Unit Assignment: Trigonometry

MHF4U

Virtual High School

Jin Hyung Park

2020.07.21

Question 1.

a. Find all solutions for $sin(x) = \frac{\sqrt{3}}{2}$

Graph

Radians: $x = \frac{\pi}{3} + 2\pi n$, $x = \frac{2\pi}{3} + 2\pi n$

• Take the inverse side of both sides of the equation to extract *x* from inside the sine.

$$\circ \quad x = \arcsin(\frac{\sqrt{3}}{2})$$

• The exact value of $arcsin(\frac{\sqrt{3}}{2})$ is $\frac{\pi}{3}$

$$\circ \quad x = \frac{\pi}{3}$$

• The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from π to find the solution in the second quadrant.

$$\circ \quad x = \pi - \frac{\pi}{3}$$

• Simplify $\pi - \frac{\pi}{3}$

• Find the period of sin(x)

$$\circ$$
 2π

• The period of the sin(x) function is 2π so values will repeat every 2π radians in both directions.

$$\circ \quad x = \frac{\pi}{3} + 2\pi n \text{ (for any Integer } n\text{)}$$

$$\circ \quad x = \frac{2\pi}{3} + 2\pi n \text{ (for any Integer } n\text{)}$$

b. If $sin(x) = \frac{1}{3}$ and $sec(y) = \frac{5}{4}$, where $0 \le x \le \frac{\pi}{2}$ and $0 \le y \le \frac{\pi}{2}$, evaluate the expression sin(x-y).

Step 1.

- $2 \sin(x-y) + 2 \sin y \cos x = 2 \sin x \cos y$
- Now, divide by 2 which yield:
- sin(x-y) + sinycosx = sinxcosy
- Finally, solve for sin(x-y) and we get the desired identity.
- sin(x-y) = sinxcosy sinycosx

Step 2.

- $sec(y) = \frac{5}{4}$
- $5\cos(y) = 4$
- $cos(y) = \frac{4}{5}$

Step 3.

- sin(x-y) = sinxcosy sinycosx
- $sin(x y) = \frac{1}{3} * \frac{4}{5} \frac{3}{5} * cos(x)$ $cos(x) = \frac{2\sqrt{5}}{3}$
- $sin(x-y) = \frac{1}{3} * \frac{4}{5} \frac{3}{5} * \frac{2\sqrt{2}}{3}$ $sin(x-y) = \frac{4}{15} \frac{2\sqrt{2}}{5}$ $sin(x-y) = \frac{4-6\sqrt{2}}{15}$

Answer: $sin(x-y) = \frac{4-6}{15}$

Question 2.

Solve for all values of x in the given intervals:

- a) $2\cos(x) + \sin(2x) = 0$ for $0 \le x \le 2\pi$
- $2\cos(x) + 2\sin(x)\cos(x) = 0$
- $2(\cos(x) + \sin(x)\cos(x)) = 0$
- $2\cos(x)(1+\sin(x))=0$
- Case 1.
 - $2\cos(x) = 0$
 - cos(x) = 0
 - $x=\frac{\pi}{2},\frac{3\pi}{2}$ 0
- Case 2.
 - 0 1 + sin(x) = 0
 - sin(x) = -1

$$\circ \quad x = \frac{3\pi}{2}$$

- b) $2sin^2(x) = 1$ for $x \in R$
- $sin^2(x) = \frac{1}{2}$
- $sin(x) = -\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}$
- Case 1. $sin(x) = -\sqrt{\frac{1}{2}}$ $sin(x) = -\frac{\sqrt{2}}{2}$ $arcsin(sin(x)) = arcsin(-\frac{1}{2})$

- $\bullet \qquad \chi = \frac{\pi}{4}$
- The sine function to be negative in the 3 and 4 quadrants.
- Subtract the reference angle from 2π to find a reference angle.

$$\circ \quad x = 2\pi - \left(-\frac{\pi}{4}\right)$$

Add the aforementioned reference angle to π to find the solution in the third quadrant.

$$0 \quad x = 2\pi + \frac{\pi}{4} + \pi$$

Simplify the expression.

$$\circ \quad x = \frac{5\pi}{4}$$

Since the period of sin(x) is 2π , we can write as the follows:

$$\circ \quad x = \frac{5\pi}{4} + 2\pi n$$

Add 2π to every negative angle to get positive angles.

