GW and BSE methods

Jinyuan Wu

January 11, 2023

1 Preliminaries

1.1 Details in diagrammatics

This section briefly goes through some tricky aspects of Feynman diagram techniques that may seem puzzling when we do concrete calculations.

1.1.1 Infinitesimals

Note that here we need to add some convergence factors. The first is about the value of the propagator to ensure that when t = 0, $\mathcal{T} \langle c(t)c^{\dagger}(0)\rangle$ is the particle number (so that if we evaluate the tadpole diagram, we get the Hartree term), the contribution of an electron line is actually

$$\mathcal{T} \langle c_{\mathbf{k}}(t) c_{\mathbf{k}}^{\dagger}(0) \rangle := \mathcal{T} \langle c_{\mathbf{k}}(t-0^{+}) c_{\mathbf{k}}^{\dagger}(0) \rangle$$

$$= \int \frac{\mathrm{d}\omega}{2\pi} \mathrm{e}^{-\mathrm{i}\omega(t-0^{+})} \underbrace{\frac{\mathrm{i}}{\omega - \xi_{\mathbf{k}} + \mathrm{i}0^{+} \operatorname{sgn}(\xi_{\mathbf{k}})}}_{\mathrm{i}G_{0}(\omega,\mathbf{k})} = \int \frac{\mathrm{d}\omega}{2\pi} \mathrm{e}^{-\mathrm{i}\omega t} \mathrm{e}^{\mathrm{i}\omega0^{+}} \mathrm{i}G_{0}(\omega,\mathbf{k}). \quad (1)$$

The necessity of this $e^{i\omega^0}$ factor can also be seen by explicitly doing the integration: when t=0, if we ignore the $e^{i\omega^0}$ factor, we get

$$\int \frac{d\omega}{2\pi} \frac{i}{\omega - \xi_{\mathbf{k}} + i0^{+} \operatorname{sgn}(\xi_{\mathbf{k}})}.$$

This integral is not zero, but we want it to be zero when $\xi_k > 0$, so we have to add a $e^{i\omega 0^+}$ factor to make the integrand approaches zero quickly enough in the upper plane, so we can construct an integration contour in the upper plane, in which there is no pole, and

$$\int_{|\omega|=R\gg 1} \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{i}}{\omega - \xi_{\mathbf{k}} + \mathrm{i}0^{+} \operatorname{sgn}(\xi_{\mathbf{k}})} = 0.$$

Another mini-regularization is when necessary, for a real space interaction line – screened or unscreened – we should assume the "out-time" is the "in-time" plus 0^+ , because the Coulomb interaction isn't really spontaneous and there is a small time retardation. In the frequency space, we need to assume that there is an infinite amount of energy on the interaction line,

For bare Coulomb interaction this is rarely needed, because we don't have ω dependence in the potential, and it makes no sense to discuss the poles when we change ω . It does make sense to talk about retardation in the relativistic origin of Coulomb interaction: the Coulomb interaction is mediated by virtual photons, and is therefore proportional to the off-shell (i.e. $\omega \to 0$) limit of the photon propagator, which has $\omega^2 - q^2 + \mathrm{i}0^+$ as the denominator, and we get

$$V(q) = \frac{4\pi e^2}{q^2 - \omega^2 - i0^+}. (2)$$

For screened Coulomb interaction, however, the correct retardation is important, because now something looking like (2) appears again.

1.1.2 The position of imaginary units

In this section I only consider how many imaginary units there are in front of Green functions, self energies, etc. Normalization factors like 2π or V involved in summation of r or k are not considered.

The self-energy correction is visualized as the follows:

and from it we have

$$iG = iG_0 + iG_0iG \times$$

It's then a good idea to define

$$-i\Sigma = \qquad (4)$$

because in this case, we have

$$G = G_0 + GG_0\Sigma, (5)$$

and therefore

$$\underbrace{\omega - \xi_{\mathbf{k}}^{0}}_{1/G_0} = \underbrace{\omega - \xi_{\mathbf{k}}}_{1/G} + \Sigma, \tag{6}$$

which agrees with the definition of the self energy as the shift of single-particle energy from the free dispersion.

Similarly, we define the corrected interaction line as

$$-iW = \begin{cases} & & \\ &$$

because in this way, when there is no interaction corrections, we have

$$W = \frac{e^2}{r} =: v. \tag{8}$$

1.1.3 About "antiparticles"

The directions of momentum lines indicate whether the particles are created or annihilated. When the momentum arrow goes against the arrow on a line, we say this line is an antiparticle line. But here is a puzzle: we know there is no such thing as positrons in condensed matter physics, so what does "antiparticle" mean?

Here the problem lies on what it means to be the antiparticle of a kind of particle. In particle physics, when we do the particle-antiparticle transformation to an electron state whose polarization is one of the Dirac basis, a ψ^+ particle is flipped into a ψ^- particle and vice versa. In condensed matter physics, the label of ψ^+ and ψ^- (or ϕ and χ as people often call them:

 $\psi = (\phi, \chi)$) is no longer there: the χ modes in the Dirac field have already been integrated out. So electrons in condensed matter physics don't really have antiparticles in the context of high energy physics.

Indeed, if we are still dealing with scattering problems in the non-relativistic limit, the antiparticle lines don't appear at all! And similar to the case in QED (which can be checked in Peskin (A.6)), no separate momentum arrows parallel to the internal lines are needed: When calculating the propagator, the processes of both "an electron traveling forward" and "a hole traveling backward" are automatically covered together.

The antiparticle lines only appear when there are electrons in the ground state, which usually indicates there is a $-\mu N$ term in the Hamiltonian so having some preexisting electrons lower the energy further, and this differs with the scattering case only in the rules pertaining to the external lines. For external lines, we now have diagrams like the following:

because now it's possible to annihilate a preexisting electron in the ground state, but for internal lines, momentum labels can still be directly attached to the internal lines. This can be also seen by reckoning how Feynman rules are derived: the series we obtain by expanding e^{-iHt} contains field operators, not single creation or annihilation operators, and after Wick expansion, the correlation functions we get are all like $\langle \bar{\psi}\psi \rangle$, and of course an annihilation operator appearing in the expression of the out state in terms of the ground state can be contracted with a creative operator in e^{-iHt} , and this is visualized as an "antiparticle" external line with an outward momentum line. So here, the "particle-antiparticle transformation" is just swapping c_k and c_k^{\dagger} – this operation is still legit in condensed matter physics, because it doesn't involve the χ field; of course, the operation doesn't create that kind of antiparticle in high energy physics.

No real modification happens to the propagator when there are electrons in the ground state. We have

$$\int_{-\infty}^{\infty} e^{i\omega t} dt \, \mathcal{T} \, \langle c_{\mathbf{k}}(t)c^{\dagger}(0)\rangle = \frac{i}{\omega - \epsilon_{\mathbf{k}} + \mu}, \tag{9}$$

which can be straightforwardly obtained by looking at

$$H = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} - \mu N \tag{10}$$

without doing any calculation.

Now we have to face the tough question: if antiparticle lines are there when there is a Fermi ball in the ground state, then why poles corresponding to antiparticles (whatever they are) are absent in the propagator? The answer is, for a k on an antiparticle line appearing in diagrams, the corresponding pole can indeed be understood as a pole of an antiparticle: for an antiparticle line with momentum k, k has to be under the Fermi surface in the ground state, so $\omega_k = \epsilon_k - \mu < 0$, and the point $\omega = \omega_k$ thus may be understood as an antiparticle pole. But here is a rather strong antisymmetry between particles and antiparticles: in external lines, when particles appear (k over Fermi surface), antiparticles never appear; when antiparticles appear (k below Fermi surface), particles never appear. The spectrum of electrons is split into two halves: for the part over the Fermi surface, only particles are visible, while for the part below the Fermi surface, only antiparticles are visible.

