

Sensors

Luís Paulo Reis

Ipreis@fe.up.pt
Director/Researcher LIACC
Associate Professor at FEUP/DEI

Armando Sousa

asousa@fe.up.pt
Researcher INESC-TEC
Assistant Professor at FEUP/DEEC

Also, a very special Thank You to: **Prof. Nuno Lau, IEETA, U. Aveiro**

Robot & World

The Perception Problem

The Perception Problem

What does a robot needs to sense

- Depends on what the robot needs to do
- Animals have evolved sensors that suited to their environment and position in the ecosystem
 - ⇒ A good robot designer should follow similar principles

Two possible questions:

- Given a sensory reading, what was the world like when the reading was taken?
- Given a sensory reading, what should I do?

The Perception Problem

The first question

- Focused on world representation
- Perception is considered in isolation

The second question

- Perception without the context of action is meaningless
- Systemic view of the robot design
 - Task to perform
 - Best suited sensors
 - Most suited mechanical design

Some current sensing methods

Action oriented perception

Direct link between perception and action

Expectation-based perception

Sensor interpretation constraining based on world knowledge

Task-driven attention

 Direct perception where information is needed or likely to be provided (focus-of-attention)

Perceptual classes

Partition world in manageable categories

What is a sensor?

Sensors:

- Are transducers (change physical properties)
- Map physical attribute(s) to a [quantitative] measure(s)
- Produce results, measurements over time
- Constitute the perceptual system of the robot (perception after measurement)
- Sensor "chain" (perception chain likely hardware + software)
- Transducer + electronics + ADC + software

Human sensing

Sense	Physical attribute	Organ
Vision	EM waves	eyes
Audition	Pressure waves	Ears
Gustation	Chemical properties	Tongue
Olfaction	Chemical properties	Nose
Tact	Contact pressure/texture	Skin

- Humans can also sense other things like temperature, pain, equilibrium, own body
- Several animals have still other types of sensor capabilities

Robot sensors

Proximity

Infrared, Sonar, laser, optical, capacitive, inductive

Position

Potentiometer, switch, buttons, encoder

Heading

Compass, gyroscope

Temperature

Thermocouple

Sound

Microphone

Force, Pressure

Piezoelectric, variable resistance

Battery, Current

- Thermocouple

Chemical

Several

Magnetic field

magnetometer

Vision

- Camera
- Etc...

Levels of sensing

- Attribute to be measured
- Physical principle of transduction
 - Determines many of the characteristics of the sensor
- Hardware
 - Electronics
- Software
 - Signal processing
 - Computation
 - Sensor fusion

Levels of sensing

- Attribute to be measured
- Physical principle of transduction
 - Determines many of the characteristics of the sensor
- Hardware
 - Electronics
- Software
 - Signal processing
 - Computation
 - Sensor fusion

Sensor Characteristics

- Field of view and Range
- Accuracy, repeatability and resolution
- Responsiveness in the target domain
- Power consumption
- Hardware reliability
- Size
- Computational complexity
- Interpretation reliability

Accuracy...

https://www.pi-usa.us/en/tech-blog/the-difference-between-position-accuracy-and-repeatability-and-methods-to-reduce-position-errors/

Optional viewing: https://www.youtube.com/watch?v=-Lit-lusMZk

Sensor errors

Systematic errors

- Always push the measured value in the same direction
- Can be reduced by sensor calibration
- Ex: temperature in sonar, wheel radius in odometry
- Note: Interference is different, some interferences can be measured and corrected by sensor fusion like techniques

Non systematic errors

- Have a more random behavior
- Cannot be predicted or eliminated by calibration

≠ Interference (external influence)

Classification of sensors

Passive sensors

- Rely on environment to provide the medium for observation
- Ex: Camera, thermocouple, microphone
- Less energy
- Reduced Signal to Noise ratio

Active sensors

- Emits form of energy and measures the impact
- Ex: sonars. X-ray
- Restricted environments

Classification of sensors

Proprioceptive

- Measure values internally to the system
- Ex: motor speed, battery status, joint angle, etc.

