KNN, Naive Bayes, Support Vector Machines with Text Data

Agenda

Discussion Flow

- K-Nearest Neighbours
- Naive Bayes
- Support Vector Machines
- Implementation in Scikit-Learn (with features from text data)

K-Nearest Neighbours

KNN

Notes on KNN

- Since the algorithm is distance based, consider normalising distances
- Votes can be weighted in various ways, weighing by distance is most popular
- Low number of K, captures heavily localised patterns and can lead to overfit
- Very high value of K, captures broad level patterns and can miss out on complex patterns
- There is no equation/output for the model, training data itself is the model
- Standalone KNN is not a very powerful algorithm

Naive Bayes

Bayes Theorem

$$P(A) = \frac{|A|}{|U|}$$

$$P(B) = \frac{|B|}{|U|}$$

Reference: https://oscarbonilla.com/2009/05/visualizing-bayes-theorem/

contd..

$$P(AB) = \frac{|AB|}{|U|}$$

$$P(A|B) = \frac{|AB|}{|B|}$$

$$P(A|B) = \frac{\frac{|AB|}{|U|}}{\frac{|B|}{|U|}}$$

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Reference: https://oscarbonilla.com/2009/05/visualizing-bayes-theorem/

Bayes theorem statement

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Extension of Bayes

$$P(A|B_1 \cap B_2 \cap B_3 \cap ..) = \frac{P(B_1 \cap B_2 \cap B_3 \cap ..|A) * P(A)}{P(B_1 \cap B_2 \cap B_3 \cap ..)}$$

Naive Bayes

$$P(A|B_1 \cap B_2 \cap B_3 \cap ..) = \frac{P(B_1|A) * P(B_2|A) * P(B_3|A) * P(A)}{P(B_1 \cap B_2 \cap B_3 \cap ..)}$$

Example

Туре		Long	N	lot Long	П	Sweet	I	Not Sweet	П	Yellow	IN	Not Yellow	Total
Banana	_	400	T	100	Π	350	ī	150	П	450	T	50	500
Orange		0	Ì	300	Ш	150	ĺ	150	П	300	ĺ	0	300
Other Fruit		100	ĺ	100	П	150	I	50	П	50	Ī	150	200
Total		500	Ι	500	П	650	Ι	350	П	800	Τ	200	1000

Reference: https://stackoverflow.com/questions/10059594/a-simple-explanation-of-naive-bayes-classification

Contd...

```
P(Banana) = 0.5 (500/1000)
P(Orange) = 0.3
P(Other Fruit) = 0.2
```

```
p(Long) = 0.5
P(Sweet) = 0.65
P(Yellow) = 0.8
```

```
P(Long|Banana) = 0.8
P(Long|Orange) = 0 [Oranges are never long in all the fruit we have seen.]
....
P(Yellow|Other Fruit) = 50/200 = 0.25
P(Not Yellow|Other Fruit) = 0.75
```

Reference: https://stackoverflow.com/questions/10059594/a-simple-explanation-of-naive-bayes-classification

Contd...

```
P(Banana Long, Sweet and Yellow)
     P(Long|Banana) * P(Sweet|Banana) * P(Yellow|Banana) * P(banana)
                      P(Long) * P(Sweet) * P(Yellow)
   = 0.8 * 0.7 * 0.9 * 0.5 / P(evidence)
   = 0.252 / P(evidence)
P(Orange Long, Sweet and Yellow) = 0
P(Other Fruit|Long, Sweet and Yellow)
     P(Long|Other fruit) * P(Sweet|Other fruit) * P(Yellow|Other fruit) * P(Other Fruit)
                                          P(evidence)
   = (100/200 * 150/200 * 50/200 * 200/1000) / P(evidence)
   = 0.01875 / P(evidence)
```

Reference: https://stackoverflow.com/questions/10059594/a-simple-explanation-of-naive-bayes-classification

Support Vector Machines

Vector Equation of A line

Idea behind sym

$$\vec{x_i} \cdot \vec{w} + b > = +1 \quad \forall x_i \mid y_i = +1$$

$$\vec{x} \cdot \vec{w} + b = +1$$

$$\vec{x_i} \cdot \vec{w} + b = -1$$

$$\vec{x_i} \cdot \vec{w} + b < = -1$$

Objective Function & Constraints

$$m = \frac{2}{||\vec{w}||}$$

Objective Function

$$\frac{1}{2}||\vec{w}||^2$$

Constraints

$$y_i * [\vec{x_i} \cdot \vec{w} + b] > = +1 \quad \forall x_i$$

Optimisation with constraints: Lagrange's Multiplier

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
$$g(x, y, z) = k$$

Example

find values of x and y for which (5x - 3y) takes its max/min value under constraints $x^2 + y^2 = 136$

New Objective Function

$$5x - 3y - \lambda * (x^2 + y^2 - 136)$$

$$5 = 2\lambda x$$
$$-3 = 2\lambda y$$
$$x^{2} + y^{2} = 136$$

$$\lambda^2 = \frac{1}{16}$$
 \Rightarrow $\lambda = \pm \frac{1}{4}$

If
$$\lambda = -\frac{1}{4}$$
 we get,

$$x = -10$$

$$y = 6$$

and if
$$\lambda = \frac{1}{4}$$
 we get,

$$x = 10$$

$$y = -6$$

In context of sym

$$\frac{1}{2}||\vec{w}||^2 - \sum_{i=1}^n \alpha_i * [y_i * (\vec{x_i} \cdot \vec{w} + b - 1)]$$

$$\vec{w} = \sum_{i=1}^{n} \alpha_i * \vec{x_i} * y_i$$

$$\sum_{i=1}^{n} \alpha_i * y_i = 0$$

Dual

$$\max \left[\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \alpha^T H \alpha \right]$$

s.t.
$$\alpha_i \geq 0 \ \forall_i \ and \ \sum_{i=1}^n \alpha_i y_i = 0$$

where
$$H_{ij} = y_i y_j \vec{x_i} \cdot \vec{x_j}$$

Overlap Case

$$\frac{1}{2}||\vec{w}||^2 + C * \sum_{i=1}^n \epsilon_i - \sum_{i=1}^n \alpha_i * [y_i * (\vec{x_i} \cdot \vec{w} + b) - 1 + \epsilon_i] - \sum_{i=1}^n \mu_i \epsilon_i$$

for complete mathematical discussion : refer to svm paper uploaded in LMS

Nonlinear Separation Line and Kernel Function

Kernel Functions

RBF

$$k(\vec{x_i}, \vec{x_j}) = \exp^{-\left(\frac{||\vec{x_i} - \vec{x_j}||^2}{2\sigma^2}\right)}$$

Polynomial

$$k(\vec{x_i}, \vec{x_j}) = (\vec{x_i} \cdot \vec{x_j} + a)^b$$

Sigmoid

$$k(\vec{x_i}, \vec{x_j}) = tanh(a\vec{x_i} \cdot \vec{x_j} - b)$$

SVM and probabilities

- There is no concept of probabilities in svm
- Separation is based on distance from the separating plane
- Normalised distance can be used as ad-hoc probabilities
- you'll need to use specific options in sklearn implementation to forcefully obtain probabilities
- Multiclass svm , simply uses multiple binary svm (One vs All) internally

Lets see it in action in Python

