# Pretest Practice

## Niccolò Gabrielli

### August 9, 2025

## Contents

| 1 | 24-01-2025 | 2 |
|---|------------|---|
| 2 | 08-01-2025 | 5 |
| 3 | 15-07-2025 | 8 |

#### 24-01-2025 1

### Domande di Reti Logiche - compito del 24/01/2025

C'è una sola risposta corretta per ogni domanda Usare lo spazio bianco sul retro del foglio per appunti, se serve



MOV 100, %EAX CMP \$0, %AX JL dopo

- 1) Dato il contenuto della memoria riportato in figura, il codice scritto sopra salta all'etichetta dopo.
  - Sempre
  - b) Mai
  - Mancano informazioni per poter decidere
  - Nessuna delle precedenti
- 2) In complemento alla radice, la somma di due numeri interi riducibili è rappresentabile sul numero di cifre degli operandi
  - a) In qualunque base
  - In nessuna base
  - Solo in base 2
  - d) Nessuna delle precedenti

SAR %AL ROL %AL

- 3) In AL c'è lo stesso contenuto prima e dopo il codice scritto sopra se:
  - a) AL è minore di 128
  - AL è multiplo di 2 b)
  - Solo se AL contiene un intero
  - Nessuna delle precedenti



- 4) Si connetta d ad un clock di periodo T molto maggiore del tempo di risposta del latch SR. L'uscita q:

  - a) È un clock di periodo T
    b) È un clock di periodo 2T
  - Cambia nel tempo in modo non prevedibile Nessuna delle precedenti



- 5) Nel circuito di sopra, l'uscita z
  - Vale sempre uno
  - Insegue l'ingresso con un ritardo circa Δ
  - Genera un impulso di durata circa  $\Delta$  ad ogni transizione di x
  - Nessuna delle precedenti

- 6) Se devo dividere +4602 per -3, devo usare una IDIV con dividendo:
  - a) a 16 bit, ed il resto sarà negativo
  - b) a 16 bit, ed il resto sarà positivoc) a 32 bit, ed il resto sarà negativo

  - d) Nessuna delle precedenti
- 7) Perché nel calcolatore visto a lezione il ciclo di lettura nello spazio di I/O dura un clock in più rispetto a quello dello spazio di memoria?
  - a) Perché si assume che i dispositivi di I/O sono più lenti
  - dei chip di memoria Perché si deve dare tempo alle maschere delle interfacce di andare a regime, mentre davanti alla memoria non ci sono maschere
  - c) Perché le letture in memoria non sono distruttive. mentre quelle nell'I/O possono esserlo indirettamente
  - d) Nessuna delle precedenti
- 8) Dato  $A \equiv (\beta 1, \beta 1, ..., \beta 1)_{\beta}$ , naturale in base  $\beta$ ,

$$|A|_{\beta} = \beta - 1$$

- Vero, qualunque sia la base  $\beta$
- b) Vero, ma solo in base  $\beta = 10$
- Falso, qualunque sia la base  $\beta$ c) Nessuna delle precedenti
- 9) Il costo a diodi della sintesi a costo minimo a porte NOR della mappa sopra riportata è pari a:
  a) 10

  - b) 7 c) 9
  - c) 9d) Nessuna delle precedenti
- 10) Sia X=5555 la rappresentazione in complemento alla radice di un numero intero x in base 8. Ciò significa che x è
  - positivo, rappresentabile anche su tre cifre
  - positivo, ma non rappresentabile su tre cifre b)
  - negativo, rappresentabile anche su tre cifre
  - negativo, ma non rappresentabile su tre cifre