Exteroceptive

- Information from the robots external environment
- Generally considering the robots frame of reference
- Depend on something external

Proprioceptive sensors

- Potentiometers
- Encoders
- Inertial navigation system
- Compass
- Gyroscopes
- Battery sensors

Potentiometer

• Physical principle:

Linear tension variation at the output of a variable resistance

- Can be used to detect angular or linear position
 - Joint angle, servomotor, etc

Encoders / Odometry

Physical principle

Record the wheel traversed distance

 Wheel traversed distance is used to estimate robot position and orientation

$$v = \frac{v_1 + v_2}{2}$$
$$\omega = \frac{v_1 - v_2}{b}$$

Detect direction of movement

Encoders / Odometry

Magnetic version of an encoder: (Rotary or linear)

https://e.sentech.nl/en/news/ inductive-encoder-accurately-measuredisplacement-in-harsh-conditions The two encoder wheels, one for each motor, beneath transparent floor of the robot

https://automaticaddison.com/ how-to-make-an-autonomous-wheeled-robot-using-ros/

https://hackaday.io/project/ 158496-imcoders/log/147068-robot-odometry

GPS/DGPS

Physical principle

Triangulation over the distance to several satellites

- Estimates longitude, latitude and altitude
 - Resolution: 10-15m
- DGPS (Differential GPS)
 - Extra GPS receivers at known locations are used to reduce errors
 - Resolution: few centimeters

Proximity sensors

- Bumper
- Infrared
- Sonar
- Laser Range Finder

Bumper

Physical principle

Direct contact closes (or opens) a circuit

- Used to detect collisions
- Binary value
- Reliable but the collision is eminent

Infrared sensor

Physical principle

Na IR emitter/receiver is used to detect distance or as a barrier

- Used to estimate distance, presence of objects or color
 - Some dark surfaces do not reflect IR
- Several technologies
- Range: from <10cm to ~1m
- Narrow field of view
- Cheap

Sonar

Physical principle

Emit US chirp, time until echo is received is used to estimate distance

- Time until echo is proportional to the distance until clo obstacle
 - Speed of sound changes with temperature and pressure
- Range: few centimeters to ~10m
- Field of view ~30º
- Cheap (but not as cheap as IR)
- Fast (depends on range)
- Ring of sonars

Sonar problems

Foreshortening

Crosstalk

Receiver may detect echoes f

s in the ring

Specular reflection

- Wave is reflected when angle is

Laser range finder

Physical principle

Similar to sonar but uses laser instead of sound

- Time of flight is used to estimate distance
- Range: 2m until ~500m
- Resolution: 1 cm
- Field of view: 100°-180°
- Much more accurate than sonar
- Also more expensive

28

Vision

Pinhole camera

Figure from Forsyth

https://slidetodoc.com/pinhole-cameramodel-computational-photography-derekhoiem-university/

> https://www.scratchapixel.com/ lessons/3d-basic-rendering/ 3d-viewing-pinhole-camera/ how-pinhole-camera-works-part-2

Depth Sensing

Depth Sensing

Stereo Vision

Visual tracking of unknown moving object by adaptive binocular visual servoing 1999

DOI:10.1109/MFI.1999.815998

- IEEE Xplore
- •Conference: Multisensor Fusion and Integration for Intelligent Systems,

https://www.stereolabs.com/zed-2i/ https://www.stereolabs.com/solutions/robotics/

Active Stereo

ACTIVE STEREO

STRUCTURED LIGHT

https://www.osela.com/depth-sensing/

RGBD

https://p3d.in/ifOvj (interactive!)

RGBD - Point Cloud

https://blog.bricsys.com/ point-clouds-whats-the-point/

Yu, Lequan & Li, Xianzhi & Fu, Chi-Wing & Cohen-Or, Daniel & Heng, Pheng-Ann. (2018). EC-Net: an Edge-aware Point set Consolidation Network.

https://www.researchgate.net/publication/326459 389_EC-Net_an_Edgeaware_Point_set_Consolidation_Network

Automotive Sensors / LIDAR

https://www.roboticsbusinessreview.com/unmanned/unmanned-ground/velodyne-touts-latest-lidar-advances-autonomous-vehicle-partnerships/

Thrun et al.

