TEC0001 – Teoria da Computação Aula 11 NP e NP-Completude

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Caminho Hamiltoniano

Percorrer todo os nodos do grafo, passando uma única vez em cada nodo.

Definição (Verificador)

Um **verificador** para uma linguagem A é um algoritmo V onde

$$A = \{w \mid V \text{ aceita } \langle w, c \rangle \text{ para uma string } c\}$$

- A string c é chamada de certificado (ou prova) de pertinência à A.
- O tempo do verificador é medido apenas em termos do comprimento de *w*.
- Verificador em tempo polinomial: se executa em tempo polinomial sobre o tamanho de w.
- A linguagem A é **verificável em tempo polinomial** se existe pelo menos um verificador em tempo polinomial para ela

Classe NP

Definição (Classe NP)

NP é a classe de linguagens que possuem verificadores em tempo polinomial.

Teorema

 $A \in NP$ se e somente se A é decidida por uma Máquina de Turing não determinística de tempo polinomial.

$\mathsf{Prova} \Rightarrow$

Seja V um verificador em tempo polinomial de A. Assuma que V é uma Máquina de Turing que execute em tempo n^k . Então temos a Máquina de Turing não determinística N como abaixo:

N =Sobre a entrada w de tamanho n:

- Selecione de modo não determinístico strings c de comprimento até n^k
- **2** Execute V com entrada $\langle w, c \rangle$
- 3 Se V aceitar, aceite. Caso contrário, rejeite.

Classe NTIME

Definição (NTIME)

$$NTIME(t(n)) =$$

 $\{L \mid L \text{ \'e uma linguagem decidida por uma MTND em } \mathcal{O}(t(n))\}$

$$NP = \bigcup_{k} NTIME(n^k)$$

P = classe das linguagens que poden ser **decididas** "rapidamente" NP = classe das linguagens que poden ser **verificadas** "rapidamente"

NP-Completude

Problemas em NP cuja complexidade individual está realcionada àquela da classe inteira

Função em Tempo Polinomial

Definição (Função em Tempo Polinomial)

Uma função $f: \Sigma^* \to \Sigma^*$ é uma **função computável em tempo polinomial** se existe alguma Máquina de Turing determinística de tempo polinomial que para com exatamente f(w) na sua fita quando iniciada com entrada w.

Redução em Tempo Polinomial

Definição (Redução em Tempo Polinomial)

A linguagem A é **redutível por mapeamento em tempo polinomial** à linguagem B, denotado por $A \leq_P B$, se existe uma função computável em tempo polinomial $f: \Sigma^* \to \Sigma^*$ onde para todo w

$$w \in A \Leftrightarrow f(w) \in B$$

Linguagem em NP-Completo

Definição (Linguagem em NP-Completo)

Uma linguagem B é NP-Completa se:

- B ∈ NP e
- toda $A \in NP$ é redutível em tempo polinomial à B, ou seja

$$\forall A \in NP(A \leq_P B)$$

Teoremas

Teorema

Se $B \in NP$ -Completo e $B \in P$ então P = NP.

Teorema

 $SeB \in NP$ -Completo, $B \leq_P C$ e $C \in NP$ então $C \in NP$ -Completo.

