WHAT IS CLAIMED IS:

8.

communication with said microfluidic passage.

1 2

1	1. A microfluidic device for treating a particle comprising:		
2	(a) an input mechanism for introducing a fluid sample containing a particle;		
3	(b) a microfluidic passage in fluid communication with said input mechanism;		
4	(c) a positioning mechanism in fluid communication with said microfluidic		
5	passage, said positioning mechanism for positioning said particle in said		
6	microfluidic passage while contained in said fluid sample;		
7	(d) a retention mechanism for retaining said particle upon being positioned by		
8	said positioning means;		
9	(e) a treatment mechanism in communication with said retention mechanism for		
10	selectively treating said particle to produce a treatment response while being		
11	retained within said retention mechanism; and,		
12	(f) a measurement mechanism for measuring said treatment response, if any, of		
13	said particle.		
1	2. The microfluidic device of claim 1 further comprising a release mechanism for		
2	releasing said particle from said retention mechanism.		
	·		
1	3. The microfluidic device of claim 2 further comprising an output mechanism for		
2	outputting said particle from said microfluidic device.		
1	4. The microfluidic device of claim 2 further comprising a cell culture mechanism for		
2	culturing said particle.		
1	5. The microfluidic device of claim 1 further comprising a control mechanism for		
2	determining aspects of the flow rate or path of the sample fluid or other fluid.		
1	6. The microfluidic device of claim 5, wherein said control mechanism is a valve in		
2	communication with said microfluidic passage.		
1	7. The microfluidic device of claim 6, wherein said microfluidic device is formed from a		
2	multi-layer elastomeric block and, wherein said valve is formed from an elastomeric		
3	membrane within said elastomeric block.		

The microfluidic device of claim 6, wherein said control mechanism is a pump in

- 1 9. The microfluidic device of claim 8, wherein said microfluidic device is formed from a
- 2 multi-layer elastomeric block and, wherein said pump is formed from an elastomeric
- 3 membrane within said elastomeric block.
- 1 10. The microfluidic device of claim 1, wherein said microfluidic device comprises a
- 2 multi-layered elastomeric block having a control layer having an elastomeric membrane
- 3 deflectable into said microfluidic passage in a fluidic layer to determine the flow rate or path
- 4 of a fluid in said microfluidic passage.
- 1 11. The microfluidic device of claim 1, wherein said microfluidic device comprises a
- 2 layer including a material selected from the group consisting of elastomers,
- 3 polydimethylsiloxane, plastic, polystyrene, polypropylene, polycarbonate, glass, ceramic,
- 4 silicon, sol-gels, metal, metalloids, metal oxides, biological polymers, mixtures thereof,
- 5 particles, proteins, gelatins, polylysine, serum albumin, collagen, nucleic acids, and
- 6 microoganisms.
- 1 12. The microfluidic device of claim 1, wherein said microfluidic passage has is less than
- 2 about 500 micrometers wide.
- 1 13. The microfluidic device of claim 1, wherein said microfluidic passage further
- 2 comprises an adjacent passage joining said microfluidic passage at a junction or branch, said
- 3 adjacent passage being selected from the group consisting of inlet passage, outlet passage,
- 4 particle passage, reagent passage, and waste passage.
- 1 14. The microfluidic device of claim 13, wherein said adjacent passage is a dead-end
- 2 passage.
- 1 15. The microfluidic device of claim 13 further comprising said adjacent passage
- 2 manipulating said particle.
- 1 16. The microfluidic device of claim 15, wherein said particle manipulating is selected
- 2 from the group of positioning, sorting, retaining, treating, detecting, propagating, storing,
- 3 mixing, and releasing.

