Homework should be written neatly and clearly explained.

Problem 1

Let X_1, X_2, X_3, \ldots be independent random variables uniformly distributed on the interval [0, 2].

- 1. What are μ , the mean of X_1 , and σ^2 , the variance of X_1 ?
- 2. Simulate $\frac{1}{100}\sum_{i=1}^{100}\frac{X_i-\mu}{\sigma}$, 10000 times and give a histogram of the results.
- 3. Simulate $Y_n = \frac{1}{n} \sum_{i=1}^n \frac{X_i \mu}{\sigma}$ for various n and plot the histograms. What happens with the histogram of Y_n when n grows?

If we want the convergence in distribution, then we need to scale Y_n , that is, we should multiply Y_n by some a_n . What a_n should be chosen so that $Z_n = a_n Y_n$ converge in distribution to a standard normal random variable? Plot the histogram of Z_n for n = 1000.

Solution: