

_	ML Model 1
Our accordants	efining SVR function with SMO t of epsilon, nu, and least squares SVRs; we select the epsilon SVR for this project. Epsilon SVR gives us direct control over the uracy of the model, by controlling the allowed error. Although, this may lead to complex models (with lot of support vectors). faster training of our model we employ Sequential Minimal Optimization (SMO) algorithm, the referenced paper has been exched.
imp fro imp def n x z r	<pre>ort pandas as pd m typing import Callable ort math gaussian_kernel(x: np.ndarray, z: np.ndarray, sigma: float) -> np.ndarray:</pre>
# E def	<pre>turn np.matmul(x, z.T) _toler is the amount of additional error that is allowed while checking the KKT conditions svr_train(X_train: np.ndarray, Y_train: np.ndarray, kernel: Callable[[np.ndarray, np.ndarray], np.ndarray], C=1.6 variable initialization p.random.seed(random_seed) _samples, m_features = X_train.shape erneled_matrix = kernel(X_train, X_train) s_changed = np.zeros(n_samples) lphas = np.zeros(n_samples) = 0.0 ter_num = 1 lphas_pairs_changed = 0</pre>
#	<pre>ipinas_pairs_changed = 0 smo training hile (alphas_pairs_changed > 0 or iter_num == 1) and iter_num <= max_iter: alphas_pairs_changed = 0 # After one pass through the training set, the outer loop iterates over only those examples whose Lagrange multiplication if iter_num == 1: seq_SV = list(range(n_samples)) else: seq_SV = np.nonzero((alphas > -C)*(alphas < C))[0] for i in seq_SV:</pre>
	<pre># Calculate error at index i Ei = alphas.dot(kerneled_matrix[i].T) + b - Y_train[i] # Check KKT conditions condition_1 = alphas[i] == 0 and abs(Ei) < (epsilon + E_toler) condition_2 = alphas[i] != 0 and abs(alphas[i]) < C and\ abs(Ei) <= (epsilon + E_toler) and abs(Ei) >= (epsilon - E_toler) condition_3 = abs(alphas[i]) == C and abs(Ei) > (epsilon - E_toler) if (condition_1 or condition_2 or condition_3): continue # select a j (another data sample) j = Ej = -1</pre>
	<pre>changed_seq = np.nonzero(is_changed)[0] if changed_seq.shape[0] == 0: random_seq = np.arange(n_samples) # remove i from the choice list random_seq = np.append(random_seq[:i], random_seq[i+1:]) j = np.random.choice(random_seq) # error at new index j Ej = alphas.dot(kerneled_matrix[j].T) + b - Y_train[j] else: max_step = -np.inf for c in changed_seq: if c == i:</pre>
	<pre>continue temp_error = alphas.dot(kerneled_matrix[c].T) + b - Y_train[c] temp_step = abs(temp_error - Ei) # take the j and Ej with max step (Ej - Ei) if temp_step > max_step: max_step = temp_step j, Ej = c, temp_error # all of the support vectors now pass the KKT conditions if j == -1: break # Save the old i and j</pre>
	<pre>alpha_i_old = alphas[i].copy() alpha_j_old = alphas[j].copy() # Calculate the Lower and upper bound lower_bound = max(-C, alpha_i_old + alpha_j_old - C) upper_bound = min(C, alpha_i_old + alpha_j_old + C) # This may not happen, but if the lower_bound equals to upper_bound, continue if lower_bound == upper_bound: continue # Calculate eta eta = kerneled_matrix[i, i] + kerneled_matrix[j, j] - 2.0 * kerneled_matrix[i, j] # May not happen</pre>
	<pre>if eta <= 0: continue # update j is_j_update = False I = alpha_i_old + alpha_j_old for sgn in [-2, 0, 2, -1, 1]: temp_j = alpha_j_old + (Ei - Ej + epsilon) if np.sign(I - temp_j) - np.sign(temp_j) == sgn: alphas[j] = temp_j is_j_update = True break</pre>
	<pre>if not is_j_update: continue alphas[j] = max(min(alphas[j], upper_bound), lower_bound) if abs(alphas[j] - alpha_j_old) < 1e-5: is_changed[j] = 1 continue # update i alphas[i] += alpha_j_old - alphas[j] # Calculate bi and bj bi = -(Ei + (alphas[i] - alpha_i_old) * kerneled_matrix[i, i]\</pre>
	<pre>+ (alphas[j] - alpha_j_old) * kerneled_matrix[i, j]) + b bj = -(Ei + (alphas[i] - alpha_i_old) * kerneled_matrix[i, j]\</pre>
def r	<pre>is_cnanged[j] = 1 is_changed[j] = 1 alphas_pairs_changed += 1 iter_num += 1 eturn alphas, b svr_predict(X_train: np.ndarray, X_test: np.ndarray, alphas: np.ndarray, b: float, kernel: Callable[[np.ndarray, eturn alphas @ kernel(X_train, X_test) + b) Testing the model""" a = pd.read_csv("Team16_Preprocessed.csv", index_col=0, header=0) ndardize(data, skip = 'co2')</pre>
<pre>tes Y_t X_t Y_t X_t # h ker # l</pre>	<pre>data['co2'] data.drop(['co2'], axis = 1) t, train = test_train_split(data) rain = train['co2'].to_numpy() rain = train.drop(['co2'], axis = 1).to_numpy() est = test['co2'].to_numpy() est = test.drop(['co2'], axis = 1).to_numpy() yper params: c, gamma, epsilon nel = lambda x, y: gaussian_kernel(x, y, 1/len(X_train)) arge C = more SVs = overfitting + more time to train has, b = svr_train(X_train, Y_train, kernel, 1, 0.01, 42, 1000, 0.01)</pre>
Y_p pri pri pri 7527 -1.1	<pre>red = svr_predict(X_train, X_test, alphas, b, kernel) nt(alphas, b) nt(MSE(Y_pred, Y_test)) nt(rsquared_score(Y_pred, Y_test)) 7.3136942675155 1235651783367875</pre> <pre>ML Model 2</pre>
# p par # A cla	rtificial Neural Network [32]: arameter of Leaky Rectified Linear Unit activation function (Leaky ReLU) am = 0.01 normal Layer of ANN (Linear) ss LinearLayer: efinit(self, input_size: int, output_size: int): # weigths of this Layer self.weights = np.zeros((input_size, output_size)) solf bias = np.zeros((1 output_size))
d #	<pre>self.bias = np.zeros((1, output_size)) take 1-D input and produce 1-D output ef forward_propagation(self, data: np.ndarray) -> np.ndarray: self.input = data # print(self.input.shape, self.weights.shape, self.bias.shape) return self.input @ self.weights + self.bias computes dErr/dW (gradient), for a given dE/dY (output err), Returns dE/dX (input err) ef backward_propagation(self, output_error: float, learning_rate: float): # update parameters # print(self.weights.shape, self.input.T.shape, output_error.shape) self.weights -= learning_rate * (self.input.T @ output_error)</pre>
cla d	<pre>self.bias -= learning_rate * output_error # return the input error return output_error @ self.weights.T n activation Layer of the ANN (non-linear) ss ActivationLayer: efinit(self, activation_fn: Callable[[np.ndarray], np.ndarray], activation_fn_derivative: Callable[[np.ndarray], self.afn = activation_fn self.afnstar = activation_fn derivative returns the activated input (non-linear transform using tanh) ef forward_propagation(self, data):</pre>
cla d	<pre>self.input = data return self.afn(data) This layer has no learnable parameters, so no need for any updation ef backward_propagation(self, output_error, learning_rate): return self.afnstar(self.input) * output_error ss ANN: efinit(self, layers: list[LinearLayer ActivationLayer]) -> None: # layers of ANN self.layers = layers ef fit(self, X_train: np.ndarray, Y_train: np.ndarray, max_iters = 1000, learning_rate = 0.1):</pre>
	<pre>for i in range(max_iters): error = 0 for j in range(n_samples): # forward propagation (prediction) for one sample out = X_train[j].reshape((1, m_features)) for layer in self.layers: out = layer.forward_propagation(out) # backward propagation for the same sample error = 2*(out-Y_train[j])/Y_train[j].size</pre>
d	<pre>for layer in reversed(self.layers): error = layer.backward_propagation(error, learning_rate) ef predict(self, X_test: np.ndarray): # sample dimension first samples = len(X_test) result = [] # run network over all samples for i in range(samples): # forward propagation output = X_test[i]</pre>
def ×	<pre>for layer in self.layers: output = layer.forward_propagation(output) result.append(output) return np.array(result) ivation_fn = lambda x: np.maximum(param*x, x) activation_fn_derivative(x: np.ndarray): c = np.full_like(x, param) c[x >= 0] = 1 eturn xc</pre>
dat sta Y = X = tes Y_t X_t Y_t X_t	<pre>Testing the model""" a = pd.read_csv("Team16_Preprocessed.csv", index_col=0, header=0) ndardize(data, skip = 'co2') data['co2'] data.drop(['co2'], axis = 1) t, train = test_train_split(data, 0.5) rain = train['co2'].to_numpy() rain = train.drop(['co2'], axis = 1).to_numpy() est = test['co2'].to_numpy() est = test.drop(['co2'], axis = 1).to_numpy()</pre>
m = net net Y_p pri pri 1276-363	<pre>work = ANN([LinearLayer(X_train.shape[1], m), ActivationLayer(activation_fn, activation_fn_derivative), LinearLaye work.fit(X_train, Y_train) red = network.predict(X_test) nt(MSE(Y_pred, Y_test)) nt(rsquared_score(Y_pred, Y_test)) 55257.36035541 82.0390231824704</pre>
Ra De Thi	andom Forest Regressor efining Trees of the Random Forest s decision tree uses mean absolute error as the impurity measure. These trees only perform binary split wherever applicable [33]: ort math
cla	<pre>ss TreeNode: efinit(self, feature=None, threshold=None, left=None, right=None, value=None): self.feature = feature self.threshold = threshold self.left = left self.right = right self.value = value ss DecisionTree: efinit(self, max_depth=20, min_samples=10, random_forest=False): self.max_depth = max_depth</pre>
