A Series of Unfortunate Events in Complex Networks

Robustness Metrics for Cascading Failures

Inês Ferreira Ricardo Santos

Removing nodes one by one

Real-world networks are robust to random failures

For targeted attacks, removing a minimal amount of nodes cripples the network.

Networks as transportation systems

The Motter-Lai Model

$$C_i = (1 + \alpha)L_i^0 ,$$

$$i = 1, 2, ..., N$$

$$L_i^t > C_i \Longrightarrow$$

How to choose the initial node to attack?

- Random
- Degree
- Betweenness Centrality (Load)
- Clustering Coefficient

The Giant Component Metric

How to evaluate the robustness of a network?

$$G = \frac{N'}{N}$$

What models to use for testing?

$$P(k) \sim k^{-\gamma}$$

Power Law Avg. Degree 2 VS 4 (N = 5000)

Power Law VS DMS (Avg. Degree 4, N = 5000)

Power Law VS DMS (Avg. Degree 4)

The DMS Model seems less robust to targeted attacks...

What about if we use a different metric?

Will the results be the same?

Power Law VS DMS (Avg. Degree 4)

Power Law VS DMS (Avg. Degree 4)

Power Law - Load-based attack - α = 0.2 - N = 5000

DMS - Load-based attack - α = 0.2 - N = 5000

Power Law and DMS comparison for $\alpha = 0.2$

Final values	Power Law	DMS
# of Nodes	3193	4483
# of Nodes w/ k > 0	2995 (94%)	4125 (92%)
# of Nodes in biggest comp.	2751 (86%)	1095 (24%)
# of Components	83	175
Average Degree	2.695	3.411

Power Grid

< k > = 2.67

Power Grid

Power Grid - Load-based attack - α = 0.2

Conclusion

How to attack a network?

- Degree
- Betweenness Centrality

Higher degree ⇒ More robustness

- Robustness ⇔ Number of nodes ⇒ Choose a DMS Model
- Robustness

 Size of the giant component

 Choose a Power Law Model

Thank you!