

Kapitel 2

Starke Zusammenhangskomponenten in Graphen

Effiziente Algorithmen, SS 2018 Professor Dr. Petra Mutzel

VO 5 vom 24. April 2018

Petra Mutzel 24. April 2018

Einführung

Grundlegende Definitionen: siehe ppt-Folien

- Graph (gerichtet und ungerichtet)
- einfache Graphen
- Knotengrade und Nachbarmengen
- Kantenzüge, Pfade und Wege
- Kreise
- Datenstrukturen für Graphen: Adjazenzlisten, Matrizen

Tiefensuche in Graphen

zum Aufwärmen und Einsteigen etwas Wiederholung von DAP 2 Tiefensuche (ungerichtet) (auch: Depth First Search, DFS)

The state of the s

Erinnerung zentraler Algorithmus ziemlich einfach extrem nützlich sehr effizient (Linearzeit)

jetzt: gerichtete Tiefensuche

Tiefensuche in gerichteten Graphen

Kantenklassifikation

- Baum-Kanten (T): Kanten, denen die Tiefensuche folgt
- Rückwärtskanten (B): Kanten von einem DFS-Knoten v zu einem Vorgänger von v im DFS-Baum
- Vorwärtskanten (F): Kanten von v zu einem bereits durch T-Kanten erreichten Nachfolgerknoten w
- Querkanten (C): alle anderen Kanten

Tiefensuche in gerichteten Graphen: Beispiel

v	num(v)	status(v)	
a			$\begin{pmatrix} a \end{pmatrix} \longrightarrow \begin{pmatrix} c \end{pmatrix}$
b			
c			/ T 📉 🕴
d			
e			$I \mid \mathcal{L}^e \mathcal{L}$
f			
g			
	num(v):	Reihenfolge im DFS	(b) / (f)
	` '	_	$1 \vee 1 \vee =$
S	tatus(v):	0 (noch nicht besucht)	
		1 (besucht, nicht fertig)	1 1 1 1 1 1 1 1 1 1
		2 (fertig)	$\mathbf{V}_{a}\mathbf{V}$

Petra Mutzel 24. April 2018

Tiefensuche in gerichteten Graphen: Beispiel

	-	•
v	num(v)	status(v)
\overline{a}	1	2
b	2	2
c	5	2
d	6	2
e	3	2
f	7	2
g	4	2
T	= (a,	(b, e), (b, g), (a, c)
F	= $(a,$	g)
B	= $(e,$	a)
C	= $(g,$	e), (f, c), (f, d)

Algorithmus 2.1 (Gerichtete Tiefensuche (DFS))

1. Initialisierung

```
i:=0;\ T:=\emptyset;\ B:=\emptyset;\ C:=\emptyset;\ F:=\emptyset
Für alle v\in V: dfsnum(v):=0; status(v):=0
2. Für alle v\in V: If dfsnum(v)=0 Then DFS-visit(v)
```

$\mathsf{DFS} ext{-visit}(v)$

```
1. \operatorname{status}(v) := 1; \ i := i+1; \ \operatorname{dfsnum}(v) := i
2. Für alle w \in \operatorname{Adj}(v)
   If \operatorname{dfsnum}(w) = 0
   Then T := T \cup \{(v,w)\}; \ \operatorname{DFS-visit}(w)
   Else If \operatorname{dfsnum}(w) > \operatorname{dfsnum}(v)
   Then F := F \cup \{(v,w)\}
   Else If \operatorname{status}(w) = 1
   Then B := B \cup \{(v,w)\}
```

3. status(v) := 2

Petra Mutzel 24. April 2018 9

Else $C := C \cup \{(v, w)\}$

Analyse der Tiefensuche

Lemma

Der Algorithmus 2.1 zur gerichteten Tiefensuche klassifiziert die Kanten korrekt in Baumkanten, Rückwärtskanten, Vorwärtskanten und Querkanten. Er läuft in Zeit O(|V|+|E|).

Tiefensuche — Na, und?

Wen interessiert denn das?

Jemanden, der

- wissen will, ob ein Graph zusammenhängend ist.
- wissen will, ob ein Graph kreisfrei ist.
- wissen will, ob ein Graph stark zusammenhängend ist.

Stark zusammenhängend?

neuer Begriff starker Zusammenhang

Starker Zusammenhang

Definition 2.2 (starker Zusammenhang)

Sei G=(V,E) ein gerichteter Graph. Gibt es einen gerichteten Weg von v nach w (mit $v,w\in V$), so schreiben wir $v\to w$. Gilt $v\to w$ und $w\to v$, so schreiben wir $v\leftrightarrow w$.

Zwei Knoten $v,w\in V$ heißen stark zusammenhängend, wenn $v\leftrightarrow w$ gilt.