- 1 17. The microfluidic device of claim 1, wherein said particle is selected from the group
- 2 consisting of cells, eukaryotic cells, prokaryotic cells, plant cells, animal cells, hybridoma
- 3 cells, bacterial cells, yeast cells, viruses, organelles, beads, and vesicles.
- 1 18. The microfluidic device of claim 17, wherein said particle is a plurality or an
- 2 aggregate of particles.
- 1 19. The microfluidic device of claim 18, wherein said plurality of particles is a complex
- 2 mixture containing different particles.
- 1 20. The microfluidic device of claim 19, wherein said complex mixture containing
- 2 different particles is whole blood or serum or bodily fluid.
- 1 21. The microfluidic device of claim 1, wherein said particle is an egg or embryo.
- 1 22. The microfluidic device of claim 1, wherein the input mechanism is a receptacle or
- well in fluid communication with said microfluidic passage.
- 1 23. The microfluidic device of claim 22, wherein the input mechanism has a volume
- 2 greater than a volume defined by said microfluidic passage.
- 1 24. The microfluidic device of claim 1 further comprising a facilitating mechanism in
- 2 communication with or acting upon said input mechanism.
- 1 25. The microfluidic device of claim 24, wherein said facilitating mechanism is selected
- 2 from the group consisting of gravity, fluid pressure, centrifugal pressure, pump pressure, and
- 3 negative fluid pressure.
- 1 26. The microfluidic device of claim 1, wherein said positioning mechanism is a direct
- 2 positioning mechanism or an indirect positioning mechanism.
- 1 27. The microfluidic device of claim 26, wherein said direct positioning mechanism is a
- 2 force selected from the group consisting of optical, electrical, magnetic, and gravitational.
- 1 28. The microfluidic device of claim 27, wherein said electrical force is selected from the
- 2 group consisting of electrophoretic, electroosmotic, electroendoosmotic, and
- 3 dielectrophoretic.

- 1 29. The microfluidic device of claim 26, wherein said indirect positioning mechanism is a
- 2 longitudinal indirect positioning mechanism or a transverse indirect positioning mechanism.
- 1 30. The microfluidic device of claim 29, wherein said indirect positioning mechanism is
- 2 facilitated by a pump or a valve associated with said microfluidic device.
- 1 31. The microfluidic device of claim 29, wherein said transverse indirect positioning
- 2 mechanism is facilitated by a fluid flow stream at a passage junction, laterally disposed
- 3 region of reduced fluid flow, or channel bend.
- 1 32. The microfluidic device of claim 31, wherein said passage junction is unifying or
- 2 dividing.
- 1 33. The microfluidic device of claim 29, wherein said transverse indirect positioning
- 2 mechanism is a laminar flow-based transverse positioning means.
- 1 34. The microfluidic device of claim 29, wherein said transverse indirect positioning
- 2 mechanism is a stochastic transverse positioning mechanism.
- 1 35. The microfluidic device of claim 34, wherein said stochastic transverse positioning
- 2 mechanism randomly selects said particle from a population of particles by lateral separation
- 3 of said particle in said sample fluid from a main flow region to a reduced flow region.
- 1 36. The microfluidic device of claim 29, wherein said transverse indirect positioning
- 2 mechanism is a centrifugal forced-based transverse positioning mechanism.
- 1 37. The microfluidic device of claim 1 wherein said retention mechanism selectively
- 2 retains said particle at a pre-selected region within said microfluidic device.
- 1 38. The microfluidic device of claim 37, wherein said retention mechanism retains said
- 2 particle by overcoming or counteracting a force caused by said positioning mechanism.
- 1 39. The microfluidic device of claim 1, wherein said retention mechanism is a trap or
- 2 barrier-based retention mechanism.
- 1 40. The microfluidic device of claim 39, wherein said barrier-based retention mechanism
- 2 is restricts longitudinal movement of said particle in or adjacent said microfluidic passage.

- 1 41. The microfluidic device of claim 38, wherein said retention mechanism is a protrusion
- 2 extending, fixedly or transiently, into or adjacent said microfluidic passage to restrict
- 3 longitudinal movement of said particle.
- 1 42. The microfluidic device of claim 26, wherein said direct positioning mechanism is a
- 2 chemical retention mechanism.
- 1 43. The microfluidic device of claim 42, wherein said chemical retention mechanism is
- 2 based on a specific affinity between said particle and said retention mechanism.
- 1 44. The microfluidic device of claim 1, wherein said treatment mechanism is a fluid-
- 2 mediated mechanism or a non-fluid mediated mechanism.
- 1 45. The microfluidic device of claim 1, wherein said treatment mechanism exposes said
- 2 particle to a reagent or physical condition.
- 1 46. The microfluidic device of claim 45, wherein said reagent is selected from the group
- 2 consisting of chemical modulator, biological modulator, agonist, antagonist, hormone, ligand,
- 3 small molecule, peptide, protein, carbohydrate, lipid, receptor, nutrient, toxin, drug, chemical
- 4 substance, compound, ion, polymer, nucleic acid, material, complex, mixture, aggregate, dye,
- 5 stain, fluorescent dye, detection agent, assay agent, substrate, substrate inhibitor, antibody,
- 6 labeled substance, and biological particle.
- 1 47. The microfluidic device of claim 46, wherein said reagent attracts or repels said
- 2 particles.
- 1 48. The microfluidic device of claim 45, wherein said reagent induces or inhibits cell
- 2 particle proliferation.
- 1 49. The microfluidic device of claim 45, wherein said reagent is cytotoxic.
- 1 50. The microfluidic device of claim 44, wherein said fluid-mediated mechanism further
- 2 comprises a fluid treatment and wherein said particles are introduced to said fluid treatment.
- 1 51. The microfluidic device of claim 44, wherein said fluid-mediated mechanism
- 2 functions in conjunction with the functioning of said positioning mechanism.

