Projet CoBRA: Cinématique de vol

Tancrède WLODYKA, Enzo HENRY

Antoine HUET, Antoine TRENTIN

Lucas DESPAGNE, Jérémy MAZOYER

Défi SAPHIRE 2024-2025

Projet CoBRA: Cinématique

Mise en contexte

Figure 0 – Illustration du projet CoBRA et de l'objectif de cette année

Objectifs et sommaire

Sélection d'une cinématique de propulsion ainsi qu'un convertisseur adapté

- **Sommaire:** I. Étude théorique
 - Choix de la cinématique
 - Étude de traînée et de force à déployer
 - Vérification par une simulation
 - II. Étude pratique sur le moteur actuel
 - III. Recherche de nouveaux moteurs et variateurs
 - IV. Conclusion

Choix de la cinématique – Équipe 1

Figure 1 – Schéma de la solution cinématique de l'équipe 1

→ Deux hélices sous le dirigeable pour aider à l'élévation du dirigeable, à sa stabilité avec le système de préhension, et permettre un contrôle sur l'axe de tangage

Choix de la cinématique – Équipe 1

Avantages	Inconvénients	
Tourner (sans avancer) – Principe d'une chenille	Masse, nécessité de faire attention au centre de gravité	
Stabilité pour la prise en charge / dépôt du colis en se mettant dans le sens de la perturbation	Nécessite de dissocier propulseur du dessous avant et arrière pour contrôler le tangage – réfléchir à la télécommande de contrôle	
Contrôle de l'angle de lacet, tangage	Pas de contrôle direct sur l'axe de roulis	

Figure 2 – Tableau des avantages et inconvénients de la solution de l'équipe 1

Choix de la cinématique – Équipe 2

→ Reprise de la solution double hélice de l'an dernier

Éventuelles modifications:

- Diminution taille des roulements
- Diminution rayon tige de carbone
- Optimisation du socle
- Optimisation des moteurs

 (utilisations de variateurs de vitesse pour avoir les deux sens de rotation)

Figure 3 – Modélisation de la solution cinématique de l'équipe 2

Choix de la cinématique – Équipe 2

Choix de la cinématique – Équipe 2

→ Pilotage de la nouvelle rotation par liaison hélicoïdale

Nouveau design de point d'attache des blocs de propulsion :

- Liaison pivot
- Liaison sphérique

Figure 5 – Zoom sur les modélisations de la solution cinématique de l'équipe 2 avec pistes d'amélioration

Choix de la cinématique – Équipe 2

Avantages	Inconvénients	
Tourner (sans avancer)	Masse / Encombrement	
Stabilité pour la prise en charge / dépôt du colis	Limites d'angles	
Contrôle de l'angle de roulis	Difficulté de pilotage	

Figure 6 – Tableau des avantages et inconvénients de la solution de l'équipe 2

Nous pouvons aussi rencontrer plusieurs difficultés de montage :

- Petite liaison sphérique
- Dimensionnement des différentes tiges supplémentaires

Choix de la cinématique – Équipe 2

Autre solution:

→ Utilisation de deux câbles inextensibles (fils de pêche)

L'idée est de faire passer le fil dans la tige de carbone, attaché dans l'axe du système de propulsion.

Puis fixer un moteur sur la tige de carbone au centre (il faut faire une petite patte de fixation)

ATTENTION : On utilise la poussée pour incliner vers l'intérieur le support de propulsion A l'arrêt, les supports de propulsion tombent....

<u>Gain :</u>

- Masse
- Facilité de montage
- > Angle de rotation
- > Equilibre

Choix de la cinématique – Équipe 3

Figure 7 – Schéma de la solution cinématique de l'équipe 3

Choix de la cinématique – Équipe 3

Avantages	Inconvénients
4 mobilités dont déplacement latéral important pour le positionnement lors de la préhension	5 moteurs → masse supplémentaire 5 moteurs pour 4 mobilités
Système robuste (rigide, fiable)	
Dégagement de la zone de préhension	Moteur supplémentaire
Positionnement des moteurs d'avance pour une meilleure efficacité, meilleure stabilité	Structure supplémentaire

