Saturation Binding SOP

Talia Albert Charles "Mitch" Boudreau

November 9, 2023

Contents

Overview	
Determining Protein Concentration	2
Hot Ligand Addition 3.1 Table	3
Cold Ligand (Reference) Addition 4.1 Table	4
Membrane (Protein) Addition	4
6.2 3H Hot Ligand calculation	
	Determining Protein Concentration Hot Ligand Addition 3.1 Table

1 Overview

Uses 6 columns of 96-well shallow plate, can test 2 membrane/protein per plate. Final Volume in each well is 125 μL

- \bullet 25 $\mu\mathrm{L}$ 3H Hot Ligand
- \bullet 25 $\mu\mathrm{L}$ Binding Buffer (BB)/Cold Ligand (Reference)
- 75 μ L Membrane (Protein)

	Columns 1/7	Columns 2/8	Columns 3/9	Columns 4/10	Columns 5/11	Columns 6/12
A	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
	$75~\mu L~{ m Mem}$	$75~\mu\mathrm{L~Mem}$	$75~\mu L~{ m Mem}$	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu\mathrm{L~Mem}$	$75~\mu\mathrm{L~Mem}$
В	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
	$75~\mu L~{ m Mem}$	$75~\mu\mathrm{L~Mem}$	$75~\mu\mathrm{L~Mem}$	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu\mathrm{L~Mem}$	$75~\mu\mathrm{L~Mem}$
С	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu\mathrm{L~Mem}$	$75~\mu\mathrm{L~Mem}$	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu\mathrm{L~Mem}$	$75~\mu L~{ m Mem}$
D	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$
E	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$
F	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
	$75 \mu L \text{ Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$	$75 \mu L \text{ Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$
G	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
	$25 \ \mu L \ BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
	$75 \mu L \text{ Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$	$75 \mu L \text{ Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$
Н	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
	$75 \ \mu L \ \mathrm{Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$	$75 \mu L \text{ Mem}$	$75~\mu L~{ m Mem}$	$75~\mu L~{ m Mem}$

Table 1: Contents of drug plate after completion of procedure, adding Membrane (Protein)

2 Determining Protein Concentration

- 1. Resuspend pellet in 12 mL Lysis Buffer (10mM Tris + 5% Sucrose, pH 7.4):
 - (a) Use 1 mL Lysis Buffer to break up pellet
 - (b) Fill to 12 mL with Lysis Buffer
 - (c) Pool pellets into one tube (if multiple pellets)
- 2. Perform Bradford Protein Concentration Assay:
 - (a) Sample Prep: 10 μL Pellet Suspension + 790 μL dH20 + 200 μL Bradford Reagent
 - (b) Blank Prep: 10 μ L Lysis Buffer + 790 μ L dH20 + 200 μ L Bradford Reagent
 - (c) Incubate @ RT 10 min
 - (d) Measure absorbance @ 595 nm
 - (e) Calculate protein concentration (Refer to Formulas section or Spreadsheet)

3 Hot Ligand Addition

- 4. Prepare ~ 15 mL appropriate BB w/BSA ($\sim 30~\mu$ L) in trough
- 5. In an empty 96-well shallow plate (need one column):
 - (a) Add 330 μL BB to well H and 165 μL BB to well A-G
 - (b) Add 3H-Ligand to Well H (Refer to Formulas section or Spreadsheet)
 - (c) Perform a Serial Dilution (1:2) of 165 μ L up from well H to A
 - (d) Remove 25 μ L from Well A for radioactivity counts
 - (e) Using a multichanel pipettor, Transfer 25 μ L into 6 columns of the Drug Plate

3.1 Table

	Inital	Transfer	Serial	Actual	Final	3H-Ligand
	IIIIvai	Transier	Dilution	Counts	rillai	Ratio
A	$165~\mu\mathrm{L}$		$330~\mu\mathrm{L}$	$ ightarrow 25~\mu { m L}$	$305~\mu\mathrm{L}$	1:128
В	$165~\mu\mathrm{L}$	$\uparrow 165 \mu L$	$165~\mu\mathrm{L}$		$165~\mu\mathrm{L}$	1:64
С	$165~\mu\mathrm{L}$	$\uparrow 165 \mu L$	$165~\mu\mathrm{L}$		$165~\mu\mathrm{L}$	1:32
D	$165~\mu\mathrm{L}$	$\uparrow 165 \mu L$	$165~\mu\mathrm{L}$		$165~\mu\mathrm{L}$	1:16
Е	$165~\mu\mathrm{L}$	$\uparrow 165 \mu L$	$165~\mu\mathrm{L}$		$165~\mu\mathrm{L}$	1:8
F	$165~\mu\mathrm{L}$	$\uparrow 165 \mu L$	$165~\mu\mathrm{L}$		$165~\mu\mathrm{L}$	1:4
G	$165~\mu\mathrm{L}$	$\uparrow 165 \mu L$	$165~\mu\mathrm{L}$		$165~\mu\mathrm{L}$	1:2
Н	$330~\mu\mathrm{L}$	$\uparrow 165~\mu \text{L}$	$165~\mu\mathrm{L}$		$165~\mu\mathrm{L}$	1:1

Table 2: Contents of column in empty 96-well plate after step 5.(d)

