```
In [1]: # Import modules
import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
```

```
In [2]: # Define data filepath
    pathname = '/Users/jack/Documents/GitHub/geospatial-data-science/labs/
# Read data
    df = gpd.read_file(pathname + 'or_1992-2018.shp') # 'df' stands for Da
```

```
In [3]: # Find column labels
df.columns
```

In [4]: # Find columns datatypes df.dtypes

Out[4]:	OBJECTID	float64
	FOD_ID	int64
	FPA_ID	object
	SOURCE_SYS	object
	SOURCE_S_1	object
	NWCG_REPOR	object
	NWCG_REP_1	object
	NWCG_REP_2	object
	SOURCE_REP	object
	SOURCE_R_1	object
	LOCAL_FIRE	object
	LOCAL_INCI	object
	FIRE_CODE	object
	FIRE_NAME	object
	ICS_209_PL	object
	ICS_2091	object
	MTBS_ID	object
	MTBS_FIRE_	object
	COMPLEX_NA	object
	FIRE_YEAR	int64
	DISCOVERY_	object
	DISCOVER_1	int64
	DISCOVER_2	object
	NWCG_CAUSE	object
	NWCG_GENER	object
	NWCG_CAU_1	object
	CONT_DATE	object
	CONT_DOY	float64
	CONT_TIME	object
	FIRE_SIZE	float64
	FIRE_SIZE_	object
	LATITUDE	float64
	LONGITUDE	float64
	OWNER_DESC	object
	STATE	object
	COUNTY	object
	FIPS_CODE	object
	FIPS_NAME	object
	geometry	geometry
	dtype: object	

```
In [5]: # Get some stats for numeric columns
         df['FIRE SIZE'].describe()
 Out[5]: count
                   67042,000000
                     144.878795
         mean
                    3815.600420
         std
         min
                       0.010000
         25%
                       0.100000
         50%
                       0.100000
         75%
                       0.330000
                  558198.300000
         max
         Name: FIRE_SIZE, dtype: float64
 In [6]: # Filter fires larger than 100 acres
         df large = df[df['FIRE SIZE'] > 100]
 In [7]: # Find mean size of wildfires larger than 100 acres
         df large['FIRE SIZE'].mean()
 Out[7]: 5077.047927022739
 In [8]: # Find the different cause of large wildfires
         df_large['NWCG_CAUSE'].unique()
 Out[8]: array(['Human', 'Natural', 'Missing data/not specified/undetermined']
               dtype=object)
 In [9]: # Filter fires that were caused by natural causes
         df_large_natural = df_large[df_large['NWCG_CAUSE'] == 'Natural']
In [10]: # Find date of discovery
         df large natural['DISCOVERY ']
Out[10]: 56
                  2008/07/02 00:00:00.000
         89
                  2000/07/22 00:00:00.000
                  2007/08/31 00:00:00.000
         95
         96
                  2003/06/29 00:00:00.000
         109
                  2007/07/13 00:00:00.000
         67007
                  2017/08/29 00:00:00.000
         67008
                  2011/09/15 00:00:00.000
         67014
                  2014/09/16 00:00:00.000
         67017
                  2013/08/07 00:00:00.000
         67022
                  2016/08/17 00:00:00.000
         Name: DISCOVERY_, Length: 1164, dtype: object
```

```
In [11]: | datetime = pd.to_datetime(df_large_natural['DISCOVERY_'], format='%Y/%
         datetime
Out[11]: 56
                 2008-07-02
         89
                 2000-07-22
         95
                 2007-08-31
         96
                 2003-06-29
         109
                 2007-07-13
         67007
                 2017-08-29
         67008
                 2011-09-15
         67014
                 2014-09-16
         67017
                 2013-08-07
                 2016-08-17
         67022
         Name: DISCOVERY_, Length: 1164, dtype: datetime64[ns]
In [12]: df_large_natural['datetime'] = datetime # Sorry about the warning, ext
         /Users/jack/Documents/Anaconda3/anaconda3/envs/lab2/lib/python3.8/sit
         e-packages/geopandas/geodataframe.py:1351: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/panda
         s-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
         (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.htm
         l#returning-a-view-versus-a-copy)
           super().__setitem__(key, value)
In [13]: # Filter large, natural wildfires in 2016
         df large natural 2016 = df large natural[df large natural['datetime'].
In [14]: # Find number of large fires in each year (i.e. number of rows in each
         large_fire_count = df_large.iloc[:,0].groupby(df_large_natural['dateti
In [15]: # Find acres of wildfire for each year
         large fire area = df large['FIRE SIZE'].groupby(df large natural['date
```

```
In [16]: # Plot number and acres of wildfire for each year
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(10,8), share
ax1.plot(large_fire_count, lw=2)
ax1.set_ylabel('Number of fires (>100 acres)', fontsize=14)
ax1.tick_params(axis='x', labelsize=14)
ax1.tick_params(axis='y', labelsize=14)
ax1.grid(ls='dotted', lw=2, alpha=0.5)

ax2.plot(large_fire_area, lw=2)
ax2.set_ylabel('Area of fires (>100 acres)', fontsize=14)
ax2.tick_params(axis='x', labelsize=14)
ax2.tick_params(axis='y', labelsize=14)
ax2.grid(ls='dotted', lw=2, alpha=0.5)
```


