## **ACT 1 Introduction aux circuits séquentiels**

Nous allons découvrir le fonctionnement de circuits de décision dits « séquentiels ».

### 1 Rappels sur les portes logiques

#### **Notations**

- La conjonction, notée & (esperluette), ^ ou . est lue "ET"
- La disjonction, notée | (pipe), v ou + est lue "OU"
- la négation, notée ~, ¬ ou (lire barre) est lue "NON"

#### **Symboles**

Les symboles américains représentant les fonctions logiques sont différents de la norme européenne (forme arrondie).

| FONCTION     | EQUATION                   | SYMBOLES      |                |               |                  | TABLES DE        |                  |  |
|--------------|----------------------------|---------------|----------------|---------------|------------------|------------------|------------------|--|
| FUNCTION     |                            | International | Français       | Allemand      | VERITE           |                  |                  |  |
|              |                            |               |                | 7             | а                |                  | S                |  |
| NON          | S = <u>a</u>               | 3—S           | 1 0-           | <b>−</b> ()~  | 0<br>1           |                  | 1<br>0           |  |
| ET           | S = a.b                    | å S           | - & _          | <b>⊅</b> -    | а                | b                | S                |  |
|              |                            |               |                |               | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 0<br>0<br>0<br>1 |  |
| NAND         | $S = \overline{a \cdot b}$ |               | »              | <b>□</b>      | а                | b                | S                |  |
|              |                            |               |                |               | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 1<br>1<br>1<br>0 |  |
| ου           | S = a + b                  | <u>a</u> s    | ≥ 1            | $\supset$     | а                | b                | S                |  |
|              |                            |               |                |               | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 0<br>1<br>1<br>1 |  |
|              |                            |               |                |               | а                | b                | S                |  |
| NOR          | $S = \overline{a + b}$     |               | ≥ 1 <b>b</b> − | $\rightarrow$ | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 1<br>0<br>0      |  |
|              |                            | _             |                |               | а                | b                | S                |  |
| OU Exclusif  | S = a ⊕ b                  |               | = 1            |               | 0<br>0<br>1      | 0<br>1<br>0      | 1 1 0            |  |
|              |                            | a <b>,</b> _  |                |               | а                | b                | S                |  |
| NOR Exclusif | S = <u>a ⊕ b</u>           |               | = 1 0-         | <b>—</b>      | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 1<br>0<br>0<br>1 |  |

# 2 <u>La bascule RS</u>

Soit la fonction booléenne suivante et son chronogramme :



| S | R | Q | /Q |  |
|---|---|---|----|--|
| 0 | 0 |   |    |  |
| 0 | 1 |   |    |  |
| 1 | 0 |   |    |  |
| 1 | 1 |   |    |  |

### Chronogramme



- Compléter la table de vérité de la bascule et le chronogramme.
- Quelle utilisation concrète cela pourrait-il avoir ?

# 3 Pour aller plus loin : la bascule RS synchrone

• Comment synchroniser le changement d'état avec une horloge ?



- Comment éliminer la dernière combinaison en ayant toujours S et R complémentaires ?
- Comment appeler ce signal alors ?