This means we can do away with antiparticle lines. By defining

$$b_{\mathbf{k}} = \begin{cases} c_{\mathbf{k}}, & \epsilon_{\mathbf{k}} > \mu, \\ c_{\mathbf{k}}^{\dagger}, & \epsilon_{\mathbf{k}} < \mu, \end{cases}$$
 (11)

for $\epsilon_{\mathbf{k}} < \mu$, we have

$$\int_{-\infty}^{\infty} e^{i\omega t} dt \, \mathcal{T} \, \langle b_{\mathbf{k}}(t)b^{\dagger}(0)\rangle = \frac{i}{\omega - \mu + \epsilon_{\mathbf{k}}}, \tag{12}$$

and now all poles have positive energies. It's also easy to replace c operators in all interaction vertices with b operators, so now, in the theory in terms of b operators, there is no antiparticle poles or Feynman diagrammatic antiparticle lines. Indeed, b operators give the true free excitation spectrum in a system with a non-zero chemical potential.

For $\epsilon_{k} < \mu$, b_{k}^{\dagger} is said to *create* a **hole**. The energy of a hole is still positive: the energy of a state with a hole with momentum k is

$$\sum_{\mathbf{k}'\neq\mathbf{k},\epsilon_{\mathbf{k}'}<\mu}\epsilon_{\mathbf{k}'}-\mu(N-1),$$

and compared with the ground state, the energy of the hole is

$$E = \sum_{\mathbf{k'} \neq \mathbf{k}, \epsilon_{\mathbf{k'}} < \mu} \epsilon_{\mathbf{k'}} - \mu(N - 1) - \left(\sum_{\epsilon_{\mathbf{k'}} < \mu} \epsilon_{\mathbf{k'}} - \mu N\right)$$

$$= \mu - \epsilon_{\mathbf{k}} > 0.$$
(13)

So, we may say a hole is the antiparticle of an electron, but when we talk about the former, the latter is just a part of the background. Unlike the case in particle physics, where the electron and the positron are definitely two things, the hole and the electron are basically two representations of the same thing. (But this doesn't make talking about "annihilation between an electron and a hole" nonsense, because in an annihilation-between-electron-and-hole process, the n and k numbers of the electron and the hole are different, so there is no problem of double counting the same mode in two representations, etc.)

1.1.4 Normalization

$$\int_{-\infty}^{\infty} e^{i\omega t} dt \tag{14}$$

1.2 Feynman rules for actual calculation

1.2.1 In the free space

TODO: n interaction line $\Rightarrow n$ independent momenta, not all of which are on Coulomb interaction lines

A large benefit of this formalism is it lifts the burden to worry about normalization concerning δ -functions: no δ -function appears in the rules now!

$$v(\mathbf{q}) = \frac{4\pi e^2}{\mathbf{q}^2}. (15)$$

1.2.2 In a crystal

There are several things that need attention concerning Feynman rules in condensed physics:

- The propagator is no longer $1/(\omega k^2/2m)$, but $\propto \sum_{k} \psi_{nk}(r) \psi_{nk}^*(r')/(\omega \xi_{nk})$;
- The crystal momentum k appears above. To carry out Feynman diagrammatic calculations in an actual computer, a cutoff on the density of k points is needed (essentially, a cutoff on the size of the system V). This means we should replace $\int d^3k/2\pi$ with properly normalized \sum_{k} , where k goes over the discretely infinite k-grid.
- Usually we limit all momenta to the first Brillouin zone (1BZ), and therefore a sum over an unbounded momentum variable k or q has to be recast into $\sum_{G} \sum_{k} f(k+G)$.

Below I describe a set of Feynman rules that are compatible with the notation in [6]. Note that there is no controversy over normalization in the *real space* Feynman diagrams: although the inner structure of G(1,2) has changed in the presence of the crystal potential, its relation with other diagrammatic components as abstract entities is never changed. Thus, starting from the space-in-real-space-and-time-in-frequency-space formalism may be a good idea: the free-space momentum formalism however is an important reference for normalization constants. In the

space-in-real-space-and-time-in-frequency-space formalism, in a diagram containing n Coulomb interaction lines, the variables summed over are n frequency variables, and 2n space variables, and we just need to do

$$\int \frac{d\omega_1}{2\pi} \cdots \int \frac{d\omega_n}{2\pi} \int d^3 \mathbf{r}_1 \cdots \int d^3 \mathbf{r}_{2n} . \tag{16}$$

We choose a normalization scheme for $\psi_{n\mathbf{k}}$ such that

$$c_{n\mathbf{k}}^{\dagger} = \int d^{3}\mathbf{r} \underbrace{e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})}_{\psi_{n\mathbf{k}}} \psi^{\dagger}(\mathbf{r}), \quad \{c_{n\mathbf{k}}, c_{n'\mathbf{k}'}^{\dagger}\} = \delta_{nn'}\delta_{\mathbf{k}\mathbf{k}'}, \tag{17}$$

where $\psi^{\dagger}(\mathbf{r})$ is the complex conjugate of the non-relativistic electron field operator. This leads to the normalization condition

$$\int d^3 \mathbf{r} \, \psi_{n\mathbf{k}}^*(\mathbf{r}) \psi_{n'\mathbf{k}'}(\mathbf{r}) = \delta_{nn'} \delta_{\mathbf{k}\mathbf{k}'}, \tag{18}$$

and

$$G^{0}(\mathbf{r}, \mathbf{r}', \omega) = \sum_{n, \mathbf{k}} \frac{\psi_{n\mathbf{k}}(\mathbf{r})\psi_{n\mathbf{k}}^{*}(\mathbf{r}')}{\omega - \xi_{n\mathbf{k}} + \mathrm{i}0^{+}\operatorname{sgn}(\omega)}.$$
(19)

In the free-electron case, we expect

$$\psi_{n\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{V}} e^{i(\mathbf{k} + \mathbf{G}_n) \cdot \mathbf{r}}, \tag{20}$$

and therefore (note that the only possibility for $G_n + k$ to be equal to $G_{n'} + k'$ is for G_n to be $G_{n'}$ and k to be k')

LHS of
$$(18) = \frac{1}{V} \int d^3 \mathbf{r} e^{i\mathbf{r}(-\mathbf{G}_n - \mathbf{k} + \mathbf{G}_{n'} + \mathbf{k'})} = \frac{1}{V} V \delta_{\mathbf{G}_n + \mathbf{k}, \mathbf{G}_{n'} + \mathbf{k'}} = \delta_{nn'} \delta_{\mathbf{k}\mathbf{k'}},$$

and

RHS of (19) =
$$\frac{1}{V} \sum_{n,k} e^{i(\mathbf{k} + \mathbf{G}_n) \cdot (\mathbf{r} - \mathbf{r}')} = \frac{1}{V} \sum_{\text{unbounded } \mathbf{k}} e^{i\mathbf{k} \cdot (\mathbf{r} - \mathbf{r}')}$$

= $\int \frac{d^3 \mathbf{k}}{(2\pi)^3} e^{i\mathbf{k} \cdot (\mathbf{r} - \mathbf{r}')} =: \text{LHS of } (19),$

so (18) and (19) go back to the free-space case.

Now we consider what happens when we encounter a Coulomb interaction line. The structure in which a Coulomb interaction line is connected to four electron lines gives rise to the following factor in the interpretation of the diagram:

$$M = \int d^3 \mathbf{r} \int d^3 \mathbf{r}' i G(\mathbf{r}_4, \mathbf{r}, \omega_1) i G(\mathbf{r}_3, \mathbf{r}', \omega_2) i G(\mathbf{r}', \mathbf{r}_2, \omega_3) i G(\mathbf{r}, \mathbf{r}_1, \omega_4) (-i) v(\mathbf{r} - \mathbf{r}').$$
(21)

