Data Visualization and Pre-processing

Import libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Load dataset

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

data = pd.read_csv('drive/My Drive/Churn_Modelling.csv')

data.head()
```

\	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	${\sf HasCrCard}$	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
     Column
                      Non-Null Count
                                      Dtype
- - -
     _ _ _ _ _ _
                      _____
 0
     RowNumber
                      10000 non-null
                                      int64
 1
     CustomerId
                      10000 non-null int64
 2
     Surname
                      10000 non-null
                                      object
 3
                      10000 non-null
    CreditScore
                                      int64
 4
                      10000 non-null
                                      object
     Geography
 5
     Gender
                      10000 non-null
                                      object
 6
                      10000 non-null
                                      int64
     Age
                                      int64
 7
     Tenure
                      10000 non-null
 8
    Balance
                      10000 non-null float64
 9
     NumOfProducts
                      10000 non-null
                                      int64
 10 HasCrCard
                      10000 non-null int64
    IsActiveMember
                      10000 non-null int64
 11
 12
    EstimatedSalary 10000 non-null float64
 13 Exited
                      10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

Visualisations

1. Univariate Analysis

```
data['Gender'].value_counts()

Male     5457
Female     4543
Name: Gender, dtype: int64

# Plotting the features of the dataset to see the correlation between them

plt.hist(x = data.Gender, bins = 3, color = 'pink')
plt.title('comparison of male and female')
plt.xlabel('Gender')
plt.ylabel('population')
plt.show()
```

5000 -4000 -1000 -2000 -

comparison of male and female

Gender

Male

```
data['Age'].value_counts()
37
      478
       477
38
35
       474
36
       456
34
       447
92
         2
82
         1
88
         1
         1
85
83
         1
Name: Age, Length: 70, dtype: int64
# comparison of age in the dataset
plt.hist(x = data.Age, bins = 10, color = 'orange')
plt.title('comparison of Age')
plt.xlabel('Age')
plt.ylabel('population')
plt.show()
```

1000

0

Female


```
data['HasCrCard'].value_counts()

1    7055
0    2945
Name: HasCrCard, dtype: int64

# comparision of how many customers hold the credit card

plt.hist(x = data.HasCrCard, bins = 3, color = 'red')
plt.title('how many people have or not have the credit card')
plt.xlabel('customers holding credit card')
plt.ylabel('population')
plt.show()
```



```
data['IsActiveMember'].value_counts()

1    5151
0    4849
Name: IsActiveMember, dtype: int64

# How many active member does the bank have ?

plt.hist(x = data.IsActiveMember, bins = 3, color = 'brown')
plt.title('Active Members')
plt.xlabel('Customers')
plt.ylabel('population')
plt.show()
```


2. Bi - Variate Analysis

comparison between Geography and Gender

```
Gender = pd.crosstab(data['Gender'],data['Geography'])
Gender.div(Gender.sum(1).astype(float), axis=0).plot(kind="bar",
stacked=True, figsize=(6, 6))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a93dbbfd0>

comparison between geography and card holders

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a93ced590>

comparison of active member in differnt geographies

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a93c7c950>

comparing ages in different geographies

calculating total balance in france, germany and spain

```
total_france = data.Balance[data.Geography == 'France'].sum()
total_germany = data.Balance[data.Geography == 'Germany'].sum()
total_spain = data.Balance[data.Geography == 'Spain'].sum()

print("Total Balance in France :",total_france)
print("Total Balance in Germany :",total_germany)
print("Total Balance in Spain :",total_spain)

Total Balance in France : 311332479.49
Total Balance in Germany : 300402861.38
Total Balance in Spain : 153123552.01

# plotting a pie chart

labels = 'France', 'Germany', 'Spain'
```

```
colors = ['cyan', 'magenta', 'orange']
sizes = [311, 300, 153]
explode = [ 0.01, 0.01, 0.01]

plt.pie(sizes, colors = colors, labels = labels, explode = explode, shadow = True)

plt.axis('equal')
plt.show()
```


