

Patent Abstracts of Japan

FJ-9262-EP

PUBLICATION NUMBER

04051580

PUBLICATION DATE

20-02-92

APPLICATION DATE

19-06-90

APPLICATION NUMBER

02161020

APPLICANT: RICOH CO LTD;

INVENTOR: SAKURAI TATSUAKI;

INT.CL.

: H01S 3/133

TITLE

: CONTROL CIRCUIT OF

SEMICONDUCTOR LASER

ABSTRACT: PURPOSE: To make the life of a semiconductor laser long by a method wherein it is detected whether the light-emitting power in a laser control area has been stabilized and, after the power is stabilized, a control operation in the area is stopped.

> CONSTITUTION: A regeneration-power control operation is stopped only in a laser control area. The output of a counter 15 is input to a D/A converter 16 for a digital-to-analog conversion operation; a switching element 18 is set to ON via a second drive circuit 17. An electric current corresponding to the output of the counter 15 is made to flow to an LD 10 in addition to an electric current at a regeneration operation. One part of radiated light by the LD 10 at this time is photodetected by using a photodetector 11; a photodetected electric current of the photodetector 11 is converted into a voltage by using an I-V converter 12; the output of the I-V converter 12 is compared with a reference electric current Vref by using a comparator 19; according to a compared result, the light-emitting power is controlled to a power corresponding to the reference voltage Vref. When a prescribed condition is satisfied, a controller 1 stops a power control operation in the laser control area.

COPYRIGHT: (C)1992,JPO&Japio

THIS PAGE BLANK (USPTO)

⑩ 日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

平4-51580

@Int.Cl.5

識別記号

庁内整理番号

❸公開 平成 4年(1992) 2月20日

H 01 S 3/133

6940-4M

審査請求 未請求 請求項の数 3 (全6頁)

69発明の名称

半導体レーザ制御回路

②特 願 平2-161020

願 平2(1990)6月19日 **②出**

個発 明 者 明 桜井

東京都大田区中馬込1丁目3番6号 株式会社リコー内

株式会社リコー 東京都大田区中馬込1丁目3番6号 の出 願 人

個代 理 人 弁理士 高野 明 近 外1名

1. 発明の名称

半導体レーザ制御団路

2. 特許請求の範囲

1. 紅鈴あるいは消去のパワーの制御は、複数 回のレーザコントロールエリアの通過により退汰 パワーを制御する半導体レーザ制御回路におい て、前記レーザコントロールエリアでの発光パワ ーが安定したことを検出する検出回路と、前記レ ーザコントロールエルアでの発光パワー安定後は、 該レーザコントロールエリアでの制御を停止させ るコントロール手段を有する半導体シーザ制御回

2. 前記レーザコントロールエリア以外で行な う再生パワー制御手段と、該再生パワー制御手段 の制御電圧を検出する再生パワー制御電圧検出手 段とを有し、前記レーザコントロールエリアでの 発光パワー安定時の再生パワー制御電圧を検出し、 験レーザコントロールエリアでの記録あるいは消 去パワーの制御停止後、前記再生パワー制御電圧

の変動によりレーザコントロールエリアでの制御 を再開することを特徴とする請求項1記載の半導 体レーザ制御回路。

3. 温度検出手段を有し、前記シーザコントロ ールエリアでの発光パワー安定時の温度を検出し、 抜レーザコントロールエリアでの記録あるいは消 去パワーの制御停止後、前記温度の変動によりレ ーザコントロールエリアでの制御を再開すること を特徴とする請求項1記載の半導体レーザ制御回

3.発明の詳細な説明

本発明は、半導体レーザ制御回路に関し、より 詳細には、レーザコントロールエリアを持つ光デ ィスクに情報を記録、再生、あるいは消去する光 ディスクドライブの半導体レーザの発光パワー制 御回路に関する。例えば、光カード、レーザブリ ンダ、レーザ通信などに適用されるものである。

半導体レーザ(以下し口と記す)は温度によっ

特開平4-51580 (2)

てIーL特性(包流一光特性)が悲しく変化する。 このためLDを用いる段器においてはLDの発光 パワー朝仰が必須である。

光ディスク数回においてもLDの発光パワーの 別切方法が、 包々考察されているが、 その1つに 例えば「ひ換入型高性能光配像技術」(三段は 技切、 Vo 8 62. km 7.1988.p26~29)がある。この 方法は、 紀碌あるいは消去する直前に、 光源である半辺体レーザ(LD)を発光させ、このときの 改したび茂と発光パワーから、 LDの鍛分丘子効 ひを求め、 所定の記録あるいは消去パワーを出力 するものである。すなわち、 光ディスクの各トラ ックの一部にレーザコントロールエリアを設けて、 この領域において、 LDの配係あるいは消去のパワーを制御するものである。