Figure 8 – Tableau des avantages et inconvénients de la solution de l'équipe 3

Étude de traînée et de force à déployer – Équipe 1 & 2 & 3

Figure 9 – Schéma pour expliquer le principe de la trainée

- ightharpoonup Calculons le nombre de Reynolds du dirigeable pour connaître le type d'écoulement : $Re = rac{v\mu a}{\eta} \simeq 92108 < 3 \cdot 10^5 \ {
 m donc} \ {\it plage sous critique}$
- \Rightarrow Ainsi notre force de trainée est : $F_{\chi}=\frac{1}{2}\rho SC_{\chi}v^2$ (S = $V^{\frac{2}{3}}$), et après avoir appliquer le Principe Fondamental de la Dynamique à notre système {dirigeable}, on trouve la relation suivante : $C_{\chi}=\frac{2m}{\rho St}\Big(\frac{1}{v(t)}-\frac{1}{V_0}\Big)$

Étude de traînée et de force à déployer - Équipe 1 & 2 & 3

Conclusion et annexes

Figure 10 – Capture d'écran de la vidéo sous traitement du tracking vidéo

 \rightarrow Nous avons alors réalisé un tracking vidéo. Grâce à un suivi précis image par image, nous avons déterminé la vitesse initiale V_0 et sa vitesse v_1 après un temps t_1 . On trouve

alors:
$$C_{\chi} = \frac{2m}{\rho S t_1} \left(\frac{1}{v_1} - \frac{1}{V_0} \right) \simeq 0.042$$

ightharpoonup Cela nous donne alors une idée de la force à déployer pour faire avancer notre dirigeable à une vitesse imposée, en réinjectant notre coefficient C_x dans l'expression de la force. On trouve alors une force nécessaire pour faire avancer notre dirigeable entre 1 et 2 N (dépend de la vitesse souhaitée) : $F_x = \frac{1}{2} \rho S C_x v^2$

Conclusion et annexes

Vérification par une simulation – Équipe 1 & 2 & 3

Valeurs de C_x et C_y , respectivement horizontal et vertical:

$$> C_x = \frac{0,102}{1226087.10^{-6}} = 0,083$$

$$> C_{v} = 0.43$$

Figure 11 – Captures d'écran de la simulation du dirigeable

Étude pratique sur le moteur actuel – Équipe 1 & 2 & 3

Intensité (A)	Largeur d'impulsion (ms)
0,4	1,1
0,95	1,2
1,6	1,3
2,25	1,4
3,0	1,5
3,7	1,6
4,6	1,7
6,2	1,8
8,5	1,9
9,1	2,0

Figure 12 – Tableau intensité en sortie de la batterie en fonction de la largeur d'impulsion imposée au moteur

→ On peut redimensionner la batterie en diminuant sa capacité (4h étant trop), ce qui permet un gain de masse

→ Pour choisir un nouveau moteur et variateur, il faut avant tout poser notre Cahier des Charges :

Cahier des charges	Critères	Niveaux
Vitesse	Maximum	Dépend de l'équipe
Masse	Minimum	
Réversibilité		Moteur réversible

Figure 13 – Tableau du Cahier des charges inter-équipes

→ Il faudra donc être capable de déployer une force de propulsion entre 1,5 N et 3N selon la vitesse voulue

Pulsar Choki Pro 2200KV	Nouveau Moteur	AS2303 F3P 2300 KV
m=29g	Réduction de masse	m=16,9g
Puissance surdimensionnée, 2200KV	Puissance moindre	2300KV
Variateur simple	Commande double variateur	QuicRun-WP-Mini25- ESC_Manual

Figure 14 – Tableau du nouveau moteur et variateur

Figure 15 – Photos des essais pour connaître la force déployée par le nouveau moteur

Projet CoBRA: Cinématique

<u>T Motor – AS2303 F3P 2300 kV</u>

Hélice 5/5	Hélice	Balance	Moteur dans flux	Poussée(g)
1	+	С	+	190
2	-	Т	-	-125
3	-	С	-	130
4	+	Т	+	-175

Figure 16 – Tableau des résultats de poussée lors des essais

Conclusion – Équipe 1 & 2 & 3

Conclusion