Metin ve sıralı verilerin derin öğrenme ile işlenmesi (Deep learning for text and sequences)

Metin (text) verilerle çalışmak

- Metin-vektör dönüşmü, bazı token dönüşüm işlemleri ve üretilen tokenlar için sayısal vektörlerin belirlenmesinden oluşur.
- Bu vektörler dizi tensörleri içerisinde saklanır ve yapay sinir ağına uygulanır.
- Bir vektörü bir token ile ilişkilendirmenin bir çok yolu vardır.
- Bunlardan en çok kullanılan ikisi,
 - one-hot encoding
 - word embedding (veya token embedding)

One-hot encoding

```
10 samples = ['The cat sat on the mat.',
                                                                              Programda verilen cümledeki
                 'The dog ate my homework.'] •
                                                                               farklı kelimeler bulunup,
12
                                                                               her birine farklı bir indis
13 token index = {} #boş dictionary
                                                                                     atanıyor.
14
15 print('Kelimelere atanan indisler:')
16 for sample in samples:
        for word in sample.split():# sıradaki kelimeyi al
17
             if word not in token index:# token indeks verilmemisse
18
                  token index[word] = len(token index) + 1 # sıraki tamsayıyı ata
19
20
                  print('\t',word,'=',token index[word])
21
22 \text{ max length} = 10
23 results = np.zeros(shape=(len(samples),
                                                                                       The = 1
                                    max length,
24
                                                                                            [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                    max(token index.values()) + 1))
25
                                                                                            [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
26
                                                                                             [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
27 print('Kelimelere vektör ata:')
                                                                                             [0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
                                                                                             [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
28 for i, sample in enumerate(samples):
                                                                                       mat. = 6
        for j, word in list(enumerate(sample.split()))[:max length]:
                                                                                             [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
29
                                                                                       The = 1
                                                                                             [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
30
             index = token index.get(word)
                                                                                             [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
             print(word, '=', token_index[word])
31
                                                                                             [0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
             results[i, j, index] = 1.
32
                                                                                            [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
33
             print('\t',results[i,j,:])
                                                                                            [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
```

Kelime gömme (word embeddings)

- One-hot encoding kelime adedine göre (genelde O'lardan)oluşturulan vektör üzerinde ilgili kelimenin belirtilmesi (genelde 1) ile yapılır.
- Word embedding ile oluşturulan vektörler genelde ağın eğitimi sırasında belirlenir.
- One-hot ile tanımlanan kelime vektörleri Word embedding ile tanımlananlara göre daha düşük boyutludur.

One-hot word vectors:

- Sparse
- High-dimensional
- Hard-coded

Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

Word embedding

Embedding katmanı

- Embedding katmanı tanımlanmış her bir kelimeye karşılık belirlenmiş sayı vektörlerini verir.
- Girişe kelimelere ait tamsayı indisler uygulanır. Bir iç sözlüğe bakarak girilen indislerin vektör karşılıklarının verir

Embedding katmanı ve sınıflandırıcı

Yelime indeksi \rightarrow Embedding katman \rightarrow Girişteki kelimelere göre kelime vektörleri


```
8 from keras.datasets import imdb
                                          Yorumların 20 kelimeden
9 from keras import preprocessing
                                             sonrasını keserek
                                            oluşturulacak ağın
1# Özellik olarak düşnülecek kq
                                          embedding katmanını 20
                                           giriş ile sınırlandırdık.
2 max features = 10000
                                          Kelime sınırı örneğin 100
3#20 kelimeden sorra me
                                 kes
                                          veya daha fazla yapılarak
4 \, \text{maxlen} = 20^{\circ}
                                           başarıma olan etkisine
                                                                        20 kelimeden az
                                               bakılabilir.
                                                                          yorumları
6#veriyi tamsayılar listesi olarak
                                                                       sıfır ile dolgulayıp
7(x_train, y_train), (x_test, y_test) =
                                                                          20 kelimeye
8 imdb.load data(num words=max features)
                                                                          tamamla.
0# veriyi 2D tensor olarak yükle (samples, maxl🔾n)
1x train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)
2 x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)
```

```
25 #Bir embedding katmanı ve sınıflandırıcı kullan
26 from keras.models import Sequential
27 from keras.layers import Flatten, Dense, Embedding
28
29 model = Sequential()
30 model.add(Embedding(10000, 8, input_length=maxlen))
31
32 model.add(Flatten())
                                                   10000 kelime 8
33 model.add(Dense(1, activation='sigmoid'))
                                                  elemanlı vektörler
34 model.compile(optimizer='rmsprop',
                                                  ile temsil edilecek.
35
                  loss='binary_crossentropy',
                  metrics=['acc'])
36
37 model.summary()
38
39 history = model.fit(x_train, y_train,
40
                        epochs=10,
                        batch_size=32,
41
42
                        validation_split=0.2)
```

