Due date: Friday, April 1, 2016 (before class).

1. (5 pts) Using induction, verify that for all $n \ge 1$, the sum of the squares of the first 2n positive integers is given by the formula:

$$1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}$$

Soln: For any integer n 1, let P_n be the statement that

$$1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}$$

Base Case. The statement P_1 says that

$$1^{2} + 2^{2} = \frac{(1)(2(1) + 1)(4(1) + 1)}{3} = 5$$

which is true.

Inductive Step. Fix $k \geq 1$, and suppose that P_k holds, that is,

$$1^{2} + 2^{2} + 3^{2} + \dots + (2k)^{2} = \frac{k(2k+1)(4k+1)}{3}$$

. It remains to show that P_{k+1} holds, that is,

$$1^{2} + 2^{2} + 3^{2} + \dots + (2(k+1))^{2} = \frac{n(2(k+1)+1)(4(k+1)+1)}{3}$$

$$LHS = 1^{2} + 2^{2} + 3^{2} + \dots + (2(k+1))^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + (2k+2)^{2}$$

$$= 1^{2} + 2^{2} + 3^{2} + \dots + (2k)^{2} + (2k+1)^{2} + (2k+2)^{2}$$

$$= \frac{k(2k+1)(4k+1)}{3} + (2k+1)^{2} + (2k+2)^{2}$$

$$= \frac{k(2k+1)(4k+1)}{3} + \frac{3(2k+1)^{2} + 3(2k+2)^{2}}{3}$$

$$= \frac{8k^{3} + 30k^{2} + 37k^{2} + 15}{3}$$

$$RHS = \frac{(k+1)(2k+2+1)(4k+4+1)}{3}$$

CS182 Spring 2016: Homework 6

$$= \frac{(k+1)(2k+3)(4k+5)}{3}$$
$$= \frac{8k^3 + 30k^2 + 37k^2 + 15}{3}$$

Therefore P_{k+1} holds. Thus, by the principle of mathematical induction, for all $n \ge 1, P_n$ holds.

2. (5 pts)Consider the sequence of real numbers defined by the relations:

$$x_1 = 1, x_{n+1} = \sqrt{1 + 2x_n}$$

for $n \geq 1$.

Use the Principle of Mathematical Induction to show that $x_n < 4$ for all $n \ge 1$.

Soln: For any $n \geq 1$, let P_n be the statement that $x_n < 4$.

Base Case. The statement P_1 says that $x_1 = 1 < 4$, which is true.

Inductive Step. Fix $k \ge 1$, and suppose that P_k holds, that is, $x_k < 4$. It remains to show that P_{k+1} holds, that is, that $x_{k+1} < 4$.

$$x_{k+1} = \sqrt{1 + 2x_k} = \sqrt{1 + 2(4)} = \sqrt{9} = 3 < 4$$

Therefore P_{k+1} holds.

Thus by the principle of mathematical induction, for all $n \geq 1, P_n$ holds.

3. (5 pts)Show that $n! > 3^n$ for $n \ge 7$ via induction.

Soln: For any $n \geq 7$, let P_n be the statement that $n! > 3^n$.

Base Case. The statement P_7 says that 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040 > 3.7 = 2187, which is true.

Inductive Step. Fix $k \geq 7$, and suppose that P_k holds, that is, $k! > 3^k$.

It remains to show that P_{k+1} holds, that is, $(k+1)! > 3^{k+1}$.

$$(k+1)! = (k+1)k! > (k+1)3k \ge (7+1)3k = 8*3k > 3*3k = 3^{k+1}.$$

Therefore P_{k+1} holds.

Thus by the principle of mathematical induction, for all $n \geq 1, P_n$ holds.

4. (5 pts)Let $p_0 = 1, p_1 = \cos\theta$ (for θ some fixed constant) and $p_{n+1} = 2p_1p_n - p_{n-1}$ for $n \ge 1$. Use Principle of Mathematical Induction to prove that $p_n = \cos(n\theta)$ for $n \ge 0$.

Soln:

For any $n \geq 0$, let P_n be the statement that $p_n = cos(n\theta)$.

Base Cases. The statement P_0 says that $p_0 = 1 = cos(0\theta) = 1$, which is true. The statement P_1 says that $p_1 = cos = cos(1\theta)$, which is true.

Inductive Step. Fix $k \geq 0$, and suppose that both P_k and P_{k+1} hold, that is, $p_k = cos(k)$, and $p_{k+1} = cos((k+1))$. It remains to show that P_{k+2} holds, that is, $p_{k+2} = cos((k+2)\theta)$. We have the following identities:

cos(a + b) = cos a cos b - sin a sin b

cos(a b) = cos a cos b + sin a sin b

Therefore, using the first identity when $a = \theta$ and $b = (k+1)\theta$, we have

$$cos(\theta + (k+1)\theta) = cos\theta cos(k+1)\theta - sin\theta sin(k+1)\theta$$

, and using the second identity when $a = (k+1)\theta$ and $b = \theta$, we have

$$cos((k+1)\theta - \theta) = cos(k+1)\theta cos\theta + sin(k+1)\theta sin\theta$$

Therefore,

$$p_{k+2} = 2p_1 p_{k+1} p_k$$

$$= 2(\cos\theta)(\cos((k+1)\theta)) - \cos(k\theta)$$

$$= (\cos\theta)(\cos((k+1)\theta)) + (\cos\theta)(\cos((k+1)\theta)) - \cos(k\theta)$$

$$= \cos(\theta + (k+1)\theta) + \sin\theta \sin(k+1)\theta + (\cos\theta)(\cos((k+1)\theta)) - \cos(k\theta)$$

$$= \cos((k+2)\theta) + \sin\theta \sin(k+1)\theta + (\cos\theta)(\cos((k+1)\theta)) - \cos(k\theta)$$

$$= \cos((k+2)\theta) + \sin\theta \sin(k+1)\theta + \cos((k+1)\theta - \theta) - \sin(k+1)\theta \sin\theta - \cos(k\theta)$$

$$= \cos((k+2)\theta) + \cos(k\theta) - \cos(k\theta)$$

$$= \cos((k+2)\theta)$$

. Therefore P_{k+2} holds.

Thus by the principle of mathematical induction, for all $n \geq 1, P_n$ holds

5. (5 pts)Using strong induction, prove that the Fibonacci sequence: $a_0 = 1, a_1 = 1, a_{k+1} = a_k + a_{k-1}$ for $k \ge 1$:

$$a_k \ge \left(\frac{3}{2}\right)^{k-2}.$$

Soln: P(1) is true since $a_1 = 1 = \frac{2}{3} = (\frac{3}{2})^{1-2}$ Now consider any $k \ge 1$. If we assume $a_{k-1} \ge (\frac{3}{2})^{k-3}$ and $a_k \ge (\frac{3}{2})^{k-2}$, then

$$a_{k+1} = a_k + a_{k-1} = \left(\frac{3}{2}\right)^{k-3} + \left(\frac{3}{2}\right)^{k-2}$$

$$\geq \left(\frac{3}{2} + 1\right)\left(\frac{3}{2}\right)^{k-3}$$

$$\geq \left(\frac{5}{2}\right)\left(\frac{3}{2}\right)^{k-3}$$

$$\geq \left(\frac{9}{4}\right)\left(\frac{3}{2}\right)^{k-3}$$

$$\geq \left(\frac{3}{2}\right)^2\left(\frac{3}{2}\right)^{k-3}$$

$$\geq \left(\frac{3}{2}\right)^{(k+1)-2}$$

Hence proved.