#### **APS502 Project 2**

Di Tong Liu

1002196394

#### Part 1

a.

Mean and standard deviation table:

|      | Expected return | standard deviation |
|------|-----------------|--------------------|
| SPY  | 0.008616        | 0.03472            |
| GOVT | 0.002625        | 0.01109            |
| EEMV | 0.002052        | 0.03459            |

Variance and covariance table (red = variance, black = covariance):

|      | SPY        | GOVT        | EEMV        |
|------|------------|-------------|-------------|
| SPY  | 0.001205   | -0.0001061  | 0.00076     |
| GOVT | -0.0001061 | 0.000123    | 0.000008884 |
| EEMV | 0.00076    | 0.000008884 | 0.001196    |

b.

Decision variables:

Let  $w_1$  = weight of SPY fund,  $w_2$  = weight of GOVT fund, and  $w_3$  = weight of EEMV fund

### Objective function:

 $\begin{array}{l} \text{Minimize } 0.001205{w_1}^2 + 0.000123{w_2}^2 + 0.001196{w_3}^2 - 0.0002122{w_1}{w_2} + 0.00152{w_1}{w_3} + 0.00001777{w_2}{w_3} \end{array}$ 

#### Constraints:

- 1.  $0.008616w_1 + 0.002625w_2 + 0.002052w_3 >= R$ , where R =expected return goal
- 2.  $w_1 + w_2 + w_3 = 1$

I assumed that short selling is allowed.

After sweeping R through 10 different values, the following results were obtained:

| R value  | Optimal weights of assets (w <sub>1</sub> , w <sub>2</sub> , w <sub>3</sub> ) | Portfolio variance $(\sigma^2)$ |
|----------|-------------------------------------------------------------------------------|---------------------------------|
| 0.002053 | 0.1785, 0.8683, -0.0468                                                       | 0.00004372                      |
| 0.002782 | 0.1785, 0.8683, -0.0468                                                       | 0.00004372                      |
| 0.003511 | 0.1785, 0.8683, -0.0468                                                       | 0.00004372                      |
| 0.00424  | 0.2589, 0.8529, -0.1117                                                       | 0.00004632                      |
| 0.004969 | 0.3719, 0.8312, -0.203                                                        | 0.00005878                      |
| 0.005698 | 0.4848, 0.8095, -0.2943                                                       | 0.00008151                      |
| 0.006427 | 0.5977, 0.7879, -0.3856                                                       | 0.0001145                       |
| 0.007156 | 0.7107, 0.7662, -0.4769                                                       | 0.0001578                       |
| 0.007885 | 0.8236, 0.7446, -0.5682                                                       | 0.0002114                       |
| 0.008615 | 0.9367, 0.7229, -0.6596                                                       | 0.0002753                       |

## Plot of efficient frontier:



#### Matlab code:

```
format long g
R = [0.002053 \ 0.002782 \ 0.003511 \ 0.00424 \ 0.004969
0.005698 0.006427 0.007156 0.007885 0.008615]; % R values
used
Q = [0.001205, -0.0001061, 0.00076; -0.0001061, 0.000123,
0.000008884; 0.00076, 0.000008884, 0.001196; ];
c = [0 \ 0 \ 0]';
A = -[0.008616, 0.002625, 0.002052];
Aeq = [1 \ 1 \ 1];
beq = [1];
ub = [inf; inf; inf;];
lb = [-inf; -inf; -inf;];
variance array = zeros(10,1);
weights matrix = zeros(10,3);
for i = 1:10 % for loop to sweep through R values
   b = R \operatorname{array}(i) *-1;
   [x, fval] = quadprog(Q, c, A, b, Aeq, beq, lb, ub); %
each iteration of for loop calls quadprog with a new R
value
   x = round(x, 10);
   fval = round(fval, 10);
   variance array(i,:) = fval;
   weights matrix(i,:) = x;
end
variance array % portfolio variance values
weights matrix % weights of assets matrix (w1, w2, w3)
std array = sqrt(variance array); % portfolio std values
h = plot(std array, R array, '-o') % efficient frontier
plot
title('Efficient Frontier')
xlabel('Volatility \sigma')
ylabel('Expected return goal R')
ax = qca
ax.YAxis.Exponent = 0;
```

