universität freiburg

Stochastic processes

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024ws_stochproc.html

https://www.stochastik.uni-freiburg.de/

Tutorial 10 - Markov processes II

Exercise 1 (4 Points).

Let $\mathcal{X} = (X_t)_{t=0,1,2,\dots}$ be a stochastic process with state space E and $(\mathcal{F}_t)_{t=0,1,2,\dots}$ its filtration. Show that the following are equivalent:

- (a) \mathcal{X} is a Markov process.
- (b) For all bounded and measurable functions $f: E \to \mathbb{R}$,

$$f(X_t) - \sum_{k=1}^t \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}]$$

is a martingale wrt the filtration $(\mathcal{F}_t)_{t=0,1,2,...}$

Solution.

(a) '\imp': Let us define $M_t = f(X_t) - \sum_{k=1}^t \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}]$. Obviously, $M_{t+1} = f(X_{t+1}) - \sum_{k=1}^{t+1} \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}]$. It is sufficient to verify the martingale property!

$$\begin{aligned} \mathbf{E}[M_{t+1}|\mathcal{F}_t] &= \mathbf{E}[f(X_{t+1}) - \sum_{k=1}^{t+1} \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}]|\mathcal{F}_t] \\ &= \mathbf{E}[f(X_{t+1})|\mathcal{F}_t] - \sum_{k=1}^{t} \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}] - \mathbf{E}[f(X_{t+1}) - f(X_t)|X_t]. \end{aligned}$$

With the Markov property, we have that,

$$\mathbf{E}[M_{t+1}|\mathcal{F}_t] = \mathbf{E}[f(X_{t+1})|X_t] - \sum_{k=1}^t \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}] - \mathbf{E}[f(X_{t+1}) - f(X_t)|X_t].$$

$$= f(X_t) - \sum_{k=1}^t \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}] = M_t$$

(b) '\(\infty\)': Now, we assume that M_t as defined above is a martingale with respect to the filtration $(\mathcal{F}_t)_{t=0,1,2,...}$, and we will verify the Markov property.

$$\mathbf{E}[f(X_{t+1})|\mathcal{F}_t] = \mathbf{E}[M_{t+1} + \sum_{k=1}^{t+1} \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}]|\mathcal{F}_t]$$

$$= \mathbf{E}[M_{t+1}|\mathcal{F}_t] + \sum_{k=1}^{t+1} \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}].$$

With the martingale property, and by the definition of M_t , it follows that

$$\mathbf{E}[f(X_{t+1})|\mathcal{F}_t] = M_t + \sum_{k=1}^{t+1} \mathbf{E}[f(X_k) - f(X_{k-1})|X_{k-1}]$$

$$= f(X_t) + \mathbf{E}[f(X_{t+1}) - f(X_t)|X_t]$$

$$= \mathbf{E}[f(X_{t+1})|X_t].$$

Exercise 2 (2+2 points).

Let $\lambda > 0$ and ν be a probability measure on \mathbb{R} with $\nu(\{1\}) = \nu(\{-1\}) = \frac{1}{2}$. Furthermore, consider the family of Markov kernels $(P_{s,t})_{s \leq t}$ given by:

$$P_{s,t}(x,\{x\}) = \frac{1}{2} (1 + e^{-\lambda(t-s)}), \quad P_{s,t}(x,\{-x\}) = \frac{1}{2} (1 - e^{-\lambda(t-s)}), \quad x \in \{-1-1\}.$$

For $x \neq \pm 1$, it is $P_{s,t}(x,\cdot) = \delta_x$ the Dirac measure on x.

(a) Show that the *Chapman-Kolmogorov* equations

$$P_{s,u}(x,A) = \int_{\mathbb{R}} P_{s,t}(x,dz) P_{t,u}(z,A)$$

hold for all $s \leq t \leq u, x \in \mathbb{R}$, and $A \subset \mathbb{R}$.

(b) Let \mathcal{X} be a Markov process with Markov kernels $(P_{s,t})_{s \leq t}$. Show that, if $X_0 \sim \nu$, then

$$\mathbf{P}(X_t = 1) = \mathbf{P}(X_t = -1) = \frac{1}{2}.$$

Solution.

