UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA EN INFORMÁTICA Y SISTEMAS

SILABO DE FÍSICA MODERNA

1. IDENTIFICACIÓN DE LA ASIGNATURA:

1.1 Facultad : Ingeniería.

1.2 Escuela Profesional : Ingeniería en Informática y Sistemas.

1.3 Departamento Académico : Física.1.4 Año Académico : 2014

1.5Año de estudios: Segundo Año.1.6Régimen: Semestre I.1.7Código de la asignatura: IS.0332.

1.8 Créditos : 03.

1.9 Horas semanales de Clase : T: 03, P: 02, TH: 05.

1.10 Profesor : Lic. Andrés Oliver Guerrero Farro.

2. DESCRIPCIÓN DE LA ASIGNATURA:

La presente asignatura Física Moderna pertenece al área de formación general, se imparte a los alumnos del segundo año de la Escuela Profesional de Ingeniería Informática y de Sistemas, es de carácter teórico - práctico la cual tiene el propósito de brindar al estudiante, conocimientos sólidos en los campos de la física moderna, que son necesarios para la comprensión de las modernas tecnologías electrónicas, informática, computación y sistemas. Los temas a tratar en la asignatura son:

- **2.1 Óptica para computación:** El cual comprende: La Naturaleza y la propagación de la luz. Óptica geométrica e instrumentos ópticos. Interferencia. Difracción. Polarización. Procesamiento de la luz.
- **2.2 Física moderna:** Relatividad. Fotones, electrones y átomos. La naturaleza ondulatoria de las partículas. Mecánica cuántica. Computación quántica. Física de partículas. Física nuclear y cosmología.

3. COMPETENCIAS DE LA ASIGNATURA:

- **3.1.** Aplicar las leyes y principios de la física moderna a la solución de problemas relacionados con la informática y computación.
- **3.2.** Desarrollar en el estudiante la capacidad de observación y análisis, para ser aplicados al estudio de los fenómenos ópticos y cuánticos que ocurren en los computadores.
- **3.3.** Resolver problemas generales a partir de la modelación de ecuaciones matemáticas, validos de ser aplicados al estudio de los procesos opto cuánticos que suceden en los ordenadores.

4. ORGANIZACIÓN DE LOS CONTENIDOS:

4.1 PRIMERA UNIDAD: ÓPTICA DE LA COMPUTACIÓN.

Semana Nro	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL
1	Naturaleza de la luz y leyes	Comprende la naturaleza dual	Sustenta con espontaneidad
	de la óptica geométrica.	de la luz.	y asertividad sus opiniones.
	Aproximación de un rayo	Comprende la óptica	Es tolerante con las ideas y
	en óptica geométrica.	geométrica y construye	opiniones que difieren de la
	Reflexión y Refracción de	gráficos que representan la	suya.

