1.	. Дайте определение метрическому пространству.
	Определение. Метрическим пространством М называется некоторое мно-
	жество, на котором определено отображение $\rho: M \times M \to \mathbb{R}$, обладающее сле-
	дующими свойствами:
	M1. $\rho(x,y) \geqslant 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$;
	M2. $\rho(x,y) = \rho(y,x)$;
	M3. $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$.
2.	. Линейна ли метрическая форма по обоим аргументам? Объясните ответ.
3.	Дайте определение нормированному пространству.
	O
	Определение. Нормированным пространством называется линейное про- странство $X(\mathbb{R})$, наделенное отображением $\ \cdot\ : X \to \mathbb{R}$, обладающим следую-
	шими свойствами:
	N1. $ x \ge 0$, $ x = 0 \Leftrightarrow x = 0$;
	N2. $\ \alpha x\ = \alpha \cdot \ x\ , \alpha \in \mathbb{R};$
	N3. $ x+y \le x + y $.
4.	Как можно метризовать нормированное пространство?
	Лемма 1.1. Любое нормированное пространство может быть метризовано:
	$\rho(x,y) = \ x - y\ .$
5. t	Что называется (комплексным) евклидовым пространством?
	Определение. Линейное пространство X над $\mathbb C$ называется комплексным
	евклидовым пространством, если на нем задана метрическая форма $g(x,y) =$
	$=\langle x,y \rangle$ со следующими свойствами:
	E1. $\langle x, \alpha y_1 + \beta y_2 \rangle = \alpha \langle x, y_1 \rangle + \beta \langle x, y_2 \rangle$ - линейность по второму аргументу;
	E2. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ - эрмитовость;
	E3. $\langle x, x \rangle \geqslant 0$, $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.
6	Что такое метрический тензор в ерклилором пространстве?
0.	Что такое метрический тензор в евклидовом пространстве?
	Определение. Совокупность чисел $g_{ij} = g\left(e_{i}, e_{j}\right)$ называется метрическим
	Mengur oponisi dolguerbe feermon
	Mengur oponios doquerros termonos
- 7.	7. Как записать скалярное произведение в координатной форме, используя метрический
_	тензор?
	U.V = 5 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$0 \cdot \mathbf{v} = \sum_{i=1}^{n} \mathbf{y}_{i,i} \cdot \mathbf{v}_{i,i} \cdot \mathbf{v}_{i,i}$

8. Что называется матрицей Грама?

Определение. Совокупность чисел $g_{ij} = g\left(e_i, e_j\right)$ называется метрическим тензором, а соответствующая матрица $G = \|g_{ij}\|$ - матрицей Грама:

$$G = \begin{pmatrix} g_{11} & g_{12} & \dots & g_{1n} \\ g_{21} & g_{22} & \dots & g_{2n} \\ \dots & \dots & \dots & \dots \\ g_{n1} & g_{n2} & \dots & g_{nn} \end{pmatrix} = \begin{pmatrix} \langle e_1, e_1 \rangle & \langle e_1, e_2 \rangle & \dots & \langle e_1, e_n \rangle \\ \langle e_2, e_1 \rangle & \langle e_2, e_2 \rangle & \dots & \langle e_2, e_n \rangle \\ \dots & \dots & \dots & \dots \\ \langle e_n, e_1 \rangle & \langle e_n, e_2 \rangle & \dots & \langle e_n, e_n \rangle \end{pmatrix}.$$

9. Запишите свойства матрицы Грама.

Замечание. Свойства матрицы Грама:

- (a) $G_{ji} = \overline{G}_{ij}$;
- (6) $G_{ii} > 0 \quad \forall i = 1 \dots n;$
- (B) $\overline{\xi^i}\xi^j g_{ij} \geqslant 0$, $\overline{\xi}^i \xi^j g_{ij} = 0 \Leftrightarrow \xi^i = 0$, $\forall i$.
- 10. Запишите неравенство Шварца.

Теорема 3.1. (Неравенство Шварца) Имеет место следующее соотношение между скалярным произведением и порождаемой им нормой

$$|\langle x, y \rangle| \leqslant ||x|| \, ||y|| \, .$$

11. При каком условии неравенство Шварца становится равенством?

Лемма 3.2. Неравенство Шварца обращается в точное равенство тогда и только тогда, когда x и y - линейно зависимые векторы.

12. Как вводится норма, порожденная скалярным произведением?

$$||x|| = \sqrt{\langle x, x \rangle},$$

13. Какие векторы называются ортогональными?

Определение 1.1. Пусть $x, y \in E$. Говорят, что x **ортогонален** y (пишут $x \perp y$), если $\langle x, y \rangle = 0$.

14. Как связана ортогональность векторов и линейная (не)зависимость.

Теорема 1.1. (Об ортогональности и линейной независимости) Пусть $\{x_1, x_2, \dots, x_k\}$ - набор ненулевых попарно ортогональных векторов, тогда $\{x_1, x_2, \dots, x_k\}$ - линейно независимый набор.

15. Запишите теорему Пифогора для набора попарно ортогональных векторов.

Теорема 1.2. (Пифагора) Пусть $\{x_1, x_2, \dots, x_k\}$ - набор ненулевых попарно ортогональных векторов, тогда

$$\left\| \sum_{i=1}^{k} x_i \right\|^2 = \sum_{i=1}^{k} \|x_i\|^2.$$

16. Как определяется ортогональность вектора подпространству?

Определение 1.2. Говорят, что x ортогонален подпространству $L \leqslant X_E,$ если

$$\forall y \in L \quad \langle x, y \rangle = 0.$$

17. Что такое ортогональное дополнение пространства?

Лемма 1.2. Ортогональное дополнение является подпространством X_E .

18. В чем цель процесса ортогонализации?

Цель процесса ортогонализации — преобразование заданного набора век торов в новый набор, состоящий из попарно ортогональных векторов.

- 29. В чем суть задачи о перпендикуляре?

 Определение 5.2. Задачей о перпендикуляре называется задача об отыскании компонент произвольного вектора x в подпространствах L и M.
- 30. Запишите алгоритм отыскания компонент вектора при разложении $E=L\oplus L^\perp.$

Замечание 5.2. Алгоритм решения задачи о перпендикуляре:

- 1. Найти ортонормированный базис $\{e_j\}_{j=1}^k$ подпространства L;
- 2. Найдем ортогональную проекцию $\mathcal{P}_L^{\perp} x = \sum_{i=1}^k \langle x, e_i \rangle e_i$,
- 3. Найдем ортогональную проекцию $\mathcal{P}_M^{\perp} = x \mathcal{P}_L^{\perp}$.
- 31. Что такое коэффициенты Фурье?

Определение 5.3. Коэффициенты $\alpha_i = \langle x, e_i \rangle$ ортонормированном базисе $\{e_i\}_{i=1}^n$ пространства X_E называются коэффициентами Фурье вектора x относительно этого базиса.

32. Запишите соотношение, связвающее норму ортогональной проекции вектора и коэффициенты Фурье.

Лемма 6.2. Справедливо следующее равенство:

$$\left\|\mathcal{P}_{L}^{\perp}x\right\|^{2} = \sum_{i=1}^{k} \left|\langle x, e_{i} \rangle\right|^{2} = \sum_{i=1}^{k} \left|\alpha_{i}\right|^{2}$$

33. Запишите неравенство Бесселя.

Лемма 6.3. (Следствие предыдущих лемм) Неравенство Бесселя:

$$||x||^2 \geqslant \sum_{i=1}^k |\alpha_i|^2$$
, $||x||^2 = \sum_{i=1}^k |\alpha_i|^2 \Leftrightarrow x \in L$.

34. В чем заключается геометрический смысл неравенства Бесселя?

Квадрат длины проекции вектора на подпространство не превосходит квадрата длины самого вектора

35. В каком случае система ортонормированных векторов является полной? — Теорема 6.1. Система ортонормированных векторов $\{e_i\}_{i=1}^k$ является полной в X_E тогда и только тогда, когда для любого $x \in X_E$ имеет место равенство Парсеваля:

$$||x||^2 = \sum_{i=1}^k |\alpha_i|^2, \quad \alpha_i = \langle e_i, x \rangle \quad \forall x \in X_E.$$

36. Дайте определение эрмитово сопряженному оператору.

Определение 1.1. Оператор φ^{\dagger} называется эрмитово сопряженным к оператору φ , если он обладает следующим свойством:

$$\langle x, \varphi y \rangle = \langle \varphi^{\dagger} x, y \rangle.$$

37. Запишите свойство аддитивности и контравариантности операции эрмитового сопряжения.

Замечание 1.1. Операция эрмитового сопряжения обладает следующими свойствами:

- аддитивность: $(\varphi + \psi)^{\dagger} = \varphi^{\dagger} + \psi^{\dagger};$
- сопряженная однородность: $(\lambda \varphi)^{\dagger} = \overline{\lambda} \varphi^{\dagger};$
- контравариантность: $(\psi \circ \varphi)^{\dagger} = \varphi^{\dagger} \circ \psi^{\dagger};$
- инволютивность: $(\varphi^{\dagger})^{\dagger} = \varphi$.
- 38. Запишите свойства сопряженной однородности и инволютивности эрмитового сопряжения. Обозначения поясните.

	Лемма 1.1. Пусть $\{e_j\}_{j=1}^n$ — базис евклидова пространства $X_E(\mathbb{K})$ и G - его матрица Грама. Тогда если A_{φ} — матрица оператора φ в этом базисе, то матрица φ^{\dagger} будет имеет вид	
	$A_{arphi^\dagger} = G^{-1} A^\dagger G, A^\dagger = \overline{A}^T.$	
40.	Какой оператор называется самосопряженным?	
	Определение 2.1. Оператор, обладающий свойством $\varphi^{\dagger} = \varphi$ называется самосопряженным, если $\mathbb{K} = \mathbb{R}$ и эрмитовским, если $\mathbb{K} = \mathbb{C}$.	
	. В чем разница между самосопряженным и эрмитовым операторами?	
42.	. Запишите свойства матриц самосопряженного и эрмитова операторов.	
	Замечание 2.1. Матрицы самосопряженного φ и эрмитовского ψ операторов обладают соответственно свойствами:	
	$A_{\omega}^T = A_{arphi}, B_{\psi}^{\dagger} = B_{\psi}.$	
43	8. Что можно сказать про свойства собственных векторов эрмитова оператора относи- тельно скалярного произведения?	
44	. Запишите спектральную теорему для эрмитова оператора.	
	Теорема 3.2. (Спектральная теорема для эрмитова оператора) Пусть φ :	
	$X_E o X_E$ — эрмитов оператор и $\left\{e_j ight\}_{j=1}^n$ — ортонормированный базис X_E ,	
	cocmosuuй из $coбcmвенных$ векторов $arphi$, тогда:	
	n	
	$\varphi(*) = \sum \lambda_i \langle *, e_i \rangle e_i, \lambda_i \in \mathbb{R}.$	
	<i>i</i> = 1	
45.	. Запишите определение унитарного оператораю.	
	Определение 4.1. Унитарным называется оператор ψ , обладающий одним	
	из перечисленных выше свойств (и, как следствие, всем остальными).	
	Лемма 4.1. Пусть ψ — опертор в евклидовом пространстве $X_E(\mathbb{K})$, тогда	
	следующие свойства эквиваентны:	
	(a) изометрия: $\langle \psi x, \psi y \rangle = \langle x, y \rangle;$	
	(б) сохранение нормы: $\ \psi x\ = \ x\ $;	
	(в) свойство сопряженного: $\psi^\dagger=\psi^{-1}$	
46.	Запишите три свойства, которые определяют унитарный оператор.	
_	Лемма 4.1. Пусть ψ — опертор в евклидовом пространстве $X_E(\mathbb{K})$, тогда	
	следующие свойства эквиваентны:	
	(a) изометрия: $\langle \psi x, \psi y \rangle = \langle x, y \rangle;$	
	(б) сохранение нормы: $\ \psi x\ = \ x\ $;	
	(в) свойство сопряженного: $\psi^\dagger = \psi^{-1}$	
17.	Чему может быть равен определитель унитарного оператора?	
	Лемма 4.2. Определитель оператора ψ имеет следующее свойство:	
+	$ \det \psi = 1.$	
48.	Запишите свойства матрицы унитарного оператора.	
	Замечание 5.1. Матрицы унитарного и ортогонального операторов имеют свойсва:	
+		
+	$\mathbb{C}: \psi \leftrightarrow U_{\psi}, \overline{U^T} = U^{-1};$	
	$\mathbb{R}: \psi \leftrightarrow U_{\psi}, U^T = U^{-1}.$	
	-	

39. Как найти матрицу эрмитово сопряженного оператора?

6	57.												жа,	есл	ио	тсу	тст	гвун	от	ква	дра	ты	ко	орд	цина	ат,	но	при	этс	ОМ											
		су	ице	СТЕ	ует	и	хп	poi	изв	еде	эние	э?																													
						\top																																			
				+	+	+					-																		+	+		_		+	+	+			+	+	
			-	+	-	+					<u> </u>	-		-															-	_		-		+		-	_	-	-	_	
			-								_	_																		_				1		_			_	_	
68	2 7	Rai	пип	тит	e 0	бm	пий	DH	пр	en	VHO	TDE	VEO	льн	OFO	пр	ക്ക	nas	OBS	NI II	а ба	211	22																		
00	,. (<i>-</i>				ОШ	(FIFI	DII	дь	Cp.	XIIC.	rpc	y10.	JIDII	010	пр	-	pas	ОДС		<i>n</i> 00	One	· ·									+		+		+				+	_
		(g_1	=	e ₁ ,										-				-					-					+	+	-	+		+-	++	\dashv	\dashv	\dashv	+	+	_
			g_2			0,	+ 0								_																	_		-	+			_			
																																			\perp						
		亻	g_3	=	s_{31}	e_1	+ s	32ϵ	ϵ_2 -	$+e_{i}$	$_3,$																														
		١	:																																						
		- [g_n	_	e .	0.	+ (8 0	ea	_		+ e																													
		_ `	y_n	_	n_1		,	¹ n2	-2	٠.		1 0	n,	1 1																											
69	. 3	Заг	тиш	ит	ек	ан	они	че	СКИ	ий	вил	K	валі	раті	ичн	ой	фо	DMI	ыв	B D6	23 V.Л	ьта	те	пр	име	нег	ния	мет	ОЛ	a. —						_					
			оби											Port			4	P		P										+		-		+	+	+				+	
			-	+	+	+	+	-			_	<u> </u>		+															+	+		+		+-	+	\dashv	\dashv	\dashv	_	-	
				+		+	_	4		_		<u> </u>	_	\vdash															+	_		+		+	+	_	_	\dashv			
						1	_	_			<u> </u>	<u> </u>																	4	_		_		1	1			_			
																																				\dashv					
70).]	Пр	ои к	ак	ом	усл	пов	ии	мо	же	тп	рии	мен:	ятьс	ся и	иет	од 3	Яко	би'	? П	оясі	нит	e o	боз	нач	ени	я.					_		+	-						
													_																					+	+	\dashv	-	-	-		_
				+	-	+					-	-		-					_					_						-		_		+	-	-	-	-	-	-	_
					_					-	<u> </u>	-		-																_				-		_		_		_	
						_				<u> </u>																									\perp						
71	. С)пі	иши	те	ал	Lol	оит	M C	ДН	овг	реме	енн	Юй	диа	гон	али	іза	ции	дв	yx	ква	дра	тит	чнь	IX C	bop	M.														
		(a)) Д																																						
														$q_1(v$																											
		 ортогональных преобразований, например при помощи спектрального ана- лиза присоединенного оператора к этой квадратичной форме. Получим 																			_		+																		
														ка етм				рати	ичн	ои	фор	ме.	110	луч	ним							_		-	-						
			Oa	SHC	IJ	ı ʃ ,	ьк	.010	por	мч	Jopi	via i	amee	OI WI	агр	ицу													-	_		-		+		-		-	-	_	
												<i>A</i> =	= dia	$ag(\lambda$	1,.	,2	(λ_n) .															_									
																																			\perp						
		(б)	Π_{j}										,	, ,																											
			Вычислим матрицу B формы $q_2(v)$ в базисе $\{f_i\}$:																																						
													B:	$=T_{1}^{2}$	$^TB'$	T_1 .																									
														-																											
			где T_1 — матрица перехода из $\{e_i\}$ в $\{f_i\}$, B' — исходная матрица $q_2(v)$. Еще раз обратим внимание, что преобразование T является ортогональным, —																				1																		
														образ тора											ым,	\exists				+		+		+							
		/ \										ых	век	тора	tx II	рис	оед	ине	ннс	010	oner	arc	ра.									_		+	+						
		(B)) Д: В:									LTTT	710 T	еори	TIO .	ппс	HA.	aner	10 11	lloe.	(T7277	Dm^	mer	125	ea m	\dashv				+		+		+	+	\rightarrow		\rightarrow			
														алы															-	_		_		+		-		-	-	_	
														адра																		_									
			ви					•		•						٠	•	•		- ()																					
											B	H	\rightarrow	diag	$g(\mu)$	$_1, \dots$	\cdot , μ	(n)																							
70			ı	I	ا س	1	ı	I	- 1			I	1	1 1	- 1	1		- 1			1	1	1																		
72.												дим	MO I	испо	оль	зова	ать	пр	и (одн	овр	еме	ННС	рй,	диа	ГОН	алі	изац	ии												
	дв	уx	кв	аД]	JaT.	иЧ.	ны	v q	юр	M!																I			-									\top			
								\dashv																								+		+		\top		\top			
						+	+																						+	+		+		+	+++	+		+			
				+	+	+	+				-			+																+		+		+-	+++	+		+			
				+	+	+	-				-	_	-	\vdash																+		+		+	+-+	\dashv		+			
			-	+	+	+	-	+			_	_	-	\vdash															_	+		+		+	+			_			
				-	-	+						_	_	-															_	_		-			1			_			
						1					<u> </u>																		_			_			1						
											<u> </u>																														
		1	1					1			1	1		1 1									- 1					1 1		- 1	1	1	1	1	1 1	1	- 1		1	- 1	

Horau B graning @ Resh NF (TX: NF-coder)

Tygy pag utnysbierusin u gonsinemur