	Columns 1/7	Columns 2/8	Columns 3/9	Columns 4/10	Columns 5/11	Columns 6/12
A	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
В	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
С	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
D	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
E	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$
F	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25 \mu L 3H$	$25~\mu L~3H$	$25~\mu L~3H$
G	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
Н	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$

Table 3: Contents of drug plate after completion of Hot Ligand Addition

4 Cold Ligand (Reference) Addition

- 6. Add 25 μ L BB to first 3 columns
- 7. Prepare Cold Ligand (Reference):
 - (a) Usually, add 4 μ L Reference compound into 800 μ L BB in an eppendorf tube
 - (b) Using a single channel pipettor, add 25 μ L Reference Compound into the last 3 columns

4.1 Table

	T -: .					
	Columns 1/7	Columns 2/8	Columns 3/9	Columns 4/10	Columns 5/11	Columns 6/12
A	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
В	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
С	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
D	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
E	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
F	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
G	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25 \ \mu L \ Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$
Н	$25~\mu L~3H$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$	$25~\mu\mathrm{L}~3\mathrm{H}$	$25~\mu L~3H$
	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~BB$	$25~\mu L~Ref$	$25~\mu L~Ref$	$25~\mu L~Ref$

Table 4: Contents of drug plate after completion of Cold Ligand (Reference) Addition

5 Membrane (Protein) Addition

- 8. Prepare ~ 4 mL membrane receptor:
 - (a) Add BB volume to new trough (Refer to Formulas section or Spreadsheet)
 - (b) Add protein to BB in trough (Refer to Formulas section or Spreadsheet)
 - (c) Using a multichannel pipettor, add 75 μ L protein dilution into all 6 columns
 - (d) Refer to Table 1 for plate contents
- 9. Incubate plates in drawer @ RT for 1 hour

6 Formulas

6.1 Protein Concentration calculation

Need:

• OD 595 nm

Formula:

Protein Concentration
$$(\mu g/\mu L) = \frac{OD@595 \text{ nm} - 0.094}{0.503}$$

Where:

• 0.094 and 0.503 were determined from experimental procedure, provided by XP

6.2 3H Hot Ligand calculation

Need:

- Starting Concentration (nM)
- 3H-Ligand Specific Activity (Ci/mmol)

Formula:

3H-Ligand Vol (
$$\mu$$
L) = $\frac{330 (\mu L) * Starting Concentration (nM) * 5 * 1.2}{Specific Activity (Ci/mmol)^{-1} * 1000000}$

Where:

- 330 μ L is double the volume of 165 μ L, (25 μ L * 6 wells * 1.1 overage = 165 μ L), so we can perform a serial dilution
- 5 is a Dilution Factor, the final volume in each well is 125 μ L, we add 25 μ L from the Hot-Ligand plate, (125/25=5)
- 1.2 is a 20% overage
- 1000000 is for unit conversion

6.3 Cold Ligand calculation

Usually need 4 μ L Reference compound and 800 μ L BB Need:

 \bullet Concentration of Cold Ligand (Reference) Stock (most are 10 mM = 10000 $\mu \rm M)$

Formula:

Reference Vol (
$$\mu$$
L) = $\frac{800~\mu\text{L}*10~\mu\text{M}}{10000~\mu\text{M}}$ Starting Concentration

Where:

- 800 μ L is approixmate volume we need (8 Wells/Column * 3 Columns * 25 μ L/Well * 1.1 overage = 660), use 800 so pulling from reference is easier
- Final concentration of Cold Ligand (Reference) in each well is 10 μM
- 5 is a Dilution Factor, the final volume in each well is 125 μ L, we add 25 μ L from the Hot-Ligand plate, (125/25=5)
- 10000 μ M or 10 mM is starting reference concentration, usually

6.4 Membrane Receptor calculation

Need:

- Protein Concentration ($\mu g/\mu L$) (Found from "Determining Protein Concentration")
- Protein/Well (µg) (XP will provide this)

Formula:

Volume of Protein (
$$\mu$$
L) = $\frac{\text{Protein/Well } (\mu \text{g}) * 4000 \text{ } (\mu\text{L})}{\text{Protein Concentration } (\mu\text{g}/\mu\text{L}) * 75 \text{ } (\mu\text{L})}$
Volume of BB (μ L) = 4000 (μ L) – Volume of Protein (μ L)

Where:

- 75 μ L is the volume that will be dispensed into each well
- 4000 μ L is approixmate volume we need (8 Wells/Column * 6 Columns * 75 μ L/Well * 1.1 overage = 3960 μ L), round to 4000 μ L for convience

6.5 Determining Starting Concentration calculation

After obtaining actual radioactive counts (dpm) starting concentration (concentration of 3H-Ligand in Well H) can be determined. Need:

- Specific Activity (Ci/mmol)
- Actual Counts (dpm)

Formula:

$$Starting\ Concentration\ (nM) = \frac{Actual\ Counts\ (dpm)*10^9\ (nM/M)*2^7}{2.22*10^{12}\ (dpm/Ci)*Specific\ Activity\ (Ci/mmol)*0.125\ (mL/Well)}$$

Where:

- 10⁹ in a unit conversion to nM from M
- 2^7 is for the 7 serial 1:2 dilutions
- $2.22 * 10^{12}$ dpm/Ci is a constant
- 0.125 mL/Well is the final volume in each well