e quiudi auche per m 237.

per M≥0

Note Title					28/09/2024
				m 0	
Escupio 1 Per	r quali ne	: N vale	che 5"?	> 3" + 4"	
Esplorazione.	m = 0	1 > 2	70		
	m=1	5 2 3+	4 10		
	m = 2	25 ≥ 9 -	-16 OK		
	m=3	125 ≥ 2	7+64 Ok	ξ	
Idea è che vi	alo ben on	$i \sim 2$			
					•
Passo base	m=2 appe	na fatto)		
Passo inolution	o Ipoteni	5 ≥	3" + 4"		
	- Tesi	E m+1	≥ 3 ^{m+1} + 4	mt 1	
(,					
dupostiano (la cateua:				
5 ⁿ⁺¹ = 5.	5 = 5(3" + 4")	= 5.3 ^m	+ 5.4	
CEYWYA	ipotesi		The precovers		
	per 5		2 2 m	+ 4.4 = 3	m+1 m+1
			<i>y y</i> , <i>y</i>	1 4.4 2 2	- 701400
				propr. p	35,600 66
Esempio 2	Dimostrare che ($(2n)! \ge 2^n (n!)$	² per ogni inte	ro $n \geq 37$.	
			230 111 1111		
m = 37 come	tam base	conduc	a human	i grount	
					1 - 0 -
Idea: usu à			_	po prima	X 57
	~s 2! ≥				
m= 2	~ 4! ≥	$2^2 \cdot (2!)^2$	~ 24 Z	22.22 01	K
M = 3	~ 6! >	23 (3!)	² ~ 720	≥ 8.36 0	k
Spero di riu	sara a saa	montone	me e ver	1 901 111 2	1 e anoge

Parso induttivo Ipotesi: (2m)! > 2 (m!)2 Tesi: $(2m+2)! \ge 2^{m+1} ((u+1)!)^2$ Impostiamo la catera di disignaglianse (2m+2) = (2m+2)(2m+1)(2m)rsolo ultimi 2 fattori $\geq (2m+2)(2m+1) \cdot 2^{m} (m!)^{2}$ ipotési molt. per quello che serve > 2^{m+1} ((m+1)!)² Controllo la speranta $(2m+2)(2m+1)\cdot 2^{m}\cdot (m!)^{2} \geq 2^{m+1}((u+1)!)^{2}$ $(2m+2)(2m+1)\cdot 2^{2} \cdot (m!)^2 \geq 2\cdot 2^2 \cdot (u+1)^2 \cdot (m!)^2$ 2(m+1)(m+1)(2m+2)(2m+1) ? (2m+2)(m+1)2m+1 2 m+1 e questo è vers per agrir m EN Riassunto: il meccanismo di caduta funsiona sempre e per n=0 già casca les vera per oqui n≥0. Esempio 3 Dimostrare che $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{m^2} < 2$ AWSI Passo base m=1 no 1<2 Ok Passo induttivo Ipolesi. Z 1 2 2 Tesi: \(\frac{1}{\k^2} \k^2 \)