Thakurdesai, Hrishikesh & Aghav, Jagannath. (2021). Autonomous Cars: Technical Challenges and a Solution to Blind Spot.

Components of Driver-less Car (Source: The Economist, How does a self-driving car work)

Fire detection sensors

- Physical principle
 Detect flame by sensing ultraviolet light
- Flame detector, fire alarms, fire fighting competitions, etc
- Can detect a flame from a cigarette lighter from a distance of more than
 5m

Compass

- Physical principle
 Detection of Earth magnetic field
- Used to detect robot orientation
- Together with velocity information can be used for dead reckoning
- Resolution 1º, Accuracy 2º
- Sensitive to other magnetic fields ot metal in the environment

Inertial sensors

Accelerometer

- Measures the linear acceleration of the robot
- Second integration to obtain displacement

Gyroscope

- Measures the angular motion of the robot
- Not influenced by gravity
- Integration gives angular displacement

Multisensor fusion

Redundant

Several sensors return the same percept

Complementary

Provide disjoint types of information about percept

Coordinated

- Sequence of sensors
- Focus-of-attention

Redundant Multisensor fusion

Mean of several measures

Considering a normal distribution:

The mean of N measures as a reduced covariance

$$M \sim N(\mu, \sigma^2)$$

$$Mean = 1/N \sum_{n=1}^{N} M_{i}$$

$$Mean \sim N(\mu, \sigma^{2}/N)$$

Sensor Fusion

Kalman filter

- Integration of measures over time
- Markovian assumption
- Considers physics model and action model

$$x_t = Px_{t-1} + Cu_t + q$$
 $q \quad N(0, Q)$
 $z_t = Hx_t + r$ $r \quad N(0, R)$
 $N(\hat{x}_{t-1}, \Sigma_{t-1})$

Information

$$\bar{x}_t = P\hat{x}_{t-1} + Cu_t$$

$$\bar{\Sigma}_t = P\Sigma_{t-1}P^{\mathrm{T}} + Q$$

$$K_t = \bar{\Sigma}_t H^{\mathrm{T}} (H\bar{\Sigma}_t H^{\mathrm{T}} + R)^{-1}$$

$$\Sigma_t = (I - K_t H)\bar{\Sigma}_t$$

$$\hat{x}_t = \bar{x}_t + K_t (z_t - H\bar{x}_t)$$

$$\begin{cases} \frac{dx(t)}{dt} &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{cases}$$

$$x = [x_1 \quad x_2 \cdots x_m]^T \qquad \dim(A) = m \times m$$

$$u = [u_1 \quad u_2 \cdots u_p]^T \qquad \dim(B) = p \times m$$

$$y = [y_1 \quad y_2 \cdots y_q]^T \qquad \dim(C) = m \times q$$

$$\begin{cases} x(k) &= \Phi x(k-1) + Gu(k-1) \\ y(k) &= Hx(k) \end{cases}$$

$$\Delta t_k = t_k - t_{k-1}$$

$$\Phi(k) = e^{A\Delta t_k}$$

$$G = \int_{t_{k-1}}^{t_k} e^{A\Delta t_k} B dt$$

$$H = C$$

$$\begin{cases} x(k) &= \Phi x(k-1) + Gu(k-1) + w(k-1) \\ y(t) &= Hx(k) + v(k-1) \end{cases}$$

$$\begin{split} R_{\mathbf{w}}(k\,,\,i) = & \begin{cases} Q(k) & \text{se } i = k \\ 0 & \text{se } i \neq k \end{cases} & E(\mathbf{w}(k)\mathbf{v}(i)^T) = 0 \ , \forall \, k\,, i \\ \\ R_{\mathbf{v}}(k\,,\,i) = & \begin{cases} R(k) & \text{se } i = k \\ 0 & \text{se } i \neq k \end{cases} & P(\mathbf{w}) \sim N(0,Q) \\ P(\mathbf{v}) \sim N(0,R) & Cov(x(0)) = P_0 \end{cases} \end{split}$$

Kalman Filter always keeps track of **averages** and **covariances**!

