Maria Restrepo (mar981)

1. There are five potential outliers.

Survey Rate	Z	'-Score
75	5	-2.91117
75	7	-2.89843
167	'3	2.933516
171	.0	3.169086
172	.5	3.264588

2.

1.
$$H_o$$
: $\mu_1 = \mu_2$
 H_A : $\mu_1 != \mu_2$

2.
$$\alpha = .05$$
; $\alpha/2 = .025$

3.
$$t_{crit} = t_{df=n1+n2-2}^{\alpha/2=.025} = t_{df=1053+535-2}^{\alpha/2=.025} = 1.959$$

4. Reject H_o if $|t_{obs}| > 1.959$

$$t_{obs} = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{s_{\bar{X}_1 - \bar{X}_2}}; \text{ where } s_{\bar{X}_1 - \bar{X}_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$s_p = \sqrt{\frac{[(n_1 - 1)s_1^2] + [(n_2 - 1)s_2^2]}{(n_1 + n_2 - 2)}}$$

5.
$$s_p = \sqrt{\frac{[(n_1 - 1)s_1^2] + [(n_2 - 1)s_2^2]}{(n_1 + n_2 - 2)}}$$

$$S_p = \sqrt{\frac{(1052)(16031772)^2 + (534)(150.815)^2}{1053 + 535 - 2}} = = \sqrt{24676.42077} = 157.087303$$

$$S_{Xbar1-xbar2} = 157.087303 \sqrt{\frac{1}{1053} + \frac{1}{535}} = 8.340176776$$

$$t_{obs} = \frac{1214.358 - 1208.086}{8.340176776} = .7520224293$$

6. $t_{obs}(0.75) < t_{crit}(1.959)$ so fail to reject H_o. We conclude there is no statistical mean difference in survey score for male and female.

EXCEL OUTPUT:

3.

1.
$$H_o$$
: $\mu_1 = \mu_2$
 H_A : $\mu_1 != \mu_2$

2.
$$\alpha = .05$$
; $\alpha/2 = .025$

2.
$$\alpha = .05$$
; $\alpha/2 = .025$
3. $\mathbf{t_{crit}} = \mathbf{t_{df=n1+n2-2}^{\alpha/2}} = \mathbf{t_{df=1053+535-2}^{\alpha/2}} = 1.959$
4. Reject H₀ if $|\mathbf{t_{obs}}| > 1.959$

$$t_{obs} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{s_{\overline{X}_1 - \overline{X}_2}}; \text{ where } s_{\overline{X}_1 - \overline{X}_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$s_p = \sqrt{\frac{[(n_1 - 1)s_1^2] + [(n_2 - 1)s_2^2]}{(n_1 + n_2 - 2)}}$$

5.
$$s_p = \sqrt{\frac{[(n_1 - 1)s_1^2] + [(n_2 - 1)s_2^2]}{(n_1 + n_2 - 2)}}$$

$$S_p = \sqrt{\frac{(1052)(.461635)^2 + (534)(.49320286)^2}{1053 + 535 - 2}} = = \sqrt{.22325563} = .472499$$

$$S_{p} = \sqrt{\frac{(n_{1} + n_{2} - 2)}{1053 + 535 - 2}} = \sqrt{.22325563} = .472499$$

$$S_{Xbar1 - xbar2} = .472499 \sqrt{\frac{1}{1053} + \frac{1}{535}} = .025086211$$

$$t_{obs} = \frac{3.684786 - 3.57620561}{.025086211} = 4.328289$$
6. $t_{obs}(4.328289) > t_{crit}(1.959)$ so reject H_{o} . We conclude there is a statistical difference in survey score for male and female on manager's annual performance.

in survey score for male and female on manager's annual performance.

1.
$$H_o$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$
 H_A : $\mu_1 != \mu_2 != \mu_3 != \mu_4 != \mu_5 != \mu_6$

2.
$$\alpha = 0.05$$

3.
$$F_{crit} = F_{dfn,dfd}^{\alpha=.05} = F_{dfTR,dfE}^{\alpha=.05} = F_{5,1582}^{\alpha=.05} = 2.219$$

 $dfTR = k-1 = 6-1 = 5$
 $dfErr = n-k = 1588-6 = 1582$

- 4. Reject H_0 if $F_{obs} > F_{crit}$
- 5. $F_{obs} = 10.21$ (from table)
- 6. F_{obs} (10.21) > F_{crit} (2.219) so reject Ho. Conclude that there is a statistically significant difference in the mean scores of the recruits' college major and the manager's annual performance review.