| # | High-level                                                                                           | Solution                                                                                                                                                                                                                                                                                 |
|---|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | I need to know how MOV moves data into registers ( in what order )                                   | <ul> <li>→ We're working in little-edian so the least significant byte is stored in the lowest address</li> <li>→ Smallest + i = smallest + i, iterated for each 9 bit memory address</li> </ul>                                                                                         |
| 2 | Need to understand the conditions for a riducibile integer, and the arithmetic of riducibile numbers | <ul> <li>→ Definition of a reducible integer in Anki</li> <li>→ Worst case scenario is the addition between natural numbers, which works</li> <li>→ Given all the other bases can be represented in base 2, if it works in base 2, it works in all</li> </ul>                            |
| 3 | Need to understand how SAR, SHR, ROL, etc. work                                                      | <ul> <li>→ Stiamo ommettendo il sorgente quindi si fa solo 1 volta</li> <li>→ ROL takes the last bit and puts it in both CF and the first bit and shifts everything to the left</li> <li>→ Nothing is conserved given that we're not using the CF flag for intermediary stuff</li> </ul> |
| 4 | Need to know how latch SR's work                                                                     | → Can't change variables at the same time in microprocessors ⇒ we're going to pass through an intermediary state in which we don't know what will happen                                                                                                                                 |

| 5  | Need to know how an XNOR gate works                                            | $\rightarrow$ XNOR only provides 1 if both the imputs are the same $\Rightarrow$ generatore di impulso                                                                                                                                                                                                                                                           |
|----|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | Need to understand how IDIV works                                              | <ul> <li>→ Relationship with dividendo and divisore bit sizes, if dividendo is 16 bits ⇒ the divisore was 8 bits</li> <li>→ See if the quoziente is representable on 8 bits</li> <li>→ IDIV also does not obide by univoco condition, it just does truncation</li> </ul>                                                                                         |
| 7  | Really learn the structure of a calculator which is really important knowledge | $\rightarrow$ TODO                                                                                                                                                                                                                                                                                                                                               |
| 8  | Need to know what the notation means                                           | → the A $\equiv \beta - 1, \beta - 1,, \beta - 1$ means that we just have $\beta - 1$ in each position  → Then the $ A _{\beta} = \beta - 1$ means the value I think in decimal  → Doing the math it comes out to be true and it'll be true in all bases                                                                                                         |
| 9  | This is elementary mappe di karnaugh stuff                                     | → Sintesi a porte NOR you flip then reflip, just look at the ingressi because you don't optimize those                                                                                                                                                                                                                                                           |
| 10 | Problem on the riducibilità of numbers, goes back to arithmetic  4             | <ul> <li>→ First see if the first cifra is &gt; <sup>β</sup>/<sub>2</sub> to see if it's negative</li> <li>→ Look at the representability of individual cifre in the reduced form</li> <li>→ Or see the condition of the represetability by still looking at the most significant bit and see if the last and penultimate bit are equal to each other</li> </ul> |

#### 2 08-01-2025

Domande di Reti Logiche - compito del 08/01/2025

C'è una sola risposta corretta per ogni domanda Usare lo spazio bianco sul retro del foglio per appunti, se serve

- 1) Il fatto che il risultato di una IMUL non sta sul numero di bit dove la IMUL intende scriverlo:
  - È rilevato da un'eccezione
  - È indicato dal fatto che OF va ad 1
  - È indicato dal fatto che CF va ad 1
  - Nessuna delle precedenti
- 2) Un sommatore ad una cifra in base 10 BCD può essere realizzato concatenando 4 full adder in base 2 in montaggio ripple carry

  a) Vero, sia per naturali che per interi

  - Vero, ma solo per naturali
  - Falso
  - Nessuna delle precedenti d)

var1: .WORD 0x1020, 0x32AB .LONG var1+2 var2: var3: .BYTE 0x66

- 3) Data la dichiarazione di sopra, qual è il contenuto del byte di memoria di indirizzo var2?
  - a) 0xAB
  - b) 0x32
  - 0x66
  - Nessuna delle precedenti
- 4) Affinché la divisione intera tra a (dividendo) e b (divisore) abbia un quoziente rappresentabile sul numero di cifre richiesto, il fatto che lo abbia la divisione naturale tra |a| e |b| è condizione:
  - Sufficiente
  - b) Necessaria
  - Necessaria e sufficiente
  - Nessuna delle precedenti



- 5) La rete disegnata di sopra riconosce un numero di stati di ingresso pari a:
  - a) 6
  - b)
  - Nessuna delle precedenti d)

- 6) Nel calcolatore visto a lezione, un'interfaccia per la conversione D/A appare come:
  - a) Un'interfaccia di ingresso con handshake

