Unidad 1 – parte 1

Conceptos básicos

Bases de Datos Aplicada

v1.1.0 – Marzo 2025

Contenido

- Conceptos básicos y terminología de las DDBB.
- Qué software de DDBB se utilizan actualmente.
- En qué consiste el trabajo del DBA y en qué se diferencia de un programador de DB.

Al finalizar deberías ser capaz de...

- Definir qué es una base de datos y por qué se necesitan.
- Discernir escenarios donde usar una DDBB es una mala idea.
- Explicar qué es un DBMS.
- Explicar en qué consiste el trabajo de un DBA y de un programador de DDBB.

Por qué necesitamos bases de datos

- Reducir o eliminar redundancias.
- Evitar inconsistencias.
- Facilita reaprovechamiento de los datos.

¿Cómo administraríamos un sistema de manejo de alumnos, notas, exámenes, inscripciones... con archivos de datos individuales?

Por qué necesitamos bases de datos

- Un único repositorio para mantener los datos.
- Requiere naturaleza auto-descriptiva de un sistema de DB.
- Aislación entre programas y datos, abstracción de datos.
- Admitir múltiples vistas de los datos.
- Compartir datos, procesamiento de transacciones multiusuario.

Qué es una base de datos

- Colección de datos relacionados.
- Representan o reflejan algún aspecto del mundo real.
- Colección coherente y lógica de datos con un significado inherente.
- Es diseñada, construida y cargada con datos para un propósito específico.
- Dirigida a un grupo de usuarios y a aplicaciones preconcebidas de interés para esos usuarios.

Qué es un DBMS (Database Management System)

Software que permite crear y mantener una base de datos.

- Permitir las tareas de construcción, manipulación y compartir bases de datos a distintos usuarios y aplicaciones.
- Proteger contra fallos de HW y SW, accesos no autorizados o malintencionados.
- Permitir al sistema evolucionar a lo largo del ciclo de vida del SW.
- Eficiente, confiable, conveniente, seguro, multiusuario y capaz de almacenar cantidades masivas de datos en forma persistente.

DBMS (motores) modernos

Mar 024	DBMS	Database Model	Score		
			Mar 2025	Feb 2025	Mar 2024
1.	Oracle	Relational, Multi-model 👔	1253.08	-1.74	+32.02
2.	MySQL	Relational, Multi-model 👔	988.13	-11.86	-113.37
3.	Microsoft SQL Server	Relational, Multi-model 👔	788.14	+1.27	-57.67
4.	PostgreSQL 😷	Relational, Multi-model 👔	663.42	+3.81	+28.52
5.	MongoDB 🚹	Document, Multi-model 👔	396.42	-0.21	-28.11
9.	Snowflake	Relational	161.78	+6.20	+36.40
 6.	Redis	Key-value, Multi-model 👔	155.36	-2.55	-1.64
- 7.	Elasticsearch	Multi-model 👔	131.38	-3.25	-3.41
▶ 8.	IBM Db2	Relational, Multi-model 🛐	126.57	+1.14	-1.18
10.	SQLite	Relational	113.08	-0.74	-5.08

Fuente: https://db-engines.com/en/ranking_trend

DBMS más utilizados en Argentina

Lenguajes de programación más utilizados en **Argentina**

Lenguajes de programación más utilizadas entre los participantes

2025.01/#Introduccion

DBMS: ¿cuál elegir?

Factores de decisión:

- Costo de licenciamiento.
- Costo de soporte.
- Características del software donde se utilizará.
- ¿Embebida, on premise, cloud?
- Complejidad, recursos humanos y didácticos disponibles.
- Características avanzadas: encriptación, alta disponibilidad, alojamiento en nube, escalabilidad, etc.

¿Siempre conviene usar un DBMS?

Existen escenarios donde resulta contraproducente.

- Inversión inicial elevada para HW, SW y capacitación.
- Overhead resultante de los mecanismos de seguridad, concurrencia, control, recuperación e integridad.
- Datos que no cambiarán a lo largo del ciclo de vida del SW.
- Capacidad limitada como en sistemas embebidos.
- No existe necesidad de multiusuario.

Fuente: Elmasri 1.8

Administrador de base de datos (dba)

Función: garantizar la continuidad del negocio. Respaldar el crecimiento.

Recursos a su cargo: las DB y el DBMS y software relacionado.

- Autoriza y regula el acceso.
- Monitorea y optimiza el uso.
- Adquiere SW y HW necesarios.
- Asegura disponibilidad.

Generalmente se enfoca en pocas tecnologías de DB.

Programador/desarrollador de base de datos

Función: crear e implementar bases de datos.

Recursos a su cargo: la base de datos, servicios y APIs relacionados.

- Determina el mejor DBMS para un sistema en particular.
- Diseña y crea los objetos de la base de datos.
- Desarrolla componentes de software (vistas, procedimientos, funciones, triggers, etc.)
- Asegura la eficiencia del sistema y su performance.

Puede manejar varias tecnologías de DB.

¿Dudas?

