

KHAI PHÁ DỮ LIỆU Phân lớp với Cây quyết định

Phan Xuân Hiếu

Bộ môn CHTTT & KTLab, Khoa Công nghệ thông tin, Trường Đại học Công nghệ, ĐHQG HN

Email: hieupx@vnu.edu.vn

URL: http://uet.vnu.edu.vn/~hieupx

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Lý thuyết thông tin (information theory)

- Lý thuyết thông tin là một phần của
 - Toán ứng dụng (applied mathematics)
 - Kỹ nghệ điện-điện tử
 - Khoa học máy tính & kỹ nghệ truyền thông
- Có vai trò quan trọng trong:
 - Lượng hóa thông tin
 - Xử lý tín hiệu, truyền thông tin
 - Nén dữ liệu (zip; mp3, jpeg, ...)
 - Mã hóa kênh truyền
 - Suy diễn thống kê
 - Xử lý ngôn ngữ tự nhiên
 - □ Trò chơi & cá cược
 - .V.V.

Claude Shannon (1916-2001) A Mathematical Theory of Communication,1948 Bell Labs, MIT, IAS

Ví dụ về truyền thông tin (theo bit)

- Quan sát một biến ngẫu nhiên X nhận 1 trong 4 giá trị A, B, C, D:
 - P(X = A) = P(X = B) = P(X = C) = P(X = D) = 0.25
 - □ Ví dụ một chuỗi thông tin theo P(X): BAACBADCDADDDA...
- Truyền dãy dữ liệu trên qua một kênh truyền mã hóa nhị phân (bit)
 - \triangle A = 00, B = 01, C = 10, D = 11
 - Dữ liệu: 01000010010011101100111111100...
- Cần trung bình bao nhiêu bit để truyền một đơn vị thông tin theo phân phối P(X) như trên?
 - 2 bit
- Số lượng bit trung bình nhỏ nhất đề truyền dữ liệu có phụ thuộc vào phân phối của dữ liệu không?
 - □ Có

Ví dụ: một phân phối khác

- Ví dụ, P(X) bây giờ:
 - P(X = A) = 0.5
 - P(X = B) = 0.3
 - P(X = C) = 0.125
 - P(X = D) = 0.075
- Mã hóa:
 - □ A: 0, B: 10, C: 110, D: 111
- Số lượng bit trung bình để truyền dữ liệu theo P(X):
 - $1 \times 0.5 + 2 \times 0.3 + 3 \times 0.125 + 3 \times 0.075 = 1.7$ (bit)
 - Xem xét biểu thức và giá trị sau?

Con số này có ý nghĩa gì?

 $-(0.5\log_2 0.5 + 0.3\log_2 0.3 + 0.125\log_2 0.125 + 0.075\log_2 0.075) =$ **1.67636**

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - □ Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Entropy

- Biến ngẫu nhiên X:
 - \Box Có không gian mẫu $\Omega = \{x_1, x_2, ..., x_m\}$ với xác suất

$$P(X = x_1) = p_1$$
, $P(X = x_2) = p_2$, ..., $P(X = x_m) = p_m$

Số bit trung bình nhỏ nhất để truyền một đơn vị dữ liệu theo phân phối P(X):

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$
$$= -\sum_{i=1}^m p_i \log_2 p_i$$

$$0 \le H(X) \le \log_2 m$$

- Giá trị entropy:
 - Lớn: phân phối P(X) gần dạng phân phối đồng nhất (uniform distribution)
 - Nhỏ: phân phối P(X) xa dạng phân phối đồng nhất

Entropy: một cách trực giác

Entropy

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Entropy với điều kiện cụ thể: H(Y|X = v)

X	Υ
Ngành	Thích chơi game
Toán	Có
Lịch sử	Không
CNTT	Có
Toán	Không
Toán	Không
CNTT	Có
Lịch sử	Không
Toán	Có

Quy ước:

$$0\log_2 0 = 0$$

Từ bảng dữ liệu bên ta có:

$$P(Y = Co) = 0.5$$

$$\square$$
 P(X = Toán & Y = Không) = 0.25

$$P(X = Toán) = 0.5$$

$$P(Y = Co | X = Lich sử) = 0$$

Các entropy H(X) và H(Y):

$$\Box$$
 H(X) = -0.5log₂0.5 - 0.25log₂0.25 - 0.25log₂0.25 = 1.5

$$H(Y) = -0.5\log_2 0.5 - 0.5\log_2 0.5 = 1$$

Entropy điều kiện: H(Y|X = v):