- 1 52. The microfluidic device of claim 51, wherein said positioning mechanism is a
- 2 transverse positioning mechanism for moving said particle into and out of said fluid-mediated
- 3 mechanism to modulate exposure of said particle to said treatment fluid.
- 1 53. The microfluidic device of claim 45, wherein said physical condition is selected from
- 2 the group consisting of heat, light, radiation, sub-atomic particles, electric fields, magnetic
- 3 fields, pressure, acoustical pressure, gravity, and micro-gravity.
- 1 54. The microfluidic device of claim 1, wherein said measurement mechanism is a
- 2 detector associated with said microfluidic device that detects a characteristic of said particle
- 3 or caused by said particle.
- 1 55. The microfluidic device of claim 54, wherein said detector is selected from the group
- 2 consisting of spectroscopes, electronic sensors, hydrodynamic sensors, imaging systems, and
- 3 photon detectors.
- 1 56. The microfluidic device of claim 54, wherein said detector detects multiple values.
- 1 57. The microfluidic device of claim 54, wherein said detector employs a detection mode
- 2 that is selected from the group consisting of time-independent, time-dependent, and averaged.
- 1 58. The microfluidic device of claim 54, wherein said detector is a spectroscopic detector
- 2 that detects a signal produced of a type selected from the group consisting of absorption,
- 3 luminescence, photoluminescence, chemiluminescence, electroluminescence, magnetic
- 4 resonance, nuclear resonance, electron spin resonance, scattering, electron scattering, light
- 5 scattering, neutron scattering, diffraction, circular dichroism, optical rotation, fluorescence
- 6 intensity, fluorescence resonance energy transfer, fluorescence polarization, fluorescence
- 7 lifetime, total internal reflection fluorescence, fluorescence correlation spectroscopy,
- 8 fluorescence recovery after photobleaching, fluorescence activated cell sorting, and
- 9 phosphorescent.
- 1 59. The microfluidic device of claim 54, wherein said detector is an electrical detector
- 2 capable of detecting a signal selected from the group consisting of current, voltage,
- 3 resistance, capacitance, and power.

- 1 60. The microfluidic device of claim 54, wherein said detector is a hydrodynamic detector
- which detects a hydrodynamic interaction between said particle and a fluid, another particle,
- 3 or said microfluidic passage.
- 1 61. The microfluidic device of claim 60, wherein said interaction included a
- 2 hydrodynamic interaction selected from the group consisting of chromatography,
- 3 sedimentation, viscometry, electrophoresis.
- 1 62. The microfluidic device of claim 54, wherein said detector is an imaging detector for
- 2 creating and analyzing images of said particle(s).
- 1 63. The microfluidic device of claim 54, wherein said detector detects a biological
- 2 response produced by said particle(s).
- 1 64. The microfluidic device of claim 63, wherein said biological response is selected from
- 2 the group consisting of chemotaxis, biotaxis, senescence, apoptosis, proliferation,
- 3 differentiation, morphological change, pH change, and calcium uptake.
- 1 65. The microfluidic device of claim 1, further comprising a detection site, wherein said
- 2 particle or product of said particle, is detected by said detector.
- 1 66. The microfluidic device of claim 65, wherein said detection site is within said
- 2 microfluidic device.
- 1 67. The microfluidic device of claim 65, wherein said detection site is located external to
- 2 said microfluidic device.
- 1 68. The microfluidic device of claim 54, wherein said detector detects a characteristic of
- 2 said particle, directly or indirectly, said characteristic being selected from the group
- 3 consisting of particle identity, particle number, particle concentration, composition, structure,
- 4 sequence, activity, molecular character, morphology, phenotype, genotype, growth,
- 5 apoptosis, necrosis, lysis, alive/dead ratio, position in cell cycle, activity of signal pathway,
- 6 differentiation, transcriptional activity, substrate attachment, cell-cell interaction,
- 7 translational activity, replication activity, transformation, heat shock response, motility,
- 8 spreading, membrane integrity, chemotaxis, and neurite outgrowth.

