# System Administration

# **Topics**

- 1. Servers vs Desktops
- 2. Server Hardware
- 3. Different Approaches to Servers

# How are Servers different?

- 1000s of clients depend on server.
- Requires high reliability.
- Requires tighter security.
- Often expected to last longer.
- Investment amortized over many clients, longer lifetime.

# Vendor Product Lines

#### Home

- Cheapest purchase price.
- Components change regularly based on cost.

#### **Business**

- Focuses on Total Cost of Ownership (TCO).
- Slower hardware changes, longer lifetime.

#### Server

- Lowest cost per performance metric (nfs, web)
- Easy to service rack-mountable chassis.
- Higher quality (MIL-SPEC) components.

# Server Hardware

- · More internal space.
- More CPU/Memory.
  - More / high-end CPUs.
  - More / faster memory.
- High performance I/O.
  - PCIe vs PCI
  - SCSI/FC-AL vs. IDE
- · Rack mounted.
- Redundancy
  - RAID
  - Hot-swap, hot-spares



# **Rack Mounting**

#### Efficient space utilization.



- Simple, rectangular shape measured in
- Repair and upgrade while mounted in rack.
- No side access required.

#### Requirements

- Cooling through back, not sides.
- Drives in front, cables in back.
- Remote management (serial console, hardware sensors, VM MUI)

# Server Memory

Servers need more RAM than desktops.

- x86 supports up to 64GB with PAE.
- x86-64 supports 1 PB (1024 TB)

Servers need faster RAM than desktops.

- Higher memory speeds.
- Multiple DIMMs accessed in parallel.
- Larger CPU caches.

# Server CPUs

### **Enterprise Processors**

- Intel Xeon (x86)
- AMD Opteron (x86)
- Itanium 2
- Sun UltraSPARC T2+
  - 4, 6, or 8 cores.
  - · Each with 4 threads.
- IBM POWER 6+
  - dual-core 5.0 GHz
  - · Each with 2 threads.



POWER 5 MCM with 4 dual-core HT CPUs + 4 36MB L3 cache chips.

# Xeon vs Pentium/Core

- Xeon based on Pentium/Core with changes that vary by CPU:
  - Supports more CPUs
  - Faster/larger CPU caches
  - Faster/larger RAM support
  - Better hyperthreading



# System Buses

Servers need high I/O throughput.

- Fast peripherals: SCSI-3, Gigabit ethernet
- Often use multiple and/or faster buses.

#### PCI

- Desktop: 32-bit 33 MHz, 133 MB/s
- Server: 64-bit 66 MHz, 533 MB/s

#### PCI-X (backward compatible)

- v1.0: 64-bit 133 MHz, 1.06 GB/s
- v2.0: 64-bit 533 MHz, 4.3 GB/s

### PCI Express (PCIe)

- Serial architecture, v3.0 up to 16 GB/s

# Hardware Redundancy

Disks are most likely component to fail.

- Use RAID for disk redundancy.
- Cover in detail in Disks lecture.

Power supplies second most likely to fail.

- Use redundant power supplies.
- Many servers need 2 power supplies normally.
- Need 3 power supplies for redundancy.
- Use separate power cord and UPS for each power supply.

# Full and n+1 Redundancy

- **n+1 Redundancy**: One component can fail, but the system is still functional.
  - Ex: RAID 5, dual NICs with failover

**Full Redundancy**: Two complete sets of hardware configured with failover mechanism.

- Manual: SA switches to 2<sup>nd</sup> system when notices failure.
- Automatic: The second system monitors the first and switches over automatically on failure.
- Load-sharing: Both systems serve users, sharing load, but each has
  capacity to handle entire load on its own. When one fails, other
  automatically handles entire load.

# **Hot-swap Components**

### Hot-swap components

- Components can be replaced while running.
- − Need n+1 redundancy for this to be useful.
- Don't need to schedule a downtime.

#### Issues

- Which parts are hot-swappable?
- May require a few seconds to reconfigure.
- Be sure components are hot-swap, not hot-plug.

# Hot Plug and Hot Spare

#### Hot Plug

- Electrically safe to replace component.
- Part may not be recognized until next reboot.
- Requires downtime, unlike hot swap.

#### Hot Spare

- Spare component already plugged into system.
- System automatically uses hot spare when disk/CPU board etc. fails.
- Provides n+2 redundancy.

# Separate Administrative Network

#### Reliability

 Allows access to machines even when network is down.

#### Performance

 Backups require so much bandwidth that they're often done over their own network.

#### Security

 Network security monitoring data and logs sent across network should be secured.

# Maintenance Contracts

- · All machines eventually break.
- · Vendors offer variety of maint contracts.
- Non-critical: Next-day or 2-day contract.
- Clusters: If you have many similar hosts (CPU or web farm), then on-site spares may be cheaper than maintenance contract.
- Controlled Model: Use small # of machine types for all servers, so you can afford a spares kit.
- Critical Host: Same-day response or on-site spares.
- Highly Critical: On-site technician + dup machine.

# **Data Protection**

- Avoid desktop backups by storing data on servers. Easy on UNIX, harder on Windows.
- · Use RAID for server hardware failures.
  - Mirror root disk, higher RAID levels for data.
  - Some servers use 16GB Flash drives for root disk.
  - Doesn't protect against software mistakes.
- · Server backups
  - Use specialized admin network to keep load off main network.
  - Use specialized tape jukeboxes to fully automate backups of large data servers (DBs, fileservers).

# Keep Servers in Data Center

Data center necessary for server reliability.

- Power (enough power, UPS)
- Climate control (temperature, humidity)
- Fire protection
- High-speed network
- Physical security

# Server OS

Need greater reliability, security than desktop.

- Remove unnecessary OS components.
- Configure for best security & performance.

Install and config specialized server software.

- Server software: web, db, nfs, dns, ldap, etc.
- May need monitoring software too.
- Configuration: disk space, networking

Server OS install should be automated too.

# Remote Administration

Servers must be accessible remotely.

- Allows SA to fix problems quickly at 3am.
- Allows SA to work outside machine room.

#### Remote Administration

- Serial console and concentrator (UNIX)
- Networked KVM (Windows)
- Remote power control.
- Important to secure remote admin facilities.

# Server Appliances

Dedicated hardware + software

- Fileserver (NetApp, Auspex)
- Print servers
- Routers

#### Advantages

- Performance
- Reliability
- Easy to setupExtra capabilities
- Extra capabil

### Disadvantages

Cos



# Many Inexpensive Workstations

Why buy svr hardware?

- Buy two cheap rackmount PCs + failover software.
- Works if two PCs cheaper than server.
- Google's approach with ~450,000 servers.



# **Blade Servers**

- High-density servers on a board.
  - CPU
  - Memory
  - Disk
- Each blade lives in a blade chassis.



# **Blade Chassis**

- Blade chassis provides power, network, remote.
- Typically hotswappable, hot-spare.
- Racks can only support 1 svr/RU.
- Blades are higher density, but also require more power and cooling.



# **Key Points**

### Servers vs desktops

- Requirements and hardware differences.

### Redundancy

- Full vs n+k redundancy.
- Hot plug vs hot spare.

### Services

- Requirements: service, server, customer, operational.
   Machine independence and open architectures.

#### Performance

- Latency vs. throughput.