Homework 2, IEOR 4732

Zongyi Liu

Feb 11, 2025

Question 1

The characteristic function of the log of stock price in Black-Scholes framework is given by:

$$\mathbb{E}\left(e^{iu\ln S_t}\right) = \mathbb{E}\left(e^{ius_t}\right)$$

$$= \exp\left(i\left(\ln S_0 + \left(r - q - \frac{\sigma^2}{2}\right)t\right)u - \frac{1}{2}\sigma^2u^2t\right)$$

$$= \exp\left(i\left(s_0 + \left(r - q - \frac{\sigma^2}{2}\right)t\right)u - \frac{1}{2}\sigma^2u^2t\right)$$

For the following parameters: Spot price, $S_0 = \$1900$; maturity, T = 0.25 year; volatility, $\sigma = 0.36$; risk-free interest rate, r = 2.00%, continuous dividend rate, q = 1.87% and strike range of K = 2000, 2100, 2200 price European call options via the following transform techniques:

- (a) Fast Fourier transform (FFT): consider $\eta = \Delta \nu = 0.25, \alpha = 0.4, 1.0, 1.4, 3.0, N = 2^n$ for n = 9, 11, 13, 15, and $\beta = \ln K \frac{\lambda N}{2}$
- (b) Fractional fast Fourier transform (FrFFT): consider $\eta = \Delta \nu = 0.25, \lambda = \Delta k = 0.1, \alpha = 0.4, 1.0, 1.4, 3.0, N = 2^n$ for n = 6, 7, 8, 9, and $\beta = \ln K \frac{\lambda N}{2}$
- (c) Fourier-cosine (COS) method: consider values [-1, 1], [-4, 4], [-8, 8], [-12, 12] for the interval [a, b] and find the sensitivity of your results to the choice of [a, b]

Compare and conclude.

Answer

Part a

I modified the code given in the sample code folder, and get the result of Fast Fourier transform for different strike prices.

Table 1: Results for Different Values of K

	$K = 2000, \ \eta = 0.25$				$K = 2100, \ \eta = 0.25$				$K = 2200, \ \eta = 0.25$			
α	$N = 2^9$	2^{11}	2^{13}	2^{15}	$N = 2^9$	2^{11}	2^{13}	2^{15}	$N = 2^9$	2^{11}	2^{13}	2^{15}
0.4	95.3281	95.3281	95.3281	95.3281	64.9160	64.9160	64.9160	64.9160	43.0286	43.0286	43.0286	43.0286
1.0	95.2467	95.2467	95.2467	95.2467	64.8346	64.8346	64.8346	64.8346	42.9472	42.9472	42.9472	42.9472
1.4	95.2467	95.2467	95.2467	95.2467	64.8346	64.8346	64.8346	64.8346	42.9472	42.9472	42.9472	42.9472
3.0	95.2467	95.2467	95.2467	95.2467	64.8346	64.8346	64.8346	64.8346	42.9472	42.9472	42.9472	42.9472

Part b

The fractional FFT procedure computes a sum of the form

$$\sum_{\gamma=1}^{N} e^{-i2\pi\gamma(j-1)(m-1)} x(j)$$

for any value of γ I modified the sample codes given, which only contains methods for VG, GBM, and Heston. I added the chunk like:

```
elif model == 'BlackScholes':
sigma = 0.36  # Volatility
params.append(sigma)
```

and in def generic CF, define the model:

```
elif (model == 'BlackScholes'):
    sigma = params[0] # Volatility

mu = np.log(S0) + (r - q - 0.5 * sigma**2) * T # Drift
    a = sigma * np.sqrt(T)
    phi = np.exp(1j * mu * u - 0.5 * a**2 * u**2)
```

Which defines the Black-Scholes model, and we can get the result for different of strike price.

Table 2: Results for Different Values of K

	$K = 2000, \ \eta = 0.25$				$K = 2100, \ \eta = 0.25$				$K = 2200, \ \eta = 0.25$			
α	$N = 2^{6}$	2^{7}	2^{8}	2^{9}	$N = 2^6$	2^{7}	2^{8}	2^{9}	$N = 2^6$	2^{7}	2^{8}	2^{9}
0.4	95.3859	95.3295	95.3295	95.3295	64.9425	64.9174	64.9174	64.9174	43.0108	43.0298	43.0298	43.0298
1.0	95.3051	95.2477	95.2477	95.2477	64.8774	64.8357	64.8357	64.8357	42.9511	42.9482	42.9482	42.9482
1.4	95.3006	95.2475	95.2475	95.2475	64.8842	64.8355	64.8355	64.8355	42.9641	42.9480	42.9480	42.9480
3.0	95.2521	95.2467	95.2467	95.2467	64.8762	64.8349	64.8349	64.8349	42.9915	42.9476	42.9476	42.9476

The FrFFT analyzes a signal at non-integer frequency intervals, whereas the FFT simply calculates the standard frequency spectrum of a discrete signal with increased speed.

Part c

The Fourier cosine series expansion of a function $f(\theta)$ on $[0,\pi]$ is

$$f(\theta) = \frac{1}{2}A_0 + \sum_{k=1}^{\infty} A_k \cos(k_k^s \theta)$$
$$= \sum_{in}^{\infty} \sum_{k=0}^{\infty} A_k \cos(k\theta)$$

with the Fourier cosine coefficient

$$A_k = \frac{2}{\pi} \int_0^{\pi} f(\theta) \cos(k\theta) d\theta$$

where \sum indicates the first term in the summation is weighted by one-half. Then the option value at time t can be written as

$$v(x,t) = C \int_{a}^{b} v(y,T)f(y \mid x)^{0} dy$$
$$= C \int_{a}^{bb^{25}} v(y,T) \overline{\sum}_{k=0}^{\infty} A_{k} \cos\left(k\frac{y-a}{b-a}\pi\right) dy$$

$$= C \sum_{k=0}^{\infty} A_k \left(\int_a^b v(y, T) \cos \left(k \frac{y-a}{b-a} \pi \right) dy \right)$$
therefore the interval $[a, b]$, and results are different

Here I tested different values for the interval [a, b], and results are different. And the result can be plotted below:

Fourier-Cosine Method									
K	[-1, 1]	[-4, 4]	[-8, 8]	[-12, 12]					
2000	2994.5770	4965.5228	4975.0742	4975.2406					
2100	3144.3059	5213.7990	5223.8279	5224.0026					
2200	3294.0347	5462.0751	5472.5816	5472.7646					

Figure 1: Sensitivity of Option Prices to Interval [a,b]

I later looked up in Fang and Oosterlee's paper, they proposed some rule of thumb based on cumulants to get an idea how to choose [a, b]. In particular, they suggested (In equation (49)):

$$[a,b] = \begin{cases} \left[c_1 \pm 12\sqrt{c_2}\right] &, n_c = 2\\ \left[c_1 \pm 10\sqrt{c_2 + \sqrt{c_4}}\right] &, n_c = 4\\ \left[c_1 \pm 10\sqrt{c_2 + \sqrt{c_4 + \sqrt{c_6}}}\right] &, n_c = 6 \end{cases}$$

where c_1, c_2, c_4, c_6 are the first, second, forth and sixth cumulants of $\ln(S_t/K)$. The cumulants, c_n , are defined by the cumulant-generating function g(t):

$$g(t) = \log \left(E\left(e^{t \cdot X}\right) \right)$$

for some random variable X. The cumulants are given by the derivatives, at zero, of g(t). Back to our model, when L is chosen as 8, which corresponds to [-4, 4], the premiums are more accurate and consistent.