Model.summary()

10000 kelime 8
elemanlı vektörler ile
temsil ediliyor
toplam 80000
eğitilecek parametre

Layer (type)	Output Shape	ram #
embedding_1 (Embedding)	(None, 20, 8)	80000
flatten_1 (Flatten)	(None, 160)	9
dense_1 (Dense)	(None, 1)	161
Total params: 80,161 Trainable params: 80,161 Non-trainable params: 0	Dense layer 160 girişli bir	
	elemandan oluşuyor. Bu katmanda, bias ile birlikte	
	•	eğitilecek 161
	par	ametre var

Yorum sayısı 20 kelime ve her kelime 8 parametreden oluşuyor. Flatten işlemi sonrası dense layer girişi toplam=20*8=160

```
Train on 20000 samples, validate on 5000 samples
Epoch 1/10
0.6759 - acc: 0.6050 - val loss: 0.6398 - val acc: 0.6814
Epoch 2/10
0.5657 - acc: 0.7427 - val loss: 0.5467 - val acc: 0.7206
Epoch 3/10
0.4752 - acc: 0.7808 - val loss: 0.5113 - val acc: 0.7384
Epoch 4/10
0.4263 - acc: 0.8077 - val loss: 0.5008 - val acc: 0.7452
Epoch 5/10
0.3930 - acc: 0.8258 - val loss: 0.4981 - val acc: 0.7538
Epoch 6/10
20000/20000 [============== ] - 2s 105us/step - loss:
0.3668 - acc: 0.8395 - val loss: 0.5014 - val acc: 0.7530
Epoch 7/10
0.3435 - acc: 0.8533 - val loss: 0.5052 - val acc: 0.7520
Epoch 8/10
0.3223 - acc: 0.8657 - val loss: 0.5132 - val acc: 0.7486
Epoch 9/10
0.3022 - acc: 0.8766 - val loss: 0.5213 - val acc: 0.7490
Epoch 10/10
20000/20000 [============== ] - 2s <u>111us/step</u> - loss:
0.2839 - acc: 0.8860 - val_loss: 0.5303 - val_acc: 0.7466
```



```
8 import os
 9 imdb dir = 'aclImdb'
10 train dir = os.path.join(imdb dir, 'train')
12 labels = []
13 texts = []
14
15 for label type in ['neg', 'pos']:
                                                                           Yorumları text isimli
16
         dir name = os.path.join(train dir, la
                                                                                listeye ekle.
17
         for fname in os.listdir(dir name):
18
                print(label type,fname)
                if fname[-4:] == '.txt':
19
                      f = open(os.path.join(dir_name, fname),encoding="utf8")
20
                      texts.append(f.read())
21
                                                                         label type
22
                      f.close()
23
                      if label type == 'neg' ♀○
                                                                        negatif ise 0,
24
                            labels.append(0)
                                                                        pozitif ise 1.
25
                      else:
26
                            label append(1)
                                                                 |In |240|: texts|5|
                                                                 Out[240]: '"It appears that many critics find the idea of a Woody Allen
                                                                 drama unpalatable." And for good reason: they are unbearably wooden and
                                                                 pretentious imitations of Bergman. And let\'s not kid ourselves: critics
                                                                 were mostly supportive of Allen\'s Bergman pretensions, Allen\'s whining
                                                                 accusations to the contrary notwithstanding. What I don\'t get is this: why
                                                                 was Allen generally applauded for his originality in imitating Bergman, but
                                                                 the contemporaneous Brian DePalma was excoriated for "ripping off"
                                                                 Hitchcock in his suspense/horror films? In Robin Wood\'s view, it\'s a
                                                                 strange form of cultural snobbery. I would have to agree with that.'
                                                                 In [241]: labels[5]
                                                                 Out[241]: 0
```

```
30 #Tokenize the data
31 from keras.preprocessing.text import Tokenizer
32 from keras.preprocessing.sequence import pad sequences
33 import numpy as np
34
35 maxlen = 100 # We will cut reviews after 100 words
36 training samples = 200 # We will be training on 200 samples
37 validation samples = 10000 # We will be validating on 10000 samples
38 max_words = 10000 # We will only consider the top 10,000 words in the dataset
39
                                                                     Sık kullanılan
40 tokenizer = Tokenizer(num_words=max_words)
                                                                     10000 kelimeyi
41 tokenizer.fit on texts(texts)
                                                                     numaralandır
42 sequences = tokenizer.texts to sequences(texts)
43
                                                               In [276]: word_index.get('this')
44 word index = tokenizer.word index
                                                               Out[276]: 11
45 print('Found %s unique tokens.' % len(word index))
                                                               In [277]: word_index.get('apple')
46
                                                               Out[277]: 7671
47 data = pad sequences(sequences, maxlen=maxlen)
                                                               In [278]: word index.get('funny')
48
                                                               Out[278]: 160
49 labels = onp.asarray(labels)
```

