Cellular Automata for tropical forests prone to fire

Bert Wuyts & Jan Sieber

(Dynamical Systems & Analysis)

PNAS 120(45), 2023

Background

Common tipping mechanism

Fire feedback

- fire ignites and spreads in grassland
- trees block fires but get damaged
- fast fire spread (hours-days)
- slow tree spread (years-decades)

Models have **threshold parameter** for effect of fire (~40% tree cover)

Motivation: percolation theory

Cellular automaton — Hébert-Dufresne et al. 2018

- ► Square Lattice (each cell $\sim 30 \text{m} \times 30 \text{m}$), N = 100
- 4 Species: Tree, Grass, Burning, Ash

Intuition: SIS on slow timescale ←→ SIRS on fast timescale

Cellular automaton simulation

Cellular automaton — bistability

Cellular automaton — bistability

Cellular automaton — bistability

Potential V(T)

forest **loss** by repeated fires

 $\langle TG \rangle_{cg} :=$

length of forest boundary, each cell weighted by size of adjacent grass patch

forest **gain** by growth
[*TG*] :=
length of forest boundary

⇒violate assumptions of percolation theory

Potential V(T)

$$\frac{d}{dt}T = -\mu T + \alpha_{+}[TG] - \alpha_{-}(1-T)\langle TG \rangle_{cg} =: -V'(T)$$

(TG)_{cg} adjacent grass weighted forest boundary

Summary & implications

- adjacent grass cells cooperate by burning down
 - ⇒ long-range correlations
 - ⇒ violation of assumptions behind mean fields & percolation theory
- ▶ Quantities determining tipping potential V(T):
 - gain: forest boundary [TG]
 - loss: grass-weighted forest boundary (TG)_{cg}
- Implications:
 - tropical forest change and resilience can be empirically estimated from its spatial structure.
 - determine where tropical forest bistable