Appendix

Part a

```
import numpy as np
           import math
           import time
           import cmath
           # Fixed Parameters
6
           SO = 1900 # Initial stock price
           K = 2000
                      # Strike price
           k = math.log(K) # Log of strike price
           r = 0.02 # Risk-free rate
           q = 0.0187 # Dividend yield
           T = 0.25
                        # Time to maturity
12
13
           # Parameters for FFT
14
                     # n determines the size of FFT: N = 2^n
           n = 15
           N = 2**n
           eta = 0.25 # Step-size
           alpha = 1.0 # Damping factor
18
19
           # Black-Scholes model parameters
20
           sigma = 0.36 # Volatility
           # Characteristic function for Black-Scholes
23
           def generic_CF(u, S0, r, q, T, sigma):
           mu = np.log(S0) + (r - q - 0.5 * sigma**2) * T
25
           a = sigma * np.sqrt(T)
           phi = np.exp(1j * u * mu - 0.5 * a**2 * u**2)
27
28
           return phi
29
           # FFT implementation for Black-Scholes model
           def genericFFT(S0, K, r, q, T, alpha, eta, n, sigma):
31
           lda = (2 * np.pi / N) / eta # Step-size in log strike space
           beta = np.log(K)
34
35
           # Initialize arrays
           km = np.zeros(N)
37
           xX = np.zeros(N, dtype=complex)
38
           # Discount factor
40
           df = np.exp(-r * T)
41
42
           # Define the frequency range
43
           nuJ = np.arange(N) * eta
44
           psi_nuJ = generic_CF(nuJ - (alpha + 1) * 1j, S0, r, q, T, sigma) / ((alpha
45
                + 1j * nuJ) * (alpha + 1 + 1j * nuJ))
46
           # Compute the xX vector (values for the FFT)
47
           for j in range(N):
           km[j] = beta + j * lda
49
           wJ = eta \ if \ j > 0 \ else \ eta \ / \ 2 \ \# \ Weighting for \ j = 0
50
           xX[j] = np.exp(-1j * beta * nuJ[j]) * df * psi_nuJ[j] * wJ
           # Apply FFT to the xX vector
53
           yY = np.fft.fft(xX)
```

```
# Compute the option prices
56
           cT_km = np.zeros(N)
57
           for i in range(N):
58
           multiplier = np.exp(-alpha * km[i]) / np.pi
           cT_km[i] = multiplier * np.real(yY[i])
60
61
           return km, cT_km
           # Function to calculate option price using FFT
64
           def calculate_option_price(SO, K, r, q, T, alpha, eta, n, sigma):
           start_time = time.time()
66
67
           km, cT_km = genericFFT(S0, K, r, q, T, alpha, eta, n, sigma)
68
           cT_k = np.interp(k, km, cT_km) # Interpolating the option price for the
               given strike
           elapsed_time = time.time() - start_time
71
           print(f"Option_via_FFT:_for_strike_{np.exp(k):.4f}_the_option_premium_is_{{}}{}
72
               cT_k:.4f")
           print(f"FFT_execution_time_was_{{lapsed_time:.7f}_seconds")
74
           return cT_k
           # Example usage
77
           option_price = calculate_option_price(SO, K, r, q, T, alpha, eta, n, sigma
               )
```

