

- CA sei geteilt im Verhältnis r:s
- CB sei geteilt im Verhältnis u:v
- wie verhält sich dann x : y auf der Zwischen-Transversale ?

Mit CEVA2 ist $\frac{AZ}{ZB} = su: vr$

Gemäss Menelaus2b ist dann:

$$\frac{x}{y} = \frac{u}{v} \cdot \frac{su + vr}{su} = \frac{u}{v} \left(1 + \frac{vr}{su} \right) = \frac{r}{s} + \frac{u}{v}$$

Satz MeneCeva: Die Summe der Teilungs-Verhältnisse zweier Seiten ist gleich dem Teilungs-Verhältnis der Zwischen-Transversale.

Ist das nicht ein wunderschön symmetrisches Resultat?

Beispiele mit Verhältniszahlen

Bitte nie vergessen, dass immer Paare von Verhältniszahlen angeschrieben sind! Man darf nicht Zahlen auf verschiedenen Geraden vergleichen.

Man bemerkt, dass die Summe der Verhältniszahlen bei allen 3 Transversalen konstant ist, sofern man das Transversalen-Verhältnis nicht kürzt (nach MeneCeva).

Dies ist eine Folge des Satzes von CEVA.

Beispiel: 15+4 = 13+6 = 10+9 = 19

Satz über die Transversalen-Verhältnisse

Es sei das Transversalen-Verhältnis $v(Ct) = \frac{x}{x+y} \leq 1$.

Meneceva2:
$$v(At) + v(Bt) + v(Ct) = 2$$

Wählt man den Transversalen-Schnittpunkt immer näher an einer Dreiecks-Seite, so sieht man, das der Satz stimmen kann!

1. Beweis: algebraisch (Mit CEVA2 wird: AZ : BZ = su : vr)

$$v'(Ct) = \frac{r}{s} + \frac{u}{v} = \frac{rv + us}{sv} \quad \rightarrow \quad v(Ct) = \frac{rv + us}{rv + us + sv}$$

$$v'(Bt) = \frac{v}{u} + \frac{vr}{su} = \frac{vs + vr}{su} \quad \rightarrow \quad v(Bt) = \frac{vs + vr}{vs + vr + su}$$

$$v'(At) = \frac{su}{vr} + \frac{s}{r} = \frac{su + sv}{vr} \quad \rightarrow \quad v(At) = \frac{su + sv}{su + sv + vr}$$

$$v(Ct) + v(Bt) + v(At) = \frac{rv + us}{rv + us + sv} + \frac{vs + vr}{vs + vr + su} + \frac{su + sv}{su + sv + vr} = \frac{2(rv + us + sv)}{rv + us + sv} = 2$$

$$v(Ct) + v(Bt) + v(At) = \frac{rv + us}{rv + us + sv} + \frac{vs + vr}{vs + vr + su} + \frac{su + sv}{su + sv + vr} = \frac{2(rv + us + sv)}{rv + us + sv} = 2$$

2. Beweis: geometrisch

a', b', c' sind die Parallelen zu den entsprechenden Seiten durch den Transversalen-Schnittpunkt.

Damit ist
$$v(At) = \frac{a'}{a}$$
 $v(Bt) = \frac{b'}{b}$ $v(Ct) = \frac{c'}{c}$

$$x = b - AG = b \cdot (1 - \frac{a'}{a})$$

$$y = b - CF = b \cdot (1 - \frac{c'}{c})$$

$$x + y = b' = b \cdot (2 - \frac{a'}{a} - \frac{c'}{c})$$

$$\frac{b'}{c} = 2 - \frac{a'}{c} - \frac{c'}{c}$$

$$\boxed{\frac{a'}{a} + \frac{b'}{b} + \frac{c'}{c} = 2 = v(At) + v(Bt) + v(Ct)}$$