Lei de Coulomb

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

13 de Junho de 2022

Sumário

- Introdução
 - Conceito de carga elétrica
- Lei de Coulomb
- Apêndice

Carga elétrica

- ✓ Existem dois tipos diferentes de carga elétrica (positivo e negativo);
- ✓ O processo de eletrização não cria cargas, apenas a transfere de um corpo para o outro levando a lei de conservação da carga elétrica;
- ✓ Acreditava-se que a transferência ocorria pela carga positiva e não pela negativa;
- ✓ Pela experiência realizada por Du Fay cargas de mesmo sinal se repelem e sinais contrários se atraem;

Carga elementar

A carga elétrica assume valores discretos, dados pela carga -e do elétron e +e do próton.

$$e = 1,602177 \times 10^{-19} \text{ C}$$

Força eletrostática

Características

- ✓ É uma força conservativa;
- ✓ Curta distância (alguns metros);
- ✓ Proporcional ao produto das cargas;
- ✓ Inversamente proporcional ao quadrado da distância;
- ✓ Pode ser atrativa ou repulsiva dependendo do produto das cargas;
- ✓ Obedece as Leis de Newton do movimento.

Sentido da força em relação ao sinal das cargas.

Lei de Coulomb

$$F_{qQ} = k rac{|Qq|}{r_{qQ}^2}$$

Leis de Newton e a Força eletrostática

Vetorialmente, a lei de Coulomb é definida como

$$\vec{F}_{Qq} = k rac{Qq}{r_{Qq}^2} \hat{r}_{Qq}$$

Sabendo que $\vec{r}_{Qq}=-\vec{r}_{qQ}$ temos que a Lei de Coulomb satisfaz a Lei da ação e reação, onde

$$\vec{F}_{Qq} = -\vec{F}_{qQ}$$

Sentido da força em relação ao sinal das cargas.

Corollary

Objetos puntuais são aqueles cujas dimensões são praticamente desprezíveis.

Utilize a animação para verificar a dependência da fora com as cargas e distância relativa.

Distribuição discreta de cargas

Dado o conjunto de cargas i distribuídas no espaço, a força resultante atuando em cada carga devido as demais é obtida somando vetorialmente as forças atuando na carga i.

$$\vec{F}_i = \vec{F}_{i1} + \vec{F}_{i2} + \vec{F}_{i3} + \vec{F}_{i4} + \vec{F}_{i5} + \vec{F}_{i6}.$$

Lei de Coulomb em um distribuição discreta

$$\vec{F}_i = \sum_{j=1}^N \vec{F}_{ij}$$

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000.0 = 6.59×10^{15}

Conversão de unidades em uma dimensão

$$1~\text{mm} = 1\times 10^{(-1)\times \textcolor{red}{2}}~\text{dm} \rightarrow 1\times 10^{-2}~\text{dm}$$

$$2,5~g=2,5\times 10^{(1)\times 3}~mg \to 2,5\times 10^3~mg$$

10
$$\mu$$
C = 10 × 10^[(-3)×1+(-1)×3] C \rightarrow 10 × 10⁻⁶ C

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

10
$$\mu$$
m² = 10 × 10^[(-6)×1+(-2)×3] m² \rightarrow 10 × 10⁻¹² m²

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ho
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

- D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Eletromagnetismo, v.3, 10. ed., Rio de Janeiro, LTC (2016)
- R. D. Knight, Física: Uma abordagem estratégica, v.3, 2nd ed., Porto Alegre, Bookman (2009)
- H. M. Nussenzveig, Curso de física básica. Eletromagnetismo, v.1, 5. ed., São Paulo, Blucher (2014)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.