Math 111C HW6

Zih-Yu Hsieh

May 22, 2025

1

Question 1 Let E be a splitting field of $f(x) \in F[x]$ and G = Aut(E/F). Prove that:

- (a) If f(x) is irreducible, then G acts transitively on the set of all roots of f(x), i.e. if α, β are two roots of f(x) in E, there exists $\sigma \in G$ with $\sigma(\alpha) = \beta$.
- (b) If f(x) has no repeated roots and G acts transitively on the roots, then f(x) is irreducible.

Pf:

(a) Suppose $f(x) \in F[x]$ is irreducible, then let $a \in F$ be the leading coefficient of f(x) (which $a \neq 0$), then $a^{-1}f(x)$ is a monoic polynomial. For any roots of f(x) in E, denoted as $\alpha, \beta \in E$, since $a^{-1}f(\alpha) = a^{-1}f(\beta) = 0$, while $a^{-1}f(x)$ is an irreducible monic polynomial in F[x], then it must be the minimal polynomial of α and β . Hence, $F(\alpha) \cong F[x]/(a^{-1}f(x)) \cong F(\beta)$, and an explicit isomorphism is given as $\varphi : F(\alpha) \tilde{\to} F(\beta)$ by:

$$\forall a_0, a_1, ..., a_n \in F, \quad \varphi(a_n \alpha^n + ... + a_1 \alpha + a_0) = a_n \beta^n + ... + a_1 \beta + a_0$$

Now, notice the following information:

- For all $k \in F$, $\varphi(k) = k$ (which φ fixes F, or $\varphi \mid_F = \mathrm{Id}_F$).
- Since E/F is a splitting field of f(x), then E/F is an algebraic extension, hence there exists an algebraic closure \overline{F} of F, such that $F \subseteq E \subseteq \overline{F}$.
- Because $\alpha, \beta \in E$ are roots of $f(x) \in F[x]$, then they're algebraic over F, hence $F(\alpha), F(\beta)$ are algebraic extensions of F, with $F(\alpha), F(\beta) \subseteq E$. With the fact that E/F is algebraic and $F \subseteq F(\alpha) \subseteq E$, then $E/F(\alpha)$ is also an algebraic extension.
- Because $F \subseteq F(\alpha) \subseteq \overline{F}$, while \overline{F}/F is an algebraic extension, then $\overline{F}/F(\alpha)$ is an algebraic extension; then, since \overline{F} is itself algebraically closed, it is also an algebraic closure of $F(\alpha)$.

So, composing the inclusion $F(\beta) \hookrightarrow \overline{F}$, the isomorphism $\varphi: F(\alpha) \tilde{\to} F(\beta)$ can be extended to an embedding $\varphi: F(\alpha) \to \overline{F}$, which is also an F-embedding (since φ fixes F). Furthermore, since $E/F(\alpha)$ is an algebraic extension, while $F(\alpha)$ is embedded into \overline{F} (its own algebraic closure also), then such embedding $\varphi: F(\alpha) \to \overline{F}$ can be extended to an embedding $\sigma: E \to \overline{F}$, such that $\sigma \mid_{F(\alpha)} = \varphi$. So, $\sigma \mid_{F} = \varphi \mid_{F} = \operatorname{Id}_{F}$.

Then, the final step is to claim that $\sigma(E) = E$, or $\sigma \in \operatorname{Aut}(E/F)$ after restricting the codomain.

Since $f(x) \in F[x]$, while σ fixes F, then after extending the F-embedding $\sigma: E \to \overline{F}$ to a canonical ring homomorphism $\overline{\sigma}: E[x] \to \overline{F}[x]$ (which $\overline{\sigma}(a) = \sigma(a)$ and $\overline{\sigma}(x) = x$ for all $a \in E$, so this map is injective), then $\overline{\sigma}(f(x)) = f(x)$ (since all of its coefficients are in F, while σ fixes F). So, since $\sigma(E) \cong E$, while $\overline{\sigma}$ preserves f(x), then $\sigma(E)$ is also a splitting field of f(x) under \overline{F} . However, since \overline{F} is chosen in a way such that $E \subseteq \overline{F}$, then because a splitting field of a polynomial $f(x) \in F[x]$ is unique when chosen a larger algebraic extension of F such that f splits completely, then $E, \sigma(E) \subseteq \overline{F}$ while both being a splitting field of f(x) implies that $E = \sigma(E)$, hence restricting the codomain of σ to the range, we get that $\sigma: E \to E$, which $\sigma \in \operatorname{Aut}(E)$. Finally, since we've proven that $\sigma \mid_F = \operatorname{Id}_F$, then $\sigma \in \operatorname{Aut}(E/F) = G$.

