

RL62M02

Bluetooth® Low Energy 5.0 Module

Mesh AT Command Programming Guide

VERSION 1.0

REVISION HISTORY

Version	Date	Revision Description
1.0	22/3/21	Preliminary release.

目錄

1.	介紹		5
1.	1	應用接線圖	5
1.3	2	模組說明	5
1.3	3	支援硬體介面	6
1.	4	支援藍芽 Profile	6
1.	5	指令格式	6
1.0	6	回傳指令格式	6
1.	7	模組預設參數	6
2.	指令	表	7
2.	1.	通用指令	7
	2.1.1	查詢韌體版本	7
	2.1.2	設置 UART 波特率	7
	2.1.3	設置藍芽名稱	7
	2.1.4	重啟藍芽模組	8
	2.1.5	回復原廠設定	8
	2.1.6	查詢藍芽 Mesh 模組角色	
	2.1.7	清除 Mesh 網路配置	9
2.	2.	Provisioner 控制指令	10
	2.2.1	掃描 Mesh 節點設備	10
	2.2.2	開啟 Mesh PB-ADV 通道	10
	2.2.3	關閉 Mesh PB-ADV 通道	11
	2.2.4	開啟 Provisioning 功能	11
	2.2.5	查詢 composition data page 0	12
	2.2.6	查詢配置節點設備清單	12
	2.2.7	查詢單一節點設備在線狀態	12
	2.2.8	設置節點的 AppKey	13
	2.2.9	查詢節點的 AppKey	
	2.2.10		
	2.2.11	L 設置新增節點 Model 訂閱的 Group 位址	14

2.2.12	設置刪除節點 Model 訂閱的 Group 位址	14
2.2.13	查詢節點 Model 訂閱的 Group 位址	14
2.2.14	設置節點 Model 的 Publish 位址	15
2.2.15	刪除節點 Model 的 Publish 位址	15
2.2.16	查詢節點 Model 的 Publish 位址	15
2.2.17	設置 SIG Model - Generic on off Model 的狀態	16
2.2.18	查詢 SIG Model - Generic on off Model 的狀態	16
2.2.19	設置 Vendor Model - Datatrans Model 的狀態	17
2.2.20	查詢 Vendor Model - Datatrans Model 的狀態	17
2.2.21	GATT 透傳服務發送數據	18
2.3.	Device 控制指令	19
2.3.1	設置節點設備 UUID	19
2.3.2	查詢節點設備 UUID	19
2.3.3	設置 SIG Model - Generic on off Model 的狀態	19
2.3.4	查詢 SIG Model - Generic on off Model 的狀態	20
2.3.5	設置 Vendor Model - Datatrans Model 的狀態	20
2.3.6	查詢 Vendor Model - Datatrans Model 的狀態	20
2.3.7	GATT 透傳服務發送數據	21
3. 藍芽	Mesh Model 列表	22
3.1. F	Provisioner - Mesh Model list	22
3.2.	Device - Mesh Model list	22
∕ 乾芒 8	服 <u>黎</u> 列夫	22

1. 介紹

此文件將介紹關於本司開發之 RL62M02 藍芽 5.0 Mesh 模組的 AT 指令使用方法與應用電路,並提供範例供開發者快速上手以利開發。

1.1 應用接線圖

Figure 1-1 應用電路圖

1.2 模組說明

本司提供兩種藍芽 5.0 Mesh 模組,各自擔任不同的角色來使用,出廠時就會固定並且不同自行變動,分別為 Provisioner 與 Device 角色。

- Provisioner Role: Mesh 網路管理者
- Device Role: Mesh 節點(Node)

Mesh 網路是多對多的通訊,各節點並不知道其他節點存在,必須要透過 Provisioner 去配置各節點的 NetKey、AppKey、Unicast Address、Bind Model、Publish、Subscribe Group 等,各Node 之間才可進入此 Mesh 網路互相通訊。

1.3 支援硬體介面

UART

1.4 支援藍芽 Profile

- Mesh Profile
- Mesh Model
- GATT Server (Generic Attribute Profile)

1.5 指令格式

- 指令開頭都是 AT,並以"\r\n"為結束
- 如果指令需要設置參數,相關參數都必須放於(space)之後
- 指令執行成功將回覆"SUCCESS",失敗則回覆"ERROR",並且不會有參數<param>

1.6 回傳指令格式

INDICATION {<param>...}\r\n

- 回傳指令都會以"\r\n"為結尾,且開頭會有(INDICATION)-MSG 識別碼
- 如果回傳指令有包含參數,參數都會於(space)之後

1.7 模組預設參數

- Bluetooth Default Settings
 - Local Name: RL62M-PROVISIONER

RL62M-DEVICE

UART Default Settings

Baud Rate: 115200bps

Data Bits: 8

Parity Bit: None

Stop Bits: 1

Flow Control: Disable

2. 指令表

2.1. 通用指令

2.1.1 查詢韌體版本

指令	AT+VER
返回值	VER-MSG SUCCESS <ver_code></ver_code>
說明	列出目前藍芽韌體版本
範例	>> AT+VER\r\n << VER-MSG SUCCESS 1.0.0\r\n

2.1.2 設置 UART 波特率

指令	AT+BAUD [param]
返回值	BAUD-MSG {SUCCESS/ERROR}
說明	可設置串口波特率·預設串口波特率=115200bps 有效串口波特率為: [param] = 9600bps, 38400bps, 115200bps, 921600bps, 1000000bps
範例	>> AT+BAUD 9600\r\n << BAUD-MSG SUCCESS\r\n

2.1.3 設置藍芽名稱

指令	AT+NAME [param]
返回值	NAME-MSG {SUCCESS/ERROR}
說明	[param]=xxxxxx; 設置藍芽名稱 限制 20 個字元以內·需重啟設備才生效
範例	<< AT+NAME BLE_TEST\r\n >> NAME-MSG SUCCESS\r\n

2.1.4 重啟藍芽模組

指令	AT+REBOOT
返回值	REBOOT-MSG {SUCCESS/ERROR}
說明	重啟藍芽模組; 重啟時間為 500ms
範例	<< AT+REBOOT\r\n >> REBOOT-MSG SUCCESS\r\n >> SYS-MSG PROVISIONER READY\r\n

2.1.5 回復原廠設定

指令	AT+RESET
返回值	RESET-MSG {SUCCESS/ERROR}
說明	回復原廠設定並重啟; 重啟時間為 500ms
範例	<< AT+RESET\r\n >> RESET-MSG SUCCESS\r\n >> SYS-MSG PROVISIONER READY\r\n

2.1.6 查詢藍芽 Mesh 模組角色

指令	AT+MRG
返回值	MRG-MSG {SUCCESS/ERROR} {PROVISIONER/DEVICE}
說明	可查詢藍芽模組當前角色為"PROVISIONER" 或 "DEVICE"
範例	<< AT+MRG\r\n >> MRG-MSG SUCCESS PROVISIONER\r\n

2.1.7 清除 Mesh 網路配置

指令	AT+NR [param]		
返回值	NR-MSG {SUCCESS/ERROR} <unicast_addr></unicast_addr>		
說明	可清除 Mesh provisioned 的資訊,清除後當前保存的 Mesh 網路節點資料將會變成 unprov 的狀態,必須重新 provisioning 才可繼續進入 Mesh 網路通訊。 Provisioner Role: [param] = unicast_address 如果無輸入清除的 unicast address,將會清除所有保存的設備,如果有輸入清除的 unicast address,只會清除目標地址的設備。 Device Role: 只能清除本設備的 Mesh provisioned 的資訊,所以不需要帶入 unicast address 此指令執行成功後,500ms 後將會自動重啟模組。		
範例	<< AT+NR\r\n >> NR-MSG SUCCESS 0x0000\r\n >> SYS-MSG PROVISIONER READY\r\n		

2.2. Provisioner 控制指令

2.2.1 掃描 Mesh 節點設備

指令	AT+DIS [param]
	DIS-MSG {SUCCESS/ERROR}
返回值	如果發現設備,會持續打印下列訊息
	DIS-MSG <mac_addr> <rssi> <uuid></uuid></rssi></mac_addr>
	可開啟/關閉掃描當前未被配置過的 Mesh 節點設備
說明	[param]=1:開啟 Mesh 節點設備掃描
	[param]=0:關閉 Mesh 節點設備掃描
	<< AT+DIS 1\r\n
	>> DIS-MSG SUCCESS\r\n
	>> DIS-MSG 655600000152 -48 123E4567E89B12D3A456655600000152\r\n
範例	>> DIS-MSG 655600000152 -48 123E4567E89B12D3A456655600000153\r\n
	>> DIS-MSG 655600000152 -48 123E4567E89B12D3A456655600000151\r\n
	<< AT+DIS 0\r\n
	>> DIS-MSG SUCCESS \r\n

2.2.2 開啟 Mesh PB-ADV 通道

指令	AT+PBADVCON [DEV_UUID]
返回值 PBADVCON-MSG {SUCCESS/ERROR}	
說明	開啟 PB-ADV 的通道·要配置節點設備時需要先使用此指令開啟 PB-ADV 通道· 才可做 provisioning·UUID 可透過 AT+DIS 搜尋獲得 <param/> =16bytes Device UUID
範例	<< AT+PBADVCON 123E4567E89B12D3A456655600000151\r\n >> PBADVCON-MSG SUCCESS\r\n

2.2.3 關閉 Mesh PB-ADV 通道

指令	AT+PBADVDISC
返回值	PBADVDISC-MSG {SUCCESS/ERROR}
說明	關閉 PB-ADV 的通道
範例	<< AT+PBADVCON 123E4567E89B12D3A456655600000152\r\n >> PBADVCON-MSG SUCCESS\r\n << AT+PBADVDISC\r\n >> PBADVDISC-MSG SUCCESS\r\n

2.2.4 開啟 Provisioning 功能

指令	AT+PROV
返回值	PROV-MSG {SUCCESS/ERROR} <unicast_address></unicast_address>
說明	開啟 Provisioning 功能,就會開始配置 Mesh 節點, 此功能要先開啟 PB-ADV 功能才有效,Provisioner 配置成功時間約 3~5 秒,配 置成功後,返回值即代表目標節點的位址,任何通訊都是透過此位址傳接收。
範例	<pre><< AT+PBADVCON 123E4567E89B12D3A456655600000152\r\n >> PBADVCON-MSG SUCCESS\r\n << AT+PROV\r\n >> PROV-MSG SUCCESS 0x0100\r\n</pre>

2.2.5 查詢 composition data page 0

指令	AT+CDG [dst]
返回值	CDG-MSG <index0> <src> <cid> <pid> <vid> <rpl> <feature> CDG-MSG <index1> <element_idx> <s_num> {<sig_model_id>} CDG-MSG <index2> <element_idx> <v_num> {<vendor_model_id>}</vendor_model_id></v_num></element_idx></index2></sig_model_id></s_num></element_idx></index1></feature></rpl></vid></pid></cid></src></index0>
說明	查詢節點端的資訊與 Mesh Model。 INDEX = 0 為節點資訊 INDEX = 1 為節點 Mesh SIG model 資訊 INDEX = 2 為節點 Mesh Vendor model 資訊
範例	<pre><< AT+CDG 0x100\r\n >> CDG-MSG 0 0x0100 0x005D 0x0000 0x0000 0x0014 0x000F\r\n >> CDG-MSG 1 0 3 0x0000FFFF 0x0002FFFF 0x1000FFFF\r\n >> CDG-MSG 2 0 3 0x0000005D 0x0003005D 0x0004005D\r\n</pre>

2.2.6 查詢配置節點設備清單

指令	AT+NL
返回值	NL-MSG <index> <unicast_addr> <element_num> <state_online></state_online></element_num></unicast_addr></index>
說明	查詢所有已配置節點清單,並且可以查詢所有節點設備是不是在線/離線, 系統每5秒會自動詢問所有節點設備在線狀態。
範例	<< AT+NL\r\n >> NL-MSG 0 0x0100 1 1\r\n >> NL-MSG 1 0x0101 1 0\r\n >> NL-MSG 2 0x0102 1 1\r\n

2.2.7 查詢單一節點設備在線狀態

指令	AT+NSO [unicast_addr]
返回值	NSO-MSG <unicast_addr> <state_online></state_online></unicast_addr>
說明	查詢單一位址在線狀態。
範例	<< AT+NSO 0x100\r\n >> NSO-MSG 0x0100 1\r\n << AT+NSO 0x101\r\n >> NSO-MSG 0x0101 0\r\n