## Matlab output:

### variance\_array =

4.37199e-05 4.37199e-05 4.37199e-05 4.63221e-05 5.87781e-05 8.15089e-05 0.0001145217 0.0001578224 0.0002113866 0.0002753316

#### weights matrix =

| 0.1785188519 | 0.8682607352 | -0.0467795872 |
|--------------|--------------|---------------|
| 0.1785180021 | 0.8682608982 | -0.0467789003 |
| 0.1785186461 | 0.8682607747 | -0.0467794208 |
| 0.2588870281 | 0.8528519148 | -0.1117389429 |
| 0.3718507036 | 0.8311936281 | -0.2030443317 |
| 0.4847857052 | 0.8095408391 | -0.2943265442 |
| 0.597736422  | 0.787885037  | -0.385621459  |
| 0.7107070815 | 0.7662254113 | -0.4769324928 |
| 0.8236398775 | 0.7445730451 | -0.5682129226 |
| 0.9367438014 | 0.7228878689 | -0.6596316704 |
|              |              |               |

c.

Expected return table March 2020:

|      | Expected return |
|------|-----------------|
| SPY  | -0.1485         |
| GOVT | 0.03244         |
| EEMV | -0.1379         |

Minimum variance portfolio from b (portfolio #1):

$$w_1 = 0.1785$$
,  $w_2 = 0.8683$ ,  $w_3 = -0.0468$ , portfolio expected return = **0.008114**

Equal weighted portfolio using March 2020 returns (portfolio #2):

$$w_1 = 1/3$$
,  $w_2 = 1/3$ ,  $w_3 = 1/3$ , portfolio expected return = -0.08465

Portfolio using March 2020 returns with 60% in SPY, 30% in GOVT, and 10% in EEMV (portfolio #3):

$$w_1 = 0.6$$
,  $w_2 = 0.3$ ,  $w_3 = 0.1$ , portfolio expected return = -0.09316

Portfolios 2 and 3 both have negative returns, thus **portfolio 1 performs the best out of the three**. Portfolio 2 performs slightly better than portfolio 3 since it has a slightly higher return compared to Portfolio 3.

The reason for this is because in March 2020, GOVT is the only one of the three assets that has a positive return. Portfolio 1 has 87% of its weight put into GOVT, while portfolio 2 only has 33% put into GOVT and portfolio 3 only has 30% put into GOVT. Naturally, portfolio 1 will perform much better than portfolios 2 and 3 because of this.

Part 2

Mean and standard deviation table:

|      | Expected return | standard deviation |
|------|-----------------|--------------------|
| SPY  | 0.008616        | 0.03472            |
| GOVT | 0.002625        | 0.01109            |
| EEMV | 0.002052        | 0.03459            |
| CME  | 0.01691         | 0.04885            |
| BR   | 0.01617         | 0.05451            |
| CBOE | 0.01187         | 0.0594             |
| ICE  | 0.01162         | 0.04742            |
| ACN  | 0.01307         | 0.05087            |

### Variance and covariance table:

|      | SPY       | GOVT       | EEMV       | CME        | BR        | CBOE      | ICE        | ACN       |
|------|-----------|------------|------------|------------|-----------|-----------|------------|-----------|
| SPY  | 0.0012    | -0.000106  | 0.00076    | 0.000307   | 0.000941  | 0.000165  | 0.000607   | 0.0012    |
| GOVT | -0.000106 | 0.00012    | 0.00000888 | -0.0000564 | 0.0000402 | 0.0000468 | -0.0000832 | -0.000088 |
| EEMV | 0.00076   | 0.00000888 | 0.0012     | -0.000217  | 0.00059   | -0.000152 | -0.0000175 | 0.000536  |
| CME  | 0.000307  | -0.0000564 | -0.000217  | 0.00239    | 0.000912  | 0.00116   | 0.001287   | 0.00053   |
| BR   | 0.000941  | 0.0000402  | 0.00059    | 0.000912   | 0.00297   | 0.0004    | 0.000718   | 0.00135   |
| CBOE | 0.000165  | 0.0000468  | -0.000152  | 0.00116    | 0.0004    | 0.00353   | 0.00082    | 0.000438  |
| ICE  | 0.000607  | -0.0000832 | -0.0000175 | 0.00129    | 0.000718  | 0.00082   | 0.00225    | 0.000907  |
| ACN  | 0.0012    | -0.000088  | 0.000536   | 0.00053    | 0.00135   | 0.000438  | 0.000907   | 0.00259   |