	la luz.	propagación de la luz	
		propagación de la luz.	
	Principio de Huyguens.	Aplica la óptica geométrica	
	Dispersión y Reflexión	para explicar fenómenos de	
	total interna.	reflexión y refracción.	
		Explica los fenómenos de	
		reflexión y refracción	
		mediante otros principios.	
		Comprende la importancia del	
		entendimiento de los	
		fenómenos para la aplicación a	
		la computación e informática.	
2	Principio de Fermat.	Comprende la formación de	Aporta ideas sobre el tema
	Imágenes formadas por	imágenes por espejos y lentes.	en discusión y contribuye a
	espejos planos.	Determina las variables que	mejorar las relaciones entre
	Imágenes formadas por	intervienen en la construcción	los integrantes del grupo.
	espejos esféricos.	de imágenes.	
	Imágenes formadas por	Construye imágenes formadas	
	refracción.	por espejos planos, espejos	
	Imágenes formadas por	esféricos y lentes delgadas.	
	lentes delgadas.		
3	El microscopio y el	Comprende la diferencia de	Recoge los aportes de la
3	telescopio.	construcción y funcionamiento	lectura para formular nuevas
	Condiciones para la	entre el microscopio y el	ideas valorando las
	interferencia.	1 = -	
		telescopio.	fortalezas y debilidades encontradas.
	Experimento de la doble	Entiende el origen del	encontradas.
	rendija.	fenómeno de interferencia y	
	Intensidad del patrón de	las condiciones a la que	
	interferencia.	ocurre.	
	Adición de fasores de	Mediante una lectura analiza	
	ondas.	aplicaciones.	
4	Interferencia en películas	Determina el número de	Formula preguntas, expone
	delgadas.	rendijas y la distancia entre	sus puntos de vista y discute
	Interferómetro de	ellas.	con sus compañeros.
	Michelson.	Determina la distancia entre	
	Patrones de difracción.	las franjas del patrón de	
	Patrones de difracción	difracción.	
	debido a rendijas angostas.	Describe, después de una	
	Resolución de aperturas de	lectura, la función y la	
	una sola rendija y	aplicación de las rendijas de	
	circulares.	difracción en la informática.	
		Resuelve problemas	
5	Rejilla de difracción.	Comprende la difracción de	Formula ideas y puntos de
	Difracción de rayos X	rayos X y sus aplicaciones.	vista para la aplicación de
	mediante cristales.	Comprende el fenómeno de	los distintos fenómenos
	Polarización de la luz.	polarización de la luz y	geométricos de la luz a la
	i oranizacion de la luz.	mediante una lectura analiza	informática.
			miormanca.
6	Drimar Evamon	sus aplicaciones.	Dartisina
6	Primer Examen.	Responde en función del	Participa con
		proceso aprendizaje.	responsabilidad en el
			examen.

4.1.1 ESTRATEGIAS DIDÁCTICAS

- ➤ Conferencia para la teoría.
- Participación activa en clase en la solución de ejercicios.
- > Talleres grupales.

4.1.2 TIEMPO: 6 SEMANAS.

4.2 SEGUNDA UNIDAD: FÍSICA MODERNA.

Semana	CONTENIDOS		
Nro	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL
7	Principio de la relatividad Galileana y experimento de Michelson y Morley. Principio de la relatividad de Einstein. Consecuencias de la teoría de la relatividad. Ecuaciones de transformación de Lorentz. Momento lineal y forma relativista de las Leyes de Newton.	Comprende el principio de relatividad Galileana. Comprende las diferencias del principio de relatividad desde el enfoque Galileano y de Einstein. Aplica las ecuaciones de transformación de Lorentz a las consecuencias de la relatividad.	Manifiesta capacidad de análisis. Participa con entusiasmo en la discusión de los temas y respeta el aporte de sus compañeros.
8	Masa y energía relativistas. Radiación del cuerpo negro e hipótesis de Planck. Efecto fotoeléctrico y Efecto Compton. Fotones y ondas electromagnéticas. Propiedades ondulatorias de las partículas.	Aplica adecuadamente las definiciones de masa y energía relativista. Comprende la hipótesis de la radiación del cuerpo negro. Comprende los efectos fotoeléctricos y de Compton y resuelve problemas.	Muestra responsabilidad por su aprendizaje y disposición por el trabajo en equipo.
9	Partícula cuántica y revisión del experimento de la doble rendija. Principio de incertidumbre. Interpretación de la mecánica cuántica. Partícula en una caja y partícula bajo condiciones de frontera. Ecuación de Schrodinger.	Identifica correctamente las características de una partícula cuántica. Entiende el principio de incertidumbre y la ecuación de Schrodinger. Resuelve problemas de mecánica cuántica relacionados con partículas bajo condiciones de frontera.	Trabajo interactivo en grupo. Sustenta sus problemas desarrollados.
10	Partícula en un pozo de altura finita. Efecto túnel a través de una barrera. Oscilador armónico simple. Experimetnos de los gases. Primeros modelos atómicos: Modelo de Bohr del átomo de hidrógeno.	Comprende el modelo de oscilador armónico simple. Analiza los primeros modelos atómicos y sus diferencias.	Trabajo interactivo con sus compañeros. Sustenta en plenarias los temas desarrollados.