Question 1a

```
In [17]:
#df_large['FIRE_SIZE'].groupby(df_large_natural)
df_large = df[df['FIRE_SIZE'] > 50]
```

```
In [18]: # Find the fire area in acres
#large_fire_area = df_large['FIRE_SIZE'].groupby(df_large_natural['dat
```

In [19]: # Filter fires that were caused by human causes
df_large = df_large[df_large['NWCG_CAUSE'] == 'Human']

In [20]: most_count = df_large.groupby('FIPS_NAME').count()

In [21]: most_count.sort_values(by='OBJECTID')

Out [21]:

OBJECTID FOD_ID FPA_ID SOURCE_SYS SOURCE_S_1 NWCG_REPOR NWCG_I

FIPS_NAME						
Adams County	1	1	1	1	1	1
Tillamook County	1	1	1	1	1	1
Columbia County	1	1	1	1	1	1
Yamhill County	1	1	1	1	1	1
Klickitat County	2	2	2	2	2	2
Washington County	2	2	2	2	2	2
Clatsop County	3	3	3	3	3	3
Multnomah County	3	3	3	3	3	3
Polk County	4	4	4	4	4	4
Clackamas County	4	4	4	4	4	4
Benton County	5	5	5	5	5	5
Hood River County	5	5	5	5	5	5
Linn County	5	5	5	5	5	5
Lincoln County	6	6	6	6	6	6

Marion	7	7	7	7	7	7
County						
Coos County	8	8	8	8	8	8
Curry County	9	9	9	9	9	9
Crook County	10	10	10	10	10	10
Wallowa County	10	10	10	10	10	10
Morrow County	11	11	11	11	11	11
Union County	14	14	14	14	14	14
Lake County	18	18	18	18	18	18
Lane County	18	18	18	18	18	18
Gilliam County	19	19	19	19	19	19
Josephine County	20	20	20	20	20	20
Sherman County	20	20	20	20	20	20
Baker County	22	22	22	22	22	22
Deschutes County	22	22	22	22	22	22
Jackson County	25	25	25	25	25	25
Wheeler County	28	28	28	28	28	28
Grant County	28	28	28	28	28	28
Jefferson County	30	30	30	30	30	30
Harney County	31	31	31	31	31	31
Klamath County	34	34	34	34	34	34

Umatilla County	40	40	40	40	40	40
Douglas County	40	40	40	40	40	40
Malheur County	49	49	49	49	49	49
Wasco County	71	71	71	71	71	71

