SBML Model Report

Model name: "Smallbone2013 - Yeast metabolic model with modular rate law"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Nick Juty¹, Vijayalakshmi Chelliah² and Kieran Smallbone³ at February 20th 2008 at 10:05 a.m. and last time modified at April 29th 2014 at 11:44 a.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	657
events	0	constraints	0
reactions	282	function definitions	1
global parameters	0	unit definitions	8
rules	0	initial assignments	0

2 Unit Definitions

This is an overview of twelve unit definitions of which four are predefined by SBML and not mentioned in the model.

¹EMBL-EBI, juty@ebi.ac.uk

²EMBL-EBI, viji@ebi.ac.uk

 $^{^3}$ University of Manchester, kieran.smallbone@manchester.ac.uk

2.1 Unit substance

Name mmol

Definition mmol

2.2 Unit mM

Name mM

Definition $mmol \cdot l^{-1}$

2.3 Unit mM_per_s

Name mM per s

Definition $mmol \cdot 1^{-1} \cdot s^{-1}$

2.4 Unit mM_squared

Name mM squared

Definition $mmol^2 \cdot l^{-2}$

2.5 Unit mM_cubed

Name mM cubed

Definition $mmol^3 \cdot 1^{-3}$

2.6 Unit per_mM

Name per mM

Definition $mmol^{-1} \cdot 1$

2.7 Unit per_mM_squared

Name per mM squared

Definition $mmol^{-2} \cdot l^2$

2.8 Unit per_mM_cubed

Name per mM cubed

Definition $mmol^{-3} \cdot l^3$

2.9 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.10 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.11 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.12 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell extracellular	cell extracellular	0000290 0000290	3 3	1 1	litre litre	✓	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

SBO:0000290 physical compartment

3.2 Compartment extracellular

This is a three dimensional compartment with a constant size of one litre.

Name extracellular

SBO:0000290 physical compartment

4 Species

This model contains 657 species. The boundary condition of 354 of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_0002	(1->3)-beta-D-glucan	cell	$\operatorname{mmol} \cdot 1^{-1}$	В	
s_0004	(1->6)-beta-D-glucan	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0008	(2R,3R)-2,3-dihydroxy-3-methylpentanoate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0009	(2R,3S)-3-isopropylmalate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0010	(2S)-2-isopropyl-3-oxosuccinate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0015	(N(omega)-L-arginino)succinic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0016	(R)-2,3-dihydroxy-3-methylbutanoate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0018	(R)-5-diphosphomevalonic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0019	(R)-5-phosphomevalonic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0028	(R)-mevalonate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0037	(S)-2,3-epoxysqualene	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0039	(S)-2-acetyl-2-hydroxybutanoate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0056	(S)-3-methyl-2-oxopentanoate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0061	(S)-dihydroorotate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0066	(S)-malate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0075	1,3-bisphospho-D-glycerate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0076	1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_0077	1-(5-phospho-D-ribosyl)- 5-[(5-phospho-D-	cell	$\operatorname{mmol} \cdot 1^{-1}$	B	
	ribosylamino)methylideneamino]imidazo 4-carboxamide	ole-			
s_0078	1-(5-phosphoribosyl)-5'-AMP	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0082	1-acyl-sn-glycerol 3-phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0086	1-C-(indol-3-yl)glycerol 3-phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0089	1-phosphatidyl-1D-myo-inositol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0118	1-pyrroline-5-carboxylate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0120	10-formyl-THF	cell	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
s_0122	14-demethyllanosterol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0126	1D-myo-inositol 1-phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0141	2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0142	2,5-diamino-6-(5-phosphono)ribitylamino-4(3H)-pyrimidinone	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0145	2-acetamido-5-oxopentanoate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0146	2-acetyllactic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0158	2-hydroxy-3-oxobutyl phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0162	2-isopropylmalate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0165	2-isopropylmaleic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0176	2-oxoadipic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}0178$	2-oxobutanoate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0180	2-oxoglutarate	cell	$\text{mmol} \cdot 1^{-1}$		\Box
s_0188	2-phospho-D-glyceric acid	cell	$\text{mmol} \cdot 1^{-1}$		\Box
s_0190	farnesyl diphosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_0201	3'-phospho-5'-adenylyl sulfate	cell	$mmol \cdot l^{-1}$		\Box
s_0204	3-(4-hydroxyphenyl)pyruvate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0207	3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0209	3-dehydro-4-methylzymosterol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0210	3-dehydroquinate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0211	3-dehydroshikimate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0218	3-hydroxy-3-methylglutaryl-CoA	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0231	3-ketosphinganine	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
s_0232	3-methyl-2-oxobutanoate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0258	3-phospho-hydroxypyruvate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0259	3-phospho-serine	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0260	3-phosphoglycerate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0261	3-phosphoshikimic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0262	4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0291	4-methyl-2-oxopentanoate	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
s_0295	4-phospho-L-aspartate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0296	4alpha-methylzymosterol	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
s_0297	4beta-methylzymosterol-4alpha- carboxylic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0298	5'-adenylyl sulfate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0299	5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0300	5'-phosphoribosyl-5-aminoimidazole	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$s_{-}0301$	5'-phosphoribosyl-N-formylglycineamide	cell	$\text{mmol} \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_0302	5'-phosphoribosyl-N-	cell	$mmol \cdot l^{-1}$	\Box	\Box
	formylglycineamidine				
s_0304	5,10-methenyl-THF	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0306	5,10-methylenetetrahydrofolate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0312	5-[(5-phospho-1-deoxy-D-ribulos-	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	1-ylamino)methylideneamino]-1-				
	(5-phospho-D-ribosyl)imidazole-4-				
	carboxamide				
s_0313	5-amino-6-(5-phosphoribitylamino)uracil	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0314	5-amino-6-(D-ribitylamino)uracil	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
s_0322	5-methyltetrahydrofolate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0324	5-O-(1-carboxyvinyl)-3-phosphoshikimic acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0325	5-phospho-ribosyl-glycineamide	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0326	5-phosphoribosyl-ATP	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
s_0327	5-phosphoribosylamine	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
s_0328	6,7-dimethyl-8-(1-D-ribityl)lumazine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0349	7-phospho-2-dehydro-3-deoxy-D- arabino-heptonic acid	cell	$\operatorname{mmol} \cdot l^{-1}$	\Box	\Box
s_0362	acetate	cell	$\text{mmol} \cdot l^{-1}$		
s_0367		cell	$mmol \cdot l^{-1}$		
s_0373	acetoacetyl-CoA acetyl-CoA	cell	$mmol \cdot l^{-1}$		
s_0373 s_0380	acetyl-CoA acyl-CoA	cell	$mmol \cdot l^{-1}$		
s_0386	adenosine	cell	$mmol \cdot l^{-1}$		
s_0390	adenosine adenosine 3',5'-bismonophosphate	cell	$mmol \cdot l^{-1}$		
	* *		$mmol \cdot l^{-1}$		
s_0393 s_0394	adenylo-succinate ADP	cell cell	$mmol \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_0403	AICAR	cell	$mmol \cdot l^{-1}$	\Box	\Box
s_0404	Ala-tRNA(Ala)	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		\Box
s_0409	alpha,alpha-trehalose 6-phosphate	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		\Box
s_0419	ammonium	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0420	ammonium	extracellular	$\operatorname{mmol} \cdot 1^{-1}$		\square
s_0423	AMP	cell	$\text{mmol} \cdot 1^{-1}$		
s_0427	anthranilate	cell	$\text{mmol} \cdot 1^{-1}$		\Box
s_0428	Arg-tRNA(Arg)	cell	$mmol \cdot l^{-1}$	\Box	
s_0430	Asn-tRNA(Asn)	cell	$mmol \cdot l^{-1}$		
s_0432	Asp-tRNA(Asp)	cell	$mmol \cdot l^{-1}$		
s_0434	ATP	cell	$mmol \cdot l^{-1}$	\Box	
s_0445	bicarbonate	cell	$mmol \cdot l^{-1}$		
s0454	but-1-ene-1,2,4-tricarboxylic acid	cell	$mmol \cdot l^{-1}$		
s_0455	carbamoyl phosphate	cell	$mmol \cdot l^{-1}$		
s_0456	carbon dioxide	cell	$mmol \cdot l^{-1}$		
s_0458	carbon dioxide	extracellular	$mmol \cdot l^{-1}$		\square
s_0467	CDP	cell	$mmol \cdot l^{-1}$		
s_0471	CDP-diacylglycerol	cell	$mmol \cdot l^{-1}$		
$s_{-}0475$	ceramide-1 (C24)	cell	$mmol \cdot l^{-1}$		
s_0481	ceramide-2 (C24)	cell	$mmol \cdot l^{-1}$		
s_0493	ceramide-3 (C24)	cell	$mmol \cdot l^{-1}$		
s_0499	ceramide-4 (C24)	cell	$mmol \cdot l^{-1}$	\Box	
s_0515	chorismate	cell	$mmol \cdot l^{-1}$	\Box	
s_0516	cis-aconitate	cell	$mmol \cdot l^{-1}$	\Box	
s_0522	citrate	cell	$mmol \cdot l^{-1}$	\Box	
s_0526	CMP	cell	$mmol \cdot l^{-1}$	\Box	
s_0529	coenzyme A	cell	$\text{mmol} \cdot 1^{-1}$		

Produced
by
SBMLZETEX

10	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	s_0539	CTP	cell	$\operatorname{mmol} \cdot l^{-1}$		\Box
	s_0542	Cys-tRNA(Cys)	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
	s_0550	D-erythro-1-(imidazol-4-yl)glycerol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
		3-phosphate				
	s_0551	D-erythrose 4-phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	s_0555	D-fructose 1,6-bisphosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	\mathtt{s}_0557	D-fructose 6-phosphate	cell	$\text{mmol} \cdot 1^{-1}$		
H	s_0563	D-glucose	cell	$\text{mmol} \cdot 1^{-1}$		
Produced by SBML2laTEX	s_0565	D-glucose	extracellular	$\operatorname{mmol} \cdot 1^{-1}$	\square	
duc	s_0567	D-glucose 1-phosphate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
ed	s_0568	D-glucose 6-phosphate	cell	$mmol \cdot l^{-1}$		
by	s_0573	D-mannose 1-phosphate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
8	$\mathtt{s}_{-}0574$	D-mannose 6-phosphate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
<u>≦</u>	\mathtt{s}_0577	D-ribulose 5-phosphate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
Ä	s_0581	D-xylulose 5-phosphate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
\times	s_0582	dADP	cell	$mmol \cdot l^{-1}$	\Box	
	s_0584	dAMP	cell	$mmol \cdot l^{-1}$	\Box	
	s_0586	dATP	cell	$\text{mmol} \cdot 1^{-1}$		
	s_0587	dCDP	cell	$mmol \cdot l^{-1}$		
	s_0589	dCMP	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
	s_0595	decanoate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
	s_0602	decanoyl-CoA	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
	s_0613	dGDP	cell	$mmol \cdot l^{-1}$		
	s_0615	dGMP	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
	s_0619	diglyceride	cell	$mmol \cdot l^{-1}$		
	$\mathtt{s}_{-}0625$	dihydrofolic acid	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
	s_0629	dihydroxyacetone phosphate	cell	$mmol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_0633	diphosphate	cell	$mmol \cdot 1^{-1}$		
s_0644	dolichyl D-mannosyl phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0645	dolichyl phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0649	dTMP	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0654	dUMP	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0656	dUTP	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0657	episterol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0662	ergosta-5,7,22,24(28)-tetraen-3beta-ol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0664	ergosta-5,7,24(28)-trien-3beta-ol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0666	ergosterol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0672	ergosterol ester	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0700	fecosterol	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}0709$	ferricytochrome c	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}0710$	ferrocytochrome c	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0722	formate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0723	formate	extracellular	$\operatorname{mmol} \cdot 1^{-1}$		
s_0725	fumarate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0739	GDP	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0743	GDP-alpha-D-mannose	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$s_{-}0745$	geranyl diphosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$s_{-}0747$	Gln-tRNA(Gln)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0748	Glu-tRNA(Glu)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0750	glutathione	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0754	glutathione disulfide	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_0757	Gly-tRNA(Gly)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_0764	glyceraldehyde 3-phosphate	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
s_0767	glycerol 3-phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		

Produced
by SBN
VILZALEX
\sim

12	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
						tion
	s_0773	glycogen	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
	s_0782	GMP	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
	s_0785	GTP	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
	s_0832	His-tRNA(His)	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
	s_0835	homocitrate	cell	$\mathrm{mmol} \cdot \mathrm{l}^{-1}$	\Box	\Box
	s_0836	homoisocitrate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
	s_0837	hydrogen peroxide	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
F	s_0841	hydrogen sulfide	cell	$mmol \cdot l^{-1}$	\Box	\Box
γ_{roc}	s_0847	Ile-tRNA(Ile)	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\Box	\Box
Лис	s_0849	IMP	cell	$\mathrm{mmol} \cdot \mathrm{l}^{-1}$	\Box	\Box
Produced by SBML2l ^{ET} EX	s_0918	inositol-P-ceramide D (C24)	cell	$\mathrm{mmol} \cdot \mathrm{l}^{-1}$	\Box	\Box
by	s_0940	isocitrate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
<u>8</u>	s_0943	isopentenyl diphosphate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
<u>\$</u>	s_0951	keto-phenylpyruvate	cell	$\text{mmol} \cdot l^{-1}$	\Box	\Box
Ä	s_0953	L-2-aminoadipate	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
×	s_0955	L-alanine	cell	$\text{mmol} \cdot l^{-1}$	\Box	\Box
	s_0959	L-allysine	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\Box	\Box
	s_0965	L-arginine	cell	$\text{mmol} \cdot 1^{-1}$		
	s_0969	L-asparagine	cell	$\text{mmol} \cdot 1^{-1}$		
	s0973	L-aspartate	cell	$\text{mmol} \cdot l^{-1}$		
	s_0978	L-aspartate 4-semialdehyde	cell	$\text{mmol} \cdot l^{-1}$		
	s_0979	L-citrulline	cell	$\text{mmol} \cdot l^{-1}$	\Box	
	s_0980	L-cystathionine	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
	s_0981	L-cysteine	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
	s_0991	L-glutamate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	s_0999	L-glutamine	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
	$s_{-}1003$	L-glycine	cell	$mmol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_1006	L-histidine	cell	$mmol \cdot l^{-1}$	\Box	\Box
s_1010	L-histidinol	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1011	L-histidinol phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1012	L-homocysteine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1014	L-homoserine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1016	L-isoleucine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1021	L-leucine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1025	L-lysine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1029	L-methionine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1032	L-phenylalanine	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_1035	L-proline	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1038	L-saccharopine	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_1039	L-serine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1045	L-threonine	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
s_1048	L-tryptophan	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1051	L-tyrosine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1056	L-valine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1059	lanosterol	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
s_1065	laurate	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
s_1073	lauroyl-CoA	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1077	Leu-tRNA(Leu)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1084	lignoceric acid	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1099	Lys-tRNA(Lys)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1101	malonyl-CoA	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1107	mannan	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
s_1148	Met-tRNA(Met)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1153	myo-inositol	cell	$\operatorname{mmol} \cdot 1^{-1}$		

Produced by SBML2ATEX	

14	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	s_1161	myristate	cell	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\Box	
	$s_{-}1176$	myristoyl-CoA	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
	s_1182	N(2)-acetyl-L-ornithine	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
	$s_{-}1187$	N-(5-phospho-beta-D-ribosyl)anthranilate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
	s_11191	N-acetyl-L-gamma-glutamyl phosphate	cell			
	$s_{-}1192$	N-acetyl-L-glutamate	cell			
	$s_{-}1194$	N-carbamoyl-L-aspartate	cell			\Box
	s_1198	NAD	cell			
r_0	s_1203	NADH	cell			
duc	s_1207	NADP(+)	cell			
ed	s_1212	NADPH	cell			
Produced by SBML2PTEX	s_1233	O-acetyl-L-homoserine	cell			
<u>88</u>	$s_{-}1238$	O-phospho-L-homoserine	cell			
<u>\$</u>	$s_{-}1255$	octanoyl-CoA	cell			
Ä	s_1266	ornithine	cell			
\ <u>\</u>	s_1269	orotate	cell			\Box
	s_1270	orotidine 5'-(dihydrogen phosphate)	cell		\Box	
	s_1271	oxaloacetate	cell			
	s_1275	oxygen	cell			
	$s_{-}1277$	oxygen	extracellular			
	$s_{-}1286$	palmitate	cell			\Box
	s_1302	palmitoyl-CoA	cell			\Box
	$s_{-}1314$	Phe-tRNA(Phe)	cell			\Box
	s_1322	phosphate	cell			\Box
	s_1324	phosphate	extracellular			
	s_1331	phosphatidate	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
	s_1337	phosphatidyl-L-serine	cell	$\operatorname{mmol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_1342	phosphatidyl-N,N-dimethylethanolamine	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
s_1343	phosphatidyl-N-methylethanolamine	cell	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
s_1346	phosphatidylcholine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1351	phosphatidylethanolamine	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
s_1360	phosphoenolpyruvate	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1364	phosphoribosyl-carboxy-aminoimidazole	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$s_{-}1365$	phosphoribosyl-formamido-carboxamide	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1366	phytosphingosine	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1376	prenyl diphosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1377$	prephenate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1379$	Pro-tRNA(Pro)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1386	PRPP	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1399$	pyruvate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1405$	riboflavin	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1408$	ribose-5-phosphate	cell	$\operatorname{mmol} \cdot \operatorname{l}^{-1}$		
$s_{-}1413$	S-adenosyl-L-homocysteine	cell	$\operatorname{mmol} \cdot \operatorname{l}^{-1}$		\Box
$s_{-}1416$	S-adenosyl-L-methionine	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1427$	sedoheptulose 7-phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1428$	Ser-tRNA(Ser)	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1429$	shikimate	cell	$\operatorname{mmol} \cdot \operatorname{l}^{-1}$		\Box
$s_{-}1445$	sphinganine	cell	$\operatorname{mmol} \cdot \operatorname{l}^{-1}$		\Box
$s_{-}1447$	squalene	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1449$	stearate	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1454$	stearoyl-CoA	cell	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$s_{-}1467$	sulphate	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
$s_{-}1468$	sulphate	extracellular	$\operatorname{mmol} \cdot 1^{-1}$		
$s_{-}1469$	sulphite	cell	$\operatorname{mmol} \cdot 1^{-1}$		

Produced
by
SBMLZETEX

16	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	s_1487	THF	cell	$mmol \cdot l^{-1}$		
	$s_{-}1491$	Thr-tRNA(Thr)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	$s_{-}1520$	trehalose	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	$s_{-}1524$	triglyceride	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	$s_{-}1527$	Trp-tRNA(Trp)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	$s_{-}1533$	Tyr-tRNA(Tyr)	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
	s_1535	ubiquinol-6	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
F	s_1537	ubiquinone-6	cell	$mmol \cdot 1^{-1}$	\Box	\Box
Produced by SBML2l ^{ET} EX	s_1538	UDP	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
дис	$s_{-}1543$	UDP-D-glucose	cell	$mmol \cdot 1^{-1}$	\Box	\Box
ed	$s_{-}1545$	UMP	cell	$mmol \cdot 1^{-1}$	\Box	
by	s_1559	UTP	cell	$mmol \cdot l^{-1}$	\Box	\Box
<u>8</u>	s_1561	Val-tRNA(Val)	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
<u>\$</u>	s_1565	xanthosine-5-phosphate	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
Ä	s_1569	zymosterol	cell	$mmol \cdot l^{-1}$	\Box	\Box
'×	$s_{-}1576$	zymosterol intermediate 1a	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
	$s_{-}1577$	zymosterol intermediate 1b	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
	$s_{-}1578$	zymosterol intermediate 1c	cell	$mmol \cdot l^{-1}$	\Box	
	$s_{-}1579$	zymosterol intermediate 2	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
	s_1582	tRNA(Ala)	cell	$mmol \cdot l^{-1}$	\Box	
	s_1583	tRNA(Arg)	cell	$mmol \cdot l^{-1}$	\Box	\Box
	s_1585	tRNA(Asn)	cell	$\text{mmol} \cdot 1^{-1}$	\Box	\Box
	$s_{-}1587$	tRNA(Asp)	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
	$s_{-}1589$	tRNA(Cys)	cell	$mmol \cdot 1^{-1}$	\Box	\Box
	$s_{-}1590$	tRNA(Gln)	cell	$mmol \cdot l^{-1}$	\Box	\Box
	s_1591	tRNA(Glu)	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
	s_1593	tRNA(Gly)	cell	$\operatorname{mmol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_1594	tRNA(His)	cell	$mmol \cdot l^{-1}$	\Box	
s_1596	tRNA(Ile)	cell	$mmol \cdot l^{-1}$		
s_1598	tRNA(Leu)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1600	tRNA(Lys)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1602	tRNA(Met)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1604	tRNA(Phe)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1606	tRNA(Pro)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1607	tRNA(Ser)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1608	tRNA(Thr)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
s_1610	tRNA(Trp)	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
s_1612	tRNA(Tyr)	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$s_{-}1614$	tRNA(Val)	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
s_1616	TRX1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
s_1620	TRX1 disulphide	cell	$\text{mmol} \cdot 1^{-1}$	\Box	
e_0001	COX1	cell	$\text{mmol} \cdot 1^{-1}$		
e_0004	COB	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0006	COX2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0007	COX3	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0008	CYS3	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0010	PMT2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0011	CDC19	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0012	GCV3	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0016	GDH3	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
e_0017	ADE1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
e_0020	SCT1	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
$e_{-}0022$	ACH1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
e_0025	RIB1	cell	$\text{mmol} \cdot 1^{-1}$		\square

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
e_0026	URA7	cell	$\text{mmol} \cdot 1^{-1}$	Ø	
e_0028	COR1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $	
e_0029	PRX1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0030	PRS4	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0031	ILS1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0038	IPP1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
e_0045	CDS1	cell	$\text{mmol} \cdot 1^{-1}$		
e_0054	TSC3	cell	$\text{mmol} \cdot 1^{-1}$		
e_0057	MIS1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0062	LYS2	cell	$\text{mmol} \cdot 1^{-1}$		
e_0063	TKL2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
e_0064	GRS1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0065	TPS1	cell	$\text{mmol} \cdot 1^{-1}$		
e_0071	RIB7	cell	$\text{mmol} \cdot 1^{-1}$		
e_0074	TYR1	cell	$\text{mmol} \cdot 1^{-1}$		
e_0077	YPC1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
e_0079	PGI1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0084	PYC2	cell	$\text{mmol} \cdot 1^{-1}$		
e_0085	PDB1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0086	GPX2	cell	$\text{mmol} \cdot 1^{-1}$		
e_0087	HIS7	cell	$\text{mmol} \cdot 1^{-1}$		
e_0088	ARO4	cell	$\text{mmol} \cdot 1^{-1}$		
e_0089	DUT1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0090	RIB5	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0091	SHM1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0092	TSC10	cell	$\text{mmol} \cdot 1^{-1}$		\square
e_0100	ILV6	cell	$\operatorname{mmol} \cdot 1^{-1}$		\checkmark

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
e_0101	LEU2	cell	$mmol \cdot l^{-1}$	Ø	
e_0103	HIS4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0104	GRX1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0106	GLK1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0107	APA1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0111	CIT2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\checkmark}$
e_0113	PGK1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0117	FEN1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0122	THR4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0124	TRX3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0128	TSC13	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0129	GPD1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0133	SLC1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0134	PSA1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0135	IDP1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0136	COX9	cell	$\operatorname{mmol} \cdot 1^{-1}$		\checkmark
e_0137	MDH3	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0139	NDE2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	\checkmark
e_0141	PMT5	cell	$\operatorname{mmol} \cdot 1^{-1}$		\checkmark
e_0142	PMT1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0146	LYS21	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	\checkmark
e_0154	LYS20	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	\checkmark
e_0160	GDH2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0165	TRP1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	\checkmark
e_0167	GCV1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0168	SES1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$	
e_0169	ARO3	cell	$mmol \cdot l^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$

Prod
luced by
SBML
MEX

20	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	e_0171	KRS1	cell	$mmol \cdot 1^{-1}$	Ø	
	e_0175	TPI1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
	e_0176	TGL2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
	e_0177	LCB2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0179	TPS2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0181	GRX3	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0182	ARO1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0186	HOM2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
Produced by SBML2laTEX	e_0194	ADK1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
duc	e_0196	LYS4	cell	$\operatorname{mmol} \cdot 1^{-1}$		
ed	e_0203	DPP1	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
by	e_0204	INM2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		\checkmark
<u>88</u>	e_0206	SUR2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
\leq	e_0214	YDR341C	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
Ä	e_0218	TRR1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
\mathbb{R}	e_0219	TRP4	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0220	KEI1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0231	ADE8	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0233	TSA2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0234	GUK1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0237	RIB3	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0239	SAM2	cell	$\operatorname{mmol} \cdot 1^{-1}$		\checkmark
	e_0242	GRX2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0243	QCR7	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
	e_0249	URA3	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		\square
	e_0250	RIP1	cell	$\text{mmol} \cdot 1^{-1}$		\checkmark
	e_0255	CYC7	cell	$mmol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
e_0269	PMI40	cell	$mmol \cdot l^{-1}$		
e_0271	YND1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0273	FAA2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$	$\overline{\mathbf{Z}}$
e_0276	PRO3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\checkmark}$
e_0278	CHO1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\checkmark} $
e_0280	SAH1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0281	ном3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0283	HIS1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	7
e_0290	ARG5,6	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0291	RNR1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$	$\overline{\mathbf{Z}}$
e_0294	SER3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0296	AIM10	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$	
e_0297	TRP2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0298	MET6	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0299	PRS2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0303	ADK2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0304	GRX4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0306	PDA1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0311	LPD1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0312	FRS2	cell	$\operatorname{mmol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0314	SEC53	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0317	GSY1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0320	HIS2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0321	MET10	cell	$\operatorname{mmol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0322	QCR6	cell	$\operatorname{mmol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0325	HXK1	cell	$\operatorname{mmol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$	$ \mathbf{Z} $
e_0326	ERG26	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \mathbf{Z} $

Produced by SBML2PTE		
ed by SBMLZETE)	rodu	
ĂE	d by SBM	
	Ä	

22	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	e_0328	LEU1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\overline{Z}
	e_0329	ERG4	cell	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
	e_0330	TRP5	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
	e_0334	PYC1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0340	MET13	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	\square
	e_0342	ARO2	cell	$\text{mmol} \cdot 1^{-1}$	\square	\square
	$e_{-}0343$	LYS5	cell	$\text{mmol} \cdot 1^{-1}$	\square	
_	e_0346	COX4	cell	$\text{mmol} \cdot 1^{-1}$	\square	\square
Produced	e_0347	COX13	cell	$\text{mmol} \cdot 1^{-1}$	\square	\square
duc	e_0348	ARO8	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	\square
ed	e_0352	ADE5,7	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	\square
by	e_0353	GUS1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	\square
SBMLZATEX	e_0355	HXK2	cell	$\text{mmol} \cdot 1^{-1}$	\square	\square
<u>\lambda</u>	e_0364	GSC2	cell	$\text{mmol} \cdot 1^{-1}$	\square	\square
Ä	e_0365	ACB1	cell	$\text{mmol} \cdot 1^{-1}$	\square	\square
\times	e_0367	ERG25	cell	$\text{mmol} \cdot 1^{-1}$		
	e_0368	ADE6	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0372	VAS1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0376	ASN2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	\square
	e_0379	SKN1	cell	$\text{mmol} \cdot 1^{-1}$		
	e_0380	CYS4	cell	$\text{mmol} \cdot 1^{-1}$		
	e_0381	CHO2	cell	$\text{mmol} \cdot 1^{-1}$		
	e_0382	PSD2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0385	ERG1	cell	$\text{mmol} \cdot 1^{-1}$		
	e_0387	RNR4	cell	$\text{mmol} \cdot 1^{-1}$		
	e_0389	QCR9	cell	$\text{mmol} \cdot 1^{-1}$		\square
	e_0390	TYS1	cell	$\text{mmol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
e_0392	TDH3	cell	$mmol \cdot l^{-1}$		$ \overline{Z} $
e_0393	PDX1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$	
e_0396	ADE3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0397	SER2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0398	TRX2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0401	PFK1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0405	ENO1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0409	MES1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0418	PRS3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0422	QCR10	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
$e_{-}0424$	ERG11	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0425	DIA4	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$e_{-}0426$	ARG4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0427	DED81	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0428	THR1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0431	PUT2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0434	NCP1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0435	INM1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0436	COX6	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$e_{-}0440$	ERG7	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0448	TRR2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0452	DCD1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0454	ENO2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0456	ERG9	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0457	BAT1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0458	IMD2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0462	FAA3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbb{Z}}$	\overline{Z}

24	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	e_0463	DOT5	cell	$mmol \cdot l^{-1}$	Ø	
	e_0465	HIS6	cell	$mmol \cdot l^{-1}$		\square
	e_0467	RNR3	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
	e_0469	SER33	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	
	e_0470	THS1	cell	$mmol \cdot l^{-1}$		
	$e_{-}0472$	LYS12	cell	$\text{mmol} \cdot 1^{-1}$	\square	
	$e_{-}0475$	COX5B	cell	$\text{mmol} \cdot 1^{-1}$		
H	e_0476	HIS5	cell	$mmol \cdot l^{-1}$		\square
Produced by SBML2ATEX	e_0489	LYS1	cell	$mmol \cdot l^{-1}$		\square
дис	e_0490	HYR1	cell	$\text{mmol} \cdot 1^{-1}$		
ed	e_0492	RNR2	cell	$\text{mmol} \cdot 1^{-1}$		\square
by	e_0495	TDH1	cell	$mmol \cdot l^{-1}$		
<u>88</u>	e_0496	BNA3	cell	$mmol \cdot l^{-1}$		
<u>\$</u>	e_0499	ARG3	cell	$mmol \cdot l^{-1}$		
Ä	e_0506	RPE1	cell	$\text{mmol} \cdot 1^{-1}$		\square
\times	e_0508	URA2	cell	$mmol \cdot l^{-1}$		
	e_0510	GLG2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		\square
	e_0512	INO1	cell	$mmol \cdot l^{-1}$		
	e_0514	QCR8	cell	$mmol \cdot l^{-1}$		
	e_0515	ERG20	cell	$mmol \cdot l^{-1}$	\square	
	e_0525	TDH2	cell	$mmol \cdot l^{-1}$	\square	
	e_0528	ILV3	cell	$mmol \cdot l^{-1}$		
	e_0531	CYC1	cell	$mmol \cdot l^{-1}$		
	e_0536	OPI3	cell	$mmol \cdot l^{-1}$	\square	
	$e_{-}0540$	URA8	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
	$e_{-}0541$	ADO1	cell	$mmol \cdot l^{-1}$		\square
	e_0542	CPA2	cell	$mmol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
e_0545	STR2	cell	$mmol \cdot l^{-1}$	✓	
e_0547	MET5	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0548	HOM6	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0549	PMT4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathscr{L}}$	
e_0550	BAT2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0556	MET14	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0557	AUR1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathscr{L}}$	$\overline{\mathbf{Z}}$
e_0561	URA6	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0563	GPX1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0565	UGP1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0567	FBA1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\checkmark
e_0568	YNK1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\checkmark
e_0571	MDH1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0574	AAT1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0576	PGM1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0578	TGL1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\checkmark
e_0582	GPM1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0585	PRS1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0586	FAS1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
e_0591	TRP3	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0594	URA1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0603	GLG1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0607	GPT2	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
e_0610	MTD1	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
e_0611	TGL4	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
e_0613	YEH1	cell	$\text{mmol} \cdot l^{-1}$		
e_0615	DPS1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		$ \mathbf{Z} $

Produced
by
SBM
FALE

26	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	e_0629	AAT2	cell	$\operatorname{mmol} \cdot 1^{-1}$	Ø	
	e_0631	ADE16	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
	e_0632	COX12	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
	e_0633	TRX1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\mathbf{Z}} $
	e_0637	ERG3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\mathbf{Z}} $
	e_0638	SHM2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0639	FRS1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	\checkmark
	e_0642	ALT1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\mathbf{Z}} $
Produced by	e_0644	ERG27	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\mathbf{Z}} $
duc	e_0645	AHP1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
ed	e_0658	SAM1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
by	e_0667	GSY2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
SBMLZATEX	e_0674	MET17	cell	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $	$ \overline{\mathbf{Z}} $
\leq	e_0675	ACO1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
Ά	e_0682	FKS1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
T.	e_0684	TAL1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0685	ILV5	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0686	ADE13	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0687	SUR4	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0690	COX8	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\mathbf{Z}} $
	e_0692	URA4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\mathbf{Z}} $
	e_0693	IMD3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	\checkmark
	e_0697	HMG2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\mathbf{Z}} $
	e_0699	ERG6	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$ \overline{\mathbf{Z}} $
	e_0705	IMD4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
	e_0708	HMG1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$	$\overline{\mathbf{Z}}$
	e_0711	TSL1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
e_0712	URA5	cell	$mmol \cdot l^{-1}$	Ø	
e_0714	NDI1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0716	ERG13	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0724	ERG5	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0729	ARG7	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0733	PGM2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0734	ILV2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0736	ADE17	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0737	NDE1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0741	GCV2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$e_{-}0742$	ERG2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0743	PFK2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$e_{-}0744$	HFA1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$e_{-}0745$	ERG12	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0746	GUA1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0747	ERG8	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0750	FAA4	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0752	COX7	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0753	TPS3	cell	$\operatorname{mmol} \cdot 1^{-1}$		
$e_{-}0754$	PPA2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0755	URA10	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0756	SCS7	cell	$\operatorname{mmol} \cdot 1^{-1}$		
e_0757	PGM3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0761	LCB1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0763	ADE4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0765	TGL3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\checkmark}$
e_0769	IDP3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$

Produced
by
SBMLZE

28	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	e_0771	IDH1	cell	$mmol \cdot l^{-1}$	Ø	
	e_0774	COX5A	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0775	LAT1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0778	LEU4	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0788	PSD1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0791	ADE12	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0793	YNL247W	cell	$\operatorname{mmol} \cdot 1^{-1}$		
1	e_0799	MET2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
ro	e_0800	ERG24	cell	$\operatorname{mmol} \cdot 1^{-1}$		
duc	e_0802	PHA2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
Produced by SBML2 ^{l≙T} EX	e_0805	CIT1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
by	e_0808	ACC1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
₩	e_0812	MVD1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
\leq	e_0813	LYS9	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
Ä	e_0826	ARG1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
\square	e_0827	GPD2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0829	PRS5	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0830	MET22	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
	e_0832	RIB2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		\checkmark
	e_0836	WRS1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	e_0838	MDH2	cell	$\text{mmol} \cdot 1^{-1}$		
	e_0840	ARG8	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0841	RIB4	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0848	CYT1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		\checkmark
	e_0850	CDC21	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0851	TGL5	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
	e_0852	RKI1	cell	$\operatorname{mmol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
e_0855	LEU9	cell	$mmol \cdot l^{-1}$	Ø	
e_0860	ADE2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0862	IDH2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0867	GLN4	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0869	ALE1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0872	SER1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $	
e_0875	HIS3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0880	DFR1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0883	DGA1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $	
e_0888	CPA1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
e_0889	FAA1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
e_0890	PMT3	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
e_0894	ALA1	cell	$\text{mmol} \cdot 1^{-1}$		
e_0895	PYK2	cell	$\text{mmol} \cdot 1^{-1}$		
e_0899	GDH1	cell	$\text{mmol} \cdot 1^{-1}$		\square
e_0903	MET12	cell	$\text{mmol} \cdot 1^{-1}$		\square
e_0904	ERG10	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
e_0910	GRX5	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
e_0914	YDC1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\square
e_0915	GLR1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $	
e_0922	IDI1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $	
e_0926	CDC60	cell	$\text{mmol} \cdot 1^{-1}$		\square
e_0934	FAS2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0940	FUM1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
e_0947	CIT3	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0953	HTS1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
e_0955	GLN1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
e_0959	ARO7	cell	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark	\overline{Z}
e_0962	TKL1	cell	$\operatorname{mmol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
e_0963	GRS2	cell	$\text{mmol} \cdot l^{-1}$		$\overline{\mathbf{Z}}$
e_0964	PIS1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
e_0970	ASN1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
e_0973	KRE6	cell	$\text{mmol} \cdot l^{-1}$		
e_0975	MET16	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
e_0976	DPM1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
e_0978	QCR2	cell	$\text{mmol} \cdot 1^{-1}$		
e_0980	YER152C	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		

5 Function definition

This is an overview of one function definition.

5.1 Function definition max

Mathematical Expression

$$\frac{\mathbf{x} + \mathbf{y} + |\mathbf{x} - \mathbf{y}|}{2} \tag{1}$$

32

6 Reactions

This model contains 282 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	r_0005	1,3-beta-glucan synthase	s_1543 <u>e_0682</u> , <u>e_0364</u> , <u>s_1543</u> , <u>s_0002</u> , <u>s_1538</u>	s_000 2)\u000176
2	r_0006	1,6-beta-glucan synthase	s_1538 s_1543	s_0004 00 00176
3	r_0007	1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino)imid 4-carboxamide isomerase	s_0077 \(\frac{e_0465, \text{s_0077, s_0312}}{} \text{s_0312} \)	0000176
4	r_0008	1-acyl-sn-gylcerol-3-phosphate acyltrans- ferase	s_0082+s_0380	
5	r_0012	1-pyrroline-5-carboxylate dehydrogenase	s_0991+s_1203 e_0431, s_0991, s_1203, s_0118. s_1198	<u>, s_1198</u> 00 000768+
6	r_0014	2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate deaminase	s_0142 \(\frac{\epsilon_0832, \s_0142, \s_0313, \s_0419}{\epsilon_0419}\) s_0313	+ 0000176
7	r_0015	2,5-diamino-6-ribosylamino-4(3H)- pyrimidinone 5'-phosphate reductase (NADPH)	s_0141+s_1212 = e_0071, s_0141, s_1212, s_0142, s_1207	
8	r_0016	2-aceto-2-hydroxybutanoate synthase	s_0178+s_1399 = e_0734, e_0100, s_0178, s_1399 s_0456	, s_0039, s_0456 0000176→ s_0039+

N₀	Id	Name	Reaction Equation	SBO
9	r_0018	2-aminoadipate transaminase	s_0176+s_0991	
10	r_0020	2-deoxy-D-arabino-heptulosonate 7-phosphate synthetase	s_0551+s_1360	<u>0, s_0349, s_1322</u> 0000176 s_0349 -
11	r_0023	2-isopropylmalate hydratase	s_0162 \(\frac{e_0328, s_0162, s_0165}{\text{s}}\) s_0165	0000176
12	r_0024	2-isopropylmalate synthase	s_0232+s_0373	3, s_0162, s_0529
13	r_0027	2-methylcitrate dehydratase	$s_0835 \stackrel{e_0196, s_0835, s_0454}{\rightleftharpoons} s_0454$	0000176
14	r_0029	2-oxo-4-methyl-3-carboxypentanoate decarboxylation	s_0010 \(\frac{\end{e}_0550, \end{e}_0457, \s_0010, \s_0291, \s_0456}{\s_0456}\)	s_02910\(\phi\)00176
15	r_0032	3',5'-bisphosphate nucleotidase	s_0390 <u>e_0830</u> , s_0390, s_0423, s_1322 s_1322 s_0423	+ 0000176
16	r_0038	3,4-dihydroxy-2-butanone-4-phosphate synthase	s_0577 \(\frac{e_0237, s_0577, s_0158, s_0722}{\text{s_0722}}\) s_0158	+ 0000176
17	r_0039	3-dehydroquinate dehydratase	$s_0210 \stackrel{e_0182, s_0210, s_0211}{\longleftarrow} s_0211$	0000176
18	r_0040	3-dehydroquinate synthase	s_0349 \(\frac{\epsilon_0182, \s_0349, \s_0210, \s_1322}{\s_1322}\) s_0210	+ 0000176
19	r_0041	3-dehydrosphinganine reductase	s_0231+s_1212	7, s_1445 00 90 126 7+
20	r_0060	3-isopropylmalate dehydratase	s_0165 \(\frac{\text{e}_0328, \text{s}_0165, \text{s}_0009}{\text{s}_0009}\)	0000176
21	r_0061	3-isopropylmalate dehydrogenase	s_0009+s_1198	<u>0, s_1203</u> 00000000000000000000000000000000000

34	No	Id	Name	Reaction Equation SBO
-	22	r_0065	3-phosphoshikimate 1- carboxyvinyltransferase	s_0261+s_1360
	23	r_0079	5'-phosphoribosylformyl glycinamidine synthetase	$\begin{array}{c} s_0301 & + & s_0434 & + & 0000176 \\ s_0999 & & & & \underbrace{e_0368, s_0301, s_0434, s_0999, s_0302, s_0394, s_0991, s_1322}_{s_0394 + s_0991 + s_1322} \\ s_0394 & + s_0991 + s_1322 \\ \end{array}$
	24	r_0080	5,10-methylenetetrahydrofolate reductase (NADPH)	$\begin{array}{c} s_0306 + s_1212 \xleftarrow{e_0340,\ e_0903,\ s_0306,\ s_1212,\ s_0322,\ s_1207} \\ s_1207 \end{array}$
	25	r_0096	acetohydroxy acid isomeroreductase	$s_0146 + s_1212 \stackrel{e_0685, s_0146, s_1212, s_0016, s_1207}{\longleftarrow} 000006 + s_1207$
	26	r_0097	acetolactate synthase	2 s_1399
	27	r_0103	acetyl-CoA C-acetyltransferase	$2 s_{-}0373 \xrightarrow{e_{-}0904, s_{-}0373, s_{-}0367, s_{-}0529} s_{-}0367 + 0000176$ $s_{-}0529$
1	28	r_0108	acetyl-Coa carboxylase	s_0329 s_0373 + s_0434 + 0000176 s_0445 \(\frac{e_0744, e_0808, s_0373, s_0434, s_0445, s_0394, s_1101, s_1322}{} \) s_03
				s_1101 + s_1322
	29	r_0110	acetyl-CoA hydrolase	s_0362+s_0529 e_0022, s_0362, s_0529, s_0373 s_0370000176
	30	r_0115	acetylglutamate kinase	$s_0434 + s_01192 = \frac{e_0290, s_0434, s_01192, s_0394, s_01191}{e_000364 + s_01191} = \frac{e_0290, s_0434, s_0119}{e_000364 + s_01191} = \frac{e_0290, s_0434, s_0119}{e_000364 + s_0119} = \frac{e_0290, s_044}{e_000364 + s_0119} = \frac{e_0290, s_044}{e_000364 + s_0119} = \frac{e_0290, s_044}{e_000364 + s_0119} = \frac{e_0290, s_044}{e_0000364 + s_0119} = \frac{e_0290, s_044}{e_0000364 + s_0119} = \frac{e_0290, s_04}{e_0000364 + s_0119} = e_0290,$
	31	r_0118	acteylornithine transaminase	$\begin{array}{l} s_0145 + s_0991 \xleftarrow{e_0840, \ s_0145, \ s_0991, \ s_0180, \ s_1182} \\ s_1182 \end{array} + \\ \begin{array}{l} \bullet \bullet$
	32	r_0142	adenosine kinase	$\begin{array}{l} s_0386 + s_0434 \xleftarrow{e_0541, \ s_0386, \ s_0434, \ s_0394, \ s_0423} \\ s_0423 \end{array} + \\ \begin{array}{l} \bullet \\ \bullet $

N⁰	Id	Name	Reaction Equation	SBO
33	r_0144	adenosylhomocysteinase	s_1413 <u>e_0280, s_1413, s_0386, s_1012</u> s_0386 + s_1012	0000176
34	r_0148	adenylate kinase	s_0423+s_0434	394
35	r_0151	adenylosuccinate lyase (AICAR)	s_0299 \(\frac{e_0686, s_0299, s_0403, s_0725}{} s_0403 + s_0725	0000176
36	r_0152	adenylosuccinate lyase	s_0393	0000176
37	r_0153	adenylosuccinate synthase	s_0785 + s_0849 + s_0973 \(\frac{e_0791, s_0785, s_0849, s_0973, s_0393, s_07}{e_0785, s_0849, s_0973, s_0393, s_07} \)	0000176 39, s_1322 s_0393+
38	r_0154	adenylyl-sulfate kinase	s_0739 + s_1322 s_0298 + s_0434	394
39	r_0157	alanyl-tRNA synthetase	s_0434 + s_0955 + s_1582 \(\frac{e_0894, s_0434, s_0955, s_1582, s_0404, s_04}{e_0894, s_0434, s_0955, s_1582, s_0404, s_04} \)	0000176 23, s_0633 s_0404+
			s_0423 + s_0633	0560 - 1542 - 0400 - 152
40	r_0195	alpha,alpha-trehalose-phosphate synthase (UDP-forming)	s_0568+s_1543	308, \$_1343, \$_0409, \$_133 0000176
41	r_0202	anthranilate phosphoribosyltransferase	s_0427+s_1386 e_0219, s_0427, s_1386, s_0633, s_1	187
42	r_0203	anthranilate synthase	s_1187 s_0515+s_0999	427, s_0991, s_1399 -0000176 s_0427
43	r_0207	argininosuccinate lyase	s_0015 \(\frac{e_0426, s_0015, s_0725, s_0965}{s_0965}\) s_0725 + s_0965	0000176

s_0633

No	Id	Name	Reaction Equation	SBO
54	r_0231	C-14 sterol reductase	s_0262+s_1212	207 — 00 90 078 2+
55	r_0233	C-22 sterol desaturase (NADP)	s_0664 + s_1212 + s_1275 e_0724, s_0664, s_1212, s_1275, s_0662, s_12 s_1207	0000176 $\stackrel{007}{\Longrightarrow} s_{-}0662 +$
56	r_0234	C-3 sterol dehydrogenase	s_1207+s_1578	
57	r_0235	C-3 sterol dehydrogenase (4-methylzymosterol)	s_0297+s_1198	
58	r_0236	C-3 sterol keto reductase (4-methylzymosterol)	s_0209+s_1212	
59	r_0237	C-3 sterol keto reductase (zymosterol)	s_1212+s_1579 \(\frac{e_0644, s_1212, s_1579, s_1207, s_11}{s_1569}\)	569
60	r_0238	C-4 methyl sterol oxidase	s_0296 + s_1212 + s_1275 \(\frac{e_0367, s_0296, s_1212, s_1275, s_1207, s_15}{e_0367, s_0296, s_1212, s_1275, s_1207, s_15} \)	0000176 $\stackrel{76}{\Longrightarrow}$ s ₋₁₂₀₇₊
61	r_0239	C-4 methyl sterol oxidase	s_1576 s_1212 + s_1275 + s_1576 e_0367, s_1212, s_1275, s_1576, s_1207, s_15	
62	r_0240	C-4 methyl sterol oxidase	s_1577 s_1212 + s_1275 + s_1577 e_0367, s_1212, s_1275, s_1577, s_1207, s_15	0000176 $\stackrel{78}{\longrightarrow}$ s ₋ 1207+
63	r_0241	C-4 sterol methyl oxidase (4,4-dimethylzymosterol)	s_1578 s_0122 + 3 s_1212 + 3 s_1275 e_0367, s_0122, s_1212, s_1275, s_0297, s_1 3 s_1207	0000176 1207 s_0297+

4.5					
38	$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO
	64	r_0242	C-5 sterol desaturase	s_0657 + s_1212 + s_1275 \(\frac{e_0637, s_0657, s_1212, s_1275, s_0664, s_12}{} \)	0000176
					s_0664+
				s_1207	
	65	r_0243	C-8 sterol isomerase	$s_{-0700} = 0.0742, s_{-0700}, s_{-0657} = 0.0657$	0000176
	66	r_0244	C-s24 sterol reductase	s_0662+s_1212 \(\frac{e_0329, s_0662, s_1212, s_0666, s_1}{e_0329}\)	20 7 = 00 900 66 6+
				s_1207	
	67	r_0250	carbamoyl-phosphate synthase (glutamine-	2 s_0434 + s_0445 + s_0999 \(\frac{e_0508}{2}\), e_0542, e_0888, s_0434, s_0445, s_099	0000176 200 s 0394 s 0455 s 0991 s 13
			hydrolysing)	s_0999 	999, 8_0394, 8_0433, 8_0391, 8_11
Pro				$s_0455 + s_0991 + s_1322$	
Produced by SBML2/ATEX	68	r_0257	CDP-diacylglycerol synthase	s_0539+s_1331 \(\frac{e_0045, s_0539, s_1331, s_0471, s_0}{e_0045, s_0539, s_1331, s_0471, s_0}\)	0633 = -00 9004761+
d b				s_0633	
S	69	r_0259	ceramide-1 hydroxylase (24C)	s_0475	0000176 207
<u>M</u>					s_0481+
\ \> <u>\</u>				s_1207	00001=6
Ψ'	70	r_0267	ceramide-3 synthase (24C)	s_0481 + s_1212 + s_1275 = e_0756, s_0481, s_1212, s_1275, s_0493, s_12	0000176 207
					s_0493+
	71	0040	:1 4 (1 (246)	s_1207	0000176
	/1	r_0269	ceramide-4 synthase (24C)	s_0493 + s_1212 + s_1275 = e_0756, s_0493, s_1212, s_1275, s_0499, s_12	0000176 207
					== s_0499+
				s_1207	
	72	r_0278	chorismate mutase	$s_0515 \stackrel{e_0959, s_0515, s_1377}{\longleftarrow} s_1377$	0000176
	73	r_0279	chorismate synthase	s_0324 \(\frac{\mathbf{e}_0342, \mathbf{s}_0324, \mathbf{s}_0515, \mathbf{s}_1322}{\mathbf{e}_0342, \mathbf{s}_0515}\) +	0000176
			-	s_1322	
	74	r_0280	cis-aconitate(3-) to isocitrate	$s_{-}0516 \xrightarrow{e_{-}0675, s_{-}0516, s_{-}0940} s_{-}0940$	0000176

N⁰	Id	Name	Reaction Equation	SBO
75	r_0300	citrate synthase	s_0373+s_1271 = 0.0947, e_0805, e_0111, s_0	0373, s_1271, s_0522, s_0529
13	1_0000	citate symmase	s_0529	3_0322
76	0000		$s_0522 = 0.0675, s_0522, s_0516 = 0.0516$	0000176
76	r_0302	citrate to cis-aconitate(3-)		
77	r_0307	CTP synthase (NH3)	s_0419 + s_0434 e_0540_e_0026_s_0419_s_0434_s_15	+ 0000176 559 s 0394 s 0539 s 1322
			s_1559 <u>e_0540</u> , <u>e_0026</u> , <u>s_0419</u> , <u>s_0434</u> , <u>s_15</u>	s_0394
			$s_{-}0539 + s_{-}1322$	
78	r_0309	cystathionine beta-synthase	$s_1012 + s_1039 = 0.380, s_1012, s_1039, s_0$	980 ⇒ s_0980000176
79	r_0310	cystathionine g-lyase	s_0980 = 0008, s_0980, s_0178, s_0419, s_09	281 s 01780000176
19	1_0310	cystatinonine g-1yasc	s_0419 + s_0981	\$_017@ 0 00170
				362, s_0980
80	r_0311	cystathionine gamma-synthase	$s_0981 + s_1233 = 0.0545, s_0981, s_1233, s_0$	00 900 36 2+
			s_0980	
81	r_0313	cysteinyl-tRNA synthetase	s_0434 + s_0981 s_1589 = 0793, s_0434, s_0981, s_1589, s_04	+ 0000176
			s_1589 ====================================	$=$ $s_0423 +$
			$s_0542 + s_0633$	
82	r_0317	cytochrome P450 lanosterol 14-alpha-	s_1059 + 3 s_1212 3 s_1275 = e_0434, e_0424, s_1059, s_1212, s_1	+ 0000176
		demethylase (NADP)	3 s_1275 = 0.0434, e_0.0424, s_1039, s_1212, s_1	$\frac{1273, s_{-0}262, s_{-0}722, s_{-1}207}{s_{-0}262}$
			$s_0722 + 3 s_1207$	
83	r_0326	dCMP deaminase	s_0589 e_0452, s_0589, s_0419, s_0654 s_04	19 + 0000176
0.5	1-0020	delini dedininase	s_0654	15 0000170
0.4	0000	1 (1) (1CMD ATTD)	s_0394+s_0613 \(\frac{e_0234, s_0394, s_0613, s_0}{}	434, s_0615
84	r_0330	deoxyguanylate kinase (dGMP:ATP)		00 900454+
			s_0615 e_0883 s_0529 s_1524 s_0	380 s 0619
85	r_0336	diacylglycerol acyltransferase	s_0529+s_1524 <u>e_0883, s_0529, s_1524, s_0</u>	000 900 7% 0+
			s_0619	

40	Nº Id	Name	Reaction Equation	SBO
	86 r ₋ 0337	diacylglycerol pyrophosphate phosphatase	s_1331 \(\frac{e_0203, s_1331, s_0619, s_1322}{\text{s_1322}}\) s_0619	+ 0000176
	87 r_0339	dihydoorotic acid dehydrogenase	s_0061+s_1275	<u>s_1269</u>
	88 r_0340	dihydroceramidase	s_1084+s_1445 = e_0914, s_1084, s_1445, s_0475	s_04 75 000176
	89 r ₋ 0344	dihydrofolate reductase	s_0625+s_1212	<u>s_1487</u> 00 901 26 7+
P_{Γ}	90 r_0349	dihydroorotase	s_1194 <u>e_0692, s_1194, s_0061</u> s_0061	0000176
oduced	91 r ₋ 0352	dihydroxy-acid dehydratase (2,3-dihydroxy-3-methylbutanoate)	s_0016 \(\frac{\epsilon_0528, \epsilon_0016, \epsilon_0232}{\epsilon}\) s_0232	0000176
Produced by SBMI2PTEX	92 r ₋ 0353	dihydroxy-acid dehydratase (2,3-dihydroxy-3-methylpentanoate)	s_0008 \(\frac{e_0528, s_0008, s_0056}{}\) s_0056	0000176
LZIATEX	93 r ₋ 0355	dimethylallyltranstransferase	s_0943+s_1376	<u>s_0745</u> 00000633+
	94 r ₋ 0361	dolichyl-phosphate D-mannosyltransferase	s_0645+s_0743	s_0739 00006 6 4+
	95 r_0362	dolichyl-phosphate-mannose–protein manno- syltransferase	s_0644	s_0644, s_0645, s_1107 0000176 s_064
	96 r ₋ 0364	dUTP diphosphatase	s_0656 \(\frac{\text{e_0089, s_0656, s_0633, s_0654}}{\text{s_0654}}\) s_0654	+ 0000176
	97 r_0366	enolase	s_0188 <u>e_0405, e_0454, s_0188, s_1360</u> s_1360	0000176

	Id	Name	Reaction Equation SBO
	r_0386	fatty acid synthase (n-C12:0)	s_0595 + s_1101 + 0000176 2 s_1212 = 0808, e_0365, e_0586, e_0934, s_0595, s_1101, s_1212, s_0456, s_0529, s_1101
99	r_0387	fatty acid synthase (n-C14:0)	\$_{\sum_{0529} + \s_{\text{1065} + 2\s_{\text{1207}}}}\] \$\s_{\text{1065} + \s_{\text{1101}} + \text{0000176}}\] \$\s_{\text{1065} + \s_{\text{1212}}}\] \$\sum_{\text{0808}, \sum_{0365}, \sum_{0586}, \sum_{0934}, \sum_{1065, \sum_{1101}, \sum_{1212}, \sum_{0456}, \sum_{0529}, \sum_{0586}}}\] \$\sum_{\text{2s_{\text{1212}}}}\]
100	r_0389	fatty acid synthase (n-C16:0)	s_0529 + s_1161 + 2 s_1207 s_1101 + s_1161 + 0000176 2 s_1212 = e_0808, e_0365, e_0586, e_0934, s_1101, s_1161, s_1212, s_0456, s_0529, s_0
101	r_0391	fatty acid synthase (n-C18:0)	s_0529 + 2 s_1207 + s_1286 s_1101 + 2 s_1212 + 0000176 s_1286 e_0808, e_0365, e_0586, e_0934, s_1101, s_1212, s_1286, s_0456, s_0529, s_1
102	r_0393	fatty acid synthase (n-C24:0), lumped reaction	s_0529 + 2 s_1207 + s_1449 3 s_1101 + 6 s_1212 + 0000176 s_1449 e_0128, e_0117, e_0687, s_1101, s_1212, s_1449, s_0456, s_0529, s_1084, s_11
103	r_0397	fatty acyl-CoA synthase (n-C10:0CoA)	3 s_0529 + s_1084 + 6 s_1207 s_1101 + 2 s_1212 + 0000176 s_1255 e_0808, e_0365, e_0586, e_0934, s_1101, s_1212, s_1255, s_0456, s_0529, s_0
104	r_0398	fatty acyl-CoA synthase (n-C8:0CoA), lumped reaction	s_0529 + s_0602 + 2 s_1207 s_0373 + 3 s_1101 + 0000176 e_0808, e_0365, e_0586, e_0934, s_0373, s_1101, s_1212, s_0456, s_0529, s_0656
105	r_0399	fatty-acid-CoA ligase (decanoate)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

42	N₀	Id	Name	Reaction Equation	SBO
	106	r_0400	fatty-acid–CoA ligase (dodecanoate)	s_0423 + s_0633 s_1073 = e_0273, s_0423, s_0633, s_1073, s_0434,	+ 0000176 , s_0529, s_1065
				$s_0529 + s_1065$	
	107	r_0407	fatty-acid-CoA ligase (octadecanoate)	s_0423 + s_0633 s_1454 = 0750, e_0889, e_0462, s_0423, s_0633,	+ 0000176 , s_1454, s_0434, s_0529, s_1449
				s.0529 + s.1449	
Produced by SBMLੴE ^X	108	r_0432	fatty-acyl-CoA synthase (n-C12:0CoA)	s_0602 + s_1101 2 s_1212 \(\frac{e_0808, e_0365, e_0586, e_0934, s_060}{} \)	+ 0000176)2, s_1101, s_1212, s_0456, s_0529, s_
				$s_{-}0529 + s_{-}1073 + 2 s_{-}1207$	
	109	r_0433	fatty-acyl-CoA synthase (n-C14:0CoA)	s_1073 + s_1101 2 s_1212 \(\frac{e_0808, e_0365, e_0586, e_0934, s_107}{} \)	+ 0000176 /3, s_1101, s_1212, s_0456, s_0529, s_
				$s_{-}0529 + s_{-}1176 + 2 s_{-}1207$	
y SBN	110	r_0434	fatty-acyl-CoA synthase (n-C16:0CoA)	s_1101 + s_1176 2 s_1212 \(\frac{e_0808, e_0365, e_0586, e_0934, s_110}{} \)	+ 0000176)1, s_1176, s_1212, s_0456, s_0529, s_
				$s_{-}0529 + 2 s_{-}1207 + s_{-}1302$	
严'	111	r_0435	fatty-acyl-CoA synthase (n-C18:0CoA)	s_1101 + 2 s_1212 s_1302 = 0808, e_0365, e_0586, e_0934, s_1101,	+ 0000176 , s_1212, s_1302, s_0456, s_0529, s_12
				$s_0529 + 2 s_1207 + s_1454$	
	112	r_0438	ferrocytochrome-c:oxygen oxidoreductase	$4 s_0710 + s_1275 = \frac{e_0632, e_0007, e_0774, e_043}{e_0514 e_0078, e_0778, e_0432, e_093}$	36, e_0136, e_0001, e_0347, e_0255, e_0000176
	113	r_0439	ferrocytochrome-c:oxygen oxidoreductase	2 s_0709 + s_1535	50, e_0004, e_0243, e_0389, e_0233, e_
	114	r_0446	formate-tetrahydrofolate ligase	s_1337 s_0120 + s_0394 s_1322 = e_0396, e_0057, s_0120, s_0394, s_1322,	+ 0000176
				s_1322 \(\frac{\epsilon_{0057}, \epsilon_{0120}, \epsilon_{0394}, \epsilon_{1322}, \\ \epsilon_{0722} + \epsilon_{1487} \)	$\xrightarrow{s_0434, s_0722, s_1487} s_0434 +$
				$S_{-}0/22 + S_{-}140/$	

N₀	Id	Name	Reaction Equation	SBO
115	r_0450	fructose-bisphosphate aldolase	s_0555 \(\frac{e_0567, s_0555, s_0629, s_0764}{\frac{s_0764}{s_0764}}\) s_0629	+ 0000176
116	r_0451	fumarase	$s_0725 \stackrel{e_0940, s_0725, s_0066}{\longleftarrow} s_0066$	0000176
117	r_0462	geranyltranstransferase	s_0745+s_0943	0, \$ <u>0</u> 0007 % 0+
118 119	r_0467 r_0470	glucose-6-phosphate isomerase glutamate dehydrogenase (NAD)	$\begin{array}{c} s_0568 \xleftarrow{e_0079, \ s_0568, \ s_0557} s_0180 \\ s_1203 e_0160, \ s_0180, \ s_0419, \ s_1203, \ s_0991, \ s_0419, \ s_1203, \ s_0991, \ s_0419, \ s_04$	0000176 + 0000176 s s_1198 s 0991 +
120	r_0471	glutamate dehydrogenase (NADP)	s_1198 s_0180 + s_0419 s_1212 \(e_0016, e_0899, s_0180, s_0419, s_1212. \)	
121	r_0476	glutamine synthetase	s_1207 s_0419 + s_0434 s_0991 = e_0955, s_0419, s_0434, s_0991, s_0394,	+ 0000176 , s_0999, s_1322 ===================================
122	r_0478	glutaminyl-tRNA synthetase	s_0999 + s_1322 s_0434 + s_0999 s_1590 = 0.867, s_0434, s_0999, s_1590, s_0423,	+ 0000176 s = 0633, s = 0747 s = 0423+
123	r_0479	glutamyl-tRNA synthetase	s_0633 + s_0747 s_0434 + s_0991 s_1591 \(\frac{e_0353, s_0434, s_0991, s_1591, s_0423, s_0423}{e_0353, s_0434, s_0991, s_1591, s_0423, s_0423} \)	
124	r_0481	glutathione oxidoreductase	s_0633 + s_0748 s_0754 + s_1212	
125	r_0483	glutathione peridoxase	2 s_0750+s_0837 = 0.0242, e_0563, e_0086, e_01	04, e_0490, e_0910, s_0750, s_0837,

 $s_0633 + s_0722$

135 r₋0525

GTP cyclohydrolase II

N⁰	Id	Name	Reaction Equation	SBO
136	r_0528	guanylate kinase	s_0434+s_0782	739 = 00 90 03% 4+
137	r_0529	guanylate kinase (GMP:dATP)	s_0586+s_0782	739 = 00 00 05% 2+
138	r_0534	hexokinase (D-glucose:ATP)	s_0434+s_0563	563, s_0394, s_0568 0000176 s_0394+
139	r_0536	histidinol dehydrogenase	s_1010+2 s_1198	1203
140	r_0537	histidinol-phosphatase	$s_{-1011} = \frac{e_{-0320}, s_{-1011}, s_{-1010}, s_{-1322}}{s_{-1010}} + s_{-1322}$	0000176
141	r_0538	histidinol-phosphate transaminase	s_0207+s_0991	011
142	r_0539	histidyl-tRNA synthetase	$\begin{array}{c} \text{s_0434} & + & \text{s_1006} & + \\ \text{s_1594} & & \\ \hline \text{s_0633} + \text{s_0832} & \\ \end{array}$	0000176 33, s_0832 s_0423+
143	r_0542	homoacontinate hydratase	s_0454 \(\frac{e_0196, s_0454, s_0836}{}\) s_0836	0000176
144	r_0543	homocitrate synthase	s_0180+s_0373	529, s_0835 0000176 s_0529+
145	r_0545	homoisocitrate dehydrogenase	s_0836+s_1198	203, s_0456 =0000176=` s_0176+
146	r_0547	homoserine dehydrogenase (NADP)	s_0978+s_1212	207 = 00 90 1 064 +

 $s_0456 + s_1203$

46

N⁰	Id	Name	Reaction Equation SBO
160	r_0661	isocitrate dehydrogenase (NADP+), peroxiso-	s_0940+s_1207 = 0769, e_0135, s_0940, s_1207, s_0180, s_0456, s_1212 = 0000176
100	1_0001	mal	s_0456+s_1212
171	0.000		s_0056+s_0991
101	r_0663	isoleucine transaminase	s_0056+s_0991
162	r_0665	isoleucyl-tRNA synthetase	
102	1 = 0 0 0 0	isolouoyi iki vi syninouso	s_0434 + s_1016 + 0000176 s_1596 = 0031, s_0434, s_1016, s_1596, s_0423, s_0633, s_0847 s_0423 +
			s_0633 + s_0847
1.60			e 0922 s 0943 s 1376
163	r_0667	isopentenyl-diphosphate D-isomerase	
164	r_0669	ketol-acid reductoisomerase (2-aceto-2-	$s_0039 + s_1212 \xrightarrow{e_0685, s_0039, s_1212, s_0008, s_1207} 00000068 +$
		hydroxybutanoate)	s_1207
165	r_0674	L-alanine transaminase	s_0991+s_1399 \(\frac{e_0642, s_0991, s_1399, s_0180, s_0955}{00000780} +
			s_0955
166	r_0678	L-aminoadipate-semialdehyde dehydroge-	s_0953+s_1212 \(\frac{e_0062, e_0343, s_0953, s_1212, s_0959, s_1207}{0000176} \) s_0959+
100	1_0010	nase (NADPH)	s_1207
167	~ 0609	langetaral comphaga	$s_{-0037} = 0.0440, s_{-0037}, s_{-1059} = 0.000176$
107	r_0698	lanosterol synthase	
168	r_0699	leucine transaminase	$s_0291 + s_0991 \xleftarrow{e_0550, e_0457, s_0291, s_0991, s_0180, s_1021} \underbrace{0000176} s_0180 +$
1.60	0704	1 1 (DNIA) 1 /	s_1021
169	r_0701	leucyl-tRNA synthetase	s_0434 + s_1021 + 0000176 s_1598 = 0926, s_0434, s_1021, s_1598, s_0423, s_0633, s_1077 s_0423 +
170	0711	lysayd tDNA symthatosa	s_0633 + s_1077
1/0	r_0711	lysyl-tRNA synthetase	s_0434 + s_1025 + 0000176 s_1600 = 0171, s_0434, s_1025, s_1600, s_0423, s_0633, s_1099 s_0423 +
			$s_{-}0633 + s_{-}1099$

myo-inositol 1-phosphatase

Reaction Equation

 $s_{-}1322$

 $s_0126 \xleftarrow{e_0204,\ e_0435,\ s_0126,\ s_1153,\ s_1322} s_11530\theta00176$

SBO

48

 $N_{\overline{0}}$ Id

182 r₋0757

Name

Nº	Id	Name	Reaction Equation	SBO
183	r_0758	myo-inositol-1-phosphate synthase	s_0568 \(\frac{\text{e_0512}, \text{s_0568}, \text{s_0126}}{\text{c_0200}}\text{s_0126}}\text{s_0126}	0000176
184	r_0759	N-acetyl-g-glutamyl-phosphate reductase	s_1191+s_1212 = e_0290, s_1191, s_1212, s_0145, s_s_1207+s_1322	$\frac{1207. \text{ s} - 1322}{-0000176} \text{ s} - 0145 +$
185	r_0770	NADH dehydrogenase, cytosolic/mitochondrial	s_1203+s_1537	1537, s_1198, s_1535 —0000176 s_1198
186	r_0792	nucleoside diphosphatase	s_0467 \(\frac{\epsilon_0271, \s_0467, \s_0526, \s_1322}{\s_1322}\) s_0526 + s_1322	0000176
187	r_0800	nucleoside diphosphate kinase	s_0434+s_0739	0785
188	r_0811	nucleoside-diphosphate kinase (ATP:UDP)	s_0434+s_1538	1559 == 00 900 .3% 4+
189	r_0813	O-acetylhomoserine (thiol)-lyase	s_0841+s_1233	1012
190	r_0816	ornithine carbamoyltransferase	s_0455+s_1266	1322
191	r_0818	ornithine transacetylase	s_0991+s_1182	1266
192	r_0820	orotate phosphoribosyltransferase	s_1269+s_1386	0633, s_1270 0000176 s_0633+
193	r_0821	orotidine-5'-phosphate decarboxylase	s_1270	0000176
194	r_0851	phenylalanine transaminase	s_0951+s_0991	1032

50	N⁰	Id	Name	Reaction Equation SBO
Pr	195	r_0852	phenylalanyl-tRNA synthetase	s_0434 + s_1032 + 0000176 s_1604 e_0639, e_0312, s_0434, s_1032, s_1604, s_0423, s_0633, s_1314 s_0423 +
	196	r_0855	phopshoribosylaminoimidazole synthetase	s_0633 + s_1314 s_0302 + s_0434
	197	r_0858	phosphatidylethanolamine methyltransferase	s_1351+s_1416
	198	r_0874	phosphatidylinositol synthase	$\begin{array}{l} s_0471 + s_1153 \xleftarrow{e_0964, \ s_0471, \ s_1153, \ s_0089, \ s_0526} \\ s_0526 \end{array} + \\ \begin{array}{l} s_0526 \end{array}$
Produced by SBML2'ETEX	199	r_0877	phosphatidylserine decarboxylase	s_1337 \(\frac{\epsilon_0788, \epsilon_0382, \s_1337, \s_0456, \s_1351}{\epsilon_1351}\) s_045\(\phi\)\(\phi\)00176 s_1351
y SBML	200	r_0880	phosphatidylserine synthase	$\begin{array}{l} s_0471 + s_1039 \xleftarrow{e_0278, \ s_0471, \ s_1039, \ s_0526, \ s_1337} \\ s_1337 \end{array} \\ + \begin{array}{l} \bullet \\ \bullet $
PATEX	201	r_0883	phosphoadenylyl-sulfate reductase (thioredoxin)	$\begin{array}{l} s_0201 + s_1616 \xleftarrow{e_0633, \ e_0975, \ e_0398, \ s_0201, \ s_1616, \ s_0390, \ s_1469, \ s_1620} \\ s_1469 + s_1620 \end{array} \\ s_0201 + s_1620 \\ \end{array}$
	202	r_0886	phosphofructokinase	$\begin{array}{l} s_0434 + s_0557 \xleftarrow{e_0401,\ e_0743,\ s_0434,\ s_0557,\ s_0394,\ s_0555} \\ s_0555 \end{array}$
	203	r_0888	phosphoglucomutase	s_0568 \(\frac{\mathbf{e}_0576, \mathbf{e}_0757, \mathbf{e}_0733, \mathbf{s}_0568, \mathbf{s}_0567}{\text{s}_05670000176}\)
	204	r_0891	phosphoglycerate dehydrogenase	$\begin{array}{l} s_0260 + s_1198 \xleftarrow{e_0294,\ e_0469,\ s_0260,\ s_1198,\ s_0258,\ s_1203} \\ s_1203 \end{array}$
	205	r_0892	phosphoglycerate kinase	$\begin{array}{l} s_0075 + s_0394 \xleftarrow{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ s_0434 \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \\ \begin{array}{l} \underbrace{e_0113, \ s_0075, \ s_0394, \ s_0260, \ s_0434} \\ \end{array} + \underbrace{e_0113, \ s_0260, \ s_0434} \\ \end{array} + \underbrace{e_0113, \ s_0260, \ s_0260, \ s_0434} \\ + \underbrace{e_0113, \ s_0260, \ s_0434} \\ \end{array} + \underbrace{e_0113, \ s_0260, \ s_040, \ s_040} \\ + \underbrace{e_0113, \ s_0260, \ s_040, \ s_040} \\ + \underbrace{e_0113, \ s_0260, \ s_040, \ s_040} \\ + \underbrace{e_0113, \ s_040, \ s_040} \\ + e_0113, \ s$
	206	r_0893	phosphoglycerate mutase	$s_{-0260} \stackrel{e_{-0582, s_{-0260, s_{-0188}}}{\longleftarrow} s_{-0188}$ 0000176

N⁰	Id	Name	Reaction Equation	SBO
207	r_0900	phospholipid methyltransferase	s_1342+s_1416	1413
208	r_0901	phospholipid methyltransferase	s_1343+s_1416	1413
209	r_0902	phosphomannomutase	$s_0574 = 0314, s_0574, s_0573 = 0573$	0000176
210	r_0904	phosphomevalonate kinase	s_0019+s_0434	0394
211	r_0908	phosphoribosyl amino imidazolesuccinocar- bozamide synthetase	s_0394 s_0434 + s_0973 + s_1364 = e_0017, s_0434, s_0973, s_1364, s_0299, s_036 s_0394 + s_1322	0000176 394, s_1322 s_0299+
212	r_0909	phosphoribosyl-AMP cyclohydrolase	s_0078 <u>e_0103, s_0078, s_0077</u> s_0077	0000176
213	r_0910	phosphoribosyl-ATP pyrophosphatase	s_0326 <u>e_0103, s_0326, s_0078, s_0633</u> s_0078 +	0000176
214	r_0911	phosphoribosylaminoimidazole-carboxylase	s_0633 s_0300 + s_0456 + s_0434 e_0860, s_0300, s_0456, s_0434, s_1364, s_035 s_0394 + s_1322	0000176 394, s_1322 s_1364+
215	r_0912	phosphoribosylaminoimidazolecarboxamide formyltransferase	s_0120+s_0403	1365, s_1487 — 0000176 → s_1365 +
216	r_0913	phosphoribosylanthranilate isomerase	$s_{-1187} = 0.0165, s_{-1187}, s_{-0076} = 0.0076$	0000176
217	r_0914	phosphoribosylglycinamidine synthetase	s_0327 + s_0434 + + s_1003 = e_0352, s_0327, s_0434, s_1003, s_0325, s_0325 s_0394 + s_1322	0000176 394, s_1322 s_0325+
218	r_0915	phosphoribosylpyrophosphate amidotrans- ferase	s_0999+s_1386 e_0763, s_0999, s_1386, s_0327, s_0 s_0633+s_0991	0633, s_0991

52	No	Id	Name	Reaction Equation	SBO
	219	r_0916	phosphoribosylpyrophosphate synthetase	s_0434+s_1408	e_0829, s_0434, s_1408, s_0423, s_1
	220	r_0917	phosphoserine phosphatase (L-serine)	s_0259 \(\frac{e_0397, s_0259, s_1039, s_1322}{\frac{s_1322}{\text{s}}}\) s_1039	+ 0000176
	221	r_0918	phosphoserine transaminase	s_0258+s_0991	<u>s_0259</u>
	222	r_0919	phytoceramidase	s_1084+s_1366 = 0077, s_1084, s_1366, s_0481 s	s_0480000176
Proc	223	r_0922	phytosphingosine synthesis	s_1212 + s_1275 s_1445 = e_0206, s_1212, s_1275, s_1445, s_1207, s	+ 0000176 s_{-1366} $s_{-1207} +$
Produced by S	224	r_0938	prephenate dehydratase	s_1366 s_1377 <u>e_0802</u> , s_1377, s_0456, s_0951 s_0951 s_0456	
SBMLZIATEX	225	r_0939	prephenate dehydrogenase (NADP)	s_1207+s_1377 = e_0074, s_1207, s_1377, s_0204, s_0456+s_1212	s_0456, s_1212
<u> </u>	226	r_0941	prolyl-tRNA synthetase	s_0434 + s_1035 s_1606 = e_0296, s_0434, s_1035, s_1606, s_0423, s	+ 0000176 \$_0633, s_1379 \$_0423+
				s_0633 + s_1379	1007
	227	r_0957	pyrroline-5-carboxylate reductase	s_0118+s_1212	<u>s_1207</u> 99 901 0% 5+
	228	r_0958	pyruvate carboxylase	s_0434 + s_0445 s_1399 \(\infty\) = 0084, s_0434, s_0445, s_1399, s s_1271 + s_1322	+ 0000176 s_0394, s_1271, s_1322 s_0394+

N₀	Id	Name	Reaction Equation	SBO
229	r_0961	pyruvate dehydrogenase	s_0529 + s_1198 +	0000176 520 a 1108 a 1200 a 0272 a 0
			s_1399 = 0.0083, e_0300, e_0393, e_0311, e_0773, s_0	329, S_1198, S_1399, S_0373, S_0 ²
			$s_0456 + s_1203$	
230	r_0962	pyruvate kinase	s_0394+s_1360	1434, s_1399 = 0000176
			s_1399	
231	r_0967	riboflavin synthase	s_0158+s_0314 <u>e_0841, s_0158, s_0314, s_0328, s_1</u>	322
			s_1322	
232	r_0968	riboflavin synthase	$2 s_{-}0328 \stackrel{e_{-}0090, s_{-}0328, s_{-}0314, s_{-}1405}{\longrightarrow} s_{-}0314 +$	0000176
			s_1405	
233	r_0970	ribonucleoside-triphosphate reductase (ATP)	s_0434+s_1616	620 = 00 00 05% 6+
			s_1620	
234	r_0973	ribonucleoside-triphosphate reductase (UTP)	s_1559+s_1616	620 = 00 00 05 6+
			s_1620	
235	r_0974	ribonucleotide reductase	s_0394+s_1616 e_0467, e_0492, e_0387, e_0291, s_0	0394, s_1616, s_0582, s_1620
			s_1620	
236	r_0976	ribonucleotide reductase	s_0467+s_1616	0467, s_1616, s_0587, s_1620 =
			s_1620	
237	r_0978	ribonucleotide reductase	s_0739+s_1616 = 0.0467, e_0492, e_0387, e_0291, s_0	0739, s_1616, s_0613, s_1620 = 0000176 ====================================
			s_1620	
238	r_0982	ribose-5-phosphate isomerase	$s_{-0577} \stackrel{e_{-0852}, s_{-0577}, s_{-1408}}{\rightleftharpoons} s_{-1408}$	0000176
239	r_0984	ribulose 5-phosphate 3-epimerase	s_0581 \(\frac{e_0506, s_0581, s_0577}{\times}\) s_0577	0000176
240	r_0986	S-adenosyl-methionine delta-24-sterol-c-	s_1416+s_1569 = e_0699, s_1416, s_1569, s_0700, s_1	413
-		methyltransferase	s_1413	·
	239 230 231 232 233 234 235 236 237 238 239	230 r_0961 230 r_0962 231 r_0967 232 r_0968 233 r_0970 234 r_0973 235 r_0974 236 r_0976 237 r_0978 238 r_0982 239 r_0984	pyruvate dehydrogenase 230 r_0962 pyruvate kinase 231 r_0967 riboflavin synthase 232 r_0968 riboflavin synthase 233 r_0970 ribonucleoside-triphosphate reductase (ATP) 234 r_0973 ribonucleoside-triphosphate reductase (UTP) 235 r_0974 ribonucleotide reductase 236 r_0976 ribonucleotide reductase 237 r_0978 ribonucleotide reductase 238 r_0982 ribose-5-phosphate isomerase 239 r_0984 ribulose 5-phosphate 3-epimerase 240 r_0986 S-adenosyl-methionine delta-24-sterol-c-	229 r.0961 pyruvate dehydrogenase s.0529

54	N⁰	Id	Name	Reaction Equation	SBO
	241	r_0988	saccharopine dehydrogenase (NAD, L-lysine forming)	s_1038+s_1198	1025, s_1203 0000176 s_0180+
	242	r_0989	saccharopine dehydrogenase (NADP, L-glutamate forming)	s_0959 + s_0991 + s_1212 = e_0813, s_0959, s_0991, s_1212, s_1038, s_1 s_1207	
	243	r_0993	serine palmitotransferase	s_1039+s_1302	_1302, s_0231, s_0456, s_0529 0000176 s_
Prod	244	r_0995	seryl-tRNA synthetase	s_0434 + s_1039 + s_1607 = e_0168, e_0425, s_0434, s_1039, s_1607, s_0 s_0633 + s_1428	- 0000176 0423, s_0633, s_1428 s_0423+
Produced by SBML2laTEX	245	r_0996	shikimate dehydrogenase	s_0211+s_1212	
SI ME	246	r_0997	shikimate kinase	s_0434+s_1429	-0394
X=IEX	247	r_1010	squalene epoxidase (NAD)	s_0394 s_1203 + s_1275 + s_1447 e_0385, s_1203, s_1275, s_1447, s_0037, s_1	$ \begin{array}{c} - 0000176 \\ 1198 \\ \longrightarrow s_{-}0037 + \end{array} $
	248	r_1011	squalene epoxidase (NADP)	s_1198 s_1212 + s_1275 + s_1447 e_0385, s_1212, s_1275, s_1447, s_0037, s_1	$ \begin{array}{c} -0000176 \\ 1207 \\ \hline \end{array} s_0037 + $
	249	r_1012	squalene synthase	s_1207 2 s_0190+s_1212	
	250	r_1014	steryl ester hydrolase	s_0666+3 s_0056 e_0578, e_0613, s_0666, s_0056,	s_0672 0000sL70672

No	Id	Name	Reaction Equation	SBO
251	r_1026	sulfate adenylyltransferase (ADP)	s_0394+s_1467	322
252	r_1027	sulfite reductase (NADPH2)	3 s_1212+s_1469	_0841_s_1207 s_0841+
253	r_1038	thioredoxin reductase (NADPH)	s_1212+s_1620	0915, e_0124, s_1212, s_1620, s_1 0000176
254	r_1041	threonine synthase	s_1238 \(\frac{\epsilon_0122, \epsilon_1238, \epsilon_1045, \epsilon_1322}{\epsilon_1322}\) s_1045 + s_1322	0000176
255	r_1042	threonyl-tRNA synthetase	s_0434 + s_1045 + s_1608 = e_0470, s_0434, s_1045, s_1608, s_0423, s_06	0000176 633, s_1491 s_0423+
			$s_0633 + s_1491$	
256	r_1045	thymidylate synthase	s_0306+s_0654	649
257	r_1048	transaldolase	s_0551+s_0557	427
258	r_1049	transketolase 1	s_0764+s_1427 = 0.0063, e_0962, s_0764, s_1427, s_0 s_1408	0581, s_1408 = 0000176 s_0581+
259	r_1050	transketolase 2	s_0557+s_0764 = 0063, e_0962, s_0557, s_0764, s_0 s_0581	0551, s_0581 = 0000176 ≥ s_0551+
260	r_1051	trehalose-phosphatase	s_0409 <u>e_0711</u> , e_0065, e_0179, e_0753, s_0409, s_13 s_1520	322, s_1520 = 0000176` s_1322+
261	r_1052	triacylglycerol lipase	s_0619+4 · 3333333333333333 s_0056 = 0.0176, e_0611	, e_0765, e_0851, s_0619, s_0056
201	1_1002	tracyrgryceror npase		
262	$r_{-}1054$	triose-phosphate isomerase	s_0629 \(\frac{e_0175, s_0629, s_0764}{\times}\) s_0764	0000176

56	N⁰	Id	Name	Reaction Equation	SBO
Produced by SBMLZATEX	263	r_1055	tryptophan synthase (indoleglycerol phosphate)	s_0086+s_1039	048
	264	r_1057	tryptophanyl-tRNA synthetase	s_1610 = 0836, s_0434, s_1048, s_1610, s_0423, s_06	0000176 533, s_1527 s_0423+
	265	r_1063	tyrosine transaminase	s_0633 + s_1527 s_0204 + s_0991	0180. s_1051
	266	r_1066	tyrosyl-tRNA synthetase	s_0434 + s_1051 + s_1612 \(\frac{e_0390, s_0434, s_1051, s_1612, s_0423, s_06}{s_0633 + s_1533}\)	0000176 533, s_1533 s_0423+
	267	r_1072	UMP kinase	s_0434+s_1545	
	268	r_1084	UTP-glucose-1-phosphate uridylyltransferase	s_0567+s_1559	543 — 00 90 06% 3+
	269	r_1087	valine transaminase	s_0232+s_0991	0180, s_1056
	270	r_1089	valyl-tRNA synthetase	s_0434 + s_1056 + s_1614 e_0372, s_0434, s_1056, s_1614, s_0423, s_06	0000176 533, s_1561 s_0423+
	271	r_1115	ammonia transport	$s_{-}0633 + s_{-}1561$ $s_{-}0420 \xrightarrow{s_{-}0420, s_{-}0419} s_{-}0419$	0000185
	272	r_1166	glucose transport	$s_{-0565} \stackrel{s_{-0565}}{=} \stackrel{s_{-0563}}{=} s_{-0563}$	0000185
	273	r_1244	phosphate transport	$s_{-1324} \xrightarrow{s_{-1324}, s_{-1322}} s_{-1322}$	0000185
	274	r_1266	sulfate uniport	$s_{-}1468 \xrightarrow{s_{-}1468, s_{-}1467} s_{-}1467$	0000185

N⁰	Id	Name	Reaction Equation	SBO
275	r_1664	bicarbonate formation	s_0456 <u>s_0456, s_0445</u> s_0445	0000176
276	r_1697	CO2 transport	$s_0456 \xrightarrow{s_0456} s_0458$	0000185
277	r_1704	cytidylate kinase (dCMP)	s_0394+s_0587	13 000 0176
278	r_1729	deoxyadenylate kinase	s_0394+s_0582	13 000 0176
279	r_1795	formate transport	$s_0722 \xrightarrow{s_0722} s_0723$	0000185
280	r_1979	O2 transport	$s_{-1277} \stackrel{s_{-1277}, s_{-1275}}{\longleftarrow} s_{-1275}$	0000185
281	r_2030	pyrimidine phosphatase	$s_0313 \stackrel{s_0313, s_0314, s_1322}{\longleftarrow} s_0314 + s_1322$	0000176

Nº Id

282 r₋2111

Name

growth

Reaction Equation	SBO
$1 \cdot 1348 \text{s} \cdot 0002 + 0 \cdot 046 \text{s} \cdot 0423 + 59 \cdot 276 \text{s} \cdot 0434 +$	
$0.0447 \text{ s}_0526 + 0.0036 \text{ s}_0584 + 0.0036 \text{ s}_0584$	
$0.0024 \text{s}_0589 + 0.0024 \text{s}_0615 +$	
$0.0036 \text{ s}_0649 + 0.5185 \text{ s}_0773 + 0.046 \text{ s}_0782 +$	
$0.8079 s_{-}1107 + 9.9 \cdot 10^{-4} s_{-}1405 +$	
$0.02\mathrm{s}_{-}1467 + 0.0234\mathrm{s}_{-}1520 + 0.0599\mathrm{s}_{-}1545 +$	-
$1 \cdot 1348 s_{-}0004 + 0 \cdot 4588 s_{-}0404 +$	-
$0.1607 \text{s}_{-}0428 + 0.1017 \text{s}_{-}0430 +$	-
$0.2975 s_0432 + 0.0066 s_0542 +$	-
$0 \cdot 1054 \text{s_}0747 + 0 \cdot 3018 \text{s_}0748 +$	-
$0.2904 s_0757 + 0.0663 s_0832 +$	-
$0.1927 s_{-}0847 + 0.2964 s_{-}1077 +$	-
$0.2862 s_{-}1099 + 0.0507 s_{-}1148 +$	-
$0.1339 s_{-}1314 + 0.1647 s_{-}1379 +$	-
$3.9 \cdot 10^{-4} \text{s}_1337 + 0 \cdot 001583 \text{s}_0089 +$	-
$0 \cdot 1854 s_{-}1428 + 0 \cdot 1914 s_{-}1491 +$	-
$0.0284s_{-}1527 + 0.102s_{-}1533 + 0.2646s_{-}1561 +$	-
$5.6 \cdot 10^{-5} \text{s_}0122 + 5.38625 \cdot 10^{-4} \text{s_}0918 +$	-
$9.6 \cdot 10^{-5} \text{s}_0657 + 1.25 \cdot 10^{-4} \text{s}_0662 +$	-
$0.0056 \mathrm{s_0666} + 8.12 \cdot 10^{-4} \mathrm{s_0672} +$	-
8.92666666666666666666666666666666666666	-
$1.14 \cdot 10^{-4} \text{s}_0700 + 3.2 \cdot 10^{-5} \text{s}_1059 +$	
$0.00288 \mathrm{s}1346 + 6.97 \cdot 10^{-4} \mathrm{s}1351 +$	
$7.81 \cdot 10^{-4}$ s_1524 + 0.526	
$1.5 \cdot 10^{-5} \text{s}_1569 = \frac{\text{s}_0002, \text{s}_0423, \text{s}_0434, \text{s}_0526, \text{s}_}{\text{s}_0434, \text{s}_0526, \text{s}_}$	0584, s_0589, s_0615, s_0649
$58 \cdot 70001 s_{-}1322 + 0 \cdot 4588 s_{-}1582 +$	
$0.1607 s_{-}1583 + 0.1017 s_{-}1585 +$	-
$0.2975 s_{-}1587 + 0.0066 s_{-}1589 +$	-
$0.1054 s_{-}1590 + 0.3018 s_{-}1591 +$	-
$0.2904 s_1593 + 0.0663 s_1594 +$	-
$0 \cdot 1927 s_{-}1596 + 0 \cdot 2964 s_{-}1598 +$	-
$0.2862\mathrm{s_1600}$ + $0.0507\mathrm{s_1602}$ +	-
$0.1339 s_{-}1604 + 0.1647 s_{-}1606 +$	-
$0 \cdot 1854 s_{-}1607 + 0 \cdot 1914 s_{-}1608 +$	-
$0\cdot 0284 s_{-}1610 + 0\cdot 102 s_{-}1612 + 0\cdot 2646 s_{-}1614$	

Produce
d
by
88
=
冷
$\overline{\mathbb{Q}}$

№ Id Name Reaction Equation SBO

6.1 Reaction r_0005

This is a reversible reaction of one reactant forming two products influenced by five modifiers.