d	<pre>self.min_samples = min_samples self.tree = [] self.random = random_forest ef fit(self, X_train: np.ndarray, Y_train: np.ndarray): self.tree = self.grow_tree(X_train, Y_train) ef predict(self, X_test: np.ndarray): return np.array([self.traverse_tree(row, self.tree) for row in X_test]) ef best_split(self, X: np.ndarray, y: np.ndarray): best_feature: int None = None</pre>
	<pre>best_threshold: float None = None best_gain = -1 # go through a random subset of features (and all thresholds) for random forest, else go through all and find the features = np.random.choice(range(X.shape[1]), size=int(math.log2(X.shape[1])+1),replace=False) if self.random el for i in features: thresholds = np.unique(X[:, i]) for threshold in thresholds: gain = self.split_gain(X[:, i], y, threshold) if gain > best_gain: best_gain = gain best_feature = i</pre>
d	<pre>best_threshold = threshold return best_feature, best_threshold ef split_gain(self, X_column, y, threshold): # define a impurity finding function def impurity(samples: np.ndarray) -> float: s_avg = np.mean(samples) # consider the mean absolute error as the impurity measure return np.mean(np.abs(samples - s_avg)) n = len(y) parent_imp = impurity(y)</pre>
	<pre>left_indexes = np.argwhere(X_column <= threshold).flatten() right_indexes = np.argwhere(X_column > threshold).flatten() child_imp = 0.0 # take child's impurity's weighted average across the two way split if len(left_indexes) != 0: child_imp += (len(left_indexes) / n) * impurity(y[left_indexes]) if len(right_indexes) != 0: child_imp += (len(right_indexes) / n) * impurity(y[right_indexes]) return parent_imp - child_imp</pre>
d	<pre>ef grow_tree(self, X, y, depth=0): n_samples, m_features = X.shape if n_samples <= self.min_samples or depth >= self.max_depth: return TreeNode(value = np.mean(y)) best_feature, best_threshold = self.best_split(X, y) left_indexes = np.argwhere(X[:, best_feature] <= best_threshold).flatten() right_indexes = np.argwhere(X[:, best_feature] > best_threshold).flatten() if len(left_indexes) == 0 or len(right_indexes) == 0:</pre>
d	<pre>return TreeNode(value=np.average(y)) # build the tree on both children with remaining samples left = self.grow_tree(X[left_indexes, :], y[left_indexes], depth+1) right = self.grow_tree(X[right_indexes, :], y[right_indexes], depth+1) # return the current node return TreeNode(best_feature, best_threshold, left, right) ef traverse_tree(self, x: np.ndarray, tree: list[TreeNode]): # return the value of the node if we reach a leaf if tree.value is not None: return tree.value</pre>
# g dat sta Y =	<pre># else continue travers if x[tree.feature] <= tree.threshold: return self.traverse_tree(x, tree.left) return self.traverse_tree(x, tree.right) Testing the model""" et the test train split a = pd.read_csv("Team16_Preprocessed.csv", index_col=0, header=0) ndardize(data, skip = 'co2') data['co2'] data.drop(['co2'], axis = 1)</pre>
Y_t X_t Y_t X_t # m cl cl. Y_p pri pri	<pre>t, train = test_train_split(data) rain = train['co2'].to_numpy() rain = train.drop(['co2'], axis = 1).to_numpy() est = test['co2'].to_numpy() est = test.drop(['co2'], axis = 1).to_numpy() ax depth and min samples per leaf are hyperparams = DecisionTree() fit(X_train, Y_train) red = cl.predict(X_test) nt(MSE(Y_pred, Y_test)) nt(rsquared_score(Y_pred, Y_test))</pre>
Do In cla	<pre>efining RandomForest Class [41]: ss RandomForest(): efinit(self, n_estimators, sample_size=None, min_leaf=3, max_depth=10): self.n_estimators = n_estimators self.sample_size = sample_size self.min_leaf = min_leaf self.max_depth = max_depth self.trees = None</pre>
d	<pre>ef fit(self, X_train: np.ndarray, Y_train: np.ndarray, random_seed=0): self.trees = [] np.random.seed(random_seed) if self.sample_size is None: self.sample_size = len(X_train) for _ in range(self.n_estimators): # bootstrap sampling and creation of a random forest tree indexes = np.random.randint(len(Y_train), size=self.sample_size) dt = DecisionTree(self.max_depth, self.min_leaf, True) dt.fit(X_train[indexes], Y_train[indexes]) self.trees.append(dt)</pre>
# m cl cl. Y_p	<pre>ef predict(self, x): tree_predictions = np.array([tree.predict(x) for tree in self.trees]) prediction = np.mean(tree_predictions, axis=0) return prediction Testing the model""" ax depth, min samples per leaf, sample size per tree and no of estimators are hyperparams = RandomForest(n_estimators=50, sample_size=len(X_train), min_leaf=3, max_depth=10) fit(X_train, Y_train) red = cl.predict(X_test) nt(MSE(Y_pred, Y_test)) nt(rsquared_score(Y_pred, Y_test))</pre>
6.995.Elimp	astic Net Regression [50]: ort numpy as np