28 rowe - 28 columns

Question 1b

```
In [22]:
         df_large_natural['FIRE_SIZE'].groupby(df_large_natural['FIPS_NAME']).d
         HOUR NEVEL COUNTRY
                                30
         Jackson County
         Jefferson County
                                26
         Josephine County
                                15
         Klamath County
                                15
         Lake County
                                34
         Lane County
                                15
         Linn County
                                 3
         Malheur County
                               183
         Marion County
                                 5
         Morrow County
                                 6
         Owyhee County
                                 1
         Sherman County
                                12
         Umatilla County
                                20
         Union County
                                 4
                                29
         Wallowa County
         Wasco County
                                33
         Wheeler County
                                39
         Yamhill County
                                 1
         Name: FIRE_SIZE, dtype: int64
In [23]: #Question 1b
         df_large = df[df['FIRE_SIZE'] > 100]
In [24]: df_natural = df_large[df_large['NWCG_CAUSE']=='Natural']
In [25]: |#df_natural['month'].describe()
In [26]: | df_large_natural = df_natural[df_natural['FIRE_SIZE']>100]
```

```
In [27]: | datetime = pd.to_datetime(df_large_natural['DISCOVERY_'], format='%Y/%m
         df large natural.month = datetime
         #monthcount = df large natural.groupby('month').count()
         #monthcount
         /Users/jack/Documents/Anaconda3/anaconda3/envs/lab2/lib/python3.8/sit
         e-packages/geopandas/geodataframe.py:199: UserWarning: Pandas doesn't
         allow columns to be created via a new attribute name - see <a href="https://pa">https://pa</a>
         ndas.pydata.org/pandas-docs/stable/indexing.html#attribute-access
          (https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute
         -access)
            super().__setattr__(attr, val)
In [28]: datetime = pd.to_datetime(df_large_natural['DISCOVERY_'], format='%Y/%m
         df_large_natural["month"] = datetime.dt.month
In [29]: df_large_natural["month"]
Out[29]: 56
                   7
         89
                   7
         95
                   8
         96
                   6
         109
                   7
         67007
                   8
         67008
                   9
         67014
                   9
         67017
                   8
         67022
         Name: month, Length: 1164, dtype: int64
In [30]: | df_large_natural['FIRE_SIZE'].groupby(df_large_natural['month']).count
Out[30]: month
                  2
          5
                  6
         6
                 98
         7
                410
         8
                549
         9
                 93
         10
                  6
         Name: FIRE_SIZE, dtype: int64
```

Question 1c

```
In [31]:
         # Filter fires larger than 200 acres
         df large = df[df['FIRE SIZE'] > 200]
In [32]: # Find the different cause of large wildfires
         df large['NWCG CAUSE'].unique()
Out[32]: array(['Natural', 'Human', 'Missing data/not specified/undetermined']
               dtype=object)
In [33]: # Filter fires that were caused by specified/undetermined causes
         df_large = df_large[df_large['NWCG_CAUSE'] == 'Missing data/not specif
         Question 1d
In [34]:
         # Get some stats for numeric columns
         df['FIRE SIZE'].describe()
Out[34]: count
                   67042.000000
         mean
                      144.878795
         std
                     3815,600420
                        0.010000
         min
         25%
                        0.100000
         50%
                        0.100000
         75%
                        0.330000
                  558198.300000
         max
         Name: FIRE_SIZE, dtype: float64
In [35]: df_large['FIRE_SIZE'].max()
Out[35]: 23600.0
         largest_fire = df_large['FIRE_SIZE'].max()
In [36]:
In [37]: | df[df['FIRE_SIZE'] == df['FIRE_SIZE'].max()][['DISCOVERY_', 'FIRE_NAME'
Out[37]:
                       DISCOVERY_
                                  FIRE NAME
                                              FIPS NAME FIRE SIZE
```

66964 2012/07/08 00:00:00.000 LONG DRAW Malheur County

558198.3

Question 1e

Lab 2b: Where are wildfires occurring in Oregon?

```
In [40]: # Import modules
    from cenpy import products
    import matplotlib.pyplot as plt

# Define product
    acs = products.ACS(2019)
```

In [41]: # Print list of tables
acs.filter_tables('POPULATION', by='description')