- H(Y|X = v): là entropy của Y đối với những hàng dữ liệu mà ở đó giá trị của X là v.
- \Box H(Y|X = Toán) = -0.5log₂0.5 0.5log₂0.5 = 1
- \Box H(Y|X = Lịch sử) = $-0\log_2 0 1\log_2 1 = 0$
- \Box H(Y|X = CNTT) = $-1\log_2 1 0\log_2 0 = 0$

Entropy điều kiện: H(Y|X)

Χ	Υ
Ngành	Thích chơi game
Toán	Có
Lịch sử	Không
CNTT	Có
Toán	Không
Toán	Không
CNTT	Có
Lịch sử	Không
Toán	Có

 H(Y|X) = trung bình các giá trị entropy điều kiện cụ thể H(Y|X = v)

Bằng số bít trung bình nhỏ nhất để truyền Y nếu hai bên (gửi và nhận) đều biết X

$$H(Y | X) = \sum_{i} P(X = v_i) H(Y | X = v_i)$$

V _i	$P(X = v_i)$	$H(Y X = v_i)$
Toán	0.5	1
Lịch sử	0.25	0
CNTT	0.25	0

Do đó:

$$H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5$$

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Information Gain: IG(Y|X)

Υ
Thích chơi game
Có
Không
Có
Không
Không
Có
Không
Có

• Định nghĩa:

IG(Y|X) là số lượng bit trung bình có thể tiết kiệm khi truyền Y mà hai đầu (gửi và nhận) đã biết X.

Như vậy:

$$IG(Y|X) = H(Y) - H(Y|X)$$

Ví dụ (dữ liệu hình bên):

$$H(Y) = 1$$

$$H(Y|X) = 0.5$$

$$IG(Y|X) = 1 - 0.5 = 0.5$$

Một ví dụ khác về Information Gain

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Phát biểu lại bài toán phân lớp

- Phát biểu lại bài toán phân lớp:
 - □ **C** = {c₁, c₂, ..., c_K}: tập K lớp
 - $\mathbf{X} = \{\mathbf{x}_i\}$ (i=1,2,...) là không gian các đối tượng cần phân lớp
 - □ Xây dựng một ánh xạ $f: \mathbf{X} \rightarrow \mathbf{C}$
 - □ Ánh xạ f được gọi là mô hình phân lớp (classification model, classifier)
- Xây dựng mô hình f bằng học giám sát
 - □ $\mathbf{D} = \{(\mathbf{x}^1, c^1), (\mathbf{x}^2, c^2), ..., (\mathbf{x}^N, c^N)\}$ trong đó $\mathbf{x}^n \in \mathbf{X}, c^n \in \mathbf{C}$ là tập dữ liệu huấn luyện (training data)
 - Huấn luyện mô hình f dựa trên tập huấn luyện D sao cho f phân lớp chính xác nhất có thể
- Mô hình f có thể xây dựng theo:
 - Phương pháp Naïve Bayes
 - Phương pháp cây quyết định (decision tree) trong phần này
 - Phương pháp cực đại hóa entropy (maximum entropy classification)
 - Phương pháp máy vector hỗ trợ (support vector machines)
 - .V.V.

Môt hình cây quyết định (decision tree)

Ross Quinlan
Induction of Decision
Trees
Machine Learning 1986

Cấu trúc cây & các tính chất

- Nốt gốc của cây (root node):
 - Một thuộc tính điều kiện sẽ được chọn làm nốt gốc
 - Các nhánh từ nốt gốc tương ứng với các giá trị có thể của thuộc tính này
 - Nốt gốc bao hàm toàn bộ các đối tượng trong dữ liệu huấn luyện D
- Các nốt trong (internal nodes):
 - Mỗi nốt trong của cây có thể xem là nốt gốc của một cây con (sub-tree)
 - Mỗi nốt trong cũng tương ứng với một thuộc tính điều kiện
 - Mỗi nốt trong chỉ bao hàm những đối tượng dữ liệu thuộc một nhánh cụ thể của nốt cha.
- Các nốt lá (leaf nodes):
 - Là nốt cuối trong nhánh mà tất cả các đối tượng đều thuộc một lớp, hoặc
 - Không còn thuộc tính điều kiện nào để phân chia, hoặc
 - Không còn đối tượng dữ liệu nào để phân chia
- Cây được xây dựng theo cách chia để trị và đệ quy từ trên xuống
 Top-down recursive divide-and-conquer manner

