Affects of Proper Nouns on Amazon Sentiment Analysis

Abstract

Abstraction needs to be written after writing everything else

1 Introduction

Sentiment Analysis looks into extracting subjective information from a source. It has been noted from Bing Liu sentiment analysis on subjectivity that adjectives, adverbs, nouns, and verbs can obtain sentiment detail [2]. Furthermore, an object in object extraction from sentiment is a noun, proper noun, and sometimes a verb. Even though nouns are a way of obtaining subjective information, further investigation has not been looked into for proper nouns.

There has been plenty of models on predicting sentiment analysis of Amazon reviews. The top 3 models; accurancies unsupervised data augmentation for consistency training [4], deep pyramid convolutional neural networks for text categorization [1], and disconnected recurrent neural networks for text categorization [3]; all has been tested with Amazon product reviews from users. Although those models accurancies are between 60%-70% percent, does simplifing the proper noun into one word affect Amazon sentiment analysis in positive or negative accurancies.

2 Related Work

3 Task

The task is to see if proper nouns contains necessary information needed for sentiment analysis in Amazon product reviews.

4 Method

Amazon product review data comes with a rating and review that can be used for training. The product must parse out proper nouns with a replacement token to represent their is a proper noun, however, removes the context of the proper noun. An example of removing the proper noun context can be shown.

"It's just like having \$100. Except I couldn't get Walmart to accept it. Apparently you can only use it on the interweb at Amazon."

Detect Amazon and Walmart as proper noun replaced with $\ensuremath{<} \mbox{NNP}\ensuremath{>}$

"It's just like having \$100. Except I couldn't get <NNP> to accept it. Apparently you can only use it on the interweb at <NNP>."

4.1 LUKE

LUKE is an entity extraction model that can be used for extracting proper nouns in an Amazon product review.

4.2 NLTK Speech Tagging

NLTK library comes with speech tagging library that can be used for tagging the proper nouns in a text.

4.3 Unsupervised Data Augmentation

Unsupervised data augmentation is a way to train the model. Can make comparsion on data with proper noun context and without.

4.4 Deep Pyramid Convolutional Neural Networks for Text Categorization

Deep Pyramid Convolutional Neural Networks for Text Categorization is another method for training a model for sentiment analysis. Can make comparsion on data with proper noun context and without.

4.5 FastText

FastText can be used in a bag of tricks for efficient text classification. Can make comparsion on data with proper noun context and without.

100	5	Experiments	150
101	6	Conclusion	151
102 103			152 153
104	R	eferences	154
105	[1]	Rie Johnson and Tong Zhang. Deep pyramid con-	155
106		volutional neural networks for text categorization.	156
107		2017.	157
108	[2]	Bing Liu. Sentiment analysis and subjectivity.	158
109	[3]	3] Baoxin Wang. Disconnected recurrent neural networks for text categorization. 2018.	159
110			160
111	[4]	Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang	161
112	[4]	Luong, and Quoc V. Le. Unsupervised data augmentation for consistency training. 2020.	162
113			163
114			164
115			165
116			166
117			167
118			168
119			169
120			170
121			171
122			172
123			173
124			174
125			175
126			176
127			177
128			178
129			179
130			180
131			181
132			182
133			183
134			184
135			185
136			186
137			187
138			188
139			189
140			190
141			191
142			192
143			193
144			194
145			195
146			196
147			197
148			198
149			199