

COMPUTER VISION LECTURE 17 – TWO-VIEW GEOMETRY (2)

Prof. Dr. Francesco Maurelli 2018-11-06

Courtesy of Ioannis Gkioulekas, CMU

A generic projection matrix

Intrinsic Assumptions

- Optical center at (u₀, v₀)
- Rectangular pixels
- Small skew

Extrinsic Assumptions

- Allow rotation
- Camera at (t_x,t_y,t_z)

$$P' = K \begin{bmatrix} R & \overline{t} \end{bmatrix} P \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

A generic projection matrix

Intrinsic Assumptions

- Optical center at (u₀, v₀)
 Allow rotation
- Rectangular pixels
- Small skew

Extrinsic Assumptions

- Camera at (t_x,t_y,t_z)

$$P' = K \begin{bmatrix} R & \overline{t} \end{bmatrix} P \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Degrees of freedom??

A generic projection matrix

Intrinsic Assumptions

- Optical center at (u₀, v₀)
- Rectangular pixels
- Small skew

Extrinsic Assumptions

- Allow rotation
- Camera at (tx,ty,tz)

$$P' = K \begin{bmatrix} R & \overline{t} \end{bmatrix} P \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & P & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Degrees of freedom??

Pose estimation

3D Pose Estimation

(Resectioning, Geometric Calibration, Perspective n-Point)

Given a set of matched points

$$\{\mathbf{X}_i, oldsymbol{x}_i\}$$

point in 3D space

point in the image

and camera model

$$oldsymbol{x} = oldsymbol{f}(\mathbf{X}; oldsymbol{p}) = \mathbf{P} \mathbf{X}$$

projection parameters Camera matrix

Find the (pose) estimate of

What is Pose Estimation?

What is Pose Estimation?

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
What are the unknowns?

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = \left[egin{array}{ccc} --- & oldsymbol{p}_1^ op & --- \ --- & oldsymbol{p}_2^ op & --- \ --- & oldsymbol{p}_3^ op & --- \end{array}
ight] \left[egin{array}{c} x \ X \ | \end{array}
ight]$$

Heterogeneous coordinates

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

(non-linear correlation between coordinates)

How can we make these relations linear?

How can we make these relations linear?

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

Make them linear with algebraic manipulation...

$$\boldsymbol{p}_2^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} y' = 0$$

$$\boldsymbol{p}_1^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} x' = 0$$

Now you can setup a system of linear equations with multiple point correspondences

$$egin{aligned} m{p}_2^{ op} m{X} - m{p}_3^{ op} m{X} y' &= 0 \ \ m{p}_1^{ op} m{X} - m{p}_3^{ op} m{X} x' &= 0 \end{aligned}$$

In matrix form ...
$$\begin{bmatrix} m{X}^{ op} & m{0} & -x'm{X}^{ op} \\ m{0} & m{X}^{ op} & -y'm{X}^{ op} \end{bmatrix} \begin{vmatrix} m{p}_1 \\ m{p}_2 \\ m{p}_3 \end{vmatrix} = m{0}$$

For N points ...
$$\begin{bmatrix} \boldsymbol{X}_1^\top & \boldsymbol{0} & -x'\boldsymbol{X}_1^\top \\ \boldsymbol{0} & \boldsymbol{X}_1^\top & -y'\boldsymbol{X}_1^\top \\ \vdots & \vdots & \vdots \\ \boldsymbol{X}_N^\top & \boldsymbol{0} & -x'\boldsymbol{X}_N^\top \\ \boldsymbol{0} & \boldsymbol{X}_N^\top & -y'\boldsymbol{X}_N^\top \end{bmatrix} \begin{bmatrix} \boldsymbol{p}_1 \\ \boldsymbol{p}_2 \\ \boldsymbol{p}_3 \end{bmatrix} = \boldsymbol{0}$$

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & -y'oldsymbol{X}_N^ op \ \end{array}
ight] egin{array}{cccc} oldsymbol{x} = \begin{bmatrix} oldsymbol{p}_1 \\ oldsymbol{p}_2 \\ oldsymbol{p}_3 \end{bmatrix} \\ oldsymbol{0} & oldsymbol{X}_N^ op & -y'oldsymbol{X}_N^ op \ \end{array}
ight]$$

SVD!

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{x}_N^ op & -y'oldsymbol{X}_N^ op \ oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op \$$

Solution **x** is the column of **V** corresponding to smallest singular value of

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$$

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{x}_N^ op & -y'oldsymbol{X}_N^ op \ oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op \$$

Equivalently, solution **x** is the Eigenvector corresponding to smallest Eigenvalue of

$$\mathbf{A}^{ op}\mathbf{A}$$

Intrinsic / Extrinsic???