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Các ký hiệu & thuật ngữ

- Tập dữ liệu huấn luyện:
 - \Box C = {c₁, c₂, ..., c_K}: tập K lớp
 - □ **D** = {(\mathbf{x}^1 , \mathbf{c}^1), (\mathbf{x}^2 , \mathbf{c}^2), ..., (\mathbf{x}^N , \mathbf{c}^N)} trong đó $\mathbf{x}^n \in \mathbf{X}$, $\mathbf{c}^n \in \mathbf{C}$
- Các đối tượng cần phân lớp x được biểu diễn bởi M thuộc tính
 - \blacksquare **F** = {F₁, F₂, ..., F_M}
 - □ Mỗi thuộc tính $F_i \in \mathbf{F}$ có miền xác định $\mathbf{V}^i = \{v_1^i, v_2^i, ..., v_{p_i}^i\}$
 - Nếu một thuộc tính F_i nào đó có miền xác định liên tục, F_i trước tiên cần được rời rạc hóa để có miền giá trị như Vⁱ như trên.
- Các thuật ngữ:
 - C (tập các lớp) được gọi là thuộc tính phân loại (hoặc thuộc tính đích target attribute)
 - Các thuộc tính trong F được gọi là các thuộc tính điều kiện (thuộc tính dùng để phân lớp)

Dữ liệu minh họa

Các thuộc tính điều kiện (dùng để phân loại)

Thuộc tính cần phân loại (target attribute)

ID	Age	Income	Student	Credit_rating	Buys_computer
1	≤30	High	No	Fair	No
2	≤30	High	No	Excellent	No
3	3140	High	No	Fair	Yes
4	>40	Medium	No	Fair	Yes
5	>40	Low	Yes	Fair	Yes
6	>40	Low	Yes	Excellent	No
7	3140	Low	Yes	Excellent	Yes
8	≤30	Medium	No	Fair	No
9	≤30	Low	Yes	Fair	Yes
10	>40	Medium	Yes	Fair	Yes
11	≤30	Medium	Yes	Excellent	Yes
12	3140	Medium	No	Excellent	Yes
13	3140	High	Yes	Fair	Yes
14	>40	Medium	No	Excellent	No

F = {Age, Income, Student, Credit_rating}, C = Buys_computer = {Yes, No}

Thuật toán ID3

Input:

- Examples = **D**, tập toàn bộ dữ liệu huấn luyện
- $C = \{c_1, c_2, ..., c_k\}$: tập K lớp và là thuộc tính đích
- Attributes = F, tập toàn bộ các thuộc tính điều kiện

ID3(Examples, C, Attributes)

- Tạo nốt gốc (Root) cho cây.
- Nếu tất cả đối tượng x ∈ Examples có cùng một lớp c_k, trả yế nốt gốc Root với nhãn c_k.
- Nếu không còn thuộc tính điều kiện nào (Attributes = Ø), trả về nốt gốc Root với nhãn c_k nào đó xuất hiện nhiều nhất trong Examples.
- Nếu không thì (else):
 - Chọn F_i ∈ Attributes là thuộc tính phân lớp tốt nhất cho tập Examples làm nốt gốc Root.
 - Đối với mỗi giá trị vⁱ (∈ Vⁱ) của F_i:
 - □ Thêm một nhánh dưới nốt gốc Root tương ứng với $F_i = v_j^i$.
 - Examples(v_j) là tập các đối tượng thuộc Examples có F_i = v_j.
 - Nếu Examples(v_j^i) = \emptyset : thêm một nốt lá (leaf node) dưới nhánh này với nhãn c_k nào đó phổ biến nhất trong Examples.
 - Ngược lại (else): dưới nhánh này thêm một cây con **ID3**(Examples(v_i^i), C, Attributes { F_i })
- Trả về nốt gốc Root.

