Linear Equations

Department of Mathematics

Salt Lake Community College

(Slides by Adam Wilson)

An equation $F(x_1, x_2, ..., x_n) = C$ is **linear** if it is of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=C$$

where a_1, a_2, \ldots, a_n and C are constants.

If C = 0, the equation is said to be **homogeneous**.

An equation $F(x_1, x_2, ..., x_n) = C$ is **linear** if it is of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=C$$

where a_1, a_2, \ldots, a_n and C are constants.

If C = 0, the equation is said to be **homogeneous**.

Example 1

$$4x - 3ex = 15$$
$$4x - 2y + 3\sqrt{z} = 12$$
$$2x - 3y + 4z + 3 = w$$

An equation $F(x_1, x_2, ..., x_n) = C$ is **linear** if it is of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=C$$

where a_1, a_2, \ldots, a_n and C are constants.

If C = 0, the equation is said to be **homogeneous**.

Example 1

$$4x - 3e^{x} = 15 \quad \text{No}$$

$$4x - 2y + 3\sqrt{z} = 12$$

$$2x - 3y + 4z + 3 = w$$

An equation $F(x_1, x_2, ..., x_n) = C$ is **linear** if it is of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=C$$

where a_1, a_2, \ldots, a_n and C are constants.

If C = 0, the equation is said to be **homogeneous**.

Example 1

$$4x - 3e^{x} = 15 \quad \text{No}$$

$$4x - 2y + 3\sqrt{z} = 12 \quad \text{No}$$

$$2x - 3y + 4z + 3 = w$$

An equation $F(x_1, x_2, ..., x_n) = C$ is **linear** if it is of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=C$$

where a_1, a_2, \ldots, a_n and C are constants.

If C = 0, the equation is said to be **homogeneous**.

Example 1

$$4x - 3e^{x} = 15 \quad \text{No}$$

$$4x - 2y + 3\sqrt{z} = 12 \quad \text{No}$$

$$2x - 3y + 4z + 3 = w \quad \text{Yes}$$

A differential equation $F(y, y', y'', \dots, y^{(n)}) = f(t)$ is **linear** if it is of the form

$$a_n(t)\frac{d^ny}{dt^n} + a_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \cdots + a_1(t)\frac{dy}{dt} + a_0(t)y = f(t)$$

where all functions of t are assumed to be defined over some common interval I.

If f(t) = 0 over the interval I, the differential equation is said to be homogeneous.

A differential equation $F(y, y', y'', \dots, y^{(n)}) = f(t)$ is **linear** if it is of the form

$$a_n(t)\frac{d^ny}{dt^n} + a_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \cdots + a_1(t)\frac{dy}{dt} + a_0(t)y = f(t)$$

where all functions of t are assumed to be defined over some common interval I.

If f(t) = 0 over the interval I, the differential equation is said to be homogeneous.

First and Second Order Notation

It is common to write first-order differential equations as

$$y' + p(t)y = f(t)$$

and second-order differential equations as

$$y'' + p(t)y' + q(t)y = f(t)$$

Let us classify the following differential equations.

Differential Equation Order Linear? Homogeneous? Coefficients

$$y'+ty=1$$

Differential Equation	Order	Linear?	Homogeneous?	Coefficients

$$y' + ty = 1$$

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
v' + tv = 1	1	Yes		

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y' + ty = 1	1	Yes	No	

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
,, ,				

$$y'' + yy' + y = t$$

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2			

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y' + ty = 1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$				

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2			

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	<u>—</u>
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0				

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2			

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes		

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	<u>—</u>
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant
$y'' + y = \sin(y)$				

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant
$y'' + y = \sin(y)$	2			

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant
$y'' + y = \sin(y)$	2	No	_	_

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant
$y'' + y = \sin(y)$	2	No	_	_
$y''' + 3y' + y = \sin(t)$				

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant
$y'' + y = \sin(y)$	2	No	_	_
$y''' + 3y' + y = \sin(t)$	3			

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant
$y'' + y = \sin(y)$	2	No	<u>—</u>	_
$y''' + 3y' + y = \sin(t)$	3	Yes		

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y'+ty=1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant
$y'' + y = \sin(y)$	2	No	_	_
$y''' + 3y' + y = \sin(t)$	3	Yes	No	

Differential Equation	Order	Linear?	Homogeneous?	Coefficients
y' + ty = 1	1	Yes	No	Variable
y'' + yy' + y = t	2	No	_	_
$y'' + ty' + y^2 = 0$	2	No	_	_
y'' + 3y' + 2y = 0	2	Yes	Yes	Constant
$y'' + y = \sin(y)$	2	No	_	_
$y''' + 3y' + y = \sin(t)$	3	Yes	No	Variable

Notation

We will use a vector notation to represent a whole set of variables:

Linear Algebraic Equations:

$$\vec{\boldsymbol{x}} = [x_1, x_2, \dots, x_n]$$

Linear Differential Equations:

$$\vec{y} = [y^{(n)}, y^{(n-1)}, \dots, y', y]$$

Notation

We will use a vector notation to represent a whole set of variables:

Linear Algebraic Equations:

$$\vec{\mathbf{x}} = [x_1, x_2, \dots, x_n]$$

Linear Differential Equations:

$$\vec{y} = [y^{(n)}, y^{(n-1)}, \dots, y', y]$$

Definition

A linear operator L is an entire operation performed on a set of variables.

