Accept-Reject Algorithm

Let $\pi(x)$ be out *Target density*, i.e. the density we want to sample from.

Accept-Reject Algorithm

Choose initial value $x^{(0)}$.

For t = 1, 2, ..., T

- 1. Generate **Proposal**: $y \sim q(x^{(t-1)}, y)$.
- 2. Accept proposal with probability: $a(x^{(t-1)},y)$ otherwise reject it.
- 3. If accepting: $x^{(t)} = y$
- 4. If rejecting: $x^{(t)} = x^{(t-1)}$

This algorithm generate a realisation of a time homogeneous Markov chain.

How do we choose q(x,y) and a(x,y) so that the unique invariant distribution of the resulting Markov chain is given by $\pi(x)$?

The Metropolis-Hastings algorithm

How to choose q(x,y) and a(x,y)?

One choice leads to the Metropolis-Hasting algorithm. The user specifies a proposal kernel q(x,y). The algorithm then "automatically" chooses the correct acceptance probability.

Metropolis-Hastings algorithm

- lacktriangle Choose any proposal kernel q(x,y)
- Define the Hastings ratio

$$H(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},$$

where $H(x,y) = \infty$ if $\pi(x)a(x,y) = 0$.

■ The acceptance probability is

$$a(x,y) = \min\{1, H(x,y)\}.$$

The Metropolis algorithm

A special case of the MH-algorithm is when the proposal kernel is symmetric:

$$q(x,y) = q(y,x)$$

In this case the Hastings-ratio simplifies to

$$H(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)} = \frac{\pi(y)}{\pi(x)}.$$

Example: The most common example, is when the proposal is normal distributed with x as the mean value, and τ_p as the precision:

$$q(x,y) = \sqrt{\frac{\tau_p}{2\pi}} \exp\left(-\frac{1}{2}\tau_p(y-x)^2\right).$$

Clearly, q(x,y) = q(y,x).

Burn-in

- Generate $X^{(0)} \sim \pi_0(x)$, an initial distribution, typically different from $\pi(x)$.
- Create irreducible Markov chain $X^{(0)}, X^{(1)}, X^{(2)}, \ldots$ with $\pi(x)$ as invariant distribution.
- For small values of t the distribution of $X^{(t)}$ can be quite different from $\pi(x)$.
- As a consequence, the sample mean

$$\frac{1}{T} \sum_{t=1}^{T} X^{(t)}$$

is biased, i.e. $\mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}X^{(t)}\right]\neq\mu.$

Instead consider

$$\frac{1}{T} \sum_{t=1}^{T} X^{(m+t)},$$

where m is the length of the **burn-in**

The effect of burn-in

Variance of the sample mean: IID Case

Assume we have independent samples $X^{(1)}, X^{(2)}, \dots, X^{(T)}$ from $\pi(x)$.

Assume $E[X^{(t)}] = \mu$ and $Var[X^{(t)}] = \sigma^2$.

The sample mean is

$$\frac{1}{T} \sum_{t=1}^{T} X^{(t)}$$

For the sample mean we have the following results.

$$\begin{split} \mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}X^{(t)}\right] &= \mu \\ \mathbb{V}\mathrm{ar}\left[\frac{1}{T}\sum_{t=1}^{T}X^{(t)}\right] &= \frac{1}{T}\sigma^2 \\ T \cdot \mathbb{V}\mathrm{ar}\left[\frac{1}{T}\sum_{t=1}^{T}X^{(t)}\right] &= \sigma^2. \end{split}$$

Variance of the sample mean: Markov Chain Case

Assume $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ is an irreducible Markov chain with invariant distribution with density $\pi(x)$.

Further, assume that $X^{(1)} \sim \pi(x)$ which implies that $X^{(t)} \sim \pi(X)$ for all $t=2,3,4,\ldots$, which in turn implies that $\mathbb{E}[X^{(t)}]=\mu$ and $\mathbb{V}\mathrm{ar}[X^{(t)}]=\sigma^2$.

The expected value of the sample mean is (again)

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}X^{(t)}\right] = \mu.$$

So the expected value of the sample mean is unaffected by the shift from IID sample to Markov chain.

Variance of the sample mean: Markov Chain Case

Regarding the variance we have

$$T \cdot \mathbb{V}$$
ar $\left[\frac{1}{T} \sum_{t=1}^{T} X^{(t)} \right] \to \sigma^2 \left(1 + 2 \sum_{i=1}^{\infty} \rho_i \right),$

where

$$\rho_i = \text{Corr}(X^{(t)}, X^{(t+i)}) = \frac{\mathbb{E}\left[(X^{(t)} - \mu)(X^{(t+i)} - \mu)\right]}{\sigma^2}$$

is the lag-i auto-correlation.