Part b

```
import warnings
2
            warnings.filterwarnings("ignore")
3
            import numpy as np
            import cmath
            import math
            import time
9
            # Fixed Parameters
10
            S0 = 1900
            K = 2100
12
            k = math.log(K)
13
            r = 0.02
14
15
            q = 0.0187
16
            # Parameters for FFT and FrFFT
17
18
            n_FFT = 7
19
            N_FFT = 2**n_FFT
20
21
            n_FrFFT = 7
            N_FrFFT = 2**n_FrFFT
23
            N = 2000
25
26
            #step-size
            eta = 0.25
```

```
# damping factor
29
            alpha = 3
30
            # step-size in log strike space
32
            lda_FFT = (2*math.pi/N_FFT)/eta # lda is fixed under FFT
            lda_FrFFT = 0.001 # lda is an adjustable parameter under FrFFT,
34
35
36
            #Choice of beta
37
            beta = np.log(S0)-N*lda_FFT/2
38
            #beta = np.log(S0)-N*lda_FrFFT/2
            #beta = np.log(K)
41
            #model-specific Parameters
42
            model = 'BlackScholes'
43
44
            params = []
45
            if (model == 'GBM'):
46
47
            sig = 0.30
48
            params.append(sig);
49
50
            elif model == 'BlackScholes':
51
            sigma = 0.36 # Volatility
53
            params.append(sigma)
54
            elif (model == 'VG'):
56
            sig = 0.3
            nu = 0.5
58
            theta = -0.4
60
            params.append(sig);
61
            params.append(nu);
            params.append(theta);
63
            elif (model == 'Heston'):
67
68
            kappa = 2.0
            theta = 0.05
            sig = 0.30
71
            rho = -0.70
            v0 = 0.04
74
            params.append(kappa)
            params.append(theta)
            params.append(sig)
77
            params.append(rho)
79
            params.append(v0)
80
            def generic_CF(u, params, S0, r, q, T, model):
81
82
            if (model == 'GBM'):
83
84
            sig = params[0]
85
            mu = np.log(S0) + (r-q-sig**2/2)*T
           a = sig*np.sqrt(T)
```

```
phi = np.exp(1j*mu*u-(a*u)**2/2)
88
89
            elif (model == 'BlackScholes'):
90
            sigma = params[0] # Volatility
            mu = np.log(S0) + (r - q - 0.5 * sigma**2) * T # Drift
93
            a = sigma * np.sqrt(T) # Standard deviation over the maturity period
94
            phi = np.exp(1j * mu * u - 0.5 * a**2 * u**2) # Characteristic function
95
                for Black-Scholes
96
            elif(model == 'Heston'):
99
            kappa = params[0]
            theta
                   = params[1]
            sigma
                  = params[2]
            rho
                   = params[3]
                   = params[4]
            vΟ
104
            tmp = (kappa-1j*rho*sigma*u)
106
            g = np.sqrt((sigma**2)*(u**2+1j*u)+tmp**2)
108
            pow1 = 2*kappa*theta/(sigma**2)
109
            numer1 = \frac{(kappa*theta*T*tmp)}{(sigma**2)} + 1j*u*T*r + 1j*u*math.log(S0)
111
            \log_{denum1} = pow1 * np.log(np.cosh(g*T/2)+(tmp/g)*np.sinh(g*T/2))
112
            tmp2 = ((u*u+1j*u)*v0)/(g/np.tanh(g*T/2)+tmp)
113
            log_phi = numer1 - log_denum1 - tmp2
114
            phi = np.exp(log_phi)
            \#g = np.sqrt((kappa-1j*rho*sigma*u)**2+(u*u+1j*u)*sigma*sigma)
117
            #beta = kappa-rho*sigma*1j*u
118
            #tmp = g*T/2
119
            \#temp1 = 1j*(np.log(S0)+(r-q)*T)*u + kappa*theta*T*beta/(sigma*sigma)
            \#temp2 = -(u*u+1j*u)*v0/(g/np.tanh(tmp)+beta)
            #temp3 = (2*kappa*theta/(sigma*sigma))*np.log(np.cosh(tmp)+(beta/g)*np.
123
                sinh(tmp))
124
            #phi = np.exp(temp1+temp2-temp3);
126
127
            elif (model == 'VG'):
128
129
            sigma = params[0];
                   = params[1];
131
            theta = params[2];
            if (nu == 0):
            mu = np.log(S0) + (r-q - theta -0.5*sigma**2)*T
            phi = np.exp(1j*u*mu) * np.exp((1j*theta*u-0.5*sigma**2*u**2)*T)
            else:
137
            mu = np.log(S0) + (r-q + np.log(1-theta*nu-0.5*sigma**2*nu)/nu)*T
138
            phi = np.exp(1j*u*mu)*((1-1j*nu*theta*u+0.5*nu*sigma**2*u**2)**(-T/nu))
140
            return phi
141
            def evaluateIntegral(params, S0, K, r, q, T, alpha, eta, N, model):
142
143
            # Just one strike at a time
144
```

```
# no need for Fast Fourier Transform
145
146
            # discount factor
147
            df = math.exp(-r*T)
148
149
            sum1 = 0
150
            for j in range(N):
151
            nuJ = j*eta
            psi_nuJ = df*generic_CF(nuJ-(alpha+1)*1j, params, S0, r, q, T, model)/((
153
                alpha + 1j*nuJ)*(alpha+1+1j*nuJ))
            if j == 0:
            wJ = (eta/2)
            else:
156
            wJ = eta
157
            sum1 += np.exp(-1j*nuJ*k)*psi_nuJ*wJ
158
159
            cT_k = (np.exp(-alpha*k)/math.pi)*sum1
160
161
