Алгебра 1 2022

1 Листок 5

1.

2. а) \mathfrak{m} — максимальный идеал, содержащий I. Поле $F = R/\mathfrak{m}$ имеет характеристику 0. Допустим, это не так, и характеристика поля F равна p. Тогда для любого элемента $t \in R$ имеет место

$$pt \in \mathfrak{m}$$

Покажем, что тогда идеал $\mathfrak m$ совпадает со всем кольцом R. Возьмём произвольный элемент $a\in R$ и покажем, что он лежит в идеале $\mathfrak m$. Пусть

$$a = (a_2, a_3, \dots, a_p \dots).$$

Рассмотрим элементы b_1, b_2 , такие, что

$$b_1(q) = \begin{cases} a_q, q \le p, \\ 0, q > p \end{cases}$$
 $b_2(q) = \begin{cases} 0, q \le p, \\ p^{-1}a_q, q > p \end{cases}$

Ясно, что $a=b_1+pb_2, b_1\in I, pb_2\in\mathfrak{m}$. Итак, $a\in\mathfrak{m}$. Получили противоречие, доказали.

б) Докажем, что в поле F хотя бы один из элементов 2, 3, 6 является квадратом. Пусть A и B — два непересекающихся подмножества простых чисел, в объединении дающие всё множество простых. Пусть $a \in R$ — такой элемент, у которого все a_p равны 1 при $p \in A$ и 0 при $p \notin A$. Аналогично, у $b \in R$ все b_p равны 1 при $p \in B$ и 0 при $p \notin B$. Тогда a+b=1, и a и b не могут одновременно принадлежать идеалу \mathfrak{m} (поскольку \mathfrak{m} — собственный идеал). С другой стороны, хотя бы один из элементов a, b принадлежит идеалу \mathfrak{m} . Докажем это. Допустим, ни a, ни b не лежат в идеале \mathfrak{m} . Покажем, что это противоречит его максимальности. Добавим к этому идеалу a, тем самым получив идеал \mathfrak{m}_1 . Покажем, что \mathfrak{m}_1 всё равно собственный, а именно, $b \notin \mathfrak{m}_1$. Действительно, если бы было $b \in \mathfrak{m}_1$, то b представлялось бы в виде

$$b = ha + t, h \in \mathbb{R}, t \in \mathfrak{m}.$$

2 Листок 11

1. а) Имеем для суммы количеств неподвижных элементов по всем элементам G

$$\sum_{g \in G} \sum_{x \in X} \mathbbm{1}_{gx=x} = \sum_{x \in X} \sum_{g \in G} \mathbbm{1}_{gx=x} = \sum_{x \in X} |\mathrm{Stab}_x| = \sum_{x \in X} \frac{|G|}{|X|} = |G|.$$

Поэтому искомое среднее равно 1. Мы воспользовались тем, что

$$|\operatorname{Stab}_x| = \frac{|G|}{|\operatorname{Orb}_x|} = \frac{|G|}{|X|},$$

ведь в нашем случае орбита x — это всё X в силу транзитивности.