Theoretical Physics 2019/20 — Problem QT2.7

This problem concerns the ladder operators for a linear harmonic oscillator, \hat{a}_{-} and \hat{a}_{+} . Recall that $\hat{a}_{+} = \hat{a}_{-}^{\dagger}$. To avoid unnecessary subscripts, we will denote \hat{a}_{-} by \hat{a} and \hat{a}_{+} by \hat{a}^{\dagger} . In the position representation, these two operators take on the following forms, with $p = -i\hbar d/dx$:

$$a = (2\hbar m\omega)^{-1/2} \left(m\omega x + \hbar \frac{\mathrm{d}}{\mathrm{d}x} \right) = (2\hbar m\omega)^{-1/2} \left(m\omega x + ip \right)$$
$$a^{\dagger} = (2\hbar m\omega)^{-1/2} \left(m\omega x - \hbar \frac{\mathrm{d}}{\mathrm{d}x} \right) = (2\hbar m\omega)^{-1/2} \left(m\omega x - ip \right),$$

As seen previously, $[a, a^{\dagger}] = 1$, and, for any complex value of α , one can find a function $\phi_{\alpha}(x)$ such that $a\phi_{\alpha}(x) = \alpha \phi_{\alpha}(x)$. In the Dirac notation, $[\hat{a}, \hat{a}^{\dagger}] = 1$, $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$, $\hat{a} = (2\hbar m\omega)^{-1/2} (m\omega\hat{x} + i\hat{p})$ and $\hat{a}^{\dagger} = (2\hbar m\omega)^{-1/2} (m\omega\hat{x} - i\hat{p})$, where \hat{x} and \hat{p} are the position and momentum operators for the x- direction.

- (a) Show that $\hat{x} = [2\hbar/(m\omega)]^{1/2} \hat{S}$ and $\hat{p} = (2\hbar m\omega)^{1/2} \hat{D}$, where $\hat{S} = (\hat{a} + \hat{a}^{\dagger})/2$ and $\hat{D} = (\hat{a} \hat{a}^{\dagger})/(2i)$.
- (b) Let us consider a linear harmonic oscillator and suppose that it is in the state $|\alpha\rangle$ at t=0. Then, at that time, the expectation values of its position and its momentum are given by the equations $\langle x \rangle (t=0) = \langle \alpha | \hat{x} | \alpha \rangle$ and $\langle p \rangle (t=0) = \langle \alpha | \hat{p} | \alpha \rangle$. Given that $\langle \alpha | \hat{S} | \alpha \rangle = \text{Re } \alpha$ and $\langle \alpha | \hat{D} | \alpha \rangle = \text{Im } \alpha$ (see Question 2 of the Progress Test), show that

$$\langle \alpha | \hat{x} | \alpha \rangle = [2\hbar/(m\omega)]^{1/2} \operatorname{Re} \alpha \quad \text{and} \quad \langle \alpha | \hat{p} | \alpha \rangle = (2\hbar m\omega)^{1/2} \operatorname{Im} \alpha.$$

- (c) Let us describe the time evolution of the system in the Heisenberg picture. Hence, we describe its state by the time-independent ket vector $|\alpha\rangle$ and we associate the position and the momentum with time-dependent Heisenberg operators $\hat{x}_{\rm H}(t)$ and $\hat{p}_{\rm H}(t)$ such that $\hat{x}_{\rm H}(t=0)=\hat{x}$ and $\hat{p}_{\rm H}(t=0)=\hat{p}$. Accordingly, we calculate the expectation values $\langle x \rangle(t)$ and $\langle p \rangle(t)$ as, respectively, $\langle \alpha | \hat{x}_{\rm H}(t) | \alpha \rangle$ and $\langle \alpha | \hat{p}_{\rm H}(t) | \alpha \rangle$.
 - (i) The Heisenberg operator reducing to the Schrödinger operator \hat{a} for $t \to 0$ is $\hat{a}_{\rm H}(t) = \hat{U}(0,t)\,\hat{a}\,\hat{U}^{\dagger}(0,t)$, where \hat{U} is the time evolution operator. Similarly, the equation $\hat{H}_{\rm H}(t) = \hat{U}(0,t)\,\hat{H}\,\hat{U}^{\dagger}(0,t)$ relates the Hamiltonian operator in the Heisenberg picture, $\hat{H}_{\rm H}(t)$, to the Hamiltonian in the Schrödinger picture, $\hat{H}_{\rm H}(t)$. As seen in a lecture, $[\hat{a}_{\rm H}(t),\hat{H}_{\rm H}(t)] = \hat{U}(0,t)\,[\hat{a},\hat{H}]\,\hat{U}^{\dagger}(0,t)$. Given that $\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + 1/2)$, show that $[\hat{a}_{\rm H}(t),\hat{H}_{\rm H}(t)] = \hbar\omega\,\hat{a}_{\rm H}(t)$.
 - (ii) The Heisenberg equation of motion for $\hat{a}_{\rm H}(t)$ is

$$\frac{\mathrm{d}\hat{a}_{\mathrm{H}}}{\mathrm{d}t} = \frac{1}{i\hbar} \left[\hat{a}_{\mathrm{H}}(t), \hat{H}_{\mathrm{H}}(t) \right].$$

Given that $\hat{a}_{\rm H}(t=0)=\hat{a}$, show that $\hat{a}_{\rm H}(t)=\hat{a}\exp(-i\omega t)$ and $\hat{a}_{\rm H}^{\dagger}(t)=\hat{a}^{\dagger}\exp(i\omega t)$.

(iii) Hence, show that $\langle x \rangle(t) = A\cos(\omega t - \arg \alpha)$ and $\langle p \rangle(t) = -m\omega A\sin(\omega t - \arg \alpha)$, with $\alpha = |\alpha| \exp(i \arg \alpha)$ and $A = [2\hbar/(m\omega)]^{1/2} |\alpha|$. (Note the physical meaning of this result: in the state $|\alpha\rangle$, the expectation values of the position and the momentum of this quantum harmonic oscillator vary in time exactly in the same way as the position and the momentum of a classical harmonic oscillator.)