

主成分分析 (Principal Component Analysis)

高琰

目录

- 引言
- 主成分分析的作用
- 数学背景知识
- 主成分分析的基本思想
- 主成分分析的计算
- 主成分的编程实现

引言

引言

- 两类提取有效信息、压缩特征空间的方法: 特征提取和特征选择
- 特征提取 (extraction): 用映射(或变换)的方法把原始特征变换为较少的新特征
- 特征这种(sel(Mm) 个特征中选择 m_1 个, m_1 < m (人为选择、算法选择) 可代表性,分类性能最好的特征

• 特征的选择与将m个特征变为m2个新特征 --- 二次特征 有理论能给出对任何问题都有效的特征选择与提取力法

主成分分析的作用

- 数据压缩
- 数据可视化
- 降维

主成分分析的作用-数据压缩

• PCA: n维数据集可以通过映射降成k维子空

主成分分析的作用-数据可视化

Data Visualization

				-		Mean	
		Per capita	5000		Poverty	household	0
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	`56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

主成分分析的作用-数据可视化

Data Visualization							
Country	z_1	z_2					
Canada	1.6	1.2					
China	1.7	0.3					
India	1.6	0.2					
Russia	1.4	0.5					
Singapore	0.5	1.7					
USA	2	1.5					

主成分分析的作用-数据可视化

主成分分析的作用-降维

• 一般我们获取的原始数据维度都很高,比如 1000个特征,在这1000个特征中可能包含了很 多无用的信息或者噪声,真正有用的特征才 100个,那么我们可以运用PCA算法将1000个特征降到100个特征。这样不仅可以去除无用的 噪声,还能减少很大的计算量。

背景知识-方差、协方差

• 方差(variance)-度量一组数据 分散的程度;各个样本与样本 均值的差的平方和的均值;

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})}{n-1}$$

背景知识-方差、协方差

• **协方差**(Covariance)-度量两个变量的线性相关程度;两个变量的协方差为0,则统计学上认为二者线性无关;大于0表示二者正相关,小于0表示二者负相关;

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{n-1}$$

背景知识-协方差矩阵

• **协方差矩阵**(Covariance matrix): 由数据集中两两变量的协方差组成; 矩阵的第(i,j)个元素是数据集中第i 个和第j个元素的协方差; 如三维数 据的协方差矩阵为:

```
c = \begin{bmatrix} \cos(x1, x1) & \cos(x1, x2) & \cos(x1, x3) \\ \cos(x2, x1) & \cos(x2, x2) & \cos(x2, x3) \\ \cos(x3, x1) & \cos(x3, x2) & \cos(x3, x3) \end{bmatrix}
```


PCA的基本思想

• PCA可以把可能具有相关性的高维变量合成线性无关的低维变量, 称为主成分; n维数据集可以通过映射降成k维子空间

•准则:压缩数据时让信息损失最小化,即第一个主成分是从数据差异最大(方差最大)的方向提取。依次处理

PCA的数学描述

- 原特征表示: $x=[x_1,....,x_p]^T$
- 新特征表示:x'=[x₁',....,x_k']^T

$$X_i^{\prime} = \sum_{j=1}^{p} \alpha_{ij} X_j = \alpha_i^T X$$

$$x' = W^T x, \alpha_i^T \alpha_i = 1$$
 $\alpha_i = [\alpha_{i1,...}\alpha_{ip}]^T$

$$W = [\alpha_{1,...}\alpha_k]i = 1,...k$$

PCA的公式推导

• 考虑第一个新特征x₁':

$$var(x_1') = E(x_1'^2) - E(x_1')^2$$

$$= E[\alpha_1^T x x^T \alpha_1] - E[\alpha_1^T x] E(x^T \alpha_1)$$

$$= \alpha_1^T \Sigma \alpha_1$$

目标函数: $\underset{\alpha_1}{\operatorname{argm}} ax \operatorname{var}(x_1) = \underset{\alpha_1}{\operatorname{argm}} ax \alpha_1^{\mathsf{T}} \Sigma \alpha_1$

PCA的公式推导

$$f(\alpha_1) = \alpha_1^T \Sigma \alpha_1 - \lambda (\alpha_1^T \alpha_1 - 1) = 0$$

