

ADA 087644

THE CAY TO THE STATE OF A THE CAP TO THE CAP

Wille J.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
	3. RECIPIENT'S CATALOG NUMBER				
DR-1152 AD-A082644					
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED				
12819A LANCE					
Missile Number 4244 Round Number 351 ECL	6. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(s)				
White Sands Meteorological Team	DA Task 1F665702D127-02				
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
	AREA & WORK UNIT NUMBERS				
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE				
US Army Electronics Research & Development Comman	I				
Atmospheric Sciences Laboratory	13. NUMBER OF PAGES				
White Sands Missile Range, New Mexico 88002 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)				
US Army Electronics Research & Dev Command	UNCLASSIFIED				
Adelphi, MD: 20783					
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)					
to any and the state of the state of the Black St. II Allegant to	- Potenti				
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)					
Approved for public release; distribution unlimited.					
Approved for public release, distribution diffinite	eu.				
18. SUPPLEMENTARY NOTES	** · · · · · · · · · · · · · · · · ·				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)					
,	·				
	·				
26. ABSTRACT (Continue on reverse side N resectory and identify by block number)					
<u> </u>					
Meteorological data gathered for the launching of	the 12819A LANCE.				
Missile Number 4244, Round Number 351 ECL, presen					
	` `.				

CONTENTS

		PAGE
INTRODUCTI	ON	1
DISCUSSION		1
GENERAL AR	EA MAP	2
TABLES:		
1.	Surface Observations Taken at 0805 MDT at Spec Site	3
2.	Spec Site Pilot-Balloon Measured Wind Data at 0737 MDT	4
3.	Spec Site Pilot-Balloon Measured Wind Data at 0805 MDT	5
4.	Jallen Site Significant Level Data at 0400 MDT	6
5.	Jallen Upper Air Data at 0400 MDT	8
6.	Jallen Mandatory Levels at 0400 MDT	13
7.	AFSWC Significant Level Data at 0900 MDT	14
8.	AFSWC Upper Air Data at 0900 MDT	16
9.	AFSWC Mandatory Levels at 0900 MDT	22

ACCESSIO	N for
NUS	White Section Ex
DOC	Buff Section 🖂
DIMMINO	
JUSTIFICA	ITION
	TROM/AYAR ABILITY CODES
Diet.	NATL and/or SPECIAL
Λ	237
1 /	اسم ا
l '	

INTRODUCTION

12819A LANCE	, Missil	le Number	4244	, Round Number 351 ECL ,
				Te Range (WSMR), New Mexico,
at_0805:32 MDT	on 20 June	1980	The sc!	neduled launch time was
0730 MDT.	- ·			
		DISCUSS	STON	
Meteorological da	ita were recorde	ed and reduc	ed by the V	Hhite Sands Meterrological
Team. Atmospheric	Sciences Labor	ratory (ASL)	, White Sar	nds Missile Rango, New Mexico.
The data were obt	ained by the fo	ollowing met	thods:	
1. Observat	ions			
a. Surf				
		aco obsorvat	tions to in.	llude pressure, temperature
				i ³), Wind direction and speed,
				t Site at T-O minutes.
		-	direction	from one anemometer was
provided in the 1	aunch control r	'OOM .		
b. Uppe	r Air			
• •		d data were	obtained fo	com RAPTS T-9 pibal observa-
tion at:				The same table to be provided to the same table to be sam
		SITE AND /	ALTI TUDE	
	Spe	c 0737 M	DT 7200 f	't AGL
	Spe			
	·			
				collected at the following
		from surfac	e to as hig	h as possible feet in
500-feet incremen	ts.			

SITE AND TIME

Jallen 0400 MDT AFSWC 0900 MDT

Surface Observations Taken at 0805 MDT, 20 June 1980, at Spec Site, 12819A LANCE, Missile Number 4244, Round Number 351 ECL.

ELEVATION	no survey	FT/MS1.
PRESSURE	858.8	MBS
TEMPERATURE	18.9	°с.
RELATIVE HUMIDITY	33	<u> </u>
DEW POINT	2.2	°c
DENSITY	1020	GM/M ³
WIND SPEED	01	KTS
WIND DIRECTION	355	DEGREES
CLOUD COVER	2 2	AC CI

PILOT BALLOON MEASURED WIND DATA

TABLE	-					
RELEASED FROM	Spec Site	DATE	20 June 1980		TIME	0737 MDT
	COORDINATES (WSTM) X=	no survey	Y =	H=_	·
NOTE: WIND DIRE	ECTIONS ARE REFERE	NCED TO	TRUE NORTH.			
HEIGHTS ARE METE	ERS AGLOR FFE	T AGL_X	 •			

HEIGHT AGL	DIRECTION DEGREES	SPEED KTS
sfc	360	01
100	MISG	MISG
200		CALM
300	080	01
400	070	01
500	105	02
600	120	02
700	125	03
800	130	03
900	145	03
1000	160	03
1100	165	03
1200	170	04
1300	175	04
1400	185	. 04
1500	200	04
1600	215	04
1700	225	04
1800	230	04
1900	230	05
2000	225	05
2100	225	05
2200	225	06
2300	225	06
2400	225	06
2500	220	06
2600	215	07
2700	220	07
2800	225	07
2900	220	07
3000	220	07

HEIGHT	DIRECTION	SPEED
AGL	DEGREES	KTS
3100	215	07
3200	215	07
3300	220	06
3400	225	05
3500	225	04
3600	225	04
3700	225	03
3800	220	03
3900	220	03
4000	220	04
4100	220	02
4200	205	01
4300	145	01
4400	090	01
4500	075	02
4600	075	03
4700	060	03
4800	065	03
4900	065	03
5000	065	03
5100	065	03
5200	070	03
5300	070	03
5400	060	04
5500	055	04_
5600	050	04
5700	045	05
5800	045	05
5900	035	04
6000	020	04
6100	025	04
		

HE COURT	L BICCCTION	logees 1
HEIGHT AGL	DIRECTION DEGREES	SPEED KTS
6200	030	04
6300	025	04
6400	020	03
6500	025	03
6600	025	03
6700	025	03
6800	025	03
6900	030	04
7000	035	04
7100	035	04
7200	035	04
		
		

PILOT BALLOON MEASURED WIND DATA

TABLE 3	_				
RELEASED FROM_	Spec Site	DATE	20 June	1980	TIME 0805 MDT
	COORDINATES (WS	ΓM) X=	no survey	γ=	H=
NOTE: WIND DI	RECTIONS ARE REFE	RENCED TO	TRUE NORTH.		
	FEDC 401 OF F	AOL			

HEIGHTS ARE METERS AGL___ OR FEET AGL_ χ _.

