Математична фізика

Нікіта Скибицький 24 січня 2019 р.

1 Постановка основних граничних задач для лінійних ди-

Зміст

	фер	ренційних рівнянь 2-го порядку, коректність, класичні	
	тау	узагальнені розв'язки	1
	1.1	Гранична задача для еліптичного рівняння	1 2
	1.2	Постановка змішаних задач для рівняння гіперболічного	
		типу Задача Коші для гіперболічного рівняння	3
	1.3	Задача Коші	4
	1.4	Постановка змішаних задач для рівняння параболічного	
		типу	4
	1.5	Коректність задач математичної фізики	5
	1.6	Приклад Адамара некоректно поставленої задачі	6
	1.7	Класичний і узагальнений розв'язки	7
1	Т	Іостановка основних граничних задач дл	g
_		<u> -</u>	
	Л	інійних диференційних рівнянь 2-го по)-
	n	ядку, коректність, класичні та узагально	_ج
	_	· · · · · · · · · · · · · · · · · · ·	_
	\mathbf{H}	і розв'язки	

Серед множини математичних моделей, які були розглянуті в попередніх параграфах можна виділити найтиповіші математичні моделі, які концентрують в собі головні особливості усіх розглянутих вище. Ці моделі представляють собою граничні задачі для рівнянь трьох типів: еліптичних, параболічних та гіперболічних лінійних рівнянь другого порядку.

Розглянемо основний диференціальний оператор другого порядку:

$$Lu = \operatorname{div}(p(x) \cdot \operatorname{grad}(u)) - q(x) \cdot u. \tag{1.1}$$

Запишемо основні диференціальні рівняння:

• Еліптичне рівняння:

$$Lu = -F(x), \quad x \in \Omega \subset \mathbb{R}^n.$$
 (1.2)

• Параболічне рівняння:

$$\rho(x) \cdot \frac{\partial u}{\partial t} = Lu + F(x, t), \quad x \in \Omega \subset \mathbb{R}^n, \quad t > t_0 \in \mathbb{R}.$$
(1.3)

• Гіперболічне рівняння:

$$\rho(x) \cdot \frac{\partial^2 u}{\partial t^2} = Lu + F(x, t), \quad x \in \Omega \subset \mathbb{R}^n, \quad t > t_0 \in \mathbb{R}. \tag{1.4}$$

1.1 Гранична задача для еліптичного рівняння

Будемо розділяти внутрішні і зовнішні задачі для еліптичного рівняння, а саме, якщо $x \in \Omega$, то таку задачу будемо називати внутрішньою, якщо $x \in \Omega'$ – задача зовнішня¹.

В подальшому ми будемо розглядати класичні розв'язки граничних задач. Це означає, що рівняння і усі граничні умови виконуються в кожній точці області або границі.

Введемо обмеження на коефіцієнти рівняння p і q та вільний член F. Зокрема будемо припускати, що $p>0, p\in C^{(1)}(\Omega), q\geq 0, q\in C(\Omega),$ $F(x)\in C(\Omega).$

Позначимо $\partial \Omega = S$ – поверхню на якій задаються граничні умови загального вигляду

$$\alpha(x) \cdot \frac{\partial u}{\partial n} + \beta(x) \cdot u|_S = V(x),$$
 (1.1.1)

де $\alpha, \beta \geq 0$, $\{\alpha, \beta, V\} \subset C(S)$. З умови (1.1.1) можна отримати умови 1, 2, 3 роду зокрема:

 $^{^{1}\}mathrm{Tyr}\;\Omega'$ – доповнення до Ω

• Діріхле:

$$u|_{S} = \frac{V(x)}{\beta(x)}. (1.1.2)$$

• Неймана:

$$\frac{\partial u}{\partial n}\Big|_{S} = \frac{V(x)}{\alpha(x)}.$$
 (1.1.3)

• Ньютона:

$$\frac{\partial u}{\partial n} + \frac{\beta}{\alpha} \cdot u|_S = \frac{V}{\alpha}.\tag{1.1.4}$$

Таким чином гранична задача для еліптичного рівняння може бути сформульована наступним чином: знайти функцію $u(x) \in C^{(2)}\Omega \cap C^{(1)}(\bar{\Omega})$, яка в кожній внутрішній точці області Ω (для внутрішньої задачі) або Ω' (для зовнішньої задачі) задовольняє рівняння (1.2), а кожній точці границі S виконується одна з граничних умов (1.1.2), (1.1.3) або (1.1.4).