### Decision variables:

Let  $w_1$  = weight of SPY fund,  $w_2$  = weight of GOVT fund,  $w_3$  = weight of EEMV fund,  $w_4$  = weight of CME fund,  $w_5$  = weight of BR fund,  $w_6$  = weight of CBOE fund,  $w_7$  = weight of ICE fund, and  $w_8$  = weight of ACN fund

#### Objective function:

#### Minimize

 $0.0012{w_1}^2 - 0.000212{w_1}{w_2} + 0.00152{w_1}{w_3} + 0.000614{w_1}{w_4} + 0.001882{w_1}{w_5} + 0.00033{w_1}{w_6} + 0.001214{w_1}{w_7} + 0.0024{w_1}{w_8}$ 

 $+\ 0.0012w_2{}^2+0.00001776w_2w_3-0.0001128w_2w_4+0.0000804w_2w_5+0.0000936w_2w_6-0.0001664w_2w_7-0.000176w_2w_8$ 

 $+\ 0.0012{{w}_{3}}^{2}-0.000434{{w}_{3}}{{w}_{4}}+0.00118{{w}_{3}}{{w}_{5}}-0.000304{{w}_{3}}{{w}_{6}}-0.000035{{w}_{3}}{{w}_{7}}+0.001072{{w}_{3}}{{w}_{8}}$ 

 $+\ 0.00239{w_4}^2+0.001824{w_4}{w_5}+0.00232{w_4}{w_6}+0.002574{w_4}{w_7}+0.00106{w_4}{w_8}$ 

 $+\ 0.00297{w_5}^2+0.0008{w_5}{w_6}+0.001436{w_5}{w_7}+0.0027{w_5}{w_8}$ 

 $+\ 0.00353 w_6{}^2 + 0.00164 w_6 w_7 + 0.000876 w_6 w_8$ 

 $+0.00225w_7^2+0.001814w_7w_8$ 

+0.00259w $8^2$ 

#### Constraints:

- $1. \quad 0.008616w_1 + 0.002625w_2 + 0.002052w_3 + 0.01691w_4 + 0.01617w_5 + 0.01187w_6 + \\ 0.01162w_7 + 0.01307w_8 >= R, \text{ where } R = \text{expected return goal}$
- 2.  $w_1 + w_2 + w_3 + w_4 + w_5 + w_6 + w_7 + w_8 = 1$

## I assumed that short selling is allowed.

After sweeping R through 10 different values, the following results were obtained:

## (Note: These are the same R values that were used in part 1)

| R value  | W1     | W2     | W3       | W4      | <b>W</b> 5 | W6       | <b>W</b> 7 | W8       | $\sigma^2$ |
|----------|--------|--------|----------|---------|------------|----------|------------|----------|------------|
| 0.002053 | 0.1861 | 0.85   | -0.0242  | 0.04606 | -0.05215   | -0.01045 | 0.01215    | -0.00752 | 0.00003826 |
| 0.002782 | 0.1861 | 0.85   | -0.02421 | 0.04607 | -0.05215   | -0.01045 | 0.01215    | -0.00752 | 0.00003826 |
| 0.003511 | 0.1862 | 0.8497 | -0.02442 | 0.04627 | -0.05199   | -0.01041 | 0.01209    | -0.00745 | 0.00003826 |
| 0.00424  | 0.1963 | 0.8205 | -0.04381 | 0.06494 | -0.03735   | -0.00681 | 0.00693    | -0.00067 | 0.00003982 |
| 0.004969 | 0.2086 | 0.7847 | -0.06762 | 0.08786 | -0.01938   | -0.0024  | 0.00058    | 0.00766  | 0.00004589 |
| 0.005698 | 0.2209 | 0.7489 | -0.09144 | 0.1108  | -0.00141   | 0.00202  | -0.00576   | 0.01598  | 0.00005655 |
| 0.006427 | 0.2333 | 0.7131 | -0.1152  | 0.1337  | 0.01656    | 0.00644  | -0.01211   | 0.02431  | 0.00007179 |
| 0.007156 | 0.2456 | 0.6773 | -0.1391  | 0.1566  | 0.03453    | 0.01085  | -0.01845   | 0.03263  | 0.00009162 |
| 0.007885 | 0.2579 | 0.6415 | -0.1629  | 0.1795  | 0.0525     | 0.01527  | -0.02479   | 0.04096  | 0.000116   |
| 0.008615 | 0.2703 | 0.6056 | -0.1867  | 0.2025  | 0.07049    | 0.01969  | -0.03115   | 0.04929  | 0.0001451  |

## Plot of efficient frontier:



The table below provides the differences in portfolio variance between the efficient frontier above and the efficient frontier in part 1:

| R value  | $\sigma^2$ in part 2 | $\sigma^2$ in part 1 | Difference ( $\sigma^2$ in part 2 - $\sigma^2$ in part 1) |
|----------|----------------------|----------------------|-----------------------------------------------------------|
| 0.002053 | 0.00003826           | 0.00004372           | -0.00000546                                               |
| 0.002782 | 0.00003826           | 0.00004372           | -0.00000546                                               |
| 0.003511 | 0.00003826           | 0.00004372           | -0.00000546                                               |
| 0.00424  | 0.00003982           | 0.00004632           | -0.0000065                                                |
| 0.004969 | 0.00004589           | 0.00005878           | -0.00001289                                               |
| 0.005698 | 0.00005655           | 0.00008151           | -0.00002496                                               |
| 0.006427 | 0.00007179           | 0.0001145            | -0.00004271                                               |
| 0.007156 | 0.00009162           | 0.0001578            | -0.00006618                                               |
| 0.007885 | 0.000116             | 0.0002114            | -0.0000954                                                |
| 0.008615 | 0.0001451            | 0.0002753            | -0.0001302                                                |

In comparison to the efficient frontier from part 1, the part 2 portfolio's efficient frontier provides a lower portfolio variance compared to the part 1 portfolio's efficient frontier for all 10 R values that were tested. A decrease in portfolio variance while retaining the same expected return value means that the portfolios in part 2 are less risky than the portfolios in part 1 while providing the same expected return. Therefore, I can make the conclusion that including the 5 stocks from part 2 does in fact lead to better portfolios due to this decrease in portfolio variance.

