Problem 9.53.3

Because the map p is a covering map, we have that there must be some covering into slices such that each neighborhood of b is evenly covered. As a result, we must have that there is a local homeomorphism from $S_k \to U_b$ and so S_k can be written as the union of evenly covered open sets. Conversely, set $B = B - S_\ell = B - \bigcup_{j \neq k} S_j$. We see that each of the rems of the union must be disjoint and non-empty, so that S_j is closed. By assumption B is connected, so the sets that are both open and closed in b can be the whole space. So $S_k = B$ and consequently $p^{-1}(b)$ has k elements for every b.

Problem 9.53.4

This proof is much more clear with a diagram. Given any $z \in Z$ we can find some neighborhood U_z that is evenly covered by r. Moreover, because $r^{-1}(U_z)$ is finite it admits a decomposition into disjoint open sets V_1, \ldots, V_n such that $V_j \approx U_z$ for every j. We then use the second map to take each of these V_j and find an j such that $r_j \in V_j = r(x_j)$ and neighborhood W_j such that W_j is evenly covered by q, because q is a covering map. We then set $V = U_z \cap \left(\bigcup_j r(W_j)\right)$ which is a neighborhood of z that is evenly covered by $p = r \circ q$. Furthermore, p is a covering map because it is the composition of continuous surjective functions, and both properties are preserved under composition.

Problem 9.53.5

We are given the function

$$p: S^1 \to S^1$$
$$z \mapsto z^2$$

To see that this is a covering map we simply recall the fact that $e^{(i\theta)^n}=e^{in\theta}$ whenever the points in S^1 are identified with the point $e^{i\theta}$. In this case we have n=2 and so p is polynomial and therefore continuous and it is also surjective because we just take $x=\theta/2$ to get that $p(x)=e^{i\theta}$. For the fibers over each point we have sets that look like $p^{-1}(e^{i\theta})=\{e^{2\pi i(\theta+k)/2}\,|\,k\geq 0\}$ For each fixed θ in the interval $[0,2\pi)$ we take the neighborhood in S^1 of $e^{i\theta}$ to be the set of all ϕ such that $|\theta-\phi|<\pi/2$. So that we must have that

$$p^{-1}(U_{\theta}) = \left\{ e^{i\phi} \, | \, |\phi - (\theta + 2\pi i k)/2| < \pi/4 \right\}$$

It is then clear that if if $\alpha \neq \beta \in [0, 2\pi)$ then $U_{\alpha} \cap U_{\beta}$ is empty. Then we use the fact that each of these maps is continuous to get that $U_{\theta} \approx p^{-1}(U_{\theta})$. So $e^{i\theta}$ has an evenly covered neighborhood for all θ and so it must be a covering map.

To generalize to the case n > 2. We simply repeat the argument given above. This is still valid because we still have the equality $e^{(i\theta)^n} = e^{in\theta}$ and so we just carry the n throughout the computation. In particular, we get

$$p^{-1}(e^{i\theta}) = \{e^{(\theta + 2\pi i m)/n}\}$$

and

$$p^{-1}(U_{\theta}) = \left\{ e^{i\phi} \, | \, |\phi - (\theta + 2\pi i k)/n| < \pi/n \right\}$$

Problem 9.53.6

(b) Begin with some open cover for E, say $E \subset \bigcup_n E_n$. Fix a $b \in B$ and find an open neighborhood U_b about b such that $p^{-1}(U_b) = \bigcup_{j=1}^m A_j$ and each of the $A_j \approx U_b$. We then note that $|A_j \cap p^{-1}(b)| = 1$ because p is a covering map and so there is some element $x_{b,j} \in E_{b,j}$. We then use the fact that p is a covering map to get a neighborhood $N_b = \bigcap_{j=1}^m p(A_j \cap E_j)$, an open neighborhood about b. Then, we have found for each $b \in B$ an open neighborhood N_b that contains it, and therefore we have that $B \subset \bigcup_{b \in B} N_b$. By assumption, B is compact so we can extract a finite subcover $\{S_1, \ldots, S_N\}$ whose union is all of B. We then observe that $\{p^{-1}(S_1), \ldots, p^{-1}(S_N)\}$ is an open cover of E. The

final observation is to note that each of the sets $p^{-1}(S_j) \subset \bigcup_{j=1}^m E_{b,j}$ and so $\bigcup_j p^{-1}(S_j)$ is contained in the union of only finitely many elements of the $E_{b,j}$. Furthermore, we have that this set contains all of E, and so we have by transitivity of inclusion that E has a finite subcover, and is therefore compact.