  - Un'interfaccia di ingresso senza handshake Un'interfaccia di uscita senza handshake
  - Nessuna delle precedenti

PUSH %AL testFO: IN TSR\_offset, %AL AND \$0x20, %AL JNZ testFO POP %AL OUT %AL, TBR\_offset

- 7) Il sottoprogramma scritto sopra:
  - a) Può essere chiamato per scrivere un dato in un'interfaccia di uscita con handshake
  - b) Può essere chiamato per leggere un dato in un'interfaccia di ingresso con handshake
  - Non termina mai, oppure viola l'handshake
  - d) Nessuna delle precedenti



- 8) Il flip-flop JK montato come in figura ha un'uscita Q che:
  - a) Cambia ad ogni clock
  - b)
  - Cambia al massimo una volta Oscilla in modo non prevedibile Nessuna delle precedenti
- 9) In complemento alla radice in base β=14 su una cifra, la rappresentazione dell'intero -8:
  - a) È codificata come 1000
  - b) È codificata come 1010
  - È codificata come 0110 Nessuna delle precedenti
- 10) Sia dato un D-latch inizializzato ad 1 al reset asincrono. La sequenza di ingressi fornita è dc=00, 10, 11, 01, 10, 11, 00. l'uscita q alla fine:
  - a) Oscilla in modo incontrollato
  - b) Si stabilizza su un valore casuale non prevedibile a
  - Resta nella fascia di indeterminazione
  - Nessuna delle precedenti



| # | High-level                                                                                                                                                   | Solution                                                                                                                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Gotta know which flags are impacted by assembler operations                                                                                                  | <ul> <li>→ In IMUL &amp; MUL both CF e OF vengono modificati</li> <li>→ Just fyi, in IDIV &amp; DIV, viene generato un'interruzione interno</li> </ul>                                      |
| 2 | If the result needs to be in BCD, it doesn't work                                                                                                            | <ul> <li>→ Just using 4 full adders, i would get the correct answer in bits</li> <li>→ However, the representation of the result in BCD would require adding +6 to the answer</li> </ul>    |
| 3 | Knowing what variables are in assembler.                                                                                                                     | <ul> <li>→ Variables are just memory addresses</li> <li>→ The problem has var2 the address of the third byte pointed by var1</li> <li>→ We don't know what the address is though</li> </ul> |
| 4 | Understanding the relationship between<br>numeri naturali and interi. Understanding<br>the meaning of condizione sufficiente e<br>necessaria                 | <ul> <li>→ Divisione intera is a special case of divisione naturale from a representation standpoint</li> <li>→ ⇒ condizione necessaria</li> </ul>                                          |
| 5 | Understand how gates work $\rightarrow$ write out<br>the tabella di verità $\rightarrow$ see how many states<br>are 'riconosciuto' $\Rightarrow$ uscita == 1 | $\rightarrow$ Following the steps above I get to 3                                                                                                                                          |
| 6 | Know more about the struttura del calcolatore                                                                                                                | → Full answer is literally written in the notes, interfaccia di uscita senza hand-shake                                                                                                     |

| #  | High-level                                                                                                      | Solution                                                                                                                                                                                                                                                                                                         |
|----|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Need to understand how the flags work, and how the AND operation works                                          | <ul> <li>→ We want FO to be 1 in order to be able to write something new</li> <li>→ AND replaces in the operando destinatario the result of and AND gate of each bit</li> <li>→ The important part is that we have JNZ which means that if the FO flag is 1, we stay in the loop, which isn't correct</li> </ul> |
| 8  | Need to understand how the flip flop JK works.                                                                  | $\rightarrow$ ANKI for flip-flop JK $\rightarrow$ Changes at most one time based on how the flip-flop JK words                                                                                                                                                                                                   |
| 9  | Need to know how complemento alla radice works                                                                  | $\rightarrow$ -8 is out of the range of representable numbers in complemento alla radice in base $\beta=14$                                                                                                                                                                                                      |
| 10 | Need to know how a D-latch works, and an important physical detail where variables do not change simultaneously | → The d-latch passes over 10 or 01 when going from 11-¿00, so we don't know the last value                                                                                                                                                                                                                       |

## 3 15-07-2025