Why does a molecule form?

Electronegativity

2.1																
Н																
1.0	1.5											2.0	2.5	3.0	3.5	4.0
Li	Be											В	C	N	O	F
0.9	1.2											1.5	1.8	2.1	2.5	3.0
Na	Mg											Al	Si	P	S	Cl
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.7	0.9		1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At
0.7	0.9															
Fr	Ra															

Ionic Bonds

What are the properties of an Ionic Bond and Ionic Compounds?

Are Ionic compounds molecules?

What does covalent really mean?

Can two atoms really "share" electrons equally?

Polar Covalent Bonds

Coordinate Covalent Bonds

How do we determine what type of bond forms between two atoms?

 $F_{2} \\$

 H_2O

KCl

Wannabe Crystal Structures

Valence Electrons

Electron Dot Diagrams

Li Be

В

C

N

O

F

Ne

Lewis Dot Diagrams

Just the basics

 H_2

 Cl_2

 H_2S

 CH_4

 NCl_3

 PCl_3

 NH_3

 C_2H_6

More Complex Lewis Dot Structures

Double Bonds/ Triple Bonds

How can you tell when a double or triple bond forms?

 O_2

 N_2

 C_2H_4

 C_2H_2

The Halogens!

More than 8 Electrons

Which elements can see more than 8 electrons? Why?

 PCl_5

 SF_6

 XeF_2

 XeF_4

Less than 8 Electrons

Ions

Which elements can see less than 8 electrons?

 BeH_2

 BCl_3

 ICl_2^-

Molecular Geometry

How do we arrange atoms around a central atom?

Type	Picture	Shape	Example	Type	Picture	Shape	Example
A ₂ and AB ₂	•—•	Linear	H ₂ / CO ₂	AB_4E		Irregular tetrahedral (sea saw)	SF ₄
AB ₃		Triangular	BCl ₃	AB_3E_2	· .	T-shaped	ClF ₃
AB ₂ E		Angular or Bent	PbI ₂	AB_2E_3		Linear	XeF ₂
AB ₄		Tetrahedral	CH ₄	AB_6		Octahedral	SF ₆
AB ₃ E		Triangular pyramidal	NH ₃	AB ₅ E		Square pyramidal	ClF₅
AB ₂ E ₂		Angular or Bent	H ₂ O	AB_4E_2		Square planar	XeF ₄
AB ₅		Triangular bipyramidal	PCl ₅	AB_7		Pentagonal bipyramidal	IF ₇

Dipote Midification	Dipo l	le M	ome	ents
---------------------	---------------	------	-----	------

Dipole

Polar Covalent Bond

Molecule with a dipole moment

Consider the following four molecules:

 H_2

HCl

 BCl_3

 NH_3

Intermolecular Forces

The Inverted Milk Bottle

Intramolecular Forces

Intermolecular Forces

London Dispersion Forces

Dipole-Dipole

Hydrogen Bonding

What determines a substance boiling or melting points?

Would James Bond drink a Martini if the ice cubes were not floating?

Why does DNA hold together?

van der Waals Forces

How does a tree drink?

Explain why ammonia is a gas at room temperature and water is a liquid.

Which has a higher boiling point Helium or Xenon?

Why do we sometimes say "Inter-particle Forces"

What really determines a substance boiling or melting point?

What intermolecular forces are present in the following species:

Species	London Forces present?	Dipole Forces present?	Hydrogen Bonding present?
Не	present	presenti	Bonding presents
NaCl			
KCI			
NH ₃			
H_2O			
CH ₄			
\mathbf{H}_2			
HF			