Guanzhou Hu

Phone: +86 15052208971 | Email: guanzhou.hu@wisc.edu

Address: Madison, WI, USA WebSite: https://josehu.com

EDUCATION

University of Wisconsin-Madison

Aug 2020 - Jun 2025

Computer Science Ph.D. Student,

Madison, WI, USA

• Supervised by Prof. Andrea Arpaci-Dusseau and Prof. Remzi Arpaci-Dusseau

ShanghaiTech University

Sep 2016 - Jul 2020

Computer Science and Technology B.Eng.,

Shanghai, China

- GPA: 3.9 / 4.0 (rank 2 / 183)
- Honors: Dean's Scholarship (2019), President's Scholarship (2017, 2018), Outstanding Student (2017, 2018)
- Relevant coursework: Operating Systems, Computer Architecture III, Compilers, Parallel Computing

Massachusetts Institute of Technology

Sep 2019 - Jun 2020

Electrical Engineering & Computer Science Special Student,

Cambridge, MA, USA

• Relevant coursework: Distributed Systems Engineering, Computer Networks, Computer Systems Security

RESEARCH EXPERIENCE

Affordable AI: Cost-Efficient & Scalable Graph Convolutional Networks Computing Framework with the Aid of Serverless (Lambda) Computing

Jul 2019 - Oct 2019

Los Angeles, CA, USA

CSST Research Intern, University of California, Los Angeles, with Prof. Harry Xu

- Integrated new and emerging serverless computing techniques into traditional graph computing to build an affordable, efficient, and highly-scalable graph convolutional networks (GCNs) computing platform without expensive dedicated GPUs.
- Implemented the first workable prototype with AWS Lambdas service, and reached linear scalability and 100% cost-efficiency.

NcTrace: Optimized Trace Data Storage with the netCDF Format

Mar 2019 - Aug 2019

Leader of project team, Shanghai Tech University, L.I.O.N group, with Prof. Shu Yin

Shanghai, China

- Optimized the storage of comma-separated values (CSV) trace data using the netCDF I/O library. Introduced the "dimension packing" storage model which reduces the file size and accelerates users' analysis tasks.
- Tested with Google cluster traces, and achieved 7:1 size reduction with 2 orders of magnitude acceleration on reading.

Active I/O: High-Performance Parallel Content-aware Storage System

Jan 2019 - Aug 2019

Research Assistant, Shanghai Tech University, L.I.O.N Group, with Prof. Shu Yin

Shanghai, China

- Designed a high-performance, parallel file system named RosFS. It aims to dig out the "content locality" within highlystructured data formats, by clustering data by topics and providing users a better locality when operating on a subset of topics.
- Tested with Robot Operating System bag files, and achieved 6.5x performance improvement on opening and at least 1.4x on reading.

PRIZES & AWARDS

Outstanding Research Award, CSST Program 2019, University of California, Los Angeles	Sep 2019
Second Class Prize, ASC Supercomputing Cluster Competition 2019 (team leader)	Mar 2019
Outstanding Teaching Assistant Award, School of Information Science and Technology	Jan 2019
Meritorious Winner, Mathematical Contest in Modeling (MCM) 2018	Apr 2018

TEACHING EXPERIENCE

Teaching Assistant in Computer Architecture

Feb 2019 - Apr 2019

School of Information Science and Technology, Shanghai Tech University

Shanghai, China Sep 2018 - Jan 2019

Shanghai, China

School of Information Science and Technology, Shanghai Tech University

• Guided semester-long course projects on the PintOS system kernel from Stanford CS140.

Teaching Assistant in Discrete Mathematics

Teaching Assistant in Operating Systems

Mar 2018 - Jul 2018

School of Information Science and Technology, Shanghai Tech University

Shanghai, China

PUBLICATIONS & PATENTS

• Yin, S. and Hu, G. 2019. A Storage System Management Policy Based on Data Content Locality. CN. Patent application 201910499391.9, filed in June 2019. [Patent pending.]

MISCELLANEOUS

- Skills: System programming, C/C++, Rust, Go, Python, Linux server dev/ops, MIPS
- Languages: Chinese (Native), English (Fluent), Japanese (Basic)