Linear Algebraic Equations:

$$L(\vec{x}) = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

Linear Differential Equations:

$$L(\vec{y}) = a_n(t) \frac{d^n y}{dt^n} + a_{n-1}(t) \frac{d^{n-1} y}{dt^{n-1}} + \cdots + a_1(t) \frac{dy}{dt} + a_0(t) y$$

What is the linear operator for the following linear differential equations?

$$y'+ty=1$$

What is the linear operator for the following linear differential equations?

$$y' + ty = 1$$
 \rightarrow $L(\vec{y}) = y' + ty$

$$y' + ty = 1$$
 \rightarrow $L(\vec{y}) = y' + ty$
 $y'' + 2y = 3y' + t$

$$y' + ty = 1$$
 \rightarrow $L(\vec{y}) = y' + ty$
 $y'' - 3y' + 2y = t$

$$y' + ty = 1$$
 \rightarrow $L(\vec{y}) = y' + ty$
 $y'' - 3y' + 2y = t$ \rightarrow $L(\vec{y}) = y'' - 3y' + 2y$

$$y' + ty = 1$$
 \rightarrow $L(\vec{y}) = y' + ty$
 $y'' - 3y' + 2y = t$ \rightarrow $L(\vec{y}) = y'' - 3y' + 2y$
 $y^{(4)} + 3y = \sin(t)$

$$y' + ty = 1$$
 \rightarrow $L(\vec{y}) = y' + ty$
 $y'' - 3y' + 2y = t$ \rightarrow $L(\vec{y}) = y'' - 3y' + 2y$
 $y^{(4)} + 3y = \sin(t)$ \rightarrow $L(\vec{y}) = y^{(4)} + 3y$

What is the linear operator for the following linear differential equations?

$$y' + ty = 1$$
 \rightarrow $L(\vec{y}) = y' + ty$
 $y'' - 3y' + 2y = t$ \rightarrow $L(\vec{y}) = y'' - 3y' + 2y$
 $y^{(4)} + 3y = \sin(t)$ \rightarrow $L(\vec{y}) = y^{(4)} + 3y$

Linear Operator Properties

$$L(k\vec{u}) = kL(\vec{u}), \quad k \in \mathbb{R}$$

 $L(\vec{u} + \vec{w}) = L(\vec{u}) + L(\vec{w})$

What is the linear operator for the following linear differential equations?

$$y' + ty = 1$$
 \rightarrow $L(\vec{y}) = y' + ty$
 $y'' - 3y' + 2y = t$ \rightarrow $L(\vec{y}) = y'' - 3y' + 2y$
 $y^{(4)} + 3y = \sin(t)$ \rightarrow $L(\vec{y}) = y^{(4)} + 3y$

Linear Operator Properties

$$L(k\vec{u}) = kL(\vec{u}), \quad k \in \mathbb{R}$$

 $L(\vec{u} + \vec{w}) = L(\vec{u}) + L(\vec{w})$

Proof

The properties can be proved directly for algebraic operators.

For differential operators, the proof follows from the derivative properties:

- (kf)' = kf'
- (f+g)'=f'+g'

Superposition Principle for Linear Homogeneous Equations

Let \vec{u}_1 and \vec{u}_2 be any solutions of the *homogeneous linear* equation

$$L(\vec{u})=0$$

- The sum $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_1 + \vec{\boldsymbol{u}}_2$ is also a solution.
- For any constant k, $\vec{\boldsymbol{u}} = k\vec{\boldsymbol{u}}_1$ is also a solution.

Superposition Principle for Linear Homogeneous Equations

Let \vec{u}_1 and \vec{u}_2 be any solutions of the *homogeneous linear* equation

$$L(\vec{\boldsymbol{u}})=0$$

- The sum $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_1 + \vec{\boldsymbol{u}}_2$ is also a solution.
- For any constant k, $\vec{\boldsymbol{u}} = k\vec{\boldsymbol{u}}_1$ is also a solution.

Proof

The proof of the Superposition Principle follows directly from the properties of linear operators from the previous slides.

$$L(\vec{u}) = L(\vec{u_1} + \vec{u_2}) = L(\vec{u_1}) + L(\vec{u_2}) = 0 + 0 = 0$$
$$L(\vec{u}) = L(k\vec{u_1}) = kL(\vec{u_1}) = k \cdot 0 = 0$$

The point (1,3) is on the line y = 3x.

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

Additionally, the point (3,9) = (1+2,3+6) = (1,3)+(2,6) is on the line.

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

Additionally, the point (3,9) = (1+2,3+6) = (1,3) + (2,6) is on the line.

Example 5

The differential equation

$$y''-4y=0$$

has the solutions $y = e^{2t}$ and $y = e^{-2t}$.

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

Additionally, the point (3,9) = (1+2,3+6) = (1,3) + (2,6) is on the line.

Example 5

The differential equation

$$y''-4y=0$$

has the solutions $y = e^{2t}$ and $y = e^{-2t}$.

By superposition, $y = 2e^{2t} + 3e^{-2t}$ must also be a solution.

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

Additionally, the point (3,9) = (1+2,3+6) = (1,3) + (2,6) is on the line.

Example 5

The differential equation

$$y'' - 4y = 0$$

has the solutions $y = e^{2t}$ and $y = e^{-2t}$.

By superposition, $y = 2e^{2t} + 3e^{-2t}$ must also be a solution.

$$y' = 4e^{2t} - 6e^{-2t}$$

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

Additionally, the point (3,9) = (1+2,3+6) = (1,3) + (2,6) is on the line.

Example 5

The differential equation

$$y'' - 4y = 0$$

has the solutions $y = e^{2t}$ and $y = e^{-2t}$.

By superposition, $y = 2e^{2t} + 3e^{-2t}$ must also be a solution.

$$y' = 4e^{2t} - 6e^{-2t}$$

$$y'' = 8e^{2t} + 12e^{-2t}$$

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

Additionally, the point (3,9) = (1+2,3+6) = (1,3) + (2,6) is on the line.

Example 5

The differential equation

$$y''-4y=0$$

has the solutions $y = e^{2t}$ and $y = e^{-2t}$.

By superposition, $y = 2e^{2t} + 3e^{-2t}$ must also be a solution.

$$y' = 4e^{2t} - 6e^{-2t}$$

$$y'' = 8e^{2t} + 12e^{-2t}$$

$$y'' - 4y = (8e^{2t} + 12e^{-2t}) - 4(2e^{2t} + 3e^{-2t})$$

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

Additionally, the point (3,9) = (1+2,3+6) = (1,3) + (2,6) is on the line.

Example 5

The differential equation

$$y''-4y=0$$

has the solutions $y = e^{2t}$ and $y = e^{-2t}$.

By superposition, $y = 2e^{2t} + 3e^{-2t}$ must also be a solution.

$$y' = 4e^{2t} - 6e^{-2t}$$

$$y'' = 8e^{2t} + 12e^{-2t}$$

$$y'' - 4y = (8e^{2t} + 12e^{-2t}) - 4(2e^{2t} + 3e^{-2t})$$

$$= 8e^{2t} + 12e^{-2t} - 8e^{2t} - 12e^{-2t}$$

The point (1,3) is on the line y=3x. So is the point $(2,6)=(2\cdot 1,2\cdot 3)$.

Additionally, the point (3,9) = (1+2,3+6) = (1,3) + (2,6) is on the line.

Example 5

The differential equation

$$y'' - 4y = 0$$

has the solutions $y = e^{2t}$ and $y = e^{-2t}$.

By superposition, $y = 2e^{2t} + 3e^{-2t}$ must also be a solution.

$$y' = 4e^{2t} - 6e^{-2t}$$

$$y'' = 8e^{2t} + 12e^{-2t}$$

$$y'' - 4y = (8e^{2t} + 12e^{-2t}) - 4(2e^{2t} + 3e^{-2t})$$

$$= 8e^{2t} + 12e^{-2t} - 8e^{2t} - 12e^{-2t} = 0$$

Nonhomogeneous Principle

Let \vec{u}_p be any solution (called a particular solution) to *linear nonhomogeneous* equation

$$L(\vec{u}) = C$$
 (algebraic)

or

$$L(\vec{u}) = f(t)$$
 (differential)

Then.

$$\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p$$

is also a solution, here \vec{u}_h is a solution to the associated homogeneous equation

$$L(\vec{\boldsymbol{u}})=0$$

Furthermore, every solution of the nonhomogeneous equation must be of the form $\vec{u} = \vec{u}_h + \vec{u}_p$.

It is easy to show that $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p$ is a solution.

$$L(\vec{\boldsymbol{u}}) = L(\vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_h) + L(\vec{\boldsymbol{u}}_p) = 0 + f(t) = f(t)$$

It is easy to show that $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p$ is a solution.

$$L(\vec{\boldsymbol{u}}) = L(\vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_h) + L(\vec{\boldsymbol{u}}_p) = 0 + f(t) = f(t)$$

To show that every solution has to be of this form, suppose that \vec{u}_q is any solution. Note that $\vec{u}_q = \vec{u}_p + (\vec{u}_q - \vec{u}_p)$.

It is easy to show that $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p$ is a solution.

$$L(\vec{\boldsymbol{u}}) = L(\vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_h) + L(\vec{\boldsymbol{u}}_p) = 0 + f(t) = f(t)$$

To show that every solution has to be of this form, suppose that \vec{u}_q is any solution. Note that $\vec{u}_q = \vec{u}_p + (\vec{u}_q - \vec{u}_p)$.

$$L(\vec{\boldsymbol{u}}_q - \vec{\boldsymbol{u}}_p) =$$

It is easy to show that $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p$ is a solution.

$$L(\vec{\boldsymbol{u}}) = L(\vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_h) + L(\vec{\boldsymbol{u}}_p) = 0 + f(t) = f(t)$$

To show that every solution has to be of this form, suppose that \vec{u}_q is any solution. Note that $\vec{u}_q = \vec{u}_p + (\vec{u}_q - \vec{u}_p)$.

$$L(\vec{\boldsymbol{u}}_q - \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_q) + L(-\vec{\boldsymbol{u}}_p)$$

It is easy to show that $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p$ is a solution.

$$L(\vec{\boldsymbol{u}}) = L(\vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_h) + L(\vec{\boldsymbol{u}}_p) = 0 + f(t) = f(t)$$

To show that every solution has to be of this form, suppose that \vec{u}_q is any solution. Note that $\vec{u}_q = \vec{u}_p + (\vec{u}_q - \vec{u}_p)$.

$$L(\vec{\boldsymbol{u}}_q - \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_q) + L(-\vec{\boldsymbol{u}}_p)$$

= $L(\vec{\boldsymbol{u}}_q) - L(\vec{\boldsymbol{u}}_p)$

It is easy to show that $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p$ is a solution.

$$L(\vec{\boldsymbol{u}}) = L(\vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_h) + L(\vec{\boldsymbol{u}}_p) = 0 + f(t) = f(t)$$

To show that every solution has to be of this form, suppose that \vec{u}_q is any solution. Note that $\vec{u}_q = \vec{u}_p + (\vec{u}_q - \vec{u}_p)$.

$$L(\vec{\boldsymbol{u}}_q - \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_q) + L(-\vec{\boldsymbol{u}}_p)$$
$$= L(\vec{\boldsymbol{u}}_q) - L(\vec{\boldsymbol{u}}_p)$$
$$= f(t) - f(t) = 0$$

It is easy to show that $\vec{\boldsymbol{u}} = \vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p$ is a solution.

$$L(\vec{\boldsymbol{u}}) = L(\vec{\boldsymbol{u}}_h + \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_h) + L(\vec{\boldsymbol{u}}_p) = 0 + f(t) = f(t)$$

To show that every solution has to be of this form, suppose that \vec{u}_q is any solution. Note that $\vec{u}_q = \vec{u}_p + (\vec{u}_q - \vec{u}_p)$.

We can then show that $\vec{\boldsymbol{u}}_q - \vec{\boldsymbol{u}}_p$ is also a solution to $L(\vec{\boldsymbol{u}}) = 0$:

$$L(\vec{\boldsymbol{u}}_q - \vec{\boldsymbol{u}}_p) = L(\vec{\boldsymbol{u}}_q) + L(-\vec{\boldsymbol{u}}_p)$$
$$= L(\vec{\boldsymbol{u}}_q) - L(\vec{\boldsymbol{u}}_p)$$
$$= f(t) - f(t) = 0$$

Process for Solving Nonhomogeneous Linear Equations

- Step 1: Find all solutions $\vec{\boldsymbol{u}}_h$ of $L(\vec{\boldsymbol{u}}) = 0$.
- Step 2: Find any solution $\vec{\boldsymbol{u}}_{p}$ of $L(\vec{\boldsymbol{u}}) = f$.
- Step 3: Add $\vec{u}_h + \vec{u}_p = \vec{u}$ to find all solutions of $L(\vec{u}) = f$.

Consider

$$y' - y = t$$

To solve using superposition we need to complete three steps.

Step 1:

Step 2:

Step 3:

Consider

$$y' - y = t$$

To solve using superposition we need to complete three steps.

