

# Orthopoxvirus real-time PCR Version 2

# Judy Northill, David Warrilow, Ian Mackay

#### **Abstract**

A real-time PCR targeting the DNA-dependent RNA polymerase of Orthopoxviruses.

Citation: Judy Northill, David Warrilow, Ian Mackay Orthopoxvirus real-time PCR. protocols.io

dx.doi.org/10.17504/protocols.io.nzxdf7n

Published: 24 Mar 2018

## **Guidelines**

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol.

## **Materials**

SensiFAST™ Probe Lo-ROX Kit <u>BIO-84002</u> by <u>Bioline</u>

#### **Protocol**

## Oligonucleotide sequences

## Step 1.

| Name        | 5'-3'                                        |
|-------------|----------------------------------------------|
| OPV2018-F   | CGTACMGGAACACTRGCTAGA                        |
| OPV2018-R   | AGCGTATTACCTATAACTACTTGTCCGTA                |
| OPV2018-FAM | 6FAM- ATCATTAAAAAGATGGAGGATATGGTGGTHGA -BHQ1 |

#### Step 2.



**REAGENTS** 

SensiFAST™ Probe Lo-ROX Kit <u>BIO-84002</u> by <u>Bioline</u>

#### **REACTION SET-UP**

Step 3.

Assay has been used on both a Rotor-Gene 6000 / Rotor-Gene Q 5-plex using 100-place rotor discs.

Total reaction volume is 20µL.

Prepare sufficient for number of reaction plus a 'dead volume' usually 2 extra. Adjust as necessary if using a robotic dispenser.

| Reagent                    | Volume X1 (μL) | Final concentration |
|----------------------------|----------------|---------------------|
| Nuclease-free water        | 4.87           |                     |
| SensiFast Probe Lo-Rox mix | 10             | 1X                  |
| OPV2018-F (200pmol/μL)     | 0.05           | 500nM               |
| OPV2018-R (200pmol/μL)     | 0.05           | 500nM               |
| OPV2018-FAM (100pmol/μL)   | 0.03           | 150nM               |
| TOTAL VOLUME               | 15             |                     |

## **AMPLIFICATION**

#### Step 4.

The assay has been optimised and validated for the Rotor-Gene 6000 and Rotor-Gene Q thermocyclers.

|      |      | PCR |  |
|------|------|-----|--|
| 50°C | 5min |     |  |
| 95°C | 2min |     |  |
| 95°C | 3s   | 40X |  |
| 60°C | 30s* |     |  |

<sup>\*</sup>Data aquisition step

## **RESULT ANALYSIS**

#### Step 5.

The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:

- 1. A **sigmoidal curve** the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
- 2. A **suitable level of fluorescence** intensity as measured in comparison to a positive control (y-axis)
- 3. A defined threshold ( $C_T$ ) value which the fluorescent curve has clearly exceeded (Fig.1 arrow) and which sits early in the log-linear phase and is <40 cycles
- 4. A flat or non-sigmoidal curve or a curve that crosses the threshold with a  $C_{\tau}$  value >40 cycles is considered a negative result

## 5. NTCs should not produce a curve



**Figure 1**. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle ( $C_T$ ) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.