レーザコントロールエリアは、例えば、第5回のように、アドレスフィールドの一部におかれており、テスト時にLDを発光させるため、ブランクとなっている。上記例舞方法は、第5回に示すレーザコントロールエリアにおいて、LDに所定

行なう。また、レーザコントロールエリアにおい ては、このとを再生パワーの例約はレーザコント ロールエリア中のみ停止させて、カウンタ25の 出力をD/A佼検召26に入力してディジタルー アナログ変換して第2の際助回路27を介し、ス イッチ段子28をONにして、LD20に再生時 の口流に加えて、カウンタ25の出力に応じた口 流を流す。このと2のLD20の出射光の一部を **受光表子21で受光し、I-V変換器22でQ流** - Q圧変換を行なう。この I - V 変換器 2 2 の出 力を比效器29では早以圧Vrefと比较し、比较結 具に応じてカウンタ25をアップカウントする か、ダウンカウントするか定め、1回のレーザコ ントロールエリアに付、1個のクロックをカウン タ25に入力する。これによりレーザコントロー ルエリアを過過する毎に、発光パワーが凸窄Q圧 Verfに応じたパワーに剝仰される。これによって、 髙辺なA/D変換は不要となる。しかしながら、 この方法でパワー創御を行なうとレーザコントロ ールエリアでは常にLD20を強く光らせるため、

の ① 滋をそれまでに流していた 図 渡に 盛 昼し、 発 光 パワーの 増加分から 微分量子 効率を求める、 こ の 微分量子 効率 から、 目的の 発光 パワーになるま での ② 流質 が求まり、 希望 の 発光 出力 が得られる。

ところが上配方法においては、配係あるいは消去直前に做分量子効果を測定するために、締密なパワー制御が行なえる反面、光量の検出のため高速なA/D変換器が必要となってしまう。

このため、第6回のような制物方法も提致されている。図中、20は半導体レーザ(LD)、21は受光素子、22はI-V変換器、23は再生パワー制御回路、24は第1の原助回路、25はカウンタ、26はD/A変換器、27は第2の節助回路、28はスイッチ兵子、29は比欧器である。

この方法は通常、再生時においては、LD20から出対された光の一部を受光素子21で受光し、 I-V疫換器22によりほ流一位圧変換を行ない、この出力を再生パワー制切回路23に入力し、第 1の駆功回路24を通して、再生パワーの制御を

LD20の寿命が短かくなるという欠点がある。 <u>目</u>的

本発明は、上述のごとを実育に燃みてなされた もので、半羽体レーザを長寿命に用い、かつ安定 な半羽体レーザの発光パワー制御を行なうように した半弱体レーザ制御回路を提供することを目的 としてなされたものである。

<u>京</u> 成

特開平4-51580 (3)

第1回は、本発明による半導体レーザ制御问路の一実施例を説明するための構成回で、回中、1はコントローラ、2はA/D変換器、3は温度センサ、10は半導体レーザ(LD)、11は受光素子、12はI-V変換器、13は再生パワー制御回路、14は第1の駆動回路、15はカウンタ、16はD/A変換器、17は第2の駆動回路、

18はスイッチ素子、19は比較器である。

通常、再生時においてはLD10から出射され た光の一部を受光素子11で受光し、受光された 受光素子11の出力をI-V変換器12により電 流ー電圧変換を行ない、該出力を再生パワー制御 回路13に入力し、第1の駆動回路14を通して、 再生パワーの制御を行なう。また、レーザコント ロールエリアにおいては、このとき再生パワーの 制御はシーザコントロールエリア中のみ停止させ て、カウンタ15の出力をD/A変換銀16に入 カしてディジタルーアナログ変換して第2の駅動 回路17を介し、スイッチ素子18をONにして、 LD10に再生時の電流に加え、カウンタ15の 出力に応じた電流を流す。この時のLD10の出 射光の一部を受光素子11で受光し、受光された 受光素子11の出力を1-V変換器12で電流-電圧変換を行ない、験1-V変換器12の出力を 比較器19で基準電流Verfと比較し、比較結果に 応じてカウンタ15をアップカウント又はダウン カウントするかを定め、1回のレーザコントロー

