

Metal Ion Released from Old Prostheses May Affect Oral Lesions: A Pilot Study

Hve-Min Ju. Ji-Su Kim. Yona-Woo Ahn. Soo-Min Ok. Suna-Hee Jeona 자 자

(Authors)

Journal of Oral Medicine and Pain 43(4), 2018.12, 131-135(5 pages) 출처

(Source)

대한안면통증구강내과학회 발행처

THE KOREAN ACADEMY OF OROFACIAL PAIN AND ORAL MEDICINE (Publisher)

http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07592009 **URL**

Hye-Min Ju, Ji-Su Kim, Yong-Woo Ahn, Soo-Min Ok, Sung-Hee Jeong (2018). Metal lon Released from Old Prostheses May Affect Oral Lesions: A Pilot Study. Journal of Oral Medicine and Pain, 43(4), 131-135 APA Style

이화여자대학교 이용정보 203.255.***.68 2020/05/18 04:03 (KST) (Accessed)

저작권 안내

DBpia에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 그리고 DBpia에서 제공되 는 저작물은 DBpia와 구독계약을 체결한 기관소속 이용자 혹은 해당 저작물의 개별 구매자가 비영리적으로만 이용할 수 있습니다. 그러므로 이에 위반하여 DBpia에 서 제공되는 저작물을 복제, 전송 등의 방법으로 무단 이용하는 경우 관련 법령에 따라 민, 형사상의 책임을 질 수 있습니다.

Copyright Information

Copyright of all literary works provided by DBpia belongs to the copyright holder(s) and Nurimedia does not guarantee contents of the literary work or assume responsibility for the same. In addition, the literary works provided by DBpia may only be used by the users affiliated to the institutions which executed a subscription agreement with DBpia or the individual purchasers of the literary work(s) for non-commercial purposes. Therefore, any person who illegally uses the literary works provided by DBpia by means of reproduction or transmission shall assume civil and criminal responsibility according to applicable laws and regulations.

Metal Ion Released from Old Prostheses May Affect Oral Lesions: A Pilot Study

Original

Hye-Min Ju^{1,2}, Ji-Su Kim², Yong-Woo Ahn², Soo-Min Ok², Sung-Hee Jeong²

¹Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea ²Department of Oral Medicine, Dental Research Institute, Pusan National University School of Dentistry, Yangsan, Korea

Received November 7, 2018 Revised December 15, 2018 Accepted December 28, 2018

Correspondence to:

Sung-Hee Jeong
Department of Oral Medicine, Dental
Research Institute, Pusan National
University School of Dentistry, 49
Busandaehak-ro, Mulgeum-eup,
Yangsan 50612, Korea
Tel: +82-55-360-5242
Fax: +82-55-360-5238
E-mail: drcookie@pusan.ac.kr

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2017032298).

Purpose: To investigate the correlation between the amount of salivary metal ions released from fixed prostheses and the period of restoration insertion, and to evaluate the correlation between the type and amount of metal ions in saliva and oral lesions (OL).

Methods: Based on the oldest prosthesis, we divided patients into two groups: more than 5 years (n=19) and less than 5 years (n=10). Patients were also divided into two groups by another criteria: the one with the presence (n=15), and the one with absence (n=14) of OL, and the amounts of metal ions were examined. Metal ions—gold (Au), copper, cobalt (Co), chromium (Cr), nickel, zinc, aluminum, palladium (Pd), tin, and platinum (Pt)—were measured using laser ablation microprobe inductively coupled plasma mass spectrometry.

Results: Significantly higher quantities of Co, Pt, and Pd ions were released in patients with fixed prosthesis of more than 5 years (p<0.05). Measurement of the average amount of salivary metal ions was performed on patients with and without OL - Significantly higher amounts of Cr, Pd and Au ions were released in patients with OL (p<0.05).

Conclusions: Old prostheses (≥5 years) released metal ions, and among them were Co, Pt and Pd ions more than others. Patients with OL showed significantly higher levels of ion release, especially Cr, Pd and Au. There was a positive correlation between the amount of a certain kind of released metal ions, especially Pd, and the development of OL. Salivary Pd ion released from old prostheses could affect the pathogenesis of OL; therefore, long-term follow-up is important.

