# **Mechanical Control Systems (ME 4473)**

Recitation - 9

GTA: Shishir Khanal, <a href="mailto:khanshis@isu.edu">khanshis@isu.edu</a>
(Students are advised to actively use matlab during the Recitation session)

| `      | ,                                                                                                                              |
|--------|--------------------------------------------------------------------------------------------------------------------------------|
| 1. Age | nda:                                                                                                                           |
| •      | Revision                                                                                                                       |
| •      | Problems(Routh Hurwitz Criterion)                                                                                              |
| 2. Que | stions:                                                                                                                        |
| Bod    | e Basics:                                                                                                                      |
|        | What information does a Bode Plot provide?                                                                                     |
| •      | Why do we look at a Gain and Phase plot in a Bode plot?                                                                        |
| •      | Magnitude equation for Bode Plot                                                                                               |
| •      | What are the factors that we individually evaluate during the construction of a Bode Plot?                                     |
|        | 0                                                                                                                              |
|        | 0                                                                                                                              |
|        | 0                                                                                                                              |
| •      | Fill in the blanks:  • A unit change inin the rectangular coordinate system = 1 dec of variation in w in semi log coordinates. |
|        | <ul> <li>Number of between two frequencies = log<sub>10</sub>(w<sub>2</sub>/w<sub>1</sub>)</li> </ul>                          |

### **Properties of Transfer Function Components:**

| • | How does a constant gain affect the Bode Plot?  Magnitude: Phase:                               |
|---|-------------------------------------------------------------------------------------------------|
| • | How do poles/zeros at origin affect the Bode Plot?                                              |
|   | Magnitude:                                                                                      |
|   | Phase:                                                                                          |
|   | (Zero makes the signal lead ahead, pole makes the signal lag behind)                            |
| • | How do complex conjugate poles/zeros affect the Bode Plot? Magnitude:                           |
|   | Phase:                                                                                          |
|   | Plot & Stability: What happens in Magnitude & Phase Plot at the corner Frequency? Magnitude:    |
|   | Phase:                                                                                          |
|   | (Total Phase change occurs within the 2 decades: one before and one after the corner frequency) |

#### • Gain crossover point:

- Gain Margin & Phase Margin:
  - o Gain Margin is measured ...... from freq axis
  - Phase margin is measured ......from deg = 180° axis.
- Matlab code for the Bode plot:.....

#### For a magnitude plot below, label:

- 1. Maximum Magnitude(M<sub>pw</sub>)
- 2. Resonant frequency(w<sub>r</sub>)



- 3. Problems:
- CP8.8 Consider a problem of controlling an inverted pendulum on a moving base, as shown in the fig below:
  - a. The transfer function of the system is:

$$G(s) = \frac{-1/(M_b L)}{s^2 - (M_b + M_s)g/(M_b L)}$$

The design objective is to balance the pendulum (i.e.  $\Theta(t) \approx 0$ ) in the presence of disturbance inputs. A block diagram of the system is given below.



- b. Let  $M_s = 10$ kg,  $M_b = 100$  kg, L = 1m, g = 9.81m/s<sup>2</sup>, a = 5 and b = 10. The design specifications, based on the unit step disturbance are :
  - i. Settling time(with 2% criterion) of  $T_s \le 10 \text{ s}$
  - ii. Percentage overshoot ≤ 40% &
  - iii. Steady-state tracking error less than 0.1° in the presence of disturbance
- c. Using the information provided above, compute:

| i.  | Closed-Loop transfer function from disturbance to the output with K as an adjustable parameter. |
|-----|-------------------------------------------------------------------------------------------------|
| ii. | Range of K that will satisfy the steady state output requirement                                |

iii. Expression to compute output maximum magnitude( $M_{\text{pw}}$ ) and resonant frequency( $w_{\text{r}}$ ) using equations (8.36) and (8.37)

- d. Write a matlab code to evaluate:
  - i. Closed-Loop transfer function from disturbance to the output with K as an adjustable parameter. Bode Plot of the closed loop system
    - @Matlab
  - ii. Automatically compute and output maximum magnitude  $(M_{pw})$  and resonant frequency  $(w_r)$  @Matlab
- e. If the performance specification is not satisfied, change K and iterate the design using the first two scripts. For the third script:
  - i. Plot the response  $\Theta(t)$  to a unit step disturbance with K as an adjustable parameter
    - @Matlab
  - ii. Label the plot properly @Matlab

## Bibliography:

• Dorf, Modern Control Systems, 13th ed