Step 1: Solve the associated homogeneous equation y' - y = 0, or y' = y. (Note: first-order homogeneous linear differential equations are always separable.)

$$y_h = ce^t$$
, for any $c \in \mathbb{R}$

- Step 2:
- Step 3:

Consider

$$y' - y = t$$

To solve using superposition we need to complete three steps.

Step 1: Solve the associated homogeneous equation y' - y = 0, or y' = y. (Note: first-order homogeneous linear differential equations are always separable.)

$$y_h = ce^t$$
, for any $c \in \mathbb{R}$

- Step 2: We can verify by differentiation and substitution that $y_p = -t 1$ is a particular solution.
- Step 3:

Consider

$$y' - y = t$$

To solve using superposition we need to complete three steps.

Step 1: Solve the associated homogeneous equation y' - y = 0, or y' = y. (Note: first-order homogeneous linear differential equations are always separable.)

$$y_h = ce^t$$
, for any $c \in \mathbb{R}$

- Step 2: We can verify by differentiation and substitution that $y_p = -t 1$ is a particular solution.
- Step 3: Superposition tells us that

$$y = y_h + y_p = ce^t - t - 1$$

is a solution for any $c \in \mathbb{R}$.

Consider

Euler-Lagrange Two-Stage Method

We have seen that the general solution for the linear first-order differential equation

$$y'+p(t)y=f(t)$$

has the form $y = y_h + y_p$.

Euler-Lagrange Two-Stage Method

We have seen that the general solution for the linear first-order differential equation

$$y'+p(t)y=f(t)$$

has the form $y = y_h + y_p$.

We solved the corresponding homogenous equation using separation of variables, getting a one-parameter family

$$y_h = ce^{-\int p(t)dt}$$

where $c \in \mathbb{R}$.

Euler-Lagrange Two-Stage Method

We have seen that the general solution for the linear first-order differential equation

$$y'+p(t)y=f(t)$$

has the form $y = y_h + y_p$.

We solved the corresponding homogenous equation using separation of variables, getting a one-parameter family

$$y_h = ce^{-\int p(t)dt}$$

where $c \in \mathbb{R}$.

The second step is to find a particular solution, which we will accomplish using variation of parameters, which was developed by French mathematician Joseph Louis Lagrange.

Variation of Parameters

The idea of variation of parameters is to start with

$$y_h(t) = ce^{-\int p(t)dt}$$

The idea of variation of parameters is to start with

$$y_h(t) = ce^{-\int p(t)dt}$$

and change the constant c to a function v(t) and try a solution of the form

$$y_p(t) = v(t)e^{-\int p(t)dt}$$

where the unknown function v(t) is called the varying parameter.

The idea of variation of parameters is to start with

$$y_h(t) = ce^{-\int p(t)dt}$$

and change the constant c to a function v(t) and try a solution of the form

$$y_p(t) = v(t)e^{-\int p(t)dt}$$

where the unknown function v(t) is called the varying parameter.

$$\underbrace{\left(v'(t)e^{-\int p(t)dt} - p(t)v(t)e^{-\int p(t)dt}\right)}_{y'_p} + \underbrace{p(t)v(t)e^{-\int p(t)dt}}_{p(t)y_p} = f(t)$$

The idea of variation of parameters is to start with

$$y_h(t) = ce^{-\int p(t)dt}$$

and change the constant c to a function v(t) and try a solution of the form

$$y_p(t) = v(t)e^{-\int p(t)dt}$$

where the unknown function v(t) is called the varying parameter.

$$v'(t)e^{-\int p(t)dt} = f(t)$$

The idea of variation of parameters is to start with

$$y_h(t) = ce^{-\int p(t)dt}$$

and change the constant c to a function v(t) and try a solution of the form

$$y_p(t) = v(t)e^{-\int p(t)dt}$$

where the unknown function v(t) is called the varying parameter.

$$v'(t) = f(t)e^{\int p(t)dt}$$

The idea of variation of parameters is to start with

$$y_h(t) = ce^{-\int p(t)dt}$$

and change the constant c to a function v(t) and try a solution of the form

$$y_p(t) = v(t)e^{-\int p(t)dt}$$

where the unknown function v(t) is called the varying parameter.

$$v(t) = \int f(t)e^{\int p(t)dt}dt$$

The idea of variation of parameters is to start with

$$y_h(t) = ce^{-\int p(t)dt}$$

and change the constant c to a function v(t) and try a solution of the form

$$y_p(t) = v(t)e^{-\int p(t)dt}$$

where the unknown function v(t) is called the varying parameter.

