Sécurité des systèmes d'information Exercise sheet 3 : Modular arithmetic

08 Octobre 2019

Non-mandatory exercise sheet. Please upload your answers on Moodle before Monday 14/10/2019 17h15.

All answers should be carefully justified.

Exercise 1: Number theory

- 1. By hand:
 - Find all prime numbers ≤ 50 . Are 233 and 254 relatively prime?
 - Compute Bézout's identity for the pairs (30, 45), (21, 321).
- 2. Programming part:
 - Implement the Sieve of Erathostene algorithm to find prime numbers up to a certain number n. Why don't we use it nowadays to find big prime numbers?
 - Implement an algorithm bezout_coefficient(a,b) that takes two integers (a,b) as input and returns three integers (x,y,d) such that $a \cdot x + b \cdot y = d$ where d is the gcd of a and b.

Exercise 2: Multiplicative groups revisited

- 1. By hand:
 - \bullet Compute \mathbb{Z}_{10}^* and match each element with its inverse.
 - Do the same for \mathbb{Z}_{11}^* .
 - Show that $(n-1) \in \mathbb{Z}_n^*$ for any n and give its inverse.
 - Compute the multiplicative inverse of 23 modulo 64 using Bézout identity.

$2. \ {\bf Programming \ part:}$

 \bullet Implement a function multiplicative_inverse (x,m) that computes the inverse of x modulo m.