Note that here ω_4 is just a shorthand of $\omega_1 + \omega_2 - \omega_3$ and this condition is *not* imposed by a δ -function factor according to the rules listed above for the free-space case (if we want to make this expression really symmetric, we should add a $2\pi\delta(\sum \omega)$ factor, and let, say, $\int d\omega_4/2\pi$ explicitly impose the energy conservation condition for us). Inserting (19) into the above expression, and using the definition

$$v(\mathbf{r} - \mathbf{r}') = \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} \mathrm{e}^{\mathrm{i}\mathbf{p}\cdot(\mathbf{r} - \mathbf{r}')} v(\mathbf{p}), \tag{22}$$

we have

$$M = \psi_{4}(\mathbf{r}_{4})\psi_{3}(\mathbf{r}_{3})\psi_{2}^{*}(\mathbf{r}_{2})\psi_{1}^{*}(\mathbf{r}_{1})$$

$$\times \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} \sum_{1,2,3,4} \frac{i}{\omega_{1} - \xi_{4} + i0^{+} \operatorname{sgn}(\omega_{1})} \frac{i}{\omega_{1} - \xi_{3} + i0^{+} \operatorname{sgn}(\omega_{2})}$$

$$\times \frac{i}{\omega_{1} - \xi_{2} + i0^{+} \operatorname{sgn}(\omega_{3})} \frac{i}{\omega_{1} - \xi_{1} + i0^{+} \operatorname{sgn}(\omega_{4})}$$

$$\times \int d^{3}\mathbf{r} \, \psi_{4}^{*}(\mathbf{r})\psi_{1}(\mathbf{r})e^{i\mathbf{q}\cdot\mathbf{r}} \int d^{3}\mathbf{r}' \, \psi_{3}^{*}(\mathbf{r}')\psi_{2}(\mathbf{r}')e^{-i\mathbf{q}\cdot\mathbf{r}'}v(\mathbf{q}),$$
(23)

where the label 1, 2, etc. mean $(n_1, \mathbf{k}_1), (n_2, \mathbf{k}_2)$, etc., which doesn't contain ω variables. Since V is always large enough, we have

$$\int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} = \frac{1}{V} \sum_{\mathbf{G}} \sum_{\mathbf{q}},$$

and eventually we get

$$M = \psi_{4}(\boldsymbol{r}_{4})\psi_{3}(\boldsymbol{r}_{3})\psi_{2}^{*}(\boldsymbol{r}_{2})\psi_{1}^{*}(\boldsymbol{r}_{1})$$

$$\times \frac{1}{V} \sum_{\boldsymbol{G}} \sum_{\boldsymbol{q}} \sum_{1,2,3,4} \frac{\mathrm{i}}{\omega_{1} - \xi_{4} + \mathrm{i}0^{+} \operatorname{sgn}(\omega_{1})} \frac{\mathrm{i}}{\omega_{1} - \xi_{3} + \mathrm{i}0^{+} \operatorname{sgn}(\omega_{2})}$$

$$\times \frac{\mathrm{i}}{\omega_{1} - \xi_{2} + \mathrm{i}0^{+} \operatorname{sgn}(\omega_{3})} \frac{\mathrm{i}}{\omega_{1} - \xi_{1} + \mathrm{i}0^{+} \operatorname{sgn}(\omega_{4})}$$

$$\times \langle 4|\mathrm{e}^{\mathrm{i}(\boldsymbol{q}+\boldsymbol{G})\cdot\boldsymbol{r}}|1\rangle \langle 3|\mathrm{e}^{-\mathrm{i}(\boldsymbol{q}+\boldsymbol{G})\cdot\boldsymbol{r}}|2\rangle v(\boldsymbol{q}+\boldsymbol{G}).$$
(24)

The structure of this expression reveals the Feynman rules for a crystal:

- For each external electron line, according to its direction, write down $\psi(\mathbf{r})$ (outgoing) or $\psi^*(\mathbf{r})$ (incoming).
- For each inner electron line, i.e. propagator, write down

$$\xrightarrow{n,k} = \frac{\mathrm{i}}{\omega - \xi_{n\mathbf{k}} + \mathrm{i}0^{+} \operatorname{sgn}(\omega)} =: \mathrm{i}G_{n\mathbf{k}}^{0}(\omega), \tag{25}$$

where $k = (\omega, \mathbf{k})$.

• For each Coulomb interaction line, write

$$q, \mathbf{G} = -i\frac{1}{V}v(\mathbf{q} + \mathbf{G})$$
 (26)

When an interaction line appears, enforce the momentum and energy conservation laws by hand. That's so say, when you see

we need to replace k_4 by $k_1 + k_2 - k_3$ manually: we just do a find-and-replace operation in the interpretation of this diagram. We *don't* integrate over k_4 : k_4 has already been replaced in every part of the interpretation of this diagram and is not an integration variable.

• For each vertex – here I mean the two-electron-line-one-dotted-line structure, not the four-electron-line structure (i.e. not the diagrammatic component corresponding to H_{int}), we write $\langle \text{out}|e^{\pm i(q+G)}|\text{in}\rangle$:

$$n', k \longrightarrow q, \mathbf{G}$$

$$n, k - q | e^{-i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | n' \mathbf{k} \rangle, \qquad (27)$$

$$n, k - q$$

and

$$n', k$$

$$q, G$$

$$\dots \dots = \langle n, k + q | e^{i(q+G) \cdot r} | n'k \rangle.$$

$$n, k + q$$

$$(28)$$

The sign is decided by the direction of q. The direction of q doesn't matter: we don't sum over the two directions. The value of q is determined by the values of free momentum variables; if q is not selected as a free momentum variable, it shouldn't be integrated over.

Now we compare the above Feynman rules with the momentum space Feynman rules in Section 1.2.1. Note that here we distribute the space and time parts of $(2\pi)^4$ differently: the space part, $(2\pi)^3$, becomes 1/V, because we replace $\int \mathrm{d}^3 q$ by $\sum_{\mathbf{G}} \sum_{\mathbf{q}}$. Since there are n free momentum variables and n Coulomb interaction lines, we can attribute

Since there are n free momentum variables and n Coulomb interaction lines, we can attribute the 1/V factor to the interaction line, and we can also attribute it to the sum over \mathbf{q} . In [6], the 1/V factor comes together with $v(\mathbf{q} + \mathbf{G})$. Indeed, they define

$$v(\mathbf{q} + \mathbf{G}) = \frac{4\pi e^2}{V|\mathbf{q} + \mathbf{G}|^2}.$$
 (29)

The time part, 2π , now comes with integrations of ω 's. Thus, a ring diagram should be interpreted as

$$\begin{array}{ccc}
n, k \\
& \cdots \\
m, q - k
\end{array} = \int \frac{d\omega}{2\pi} \sum_{m,n} iG_n^0(\mathbf{k}, \omega) iG_m^0(\mathbf{q} - \mathbf{k}, \omega_0 - \omega), \tag{30}$$

where $q = (\omega_0, \boldsymbol{q})$.

Another way to make sense of the Feynman rules in this section is to write down the Coulomb interaction Hamiltonian in the crystal momentum representation before deriving Feynman rules. The interaction Hamiltonian – the Coulomb repulsion Hamiltonian – is

$$H = \sum_{1.2.3.4} c_4^{\dagger} c_3^{\dagger} H_{4321} c_2 c_1, \tag{31}$$

$$H_{4321} = \frac{1}{2} \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \langle 4|\mathbf{r}\rangle \langle 3|\mathbf{r}'\rangle \langle \mathbf{r}'|2\rangle \langle \mathbf{r}|1\rangle v(\mathbf{r} - \mathbf{r}'), \tag{32}$$

Now again invoking the Fourier transformation from $v(\mathbf{r} - \mathbf{r}')$ to $v(\mathbf{q})$, and discretize the integration over \mathbf{q} , the 1/V factor appears again. The 1/2 prefactor is canceled in the same way it's canceled in the free-space case.

1.2.3 Diagrammatic components as tensors

Both the Coulomb interaction line and the band electron propagator line contains one discrete index. And there are actually two indices: for an interaction-corrected Coulomb line, the two edges of a W line can have different G vectors, as is clearly shown below:

$$q, G_1 \cdots q, G_2 \cdots q, G_3$$

For the renormalized electron Green function, the same applies.

Note that for a free-space electron, the band index label n is essentially G_n , but once the crystal potential and the self-energy is added, electrons can be scattered from one G to another. One may want to diagonalize the effective Hamiltonian, but now the band index after diagonalization no longer corresponds to the index of G vectors.

