BACCALAUREAT SESSION 2020 Coefficient : 5 Durée : 4 H

MATHEMATIQUES

SERIE E

Cette épreuve comporte deux (02) pages numérotées 1/2 et 2/2. Chaque candidat recevra une (01) feuille de papier millimétré. L'usage de la calculatrice scientifique est autorisé.

EXERCICE 1

Soit ABC un triangle du plan.

- 1. a) Déterminer et construire le point G, barycentre des points pondérés (A,1); (B,-1) et (C, 1).
 - b) Déterminer et construire le point G', barycentre des points pondérés (A,1); (B,5) et (C,-2).
- 2. Soit J le milieu de [AB].
 - a) Exprimer les vecteurs GG' et JG'en fonction de AB et AC puis en déduire que le point J est le point d'intersection des droites (GG') et (AB).
 - b) Démontrer que le barycentre I des points pondérés (B,2) et (C,-1) appartient à (GG').
- Soit D un point quelconque du plan n'appartenant pas à la droite (AC).
 Soit O le milieu de [CD] et K le milieu de [OA].
 - a) Déterminer trois nombres réels a, b et c tels que K soit le barycentre de (A, a); (D, b) et (C, c).
 - b) Soit E le point d'intersection des droites (DK) et (AC).
 Démontrer que E est le barycentre des points pondérés (A, 2) et (C, 1).

EXERCICE 2

L'objectif est d'étudier la suite u définie par ; $u_0 = \int_0^1 \frac{1}{\sqrt{1+x^2}} dx$ et pour $n \ge 1$, $u_n = \int_0^1 \frac{x^n}{\sqrt{1+x^2}} dx$.

- 1. Soit f la fonction numérique définie sur [0; 1] par : $f(x) = \ln(x + \sqrt{1+x^2})$.
 - a) Calculer f'(x) et en déduire uo. f' étant la dérivée de f.
 - b) Calculer u₁.
- 2. On ne cherchera pas à calculer un
 - a) Démontrer que la suite (u_n) est décroissante et en déduire qu'elle converge.
 - b) Démontrer que pour tout nombre réel x appartenant à l'intervalle [0; 1], on a: 1 ≤ √1+x² ≤ √2.

En déduire que pour tout entier naturel $n \ge 1$, on a : $\frac{1}{(n+1)\sqrt{2}} \le u_n \le \frac{1}{n+1}$. (1)

c) Déterminer la limite de (u_n).

- 3. Pour tout entier naturel $n \ge 3$, on pose $I_n = \int_0^1 x^{n-2} \sqrt{1+x^2} dx$.
 - a) Justifier que : ∀ n ≥3, u_n + u_{n-2} = I_n.
 - b) A l'aide d'une intégration par parties de I_n , démontrer que : $\forall n \ge 3$, $nu_n + (n-1)u_{n-2} = \sqrt{2}$.
 - c) En déduire que : $\forall n \ge 3$, $(2n-1) u_n \le \sqrt{2}$. (2)
 - d) A l'aide des inégalités (1) et (2), démontrer que : \forall $n \ge 3$, $\frac{n}{(n+1)\sqrt{2}} \le nu_n \le \frac{n\sqrt{2}}{2n-1}$ En déduire que la suite (nu_n) est convergente.

PROBLEME

n est un nombre entier naturel non nul.

On considère la fonction numérique f_n définie sur [0; 1] par : $\begin{cases} f_n(x) = x^2(\ln x)^n si \ x \in [0, 1] \\ f_n(0) = 0 \end{cases}$

On désigne par (C_n), la courbe représentative de f_n dans le plan muni d'un repère orthonormé (O, I, J). Unité graphique 10 cm.

Partie A

- 1. Démontrer que fn est dérivable à droite en 0.
- 2. a) Démontrer que : $\forall n > 0, 0 < e^{-\frac{n}{2}} < 1$.
 - b) Résoudre dans]0;1], l'inéquation : $\ln x + \frac{n}{2} < 0$.
- 3. a) Démontrer que : $\forall x \in [0; 1], f_n'(x) = 2x(\ln x)^{n-1}(\ln x + \frac{n}{2})$
 - b) Etudier suivant les valeurs de n, les variations de f_n puis dresser son tableau de variation (On distinguera trois cas : n = 1, n pair et n impair)
- a) Démontrer que toutes les courbes (C_n) passent par deux points fixes dont on déterminera les coordonnées.
 - b) Construire (C1) et (C2) dans le même repère.

Partie B

t désigne un nombre réel appartenant à [0 ; 1]. On pose $I_n(t) = \int_1^1 f_n(x) dx$ et $L_n = \int_0^1 f_n(x) dx$.

On admet que $L_n = \lim_{t\to 0} I_n(t)$.

- 1. Soit F la fonction dérivable et définie sur [0;1] par : $\begin{cases} F(x) = \frac{x^3}{3}(\ln x) \frac{x^3}{9}si \ x \in]0, 1] \\ F(0) = 0 \end{cases}$
 - a) Démontrer que F est une primitive de f₁ sur [0 ; 1].
 - b) Calculer L₁.
- 2. Soit ϕ_n la fonction définie sur]0 ; 1] par $\phi_n(t) = -\frac{1}{3} t^3 (Int)^n$.
 - a) Calculer la limite de φ_n en 0.
 - b) A l'aide d'une intégration par parties, démontrer que : \forall t \in [0;1], $I_{n+1}(t) = \phi_{n+1}(t) \frac{n+1}{3}I_n(t)$
 - c) En déduire que : $L_{n+1} = -\frac{n+1}{3} L_n$.
 - d) Démontrer par récurrence que : \forall $n \ge 1$, $L_n = (-1)^n \frac{n!}{3^{n+1}}$.
- Calculer en fonction de n, l'aire A(n) de la partie du plan délimitée par (Cn); l'axe des abscisses et les droites d'équations x = 0 et x= 1.