交叉检验

在上一章中,我们没有建立任何模型。原因很简单,在创建任何一种机器学习模型之前,我们必须知道什么是交叉检验,以及如何根据数据集选择最佳交叉检验数据集。

那么, 什么是交叉检验, 我们为什么要关注它?

关于什么是交叉检验,我们可以找到多种定义。我的定义只有一句话:交叉检验是构建机器学习模型过程中的一个步骤,它可以帮助我们确保模型准确拟合数据,同时确保我们不会过拟合。但这又引出了另一个词:过拟合。

要解释过拟合,我认为最好先看一个数据集。有一个相当有名的红酒质量数据集(red wine quality dataset)。这个数据集有11个不同的特征,这些特征决定了红酒的质量。

这些属性包括:

- 固定酸度(fixed acidity)
- 挥发性酸度(volatile acidity)
- 柠檬酸(citric acid)
- 残留糖 (residual sugar)
- 氯化物 (chlorides)
- 游离二氧化硫(free sulfur dioxide)
- 二氧化硫总量(total sulfur dioxide)
- 密度(density)
- PH值(pH)
- 硫酸盐 (sulphates)
- 酒精 (alcohol)

根据这些不同特征,我们需要预测红葡萄酒的质量,质量值介于0到10之间。

让我们看看这些数据是怎样的。

```
import pandas as pd

df = pd.read_csv("winequality-red.csv")
```

fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рH	sulphates	alcohol	quality
6.8	0.67	0.00	1.9	0.080	22.0	39.0	0.99701	3.40	0.74	9.7	5
7.2	0.63	0.00	1.9	0.097	14.0	38.0	0.99675	3.37	0.58	9.0	6
8.0	0.31	0.45	2.1	0.216	5.0	16.0	0.99358	3.15	0.81	12.5	7
7.9	0.72	0.17	2.6	0.096	20.0	38.0	0.99780	3.40	0.53	9.5	5
7.6	0.52	0.12	3.0	0.067	12.0	53.0	0.99710	3.36	0.57	9.1	5
	•••				•••		***		•••		
10.4	0.41	0.55	3.2	0.076	22.0	54.0	0.99960	3.15	0.89	9.9	6
9.2	0.59	0.24	3.3	0.101	20.0	47.0	0.99880	3.26	0.67	9.6	5
10.2	0.67	0.39	1.9	0.054	6.0	17.0	0.99760	3.17	0.47	10.0	5
8.1	0.78	0.10	3.3	0.090	4.0	13.0	0.99855	3.36	0.49	9.5	5
7.8	0.52	0.25	1.9	0.081	14.0	38.0	0.99840	3.43	0.65	9.0	6
10.2 8.1	0.67 0.78	0.39 0.10	1.9 3.3	0.054 0.090	6.0 4.0	17.0 13.0	0.99760 0.99855	3.17 3.36	0.47 0.49		10.0 9.5

图1:红葡萄酒质量数据集简单展示

我们可以将这个问题视为分类问题,也可以视为回归问题。为了简单起见,我们选择分类。然而,这个数据集值包含6种质量值。因此,我们将所有质量值映射到0到5之间。

```
# — 个映射字典,用于将质量值从 0 到 5 进行映射
quality_mapping = {
3: 0,
4: 1,
5: 2,
6: 3,
7: 4,
8: 5
}

# 你可以使用 pandas 的 map 函数以及任何字典,
# 来转换给定列中的值为字典中的值
df.loc[:, "quality"] = df.quality.map(quality_mapping)
```

当我们看大这些数据并将其视为一个分类问题时,我们脑海中会浮现出很多可以应用的算法,也许,我们可以使用神经网络。但是,如果我们从一开始就深入研究神经网络,那就有点牵强了。 所以,让我们从简单的、我们也能可视化的东西开始:决策树。

在开始了解什么是过拟合之前,我们先将数据分为两部分。这个数据集有 1599 个样本。我们保留 1000 个样本用于训练,599 个样本作为一个单独的集合。

以下代码可以轻松完成划分:

```
# 使用 frac=1 的 sample 方法来打乱 dataframe
# 由于打乱后索引会改变,所以我们重置索引
df = df.sample(frac=1).reset_index(drop=True)

# 选取前 1000 行作为训练数据
df_train = df.head(1000)

# 选取最后的 599 行作为测试/验证数据
df_test = df.tail(599)
```

现在,我们将在训练集上使用 scikit-learn 训练一个决策树模型。

```
# 从 scikit-learn 导入需要的模块
from sklearn import tree
from sklearn import metrics
# 初始化一个决策树分类器,设置最大深度为 3
clf = tree.DecisionTreeClassifier(max_depth=3)
# 选择你想要训练模型的列
# 这些列作为模型的特征
cols = ['fixed acidity',
       'volatile acidity',
       'citric acid',
       'residual sugar',
       'chlorides',
       'free sulfur dioxide',
       'total sulfur dioxide',
       'density',
       'pH',
       'sulphates',
       'alcohol']
# 使用之前映射的质量以及提供的特征来训练模型
clf.fit(df_train[cols], df_train.quality)
```

请注意,我将决策树分类器的最大深度(max_depth)设为 3。该模型的所有其他参数均保持默 认值。现在,我们在训练集和测试集上测试该模型的准确性:

```
# 在训练集上生成预测
train_predictions = clf.predict(df_train[cols])
```

```
# 在测试集上生成预测
test_predictions = clf.predict(df_test[cols])

# 计算训练数据集上预测的准确度
train_accuracy = metrics.accuracy_score(
    df_train.quality, train_predictions
)

# 计算测试数据集上预测的准确度
test_accuracy = metrics.accuracy_score(
    df_test.quality, test_predictions
)
```

训练和测试的准确率分别为 58.9%和 54.25%。现在,我们将最大深度(max_depth)增加到 7,并重复上述过程。这样,训练准确率为 76.6%,测试准确率为 57.3%。在这里,我们使用准确率,主要是因为它是最直接的指标。对于这个问题来说,它可能不是最好的指标。我们可以根据最大深度(max_depth)的不同值来计算这些准确率,并绘制曲线图。

```
# 注意: 这段代码在 Jupyter 笔记本中编写
# 导入 scikit-learn 的 tree 和 metrics
from sklearn import tree
from sklearn import metrics
# 导入 matplotlib 和 seaborn
# 用于绘图
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
# 设置全局标签文本的大小
matplotlib.rc('xtick', labelsize=20)
matplotlib.rc('ytick', labelsize=20)
# 确保图表直接在笔记本内显示
%matplotlib inline
# 初始化用于存储训练和测试准确度的列表
# 我们从 50% 的准确度开始
train_accuracies = [0.5]
test_accuracies = [0.5]
# 遍历几个不同的树深度值
for depth in range(1, 25):
   # 初始化模型
   clf = tree.DecisionTreeClassifier(max_depth=depth)
```

```
# 选择用于训练的列/特征
   cols = [
       'fixed acidity', 'volatile acidity', 'citric acid',
       'residual sugar', 'chlorides', 'free sulfur dioxide',
       'total sulfur dioxide', 'density', 'pH',
       'sulphates', 'alcohol'
   ]
   # 在给定特征上拟合模型
   clf.fit(df_train[cols], df_train.quality)
   # 创建训练和测试预测
   train_predictions = clf.predict(df_train[cols])
   test_predictions = clf.predict(df_test[cols])
   # 计算训练和测试准确度
   train_accuracy = metrics.accuracy_score(
       df_train.quality, train_predictions
   )
   test_accuracy = metrics.accuracy_score(
       df_test.quality, test_predictions
   )
   #添加准确度到列表
   train_accuracies.append(train_accuracy)
   test_accuracies.append(test_accuracy)
# 使用 matplotlib 和 seaborn 创建两个图
plt.figure(figsize=(10, 5))
sns.set_style("whitegrid")
plt.plot(train_accuracies, label="train accuracy")
plt.plot(test_accuracies, label="test accuracy")
plt.legend(loc="upper left", prop={'size': 15})
plt.xticks(range(0, 26, 5))
plt.xlabel("max_depth", size=20)
plt.ylabel("accuracy", size=20)
plt.show()
```


图 2: 不同 max_depth 训练和测试准确率。

我们可以看到,当最大深度(max_depth)的值为14时,测试数据的得分最高。随着我们不断增加这个参数的值,测试准确率会保持不变或变差,但训练准确率会不断提高。这说明,随着最大深度(max_depth)的增加,决策树模型对训练数据的学习效果越来越好,但测试数据的性能却丝毫没有提高。

这就是所谓的过拟合。

模型在训练集上完全拟合,而在测试集上却表现不佳。这意味着模型可以很好地学习训练数据,但无法泛化到未见过的样本上。在上面的数据集中,我们可以建立一个最大深度(max_depth)非常高的模型,它在训练数据上会有出色的结果,但这种模型并不实用,因为它在真实世界的样本或实时数据上不会提供类似的结果。

有人可能会说,这种方法并没有过拟合,因为测试集的准确率基本保持不变。过拟合的另一个定义是,当我们不断提高训练损失时,测试损失也在增加。这种情况在神经网络中非常常见。

每当我们训练一个神经网络时,都必须在训练期间监控训练集和测试集的损失。如果我们有一个非常大的网络来处理一个非常小的数据集(即样本数非常少),我们就会观察到,随着我们不断训练,训练集和测试集的损失都会减少。但是,在某个时刻,测试损失会达到最小值,之后,即使训练损失进一步减少,测试损失也会开始增加。我们必须在验证损失达到最小值时停止训练。

这是对过拟合最常见的解释。

奥卡姆剃刀用简单的话说,就是不要试图把可以用简单得多的方法解决的事情复杂化。换句话说,最简单的解决方案就是最具通用性的解决方案。一般来说,只要你的模型不符合奥卡姆剃刀原则,就很可能是过拟合。

图 3: 过拟合的最一般定义

现在我们可以回到交叉检验。

在解释过拟合时,我决定将数据分为两部分。我在其中一部分上训练模型,然后在另一部分上检查其性能。这也是交叉检验的一种,通常被称为 "暂留集"(hold-out set)。当我们拥有大量数据,而模型推理是一个耗时的过程时,我们就会使用这种(交叉)验证。

交叉检验有许多不同的方法,它是建立一个良好的机器学习模型的最关键步骤。**选择正确的交叉** 检验取决于所处理的数据集,在一个数据集上适用的交叉检验也可能不适用于其他数据集。不过,有几种类型的交叉检验技术最为流行和广泛使用。

其中包括:

- k 折交叉检验
- 分层 k 折交叉检验
- 暂留交叉检验
- 留一交叉检验
- 分组 k 折交叉检验

交叉检验是将训练数据分层几个部分, 我们在其中一部分上训练模型, 然后在其余部分上进行测试。请看图 4。

图 4: 将数据集拆分为训练集和验证集

图 4 和图 5 说明,当你得到一个数据集来构建机器学习模型时,你会把它们分成两个不同的集: 训练集和验证集。很多人还会将其分成第三组,称之为测试集。不过,我们将只使用两个集。如你所见,我们将样本和与之相关的目标进行了划分。我们可以将数据分为 k 个互不关联的不同集合。这就是所谓的 k 折交叉检验。

图 5: K 折交叉检验

我们可以使用 scikit-learn 中的 KFold 将任何数据分割成 k 个相等的部分。每个样本分配一个从 0 到 k-1 的值。

```
# 导入 pandas 和 scikit-learn 的 model_selection 模块
import pandas as pd
from sklearn import model_selection
if __name__ = "__main__":
   # 训练数据存储在名为 train.csv 的 CSV 文件中
   df = pd.read_csv("train.csv")
   # 我们创建一个名为 kfold 的新列, 并用 -1 填充
   df["kfold"] = -1
   # 接下来的步骤是随机打乱数据的行
   df = df.sample(frac=1).reset_index(drop=True)
   # 从 model_selection 模块初始化 kfold 类
   kf = model_selection.KFold(n_splits=5)
   # 填充新的 kfold 列 (enumerate的作用是返回一个迭代器)
   for fold, (trn_, val_) in enumerate(kf.split(X=df)):
       df.loc[val_, 'kfold'] = fold
   # 保存带有 kfold 列的新 CSV 文件
   df.to_csv("train_folds.csv", index=False)
```

