## Análisis Matemático II

Grado en Estadística

Curso 2017/18

## Índice

| 1. El espacio euclídeo y su topología | 3 |
|---------------------------------------|---|
| 2.                                    | 4 |
| Referencias                           | 5 |

## El espacio euclídeo y su topología

Como punto de partida para el estudio de las funciones de varias variables reales, debemos familiarizarnos con la estructura y propiedades del espacio en el que dichas funciones tendrán su conjunto de definición, el espacio euclídeo n-dimensional, donde n es un número natural. Al tiempo que estudiamos algunas propiedades de dicho espacio, las iremos abstrayendo, para entender ciertos conceptos generales que son importantes en Análisis Matemático. Partimos de la definición de  $\mathbb{R}^n$  y su estructura algebraica básica, la de espacio vectorial. Al estudiar el producto escalar en  $\mathbb{R}^n$ , completamos la definición del espacio euclídeo, así llamado porque formaliza analíticamente los axiomas y resultados de la geometría de Euclides.

**Definición 1.1 (Espacio euclídeo).** Definimos el espacio euclídeo n-dimensional como el producto cartesiano de n copias de  $\mathbb{R}$ , es decir, el conjunto de todas las posibles n-uplas de números reales:  $\mathbb{R}^n = \mathbb{R} \ x \ \mathbb{R} \ x \ ...^{(n)} \ x \ \mathbb{R} = \{(x_1, ..., x_n) : x_i \in R, \forall i \in 1...n\}$ 

Sin embargo, no siempre es conveniente usar subíndices para denotar las componentes de los elementos de  $\mathbb{R}^n$ , pues podemos necesitar los subíndices para otra finalidad. Para valores concretos de n, podemos denotar las componentes con letras diferentes, siendo habitual escribir:

$$\mathbb{R}^{2} = \{(x, y) : x, y \in R\}$$
$$\mathbb{R}^{3} = \{(x, y, z) : x, y, z \in R\}$$

En  $\mathbb{R}^n$  disponemos de las operaciones de suma y producto por escalares, definidas, para  $x=(x_1,...,x_n)\in\mathbb{R}^n$ ,  $y=(y_1,...,y_n)\in\mathbb{R}^n$  y  $\lambda\in\mathbb{R}$ , por

$$x + y = (x_1 + y_1, ..., x_n + y_n)$$
$$\lambda x = (\lambda x_1, ..., \lambda x_n)$$

**Proposición 1.1.** Sea  $n \in \mathbb{N}$ ,  $x, y, z \in \mathbb{R}^n$ ,  $\alpha, \beta \in \mathbb{R}$ . Entonces: a) (x + y) + z = x + (y + z) (Propiedad asociativa) b)  $0 = (0, ..., 0) \in \mathbb{R}^n \implies x + 0 = 0 + x = x$ c) Dado  $x = (x_1, ..., x_n) \implies \exists! v \in \mathbb{R}^n : x + v = v + x = 0 \implies v = (-x_1, ..., -x_n) = -x$ d) x + y = y + xe) 1 \* x = xf)  $(\lambda + \beta)x = \lambda x + \beta x$ g)  $\lambda(x + y) = \lambda x + \lambda y$ h)  $(\lambda \beta)y = \lambda(\beta y)$  **Definición 1.2 (Producto escalar).** Sea  $n \in \mathbb{N}$ . Definimos el producto escalar de  $x = (x_1, ..., x_n) \in$ 

$$\mathbb{R}^n$$
,  $y = (y_1, ..., y_n) \in \mathbb{R}^n$  como

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

**Proposición 1.2.** Sea  $n \in \mathbb{N}$ :

a) 
$$x, y, z \in \mathbb{R}^n \implies \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$
  
b)  $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R} \implies \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$   
c)  $\langle x, y \rangle = \langle y, x \rangle \ \forall x, y \in \mathbb{R}^n$ 

b) 
$$x, y \in \mathbb{R}^n, \lambda \in \mathbb{R} \implies \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

$$(c) < x, y > = < y, x > \forall x, y \in \mathbb{R}^n$$

**Proposición 1.3 (Desigualdad de Cauchy-Schwartz).** Sean  $x=(x_1,...,x_n)\in\mathbb{R}^n$ ,  $y=(y_1,...,y_n)\in\mathbb{R}^n$ , entonces:

$$(\langle x, y \rangle)^2 \le (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2)$$

Demostración.

Para  $x = (x_1, ..., x_n) \in \mathbb{R}^n$ ,  $y = (y_1, ..., y_n)$ , es cierto que  $0 \le \sum_{i=1}^n (ax_i + y_i)^2 = \sum_{i=1}^n (a^2x_i^2 + y_i^2 + 2ax_iy_i) = \sum_{i=1}^n (a^2x_i^2 + x_i^2 + 2ax_iy_i) = \sum_{i=1}$  $a^2(\sum_{i=1}^n x_i^2) + (\sum_{i=1}^n y_i^2) + 2a(\sum_{i=1}^n x_i y_i)$  para todo número real y es igualdad si, y sólo si, cada término de la suma es cero. Esta desigualdad puede escribirse en la forma:  $Ax^2 + Bx + C$  donde  $A = \sum_{i=1}^n x_i^2$ ,  $B = \sum_{i=1}^n x_i^2$  $\sum_{i=1}^{n} x_i y_i$ ,  $C = \sum_{i=1}^{n} y_i^2$ . En particular, la desigualdad se cumple para  $\frac{-B}{2A}$ :  $A(\frac{-B}{A})^2 + 2B(\frac{-B}{A}) + C \ge 0$  $C \ge \frac{B^2}{2} \implies B^2 \le AC$ .

**Definición 1.3 (Norma).** Dado  $n \in \mathbb{N}$ ,  $x = (x_1, ..., x_n) \in \mathbb{R}^n$ , se define la norma de x como:

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{\langle x, x \rangle}$$

## Referencias

.