100 kelimeden az yorumları sıfırlarla doldur.

50 print('Shape of data tensor:', data.shape)

51 print('Shope of label tensor:', labels.shape)

Found 88562 unique tokens. Shape of data tensor: (25000, 100) Shape of label tensor: (25000,)

- Veriyi karıştır.
- Eğitim ve geçerleme olmak üzere iki kümeye ayır.

```
52 # Split the data into a training set and a validation set
53 # But first, shuffle the data, since we started from data
54 # where sample are ordered (all negative first, then all positive).
55 indices = np.arange(data.shape[0])
56 np.random.shuffle(indices)
57 data = data[indices]
58 labels = labels[indices]
58 labels = labels[indices]
59
60 x_train = data[:training_samples]
61 y_train = labels[:training_samples]
62 x_val = data[training_samples: training_samples + validation_samples]
63 y_val = labels[training_samples: training_samples + validation_samples]
```

Önceden eğitilmiş (Pretrained) Word embeddings

- Daha önce eğitilmiş (pretraine) kelime vektörlerine ait ağırlıklar kullanılarak eğitim hızlandırılabilir.
- 2Dconv ağında olduğu gibi eğitilmiş ağa ait ağırlıklar yüklenirse ilgili katman için trainable = False yapılır.
- Kelime ağındaki tüm kelimeleri kullanmak yerine ilgilenilen kelimeler bir ağırlık matrisine yazılır ve Embedding layer ağırlıkları olarak yüklenir.

GloVe word embeddings

- GloVe, kelimeler için vektör gösterimleri elde etmek için denetimsiz bir öğrenme (unsupervised learning) algoritmasıdır.
- Önceden eğitilmiş ağırlıkları kullanmak için aşağıda verilen bağlantıya gidip Dosya 822MB boyutlu, glove.6B.zip 2014 English Wikipedia dosyası indirilmelidir.
- Bu dosya içerisinden 400.000 kelimeye ait 100-boyutlu embedding vektörleri kullanılacaktır.

https://nlp.stanford.edu/projects/glove/

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning

Introduction

GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-wor co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.

Getting started (Code download)

- Download the code (licensed under the Apache License, Version 2.0)
- Unpack the files: unzip GloVe-1.2.zip
- Compile the source: cd GloVe-1.2 && make
- Run the demo script: ./demo.sh
- · Consult the included README for further usage details, or ask a question
- The code is also available on GitHub

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> vt.o whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/t.o/.
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - o Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download); glove.twitter.27B.zip

