Fernando Lozano

Universidad de los Andes

2 de febrero de 2023



• Modelo matemático para toma de decisiones secuenciales, orientadas a una meta, bajo incertidumbre.

- Modelo matemático para toma de decisiones secuenciales, orientadas a una meta, bajo incertidumbre.
- Diversos campos de aplicación (logística, control, ecología, economía, comunicaciones...).

- Modelo matemático para toma de decisiones secuenciales, orientadas a una meta, bajo incertidumbre.
- Diversos campos de aplicación (logística, control, ecología, economía, comunicaciones...).
- En RL: aprendizaje a través de interacción del agente con el ambiente.

- Modelo matemático para toma de decisiones secuenciales, orientadas a una meta, bajo incertidumbre.
- Diversos campos de aplicación (logística, control, ecología, economía, comunicaciones...).
- En RL: aprendizaje a través de interacción del agente con el ambiente.
- Modelo idealizado del problema de RL:

- Modelo matemático para toma de decisiones secuenciales, orientadas a una meta, bajo incertidumbre.
- Diversos campos de aplicación (logística, control, ecología, economía, comunicaciones...).
- En RL: aprendizaje a través de interacción del agente con el ambiente.
- Modelo idealizado del problema de RL:
  - Permite análisis teórico, por ejemplo de convergencia de algoritmos de solución.

- Modelo matemático para toma de decisiones secuenciales, orientadas a una meta, bajo incertidumbre.
- Diversos campos de aplicación (logística, control, ecología, economía, comunicaciones...).
- En RL: aprendizaje a través de interacción del agente con el ambiente.
- Modelo idealizado del problema de RL:
  - Permite análisis teórico, por ejemplo de convergencia de algoritmos de solución.
  - Extrapolar a situaciones reales.





• Agente toma decisiones (acciones).



- Agente toma decisiones (acciones).
- Ambiente: todo lo que es exterior al agente.



- Agente toma decisiones (acciones).
- Ambiente: todo lo que es exterior al agente.
- Ambiente y agente interactúan en pasos t=1,2,...:



- Agente toma decisiones (acciones).
- Ambiente: todo lo que es exterior al agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
  - lacktriangle Agente recibe representación del estado del ambiente  $S_t \in \mathcal{S}$



- Agente toma decisiones (acciones).
- Ambiente: todo lo que es exterior al agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
  - Agente recibe representación del estado del ambiente  $S_t \in \mathcal{S}$
  - **2** Selecciona acción  $A_t \in \mathcal{A}(s_t)$ .



- Agente toma decisiones (acciones).
- Ambiente: todo lo que es exterior al agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
  - Agente recibe representación del estado del ambiente  $S_t \in \mathcal{S}$
  - 2 Selecciona acción  $A_t \in \mathcal{A}(s_t)$ .
  - **③** En tiempo t+1 recibe recompensa  $R_{t+1} ∈ \mathcal{R} \subset \mathbb{R}$



- Agente toma decisiones (acciones).
- Ambiente: todo lo que es exterior al agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
  - Agente recibe representación del estado del ambiente  $S_t \in \mathcal{S}$
  - 2 Selecciona acción  $A_t \in \mathcal{A}(s_t)$ .
  - **③** En tiempo t+1 recibe recompensa  $R_{t+1} ∈ \mathcal{R} \subset \mathbb{R}$  y pasa a estado  $S_{t+1} ∈ \mathcal{S}$



- Agente toma decisiones (acciones).
- Ambiente: todo lo que es exterior al agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
  - **1** Agente recibe representación del estado del ambiente  $S_t \in \mathcal{S}$

  - **3** En tiempo t+1 recibe recompensa  $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$  y pasa a estado  $S_{t+1} \in \mathcal{S}$
- Trayectoria:

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, S_3, \dots$$

• MDPs finitos:  $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$ .

- MDPs finitos:  $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$ .
- $R_t$ ,  $S_t$  variables aleatorias discretas cuya distribución depende únicamente del estado y acción anterior:

- MDPs finitos:  $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$ .
- $R_t, S_t$  variables aleatorias discretas cuya distribución depende únicamente del estado y acción anterior:

$$p(s', r \mid s, a) \doteq \mathbf{P} \left\{ S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a \right\},$$
  
$$\forall s', s \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A}(s)$$

- MDPs finitos:  $|\mathcal{S}|, |\mathcal{A}|, |\mathcal{R}| < \infty$ .
- $R_t, S_t$  variables aleatorias discretas cuya distribución depende únicamente del estado y acción anterior:

$$p(s', r \mid s, a) \doteq \mathbf{P} \left\{ S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a \right\},$$
  
$$\forall s', s \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A}(s)$$

•

$$p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \longrightarrow [0,1]$$

- MDPs finitos:  $|S|, |A|, |R| < \infty$ .
- $R_t, S_t$  variables aleatorias discretas cuya distribución depende únicamente del estado y acción anterior:

$$p(s', r \mid s, a) \doteq \mathbf{P} \left\{ S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a \right\},$$
  
$$\forall s', s \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A}(s)$$

•

$$p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \longrightarrow [0,1]$$

•

$$\sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r \mid s, a) = 1 \quad \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$

 $\bullet$  La función  $p(s',r\mid s,a)$  caracteriza por completo la dinámica del MDP.