Hence, because $\sigma \in G$, while $\sigma \mid_{F(\alpha)} = \varphi$, and $\varphi(alpha) = \beta$ based on the setup, then $\sigma(\alpha) = \beta$. So, this proves that G acts transitively on the set of all roots of f(x).

(b) Suppose f(x) has no repeated roots, while G acts transitively on the roots, then for any two roots of f(x), denote as $\alpha, \beta \in E$, there exists $\sigma \in G = \operatorname{Aut}(E/F)$, such that $\sigma(\alpha) = \beta$. Then, since $F(\alpha), F(\beta) \subseteq E$ are finite extensions of F, let $\varphi = \sigma \mid_{F(\alpha)}$, then we get the following:

$$\forall a_0, a_1, ..., a_n \in F, \quad \varphi(a_0 + a_1 \alpha + ... + a_n \alpha^n) = \sigma(a_0 + a_1 \alpha + ... + a_n \alpha^n) = a_0 + a_1 \beta + ... + a_n \beta^n$$

This proves that $\varphi(F(\alpha)) = F(\beta)$ (since choice of $a_0, a_1, ..., a_n \in F$ are arbitrary), so after restricting the codomain, $\varphi : F(\alpha) \tilde{\to} F(\beta)$ is in fact an isomorphism.

Now, consider the minimal polynomials $m_{\alpha,F}(x), m_{\beta,F}(x) \in F[x]$: First, since $m_{\alpha,F}(\alpha) = 0$, while all of its coefficients are in F, then we get:

$$\varphi(0) = \varphi(m_{\alpha,F}(\alpha)) = m_{\alpha,F}(\beta) = 0$$

So, this implies that $m_{\beta,F}(x) \mid m_{\alpha,F}(x)$ (since β is a root of $m_{\alpha,F}(x)$). Then, because both $m_{\alpha,F}(x)$ and $m_{\beta,F}(x)$ are irreducible in F[x], then $m_{\beta,F}(x) \mid m_{\alpha,F}(x)$ implies that $m_{\alpha,F}(x) = k \cdot m_{\beta,F}(x)$, where $k \in (F[x])^{\times} = F^{\times}$; but since both polynomials are monic, then k = 1. So, $m_{\beta,F}(x) = m_{\alpha,F}(x)$. This implies that all roots of f(x) must have the same minimal polynomial. So, WLOG, let $m(x) \in F[x]$ be the minimal polynomial of all roots of f(x) in E.

Finally, since all roots of f(x) has minimal polynomial $m(x) \in F[x]$, then $m(x) \mid f(x)$, so $\deg(m) \le \deg(f)$; on the other hand, since E is a splitting field of f, while f is assumed to have no repeated roots, then let $n = \deg(f)$, it implies that there are n distinct roots of f in E. Then, since they're all having m(x) as the minimal polynomial, they're all roots of m(x), so m has at least n distinct roots, showing that $\deg(m) \ge n = \deg(f)$. So, this enforces $\deg(m) = \deg(f)$. And, because $m(x) \mid f(x)$, then $f(x) = k \cdot m(x)$ for some $k \in F$. Which, since $m(x) \in F[x]$ is irreducible (because it's a minimal polynomial of some elements in E), then f(x) as a nonzero constant multiple of m(x) is also irreducible. This finishes the proof.

Question 2 In each part, find the degree of the extension K/F.

- (a) Splitting field $K \subseteq \mathbb{C}$ of $f(x) = x^4 4$ over $F = \mathbb{Q}$. (b) Splitting field $K \subseteq \mathbb{C}$ of $f(x) = x^6 2$ over $F = \mathbb{Q}$.
- (c) Splitting field K of $f(x) = x^{10} 2$ over $F = \mathbb{F}_5$.