Önceden eğitilmiş (Pretrained) Word embeddings

```
67 #Pre-process the embeddings Let's parse the un-zipped file (it's a txt file)
68#to build an index mapping words (as strings) to their vector
69 #representation (as number vectors).
                                                                                                               glove.6B
71 glove dir = 'glove.6B'
73 embeddings index = {}
                                                                                                                    glove.6B.50d.txt
74 f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'),encoding="utf8")
                                                                                                                    glove.6B.100d.txt
75 for line in f:
                                                                                                                    glove.6B.200d.txt
76
        values = line.split()
                                                                                                                    glove.6B.300d.txt
77
        word = values[0]
        coefs = np.asarray(values[1:], dtype='float32')
78
        embeddings index[word] = coefs
80 f.close()
81
82print('Found %s word vectors.' % len(embeddings index))
                                               🗐 glove.6B.100d.txt - Not Defteri
                                               Dosya Düzen Biçim Görünüm Yardım
                                             the -0.038194 -0.24487 0.72812 -0.39961 0.083172 0.043953 -0.39141 0.3344 -0.57545 0.087459 0.28787
                                               8 0.3587 0.42568 0.19021 0.91963 0.57555 0.46185 0.42363 -0.095399 -0.42749 -0.16567 -0.056842 -0.2
                                               5886 -0.25282 -0.30432 -0.11215 -0.26182 -0.22482 -0.44554 0.2991 -0.85612 -0.14503 -0.49086 0.0082
                                               1.7574 0.59085 0.04885 0.78267 0.38497 0.42097 0.67882 0.10337 0.6328 -0.026595 0.58647 -0.44332 0.
         Kelimeler listesi ve
                                               0.052536 0.59298 0.29604 -0.67644 0.13916 -1.5504 -0.20765 0.7222 0.52056 -0.076221 -0.15194 -0.131
                                               0.19539in 0.085703 -0.22201 0.16569 0.13373 0.38239 0.35401 0.01287 0.22461 -0.43817 0.50164 -0.358
        100 elemanlı vektör
                                               0.067396    0.64556   -0.085523    0.14103    0.094539    0.74947   -0.194   -0.68739   -0.41741   -0.22807    0.12   -0.48999
                                               46 -0.67961 0.18581 0.060653 0.43776 0.13834 -0.48207 -0.56141 -0.25422 -0.52445 0.097003 -0.48925
              karşılıkları
                                               1 0.4044 0.35558 0.98265 -0.61724 0.53901 0.76219 0.30689 0.33065 0.30956 -0.15161 -0.11313 -0.8128
                                               0.25165 0.49197 -1.525 0.15326 0.2827 0.12102 -0.36766 -0.61275 -0.18884 0.10907 0.12315 0.090066 -
                                               8457 -0.41548 -0.22777 -0.11803 -0.095434 0.19613 0.17785 -0.020244 -0.055409 0.33867 0.79396 -0.04
                                               .34183 0.61316 0.31668 0.64846 -0.079312 -0.065219 -0.17718 -0.32439 0.51868 -0.23424 0.34381 0.046
                                               75 0.56338 -0.56907 0.12398 -0.12894 0.72484 -0.26105 -0.26314 -0.43605 0.078908 -0.84146 0.51595 1
                                               1 -0.7572 0.65856 0.70107 -0.93141 0.52928 0.23323 0.18857 0.38691 0.011489
```

0.30965 , -1.958 , -1.1872 , 1.2027 , 2.1138 , 0.083629, 0.54319 , 0.78883 , 0.35416 , 0.87736 , 0.54007 , -0.10454 , 0.075371, -0.45727 , -0.27466 , 0.11838 , -0.49412 , -0.61325 , 0.071519, -0.57665 , 0.21371 , 0.62137 , 1.4404 , -0.34033 , -0.89958 , -0.69605 , 0.74058 , 0.52105 , -0.19224 , -0.20366 , -0.22409 , -0.3708 , -0.34663 , -0.86018 , -0.89182 , -0.43871 , 0.19424 , 0.17073 , 0.43663 , -0.11295 , -0.51156 , 0.34186 ,