- La función  $p(s', r \mid s, a)$  caracteriza por completo la dinámica del MDP.
- Valor de  $R_t$ ,  $S_t$  depende <u>únicamente</u> de  $S_{t-1}$ ,  $A_{t-1}$ , y no de valores anteriores en la trayectoria.

- La función  $p(s', r \mid s, a)$  caracteriza por completo la dinámica del MDP.
- Valor de  $R_t$ ,  $S_t$  depende <u>únicamente</u> de  $S_{t-1}$ ,  $A_{t-1}$ , y no de valores anteriores en la trayectoria.
- Propiedad de Markov.

- La función  $p(s', r \mid s, a)$  caracteriza por completo la dinámica del MDP.
- Valor de  $R_t$ ,  $S_t$  depende <u>únicamente</u> de  $S_{t-1}$ ,  $A_{t-1}$ , y no de valores anteriores en la trayectoria.
- Propiedad de Markov.
- Estado observado incluye toda la información relevante para el agente, en interacciones pasadas.

• Secuencia de variables aleatorias

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, S_3, \dots$$

• Secuencia de variables aleatorias

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, S_3, \dots$$

• Una señal de estado tiene la Propiedad de Markov si:

• Secuencia de variables aleatorias

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, S_3, \dots$$

• Una señal de estado tiene la Propiedad de Markov si:

$$\mathbf{P}\left\{S_{t+1} = s', R_{t+1} = r \mid S_t = s_t, A_t = a_t, R_t = r_t, S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \dots \right.$$

$$\left., R_1 = r_1, S_0 = s_0, A_0 = a_0\right\}$$

$$= \mathbf{P}\left\{S_{t+1} = s', R_{t+1} = r \mid S_t = s_t, A_t = a_t\right\}$$

para todo s', r, y todos los valores posibles de  $s_{t+1}, r_{t+1}, s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0$ .



Acciones: u, d, l ,r

| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  |                   |
| (1,1) | u             | (2,1) | 0  |                   |
| (1,1) | u             | (1,2) | 1  |                   |
| (3,3) | r             | (4,3) | 1  |                   |
| (3,3) | r             | (4,3) | -1 |                   |



Acciones: u, d, l ,r

| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 1                 |
| (1,1) | u             | (2,1) | 0  |                   |
| (1,1) | u             | (1,2) | 1  |                   |
| (3,3) | r             | (4,3) | 1  |                   |
| (3,3) | r             | (4,3) | -1 |                   |



Acciones: u, d, l ,r

| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 1                 |
| (1,1) | u             | (2,1) | 0  | 0                 |
| (1,1) | u             | (1,2) | 1  |                   |
| (3,3) | r             | (4,3) | 1  |                   |
| (3,3) | r             | (4,3) | -1 |                   |



Acciones: u, d, l ,r

| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 1                 |
| (1,1) | u             | (2,1) | 0  | 0                 |
| (1,1) | u             | (1,2) | 1  | 0                 |
| (3,3) | r             | (4,3) | 1  |                   |
| (3,3) | r             | (4,3) | -1 |                   |



Acciones: u, d, l ,r

| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 1                 |
| (1,1) | u             | (2,1) | 0  | 0                 |
| (1,1) | u             | (1,2) | 1  | 0                 |
| (3,3) | r             | (4,3) | 1  | 1                 |
| (3,3) | r             | (4,3) | -1 |                   |



Acciones: u, d, l ,r

| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 1                 |
| (1,1) | u             | (2,1) | 0  | 0                 |
| (1,1) | u             | (1,2) | 1  | 0                 |
| (3,3) | r             | (4,3) | 1  | 1                 |
| (3,3) | r             | (4,3) | -1 | 0                 |



| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  |                   |
| (1,1) | u             | (2,1) | 0  |                   |
| (1,1) | u             | (1,2) | 1  |                   |
| (3,1) | l             | (3,2) | 0  |                   |
| (3,2) | u             | (4,2) | -1 |                   |



| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 0.5               |
| (1,1) | u             | (2,1) | 0  |                   |
| (1,1) | u             | (1,2) | 1  |                   |
| (3,1) | l             | (3,2) | 0  |                   |
| (3,2) | u             | (4,2) | -1 |                   |



| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 0.5               |
| (1,1) | u             | (2,1) | 0  | 0.5               |
| (1,1) | u             | (1,2) | 1  |                   |
| (3,1) | l             | (3,2) | 0  |                   |
| (3,2) | u             | (4,2) | -1 |                   |



| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 0.5               |
| (1,1) | u             | (2,1) | 0  | 0.5               |
| (1,1) | u             | (1,2) | 1  | 0                 |
| (3,1) | l             | (3,2) | 0  |                   |
| (3,2) | u             | (4,2) | -1 |                   |



| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 0.5               |
| (1,1) | u             | (2,1) | 0  | 0.5               |
| (1,1) | u             | (1,2) | 1  | 0                 |
| (3,1) | 1             | (3,2) | 0  | 0.25              |
| (3,2) | u             | (4,2) | -1 |                   |



| s     | $\mid a \mid$ | s'    | r  | $p(s',r\mid s,a)$ |
|-------|---------------|-------|----|-------------------|
| (1,1) | u             | (1,2) | 0  | 0.5               |
| (1,1) | u             | (2,1) | 0  | 0.5               |
| (1,1) | u             | (1,2) | 1  | 0                 |
| (3,1) | l             | (3,2) | 0  | 0.25              |
| (3,2) | u             | (4,2) | -1 | 0.25              |

• Probabilidad de que el estado resultante sea s', cuando se parte del estado s y se ejecuta la acción a.

