Department Of Aerospace Engineering, Indian Institute Of Technology Madras

AS2101: Introduction to Aerospace Engineering

Report 2: Linear Regression of a Dataset

Pranit Zope AE20B046

September 1, 2021

Contents

1	The	eory	2
2	Pro	cedure	2
	2.1	Procedure for Linear Regression	2
	2.2	Gauss Jordan Elimination for Inverse	3
	2.3	Error Calculation	4
3	Δns	alysis of Datasets	5
J	3.1	Data 1	5
	0.1	3.1.1 Data Table	5
		3.1.2 Plots	5
		3.1.3 Interpretation	6
	3.2	Data 2	7
	J	3.2.1 Data Table	7
		3.2.2 Plots	7
		3.2.3 Interpretation	8
	3.3	Data 3	9
		3.3.1 Data Table	9
		3.3.2 Plots	9
		3.3.3 Interpretation	10
\mathbf{L}_{i}^{t}		of Figures	
	1	Linear Regression of a Scattered Plot	2
	2	Data 1 : Points 1-50	5
	3	Data 1 : Points 51-100	5
	4	Data 1 : Points 101-200	6
	5 6	Data 1 : Points 1-200	6 7
	7	Data 2 : Points 51-100	7
	8	Data 2 : Points 101-200	8
	9	Data 2 : Points 1-200	8
	10	Data 3 : Points 1-50	9
	11	Data 3 : Points 51-100	9
	12	Data 3 : Points 101-200	10
	13	Data 3 : Points 1-200	10
$\mathbf{L}^{:}$	ist	of Tables	
	1	Data Table for Dataset 1	5
	2	Data Table for Dataset 2	7
	3	Data Table for Dataset 3	9

1 Theory

Linear Regression is basically a method using which we can find the line of best fit, in a scattered plot of a given dataset. The main use of this technique is to predict or to "forecast" the value of a dependant variable.

For instance, we have a scattered plot, which doesn't have any particular fixed pattern. Using linear regression, we can obtain a line, that best fits and that can best predict the value of the dependant variable, using just the line and the independant variable.

When there is only one dependant variable, it is called **Simple Linear Regression**. Figure 1 explains what linear regression exactly is:

Figure 1: Linear Regression of a Scattered Plot

2 Procedure

2.1 Procedure for Linear Regression

Let us suppose we are given a data $(x_1, y_1), (x_2, y_2), (x_3, y_3)....(x_n, y_n)$. This data is a scattered, or rather a non linear plot. Our aim is to find a best fitting line y = mx + c for the given dataset.

$$y = mx + c \tag{1}$$

m = slope of the linec = y-intercept of the line

Now, we will try to fit the data into the line that we just got.

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

$$y_3 = mx_3 + c$$

$$\vdots$$

$$y_3 = mx_3 + c$$

On close observation, we can see that these sets f equations can be represented by a matrix multiplication.

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \cdot \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix}$$
 (2)

Now, here, our aim is to find out the values of m and c, so that we can get the best fitting line.

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} = A; \begin{bmatrix} m \\ c \end{bmatrix} = X; \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = B;$$

Thus we can say that in this case, AX = B. Now we can simply

$$AX = B$$
$$X = A^{-1}B$$

But here, the problem is that A is a $N \times 2$ matrix and finding its inverse is a tedious task. So we multiply by the transpose of A and then compute the inverse so that the matrix will be a 2×2 matrix and Gauss-Jordan Elimination can be used.

$$AX = B$$

$$A^{T}AX = A^{T}B$$

$$X = (A^{T}A)^{-1}A^{T}B$$
(3)

Now that we have the final expression for X, that is $\begin{bmatrix} m \\ c \end{bmatrix}$ we can calculate it and achieve our aim.