# a def	<pre>ssumes dummy ones in X_test elastic_net_predict(X_test: np.ndarray, W: np.ndarray) -> np.ndarray: eturn np.dot(X_test, W) elastic_net_train(X_train: np.ndarray, Y_train: np.ndarray, learning_rate = 0.01, l1_penalty = 50, l2_penalty = 3 _samples, m_features = X_train.shape = np.zeros(m_features + 1) _train = np.concatenate((np.ones((n_samples, 1)), X_train), axis = 1) or _ in range(max_iterations): Y_pred = elastic_net_predict(X_train, W) grad = np.dot(X_train.T, Y_pred-Y_train) + l1_penalty*np.sign(W) + 2*12_penalty*W</pre>
dat sta Y = X = tes Y_t X_t Y_t	<pre>W -= (learning_rate/n_samples)*grad eturn W Testing the model""" a = pd.read_csv("Team16_Preprocessed.csv", index_col=0, header=0) ndardize(data, skip = 'co2') data['co2'] data['co2'] data.drop(['co2'], axis = 1) t, train = test_train_split(data) rain = train['co2'].to_numpy() rain = train.drop(['co2'], axis = 1).to_numpy() est = test['co2'].to_numpy()</pre>
X_t W = Y_p pri pri pri [250 2032.!	<pre>est = test['co2'].to_numpy() est = test.drop(['co2'], axis = 1).to_numpy() elastic_net_train(X_train, Y_train) red = elastic_net_predict(np.concatenate((np.ones((len(X_test), 1)), X_test), axis = 1), W) nt(W) nt(MSE(Y_pred, Y_test)) nt(rsquared_score(Y_pred, Y_test)) 0.81338919 0.48092591 2.20644654 24.29668318 13.35625935 0.83114769 -6.6131026 -30.23099655 -14.12377927 -13.91612893] 670631494308245 008113489503665</pre>
ld Bas bes	entifying the Best/Safest Car Model ed on Exploratory Data Analysis, we observe that Fuel Consumption, Engine Size, Cylinders affect CO2 Emmisions the most. The at car model will be the one which simultaneously minimizes all three (since all of them show strong positive correlation, minimizing a leads to a decrease in other two). Out of categorical data, Fuel Type and Make affect the Emmisions a little. Cars using Diesel or gular Gasoline should be preferred. Usage of Natural Gas is included, but it is inconclusive, due to the lack of samples in that
Ch In dat	comparing the effects of considering fuel consumption separately necking for Elastic Search [40]: a = pd.read_csv("Team16_Preprocessed.csv", index_col=0, header=0) tandardize all columns except the target
mse # c for d t Y X	<pre>ndardize(data, skip = 'co2') 1 = r21 = mse2 = r22 = mse3 = r23 = 0 hecking avg value across multiple runs i in range(5): dropping all fuel consumption combo columns ata2 = data.drop(['fuel_cons_comb', 'fuel_cons_comb_mpg'], axis = 1) est, train = test_train_split(data2, random_state=i) _train = train['co2'].to_numpy() _train = train.drop(['co2'], axis = 1).to_numpy() _test = test['co2'].to_numpy() _test = test.drop(['co2'], axis = 1).to_numpy()</pre>
y m r d t y X	<pre>= elastic_net_train(X_train, Y_train, 0.01, 0.01, 0.001, 10000) _pred = elastic_net_predict(np.concatenate((np.ones((len(X_test), 1)), X_test), axis = 1), W) se1 += MSE(Y_pred, Y_test) 21 += rsquared_score(Y_pred, Y_test) **Leaving only fuel consumption combo (in L/km) ata2 = data.drop(['fuel_cons_city', 'fuel_cons_hwy', 'fuel_cons_comb_mpg'], axis = 1) est, train = test_train_split(data2, random_state=1) _train = train['co2'].to_numpy() _train = train.drop(['co2'], axis = 1).to_numpy() _test = test['co2'].to_numpy() _test = test.drop(['co2'], axis = 1).to_numpy()</pre>
W Y m r d t Y	<pre>_test = test.drop([to2], axis = 1).to_numpy() = elastic_net_train(X_train, Y_train, 0.01, 0.01, 0.001, 10000) _pred = elastic_net_predict(np.concatenate((np.ones((len(X_test), 1)), X_test), axis = 1), W) se2 += MSE(Y_pred, Y_test) 22 += rsquared_score(Y_pred, Y_test) * leaving only fuel consumption combo (in mpg) ata2 = data.drop(['fuel_cons_city', 'fuel_cons_hwy', 'fuel_cons_comb'], axis = 1) est, train = test_train_split(data2, random_state=1) _train = train['co2'].to_numpy() _train = train.drop(['co2'], axis = 1).to_numpy() _test = test['co2'].to_numpy()</pre>
W Y m r pri pri pri pri	<pre>_test = test.drop(['co2'], axis = 1).to_numpy() = elastic_net_train(X_train, Y_train, 0.01, 0.01, 10000)</pre>
pri pri Sepa Sepa Sepa Sepa Sepa Sepa Sepa Sepa	nt("Fuel consumption combo in mpg") nt(mse3/5) nt(r23/5) arate fuel consumption 3 consumption considered separately 34059962570899 394206171479647