HEIGHT AGL	DIRECTION DEGREES	SPEED KTS
sfc	355	01
100	MISG	MISG
200	055	01
300	115	01
400	125	02
500	145	03
600	155	03
700	165	04
800	175	04
900	165	04
1000	155	04
1100	145	03
1200	135	02
1300	155	02
1400	180	02
1500	200	02
1600	215	02
1700	215	03
1800	215	03
1900	215	04
2000	215	04
2100	220	05
2200	225	06
2300	230	06
2400	235	06
2500	235	06
2600	240	07
2700	240	06
2800	235	05
2900	230	05
3000	225	05

HEIGHT AGL	DIRECTION DEGREES	SPELD KTS
3100	225	04
3200	215	04
3300	225	03
3400	235	03
3500	315	02
3600	205	02
3700	170	01
3800	125	01
3900	190	02
4000	210	03
4100	145	01
4200 -	080	03
4300	075	03
4400	075	03
4500	075	03
4600	075	03
4700	075	04
4800	075	04
4900	075	04
5000	070	04
5100	065	04
5200	065	04
5300	060	04
5400	060	04
5500	060	04
5600	060	03
5700	060	03
5800	060	03
5900	050	03
6000	045	03
6100	045	04

HEIGHT	DIRECTION	SPEED
AGL	DEGREES	KTS
6200	040	04
6300	045	04
6400	045	04
6500	050	04
6600	050	04
6700	055	04
6800	060	04
6900	060	04
7000	060	04
7100	060	04
7200	060	04
7300	070	04
7400	085	04
7500	080	04
7600	080	05
7700	090	06
7800	095	07
7900	060	07
8000	035	09
	-	
ļ		

N91S	STATION ALTITUDE 4051.00 FEET MSL	80 DAND HRS MDT	
	STATION ALTITU	20 JUNE 80	ASCENSION NO.

DATA		
LEVEL	30168	
GNIFICANT	1720030168	JALLEN
913		

Ē	OO HRS MDT
ALTITUDE 4051.0	20 JUNE 80 ASCENSION NO. 168 0400 H
STATION	ASCE USE

DATA	
LEVEL 30168	
SIGNIFICANT LEVEL 1720030168	JALLEN
S 1 G	

TABLE 4 (continued)

TEMPERATURE	AIR DEWPOINT	٠.
GEOMETRIC	ALTITUDE	TILL TEE
PRESSURE	20487 : (14	11110411

REL.HUM. '

-68.0 -58.3 -58.5 62.8 63974.9 57.4 65797.1 50.0 68631.7 44.4 71093.2

GEODETIC COORDINATES 33-16712 LAT DEG 106-49511 LON DEG

7

STALIUN AL	STAIIUN ALTITUDE 4051.00 FEET	51.00 FEE	T MSL	-	UPPER AIR DATA 1720030168)ATA ,6		GEODE TI	C COORDINATES	
20 JUNE 80 ASCENSION NO.	NO. 168	0400 HRS	S MDT		JALLEN			106.	33-16712 LAT DEG 106-49511 LON DEG	
					TABLE 5.	•				
GEOMF INIC	PRESSUME		TEMPERATURE	REL.HUM.	DENSITY	SPEED OF	WIND DATA	TA	INDEX	
AL 11TUDE) ;	AI	DEWPOINT	PERCENT	GM/CUBIC	SOUND	DIRECTION	SPEED	PO	
MSL FEET	MILLIBAMS	DEGREES	CENTIGRADE		METER	KNOTS	DEGREES (IN)	KNOTS	REFRACTION	
4051.0	878.2	23.9	6•6	41.0	1024.5	673.2	•	•	1.000281	
4500.0	864.1	27.5	80.	30.8	997.1	677.1	228.5		1.000270	
5000-0	7.6±2	26.4	7.4	30.0	983.9	675.8	228.5	1.7	1.000263	
5500.0	835.3	25.7	6.1	28.4	4.696	675.0	228.5	5.6	1.000256	
6000.0	820.9	25.1	4.7	26.8	1.566	674.1	232+3	3.5	1.000249	
6500.0	806.8	24.4	3.3	25.3	941.1	673.3	275-1	2.1	1.000243	
7000.0	192.8	23.6	2.1	24.4	927.5	672.3	295.6	8. 5	1.000237	
7500.0	178.9	22.3	1.9	26.2	915.4	670.7	290•2	9.	.1 • 000235	
8000.0	765.2	20.9	1.7	28.0	903+5	669.2	287.5	.	1.000232	
8500.0	/51.8	19.5	1.4	29.8	891.8	9.799	584.6	\$ • \$	1.000229	
0.0006	138.6	18.1	1.0	31.6	680.3	666.0	280•4	3.6	1.000226	
9500.0	125.6	16.8	•	33.4	868.9		278.5	3.5	1.000222	
10000	/12.8	15.4	•	35.2	857.8	_	277.9	3.6	1.000219	
10500.0	/00.3	14.0	J.	37.0	846.8		277.1	3.0	1.000216	
11000.0	687.6	12.7	1	39.7	835.4	659.7	271.9	2.4	1.000213	
11500.0	675.1	11.3	6•-	45.6	824 • 1	658.1	256.3	1.9	1.000210	
12000.0	562.8	6.6	-1.3	45.4	813.1		547.6	£.1	1.000207	
12500.0	650·8	9.6	-1.7	48.2	802.2		253.5	6.	1.000204	
13000.0	638.9	7.2	-2.5	51.0	791.5		279.8	••	1.000201	
13500.0	627.3	S.0	-2.8	53.8	780.9		5-96-2	**	1.000198	
14000.0	615.9	ຄ• #	4.6	56.6	770.6		288.1	1.4	1.000195	
14500.0	504.4	3.1	-3-1	63.8	759.9		260.5	1.1	1.000193	
15000.0	593.1	1.7	-2.9	71.6	749.4		6.461	1.6	1.000192	
15500.0	582.0	٠.	-2.8	79.4	739.1	645.3	187.2	2.7	1.000190	
16000.0	571.2	-1.1	-2.9	87.2	728.9		191-3	3.6	1.000188	
16500.0	560.4	-2.4	-3.3	93.5	718.8	642.1	208.2	S.	1.000185	
17000.0	549.8	-3.6	-4·2	95.4	708.2		217.7	8•0	1.000181	
17500.0	539.3	7.4-	-5.1	97.4	697.9	639.2	225.7	10.2	1.000178	
18000.0	529·U	-5.9	-6.0	0.66	687.6		229.3	11.4	1.000174	
18500.0	518.8	-7.0	-7.1	0.66	677.3	636.4	231.6	12.2	1.000170	
19000.0	90G	-8-1	-8.2	0.66	667.1	635.0	233.3	12.7	1.000166	
19500.0	4.98.4	-9.5	-9-3	98.9	657.0	633.7	235.2	13.2	1.000163	