- Probabilidad de que el estado resultante sea s', cuando se parte del estado s y se ejecuta la acción a.
- Función  $p: \mathcal{S} \times \mathcal{S} \times \mathcal{A} \longrightarrow [0,1].$

- Probabilidad de que el estado resultante sea s', cuando se parte del estado s y se ejecuta la acción a.
- Función  $p: \mathcal{S} \times \mathcal{S} \times \mathcal{A} \longrightarrow [0,1].$

$$p(s' | s, a) \doteq \mathbf{P} \{ S_t = s' | S_{t-1} = s, A_{t-1} = a \}$$

- Probabilidad de que el estado resultante sea s', cuando se parte del estado s y se ejecuta la acción a.
- Función  $p: \mathcal{S} \times \mathcal{S} \times \mathcal{A} \longrightarrow [0,1].$

$$p(s' \mid s, a) \doteq \mathbf{P} \{ S_t = s' \mid S_{t-1} = s, A_{t-1} = a \} = \sum_{r \in \mathcal{R}} p(s', r \mid s, a)$$

- Probabilidad de que el estado resultante sea s', cuando se parte del estado s y se ejecuta la acción a.
- Función  $p: \mathcal{S} \times \mathcal{S} \times \mathcal{A} \longrightarrow [0,1].$

$$p(s' \mid s, a) \doteq \mathbf{P} \{ S_t = s' \mid S_{t-1} = s, A_{t-1} = a \} = \sum_{r \in \mathcal{R}} p(s', r \mid s, a)$$

(sumamos probabilidades sobre los valores de recompensas posibles).



| s     | a | s'    | $p(s' \mid s, a)$ |
|-------|---|-------|-------------------|
| (1,1) | u | (1,2) |                   |
| (1,1) | u | (2,1) |                   |
| (3,1) | d | (3,2) |                   |
| (3,2) | u | (4,2) |                   |



| s     | a | s'    | $p(s' \mid s, a)$ |
|-------|---|-------|-------------------|
| (1,1) | u | (1,2) | 0.5               |
| (1,1) | u | (2,1) |                   |
| (3,1) | d | (3,2) |                   |
| (3,2) | u | (4,2) |                   |



| s     | a | s'    | $p(s' \mid s, a)$ |
|-------|---|-------|-------------------|
| (1,1) | u | (1,2) | 0.5               |
| (1,1) | u | (2,1) | 0.5               |
| (3,1) | d | (3,2) |                   |
| (3,2) | u | (4,2) |                   |



| s     | a | s'    | $p(s' \mid s, a)$ |
|-------|---|-------|-------------------|
| (1,1) | u | (1,2) | 0.5               |
| (1,1) | u | (2,1) | 0.5               |
| (3,1) | d | (3,2) | 0.25              |
| (3,2) | u | (4,2) |                   |



| s     | a | s'    | $p(s' \mid s, a)$ |
|-------|---|-------|-------------------|
| (1,1) | u | (1,2) | 0.5               |
| (1,1) | u | (2,1) | 0.5               |
| (3,1) | d | (3,2) | 0.25              |
| (3,2) | u | (4,2) | 0.25              |

 $\bullet$  Valor esperado de la recompensa cuando está en estado s y ejecuta acción a.

- Valor esperado de la recompensa cuando está en estado s y ejecuta acción a.
- Función  $r: \mathcal{S} \times \mathcal{A} \longrightarrow \mathbb{R}$ :

- Valor esperado de la recompensa cuando está en estado s y ejecuta acción a.
- Función  $r: \mathcal{S} \times \mathcal{A} \longrightarrow \mathbb{R}$ :

$$r(s, a) \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a]$$

- Valor esperado de la recompensa cuando está en estado s y ejecuta acción a.
- Función  $r: \mathcal{S} \times \mathcal{A} \longrightarrow \mathbb{R}$ :

$$r(s, a) \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r \mid s, a)$$

- Valor esperado de la recompensa cuando está en estado s y ejecuta acción a.
- Función  $r: \mathcal{S} \times \mathcal{A} \longrightarrow \mathbb{R}$ :

$$r(s, a) \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r \mid s, a)$$



| s     | a | r(s, a) |
|-------|---|---------|
| (1,1) | u |         |
| (3,2) | u |         |
| (3,2) | d |         |
| (3,3) | 1 |         |



| s     | a | r(s, a) |
|-------|---|---------|
| (1,1) | u | 0       |
| (3,2) | u |         |
| (3,2) | d |         |
| (3,3) | 1 |         |



| s     | a | r(s, a) |
|-------|---|---------|
| (1,1) | u | 0       |
| (3,2) | u | -0.25   |
| (3,2) | d |         |
| (3,3) | 1 |         |



| s     | a | r(s, a) |
|-------|---|---------|
| (1,1) | u | 0       |
| (3,2) | u | -0.25   |
| (3,2) | d | -0.5    |
| (3,3) | 1 |         |



| s     | a | r(s, a) |
|-------|---|---------|
| (1,1) | u | 0       |
| (3,2) | u | -0.25   |
| (3,2) | d | -0.5    |
| (3,3) | 1 | 0.25    |

• Recompensa esperada para triplas estado-acción-estado siguiente.