Đánh giá bằng tiêu chí nào? Information Gain?

Information Gain (IG)

- Ký hiệu:
 - □ Thuộc tính đích $C = \{c_1, c_2, ..., c_K\}$: tập K lớp
 - □ Tập dữ liệu huấn luyên **D** = { (\mathbf{x}^1, c^1) , (\mathbf{x}^2, c^2) , ..., (\mathbf{x}^N, c^N) } trong đó $\mathbf{x}^N \in \mathbf{X}$, $\mathbf{c}^N \in \mathbf{X}$
- Entropy của C trên tập **D**, ký hiệu là H_D(C), được tính như sau:
 - □ Ký hiệu p_k là xác suất để một đối tượng \mathbf{x} thuộc lớp c_k . p_k có thể ước lượng từ dữ liệu huấn luyện: $p_k = |\mathbf{D}_k| / |\mathbf{D}|$ (với $\mathbf{D}_k \subseteq \mathbf{D}$ là tập các đối tượng \mathbf{x} thuộc lớp c_k)

$$H_{\mathbf{D}}(C) = -\sum_{k=1}^{K} p_k \log_2 p_k = -\sum_{k=1}^{K} \frac{|\mathbf{D}_k|}{|\mathbf{D}|} \log_2 \frac{|\mathbf{D}_k|}{|\mathbf{D}|}$$

- Chọn một thuộc tính $F_i \in \mathbf{F} = \{F_1, F_2, ..., F_M\}$ để phân chia \mathbf{D} : khi đó entropy của C (trên \mathbf{D}) điều kiện F_i , ký hiệu là $H_{\mathbf{D}}(C|F_i)$, được tính:
 - □ Thuộc tính F_i có miền xác định $\mathbf{V}^i = \{v_1^i, v_2^i, ..., v_{p_i}^i\}$
 - □ Gọi $\mathbf{D}_{j} \subseteq \mathbf{D}$ là tập các đối tượng x có thuộc tính $F_{i} = v_{j}^{i}$.

$$H_{D}(C \mid F_{i}) = \sum_{j=1}^{P_{i}} \frac{|D_{j}|}{|D|} H_{D_{j}}(C \mid F_{i} = v_{j}^{i})$$

Khi đó:
$$IG_{\mathbf{D}}(C | F_i) = H_{\mathbf{D}}(C) - H_{\mathbf{D}}(C | F_i)$$

Information Gain (IG) - cont'd

$$H_{\mathbf{D}}(C) = -\sum_{k=1}^{K} p_k \log_2 p_k = -\sum_{k=1}^{K} \frac{|\mathbf{D}_k|}{|\mathbf{D}|} \log_2 \frac{|\mathbf{D}_k|}{|\mathbf{D}|}$$

$$H_{\rm D}(C \mid F_i) = \sum_{j=1}^{P_i} \frac{|{\rm D}_j|}{|{\rm D}|} H_{{\rm D}_j}(C \mid F_i = v_j^i)$$

$$IG_{\mathbf{D}}(C \mid F_i) = H_{\mathbf{D}}(C) - H_{\mathbf{D}}(C \mid F_i)$$

Thuộc tính phân lớp tốt nhất:

Là thuộc tình F đem lại giá trị IG_D(C|F) **lớn nhất**

Đây là tiêu chuẩn để chọn lựa thuộc tính Fi trong thuật toán xây dựng cây quyết định ID3.

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Ví dụ minh họa

Các thuộc tính điều kiện (dùng để phân loại)

Thuộc tính cần phân loại (target attribute)

ID	Age	Income	Student	Credit_rating	Buys_computer
1	≤30	High	No	Fair	No
2	≤30	High	No	Excellent	No
3	3140	High	No	Fair	Yes
4	>40	Medium	No	Fair	Yes
5	>40	Low	Yes	Fair	Yes
6	>40	Low	Yes	Excellent	No
7	3140	Low	Yes	Excellent	Yes
8	≤30	Medium	No	Fair	No
9	≤30	Low	Yes	Fair	Yes
10	>40	Medium	Yes	Fair	Yes
11	≤30	Medium	Yes	Excellent	Yes
12	3140	Medium	No	Excellent	Yes
13	3140	High	Yes	Fair	Yes
14	>40	Medium	No	Excellent	No