Name 1,3-beta-glucan synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1543 \xleftarrow{e_0682, \ e_0364, \ s_1543, \ s_0002, \ s_1538} s_0002 + s_1538 \tag{2}$$

Reactant

Table 5: Properties of each reactant.

	Ι	
Id	Name	SBO
s_1543	UDP-D-glucose	

Modifiers

Table 6: Properties of each modifier.

	*	
Id	Name	SBO
e_0682	FKS1	0000460
e_0364	GSC2	0000460
$s_{-}1543$	UDP-D-glucose	
s_0002	(1->3)-beta-D-glucan	
s_1538	UDP	

Products

Table 7: Properties of each product.

Id	Name	SBO
s_0002	(1->3)-beta-D-glucan	_
s_1538	UDP	

Kinetic Law

$$v_{1} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left(\left[s_{-}1543\right] - \frac{\left[s_{-}0002\right] \cdot \left[s_{-}1538\right]}{\text{Km}1543}}{1 + \frac{\left[s_{-}1543\right]}{\text{Km}1543} + \left(1 + \frac{\left[s_{-}0002\right]}{\text{Km}0002}\right) \cdot \left(1 + \frac{\left[s_{-}1538\right]}{\text{Km}1538}\right) - 1}$$
(3)

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.043	dimensionless	\overline{Z}
Vmax		0000324	0.431	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1543		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0002		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1538		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.2 Reaction r_0006

This is a reversible reaction of one reactant forming two products influenced by five modifiers.

Name 1,6-beta-glucan synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1543 \xrightarrow{e_0973, \ e_0379, \ s_1543, \ s_0004, \ s_1538} s_0004 + s_1538 \tag{4}$$

Reactant

Table 9: Properties of each reactant.

	reperiors or each re	
Id	Name	SBO
s_1543	UDP-D-glucose	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
e_0973	KRE6	0000460
e_0379	SKN1	0000460
s_1543	UDP-D-glucose	

Id	Name	SBO
s_0004	(1->6)-beta-D-glucan	
s_1538	UDP	

Products

Table 11: Properties of each product.

	1 1	
Id	Name	SBO
s_0004 s_1538	(1->6)-beta-D-glucan UDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{2} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.1543}] - \frac{[\text{s.0004}] \cdot [\text{s.1538}]}{\text{Keq}} \right)}{\text{Km1543}}}{1 + \frac{[\text{s.1543}]}{\text{Km1543}} + \left(1 + \frac{[\text{s.0004}]}{\text{Km0004}} \right) \cdot \left(1 + \frac{[\text{s.1538}]}{\text{Km1538}} \right) - 1}$$
 (5)

Table 12: Properties of each parameter.

		•	•		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.043	dimensionless	\square
Vmax		0000324	0.431	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	\square
Km1543		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0004		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1538		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	

6.3 Reaction r_0007

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino)imidazole-4-carboxamide isomerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-0077} \xrightarrow{e_{-0465}, s_{-0077}, s_{-0312}} s_{-0312}$$
 (6)

Reactant

Table 13: Properties of each reactant.

Id	Name
s_0077	1-(5-phospho-D-ribosyl)-5-[(5-phospho-D-ribosylamino) methylideneamino] imidazole-4-carboxamide

Modifiers

Table 14: Properties of each modifier.

Id	Name
e_0465	HIS6
s_0077	1-(5-phospho-D-ribosyl)-5-[(5-phospho-D-ribosylamino) methylideneamino] imidazole-4-carboxamide
s_0312	$5\hbox{-}[(5\hbox{-}phospho-1\hbox{-}deoxy-D\hbox{-}ribulos\hbox{-}1\hbox{-}ylamino) methylideneamino}]\hbox{-}1\hbox{-}(5\hbox{-}phospho-D\hbox{-}ribosyl) imidazole\hbox{-}4\hbox{-}colored and the colored and the colore$

Product

Table 15: Properties of each product.

Id	Name
s_0312	5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-D-ribosyl)imidazole-4-c

Kinetic Law

$$v_{3} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0077}] - \frac{[\text{s_0312}]}{\text{Keq}} \right)}{\frac{\text{Km0077}}{1 + \frac{[\text{s_0077}]}{\text{Km0077}} + 1 + \frac{[\text{s_0312}]}{\text{Km0312}} - 1}}$$
(7)

Table 16: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	
Vmax		0000324	0.015	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\checkmark

Id	Name	SBO	Value	Unit	Constant
Keq		0000281	2.000	dimensionless	
Km0077		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0312		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

6.4 Reaction r_0008

This is a reversible reaction of two reactants forming two products influenced by seven modifiers.

Name 1-acyl-sn-gylcerol-3-phosphate acyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0082 + s_0380 \xleftarrow{e_0869, \ e_0133, \ e_0117, \ s_0082, \ s_0380, \ s_0529, \ s_1331} s_0529 + s_1331 \tag{8}$$

Reactants

Table 17: Properties of each reactant.

Id	Name	SBO
	1-acyl-sn-glycerol 3-phosphate acyl-CoA	

Modifiers

Table 18: Properties of each modifier.

Id	Name	SBO
e_0869	ALE1	0000460
e_0133	SLC1	0000460
e_0117	FEN1	0000460
s_0082	1-acyl-sn-glycerol 3-phosphate	
s_0380	acyl-CoA	
s_0529	coenzyme A	
s_1331	phosphatidate	

Products

Table 19: Properties of each product.

Id	Name	SBO
s_0529 s_1331	coenzyme A phosphatidate	

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0082}] \cdot [\text{s_0380}] - \frac{[\text{s_0529}] \cdot [\text{s_1331}]}{\text{Keq}} \right)}{\text{Km0082} \cdot \text{Km0380}}}{\left(1 + \frac{[\text{s_0082}]}{\text{Km0082}} \right) \cdot \left(1 + \frac{[\text{s_0380}]}{\text{Km0380}} \right) + \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1331}]}{\text{Km1331}} \right) - 1}$$

$$(9)$$

Table 20: Properties of each parameter.

Id Name SBO Value Unit	Constant
FLUX_VALUE $2.40277332169094 \cdot 10^{-4}$ dimensionless	
Vmax 0000324 0.003 $\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq 0000281 2.000 dimensionless	
Km0082 0000322 0.100 $\text{mmol} \cdot l^{-1}$	
Km0380 0000322 0.100 $\text{mmol} \cdot l^{-1}$	
${\rm Km0529}$ 0000323 0.100 ${\rm mmol \cdot l^{-1}}$	
Km1331 0000323 0.100 $\text{mmol} \cdot l^{-1}$	

6.5 Reaction r_0012

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name 1-pyrroline-5-carboxylate dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0991 + s_1203 \xrightarrow{e_0431, s_0991, s_1203, s_0118, s_1198} s_0118 + s_1198 \tag{10}$$

Reactants

Table 21: Properties of each reactant.

Id	Name	SBO
	L-glutamate	
s_1203	NADH	

Modifiers

Table 22: Properties of each modifier.

	1	
Id	Name	SBO
e_0431	PUT2	0000460
s_0991	L-glutamate	
$s_{-}1203$	NADH	
s_0118	1-pyrroline-5-carboxylate	
s_1198	NAD	

Products

Table 23: Properties of each product.

Id	Name	SBO
s_0118 s_1198	1-pyrroline-5-carboxylate NAD	

Kinetic Law

$$v_{5} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_0991] \cdot [s_1203] - \frac{[s_0118] \cdot [s_1198]}{\text{Keq}} \right)}{\text{Km0991} \cdot \text{Km1203}}}{\left(1 + \frac{[s_0991]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[s_1203]}{\text{Km1203}} \right) + \left(1 + \frac{[s_0118]}{\text{Km0118}} \right) \cdot \left(1 + \frac{[s_1198]}{\text{Km1198}} \right) - 1}$$
(11)

Table 24: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALU	E		0.006	dimensionless	
Vmax		0000324	0.088	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0991		0000322	0.100	$mmol \cdot l^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km1203		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0118		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1198		0000323	0.100	$mmol \cdot l^{-1}$	

6.6 Reaction r_0014

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate deaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0142 \xrightarrow{e_0832, s_0142, s_0313, s_0419} s_0313 + s_0419$$
 (12)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
s_0142	2,5-diamino-6-(5-phosphono)ribitylamino-4(3H)-pyrimidinone	

Modifiers

Table 26: Properties of each modifier.

Id	Name	SBO
e_0832	RIB2	0000460
s_0142	2,5-diamino-6-(5-phosphono)ribitylamino-4(3H)-pyrimidinone	
s_0313	5-amino-6-(5-phosphoribitylamino)uracil	
s0419	ammonium	

Products

Table 27: Properties of each product.

Id	Name	SBO
	5-amino-6-(5-phosphoribitylamino)uracil	
s_0419	ammonium	

Kinetic Law

Derived unit contains undeclared units

$$v_{6} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.}0142] - \frac{[\text{s.}0313] \cdot [\text{s.}0419]}{\text{Keq}} \right)}{\text{Km0142}}}{1 + \frac{[\text{s.}0142]}{\text{Km0142}} + \left(1 + \frac{[\text{s.}0313]}{\text{Km0313}} \right) \cdot \left(1 + \frac{[\text{s.}0419]}{\text{Km0419}} \right) - 1}$$
(13)

Table 28: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant		
FLUX_VALUE]		$3.75729835487922 \cdot 10^{-5}$	dimensionless	\overline{Z}		
Vmax		0000324	$3.75729835487922 \cdot 10^{-4}$	$mmol \cdot l^{-1} \cdot s^{-1}$			
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$			
Km0142		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$			
Km0313		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$			
Km0419		0000323	0.100	$\text{mmol} \cdot 1^{-1}$			

6.7 Reaction r_0015

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate reductase (NADPH)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0141 + s_1212 \xrightarrow{e_0071, s_0141, s_1212, s_0142, s_1207} s_0142 + s_1207 \tag{14}$$

Reactants

Table 29: Properties of each reactant.

	Tuesto 25, 1 repetition es cuen rouccusio.	
Id	Name	SBO
	2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine NADPH	

Modifiers

Table 30: Properties of each modifier.

Id	Name	SBO
e_0071	RIB7	0000460
s_0141	2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine	
$s_{-}1212$	NADPH	
s_0142	2,5-diamino-6-(5-phosphono)ribitylamino-4(3H)-pyrimidinone	
$s_{-}1207$	NADP(+)	

Products

Table 31: Properties of each product.

Id	Name	SBO
s_0142	2,5-diamino-6-(5-phosphono)ribitylamino-4(3H)-pyrimidinone	
$s_{-}1207$	NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$v_{7} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0141}] \cdot [\text{s_1212}] - \frac{[\text{s_0142}] \cdot [\text{s_1207}]}{\text{Keq}}\right)}{\text{Km0141} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0141}]}{\text{Km0141}}\right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}}\right) + \left(1 + \frac{[\text{s_0142}]}{\text{Km0142}}\right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}}\right) - 1}$$
(15)

Table 32: Properties of each parameter.

	Tuo	16 32: 110p	erties or each parameter.		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$3.75729835487922 \cdot 10^{-5}$	dimensionless	\overline{Z}
Vmax		0000324	$5.26021769683091 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0141		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0142		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.8 Reaction r_0016

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name 2-aceto-2-hydroxybutanoate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0178 + s_1399 \xrightarrow{e_0734, \ e_0100, \ s_0178, \ s_1399, \ s_0039, \ s_0456} s_0039 + s_0456 \tag{16}$$

Reactants

Table 33: Properties of each reactant.

Id	Name	SBO
s_0178	2-oxobutanoate	
s_1399	pyruvate	

Modifiers

Table 34: Properties of each modifier.

	*	
Id	Name	SBO
e_0734	ILV2	0000460
$e_{-}0100$	ILV6	0000460
s_0178	2-oxobutanoate	
$s_{-}1399$	pyruvate	
s_0039	(S)-2-acetyl-2-hydroxybutanoate	
s_0456	carbon dioxide	

Products

Table 35: Properties of each product.

Id	Name	SBO
s_0039	(S)-2-acetyl-2-hydroxybutanoate	
s_0456	carbon dioxide	

Kinetic Law

$$v_{8} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0178}] \cdot [\text{s_1399}] - \frac{[\text{s_0039}] \cdot [\text{s_0456}]}{\text{Keq}} \right)}{\frac{\text{Km0178} \cdot \text{Km1399}}{\left(1 + \frac{[\text{s_0178}]}{\text{Km0178}} \right) \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km1399}} \right) + \left(1 + \frac{[\text{s_0039}]}{\text{Km0039}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) - 1}}$$
(17)

Table 36: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	\checkmark
Vmax		0000324	0.135	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0178		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1399		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0039		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.9 Reaction r_0018

This is a reversible reaction of two reactants forming two products influenced by seven modifiers.

Name 2-aminoadipate transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0176 + s_0991 \xrightarrow{e_0348, e_0496, e_0980, s_0176, s_0991, s_0180, s_0953} s_0180 + s_0953 \tag{18}$$

Reactants

Table 37: Properties of each reactant.

Id	Name	SBO
	2-oxoadipic acid	
s_0991	L-glutamate	

Modifiers

Table 38: Properties of each modifier.

Id	Name	SBO
e_0348	ARO8	0000460
e_0496	BNA3	0000460
e_0980	YER152C	0000460
s_0176	2-oxoadipic acid	
s_0991	L-glutamate	

Id	Name	SBO
s_0180	2-oxoglutarate	
s_0953	L-2-aminoadipate	

Products

Table 39: Properties of each product.

	1 .	<u> </u>
Id	Name	SBO
	2-oxoglutarate L-2-aminoadipate	

Kinetic Law

Derived unit contains undeclared units

$$v_{9} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0176}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_0953}]}{\text{Keq}} \right)}{\text{Km0176} \cdot \text{Km0991}}}{\left(1 + \frac{[\text{s_0176}]}{\text{Km0176}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0953}]}{\text{Km0953}} \right) - 1}$$
(19)

Table 40: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	<u> </u>
Vmax		0000324	0.152	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0176		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0180		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0953		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.10 Reaction r_0020

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name 2-deoxy-D-arabino-heptulosonate 7-phosphate synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0551 + s_1360 \xrightarrow{e_0169, \ e_0088, \ s_0551, \ s_1360, \ s_0349, \ s_1322} s_0349 + s_1322 \tag{20}$$

Reactants

Table 41: Properties of each reactant.

	There is repetition of emerical				
Id	Name	SBO			
s_0551 s_1360	D-erythrose 4-phosphate phosphoenolpyruvate				

Modifiers

Table 42: Properties of each modifier.

Id	Name	SBO
e_0169	ARO3	0000460
e_0088	ARO4	0000460
s_0551	D-erythrose 4-phosphate	
$s_{-}1360$	phosphoenolpyruvate	
s_0349	7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid	
s_1322	phosphate	

Products

Table 43: Properties of each product.

Id	Name	SBO
	7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid phosphate	

Kinetic Law

$$v_{10} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0551}] \cdot [\text{s_1360}] - \frac{[\text{s_0349}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0551} \cdot \text{Km1360}}}{\left(1 + \frac{[\text{s_0551}]}{\text{Km0551}} \right) \cdot \left(1 + \frac{[\text{s_1360}]}{\text{Km1360}} \right) + \left(1 + \frac{[\text{s_0349}]}{\text{Km0349}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(21)

Table 44: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	
Vmax		0000324	0.140	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0551		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1360		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0349		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

6.11 Reaction r_0023

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name 2-isopropylmalate hydratase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0162 \xrightarrow{e_{-}0328, s_{-}0162, s_{-}0165} s_{-}0165$$
 (22)

Reactant

Table 45: Properties of each reactant.

	1	
Id	Name	SBO
s_0162	2-isopropylmalate	

Modifiers

Table 46: Properties of each modifier.

Id	Name	SBO
e_0328	LEU1	0000460
s_0162	2-isopropylmalate	
s_0165	2-isopropylmaleic acid	

Product

Table 47: Properties of each product.

Id	Name	SBO
s_0165	2-isopropylmaleic acid	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0162}] - \frac{[\text{s_0165}]}{\text{Keq}} \right)}{\frac{\text{Km0162}}{1 + \frac{[\text{s_0162}]}{\text{Km0162}} + 1 + \frac{[\text{s_0165}]}{\text{Km0165}} - 1}}$$
(23)

Table 48: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	Ø
Vmax		0000324	0.067	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0162		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0165		0000323	0.100	$mmol \cdot l^{-1}$	

6.12 Reaction r_0024

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name 2-isopropylmalate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0232 + s_0373 \xrightarrow{e_0778, e_0855, s_0232, s_0373, s_0162, s_0529} s_0162 + s_0529 \tag{24}$$

Reactants

Table 49: Properties of each reactant.

Id	Name	SBO
	3-methyl-2-oxobutanoate acetyl-CoA	

Table 50: Properties of each modifier.

	*	
Id	Name	SBO
e_0778	LEU4	0000460
e_0855	LEU9	0000460
s_0232	3-methyl-2-oxobutanoate	
s0373	acetyl-CoA	
s0162	2-isopropylmalate	
s_0529	coenzyme A	

Products

Table 51: Properties of each product.

	1 1	
Id	Name	SBO
	2-isopropylmalate coenzyme A	

Kinetic Law

$$v_{12} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0232}] \cdot [\text{s_0373}] - \frac{[\text{s_0162}] \cdot [\text{s_0529}]}{\text{Keq}} \right)}{\text{Km0232} \cdot \text{Km0373}}}{\left(1 + \frac{[\text{s_0232}]}{\text{Km0232}} \right) \cdot \left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right) + \left(1 + \frac{[\text{s_0162}]}{\text{Km0162}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) - 1}$$
(25)

Table 52: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.157	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	
Km0232		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0373		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0162		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$

6.13 Reaction r_0027

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name 2-methylcitrate dehydratase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0835 \xrightarrow{e_{-}0196, s_{-}0835, s_{-}0454} s_{-}0454$$
 (26)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
s_0835	homocitrate	

Modifiers

Table 54: Properties of each modifier.

Id	Name	SBO
e_0196	LYS4	0000460
s_0835	homocitrate	
s_0454	but-1-ene-1,2,4-tricarboxylic acid	

Product

Table 55: Properties of each product.

Id	Name	SBO
s_0454	but-1-ene-1,2,4-tricarboxylic acid	

Kinetic Law

$$v_{13} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0835}] - \frac{[\text{s_0454}]}{\text{Keq}} \right)}{\frac{\text{Km0835}}{1 + \frac{[\text{s_0835}]}{\text{Km0835}} + 1 + \frac{[\text{s_0454}]}{\text{Km0454}} - 1}}$$
(27)

Table 56: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	\square
Vmax		0000324	0.065	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0835		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0454		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.14 Reaction r_0029

This is a reversible reaction of one reactant forming two products influenced by five modifiers.

Name 2-oxo-4-methyl-3-carboxypentanoate decarboxylation

SBO:0000176 biochemical reaction

Reaction equation

$$s_0010 \xrightarrow{e_0550, \ e_0457, \ s_0010, \ s_0291, \ s_0456} s_0291 + s_0456 \tag{28}$$

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
s_0010	(2S)-2-isopropyl-3-oxosuccinate	

Modifiers

Table 58: Properties of each modifier.

Id	Name	SBO
e_0550	BAT2	0000460
e_0457	BAT1	0000460
s_0010	(2S)-2-isopropyl-3-oxosuccinate	
s_0291	4-methyl-2-oxopentanoate	
s_0456	carbon dioxide	

Products

Table 59: Properties of each product.

Id	Name	SBO
	4-methyl-2-oxopentanoate carbon dioxide	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{14} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0010}] - \frac{[\text{s_0291}] \cdot [\text{s_0456}]}{\text{Keq}} \right)}{\text{Km0010}}}{1 + \frac{[\text{s_0010}]}{\text{Km0010}} + \left(1 + \frac{[\text{s_0291}]}{\text{Km0291}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) - 1}$$
(29)

Table 60: Properties of each parameter.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Id	Name	SBO	Value	Unit	Constant
Keq 0000281 0.200 $mmol \cdot l^{-1}$ Km0010 0000322 0.100 $mmol \cdot l^{-1}$ Km0291 0000323 0.100 $mmol \cdot l^{-1}$	FLUX_VALUE			0.011	dimensionless	
Km0010 0000322 0.100 $mmol \cdot l^{-1}$ Km0291 0000323 0.100 $mmol \cdot l^{-1}$	Vmax		0000324	0.112	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Km0291 $0000323 0.100 \text{mmol} \cdot 1^{-1}$	Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
	Km0010		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456 $0000323 0.100 mmol \cdot l^{-1}$ ✓	Km0291		0000323	0.100	$mmol \cdot l^{-1}$	
	Km0456		0000323	0.100	$mmol \cdot l^{-1}$	

6.15 Reaction r_0032

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name 3',5'-bisphosphate nucleotidase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0390 \xrightarrow{e_0830, s_0390, s_0423, s_1322} s_0423 + s_1322$$
 (30)

Reactant

Table 61: Properties of each reactant.

Id	Name	SBO
s_0390	adenosine 3',5'-bismonophosphate	

Id	Name	SBO

Table 62: Properties of each modifier.

Id	Name	SBO
e_0830	MET22	0000460
s_0390	adenosine 3',5'-bismonophosphate	
s_0423	AMP	
s_1322	phosphate	

Products

Table 63: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_1322	phosphate	

Kinetic Law

$$v_{15} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0390}] - \frac{[\text{s_0423}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0390}}}{1 + \frac{[\text{s_0390}]}{\text{Km0390}} + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(31)

Table 64: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	\overline{Z}
Vmax		0000324	0.022	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0390		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0423		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km1322		0000323	0.100	$mmol \cdot l^{-1}$	\square

6.16 Reaction r_0038

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name 3,4-dihydroxy-2-butanone-4-phosphate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0577 \xrightarrow{e_0237, s_0577, s_0158, s_0722} s_0158 + s_0722$$
 (32)

Reactant

Table 65: Properties of each reactant.

Id	Name	SBO
s_0577	D-ribulose 5-phosphate	

Modifiers

Table 66: Properties of each modifier.

Id	Name	SBO
e_0237	RIB3	0000460
s_0577	D-ribulose 5-phosphate	
s_0158	2-hydroxy-3-oxobutyl phosphate	
s_0722	formate	

Products

Table 67: Properties of each product.

There exists of each product.		
Id	Name	SBO
	2-hydroxy-3-oxobutyl phosphate formate	

Kinetic Law

$$v_{16} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0577}] - \frac{[\text{s_0158}] \cdot [\text{s_0722}]}{\text{Keq}} \right)}{\text{Km0577}}}{1 + \frac{[\text{s_0577}]}{\text{Km0577}} + \left(1 + \frac{[\text{s_0158}]}{\text{Km0158}} \right) \cdot \left(1 + \frac{[\text{s_0722}]}{\text{Km0722}} \right) - 1}$$
(33)

Table 68: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
	Tuttie		varae		
$FLUX_VALUE$			$7.51459670975844 \cdot 10^{-5}$	dimensionless	\square
Vmax		0000324	$7.51459670975844 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0577		0000322	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km0158		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km0722		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.17 Reaction r_0039

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name 3-dehydroquinate dehydratase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-0210} \stackrel{e_{-0182}, s_{-0210}, s_{-0211}}{=\!=\!=\!=\!=} s_{-0211}$$
 (34)

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
s_0210	3-dehydroquinate	

Modifiers

Table 70: Properties of each modifier.

	1	
Id	Name	SBO
e_0182	111101	0000460
s_0210	3-dehydroquinate	
s_0211	3-dehydroshikimate	

Product

Table 71: Properties of each product

14010 / 1	. Troperties of each pr	ouuct.
Id	Name	SBO
s_0211	3-dehydroshikimate	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0210}] - \frac{[\text{s_0211}]}{\text{Keq}} \right)}{\frac{\text{Km0210}}{1 + \frac{[\text{s_0210}]}{\text{Km0210}} + 1 + \frac{[\text{s_0211}]}{\text{Km0211}} - 1}}$$
(35)

Table 72: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	
Vmax		0000324	0.060	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0210		0000322	0.100	$mmol \cdot l^{-1}$	
Km0211		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.18 Reaction r_0040

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name 3-dehydroquinate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0349 \xrightarrow{e_0182, s_0349, s_0210, s_1322} s_0210 + s_1322$$
 (36)

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
s_0349	7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid	

Table 74: Properties of each modifier.

Id	Name	SBO
e_0182	ARO1	0000460
$s_{-}0349$	7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid	
s_0210	3-dehydroquinate	
s_1322	phosphate	

Products

Table 75: Properties of each product.

	1 1	
Id	Name	SBO
s_0210	3-dehydroquinate	
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0349}] - \frac{[\text{s_0210}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0349}}}{1 + \frac{[\text{s_0349}]}{\text{Km0349}} + \left(1 + \frac{[\text{s_0210}]}{\text{Km0210}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(37)

Table 76: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	\square
Vmax		0000324	0.100	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	0.200	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0349		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0210		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathscr{A}}$

6.19 Reaction r_0041

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name 3-dehydrosphinganine reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0231 + s_1212 \xrightarrow{e_0092, \ s_0231, \ s_1212, \ s_1207, \ s_1445} s_1207 + s_1445 \tag{38}$$

Reactants

Table 77: Properties of each reactant.

Id	Name	SBO
	3-ketosphinganine NADPH	

Modifiers

Table 78: Properties of each modifier.

Id	Name	SBO
e_0092	TSC10	0000460
s_0231	3-ketosphinganine	
s_1212	NADPH	
s_1207	NADP(+)	
$s_{-}1445$	sphinganine	

Products

Table 79: Properties of each product.

Id	Name	SBO
s_1207 s_1445	NADP(+) sphinganine	
S_1445	spninganine	

Kinetic Law

$$\nu_{19} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0231}] \cdot [\text{s_1212}] - \frac{[\text{s_1207}] \cdot [\text{s_1445}]}{\text{Keq}} \right)}{\text{Km0231} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0231}]}{\text{Km0231}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1445}]}{\text{Km1445}} \right) - 1}$$
(39)

Table 80: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.04421699920047 \cdot 10^{-5}$	dimensionless	Ø
Vmax		0000324	$2.86190379888066 \cdot 10^{-4}$	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	2.000	dimensionless	
Km0231		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$mmol \cdot l^{-1}$	
Km1207		0000323	0.100	$mmol \cdot l^{-1}$	
Km1445		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square

6.20 Reaction r_0060

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name 3-isopropylmalate dehydratase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0 = 0.0165 \xrightarrow{e_0 = 0.0165, s_0 = 0.009} s_0 = 0.009$$
 (40)

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
s_0165	2-isopropylmaleic acid	

Modifiers

Table 82: Properties of each modifier.

Id	Name	SBO
	LEU1 2-isopropylmaleic acid (2R,3S)-3-isopropylmalate	0000460

Product

Table 83: Properties of each product.

	1 1	
Id	Name	SBO
s_0009	(2R,3S)-3-isopropylmalate	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0165}] - \frac{[\text{s_0009}]}{\text{Keq}} \right)}{\frac{\text{Km0165}}{1 + \frac{[\text{s_0165}]}{\text{Km0165}} + 1 + \frac{[\text{s_0009}]}{\text{Km0009}} - 1}}$$
(41)

Table 84: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.067	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0165		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0009		0000323	0.100	$mmol \cdot l^{-1}$	\square

6.21 Reaction r_0061

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name 3-isopropylmalate dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0009 + s_1198 \xrightarrow{e_0101, s_0009, s_1198, s_0010, s_1203} s_0010 + s_1203 \tag{42}$$

Reactants

Table 85: Properties of each reactant.

Id	Name	SBO
	(2R,3S)-3-isopropylmalate	
s_1198	NAD	

Table 86: Properties of each modifier.

Id	Name	SBO
e_0101	LEU2	0000460
s_0009	(2R,3S)-3-isopropylmalate	
s_1198	NAD	
s_0010	(2S)-2-isopropyl-3-oxosuccinate	
s_1203	NADH	

Products

Table 87: Properties of each product.

Id	Name	SBO
s_0010 s_1203	(2S)-2-isopropyl-3-oxosuccinate NADH	

Kinetic Law

$$v_{21} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0009}] \cdot [\text{s_1198}] - \frac{[\text{s_0010}] \cdot [\text{s_1203}]}{\text{Keq}} \right)}{\text{Km0009} \cdot \text{Km1198}}}{\left(1 + \frac{[\text{s_0009}]}{\text{Km0009}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_0010}]}{\text{Km0010}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1}$$

$$(43)$$

Table 88: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	<u> </u>
Vmax		0000324	0.157	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$ \overline{\mathcal{L}} $
Km0009		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{L}} $
Km1198		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $
Km0010		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1203		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$

6.22 Reaction r_0065

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name 3-phosphoshikimate 1-carboxyvinyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0261 + s_1360 \xrightarrow{e_0182, \ s_0261, \ s_1360, \ s_0324, \ s_1322} s_0324 + s_1322 \tag{44}$$

Reactants

Table 89: Properties of each reactant.

Id	Name	SBO
s_0261	3-phosphoshikimic acid	
s_1360	phosphoenolpyruvate	

Modifiers

Table 90: Properties of each modifier.

Id	Name	SBO
e_0182	ARO1	0000460
s0261	3-phosphoshikimic acid	
$s_{-}1360$	phosphoenolpyruvate	
s_0324	5-O-(1-carboxyvinyl)-3-phosphoshikimic acid	
s_1322	phosphate	

Products

Table 91: Properties of each product.

Id	Name	SBO
	5-O-(1-carboxyvinyl)-3-phosphoshikimic acid phosphate	
S_1322	phosphate	

Kinetic Law

$$v_{22} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0261}] \cdot [\text{s_1360}] - \frac{[\text{s_0324}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0261} \cdot \text{Km1360}}}{\left(1 + \frac{[\text{s_0261}]}{\text{Km0261}} \right) \cdot \left(1 + \frac{[\text{s_1360}]}{\text{Km1360}} \right) + \left(1 + \frac{[\text{s_0324}]}{\text{Km0324}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

$$(45)$$

Table 92: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	
Vmax		0000324	0.140	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathscr{L}} $
Keq		0000281	2.000	dimensionless	\square
Km0261		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1360		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0324		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1322		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square

6.23 Reaction r_0079

This is a reversible reaction of three reactants forming four products influenced by eight modifiers.

Name 5'-phosphoribosylformyl glycinamidine synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0301 + s_0434 + s_0999 \xleftarrow{e_0368, s_0301, s_0434, s_0999, s_0302, s_0394, s_0991, s_1322} s_0302 + s_0394 + s_0999 \underbrace{(46)}$$

Reactants

Table 93: Properties of each reactant.

Id	Name	SBO
s_0301	5'-phosphoribosyl-N-formylglycineamide	_
s_0434	ATP	
s_0999	L-glutamine	

Modifiers

Table 94: Properties of each modifier.

Id	Name	SBO
e_0368	ADE6	0000460
s_0301	5'-phosphoribosyl-N-formylglycineamide	
s_0434	ATP	
s_0999	L-glutamine	
s_0302	5'-phosphoribosyl-N-formylglycineamidine	
s_0394	ADP	
s_0991	L-glutamate	
s_1322	phosphate	

Products

Table 95: Properties of each product.

Id	Name	SBO
s_0302	5'-phosphoribosyl-N-formylglycineamidine	
s_0394	ADP	
s_0991	L-glutamate	
$s_{-}1322$	phosphate	

Kinetic Law

$$= \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0301}] \cdot [\text{s_0434}] \cdot [\text{s_0999}] - \frac{[\text{s_0302}] \cdot [\text{s_0394}] \cdot [\text{s_0991}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\frac{\text{Km0301} \cdot \text{Km0434} \cdot \text{Km0999}}{\text{Km0301}} \cdot \left(1 + \frac{[\text{s_0304}]}{\text{Km0391}} \right) \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km0999}} \right) + \left(1 + \frac{[\text{s_0302}]}{\text{Km0302}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) \cdot \left(1 + \frac{[\text{s_0304}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) \cdot \left(1 + \frac{[\text{s_0304}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0399}} \right) \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km0399}} \right) \cdot \left(1 + \frac{[\text{s_0999}]}{\text{$$

Table 96: Properties of each parameter.

	*** * * * * * * * * * * * * * * * * * *	1	· · · · · ·		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.173	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	
Km0301		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0999		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0302		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0991		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$mmol \cdot l^{-1}$	

6.24 Reaction r_0080

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name 5,10-methylenetetrahydrofolate reductase (NADPH)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0306 + s_1212 \xrightarrow{e_0340, \ e_0903, \ s_0306, \ s_1212, \ s_0322, \ s_1207} s_0322 + s_1207 \tag{48}$$

Reactants

Table 97: Properties of each reactant.

Id	Name	SBO
s_0306	5,10-methylenetetrahydrofolate	
$s_{-}1212$	NADPH	

Modifiers

Table 98: Properties of each modifier.

Id	Name	SBO
e_0340	MET13	0000460
e_0903	MET12	0000460
s_0306	5,10-methylenetetrahydrofolate	
s_1212	NADPH	
s_0322	5-methyltetrahydrofolate	
s_1207	NADP(+)	

Products

Table 99: Properties of each product.

Id	Name	SBO
	5-methyltetrahydrofolate NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.}0306] \cdot [\text{s.}1212] - \frac{[\text{s.}0322] \cdot [\text{s.}1207]}{\text{Keq}} \right)}{\text{Km0306} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s.}0306]}{\text{Km0306}} \right) \cdot \left(1 + \frac{[\text{s.}1212]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s.}0322]}{\text{Km0322}} \right) \cdot \left(1 + \frac{[\text{s.}1207]}{\text{Km1207}} \right) - 1}$$

$$(49)$$

Table 100: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	\square
Vmax		0000324	0.035	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0306		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{A}} $
Km0322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{A}} $
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.25 Reaction r_0096

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name acetohydroxy acid isomeroreductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0146 + s_1212 \xrightarrow{e_0685, s_0146, s_1212, s_0016, s_1207} s_0016 + s_1207 \tag{50}$$

Reactants

Table 101: Properties of each reactant.

Id	Name	SBO
	2-acetyllactic acid NADPH	

Table 102: Properties of each modifier.

	_	
Id	Name	SBO
e_0685	ILV5	0000460
s_0146	2-acetyllactic acid	
$s_{-}1212$	NADPH	
s_0016	(R)-2,3-dihydroxy-3-methylbutanoate	
$s_{-}1207$	NADP(+)	

Products

Table 103: Properties of each product.

Id	Name	SBO
	(R)-2,3-dihydroxy-3-methylbutanoate NADP(+)	

Kinetic Law

$$v_{25} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0146}] \cdot [\text{s_1212}] - \frac{[\text{s_0016}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0146} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0146}]}{\text{Km0146}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0016}]}{\text{Km0016}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$
(51)

Table 104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE	1		0.021	dimensionless	
Vmax		0000324	0.298	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0146		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $

Id	Name	SBO	Value	Unit	Constant
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0016		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$mmol \cdot l^{-1}$	

6.26 Reaction r_0097

This is a reversible reaction of one reactant forming two products influenced by five modifiers.

Name acetolactate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$2s_{-}1399 \xrightarrow{e_{-}0734, e_{-}0100, s_{-}1399, s_{-}0146, s_{-}0456} s_{-}0146 + s_{-}0456$$
 (52)

Reactant

Table 105: Properties of each reactant.

Id	Name	SBO
s_1399	pyruvate	

Modifiers

Table 106: Properties of each modifier.

racie 100: 110 perties of each infoamer.				
Id	Name	SBO		
e_0734	ILV2	0000460		
$e_{-}0100$	ILV6	0000460		
s_1399	pyruvate			
s_0146	2-acetyllactic acid			
s_0456	carbon dioxide			

Products

Table 107: Properties of each product.

Id	Name	SBO
s_0146	2-acetyllactic acid	

Id	Name	SBO
s_0456	carbon dioxide	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1399]^2 - \frac{[s_0146] \cdot [s_0456]}{\text{Keq}} \right)}{\text{Km1399}^2}}{\left(1 + \frac{[s_1399]}{\text{Km1399}} \right)^2 + \left(1 + \frac{[s_0146]}{\text{Km0146}} \right) \cdot \left(1 + \frac{[s_0456]}{\text{Km0456}} \right) - 1}$$
(53)

Table 108: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.021	dimensionless	
Vmax		0000324	0.298	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1399		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0146		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0456		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.27 Reaction r_0103

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name acetyl-CoA C-acetyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$2s_0373 \xrightarrow{e_0904, s_0373, s_0367, s_0529} s_0367 + s_0529$$
 (54)

Reactant

Table 109: Properties of each reactant.

Id	Name	SBO
s_0373	acetyl-CoA	

Table 110: Properties of each modifier.

Id	Name	SBO
e_0904	ERG10	0000460
s_0373	acetyl-CoA	
s_0367	acetoacetyl-CoA	
s_0529	coenzyme A	

Products

Table 111: Properties of each product.

Id	Name	SBO
s_0367 s_0529	acetoacetyl-CoA coenzyme A	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0373}]^2 - \frac{[\text{s_0367}] \cdot [\text{s_0529}]}{\text{Keq}} \right)}{\text{Km0373}^2}}{\left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right)^2 + \left(1 + \frac{[\text{s_0367}]}{\text{Km0367}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) - 1}$$
(55)

Table 112: Properties of each parameter.

There is a repetition of their parameters					
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	
Vmax		0000324	0.022	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0373		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0367		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0529		0000323	0.100	$mmol \cdot l^{-1}$	

6.28 Reaction r_0108

This is a reversible reaction of three reactants forming three products influenced by eight modifiers.

Name acetyl-Coa carboxylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0373 + s_0434 + s_0445 \xleftarrow{e_0744, e_0808, s_0373, s_0434, s_0445, s_0394, s_1101, s_1322} s_0394 + s_1101 + s_1323 + s_0434 + s_0445 \xrightarrow{e_0744, e_0808, s_0373, s_0434, s_0445, s_0394, s_1101, s_1322} s_0394 + s_1101 + s_1323 + s_0434 + s_0445 + s_045 +$$

Reactants

Table 113: Properties of each reactant.

Id	Name	SBO
s_0373	acetyl-CoA	
s0434	ATP	
s_0445	bicarbonate	

Modifiers

Table 114: Properties of each modifier.

Id	Name	SBO
e_0744	HFA1	0000460
e_0808	ACC1	0000460
s_0373	acetyl-CoA	
s_0434	ATP	
s_0445	bicarbonate	
s_0394	ADP	
$s_{-}1101$	malonyl-CoA	
s_1322	phosphate	

Products

Table 115: Properties of each product.

Id	Name	SBO
s_0394	ADP	
$s_{-}1101$	malonyl-CoA	
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{28} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0373}] \cdot [\text{s_0434}] \cdot [\text{s_0445}] - \frac{[\text{s_0394}] \cdot [\text{s_1101}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0373} \cdot \text{Km0434} \cdot \text{Km0445}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0373}] \cdot [\text{s_0434}] \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0445}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1101}]}{\text{Km1101}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}{(1 + \frac{[\text{s_0373}]}{\text{Km0373}}) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1101}]}{\text{Km1101}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

Table 116: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$3.6795905905662 \cdot 10^{-4}$	dimensionless	$ \overline{Z} $
Vmax		0000324	0.011	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbb{Z}}$
Keq		0000281	2.000	dimensionless	\overline{Z}
Km0373		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0445		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1101		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square

6.29 Reaction r_0110

This is a reversible reaction of two reactants forming one product influenced by four modifiers.

Name acetyl-CoA hydrolase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0362 + s_0529 = \frac{e_0022, s_0362, s_0529, s_0373}{s_0362} s_0373$$
 (58)

Reactants

Table 117: Properties of each reactant.

Id	Name	SBO
s_0362	acetate	
s_0529	coenzyme A	

Table 118: Properties of each modifier.

Id	Name	SBO
e_0022	ACH1	0000460
s_0362	acetate	
s_0529	coenzyme A	
s_0373	acetyl-CoA	

Product

Table 119: Properties of each product.

Id	Name	
s_0373	acetyl-CoA	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0362}] \cdot [\text{s_0529}] - \frac{[\text{s_0373}]}{\text{Keq}} \right)}{\text{Km0362} \cdot \text{Km0529}}}{\left(1 + \frac{[\text{s_0362}]}{\text{Km0362}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) + 1 + \frac{[\text{s_0373}]}{\text{Km0373}} - 1}$$
(59)

Table 120: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.012	dimensionless	
Vmax		0000324	0.116	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km0362		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0529		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0373		0000323	0.100	$mmol \cdot l^{-1}$	

6.30 Reaction r_0115

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name acetylglutamate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1192 \xrightarrow{e_0290, \ s_0434, \ s_1192, \ s_0394, \ s_1191} s_0394 + s_1191 \tag{60}$$

Reactants

Table 121: Properties of each reactant.

Id	Name	SBO		
s_0434	ATP			
s_1192	N-acetyl-L-glutamate			

Modifiers

Table 122: Properties of each modifier.

Id	Name	SBO
e_0290	ARG5,6	0000460
s_0434	ATP	
s_1192	N-acetyl-L-glutamate	
s_0394	ADP	
$s_{-}1191$	N-acetyl-L-gamma-glutamyl phosphate	

Products

Table 123: Properties of each product.

	Tuest 120. Treperiors of tuest producti	
Id	Name	SBO
s_0394	ADP	
$s_{-}1191$	N-acetyl-L-gamma-glutamyl phosphate	

Kinetic Law

$$v_{30} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1192}] - \frac{[\text{s_0394}] \cdot [\text{s_1191}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1192}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1192}]}{\text{Km1192}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1191}]}{\text{Km1191}} \right) - 1}$$
(61)

Table 124: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	
Vmax		0000324	0.085	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathscr{L}} $
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1192		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0394		0000323	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\checkmark} $
Km1191		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.31 Reaction r_0118

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name acteylornithine transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0145 + s_0991 \xrightarrow{e_0840, \ s_0145, \ s_0991, \ s_0180, \ s_1182} s_0180 + s_1182 \tag{62}$$

Reactants

Table 125: Properties of each reactant

Id Name		SBO	
	2-acetamido-5-oxopentanoate L-glutamate		

Modifiers

Table 126: Properties of each modifier.

SBO
0000460

Products

Table 127: Properties of each product.

Id Name SBC		
	2-oxoglutarate N(2)-acetyl-L-ornithine	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0145}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_1182}]}{\text{Keq}} \right)}{\text{Km0145} \cdot \text{Km0991}}}{\left(1 + \frac{[\text{s_0145}]}{\text{Km0145}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_1182}]}{\text{Km1182}} \right) - 1}$$
(63)

Table 128: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	\square
Vmax		0000324	0.085	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	\square
Km0145		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0180		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1182		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.32 Reaction r_0142

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name adenosine kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0386 + s_0434 \xrightarrow{e_0541, \ s_0386, \ s_0434, \ s_0394, \ s_0423} s_0394 + s_0423 \tag{64}$$

Reactants

Table 129: Properties of each reactant.

Id	Name	SBO
s_0386 s_0434	adenosine ATP	

Table 130: Properties of each modifier.

Id	Name	SBO
e_0541	ADO1	0000460
s_0386	adenosine	
s0434	ATP	
s_0394	ADP	
s_0423	AMP	

Products

Table 131: Properties of each product.

Id	Name	SBO
s_0394	ADP	
s_0423	AMP	

Kinetic Law

$$v_{32} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_0386] \cdot [s_0434] - \frac{[s_0394] \cdot [s_0423]}{\text{Keq}} \right)}{\text{Km0386} \cdot \text{Km0434}}}{\left(1 + \frac{[s_0386]}{\text{Km0386}} \right) \cdot \left(1 + \frac{[s_0434]}{\text{Km0434}} \right) + \left(1 + \frac{[s_0394]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[s_0423]}{\text{Km0423}} \right) - 1}$$
(65)

Table 132: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.83975250318604 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.008	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0386		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\overline{Z}
Km0394		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.33 Reaction r_0144

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name adenosylhomocysteinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-1413} \xrightarrow{e_{-0280}, s_{-1413}, s_{-0386}, s_{-1012}} s_{-0386} + s_{-1012}$$
 (66)

Reactant

Table 133: Properties of each reactant.

Id	Name	SBO
s_1413	S-adenosyl-L-homocysteine	

Modifiers

Table 134: Properties of each modifier.

	1	
Id	Name	SBO
e_0280	SAH1	0000460
$s_{-}1413$	S-adenosyl-L-homocysteine	
s_0386	adenosine	
$s_{-}1012$	L-homocysteine	

Products

Table 135: Properties of each product.

Id	Name	SBO
	adenosine L-homocysteine	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1413}] - \frac{[\text{s_0386}] \cdot [\text{s_1012}]}{\text{Keq}} \right)}{\text{Km1413}}}{1 + \frac{[\text{s_1413}]}{\text{Km1413}} + \left(1 + \frac{[\text{s_0386}]}{\text{Km0386}} \right) \cdot \left(1 + \frac{[\text{s_1012}]}{\text{Km1012}} \right) - 1}$$
(67)

Table 136: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.83975250368712 \cdot 10^{-4}$	dimensionless	✓
Vmax		0000324	0.006	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \mathbf{Z} $
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1413		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \mathbf{Z} $
Km0386		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1012		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.34 Reaction r_0148

This is a reversible reaction of two reactants forming one product influenced by five modifiers.

Name adenylate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{0}423 + s_{0}434 = \underbrace{e_{0}0194, e_{0}303, s_{0}423, s_{0}434, s_{0}394}_{2s_{0}394} 2 s_{0}394$$
 (68)

Reactants

Table 137: Properties of each reactant.

Id	Name	SBO
s_0423	AMP	
s_0434	ATP	

Modifiers

Table 138: Properties of each modifier.

Id	Name	SBO
e_0194	ADK1	0000460
e_0303	ADK2	0000460
s_0423	AMP	
s_0434	ATP	
s_0394	ADP	

Product

Table 139: Properties of each product.

Id	Name	SBO
s_0394	ADP	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0423}] \cdot [\text{s_0434}] - \frac{[\text{s_0394}]^2}{\text{Keq}} \right)}{\text{Km0423} \cdot \text{Km0434}}}{\left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right)^2 - 1}$$
(69)

Table 140: Properties of each parameter.

ruste 1 to. 1 toperties of each parameter.					
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.169	dimensionless	
Vmax		0000324	2.361	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0423		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0434		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0394		0000323	0.100	$mmol \cdot l^{-1}$	\checkmark

6.35 Reaction r_0151

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name adenylosuccinate lyase (AICAR)

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-0299} = 0.0686, s_{-0299}, s_{-0403}, s_{-0725} = 0.0403 + s_{-0725}$$
 (70)

Reactant

Table 141: Properties of each reactant.

Id	Name	SBO
s_0299	5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole	_

Modifiers

Table 142: Properties of each modifier.

Id	Name	SBO
e_0686	ADE13	0000460
s_0299	5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole	
s_0403	AICAR	
s_0725	fumarate	

Products

Table 143: Properties of each product.

Id	Name	SBO
s_0403	AICAR	
s_0725	fumarate	

Kinetic Law

$$v_{35} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0299}] - \frac{[\text{s_0403}] \cdot [\text{s_0725}]}{\text{Keq}} \right)}{\text{Km0299}}}{1 + \frac{[\text{s_0299}]}{\text{Km0299}} + \left(1 + \frac{[\text{s_0403}]}{\text{Km0403}} \right) \cdot \left(1 + \frac{[\text{s_0725}]}{\text{Km0725}} \right) - 1}$$
(71)

Table 144: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.038	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	
Km0299		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0403		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0725		0000323	0.100	$mmol \cdot l^{-1}$	

6.36 Reaction r_0152

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name adenylosuccinate lyase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0393 \xleftarrow{e_0686, s_0393, s_0423, s_0725} s_0423 + s_0725 \tag{72}$$

Reactant

Table 145: Properties of each reactant.

Id	Name	SBO
s_0393	adenylo-succinate	

Modifiers

Table 146: Properties of each modifier.

Id	Name	SBO
e_0686	ADE13	0000460
s_0393	adenylo-succinate	
s_0423	AMP	
s_0725	fumarate	

Products

Table 147: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0725	fumarate	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0393}] - \frac{[\text{s_0423}] \cdot [\text{s_0725}]}{\text{Keq}} \right)}{\text{Km0393}}}{1 + \frac{[\text{s_0393}]}{\text{Km0393}} + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0725}]}{\text{Km07725}} \right) - 1}$$
(73)

Table 148: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	\square
Vmax		0000324	0.044	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0393		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0423		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0725		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.37 Reaction r_0153

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name adenylosuccinate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0785 + s_0849 + s_0973 \xleftarrow{e_0791, s_0785, s_0849, s_0973, s_0393, s_0739, s_1322} s_0393 + s_0739 + s_1322 \tag{74}$$

Reactants

Table 149: Properties of each reactant.

Id	Name	SBO
s_0785	GTP	
s_0849	IMP	
s_0973	L-aspartate	

Modifiers

Table 150: Properties of each modifier.

Id	Name	SBO
e_0791	ADE12	0000460
s_0785	GTP	
s_0849	IMP	
s_0973	L-aspartate	
s_0393	adenylo-succinate	
s_0739	GDP	
s_1322	phosphate	

Products

Table 151: Properties of each product.

Id	Name	SBO
s_0739	adenylo-succinate GDP phosphate	

Kinetic Law

$$v_{37} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0785}] \cdot [\text{s_0849}] \cdot [\text{s_0973}] - \frac{[\text{s_0393}] \cdot [\text{s_0739}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0785} \cdot \text{Km0849} \cdot \text{Km0973}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0785}] \cdot [\text{s_0849}] \cdot [\text{s_0785}] \cdot \left(1 + \frac{[\text{s_0849}]}{\text{Km0785}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km00785}} \right) \cdot \left(1 + \frac{[\text{s_0739}]}{\text{Km0789}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}{(1 + \frac{[\text{s_0785}]}{\text{Km0785}}) \cdot \left(1 + \frac{[\text{s_0785}]}{\text{Km0785}} \right) \cdot \left(1 + \frac{[\text{s_0785}]}{\text{Km0785}} \right)} \cdot \left(1 + \frac{[\text{s_0785}]}{\text{Km0785}} \right) \cdot \left(1 +$$

Table 152: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	$ \mathcal{L} $
Vmax		0000324	0.132	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0785		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0849		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0973		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0393		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0739		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.38 Reaction r_0154

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name adenylyl-sulfate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0298 + s_{-}0434 \xrightarrow{e_{-}0556, s_{-}0298, s_{-}0434, s_{-}0201, s_{-}0394} s_{-}0201 + s_{-}0394 \tag{76}$$

Reactants

Table 153: Properties of each reactant.

	· F	
Id	Name	SBO
s_0298	5'-adenylyl sulfate	
s_0434	ATP	

Table 154: Properties of each modifier.

Id	Name	SBO
e_0556	MET14	0000460
s_0298	5'-adenylyl sulfate	
s_0434	ATP	
s_0201	3'-phospho-5'-adenylyl sulfate	

Id	Name	SBO
s_0394	ADP	

Table 155: Properties of each product.

Id	Name	SBO
s_0201 s_0394	3'-phospho-5'-adenylyl sulfate ADP	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0298}] \cdot [\text{s_0434}] - \frac{[\text{s_0201}] \cdot [\text{s_0394}]}{\text{Keq}} \right)}{\text{Km0298} \cdot \text{Km0434}}}{\left(1 + \frac{[\text{s_0298}]}{\text{Km0298}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) + \left(1 + \frac{[\text{s_0201}]}{\text{Km0201}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) - 1}$$
(77)

Table 156: Properties of each parameter.

		_			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	
Vmax		0000324	0.030	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0298		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	\checkmark
Km0201		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\checkmark
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.39 Reaction r_0157

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name alanyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0955 + s_1582 \xrightarrow{e_0894, s_0434, s_0955, s_1582, s_0404, s_0423, s_0633} s_0404 + s_0423 + s_0633 \tag{78}$$

Reactants

Table 157: Properties of each reactant.

Id	Name	SBO
s0434	ATP	
s_0955	L-alanine	
s_1582	tRNA(Ala)	

Modifiers

Table 158: Properties of each modifier.

	· · P · · · · ·	
Id	Name	SBO
e_0894	ALA1	0000460
s_0434	ATP	
s_0955	L-alanine	
s_1582	tRNA(Ala)	
s_0404	Ala-tRNA(Ala)	
s_0423	AMP	
s_0633	diphosphate	

Products

Table 159: Properties of each product.

Id	Name	SBO
s_0404	Ala-tRNA(Ala)	
s_0423	AMP	
s_0633	diphosphate	

Kinetic Law

$$v_{39} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0955}] \cdot [\text{s_1582}] - \frac{[\text{s_0404}] \cdot [\text{s_0423}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km0955} \cdot \text{Km1582}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0955}]}{\text{Km0955}} \right) \cdot \left(1 + \frac{[\text{s_1582}]}{\text{Km1582}} \right) + \left(1 + \frac{[\text{s_0404}]}{\text{Km0404}} \right) \cdot \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1}$$

Table 160: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.017	dimensionless	
Vmax		0000324	0.522	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0955		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1582		0000322	0.100	$mmol \cdot l^{-1}$	
Km0404		0000323	0.100	$mmol \cdot l^{-1}$	$\overline{\mathbf{Z}}$
Km0423		0000323	0.100	$mmol \cdot l^{-1}$	$\overline{\mathbf{Z}}$
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \mathbf{Z} $

6.40 Reaction r_0195

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name alpha, alpha-trehalose-phosphate synthase (UDP-forming)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0568 + s_1543 \xleftarrow{e_0711, e_0065, e_0179, e_0753, s_0568, s_1543, s_0409, s_1538} s_0409 + s_1538 \tag{80}$$

Reactants

Table 161: Properties of each reactant.

Id	Name	SBO
	D-glucose 6-phosphate UDP-D-glucose	

Table 162: Properties of each modifier.

Id	Name	SBO
e_0711	TSL1	0000460
e_0065	TPS1	0000460
e_0179	TPS2	0000460
e_0753	TPS3	0000460
s_0568	D-glucose 6-phosphate	
$s_{-}1543$	UDP-D-glucose	
s_0409	alpha,alpha-trehalose 6-phosphate	
s_1538	UDP	

Table 163: Properties of each product.

Id	Name	SBO
s_0409 s_1538	alpha,alpha-trehalose 6-phosphate UDP	

Kinetic Law

$$v_{40} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0568}] \cdot [\text{s_1543}] - \frac{[\text{s_0409}] \cdot [\text{s_1538}]}{\text{Keq}} \right)}{\text{Km0568} \cdot \text{Km1543}}}{\left(1 + \frac{[\text{s_0568}]}{\text{Km0568}} \right) \cdot \left(1 + \frac{[\text{s_1543}]}{\text{Km1543}} \right) + \left(1 + \frac{[\text{s_0409}]}{\text{Km0409}} \right) \cdot \left(1 + \frac{[\text{s_1538}]}{\text{Km1538}} \right) - 1}$$
(81)

Table 164: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$8.88088702058448 \cdot 10^{-4}$	dimensionless	<u>√</u>
Vmax		0000324	0.012	$mmol \cdot l^{-1} \cdot s^{-1}$	\overline{Z}
Keq		0000281	2.000	dimensionless	$ \overline{\mathcal{L}} $
Km0568		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1543		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0409		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1538		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.41 Reaction r_0202

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name anthranilate phosphoribosyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0427 + s_1386 \xrightarrow{e_0219, \ s_0427, \ s_1386, \ s_0633, \ s_1187} s_0633 + s_1187 \tag{82}$$

Reactants

Table 165: Properties of each reactant.

Id	Name	SBO
s_0427 s_1386	anthranilate PRPP	

Modifiers

Table 166: Properties of each modifier.

Id	Name	SBO
e_0219	TRP4	0000460
s_0427	anthranilate	
$s_{-}1386$	PRPP	
s_0633	diphosphate	
$s_{-}1187$	N-(5-phospho-beta-D-ribosyl)anthranilate	

Products

Table 167: Properties of each product.

Id	Name	SBO
s_0633	diphosphate	
s_1187	N-(5-phospho-beta-D-ribosyl)anthranilate	

Kinetic Law

$$v_{41} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0427}] \cdot [\text{s_1386}] - \frac{[\text{s_0633}] \cdot [\text{s_1187}]}{\text{Keq}} \right)}{\text{Km0427} \cdot \text{Km1386}}}{\left(1 + \frac{[\text{s_0427}]}{\text{Km0427}} \right) \cdot \left(1 + \frac{[\text{s_1386}]}{\text{Km1386}} \right) + \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1187}]}{\text{Km1187}} \right) - 1}$$
(83)

Table 168: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.001	dimensionless	\square
Vmax		0000324	0.015	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	\square
Km0427		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1386		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1187		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.42 Reaction r_0203

This is a reversible reaction of two reactants forming three products influenced by seven modifiers.

Name anthranilate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0515 + s_0999 \xrightarrow{e_0297, \ e_0591, \ s_0515, \ s_0999, \ s_0427, \ s_0991, \ s_1399} s_0427 + s_0991 + s_1399 \tag{84}$$

Reactants

Table 169: Properties of each reactant.

Id	Name	SBO
s_0515	chorismate	
s_0999	L-glutamine	

Table 170: Properties of each modifier.

Id	Name	SBO
e_0297	TRP2	0000460
e_0591	TRP3	0000460
s_0515	chorismate	
s_0999	L-glutamine	
s_0427	anthranilate	
s_0991	L-glutamate	
s_1399	pyruvate	

Table 171: Properties of each product.

Id	Name	SBO
s_0427	anthranilate	
s_0991	L-glutamate	
$s_{-}1399$	pyruvate	

Kinetic Law

$$v_{42} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0515}] \cdot [\text{s_0999}] - \frac{[\text{s_0427}] \cdot [\text{s_0991}] \cdot [\text{s_1399}]}{\text{Keq}} \right)}{\left(1 + \frac{[\text{s_0515}]}{\text{Km0515}} \right) \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km0999}} \right) + \left(1 + \frac{[\text{s_0427}]}{\text{Km0427}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km1399}} \right) - 1}$$

$$(85)$$

Table 172: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
- Iu	Name	300	value	Ullit	Constant
$FLUX_VALUE$			0.001	dimensionless	
Vmax		0000324	0.024	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$mmol \cdot l^{-1}$	
Km0515		0000322	0.100	$mmol \cdot l^{-1}$	
Km0999		0000322	0.100	$mmol \cdot l^{-1}$	
Km0427		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km0991		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km1399		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.43 Reaction r_0207

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name argininosuccinate lyase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0015 \xrightarrow{e_0426, s_0015, s_0725, s_0965} s_0725 + s_0965$$
 (86)

Reactant

Table 173: Properties of each reactant.

Id	Name	SBO
s_0015	(N(omega)-L-arginino)succinic acid	

Modifiers

Table 174: Properties of each modifier.

Id	Name	SBO
e_0426	ARG4	0000460
s_0015	(N(omega)-L-arginino)succinic acid	
s_0725	fumarate	
s_0965	L-arginine	

Products

Table 175: Properties of each product.

Id	Name	SBO
s_0725	fumarate	
s_0965	L-arginine	

Kinetic Law

$$v_{43} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0015}] - \frac{[\text{s_0725}] \cdot [\text{s_0965}]}{\text{Keq}} \right)}{\text{Km0015}}}{1 + \frac{[\text{s_0015}]}{\text{Km0015}} + \left(1 + \frac{[\text{s_0725}]}{\text{Km0725}} \right) \cdot \left(1 + \frac{[\text{s_0965}]}{\text{Km0965}} \right) - 1}$$
(87)

Table 176: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.061	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0015		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0725		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0965		0000323	0.100	$mmol \cdot l^{-1}$	

6.44 Reaction r_0208

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name argininosuccinate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0973 + s_0979 \xleftarrow{e_0826, s_0434, s_0973, s_0979, s_0015, s_0423, s_0633} s_0015 + s_0423 + s_0633 \tag{88}$$

Reactants

Table 177: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0973	L-aspartate	
s_0979	L-citrulline	

Table 178: Properties of each modifier.

	THE TOTAL TOP STATES OF SHEET THE GIRLS	<u> </u>
Id	Name	SBO
e_0826	ARG1	0000460
s_0434	ATP	
s_0973	L-aspartate	
s_0979	L-citrulline	
s_0015	(N(omega)-L-arginino)succinic acid	
s_0423	AMP	
s_0633	diphosphate	

Table 179: Properties of each product.

Id	Name	SBO
s_0015 s_0423	(N(omega)-L-arginino)succinic acid AMP	
s_0633	diphosphate	

Kinetic Law

$$\nu_{44} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0973}] \cdot [\text{s_0979}] - \frac{[\text{s_0015}] \cdot [\text{s_0423}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km0973} \cdot \text{Km0979}}{\text{Km00434}} \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km0973}} \right) \cdot \left(1 + \frac{[\text{s_0979}]}{\text{Km0979}} \right) + \left(1 + \frac{[\text{s_0015}]}{\text{Km0015}} \right) \cdot \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1$$

Table 180: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	\overline{Z}
Vmax		0000324	0.183	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	2.000	dimensionless	$ \overline{\mathscr{L}} $
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0973		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0979		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0015		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0423		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.45 Reaction r_0209

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name arginyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0965 + s_1583 \xleftarrow{e_0214, s_0434, s_0965, s_1583, s_0423, s_0428, s_0633} s_0423 + s_0428 + s_0633 \tag{90}$$

Reactants

Table 181: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0965	L-arginine	
s_1583	tRNA(Arg)	

Modifiers

Table 182: Properties of each modifier.

Id	Name	SBO
e_0214	YDR341C	0000460
s_0434	ATP	
s_0965	L-arginine	
s_1583	tRNA(Arg)	
s_0423	AMP	
s_0428	Arg-tRNA(Arg)	
s_0633	diphosphate	

Products

Table 183: Properties of each product.

Id	Name	SBO
s_0423	AMP	

Id	Name	SBO
	Arg-tRNA(Arg) diphosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0965}] \cdot [\text{s_1583}] - \frac{[\text{s_0423}] \cdot [\text{s_0428}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km0965} \cdot \text{Km1583}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0965}]}{\text{Km0965}} \right) \cdot \left(1 + \frac{[\text{s_1583}]}{\text{Km1583}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0428}]}{\text{Km0428}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1}$$

Table 184: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	
Vmax		0000324	0.183	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0965		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km1583		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0428		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0633		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.46 Reaction r_0211

This is a reversible reaction of three reactants forming four products influenced by nine modifiers.

Name asparagine synthase (glutamine-hydrolysing)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0973 + s_0999 \xrightarrow{e_0970, \ e_0376, \ s_0434, \ s_0973, \ s_0999, \ s_0423, \ s_0633, \ s_0969, \ s_0991} s_0423 + s_0633 + s_0$$

Reactants

Table 185: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0973	L-aspartate	
s_0999	L-glutamine	

Modifiers

Table 186: Properties of each modifier.

Id	Name	SBO
e_0970	ASN1	0000460
e_0376	ASN2	0000460
s_0434	ATP	
s_0973	L-aspartate	
s_0999	L-glutamine	
s_0423	AMP	
s_0633	diphosphate	
s_0969	L-asparagine	
s_0991	L-glutamate	

Products

Table 187: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0633	diphosphate	
s_0969	L-asparagine	
s_0991	L-glutamate	

Kinetic Law

$$v_{46} = \frac{\frac{vol(cell) \cdot V_{max} \cdot \left([s_0434] \cdot [s_0973] \cdot [s_0999] - \frac{[s_0423] \cdot [s_0969] \cdot [s_0999]}{Keq} \right)}{\frac{Km0434 \cdot Km0973 \cdot Km0999}} }{\left(1 + \frac{[s_0434]}{Km0434} \right) \cdot \left(1 + \frac{[s_0973]}{Km0973} \right) \cdot \left(1 + \frac{[s_0999]}{Km0999} \right) + \left(1 + \frac{[s_0423]}{Km0423} \right) \cdot \left(1 + \frac{[s_0633]}{Km0633} \right) \cdot \left(1 + \frac{[s_0969]}{Km0969} \right) \cdot \left(1 + \frac{[s_0991]}{Km0991} \right)}$$

Table 188: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.178	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$ \overline{\mathbf{Z}} $
Km0434		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$ \overline{\mathbf{Z}} $
Km0973		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0999		0000322	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\checkmark} $
Km0423		0000323	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\checkmark} $
Km0633		0000323	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
Km0969		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$ \overline{\mathbf{Z}} $
Km0991		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.47 Reaction r_0212

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name Asparaginyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0969 + s_1585 \xleftarrow{e_0427, s_0434, s_0969, s_1585, s_0423, s_0430, s_0633} s_0423 + s_0430 + s_0633 \tag{94}$$

Reactants

Table 189: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}0969$	L-asparagine	
s_1585	tRNA(Asn)	

Table 190: Properties of each modifier.

	- · · F · · · · · · · · · · · ·	
Id	Name	SBO
e_0427	DED81	0000460
s_0434	ATP	
s_0969	L-asparagine	
s_1585	tRNA(Asn)	
s0423	AMP	
s0430	Asn-tRNA(Asn)	
s_0633	diphosphate	

Table 191: Properties of each product.

_		*	
	Id	Name	SBO
	s_0423	AMP	
	s_0430	Asn-tRNA(Asn)	
	s0633	diphosphate	

Kinetic Law

$$\nu_{47} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0969}] \cdot [\text{s_1585}] - \frac{[\text{s_0423}] \cdot [\text{s_0430}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km0969} \cdot \text{Km1585}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0969}] \cdot \left(1 + \frac{[\text{s_0433}]}{\text{Km0969}} \right) \cdot \left(1 + \frac{[\text{s_0433}]}{\text{Km01585}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0430}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1} \\ = \frac{1}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0969}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km01585}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0430}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1} \\ = \frac{1}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0969}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km01585}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0430}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1} \\ = \frac{1}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0969}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0430}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0430}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0633}} \right) - 1} \\ = \frac{1}{\left(1 + \frac{[\text{s_0430}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0633}} \right) - 1} \\ = \frac{1}{\left(1 + \frac{[\text{s_0430}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0430}]}{\text{Km0633}}$$

Table 192: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.116	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	
Km0969		0000322	0.100	$mmol \cdot l^{-1}$	
Km1585		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0423		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0430		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0633		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.48 Reaction r_0214

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name aspartate carbamoyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0455 + s_0973 \xrightarrow{e_0508, \ s_0455, \ s_0973, \ s_1194, \ s_1322} s_1194 + s_1322 \tag{96}$$

Reactants

Table 193: Properties of each reactant.

Id	Name	SBO
	carbamoyl phosphate L-aspartate	

Modifiers

Table 194: Properties of each modifier.

	1	
Id	Name	SBO
e_0508	URA2	0000460
s_0455	carbamoyl phosphate	
s0973	L-aspartate	
$s_{-}1194$	N-carbamoyl-L-aspartate	
s_1322	phosphate	

Products

Table 195: Properties of each product.

Id	Name	SBO
s_1194	N-carbamoyl-L-aspartate	
s_1322	phosphate	

Kinetic Law

$$v_{48} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0455}] \cdot [\text{s_0973}] - \frac{[\text{s_1194}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0455} \cdot \text{Km0973}}}{\left(1 + \frac{[\text{s_0455}]}{\text{Km0455}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km0973}} \right) + \left(1 + \frac{[\text{s_1194}]}{\text{Km1194}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

$$(97)$$

Table 196: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	\square
Vmax		0000324	0.059	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0455		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0973		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1194		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square

6.49 Reaction r_0215

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name aspartate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0973 \xrightarrow{e_0281, s_0434, s_0973, s_0295, s_0394} s_0295 + s_0394 \tag{98}$$

Reactants

Table 197: Properties of each reactant.

Id	Name	SBO
s_0434	ATP L-aspartate	

Table 198: Properties of each modifier.

Id	Name	SBO
e_0281	ном3	0000460

Id	Name	SBO
s_0434	ATP	
s_0973	L-aspartate	
s0295	4-phospho-L-aspartate	
s_0394	ADP	

Table 199: Properties of each product.

Tuble 1991 Troperties of each product			
Id	Name	SBO	
s_0295 s_0394	4-phospho-L-aspartate ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0973}] - \frac{[\text{s_0995}] \cdot [\text{s_0394}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km0973}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km0973}} \right) + \left(1 + \frac{[\text{s_0295}]}{\text{Km0295}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) - 1}$$

$$(99)$$

Table 200: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.019	dimensionless	$ \mathcal{A} $
Vmax		0000324	0.264	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0973		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0295		0000323	0.100	$mmol \cdot l^{-1}$	
Km0394		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.50 Reaction r_0216

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name aspartate transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0991 + s_1271 \xrightarrow{e_0629, \ e_0574, \ s_0991, \ s_1271, \ s_0180, \ s_0973} s_0180 + s_0973 \qquad (100)$$

Reactants

Table 201: Properties of each reactant.

Id	Name	SBO
s_0991	L-glutamate	
s_1271	oxaloacetate	

Modifiers

Table 202: Properties of each modifier.

	<u> </u>	
Id	Name	SBO
e_0629	AAT2	0000460
e_0574	AAT1	0000460
s_0991	L-glutamate	
s_1271	oxaloacetate	
s_0180	2-oxoglutarate	
s_0973	L-aspartate	

Products

Table 203: Properties of each product.

Id	Name	SBO
	2-oxoglutarate	
s_0973	L-aspartate	

Kinetic Law

$$v_{50} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0991}] \cdot [\text{s_1271}] - \frac{[\text{s_0180}] \cdot [\text{s_0973}]}{\text{Keq}} \right)}{\text{Km0991} \cdot \text{Km1271}}}{\left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1271}]}{\text{Km1271}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km09973}} \right) - 1}$$
(101)

Table 204: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.052	dimensionless	<u> </u>
Vmax		0000324	0.734	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$ \overline{\mathbf{Z}} $
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1271		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0180		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0973		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.51 Reaction r_0219

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name aspartate-semialdehyde dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0295 + s_1212 \xrightarrow{e_0186, \ s_0295, \ s_1212, \ s_0978, \ s_1207, \ s_1322} s_0978 + s_1207 + s_1322 \tag{102}$$

Reactants

Table 205: Properties of each reactant.

Id	Name	SBO
	4-phospho-L-aspartate NADPH	

Table 206: Properties of each modifier.

Id	Name	SBO
e_0186	HOM2	0000460
s_0295	4-phospho-L-aspartate	
$s_{-}1212$	NADPH	
s_0978	L-aspartate 4-semialdehyde	
$s_{-}1207$	NADP(+)	

Id	Name	SBO
s_1322	phosphate	

Table 207: Properties of each product.

Id	Name	SBO
s_0978	L-aspartate 4-semialdehyde	
$s_{-}1207$	NADP(+)	
$s_{-}1322$	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0295}] \cdot [\text{s_1212}] - \frac{[\text{s_0978}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0295} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0295}]}{\text{Km0295}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0978}]}{\text{Km0978}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

$$(103)$$

Table 208: Properties of each parameter.

Table 200. I Toperties of each parameter.					
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.019	dimensionless	
Vmax		0000324	0.414	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0295		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0978		0000323	0.100	$mmol \cdot l^{-1}$	
Km1207		0000323	0.100	$mmol \cdot l^{-1}$	
Km1322		0000323	0.100	$mmol \cdot l^{-1}$	

6.52 Reaction r_0220

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name Aspartyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0973 + s_1587 \xrightarrow{e_0615, s_0434, s_0973, s_1587, s_0423, s_0432, s_0633} s_0423 + s_0432 + s_0633 \tag{104}$$

Reactants

Table 209: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0973	L-aspartate	
$s_{-}1587$	tRNA(Asp)	

Modifiers

Table 210: Properties of each modifier.

Id	Name	SBO
e_0615	DPS1	0000460
s_0434	ATP	
$s_{-}0973$	L-aspartate	
s_1587	tRNA(Asp)	
s_0423	AMP	
s_0432	Asp-tRNA(Asp)	
s_0633	diphosphate	

Products

Table 211: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0432	Asp-tRNA(Asp)	
s_0633	diphosphate	

Kinetic Law

$$v_{52} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0973}] \cdot [\text{s_1587}] - \frac{[\text{s_0423}] \cdot [\text{s_0432}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km0973} \cdot \text{Km1587}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km0973}} \right) \cdot \left(1 + \frac{[\text{s_1587}]}{\text{Km1587}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0432}]}{\text{Km0432}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1}$$

Table 212: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.339	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0973		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1587		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0423		0000323	0.100	$mmol \cdot l^{-1}$	$\overline{\mathbf{Z}}$
Km0432		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \mathbf{Z} $

6.53 Reaction r_0225

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name ATP phosphoribosyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1386 \xrightarrow{e_0283, s_0434, s_1386, s_0326, s_0633} s_0326 + s_0633 \tag{106}$$

Reactants

Table 213: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_1386	PRPP	

Table 214: Properties of each modifier.

Id	Name	SBO
e_0283	HIS1	0000460
s_0434	ATP	
s_1386	PRPP	
$s_{-}0326$	5-phosphoribosyl-ATP	
s_0633	diphosphate	

Table 215: Properties of each product.