Triangulation

Triangulation

Given a set of (noisy) matched points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$

and camera matrices

$$\mathbf{P}, \mathbf{P}'$$

Estimate the 3D point

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

(homorogeneous coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

(inhomogeneous coordinate)

Same ray direction but differs by a scale factor

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight] \left[egin{array}{c} X \ Y \ Z \ 1 \end{array}
ight]$$

How do we solve for unknowns in a similarity relation?

Remove scale factor, convert to linear system and solve with SVD!

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$oldsymbol{a} imesoldsymbol{b}=\left[egin{array}{c} a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{array}
ight]$$

cross product of two vectors in the same direction is zero

$$\boldsymbol{a} \times \boldsymbol{a} = 0$$

remember this!!!

$$\mathbf{c} \cdot \mathbf{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$

Same direction but differs by a scale factor

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

Cross product of two vectors of same direction is zero (this equality removes the scale factor)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{ccc} --- & oldsymbol{p}_1^ op & --- \ --- & oldsymbol{p}_2^ op & --- \ --- & oldsymbol{p}_3^ op & --- \end{array}
ight] \left[egin{array}{c} x \ X \ \end{array}
ight]$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight]$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{ccc} --- & oldsymbol{p}_1^ op & --- \ --- & oldsymbol{p}_2^ op & --- \ --- & oldsymbol{p}_3^ op & --- \end{array}
ight] \left[egin{array}{c} X \ X \ \end{array}
ight]$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight]$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

$$\left[egin{array}{c} x \ y \ 1 \end{array}
ight] imes \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} y oldsymbol{p}_3^ op oldsymbol{X} - oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_1^ op oldsymbol{X} - x oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight]$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

$$\left[egin{array}{c} y oldsymbol{p}_3^ op oldsymbol{X} - oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_1^ op oldsymbol{X} - x oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

$$\left[egin{array}{c} y oldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - x oldsymbol{p}_3^ op \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

$$\mathbf{A}_i X = \mathbf{0}$$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

Concatenate the 2D points from both images

$$\left[egin{array}{c} yoldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - xoldsymbol{p}_3^ op \ y'oldsymbol{p}_3'^ op - oldsymbol{p}_2'^ op \ oldsymbol{p}_1'^ op - x'oldsymbol{p}_3'^ op \ oldsymbol{p}_1'^ op \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

sanity check! dimensions?

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$$\left[egin{array}{c} yoldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - xoldsymbol{p}_3^ op \ y'oldsymbol{p}_3'^ op - oldsymbol{p}_2'^ op \ oldsymbol{p}_1'^ op - x'oldsymbol{p}_3'^ op \ oldsymbol{p}_1'^ op \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

Recall: Total least squares

(**Warning:** change of notation. x is a vector of parameters!)

$$E_{ ext{TLS}} = \sum_i (m{a}_i m{x})^2 \ = \|m{A}m{x}\|^2 \qquad ext{(matrix form)}$$

minimize
$$\|{m A}{m x}\|^2$$
 subject to $\|{m x}\|^2=1$ minimize $\frac{\|{m A}{m x}\|^2}{\|{m x}\|^2}$ (Rayleigh quotient)

Solution is the eigenvector corresponding to smallest eigenvalue of

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}$$

Tie tiny threads on HERB and pin them to your eyeball

What would it look like?

You see points on HERB

You see points on HERB

Epipolar geometry

Epipolar geometry

Epipolar constraint

Epipolar constraint

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Right image

Want to avoid search over entire image

Epipolar constraint reduces search to a single line

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Right image

Want to avoid search over entire image

Epipolar constraint reduces search to a single line

The essential matrix

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Motivation

The Essential Matrix is a 3 x 3 matrix that encodes **epipolar geometry**

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Epipolar Line

$$ax+by+c=0$$
 in vector form $egin{bmatrix} a \ b \ c \end{bmatrix}$

If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

$$\boldsymbol{x}^{\top}\boldsymbol{l} = ?$$

Epipolar Line

$$ax+by+c=0$$
 in vector form $oldsymbol{l}=\left[egin{array}{c}a\b\\b\end{array}
ight]$

If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

$$\boldsymbol{x}^{\top}\boldsymbol{l} = 0$$

Recall: Dot Product

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

dot product of two orthogonal vectors is zero

so if $oldsymbol{x}^{ op}oldsymbol{l}=0$ and $oldsymbol{\mathbf{E}}oldsymbol{x}=oldsymbol{l}'$ then

$$\boldsymbol{x}'^{\top}\mathbf{E}\boldsymbol{x} = ?$$

so if $oldsymbol{x}^{ op}oldsymbol{l}=0$ and $oldsymbol{\mathbf{E}}oldsymbol{x}=oldsymbol{l}'$ then

$$\boldsymbol{x}'^{\top}\mathbf{E}\boldsymbol{x} = 0$$

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

Essential matrix maps a **point** to a **line**

$$oldsymbol{x}' = \mathbf{H} oldsymbol{x}$$

Homography maps a **point** to a **point**

Where does the Essential matrix come from?

$$\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t})$$

$$\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t})$$

Does this look familiar?

$$\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t})$$

Camera-camera transform just like world-camera transform

These three vectors are coplanar

 $oldsymbol{x},oldsymbol{t},oldsymbol{x}'$

If these three vectors $~m{x},m{t},m{x}'~$ are coplanar, then

$$\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x}) = ?$$

$$\boldsymbol{x}^\top(\boldsymbol{t}\times\boldsymbol{x})=0$$

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

$$(\boldsymbol{x} - \boldsymbol{t})^{\mathsf{T}} (\boldsymbol{t} \times \boldsymbol{x}) = ?$$

$$(\boldsymbol{x} - \boldsymbol{t})^{\top} (\boldsymbol{t} \times \boldsymbol{x}) = 0$$

rigid motion coplanarity

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x}) = 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) (oldsymbol{t} imes oldsymbol{x}) = 0 \end{aligned}$$

Cross product

$$oldsymbol{a} imesoldsymbol{b}=\left[egin{array}{c} a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{array}
ight]$$

Can also be written as a matrix multiplication

$$m{a} imes m{b} = [m{a}]_{ imes} m{b} = \left[egin{array}{ccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight] \left[egin{array}{ccc} b_1 \ b_2 \ b_3 \end{array}
ight]$$

Skew symmetric

rigid motion coplanarity $oldsymbol{x}' = \mathbf{R}(oldsymbol{x} - oldsymbol{t}) \qquad (oldsymbol{x} - oldsymbol{t})^ op (oldsymbol{t} imes oldsymbol{x}) = 0$

$$(\boldsymbol{x}'^{\top}\mathbf{R})(\boldsymbol{t}\times\boldsymbol{x})=0$$

$$(\boldsymbol{x}'^{\top}\mathbf{R})([\mathbf{t}_{\times}]\boldsymbol{x}) = 0$$

rigid motion coplanarity $m{x}' = \mathbf{R}(m{x} - m{t}) \qquad (m{x} - m{t})^{ op} (m{t} imes m{x}) = 0$ $(m{x}'^{ op} \mathbf{R}) (m{t} imes m{x}) = 0$ $(m{x}'^{ op} \mathbf{R}) ([m{t}_{ imes}] m{x}) = 0$ $m{x}'^{ op} (m{R}[m{t}_{ imes}]) m{x} = 0$

rigid motion coplanarity $\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t}) \qquad (\boldsymbol{x} - \boldsymbol{t})^{\top} (\boldsymbol{t} \times \boldsymbol{x}) = 0$ $(\boldsymbol{x}'^{\top}\mathbf{R})(\boldsymbol{t}\times\boldsymbol{x})=0$ $(\boldsymbol{x}'^{\top}\mathbf{R})([\mathbf{t}_{\times}]\boldsymbol{x}) = 0$ $\boldsymbol{x}'^{\top}(\mathbf{R}[\mathbf{t}_{\times}])\boldsymbol{x} = 0$ $\mathbf{x}'^{\perp}\mathbf{E}\mathbf{x}=0$

rigid motion

coplanarity

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x})^{ op} (oldsymbol{t} imes oldsymbol{x}) &= 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) ([\mathbf{t}_{ imes}] oldsymbol{x}) = 0 \ & oldsymbol{x}'^{ op} (\mathbf{R}[\mathbf{t}_{ imes}]) oldsymbol{x} = 0 \end{aligned}$$

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Essential Matrix

[Longuet-Higgins 1981]

properties of the E matrix

Longuet-Higgins equation

$$\mathbf{x}'^{\top} \mathbf{E} \mathbf{x} = 0$$

properties of the E matrix

Longuet-Higgins equation

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$l' = \mathbf{E} x$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$oldsymbol{l} = \mathbf{E}^T oldsymbol{x}'$$

properties of the E matrix

Longuet-Higgins equation

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$l' = \mathbf{E} x$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$\boldsymbol{l} = \mathbf{E}^T \boldsymbol{x}'$$

Epipoles

$$e'^{\top}\mathbf{E} = \mathbf{0}$$

$$\mathbf{E}e=\mathbf{0}$$

points in normalized <u>camera</u> coordinates...

Recall: Epipolar constraint

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

How do you generalize to uncalibrated cameras?

The fundamental matrix

The Fundamental matrix is a **generalization** of the Essential matrix, where the assumption of calibrated cameras is removed

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}'} = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$ camera point point

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}'} = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$ camera point point

Writing out the epipolar constraint in terms of image coordinates

$$\mathbf{x}'^{\top} \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1} \mathbf{x} = 0$$

 $\mathbf{x}'^{\top} (\mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}) \mathbf{x} = 0$
 $\mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0$

Same equation works in image coordinates!

$$\boldsymbol{x}'^{\top} \mathbf{F} \boldsymbol{x} = 0$$

it maps pixels to epipolar lines

properties of the E matrix

Longuet-Higgins equation

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\top}\boldsymbol{l} = 0$$

$$l' = \mathbf{E}x$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$oldsymbol{l} = oldsymbol{\Xi}^T oldsymbol{x}'$$

Epipoles

$$e'^{\top} \mathbb{E} = \mathbf{0}$$

$$\mathbf{E}e=0$$

Breaking down the fundamental matrix

$$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$$

 $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\times}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix

$$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$$

 $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\times}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

The 8-point algorithm

Assume you have M matched *image* points

$$\{\boldsymbol{x_m}, \boldsymbol{x'_m}\}$$
 $m = 1, \dots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Assume you have M matched *image* points

$$\{\boldsymbol{x_m}, \boldsymbol{x_m'}\}$$
 $m = 1, \dots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Assume you have M matched *image* points

$$\{\boldsymbol{x_m}, \boldsymbol{x'_m}\}$$
 $m = 1, \dots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Set up a homogeneous linear system with 9 unknowns

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

ONE correspondence gives you ONE equation

$$x_m x'_m f_1 + x_m y'_m f_2 + x_m f_3 + y_m x'_m f_4 + y_m y'_m f_5 + y_m f_6 + x'_m f_7 + y'_m f_8 + f_9 = 0$$

Set up a homogeneous linear system with 9 unknowns

$$\begin{bmatrix} x_1x'_1 & x_1y'_1 & x_1 & y_1x'_1 & y_1y'_1 & y_1 & x'_1 & y'_1 & 1 \\ \vdots & \vdots \\ x_Mx'_M & x_My'_M & x_M & y_Mx'_M & y_My'_M & y_M & x'_M & y'_M & 1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \\ f_9 \end{bmatrix} = \mathbf{0}$$

How many equations do you need?

Each point pair (according to epipolar constraint) contributes only one scalar equation

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

How do you solve a homogeneous linear system?

$$\mathbf{A}X = \mathbf{0}$$

How do you solve a homogeneous linear system?

$$\mathbf{A}X = \mathbf{0}$$

Total Least Squares

minimize
$$\|\mathbf{A} x\|^2$$

subject to
$$\|oldsymbol{x}\|^2=1$$

How do you solve a homogeneous linear system?

$$\mathbf{A}X = \mathbf{0}$$

Total Least Squares

minimize $\|\mathbf{A}oldsymbol{x}\|^2$ subject to $\|oldsymbol{x}\|^2=1$

SVD!

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

How do we do this?

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

Enforcing rank constraints

Problem: Given a matrix **F**, find the matrix **F'** of rank k that is closest to **F**,

$$\min_{F'} ||F - F'||^2$$

$$\operatorname{rank}(F') = k$$

Solution: Compute the singular value decomposition of **F**,

$$F = U\Sigma V^T$$

Form a matrix Σ ' by replacing all but the k largest singular values in Σ with 0.

Then the problem solution is the matrix **F**' formed as,

$$F' = U\Sigma'V^T$$

Example

epipolar lines

$$\mathbf{F} = \begin{bmatrix} -0.00310695 & -0.0025646 & 2.96584 \\ -0.028094 & -0.00771621 & 56.3813 \\ 13.1905 & -29.2007 & -9999.79 \end{bmatrix}$$

$$m{x} = \left[egin{array}{c} 343.53 \\ 221.70 \\ 1.0 \end{array}
ight]$$

$$m{l}' = \mathbf{F} m{x}$$

$$= \begin{bmatrix} 0.0295 \\ 0.9996 \\ -265.1531 \end{bmatrix}$$

$$m{l}' = \mathbf{F} m{x}$$

$$= \left[egin{array}{c} 0.0295 \\ 0.9996 \\ -265.1531 \end{array} \right]$$

Where is the epipole?

$$\mathbf{F}e = \mathbf{0}$$

The epipole is in the right null space of **F**

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

 $\mathbf{F}e = \mathbf{0}$

The epipole is in the right null space of **F**

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

SVD!

eigenvectors u =

eigenvalue

eigenvectors

u =

-0.9660

eigenvalue

$$>> [u,d] = eigs(F' * F)$$

eigenvectors

u =

eigenvalue

Eigenvector associated with smallest eigenvalue

$$\Rightarrow$$
 [u,d] = eigs(F' * F)

eigenvectors

u =

1.0000

0.0032

-0.9660

-0.2586

-0.0005

eigenvalue

References

Basic reading:

- Szeliski textbook, Sections 7.1, 7.2, 11.1.
- Hartley and Zisserman, Chapters 9, 11, 12.