Estudos TCC

September 27, 2022

1 Anéis

Definição 1.1 (Anel). Um anel R é um conjunto com duas operações + e * tal que $dados \ x, y, z \in R$ temos:

1.
$$x + (y + z) = (x + y) + z$$

$$2. x + y \in R$$

3.
$$\exists 0 \ tal \ que \ \forall x, x+0=x$$

4.
$$x + y = y + x$$

5.
$$\exists -x \ tal \ que \ x, x + (-x) = x$$

6.
$$a*b \in R$$

7.
$$(a*b)*c = a*(b*c)$$

8.
$$a*(b+c) = a*b+a*c$$

9.
$$\exists 1 \ tal \ que \ a * 1 = 1 * a = a$$

Observação 1.2. A definição de anel varia de autor para autor, alguns consideram anéis comutativos com unidade, outro já não consideram a existência do neutro multiplicativo

 $Quando\ a\ multiplicação\ tamb\'em\ \'e\ comutativa,\ isto\ \'e\ a*b=b*a\ chamamos\ de\ anel\ comutativo.$

Exemplo 1.3. Temos que $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ com as operações usuais de soma e produto são anéis.

Proposição 1.4. Seja R um anel não trivial, se $x \in R$ então x * 0 = 0

Proof. Temos que

$$x * 0 = x * (0 + 0) = x * 0 + x * 0$$

mas como existe o oposto de x * 0 podemos somar

$$x * 0 - x * 0 = x * 0 + x * 0 - x * 0$$

logo

$$0 = x * 0$$

Temos que caso 1 = 0 o anel é trivial. Já que x = x * 1 = x * 0 = 0.

Definição 1.5 (Subaneis).

Definição 1.6 (Homomorfismo). *Uma função entre os anéis A e B é dito homomorfismo se:*

1.
$$f(x+y) = f(x) + f(y)$$

2.
$$f(xy) = f(x)f(y)$$

Definição 1.7 (Ideais(maximal e primo)).

Definição 1.8 (Divisores de zero).

Definição 1.9 (Anéis quociente). 2 Corpo de fração

3 Localização em anéis comutativos

 $Vamos\ seguir\ a\ demonstração\ a\ partir\ de\ um\ anel\ A\ sem\ unidade,\ no\ livro\ temos\ a\ demonstração\ feita\ com\ anel\ com\ unidade.$

Definição 3.1. Um subconjunto S de um anel A é dito um conjunto multiplicativo se $1 \in S$ e $x \cdot y \in S$ para todo $x, y \in S$.

 $Agora \ que j\'a \ temos \ todas \ as \ definiç\~oes \ necess\'arias \ para \ iniciar \ a \ construç\~ao, vamos \ começar.$

Definição 3.2. Seja A um anel e S um conjunto multiplicativo de A. Vamos definir uma relação em $A \times S$ como

$$(a,b) \equiv (c,d) \Leftrightarrow (ad-bc)u = 0$$

para algum $u \in S$.

Esta relação, é uma relação de equivalência.

Proof. Vamos mostrar que é uma relação reflexiva, simétrica e transitiva.

Reflexiva $(a,b) \equiv (a,b)$, de fato, pois ab-ba=0, já que estamos trabalhando com um anel comutativo.

Simétrica Temos que $(a, b) \equiv (c, d)$ nos leva a (ad-bc)u = 0 mas como o anel é comutativo podemos trocar a ordem dos fatores (da-cb)u = 0. Multiplicando por -1 chegamos a (cb-da)u = 0 que é igual a $(c, d) \equiv (a, b)$.

Transitividade Seja $(a,b) \equiv (c,d)$ e $(c,d) \equiv (e,f)$, devemos chegar em $(a,b) \equiv (e,f)$. De $(a,b) \equiv (c,d)$ temos $(ad-bc)u_1 = 0$ para algum $u_1 \in S$.

De $(c,d) \equiv (e,f)$ temos $(cf-de)u_2 = 0$ para algum $u_2 \in S$.

Multiplicando a primeira equação por fu_2 e a segunda por bu_1 chegamos a

$$(fad - fbc)u_2u_1 = 0$$

$$(bcf - bde)u_2u_1 = 0$$

Novamente, vamos usar a comutatividade para reorganizar as expressões

$$(afd - fbc)u_2u_1 = 0 \ (*)$$
$$(fbc - bed)u_2u_1 = 0$$

Da segunda expressão temos que $fbcu_2u_1 = bedu_2u_1$

Substituindo isso em (*) temos

$$(afd - bed)u_2u_1 = 0$$

$$(af - be)du_2u_1 = 0$$

Como S é multiplicativo e $u_1 \in S$, logo $du_2u_1 \in S$ e portanto $(a, b) \equiv (e, f)$.

Portanto, a relação definida em $A \times S$ é de equivalência.

Notação 3.3. Denotamos por $S^{-1}A$ o conjunto das classes de equivalência. Denotamos por $\frac{a}{s}$ a classe de equivalência de (a,s).

Vamos agora definir as operações de soma e multiplicação em $S^{-1}A$.

