1) Duas correntes gasosas a 62 bar e 20 °C são misturadas: uma de metano (1,0 m³/min) e a outra de dióxido de carbono (1,5 m³/min). Todas as correntes do processo se comportam conforme a equação de estado de van der Waals. Calcule a taxa de troca de calor quando o misturador é operado isotermicamente e quando a corrente de saída está a 80 °C. Dados: R = 8,314 J/(mol.K); tabela. Resposta: 77,77 e 607,93 kW.

	T _c (K)	P _c (bar)	C _p ^{gi} /R (T em K)	\mathbf{k}_{ij}
CH ₄	190,6	46,0	$1,70 + 9,08.10^{-3} \text{ T}$	0,09
CO ₂	304,2	73,8	5,46 + 1,04.10 ⁻³ T	0,09

- 2) Para uma solução binária líquida a 30 °C, $V = 58,6 x_1 + 118,5 x_2 + x_1 x_2 (0,22 (x_1 x_2) 1,03)$ (V em mL/mol). São necessários 2 L de solução com 25% do componente 1 (à mesma temperatura). Calcule os volumes dos componentes puros que devem ser misturados e o volume em excesso total da solução. Resposta: 284; 1720 e -4 mL.
- 3) Para uma solução binária líquida a 50 °C, $H^E = -74.4 \text{ x}_1 \text{ x}_2 (1 0.6 \text{ x}_1)$ (H^E em kJ/mol, frações em base molar). Uma corrente de 100 kg/min de solução a 50 °C, com 96% (em base mássica) do componente 1, é diluída até a composição de 20% através da mistura com uma corrente do componente 2 puro a 25 °C. A corrente resultante está a 50 °C. Calcule a taxa de troca de calor do processo. Dados: $M_1 = 98.1 \text{ g/mol}$; $M_2 = 18.0 \text{ g/mol}$; $C_{p2} = 4.18 \text{ J/(g.K)}$. Resposta: -353.92 kW.
- 4) Duas correntes de solução aquosa de ácido sulfúrico a 100 °F são misturadas: uma de 500 lb_m/h com 10% (em base mássica) de H₂SO₄ e a outra de 800 lb_m/h com composição de 75%. Com base no diagrama Hx da solução, calcule a temperatura da saída quando o misturador é operado adiabaticamente e a taxa de troca de calor quando o misturador é operado isotermicamente. Resposta: 163 °F e –49400 Btu/h.
- 5) Para uma solução binária líquida, vale o modelo de Margules com $A_{12} = 21, 1 (540 / T) 3 \ln(T)$. Calcule a entropia e o calor de mistura para a solução equimolar a 30 °C. Resposta: 3,77 J/(mol.K) e 767,90 J/mol.
- 6) Uma mistura binária equimolar tem ponto de bolha a 75 °C e 1,2 bar. Calcule a pressão e a composição azeotrópicas da mistura a 100 °C. Dados: modelo de Margules com $A_{12} = c / T$; $ln(P_1^{sat}) = 11,04 3861 / T$; $ln(P_2^{sat}) = 13,46 4729 / T$ (P_i^{sat} em bar, T em K). Resposta: 2,7 bar e 45,3% de 1.
- 7) Uma mistura binária forma azeótropo a 35 °C com 67% do componente 1. Para a mistura com 40% do componente 1 à mesma temperatura, calcule a pressão mínima que a mantém como uma fase líquida e a pressão máxima que a mantém em fase gasosa. Dados: modelo de Margules com uma constante; $P_1^{sat} = 0.7$ bar; $P_2^{sat} = 0.5$ bar. Resposta: 0,751 e 0,686 bar.
- 8) Uma solução binária líquida é aproximadamente ideal. Deseja-se aquecer e evaporar a solução com 60% do componente 1 à pressão atmosférica. Calcule a temperatura em que a evaporação se inicia. Dados: $\ln(P_1^{sat}) = 7 2800 \, / \, \mathrm{T}; \, \ln(P_2^{sat}) = 6 3000 \, / \, \mathrm{T}; \, (P_i^{sat}) = 6 3000 \, /$

- 9) Para uma solução ternária líquida a 30 °C, $G^E/(R T) = 2 x_1 x_2 + x_1 x_3$. A essa temperatura, a volatilidade do componente 3 é desprezível. Calcule a composição inicial do vapor formado quando se reduz suficientemente a pressão da solução com 35% do componente 1 e 30% do componente 2 a 30 °C. Dados: $P_1^{sat} = 0.4$ bar; $P_2^{sat} = 0.6$ bar. Resposta: equimolar com 1 e 2.
- 10) Uma mistura binária se aproxima do comportamento de solução ideal. Dados: P_1^{sat} e P_2^{sat} (exercício 8). Determine completamente o estado da mistura com 30% do componente 1 nas condições:
- a) 300 °C e 3 atm. Resposta: 66,2% de vapor com 38,2% de 1 e líquido com 13,8% de 1.
- b) 300 °C e 33% de vapor. Resposta: vapor com 49,6% de 1 e líquido com 20,3% de 1 a 3,40 atm.
- 11) Uma mistura binária equimolar tem ponto de bolha a 200 °C e 2,3 atm. Uma corrente de 30 kmol/min dessa mistura a 200 °C e 3,0 atm passa por uma válvula e, em seguida, por um trocador de calor, do qual sai a 1 atm e 167 °C. Dados: P_1^{sat} e P_2^{sat} (exercício 8); modelo de Margules com $A_{12} = 440 / T$; tabela.

