Lösungen Testat STOC SW03

Daniel Winz

11. März 2013 21:52

Inhaltsverzeichnis

1	Auf	ga	be	1				Aufgabe 1 1.1 a																						2
	1.1	a																												2
	1.2	b																												2
2	Aufgabe 2															2														
	2.1	a																												2
	2.2	b																												2
	2.3	$^{\mathrm{c}}$																												3
	2.4	d																												3
	2.5	e																												3
3	Aufgabe 3																4													
	3.1	a																												4
	3.2	b	•																											4
4	Aufgabe 4															4														
	4.1																													4
	4.2	b																												4
	4.3	\mathbf{c}																												4
	4.4	d																												4
	4.5	e																												5
	4.6	f	•																											5
5	Aufgabe 5																5													
	5.1	a																												5
	5.2	b																												5
	5.3	\mathbf{c}																												5
6	Aufgabe 6														5															
	6.1																													5
	6.2	b																												5
	6.3	c																												5

1 Aufgabe 1

- 1.1 a
- 1.2 b

2 Aufgabe 2

2.1 a

$$P(A\cap B)=P(A)\cdot P(B)=\frac{3}{4}\cdot \frac{2}{3}=\frac{1}{2}$$

\begin{venndiagram2sets}

\fillACapB

3 \end{venndiagram2sets}

2.2 b

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{3}{4} + \frac{2}{3} - \frac{2}{4} = \frac{11}{12}$$

\begin{venndiagram2sets}

2 \fillA \fillB

\end{venndiagram2sets}

2.3 c

$$P(\overline{A\cap B}) = P(\Omega) - P(A\cap B) = 1 - P(A\cap B) = 1 - \frac{1}{2} = \frac{1}{2}$$

- 1 \begin{venndiagram2sets}
- 2 \fillNotAorB \fillANotB \fillBNotA
- 3 \end{venndiagram2sets}

2.4 d

$$P(\overline{A \cup B}) = P(\Omega) - P(A \cup B) = 1 - P(A \cup B) = 1 - \frac{11}{12} = \frac{1}{12}$$

- \begin{venndiagram2sets}
- 2 \fillNotAorB
- 3 \end{venndiagram2sets}

2.5 e

$$P(A \cup B) = P(A) + P(B) - 2 \cdot P(A \cap B) = \frac{3}{4} + \frac{2}{3} - 2 \cdot \frac{2}{4} = \frac{5}{12}$$


```
\begin{venndiagram2sets}
  \fillANotB \fillBNotA
```

\end{venndiagram2sets}

3 Aufgabe 3

3.1

$$P(F|A) = \frac{P(A \cap F)}{P(A)} = 0.2111$$

3.2

$$P(KF|KA) = \frac{P(KF \cap KA)}{P(KA)} = 0.99$$

Aufgabe 4 4

4.1

 $\{11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36,$ 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}

4.2 b

$$\frac{1}{36}$$

4.3

$$E_1 = \{16, 25, 34, 43, 52, 61\}$$

$$P(E_1) = \frac{6}{36} = \frac{1}{6}$$

4.4 d

$$E_2 = \{11, 12, 21\}$$

$$P(E_2) = \frac{3}{36} = \frac{1}{12}$$

4.5 e

$$E_3 = \{11, 13, 15, 31, 33, 35, 51, 53, 55\}$$

$$P(E_3) = \frac{9}{36} = \frac{1}{4}$$

4.6 f

$$E_2 \cup E_3 = \{11, 12, 13, 15, 21, 31, 33, 35, 51, 53, 55\}$$

$$P(E_3) = \frac{11}{36}$$

5 Aufgabe 5

5.1 a

P(Kopf) + P(Zahl) muss 1 ergeben.

5.2 b

Eine Wahrscheinlichkeit kann nicht negativ sein.

5.3 c

Da $\{S \cap M\}$ nicht existiert muss $P(S) + P(M) = P(S \cup M)$ sein.

6 Aufgabe 6

6.1 a

6.2 b

6.3 c