Chapitre 6 - Géométrie dans l'espace

TMATH1

EXERCICE 1 5 points

L'espace est muni d'un repère $(0; \vec{i}, \vec{j}, \vec{k})$. On considère les points A(1; -1; 2); B(0; 0; -1); C(5; 3; -1); le

vecteur $\vec{v} \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$ et la droite \mathcal{D} de représentation paramétrique : $\mathcal{D} : \begin{cases} x = t+1 \\ y = -t-2, \quad t \in \mathbb{R} \\ z = 2t+4 \end{cases}$

$$\mathcal{D}: \left\{ \begin{array}{l} x = t+1 \\ y = -t-2, \quad t \in \mathbb{R} \\ z = 2t+4 \end{array} \right.$$

Pour chaque affirmation, dire si elle est vraie ou fausse en justifiant votre réponse.

- 1. Le point C appartient à \mathcal{D}
- 2. Le vecteur \vec{v} est un vecteur directeur de \mathcal{D}
- 3. Les droites (AB) et \mathcal{D} sont sécantes
- 4. Le vecteur \overrightarrow{v} , le vecteur \overrightarrow{AB} et le vecteur \overrightarrow{AC} sont coplanaires.

EXERCICE 2 5 points

Dans un cube ABCDEFGH, on place les points M,N et P tels que :

$$-\overrightarrow{CN} = \frac{2}{3}\overrightarrow{CD}$$

$$\Rightarrow 1 \Rightarrow$$

$$--\overrightarrow{EP} = \frac{1}{4}\overrightarrow{EH}.$$

On se place dans le repère $(A, \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$.

- 1. Placer les points M, N et P et déterminer les coordonnées des points de la figure sans justifier.
- 2. Déterminer la représentation paramétrique de la droite (AD) et de la droite (MN). (Indication: prenez des paramètres différents).
- 3. Montrer que les coordonnées du point L, intersection de (AD) et (MN) sont $(0, \frac{5}{4}, 0)$.
- 4. Donner une représentation paramétrique de la droite (PL).
- 5. Déterminer les coordonnées du point d'intersection K de (PL) et (DH)
- 6. Déterminer l'intersection des plans (MNP) et (ADH)