2.2.8 設置節點的 AppKey

指令	AT+AKA [dst] [app_key_index] [net_key_index]
返回值	AKA-MSG {SUCCESS/ERROR}
說明	設置目標節點的 AppKey·並將此 Appkey 綁定在 NetKey 上 [app_key_index] = 0, 1 [net_key_index] = 0, 1
範例	<< AT+AKA 0x100 0 0\r\n >> AKA-MSG SUCCESS\r\n

2.2.9 查詢節點的 AppKey

指令	AT+AKG [dst] [net_key_idx]
返回值	AKG-MSG {SUCCESS/ERROR} <app_key_index></app_key_index>
說明	設置目標節點的 AppKey,並將此 Appkey 綁定在 NetKey 上 [app_key_idx] = 0, 1 [net_key_idx] = 0, 1
範例	<< AT+AKG 0x100 0\r\n >> AKG-MSG SUCCESS 0\r\n

2.2.10 設置節點綁定 Model 的 Appkey

指令	AT+MAKB [dst] [element_index] [model_id] [app_key_index]
返回值	MAKB-MSG {SUCCESS/ERROR}
說明	設置目標節點的 Model 綁定 AppKey‧即可使用此 Model 進行通訊
範例	<< AT+MAKB 0x100 0 0x1000ffff 0\r\n >> MAKB-MSG SUCCESS\r\n

2.2.11 設置新增節點 Model 訂閱的 Group 位址

指令	AT+MSAA [dst] [element_index] [model_id] [Group_addr]
返回值	MSAA-MSG {SUCCESS/ERROR}
說明	設置目標節點 Model 訂閱 Group 地址,不同設備中相同 Model 可以訂閱相同的 Group 地址,即可實現同時控制,且 Model 可設定多組 Group Address。 Group 地址範圍: 0xc000~0xffff
範例	<< AT+MSAA 0x100 0 0x1000ffff 0xc000\r\n >> MSAA-MSG SUCCESS\r\n

2.2.12 設置刪除節點 Model 訂閱的 Group 位址

指令	AT+MSAD [dst] [element_index] [model_id] [Group_addr]
返回值	MSAD-MSG {SUCCESS/ERROR}
說明	刪除目標節點 Model 訂閱的 Group 地址
範例	<< AT+MSAD 0x100 0 x1000ffff 0xc000\r\n >> MSAD-MSG SUCCESS\r\n

2.2.13 查詢節點 Model 訂閱的 Group 位址

指令	AT+MSAG [dst] [element_index] [model_id]
返回值	MSAG-MSG <index> <src> <model_id> <group_addr></group_addr></model_id></src></index>
說明	查詢目標節點 Model 被訂閱的所有 Group Address。
範例	<pre><< AT+MSAA 0x100 0 x1000ffff 0xc000\r\n >> MSAA-MSG SUCCESS\r\n << AT+MSAA 0x100 0 x1000ffff 0xc001\r\n >> MSAA-MSG SUCCESS\r\n << AT+MSAG 0x100 0 x1000ffff\r\n >> MSAG-MSG 0 0x0100 0x1000FFFF 0xC000\r\n >> MSAG-MSG 1 0x0100 0x1000FFFF 0xC001\r\n</pre>

2.2.14 設置節點 Model 的 Publish 位址

指令	AT+MPAS [dst] [element_idx] [model_id] [publish_addr] [publish_app_key_idx]
返回值	MPAS-MSG {SUCCESS/ERROR}
說明	設置目標節點的 Model publish address。如果有設定 Publish address,當綁定的 Model 狀態改變的時候,會自動發送自身狀態到 publish 的地址上。 Publish address 可以是不同節點之 unicast address,也可以是 Group address。
範例	<< AT+MPAS 0x100 0 0x1000ffff 0x101 0\r\n >> MPAS-MSG SUCCESS\r\n

2.2.15 刪除節點 Model 的 Publish 位址

指令	AT+MPAD [dst] [element_idx] [model_id] [publish_app_key_idx]
返回值	MPAD-MSG {SUCCESS/ERROR}
說明	刪除目標節點已設置過的 Model publish address。
範例	<< AT+MPAD 0x100 0 0x1000ffff 0\r\n >> MPAD-MSG SUCCESS\r\n