Out [41]:

	description	columns
table_name		
B01003	TOTAL POPULATION	[B01003_001E]
B05006	PLACE OF BIRTH FOR THE FOREIGN-BORN POPULATION	[B05006_001E, B05006_002E, B05006_003E, B05006
B05007	PLACE OF BIRTH BY YEAR OF ENTRY BY CITIZENSHIP	[B05007_001E, B05007_002E, B05007_003E, B05007
B05008	SEX BY PLACE OF BIRTH BY YEAR OF ENTRY FOR THE	[B05008_001E, B05008_002E, B05008_003E, B05008
B05013	SEX BY AGE FOR THE FOREIGN-BORN POPULATION	[B05013_001E, B05013_002E, B05013_003E, B05013
C24030	SEX BY INDUSTRY FOR THE CIVILIAN EMPLOYED POPU	[C24030_001E, C24030_002E, C24030_003E, C24030
C24040	SEX BY INDUSTRY FOR THE FULL-TIME, YEAR-ROUND	[C24040_001E, C24040_002E, C24040_003E, C24040
C24050	INDUSTRY BY OCCUPATION FOR THE CIVILIAN EMPLO	[C24050_001E, C24050_002E, C24050_003E, C24050
C24060	OCCUPATION BY CLASS OF WORKER FOR THE CIVILIAN	[C24060_001E, C24060_002E, C24060_003E, C24060
C24070	INDUSTRY BY CLASS OF WORKER FOR THE CIVILIAN E	[C24070_001E, C24070_002E, C24070_003E, C24070

143 rows × 2 columns

In [42]: # Print list of variables
acs.filter_variables('B01003')

Out[42]:

	label	concept	predicateType	group	limit	predicateOnly	hasGeo
B01003_001E	Estimate!!Total	TOTAL POPULATION	int	B01003	0	NaN	

/Users/jack/Documents/Anaconda3/anaconda3/envs/lab2/lib/python3.8/sit e-packages/pyproj/crs/crs.py:131: FutureWarning: '+init=<authority>:< code>' syntax is deprecated. '<authority>:<code>' is the preferred in itialization method. When making the change, be mindful of axis order changes: https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6

(https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-chan
ges-in-proj-6)

in_crs_string = _prepare_from_proj_string(in_crs_string)
/Users/jack/Documents/Anaconda3/anaconda3/envs/lab2/lib/python3.8/sit
e-packages/pyproj/crs/crs.py:131: FutureWarning: '+init=<authority>:<
code>' syntax is deprecated. '<authority>:<code>' is the preferred in
itialization method. When making the change, be mindful of axis order
changes: https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-or
der-changes-in-proj-6

(https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-chan
ges-in-proj-6)

in_crs_string = _prepare_from_proj_string(in_crs_string)
/Users/jack/Documents/Anaconda3/anaconda3/envs/lab2/lib/python3.8/sit
e-packages/cenpy/products.py:762: FutureWarning: The `op` parameter i
s deprecated and will be removed in a future release. Please use the
`predicate` parameter instead.

return self._from_name(county, variables, level, "Counties", **kwar
gs)

```
In [44]: # Calculate some stats
malheur_pop['B01003_001E'].describe()
```

```
Out [44]: count
                       8.000000
                   3801.500000
          mean
                   1968.306088
          std
          min
                       0.000000
          25%
                   3540.750000
          50%
                   4518,500000
          75%
                   4802.250000
                   5781,000000
          max
```

Name: B01003_001E, dtype: float64

```
In [45]: # Plot map
f, ax = plt.subplots(1, 1, figsize=(10,10))
malheur_pop.plot('B01003_001E', ax=ax, cmap='plasma')
```

Out[45]: <AxesSubplot:>


```
In [46]: malheur_pop['pop_density'] = 1e4 * malheur_pop['B01003_001E'] / malheu
from mpl_toolkits.axes_grid1 import make_axes_locatable

# Plot map
f, ax = plt.subplots(1, 1, figsize=(10,10))

# These two lines make the colorbar the same size as the axes
```

```
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
malheur_pop.plot('pop_density', ax=ax, cmap='plasma', legend=True, cax
```

Out[46]: <AxesSubplot:>


```
In [47]: malheur_pop.crs
Out[47]: <Derived Projected CRS: EPSG:3857>
         Name: WGS 84 / Pseudo-Mercator
         Axis Info [cartesian]:
         - E[east]: Easting (metre)
         - N[north]: Northing (metre)
         Area of Use:
         - name: World between 85.06°S and 85.06°N.
         - bounds: (-180.0, -85.06, 180.0, 85.06)
         Coordinate Operation:
         - name: Popular Visualisation Pseudo-Mercator
         - method: Popular Visualisation Pseudo Mercator
         Datum: World Geodetic System 1984 ensemble
         - Ellipsoid: WGS 84
         - Prime Meridian: Greenwich
In [48]: # Make
         df_large = df[df['FIRE_SIZE'] > 100]
         malheur_fires = df_large[df_large['FIPS_NAME'] == 'Malheur County']
         malheur_fires.crs
Out[48]: <Geographic 2D CRS: EPSG:4326>
         Name: WGS 84
         Axis Info [ellipsoidal]:
         - Lat[north]: Geodetic latitude (degree)
         - Lon[east]: Geodetic longitude (degree)
         Area of Use:
         name: World.
         - bounds: (-180.0, -90.0, 180.0, 90.0)
         Datum: World Geodetic System 1984 ensemble
         - Ellipsoid: WGS 84
         - Prime Meridian: Greenwich
```

```
In [49]: malheur_fires_proj = malheur_fires.to_crs('EPSG:3857')
malheur_fires_proj.crs
```

Out[49]: <Derived Projected CRS: EPSG:3857>

Name: WGS 84 / Pseudo-Mercator

Axis Info [cartesian]:

- X[east]: Easting (metre)

- Y[north]: Northing (metre)

Area of Use:

- name: World between 85.06°S and 85.06°N.

- bounds: (-180.0, -85.06, 180.0, 85.06)

Coordinate Operation:

name: Popular Visualisation Pseudo-Mercator

- method: Popular Visualisation Pseudo Mercator

Datum: World Geodetic System 1984 ensemble

- Ellipsoid: WGS 84

- Prime Meridian: Greenwich

Type Markdown and LaTeX: α^2

In [50]: # Plot map f, ax = plt.subplots(1, 1, figsize=(10,10)) # These two lines make the colorbar the same size as the axes. divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.1) malheur_pop.plot('pop_density', ax=ax, cmap='plasma', legend=True, cax malheur_fires_proj.plot(ax=ax, c='red')

Out[50]: <AxesSubplot:>

The diagram below is a choropleth map showing the fire count in Malheur County. As we can see most of the fire occur in the rural areas, with some fires near Ontario.

```
In [51]: # Spatial join
    joined_df = gpd.sjoin(malheur_fires_proj, malheur_pop, how='inner', pr

# Groupby tract
    tract_count = joined_df.groupby(['tract'], as_index=False)['OBJECTID']
    tract_count.columns = ['tract', 'fire_count']

# Merge back to original DataFrame
    merged_df = malheur_pop.merge(tract_count, on='tract', how='left')

# Clean up data by filling NaNs with 0
    merged_df['fire_count'].fillna(0, inplace=True)

# Plot map
    f, ax = plt.subplots(1, 1, figsize=(10,10))
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.1)
    merged_df.plot('fire_count', ax=ax, cmap='viridis', legend=True, cax=c
```

/Users/jack/Documents/Anaconda3/anaconda3/envs/lab2/lib/python3.8/sit e-packages/mapclassify/classifiers.py:1718: UserWarning: Warning: Not enough unique values in array to form k classes

Warn(ms, UserWarning)

/Users/jack/Documents/Anaconda3/anaconda3/envs/lab2/lib/python3.8/sit e-packages/mapclassify/classifiers.py:1719: UserWarning: Warning: set ting k to 5

Warn("Warning: setting k to %d" % uvk, UserWarning)

Out[51]: <AxesSubplot:>

In []: