# Измерение коэффициента поверхностного натяжения жидкости (2.5.1)

Дудаков Семён

7 марта 2024 г.

#### 1 Аннотация

В данной работе мы находим коэффициент поверхностного натяжения, с помощью иглы, колб с жидкостями и аспиратора, создающего разность давления.

#### 2 Введение

**Цель работы:** 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

**В работе используются:** прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы; микроскоп.

#### 3 Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление дается формулой Лапласа:

$$\Delta P = P_{int} - P_{ext} = \frac{2\sigma}{r},\tag{1}$$

где  $\sigma$  – коэффициент поверхностного натяжения,  $P_{int}$  и  $P_{ext}$  – давление внутри пузырька и снаружи, r – радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление  $\Delta P$ , необходимое для выталкивания в жидкость пузырька воздуха.

#### 4 Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) B (рис. (1)). Тестовая жидкость (этиловый спирт) наливается в сосуд E. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла . Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения  $\Delta P$  (1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора A. Кран  $K_2$  разделяет две полости аспиратора. Верхняя полость при закрытом кране  $K_2$  заполняется водой. Затем кран  $K_2$  открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана  $K_1$ , когда вода вытекает из неё по каплям. В колбах и , соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Для стабилизации температуры исследуемой жидкости через рубашку D колбы непрерывно прогоняется вода из термостата.

Обычно кончик иглы лишь касается поверхности жидкости, чтобы исключить влияние гидростатического давления столба жидкости. Однако при измерении температурной зависимости коэффи-



Рис. 1: Рисунок экспериментальной установки

циента поверхностного натяжения возникает ряд сложностей. Во-первых, большая теплопроводность металлической трубки приводит к тому, что температура на конце трубки заметно ниже, чем в глубине жидкости. Во-вторых, тепловое расширение поднимает уровень жидкости при увеличении температуры.

Обе погрешности можно устранить, погрузив кончик трубки до самого дна. Полное давление, измеренное при этом микроманометром, равно

$$P = \Delta P + \rho q h$$
.

Заметим, что  $\rho gh$  от температуры практически не зависит, так как подъём уровня жидкости компенсируется уменьшением её плотности (произведение  $\rho g$  определяется массой всей жидкости и поэтому постоянно). Величину  $\rho gh$  следует измерить двумя способами.

Во-первых, замерить величину  $P_1 = \Delta P'$ , когда кончик трубки только касается поверхности жидкости. Затем при этой же температуре опустить иглу до дна и замерить  $P_2 = \rho g h + \Delta P'' \ (\Delta P', \Delta P'' - давление Лапласа)$ . Из-за несжимаемости жидкости можно положить  $\Delta P' = \Delta P''$  и тогда

$$\rho gh = P_2 - P_1.$$

Во-вторых, при измерениях  $P_1$  и  $P_2$  замерить линейкой глубину погружения иглы h. Это можно сделать, замеряя расстояние между верхним концом иглы и любой неподвижной частью прибора при положении иглы на поверхности и в глубине колбы.

#### 5 Ход работы

#### 5.1 Измерение диаметра иглы

Измерим максимальное давление при пробулькивании пузырьков воздуха через спирт:

| $P_{\text{спирт}}$ , мм             | 44 | 45 | 46 |
|-------------------------------------|----|----|----|
| $P_{\text{спирт}}^{\text{cp}}$ , мм |    | 45 |    |

Таблица 1: Результаты измерений в спирте

$$\sigma_P = \sqrt{(\sigma_P^{\text{chct}})^2 + (\sigma_P^{\text{chyq}})^2} = \sqrt{2^2 + 0.8^2} \approx 2$$

По формуле (1) найдем диаметр иглы:

$$d = \frac{4\sigma_{\rm c}}{P_{\rm chindpt}^{\rm cp}Kg} = (1.00 \pm 0.04) \text{ MM}, \varepsilon_r = 4\%$$

Результат полученный под микроскопом:  $D=(1.00\pm0.05)$  мм,  $\varepsilon_r=5\%$  это означает, что диаметр найденный экспериментально достаточно точен.

# 5.2 Измерение температурной зависимости коэффициента поверхностного натяжения

Снимать будем двумя способами: при касании поверхности воды и при полном погружении иглы. Глубина погружения измеренная линейкой:  $\Delta h = (1.6 \pm 0.2)$  см,  $\varepsilon_{\Delta h} = 13\%$ . Глубина погружения по разнице давлений из первого опыта:  $\Delta P = (211-148)*0.2*9.81 = 123.6 \pm 3.9$  Па,  $\varepsilon_{\Delta P} = 3.2\%$ ,  $\Delta h = \frac{\Delta P}{\rho g} = (1.56 \pm 0.05)$  см,  $\varepsilon_{\Delta h} = 3.2\%$ .

Внесём все измеренные и полученные данные в таблицу:

| T, °C | P, mm | $\sigma$ , м $H$ /м | $\Delta\sigma$ , м $H/$ м | $arepsilon_{\Delta\sigma}$ | q, м $H$ /м | $\Delta q$ , м $H/$ м | $U/\Pi$ , м $H/$ м | $\Delta(U/\Pi)$ , м $H/$ м |
|-------|-------|---------------------|---------------------------|----------------------------|-------------|-----------------------|--------------------|----------------------------|
| 24.9  | 211   | 72.6                | 1                         | 1.4                        | 3.9         | 0.16                  | 76.5               | 1.1                        |
| 30.5  | 210   | 72.1                | 1                         | 1.4                        | 4.7         | 0.2                   | 76.8               | 1.2                        |
| 35.5  | 208   | 71.1                | 1                         | 1.4                        | 5.5         | 0.23                  | 76.6               | 1.1                        |
| 40.5  | 206   | 70.1                | 1                         | 1.4                        | 6.3         | 0.26                  | 76.4               | 1.1                        |
| 45.4  | 205   | 69.7                | 1                         | 1.4                        | 7           | 0.3                   | 76.7               | 1.2                        |
| 50.5  | 203   | 68.7                | 1                         | 1.5                        | 7.8         | 0.33                  | 76.5               | 1.1                        |
| 55.5  | 202   | 68.2                | 1                         | 1.5                        | 8.6         | 0.36                  | 76.8               | 1.2                        |
| 59.8  | 200   | 67.2                | 1                         | 1.5                        | 9.3         | 0.39                  | 76.5               | 1.1                        |

Таблица 2: Зависимости  $\sigma(T)$ , q(T) и  $U/\Pi(T)$ 

Строим по ним графики зависимости  $\sigma(T)$ :



Рис. 2: График  $\sigma(T)$ 

Температурные коэффициенты:

• 
$$k = \frac{d\sigma}{dT} = (-0.155 \pm 0.006) \frac{\text{MH}}{\text{M} \cdot \text{K}}, \ (\varepsilon = 4.2\%);$$

• 
$$b = (76.6 \pm 3.9) \frac{\text{MH}}{\text{M}}, (\varepsilon = 5.1\%).$$

### 5.3 Графики других величин

Окончательно, с помощью полученных данных построим графики теплоты образования единицы поверхности жидкости:  $q = -T \cdot \frac{d\sigma}{dT}$  и поверхностной энергии U единицы площади  $\Pi$ :  $\frac{U}{\Pi} = \sigma - T \cdot \frac{d\sigma}{dT}$ .



Рис. 3: График q(T)



Рис. 4: График U/(T)



Рис. 5: График U/(T)

## 6 Вывод

В ходе работы:

- 1. Был экспериментально измерен диаметр иглы при помощи коэффициента поверхностного натяжения спирта. Полученный результат  $d=(1.00\pm0.04)$  мм с достаточной точность совпадает с диаметром измеренным с помощью микроскопа.
- 2. Было измерено давление, создаваемое столбом жидкости при опускании иглы на  $\Delta h = (1.6 \pm 0.2)$  см.
- 3. Получены коэффициенты поверхностного натяжения воды при различных ее температурах, например  $\sigma=(72.6\pm1)\frac{\rm MH}{\rm M}$  при температуре 25 °C.
- 4. Были построены графики зависимости различных величин от температуры.