

Санкт-Петербургский государственный университет Кафедра системного программирования

Разработка набора инструментов для обучения искусственных нейронных сетей выбору оптимального пути для символьного исполнения

Максим Владиславович Нигматулин, 22.М07-мм

Научный руководитель: к.ф.-м. н. С.В. Григорьев, доцент кафедры системного программирования

Санкт-Петербург 2023

Введение

- Символьное исполнение техника анализа ПО, позволяющая понять, какие данные вызывают выполнение каждой части программы
- Одна из проблем "взрыв" путей, которые нужно исследовать

Существующие решения: Q-KLEE¹

Согласно бенчмаркам, исследует в 10 раз меньше путей, исполняет в 10 раз меньше инструкций за незначительно большее время

¹J. Wu, C. Zhang and G. Pu, "Reinforcement Learning Guided Symbolic Execution."2020

Существующие решения: Learch 2

- KLEE as symbolic execution engine
- Возможность обучать свои модели
- Возможность генерировать датасет на своих данных

² Jingxuan He, Gishor Sivanrupan, Petar Tsankov, and Martin Vechev, "Learning to Explore Paths for Symbolic Execution"

Существующие решения: Automatic Heuristics Learning³

- Генерация эвристических алгоритмов автоматически
- Результаты выше, чем у алгоритмов, придуманных людьми

³Enhancing Dynamic Symbolic Execution by Automatically Learning Search Heuristics, Sooyoung Cha, Seongjoon Hong, Jiseong Bak et al.

Существующие решения

- Q-KLEE можно улучшить
- Learch не позвояет работать с GNN
- Automatic Heuristics Learning подобранные эвристики ограничены правилами, которые придумывают люди

Цель работы: реализовать фреймворк, выполняющий генерацию моделей-учителей в ходе обучения с помощью символьной машины V#.

Поставленные задачи:

- Создать протокол общения с сервером обучения для получения сигнала об окончании взаимодействия, информации о награде за шаг и состоянии символьного исполнения во время обучения;
- Создать фреймворк, использующий генетическое обучение для создания и обучения нейронных сетей во время взаимодействия с сервером обучения как с игровой средой;
- Поддержать возможность одновременного обучения нескольких нейронных сетей;
- Поддержать возможность использования GPU для ускорения работы нейронных сетей.

Игровая аналогия

Какую фишку подвинуть?

Игровая аналогия

Какую фишку подвинуть?

Структура решения

Генетическое обучение: архитектура

Параллелизм: GPU

- Передача тензоров, инференс на GPU
- Ускорение обучение в 2-3 раза

Benchmark Results

	Среднее покрытие (больше - лучше)	Среднее количество шагов символьной машины (меньше - лучше)	Среднее количество сгенерированных тестов (меньше - лучше)	Среднее количество сгенерированных ошибок (больше - лучше)
V# heuristic4	75.7 ± 33	2889.18 ± 2193.42	3.64 ± 4.98	9.95 ± 26.6
GNN	65.95 ± 44	1408.75 ± 1982.65	2.31 ± 2.59	2.89 ± 4.11

V# integration tests + BizHawk + Powershell + Unity + CosmosOS + JetBrainsLifetimes / 5k шагов / без лимита времени

Результаты

- Создан протокол общения с сервером обучения для получения сигнала об окончании взаимодействия, информации о награде за шаг и состоянии символьного исполнения во время обучения;
- Создан фреймворк, использующий генетическое обучение для создания и обучения нейронных сетей во время взаимодействия с сервером обучения как с игровой средой;
- Поддержана возможность одновременного обучения нескольких нейронных сетей;
- Поддержана возможность использования GPU для ускорения работы нейронных сетей.

Параллелизм: CPU

- "Игры" в одном поколении передаются в пул потоков для обработки
- Взаимодействие с несколькими игровыми серверами
- Работает быстрее

Архитектура нейронной сети

ML > Эвристики⁴

Figure 3: Limitations of existing manually designed heuristics and how LEARCH outperforms them for our coreutils test set.

⁴ Jingxuan He, Gishor Sivanrupan, Petar Tsankov, and Martin Vechev, "Learning to Explore Paths for Symbolic Execution"