Combinatorial aspects of τ -tilting theory

April 30, 2021

1 Introduction

In these notes, $A = k\Gamma/I$ will denote the quotient of a path algebra over an admissible ideal. In particular, A is finite dimensional. We now recall some important definitions from tau-tilting theory.

2 Duality on support τ -tilting modules

There is a theory of duality for support τ -tilting modules which we now describe. For a support τ -tilting A-module (M, P), let M_p be the projective part of M. We then have

$$(M,P)^{\dagger} = (\operatorname{Tr} M \oplus P^*, M_p^*)$$

and $(M, P)^{\dagger}$ is a support τ -tilting A^{op} -module.

The following observation will be particularly useful when studying the mutation graphs of symmetric algebras.

Observation 2.1. An ordering of (M, P) induces an ordering on $(M, P)^{\dagger}$. With this induced ordering,

$$G_{(M,P)^{\dagger}} = -G_{(M,P)}$$

Proof. Any indecomposable summand X in (M,P) appears as exactly one indecomposable summand of $(M,P)^{\dagger}$, either in the tau-rigid part or in the second part.

Also note that the canonical bijection between the vertices of A and A^{op} induces a canonical isomorphism between the Groethendieck groups $K_0(A)$ and $K_0(A^{\text{op}})$.

Let now X be a nonprojective summand of M. Then we have a projective presentation $P_i \to P_j \to X \to 0$, inducing a projetive presentation of the transpose TrX

$$P_j^* \to P_i^* \to \text{Tr}X \to 0$$

Then it directly follows that $q^{\text{Tr}X} = -q^X$.

If X is a projective summand of M, $(M, P)^{\dagger} = (N, Q \oplus X^*)$ for some appropriate N and Q. Then by the definition of g-matrices for support τ -tilting

modules, the column corresponding to the g-vector of X^* is given a negative sign, as it is placed in the second part.

Lastly, if X is a summand of P, it is moved from the second part to the τ -rigid part. This means that the column of the G-matrix $(M,P)^{\dagger}$ corresponding to this summand will be sign-inverted.

As all columns are thus sign-inverted and we have proved the statement.

3 Mutation quivers of symmetric algebras

For a symmetric algebra A, any A^{op} -module M may be viewed a an A-module. In particular, for a support τ -tilting A-module (M,P), $(M,P)^{\dagger}$ may also be viewed as a support τ -tilting module over A. This implies that the duality of support τ -tilting modules induces an automorphism on the set of (not necessarily ordered) support τ -tilting modules of symmetric algebras.