Our goal is to find v(t), to do so we need to substitute y_p into the DE.

$$v(t) = \int f(t)e^{\int p(t)dt}dt$$

Now that we have v(t), we have determined a particular solution.

$$y_p(t) = v(t)e^{-\int p(t)dt} = e^{-\int p(t)dt} \int f(t)e^{\int p(t)dt} dt$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 1. We start by solving the associated homogeneous equation.

$$y' + \left(\frac{1}{t+1}\right)y = 0$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 1. We start by solving the associated homogeneous equation.

$$y' + \left(\frac{1}{t+1}\right)y = 0$$

$$\frac{dy}{y} = -\frac{dt}{t+1}$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 1. We start by solving the associated homogeneous equation.

$$y' + \left(\frac{1}{t+1}\right)y = 0$$

$$\ln|y| = -\ln(t+1) + c$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 1. We start by solving the associated homogeneous equation.

$$y' + \left(\frac{1}{t+1}\right)y = 0$$

$$|y| = e^{\ln(t+1)^{-1}+c}$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 1. We start by solving the associated homogeneous equation.

$$y' + \left(\frac{1}{t+1}\right)y = 0$$

$$|y| = e^c(t+1)^{-1}$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 1. We start by solving the associated homogeneous equation.

$$y' + \left(\frac{1}{t+1}\right)y = 0$$

$$y_h = \pm \frac{e^c}{t+1}$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 1. We start by solving the associated homogeneous equation.

$$y' + \left(\frac{1}{t+1}\right)y = 0$$

Let us assume for the moment that $y \neq 0$ and use separation of variables.

$$y_h = \frac{k}{t+1}$$

where $k = \pm e^c$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 2. Next, using variation of parameters, we try

$$y_p = \frac{v(t)}{t+1}$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 2. Next, using variation of parameters, we try

$$y_p = \frac{v(t)}{t+1}$$

$$v'(t)e^{-\int p(t)dt} = f(t)$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 2. Next, using variation of parameters, we try

$$y_p = \frac{v(t)}{t+1}$$

$$\frac{v'(t)}{t+1}=2$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 2. Next, using variation of parameters, we try

$$y_p = \frac{v(t)}{t+1}$$

$$v'(t) = 2t + 2$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 2. Next, using variation of parameters, we try

$$y_p = \frac{v(t)}{t+1}$$

$$v(t) = t^2 + 2t + c$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 2. Next, using variation of parameters, we try

$$y_p = \frac{v(t)}{t+1}$$

which gives:

$$v(t) = t^2 + 2t + c$$

But, we only need a single v(t), so we can let c=0, giving

$$y_p = \frac{t^2 + 2t}{t+1}$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 3. Thus, the general solution is:

$$y(t) = y_h + y_p = \frac{k}{t+1} + \frac{t^2 + 2t}{t+1}$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 3. Thus, the general solution is:

$$y(t) = y_h + y_p = \frac{k}{t+1} + \frac{t^2 + 2t}{t+1}$$

Step 4. Substituting the initial condition into the general solution gives:

$$0 = y(0) = \frac{k}{(0)+1} + \frac{(0)^2 + 2(0)}{(0)+1}$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 3. Thus, the general solution is:

$$y(t) = y_h + y_p = \frac{k}{t+1} + \frac{t^2 + 2t}{t+1}$$

Step 4. Substituting the initial condition into the general solution gives:

$$0 = y(0) = \frac{k}{(0)+1} + \frac{(0)^2 + 2(0)}{(0)+1} \Rightarrow k = 0$$

Consider the IVP

$$y' + \left(\frac{1}{t+1}\right)y = 2, \quad y(0) = 0, \quad t \ge 0$$

Step 3. Thus, the general solution is:

$$y(t) = y_h + y_p = \frac{k}{t+1} + \frac{t^2 + 2t}{t+1}$$

Step 4. Substituting the initial condition into the general solution gives:

$$0 = y(0) = \frac{k}{(0)+1} + \frac{(0)^2 + 2(0)}{(0)+1} \Rightarrow k = 0$$

Which means that the solution to the IVP is

$$y(t) = \frac{t^2 + 2t}{t+1}$$

Euler-Lagrange Method for Solving Linear First-Order DEs

To solve a linear differential equation

$$y'+p(t)y=f(t)$$

where p and f are continuous on a domain I, use the following steps.

Step 1. Solve the corresponding homogenous equation y' + p(t)y = 0 to obtain the one-parameter family.

$$y_h = ce^{-\int p(t)dt}$$

Step 2. Solve

$$v'(t)e^{-\int p(t)dt} = f(t)$$

for v(t) to obtain a particular solution $y_p = v(t)e^{-\int p(t)dt}$.

Step 3. Combine the results of Step 1 and Step 2 to form the general solution

$$y(t) = y_h + y_p$$

Step 4. If you are solving an IVP, only after Step 3 can you plug in the initial condition.

Note

Variation of Parameters is a very powerful method, and you will see it again in a proper differential equations course. But, for first-order (and *only* first-order) equations we have a second method, called the **Integrating** Factor Method which may also be used.