- Recompensa esperada para triplas estado-acción-estado siguiente.
- Función  $r: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}$ :

- Recompensa esperada para triplas estado-acción-estado siguiente.
- Función  $r: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}$ :

$$r(s, a, s') \doteq \mathbb{E} [R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s']$$

- Recompensa esperada para triplas estado-acción-estado siguiente.
- Función  $r: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \longrightarrow \mathbb{R}$ :

$$r(s, a, s') \doteq \mathbb{E}\left[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s'\right] = \sum_{r \in \mathcal{R}} r \frac{p(s', r \mid s, a)}{p(s' \mid s, a)}$$



| s     | a | s'    | r(s, a, s') |
|-------|---|-------|-------------|
| (1,1) | u | (1,2) |             |
| (3,2) | u | (4,2) |             |
| (3,2) | d | (4,2) |             |
| (3,3) | 1 | (4,3) |             |



| s     | $\mid a \mid$ | s'    | r(s, a, s') |
|-------|---------------|-------|-------------|
| (1,1) | u             | (1,2) | 0           |
| (3,2) | u             | (4,2) |             |
| (3,2) | d             | (4,2) |             |
| (3,3) | l             | (4,3) |             |



| s     | a | s'    | r(s, a, s') |
|-------|---|-------|-------------|
| (1,1) | u | (1,2) | 0           |
| (3,2) | u | (4,2) | -1          |
| (3,2) | d | (4,2) |             |
| (3,3) | 1 | (4,3) |             |



Acciones: u, d, l ,<br/>r pero con probabilidad $\frac{1}{2}$ otra dirección aleatoria.

| s     | a | s'    | r(s, a, s') |
|-------|---|-------|-------------|
| (1,1) | u | (1,2) | 0           |
| (3,2) | u | (4,2) | -1          |
| (3,2) | d | (4,2) | -1          |
| (3,3) | 1 | (4,3) |             |



Acciones: u, d, l ,<br/>r pero con probabilidad $\frac{1}{2}$ otra dirección aleatoria.

| s     | a | s'    | r(s, a, s') |
|-------|---|-------|-------------|
| (1,1) | u | (1,2) | 0           |
| (3,2) | u | (4,2) | -1          |
| (3,2) | d | (4,2) | -1          |
| (3,3) | 1 | (4,3) | 1           |

• Robot que recolecta latas de Coca-Cola vacías en la oficina.

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones:

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones: Buscar lata,

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones: Buscar lata, esperar lata,

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones: Buscar lata, esperar lata, ir a recargar batería.

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones: Buscar lata, esperar lata, ir a recargar batería. Estados:

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones: Buscar lata, esperar lata, ir a recargar batería.

Estados: Carga de la batería.

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones: Buscar lata, esperar lata, ir a recargar batería.

Estados: Carga de la batería.

Recompensas:

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones: Buscar lata, esperar lata, ir a recargar batería.

Estados: Carga de la batería.

Recompensas: Positiva si recoge una lata,

- Robot que recolecta latas de Coca-Cola vacías en la oficina.
- Cámara, sensores, brazo...
- Batería recargable.
- Meta: Recolectar máximo número de latas, sin quedarse varado por baterías.
- Elementos:

Acciones: Buscar lata, esperar lata, ir a recargar batería.

Estados: Carga de la batería.

Recompensas: Positiva si recoge una lata, muy negativa si se queda sin batería.

| s    | a        | s'   | p(s' s,a)  | r(s, a, s')           |
|------|----------|------|------------|-----------------------|
| high | search   | high | α          | $r_{\mathtt{search}}$ |
| high | search   | low  | $1-\alpha$ | $r_{\mathtt{search}}$ |
| low  | search   | high | $1-\beta$  | -3                    |
| low  | search   | low  | β          | $r_{\mathtt{search}}$ |
| high | wait     | high | 1          | $r_{\mathtt{wait}}$   |
| high | wait     | low  | 0          | -                     |
| low  | wait     | high | 0          | -                     |
| low  | wait     | low  | 1          | rwait                 |
| low  | recharge | high | 1          | 0                     |
| low  | recharge | low  | 0          | -                     |



• Agente aprende a maximizar la recompensa acumulada a lo largo del tiempo.

- Agente aprende a maximizar la recompensa acumulada a lo largo del tiempo.
- Recompensa acumulada debe corresponder a la meta de aprendizaje.

- Agente aprende a maximizar la recompensa acumulada a lo largo del tiempo.
- Recompensa acumulada debe corresponder a la meta de aprendizaje.
  - Juego de tablero:

- Agente aprende a maximizar la recompensa acumulada a lo largo del tiempo.
- Recompensa acumulada debe corresponder a la meta de aprendizaje.
  - ▶ Juego de tablero: +1, ganar, -1 perder, cero empatar.

- Agente aprende a maximizar la recompensa acumulada a lo largo del tiempo.
- Recompensa acumulada debe corresponder a la meta de aprendizaje.
  - ▶ Juego de tablero: +1, ganar, -1 perder, cero empatar.
  - Robot reciclador:

- Agente aprende a maximizar la recompensa acumulada a lo largo del tiempo.
- Recompensa acumulada debe corresponder a la meta de aprendizaje.
  - ▶ Juego de tablero: +1, ganar, -1 perder, cero empatar.
  - Robot reciclador: positiva al recoger lata, muy negativa al descargarse

- Agente aprende a maximizar la recompensa acumulada a lo largo del tiempo.
- Recompensa acumulada debe corresponder a la meta de aprendizaje.
  - ▶ Juego de tablero: +1, ganar, -1 perder, cero empatar.
  - Robot reciclador: positiva al recoger lata, muy negativa al descargarse
  - ▶ No se usa para indicar cómo lograr la meta de aprendizaje.