-0.10274 , 0.39684 , 1.734 , -0.70787], dtype=float32)

```
Kelimeler ve vektör
                                    karşılıkları sırayla seçilir.
lglove dir = 'glove.6B
                                    Kelimeler key olarak ve
                                     ona ait vektörler value
                                       olarak kaydedilir.
3 embeddings index = {}
4f = open(os.path.join(glow)
                                                                0.14736 0.29343
5for line in f:
       print(line)
      values = line.split()
      word = values[0]
      coefs = np.asarray(values[1:], dtype='
       embeddings index[word] = coefs
lf.close()
                       In [299]: embeddings_index['car']
3 print('Found %s
                        Out[299]:
                        array([-0.1684 , -0.53827 , 0.31155 , -0.53218 , 0.26678 , -0.13638 ,
                               0.36621 , 0.68383 , 0.77726 , 0.68049 , 0.69137 , 0.2103 ,
                               0.091065, 0.24845, -0.16157, 0.46291, -0.1503, 0.2562,
                              -0.1199 , 0.5913 , 1.0351 , -0.2052 , 0.30244 , -0.34101 ,
                              0.6326 , -0.31603 , -0.9959 , -0.33583 , 0.25161 , 0.10323 ,
                               0.019611, 0.54893, -0.33433, 0.29617, 0.41218, 0.4207,
                              0.25775 , 0.12709 , 0.80269 , 0.61944 , 0.54316 , -0.5941
                               0.87551 , -0.063686, -0.29117 , 0.61609 , 0.33376 , 0.14488 ,
                              -0.039021, -1.1849 , -0.45951 , 0.15631 , -0.50818 , 1.2357 ,
```

transitioning 0.20251 0.12278 -0.29583 0.29518 0.028708 0.31636 -0.046019 -0.016049 0.33441 0.16679 0.40064 -0.29935 0.42104 -0.17614 0.65392 -0.81993 0.50021 0.068609 0.7578 -0.29849 -0.49697 0.29507 0.48266 0.1083 -0.055123 0.32345 0.23867 -0.046655 0.2335 0.21204 -0.7196 0.074292 -0.27075 -0.36241 -0.12487 -0.34504 -0.31462 -0.36922 0.00089996 -0.0053808 -0.90473 0.39511 -0.16349 0.64374 -0.23603 0.84891 0.081826 0.67047 -0.020202 -0.25858 -0.82844 -0.27441 -0.33778 0.56883 0.17465 0.41678 0.52558 -0.48956 0.24056 0.057252 0.06338 0.54847 -0.12381 0.093183 0.15027 0.21815 -0.37329 -0.30709 -0.096194 0.28707 0.37655 -0.38157 -0.33439 -0.30448 0.031091 -0.082888 -0.539 -0.097052 0.23306 -0.96377 -0.92684 -0.054472 -0.79825 0.6423 -0.013918 0.054843 0.34311 -0.37162 -0.69595 -0.40519 -0.48418 0.39324 -0.70599 -0.46123 0.60166 -0.85254 0.50901 0.47864 0.14736 0.29343

enquiries -0.14904 -0.21957 -0.31082 -0.065191 -0.41996 0.50185 0.11259 0.18736 0.52458 0.15915 0.25132 0.38871 0.34784 0.049581 0.096843 0.21427 -0.37692 0.50058 0.021539 0.76779 -0.17127 0.17142 -0.28802 0.048461 -0.28317 -0.5767 1.1215 1.0056 0.030221 -0.46243 -0.53596 -0.52128 -0.082707 0.10012 -0.067101 0.48861 -0.48095 -0.43809 -0.13637 -0.27922 -0.32265 -0.20612 -0.16561 -0.63729 -0.032788 -0.078506 0.2115 -0.37213 0.68803 0.21017 0.56802 0.21348 0.20787 0.28016 -0.58384 0.97988 0.13051 -0.56958 0.40867 0.082901 0.047878 0.56558 -0.35077 0.76387 0.28555 -0.29691 -0.38145 0.096004 0.83453 0.058359 0.054206 0.0017946 0.68252 -1.6077 0.32038 0.47594 -0.24858 0.57482 -1.3976 -0.51926 0.34805 0.7156 0.81954 0.46885 -0.67936 -0.77978 -0.091613 0.050002 -0.63979 -0.029186 -0.69195 0.14074 -0.78406 -0.34735 1.1656 -0.078694 -0.014208 0.21814 -0.14069 0.32493

