Seminární úlohy 3

1. Hustota pravděpodobnosti exponenciálního rozdělení je exponenciálně klesající funkce. Parametrem rozdělení je střední doba života τ.

Napište hustotu pravděpodobnosti exponenciálního rozdělení.

Vypočítejte distribuční funkci exponenciálního rozdělení.

V programu Gnuplot nakrestele grafy obou funkcí.

Řešení:

Doba života nemůže být záporná, proto f(x) = 0 pro x < 0.

Pro kladné hodnoty x pravděpodobnost výskytu náhodné proměnné v okolí bodu x exponenciálně klesá s rostoucím x. Tedy $f(x) = Ke^{-\frac{x}{\tau}}$ pro $x \ge 0$, kde K je konstanta, kterou zjistíme z normalizační podmínky $\int_{-\infty}^{\infty} f(x)dx = 1$. Tento integrál můžeme rozdělit na dvě části $\int_{-\infty}^{0} f(x)dx + \int_{0}^{\infty} f(x)dx$. První část je nulová $\int_{-\infty}^{0} f(x)dx = 0$.

Druhá část
$$\int_0^\infty f(x)dx = K \int_0^\infty e^{-\frac{x}{\tau}}dx = K \left[-\tau e^{-\frac{x}{\tau}}\right]_0^\infty = K\tau = 1.$$

Z toho dostáváme, že konstanta K musí být $K = \frac{1}{\tau}$

Tedy hustota pravděpodobnosti je
$$f(x) = \begin{cases} 0 & \text{pro } x < 0 \\ \frac{1}{\tau} e^{-\frac{x}{\tau}} & \text{pro } x \ge 0 \end{cases}$$

Distribuční je definovaná jako $F(x) = \int_{-\infty}^{x} f(t)dt$.

Pro
$$x < 0$$
 je to $F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0 dt = 0.$

Pro
$$x \ge 0$$
 je to $F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{x} \frac{1}{\tau} e^{-\frac{t}{\tau}} dt = 0 + \left[-e^{-\frac{t}{\tau}} \right]_{0}^{x} = 1 - e^{-\frac{x}{\tau}}$

Pro $x \ge 0$ je to $F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0 \ dt + \int_{0}^{x} \frac{1}{\tau} e^{-\frac{t}{\tau}} dt = 0 + \left[-e^{-\frac{t}{\tau}} \right]_{0}^{x} = 1 - e^{-\frac{x}{\tau}}$ Tedy distribuční funkce exponenciálního rozdělení je $F(x) = \begin{cases} 0 & \text{pro } x < 0 \\ 1 - e^{-\frac{x}{\tau}} & \text{pro } x \ge 0 \end{cases}$

hustota pravděpodobnosti

distribuční funkce

2. Dokažte následující často používané vlastnosti pravděpodobnosti

1.
$$P({0}) = 0$$

2.
$$P(\overline{A}) = 1 - P(A)$$
, kde \overline{A} je doplnek množiny A

3.
$$0 \le P(A) \le 1$$

4.
$$A \subset B \Rightarrow P(A) \leq P(B)$$

5.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Řešení:

Použijeme definiční axiomy pravděpodobnosti

(i)
$$P(\Omega) = 1$$

(ii)
$$A \subset \Omega \Rightarrow P(A) \ge 0$$

(iii)
$$A \cap B = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$$

ad 1) $\Omega = \Omega \cup \{0\}$. Prázdná množina je disjuktní s každou monožinou tedy i Ω . Podle (iii) můžeme psát $P(\Omega) = P(\Omega \cup \{0\}) = P(\Omega) + P(\{0\})$. Podle (i) je $P(\Omega) = 1$ a tedy musí být i $P(\Omega) + P(\{0\}) = 1$. Z toho dostáváme, že $P(\{0\}) = 0$.

ad 2)
$$\Omega = A \cup \overline{A}$$
 a A , \overline{A} jsou disjunktní množiny. Proto podle (iii) $P(A \cup \overline{A}) = P(A) + P(\overline{A})$. Platí tedy $P(A) + P(\overline{A}) = P(\Omega) = 1$. Odtud dostáváme $P(\overline{A}) = 1 - P(A)$.

ad 3) Nerovnost $P(A) \ge 0$ platí podle (ii). Zbývá tedy dokázat, že $P(A) \le 1$. To provedeme sporem Nechť B je takový jev pro který je P(B) > 1. Platí $B \cup \overline{B} = \Omega$ a B, \overline{B} jsou disjunktní jevy. Proto podle (iii) $P(B) + P(\overline{B}) = P(\Omega) = 1$. Jelikož současně platí, že P(B) > 1, musí být $P(\overline{B}) < 0$. To je ale spor s axiomem (ii).

ad 4) Označme jako $B \setminus A$ doplněk množiny B v množině A, tj. $B \setminus A$ množina všech prvků, které patří do A ale nepatří do B. Protože $A \subset B$ je množinu B je možné psát jako sjednocení dvou disjuktních množin A a $B \setminus A$, tj. $B = A \cup B \setminus A$. Platí tedy $P(B) = P(A) + P(B \setminus A)$. Protože $P(B \setminus A) \ge 0$, musí být $P(B) \ge P(A)$.

ad 5) Množinu B lze psát jako sjednocení dvou disjunktních množin $B = (A \cap B) \cup B \setminus A$. Podobně $A = (A \cap B) \cup A \setminus B$. Pro pravděpodobnosti tedy podle (iii) platí

$$P(A) = P(A \cap B) + P(A \setminus B)$$
 (a1)

$$P(B) = P(A \cap B) + P(B \setminus A). \tag{a2}$$

Množinu $A \cup B$ je možné vyjádřit jako sjednocení tří disjunktních množin

$$A \cup B = (A \cap B) \cup B \setminus A \cup A \setminus B$$
 a tedy pro praděpodobnost platí podle (iii)

$$P(A \cup B) = P(A \cap B) + P(B \setminus A) + P(A \setminus B)$$
 (a3)

Pravděpodobnosti $P(A \setminus B)$ a $P(B \setminus A)$ si vyjádříme z (a1) a (a2) a dosadíme do (a3)

$$P(A \cup B) = P(A \cap B) + P(B) - P(A \cap B) + P(A) - P(A \cap B) = P(A) + P(B) - P(A \cap B)$$