(a) To show that the Chapman-Kolmogorov equations

$$P_{s,u}(x,A) = \int_{\mathbb{R}} P_{s,t}(x,dz) P_{t,u}(z,A)$$

hold for all $s \leq t \leq u, x \in \mathbb{R}$, and $A = \{x\}$; on the one hand, for $x = \pm 1$, we have

$$\int_{\mathbb{R}} P_{s,t}(x,dz) P_{t,u}(z,A) = P_{s,t}(x,\{x\}) P_{t,u}(x,A) + P_{s,t}(x,\{-x\}) P_{t,u}(-x,A)
= \frac{1}{2} (1 + e^{-\lambda(t-s)}) \cdot \frac{1}{2} (1 + e^{-\lambda(u-t)}) + \frac{1}{2} (1 - e^{-\lambda(t-s)}) \cdot \frac{1}{2} (1 - e^{-\lambda(u-s)})
= \frac{1}{4} (2 + 2e^{-\lambda(t-s)e^{-\lambda(u-t)}}) = \frac{1}{2} (1 + e^{-\lambda(u-s)}) = P_{s,u}(x,\{x\}).$$

Similarly, $P_{s,u}(x,\{-x\}) = \frac{1}{2}(1 - e^{-\lambda(u-s)})$. In general, all $A \subset \mathbb{R}$ can be written as a disjoint union $A = A_1 \uplus A_2$ with $x \in A_1$ and $-x \in A_2$. Hence,

$$\begin{split} P_{s,u}(x,A) &= P_{s,u}(x,A_1) + P_{s,u}(x,A_2) \\ &= \int_{\mathbb{R}} P_{s,t}(x,dz) P_{t,u}(z,A_1) + \int_{\mathbb{R}} P_{s,t}(x,dz) P_{t,u}(z,A_2) \\ &= \int_{\mathbb{R}} P_{s,t}(x,dz) \left(P_{t,u}(z,A_1) + P_{t,u}(z,A_2) \right) \\ &= \int_{\mathbb{R}} P_{s,t}(x,dz) P_{t,u}(z,A) \end{split}$$

On the other hand, for $x \neq \pm 1$,

$$\int_{\mathbb{R}} P_{s,t}(x,dz) P_{t,u}(z,A) = \int_{\mathbb{R}} \delta_x P_{t,u}(z,A) = P_{t,u}(x,A).$$

Therefore, the *Chapman-Kolmogorov* equations hold for all $s \leq t \leq u, x \in \mathbb{R}$, and $A \subset \mathbb{R}$.

(b) With the Markov property, it holds,

$$\mathbf{P}(X_t = A) = \int_{\mathbb{R}} P_{0,t}(x,\{A\})\nu(dx).$$

Since $\nu(\{1\}) = \nu(\{-1\}) = \frac{1}{2}$, then

$$\mathbf{P}(X_t = 1) = \int_{\{-1,1\}} P_{0,t}(x,\{1\}) \nu(dx)$$

$$= \nu(\{1\}) \cdot P_{0,t}(1,\{1\}) + \nu(\{-1\}) \cdot P_{0,t}(-1,\{1\})$$

$$= \frac{1}{2} (1 - e^{-\lambda(t-0)}) \cdot \frac{1}{2} + \frac{1}{2} (1 + e^{-\lambda(t-0)}) \cdot \frac{1}{2}$$

$$= \frac{1}{2}.$$

Similarly, $\mathbf{P}(X_t = -1) = \frac{1}{2}$ or use the fact that $\mathbf{P}(X_t = -1) = 1 - \mathbf{P}(X_t = 1) = \frac{1}{2}$.

Exercise 3 (4 Points).

Let $E \subset \mathbb{R}$ be countable and let \mathcal{X} be a Markov chain on E with transition matrix p and with the property that, for any x, there are at most three choices for the next step; that is, there exists a set $A_x \subset E$ of cardinality 3 with p(x,y) = 0 for all $y \in E \setminus A_x$. Let $d(x) := \sum_{y \in E} (y - x) p(x,y)$ for all $x \in E$.