2.2 Gauss Jordan Elimination for Inverse

This is a technique which is used to compute inverse of a square matrix. We take our Data matrix and one identity augmented matrix and perform row/column operations to find the inverse.

$$\begin{bmatrix} A|I \end{bmatrix} = \begin{bmatrix} a & b & 1 & 0 \\ c & d & 1 & 0 \end{bmatrix} \tag{4}$$

In the case of a 2×2 matrix, the equation solves to

$$\begin{bmatrix} 1 & 0 & \begin{vmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ 0 & 1 & \begin{vmatrix} \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{vmatrix} \end{bmatrix}$$

Which implies that

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} \frac{d}{\Delta_A} & \frac{-b}{\Delta_A} \\ \frac{-c}{\Delta_A} & \frac{a}{\Delta_A} \end{bmatrix} = \frac{1}{\Delta_A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 (5)

Where Δ_A is the determinant of matrix A.

2.3 Error Calculation

After figuring out our X matrix, we now need to find the error. For this, at a particular x value, we will simply take the square-sum of the difference in the y values and the sqrt it later. So, for a given x, our error will be

$$e = |y_i - (mx_i + c)|$$

Now our total error will be given by

$$E = \sqrt{\sum_{i=1}^{n} e_i^2} \tag{6}$$

3 Analysis of Datasets

3.1 Data 1

3.1.1 Data Table

Dataset Points	$\mathbf{Slope}(m)$	$\mathbf{Intercept}(c)$	Error (E)
Points 1-50	7.09999999999998	-43.19999999999993	131.62978386368337
Points 51-100	17.09999999999966	-548.20000000000007	131.62978386368334
Point 10-200	32.09999999999991	-2180.699999999997	745.1696451144531
Points 1-200	22.099999999999994	-675.6999999999998	4216.106687454671

Table 1: Data Table for Dataset 1

3.1.2 Plots

Figure 2: Data 1: Points 1-50

Figure 3: Data 1 : Points 51-100

Figure 4: Data 1: Points 101-200

Figure 5: Data 1 : Points 1-200

3.1.3 Interpretation

We can say that the line is pretty much the best as it has apparently minimised the error. But if we look in the center and the end parts, the error $e = |y_i - (mx_i + c)|$ increases. Thus, we can say that there are better curves for regression, which in this case might be a quadratic function $y = ax^2 + bx + c$ or an exponential function $y = a^x$.

3.2 Data 2

3.2.1 Data Table

Dataset Points	$\mathbf{Slope}(m)$	$\mathbf{Intercept}(c)$	Error (E)
Points 1-50	2.01107598559424	1.1956343673468837	0.2121550871363664
Points 51-100	2.0058037358943466	1.426665939976374	0.025965351407384034
Points 101-200	2.004110508250804	1.6023905082547572	0.05222547822258797
Points 1-200	2.0056244629115776	1.3809824773861692	0.9143398808678752

Table 2: Data Table for Dataset 2

3.2.2 Plots

Figure 6: Data 2 : Points 1-50

Figure 7: Data 2: Points 51-100

Figure 8: Data 2: Points 101-200

Figure 9: Data 2 : Points 1-200

3.2.3 Interpretation

Here we can see that the scattered data is almost linear and the error is also very less, so we can say that linear regression is a good choice fir this dataset.

3.3 Data 3

3.3.1 Data Table

Dataset Points	$\mathbf{Slope}(m)$	$\mathbf{Intercept}(c)$	Error (E)
Points 1-50	2.0000503337334905	1.0036004897959856	0.019092074017140144
Points 51-100	1.999962252100822	1.0073759663873716	0.02328345739436074
Points 101-200	2.0000151983198364	1.0027986528639303	0.02866100570048151
Points 1-200	2.0000042825320685	1.0044651055268332	0.04227031505781017

Table 3: Data Table for Dataset 3

3.3.2 Plots

Figure 10: Data 3 : Points 1-50

Figure 11: Data 3: Points 51-100

Figure 12: Data 3 : Points 101-200

Figure 13: Data 3: Points 1-200

3.3.3 Interpretation

Here we can see that the scattered data is almost linear and the error is also very less, so we can say that linear regression is a good choice fir this dataset.