2.2.16 查詢節點 Model 的 Publish 位址

指令	AT+MPAG [dst] [element_idx] [model_id]
返回值	MPAD-MSG {SUCCESS/ERROR} < publish_address>
說明	查詢目標節點已設置過的 Model publish address。
範例	<< AT+MPAG 0x100 0 0x1000ffff\r\n >> MPAG-MSG SUCCESS 0x0101\r\n

2.2.17 設置 SIG Model - Generic on off Model 的狀態

指令	AT+GOOS [dst] [on/off] [ack] [app_key_idx] [steps] [resolution] [delay]
返回值	GOOS-MSG {SUCCESS/ERROR}
	-當有設置 ACK 時,將會打印下列
	GOOG-MSG <unicast_addr> <element_idx> <on off=""></on></element_idx></unicast_addr>
說明	當目標節點 Generic on off model 有被綁定之後,
	即可透過此指令發送且設定目標節點的 Generic on/off model 狀態。
範例	<< AT+GOOS 0x100 1 1 0 0 0 0\r\n
	>> GOOS-MSG SUCCESS\r\n
	>> GOOG-MSG 0x0100 0 1\r\n

2.2.18 查詢 SIG Model - Generic on off Model 的狀態

指令	AT+GOOG [dst] [element_index] [app_key_idx]
	GOOS-MSG {SUCCESS/ERROR}
返回值	-當收到目標節點資料後,將會打印下列
	GOOG-MSG <unicast_addr> <element_idx> <on off=""></on></element_idx></unicast_addr>
說明	當目標節點 Generic on off model 有被綁定之後,
□ □兀叶刀	即可透過此指令發送且讀取目標節點的 Generic on/off model 狀態。
	<< AT+GOOG 0x100 0 0\r\n
	>> GOOG-MSG SUCCESS\r\n
範例	>> GOOG-MSG 0x0100 0 1\r\n
	<< AT+GOOS 0x100 0 0 0 0 0 0 \r\n
	>> GOOS-MSG SUCCESS\r\n
	<< AT+GOOG 0x100 0 0\r\n
	>> GOOG-MSG SUCCESS\r\n
	>> GOOG-MSG 0x0100 0 0\r\n

2.2.19 設置 Vendor Model - Datatrans Model 的狀態

指令	AT+MDTS [dst] [element_index] [app_key_idx] [ack] [data(1~20bytes)]
返回值	MDTS-MSG {SUCCESS/ERROR}
	-當有設置 ACK 時・將會收到下列
	MDTS-MSG <unicast_addr> <element_idx> <send_bytes></send_bytes></element_idx></unicast_addr>
說明	當目標節點 Datatrans model 有被綁定之後,
	即可透過此指令發送且設定目標節點的 datatrans model 狀態。
範例	<< AT+MDTS 0x100 0 0 1 0x1122335566778899\r\n
	>> MDTS-MSG SUCCESS\r\n
	>> MDTS-MSG 0x0100 0 8\r\n

2.2.20 查詢 Vendor Model - Datatrans Model 的狀態

指令	AT+MDTG [dst] [element_index] [app_key_idx] [read_data_len]
返回值	MDTG-MSG <unicast_addr> <element_idx> <read_data></read_data></element_idx></unicast_addr>
說明	當目標節點 Datatrans model 有被綁定後,即可透過此指令發送且讀取目標節點的 Datatrans model 狀態。
	<< AT+MDTG 0x100 0 0 3\r\n >> MDTG-MSG SUCCESS\r\n >> MDTG-MSG 0x0100 0 112233\r\n
範例	<< AT+MDTS 0x100 0 0 0 0x1122335566778899\r\n >> MDTS-MSG SUCCESS \r\n << AT+MDTG 0x100 0 0 5\r\n >> MDTG-MSG SUCCESS \r\n >> MDTG-MSG 0x0100 0 1122334455\r\n

2.2.21 GATT 透傳服務發送數據

指令	AT+GDTS [Data(1~20Bytes)]
返回值	GDTS-MSG {SUCCESS/ERROR}
說明	當 GATT 連線成功且 Notifications enabled,即可透過此指令傳送數據至對端
範例	<< AT+GDTS 0x112233445566\r\n >> GDTS-MSG SUCCESS\r\n

