Econometrics: Problem Set #2

Due on April 5, 2024 at 4:00 pm

 $Professor\ Ben\ Faber\ Section\ 101$

Zachary Brandt

Question 1

The Ministry of Commerce in a large country wants to know the causal effect of membership in a local Chamber of Commerce on firm revenues and profits. Firms pay for their membership and they supposedly benefit from the network of information and contacts that the local Chambers of Commerce offer them. But usually, it is only a small minority of all firms that end up paying for the membership.

The Ministry plans to estimate the causal effect of being a member in a local Chamber of Commerce by letting the Ministry's staff estimate the average percentage change in annual firm sales between firms that are members and the rest of the firms that are non-members of their local Chamber of Commerce.

- A) Write down the OLS regression specification that the Ministry's staff could use to implement their analysis described above. Interpret what the intercept and slope coefficients would capture in such a specification.
- B) Using notation from the Potential Outcomes Framework, briefly explain the concept of the Average Treatment Effect (ATE) to the Minister, and how what they plan to estimate in A) relates to this definition.
- C) Referring to the expressions you use in your answer to B), explain why a randomized control trial (RCT) could be useful, and very briefly describe the basics of the RCT design for how the Ministry could set this up.
- D) The Ministry mentions that it has no legal authority to force firms to become members in their local Chambers of Commerce. Using notation from the Potential Outcomes Framework, explain why this information could be important for the interpretation of the results from the RCT relative to the ATE, and how the Ministry should address this concern in the RCT analysis?
- E) The Ministry talked to other economists, and now it is worried about spillover effects on the control group. The staff don't fully understand what the concern is, however. Briefly explain to them the intuition behind this concern, and explain how they could potentially address it when designing the RCT.

Part A

Write down the OLS regression specification that the Ministry's staff could use to implement their analysis described above. Interpret what the intercept and slope coefficients would capture in such a specification.

Solution

The following OLS regression specification is one that the Ministry could implement:

$$ln(Y_i) = \beta_0 + \beta_1 D_i + u_i$$

where

the subscript i runs over the observations, i = 1, ..., n;

 Y_i is the dependent variable, annual firm sales

 D_i is the dummy variable, $D_i = 1$ if the firm is a local Chamber of Commerce member and 0 otherwise

 β_0 is the *intercept* of the regression, the population mean value of annual, non-member firm sales

 β_1 is the coefficient on D_i , associating a change in D_i by one unit with a $100\beta_1\%$ change in Y_i

 $\beta_0 + \beta_1$ is the population mean value of annual, member firm sales

 u_i is the error term, all the factors responsiblze for the difference between predicted and observed values

Part B

Using notation from the Potential Outcomes Framework, briefly explain the concept of the Average Treatment Effect (ATE) to the Minister, and how what they plan to estimate in A) relates to this definition.

Solution

One core challenge with evaluating the causal effect of membership in a local Chamber of Commerce on firm revenues and profits is that we cannot observe a firm i in two different states of the world: one where the firm is a member, and one where it is not. Instead, we can compare the mean outcomes of two firm groups (members vs. non-members) to learn about the true, average treatment effect (ATE) of membership.

The ATE is defined as:

$$ATE = E(Y_i(1) - Y_i(0))$$

where $Y_i(1)$ represents the potential outcome (the annual sales) of a firm i if part of a local Chamber of Commerce and $Y_i(0)$ represents the annual sales for the **same** firm if not.

To compare the mean outcomes of the two groups of firms (members vs. non-members of a local Chamber of Commerce), we instead estimate:

$$E(Y_i(1) | X_i = 1) - E(Y_i(0) | X_i = 0)$$

where we condition our observation of Y_i on X_i , with $X_i = 1$ representing if firm i is part of a local Chamber of Commerce, and $X_i = 0$ if it is not. The above is not necessarily equal to the ATE defined earlier because X_i , or membership status, is not independent of potential outcomes (annual firm sales). We would have to show first that, in the absence of a local Chamber of Commerce, member and non-member firms would have to be on average identical (there would have to be no selection bias).

Unpacking the above expression we can see the effect of selection bias:

$$E(Y_i(1) \mid D_i = 1) - E(Y_i(0) \mid D_i = 1) = \underbrace{E(Y_i(1) \mid D_i = 1) - E(Y_i(0) \mid D_i = 1)}_{\text{Average Treatment Effect on the Treated}} + \underbrace{E(Y_i(0) \mid D_i = 1) - E(Y_i(0) \mid D_i = 0)}_{\text{Selection Bias}}$$

The first term is the average treatment effect on the treated (ATT), the difference between $Y_i(1)$ and $Y_i(0)$ for the group of firms that are members of a local Chamber of Commerce. The second term estimates the selection bias by comparing $Y_i(0)$, annual sales before being a member, between members, $X_i = 1$, and non-members, $X_i = 0$. $E(Y_i(0) | X_i = 1)$ cannot be observed directly for both of these terms, because we cannot rerun the experiment a second time where the treatment is not applied. The bias term appears because firms that are members of a local Chamber of Commerce may have different outcomes than firms that are not members, even in the absence of a local Chamber of Commerce.