GEODETIC COORDINATES 33.16712 LAT DEG 106.49511 LON DEG	INDEX OF REFRACTION	1.000159 1.000156 1.000150 1.000150 1.000136	1.000129 1.000129 1.000124 1.000120 1.000118	1.000116 1.000112 1.000112 1.0001104 1.000104 1.000099 1.000099 1.000099
6E ODE TIC 33.1	TA SPEEU KNOTS	10000000000000000000000000000000000000	00000000000000000000000000000000000000	us a sa a
<u>-</u>	MIND DATA DIRECTION S DEGREES(IN) KI	237.7 238.6 238.6 238.7 229.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222 222 222 222 222 222 222 222 222 22
ata se ontinued	SPEED OF SOUND KNOTS	632.5 631.3 630.1 627.3 627.2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6612 6612 6613 6613 6603 6603 6603 6603 6603 6603
UPPER AIK DATA 1720030168 JALLEN TABLE 5 (continued)	U	646 626 616 616 616 618 618 618 618 618 618 61	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	60000000000000000000000000000000000000
, 1	REL.HUM. DENSITY PERCENT GM/CURI	97.4 855.0 83.6 89.4	4 5 7 4 9 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
T MSL RS MDT	TEMPERATURE R DEWPOINT EES CENTIGRADE	11111111111111111111111111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1.00 FEET W	TEMP AIR UEGREES	111111111111111111111111111111111111111	10000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TITUDE 405 NO. 168	PRESSUME TEMP AIR MILLIBAMS DEGREES	# # # # # # # # # # # # # # # # # # #	4 1100 4 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2501.0 2501.0 2501.0 2011.0 2011.0 2011.0 2011.0 2011.0 2011.0 2011.0 2011.0 2011.0 2011.0 2011.0
STATION ALTITUDE 4051.00 FEET MSL 20 June 80 Ascension no. 168 O400 HRS MC	GEUMETRIC ALIITUUE MSL FEET	20000.0 20500.0 21500.0 22500.0 23500.0	25000.0 25000.	27508 29040 29040 29040 29040 29040 31040 25040 25040 25040 25040 25040 25040 25040 25040

. AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

GEODETIC COORDINATES 33-16712 LAT DEG 106-49511 LON DEG		-		REFRACTION		4 1.000084	7 1.000063	8 1.000061	1 1.000080	7	٦.	_	-	_	- •	-				_	•	_	_	_	. •	_		_	-		~	_	-	_		1.000045
GEODE 3		ATA	SPEED	KNOTS	39.9	40.4	44.7	45.8	46.1	47.4	49.6	51.0	51.	50.7	0.64	47.	45.	44.7	45.3	46.3	48.0	49.6	£8.4	47.1	÷	40.0	38.5	37.	34.9	31.	28.1	26.3	25.3	*2	24.7	24.7
		WIND DATA	DIRECTION	DEGREES(TN)	231.2	234.6	256.2	240.3	246.8	252.2	256.2	259.5	262.2	265.3	569.6	274.7	2.6.2	284.1	288.8	293.4	596.9	300.1	302.9	305.8	307.1	308-1	307.9	306.4	304.0	296.8	267.8	279.0	569.6	261.3	257.5	253.7
A1A 8	tinued)	SPEED OF	SOUND	KNOTS	585.4	583.9	582.5	581.0	579.5	578.9	578.4	578.0	577.6	577.2	577.0	578.1	579.7	580.2	579.0	578.4	578.4	578.0	576.5	575.1	573.6	572.1	570.7	569.2	567.7	566.2	564.7	563.2	561.7	560.2	558.7	557.2
UPPER AIR UATA 1720030168 Jalle ⁿ	TABLE 5 (continued)		GM/CUBIC	METER	384.3	377.3	370.5	353.9	357.3	349.8	342.2	334.7	327.4	320.3	313.0	304.5	295.9	288.5	283.0	277.0	270.6	264.7	259.7	254.9	250.2	245.6	240.9	236.2	231.5	227.0	222.5	218.2	213.9	209.7	205.6	201.6
2	TA	REL.HUM. DENSITY	PERCENT																																	
T MSL S MDT		TEMPERATURE	DEWPOINT	MILLIBAKS DEGREES CENTIGRADE																																
11.00 FEET 0400 HRS		TER	AIR	UEGREES	-47.4	4	-40-6	-50.7	-51.6B	-52.4	1.52.	0.5	-53.3	-53.7	-53.8	-52.9	-51.8	-51.3	-52.2	-52.7	-52.7	-53.0	-54.1	-55.2	-56.4	-57.5	-58.6	-59.7	-60.8	-61.9	-63.0	-64.2	-65.3	-66.4	-67.5	-68.6
TITUDE 405 NO. 168		PHESSURE		MILLIBAKS	0.047	4 4 4 7	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	240.5	2070	221.7	2.5.5	21.2	206.6	201.8	197.1	192.5	188.1	183.7	179.5	175.5	171.2	167.2	163.5	159.5	155.7	152.1	148.4	144.	141-1	137.6	134.2	130.9	127.6	124.5	121.4	118.4
SIATION ALTITIES JUNE 80		GEONE INTE	ALTITUDE	MSL FEET	O COLOGY	4 c c c c c c c c c c c c c c c c c c c	440000			S S S S S S S S S S S S S S S S S S S		0.0000	40000	40500.0	41000.0	41500.0	42000-0	42500.0	4.3000-0	4.3500.0	0.09045	-	45000.0	45500.0	46000.0	16500.0	47000.0	47500.0	48000+0	48500.0	0.00064	49560.0	50000-0	50500.0	51000.0	51500.0