- We call $\sigma^2 (1 + 2 \sum_{i=1}^{\infty} \rho_i)$ the asymptotic variance.
- Trying to get $\tau = 1 + 2 \sum_{i=1}^{\infty} \rho_i$ to be as small as possible seems like a good idea.
- lacksquare If we just want to estimate μ this is a brilliant idea.

Tuning

Assume the proposal kernel is

$$q(x,y) = \sqrt{\frac{\tau_p}{2\pi}} \exp\left(-\frac{1}{2}\tau_p(y-x)^2\right).$$

Now, τ_p is an "algorithm parameter" that we need to choose.

What is a good choice of τ_p ? This is an example of *tuning* an algorithm.

Example: Assume target density is normal

$$\pi(x) = \sqrt{\frac{\tau}{2\pi}} \exp(-\frac{1}{2}x^2)$$

The optimal choice (in terms of reducing the asymptotic variance) is so that the acceptance probability is around 40%.

If $\pi(x_1, x_2, \dots, x_k)$ is multivariate normal, the optimal choice of τ_p corresponds to an acceptance probability of 0.234.

Tuning, Acceptance probability and Auto-correlation

Optimum proposal

Assume target is a d-dimensional normal:

$$\pi(\mathbf{x}) = \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

and the proposal is normal:

$$q(\mathbf{x}, \mathbf{y}) = \mathcal{N}_d(\mathbf{x}, \mathbf{\Sigma}_q)$$

Then the optimum choice of proposal variance $oldsymbol{\Sigma}_q$ is

$$\Sigma_q = \frac{2.38^2}{d} \Sigma$$

Catch: Σ is unknown.

Solutions: Pilot run or adaptive MCMC.

Reminder: The Gibbs sampler

Aim: We want to sample $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ from a pdf/pf $\pi(\theta)$. Assume $\theta_i \in \Omega_i \subset \mathbf{R}^{d_i}$. Then, $\theta \in \Omega_1 \times \Omega_2 \times \dots \times \Omega_k \subset \mathbf{R}^{d_1 + d_2 + \dots + d_k}$

We can now (under some conditions) generate an $\it approximate$ sample from $\pi(\pmb{\theta})$ as follows:

Gibbs Sampler

- \blacksquare Choose initial value $\boldsymbol{\theta}^{(0)} = (\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_k^{(0)}).$
- For $t=1,2,\ldots,T$ For $i=1,2,\ldots,k$ 1. Generate $\theta_i^{(t)} \sim \pi(\theta_i|\theta_1^{(t)},\ldots,\theta_{i-1}^{(t)},\theta_{i+1}^{(t-1)},\ldots,\theta_k^{(t-1)})$

Question: What if we cannot generate samples from one or more of the full conditional distributions?

Solution: Use a Metropolis-Hastings update instead!

Metropolis within Gibbs (MwG)

Gibbs Sampler

- Choose initial value $\boldsymbol{\theta}^{(0)} = (\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_k^{(0)}).$
- For t = 1, 2, ..., TFor i = 1, 2, ..., k
 - 1. Generate proposal $\theta_i' \sim q(\theta_i'|\theta_1^{(t)},\dots,\theta_{i-1}^{(t)},\theta_i^{(t-1)},\dots,\theta_{i-1}^{(t-1)})$
 - 2. Calculate Hastings ratio

$$\begin{split} H(\boldsymbol{\theta}_i^{(t-1)}, \boldsymbol{\theta}_i') &= \frac{\pi(\boldsymbol{\theta}_i'|\boldsymbol{\theta}_1^{(t)}, \dots, \boldsymbol{\theta}_{i-1}^{(t)}, \boldsymbol{\theta}_{i+1}^{(t-1)}, \dots, \boldsymbol{\theta}_k^{(t-1)})}{\pi(\boldsymbol{\theta}_i^{(t-1)}|\boldsymbol{\theta}_1^{(t)}, \dots, \boldsymbol{\theta}_{i-1}^{(t)}, \boldsymbol{\theta}_{i+1}^{(t-1)}, \dots, \boldsymbol{\theta}_k^{(t-1)})} \times \\ &\qquad \qquad \frac{q(\boldsymbol{\theta}_i^{(t-1)}|\boldsymbol{\theta}_1^{(t)}, \dots, \boldsymbol{\theta}_{i-1}^{(t)}, \boldsymbol{\theta}_i^{(t)}, \dots, \boldsymbol{\theta}_k^{(t-1)})}{q(\boldsymbol{\theta}_i'|\boldsymbol{\theta}_1^{(t)}, \dots, \boldsymbol{\theta}_{i-1}^{(t)}, \boldsymbol{\theta}_i^{(t-1)}, \dots, \boldsymbol{\theta}_k^{(t-1)})} \end{split}$$

