The Unknown Component Problem

Vikas Rao
Department of Electrical and Computer Eng.
University of Utah
Vikas.k.rao@utah.edu

November 15, 2017

1 Preliminaries

Given a specification polynomial $f \in \mathbb{F}_q[x_1..x_n] = \mathbb{R}$ where $q = 2^k$, and a circuit C with S gates. Write the gates as polynomials in \mathbb{R} as $F = \{f_1, ..., f_i, ..., f_s\}$: $J = \langle f_1, ..., f_i, ..., f_s \rangle$. Let us consider f_i to be the unknown component and of the special form $y_i + P(u_i)$, where y_i is the leading term of the polynomial representing the unknown gate and P as the function implementing the tail in terms of variables u_i , with $y_i > u_i$ as our variable order.

Let's assume that the circuit C correctly implements f. Then $f \in I(V_{\mathbb{F}_q}(J)) = J + J_0 : (J_0 = \langle x_i^q - x_i \rangle)$, let's also assume $J \subset J_0$.

$$f \in J \implies f = h_1 f_1 + h_2 f_2 \dots + h_i f_i + \dots + h_s f_s : \text{where } h_i \in \mathbb{R}$$

$$h_i f_i = f + h_1 f_1 + h_2 f_2 \dots + h_{i-1} f_{i-1} + h_{i+1} f_{i+1} + \dots + h_s f_s \quad (1)$$

$$h_i f_i \in \langle f, f_1, f_2 \dots f_{i-1}, f_{i+1} \dots f_s \rangle$$

Let J' represent this ideal $\langle f, f_1, f_2...f_{i-1}, f_{i+1}...f_s \rangle$. Given the setup, can we project the variety of J' on y_i and u_i coordinates and recover f_i ?

Is
$$h_i f_i \in J' \cap [y_i, u_i]$$

2 Debug Example

Consider the circuit given in fig. 1 with specification given as f: z+a*c+a+b*c+b+c and variables from ring $\mathbb{R} = \mathbb{F}_2[z,z_1,z_2,d_0,e_2,e_1,e_0,a,b,c]$. Let us assume f_4 to be the unknown gate in the design.

Polynomials for the given circuit are given as:

$$f_{1} = e_{0} + a + b; \quad f_{5} = z1 + e_{0} * d_{0} + e_{0} + d_{0};$$

$$f_{2} = e_{1} + b * c + b + c; \quad f_{6} = z_{2} + d_{0} + e_{2};$$

$$f_{3} = e_{2} + c + 1; \quad f_{7} = z + z_{1} * z_{2};$$

$$f_{4} = d_{0} + P(e_{1}, c);$$

$$(2)$$

We shall add the vanishing polynomials of primary inputs, outputs, and intermediate variables and call this *ideal* J_0 . Here ' α ' is the root of primitive polynomial used to build the field.

$$f_8: a^2 + a;$$
 $f_{12}: e_1^2 + e_1;$ $f_{16}: z_2^2 + z_2;$ $f_9: b^2 + b;$ $f_{13}: e_2^2 + e_2;$ $f_{17}: z^2 + z;$ $f_{10}: c^2 + c;$ $f_{14}: d_0^2 + d_0;$ $f_{11}: e_0^2 + e_0;$ $f_{15}: z_1^2 + z_1;$

Figure 1: circuit with redundancy

From equation (1):

$$f \in \langle f_1, f_2...f_6, f_7 \rangle : \text{ where } f_4 \text{ is unknown}$$

$$h_4 f_4 \in \langle f, f_1, f_2, f_3, f_5, f_6, f_7 \rangle$$

$$h_4 f_4 = f + h_1 f_1 + h_2 f_2 + h_3 f_3 + h_5 f_5 + h_6 f_6 + h_7 f_7$$

$$(3)$$

Since we know that the unknown component lies between cuts cut_0 and cut_1 , and given our RTTO>, we can compute h_7, h_6, h_5 , and h_4 with polynomial reduction as shown below. We will be using the notations: '[]' to represent quotient- h_i 's, '()' to represent divisor- f_i 's, and '{}' to represent the partial remainder of every reduction step- fp_i 's.

Reduction order: $f_7 \rightarrow f_6 \rightarrow f_5 \rightarrow f_4$ Variable order: $\{z, z_2, z_1, d_0, e_2, e_1, e_0, a, b, c\}$

$$f \xrightarrow{f_7} [1](z+z_2*z_1) + \{z_2*z_1+a*c+a+b*c+b+c\} \to fp_1$$

$$fp_1 \xrightarrow{f_6} [z_1](z_2+d_0+e_2) + \{z_1*d_0+z_1*e_2+a*c+a+b*c+b+c\} \to fp_2$$

$$fp_2 \xrightarrow{f_5} [d_0+e_2](z_1+d_0*e_0+d_0+e_0) + \{d_0*e_0*e_2+d_0*e_2+d_0+e_0*e_2+ac+a+bc+b+c\} \to fp_3$$

$$fp_3 \xrightarrow{f_4} [e_0*e_2+e_2+1](d_0+P(e_1,c)) + \{fp_4\}$$

Equation (3) can now be re-written as:

$$h_4f_4 + h_1f_1 + h_2f_2 + h_3f_3 = f + h_5f_5 + h_6f_6 + h_7f_7;$$

$$h_4(d_0 + P(e_1, c)) + h_1f_1 + h_2f_2 + h_3f_3 = f + h_5f_5 + h_6f_6 + h_7f_7;$$

$$h_4 * d_0 + h_4 * P(e_1, c) + h_1f_1 + h_2f_2 + h_3f_3 = f + h_5f_5 + h_6f_6 + h_7f_7;$$

$$h_4 * P(e_1, c) + h_1f_1 + h_2f_2 + h_3f_3 = h_4 * d_0 + f + h_5f_5 + h_6f_6 + h_7f_7;$$

$$h_4 * P(e_1, c) + h_1f_1 + h_2f_2 + h_3f_3 = e_0 * e_2 + a * c + a + b * c + b + c;$$

$$h_4 * P(e_1, c) + h_1f_1 + h_2f_2 + h_3f_3 = e_0 * e_2 + a * c + a + b * c + b + c;$$

Since, we know h_4, f_1, f_2, f_3 , this can be formulated as a ideal membership testing:

$$e_0 * e_2 + a * c + a + b * c + b + c \in \langle h_4, f_1, f_2, f_3 \rangle$$
 (4)

Term re-writing(yet to figure it out in singular), we can arrive at: $e_0 * e_2 + a * c + a + b * c + b + c = [c](e_0 * e_2 + e_2 + 1) + [e_0 * c + e_0 + c](e_2 + c + 1) + (e_1 + b * c + b + c) + [c + 1](e_0 + a + b);$

Thus, $P(u_1) = P(e_1, c) = c$, which can implemented as a simple AND gate with c as both inputs.

Since any P_i which satisfies $P_i - P_j \in (f_1, f_2, f_3) : h_4$, where $i \neq j$, works for the circuit, the computed P is not considered unique and can take any values. We need to come up with better heuristics to identify the exact form and variables in which we want the P to be.