GEODETIC COORDINATES 33.16712 LAT DEG 106.49511 LON DEG		WIND DATA INDEX		KNOTS REF		241.0 24.0 1.000043	24.0	23.9			22.0			19.8		18.0	16.4		12.0	1. 6	80		E) (750001 0.7 5.6	D (D (٠ •	5.0	11.2	11.1	10.8		9.1.	12.4	71.3 12.9 1.000019
	(pe		DIRE	DEGREES (TN)												ñ							_	7	ń	-										•
DATA 68	ntinu	SPEED OF	SOUND	KNOTS	555.6	554.1		_			547.4							553.5				552.6		555			262.9									567.9
UPPER AIR DATA 1720030168 Jallen	TABLE 5 (continued)	REL.HUM. DENSITY	GM/CUBIC	METER	197.7	193.8	1.061	186.4	162.8	179.3	175.2	169.7	164.3	159.1	154-1	150.3	146.6	143.0	139.5	136.1	132.7	129.5	125.8	121.6	0.11	11.00	0.011	107.3	105.0	102.0	99.5	1.96 1	93.8	91.3	88.9	96.6
	T	REL.HUM.	PERCENT																																	
FEET MSL HRS MDT		TEMPERATUPE	DEWPOLNT	J			•		CI.	•	•	•	•	_	•	_	-	•	•	•	•	6	N 1	.	•	2		n (.	QI 1	•		.	•		۰.
51.00		=	AIR	ä	-69-1	-70.8	-72.0	-73.1	-74.2	-75.3	-75.8	-74.5	-73.3	-72.1	-70.9	-71.0	-71.1	-71.5	-71.4	-71.6	-11:	-71.9		7.60		200		0.00	-65.0	-64.2	-63.3	-62.7	-62.1	-61.6	-61.1	-60•
STATION ALTITUDE 4051.00 FEET 20 JUNE 80 ASCENSION NO. 158		PRESSURE		MILLIBANS	115.4	112.6	109.6	107.1	104.4	101.8	99.3	9 6	?:\$	91.8	89.5	87.2	95.0	62.9	90.9	78.7	76./	9.97	72.9	1.17	21.7	2 2 2	400	7 .	7.29	61.2	29.	28.5	2 · 9	000	1.50	52.6
STATION ALTITION SO JONE BO		GEUNE IN IC	AL 1 I TUDE	MSL FEET	52000.0	52500.0	53000.0	53500.0	54000.0	54500.0	55000.0	55500.0	56000•0	56500.0	57000.0	57500.0	28000.0	58500.0	29000.0	59500.0	0.00009	60500.0	0.90014	0.00519		0.00020		0.0000	0.000	64566.0	62000.0	65500.0	0.0000	0-00599	67000·0	67500.0

The the state of t

EODETIC COORDINATES 33.16712 LAT DEG 106.49511 LON DEG		INDEX	ğ	REFRACTION	1.000019	1.00001	1.000018	1.00001	1.000017	1.000017	1.000016
6E00E71 33.		17	SPEED	KNOTS	13.6	14.9	16.3				
		OF WIND DATA	DIRECT 10N	DEGREES (TN)	2.99	7.3	61.7				
۷ ۲ م	:inued)	EEO	200	MOTS	566.6	569.3	569.6	569.9	570.1	570.3	570.6
UPPER AIR LATA 1720030168 Jallen	TABLE 5 (continued	ENSIT	W/CUB1	ME.TER	8.40	62.1	90.06	79.1	7.92	2	72.4
	TABL	REL.HUM.	PERCENT 6								
17 HSC.				CENTIGHADE							
400 HRS		1614	ATA	DEGREES	7.99-	-59.6	-59.4	-59.2	-59.0	9.95	-36.6
19 JUNE BE 0400 HRS NDT 19-EERS JUN NO. 188		PRESSUME		MILLIBANS DEGREES	9116	2.05	44.1	47.4	46.0	45.	4:11
STATION AL 20 JUNE 80 ASCENSION		GEUNE INIC	AL I ITUDE	MSL FEET	0.0000	0-00260	69600.0	0.00569	70000	70500.0	71606.0

CTANTO INCIDENT	1720930168	JALLEN	TABLE 6.
	STATION ALTITUDE 4051.00 FEET MSL	28 JUNE 88 0400 HRS MOT	sor on North Market

6EODETIC COORDINATES 33.16712 LAT DEG 106.49511 LON DEG

A STATE OF	DE COPOTE NT I AL		TEMPERAL UKE	MEL . HOM.	AIAU UNIN	W W
MILLIBARS	FEET	AIR DEGREES	CENTIGRADE	PERCENT	DIRECTION DEGREES(TN)	KNOTS
656.0	4993.	26.4	7.4	8	228.5	1.7
0.00	6739.	24.1	5.6	25.	295.5	3.0
750.0	6574.	19.5	E • 1	30.	284.0	
100.0	10562.	14.0	*:	37.	277.1	2.0
6-50-0	12534.	8.9	-1.0	.04	255-1	٥.
0.09	14644.	2.6	-3.0	67.	226.4	1.1
9.00	16970.	6.6-	-4.2	95.	217.4	7.9
5000	19420.	-9.	-9.5	66	234.9	13.2
450.0	22074.	-13.6	-26.3	33.	233.3	16.9
8000	24982.	-19.3	198-	23.	250.0	26.1
350.0	20192.	-26.5	-29.8	73.	233.9	29.7
300.0	31779.	-35.6	41.2	57.	216.4	9.40
250.0	35640.	-47.2		!	230.1	39.4
200.0	. 10201	-53.8			5.992	50.0
175.0	43426.	-52.7			293.5	4.94
156.0	46662.	-56.1			308.6	39.3
125.0	50359.	-66.2			261.5	24.9
100.0	54690.	-76.1			257.7	22.3
3	56997.	-71.5			25.1	11.1
70.0	61566.	-69-1			۲.	•
3	64667.	-63.6			63.0	11.2
6.63	48177					

.. AF LEAST ONE ASSUMED RELATIVE HIMIDITY VALUE HAS USED IN THE INTERPOLATION.

