

Análisis Matemático A (para Ingeniería y Ciencias Exactas y Naturales) Guía de Repaso Sesiones 1 a 3

Cátedra Cabana

 $1.\,\,$ Determinar el conjunto más amplio de números reales (dominio natural) para el cual

$$f(x) = \frac{\sqrt{3x+1}}{x^2 - 4}$$

es una función.

2. Sea la función $f: \mathbb{R} \to \mathbb{R}$ cuyo gráfico es

Determinar intervalos de crecimiento y decrecimiento, conjunto imagen e intersección con los ejes.

- 3. Dada la función lineal $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \frac{2}{3}x 7$. Determinar la ordenada al origen de la función lineal g perpendicular a f que pasa por (1,2).
- 4. Sea f una función lineal que verifica que f(1)=3 y cuyo gráfico interseca al gráfico de g, dada por g(x)=3x-1, en el punto de abscisa x=2. Encontrar la expresión de f.
- 5. Dada la función $f: D_f \to \mathbb{R}$, $f(x) = |x| + \frac{1}{x^2}$. Analizar el dominio, la paridad y la intersección del gráfico con los ejes.
- 6. Analizar si las siguientes afirmaciones son verdaderas o falsas. Justificar su respuesta
 - a) Toda función impar tiene como imagen todos los reales.
 - b) El dominio de la función f definida por $f(x) = \sqrt{3x+6}$ es $(-2, +\infty)$.
 - c) Si f es una función par, g es una función impar y $f \circ g$ está bien definido, entonces $f \circ g$ es una función par.
- 7. Sean $f: [0, +\infty) \to \mathbb{R}$ dada por $f(x) = \sqrt{x}$ y $g: \mathbb{R} \to \mathbb{R}$ dada por g(x) = 3x + 1. Determinar $f \circ g$ y $g \circ f$. Analizar si $f \circ g$ es inversible.

1

- 8. Dada la función $f: D_f \to \text{Im}(f)$, $f(x) = \frac{2x-3}{x}$. Determinar el dominio e imagen de f, calcular la función inversa y analizar paridad de esta.
- 9. Dadas la funciones $f: D_f \to \text{Im}(f), f(x) = \frac{2x-3}{x} \text{ y } g: \mathbb{R} \to \mathbb{R},$ $g(x) = \sqrt[3]{x+9}$. Calcular $g \circ f(-1)$.
- 10. Sea la función f definida por $f(x) = \frac{3x+1}{-x+2}$. Hallar dominio e imagen, conjuntos de positividad y negatividad, intervalos de crecimiento y decrecimiento, asíntotas y luego graficar.
- 11. Dada la función $f(x) = |x^2 4|$. Hallar dominio e imagen, conjuntos de positividad y negatividad, intervalos de crecimiento y decrecimiento. Graficar.
- 12. Dada la recta L de ecuación 6x + 3y = 2 hallar la ecuación de una recta perpendicular a L y que pase por el punto P = (1, -1).
- 13. El conjunto C está determinado por $C = \{x \in \mathbb{R} : x^2 + 2x 4 \le x + 2\}$, expresarlo en forma de intervalo o unión de intervalos.
- 14. Hallar una función cuadrática cuyo conjunto de positividad sea $C^+ = (-1, 3)$ y su imagen sea $\mathrm{Im} f = (-\infty, 4]$.
- 15. Resolver |2x 1| = -2 x.
- 16. Indicar el conjunto A como intervalo o unión de intervalos:

$$A = \{x \in \mathbb{R} : \frac{2x-1}{x+3} > 2\}$$

17. Resolver la siguiente ecuación para $x \in \mathbb{R}$ y luego para $x \in [-\pi, \pi]$.

$$2\cos(4x + \frac{\pi}{4}) = \sqrt{3}.$$

Respuestas:

- 1. $\left[-\frac{1}{3},2\right) \cup (2,+\infty)$.
- 2. Es creciente en \mathbb{R} (más adelante se verá bien la definición).

Imagen: $\operatorname{Im}(f) = (-3, +\infty).$

Corta a ambos ejes en el punto (0,0).

- 3. $b = \frac{7}{2}$
- 4. f(x) = 2x + 1
- 5. $D_f = \mathbb{R} \{0\}$, f es par. El gráfico de f no corta a ninguno de los ejes.
- 6. a) FALSO. Un contraejemplo es f(x) = sen(x) cuya imagen es Im(f) = [-1, 1]
 - b) FALSO $D_f = [-2, +\infty)$.
 - c) VERDADERO

$$f \circ g(-x) = f(g(-x)) = f(-g(x)) = f(g(x)) = f \circ g(x)$$

- 7. $f \circ g(x) = \sqrt{3x+1}$; $g \circ f(x) = 3\sqrt{x} + 1$.
 - Si consideramos (haciendo las restricciones necesarias)

$$f \circ g : [-1/3, +\infty) \to \mathbb{R}_{\geq 0}, f \circ g$$
 es inversible.

- 8. $D_f = \mathbb{R} \{0\}$, $\text{Im}(f) = \mathbb{R} \{2\}$, $f^{-1}(x) = -\frac{3}{x-2}$, no es una función par, tampoco impar.
- 9. $g \circ f(-1) = \sqrt[3]{14}$
- 10. $D_f = \mathbb{R} \{2\}$, $\text{Im}(f) = \mathbb{R} \{-3\}$. $C^+ = (-1/3, 2)$, $C^- = (-\infty, 1/3) \cup (2, +\infty)$. Crece en todo su dominio.

11. $D_f = \mathbb{R}$, $\operatorname{Im}(f) = [0, +\infty)$. $C^+ = \mathbb{R} - \{-2, 2\}$, $C^- = \emptyset$.

Crece en: (-2,0), $(2,+\infty)$. Decrece en: $(-\infty,-2)$, (0,2).

12.
$$y = \frac{1}{2}x - \frac{3}{2}$$
.

13.
$$[-3, 2]$$

14.
$$f(x) = -x^2 + 2x + 3$$

16.
$$(-\infty, -3)$$

17.
$$x = \frac{-\pi + 24k\pi}{48} \text{ con } k \in \mathbb{Z}$$
 o $x = \frac{19\pi + 24k\pi}{48} \text{ con } k \in \mathbb{Z}$
En $[-\pi, \pi]$:
 $x = -\frac{25}{48}\pi$, $x = -\frac{1}{48}\pi$, $x = \frac{23}{48}\pi$, $x = \frac{47}{48}\pi$, $x = -\frac{29}{48}\pi$, $x = -\frac{5}{48}\pi$, $x = \frac{19}{48}\pi$ o $x = \frac{43}{48}\pi$.