#### Matlab code:

```
format long g
R = [0.002053 \ 0.002782 \ 0.003511 \ 0.00424 \ 0.004969]
0.005698 0.006427 0.007156 0.007885 0.008615];
Q = [0.0012, -0.000106, 0.00076, 0.000307, 0.000941,
0.000165, 0.000607, 0.0012;
    -0.000106, 0.00012, 0.00000888, -0.0000564, 0.0000402,
0.0000468, -0.0000832, -0.000088;
    0.00076, 0.00000888, 0.0012, -0.000217, 0.00059, -
0.000152, -0.0000175, 0.000536;
    0.000307, -0.0000564, -0.000217, 0.00239, 0.000912,
0.00116, 0.001287, 0.00053;
    0.000941, 0.0000402, 0.00059, 0.000912, 0.00297,
0.0004, 0.000718, 0.00135;
    0.000165, 0.0000468, -0.000152, 0.00116, 0.0004,
0.00353, 0.00082, 0.000438;
    0.000607, -0.0000832, -0.0000175, 0.00129, 0.000718,
0.00082, 0.00225, 0.000907;
    0.0012, -0.000088, 0.000536, 0.00053, 0.00135,
0.000438, 0.000907, 0.00259;
c = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]';
A = -[0.008616, 0.002625, 0.002052, 0.01691, 0.01617,
0.01187, 0.01162, 0.01307];
Aeq = [1 1 1 1 1 1 1 1];
beq = [1];
ub = [inf; inf; inf; inf; inf; inf; inf;];
lb = [-inf; -inf; -inf; -inf; -inf; -inf; -inf; -inf;];
variance array = zeros(10,1);
weights matrix = zeros(10,8);
for i = 1:10
   b = R \operatorname{array}(i) *-1;
   [x, fval] = quadprog(Q, c, A, b, Aeq, beq, lb, ub);
   x = round(x, 5);
   fval = round(fval, 10);
   variance array(i,:) = fval;
   weights matrix(i,:) = x;
end
variance array
weights matrix
```

```
std_array = sqrt(variance_array);
h = plot(std_array, R_array, '-o')
title('Efficient Frontier')
xlabel('Volatility \sigma')
ylabel('Expected return goal R')
ax = gca
ax.YAxis.Exponent = 0
ax.XAxis.Exponent = 0;
```

# Matlab output:

0.03453

0.0525

0.07049

| -              |                                                                                                                  |                                               |          |          |
|----------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------|----------|
| variance_a     | rray =                                                                                                           |                                               |          |          |
|                | 3.82628e-<br>3.82628e-<br>3.8263e-<br>3.98185e-<br>4.58893e-<br>5.65467e-<br>7.17923e-<br>9.16211e-<br>0.0001160 | -05<br>-05<br>-05<br>-05<br>-05<br>-05<br>-05 |          |          |
| weights matrix |                                                                                                                  | , 10                                          |          |          |
|                |                                                                                                                  |                                               |          |          |
| Columns 1 thr  | ough 4                                                                                                           |                                               |          |          |
|                | 0.18611                                                                                                          | 0.85                                          | -0.0242  | 0.04606  |
|                | 0.18611                                                                                                          | 0.84999                                       | -0.0242  | 0.04607  |
|                | 0.18622                                                                                                          | 0.84968                                       | -0.02421 | 0.04607  |
|                | 0.19626                                                                                                          | 0.82051                                       | -0.02442 | 0.04627  |
|                | 0.2086                                                                                                           | 0.78471                                       | -0.04381 | 0.08786  |
|                | 0.22093                                                                                                          | 0.74891                                       | -0.09144 | 0.11077  |
|                | 0.23326                                                                                                          | 0.7131                                        | -0.11525 | 0.13369  |
|                | 0.24559                                                                                                          | 0.6773                                        | -0.13906 | 0.1566   |
|                | 0.24333                                                                                                          | 0.6415                                        | -0.16287 | 0.17952  |
|                | 0.27028                                                                                                          | 0.60564                                       | -0.18672 | 0.20247  |
|                | 0.27020                                                                                                          | 0.00304                                       | 0.10072  | 0.20247  |
| Columns 5 thr  | ough 8                                                                                                           |                                               |          |          |
|                | -0.05215                                                                                                         | -0.01045                                      | 0.01215  | -0.00752 |
|                | -0.05215                                                                                                         | -0.01045                                      | 0.01215  | -0.00752 |
|                | -0.05199                                                                                                         | -0.01041                                      | 0.01209  | -0.00745 |
|                | -0.03735                                                                                                         | -0.00681                                      | 0.00693  | -0.00067 |
|                | -0.01938                                                                                                         | -0.0024                                       | 0.00058  | 0.00766  |
|                | -0.00141                                                                                                         | 0.00202                                       | -0.00576 | 0.01598  |
|                | 0.01656                                                                                                          | 0.00644                                       | -0.01211 | 0.02431  |
|                |                                                                                                                  |                                               |          | 0.02101  |

0.01085

0.01527

0.01969

-0.01845

-0.02479

-0.03115

0.03263

0.04096

0.04929