ASE.	
FEET	₹S-
8.63	, 0900 HRS NOT
2	0;
STATION ALTITUDE	
1	
5	20 JUNE 80
STA	2

DATA		
LEVEL	10006	
GNIFICANT	17201	AFSUC
516		

	REL-HUM. PERCENT		26.0
TABLE 7.	TEMPERATURE AIR DEMPOINT	CENT IGHADE	7.7
TAB	TEMPE	DEGREES	29.1
	GEOMETRIC AL 1171INE	MSL FEET	4700.6
	PRESSURE GEOMETRIC	MILLIBARS	860.8 4700.6
C			

PRESSURE	E GEOMETRIC		TEMPERATURE	REL. CE.
	-	AIR	DEMPOINT	PERCENT
ILLIBARS	축	DEGREES	CENT I GRADE	
860.8	4700.6	29.1	7.7	26.0
Š		26.8	9.9	20.0
700.0	9567.	÷	-3.1	31.0
9.00	283	0.K	2.4.	33.0
574.2	5918.	7:-	9.9-	55.0
200.0	9506.	-8.7	-14.1	65.0
474.0	20659.7	-12.2	-18.5	59.0
445.6	2	-15.3	-17.7	95.0
436.1	22940.9	-15.9	-21.1	0.49
423.6	3660	-17.1	-25.5	48.0
0.00	25066.4	-20.5	-32.5	33.0
365.7	25949.7	-22.5	-30.2	49.0
	75	-25.7		30.0
327.6	200	-31.2	£5.3	29.0
9	31864.1	-35.8	-40.0	27.0
289.0	32714.8	-36.2	-49.6	
2000	35943.5	2.91-		
219.0	36742.0	1.61		
2000	40786.3	1-01-		
191.6	41721.2	-46.7		
150.0	46928.5	-58.9		
126.0	56479.3	-65.7		
122.4	51060.9	-65.2		
1.Co.1	•	-72.1		
190.0	55036.2	-71.8		
:	57623.4	-67.4		
72.8	2	64.9		
•	62130.2	-62.5		
-	ā	-58.6		
•	ž	-57.1		
•	78672.6	-49.2		
30.0	3	•		

STATION ALTITUDE *700.63 FEET MSL. 20 JUNE 80 ASLENSION NO. 8 0900 HRS MDT

SIGNIFICANT LEVEL DATA 1720170008 AFSWC

TABLE 7 (continued)

TEMPERATUME AIR DEWPOINT DEGREES CENTIGRADE PRESSURE GEOMETRIC ALITUDE MILLIBAMS MSL FEET

REL.HUM. PERCENT

-50.7 26.2 82869.4 20.7 88005.8

GEODETIC COONDINATES 33.64686 LAT DEG 106.58581 LON DEG

15

	DOV CCI MIE				TABLE 8.	_			
4700.6	MILLIBANS	TEM AIR DEGREES	PRESSUME TEMPERATURE AIR DEMPOINT MILLIBAMS DEGREES CENTIGHADE	REL.HUM. PERCENT	DENSITY GM/CUBIC METER	SPEED OF SOUND KNOTS	MIND DATA DIRECTION SI DEGREES(TN) KI	SPEED KNOTS	INDEX OF REFRACTION
•	860.6	29.1	7.7	26.0	987.6	6.849	•	•	1.000264
Vece.	852.0	27.2	6.9	27.6	983.7		246.2		1.000261
250	837.1	25.8	9	28.2	9/1.5	_	246.2	1.9	1.000256
0.000	822.5	24.6	3.1	28.5	958.5	_	246.2	3.1	1.000251
6506.0	4.000	23.4	2.5	28.8	945.6		247.0	0.3	1.000246
7.0007	3.5	22.2	3.8	29.1	933.0		249.3	D.	1.000242
7500.0	780-1	21.0	2.5	29.3	950.6		247.5	3.2	1.000237
0.000	1,66.4	19.8	1.6	29.6	906	_	233.4	1.3	1.000233
8586.0	153.8	16.6		59.9	896.2		139.4	•	1.000228
9006	139.8	17.4	2	30.1	884.2	665.1	85.2	1:1	1.000224
9500.0	/26.3	16.2	-1:1	100	872.5		78.4	7:	1.000220
10000.	7.16.2	19.1	-2.1	7000	6.098	662.3	9.69	2.1	1.000216
10500.0	/01./	13.9	0.8-	31.0	9.610	6.099	1001	3.0	1.000212
11000.0	\$ 60°	12.6	9.8	31.4	837.9		116.6	4.1	1.000208
11500.0	676.6	11.4		31.8	856.5		127.7	2.5	1.000204
12006.0	2.400	10.1	-5.7	32.3	615.2		136.2	9.5	1.000200
12500.0	652.3	•	÷.	32.7	1.500	624.9	7.551	7.5	1.000197
13000.0	***	7.6	-7.2	7.5	193.		152.2	0.0	1.000194
13500.0	628.b	F-9	-7.1	37.7	762.0		165.3	9.7	1.000192
14000.0	4.910	6.	-7.1	41.3	771.1		161.1	9.1	1.000169
14500.0	50 5.5	3.6	-7.5	6.4	760-4		198.1	6.9	1.000187
15000.0	2.467	2.3	-7.4	*9.	749.9		222.1	9.6	1.000185
15588.0	563.5	- -	-7.7	52.0	739.5		242.2	9.6	1.000182
15000.0	572.4	~-	-A.2	55.2	729.2		255.6	11:4	1.000179
16500.0	261.5	-1.5	0.6-	56.6	716.5	642.8	560.6	13.2	1.000176
17000.0	7.00	-2.7	8.6-	58.0	708.0		262.0	14.6	1.000173
17500.0	2.040	6.6-	-10.6	59.4	697.6	Ī	263.9	17.4	1.000170
18606.0	729.4	-5-1	-11.5	60.8	687.4	638.4	265.5	20.5	1.000167
10500	9.610	£.9	-12.3	62.2	677.4	637.0	267.5	24.1	1.000164
190001	500	-7.5	-13.2	63.6	667.5	635.5	268.7	27.5	1.000161
19500.0	1.000	~•	1-14-1	65.0	657.8	634.0	268.5	29.5	1.000158
20000-0	***	-10.0	-15.7	62.8	648.2	632.4	567.9	30.5	1.000154