34.4 0.98 Fue: 247 0.92 Inf Fue: I/10	Consumption combo in 1/100km 139656806877935 1399490191695663 1 consumption combo in mpg 1.5744834614199 1.77470620183909 Perence: We observe that considering Fuel Consumption combo in I/100km or separately yields better results on average than using the Consumption Combo in mpg. Thus to minimise the data and increase efficiency, it is best to only use Fuel consumption combo in 1/100km.
In dat # s sta mse # a cl # c	recking for Random Forest [42]: a = pd.read_csv("Team16_Preprocessed.csv", index_col=0, header=0) tandardize all columns except the target ndardize(data, skip = 'co2') 1 = r21 = mse2 = r22 = mse3 = r23 = 0 refining the class = RandomForest(n_estimators=20, sample_size=len(data), min_leaf=3, max_depth=8) hecking avg value across multiple runs i in range(5):
## dd tt YY X Y X	<pre>rint(i) dropping all fuel consumption combo columns ata2 = data.drop(['fuel_cons_comb', 'fuel_cons_comb_mpg'], axis = 1) est, train = test_train_split(data2, random_state=i) _train = train['co2'].to_numpy() _train = train.drop(['co2'], axis = 1).to_numpy() _test = test['co2'].to_numpy() _test = test.drop(['co2'], axis = 1).to_numpy() l.fit(X_train, Y_train, random_seed=i) _pred = cl.predict(X_test) se1 += MSE(Y_pred, Y_test)</pre>
## dd tt YY X YY X	<pre>21 += rsquared_score(Y_pred, Y_test) * leaving only fuel consumption combo (in l/km) ata2 = data.drop(['fuel_cons_city', 'fuel_cons_hwy', 'fuel_cons_comb_mpg'], axis = 1) est, train = test_train_split(data2, random_state=1) _train = train['co2'].to_numpy() _train = train.drop(['co2'], axis = 1).to_numpy() _test = test['co2'].to_numpy() _test = test.drop(['co2'], axis = 1).to_numpy() l.fit(X_train, Y_train, random_seed=i) _pred = cl.predict(X_test) **Precedure of the predict of the predict</pre>
## dd tt YY XX	<pre>se2 += MSE(Y_pred, Y_test) 22 += rsquared_score(Y_pred, Y_test) * leaving only fuel consumption combo (in mpg) ata2 = data.drop(['fuel_cons_city', 'fuel_cons_hwy', 'fuel_cons_comb'], axis = 1) est, train = test_train_split(data2, random_state=1) _train = train['co2'].to_numpy() _train = train.drop(['co2'], axis = 1).to_numpy() _test = test['co2'].to_numpy() _test = test.drop(['co2'], axis = 1).to_numpy() 1.fit(X_train, Y_train, random_seed=i) _pred = cl.predict(X_test)</pre>
pri pri pri pri pri pri pri	<pre>_pred = C1.predict(x_test) se3 += MSE(Y_pred, Y_test) 23 += rsquared_score(Y_pred, Y_test) nt("Fuel consumption considered separately") nt(mse1/5) nt(r21/5) nt("Fuel consumption combo in 1/100km") nt(mse2/5) nt(r22/5) nt(r22/5) nt("Fuel consumption combo in mpg") nt(mse3/5) nt(r23/5)</pre>
17.3 0.99 Fuel 24.9 0.99 Inf Thu In dat dat tes	L consumption considered separately 194143067065557 1950334598028643 1 consumption combo in 1/100km 19613573020007 1927108837683767 2 consumption combo in mpg 133280820131425 1099139626313245 109913962313245 1099139626313245 1099139626313245 1099139626313245 1099139626313245 1099139626313245 1099139626313245 1099139626313245 10
In # D def	<pre>ring SVR [49]: efining a function for finding error in svr across random train and validation sets svr_error(kernel: Callable[[np.ndarray, np.ndarray], np.ndarray], C=10.0, epsilon=0.1, random_seed=0, max_iter=masetrain = r2train = msevalidate = r2validate = 0 ount = 3 or i in range(count): validate, train = test_train_split(train_validate, random_state=i+random_seed) Y_train = train['co2'].to_numpy() X_train = train.drop(['co2'], axis = 1).to_numpy() Y_validate = validate['co2'].to_numpy() X_validate = validate.drop(['co2'], axis = 1).to_numpy()</pre>
p	<pre>Y_validate = validate['co2'].to_numpy()</pre>
lin # c for p s pri # c for	<pre>rint("train r2=", r2train/count) ear = lambda x, y: linear_kernel(x, y) omparing c c in [0.1, 1, 10, 100]: rint("\nC=", c) vr_error(linear, C=c) nt() omparing epsilon e in [0.01, 0.1, 1, 10, 100]: rint("\nepsilon=", e)</pre>
pri # c ker pri svr C= (val:	<pre>rint("\nepsilon=", e) vr_error(linear, epsilon=e) nt() omparing kernels nel = lambda x, y: gaussian_kernel(x, y, 1/len(X_train)) nt("gaussian kernel") _error(kernel)</pre>
val: tra: tra: val: val: tra: C= :	in MSE= 4149.165847937683 in r2= -0.18295410806187284 Lidation MSE= 4200.799809729887 idation r2= -0.15323458789959252 in MSE= 3961.645424615707 in r2= -0.12955048714305545 Lidation MSE= 3287.981171851158 idation r2= 0.09481639367012695
tra: tra: C= : val: val:	in MSE= 3257.88144487578 in r2= 0.07178063447876896
eps: val:	idation MSE= 3287.981171851158 idation r2= 0.09481639367012695 in MSE= 3257.88144487578

