Problema 1.

Un generador cuya fuerza electromotriz es de $120\,\mathrm{V}$ y resistencia interna $0.2\,\Omega$, entrega una corriente de $20\,\mathrm{A}$ a un motor situado a $300\,\mathrm{m}$ de distancia y de resistencia interna $0.5\,\Omega$. La línea es de cobre de resistividad $17.24\,\mathrm{m}\Omega\,\mathrm{mm}^2\,\mathrm{m}^{-1}$. Sabiendo que el motor absorbe $10.2\,\mathrm{kWh}$ en 5 horas, hallar:

- 1. Fuerza contraelectromotriz del motor.
- 2. Sección de los conductores.
- 3. Rendimiento del motor, del generador, de la línea y rendimiento total.
- 4. Balance general de potencias.

Problema 2.

Un generador de corriente continua alimenta a dos cargas. La primera está situada a 2100 m, tiene una resistencia de 215 Ω y rendimiento unidad. La segunda está situada a 270 m después de la primera, tiene una potencia de 4662 W, un rendimiento del 75 %, y una tensión aplicada de 420 V.

Sabiendo que la línea es de cobre, de $6\,\mathrm{mm}^2$ de sección, y que la resistividad es de $17.24\,\mathrm{m}\Omega\,\mathrm{mm}^2\,\mathrm{m}^{-1}$, determinar:

- 1. Tensión en bornes del generador.
- 2. Intensidad entregada por el generador.
- 3. Rendimiento de la instalación.

Problema 3.

Convierte en fuente de tensión o intensidad, según corresponda.

Problema 4.

Calcula la resistencia equivalente entre A y B.

Problema 5.

Analiza el circuito de la figura mediante el método de las mallas, obteniendo:

- 1. Corriente de cada una de las ramas
- 2. Potencial en cada uno de los nudos, tomando como referencia el nudo A.

Datos: $R_1 = R_3 = R_6 = 3\Omega$ $R_2 = R_4 = R_5 = R_6 = 2\Omega$ $\epsilon_1 = 1V$ $\epsilon_2 = 2V$ $\epsilon_3 = 3V$ $R_1 = R_3 = R_6 = 3\Omega$ $\epsilon_1 = 1V$ $\epsilon_2 = 2V$ $\epsilon_3 = 3V$ $R_2 = R_4 = R_5$ $R_4 = R_4$ $R_4 = R_5$ $R_5 = R_6$ $R_6 = R_6$