

Lata Pasupulety

Department of Science and Humanities

Module 5- Energy storage devices – Fuel cells

Class content:

• Types of Fuel cells

Module 5- Energy Storage devices- Fuel cells

Types of Fuel cells (based on electrolyte):

- Alkaline fuel cell
- Phosphoric acid fuel cell
- Molten carbonate fuel cell
- Polymer electrolyte fuel cell
- Solid oxide fuel cell

Module 5- Energy Storage devices- Fuel cells

Alkaline fuel cell

- Aqueous solution of KOH is used as electrolyte
- Low temperature fuel cell (operates at 100°C)
- Oxygen reduction is more rapid in alkaline electrolytes
- than in acid electrolytes
- Use of non noble metal electro-catalyst is feasible
- Carbon containing fuels cannot be used as CO₂ is formed as product which reacts with the electrolyte, KOH, to form K₂CO₃ which reduces efficiency of the cell

$$CO_2 + KOH \rightarrow K_2CO_3 + H_2O$$

Module 5- Energy Storage devices- Fuel cells

Phosphoric acid fuel cell

- Concentrated phosphoric acid is used as electrolyte
- Intermediate temperature fuel cell (operates between 160 220°C)
- Platinum is used as electro-catalyst
- Use only H₂ as fuel
- H₂ used as fuel must be very pure as sulphur compounds and CO poison the Pt catalyst

Module 5- Energy Storage devices- Fuel cells

Molten carbonate fuel cell

- Molten carbonates (mixture of LiAlO₂ + K₂CO₃ +Li₂CO₃) used as electrolyte
- High temperature fuel cell (operates between 600 650°C)
- Catalyst is not required since it operates at high temperature
- H₂ or CO can be used as fuel

Module 5- Energy Storage devices- Fuel cells

Polymer electrolyte membrane fuel cell

- Known as proton exchange membrane fuel cell
- Polymer membrane or proton exchange membrane is used as electrolyte
- •Fluorocarbon backbone (-CF₂-CF₂-) similar to Teflon to which sulphonic acid groups(-SO₃H) are attached. The protons on sulphonic acid group are free to migrate through the hydrated membrane. e.g., (A) Aquivion and (B)Nafion

Source:https://www.researchgate.net/figure/Chemical-structures-of-A-AquivionR-or-Hyflon-and-B-NafionR fig1_234842575

•New membranes are being used especially when CH₃OH is used as fuel - Poly electrolyte membranes e.g., SPEEK - sulphonated poly(ether ether ketone)

Source:https://www.degruyter.com/view/journals/psr/2/8/article-20170018.xml?language=en

Module 5- Energy Storage devices- Fuel cells

Polymer electrolyte membrane fuel cell(contd.)

- •Low temperature fuel cell (60-90 °C)
- •Polymer membrane must remain hydrated to maintain H⁺ conductivity
- •Water produced from the reaction must be removed from the cathode
 - **High temperatures** may dehydrate the polymer so H⁺ conductivity cannot take place and the polymer may degrade and crack resulting in short circuit
 - Low temperatures will result in flooding of the cell thereby reducing efficiency of the cell and a higher catalyst loading will be required
- Low weight and volume
- High energy density
- Noble metal catalyst usually Pt is used
- CO, if present poisons the catalyst, so pure fuel and oxidant should be used

Module 5- Energy Storage devices- Fuel cells

Solid oxide fuel cell

• Ceramic oxide capable of conducting oxide ions is used as electrolyte,

e.g. ZrO₂ doped with Y₂O₃

- Very high temperature fuel cell (operates at 650 1000°C)
- Due to high temperature , expensive catalyst need not be used
- CO can also be used as a fuel
- Slow start up

THANK YOU

Lata Pasupulety

Department of Science and Humanities

latapasupulety@pes.edu

+91 80 6666 3333 Extn 759