componente	$C_{\mathrm{p}}^{\mathrm{gi}}$	C_p^L	ΔH^{LV}
Componente	J/(m	ol.K)	kJ/mol
1	75	110	20
2	95	130	25

- a) Determine completamente o estado da saída do processo. Resposta (após 2 iterações): 73,2% de vapor com 61,8% de 1 e líquido com 17,7% de 1.
- b) Calcule a taxa de troca de calor, considerando comportamento de gás ideal. Resposta: 6,23 MW.
- c) Estime a taxa de troca de calor pelo balanço de energia simplificado. Resposta: 6,26 MW.
- 12) Uma mistura ternária se aproxima do comportamento de solução ideal. Para a mistura com 50% do componente 1 e 30% do componente 2 a 150 °C, calcule a fração vaporizada a 0,6, 0,8 e 1 bar. Dados: $\ln(P_1^{sat}) = 9,64 3630 / (T 72,1); \ln(P_2^{sat}) = 9,25 3340 / (T 57,6); \ln(P_3^{sat}) = 9,32 3120 / (T 63,6) (P_i^{sat})$ em bar, T em K). Resposta: 100; 60,7 e 0%.
- 13) Numa mistura ternária, o componente 1 é quase imiscível, em fase líquida, com os demais componentes, os quais formam uma solução líquida ideal. A 1,4 bar e 100 °C, a mistura se apresenta em equilíbrio líquido-líquido-vapor, sendo o vapor aproximadamente um gás ideal. Calcule as composições das fases. Dados: $P_1^{sat} = 0.7$ bar; $P_2^{sat} = 0.5$ bar; $P_3^{sat} = 0.9$ bar. Resposta: líquido puro com 1, líquido equimolar com 2 e 3, vapor com 50% de 1 e 17,8% de 2.
- 14) A reação CO + 2 H₂ ↔ CH₄O ocorre em fase gasosa a 200 °C e 10 bar. Considerando que a mistura reacional é um gás ideal, calcule a composição de equilíbrio de um sistema alimentado com quantidades iguais dos reagentes. Dados: tabela. Resposta: 50% de CO; 34,8% de H₂ e 15,2% de CH₄O.

	CO	H_2	CH ₄ O
C _p [J/(mol.K)]	29,9	29,0	56,6
ΔG _f a 25 °C [kJ/mol]	-137	_	-162
ΔH _f a 25 °C [kJ/mol]	-111	_	-201

15) As reações A ↔ B e B ↔ 2 C ocorrem em fase gasosa a 150 °C e 5 bar. Considerando que a mistura reacional é um gás ideal, calcule a composição de equilíbrio de um sistema alimentado com 60% de A e 40% do inerte D. Dados: tabela. Resposta: 21,3% de A; 21,6% de B; 21,4% de C e 35,7% de D.

	A	В	C
ΔG _f a 100 °C [kJ/mol]	-65,32	-65,37	-27,82
ΔH _f ^o a 100 °C [kJ/mol]	-214,2	-214,2	-65,1

16) A reação A \leftrightarrow 2 B ocorre na presença do inerte C, a 100 °C e 5 bar. Nessas condições, a volatilidade de C é desprezível e B não é condensável. Calcule as composições das fases no equilíbrio, considerando que o vapor é um gás ideal e o líquido é uma solução ideal. Dados: $\ln(P_A^{sat}) = 12 - 3800 / \text{T}$ (P_A^{sat} em bar, T em K); tabela. Resposta: vapor com 76,0% de A e 24,0% de B; líquido com 61,8% de A e 38,2% de C.

	A(g)	A (1)	B(g)
ΔG _f a 100 °C [kJ/mol]	181,20	186,84	92,10

17) A reação CaCO₃ (s) ↔ CaO (s) + CO₂ (g) ocorre a 900 °C. Calcule a pressão do sistema no equilíbrio, considerando comportamento de gás ideal. Dados: tabela. Resposta: 0,90 bar.

	CaCO ₃	CaO	CO_2
C _p [J/(mol.K)]	105,1	48,2	46,0
ΔG _f a 25 °C [kJ/mol]	-1129	-604	-394
ΔH _f a 25 °C [kJ/mol]	-1207	-635	-394

18) A reação CH₄ (g) ↔ C (s) + 2 H₂ (g) ocorre a 2 bar. A alimentação do reator está a 200 °C e contém 50% de CH₄, 20% de H₂ e 30% de N₂. Na saída, a mistura reacional está em equilíbrio a 600 °C. Calcule a quantidade de calor trocada (por mol de alimentação), considerando comportamento de gás ideal. Dados: tabela. Resposta: 32,12 kJ/mol.

	CH ₄	С	H ₂	N_2
C _p [J/(mol.K)]	50,7	14,0	29,5	30,4
ΔG _f a 25 °C [kJ/mol]	-50,5	_	_	_
ΔH _f a 25 °C [kJ/mol]	-74,5	_	_	_