. Find all positive integer solutions of the equation 10(M+N) = MN. (Croatia, 1998)

Exercise 48. How many pairs of integers (x, y) are there such that 2x + 5y = xy - 1? (Turkey National Olympiad, 2003 - Round 1)

Exercise 49. Let M, N be natural numbers such that M + N + 1 is prime and divides $2(M^2 + N^2) - 1$. Prove that M = N. (Switzerland, 2010)

Exercise 50. Two different positive integers a and b satisfy the equation $a^2 - b^2 = 2018 - 2a$. What is the value of a + b? (Australia – Intermediate, 2018)