Information gain theo từng thuộc tính

			H(Buys_computer)	H(Buys_computer Age)
Thuộc tính	Giá trị	Số lượng theo	Phân phối	Information Gain
Age		giá trị	theo giá trị	0.9403 - 0.6935 = 0.2468
(I)	≤30	(2, 3)		
	3140	(4, 0)		IG(Buys_computer Age)
	>40	(3, 2)		
Income				0.9403 - 0.9111 = 0.0292
	High	(2, 2)		
	Medium	(4, 2)		
	Low	(3, 1)		
Student				0.9403 - 0.7885 = 0.1518
	Yes	(6, 1)		
	No	(3, 4)		
Credit_rating				0.9403 - 0.8922 = 0.0481
	Fair	(6, 2)		
	Excellent	(3, 3)		

Ví dụ: xây dựng cây

D _{Age="≤30'}

Thuộc tính	Giá trị	Phân phối	Information Gain
Income	High	(0, 2)	0.971 - 0.4 = 0.571
	Medium	(1, 1)	
	Low	(1, 0)	
Student	Yes	(2, 0)	0.971 - 0 = 0.971
	No	(0, 3)	
Credit_rating	Fair	(1, 2)	0.971 - 0.951 = 0.02
	Excellent	(1, 1)	

D_{Age=">40"}

Thuộc tính	Giá trị	Phân phối	Information Gain
Income	High		0.971 - 0.951 = 0.02
	Medium	(2, 1)	
	Low	(1, 1)	
Student	Yes	(2, 1)	0.971 - 0.951 = 0.02
	No	(1, 1)	
Credit_rating	Fair	(3, 0)	0.971 - 0 = 0.971
	Excellent	(0, 2)	

Ví dụ: xây dựng cây (cont'd)

Phân lớp với cây quyết định

 $IF \text{ Age} \leq 30 \text{ }AND \text{ Student} = \text{Yes }THEN \text{ Buys_computer} = \text{Yes}$ $IF \text{ 31} \leq \text{Age} \leq 40 \text{ }THEN \text{ Buys_computer} = \text{Yes}$ $IF \text{ Age} > 40 \text{ }AND \text{ Credit_rating} = \text{Excellent }THEN \text{ Buys_computer} = \text{No}$

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Thuật toán C4.5

Một số cải tiến của thuật toán C4.5 so với ID3:

- Sử dụng Gain Ratio (thay vì Information Gain) để chọn thuộc tính phân chia trong quá trình xây dựng cây
- Xử lý tốt cả hai dạng thuộc tính: rời rạc và liên tục
- Xử lý dữ liệu không đầy đủ (thiếu một số giá trị tại một số thuộc tính).
 - C4.5 cho phép các thuộc tính-giá trị bị thiếu có thể thay bằng dấu hỏi (?)
 - Những giá trị bị thiếu không được xem xét khi tính toán Information Gain và
 Gain Ratio
- Cắt tỉa cây sau khi xây dựng
 - Loại bỏ những nhánh cây không thực sự ý nghĩa (thay bằng nốt lá)

Gain Ratio

$$H_{\mathbf{D}}(C) = -\sum_{k=1}^{K} p_k \log_2 p_k = -\sum_{k=1}^{K} \frac{|\mathbf{D}_k|}{|\mathbf{D}|} \log_2 \frac{|\mathbf{D}_k|}{|\mathbf{D}|}$$

$$H_{\mathbf{D}}(C \mid F_i) = \sum_{j=1}^{P_i} \frac{|\mathbf{D}_j|}{|\mathbf{D}|} H_{\mathbf{D}_j}(C \mid F_i = v_j^i)$$

$$IG_{\mathbf{D}}(C \mid F_i) = H_{\mathbf{D}}(C) - H_{\mathbf{D}}(C \mid F_i)$$

Spliting entropy của thuộc tính F_i, ký hiệu SE(F_i):

$$SE_{\mathbf{D}}(F_i) = -\sum_{j=1}^{P_i} \frac{|\mathbf{D}_j|}{|\mathbf{D}|} \log_2 \frac{|\mathbf{D}_j|}{|\mathbf{D}|}$$