Definição 3.4. A soma em $S^{-1}A$ é definida por $\frac{a}{s} + \frac{b}{t} = \frac{at+sc}{st}$

Definição 3.5. A multiplicação em $S^{-1}A$ é definida por $\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$

Vamos verificar se as operações estão bem definidas, ou seja, se as operações acima não dependem do representante escolhido da classe.

Proposição 3.6. As operações de soma e multiplicação em $S^{-1}A$ não dependem dos representantes da classe.

Proof. Seja $\frac{a}{s} = \frac{a'}{s'}$, vamos fazer as operações com esses dois representantes e ver que a operação não depende da escolha. Sabemos que (as'-sa')u=0 para algum u.

$$\frac{a}{s} + \frac{b}{t} = \frac{at + sc}{st}$$
$$\frac{a'}{t} + \frac{c}{t} = \frac{a'd + b'c}{st}$$

and $\frac{a}{s} + \frac{b}{t} = \frac{at + sc}{st}$ $\frac{a'}{b'} + \frac{c}{d} = \frac{a'd + b'c}{b'd}$ (ad + bc)b'd - bd(a'd + b'c) = adb'd + beb'd - bda'd - bdb'c = adb'd - bda'dMultiplicando tudo por u temos

uab'dd - ua'bdd mas como ab'u = ba'u, logo uab'dd - ua'bdd = (ab'dd - ba'u)a'bdd)u = 0, ou seja, são "iguais" os resultados da soma.

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a'}{d} \cdot \frac{c}{d} = \frac{a'c}{dd}$$

 $\frac{a}{b}.\frac{c}{d}=\frac{a\dot{c}}{bd}$ $\frac{a'}{b'}.\frac{c}{d}=\frac{a'c}{b'd}$ Utilizando novamente a relação temos que acb'd-bda'c=ab'cd-a'bcdmultiplicando por u vamos ficar com ab'cdu - a'bcdu e usando ab'u = ba'uficaremos com ab'cdu - a'bcdu = 0

 $S^{-1}A$ com a soma e a multiplicação definida acima é um anel.

Agora vamos ver alguns exemplos de anéis que podemos fazer essa construção. Mas antes vamos o que é um domínio de integridade, que é um tipo especial de anel.

Definição 3.7. Um domínio de integridade (ou simplesmente domínio) é um anel comutativo unitário A tal que se $a, b \in A$ e $a \cdot b = 0$ então a = 0 ou b = 0.

Exemplo 3.8. O caso quando A é um domínio de integridade é um caso particular do anel de frações, isso acontece pois $S = A - \{0\}$ é um conjunto multiplicativo.

Para provar o exemplo acima, basta provar a seguinte proposição.

Proposição 3.9. Seja A um domínio de integridade, então o conjunto $C = A - \{0\}$ é um conjunto multiplicativo.

Proof. Como $1 \in A$, logo $1 \in C$. Temos também que para xy com $x, y \in C$ $xy \neq 0$, pois A é um domínio de integridade e x e y não podem ser nulos. Portanto C é fechado na multiplicação, logo é um conjunto multiplicativo. \square

Exemplo 3.10. Tomando como nosso anel os inteiros (\mathbb{Z}) e o nosso conjunto multiplicativo como $S = \mathbb{Z} - 0$, teremos $\frac{a}{b}$, onde $a \in \mathbb{Z}$ e $b \in S$, ou seja, b deve ser inteiro não nulo e isso é exatamente a definição dos números racionais, que sabemos que é um corpo.

Exemplo 3.11. Podemos tomar como $A = \mathbb{Z}$ e S sendo as potências de 2, ou seja, $S = \{2^n\}$ com $n \geq 0$, dessa forma $S^{-1}A = \{\frac{a}{b} \text{ tal que } a \in A \text{ e } b = 2^n\}$ com $n \geq 0$.

Exemplo 3.12. Temos que $S^{-1}A$ será o anel zero se tivemos que $0 \in S$. De fato, pois se $0 \in S$ podemos tomar u da relação de equivalência como 0, dessa forma (ad-bc)0=0 para todo $\frac{a}{b}$ e $\frac{c}{d}$, dessa forma todos os elementos são equivalentes entre si, em particular serão equivalente ao elemento $\frac{0}{0}$, ou seja, $S^{-1}A$ pode ser representado por um único elemento, o $\frac{0}{0}$

```
Um importante homomorfismo é f(a) = a/1 para f: A - > s^{-1}A. f definada para um anel sem unidade quando f é injetora? <=> sem divisor de zero
```

Proposição 3.13. Seja g: A -> B um homomorfismo de anéis tal que g(s) é invertível em B para todo $s \in S$. Então existe um único homomorfismo de anel $h: S^{-1}A -> B$ tal que g=hof

References

- [1] Atiyah M. F.; MacDonald M. G., Introduction to Commutative Algebra . Addison-wesley publishing company, 1969.
- [2] Fraleigh, J. B., A first course in abstract algebra. Person , 2003.
- [3] Herstein I. N., Topics in algebra. University of Chicago, 1975.