3. With probability

$$\min\left\{1, H(\theta_i^{(t-1)}, \theta_i')\right\}$$
 set $\theta_i^{(t)} = \theta_i'$ (accept) otherwise set $\theta_i^{(t)} = \theta_i^{(t-1)}$ (reject).

Metropolis within Gibbs: Comments

- Notice that each of the k component updates have $\pi(\theta)$ as their invariant distribution.
- Hence the MwG algorithm has $\pi(\theta)$ as its invariant distribution.
- Irreducibility is not automatically fulfilled.
- **Special case**: Assume that $q(\theta_i|\theta_{-i})$ is given by the full conditional:

$$\begin{split} q(\theta_i'|\theta_1^{(t)},\dots,\theta_i^{(t)},\theta_{i+1}^{(t-1)},\dots,\theta_k^{(t-1)}) \\ &= \pi(\theta_i'|\theta_1^{(t)},\dots,\theta_{i-1}^{(t)},\theta_{i+1}^{(t-1)},\dots,\theta_k^{(t-1)}). \end{split}$$

Then $H(\theta_i^{(t-1)}, \theta_i') = 1$, hence all proposals are accepted.

■ In fact, this is exactly the usual Gibbs sampler!

Prior predictions

Predicting future observations without data.

Notation: Let \tilde{x} denote a prediction.

Assume:

■ Data model: $\tilde{x}|\theta \sim \pi(x|\theta)$

■ Prior: $\pi(\theta)$

The above assumptions implies a joint distribution of data, x, and parameter, θ :

$$\pi(x,\theta) = \pi(x|\theta)\pi(\theta).$$

We are interested in predicting a future observation, i.e. the (marginal) distribution of x, i.e. when ignoring θ , i.e.

$$\tilde{x} \sim \pi(x),$$

where

$$\pi(x) = \int \pi(x|\theta)\pi(\theta)d\theta.$$

Prior prediction: Normal case, τ known

Assume:

■ Data model: $\pi(x|\mu) \sim \mathcal{N}(\mu, \tau)$.

Prior:
$$\pi(\mu) = \mathcal{N}(\mu_0, \tau_0)$$

Prior predictive distribution

$$\begin{split} \pi(x) &= \int \pi(x|\mu)\pi(\mu)d\mu \\ &= \int \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{1}{2}\tau(x-\mu)^2\right) \sqrt{\frac{\tau_0}{2\pi}} \exp\left(-\frac{1}{2}\tau_0(\mu-\mu_0)^2\right) d\mu \\ &= \sqrt{\frac{\tau\tau_0}{\tau+\tau_0}} \frac{1}{2\pi} \exp\left(-\frac{1}{2}\frac{\tau\tau_0}{\tau+\tau_0}(x-\mu_0)^2\right) \\ &= \mathcal{N}\left(\mu_0, \frac{\tau\tau_0}{\tau+\tau_0}\right). \end{split}$$

Prior predictive distribution

Simulating the prior predictive distribution

If $\pi(x)$ is difficult to derive or not easily simulated from *directly* we can use another strategy.

Simulating the prior predictive distribution can be done as follows:

- 1. Generate parameter from prior: $\theta \sim \pi(\theta)$
- 2. Conditional on θ generate x: $\tilde{x} \sim \pi(x|\theta)$

Now \tilde{x} is a sample from the prior predictive distribution.

Posterior prediction

Predicting future observation given data.

Assume:

■ Data model: $x|\theta \sim \pi(x|\theta)$

■ Prior: $\pi(\theta)$

The joint distribution of predicted data \tilde{x} , data x and parameter θ is

$$\pi(\tilde{x}, x, \theta) = \pi(\tilde{x}|\theta)\pi(x|\theta)\pi(\theta)$$
$$\propto \pi(\tilde{x}|\theta)\pi(\theta|x).$$

Notice: Here $\pi(\tilde{x}|\theta)$ and $\pi(x|\theta)$ represent the same distribution.

