Honors Assignment

Programming Non-Personalized Recommenders

Assignment Objectives

Implement non-personalized recommenders

- Mean rating
 - Both raw and damped
- Association rules
 - Basic
 - Lift

Getting Started

- Download the assignment template
- Extract it
- Import into your IDE as a Gradle project
 - Gradle will do the rest

Mean Recommenders

Basic Mean:

$$s(i) = \frac{\sum_{u} \overline{r_{ui}}}{|R_i|}$$

Damped Mean:

$$s(i) = \frac{\sum_{u} \overline{r_{ui}} + \gamma \mu}{|R_{i}| + \gamma} \int_{\alpha \neq i \alpha}^{\beta = 1} \frac{|R_{i}|}{|R_{i}| + \gamma}$$

 γ will be a configurable parameter

Recommender Structure

LensKit recommenders have 3 components:

- Recommender or scorer
 - MeanItemBasedItemRecommender
- Model
 - MeanModel
- Model provider/builder
 - ItemMeanModelProvider
 - DampedItemMeanModelProvider

Association Rules

These will use a reference item

Basic rule

$$s(i|j) = P(i|j) = \frac{P(i \land j)}{P(j)} = \frac{|U_i \cap U_j|/|U|}{|U_j|/|U|}$$
Lift rule

 $s(i|j) = \frac{P(i|j)}{P(i)} = \frac{P(i \land j)}{P(i)P(j)}$

Running your code

- Use Gradle tasks
 - See instructions for details
- In IntelliJ, you can 'debug' the Gradle task to run your code in the debugger
- Log files show up under build.

Submitting Your Work

- Submit a compiled jar file
- The prepareDistribution Gradle task will make one and name it properly
- Upload this file to Coursera

Coursera will automatically grade your code See grading formula in assignment description

Honors Assignment

Programming Non-Personalized Recommenders