- (a) Show that $M_n := X_n \sum_{k=0}^{n-1} d(X_k)$ defines a martingale M with square variation process $\langle M \rangle_n = \sum_{i=0}^{n-1} f(X_i)$ for a unique function $f: E \to [0, \infty)$.
- (b) Show that the transition matrix p is uniquely determined by f and d.

Exercise 4 (4 Points).

Let $\alpha, \sigma^2 \in (0,\infty)$. Show that given $K_t(x,\cdot) := N(xe^{-\alpha t}, \frac{\sigma^2}{2\alpha}(1-e^{-2\alpha t}))$ for $t > 0, K_0(x,\cdot) := \varepsilon_x$ is a semigroup of Markov kernels, i.e:

$$K_{s+t}(x,B) = \int_{\mathbb{R}} K_t(y,B)K_s(x,dy) \qquad \forall (x,B) \in \mathbb{R} \times \mathcal{B} \text{ and } s,t \in \mathbb{R}_+.$$

Hint: The following equation simplifies the calculation:

$$\int_{B} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{B-\mu} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx.$$

Solution.

We show the claim in general for $f: \mathbb{R} \to \overline{\mathbb{R}}_+$ measurable, then the claim follows in

Figure 1: Merry Christmas!

particular also for $f=\mathbbm{1}_B$. Further set $k_s=(1-e^{-2\alpha s}),\ k_t=(1-e^{-2\alpha t}),\ k_{s+t}=(1-e^{-2\alpha(s+t)})$ and $\tilde{\sigma}^2=\frac{\sigma^2}{2\alpha}$. Then the following applies

$$\begin{split} &(K_t \circ K_s) f(x) = \int \int f(z) K_s(y, dz) K_t(x, dy) \\ &= \frac{1}{\sqrt{2\pi\tilde{\sigma}^2 k_s}} \int \int f(z + y e^{-\alpha s}) e^{\frac{-z^2}{2\tilde{\sigma}^2 k_s}} dz \ K_t(x, dy) \\ &= \frac{1}{2\pi\tilde{\sigma}^2 \sqrt{k_s k_t}} \int \int f(z + (y + x e^{-\alpha t}) e^{-\alpha s}) e^{\frac{-z^2}{2\tilde{\sigma}^2 k_s}} e^{\frac{-y^2}{2\tilde{\sigma}^2 k_t}} dz \ dy \\ &= \frac{1}{2\pi\tilde{\sigma}^2 \sqrt{k_s k_t}} \int f(u + x e^{-\alpha (t+s)}) \int \exp\left(-\frac{1}{2\tilde{\sigma}^2} (y^2 (\frac{1}{k_t} + \frac{e^{-2\alpha s}}{k_s}) - 2y \frac{e^{-\alpha s} u}{k_s} + \frac{u^2}{k_s})\right) dy \ du \\ &= \frac{1}{\sqrt{2\pi\tilde{\sigma}^2 k_{s+t}}} \int f(u + x e^{-\alpha (t+s)}) \frac{1}{\sqrt{2\pi\tilde{\sigma}^2 \frac{k_s k_t}{k_{s+t}}}} \int \exp\left(-\frac{1}{2\tilde{\sigma}^2 \frac{k_s k_t}{k_{s+t}}} (y - \frac{e^{-\alpha s} k_t u}{k_{s+t}})^2\right) dy \\ &= \exp\left(\frac{-u^2}{2\tilde{\sigma}^2} (\frac{1}{k_s} + \frac{e^{-2\alpha s} k_t}{k_s k_{s+t}})\right) du \\ &= \frac{1}{\sqrt{2\pi\tilde{\sigma}^2 k_{s+t}}} \int f(u + x e^{-\alpha (t+s)}) e^{-\frac{u^2}{2\tilde{\sigma}^2 k_s + t}} du \\ &= K_{s+t} f(x). \end{split}$$