Business Problem:

Ad Ease is an ads and marketing based company helping businesses elicit maximum clicks @ minimum cost. AdEase is an ad infrastructure to help businesses promote themselves easily, effectively, and economically. The interplay of 3 Al modules - Design, Dispense, and Decipher, come together to make it this an end-to-end 3 step process digital advertising solution for all.

You are working in the Data Science team of Ad ease trying to understand the per page view report for different wikipedia pages for 550 days, and forecasting the number of views so that you can predict and optimize the ad placement for your clients. You are provided with the data of 145k wikipedia pages and daily view count for each of them. Your clients belong to different regions and need data on how their ads will perform on pages in different languages.

Importing required packages:

In [2]:

```
import pandas as pd
import numpy as np
import math as math
import seaborn as sns
sns.set(style='whitegrid')
from scipy import stats
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
plt.rcParams['figure.figsize'] = (15, 6)
```

In [3]:

```
ad_ease_train = pd.read_csv("train_1.csv")
```

In [4]:

ad_ease_train

Out[4]:

	Page	2015- 07-01	2015- 07-02	2015- 07-03	2015- 07-04	2015- 07-05	2015- 07-06
0	2NE1_zh.wikipedia.org_all-access_spider	18.0	11.0	5.0	13.0	14.0	9.0
1	2PM_zh.wikipedia.org_all-access_spider	11.0	14.0	15.0	18.0	11.0	13.0
2	3C_zh.wikipedia.org_all-access_spider	1.0	0.0	1.0	1.0	0.0	4.0
3	4minute_zh.wikipedia.org_all-access_spider	35.0	13.0	10.0	94.0	4.0	26.0
4	52_Hz_I_Love_You_zh.wikipedia.org_all-access_s	NaN	NaN	NaN	NaN	NaN	NaN
145058	Underworld_(serie_de_películas)_es.wikipedia.o	NaN	NaN	NaN	NaN	NaN	NaN
145059	Resident_Evil:_Capítulo_Final_es.wikipedia.org	NaN	NaN	NaN	NaN	NaN	NaN
145060	Enamorándome_de_Ramón_es.wikipedia.org_all- acc		NaN	NaN	NaN	NaN	NaN
145061	Hasta_el_último_hombre_es.wikipedia.org_all-ac	NaN	NaN	NaN	NaN	NaN	NaN
145062	Francisco_el_matemático_(serie_de_televisión_d	NaN	NaN	NaN	NaN	NaN	NaN

145063 rows × 551 columns

In [5]:

ad_ease_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 145063 entries, 0 to 145062
Columns: 551 entries, Page to 2016-12-31

dtypes: float64(550), object(1)

memory usage: 609.8+ MB

In [6]:

ad_ease_train.shape

Out[6]:

(145063, 551)

In [7]:

```
ad_ease_train.describe()
```

Out[7]:

	2015-07-01	2015-07-02	2015-07-03	2015-07-04	2015-07-05	2015-07-06	
count	1.243230e+05	1.242470e+05	1.245190e+05	1.244090e+05	1.244040e+05	1.245800e+05	1
mean	1.195857e+03	1.204004e+03	1.133676e+03	1.170437e+03	1.217769e+03	1.290273e+03	1
std	7.275352e+04	7.421515e+04	6.961022e+04	7.257351e+04	7.379612e+04	8.054448e+04	7
min	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0
25%	1.300000e+01	1.300000e+01	1.200000e+01	1.300000e+01	1.400000e+01	1.100000e+01	1
50%	1.090000e+02	1.080000e+02	1.050000e+02	1.050000e+02	1.130000e+02	1.130000e+02	1
75%	5.240000e+02	5.190000e+02	5.040000e+02	4.870000e+02	5.400000e+02	5.550000e+02	5
max	2.038124e+07	2.075219e+07	1.957397e+07	2.043964e+07	2.077211e+07	2.254467e+07	2

8 rows × 550 columns

→

In [8]:

```
ad_ease_train.isnull().sum().sort_values(ascending=False)
```

Out[8]:

```
2015-07-02
              20816
2015-07-01
              20740
2015-07-07
              20664
2015-07-05
              20659
2015-07-04
              20654
2016-12-31
               3465
2016-12-20
               3268
2016-12-21
               3236
2016-12-24
               3189
Length: 551, dtype: int64
```

Exploratory Data Analysis:

Missing values:

In [9]:

```
df_null = ad_ease_train[ad_ease_train.isnull().any(axis=1)]
```

```
In [10]:
```

```
df_null.shape
Out[10]:
```

(27786, 551)

```
In [11]:
```

```
def missing_value(df):
    total_null = df.isnull().sum().sort_values(ascending=False)
    percent_null = ((df.isnull().sum()/df.shape[0])*100).sort_values(ascending = False)
    print(f"Total records in our data = {df.shape[0]}) where missing values are as follows:
    missing_data = pd.concat([total_null,percent_null.round(2)],axis=1,keys=['Total Missing return missing_data
```

In [12]:

```
missing_value(ad_ease_train)
```

Total records in our data = 145063) where missing values are as follows:

Out[12]:

	Total Missing	In Percent
2015-07-02	20816	14.35
2015-07-01	20740	14.30
2015-07-07	20664	14.24
2015-07-05	20659	14.24
2015-07-04	20654	14.24
2016-12-31	3465	2.39
2016-12-20	3268	2.25
2016-12-21	3236	2.23
2016-12-24	3189	2.20
Page	0	0.00

551 rows × 2 columns

• We have imputed the missing values with 0 as we have used the aggregation(mean) on the language for total view counts.

Understanding the page name format and splitting it to get different information:

In [13]:

Out[13]:

```
2NE1_zh.wikipedia.org_all-access_spider
0
1
                2PM_zh.wikipedia.org_all-access_spider
2
                 3C_zh.wikipedia.org_all-access_spider
            4minute_zh.wikipedia.org_all-access_spider
3
4
     52_Hz_I_Love_You_zh.wikipedia.org_all-access_s...
5
               5566_zh.wikipedia.org_all-access_spider
             91Days_zh.wikipedia.org_all-access_spider
6
7
              A'N'D_zh.wikipedia.org_all-access_spider
8
              AKB48_zh.wikipedia.org_all-access_spider
9
              ASCII_zh.wikipedia.org_all-access_spider
Name: Page, dtype: object
```

In [14]:

```
page_details=ad_ease_train.Page.str.extract(r'(.*)\_(.*).wikipedia.org\_(.*)\_(.*)')
page_details[0:10]
#(?P.*)\_(?P.*).wikipedia.org\_(?P.*)\_(?P.*)
```

 $\#page_details = ad_ease_train.Page.str.extract(r'(?P.*) \setminus (?P.*).wikipedia.org \setminus (?P.*) \setminus (?P.*)$

Out[14]:

	0	1	2	3
0	2NE1	zh	all-access	spider
1	2PM	zh	all-access	spider
2	3C	zh	all-access	spider
3	4minute	zh	all-access	spider
4	52_Hz_I_Love_You	zh	all-access	spider
5	5566	zh	all-access	spider
6	91Days	zh	all-access	spider
7	A'N'D	zh	all-access	spider
8	AKB48	zh	all-access	spider
9	ASCII	zh	all-access	spider

In [15]:

```
page_details.columns=['topic','lang','access','type']
```

In [16]:

```
page_details[0:10]
```

Out[16]:

	topic	lang	access	type
0	2NE1	zh	all-access	spider
1	2PM	zh	all-access	spider
2	3C	zh	all-access	spider
3	4minute	zh	all-access	spider
4	52_Hz_I_Love_You	zh	all-access	spider
5	5566	zh	all-access	spider
6	91Days	zh	all-access	spider
7	A'N'D	zh	all-access	spider
8	AKB48	zh	all-access	spider
9	ASCII	zh	all-access	spider

In [17]:

```
page_details["lang"].value_counts().sort_values(ascending = False)
```

Out[17]:

en 24108 ja 20431 de 18547 fr 17802 zh 17229 ru 15022 es 14069

Name: lang, dtype: int64

In [18]:

```
fig, ax = plt.subplots(3,1,figsize=(12,12))

page_details["lang"].value_counts().sort_values(ascending = False).plot.bar(ax=ax[0])
ax[0].set_title('Language - distribution')

page_details["access"].value_counts().sort_values(ascending = False).plot.bar(ax=ax[1])
ax[1].set_title('Access - distribution')

page_details["type"].value_counts().sort_values(ascending = False).plot.bar(ax=ax[2])
ax[2].set_title('Type - distribution')

plt.tight_layout()
```


- English webpages are the mostly viewed pages whereas Spanish(es) are the least viewed.
- All access would be prefered as we are getting maximum no. of view counts.
- The distribution type is via all agents (is preferred) as we are getting most of the views unlike via spider distribution

In [19]:

```
train_df = pd.concat([page_details, ad_ease_train],axis=1)
```

Converting the data to a format that can be fed to the arima model (Pivoting etc)

In [20]:

```
train_df.head(3)
```

Out[20]:

	topic	lang	access	type	Page	2015- 07-01	2015- 07-02	2015- 07-03	2015- 07-04	2015- 07-05	
0	2NE1	zh	all- access	spider	2NE1_zh.wikipedia.org_all- access_spider	18.0	11.0	5.0	13.0	14.0	
1	2PM	zh	all- access	spider	2PM_zh.wikipedia.org_all- access_spider	11.0	14.0	15.0	18.0	11.0	
2	3C	zh	all- access	spider	3C_zh.wikipedia.org_all- access_spider	1.0	0.0	1.0	1.0	0.0	

3 rows × 555 columns

←

In [21]:

```
train_df['lang'].nunique()
```

Out[21]:

7

In [22]:

```
train_df['topic'].nunique()
```

Out[22]:

```
In [23]:
train_df['access'].nunique()
Out[23]:
3
In [24]:
en_df = train_df[train_df['lang']=='en'].iloc[:,:].mean().to_frame().iloc[:,:].reset_index(
In [25]:
en_df
Out[25]:
         index
                       en
  0 2015-07-01 4120.242704
  1 2015-07-02 4096.969675
  2 2015-07-03 3863.318780
  3 2015-07-04 4020.385549
  4 2015-07-05 4157.757910
545 2016-12-27 6189.329381
546 2016-12-28 6032.638712
547 2016-12-29 6425.295920
548 2016-12-30 5353.679346
549 2016-12-31 5180.347343
550 rows × 2 columns
In [26]:
lang_list=list(train_df['lang'].unique())
In [27]:
lang_list
Out[27]:
['zh', 'fr', 'en', nan, 'ru', 'de', 'ja', 'es']
In [28]:
df = train_df
```

In [29]:

```
all_languages = df[df['lang'] == 'en'].iloc[:,:].mean().to_frame().iloc[:,:].reset_index().
for i in df['lang'].unique():
    tdf = df[df['lang'] == i].iloc[:,:].mean().to_frame().iloc[:,:].reset_index().rename(co
    all_languages[i] = tdf[i]
all_languages.rename(columns={'en':'English','zh':'Chinese','fr':'French','na':'Media','ru'
all_languages.set_index("index").plot(kind='line',figsize=(15,5))
plt.grid()
plt.title("Number of visits across different languages")
plt.xlabel("days")
plt.ylabel("Number of views")
plt.show()
```


• As we can see, during the month of August, 2016 we are seeing a huge spike in the number of views on the web pages. As these are anamolies, we will treat these outliers using simple IQR based method.

In [30]:

all_languages

Out[30]:

	index	English	Chinese	French	NaN	Russian	German	Japanese
0	2015- 07-01	4120.242704	306.174324	526.624206	NaN	694.492845	801.433519	637.635044
1	2015- 07-02	4096.969675	306.180041	530.038727	NaN	706.667866	790.469330	732.300645
2	2015- 07-03	3863.318780	304.711372	509.429958	NaN	654.068973	758.689914	661.188706
3	2015- 07-04	4020.385549	307.106882	544.347518	NaN	615.880100	697.106317	830.489442
4	2015- 07-05	4157.757910	326.373163	534.101778	NaN	655.269262	809.890360	796.904439
545	2016- 12-27	6189.329381	380.391169	861.947656	NaN	1008.121724	1095.848843	804.676399
546	2016- 12-28	6032.638712	382.556091	777.255710	NaN	938.610821	1042.817652	806.809621
547	2016- 12-29	6425.295920	354.776010	755.727032	NaN	903.053531	1004.514348	883.427658
548	2016- 12-30	5353.679346	358.554506	703.626382	NaN	808.817615	958.359915	970.883847
549	2016- 12-31	5180.347343	369.829429	648.626656	NaN	886.737728	900.882241	1222.550930
550 r	ows x c	ocolumns						
	O VV O C	, columns						
4								•

In [31]:

```
all_languages =all_languages.rename(columns={'index':'Dates'})
```

In [32]:

```
all_languages = all_languages.dropna(axis = 1)
```

In [33]:

all_languages

Out[33]:

	Dates	English	Chinese	French	Russian	German	Japanese	S
0	2015- 07-01	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.
1	2015- 07-02	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.
2	2015- 07-03	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.
3	2015- 07-04	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.
4	2015- 07-05	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.
545	2016- 12-27	6189.329381	380.391169	861.947656	1008.121724	1095.848843	804.676399	1138.
546	2016- 12-28	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.
547	2016- 12-29	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.
548	2016- 12-30	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.
549	2016- 12-31	5180.347343	369.829429	648.626656	886.737728	900.882241	1222.550930	791.
550 r	ows × 8	3 columns						
		, 5514111110						
4								

In [34]:

```
all_languages.Dates = pd.to_datetime(all_languages.Dates)
```

In [35]:

```
eng_df = all_languages[['Dates','English']].set_index('Dates').reset_index()
```

In [36]:

eng_df

Out[36]:

	Dates	English
0	2015-07-01	4120.242704
1	2015-07-02	4096.969675
2	2015-07-03	3863.318780
3	2015-07-04	4020.385549
4	2015-07-05	4157.757910
545	2016-12-27	6189.329381
546	2016-12-28	6032.638712
547	2016-12-29	6425.295920
548	2016-12-30	5353.679346
549	2016-12-31	5180.347343

550 rows × 2 columns

In [37]:

```
# centered MA: typically used for imputation
eng_df.English.plot(label='original')
eng_df.English.rolling(12, center=True).mean().plot(label='smoothed',figsize=(15,5))
plt.legend()
plt.grid()
plt.title("Number of visits across different languages")
plt.xlabel("days")
plt.ylabel("Number of views")
plt.show()
```


Percentiles based outlier removal/detection:

In [38]:

```
# Remove anamolies using percentiles
plt.figure(figsize=(15,5))
eng_df.English.hist(bins=100).plot()
plt.show()
```


In [39]:

eng_df.English.describe()

Out[39]:

550.000000 count mean 4773.277263 std 926.906700 min 3650.296939 4216.631281 25% 50% 4558.549069 75% 5000.271195 max 8772.509464

Name: English, dtype: float64

In [40]:

eng_df.English.quantile(0.95)

Out[40]:

6723.037270821685

```
In [41]:
```

```
plt.figure(figsize=(15,5))
eng_df.English.clip(upper=eng_df.English.quantile(0.95)).plot()
plt.show()
```


· After clipping to 95th percentile, we can clearly see the trend (increasing) in the no. of view counts.

In [42]:

```
eng_df = eng_df.English.clip(upper=eng_df.English.quantile(0.95))
```

• I have used 95th percentile to clip all the view counts beyond it as they are coming due to the fact (exogenous/any significant event)

In [43]:

```
all_languages.shape
```

Out[43]:

(550, 8)

In [44]:

```
list_lang_fin = list(all_languages.columns)
list_lang_fin
```

Out[44]:

```
['Dates',
'English',
'Chinese',
'French',
'Russian',
'German',
'Japanese',
'Spanish']
```

In [45]:

```
list_lang_fin = list_lang_fin[1:]
```

```
In [46]:
```

```
list_lang_fin
```

Out[46]:

```
['English', 'Chinese', 'French', 'Russian', 'German', 'Japanese', 'Spanish']
```

In [47]:

```
final_lang_df = eng_df
for i in list_lang_fin[1:]:
    new_lang_df = all_languages[i].clip(upper=all_languages[i].quantile(0.95))
    final_lang_df = pd.concat([final_lang_df,new_lang_df], axis = 1)
```

In [48]:

```
final_lang_df
```

Out[48]:

	English	Chinese	French	Russian	German	Japanese	Spanish
0	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.993529
1	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.926357
2	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.044477
3	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.426566
4	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.349179
545	6189.329381	380.391169	825.957589	1008.121724	1095.848843	804.676399	1138.872438
546	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.690560
547	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.971921
548	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.957059
549	5180.347343	369.829429	648.626656	886.737728	900.882241	991.608202	791.449882

550 rows × 7 columns

Checking stationarity:

1. Formatting the data for the model

In [49]:

```
df = pd.concat([all_languages.iloc[:,:1], final_lang_df] , axis = 1)
df
```

Out[49]:

	Dates	English	Chinese	French	Russian	German	Japanese	Sŗ
0	2015- 07-01	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.9
1	2015- 07-02	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.9
2	2015- 07-03	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.0
3	2015- 07-04	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.4
4	2015- 07-05	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.3
545	2016- 12-27	6189.329381	380.391169	825.957589	1008.121724	1095.848843	804.676399	1138.8
546	2016- 12-28	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.6
547	2016- 12-29	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.9
548	2016- 12-30	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.9
549	2016- 12-31	5180.347343	369.829429	648.626656	886.737728	900.882241	991.608202	791.4

550 rows × 8 columns

4

In [50]:

```
final_lang_df.iloc[:,:].plot(kind='line',figsize=(15,5))
plt.grid()
plt.title("Number of visits across different languages")
plt.xlabel("days")
plt.ylabel("Number of views")
plt.show()
```


2.Dickey fuller test

```
from statsmodels.tsa.stattools import adfuller# ADF Test
for i in list_lang_fin:
   result = adfuller(all_languages[['Dates',i]].set_index('Dates'), autolag='AIC')
   # Extracting the values from the results:
   print(result)
   print('ADF Statistic: %f' % result[0])
   print('p-value: %f' % result[1])
   print('Critical Values:')
   for key, value in result[4].items():
       print('\t%s: %.3f' % (key, value))
   if result[0] < result[4]["5%"]:</pre>
        print (f"Reject Ho - Time Series is Stationary for {i} language page views")
   else:
        print (f"Failed to Reject Ho - Time Series is Non-Stationary for {i} language page
   print('-'*120)
   print('-'*120)
(-2.5405988735088383, 0.10590600305281189, 14, 535, {'1%': -3.44263215555209
05, '5%': -2.86695748394138, '10%': -2.5696553279762426}, 7697.34031063618)
ADF Statistic: -2.540599
p-value: 0.105906
Critical Values:
       1%: -3.443
        5%: -2.867
        10%: -2.570
Failed to Reject Ho - Time Series is Non-Stationary for English language pag
______
(-2.1682373404138966, 0.21797471929344492, 19, 530, {'1%': -3.44274859335558
86, '5%': -2.8670087381529723, '10%': -2.569682641509434}, 5073.13836417610
ADF Statistic: -2.168237
p-value: 0.217975
Critical Values:
       1%: -3.443
        5%: -2.867
        10%: -2.570
Failed to Reject Ho - Time Series is Non-Stationary for Chinese language pag
e views
(-3.089264885968547, 0.027357902773498328, 13, 536, {'1%': -3.44260912994227, ...}
4, '5%': -2.866947348175723, '10%': -2.569649926626197}, 5730.819559834136)
ADF Statistic: -3.089265
p-value: 0.027358
Critical Values:
        1%: -3.443
        5%: -2.867
        10%: -2.570
```

```
Reject Ho - Time Series is Stationary for French language page views
_____
_____
5, '5%': -2.8668480382580386, '10%': -2.569597004924258}, 6613.514779950347)
ADF Statistic: -3.976067
p-value: 0.001541
Critical Values:
      1%: -3.442
      5%: -2.867
      10%: -2.570
Reject Ho - Time Series is Stationary for Russian language page views
  -----
______
(-2.4834127902000716, 0.11956251043822996, 16, 533, {'1%': -3.44267846724096)
6, '5%': -2.8669778698997543, '10%': -2.5696661916864083}, 5890.94169324384
2)
ADF Statistic: -2.483413
p-value: 0.119563
Critical Values:
      1%: -3.443
      5%: -2.867
      10%: -2.570
Failed to Reject Ho - Time Series is Non-Stationary for German language page
views
(-2.8737334050595957, 0.048488815704921785, 8, 541, {'1%': -3.44249528488780
5, '5%': -2.86689723299801, '10%': -2.5696232204003677}, 6122.913108094406)
ADF Statistic: -2.873733
p-value: 0.048489
Critical Values:
      1%: -3.442
      5%: -2.867
      10%: -2.570
Reject Ho - Time Series is Stationary for Japanese language page views
______
______
(-3.017856656657231, 0.03326012989540662, 15, 534, {'1%': -3.442655267821600
3, '5%': -2.8669676577777548, '10%': -2.569660749624767}, 6199.097158858442
ADF Statistic: -3.017857
p-value: 0.033260
Critical Values:
      1%: -3.443
      5%: -2.867
      10%: -2.570
Reject Ho - Time Series is Stationary for Spanish language page views
```

- Time Series is Non-Stationary for English language page views
- Time Series is Non-Stationary for Chinese language page views
- Time Series is Stationary for French language page views
- · Time Series is Stationary for Russian language page views
- Time Series is Non-Stationary for German language page views
- · Time Series is Stationary for Japanese language page views
- Time Series is Stationary for Spanish language page views

3. Decomposing time-series:

• English language pages:

In [52]:

df

Out[52]:

	Dates	English	Chinese	French	Russian	German	Japanese	Sŗ
0	2015- 07-01	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.9
1	2015- 07-02	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.9
2	2015- 07-03	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.0
3	2015- 07-04	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.4
4	2015- 07-05	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.3
		•••	•••	•••	•••	•••	•••	
545	2016- 12-27	6189.329381	380.391169	825.957589	1008.121724	1095.848843	804.676399	1138.8
546	2016- 12-28	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.6
547	2016- 12-29	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.9
548	2016- 12-30	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.9
549	2016- 12-31	5180.347343	369.829429	648.626656	886.737728	900.882241	991.608202	791.4

550 rows × 8 columns

In [53]:

df.Dates = pd.to_datetime(df.Dates)

In [54]:

```
#additive decomposition
import statsmodels.api as sm

model = sm.tsa.seasonal_decompose(df.English, model='additive', period = 7)
```

In [55]:

```
# By default, we get the plot twice with this functionality
# We add; to avoid seeing the plot
model.plot()
plt.show()
```


In [56]:

model.resid.plot()

Out[56]:

<AxesSubplot:>

In [57]:

model.resid.hist(bins=100)

Out[57]:

<AxesSubplot:>

In [58]:

model.resid.mean()

Out[58]:

-0.08045337562489967

In [59]:

```
#multiplicative decomposition
import statsmodels.api as sm

model = sm.tsa.seasonal_decompose(df.English, model='multiplicative', period = 7)
```

In [60]:

```
# By default, we get the plot twice with this functionality
# We add; to avoid seeing the plot
model.plot()
plt.show()
```


- As we can clearly see from the decomposition that there's a seasonality present.
- · There's also an increasing trend

4. Differencing the series.

In [61]:

```
# de-seasonalisation
deseas = df.English.diff(12)
deseas.plot()
```

Out[61]:

<AxesSubplot:>

Creating model training and forecasting with ARIMA, SARIMAX

AutoCorrelation and PartialAutoCorrelation

In [62]:

```
lag = 1
np.corrcoef(df.English[lag:],df.English.shift(lag)[lag:])[0][1]
```

Out[62]:

0.892969566894908

In [63]:

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plot_acf(df.English);

In [64]:

for detrended time-series
plot_acf(df.English.diff().dropna());

- As, ACF plot is useful for identifying non-stationary time series. For a stationary time series, the ACF will
 drop to zero relatively quickly, while the ACF of non-stationary data decreases slowly.
- Which shows that the seasonality is of 7 days. (weekly)

In [65]:

PACF plot_pacf(df.English);

In [66]:

df_copy = df

In [67]:

df = df.set_index('Dates')

In [68]:

df

Out[68]:

	English	Chinese	French	Russian	German	Japanese	Spanish		
Dates									
2015- 07-01	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.993529		
2015- 07-02	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.926357		
2015- 07-03	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.044477		
2015- 07-04	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.426566		
2015- 07-05	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.349179		
				•••	•••				
2016- 12-27	6189.329381	380.391169	825.957589	1008.121724	1095.848843	804.676399	1138.872438		
2016- 12-28	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.690560		
2016- 12-29	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.971921		
2016- 12-30	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.957059		
2016- 12-31	5180.347343	369.829429	648.626656	886.737728	900.882241	991.608202	791.449882		
550 rows × 7 columns									

In [69]:

```
#last 50 days as test

train_x = df.loc[df.index < df.index[-50]].copy()
test_x = df.loc[df.index >= df.index[-50]].copy()
test_x.shape
```

Out[69]:

(50, 7)

```
In [70]:

test_x1 = test_x.iloc[:,:1]
test_x1.shape

Out[70]:

(50, 1)

In [71]:

from sklearn.metrics import (
    mean_squared_error as mse,
    mean_absolute_error as mae,
    mean_absolute_percentage_error as mape
)

# Creating a function to print values of all these metrics.
def performance(actual, predicted):
    print('MAE :', round(mae(actual, predicted), 3))
    print('RMSE :', round(mse(actual, predicted)**0.5, 3))
    print('MAPE:', round(mape(actual, predicted), 3))
```

Foundational models and trainings:

Mean model

In [72]:

```
#train mean as test predicted
test_x['pred'] = train_x['English'].mean()

test_x['English'].plot(style='-o')
test_x['pred'].plot(style='-o')

performance(test_x['English'], test_x['pred'])
plt.legend()
```

MAE : 562.011 RMSE : 704.079 MAPE: 0.102

Out[72]:

<matplotlib.legend.Legend at 0x2681409ad60>

Seasonal Naive:

In [73]:

```
#Simple Naive
## Last value as the value at all future values: high variance model
test_x['pred'] = train_x['English'][-1]

test_x['English'].plot(style='-o')
test_x['pred'].plot(style='-o')

performance(test_x['English'], test_x['pred'])
plt.legend()
```

MAE : 660.914 RMSE : 729.16 MAPE: 0.133

Out[73]:

<matplotlib.legend.Legend at 0x268140c9850>

In [74]:

```
test_x.index
```

Out[74]:

```
DatetimeIndex(['2016-11-12', '2016-11-13', '2016-11-14', '2016-11-15',
               '2016-11-16', '2016-11-17', '2016-11-18', '2016-11-19',
               '2016-11-20', '2016-11-21', '2016-11-22', '2016-11-23'
               '2016-11-24', '2016-11-25', '2016-11-26', '2016-11-27'
                                           '2016-11-30',
               '2016-11-28',
                             '2016-11-29',
                                                          '2016-12-01'
               '2016-12-02', '2016-12-03', '2016-12-04', '2016-12-05',
               '2016-12-06', '2016-12-07', '2016-12-08', '2016-12-09'
               '2016-12-10', '2016-12-11', '2016-12-12',
                                                          '2016-12-13',
               '2016-12-14', '2016-12-15', '2016-12-16',
                                                          '2016-12-17',
               '2016-12-18', '2016-12-19', '2016-12-20', '2016-12-21',
               '2016-12-22', '2016-12-23', '2016-12-24', '2016-12-25'
               '2016-12-26', '2016-12-27', '2016-12-28', '2016-12-29',
               '2016-12-30', '2016-12-31'],
              dtype='datetime64[ns]', name='Dates', freq=None)
```

In [75]:

```
test_x.head(3)
```

Out[75]:

	English	Chinese	French	Russian	German	Japanese	Spanish
Dates							
2016- 11-12	5487.667243	407.264755	825.682597	1017.099623	899.935765	779.382937	1128.540873
2016- 11-13	6140.359217	425.872392	767.825473	1095.276586	1021.387068	835.054576	1318.801136
2016- 11-14	6196.286645	382.971699	746.839165	1065.850514	1033.071648	812.220358	1540.315464
4							•

In [76]:

```
## Seasonal Naive forecast: 63 days based on ACF and PACF plots
for i in test_x.index:
    test_x.loc[i]['pred'] = train_x.loc[i - pd.DateOffset(days = 63)]['English']

test_x['English'].plot(style='-o')
test_x['pred'].plot(style='-o')
performance(test_x['English'], test_x['pred'])
plt.legend()
```

MAE : 398.319 RMSE : 554.8 MAPE: 0.073

Out[76]:

<matplotlib.legend.Legend at 0x2681431b2e0>

Moving average forecast:

In [77]:

```
train_x1 = train_x.iloc[:,:1]
```

In [78]:

```
df = train_x1.copy()

df = df.append(pd.DataFrame(index = pd.date_range(start=df.index[-1], periods=50)[1:]))

pred = df.English.dropna().values

for i in range(50):
    pred = np.append(pred, pred[-3:].mean()) ##MA of window-length=3

test_x['pred'] = pred[-50:]
    test_x['English'].plot(style='-o')
    test_x['pred'].plot(style='-o')
    performance(test_x['English'], test_x['pred'])
    plt.legend()
```

MAE : 956.814 RMSE : 1043.618 MAPE: 0.192

Out[78]:

<matplotlib.legend.Legend at 0x26817b20d30>

ARIMA & SARIMA Models

ARIMA(p,d,q)

In [79]:

```
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
from sklearn.model_selection import StratifiedKFold

import datetime as dt

params = {
    'p': [1, 2, 3],
    'd': [1, 2],
    'q': [1, 2, 3],
}
```

In [80]:

from statsmodels.tsa.statespace.sarimax import SARIMAX

In [81]:

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
model = SARIMAX(train_x.English, order=(3, 1, 3))
# RandomizedSearchCV(model, param_distributions=params)
model = model.fit(disp=False)
test_x['pred'] = model.forecast(steps=50)
test_x['English'].plot(style='-o')
test_x['pred'].plot(style='-o')
performance(test_x['English'], test_x['pred'])
plt.legend()
```

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47

1: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47

1: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\base\model.py:604: Conve
rgenceWarning: Maximum Likelihood optimization failed to converge. Check mle
_retvals

warnings.warn("Maximum Likelihood optimization failed to "

MAE : 813.327 RMSE : 880.714 MAPE: 0.163

Out[81]:

<matplotlib.legend.Legend at 0x26817b349d0>

SARIMA (p,d,q,P,D,Q,s)

In [82]:

```
model = SARIMAX(train_x.English, order=(3, 1, 3), seasonal_order=(1,1,1,7))
model = model.fit(disp=False)
test_x['pred'] = model.forecast(steps=50)
test_x['English'].plot(style='-o')
test_x['pred'].plot(style='-o')
performance(test_x['English'], test_x['pred'])
plt.legend()
```

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47
1: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47
1: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\base\model.py:604: Conve
rgenceWarning: Maximum Likelihood optimization failed to converge. Check mle
_retvals

warnings.warn("Maximum Likelihood optimization failed to "

MAE : 603.111 RMSE : 660.853 MAPE: 0.12

Out[82]:

<matplotlib.legend.Legend at 0x26817ba8130>

In [83]:

• Confidence interval -> is huge in this case.

SARIMAX:

Exog_Campaign_eng:

- This file contains data for the dates which had a campaign or significant event that could affect the views for that day. The data is just for pages in english.
- There's 1 for dates with campaigns and 0 for remaining dates. It is to be treated as an exogenous variable for models when training and forecasting data for pages in english

In [84]:

```
exog = pd.read_csv('Exog_Campaign_eng')
```

In [85]:

exog

Out[85]:

	Exog
0	0
1	0
2	0
3	0
4	0
•••	
545	1
546	1
547	1
548	0
549	0

550 rows × 1 columns

In [86]:

```
final_df = pd.concat([df_copy,exog], axis= 1)
final_df
```

Out[86]:

	Dates	English	Chinese	French	Russian	German	Japanese	Sŗ
0	2015- 07-01	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.9
1	2015- 07-02	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.9
2	2015- 07-03	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.0
3	2015- 07-04	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.4
4	2015- 07-05	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.3
545	2016- 12-27	6189.329381	380.391169	825.957589	1008.121724	1095.848843	804.676399	1138.8
546	2016- 12-28	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.6
547	2016- 12-29	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.9
548	2016- 12-30	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.9
549	2016- 12-31	5180.347343	369.829429	648.626656	886.737728	900.882241	991.608202	791.4

550 rows × 9 columns

4

In [87]:

```
df_ind_dates = final_df.set_index('Dates')
df_ind_dates
```

Out[87]:

	English	Chinese	French	Russian	German	Japanese	Spanish
Dates							
2015- 07-01	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.993529
2015- 07-02	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.926357
2015- 07-03	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.044477
2015- 07-04	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.426566
2015- 07-05	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.349179
2016- 12-27	6189.329381	380.391169	825.957589	1008.121724	1095.848843	804.676399	1138.872438
2016- 12-28	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.690560
2016- 12-29	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.971921
2016- 12-30	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.957059
2016- 12-31	5180.347343	369.829429	648.626656	886.737728	900.882241	991.608202	791.449882

550 rows × 8 columns

4

In [88]:

```
# Lets take a look at our time series plot
plt.plot(df_ind_dates.index, df_ind_dates['English'], '-*')
plt.show()
```


2015-02015-02015-12016-02016-02016-02016-02016-02016-12017-01

In [89]:

```
plt.plot(range(50),df_copy['English'][:50], '-o')
plt.xticks(range(0,50), df_copy['Dates'][:50],rotation = 45)
plt.show()
```


In [90]:

```
# Lets take a look at our time series plot
exog = df_ind_dates.loc[df_ind_dates.Exog==1].index
for exo in exog:
    plt.axvline(x=exo, color='#FA8072')
df_ind_dates.English.plot(style='-*')
plt.show()
```


- As we can clearly see, when we had the campaign or significant event, the user view counts has peaked.
- The SARIMAX model has clearly identified the peaks due to external factors.

In [93]:

```
from statsmodels.tsa.seasonal import seasonal_decompose
  result = seasonal_decompose(df_ind_dates['English'], model='multiplicative',extrapolate_tre
#,freq = 30
  fig = plt.figure()
  fig = result.plot()
  fig.set_size_inches(12, 9)
  fig.show()
```

<Figure size 432x288 with 0 Axes>

In [94]:

```
train = df_ind_dates.iloc[:500]
test = df_ind_dates.iloc[500:]
```

In [95]:

```
model = SARIMAX(train['English'],seasonal_order=(1,0,1,7)) # P,D, Q,s
results = model.fit()
fc = results.forecast(42)
```

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47
1: ValueWarning: No frequency information was provided, so inferred frequency D will be used.
 self._init_dates(dates, freq)
C:\Users\hp\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47
1: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

In [96]:

results.plot_diagnostics(figsize=(8,8));

- With the plot_diagnostics, we can clearly see that the purely seasonal model is performing fairly well.
- Which means, there's a seasonality present.
- All residuals are within the error bound.

In [97]:

```
# Obtain predicted values
start=len(train)
end=len(train)+len(test)-1
predictions = results.predict(start=start, end=end)
```

In [98]:

```
performance(test['English'], predictions)
# Plot predictions against known values
title='Web pages Visitors'
ylabel='Visitors per day'
xlabel='days'
ax = test['English'].plot(legend=True,figsize=(12,8),title=title)
predictions.plot(legend=True,color = 'orange')
ax.autoscale(axis='x',tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
for x in test.query('Exog==1').index:
    ax.axvline(x=x, color='red', alpha = 0.5)
```

MAE : 370.494 RMSE : 460.175 MAPE: 0.072


```
In [99]:
```

```
model = SARIMAX(train['English'],exog=train['Exog'],order=(3,1,3),seasonal_order=(1,0,1,7),
results = model.fit()

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47
1: ValueWarning: No frequency information was provided, so inferred frequenc
y D will be used.
    self._init_dates(dates, freq)

C:\Users\hp\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47
1: ValueWarning: No frequency information was provided, so inferred frequenc
y D will be used.
    self._init_dates(dates, freq)
```

In [100]:

```
exog_forecast = test[['Exog']] # requires two brackets to yield a shape of (50,1)
predictions = results.predict(start=start, end=end, exog=exog_forecast).rename('Predictions')
```

In [101]:

```
performance(test['English'], predictions)
# Plot predictions against known values
title='Web pages Visitors'
ylabel='Visitors per day'
xlabel='days'
ax = test['English'].plot(legend=True,figsize=(12,8),title=title)
predictions.plot(legend=True,color = 'orange')
ax.autoscale(axis='x',tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
for x in test.query('Exog==1').index:
    ax.axvline(x=x, color='red', alpha = 0.5)
```

MAE : 277.061 RMSE : 341.6 MAPE: 0.055

- We can a best MAPE of 5.4 % with seasonality and exogenous factors added.
- With SARIMAX, as there's huge spikes in the view counts during the campaigns and other significant
 events, our SARIMAX is able to detect the changes and thus the predictions are with very less
 MAPE(mean absolute percentage error)

Summary of all models(for English language views):

- Mean model MAPE: 10.2%
- Seasonal Naive 7.3%
- Moving average forecast: 19.2%
- ARIMA(3,1,3): 16.3%
- SARIMA(order=(3, 1, 3), seasonal_order=(1,1,1,7): 11.4 %
- SARIMAX seasonal_order=(1,0,1,7) -MAPE: 7.2%
- SARIMAX with hyper parameter tuning: order=(3,1,3),seasonal_order=(1,0,1,7) 5.4%

Auto ARIMA:

In [102]:

```
pip install pmdarima
Collecting pmdarimaNote: you may need to restart the kernel to use updated p
ackages.
 Downloading pmdarima-2.0.2-cp38-cp38-win_amd64.whl (571 kB)
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in c:\users\hp\an
aconda3\lib\site-packages (from pmdarima) (49.2.0.post20200714)
Requirement already satisfied: statsmodels>=0.13.2 in c:\users\hp\anaconda3
\lib\site-packages (from pmdarima) (0.13.2)
Requirement already satisfied: numpy>=1.21.2 in c:\users\hp\anaconda3\lib\si
te-packages (from pmdarima) (1.23.1)
Requirement already satisfied: scikit-learn>=0.22 in c:\users\hp\anaconda3\l
ib\site-packages (from pmdarima) (1.1.2)
Requirement already satisfied: joblib>=0.11 in c:\users\hp\anaconda3\lib\sit
e-packages (from pmdarima) (1.1.0)
Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in c:\users
\hp\anaconda3\lib\site-packages (from pmdarima) (0.29.21)
Requirement already satisfied: urllib3 in c:\users\hp\anaconda3\lib\site-pac
kages (from pmdarima) (1.25.9)
Requirement already satisfied: pandas>=0.19 in c:\users\hp\anaconda3\lib\sit
e-packages (from pmdarima) (1.4.3)
Requirement already satisfied: scipy>=1.3.2 in c:\users\hp\anaconda3\lib\sit
e-packages (from pmdarima) (1.9.0)
Requirement already satisfied: patsy>=0.5.2 in c:\users\hp\anaconda3\lib\sit
e-packages (from statsmodels>=0.13.2->pmdarima) (0.5.2)
Requirement already satisfied: packaging>=21.3 in c:\users\hp\anaconda3\lib
\site-packages (from statsmodels>=0.13.2->pmdarima) (21.3)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\hp\anaconda3
\lib\site-packages (from scikit-learn>=0.22->pmdarima) (2.1.0)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\hp\anacond
a3\lib\site-packages (from pandas>=0.19->pmdarima) (2.8.1)
Requirement already satisfied: pytz>=2020.1 in c:\users\hp\anaconda3\lib\sit
e-packages (from pandas>=0.19->pmdarima) (2020.1)
Requirement already satisfied: six in c:\users\hp\anaconda3\lib\site-package
s (from patsy>=0.5.2->statsmodels>=0.13.2->pmdarima) (1.15.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\users\hp\anaco
nda3\lib\site-packages (from packaging>=21.3->statsmodels>=0.13.2->pmdarima)
```

Installing collected packages: pmdarima
Successfully installed pmdarima-2.0.2

In [103]:

(2.4.7)

import pmdarima as pm

In [104]:

```
model = pm.auto_arima(train['English'], exogenous = train['Exog'],seasonal=True, m=12)
```

In [105]:

model.summary()

Out[105]:

SARIMAX Results

Dep. Variable: y No. Observations: 500

Model: SARIMAX(2, 1, 4)x(1, 0, [], 12) **Log Likelihood** -3525.082

Date: Fri, 02 Dec 2022 **AIC** 7066.165

Time: 14:28:26 **BIC** 7099.866

Sample: 07-01-2015 **HQIC** 7079.390

- 11-11-2016

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	1.2425	0.005	263.250	0.000	1.233	1.252
ar.L2	-0.9961	0.004	-240.140	0.000	-1.004	-0.988
ma.L1	-1.4597	0.032	-45.736	0.000	-1.522	-1.397
ma.L2	1.1283	0.075	15.034	0.000	0.981	1.275
ma.L3	-0.0669	0.078	-0.862	0.389	-0.219	0.085
ma.L4	-0.1404	0.049	-2.865	0.004	-0.237	-0.044
ar.S.L12	-0.1687	0.061	-2.749	0.006	-0.289	-0.048
sigma2	9.415e+04	3794.294	24.812	0.000	8.67e+04	1.02e+05

Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 1461.58

Prob(Q): 0.89 **Prob(JB):** 0.00

Heteroskedasticity (H): 3.69 Skew: 0.35

Prob(H) (two-sided): 0.00 Kurtosis: 11.35

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [106]:

```
forecasts = model.predict(test.shape[0],exogenous = test['Exog'])
performance(test['English'], forecasts)
# Plot predictions against known values
title='Web pages Visitors'
ylabel='Visitors per day'
xlabel='days'
ax = test['English'].plot(legend=True,figsize=(12,8),title=title)
forecasts.plot(legend=True,color = 'orange')
ax.autoscale(axis='x',tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
for x in test.query('Exog==1').index:
    ax.axvline(x=x, color='red', alpha = 0.5)
```

MAE : 723.578 RMSE : 790.322 MAPE: 0.145

Which means seasonality is the most important factor even more important than the external factors

Time Series Forecasting as Linear or Non-linear Regression + innovative features:

Change points detection:

In [107]:

```
def plot_changepoints(signal, changepoints):
   for cp in changepoints:
        plt.axvline(x=cp, color='#FA8072')
   plt.plot(signal, '-*', label='signal')
   start = 0
   trends = np.array([])
   for i in changepoints:
       x = np.arange(start, i)
       y = signal[start:i]
       11 = np.polyfit(x, y, deg=1)
       trend = x*l1[0] + l1[1]
       trends = np.append(trends, trend)
        start = i
   plt.plot(trends, label='trend')
   plt.legend()
   plt.show()
```

In [108]:

df_copy

Out[108]:

	Dates	English	Chinese	French	Russian	German	Japanese	Sŗ
0	2015- 07-01	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.9
1	2015- 07-02	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.9
2	2015- 07-03	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.0
3	2015- 07-04	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.4
4	2015- 07-05	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.3
							•••	
545	2016- 12-27	6189.329381	380.391169	825.957589	1008.121724	1095.848843	804.676399	1138.8
546	2016- 12-28	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.6
547	2016- 12-29	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.9
548	2016- 12-30	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.9
549	2016- 12-31	5180.347343	369.829429	648.626656	886.737728	900.882241	991.608202	791.4
550 r	ows × 8	3 columns						
		, 5514111110						
\triangleleft								•

In [109]:

```
df_10 = df_copy.set_index('Dates')
```

In [110]:

```
signal = df_10.English # Stationarise for mean as cost function
window=50

def get_slope(y):
    return np.polyfit(np.arange(len(y)), y, deg=1)[0]

changepoints = signal.loc[abs(signal.rolling(window, center=True).apply(get_slope).diff())

# converting to index from dates
temp = signal.reset_index()
changepoints = temp.loc[temp['Dates'].isin(changepoints)].index.tolist()

plot_changepoints(signal.values, changepoints)
```


- As we can see, there are multiple change points (around forst 175 days, 225 days, 275 days, 360 days, 400-250 days, 525 days)
- Almost all of them are due to the exogenous features (campaigns)

In [125]:

exog1

Out[125]:

	Exog
0	0
1	0
2	0
3	0
4	0
545	1
546	1
547	1
548	0
549	0

550 rows × 1 columns

Forecasting with Regression Model:

In [123]:

```
df_reg = all_languages[['Dates','English']]
df_reg['dayoftheweek'] = df_reg['Dates'].apply(lambda x : x.strftime('%a'))
df_reg['month'] = df_reg['Dates'].apply(lambda x : x.strftime('%b'))
df_reg['day'] = df_reg['Dates'].apply(lambda x : x.strftime('%d'))
df_reg['exog'] = exog1['Exog']
df_reg['year'] = df_reg['Dates'].apply(lambda x : x.strftime('%Y'))
df_reg['dayoftheweek_mod'] = df_reg.groupby('dayoftheweek')['English'].transform("mean")
df_reg['month_mod'] = df_reg.groupby('month')['English'].transform('mean')
df_reg['day_mod'] = df_reg.groupby('day')['English'].transform('mean')
df_reg['exog_mod'] = df_reg.groupby('exog')['English'].transform('mean')
df_reg['year_mod'] = df_reg.groupby('year')['English'].transform('mean')
```

In [124]:

df_reg

Out[124]:

	Dates	English	dayoftheweek	month	day	exog	year	dayoftheweek_mod	month_n
0	2015- 07-01	4120.242704	Wed	Jul	01	0	2015	4770.646066	4996.3980
1	2015- 07-02	4096.969675	Thu	Jul	02	0	2015	4657.967817	4996.3980
2	2015- 07-03	3863.318780	Fri	Jul	03	0	2015	4508.924225	4996.3980
3	2015- 07-04	4020.385549	Sat	Jul	04	0	2015	4582.596278	4996.3980
4	2015- 07-05	4157.757910	Sun	Jul	05	0	2015	4922.296453	4996.3980
545	2016- 12-27	6189.329381	Tue	Dec	27	1	2016	4859.181033	4759.630
546	2016- 12-28	6032.638712	Wed	Dec	28	1	2016	4770.646066	4759.630
547	2016- 12-29	6425.295920	Thu	Dec	29	1	2016	4657.967817	4759.630
548	2016- 12-30	5353.679346	Fri	Dec	30	0	2016	4508.924225	4759.630
549	2016- 12-31	5180.347343	Sat	Dec	31	0	2016	4582.596278	4759.630
550 r	ows × 1	2 columns							
4									•

In [126]:

```
from sklearn.model_selection import train_test_split
X = df_reg[['dayoftheweek_mod','month_mod','day_mod','exog_mod','year_mod']]
Y = df_reg['English']
```

In [127]:

```
x_train = X[:500]
x_test = X[500:]
y_train = Y[:500]
y_test = Y[500:]
```

In [128]:

```
import statsmodels.api as sm
# x_train = sm.add_constant(x_train)
# x_test = sm.add_constant(x_test
```

In [129]:

finalmodel = sm.OLS(y_train,x_train).fit()
print(finalmodel.summary())

============	OLS Regression Results					
Dep. Variable:		English	R-squared (uncentered):			
0.989						
Model:		OLS	Adj. R-squa	red (uncente	red):	
0.989						
Method:	Least	Sauares	F-statistic	:		
8848.		- 4		•		
Date:	Eni 02	Doc 2022	Prob (F-sta	tictic).		
	111, 02	DEC 2022	FIOD (F-Sta	ciscic).		
0.00		46 44 50				
Time:		16:11:58	Log-Likelih	ooa:		
-3824.3						
No. Observations:		500	AIC:			
7659.						
Df Residuals:		495	BIC:			
7680.						
Df Model:		5				
Covariance Type:	n	onrobust				
					========	
======				5 1.1	F0 00F	
_	coet	std err	t	P> t	[0.025	
0.975]						
dayoftheweek_mod	0.4601	0.105	4.389	0.000	0.254	
0.666						
month_mod	0.1077	0.083	1.293	0.197	-0.056	
0.271	0.1_0	0.000	_,,	0122	0.000	
day_mod	-1.0498	0.127	-8.278	0.000	-1.299	
	-1.0498	0.127	-0.276	0.000	-1.299	
-0.801	0.0540	0.005	26 707			
exog_mod	0.9519	0.036	26.797	0.000	0.882	
1.022						
year_mod	0.5257	0.056	9.471	0.000	0.417	
0.635						
==========	=======	=======	========	========	========	
==						
Omnibus:		82.048	Durbin-Watso	on:	0.5	
08		0_10.0	20. 22. 110.03	• •		
Prob(Omnibus):		0.000	Jarque-Bera	(JR).	547.9	
		0.000	Jai que-bei a	(36).	547.5	
19		0 407	D 1 (3D)		4 05 4	
Skew:		-0.497	Prob(JB):		1.05e-1	
19						
Kurtosis:		8.031	Cond. No.		7	
1.4						
=======================================	=======	=======	========	========	========	
==						

Notes:

^[1] ${\sf R^2}$ is computed without centering (uncentered) since the model does not c ontain a constant.

^[2] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.

In [130]:

print(finalmodel.params)

 dayoftheweek_mod
 0.460117

 month_mod
 0.107668

 day_mod
 -1.049770

 exog_mod
 0.951857

 year_mod
 0.525677

dtype: float64

In [131]:

```
predictions = finalmodel.predict(x_test)
```

In [132]:

```
performance(y_test, predictions)
# Plot predictions against known values
title='Web pages Visitors of English modelled by Linear Regression'
ylabel='Visitors per day'
xlabel='days'
ax = y_test.plot(legend=True,figsize=(12,8),title=title)
predictions.plot(legend=True,color = 'orange')
ax.autoscale(axis='x',tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
plt.show()
```

MAE : 452.523 RMSE : 538.464 MAPE: 0.084

Linear Regression model is given the MAPE of 8.4 % which is pretty good than the complex models as well

Forecasting with FB-Prophet (Alternative to SARIMAX)

In [144]:

```
!pip install pystan~=2.14
```

Requirement already satisfied: pystan~=2.14 in c:\users\hp\anaconda3\lib\sit e-packages (2.19.1.1)

Requirement already satisfied: Cython!=0.25.1,>=0.22 in c:\users\hp\anaconda 3\lib\site-packages (from pystan~=2.14) (0.29.21)

Requirement already satisfied: numpy>=1.7 in c:\users\hp\anaconda3\lib\sitepackages (from pystan~=2.14) (1.23.1)

In [134]:

df_copy

Out[134]:

	Dates	English	Chinese	French	Russian	German	Japanese	Sŗ	
0	2015- 07-01	4120.242704	306.174324	526.624206	694.492845	801.433519	637.635044	1176.9	
1	2015- 07-02	4096.969675	306.180041	530.038727	706.667866	790.469330	732.300645	1125.9	
2	2015- 07-03	3863.318780	304.711372	509.429958	654.068973	758.689914	661.188706	1035.0	
3	2015- 07-04	4020.385549	307.106882	544.347518	615.880100	697.106317	830.489442	972.4	
4	2015- 07-05	4157.757910	326.373163	534.101778	655.269262	809.890360	796.904439	1056.3	
545	2016- 12-27	6189.329381	380.391169	825.957589	1008.121724	1095.848843	804.676399	1138.8	
546	2016- 12-28	6032.638712	382.556091	777.255710	938.610821	1042.817652	806.809621	1184.6	
547	2016- 12-29	6425.295920	354.776010	755.727032	903.053531	1004.514348	883.427658	1117.9	
548	2016- 12-30	5353.679346	358.554506	703.626382	808.817615	958.359915	970.883847	825.9	
549	2016- 12-31	5180.347343	369.829429	648.626656	886.737728	900.882241	991.608202	791.4	
550 r	550 rows × 9 columns								

In [135]:

exog1 = pd.read_csv('Exog_Campaign_eng')

In [136]:

```
df_copy['exog'] = exog1['Exog']
```

In [137]:

```
df_fin = df_copy[['Dates', 'English', 'exog']]
df_fin
```

Out[137]:

	Dates	English	exog
0	2015-07-01	4120.242704	0
1	2015-07-02	4096.969675	0
2	2015-07-03	3863.318780	0
3	2015-07-04	4020.385549	0
4	2015-07-05	4157.757910	0
545	2016-12-27	6189.329381	1
546	2016-12-28	6032.638712	1
547	2016-12-29	6425.295920	1
548	2016-12-30	5353.679346	0
549	2016-12-31	5180.347343	0

550 rows × 3 columns

In [138]:

```
df_fin['Dates'] = pd.to_datetime(df_fin['Dates'])
```

```
In [139]:
```

```
df_fin
```

Out[139]:

	Dates	English	exog
0	2015-07-01	4120.242704	0
1	2015-07-02	4096.969675	0
2	2015-07-03	3863.318780	0
3	2015-07-04	4020.385549	0
4	2015-07-05	4157.757910	0
545	2016-12-27	6189.329381	1
546	2016-12-28	6032.638712	1
547	2016-12-29	6425.295920	1
548	2016-12-30	5353.679346	0
549	2016-12-31	5180.347343	0

550 rows × 3 columns

In [140]:

```
df_fin['ds'] = df_fin['Dates']
df_fin['y'] = df_fin['English']
df_fin = df_fin[['ds', 'y', 'exog']]
df_fin.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550 entries, 0 to 549
Data columns (total 3 columns):
    Column Non-Null Count Dtype
#
            -----
0
    ds
            550 non-null
                            datetime64[ns]
 1
            550 non-null
                           float64
    У
2
    exog 550 non-null
                            int64
dtypes: datetime64[ns](1), float64(1), int64(1)
memory usage: 13.0 KB
```

In [141]:

```
df_fin_train = df_fin.iloc[:530]
df_fin_test = df_fin.iloc[530:]
```

In [152]:

```
#!pip install fbprophet
```

```
In [154]:
```

Out[154]:

'\nfrom prophet import Prophet\n\nmodel = Prophet(interval_width=0.95, yearl y_seasonality=True, weekly_seasonality=True, \n changepoint_pr ior_scale=4)\n\n#Fit the model\n\nm = model.fit(df_fin_train)\n#Make predict ions\nfuture = m.make_future_dataframe(periods=20,freq="D")\nforecast3 = m.p redict(future)\n# plt.ylim(2500,8000)\nfig = m.plot(forecast3)\n'

In [153]:

```
df_fin_train.shape
```

Out[153]:

(530, 3)

In [155]:

```
#forecast3.head()
```

In [156]:

```
#performance(df_fin['y'][:-20],forecast3['yhat'][:-20])
```

```
In [157]:
```

```
plt.plot(forecast3['ds'], forecast3['yhat'],'-*', label = 'Predictions')
plt.plot(df_fin['ds'], df_fin['y'], label = 'Actual')

plt.xlim(pd.to_datetime('2015-07-01'), pd.to_datetime('2016-12-01'))
plt.ylim(2500,8000)
for x in df_fin.query('exog==1')['ds']:
    plt.axvline(x=x, color='red', alpha = 0.5);
plt.legend()
'''
```

Out[157]:

```
"\nplt.plot(forecast3['ds'], forecast3['yhat'],'-*', label = 'Predictions') \nplt.plot(df_fin['ds'], df_fin['y'], label = 'Actual')\n\nplt.xlim(pd.to_datetime('2015-07-01'), pd.to_datetime('2016-12-01'))\nplt.ylim(2500,8000)\nfo r x in df_fin.query('exog==1')['ds']: \n plt.axvline(x=x, color='red', alpha = 0.5);\nplt.legend()\n"
```

- When the exogenous factors are considered along with English language view counts, we are getting MAPE as 4.2%
- FB prophet is able to determine all the change points(shown in red)

In [158]:

```
df_fin = df_fin[['ds', 'y']]
df_fin.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550 entries, 0 to 549
Data columns (total 2 columns):
    Column Non-Null Count Dtype
             -----
    ds
            550 non-null
                             datetime64[ns]
0
1
            550 non-null
                             float64
    У
dtypes: datetime64[ns](1), float64(1)
memory usage: 8.7 KB
In [159]:
df_fin_train = df_fin.iloc[:500]
df fin test = df fin.iloc[500:]
```

In []:

```
#m = Prophet()
#m.fit(df_fin_train)
```

In []:

```
#future = m.make_future_dataframe(periods=50, freq = 'D')
#future.tail()
```

```
In [160]:
#forecast = m.predict(future)
#forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
In [161]:
df_fin_test.shape
Out[161]:
(50, 2)
In [162]:
. . .
performance(df_fin_test['y'],forecast['yhat'][500:])
# Plot predictions against known values
title='Web pages Visitors of English language modelled by Prophet'
ylabel='Visitors per day'
xlabel='days'
ax = df_fin_test['y'].plot(legend=True,figsize=(12,8),title=title)
forecast['yhat'][500:].plot(legend=True,color = 'orange')
ax.autoscale(axis='x',tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
plt.show()
Out[162]:
"\nperformance(df_fin_test['y'],forecast['yhat'][500:])\n\n# Plot prediction
s against known values\ntitle='Web pages Visitors of English language modell
ed by Prophet'\nylabel='Visitors per day'\nxlabel='days'\nax = df_fin_test
['y'].plot(legend=True,figsize=(12,8),title=title)\nforecast['yhat'][500:].p
lot(legend=True,color = 'orange')\nax.autoscale(axis='x',tight=True)\nax.set
(xlabel=xlabel, ylabel=ylabel)\nplt.show()\n"
In [163]:
#fig1 = m.plot(forecast)
- The confidence interval of the predictions is also in the range (+- 1000) views which
is very great
In [164]:
#fig2 = m.plot components(forecast)
- On monday, we have maximum number of view counts followed by a decreasing trend till
friday. On weekends the view counts shoots up!!
In [ ]:
#from prophet.plot import plot_plotly, plot_components_plotly
#plot plotly(m, forecast)
```

```
In [165]:
```

```
#plot_components_plotly(m, forecast)
```

 When the exogenous factors are NOT considered along with English language view counts, we are getting MAPE as 5.6%

Creating a pipeline for working with multiple series

Forecasting for different languages

In [166]:

```
df_ind_dates_train = df_ind_dates[:500]
df_ind_dates_test = df_ind_dates[500:]
```

```
In [167]:
```

```
for i in df ind dates.columns:
 print("Performance Metrics after Auto Arima for ",i)
 model = pm.auto_arima(df_ind_dates_train[i], exogenous = df_ind_dates_train['Exog'],seaso
 forecasts = model.predict(df_ind_dates_test.shape[0],exogenous = df_ind_dates_test['Exog'
 performance(df_ind_dates_test[i], forecasts)
 print('-'*50)
Performance Metrics after Auto Arima for English
MAE: 723.578
RMSE: 790.322
MAPE: 0.145
Performance Metrics after Auto Arima for Chinese
MAE : 29.194
RMSE: 33.117
MAPE: 0.079
_____
Performance Metrics after Auto Arima for French
MAE : 55.491
RMSE: 63.159
MAPE: 0.08
Performance Metrics after Auto Arima for Russian
MAE: 129.625
RMSE: 146.541
MAPE: 0.136
Performance Metrics after Auto Arima for German
MAE: 64.604
RMSE: 80.172
MAPE: 0.071
Performance Metrics after Auto Arima for Japanese
MAE: 51.87
RMSE: 69.18
MAPE: 0.063
Performance Metrics after Auto Arima for Spanish
MAE : 292.161
RMSE: 330.547
MAPE: 0.277
-----
Performance Metrics after Auto Arima for Exog
MAE: 0.254
RMSE: 0.318
MAPE: 770529825430761.9
```

With Auto ARIMA below are the languages with decreasing order of MAPE: Japanese(6.3%) <
 German(6.9%) < Chinese(7.9%) < French(8%) < Russian(13.6%) < English(14.7) < Spanish(29.6%)

Questionnaire:

- 1) Defining the problem statements and where can this and modifications of this be used?
 - To forecast the number of views so that you can predict and optimize the ad placement for your clients. You
 are provided with the data of 145k wikipedia pages and daily view count for each of them. Your clients

- belong to different regions and need data on how their ads will perform on pages in different languages.
- The modification of this can be used in case of Scaler's advertising. If Scaler Academy is willing to open it's branches in different regions, then the best time(ex. monday) and maximum digital adv capital (on english web pages, can be understood)
- 2) Write 3 inferences you made from the data visualizations
 - English webpages are the mostly viewed pages whereas Spanish(es) are the least viewed.
 - The distribution type is via all agents and is preferred as with it, we are getting most of the views unlike via spider distribution
 - As we can see, during the month of August, 2016 we are seeing a huge spike in the number of views on the web pages. As these are anamolies, we will treat these outliers using simple IQR based method.
- 3) What does the decomposition of series do?
 - The decomposition of time series is a statistical task that deconstructs a time series into several
 components, each representing one of the underlying categories of patterns.(ex: Trends, Seasonality,
 Residuals distribution)
- 4) What level of differencing gave you a stationary series?
 - I got 3 time series (English, Japanese and German languages) as stationary with 1 level of differentiation.
- 5) Difference between arima, sarima & sarimax.
 - ARIMA -> Differencing (detrending) and residual smoothing (moving average) are considered with order of differentiation (p,d,q)
 - SARIMA -> Along with above parameters as in ARIMA, seasonality(s) and the seasonality effect on
 Differencing (detrending), residual smoothing (moving average) and order of derivative is considered
 (p,q,d,P,Q,D,s)
 - SARIMAX -> Along with SARIMA's parameters, changes due to external/exogenous factors are also considered (p,q,d,P,Q,D,s,exog)
- 6) Compare the number of views in different languages
 - English webpages are the mostly viewed pages whereas Spanish(es) are the least viewed.
 - With Auto ARIMA below are the languages with decreasing order of MAPE: Japanese(6.3%) < German(6.9%) < Chinese(7.9%) < French(8%) < Russian(13.6%) < English(14.7) < Spanish(29.6%)
 - Meaning, if the advertising agency is forecasting then they will have least amount of loss in ad placements on Japanese, German web pages and most amount of losses on Spanish web pages. Keeping this in mind, Adease should allocate their digital/monetary resources on proper language's web pages.
- 7) What other methods other than grid search would be suitable to get the model for all languages?
 - Auto ARIMA, confidence interval detection, FB Prophet are the other methods other than hyper parameter tuning (grid search) that would be suitable to get the model for all languages