

Application No.: 10/532,696
Paper Dated: July 10, 2009
Attorney Docket No.: 4544-051285

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No. : 10/532,696 Confirmation No. : 2673
Applicants : Gopala Krishna Murthy SRUNGARAM et al.
Filed : November 23, 2005
Title : **A System for Elliptic Curve Encryption Using Multiple Points on an Elliptic Curve Derived from Scalar Multiplication**
Group Art Unit : 2431
Examiner : Matthew T. HENNING
Customer No. : 28289

Mail Stop Amendment
Commissioner for Patents
P. O. Box 1450
Alexandria, VA 22313-1450

AMENDMENT

Sir:

In response to the Office Action of February 10, 2009, Applicants hereby submit a two-month Petition for Extension of Time and the following amendments and remarks.

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims are reflected in the listing of claims which begins on page 3 of this paper.

Remarks begin on page 10 of this paper.

I hereby certify that this correspondence is being electronically submitted to the United States Patent and Trademark Office on July 10, 2009.	
<hr/> <p>Lisa A. Miller (Name of Person Submitting Paper)</p> <hr/>	
 Signature	07/10/2009 Date

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

Claims 1-11 (Cancelled)

1 Claim 12 (Currently Amended): A method of system for elliptic curve encryption, the system comprising a computer having a computer readable medium having stored thereon instructions which, when executed by a processor of the computer, causes the processor to perform the steps of:

- 5 (a) selecting an elliptic curve $E_p(a,b)$ of the form $y^2 = x^3 + ax + b \pmod{p}$, wherein p is a prime number, wherein a and b are non-negative integers less than p satisfying the formula $4a^3 + 27b^2 \pmod{p}$ not equal to 0;
- 10 (b) generating a large 160 bit random number by a method of concatenation of a number of smaller random numbers;
- 15 (c) generating a well hidden point $G(x,y)$ on the elliptic curve $E_p(a,b)$ by scalar multiplication of a point $B(x,y)$ on the elliptic curve with a large random integer M further comprises comprising the steps of:
- (i) converting the large random integer M into a series of powers of 2^{31} ;
- (ii) converting each coefficient of 2^{31} obtained from above step into a binary series;
- (iii) multiplication of multiplying the binary series obtained from steps (i) and (ii) above with the point $B(x,y)$ on the elliptic curve;
- 20 (d) generating a private key n_A [(of about \geq)] greater than or equal to 160 bits length;
- (e) generating of a public key $P_A(x,y)$ given by the formula $P_A(x,y) = (n_A \cdot G(x,y)) \pmod{p}$;
- 25 (f) encrypting the an input message MSG further comprising the steps of:
- (i) generating a large random integer K ;
- (ii) setting $P_{mask}(x,y) = k \cdot P_A(x,y) \pmod{p}$;

- (iii) setting $P_k(x,y) = k \cdot G(x,y) \text{ mod } (p);$
- (iv) accepting the input message MSG to be encrypted;
- (v) converting the input message into a point $P_c(x,y);$
- (vi) generating a random point $P_m(x,y)$ on the elliptic curve $E_p(a,b);$
- 5 (vii) setting $P_e(x,y) = (P_c(x,y) - P_m(x,y));$
- (viii) setting $P_{mk}(x,y) = (P_m(x,y) + P_{mask}(x,y)) \text{ mod } (p);$
- (ix) returning $P_k(x), P_e(x,y),$ and $P_{mk}(x)$ as a ciphered text; and
- (g) decrypting the ciphered text further comprising the steps of:
- /O (i) getting the ciphered text $(P_k(x), P_a(x,y),$ and $P_{mk}(x));$
- (ii) computing $P_k(y)$ from $P_k(x)$ using the elliptic curve $E_p(a,b);$
- (iii) computing $P_{mk}(y)$ from $P_{mk}(x)$ using elliptic curve $E_p(a,b);$
- (iv) computing $P_{ak}(x,y) = (n_A \cdot P_k(x,y)) \text{ mod } (p);$
- (v) computing $P_m(x,y) = P_{mk}(x,y) - P_{ak}(x,y)) \text{ mod } (p);$
- (vi) computing $P_c(x,y) = P_m(x,y) + P_e(x,y);$
- 15 (vii) converting $P_c(x,y)$ into the input message MSG.

(2) Claim 13 (Currently Amended): The method of system for elliptic curve encryption as claimed in claim 12, wherein the said number p appearing in selection of elliptic curve is about a 160 bit length prime number.

(3) Claim 14 (Currently Amended): The method of system for elliptic curve encryption as claimed in claim 12, wherein the said method of generating any large the random integer M comprises the steps of:

- (i) setting a variable I [[=]] equal to 0;
- (ii) setting M to null;
- (iii) determining whether I[[<]] is less than 6;
- (iv) going to next step (vi) if true I is less than 6;
- (v) returning M as a result if false I is not less than 6;
- (vi) generating a random number RI within (0,1);
- (vii) multiplying RI with 10^9 to obtain variable BINT [[-]], wherein BINT is an integer of size having 9 digits;
- (viii) concatenating BINT to M;
- (ix) setting I [[=]] equal to I + 1;

(x) returning to step (iii).

4

Claim 15 (Currently Amended): The method of system for elliptic curve encryption as claimed in claim 12, wherein said conversion of the large random integer into a series of powers of 2^{31} and conversion of each coefficient m_n of said 2^{31} series thus obtained for scalar multiplication for said random integer with the said point $B(x,y)$ on said elliptic curve $E_p(a,b)$ comprises the steps of:

- (i) accepting a big the integer M;
- (ii) setting a variable T31 equal to 2^{31} ;
- (iii) setting a variable LIM [=] equal to a size of M [[()]] in bits[[()]] and initializing an array A() with size LIM;
- (iv) setting a variable INCRE equal to [[zero]] 0;
- (v) setting a variable N equal to M modulus T31;
- (vi) setting M [=] equal to INT(M/T31);
- (vii) determining whether N is equal to 0;
- (viii) going to next step (x) if true N is equal to 0;
- (ix) going to step (xxiv) if false N is not equal to 0;
- (x) determining whether M is equal to 0;
- (xi) going to next step (xiii) if true M is equal to 0;
- (xii) going to step (xxvi) if false M is not equal to 0;
- (xiii) setting I [=] equal to 0 and J [=] equal to 0;
- (xiv) determining whether I [\geq] is greater than or equal to LIM;
- (xv) going to next step (xvii) if false I is not greater than or equal to LIM;
- (xvi) going to step (xxviii) if true I is greater than or equal to LIM;
- (xvii) determining whether A(I) is equal to 1;
- (xviii) going to next step (xx) if true A(I) is equal to 1;
- (xix) returning to step (xxii) if false A(I) is not equal to 1;
- (xx) setting B (J) [=] equal to I;
- (xxi) incrementing J by 1;
- (xxii) incrementing I by 1;
- (xxiii) returning to step (xiv);
- (xxiv) calling a function BSERIES (N, INCRE) and updating array A();
- (xxv) returning to step (x);

- (xxvi) setting a variable INCRE [[=]] equal to INCRE + 31;
- (xxvii) returning to step (v);
- (xxviii) returning array B() as a result.