Thus, the G- and n-summations mentioned in Section 1.2.2 can be recast into matrix forms:

$$\longrightarrow^{k} = iG_{\mathbf{k}}^{0}(\omega) := i[\delta_{nn'}G_{n\mathbf{k}}^{0}(\omega)]_{nn'},$$
 (33)

$$q = -iv(q) := -i[\delta_{\mathbf{G}\mathbf{G}'}v(\mathbf{q} + \mathbf{G})]_{\mathbf{G}\mathbf{G}'},$$
 (34)

and

$$k \longrightarrow q$$

$$= M := [\langle n, \mathbf{k} + \mathbf{q} | e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | n' \mathbf{k} \rangle]_{nn'\mathbf{G}}.$$

$$(35)$$

How to contract the indices can be done by following the standard quantum mechanic convention: the index of what happens later appears on the left side.

1.3 Quasiparticles

In the context of *ab initio* calculations, the term quasiparticle usually means renormalized band electrons and holes. Bosonic modes are just called "excitations", and non-electron-like fermionic modes like spinons are simply absent (we are studying weakly correlated systems, anyway), so this terminology creates no confusion.

1.4 Light-matter interaction

1.4.1 Interaction Hamiltonian

The non-relativistic minimal coupling is

$$H = \frac{(\boldsymbol{p} - q\boldsymbol{A})^2}{2m} = \frac{(\boldsymbol{p} + e\boldsymbol{A})^2}{2m},$$
(36)

and therefore the full light-matter interaction Hamiltonian is

$$H_{\text{light-matter}} = \frac{e\boldsymbol{p} \cdot \boldsymbol{A}}{m} + \frac{e^2 \boldsymbol{A}^2}{2m}.$$
 (37)

Usually, the double-photon process is ignored, and we get

$$H_{\text{light-matter}} = \frac{e\boldsymbol{p} \cdot \boldsymbol{A}}{m}.$$
 (38)

Note that here p is the original momentum operator, i.e. $-i\nabla$.

The dipole approximation is

$$H_{\text{light-matter}} = -\mathbf{d} \cdot \mathbf{E}. \tag{39}$$

It can be derived when the effect of the outside electromagnetic field is predominantly electrostatic, and the system in question is restricted to a relatively small region. With the above two approximations, we can attribute the light-matter interaction to

$$H_{\text{light-matter}} = q\varphi \approx \text{const} + q\mathbf{r} \cdot \nabla \varphi \simeq \underbrace{q\mathbf{r}}_{-\mathbf{d}} \cdot \mathbf{E}.$$
 (40)

Of course, when magnetic response of the system is important, we also need to add a magnetic dipole interaction term, etc.

Another light-matter interaction Hamiltonian is

$$H_{\text{light-matter}} = e\mathbf{v} \cdot \mathbf{A}. \tag{41}$$

The problem with this Hamiltonian is, when the potential term is not V(r), we have

$$v = \frac{1}{\mathbf{i}}[r, H] = \frac{\mathbf{p}}{m} + \frac{1}{\mathbf{i}}\underbrace{[r, V]}_{\neq 0}.$$
 (42)

TODO: then why it works?

1.4.2 How to capture absorption

Absorption is usually modeled by the imaginary part of ϵ , and it's usually calculated by Fermi golden rule. There seems to be a contradiction here: Fermi golden rule looks "discrete", while Im ϵ gives us a continuous damping.

Recall how we treat spontaneous radiation using a quantum jump formalism: damping here is introduced by two (related) factors, the first being $\operatorname{Im} H_{\text{eff}}$, the second being the quantum jump channels, and once the shapes of the two terms in the master equation are determined, the strengths of which are "equal" to some extent.

Now Im ϵ is about Im $H_{\rm eff}$, while Fermi golden rule is about the quantum jump channels, so it's indeed correct to infer Im ϵ from Fermi golden rule, using a procedure like, say, comparing the amount of light absorbed calculated from Im ϵ and from Fermi golden rule. There is no double counting in this procedure: both Im $H_{\rm eff}$ and Γ are needed for a full account of dissipation. $H_{\rm eff}$ continuously reduces the possibility to see the system staying in its original state, while quantum jump channels "confirm" that indeed the system decays to a lower energy state when the norm of the wave function has decreased considerably.

In the phenomenological model of spontaneous radiation, we first write down an $H_{\rm eff}$, and then find the correct corresponding quantum jump channels to make the theory unitary, while here, we first calculate quantum jump channels (i.e. scattering) and then fit the $H_{\rm eff}$ according to the strength of scattering.

2 Overview of GW+BSE

2.1 What is *GW*

2.1.1 GW is screened Hartree-Fock approximation

In short, GW means

$$\Sigma = iGW, \tag{43}$$

where G is the renormalized Green function, and W is the renormalized (i.e. screened) Coulomb interaction, which is

$$W = \frac{v}{\epsilon} = \dots + \dots$$
 (44)

$$\epsilon = 1 - \cdots$$
 (45)

Compared with the exact Hedin equations, no vertex correction is taken into account here in GW.

It should be noted that the ϵ here is a matrix, but it contains no index of the ordinary 3-vector: it's a *scalar* in the real space, because it connects W and v, both of which are scalar potentials. The *dielectric matrix* used to connect vector E and D is related to $\epsilon_{GG'}$ (TODO: how?) but they are not simply equal.

2.1.2 GW compared with the Hartree-Fock approximation

Note that there is screening in self-consistent Hartree-Fock approximation: if we forget about the Fock term, then the Hartree approximation is essentially the same as Thomas-Fermi screening, which considers and only considers screening channels with respect to density of electrons, i.e. ring diagrams. Then we add the Fock term, and in the Fock term, there is still screening in the

corrected propagator, but there is no screening in the Coulomb interaction line. (On the other hand, in the Hartree term, there shouldn't be any screening in the Coulomb interaction line, or otherwise we have double counting.)

In this perspective, GW is completely natural: the next level of correction is just to correct the Coulomb interaction line, using the same ring diagrams that appear in the self-consistent Hartree term.

2.1.3 BSE with the same order of approximation

2.2 Deriving important formulae

TODO:

- Truncated Coulomb interaction
- Derive

$$\operatorname{Im} \epsilon = \frac{16\pi^2 e^2}{\omega^2} \sum_{S} |\hat{\boldsymbol{e}} \cdot \langle 0|\boldsymbol{v}|S\rangle|^2 \delta(\omega - \Omega^S). \tag{46}$$

- Why we say $\Sigma = V_{xc} + \Sigma V_{xc}$? (see [4] p. 1271)
- What should be symmetric? (11) and (12) in [4]???

2.2.1 The ϵ matrix

To build concrete expressions from the above floppy arguments, let's apply the rules in Section 1.2.3. First, we define

$$q \cdot \dots \cdot q = i\chi(q)$$
 (47)

Here the dotted lines are dummies: they contribute nothing to the value of the diagram. Note that χ is a matrix, with its elements taking the form of $\chi_{GG'}$.

Now we have (every letter in the expression below is a matrix, so pay attention to the order)

$$-iW(q) = -iv(q) + (-iv(q))(i\chi(q))(-iv(q)) + \cdots,$$

$$W(q) = v(q) + v(q)\chi(q)v(q) + v(q)\chi(q)v(q)\chi(q)v(q) + \dots = (1 - v(q)\chi(q))^{-1}v(q).$$

So we get a concrete expression of ϵ :

$$\epsilon(q) = 1 - v(q)\chi(q), \quad W(q) = \epsilon(q)^{-1}v(q).$$
 (48)

Because

$$(v(q)\chi(q))_{\mathbf{G}\mathbf{G}'} = \sum_{\mathbf{G}''} v(q + \mathbf{G}'')\delta_{\mathbf{G}\mathbf{G}''}\chi_{\mathbf{G}''\mathbf{G}}(q).$$

we have

$$\epsilon_{GG'}(q) = \delta_{GG'} - v(q + G)\chi_{GG'}(q). \tag{49}$$

Here the inverse of ϵ is matrix inverse, not element-by-element inverse. (13) in [4] is ambiguous: a clearer but more cumbersome notation is

$$[\epsilon_{\mathbf{G}\mathbf{G}'}(q)]_{\mathbf{G}\mathbf{G}'}^{-1}v(\mathbf{q}+\mathbf{G}').$$

Now it comes the evaluation of $\chi_{GG}(q)$. We have

$$\mathrm{i}\chi_{\boldsymbol{G}\boldsymbol{G}'}(\boldsymbol{q},\omega) = \int \frac{\mathrm{d}\omega'}{2\pi} \sum_{\boldsymbol{k}} \sum_{n.n'} \frac{\mathrm{i}}{\omega' - \xi_{n'\boldsymbol{k}} + \mathrm{i}0^+ \, \mathrm{sgn}(\xi_{n\boldsymbol{k}})} \frac{\mathrm{i}}{\omega - \omega' - \xi_{n,\boldsymbol{k}+\boldsymbol{q}}} M_{nn'\boldsymbol{G}}(\boldsymbol{k},\boldsymbol{q}) M_{nn'\boldsymbol{G}'}(\boldsymbol{k},\boldsymbol{q},\boldsymbol{G}')$$

So (8) in [4] is wrong: it misses the 1/V factor. This leads to a ridiculous result: as we increase the density of the k-grid, χ becomes larger and larger!