Key Words: Metals; Old prosthesis; Oral lesion; Saliva

INTRODUCTION

Artificial teeth made of various dental materials, including ceramics, acrylates, composites and metal alloys, are used to replace natural teeth when recovery of oral health and aesthetic improvement are needed. The oral cavity is exposed to several environments in which metal alloys corrode over time. Factors which are inherent in the metals used include microstructure, chemical composition, construction technique, and galvanizing properties because of interactions among existing metallic restorations. Factors

that may initiate corrosion include secreted saliva, the reflux of organic acids, temperature fluctuations because of food and drink intake, and the accumulation of plaque. In particular, saliva is affected by diet and medication intake. Studies of metal ion detection in saliva have reported that initially, fixed prostheses mainly release metal ions; however, the amount of released metal ions is not consistent and declines over time. However, these results were derived from short-term studies (duration of less than 6 months). There is a lack of studies on the long-term effects of fixed prostheses.

Copyright © 2018 Korean Academy of Orofacial Pain and Oral Medicine, All rights reserved,

@ This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Previous studies on human exposure to metal ions and inflammation primarily depended upon patch testing on skin or serum tests. Previous studies have shown that particles released from orthopedic implants, used in surgeries such as hip arthroplasty, cause chronic inflammation when they are locally accumulated, leading to osteolysis in the long run. Furthermore, there have been a number of studies on dental material patch testing targeted for patients with oral lesions, the result of which showed that dental material caused allergic reactions.³⁻⁸⁾ Nevertheless, there is a lack of research on the correlation between salivary metal ions and oral lesions in patients with fixed prostheses in contact with mucosa.

Therefore in this study, we investigated correlation between the amount of traditional dental material metal ions—gold (Au), copper, cobalt (Co), chromium (Cr), nickel (Ni), zinc (Zn), aluminum (Al), palladium (Pd), tin (Sn) and platinum (Pt)—released from fixed prostheses in saliva and the period of restoration insertion, and studied the correlation between the amount of released metal ions in saliva and oral mucosal lesions.

MATERIALS AND METHODS

1. Patients

This study included 29 patients who visited the Department of Oral Medicine, Pusan University Dental Hospital from March to September in 2013. Out of 29 patients, 28 were female with an average age of 52.96±16.16. Only one male patient, 43 years old, was included.

For patients with more than one restoration in the mouth, the duration of prosthesis restoration was examined based on the oldest prosthesis. Oral prostheses were divided into two groups: more than 5 years and less than 5 years.

Table 1 shows the distribution of subjects by diagnosis. Patients were classified as having oral lichen planus (OLP), burning mouth syndrome (BMS), recurrent aphthous stomatitis (RAS) or miscellaneous (MISC). The miscellaneous group included xerostomia, temporomandibular disorder, paresthesia and hyperkeratosis. OLP group was diagnosed with the modified WHO clinical criteria proposed by van der Meij and van der Waal in 2003.⁹⁾ OLP has a lace-like white lesion (reticular pattern), erosive, atrophic, bullous,

and plaque- type lesions bilaterally on the oral mucosa. The inclusion criteria for BMS group were a burning sensation in the mouth, consistent for more than 3 months. The patients have normal salivary flow rate (unstimulated whole saliva >0.1 mL/min and stimulated whole saliva >0.5-0.7 mL/min), and normal results in laboratory tests of complete blood counts, liver and renal function, thyroid function (T3, T4, and thyroid stimulating hormone), folate, serum iron, ferritin, vitamin B12, and zinc levels. And also, candidiasis was not found in oral swab and culture. Lesions such as OLP and RAS were classified as oral lesions that show oral mucosal defects; lesions except OLP and RAS were classified as non-oral lesions. The study protocol was approved by the Institutional Review Board of Pusan National University Dental Hospital (IRB no. PNUDH-2013-029).

2. Collection of Saliva Sample

Unstimulated whole saliva was collected from patients with or without oral lesions at their first visit. A polypropylene tube was used for 3 minutes to collect saliva. The saliva samples were kept in a -80° C freezer until analysis.

3. Analysis of Metal Ion

Metal ions—gold (Au), copper (Cu), cobalt (Co), chromium (Cr), nickel (Ni), zinc (Zn), aluminum (Al), palladium (Pd), tin (Sn), platinum (Pt)—were measured using a laser ablation microprobe inductively coupled plasma mass spectrometer (LAM-ICP-MS, PerkinElmer, Optima 3000, USA).

To evaluate the levels of metal ions in saliva, samples were diluted directly with nitric acid, as described by Kim et al. ¹⁰⁾ Operating conditions for instruments recommended by the manufacturer were met.