У випадку зовнішньої граничної задачі в нескінченно віддаленій точці області слід задавати додаткові умови поведінки розв'язку. Такі умови називають умовами *регулярності на нескінченості*. Як правило вони полягають в завданні характеру спадання розв'язку і мають вигляд:

$$u(x) = O\left(\frac{1}{|x|^{\alpha}}\right), \quad |x| \to \infty,$$
 (1.1.5)

де α – деякий параметр задачі.

1.2 Постановка змішаних задач для рівняння гіперболічного типу Задача Коші для гіперболічного рівняння

Для постановки граничних задач рівняння гіперболічного типу (1.4) введемо просторово-часовий циліндр, як область зміни незалежних змінних x,t:

$$Z(\Omega, T) = \Omega \times (0, T]. \tag{1.2.1}$$

Для отримання єдиного розв'язку гіперболічного рівняння, на нижній основі просторово-часового циліндру $Z_0(\Omega,T)=\Omega \times \{t=0\}$ треба задати початкові умови:

$$u(x,0) = u_0(x), \quad x \in \Omega, \tag{1.2.2}$$

$$\frac{\partial u(x,0)}{\partial t} = v_0(x), \quad x \in \Omega. \tag{1.2.3}$$

На боковій поверхні просторово-часового циліндру $Z_S(\Omega,T) = S \times (0,T]$ треба задати граничні умови одного з трьох основних типів:

• Діріхле:

$$u|_S = \varphi(x, t). \tag{1.2.4}$$

• Неймана:

$$\frac{\partial u}{\partial n}\Big|_{S} = \varphi(x, t).$$
 (1.2.5)

• Ньютона:

$$\frac{\partial u}{\partial n} + \alpha(x,t) \cdot u|_S = \varphi(x,t). \tag{1.2.6}$$

Таким чином постановка граничної задачі для гіперболічного рівняння має вигляд:

Знайти функцію $u(x,t) \in C^{(2,2)}Z(\Omega,T)) \cap C^{(1,1)}\left(\overline{Z(\Omega,T)}\right)$, яка задовольняє рівнянню (1.4) для $(x,t) \in Z(\Omega,T)$, початковим умовам (1.2.2), (1.2.3) для $(x,t) \in Z_0(\Omega,T)$, і в кожній точці $(x,t) \in Z_S(\Omega,T)$ одній з граничних умов (1.2.4)-(1.2.6).

При цьому відносно вхідних даних будемо робити наступні припущення:

$$p > 0, \quad p \in C^{(1)}(\bar{\Omega}), \quad q \in C(\bar{\Omega}), \quad F(x,t) \in C\left(\overline{Z(\Omega,T)}\right).$$
 (1.2.7)

$$u_0, v_0 \in C\left(\overline{Z_0(\Omega, T)}\right), \quad \alpha, \varphi \in C\left(\overline{Z_S(\Omega, T)}\right), \quad \alpha \ge 0.$$
 (1.2.8)

1.3 Задача Коші

У випадку, коли область Ω має великі розміри і впливом граничних умов можна знехтувати, область Ω ототожнюється з усім евклідовим простором, тобто $\Omega = \mathbb{R}^n$.

У зв'язку з відсутністю границі, граничні умови не задаються. В цьому випадку гранична задача трансформується в задачу Коші для гіперболічного рівняння яка ставиться наступним чином:

Знайти функцію $u(x,t) \in C^{(2,2)}Z(\mathbb{R}^n,T)) \cap C^{(1,1)}\left(\overline{Z(\mathbb{R}^n,T)}\right)$, яка задовольняе рівняння (1.4) для $(x,t) \in Z(\mathbb{R}^n,T)$, початковим умовам (1.2.2), (1.2.3) для $x \in \mathbb{R}^n$.