3 Accuracy of GW

3.1 Coverage

GW proves to be accurate enough for most weakly-correlated systems. TODO: any counter-examples? Recently, it's also applied successfully to systems like polymers, nano-wires and molecules.

3.2 Diagonal or not

We know in the momentum space, we have

$$E_{n\mathbf{k}}^{\mathrm{QP}} = E_{n\mathbf{k}}^{0} + \Sigma_{n\mathbf{k}}(E^{\mathrm{QP}}). \tag{50}$$

Here since Σ depends on the corrected propagator, E_{nk}^{QP} enters its expression. The cost of GW calculation means we need to first do a DFT calculation and feed this as the input of the GW package (the former usually mysteriously called the "mean field" step, though we may also say GW is a mean-field method; on the other hand, in principle – though of course not in practice – DFT is able to decide everything about the system), so (50) now is

$$E_{\mathbf{k}}^{\mathrm{QP}} = E_{\mathbf{k}}^{\mathrm{KS}} + \Sigma_{\mathbf{k}}(E^{\mathrm{QP}}) - \Sigma^{\mathrm{KS}}.$$
 (51)

Here Σ^{KS} is the so-called DFT self-energy, i.e. the Hartree potential plus the exchange-correlation potential. Note that here I don't insert band indices into the equation, because Σ_{k} may mix different bands together, and (51) is an equation about matrices, essentially a single-electron Schrodinger equation. It's first order approximation is

$$E_{n\mathbf{k}}^{\mathrm{QP}} = E_{n\mathbf{k}}^{\mathrm{KS}} + \left\langle \psi_{n\mathbf{k}}^{\mathrm{KS}} \middle| \Sigma(E_{n\mathbf{k}}^{\mathrm{QP}}) - \Sigma^{\mathrm{KS}} \middle| \psi_{n\mathbf{k}}^{\mathrm{KS}} \right\rangle. \tag{52}$$

TODO: when doing iterative calculation, $V_{\rm H}$ may no longer be the same between DFT and GW?? So when doing iterative calculation, should we calculate "the GW $V_{\rm H}$ "?

3.3 Self-consistent or not

There are three iterative schemes. The first is the eigenvalue self-consistent scheme: It's just a self-consistent solver of (52). In this case, we don't need off-diagonal elements, because they are not used in (52). This scheme is mentioned in Section 3.3 in [4]. The second scheme takes the change of eigenvalues into account, and thus iteratively solves (51). In this case we need to take non-diagonal elements seriously [1,5]. In the third scheme, the form of Σ itself is changed: Recall that we need an epsilon step to calculate ϵ and thus the screened interaction potential W, and $\Sigma = iGW$. This in general is not recommended, because we know GW tends to widen the band gap, and sometimes as we iteratively update the band gap, it becomes too large. The origin of this overestimation of band gap is that GW neglects the vertex, so iterative GW only leads us towards the more and more inaccurate way.

The non-self-consistent G_0W_0 calculation proves to be a better choice empirically, if the initial DFT input is of good quality – and here there is another empirical observation that sometimes LDA functional together with G_0W_0 provides better results. Still, the argumentation provided above only explains why iterative GW is bad, but doesn't explain why one-shot GW is good. In other words, we need to know how certain factors in the one-shot GW scheme somehow makes up for the missing vertex correction.

One possible form of the vertex is the electron-hole interaction, which is calculated by solving the BSE. Now an empirical fact is LDA tends to give the same band gap as BSE, leading to a pretty good one-shot approximation.

TODO: [9]

The question, then, is why LDA in some cases works as well as BSE. The reason for this is because of the relation between the derivative discontinuity in DFT and electron-hole interaction kernel TODO: the relation with [7]

3.4 On so-called failure of GW and convergence issues

Some (weak-correlated, of course) materials are claimed to be impossible to be characterized correctly using GW, or at least G^0W^0 . [8] refutes such a claim, at least for ZnO.

The root for this seems to be poor convergence test: people often use insufficient number of bands, etc.

See https://www.nersc.gov/assets/Uploads/ConvergenceinBGW.pdf

4 The QuantumESPRESSO-BerkeleyGW ecosystem

4.1 Overview of the pipeline

TODO: whether and how BerkeleyGW supports HSE06. See https://groups.google.com/a/berkeleygw.org/g/help/c/l Note that the division of labor is different in the GW step and the BSE step. The sigma program doesn't really do diagonalization, so building Σ and finding quasiparticle energies are done in one step, which is implemented in sigma. On the other hand, diagonalization is needed for BSE, so building the kernel – counterpart of Σ – is done in one step (kernel), while diagonalizing it is done in another step (absorption).

4.2 Relativistic effects

BerkeleyGW supports SOC calculation, with the so-called fully relativistic mode and the scalar relativistic mode; I say "so-called" because all the calculations are still done in the framework of Schrodinger equation, with relativistic effects being introduced by adding perturbative terms like $L \cdot S$ or p^4 [2]. On the other hand, when it comes to calculating the inner structure of atoms (which, in condensed matter physics, is usually seen when we generate our own pseudopotentials), being "fully relativistic" means using *Dirac equation*.

4.3 Input and output of pw

4.4 epsilon

4.4.1 Procedure and speed

What epsilon does, as its name implies, is to calculate ϵ – and since ϵ is used to find W, we need ϵ^{-1} . The relative equations are (8-10) in [4]. There are three steps in epsilon:

- 1. Calculate $M_{nn'}(\boldsymbol{k}, \boldsymbol{q}, \boldsymbol{G})$;
- 2. Summing over n, n', k;
- 3. Finding ϵ^{-1} .

With a fixed accuracy requirement, the time cost of first step is $\sim N^3 \log N$, where N is the number of atoms per unit cell. The k and q points are given by the q-grid given in epsilon.inp and the k-grid in the wave function files, so they are fixed are not a part of the scaling. With the cutoff energy fixed, the size of the G-grid is proportional to V, which is in turn proportional to N (the distance between atoms is roughly fixed, and therefore the more atoms we have, the larger the unit cell is). With a fixed accuracy standard, the required numbers of occupied bands and empty bands are all $\sim N$, so the number of matrix elements of $M_{nn'}(k,q,G)$ scales as N^3 . For each matrix element, we need to calculate $\langle n, k+q| \mathrm{e}^{\mathrm{i}(q+G)\cdot r}|n'k\rangle$. Note that the matrix inside contains only r, and the expression therefore can be evaluated as

$$\int d^3 \boldsymbol{r} \, \phi_{n,\boldsymbol{k}+\boldsymbol{q}}^*(\boldsymbol{r}) e^{\mathrm{i}(\boldsymbol{q}+\boldsymbol{G})\cdot \boldsymbol{r}} \phi_{n'\boldsymbol{k}}(\boldsymbol{r}),$$

and the scale of the calculation needed is proportional to V and again N. In practice, we use the G representation to calculate the matrix element, and again the time cost is $\sim N$. (Note that the two estimations are equivalent: by saying the time cost is proportional to V, we implicitly imply the absolute spatial resolution is fixed, which, in other words, means we fix the cutoff energy.) So naively, the time cost is $\sim N^4$. Fortunately the matrix element $M_{nn'}(\mathbf{k}, \mathbf{q}, \mathbf{G})$ with

fixed n, n', G can be evaluated by fast Fourier transformation, so eventually, the time cost scales like $N^3 \log N$.

