ECS 122A: Algorithm Design and Analysis Week 3 Discussion

Ji Wang

Spring 2020

Outline

- ► Divide and Conquer: Key Idea
- ▶ Variant of Maximum Subarray Problem: Stock Investment
- Another Example: Binary Integer Multiplication

Divide and Conquer: Key Idea

- 1. **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- 2. Conquer by solving the subproblems recursively.
- Combine the solutions to the subproblems to produce the solution to the original problem.

Divide and Conquer: Key Idea

- 1. **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- 2. **Conquer** by solving the subproblems recursively.
- Combine the solutions to the subproblems to produce the solution to the original problem.

In class, we demonstrated three problems that use divide and conquer paradigm:

- ► Merge Sort
- Matrix Multiplication
- Maximum Subarray

Problem Statement:

We're doing a simulation in which we look at n consecutive days of a given stock, at some point in the past. Let's number the days i=1,2,...,n and p(i) is the price per share for the stock on that day. We want to know: When should we have bought and sold in order to have made as much money as possible?

For example, n = 4, p(1) = 9, p(2) = 1, p(3) = 5, p(4) = 3. Then we should answer "buy on day 2, sell on day 3".

Problem Statement:

We're doing a simulation in which we look at n consecutive days of a given stock, at some point in the past. Let's number the days i=1,2,...,n and p(i) is the price per share for the stock on that day. We want to know: When should we have bought and sold in order to have made as much money as possible?

For example, n = 4, p(1) = 9, p(2) = 1, p(3) = 5, p(4) = 3. Then we should answer "buy on day 2, sell on day 3".

Rephrase the problem:

Input: array p of length n

Problem Statement:

We're doing a simulation in which we look at n consecutive days of a given stock, at some point in the past. Let's number the days i=1,2,...,n and p(i) is the price per share for the stock on that day. We want to know: When should we have bought and sold in order to have made as much money as possible?

For example, n = 4, p(1) = 9, p(2) = 1, p(3) = 5, p(4) = 3. Then we should answer "buy on day 2, sell on day 3".

Rephrase the problem:

Input: array p of length n

Output: $argmax{p(j) - p(i)}$ where $i \le j$

Revisit maximum subarray problem:

- 1. Divide $A[low \cdots high]$ into two subarrays of as equal size as possible by finding the midpoint mid
- 2. Conquer:
 - a. finding maximum subarrays of $A[low \cdots mid]$ and $A[mid + 1 \cdots high]$
 - b. finding a max-subarray that crosses the midpoint
- 3. Combine: returning the max of the three

Revisit maximum subarray problem:

- 1. Divide $A[low \cdots high]$ into two subarrays of as equal size as possible by finding the midpoint mid
- 2. Conquer:
 - a. finding maximum subarrays of $A[low \cdots mid]$ and $A[mid + 1 \cdots high]$
 - b. finding a max-subarray that crosses the midpoint
- 3. Combine: returning the max of the three

Can we apply the same strategy on this problem?

How does the conquer part work?

- 1. The optimal solution to $A[low \cdots mid]$
- 2. The optimal solution to $A[mid + 1 \cdots high]$
- 3. $argmax\{p(j) p(i)\}\$ where $low \le i \le mid$ and $mid + 1 \le j \le high$

How does the conquer part work?

- 1. The optimal solution to $A[low \cdots mid]$
- 2. The optimal solution to $A[mid + 1 \cdots high]$
- 3. $argmax\{p(j) p(i)\}\$ where $low \le i \le mid$ and $mid + 1 \le j \le high$

Time complexity:

$$T(n) = 2T(\frac{n}{2}) + \Theta(n) + \Theta(1)$$
$$= \Theta(n \log n)$$

- 1. $2T(\frac{n}{2})$: the first two optimal solutions
- 2. $\Theta(n)$: the third solution is equivalent to find the min of $A[low \cdots mid]$ and max of $A[mid + 1 \cdots high]$
- 3. $\Theta(1)$: compare the results of three solutions

Recall how we multiply two integers of equal length

	1100
	× 1101
12	1100
$\times 13$	0000
36	1100
12	_1100
156	10011100
(a)	(b)

