

Presentation Outline

- Computational Propellant and Pressurization Program One Dimensional (CPPPO) Model Development
 - Define Control Volumes
 - Various Model Information
 - Conservation Equations
 - Heat and Mass Transfer
- CPPPO Model Validation
 - Conservation of mass and energy internal to model
 - Validated during all scenarios for heat and mass transfer
 - Comparison to existing analytic model
 - ROCETS used for design of Ares I Upper Stage
 - Flight Experiment
 - AS-203 (S-IVB stage orbital test)
 - Ground Experiment
 - NASA Glenn LH₂ tank self pressurization testing
- Application to Lunar Landing Vehicle (currently named Altair)
 - Parametric analysis on pressurant conditions
 - Unequal tank pressurization and draining for multiple tank designs

CPPPO Model Development

- Control Volume Definitions
 - Ullage gas: mixture of propellant vapor and Helium pressurant
 - Surface: infinitely thin layer containing no mass at propellant saturation conditions (used to pass heat between ullage and liquid and allow for surface layer evaporation)
 - Liquid: liquid propellant remaining in tank
- 5 Node Model
 - Tank wall exposed to ullage gas
 - Ullage gas
 - Surface layer
 - Liquid
 - Tank wall exposed to liquid

CPPPO Model Development

Variable Definitions

Variable	Units	Definition
Variable	Oilles	Definition
\dot{m}_{autog}	lbm/s	Autogenous GH2 or GO2 pressurization mass flow rate
\dot{m}_{He}	lbm/s	Helium pressurization mass flow rate
\dot{m}_{vent}	lbm/s	Vent relief mass flow rate
\dot{Q}_{exwg}	Btu/s	Heat transfer rate from external environment to metallic tank wall skin exposed to ullage gas node
\dot{Q}_{wg}	Btu/s	Heat transfer rate between ullage gas node and tank wall exposed to ullage gas node
\dot{Q}_{gs}	Btu/s	Heat transfer rate between ullage gas node and saturated surface layer node
\dot{m}_{evap}	lbm/s	Propellant evaporation mass flow rate
\dot{m}_{bb}	lbm/s	Propellant bulk boiling mass flow rate
\dot{W}_{tg}	lbf-ft/s	Ullage gas node work rate
\dot{Q}_{exwl}	Btu/s	Heat transfer rate from external environment to metallic tank wall skin exposed to liquid node
\dot{Q}_{wl}	Btu/s	Heat transfer rate between liquid node and tank wall exposed to liquid node
\dot{Q}_{ls}	Btu/s	Heat transfer rate between liquid node and saturated surface layer node
\dot{m}_{cond}	lbm/s	Propellant vapor condensation mass flow rate
\dot{W}_l	lbf-ft/s	Liquid node work rate
\dot{m}_l	lbm/s	Propellant liquid mass flow rate
\dot{m}_{TVS}	lbm/s	Propellant Thermodynamic Vent System (TVS) mass flow rate
P_{tg}	psia	Tank Pressure
V_{tg}	ft³	Ullage gas volume
V_l	ft ³	Liquid volume

CPPPO Model Development

- Various Model Information
 - Finite Difference method
 - All fluid properties updated at each time step using NIST Refprop
 - All internal tank heat transfer is Free Convection
 - Helium pressurant tank assumed isentropic blowdown
 - Tank wall is modeled as a lump thermal mass
 - External heat transfer rates assumed averaged over exposed tank surface area
 - Simplistic Thermodynamic Vent
 System (TVS) modeled during
 any in-space coast phases

CPPPO Model Development

- Conservation Equations
 - Ullage Gas:

$$\dot{Q}_{gs} - \dot{Q}_{wg} + \dot{m}_{autog}h_{autog} + \dot{m}_{He}h_{He} + \dot{m}_{evap}h_{evap} + \dot{m}_{bb}h_{bb} - \dot{m}_{cond}h_{cond} - \dot{m}_{vent}h_{tg} - P_{tg}\frac{dV_{tg}}{dt} = \frac{d}{dt}\left(m_{tg}u_{tg}\right)$$

- Applying Ideal Gas assumption to internal energy in ullage:

$$\begin{split} & m_{tg}C_{v_{tg}}\frac{dT_{tg}}{dt} = \dot{Q}_{gs} - \dot{Q}_{wg} + \dot{m}_{autog}\left(h_{autog} - C_{v_{tg}}T_{tg}\right) + \dot{m}_{He}\left(h_{He} - C_{v_{tg}}T_{tg}\right) + \dot{m}_{evap}\left(h_{evap} - C_{v_{tg}}T_{tg}\right) \\ & + \dot{m}_{bb}\left(h_{bb} - C_{v_{tg}}T_{tg}\right) - \dot{m}_{cond}\left(h_{cond} - C_{v_{tg}}T_{tg}\right) - \dot{m}_{vent}\left(h_{tg} - C_{v_{tg}}T_{tg}\right) - P_{tg}\frac{dV_{tg}}{dt} - m_{tg}T_{tg}\frac{dC_{v_{tg}}}{dt} \end{split}$$