1.4 Постановка змішаних задач для рівняння параболічного типу

При постановці граничної задачі і задачі Коші для рівняння параболічного типу треба враховувати, що по часовій змінній рівняння має перший порядок, що і обумовлює деякі відмінності в постановці граничних задач.

Постановка граничної задачі для рівняння параболічного типу (1.3) має вигляд:

Знайти функцію $u(x,t) \in C^{(2,1)}Z(\mathbb{R}^n,T)) \cap C^{(1,0)}\left(\overline{Z(\mathbb{R}^n,T)}\right)$, яка задовольняе рівняння (1.3) для $(x,t) \in Z(\Omega,T)$, початковим умовам (1.2.2) для $(x,t) \in Z_0(\Omega,T)$, і в кожній точці $(x,t) \in Z_S(\Omega,T)$ одній з граничних умов (1.2.4)-(1.2.6).

Аналогічні зміни необхідно запровадити і при постановці задачі Коші для рівняння параболічного типу (записати самостійно постановку задачі Коші для параболічного рівняння (1.3).

1.5 Коректність задач математичної фізики

Зважуючи на фізичну природу задач математичної фізики, до них застосовуються наступні природні вимоги.

- 1. **Існування розв'язку**. Задача повинна мати розв'язок (задача яка не має розв'язку не представляє інтересу як математична модель).
- 2. **Єдиність розв'язку**. Не повинно існувати декілька розв'язків задачі.
- 3. **Неперервна залежність від вхідних даних**. Розв'язок задачі повинен мало змінюватись при малій зміні вхідних даних.

Розглянемо математичну модель у вигляді наступної граничної задачі:

$$\begin{cases} Lu = f, & x \in \Omega, \\ hu = \varphi, & x \in S = \partial \Omega. \end{cases}$$
 (1.5.1)

Формулювання диференціального рівняння і граничних умов ще недостатнью що б гранична задача була сформульована однозначно. Необхідно додатково вказати які аналітичні властивості вимагаються від розв'язку, в якому розумінні задовольняється рівняння і граничні умови.

При аналізі граничної задачі виникають наступні питання:

- Чи може існувати розв'язок з відповідними властивостями?
- Які аналітичні властивості треба вимагати від вхідних даних f, φ , коефіцієнтів диференціального оператора і граничних умов?
- Чи існують серед умов задачі такі, що протирічать одне одному?
- \bullet Які умови треба накладати на гладкість границі S?
- Чи достатньо сформульованих умов для однозначного знаходження розв'язку?
- Чи можна гарантувати, що малі зміни f, φ приведуть до малих змін розв'язку?

Перелічені проблеми зручно розв'язувати звівши граничну задачу до операторного рівняння. Застосувавши загальні методи теорії операторів та операторних рівнянь.

В першу чергу виберемо два бананових простора E та F.

Шуканий розв'язок розглядається як елемент E, а сукупність правих частин як елемент F.

Визначимо оператор A, як відображення $u \to \{Lu, \varphi\}$, тоді гранична задача (1.5.1) зводиться до операторного рівняння

$$Au = g, \quad g = \{f, \varphi\} \tag{1.5.2}$$

Позначимо R(A) та D(A) – область значень та область визначення оператора A. Коректність операторного рівняння визначають для пари просторів E та F.

В термінах операторного рівняння (1.5.2) існування розв'язку означає, що область значень оператора R(A) є не порожня підмножина F.

Єдиність розв'язку означає, що відображення $A:D(A)\to R(A)$ ін'єктивно і на R(A) визначений обернений оператор A^{-1} .

Відображення $A:D(A)\to R(A)$ називається $in'e\kappa muвним$, якщо різні елементи множини D(A) переводяться в різні елементи множини R(A).

Вимога неперервної залежності розв'язку від правої частини або стійкості граничної задачі зводиться до неперервності або обмеженості оператора A^{-1} .