3. Multi - Variate Analysis

```
sns.pairplot(data=data, hue='Exited')
<seaborn.axisgrid.PairGrid at 0x7f6a93ddd510>
```


Descriptive statistics

#Statistical analysis

data.describe()

RowNumber	CustomerId	CreditScore	Age
Tenure \			_
count 10000.00000	1.000000e+04	10000.000000	10000.000000
10000.000000			
mean 5000.50000	1.569094e+07	650.528800	38.921800
5.012800			
std 2886.89568	7.193619e+04	96.653299	10.487806
2.892174			
min 1.00000	1.556570e+07	350.000000	18.000000
0.000000			
25% 2500.75000	1.562853e+07	584.000000	32.000000
3.000000			

50%	5000.50000	1.569074e+07	652.000000	37.000000
5.0000	000			
75%	7500.25000	1.575323e+07	718.000000	44.000000
7.0000	000			
max	10000.00000	1.581569e+07	850,000000	92,000000
10.000	0000			

	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
count	10000.000000	10000.000000	10000.00000	10000.000000	
mean	76485.889288	1.530200	0.70550	0.515100	
std	62397.405202	0.581654	0.45584	0.499797	
min	0.00000	1.000000	0.00000	0.000000	
25%	0.00000	1.000000	0.00000	0.000000	
50%	97198.540000	1.000000	1.00000	1.000000	
75%	127644.240000	2.000000	1.00000	1.000000	
max	250898.090000	4.000000	1.00000	1.000000	

	EstimatedSalary	Exited
count	10000.000000	10000.000000
mean	100090.239881	0.203700
std	57510.492818	0.402769
min	11.580000	0.00000
25%	51002.110000	0.00000
50%	100193.915000	0.00000
75%	149388.247500	0.00000
max	199992.480000	1.000000

Handle the Missing values #Missing Values data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

No missing values are found.

Find the outliers and replace the outliers

sns.boxplot(data = data, x = 'CreditScore')

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a8ecfe7d0>

sns.boxplot(data = data, x = 'Age')

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a8e9a3f50>

sns.boxplot(data = data, x = 'Balance')
<matplotlib.axes._subplots.AxesSubplot at 0x7f6a8d0e0e90>

sns.boxplot(data = data, x = 'EstimatedSalary')
<matplotlib.axes._subplots.AxesSubplot at 0x7f6a8d0e0c50>

EstimatedSalary

```
for i in data:
    if data[i].dtype=='int64' or data[i].dtypes=='float64':
        q1=data[i].quantile(0.25)
        q3=data[i].quantile(0.75)
        iqr=q3-q1
        upper=q3+1.5*iqr
        lower=q1-1.5*iqr
        data[i]=np.where(data[i] >upper, upper, data[i])
        data[i]=np.where(data[i] <lower, lower, data[i])</pre>
```

data.describe()

RowNumber	CustomerId	CreditScore	Age
Tenure \	000000000000000000000000000000000000000	0.00=1000.0	7.90
count 10000.00000	1.000000e+04	10000.000000	10000.000000
10000.000000			
mean 5000.50000	1.569094e+07	650.561300	38.660800
5.012800			
std 2886.89568	7.193619e+04	96.558702	9.746704
2.892174			
min 1.00000	1.556570e+07	383.000000	18.000000
0.000000			
25% 2500.75000	1.562853e+07	584.000000	32.000000
3.000000			
50% 5000.50000	1.569074e+07	652.000000	37.000000
5.000000			
75% 7500.25000	1.575323e+07	718.000000	44.000000
7.000000			
max 10000.00000	1.581569e+07	850.000000	62.000000

count mean std min 25% 50% 75% max	Balance 10000.000000 76485.889288 62397.405202 0.000000 0.000000 97198.540000 127644.240000 250898.090000	NumOfProducts 10000.000000 1.527200 0.570081 1.000000 1.000000 2.000000 3.500000	HasCrCard 10000.00000 0.70550 0.45584 0.00000 0.00000 1.00000 1.00000	IsActiveMember 10000.000000 0.515100 0.499797 0.000000 0.000000 1.000000 1.000000 1.000000	\
count mean std min 25% 50% 75% max	EstimatedSalary 10000.000000 100090.239881 57510.492818 11.580000 51002.110000 100193.915000 149388.247500 199992.480000	10000.0 0.0 0.0 0.0 0.0 0.0			