• Tareas episódicas:

• Tareas episódicas: estado terminal  $S_T$ .

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

• Meta: Maximizar retorno esperado.

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Meta: Maximizar retorno esperado.
- Tareas con horizonte infinito

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Meta: Maximizar retorno esperado.
- Tareas con horizonte infinito : retorno con descuento  $0 \le \gamma \le 1$ :

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Meta: Maximizar retorno esperado.
- Tareas con horizonte infinito : retorno con descuento  $0 \le \gamma \le 1$ :

$$G_t \doteq R_{t+1} + \frac{\gamma}{\gamma} R_{t+2} + \frac{\gamma^2}{\gamma^2} R_{t+3} + \dots$$

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Meta: Maximizar retorno esperado.
- Tareas con horizonte infinito : retorno con descuento  $0 \le \gamma \le 1$ :

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Meta: Maximizar retorno esperado.
- Tareas con horizonte infinito : retorno con descuento  $0 \le \gamma \le 1$ :

$$G_t \doteq R_{t+1} + \frac{\gamma}{\gamma} R_{t+2} + \frac{\gamma^2}{\gamma^2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \frac{\gamma^k}{\gamma^k} R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

#### Retorno

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Meta: Maximizar retorno esperado.
- Tareas con horizonte infinito : retorno con descuento  $0 \le \gamma \le 1$ :

$$G_t \doteq R_{t+1} + \frac{\gamma}{\gamma} R_{t+2} + \frac{\gamma^2}{\gamma^2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \frac{\gamma^k}{\gamma^k} R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

Preferencia por recompensas recientes.

#### Retorno

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Meta: Maximizar retorno esperado.
- Tareas con horizonte infinito : retorno con descuento  $0 \le \gamma \le 1$ :

$$G_t \doteq R_{t+1} + \frac{\gamma}{\gamma} R_{t+2} + \frac{\gamma^2}{\gamma^2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \frac{\gamma^k}{\gamma^k} R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

- Preferencia por recompensas recientes.
- ▶ Valor típico  $\gamma \approx 0.9$

#### Retorno

- Tareas episódicas: estado terminal  $S_T$ .
- Retorno:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- Meta: Maximizar retorno esperado.
- Tareas con horizonte infinito : retorno con descuento  $0 \le \gamma \le 1$ :

$$G_t \doteq R_{t+1} + \frac{\gamma}{\gamma} R_{t+2} + \frac{\gamma^2}{\gamma^2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \frac{\gamma^k}{\gamma^k} R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

- Preferencia por recompensas recientes.
- ▶ Valor típico  $\gamma \approx 0.9$
- ▶ NO sirve para maximizar recompensas promedio!

- 4 ロ b 4回 b 4き b 4き b ・ き ・ かくぐ

### Visión unificada

$$s_0$$
  $r_1 = +1$   $s_1$   $r_2 = +1$   $s_2$   $r_3 = +1$   $r_4 = 0$   $r_5 = 0$   $r_5 = 0$ 





• Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.
  - Recompensa:



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.
  - ▶ Recompensa: +1 por cada iteración en que no se cae.



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.
  - ▶ Recompensa: +1 por cada iteración en que no se cae.
  - ▶ Retorno: tiempo total en que el palo está balanceado.



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.
  - ▶ Recompensa: +1 por cada iteración en que no se cae.
  - ▶ Retorno: tiempo total en que el palo está balanceado.
- Tarea contínua:



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.
  - ▶ Recompensa: +1 por cada iteración en que no se cae.
  - ▶ Retorno: tiempo total en que el palo está balanceado.
- Tarea contínua:
  - ► Recompensa:



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.
  - ▶ Recompensa: +1 por cada iteración en que no se cae.
  - ▶ Retorno: tiempo total en que el palo está balanceado.
- Tarea contínua:
  - ▶ Recompensa: -1 si se cae, 0 si no.



- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.
  - ▶ Recompensa: +1 por cada iteración en que no se cae.
  - ▶ Retorno: tiempo total en que el palo está balanceado.
- Tarea contínua:
  - ▶ Recompensa: -1 si se cae, 0 si no.
  - ightharpoonup Decuento  $\gamma$





- Objetivo: Aplicar fuerzas al carro de manera que el palo no se caiga.
- Cuando se cae, el palo se devuelve a su posición vertical.
- Tarea episódica:
  - ▶ Episodio: cada intento de mantener el palo vertical.
  - ▶ Recompensa: +1 por cada iteración en que no se cae.
  - ▶ Retorno: tiempo total en que el palo está balanceado.
- Tarea contínua:
  - ▶ Recompensa: -1 si se cae, 0 si no.
  - Decuento  $\gamma$ , retorno:  $-\gamma^k$

• Define comportamiento del agente.

- Define comportamiento del agente.
- $\bullet$  Mapeo estado  $\to$  probabilidad de seleccionar acción en ese estado:

- Define comportamiento del agente.
- $\bullet$  Mapeo estado  $\to$  probabilidad de seleccionar acción en ese estado:

$$\pi(a \mid s)$$

- Define comportamiento del agente.
- $\bullet$  Mapeo estado  $\to$  probabilidad de seleccionar acción en ese estado:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

- Define comportamiento del agente.
- $\bullet$  Mapeo estado  $\to$  probabilidad de seleccionar acción en ese estado:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

Políticas determinísticas:  $\pi(s) = a$ 

- Define comportamiento del agente.
- $\bullet$  Mapeo estado  $\to$  probabilidad de seleccionar acción en ese estado:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

- Políticas determinísticas:  $\pi(s) = a$
- ▶ Políticas soft:  $\pi(a \mid s) > 0 \ \forall a \in \mathcal{A}$

- Define comportamiento del agente.
- $\bullet$  Mapeo estado  $\to$  probabilidad de seleccionar acción en ese estado:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

- Políticas determinísticas:  $\pi(s) = a$
- ▶ Políticas soft:  $\pi(a \mid s) > 0 \ \forall a \in \mathcal{A} \to \text{exploración}$ .

- Define comportamiento del agente.
- $\bullet$  Mapeo estado  $\to$  probabilidad de seleccionar acción en ese estado:

$$\pi(a \mid s) = \mathbf{P} \left\{ A_t = a \mid s_t = s \right\}$$

- Políticas determinísticas:  $\pi(s) = a$
- ▶ Políticas soft:  $\pi(a \mid s) > 0 \ \forall a \in \mathcal{A} \to \text{exploración}$ .
- Aprendizaje: Encontrar buenas políticas.

• Valor de un estado:

- Valor de un estado:
  - ▶ Indica qué tan bueno es estar en un estado dado, en términos de el retorno esperado .

- Valor de un estado:
  - ▶ Indica qué tan bueno es estar en un estado dado, en términos de el retorno esperado .
  - ▶ Asociado a una política  $\pi(a \mid s)$ .

- Valor de un estado:
  - ▶ Indica qué tan bueno es estar en un estado dado, en términos de el retorno esperado .
  - ▶ Asociado a una política  $\pi(a \mid s)$ .
  - $\blacktriangleright$  Valor esperado del retorno, comenzando en s y siguiendo  $\pi$  de ahí en adelante:

- Valor de un estado:
  - ▶ Indica qué tan bueno es estar en un estado dado, en términos de el retorno esperado .
  - ▶ Asociado a una política  $\pi(a \mid s)$ .
  - $\blacktriangleright$  Valor esperado del retorno, comenzando en s y siguiendo  $\pi$  de ahí en adelante:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\}$$

- Valor de un estado:
  - ▶ Indica qué tan bueno es estar en un estado dado, en términos de el retorno esperado .
  - ▶ Asociado a una política  $\pi(a \mid s)$ .
  - $\blacktriangleright$  Valor esperado del retorno, comenzando en s y siguiendo  $\pi$  de ahí en adelante:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

es la función de valor de estado de la política  $\pi$ 

- Valor de un estado:
  - ▶ Indica qué tan bueno es estar en un estado dado, en términos de el retorno esperado .
  - ▶ Asociado a una política  $\pi(a \mid s)$ .
  - $\blacktriangleright$  Valor esperado del retorno, comenzando en s y siguiendo  $\pi$  de ahí en adelante:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

es la función de valor de estado de la política  $\pi$ 

• Similarmente la función de valor de acción de la política  $\pi$ :

- Valor de un estado:
  - ▶ Indica qué tan bueno es estar en un estado dado, en términos de el retorno esperado .
  - ▶ Asociado a una política  $\pi(a \mid s)$ .
  - $\blacktriangleright$  Valor esperado del retorno, comenzando en s y siguiendo  $\pi$  de ahí en adelante:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

es la función de valor de estado de la política  $\pi$ 

• Similarmente la función de valor de acción de la política  $\pi$ :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s, A_t = a \right\}$$

- Valor de un estado:
  - ▶ Indica qué tan bueno es estar en un estado dado, en términos de el retorno esperado .
  - ▶ Asociado a una política  $\pi(a \mid s)$ .
  - $\blacktriangleright$  Valor esperado del retorno, comenzando en s y siguiendo  $\pi$  de ahí en adelante:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

es la función de valor de estado de la política  $\pi$ 

• Similarmente la función de valor de acción de la política  $\pi$ :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left\{ G_t \mid S_t = s, A_t = a \right\}$$

$$= \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right\}$$































$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$
$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$
$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$
$$= \sum_{k=0}^{\infty} \pi(a \mid s)$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$
$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$
$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a)$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$

$$= \sum_{n} \pi(a \mid s) \sum_{t} p(s' \mid s, a) \left[ r(s, a, s') \right]$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t+1} = s' \right\} \right]$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t+1} = s' \right\} \right]$$

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\} \\ &= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\} \\ &= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t+1} = s' \right\} \right] \\ &= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right] \end{aligned}$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t+1} = s' \right\} \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[ r + \gamma v_{\pi}(s') \right]$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t+1} = s' \right\} \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[ r + \gamma v_{\pi}(s') \right]$$

• Relación entre el valor de un estado y el valor de sus sucesores.