			UPPER AIR DAIA	
STATION ALTITUDE 4700-63 FEET MSL	4700.63 FEET	MSL	1720170008	GEODETIC COORDI
20 JUNE 80	0900 HRS	LOW	AFSWC	33.64686 LA
ASCENSION NO.	10			106.58581 LO

GEODETIC COORDINATES	33.64686 LAT DEG	106.58581 LON DEG
1720170008	AFSEC	
IITUDE 4700.63 FEET MSL	OPO HRS MDT	NO. 8

20 JUNE 80 ASCENSION NO. B	20 JUNE 80 0900 HRS ASCENSION NO. 8	RS MDT		AFSWC	8		6500511 33. 106.	6E0DETIC COOKDINATES 33.64686 LAT DEG 106.58581 LON DEG
			TAE	TABLE 8 (continued)	ntinued)		,	
PRESSURE			REL.HUM.	DENSITY	SPEED OF	WIND DATA	TA COSEC	INDEX
v.	MILLIUAMS DEGREES	CENTIGRADE	ביייי	#F.TEX	KNOTS	DEGREES (TN)	KNOTS	REFRACTION
	-11.3	-17.3	9.09	638.8	630.8	266.7	29.9	1.000151
471.5	-12.5	-18.4	61.1	629.2	629.3	564.9	29.1	1.000148
	-13.5	-18.0	68.5	1.619		262.1	27.9	1.000146
	-14.5	-17.8	76.0	609.2		260.1	26.6	1.000144
5.04	-15.4	-18.2	78.8	599.2		259.4	25.1	1.000142
135.1	-16.0	-21.4	62.7	588.8		258•6	22.6	1.000137
	-16.8	+-24·4	51.6	579.0		257.7	19.7	1.000134
	-17.9	-27.1	***	569.		253.8	17.9	1.000131
	-19.1	-29.5	39.0	561.1		249.5	16.8	1.000128
	-20.3	-32.2	33.7	552+5		250.0	18.5	1.000125
	-21.5	-31.2	6.0	543.6		5-042	20.5	1.000124
	-22.6	-30.5	£ 89 .	S. 46.0		252.2	23.1	1.000122
_	-23.6	-32.7	45.6	526.0	615.6	252.6	25.2	1.000120
	-24.5	-35.0	36.8	517.2		252.6	27.1	1.000117
	-25.5	-37.6	31.1	208.6		252.4	29.5	1.000115
	-26.7	29.0	29.8	8.00S		252.1	31.2	1.000113
	-27.9	-40.5	59.6	492.3		520.6	32.8	1.000111
	-59.5	141.4	29.4	484		248.7	34.2	1.000109
	-30.4	-42.5	29.1	476.7		246.0	34.9	1.000107
	-31.6	143.7	28.8	469.0		242.8	35.2	1.000105
	-35.1	0.01-	28.3	461-1		238.8	34.7	1.000103
311.4	-33.9	-46.0	27.8	453.		233.8	33.6	1.000102
_	-35.0	-47.5	27.4	445.7		228.9	33.1	1.000100
	-36-2	でのはずー	27.2	4.864		224 • 3	33.0	1.000098
7-167	-37.6	£.64-	27.7	431.4		221.6	33.6	1.000097
_	-38.9	-51.2	25.54	424.3		220.6	34.7	1.000095
_	140.2	-53.9	21.2**	417.1		220.8	35.5	1.000093
	47.4	-56.8	16.9*	410.1		221.8	36.0	1.000092
_	-42.7	-60.5	12.5**	403.2		223.9	36.4	1.000090
20097	6.64-	7.19-	8.2*	396.4		226 • 4	36.8	1.000068
255.0	-45.2	9.04-	3.8*	389.7		228•6	37.7	1.000087
	\$.94		•	383.0		250.6	38.7	1.000085

** AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION AL	IITUDE 47	OD.63 FEET	ET MSL	,	UPPER AIR DATA 1720170008 AFSWC	08 08		GEODETI 33.	GEODETIC COORDINATE 33.64686 LAT DE
ASCENSION NO.	2 0	2000	<u> </u>	TAB	TABLE 8 (continued)	tinued)		106.	106.58581 LON CE
GEONE INIC	PRESSUME	TEM	TEMPERATURE	REL.HUM.	DENSITY	SPEED OF	WIND DATA	11A	INDEX
ALIITUUE MSL FEEI	HILLIBARS	AIR DEGREES	DEWPOINT CENTIGRADE	PERCENT	GM/CUBIC METER	SCUND KNOTS	DEGREES (TN)	KNOTS	OF REFRACTION
36580.0	243.1	-46.9			375.2	•	232.8	39.3	1.000084
37000.0	238-1	-47.5			367.6		235.0	39.8	1.000082
37500.0	232.1	-48.0			360.1		237.9	39.9	1.000080
38000.0	227.4	-48.6			352.8		241.1	39.8	1.00007
38500.0	222.3	1-64-			345.6	•	245.2	39.8	1.00001
39000-0	217.2	-49.2			337.9		250.0	0.0	1.00001
39500.0	212.2	-48.9			329.7	583.4	255.2	n : 0 :	1.00007
40000	207.4	-48.6			321.8		261.0	6.0	7.00001
40500.0	202.1	-48.3			314.0		500.0	9	1.00007
41000.0	0.861	-47.B			306.1		270.3	5.2	1.000068
41500.0	193.6	-47.0			298.2		273.9	3.0	1.00006
\$2000.0	189.1	-47.4			291.8	585.4	2/7.1	0.00	1.000063
42500.0	184.7	-18.5			286.5	583.9	280.2	٠. ت	1.00000
43000.0	180.4	-49.7			281.3		282.4	***	1.000063
43500.0	176.2	-50.9			276.2		283.6	20.5	1.000062
44000-0	172.1	-52.0			271.2		284.7	0.0	1.000060
44500.0	168.1	-53.2			266.3		285.8	60°F	1.000059
45000.0	164.2	-54.4			261.5		247.0	43.6	1.00005
_	160.4	-55.6			256.8		298.2	42.9	1.000057
46000-0	156.7	-56.7			252.2	•	289.5	8.19	1.000056
46500.0	153.1	-57.9			247.7		290.8	8 · D ·	1.00005
47000.0	149.5	-59.0			243.2		292.1	38.0	1.00005
47500.0	145.8	-60.0			238.4	568.8	293+5	300 000	1.00005
48000-0	142.5	-61.0			233.6		294.0	32.7	1.00005
48500.0	138.9	-61.9			229.0		293.7	30.0	1.000051
49000	135.5	-62.9			224.5		293.2	27.3	1.000050
49500.0	132.2	-63.6			220.0	563.6	285.2	26.0	1.000049
50000	129.0	-64.8			215.7	562.4	276.0	25.5	1.000048
50500.0	125.9	-65.7			211.4		267.5	25.9	1.000047
51000.0	122.8	-65.3			205.7		262.2	27.7	1.0000年
51500.0	119.7	-66.2			201.5	•	257.5	29.7	1.00004
52000.0	116.7	-67.			197.6	558.8	257.1	30.9	1.00004

ES ES ES

SIATION 20 JUNE	NOE NO	00-63 FEET MSL 0900 HRS MDT	J	UPPER AIR LATA 1720170008 AFSWC	,ATA 18		GEODET1	GEODETIC COORDINATES
ASCENSION NO.	• 02		TAI	TABLE 8 (continued)	ntinued		106.	106.58581 LON DEG
GEOME INIC	C PRESSURE	TEMPERATURE	REL.HUM. DENSITY		SPEEU OF	WIND DATA	TA	INDEX
AL TITUDE		AIR	PERCENT	GM/CUMIC	SOUND	DIRECTION	SPEED	Ą
MSL FEET	MILLIBAKS	DEGREES CENTIGRADE		METER	KNOTS	DEGREES (IN)	KNOTS	REFRACT10N
52500.0	0 113.8	-68.6		193.8	557.2	260.8	31.1	1.000043
53000.0	_	-69.1		190.0	555.6	564.4	31.5	1.000042
53500.0		-70.9		186.3	554.0	271.6	31.8	1.000041
54000	_	-72.1		182.7	552.4	280.5	32.7	1.000041
04200		-72.0		178.0	552.6	288.6	34.46	1.000040
55000.0	4	-71.8		173.4	552.8	298.2	31.9	1.000039
55500.0	•	-71.1		168.4	553.8	309.5	29.9	1.000038
56000.0		-70.3		163.5	554.9	321.5	28.5	1.000036
56500.0		-69.5		158.8	556.0	333.4	23.0	1.000035
57000.0		-68.7		154.2	557.0	351.1	19.2	1.000034
57500.0		-67.9		149.8	558.1	7.9	16.5	1.000033
58000.0		-67.3		145.6	559.0	12.1	12.4	1.000032
58500.0		-66.9		141.7	559.5	23.8	8.5	1.000032
29000.0	_	-66.6		138.0	559.9	39.3	7.0	1.000031
59500.0		-66.2		134.4	560.4	48.5	7.5	1.000030
0.00009	•	-65.9		130.8	560.9	56.4	8•1	1.000029
_	• -	-65.5		127.4	561.4	27.6	8.9	1.000028
0.00019	•	-65.1		124.0	561.9	55.0	4.4	1.000028
_	•	-64.4		120.6	562.8	52.7	10.5	1.000027
62000.0	•	-62.9		116.8	564.9	52.0	11.0	1.000026
62500.0	_	-61.6		113.3	566.6	51.5	11.4	1.000025
63000°	_	-60.5		109.9	568.2	52.3	12.3	1.000024
63500.0	_	-59.3		106.7	569.7	57.0	14.5	1.000024
64000.0	•	-58.6		103.8	570.7	909	16.8	1.000023
64500.0	0 62.4	-58.5		101.3	570.8	67.1	17.4	1.000023
65000.0	_	-58-4		98.9	570.9	79.7	17.0	1.000022
65500.0		-58.3		96.5	571.0	21.7	17.4	1.000021
0.0000	•	-58.3		2.46	571.1	104.0	17.3	1.000021
66500.0		-58.2		91.9	571.2	116.4	17.7	1.000020
67000.0		-58.1		89.7	571.3	127.8	18.9	1.000020
67500.0	-,	-58.0		87.5	571.4	1.50 • 0	17.6	1.000019
68000.0	0 52·8	-57.9		85.4	571.5	131.4	15.9	1.000019

STATION ALT	LTITUDE 470	STATION ALTITUDE 4700.63 FEET MSL 20 JUNE 80 0900 HRS MDT		UPPER AIR DATA 1720170008 AFSWC	UATA 08		GEODETI 33.	GEODETIC COORDINATES	
ASCENSION NO.			TA	TABLE 8 (continued)	tinued)		106.	106.58581 LON DEG	
GE JME 1KIC	PRESSURE	Ž.		1. DENSITY	SPEED OF	MIND DATA	ITA	INDEX	
ALITUDE MSL FEET	MILLIBAMS	AIR DEWPOINT MILLIBAKS DEGREES CENTIGRADE	OINT PERCENT GRADE	GM/CUBIC METER	SOUND	DEGREES (TN)	SPEED KNOTS	OF REFRACTION	
68500.0	51.5	-57.9		93.4		132.7	14.3	1.000019	
0.00000	50.3	-57.8		91.4		128.2	13.5	1.000018	
69500.0	49.1	57.1		79.4		123.2	12.8	1.000018	
70000	47.4	-57.6		77.5		117.9	12.3	1.000017	
70500.0	46.8	-57.5		75.6	572.0	113.4	12.5	1.000017	
71000.0	45.7	-57.5		73.8		109.1	12.8	1.000016	
71500.0		-57.4		72.0		105.3	13.1	1.000016	
72000.0	-	-57.3		70.3		102.8	13.5	910000•1.	
72500.0	_	-57.2		9.89	572.4	100.4	14.0	1.000015	
73000.0		-57.2		67.0		9.96	14.4	1.000015	
73500.0	40.0	-56.9		65.3	572.9	98.0	14.9	1.000015	
74000.0		-56.2		63.6		97.5	15.4	1.000014	
74500.0		-55.4	•	61.9		9.96	15.9	1.000014	
75000.0		-54.7		60.2		92•6	16.4	1.000013	
75500.0		-53.9		58.6		94.5	16.8	1.000013	
76000.0		-53.2		57.1		93.8	17.4	1.000013	
76500.0	35.2	-52.4		55.6	578.8	#• 5 6	18.0	1.000012	
77000.0		-51.7		24.1		94.6	18.6	1.000012	
77500.0		-50.9		52.7		24.7	19.7	1.000012	
78000.0		-50.5		51.3		92.9	21.9	1.000011	
78500.0		-49.5		6.64		91.5	24.1	1.000011	
19000.0		1.64-		48.7		50.	26.2	1.000011	
19500.0		-46.9		47.6		9•68	27.5	1.000011	
80000				46.5		699	28.8	1.000010	
80500.0		-49.5		45.5		88•4	29.9	1.000010	
81000.0		5.6		10 · 10 · 10		89.0	29.7	1.000010	
81500.0		8.64-		43.5	582.2	89.7	29.5	1.000010	
82000.0		-50 • 1		45.6		90.3	29.5	1.000009	
82500.0		-50.5		41.7		6.06	28.5	1.000009	
83000.0		-50.6		8.0*		91.5	27.8	1.00000	
83500.0	25.5	-50.1		39.8		92.1	27.1	1.000009	
84000.0		9.64-		38.8		ħ•06	56.6	1.000009	

STATION AL 20 JUNE BL ASCENSION	STATION ALTITUDE 4700.63 FEET MSL 20 June 80 0900 HRS MDT ASCENSION NO. B	uo.63 FEE 1900 HRS	MDT	TAB	UPPER AIR DATA AFSWC ABLE 8 (continued)	oata Da tinued)		GEODETI 33.	GEODETIC COORDINATES 33.64686 LAT DEG 106.58581 LON DEG	
GEOMETHIC ALTITUDE MSL FEET M	PRESSUME MILLIBAMS	TEMP AIR Degrees	PRESSUME TEMPERATURE AIR DEMPOINT MILLIBAMS DEGREES CENTIGRADE	REL.HUM. PERCENT	REL.HUM. DENSITY S PERCENT GM/CUBIC METER	SPEED OF SOUND KNOTS	OF WIND DATA DIRECTION SPEED	SPEED KNOTS	INDEX OF REFRACTION	
84500.0		-49.1			37.8	583.	89.89	26.1	1.000008	
85000.n	23.8	-48.7			36.9	583.7	87.0	25.8	1.000008	
85500.0		-48.2			36.0		0 • SA.	27.1	1.000008	
96000.0		-47.7			35.1		83.2	28.6	1.000008	
86500.0		-47.2			34.2			•	1.000008	
87000.0		-46.8			33.4				1.000007	
87500.0		-46.3			32.5				1.000007	
88000.0		-45°			31.7				70000°1.	

STATION ALTITUDE 4700.63 FEET MSL 20 JUNE 80 0900 HRS MDT ASCENSION NO. 8	4700.63 FEET 0900 HRS	FEET MSL HRS MDT	I	MANDATORY LEVELS 1720170008 AFSWC TABLE 9.	EVELS 08		GEODETIC COONDINATES 33.64686 LAT DEG 106.58581 LON DEG
	PRESSURE GEUPOTENTIAL	UPOTENTIAL	TEMP	TEMPERATURE	REL . HUM.	WIND DATA	ATA
	MILLIBARS	FEET	DEGREES	DEGREES CENTIGRADE	PERCEN	DEGREES (TN)	KNOTS
	850.0	5065.	26.8	6.8	28.	246.2	6.
	800.0	6807.	22.7	3.7	29.	248.5	4.2
	750.0	8635.	18.4	s.	30.	104.0	9•
	700.0	10558.	13.7	-3.1	31.	102.8	3.1
	650.0	12588.	8.6	-6.8	33.	144.2	1. 4
	0.009	14738.	3.0	-7.3	47.	210.1	8.6
	550.0	17027.	-2.8	8-6-	58.		15.0
	500.0	19481.	-8.7	-14.1	65.		
	450.0	22129.	-14.8	-17.7	78.		26.1
	0.004	25027.	-20.5	-32.5	33.		18.7
	350.0	28226.	-27.4	-39.7	30.		32.2
	300.0	31803.	-35.8	0.84	27.		33.0
	250.0	35868.	-46.3				38.5
	200.0	4 0691.	-48.1				42.2
	175.0	43574	-51.2			283.9	
	150.0	45803.	0.00				200
	0.621	00407	900-				200
22		59258	-66.2				7.4
.	70.0	61929.	-62.5				· •
	0.09	65093.	-58.4			86.9	17.1
	20.0	68862.	-57.8			127.4	13.4
	0.04	73489.	-56.5				15.2
	30.0	79601.	8-84-				28.6
	25.0	83513.	-49.7			6.06	26.7

** AT LEAST ONE ASSUMED RELATIVE HIMIDITY VALUE WAS USED IN THE INTERPOLATION.