Pf:

(a) Notice that $\sqrt{2}, -\sqrt{2}, \sqrt{2}i, -\sqrt{2}i \in \mathbb{C}$ all satisfies $x^4 = 4$, so they're all the roots of $x^4 - 4 \in \mathbb{Q}[x]$ over \mathbb{C} . Hence, the splitting field of $x^4 - 4 \in \mathbb{Q}[x]$ is $K = \mathbb{Q}(\sqrt{2}, -\sqrt{2}, \sqrt{2}i, -\sqrt{2}i)$.

Now, notice that $-\sqrt{2} \in \mathbb{Q}(\sqrt{2})$; on the other hand, since $\sqrt{2}i \in K$, then $i = \frac{\sqrt{2}i}{\sqrt{2}} \in K$, which indicates that the field $\mathbb{Q}(\sqrt{2},i) \subseteq K$.

Furthermore, since $\sqrt{2}$, $-\sqrt{2}$, $\sqrt{2}i$, $-\sqrt{2}i$ can all be generated by $\sqrt{2}$ and i, then we can also deduce that $K = \mathbb{Q}(\sqrt{2}, -\sqrt{2}, \sqrt{2}i, -\sqrt{2}i) \subseteq \mathbb{Q}(\sqrt{2}, i)$. So, we can conclude that $K = \mathbb{Q}(\sqrt{2}, i)$.

Then, consider the relation $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq K = \mathbb{Q}(\sqrt{2}, i)$: Since $\sqrt{2} \notin \mathbb{Q}$, and it satisfies $(\sqrt{2})^2 - 2 = 0$, then it is a root of $x^2 - 2 \in \mathbb{Q}[x]$. Since this polynomial satisfies Eisenstein Criterion for prime p = 2, it is irreducible; and since it is also monic, while $\sqrt{2}$ is its root, then $x^2 - 2$ is the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} . Hence, $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x]/(x^2-2)$, which indicates that $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$.

Also, If consider $\mathbb{Q}(\sqrt{2},i) = \mathbb{Q}(\sqrt{2})(i)$, since $i \notin \mathbb{Q}(\sqrt{2})$, while i satisfies $(i)^2 + 1 = 0$, then it is a root of $x^2 + 1 \in \mathbb{Q}[x]$. Which, since this polynomial has no roots in $\mathbb{Q}(\sqrt{2})$ (since all $q \in \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ has $q^2 > 0$), then it is irreducible over $\mathbb{Q}(\sqrt{2})$. Together with the fact that $x^2 + 1$ is monic, it is the minimal polynomial of i over $\mathbb{Q}(\sqrt{2})$. So, $\mathbb{Q}(\sqrt{2})(i) \cong \mathbb{Q}(\sqrt{2})[x]/(x^2+1)$, which indicates that $[\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})]=2.$

Finally, with the above two degrees of field extension, we get:

$$[K:\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4$$

(b) Notice that for all integer $0 \le k \le 5$ (6 distinct entries), we have $2^{1/6}e^{2\pi i \cdot k/6} \in \mathbb{C}$ satisfies the equation $(2^{1/6}e^{2\pi i \cdot k/6})^6 - 2 = 0$. Then, since these are all distinct (6 distinct roots), while $x^6 - 2 \in \mathbb{Q}[x]$ can have at most 6 distinct roots, then these must be the roots of x^6-2 over \mathbb{C} . Which, since K is the splitting field of x^6-2 , it is precisely the field obtained by \mathbb{Q} adjoining all the above roots.

Now, since $2^{1/6}, 2^{1/6} \cdot e^{2\pi i/6} \in K$, then let $\zeta_6 = e^{2\pi i/6}$, we get that $\zeta_6 = \frac{2^{1/6} \cdot e^{2\pi i/6}}{2^{1/6}} \in K$. Hence, the field $\mathbb{Q}(2^{1/6},\zeta_6)\subseteq K$. On the other hand, each root of x^6-2 over \mathbb{C} is in the form $2^{1/6}\cdot e^{2\pi i\cdot k/6}=2^{1/6}\cdot \zeta_6^k$ for some integer $0 \le k \le 5$, this shows that each root $2^{1/6} \cdot e^{2\pi i \cdot k/6} \in \mathbb{Q}(2^{1/6}, \zeta_6)$, hence $K \subseteq \mathbb{Q}(2^{1/6}, \zeta_6)$, which together with the previous inclusion shows that $K = \mathbb{Q}(2^{1/6}, \zeta_6)$.

Then, consider the relation $\mathbb{Q} \subseteq \mathbb{Q}(2^{1/6}) \subseteq K = \mathbb{Q}(2^{1/6},\zeta_6)$: First, since $2^{1/6} \notin \mathbb{Q}$ is a root of $x^6-2\in\mathbb{Q}[x]$, and this polynomial satisfies the Eisenstein Criterion for prime p=2, then it is irreducible; together with the fact that it is monic, then it must be the minimal polynomial of $2^{1/6}$ over \mathbb{Q} . Hence, $\mathbb{Q}(2^{1/6}) \cong \mathbb{Q}[x]/(x^6-2)$, showing that $[\mathbb{Q}(2^{1/6}):\mathbb{Q}]=6$.

Also, if consider the $\mathbb{Q}(2^{1/6}, \zeta_6) = \mathbb{Q}(2^{1/6})(\zeta_6)$, since $\zeta_6 \notin \mathbb{R}$, while $\mathbb{Q}(w^{1/6}) \subset \mathbb{R}$, then ζ_6 must have its minimal polynomial with degree ≥ 2 ; on the other hand, given the polynomial $x^2 - x + 1 \in \mathbb{Q}(2^{1/6})[x]$, using quadratic formula, we get the roots are given by:

$$\alpha = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{-3}}{2}$$

Which, since $\zeta_6 = e^{2\pi i/6} = \frac{1+\sqrt{3}}{2}$, then ζ_6 is a root of $x^2 - x + 1$. Then, let $m(x) \in \mathbb{Q}(2^{1/6})[x]$ be the minimal polynomial of ζ_6 over $\mathbb{Q}(2^{1/6})$, ζ_6 being a root of $x^2 - x + 1$ implies $m(x) \mid (x^2 - x + 1)$, which $\deg(m) \leq 2$; on the other hand, we know m(x) is proven to have degree ≥ 2 , this enforces $\deg(m) = 2$. Which, m(x) divides $x^2 - x + 1$, while $x^2 - x + 1$ is monic, indicates that $m(x) = x^2 - x + 1$. So, $\mathbb{Q}(2^{1/6})(\zeta_6) \cong \mathbb{Q}(2^{1/6})[x]/(m(x)) = \mathbb{Q}(2^{1/6})[x]/(x^2 - x + 1)$, which shows that $[\mathbb{Q}(2^{1/6}, \zeta_6) : \mathbb{Q}(2^{1/6})] = 2$.

Finally, combine all the degree of extensions from above, we get:

$$[K:\mathbb{Q}] = [\mathbb{Q}(2^{1/6},\zeta_6):\mathbb{Q}(2^{1/6})] \cdot [\mathbb{Q}(2^{1/6}):\mathbb{Q}] = 2 \cdot 6 = 12$$

(c) Given $f(x) = x^{10} - 2$ over \mathbb{F}_5 . Notice that within \mathbb{F}_5 , the following equality is true:

$$2^5 = (2^2)^2 \cdot 2 = 4^2 \cdot 2 = (16 \mod 5) \cdot 2 = 1 \cdot 2 = 2$$

Hence, with the fact that $\mathbb{F}_5[x]$ has characteristic 5, using Frobenius Endomorphism, we get:

$$x^{10} - 2 = (x^2)^5 - 2^5 = (x^2 - 2)^5$$

Hence, all the roots of $x^{10} - 2$ are precisely the roots of $x^2 - 2$, which K as a splitting field of $x^{10} - 2$, is the same field as \mathbb{F}_5 adjoining the roots of $x^2 - 2$ that's within K, which is also a splitting field of $x^2 - 2$. Hence, it suffices to show the degree of any splitting field K of $x^2 - 2$ as a field extension of \mathbb{F}_5 .

Now, notice that within \mathbb{F}_5 , $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 = (9 \mod 5) = 4$, and $4^2 = (16 \mod 5) = 1$. So, since no element in \mathbb{F}_5 satisfies $x^2 = 2$, then $x^2 - 2 \in \mathbb{F}_5[x]$ has no roots in \mathbb{F}_5 , showing that it is irreducible over \mathbb{F}_5 . This shows that the splitting field $K \neq \mathbb{F}_5$, which $[K : \mathbb{F}_5] \geq 2$.

Then, since the field extension $K' = \mathbb{F}_5[x]/(x^2-2)$ contains a root of $x^2-2 \in \mathbb{F}_5[x] \subset K'[x]$, namely the element $\theta = \overline{x} \in K'$ (and $[K' : \mathbb{F}_5] = 2$). Then, x^2-2 has a linear factor in K'[x], showing that it splits completely over K'. So, if consider the splitting field of x^2-2 , $K'' \subseteq K'$, then we know $[K'' : \mathbb{F}_5] \leq [K' : \mathbb{F}_5] = 2$.

Which, since all splitting fields of $x^2 - 2 \in \mathbb{F}_5[x]$ are all isomorphic, then $K \cong K''$, which shows that $[K : \mathbb{F}_5] = [K'' : \mathbb{F}_5] \leq 2$. Which, with both inequalities of $[K : \mathbb{F}_5]$ above, we can conclude the following:

$$[K : \mathbb{F}_5] = 2$$

3 (not done)

Question 3 Let L be the splitting field of $f(x) = x^3 + x + 1$ over \mathbb{Q} contained in \mathbb{C} . Prove that $Aut(L/\mathbb{Q}) \cong S_3$.

Pf:

Question 4 Calculate the splitting field of $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$.

Pf:

First, since $0^3 + 0 + 1 = 1 \neq 0$, and $1^3 + 1 + 1 = 1 + 1 + 1 = 1 \neq 0$, then $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$ has no roots in \mathbb{F}_2 . Because it is a degree 3 polynomial, having no roots implies that it is irreducible over \mathbb{F}_2 .

Now, consider the field $K = \mathbb{F}_2[x]/(x^3+x+1)$: Taken $\theta = \overline{x} \neq 0$, then it satisfies $\overline{x}^3 + \overline{x} + 1 = \overline{x}^3 + x + 1 = 0$. Hence, for the same polynomial $f(y) = y^3 + y + 1 \in \mathbb{F}_2[y] \subset K[y]$, the element $\theta \in K$ is a root. This implies that $(y - \theta) \in K[x]$ is a linear factor of f(y), so there exists $\alpha, \beta \in K$, such that the following factorization holds:

$$f(y) = y^3 + y + 1 = (y - \theta)(y^2 + \alpha y + \beta) = y^3 + (-\theta + \alpha)y^2 + (-\theta\alpha + \beta)y + (-\theta)\beta$$

Which, solving for coefficients, the constant coefficient is $1 = (-\theta)\beta = \theta\beta$, which indicates that $\beta = \theta^{-1} \in K$. Going deeper, we know that the following equation holds:

$$\theta^3 + \theta + 1 = \overline{x}^3 + \overline{x} + 1 = \overline{x^3 + x + 1} = 0, \implies \theta^3 + \theta = -1 = 1$$

$$\implies \theta(\theta^2 + 1) = 1 \implies \theta^{-1} = \theta^2 + 1$$

So, we can conclude that $\beta = \theta^2 + 1 \in K$.

On the other hand, if solving for the coefficient of y^2 , we get that $0 = (-\theta) + \alpha$, which $\alpha = \theta$. Hence, the first factorization is given by:

$$f(y) = y^3 + y + 1 = (y - \theta)(y^2 + \alpha y + \beta) = (y - \theta)(y^2 + \theta y + (\theta^2 + 1))$$

Now, consider the element $\theta^2 \in K$: If we plug it into the polynomial $y^2 + \theta y + (\theta^2 + 1) \in K[x]$, we get:

$$(\theta^2)^2 + \theta \cdot \theta^2 + (\theta^2 + 1) = \theta^3 \cdot \theta + \theta^3 \cdot 1 + (\theta + 1)^2 = \theta^3(\theta + 1) + (\theta + 1)^2 = (\theta^3 + \theta + 1)(\theta + 1) = 0$$

(Note: the second equality is true with $(\theta^2 + 1) = (\theta + 1)^2$ is because K/\mathbb{F}_2 is a characteristic-2 field, and the last equality is true since θ is a root of $y^3 + y + 1 \in K[x]$).