Id	Name	SBO
	5-phosphoribosyl-ATP diphosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1386}] - \frac{[\text{s_0326}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1386}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1386}]}{\text{Km1386}} \right) + \left(1 + \frac{[\text{s_0326}]}{\text{Km0326}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1}$$
(107)

Table 216: Properties of each parameter.

	1001	z 210. Troperties of c	Puri		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	\square
Vmax		0000324	0.035	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1386		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0326		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.54 Reaction r_0231

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name C-14 sterol reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0262 + s_1212 \xrightarrow{e_0800, \ s_0262, \ s_1212, \ s_0122, \ s_1207} s_0122 + s_1207 \tag{108}$$

Reactants

Table 217: Properties of each reactant.

Id	Name	SBO
	4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol NADPH	

Modifiers

Table 218: Properties of each modifier.

Id	Name	SBO
e_0800	ERG24	0000460
s_0262	4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol	
$s_{-}1212$	NADPH	
s_0122	14-demethyllanosterol	
$s_{-}1207$	NADP(+)	

Products

Table 219: Properties of each product.

Id	Name	SBO
	14-demethyllanosterol NADP(+)	

Kinetic Law

$$v_{54} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0262}] \cdot [\text{s_1212}] - \frac{[\text{s_0122}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0262} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0262}]}{\text{Km0262}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0122}]}{\text{Km0122}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$
(109)

Table 220: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.58760203874159 \cdot 10^{-4}$	dimensionless	<u> </u>
Vmax		0000324	0.004	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km0262		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0122		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1207		0000323	0.100	$\text{mmol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$

6.55 Reaction r_0233

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name C-22 sterol desaturase (NADP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0664 + s_1212 + s_1275 \xleftarrow{e_0724, s_0664, s_1212, s_1275, s_0662, s_1207} s_0662 + s_1207 \tag{110}$$

Reactants

Table 221: Properties of each reactant

	rable 221. Troperties of each reactaint.				
Id	Name	SBO			
	ergosta-5,7,24(28)-trien-3beta-ol NADPH				
$s_{-}1275$	oxygen				

Table 222: Properties of each modifier.

Id	Name	SBO
e_0724	ERG5	0000460
s0664	ergosta-5,7,24(28)-trien-3beta-ol	
$s_{-}1212$	NADPH	
$s_{-}1275$	oxygen	

Id	Name	SBO
	ergosta-5,7,22,24(28)-tetraen-3beta-ol NADP(+)	

Table 223: Properties of each product.

Id	Name	SBO
	ergosta-5,7,22,24(28)-tetraen-3beta-ol NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{55} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0664}] \cdot [\text{s_1212}] \cdot [\text{s_1275}] - \frac{[\text{s_0662}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0664} \cdot \text{Km1212} \cdot \text{Km1275}}}{\left(1 + \frac{[\text{s_0664}]}{\text{Km0664}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right) + \left(1 + \frac{[\text{s_0662}]}{\text{Km0662}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$

$$(111)$$

Table 224: Properties of each parameter.

		1401c 224. 110p	erties of each parameter.		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.48095549098117 \cdot 10^{-4}$	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.005	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km0664		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1275		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0662		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{A}} $
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.56 Reaction r_0234

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name C-3 sterol dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1207 + s_1578 \xleftarrow{e_0326, s_1207, s_1578, s_0456, s_1212, s_1579} s_0456 + s_1212 + s_1579 \tag{112}$$

Reactants

Table 225: Properties of each reactant.

Id	Name	SBO
s_1207	NADP(+)	
s_1578	zymosterol intermediate 1c	

Modifiers

Table 226: Properties of each modifier.

	1	
Id	Name	SBO
e_0326	ERG26	0000460
s_1207	NADP(+)	
$s_{-}1578$	zymosterol intermediate 1c	
s_0456	carbon dioxide	
s_1212	NADPH	
$s_{-}1579$	zymosterol intermediate 2	

Products

Table 227: Properties of each product.

Id	Name	SBO
s_1212	carbon dioxide NADPH zymosterol intermediate 2	

Kinetic Law

$$v_{56} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1207}] \cdot [\text{s_1578}] - \frac{[\text{s_0456}] \cdot [\text{s_1212}] \cdot [\text{s_1579}]}{\text{Keq}} \right)}{\text{Km1207} \cdot \text{Km1578}}}{\left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1578}]}{\text{Km1578}} \right) + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) \cdot \left(1 + \frac{[\text{s_1579}]}{\text{Km1579}} \right) - 1}$$

$$(113)$$

Table 228: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56634863390825 \cdot 10^{-4}$	dimensionless	\checkmark
Vmax		0000324	0.006	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$mmol \cdot l^{-1}$	
Km1207		0000322	0.100	$mmol \cdot l^{-1}$	
Km1578		0000322	0.100	$mmol \cdot l^{-1}$	
Km0456		0000323	0.100	$mmol \cdot l^{-1}$	
Km1212		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1579		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark

6.57 Reaction r_0235

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name C-3 sterol dehydrogenase (4-methylzymosterol)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0297 + s_1198 \xleftarrow{e_0326, s_0297, s_1198, s_0209, s_0456, s_1203} s_0209 + s_0456 + s_1203 \tag{114}$$

Reactants

Table 229: Properties of each reactant.

Id	Name	SBO
s_0297	4beta-methylzymosterol-4alpha-carboxylic acid	
$s_{-}1198$	NAD	

Table 230: Properties of each modifier.

Id	Name	SBO
e_0326	ERG26	0000460
s_0297	4beta-methylzymosterol-4alpha-carboxylic acid	
s_1198	NAD	
s_0209	3-dehydro-4-methylzymosterol	
s0456	carbon dioxide	
s_1203	NADH	

Table 231: Properties of each product.

Id	Name	SBO
	3-dehydro-4-methylzymosterol carbon dioxide	
s_1203		

Kinetic Law

$$v_{57} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0297}] \cdot [\text{s_1198}] - \frac{[\text{s_0209}] \cdot [\text{s_0456}] \cdot [\text{s_1203}]}{\text{Keq}} \right)}{\text{Km0297} \cdot \text{Km1198}}}{\left(1 + \frac{[\text{s_0297}]}{\text{Km0297}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_0209}]}{\text{Km0209}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1}}$$

$$(115)$$

Table 232: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56634863390825 \cdot 10^{-4}$	dimensionless	$ \overline{\checkmark} $
Vmax		0000324	0.006	$mmol \cdot l^{-1} \cdot s^{-1}$	\checkmark
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	
Km0297		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km1198		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0209		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1203		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.58 Reaction r_0236

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name C-3 sterol keto reductase (4-methylzymosterol)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0209 + s_1212 \xleftarrow{e_0644, s_0209, s_1212, s_0296, s_1207} s_0296 + s_1207 \tag{116}$$

Reactants

Table 233: Properties of each reactant.

Id	Name	SBO
	3-dehydro-4-methylzymosterol NADPH	

Modifiers

Table 234: Properties of each modifier.

	1	
Id	Name	SBO
e_0644	ERG27	0000460
s_0209	3-dehydro-4-methylzymosterol	
$s_{-}1212$	NADPH	
s_0296	4alpha-methylzymosterol	
s_1207	NADP(+)	

Products

Table 235: Properties of each product.

Id	Name	SBO
	4alpha-methylzymosterol NADP(+)	

Kinetic Law

$$v_{58} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0209}] \cdot [\text{s_1212}] - \frac{[\text{s_0296}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0209} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0209}]}{\text{Km0209}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0296}]}{\text{Km0296}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$
(117)

Table 236: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56634863390825 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.004	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0209		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$mmol \cdot l^{-1}$	
Km0296		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.59 Reaction r_0237

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name C-3 sterol keto reductase (zymosterol)

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-1}212 + s_{-1}579 \xrightarrow{e_{-0}644, s_{-1}212, s_{-1}579, s_{-1}207, s_{-1}569} s_{-1}207 + s_{-1}569$$
 (118)

Reactants

Table 237: Properties of each reactant.

Id	Name	SBO
s_1212	NADPH	
s_1579	zymosterol intermediate 2	

Table 238: Properties of each modifier.

Id	Name	SBO
e_0644	ERG27	0000460

Id	Name	SBO
s_1212	NADPH	
s_1579	zymosterol intermediate 2	
$s_{-}1207$	NADP(+)	
s_1569	zymosterol	

Products

Table 239: Properties of each product.

Id	Name	SBO
s_1207	NADP(+)	
s_1569	zymosterol	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1212] \cdot [s_1579] - \frac{[s_1207] \cdot [s_1569]}{\text{Keq}} \right)}{\text{Km}1212 \cdot \text{Km}1579}}{\left(1 + \frac{[s_1212]}{\text{Km}1212} \right) \cdot \left(1 + \frac{[s_1579]}{\text{Km}1579} \right) + \left(1 + \frac{[s_1207]}{\text{Km}1207} \right) \cdot \left(1 + \frac{[s_1569]}{\text{Km}1569} \right) - 1}$$
(119)

Table 240: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56634863390825 \cdot 10^{-4}$	dimensionless	$lue{2}$
Vmax		0000324	0.004	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1579		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1569		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.60 Reaction r_0238

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name C-4 methyl sterol oxidase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0296 + s_1212 + s_1275 \xleftarrow{e_0367, s_0296, s_1212, s_1275, s_1207, s_1576} s_1207 + s_1576 \tag{120}$$

Reactants

Table 241: Properties of each reactant.

Id	Name	SBO
	4alpha-methylzymosterol NADPH	
s_1275	oxygen	

Modifiers

Table 242: Properties of each modifier.

Id	Name	SBO
e_0367	ERG25	0000460
s_0296	4alpha-methylzymosterol	
s_1212	NADPH	
s_1275	oxygen	
$s_{-}1207$	NADP(+)	
s_1576	zymosterol intermediate 1a	

Products

Table 243: Properties of each product.

	<u> </u>	
Id	Name	SBO
	NADP(+) zymosterol intermediate 1a	

Kinetic Law

146

$$\nu_{60} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0296}] \cdot [\text{s_1212}] \cdot [\text{s_1275}] - \frac{[\text{s_1207}] \cdot [\text{s_1576}]}{\text{Keq}} \right)}{\text{Km0296} \cdot \text{Km1212} \cdot \text{Km1275}}}{\left(1 + \frac{[\text{s_0296}]}{\text{Km0296}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right) + \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1576}]}{\text{Km1576}} \right) - 1}$$

$$(121)$$

Table 244: Properties of each parameter.

			1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56634863390825 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.006	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	$ \overline{\mathscr{L}} $
Km0296		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1275		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1576		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.61 Reaction r_0239

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name C-4 methyl sterol oxidase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1212 + s_1275 + s_1576 \xleftarrow{e_0367, s_1212, s_1275, s_1576, s_1207, s_1577} s_1207 + s_1577 \tag{122}$$

Reactants

Table 245: Properties of each reactant.

Id	Name	SBO
s_1212	NADPH	
$s_{-}1275$	oxygen	
s_1576	zymosterol intermediate 1a	

Modifiers

Table 246: Properties of each modifier.

	<u> </u>	
Id	Name	SBO
e_0367	ERG25	0000460
s_1212	NADPH	
s_1275	oxygen	
s_1576	zymosterol intermediate 1a	
$s_{-}1207$	NADP(+)	
s_1577	zymosterol intermediate 1b	

Products

Table 247: Properties of each product.

	1 1	
Id	Name	SBO
s_1207	NADP(+)	
$s_{-}1577$	zymosterol intermediate 1b	

Kinetic Law

$$v_{61} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_1212] \cdot [\text{s}_1576] - \frac{[\text{s}_1207] \cdot [\text{s}_1577]}{\text{Keq}}\right)}{\text{Km}1212 \cdot \text{Km}1275} \cdot \left(1 + \frac{[\text{s}_1212]}{\text{Km}1275}\right) \cdot \left(1 + \frac{[\text{s}_1275]}{\text{Km}1275}\right) \cdot \left(1 + \frac{[\text{s}_1576]}{\text{Km}1576}\right) + \left(1 + \frac{[\text{s}_1207]}{\text{Km}1207}\right) \cdot \left(1 + \frac{[\text{s}_1577]}{\text{Km}1577}\right) - 1}$$
(123)

Table 248: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56634863390825 \cdot 10^{-4}$	dimensionless	\square
Vmax		0000324	0.006	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	$ \overline{\mathcal{L}} $
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1576		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1577		0000323	0.100	$mmol \cdot l^{-1}$	

6.62 Reaction r_0240

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name C-4 methyl sterol oxidase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1212 + s_1275 + s_1577 \xleftarrow{e_0367, s_1212, s_1275, s_1577, s_1207, s_1578} s_1207 + s_1578 \tag{124}$$

Reactants

Table 249: Properties of each reactant.

	= ., . = - · F · · · · · · · · · · · · · ·	
Id	Name	SBO
s_1212	NADPH	
s_1275	oxygen	
$s_{-}1577$	zymosterol intermediate 1b	

Modifiers

Table 250: Properties of each modifier.

	P	
Id	Name	SBO
e_0367	ERG25	0000460
$s_{-}1212$	NADPH	
$s_{-}1275$	oxygen	
$s_{-}1577$	zymosterol intermediate 1b	
$s_{-}1207$	NADP(+)	
s_1578	zymosterol intermediate 1c	

Products

Table 251: Properties of each product.

Id	Name	SBO
s_1207	NADP(+)	
s_1578	zymosterol intermediate 1c	

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1212}] \cdot [\text{s_1275}] \cdot [\text{s_1577}] - \frac{[\text{s_1207}] \cdot [\text{s_1578}]}{\text{Keq}} \right)}{\text{Km1212} \cdot \text{Km1275} \cdot \text{Km1577}} \\ \frac{\left(1 + \frac{[\text{s_1212}]}{\text{Km}1212} \right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km}1275} \right) \cdot \left(1 + \frac{[\text{s_1577}]}{\text{Km}1577} \right) + \left(1 + \frac{[\text{s_1207}]}{\text{Km}1207} \right) \cdot \left(1 + \frac{[\text{s_1578}]}{\text{Km}1578} \right) - 1}$$

$$(125)$$

Table 252: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56634863390825 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.006	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot \mathbf{l}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1577		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1578		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.63 Reaction r_0241

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name C-4 sterol methyl oxidase (4,4-dimethylzymosterol)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0122 + 3 s_1212 + 3 s_1275 \xleftarrow{e_0367, s_0122, s_1212, s_1275, s_0297, s_1207} s_0297 + 3 s_1207 \tag{126}$$

Reactants

Table 253: Properties of each reactant.

Id	Name	SBO
s_0122	14-demethyllanosterol	
$s_{-}1212$	NADPH	
$s_{-}1275$	oxygen	

Modifiers

Table 254: Properties of each modifier.

Id	Name	SBO
e_0367	ERG25	0000460
s_0122	14-demethyllanosterol	
s_1212	NADPH	
$s_{-}1275$	oxygen	
s_0297	4beta-methylzymosterol-4alpha-carboxylic acid	
s_1207	NADP(+)	

Products

Table 255: Properties of each product.

Id	Name	SBO
	4beta-methylzymosterol-4alpha-carboxylic acid NADP(+)	

Kinetic Law

$$v_{63} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0122}] \cdot [\text{s_1212}]^3 \cdot [\text{s_1275}]^3 - \frac{[\text{s_0297}] \cdot [\text{s_1207}]^3}{\text{Keq}} \right)}{\frac{\text{Km0122} \cdot \text{Km1212}^3 \cdot \text{Km1275}^3}{\left(1 + \frac{[\text{s_0122}]}{\text{Km0122}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right)^3 \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right)^3 + \left(1 + \frac{[\text{s_0297}]}{\text{Km0297}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^3 - 1}$$
(127)

Table 256: Properties of each parameter.

T 1	NT.	CD C	37.1	TT */	<u> </u>
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56634863390825 \cdot 10^{-4}$	dimensionless	\checkmark
Vmax		0000324	0.073	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2000.000	$\text{mmol}^{-3} \cdot l^3$	
Km0122		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1275		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0297		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square

6.64 Reaction r_0242

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name C-5 sterol desaturase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0657 + s_1212 + s_1275 \xleftarrow{e_0637, s_0657, s_1212, s_1275, s_0664, s_1207} s_0664 + s_1207 \tag{128}$$

Reactants

Table 257: Properties of each reactant.

Id	Name	SBO
s_0657	episterol	
s_1212	NADPH	
$s_{-}1275$	oxygen	

Modifiers

Table 258: Properties of each modifier.

Id	Name	SBO
e_0637	ERG3	0000460
s0657	episterol	
s_1212	NADPH	
$s_{-}1275$	oxygen	
s_0664	ergosta-5,7,24(28)-trien-3beta-ol	
s_1207	NADP(+)	

Products

Table 259: Properties of each product.

Id	Name	SBO
	ergosta-5,7,24(28)-trien-3beta-ol NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$v_{64} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0657}] \cdot [\text{s_1212}] \cdot [\text{s_1275}] - \frac{[\text{s_0664}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0657} \cdot \text{Km1212} \cdot \text{Km12175}}}{\left(1 + \frac{[\text{s_0657}]}{\text{Km0657}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right) + \left(1 + \frac{[\text{s_0664}]}{\text{Km0664}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}}$$
(129)

Table 260: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.48095549098117 \cdot 10^{-4}$	dimensionless	\checkmark
Vmax		0000324	0.005	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km0657		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0664		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

6.65 Reaction r_0243

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name C-8 sterol isomerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-0700} \stackrel{e_{-0742}, s_{-0700}, s_{-0657}}{=} s_{-0657}$$
 (130)

Reactant

Table 261: Properties of each reactant.

Id	Name	SBO
s_0700	fecosterol	

Modifiers

Table 262: Properties of each modifier.

Id	Name	SBO
e_0742	ERG2	0000460
s_0700	fecosterol	
s0657	episterol	

Product

Table 263: Properties of each product.

Id	Name	SBO
s_0657	episterol	

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0700}] - \frac{[\text{s_0657}]}{\text{Keq}} \right)}{\frac{\text{Km0700}}{1 + \frac{[\text{s_0700}]}{\text{Km0700}} + 1 + \frac{[\text{s_0657}]}{\text{Km0657}} - 1}}$$
(131)

Table 264: Properties of each parameter.

			r F		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.5173898992709 \cdot 10^{-4}$		\overline{Z}
${\tt Vmax}$		0000324	0.002	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0700		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0657		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.66 Reaction r_0244

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name C-s24 sterol reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0662 + s_1212 \xrightarrow{e_0329, s_0662, s_1212, s_0666, s_1207} s_0666 + s_1207 \tag{132}$$

Reactants

Table 265: Properties of each reactant.

Id	Name	SBO
	ergosta-5,7,22,24(28)-tetraen-3beta-ol NADPH	

Modifiers

Table 266: Properties of each modifier.

Id	Name	SBO
e_0329	ERG4	0000460
s0662	ergosta-5,7,22,24(28)-tetraen-3beta-ol	
$s_{-}1212$	NADPH	
s_0666	ergosterol	
$s_{-}1207$	NADP(+)	

Products

Table 267: Properties of each product.

Id	Name	SBO
s_0666 s_1207	ergosterol NADP(+)	

Kinetic Law

$$\nu_{66} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0662}] \cdot [\text{s_1212}] - \frac{[\text{s_0666}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0662} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0662}]}{\text{Km0662}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0666}]}{\text{Km0666}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$
(133)

Table 268: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.43351485368152 \cdot 10^{-4}$	dimensionless	$lue{2}$
Vmax		0000324	0.003	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
Keq		0000281	2.000	dimensionless	\square
Km0662		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0666		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$mmol \cdot l^{-1}$	

6.67 Reaction r_0250

This is a reversible reaction of three reactants forming four products influenced by ten modifiers.

Name carbamoyl-phosphate synthase (glutamine-hydrolysing)

SBO:0000176 biochemical reaction

Reaction equation

$$2s_0434 + s_0445 + s_0999 \xrightarrow{e_0508, e_0542, e_0888, s_0434, s_0445, s_0999, s_0394, s_0455, s_0991, s_1322} 2s_03 \xrightarrow{(134)}$$

Reactants

Table 269: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0445	bicarbonate	
s_0999	L-glutamine	

Modifiers

Table 270: Properties of each modifier.

	_	
Id	Name	SBO
e_0508	URA2	0000460
e_0542	CPA2	0000460
e_0888	CPA1	0000460
s_0434	ATP	
s_0445	bicarbonate	
s_0999	L-glutamine	
s_0394	ADP	
s_0455	carbamoyl phosphate	

Id	Name	SBO
s_0991	L-glutamate	
s_1322	phosphate	

Products

Table 271: Properties of each product.

Id	Name	SBO
s_0394	ADP	
s0455	carbamoyl phosphate	
s_0991	L-glutamate	
s_1322	phosphate	

Kinetic Law

$$\nu_{67} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}]^2 \cdot [\text{s_0445}] \cdot [\text{s_0999}] - \frac{[\text{s_0394}]^2 \cdot [\text{s_0455}] \cdot [\text{s_0991}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\frac{\text{Km0434}^2 \cdot \text{Km04445} \cdot \text{Km09999}}{\text{Km04445} \cdot \text{Km0999}}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0445}] \cdot [\text{s_0445}] \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km0}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right)^2 \cdot \left(1 + \frac{[\text{s_0455}]}{\text{Km0455}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right)}}{\text{Km1322}}$$

Table 272: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	
Vmax		0000324	0.968	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0445		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0999		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0455		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0991		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.68 Reaction r_0257

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name CDP-diacylglycerol synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0539 + s_1331 \xrightarrow{e_0045, s_0539, s_1331, s_0471, s_0633} s_0471 + s_0633 \tag{136}$$

Reactants

Table 273: Properties of each reactant.

Id	Name	SBO
s_0539	CTP	
s_1331	phosphatidate	

Modifiers

Table 274: Properties of each modifier.

	1	
Id	Name	SBO
e_0045	CDS1	0000460
s_0539	CTP	
$s_{-}1331$	phosphatidate	
s0471	CDP-diacylglycerol	
s_0633	diphosphate	

Products

Table 275: Properties of each product.

Name	SBO
CDP-diacylglycerol diphosphate	

Kinetic Law

$$\nu_{68} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0539}] \cdot [\text{s_1331}] - \frac{[\text{s_0471}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\text{Km0539} \cdot \text{Km1331}}}{\left(1 + \frac{[\text{s_0539}]}{\text{Km0539}} \right) \cdot \left(1 + \frac{[\text{s_1331}]}{\text{Km1331}} \right) + \left(1 + \frac{[\text{s_0471}]}{\text{Km0471}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1}$$
(137)

Table 276: Properties of each parameter.

Name	SBO	Value	Unit	Constant
		$2.3107859282821 \cdot 10^{-4}$	dimensionless	\square
	0000324	0.003	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
	0000281	2.000	dimensionless	
	0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
	0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
	0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square
	0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
	Name	0000324 0000281 0000322 0000322 0000323	$\begin{array}{cccc} & 2.3107859282821 \cdot 10^{-4} \\ 0000324 & 0.003 \\ 0000281 & 2.000 \\ 0000322 & 0.100 \\ 0000322 & 0.100 \\ 0000323 & 0.100 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

6.69 Reaction r_0259

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name ceramide-1 hydroxylase (24C)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0475 + s_1212 + s_1275 \xleftarrow{e_0206, \ s_0475, \ s_1212, \ s_1275, \ s_0481, \ s_1207} s_0481 + s_1207 \tag{138}$$

Reactants

Table 277: Properties of each reactant.

Id	Name	SBO
s_0475	ceramide-1 (C24)	
$s_{-}1212$	NADPH	
s_1275	oxygen	

Modifiers

Table 278: Properties of each modifier.

	1	
Id	Name	SBO
e_0206	SUR2	0000460
s_0475	ceramide-1 (C24)	
$s_{-}1212$	NADPH	
s_1275	oxygen	
s0481	ceramide-2 (C24)	
$s_{-}1207$	NADP(+)	

Products

Table 279: Properties of each product.

Id	Name	SBO
	ceramide-2 (C24) NADP(+)	

Kinetic Law

$$\nu_{69} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0475}] \cdot [\text{s.1275}] - \frac{[\text{s.0481}] \cdot [\text{s.1207}]}{\text{Keq}}\right)}{\text{Km0475} \cdot \text{Km1212} \cdot \text{Km1212} \cdot \text{Km1275}}}{\left(1 + \frac{[\text{s.0475}]}{\text{Km0475}}\right) \cdot \left(1 + \frac{[\text{s.1212}]}{\text{Km1212}}\right) \cdot \left(1 + \frac{[\text{s.1275}]}{\text{Km1275}}\right) + \left(1 + \frac{[\text{s.0481}]}{\text{Km0481}}\right) \cdot \left(1 + \frac{[\text{s.1207}]}{\text{Km1207}}\right) - 1}}$$

$$(139)$$

Table 280: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210849818021 \cdot 10^{-5}$	dimensionless	$ \overline{\checkmark} $
Vmax		0000324	$2.24863869599646 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\checkmark
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km0475		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0481		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$mmol \cdot l^{-1}$	\checkmark

6.70 Reaction r_0267

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name ceramide-3 synthase (24C)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0481 + s_1212 + s_1275 \stackrel{e_0756, s_0481, s_1212, s_1275, s_0493, s_1207}{\rightleftharpoons} s_0493 + s_1207$$
(140)

Reactants

Table 281: Properties of each reactant.

Id	Name	SBO
$s_{-}1212$	ceramide-2 (C24) NADPH	
s_1275	oxygen	

Modifiers

Table 282: Properties of each modifier.

14010 20	z. r reperies er euer	
Id	Name	SBO
e_0756	SCS7	0000460
s_0481	ceramide-2 (C24)	
s_1212	NADPH	
s_1275	oxygen	
s_0493	ceramide-3 (C24)	
s_1207	NADP(+)	

Products

Table 283: Properties of each product.

Id N	Name	SBO
s_0493 c s_1207 N	ceramide-3 (C24) NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0481}] \cdot [\text{s_1212}] \cdot [\text{s_1275}] - \frac{[\text{s_0493}] \cdot [\text{s_1207}]}{\text{Keq}}\right)}{\text{Km0481} \cdot \text{Km1212} \cdot \text{Km1212} \cdot \text{Km1275}}}{\left(1 + \frac{[\text{s_0481}]}{\text{Km0481}}\right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}}\right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}}\right) + \left(1 + \frac{[\text{s_0493}]}{\text{Km0493}}\right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}}\right) - 1}}$$

$$(141)$$

Table 284: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.04421701081157 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	$4.49727742378545 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot \mathbf{l}$	
Km0481		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0493		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.71 Reaction r_0269

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name ceramide-4 synthase (24C)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0493 + s_1212 + s_1275 \xleftarrow{e_0756, s_0493, s_1212, s_1275, s_0499, s_1207} s_0499 + s_1207 \tag{142}$$

Reactants

Table 285: Properties of each reactant.

Id	Name	SBO
s_0493	ceramide-3 (C24)	
$s_{-}1212$	NADPH	
$s_{-}1275$	oxygen	

Modifiers

Table 286: Properties of each modifier.

Id	Name	SBO
e_0756	SCS7	0000460
s_0493	ceramide-3 (C24)	
$s_{-}1212$	NADPH	
$s_{-}1275$	oxygen	
s_0499	ceramide-4 (C24)	
$s_{-}1207$	NADP(+)	

Products

Table 287: Properties of each product.

Id	Name	SBO
	ceramide-4 (C24) NADP(+)	

Kinetic Law

$$v_{71} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0493}] \cdot [\text{s_1275}] - \frac{[\text{s_0499}] \cdot [\text{s_1207}]}{\text{Keq}}\right)}{\text{Km0493} \cdot \text{Km1212} \cdot \text{Km1275}}}{\left(1 + \frac{[\text{s_0493}]}{\text{Km0493}}\right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}}\right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}}\right) + \left(1 + \frac{[\text{s_0499}]}{\text{Km0499}}\right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}}\right) - 1}}$$

$$(143)$$

Table 288: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.04421702621944 \cdot 10^{-5}$	dimensionless	$ \overline{\checkmark} $
Vmax		0000324	$4.49727745768277 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	$ \overline{\checkmark} $
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km0493		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{A}} $
Km0499		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{A}} $
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square

6.72 Reaction r_0278

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name chorismate mutase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0515 \xrightarrow{e_{-}0959, \ s_{-}0515, \ s_{-}1377} s_{-}1377$$
 (144)

Reactant

Table 289: Properties of each reactant.

Id	Name	SBO
s_0515	chorismate	

Modifiers

Table 290: Properties of each modifier.

Id	Name	SBO
e_0959	ARO7	0000460
s_0515	chorismate	
s_1377	prephenate	

Product

Table 291: Properties of each product.

Id	Name	SBO
s_1377	prephenate	

Kinetic Law

$$v_{72} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0515}] - \frac{[\text{s.1377}]}{\text{Keq}} \right)}{\frac{\text{Km0515}}{1 + \frac{[\text{s.0515}]}{\text{Km0515}} + 1 + \frac{[\text{s.1377}]}{\text{Km1377}} - 1}}$$
(145)

Table 292: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.009	dimensionless	
Vmax		0000324	0.054	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0515		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1377		0000323	0.100	$mmol \cdot l^{-1}$	

6.73 Reaction r_0279

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name chorismate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0324 \xleftarrow{e_0342, \ s_0324, \ s_0515, \ s_1322} s_0515 + s_1322 \tag{146}$$

Reactant

Table 293: Properties of each reactant.

Id	Name	SBO
s_0324	5-O-(1-carboxyvinyl)-3-phosphoshikimic acid	

Modifiers

Table 294: Properties of each modifier.

Id	Name	SBO
e_0342	ARO2	0000460
s_0324	5-O-(1-carboxyvinyl)-3-phosphoshikimic acid	
s_0515	chorismate	
s_1322	phosphate	

Products

Table 295: Properties of each product.

Id	Name	SBO
	chorismate phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{73} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0324}] - \frac{[\text{s_0515}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0324}}}{1 + \frac{[\text{s_0324}]}{\text{Km0324}} + \left(1 + \frac{[\text{s_0515}]}{\text{Km0515}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(147)

Table 296: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	
Vmax		0000324	0.100	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0324		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0515		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1322		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.74 Reaction r_0280

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name cis-aconitate(3-) to isocitrate

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0516 \xrightarrow{e_{-}0675, s_{-}0516, s_{-}0940} s_{-}0940$$
 (148)

Reactant

Table 297: Properties of each reactant.

Id	Name	SBO
s_0516	cis-aconitate	

Id	Name	SBO

Modifiers

Table 298: Properties of each modifier.

Id	Name	SBO
e_0675	11001	0000460
s0516	cis-aconitate	
s_0940	isocitrate	

Product

Table 299: Properties of each product.

Id	Name	SBO
s_0940	isocitrate	

Kinetic Law

Derived unit contains undeclared units

$$v_{74} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0516}] - \frac{[\text{s_0940}]}{\text{Keq}}\right)}{\frac{\text{Km0516}}{1 + \frac{[\text{s_0516}]}{\text{Km0516}} + 1 + \frac{[\text{s_0940}]}{\text{Km0940}} - 1}}$$
(149)

Table 300: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.039	dimensionless	
Vmax		0000324	0.232	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	
Km0516		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0940		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square

6.75 Reaction r_0300

This is a reversible reaction of two reactants forming two products influenced by seven modifiers.

Name citrate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0373 + s_1271 \xrightarrow{e_0947, \ e_0805, \ e_0111, \ s_0373, \ s_1271, \ s_0522, \ s_0529} s_0522 + s_0529 \tag{150}$$

Reactants

Table 301: Properties of each reactant.

Id	Name	SBO
s_0373 s_1271	acetyl-CoA oxaloacetate	

Modifiers

Table 302: Properties of each modifier.

	1	
Id	Name	SBO
e_0947	CIT3	0000460
e_0805	CIT1	0000460
e_0111	CIT2	0000460
s_0373	acetyl-CoA	
$s_{-}1271$	oxaloacetate	
s_0522	citrate	
s_0529	coenzyme A	

Products

Table 303: Properties of each product.

Id	Name	SBO
s_0522 s_0529	citrate coenzyme A	

Kinetic Law

$$v_{75} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0373}] \cdot [\text{s_1271}] - \frac{[\text{s_0522}] \cdot [\text{s_0529}]}{\text{Keq}} \right)}{\text{Km0373} \cdot \text{Km1271}}}{\left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right) \cdot \left(1 + \frac{[\text{s_1271}]}{\text{Km1271}} \right) + \left(1 + \frac{[\text{s_0522}]}{\text{Km0522}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) - 1}$$
(151)

Table 304: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.039	dimensionless	
Vmax		0000324	0.541	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0373		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1271		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0522		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.76 Reaction r_0302

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name citrate to cis-aconitate(3-)

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0522 \xrightarrow{e_{-}0675, s_{-}0522, s_{-}0516} s_{-}0516$$
 (152)

Reactant

Table 305: Properties of each reactant.

Id	Name	SBO
s_0522	citrate	

Modifiers

Table 306: Properties of each modifier.

Id	Name	SBO
e_0675	ACO1	0000460
s_0522	citrate	

Id	Name	SBO
s_0516	cis-aconitate	

Product

Table 307: Properties of each product.

Id	Name	SBO
s_0516	cis-aconitate	

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0522}] - \frac{[\text{s_0516}]}{\text{Keq}} \right)}{\frac{\text{Km0522}}{1 + \frac{[\text{s_0522}]}{\text{Km0522}} + 1 + \frac{[\text{s_0516}]}{\text{Km0516}} - 1}}$$
(153)

Table 308: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.039	dimensionless	\square
Vmax		0000324	0.232	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0522		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0516		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.77 Reaction r_0307

This is a reversible reaction of three reactants forming three products influenced by eight modifiers.

Name CTP synthase (NH3)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0419 + s_0434 + s_1559 \xleftarrow{e_0540, \ e_0026, \ s_0419, \ s_0434, \ s_1559, \ s_0394, \ s_0539, \ s_1322} s_0394 + s_0539 + s_1323 + s_1322$$

Reactants

Table 309: Properties of each reactant.

Id	Name	SBO
s_0419 s_0434 s_1559		

Modifiers

Table 310: Properties of each modifier.

Id	Name	SBO
e_0540	URA8	0000460
e_0026	URA7	0000460
s_0419	ammonium	
s_0434	ATP	
$s_{-}1559$	UTP	
s_0394	ADP	
s_0539	CTP	
s_1322	phosphate	

Products

Table 311: Properties of each product.

	-	
Id	Name	SBO
s_0394		
s_0539	CTP	
$s_{-}1322$	phosphate	

Kinetic Law

$$v_{77} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0419}] \cdot [\text{s_0434}] \cdot [\text{s_1559}] - \frac{[\text{s_0394}] \cdot [\text{s_0539}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0419} \cdot \text{Km0434}} \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0539}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0539}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1$$

Table 312: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	\overline{Z}
Vmax		0000324	0.054	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0419		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0434		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km1559		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0394		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km0539		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.78 Reaction r_0309

This is a reversible reaction of two reactants forming one product influenced by four modifiers.

Name cystathionine beta-synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}1012 + s_{-}1039 \xrightarrow{e_{-}0380, s_{-}1012, s_{-}1039, s_{-}0980} s_{-}0980$$
 (156)

Reactants

Table 313: Properties of each reactant.

Id	Name	SBO
	L-homocysteine L-serine	

Modifiers

Table 314: Properties of each modifier.

Id	Name	SBO
e_0380	CYS4	0000460
$s_{-}1012$	L-homocysteine	
$s_{-}1039$	L-serine	
s_0980	L-cystathionine	

Product

Table 315: Properties of each product.

Id	Name	SBO
s_0980	L-cystathionine	

Kinetic Law

Derived unit contains undeclared units

$$v_{78} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1012] \cdot [s_1039] - \frac{[s_0980]}{\text{Keq}} \right)}{\text{Km}1012 \cdot \text{Km}1039}}{\left(1 + \frac{[s_1012]}{\text{Km}1012} \right) \cdot \left(1 + \frac{[s_1039]}{\text{Km}1039} \right) + 1 + \frac{[s_0980]}{\text{Km}0980} - 1}$$
(157)

Table 316: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.50486556092046 \cdot 10^{-4}$	dimensionless	Ø
Vmax		0000324	0.003	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km1012		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1039		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0980		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.79 Reaction r_0310

This is a reversible reaction of one reactant forming three products influenced by five modifiers.

Name cystathionine g-lyase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0980 \xrightarrow{e_0008, \ s_0980, \ s_0178, \ s_0419, \ s_0981} s_0178 + s_0419 + s_0981 \tag{158}$$

Reactant

Table 317: Properties of each reactant.

Id	Name	SBO
s_0980	L-cystathionine	

Modifiers

Table 318: Properties of each modifier.

Id	Name	SBO
e_0008	CYS3	0000460
s_0980	L-cystathionine	
s_0178	2-oxobutanoate	
s_0419	ammonium	
s_0981	L-cysteine	

Products

Table 319: Properties of each product.

Id	Name	SBO
s_0178	2-oxobutanoate	
$s_{-}0419$	ammonium	
s_0981	L-cysteine	

Kinetic Law

$$v_{79} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0980}] - \frac{[\text{s_0178}] \cdot [\text{s_0981}]}{\text{Keq}} \right)}{\text{Km0980}}}{1 + \frac{[\text{s_0980}]}{\text{Km0980}} + \left(1 + \frac{[\text{s_0178}]}{\text{Km0178}} \right) \cdot \left(1 + \frac{[\text{s_0419}]}{\text{Km0419}} \right) \cdot \left(1 + \frac{[\text{s_0981}]}{\text{Km0981}} \right) - 1}$$
(159)

Table 320: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	$ \mathbf{Z} $
Vmax		0000324	0.174	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	0.020	$\text{mmol}^2 \cdot 1^{-2}$	
Km0980		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km0178		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0419		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0981		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\checkmark

6.80 Reaction r_0311

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name cystathionine gamma-synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0981 + s_1233 \xrightarrow{e_0545, s_0981, s_1233, s_0362, s_0980} s_0362 + s_0980 \tag{160}$$

Reactants

Table 321: Properties of each reactant.

Id	Name	SBO
s_0981	L-cysteine	
s_1233	O-acetyl-L-homoserine	

Modifiers

Table 322: Properties of each modifier.

Id	Name	SBO
e_0545	STR2	0000460
s_0981	L-cysteine	
s_1233	O-acetyl-L-homoserine	
s_0362	acetate	
s_0980	L-cystathionine	

Products

Table 323: Properties of each product.

Id	Name	SBO
s_0362 s_0980	acetate L-cystathionine	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{80} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0981}] \cdot [\text{s_1233}] - \frac{[\text{s_0362}] \cdot [\text{s_0980}]}{\text{Keq}} \right)}{\text{Km0981} \cdot \text{Km1233}}}{\left(1 + \frac{[\text{s_0981}]}{\text{Km0981}} \right) \cdot \left(1 + \frac{[\text{s_1233}]}{\text{Km1233}} \right) + \left(1 + \frac{[\text{s_0362}]}{\text{Km0362}} \right) \cdot \left(1 + \frac{[\text{s_0980}]}{\text{Km0980}} \right) - 1}$$
(161)

Table 324: Properties of each parameter.

		^			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.009	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.132	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0981		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1233		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0362		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0980		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.81 Reaction r_0313

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name cysteinyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0981 + s_1589 \xleftarrow{e_0793, s_0434, s_0981, s_1589, s_0423, s_0542, s_0633} s_0423 + s_0542 + s_0633 \tag{162}$$

Reactants

Table 325: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0981	L-cysteine	
s_1589	tRNA(Cys)	

Modifiers

Table 326: Properties of each modifier.

Id	Name	SBO
e_0793	YNL247W	0000460
s0434	ATP	
s_0981	L-cysteine	
$s_{-}1589$	tRNA(Cys)	
s_0423	AMP	
s_0542	Cys-tRNA(Cys)	
s_0633	diphosphate	

Products

Table 327: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s0542	Cys-tRNA(Cys)	
s_0633	diphosphate	

Kinetic Law

$$v_{81} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0981}] \cdot [\text{s_1589}] - \frac{[\text{s_0423}] \cdot [\text{s_0542}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km0981} \cdot \text{Km1589}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0981}]}{\text{Km0981}} \right) \cdot \left(1 + \frac{[\text{s_1589}]}{\text{Km1589}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0542}]}{\text{Km0542}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1}$$

Table 328: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.50486556991948 \cdot 10^{-4}$	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.008	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0981		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1589		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{A}} $
Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{A}} $
Km0542		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{A}} $
Km0633		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	

6.82 Reaction r_0317

This is a reversible reaction of three reactants forming three products influenced by eight modifiers.

Name cytochrome P450 lanosterol 14-alpha-demethylase (NADP)

SBO:0000176 biochemical reaction

Reaction equation

Reactants

Table 329: Properties of each reactant.

Id	Name	SBO
s_1059	lanosterol	
$s_{-}1212$	NADPH	
$s_{-}1275$	oxygen	

Modifiers

Table 330: Properties of each modifier.

Id	Name	SBO
e_0434	NCP1	0000460

Id	Name	SBO
e_0424	ERG11	0000460
$s_{-}1059$	lanosterol	
$s_{-}1212$	NADPH	
$s_{-}1275$	oxygen	
s_0262	4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol	
s_0722	formate	
s_1207	NADP(+)	

Products

Table 331: Properties of each product.

Id	Name	SBO
s_0262	4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol	
s_0722	formate	
$s_{-}1207$	NADP(+)	

Kinetic Law

$$v_{82} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1059}] \cdot [\text{s_1212}]^3 \cdot [\text{s_1275}]^3 - \frac{[\text{s_0262}] \cdot [\text{s_1207}]^3}{\text{Keq}} \right)}{\text{Km1059} \cdot \text{Km1212}^3 \cdot \text{Km1275}^3} } \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1059}] \cdot [\text{s_1212}]^3 \cdot [\text{s_1275}]^3 - \frac{[\text{s_0262}] \cdot [\text{s_0722}] \cdot [\text{s_1207}]^3}{\text{Keq}} \right)}{\left(1 + \frac{[\text{s_1059}]}{\text{Km1059}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right)^3 \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right)^3 + \left(1 + \frac{[\text{s_0262}]}{\text{Km0262}} \right) \cdot \left(1 + \frac{[\text{s_0722}]}{\text{Km0722}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^3 - 1}$$

Table 332: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.58760203874159 \cdot 10^{-4}$	dimensionless	\overline{Z}
Vmax		0000324	0.082	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathscr{L}} $
Keq		0000281	200.000	$\text{mmol}^{-2} \cdot l^2$	$ \overline{\mathcal{L}} $
Km1059		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0262		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0722		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\checkmark

6.83 Reaction r_0326

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name dCMP deaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{0}589 \xrightarrow{e_{0}452, s_{0}589, s_{0}419, s_{0}654} s_{0}419 + s_{0}654$$
 (166)

Reactant

Table 333: Properties of each reactant.

Id	Name	SBO
s_0589	dCMP	

Modifiers

Table 334: Properties of each modifier.

Id	Name	SBO
e_0452	DCD1	0000460
s_0589	dCMP	
s_0419	ammonium	
s_0654	dUMP	

Products

Table 335: Properties of each product.

Id	Name	SBO
s_0419 s_0654	ammonium dUMP	

Kinetic Law

$$v_{83} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0589}] - \frac{[\text{s_0419}] \cdot [\text{s_0654}]}{\text{Keq}} \right)}{\text{Km0589}}}{1 + \frac{[\text{s_0589}]}{\text{Km0589}} + \left(1 + \frac{[\text{s_0419}]}{\text{Km0419}} \right) \cdot \left(1 + \frac{[\text{s_0654}]}{\text{Km0654}} \right) - 1}$$
(167)

Table 336: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$3.36354094523684 \cdot 10^{-6}$	dimensionless	\overline{Z}
Vmax		0000324	$3.36354094523684 \cdot 10^{-5}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	
Km0589		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0419		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0654		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	

6.84 Reaction r_0330

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name deoxyguanylate kinase (dGMP:ATP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0394 + s_0613 \xrightarrow{e_0234, s_0394, s_0613, s_0434, s_0615} s_0434 + s_0615 \tag{168}$$

Reactants

Table 337: Properties of each reactant.

Id	Name	SBO
s_0394	ADP	
s_0613	dGDP	

Modifiers

Table 338: Properties of each modifier.

Id	Name	SBO
e_0234	GUK1	0000460
s_0394	ADP	

Id	Name	SBO
s_0613	dGDP	
s_0434	ATP	
s0615	dGMP	

Products

Table 339: Properties of each product.

Id	Name	SBO
s_0434	ATP	
s_0615	dGMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{84} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0394}] \cdot [\text{s_0613}] - \frac{[\text{s_0434}] \cdot [\text{s_0615}]}{\text{Keq}} \right)}{\frac{\text{Km0394} \cdot \text{Km0613}}{\left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0613}]}{\text{Km0613}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0615}]}{\text{Km0615}} \right) - 1}}$$
(169)

Table 340: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$9.10860206737184 \cdot 10^{-5}$	dimensionless	Ø
Vmax		0000324	0.001	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0394		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0613		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0434		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0615		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{A}} $

6.85 Reaction r_0336

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name diacylglycerol acyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0529 + s_{-}1524 \xrightarrow{e_{-}0883, \ s_{-}0529, \ s_{-}1524, \ s_{-}0380, \ s_{-}0619} s_{-}0380 + s_{-}0619 \tag{170}$$

Reactants

Table 341: Properties of each reactant.

Id	Name	SBO
	coenzyme A triglyceride	

Modifiers

Table 342: Properties of each modifier.

	1	
Id	Name	SBO
e_0883	DGA1	0000460
s_0529	coenzyme A	
$s_{-}1524$	triglyceride	
s_0380	acyl-CoA	
s_0619	diglyceride	

Products

Table 343: Properties of each product.

Id	Name	SBO
s_0380	acyl-CoA	
s_0619	diglyceride	

Kinetic Law

$$v_{85} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0529}] \cdot [\text{s.1524}] - \frac{[\text{s.0380}] \cdot [\text{s.0619}]}{\text{Keq}} \right)}{\text{Km0529} \cdot \text{Km1524}}}{\left(1 + \frac{[\text{s.0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s.1524}]}{\text{Km1524}} \right) + \left(1 + \frac{[\text{s.0380}]}{\text{Km0380}} \right) \cdot \left(1 + \frac{[\text{s.0619}]}{\text{Km0619}} \right) - 1}$$
(171)

Table 344: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$4.80554664340808 \cdot 10^{-4}$	dimensionless	\checkmark
Vmax		0000324	0.007	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0529		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1524		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0380		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0619		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.86 Reaction r_0337

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name diacylglycerol pyrophosphate phosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-1331} \stackrel{e_{-0203}, s_{-1331}, s_{-0619}, s_{-1322}}{=} s_{-0619} + s_{-1322}$$
 (172)

Reactant

Table 345: Properties of each reactant.

Id	Name	SBO
s_1331	phosphatidate	

Modifiers

Table 346: Properties of each modifier.

Id	Name	SBO
e_0203	DPP1	0000460
$s_{-}1331$	phosphatidate	
$s_{-}0619$	diglyceride	
s_1322	phosphate	

Products

Table 347: Properties of each product.

Id	Name	SBO
s_0619	diglyceride	
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{86} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1331] - \frac{[s_0619] \cdot [s_1322]}{\text{Keq}} \right)}{\text{Km}1331}}{1 + \frac{[s_1331]}{\text{Km}1331} + \left(1 + \frac{[s_0619]}{\text{Km}0619} \right) \cdot \left(1 + \frac{[s_1322]}{\text{Km}1322} \right) - 1}$$
(173)

Table 348: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$9.19873934027924 \cdot 10^{-6}$	dimensionless	$\overline{\mathbf{Z}}$
Vmax		0000324	$9.19873934027924 \cdot 10^{-5}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	$ \overline{\mathscr{L}} $
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	
Km1331		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0619		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square

6.87 Reaction r_0339

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name dihydoorotic acid dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0061 + s_1275 \xrightarrow{e_0594, s_0061, s_1275, s_0837, s_1269} s_0837 + s_1269 \tag{174}$$

Reactants

Table 349: Properties of each reactant.

Id	Name	SBO
s_0061	(S)-dihydroorotate	

Id	Name	SBO
s_1275	oxygen	

Table 350: Properties of each modifier.

	*	
Id	Name	SBO
e_0594	URA1	0000460
s_0061	(S)-dihydroorotate	
$s_{-}1275$	oxygen	
s_0837	hydrogen peroxide	
s_1269	orotate	

Products

Table 351: Properties of each product.

Id	Name	SBO
s_0837 s_1269	hydrogen peroxide orotate	

Kinetic Law

$$v_{87} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0061}] \cdot [\text{s_1275}] - \frac{[\text{s_0837}] \cdot [\text{s_1269}]}{\text{Keq}} \right)}{\text{Km0061} \cdot \text{Km1275}}}{\left(1 + \frac{[\text{s_0061}]}{\text{Km0061}} \right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right) + \left(1 + \frac{[\text{s_0837}]}{\text{Km0837}} \right) \cdot \left(1 + \frac{[\text{s_1269}]}{\text{Km1269}} \right) - 1}$$
(175)

Table 352: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	$ \overline{\mathbf{Z}} $
Vmax		0000324	0.059	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km0061		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0837		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1269		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	$ \overline{\mathbf{Z}} $

6.88 Reaction r_0340

This is a reversible reaction of two reactants forming one product influenced by four modifiers.

Name dihydroceramidase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}1084 + s_{-}1445 \xrightarrow{e_{-}0914, s_{-}1084, s_{-}1445, s_{-}0475} s_{-}0475$$
 (176)

Reactants

Table 353: Properties of each reactant.

Id	Name	SBO
	lignoceric acid sphinganine	

Modifiers

Table 354: Properties of each modifier.

	1	
Id	Name	SBO
e_0914	YDC1	0000460
$s_{-}1084$	lignoceric acid	
$s_{-}1445$	sphinganine	
s0475	ceramide-1 (C24)	

Product

Table 355: Properties of each product.

Id	Name	SBO
s_0475	ceramide-1 (C24)	

Kinetic Law

$$v_{88} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1084] \cdot [s_1445] - \frac{[s_0475]}{\text{Keq}} \right)}{\text{Km}1084 \cdot \text{Km}1445}}}{\left(1 + \frac{[s_1084]}{\text{Km}1084} \right) \cdot \left(1 + \frac{[s_1445]}{\text{Km}1445} \right) + 1 + \frac{[s_0475]}{\text{Km}0475} - 1}$$
(177)

Table 356: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210849818021 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	$1.02210849818021 \cdot 10^{-4}$	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	$ \overline{\mathbf{Z}} $
Km1084		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1445		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0475		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $

6.89 Reaction r_0344

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name dihydrofolate reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0625 + s_1212 \xrightarrow{e_0880, s_0625, s_1212, s_1207, s_1487} s_1207 + s_1487 \tag{178}$$

Reactants

Table 357: Properties of each reactant.

Id	Name	SBO
	dihydrofolic acid NADPH	

Modifiers

Table 358: Properties of each modifier.

Id	Name	SBO
e_0880	DFR1	0000460
s_0625	dihydrofolic acid	

Id	Name	SBO
s_1212	NADPH	
$s_{-}1207$	NADP(+)	
s_1487	THF	

Products

Table 359: Properties of each product.

Id	Name	SBO
s_1207	NADP(+)	
$s_{-}1487$	THF	

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0625}] \cdot [\text{s_1212}] - \frac{[\text{s_1207}] \cdot [\text{s_1487}]}{\text{Keq}} \right)}{\frac{\text{Km0625} \cdot \text{Km1212}}{\left(1 + \frac{[\text{s_0625}]}{\text{Km0625}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1487}]}{\text{Km1487}} \right) - 1}}$$
(179)

Table 360: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.36629031089924 \cdot 10^{-4}$	dimensionless	\overline{Z}
Vmax		0000324	0.002	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0625		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1487		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.90 Reaction r_0349

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name dihydroorotase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}1194 = 0.0692, s_{-}1194, s_{-}0061$$
 (180)

Reactant

Table 361: Properties of each reactant.

Id	Name	SBO
s_1194	N-carbamoyl-L-aspartate	

Modifiers

Table 362: Properties of each modifier.

Id	Name	SBO
e_0692	URA4	0000460
$s_{-}1194$	N-carbamoyl-L-aspartate	
s_0061	(S)-dihydroorotate	

Product

Table 363: Properties of each product.

Id	Name	SBO
s_0061	(S)-dihydroorotate	

Kinetic Law

$$v_{90} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_1194] - \frac{[\text{s}_0061]}{\text{Keq}} \right)}{\text{Km}1194}}{1 + \frac{[\text{s}_1194]}{\text{Km}1194} + 1 + \frac{[\text{s}_0061]}{\text{Km}0061} - 1}}$$
(181)

Table 364: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.025	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\checkmark

Id	Name	SBO	Value	Unit	Constant
Keq Km1194		0000281 0000322		dimensionless $\text{mmol} \cdot 1^{-1}$	1
Km0061		0000323		$mmol \cdot l^{-1}$	v

6.91 Reaction r_0352

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name dihydroxy-acid dehydratase (2,3-dihydroxy-3-methylbutanoate)

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0016 \xrightarrow{e_{-}0528, s_{-}0016, s_{-}0232} s_{-}0232$$
 (182)

Reactant

Table 365: Properties of each reactant

	Table 303. I Toperties of each reactant.	
Id	Name	SBO
s_0016	(R)-2,3-dihydroxy-3-methylbutanoate	

Modifiers

Table 366: Properties of each modifier.

Id	Name	SBO
e_0528	ILV3	0000460
s_0016	(R)-2,3-dihydroxy-3-methylbutanoate	
s_0232	3-methyl-2-oxobutanoate	

Product

Table 367: Properties of each product.

Id	Name	SBO
s_0232	3-methyl-2-oxobutanoate	

Kinetic Law

Derived unit contains undeclared units

$$v_{91} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0016}] - \frac{[\text{s_0232}]}{\text{Keq}} \right)}{\frac{\text{Km0016}}{1 + \frac{[\text{s_0016}]}{\text{Km0016}} + 1 + \frac{[\text{s_0232}]}{\text{Km0232}} - 1}}$$
(183)

Table 368: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.021	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.128	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	\checkmark
Km0016		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0232		0000323	0.100	$mmol \cdot l^{-1}$	$\overline{\checkmark}$

6.92 Reaction r_0353

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name dihydroxy-acid dehydratase (2,3-dihydroxy-3-methylpentanoate)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0008 \xrightarrow{e_0528, s_0008, s_0056} s_0056$$
 (184)

Reactant

Table 369: Properties of each reactant.

Id	Name	SBO
s_0008	(2R,3R)-2,3-dihydroxy-3-methylpentanoate	

Modifiers

Table 370: Properties of each modifier.

Id	Name	SBO
e_0528	ILV3	0000460

Id	Name	SBO
	(2R,3R)-2,3-dihydroxy-3-methylpentanoate (S)-3-methyl-2-oxopentanoate	

Product

Table 371: Properties of each product.

Id	Name	SBO
s_0056	(S)-3-methyl-2-oxopentanoate	

Kinetic Law

Derived unit contains undeclared units

$$v_{92} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0008}] - \frac{[\text{s_0056}]}{\text{Keq}} \right)}{\frac{\text{Km0008}}{1 + \frac{[\text{s_0008}]}{\text{Km0008}} + 1 + \frac{[\text{s_0056}]}{\text{Km0056}} - 1}}$$
(185)

Table 372: Properties of each parameter.

	14010 0 / 2/ 11	operates or t	Puri		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	
Vmax		0000324	0.058	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0008		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0056		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square

6.93 Reaction r_0355

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name dimethylallyltranstransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0943 + s_1376 \xrightarrow{e_0515, s_0943, s_1376, s_0633, s_0745} s_0633 + s_0745 \tag{186}$$

Reactants

Table 373: Properties of each reactant.

10010 0	There e / e / 11 op e 10 ca e u ca e 10 ca e u ca e				
Id	Name	SBO			
s_0943 s_1376	isopentenyl diphosphate prenyl diphosphate				

Table 374: Properties of each modifier.

	-	
Id	Name	SBO
e_0515	ERG20	0000460
s_0943	isopentenyl diphosphate	
$s_{-}1376$	prenyl diphosphate	
s_0633	diphosphate	
s_0745	geranyl diphosphate	

Products

Table 375: Properties of each product.

	Tueste e / e / Treperines er euen producti				
Id	Name	SBO			
s_0633 s_0745	diphosphate geranyl diphosphate				

Kinetic Law

$$v_{93} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0943}] \cdot [\text{s_1376}] - \frac{[\text{s_0633}] \cdot [\text{s_0745}]}{\text{Keq}} \right)}{\text{Km0943} \cdot \text{Km1376}}}{\left(1 + \frac{[\text{s_0943}]}{\text{Km0943}} \right) \cdot \left(1 + \frac{[\text{s_1376}]}{\text{Km1376}} \right) + \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0745}]}{\text{Km0745}} \right) - 1}$$
(187)

Table 376: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.19949368301002 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.007	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0943		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km1376		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$mmol \cdot l^{-1}$	
Km0745		0000323	0.100	$mmol \cdot l^{-1}$	

6.94 Reaction r_0361

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name dolichyl-phosphate D-mannosyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0645 + s_0743 \xrightarrow{e_0976, s_0645, s_0743, s_0644, s_0739} s_0644 + s_0739 \tag{188}$$

Reactants

Table 377: Properties of each reactant.

Id	Name	SBO
s_0645	dolichyl phosphate	
s_0743	GDP-alpha-D-mannose	

Modifiers

Table 378: Properties of each modifier.

Id	Name	SBO
e_0976	DPM1	0000460
s_0645	dolichyl phosphate	
s_0743	GDP-alpha-D-mannose	
s_0644	dolichyl D-mannosyl phosphate	
s_0739	GDP	

Products

Table 379: Properties of each product.

Id	Name	SBO
s_0644 s_0739	dolichyl D-mannosyl phosphate GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{94} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0645}] \cdot [\text{s_0743}] - \frac{[\text{s_0644}] \cdot [\text{s_0739}]}{\text{Keq}} \right)}{K\text{m0645} \cdot K\text{m0743}}}{\left(1 + \frac{[\text{s_0645}]}{K\text{m0645}} \right) \cdot \left(1 + \frac{[\text{s_0743}]}{K\text{m0743}} \right) + \left(1 + \frac{[\text{s_0644}]}{K\text{m0644}} \right) \cdot \left(1 + \frac{[\text{s_0739}]}{K\text{m0739}} \right) - 1}$$
(189)

Table 380: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.031	dimensionless	$ \overline{\checkmark} $
Vmax		0000324	0.429	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\checkmark
Keq		0000281	2.000	dimensionless	
Km0645		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0743		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$
Km0644		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$
Km0739		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.95 Reaction r_0362

This is a reversible reaction of one reactant forming two products influenced by eight modifiers.

Name dolichyl-phosphate-mannose-protein mannosyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0644 \xleftarrow{e_0141,\,e_0549,\,e_0010,\,e_0890,\,e_0142,\,s_0644,\,s_0645,\,s_1107} s_0645 + s_1107 \tag{190}$$

Reactant

Table 381: Properties of each reactant.

Id	Name	SBO
s_0644	dolichyl D-mannosyl phosphate	

Table 382: Properties of each modifier.

Id	Name	SBO
e_0141	PMT5	0000460
e_0549	PMT4	0000460
e_0010	PMT2	0000460
e_0890	PMT3	0000460
e_0142	PMT1	0000460
s_0644	dolichyl D-mannosyl phosphate	
s_0645	dolichyl phosphate	
s_1107	mannan	

Products

Table 383: Properties of each product.

ruble 303. I roperties of each product.			
Id	Name	SBO	
s_0645 s_1107	dolichyl phosphate mannan		

Kinetic Law

$$v_{95} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_0644] - \frac{[s_0645] \cdot [s_1107]}{\text{Keq}} \right)}{\text{Km0644}}}{1 + \frac{[s_0644]}{\text{Km0644}} + \left(1 + \frac{[s_0645]}{\text{Km0645}} \right) \cdot \left(1 + \frac{[s_1107]}{\text{Km1107}} \right) - 1}$$
(191)

Table 384: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.031	dimensionless	\square
Vmax		0000324	0.307	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $

Id	Name	SBO	Value	Unit	Constant
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0644		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0645		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1107		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\checkmark

6.96 Reaction r_0364

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name dUTP diphosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0656 \stackrel{e_0089, s_0656, s_0633, s_0654}{=\!=\!=\!=\!=} s_0633 + s_0654$$
 (192)

Reactant

Table 385: Properties of each reactant.

Id	Name	SBO
s_0656	dUTP	

Modifiers

Table 386: Properties of each modifier.

Id	Name	SBO
e_0089	DUT1	0000460
s_0656	dUTP	
s_0633	diphosphate	
s_0654	dUMP	

Products

Table 387: Properties of each product.

Id	Name	SBO
s_0633	diphosphate	

Id	Name	SBO
s_0654	dUMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{96} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0656}] - \frac{[\text{s_0633}] \cdot [\text{s_0654}]}{\text{Keq}} \right)}{\text{Km0656}}}{1 + \frac{[\text{s_0656}]}{\text{Km0656}} + \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0654}]}{\text{Km0654}} \right) - 1}$$
(193)

Table 388: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.33265490575614 \cdot 10^{-4}$	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.001	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0656		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0654		0000323	0.100	$mmol \cdot l^{-1}$	

6.97 Reaction r_0366

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name enolase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-0.188} \stackrel{e_{-0.405}, e_{-0.454}, s_{-0.188}, s_{-1360}}{=} s_{-1360}$$
 (194)

Reactant

Table 389: Properties of each reactant.

Id	Name	SBO
s_0188	2-phospho-D-glyceric acid	

Table 390: Properties of each modifier.

	to eyour roperties or each inc.	
Id	Name	SBO
e_0405	ENO1	0000460
e_0454	ENO2	0000460
s_0188	2-phospho-D-glyceric acid	
$s_{-}1360$	phosphoenolpyruvate	

Product

Table 391: Properties of each product.

Id	Name	SBO
s_1360	phosphoenolpyruvate	

Kinetic Law

Derived unit contains undeclared units

$$v_{97} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0188}] - \frac{[\text{s.1360}]}{\text{Keq}}\right)}{\frac{\text{Km0188}}{1 + \frac{[\text{s.0188}]}{\text{Km0188}} + 1 + \frac{[\text{s.1360}]}{\text{Km1360}} - 1}}$$
(195)

Table 392: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.231	dimensionless	
Vmax		0000324	1.388	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0188		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1360		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	

6.98 Reaction r_0386

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty acid synthase (n-C12:0)

SBO:0000176 biochemical reaction

Reaction equation

 $s_0595 + s_1101 + 2\,s_1212 \xleftarrow{e_0808,\,e_0365,\,e_0586,\,e_0934,\,s_0595,\,s_1101,\,s_1212,\,s_0456,\,s_0529,\,s_1065,\,s_120} \tag{196}$

Reactants

Table 393: Properties of each reactant.

Id	Name	SBO
s_0595	decanoate	
$s_{-}1101$	malonyl-CoA	
s_1212	NADPH	

Modifiers

Table 394: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460
e_0934	FAS2	0000460
s_0595	decanoate	
s_1101	malonyl-CoA	
s_1212	NADPH	
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1065	laurate	
s_1207	NADP(+)	

Products

Table 395: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1065	laurate	
s_1207	NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{98} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0595}] \cdot [\text{s.1101}] \cdot [\text{s.1212}]^2 - \frac{[\text{s.0456}] \cdot [\text{s.0529}] \cdot [\text{s.1065}] \cdot [\text{s.1207}]^2}{\text{Keq}} \right)}{\frac{\text{Km0595} \cdot \text{Km1101} \cdot \text{Km1212}^2}{\left(1 + \frac{[\text{s.0595}]}{\text{Km0595}} \right) \cdot \left(1 + \frac{[\text{s.1101}]}{\text{Km1101}} \right) \cdot \left(1 + \frac{[\text{s.1212}]}{\text{Km1212}} \right)^2 + \left(1 + \frac{[\text{s.0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s.0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s.1065}]}{\text{Km1065}} \right) \cdot \left(1 + \frac{[\text{s.1207}]}{\text{Km1207}} \right)^2}{\nu_{1000}}$$

Table 396: Properties of each parameter.

		14010 0001101	perties of each parameter.		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210849110579 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	$9.60781981639442 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0595		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1101		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1065		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.99 Reaction r_0387

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty acid synthase (n-C14:0)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1065 + s_1101 + 2\,s_1212 \xleftarrow{e_0808, \, e_0365, \, e_0586, \, e_0934, \, s_1065, \, s_1101, \, s_1212, \, s_0456, \, s_0529, \, s_1161, \, s_1200} \tag{198}$$

Reactants

Table 397: Properties of each reactant.

Id	Name	SBO
	malonyl-CoA	
$s_{-}1212$	NADPH	

Table 398: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460
e_0934	FAS2	0000460
s_1065	laurate	
$s_{-}1101$	malonyl-CoA	
$s_{-}1212$	NADPH	
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1161	myristate	
s_1207	NADP(+)	

Products

Table 399: Properties of each product.

1	1
Name	SBO
carbon dioxide	
coenzyme A	
myristate	
NADP(+)	
	carbon dioxide coenzyme A myristate

Kinetic Law

$$v_{99} = \frac{\frac{vol(cell) \cdot V_{max} \cdot \left([s_1065] \cdot [s_1101] \cdot [s_1212]^2 - \frac{[s_0456] \cdot [s_0529] \cdot [s_1161] \cdot [s_1207]^2}{Keq} \right)}{\frac{Km1065 \cdot Km1101 \cdot Km1212^2}{\left(1 + \frac{[s_1065]}{Km1065} \right) \cdot \left(1 + \frac{[s_1101]}{Km1101} \right) \cdot \left(1 + \frac{[s_1212]}{Km1212} \right)^2 + \left(1 + \frac{[s_0456]}{Km0456} \right) \cdot \left(1 + \frac{[s_0529]}{Km0529} \right) \cdot \left(1 + \frac{[s_1161]}{Km1161} \right) \cdot \left(1 + \frac{[s_1207]}{Km1207} \right)^2}$$

Table 400: Properties of each parameter.

			<u> </u>		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210846264081 \cdot 10^{-5}$	dimensionless	\square
Vmax		0000324	$9.60781954882361 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
Km1065		0000322	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
Km1101		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0456		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$ \overline{\mathbf{Z}} $
Km0529		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\overline{Z}
Km1161		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	<u></u>

6.100 Reaction r_0389

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty acid synthase (n-C16:0)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1101 + s_1161 + 2s_1212 \xleftarrow{e_0808, \ e_0365, \ e_0586, \ e_0934, \ s_1101, \ s_1161, \ s_1212, \ s_0456, \ s_0529, \ s_1207, \ s_128} \tag{200}$$

Reactants

Table 401: Properties of each reactant.

Id	Name	SBO
s_1101	malonyl-CoA	
$s_{-}1161$	myristate	
$s_{-}1212$	NADPH	

Table 402: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460
$e_{-}0934$	FAS2	0000460
$s_{-}1101$	malonyl-CoA	
$s_{-}1161$	myristate	
$s_{-}1212$	NADPH	
s_0456	carbon dioxide	
s_0529	coenzyme A	
$s_{-}1207$	NADP(+)	
$s_{-}1286$	palmitate	

Products

Table 403: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1207	NADP(+)	
$s_{-}1286$	palmitate	

Kinetic Law

$$v_{100} = \frac{\frac{vol(cell) \cdot V_{max} \cdot \left([s_1101] \cdot [s_1161] \cdot [s_1212]^2 - \frac{[s_0456] \cdot [s_0529] \cdot [s_1207]^2 \cdot [s_1286]}{Keq} \right)}{\frac{Km1101 \cdot Km1161 \cdot Km1212^2}{\left(1 + \frac{[s_1101]}{Km1101} \right) \cdot \left(1 + \frac{[s_1161]}{Km1161} \right) \cdot \left(1 + \frac{[s_1212]}{Km1212} \right)^2 + \left(1 + \frac{[s_0456]}{Km0456} \right) \cdot \left(1 + \frac{[s_0529]}{Km0529} \right) \cdot \left(1 + \frac{[s_1207]}{Km1207} \right)^2 \cdot \left(1 + \frac{[s_1286]}{Km1286} \right)}$$

Table 404: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210846264081 \cdot 10^{-5}$	dimensionless	

Id	Name	SBO	Value	Unit	Constant
Vmax		0000324	$9.60781954882362 \cdot 10^{-4}$	$\operatorname{mmol} \cdot \mathbf{l}^{-1} \cdot \mathbf{s}^{-1}$	\overline{Z}
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1101		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1161		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1207		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square
Km1286		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	

6.101 Reaction r_0391

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty acid synthase (n-C18:0)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1101 + 2\,s_1212 + s_1286 \xleftarrow{e_0808, \, e_0365, \, e_0586, \, e_0934, \, s_1101, \, s_1212, \, s_1286, \, s_0456, \, s_0529, \, s_1207, \, s_1449} \tag{202}$$

Reactants

Table 405: Properties of each reactant.

Id	Name	SBO
s_1101	malonyl-CoA	
$s_{-}1212$	NADPH	
s_1286	palmitate	

Modifiers

Table 406: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460

Id	Name	SBO
e_0934	FAS2	0000460
s_1101	malonyl-CoA	
$s_{-}1212$	NADPH	
$s_{-}1286$	palmitate	
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1207	NADP(+)	
s_1449	stearate	

Products

Table 407: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
$s_{-}1207$	NADP(+)	
s_1449	stearate	

Kinetic Law

$$\nu_{101} = \frac{\frac{\text{vol(cell)} \cdot \text{V}_{max} \cdot \left([\text{s_1101}] \cdot [\text{s_1212}]^2 \cdot [\text{s_1286}] - \frac{[\text{s_0456}] \cdot [\text{s_0529}] \cdot [\text{s_1207}]^2 \cdot [\text{s_1449}]}{\text{Keq}} \right)}{\frac{\text{Km1101} \cdot \text{Km1212}^2 \cdot \text{Km1286}}{\left(1 + \frac{[\text{s_1101}]}{\text{Km1101}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right)^2 \cdot \left(1 + \frac{[\text{s_1286}]}{\text{Km1286}} \right) + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2 \cdot \left(1 + \frac{[\text{s_1449}]}{\text{Km1449}} \right)}{\nu_{m1449}} \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2 \cdot \left(1 + \frac{[\text{s_1449}]}{\text{Km1449}} \right)}$$

Table 408: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210846264081 \cdot 10^{-5}$	dimensionless	\checkmark
Vmax		0000324	$9.60781954882362 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1101		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1286		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
Km1207 Km1449		0000323 0000323	0.100 0.100	$\begin{array}{c} mmol \cdot 1^{-1} \\ mmol \cdot 1^{-1} \end{array}$	
KIII1449		0000323	0.100	11111101 · 1	$ \overline{\mathcal{L}} $

6.102 Reaction r_0393

This is a reversible reaction of three reactants forming four products influenced by ten modifiers.

Name fatty acid synthase (n-C24:0), lumped reaction

SBO:0000176 biochemical reaction

Reaction equation

$$3s_1101 + 6s_1212 + s_1449 \xrightarrow{e_0128, e_0117, e_0687, s_1101, s_1212, s_1449, s_0456, s_0529, s_1084, s_1207} 3s_0(204)$$

Reactants

Table 409: Properties of each reactant.

Id	Name	SBO
s_1101	malonyl-CoA	
$s_{-}1212$	NADPH	
$s_{-}1449$	stearate	

Modifiers

Table 410: Properties of each modifier.

Id	Name	SBO
e_0128	TSC13	0000460
e_0117	FEN1	0000460
e_0687	SUR4	0000460
s_1101	malonyl-CoA	
$s_{-}1212$	NADPH	
$s_{-}1449$	stearate	
s0456	carbon dioxide	
s_0529	coenzyme A	
s_1084	lignoceric acid	
s_1207	NADP(+)	

Products

Table 411: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1084	lignoceric acid	
$s_{-}1207$	NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{102} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1101}]^3 \cdot [\text{s_1212}]^6 \cdot [\text{s_1449}] - \frac{[\text{s_0456}]^3 \cdot [\text{s_1084}] \cdot [\text{s_1207}]^6}{\text{Keq}} \right)}{\text{Km1101}^3 \cdot \text{Km1212}^6 \cdot \text{Km1449}}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1101}]^3 \cdot [\text{s_1212}]^6 \cdot [\text{s_1449}] - \frac{[\text{s_0456}]^3 \cdot [\text{s_0456}]^3 \cdot [\text{s_1084}] \cdot [\text{s_1084}]}{\text{Km1101}} \right)}}{\left(1 + \frac{[\text{s_1101}]}{\text{Km11101}} \right)^3 \cdot \left(1 + \frac{[\text{s_11212}]}{\text{Km1212}} \right)^6 \cdot \left(1 + \frac{[\text{s_1449}]}{\text{Km1449}} \right) + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right)^3 \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right)^3 \cdot \left(1 + \frac{[\text{s_1084}]}{\text{Km1084}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1200}} \right)}$$

Table 412: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.04421699980673 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	0.377	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathcal{A}} $
Keq		0000281	0.002	$\text{mmol}^3 \cdot 1^{-3}$	$ \overline{\checkmark} $
Km1101		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1449		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1084		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1207		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square

6.103 Reaction r_0397

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty acyl-CoA synthase (n-C10:0CoA)

SBO:0000176 biochemical reaction

Reaction equation

 $s_1101 + 2\,s_1212 + s_1255 \xleftarrow{e_0808,\ e_0365,\ e_0586,\ e_0934,\ s_1101,\ s_1212,\ s_1255,\ s_0456,\ s_0529,\ s_0602,\ s_1208}$

(206)

Reactants

Table 413: Properties of each reactant.

Id	Name	SBO
$s_{-}1212$	malonyl-CoA NADPH octanoyl-CoA	

Modifiers

Table 414: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460
e_0934	FAS2	0000460
$s_{-}1101$	malonyl-CoA	
s_1212	NADPH	
s_1255	octanoyl-CoA	
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_0602	decanoyl-CoA	
s_1207	NADP(+)	

Products

Table 415: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_0602	decanoyl-CoA	
s_1207	NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{103} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1101}] \cdot [\text{s_1212}]^2 \cdot [\text{s_1255}] - \frac{[\text{s_0456}] \cdot [\text{s_0529}] \cdot [\text{s_0602}] \cdot [\text{s_1207}]^2}{\text{Keq}} \right)}{\text{Km1101} \cdot \text{Km1212}^2 \cdot \text{Km1255}}}{\left(1 + \frac{[\text{s_1101}]}{\text{Km1101}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right)^2 \cdot \left(1 + \frac{[\text{s_1255}]}{\text{Km1255}} \right) + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_0602}]}{\text{Km0602}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2}{\nu_{\text{Km1207}}^2 \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2}$$

Table 416: Properties of each parameter.

Table 410. 110perfies of each parameter.					
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$4.0884339927971 \cdot 10^{-5}$	dimensionless	\square
Vmax		0000324	0.004	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$mmol \cdot l^{-1}$	
Km1101		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1255		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0529		0000323	0.100	$mmol \cdot l^{-1}$	
Km0602		0000323	0.100	$mmol \cdot l^{-1}$	$\overline{\mathbf{Z}}$
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.104 Reaction r_0398

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty acyl-CoA synthase (n-C8:0CoA), lumped reaction

SBO:0000176 biochemical reaction

Reaction equation

$$s_0373 + 3 \, s_1101 + 6 \, s_1212 \xleftarrow{e_0808, \, e_0365, \, e_0586, \, e_0934, \, s_0373, \, s_1101, \, s_1212, \, s_0456, \, s_0529, \, s_1207, \,$$

Reactants

Table 417: Properties of each reactant.

Id	Name	SBO
	acetyl-CoA	
s_1101	3	
s_1212	NADPH	

Table 418: Properties of each modifier.

	*	
Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460
e_0934	FAS2	0000460
s_0373	acetyl-CoA	
s_1101	malonyl-CoA	
$s_{-}1212$	NADPH	
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1207	NADP(+)	
s_1255	octanoyl-CoA	

Products

Table 419: Properties of each product.

	1	1
Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
$s_{-}1207$	NADP(+)	
$s_{-}1255$	octanoyl-CoA	

Kinetic Law

$$v_{104} = \frac{\frac{vol(\text{cell}) \cdot V_{\text{max}} \cdot \left([\text{s_0373}] \cdot [\text{s_1101}]^3 \cdot [\text{s_1212}]^6 - \frac{[\text{s_0456}]^3 \cdot [\text{s_0529}]^3 \cdot [\text{s_1207}]^6 \cdot [\text{s_1255}]}{\text{Keq}} \right)}{\frac{Km0373 \cdot Km1101^3 \cdot Km1212^6}{\left(1 + \frac{[\text{s_0373}]}{Km0373} \right) \cdot \left(1 + \frac{[\text{s_1101}]}{Km1101} \right)^3 \cdot \left(1 + \frac{[\text{s_1212}]}{Km1212} \right)^6 + \left(1 + \frac{[\text{s_0456}]}{Km0456} \right)^3 \cdot \left(1 + \frac{[\text{s_0529}]}{Km0529} \right)^3 \cdot \left(1 + \frac{[\text{s_1207}]}{Km1207} \right)^6 \cdot \left(1 + \frac{[\text{s_1255}]}{Km1207} \right)^6} \cdot \left(1 + \frac{[\text{s_1255}]}{Km1207} \right)^6 \cdot \left(1 + \frac{[\text{s_1255}]}{Km1207} \right)^6$$

Table 420: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$4.08843399368032 \cdot 10^{-5}$	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.753	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	0.002	$\text{mmol}^3 \cdot 1^{-3}$	\square
Km0373		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1101		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1255		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.105 Reaction r_0399

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name fatty-acid-CoA ligase (decanoate)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0423 + s_0602 + s_0633 \xleftarrow{e_0273, s_0423, s_0602, s_0633, s_0434, s_0529, s_0595} s_0434 + s_0529 + s_0595 \tag{210}$$

Reactants

Table 421: Properties of each reactant.

Id	Name	SBO
s_0423	AMP	
s0602	decanoyl-CoA	
s0633	diphosphate	

Table 422: Properties of each modifier.

Id	Name	SBO
e_0273	FAA2	0000460
s_0423	AMP	
s_0602	decanoyl-CoA	
s_0633	diphosphate	
s_0434	ATP	
s_0529	coenzyme A	
s_0595	decanoate	

Products

Table 423: Properties of each product.

Id	Name	SBO
s_0434	ATP	
s_0529	coenzyme A	
s_0595	decanoate	

Kinetic Law

$$v_{105} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0423}] \cdot [\text{s_0602}] \cdot [\text{s_0633}] - \frac{[\text{s_0434}] \cdot [\text{s_0529}] \cdot [\text{s_0595}]}{\text{Keq}} \right)}{\text{Km0423} \cdot \text{Km0602} \cdot \text{Km0603}} } \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0423}] \cdot [\text{s_0602}] \cdot [\text{s_0602}] \cdot [\text{s_0602}] \cdot [\text{s_0603}] - \frac{[\text{s_0434}] \cdot [\text{s_0529}] \cdot [\text{s_0529}]}{\text{Keq}} \right)}{\left(1 + \frac{[\text{s_0602}]}{\text{Km0623}} \right) \cdot \left(1 + \frac{[\text{s_0603}]}{\text{Km0633}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_0595}]}{\text{Km0595}} \right) - 1}$$

Table 424: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE Vmax		0000324	$1.02210849110579 \cdot 10^{-5}$ $3.06632547331737 \cdot 10^{-4}$	dimensionless mmol $\cdot 1^{-1} \cdot s^{-1}$	1
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km0423 Km0602		0000322 0000322	0.100 0.100	$mmol \cdot l^{-1}$ $mmol \cdot l^{-1}$	1
Km0633		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	v
Km0434		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

Id	Name	SBO	Value	Unit	Constant
Km0529 Km0595		0000323 0000323	0.100 0.100	$\begin{array}{c} mmol \cdot l^{-1} \\ mmol \cdot l^{-1} \end{array}$	

6.106 Reaction r_0400

This is a reversible reaction of three reactants forming three products influenced by seven modifiers

Name fatty-acid-CoA ligase (dodecanoate)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0423 + s_0633 + s_1073 \xleftarrow{e_0273, s_0423, s_0633, s_1073, s_0434, s_0529, s_1065} s_0434 + s_0529 + s_1065 \tag{212}$$

Reactants

Table 425: Properties of each reactant.

Id	Name	SBO
s_0423	AMP	
s_0633	diphosphate	
s_1073	lauroyl-CoA	

Modifiers

Table 426: Properties of each modifier.

Id	Name	SBO
e_0273	FAA2	0000460
s_0423	AMP	
s_0633	diphosphate	
$s_{-}1073$	lauroyl-CoA	
s_0434	ATP	
s_0529	coenzyme A	
$s_{-}1065$	laurate	

Products

Table 427: Properties of each product.

