Housekeep: Tidying Virtual Households using Commonsense Reasoning

Yash Kant^{1,2}, Arun Ramachandran², Sriram Yenamandra², Igor Gilitschenski¹, Dhruv Batra^{2,3}, Andrew Szot*², Harsh Agrawal*² Twitter: @yash2kant, @_arun_r, @yvsriram, @igilitschenski, @DhruvBatraDB, @andrew_szot, @harsh_092

¹University of Toronto, ²Georgia Tech, ³Meta Al

https://yashkant.github.io/housekeep/

Overview

Can embodied agents do tasks without detailed human instructions?

- Housekeep, a new benchmark for common sense reasoning in embodied Al
- The agent must rearrange objects without explicit instructions
- We collect a dataset of human object placement preferences
- We build a modular baseline that uses a language model (LM) for planning

Language Models for Embodied Commonsense

- Language models capture commonsense reasoning by ranking the compatibility of object / receptacle pairs.
- Right: comparing ranking strategies. Fine-tuned language model performs best

Human Preferences Dataset

- Over 45k annotations of human preferences for object placements
- 1799 objects, 268 object categories, 585 placements, and 105 rooms
- For each object, receptacles are grouped into 3 categories
- Receptacles are ranked in the correct and misplaced groups

Misplaced Correct

Implausible

High agreement on object placements in dataset

Baseline and Ablations on Housekeep

 Modular Approach: Planning, exploration, navigation

bottom cabinet

• Right: Performance on Housekeep for different ranking and exploration modules

Episode success is low due to compounding errors between rearranging multiple objects

		Modules		Rearrange		Explore		Efficiency
	#	Rank	Explore	ES ↑	os ↑	MC ↑	oc ↑	PPE ↑
t-seen	1	OR	OR	1.00	1.00	_	1.00	1.00
	2	OR	FTR	0.35	0.64	73	0.73	1.00
	3	LM	OR	0.04	0.44	_	1.00	0.57
	4	LM	FTR	0.01	0.30	77	0.76	0.41
	5	GLV	FTR	0.01	0.29	71	0.73	0.39
t-unseen	6	OR	OR	1.00	1.00	_	1.00	1.00
	7	OR	FTR	0.35	0.65	74	0.74	1.00
	8	LM	OR	0.02	0.32	_	1.00	0.42
ب	9	LM	FTR	0.01	0.23	73	0.74	0.35
	10	GLV	FTR	0.00	0.23	72	0.74	0.26

- Success metrics computed using human preferences dataset
- Metrics for efficiency, soft alignment with human preferences, and exploration in paper
- Finding misplaced objects and rearranging them according to human preferences are difficult challenges of Housekeep