بسمه تعالي

Har

شبیه سازی ۳ درس کنترل تطبیقی: طراحی کنترلکنندههای تطبیقی

استاد: دکتر موسی آیتی

طبق جدول صفحه آخر، سیستم مینیمم فاز مربوط به خود را در نظر بگیرید و در صورت لزوم صفر سیستم را تغییر دهید و یا صفر و قطبی به سیستم اضافه کنید. همچنین نویز سفید و رنگی را با واریانس قابل قبول برای سیستم در نظر بگیرید. هدف از این پروژه مشاهده ضعف STRهای جایاب قطب مستقیم و غیرمستقیم در حضور نویز و رفع این مشکل با استفاده از استراتژی کنترل -Minimum ضعف Variance و کنترل کنندههای اتفاقی است. از معیارهای زیر برای مقایسه نتایج استفاده کنید.

- شكل زماني، ميانگين و واريانس سيگنال كنترلي و خروجي.
- تلفات جمع شده (Accumulated loss) کنترلی و خروجی.
 - خطای شناسایی پارامترهای سیستم و کنترل کننده.

قسمت اول

۱) برای سیستم مینیمم فاز، کنترل کننده STR جایاب قطب غیرمستقیم را طراحی نموده و عملکرد سیستم حلقه بسته را برای موارد زیر بررسی کنید.

- بدون حضور نويز
- در حضور نویز سفید
- در حضور نویز رنگی
- ۲) بند قبل را برای کنترل کننده STR جایاب قطب مستقیم انجام دهید.
- ۳) بندهای ۱ و ۲ را با استفاده از معیارهای مناسب با هم مقایسه کنید و نتایج را در جدولی بیاورید.
- ۴) برای سیستم مینیمم فاز، در حضور نویز رنگی، کنترل کننده STR غیرمستقیم حداقل واریانس و Moving-Average با فرض:
 - الف) معلوم بودن مدل سيستم (غيرتطبيقي)
 - ب) در حالت تطبیقی
 - طراحی نموده، و عملکرد این کنترل کنندهها را با استفاده از تلفات انباشته، واریانس خروجی و غیره بررسی کنید.
- ۵) بند قبل را برای سیستم غیر مینیمم فاز (با کنترل کننده STR غیرمستقیم حداقل واریانس و Moving-Average) تکرار نمایید.
 - (به منظور تغییر سیستم صفر سیستم را معکوس کنید)
 - ۶) بندهای ۴ و ۵ را مقایسه کنید و نتایج را در جدولی بیاورید.
 - ۷) بندهای ۳ و ۶ را با هم مقایسه کنید،
 - ۸) اثر تغییر مرتبه مدل را در بند ۴ مقایسه کنید.

شبیه سازی ۳ درس کنترل تطبیقی: طراحی کنترلکنندههای تطبیقی

استاد: دکتر موسی آیتی

قسمت دوم

۱) برای سیستمهای زیر کنترل کنندههای تطبیقی حداقل واریانس (MV) و میانگین متحرک (MA) را به روش مستقیم طراحی و شبیه سازی کنید. سپس نتایج را مقایسه و تحلیل کنید. (الگوریتم +1)

همچنین با Q(q) و Q(q) حداقل واریانس (MV) و میانگین متحرک (MA) یا هر Q(q) و فرا مناسب دیگر صحت قضیه (۱–۴) را بررسی کنید.

(کنترل کننده حداقل واریانس)

$$A(q) = q^2 - 1.5q + 0.6, B(q) = q - 0.8, C(q) = q^2 - 0.8q + 0.1$$

(کنترل کننده میانگین متحرک)

$$A(q) = q^2 - 1.5q + 0.6, B(q) = q - 1.2, C(q) = q^2 - 0.8q + 0.1$$

۲) برای سیستم زیر با هدف ردیابی سیگنال مربعی و در حضور نویز رنگی، یک کنترل کننده خطی درجه ۲ گوسی (LQG) را طراحی کنید. همچنین، اثر تغییر ضریب ρ را بررسی کنید.

$$y(t) = \frac{q - 0.5}{(q - 0.3)(q - 0.45)}u(t) + \frac{q - 0.7}{q - 0.9}e(t)$$

موفق باشيد

شبیه سازی ۳ درس کنترل تطبیقی: طراحی کنترلکنندههای تطبیقی

سیستمهای دینامیکی در نظر گرفته شده بر اساس شماره دانشجویی

١	A(q) = (q - 0.2)(q - 0.55), $B(q) = (q - 0.7)$	810697150
۲	A(q) = (q - 0.85)(q - 0.15), $B(q) = (q - 0.45)$	810699072
٣	A(q) = (q - 0.6)(q - 0.32), $B(q) = (q - 0.18)$	810699070
۴	A(q) = (q - 0.84)(q - 0.95), $B(q) = (q - 0.2)$	810600018
۵	A(q) = (q - 0.55)(q - 0.25), $B(q) = (q - 0.85)$	810600006
۶	A(q) = (q - 0.25)(q - 0.55), $B(q) = (q - 0.32)$	810600201
٧	A(q) = (q - 0.25)(q - 0.42), $B(q) = (q - 0.45)$	810600297
٨	A(q) = (q - 0.7)(q - 0.24), $B(q) = (q - 0.5)$	810600209
٩	A(q) = (q - 0.25)(q - 0.8), $B(q) = (q - 0.18)$	810600291
1+	A(q) = (q - 0.15)(q - 0.82), $B(q) = (q - 0.74)$	810600203
11	A(q) = (q - 0.15)(q - 0.86), $B(q) = (q - 0.14)$	810600236
۱۲	A(q) = (q - 0.5)(q - 0.65), $B(q) = (q - 0.73)$	810600157
۱۳	A(q) = (q - 0.35)(q - 0.2), $B(q) = (q - 0.65)$	810600290
14	A(q) = (q - 0.55)(q - 0.3), $B(q) = (q - 0.45)$	810600267
۱۵	A(q) = (q - 0.45)(q - 0.3), $B(q) = (q - 0.55)$	810600261