Id	Name	SBO
s_0434	ATP	
s_0529	coenzyme A	
s_1065	laurate	

Kinetic Law

Derived unit contains undeclared units

$$v_{106} = \frac{\frac{\text{vol(cell)} \cdot \text{V}_{\text{max}} \cdot \left([\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1073}] - \frac{[\text{s_0434}] \cdot [\text{s_0529}] \cdot [\text{s_1065}]}{\text{Keq}} \right)}{\text{Km0423} \cdot \text{Km0633} \cdot \text{Km1073}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{V}_{\text{max}} \cdot \left([\text{s_0423}] \cdot [\text{s_0423}] \cdot [\text{s_0423}] \cdot \left(1 + \frac{[\text{s_1063}]}{\text{Km00433}} \right) \cdot \left(1 + \frac{[\text{s_1063}]}{\text{Km1073}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1065}]}{\text{Km1065}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_1063}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1073}]}{\text{Km1073}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1065}]}{\text{Km1065}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_1063}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1073}]}{\text{Km1073}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1065}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1065}]}{\text{Km1065}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_1063}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1073}]}{\text{Km1073}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1065}]}{\text{Km1065}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_1065}]}{\text{Km10633}} \right) \cdot \left(1 + \frac{[\text{s_1073}]}{\text{Km1063}} \right) \cdot \left(1 + \frac{[\text{s_1065}]}{\text{Km1063}} \right) \cdot \left(1 + \frac{[\text{s_1065}]}{\text{Km1063}$$

Table 428: Properties of each parameter.

			r · · · · · · · · · · · · · · · · · · ·		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.32100771565048 \cdot 10^{-12}$	dimensionless	
Vmax		0000324	$3.96302314695144 \cdot 10^{-11}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0423		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0633		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1073		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0434		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1065		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.107 Reaction r_0407

This is a reversible reaction of three reactants forming three products influenced by nine modifiers.

Name fatty-acid–CoA ligase (octadecanoate)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0423 + s_0633 + s_1454 \xleftarrow{e_0750, \ e_0889, \ e_0462, \ s_0423, \ s_0633, \ s_1454, \ s_0434, \ s_0529, \ s_1449} (214) \\ \underline{ \qquad \qquad } s_0434 + s_0529 + s_0429 + s_04$$

Reactants

Table 429: Properties of each reactant.

Id	Name	SBO
s_0423 s_0633 s_1454	AMP diphosphate stearoyl-CoA	

Modifiers

Table 430: Properties of each modifier.

	1	
Id	Name	SBO
e_0750	FAA4	0000460
e_0889	FAA1	0000460
e_0462	FAA3	0000460
s_0423	AMP	
s_0633	diphosphate	
s_1454	stearoyl-CoA	
s_0434	ATP	
s_0529	coenzyme A	
$s_{-}1449$	stearate	

Products

Table 431: Properties of each product.

Id	Name	SBO
s_0434	ATP	
s_0529	coenzyme A	
$s_{-}1449$	stearate	

Kinetic Law

$$\nu_{107} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{V} \text{max} \cdot \left([\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1454}] - \frac{[\text{s_0434}] \cdot [\text{s_0529}] \cdot [\text{s_1449}]}{\text{Keq}} \right)}{\text{Km0423} \cdot \text{Km0633} \cdot \text{Km1454}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{V} \text{max} \cdot \left([\text{s_0423}] \cdot [\text{s_0423}] \cdot [\text{s_0434}] \cdot [\text{s_0529}] \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1454}]}{\text{Km1454}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1449}]}{\text{Km1449}} \right) - 1}$$

Table 432: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210853716592 \cdot 10^{-5}$	dimensionless	$ \mathcal{I} $
Vmax		0000324	$3.06632561149776 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0423		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0633		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1454		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0434		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1449		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.108 Reaction r_0432

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty-acyl-CoA synthase (n-C12:0CoA)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0602 + s_1101 + 2 s_1212 \xleftarrow{e_0808, \ e_0365, \ e_0586, \ e_0934, \ s_0602, \ s_1101, \ s_1212, \ s_0456, \ s_0529, \ s_1073, \ s_120} \tag{216}$$

Reactants

Table 433: Properties of each reactant.

Id	Name	SBO
	decanoyl-CoA malonyl-CoA	
	NADPH	

Modifiers

Table 434: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460

Id	Name	SBO
e_0365	ACB1	0000460
e_0586	FAS1	0000460
e_0934	FAS2	0000460
s_0602	decanoyl-CoA	
s_1101	malonyl-CoA	
s_1212	NADPH	
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1073	lauroyl-CoA	
$s_{-}1207$	NADP(+)	

Products

Table 435: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
$s_{-}1073$	lauroyl-CoA	
$s_{-}1207$	NADP(+)	

Kinetic Law

$$\nu_{108} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0602}] \cdot [\text{s_1101}] \cdot [\text{s_1212}]^2 - \frac{[\text{s_0456}] \cdot [\text{s_0529}] \cdot [\text{s_1073}] \cdot [\text{s_1207}]^2}{\text{Keq}} \right)}{\frac{\text{Km0602} \cdot \text{Km1101} \cdot \text{Km1212}^2}{\left(1 + \frac{[\text{s_0602}]}{\text{Km0602}} \right) \cdot \left(1 + \frac{[\text{s_1101}]}{\text{Km1101}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right)^2 + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1073}]}{\text{Km1073}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2}{\nu_{\text{Km1207}}} \right)} \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2}$$

Table 436: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VAI	LUE		$3.06632550169132 \cdot 10^{-5}$	dimensionless	\square
Vmax		0000324	0.003	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0602		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	Ø
Km1101		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\overline{Z}

Id	Name	SBO	Value	Unit	Constant
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\overline{Z}
Km0529		0000323	0.100	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$	$ \overline{\mathscr{A}} $
Km1073		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.109 Reaction r_0433

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty-acyl-CoA synthase (n-C14:0CoA)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1073 + s_1101 + 2\,s_1212 \underbrace{\frac{e_0808,\,e_0365,\,e_0586,\,e_0934,\,s_1073,\,s_1101,\,s_1212,\,s_0456,\,s_0529,\,s_1176,\,s_120}_{(218)}$$

Reactants

Table 437: Properties of each reactant.

Id	Name	SBO
s_1073	lauroyl-CoA	
s_1101	malonyl-CoA	
s_1212	NADPH	

Modifiers

Table 438: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460
$e_{-}0934$	FAS2	0000460
s_1073	lauroyl-CoA	
s_1101	malonyl-CoA	
s_1212	NADPH	
s_0456	carbon dioxide	

Id	Name	SBO
s_0529 s_1176 s_1207	<i>y</i>	

Products

Table 439: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1176	myristoyl-CoA	
$s_{-}1207$	NADP(+)	

Kinetic Law

$$\nu_{109} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1073] \cdot [s_1101] \cdot [s_1212]^2 - \frac{[s_0456] \cdot [s_0529] \cdot [s_1176] \cdot [s_1207]^2}{\text{Keq}} \right)}{\frac{\text{Km}1073 \cdot \text{Km}1101 \cdot \text{Km}1212^2}}{\left(1 + \frac{[s_1073]}{\text{Km}1073} \right) \cdot \left(1 + \frac{[s_1101]}{\text{Km}1101} \right) \cdot \left(1 + \frac{[s_1212]}{\text{Km}1212} \right)^2 + \left(1 + \frac{[s_0456]}{\text{Km}0456} \right) \cdot \left(1 + \frac{[s_0529]}{\text{Km}0529} \right) \cdot \left(1 + \frac{[s_1176]}{\text{Km}1176} \right) \cdot \left(1 + \frac{[s_1207]}{\text{Km}1207} \right)^2}$$

Table 440: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$3.06632551696157 \cdot 10^{-5}$	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.003	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km1073		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1101		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1176		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.110 Reaction r_0434

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty-acyl-CoA synthase (n-C16:0CoA)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1101 + s_1176 + 2s_1212 = \underbrace{e_0808, \, e_0365, \, e_0586, \, e_0934, \, s_1101, \, s_1176, \, s_1212, \, s_0456, \, s_0529, \, s_1207, \, s_130}_{(220)}$$

Reactants

Table 441: Properties of each reactant.

Id	Name	SBO
s_1101	malonyl-CoA	
$s_{-}1176$	myristoyl-CoA	
$s_{-}1212$	NADPH	

Modifiers

Table 442: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460
e_0934	FAS2	0000460
$s_{-}1101$	malonyl-CoA	
s_1176	myristoyl-CoA	
s_1212	NADPH	
s_0456	carbon dioxide	
s_0529	coenzyme A	
s_1207	NADP(+)	
s_1302	palmitoyl-CoA	

Products

Table 443: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
$s_{-}1207$	NADP(+)	
s_1302	palmitoyl-CoA	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{110} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1101}] \cdot [\text{s_1176}] \cdot [\text{s_1176}] \cdot [\text{s_1212}]^2 - \frac{[\text{s_0456}] \cdot [\text{s_0529}] \cdot [\text{s_1207}]^2 \cdot [\text{s_1302}]}{\text{Keq}} \right)}{\frac{\text{Km1101} \cdot \text{Km1176} \cdot \text{Km1212}^2}{\left(1 + \frac{[\text{s_1101}]}{\text{Km1101}} \right) \cdot \left(1 + \frac{[\text{s_1176}]}{\text{Km1176}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right)^2 + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2 \cdot \left(1 + \frac{[\text{s_1302}]}{\text{Km1302}} \right)}{\nu}$$

Table 444: Properties of each parameter.

		r	I		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$3.06632551696157 \cdot 10^{-5}$	dimensionless	\overline{Z}
Vmax		0000324	0.003	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathscr{L}} $
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km1101		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1176		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1302		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

6.111 Reaction r_0435

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name fatty-acyl-CoA synthase (n-C18:0CoA)

SBO:0000176 biochemical reaction

Reaction equation

 $s_1101 + 2\,s_1212 + s_1302 \underbrace{\frac{e_0808,\,e_0365,\,e_0586,\,e_0934,\,s_1101,\,s_1212,\,s_1302,\,s_0456,\,s_0529,\,s_1207,\,s_145}_{(222)}$

Reactants

Table 445: Properties of each reactant.

Id	Name	SBO
$s_{-}1212$	malonyl-CoA NADPH	
s_1302	palmitoyl-CoA	

Modifiers

Table 446: Properties of each modifier.

Id	Name	SBO
e_0808	ACC1	0000460
e_0365	ACB1	0000460
e_0586	FAS1	0000460
$e_{0}934$	FAS2	0000460
s_1101	malonyl-CoA	
$s_{-}1212$	NADPH	
s_1302	palmitoyl-CoA	
s_0456	carbon dioxide	
$s_{-}0529$	coenzyme A	
$s_{-}1207$	NADP(+)	
s_1454	stearoyl-CoA	

Products

Table 447: Properties of each product.

Id	Name	SBO
s_0456	carbon dioxide	
s_0529	coenzyme A	
$s_{-}1207$	NADP(+)	
$s_{-}1454$	stearoyl-CoA	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{111} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1101}] \cdot [\text{s_1212}]^2 \cdot [\text{s_1302}] - \frac{[\text{s_0456}] \cdot [\text{s_0529}] \cdot [\text{s_1207}]^2 \cdot [\text{s_1454}]}{\text{Keq}} \right)}{\text{Km1101} \cdot \text{Km1212}^2 \cdot \text{Km1302}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1101}] \cdot [\text{s_1212}]^2 \cdot [\text{s_1302}] - \frac{[\text{s_0456}] \cdot [\text{s_0529}] \cdot [\text{s_1207}]^2 \cdot [\text{s_1454}]}{\text{Keq}} \right)}{\left(1 + \frac{[\text{s_1101}]}{\text{Km1101}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right)^2 \cdot \left(1 + \frac{[\text{s_1302}]}{\text{Km1302}} \right) + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2 \cdot \left(1 + \frac{[\text{s_1454}]}{\text{Km1454}} \right)}$$

Table 448: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.0221085177611 \cdot 10^{-5}$	dimensionless	
L LOY ALOF					
Vmax		0000324	$9.60782006695434 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	\square
Km1101		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1302		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1454		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark

6.112 Reaction r_0438

This is a reversible reaction of two reactants forming one product influenced by 17 modifiers.

Name ferrocytochrome-c:oxygen oxidoreductase

SBO:0000176 biochemical reaction

Reaction equation

Reactants

Table 449: Properties of each reactant.

Id	Name	SBO
s_0710	ferrocytochrome c	

Id	Name	SBO
s_1275	oxygen	

Modifiers

Table 450: Properties of each modifier.

Id	Name	SBO
	Name	зьо
$e_{-}0632$	COX12	0000460
$e_{-}0007$	COX3	0000460
$e_{-}0774$	COX5A	0000460
e_0436	COX6	0000460
e_0136	COX9	0000460
$e_{-}0001$	COX1	0000460
$e_{-}0347$	COX13	0000460
$e_{-}0255$	CYC7	0000460
$e_{-}0752$	COX7	0000460
$e_{-}0690$	COX8	0000460
e_0006	COX2	0000460
e_0531	CYC1	0000460
$e_{-}0346$	COX4	0000460
e_0475	COX5B	0000460
s0710	ferrocytochrome c	
$s_{-}1275$	oxygen	
s_0709	ferricytochrome c	

Product

Table 451: Properties of each product.

	P	
Id	Name	SBO
s_0709	ferricytochrome c	

Kinetic Law

$$v_{112} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0710}]^4 \cdot [\text{s_1275}] - \frac{[\text{s_0709}]^4}{\text{Keq}} \right)}{\text{Km0710}^4 \cdot \text{Km1275}}}{\left(1 + \frac{[\text{s_0710}]}{\text{Km0710}} \right)^4 \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right) + \left(1 + \frac{[\text{s_0709}]}{\text{Km0709}} \right)^4 - 1}$$
(225)

Table 452: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUI	Ε		2.934	dimensionless	
Vmax		0000324	275.786	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	\square
Km0710		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0709		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.113 Reaction r_0439

This is a reversible reaction of two reactants forming two products influenced by 16 modifiers.

Name ferrocytochrome-c:oxygen oxidoreductase

SBO:0000176 biochemical reaction

Reaction equation

Reactants

Table 453: Properties of each reactant.

Id	Name	SBO			
s_0709	ferricytochrome c				
$s_{-}1535$	ubiquinol-6				

Modifiers

Table 454: Properties of each modifier.

	•	
Id	Name	SBO
e_0514	QCR8	0000460
e_0978	QCR2	0000460
e_0422	QCR10	0000460
e_0250	RIP1	0000460
e_0004	COB	0000460
$e_{-}0243$	QCR7	0000460

Id	Name	SBO
e_0389	QCR9	0000460
e_0255	CYC7	0000460
e_0848	CYT1	0000460
e_0028	COR1	0000460
e_0531	CYC1	0000460
e_0322	QCR6	0000460
s_0709	ferricytochrome c	
s_1535	ubiquinol-6	
s_0710	ferrocytochrome c	
$s_{-}1537$	ubiquinone-6	

Products

Table 455: Properties of each product.

Id	Name	SBO
	ferrocytochrome c ubiquinone-6	

Kinetic Law

$$v_{113} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0709}]^2 \cdot [\text{s_1535}] - \frac{[\text{s_0710}]^2 \cdot [\text{s_1537}]}{\text{Keq}} \right)}{\frac{\text{Km0709}^2 \cdot \text{Km1535}}{\left(1 + \frac{[\text{s_0709}]}{\text{Km0709}} \right)^2 \cdot \left(1 + \frac{[\text{s_1535}]}{\text{Km1535}} \right) + \left(1 + \frac{[\text{s_0710}]}{\text{Km0710}} \right)^2 \cdot \left(1 + \frac{[\text{s_1537}]}{\text{Km1537}} \right) - 1}}$$
(227)

Table 456: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			5.868	dimensionless	\checkmark
Vmax		0000324	176.034	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0709		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1535		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0710		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1537		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathbf{Z}} $

6.114 Reaction r_0446

This is a reversible reaction of three reactants forming three products influenced by eight modifiers.

Name formate-tetrahydrofolate ligase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0120 + s_0394 + s_1322 \xrightarrow{e_0396, \ e_0057, \ s_0120, \ s_0394, \ s_1322, \ s_0434, \ s_0722, \ s_1487} s_0434 + s_0722 + s_1487 \xrightarrow{(228)} s_0434 + s_0722 + s_$$

Reactants

Table 457: Properties of each reactant.

Id	Name	SBO
s_0120	10-formyl-THF	
s0394	ADP	
$s_{-}1322$	phosphate	

Modifiers

Table 458: Properties of each modifier.

Id	Name	SBO
e_0396	ADE3	0000460
e_0057	MIS1	0000460
s_0120	10-formyl-THF	
s_0394	ADP	
s_1322	phosphate	
s_0434	ATP	
s_0722	formate	
s_1487	THF	

Products

Table 459: Properties of each product.

Id	Name	SBO
s_0434	ATP	
s_0722	formate	
$s_{-}1487$	THF	

Kinetic Law

Derived unit contains undeclared units

$$v_{114} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0120}] \cdot [\text{s_0394}] \cdot [\text{s_1322}] - \frac{[\text{s_0434}] \cdot [\text{s_0722}] \cdot [\text{s_1487}]}{\text{Keq}} \right)}{\text{Km0120} \cdot \text{Km0394} \cdot \text{Km1322}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0120}] \cdot [\text{s_0394}] \cdot [\text{s_1322}] - \frac{[\text{s_0434}] \cdot [\text{s_0722}] \cdot [\text{s_1487}]}{\text{Keq}} \right)}{\text{Km0120} \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1487}]}{\text{Km1322}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0722}]}{\text{Km0722}} \right) \cdot \left(1 + \frac{[\text{s_1487}]}{\text{Km1487}} \right) - 1} \\ = \frac{\text{Vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0394}] \cdot [\text{s_0394}] \cdot$$

Table 460: Properties of each parameter.

	r r					
Id	Name	SBO	Value	Unit	Constant	
FLUX_VALUE			2.876	dimensionless	\checkmark	
Vmax		0000324	86.269	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$		
Keq		0000281	2.000	dimensionless		
Km0120		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$		
Km0394		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$		
Km1322		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$		
Km0434		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$		
Km0722		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$		
Km1487		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$		

6.115 Reaction r_0450

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name fructose-bisphosphate aldolase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0555 = \frac{e_0567, s_0555, s_0629, s_0764}{s_0629 + s_0764}$$
 $s_0629 + s_0764$ (230)

Reactant

Table 461: Properties of each reactant.

	· · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
s_0555	D-fructose 1,6-bisphosphate	

Modifiers

Table 462: Properties of each modifier.

Id	Name	SBO
e_0567	FBA1	0000460
s_0555	D-fructose 1,6-bisphosphate	
s_0629	dihydroxyacetone phosphate	
s_0764	glyceraldehyde 3-phosphate	

Products

Table 463: Properties of each product.

Id	Name	SBO
	dihydroxyacetone phosphate glyceraldehyde 3-phosphate	

Kinetic Law

$$v_{115} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0555}] - \frac{[\text{s.0629}] \cdot [\text{s.0764}]}{\text{Keq}} \right)}{\text{Km0555}}}{1 + \frac{[\text{s.0555}]}{\text{Km0555}} + \left(1 + \frac{[\text{s.0629}]}{\text{Km0629}} \right) \cdot \left(1 + \frac{[\text{s.0764}]}{\text{Km0764}} \right) - 1}$$
(231)

Table 464: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.851	dimensionless	Ø
Vmax		0000324	8.506	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	0.200	$\text{mmol} \cdot l^{-1}$	\square
Km0555		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0629		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0764		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.116 Reaction r_0451

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name fumarase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0725 = 0.0940, s_0725, s_0066 = 0.0066$$
 (232)

Reactant

Table 465: Properties of each reactant.

Id	Name	SBO
s_0725	fumarate	

Modifiers

Table 466: Properties of each modifier.

Id	Name	SBO
e_0940	FUM1	0000460
s_0725	fumarate	
s_0066	(S)-malate	

Product

Table 467: Properties of each product.

Id	Name	SBO
s_0066	(S)-malate	

Kinetic Law

$$v_{116} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0725}] - \frac{[\text{s_0066}]}{\text{Keq}} \right)}{\frac{\text{Km0725}}{1 + \frac{[\text{s_0725}]}{\text{Km0725}} + 1 + \frac{[\text{s_0066}]}{\text{Km0066}} - 1}}$$
(233)

Table 468: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.014	dimensionless	
Vmax		0000324	0.086	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0725		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0066		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\checkmark

6.117 Reaction r_0462

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name geranyltranstransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0745 + s_0943 \xrightarrow{e_0515, s_0745, s_0943, s_0190, s_0633} s_0190 + s_0633 \tag{234}$$

Reactants

Table 469: Properties of each reactant.

Id	Name	SBO
s_0745 s_0943	geranyl diphosphate isopentenyl diphosphate	

Modifiers

Table 470: Properties of each modifier.

Id	Name	SBO
e_0515	ERG20	0000460
s_0745	geranyl diphosphate	
$s_{-}0943$	isopentenyl diphosphate	
s_0190	farnesyl diphosphate	
s_0633	diphosphate	

Products

Table 471: Properties of each product.

Id	Name	SBO
s_0190 s_0633	farnesyl diphosphate diphosphate	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{117} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0745}] \cdot [\text{s_0943}] - \frac{[\text{s_0190}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\text{Km0745} \cdot \text{Km0943}}}{\left(1 + \frac{[\text{s_0745}]}{\text{Km0745}} \right) \cdot \left(1 + \frac{[\text{s_0943}]}{\text{Km0943}} \right) + \left(1 + \frac{[\text{s_0190}]}{\text{Km0190}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1}$$
 (235)

Table 472: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.19949368301002 \cdot 10^{-4}$	dimensionless	\checkmark
Vmax		0000324	0.007	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0745		0000322	0.100	$mmol \cdot l^{-1}$	
Km0943		0000322	0.100	$mmol \cdot l^{-1}$	
Km0190		0000323	0.100	$mmol \cdot l^{-1}$	
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.118 Reaction r_0467

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name glucose-6-phosphate isomerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0568 \xrightarrow{e_{-}0079, s_{-}0568, s_{-}0557} s_{-}0557$$
 (236)

Reactant

Table 473: Properties of each reactant.

Id	Name	SBO
s_0568	D-glucose 6-phosphate	

Modifiers

Table 474: Properties of each modifier.

Id	Name	SBO
e_0079	PGI1	0000460
s_0568	D-glucose 6-phosphate	
s_0557	D-fructose 6-phosphate	

Product

Table 475: Properties of each product.

	1 1	
Id	Name	SBO
s_0557	D-fructose 6-phosphate	

Kinetic Law

$$v_{118} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0568}] - \frac{[\text{s_0557}]}{\text{Keq}} \right)}{\frac{\text{Km0568}}{1 + \frac{[\text{s_0568}]}{\text{Km0568}} + 1 + \frac{[\text{s_0557}]}{\text{Km0557}} - 1}}$$
(237)

Table 476: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.892	dimensionless	
Vmax		0000324	5.354	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0568		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0557		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	

6.119 Reaction r_0470

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name glutamate dehydrogenase (NAD)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0180 + s_0419 + s_1203 \xleftarrow{e_0160, s_0180, s_0419, s_1203, s_0991, s_1198} s_0991 + s_1198 \tag{238}$$

Reactants

Table 477: Properties of each reactant.

Id	Name	SBO
s_0180	2-oxoglutarate	
s_0419	ammonium	
$s_{-}1203$	NADH	

Modifiers

Table 478: Properties of each modifier.

	1	
Id	Name	SBO
e_0160	GDH2	0000460
s_0180	2-oxoglutarate	
s_0419	ammonium	
s_1203	NADH	
s_0991	L-glutamate	
s_1198	NAD	

Products

Table 479: Properties of each product.

Id	Name	SBO
s_0991	L-glutamate	
s_1198	NAD	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{119} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0180}] \cdot [\text{s_0419}] \cdot [\text{s_1203}] - \frac{[\text{s_0991}] \cdot [\text{s_1198}]}{\text{Keq}} \right)}{\text{Km0180} \cdot \text{Km0419} \cdot \text{Km1203}} } \frac{\text{Km0180} \cdot \text{Km0419} \cdot \text{Km1203}}{\left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0419}]}{\text{Km0419}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) + \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) - 1}$$
(239)

Table 480: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.813	dimensionless	
Vmax		0000324	17.882	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathscr{L}} $
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot \mathbf{l}$	\square
Km0180		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0419		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1203		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0991		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1198		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.120 Reaction r_0471

This is a reversible reaction of three reactants forming two products influenced by seven modifiers.

Name glutamate dehydrogenase (NADP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0180 + s_0419 + s_1212 \xrightarrow{e_0016, e_0899, s_0180, s_0419, s_1212, s_0991, s_1207} s_0991 + s_1207 \tag{240}$$

Reactants

Table 481: Properties of each reactant.

	•	
Id	Name	SBO
s_0180	2-oxoglutarate	
$s_{-}0419$	ammonium	

Id	Name	SBO
s_1212	NADPH	

Modifiers

Table 482: Properties of each modifier.

Id	Name	SBO
e_0016	GDH3	0000460
e_0899	GDH1	0000460
s_0180	2-oxoglutarate	
s_0419	ammonium	
s_1212	NADPH	
s_0991	L-glutamate	
$s_{-}1207$	NADP(+)	

Products

Table 483: Properties of each product.

Id	Name	SBO
s_0991	L-glutamate	
s_1207	NADP(+)	

Kinetic Law

$$\nu_{120} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0180}] \cdot [\text{s_0419}] \cdot [\text{s_1212}] - \frac{[\text{s_0991}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\frac{\text{Km0180} \cdot \text{Km0419} \cdot \text{Km1212}}{\left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0419}]}{\text{Km0419}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}}$$

$$(241)$$

Table 484: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALU	E		0.813	dimensionless	\overline{Z}
Vmax		0000324	17.882	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km0180		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark

Id	Name	SBO	Value	Unit	Constant
Km0419		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0991		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$mmol \cdot l^{-1}$	

6.121 Reaction r_0476

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name glutamine synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0419 + s_0434 + s_0991 \xrightarrow{e_0955, s_0419, s_0434, s_0991, s_0394, s_0999, s_1322} s_0394 + s_0999 + s_1322 \tag{242}$$

Reactants

Table 485: Properties of each reactant.

Id	Name	SBO
s_0419	ammonium	
s_0434	ATP	
s_0991	L-glutamate	

Modifiers

Table 486: Properties of each modifier.

Id	Name	SBO
e_0955	GLN1	0000460
s0419	ammonium	
s0434	ATP	
s_0991	L-glutamate	
s_0394	ADP	
s_0999	L-glutamine	
s_1322	phosphate	

Products

Table 487: Properties of each product.

Id	Name	SBO
s_0394	ADP	
s_0999	L-glutamine	
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{121} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0419}] \cdot [\text{s_0434}] \cdot [\text{s_0991}] - \frac{[\text{s_0394}] \cdot [\text{s_0999}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\frac{\text{Km0419} \cdot \text{Km0434}}{\left(1 + \frac{[\text{s_0419}]}{\text{Km0419}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0999}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km09999}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

Table 488: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.031	dimensionless	
Vmax		0000324	0.934	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0419		0000322	0.100	$mmol \cdot l^{-1}$	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	
Km0991		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0394		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0999		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.122 Reaction r_0478

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name glutaminyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0999 + s_1590 \xrightarrow{e_0867, s_0434, s_0999, s_1590, s_0423, s_0633, s_0747} s_0423 + s_0633 + s_0747 \xrightarrow{(244)}$$

Reactants

Table 489: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0999	L-glutamine	
$s_{-}1590$	tRNA(Gln)	

Modifiers

Table 490: Properties of each modifier.

Id	Name	SBO
e_0867	GLN4	0000460
s_0434	ATP	
s_0999	L-glutamine	
s_1590	tRNA(Gln)	
s_0423	AMP	
s_0633	diphosphate	
s_0747	Gln-tRNA(Gln)	

Products

Table 491: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0633	diphosphate	
s_0747	Gln-tRNA(Gln)	

Kinetic Law

$$v_{122} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0999}] \cdot [\text{s_1590}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_0747}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km0999} \cdot \text{Km1590}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0999}] \cdot [\text{s_1590}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_0747}]}{\text{Keq}} \right)}{\left(1 + \frac{[\text{s_0999}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0747}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0747}]}{\text{Km0747}} \right) - 1}$$

Table 492: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.120	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0999		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1590		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0423		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0747		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.123 Reaction r_0479

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name glutamyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0991 + s_1591 \xrightarrow{e_0353, s_0434, s_0991, s_1591, s_0423, s_0633, s_0748} s_0423 + s_0633 + s_0748 \xrightarrow{(246)}$$

Reactants

Table 493: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0991	L-glutamate	
s_1591	tRNA(Glu)	

Modifiers

Table 494: Properties of each modifier.

Id	Name	SBO
e_0353	GUS1	0000460
s_0434	ATP	
s_0991	L-glutamate	
$s_{-}1591$	tRNA(Glu)	
s0423	AMP	
s0633	diphosphate	
s_0748	Glu-tRNA(Glu)	

Products

Table 495: Properties of each product.

Id	Name	SBO
s_0423	AMP	_
s_0633	diphosphate	
s_0748	Glu-tRNA(Glu)	

Kinetic Law

$$v_{123} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0991}] \cdot [\text{s_1591}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_0748}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km0991} \cdot \text{Km1591}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0434}] \cdot [\text{s_0434}] \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0934}} \right) \cdot \left(1 + \frac{[\text{s_1591}]}{\text{Km0748}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0748}]}{\text{Km0748}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1591}]}{\text{Km1591}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0748}]}{\text{Km0748}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0748}]}{\text{Km0748}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km1591}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0748}]}{\text{Km0748}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0748}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0748}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0434}]$$

Table 496: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.344	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1591		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0423		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square

Id	Name	SBO	Value	Unit	Constant
Km0633		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km0748		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.124 Reaction r_0481

This is a reversible reaction of two reactants forming two products influenced by ten modifiers.

Name glutathione oxidoreductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0754 + s_1212 \xrightarrow{e_0242, \ e_0104, \ e_0181, \ e_0304, \ e_0915, \ e_0910, \ s_0754, \ s_1212, \ s_0750, \ s_1207} 2 \ s_0750 + s_1207 \xrightarrow{(248)} 2 \ s_0750 + s_1207 \xrightarrow{(248)} 3 \ s_0750 + s$$

Reactants

Table 497: Properties of each reactant.

Id	Name	SBO
	glutathione disulfide NADPH	

Modifiers

Table 498: Properties of each modifier.

Id	Name	SBO
e_0242	GRX2	0000460
e_0104	GRX1	0000460
e_0181	GRX3	0000460
$e_{-}0304$	GRX4	0000460
e_0915	GLR1	0000460
e_0910	GRX5	0000460
s0754	glutathione disulfide	
s_1212	NADPH	
s_0750	glutathione	
s_1207	NADP(+)	

Products

Table 499: Properties of each product.

Id	Name	SBO
s_0750 s_1207	glutathione NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$v_{124} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0754}] \cdot [\text{s_1212}] - \frac{[\text{s_0750}]^2 \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\frac{\text{Km0754} \cdot \text{Km1212}}{\left(1 + \frac{[\text{s_0754}]}{\text{Km0754}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0750}]}{\text{Km0750}} \right)^2 \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$
(249)

Table 500: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	
Vmax		0000324	0.046	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0754		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0750		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $

6.125 Reaction r_0483

This is a reversible reaction of two reactants forming one product influenced by nine modifiers.

Name glutathione peridoxase

SBO:0000176 biochemical reaction

Reaction equation

$$2s_0750 + s_0837 \xleftarrow{e_0242,\ e_0563,\ e_0086,\ e_0104,\ e_0490,\ e_0910,\ s_0750,\ s_0837,\ s_0754} s_0754 \tag{250}$$

Reactants

Table 501: Properties of each reactant.

Id	Name	SBO
s_0750 s_0837	glutathione hydrogen peroxide	

Modifiers

Table 502: Properties of each modifier.

	oz. Troperties of each	
Id	Name	SBO
e_0242	GRX2	0000460
e_0563	GPX1	0000460
e_0086	GPX2	0000460
e_0104	GRX1	0000460
$e_{-}0490$	HYR1	0000460
e_0910	GRX5	0000460
s_0750	glutathione	
s_0837	hydrogen peroxide	
s0754	glutathione disulfide	

Product

Table 503: Properties of each product.

Id	Name	SBO
s_0754	glutathione disulfide	

Kinetic Law

$$v_{125} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0750}]^2 \cdot [\text{s_0837}] - \frac{[\text{s_0754}]}{\text{Keq}} \right)}{\text{Km0750}^2 \cdot \text{Km0837}}}{\left(1 + \frac{[\text{s_0750}]}{\text{Km0750}} \right)^2 \cdot \left(1 + \frac{[\text{s_0837}]}{\text{Km0837}} \right) + 1 + \frac{[\text{s_0754}]}{\text{Km0754}} - 1}$$
(251)

Table 504: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALU	UE		0.002	dimensionless	

Id	Name	SBO	Value	Unit	Constant
Vmax		0000324	0.038	$\operatorname{mmol} \cdot l^{-1} \cdot s^{-1}$	$\overline{\square}$
Keq		0000281	200.000	$\text{mmol}^{-2} \cdot l^2$	\square
Km0750		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0837		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0754		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.126 Reaction r_0486

This is a reversible reaction of three reactants forming two products influenced by eight modifiers.

Name glyceraldehyde-3-phosphate dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0764 + s_1198 + s_1322 \xrightarrow{e_0392, \ e_0495, \ e_0525, \ s_0764, \ s_1198, \ s_1322, \ s_0075, \ s_1203} s_0075 + s_1203 \xrightarrow{(252)}$$

Reactants

Table 505: Properties of each reactant.

	NI	CDC
Id	Name	SBO
s0764	glyceraldehyde 3-phosphate	
$s_{-}1198$	NAD	
s_1322	phosphate	

Modifiers

Table 506: Properties of each modifier.

Id	Name	SBO
e_0392	TDH3	0000460
e_0495	TDH1	0000460
e_0525	TDH2	0000460
s_0764	glyceraldehyde 3-phosphate	
$s_{-}1198$	NAD	
s_1322	phosphate	
s_0075	1,3-bisphospho-D-glycerate	

Id	Name	SBO
s_1203	NADH	

Products

Table 507: Properties of each product.

Id	Name	SBO
s_0075	1,3-bisphospho-D-glycerate	
s_1203	NADH	

Kinetic Law

Derived unit contains undeclared units

$$v_{126} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0764}] \cdot [\text{s.1198}] \cdot [\text{s.1322}] - \frac{[\text{s.0075}] \cdot [\text{s.1203}]}{\text{Keq}} \right)}{\text{Km0764} \cdot \text{Km1198} \cdot \text{Km1322}} } \frac{1198 \cdot (\text{s.1322}) - \frac{[\text{s.0075}] \cdot [\text{s.1203}]}{\text{Keq}}}{\left(1 + \frac{[\text{s.0764}]}{\text{Km0764}} \right) \cdot \left(1 + \frac{[\text{s.1198}]}{\text{Km1198}} \right) \cdot \left(1 + \frac{[\text{s.1322}]}{\text{Km1322}} \right) + \left(1 + \frac{[\text{s.0075}]}{\text{Km0075}} \right) \cdot \left(1 + \frac{[\text{s.1203}]}{\text{Km1203}} \right) - 1}$$

$$(253)$$

Table 508: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.691	dimensionless	
Vmax		0000324	37.211	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbb{Z}}$
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	$ \mathbf{Z} $
Km0764		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1198		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1322		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0075		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1203		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.127 Reaction r_0491

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name glycerol-3-phosphate dehydrogenase (NAD)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0629 + s_1203 \xrightarrow{e_0129, \ e_0827, \ s_0629, \ s_1203, \ s_0767, \ s_1198} s_0767 + s_1198 \qquad (254)$$

Reactants

Table 509: Properties of each reactant.

Id	Name	SBO
	dihydroxyacetone phosphate NADH	

Modifiers

Table 510: Properties of each modifier.

Id	Name	SBO
e_0129	GPD1	0000460
e_0827	GPD2	0000460
s_0629	dihydroxyacetone phosphate	
s_1203	NADH	
s_0767	glycerol 3-phosphate	
s_1198	NAD	

Products

Table 511: Properties of each product.

	<u> </u>	
Id	Name	SBO
s_0767 s_1198	glycerol 3-phosphate	
5_1190	NAD	

Kinetic Law

$$\nu_{127} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0629}] \cdot [\text{s_1203}] - \frac{[\text{s_0767}] \cdot [\text{s_1198}]}{\text{Keq}} \right)}{\text{Km0629} \cdot \text{Km1203}}}{\left(1 + \frac{[\text{s_0629}]}{\text{Km0629}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) + \left(1 + \frac{[\text{s_0767}]}{\text{Km0767}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) - 1}$$
 (255)

Table 512: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.40277331835412 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.003	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathcal{L}} $
Keq		0000281	2.000	dimensionless	$ \overline{\mathcal{L}} $
Km0629		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{L}} $
Km1203		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0767		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{L}} $
Km1198		0000323	0.100	$mmol \cdot l^{-1}$	$\overline{\mathbf{Z}}$

6.128 Reaction r_0495

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name glycerol-3-phosphate/dihydroxyacetone phosphate acyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0380 + s_0767 \xrightarrow{e_0020, \ e_0607, \ s_0380, \ s_0767, \ s_0082, \ s_0529} s_0082 + s_0529 \tag{256}$$

Reactants

Table 513: Properties of each reactant.

Id	Name	SBO
	acyl-CoA	
s_0767	glycerol 3-phosphate	

Modifiers

Table 514: Properties of each modifier.

r				
Id	Name	SBO		
e_0020	SCT1	0000460		
$e_{-}0607$	GPT2	0000460		
s_0380	acyl-CoA			
s_0767	glycerol 3-phosphate			
s_0082	1-acyl-sn-glycerol 3-phosphate			
s_0529	coenzyme A			

Products

Table 515: Properties of each product.

Id	Name	SBO
	1-acyl-sn-glycerol 3-phosphate coenzyme A	

Kinetic Law

Derived unit contains undeclared units

$$v_{128} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0380}] \cdot [\text{s_0767}] - \frac{[\text{s_0082}] \cdot [\text{s_0529}]}{\text{Keq}} \right)}{\text{Km0380} \cdot \text{Km0767}}}{\left(1 + \frac{[\text{s_0380}]}{\text{Km0380}} \right) \cdot \left(1 + \frac{[\text{s_0767}]}{\text{Km0767}} \right) + \left(1 + \frac{[\text{s_0082}]}{\text{Km0082}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) - 1}$$
(257)

Table 516: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.40277332169094 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.003	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$ \overline{\mathscr{L}} $
Km0380		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0767		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0082		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0529		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	

6.129 Reaction r_0499

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name glycinamide ribotide transformylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0120 + s_0325 \xrightarrow{e_0231, s_0120, s_0325, s_0301, s_1487} s_0301 + s_1487 \tag{258}$$

Reactants

Table 517: Properties of each reactant.

Id	Name	SBO
	10-formyl-THF 5-phospho-ribosyl-glycineamide	

Table 518: Properties of each modifier.

Id	Name	SBO
e_0231	ADE8	0000460
s_0120	10-formyl-THF	
s_0325	5-phospho-ribosyl-glycineamide	
s_0301	5'-phosphoribosyl-N-formylglycineamide	
s_1487	THF	

Products

Table 519: Properties of each product.

Id	Name	SBO
s_0301 s_1487	5'-phosphoribosyl-N-formylglycineamide THF	

Kinetic Law

$$v_{129} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0120}] \cdot [\text{s_0325}] - \frac{[\text{s_0301}] \cdot [\text{s_1487}]}{\text{Keq}} \right)}{\text{Km0120} \cdot \text{Km0325}}}{\left(1 + \frac{[\text{s_0120}]}{\text{Km0120}} \right) \cdot \left(1 + \frac{[\text{s_0325}]}{\text{Km0325}} \right) + \left(1 + \frac{[\text{s_0301}]}{\text{Km0301}} \right) \cdot \left(1 + \frac{[\text{s_1487}]}{\text{Km1487}} \right) - 1}$$
(259)

Table 520: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE	Ξ		0.004	dimensionless	
Vmax		0000324	0.053	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0120		0000322	0.100	$mmol \cdot l^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km0325		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0301		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1487		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.130 Reaction r_0501

This is a reversible reaction of three reactants forming four products influenced by eleven modifiers.

Name glycine cleavage system

SBO:0000176 biochemical reaction

Reaction equation

$$s_1003 + s_1198 + s_1487 = \underbrace{e_0741, e_0012, e_0167, e_0311, s_1003, s_1198, s_1487, s_0306, s_0419, s_0456, s_1203}_{(260)}$$

Reactants

Table 521: Properties of each reactant.

Id	Name	SBO
s_1003	L-glycine	
s_1198	NAD	
$s_{-}1487$	THF	

Modifiers

Table 522: Properties of each modifier.

Id	Name	SBO
e_0741	GCV2	0000460
e_0012	GCV3	0000460
e_0167	GCV1	0000460
e_0311	LPD1	0000460
s_1003	L-glycine	
s_1198	NAD	
$s_{-}1487$	THF	
s_0306	5,10-methylenetetrahydrofolate	
s_0419	ammonium	

Id	Name	SBO
s_0456 s_1203	carbon dioxide NADH	

Products

Table 523: Properties of each product.

Id	Name	SBO
s_0306	5,10-methylenetetrahydrofolate	
s_0419	ammonium	
s0456	carbon dioxide	
s_1203	NADH	

Kinetic Law

Derived unit contains undeclared units

$$v_{130} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_1003] \cdot [\text{s}_1198] \cdot [\text{s}_1487] - \frac{[\text{s}_0306] \cdot [\text{s}_0419] \cdot [\text{s}_0456] \cdot [\text{s}_1203]}{\text{Keq}}\right)}{\text{Km}1003 \cdot \text{Km}1198 \cdot \text{Km}1487}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_1003] \cdot [\text{s}_1198] \cdot [\text{s}_1487] - \frac{[\text{s}_0306] \cdot [\text{s}_0419] \cdot [\text{s}_0456] \cdot [\text{s}_1203]}{\text{Keq}}\right)}{\text{Km}1003} \cdot \left(1 + \frac{[\text{s}_1198]}{\text{Km}1198}\right) \cdot \left(1 + \frac{[\text{s}_1487]}{\text{Km}1487}\right) + \left(1 + \frac{[\text{s}_0306]}{\text{Km}0306}\right) \cdot \left(1 + \frac{[\text{s}_0419]}{\text{Km}0419}\right) \cdot \left(1 + \frac{[\text{s}_0456]}{\text{Km}0456}\right) \cdot \left(1 + \frac{[\text{s}_1203]}{\text{Km}1203}\right)}$$

Table 524: Properties of each parameter.

		<u> </u>			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.437	dimensionless	lacksquare
Vmax		0000324	66.091	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km1003		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1198		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1487		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0306		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0419		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1203		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.131 Reaction r_0502

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name glycine hydroxymethyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1039 + s_1487 \xrightarrow{e_0638, \ e_0091, \ s_1039, \ s_1487, \ s_0306, \ s_1003} s_0306 + s_1003 \tag{262}$$

Reactants

Table 525: Properties of each reactant.

Id	Name	SBO
s_1039 s_1487	L-serine THF	

Modifiers

Table 526: Properties of each modifier.

Id	Name	SBO
e_0638	SHM2	0000460
e_0091	SHM1	0000460
s_1039	L-serine	
s_1487	THF	
s_0306	5,10-methylenetetrahydrofolate	
$s_{-}1003$	L-glycine	

Products

Table 527: Properties of each product.

Id	Name	SBO
s_0306	5,10-methylenetetrahydrofolate	
s_1003	L-glycine	

Kinetic Law

$$v_{131} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1039}] \cdot [\text{s_1487}] - \frac{[\text{s_0306}] \cdot [\text{s_1003}]}{\text{Keq}} \right)}{\text{Km1039} \cdot \text{Km1487}}}{\left(1 + \frac{[\text{s_1039}]}{\text{Km1039}} \right) \cdot \left(1 + \frac{[\text{s_1487}]}{\text{Km1487}} \right) + \left(1 + \frac{[\text{s_0306}]}{\text{Km0306}} \right) \cdot \left(1 + \frac{[\text{s_1003}]}{\text{Km1003}} \right) - 1}$$
 (263)

Table 528: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.452	dimensionless	
Vmax		0000324	20.322	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km1039		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1487		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0306		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1003		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square

6.132 Reaction r_0510

This is a reversible reaction of one reactant forming two products influenced by seven modifiers.

Name glycogen (starch) synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1543 \xleftarrow{e_0667,\ e_0510,\ e_0317,\ e_0603,\ s_1543,\ s_0773,\ s_1538} s_0773 + s_1538 \tag{264}$$

Reactant

Table 529: Properties of each reactant.

Id	Name	SBO
s_1543	UDP-D-glucose	

Modifiers

Table 530: Properties of each modifier.

Id	Name	SBO
e_0667	GSY2	0000460
e_0510	GLG2	0000460

Id	Name	SBO
e_0317	GSY1	0000460
e_0603	GLG1	0000460
$s_{-}1543$	UDP-D-glucose	
s_0773	glycogen	
s_1538	UDP	

Products

Table 531: Properties of each product.

Id	Name	SBO
s_0773	glycogen	
$s_{-}1538$	UDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{132} = \frac{\frac{\text{vol(cell)} \cdot \text{V} \text{max} \cdot \left([\text{s_1543}] - \frac{[\text{s_0773}] \cdot [\text{s_1538}]}{\text{Keq}} \right)}{\text{Km1543}}}{1 + \frac{[\text{s_1543}]}{\text{Km1543}} + \left(1 + \frac{[\text{s_0773}]}{\text{Km0773}} \right) \cdot \left(1 + \frac{[\text{s_1538}]}{\text{Km1538}} \right) - 1}$$
(265)

Table 532: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.020	dimensionless	
Vmax		0000324	0.197	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	
Km1543		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0773		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1538		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark

6.133 Reaction r_0512

This is a reversible reaction of three reactants forming three products influenced by eight modifiers.

Name glycyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1003 + s_1593 \xrightarrow{e_0064, \ e_0963, \ s_0434, \ s_1003, \ s_1593, \ s_0423, \ s_0633, \ s_0757} s_0423 + s_0633 + s_0757 + s_07$$

Reactants

Table 533: Properties of each reactant.

Id	Name	SBO
	ATP L-glycine tRNA(Gly)	

Modifiers

Table 534: Properties of each modifier.

Id	Name	SBO
e_0064	GRS1	0000460
e_0963	GRS2	0000460
s_0434	ATP	
$s_{-}1003$	L-glycine	
$s_{-}1593$	tRNA(Gly)	
s_0423	AMP	
s_0633	diphosphate	
s_0757	Gly-tRNA(Gly)	

Products

Table 535: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s0633	diphosphate	
s_0757	Gly-tRNA(Gly)	

Kinetic Law

$$v_{133} = \frac{ \frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1003}] \cdot [\text{s_1593}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_0757}]}{\text{Keq}} \right) }{ \frac{\text{Km0434} \cdot \text{Km1003} \cdot \text{Km1593}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1003}]}{\text{Km}1003} \right) \cdot \left(1 + \frac{[\text{s_1593}]}{\text{Km1593}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0757}]}{\text{Km0757}} \right) - 1 }$$

Table 536: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	$ \mathbf{Z} $
Vmax		0000324	0.331	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1003		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1593		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0423		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
Km0633		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathcal{L}} $
Km0757		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \mathbf{Z} $

6.134 Reaction r_0514

This is a reversible reaction of three reactants forming four products influenced by eight modifiers

Name GMP synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0999 + s_1565 \xleftarrow{e_0746, s_0434, s_0999, s_1565, s_0423, s_0633, s_0782, s_0991} s_0423 + s_0633 + s_0782 + s_0782 + s_0633 + s_0782 +$$

Reactants

Table 537: Properties of each reactant.

	- · · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
	L-glutamine	
S_1565	xanthosine-5-phosphate	

Table 538: Properties of each modifier.

Id	Name	SBO
e_0746	GUA1	0000460
s_0434	ATP	
s_0999	L-glutamine	
$s_{-}1565$	xanthosine-5-phosphate	
s_0423	AMP	
s_0633	diphosphate	
s_0782	GMP	
s_0991	L-glutamate	

Products

Table 539: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0633	diphosphate	
s_0782	GMP	
s_0991	L-glutamate	

Kinetic Law

$$\nu_{134} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0999}] \cdot [\text{s_1565}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_0782}] \cdot [\text{s_09991}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km0999} \cdot \text{Km1565}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0999}] \cdot \left(1 + \frac{[\text{s_0423}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0782}]}{\text{Km0782}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0999}} \right) - \frac{(\text{s_0991})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0782}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0999}} \right) - \frac{(\text{s_0423}) \cdot [\text{s_0633}]}{\text{Km0434}} \cdot \left(1 + \frac{[\text{s_0782}]}{\text{Km0782}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0999}} \right) - \frac{(\text{s_0423}) \cdot [\text{s_0423}]}{\text{Km0434}} \cdot \left(1 + \frac{[\text{s_0782}]}{\text{Km0782}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0999}} \right) - \frac{(\text{s_0434}) \cdot [\text{s_0434}]}{\text{Km0434}} \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km0999}} \right) - \frac{(\text{s_0423}) \cdot [\text{s_0433}]}{\text{Km0434}} \cdot \left(1 + \frac{[\text{s_0782}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km0999}} \right) - \frac{(\text{s_0434}) \cdot (\text{s_0434})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) - \frac{(\text{s_0434}) \cdot (\text{s_0434})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) - \frac{(\text{s_0434}) \cdot (\text{s_0434})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) - \frac{(\text{s_0434}) \cdot (\text{s_0434})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) - \frac{(\text{s_0434}) \cdot (\text{s_0434})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) - \frac{(\text{s_0434}) \cdot (\text{s_0434})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) - \frac{(\text{s_0434}) \cdot (\text{s_0434})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0999}} \right) - \frac{(\text{s_0434})}{\text{Km0999}} \cdot \left(1 + \frac{[\text{s_0434}]}$$

Table 540: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	
Vmax		0000324	0.086	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0999		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	<u></u>

Id	Name	SBO	Value	Unit	Constant
Km1565		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\overline{Z}
Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \mathbf{Z} $
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0782		0000323	0.100	$mmol \cdot l^{-1}$	
Km0991		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.135 Reaction r_0525

This is a reversible reaction of one reactant forming three products influenced by five modifiers.

Name GTP cyclohydrolase II

SBO:0000176 biochemical reaction

Reaction equation

$$s_0785 \xrightarrow{e_0025, s_0785, s_0141, s_0633, s_0722} s_0141 + s_0633 + s_0722 \tag{270}$$

Reactant

Table 541: Properties of each reactant.

Id	Name	SBO
s_0785	GTP	

Modifiers

Table 542: Properties of each modifier.

Id	Name	SBO
e_0025	RIB1	0000460
s_0785	GTP	
s_0141	2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine	
s_0633	diphosphate	
s0722	formate	

Products

Table 543: Properties of each product.

Id	Name	SBO
s_0633	2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine diphosphate formate	

Kinetic Law

Derived unit contains undeclared units

$$v_{135} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0785}] - \frac{[\text{s_0141}] \cdot [\text{s_0633}] \cdot [\text{s_0722}]}{\text{Keq}} \right)}{\text{Km0785}}}{1 + \frac{[\text{s_0785}]}{\text{Km0785}} + \left(1 + \frac{[\text{s_0141}]}{\text{Km0141}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0722}]}{\text{Km0722}} \right) - 1}$$
(271)

Table 544: Properties of each parameter.

		14010 5 1 1. 1 10	perties of each parameter.		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALU	JE		$3.75729835487922 \cdot 10^{-5}$	dimensionless	
${\tt Vmax}$		0000324	$6.7631370387826 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	
Keq		0000281	0.020	$\text{mmol}^2 \cdot 1^{-2}$	
Km0785		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0141		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0722		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.136 Reaction r_0528

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name guanylate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0782 \xrightarrow{e_0234, \ s_0434, \ s_0782, \ s_0394, \ s_0739} s_0394 + s_0739 \tag{272}$$

Reactants

Table 545: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0782	GMP	

Table 546: Properties of each modifier.

	_	
Id	Name	SBO
e_0234	GUK1	0000460
s_0434	ATP	
s_0782	GMP	
s_0394	ADP	
s_0739	GDP	

Products

Table 547: Properties of each product.

Id	Name	SBO
s_0394	ADP	
s_0739	GDP	

Kinetic Law

$$v_{136} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0782}] - \frac{[\text{s_0394}] \cdot [\text{s_0739}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km0782}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0782}]}{\text{Km0782}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0739}]}{\text{Km0739}} \right) - 1}}$$
(273)

Table 548: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$6.43295020859241 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	$9.00613029202938 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km0782		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0394		0000323	0.100	$mmol \cdot l^{-1}$	
Km0739		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square

6.137 Reaction r_0529

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name guanylate kinase (GMP:dATP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0586 + s_0782 \xrightarrow{e_0234, \ s_0586, \ s_0782, \ s_0582, \ s_0739} s_0582 + s_0739 \tag{274}$$

Reactants

Table 549: Properties of each reactant.

Id	Name	SBO
s_0586	dATP	
s_0782	GMP	

Modifiers

Table 550: Properties of each modifier.

Id	Name	SBO
e_0234	GUK1	0000460
s_0586	dATP	
s_0782	GMP	
s_0582	dADP	
s_0739	GDP	

Products

Table 551: Properties of each product.

Id	Name	SBO
s_0582	dADP	
s_0739	GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{137} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0586}] \cdot [\text{s_0782}] - \frac{[\text{s_0582}] \cdot [\text{s_0739}]}{\text{Keq}} \right)}{\text{Km0586} \cdot \text{Km0782}}}{\left(1 + \frac{[\text{s_0586}]}{\text{Km0586}} \right) \cdot \left(1 + \frac{[\text{s_0782}]}{\text{Km0782}} \right) + \left(1 + \frac{[\text{s_0582}]}{\text{Km0582}} \right) \cdot \left(1 + \frac{[\text{s_0739}]}{\text{Km0739}} \right) - 1}$$
 (275)

Table 552: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$6.43295039602845 \cdot 10^{-5}$	dimensionless	\checkmark
Vmax		0000324	$9.00613055443983 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0586		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0782		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0582		0000323	0.100	$mmol \cdot l^{-1}$	
Km0739		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.138 Reaction r_0534

This is a reversible reaction of two reactants forming two products influenced by seven modifiers.

Name hexokinase (D-glucose:ATP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0563 \xleftarrow{e_0106, \ e_0325, \ e_0355, \ s_0434, \ s_0563, \ s_0394, \ s_0568} s_0394 + s_0568 \tag{276}$$

Reactants

Table 553: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0563	D-glucose	

Table 554: Properties of each modifier.

	ee ii rreperiies or each ii	
Id	Name	SBO
e_0106	GLK1	0000460
e_0325	HXK1	0000460
e_0355	HXK2	0000460
s_0434	ATP	
s_0563	D-glucose	
s_0394	ADP	
s_0568	D-glucose 6-phosphate	

Products

Table 555: Properties of each product.

14010 5	rue te e e e e e e e e e e e e e e e e e			
Id	Name	SBO		
s_0394	ADP			
s_0568	D-glucose 6-phosphate			

Kinetic Law

$$v_{138} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0563}] - \frac{[\text{s_0568}]}{\text{Keq}}\right)}{\text{Km0434} \cdot \text{Km0563}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}}\right) \cdot \left(1 + \frac{[\text{s_0563}]}{\text{Km00563}}\right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}}\right) \cdot \left(1 + \frac{[\text{s_0568}]}{\text{Km0568}}\right) - 1}$$
(277)

Table 556: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.000	dimensionless	
Vmax		0000324	14.000	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $

Id	Name	SBO	Value	Unit	Constant
Keq		0000281	2.000	dimensionless	\overline{Z}
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0563		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	Z
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0568		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.139 Reaction r_0536

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name histidinol dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}1010 + 2s_{-}1198 \rightleftharpoons 0.0103, s_{-}1010, s_{-}1198, s_{-}1006, s_{-}1203 \rightleftharpoons s_{-}1006 + 2s_{-}1203$$
 (278)

Reactants

Table 557: Properties of each reactant.

Id	Name	SBO
s_1010 s_1198	L-histidinol NAD	

Modifiers

Table 558: Properties of each modifier.

Id	Name	SBO
e_0103	HIS4	0000460
$s_{-}1010$	L-histidinol	
$s_{-}1198$	NAD	
$s_{-}1006$	L-histidine	
s_1203	NADH	

Products

Table 559: Properties of each product.

Id	Name	SBO
	L-histidine NADH	

Kinetic Law

Derived unit contains undeclared units

$$v_{139} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1010}] \cdot [\text{s_1198}]^2 - \frac{[\text{s_1006}] \cdot [\text{s_1203}]^2}{\text{Keq}} \right)}{\text{Km1010} \cdot \text{Km1198}^2}}{\left(1 + \frac{[\text{s_1010}]}{\text{Km1010}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right)^2 + \left(1 + \frac{[\text{s_1006}]}{\text{Km1006}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right)^2 - 1}$$
(279)

Table 560: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	\square
Vmax		0000324	0.075	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km1010		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1198		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1006		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1203		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square

6.140 Reaction r_0537

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name histidinol-phosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-1011} = \underbrace{e_{-0320, s_{-1011, s_{-1010, s_{-1322}}}}_{s_{-1010 + s_{-1322}}} s_{-1010 + s_{-1322}}$$
 (280)

Reactant

Table 561: Properties of each reactant.

Id	Name	SBO
s_1011	L-histidinol phosphate	

Table 562: Properties of each modifier.

	- · · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
e_0320	HIS2	0000460
$s_{-}1011$	L-histidinol phosphate	
$s_{-}1010$	L-histidinol	
s_1322	phosphate	

Products

Table 563: Properties of each product.

Id	Name	SBO
s_1010	L-histidinol	
s_1322	phosphate	

Kinetic Law

$$v_{140} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1011}] - \frac{[\text{s_1010}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km1011}}}{1 + \frac{[\text{s_1011}]}{\text{Km1011}} + \left(1 + \frac{[\text{s_1010}]}{\text{Km1010}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(281)

Table 564: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	
Vmax		0000324	0.025	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1011		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1010		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	Ø

6.141 Reaction r_0538

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name histidinol-phosphate transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0207 + s_0991 \xrightarrow{e_0476, s_0207, s_0991, s_0180, s_1011} s_0180 + s_1011 \tag{282}$$

Reactants

Table 565: Properties of each reactant.

Id	Name	SBO
	3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphate L-glutamate	

Modifiers

Table 566: Properties of each modifier.

Id	Name	SBO
e_0476	HIS5	0000460
s_0207	3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphate	
s_0991	L-glutamate	
s_0180	2-oxoglutarate	
$s_{-}1011$	L-histidinol phosphate	

Products

Table 567: Properties of each product.

Id	Name	SBO
	2-oxoglutarate L-histidinol phosphate	

Kinetic Law

$$v_{141} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0207}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_1011}]}{\text{Keq}} \right)}{\text{Km0207} \cdot \text{Km0991}}}{\left(1 + \frac{[\text{s_0207}]}{\text{Km0207}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_1011}]}{\text{Km1011}} \right) - 1}$$
 (283)

Table 568: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	
Vmax		0000324	0.035	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	$ \overline{\mathscr{L}} $
Km0207		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0991		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0180		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1011		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.142 Reaction r_0539

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name histidyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1006 + s_1594 \xrightarrow{e_0953, s_0434, s_1006, s_1594, s_0423, s_0633, s_0832} s_0423 + s_0633 + s_0832$$

$$(284)$$

Reactants

Table 569: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1006$	L-histidine	
$s_{-}1594$	tRNA(His)	

Modifiers

Table 570: Properties of each modifier.

	· F	
Id	Name	SBO
e_0953	HTS1	0000460
s_0434	ATP	
$s_{-}1006$	L-histidine	
s_1594	tRNA(His)	
s_0423	AMP	
s_0633	diphosphate	
s_0832	His-tRNA(His)	

Products

Table 571: Properties of each product.

Name	SBO
AMP	
diphosphate	
His-tRNA(His)	
	AMP diphosphate

Kinetic Law

$$v_{142} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1006}] \cdot [\text{s_1594}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_0832}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1006} \cdot \text{Km1594}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1006}] \cdot [\text{s_1594}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_0832}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \left(1 + \frac{[\text{s_1006}]}{\text{Km1006}} \right) \cdot \left(1 + \frac{[\text{s_1594}]}{\text{Km1594}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0832}]}{\text{Km0832}} \right) - 1}$$

Table 572: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	\overline{Z}
Vmax		0000324	0.075	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1006		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1594		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0423		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0633		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0832		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.143 Reaction r_0542

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name homoacontinate hydratase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0454 \stackrel{e_0196, s_0454, s_0836}{\longleftarrow} s_0836$$
 (286)

Reactant

Table 573: Properties of each reactant.

Id	Name	SBO
s_0454	but-1-ene-1,2,4-tricarboxylic acid	

Modifiers

Table 574: Properties of each modifier.

Id	Name	SBO
e_0196	LYS4	0000460
s_0454	but-1-ene-1,2,4-tricarboxylic acid	
s_0836	homoisocitrate	

Product

Table 575: Properties of each product.

Id	Name	SBO
s_0836	homoisocitrate	

Kinetic Law

$$v_{143} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0454}] - \frac{[\text{s_0836}]}{\text{Keq}}\right)}{\frac{\text{Km0454}}{1 + \frac{[\text{s_0454}]}{\text{Km0454}} + 1 + \frac{[\text{s_0836}]}{\text{Km0836}} - 1}}$$
(287)

Table 576: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	\square
Vmax		0000324	0.065	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0454		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0836		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.144 Reaction r_0543

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name homocitrate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0180 + s_0373 \xleftarrow{e_0154, \ e_0146, \ s_0180, \ s_0373, \ s_0529, \ s_0835} s_0529 + s_0835 \tag{288}$$

Reactants

Table 577: Properties of each reactant.

Id	Name	SBO
s_0180	2-oxoglutarate	
s_0373	acetyl-CoA	

Modifiers

Table 578: Properties of each modifier.

Id	Name	SBO
e_0154	LYS20	0000460
e_0146	LYS21	0000460
s_0180	2-oxoglutarate	
s_0373	acetyl-CoA	
s_0529	coenzyme A	
s_0835	homocitrate	

Products

Table 579: Properties of each product.

Id	Name	SBO
	coenzyme A homocitrate	

Kinetic Law

Derived unit contains undeclared units

$$v_{144} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0180}] \cdot [\text{s_0373}] - \frac{[\text{s_0529}] \cdot [\text{s_0835}]}{\text{Keq}} \right)}{\text{Km0180} \cdot \text{Km0373}}}{\left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right) + \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_0835}]}{\text{Km0835}} \right) - 1}$$
(289)

Table 580: Properties of each parameter.

		_			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.152	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0180		0000322	0.100	$mmol \cdot l^{-1}$	
Km0373		0000322	0.100	$mmol \cdot l^{-1}$	
Km0529		0000323	0.100	$mmol \cdot l^{-1}$	
Km0835		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.145 Reaction r_0545

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name homoisocitrate dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0836 + s_1198 \xleftarrow{e_0472, \ s_0836, \ s_1198, \ s_0176, \ s_1203, \ s_0456} s_0176 + s_1203 + s_0456 \tag{290}$$

Reactants

Table 581: Properties of each reactant.

Id	Name	SBO
s_0836 s_1198	homoisocitrate NAD	

Table 582: Properties of each modifier.

	1	
Id	Name	SBO
e_0472	LYS12	0000460
s_0836	homoisocitrate	
$s_{-}1198$	NAD	
s_0176	2-oxoadipic acid	
s_1203	NADH	
s_0456	carbon dioxide	

Products

Table 583: Properties of each product.

Id	Name	SBO
s_0176	2-oxoadipic acid	
$s_{-}1203$	NADH	
s_0456	carbon dioxide	

Kinetic Law

$$v_{145} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0836}] \cdot [\text{s_1198}] - \frac{[\text{s_0176}] \cdot [\text{s_1203}] \cdot [\text{s_0456}]}{\text{Keq}} \right)}{Km0836 \cdot \text{Km1198}}}{\left(1 + \frac{[\text{s_0836}]}{\text{Km0836}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_0176}]}{\text{Km0176}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) - 1}$$

$$(291)$$

Table 584: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	

Id	Name	SBO	Value	Unit	Constant
Vmax		0000324	0.239	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0836		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1198		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0176		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1203		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square

6.146 Reaction r_0547

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name homoserine dehydrogenase (NADP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0978 + s_1212 \xleftarrow{e_0548, \ s_0978, \ s_1212, \ s_1014, \ s_1207} s_1014 + s_1207 \tag{292}$$

Reactants

Table 585: Properties of each reactant.

Id	Name	SBO
	L-aspartate 4-semialdehyde NADPH	

Modifiers

Table 586: Properties of each modifier.

Id	Name	SBO
e_0548	HOM6	0000460
s_0978	L-aspartate 4-semialdehyde	
$s_{-}1212$	NADPH	
$s_{-}1014$	L-homoserine	
$s_{-}1207$	NADP(+)	

Products

Table 587: Properties of each product.

Id	Name	SBO
	L-homoserine NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$v_{146} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0978}] \cdot [\text{s_1212}] - \frac{[\text{s_1014}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0978} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0978}]}{\text{Km0978}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_1014}]}{\text{Km1014}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$
(293)

Table 588: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.019	dimensionless	\overline{Z}
Vmax		0000324	0.264	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\checkmark} $
Keq		0000281	2.000	dimensionless	$ \overline{\checkmark} $
Km0978		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{L}} $
Km1014		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathscr{A}}$

6.147 Reaction r_0548

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name homoserine kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1014 \xrightarrow{e_0428, s_0434, s_1014, s_0394, s_1238} s_0394 + s_1238 \tag{294}$$

Reactants

Table 589: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1014$	L-homoserine	

Table 590: Properties of each modifier.

	1	
Id	Name	SBO
e_0428	THR1	0000460
s_0434	ATP	
$s_{-}1014$	L-homoserine	
s_0394	ADP	
$s_{-}1238$	O-phospho-L-homoserine	

Products

Table 591: Properties of each product.

	ruete es il reperiore er euen producti		
Id	Name	SBO	
s_0394	ADP		
s_1238	O-phospho-L-homoserine		

Kinetic Law

$$v_{147} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1014}] - \frac{[\text{s_0394}] \cdot [\text{s_1238}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1014}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1014}]}{\text{Km1014}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1238}]}{\text{Km1238}} \right) - 1}$$
 (295)

Table 592: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALU	E		0.007	dimensionless	$lue{2}$
${\tt Vmax}$		0000324	0.102	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km1014		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1238		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\checkmark

6.148 Reaction r_0549

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name homoserine O-trans-acetylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0373 + s_1014 \xrightarrow{e_0799, \ s_0373, \ s_1014, \ s_0529, \ s_1233} s_0529 + s_1233 \tag{296}$$

Reactants

Table 593: Properties of each reactant.

Id	Name	SBO
s_0373	acetyl-CoA	
$s_{-}1014$	L-homoserine	

Modifiers

Table 594: Properties of each modifier.

Id	Name	SBO
e_0799	MET2	0000460
s_0373	acetyl-CoA	
s_1014	L-homoserine	
s_0529	coenzyme A	
s_1233	O-acetyl-L-homoserine	

Products

Table 595: Properties of each product.

Id	Name	SBO
	coenzyme A O-acetyl-L-homoserine	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{148} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0373}] \cdot [\text{s_1014}] - \frac{[\text{s_0529}] \cdot [\text{s_1233}]}{\text{Keq}} \right)}{\text{Km0373} \cdot \text{Km1014}}}{\left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right) \cdot \left(1 + \frac{[\text{s_1014}]}{\text{Km1014}} \right) + \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1233}]}{\text{Km1233}} \right) - 1}$$
 (297)

Table 596: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.012	dimensionless	
Vmax		0000324	0.162	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0373		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1014		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1233		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.149 Reaction r_0550

This is a reversible reaction of two reactants forming one product influenced by ten modifiers.

Name hydrogen peroxide reductase (thioredoxin)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0837 + s_1616 \xrightarrow{e_0633, \ e_0398, \ e_0233, \ e_0463, \ e_0645, \ e_0029, \ e_0124, \ s_0837, \ s_1616, \ s_1620} (298) \\$$

Reactants

Table 597: Properties of each reactant.

	· · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
s_0837 s_1616	hydrogen peroxide TRX1	

Table 598: Properties of each modifier.

	or repermes or cach	1110 0111011
Id	Name	SBO
e_0633	TRX1	0000460
e_0398	TRX2	0000460
e_0233	TSA2	0000460
e_0463	DOT5	0000460
e_0645	AHP1	0000460
e_0029	PRX1	0000460
e_0124	TRX3	0000460
s_0837	hydrogen peroxide	
s_1616	TRX1	
$s_{-}1620$	TRX1 disulphide	

Product

Table 599: Properties of each product.

Id	Name	SBO
s_1620	TRX1 disulphide	

Kinetic Law

$$v_{149} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0837}] \cdot [\text{s_1616}] - \frac{[\text{s_1620}]}{\text{Keq}} \right)}{\text{Km0837} \cdot \text{Km1616}}}{\left(1 + \frac{[\text{s_0837}]}{\text{Km0837}} \right) \cdot \left(1 + \frac{[\text{s_1616}]}{\text{Km1616}} \right) + 1 + \frac{[\text{s_1620}]}{\text{Km1620}} - 1}$$
(299)

Table 600: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	
Vmax		0000324	0.021	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	\square
Km0837		0000322	0.100	$mmol \cdot l^{-1}$	\square
Km1616		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1620		0000323	0.100	$mmol \cdot l^{-1}$	

6.150 Reaction r_0558

This is a reversible reaction of two reactants forming three products influenced by seven modifiers.

Name hydroxymethylglutaryl CoA reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0218 + 2\,s_1212 \xleftarrow{e_0697, \, e_0708, \, s_0218, \, s_1212, \, s_0028, \, s_0529, \, s_1207} \\ s_0028 + s_0529 + 2\,s_1207 \\ (300)$$

Reactants

Table 601: Properties of each reactant.

Id	Name	SBO	
s_0218	3-hydroxy-3-methylglutaryl-CoA		
$s_{-}1212$	NADPH		

Modifiers

Table 602: Properties of each modifier.

Id	Name	SBO
e_0697	HMG2	0000460
e_0708	HMG1	0000460
s_0218	3-hydroxy-3-methylglutaryl-CoA	
$s_{-}1212$	NADPH	
s_0028	(R)-mevalonate	

Id	Name	SBO
	coenzyme A NADP(+)	

Products

Table 603: Properties of each product.

Id	Name	SBO
s_0028	(R)-mevalonate	
s_0529	coenzyme A	
s_1207	NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$v_{150} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0218}] \cdot [\text{s_1212}]^2 - \frac{[\text{s_0028}] \cdot [\text{s_1207}]^2}{\text{Keq}} \right)}{\text{Km0218} \cdot \text{Km1212}^2}}{\left(1 + \frac{[\text{s_0218}]}{\text{Km0218}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right)^2 + \left(1 + \frac{[\text{s_0028}]}{\text{Km0028}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right)^2 - 1}$$

$$(301)$$

Table 604: Properties of each parameter.

	- re- re- re- re- re- re- re- re- re- re					
Id	Name	SBO	Value	Unit	Constant	
FLUX_VALUE			0.002	dimensionless		
Vmax		0000324	0.072	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$		
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$		
Km0218		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$		
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square	
Km0028		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square	
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$		
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$		

6.151 Reaction r_0559

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name hydroxymethylglutaryl CoA synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0367 + s_0373 \xrightarrow{e_0716, s_0367, s_0373, s_0218, s_0529} s_0218 + s_0529 \tag{302}$$

Reactants

Table 605: Properties of each reactant.

Id	Name	SBO
s_0367 s_0373	acetoacetyl-CoA acetyl-CoA	

Modifiers

Table 606: Properties of each modifier.

Id	Name	SBO
e_0716	ERG13	0000460
s_0367	acetoacetyl-CoA	
s_0373	acetyl-CoA	
s_0218	3-hydroxy-3-methylglutaryl-CoA	
s_0529	coenzyme A	

Products

Table 607: Properties of each product.

Id	Name	SBO
	3-hydroxy-3-methylglutaryl-CoA coenzyme A	

Kinetic Law

$$v_{151} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0367}] \cdot [\text{s_0373}] - \frac{[\text{s_0218}] \cdot [\text{s_0529}]}{\text{Keq}} \right)}{\text{Km0367} \cdot \text{Km0373}}}{\left(1 + \frac{[\text{s_0367}]}{\text{Km0367}} \right) \cdot \left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right) + \left(1 + \frac{[\text{s_0218}]}{\text{Km0218}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) - 1}$$
(303)

Table 608: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	
Vmax		0000324	0.022	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0367		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0373		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0218		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0529		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.152 Reaction r_0563

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name Imidazole-glycerol-3-phosphate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0312 + s_0999 \xleftarrow{e_0087, s_0312, s_0999, s_0403, s_0550, s_0991} s_0403 + s_0550 + s_0991 \tag{304}$$

Reactants

Table 609: Properties of each reactant.

_	Id	Name
		5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-D-ribosyl)imidazole-4-c L-glutamine

Modifiers

Table 610: Properties of each modifier.

Id	Name
e_0087	HIS7
s_0312	5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-D-ribosyl)imidazole-4-c
s_0999	L-glutamine
s_0403	AICAR
s_0550	D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate

Id	Name
s_0991	L-glutamate

Products

Table 611: Properties of each product.

Id	Name	SBO
	AICAR	
ຣ_0550	D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate	
s_0991	L-glutamate	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{152} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0312}] \cdot [\text{s_0999}] - \frac{[\text{s_0403}] \cdot [\text{s_0991}]}{\text{Keq}} \right)}{\text{Km0312} \cdot \text{Km0999}}}{\left(1 + \frac{[\text{s_0312}]}{\text{Km0312}} \right) \cdot \left(1 + \frac{[\text{s_0999}]}{\text{Km0999}} \right) + \left(1 + \frac{[\text{s_0403}]}{\text{Km0403}} \right) \cdot \left(1 + \frac{[\text{s_0550}]}{\text{Km0550}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) - 1}$$

$$(305)$$

Table 612: Properties of each parameter.

Table 012. Hopefiles of each parameter.					
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	
Vmax		0000324	0.055	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0312		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0999		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0403		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0550		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0991		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\square} $

6.153 Reaction r_0564

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name imidazoleglycerol-phosphate dehydratase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0550 \xrightarrow{e_{-}0875, s_{-}0550, s_{-}0207} s_{-}0207$$
 (306)

Reactant

Table 613: Properties of each reactant.

Id	Name	SBO
s_0550	D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate	

Modifiers

Table 614: Properties of each modifier.

Id	Name	SBO
e_0875	HIS3	0000460
s_0550	D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate	
s_0207	3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphate	

Product

Table 615: Properties of each product.

LJ	Nomes	CDO
10	Name	SBO
s_0207	3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphat	te

Kinetic Law

$$v_{153} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_0550] - \frac{[\text{s}_0207]}{\text{Keq}}\right)}{\frac{\text{Km}0550}{1 + \frac{[\text{s}_0550]}{\text{Km}0550} + 1 + \frac{[\text{s}_0207]}{\text{Km}0207} - 1}}$$
(307)

Table 616: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	
Vmax		0000324	0.015	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\checkmark

Id	Name	SBO	Value	Unit	Constant
Keq		0000281	2.000	dimensionless	$ \mathbf{Z} $
Km0550		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

6.154 Reaction r_0565

This is a reversible reaction of two reactants forming two products influenced by seven modifiers.

Name IMP dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0849 + s_1198 \xleftarrow{e_0705, \ e_0458, \ e_0693, \ s_0849, \ s_1198, \ s_1203, \ s_1565} s_1203 + s_1565 \tag{308}$$

Reactants

Table 617: Properties of each reactant.

Id	Name	SBO
s_0849	IMP	
s_1198	NAD	

Modifiers

Table 618: Properties of each modifier.

Id	Name	SBO
e_0705	IMD4	0000460
e_0458	IMD2	0000460
e_0693	IMD3	0000460
s_0849	IMP	
s_1198	NAD	
$s_{-}1203$	NADH	
s_1565	xanthosine-5-phosphate	

Products

Table 619: Properties of each product.

Id	Name	SBO
s_1203	NADH	
$s_{-}1565$	xanthosine-5-phosphate	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{154} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0849}] \cdot [\text{s_1198}] - \frac{[\text{s_1203}] \cdot [\text{s_1565}]}{\text{Keq}} \right)}{\text{Km0849} \cdot \text{Km1198}}}{\left(1 + \frac{[\text{s_0849}]}{\text{Km0849}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1565}]}{\text{Km1565}} \right) - 1}$$
(309)

Table 620: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	
Vmax		0000324	0.026	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0849		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1198		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1203		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1565		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.155 Reaction r_0566

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name indole-3-glycerol-phosphate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0076 \xrightarrow{e_0591, s_0076, s_0086, s_0456} s_0086 + s_0456$$
 (310)

Reactant

Table 621: Properties of each reactant.

Id	Name	SBO
s_0076	1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate	

Modifiers

Table 622: Properties of each modifier.

Id	Name	SBO
e_0591	TRP3	0000460
s_0076	1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate	
s_0086	1-C-(indol-3-yl)glycerol 3-phosphate	
s_0456	carbon dioxide	

Products

Table 623: Properties of each product.

Id	Name	SBO
	1-C-(indol-3-yl)glycerol 3-phosphate carbon dioxide	

Kinetic Law

$$v_{155} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0076}] - \frac{[\text{s_0086}] \cdot [\text{s_0456}]}{\text{Keq}} \right)}{\text{Km0076}}}{1 + \frac{[\text{s_0076}]}{\text{Km0076}} + \left(1 + \frac{[\text{s_0086}]}{\text{Km0086}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) - 1}$$
(311)

Table 624: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.001	dimensionless	<u> </u>
Vmax		0000324	0.011	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0076		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0086		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square

6.156 Reaction r_0568

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name inorganic diphosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0633 \xrightarrow{e_0038, e_0754, s_0633, s_1322} 2s_1322$$
 (312)

Reactant

Table 625: Properties of each reactant.

Id	Name	SBO
s_0633	diphosphate	

Modifiers

Table 626: Properties of each modifier.

Id	Name	SBO
e_0038	IPP1	0000460
e_0754	PPA2	0000460
s0633	diphosphate	
s_1322	phosphate	

Product

Table 627: Properties of each product.

Id	Name	SBO
s_1322	phosphate	

Kinetic Law

$$v_{156} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_0633] - \frac{[\text{s}_1322]^2}{\text{Keq}} \right)}{\text{Km0633}}}{1 + \frac{[\text{s}_0633]}{\text{Km0633}} + \left(1 + \frac{[\text{s}_1322]}{\text{Km1322}} \right)^2 - 1}$$
(313)

Table 628: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX VALUE			0.306	dimensionless	$ \mathbf{Z} $
Vmax		0000324	3.057	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$
Km0633		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$mmol \cdot l^{-1}$	

6.157 Reaction r_0570

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name inosine monophosphate cyclohydrolase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-1365} \stackrel{e_{-0631}, e_{-0736}, s_{-1365}, s_{-0849}}{\longleftarrow} s_{-0849}$$
 (314)

Reactant

Table 629: Properties of each reactant

	rable 62). Properties of each reactant.	
Id	Name	SBO
s_1365	phosphoribosyl-formamido-carboxamide	

Modifiers

Table 630: Properties of each modifier.

Id	Name	SBO
e_0631	ADE16	0000460
e_0736	ADE17	0000460
$s_{-}1365$	phosphoribosyl-formamido-carboxamide	
s_0849	IMP	

id Name SBO

Product

Table 631: Properties of each product.

Id	Name	SBO
s_0849	IMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{157} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_{-}1365] - \frac{[\text{s}_{-}0849]}{\text{Keq}}\right)}{\text{Km}1365}}{1 + \frac{[\text{s}_{-}1365]}{\text{Km}1365} + 1 + \frac{[\text{s}_{-}0849]}{\text{Km}0849} - 1}$$
(315)

Table 632: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	
Vmax		0000324	0.038	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1365		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0849		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.158 Reaction r_0594

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name IPC synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0089 + s_0499 \xrightarrow{e_0557, \ e_0220, \ s_0089, \ s_0499, \ s_0619, \ s_0918} s_0619 + s_0918 \qquad (316)$$

Reactants

Table 633: Properties of each reactant.

Id	Name	SBO
	1-phosphatidyl-1D-myo-inositol ceramide-4 (C24)	

Modifiers

Table 634: Properties of each modifier.

	1	
Id	Name	SBO
e_0557	AUR1	0000460
e_0220	KEI1	0000460
s_0089	1-phosphatidyl-1D-myo-inositol	
s_0499	ceramide-4 (C24)	
s_0619	diglyceride	
s_0918	inositol-P-ceramide D (C24)	

Products

Table 635: Properties of each product.