Preprocessing

(10000, 11)

Split the data into dependent and independent variables

Removing the unnecassary features from the dataset

splitting the dataset into $x(independent\ variables)$ and $y(dependent\ variables)$

```
x = data.iloc[:,0:10]
y = data.iloc[:,10]
```

```
print(x.shape)
print(y.shape)
print(x.columns)
(10000, 10)
(10000,)
Index(['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure',
'Balance',
       'NumOfProducts', 'HasCrCard', 'IsActiveMember',
'EstimatedSalary'],
      dtype='object')
Check for Categorical columns and perform encoding
# Encoding Categorical variables into numerical variables
# One Hot Encoding
x = pd.get dummies(x)
x.head()
                                          NumOfProducts
   CreditScore
                      Tenure
                                 Balance
                                                          HasCrCard \
                 Age
0
                          2.0
         619.0
                42.0
                                    0.00
                                                     1.0
                                                                1.0
1
         608.0
                41.0
                          1.0
                                83807.86
                                                     1.0
                                                                0.0
2
         502.0 42.0
                          8.0
                              159660.80
                                                     3.0
                                                                1.0
3
                          1.0
         699.0 39.0
                                    0.00
                                                     2.0
                                                                0.0
                          2.0 125510.82
4
         850.0 43.0
                                                     1.0
                                                                1.0
   IsActiveMember EstimatedSalary Geography_France
Geography_Germany
0
              1.0
                          101348.88
                                                     1
0
1
              1.0
                          112542.58
                                                     0
0
2
              0.0
                          113931.57
                                                     1
0
3
              0.0
                           93826.63
                                                     1
0
4
              1.0
                           79084.10
                                                     0
0
   Geography Spain Gender Female Gender Male
0
                                 1
                 0
                                              0
                                              0
1
                 1
                                 1
2
                                 1
                                              0
                 0
3
                 0
                                 1
                                              0
4
                                              0
                 1
                                 1
```

```
Split the data into training and testing
```

```
# splitting the data into training and testing set
```

```
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =
0.25, random state = 0)
print(x train.shape)
print(y_train.shape)
print(x_test.shape)
print(y test.shape)
(7500, 13)
(7500,)
(2500, 13)
(2500,)
Scale the independent variables
# Feature Scaling
# Only on Independent Variable to convert them into values ranging
from -1 to +1
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x train = sc.fit transform(x train)
x test = sc.fit transform(x test)
x train = pd.DataFrame(x train)
x train.head()
                                                           5
                   1
                             2
                                       3
                                                                     6
0 -0.736828  0.042283  0.008860  0.673160  2.583231 -1.553624 -
1.034460
1 1.025257 -0.674496 0.008860 -1.207724
                                           0.822578 0.643657 -
1.034460
2 0.808861 -0.469702 1.393293 -0.356937
                                           0.822578
                                                     0.643657
0.966688
3 0.396677 -0.060114 0.008860 -0.009356 -0.938076
                                                     0.643657
0.966688
             1.373444 0.701077 -1.207724
4 -0.468908
                                           0.822578
                                                     0.643657
0.966688
         7
                   8
                             9
                                                 11
                                                           12
0 -1.640810 -1.015588 1.760216 -0.574682
                                           1.087261 -1.087261
1 -0.079272 0.984651 -0.568112 -0.574682
                                           1.087261 -1.087261
2 -0.996840 -1.015588 -0.568112 1.740094
                                           1.087261 -1.087261
```

- 3 -1.591746 -1.015588 -0.568112 1.740094 -0.919743 0.919743 4 1.283302 0.984651 -0.568112 -0.574682 -0.919743 0.919743