几乎所有类型的数据集都可以使用此流程。例如,当数据图像时,您可以创建一个包含图像 ID、图像位置和图像标签的 CSV,然后使用上述流程。

另一种重要的交叉检验类型是分层 k 折交叉检验。如果你有一个偏斜的二元分类数据集,其中正样本占 90%,负样本只占 10%,那么你就不应该使用随机 k 折交叉。对这样的数据集使用简单的 k 折交叉检验可能会导致折叠样本全部为负样本。在这种情况下,我们更倾向于使用分层 k 折交叉检验。分层 k 折交叉检验可以保持每个折中标签的比例不变。因此,在每个折叠中,都会有相同的 90% 正样本和 10% 负样本。因此,无论您选择什么指标进行评估,都会在所有折叠中得到相似的结果。

修改创建 k 折交叉检验的代码以创建分层 k 折交叉检验也很容易。我们只需将 model_selection.KFold 更改为 model_selection.StratifiedKFold,并在 kf.split(...) 函数中指定要分层的目标列。我们假设 CSV 数据集有一列名为 "target",并且是一个分类问题。

```
# 导入 pandas 和 scikit-learn 的 model_selection 模块 import pandas as pd from sklearn import model_selection
```

```
if __name__ = "__main__":
   # 训练数据保存在名为 train.csv 的 CSV 文件中
   df = pd.read_csv("train.csv")
   #添加一个新列 kfold, 并用 -1 初始化
   df["kfold"] = -1
   # 随机打乱数据行
   df = df.sample(frac=1).reset_index(drop=True)
   # 获取目标变量
   y = df.target.values
   # 初始化 StratifiedKFold 类,设置折数 (folds) 为 5
   kf = model_selection.StratifiedKFold(n_splits=5)
   # 使用 StratifiedKFold 对象的 split 方法来获取训练和验证索引
   for f, (t_, v_) in enumerate(kf.split(X=df, y=y)):
       df.loc[v_, 'kfold'] = f
   # 保存包含 kfold 列的新 CSV 文件
   df.to_csv("train_folds.csv", index=False)
```

对于葡萄酒数据集、我们来看看标签的分布情况。

```
b = sns.countplot(x='quality', data=df)
b.set_xlabel("quality", fontsize=20)
b.set_ylabel("count", fontsize=20)
```

请注意,我们继续上面的代码。因此,我们已经转换了目标值。从图 6 中我们可以看出,质量偏差很大。有些类别有很多样本,有些则没有那么多。如果我们进行简单的 k 折交叉检验,那么每个折叠中的目标值分布都不会相同。因此,在这种情况下,我们选择分层 k 折交叉检验。

图 6: 葡萄酒数据集中 "质量" 分布情况

规则很简单,如果是标准分类问题,就盲目选择分层 k 折交叉检验。

但如果数据量很大,该怎么办呢?假设我们有100万个样本。5倍交叉检验意味着在800k个样本上进行训练,在200k个样本上进行验证。根据我们选择的算法,对于这样规模的数据集来说,训练甚至验证都可能非常昂贵。在这种情况下,我们可以选择暂留交叉检验。

创建保持结果的过程与分层 k 折交叉检验相同。对于拥有 100 万个样本的数据集,我们可以创建 10 个折叠而不是 5 个,并保留其中一个折叠作为保留样本。这意味着,我们将有 10 万个样本被保留下来,我们将始终在这个样本集上计算损失、准确率和其他指标,并在 90 万个样本上进行训练。

在处理时间序列数据时,暂留交叉检验也非常常用。假设我们要解决的问题是预测一家商店 2020 年的销售额,而我们得到的是 2015-2019 年的所有数据。在这种情况下,你可以选择 2019 年的所有数据作为保留数据,然后在 2015 年至 2018 年的所有数据上训练你的模型。

图 7: 时间序列数据示例

在图 7 所示的示例中,假设我们的任务是预测从时间步骤 31 到 40 的销售额。我们可以保留 21 至 30 步的数据,然后从 0 步到 20 步训练模型。需要注意的是,在预测 31 步至 40 步时,应将 21 步至 30 步的数据纳入模型,否则,模型的性能将大打折扣。

在很多情况下,我们必须处理小型数据集,而创建大型验证集意味着模型学习会丢失大量数据。 在这种情况下,我们可以选择留一交叉检验,相当于特殊的 k 则交叉检验其中 k=N,N 是数据集中的样本数。这意味着在所有的训练折叠中,我们将对除 1 之外的所有数据样本进行训练。这种类型的交叉检验的折叠数与数据集中的样本数相同。