Id	Name	SBO
	diglyceride inositol-P-ceramide D (C24)	

Kinetic Law

$$\nu_{158} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0089}] \cdot [\text{s_0499}] - \frac{[\text{s_0619}] \cdot [\text{s_0918}]}{\text{Keq}} \right)}{\text{Km0089} \cdot \text{Km0499}}}{\left(1 + \frac{[\text{s_0089}]}{\text{Km0089}} \right) \cdot \left(1 + \frac{[\text{s_0499}]}{\text{Km00499}} \right) + \left(1 + \frac{[\text{s_0619}]}{\text{Km0619}} \right) \cdot \left(1 + \frac{[\text{s_0918}]}{\text{Km0918}} \right) - 1}$$
(317)

Table 636: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.04421705708177 \cdot 10^{-5}$	dimensionless	Ø
Vmax		0000324	$2.86190387991448 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	$ \overline{\checkmark} $

Id	Name	SBO	Value	Unit	Constant
Km0089		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\overline{Z}
Km0499		0000322	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathscr{A}} $
Km0619		0000323	0.100	$mmol \cdot l^{-1}$	
Km0918		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.159 Reaction r_0658

This is a reversible reaction of two reactants forming three products influenced by seven modifiers.

Name isocitrate dehydrogenase (NAD+)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0940 + s_1198 \xleftarrow{e_0862, \ e_0771, \ s_0940, \ s_1198, \ s_0180, \ s_0456, \ s_1203} \\ s_0180 + s_0456 + s_1203 \\ (318)$$

Reactants

Table 637: Properties of each reactant.

Id	Name	SBO
s_0940	isocitrate	
s_1198	NAD	

Modifiers

Table 638: Properties of each modifier.

	1	
Id	Name	SBO
e_0862	IDH2	0000460
e_0771	IDH1	0000460
s_0940	isocitrate	
$s_{-}1198$	NAD	
s_0180	2-oxoglutarate	
s_0456	carbon dioxide	
s_1203	NADH	

Products

Table 639: Properties of each product.

Id	Name	SBO
s_0180	2-oxoglutarate	
s_0456	carbon dioxide	
s_1203	NADH	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{159} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0940}] \cdot [\text{s_1198}] - \frac{[\text{s_0180}] \cdot [\text{s_01203}]}{\text{Keq}} \right)}{\text{Km0940} \cdot \text{Km1198}}}{\left(1 + \frac{[\text{s_0940}]}{\text{Km0940}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1}$$
 (319)

Table 640: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.019	dimensionless	$ \overline{\checkmark} $
Vmax		0000324	0.425	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0940		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1198		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0180		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1203		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.160 Reaction r_0661

This is a reversible reaction of two reactants forming three products influenced by seven modifiers.

Name isocitrate dehydrogenase (NADP+), peroxisomal

SBO:0000176 biochemical reaction

Reaction equation

$$s_0940 + s_1207 \xleftarrow{e_0769, \ e_0135, \ s_0940, \ s_1207, \ s_0180, \ s_0456, \ s_1212} s_0180 + s_0456 + s_1212 \tag{320}$$

Reactants

Table 641: Properties of each reactant.

Id	Name	SBO
s_0940 s_1207	isocitrate NADP(+)	

Modifiers

Table 642: Properties of each modifier.

	· P	
Id	Name	SBO
e_0769	IDP3	0000460
e_0135	IDP1	0000460
s_0940	isocitrate	
s_1207	NADP(+)	
s_0180	2-oxoglutarate	
s_0456	carbon dioxide	
$s_{-}1212$	NADPH	

Products

Table 643: Properties of each product.

	•	
Id	Name	SBO
	2-oxoglutarate carbon dioxide	
	NADPH	

Kinetic Law

$$v_{160} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0940}] \cdot [\text{s_1207}] - \frac{[\text{s_0180}] \cdot [\text{s_0456}] \cdot [\text{s_1212}]}{\text{Keq}} \right)}{\text{Km0940} \cdot \text{Km1207}}}{\left(1 + \frac{[\text{s_0940}]}{\text{Km0940}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) - 1}$$

$$(321)$$

Table 644: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.019	dimensionless	\overline{Z}
Vmax		0000324	0.425	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0940		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1207		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0180		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1212		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.161 Reaction r_0663

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name isoleucine transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0056 + s_0991 \xrightarrow{e_0550, \ e_0457, \ s_0056, \ s_0991, \ s_0180, \ s_1016} s_0180 + s_1016 \qquad (322)$$

Reactants

Table 645: Properties of each reactant.

Id	Name	SBO
s_0056	(S)-3-methyl-2-oxopentanoate	
s_0991	L-glutamate	

Modifiers

Table 646: Properties of each modifier.

F			
Id	Name	SBO	
e_0550	BAT2	0000460	
e_0457	BAT1	0000460	
s_0056	(S)-3-methyl-2-oxopentanoate		
s_0991	L-glutamate		
s_0180	2-oxoglutarate		
s_1016	L-isoleucine		

Products

Table 647: Properties of each product.

Id	Name	SBO
s_0180	2-oxoglutarate	
s_1016	L-isoleucine	

Kinetic Law

$$v_{161} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0056}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_1016}]}{\text{Keq}} \right)}{\text{Km0056} \cdot \text{Km0991}}}{\left(1 + \frac{[\text{s_0056}]}{\text{Km0056}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_1016}]}{\text{Km1016}} \right) - 1}$$
(323)

Table 648: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.007	dimensionless	
Vmax		0000324	0.102	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0056		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{A}} $
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0180		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1016		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square

6.162 Reaction r_0665

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name isoleucyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1016 + s_1596 \xrightarrow{e_0031, s_0434, s_1016, s_1596, s_0423, s_0633, s_0847} s_0423 + s_0633 + s_0847 \xrightarrow{(324)}$$

Reactants

Table 649: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1016$	L-isoleucine	
$s_{-}1596$	tRNA(Ile)	

Modifiers

Table 650: Properties of each modifier.

Id	Name	SBO
e_0031	ILS1	0000460
s_0434	ATP	
$s_{-}1016$	L-isoleucine	
s_1596	tRNA(Ile)	
s_0423	AMP	
s_0633	diphosphate	
s_0847	Ile-tRNA(Ile)	

Products

Table 651: Properties of each product.

Id	Name	SBO
s_0423	AMP	

Id	Name	SBO
s_0633 s_0847	diphosphate Ile-tRNA(Ile)	

Kinetic Law

Derived unit contains undeclared units

$$v_{162} = \frac{ \frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1016}] \cdot [\text{s_1596}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_0847}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1016} \cdot \text{Km1596}} \\ = \frac{ \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1016}]}{\text{Km1016}} \right) \cdot \left(1 + \frac{[\text{s_1596}]}{\text{Km1596}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0847}]}{\text{Km0847}} \right) - 1} \right) }{ + \frac{(\text{s_0434}]}{\text{Vol(cell)}} \cdot \left(1 + \frac{[\text{s_1016}]}{\text{Km1016}} \right) \cdot \left(1 + \frac{[\text{s_10434}]}{\text{Km1016}} \right) \cdot \left(1 + \frac{[\text{s_0847}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0847}]}{\text{Km0847}} \right) - 1}$$

Table 652: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.007	dimensionless	
Vmax		0000324	0.219	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1016		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1596		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0847		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.163 Reaction r_0667

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name isopentenyl-diphosphate D-isomerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0943 \stackrel{e_{-}0922, s_{-}0943, s_{-}1376}{=} s_{-}1376$$
 (326)

Reactant

Table 653: Properties of each reactant.

Id	Name	SBO
s_0943	isopentenyl diphosphate	

Modifiers

Table 654: Properties of each modifier.

Id	Name	SBO
e_0922	IDI1	0000460
s_0943	isopentenyl diphosphate	
s_1376	prenyl diphosphate	

Product

Table 655: Properties of each product.

Id	Name	SBO
s_1376	prenyl diphosphate	

Kinetic Law

$$v_{163} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0943}] - \frac{[\text{s_1376}]}{\text{Keq}} \right)}{\text{Km0943}}}{1 + \frac{[\text{s_0943}]}{\text{Km0943}} + 1 + \frac{[\text{s_1376}]}{\text{Km1376}} - 1}$$
(327)

Table 656: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.19949368301002 \cdot 10^{-4}$	dimensionless	\overline{Z}
Vmax		0000324	0.003	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0943		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1376		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.164 Reaction r_0669

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name ketol-acid reductoisomerase (2-aceto-2-hydroxybutanoate)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0039 + s_1212 \xrightarrow{e_0685, s_0039, s_1212, s_0008, s_1207} s_0008 + s_1207 \tag{328}$$

Reactants

Table 657: Properties of each reactant.

Id	Name	SBO
	(S)-2-acetyl-2-hydroxybutanoate NADPH	

Modifiers

Table 658: Properties of each modifier.

Id	Name	SBO
e_0685	ILV5	0000460
s_0039	(S)-2-acetyl-2-hydroxybutanoate	
s_1212	NADPH	
s_0008	(2R,3R)-2,3-dihydroxy-3-methylpentanoate	
$s_{-}1207$	NADP(+)	

Products

Table 659: Properties of each product.

Id	Name	SBO
	(2R,3R)-2,3-dihydroxy-3-methylpentanoate NADP(+)	

Kinetic Law

$$v_{164} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0039}] \cdot [\text{s_1212}] - \frac{[\text{s_0008}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0039} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0039}]}{\text{Km0039}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0008}]}{\text{Km0008}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$
(329)

Table 660: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	
Vmax		0000324	0.135	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km0039		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0008		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square

6.165 Reaction r_0674

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name L-alanine transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0991 + s_1399 \xrightarrow{e_0642, s_0991, s_1399, s_0180, s_0955} s_0180 + s_0955 \tag{330}$$

Reactants

Table 661: Properties of each reactant.

Id	Name	SBO
s_0991 s_1399	L-glutamate pyruvate	

Modifiers

Table 662: Properties of each modifier.

Id	Name	SBO
e_0642	ALT1	0000460

Id	Name	SBO
s_0991	L-glutamate	
s_1399	pyruvate	
s_0180	2-oxoglutarate	
s_0955	L-alanine	

Products

Table 663: Properties of each product.

Id	Name	SBO
	2-oxoglutarate L-alanine	

Kinetic Law

Derived unit contains undeclared units

$$v_{165} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0991}] \cdot [\text{s_1399}] - \frac{[\text{s_0180}] \cdot [\text{s_0955}]}{\text{Keq}} \right)}{\text{Km0991} \cdot \text{Km1399}}}{\left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km1399}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0955}]}{\text{Km0955}} \right) - 1}$$
(331)

Table 664: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.017	dimensionless	
Vmax		0000324	0.244	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0991		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1399		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km0180		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0955		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.166 Reaction r_0678

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name L-aminoadipate-semialdehyde dehydrogenase (NADPH)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0953 + s_1212 \xrightarrow{e_0062, \ e_0343, \ s_0953, \ s_1212, \ s_0959, \ s_1207} s_0959 + s_1207 \tag{332}$$

Reactants

Table 665: Properties of each reactant.

Id	Name	SBO
	L-2-aminoadipate NADPH	

Modifiers

Table 666: Properties of each modifier.

	*	
Id	Name	SBO
e_0062	LYS2	0000460
$e_{-}0343$	LYS5	0000460
s_0953	L-2-aminoadipate	
s_1212	NADPH	
s_0959	L-allysine	
s_1207	NADP(+)	

Products

Table 667: Properties of each product.

Id	Name	SBO
s_0959 s_1207	L-allysine NADP(+)	

Kinetic Law

$$v_{166} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0953}] \cdot [\text{s_1212}] - \frac{[\text{s_0959}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0953} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0953}]}{\text{Km0953}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0959}]}{\text{Km0959}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$
(333)

Table 668: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.152	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0953		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km1212		0000322	0.100	$mmol \cdot l^{-1}$	
Km0959		0000323	0.100	$mmol \cdot l^{-1}$	
Km1207		0000323	0.100	$mmol \cdot l^{-1}$	

6.167 Reaction r_0698

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name lanosterol synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-0037} \xrightarrow{e_{-0440}, s_{-0037}, s_{-1059}} s_{-1059}$$
 (334)

Reactant

Table 669: Properties of each reactant.

Id	Name	SBO
s_0037	(S)-2,3-epoxysqualene	

Modifiers

Table 670: Properties of each modifier.

Id	Name	SBO
e_0440	ERG7	0000460
s_0037	(S)-2,3-epoxysqualene	
s_1059	lanosterol	

Product

Table 671: Properties of each product.

Id	Name	SBO
s_1059	lanosterol	

Kinetic Law

Derived unit contains undeclared units

$$v_{167} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_0037] - \frac{[\text{s}_1059]}{\text{Keq}}\right)}{\frac{\text{Km}0037}{1 + \frac{[\text{s}_0037]}{\text{Km}0037} + 1 + \frac{[\text{s}_1059]}{\text{Km}1059} - 1}}$$
(335)

Table 672: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.59974684150501 \cdot 10^{-4}$	dimensionless	\overline{Z}
Vmax		0000324	0.002	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0037		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1059		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square

6.168 Reaction r_0699

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name leucine transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0291 + s_0991 \xrightarrow{e_0550, \ e_0457, \ s_0291, \ s_0991, \ s_0180, \ s_1021} s_0180 + s_1021 \tag{336}$$

Reactants

Table 673: Properties of each reactant.

Id	Name	SBO
s_0291	4-methyl-2-oxopentanoate	
s_0991	L-glutamate	

Modifiers

Table 674: Properties of each modifier.

	-	
Id	Name	SBO
e_0550	BAT2	0000460
e_0457	BAT1	0000460
s_0291	4-methyl-2-oxopentanoate	
s_0991	L-glutamate	
s_0180	2-oxoglutarate	
$s_{-}1021$	L-leucine	

Products

Table 675: Properties of each product.

Id	Name	SBO
	2-oxoglutarate L-leucine	

Kinetic Law

$$v_{168} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0291}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_1021}]}{\text{Keq}} \right)}{\text{Km0291} \cdot \text{Km0291}}}{\left(1 + \frac{[\text{s_0291}]}{\text{Km0291}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_1021}]}{\text{Km1021}} \right) - 1}$$
(337)

Table 676: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.157	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0291		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0991		0000322	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\checkmark} $
Km0180		0000323	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\checkmark} $
Km1021		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.169 Reaction r_0701

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name leucyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1021 + s_1598 \xrightarrow{e_0926, \ s_0434, \ s_1021, \ s_1598, \ s_0423, \ s_0633, \ s_1077} s_0423 + s_0633 + s_1077 \tag{338}$$

Reactants

Table 677: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1021$	L-leucine	
s_1598	tRNA(Leu)	

Modifiers

Table 678: Properties of each modifier.

Id	Name	SBO
e_0926	CDC60	0000460
s_0434	ATP	
s_1021	L-leucine	
s_1598	tRNA(Leu)	
s_0423	AMP	
s_0633	diphosphate	
s_1077	Leu-tRNA(Leu)	

Products

Table 679: Properties of each product.

Id	Name	SBO
s_0423	AMP	

Id	Name	SBO
	diphosphate Leu-tRNA(Leu)	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{169} = \frac{\frac{\text{vol(cell)} \cdot \text{V}_{\text{max}} \cdot \left([\text{s_0434}] \cdot [\text{s_1021}] \cdot [\text{s_1598}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1077}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1021} \cdot \text{Km1598}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{V}_{\text{max}} \cdot \left([\text{s_0434}] \cdot [\text{s_1021}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1021}]}{\text{Km1021}} \right) \cdot \left(1 + \frac{[\text{s_1598}]}{\text{Km1598}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1077}]}{\text{Km1077}} \right) - 1}{\text{Km1077}} \\ = \frac{\text{vol(cell)} \cdot \text{V}_{\text{max}} \cdot \left([\text{s_0434}] \cdot [\text{s_1598}] \right) - \left(1 + \frac{[\text{s_0423}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1077}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1077}]}{\text{Km1077}} \right) - 1}{\text{Km1077}} \\ = \frac{\text{vol(cell)} \cdot \text{V}_{\text{max}} \cdot \left([\text{s_0434}] \cdot [\text{s_1021}] \cdot [\text{s_1598}] - \frac{[\text{s_0423}] \cdot [\text{s_0433}] \cdot [\text{s_1077}]}{\text{Km0434}} \right)}{\text{Vol(cell)} \cdot \text{V}_{\text{max}} \cdot \left([\text{s_0434}] \cdot [\text{s_1021}] \cdot [\text{s_1598}] - \frac{[\text{s_0423}] \cdot [\text{s_0433}] \cdot [\text{s_1077}]}{\text{Km0434}} \right)}$$

Table 680: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.337	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1021		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1598		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0633		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square
Km1077		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square

6.170 Reaction r_0711

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name lysyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1025 + s_1600 \xleftarrow{e_0171, s_0434, s_1025, s_1600, s_0423, s_0633, s_1099} s_0423 + s_0633 + s_1099 \tag{340}$$

Reactants

Table 681: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1025$	L-lysine	
$s_{-}1600$	tRNA(Lys)	

Modifiers

Table 682: Properties of each modifier.

Id	Name	SBO
e_0171	KRS1	0000460
s_0434	ATP	
$s_{-}1025$	L-lysine	
$s_{-}1600$	tRNA(Lys)	
s_0423	AMP	
s_0633	diphosphate	
s_1099	Lys-tRNA(Lys)	

Products

Table 683: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s0633	diphosphate	
s_1099	Lys-tRNA(Lys)	

Kinetic Law

$$\nu_{170} = \frac{\frac{\text{vol(cell)} \cdot \text{V}_{max} \cdot \left([\text{s_0434}] \cdot [\text{s_1025}] \cdot [\text{s_1600}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1099}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km1025} \cdot \text{Km1600}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1025}]}{\text{Km1025}} \right) \cdot \left(1 + \frac{[\text{s_1600}]}{\text{Km1600}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1099}]}{\text{Km1099}} \right) - 1}}$$

Table 684: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.326	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1025		0000322	0.100	$mmol \cdot l^{-1}$	
Km1600		0000322	0.100	$mmol \cdot l^{-1}$	
Km0423		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km0633		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km1099		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.171 Reaction r_0713

This is a reversible reaction of two reactants forming two products influenced by seven modifiers.

Name malate dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0066 + s_1198 \xrightarrow{e_0571, e_0838, e_0137, s_0066, s_1198, s_1203, s_1271} s_1203 + s_1271 \tag{342}$$

Reactants

Table 685: Properties of each reactant.

Id	Name	SBO
	(S)-malate	
s_1198	NAD	

Modifiers

Table 686: Properties of each modifier.

Id	Name	SBO
e_0571	MDH1	0000460
e_0838	MDH2	0000460
e_0137	MDH3	0000460

Id	Name	SBO
s_0066	(S)-malate	
s_1198	NAD	
s_1203	NADH	
s_1271	oxaloacetate	

Products

Table 687: Properties of each product.

Id	Name	SBO
s_1203	NADH	
s_1271	oxaloacetate	

Kinetic Law

Derived unit contains undeclared units

$$v_{171} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0066}] \cdot [\text{s_1198}] - \frac{[\text{s_1203}] \cdot [\text{s_1271}]}{\text{Keq}} \right)}{\text{Km0066} \cdot \text{Km1198}}}{\left(1 + \frac{[\text{s_0066}]}{\text{Km0066}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1271}]}{\text{Km1271}} \right) - 1}$$
(343)

Table 688: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.014	dimensionless	
Vmax		0000324	0.200	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0066		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1198		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1203		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1271		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.172 Reaction r_0722

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name mannose-1-phosphate guanylyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0573 + s_0785 \xrightarrow{e_0134, s_0573, s_0785, s_0633, s_0743} s_0633 + s_0743 \tag{344}$$

Reactants

Table 689: Properties of each reactant.

Id	Name	SBO
s_0573 s_0785	D-mannose 1-phosphate GTP	

Modifiers

Table 690: Properties of each modifier.

	1	
Id	Name	SBO
e_0134	PSA1	0000460
s_0573	D-mannose 1-phosphate	
s_0785	GTP	
s_0633	diphosphate	
s_0743	GDP-alpha-D-mannose	

Products

Table 691: Properties of each product.

Id	Name	SBO
	diphosphate GDP-alpha-D-mannose	

Kinetic Law

$$v_{172} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0573}] \cdot [\text{s_0785}] - \frac{[\text{s_0633}] \cdot [\text{s_0743}]}{\text{Keq}} \right)}{\text{Km0573} \cdot \text{Km0785}}}{\left(1 + \frac{[\text{s_0573}]}{\text{Km0573}} \right) \cdot \left(1 + \frac{[\text{s_0785}]}{\text{Km0785}} \right) + \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0743}]}{\text{Km0743}} \right) - 1}$$
(345)

Table 692: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.031	dimensionless	
Vmax		0000324	0.429	$mmol \cdot l^{-1} \cdot s^{-1}$	Z
Keq		0000281	2.000	dimensionless	\overline{Z}
Km0573		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0785		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0743		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.173 Reaction r_0723

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name mannose-6-phosphate isomerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0557 \xrightarrow{e_{-}0269, s_{-}0557, s_{-}0574} s_{-}0574$$
 (346)

Reactant

Table 693: Properties of each reactant.

	,	
Id	Name	SBO
s_0557	D-fructose 6-phosphate	

Modifiers

Table 694: Properties of each modifier.

Id	Name	SBO
e_0269	PMI40	0000460
s_0557	D-fructose 6-phosphate	
s_0574	D-mannose 6-phosphate	

Product

Table 695: Properties of each product.

Id	Name	SBO
s_0574	D-mannose 6-phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{173} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0557}] - \frac{[\text{s.0574}]}{\text{Keq}}\right)}{\frac{\text{Km0557}}{1 + \frac{[\text{s.0577}]}{\text{Km0557}} + 1 + \frac{[\text{s.0574}]}{\text{Km0574}} - 1}}$$
(347)

Table 696: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.031	dimensionless	\square
Vmax		0000324	0.184	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0557		0000322	0.100	$mmol \cdot l^{-1}$	\square
Km0574		0000323	0.100	$mmol \cdot l^{-1}$	\square

6.174 Reaction r_0724

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name methenyltetrahydrifikate cyclohydrolase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-0304} \xrightarrow{e_{-0057, e_{-0396, s_{-0304, s_{-0120}}}} s_{-0120}$$
 (348)

Reactant

Table 697: Properties of each reactant.

Id	Name	SBO
s_0304	5,10-methenyl-THF	

Modifiers

Table 698: Properties of each modifier.

14010 0	y or a repertites of cutting	
Id	Name	SBO
e_0057	MIS1	0000460
e_0396	ADE3	0000460
s_0304	5,10-methenyl-THF	
s0120	10-formyl-THF	

Product

Table 699: Properties of each product.

Id	Name	SBO
s_0120	10-formyl-THF	

Kinetic Law

Derived unit contains undeclared units

$$v_{174} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0304}] - \frac{[\text{s_0120}]}{\text{Keq}}\right)}{\frac{\text{Km0304}}{1 + \frac{[\text{s_0304}]}{\text{Km0304}} + 1 + \frac{[\text{s_0120}]}{\text{Km0120}} - 1}}$$
(349)

Table 700: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			2.886	dimensionless	
Vmax		0000324	17.314	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0304		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0120		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\checkmark

6.175 Reaction r_0726

This is a reversible reaction of two reactants forming three products influenced by seven modifiers.

Name methionine adenosyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1029 \xrightarrow{e_0239, \ e_0658, \ s_0434, \ s_1029, \ s_0633, \ s_1322, \ s_1416} s_0633 + s_1322 + s_1416 \tag{350}$$

Reactants

Table 701: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_1029	L-methionine	

Modifiers

Table 702: Properties of each modifier.

Id	Name	SBO			
e_0239	SAM2	0000460			
e_0658	SAM1	0000460			
s_0434	ATP				
s_1029	L-methionine				
s_0633	diphosphate				
$s_{-}1322$	phosphate				
$s_{-}1416$	S-adenosyl-L-methionine				

Products

Table 703: Properties of each product.

Id	Name	SBO
	diphosphate	
s_1322	phosphate	
$s_{-}1416$	S-adenosyl-L-methionine	

Kinetic Law

$$v_{175} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1029}] - \frac{[\text{s_0633}] \cdot [\text{s_1322}] \cdot [\text{s_1416}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1029}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1029}]}{\text{Km1029}} \right) + \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) \cdot \left(1 + \frac{[\text{s_1416}]}{\text{Km1416}} \right) - 1}$$

$$(351)$$

Table 704: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.83975250367414 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.013	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$mmol \cdot l^{-1}$	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	
Km1029		0000322	0.100	$mmol \cdot l^{-1}$	
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1416		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.176 Reaction r_0727

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name methionine synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0322 + s_1012 \xrightarrow{e_0298, s_0322, s_1012, s_1029, s_1487} s_1029 + s_1487 \tag{352}$$

Reactants

Table 705: Properties of each reactant.

Id	Name	SBO
s_0322	5-methyltetrahydrofolate	
$s_{-}1012$	L-homocysteine	

Modifiers

Table 706: Properties of each modifier.

There is a repaired of them in the differ.				
Id	Name	SBO		
e_0298	MET6	0000460		
s_0322	5-methyltetrahydrofolate			
$s_{-}1012$	L-homocysteine			
s_1029	L-methionine			
$s_{-}1487$	THF			

Products

Table 707: Properties of each product.

Id	Name	SBO
s_1029 s_1487	L-methionine THF	

Kinetic Law

Derived unit contains undeclared units

$$v_{176} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0322}] \cdot [\text{s_1012}] - \frac{[\text{s_1029}] \cdot [\text{s_1487}]}{\text{Keq}} \right)}{\text{Km0322} \cdot \text{Km1012}}}{\left(1 + \frac{[\text{s_0322}]}{\text{Km0322}} \right) \cdot \left(1 + \frac{[\text{s_1012}]}{\text{Km1012}} \right) + \left(1 + \frac{[\text{s_1029}]}{\text{Km1029}} \right) \cdot \left(1 + \frac{[\text{s_1487}]}{\text{Km1487}} \right) - 1}$$
(353)

Table 708: Properties of each parameter.

	Tuest 7 co. 11 openies of tuest purumeter.					
Id	Name	SBO	Value	Unit	Constant	
FLUX_VALUE			0.003	dimensionless		
Vmax		0000324	0.035	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square	
Keq		0000281	2.000	dimensionless	\square	
Km0322		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square	
Km1012		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square	
Km1029		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square	
Km1487		0000323	0.100	$\text{mmol} \cdot 1^{-1}$		

6.177 Reaction r_0729

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name methionyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1029 + s_1602 \xleftarrow{e_0409, \ s_0434, \ s_1029, \ s_1602, \ s_0423, \ s_0633, \ s_1148} \\ \underbrace{s_0423 + s_0633 + s_1148}_{(354)}$$

Reactants

Table 709: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1029$	L-methionine	
$s_{-}1602$	tRNA(Met)	

Modifiers

Table 710: Properties of each modifier.

Tuble / 10: 1 toperties of each mounter.				
Id	Name	SBO		
e_0409	MES1	0000460		
s_0434	ATP			
s_1029	L-methionine			
s_1602	tRNA(Met)			
s_0423	AMP			
s_0633	diphosphate			
s_1148	Met-tRNA(Met)			

Products

Table 711: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0633	diphosphate	
s_1148	Met-tRNA(Met)	

Kinetic Law

Derived unit contains undeclared units

$$v_{177} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1029}] \cdot [\text{s_1602}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1148}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1029} \cdot \text{Km1602}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1029}] \cdot \left(1 + \frac{[\text{s_1029}]}{\text{Km1029}} \right) \cdot \left(1 + \frac{[\text{s_1602}]}{\text{Km1602}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1148}]}{\text{Km1148}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1029}]}{\text{Km1029}} \right) \cdot \left(1 + \frac{[\text{s_1602}]}{\text{Km1602}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1148}]}{\text{Km1148}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1029}]}{\text{Km1029}} \right) \cdot \left(1 + \frac{[\text{s_1602}]}{\text{Km1602}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_1148}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1148}]}{\text{Km1148}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0434}]}{\text{Km1029}} \right) \cdot \left(1 + \frac{[\text{s_1602}]}{\text{Km1029}} \right) \cdot \left(1 + \frac{[\text{s_1602}]}{\text{Km1602}} \right) + \left(1 + \frac{[\text{s_1602}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1604}]}{\text{Km1148}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_1604}]}{\text{Km1029}} \right) \cdot \left(1 + \frac{[\text{s_1602}]}{\text{Km1029}} \right) \cdot \left(1 + \frac{[\text{s_1602}]}$$

Table 712: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	lacksquare
Vmax		0000324	0.058	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1029		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1602		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1148		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.178 Reaction r_0731

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name methylenetetrahydrofolate dehydrogenase (NAD)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0306 + s_1198 \xrightarrow{e_0610, s_0306, s_1198, s_0304, s_1203} s_0304 + s_1203 \tag{356}$$

Reactants

Table 713: Properties of each reactant.

Id	Name	SBO
s_0306 s_1198	5,10-methylenetetrahydrofolate NAD	

Modifiers

Table 714: Properties of each modifier.

Id	Name	SBO
e_0610	MTD1	0000460
s_0306	5,10-methylenetetrahydrofolate	
$s_{-}1198$	NAD	
s0304	5,10-methenyl-THF	
s_1203	NADH	

Products

Table 715: Properties of each product.

Id	Name	SBO
s_0304 s_1203	5,10-methenyl-THF NADH	

Kinetic Law

$$v_{178} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0306}] \cdot [\text{s_1198}] - \frac{[\text{s_0304}] \cdot [\text{s_1203}]}{\text{Keq}} \right)}{\text{Km0306} \cdot \text{Km1198}}}{\left(1 + \frac{[\text{s_0306}]}{\text{Km0306}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_0304}]}{\text{Km0304}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1}$$
(357)

Table 716: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.959	dimensionless	\overline{Z}
Vmax		0000324	27.431	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0306		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1198		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{L}} $
Km0304		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $
Km1203		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.179 Reaction r_0732

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name methylenetetrahydrofolate dehydrogenase (NADP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0306 + s_1207 \xrightarrow{e_0396, \ e_0057, \ s_0306, \ s_1207, \ s_0304, \ s_1212} s_0304 + s_1212 \qquad (358)$$

Reactants

Table 717: Properties of each reactant.

Id	Name	SBO
	5,10-methylenetetrahydrofolate NADP(+)	

Modifiers

Table 718: Properties of each modifier.

Id	Nama	CDO
10	Name	SBO
e_0396	ADE3	0000460
$e_{-}0057$	MIS1	0000460
s_0306	5,10-methylenetetrahydrofolate	
$s_{-}1207$	NADP(+)	
s_0304	5,10-methenyl-THF	
s_1212	NADPH	

Products

Table 719: Properties of each product.

Id	Name	SBO
s_0304	5,10-methenyl-THF	
s_1212	NADPH	

Kinetic Law

Derived unit contains undeclared units

$$v_{179} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0306}] \cdot [\text{s.1207}] - \frac{[\text{s.0304}] \cdot [\text{s.1212}]}{\text{Keq}} \right)}{\text{Km0306} \cdot \text{Km1207}}}{\left(1 + \frac{[\text{s.0306}]}{\text{Km0306}} \right) \cdot \left(1 + \frac{[\text{s.1207}]}{\text{Km1207}} \right) + \left(1 + \frac{[\text{s.0304}]}{\text{Km0304}} \right) \cdot \left(1 + \frac{[\text{s.1212}]}{\text{Km1212}} \right) - 1}$$
(359)

Table 720: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.926	dimensionless	
Vmax		0000324	12.968	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0306		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0304		0000323	0.100	$mmol \cdot l^{-1}$	
Km1212		0000323	0.100	$mmol \cdot l^{-1}$	\square

6.180 Reaction r_0736

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name mevalonate kinase (ctp)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0028 + s_0539 \xrightarrow{e_0745, s_0028, s_0539, s_0019, s_0467} s_0019 + s_0467 \tag{360}$$

Reactants

Table 721: Properties of each reactant.

Id	Name	SBO
s_0028 s_0539	(R)-mevalonate CTP	

Modifiers

Table 722: Properties of each modifier.

Id	Name	SBO
e_0745	ERG12	0000460
s_0028	(R)-mevalonate	
s_0539	CTP	
s_0019	(R)-5-phosphomevalonic acid	
s0467	CDP	

Products

Table 723: Properties of each product.

Id	Name	SBO
s_0019 s_0467	(R)-5-phosphomevalonic acid CDP	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{180} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0028}] \cdot [\text{s_0539}] - \frac{[\text{s_0019}] \cdot [\text{s_0467}]}{\text{Keq}} \right)}{\text{Km0028} \cdot \text{Km0539}}}{\left(1 + \frac{[\text{s_0028}]}{\text{Km0028}} \right) \cdot \left(1 + \frac{[\text{s_0539}]}{\text{Km00539}} \right) + \left(1 + \frac{[\text{s_0019}]}{\text{Km0019}} \right) \cdot \left(1 + \frac{[\text{s_0467}]}{\text{Km0467}} \right) - 1}$$
(361)

Table 724: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	\checkmark
Vmax		0000324	0.022	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0028		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0539		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0019		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0467		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $

6.181 Reaction r_0739

This is a reversible reaction of two reactants forming four products influenced by seven modifiers.

Name mevalonate pyrophoshate decarboxylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0018 + s_0434 \xleftarrow{e_0812, s_0018, s_0434, s_0394, s_0456, s_0943, s_1322} s_0394 + s_0456 + s_0943 + s_1322 \tag{362}$$

Reactants

Table 725: Properties of each reactant.

Id	Name	SBO
s_0018	(R)-5-diphosphomevalonic acid	
s_0434	ATP	

Modifiers

Table 726: Properties of each modifier.

Id	Name	SBO
e_0812	MVD1	0000460
s_0018	(R)-5-diphosphomevalonic acid	
s_0434	ATP	
s_0394	ADP	
s_0456	carbon dioxide	
s_0943	isopentenyl diphosphate	
s_1322	phosphate	

Products

Table 727: Properties of each product.

Id	Name	SBO
s_0394	ADP	
s_0456	carbon dioxide	
s_0943	isopentenyl diphosphate	
$s_{-}1322$	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{181} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0018}] \cdot [\text{s_0434}] - \frac{[\text{s_0394}] \cdot [\text{s_0456}] \cdot [\text{s_0943}] \cdot [\text{s_1322}]}{\text{Km0018} \cdot \text{Km0434}}}{\left(1 + \frac{[\text{s_0018}]}{\text{Km0018}}\right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}}\right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}}\right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}}\right) \cdot \left(1 + \frac{[\text{s_0943}]}{\text{Km0943}}\right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}}\right) - 1}$$

Table 728: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	\checkmark
Vmax		0000324	0.059	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.020	$\text{mmol}^2 \cdot 1^{-2}$	
Km0018		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0943		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.182 Reaction r_0757

This is a reversible reaction of one reactant forming two products influenced by five modifiers.

Name myo-inositol 1-phosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0126 \xrightarrow{e_{-}0204, e_{-}0435, s_{-}0126, s_{-}1153, s_{-}1322} s_{-}1153 + s_{-}1322$$
 (364)

Reactant

Table 729: Properties of each reactant.

Id	Name	SBO
s_0126	1D-myo-inositol 1-phosphate	

Modifiers

Table 730: Properties of each modifier.

Id	Name	SBO
e_0204	INM2	0000460
e_0435	INM1	0000460
s_0126	1D-myo-inositol 1-phosphate	
s_1153	myo-inositol	
s_1322	phosphate	

Products

Table 731: Properties of each product.

Id	Name	SBO
	myo-inositol phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{182} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0126}] - \frac{[\text{s_1153}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0126}}}{1 + \frac{[\text{s_0126}]}{\text{Km0126}} + \left(1 + \frac{[\text{s_1153}]}{\text{Km1153}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(365)

Table 732: Properties of each parameter.

		14010 732.110	perties of each parameter.		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE	1		$8.05209910738368 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	$8.05209910738368 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0126		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1153		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.183 Reaction r_0758

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name myo-inositol-1-phosphate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0568 \xrightarrow{e_{-}0512, s_{-}0568, s_{-}0126} s_{-}0126$$
 (366)

Reactant

Table 733: Properties of each reactant.

Id	Name	SBO
s_0568	D-glucose 6-phosphate	

Modifiers

Table 734: Properties of each modifier.

Id	Name	SBO
e_0512	INO1	0000460
s_0568	D-glucose 6-phosphate	
s_0126	1D-myo-inositol 1-phosphate	

Product

Table 735: Properties of each product.

Id	Name	SBO
s_0126	1D-myo-inositol 1-phosphate	

Kinetic Law

$$v_{183} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0568}] - \frac{[\text{s_0126}]}{\text{Keq}}\right)}{\frac{\text{Km0568}}{1 + \frac{[\text{s_0568}]}{\text{Km0568}} + 1 + \frac{[\text{s_0126}]}{\text{Km0126}} - 1}}$$
(367)

Table 736: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$8.05209911324267 \cdot 10^{-5}$	dimensionless	$lue{2}$
Vmax		0000324	$4.8312594679456 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0568		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km0126		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.184 Reaction r_0759

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name N-acetyl-g-glutamyl-phosphate reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1191 + s_1212 \xleftarrow{e_0290, \ s_1191, \ s_1212, \ s_0145, \ s_1207, \ s_1322} s_0145 + s_1207 + s_1322 \tag{368}$$

Reactants

Table 737: Properties of each reactant

Id Name		
	N-acetyl-L-gamma-glutamyl phosphate NADPH	

Modifiers

Table 738: Properties of each modifier.

Id	Name	SBO
e_0290	ARG5,6	0000460
s_1191	N-acetyl-L-gamma-glutamyl phosphate	
$s_{-}1212$	NADPH	
s_0145	2-acetamido-5-oxopentanoate	
$s_{-}1207$	NADP(+)	
$s_{-}1322$	phosphate	

Products

Table 739: Properties of each product.

Id	Name	SBO
s_0145	2-acetamido-5-oxopentanoate	
$s_{-}1207$	NADP(+)	
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{184} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1191}] \cdot [\text{s_1212}] - \frac{[\text{s_0145}] \cdot [\text{s_1207}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\frac{\text{Km1191} \cdot \text{Km1212}}{\left(1 + \frac{[\text{s_1191}]}{\text{Km1191}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_0145}]}{\text{Km0145}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}}$$

$$(369)$$

Table 740: Properties of each parameter.

			•		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	
Vmax		0000324	0.134	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	
Km1191		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0145		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1207		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.185 Reaction r_0770

This is a reversible reaction of two reactants forming two products influenced by seven modifiers.

Name NADH dehydrogenase, cytosolic/mitochondrial

SBO:0000176 biochemical reaction

Reaction equation

$$s_1203 + s_1537 \xleftarrow{e_0139, \ e_0737, \ e_0714, \ s_1203, \ s_1537, \ s_1198, \ s_1535} s_1198 + s_1535 \tag{370}$$

Reactants

Table 741: Properties of each reactant.

Id	Name	SBO
s_1203	1 (1 122 11	_
$s_{-}1537$	ubiquinone-6	

Modifiers

Table 742: Properties of each modifier.

	*	
Id	Name	SBO
e_0139	NDE2	0000460
e_0737	NDE1	0000460
$e_{-}0714$	NDI1	0000460
s_1203	NADH	
s_1537	ubiquinone-6	
s_1198	NAD	
s_1535	ubiquinol-6	

Products

Table 743: Properties of each product.

Id	Name	SBO
s_1198	NAD	
s_1535	ubiquinol-6	

Kinetic Law

$$\nu_{185} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1203] \cdot [s_1537] - \frac{[s_1198] \cdot [s_1535]}{\text{Keq}} \right)}{\text{Km1203} \cdot \text{Km1537}}}{\left(1 + \frac{[s_1203]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[s_1537]}{\text{Km1537}} \right) + \left(1 + \frac{[s_1198]}{\text{Km1198}} \right) \cdot \left(1 + \frac{[s_1535]}{\text{Km1535}} \right) - 1}$$
(371)

Table 744: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			5.868	dimensionless	$lue{2}$
Vmax		0000324	82.149	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1203		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1537		0000322	0.100	$mmol \cdot l^{-1}$	
Km1198		0000323	0.100	$mmol \cdot l^{-1}$	
Km1535		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark

6.186 Reaction r_0792

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name nucleoside diphosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0467 \rightleftharpoons 0.0271, s_0467, s_0526, s_1322 \Rightarrow s_0526 + s_1322$$
 (372)

Reactant

Table 745: Properties of each reactant.

Id	Name	SBO
s_0467	CDP	

Modifiers

Table 746: Properties of each modifier.

Id	Name	SBO
e_0271	YND1	0000460
s_0467	CDP	
s_0526	CMP	
s_1322	phosphate	

Products

Table 747: Properties of each product.

Id	Name	SBO
s_0526	CMP	
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{186} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0467}] - \frac{[\text{s_0526}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0467}}}{1 + \frac{[\text{s_0467}]}{\text{Km0467}} + \left(1 + \frac{[\text{s_0526}]}{\text{Km0526}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(373)

Table 748: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.001	dimensionless	\square
Vmax		0000324	0.015	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0467		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0526		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1322		0000323	0.100	$mmol \cdot l^{-1}$	

6.187 Reaction r_0800

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name nucleoside diphosphate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0739 \xrightarrow{e_0568, s_0434, s_0739, s_0394, s_0785} s_0394 + s_0785 \tag{374}$$

Reactants

Table 749: Properties of each reactant.

Id	Name	SBO
s 0434	ATP	

Id	Name	SBO
s_0739	GDP	

Modifiers

Table 750: Properties of each modifier.

Id	Name	SBO
e_0568	YNK1	0000460
s0434	ATP	
s_0739	GDP	
$s_{-}0394$	ADP	
s_0785	GTP	

Products

Table 751: Properties of each product.

Id	Name	SBO
s_0394 s_0785		

Kinetic Law

$$v_{187} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0739}] - \frac{[\text{s_0394}] \cdot [\text{s_0785}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km0739}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0739}]}{\text{Km0739}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0785}]}{\text{Km0785}} \right) - 1}$$
(375)

Table 752: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.035	dimensionless	
Vmax		0000324	0.491	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	
Km0739		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0785		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

6.188 Reaction r_0811

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name nucleoside-diphosphate kinase (ATP:UDP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1538 \xrightarrow{e_0568, s_0434, s_1538, s_0394, s_1559} s_0394 + s_1559 \tag{376}$$

Reactants

Table 753: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1538$	UDP	

Modifiers

Table 754: Properties of each modifier.

Id	Name	SBO
e_0568	YNK1	0000460
s_0434	ATP	
s_1538	UDP	
s_0394	ADP	
$s_{-}1559$	UTP	

Products

Table 755: Properties of each product.

Id	Name	SBO
s_0394	ADP	
s_1559	UTP	

Kinetic Law

$$v_{188} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1538}] - \frac{[\text{s_0394}] \cdot [\text{s_1559}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1538}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1538}]}{\text{Km1538}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1559}]}{\text{Km1559}} \right) - 1}$$
(377)

Table 756: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.109	dimensionless	
Vmax		0000324	1.521	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1538		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1559		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.189 Reaction r_0813

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name O-acetylhomoserine (thiol)-lyase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0841 + s_1233 \xrightarrow{e_0674, s_0841, s_1233, s_0362, s_1012} s_0362 + s_1012 \tag{378}$$

Reactants

Table 757: Properties of each reactant.

Id	Name	SBO
	hydrogen sulfide	
s_1233	O-acetyl-L-homoserine	

Modifiers

Table 758: Properties of each modifier.

Id	Name	SBO
e_0674	MET17	0000460

Id	Name	SBO
s_0841	hydrogen sulfide	
s_1233	O-acetyl-L-homoserine	
s_0362	acetate	
$s_{-}1012$	L-homocysteine	

Products

Table 759: Properties of each product.

Id	Name	SBO
s_0362 s_1012	acetate L-homocysteine	

Kinetic Law

Derived unit contains undeclared units

$$v_{189} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0841}] \cdot [\text{s_1233}] - \frac{[\text{s_0362}] \cdot [\text{s_1012}]}{\text{Keq}}\right)}{\text{Km0841} \cdot \text{Km1233}}}{\left(1 + \frac{[\text{s_0841}]}{\text{Km0841}}\right) \cdot \left(1 + \frac{[\text{s_1233}]}{\text{Km1233}}\right) + \left(1 + \frac{[\text{s_0362}]}{\text{Km0362}}\right) \cdot \left(1 + \frac{[\text{s_1012}]}{\text{Km1012}}\right) - 1}$$
(379)

Table 760: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	
Vmax		0000324	0.030	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0841		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km1233		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km0362		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km1012		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.190 Reaction r_0816

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name ornithine carbamoyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0455 + s_1266 \xrightarrow{e_0499, s_0455, s_1266, s_0979, s_1322} s_0979 + s_1322 \tag{380}$$

Reactants

Table 761: Properties of each reactant.

Id	Name	SBO
	carbamoyl phosphate ornithine	

Modifiers

Table 762: Properties of each modifier.

	oz. Troperties of each i	mounier.
Id	Name	SBO
e_0499	ARG3	0000460
s0455	carbamoyl phosphate	
$s_{-}1266$	ornithine	
s_0979	L-citrulline	
s_1322	phosphate	

Products

Table 763: Properties of each product.

Name	SBO
L-citrulline phosphate	
	- 1 (41110

Kinetic Law

$$v_{190} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0455}] \cdot [\text{s_1266}] - \frac{[\text{s_0979}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0455} \cdot \text{Km1266}}}{\left(1 + \frac{[\text{s_0455}]}{\text{Km0455}} \right) \cdot \left(1 + \frac{[\text{s_1266}]}{\text{Km1266}} \right) + \left(1 + \frac{[\text{s_0979}]}{\text{Km0979}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(381)

Table 764: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	$ \mathcal{L} $
Vmax		0000324	0.085	$mmol \cdot l^{-1} \cdot s^{-1}$	\checkmark
Keq		0000281	2.000	dimensionless	
Km0455		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1266		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0979		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark

6.191 Reaction r_0818

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name ornithine transacetylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0991 + s_1182 \xrightarrow{e_0729, \ s_0991, \ s_1182, \ s_1192, \ s_1266} s_1192 + s_1266 \tag{382}$$

Reactants

Table 765: Properties of each reactant.

Id	Name	SBO			
	L-glutamate N(2)-acetyl-L-ornithine				

Modifiers

Table 766: Properties of each modifier.

	-	
Id	Name	SBO
e_0729	ARG7	0000460
s_0991	L-glutamate	
s_1182	N(2)-acetyl-L-ornithine	
$s_{-}1192$	N-acetyl-L-glutamate	
$s_{-}1266$	ornithine	

Products

Table 767: Properties of each product.

Id	Name	SBO
	N-acetyl-L-glutamate ornithine	

Kinetic Law

Derived unit contains undeclared units

$$v_{191} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0991}] \cdot [\text{s_1182}] - \frac{[\text{s_1192}] \cdot [\text{s_1266}]}{\text{Keq}} \right)}{\text{Km0991} \cdot \text{Km1182}}}{\left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1182}]}{\text{Km1182}} \right) + \left(1 + \frac{[\text{s_1192}]}{\text{Km1192}} \right) \cdot \left(1 + \frac{[\text{s_1266}]}{\text{Km1266}} \right) - 1}$$
(383)

Table 768: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	\square
Vmax		0000324	0.085	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1182		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1192		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1266		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.192 Reaction r_0820

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name orotate phosphoribosyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1269 + s_1386 \xrightarrow{e_0755, \ e_0712, \ s_1269, \ s_1386, \ s_0633, \ s_1270} s_0633 + s_1270 \tag{384}$$

Reactants

Table 769: Properties of each reactant.

Id	Name	SBO
s_1269 s_1386	orotate PRPP	

Modifiers

Table 770: Properties of each modifier.

	A	
Id	Name	SBO
e_0755	URA10	0000460
e_0712	URA5	0000460
$s_{-}1269$	orotate	
s_1386	PRPP	
s_0633	diphosphate	
s_1270	orotidine 5'-(dihydrogen phosphate)	

Products

Table 771: Properties of each product.

Id	Name	SBO
s_0633 s_1270	diphosphate orotidine 5'-(dihydrogen phosphate)	

Kinetic Law

$$v_{192} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_1269] \cdot [\text{s}_1386] - \frac{[\text{s}_0633] \cdot [\text{s}_1270]}{\text{Keq}} \right)}{\text{Km1269} \cdot \text{Km1386}}}{\left(1 + \frac{[\text{s}_1269]}{\text{Km1269}} \right) \cdot \left(1 + \frac{[\text{s}_1386]}{\text{Km1386}} \right) + \left(1 + \frac{[\text{s}_0633]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s}_1270]}{\text{Km1270}} \right) - 1}$$
(385)

Table 772: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	$ \mathbf{Z} $
Vmax		0000324	0.059	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	

Id	Name	SBO	Value	Unit	Constant
Km1269		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $
Km1386		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$mmol \cdot l^{-1}$	
Km1270		0000323	0.100	$mmol \cdot l^{-1}$	\mathbf{Z}

6.193 Reaction r_0821

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name orotidine-5'-phosphate decarboxylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-1270} = \underbrace{\frac{e_{-0249}, s_{-1270}, s_{-0456}, s_{-1545}}_{s_{-0456} + s_{-1545}} s_{-0456} + s_{-1545}$$

$$(386)$$

Reactant

Table 773: Properties of each reactant.

Id	Name	SBO
s_1270	orotidine 5'-(dihydrogen phosphate)	

Modifiers

Table 774: Properties of each modifier.

Id	Name	SBO
e_0249	URA3	0000460
s_1270	orotidine 5'-(dihydrogen phosphate)	
s_0456	carbon dioxide	
s_1545	UMP	

Products

Table 775: Properties of each product.

Id	Name	SBO
s 0456	carbon dioxide	

Id	Name	SBO
s_1545	UMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{193} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1270}] - \frac{[\text{s_0456}] \cdot [\text{s_145}]}{\text{Keq}} \right)}{\text{Km1270}}}{1 + \frac{[\text{s_1270}]}{\text{Km1270}} + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1545}]}{\text{Km1545}} \right) - 1}$$
(387)

Table 776: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.042	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km1270		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1545		0000323	0.100	$mmol \cdot l^{-1}$	

6.194 Reaction r_0851

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name phenylalanine transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0951 + s_0991 \xrightarrow{e_0348, s_0951, s_0991, s_0180, s_1032} s_0180 + s_1032 \tag{388}$$

Reactants

Table 777: Properties of each reactant.

Id	Name	SBO
	keto-phenylpyruvate L-glutamate	

Modifiers

Table 778: Properties of each modifier.

Id	Name	SBO
e_0348	ARO8	0000460
s_0951	keto-phenylpyruvate	
s_0991	L-glutamate	
s_0180	2-oxoglutarate	
s_1032	L-phenylalanine	

Products

Table 779: Properties of each product.

Id	Name	SBO
	2-oxoglutarate	
$s_{-}1032$	L-phenylalanine	

Kinetic Law

$$v_{194} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0951}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_1032}]}{\text{Keq}} \right)}{\text{Km0951} \cdot \text{Km0991}}}{\left(1 + \frac{[\text{s_0951}]}{\text{Km0951}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_1032}]}{\text{Km1032}} \right) - 1}$$
(389)

Table 780: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.005	dimensionless	$ \overline{Z} $
Vmax		0000324	0.071	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbb{Z}}$
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km0951		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0180		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1032		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.195 Reaction r_0852

This is a reversible reaction of three reactants forming three products influenced by eight modifiers

Name phenylalanyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1032 + s_1604 \xrightarrow{e_0639, \ e_0312, \ s_0434, \ s_1032, \ s_1604, \ s_0423, \ s_0633, \ s_1314} s_0423 + s_0633 + s_13 \xrightarrow{(390)}$$

Reactants

Table 781: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	_
$s_{-}1032$	L-phenylalanine	
$s_{-}1604$	tRNA(Phe)	

Modifiers

Table 782: Properties of each modifier.

Id	Name	SBO
e_0639	FRS1	0000460
e_0312	FRS2	0000460
s_0434	ATP	
s_1032	L-phenylalanine	
$s_{-}1604$	tRNA(Phe)	
s_0423	AMP	
s_0633	diphosphate	
s_1314	Phe-tRNA(Phe)	

Products

Table 783: Properties of each product.

Id	Name	SBO
s_0423		
s_0633	diphosphate	
s_1314	Phe-tRNA(Phe)	

Kinetic Law

Derived unit contains undeclared units

$$v_{195} = \frac{\frac{\text{vol(cell)} \cdot \text{V} \text{max} \cdot \left([\text{s_0434}] \cdot [\text{s_1032}] \cdot [\text{s_1604}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1314}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1032} \cdot \text{Km1604}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{V} \text{max} \cdot \left([\text{s_0434}] \cdot [\text{s_1032}] \cdot \left(1 + \frac{[\text{s_1032}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1032}]}{\text{Km10423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1314}]}{\text{Km1314}} \right) - 1}{(1 + \frac{[\text{s_0434}]}{\text{Km0434}}) \cdot \left(1 + \frac{[\text{s_1032}]}{\text{Km1032}} \right) \cdot \left(1 + \frac{[\text{s_1032}]}{\text{Km1032}} \right) \cdot \left(1 + \frac{[\text{s_11314}]}{\text{Km11314}} \right) - 1} \\ = \frac{(391)}{\text{Km0434} \cdot \text{Km1032} \cdot \text{Km1032}} \cdot \left(1 + \frac{[\text{s_1032}]}{\text{Km1032}} \right) \cdot \left(1 + \frac{[\text{s_1032}]}{\text{Km1032}} \right) \cdot \left(1 + \frac{[\text{s_1032}]}{\text{Km10423}} \right)$$

Table 784: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.005	dimensionless	$ \mathcal{L} $
Vmax		0000324	0.152	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1032		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1604		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1314		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.196 Reaction r_0855

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name phopshoribosylaminoimidazole synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0302 + s_0434 \xrightarrow{e_0352, s_0302, s_0434, s_0300, s_0394, s_1322} s_0300 + s_0394 + s_1322 \tag{392}$$

Reactants

Table 785: Properties of each reactant.

Id	Name	SBO
s_0302 s_0434	5'-phosphoribosyl-N-formylglycineamidine ATP	

Modifiers

Table 786: Properties of each modifier.

Id	Name	SBO
e_0352	ADE5,7	0000460
s_0302	5'-phosphoribosyl-N-formylglycineamidine	
s_0434	ATP	
s_0300	5'-phosphoribosyl-5-aminoimidazole	
s_0394	ADP	
s_1322	phosphate	

Products

Table 787: Properties of each product.

Id	Name	SBO
s_0394	5'-phosphoribosyl-5-aminoimidazole ADP phosphate	

Kinetic Law

$$\nu_{196} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0302}] \cdot [\text{s_0434}] - \frac{[\text{s_0300}] \cdot [\text{s_0394}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0302} \cdot \text{Km0434}}}{\left(1 + \frac{[\text{s_0302}]}{\text{Km0302}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) + \left(1 + \frac{[\text{s_0300}]}{\text{Km03000}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

$$(393)$$

Table 788: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.083	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0302		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0300		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.197 Reaction r_0858

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name phosphatidylethanolamine methyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1351 + s_1416 \xrightarrow{e_0536, \ e_0381, \ s_1351, \ s_1416, \ s_1343, \ s_1413} s_1343 + s_1413 \tag{394}$$

Reactants

Table 789: Properties of each reactant.

	, u, , , o p	
Id	Name	SBO
s_1351	phosphatidylethanolamine	
$s_{-}1416$	S-adenosyl-L-methionine	

Modifiers

Table 790: Properties of each modifier.

Id	Name	SBO
e_0536	OPI3	0000460
e_0381	CHO2	0000460
$s_{-}1351$	phosphatidylethanolamine	
$s_{-}1416$	S-adenosyl-L-methionine	
s_1343	phosphatidyl-N-methylethanolamine	

Id	Name	SBO
s_1413	S-adenosyl-L-homocysteine	

Products

Table 791: Properties of each product.

Id	Name	SBO
	phosphatidyl-N-methylethanolamine S-adenosyl-L-homocysteine	

Kinetic Law

Derived unit contains undeclared units

$$v_{197} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1351] \cdot [s_1416] - \frac{[s_1343] \cdot [s_1413]}{\text{Keq}} \right)}{\text{Km1351} \cdot \text{Km1416}}}{\left(1 + \frac{[s_1351]}{\text{Km1351}} \right) \cdot \left(1 + \frac{[s_1416]}{\text{Km1416}} \right) + \left(1 + \frac{[s_1343]}{\text{Km1343}} \right) \cdot \left(1 + \frac{[s_1413]}{\text{Km1413}} \right) - 1}$$
(395)

Table 792: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.09303224869629 \cdot 10^{-4}$	dimensionless	<u>√</u>
Vmax		0000324	0.002	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$ \overline{\mathscr{L}} $
Km1351		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1416		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1343		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1413		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.198 Reaction r_0874

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name phosphatidylinositol synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0471 + s_1153 \xrightarrow{e_0964, s_0471, s_1153, s_0089, s_0526} s_0089 + s_0526 \tag{396}$$

Reactants

Table 793: Properties of each reactant.

	P	
Id	Name	SBO
	CDP-diacylglycerol myo-inositol	

Modifiers

Table 794: Properties of each modifier.

Id	Name	SBO
e_0964	PIS1	0000460
s_0471	CDP-diacylglycerol	
$s_{-}1153$	myo-inositol	
s_0089	1-phosphatidyl-1D-myo-inositol	
s_0526	CMP	

Products

Table 795: Properties of each product.

Id	Name	SBO
s_0089 s_0526	1-phosphatidyl-1D-myo-inositol CMP	

Kinetic Law

$$v_{198} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0471}] \cdot [\text{s_1153}] - \frac{[\text{s_0089}] \cdot [\text{s_0526}]}{\text{Keq}} \right)}{\text{Km0471} \cdot \text{Km1153}}}{\left(1 + \frac{[\text{s_0471}]}{\text{Km0471}} \right) \cdot \left(1 + \frac{[\text{s_1153}]}{\text{Km1153}} \right) + \left(1 + \frac{[\text{s_0089}]}{\text{Km0089}} \right) \cdot \left(1 + \frac{[\text{s_0526}]}{\text{Km0526}} \right) - 1}$$
(397)

Table 796: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$8.05209910738368 \cdot 10^{-5}$	dimensionless	\checkmark
Vmax		0000324	0.001	$mmol \cdot l^{-1} \cdot s^{-1}$	\checkmark

Id	Name	SBO	Value	Unit	Constant
Keq		0000281	2.000	dimensionless	\square
Km0471		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1153		0000322	0.100	$mmol \cdot l^{-1}$	
Km0089		0000323	0.100	$mmol \cdot l^{-1}$	
Km0526		0000323	0.100	$mmol \cdot l^{-1}$	

6.199 Reaction r_0877

This is a reversible reaction of one reactant forming two products influenced by five modifiers.

Name phosphatidylserine decarboxylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1337 \xrightarrow{e_0788, \ e_0382, \ s_1337, \ s_0456, \ s_1351} s_0456 + s_1351 \tag{398}$$

Reactant

Table 797: Properties of each reactant.

Id	Name	SBO
s_1337	phosphatidyl-L-serine	

Modifiers

Table 798: Properties of each modifier.

Id	Name	SBO
e_0788	PSD1	0000460
e_0382	PSD2	0000460
s_1337	phosphatidyl-L-serine	
s_0456	carbon dioxide	
$s_{-}1351$	phosphatidylethanolamine	

Products

Table 799: Properties of each product.

Id	Name	SBO
	carbon dioxide phosphatidylethanolamine	

Kinetic Law

Derived unit contains undeclared units

$$v_{199} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1337}] - \frac{[\text{s_0456}] \cdot [\text{s_1351}]}{\text{Keq}} \right)}{\text{Km1337}}}{1 + \frac{[\text{s_1337}]}{\text{Km1337}} + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1351}]}{\text{Km1351}} \right) - 1}$$
(399)

Table 800: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.3575612338737 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.001	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1337		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1351		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.200 Reaction r_0880

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name phosphatidylserine synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0471 + s_1039 \xrightarrow{e_0278, s_0471, s_1039, s_0526, s_1337} s_0526 + s_1337 \tag{400}$$

Reactants

Table 801: Properties of each reactant.

Id	Name	SBO
s_0471	CDP-diacylglycerol	

Id	Name	SBO
s_1039	L-serine	

Modifiers

Table 802: Properties of each modifier.

	*	
Id	Name	SBO
e_0278	CHO1	0000460
s_0471	CDP-diacylglycerol	
s_1039	L-serine	
s_0526	CMP	
s_1337	phosphatidyl-L-serine	

Products

Table 803: Properties of each product.

Id	Name	SBO
s_0526	CMP	
s_1337	phosphatidyl-L-serine	

Kinetic Law

$$v_{200} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0471}] \cdot [\text{s_1039}] - \frac{[\text{s_0526}] \cdot [\text{s_1337}]}{\text{Keq}} \right)}{\text{Km0471} \cdot \text{Km1039}}}{\left(1 + \frac{[\text{s_0471}]}{\text{Km0471}} \right) \cdot \left(1 + \frac{[\text{s_1039}]}{\text{Km1039}} \right) + \left(1 + \frac{[\text{s_0526}]}{\text{Km0526}} \right) \cdot \left(1 + \frac{[\text{s_1337}]}{\text{Km1337}} \right) - 1}$$
(401)

Table 804: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.50557601754342 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.002	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0471		0000322	0.100	$mmol \cdot l^{-1}$	
Km1039		0000322	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
Km0526		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1337		0000323	0.100	$mmol \cdot l^{-1}$	\square

6.201 Reaction r_0883

This is a reversible reaction of two reactants forming three products influenced by eight modifiers.

Name phosphoadenylyl-sulfate reductase (thioredoxin)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0201 + s_1616 \xrightarrow{e_0633, e_0975, e_0398, s_0201, s_1616, s_0390, s_1469, s_1620} s_0390 + s_1469 + s_1620 \tag{402}$$

Reactants

Table 805: Properties of each reactant.

Id	Name	SBO
s_0201	3'-phospho-5'-adenylyl sulfate	
s_1616	TRX1	

Modifiers

Table 806: Properties of each modifier.

	Tuble 600. I Toperties of each meanier.				
Id	Name	SBO			
e_0633	TRX1	0000460			
e_0975	MET16	0000460			
e_0398	TRX2	0000460			
s_0201	3'-phospho-5'-adenylyl sulfate				
s_1616	TRX1				
s_0390	adenosine 3',5'-bismonophosphate				
$s_{-}1469$	sulphite				
$s_{-}1620$	TRX1 disulphide				

Products

Table 807: Properties of each product.

Id	Name	SBO
s_0390	adenosine 3',5'-bismonophosphate	

Id	Name	SBO
	sulphite TRX1 disulphide	

Kinetic Law

Derived unit contains undeclared units

$$v_{201} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0201}] \cdot [\text{s_1616}] - \frac{[\text{s_0390}] \cdot [\text{s_1469}] \cdot [\text{s_1620}]}{\text{Keq}} \right)}{\text{Km0201} \cdot \text{Km1616}}}{\left(1 + \frac{[\text{s_0201}]}{\text{Km0201}} \right) \cdot \left(1 + \frac{[\text{s_1616}]}{\text{Km1616}} \right) + \left(1 + \frac{[\text{s_0390}]}{\text{Km0390}} \right) \cdot \left(1 + \frac{[\text{s_1469}]}{\text{Km1469}} \right) \cdot \left(1 + \frac{[\text{s_1620}]}{\text{Km1620}} \right) - 1}$$

$$(403)$$

Table 808: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	$\overline{\checkmark}$
Vmax		0000324	0.048	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0201		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km1616		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km0390		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km1469		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1620		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.202 Reaction r_0886

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name phosphofructokinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0557 \xrightarrow{e_0401, \ e_0743, \ s_0434, \ s_0557, \ s_0394, \ s_0555} s_0394 + s_0555 \tag{404}$$

Reactants

Table 809: Properties of each reactant.

Id	Name	SBO
	Name	
s_0434	ATP	
s_0557	D-fructose 6-phosphate	

Modifiers

Table 810: Properties of each modifier.

	1	
Id	Name	SBO
e_0401	PFK1	0000460
e_0743	PFK2	0000460
s_0434	ATP	
s_0557	D-fructose 6-phosphate	
$s_{-}0394$	ADP	
s_0555	D-fructose 1,6-bisphosphate	

Products

Table 811: Properties of each product.

Id	Name	SBO			
s_0394	ADP				
s_0555	D-fructose 1,6-bisphosphate				

Kinetic Law

$$v_{202} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0557}] - \frac{[\text{s_0394}] \cdot [\text{s_0555}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km0557}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0557}]}{\text{Km0557}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0555}]}{\text{Km0555}} \right) - 1}}$$
(405)

Table 812: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.851	dimensionless	
Vmax		0000324	11.908	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	

Id	Name	SBO	Value	Unit	Constant
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0557		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0555		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.203 Reaction r_0888

This is a reversible reaction of one reactant forming one product influenced by five modifiers.

Name phosphoglucomutase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0568 \xleftarrow{e_{-}0576, e_{-}0757, e_{-}0733, s_{-}0568, s_{-}0567} s_{-}0567$$
 (406)

Reactant

Table 813: Properties of each reactant.

Id	Name	SBO
s_0568	D-glucose 6-phosphate	

Modifiers

Table 814: Properties of each modifier.

Id	Name	SBO
e_0576	PGM1	0000460
e_0757	PGM3	0000460
e_0733	PGM2	0000460
s_0568	D-glucose 6-phosphate	
s_0567	D-glucose 1-phosphate	

Product

Table 815: Properties of each product.

Id	Name	SBO
s_0567	D-glucose 1-phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{203} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.0568}] - \frac{[\text{s.0567}]}{\text{Keq}}\right)}{\text{Km0568}}}{1 + \frac{[\text{s.0568}]}{\text{Km0568}} + 1 + \frac{[\text{s.0567}]}{\text{Km0567}} - 1}$$
(407)

Table 816: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.107	dimensionless	\overline{Z}
Vmax		0000324	0.640	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	
Km0568		0000322	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km0567		0000323	0.100	$mmol \cdot l^{-1}$	\square

6.204 Reaction r_0891

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name phosphoglycerate dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0260 + s_1198 \xrightarrow{e_0294, \ e_0469, \ s_0260, \ s_1198, \ s_0258, \ s_1203} s_0258 + s_1203 \tag{408}$$

Reactants

Table 817: Properties of each reactant.

Id	Name	SBO
s_0260 s_1198	3-phosphoglycerate NAD	

Modifiers

Table 818: Properties of each modifier.

Id	Name	SBO
e_0294	SER3	0000460
e_0469	SER33	0000460
s_0260	3-phosphoglycerate	
s_1198	NAD	
s_0258	3-phospho-hydroxypyruvate	
s_1203	NADH	

Products

Table 819: Properties of each product.

Id	Name	SBO
s_0258 s_1203	3-phospho-hydroxypyruvate NADH	

Kinetic Law

$$v_{204} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0260}] \cdot [\text{s_1198}] - \frac{[\text{s_0258}] \cdot [\text{s_1203}]}{\text{Keq}} \right)}{\text{Km0260} \cdot \text{Km1198}}}{\left(1 + \frac{[\text{s_0260}]}{\text{Km0260}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_0258}]}{\text{Km0258}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1}$$
(409)

Table 820: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.460	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	20.441	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0260		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1198		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0258		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1203		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.205 Reaction r_0892

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name phosphoglycerate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0075 + s_0394 \xrightarrow{e_0113, s_0075, s_0394, s_0260, s_0434} s_0260 + s_0434 \tag{410}$$

Reactants

Table 821: Properties of each reactant.

Id	Name	SBO
s_0075 s_0394	1,3-bisphospho-D-glycerate ADP	

Modifiers

Table 822: Properties of each modifier.

Id	Name	SBO
e_0113	PGK1	0000460
s0075	1,3-bisphospho-D-glycerate	
s_0394	ADP	
s_0260	3-phosphoglycerate	
s_0434	ATP	

Products

Table 823: Properties of each product.

Id	Name	SBO
s_0260 s_0434	3-phosphoglycerate ATP	

Kinetic Law

$$v_{205} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0075}] \cdot [\text{s_0394}] - \frac{[\text{s_0260}] \cdot [\text{s_0434}]}{\text{Keq}} \right)}{\text{Km0075} \cdot \text{Km0394}}}{\left(1 + \frac{[\text{s_0075}]}{\text{Km0075}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) + \left(1 + \frac{[\text{s_0260}]}{\text{Km0260}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) - 1}$$

$$(411)$$

Table 824: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.691	dimensionless	\checkmark
Vmax		0000324	23.680	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0075		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0394		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0260		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0434		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	

6.206 Reaction r_0893

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name phosphoglycerate mutase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0260 \xrightarrow{e_{-}0582, s_{-}0260, s_{-}0188} s_{-}0188$$
 (412)

Reactant

Table 825: Properties of each reactant.

Id	Name	SBO
s_0260	3-phosphoglycerate	

Table 826: Properties of each modifier.

Id	Name	SBO
e_0582	GPM1	0000460
s_0260	3-phosphoglycerate	

Id	Name	SBO
s_0188	2-phospho-D-glyceric acid	

Product

Table 827: Properties of each product.

		GD 0
Id	Name	SBO
s_0188	2-phospho-D-glyceric acid	

Kinetic Law

Derived unit contains undeclared units

$$v_{206} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0260}] - \frac{[\text{s_0188}]}{\text{Keq}}\right)}{\frac{\text{Km0260}}{1 + \frac{[\text{s_0260}]}{\text{Km0260}} + 1 + \frac{[\text{s_0188}]}{\text{Km0188}} - 1}}$$
(413)

Table 828: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.231	dimensionless	\square
Vmax		0000324	1.388	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0260		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0188		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.207 Reaction r_0900

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name phospholipid methyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1342 + s_1416 \xrightarrow{e_0536, \ s_1342, \ s_1416, \ s_1346, \ s_1413} s_1346 + s_1413 \tag{414}$$

Reactants

Table 829: Properties of each reactant.

Id	Name	SBO
	phosphatidyl-N,N-dimethylethanolamine S-adenosyl-L-methionine	

Modifiers

Table 830: Properties of each modifier.

Id	Name	SBO
e_0536	OPI3	0000460
s_1342	phosphatidyl-N,N-dimethylethanolamine	
$s_{-}1416$	S-adenosyl-L-methionine	
$s_{-}1346$	phosphatidylcholine	
$s_{-}1413$	S-adenosyl-L-homocysteine	

Products

Table 831: Properties of each product.

Id	Name	SBO
	phosphatidylcholine S-adenosyl-L-homocysteine	

Kinetic Law

$$\nu_{207} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1342}] \cdot [\text{s_1416}] - \frac{[\text{s_1346}] \cdot [\text{s_1413}]}{\text{Keq}}\right)}{\text{Km1342} \cdot \text{Km1416}}}{\left(1 + \frac{[\text{s_1342}]}{\text{Km1342}}\right) \cdot \left(1 + \frac{[\text{s_1416}]}{\text{Km1416}}\right) + \left(1 + \frac{[\text{s_1346}]}{\text{Km1346}}\right) \cdot \left(1 + \frac{[\text{s_1413}]}{\text{Km1413}}\right) - 1}$$
(415)

Table 832: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.09303224869629 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.002	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1342		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km1416		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1346		0000323	0.100	$mmol \cdot l^{-1}$	
Km1413		0000323	0.100	$mmol \cdot l^{-1}$	\square

6.208 Reaction r_0901

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name phospholipid methyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1343 + s_1416 \xrightarrow{e_0536, \ s_1343, \ s_1416, \ s_1342, \ s_1413} s_1342 + s_1413 \tag{416}$$

Reactants

Table 833: Properties of each reactant.

Id	Name	SBO
	phosphatidyl-N-methylethanolamine S-adenosyl-L-methionine	

Modifiers

Table 834: Properties of each modifier.

Id	Name	SBO
e_0536	OPI3	0000460
s_1343	phosphatidyl-N-methylethanolamine	
$s_{-}1416$	S-adenosyl-L-methionine	
s_1342	phosphatidyl-N,N-dimethylethanolamine	
$s_{-}1413$	S-adenosyl-L-homocysteine	

Products

Table 835: Properties of each product.

Id	Name	SBO
	phosphatidyl-N,N-dimethylethanolamine S-adenosyl-L-homocysteine	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{208} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1343] \cdot [s_1416] - \frac{[s_1342] \cdot [s_1413]}{\text{Keq}} \right)}{\text{Km1343} \cdot \text{Km1416}}}{\left(1 + \frac{[s_1343]}{\text{Km1343}} \right) \cdot \left(1 + \frac{[s_1416]}{\text{Km1416}} \right) + \left(1 + \frac{[s_1342]}{\text{Km1342}} \right) \cdot \left(1 + \frac{[s_1413]}{\text{Km1413}} \right) - 1}$$
(417)

Table 836: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.09303224869629 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.002	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1343		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1416		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1342		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1413		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	

6.209 Reaction r_0902

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name phosphomannomutase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0574 \xrightarrow{e_{-}0314, s_{-}0574, s_{-}0573} s_{-}0573$$
 (418)

Reactant

Table 837: Properties of each reactant.

Id	Name	SBO
s_0574	D-mannose 6-phosphate	

Modifiers

Table 838: Properties of each modifier.

Id	Name	SBO
e_0314	SEC53	0000460
s_0574	D-mannose 6-phosphate	
s_0573	D-mannose 1-phosphate	

Product

Table 839: Properties of each product.

Id	Name	SBO
s_0573	D-mannose 1-phosphate	

Kinetic Law

$$v_{209} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_0574] - \frac{[\text{s}_0573]}{\text{Keq}}\right)}{\text{Km0574}}}{1 + \frac{[\text{s}_0574]}{\text{Km0574}} + 1 + \frac{[\text{s}_0573]}{\text{Km0573}} - 1}$$
(419)

Table 840: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.031	dimensionless	
Vmax		0000324	0.184	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0574		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0573		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.210 Reaction r_0904

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name phosphomevalonate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0019 + s_0434 \xrightarrow{e_0747, s_0019, s_0434, s_0018, s_0394} s_0018 + s_0394 \tag{420}$$

Reactants

Table 841: Properties of each reactant.

Id	Name	SBO
s_0019 s_0434	(R)-5-phosphomevalonic acid ATP	

Modifiers

Table 842: Properties of each modifier.

Id	Name	SBO
e_0747	ERG8	0000460
s_0019	(R)-5-phosphomevalonic acid	
s_0434	ATP	
s_0018	(R)-5-diphosphomevalonic acid	
s_0394	ADP	

Products

Table 843: Properties of each product.

Id	Name	SBO
s_0018	(R)-5-diphosphomevalonic acid	
s_0394	ADP	

Kinetic Law

$$v_{210} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0019}] \cdot [\text{s_0434}] - \frac{[\text{s_0018}] \cdot [\text{s_0394}]}{\text{Keq}} \right)}{\text{Km0019} \cdot \text{Km0434}}}{\left(1 + \frac{[\text{s_0019}]}{\text{Km0019}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km00434}} \right) + \left(1 + \frac{[\text{s_0018}]}{\text{Km0018}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) - 1}$$
 (421)

Table 844: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	\overline{Z}
Vmax		0000324	0.022	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0019		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0018		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.211 Reaction r_0908

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name phosphoribosyl amino imidazolesuccinocarbozamide synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0434 + s_{-}0973 + s_{-}1364 \xrightarrow{e_{-}0017, s_{-}0434, s_{-}0973, s_{-}1364, s_{-}0299, s_{-}0394, s_{-}1322} s_{-}0299 + s_{-}0394 + s_{-}1322$$

$$(422)$$

Reactants

Table 845: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0973	L-aspartate	
$s_{-}1364$	phosphoribosyl-carboxy-aminoimidazole	

Table 846: Properties of each modifier.

Id	Name	SBO
e_0017	ADE1	0000460
s_0434	ATP	
s_0973	L-aspartate	
s_1364	phosphoribosyl-carboxy-aminoimidazole	
s_0299	5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole	
s_0394	ADP	
s_1322	phosphate	

Products

Table 847: Properties of each product.

Id	Name	SBO
s_0299 s_0394	5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ADP	
s_1322	phosphate	

Kinetic Law

$$v_{211} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0973}] \cdot [\text{s_1364}] - \frac{[\text{s_0299}] \cdot [\text{s_0394}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km0973} \cdot \text{Km1364}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0973}]}{\text{Km0434} \cdot \text{Km0973}} \right) \cdot \left(1 + \frac{[\text{s_1364}]}{\text{Km0373}} \right) \cdot \left(1 + \frac{[\text{s_1364}]}{\text{Km1364}} \right) + \left(1 + \frac{[\text{s_0299}]}{\text{Km0299}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}{\text{Vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_0973}] \cdot [\text{s_1364}] \right)} \\ = \frac{(423)}{\text{Km0434} \cdot \text{Km0973} \cdot \text{Km1364}} + \left(1 + \frac{[\text{s_0299}]}{\text{Km0299}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}{\text{Km1364}} \\ = \frac{(423)}{\text{Km0434} \cdot \text{Km0973}} \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0399}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1364}} \right) - 1}{\text{Vol(cell)} \cdot \text{Vmax} \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km1364}} \right) + \left(1 + \frac{[\text{s_0973}]}{\text{Km0299}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km1364}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km1364}} \right) \cdot \left(1 + \frac{[\text{s_0973}]}{\text{Km1364}} \right) + \left(1 + \frac{[\text{s_0973}]}{\text{Km1364}} \right) \cdot \left(1 + \frac{[\text{s_0$$

Table 848: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.113	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	
Km0973		0000322	0.100	$mmol \cdot l^{-1}$	
Km1364		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0299		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km0394		0000323	0.100	$mmol \cdot l^{-1}$	
Km1322		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.212 Reaction r_0909

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name phosphoribosyl-AMP cyclohydrolase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0078 \xleftarrow{e_0103, s_0078, s_0077} s_0077$$
 (424)

Reactant

Table 849: Properties of each reactant.

Id	Name	SBO
s_0078	1-(5-phosphoribosyl)-5'-AMP	

Modifiers

Table 850: Properties of each modifier.

Id	Name
e_0103	HIS4
s_0078	1-(5-phosphoribosyl)-5'-AMP
s0077	$1\hbox{-}(5\hbox{-phospho-}D\hbox{-ribosyl})\hbox{-}5\hbox{-}[(5\hbox{-phospho-}D\hbox{-ribosylamino}) methylideneamino}] imidazole\hbox{-}4\hbox{-carboxamide}$

Product

Table 851: Properties of each product.

Id	Name
s_0077	1-(5-phospho-D-ribosyl)-5-[(5-phospho-D-ribosylamino)methylideneamino]imidazole-4-carboxamide

Kinetic Law

$$v_{212} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0078}] - \frac{[\text{s_0077}]}{\text{Keq}} \right)}{\frac{\text{Km0078}}{1 + \frac{[\text{s_0078}]}{\text{Km0078}} + 1 + \frac{[\text{s_0077}]}{\text{Km0077}} - 1}}$$
(425)

Table 852: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	\square
Vmax		0000324	0.015	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0078		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0077		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.213 Reaction r_0910

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name phosphoribosyl-ATP pyrophosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0326 \xleftarrow{e_0103, s_0326, s_0078, s_0633} s_0078 + s_0633 \tag{426}$$

Reactant

Table 853: Properties of each reactant.

Id	Name	SBO
s_0326	5-phosphoribosyl-ATP	

Modifiers

Table 854: Properties of each modifier.

Id	Name	SBO
e_0103	HIS4	0000460
s_0326	5-phosphoribosyl-ATP	
s_0078	1-(5-phosphoribosyl)-5'-AMP	
s_0633	diphosphate	

Products

Table 855: Properties of each product.

Id	Name	SBO
	1-(5-phosphoribosyl)-5'-AMP diphosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{213} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0326}] - \frac{[\text{s_0078}] \cdot [\text{s_0633}]}{\text{Keq}} \right)}{\text{Km0326}}}{1 + \frac{[\text{s_0326}]}{\text{Km0326}} + \left(1 + \frac{[\text{s_0078}]}{\text{Km0078}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) - 1}$$
(427)

Table 856: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	
Vmax		0000324	0.025	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0326		0000322	0.100	$mmol \cdot l^{-1}$	\square
Km0078		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km0633		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.214 Reaction r_0911

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name phosphoribosylaminoimidazole-carboxylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0300 + s_0456 + s_0434 \xleftarrow{e_0860, s_0300, s_0456, s_0434, s_1364, s_0394, s_1322} s_1364 + s_0394 + s_1322 \tag{428}$$

Reactants

Table 857: Properties of each reactant.

Id	Name	SBO
s_0456	5'-phosphoribosyl-5-aminoimidazole carbon dioxide	
s_0434	ATP	

Modifiers

Table 858: Properties of each modifier.

Id	Name	SBO
e_0860	ADE2	0000460
s_0300	5'-phosphoribosyl-5-aminoimidazole	
s0456	carbon dioxide	
s_0434	ATP	
s_1364	phosphoribosyl-carboxy-aminoimidazole	
s_0394	ADP	
s_1322	phosphate	

Products

Table 859: Properties of each product.