EXCEL OUTPUT:

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	11.2080113	5	2.24160225	10.2179437	1.1864E-09	2.21975448
Within Groups	347.057574	1582	0.219379			
Total	358.265585	1587				

5.

1.
$$H_o$$
: $\mu_D = 0$
 H_A : $\mu_D != 0$

2.
$$\alpha = 0.05$$
: $\alpha/2 = 0.025$

3.
$$t_{crit} = t_{df = 1589-1 = 1588} (t \wedge \alpha = .025) = 1.961$$

4. Reject H_o if
$$|t_{obs}|$$
 (17.13622) > t_{crit}

5.
$$t_{obs} = -17.13622$$

6. $t_{obs}(17.13622) > t_{crit}(1.961)$ so reject H_o . We conclude there is statistical change in the survey results between three months after they are initially hired and twelve months.

EXCEL OUTPUT:

t-Test: Paired Two Sample for

Means

	three.month	twelve.month
Mean	1127.09509	1212.24496
Variance	20407.1939	24669.6646
Observations	1588	1588
Pearson Correlation	0.13075503	
Hypothesized Mean Difference	0	
df	1587	
t Stat	-17.13622	

P(T<=t) one-tail	7.8837E-61
t Critical one-tail	1.64581435
P(T<=t) two-tail	1.5767E-60
t Critical two-tail	1.96145992

1. H_o: Manager's annual performance review does NOT predict the recruit's 12 month survey score.

H_A: Manager's annual performance review does predict the recruit's 12 month survey score.

OR

H_o: $\beta_1 = 0$

 $H_A: \beta_1 != 0$

- 2. $\alpha = .05$
- 3. $F_{crit} = F_{df=1,1586}^{\alpha=.05} = 3.86$ (from F table)
- 4. Reject H_0 if $F_{obs} > F_{crit}(3.86)$
- 5. $F_{obs} = 136.11$ (from ANOVA table)
- 6. $F_{obs}(136.11) > F_{crit}(3.86)$, so reject H_o . Conclude that, manager's annual performance review does predict the recruit's 12-month survey score.

EXCEL OUTPUT:

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	3094352.99	3094352.99	136.110183	3.1173E-30
Residual	1586	36056404.7	22734.177		
Total	1587	39150757.7			

Regression Equation: y = 0.0009x + 2.6173

Correlation: .28113495

- 1. H_o : $\mu_1 = \mu_2 = \mu_3$ H_A : $\mu_1 != \mu_2 != \mu_3$
- 2. $\alpha = 0.05$
- 3. $F_{crit} = F_{2,1552}^{\alpha=.05} = 3.00$
- 4. Reject H_o if $F_{obs} > F_{crit}$
- 5. $F_{obs} = 74.86$ (from ANOVA table)
- 6. F_{obs} (74.86) > F_{crit} (3.00) so reject Ho. Conclude that there is a statistically significant difference on survey scores for three, six and twelve months.

EXCEL OUTPUT:

three.month	777	873205	1123.81596	20347.7328
six.month	777	914864	1177.43115	22351.1116
twelve.month	777	940447	1210.3565	24187.2812

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Rows	21172084.6	776	27283.6142	1.37787293	7.8552E-08	1.10662163
Columns	2965014.47	2	1482507.24	74.8693546	0	3.0015222
Error	30731548.9	1552	19801.2557			
Total	54868648	2330				

 1^{st} (the within) variable are the three times the survey was administered (the over time variable) and 2^{nd} (the in btwn variable) is public or private institution.

- 1. H_o: There is NO significant interaction between survey score and institution. H_a: There is a significant interaction between survey score and institution.
- 2. $\alpha = .05$
- 3. $F_{crit} = F_{dfn,dfd}^{\alpha=.05} = F_{dfTR,dfE}^{\alpha=.05} = F_{2,1734}^{\alpha=.05} = 3.00$ (from ANOVA Table, Interactions row)
- 4. Reject H_o if $F_{obs} > F_{crit}$ (3.00)
- 5. $F_{obs} = 4.80$ (from ANOVA Table (F), Interactions row)
- 6. F_{obs} (4.80) > F_{crit} (3.00), so reject H_o . Conclude that the interaction between survey score and institution is significant. This means there is a difference in survey scores for those who went to public and private institutions.