需要注意的是,如果模型的速度不够快,这种类型的交叉检验可能会耗费大量时间,但由于这种交叉检验只适用于小型数据集,因此并不重要。

现在我们可以转向回归问题了。回归问题的好处在于,除了分层 k 折交叉检验之外,我们可以在回归问题上使用上述所有交叉检验技术。也就是说,我们不能直接使用分层 k 折交叉检验,但有一些方法可以稍稍改变问题,从而在回归问题中使用分层 k 折交叉检验。大多数情况下,简单的 k 折交叉检验适用于任何回归问题。但是,如果发现目标分布不一致,就可以使用分层 k 折交叉检验。

要在回归问题中使用分层 k 折交叉检验,我们必须先将目标划分为若干个分层,然后再以处理分类问题的相同方式使用分层 k 折交叉检验。选择合适的分层数有几种选择。如果样本量很大(> 10k, > 100k),那么就不需要考虑分层的数量。只需将数据分为 10 或 20 层即可。如果样本数不多,则可以使用 Sturge's Rule 这样的简单规则来计算适当的分层数。

Sturge's Rule:

图 8: 利用斯特格法则绘制样本与箱数对比图

让我们制作一个回归数据集样本,并尝试应用分层 k 折交叉检验,如下面的 python 代码段所示。

```
# stratified-kfold for regression
# 为回归问题进行分层K-折交叉验证

# 导入需要的库
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn import model_selection

# 创建分折 (folds) 的函数
def create_folds(data):
    # 创建一个新列叫做kfold, 并用-1来填充
    data["kfold"] = -1

# 随机打乱数据的行
```

```
data = data.sample(frac=1).reset_index(drop=True)
   # 使用Sturge规则计算bin的数量
   num_bins = int(np.floor(1 + np.log2(len(data))))
   # 使用pandas的cut函数进行目标变量 (target) 的分箱
   data.loc[:, "bins"] = pd.cut(
       data["target"], bins=num_bins, labels=False
   )
   # 初始化StratifiedKFold类
   kf = model_selection.StratifiedKFold(n_splits=5)
   # 填充新的kfold列
   # 注意: 我们使用的是bins而不是实际的目标变量 (target)!
   for f, (t_, v_) in enumerate(kf.split(X=data, y=data.bins.values)):
       data.loc[v_, 'kfold'] = f
   # 删除bins列
   data = data.drop("bins", axis=1)
   # 返回包含folds的数据
   return data
# 主程序开始
if __name__ = "__main__":
   # 创建一个带有15000个样本、100个特征和1个目标变量的样本数据集
   X, y = datasets.make_regression(
      n_samples=15000, n_features=100, n_targets=1
   )
   # 使用numpy数组创建一个数据框
   df = pd.DataFrame(
       Χ,
       columns=[f"f_{i}" for i in range(X.shape[1])]
   )
   df.loc[:, "target"] = y
   # 创建folds
   df = create_folds(df)
```

交叉检验是构建机器学习模型的第一步,也是最基本的一步。如果要做特征工程,首先要拆分数据。如果要建立模型,首先要拆分数据。如果你有一个好的交叉检验方案,其中验证数据能够代表训练数据和真实世界的数据,那么你就能建立一个具有高度通用性的好的机器学习模型。

本章介绍的交叉检验类型几乎适用于所有机器学习问题。不过,你必须记住,交叉检验也在很大程度上取决于数据,你可能需要根据你的问题和数据采用新的交叉检验形式。

例如,假设我们有一个问题,希望建立一个模型,从患者的皮肤图像中检测出皮肤癌。我们的任务是建立一个二元分类器,该分类器接收输入图像并预测其良性或恶性的概率。

在这类数据集中,训练数据集中可能有同一患者的多张图像。因此,要在这里建立一个良好的交叉检验系统,必须有分层的 k 折交叉检验,但也必须确保训练数据中的患者不会出现在验证数据中。幸运的是,scikit-learn 提供了一种称为 GroupKFold 的交叉检验类型。 在这里,患者可以被视为组。 但遗憾的是,scikit-learn 无法将 GroupKFold 与 StratifiedKFold 结合起来。所以你需要自己动手。我把它作为一个练习留给读者的练习。