Table 1. Distribution of subjects

	Patients (n=29)
OLP	11 (37.93)
BMS	3 (10.35)
RAS	1 (3.45)
MISC	14 (48.28)

Values are presented as number (%).

OLP, oral lichen planus; BMS, burning mouth syndrome; RAS, recurrent aphthous stomatitis; MISC, miscellaneous.

4. Statistical Analysis

The Mann-Whitney U test was used to determine significant difference in mean values of salivary metal ions, depending on the difference in period of restoration insertion and the presence/absence of oral lesions. p-values less than 0.05 were considered statistically significant. Statistical analyses were performed using SPSS Statistics ver. 20.0 (IBM Co., Armonk, NY, USA).

RESULTS

1. Proportion by Restoration Type

The highest proportion of prostheses in patients consisted of gold crowns, inlay and onlay (46.7%), followed by porcelain-fused metal crowns (28.9%). Oral restorations included more than one kind. The relative proportion(s) among restorations for each diagnosis was the same with that among the restorations for overall diagnoses (Table 2).

2. Amounts of Metal Ions in Saliva Depending on the Period of Restoration Insertion

Among 29 patients, when they were divided according to the period of insertion of the oldest restorations, the control group (<5 years) size was n=10 and study group (≥5 years) size was n=19. In both groups, Zn, Al and Cu were observed in terms of amounts of metal ions in saliva, with first (Zn) being the highest. There were no significant differences in metal ion contents except for Co, Pt and Pd. These three ions showed significantly higher levels in the study group (≥5 years) (Mann-Whitney U-test). Co was 0.72±0.38 ppb in the control group, 1.61±2.77 ppb in the study group and was 2 times higher in the study group (p=0.048). Pt was

Table 2. Number of dental restorations in patients

Restoration	OLP	BMS	RAS	MISC	Total
Amalgam filling	2	0	0	3	5
Gold crown, inlay, onlay	9	3	1	8	21
Metal crown, inlay	1	0	0	0	1
Porcelain fused metal crown	4	3	1	5	13
Resin filling	1	0	0	1	2
Implant	1	0	0	2	3
Total	18	6	2	19	45

OLP, oral lichen planus; BMS, burning mouth syndrome; RAS, recurrent aphthous stomatitis; MISC, miscellaneous.

 0.04 ± 0.02 ppb in the control group, 0.25 ± 0.46 ppb in the study group, showing the difference of more than 6 times in the study group (p=0.011). Pd was 0.27 ± 0.36 ppb in the control group, 0.74 ± 0.94 ppb in the study group and was 2 times higher in the study group (p=0.004) (Table 3).

3. Difference of the Amounts of Salivary Metal Ions With or Without Oral Lesions

Among the 29 total patients, 14 were in the OL (oral lesion=OLP+RAS) and 15 were in the non-OL group. In most cases, no statistically significant difference was observed between the two groups, but statistically significant difference in the amount of metal ions of Cr, Pt, Pd and Au was observed. Significantly higher amounts of Cr, Pd and Au ions were released in patients with oral lesions, with the average amount of 29.68±5.46 ppb (p=0.039), 1.06±1.17 ppb (p=0.008) and 56.51±20.18 ppb (p=0.012) respectively. By contrast, significantly higher amounts of Pt ions were released in patients without oral lesions (ppb) (Table 4).

DISCUSSION

Over time, metal interacts with various elements in various environments and becomes corroded. Released ions and particles accumulate in the human body. In recent studies, orthopedic alloys were reported to increase the metal ion content of serum and urine in vitro and in vivo. In cases of total hip arthroplasty with metal-on-metal, it was reported

Table 3. Mean value of salivary metal ions evaluated when patients were classified with prosthesis placement period based on 5 years (ppb)

-	<5 y (n=10)	≥5 y (n=19)	p-value
Cu	52.94±48.25	52.18±32.73	0.714
Cr	24.32±7.10	29.12±9.12	0.169
Ni	38.39±35.11	28.37 ± 30.41	0.680
Zn	284.75 ± 225.95	658.67 ± 1120.27	0.551
Co	0.72 ± 0.38	1.61 ± 2.77	0.048*
Al	103.54±84.25	152.01 ± 274.87	0.714
Pt	0.04 ± 0.02	0.25 ± 0.46	0.011*
Sn	0.13 ± 0.25	0.31 ± 0.42	0.105
Pd	0.27 ± 0.36	0.74 ± 0.94	0.004*
Au	22.31±37.88	42.74±67.25	0.233

Values are presented as mean±standard deviation. Statistical significance test was done by Mann-Whitney U-test. *p<0.05.