            return np.real(cT_k)
162
163
            def genericFFT(params, S0, K, r, q, T, alpha, eta, n, model):
165
            N = 2 **n
166
167
            # step-size in log strike space
168
            lda = (2*np.pi/N)/eta
169
            #Choice of beta
171
            \#beta = np.log(S0)-N*lda/2
172
            #beta = np.log(K)
173
174
            # forming vector x and strikes km for m=1,...,N
175
            km = np.zeros((N))
176
            xX = np.zeros((N))
177
178
            # discount factor
179
            df = math.exp(-r*T)
            nuJ = np.arange(N)*eta
182
            psi_nuJ = generic_CF(nuJ-(alpha+1)*1j, params, S0, r, q, T, model)/((alpha
183
                 + 1j*nuJ)*(alpha+1+1j*nuJ))
184
            for j in range(N):
185
            km[j] = beta+j*lda
186
            if j == 0:
            wJ = (eta/2)
188
            else:
189
            wJ = eta
190
191
            xX[j] = np.exp(-1j*beta*nuJ[j])*df*psi_nuJ[j]*wJ
192
            yY = np.fft.fft(xX)
194
            cT_km = np.zeros((N))
195
            for i in range(N):
196
            multiplier = np.exp(-alpha*km[i])/math.pi
197
            cT_km[i] = multiplier*np.real(yY[i])
198
199
            return km, cT_km
201
```

```
def genericFrFFT(params, S0, K, r, q, T, alpha, eta, n, lda, model):
202
203
            N = 2 **n
204
            gamma = eta*lda/(2*math.pi)
205
206
            #Choice of beta
207
            \#beta = np.log(S0)-N*lda/2
208
            beta = np.log(K)
209
210
            # initialize x, y, z, and cT_km
211
            km = np.zeros((N))
            x = np.zeros((N))
            y = np.zeros((2*N), dtype=np.complex128)
214
            z = np.zeros((2*N), dtype=np.complex128)
215
            cT_km = np.zeros((N))
216
217
            # discount factor
218
            df = math.exp(-r*T)
219
220
            # compute x
221
            nuJ = np.arange(N)*eta
222
            psi_nuJ = generic_CF(nuJ-(alpha+1)*1j, params, SO, r, q, T, model)/((alpha
223
                 + 1j*nuJ)*(alpha+1+1j*nuJ))
            for j in range(N):
            km[j] = beta+j*lda
226
            if j == 0:
227
            wJ = (eta/2)
228
            else:
229
            wJ = eta
230
            x[j] = np.exp(-1j*beta*nuJ[j])*df*psi_nuJ[j]*wJ
231
232
            # set up y
233
            for i in range(N):
234
            y[i] = np.exp(-1j*math.pi*gamma*i**2)*x[i]
235
            y[N:] = 0
236
237
            # set up z
            for i in range(N):
239
            z[i] = np.exp(1j*math.pi*gamma*i**2)
240
            z[N:] = z[:N][::-1]
241
242
            # compute xi_hat
243
            xi_hat = np.fft.ifft(np.fft.fft(y) * np.fft.fft(z))
244
            # compute call prices
246
            for i in range(N):
247
            cT_km[i] = np.exp(-alpha*(beta + i*lda))/math.pi * (np.exp(-1j*math.pi*
248
                gamma*i**2)*xi_hat[i]).real
249
            return km, cT_km
251
            print('\(\u)')
252
            print('=======,')
253
            print('Model_is_\%s' % model)
254
            print('----')
255
256
257
            T = 0.25
```

```
# FFT
259
            print('\( \)')
260
            start_time = time.time()
261
            km, cT_km = genericFFT(params, SO, K, r, q, T, alpha, eta, n_FFT, model)
262
            \#cT_k = cT_km[0]
263
            cT_k = np.interp(k, km, cT_km)
264
265
            elapsed_time = time.time() - start_time
266
267
            \#cT_k = np.interp(np.log(k), km, cT_km)
            print("OptionuviauFFT:uforustrikeu%sutheuoptionupremiumuisu%6.4f" % (np.
                exp(k), cT_k)
            #print("Option via FFT: for strike %s the option premium is %6.4f" % (np.
270
                exp(k), cT_km[0])
            print('FFT_execution_time_was_%0.7f' % elapsed_time)
271
272
            # FrFFT
273
            print('u')
            start_time = time.time()
275
            km, cT_km = genericFrFFT(params, S0, K, r, q, T, alpha, eta, n_FrFFT,
276
                lda_FrFFT, model)
            \#cT_k = cT_km[0]
277
            cT_k = np.interp(k, km, cT_km)
            elapsed_time = time.time() - start_time
281
            #cT_k = np.interp(np.log(), km, cT_km)
282
            print("Option_via_FrFFT:_for_strike_%s_the_option_premium_is_%6.4f" % (np.
283
                exp(k), cT_k)
            #print("Option via FFT: for strike %s the option premium is %6.4f" % (np.
284
                exp(k), cT_km[0])
            print('FrFFT_execution_time_was_%0.7f' % elapsed_time)
285
286
287
            # Integral
288
            print('\(\u)')
289
            start_time = time.time()
            cT_k = evaluateIntegral(params, S0, K, r, q, T, alpha, eta, N, model)
            elapsed_time = time.time() - start_time
            print("Option_via_Integration:_for_strike_%s_the_option_premium_is_%6.4f"
293
                % (np.exp(k), cT_k))
            print('Evaluationuofuintegralutimeuwasu%0.7f' % elapsed_time)
294
```