The time cost of the second step, in a serial program, scales like N^4 . We sum over n and n', each of which has $\sim N$ values. And we need to calculate $\chi_{GG'}$, where the values of G and G' are all roughly proportional to N. So the final scaling of the time cost is N^4 . This however can be parallelized, and eventually, in a well optimized parallelized package, the time cost scales like N^2 .

The time cost of the third step – the matrix inversion step – scales like N^3 .

4.4.2 Divergence problems when $q \to 0$

When calculating $\epsilon_{GG'}(q, \omega = 0)$, we notice that when G = G' = 0, the matrix element diverges as $q \to 0$. For an insulator, we have

$$\epsilon_{00}(\boldsymbol{q} \to \boldsymbol{0}, \omega = 0) \propto -\frac{1}{\boldsymbol{q}^{2}} \chi_{00}(\boldsymbol{q} \to \boldsymbol{0}, \omega = 0)$$

$$\propto \sum_{n \text{ occupied}, n' \text{ empty}} -\frac{1}{\boldsymbol{q}^{2}} |\langle n\boldsymbol{k}|1 + \mathrm{i}(\boldsymbol{q} + \boldsymbol{G}) \cdot \boldsymbol{r} + \cdots |n'\boldsymbol{k}\rangle|^{2}$$

$$\propto \mathrm{const.} \times \frac{\boldsymbol{q}^{2}}{\boldsymbol{q}^{2}}.$$
(53)

Here the first term in the Taylor expansion of $e^{i(q+G)\cdot r}$ vanishes because of orthogonality conditions. We see $\epsilon_{00}(q \to 0, \omega = 0)$ has a definite value.

For a metal, some bands are both occupied and empty, so we can no longer use the orthogonality conditions, and $\epsilon_{00}(q \to 0, \omega = 0)$ scales like C/q^2 . TODO: whether this is a numerical artifact or not To decide the constant C, very find description of the Fermi surface is needed, so we need a very fine k-grid. On the other hand, we don't really need many bands, because for the metal $\epsilon_{00}(q \to 0, \omega = 0)$, most of the relevant transitions are inter-band ones.

4.4.3 Frequency dependence of ϵ

The $\epsilon_{GG'}(q,\omega)$ matrix has frequency dependence. The fastest way to handle this is to calculate the $\omega=0$ case only and then find the plasmon frequency, and then, the $\epsilon_{GG'}(q,\omega)$ curve can be fitted using sum rules. TODO

The spectral function – used in ARPES simulation – can't be accurately obtained just by the above mentioned method. Thus, **full frequency** treatments are needed. A trick called **static subspace** can speed up the process. TODO

4.4.4 Console output

The console output of epsilon has the following structure:

- 1. Initialization
- 2. Iterating over the q-grid. For each q-point,
 - (a) The output starts with something like

```
13:59:21 Dealing with q = 0.000000 0.500000 0.000000 5 / 35
```

This is a regular non-zero q-point.

- (b) Then we can see lines about Rank of the polarizability matrix, BLACS processor grid, and Number of k-points in the irreducible BZ(q) (nrk).
- (c) Now we enter the first step mentioned in Section 4.4.1. The start line looks like Started calculation of matrix elements with 324 transition(s) at → 13:59:21.
- (d) TODO: what's the corresponding step of the following line:

```
Started building polarizability matrix with 320 processor(s) at \hookrightarrow 13:59:30.
```

4.4.5 Other output files

The epsilon program generates the files mentioned in this page. Note that eps0mat.h5 is not ϵ from DFT orbitals! In steps after epsilon, screening obtained from DFT orbitals are not used; we only use ϵ from GW orbitals. The file eps0mat.h5 is the ϵ around the Γ point. Thus, in principle, we can calculate eps0mat.h5 and epsmat.h5 in two runs, and indeed this is the case when we deal with a metallic system (Section 5.4).

4.5 Systems of units

TODO

5 Standard operation procedures

5.1 Avoid data pollution

The follows are strongly recommended whenever modifying files:

- Read out loud the *directory* of the file being modified. Are you mistakenly modify files in another directory?
- When copying file from a folder to another, similarly read out loud the name of the source and the target.
- If a file is going to be overwritten, make sure it's really no longer needed. Whenever you have doubts, make backups.

•

5.2 Structural relaxation

TODO: Wyckoff positions

5.3 Insulator DFT+GW+BSE

5.3.1 The DFT stage

- 1. Do a scf calculation in 1-scf.
- 2. Do a bands calculation in 2.1-wfn. This step includes:
 - (a) Create a the-suffix-you-set.save folder in 2.1-wfn, and link data-file-schema.xml and charge-density.dat from 1-scf into this folder. These are files required for a bands calculation.
 - (b) Run

to create kgrid.inp, which describes how to create a k-grid with size nx ny nz. This can't be done with options in QuantumESPRESSO's kpoints section because QuantumESPRESSO and BerkeleyGW have different tolerance for symmetry.

(c) Run

```
kgrid.x kgrid.inp kgrid.out kgrid.log
```

to obtain kgrid.out. The content in kgrid.out will be used as the KPOINTS section for the input file of pw.

- (d) Preparing the bands.in file, which is the input file of pw.x. Do the following checklist:
 - Whether calculation is bands.
 - Whether pseudo_dir is correct.
 - Whether nbnd is set to, say, 1000.
 - Whether lspinorb = .true. and noncolin = .true. are set for an SOC run.
- (e) Run pw2bgw.x in 2.1-wfn. Do the following checklist:

- This step should be done with exactly the same parallelization setting with pw.x.
- The wfng_nk1, wfng_nk2, wfng_nk3 parameters should be set to nx, ny, nz mentioned above. (This item needs double check especially when pw2bgw.inp comes from another run.)
- Whether rhog_flag is .true..
- Whether vxc_flag is .true..
- Whether wfng_flag is .true..
- 3. Do a bands calculation in 2.2-wfnq. The steps are similar to 2.1-wfn:
 - (a) Linking files from 1-scf.
 - (b) Run

```
data-file2kgrid.py --kgrid nx ny nz --qshift qx qy qz the-

→ suffix-you-set.save/data-file-schema.xml kgrid.inp
```

to get the kgrid.inp file. Here qx qy qz is a small displacement used to regularize Coulomb interaction at q=0. A common choice is 0 0 0.001; when dealing with a 2D material, choose 0 0.001 0, because with cell_slab_truncation open in the epsilon.x step, non-zero z components of k-points are forbidden.

- (c) Run kgrid.x.
- (d) Preparing the bands.in file.
- (e) Run pw2bgw.x. Do the following checklist:
 - This step should be done with exactly the same parallelization setting with pw.x.
 - The wfng_nk1, wfng_nk2, wfng_nk3 parameters should be set to nx, ny, nz mentioned above.
 - The wfng_dk1, wfng_dk2, wfng_dk3 parameters should be set to wfng_nk1 × qx, etc. (If kshift is used, it also should be added to wfng_dk1, etc.)

Note that this doesn't mean the displacement imposed to the k-grid is wfng_nk1 \times qx: the displacement is still qx qy qz. Here the wfng_dk1, wfng_dk2, wfng_dk3 are conventional parameters used in Monkhorst-Pack grids, and wfng_dk1 = 0.5 means the grid is shifted towards x direction by half a grid step — and therefore the displacement is 0.5×1 / wfng_nk1 in the crystal coordinates. Now we understand why we need to set wfng_dk1 to wfng_nk1 \times qx. Indeed, below is a part of the header of a WFN file in 2.2-wfnq:

```
k-grid:
          24 24
              0.000000
                           0.024000
                                      0.000000
k-shifts:
[ifmin = lowest occupied band, ifmax = highest occupied band, for
     → each spin]
   Index
                 Coordinates (crystal)
                                                              Number of
                                                    Weight
           G-vectors
       \rightarrow
                         ifmin
                                    ifmax
       1
           0.000000
                         0.001000
                                     0.000000
                                                  0.001736
                               36275
                                                      120
```

It can be seen that the first k-point is displaced 0.001 in the y direction, and the k-shifts parameter corresponding to the y direction is 0.024; since the size of the grid in the y direction is 24, the displacement instructed by the latter is 0.024/24 = 0.001, exactly the displacement recorded in the first k-point.