Note

Variation of Parameters is a very powerful method, and you will see it again in a proper differential equations course. But, for first-order (and *only* first-order) equations we have a second method, called the **Integrating Factor Method** which may also be used.

For the differential equation

$$y' + p(t)y = f(t)$$

we will break this new method down into two cases:

- p(t) is constant.
- p(t) is variable.

Let us look at the first-order linear differential equation

$$y' + ay = f(t), \quad a \in \mathbb{R}$$

Let us look at the first-order linear differential equation

$$y' + ay = f(t), \quad a \in \mathbb{R}$$

This method uses a simple observation made by Euler:

$$e^{at}\left(y'+ay\right)=rac{d}{dt}\left(e^{at}y\right)$$

Let us look at the first-order linear differential equation

$$y' + ay = f(t), \quad a \in \mathbb{R}$$

This method uses a simple observation made by Euler:

$$e^{at}\left(y'+ay\right)=rac{d}{dt}\left(e^{at}y\right)$$

Let us start with the differential equation.

$$y' + ay = f(t)$$

Let us look at the first-order linear differential equation

$$y' + ay = f(t), \quad a \in \mathbb{R}$$

This method uses a simple observation made by Euler:

$$e^{at}\left(y'+ay\right)=rac{d}{dt}\left(e^{at}y
ight)$$

We first multiply both sides of the equation by e^{at} .

$$e^{at}\left(y'+ay\right)=e^{at}f(t)$$

Let us look at the first-order linear differential equation

$$y' + ay = f(t), \quad a \in \mathbb{R}$$

This method uses a simple observation made by Euler:

$$e^{at}\left(y'+ay\right)=rac{d}{dt}\left(e^{at}y\right)$$

We then apply Euler's observation to the left-hand side.

$$\frac{d}{dt}\left(e^{at}y\right) = e^{at}f(t)$$

Let us look at the first-order linear differential equation

$$y' + ay = f(t), \quad a \in \mathbb{R}$$

This method uses a simple observation made by Euler:

$$e^{at}\left(y'+ay\right)=rac{d}{dt}\left(e^{at}y\right)$$

Next we integrate both sides.

$$e^{at}y = \int e^{at}f(t)dt + c$$

Let us look at the first-order linear differential equation

$$y' + ay = f(t), \quad a \in \mathbb{R}$$

This method uses a simple observation made by Euler:

$$e^{at}\left(y'+ay\right)=rac{d}{dt}\left(e^{at}y\right)$$

Solving for *y* gives:

$$y(t) = e^{-at} \int e^{at} f(t) dt + ce^{-at}$$

Let us look at the first-order linear differential equation

$$y' + ay = f(t), \quad a \in \mathbb{R}$$

This method uses a simple observation made by Euler:

$$e^{at}\left(y'+ay\right)=rac{d}{dt}\left(e^{at}y\right)$$

Solving for y gives:

$$y(t) = e^{-at} \int e^{at} f(t) dt + ce^{-at}$$

Note

This is the same answer we got from Variation of Parameters, though achieved through a different route. We have obtained both y_h and y_p at the same time.

Integrating Factor Method (Variable Coefficient)

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We seek a function $\mu(t)$ that satisfies Euler's observation, i.e.

$$\mu(t)\cdot (y'+p(t)y)=\frac{d}{dt}(\mu(t)\cdot y)$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

Let us carry out the differentiation on the right-hand side

$$\mu(t)y' + \rho(t)\mu(t)y = \mu'(t)y + \mu(t)y'$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

If we assume $y(t) \neq 0$, this simplifies to

$$\mu'(t) = p(t)\mu(t)$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\frac{\mu'(t)}{\mu(t)} = p(t)$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\ln |\mu(t)| = \int p(t)dt$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\mu(t) = e^{\int p(t)dt}$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\mu(t) = e^{\int p(t)dt}$$

We now know the integrating factor, and perform the same steps as before.

$$y' + p(t)y = f(t)$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\mu(t) = e^{\int p(t)dt}$$

Multiply both sides by the integrating factor.

$$\mu(t)\cdot\big(y'+p(t)y\big)=\mu(t)\cdot f(t)$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\mu(t) = e^{\int p(t)dt}$$

Apply the property $\mu(t) \cdot (y' + p(t)y) = (\mu(t) \cdot y)'$ to the left-hand side.

$$(\mu(t)y)' = \mu(t)f(t)$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\mu(t) = e^{\int p(t)dt}$$

Integrate both sides.

$$\mu(t)y(t) = \int \mu(t)f(t)dt + c$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\mu(t) = e^{\int p(t)dt}$$

Assuming $\mu(t) \neq 0$, we can solve for y.

$$y(t) = \frac{1}{\mu(t)} \int \mu(t) f(t) dt + \frac{c}{\mu(t)}$$

Now let us look at the more general first-order differential equation

$$y' + p(t)y = f(t)$$

We can find a solution $\mu(t) > 0$ by Separation of Variables.

$$\mu(t) = e^{\int p(t)dt}$$

Assuming $\mu(t) \neq 0$, we can solve for y.

$$y(t) = \frac{1}{\mu(t)} \int \mu(t) f(t) dt + \frac{c}{\mu(t)}$$

Note

We have again found y_h and y_p at the same time.

