NAV-ASTRO	LE SEXTANT	V1.2 – 12/21
A. Charbonnel	RAPPELS SUR LES ARCS CAPABLES	1/2

Il s'agit d'une méthode de positionnement ancienne utilisable en vue de terre, lorsque 2 ou 3 amers sont visibles.

Cette méthode présente les avantages suivants :

- elle donne une position très précise, si vous pouvez utiliser 3 amers ;
- elle permet d'utiliser des amers assez proches les uns des autres, ce qui n'est pas possible avec la méthode traditionnelle, au compas de relèvement.
- elle permet de surveiller un mouillage

De plus elle constitue une application pratique du sextant.

Il y a plusieurs méthodes de détermination du point par les arcs capables :

- graphique : 2 méthodes décrites ci-après ;
- mécanique : en utilisant un stigmographe ;
- calcul : le livre Formules de Navigation décrit cette méthode ;
- informatique : le logiciel <u>StarPilot</u> contient un module de traitement des arcs capables.

Etape 1:

Vous êtes au large d'une côte sur laquelle vous voyez 3 amers A, B, C, que vous identifiez parfaitement sur votre carte marine.

A l'aide de votre sextant tenu horizontalement, vous mesurez exactement l'angle entre AB et l'angle entre BC

Etape 2:

Sur votre carte (ou sur un calque posé dessus) tracez les droites joignant les amers AB et BC

Etape 3:

Par le point A tracez la perpendiculaire à AB, et par le point C, tracez la perpendiculaire à BC

NAV-ASTRO	LE SEXTANT	V1.2 – 12/21
A. Charbonnel	RAPPELS SUR LES ARCS CAPABLES	2/2

Etape 4:

Calculez la valeur de l'angle $\alpha = 90^{\circ}$ – angle AB
" " " $\beta = 90^{\circ}$ –

angle BC

(les angles AB et BC sont ceux mesurés au sextant à l'étape 1, évidemment)

Par B, tracez la droite Bx faisant un angle α avec la droite AB, et la droite By faisant un angle β avec la droite BC.

Vous déterminez ainsi les points x et y.

Etape 5:

Tracez la droite passant par x et y.

Etape 6:

Tracez la droite perpendiculaire à xy passant par B.

Etape 7:

Le point ainsi déterminé est votre position.