Part C

Referring to the expressions you use in your answer to B), explain why a randomized control trial (RCT) could be useful, and very briefly describe the basics of the RCT design for how the Ministry could set this up.

Solution

In a RCT, treatment and control groups are randomly selected, and the average outcomes of these two groups are compared after the treatment. By randomly allocating treatment status, we can use the simple difference in outcomes between treatment and control groups to estimate the ATE. This is because the randomization removes selection bias by ensuring that member firms and non-member firms are comparable in terms of both observable and unobservable characteristics and that any difference between the two groups is not due to systematic differences. This implies that the ATE = ATT.

Connecting back to the potential outcomes framework, $D_i = 1$ indicates if firm i is a member of a local Chamber of Commerce (the treatment), and $D_i = 0$ if the firm is not (D_i indicates treatment status). $Y_i(1)$ are the annual sales (the potential outcome) for a firm i if treated (part of a local Chamber or Commerce), and $Y_i(0)$ are the annual sales for the same firm if not.

The ATE is then defined as:

$$ATE = E(Y_i(1) - Y_i(0))$$

If the treatment assignment D_i is assigned randomly and independent of the potential outcomes of the firms $(D_i \perp (Y_i(1), Y_i(0)))$, we can compare the mean outcomes of the two groups (members vs. non-members of a local Chamber of Commerce):

$$E(Y_{i}(1) \mid D_{i} = 1) - E(Y_{i}(0) \mid D_{i} = 1) = \underbrace{E(Y_{i}(1) \mid D_{i} = 1) - E(Y_{i}(0) \mid D_{i} = 1)}_{\text{Average Treatment Effect on the Treated}} + \underbrace{E(Y_{i}(0) \mid D_{i} = 1) - E(Y_{i}(0) \mid D_{i} = 0)}_{\text{Selection Bias}}$$

$$= E(Y_{i}(1) \mid D_{i} = 1) - E(Y_{i}(0) \mid D_{i} = 1) \quad \text{(selection bias is zero)}$$

$$= ATT$$

because the treatment status is independent of outcomes, we can also show:

$$ATT = E(Y_i(1) - Y_i(0)) = ATE$$

This means that if we randomly assign treatment status (membership in a local Chamber of Commerce) and control status (non-membership), we can estimate the ATE by comparing mean sales outcomes across the two groups of observation. We can report the estimated treatment effect of the RCT design from the OLS regression, $ln(Y_i) = \beta_0 + \beta_1 D_i + u_i$. The β_1 coefficient is the difference in means between the treatment group relative to the control group. Dividing this difference by its standard error produces a t-statistic that allows us to determine whether the observed difference in annual sales between firms part of a local Chamber of Commerce and firms that are not is statistically significant.

Part D

The Ministry mentions that it has no legal authority to force firms to become members in their local Chambers of Commerce. Using notation from the Potential Outcomes Framework, explain why this information could be important for the interpretation of the results from the RCT relative to the ATE, and how the Ministry should address this concern in the RCT analysis?

Solution

In the case where assigned treatment status, D_i , cannot be enforced on firms,

Question 2

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $E[e_i] = 0$, and $Var[e_i] = \sigma_e^2$ and $Cov[e_i, e_j] = 0$, $\forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta_1}$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

Solution

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$\begin{split} \mathbf{E}[\hat{\beta}_1] &= \mathbf{E}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i \mathbf{E}[Y_i]}{\sum x_i^2} \\ &= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2} \\ &= \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \end{split}$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\operatorname{Var}[\hat{\beta_1}] = \operatorname{Var}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right]$$

$$= \frac{\sum x_i^2}{\sum x_i^2 \sum x_i^2} \operatorname{Var}[Y_i]$$

$$= \frac{\sum x_i^2}{\sum x_i^2 \sum x_i^2} \operatorname{Var}[Y_i]$$

$$= \frac{1}{\sum x_i^2} \operatorname{Var}[Y_i]$$

$$= \frac{1}{\sum x_i^2} \sigma^2$$

$$= \frac{\sigma^2}{\sum x_i^2}$$

Question 3

Prove a polynomial of degree k, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ is a member of $\Theta(n^k)$ where $a_k \ldots a_0$ are nonnegative constants.

Proof. To prove that $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, we must show the following:

$$\exists c_1 \exists c_2 \forall n \ge n_0, \ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^k \le a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1 = 1$ and $n_0 = 1$. This is because $n^k \le c_1 \cdot a_k n^k$ for any nonnegative constant, c_1 and a_k .

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_i$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \ldots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$\leq c_2 \cdot n^k$$

where $n_0 = 1$ and $c_2 = A$. c_2 is just a constant. Thus the proof is complete.

Question 18

Evaluate $\sum_{k=1}^{5} k^2$ and $\sum_{k=1}^{5} (k-1)^2$.

Question 19

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Question 6

Evaluate the integrals $\int_0^1 (1-x^2) \mathrm{d}x$ and $\int_1^\infty \frac{1}{x^2} \mathrm{d}x$.