Table 4. Mean value of salivary metal ions with or without oral lesion (ppb)

-	OL (n=15)	Non-OL (n=14)	p-value
Cu	51.44±30.76	53.07 ± 42.54	0.822
Cr	29.68 ± 5.46	26.11 ± 10.05	0.039*
Ni	34.55 ± 29.15	30.16 ± 34.11	0.281
Zn	859.55 ± 1439.53	328.17 ± 278.14	0.822
Co	1.07 ± 0.43	1.45 ± 2.88	0.111
Al	120.31 ± 76.86	144.45 ± 284.52	0.116
Pt	0.11 ± 0.11	0.21 ± 0.48	0.038*
Sn	0.37 ± 0.49	0.17 ± 0.28	0.066
Pd	1.06 ± 1.17	0.29 ± 0.23	0.008*
Au	56.51 ± 20.18	22.98±12.07	0.012*

OL, oral lesions.

Values are presented as mean±standard deviation.
Statistical significance test was done by Mann-Whitney U-test.
*p<0.05.

that metal ions accumulate at a high level of 0.1-100 ng/mL in serum.⁴⁾ Fixed dental prostheses for dental treatment are also often made of metal alloys with various alloy components. The oral cavity environment is particularly prone to corrosion due to saliva, microorganisms and pH variations. Studies on the metal ion release in artificial saliva in various pH and bacterial plaque conditions have been conducted in vitro. Furthermore, in in vivo studies, metal ions were present in the saliva of patients without metal restorations; however, studies have shown that the metal ion concentration in saliva was significantly higher in patients with metal dental prostheses.

However, most of these studies examined the prosthesis within 6 months. In previous studies, metal ions increased immediately after restoration of prostheses, and the amounts of ions decreased with time. Nevertheless, in clinical practice, oral lesions were often observed around prolonged prostheses of more than 5 years. Therefore, we investigated the relationship between metal ion release and oral lesions in patients with prolonged placement of prostheses. 11,121 In this study, we focused on the restoration period of prostheses; therefore, we divided the subjects into two groups according to the restoration period - less than 5 years, and more than 5 years. In previous studies, primarily Ni, Cr, and Co showed increased levels in saliva after prosthetic restoration. Because Co-Cr is a traditional dental cast alloy, much research has been done on these metal ions. 13-16) The concentration of these ions in saliva was higher in Co, Pt, and Pd in the study group, although there was no statistically

significant difference in the concentration of Cu, Cr, Ni, Zn or Al (Table 3). Table 4 shows the correlation between the amount of metal ions in the oral lesion group (OL) and the non-OL group (Non-OL). In the OL group, the amounts of released Cr, Pd, and Au were greater.

When we investigate the results in Tables 3 and 4 synthetically, we note that more amounts of Pd were released in the study group than in control group, and Pd was also found in statistically significantly higher amounts in the saliva of the subjects in the group with OL.

Pd is an alloy commonly used in fixed dental prostheses such as crowns and bridges.

Therefore, the oral mucosa of many people is exposed to Pd; however, it has not been proven to cause allergic contact dermatitis unlike Ni, and has not been studied as often as Co-Cr. Pd allergy is not well documented. However, recently, the response of Th2-mediated cytokines due to Pd exposure has attracted attention. Recent studies have reported that exposure to Pd stimulates various cytokines in rat serum and human skin tests. ¹⁷⁻¹⁹⁾ In this study, most of the diagnoses in patients with OL (78.57%) was OLP. OLP is a T-cell mediated disease; further studies on the correlation between Pd and OLP are needed.

In this study, there are several limitations: first, the period of restoration insertion was only based on the patient's report; second, the proportion of the alloy composition of the prostheses in the patients was varied and uncontrollable. There was also a lack of baseline metal ions for patients without prostheses. Nevertheless, this is one of the rare studies to investigate the distribution of metal ions in saliva with long-term prostheses (over 5 years) as well as the distribution of metal ions depending on the presence or absence of OL. Further studies should be conducted regarding the proportion of metal ions in prostheses, investigating the exact insertion period of the prostheses with larger sample sizes, as well as measuring secreted cytokines.