Id	Name	SBO
s_0394	phosphoribosyl-carboxy-aminoimidazole ADP phosphate	

Kinetic Law

$$v_{214} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0300}] \cdot [\text{s_0456}] \cdot [\text{s_0434}] - \frac{[\text{s_1364}] \cdot [\text{s_0394}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\frac{\text{Km0300} \cdot \text{Km0456} \cdot \text{Km0434}}{\left(1 + \frac{[\text{s_0300}]}{\text{Km0300}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) + \left(1 + \frac{[\text{s_1364}]}{\text{Km1364}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

Table 860: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	\checkmark
Vmax		0000324	0.113	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0300		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0456		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	
Km1364		0000323	0.100	$mmol \cdot l^{-1}$	
Km0394		0000323	0.100	$mmol \cdot l^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.215 Reaction r_0912

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name phosphoribosylaminoimidazolecarboxamide formyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0120 + s_0403 \xrightarrow{e_0631, \ e_0736, \ s_0120, \ s_0403, \ s_1365, \ s_1487} s_1365 + s_1487 \tag{430}$$

Reactants

Table 861: Properties of each reactant.

Id	Name	SBO
	10-formyl-THF AICAR	

Table 862: Properties of each modifier.

Id	Name	SBO
e_0631	ADE16	0000460
e_0736	ADE17	0000460
s_0120	10-formyl-THF	
s_0403	AICAR	

Id	Name	SBO
s_1365 s_1487	phosphoribosyl-formamido-carboxamide THF	

Products

Table 863: Properties of each product.

Id	Name	SBO
s_1365 s_1487	phosphoribosyl-formamido-carboxamide THF	

Kinetic Law

Derived unit contains undeclared units

$$v_{215} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0120}] \cdot [\text{s_0403}] - \frac{[\text{s_1365}] \cdot [\text{s_1487}]}{\text{Keq}} \right)}{\text{Km0120} \cdot \text{Km0403}}}{\left(1 + \frac{[\text{s_0120}]}{\text{Km0120}} \right) \cdot \left(1 + \frac{[\text{s_0403}]}{\text{Km0403}} \right) + \left(1 + \frac{[\text{s_1365}]}{\text{Km1365}} \right) \cdot \left(1 + \frac{[\text{s_1487}]}{\text{Km1487}} \right) - 1}$$

$$(431)$$

Table 864: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	
Vmax		0000324	0.088	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0120		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0403		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km1365		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1487		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $

6.216 Reaction r_0913

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name phosphoribosylanthranilate isomerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}1187 = 0.0165, s_{-}1187, s_{-}0076 = 0.0076$$
 (432)

Reactant

Table 865: Properties of each reactant.

Id	Name	SBO
s_1187	N-(5-phospho-beta-D-ribosyl)anthranilate	

Modifiers

Table 866: Properties of each modifier.

Id	Name	SBO
e_0165	TRP1	0000460
$s_{-}1187$	N-(5-phospho-beta-D-ribosyl)anthranilate	
s_0076	1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate	

Product

Table 867: Properties of each product.

Id	Name	SBO
s_0076	1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate	

Kinetic Law

$$v_{216} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1187}] - \frac{[\text{s_0076}]}{\text{Keq}}\right)}{\text{Km1187}}}{1 + \frac{[\text{s_1187}]}{\text{Km1187}} + 1 + \frac{[\text{s_0076}]}{\text{Km0076}} - 1}$$
(433)

Table 868: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.001	dimensionless	
Vmax		0000324	0.006	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\checkmark}$

Id	Name	SBO	Value	Unit	Constant
Keq Km1187		0000281 0000322		dimensionless $mmol \cdot l^{-1}$	
Km0076		0000323		$mmol \cdot l^{-1}$	≥

6.217 Reaction r_0914

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name phosphoribosylglycinamidine synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0327 + s_0434 + s_1003 \xleftarrow{e_0352, s_0327, s_0434, s_1003, s_0325, s_0394, s_1322} s_0325 + s_0394 + s_1322 \tag{434}$$

Reactants

Table 869: Properties of each reactant.

Id	Name	SBO
s_0327 s_0434	5-phosphoribosylamine ATP	
$s_{-}1003$	L-glycine	

Table 870: Properties of each modifier.

	*	
Id	Name	SBO
e_0352	ADE5,7	0000460
s_0327	5-phosphoribosylamine	
s_0434	ATP	
$s_{-}1003$	L-glycine	
s_0325	5-phospho-ribosyl-glycineamide	
s_0394	ADP	
s_1322	phosphate	

Products

Table 871: Properties of each product.

Id	Name	SBO
s_0394	1121	
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{217} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0327}] \cdot [\text{s_0434}] \cdot [\text{s_1003}] - \frac{[\text{s_0325}] \cdot [\text{s_0394}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\frac{\text{Km0327} \cdot \text{Km0434} \cdot \text{Km1003}}{\left(1 + \frac{[\text{s_0327}]}{\text{Km0327}} \right) \cdot \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1003}]}{\text{Km1003}} \right) + \left(1 + \frac{[\text{s_0325}]}{\text{Km0325}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

Table 872: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	<u> </u>
Vmax		0000324	0.113	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	\checkmark
Km0327		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	
Km1003		0000322	0.100	$mmol \cdot l^{-1}$	
Km0325		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.218 Reaction r_0915

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name phosphoribosylpyrophosphate amidotransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0999 + s_1386 \xleftarrow{e_0763, s_0999, s_1386, s_0327, s_0633, s_0991} s_0327 + s_0633 + s_0991 \tag{436}$$

Reactants

Table 873: Properties of each reactant.

Id	Name	SBO
s_0999 s_1386	L-glutamine PRPP	

Modifiers

Table 874: Properties of each modifier.

	o F	
Id	Name	SBO
e_0763	ADE4	0000460
s_0999	L-glutamine	
$s_{-}1386$	PRPP	
s_0327	5-phosphoribosylamine	
s_0633	diphosphate	
s_0991	L-glutamate	

Products

Table 875: Properties of each product.

Id	Name	SBO
s_0633	5-phosphoribosylamine diphosphate	
s_0991	L-glutamate	

Kinetic Law

$$v_{218} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0999}] \cdot [\text{s_1386}] - \frac{[\text{s_0327}] \cdot [\text{s_0633}] \cdot [\text{s_0991}]}{\text{Keq}} \right)}{\text{Km0999} \cdot \text{Km1386}}}{\left(1 + \frac{[\text{s_0999}]}{\text{Km0999}} \right) \cdot \left(1 + \frac{[\text{s_1386}]}{\text{Km1386}} \right) + \left(1 + \frac{[\text{s_0327}]}{\text{Km0327}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) - 1}$$

$$(437)$$

Table 876: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	\overline{Z}
Vmax		0000324	0.083	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Km0999		0000322	0.100	$mmol \cdot l^{-1}$	
Km1386		0000322	0.100	$mmol \cdot l^{-1}$	
Km0327		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0991		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.219 Reaction r_0916

This is a reversible reaction of two reactants forming two products influenced by nine modifiers.

Name phosphoribosylpyrophosphate synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1408 \xrightarrow{e_0030, \ e_0299, \ e_0418, \ e_0585, \ e_0829, \ s_0434, \ s_1408, \ s_0423, \ s_1386} s_0423 + s_1386 \tag{438}$$

Reactants

Table 877: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1408$	ribose-5-phosphate	

Table 878: Properties of each modifier.

Id	Name	SBO
e_0030	PRS4	0000460
e_0299	PRS2	0000460
e_0418	PRS3	0000460
e_0585	PRS1	0000460
e_0829	PRS5	0000460
s_0434	ATP	
s_1408	ribose-5-phosphate	
s_0423	AMP	
s_1386	PRPP	

Products

Table 879: Properties of each product.

Id	Name	SBO
s_0423	AMP	
$s_{-}1386$	PRPP	

Kinetic Law

$$v_{219} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1408}] - \frac{[\text{s_0423}] \cdot [\text{s_1386}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1408}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1408}]}{\text{Km1408}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_1386}]}{\text{Km1386}} \right) - 1}$$
(439)

Table 880: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.012	dimensionless	
Vmax		0000324	0.162	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1408		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0423		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km1386		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $

6.220 Reaction r_0917

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name phosphoserine phosphatase (L-serine)

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0259 \xrightarrow{e_{-}0397, s_{-}0259, s_{-}1039, s_{-}1322} s_{-}1039 + s_{-}1322$$
 (440)

Reactant

Table 881: Properties of each reactant.

Id	Name	SBO
s_0259	3-phospho-serine	

Modifiers

Table 882: Properties of each modifier.

Id	Name	SBO
e_0397	SER2	0000460
s_0259	3-phospho-serine	
$s_{-}1039$	L-serine	
s_1322	phosphate	

Products

Table 883: Properties of each product.

Id	Name	SBO
s_1039	L-serine	
s_1322	phosphate	

Kinetic Law

$$v_{220} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0259}] - \frac{[\text{s_1039}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0259}}}{1 + \frac{[\text{s_0259}]}{\text{Km0259}} + \left(1 + \frac{[\text{s_1039}]}{\text{Km1039}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(441)

Table 884: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.460	dimensionless	Ø
Vmax		0000324	14.601	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot l^{-1}$	
Km0259		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1039		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.221 Reaction r_0918

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name phosphoserine transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0258 + s_{-}0991 \xrightarrow{e_{-}0872, s_{-}0258, s_{-}0991, s_{-}0180, s_{-}0259} s_{-}0180 + s_{-}0259 \tag{442}$$

Reactants

Table 885: Properties of each reactant.

Id	Name	SBO
	3-phospho-hydroxypyruvate L-glutamate	

Table 886: Properties of each modifier.

Id	Name	SBO
e_0872	SER1	0000460
s_0258	3-phospho-hydroxypyruvate	

Id	Name	SBO
s_0991	L-glutamate	
s_0180	2-oxoglutarate	
s_0259	3-phospho-serine	

Products

Table 887: Properties of each product.

Id	Name	SBO
s_0180 s_0259	2-oxoglutarate 3-phospho-serine	

Kinetic Law

Derived unit contains undeclared units

$$v_{221} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0258}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_0259}]}{\text{Keq}} \right)}{\text{Km0258} \cdot \text{Km0991}}}{\left(1 + \frac{[\text{s_0258}]}{\text{Km0258}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_0259}]}{\text{Km0259}} \right) - 1}$$
(443)

Table 888: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.460	dimensionless	
Vmax		0000324	20.441	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0258		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0180		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0259		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.222 Reaction r_0919

This is a reversible reaction of two reactants forming one product influenced by four modifiers.

Name phytoceramidase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}1084 + s_{-}1366 = 0077, s_{-}1084, s_{-}1366, s_{-}0481$$
 (444)

Reactants

Table 889: Properties of each reactant.

Id	Name	SBO
s_1084	lignoceric acid	
s_1366	phytosphingosine	

Modifiers

Table 890: Properties of each modifier.

Id	Name	SBO
e_0077	YPC1	0000460
$s_{-}1084$	lignoceric acid	
s_1366	phytosphingosine	
s_0481	ceramide-2 (C24)	

Product

Table 891: Properties of each product.

Id	Name	SBO
s_0481	ceramide-2 (C24)	

Kinetic Law

$$v_{222} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1084] \cdot [s_1366] - \frac{[s_0481]}{\text{Keq}}\right)}{\text{Km}1084 \cdot \text{Km}1366}}}{\left(1 + \frac{[s_1084]}{\text{Km}1084}\right) \cdot \left(1 + \frac{[s_1366]}{\text{Km}1366}\right) + 1 + \frac{[s_0481]}{\text{Km}0481} - 1}}$$
(445)

Table 892: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210851263136 \cdot 10^{-5}$	dimensionless	Ø
Vmax		0000324	$1.02210851263136 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km1084		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1366		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0481		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.223 Reaction r_0922

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name phytosphingosine synthesis

SBO:0000176 biochemical reaction

Reaction equation

$$s_1212 + s_1275 + s_1445 \xleftarrow{e_0206, s_1212, s_1275, s_1445, s_1207, s_1366} s_1207 + s_1366 \tag{446}$$

Reactants

Table 893: Properties of each reactant.

Id	Name	SBO
s_1212	NADPH	
$s_{-}1275$	oxygen	
$s_{-}1445$	sphinganine	

Table 894: Properties of each modifier.

Id	Name	SBO
e_0206	SUR2	0000460
s_1212	NADPH	
$s_{-}1275$	oxygen	
$s_{-}1445$	sphinganine	
s_1207	NADP(+)	

Id	Name	SBO
s_1366	phytosphingosine	

Products

Table 895: Properties of each product.

Id	Name	SBO
s_1207	NADP(+)	
s_1366	phytosphingosine	

Kinetic Law

Derived unit contains undeclared units

$$v_{223} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1212}] \cdot [\text{s_1275}] \cdot [\text{s_1445}] - \frac{[\text{s_1207}] \cdot [\text{s_1366}]}{\text{Keq}} \right)}{\text{Km1212} \cdot \text{Km1275} \cdot \text{Km1445}} \\ \frac{\left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right) \cdot \left(1 + \frac{[\text{s_1445}]}{\text{Km1445}} \right) + \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1366}]}{\text{Km1366}} \right) - 1}{(447)}$$

Table 896: Properties of each parameter.

		14010 070.110	perties of each parameter.		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.02210838883012 \cdot 10^{-5}$	dimensionless	\overline{Z}
Vmax		0000324	$2.24863845542626 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1445		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1366		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.224 Reaction r_0938

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name prephenate dehydratase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-1377} \xrightarrow{e_{-0802}, s_{-1377}, s_{-0456}, s_{-0951}} s_{-0456} + s_{-0951}$$
 (448)

Reactant

Table 897: Properties of each reactant.

Id	Name	SBO
s_1377	prephenate	

Modifiers

Table 898: Properties of each modifier.

Id	Name	SBO
e_0802	PHA2	0000460
$s_{-}1377$	prephenate	
s_0456	carbon dioxide	
s_0951	keto-phenylpyruvate	

Products

Table 899: Properties of each product.

Id	Name	SBO			
	carbon dioxide				
s_0951	keto-phenylpyruvate				

Kinetic Law

$$v_{224} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1377}] - \frac{[\text{s_0456}] \cdot [\text{s_0951}]}{\text{Keq}} \right)}{\text{Km1377}}}{1 + \frac{[\text{s_1377}]}{\text{Km1377}} + \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_0951}]}{\text{Km0951}} \right) - 1}$$
(449)

Table 900: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.005	dimensionless	
Vmax		0000324	0.051	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	
Km1377		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0951		0000323	0.100	$mmol \cdot l^{-1}$	

6.225 Reaction r_0939

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name prephenate dehydrogenase (NADP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1207 + s_1377 \xrightarrow{e_0074, s_1207, s_1377, s_0204, s_0456, s_1212} s_0204 + s_0456 + s_1212 \tag{450}$$

Reactants

Table 901: Properties of each reactant.

Id	Name	SBO
s_1207	NADP(+)	
s_1377	prephenate	

Table 902: Properties of each modifier.

	· · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
e_0074	TYR1	0000460
$s_{-}1207$	NADP(+)	
s_1377	prephenate	
s_0204	3-(4-hydroxyphenyl)pyruvate	
s0456	carbon dioxide	
$s_{-}1212$	NADPH	

Products

Table 903: Properties of each product.

Id	Name	SBO
	3-(4-hydroxyphenyl)pyruvate carbon dioxide	
s_1212	NADPH	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{225} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1207}] \cdot [\text{s_1377}] - \frac{[\text{s_0204}] \cdot [\text{s_0456}] \cdot [\text{s_1212}]}{\text{Keq}} \right)}{\text{Km1207} \cdot \text{Km1377}}}{\left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1377}]}{\text{Km1377}} \right) + \left(1 + \frac{[\text{s_0204}]}{\text{Km0204}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) - 1}$$

$$(451)$$

Table 904: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	\overline{Z}
Vmax		0000324	0.085	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	$ \mathbf{Z} $
Keq		0000281	0.200	$mmol \cdot l^{-1}$	
Km1207		0000322	0.100	$mmol \cdot l^{-1}$	$ \mathbf{Z} $
Km1377		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0204		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	

6.226 Reaction r_0941

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name prolyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1035 + s_1606 \xrightarrow{e_0296, s_0434, s_1035, s_1606, s_0423, s_0633, s_1379} s_0423 + s_0633 + s_1379 \xrightarrow{(452)}$$

Reactants

Table 905: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1035$	L-proline	
s_1606	tRNA(Pro)	

Modifiers

Table 906: Properties of each modifier.

	P	
Id	Name	SBO
e_0296	AIM10	0000460
s_0434	ATP	
s_1035	L-proline	
$s_{-}1606$	tRNA(Pro)	
s_0423	AMP	
s_0633	diphosphate	
s_1379	Pro-tRNA(Pro)	

Products

Table 907: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0633	diphosphate	
s_1379	Pro-tRNA(Pro)	

Kinetic Law

$$v_{226} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1035}] \cdot [\text{s_1606}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1379}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km1035} \cdot \text{Km1606}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1035}]}{\text{Km1035}} \right) \cdot \left(1 + \frac{[\text{s_1606}]}{\text{Km1606}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1379}]}{\text{Km1379}} \right) - 1}$$

Table 908: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	
Vmax		0000324	0.188	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square
Km1035		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square
Km1606		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square
Km0423		0000323	0.100	$mmol \cdot l^{-1}$	
Km0633		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathscr{L}} $
Km1379		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.227 Reaction r_0957

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name pyrroline-5-carboxylate reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0118 + s_1212 \xrightarrow{e_0276, s_0118, s_1212, s_1035, s_1207} s_1035 + s_1207 \tag{454}$$

Reactants

Table 909: Properties of each reactant.

Id	Name	SBO
s_0118	1-pyrroline-5-carboxylate	
s_1212	NADPH	

Modifiers

Table 910: Properties of each modifier.

T.1	NI	CDO
Id	Name	SBO
e_0276	PRO3	0000460
s_0118	1-pyrroline-5-carboxylate	
s_1212	NADPH	
s_1035	L-proline	
$s_{-}1207$	NADP(+)	

Products

Table 911: Properties of each product.

Id	Name	SBO
	L-proline NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{227} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0118}] \cdot [\text{s_1212}] - \frac{[\text{s_1035}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\frac{\text{Km0118} \cdot \text{Km1212}}{\left(1 + \frac{[\text{s_0118}]}{\text{Km0118}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_1035}]}{\text{Km1035}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}}$$
 (455)

Table 912: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.006	dimensionless	
Vmax		0000324	0.088	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0118		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1035		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$mmol \cdot l^{-1}$	

6.228 Reaction r_0958

This is a reversible reaction of three reactants forming three products influenced by eight modifiers.

Name pyruvate carboxylase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_0445 + s_1399 \xrightarrow{e_0334, \ e_0084, \ s_0434, \ s_0445, \ s_1399, \ s_0394, \ s_1271, \ s_1322} s_0394 + s_1271 + s_1323 + s_1322 + s_1222 + s_12$$

Reactants

Table 913: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_0445	bicarbonate	
s_1399	pyruvate	

Modifiers

Table 914: Properties of each modifier.

Id	Name	SBO
e_0334	PYC1	0000460
e_0084	PYC2	0000460
s_0434	ATP	
s_0445	bicarbonate	
$s_{-}1399$	pyruvate	
s_0394	ADP	
$s_{-}1271$	oxaloacetate	
s_1322	phosphate	

Products

Table 915: Properties of each product.

Id	Name	SBO
s_0394	ADP	
$s_{-}1271$	oxaloacetate	
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{228} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1399}] - \frac{[\text{s_0394}] \cdot [\text{s_13271}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km0445} \cdot \text{Km1399}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0445}]}{\text{Km0445}} \right) \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km1399}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1271}]}{\text{Km1271}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$

Table 916: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.077	dimensionless	\checkmark
Vmax		0000324	2.306	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0445		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1399		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1271		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.229 Reaction r_0961

This is a reversible reaction of three reactants forming three products influenced by eleven modifiers.

Name pyruvate dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0529 + s_1198 + s_1399 \xleftarrow{e_0085, e_0306, e_0393, e_0311, e_0775, s_0529, s_1198, s_1399, s_0373, s_0456, s_1203} \tag{458}$$

Reactants

Table 917: Properties of each reactant.

Id	Name	SBO
s_0529	coenzyme A	_

Id	Name	SBO
s_1198	NAD	
s_1399	pyruvate	

Modifiers

Table 918: Properties of each modifier.

	· P	
Id	Name	SBO
e_0085	PDB1	0000460
$e_{-}0306$	PDA1	0000460
e_0393	PDX1	0000460
e_0311	LPD1	0000460
e_0775	LAT1	0000460
s_0529	coenzyme A	
s_1198	NAD	
s_1399	pyruvate	
s_0373	acetyl-CoA	
s_0456	carbon dioxide	
s_1203	NADH	

Products

Table 919: Properties of each product.

Id	Name	SBO
s_0373	acetyl-CoA	
s_0456	carbon dioxide	
$s_{-}1203$	NADH	

Kinetic Law

$$v_{229} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0529}] \cdot [\text{s_1198}] \cdot [\text{s_1399}] - \frac{[\text{s_0373}] \cdot [\text{s_0456}] \cdot [\text{s_1203}]}{\text{Keq}} \right)}{\text{Km0529} \cdot \text{Km1198} \cdot \text{Km1399}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0529}] \cdot [\text{s_1198}] \cdot [\text{s_1198}] \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km0373}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km1399}} \right) + \left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km1399}} \right) + \left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km1399}} \right) + \left(1 + \frac{[\text{s_0373}]}{\text{Km0373}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) - 1} \\ = \frac{\left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1198}]$$

Table 920: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.066	dimensionless	\overline{Z}
Vmax		0000324	1.976	$mmol \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathscr{L}} $
Keq		0000281	2.000	dimensionless	$ \overline{\mathscr{L}} $
Km0529		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1198		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km1399		0000322	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathscr{L}} $
Km0373		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathscr{L}} $
Km0456		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathscr{L}} $
Km1203		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.230 Reaction r_0962

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name pyruvate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0394 + s_1360 \xrightarrow{e_0011, \ e_0895, \ s_0394, \ s_1360, \ s_0434, \ s_1399} s_0434 + s_1399 \qquad (460)$$

Reactants

Table 921: Properties of each reactant.

rable 721. Properties of each reactant.			
Id	Name	SBO	
s_0394	ADP		
$s_{-}1360$	phosphoenolpyruvate		

Modifiers

Table 922: Properties of each modifier.

	_	
Id	Name	SBO
e_0011	CDC19	0000460
e_0895	PYK2	0000460
s_0394	ADP	
$s_{-}1360$	phosphoenolpyruvate	

Id	Name	SBO
s_0434	ATP	
s_1399	pyruvate	

Products

Table 923: Properties of each product.

Id	Name	SBO
s_0434	ATP	
s_1399	pyruvate	

Kinetic Law

Derived unit contains undeclared units

$$v_{230} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0394}] \cdot [\text{s_1360}] - \frac{[\text{s_0434}] \cdot [\text{s_1399}]}{\text{Keq}} \right)}{\text{Km0394} \cdot \text{Km1360}}}{\left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1360}]}{\text{Km1360}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1399}]}{\text{Km1399}} \right) - 1}$$
(461)

Table 924: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.211	dimensionless	\square
Vmax		0000324	2.958	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0394		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1360		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0434		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	Ø
Km1399		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

6.231 Reaction r_0967

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name riboflavin synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0158 + s_0314 \xrightarrow{e_0841, s_0158, s_0314, s_0328, s_1322} s_0328 + s_1322 \tag{462}$$

Reactants

Table 925: Properties of each reactant.

Id	Name	SBO
s_0158	2-hydroxy-3-oxobutyl phosphate	
s_0314	5-amino-6-(D-ribitylamino)uracil	

Modifiers

Table 926: Properties of each modifier.

Id	Name	SBO
e_0841	RIB4	0000460
s_0158	2-hydroxy-3-oxobutyl phosphate	
s_0314	5-amino-6-(D-ribitylamino)uracil	
s_0328	6,7-dimethyl-8-(1-D-ribityl)lumazine	
s_1322	phosphate	

Products

Table 927: Properties of each product.

Tueste > 2 / 1 Trepetities et euch producti				
Id	Name	SBO		
s_0328	6,7-dimethyl-8-(1-D-ribityl)lumazine			
$s_{-}1322$	phosphate			

Kinetic Law

406

$$v_{231} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0158}] \cdot [\text{s_0314}] - \frac{[\text{s_0328}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0158} \cdot \text{Km0314}}}{\left(1 + \frac{[\text{s_0158}]}{\text{Km0158}} \right) \cdot \left(1 + \frac{[\text{s_0314}]}{\text{Km0314}} \right) + \left(1 + \frac{[\text{s_0328}]}{\text{Km0328}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(463)

Table 928: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$7.51459670975844 \cdot 10^{-5}$	dimensionless	\checkmark
Vmax		0000324	0.001	$mmol \cdot l^{-1} \cdot s^{-1}$	\checkmark
Keq		0000281	2.000	dimensionless	
Km0158		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0314		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0328		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.232 Reaction r_0968

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name riboflavin synthase

SBO:0000176 biochemical reaction

Reaction equation

$$2 s_0328 \xleftarrow{e_0090, s_0328, s_0314, s_1405} s_0314 + s_1405 \tag{464}$$

Reactant

Table 929: Properties of each reactant.

	racie >2>. Troperties of each reactant.	
Id	Name	SBO
s_0328	6,7-dimethyl-8-(1-D-ribityl)lumazine	

Modifiers

Table 930: Properties of each modifier.

Id	Name	SBO
e_0090	RIB5	0000460
s_0328	6,7-dimethyl-8-(1-D-ribityl)lumazine	
s_0314	5-amino-6-(D-ribitylamino)uracil	
s_1405	riboflavin	

Products

Table 931: Properties of each product.

Id	Name	SBO
	5-amino-6-(D-ribitylamino)uracil riboflavin	

Kinetic Law

Derived unit contains undeclared units

$$v_{232} = \frac{\frac{\text{vol(cell)} \cdot \text{V} \text{max} \cdot \left([\text{s_0328}]^2 - \frac{[\text{s_0314}] \cdot [\text{s_1405}]}{\text{Keq}} \right)}{\text{Km0328}^2}}{\left(1 + \frac{[\text{s_0328}]}{\text{Km0328}} \right)^2 + \left(1 + \frac{[\text{s_0314}]}{\text{Km0314}} \right) \cdot \left(1 + \frac{[\text{s_1405}]}{\text{Km1405}} \right) - 1}$$
(465)

Table 932: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$3.75729835487922 \cdot 10^{-5}$	dimensionless	\checkmark
Vmax		0000324	$5.26021769683091 \cdot 10^{-4}$	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0328		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0314		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1405		0000323	0.100	$mmol \cdot l^{-1}$	

6.233 Reaction r_0970

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name ribonucleoside-triphosphate reductase (ATP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1616 \xrightarrow{e_0398, s_0434, s_1616, s_0586, s_1620} s_0586 + s_1620 \tag{466}$$

Reactants

Table 933: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_1616	TRX1	

Modifiers

Table 934: Properties of each modifier.

Id	Name	SBO
e_0398	TRX2	0000460
s_0434	ATP	
s_1616	TRX1	
s_0586	dATP	
s_1620	TRX1 disulphide	

Products

Table 935: Properties of each product.

	1	1
Id	Name	SBO
s_0586	W1 11 1	
S_1620	TRX1 disulphide	

Kinetic Law

$$v_{233} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1616}] - \frac{[\text{s_0586}] \cdot [\text{s_1620}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1616}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1616}]}{\text{Km1616}} \right) + \left(1 + \frac{[\text{s_0586}]}{\text{Km0586}} \right) \cdot \left(1 + \frac{[\text{s_1620}]}{\text{Km1620}} \right) - 1}$$

$$(467)$$

Table 936: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$6.43295039602845 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	$9.00613055443983 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km1616		0000322	0.100	$mmol \cdot l^{-1}$	
Km0586		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km1620		0000323	0.100	$mmol \cdot l^{-1}$	

6.234 Reaction r_0973

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name ribonucleoside-triphosphate reductase (UTP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1559 + s_1616 \xrightarrow{e_0398, \ s_1559, \ s_1616, \ s_0656, \ s_1620} s_0656 + s_1620 \tag{468}$$

Reactants

Table 937: Properties of each reactant.

Id	Name	SBO
s_1559	UTP	
$s_{-}1616$	TRX1	

Modifiers

Table 938: Properties of each modifier.

ruote 750. I roperties of euch mounter.				
Id	Name	SBO		
e_0398	TRX2	0000460		
$s_{-}1559$	UTP			
s_1616	TRX1			
s_0656	dUTP			
s_1620	TRX1 disulphide			

Products

Table 939: Properties of each product.

Id	Name	SBO
s_0656	dUTP	
$s_{-}1620$	TRX1 disulphide	

Kinetic Law

Derived unit contains undeclared units

$$v_{234} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1559] \cdot [s_1616] - \frac{[s_0656] \cdot [s_1620]}{\text{Keq}} \right)}{\text{Km1559} \cdot \text{Km1559}} \cdot \left(1 + \frac{[s_1616]}{\text{Km1616}} \right) + \left(1 + \frac{[s_0656]}{\text{Km0656}} \right) \cdot \left(1 + \frac{[s_1620]}{\text{Km1620}} \right) - 1}$$
(469)

Table 940: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.33265490575614 \cdot 10^{-4}$	dimensionless	\overline{Z}
Vmax		0000324	0.002	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1559		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1616		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0656		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1620		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.235 Reaction r_0974

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name ribonucleotide reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0394 + s_1616 \xrightarrow{e_0467, \ e_0492, \ e_0387, \ e_0291, \ s_0394, \ s_1616, \ s_0582, \ s_1620} s_0582 + s_1620 \tag{470}$$

Reactants

Table 941: Properties of each reactant.

Id	Name	SBO
s_0394	ADP	
s_1616	TRX1	

Modifiers

Table 942: Properties of each modifier.

Id	Name	SBO
e_0467	RNR3	0000460
e_0492	RNR2	0000460
e_0387	RNR4	0000460
e_0291	RNR1	0000460
s_0394	ADP	
s_1616	TRX1	
s_0582	dADP	
$s_{-}1620$	TRX1 disulphide	

Products

Table 943: Properties of each product.

Id	Name	SBO
s_0582	G. 12 1	
$s_{-}1620$	TRX1 disulphide	

Kinetic Law

$$v_{235} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0394}] \cdot [\text{s_1616}] - \frac{[\text{s_0582}] \cdot [\text{s_1620}]}{\text{Keq}} \right)}{\text{Km0394} \cdot \text{Km1616}}}{\left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1616}]}{\text{Km1616}} \right) + \left(1 + \frac{[\text{s_0582}]}{\text{Km0582}} \right) \cdot \left(1 + \frac{[\text{s_1620}]}{\text{Km1620}} \right) - 1}$$
(471)

Table 944: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$7.22995270761245 \cdot 10^{-5}$	dimensionless	$\overline{\hspace{1cm}}$

Id	Name	SBO	Value	Unit	Constant
Vmax		0000324	0.001	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	\overline{Z}
Keq		0000281	2.000	dimensionless	\square
Km0394		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1616		0000322	0.100	$mmol \cdot l^{-1}$	
Km0582		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1620		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square

6.236 Reaction r_0976

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name ribonucleotide reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0467 + s_1616 \xrightarrow{e_0467,\ e_0492,\ e_0387,\ e_0291,\ s_0467,\ s_1616,\ s_0587,\ s_1620} s_0587 + s_1620 \tag{472}$$

Reactants

Table 945: Properties of each reactant.

Id	Name	SBO
s_0467	CDP	
$s_{-}1616$	TRX1	

Modifiers

Table 946: Properties of each modifier.

Id	Name	SBO
e_0467	RNR3	0000460
e_0492	RNR2	0000460
e_0387	RNR4	0000460
e_0291	RNR1	0000460
s_0467	CDP	
s_1616	TRX1	
s_0587	dCDP	
s_1620	TRX1 disulphide	

Products

Table 947: Properties of each product.

Id	Name	SBO
s_0587	dCDP TRX1 disulphide	
S_1020	TKAT disdipilide	

Kinetic Law

Derived unit contains undeclared units

$$v_{236} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0467}] \cdot [\text{s_1616}] - \frac{[\text{s_0587}] \cdot [\text{s_1620}]}{\text{Keq}} \right)}{\text{Km0467} \cdot \text{Km1616}}}{\left(1 + \frac{[\text{s_0467}]}{\text{Km0467}} \right) \cdot \left(1 + \frac{[\text{s_1616}]}{\text{Km1616}} \right) + \left(1 + \frac{[\text{s_0587}]}{\text{Km0587}} \right) \cdot \left(1 + \frac{[\text{s_1620}]}{\text{Km1620}} \right) - 1}$$
(473)

Table 948: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$9.44495616410234 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	0.001	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	2.000	dimensionless	$ \overline{\mathbf{Z}} $
Km0467		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1616		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0587		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km1620		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.237 Reaction r_0978

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name ribonucleotide reductase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0739 + s_1616 \xrightarrow{e_0467, e_0492, e_0387, e_0291, s_0739, s_1616, s_0613, s_1620} s_0613 + s_1620 \tag{474}$$

Reactants

Table 949: Properties of each reactant.

Id	Name	SBO
s_0739	GDP	
s_1616	TRX1	

Modifiers

Table 950: Properties of each modifier.

Id	Name	SBO
e_0467	RNR3	0000460
e_0492	RNR2	0000460
e_0387	RNR4	0000460
e_0291	RNR1	0000460
s_0739	GDP	
s_1616	TRX1	
s_0613	dGDP	
$s_{-}1620$	TRX1 disulphide	

Products

Table 951: Properties of each product.

Id	Name	SBO
s_0613	dGDP	
$s_{-}1620$	TRX1 disulphide	

Kinetic Law

$$v_{237} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0739}] \cdot [\text{s_1616}] - \frac{[\text{s_0613}] \cdot [\text{s_1620}]}{\text{Keq}}\right)}{\text{Km0739} \cdot \text{Km1616}}}{\left(1 + \frac{[\text{s_0739}]}{\text{Km0739}}\right) \cdot \left(1 + \frac{[\text{s_1616}]}{\text{Km1616}}\right) + \left(1 + \frac{[\text{s_0613}]}{\text{Km0613}}\right) \cdot \left(1 + \frac{[\text{s_1620}]}{\text{Km1620}}\right) - 1}$$
(475)

Table 952: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$9.10860206851083 \cdot 10^{-5}$	dimensionless	\overline{Z}

Id	Name	SBO	Value	Unit	Constant
Vmax		0000324	0.001	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\overline{Z}
Keq		0000281	2.000	dimensionless	
Km0739		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1616		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0613		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1620		0000323	0.100	$mmol \cdot 1^{-1}$	

6.238 Reaction r_0982

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name ribose-5-phosphate isomerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0577 \stackrel{e_{-}0852, s_{-}0577, s_{-}1408}{\longleftarrow} s_{-}1408$$
 (476)

Reactant

Table 953: Properties of each reactant.

Id	Name	SBO
s_0577	D-ribulose 5-phosphate	

Modifiers

Table 954: Properties of each modifier.

Id	Name	SBO
e_0852	RKI1	0000460
s_0577	D-ribulose 5-phosphate	
s_1408	ribose-5-phosphate	

Product

Table 955: Properties of each product.

Tuble 355. I Toperties of each product:				
Id	Name	SBO		
s_1408	ribose-5-phosphate			

Kinetic Law

Derived unit contains undeclared units

$$v_{238} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_0577] - \frac{[\text{s}_1408]}{\text{Keq}}\right)}{\text{Km0577}}}{1 + \frac{[\text{s}_0577]}{\text{Km0577}} + 1 + \frac{[\text{s}_1408]}{\text{Km1408}} - 1}$$
(477)

Table 956: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	Ø
Vmax		0000324	0.066	$\text{mmol} \cdot \mathbf{l}^{-1} \cdot \mathbf{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0577		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1408		0000323	0.100	$mmol \cdot l^{-1}$	

6.239 Reaction r_0984

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name ribulose 5-phosphate 3-epimerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0581 \xrightarrow{e_{-}0506, s_{-}0581, s_{-}0577} s_{-}0577$$
 (478)

Reactant

Table 957: Properties of each reactant.

Id	Name	SBO
s_0581	D-xylulose 5-phosphate	

Modifiers

Table 958: Properties of each modifier.

Id	Name	SBO
e_0506	RPE1	0000460
s_0581	D-xylulose 5-phosphate	
s0577	D-ribulose 5-phosphate	

Product

Table 959: Properties of each product.

Id	Name	SBO
s_0577	D-ribulose 5-phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{239} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0581}] - \frac{[\text{s_0577}]}{\text{Keq}} \right)}{\frac{\text{Km0581}}{1 + \frac{[\text{s_0581}]}{\text{Km0581}} + 1 + \frac{[\text{s_0577}]}{\text{Km0577}} - 1}}$$
(479)

Table 960: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.067	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0581		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0577		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.240 Reaction r_0986

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name S-adenosyl-methionine delta-24-sterol-c-methyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_1416 + s_1569 \xrightarrow{e_0699, s_1416, s_1569, s_0700, s_1413} s_0700 + s_1413 \tag{480}$$

Reactants

Table 961: Properties of each reactant.

There year, Troperates of energia removation			
Id	Name	SBO	
s_1416	S-adenosyl-L-methionine		
s_1569	zymosterol		

Modifiers

Table 962: Properties of each modifier.

Id	Name	SBO
e 0699	ERG6	0000460
s_1416		0000100
s_1569	zymosterol	
s_0700	fecosterol	
$s_{-}1413$	S-adenosyl-L-homocysteine	

Products

Table 963: Properties of each product.

Id	Name	SBO
s_0700	fecosterol	
$s_{-}1413$	S-adenosyl-L-homocysteine	

Kinetic Law

$$v_{240} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1416}] \cdot [\text{s_1569}] - \frac{[\text{s_0700}] \cdot [\text{s_1413}]}{\text{Keq}}\right)}{\text{Km1416} \cdot \text{Km1569}}}{\left(1 + \frac{[\text{s_1416}]}{\text{Km1416}}\right) \cdot \left(1 + \frac{[\text{s_1569}]}{\text{Km1569}}\right) + \left(1 + \frac{[\text{s_0700}]}{\text{Km0700}}\right) \cdot \left(1 + \frac{[\text{s_1413}]}{\text{Km1413}}\right) - 1}$$
(481)

Table 964: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.56065575909038 \cdot 10^{-4}$	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.004	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1416		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1569		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0700		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1413		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

6.241 Reaction r_0988

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name saccharopine dehydrogenase (NAD, L-lysine forming)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1038 + s_1198 \xrightarrow{e_0489, \ s_1038, \ s_1198, \ s_0180, \ s_1025, \ s_1203} s_0180 + s_1025 + s_1203 \tag{482}$$

Reactants

Table 965: Properties of each reactant.

Id	Name	SBO
s_1038	L-saccharopine	
$s_{-}1198$	NAD	

Modifiers

Table 966: Properties of each modifier.

Id	Name	SBO
e_0489	LYS1	0000460
s_1038	L-saccharopine	
$s_{-}1198$	NAD	
s_0180	2-oxoglutarate	
$s_{-}1025$	L-lysine	

Id	Name	SBO
s_1203	NADH	

Products

Table 967: Properties of each product.

Id	Name	SBO
s_0180	2-oxoglutarate	
$s_{-}1025$	L-lysine	
$s_{-}1203$	NADH	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{241} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1038}] \cdot [\text{s_1198}] - \frac{[\text{s_0180}] \cdot [\text{s_1025}] \cdot [\text{s_1203}]}{\text{Keq}} \right)}{\frac{\text{Km1038} \cdot \text{Km1198}}{\left(1 + \frac{[\text{s_1038}]}{\text{Km1038}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_1025}]}{\text{Km1025}} \right) \cdot \left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) - 1}}{(483)}$$

Table 968: Properties of each parameter.

	14010 900.110	operacs or c	acii para	inicici.	
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.239	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot l^{-1}$	
Km1038		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1198		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0180		0000323	0.100	$mmol \cdot l^{-1}$	
Km1025		0000323	0.100	$mmol \cdot l^{-1}$	
Km1203		0000323	0.100	$\text{mmol} \cdot l^{-1}$	

6.242 Reaction r_0989

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name saccharopine dehydrogenase (NADP, L-glutamate forming)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0959 + s_0991 + s_1212 \xleftarrow{e_0813, s_0959, s_0991, s_1212, s_1038, s_1207} s_1038 + s_1207 \tag{484}$$

Reactants

Table 969: Properties of each reactant.

Id	Name	SBO
s_0991	L-allysine L-glutamate	
s_1212	NADPH	

Modifiers

Table 970: Properties of each modifier.

Id	Name	SBO
e_0813	LYS9	0000460
s_0959	L-allysine	
s_0991	L-glutamate	
s_1212	NADPH	
s_1038	L-saccharopine	
s_1207	NADP(+)	

Products

Table 971: Properties of each product.

Id	Name	SBO
	L-saccharopine NADP(+)	

Kinetic Law

$$v_{242} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0959}] \cdot [\text{s_0991}] \cdot [\text{s_1212}] - \frac{[\text{s_1038}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km0959} \cdot \text{Km09959} \cdot \text{Km1212}} \\ \frac{\left(1 + \frac{[\text{s_0959}]}{\text{Km0959}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_1038}]}{\text{Km1038}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}{(485)}$$

Table 972: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	
Vmax		0000324	0.239	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot \mathbf{l}$	
Km0959		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0991		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1038		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.243 Reaction r_0993

This is a reversible reaction of two reactants forming three products influenced by eight modifiers.

Name serine palmitotransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}1039 + s_{-}1302 \xrightarrow{e_{-}0054, \ e_{-}0177, \ e_{-}0761, \ s_{-}1039, \ s_{-}1302, \ s_{-}0231, \ s_{-}0456, \ s_{-}0529} s_{-}0231 + s_{-}0456 + s_{-}0529$$

$$(486)$$

Reactants

Table 973: Properties of each reactant.

Id	Name	SBO
s_1039	L-serine	
s_1302	palmitoyl-CoA	

Modifiers

Table 974: Properties of each modifier.

Id	Name	SBO
e_0054	TSC3	0000460
e_0177	LCB2	0000460
e_0761	LCB1	0000460
$s_{-}1039$	L-serine	
$s_{-}1302$	palmitoyl-CoA	
s_0231	3-ketosphinganine	
s_0456	carbon dioxide	
s_0529	coenzyme A	

Products

Table 975: Properties of each product.

	1 1	
Id	Name	SBO
s_0456	3-ketosphinganine carbon dioxide	
s_0529	coenzyme A	

Kinetic Law

$$v_{243} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1039}] \cdot [\text{s_1302}] - \frac{[\text{s_0231}] \cdot [\text{s_0456}] \cdot [\text{s_0529}]}{\text{Keq}} \right)}{\text{Km1039} \cdot \text{Km1302}}}{\left(1 + \frac{[\text{s_1039}]}{\text{Km1039}} \right) \cdot \left(1 + \frac{[\text{s_1302}]}{\text{Km1302}} \right) + \left(1 + \frac{[\text{s_0231}]}{\text{Km0231}} \right) \cdot \left(1 + \frac{[\text{s_0456}]}{\text{Km0456}} \right) \cdot \left(1 + \frac{[\text{s_0529}]}{\text{Km0529}} \right) - 1}$$

$$(487)$$

Table 976: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.04421699920047 \cdot 10^{-5}$	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	$4.49727739824103 \cdot 10^{-4}$	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	$ \overline{\mathbf{A}} $
Keq		0000281	0.200	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{A}} $
Km1039		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{A}} $
Km1302		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$
Km0231		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$
Km0456		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$
Km0529		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.244 Reaction r_0995

This is a reversible reaction of three reactants forming three products influenced by eight modifiers.

Name seryl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1039 + s_1607 \xrightarrow{e_0168, \ e_0425, \ s_0434, \ s_1039, \ s_1607, \ s_0423, \ s_0633, \ s_1428} s_0423 + s_0633 + s_1428 \xrightarrow{(488)} s_0423 + s_0633 + + s_063 + s$$

Reactants

Table 977: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_1039	L-serine	
$s_{-}1607$	tRNA(Ser)	

Modifiers

Table 978: Properties of each modifier.

Id	Name	SBO
e_0168	SES1	0000460
e_0425	DIA4	0000460
s_0434	ATP	
s_1039	L-serine	
$s_{-}1607$	tRNA(Ser)	
s_0423	AMP	
s0633	diphosphate	
s_1428	Ser-tRNA(Ser)	

Products

Table 979: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0633	diphosphate	
s_1428	Ser-tRNA(Ser)	

Kinetic Law

Derived unit contains undeclared units

$$v_{244} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1039}] \cdot [\text{s_1607}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1428}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1039} \cdot \text{Km1607}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1039}] \cdot \left(1 + \frac{[\text{s_1039}]}{\text{Km1039}} \right) \cdot \left(1 + \frac{[\text{s_1607}]}{\text{Km1607}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1428}]}{\text{Km1428}} \right) - 1} \\ = \frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1039}] \cdot [\text{s_1607}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1428}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1607}} \\ = \frac{\text{Vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1039}] \cdot [\text{s_1607}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1428}]}{\text{Km0434}} \right)}{\text{Km0434} \cdot \left(1 + \frac{[\text{s_1039}]}{\text{Km1039}} \right) \cdot \left(1 + \frac{[\text{s_1607}]}{\text{Km1607}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1428}]}{\text{Km1428}} \right) - 1}$$

Table 980: Properties of each parameter.

Id Name SBO Value Unit Constant FLUX_VALUE 0.007 dimensionless ✓ Vmax 0000324 0.211 mmol·l⁻¹·s⁻¹ ✓ Keq 0000281 2.000 dimensionless ✓ Km0434 0000322 0.100 mmol·l⁻¹ ✓ Km1039 0000322 0.100 mmol·l⁻¹ ✓ Km1607 0000322 0.100 mmol·l⁻¹ ✓ Km0423 0000323 0.100 mmol·l⁻¹ ✓ Km0633 0000323 0.100 mmol·l⁻¹ ✓ Km1428 0000323 0.100 mmol·l⁻¹ ✓		Tuble	700. I roperties of c	buen pure	ameter.	
Vmax 0000324 0.211 mmol·l ⁻¹ ·s ⁻¹ \checkmark Keq 0000281 2.000 dimensionless \checkmark Km0434 0000322 0.100 mmol·l ⁻¹ \checkmark Km1039 0000322 0.100 mmol·l ⁻¹ \checkmark Km1607 0000322 0.100 mmol·l ⁻¹ \checkmark Km0423 0000323 0.100 mmol·l ⁻¹ \checkmark Km0633 0000323 0.100 mmol·l ⁻¹ \checkmark	Id	Name	SBO	Value	Unit	Constant
Keq 0000281 2.000 dimensionless Km0434 0000322 0.100 $mmol \cdot l^{-1}$ Km1039 0000322 0.100 $mmol \cdot l^{-1}$ Km1607 0000322 0.100 $mmol \cdot l^{-1}$ Km0423 0000323 0.100 $mmol \cdot l^{-1}$ Km0633 0000323 0.100 $mmol \cdot l^{-1}$	FLUX_VALUE			0.007	dimensionless	\square
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Vmax		0000324	0.211	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	\square
Km1039 0000322 0.100 $mmol \cdot l^{-1}$ \checkmark Km1607 0000322 0.100 $mmol \cdot l^{-1}$ \checkmark Km0423 0000323 0.100 $mmol \cdot l^{-1}$ \checkmark Km0633 0000323 0.100 $mmol \cdot l^{-1}$ \checkmark	Keq		0000281	2.000	dimensionless	
Km1607 0000322 0.100 $mmol \cdot l^{-1}$ Km0423 0000323 0.100 $mmol \cdot l^{-1}$ Km0633 0000323 0.100 $mmol \cdot l^{-1}$	Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0423 0000323 0.100 $mmol \cdot l^{-1}$ Km0633 0000323 0.100 $mmol \cdot l^{-1}$	Km1039		0000322	0.100	$mmol \cdot l^{-1}$	
Km0633 $0000323 0.100 \text{mmol} \cdot 1^{-1}$	Km1607		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
· · · · · · · · · · · · · · · · · · ·	Km0423		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1428 $0000323 0.100 $ mmol·1 ⁻¹ ✓	Km0633		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
	Km1428		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square

6.245 Reaction r_0996

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name shikimate dehydrogenase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0211 + s_1212 \xrightarrow{e_0182, s_0211, s_1212, s_1207, s_1429} s_1207 + s_1429 \tag{490}$$

Reactants

Table 981: Properties of each reactant.

	Tueste yest. Trepervise et euen reuetanu.			
Id	Name	SBO		
	3-dehydroshikimate NADPH			

Modifiers

Table 982: Properties of each modifier.

	1	
Id	Name	SBO
e_0182	ARO1	0000460
s_0211	3-dehydroshikimate	
$s_{-}1212$	NADPH	
$s_{-}1207$	NADP(+)	
s_1429	shikimate	

Products

Table 983: Properties of each product.

Id	Name	SBO
s_1207	NADP(+)	
s_1429	shikimate	

Kinetic Law

$$v_{245} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0211}] \cdot [\text{s_1212}] - \frac{[\text{s_1207}] \cdot [\text{s_1429}]}{\text{Keq}} \right)}{\text{Km0211} \cdot \text{Km1212}}}{\left(1 + \frac{[\text{s_0211}]}{\text{Km0211}} \right) \cdot \left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) + \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1429}]}{\text{Km1429}} \right) - 1}$$
(491)

Table 984: Properties of each parameter.

		<u>,</u>			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	\overline{Z}
Vmax		0000324	0.140	$\operatorname{mmol} \cdot 1^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0211		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1429		0000323	0.100	$mmol \cdot l^{-1}$	

6.246 Reaction r_0997

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name shikimate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1429 \xrightarrow{e_0182, s_0434, s_1429, s_0261, s_0394} s_0261 + s_0394 \tag{492}$$

Reactants

Table 985: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1429$	shikimate	

Modifiers

Table 986: Properties of each modifier.

Id	Name	SBO
e_0182	ARO1	0000460
s_0434	ATP	
$s_{-}1429$	shikimate	
s_0261	3-phosphoshikimic acid	
s_0394	ADP	

Products

Table 987: Properties of each product.

Id	Name	SBO
s_0261 s_0394	3-phosphoshikimic acid ADP	

Kinetic Law

Derived unit contains undeclared units

$$v_{246} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1429}] - \frac{[\text{s_0261}] \cdot [\text{s_0394}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1429}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1429}]}{\text{Km1429}} \right) + \left(1 + \frac{[\text{s_0261}]}{\text{Km0261}} \right) \cdot \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) - 1}$$
(493)

Table 988: Properties of each parameter.

		_			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	
Vmax		0000324	0.140	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$mmol \cdot l^{-1}$	
Km1429		0000322	0.100	$mmol \cdot l^{-1}$	
Km0261		0000323	0.100	$mmol \cdot l^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.247 Reaction r_1010

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name squalene epoxidase (NAD)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1203 + s_1275 + s_1447 \xleftarrow{e_0385, s_1203, s_1275, s_1447, s_0037, s_1198} s_0037 + s_1198 \tag{494}$$

Reactants

Table 989: Properties of each reactant.

Id	Name	SBO
s_1203	NADH	
$s_{-}1275$	oxygen	
$s_{-}1447$	squalene	

Modifiers

Table 990: Properties of each modifier.

Id	Name	SBO
e_0385	ERG1	0000460
$s_{-}1203$	NADH	
$s_{-}1275$	oxygen	
$s_{-}1447$	squalene	
s_0037	(S)-2,3-epoxysqualene	
s_1198	NAD	

Products

Table 991: Properties of each product.

Id	Name	SBO
s_0037	(S)-2,3-epoxysqualene	
s_1198	NAD	

Kinetic Law

$$v_{247} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1203}] \cdot [\text{s_1275}] \cdot [\text{s_1447}] - \frac{[\text{s_0037}] \cdot [\text{s_1198}]}{\text{Keq}} \right)}{\text{Km1203} \cdot \text{Km1275} \cdot \text{Km1447}}}{\left(1 + \frac{[\text{s_1203}]}{\text{Km1203}} \right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right) \cdot \left(1 + \frac{[\text{s_1447}]}{\text{Km1447}} \right) + \left(1 + \frac{[\text{s_0037}]}{\text{Km0037}} \right) \cdot \left(1 + \frac{[\text{s_1198}]}{\text{Km1198}} \right) - 1}$$

$$(495)$$

Table 992: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.29987342075721 \cdot 10^{-4}$	dimensionless	

Id	Name	SBO	Value	Unit	Constant
Vmax		0000324	0.003	$mmol \cdot l^{-1} \cdot s^{-1}$	\overline{Z}
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	
Km1203		0000322	0.100	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$
Km1275		0000322	0.100	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$	
Km1447		0000322	0.100	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$	
Km0037		0000323	0.100	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$
Km1198		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\checkmark} $

6.248 Reaction r_1011

This is a reversible reaction of three reactants forming two products influenced by six modifiers.

Name squalene epoxidase (NADP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1212 + s_1275 + s_1447 \xleftarrow{e_0385, s_1212, s_1275, s_1447, s_0037, s_1207} s_0037 + s_1207 \tag{496}$$

Reactants

Table 993: Properties of each reactant.

Id	Name	SBO
s_1212	NADPH	
$s_{-}1275$	oxygen	
s_1447	squalene	

Modifiers

Table 994: Properties of each modifier.

Id	Name	SBO
e_0385	ERG1	0000460
$s_{-}1212$	NADPH	
$s_{-}1275$	oxygen	
$s_{-}1447$	squalene	
s_0037	(S)-2,3-epoxysqualene	
s_1207	NADP(+)	

Products

Table 995: Properties of each product.

Id	Name	SBO
	(S)-2,3-epoxysqualene NADP(+)	

Kinetic Law

Derived unit contains undeclared units

$$v_{248} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1212}] \cdot [\text{s_1275}] \cdot [\text{s_1447}] - \frac{[\text{s_0037}] \cdot [\text{s_1207}]}{\text{Keq}} \right)}{\text{Km1212} \cdot \text{Km1275}} }{\left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) \cdot \left(1 + \frac{[\text{s_1275}]}{\text{Km1275}} \right) \cdot \left(1 + \frac{[\text{s_1447}]}{\text{Km1447}} \right) + \left(1 + \frac{[\text{s_0037}]}{\text{Km0037}} \right) \cdot \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) - 1}$$

$$(497)$$

Table 996: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.2998734207478 \cdot 10^{-4}$	dimensionless	lacksquare
Vmax		0000324	0.003	$mmol \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot \text{l}$	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1275		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1447		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0037		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

6.249 Reaction r_1012

This is a reversible reaction of two reactants forming three products influenced by six modifiers.

Name squalene synthase

SBO:0000176 biochemical reaction

Reaction equation

$$2 \, s_0190 + s_1212 \, \underbrace{\frac{e_0456, \, s_0190, \, s_1212, \, s_0633, \, s_1207, \, s_1447}_{(498)}} \, 2 \, s_0633 + s_1207 + s_1447$$

Reactants

Table 997: Properties of each reactant.

Id	Name	SBO
	farnesyl diphosphate NADPH	

Modifiers

Table 998: Properties of each modifier.

	1	
Id	Name	SBO
e_0456	ERG9	0000460
s0190	farnesyl diphosphate	
$s_{-}1212$	NADPH	
s_0633	diphosphate	
$s_{-}1207$	NADP(+)	
s_1447	squalene	

Products

Table 999: Properties of each product.

Id	Name	SBO
s_0633	diphosphate	
s_1207	NADP(+)	
$s_{-}1447$	squalene	

Kinetic Law

$$v_{249} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.}0190]^2 \cdot [\text{s.}1212] - \frac{[\text{s.}0633]^2 \cdot [\text{s.}1207] \cdot [\text{s.}1447]}{\text{Keq}} \right)}{\left(1 + \frac{[\text{s.}0190]}{\text{Km}0190} \right)^2 \cdot \left(1 + \frac{[\text{s.}1212]}{\text{Km}1212} \right) + \left(1 + \frac{[\text{s.}0633]}{\text{Km}0633} \right)^2 \cdot \left(1 + \frac{[\text{s.}1207]}{\text{Km}1207} \right) \cdot \left(1 + \frac{[\text{s.}1447]}{\text{Km}1447} \right) - 1}$$
(499)

Table 1000: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$2.59974684150501 \cdot 10^{-4}$	dimensionless	$ \mathcal{I} $
Vmax		0000324	0.012	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	
Km0190		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1212		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0633		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km1207		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km1447		0000323	0.100	$mmol \cdot l^{-1}$	\checkmark

6.250 Reaction r_1014

This is a reversible reaction of two reactants forming one product influenced by five modifiers.

Name steryl ester hydrolase

SBO:0000176 biochemical reaction

Reaction equation

$$s_00666 + 3 s_0056 \xrightarrow{e_0578, e_0613, s_0666, s_0056, s_0672} s_0672$$
 (500)

Reactants

Table 1001: Properties of each reactant.

Id	Name	SBO
s_0666	ergosterol	
s_0056	(S)-3-methyl-2-oxopentanoate	

Modifiers

Table 1002: Properties of each modifier.

Id	Name	SBO
e_0578	TGL1	0000460
e_0613	YEH1	0000460
s_0666	ergosterol	
s_0056	(S)-3-methyl-2-oxopentanoate	
s_0672	ergosterol ester	

Product

Table 1003: Properties of each product.

Id	Name	SBO
s_0672	ergosterol ester	

Kinetic Law

Derived unit contains undeclared units

$$v_{250} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0666}] \cdot [\text{s_0056}]^3 - \frac{[\text{s_0672}]}{\text{Keq}} \right)}{\text{Km0666} \cdot \text{Km0056}^3}}{\left(1 + \frac{[\text{s_0666}]}{\text{Km0666}} \right) \cdot \left(1 + \frac{[\text{s_0056}]}{\text{Km0056}} \right)^3 + 1 + \frac{[\text{s_0672}]}{\text{Km0672}} - 1}$$
(501)

Table 1004: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$3.08174379214594 \cdot 10^{-5}$	dimensionless	Ø
Vmax		0000324	0.001	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2000.000	$\text{mmol}^{-3} \cdot l^3$	
Km0666		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{L}} $
Km0056		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Km0672		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\overline{Z}

6.251 Reaction r_1026

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name sulfate adenylyltransferase (ADP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0394 + s_1467 \xrightarrow{e_0107, s_0394, s_1467, s_0298, s_1322} s_0298 + s_1322 \tag{502}$$

Table 1005: Properties of each reactant.

Id	Name	SBO
s_0394	ADP	
$s_{-}1467$	sulphate	

Table 1006: Properties of each modifier.

Id	Name	SBO
e_0107	APA1	0000460
s_0394	ADP	
$s_{-}1467$	sulphate	
s_0298	5'-adenylyl sulfate	
s_1322	phosphate	

Products

Table 1007: Properties of each product.

Id	Name	SBO
	5'-adenylyl sulfate phosphate	

Kinetic Law

$$v_{251} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0394}] \cdot [\text{s_1467}] - \frac{[\text{s_0298}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0394} \cdot \text{Km1467}}}{\left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1467}]}{\text{Km1467}} \right) + \left(1 + \frac{[\text{s_0298}]}{\text{Km0298}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
 (503)

Table 1008: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUI	E		0.002	dimensionless	$ \mathbf{Z} $
Vmax		0000324	0.030	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	
Km0394		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Km1467		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0298		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$mmol \cdot l^{-1}$	

6.252 Reaction r_1027

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name sulfite reductase (NADPH2)

SBO:0000176 biochemical reaction

Reaction equation

$$3\,s_{-}1212 + s_{-}1469 = \underbrace{\frac{e_{-}0547,\,e_{-}0321,\,s_{-}1212,\,s_{-}1469,\,s_{-}0841,\,s_{-}1207}{s_{-}0841 + 3\,s_{-}1207}}\,s_{-}0841 + 3\,s_{-}1207 \quad (504)$$

Reactants

Table 1009: Properties of each reactant.

Id	Name	SBO
s_1212	NADPH	
s_1469	sulphite	

Modifiers

Table 1010: Properties of each modifier.

Id	Name	SBO
e_0547	MET5	0000460
e_0321	MET10	0000460
s_1212	NADPH	
s_1469	sulphite	
s_0841	hydrogen sulfide	
$s_{-}1207$	NADP(+)	

Products

Table 1011: Properties of each product.

Id	Name	SBO
s_0841 s_1207	hydrogen sulfide NADP(+)	

Derived unit contains undeclared units

$$v_{252} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([s_1212]^3 \cdot [s_1469] - \frac{[s_0841] \cdot [s_1207]^3}{\text{Keq}} \right)}{\text{Km1212}^3 \cdot \text{Km1469}}}{\left(1 + \frac{[s_1212]}{\text{Km1212}} \right)^3 \cdot \left(1 + \frac{[s_1469]}{\text{Km1469}} \right) + \left(1 + \frac{[s_0841]}{\text{Km0841}} \right) \cdot \left(1 + \frac{[s_1207]}{\text{Km1207}} \right)^3 - 1}$$
(505)

Table 1012: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.002	dimensionless	\square
Vmax		0000324	0.135	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1469		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km0841		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.253 Reaction r_1038

This is a reversible reaction of two reactants forming two products influenced by ten modifiers.

Name thioredoxin reductase (NADPH)

SBO:0000176 biochemical reaction

Reaction equation

$$s_1212 + s_1620 \xrightarrow{e_0633, \ e_0218, \ e_0398, \ e_0448, \ e_0915, \ e_0124, \ s_1212, \ s_1620, \ s_1207, \ s_1616} (506) \\ s_1207 + s_1616 \xrightarrow{(506)} s_1617 + s_1616 \xrightarrow{(506)} s_1617 + s_161$$

Table 1013: Properties of each reactant.

Id	Name	SBO
s_1212	NADPH	
s_1620	TRX1 disulphide	

Table 1014: Properties of each modifier.

Id	Name	SBO
e_0633	TRX1	0000460
e_0218	TRR1	0000460
e_0398	TRX2	0000460
e_0448	TRR2	0000460
e_0915	GLR1	0000460
e_0124	TRX3	0000460
s_1212	NADPH	
$s_{-}1620$	TRX1 disulphide	
$s_{-}1207$	NADP(+)	
s_1616	TRX1	

Products

Table 1015: Properties of each product.

Id	Name	SBO
s_1207	NADP(+)	
$s_{-}1616$	TRX1	

Kinetic Law

$$v_{253} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_1212}] \cdot [\text{s_1620}] - \frac{[\text{s_1207}] \cdot [\text{s_1616}]}{\text{Keq}} \right)}{\text{Km1212} \cdot \text{Km1620}}}{\left(1 + \frac{[\text{s_1212}]}{\text{Km1212}} \right) \cdot \left(1 + \frac{[\text{s_1620}]}{\text{Km1620}} \right) + \left(1 + \frac{[\text{s_1207}]}{\text{Km1207}} \right) \cdot \left(1 + \frac{[\text{s_1616}]}{\text{Km1616}} \right) - 1}$$
 (507)

Table 1016: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.005	dimensionless	
Vmax		0000324	0.066	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km1212		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1620		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1207		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $
Km1616		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $

6.254 Reaction r_1041

This is a reversible reaction of one reactant forming two products influenced by four modifiers.

Name threonine synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-1238} \xrightarrow{e_{-0122}, s_{-1238}, s_{-1045}, s_{-1322}} s_{-1045} + s_{-1322}$$
 (508)

Reactant

Table 1017: Properties of each reactant.

10010	to 177 11 to per tites of each feac	
Id	Name	SBO
s_1238	O-phospho-L-homoserine	

Modifiers

Table 1018: Properties of each modifier.

	<u>*</u>	
Id	Name	SBO
e_0122	THR4	0000460
s_1238	O-phospho-L-homoserine	
$s_{-}1045$	L-threonine	
s_1322	phosphate	

Products

Table 1019: Properties of each product.

Id	Name	SBO
s_1045	L-threonine	
s_1322	phosphate	

Derived unit contains undeclared units

$$v_{254} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s}_1238] - \frac{[\text{s}_1045] \cdot [\text{s}_1322]}{\text{Keq}} \right)}{\text{Km}1238}}{1 + \frac{[\text{s}_1238]}{\text{Km}1238} + \left(1 + \frac{[\text{s}_1045]}{\text{Km}1045} \right) \cdot \left(1 + \frac{[\text{s}_1322]}{\text{Km}1322} \right) - 1}$$
(509)

Table 1020: Properties of each parameter.

		_			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.007	dimensionless	
Vmax		0000324	0.073	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	0.200	$mmol \cdot l^{-1}$	
Km1238		0000322	0.100	$mmol \cdot l^{-1}$	
Km1045		0000323	0.100	$mmol \cdot l^{-1}$	
Km1322		0000323	0.100	$mmol \cdot l^{-1}$	

6.255 Reaction r_1042

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name threonyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1045 + s_1608 \xrightarrow{e_0470, \ s_0434, \ s_1045, \ s_1608, \ s_0423, \ s_0633, \ s_1491} s_0423 + s_0633 + s_1491 \tag{510}$$

Table 1021: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1045$	L-threonine	
$s_{-}1608$	tRNA(Thr)	

Table 1022: Properties of each modifier.

Id	Name	SBO
e_0470	THS1	0000460
s_0434	ATP	
$s_{-}1045$	L-threonine	
s_1608	tRNA(Thr)	
s_0423	AMP	
s_0633	diphosphate	
$s_{-}1491$	Thr-tRNA(Thr)	

Products

Table 1023: Properties of each product.

Id	Name	SBO
s_0423 s_0633	AMP diphosphate	
s_1491	Thr-tRNA(Thr)	

Kinetic Law

$$v_{255} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1045}] \cdot [\text{s_1608}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1491}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km1045} \cdot \text{Km1608}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1045}]}{\text{Km1045}} \right) \cdot \left(1 + \frac{[\text{s_1608}]}{\text{Km1608}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1491}]}{\text{Km1491}} \right) - 1}$$

Table 1024: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.007	dimensionless	
Vmax		0000324	0.218	$mmol \cdot l^{-1} \cdot s^{-1}$	\checkmark
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1045		0000322	0.100	$mmol \cdot l^{-1}$	\square
Km1608		0000322	0.100	$mmol \cdot l^{-1}$	\square
Km0423		0000323	0.100	$mmol \cdot l^{-1}$	\square
Km0633		0000323	0.100	$mmol \cdot l^{-1}$	\square
Km1491		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.256 Reaction r_1045

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name thymidylate synthase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0306 + s_0654 \xrightarrow{e_0850, s_0306, s_0654, s_0625, s_0649} s_0625 + s_0649 \tag{512}$$

Reactants

Table 1025: Properties of each reactant.

Table 1023. 1 toperties of each reactant.				
Id	Name	SBO		
s_0306 s_0654	5,10-methylenetetrahydrofolate dUMP			

Modifiers

Table 1026: Properties of each modifier.

	•	
Id	Name	SBO
e_0850	CDC21	0000460
s_0306	5,10-methylenetetrahydrofolate	
s_0654	dUMP	
s_0625	dihydrofolic acid	

Id	Name	SBO
s_0649	dTMP	

Products

Table 1027: Properties of each product.

Id	Name	SBO
s_0625 s_0649	dihydrofolic acid dTMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{256} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0306}] \cdot [\text{s_0654}] - \frac{[\text{s_0625}] \cdot [\text{s_0649}]}{\text{Keq}} \right)}{\text{Km0306} \cdot \text{Km0654}}}{\left(1 + \frac{[\text{s_0306}]}{\text{Km0306}} \right) \cdot \left(1 + \frac{[\text{s_0654}]}{\text{Km0654}} \right) + \left(1 + \frac{[\text{s_0625}]}{\text{Km0625}} \right) \cdot \left(1 + \frac{[\text{s_0649}]}{\text{Km0649}} \right) - 1}$$
(513)

Table 1028: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.36629031085814 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.002	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathbf{Z}} $
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km0306		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0654		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0625		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0649		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

6.257 Reaction r_1048

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name transaldolase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0551 + s_0557 \xrightarrow{e_0684, s_0551, s_0557, s_0764, s_1427} s_0764 + s_1427 \tag{514}$$

Reactants

Table 1029: Properties of each reactant.

14010 1	rable 1025. Froperties of each reactant.		
Id	Name	SBO	
s_0551 s_0557	D-erythrose 4-phosphate D-fructose 6-phosphate		

Modifiers

Table 1030: Properties of each modifier.

Id	Name	SBO
e_0684	TAL1	0000460
s_0551	D-erythrose 4-phosphate	
s_0557	D-fructose 6-phosphate	
s_0764	glyceraldehyde 3-phosphate	
s_1427	sedoheptulose 7-phosphate	

Products

Table 1031: Properties of each product.

	radic 1001. Troperties of cach product.		
Id	Name	SBO	
s_0764 s_1427	glyceraldehyde 3-phosphate sedoheptulose 7-phosphate		

Kinetic Law

$$v_{257} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0551}] \cdot [\text{s_0557}] - \frac{[\text{s_0764}] \cdot [\text{s_1427}]}{\text{Keq}} \right)}{\text{Km0551} \cdot \text{Km0557}}}{\left(1 + \frac{[\text{s_0551}]}{\text{Km0551}} \right) \cdot \left(1 + \frac{[\text{s_0557}]}{\text{Km0557}} \right) + \left(1 + \frac{[\text{s_0764}]}{\text{Km0764}} \right) \cdot \left(1 + \frac{[\text{s_1427}]}{\text{Km1427}} \right) - 1}$$
 (515)

Table 1032: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.30955594768567 \cdot 10^{-4}$	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.007	$mmol \cdot l^{-1} \cdot s^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Keq		0000281	2.000	dimensionless	
Km0551		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0557		0000322	0.100	$mmol \cdot l^{-1}$	
Km0764		0000323	0.100	$mmol \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
Km1427		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $

6.258 Reaction r_1049

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name transketolase 1

SBO:0000176 biochemical reaction

Reaction equation

$$s_0764 + s_1427 \xrightarrow{e_0063, \ e_0962, \ s_0764, \ s_1427, \ s_0581, \ s_1408} s_0581 + s_1408 \tag{516}$$

Reactants

Table 1033: Properties of each reactant.

Id	Name	SBO
s_0764 s_1427	glyceraldehyde 3-phosphate sedoheptulose 7-phosphate	

Modifiers

Table 1034: Properties of each modifier.

Id	Name	SBO
e_0063	TKL2	0000460
e_0962	TKL1	0000460
s_0764	glyceraldehyde 3-phosphate	
$s_{-}1427$	sedoheptulose 7-phosphate	
s_0581	D-xylulose 5-phosphate	
$s_{-}1408$	ribose-5-phosphate	

Products

Table 1035: Properties of each product.

Id	Name	SBO
	D-xylulose 5-phosphate ribose-5-phosphate	

Derived unit contains undeclared units

$$\nu_{258} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0764}] \cdot [\text{s_1427}] - \frac{[\text{s_0581}] \cdot [\text{s_1408}]}{\text{Keq}} \right)}{\text{Km0764} \cdot \text{Km1427}}}{\left(1 + \frac{[\text{s_0764}]}{\text{Km0764}} \right) \cdot \left(1 + \frac{[\text{s_1427}]}{\text{Km1427}} \right) + \left(1 + \frac{[\text{s_0581}]}{\text{Km0581}} \right) \cdot \left(1 + \frac{[\text{s_1408}]}{\text{Km1408}} \right) - 1}$$
 (517)

Table 1036: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.30955595806181 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.007	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
Keq		0000281	2.000	dimensionless	$\overline{\mathbf{Z}}$
Km0764		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1427		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0581		0000323	0.100	$\text{mmol} \cdot l^{-1}$	
Km1408		0000323	0.100	$mmol \cdot l^{-1}$	

6.259 Reaction r_1050

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name transketolase 2

SBO:0000176 biochemical reaction

Reaction equation

$$s_0557 + s_0764 \xrightarrow{e_0063, \ e_0962, \ s_0557, \ s_0764, \ s_0551, \ s_0581} s_0551 + s_0581 \tag{518}$$

Table 1037: Properties of each reactant.

Id	Name	SBO
	D-fructose 6-phosphate glyceraldehyde 3-phosphate	

Table 1038: Properties of each modifier.

	1	
Id	Name	SBO
e_0063	TKL2	0000460
e_0962	TKL1	0000460
s_0557	D-fructose 6-phosphate	
s_0764	glyceraldehyde 3-phosphate	
s_0551	D-erythrose 4-phosphate	
s_0581	D-xylulose 5-phosphate	

Products

Table 1039: Properties of each product.

Id	Name	SBO
	D-erythrose 4-phosphate	
s_0581	D-xylulose 5-phosphate	

Kinetic Law

$$v_{259} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0557}] \cdot [\text{s_0764}] - \frac{[\text{s_0551}] \cdot [\text{s_0581}]}{\text{Keq}} \right)}{\frac{\text{Km0557} \cdot \text{Km0764}}{\left(1 + \frac{[\text{s_0557}]}{\text{Km0557}} \right) \cdot \left(1 + \frac{[\text{s_0764}]}{\text{Km0764}} \right) + \left(1 + \frac{[\text{s_0551}]}{\text{Km0551}} \right) \cdot \left(1 + \frac{[\text{s_0581}]}{\text{Km0581}} \right) - 1}}$$
(519)

Table 1040: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.011	dimensionless	$ \mathbf{Z} $
Vmax		0000324	0.148	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	

Id	Name	SBO	Value	Unit	Constant
Km0557		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\checkmark} $
Km0764		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0551		0000323	0.100	$mmol \cdot l^{-1}$	
Km0581		0000323	0.100	$mmol \cdot l^{-1}$	

6.260 Reaction r_1051

This is a reversible reaction of one reactant forming two products influenced by seven modifiers.

Name trehalose-phosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0409 \xleftarrow{e_0711,\ e_0065,\ e_0179,\ e_0753,\ s_0409,\ s_1322,\ s_1520} s_1322 + s_1520 \tag{520}$$

Reactant

Table 1041: Properties of each reactant.

Id	Name	SBO
s_0409	alpha,alpha-trehalose 6-phosphate	

Modifiers

Table 1042: Properties of each modifier.

Id	Name	SBO
e_0711	TSL1	0000460
e_0065	TPS1	0000460
e_0179	TPS2	0000460
e_0753	TPS3	0000460
s_0409	alpha,alpha-trehalose 6-phosphate	
$s_{-}1322$	phosphate	
s_1520	trehalose	

Products

Table 1043: Properties of each product.

Id	Name	SBO
s_1322	phosphate	
$s_{-}1520$	trehalose	

Derived unit contains undeclared units

$$v_{260} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0409}] - \frac{[\text{s_1322}] \cdot [\text{s_1520}]}{\text{Keq}} \right)}{\text{Km0409}}}{1 + \frac{[\text{s_0409}]}{\text{Km0409}} + \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) \cdot \left(1 + \frac{[\text{s_1520}]}{\text{Km1520}} \right) - 1}$$
(521)

Table 1044: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$8.88088702062361 \cdot 10^{-4}$	dimensionless	\overline{Z}
Vmax		0000324	0.009	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	0.200	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark
Km0409		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1520		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.261 Reaction r_1052

This is a reversible reaction of two reactants forming one product influenced by seven modifiers.

Name triacylglycerol lipase

SBO:0000176 biochemical reaction

Reaction equation

Table 1045: Properties of each reactant.

Id	Name	SBO
	diglyceride	
s_0056	(S)-3-methyl-2-oxopentanoate	

Table 1046: Properties of each modifier.

	Tuest to text trep entires of each me differ.					
Id	Name	SBO				
e_0176	TGL2	0000460				
e_0611	TGL4	0000460				
e_0765	TGL3	0000460				
e_0851	TGL5	0000460				
s_0619	diglyceride					
s_0056	(S)-3-methyl-2-oxopentanoate					
s_1524	triglyceride					

Product

Table 1047: Properties of each product.

Id	Name	SBO
s_1524	triglyceride	

Kinetic Law

$$v_{261} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0619}] \cdot [\text{s_0056}] - \frac{[\text{s_1524}]}{\text{Keq}} \right)}{\text{Km0619} \cdot \text{Km0056}}}{\left(1 + \frac{[\text{s_0619}]}{\text{Km0619}} \right) \cdot \left(1 + \frac{[\text{s_0056}]}{\text{Km0056}} \right) + 1 + \frac{[\text{s_1524}]}{\text{Km1524}} - 1}$$
(523)

Table 1048: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$5.10195573579038 \cdot 10^{-4}$	dimensionless	\square
Vmax		0000324	0.005	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	20.000	$\text{mmol}^{-1} \cdot 1$	

Id	Name	SBO	Value	Unit	Constant
Km0619		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0056		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1524		0000323	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square

6.262 Reaction r_1054

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name triose-phosphate isomerase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0629 \xrightarrow{e_{-}0175, s_{-}0629, s_{-}0764} s_{-}0764$$
 (524)

Reactant

Table 1049: Properties of each reactant.

Id	Name	SBO
s_0629	dihydroxyacetone phosphate	

Modifiers

Table 1050: Properties of each modifier.

	· · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
e_0175		0000460
s_0629	dihydroxyacetone phosphate	
s_0764	glyceraldehyde 3-phosphate	

Product

Table 1051: Properties of each product.

Id	Name	SBO
s_0764	glyceraldehyde 3-phosphate	

Derived unit contains undeclared units

$$v_{262} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s.}0629] - \frac{[\text{s.}0764]}{\text{Keq}}\right)}{\frac{\text{Km0629}}{1 + \frac{[\text{s.}0629]}{\text{Km0629}} + 1 + \frac{[\text{s.}0764]}{\text{Km0764}} - 1}}$$
(525)

Table 1052: Properties of each parameter.

-					
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.850	dimensionless	Ø
Vmax		0000324	5.102	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0629		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0764		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\checkmark

6.263 Reaction r_1055

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name tryptophan synthase (indoleglycerol phosphate)

SBO:0000176 biochemical reaction

Reaction equation

$$s_0086 + s_1039 \xrightarrow{e_0330, s_0086, s_1039, s_0764, s_1048} s_0764 + s_1048 \tag{526}$$

Reactants

Table 1053: Properties of each reactant.

Id	Name	SBO
	1-C-(indol-3-yl)glycerol 3-phosphate L-serine	

Modifiers

Table 1054: Properties of each modifier.

Id	Name	SBO
e_0330	TRP5	0000460
s_0086	1-C-(indol-3-yl)glycerol 3-phosphate	
$s_{-}1039$	L-serine	
s_0764	glyceraldehyde 3-phosphate	
$s_{-}1048$	L-tryptophan	

Products

Table 1055: Properties of each product.

Id	Name	SBO
s_0764	glyceraldehyde 3-phosphate	
$s_{-}1048$	L-tryptophan	

Kinetic Law

Derived unit contains undeclared units

$$v_{263} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0086}] \cdot [\text{s_1039}] - \frac{[\text{s_0764}] \cdot [\text{s_1048}]}{\text{Keq}} \right)}{\text{Km0086} \cdot \text{Km1039}}}{\left(1 + \frac{[\text{s_0086}]}{\text{Km0086}} \right) \cdot \left(1 + \frac{[\text{s_1039}]}{\text{Km1039}} \right) + \left(1 + \frac{[\text{s_0764}]}{\text{Km0764}} \right) \cdot \left(1 + \frac{[\text{s_1048}]}{\text{Km1048}} \right) - 1}$$
 (527)

Table 1056: Properties of each parameter.

Tuble 1050. Froperties of each parameter.					
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.001	dimensionless	
Vmax		0000324	0.015	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0086		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1039		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0764		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1048		0000323	0.100	$mmol \cdot l^{-1}$	\checkmark

6.264 Reaction r_1057

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name tryptophanyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1048 + s_1610 \xleftarrow{e_0836, s_0434, s_1048, s_1610, s_0423, s_0633, s_1527} s_0423 + s_0633 + s_1527 \tag{528}$$

Reactants

Table 1057: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1048$	L-tryptophan	
$s_{-}1610$	tRNA(Trp)	

Modifiers

Table 1058: Properties of each modifier.

Tuest Tee et Treperties er tuest mie unien.					
Id	Name	SBO			
e_0836	WRS1	0000460			
s_0434	ATP				
s_1048	L-tryptophan				
$s_{-}1610$	tRNA(Trp)				
s_0423	AMP				
s_0633	diphosphate				
s_1527	Trp-tRNA(Trp)				

Products

Table 1059: Properties of each product.

Id	Name	SBO
s_0423	AMP	
s_0633	diphosphate	
s_1527	Trp-tRNA(Trp)	

Derived unit contains undeclared units

$$\nu_{264} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1048}] \cdot [\text{s_1610}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1527}]}{\text{Keq}} \right)}{\frac{\text{Km0434} \cdot \text{Km1048} \cdot \text{Km1610}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1048}]}{\text{Km1048}} \right) \cdot \left(1 + \frac{[\text{s_1610}]}{\text{Km1610}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1527}]}{\text{Km1527}} \right) - 1}}$$

Table 1060: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.001	dimensionless	
Vmax		0000324	0.032	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	$ \overline{\mathscr{L}} $
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1048		0000322	0.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Km1610		0000322	0.100	$mmol \cdot l^{-1}$	
Km0423		0000323	0.100	$mmol \cdot l^{-1}$	
Km0633		0000323	0.100	$mmol \cdot l^{-1}$	
Km1527		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\checkmark

6.265 Reaction r_1063

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name tyrosine transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0204 + s_0991 \xrightarrow{e_0348, \ e_0629, \ s_0204, \ s_0991, \ s_0180, \ s_1051} s_0180 + s_1051 \tag{530}$$

Table 1061: Properties of each reactant.

