SAI - 2020 Motion and Deep learning

CONTENTS

/

Deep learning in CGI (Motion, Render)

02 Learning motion manifold with CAE

03 Deep learning framework for Motion synthesis

Deep learning in CGI

Denoise

Improving corrupted data

모션 입력(좌), 왼쪽에서부터 오른쪽으로 순서대로 uncleaned data, denoised data, hand-cleaned data

출처: Ubisoft

좌우 그림에서 좌측은 간단한 path tracing으로 렌더된 이미지들, 중간은 RL/ML 개선된 이미지들 02

AN OVERVIEW

Figure 1. Example results for Poisson noise ($\lambda = 30$). Our result was computed by using noisy targets.

Learning motion manifold with Convolutional AE

What is Convolutional AutoEncoder?

Figure (D)

Encoder: Filtering + MaxPooling

In order to fit a neural network framework for model training, we can stack all the $28 \times 28 = 784$ values in a column. The stacked column for the first record look like this: (using $x_{train[1].reshape(1,784)}$):

Figure (B)

Encoder: Filtering + MaxPooling

Figure (E): The Feature Maps

filtering

Figure (G)

Encoder: Filtering + MaxPooling

Figure (H): Max Pooling

Max pooling

Figure (J)

Decoder: Filtering + UpSampling

Decoder: Filtering + UpSampling

Transpose Convolutional matrix

Input Data(2*2)를 1*4로 reshape 2*2 input → 4*4 output

Convolution By Matrix Multiplication

궁금해서 한 번 해본 Autoencoder

모델 학습 결과물:

결과물:

결론: 그냥 CNN이다

Encoder & Decoder가 있는

Learning motion manifold with CAE

다량의, 노이즈가 낀 모션 데이터를 CAE로 학습해보자

Biologically impossible Unrealistic "Fast" motion

Valid motion

$$\mathbf{\Phi}_k^{\dagger}(\mathbf{Y}) = (\mathbf{\Psi}^{\dagger}(\tanh^{-1}(\mathbf{Y})) - \mathbf{b}_k) * \tilde{\mathbf{W}}_k$$

Figure 2: Structure of the Convolutional Autoencoder. Layer 1 contains 64 filters of size 15x63. Layer 2 contains 128 filters of size 15x64. Layer 3 contains 256 filters of size 15x128. The first dimension of the filter corresponds to a temporal window, while the second dimension corresponds to the number of features/filters on the layer below.

% 30 frame per sec,
Sub-sampled input data = X
160 frames roughly covers 5 sec
160 frames * 63 degree of freedom of 20 joints = covers distinct motion

Visible Units L1 Hidden L2 Hidden L3 Hidden (160x63) (80x64)(40x128) (20x256) Convolution & Max Pooling One dimension convolution Normalized joint lengths.. etc Depooling & Deconvolution

Encoder:
$$\mathbf{\Phi}_k(\mathbf{X}) = anh(\mathbf{\Psi}(\mathbf{X}*\mathbf{W}_k+\mathbf{b}_k))$$

Decoder:
$$\mathbf{\Phi}_k^\dagger(\mathbf{Y}) = (\mathbf{\Psi}^\dagger(anh^{-1}(\mathbf{Y})) - \mathbf{b}_k) * \tilde{\mathbf{W}}_k$$

Stepped Motion

Projected

Ground Truth

DL framework for Character Motion synthesis

요즘 너무 바빠서 이 부분을 제가 잘 준비를 해오지 못했습니다. 다음학기에 하게 된다면 이어서 준비해보도록 하겠습니다 ㅠㅠ

DL framework for Character Motion synthesis

Copyright 2020 © GitHub: @ameliacode