EXCEL OUTPUT:

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Sample	1940874.01	1	1940874.01	91.2586322	4.1262E-21	3.8468272
Columns	2456434.34	2	1228217.17	57.7499717	0	3.00091379
Interaction	204319.71	2	102159.855	4.80348988	0.00831053	3.00091379
Within	36878434.9	1734	21267.8402			
_Total	41480062.9	1739				

9. A

- 1. H_o : $\mu_1 = \mu_2$ H_A : $\mu_1 != \mu_2$
- 2. $\alpha = 0.05$
- 3. $F_{crit} = F_{1,1586}^{\alpha=.05} = 3.84$
- 4. Reject H_o if $F_{obs} > F_{crit}$
- 5. $F_{obs} = 3.15$ (from ANOVA table)
- 6. F_{obs} (3.15) < F_{crit} (3.84) so fail reject Ho. Conclude that there is no statistically significant difference on 12-month survey scores for the recruits that attended HBCU institutions and those that didn't.

EXCEL OUTPUT:

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	77534.636	1	77534.636	3.14716635	0.07625076	3.84732872
Within Groups	39073223.1	1586	24636.3323			
Total	39150757.7	1587				

9.B

- 1. H_0 : $\mu_1 = \mu_2$ H_A : $\mu_1 != \mu_2$
- 2. $\alpha = 0.05$
- 3. $F_{crit} = F_{1,1586}^{\alpha=.05} = 3.84$
- 4. Reject H_o if $F_{obs} > F_{crit}$
- 5. $F_{obs} = .9788$ (from ANOVA table)

6. F_{obs} (.9788) \leq F_{crit} (3.84) so fail reject Ho. Conclude that there is no statistically significant difference on 12-month survey scores for the recruits that attended H.S.I institutions and those that didn't.

EXCEL OUTPUT:

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	24147.0686	1	24147.0686	0.97880318	0.32264537	3.84732872
Within Groups	39126610.6	1586	24669.9941			
Total	39150757.7	1587				

9.C

- 1. H_o: HBCU institutions and region are independent. H_A: HBCU institutions and region are NOT independent.
- 2. $\alpha = 0.05$
- 3. $X_{crit}^2 = X_{df=(2-1)(4-1)=3}^2 = 7.815$ (from table) 4. Reject H_o if $X_{obs}^2 > X_{crit}^2$ (7.815)
- 5. $X^{2}_{obs} = 141.16$ (from Excel)
- 6. X^2_{obs} (141.16) > X^2_{crit} (7.815), so reject H_o. Conclude that HBCU institutions and region are NOT independent.

EXCEL OUTPUT:

Expected	Northeast	South	Midwest	West	
Is HBCU	5.3	54.8	50.8	50.2	167
Is not HSBU	44.7	466.2	483.2	427	1421
	50	521	540	477	1588

Count of inst.region	Column Labels				Grand
Row Labels	1	2	3	4	Total
0	50	354	540	477	1421
1		167			167
Grand Total	50	521	540	477	1588

10.

Are the recruits satisfied?

To element some noise variables, we were able to determine that gender does not significantly affect the recruit's survey scores. We were also able to determine there is a significant change in survey

response after the three months after hire survey. It was also concluded, based on the recruiters' major, the manager rating would differ.

Are their manager's reviews of their performance in sync with their own survey responses?

For the recruiter's own survey of success gender did not play a role, but when it came to the survey scores for the manager, the gender of the recruiters was statistically significant. We were also able to determine that the 12-month recruiter survey score relies on the manager's yearly performance review survey. This implies a complimentary relationship between the manager and the recruits.

Also, where should we go to recruit if we want to increase diversity in our workforce?

If we want to increase diversity in the workforce, then it is necessary to target specific areas. Based on the hypothesis testing done in Question 9C, we were able to determine that region plays a big role in receiving recruits from a certain background. Historically Black Colleges are located in a very specific region, so in order to raise diversity there has to be a targeted effort in the South.

11.

An additional analysis we can consider is testing to see if recruits' survey result gets significantly better or worse after they are initially hired.

We can also run tests to see:

- If there is a significant difference in SAT scores depending on the level of competitiveness the schools have?
- Does the primary language spoken at home predict SAT scores?
- Is the level of competitiveness associated with or independent from region?
- Is the primary language spoken at home associated with or independent form the region?

I believe conducting these tests would a provide a bigger picture of the recruits we are hiring and obstacles they might face.