ルエリアに付、1個のクロックをカウンタ15に入力する。これによりレーザコントロールエリアを通過する毎に、発光パワーが、基準電圧Verfに応じたパワーに制御される。このとき、第2回に示すパワー制御終了検出のフローチャートに基づいて処理される。すなわち、コントローラ1によりカウンタ15のカウント値(C。)を読み(step1)、その後、1回以上のレーザコントロールエリアを通過後(step2)、再びカウンタ15のカウント値(C。)を読み(step3)、 | C。 - C。 | ≦ 1 になるまでパワーコントロールを続ける(step4)。

第3回は、パワー制御終了後、再生パワーの制御電圧値を検出・保持する場合のフローチャートである。パワー制御が実行され(step1)、制御が終了したかどうかを判断する(step2)。制御が終了すれば、再生パワー制御電圧値 V_o を得る(step3)。次に制御を停止し(step4)、再生パワー制御電圧値 V_o を得る(step5)。

| V_∗ - V_↑ | < ε かどうかを判断し (step6) 、 | V_∗ - V₁ | < ε であれば、step5に戻り、 | V。−V」| < εでなければsteplに戻る。

すなわち、第2回に示した条件が瀕たされると、 コントローラ1は、A/D変換船2によりこのと きの再生パワーをコントロールしている制御電圧 低を読みとり保持しておく。この後、スイッチ楽 子18をコントロールしてレーザコントロールエ リアにおいても電流を重畳せず、またカウンタも 動かさないで保持のモードとしておく。このよう にして、レーザコントロールエリアでのパワー制 御の終了を検出して、レーザコントロールエリア で無用にLD10を発光させるのを防ぐことがで きる。また、この後はA/D変換器2の値を読み、 この値が先に保持していた値と異なっていた場合 (すなわち再生パワー制御の電圧が変化したこと を検出して、LD10のI-L特性の変化を検出 している)は、コントローラ1は再び、スイッチ 素子18とカウンタ15をコントロールして、レ ーザコントロールエリアでパワー制御が可能なよ うに制御を行なう。

第4図は、パワー制御終了後、温度検出を行う

特別平4-51580(4)

恐合のフローチャートである。

パワー制物が実行され(step1)、制御が終了したがどうかを判断する(step2)。制御が終了すれば温度センサでT。を得る(step3)。次に制御を停止し(step4)、温度センサでT。を得る(step5)。 | T。-T, | < c であればstep5に戻り、| T。-T, | < c でなければstep1に戻る。

すなわち、パワー制御終了後、再生パワーの側 切び圧値を校出、保持するかわりに、その時の返 度を校出しておき、レーザコントロールエリアで のパワー制御終了後は随時温度を校出し、過度を 化が生じたら(温度変化によりLD10の1-L 特性は変化する)、再びレーザコントロールエリ アでのパワー側御を始める。このようにして、 の命でかつ安定な半部体レーザの発光パワー制御 が行なえる。

以上の説明から明らかなように、本発明による と、以下のような効果がある。

パワー制御牌了後、温度校出を行う場合のフローチャート、第5回は、セクターフォーマットの例を示す回、第6回は、従来の半部体レーザ制御回路を示す図である。

特許出頭人 株式会社 リコー代 現 人 高 野 明 近 (ほか1名)

(1) レーザコントロールエリアでのパワー制御の選定後は、レーザコントロールエリアでのパワー制御を中断し、無用にレーザを発光させないので、半収体レーザを長寿命にして使用することができる。

(2) 前記(1) に加えて、再生パワー制御時のコントロール包圧の変化により半導体レーザの I- L 特性の変化を検出して、レーザコントロールエリアでのパワー制御を再開するので、より安定なパワーが得られる。

(3)前記(1)に加えて、温度変化により半弱体レーザのIーL特性の変化を検出して、レーザコントロールエリアでのパワー制御を再開するので、より安定なパワーが得られる。

4. 図面の簡単な説明

第1回は、本発明による半辺体レーザ制行回路の一変施例を説明するためのは成図、第2回は、パワー制は終了役出のフローチャート、第3回は、パワー制御終了後、再生パワーの例仰ほ圧値を役出・保持する場合のフローチャート、第4回は、

特開平4-51580 (5)

第.4 🛛

(注) 再生パソー制御はレーザコントロール エリア以外は常に行なう。

第 5 図 セクタフォーマット例

特開平4-51580 (6)

-476-