In conclusion, in this pilot study, we examined the distribution of metal ions in the saliva of patients with fixed prostheses. Old prosthesis (≥5 years) continues to release more metal ions, especially Co, Pt, and Pd. Plus, patients with oral lesions showed significantly higher levels of ion release, especially Cr, Pd and Au. Therefore, there was a positive correlation between the amount of released metal

ions, especially Pd, and the development of oral lesions. Salivary Pd ion released from old prostheses may affect the pathogenesis of oral lesions; therefore, long-term follow-up is important.

CONFLICT OF INTEREST

No potential conflicts of interest relevant to this article are reported.

REFERENCES

- Kalicanin B, Ajduković Z. Influence of saliva medium on freeing heavy metal ion from fixed dentures. Sci Total Environ 2008;397:41-45.
- Elshahawy W, Ajlouni R, James W, Abdellatif H, Watanabe I. Elemental ion release from fixed restorative materials into patient saliva. J Oral Rehabil 2013;40:381-388.
- Magone K, Luckenbill D, Goswami T. Metal ions as inflammatory initiators of osteolysis. Arch Orthop Trauma Surg 2015;135:683-695.
- Niki Y, Matsumoto H, Suda Y, et al. Metal ions induce boneresorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials 2003;24:1447-1457.
- Zeng Y, Zheng B, Shen B, et al. A prospective study of ceramicon-metal bearings in total hip arthroplasty at four-year followup: clinical results, metal ion levels, inflammatory factor levels, and liver-kidney function. J Orthop Sci 2015;20:357-363.
- Hammouda DM, Martin MD. The role of dental metal allergy in oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol 2015:120:e141.
- Liu HC, Chang WH, Lin FH, Lu KH, Tsuang YH, Sun JS. Cytokine and prostaglandin E2 release from leukocytes in response to metal ions derived from different prosthetic materials: an in vitro study. Artif Organs 1999;23:1099-1106.

- 8. Kaur S, Eisen M, Leiger K, Injarabian K. Screening for gold allergy among dental clinic employees and patch test population. Contact Dermatitis 2006;54:172-173.
- van der Meij EH, van der Waal I. Lack of clinicopathologic correlation in the diagnosis of oral lichen planus based on the presently available diagnostic criteria and suggestions for modifications. J Oral Pathol Med 2003;32:507-512.
- Kim YJ, Kim YK, Kho HS. Effects of smoking on trace metal levels in saliva. Oral Dis 2010;16:823-830.
- 11. Garhammer P, Hiller KA, Reitinger T, Schmalz G. Metal content of saliva of patients with and without metal restorations. Clin Oral Investig 2004;8:238-242.
- Siddharth R, Gautam R, Chand P, Agrawal KK, Singh RD, Singh BP. Quantitative analysis of leaching of different metals in human saliva from dental casting alloys: an in vivo study. J Indian Prosthodont Soc 2015;15:206-210.
- 13. Jayaprakash K, Kumar Shetty KH, Shetty AN, Nandish BT. Effect of recasting on element release from base metal dental casting alloys in artificial saliva and saline solution. J Conserv Dent 2017;20:199-203.
- Lucchetti MC, Fratto G, Valeriani F, et al. Cobalt-chromium alloys in dentistry: an evaluation of metal ion release. J Prosthet Dent 2015:114:602-608.
- Yang X, Xiang N, Wei B. Effect of fluoride content on ion release from cast and selective laser melting-processed Co-Cr-Mo alloys. J Prosthet Dent 2014;112:1212-1216.
- 16. Oyar P, Can G, Atakol O. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy. J Prosthet Dent 2014;112:64-69.
- 17. Iavicoli I, Fontana L, Corbi M, et al. Exposure to palladium nanoparticles affects serum levels of cytokines in female wistar rats. PLoS One 2015;10:e0143801.
- 18. Minang JT, Areström I, Troye-Blomberg M, Lundeberg L, Ahlborg N. Nickel, cobalt, chromium, palladium and gold induce a mixed Th1- and Th2-type cytokine response in vitro in subjects with contact allergy to the respective metals. Clin Exp Immunol 2006;146:417-426.
- 19. Muris J, Feilzer AJ, Kleverlaan CJ, et al. Palladium-induced Th2 cytokine responses reflect skin test reactivity. Allergy 2012;67:1605-1608.