Principe de l'application

- Partage entre utilisateurs
 - texte
 - image
 - vidéo
 - géolocalisation
 - fichier
- Recommandations d'événements
 - personnalisées
 - possibilité de faire suivre à d'autres utilisateurs
- Objectif
 - modéliser les échanges d'informations
 - établir profils et liens entre utilisateurs
 - faire des recommandations personnalisées

Graphes

- Graphe G = (V, E)
- ▶ Nœuds $V = \{v_1, \dots, v_n\}$
- Arrêtes $E = \{e_1, \ldots, e_m\}$
 - $e = (u, v) \in V \times V$
 - $ightharpoonup e = (u, v, l) \in V \times V \times L$
 - si $L \subset \mathbb{R}$, matrice d'adjacence

Statistiques

- Degré :
 - entrant, sortant
 - ▶ moyenne, minimum, maximum
 - distribution (loi puissance)
- Diamètre
 - réel
 - efficace
- Condutance / expansion
- Modularité
- Matrice laplacienne

Génération de graphes

- Objectif : pouvoir générer des graphes aux propriétés similaires
- Méthodes
 - Attachement préférentiel
 - Forest Fire, Kronecker (Leskovec 2005, 2007)

Détection de communautés

- ▶ Un graphe peu contenir des sous-graphes très connectés
- ▶ 2 utilisateurs d'un même sous-graphe peuvent avoir un profil similaire

Propagation de l'information

- Détection de communauté : structure du graphe
- ► Modéliser la propagation de l'information
 - ► Théorie de la survie
 - ▶ Influences dans un réseau (Kempe et al 2003)

Statique vs dynamique

- Beaucoup de modèles/méthodes basées sur des graphes statiques
- ▶ En réalité, G(t) = (V(t), E(t))
- Nécessité de méthodes adaptées (online)