Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Präsenzaufgabenblatt 3.

Präsenzaufgabe 1. Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen.

- (i) $\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} z^n$,
- (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)!} z^{2n-1}$.

Präsenzaufgabe 2. Sei $U \subset \mathbb{C}$ offen und $f = u + iv : U \to \mathbb{C}$ reel differenzierbar mit partiellen Ableitungen

$$\partial_x f = \partial_x u + i \partial_x v, \quad \partial_y f = \partial_y u + i \partial_y v.$$

Wir definieren die Wirtinger Ableitungen durch

$$\partial_z f \coloneqq \frac{1}{2} \left(\partial_x f - i \partial_y f \right), \quad \partial_{\bar{z}} \coloneqq \frac{1}{2} \left(\partial_x f + i \partial_y f \right).$$

(i) Zeigen Sie, dass $\partial_{\bar{z}}\bar{f}=\overline{\partial_z f}$ und dass die Operatoren $\partial_z,\partial_{\bar{z}}$ C-linear sind, d.h. für $\alpha\in\mathbb{C}$ und f,g reell differenzierbar gilt

$$\partial_z(\alpha f + q) = \alpha \partial_z f + \partial_z q, \quad \partial_{\bar{z}}(\alpha f + q) = \alpha \partial_{\bar{z}} f + \partial_{\bar{z}} q$$

- (ii) Zeigen Sie, dass f holomorph in U ist genau dann wenn $\partial_{\bar{z}} f = 0$ in U und dass in diesem Fall $f' = \partial_z f$ gilt.
- (iii) Zeigen Sie, dass $\partial_z z = 1$, $\partial_{\bar{z}} \bar{z} = 1$, $\partial_z \bar{z} = 0$, $\partial_{\bar{z}} z = 0$ und berechnen Sie $\partial_z (\bar{z}^2 z + 3z^2 \bar{z})$.

Präsenzaufgabe 3. Es sei $\mathbb{S} = \{z \in \mathbb{C} : |z| = 1\}$. Zeigen Sie die folgenden Aussagen:

- (i) Die Potenzreihe $\sum_{k=0}^{\infty}kz^k$ konvergiert in keinem Punkt von S.
- (ii) Die Potenzreihe $\sum_{k=1}^{\infty}\frac{1}{k^2}z^k$ konvergiert in jedem Punkt von S.
- (iii) Die Potenzreihe $\sum_{k=1}^{\infty} \frac{1}{k} z^k$ konvergiert in $\mathbb{S} \setminus \{1\}$. Zeigen und benutzen Sie dafür die Identität $e^{ik\varphi} = (e^{i\varphi} 1)^{-1} (e^{i(k+1)\varphi} e^{ik\varphi})$ falls $e^{i\varphi} \neq 1$.