The posterior predictive distribution is the (marginal) distribution of \tilde{x} conditional on data x:

$$\pi(\tilde{x}|x) = \int \pi(\tilde{x}, \theta|x) d\theta = \int \frac{\pi(\tilde{x}, \theta, x)}{\pi(x)} d\theta \propto \int \pi(\tilde{x}|\theta) \pi(x|\theta) \pi(\theta) d\theta$$
$$\propto \int \pi(\tilde{x}|\theta) \pi(\theta|x) d\theta$$

Posterior prediction: Normal case, τ known

Data model: $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \tau)$.

Prior: $\pi(\mu) = \mathcal{N}(\mu_0, \sigma_0)$.

Posterior: $\pi(\mu|\mathbf{x}) = \mathcal{N}\left(\frac{n\tau\bar{x}+\tau_0\mu_0}{n\tau+\tau_0}, n\tau+\tau_0\right)$.

Recall that the prior prediction (of one observation) was

$$\tilde{x} \sim \mathcal{N}\left(\mu_0, \frac{\tau_0 \tau}{\tau + \tau_0}\right)$$

Since the posterior is the "prior" for the posterior prediction we have

$$\tilde{x}|\mathbf{x} \sim \mathcal{N}\left(\frac{n\tau\bar{x} + \tau_0\mu_0}{n\tau + \tau_0}, \frac{(n\tau + \tau_0)\tau}{\tau + n\tau + \tau_0}\right)$$

When n is large we have $\tilde{x}|\mathbf{x} \overset{approx}{\sim} \mathcal{N}(\bar{x},\tau)$.

Prior and posterior predictive distributions

Posterior prediction using a graph

Model checking

Idea: If the model is correct posterior predictions of the data should look similar to the observed data.

Difficulty: Who to choose a good measure of "similarity".

Example: We have observed a sequence of n=20 zeros and ones:

$$1\; 1\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0$$

Model: X_1, X_2, \dots, X_{20} are IID and $P(X_i = 1) = p$.

Prior: $\pi(\pi) = Be(\alpha, \beta)$.

Posterior: $\pi(\pi|\mathbf{x}) = Be(\#1 + \alpha, \#0 + \beta)$.

Model checking: We simulate posterior predictive realisations $\tilde{\mathbf{X}}^{(1)}, \tilde{\mathbf{X}}^{(2)}, \dots, \tilde{\mathbf{X}}^{(N)}$, where

$$\tilde{\mathbf{X}}^{(i)} = (X_1^{(i)}, X_2^{(i)}, \dots, X_2^{(n)}).$$

If these vectors look "similar" to the data above, the model is probably ok.

Model checking: First attempt (A failure)

Define summary function

 $s(\mathbf{x}) = \mathsf{Number}$ of ones in the sequence \mathbf{x}

Histogram for $s(\tilde{\mathbf{x}}^{(i)})$ for N=10,000 independent posterior predictions:

Clearly the observed number of ones is in no way unusual compared to the posterior predictions.

This is really expected — so we need another summary function s(x).

Model checking: Second attempt (A success)

Define summary function

 $s(\mathbf{x}) = \mathsf{Number}$ of switches between ones and zeros in \mathbf{x}

In the data the number of switches is 3:

$$1\; 1\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0$$

Histogram for $s(\tilde{\mathbf{x}}^{(i)})$ for N=10,000 independent posterior predictions:

Only around 1.7% of the posterior prediction have 3 or fewer switches. This suggests that the model assumption of independence is questionable.

Example: Speed of light

66 measurements of the time it takes light to travel 7445 meters:

Data model:

$$x_1, \ldots, x_{66} \stackrel{iid}{\sim} \mathcal{N}(\mu, \tau)$$

Prior:

$$\pi(\mu,\tau) = \mathcal{N}(\mu;0,0.001) \times Gamma(\tau;0.001,1000)$$

Example: Speed of light

Poestrior distribution of μ , τ and $1/\tau$:

Red lines denote sample mean and sample variance, respectively. Seem reasonable.

Example: Speed of light

Data contain one very low measurement. Is this unusual?

Generate 1000 posterior predictive samples $\mathbf{x}^{(i)}=x_1^{(i)},\dots,x_{66}^{(i)}$, $i=1,\dots,1000$

Definer $s(\mathbf{x}) = \min\{x_1, \dots x_{66}\}$

Conclusion: The smallest value in the data is very unlikely under the assumed model.