2.3. Device 控制指令

2.3.1 設置節點設備 UUID

指令	AT+DUS <16Bytes UUID>
返回值	DUS-MSG {SUCCESS/ERROR}
說明	設置當前設備的 UUID
範例	<< AT+DUS 123E4567E89B12D3A456655600000144\r\n >> DUS-MSG SUCCESS\r\n

2.3.2 查詢節點設備 UUID

指令	AT+DUG
返回值	DUG-MSG {SUCCESS/ERROR} < UUID>
說明	查詢當前設備的 UUID
範例	<< AT+DUG\r\n >> DUG-MSG SUCCESS 123E4567E89B12D3A456655600000152 \r\n

2.3.3 設置 SIG Model - Generic on off Model 的狀態

指令	AT+GOOS [element_index] [on/off]
返回值	GOOS-MSG {SUCCESS/ERROR}
說明	當此節點設備 Generic on off model 有被綁定之後,即可透過指令設置 Generic on off model 狀態並主動發送至 Provisioner。
範例	<< AT+GOOS 0 1\r\n >> GOOS-MSG SUCCESS\r\n

2.3.4 查詢 SIG Model - Generic on off Model 的狀態

指令	AT+GOOG [element_index]
返回值	GOOG-MSG <unicast_addr> <element_idx> <on off=""></on></element_idx></unicast_addr>
說明	當此節點設備 Generic on off model 有被綁定之後,即可透過指令讀取設備的 Generic on/off model 狀態。
範例	<< AT+GOOG 0\r\n >> GOOG-MSG 0x0100 0 0\r\n

2.3.5 設置 Vendor Model - Datatrans Model 的狀態

指令	AT+MDTS [element_index] [data(1~20bytes)]
返回值	MDTS-MSG {SUCCESS/ERROR}
說明	當此節點 Datatrans model 有被綁定之後,即可透過指令設置 Datatrans model 狀態並主動發送至 Provisioner。
範例	<< AT+MDTS 0 0x1122334455\r\n >> MDTS-MSG SUCCESS\r\n

2.3.6 查詢 Vendor Model - Datatrans Model 的狀態

指令	AT+MDTG [element_index] [get_data_len]	
返回值	MDTS-MSG <unicast_addr> <element_idx> <data></data></element_idx></unicast_addr>	
說明	當此節點設備 Datatrans model 有被綁定之後,即可透過指令讀取設備的 Datatrans model 的數據長度。	
範例	<< AT+MDTG 0 5\r\n >> MDTG-MSG 0x0100 0 1122334455\r\n	

2.3.7 GATT 透傳服務發送數據

指令	AT+GDTS [Data(1~20Bytes)]
返回值	GDTS-MSG {SUCCESS/ERROR}
說明	當 GATT 連線成功且 Notifications enabled,即可透過此指令傳送數據至對端
範例	<< AT+GDTS 0x112233445566\r\n >> GDTS-MSG SUCCESS\r\n

3. 藍芽 Mesh Model 列表

3.1. Provisioner - Mesh Model list

Model Index	Model ID	Model Name	Model Define
0	0x0000005D	Ping Client	Vendor Model
1	0x0005005D	Data Trans Client	Vendor Model
2	0x1001FFFF	Generic On/Off Client	SIG Model

3.2. Device - Mesh Model list

Model Index	Model ID	Model Name	Model Define
0	0x0000005D	Ping Client	Vendor Model
1	0x0004005D	Data Trans Server	Vendor Model
2	0x1000FFFF	Generic On/Off Client	SIG Model

4. 藍芽服務列表

相關藍芽 GATT 服務定義說明如下

Service Name	OTA service
UUID	0000D0FF-3C17-D293-8E48-14FE2E4DA212
說明	用於 OTA 更新,必須搭配本司所開發之 APP 使用

Service Name	DataTrans service	
UUID	524CACC0-3C17-D293-8E48-14FE2E4DA212	
說明	透傳數據傳輸使用,傳送與接收都使用此服務	
Characteristic	UUID	Properties
RX	0000D001-0000-1000-8000-00805F9B34FB	Write, Write No Response
тх	0000D002-0000-1000-8000-00805F9B34FB	Notify