questioner -0.074675 0.057146 0.88043 0.20997 -0.84641 0.38579 0.14395 0.11415 0.80489 0.32272 -0.5392 -0.013676 -0.38251 -0.41375 0.3559 -0.066215 -0.6975 -0.37779 0.11049 -1.0119 -0.17246 -0.32064 -0.98775 -0.26829 0.75113 0.16563 -0.16766 0.1512 0.056067 0.22888 -0.11186 0.34037 0.82496 0.17217 -0.16655 0.47789 -0.81997 -0.39386 0.93369 -0.012237 -0.73768 0.26562 -0.15671 0.16761 -0.79503 -0.14487 -0.023603 -0.0095582 -0.4701 0.10814 0.039796 0.055251 0.54247 0.40603

word_index imdb database'a ait kelimeleri içerir. For döngüsü ile bunların karşılıkları ön eğitimli ağdan seçilerek tanımlanacak ağda embedding katmanında kullanılmak üzere embedding_matrix'e yazılır.

```
86 embedding dim = 100
87
88 embedding_matrix = np.zeros((max_words, embedding_dim))oc
                                                                       Aranan kelime ön
89 for word, i in word_index.items():
                                                                      eğitimli ağda yoksa
       embedding vector = embeddings index.get(word)
90
                                                                       vektör sıfırlardan
       if i < max words:</pre>
                                                                          oluşuyor.
91
92
           if embedding vector is not None:
                # Words not found in embedding index will be all-zeros.
93
94
                embedding matrix[i] = embedding vector
95
```

```
98 #Define a model
 99 from keras.models import Sequential
100 from keras.layers import Embedding, Flatten, Dense
101
102 model = Sequential()
103 model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
104 model.add(Flatten())
105 model.add(Dense(32, activation='relu'))
106 model.add(Dense(1, activation='sigmoid'))
107
108
109 #Load the GloVe embeddings in the model
110 model.layers[0].set weights([embedding matrix])
111 model.layers[0].trainable = False
112
113 model.summary()
114
115 #Train and evaluate
116 model.compile(optimizer='rmsprop',
                  loss='binary crossentropy',
117
                  metrics=['acc'])
118
119 history = model.fit(x train, y train,
120
                        epochs=10,
121
                        batch size=32,
                        validation_data=(x_val, y_val))
122
123 model.save weights('pre trained glove model.h5')
```

- Öneğitimli ağdan seçilen ağırlık değerlerini yükle.
- layers[0].trainable=false yapılarak embedding katmanı eğitim dışı tutuluyor.

Layer (type)	Output Shape	Param #
embedding_12 (Embedding)	(None, 100, 100)	1000000
flatten_9 (Flatten)	(None, 10000)	0
dense_11 (Dense)	(None, 32)	320032
dense_12 (Dense)	(None, 1)	33

Total params: 1,320,065

Trainable params: 320,065

Non-trainable params: 1,000,000

Embedding katmanı donduruldu.

Eğitim 200 örnek üzerinde gerçekleştirildiği için geçerleme düşük.

```
10 def loadImdb():
      imdb dir = 'aclImdb'
11
      maxlen = 100
12
13
      max words = 10000
      tokenizer = Tokenizer(num_words=max_words)
14
      test dir = os.path.join(imdb dir, 'test')
15
      labels = []
16
      texts = []
17
      for label type in ['neg', 'pos']:
18
                                                                              Eğitim verilerine
          dir name = os.path.join(test dir, label type)
19
          for fname in sorted(os.listdir(dir name)):
20
                                                                             benzer şekilde test
              if fname[-4:] == '.txt':
21
                                                                            verilerinin de vektör
                  f = open(os.path.join(dir name, fname),
22
                                                                            karşılıklarını elde et.
                           encoding="utf8")
23
24
                  texts.append(f.read())
25
                  f.close()
26
                  if label type == 'neg':
27
                      labels.append(0)
28
                  else:
29
                      labels.append(1)
      tokenizer.fit on texts(texts)
30
      sequences = tokenizer.texts to sequence(texts)
31
                                                                      Eğitilmiş modeli
      x test = pad sequences(sequences, maxlen=maxlen)
32
                                                                     yükle. Test verileri
      y test = np.asarray(labels)
33
                                                                     ile başarımını ölç.
34
      35
36(x test, y test)=loadImdb()
37 model=models.load model('pre trained glove model.h5')
38 [loss,acc]=model.evaluate(x_test, y_test)
39 print("loss=",loss,"acc=",acc)
```