5 (5) Claim 16. (Currently Amended): The method of system for elliptic curve encryption as claimed in claim 15, wherein said conversion of the large random integer into a series of powers of 2^{31} and said conversion of each coefficient m_n of said 2^{31} series thus obtained for the said scalar multiplication of the said random integer with the said point B(x,y) on said elliptic curve $E_p(a,b)$ further comprises the steps of:

- (i) accepting N and INCRE;
- (ii) assigning an array BARRAY as an array of values which that are powers of $2([2^0, \dots, 2^{30}])$;
- (iii) setting a variable SIZE [[=]] equal to size of N (in digits);
- (iv) computing a POINTER [[=]], wherein the POINTER is equal to $\boxed{3 \cdot (\text{SIZE}) + \text{INT}(\text{SIZE}/3) - 4}$;
- (v) determining whether the POINTER [[<]] is less than 2;
- (vi) going to next step (viii) if true the POINTER is less than 2;
- (vii) going to step (ix) if false the POINTER is not less than 2;
- (viii) setting the POINTER equal to [[zero]] 0;
- (ix) determining whether [[()]]BARRAY(POINTER) [[>]] is greater than or equal to $N[[\cdot]]$;
- (x) going to next step (xii) if true BARRAY(POINTER) is greater than or equal to N;
- (xi) going to step (xx) if false BARRAY(POINTER) is not greater than or equal to N;
- (xii) determining whether BARRAY(POINTER)[[=]] is equal to N;
- (xiii) going to next step (xv) if true BARRAY(POINTER) is equal to N;
- (xiv) going to step (xvii) if false BARRAY(POINTER) is not equal to N;
- (xv) setting A (POINTER + INCRE) equal to 1;
- (xvi) returning array A () as a result;
- (xvii) setting A ((POINTER - 1) + INCRE) equal to 1;
- (xviii) computing $N[[=]]$, wherein N is equal to $N - \text{BARRAY}(\text{POINTER}-1)$;
- (xix) returning to step (iii);

PTO ERROR

(xxvi) setting $B(x,y)$ $[=]$ equal to $B(x,y) + B(x,y);$

(xxvii) returning to step (iv).

7

Claim 18 (Currently Amended): The method system for of elliptic curve encryption as claimed in claim 12, wherein said public key $P_A(x,y)$ is also a point on said elliptic curve $E_p(a,b).$

The method system for of elliptic curve

OUR
ERROR

8

Claim 19 (Currently Amended): The method system for of elliptic curve encryption as claimed in claim 12, wherein the generation of said private key n_A and said public key $P_A(x,y)$ comprises the steps of:

The method system for of elliptic curve

OUR
ERROR

- (i) entering a big odd integer p of size \geq greater than or equal to 160 bits;
- (ii) determining whether p is a prime number;
- (iii) going to next step (v) if p is a prime number;
- (iv) going to step (xix) if p is not a prime number;
- (v) entering an small integer a $[>]$, wherein a is greater than 0;
- (vi) setting an integer b $[=]$ equal to 0 and a variable x $[=]$ equal to 1;
- (vii) determining whether $4a^3 + 27b^2 \bmod (p)$ $[= zero]$ is equal to 0;
- (viii) going to next step (x) if false $4a^3 + 27b^2 \bmod$ is not equal to 0;
- (ix) incrementing b by 1 if true $4a^3 + 27b^2 \bmod (p)$ is equal to 0 and going to step (vii);
- (x) setting z $[=(y^2) =]$ equal to $x^3 + ax + b$, wherein z is y^2 ;
- (xi) determining whether z $[=(y^2)]$ is a perfect square;
- (xii) going to step (xxi) if z is not a perfect square;
- (xiii) setting $B(x,y)$ equal to (x,y) if z is a perfect square;
- (xiv) selecting a large random integer r_1 ;
- (xv) setting $G(x,y)$ $[=]$ equal to $(r_1 \cdot B(x,y)) \bmod (p)$;
- (xvi) selecting a large random integer n_A ;
- (xvii) setting $P_A(x,y)$ $[=]$ equal to $(n_A \cdot G(x,y)) \bmod (p)$;
- (xviii) returning $P_A(x,y)$ as a public key and returning n_A as a private key;
- (xix) incrementing p by 2;
- (xx) returning to step (ii);
- (xxi) incrementing x by 1;
- (xxii) determining whether x $[>]$ is greater than 900;