Problem 9.54.5

See the attached diagram for a sketch. A lifting of f is the map $\tilde{f}(t) = (t, 2t)$

Problem 9.54.6

Let $\alpha:[0,1]\to S^1$ be the usual parameterization of the disk in the complex plane given by $\alpha(t)=e^{2\pi it}$. It is clear that α is a loop because $\alpha(0)=\alpha(1)=1$. We then apply theorem 9.54.5 (cf. pg 345) to get that $[\alpha]\approx 1\in\mathbb{Z}$ under the identification given by that isomorphism. Now we will consider the function $g_*([\alpha])=[g\circ\alpha]$. A computation gives that

$$(g \circ \alpha)(t) = g(e^{2\pi it}) = (e^{2\pi it})^n = e^{2\pi int}$$

So we have that g_* is the homomorphism and therefore determined by its value on the generator. The computation above reveals that $g_*(\alpha(t)) = \alpha(nt)$ where the multiplication operation in \mathbb{Z} is usual multiplication (a sequence of additions). An analogous computation gives that $h_*(\alpha(t)) = \alpha(-nt)$. So $g_*([\alpha]) = n$ and $h_*([\alpha]) = -n$.

Problem 9.54.7

Consider the covering map $p: \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$ given by $(x,y) \mapsto (\sin 2\pi x, \cos 2\pi x) \times (\sin 2\pi y, \cos 2\pi y)$. Let e be the origin (0,0) and $b=p(e)=(0,1)\times(0,1)$. So we have that $p^{-1}(b)=\mathbb{Z}\times\mathbb{Z}$ and because \mathbb{R}^2 is simply connected we must also have that the lifting correspondence

$$\varphi: \pi_1(T,b) \to \mathbb{Z} \times \mathbb{Z}$$

is bijective. We need to show that it is in fact an isomorphism. Indeed, choose α, β to be two paths in $\pi_1(T,b)$. Let \tilde{f}, \tilde{g} denote their liftings to paths in \mathbb{R}^2 with endpoints (a_1,a_2) and (b_1,b_2) , respectively. We then define the map $\tilde{g}_t = \tilde{g} + (a_1,a_2)$. Now we have a path $\tilde{f} * \tilde{g}_t$ which takes (0,0) to $(a_1 + b_1, a_2 + b_2)$. The projection of this path onto T is f * g because $p(\tilde{g} + (a_1,a_2)) = p(\tilde{g}) = g$. This precisely means that $\tilde{f} * \tilde{g}_t$ is a lift of the path f * g so that

$$\begin{split} \varphi([f][g]) &= \varphi([f*g]) \\ &= (a_1 + b_1, a_2 + b_2) \\ &= (a_1, a_2) + (b_1, b_2) \\ &= \varphi([f]) + \varphi([g]) \end{split}$$

And so φ is a bijection and the proof is complete.

Problem 9.54.8

We have that p is a covering map. By definition, this means that p is surjective open and continuous. We are only left to verify that p is injective. Indeed, we choose any $b \in B$ and then pick two elements $x, y \in p^{-1}(b)$ such that their inverse images agree. That is, p(x) = p(y). Because E is connected, we know that there must be some path α in E such that $\alpha(0) = x$ and $\alpha(1) = y$. We can now make a loop in B by composing the maps to get $\ell = p \circ \alpha$, and moreover this loop is based at the point b. Because B is simply conneced we know that the fundamental group $\pi_1(B,b)$ is the trivial group, and so ℓ is homotopic to the constant loop. We now apply theorem 9.54.3 to get that the liftings $\tilde{\ell}$ and \tilde{e} (the constant loop) are path-homotopic. As a result of this we have that $\tilde{\ell}(1) = \tilde{e}(1)$. But we know that $\tilde{\ell} = \alpha$ so we must have that x = y. This proves that p is injective and we are done.