5.3.2 The GW stage

- 1. Do a epsilon calculation in 1-epsilon. The steps are listed below:
 - (a) Linking files. Come to 1-epsilon and do the follows:

```
ln -sf ../2.1-wfn/WFN
ln -sf ../2.2-wfnq/WFN ./WFNq
```

- (b) Prepare epsilon.inp. Do the follow checklist:
 - Whether we are setting quoints instead of kpoints.
 - Whether there is an end line of the qpoints block.
 - Whether each line of the qpoints block is in the format (see here)

```
qx qy qz 1 is_q0
```

- Especially, whether the line corresponding to the Γ point has is-q0=1.
- If we are dealing with a 2D material, add cell_slab_truncation.
- Set epsilon_cutoff to, say, 10; the exact value is to be decided by convergence tests.
- Set number_bands to the highest total number of bands allowed by degeneracy_-check.x (Section 8.1).
- 2. Do a sigma calculation in 2-sigma. The steps are listed below:
 - (a) Link necessary files:

```
ln -sf ../2.1-wfn/vxc.dat
ln -sf ../2.1-wfn/RHO
ln -sf ../2.1-wfn/WFN ./WFN_inner
ln -sf ../1-epsilon/epsmat.h5
ln -sf ../1-epsilon/eps0mat.h5
```

- (b) Prepare sigma.inp. Do the following checklist:
 - Whether we are setting kpoints instead of qpoints. (This time it's not qpoints!)
 - Whether there is an end line of the kpoints block.
 - Whether each line of the kpoints block is in the format

```
kx ky kz 1
```

- If we are dealing with a 2D material, add cell_slab_truncation.
- Set number_bands to the same value in epsilon.inp.
- Set band_index_min and band_index_max. The bands between the two are corrected by (50), and others are not.

5.3.3 The BSE stage

- 1. Do a kernel calculation in 3-bse. The steps are listed below:
 - (a) Link necessary files.

```
ln -sf ../1-epsilon/WFN ./WFN_co
ln -sf ../1-epsilon/epsmat.h5
ln -sf ../1-epsilon/eps0mat.h5
```

- (b) Prepare kernel.inp. Do the following checklist:
 - Whether the following lines are there:
- 2. Do a absorption step.
 - (a) Prepare absorption.inp. Do the following checklist:
 - Whether the following lines are in absorption.inp:

```
use_symmetries_fine_grid
use_symmetries_coarse_grid
```

5.4 Metal DFT+GW+BSE

For metals, the q-displacement technique can no longer be used. The working procedure now is

- 1. Do a scf calculation in 1-scf.
- 2. Do a bands calculation in 2.1-wfn.
- 3. Do 2.2-wfn0 with a finer k-grid, still without any qshift displacement.
- 4. Do a epsilon calculation in 1-epsilon. The steps are listed below:
 - (a) Link files according to

The 2.2-wfnq step is not needed, because we are not going to deal with the Γ point in this step.

(b) Preparing epsilon.inp. Do the following checklist:

- Whether we are setting eqpoints instead of kpoints.
- Make sure the Γ point is *not* included in the **gpoints** block.
- Whether each line of the qpoints block is in the format

```
qx qy qz 1 0
```

- 5. Do a epsilon calculation in 1.2-epsilon0.
 - (a) Link files according to

```
ln -sf ../2.2-wfn0/WFN
ln -sf ../2.2-wfn0/WFN ./WFNq
```

Now the outputs of the 2.1-wfn step is not used.

- (b) Prepare epsilon.inp. Do the following checklist:
 - Whether we are setting eqpoints instead of kpoints.
 - The *only point* included in the **qpoints** block should be the non-zero k-point with smallest length in the k-grid used in 2.2-wfn0.
 - Whether the Γ point is in the format

```
qx qy qz 1 2
```

5.5 Band plot

5.5.1 DFT level

The Fermi energy is to be found in scf.out. It won't appear in bands.out.

5.5.2 *GW* level

The GW level bands can be obtained by the **inteqp** program. The standard operation procedure is listed here:

- Go to 4-path the folder responsible for the DFT level calculation and perform a pw2bgw run needed to create a WFN file. Note that if we are not dealing with a k-grid, wfng_nk1, wfng_nk2, and wfng_nk3 should be skipped.
- 2. Create a folder within 1-epsilon/, and go into it.
- 3. Link the necessary files:

```
ln -sf ../../2.1-wfn/WFN ./WFN_co
ln -sf ../../4-path/WFN ./WFN_fi
cp ../../1-epsilon/eqp1.dat ./eqp_co.dat
```

4.

5.5.3 BSE level

5.6 Energy self-consistent calculation

The epsilon code has an option called eqp_corrections, which takes the

6 Performance tricks

6.1 Parallelization

TODO: Do more MPI tasks already result in faster speed?

6.2 Choosing cutoff energies wisely

The cutoff energies, especially the one in the GW step, of course should be large enough, but not too large: if in a benchmark test, a smaller cutoff energy gives almost the same result compared to a higher cutoff energy, then the smaller cutoff energy should be used unless we have reasons against this practice.

6.3 pseudobands

```
wfn2hdf.x BIN WFN WFN.h5
pseudobands.py WFN.h5 WFNo.h5 0.7 0.02
hdf2wfn.x BIN WFNo.h5 WFNo
```

Using pseudobands breaks the norm conserving condition. Therefore, in espilon.inp, we need to add dont_check_norms.

TODO: how it works; maybe [3] may provide some hints.

7 Trouble shooting in QuantumEspresso

7.1 Program frozen

Check whether too much resource is given to a simple task.

7.2 Error in routine allocate_fft (1): wrong ngms

I'm still not quite sure what causes this error, but it seems to be related to parallelization: in a run with 2240 MPI tasks, the error occurred, but when I used 320 MPI tasks, the error disappeared.

7.3 Error reading attribute index : expected integer , found *

This error occurs when we use a pseudopotential that is obtained by converting another pseudopotential in a different format (see here). Usually we don't need to "correct" it.

7.4 cdiaghg (159): eigenvectors failed to converge

Usually by changing diagonalization to cg, this can be solved; cg is more stable but much slower.

7.5 Error in routine cdiaghg (1052): problems computing cholesky

This also seems to be a convergence problem that can be solved by changing diagonalization to cg.

7.6 Error in routine set_occupations (1): smearing requires a vaklue for gaussian broadening (degauss)

This happens whenever smearing is used but the smearing parameter is not set. Note that this is *not* restricted to Gaussian smearing: all smearing schemes are controlled by the degauss parameter, and when this parameter is not set, the error occurs.

7.7 Error in routine splitwf (36197): wrong size for pwt

Usually this occurs when pw2bgw is redone (pw2bgw deletes intermediate files, making another pw2bgw run impossible). This also appears in cases similar to Section 7.2. A complete bands-pw2bgw run has to be redone.

7.8 Error in routine PW2BGW(19):input pw2bow

Usually this occurs when something else happens between a bands run and a pw2bgw run for it. A complete bands-pw2bgw run has to be redone.

8 Trouble shooting in epsilon and sigma

8.1 Selected number of bands breaks degenerate subspace.

Run degeneracy_check.x WFN to see degeneracy-allowed number of bands. This error occurs when one band in a degeneracy subspace is considered but others are not. Also, the band_-index_min and band_index_max parameters shouldn't be too close to vxc_diag_min and vxc_-diag_max, or the error occurs.

8.2 WFN ifmin/ifmax fields are inconsistent

The full message is

The direct causes of this error are already listed above. But it takes some time to see what is the deeper reason, and how to solve it:

- Sometimes when the occupation option in the 2.1-wfn and 2.2-wfnq steps is not correct. If fixed is used for a metal, for example, some positions that should be a part of a hole Fermi pocket are occupied by electrons, and therefore the highest occupied state has higher energy than the lowest unoccupied state. This usually means the smearing scheme needs to be changed.
- When you shift the occupation in a WFN file (Section 9.6), but forget to change the ifmax dataset correspondingly, this error will also occur, regardless of how you change the eqp.dat.