Id	Name	SBO
	3-(4-hydroxyphenyl)pyruvate L-glutamate	
5_0991	L-grutamate	

Table 1062: Properties of each modifier.

Id	Name	SBO
e_0348	ARO8	0000460
e_0629	AAT2	0000460
s_0204	3-(4-hydroxyphenyl)pyruvate	
s_0991	L-glutamate	
s_0180	2-oxoglutarate	
s_1051	L-tyrosine	

Products

Table 1063: Properties of each product.

Id	Name	SBO
	2-oxoglutarate L-tyrosine	

Kinetic Law

$$v_{265} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0204}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_1051}]}{\text{Keq}} \right)}{\text{Km0204} \cdot \text{Km0991}}}{\left(1 + \frac{[\text{s_0204}]}{\text{Km0204}} \right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}} \right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}} \right) \cdot \left(1 + \frac{[\text{s_1051}]}{\text{Km1051}} \right) - 1}$$
(531)

Table 1064: Properties of each parameter.

		_			
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	\overline{Z}
Vmax		0000324	0.054	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0204		0000322	0.100	$\text{mmol} \cdot l^{-1}$	
Km0991		0000322	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\checkmark} $
Km0180		0000323	0.100	$\text{mmol} \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
Km1051		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.266 Reaction r_1066

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name tyrosyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1051 + s_1612 \xrightarrow{e_0390, \ s_0434, \ s_1051, \ s_1612, \ s_0423, \ s_0633, \ s_1533} \\ s_0423 + s_0633 + s_1533 \\ (532)$$

Reactants

Table 1065: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1051$	L-tyrosine	
$s_{-}1612$	tRNA(Tyr)	

Modifiers

Table 1066: Properties of each modifier.

Id	Name	SBO
e_0390	TYS1	0000460
s_0434	ATP	
s_1051	L-tyrosine	
s_1612	tRNA(Tyr)	
s_0423	AMP	
s_0633	diphosphate	
s_1533	Tyr-tRNA(Tyr)	

Products

Table 1067: Properties of each product.

Id	Name	SBO
s_0423	AMP	

Id	Name	SBO
	diphosphate Tyr-tRNA(Tyr)	

Derived unit contains undeclared units

$$v_{266} = \frac{\frac{vol(cell) \cdot V_{max} \cdot \left([s_0434] \cdot [s_1051] \cdot [s_1612] - \frac{[s_0423] \cdot [s_0633] \cdot [s_1533]}{Keq} \right)}{Km0434 \cdot Km1051 \cdot Km1612} } {\left(1 + \frac{[s_0434]}{Km0434} \right) \cdot \left(1 + \frac{[s_1051]}{Km1051} \right) \cdot \left(1 + \frac{[s_1612]}{Km1612} \right) + \left(1 + \frac{[s_0423]}{Km0423} \right) \cdot \left(1 + \frac{[s_0633]}{Km0633} \right) \cdot \left(1 + \frac{[s_1533]}{Km1533} \right) - 1}$$

Table 1068: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.004	dimensionless	
Vmax		0000324	0.116	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km1051		0000322	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km1612		0000322	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km0423		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square
Km0633		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square
Km1533		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	\square

6.267 Reaction r_1072

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name UMP kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1545 \xrightarrow{e_0561, s_0434, s_1545, s_0394, s_1538} s_0394 + s_1538 \tag{534}$$

Table 1069: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
s_1545	UMP	

Table 1070: Properties of each modifier.

Id	Name	SBO
e_0561	URA6	0000460
s_0434	ATP	
$s_{-}1545$	UMP	
s_0394	ADP	
s_1538	UDP	

Products

Table 1071: Properties of each product.

Id	Name	SBO
s_0394	ADP	
$s_{-}1538$	UDP	

Kinetic Law

$$v_{267} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1545}] - \frac{[\text{s_0394}] \cdot [\text{s_1538}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1545}}}{\left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_1545}]}{\text{Km1545}} \right) + \left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_1538}]}{\text{Km1538}} \right) - 1}$$
(535)

Table 1072: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALU	E		0.002	dimensionless	\overline{Z}
${\tt Vmax}$		0000324	0.027	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0434		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark

Id	Name	SBO	Value	Unit	Constant
Km1545		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0394		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1538		0000323	0.100	$mmol \cdot l^{-1}$	

6.268 Reaction r_1084

This is a reversible reaction of two reactants forming two products influenced by five modifiers.

Name UTP-glucose-1-phosphate uridylyltransferase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0567 + s_1559 \xrightarrow{e_0565, s_0567, s_1559, s_0633, s_1543} s_0633 + s_1543 \tag{536}$$

Reactants

Table 1073: Properties of each reactant.

Id	Name	SBO
s_0567	D-glucose 1-phosphate	
$s_{-}1559$	UTP	

Modifiers

Table 1074: Properties of each modifier.

Id	Name	SBO
e_0565	UGP1	0000460
s_0567	D-glucose 1-phosphate	
s_1559	UTP	
s_0633	diphosphate	
s_1543	UDP-D-glucose	

Products

Table 1075: Properties of each product.

Id	Name	SBO
	diphosphate UDP-D-glucose	

Derived unit contains undeclared units

$$v_{268} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0567}] \cdot [\text{s_1559}] - \frac{[\text{s_0633}] \cdot [\text{s_1543}]}{\text{Keq}} \right)}{\text{Km0567} \cdot \text{Km1559}}}{\left(1 + \frac{[\text{s_0567}]}{\text{Km0567}} \right) \cdot \left(1 + \frac{[\text{s_1559}]}{\text{Km1559}} \right) + \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1543}]}{\text{Km1543}} \right) - 1}$$
 (537)

Table 1076: Properties of each parameter.

			_		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.107	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	1.494	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\checkmark
Keq		0000281	2.000	dimensionless	\checkmark
Km0567		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\checkmark}$
Km1559		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km0633		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\checkmark
Km1543		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.269 Reaction r_1087

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name valine transaminase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0232 + s_0991 \xrightarrow{e_0550, \ e_0457, \ s_0232, \ s_0991, \ s_0180, \ s_1056} s_0180 + s_1056 \tag{538}$$

Table 1077: Properties of each reactant.

Id	Name	SBO
	3-methyl-2-oxobutanoate L-glutamate	

Table 1078: Properties of each modifier.

Id	Name	SBO
e_0550	BAT2	0000460
$e_{-}0457$	BAT1	0000460
s_0232	3-methyl-2-oxobutanoate	
s_0991	L-glutamate	
s_0180	2-oxoglutarate	
s_1056	L-valine	

Products

Table 1079: Properties of each product.

Id	Name	SBO
s_0180	2-oxoglutarate	
s_1056	L-valine	

Kinetic Law

$$v_{269} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0232}] \cdot [\text{s_0991}] - \frac{[\text{s_0180}] \cdot [\text{s_1056}]}{\text{Keq}}\right)}{\text{Km0232} \cdot \text{Km0991}}}{\left(1 + \frac{[\text{s_0232}]}{\text{Km0232}}\right) \cdot \left(1 + \frac{[\text{s_0991}]}{\text{Km0991}}\right) + \left(1 + \frac{[\text{s_0180}]}{\text{Km0180}}\right) \cdot \left(1 + \frac{[\text{s_1056}]}{\text{Km1056}}\right) - 1}$$
(539)

Table 1080: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	$ \mathbf{Z} $
Vmax		0000324	0.141	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	

Id	Name	SBO	Value	Unit	Constant
Km0232		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	\overline{Z}
Km0991		0000322	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km0180		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km1056		0000323	0.100	$mmol \cdot l^{-1}$	\square

6.270 Reaction r_1089

This is a reversible reaction of three reactants forming three products influenced by seven modifiers.

Name valyl-tRNA synthetase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0434 + s_1056 + s_1614 \xrightarrow{e_0372, s_0434, s_1056, s_1614, s_0423, s_0633, s_1561} s_0423 + s_0633 + s_1561 \xrightarrow{(540)}$$

Reactants

Table 1081: Properties of each reactant.

Id	Name	SBO
s_0434	ATP	
$s_{-}1056$	L-valine	
$s_{-}1614$	tRNA(Val)	

Modifiers

Table 1082: Properties of each modifier.

Id	Name	SBO
e_0372	VAS1	0000460
s_0434	ATP	
s_1056	L-valine	
s_1614	tRNA(Val)	
s_0423	AMP	
s_0633	diphosphate	
s_1561	Val-tRNA(Val)	

Products

Table 1083: Properties of each product.

Id	Name	SBO
s_0423 s_0633 s_1561	AMP diphosphate Val-tRNA(Val)	

Kinetic Law

Derived unit contains undeclared units

$$v_{270} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1056}] \cdot [\text{s_1614}] - \frac{[\text{s_0423}] \cdot [\text{s_0633}] \cdot [\text{s_1561}]}{\text{Keq}} \right)}{\text{Km0434} \cdot \text{Km1056} \cdot \text{Km1614}} \\ = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1056}] \cdot \left(1 + \frac{[\text{s_1056}]}{\text{Km1056}} \right) \cdot \left(1 + \frac{[\text{s_1614}]}{\text{Km1614}} \right) + \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1561}]}{\text{Km1561}} \right) - 1}{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1056}] \cdot \left(1 + \frac{[\text{s_1614}]}{\text{Km1063}} \right) \cdot \left(1 + \frac{[\text{s_1561}]}{\text{Km10633}} \right) \cdot \left(1 + \frac{[\text{s_1561}]}{\text{Km1561}} \right) - 1}{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1056}] \cdot \left(1 + \frac{[\text{s_1056}]}{\text{Km10642}} \right) \cdot \left(1 + \frac{[\text{s_0423}]}{\text{Km0423}} \right) \cdot \left(1 + \frac{[\text{s_0633}]}{\text{Km0633}} \right) \cdot \left(1 + \frac{[\text{s_1561}]}{\text{Km1561}} \right) - 1}{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0434}] \cdot [\text{s_1056}] \cdot \left(1 + \frac{[\text{s_1056}]}{\text{Km1056}} \right) \cdot \left(1 + \frac{[\text{s_1056}]}{\text{Km1056$$

Table 1084: Properties of each parameter.

Table 1001. Troperties of each parameter.					
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.010	dimensionless	$\overline{\hspace{1cm}}$
Vmax		0000324	0.301	$\text{mmol} \cdot l^{-1} \cdot s^{-1}$	
Keq		0000281	2.000	dimensionless	\square
Km0434		0000322	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km1056		0000322	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km1614		0000322	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km0423		0000323	0.100	$\text{mmol} \cdot l^{-1}$	\square
Km0633		0000323	0.100	$\operatorname{mmol} \cdot l^{-1}$	
Km1561		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	\square

6.271 Reaction r_1115

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name ammonia transport

SBO:0000185 transport reaction

Reaction equation

$$s_-0420 \xrightarrow{\underline{s}_-0420, \ s_-0419} s_-0419$$
 (542)

Reactant

Table 1085: Properties of each reactant.

Id	Name	SBO
s_0420	ammonium	

Modifiers

Table 1086: Properties of each modifier.

Id	Name	SBO
s_0420	ammonium	
s_0419	ammonium	

Product

Table 1087: Properties of each product.

Id	Name	SBO
s_0419	ammonium	

Kinetic Law

$$v_{271} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot ([s.0420] - [s.0419])}{\text{Km0420}}}{1 + \frac{[s.0420]}{\text{Km0420}} + 1 + \frac{[s.0419]}{\text{Km0419}} - 1}$$
(543)

Table 1088: Properties of each parameter.

	<u> </u>	1		
Name	SBO	Value	Unit	Constant
		0.212	dimensionless	\square
	0000324	0.707	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
	0000322	1.000	$\operatorname{mmol} \cdot 1^{-1}$	
	0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
	Name	0000324 0000322	0.212 0000324 0.707 0000322 1.000	$\begin{array}{cccc} & 0.212 & \text{dimensionless} \\ 0000324 & 0.707 & \text{mmol} \cdot \text{l}^{-1} \cdot \text{s}^{-1} \\ 0000322 & 1.000 & \text{mmol} \cdot \text{l}^{-1} \end{array}$

6.272 Reaction r_1166

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name glucose transport

SBO:0000185 transport reaction

Reaction equation

$$s_{-}0565 \xrightarrow{s_{-}0565, s_{-}0563} s_{-}0563$$
 (544)

Reactant

Table 1089: Properties of each reactant.

Id	Name	SBO
s_0565	D-glucose	

Modifiers

Table 1090: Properties of each modifier.

Id	Name	SBO
	D-glucose D-glucose	

Product

Table 1091: Properties of each product.

Id	Name	SBO
s_0563	D-glucose	

Kinetic Law

$$v_{272} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot ([s_0565] - [s_0563])}{\text{Km0565}}}{1 + \frac{[s_0565]}{\text{Km0565}} + 1 + \frac{[s_0563]}{\text{Km0563}} - 1}$$
(545)

Table 1092: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			1.000	dimensionless	\square
Vmax		0000324	3.333	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	\square
Km0565		0000322	1.000	$\text{mmol} \cdot 1^{-1}$	\square
Km0563		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.273 Reaction r_1244

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name phosphate transport

SBO:0000185 transport reaction

Reaction equation

$$s_{-}1324 \xrightarrow{s_{-}1324, s_{-}1322} s_{-}1322$$
 (546)

Reactant

Table 1093: Properties of each reactant.

Id	Name	SBO
s_1324	phosphate	

Modifiers

Table 1094: Properties of each modifier.

Id	Name	SBO
s_1324	phosphate	
s_1322	phosphate	

Product

Table 1095: Properties of each product.

Id	Name	SBO
s_1322	phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{273} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot ([s_1324] - [s_1322])}{\text{Km}_{1324}}}{1 + \frac{[s_1324]}{\text{Km}_{1324}} + 1 + \frac{[s_1322]}{\text{Km}_{1322}} - 1}$$
(547)

Table 1096: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.030	dimensionless	
Vmax		0000324	0.100	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Km1324		0000322	1.000	$\operatorname{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $

6.274 Reaction r_1266

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name sulfate uniport

SBO:0000185 transport reaction

Reaction equation

$$s_{-}1468 = \underbrace{s_{-}1468, s_{-}1467}_{} s_{-}1467$$
 (548)

Reactant

Table 1097: Properties of each reactant.

Id	Name	SBO
s_1468	sulphate	

Modifiers

Table 1098: Properties of each modifier.

Id	Name	SBO
s_1468 s_1467	sulphate sulphate	

Product

Table 1099: Properties of each product.

Id	Name	SBO
s_1467	sulphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{274} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot ([s.1468] - [s.1467])}{\text{Km1468}}}{1 + \frac{[s.1468]}{\text{Km1468}} + 1 + \frac{[s.1467]}{\text{Km1467}} - 1}$$
(549)

Table 1100: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.003	dimensionless	\checkmark
Vmax		0000324	0.010	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Km1468		0000322	1.000	$mmol \cdot l^{-1}$	
Km1467		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	

6.275 Reaction r_1664

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name bicarbonate formation

SBO:0000176 biochemical reaction

Reaction equation

$$s_0456 \stackrel{\underline{s_0456}, \underline{s_0445}}{=\!=\!=\!=\!=} s_0445$$
 (550)

Reactant

Table 1101: Properties of each reactant.

Id	Name	SBO
s_0456	carbon dioxide	

Modifiers

Table 1102: Properties of each modifier.

Id	Name	SBO
22020	carbon dioxide bicarbonate	

Product

Table 1103: Properties of each product.

Id	Name	SBO
s_0445	bicarbonate	

Kinetic Law

Derived unit contains undeclared units

$$v_{275} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0456}] - \frac{[\text{s_0445}]}{\text{Keq}}\right)}{\frac{\text{Km0456}}{1 + \frac{[\text{s_0456}]}{\text{Km0456}} + 1 + \frac{[\text{s_0445}]}{\text{Km0445}} - 1}}$$
(551)

Table 1104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.088	dimensionless	\square
Vmax		0000324	0.525	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0456		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	
Km0445		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.276 Reaction r_1697

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name CO2 transport

SBO:0000185 transport reaction

Reaction equation

$$s_0456 \xrightarrow{s_0456} s_0458$$
 (552)

Reactant

Table 1105: Properties of each reactant.

Id	Name	SBO
s_0456	carbon dioxide	

Modifier

Table 1106: Properties of each modifier.

Id	Name	SBO
s_0456	carbon dioxide	

Product

Table 1107: Properties of each product.

Id	Name	SBO
s_0458	carbon dioxide	

Kinetic Law

Derived unit contains undeclared units

$$v_{276} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot [\text{s}_0456]}{\text{Km}0456}}{1 + \frac{[\text{s}_0456]}{\text{Km}0456}}$$
(553)

Table 1108: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE Vmax Km0456		0000324 0000322	3.040	dimensionless mmol· 1^{-1} ·s ⁻¹ mmol· 1^{-1}	

6.277 Reaction r_1704

This is a reversible reaction of two reactants forming two products influenced by four modifiers.

Name cytidylate kinase (dCMP)

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-}0394 + s_{-}0587 \xrightarrow{s_{-}0394, s_{-}0587, s_{-}0434, s_{-}0589} s_{-}0434 + s_{-}0589$$
 (554)

Reactants

Table 1109: Properties of each reactant.

Id	Name	SBO
s_0394	ADP	
s_0587	dCDP	

Modifiers

Table 1110: Properties of each modifier.

Id	Name	SBO
s_0394	ADP	
s_0587	dCDP	
s_0434	ATP	
s_0589	dCMP	

Products

Table 1111: Properties of each product.

Id	Name	SBO
s_0434	ATP	
s_0589	dCMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{277} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0394}] \cdot [\text{s_0587}] - \frac{[\text{s_0434}] \cdot [\text{s_0589}]}{\text{Keq}} \right)}{\text{Km0394} \cdot \text{Km0587}}}{\left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0587}]}{\text{Km0587}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0589}]}{\text{Km0589}} \right) - 1}$$
(555)

Table 1112: Properties of each parameter.

			1 1		
Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$9.44495616916319 \cdot 10^{-5}$	dimensionless	\overline{Z}
Vmax		0000324	0.001	$\text{mmol} \cdot 1^{-1} \cdot \text{s}^{-1}$	
Keq		0000281	2.000	dimensionless	
Km0394		0000322	0.100	$mmol \cdot l^{-1}$	
Km0587		0000322	0.100	$mmol \cdot l^{-1}$	
Km0434		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0589		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.278 Reaction r_1729

This is a reversible reaction of two reactants forming two products influenced by four modifiers.

Name deoxyadenylate kinase

SBO:0000176 biochemical reaction

Reaction equation

$$s_0394 + s_0582 \xrightarrow{s_0394, s_0582, s_0434, s_0584} s_0434 + s_0584 \tag{556}$$

Reactants

Table 1113: Properties of each reactant.

Id	Name	SBO
s_0394	ADP	
s_0582	dADP	

Modifiers

Table 1114: Properties of each modifier.

Id	Name	SBO
s_0394	ADP	

Id	Name	SBO
s_0582	dADP	
s_0434	ATP	
s_0584	dAMP	

Products

Table 1115: Properties of each product.

Id	Name	SBO
s_0434	ATP	
s0584	dAMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{278} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0394}] \cdot [\text{s_0582}] - \frac{[\text{s_0434}] \cdot [\text{s_0584}]}{\text{Keq}} \right)}{\text{Km0394} \cdot \text{Km0582}}}{\left(1 + \frac{[\text{s_0394}]}{\text{Km0394}} \right) \cdot \left(1 + \frac{[\text{s_0582}]}{\text{Km0582}} \right) + \left(1 + \frac{[\text{s_0434}]}{\text{Km0434}} \right) \cdot \left(1 + \frac{[\text{s_0584}]}{\text{Km0584}} \right) - 1}$$
 (557)

Table 1116: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			$1.36629031036409 \cdot 10^{-4}$	dimensionless	
Vmax		0000324	0.002	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Keq		0000281	2.000	dimensionless	\square
Km0394		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	
Km0582		0000322	0.100	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{A}} $
Km0434		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	<u> </u>
Km0584		0000323	0.100	$\text{mmol} \cdot l^{-1}$	$\overline{\mathscr{A}}$

6.279 Reaction r_1795

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name formate transport

SBO:0000185 transport reaction

Reaction equation

$$s_0722 \xrightarrow{s_0722} s_0723$$
 (558)

Reactant

Table 1117: Properties of each reactant.

Id	Name	SBO
s_0722	formate	

Modifier

Table 1118: Properties of each modifier.

Id	Name	SBO
s_0722	formate	

Product

Table 1119: Properties of each product.

Id	Name	SBO
s_0723	formate	

Kinetic Law

Derived unit contains undeclared units

$$v_{279} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot [\text{s_0722}]}{\text{Km0722}}}{1 + \frac{[\text{s_0722}]}{\text{Km0722}}}$$
(559)

Table 1120: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE				dimensionless	Ø
Vmax		0000324	5.752	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Km0722		0000322	0.100	$\operatorname{mmol} \cdot 1^{-1}$	

6.280 Reaction r_1979

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name O2 transport

SBO:0000185 transport reaction

Reaction equation

$$s_{-1277} \stackrel{s_{-1277}}{=\!=\!=\!=\!=} s_{-1275}$$
 (560)

Reactant

Table 1121: Properties of each reactant.

Id	Name	SBO
s_1277	oxygen	

Modifiers

Table 1122: Properties of each modifier.

Id	Name	SBO
s_1277 s_1275	oxygen oxygen	

Product

Table 1123: Properties of each product.

Id	Name	SBO
s_1275	oxygen	

Kinetic Law

Derived unit contains undeclared units

$$v_{280} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot ([s_1277] - [s_1275])}{\text{Km1277}}}{1 + \frac{[s_1277]}{\text{Km1277}} + 1 + \frac{[s_1275]}{\text{Km1275}} - 1}$$
(561)

Table 1124: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			2.941	dimensionless	\square
Vmax		0000324	9.804	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	\square
Km1277		0000322	1.000	$\operatorname{mmol} \cdot 1^{-1}$	\square
Km1275		0000323	0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $

6.281 Reaction r_2030

This is a reversible reaction of one reactant forming two products influenced by three modifiers.

Name pyrimidine phosphatase

SBO:0000176 biochemical reaction

Reaction equation

$$s_{-0313} \stackrel{s_{-0313}, s_{-0314}, s_{-1322}}{=} s_{-0314} + s_{-1322}$$
 (562)

Reactant

Table 1125: Properties of each reactant.

Id	Name	SBO
s_0313	5-amino-6-(5-phosphoribitylamino)uracil	

Modifiers

Table 1126: Properties of each modifier.

Id	Name	SBO
s_0314	5-amino-6-(5-phosphoribitylamino)uracil 5-amino-6-(D-ribitylamino)uracil phosphate	

Products

Table 1127: Properties of each product.

Id	Name	SBO
	5-amino-6-(D-ribitylamino)uracil phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{281} = \frac{\frac{\text{vol(cell)} \cdot \text{Vmax} \cdot \left([\text{s_0313}] - \frac{[\text{s_0314}] \cdot [\text{s_1322}]}{\text{Keq}} \right)}{\text{Km0313}}}{1 + \frac{[\text{s_0313}]}{\text{Km0313}} + \left(1 + \frac{[\text{s_0314}]}{\text{Km0314}} \right) \cdot \left(1 + \frac{[\text{s_1322}]}{\text{Km1322}} \right) - 1}$$
(563)

Table 1128: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
iu ————————————————————————————————————	Name	300	value	Ullit	Constant
FLUX_VALUE			$3.75729835487922 \cdot 10^{-5}$	dimensionless	
Vmax		0000324	$3.75729835487922 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
Keq		0000281	0.200	$mmol \cdot l^{-1}$	
Km0313		0000322	0.100	$mmol \cdot l^{-1}$	
Km0314		0000323	0.100	$\text{mmol} \cdot 1^{-1}$	
Km1322		0000323	0.100	$mmol \cdot l^{-1}$	

6.282 Reaction r_2111

This is an irreversible reaction of 51 reactants forming 22 products influenced by 51 modifiers.

Name growth

SBO:0000176 biochemical reaction

Reaction equation

$$1 \cdot 1348 \, s_0002 + 0 \cdot 046 \, s_0423 + 59 \cdot 276 \, s_0434 + 0 \cdot 0447 \, s_0526 + 0 \cdot 0036 \, s_0584 + 0 \cdot 0024 \, s_0589 + 0 \cdot 0024 \, s_0615 + 0 \cdot 0024 \, s_0616 + 0 \cdot 0$$

Reactants

Table 1129: Properties of each reactant.

Id	Name	SBO
s_0002	(1->3)-beta-D-glucan	
s_0423	AMP	
s_0434	ATP	
s_0526	CMP	
s0584	dAMP	
s_0589	dCMP	
s_0615	dGMP	
s_0649	dTMP	
s_0773	glycogen	
s_0782	GMP	
$s_{-}1107$	mannan	
$s_{-}1405$	riboflavin	
$s_{-}1467$	sulphate	
$s_{-}1520$	trehalose	
s_1545	UMP	
s_0004	(1->6)-beta-D-glucan	
s_0404	Ala-tRNA(Ala)	
s0428	Arg-tRNA(Arg)	
s_0430	Asn-tRNA(Asn)	
s_0432	Asp-tRNA(Asp)	
s_0542	Cys-tRNA(Cys)	
s_0747	Gln-tRNA(Gln)	
s_0748	Glu-tRNA(Glu)	
s_0757	Gly-tRNA(Gly)	
s_0832	His-tRNA(His)	
s_0847	Ile-tRNA(Ile)	
$s_{-}1077$	Leu-tRNA(Leu)	
s_1099	Lys-tRNA(Lys)	
s_1148	Met-tRNA(Met)	
s_1314	Phe-tRNA(Phe)	
s_1379	Pro-tRNA(Pro)	
s_1337	phosphatidyl-L-serine	
s_0089	1-phosphatidyl-1D-myo-inositol	
s_1428	Ser-tRNA(Ser)	
s_1491	Thr-tRNA(Thr)	
s_1527	Trp-tRNA(Trp)	
s_1533	Tyr-tRNA(Tyr)	
s_1561	Val-tRNA(Val)	
s_0122	14-demethyllanosterol	
s_0918	inositol-P-ceramide D (C24)	

Id	Name	SBO
s_0657	episterol	
s_0662	ergosta-5,7,22,24(28)-tetraen-3beta-ol	
s_0666	ergosterol	
s_0672	ergosterol ester	
s_0056	(S)-3-methyl-2-oxopentanoate	
s_0700	fecosterol	
s_1059	lanosterol	
$s_{-}1346$	phosphatidylcholine	
s_1351	phosphatidylethanolamine	
$s_{-}1524$	triglyceride	
s_1569	zymosterol	

Modifiers

Table 1130: Properties of each modifier.

s_0002 (1->3)-beta-D-glucan s_0423 AMP s_0434 ATP s_0526 CMP	
s_0434 ATP	
s 0526 CMP	
D_0020 CIVII	
s_0584 dAMP	
s_0589 dCMP	
s_0615 dGMP	
s_0649 dTMP	
s_0773 glycogen	
s_0782 GMP	
s_1107 mannan	
s_1405 riboflavin	
s_1467 sulphate	
s_1520 trehalose	
s_1545 UMP	
s_0004 (1->6)-beta-D-glucan	
s_0404 Ala-tRNA(Ala)	
s_0428 Arg-tRNA(Arg)	
s_0430 Asn-tRNA(Asn)	
s_0432 Asp-tRNA(Asp)	
s_0542 Cys-tRNA(Cys)	
s_0747 Gln-tRNA(Gln)	
s_0748 Glu-tRNA(Glu)	
s_0757 Gly-tRNA(Gly)	

Id	Name	SBO
s_0832	His-tRNA(His)	
$s_{-}0847$	Ile-tRNA(Ile)	
$s_{-}1077$	Leu-tRNA(Leu)	
$s_{-}1099$	Lys-tRNA(Lys)	
$s_{-}1148$	Met-tRNA(Met)	
$s_{-}1314$	Phe-tRNA(Phe)	
$s_{-}1379$	Pro-tRNA(Pro)	
$s_{-}1337$	phosphatidyl-L-serine	
s_0089	1-phosphatidyl-1D-myo-inositol	
$s_{-}1428$	Ser-tRNA(Ser)	
$s_{-}1491$	Thr-tRNA(Thr)	
$s_{-}1527$	Trp-tRNA(Trp)	
s_1533	Tyr-tRNA(Tyr)	
$s_{-}1561$	Val-tRNA(Val)	
s_0122	14-demethyllanosterol	
s0918	inositol-P-ceramide D (C24)	
s0657	episterol	
s0662	ergosta-5,7,22,24(28)-tetraen-3beta-ol	
s_0666	ergosterol	
s_0672	ergosterol ester	
s0056	(S)-3-methyl-2-oxopentanoate	
s_0700	fecosterol	
$s_{-}1059$	lanosterol	
$s_{-}1346$	phosphatidylcholine	
$s_{-}1351$	phosphatidylethanolamine	
$s_{-}1524$	triglyceride	
s_1569	zymosterol	

Products

Table 1131: Properties of each product.

Id	Name	SBO
s_0394	ADP	
s_1322	phosphate	
$s_{-}1582$	tRNA(Ala)	
$s_{-}1583$	tRNA(Arg)	
$s_{-}1585$	tRNA(Asn)	
$s_{-}1587$	tRNA(Asp)	
$s_{-}1589$	tRNA(Cys)	
s_1590	tRNA(Gln)	

Id	Name	SBO
s_1591	tRNA(Glu)	
s_1593	tRNA(Gly)	
$s_{-}1594$	tRNA(His)	
s_1596	tRNA(Ile)	
s_1598	tRNA(Leu)	
s_1600	tRNA(Lys)	
$s_{-}1602$	tRNA(Met)	
$s_{-}1604$	tRNA(Phe)	
$s_{-}1606$	tRNA(Pro)	
$s_{-}1607$	tRNA(Ser)	
s_1608	tRNA(Thr)	
s_1610	tRNA(Trp)	
s_1612	tRNA(Tyr)	
s_1614	tRNA(Val)	

Kinetic Law

Derived unit contains undeclared units

$$\begin{array}{c} \nu_{282} = \text{vol}\left(\text{cell}\right) \\ \cdot \max\left(\text{Vo} \cdot \left(1 + \text{ep0002} \cdot \left(\frac{\left[\text{s} . 0002 \right]}{\text{ic0002}} \right) + \text{ep0423} \cdot \left(\frac{\left[\text{s} . 0423 \right]}{\text{ic0423}} \right) + \text{ep0434} \cdot \left(\frac{\left[\text{s} . 0434 \right]}{\text{ic0434}} \right) \\ + \text{ep0526} \cdot \left(\frac{\left[\text{s} . 0526 \right]}{\text{ic0526}} \right) + \text{ep0584} \cdot \left(\frac{\left[\text{s} . 0584 \right]}{\text{ic0584}} \right) + \text{ep0589} \cdot \left(\frac{\left[\text{s} . 0589 \right]}{\text{ic0589}} \right) + \text{ep0615} \\ \cdot \left(\frac{\left[\text{s} . 0615 \right]}{\text{ic0615}} \right) + \text{ep0649} \cdot \left(\frac{\left[\text{s} . 0649 \right]}{\text{ic0649}} \right) + \text{ep0773} \cdot \left(\frac{\left[\text{s} . 0773 \right]}{\text{ic0773}} \right) + \text{ep0782} \cdot \left(\frac{\left[\text{s} . 0782 \right]}{\text{ic0782}} \right) \\ + \text{ep1107} \cdot \left(\frac{\left[\text{s} . 1107 \right]}{\text{ic1107}} \right) + \text{ep1405} \cdot \left(\frac{\left[\text{s} . 1405 \right]}{\text{ic1405}} \right) + \text{ep1467} \cdot \left(\frac{\left[\text{s} . 1467 \right]}{\text{ic1467}} \right) + \text{ep1520} \\ \cdot \left(\frac{\left[\text{s} . 1520 \right]}{\text{ic1520}} \right) + \text{ep1545} \cdot \left(\frac{\left[\text{s} . 1545 \right]}{\text{ic1545}} \right) + \text{ep0004} \cdot \left(\frac{\left[\text{s} . 0004 \right]}{\text{ic0004}} \right) + \text{ep0404} \cdot \left(\frac{\left[\text{s} . 0404 \right]}{\text{ic0404}} \right) \\ + \text{ep0428} \cdot \left(\frac{\left[\text{s} . 0428 \right]}{\text{ic0428}} \right) + \text{ep0430} \cdot \left(\frac{\left[\text{s} . 0430 \right]}{\text{ic0430}} \right) + \text{ep0432} \cdot \left(\frac{\left[\text{s} . 0432 \right]}{\text{ic0432}} \right) + \text{ep0542} \\ \cdot \left(\frac{\left[\text{s} . 0542 \right]}{\text{ic0542}} \right) + \text{ep0747} \cdot \left(\frac{\left[\text{s} . 0747 \right]}{\text{ic0747}} \right) + \text{ep0748} \cdot \left(\frac{\left[\text{s} . 0748 \right]}{\text{ic0748}} \right) + \text{ep0757} \cdot \left(\frac{\left[\text{s} . 0757 \right]}{\text{ic0757}} \right) \\ + \text{ep0832} \cdot \left(\frac{\left[\text{s} . 0832 \right]}{\text{ic0832}} \right) + \text{ep0847} \cdot \left(\frac{\left[\text{s} . 0847 \right]}{\text{ic0847}} \right) + \text{ep1077} \cdot \left(\frac{\left[\text{s} . 1077 \right]}{\text{ic1077}} \right) + \text{ep1099} \\ \cdot \left(\frac{\left[\text{s} . 1099 \right]}{\text{ic1099}} \right) + \text{ep1148} \cdot \left(\frac{\left[\text{s} . 1148 \right]}{\text{ic1148}} \right) + \text{ep1314} \cdot \left(\frac{\left[\text{s} . 1314 \right]}{\text{ic1314}} \right) + \text{ep1379} \cdot \left(\frac{\left[\text{s} . 1379 \right]}{\text{ic1379}} \right) \\ + \text{ep1337} \cdot \left(\frac{\left[\text{s} . 1527 \right]}{\text{ic1527}} \right) + \text{ep0898} \cdot \left(\frac{\left[\text{s} . 0869 \right]}{\text{ic0089}} \right) + \text{ep1428} \cdot \left(\frac{\left[\text{s} . 1526 \right]}{\text{ic1428}} \right) + \text{ep1491} \\ \cdot \left(\frac{\left[\text{s} . 1491 \right]}{\text{ic1491}} \right) + \text{ep1527} \cdot \left(\frac{\left[\text{s} . 1527 \right]}{\text{ic1527}} \right) + \text{ep1533} \cdot \left(\frac{\left[\text{s} . 1533 \right]}{\text{ic1533}} \right) + \text{ep1560} \cdot \left(\frac{\left[\text{s} . 0662 \right]}{\text{ic0662$$

$$\max(x, y) = \frac{x + y + |x - y|}{2}$$
 (566)

$$\max(x, y) = \frac{x + y + |x - y|}{2}$$
 (567)

Table 1132: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
FLUX_VALUE			0.038	dimensionless	Ø
${\tt zero_flux}$			0.000	$\operatorname{mmol} \cdot 1^{-1} \cdot \operatorname{s}^{-1}$	
VO			0.038	$mmol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
ic0002			0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
ep0002			1.135	dimensionless	
ic0423			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep0423			0.046	dimensionless	
ic0434			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep0434			59.276	dimensionless	
ic0526			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep0526			0.045	dimensionless	
ic0584			0.100	$\text{mmol} \cdot l^{-1}$	
ep0584			0.004	dimensionless	
ic0589			0.100	$\text{mmol} \cdot l^{-1}$	
ep0589			0.002	dimensionless	
ic0615			0.100	$\text{mmol} \cdot l^{-1}$	
ep0615			0.002	dimensionless	
ic0649			0.100	$mmol \cdot l^{-1}$	
ep0649			0.004	dimensionless	\square
ic0773			0.100	$\text{mmol} \cdot l^{-1}$	
ep0773			0.519	dimensionless	
ic0782			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep0782			0.046	dimensionless	$\mathbf{Z}_{\mathbf{z}}$
ic1107			0.100	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathcal{L}} $
ep1107			0.808	dimensionless	$\mathbf{Z}_{\mathbf{z}}$
ic1405			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep1405			$9.9 \cdot 10^{-4}$	dimensionless	$\mathbf{Z}_{\underline{}}$
ic1467			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep1467			0.020	dimensionless	
ic1520			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep1520			0.023	dimensionless	
ic1545			0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\mathbf{Z}_{\underline{}}$
ep1545			0.060	dimensionless	$\mathbf{Z}_{\underline{}}$
ic0004			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep0004			1.135	dimensionless	
ic0404			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep0404			0.459	dimensionless	Z
ic0428			0.100	$\operatorname{mmol} \cdot 1^{-1}$	\mathbf{Z}
ep0428			0.161	dimensionless	$\mathbf{Z}_{}$
ic0430			0.100	$\text{mmol} \cdot l^{-1}$	\square

Id	Name	SBO	Value	Unit	Constant
ep0430			0.102	dimensionless	\square
ic0432			0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
ep0432			0.298	dimensionless	\square
ic0542			0.100	$mmol \cdot l^{-1}$	\square
ep0542			0.007	dimensionless	\square
ic0747			0.100	$\text{mmol} \cdot 1^{-1}$	\square
ep0747			0.105	dimensionless	\square
ic0748			0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square
ep0748			0.302	dimensionless	
ic0757			0.100	$\text{mmol} \cdot 1^{-1}$	\square
ep0757			0.290	dimensionless	\square
ic0832			0.100	$mmol \cdot l^{-1}$	\square
ep0832			0.066	dimensionless	\square
ic0847			0.100	$mmol \cdot l^{-1}$	\square
ep0847			0.193	dimensionless	
ic1077			0.100	$mmol \cdot l^{-1}$	\square
ep1077			0.296	dimensionless	\square
ic1099			0.100	$mmol \cdot l^{-1}$	
ep1099			0.286	dimensionless	\square
ic1148			0.100	$mmol \cdot l^{-1}$	\square
ep1148			0.051	dimensionless	
ic1314			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep1314			0.134	dimensionless	\square
ic1379			0.100	$mmol \cdot l^{-1}$	\square
ep1379			0.165	dimensionless	\square
ic1337			0.100	$mmol \cdot l^{-1}$	\square
ep1337			$3.9 \cdot 10^{-4}$	dimensionless	
ic0089			0.100	$mmol \cdot l^{-1}$	
ep0089			0.002	dimensionless	
ic1428			0.100	$mmol \cdot l^{-1}$	
ep1428			0.185	dimensionless	
ic1491			0.100	$mmol \cdot l^{-1}$	
ep1491			0.191	dimensionless	
ic1527			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep1527			0.028	dimensionless	
ic1533			0.100	$mmol \cdot l^{-1}$	\square
ep1533			0.102	dimensionless	
ic1561			0.100	$\text{mmol} \cdot 1^{-1}$	
ep1561			0.265	dimensionless	
ic0122			0.100	$mmol \cdot l^{-1}$	
ep0122			$5.6 \cdot 10^{-5}$	dimensionless	
ic0918			0.100	$\operatorname{mmol} \cdot 1^{-1}$	\square

Id	Name	SBO	Value	Unit	Constant
ep0918			$5.38625 \cdot 10^{-4}$	dimensionless	\overline{Z}
ic0657			0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
ep0657			$9.6 \cdot 10^{-5}$	dimensionless	$ \overline{\mathbf{Z}} $
ic0662			0.100	$\text{mmol} \cdot 1^{-1}$	
ep0662			$1.25 \cdot 10^{-4}$	dimensionless	
ic0666			0.100	$\text{mmol} \cdot 1^{-1}$	
ep0666			0.006	dimensionless	
ic0672			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep0672			$8.12 \cdot 10^{-4}$	dimensionless	
ic0056			0.100	$\text{mmol} \cdot 1^{-1}$	
ep0056		8.9	$26666666666666 \cdot 10^{-4}$	dimensionless	
ic0700			0.100	$\text{mmol} \cdot 1^{-1}$	
ep0700			$1.14 \cdot 10^{-4}$	dimensionless	
ic1059			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep1059			$3.2 \cdot 10^{-5}$	dimensionless	
ic1346			0.100	$\text{mmol} \cdot 1^{-1}$	
ep1346			0.003	dimensionless	
ic1351			0.100	$\text{mmol} \cdot 1^{-1}$	
ep1351			$6.97 \cdot 10^{-4}$	dimensionless	
ic1524			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep1524			$7.81 \cdot 10^{-4}$	dimensionless	
ic1569			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
ep1569			$1.5 \cdot 10^{-5}$	dimensionless	\square

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species s_0002

Name (1->3)-beta-D-glucan

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0005 and as a modifier in r_0005 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_0002 = v_1 - 1.1348v_{282} \tag{568}$$

7.2 Species s_0004

Name (1->6)-beta-D-glucan

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0006 and as a modifier in r_0006 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_{-}0004 = v_2 - 1.1348v_{282} \tag{569}$$

7.3 Species s_0008

Name (2R,3R)-2,3-dihydroxy-3-methylpentanoate

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·1⁻¹

This species takes part in four reactions (as a reactant in r_0353 and as a product in r_0669 and as a modifier in r_0353 , r_0669).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0008 = v_{164} - v_{92} \tag{570}$$

7.4 Species s_0009

Name (2R,3S)-3-isopropylmalate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00061 and as a product in r_00060 and as a modifier in r_00060 , r_00061).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0009 = v_{20} - v_{21} \tag{571}$$

7.5 Species s_0010

Name (2S)-2-isopropyl-3-oxosuccinate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0029 and as a product in r_0061 and as a modifier in r_0029 , r_0061).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0010 = v_{21} - v_{14} \tag{572}$$

7.6 Species s_0015

Name (N(omega)-L-arginino)succinic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0207 and as a product in r_0208 and as a modifier in r_0207 , r_0208).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0015 = v_{44} - v_{43} \tag{573}$$

7.7 Species s_0016

Name (R)-2,3-dihydroxy-3-methylbutanoate

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·1⁻¹

This species takes part in four reactions (as a reactant in r_0352 and as a product in r_0996 and as a modifier in r_0996 , r_0352).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_- 0016 = v_{25} - v_{91} \tag{574}$$

7.8 Species s_0018

Name (R)-5-diphosphomevalonic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0739 and as a product in r_0904 and as a modifier in r_0739 , r_0904).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0018 = v_{210} - v_{181} \tag{575}$$

7.9 Species s_0019

Name (R)-5-phosphomevalonic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0904 and as a product in r_0736 and as a modifier in r_0736 , r_0904).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0019 = v_{180} - v_{210} \tag{576}$$

7.10 Species s_0028

Name (R)-mevalonate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0736 and as a product in r_0558 and as a modifier in r_0558 , r_0736).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_0028 = v_{150} - v_{180} \tag{577}$$

7.11 Species s_0037

Name (S)-2,3-epoxysqualene

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0698 and as a product in r_1010 , r_1011 and as a modifier in r_0698 , r_1010 , r_1011).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0037 = v_{247} + v_{248} - v_{167} \tag{578}$$

7.12 Species s_0039

Name (S)-2-acetyl-2-hydroxybutanoate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00669 and as a product in r_0016 and as a modifier in r_0016 , r_00669).

$$\frac{d}{dt}s_{-}0039 = v_8 - v_{164} \tag{579}$$

7.13 Species s_0056

Name (S)-3-methyl-2-oxopentanoate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in ten reactions (as a reactant in r_00663 , r_1014 , r_1052 , r_2111 and as a product in r_0353 and as a modifier in r_0353 , r_0663 , r_1014 , r_1052 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0056 = v_{92} - v_{161} - 3v_{250} - 4.333333333333333v_{261} - 8.92666666666666666 \cdot 10^{-4}v_{282}$$
 (580)

7.14 Species s_0061

Name (S)-dihydroorotate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0339 and as a product in r_0349 and as a modifier in r_0339 , r_0349).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_0 0061 = v_{90} - v_{87} \tag{581}$$

7.15 Species s_0066

Name (S)-malate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0713 and as a product in r_0451 and as a modifier in r_0451 , r_0713).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0066 = v_{116} - v_{171} \tag{582}$$

7.16 Species s_0075

Name 1,3-bisphospho-D-glycerate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0892 and as a product in r_0486 and as a modifier in r_0486 , r_0892).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0075 = v_{126} - v_{205} \tag{583}$$

7.17 Species s_0076

Name 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0566 and as a product in r_0913 and as a modifier in r_0566 , r_0913).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0076 = v_{216} - v_{155} \tag{584}$$

7.18 Species s_0077

Name 1-(5-phospho-D-ribosyl)-5-[(5-phospho-D-ribosylamino)methylideneamino]imidazole-4-carboxamide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0007 and as a product in r_0909 and as a modifier in r_0907 , r_0909).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0077 = v_{212} - v_3 \tag{585}$$

7.19 Species s_0078

Name 1-(5-phosphoribosyl)-5'-AMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0909 and as a product in r_0910 and as a modifier in r_0909 , r_0910).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0078 = v_{213} - v_{212} \tag{586}$$

7.20 Species s_0082

Name 1-acyl-sn-glycerol 3-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0008 and as a product in r_0495 and as a modifier in r_0495).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_0 0082 = v_{128} - v_4 \tag{587}$$

7.21 Species s_0086

Name 1-C-(indol-3-yl)glycerol 3-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1055 and as a product in r_0566 and as a modifier in r_0566 , r_1055).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0086 = v_{155} - v_{263} \tag{588}$$

7.22 Species s_0089

Name 1-phosphatidyl-1D-myo-inositol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0594 , r_2111 and as a product in r_0874 and as a modifier in r_0594 , r_0874 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0089 = v_{198} - v_{158} - 0.001583v_{282} \tag{589}$$

7.23 Species s_0118

Name 1-pyrroline-5-carboxylate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_00957 and as a product in r_0012 and as a modifier in r_0012 , r_0957).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0118 = v_5 - v_{227} \tag{590}$$

7.24 Species s_0120

Name 10-formyl-THF

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in r_0446, r_0499, r_0912 and as a product in r_0724 and as a modifier in r_0446, r_0499, r_0724, r_0912).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0120 = v_{174} - v_{114} - v_{129} - v_{215} \tag{591}$$

7.25 Species s_0122

Name 14-demethyllanosterol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0241 , r_2111 and as a product in r_0231 and as a modifier in r_0231 , r_0241 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0122 = v_{54} - v_{63} - 5.6 \cdot 10^{-5} v_{282} \tag{592}$$

7.26 Species s_0126

Name 1D-myo-inositol 1-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0757 and as a product in r_0758 and as a modifier in r_0757 , r_0758).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}.0126 = v_{183} - v_{182} \tag{593}$$

7.27 Species s_0141

Name 2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0015 and as a product in r_0525 and as a modifier in r_0015 , r_0525).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0141 = v_{135} - v_7 \tag{594}$$

7.28 Species s_0142

Name 2,5-diamino-6-(5-phosphono)ribitylamino-4(3H)-pyrimidinone

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0014 and as a product in r_0015 and as a modifier in r_0014 , r_0015).

$$\frac{d}{dt}s_0142 = v_7 - v_6 \tag{595}$$

7.29 Species s_0145

Name 2-acetamido-5-oxopentanoate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0118 and as a product in r_0759 and as a modifier in r_0118 , r_0759).

$$\frac{\mathrm{d}}{\mathrm{d}t}\text{s}.0145 = v_{184} - v_{31} \tag{596}$$

7.30 Species s_0146

Name 2-acetyllactic acid

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·1⁻¹

This species takes part in four reactions (as a reactant in r_0096 and as a product in r_0097 and as a modifier in r_0096 , r_0097).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0146 = v_{26} - v_{25} \tag{597}$$

7.31 Species s_0158

Name 2-hydroxy-3-oxobutyl phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00967 and as a product in r_0038 and as a modifier in r_0038 , r_00967).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0158 = v_{16} - v_{231} \tag{598}$$

7.32 Species s_0162

Name 2-isopropylmalate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0023 and as a product in r_0024 and as a modifier in r_0023 , r_0024).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0162 = v_{12} - v_{11} \tag{599}$$

7.33 Species s_0165

Name 2-isopropylmaleic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00060 and as a product in r_00023 and as a modifier in r_00023 , r_00060).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0165 = v_{11} - v_{20} \tag{600}$$

7.34 Species s_0176

Name 2-oxoadipic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0018 and as a product in r_0545 and as a modifier in r_0018 , r_0545).

$$\frac{d}{dt}s_{-}0176 = v_{145} - v_9 \tag{601}$$

7.35 Species s_0178

Name 2-oxobutanoate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0016 and as a product in r_0310 and as a modifier in r_0310 , r_0310).

$$\frac{d}{dt}s_{-}0178 = v_{79} - v_8 \tag{602}$$

7.36 Species s_0180

Name 2-oxoglutarate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in 34 reactions (as a reactant in r_0470 , r_0471 , r_0543 and as a product in r_0018 , r_0118 , r_0216 , r_0538 , r_0658 , r_0661 , r_0663 , r_0674 , r_0699 , r_0851 , r_0918 , r_0988 , r_1063 , r_1087 and as a modifier in r_0018 , r_0118 , r_0216 , r_0470 , r_0471 , r_0538 , r_0543 , r_0658 , r_0661 , r_0663 , r_0674 , r_0699 , r_0851 , r_0918 , r_0988 , r_1063 , r_1087).

$$\frac{d}{dt}s_{-}0180 = v_9 + v_{31} + v_{50} + v_{141} + v_{159} + v_{160} + v_{161} + v_{165} + v_{168} + v_{194} + v_{221} + v_{241} + v_{265} + v_{269} - v_{119} - v_{120} - v_{144}$$
(603)

7.37 Species s_0188

Name 2-phospho-D-glyceric acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0366 and as a product in r_0893 and as a modifier in r_0366 , r_0893).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0188 = v_{206} - v_{97} \tag{604}$$

7.38 Species s_0190

Name farnesyl diphosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1012 and as a product in r_0462 and as a modifier in r_0462 , r_1012).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}_{-}0190 = v_{117} - 2v_{249} \tag{605}$$

7.39 Species s_0201

Name 3'-phospho-5'-adenylyl sulfate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0883 and as a product in r_0154 and as a modifier in r_0154 , r_0883).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_0 201 = v_{38} - v_{201} \tag{606}$$

7.40 Species s_0204

Name 3-(4-hydroxyphenyl)pyruvate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1063 and as a product in r_20939 and as a modifier in r_20939 , r_21063).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_- 0204 = v_{225} - v_{265} \tag{607}$$

7.41 Species s_0207

Name 3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0538 and as a product in r_0564 and as a modifier in r_0538 , r_0564).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0207 = v_{153} - v_{141} \tag{608}$$

7.42 Species s_0209

Name 3-dehydro-4-methylzymosterol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0236 and as a product in r_0235 and as a modifier in r_0235 , r_0236).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0209 = v_{57} - v_{58} \tag{609}$$

7.43 Species s_0210

Name 3-dehydroquinate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0039 and as a product in r_0040 and as a modifier in r_0039 , r_0040).

$$\frac{d}{dt}s_0210 = v_{18} - v_{17} \tag{610}$$

7.44 Species s_0211

Name 3-dehydroshikimate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0996 and as a product in r_0996).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0211 = v_{17} - v_{245} \tag{611}$$

7.45 Species s_0218

Name 3-hydroxy-3-methylglutaryl-CoA

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·1⁻¹

This species takes part in four reactions (as a reactant in r_0558 and as a product in r_0559 and as a modifier in r_0558 , r_0559).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0218 = v_{151} - v_{150} \tag{612}$$

7.46 Species s_0231

Name 3-ketosphinganine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0041 and as a product in r_0993 and as a modifier in r_0941 , r_0993).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0231 = v_{243} - v_{19} \tag{613}$$

7.47 Species s_0232

Name 3-methyl-2-oxobutanoate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0024 , r_1087 and as a product in r_0352 and as a modifier in r_0352 , r_1087).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0232 = v_{91} - v_{12} - v_{269} \tag{614}$$

7.48 Species s_0258

Name 3-phospho-hydroxypyruvate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0918 and as a product in r_0891 and as a modifier in r_0891 , r_0918).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0258 = v_{204} - v_{221} \tag{615}$$

7.49 Species s_0259

Name 3-phospho-serine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0917 and as a product in r_0918 and as a modifier in r_0917 , r_0918).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0259 = v_{221} - v_{220} \tag{616}$$

7.50 Species s_0260

Name 3-phosphoglycerate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in r_0891 , r_0893 and as a product in r_0892 and as a modifier in r_0891 , r_0892 , r_0893).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0260 = v_{205} - v_{204} - v_{206} \tag{617}$$

7.51 Species s_0261

Name 3-phosphoshikimic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0065 and as a product in r_0997 and as a modifier in r_0065 , r_0997).

$$\frac{d}{dt}s_{-}0261 = v_{246} - v_{22} \tag{618}$$

7.52 Species s_0262

Name 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0231 and as a product in r_0317 and as a modifier in r_0231 , r_0317).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0262 = v_{82} - v_{54} \tag{619}$$

7.53 Species s_0291

Name 4-methyl-2-oxopentanoate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00699 and as a product in r_00029 and as a modifier in r_00029 , r_00699).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0291 = v_{14} - v_{168} \tag{620}$$

7.54 Species s_0295

Name 4-phospho-L-aspartate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0219 and as a product in r_0215 and as a modifier in r_0215 , r_0219).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0295 = v_{49} - v_{51} \tag{621}$$

7.55 Species s_0296

Name 4alpha-methylzymosterol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0238 and as a product in r_0236 and as a modifier in r_0236 , r_0238).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_0 296 = v_{58} - v_{60} \tag{622}$$

7.56 Species s_0297

Name 4beta-methylzymosterol-4alpha-carboxylic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0235 and as a product in r_0241 and as a modifier in r_0235 , r_0241).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_0 297 = v_{63} - v_{57} \tag{623}$$

7.57 Species s_0298

Name 5'-adenylyl sulfate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0154 and as a product in r_11026 and as a modifier in r_0154 , r_11026).

$$\frac{\mathrm{d}}{\mathrm{d}t}s.0298 = v_{251} - v_{38} \tag{624}$$

7.58 Species s_0299

Name 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0151 and as a product in r_0908 and as a modifier in r_0151 , r_0908).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0299 = v_{211} - v_{35} \tag{625}$$

7.59 Species s_0300

Name 5'-phosphoribosyl-5-aminoimidazole

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0911 and as a product in r_0855 and as a modifier in r_0855 , r_0911).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0300 = v_{196} - v_{214} \tag{626}$$

7.60 Species s_0301

Name 5'-phosphoribosyl-N-formylglycineamide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0079 and as a product in r_0499 and as a modifier in r_079 , r_0499).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_{-}0301 = v_{129} - v_{23} \tag{627}$$

7.61 Species s_0302

Name 5'-phosphoribosyl-N-formylglycineamidine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00855 and as a product in r_0079 and as a modifier in r_0079 , r_00855).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0302 = v_{23} - v_{196} \tag{628}$$

7.62 Species s_0304

Name 5,10-methenyl-THF

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0724 and as a product in r_0731 , r_0732 and as a modifier in r_0724 , r_0731 , r_0732).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0304 = v_{178} + v_{179} - v_{174} \tag{629}$$

7.63 Species s_0306

Name 5,10-methylenetetrahydrofolate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in r_0080 , r_0731 , r_0732 , r_1045 and as a product in r_0501 , r_0502 and as a modifier in r_0080 , r_0501 , r_0502 , r_0731 , r_0732 , r_1045).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0306 = v_{130} + v_{131} - v_{24} - v_{178} - v_{179} - v_{256} \tag{630}$$

7.64 Species s_0312

Name 5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_00563 and as a product in r_0007 and as a modifier in r_0007 , r_00563).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0312 = v_3 - v_{152} \tag{631}$$

7.65 Species s_0313

Name 5-amino-6-(5-phosphoribitylamino)uracil

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2030 and as a product in r_20014 and as a modifier in r_20014 , r_2030).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0313 = v_6 - v_{281} \tag{632}$$

7.66 Species s_0314

Name 5-amino-6-(D-ribitylamino)uracil

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0967 and as a product in r_0968 , r_2030 and as a modifier in r_0967 , r_0968 , r_2030).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0314 = v_{232} + v_{281} - v_{231} \tag{633}$$

7.67 Species s_0322

Name 5-methyltetrahydrofolate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0727 and as a product in r_080 and as a modifier in r_080 , r_0727).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s} \cdot 0322 = v_{24} - v_{176} \tag{634}$$

7.68 Species s_0324

Name 5-O-(1-carboxyvinyl)-3-phosphoshikimic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0279 and as a product in r_0065 and as a modifier in r_0065 , r_0279).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0324 = v_{22} - v_{73} \tag{635}$$

7.69 Species s_0325

Name 5-phospho-ribosyl-glycineamide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0499 and as a product in r_0914 and as a modifier in r_0499 , r_0914).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0325 = v_{217} - v_{129} \tag{636}$$

7.70 Species s_0326

Name 5-phosphoribosyl-ATP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0910 and as a product in r_0225 and as a modifier in r_0225 , r_0910).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0326 = v_{53} - v_{213} \tag{637}$$

7.71 Species s_0327

Name 5-phosphoribosylamine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0914 and as a product in r_0915 and as a modifier in r_0914 , r_0915).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0327 = v_{218} - v_{217} \tag{638}$$

7.72 Species s_0328

Name 6,7-dimethyl-8-(1-D-ribityl)lumazine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0968 and as a product in r_0967 and as a modifier in r_0967 , r_0968).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0328 = v_{231} - 2v_{232} \tag{639}$$

7.73 Species s_0349

Name 7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0040 and as a product in r_0020 and as a modifier in r_0020 , r_0040).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0349 = v_{10} - v_{18} \tag{640}$$

7.74 Species s_0362

Name acetate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0110 and as a product in r_0311 , r_0813 and as a modifier in r_0110 , r_0311 , r_0813).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0362 = v_{80} + v_{189} - v_{29} \tag{641}$$

7.75 Species s_0367

Name acetoacetyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00559 and as a product in r_0103 and as a modifier in r_0103 , r_0559).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_{-}0367 = v_{27} - v_{151} \tag{642}$$

7.76 Species s_0373

Name acetyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 20 reactions (as a reactant in r_0024, r_0103, r_0108, r_0300, r_0398, r_0543, r_0549, r_0559 and as a product in r_0110, r_0961 and as a modifier in r_0024, r_0103, r_0108, r_0110, r_0300, r_0398, r_0543, r_0549, r_0559, r_0961).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-0373} = v_{29} + v_{229} - v_{12} - 2v_{27} - v_{28} - v_{75} - v_{104} - v_{144} - v_{148} - v_{151}$$
 (643)

7.77 Species s_0380

Name acyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0008 , r_0495 and as a product in r_0336 and as a modifier in r_0008 , r_0336 , r_0495).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0380 = v_{85} - v_4 - v_{128} \tag{644}$$

7.78 Species s_0386

Name adenosine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0142 and as a product in r_0144 and as a modifier in r_0142 , r_0144).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0386 = v_{33} - v_{32} \tag{645}$$

7.79 Species s_0390

Name adenosine 3',5'-bismonophosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0032 and as a product in r_0883 and as a modifier in r_032 , r_0883).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0390 = v_{201} - v_{15} \tag{646}$$

7.80 Species s_0393

Name adenylo-succinate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0152 and as a product in r_0153 and as a modifier in r_0152 , r_0153).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0393 = v_{37} - v_{36} \tag{647}$$

7.81 Species s_0394

Name ADP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 67 reactions (as a reactant in r_0330 , r_0446 , r_0892 , r_0962 , r_0974 , r_11026 , r_1704 , r_11729 and as a product in r_0079 , r_0108 , r_0115 , r_0142 , r_0148 , r_0154 , r_0215 , r_0250 , r_0307 , r_0476 , r_0528 , r_0534 , r_0548 , r_0739 , r_0800 , r_0811 , r_0855 , r_0886 , r_0994 , r_0998 , r_0911 , r_0914 , r_0958 , r_0997 , r_11072 , r_12111 and as a modifier in r_0079 , r_0108 , r_0115 , r_0142 , r_0148 , r_0154 , r_0215 , r_0250 , r_0307 , r_0330 , r_0446 , r_0476 , r_0528 , r_0534 , r_0548 , r_0739 , r_0800 , r_0811 , r_0855 , r_0886 , r_0892 , r_0904 , r_0908 , r_0911 , r_0914 , r_0958 , r_0962 , r_0974 , r_0997 , r_11026 , r_11072 , r_1704 , r_1729).

$$\frac{d}{dt}s_{-0394} = v_{23} + v_{28} + v_{30} + v_{32} + 2v_{34} + v_{38} + v_{49} + 2v_{67} + v_{77} + v_{121} + v_{136} + v_{138} + v_{147} + v_{181} + v_{187} + v_{188} + v_{196} + v_{202} + v_{210} + v_{211} + v_{214} + v_{217} + v_{228} + v_{246} + v_{267} + 59.276v_{282} - v_{84} - v_{114} - v_{205} - v_{230} - v_{235} - v_{251} - v_{277} - v_{278}$$

$$(648)$$

7.82 Species s_0403

Name AICAR

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0912 and as a product in r_0151 , r_0563 and as a modifier in r_0151 , r_0563 , r_0912).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0403 = v_{35} + v_{152} - v_{215} \tag{649}$$

7.83 Species s_0404

Name Ala-tRNA(Ala)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0157 and as a modifier in r_0157 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0404 = v_{39} - 0.4588v_{282} \tag{650}$$

7.84 Species s_0409

Name alpha, alpha-trehalose 6-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1051 and as a product in r_20195 and as a modifier in r_20195 , r_21051).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0409 = v_{40} - v_{260} \tag{651}$$

7.85 Species s_0419

Name ammonium

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 18 reactions (as a reactant in r_0307 , r_0470 , r_0471 , r_0476 and as a product in r_0014 , r_0310 , r_0326 , r_0501 , r_1115 and as a modifier in r_0014 , r_0307 , r_0310 , r_0326 , r_0470 , r_0471 , r_0476 , r_0501 , r_1115).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0419 = v_6 + v_{79} + v_{83} + v_{130} + v_{271} - v_{77} - v_{119} - v_{120} - v_{121}$$
 (652)

7.86 Species s_0420

Name ammonium

SBO:0000247 simple chemical

Initial concentration $1 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in r_11115 and as a modifier in r_11115), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}s_{-}0420 = 0 {(653)}$$

7.87 Species s_0423

Name AMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in 64 reactions (as a reactant in r_0148, r_0399, r_0400, r_0407, r_2111 and as a product in r_0032, r_0142, r_0152, r_0157, r_0208, r_0209, r_0211, r_0212, r_0220, r_0313, r_0478, r_0479, r_0512, r_0514, r_0539, r_0665, r_0701, r_0711, r_0729, r_0852, r_0916, r_0941, r_0995, r_1042, r_1057, r_1066, r_1089 and as a modifier in r_0032, r_0142, r_0148, r_0152, r_0157, r_0208, r_0209, r_0211, r_0212, r_0220, r_0313, r_0399, r_0400, r_0407, r_0478, r_0479, r_0512, r_0514, r_0539, r_0665, r_0701, r_0711, r_0729, r_0852, r_0916, r_0941, r_0995, r_1042, r_1057, r_1066, r_1089, r_2111).

$$\frac{d}{dt}s = v_{15} + v_{32} + v_{36} + v_{39} + v_{44} + v_{45} + v_{46} + v_{47} + v_{52} + v_{81} + v_{122} + v_{123}
+ v_{133} + v_{134} + v_{142} + v_{162} + v_{169} + v_{170} + v_{177} + v_{195} + v_{219} + v_{226}
+ v_{244} + v_{255} + v_{264} + v_{266} + v_{270} - v_{34} - v_{105} - v_{106} - v_{107} - 0.046v_{282}$$
(654)

7.88 Species s_0427

Name anthranilate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0202 and as a product in r_0203 and as a modifier in r_0202 , r_0203).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0427 = v_{42} - v_{41} \tag{655}$$

7.89 Species s_0428

Name Arg-tRNA(Arg)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0209 and as a modifier in r_0209 , r_2111).

Produced by SBML2LATEX

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_{-}0428 = v_{45} - 0.1607v_{282} \tag{656}$$

7.90 Species s_0430

Name Asn-tRNA(Asn)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0212 and as a modifier in r_0212 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0430 = v_{47} - 0.1017v_{282} \tag{657}$$

7.91 Species s_0432

Name Asp-tRNA(Asp)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0220 and as a modifier in r_0220 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0432 = v_{52} - 0.2975v_{282} \tag{658}$$

7.92 Species s_0434

Name ATP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 124 reactions (as a reactant in r_0079, r_0108, r_0115, r_0142, r_0148, r_0154, r_0157, r_0208, r_0209, r_0211, r_0212, r_0215, r_0220, r_0225, r_0250, r_0307, r_0313, r_0476, r_0478, r_0479, r_0512, r_0514, r_0528, r_0534, r_0539, r_0548, r_0665, r_0701, r_0711, r_0726, r_0729, r_0739, r_0800, r_0811, r_0852, r_0855, r_0886, r_0904, r_0908, r_0911, r_0914, r_0916, r_0941, r_0958, r_0970, r_0995, r_0997, r_1042, r_1057, r_1066, r_1072, r_1089, r_2111 and as a product in r_0330, r_0399, r_0400, r_0407, r_0446, r_0892, r_0962, r_1704, r_1729 and as a modifier in r_0079, r_0108, r_0115, r_0142, r_0148, r_0154, r_0157, r_0208, r_0209, r_0211, r_0212, r_0215, r_0220, r_0225, r_0250, r_0307, r_0313, r_0330, r_0399, r_0400, r_0407, r_0446, r_0476, r_0478, r_0479, r_0512, r_0514, r_0528, r_0534, r_0539, r_0548, r_0665, r_0701, r_0711, r_0726, r_0729, r_0739, r_0800, r_0811, r_0852, r_0855, r_0886, r_0892, r_0904, r_0908, r_0911, r_0914, r_0916, r_0941, r_0958, r_0962, r_0970, r_0995, r_0997, r_1042, r_1057, r_1066, r_1072, r_1089, r_1704, r_1729, r_2111).

$$\frac{d}{dt}s_{-}0434 = v_{84} + v_{105} + v_{106} + v_{107} + v_{114} + v_{205} + v_{230} + v_{277} + v_{278} - v_{23} - v_{28} - v_{30} - v_{32} - v_{34} - v_{38} - v_{39} - v_{44} - v_{45} - v_{46} - v_{47} - v_{49} - v_{52} - v_{53} - 2v_{67} - v_{77} - v_{81} - v_{121} - v_{122} - v_{123} - v_{133} - v_{134} - v_{136} - v_{138} - v_{142} - v_{147} - v_{162} - v_{169} - v_{170} - v_{175} - v_{177} - v_{181} - v_{187} - v_{188} - v_{195} - v_{196} - v_{202} - v_{210} - v_{211} - v_{214} - v_{217} - v_{219} - v_{226} - v_{228} - v_{233} - v_{244} - v_{246} - v_{255} - v_{264} - v_{266} - v_{267} - v_{270} - 59.276v_{282}$$

$$(659)$$

7.93 Species s_0445

Name bicarbonate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in r_0108, r_0250, r_0958 and as a product in r_1664 and as a modifier in r_0108, r_0250, r_0958, r_1664).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0445 = v_{275} - v_{28} - v_{67} - v_{228} \tag{660}$$

7.94 Species s_0454

Name but-1-ene-1,2,4-tricarboxylic acid

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·l⁻¹

This species takes part in four reactions (as a reactant in r_0542 and as a product in r_0027 and as a modifier in r_0027 , r_0542).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0454 = v_{13} - v_{143} \tag{661}$$

7.95 Species s_0455

Name carbamoyl phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0214 , r_0816 and as a product in r_0250 and as a modifier in r_0214 , r_0250 , r_0816).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0455 = v_{67} - v_{48} - v_{190} \tag{662}$$

7.96 Species s_0456

Name carbon dioxide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 62 reactions (as a reactant in r_0911 , r_1664 , r_1697 and as a product in r_0016 , r_0029 , r_0097 , r_0234 , r_0235 , r_0386 , r_0387 , r_0389 , r_0391 , r_0393 , r_0397 , r_0398 , r_0432 , r_0433 , r_0434 , r_0435 , r_0501 , r_0545 , r_0566 , r_0658 , r_0661 , r_0739 , r_0821 , r_0877 , r_0938 , r_0939 , r_0961 , r_0993 and as a modifier in r_0016 , r_0029 , r_0097 , r_0234 , r_0235 , r_0386 , r_0387 , r_0389 , r_0391 , r_0393 , r_0397 , r_0398 , r_0432 , r_0433 , r_0434 , r_0435 , r_0501 , r_0545 , r_0566 , r_0658 , r_0661 , r_0739 , r_0821 , r_0877 , r_0911 , r_0938 , r_0939 , r_0961 , r_0993 , r_1664 , r_1697).

$$\frac{d}{dt}s_{-}0456 = v_{8} + v_{14} + v_{26} + v_{56} + v_{57} + v_{98} + v_{99} + v_{100} + v_{101} + 3v_{102} + v_{103} + 3v_{104} + v_{108} + v_{109} + v_{110} + v_{111} + v_{130} + v_{145} + v_{155} + v_{159} + v_{160} + v_{181} + v_{193} + v_{199} + v_{224} + v_{225} + v_{229} + v_{243} - v_{214} - v_{275} - v_{276}$$
(663)

7.97 Species s_0458

Name carbon dioxide

SBO:0000247 simple chemical

Initial concentration $0 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in r_1697), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}s_{-}0458 = 0 {(664)}$$

7.98 Species s_0467

Name CDP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0792 , r_0976 and as a product in r_0736 and as a modifier in r_0736 , r_0792 , r_0976).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0467 = v_{180} - v_{186} - v_{236} \tag{665}$$

7.99 Species s_0471

Name CDP-diacylglycerol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0874 , r_0880 and as a product in r_0257 and as a modifier in r_0257 , r_0874 , r_0880).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0471 = v_{68} - v_{198} - v_{200} \tag{666}$$

7.100 Species s_0475

Name ceramide-1 (C24)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0259 and as a product in r_0340 and as a modifier in r_0259 , r_0340).

$$\frac{d}{dt}s_-0475 = v_{88} - v_{69} \tag{667}$$

7.101 Species s_0481

Name ceramide-2 (C24)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0267 and as a product in r_0259 , r_0919 and as a modifier in r_0259 , r_0267 , r_0919).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0481 = v_{69} + v_{222} - v_{70} \tag{668}$$

7.102 Species s_0493

Name ceramide-3 (C24)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0269 and as a product in r_0267 and as a modifier in r_0267 , r_0269).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_0 - 0493 = v_{70} - v_{71} \tag{669}$$

7.103 Species s_0499

Name ceramide-4 (C24)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0594 and as a product in r_0269 and as a modifier in r_0269 , r_0594).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0499 = v_{71} - v_{158} \tag{670}$$

7.104 Species s_0515

Name chorismate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0203 , r_0278 and as a product in r_0279 and as a modifier in r_0203 , r_0278 , r_0279).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0515 = v_{73} - v_{42} - v_{72} \tag{671}$$

7.105 Species s_0516

Name cis-aconitate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0280 and as a product in r_0302 and as a modifier in r_0280 , r_0302).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0516 = v_{76} - v_{74} \tag{672}$$

7.106 Species s_0522

Name citrate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0302 and as a product in r_0300 and as a modifier in r_0300 , r_0302).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0522 = v_{75} - v_{76} \tag{673}$$

7.107 Species s_0526

Name CMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in r_2111 and as a product in r_0792 , r_0874 , r_0880 and as a modifier in r_0792 , r_0874 , r_0880 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0526 = v_{186} + v_{198} + v_{200} - 0.0447v_{282} \tag{674}$$

7.108 Species s_0529

Name coenzyme A

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 54 reactions (as a reactant in r_0110, r_0336, r_0961 and as a product in r_0008, r_0024, r_0103, r_0300, r_0386, r_0387, r_0389, r_0391, r_0393, r_0397, r_0398, r_0399, r_0400, r_0407, r_0432, r_0433, r_0434, r_0435, r_0495, r_0543, r_0549, r_0558, r_0559, r_0993 and as a modifier in r_0008, r_0024, r_0103, r_0110, r_0300, r_0336, r_0386, r_0387, r_0389, r_0391, r_0393, r_0397, r_0398, r_0399, r_0400, r_0407, r_0432, r_0433, r_0434, r_0435, r_0495, r_0543, r_0549, r_0558, r_0559, r_0961, r_0993).

$$\frac{d}{dt}s_{-0}529 = v_4 + v_{12} + v_{27} + v_{75} + v_{98} + v_{99} + v_{100} + v_{101} + 3v_{102} + v_{103} + 3v_{104} + v_{105} + v_{106} + v_{107} + v_{108} + v_{109} + v_{110} + v_{111} + v_{128} + v_{144} + v_{148} + v_{150} + v_{151} + v_{243} - v_{29} - v_{85} - v_{229}$$
(675)

7.109 Species s_0539

Name CTP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0257 , r_0736 and as a product in r_0307 and as a modifier in r_0257 , r_0307 , r_0736).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0539 = v_{77} - v_{68} - v_{180} \tag{676}$$

7.110 Species s_0542

Name Cys-tRNA(Cys)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0313 and as a modifier in r_0313 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0542 = v_{81} - 0.0066v_{282} \tag{677}$$

7.111 Species s_0550

Name D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0564 and as a product in r_0563 and as a modifier in r_0563 , r_0564).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0550 = v_{152} - v_{153} \tag{678}$$

7.112 Species s_0551

Name D-erythrose 4-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in r_0020 , r_1048 and as a product in r_1050 and as a modifier in r_0020 , r_1048 , r_1050).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0551 = v_{259} - v_{10} - v_{257} \tag{679}$$

7.113 Species s_0555

Name D-fructose 1,6-bisphosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0450 and as a product in r_0886 and as a modifier in r_0450 , r_0886).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0555 = v_{202} - v_{115} \tag{680}$$

7.114 Species s_0557

Name D-fructose 6-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in r_0723 , r_0886 , r_1048 , r_1050 and as a product in r_0467 and as a modifier in r_0467 , r_0723 , r_0886 , r_1048 , r_1050).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_0557 = v_{118} - v_{173} - v_{202} - v_{257} - v_{259} \tag{681}$$

7.115 Species s_0563

Name D-glucose

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0534 and as a product in r_1166 and as a modifier in r_0534 , r_1166).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_0563 = v_{272} - v_{138} \tag{682}$$

7.116 Species s_0565

Name D-glucose

SBO:0000247 simple chemical

Initial concentration $1 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in $r_{-}1166$ and as a modifier in $r_{-}1166$), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}s_{-}0565 = 0 ag{683}$$

7.117 Species s_0567

Name D-glucose 1-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1084 and as a product in r_0888 and as a modifier in r_0888 , r_1084).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0567 = v_{203} - v_{268} \tag{684}$$

7.118 Species s_0568

Name D-glucose 6-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in ten reactions (as a reactant in r_0195 , r_0467 , r_0758 , r_0888 and as a product in r_0534 and as a modifier in r_0195 , r_0467 , r_0534 , r_0758 , r_0888).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0568 = v_{138} - v_{40} - v_{118} - v_{183} - v_{203} \tag{685}$$

7.119 Species s_0573

Name D-mannose 1-phosphate

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·l⁻¹

This species takes part in four reactions (as a reactant in r_0722 and as a product in r_0902 and as a modifier in r_0722 , r_0902).

$$\frac{\mathrm{d}}{\mathrm{d}t}\text{s}_0573 = v_{209} - v_{172} \tag{686}$$

7.120 Species s_0574

Name D-mannose 6-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0902 and as a product in r_0723 and as a modifier in r_0723 , r_0902).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}_{-}0574 = v_{173} - v_{209} \tag{687}$$

7.121 Species s_0577

Name D-ribulose 5-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0038 , r_0982 and as a product in r_0984 and as a modifier in r_0984 , r_0982 , r_0984).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0577 = v_{239} - v_{16} - v_{238} \tag{688}$$

7.122 Species s_0581

Name D-xylulose 5-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0984 and as a product in r_1049 , r_1050 and as a modifier in r_0984 , r_1049 , r_1050).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0581 = v_{258} + v_{259} - v_{239} \tag{689}$$

7.123 Species s_0582

Name dADP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_1729 and as a product in r_0529 , r_0974 and as a modifier in r_0529 , r_0974 , r_1729).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0582 = v_{137} + v_{235} - v_{278} \tag{690}$$

7.124 Species s_0584

Name dAMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_1729 and as a modifier in r_1729 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0584 = v_{278} - 0.0036v_{282} \tag{691}$$

7.125 Species s_0586

Name dATP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0529 and as a product in r_0970 and as a modifier in r_0529 , r_0970).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_0586 = v_{233} - v_{137} \tag{692}$$

7.126 Species s_0587

Name dCDP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1704 and as a product in r_0976 and as a modifier in r_0976 , r_1704).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s.0587} = v_{236} - v_{277} \tag{693}$$

7.127 Species s_0589

Name dCMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0326 , r_2111 and as a product in r_1704 and as a modifier in r_0326 , r_1704 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0589 = v_{277} - v_{83} - 0.0024v_{282} \tag{694}$$

7.128 Species s_0595

Name decanoate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0386 and as a product in r_0399 and as a modifier in r_0386 , r_0399).

$$\frac{d}{dt}s_{-}0595 = v_{105} - v_{98} \tag{695}$$

7.129 Species s_0602

Name decanoyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0399 , r_0432 and as a product in r_0397 and as a modifier in r_0397 , r_0399 , r_0432).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0602 = v_{103} - v_{105} - v_{108} \tag{696}$$

7.130 Species s_0613

Name dGDP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0330 and as a product in r_0978 and as a modifier in r_0330 , r_0978).

$$\frac{d}{dt}s_00613 = v_{237} - v_{84} \tag{697}$$

7.131 Species s_0615

Name dGMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0330 and as a modifier in r_0330 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0615 = v_{84} - 0.0024v_{282} \tag{698}$$

7.132 Species s_0619

Name diglyceride

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in r_1052 and as a product in r_0336 , r_0337 , r_0594 and as a modifier in r_0336 , r_0337 , r_0594 , r_1052).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0619 = v_{85} + v_{86} + v_{158} - v_{261} \tag{699}$$

7.133 Species s_0625

Name dihydrofolic acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0344 and as a product in r_1045 and as a modifier in r_0344 , r_1045).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0625 = v_{256} - v_{89} \tag{700}$$

7.134 Species s_0629

Name dihydroxyacetone phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0491 , r_1054 and as a product in r_0450 and as a modifier in r_0450 , r_0491 , r_1054).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0629 = v_{115} - v_{127} - v_{262} \tag{701}$$

7.135 Species s_0633

Name diphosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 82 reactions (as a reactant in r_0399, r_0400, r_0407, r_0568 and as a product in r_0157, r_0202, r_0208, r_0209, r_0211, r_0212, r_0220, r_0225, r_0257, r_0313, r_0355, r_0364, r_0462, r_0478, r_0479, r_0512, r_0514, r_0525, r_0539, r_0665, r_0701, r_0711, r_0722, r_0726, r_0729, r_0820, r_0852, r_0910, r_0915, r_0941, r_0995, r_1012, r_1042, r_1057, r_1066, r_1084, r_1089 and as a modifier in r_0157, r_0202, r_0208, r_0209, r_0211, r_0212, r_0220, r_0225, r_0257, r_0313, r_0355, r_0364, r_0399, r_0400, r_0407, r_0462, r_0478, r_0479, r_0512, r_0514, r_0525, r_0539, r_0568, r_0665, r_0701, r_0711, r_0722, r_0726, r_0729, r_0820, r_0852, r_0910, r_0915, r_0941, r_0995, r_1012, r_1042, r_1057, r_1066, r_1084, r_1089).

$$\frac{d}{dt}s_{-0}633 = v_{39} + v_{41} + v_{44} + v_{45} + v_{46} + v_{47} + v_{52} + v_{53} + v_{68} + v_{81} + v_{93} + v_{96} + v_{117} + v_{122} + v_{123} + v_{133} + v_{134} + v_{135} + v_{142} + v_{162} + v_{169} + v_{170} + v_{172} + v_{175} + v_{177} + v_{192} + v_{195} + v_{213} + v_{218} + v_{226} + v_{244} + 2v_{249} + v_{255} + v_{264} + v_{266} + v_{268} + v_{270} - v_{105} - v_{106} - v_{107} - v_{156}$$

$$(702)$$

7.136 Species s_0644

Name dolichyl D-mannosyl phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0362 and as a product in r_0361 and as a modifier in r_0361 , r_0362).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_{-}0644 = v_{94} - v_{95} \tag{703}$$

7.137 Species s_0645

Name dolichyl phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0361 and as a product in r_0362 and as a modifier in r_0361 , r_0362).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0645 = v_{95} - v_{94} \tag{704}$$

7.138 Species s_0649

Name dTMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_1045 and as a modifier in r_1045 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0649 = v_{256} - 0.0036v_{282} \tag{705}$$

7.139 Species s_0654

Name dUMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_1045 and as a product in r_20326 , r_20364 and as a modifier in r_20326 , r_20364 , r_21045).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0654 = v_{83} + v_{96} - v_{256} \tag{706}$$