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$

$$= \mathbb{E}_{\pi} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right\}$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t+1} = s' \right\} \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[ r + \gamma v_{\pi}(s') \right]$$

- Relación entre el valor de un estado y el valor de sus sucesores.
- Similarmente:

$$q_{\pi}(s, a) = \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \sum_{a'} q_{\pi}(s', a') \right]$$

### Diagramas de Backup







Acciones: u, d, l ,r. Política  $\pi(a \mid s)$  aleatoria,  $\gamma = 1$ .



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$v_{\pi}(3,1) =$$



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$
$$v_{\pi}(3, 1) = \frac{1}{3} v_{\pi}(2, 1) +$$



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$
$$v_{\pi}(3, 1) = \frac{1}{3} v_{\pi}(2, 1) + \frac{1}{3} v_{\pi}(3, 2) +$$



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$v_{\pi}(3,1) = \frac{1}{3}v_{\pi}(2,1) + \frac{1}{3}v_{\pi}(3,2) + \frac{1}{3}v_{\pi}(4,1)$$



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$v_{\pi}(3,1) =$$



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{a'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$v_{\pi}(3,1) = \underbrace{\frac{1}{3} \left( \frac{2}{3} v_{\pi}(3,2) + \frac{1}{6} v_{\pi}(2,1) + \frac{1}{6} v_{\pi}(4,1) \right)}_{a=u}$$



$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$v_{\pi}(3, 1) = \underbrace{\frac{1}{3} \left( \frac{2}{3} v_{\pi}(3, 2) + \frac{1}{6} v_{\pi}(2, 1) + \frac{1}{6} v_{\pi}(4, 1) \right)}_{a=u} + \underbrace{\frac{1}{3} \left( \frac{1}{6} v_{\pi}(3, 2) + \frac{2}{3} v_{\pi}(2, 1) + \frac{1}{6} v_{\pi}(4, 1) \right)}_{a=l}$$



Acciones: u, d, l ,r pero con probabilidad  $\frac{1}{3}$  otra dirección aleatoria. Política  $\pi(a \mid s)$  aleatoria,  $\gamma = 1$ .

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma v_{\pi}(s') \right]$$

$$v_{\pi}(3, 1) = \underbrace{\frac{1}{3} \left( \frac{2}{3} v_{\pi}(3, 2) + \frac{1}{6} v_{\pi}(2, 1) + \frac{1}{6} v_{\pi}(4, 1) \right)}_{a=u} + \underbrace{\frac{1}{3} \left( \frac{1}{6} v_{\pi}(3, 2) + \frac{2}{3} v_{\pi}(2, 1) + \frac{1}{6} v_{\pi}(4, 1) \right)}_{a=l} + \underbrace{\frac{1}{3} \left( \frac{1}{6} v_{\pi}(3, 2) + \frac{1}{6} v_{\pi}(2, 1) + \frac{2}{3} v_{\pi}(4, 1) \right)}_{a=d}$$





| 3.3  | 8.8  | 4.4  | 5.3  | 1.5  |
|------|------|------|------|------|
| 1.5  | 3.0  | 2.3  | 1.9  | 0.5  |
| 0.1  | 0.7  | 0.7  | 0.4  | -0.4 |
| -1.0 | -0.4 | -0.4 | -0.6 | -1.2 |
| -1.9 | -1.3 | -1.2 | -1.4 | -2.0 |



• Intentar salirse del cuadro: recompensa -1.



- Intentar salirse del cuadro: recompensa -1.
- A: Recompensa +10, acciones llevan a A'.
- $\bullet$  B: Recompensa +5, acciones llevan a B'.



- Intentar salirse del cuadro: recompensa -1.
- $\bullet$  A: Recompensa +10, acciones llevan a A'.
- $\bullet$  B: Recompensa +5, acciones llevan a B'.
- $\pi(a \mid s)$  aleatoria,  $\gamma = 0.9$

•  $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$  para todo s.

- $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$  para todo s.
- Política óptima:  $\pi_*$  tal que  $\pi_* \geq \pi$  para cualquier  $\pi$ .

- $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$  para todo s.
- Política óptima:  $\pi_*$  tal que  $\pi_* \geq \pi$  para cualquier  $\pi$ .
- En MDP finitos existe por lo menos una política óptima.

- $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$  para todo s.
- Política óptima:  $\pi_*$  tal que  $\pi_* \geq \pi$  para cualquier  $\pi$ .
- En MDP finitos existe por lo menos una política óptima.
- Políticas óptimas tienen la misma función de valor de estado óptima:

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s) \quad \forall s \in \mathcal{S}$$

- $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$  para todo s.
- Política óptima:  $\pi_*$  tal que  $\pi_* \geq \pi$  para cualquier  $\pi$ .
- En MDP finitos existe por lo menos una política óptima.
- Políticas óptimas tienen la misma función de valor de estado óptima:

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s) \quad \forall s \in \mathcal{S}$$

 Políticas óptimas tienen valor óptimo de la función de valor de pares estado-acción:

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \quad \forall s \in \mathcal{S}, a \in \mathcal{A}(s).$$

- $\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s)$  para todo s.
- Política óptima:  $\pi_*$  tal que  $\pi_* \geq \pi$  para cualquier  $\pi$ .
- En MDP finitos existe por lo menos una política óptima.
- Políticas óptimas tienen la misma función de valor de estado óptima:

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s) \quad \forall s \in \mathcal{S}$$