Integrating Factor Method for First-Order Linear DEs

To solve the linear first-order DE, where p and f are continuous on a domain I.

$$y' + p(t)y = f(t)$$

- Step 1. Find the integrating factor $\mu(t) = e^{\int p(t)dt}$, where $\int p(t)dt$ represents *any* anti-derivative of p(t).
- Step 2. Multiply both sides of the DE by mu(t), which always simplifies to:

$$\left(e^{\int p(t)dt}y(t)\right)'=e^{\int p(t)dt}f(t)$$

Step 3. Find the anti-derivative to get:

$$e^{\int p(t)dt}y(t) = \int e^{\int p(t)dt}f(t)dt + c$$

Step 4. Solve algebraically for y.

$$y = e^{-\int p(t)dt} \int e^{\int p(t)dt} f(t)dt + ce^{-\int p(t)dt}$$

Step 5. For IVPs, substitute the initial conditions in to find c.

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 1. Find the integrating factor:

$$\mu(t) = \mathrm{e}^{\int p(t)dt}$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 1. Find the integrating factor:

$$\mu(t) = \mathrm{e}^{\int (-1)dt}$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 1. Find the integrating factor:

$$\mu(t) = e^{\int (-1)dt} = e^{-t}$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 1. Find the integrating factor:

$$\mu(t) = e^{\int (-1)dt} = e^{-t}$$

Step 2. Multiply both sides of the DE by $\mu(t)$:

$$e^{-t}\left(y'-y\right)=e^{-t}$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 1. Find the integrating factor:

$$\mu(t) = e^{\int (-1)dt} = e^{-t}$$

Step 2. Multiply both sides of the DE by $\mu(t)$:

$$e^{-t}\left(y'-y\right)=e^{-t}$$

Which reduces to:

$$\left(e^{-t}y\right)'=te^{-t}$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 3. Find the antiderivative:

$$e^{-t}y = \int te^{-t}dt$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 3. Find the antiderivative:

$$e^{-t}y = \int te^{-t}dt = e^{-t}(-t-1) + c$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 3. Find the antiderivative:

$$e^{-t}y = \int te^{-t}dt = e^{-t}(-t-1) + c$$

Step 4. Solve for y:

$$y(t) = e^{t} \left(e^{-t} \right) \left(-t - 1 \right) + ce^{t}$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 3. Find the antiderivative:

$$e^{-t}y = \int te^{-t}dt = e^{-t}(-t-1) + c$$

Step 4. Solve for y:

$$y(t) = e^{t} (e^{-t}) (-t-1) + ce^{t} = -t-1 + ce^{t}$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 3. Find the antiderivative:

$$e^{-t}y = \int te^{-t}dt = e^{-t}(-t-1) + c$$

Step 4. Solve for y:

$$y(t) = e^{t} (e^{-t}) (-t-1) + ce^{t} = -t-1 + ce^{t}$$

Step 5. Plug in the initial conditions to find the solution to the IVP:

$$1 = y(0) = -0 - 1 + ce^0$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 3. Find the antiderivative:

$$e^{-t}y = \int te^{-t}dt = e^{-t}(-t-1) + c$$

Step 4. Solve for *y*:

$$y(t) = e^{t} (e^{-t}) (-t-1) + ce^{t} = -t-1 + ce^{t}$$

Step 5. Plug in the initial conditions to find the solution to the IVP:

$$1 = y(0) = -0 - 1 + ce^0 \Rightarrow c = 2$$

Consider the IVP

$$y'-y=t, \quad y(0)=1$$

Let us solve this DE using the Integrating Factor method.

Step 3. Find the antiderivative:

$$e^{-t}y = \int te^{-t}dt = e^{-t}(-t-1) + c$$

Step 4. Solve for y:

$$y(t) = e^{t} (e^{-t}) (-t-1) + ce^{t} = -t-1 + ce^{t}$$

Step 5. Plug in the initial conditions to find the solution to the IVP:

$$1 = y(0) = -0 - 1 + ce^0 \Rightarrow c = 2$$

Thus, the solution to the IVP is $y(t) = -t - 1 + 2e^t$