8.3 Segmentation fault: address not mapped to object at address

The root of this error differs from case to case.

If we see

```
q-pt 2: Head of Epsilon = NaN NaN q-pt 2: Epsilon(2,2) = NaN NaN
```

usually this means a "divided-by-zero" error occurs. This may occur when we incorrectly use the insulator procedure to calculate a metallic system (as long as DFT thinks the system is metallic, the error has the potential to occur, regardless of whether the system is metallic after GW correction), often regardless of the smearing type.

8.4 eqpcor mean-field energy mismatch

This error happens when we try to do an eigenvalue self-consistent calculation, and epsilon finds the DFT energies given in eqp.dat are different from the energies in WFN. This sometimes is a technical problem (the Rydberg energy definitions used in QuantumESPRESSO and BerkeleyGW are slightly different), and can be solved by increasing TOL_eqp in the source code of BerkeleyGW. The error may also be reported when the DFT energies in eqp.dat are mistakenly changed (we should only change the column corresponding to the corrected energy).

8.5 ERROR: occupations (ifmax field) inconsistent between WFN and WFNq files.

 $\tt ERROR:$ occupations (ifmax) inconsistent between WFN and WFNq files. Remember that you should NOT use WFNq for metals and graphene.

8.6 ERROR: Unexpected characters were found while reading the value for the keyword

This usually happens when the input file contains a line like

```
number_bands = 148
while the correct format is
```

number_bands 148

8.7 forrtl: severe (24): end-of-file during read, unit -5, file Internal List-Directed Read

This usually happens when we should write **qpoints** but actually write **kpoints** (or the opposite).

8.8 ERROR: Inconsistent screening, trunction, or q0 vector

The full error message may be

```
ERROR: the input truncation flag indicates that the Coloumb interaction v(q0) diverges for q0 -> 0. However, you have q0 exactly zero. You should always specify a *nonzero* q0 -> 0 vector unless you have 0D truncation, i.e., spherical or box truncation.
```

ERROR: Inconsistent screening, trunction, or q0 vector

This arises when we are dealing with a metal but forget to add screening_metal to sigma.inp.

```
ERROR: cannot use metallic screening with q0 = 0.
You should either specify a nonzero q0 -> 0 vector or use another screening \hookrightarrow flag.
```

8.9 cannot use metallic screening with q=0

As the name implies, when doing a metallic calculation, we need to make sure that the $q \to 0$ point is the smallest *non-zero* point in the dense k-grid (Section 5.4).

8.10 ERROR: genwf mpi: No match for rkq point

8.11 ERROR: Missing bands in file eqp_co.dat

This happens when doing inteqp. The origin of the error is just its name implies. Note that this error sometimes occurs for unnoticed reasons:

When the pseudopotential is changed, the number of bands may change, because the
orbitals included in the pseudopotentials change. Now if band_index_max and band_index_min are set according to the old pseudopotentials, and the Fermi energy happens
to fall outside of the range between the two, the error occurs.

8.12 forrtl: severe (71): integer divide by zero

If this happens after Calculation parameters: , it may arise from mistakenly setting band_index_max to a value smaller than band_index_min. In this case, the number of bands considered will be zero, and thus a divide-by-zero error occurs when sigma.x tries to distribute computational loads.

9 Checklist for unexpected results

Sometimes the calculation ends successfully, but the result seems strange. Below are some checklists.

9.1 Band symmetry higher than the space group shown at the beginning of bands.out

- Usually this is because of an approximate symmetry, which is ignored by QuantumE-SPRESSO because its tolerance is very low.
- Are all steps in the DFT calculation using the same crystal structure?

9.2 Band structure looks very far from the literature

- Check the crystal structure: if it comes from relaxation, does it converges?
- For 2D materials, when we change the vacuum distance and use crystal coordinates for atomic positions at the same time, always double check whether we scale the atomic positions correctly. The formula is

$$new z coordinate = \frac{old vacuum distance}{new vacuum distance} \times old z coordinate.$$
 (54)

- Are all steps in the DFT calculation using the same crystal structure?
- Is the Fermi energy correct? Sometimes we change the band structure but forget to change the Fermi energy used to plot bands.

9.3 Band plot is empty

- Are there enough bands? If nbnd is not set for an insulator, no conduction band will be considered.
- Is the Fermi energy correct? If the Fermi energy is set too high (which may come from, say, wrong unit), then naturally there is no band in the plot.

9.4 Band plot is not continuous

TODO: it's k-points that are shuffled, or the band indices, or both???

This sometimes comes from BerkeleyGW's occasional misidentification of band index. That's to say, BerkeleyGW sometimes identifies the 100th band as the 101st band, the 101st band as the 102nd band, etc. To see whether this is the case, do a band plot using the DFT level data in 2-sigma/inteqp/eqp.dat, and if discontinuity also appears here (the scatter plot should be fine), then the problem of misidentification of band index occurs.

9.5 The size of band gap

DFT is infamous for underestimating the band gap.

- Use hybrid functionals like HSE.
- Let *GW* correct the band structure. TODO: but how? How to avoid the error in Section 8.2?

9.6 When we get a semimetal in the DFT step but it should be an insulator

This is similar to Section 9.5.

Note that naively feeding the semimetal result into BerkeleyGW while still using the insulator procedure may result in errors in Section 8.3.

One way to solve the problem is to manually move the conduction bands and the valence bands away from each other. Naively using the eqp_correction option and shifting bands near the Fermi surface away from each other leads to Section 8.2, precisely because "QP corrections" (i.e. the energy shift manually added by me) change the character of some states from valence to conduction. The mf_header/kpoints/occ and mf_header/kpoints/ifmax datasets in the WFN.h5 file have to be modified accordingly. TODO: should this be done in 2-sigma?

References

- [1] Irene Aguilera, Christoph Friedrich, Gustav Bihlmayer, and Stefan Blügel. G w study of topological insulators bi 2 se 3, bi 2 te 3, and sb 2 te 3: Beyond the perturbative one-shot approach. *Physical Review B*, 88(4):045206, 2013.
- [2] Bradford A Barker, Jack Deslippe, Johannes Lischner, Manish Jain, Oleg V Yazyev, David A Strubbe, and Steven G Louie. Spinor g w/bethe-salpeter calculations in berkeleygw: Implementation, symmetries, benchmarking, and performance. *Physical Review B*, 106(11):115127, 2022.
- [3] Mauro Del Ben, H Felipe, Andrew Canning, Nathan Wichmann, Karthik Raman, Ruchira Sasanka, Chao Yang, Steven G Louie, and Jack Deslippe. Large-scale gw calculations on pre-exascale hpc systems. *Computer Physics Communications*, 235:187–195, 2019.
- [4] Jack Deslippe, Georgy Samsonidze, David A. Strubbe, Manish Jain, Marvin L. Cohen, and Steven G. Louie. Berkeleygw: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. *Computer Physics Communications*, 183(6):1269–1289, 2012.
- [5] Sergey V Faleev, Mark Van Schilfgaarde, and Takao Kotani. All-electron self-consistent g w approximation: Application to si, mno, and nio. *Physical review letters*, 93(12):126406, 2004.
- [6] Mark S Hybertsen and Steven G Louie. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. *Physical Review B*, 34(8):5390, 1986.
- [7] John P Perdew, Robert G Parr, Mel Levy, and Jose L Balduz Jr. Density-functional theory for fractional particle number: derivative discontinuities of the energy. *Physical Review Letters*, 49(23):1691, 1982.
- [8] Bi-Ching Shih, Yu Xue, Peihong Zhang, Marvin L Cohen, and Steven G Louie. Quasiparticle band gap of zno: High accuracy from the conventional g 0 w 0 approach. *Physical review letters*, 105(14):146401, 2010.
- [9] M. Shishkin, M. Marsman, and G. Kresse. Accurate quasiparticle spectra from self-consistent gw calculations with vertex corrections. *Phys. Rev. Lett.*, 99:246403, Dec 2007.