11	Modelo cuántico del átomo	Comprende el modelo	Formula ideas y puntos de
	de hidrógeno.	cuántico del átomo de	vista para la aplicación de
	Funciones de onda e	hidrógeno.	los distintos fenómenos
	interpretación de los	Comprende el principio de	cuánticos de partículas a la
	números cuánticos.	exclusión de Pauli y los	informática.
	Principio de exclusión de	números cuánticos.	
	Pauli.	Comprende las transiciones	
	Espectros atómicos.	entre los niveles de energía.	
	Transiciones espontaneas y		
	estimuladas. Láseres.		
	Aplicaciones a la		
	computación.		
12	Segundo Examen.	Responde en función del	Participa con
		proceso aprendizaje.	responsabilidad en el
			examen.

4.2.1 ESTRATEGIAS DIDACTICAS

- > Conferencia para la teoría.
- > Participación activa en clase en la solución de ejercicios.
- > Talleres grupales.

4.2.2 TIEMPO: 6 SEMANAS.

4.3 TERCERA UNIDAD: ESTRUCTURA NUCLEAR Y COSMOLOGÍA DE PARTÍCULAS.

Semana	CONTENIDOS		
Nro	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL
13	Enlaces moleculares, estados de energía y espectros moleculares. Enlaces en sólidos. Teoría de electrones libres en metales, teoría de bandas en sólidos. Conducción eléctrica en metales, aislantes y semiconductores. Dispositivos semiconductores.	Comprende y e identifica los diferentes en laces moleculares. Comprende los enlaces entre sólidos. Comprende los conceptos de conductores, aislantes y semiconductores.	Trabajo en equipo demostrando responsabilidad, puntualidad.
14	Superconductividad. El núcleo, propiedades. Energía de amarre nuclear. Modelos nucleares. Radiactividad y Procesos de decaimiento.	Entiende el concepto de superconductividad y las condiciones bajo las que ocurre. Analiza distintos modelos nucleares. Comprende los procesos de radiactividad.	Trabajo en grupo. Sustenta sus trabajos de Aplicación.

15	Radiactividad natural y reacciones nucleares. Resonancia magnética nuclear y aplicaciones. Fisión y fusión nuclear, usos de la radiación. Fuerzas fundamentales de	Comprende el fenómeno de resonancia magnética. Analiza y comprende la fisión y fusión nuclear y sus aplicaciones de esta radiación. Realiza estimaciones. Resuelva problemas sobre	Trabaja en grupo. Participa y reconoce la importancia de la radiación.
	la naturaleza. Positrones y otras antipartículas.	radiación.	
16	Mesones y principio de la física de las partículas. Clasificación de las partículas y leyes de la conservación. Partículas extrañas y extrañeza; creación y propiedades. Quarks y el Modelo Estándar. Problemas y respectivas.	Comprende y analiza la existencia de distintas partículas cósmicas. Aplica los conocimientos de modelo estándar para resolver tipos de problemas.	Trabaja en grupo y manifiesta capacidad de análisis. Participa con entusiasmo en la discusión de los temas y respeta el aporte de sus compañeros.
17	Tercer Examen.	Responde en función del proceso aprendizaje.	Participa con responsabilidad en el examen.