- 1 69. The microfluidic device of claim 2, wherein said release mechanism operates by
- 2 removing a retaining force caused by said retaining mechanism.
- 1 70. The microfluidic device of claim 2, wherein said release mechanism operates by
- 2 overcoming a retaining force caused by said retaining mechanism.
- 1 71. The microfluidic device of claim 2, wherein said release mechanism operates by
- 2 rendering ineffective a retaining force caused by said retaining mechanism.
- 1 72. The microfluidic device of claim 2, further comprising directing said particle to
- 2 another region within or external said microfluidic device.
- 1 73. The microfluidic device of claim 72, wherein said another region is selected from the
- 2 group consisting of a second positioning mechanism, a second detection mechanism, a
- 3 second retention mechanism, and an output mechanism.
- 1 74. The microfluidic device of claim 73, wherein said second retention mechanism is a
- 2 cell culture chamber.
- 1 75. The microfluidic device of claim 3, further comprising said output mechanism
- 2 outputting said particle to a location selected from the group consisting of an internal sink,
- 3 and external sink, a waste site, a collection site, a cell growth chamber, and an external cell
- 4 culture plate.
- 1 76. A method for perfusing cells with a reagent comprising the steps of:
- 2 (a) providing a microfluidic device having
- 3 (i) a cell growth chamber,
- a cell inlet in communication with said chamber, said cell inlet having an in
- 5 valve in operable communication therewith to valve fluid flow through said
- 6 cell inlet into said chamber, wherein said cells can pass through said cell inlet
- 7 into said chamber when said inlet valve is open, but cannot pass through said
- 8 cell inlet when said inlet valve is closed; and,
- 9 (ii) a reagent inlet for inputting said reagent into said chamber, said reagent
- inlet having a reagent valve in operable communication with said reagent inlet
- for valving fluid flow through said reagent into said chamber, said inlet or said
- 12 chamber having an retention mechanism for retaining said cells in said

	chamber while permitting flow of said reagent into said chamber when said
	reagent valve is open;
	wherein when said cells are loaded into said chamber, and said cell valve is
	closed, said cells are retained in said chamber while said reagent valve is open
	and closed;
	(b) opening said cell inlet valve and introducing said cells into said chamber;
	(c) closing said cell inlet valve;
	(d) opening said reagent valve to introduce said reagent into said chamber; and,
	(e) introducing said reagent into said chamber while retaining said cells inside of said
	chamber thereby perfusing said cells with said reagent.
77.	A method for treating a particle comprising the steps of:
	(i) providing a microfluidic device comprising:
	(a) an input mechanism for introducing a fluid sample containing a
	particle;
	(b) a microfluidic passage in fluid communication with said input
	mechanism;
	(c) a positioning mechanism in fluid communication with said
	microfluidic passage, said positioning mechanism for positioning said
	particle in said microfluidic passage while contained in said fluid
	sample;
	(d) a retention mechanism for retaining said particle upon being positioned
	by said positioning means;
	(e) a treatment mechanism in communication with said retention
	mechanism for selectively treating said particle to produce a treatment
	response while being retained within said retention mechanism; and,
	(f) a measurement mechanism for measuring said treatment response, if
	any, of said particle.
	(ii) introducing said sample fluid containing said particle into said input
	mechanism;
	(iii) positioning said particle with said positioning mechanism so that said
	particle is retainable by said retention mechanism;
	(iv) retaining said particle with said retaining mechanism;
	(v) exposing said particle to said treatment by said treatment mechanism;
	77.