Die Aquivalenzklassen von V bezüglich \leftrightarrow heißen starke Zusammenhangskomponenten.

Ist das wohldefiniert? Ist \leftrightarrow eine Äquivalenzrelation? Äquivalenzrelation

Starker Zusammenhang

Definition 2.2 (starker Zusammenhang)

Sei G=(V,E) ein gerichteter Graph. Gibt es einen gerichteten Weg von v nach w (mit $v,w\in V$), so schreiben wir $v\to w$. Gilt $v\to w$ und $w\to v$, so schreiben wir $v\leftrightarrow w$.

Zwei Knoten $v,w\in V$ heißen stark zusammenhängend, wenn $v\leftrightarrow w$ gilt.

Die Aquivalenzklassen von V bezüglich \leftrightarrow heißen starke Zusammenhangskomponenten.

Ist das wohldefiniert? Ist \leftrightarrow eine Äquivalenzrelation? Äquivalenzrelation

- reflexiv $v \leftrightarrow v$ (Weglänge 0)
- symmetrisch $v \leftrightarrow w \Leftrightarrow w \leftrightarrow v$ (nach Definition)
- transitiv $v \leftrightarrow w$ und $w \leftrightarrow x \Rightarrow v \leftrightarrow x$ (Konkatenation)

Idee des Algorithmus von Kosaraju

- Führe DFS-Traversierung von G=(V,E) durch; vergib dabei in absteigender Reihenfolge sogenannte f-Nummern $n,\,n-1,\,\ldots,\,1$ an die Knoten.
- Knoten v ∈ V erhält seine f-Nummer beim Abschluss des Aufrufs von DFS-visit(v).
- Hierzu wird DFS-visit(v) in der letzten Zeile abgeändert: dort wird zusätzlich die f-Nummer von v vergeben.
- Ein zweiter DFS-Durchlauf, der den Graphen mit umgekehrten Kanten traversiert und dabei die Knoten $v \in V$ in Reihenfolge aufsteigender f-Nummern durchläuft, legt dann die SHKs fest.

Berechnung der starken Zusammenhangskomponenten

Algorithmus von Kosaraju

- 1. Führe DFS-Traversierung von G=(V,E) durch, vergib dabei in absteigender Reihenfolge die f-Nummern $n,\,n-1,\,\ldots,\,1$ an die Knoten.
- 2. Berechne $G^* := (V, E^*)$ mit $E^* := \{(w, v) \mid (v, w) \in E\}$.
- 3. Führe DFS-Traversierung von G^* durch, durchlaufe dabei im Rahmenalgorithmus die Knoten $v \in V$ in Reihenfolge aufsteigender f-Nummern, Start in Knoten v mit f[v] = 1.
- 4. Gib die T-Bäume der zweiten DFS-Traversierung als starke Zusammenhangskomponenten aus.

einfach zu implementieren $\sqrt{\frac{\text{Laufzeit }O(|V|+|E|)}{\text{Korrektheit?}}}$ Sind das wirklich die SZHK?

Starke Zusammenhangskomponenten — Beispiel

v	num(v)	f(v)
\overline{a}	1	3
b	2	5
c	5	4
d	6	2
e	3	7
f	7	1
g	4	6

SZHK 1: *f* 2: *d* 3: *a*, *e*, *b*, *g* 4: *c*

Korrektheit — Vorüberlegungen

DFS auf G liefert T-Bäume T_1, T_2, \ldots, T_l .

Kanten zwischen den Bäumen verlaufen nur von rechts nach links.

Also ist jede SZHK vollständig in einem T-Baum.

Betrachte Wurzel w von T_l : w hat minimale f-Nummer: f[w] = 1 In G^* kann DFS(w) keinen Knoten $\notin T_l$ erreichen.

Betrachte Knoten v mit $w \to v$ in G^* : $v \leftrightarrow w$

Das gilt für alle Knoten v im T^* -Baum mit Wurzel w.

Also wird die SZHK von w korrekt berechnet.

Korrektheitsbeweis

per Induktion über die Anzahl k der SZHK:

Induktionsanfang k=1

wie gesehen korrekt berechnet

Induktionsschritt:

wie gesehen erste SZHK korrekt berechnet

Was passiert danach?

Beobachtung: $T_1, T_2, \ldots, T_{l-1}, T_l \setminus S$ entspricht einer DFS-Traversierung von $G \setminus S$ in passender Reihenfolge $G \setminus S$ ist ein Graph mit k-1 SZHK.

Induktionsvoraussetzung

Wir haben gezeigt:

Lemma

Der Algorithmus von Kosaraju berechnet die starken Zusammenhangskomponenten in einem Graphen G=(V,E) korrekt und besitzt eine Laufzeit von O(|V|+|E|).