$$P \Rightarrow \sigma^{2} = \begin{bmatrix} cov(y_{1}, y_{1}) & cov(y_{1}, y_{2}) & \cdots & cov(y_{1}, y_{n}) \\ cov(y_{2}, y_{1}) & cov(y_{1}, y_{1}) & \cdots & cov(y_{1}, y_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ cov(y_{n}, y_{1}) & cov(y_{1}, y_{1}) & \cdots & cov(y_{n}, y_{n}) \end{bmatrix}$$

```
Initial(State, Covariance)
Cycle:
   Propagate (Stat, Covar, SysModel, Inputs)
   Cycle Meas(i):
      If Valid (Meas(i)) then
         Update(Stat,Covar,MeasModel(i),Meas(i))
               This is an abuse => no guarantees!
```


$$\frac{dX(t)}{dt} = f(X(t), u(t_k), t), \quad t \in]t_{k-1}, t_k]$$

$$A_k = \frac{\partial f}{\partial x} \Big|_{\substack{x = x(t_k) \\ u = u(t_k) \\ t = t_k}}$$

$$A(k) = \exp(A_k(t_k - t_{k-1}))$$

$$\begin{array}{lcl} x(k) & \approx & \tilde{x}(k) + A\big(x(k-1) - \hat{x}(k)\big) + W \ w(k-1) \\ y(k) & \approx & \tilde{y}(k) + h\big(x(k) - \tilde{x}(k)\big) + V \ v(k) \end{array}$$

$$A = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} H = \frac{\partial h}{\partial x} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial h_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial h_2} & \cdots & \frac{\partial h_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_q}{\partial x_1} & \frac{\partial h_q}{\partial h_2} & \cdots & \frac{\partial h_q}{\partial x_n} \end{bmatrix} W = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial h_2} & \cdots & \frac{\partial h_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} V = \frac{\partial h}{\partial x} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial h_2} & \cdots & \frac{\partial h_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} V = \frac{\partial h}{\partial x} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \cdots & \frac{\partial h_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} V = \frac{\partial h}{\partial x} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \cdots & \frac{\partial h_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_n}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \cdots & \frac{\partial h_n}{\partial x_n} \end{bmatrix} V = \frac{\partial h}{\partial x} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \cdots & \frac{\partial h_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_n}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \cdots & \frac{\partial h_n}{\partial x_n} \end{bmatrix} V = \frac{\partial h}{\partial x} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_1} \\ \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_n}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \end{bmatrix} V = \frac{\partial h}{\partial x} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_1} \\ \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_1}{\partial x_1} & \frac{\partial$$

Predict Stage

Update Stage

Kalman Gain Calculation:

 $K(k) = P(k^{-})H^{T}(HP(k^{-})H^{T} + R(k))^{-1}$

Propagate State:

$$x(k^{-}) = \Phi x(k-1) + Bu(k-1)$$

State Update with new Measure:

$$x(k)=x(k^{-})+K(k)(y(k)-Hx(k^{-}))$$

Propagate Co-Variance:

$$P(k^{-}) = \Phi P(k-1) \Phi^{T} + Q(k)$$

Update Covariance with new measurement:

$$P(k) = (I - K(k)H)P(k^{-})$$

Initial Estimates: x_o , P_o

EKF – Trouble

EKF offer no theoretical guarantees

Not Optimal

May not converge

Expect troubles with periodical functions such as trigonometrical

Should:

Design and implement VERY carefully

Test thouroughly

Complementary Multisensor fusion

- Example: Mercator Project
 - The robot
 - 2 Laser ranger finders
 - 1 omnicam
 - Laser ranger finders are used to detect distance to walls and obstacles
 - Output of omnicam is used to apply textures to the model

Sensors

Luís Paulo Reis

Ipreis@fe.up.pt
Director/Researcher LIACC
Associate Professor at FEUP/DEI

Armando Sousa

asousa@fe.up.pt
Researcher INESC-TEC
Assistant Professor at FEUP/DEEC

Also, a very special Thank You to: **Prof. Nuno Lau, IEETA, U. Aveiro**