This shows that $\theta^2 \in K$ is a root of $y^2 + \theta y + (\theta^2 + 1) \in K[x]$, hence $(y - \theta^2)$ is a linear factor of it, which there exists $\gamma \in K$, such that the following holds:

$$y^{2} + \theta y + (\theta^{2} + 1) = (y - \theta^{2})(y - \gamma)$$

So, within K, $f(y) = y^3 + y + 1$ can be factored as:

$$f(y) = y^3 + y + 1 = (y - \theta)(y + \theta y + (\theta^2 + 1)) = (y - \theta)(y - \theta^2)(y - \gamma)$$

Hence, f(y) splits completely over K.

Finally, let $K' \subseteq K$ be the splitting field of f(y) under K. Then, let $\alpha \in K'$ be the root of f(y), we know $\mathbb{F}_2(\alpha) \subseteq K'$, which since $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$ is proven to be irreducible, while being monic, then $f(\alpha) = 0$ implies that f(x) is the minimal polynomial of α over \mathbb{F}_2 . Hence, $\mathbb{F}_2(\alpha) \cong \mathbb{F}_2[x]/(x^3 + x + 1)$, which shows that $[F(\alpha) : \mathbb{F}_2] = 3$. However, since $K = \mathbb{F}_2[x]/(x^3 + x + 1)$, then $[K : \mathbb{F}_2] = 3$. So, since $\mathbb{F}_2(\alpha) \subseteq K' \subseteq K$, this enforces $\mathbb{F}_2(\alpha) = K$ (since they have the same dimension with base field \mathbb{F}_2), which further enforces K' = K. So, $K = \mathbb{F}_2[x]/(x^3 + x + 1)$ is a splitting field of $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$.

Question 5 Let $f(x) \in \mathbb{F}_p[x]$ be an irreducible polynomial of degree 3. Prove that f(x) is irreducible over \mathbb{F}_{p^5} .

Pf:

Since $|\mathbb{F}_{p^5}| = p^5$, then as a field extension of \mathbb{F}_p , we must have $[\mathbb{F}_{p^5} : \mathbb{F}_p] = 5$ (Note: Given any finite extension K/\mathbb{F}_p , if $[K : \mathbb{F}_p] = k \in \mathbb{N}$, then the number of elements $|K| = p^k$).

Now, given $f(x) \in \mathbb{F}_p[x]$ that is irreducible with degree 3, we'll prove by contradiction that it is irreducible over \mathbb{F}_{p^5} . Suppose the contrary that it is reducible over \mathbb{F}_{p^5} , then since it is degree 3, being reducible in \mathbb{F}_{p^5} implies there exists a root in \mathbb{F}_{p^5} .

Let $\alpha \in \mathbb{F}_{p^5}$ be a root of f(x), then since $f(x) \in \mathbb{F}_p[x]$ is irreducible, and WLOG can assume it is monic (by multiplying by a^{-1} , where a is the leading coefficient of f), so we can treat f(x) as the minimal polynomial of α over \mathbb{F}_p . Hence, $\mathbb{F}_p[x]/(f(x)) \cong \mathbb{F}_p(\alpha) \subseteq \mathbb{F}_{p^5}$.

However, since f(x) has degree 3, then $[\mathbb{F}_p(\alpha):\mathbb{F}_p]=3$ based on the fact that $\mathbb{F}_p[x]/(f(x))\cong\mathbb{F}_p(\alpha)$; however, since $\mathbb{F}_p\subseteq\mathbb{F}_p(\alpha)\subseteq\mathbb{F}_{p^5}$, while $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ and $\mathbb{F}_{p^5}/\mathbb{F}_p$ are proven to be finite extensions from above, then we get the following:

$$5 = [\mathbb{F}_{p^5} : \mathbb{F}_p] = [\mathbb{F}_{p^5} : \mathbb{F}_p(\alpha)] \cdot [\mathbb{F}_p(\alpha) : \mathbb{F}_p] = [\mathbb{F}_{p^5} : \mathbb{F}_p(\alpha)] \cdot 3$$

This indicates that $3 \mid 5$, yet this is a contradiction since 3 and 5 are coprime. So, our assumption is false, f(x) must be irreducible over \mathbb{F}_{p^5} .