1.6 Приклад Адамара некоректно поставленої задачі

Розглянемо рівняння Лапласа

$$\frac{\partial^2 u}{\partial t^2} = -\frac{\partial^2 u}{\partial x^2}, \quad t > 0, \quad 0 < x < \pi. \tag{1.6.1}$$

Додаткові умови

$$u|_{x=0} = u|_{x=\pi} = 0, \quad u|_{t=0} = 0, \quad \frac{\partial u}{\partial t}\Big|_{t=0} = \frac{1}{k} \cdot \sin kx.$$
 (1.6.2)

Розв'язок $u_k(x,t) = \frac{1}{k^2} \cdot \sinh(kt) \cdot \sin(kx), \ \forall x : \lim_{k \to \infty} \frac{1}{k} \cdot \sin(k,x) = 0,$

$$\forall t > 0, \quad \forall x \in (0, \pi) : \quad \lim_{k \to \infty} \frac{1}{k^2} \cdot \sinh(kt) \cdot \sin(kx) = \infty.$$

Для прикладу Адамара порушена умова непевної залежності розв'язку від вхідних даних.

1.7 Класичний і узагальнений розв'язки

Класичний розв'язок – це розв'язок, який задовольняє рівнянню, початковим і граничним умовам в кожній точці, області, або границі.

Це означає, що класичний розв'язок повинен мати певну гладкість, яка визначається порядком похідних рівняння і порядком похідних граничних і початкових умов.

Розглянемо рівняння $\operatorname{div}(p(x)\cdot\operatorname{grad} u)-q(x)\cdot u=-F(x),\ x\in\Omega$ та однорядні умови

$$u|_{S} = 0. (1.7.1)$$

Отримаємо інтегральне співвідношення.

Розглянемо функцію v(x) таку, що $v|_S=0$, помножимо рівняння на v та проінтегруємо по Ω :

$$\iiint_{\Omega} v \left(\operatorname{div}(p(x) \cdot \operatorname{grad} u) - q \cdot u \right) d\Omega = -\iiint_{\Omega} F \cdot v d\Omega.$$

Після інтегрування за частинами отримаємо:

$$\iiint\limits_{\Omega} \left(\left(p(x) \left(\operatorname{grad} u, \operatorname{grad} v \right) - q \cdot u \cdot v \right) \mathrm{d}\Omega + \iint\limits_{S} p \cdot v \cdot \frac{\partial u}{\partial n} \, \mathrm{d}S = - \iiint\limits_{\Omega} F \cdot v \, \mathrm{d}\Omega.$$

Остаточно, після врахування граничних умов маємо:

$$\iiint_{\Omega} (p(\operatorname{grad} u, \operatorname{grad} v) + q \cdot u \cdot v) d\Omega = \iiint_{\Omega} F \cdot v d\Omega.$$
 (1.7.2)

Інтегральна тотожність має зміст для більш широкого класу функцій ніж той якому належить класичний розв'язок граничної задачі і коефіцієнти рівняння.

Якщо $\{u,v\}\subset C^{(2)}(\Omega)\cap C(\bar\Omega),\ p\in C^{(1)}(\Omega),\ q\in C(\Omega)$ то з тотожності (1.7.2), обернений ланцюжок перетворень дозволяє отримати граничну задачу (1.7.1). Але (1.7.2) має зміст для функцій більш широкого класу, а саме $\{F,u,v,\operatorname{grad} u,\operatorname{grad} v\}\subset L_2(\Omega),\ p,q$ – обмежені. Це дозволяє використовувати інтегральну тотожність (1.7.2) для визначення узагальненого розв'язку граничної задачі (1.7.1).

Для цього введемо множину $N_2 = \{u | \{u, \operatorname{grad} u\} \subset L_2(\Omega), u|_S = 0\}.$

Узагальненим розв'язком граничної задачі (1.7.1) будемо називати довільну функцію $u \in N_2$, таку, що $\forall v \in N_2$ має місце інтегральна тотожність (1.7.2).