Khi đó, Gain Ratio, ký hiệu GR_D(C|F_i), được xác định:

$$GR_{\mathbf{D}}(C \mid F_i) = \frac{IG_{\mathbf{D}}(C \mid F_i)}{SE_{\mathbf{D}}(F_i)}$$

Information Gain & Gain Ratio

Thuộc tính	Giá trị	Số lượng theo giá trị	Phân phối theo giá trị	Information Gain	Gain ratio
Age		gia tri	uieo gia ui	0.2468	0.2468 / 1.5774 = 0.1565
	≤30	(2, 3)			
	3140	(4, 0)			
	>40	(3, 2)			
Income				0.0292	0.0292 / 1.5567 = 0.0187
	High	(2, 2)			
	Medium	(4, 2)			
	Low	(3, 1)			
Student				0.1518	0.1518 / 1 = 0.1518
	Yes	(6, 1)			
	No	(3, 4)			
Credit_rating				0.0481	0.0481 / 0.9852 = 0.04882
	Fair	(6, 2)			
	Excellent	(3, 3)			

Ý nghĩa của Gain Ratio

- Tiêu chí Information Gain thường "ưu tiên" chọn những thuộc tính có nhiều giá trị (miền xác định lớn)
 - Ví dụ: thuộc tính "Số thẻ tín dụng"
- Spliting entropy, SE_D(F_i) sẽ lớn khi thuộc tính F_i có nhiều giá trị. Điều này giúp:
 - Làm giảm Gain Ratio của thuộc tính có nhiều giá trị
 - Làm tăng Gain Ratio của thuộc tính có ít giá trị
- Ý nghĩa khác:
 - Giảm vấn đề "quá khớp" (overfitting)

Thuật toán C4.5, See5/C5.0 – Các cải tiến khác

C4.5 - Xem thêm:

- J. Ross Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Publisher, 1993.
- J. Ross Quinlan, Improved use of continuous attributes in C4.5,
 Journal of Artificial Intelligence Research (JAIR), 1996.

See5/C5.0:

- Cải tiến C4.5:
 - Tăng tốc độ
 - Quản lý và sử dụng bộ nhớ tốt hơn
 - Cây nhỏ gọn hơn
 - Hỗ trợ boosting
 - □ .V.V.
- Thương mại hóa, không có đặc tả cụ thể, có bản single-threaded free trên Linux

- Cơ bản về lý thuyết thông tin (information theory)
 - Entropy
 - Entropy điều kiện (conditional entropy)
 - Information gain
- Cây quyết định (decision tree)
 - Mô hình cây quyết định
 - Thuật toán ID3
 - Ví dụ minh họa
 - Thuật toán C4.5
- Kết luận
 - Nhược điểm
 - Uu điểm

Ưu - Nhược điểm

Nhược điểm:

- Không đảm bảo xây dựng được cây tối ưu
- Có thể overfitting (tạo ra cây quá phức tạp, quá khớp với dữ liệu huấn luyện)
- □ Thường ưu tiên thuộc tính có nhiều giá trị (khắc phục phần nào bằng Gain Ratio)

Ưu điểm:

- Mô hình dễ hiểu và dễ giải thích: cây ← → luật
- Cần ít dữ liệu huấn luyện
- Có thể xử lý tốt với dữ liệu số (rời rạc/liên tục) và dữ liệu hạng mục (categorical)
- Mô hình dạng "white box" (khác với "black box" như mạng nơ ron chẳng hạn)
- Xây dựng cây nhanh
- Phân lớp nhanh

Tổng kết

Lý thuyết thông tin:

- Entropy
- Entropy điều kiện
- Information gain

Cây quyết định:

- Mô hình cây quyết định
- Thuật toán ID3
- Những cải tiến trong thuật toán C4.5 so với ID3
- Gain Ratio

Úng dụng:

- Xử lý tốt cho dữ liệu bảng biểu với số thuộc tính không quá lớn
- Không phù hợp khi số lượng thuộc tính bùng nổ (ví dụ dữ liệu văn bản, hình ảnh, âm thanh, video, .v.v.)