MTH 375

Fall 2022

Assignment 6 - due 3/10/2022

Read Sec. 5.2

Key Concepts: Bayesian statistics, prior and posterior distiributions, Bayesian estimators for squared error loss function and absolute error loss function.

- #1. Let X_1, \ldots, X_n be iid binomial $(1, \theta)$ random variables.
- If the prior pdf of θ is Beta(1, 2), determine
- a) the posterior distribution of $\theta | x_1, \ldots, x_n$.
- b) the Bayesian estimator of θ for the squared error loss.
- c) Suppose that $n=10, \sum_{k=1}^{10} x_i = 7$. Compute the Bayesian estimate of θ for square error loss, and the Bayesian estimate for θ for absolute error loss.
- #2. Let X_1, \ldots, X_{50} be iid geometric(θ), and suppose that θ has prior pdf Beta(5,10). Say $\sum_{i=1}^{50} x_i = 149$.
 - a) Find the posterior pdf of θ .
 - b) Find the value of the Bayesian estimator of θ for the squared error loss function.
 - c) Find the value of the Bayesian estimator of θ for the absolute error loss function.
- #3. Let X_1, \ldots, X_{60} be iid random variables with pdf $f(x|\theta)$ exponential(θ). If the prior pdf of θ is Gamma(α, β), determine
 - a) the posterior distribution of $\theta | x_1, \ldots, x_n$.
 - b) the Bayesian estimator of θ for the squared error loss function.
- c) the Bayesian estimate of θ for the squared error loss function when $\sum_{i=1}^{60} x_i = 143.1$, $\alpha = 3.5$, and $\beta = 6$.
- d) the Bayesian estimate of θ for the absolute error loss function when $\sum_{i=1}^{60} = 143.1$, $\alpha = 3.5$, and $\beta = 6$.
- #4. Let X_1, \ldots, X_n be iid binomial $(2,\theta)$ random variables. If the prior pdf of θ is Uniform[0, 1], find
 - a) the posterior distribution of $\theta | x_1, \dots, x_n$
 - b) the Bayesian estimator of θ for the squared error loss function,
- c) the Bayesian estimate for the squared error loss function when when n = 10 and $\sum_{i=1}^{10} x_i = 17,$
 - d) the Bayesian estimate of θ for the absolute error loss function.
 - #5. Let X_1, \ldots, X_{10} be iid binomial $(1,\theta)$ random variables, with prior pdf

$$\pi(\theta) = \begin{cases} 1/3 & \text{if } \theta = .5\\ 2/3 & \text{if } \theta = .8 \end{cases}.$$

(a) Find the posterior distribution of $\theta | x_1, \dots, x_{10}$.

(Hint: Since θ can take only two values, you need only compute $p(\theta = .5 \mid x_1, \ldots, x_{10})$

and $p(\theta = .8 \mid x_1, ..., x_{10})$.) (b) Suppose $\sum_{k=1}^{10} x_i = 6$. Find the Bayesian estimate of θ for the squared error loss function, and for the absolute error loss function.