4.3.1 ESTRATEGIAS DIDACTICAS

- Conferencia para la teoría
- Participación activa en clase en la solución de ejercicios.
- > Talleres grupales

4.3.2 TIEMPO: 5 SEMANAS

5. ESTRATEGIAS METODOLÓGICAS:

5.1 Metodología:

- **5.1.1 Exposiciones:** De parte del profesor y los alumnos (ya sea en forma individual o grupal), para ofrecer información sobre un tema de estudio. Los conocimientos adquiridos y comprobados experimentalmente por los estudiantes serán reforzados con la presentación y exposición de temas específicos a la especialidad. Los temas serán entregados con anticipación para su preparación.
- **5.1.2 Ejercicios:** Permiten a los alumnos reforzar su aprendizaje adquirido. Los ejercicios serán dados en clase para su desarrollo y comprensión.
- **5.1.3 Estudio de casos:** Se presentarán problemas específicos orientados a los principios que rigen la óptica y fenómenos cuánticos en los ordenadores para ser analizados y resueltos en forma individual o en grupo; los casos serán entregados con anticipación para su estudio.
- **5.2 Medios y materiales educativos:** Las exposiciones se harán en el aula de clase utilizando plumones, pizarra y en algunos casos ayuda audiovisual. Como recursos didácticos se usará la bibliografía recomendada, materiales de clases e información que se pueda obtener en las páginas de internet.

6. EVALUACIÓN:

6.1 Nomenclatura de los exámenes:

La evaluación de la presente asignatura se hará sobre la base del Sistema vigesimal, valorando el rendimiento de los estudiantes en los siguientes rubros:

- **6.1.1 Exámenes Parciales:** Son pruebas escritas que se evaluarán en un número de tres, de las cuales se obtendrá una nota promedio (PE).
- **6.1.3 Prácticas de Laboratorio:** Son prácticas experimentales que se desarrollarán en el laboratorio; por cada una se presenta un informe individual que representa una nota; al final se obtendrá una nota promedio de todas las prácticas (PL).
- **6.1.2 Trabajos monográficos:** Se dejarán trabajos de investigación propuestos los que serán expuestos en el aula y de los que se obtendrá una nota promedio (PT).

6.2 Requisitos para aprobar la asignatura:

6.2.1 La nota promocional (NP) se obtiene mediante la siguiente fórmula:

$$NP = 0.60 * (PE) + 0.25 * (PL) + 0.15 * (PT)$$

- **6.2.3** El estudiante cuya nota promocional es de 10.5 o más, se considera aprobado en la asignatura.
- **6.2.4** Asistir al 80% de las clases teóricas, en caso contrario se considera el alumno desaprobado.
- **6.2.5** Los estudiantes desaprobados con nota igual o mayor a 07, tienen derecho a rendir un examen de aplazado de todo el curso, de acuerdo con las normas y reglamentos vigentes.

7. BIBLIOGRAFIA:

7.1 BASICA:

- Raymond A. Serway. John W. Jewett, física para ciencias e ingeniería volumen I y II, sétima edición, editorial cengage learning editores s.a de c.v., México, 2008.
- Francis W. Sears. Mark w. Zemansky, física universitaria tomo I y II, undécima edición, editorial pearson addison wesley. México, 2005.
- Márquez. Introducción a la mecánica cuántica origen de la teoría cuántica, 1era Ed., Edit. Univ. Inca Garcilaso de la Vega, 2006.

7.2 TEXTOS COMPLEMENTARIOS:

- Popper. Teoría cuántica y el cisma en física. Post scriptum a la lógica de la investigación, 4ta Ed., Edit. Tecnos. 2011.
- Binh, Optical fiber communications systems, 1era Ed. Edit. Crc press. 2010.
- Alonso, M.; Finn, E.; FISICA Vol. I, Ed. Fondo educativo interamericano S.A. 1992.

7.3 DIRECCIONES ELECTRÓNICAS:

- http://ergodic.ugr.es/jmarro/papers/RF.pdf
- www.e-mta.eu/es/linea-de-**fisica-computacion**-y-**aplicaciones**-lfca/
- www.tav.net/electronica-informatica/computacion_cuantica.pdf
- www.azc.uam.mx/ingenieria/**fisica**.php
- www.rena.edu.ve/cuartaEtapa/Informatica/