- (vi) measuring said treatment response caused directly or indirectly by said
 particle upon exposure to said treatment.
- 1 78. The method of claim 77 wherein said microfluidic device further comprises a release
- 2 mechanism for releasing said particle from said retention mechanism, and said method
- 3 further comprises the step of releasing said particle from said retaining mechanism.
- 1 79. The method of claim 78, wherein said microfluidic device further comprises an output
- 2 mechanism for outputting said particle from said microfluidic device, and said method further
- 3 comprises the step of outputting said particle from said microfluidic device by said output
- 4 mechanism.
- 1 80. The method of claim 78, wherein said microfluidic device further comprises a cell
- 2 culture mechanism for culturing said particle, and the method further comprises the step of
- 3 culturing said particle in said cell culture mechanism.
- 1 81. The method of claim 77, wherein said microfluidic device further comprises a control
- 2 mechanism for determining aspects of the flow rate or path of the sample fluid or other fluid,
- 3 and the method further comprises the step of determining the flow rate or path of the sample
- 4 fluid or other fluid by said control mechanism.
- 1 82. The method of claim 81, wherein said control mechanism is a valve in communication
- with said microfluidic passage, and the method further comprises valving said sample fluid or
- 3 other fluid with said valve.
- 1 83. The microfluidic device of claim 82, wherein said microfluidic device is formed from
- 2 a multi-layer elastomeric block and, wherein said valve is formed from an elastomeric
- 3 membrane within said elastomeric block, and wherein said valving occurs by deflecting said
- 4 elastomeric membrane into said microfluidic passage.
- 1 84. The method of claim 82, wherein said control mechanism is a pump in
- 2 communication with said microfluidic passage, and wherein said determining the flow rate or
- 3 path of said sample fluid occurs by actuation of said pump.
- 1 85. The method of claim 84, wherein said microfluidic device is formed from a multi-
- 2 layer elastomeric block and, wherein said pump is formed from an elastomeric membrane

- 3 within said elastomeric block, and wherein said pump is actuated by deflecting a series of
- 4 elastomeric membranes into said microfluidic passage in a selected sequence.
- 1 86. The method of claim 77, wherein said microfluidic device comprises a multi-layered
- 2 elastomeric block having a control layer having an elastomeric membrane deflectable into
- 3 said microfluidic passage in a fluidic layer to selectively determine the flow rate or path of a
- 4 fluid in said microfluidic passage.
- 1 87. The method of claim 77, wherein said microfluidic passage further comprises an
- 2 adjacent passage joining said microfluidic passage at a junction or branch, said adjacent
- 3 passage being selected from the group consisting of inlet passage, outlet passage, particle
- 4 passage, reagent passage, and waste passage, and said method further comprises the step of
- 5 selectively determining the path of said particle to said adjacent passage.
- 1 88. The method of claim 87, wherein said adjacent passage is a dead-end passage, and
- 2 wherein said selectively determining includes introducing said sample fluid into said dead-
- 3 end passage wherein said sample fluid displaces gas, if present, in said dead-end passage to
- 4 fill said dead-end passage with said sample fluid.
- 1 89. The method of claim 87 further comprising said adjacent passage manipulating said
- 2 particle.
- 1 90. The method of claim 89, wherein said particle manipulating includes retaining said
- 2 particle in addition to either positioning, sorting, treating, detecting, propagating, storing,
- 3 mixing, or releasing said particle.
- 1 91. The method of claim 77, wherein said particle is selected from the group consisting of
- 2 cells, eukaryotic cells, prokaryotic cells, plant cells, animal cells, hybridoma cells, bacterial
- 3 cells, yeast cells, viruses, organelles, beads, and vesicles, and wherein said treating step treats
- 4 said particle.
- 1 92. The method of claim 91, wherein said particle is a plurality or an aggregate of
- 2 particles, and said method further comprises a sorting step to sort out and separate or isolate a
- desired particle from said plurality of particles, and said treating step treats said separated or
- 4 isolated particle.

- 1 93. The method of claim 92, wherein said plurality of particles is a complex mixture
- 2 containing different particles, and said sorting step sorts out at least one type of particle from
- 3 other different particles in said complex mixture.
- 1 94. The method of claim 93, wherein said complex mixture containing different particles
- 2 is whole blood or serum or bodily fluid, and said sorting step selects for at least one type of
- 3 cell from the whole blood or serum.
- 1 95. The method of claim 77, wherein said particle is an egg or embryo, and said treatment
- 2 is a step towards in-vitro fertilizing or manipulating said egg or embryo, respectively.
 - 96. The method of claim 77, wherein the input mechanism is a receptacle or well in fluid communication with said microfluidic passage, and said method further comprises the step of
- 5 introducing said fluid sample into said receptacle.