

FIBER TO THE HOME - PONs

Why FTTH

- Bandwidth BW @ 20 Km = 2 Gbps > 80 x BW ADSL 2 +
- Increased BW of HFC or xDSL technologies
- WDM PON eliminates bandwidth sharing which further enhances BW
- Lowest BER = 10 E-10 BPON, GPON & EPON

Optical Fundamentals

- Types of Fiber
 - Single mode (125 μm/8 -12 μm)
 - Multimode ($125 \mu m / 50 \text{ or } 62.5 \mu m$)
- Losses
 - 1.Dispersion
 - Chromatic multiple lambdas
 - Modal multiple modes
 - 2. Attenuation (dB/km)

Link Budget

- BR
- BER
- Tx Power
- Attenuation
- Coupler, splitter, connector, splice and other losses
- Amplifier Gain
- Quantum Efficiency

Noise

- Thermal Noise
- Amplified Spontaneous emission
- Crosstalk
- Mode partition noise
- Margin for environmental disturbances, aging effects, temperature changes

Advantages of Fiber

- Extremely light weight
- EMC
 - -No Emanation
 - -Not susceptible
- A single copper wire can carry 6 phone calls compared to single fiber which can carry 2.5 million simultaneous phone calls (64 channels at 2.5 Gb/s)
- Less than 1% the size and weight of copper

Architecture

Point to Point or star topology

Ring Topology

Point to Multipoint (P2MP) = PON

E-FTTH Architecture – P2P

(can be implemented in a ring)

PON FTTx Architecture

PON as FTTH

Equipment

- Optical Network Unit (ONU)
- Optical Line Terminal (OLT)
- Optical Distribution Network (ODN)
- Optical Amplifiers
- Splitters and Connectors
- Lasers Transmitters and Receivers

ONU

- Optical Network Terminal is located near end users.
- Consists of
 - 1, Coax cable
 - 4, RJ-11
 - 1, RJ-45
 - 1310nm Laser
 - Triplexer Module
- Downstream voice, data 1490 nm
- Upstream voice, data 1310 nm
- Video 1550nm
- UPS

OLT

- Present at the head end or the central office end
- Consists of plug-in-card each of which can support upto 64 ONU's
- Uses BPON, GPON or EPON protocols

- Supports Management and supervisory functions GUIs
- Back Haul is handled by DS3, OC3 or Gigabit Ethernet card.

ODN

- Passive Network
- No active Components between OLT & ONT.
- Eliminates the need for DC power
- Low network maintenance cost
- It involves splitter

Splitter

Passive Component

 Distributes optical signals to multiple Subscribers

Also acts as a Coupler

Splitter Losses

- Each split = 3dB loss of signal
- 16 splits = 12 dB of signal loss
 - \Box 2E4 = 16
 - □4splits x 3dB/split = 12dB loss

Video Overlay Equipment

- Optical Transmitter
 Video stream @1550 nm over Optical
 Fiber
- WDM Combiner (Optical Coupler)
 Couples Downstream video to upstream/downstream data and voice
- Optical Amplifier
 Amplifies 1550nm broadcast signal.

Lasers

- Fabry-Perot lasers
 - -lower in cost and power
 - poor wavelength stability
- Distributed Feedback (DFB) Lasers
 - Higher cost and power
 - Excellent wavelength stability
 - Excellent temperature stability
 - internally modulated good for moderate power and distance
 - Externally modulated Broadcast applications
- Vertical Cavity Surface Emitting Lasers (VCSELs)

2

Wavelength Vs Lasers

- 1310 nm
 - Usually lowest cost lasers Used for shorter broadcast runs and short to moderate data runs
- 1550 nm
 - Can be amplified with relatively low-cost erbium doped fiber amplifiers (EDFAs)
 - Lasers are fabricated on a number of different wavelengths (about 1535 1600 nm) for wave division multiplexing (WDM) applications
 - Slightly lower fiber loss at 1550 nm
- 1490 nm
 - Increasingly popular for downstream data. Cannot be amplified as easily. Somewhat higher device cost

Standards

- TDMA PON First proposed in 1987 by researchers at BT laboratories
- ITU: FSAN (1996)
- BPON G.983
- GPON G.984
- EPON IEEE 802.3ah

Standards

	GPON	EPON	WDM-PON	PtP Ethernet
Standards	ITU-T G.984	IEEE.802.3ah — P2MP	No standard	IEEE.802.3ah — P2P
Downstream (DS)	2.5 Gb/s or 1.25 Gb/s	1.25 Gb/s		1.25 Gb/s
Upstream (US)	1.25 Gb/s or 622 Mb/s	1.25 Gb/s		1.25 Gb/s
DS efficiency	92% (8% of overhead)	71.94%		74%
US efficiency	92% (8% of overhead)	66.9 %		74%
Split ratio (SP)	1:32, 1:64 (1:128 planned)	1:32, 1:64 (with FEC)		1:1
DS throughput	2.3 Gb/s or 1.15 Gb/s	899.2 Mb/s		925 Mb/s
US throughput	1.15 Gb/s	836.3 Mb/s		925 Mb/s
Reach	20 km (1:64 SP)	20 km (SP 1:16)		1000BASE-L/BX: 10 km
				1000 BASEPX20: 20 km
Supports transport of TDM services	Native via GEM or CE over Ethernet	CE over Ethernet		CE over Ethernet
Encryption	AES is part of the standard	Not standardized		Not standardized
Network protection	It is part of the standard	Not standardized		Not standardized

