TOR I - Discrete structures

- Problem Set 6 -

- 1. Pokaži $(A \cup C) \cap (B \setminus C) = (A \cap B) \setminus C$.
- 2. Pokaži $A\subseteq C \wedge B \subseteq C \Rightarrow A \cup B \subseteq C.$
- 3. Pokaži $A \subseteq B \Leftrightarrow A \cap B = A$.
- 4. Pokaži $(A \cap B) \setminus B = \emptyset$.
- 5. Določi naslednje množice
 - (i) $\{\emptyset, \{\emptyset\}\} \setminus \emptyset$
 - (ii) $\{\emptyset, \{\emptyset\}\} \setminus \{\emptyset\}$
 - (iii) $\{\emptyset, \{\emptyset\}\} \setminus \{\}\emptyset\}\}$
 - (iv) $\{1, 2, 3, \{1\}, \{5\}\} \setminus \{2, \{3\}, 5\}$
- 6. Katere od spodnjih izjav so resnične za poljubne množice A, B in C:
 - (a) Če $A \in B$ in $B \in C$, potem $A \in C$.
 - (b) Če $A \subseteq B$ in $B \in C$, potem $A \in C$.
 - (c) Če $A \cap B \subseteq \overline{C}$ in $A \cup C \subseteq B$, potem $A \cap C = \emptyset$.
 - (d) Če $A \neq B$ in $B \neq C$, potem $A \neq C$.
 - (e) Če $A \subseteq \overline{(B \cup C)}$ in $B \subseteq \overline{(A \cup C)}$, potem $B = \emptyset$.
- 7. Za poljubne množice A,B in ${\cal C}$ dokaži naslednje trditve:
 - (a) $A \subseteq B \Leftrightarrow A \cap \overline{B} = \emptyset$.
 - (b) $A \setminus B = \overline{B} \setminus \overline{A}$.