Tuning ANN

In [27]:

import numpy as np
import pandas as pd

shuffle indices

random state provides reproducible results through seed

def test_train_split(dataset: pd.DataFrame, test_size = 0.20, random_state = 0):

this is also used in train validation split

np.random.seed(random_state)

<pre>rf.fit(X_train Y_pred = rf.pre msevalidate += r2validate += Y_pred = rf.pre msetrain += MSI r2train += rsqu print("validation print("validation print("train MSE: print("train r2=" print("hFinding the for e in [10, 20, 3] print("number of rfr_error(n_esting print("\nFinding the for d in range(5, 3)</pre>	<pre>t(n_estimators=n_estimators, min_leaf=min_leaf, max_depth=max_depth) count): n = test_train_split(train_validate, random_state=i) n['co2'].to_numpy() n.drop(['co2'], axis = 1).to_numpy() calidate['co2'].to_numpy()</pre>	
orint("\nFinding the for d in range(5, 3	<pre>redict(X_validate) rsquared_score(Y_pred, Y_validate) redict(X_train) redict(X_train) redict(Y_pred, Y_train) redict(Y_pred, Y_train) redict(Y_pred, Y_train) redict(Y_pred, Y_train) redict(Y_pred, Y_train) redict(Y_pred, Y_train) redict(X_train) red</pre>	
<pre>For 1 in range(1, 3 print("Samples pe rfr_error(min_lea</pre>	he best depth of each tree") 15): d) pth=d) he best number of leaves") 3): er leaf=", 1) eaf=1) umber of estimators 361087061244917 38285823257035	
rain MSE= 35.6238/ rain r2= 0.9898493 umber of trees= 20 alidation MSE= 40. alidation r2= 0.98 rain MSE= 34.18186 rain r2= 0.9902593 umber of trees= 30 alidation MSE= 39. alidation r2= 0.98 rain MSE= 34.22031 rain r2= 0.9902484 umber of trees= 40 alidation MSE= 39. alidation r2= 0.98 rain MSE= 32.95508 rain MSE= 32.95508	3263748126 369438890347693 388152223993533 5448412649 3003830695 30 .78801926115974 390621740301427 1569937146 4488623742 30 .24865230481688 39214221293078 38828723234	
rain r2= 0.9906090 umber of trees= 50 alidation MSE= 40. alidation r2= 0.98 rain MSE= 33.87961 rain r2= 0.9903451 umber of trees= 60 alidation MSE= 39. alidation r2= 0.98 rain MSE= 34.16004 rain r2= 0.9902671 inding the best de epth= 5 alidation MSE= 141 alidation r2= 0.96 rain MSE= 140.4452	206679457766181 38935933348087 12066364665 1798944998 30 .77114425506524 3906664457594 4029138352 1058384045 epth of each tree 1.94882878392534 610001385443937	
rain MSE- 140.4432 rain r2= 0.9599780 epth= 6 alidation MSE= 91. alidation r2= 0.97 rain MSE= 87.50297 rain r2= 0.9750571 epth= 7 alidation MSE= 65. alidation r2= 0.98 rain MSE= 59.11293 rain r2= 0.9831675 epth= 8 alidation MSE= 40. alidation r2= 0.98 rain MSE= 34.18186 rain r2= 0.9902593	86867795025444 747783968798172 7430386225 1882172862 .10295142590854 82073949304943 86232486334 5004244929 .69438890347693 888152223993533 6448412649	
epth= 9 alidation MSE= 32. alidation r2= 0.99 rain MSE= 26.67922 rain r2= 0.9923987 epth= 10 alidation MSE= 28. alidation r2= 0.99 rain MSE= 21.70762 rain r2= 0.9938149 epth= 11 alidation MSE= 30. alidation r2= 0.99 rain MSE= 24.98554 rain r2= 0.9928779 epth= 12	.49854476909028 910601171786507 2518721099 76353595 .271913289675293 922269550166573 27952005087 9904588505 .01445088961521 917535477911613 41425432483	
alidation MSE= 39. alidation r2= 0.98 rain MSE= 30.86796 rain r2= 0.9912096 epth= 13 alidation MSE= 27. alidation r2= 0.9940326 epth= 14 alidation MSE= 26. alidation r2= 0.99 rain MSE= 19.07986 rain r2= 0.9945645 inding the best nu	391493437645535 59287528677 5657306048 .064636039021376 925611152038036 12295916165 5245635358 .350714072436272 927507665424352 51631821824 5538469462	
1. Higher number of 2. number of samp	.12379945069733 886854750396629 92651004956 2460441072 2 .21029319636219 881055672665947	eters.
<pre>def eln_error(l1_pe msetrain = r2tra: count = 3 for i in range(compared to the period to the period</pre>	<pre>rion for finding error in elnet across random train and validation sets enalty=50, l2_penalty=3, learning_rate=0.01): in = msevalidate = r2validate = 0 rount): in = test_train_split(train_validate, random_state=i) in['co2'].to_numpy() in.drop(['co2'], axis = 1).to_numpy() ralidate['co2'].to_numpy() ralidate.drop(['co2'], axis = 1).to_numpy() rt_train(X_train, Y_train, l1_penalty=l1_penalty, l2_penalty=l2_penalty, learning_rate=learning ric_net_predict(np.concatenate((np.ones((len(X_validate), 1)), X_validate), axis=1), W)</pre>	_rato
<pre>r2validate += r Y_pred = elast: msetrain += MSI r2train += rsqu print("validation print("validation print("train MSE: print("train r2=" print("train r2=" print("\nFinding a for l1 in [0.01, 0 print("\nl1=", 1: eln_error(l1_pend print("\nFinding a</pre>		
print("\n12=", 12 eln_error(12_pena	2) alty=12) good learning_rate") 0.1, 1, 10, 100]: r) ng_rate=1r) penalty .6201644247844 207671222369493 1785557067 746410846 .620232028629204	
rain MSE= 31.71657 rain r2= 0.9909627 1= 1 alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.71811 rain r2= 0.9909622 1= 5 alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.72507 rain r2= 0.9909602 1= 10 alidation MSE= 33.	7024471291 .620911535344845 .697669184129255 18350111578 .2617761995 .62400791805499 .907660735051799 .70424873163 .280461624	
alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.73394 rain r2= 0.9909577 1= 50 alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.81227 rain r2= 0.9909354 1= 100 alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.92855 rain r2= 0.9909022	907649691809922 43983667633 7515337605 .66743399825922 907542062235399 73903017644 4279142724 .73420581483528 907359286285021 50881817745 2897771549	
inding a good 12_p 2= 0.01 alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.43956 rain r2= 0.9910416 2= 0.1 alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.44365 rain r2= 0.9910404 2= 1 alidation MSE= 33. alidation r2= 0.99	.44340930144984 90815958207257 5188907629 5471351509 .4429492565269 908160801374729 51365691665 4816218547	
alidation r2= 0.99 rain MSE= 31.50921 rain r2= 0.9910217 2= 5 alidation MSE= 34. alidation r2= 0.99 rain MSE= 32.32549 rain r2= 0.9907891 2= 10 alidation MSE= 36. alidation r2= 0.99 rain MSE= 34.47826 rain r2= 0.9901756 2= 50 alidation MSE= 88.	1441970553 7964527589 .08419089496558 906395076633854 90024372435 1684756859 .0073081525224 90110438971099 54815665575 5615546683	
alidation MSE= 88. alidation r2= 0.97 rain MSE= 87.85587 rain r2= 0.9749640 2= 100 alidation MSE= 223 alidation r2= 0.93 rain MSE= 223.1378 rain r2= 0.9364115 inding a good lear r= 0.01 alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.81227	757533461260085 7241466884 2553214743 3.4528194529535 287537214698342 287987832075 26046772553 cning_rate .66743399825922 207542062235399 73903017644	
rain r2= 0.9909354 r= 0.1 alidation MSE= 33. alidation r2= 0.99 rain MSE= 31.72347 rain r2= 0.9909607 r= 1 alidation MSE= nan alidation r2= nan rain MSE= nan rain r2= nan r= 10 alidation MSE= nan	4279142724 .62495393095919 .697657865426961 .7341727044 .7386106716	
alidation r2= nan rain MSE= nan rain r2= nan r= 100 alidation MSE= nan alidation r2= nan rain MSE= nan rain r2= nan r2	et is also found to be a good model for the given dataset, with over 99% accuracy. Is little difference in the model, as irrelevent features have already been eliminated leads to the shrinking of relevent features, leading to increase in error. The action of the shrinking of the learning but better accuracy, higher learning rate may even lead to nan values (errors too).	hia⊦