PON standards

Higher layer ATM adaptation sublayer TC **GTC** layer layer PON transmission sublayer Physical layer

BPON

- · Based on G.983 suite of standards covering all aspects such as physical, management, and control
- · BPON maps all traffic to ATM cells
- · ATM cells fit into BPON TC frames
- · Can use Ethernet uplink

Higher layer ATM adapter **GEM** adapter GTC framing sublayer Physical layer

GPON

- · Based on BPON G.983 and share similar attributes
- · Specified as G.984 suite of standards covering all aspects such as physical, management, and control
- · In addition to ATM, GEM allows native TDM and Ethernet transport

Higher layer MAC client MAC Multi-point MAC control layer MAC Physical layer

EPON

- · Ratified by IEEE as Clause 64 of IEEE 802.3 standard
- · Other important aspects are out of the scope of EPON spec

BPON G.983 – 155/622 Mbps

- Physical Medium Dependent Layer
- BPON Transmission Sub layer of TCL
- BPON Adaptation Sub layer of TCL
 - Conversion between ATM and PDUs
- Security
 - Churning: Downstream in Pseudorandom way & permutation key changed once per sec

BPON Downstream Format

Downstream Fields – OLT to ONT

- Physical Level Operations and Maintenance – PLOAM
- ATM Cells
- Message Fields

PLOAM Function

- IDENT,MSG and BIP fields are common to both Up and Downstream PLOAMs
 - □ IDENT frame delineation
 - MSG CPE to Network communication
 - □ BIP parity check (layer 2)

м.

Downstream PLOAM Fields

- Grants in first 2 PLOAMS
 - □ Each of these 2 carry grants for 27 Time Slots
 - Total 54 Time Slots per Frame
 - □ Act as Media Access Control
- Message Fields determine grant usage and ranging parameters
- ATM carry traffic

Ranging Grants

- ONU's are located at different distances from the OLT
- PLOAM cell address the station to be ranged and open up a window wide enough to receive the upstream PLOAM cell.
- OLT range determines an equalization delay, providing the ONU a window within which it is allowed to start sending.

Upstream Only Fields – ONT to OLT

- Laser Control Field
 - □ ONU reports power level and extinction ratio of its own Laser to maintain proper TX level.
- Receiver Control Field
 - OLT detects its own threshold level for distinguishing of "zero" from "one"

BPON Upstream Frame

.

GPON G.984

- Uses GEM (GPON Encapsulation):
 Enable to host different packetsize traffic formats such as Ethernet
- Uses Advanced Encryption Standard (Symmetrical crypto system)
- X-ORing of the payload with AES key for encryption and same X-OR at receiver for decryption

v

GPON Features

- Scalable framing structure
 - □ 622Mb/s to 2.5Gb/s, as well as asymmetric bit rates support.
- Exceptionally high bandwidth utilization/efficiency for any type of service
- A variant of Generic Framing Procedure (GFP) encapsulation of any type of service (both TDM and packet) into 125 µsec periodic frames.

v

GPON Features

- High efficiency with no overhead transport of native TDM traffic.
- Dynamic Allocation of upstream bandwidth via bandwidth maps (pointers) for each ONT – Asymmetric Services
- Uses a variation of GFP

GPON Encapsulation - GEM

- ITU-T recommendation G.7041 = GFP
- SONET/SDH and ITU-T G.709 (ONT)
- Supports
 - □ IP/PPP (IP/Point-to-point Protocol
 - Ethernet MAC)
 - □ Constant Bit Rate streams
 - Ex TDM as it uses 125us framing

GPON Downstream Format

GPON Upstream Format

Ethernet Based PON - EPON

- P2MP
- Splitters
- MPCP as the MAC layer
 - □ Uses a LLID Logical Link ID

100

MPCP - Function

- OLT sends discovery gate message request to all unregistered ONUs
- ONUs acknowledge by using Registration Request (REGISTER REQ) message
- When received and approved the OLT registers the ONU using the REGISTER message
- The handshake ends with the ONU acknowledgement REGISTER_ACK

Ethernet Based PON - EPON

- Does not support TDM services
- Uses 8B/10B line encoding
 - □ 20% BW Penalty due to added bits
 - DC leveling

Note - BPON/GPON - use scrambling

w

EPON Downstream

Downstream traffic in an EPON.

EPON Upstream

IEEE 802.3 packet **FCS** payload header **←** 1 1 ONU1 User 1 time slot 2 **←** [222] OLT ONU₂ User 2 Optical splitter ONU3 User 3

Upstream traffic in an EPON.

Efficiency Comparison

	Line	PON TC	Bearer	Service Adaptation	
	Coding	Layer	Protocol	T1	FE
		Efficiency	Efficiency		
APON	100%	96%	90%	98%	80%
EPON	80%	98%	97%	72%	63%
GPON	100%	99%	100%	96%	94%

	Overall Efficiency 10% TDM, 90% Data	Overall Efficiency 20% TDM, 80% Data
APON	71%	72%
EPON	49%	49%
GPON	93%	94%

WDM - PON

- 1 lambda per ONT
- 1 Gigabit per second
- Point to Point access –P2P
- Lower Laser Power Required

WDM PON

CWDM: Coarse Wavelength Division Multiplexing