Pressure and Volume rate of change:

$$\begin{aligned} P_{tg} &= \rho_{tg} R_{tg} T_{tg} \\ \dot{V}_{tg} &= \dot{V}_l + \frac{1}{\rho_l} \left(\dot{m}_{bb} + \dot{m}_{evap} + \dot{m}_{TVS} - \dot{m}_{cond} \right) - V_l \frac{\dot{\rho}_l}{\rho_l} \end{aligned}$$

CPPPO Model Development

- Conservation Equations
 - Liquid:

$$\dot{Q}_{wl} - \dot{Q}_{ls} + \dot{m}_{cond} h_{cond} - \dot{m}_{bb} \Delta h_{v} - \dot{m}_{bb} h_{bb} - \dot{m}_{TVS} h_{TVS} - \dot{m}_{l} h_{l} - P_{tg} \frac{dV_{l}}{dt} = \frac{d}{dt} (m_{l} u_{l})$$

Apply internal energy and enthalpy relationship to get:

$$m_{l} \frac{dh_{l}}{dt} = \dot{Q}_{wl} - \dot{Q}_{ls} + \dot{m}_{cond} (h_{cond} - h_{l}) - \dot{m}_{bb} \Delta h_{v} - \dot{m}_{bb} (h_{bb} - h_{l}) - \dot{m}_{TVS} (h_{TVS} - h_{l}) + V_{l} \frac{dP_{tg}}{dt}$$

- Therefore, liquid propellant remains a real fluid.
- This is very important for LH₂ during in-space coast phases since it is highly compressible, contracting and swelling from pressure and heat.

CPPPO Model Development

- Heat Transfer
 - Internal Tank Heat Transfer is all in form of Free Convection
 - During rapid pressurization this assumption breaks down due to forced convective motion of pressurant gas in ullage
 - However, these time scales are minimal compared to the burn duration and coast times of interest
 - Free Convection coefficient and exponent taken from standard text with acceleration vector parallel and normal to plane
- Mass Transfer
 - Included in form of evaporation, bulk boiling, and condensation
 - Certain conditions must be achieved before any form of mass transfer occurs
- Heat and Mass Transfer are most difficult to validate
 - Limited data exists for pressure rise in closed tanks however the method of heat transfer (free/forced convection, conduction) and mass transfer (evaporation, bulk boiling, condensation) causing such a pressure rise is difficult to pinpoint

- Conservation of mass and energy internal to model
 - Validated during all scenarios for heat and mass transfer

- Comparison to existing analytic model
 - ROCETS used for design of Ares I Upper Stage
 - LH₂ Tank Examples

- Comparison to existing analytic model
 - ROCETS used for design of Ares I Upper Stage
 - LO₂ Tank Examples

- Flight Experiment
 - AS-203 (S-IVB stage orbital test, LH₂ tank results)

- Ground Experiment
 - NASA Glenn LH₂ tank self pressurization testing (29% fill level)

26

CPPPO Model Implementation

- Applied to Altair Descent Module
 - Engine Operation Phase

CPPPO Model Implementation

- Applied to Altair Descent Module
 - In-Space Coast Phase

20000

40000

Time [sec]

60000

80000

10000C

28

30

CPPPO Model Implementation

- Applied to Altair Descent Module
 - Differential Tank Draining
 - Variations in pressurization and feed line resistances will cause variations in tank pressures when using multiple propellant tanks
 - Result is differential draining, possibly causing early engine cutoff and CG shifts

CPPPO Model Implementation

- Other Altair Descent Module Applications
 - Used in feed system pressure loss calculations
 - Added ability to calculate pressure loss in varying lines and components
 - Also part of differential draining analysis
 - Propellant Scavenging post landing
 - Calculated various methods of venting and heating the tanks after landing to supply residual propellant to life support and power subsystems
 - Cold Helium tank characteristics
 - Calculated real fluid property results of rapid blowdowns of cold Helium tanks
 - Results show drastic variation from ideal fluid behavior
 - Applied to alternative tank designs
 - Used code to model pressurization characteristics of alternative and novel tank designs in attempt to reduce the number of propellant tanks (and avoid differential draining issues)
 - Liquid Methane based vehicles
 - Used model to calculate some preliminary results of pressurization for liquid methane
 - Storable vehicles
 - Have updated model to also calculate pressurization properties of storable propellant vehicles such as NTO/MMH
 - NIST Refprop does not contain properties for these propellants so manually coded

Future Work

Validation against some preliminary CFD data is underway

Acknowledgments

- Mike Martin, Skip Urquhart, and Jay Russell of MSFC/ER-22
 - Invaluable support during model development, debugging, and validation
- Bill Pannell and Kendall Brown of MSFC
 - Provided time and funding to develop this model (and showed extreme patience while waiting on some much needed results)
- Roy Rice, Paul Munafo, and Ross Armstrong of Teledyne Brown Engineering
 - Helped in editing of written paper and presentation and any other issues related to attending JANNAF

Questions?