Here it is — **both together**, clean and compact.

Using only the stated hypotheses

Assumptions

1. Heisenberg (x-p): $\Delta x \, \Delta p \geq \hbar/2$

2. Causality: no speed > c

3. Fourier (time-frequency, $1/\sqrt{2\pi}$ convention): $\Delta t \Delta \omega \geq 1/2$

4. Planck: $E = \hbar \omega \Rightarrow \Delta E = \hbar \Delta \omega$

Derivation

1. Causal bound on momentum spread (packet at rest):

$$\Delta v \simeq \frac{\Delta p}{m} \le c \implies \boxed{\Delta p \le mc}$$

2. Minimal spatial width (Heisenberg + 1):

$$\Delta x \ge \frac{\hbar}{2\Delta p} \ge \boxed{\frac{\hbar}{2mc}}.$$

3. Causal probe time:

$$\Delta t \ge \frac{\Delta x}{c} \ge \boxed{\frac{\hbar}{2mc^2}}$$

4. Time-energy uncertainty (Fourier + Planck):

$$\Delta t \, \Delta E \ge \frac{\hbar}{2} \, \Rightarrow \, \boxed{\Delta E \ge \frac{\hbar}{2\Delta t} \ge mc^2}.$$

Result

• Under (1)–(4), any such packet has **energy uncertainty** $\Delta E \geq mc^2$.

• When all bounds are **jointly saturated** (Gaussian-like packet with $\Delta t = \Delta x/c$), the characteristic energy reaches the scale: $\langle E \rangle \approx \Delta E = mc^2$.

• No other hypotheses are used; $E = mc^2$ is **not postulated**—the **rest-energy scale** emerges from uncertainties + causality.

Generalization note

This uncertainty-based result generalizes "global relativity":

- The strict equality $E = mc^2$ is recovered only in the extremal, minimal-uncertainty (Gaussian) case (joint saturation).
- For non-Gaussian packets, the claim naturally relaxes to the inequality $\Delta E \geq mc^2$ (and—with an optional minimal causal dispersion step—also $\langle E \rangle \geq mc^2$). Thus SR's $E=mc^2$ appears here as the sharp lower bound attained by Gaussians; the uncertainty framework extends it to all signal shapes without postulating SR.

1