 Políticas óptimas tienen valor óptimo de la función de valor de pares estado-acción:

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \quad \forall s \in \mathcal{S}, a \in \mathcal{A}(s).$$

• Tenemos:

$$q_*(s,a) = \mathbb{E}\left[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a\right]$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$
$$= \max_a \mathbb{E}_{\pi_*} \{ G_t \mid S_t = s, A_t = a \}$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$
$$= \max_a \mathbb{E}_{\pi_*} \{ G_t \mid S_t = s, A_t = a \}$$

$$\begin{aligned} v_*(s) &= \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a) \\ &= \max_a \ \mathbb{E}_{\pi_*} \left\{ G_t \mid S_t = s, A_t = a \right\} \\ &= \max_a \ \mathbb{E}_{\pi_*} \left\{ R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a \right\} \end{aligned}$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

$$= \max_a \mathbb{E}_{\pi_*} \{ G_t \mid S_t = s, A_t = a \}$$

$$= \max_a \mathbb{E}_{\pi_*} \{ R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a \}$$

$$= \max_a \mathbb{E} [ R_{t+1} + \gamma v_*(s_{t+1}) \mid S_t = s, A_t = a ]$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

$$= \max_a \mathbb{E}_{\pi_*} \{ G_t \mid S_t = s, A_t = a \}$$

$$= \max_a \mathbb{E}_{\pi_*} \{ R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a \}$$

$$= \max_a \mathbb{E} [ R_{t+1} + \gamma v_*(s_{t+1}) \mid S_t = s, A_t = a ]$$

$$= \max_a \sum_{s',r} p(s', r \mid s, a) [ r + \gamma v_*(s') ]$$

$$\begin{aligned} v_*(s) &= \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a) \\ &= \max_a \ \mathbb{E}_{\pi_*} \left\{ G_t \mid S_t = s, A_t = a \right\} \\ &= \max_a \ \mathbb{E}_{\pi_*} \left\{ R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a \right\} \\ &= \max_a \ \mathbb{E} \left[ R_{t+1} + \gamma v_*(s_{t+1}) \mid S_t = s, A_t = a \right] \\ &= \max_a \ \sum_{s',r} p(s', r \mid s, a) \left[ r + \gamma v_*(s') \right] \end{aligned}$$

• Función de valor óptima sin referencia a una política específica.

• Similarmente, para  $q_*$ :

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$

• Similarmente, para  $q_*$ :

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$
$$= \sum_{a', r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a')\right]$$

• Similarmente, para  $q_*$ :

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$
$$= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a')\right]$$

• Diagramas de backup:





ullet Si hay N estados, las ecuaciones de optimalidad de Bellman son un conjunto de N ecuaciones no lineales en N incógnitas.

- Si hay N estados, las ecuaciones de optimalidad de Bellman son un conjunto de N ecuaciones no lineales en N incógnitas.
- Para MPD finitos, estas ecuaciones tienen una solución única que es independiente de la política.

- Si hay N estados, las ecuaciones de optimalidad de Bellman son un conjunto de N ecuaciones no lineales en N incógnitas.
- Para MPD finitos, estas ecuaciones tienen una solución única que es independiente de la política.
- Si la dinámica del ambiente  $p(s', r \mid s, a)$  es conocida, podemos en principio resolver las ecuaciones.

- Si hay N estados, las ecuaciones de optimalidad de Bellman son un conjunto de N ecuaciones no lineales en N incógnitas.
- Para MPD finitos, estas ecuaciones tienen una solución única que es independiente de la política.
- Si la dinámica del ambiente  $p(s', r \mid s, a)$  es conocida, podemos en principio resolver las ecuaciones.
- A partir de  $v_*$  se puede determinar una política óptima

- Si hay N estados, las ecuaciones de optimalidad de Bellman son un conjunto de N ecuaciones no lineales en N incógnitas.
- Para MPD finitos, estas ecuaciones tienen una solución única que es independiente de la política.
- Si la dinámica del ambiente  $p(s', r \mid s, a)$  es conocida, podemos en principio resolver las ecuaciones.
- A partir de  $v_*$  se puede determinar una política óptima : política greedy con respecto a  $v_*$ .

- Si hay N estados, las ecuaciones de optimalidad de Bellman son un conjunto de N ecuaciones no lineales en N incógnitas.
- Para MPD finitos, estas ecuaciones tienen una solución única que es independiente de la política.
- Si la dinámica del ambiente  $p(s', r \mid s, a)$  es conocida, podemos en principio resolver las ecuaciones.
- A partir de  $v_*$  se puede determinar una política óptima : política greedy con respecto a  $v_*$ .
- En la práctica, no conocemos  $p(s', r \mid s, a)$ .

- Si hay N estados, las ecuaciones de optimalidad de Bellman son un conjunto de N ecuaciones no lineales en N incógnitas.
- Para MPD finitos, estas ecuaciones tienen una solución única que es independiente de la política.
- Si la dinámica del ambiente  $p(s', r \mid s, a)$  es conocida, podemos en principio resolver las ecuaciones.
- A partir de  $v_*$  se puede determinar una política óptima : política greedy con respecto a  $v_*$ .
- En la práctica, no conocemos  $p(s', r \mid s, a)$ .
- Si conocemos  $q_*$  podemos conocer una política óptima sin conocer la dinámica del ambiente.



**Figure 3.5:** Optimal solutions to the gridworld example.