7.140 Species s_0656

Name dUTP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0364 and as a product in r_0973 and as a modifier in r_0364 , r_0973).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_{-}0656 = v_{234} - v_{96} \tag{707}$$

7.141 Species s_0657

Name episterol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0242 , r_2111 and as a product in r_0243 and as a modifier in r_0242 , r_0243 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0657 = v_{65} - v_{64} - 9.6 \cdot 10^{-5} v_{282} \tag{708}$$

7.142 Species s_0662

Name ergosta-5,7,22,24(28)-tetraen-3beta-ol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0244 , r_2111 and as a product in r_0233 and as a modifier in r_0233 , r_0244 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0662 = v_{55} - v_{66} - 1.25 \cdot 10^{-4} v_{282} \tag{709}$$

7.143 Species s_0664

Name ergosta-5,7,24(28)-trien-3beta-ol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0233 and as a product in r_0242 and as a modifier in r_0233 , r_0242).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_0664 = v_{64} - v_{55} \tag{710}$$

7.144 Species s_0666

Name ergosterol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in r_1014 , r_2111 and as a product in r_10244 and as a modifier in r_10244 , r_1014 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0666 = v_{66} - v_{250} - 0.0056v_{282} \tag{711}$$

7.145 Species s_0672

Name ergosterol ester

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_1014 and as a modifier in r_1014 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_0672 = v_{250} - 8.12 \cdot 10^{-4} v_{282} \tag{712}$$

7.146 Species s_0700

Name fecosterol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0243 , r_2111 and as a product in r_0986 and as a modifier in r_0243 , r_0986 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-0700} = v_{240} - v_{65} - 1.14 \cdot 10^{-4}v_{282} \tag{713}$$

7.147 Species s_0709

Name ferricytochrome c

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0439 and as a product in r_0438 and as a modifier in r_0438 , r_0439).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0709 = 4v_{112} - 2v_{113} \tag{714}$$

7.148 Species s_0710

Name ferrocytochrome c

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0438 and as a product in r_0439 and as a modifier in r_0438 , r_0439).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_0710 = 2v_{113} - 4v_{112} \tag{715}$$

7.149 Species s_0722

Name formate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in r_1795 and as a product in r_0038 , r_0317 , r_0446 , r_0525 and as a modifier in r_0038 , r_0317 , r_0446 , r_0525 , r_1795).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0722 = v_{16} + v_{82} + v_{114} + v_{135} - v_{279} \tag{716}$$

7.150 Species s_0723

Name formate

SBO:0000247 simple chemical

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in r_1795), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}s_{0}0723 = 0 {(717)}$$

7.151 Species s_0725

Name fumarate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in r_0451 and as a product in r_0151 , r_0152 , r_0207 and as a modifier in r_0151 , r_0152 , r_0207 , r_0451).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0725 = v_{35} + v_{36} + v_{43} - v_{116} \tag{718}$$

7.152 Species s_0739

Name GDP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in r_0800 , r_0978 and as a product in r_0153 , r_0361 , r_0528 , r_0529 and as a modifier in r_0153 , r_0361 , r_0528 , r_0529 , r_0800 , r_0978).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0739 = v_{37} + v_{94} + v_{136} + v_{137} - v_{187} - v_{237}$$
(719)

7.153 Species s_0743

Name GDP-alpha-D-mannose

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0361 and as a product in r_0722 and as a modifier in r_0361 , r_0722).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0743 = v_{172} - v_{94} \tag{720}$$

7.154 Species s_0745

Name geranyl diphosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0462 and as a product in r_0355 and as a modifier in r_0355 , r_0462).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0745 = v_{93} - v_{117} \tag{721}$$

7.155 Species s_0747

Name Gln-tRNA(Gln)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0478 and as a modifier in r_0478 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_{-0747} = v_{122} - 0.1054v_{282} \tag{722}$$

7.156 Species s_0748

Name Glu-tRNA(Glu)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0479 and as a modifier in r_0479 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-0.748} = v_{123} - 0.3018v_{282} \tag{723}$$

7.157 Species s_0750

Name glutathione

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0483 and as a product in r_0481 and as a modifier in r_0481 , r_0483).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-0750} = 2v_{124} - 2v_{125} \tag{724}$$

7.158 Species s_0754

Name glutathione disulfide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0481 and as a product in r_0483 and as a modifier in r_0481 , r_0483).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0754 = v_{125} - v_{124} \tag{725}$$

7.159 Species s_0757

Name Gly-tRNA(Gly)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0512 and as a modifier in r_0512 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_0757 = v_{133} - 0.2904v_{282} \tag{726}$$

7.160 Species s_0764

Name glyceraldehyde 3-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 14 reactions (as a reactant in r_0486 , r_1049 , r_1050 and as a product in r_0450 , r_1048 , r_1054 , r_1055 and as a modifier in r_0450 , r_0486 , r_1048 , r_1049 , r_1050

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0764 = v_{115} + v_{257} + v_{262} + v_{263} - v_{126} - v_{258} - v_{259}$$
(727)

7.161 Species s_0767

Name glycerol 3-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0495 and as a product in r_0491 and as a modifier in r_0491 , r_0495).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}_0767 = v_{127} - v_{128} \tag{728}$$

7.162 Species s_0773

Name glycogen

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0510 and as a modifier in r_0510 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0773 = v_{132} - 0.5185 v_{282} \tag{729}$$

7.163 Species s_0782

Name GMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in r_0528, r_0529, r_2111 and as a product in r_0514 and as a modifier in r_0514, r_0528, r_0529, r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s.0782 = v_{134} - v_{136} - v_{137} - 0.046v_{282} \tag{730}$$

7.164 Species s_0785

Name GTP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in r_0153 , r_0525 , r_0722 and as a product in r_0800 and as a modifier in r_0153 , r_0525 , r_0722 , r_0800).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-0785} = v_{187} - v_{37} - v_{135} - v_{172} \tag{731}$$

7.165 Species s_0832

Name His-tRNA(His)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0539 and as a modifier in r_0539 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_0 832 = v_{142} - 0.0663 v_{282} \tag{732}$$

7.166 Species s_0835

Name homocitrate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0027 and as a product in r_0543 and as a modifier in r_0027 , r_0543).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s} .0835 = v_{144} - v_{13} \tag{733}$$

7.167 Species s_0836

Name homoisocitrate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0545 and as a product in r_0542 and as a modifier in r_0542 , r_0545).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0836 = v_{143} - v_{145} \tag{734}$$

7.168 Species s_0837

Name hydrogen peroxide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in r_0483 , r_0550 and as a product in r_0339 and as a modifier in r_0339 , r_0483 , r_0550).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0837 = v_{87} - v_{125} - v_{149} \tag{735}$$

7.169 Species s_0841

Name hydrogen sulfide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0813 and as a product in r_1027 and as a modifier in r_0813 , r_1027).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0841 = v_{252} - v_{189} \tag{736}$$

7.170 Species s_0847

Name Ile-tRNA(Ile)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0665 and as a modifier in r_0665 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{s}.0847 = v_{162} - 0.1927 v_{282} \tag{737}$$

7.171 Species s_0849

Name IMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0153 , r_0565 and as a product in r_0570 and as a modifier in r_0153 , r_0565 , r_0570).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0849 = v_{157} - v_{37} - v_{154} \tag{738}$$

7.172 Species s_0918

Name inositol-P-ceramide D (C24)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0594 and as a modifier in r_0594 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\text{s}.0918 = v_{158} - 5.38625 \cdot 10^{-4}v_{282} \tag{739}$$

7.173 Species s_0940

Name isocitrate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_00658 , r_00661 and as a product in r_0280 and as a modifier in r_0280 , r_0658 , r_0661).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0940 = v_{74} - v_{159} - v_{160} \tag{740}$$

7.174 Species s_0943

Name isopentenyl diphosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in r_0355 , r_0462 , r_0667 and as a product in r_0739 and as a modifier in r_0355 , r_0462 , r_0667 , r_0739).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0943 = v_{181} - v_{93} - v_{117} - v_{163} \tag{741}$$

7.175 Species s_0951

Name keto-phenylpyruvate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_00851 and as a product in r_00938 and as a modifier in r_00851 , r_00938).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0951 = v_{224} - v_{194} \tag{742}$$

7.176 Species s_0953

Name L-2-aminoadipate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_00678 and as a product in r_0018 and as a modifier in r_0018 , r_0678).

$$\frac{d}{dt}s_{-}0953 = v_9 - v_{166} \tag{743}$$

7.177 Species s_0955

Name L-alanine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0157 and as a product in r_0674 and as a modifier in r_0157 , r_0674).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0955 = v_{165} - v_{39} \tag{744}$$

7.178 Species s_0959

Name L-allysine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0989 and as a product in r_0678 and as a modifier in r_0678 , r_0989).

$$\frac{\mathrm{d}}{\mathrm{d}t}s.0959 = v_{166} - v_{242} \tag{745}$$

7.179 Species s_0965

Name L-arginine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0209 and as a product in r_0207 and as a modifier in r_0207 , r_0209).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0965 = v_{43} - v_{45} \tag{746}$$

7.180 Species s_0969

Name L-asparagine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0212 and as a product in r_0211 and as a modifier in r_0211 , r_0212).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_- 0969 = v_{46} - v_{47} \tag{747}$$

7.181 Species s_0973

Name L-aspartate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in 16 reactions (as a reactant in r_0153 , r_0208 , r_0211 , r_0214 , r_0215 , r_0220 , r_0908 and as a product in r_0216 and as a modifier in r_0153 , r_0208 , r_0211 , r_0214 , r_0215 , r_0216 , r_0220 , r_0908).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0973 = v_{50} - v_{37} - v_{44} - v_{46} - v_{48} - v_{49} - v_{52} - v_{211} \tag{748}$$

7.182 Species s_0978

Name L-aspartate 4-semialdehyde

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0547 and as a product in r_0219 and as a modifier in r_0219 , r_0547).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}0978 = v_{51} - v_{146} \tag{749}$$

7.183 Species s_0979

Name L-citrulline

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0208 and as a product in r_0816 and as a modifier in r_0208 , r_0816).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0979 = v_{190} - v_{44} \tag{750}$$

7.184 Species s_0980

Name L-cystathionine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0310 and as a product in r_0309 , r_0311 and as a modifier in r_0309 , r_0310 , r_0311).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}0980 = v_{78} + v_{80} - v_{79} \tag{751}$$

7.185 Species s_0981

Name L-cysteine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0311 , r_0313 and as a product in r_0310 and as a modifier in r_0310 , r_0311 , r_0313).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}0981 = v_{79} - v_{80} - v_{81} \tag{752}$$

7.186 Species s_0991

Name L-glutamate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in 50 reactions (as a reactant in r_0012, r_0018, r_0118, r_0216, r_0476, r_0479, r_0538, r_0663, r_0674, r_0699, r_0818, r_0851, r_0918, r_0989, r_1063, r_1087 and as a product in r_0079, r_0203, r_0211, r_0250, r_0470, r_0471, r_0514, r_0563, r_0915 and as a modifier in r_0012, r_0018, r_0079, r_0118, r_0203, r_0211, r_0216, r_0250, r_0470, r_0471, r_0476, r_0479, r_0514, r_0538, r_0563, r_0663, r_06674, r_0699, r_0818, r_0851, r_0915, r_0918, r_0989, r_1063, r_1087).

$$\frac{d}{dt}s \cdot 0991 = v_{23} + v_{42} + v_{46} + v_{67} + v_{119} + v_{120} + v_{134} + v_{152} + v_{218} - v_5 - v_9 - v_{31} - v_{50} - v_{121} - v_{123} - v_{141} - v_{161} - v_{165} - v_{168} - v_{191} - v_{194} - v_{221} - v_{242} - v_{265} - v_{269}$$

$$(753)$$

7.187 Species s_0999

Name L-glutamine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 18 reactions (as a reactant in r_0079, r_0203, r_0211, r_0250, r_0478, r_0514, r_0563, r_0915 and as a product in r_0476 and as a modifier in r_0079, r_0203, r_0211, r_0250, r_0476, r_0478, r_0514, r_0563, r_0915).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-0999} = v_{121} - v_{23} - v_{42} - v_{46} - v_{67} - v_{122} - v_{134} - v_{152} - v_{218}$$
 (754)

7.188 Species s_1003

Name L-glycine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in r_0501, r_0512, r_0914 and as a product in r_0502 and as a modifier in r_0501, r_0502, r_0512, r_0914).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}003 = v_{131} - v_{130} - v_{133} - v_{217} \tag{755}$$

7.189 Species s_1006

Name L-histidine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0539 and as a product in r_0536 and as a modifier in r_0536 , r_0539).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1006} = v_{139} - v_{142} \tag{756}$$

7.190 Species s_1010

Name L-histidinol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0536 and as a product in r_0537 and as a modifier in r_0536 , r_0537).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1010 = \nu_{140} - \nu_{139} \tag{757}$$

7.191 Species s_1011

Name L-histidinol phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0537 and as a product in r_0538 and as a modifier in r_0537 , r_0538).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}1011 = v_{141} - v_{140} \tag{758}$$

7.192 Species s_1012

Name L-homocysteine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in r_0309 , r_0727 and as a product in r_0144 , r_0813 and as a modifier in r_0144 , r_0309 , r_0727 , r_0813).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}012 = v_{33} + v_{189} - v_{78} - v_{176} \tag{759}$$

7.193 Species s_1014

Name L-homoserine

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·l⁻¹

This species takes part in six reactions (as a reactant in r_0548 , r_0549 and as a product in r_0547 and as a modifier in r_0547 , r_0548 , r_0549).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}014 = \nu_{146} - \nu_{147} - \nu_{148} \tag{760}$$

7.194 Species s_1016

Name L-isoleucine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_00665 and as a product in r_00663 and as a modifier in r_00663 , r_00665).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1016 = v_{161} - v_{162} \tag{761}$$

7.195 Species s_1021

Name L-leucine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0701 and as a product in r_0699 and as a modifier in r_0699 , r_0701).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}021 = v_{168} - v_{169} \tag{762}$$

7.196 Species s_1025

Name L-lysine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0711 and as a product in r_0988 and as a modifier in r_0711 , r_0988).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-1} 025 = v_{241} - v_{170} \tag{763}$$

7.197 Species s_1029

Name L-methionine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in r_0726 , r_0729 and as a product in r_0727 and as a modifier in r_0726 , r_0727 , r_0729).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}029 = v_{176} - v_{175} - v_{177} \tag{764}$$

7.198 Species s_1032

Name L-phenylalanine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_00852 and as a product in r_00851 and as a modifier in r_00851 , r_00852).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1032 = \nu_{194} - \nu_{195} \tag{765}$$

7.199 Species s_1035

Name L-proline

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0941 and as a product in r_0957 and as a modifier in r_0941 , r_0957).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{s}_{-}1035 = v_{227} - v_{226} \tag{766}$$

7.200 Species s_1038

Name L-saccharopine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0988 and as a product in r_0989 and as a modifier in r_0988 , r_0989).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}1038 = v_{242} - v_{241} \tag{767}$$

7.201 Species s_1039

Name L-serine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 14 reactions (as a reactant in r_0309, r_0502, r_0880, r_0993, r_0995, r_1055 and as a product in r_0917 and as a modifier in r_0309, r_0502, r_0880, r_0917, r_0993, r_0995, r_1055).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1039 = v_{220} - v_{78} - v_{131} - v_{200} - v_{243} - v_{244} - v_{263}$$
 (768)

7.202 Species s_1045

Name L-threonine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1042 and as a product in r_1041 and as a modifier in r_1041 , r_1042).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1045 = v_{254} - v_{255} \tag{769}$$

7.203 Species s_1048

Name L-tryptophan

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in $r_{-}1057$ and as a product in $r_{-}1055$ and as a modifier in $r_{-}1055$, $r_{-}1057$).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1048 = v_{263} - v_{264} \tag{770}$$

7.204 Species s_1051

Name L-tyrosine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in $r_{-}1066$ and as a product in $r_{-}1063$ and as a modifier in $r_{-}1063$, $r_{-}1066$).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1051 = v_{265} - v_{266} \tag{771}$$

7.205 Species s_1056

Name L-valine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in $r_{-}1089$ and as a product in $r_{-}1087$ and as a modifier in $r_{-}1087$, $r_{-}1089$).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1056 = v_{269} - v_{270} \tag{772}$$

7.206 Species s_1059

Name lanosterol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0317 , r_2111 and as a product in r_0698 and as a modifier in r_0317 , r_0698 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1059 = v_{167} - v_{82} - 3.2 \cdot 10^{-5}v_{282} \tag{773}$$

7.207 Species s_1065

Name laurate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in r_0387 and as a product in r_0386 , r_0400 and as a modifier in r_0386 , r_0387 , r_0400).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}1065 = v_{98} + v_{106} - v_{99} \tag{774}$$

7.208 Species s_1073

Name lauroyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0400 , r_0433 and as a product in r_0432 and as a modifier in r_0400 , r_0432 , r_0433).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1073} = \nu_{108} - \nu_{106} - \nu_{109} \tag{775}$$

7.209 Species s_1077

Name Leu-tRNA(Leu)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0701 and as a modifier in r_0701 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1077} = v_{169} - 0.2964v_{282} \tag{776}$$

7.210 Species s_1084

Name lignoceric acid

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0340 , r_0919 and as a product in r_0393 and as a modifier in r_0340 , r_0393 , r_0919).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}084 = v_{102} - v_{88} - v_{222} \tag{777}$$

7.211 Species s_1099

Name Lys-tRNA(Lys)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0711 and as a modifier in r_0711 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1099} = v_{170} - 0.2862v_{282} \tag{778}$$

7.212 Species s_1101

Name malonyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 24 reactions (as a reactant in r_0386 , r_0387 , r_0389 , r_0391 , r_0393 , r_0397 , r_0398 , r_0432 , r_0433 , r_0434 , r_0435 and as a product in r_0108 and as a modifier in r_0108 , r_0386 , r_0387 , r_0389 , r_0391 , r_0393 , r_0397 , r_0398 , r_0432 , r_0433 , r_0434 , r_0435).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-1}101 = v_{28} - v_{98} - v_{99} - v_{100} - v_{101} - 3v_{102} - v_{103} - 3v_{104} - v_{108} - v_{109} - v_{110} - v_{111}$$
 (779)

7.213 Species s_1107

Name mannan

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0362 and as a modifier in r_0362 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1107} = v_{95} - 0.8079v_{282} \tag{780}$$

7.214 Species s_1148

Name Met-tRNA(Met)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0729 and as a modifier in r_0729 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1148} = v_{177} - 0.0507v_{282} \tag{781}$$

7.215 Species s_1153

Name myo-inositol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00874 and as a product in r_00757 and as a modifier in r_00757 , r_00874).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1153} = v_{182} - v_{198} \tag{782}$$

7.216 Species s_1161

Name myristate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0389 and as a product in r_0387 and as a modifier in r_0387 , r_0389).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{s}_{-1} 1161 = v_{99} - v_{100} \tag{783}$$

7.217 Species s_1176

Name myristoyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0434 and as a product in r_0433 and as a modifier in r_0433 , r_0434).

$$\frac{d}{dt}s_{-}1176 = v_{109} - v_{110} \tag{784}$$

7.218 Species s_1182

Name N(2)-acetyl-L-ornithine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0818 and as a product in r_0118 and as a modifier in r_0118 , r_0818).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}182 = v_{31} - v_{191} \tag{785}$$

7.219 Species s_1187

Name N-(5-phospho-beta-D-ribosyl)anthranilate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0913 and as a product in r_0202 and as a modifier in r_0202 , r_0913).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}187 = v_{41} - v_{216} \tag{786}$$

7.220 Species s_1191

Name N-acetyl-L-gamma-glutamyl phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0759 and as a product in r_0115 and as a modifier in r_0115 , r_0759).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}1191 = v_{30} - v_{184} \tag{787}$$

7.221 Species s_1192

Name N-acetyl-L-glutamate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0115 and as a product in r_0818 and as a modifier in r_0115 , r_0818).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}1192 = v_{191} - v_{30} \tag{788}$$

7.222 Species s_1194

Name N-carbamoyl-L-aspartate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0349 and as a product in r_0214 and as a modifier in r_0214 , r_0349).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1194 = v_{48} - v_{90} \tag{789}$$

7.223 Species s_1198

Name NAD

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 36 reactions (as a reactant in r_0061, r_0235, r_0486, r_0501, r_0536, r_0545, r_0565, r_0658, r_0713, r_0731, r_0891, r_0961, r_0988 and as a product in r_0012, r_0470, r_0491, r_0770, r_1010 and as a modifier in r_0012, r_0061, r_0235, r_0470, r_0486, r_0491, r_0501, r_0536, r_0545, r_0565, r_0658, r_0713, r_0731, r_0770, r_0891, r_0961, r_0988, r_1010).

$$\frac{d}{dt}s_{-1198} = v_5 + v_{119} + v_{127} + v_{185} + v_{247} - v_{21} - v_{57} - v_{126} - v_{130} - 2v_{139} - v_{145} - v_{154} - v_{159} - v_{171} - v_{178} - v_{204} - v_{229} - v_{241}$$
(790)

7.224 Species s_1203

Name NADH

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in 36 reactions (as a reactant in r_0012, r_0470, r_0491, r_0770, r_1010 and as a product in r_0061, r_0235, r_0486, r_0501, r_0536, r_0545, r_0565, r_0658, r_0713, r_0731, r_0891, r_0961, r_0988 and as a modifier in r_0012, r_0061, r_0235, r_0470, r_0486, r_0491, r_0501, r_0536, r_0545, r_0565, r_0658, r_0713, r_0731, r_0770, r_0891, r_0961, r_0988, r_1010).

$$\frac{d}{dt}s_{-1}203 = v_{21} + v_{57} + v_{126} + v_{130} + 2v_{139} + v_{145} + v_{154} + v_{159} + v_{171} + v_{178} + v_{204} + v_{229} + v_{241} - v_5 - v_{119} - v_{127} - v_{185} - v_{247}$$
(791)

7.225 Species s_1207

Name NADP(+)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 100 reactions (as a reactant in r_0234 , r_0661 , r_0732 , r_0939 and as a product in r_0015 , r_0041 , r_0080 , r_0096 , r_0219 , r_0231 , r_0233 , r_0236 , r_0237 , r_0238 , r_0239 , r_0240 , r_0241 , r_0242 , r_0244 , r_0259 , r_0267 , r_0269 , r_0317 , r_0344 , r_0386 , r_0387 , r_0389 , r_0391 , r_0393 , r_0397 , r_0398 , r_0432 , r_0433 , r_0434 , r_0435 , r_0471 , r_0481 , r_0547 , r_0558 , r_0669 , r_0678 , r_0759 , r_0922 , r_0957 , r_0989 , r_0996 , r_0111 , r_0112

```
\frac{d}{dt}s_{-1}207 = v_{7} + v_{19} + v_{24} + v_{25} + v_{51} + v_{54} + v_{55} + v_{58} + v_{59} + v_{60} + v_{61} + v_{62} + 3v_{63} + v_{64} + v_{66} + v_{69} + v_{70} + v_{71} + 3v_{82} + v_{89} + 2v_{98} + 2v_{99} + 2v_{100} + 2v_{101} + 6v_{102} + 2v_{103} + 6v_{104} + 2v_{108} + 2v_{109} + 2v_{110} + 2v_{111} + v_{120} + v_{124} + v_{146} + 2v_{150} + v_{164} + v_{166} + v_{184} + v_{223} + v_{227} + v_{242} + v_{245} + v_{248} + v_{249} + 3v_{252} + v_{253} - v_{56} - v_{160} - v_{179} - v_{225}
(792)
```

7.226 Species s_1212

Name NADPH

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 100 reactions (as a reactant in r_0015 , r_0041 , r_0080 , r_0096 , r_0219 , r_0231 , r_0233 , r_0236 , r_0237 , r_0238 , r_0239 , r_0240 , r_0241 , r_0242 , r_0244 , r_0259 , r_0267 , r_0269 , r_0317 , r_0344 , r_0386 , r_0387 , r_0389 , r_0391 , r_0393 , r_0397 , r_0398 , r_0432 , r_0434 , r_0435 , r_0471 , r_0481 , r_0547 , r_0558 , r_0669 , r_0678 , r_0759 , r_0922 , r_0957 , r_0989 , r_0996 , r_1011 , r_1012 , r_1027 , r_1038 and as a product in r_0234 , r_0661 , r_0732 , r_0939 and as a modifier in r_0015 , r_0041 , r_0080 , r_0096 , r_0219 , r_0231 , r_0233 , r_0234 , r_0236 , r_0237 , r_0238 , r_0239 , r_0240 , r_0241 , r_0242 , r_0244 , r_0259 , r_0267 , r_0269 , r_0317 , r_0344 , r_0386 , r_0387 , r_0389 , r_0391 , r_0393 , r_0397 , r_0398 , r_0432 , r_0433 , r_0434 , r_0435 , r_0471 , r_0481 , r_0547 , r_0558 , r_0661 , r_0669 , r_0678 , r_0732 , r_0759 , r_0922 , r_0939 , r_0957 , r_0989 , r_0996 , r_1011 , r_1012 , r_1027 , r_1038).

$$\frac{d}{dt}s_{-}1212 = v_{56} + v_{160} + v_{179} + v_{225} - v_7 - v_{19} - v_{24} - v_{25} - v_{51} - v_{54} - v_{55} - v_{58} - v_{59} - v_{60} - v_{61} - v_{62} - 3v_{63} - v_{64} - v_{66} - v_{69} - v_{70} - v_{71} - 3v_{82} - v_{89} - 2v_{98} - 2v_{99} - 2v_{100} - 2v_{101} - 6v_{102} - 2v_{103} - 6v_{104} - 2v_{108} - 2v_{109} - 2v_{110} - 2v_{111} - v_{120} - v_{124} - v_{146} - 2v_{150} - v_{164} - v_{166} - v_{184} - v_{223} - v_{227} - v_{242} - v_{245} - v_{248} - v_{249} - 3v_{252} - v_{253}$$

$$(793)$$

7.227 Species s_1233

Name O-acetyl-L-homoserine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0311 , r_0813 and as a product in r_0549 and as a modifier in r_0311 , r_0549 , r_0813).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1233} = v_{148} - v_{80} - v_{189} \tag{794}$$

7.228 Species s_1238

Name O-phospho-L-homoserine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1041 and as a product in r_20548 and as a modifier in r_20548 , r_21041).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1238 = v_{147} - v_{254} \tag{795}$$

7.229 Species s_1255

Name octanoyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0397 and as a product in r_0398 and as a modifier in r_0397 , r_0398).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}_{-}1255 = v_{104} - v_{103} \tag{796}$$

7.230 Species s_1266

Name ornithine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0816 and as a product in r_0818 and as a modifier in r_0816 , r_0818).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1266 = \nu_{191} - \nu_{190} \tag{797}$$

7.231 Species s_1269

Name orotate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0820 and as a product in r_0339 and as a modifier in r_0339 , r_0820).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}269 = v_{87} - v_{192} \tag{798}$$

7.232 Species s_1270

Name orotidine 5'-(dihydrogen phosphate)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0821 and as a product in r_0820 and as a modifier in r_0820 , r_0821).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1270} = \nu_{192} - \nu_{193} \tag{799}$$

7.233 Species s_1271

Name oxaloacetate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in r_0216 , r_0300 and as a product in r_0713 , r_0958 and as a modifier in r_0216 , r_0300 , r_0713 , r_0958).

$$\frac{d}{dt}s_{-1}1271 = v_{171} + v_{228} - v_{50} - v_{75}$$
(800)

7.234 Species s_1275

Name oxygen

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in 32 reactions (as a reactant in r_0233, r_0238, r_0239, r_0240, r_0241, r_0242, r_0259, r_0267, r_0269, r_0317, r_0339, r_0438, r_0922, r_1010, r_1011 and as a product in r_1979 and as a modifier in r_0233, r_0238, r_0239, r_0240, r_0241, r_0242, r_0259, r_0267, r_0269, r_0317, r_0339, r_0438, r_0922, r_1010, r_1011, r_1979).

$$\frac{d}{dt}s_{-1275} = v_{280} - v_{55} - v_{60} - v_{61} - v_{62} - 3v_{63} - v_{64} - v_{69} - v_{70} - v_{71} - 3v_{82} - v_{87} - v_{112} - v_{223} - v_{247} - v_{248}$$
(801)

7.235 Species s_1277

Name oxygen

SBO:0000247 simple chemical

Initial concentration $1 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in $r_{-}1979$ and as a modifier in $r_{-}1979$), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}s_{-}1277 = 0 (802)$$

7.236 Species s_1286

Name palmitate

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·l⁻¹

This species takes part in four reactions (as a reactant in r_0391 and as a product in r_0389 and as a modifier in r_0389 , r_0391).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}_{-1286} = v_{100} - v_{101} \tag{803}$$

7.237 Species s_1302

Name palmitoyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0435 , r_0993 and as a product in r_0434 and as a modifier in r_0434 , r_0435 , r_0993).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-1302} = v_{110} - v_{111} - v_{243} \tag{804}$$

7.238 Species s_1314

Name Phe-tRNA(Phe)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0852 and as a modifier in r_0852 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1314 = v_{195} - 0.1339v_{282} \tag{805}$$

7.239 Species s_1322

Name phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 73 reactions (as a reactant in r_0446 , r_0486 and as a product in r_0020 , r_0032 , r_0040 , r_0065 , r_0079 , r_0108 , r_0153 , r_0214 , r_0219 , r_0250 , r_0279 , r_0307 , r_0337 , r_0476 , r_0537 , r_0568 , r_0726 , r_0739 , r_0757 , r_0759 , r_0792 , r_0816 , r_0855 , r_0908 , r_0911 , r_0914 , r_0917 , r_0958 , r_0967 , r_1026 , r_1041 , r_1051 , r_1244 , r_2030 , r_2111 and as a modifier in r_0020 , r_0032 , r_0040 , r_0065 , r_0079 , r_0108 , r_0153 , r_0214 , r_0219 , r_0250 , r_0279 , r_0307 , r_0337 , r_0446 , r_0476 , r_0486 , r_0537 , r_0568 , r_0726 , r_0739 , r_0757 , r_0759 , r_0792 , r_0816 , r_0855 , r_0908 , r_0911 , r_0914 , r_0917 , r_0958 , r_0967 , r_1026 , r_1041 , r_11051 , r_11244 , r_2030).

$$\frac{d}{dt}s_{-1322} = v_{10} + v_{15} + v_{18} + v_{22} + v_{23} + v_{28} + v_{37} + v_{48} + v_{51} + v_{67} + v_{73} + v_{77} + v_{86} + v_{121} + v_{140} + 2v_{156} + v_{175} + v_{181} + v_{182} + v_{184} + v_{186} + v_{190} + v_{196} + v_{211} + v_{214} + v_{217} + v_{220} + v_{228} + v_{231} + v_{251} + v_{254} + v_{260} + v_{273} + v_{281} + 58.70001v_{282} - v_{114} - v_{126}$$

$$(806)$$

7.240 Species s_1324

Name phosphate

SBO:0000247 simple chemical

Initial concentration $1 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in r_1244 and as a modifier in r_1244), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}s_{-}1324 = 0 (807)$$

7.241 Species s_1331

Name phosphatidate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in r_0257 , r_0337 and as a product in r_0008 and as a modifier in r_0008 , r_0257 , r_0337).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1331} = v_4 - v_{68} - v_{86} \tag{808}$$

7.242 Species s_1337

Name phosphatidyl-L-serine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0877 , r_2111 and as a product in r_0880 and as a modifier in r_0877 , r_0880 , r_2111).

$$\frac{d}{dt}s_{-1337} = v_{200} - v_{199} - 3.9 \cdot 10^{-4}v_{282}$$
(809)

7.243 Species s_1342

Name phosphatidyl-N,N-dimethylethanolamine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0900 and as a product in r_0901 and as a modifier in r_0900 , r_0901).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1342 = v_{208} - v_{207} \tag{810}$$

7.244 Species s_1343

Name phosphatidyl-N-methylethanolamine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0901 and as a product in r_0858 and as a modifier in r_0858 , r_0901).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1343 = v_{197} - v_{208} \tag{811}$$

7.245 Species s_1346

Name phosphatidylcholine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0900 and as a modifier in r_0900 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1346} = v_{207} - 0.00288v_{282} \tag{812}$$

7.246 Species s_1351

Name phosphatidylethanolamine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0858 , r_2111 and as a product in r_0877 and as a modifier in r_0858 , r_0877 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1351 = v_{199} - v_{197} - 6.97 \cdot 10^{-4}v_{282} \tag{813}$$

7.247 Species s_1360

Name phosphoenolpyruvate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in r_0020, r_0065, r_0962 and as a product in r_0366 and as a modifier in r_0020, r_0065, r_0366, r_0962).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1360} = v_{97} - v_{10} - v_{22} - v_{230} \tag{814}$$

7.248 Species s_1364

Name phosphoribosyl-carboxy-aminoimidazole

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0908 and as a product in r_0911 and as a modifier in r_0908 , r_0911).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1364 = v_{214} - v_{211} \tag{815}$$

7.249 Species s_1365

Name phosphoribosyl-formamido-carboxamide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_0570 and as a product in r_0912 and as a modifier in r_0570 , r_0912).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{s}_{-1365} = v_{215} - v_{157} \tag{816}$$

7.250 Species s_1366

Name phytosphingosine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0919 and as a product in r_0922 and as a modifier in r_0919 , r_0922).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1366} = v_{223} - v_{222} \tag{817}$$

7.251 Species s_1376

Name prenyl diphosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0355 and as a product in r_0667 and as a modifier in r_0355 , r_0667).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1376 = v_{163} - v_{93} \tag{818}$$

7.252 Species s_1377

Name prephenate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0938 , r_0939 and as a product in r_0278 and as a modifier in r_0278 , r_0938 , r_0939).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1377 = v_{72} - v_{224} - v_{225} \tag{819}$$

7.253 Species s_1379

Name Pro-tRNA(Pro)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0941 and as a modifier in r_0941 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1379} = v_{226} - 0.1647v_{282} \tag{820}$$

7.254 Species s_1386

Name PRPP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in r_0202 , r_0225 , r_0820 , r_0915 and as a product in r_0916 and as a modifier in r_0202 , r_0225 , r_0820 , r_0915 , r_0916).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-1386} = v_{219} - v_{41} - v_{53} - v_{192} - v_{218}$$
(821)

7.255 Species s_1399

Name pyruvate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in 14 reactions (as a reactant in r_0016 , r_0097 , r_0674 , r_0958 , r_0961 and as a product in r_0203 , r_0962 and as a modifier in r_0016 , r_0097 , r_0203 , r_0674 , r_0958 , r_0961 , r_0962).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1399} = v_{42} + v_{230} - v_8 - 2v_{26} - v_{165} - v_{228} - v_{229}$$
(822)

7.256 Species s_1405

Name riboflavin

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0968 and as a modifier in r_0968 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}1405 = v_{232} - 9.9 \cdot 10^{-4} v_{282} \tag{823}$$

7.257 Species s_1408

Name ribose-5-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0916 and as a product in r_0982 , r_1049 and as a modifier in r_0916 , r_0982 , r_1049).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1408} = v_{238} + v_{258} - v_{219} \tag{824}$$

7.258 Species s_1413

Name S-adenosyl-L-homocysteine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in r_0144 and as a product in r_0858 , r_0900 , r_0901 , r_0986 and as a modifier in r_0144 , r_0858 , r_0900 , r_0901 , r_0986).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1413 = v_{197} + v_{207} + v_{208} + v_{240} - v_{33} \tag{825}$$

7.259 Species s_1416

Name S-adenosyl-L-methionine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in r_0858 , r_0900 , r_0901 , r_0986 and as a product in r_0726 and as a modifier in r_0726 , r_0858 , r_0900 , r_0901 , r_0986).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1416} = v_{175} - v_{197} - v_{207} - v_{208} - v_{240} \tag{826}$$

7.260 Species s_1427

Name sedoheptulose 7-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_1049 and as a product in r_1048 and as a modifier in r_1048 , r_1049).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1427 = v_{257} - v_{258} \tag{827}$$

7.261 Species s_1428

Name Ser-tRNA(Ser)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_0995 and as a modifier in r_0995 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}428 = v_{244} - 0.1854v_{282} \tag{828}$$

7.262 Species s_1429

Name shikimate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0997 and as a product in r_0996 and as a modifier in r_0996 , r_0997).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1429 = v_{245} - v_{246} \tag{829}$$

7.263 Species s_1445

Name sphinganine

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0340 , r_0922 and as a product in r_041 and as a modifier in r_041 , r_0340 , r_0922).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1445 = v_{19} - v_{88} - v_{223} \tag{830}$$

7.264 Species s_1447

Name squalene

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_1010 , r_1011 and as a product in r_1012 and as a modifier in r_1010 , r_1011 , r_1012).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}447 = v_{249} - v_{247} - v_{248} \tag{831}$$

7.265 Species s_1449

Name stearate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0393 and as a product in r_0391 , r_0407 and as a modifier in r_0391 , r_0393 , r_0407).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-1}449 = v_{101} + v_{107} - v_{102} \tag{832}$$

7.266 Species s_1454

Name stearoyl-CoA

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0407 and as a product in r_0435 and as a modifier in r_0407 , r_0435).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}1454 = v_{111} - v_{107} \tag{833}$$

7.267 Species s_1467

Name sulphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_1026 , r_2111 and as a product in r_1266 and as a modifier in r_1026 , r_1266 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}467 = v_{274} - v_{251} - 0.02v_{282} \tag{834}$$

7.268 Species s_1468

Name sulphate

SBO:0000247 simple chemical

Initial concentration $1 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in r_1266 and as a modifier in r_1266), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}s_{-}1468 = 0 (835)$$

7.269 Species s_1469

Name sulphite

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_1027 and as a product in r_0883 and as a modifier in r_0883 , r_1027).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}1469 = v_{201} - v_{252} \tag{836}$$

7.270 Species s_1487

Name THF

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in 14 reactions (as a reactant in r_0501 , r_0502 and as a product in r_0344 , r_0446 , r_0499 , r_0727 , r_0912 and as a modifier in r_0344 , r_0446 , r_0499 , r_0501 , r_0502 , r_0727 , r_0912).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1487} = v_{89} + v_{114} + v_{129} + v_{176} + v_{215} - v_{130} - v_{131}$$
(837)

7.271 Species s_1491

Name Thr-tRNA(Thr)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_1042 and as a modifier in r_1042 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}491 = v_{255} - 0.1914v_{282} \tag{838}$$

7.272 Species s_1520

Name trehalose

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_1051 and as a modifier in r_1051 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}520 = v_{260} - 0.0234v_{282} \tag{839}$$

7.273 Species s_1524

Name triglyceride

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in r_0336 , r_2111 and as a product in r_1052 and as a modifier in r_0336 , r_1052 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-1} + 524 = v_{261} - v_{85} - 7.81 \cdot 10^{-4} v_{282}$$
(840)

7.274 Species s_1527

Name Trp-tRNA(Trp)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_1057 and as a modifier in r_1057 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1527} = v_{264} - 0.0284v_{282} \tag{841}$$

7.275 Species s_1533

Name Tyr-tRNA(Tyr)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_1066 and as a modifier in r_1066 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-1533} = v_{266} - 0.102 v_{282} \tag{842}$$

7.276 Species s_1535

Name ubiquinol-6

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0439 and as a product in r_0770 and as a modifier in r_0439 , r_0770).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}_{-}1535 = v_{185} - v_{113} \tag{843}$$

7.277 Species s_1537

Name ubiquinone-6

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_00770 and as a product in r_0439 and as a modifier in r_0439 , r_0770).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-}1537 = v_{113} - v_{185} \tag{844}$$

7.278 Species s_1538

Name UDP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in r_0811 and as a product in r_0005 , r_0006 , r_0195 , r_0510 , r_1072 and as a modifier in r_0005 , r_0006 , r_0195 , r_0510 , r_0811 , r_1072).

$$\frac{d}{dt}s_{-1538} = v_1 + v_2 + v_{40} + v_{132} + v_{267} - v_{188}$$
(845)

7.279 Species s_1543

Name UDP-D-glucose

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in r_0005 , r_0006 , r_0195 , r_00510 and as a product in r_1084 and as a modifier in r_0005 , r_0006 , r_0195 , r_0510 , r_1084).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1543} = v_{268} - v_1 - v_2 - v_{40} - v_{132} \tag{846}$$

7.280 Species s_1545

Name UMP

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_1072 , r_2111 and as a product in r_0821 and as a modifier in r_0821 , r_1072 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1545 = v_{193} - v_{267} - 0.0599v_{282} \tag{847}$$

7.281 Species s_1559

Name UTP

SBO:0000247 simple chemical

Initial concentration 0.1 mmol·l⁻¹

This species takes part in eight reactions (as a reactant in r_0307, r_0973, r_1084 and as a product in r_0811 and as a modifier in r_0307, r_0811, r_0973, r_1084).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1559} = v_{188} - v_{77} - v_{234} - v_{268} \tag{848}$$

7.282 Species s_1561

Name Val-tRNA(Val)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in r_2111 and as a product in r_1089 and as a modifier in r_1089 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}561 = v_{270} - 0.2646v_{282} \tag{849}$$

7.283 Species s_1565

Name xanthosine-5-phosphate

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0514 and as a product in r_0565 and as a modifier in r_0514 , r_0565).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{s}_{-}1565 = v_{154} - v_{134} \tag{850}$$

7.284 Species s_1569

Name zymosterol

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in r_0986 , r_2111 and as a product in r_0237 and as a modifier in r_0237 , r_0986 , r_2111).

$$\frac{\mathrm{d}}{\mathrm{d}t} s_{-1569} = v_{59} - v_{240} - 1.5 \cdot 10^{-5} v_{282} \tag{851}$$

7.285 Species s_1576

Name zymosterol intermediate 1a

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0239 and as a product in r_0238 and as a modifier in r_0238 , r_0239).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1576 = v_{60} - v_{61} \tag{852}$$

7.286 Species s_1577

Name zymosterol intermediate 1b

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0240 and as a product in r_0239 and as a modifier in r_0239 , r_0240).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1577 = v_{61} - v_{62} \tag{853}$$

7.287 Species s_1578

Name zymosterol intermediate 1c

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0234 and as a product in r_0240 and as a modifier in r_0234 , r_0240).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-}1578 = v_{62} - v_{56} \tag{854}$$

7.288 Species s_1579

Name zymosterol intermediate 2

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r_0237 and as a product in r_0234 and as a modifier in r_0234 , r_0237).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}1579 = v_{56} - v_{59} \tag{855}$$

7.289 Species s_1582

Name tRNA(Ala)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in r_0157 and as a product in r_2111 and as a modifier in r_0157).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1582} = 0.4588v_{282} - v_{39} \tag{856}$$

7.290 Species s_1583

Name tRNA(Arg)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0209 and as a product in r_2111 and as a modifier in r_0209).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1583} = 0.1607v_{282} - v_{45} \tag{857}$$

7.291 Species s_1585

Name tRNA(Asn)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0212 and as a product in r_2111 and as a modifier in r_0212).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1585} = 0.1017v_{282} - v_{47} \tag{858}$$

7.292 Species s_1587

Name tRNA(Asp)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0220 and as a product in r_2111 and as a modifier in r_0220).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1587} = 0.2975v_{282} - v_{52} \tag{859}$$

7.293 Species s_1589

Name tRNA(Cys)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in r_0313 and as a product in r_2111 and as a modifier in r_0313).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}589 = 0.0066\nu_{282} - \nu_{81} \tag{860}$$

7.294 Species s_1590

Name tRNA(Gln)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0478 and as a product in r_2111 and as a modifier in r_0478).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}590 = 0.1054v_{282} - v_{122} \tag{861}$$

7.295 Species s_1591

Name tRNA(Glu)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0479 and as a product in r_2111 and as a modifier in r_0479).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-1}591 = 0.3018v_{282} - v_{123} \tag{862}$$

7.296 Species s_1593

Name tRNA(Gly)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0512 and as a product in r_2111 and as a modifier in r_0512).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}593 = 0.2904v_{282} - v_{133} \tag{863}$$

7.297 Species s_1594

Name tRNA(His)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in r_0539 and as a product in r_2111 and as a modifier in r_0539).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}594 = 0.0663v_{282} - v_{142} \tag{864}$$

7.298 Species s_1596

Name tRNA(Ile)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in r_00665 and as a product in r_00665).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}596 = 0.1927v_{282} - v_{162} \tag{865}$$

7.299 Species s_1598

Name tRNA(Leu)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0701 and as a product in r_2111 and as a modifier in r_0701).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-}1598 = 0.2964v_{282} - v_{169} \tag{866}$$

7.300 Species s_1600

Name tRNA(Lys)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0711 and as a product in r_2111 and as a modifier in r_0711).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}600 = 0.2862\nu_{282} - \nu_{170} \tag{867}$$

7.301 Species s_1602

Name tRNA(Met)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in r_0729 and as a product in r_2111 and as a modifier in r_0729).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}602 = 0.0507v_{282} - v_{177} \tag{868}$$

7.302 Species s_1604

Name tRNA(Phe)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_00852 and as a product in r_00852).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}604 = 0.1339v_{282} - v_{195} \tag{869}$$

7.303 Species s_1606

Name tRNA(Pro)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0941 and as a product in r_2111 and as a modifier in r_0941).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-1}606 = 0.1647v_{282} - v_{226} \tag{870}$$

7.304 Species s_1607

Name tRNA(Ser)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_0995 and as a product in r_2111 and as a modifier in r_0995).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}607 = 0.1854v_{282} - v_{244} \tag{871}$$

7.305 Species s_1608

Name tRNA(Thr)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in r_1042 and as a product in r_2111 and as a modifier in r_1042).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}608 = 0.1914v_{282} - v_{255} \tag{872}$$

7.306 Species s_1610

Name tRNA(Trp)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_11057 and as a product in r_21111 and as a modifier in r_11057).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}610 = 0.0284v_{282} - v_{264} \tag{873}$$

7.307 Species s_1612

Name tRNA(Tyr)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_1066 and as a product in r_2111 and as a modifier in r_1066).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}612 = 0.102v_{282} - v_{266} \tag{874}$$

7.308 Species s_1614

Name tRNA(Val)

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in r_1089 and as a product in r_2111 and as a modifier in r_1089).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}_{-1}614 = 0.2646v_{282} - v_{270} \tag{875}$$

7.309 Species s_1616

Name TRX1

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 16 reactions (as a reactant in r_0550, r_0883, r_0970, r_0973, r_0974, r_0976, r_0978 and as a product in r_1038 and as a modifier in r_0550, r_0883, r_0970, r_0973, r_0974, r_0976, r_0978, r_1038).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-1}616 = v_{253} - v_{149} - v_{201} - v_{233} - v_{234} - v_{235} - v_{236} - v_{237}$$
(876)

7.310 Species s_1620

Name TRX1 disulphide

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in 16 reactions (as a reactant in r_1038 and as a product in r_10550 , r_10883 , r_10970 , r_10973 , r_10974 , r_10976 , r_10978 and as a modifier in r_10550 , r_10883 , r_10970 , r_10973 , r_10974 , r_10976 , r_10978 , r_11038).

$$\frac{\mathrm{d}}{\mathrm{d}t}s_{-1}620 = v_{149} + v_{201} + v_{233} + v_{234} + v_{235} + v_{236} + v_{237} - v_{253}$$
(877)

7.311 Species e_0001

Name COX1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0001 = 0 (878)$$

7.312 Species e_0004

Name COB

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0004 = 0 (879)$$

7.313 Species e_0006

Name COX2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0006 = 0 (880)$$

7.314 Species e_0007

Name COX3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0007 = 0 (881)$$

7.315 Species e_0008

Name CYS3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0310), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0008 = 0 (882)$$

7.316 Species e_0010

Name PMT2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0362), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0010 = 0 (883)$$

7.317 Species e_0011

Name CDC19

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0962), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0011 = 0 (884)$$

7.318 Species e_0012

Name GCV3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0501), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0012 = 0 (885)$$

7.319 Species e_0016

Name GDH3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00471), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0016 = 0 (886)$$

7.320 Species e_0017

Name ADE1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0908), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0017 = 0 (887)$$

7.321 Species e_0020

Name SCT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0495), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0020 = 0 (888)$$

7.322 Species e_0022

Name ACH1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0110), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0022 = 0 (889)$$

7.323 Species e_0025

Name RIB1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00525), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0025 = 0 (890)$$

7.324 Species e_0026

Name URA7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0307), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0026 = 0 (891)$$

7.325 Species e_0028

Name COR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0028 = 0 (892)$$

7.326 Species e_0029

Name PRX1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00550), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0029 = 0 (893)$$

7.327 Species e_0030

Name PRS4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0916), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0030 = 0 (894)$$

7.328 Species e_0031

Name ILS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00665), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0031 = 0 (895)$$

7.329 Species e_0038

Name IPP1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0568), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0038 = 0 (896)$$

7.330 Species e_0045

Name CDS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0257), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0045 = 0 (897)$$

7.331 Species e_0054

Name TSC3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0993), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0054 = 0 (898)$$

7.332 Species e_0057

Name MIS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in r_0446 , r_0724 , r_0732), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0057 = 0 (899)$$

7.333 Species e_0062

Name LYS2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00678), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0062 = 0 {(900)}$$

7.334 Species e_0063

Name TKL2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_1049 , r_1050), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0063 = 0 {(901)}$$

7.335 Species e_0064

Name GRS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0512), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0064 = 0 (902)$$

7.336 Species e_0065

Name TPS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0195 , r_1051), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0065 = 0 (903)$$

7.337 Species e_0071

Name RIB7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0015), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0071 = 0 (904)$$

7.338 Species e_0074

Name TYR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0939), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0074 = 0 (905)$$

7.339 Species e_0077

Name YPC1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0919), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0077 = 0 {(906)}$$

7.340 Species e_0079

Name PGI1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0467), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0079 = 0 (907)$$

7.341 Species e_0084

Name PYC2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00958), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0084 = 0 (908)$$

7.342 Species e_0085

Name PDB1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00961), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0085 = 0 (909)$$

7.343 Species e_0086

Name GPX2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0483), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0086 = 0 {(910)}$$

7.344 Species e_0087

Name HIS7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0563), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0087 = 0 (911)$$

7.345 Species e_0088

Name ARO4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0020), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0088 = 0 {(912)}$$

7.346 Species e_0089

Name DUT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00364), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0089 = 0 (913)$$

7.347 Species e_0090

Name RIB5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00968), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0090 = 0 {(914)}$$

7.348 Species e_0091

Name SHM1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0502), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0091 = 0 (915)$$

7.349 Species e_0092

Name TSC10

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0041), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0092 = 0 (916)$$

7.350 Species e_0100

Name ILV6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0016, r_0097), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0100 = 0 (917)$$

7.351 Species e_0101

Name LEU2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00061), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0101 = 0 (918)$$

7.352 Species e_0103

Name HIS4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a modifier in r_0536, r_0909, r_0910), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0103 = 0 {(919)}$$

7.353 Species e_0104

Name GRX1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0481, r_0483), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0104 = 0 (920)$$

7.354 Species e_0106

Name GLK1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0534), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0106 = 0 (921)$$

7.355 Species e_0107

Name APA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_1026), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0107 = 0 (922)$$

7.356 Species e_0111

Name CIT2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0300), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0111 = 0 (923)$$

7.357 Species e_0113

Name PGK1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00892), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0113 = 0 (924)$$

7.358 Species e_0117

Name FEN1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0008, r_0393), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0117 = 0 (925)$$

7.359 Species e_0122

Name THR4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_1041), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0122 = 0 (926)$$

7.360 Species e_0124

Name TRX3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0550 , r_1038), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0124 = 0 (927)$$

7.361 Species e_0128

Name TSC13

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0393), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0128 = 0 (928)$$

7.362 Species e_0129

Name GPD1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0491), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0129 = 0 (929)$$

7.363 Species e_0133

Name SLC1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0008), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0133 = 0 {(930)}$$

7.364 Species e_0134

Name PSA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00722), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0134 = 0 (931)$$

7.365 Species e_0135

Name IDP1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00661), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0135 = 0 (932)$$

7.366 Species e_0136

Name COX9

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0136 = 0 (933)$$

7.367 Species e_0137

Name MDH3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00713), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0137 = 0 (934)$$

7.368 Species e_0139

Name NDE2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \ mmol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00770), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0139 = 0 (935)$$

7.369 Species e_0141

Name PMT5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0362), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0141 = 0 (936)$$

7.370 Species e_0142

Name PMT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0362), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0142 = 0 (937)$$

7.371 Species e_0146

Name LYS21

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0543), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0146 = 0 (938)$$

7.372 Species e_0154

Name LYS20

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0543), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0154 = 0 (939)$$

7.373 Species e_0160

Name GDH2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0470), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0160 = 0 (940)$$

7.374 Species e_0165

Name TRP1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0913), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0165 = 0 {(941)}$$

7.375 Species e_0167

Name GCV1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0501), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0167 = 0 (942)$$

7.376 Species e_0168

Name SES1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00995), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0168 = 0 (943)$$

7.377 Species e_0169

Name ARO3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0020), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0169 = 0 (944)$$

7.378 Species e_0171

Name KRS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00711), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0171 = 0 (945)$$

7.379 Species e_0175

Name TPI1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_11054), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0175 = 0 (946)$$

7.380 Species e_0176

Name TGL2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_1052), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0176 = 0 (947)$$

7.381 Species e_0177

Name LCB2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00993), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0177 = 0 (948)$$

7.382 Species e_0179

Name TPS2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0195 , r_11051), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0179 = 0 (949)$$

7.383 Species e_0181

Name GRX3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0481), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0181 = 0 {(950)}$$

7.384 Species e_0182

Name ARO1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in five reactions (as a modifier in r_0039, r_0040, r_0065, r_0996, r_0997), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0182 = 0 (951)$$

7.385 Species e_0186

Name HOM2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0219), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0186 = 0 (952)$$

7.386 Species e_0194

Name ADK1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0148), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0194 = 0 (953)$$

7.387 Species e_0196

Name LYS4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0027, r_0542), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0196 = 0 (954)$$

7.388 Species e_0203

Name DPP1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00337), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0203 = 0 (955)$$

7.389 Species e_0204

Name INM2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00757), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0204 = 0 {(956)}$$

7.390 Species e_0206

Name SUR2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in r_0259, r_0922), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0206 = 0 (957)$$

7.391 Species e_0214

Name YDR341C

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \ mmol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0209), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0214 = 0 (958)$$

7.392 Species e_0218

Name TRR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1038$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0218 = 0 (959)$$

7.393 Species e_0219

Name TRP4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0202), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0219 = 0 {(960)}$$

7.394 Species e_0220

Name KEI1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00594), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0220 = 0 {(961)}$$

7.395 Species e_0231

Name ADE8

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0499), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0231 = 0 (962)$$

7.396 Species e_0233

Name TSA2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00550), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0233 = 0 (963)$$

7.397 Species e_0234

Name GUK1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in r_0330, r_0528, r_0529), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0234 = 0 (964)$$

7.398 Species e_0237

Name RIB3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0038), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0237 = 0 (965)$$

7.399 Species e_0239

Name SAM2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00726), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0239 = 0 (966)$$

7.400 Species e_0242

Name GRX2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0481, r_0483), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0242 = 0 (967)$$

7.401 Species e_0243

Name QCR7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0243 = 0 (968)$$

7.402 Species e_0249

Name URA3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00821), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0249 = 0 (969)$$

7.403 Species e_0250

Name RIP1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0250 = 0 (970)$$

7.404 Species e_0255

Name CYC7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0438 , r_0439), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0255 = 0 (971)$$

7.405 Species e_0269

Name PMI40

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00723), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0269 = 0 (972)$$

7.406 Species e_0271

Name YND1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00792), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0271 = 0 (973)$$

7.407 Species e_0273

Name FAA2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0399, r_0400), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0273 = 0 (974)$$

7.408 Species e_0276

Name PRO3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00957), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0276 = 0 (975)$$

7.409 Species e_0278

Name CHO1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0880), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0278 = 0 (976)$$

7.410 Species e_0280

Name SAH1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0144), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0280 = 0 (977)$$

7.411 Species e_0281

Name HOM3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0215), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0281 = 0 (978)$$

7.412 Species e_0283

Name HIS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00225), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0283 = 0 (979)$$

7.413 Species e_0290

Name ARG5,6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in r_0115 , r_0759), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0290 = 0 {(980)}$$

7.414 Species e_0291

Name RNR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in r_0974 , r_0976 , r_0978), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0291 = 0 (981)$$

7.415 Species e_0294

Name SER3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0891), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0294 = 0 (982)$$

7.416 Species e_0296

Name AIM10

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0941), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0296 = 0 (983)$$

7.417 Species e_0297

Name TRP2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0203), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0297 = 0 (984)$$

7.418 Species e_0298

Name MET6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00727), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0298 = 0 (985)$$

7.419 Species e_0299

Name PRS2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0916), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0299 = 0 (986)$$

7.420 Species e_0303

Name ADK2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0148), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0303 = 0 (987)$$

7.421 Species e_0304

Name GRX4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0481), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0304 = 0 (988)$$

7.422 Species e_0306

Name PDA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0961), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0306 = 0 (989)$$

7.423 Species e_0311

Name LPD1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0501, r_0961), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0311 = 0 (990)$$

7.424 Species e_0312

Name FRS2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00852), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0312 = 0 (991)$$

7.425 Species e_0314

Name SEC53

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0902), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0314 = 0 (992)$$

7.426 Species e_0317

Name GSY1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00510), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0317 = 0 (993)$$

7.427 Species e_0320

Name HIS2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00537), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0320 = 0 (994)$$

7.428 Species e_0321

Name MET10

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_11027), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0321 = 0 (995)$$

7.429 Species e_0322

Name QCR6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0322 = 0 (996)$$

7.430 Species e_0325

Name HXK1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00534), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0325 = 0 (997)$$

7.431 Species e_0326

Name ERG26

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0234 , r_0235), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0326 = 0 {(998)}$$

7.432 Species e_0328

Name LEU1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in r_0023, r_0060), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0328 = 0 (999)$$

7.433 Species e_0329

Name ERG4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0244), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0329 = 0 {(1000)}$$

7.434 Species e_0330

Name TRP5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_11055), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0330 = 0 {(1001)}$$

7.435 Species e_0334

Name PYC1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00958), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0334 = 0 {(1002)}$$

7.436 Species e_0340

Name MET13

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0080), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0340 = 0 {(1003)}$$

7.437 Species e_0342

Name ARO2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0279), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0342 = 0 \tag{1004}$$

7.438 Species e_0343

Name LYS5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00678), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0343 = 0 {(1005)}$$

7.439 Species e_0346

Name COX4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0346 = 0 {(1006)}$$

7.440 Species e_0347

Name COX13

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0347 = 0 {(1007)}$$

7.441 Species e_0348

Name ARO8

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in r_0018 , r_00851 , r_1063), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0348 = 0 {(1008)}$$

7.442 Species e_0352

Name ADE5,7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0855, r_0914), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0352 = 0 {(1009)}$$

7.443 Species e_0353

Name GUS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0479), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0353 = 0 {(1010)}$$

7.444 Species e_0355

Name HXK2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0534), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0355 = 0 {(1011)}$$

7.445 Species e_0364

Name GSC2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0005), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0364 = 0 {(1012)}$$

7.446 Species e_0365

Name ACB1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a modifier in r_0386, r_0387, r_0389, r_0391, r_0397, r_0398, r_0432, r_0433, r_0434, r_0435), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0365 = 0 {(1013)}$$

7.447 Species e_0367

Name ERG25

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a modifier in r_0238, r_0239, r_0240, r_0241), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0367 = 0 {(1014)}$$

7.448 Species e_0368

Name ADE6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0079), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0368 = 0 {(1015)}$$

7.449 Species e_0372

Name VAS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1089$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0372 = 0 {(1016)}$$

7.450 Species e_0376

Name ASN2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0211), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0376 = 0 {(1017)}$$

7.451 Species e_0379

Name SKN1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0006), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0379 = 0 {(1018)}$$

7.452 Species e_0380

Name CYS4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0309), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0380 = 0 {(1019)}$$

7.453 Species e_0381

Name CHO2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00858), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0381 = 0 {(1020)}$$

7.454 Species e_0382

Name PSD2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00877), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0382 = 0 {(1021)}$$

7.455 Species e_0385

Name ERG1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_1010 , r_1011), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0385 = 0 {(1022)}$$

7.456 Species e_0387

Name RNR4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in r_0974, r_0976, r_0978), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0387 = 0 {(1023)}$$

7.457 Species e_0389

Name QCR9

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0389 = 0 {(1024)}$$

7.458 Species e_0390

Name TYS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1066$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0390 = 0 {(1025)}$$

7.459 Species e_0392

Name TDH3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0486), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0392 = 0 {(1026)}$$

7.460 Species e_0393

Name PDX1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0961), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0393 = 0 {(1027)}$$

7.461 Species e_0396

Name ADE3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in r_0446 , r_0724 , r_0732), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0396 = 0 {(1028)}$$

7.462 Species e_0397

Name SER2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00917), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0397 = 0 {(1029)}$$

7.463 Species e_0398

Name TRX2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in five reactions (as a modifier in r_0550, r_0883, r_0970, r_0973, r_1038), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0398 = 0 {(1030)}$$

7.464 Species e_0401

Name PFK1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00886), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0401 = 0 {(1031)}$$

7.465 Species e_0405

Name ENO1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in $r_0.0366$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0405 = 0 {(1032)}$$

7.466 Species e_0409

Name MES1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00729), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0409 = 0 {(1033)}$$

7.467 Species e_0418

Name PRS3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0916), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0418 = 0 {(1034)}$$

7.468 Species e_0422

Name QCR10

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0422 = 0 \tag{1035}$$

7.469 Species e_0424

Name ERG11

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00317), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0424 = 0 \tag{1036}$$

7.470 Species e_0425

Name DIA4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00995), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0425 = 0 \tag{1037}$$

7.471 Species e_0426

Name ARG4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0207), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0426 = 0 \tag{1038}$$

7.472 Species e_0427

Name DED81

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0212), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0427 = 0 \tag{1039}$$

7.473 Species e_0428

Name THR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0548), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0428 = 0 \tag{1040}$$

7.474 Species e_0431

Name PUT2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0012), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0431 = 0 {(1041)}$$

7.475 Species e_0434

Name NCP1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0317), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0434 = 0 {(1042)}$$

7.476 Species e_0435

Name INM1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00757), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0435 = 0 {(1043)}$$

7.477 Species e_0436

Name COX6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0436 = 0 {(1044)}$$

7.478 Species e_0440

Name ERG7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00698), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0440 = 0 \tag{1045}$$

7.479 Species e_0448

Name TRR2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1038$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0448 = 0 {(1046)}$$

7.480 Species e_0452

Name DCD1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0326), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0452 = 0 \tag{1047}$$

7.481 Species e_0454

Name ENO2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0366), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0454 = 0 \tag{1048}$$

7.482 Species e_0456

Name ERG9

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_11012), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0456 = 0 \tag{1049}$$

7.483 Species e_0457

Name BAT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a modifier in r_0029, r_0663, r_0699, r_1087), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0457 = 0 {(1050)}$$

7.484 Species e_0458

Name IMD2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00565), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0458 = 0 {(1051)}$$

7.485 Species e_0462

Name FAA3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0407), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0462 = 0 \tag{1052}$$

7.486 Species e_0463

Name DOT5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00550), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0463 = 0 {(1053)}$$

7.487 Species e_0465

Name HIS6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0007), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0465 = 0 \tag{1054}$$

7.488 Species e_0467

Name RNR3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a modifier in r_0974, r_0976, r_0978), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0467 = 0 ag{1055}$$

7.489 Species e_0469

Name SER33

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00891), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0469 = 0 {(1056)}$$

7.490 Species e_0470

Name THS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1042$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0470 = 0 ag{1057}$$

7.491 Species e_0472

Name LYS12

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00545), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0472 = 0 {(1058)}$$

7.492 Species e_0475

Name COX5B

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0475 = 0 {(1059)}$$

7.493 Species e_0476

Name HIS5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00538), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0476 = 0 {(1060)}$$

7.494 Species e_0489

Name LYS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0988), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0489 = 0 {(1061)}$$

7.495 Species e_0490

Name HYR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0483), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0490 = 0 {(1062)}$$

7.496 Species e_0492

Name RNR2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in r_0974 , r_0976 , r_0978), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{0}0492 = 0 {(1063)}$$

7.497 Species e_0495

Name TDH1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0486), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{0}0495 = 0 {(1064)}$$

7.498 Species e_0496

Name BNA3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0018), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0496 = 0 {(1065)}$$

7.499 Species e_0499

Name ARG3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_0.0816$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0499 = 0 {(1066)}$$

7.500 Species e_0506

Name RPE1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0984), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0506 = 0 {(1067)}$$

7.501 Species e_0508

Name URA2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0214 , r_0250), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0508 = 0 {(1068)}$$

7.502 Species e_0510

Name GLG2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0510), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0510 = 0 {(1069)}$$

7.503 Species e_0512

Name INO1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00758), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0512 = 0 \tag{1070}$$

7.504 Species e_0514

Name QCR8

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0514 = 0 ag{1071}$$

7.505 Species e_0515

Name ERG20

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0355, r_0462), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0515 = 0 {(1072)}$$

7.506 Species e_0525

Name TDH2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0486), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0525 = 0 {(1073)}$$

7.507 Species e_0528

Name ILV3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0352, r_0353), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0528 = 0 {(1074)}$$

7.508 Species e_0531

Name CYC1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0438, r_0439), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0531 = 0 {(1075)}$$

7.509 Species e_0536

Name OPI3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in r_0858, r_0900, r_0901), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0536 = 0 {(1076)}$$

7.510 Species e_0540

Name URA8

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00307), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0540 = 0 {(1077)}$$

7.511 Species e_0541

Name ADO1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0142), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0541 = 0 ag{1078}$$

7.512 Species e_0542

Name CPA2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0250), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0542 = 0 \tag{1079}$$

7.513 Species e_0545

Name STR2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0311), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0545 = 0 ag{1080}$$

7.514 Species e_0547

Name MET5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_1027), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0547 = 0 {(1081)}$$

7.515 Species e_0548

Name HOM6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00547), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0548 = 0 {(1082)}$$

7.516 Species e_0549

Name PMT4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0362), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0549 = 0 ag{1083}$$

7.517 Species e_0550

Name BAT2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a modifier in r_0029, r_0663, r_0699, r_1087), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0550 = 0 {(1084)}$$

7.518 Species e_0556

Name MET14

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0154), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0556 = 0 {(1085)}$$

7.519 Species e_0557

Name AUR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0594), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0557 = 0 {(1086)}$$

7.520 Species e_0561

Name URA6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_1072), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0561 = 0 ag{1087}$$

7.521 Species e_0563

Name GPX1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0483), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0563 = 0 {(1088)}$$

7.522 Species e_0565

Name UGP1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1084$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0565 = 0 \tag{1089}$$

7.523 Species e_0567

Name FBA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0450), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0567 = 0 {(1090)}$$

7.524 Species e_0568

Name YNK1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in r_0800, r_0811), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0568 = 0 {(1091)}$$

7.525 Species e_0571

Name MDH1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00713), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0571 = 0 {(1092)}$$

7.526 Species e_0574

Name AAT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0216), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0574 = 0 ag{1093}$$

7.527 Species e_0576

Name PGM1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00888), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0576 = 0 {(1094)}$$

7.528 Species e_0578

Name TGL1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_11014), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0578 = 0 {(1095)}$$

7.529 Species e_0582

Name GPM1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00893), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0582 = 0 \tag{1096}$$

7.530 Species e_0585

Name PRS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0916), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0585 = 0 {(1097)}$$

7.531 Species e_0586

Name FAS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a modifier in r_0386, r_0387, r_0389, r_0391, r_0397, r_0398, r_0432, r_0433, r_0434, r_0435), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0586 = 0 {(1098)}$$

7.532 Species e_0591

Name TRP3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0203 , r_0566), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0591 = 0 {(1099)}$$

7.533 Species e_0594

Name URA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00339), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0594 = 0 {(1100)}$$

7.534 Species e_0603

Name GLG1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00510), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0603 = 0 \tag{1101}$$

7.535 Species e_0607

Name GPT2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0495), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0607 = 0 \tag{1102}$$

7.536 Species e_0610

Name MTD1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00731), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0610 = 0 \tag{1103}$$

7.537 Species e_0611

Name TGL4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1052$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0611 = 0 \tag{1104}$$

7.538 Species e_0613

Name YEH1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1014$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0613 = 0 {(1105)}$$

7.539 Species e_0615

Name DPS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0220), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0615 = 0 \tag{1106}$$

7.540 Species e_0629

Name AAT2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0216, r_1063), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0629 = 0 \tag{1107}$$

7.541 Species e_0631

Name ADE16

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0570, r_0912), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0631 = 0 {(1108)}$$

7.542 Species e_0632

Name COX12

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0632 = 0 \tag{1109}$$

7.543 Species e_0633

Name TRX1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a modifier in r_0550, r_0883, r_1038), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{0}633 = 0 \tag{1110}$$

7.544 Species e_0637

Name ERG3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0242), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0637 = 0 {(1111)}$$

7.545 Species e_0638

Name SHM2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0502), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0638 = 0 {(1112)}$$

7.546 Species e_0639

Name FRS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00852), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0639 = 0 {(1113)}$$

7.547 Species e_0642

Name ALT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00674), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0642 = 0 \tag{1114}$$

7.548 Species e_0644

Name ERG27

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0236, r_0237), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0644 = 0 \tag{1115}$$

7.549 Species e_0645

Name AHP1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00550), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0645 = 0 {(1116)}$$

7.550 Species e_0658

Name SAM1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00726), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0658 = 0 {(1117)}$$

7.551 Species e_0667

Name GSY2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0510), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0667 = 0 \tag{1118}$$

7.552 Species e_0674

Name MET17

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00813), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0674 = 0 \tag{1119}$$

7.553 Species e_0675

Name ACO1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0280 , r_0302), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0675 = 0 {(1120)}$$

7.554 Species e_0682

Name FKS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0005), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0682 = 0 \tag{1121}$$

7.555 Species e_0684

Name TAL1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1048$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0684 = 0 {(1122)}$$

7.556 Species e_0685

Name ILV5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0096, r_0669), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0685 = 0 {(1123)}$$

7.557 Species e_0686

Name ADE13

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0151, r_0152), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0686 = 0 {(1124)}$$

7.558 Species e_0687

Name SUR4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0393), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0687 = 0 {(1125)}$$

7.559 Species e_0690

Name COX8

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0690 = 0 \tag{1126}$$

7.560 Species e_0692

Name URA4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0349), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0692 = 0 \tag{1127}$$

7.561 Species e_0693

Name IMD3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00565), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0693 = 0 {(1128)}$$

7.562 Species e_0697

Name HMG2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00558), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0697 = 0 {(1129)}$$

7.563 Species e_0699

Name ERG6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0986), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0699 = 0 \tag{1130}$$

7.564 Species e_0705

Name IMD4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00565), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0705 = 0 {(1131)}$$

7.565 Species e_0708

Name HMG1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00558), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0708 = 0 {(1132)}$$

7.566 Species e_0711

Name TSL1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in r_0195, r_1051), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0711 = 0 {(1133)}$$

7.567 Species e_0712

Name URA5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0820), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0712 = 0 \tag{1134}$$

7.568 Species e_0714

Name NDI1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00770), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0714 = 0 {(1135)}$$

7.569 Species e_0716

Name ERG13

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00559), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0716 = 0 {(1136)}$$

7.570 Species e_0724

Name ERG5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0233), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0724 = 0 {(1137)}$$

7.571 Species e_0729

Name ARG7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \ mmol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00818), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0729 = 0 {(1138)}$$

7.572 Species e_0733

Name PGM2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00888), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0733 = 0 {(1139)}$$

7.573 Species e_0734

Name ILV2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0016, r_0097), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0734 = 0 {(1140)}$$

7.574 Species e_0736

Name ADE17

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in r_0570, r_0912), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0736 = 0 {(1141)}$$

7.575 Species e_0737

Name NDE1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00770), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0737 = 0 {(1142)}$$

7.576 Species e_0741

Name GCV2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00501), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0741 = 0 {(1143)}$$

7.577 Species e_0742

Name ERG2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0243), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0742 = 0 \tag{1144}$$

7.578 Species e_0743

Name PFK2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00886), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0743 = 0 {(1145)}$$

7.579 Species e_0744

Name HFA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0108), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0744 = 0 {(1146)}$$

7.580 Species e_0745

Name ERG12

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00736), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0745 = 0 {(1147)}$$

7.581 Species e_0746

Name GUA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00514), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0746 = 0 {(1148)}$$

7.582 Species e_0747

Name ERG8

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0904), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0747 = 0 {(1149)}$$

7.583 Species e_0750

Name FAA4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0407), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0750 = 0 {(1150)}$$

7.584 Species e_0752

Name COX7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0752 = 0 {(1151)}$$

7.585 Species e_0753

Name TPS3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0195, r_1051), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0753 = 0 {(1152)}$$

7.586 Species e_0754

Name PPA2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0568), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0754 = 0 {(1153)}$$

7.587 Species e_0755

Name URA10

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0820), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0755 = 0 {(1154)}$$

7.588 Species e_0756

Name SCS7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0267, r_0269), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0756 = 0 {(1155)}$$

7.589 Species e_0757

Name PGM3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00888), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0757 = 0 {(1156)}$$

7.590 Species e_0761

Name LCB1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0993), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0761 = 0 {(1157)}$$

7.591 Species e_0763

Name ADE4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0915), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0763 = 0 {(1158)}$$

7.592 Species e_0765

Name TGL3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_{-}1052$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0765 = 0 {(1159)}$$

7.593 Species e_0769

Name IDP3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00661), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0769 = 0 {(1160)}$$

7.594 Species e_0771

Name IDH1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00658), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0771 = 0 {(1161)}$$

7.595 Species e_0774

Name COX5A

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0438), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0774 = 0 {(1162)}$$

7.596 Species e_0775

Name LAT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00961), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0775 = 0 {(1163)}$$

7.597 Species e_0778

Name LEU4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0024), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0778 = 0 {(1164)}$$

7.598 Species e_0788

Name PSD1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00877), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0788 = 0 {(1165)}$$

7.599 Species e_0791

Name ADE12

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0153), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0791 = 0 {(1166)}$$

7.600 Species e_0793

Name YNL247W

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0313), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0793 = 0 {(1167)}$$

7.601 Species e_0799

Name MET2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0549), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0799 = 0 {(1168)}$$

7.602 Species e_0800

Name ERG24

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0231), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0800 = 0 \tag{1169}$$

7.603 Species e_0802

Name PHA2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00938), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0802 = 0 \tag{1170}$$

7.604 Species e_0805

Name CIT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0300), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0805 = 0 {(1171)}$$

7.605 Species e_0808

Name ACC1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in eleven reactions (as a modifier in r_0108, r_0386, r_0387, r_0389, r_0391, r_0397, r_0398, r_0432, r_0433, r_0434, r_0435), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0808 = 0 {(1172)}$$

7.606 Species e_0812

Name MVD1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00739), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0812 = 0 \tag{1173}$$

7.607 Species e_0813

Name LYS9

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0989), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0813 = 0 {(1174)}$$

7.608 Species e_0826

Name ARG1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0208), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0826 = 0 \tag{1175}$$

7.609 Species e_0827

Name GPD2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0491), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0827 = 0 {(1176)}$$

7.610 Species e_0829

Name PRS5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \ mmol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0916), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0829 = 0 \tag{1177}$$

7.611 Species e_0830

Name MET22

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0032), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0830 = 0 {(1178)}$$

7.612 Species e_0832

Name RIB2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0014), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0832 = 0 {(1179)}$$

7.613 Species e_0836

Name WRS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_11057), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0836 = 0 \tag{1180}$$

7.614 Species e_0838

Name MDH2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00713), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0838 = 0 \tag{1181}$$

7.615 Species e_0840

Name ARG8

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0118), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0840 = 0 \tag{1182}$$

7.616 Species e_0841

Name RIB4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00967), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0841 = 0 {(1183)}$$

7.617 Species e_0848

Name CYT1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0848 = 0 \tag{1184}$$

7.618 Species e_0850

Name CDC21

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \ mmol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_1045), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0850 = 0 \tag{1185}$$

7.619 Species e_0851

Name TGL5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_11052), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0851 = 0 \tag{1186}$$

7.620 Species e_0852

Name RKI1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0982), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0852 = 0 {(1187)}$$

7.621 Species e_0855

Name LEU9

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00024), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0855 = 0 {(1188)}$$

7.622 Species e_0860

Name ADE2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0911), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0860 = 0 \tag{1189}$$

7.623 Species e_0862

Name IDH2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0658), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0862 = 0 \tag{1190}$$

7.624 Species e_0867

Name GLN4

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0478), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0867 = 0 {(1191)}$$

7.625 Species e_0869

Name ALE1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0008), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0869 = 0 {(1192)}$$

7.626 Species e_0872

Name SER1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \ mmol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0918), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0872 = 0 \tag{1193}$$

7.627 Species e_0875

Name HIS3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00564), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0875 = 0 {(1194)}$$

7.628 Species e_0880

Name DFR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0344), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0880 = 0 {(1195)}$$

7.629 Species e_0883

Name DGA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00336), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0883 = 0 {(1196)}$$

7.630 Species e_0888

Name CPA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0250), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0888 = 0 \tag{1197}$$

7.631 Species e_0889

Name FAA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0407), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0889 = 0 {(1198)}$$

7.632 Species e_0890

Name PMT3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0362), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0890 = 0 {(1199)}$$

7.633 Species e_0894

Name ALA1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0157), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0894 = 0 {(1200)}$$

7.634 Species e_0895

Name PYK2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00962), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0895 = 0 {(1201)}$$

7.635 Species e_0899

Name GDH1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0471), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0899 = 0 {(1202)}$$

7.636 Species e_0903

Name MET12

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0080), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0903 = 0 {(1203)}$$

7.637 Species e_0904

Name ERG10

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0103), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0904 = 0 {(1204)}$$

7.638 Species e_0910

Name GRX5

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0481 , r_0483), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0910 = 0 \tag{1205}$$

7.639 Species e_0914

Name YDC1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0340), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0914 = 0 {(1206)}$$

7.640 Species e_0915

Name GLR1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_0481 , r_1038), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0915 = 0 {(1207)}$$

7.641 Species e_0922

Name IDI1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_00667), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0922 = 0 {(1208)}$$

7.642 Species e_0926

Name CDC60

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0701), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0926 = 0 {(1209)}$$

7.643 Species e_0934

Name FAS2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a modifier in r_0386, r_0387, r_0389, r_0391, r_0397, r_0398, r_0432, r_0433, r_0434, r_0435), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0934 = 0 {(1210)}$$

7.644 Species e_0940

Name FUM1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0451), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0940 = 0 {(1211)}$$

7.645 Species e_0947

Name CIT3

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0300), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0947 = 0 {(1212)}$$

7.646 Species e_0953

Name HTS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0539), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0953 = 0 {(1213)}$$

7.647 Species e_0955

Name GLN1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00476), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0955 = 0 {(1214)}$$

7.648 Species e_0959

Name ARO7

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0278), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0959 = 0 {(1215)}$$

7.649 Species e_0962

Name TKL1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in r_1049, r_1050), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0962 = 0 \tag{1216}$$

7.650 Species e_0963

Name GRS2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0512), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0963 = 0 {(1217)}$$

7.651 Species e_0964

Name PIS1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00874), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0964 = 0 {(1218)}$$

7.652 Species e_0970

Name ASN1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0211), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0970 = 0 {(1219)}$$

7.653 Species e_0973

Name KRE6

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0006), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0973 = 0 {(1220)}$$

7.654 Species e_0975

Name MET16

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_00883), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0975 = 0 ag{1221}$$

7.655 Species e_0976

Name DPM1

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in $r_0.0361$), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0976 = 0 {(1222)}$$

7.656 Species e_0978

Name QCR2

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r_0439), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0978 = 0 {(1223)}$$

7.657 Species e_0980

Name YER152C

SBO:0000252 polypeptide chain

Initial concentration $0.0010 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in r_0018), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt}e_{-}0980 = 0 {(1224)}$$

A Glossary of Systems Biology Ontology Terms

- **SBO:0000176 biochemical reaction:** An event involving one or more chemical entities that modifies the electrochemical structure of at least one of the participants.
- **SBO:0000185 transport reaction:** Movement of a physical entity without modification of the structure of the entity
- **SBO:0000247** simple chemical: Simple, non-repetitive chemical entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000281 equilibrium constant:** Quantity characterizing a chemical equilibrium in a chemical reaction, which is a useful tool to determine the concentration of various reactants or products in a system where chemical equilibrium occurs
- **SBO:0000290** physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000322** Michaelis constant for substrate: Substrate concentration at which the velocity of product production by the forward activity of a reversible enzyme is half its maximum.
- **SBO:0000323 Michaelis constant for product:** Product concentration at which the velocity of substrate production by the reverse activity of a reversible enzyme is half its maximum.
- **SBO:0000324 forward maximal velocity:** Limiting maximal velocity of the forward reaction of a reversible enzyme, reached when the substrate is in large excess and all the enzyme is complexed.
- **SBO:0000460 enzymatic catalyst:** A substance that accelerates the velocity of a chemical reaction without itself being consumed or transformed, by lowering the free energy of the transition state. The substance acting as a catalyst is an enzyme

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany