AI, firms and wages: Evidence from India

Alex Copestake 1 , Ashley Pople 1 , Katherine Stapleton 2 June 8, 2021

¹University of Oxford

²World Bank

The impact of AI on labour markets is theoretically ambiguous

• Recent advances in machine learning have spurred an intense debate about the impact of AI on jobs

- Recent advances in machine learning have spurred an intense debate about the impact of AI on jobs
- The theoretical impact of AI on labour markets is ambiguous (Acemoglu & Restrepo 2018)

- Recent advances in machine learning have spurred an intense debate about the impact of AI on jobs
- The theoretical impact of AI on labour markets is ambiguous (Acemoglu & Restrepo 2018)
 - Advances in ML have reduced the cost of the task of 'prediction' (Agrawal et al. 2018)

- Recent advances in machine learning have spurred an intense debate about the impact of AI on jobs
- The theoretical impact of AI on labour markets is ambiguous (Acemoglu & Restrepo 2018)
 - Advances in ML have reduced the cost of the task of 'prediction' (Agrawal et al. 2018)
 - Improved prediction could displace workers, but also expand employment through improved productivity or higher quality

- Recent advances in machine learning have spurred an intense debate about the impact of AI on jobs
- The theoretical impact of AI on labour markets is ambiguous (Acemoglu & Restrepo 2018)
 - Advances in ML have reduced the cost of the task of 'prediction' (Agrawal et al. 2018)
 - Improved prediction could displace workers, but also expand employment through improved productivity or higher quality
 - AI could also create new tasks and new jobs (⇒ GPT debate)
 (Brynjolfsson et al. 2017, Cockburn et al. 2018, Klinger et al. 2018,
 Goldfarb et al. 2020, Agrawal et al. 2021)

Empirical evidence on the impact of AI is scarce

• Detailed empirical evidence remains limited due to scarce data on adoption, and focuses on high-income countries

(Acemoglu et al. 2021 in USA, Stapleton 2021 in UK)

Empirical evidence on the impact of AI is scarce

 Detailed empirical evidence remains limited due to scarce data on adoption, and focuses on high-income countries (Acemoglu et al. 2021 in USA, Stapleton 2021 in UK)

 Yet the labour market effects of AI have important ramifications for a services-led development model (Baldwin 2019; Baldwin & Forslid 2020; Korinek & Stiglitz 2021)

Empirical evidence on the impact of AI is scarce

• Detailed empirical evidence remains limited due to scarce data on adoption, and focuses on high-income countries

```
(Acemoglu et al. 2021 in USA, Stapleton 2021 in UK)
```

- Yet the labour market effects of AI have important ramifications for a services-led development model (Baldwin 2019; Baldwin & Forslid 2020; Korinek & Stiglitz 2021)
- India is archetype of services-led growth ⇒ important context for understanding effects of AI on employment
 - E.g. IT-BPO sector currently employs 4 million people and contributes 8% of India's GDP (SESEI 2019)

Overview of the paper

- What we do:
 - Investigate impact of AI on white-collar service sector using 15 million online vacancy posts from India's largest jobs website.
 - Measure firm-level demand for AI-related skills and document a rapid take-off in AI demand after 2016.
 - Exploit exogenous variation in exposure to advances in AI technologies to examine the labour market impacts of AI hiring.

Overview of the paper

• What we do:

- Investigate impact of AI on white-collar service sector using 15 million online vacancy posts from India's largest jobs website.
- Measure firm-level demand for AI-related skills and document a rapid take-off in AI demand after 2016.
- Exploit exogenous variation in exposure to advances in AI technologies to examine the labour market impacts of AI hiring.

• What we find:

- 1% increase in the AI vacancy growth rate ⇒ 3.6 percentage point decrease in establishment non-AI vacancy growth + 2.6 percentage point decrease in non-AI median wage offers over time.
- These negative effects on wage growth appear across the wage distribution.

Outline

Intro

Data	
Descriptives	
Empirical Strategy	
Results	
Conclusion	

Three datasets

• Vacancy data: 15 million job postings posted on India's largest job board platform between 2010 and 2019

Three datasets

- Vacancy data: 15 million job postings posted on India's largest job board platform between 2010 and 2019
- **Prowess**: Longitudinal balance sheet data on all publicly-listed and many large private Indian firms

Three datasets

- Vacancy data: 15 million job postings posted on India's largest job board platform between 2010 and 2019
- **Prowess**: Longitudinal balance sheet data on all publicly-listed and many large private Indian firms
- Nationally-representative labour surveys: National Sample Survey (2011-12) and Periodic Labour Force Survey (2017-18)

Construction of the vacancy data

• Over 150,000 unique firms posted at least one vacancy between 2010 and 2019, with an average of 80 posts per firm

Construction of the vacancy data

- Over 150,000 unique firms posted at least one vacancy between 2010 and 2019, with an average of 80 posts per firm
- All posts include text data on the job title, industry, role category, location, skills required, salary and experience ranges and educational requirements

Construction of the vacancy data

- Over 150,000 unique firms posted at least one vacancy between 2010 and 2019, with an average of 80 posts per firm
- All posts include text data on the job title, industry, role category, location, skills required, salary and experience ranges and educational requirements
- We manually map roles and industries onto the 2004 National Classification of Occupations and 2008 National Industrial Classification, and locations to cities and districts

Data Descriptives Empirical Strategy Results

Measuring AI demand

- Use AI hiring to proxy for AI usage
 (Rock 2019, Benzell et al. 2019, Acemoglu et al. 2021, Stapleton 2021)
- Exploit that primary method for sourcing AI capabilities is external hiring (McKinsey Global Institute 2019)
- Classify a post as an AI vacancy if it includes words from list of specific AI terms (Acemoglu & Restrepo 2018)

Five descriptive findings

- 1. AI demand increased rapidly after 2016, particularly in the IT, finance, education and professional services sectors
- 2. AI roles require more education, but offer substantially higher wages than other white-collar services jobs
- **3.** All roles are highly concentrated in a few key technology clusters, particularly Bangalore
- 4. AI roles are highly concentrated in the largest 'superstar' firms
- 5. AI adoption can spur local AI diffusion, over and above industry and region trends, particularly in the IT sector

AI demand increased rapidly after 2016

AI demand increased rapidly after 2016, particularly in IT, finance, education and professional services

AI share of total posts, by industry

Five descriptive findings

- 1. AI demand increased rapidly after 2016, particularly in the IT, finance, education and professional services sectors
- 2. AI roles require more education, but offer substantially higher wages than other white-collar services jobs
- **3.** All roles are highly concentrated in a few key technology clusters, particularly Bangalore
- 4. AI roles are highly concentrated in the largest 'superstar' firms
- 5. AI adoption can spur local AI diffusion, over and above industry and region trends, particularly in the IT sector

AI roles require more education, but offer substantially higher wages than other white-collar services jobs

⇒ AI posts pay a 13% salary premium, even after controlling for education, experience, and detailed fixed effects (industry-region, industry-year, region-year, firm, occupation).

Five descriptive findings

- 1. AI demand increased rapidly after 2016, particularly in the IT, finance, education and professional services sectors
- 2. AI roles require more education, but offer substantially higher wages than other white-collar services jobs
- 3. AI roles are highly concentrated in a few key technology clusters, particularly Bangalore
- 4. AI roles are highly concentrated in the largest 'superstar' firms
- 5. AI adoption can spur local AI diffusion, over and above industry and region trends, particularly in the IT sector

AI roles are highly concentrated in a few key technology clusters, particularly Bangalore

Five descriptive findings

- 1. AI demand increased rapidly after 2016, particularly in the IT, finance, education and professional services sectors
- 2. AI roles require more education, but offer substantially higher wages than other white-collar services jobs
- 3. AI roles are highly concentrated in a few key technology clusters, particularly Bangalore
- 4. AI roles are highly concentrated in the largest 'superstar' firms
- 5. AI adoption can spur local AI diffusion, over and above industry and region trends, particularly in the IT sector

AI roles are highly concentrated in the largest 'superstar' firms

Distribution of AI posts across all firms, 2010-2019

AI roles are highly concentrated in the largest 'superstar' firms

Firm concentration of AI posts, 2010-19

Five descriptive findings

- 1. AI demand increased rapidly after 2016, particularly in the IT, finance, education and professional services sectors
- 2. AI roles require more education, but offer substantially higher wages than other white-collar services jobs
- 3. AI roles are highly concentrated in a few key technology clusters, particularly Bangalore
- 4. AI roles are highly concentrated in the largest 'superstar' firms
- 5. AI adoption can spur local AI diffusion, over and above industry and region trends, particularly in the IT sector

AI adoption can spur local AI diffusion, over and above industry and region trends

AI adoption can spur local AI diffusion, over and above industry and region trends, particularly in the IT sector

2SLS with AI exposure as an instrument

$$\Delta y_{fr,t-t_0} = \beta \cdot \Delta A doption_{fr,t-t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$
 (1)

- Increasing the growth rate of AI demand by 1% between 2010-12 and 2017-19 causes a β percentage point rise in the growth rate of the outcome variable across the same time period.
- Our primary unit of analysis are firm-city pairs ('establishments') and we cluster standard errors at the firm level.
- Our main estimates therefore use 25,000 incumbent establishments posting 2 million vacancies.

2SLS with AI exposure as an instrument

$$\Delta Adoption_{fr,t-t_0} = \gamma \cdot Exposure_{fr,t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$
 (2)

- We instrument AI demand by 'AI exposure' that captures plausibly exogenous improvements in the AI technological frontier.
- The Webb (2020) AI exposure measure captures the degree of overlap between workers' tasks and tasks that can be performed by patented AI technologies.
- Occupations comprising more AI-automatable tasks are assigned a higher exposure measure.
- We use publicly-available crosswalks to map the Webb (2020) measure to 2004 NCO and aggregate to the establishment level.

First stage: AI exposure predicts AI demand

Impact of AI exposure on establishment AI demand

	Growth in AI Vacancies						
	(1)	(2)	(3)				
Establishment AI Exposure	0.0170***	0.0193***	0.00607**				
	(5.13)	(5.21)	(2.05)				
Fixed Effects:							
- Region	\checkmark	\checkmark	\checkmark				
– Firm Decile	\checkmark	\checkmark					
– Industry		\checkmark					
– Firm			\checkmark				
\mathbb{R}^2	.0341	.049	.3774				
Observations	22,251	22,251	19,383				

First stage: AI share by exposure quintile

Second stage: AI demand lowers growth in non-AI demand

	Growth in Non-AI Vacancies			Growth in Total Vacancies		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in AI Vacancies	-5.942***	-3.605***	-9.944*	-5.909***	-3.566***	-9.923*
	(-3.66)	(-3.16)	(-1.84)	(-3.64)	(-3.14)	(-1.84)
Fixed Effects:						
– Region	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓
– Firm Decile	✓	\checkmark		\checkmark	\checkmark	
- Industry		\checkmark			\checkmark	
– Firm			\checkmark			\checkmark
First Stage F-Stat	26.31	27.17	4.185	26.31	27.17	4.185
Observations	$22,\!251$	$22,\!251$	19,383	$22,\!251$	22,251	19,383

Second stage: AI demand lowers growth in non-AI demand

	Growth in	Growth in Non-AI Vacancies			Growth in Total Vacancies		
	(1)	(2)	(3)	(4)	(5)	(6)	
Growth in AI Vacancies	-5.942***	-3.605***	-9.944*	-5.909***	-3.566***	-9.923*	
	(-3.66)	(-3.16)	(-1.84)	(-3.64)	(-3.14)	(-1.84)	
Fixed Effects:							
– Region	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	
– Firm Decile	✓	\checkmark		✓	\checkmark		
- Industry		\checkmark			\checkmark		
– Firm			\checkmark			\checkmark	
First Stage F-Stat	26.31	27.17	4.185	26.31	27.17	4.185	
Observations	$22,\!251$	$22,\!251$	19,383	$22,\!251$	22,251	19,383	

Second stage: AI demand lowers non-AI wage growth

	Growth in	Growth in Non-AI Median Wage			Growth in Overall Median Wage			
	(1)	(2)	(3)	(4)	(5)	(6)		
Growth in AI Vacancies	-3.101***	-2.599***	-5.973*	-3.017***	-2.527***	-5.696*		
	(-3.47)	(-3.43)	(-1.83)	(-3.50)	(-3.46)	(-1.87)		
Fixed Effects:								
- Region	✓	✓	✓	\checkmark	✓	✓		
– Firm Decile	✓	✓		\checkmark	✓			
- Industry		\checkmark			✓			
- Firm			✓			✓		
First Stage F-Stat	25.64	26.39	4.294	26.84	27.71	4.602		
Observations	22,064	22,064	19,217	22,071	22,071	19,223		

Second stage: AI demand lowers non-AI wage growth

	Growth in Non-AI Median Wage			Growth in Overall Median Wage		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in AI Vacancies	-3.101***	-2.599***	-5.973*	-3.017***	-2.527***	-5.696*
	(-3.47)	(-3.43)	(-1.83)	(-3.50)	(-3.46)	(-1.87)
Fixed Effects:						
- Region	✓	✓	✓	✓	\checkmark	\checkmark
– Firm Decile	✓	✓		\checkmark	\checkmark	
- Industry		\checkmark			\checkmark	
- Firm			✓			✓
First Stage F-Stat	25.64	26.39	4.294	26.84	27.71	4.602
Observations	22,064	22,064	19,217	22,071	22,071	19,223

Second stage: AI demand lowers non-AI wage growth

	Growth in Non-AI Median Wage			Growth in Overall Median Wage		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in AI Vacancies	-3.101***	-2.599***	-5.973*	-3.017***	-2.527***	-5.696*
	(-3.47)	(-3.43)	(-1.83)	(-3.50)	(-3.46)	(-1.87)
Fixed Effects:						
- Region	✓	✓	✓	✓	\checkmark	✓
– Firm Decile	✓	✓		\checkmark	\checkmark	
- Industry		✓			✓	
- Firm			✓			\checkmark
First Stage F-Stat	25.64	26.39	4.294	26.84	27.71	4.602
Observations	22,064	22,064	19,217	22,071	22,071	19,223

✓ Robust to controlling for changes in education and experience (-1.933***)

✓ Robust to mean wages

Second stage: AI demand lowers non-AI wage growth

Results are robust to:

1.	Alternative exposure measures	√
2.	Weighting by baseline establishment size	✓
3.	Alternative data sources	1

Conclusion

- Evidence that AI is a 'double-edged sword' for Indian white-collar services workers:
 - AI jobs pay a substantial wage premium, but are highly concentrated in certain industries, cities and 'superstar' firms.
 - Within incumbent establishments, AI adoption reduces the number of other job opportunities and the available salaries.
 (A 1% increase in the AI vacancy growth rate ⇒ 3.6 percentage point decrease in establishment non-AI vacancy growth + 2.6 percentage point decrease in non-AI median wage offers over 2010-2019.)
- Further research: offsetting effects elsewhere?
 - New tasks? New firms?
 - Overall 'creation' > 'destruction'?