对
$$\alpha_1$$
求导: $\Sigma \alpha_1 - \lambda \alpha_1 = 0$

$$\operatorname{Var}(x_1) = \alpha_1^T \Sigma \alpha_1 = \lambda \alpha_1^T \alpha_1$$

α₁为Σ的最大特征向量对应的特征向量

PCA的公式推导

除了满足协方差最大外,第二个特征还要与第一个特征无关,即:

$$E(x_2, x_1) - E(x_2) E(x_1) = 0$$

$$E[\alpha_2^T x x^T \alpha_1] - E[\alpha_2^T x] E(x^T \alpha_1) = 0$$

$$\alpha_{2}^{T} \Sigma \alpha_{1} = 0$$

$$f(\alpha_{1}) = \alpha_{2}^{T} \Sigma \alpha_{2} - \lambda_{2} (\alpha_{2}^{T} \alpha_{2} - 1) - \lambda_{2}' \alpha_{2}^{T} \alpha_{1}$$

$$\alpha_{2}^{T} \alpha_{1} = 0$$

$$\Sigma \alpha_{2} - \lambda_{2} \alpha_{2} - \lambda_{2}' \alpha_{1} = 0$$

$$\Sigma \alpha_2 - \lambda_2 \alpha_2 - \lambda_2' \alpha_1 = 0$$

$$\alpha_2^{\mathsf{T}} \Sigma \alpha_2 - \lambda_2 \alpha_2^{\mathsf{T}} \alpha_2 - \lambda_2^{\mathsf{T}} \alpha_2^{\mathsf{T}} \alpha_1 = 0$$

$$\alpha_2^T \alpha_1 = 0$$

$$\alpha_2^{\mathsf{T}} \Sigma \alpha_2 - \lambda_2 \alpha_2^{\mathsf{T}} \alpha_2 = 0 \qquad \qquad \Sigma \alpha_2 - \lambda_2 \alpha_2 = 0$$

$$\sum \alpha_2 - \lambda_2 \alpha_2 = 0$$

α,为Σ的第二大特征向量对应的特征向量

ZIXING^{AI} 自兴人工智能

PCA计算过程

- 去除平均值
- 计算协方差矩阵:

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^{T}}$$

• 计算特征向量和特征值: $\Sigma \alpha_1 = \lambda \alpha_1$

- 将特征值从大到小排列
- 保留最上面的k个特征向量 $W = [\alpha_1,...,\alpha_k]$
- 将数据转换到上述k个特征向量构建的新空间

$$X' = W^T X$$

$$eigenvalues = \begin{pmatrix} .0490833989\\ 1.28402771 \end{pmatrix}$$

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix} - .677873399 - .735178656 - .677873399$$

将特征值按照从大到小的顺序排序,选择其中最大的k个。 我们选择其中最大的那个,这里是1.28402771,对应的特征向量是: (-0.677873399,735178656)^T

$$eigenvalues = \begin{pmatrix} .0490833989\\ 1.28402771 \end{pmatrix}$$

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix} - .677873399 - .735178656 - .677873399$$

将特征值按照从大到小的顺序排序,选择其中最大的k个。 我们选择其中最大的那个,这里是1.28402771, 对应的特征向量是: (-0.677873399, 735178656)^T

 $FinalData(m * k) = DataAdjust(m * n) \times EigenVectors(n * k)$

PCA的python实现

- loadDataset(filename,delim='\t')
- cov(?)建立协方差矩阵
 - cov(X,0) = cov(X) 除数是n-1(n为样本个数),除数n-1是为了得到协方差的无偏估计
 - cov(X,1) 除数是n
- linag.eig(?)求特征向量和特征值
- argsort:对特征值矩阵进行由大到小排序,返回对应排序后的索引排序

实验任务

- 对UCI的iris的数据集进行PCA处理
- 输出pca的特征值(由大到小排序),填写下表:累 计方差用np.cumsum(a)

序号	特征值	方差比	累计方差比
1			

- 画出方差比折线图,累计方差比折线图,
- K=2时,画出原始数据和重构数据散点图,画出数据在新特征空间散点图
- K=1时,画出重构数据折线图,画出数据在新特征空间折线图