SRM Institute of Science and Technology

College of Engineering and Technology Kattankulathur-603 203

Department of Mathematics

21MAB102T-Advanced Calculus and Complex Analysis

Tr .	1	α 1 .	1
1111	0r121	Shoot	I
Iu	wiiai	Sheet	.– т

Sl.No.	Part-B (8 Marks)	Answers
Q1.	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the point P in	27
	the direction of PQ , where P is $(1,-2,-1)$ and Q is $(3,-3,-2)$.	√6
Q2.	Find the angle between the surfaces (i) $x^2 - y^2 - z^2 = 11$ and $xy + y^2 - y^2 = 11$	$\cos^{-1}\left(\frac{\theta=24}{\sqrt{5246}}\right), \ \theta=$
	$yz-zx = 18$ at the point (6,4,3) (ii) $x^2-y^2+z^2 = 9$ and $x^2+y^2-z = 3$ at the point (2,-1,2).	$\cos^{-1}\left(\frac{8}{3\sqrt{21}}\right)$
Q3.	(i) Find the work done by the force $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$, when it moves	3π ,/2/3
	a particle along the arc of the curve $\vec{r} = \cos t \vec{i} + \sin t \vec{j} + t \vec{k}$ from $t = 0$	
	to 2π . (ii) Find the work done by the force $\vec{F} = (x^2 - y^2 + x)\vec{i} - (2x + y^2 + x)\vec{i}$	
	$y)\vec{j} + y\vec{k}$, when it moves a particle from origin to (1,1) along $y^2 = x$.	
Q4.	Show that $\vec{F} = (y^2 - 2xz^2)\vec{i} + (2xy - z)\vec{j} + (2x^2z - y + 2z)\vec{k}$ is irrotational and hence find its scalar potential.	$\phi = xy^2 + x^2z^2 - yz + z^2 + c$
Q5.	Show that $\vec{u} = (2x^2 + 8xy^2z)\vec{i} + (3x^3y - 3xy)\vec{j} - (4y^2z^2 + 2x^3z)\vec{k}$ is not solenoidal, but $\vec{v} = xyz^2\vec{u}$ is solenoidal.	
Sl.No.	Part-C (15 Marks)	Answers
Q6.	Verify Gauss's Divergence theorem for $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$, where S is the surface of the cuboid formed by the planes $x = 0$, $x = a$, $y = 0$, $y = a$	
	b, z = 0 and $z = c$.	