

Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

Song Han¹, Huizi Mao², William J. Dally^{1,3} ¹ Stanford University ² Tsinghua University ³ NVIDIA {songhan, dally}@stanford.edu mhz12@mails.tsinghua.edu.cn

Motivation: Make DNN Smaller

ML Researchers are Happy

GoogLeNet: 5M parameters 60M parameters Deepface: 120M parameters

Software Engineer Suffers

"Apps above 100 MB will not download until you connect to Wi-Fi "

Hardware Engineer Suffers

VGG-16: 130M parameters

Operation	Energy [pJ]	Relative Co
32 bit int ADD	0.1	1
32 bit float ADD	0.9	9
32 bit Register File	1	10
32 bit int MULT	3.1	31
32 bit float MULT	3.7	37
32 bit SRAM Cache	5	50
32 bit DRAM Memory	640	6400

Deep Compression is a three stage compression pipeline: pruning, quantization and Huffman coding. Pruning reduces the number of weights by 10x, quantization further improves the compression rate between 27x and 31x. Huffman coding gives more compression: between 35x and 49x. The compression rate already included the metadata for sparse representation. Deep Compression doesn't incur loss of accuracy.

Pruning, Relative Indexing & Huffman Coding

Weight / Index distribution is biased. Represent frequent occurring weight with less number of bits, less frequent occurring weight with more bits.

Weight Sharing and Quantization

Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

Left: Three different methods for centroids initialization. Right: Distribution of weights (blue) and distribution of codebook before (green cross) and after finetuning (red dot).

Accuracy v.s. compression rate under different compression methods. Pruning and quantization works best when combined.

Results

We pruned, quantized, and Huffman encoded four networks: Lenet-5, Lenet-300-100 on MNIST and AlexNet, VGG-16 on ImageNet. The compression pipeline saves network storage by 35× to 49× across different networks without loss of accuracy. The total size of AlexNet decreased from 240MB to 6.9MB, which is small enough to be put into on-chip SRAM, eliminating the need to store the model in energy-consuming DRAM memory.

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	-	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	$40 \times$
LeNet-5 Ref	0.80%	-	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	$39 \times$
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	$35 \times$
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49 imes

Storage ratio of weight, index and codebook.

Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

Layer	#Weights	Weights% (P)	Weight bits (P+Q)	Weight bits (P+Q+H)	Index bits (P+Q)	Index bits (P+Q+H)	Compress rate (P+Q)	Compress rate (P+Q+H)
conv1	35K	84%	8	6.3	4	1.2	32.6%	20.53%
conv2	307K	38%	8	5.5	4	2.3	14.5%	9.43%
conv3	885K	35%	8	5.1	4	2.6	13.1%	8.44%
conv4	663K	37%	8	5.2	4	2.5	14.1%	9.11%
conv5	442K	37%	8	5.6	4	2.5	14.0%	9.43%
fc6	38M	9%	5	3.9	4	3.2	3.0%	2.39%
fc7	17M	9%	5	3.6	4	3.7	3.0%	2.46%
fc8	4M	25%	5	4	4	3.2	7.3%	5.85%
Total	61M	$11\%(9\times)$	5.4	4	4	3.2	$3.7\% (27 \times)$	$2.88\% (35 \times)$

Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

•				-		•		
		Weights%	Weigh	Weight	Index	Index	Compress	Compress
Layer	#Weights		bits	bits	bits	bits	rate	rate
		(P)	(P+Q)	(P+Q+H)	(P+Q)	(P+Q+H)	(P+Q)	(P+Q+H)
conv1_1	2K	58%	8	6.8	5	1.7	40.0%	29.97%
conv1_2	37K	22%	8	6.5	5	2.6	9.8%	6.99%
conv2_1	74K	34%	8	5.6	5	2.4	14.3%	8.91%
conv2_2	148K	36%	8	5.9	5	2.3	14.7%	9.31%
conv3_1	295K	53%	8	4.8	5	1.8	21.7%	11.15%
conv3_2	590K	24%	8	4.6	5	2.9	9.7%	5.67%
conv3_3	590K	42%	8	4.6	5	2.2	17.0%	8.96%
conv4_1	1M	32%	8	4.6	5	2.6	13.1%	7.29%
conv4_2	2M	27%	8	4.2	5	2.9	10.9%	5.93%
conv4_3	2M	34%	8	4.4	5	2.5	14.0%	7.47%
conv5_1	2M	35%	8	4.7	5	2.5	14.3%	8.00%
conv5_2	2M	29%	8	4.6	5	2.7	11.7%	6.52%
conv5_3	2M	36%	8	4.6	5	2.3	14.8%	7.79%
fc6	103M	4%	5	3.6	5	3.5	1.6%	1.10%
fc7	17M	4%	5	4	5	4.3	1.5%	1.25%
fc8	4M	23%	5	4	5	3.4	7.1%	5.24%
Total	138M	$7.5\%(13\times)$	6.4	4.1	5	3.1	3.2% (31 ×)	$2.05\% (49 \times)$