Recall how we multiply two integers of equal length

$$\begin{array}{rcl}
 & & 1100 \\
 \times & 1101 \\
 \hline
 & 12 & 1100 \\
 \times & 13 & 0000 \\
 \hline
 & 36 & 1100 \\
 \hline
 & 12 & 1100 \\
 \hline
 & 156 & 10011100 \\
 \hline
 & (a) & (b)
\end{array}$$

Time complexity: $O(n^2)$

- 1. bit multiplication: n^2
- 2. bit addition: O(n)

Can we speedup? Think about Divide and Conquer

Suppose x and y are two n-bit integers, split each of them into left and right halves:

$$x = x_L x_R = 2^{\frac{n}{2}} x_L + x_R$$
$$y = y_L y_R = 2^{\frac{n}{2}} y_L + y_R$$

For instance, $10110110 = \boxed{1011} \boxed{0110} = 2^4 \times 1011 + 0110$

$$xy = (2^{\frac{n}{2}}x_L + x_R)(2^{\frac{n}{2}}y_L + y_R) = 2^n x_L x_L + 2^{\frac{n}{2}}(x_L y_R + x_R y_L) + x_R y_R$$

Can we speedup? Think about Divide and Conquer

Suppose x and y are two n-bit integers, split each of them into left and right halves:

$$x = \boxed{x_L} \boxed{x_R} = 2^{\frac{n}{2}} x_L + x_R$$
$$y = \boxed{y_L} \boxed{y_R} = 2^{\frac{n}{2}} y_L + y_R$$

For instance, $10110110 = \boxed{1011} \boxed{0110} = 2^4 \times 1011 + 0110$

$$xy = (2^{\frac{n}{2}}x_L + x_R)(2^{\frac{n}{2}}y_L + y_R) = 2^n x_L x_L + 2^{\frac{n}{2}}(x_L y_R + x_R y_L) + x_R y_R$$

Time complexity:

$$T(n) = 4T(\frac{n}{2}) + \Theta(n) + \Theta(1)$$

= $\Theta(n^2)$ \leftarrow No improvement!

Previously, we wrote:

$$xy = (2^{\frac{n}{2}}x_L + x_R)(2^{\frac{n}{2}}y_L + y_R)$$

= $2^n \underline{x_L x_L} + 2^{\frac{n}{2}}(x_L y_R + x_R y_L) + \underline{x_R y_R}$

If we rewrite

$$x_{L}y_{R}+x_{R}y_{L}=\underline{(x_{L}+x_{R})(y_{L}+y_{R})}-x_{L}y_{L}-x_{R}y_{R},$$

then the entire xy will only involve three multiplications, namely the underlining parts.

Previously, we wrote:

$$xy = (2^{\frac{n}{2}}x_L + x_R)(2^{\frac{n}{2}}y_L + y_R)$$

= $2^n \underline{x_L x_L} + 2^{\frac{n}{2}}(x_L y_R + x_R y_L) + \underline{x_R y_R}$

If we rewrite

$$x_{L}y_{R}+x_{R}y_{L}=\underline{(x_{L}+x_{R})(y_{L}+y_{R})}-x_{L}y_{L}-x_{R}y_{R},$$

then the entire xy will only involve three multiplications, namely the underlining parts.

Time complexity:

$$T(n) = \frac{3}{7} \left(\frac{n}{2}\right) + \Theta(n) + \Theta(1)$$
$$= \Theta(n^{\log_2 3})$$

Binary Integer Multiplication: Pseudocode

```
MULTIPLY(x, y)
 1 // x, y are positive integers of n-bit
 2 if n = 1
            return xy
      else
 5
            x_L, x_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lceil n/2 \rceil bits of x
            y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lceil n/2 \rceil bits of y
 6
            p_1 = \text{MULTIPLY}(x_L, y_L)
            p_2 = \text{MULTIPLY}(x_R, y_R)
 8
            p_3 = \text{MULTIPLY}(x_L + x_R, y_I + y_R)
 9
            return p_1 \times 2^n + (p_3 - p_1 - p_2) \times 2^{\frac{n}{2}} + p_2
10
```