In [65]:

count = 1

for i in range(count):
 network = ANN(layers)

Defining a function for finding error in ann across random train and validation sets

ann_error([LinearLayer(train_validate.shape[1]-1, 1), ActivationLayer(activation_fn, activation_fn_derivative)])

Inference: Training ANN is a resource intensive task, thus we were unable to test it thouroughly. According to the testing we have

1. Using linear layers alone is like using linear regression without any penalty. This leads to very large errors which the system is

validate, train = test_train_split(train_validate, random_state=i)

def ann_error(layers: list[LinearLayer|ActivationLayer]):
 msetrain = r2train = msevalidate = r2validate = 0

Y_train = train['co2'].to_numpy()
X_train = train.drop(['co2'], axis = 1).to_numpy()

r2validate += rsquared_score(Y_pred, Y_validate)

r2train += rsquared_score(Y_pred, Y_train)

print("\nSingle Layer with ReLU activation function")

print("validation MSE=", msevalidate/count)
print("validation r2=", r2validate/count)

X_validate = validate.drop(['co2'], axis = 1).to_numpy()

Y_validate = validate['co2'].to_numpy()

Y_pred = network.predict(X_validate)
msevalidate += MSE(Y_pred, Y_validate)

Y_pred = network.predict(X_train)
msetrain += MSE(Y_pred, Y_train)

print("train MSE=", msetrain/count)
print("train r2=", r2train/count)

Single Layer with ReLU activation function

validation MSE= 53864918.721634544 validation r2= -15113.369728300051 train MSE= 214000456.02578485 train r2= -60665.456455515116

done:

network.fit(X_train, Y_train)