Part c

```
k = np.arange(N)
13
                    omega_k = k * np.pi / (b - a)
14
                    # Characteristic function evaluations
16
                   phi_k = char_func(omega_k, S0, r, q, sigma, T) * np.exp(-1j *
                       omega_k * a)
18
                   # Payoff function coefficients
19
                   chi_k = (np.sin(omega_k * (b - a)) - np.sin(omega_k * (-a))) /
20
                       omega_k
                    chi_k[0] = b - a # Handle k=0 separately
                   # COS method summation
23
                   V = np.real(phi_k * chi_k * 2 / (b - a))
24
25
                   # Discounted expectation
26
                   call_price = np.exp(-r * T) * np.sum(V)
27
                   return call_price * K
29
                   # Parameters
30
                   S0 = 1900 # Spot price
31
                   T = 0.25 # Maturity in years
                   sigma = 0.36 # Volatility
                   r = 0.02 # Risk-free rate
34
                   q = 0.0187 # Continuous dividend rate
                   strike_prices = [2000, 2100, 2200] # Strike prices
36
                   N = 100 # Number of terms in Fourier series
37
                   intervals = [(-1, 1), (-4, 4), (-8, 8), (-12, 12)] # Intervals [a
38
                       , b]
39
                   # Compute option prices for different intervals
40
                   results = {}
41
                   for a, b in intervals:
42
                   results[(a, b)] = {K: cos_method_call(SO, K, T, r, q, sigma, N, a,
43
                        b) for K in strike_prices}
44
                    # Print results
                   for (a, b), prices in results.items():
                   print(f"Interval_[{a},_{[b}]:")
47
                   for K, price in prices.items():
48
                   print(f"UUStrikeU{K}:U{price:.4f}")
49
```