$$\circ \quad -\frac{\pi}{4} + 2\pi$$

$$\circ \quad x = \frac{7\pi}{4}$$

The answer is

$$\circ \quad x = \frac{5\pi}{4} + 2\pi n \text{ (for any Integer } n)$$

o
$$x = \frac{5\pi}{4} + 2\pi n$$
 (for any Integer n)
o $x = \frac{7\pi}{4} + 2\pi n$ (for any Integer n)

- Case 2. $sin(x) = \sqrt{\frac{1}{2}}$
- $sin(x) = \frac{\sqrt{2}}{2}$
- $\arcsin(\sin(x)) = \arcsin(\frac{\sqrt{2}}{2})$
- $\bullet \qquad \chi = \frac{\pi}{4}$
- The sine function to be positive in the 1 and 2 quadrants.
- Subtract the reference angle from π in the second quadrant.

$$\circ \quad x = \pi - \frac{\pi}{4}$$

Simplify $\pi - \frac{\pi}{4}$

$$\circ \quad \chi = \frac{3\pi}{4}$$

Since the period of sin(x) is 2π , which means that the values will repeat every 2π radians in both directions, thus we can write the function as the follows:

o
$$x = \frac{\pi}{4} + 2\pi n$$
 (for any Integer n)
o $x = \frac{3\pi}{4} + 2\pi n$ (for any Integer n)

The answer is the following by consolidating the previous answers:

c)
$$tan^{2}(x) - 3 = 0$$
 for $x \in R$

•
$$tan^2(x) = 3$$

•
$$tan(x) = \sqrt{3}, -\sqrt{3}$$

• Case 1.
$$tan(x) = \sqrt{3}$$

•
$$arctan(tan(x)) = arctan(\sqrt{3})$$

•
$$arctan(tan(x)) = \frac{\pi}{3}$$

$$\bullet \qquad \chi = \frac{\pi}{3}$$

Since the period of tan(x) is π , the answer is the as follows:

$$\circ \quad x = \frac{\pi}{3} + \pi n$$

• Case 2.
$$tan(x) = -\sqrt{3}$$

•
$$arctan(tan(x)) = arctan(-\sqrt{3})$$

•
$$arctan(tan(x)) = -\frac{\pi}{3}$$

$$\bullet \qquad x = -\frac{\pi}{3}$$

- The tangent function to be negative in the 1 and 4 quadrants.
- In order to find second solution, subtract the reference angle from π to get a solution in the third quadrant.

$$\circ \quad x = \pi - \frac{\pi}{3}$$

$$\circ \quad x = \frac{2\pi}{3}$$

The period of the tan(x) function is π which means that values would repeat every π radians in both sides.

$$\circ \quad x = \frac{2\pi}{3} + \pi n \text{ (for any Integer } n \text{)}$$

The answer is the following:

Question 3.

Prove the following identities: (If it is a one step problem please state the formula used)

- $a) \quad sin(\frac{\pi}{2} + x) = cos(x)$
- We usually begin to work on the side of equality that seems to be more complicated. Thus, choose to work from the left side.
- Using the following formula to solve the equation.
 - \circ $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
 - o angle a equals $\frac{\pi}{2}$ while angle b equals x
- $sin(\frac{\pi}{2})cos(x) + cos(\frac{\pi}{2})sin(x) = cos(x)$
- $1\cos(x) + \cos(\frac{\pi}{2})\sin(x) = \cos(x)$
- $\bullet \quad 1\cos(x) + 0\sin(x) = \cos(x)$
- cos(x) = cos(x), prove done.
- b) sin(x)cot(x) = cos(x)
- Applying the following formula:

$$\circ \quad \cot(x) = \frac{\cos(x)}{\sin(x)}$$

- $sin(x)\frac{cos(x)}{sin(x)} = cos(x)$
- $\bullet \quad \frac{\sin(x)\cos(x)}{\sin(x)} = \cos(x)$
- Cancel the common factor of the left side.
- cos(x) = cos(x), prove done.
- c) $cot^2(x) + sec^2(x) = tan^2(x) + csc^2(x)$
- Manipulate the left side using the following identity:

$$\circ cot^2(x) = -1 + csc^2(x)$$

- $-1 + csc^2(x) + sec^2(x) = tan^2(x) + csc^2(x)$
- Manipulate the left side using the following identity:

$$\circ -1 + sec^2(x) = tan^2(x)$$

- $tan^2(x) + csc^2(x) = tan^2(x) + csc^2(x)$, proof done.
- d) $sin^2(x) sin^2(y) = sin(x+y)sin(x-y)$
- We will choose to work on the right side to reach the left side.
- Using the sine of a sum formula:
 - $\circ \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
 - We can write as, $sin(x)^2 sin(y)^2 = (sin(x)cos(y) + cos(x)sin(y))sin(x y)$
 - $\circ \quad \text{Thus, } \sin(x)^2 \sin(y)^2 = (\sin(x)\cos(y) + \cos(x)\sin(y))(\sin(x)\cos(y) \cos(x)\sin(y))$
- $sin(x)^2 sin(y)^2 = (sin(x)cos(y))^2 (cos(x)sin(y))^2$
- Using the following formula:
 - $\circ \quad \cos^2(y) = 1 \sin(y)^2$
 - We can write as, $sin(x)^2 sin(y)^2 = (sin(x)^2(1 sin(y)^2)) (cos(x)sin(y))^2$
 - Thus, $sin(x)^2 sin(y)^2 = sin(x)^2 sin(x)^2 sin(y)^2 (cos(x)sin(y))^2$
- Factoring by $sin(y)^2$

$$\circ \quad \sin(x)^2 - \sin(y)^2 = \sin(y)^2 (-\cos(x)^2 - \sin(x)^2) + \sin(x)^2$$

Factoring by −1

$$\circ -\sin(y)^2(\cos(x)^2 + \sin(x)^2)$$

• Using the following formula:

$$\circ \quad \sin^2(x) + \cos^2(x) = 1$$

- We can write as, $-\sin(y)^2$
- Thus, $sin(x)^2 sin(y)^2 = sin(x)^2 sin(y)^2$, prove done.

Question 4.

Describe how to use both an equivalent trigonometric identity and a diagram to demonstrate that two trigonometric ratios are equivalent.

1. Use one of the following equivalent trigonometric expressions:

•
$$sin(\theta + \frac{3\pi}{2}) = -cos(\theta)$$

- we will choose to work on the left side to reach the right side.
- Use the following formula:

$$\circ \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

o where angle *a* equals θ, angle β equals
$$\frac{3\pi}{2}$$

$$\circ \quad sin(\theta)cos(\frac{3\pi}{2}) + cos(\theta)sin(\frac{3\pi}{2}) = -cos(\theta)$$

• Since
$$sin(\frac{3\pi}{2}) = -1$$

$$\circ \quad sin(\theta)cos(\frac{3\pi}{2}) - cos(\theta) = -cos(\theta)$$

• Since
$$cos(\frac{3\pi}{2}) = 0$$

$$0 * cos(\frac{3\pi}{2}) - cos(\theta) = -cos(\theta)$$

•
$$-\cos(\theta) = -\cos(\theta)$$
, Proof done.

2. Using a diagram demonstrates how the related angle formulas are true. Create an example to illustrate your findings in part a) (choose a value for θ and solve both sides to prove that they are equal.)

The graph of $sin(\theta)$ and $sin(\theta + \frac{3\pi}{2})$

• The graph is phase-shifted to the left by $\frac{3\pi}{2}$

The graph of cos(x) and -cos(x)

The graph is reflected by x-axis.

\$ ≪ $\cos(x)$ × $-\cos(x)$ Screenshot

We can acknowledge that two graphs are overlapped by each other, which means that the two graphs are identical.

ex) The θ which is set as $\frac{7\pi}{12}$ to prove that two expressions are identical. • $sin(\theta + \frac{3\pi}{2}) = -cos(\theta)$

•
$$sin(\theta + \frac{3\pi}{2}) = -cos(\theta)$$

- $sin(\frac{7\pi}{12} + \frac{3\pi}{2}) = -cos(\frac{7\pi}{12})$ $sin(\frac{7\pi + 18\pi}{12}) = -cos(\frac{7\pi}{12})$ $sin(\frac{25\pi}{12}) = -cos(\frac{7\pi}{12})$ $\frac{\sqrt{6}-\sqrt{2}}{4} = \frac{\sqrt{2}-\sqrt{3}}{2}$ The left side 0.25881904 is equal to the right side 0.25881904 , which means that the given statement is always true. True