Interpolation spatiale de variables météorologiques

Introduction

Qu'est-ce l'interpolation spatiale?

Estimer la valeur d'une variable météorologique en un lieu où l'on ne dispose pas d'instrument de mesure et où l'on ne connaît donc pas la valeur exacte de la variable étudiée.

A quoi sert l'interpolation spatiale?

- Obtenir une estimation en un lieu exact qui nous intéresse
- Obtenir des cartes de valeurs représentant la variable étudiée à partir de stations de mesure éparpillées sur le territoire

But de l'étude :

Tester un certain nombre de méthodes d'interpolation et déterminer celles qui sont les plus performantes et les plus adaptées au réseau de stations dont on dispose.

Cadre du travail

Les données:

- 455 stations sur toute la France
- Données sur les températures et les précipitations concernant 40 journées de la période 1994-2003. 4 jours par année correspondant chacune à une saison (15 janvier, 20 avril, 18 juillet, 1^{er} octobre)

Liste des méthodes à tester :

- Surfaces de réponses polynomiales
- Splines de lissage
- Valeur du point le plus proche
- Inverse des distances
- Méthode LOESS
- Combinaison des surfaces de réponses ou des splines avec l'inverse des distances
 - Méthode CGMS
 - Krigeage (ordinaire, universel) **

Description des méthodes

Surfaces de réponse polynomiales :

→ Ajustement sur le critère des moindres carrés d'un polynôme f, i.e minimisation de :

$$\sum (f(x_i) - y(x_i))^2$$

Les splines de lissage :

Dans la théorie, c'est la minimisation de :

$$\sum_{i=1}^{n} (x(t_i) - z_i)^2 + (1/\rho) \int_{a}^{b} (x''(t))^2 dt$$

x étant la fonction inconnue que l'on cherche.

La solution χ est telle que :

- x est C² sur [a, b]
- La restriction de χ sur $[t_i, t_{i+1}]$ est un polynôme d'ordre 3
- La restriction de χ sur [a, t_1] et [t_n , b] est un polynôme d'ordre 1
 - $\Delta \chi''''(t_i) + \rho (\chi(t_i) z_i) = 0$

Il y a un paramètre à fixer, ρ qui est le paramètre de lissage.

$\rho = +\infty$:

$\rho = 4$:

$\rho = 1$:

La méthode LOESS:

Principe:

- Définir un voisinage dont le centre est le point pour lequel on veut obtenir une prédiction
- Ajuster une fonction linéaire ou quadratique sur le critère des moindres carrés

Il y a un paramètre à fixer, s, paramètre de lissage qui représente la fraction des données que l'on utilise comme voisinage.

s = 0.1:

s = 0.3:

s = 0.6:

Interpolation par valeur du point le plus proche :

On donne au point à estimer la valeur du site le plus proche.

Méthode de l'inverse des distances :

C'est une méthode barycentrique qui consiste à donner à chaque site s_k un poids inversement grand à la distance entre s_k et et le point à estimer.

$$w_k = (1/d_k)^{\wedge} p / (\sum_{i=1}^{n_1} (1/d_i)^{\wedge} p)$$

Il y a deux paramètres à fixer : l'ordre p et n1 le nombre de voisins utilisé pour définir les voisinages.

La méthode CGMS:

C'est une méthode basée sur un système de scores calculés de façon à mesurer la similarité qu'il existe entre le point à estimer et les stations météos environnantes.

$$S_{i,m} = \Delta d_{i,m} + \alpha \cdot \Delta a_{i,m} + \Delta c_{i,m} + \Delta b_{i,m}$$

On choisit les stations les plus adaptées puis on effectue une moyenne non pondérée pour obtenir une prédiction.

Le krigeage:

La variable à estimée est considérée comme la réalisation d'une variable aléatoire vérifiant l'hypothèse de stationnarité d'ordre 2 ou l'hypothèse intrinsèque.

Stationnarité d'ordre 2 :

• l'espérance mathématique existe et ne dépend pas de la position x :

$$E(Z(x)) = m = constante$$

• la covariance existe et ne dépend que du vecteur de séparation h :

$$cov (Z(x),Z(x+h)) = C(h)$$

Hypothèse intrinsèque:

Z(s) est dite intrinsèque lorsque ses accroissements (Z(s+h)-Z(s)) sont stationnaires d'ordre 2 :

- $\bullet \mathbf{E} (\mathbf{Z}(\mathbf{s}+\mathbf{h}) \mathbf{Z}(\mathbf{s})) = \mathbf{0}$
- • $\gamma(h) = 1/2$ * var (Z(x)-Z(x+h)) existe et ne dépend que de h

L'estimation est faite de telle sorte que :

- L'estimateur est sans biais (l'espérance de l'erreur est nulle)
- La variance de l'erreur d'estimation est minimum. Cette variance est appelée la variance de krigeage.

La mise en œuvre du krigeage nécessite l'ajustement d'un variogramme théorique à partir du variogramme expérimental :

$$\gamma_e(h) = (1/2N(h)) * \sum_{i=1}^{N(h)} [Z(x_i) - Z(x_i + h)]^2$$

L'ajustement du variogramme théorique a une forte influence sur la qualité des prédictions.

Les logiciels utilisés pour les tests :

- SAS (surfaces de réponse polynomiales, splines de lissage, méthode LOESS)
- Scilab, logiciel de calcul scientifique libre de type Matlab développé par l'INRIA et l'ENPC (méthode de l'inverse des distances et CGMS)
 - ISATIS (krigeage)

Etapes préliminaires

1^{ère} étape : rechercher et éliminer les valeurs aberrantes contenues dans les jeux de données.

→ histogrammes, boxplots, carte des valeurs.

2^{ème} étape : choix des stations tests et des stations d'interpolation.

- → 355 stations d'interpolation
- \rightarrow 100 stations tests

Le choix a été fait d'une manière aléatoire pour obtenir une répartition spatiale homogène et une composition équilibrée.

Distance séparant chaque station test à la station d'interpolation la plus proche :

3^{ème} étape : moyennes par ligne et par colonne.

Températures:

Précipitations:

→ On se trouve dans tous les cas dans un cadre non stationnaire.

Le krigeage universel semble plus approprié que le krigeage ordinaire.

Les surfaces de réponse d'ordre 3 ou 4 peuvent constituer une bonne solution pour l'interpolation.

4^{ème} étape : Tentative de définir un rayon d'influence à l'aide de variogrammes.

Températures:

Précipitations:

5^{ème} étape : Anisotropie ?

Tests des différentes méthodes d'interpolation

Evaluation des méthodes:

Pour chaque journée :

RMSE = [moyenne ((valeur_prédite – valeur_observée)²)] 1/2

 $R^2 = 100 * (1 - (RMSE^2 / variance (valeurs_observées))$

Pour comparer les méthodes, on fait la moyenne des RMSE obtenues pour les 40 journées.

Températures moyennes

Surfaces de réponses polynomiales :

Surfaces de réponse polynomiales	RMSE
	moyenne
Dg3	1.44
Dg4	1.42
Dg3 + altitude	1.02
Dg4 + altitude	1.00
Dg3 + altitude + distance à la mer	1.01
Dg4 + altitude + distance à la mer	0.97

Splines de lissage:

Splines de lissage	RMSE moyenne
Tpspline	0.99
Tpspline + altitude	0.84
Tpspline + altitude + distance à la mer	0.88

La méthode de l'inverse des distances :

Inverse des distances	RMSE
	moyenne
Ordre 1.5 - nb voisins 4	0.99
Ordre 6 - nb voisins 6	1.13
Point le plus proche	1.34

La méthode de l'inverse des distances par quartier n'apporte aucune amélioration.

La méthode CGMS:

→ Choix des paramètres : valeurs par défaut.

CGMS	RMSE
	moyenne
Paramètres par défaut	0.99

La méthode LOESS:

Méthode LOESS	RMSE
	moyenne
LOESS	1.43
LOESS + altitude	1.16
LOESS + altitude + distance à la mer	1.30

Surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances :

Principe: retirer une tendance polynomiale aux données, ensuite appliquer la méthode de l'inverse des distances pour estimer les résidus au niveau des stations tests, puis enfin sommer les résidus estimés et les prédictions obtenues par surfaces de réponse pour avoir les prédictions finales.

Surfaces de réponses polynomiales —	RMSE
Inverse des distances	moyenne
Dg3+alt – Idw odr1.5 vois10	0.83

Les splines de lissage combinées avec la méthode de l'inverse des distances :

Les résultats ne sont pas meilleurs que pour l'interpolation par splines de lissage appliquée seule.

Le krigeage:

Krigeage	RMSE
	moyenne
Krigeage ordinaire (4 voisins)	0.98
Krigeage universel (10 voisins)	0.83

Tableau récapitulatif:

Températures moyennes	RMSE
	moyenne
Reg pol dg3	1.44
Reg pol dg3 + alt	1.02
Tpspline	0.99
Tpspline + alt	0.84
Point le plus proche	1.34
Idw odr1.5 vois4	0.98
CGMS	1.06
LOESS	1.43
LOESS + alt	1.16
Reg pol dg3 + alt – idw odr1.5 vois10	0.83
Krigeage ordinaire	0.98
Krigeage universel	0.83

Les meilleures méthodes sont celles qui prennent en compte l'altitude des stations. L'altitude est une information qu'il semble nécessaire de considérer. La distance à la mer par contre n'apporte rien en terme de performances à l'interpolation.

Stabilité des trois meilleures méthodes :

Saisonnalité:

Températures minimales et maximales

Les observations que l'on peut faire sur l'interpolation des températures minimales et maximales sont similaires à ceux que l'on a fait pour les températures moyennes : l'altitude joue toujours un rôle important contrairement à la distance à la mer.

Températures minimales :

Surfaces de réponse polynomiales :

Surfaces de réponses polynomiales	RMSE
Sarraces ac reponses porynomiates	moyenne
Dg3	1.81
Dg4	1.78
Dg3 + altitude	1.55
Dg4 + altitude	1.51
Dg3 + altitude + distance à la mer	1.54
Dg4 + altitude + distance à la mer	1.50

Splines de lissage:

Splines de lissage	RMSE moyenne
Tpspline	1.39
Tpspline + altitude	1.30
Tpspline + altitude + distance à la mer	1.35

Méthode LOESS:

Méthode LOESS	RMSE moyenne
LOESS	1.87
LOESS + altitude	1.72
LOESS + altitude + distance à la mer	1.84

Méthode de l'inverse des distances :

Inverse des distances	RMSE
	moyenne
Ordre 1.5 - nb voisins 7	1.39
Ordre 6 – nb voisins 6	1.62

Surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances :

Surf. rep. pol - Idw	RMSE
Surricp. por law	moyenne
Reg pol dg3 + alt – idw odr1.5 vois10	1.31

Températures maximales:

Surfaces de réponse polynomiales :

Surfaces de réponse polynomiales	RMSE
Surfaces de reponse porynomiales	moyenne
Dg3	1.75
Dg4	1.71
Dg3 + altitude	1.34
Dg4 + altitude	1.30
Dg3 + altitude + distance à la mer	1.28
Dg4 + altitude + distance à la mer	1.24

Splines de lissage:

Splines de lissage	RMSE moyenne
Tpspline	1.21
Tpspline + altitude	1.05
Tpspline + altitude + distance à la mer	1.05

Méthode LOESS:

Méthode LOESS	RMSE moyenne
LOESS	1.72
LOESS + altitude	1.54
LOESS + altitude + distance à la mer	1.82

Méthode de l'inverse des distances :

Inverse des distances	RMSE
Inverse des distances	moyenne
Ordre 1.5 - nb voisins 4	1.23
Ordre 6 – nb voisins 6	1.38

Surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances :

Surf. rep. pol - Idw	RMSE moyenne
Reg pol dg3 + alt – idw odr1.5 vois10	1.04

Tableaux récapitulatifs:

Températures minimales	RMSE
Temperatures minimales	moyenne
Reg pol dg3	1.81
Reg pol dg3 + alt	1.55
Tpspline	1.39
Tpspline + alt	1.30
Point le plus proche	1.88
Idw odr1.5 vois7	1.39
CGMS	1.48
LOESS	1.87
LOESS + alt	1.72
Reg pol dg3 + alt – idw odr1.5 vois10	1.31

Températures maximales	RMSE
Temperatures maximales	moyenne
Reg pol dg3	1.75
Reg pol dg3 + alt	1.34
Tpspline	1.21
Tpspline + alt	1.05
Point le plus proche	1.61
Idw odr1.5 vois4	1.23
CGMS	1.26
LOESS	1.72
LOESS + alt	1.54
Reg pol dg3 + alt – idw odr1.5 vois10	1.04

Stabilité des méthodes:

Saisonnalité:

Les résultats pour les températures minimales et maximales sont moins bons que pour les températures moyennes.

Explication partielle: la variabilité des températures minimales et maximales sont plus grandes que pour les températures moyennes.

Cumuls de température moyenne

Pour l'interpolation des cumuls de température moyenne (par mois, base 0), l'altitude est toujours un facteur qui améliore beaucoup la qualité des prédictions. Quant à la distance à la mer, elle apporte au mieux que de très faibles améliorations.

Surfaces de réponse polynomiale :

Surfaces de réponse polynomiales	RMSE
	moyenne
Dg3	32.84
Dg4	32.48
Dg3 + altitude	15.91
Dg4 + altitude	16.06
Dg3 + altitude + distance à la mer	15.73
Dg4 + altitude + distance à la mer	15.45

Splines de lissage:

Splines de lissage	RMSE moyenne
Tpspline	20.54
Tpspline + altitude	14.82
Tpspline + altitude + distance à la	15.74
mer	

Méthode LOESS:

Méthode LOESS	RMSE moyenne
LOESS	31.45
LOESS + altitude	18.87
LOESS + altitude + distance à la mer	18.25

Méthode de l'inverse des distances :

Inverse des distances	RMSE
	moyenne
Ordre 1.5 - nb voisins 4	19.78
Ordre 6 - nb voisins 6	24.17

Surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances :

Surf. rep. pol - Idw	RMSE
	moyenne
Ordre 0.5 - nb voisins 10	19.78

Tableau récapitulatif:

Cumuls de température moyenne	RMSE
	moyenne
Reg pol dg3	32.84
Reg pol dg3 + alt	15.91
Tpspline	20.54
Tpspline + alt	14.82
Point le plus proche	30.24
Idw odr1.5 vois4	19.78
CGMS	23.06
LOESS	31.45
LOESS + alt	18.87
Reg pol dg3 + alt - idw odr0.5 vois10	14.08

Stabilité des méthodes:

Saisonnalité:

Les précipitations journalières

Surfaces de réponse polynomiales :

Surfaces de réponse	RMSE
polynomiales	moyenne
Dg3	2.54
Dg4	2.46
Dg3 + altitude	2.54
Dg4 + altitude	2.45
Dg3 + distance à la mer	2.49
Dg4 + distance à la mer	2.42

Splines de lissage:

Splines de lissage	RMSE moyenne
Tpspline	1.97
Tpspline + altitude	1.96
Tpspline + distance à la mer	1.97

Méthode de l'inverse des distances :

Inverse des distances	RMSE
	moyenne
Ordre 1.5 - nb voisins 5	1.94
Ordre 6 - nb voisins 6	2.13

Méthode LOESS:

Méthode LOESS	RMSE moyenne
LOESS	2.58
LOESS + altitude	2.82
LOESS + distance à la mer	3.29

Surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances :

Surf. rep. pol - Idw	RMSE
	moyenne
Ordre 1.5 - nb voisins 5	1.93

Le krigeage:

Krigeage	RMSE moyenne
Krigeage ordinaire (5 voisins)	1.95
Krigeage universel (5 voisins)	1.96

Bilan: Il n'est pas utile de prendre en compte l'altitude ou la distance à la mer des stations météos pour l'interpolation des précipitations journalières.

Tableau récapitulatif:

Précipitations journalières	RMSE
	moyenne
Reg pol dg3	2.54
Tpspline	1.97
Point le plus proche	2.55
Idw odr1.5 vois5	1.94
LOESS	2.58
Krigeage ordinaire	1.95

Stabilité des méthodes:

Saisonnalité:

Cumuls de pluie

Cumuls par décade:

Surfaces de réponse polynomiales :

Surfaces de réponse	RMSE
polynomiales	moyenne
Dg3	11.41
Dg4	11.07
Dg3 + altitude	11.18
Dg4 + altitude	10.86
Dg3 + distance à la mer	11.38
Dg4 + distance à la mer	10.97

Splines de lissage:

Splines de lissage	RMSE
	moyenne
Tpspline	8.80
Tpspline + altitude	8.28
Tpspline + distance à la mer	8.56

Méthode LOESS:

Méthode LOESS	RMSE moyenne
LOESS	11.88
LOESS + altitude	14.39
LOESS + distance à la mer	15.08

Méthode de l'inverse des distances :

Cumuls de pluie par	RMSE
décade	moyenne
Ordre 1.5 - nb voisins 5	8.54
Ordre 6 – nb voisins 6	9.16

Surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances :

Surf. rep. pol - Idw	RMSE
	moyenne
Ordre 1.5 - nb voisins 5	8.50

Cumuls de pluie par mois :

Surfaces de réponse polynomiales :

Surfaces de réponse	RMSE
polynomiales	moyenne
Dg3	27.19
Dg4	26.67
Dg3 + altitude	26.51
Dg4 + altitude	25.93
Dg3 + distance à la mer	26.98
Dg4 + distance à la mer	26.73

Splines de lissage:

Splines de lissage	RMSE moyenne
Tpspline	21.46
Tpspline + altitude	20.09
Tpspline + distance à la mer	21.26

Méthode LOESS:

Méthode LOESS	RMSE moyenne
LOESS	29.75
LOESS + altitude	36.24
LOESS + distance à la mer	36.39

Méthode de l'inverse des distances :

Cumuls de pluie par mois	RMSE
	moyenne
Ordre 1.5 - nb voisins 5	21.13
Ordre 6 – nb voisins 6	22.35

Surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances :

Surf. rep. pol - Idw	RMSE
	moyenne
Ordre 1.5 - nb voisins 5	21.01

Tableaux récapitulatifs:

Précipitations décadaires	RMSE
	moyenne
Reg pol dg3	11.41
Tpspline	8.80
Point le plus proche	10.48
Idw odr1.5 vois5	8.54
LOESS	11.88

Précipitations mensuelles	RMSE
1 i ccipitations mensuenes	moyenne
Reg pol dg3	27.19
Tpspline	21.46
Point le plus proche	25.38
Idw odr1.5 vois5	21.13
LOESS	29.75

Stabilité:

Saisonnalité:

Reflexions sur l'interpolation spatiale

Influence des stations situées en altitude

Faut-il utiliser les stations situées en altitude lorsqu'on interpole ou est-il préférable de les enlever de notre ensemble de stations d'interpolation?

Stations supprimées	Nombre
Aucune	0
Altitude > 1000	1
Altitude > 900	4
Altitude > 800	10
Altitude > 700	12
Altitude > 600	15

Températures moyennes:

stations supprimées	nombre	Reg pol dg3+alt	Tpspline+alt	ldw odr1.5 vois4	Reg pol dg3+alt - idw odr1.5 vois10
aucune	0	1.0231	0.8371	0.9880	0.8318
stations > 1000	1	1.0265	0.8429	1.0029	0.8367
stations > 900	4	1.0303	0.8524	1.0872	0.8457
stations > 800	10	1.0296	0.8479	1.1602	0.8451
stations > 700	12	1.0318	0.8599	1.2934	0.8528
stations > 600	15	1.0410	0.8714	1.3059	0.8609

Températures minimales :

stations supprimées	nombre	Reg pol dg3+alt	Tpspline+alt	ldw odr1.5 vois4	Reg pol dg3+alt - idw odr1.5 vois10
aucune	0	1.5541	1.3032	1.4147	1.3070
stations > 1000	1	1.5556	1.3088	1.4280	1.3118
stations > 900	4	1.5578	1.3152	1.4784	1.3226
stations > 800	10	1.5682	1.3247	1.5456	1.3262
stations > 700	12	1.5701	1.3322	1.6232	1.3349
stations > 600	15	1.5794	1.3427	1.6225	1.3422

Températures maximales :

stations supprimées	nombre	Reg pol dg3+alt	Tpspline+alt	ldw odr1.5 vois4	Reg pol dg3+alt - idw odr1.5 vois10
aucune	0	1.3356	1.0497	1.2338	1.0379
stations > 1000	1	1.3421	1.0553	1.2454	1.0452
stations > 900	4	1.3569	1.0655	1.3396	1.0716
stations > 800	10	1.3591	1.0820	1.3959	1.0719
stations > 700	12	1.3631	1.1010	1.5641	1.0831
stations > 600	15	1.3708	1.1089	1.5890	1.1033

Impact de l'utilisation d'un Modèle Numérique de Terrain (1km * 1km)

Pour obtenir des cartes à partir de l'interpolation spatiale, il est nécessaire d'utiliser un Modèle Numérique de Terrain. Quel est l'impact de celuici sur les prédictions?

Erreurs du MNT:

Températures moyennes	RMSE	RMSE (MNT)	Dégradation de la RMSE
Reg pol dg3+alt	1.023	1.015	-0.77%
Tpspline+alt	0.837	0.830	-0.79%
LOESS+alt	1.162	1.168	0.49%
Reg pol dg3+alt + idw odr1.5 vois5	0.832	0.824	-0.95%

Températures minimales	RMSE	RMSE (MNT)	Dégradation de la RMSE
Reg pol dg3+alt	1.554	1.540	-0.93%
Tpspline+alt	1.303	1.293	-0.76%
LOESS+alt	1.721	1.740	1.11%
Reg pol dg3+alt + idw odr1.5 vois5	1.307	1.293	-1.10%

Températures maximales	RMSE	RMSE (MNT)	Dégradation de la RMSE
Reg pol dg3+alt	1.336	1.341	0.38%
Tpspline+alt	1.050	1.053	0.33%
LOESS+alt	1.544	1.548	0.25%
Reg pol dg3+alt + idw odr1.5 vois5	1.038	1.044	0.59%

Cumuls de température moyenne	RMSE	RMSE (MNT)	Dégradation de la RMSE
Reg pol dg3+alt	15.91	15.37	-3.37%
Tpspline+alt	14.82	14.40	-2.84%
LOESS+alt	18.87	18.52	-1.87%
Reg pol dg3+alt + idw odr0.5 vois5	14.08	13.52	-4.02%

Application du krigeage:

Le krigeage fournit non seulement une prédiction mais aussi une estimation de la variance de l'erreur que l'on commet. Cette variance de krigeage est-elle une donnée fiable ?

→ Car elle pourrait servir dans le cadre de l'optimisation du réseau de stations actuel.

On calcule:

$$\mathbf{v_i} = \mathbf{var} \left(\mathbf{\check{z}}(\mathbf{s_i}) - \mathbf{z}(\mathbf{s_i}) / \mathbf{\sigma_k}(\mathbf{s_i}) \right)$$

où $\check{z}(s_i)$ est la prédiction à la station s_i , $z(s_i)$ la valeur observée à la station s_i et $\sigma_k(s_i)$ l'écart-type de krigeage à la station s_i .

Les v_i doivent être proches de 1 et avoir une faible dispersion autour de cette valeur.

Températures moyennes:

Précipitations journalières :

La variance de krigeage n'est pas fiable, autant pour les températures moyennes que pour les pluies. Le krigeage prédit mal la dispersion des erreurs commises.

Conclusion

- L'interpolation des températures est satisfaisante notamment en prenant en compte l'altitude des stations.
- L'interpolation des pluies est plus délicate. Les résultats sont moins bons que pour les températures.
- Les deux meilleures méthodes, les plus efficaces dans tous les cas sont : les splines de lissage et les surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances.

• Du point de vue de la mise en œuvre, les surfaces de réponse polynomiales combinées avec la méthode de l'inverse des distances semblent avoir un avantage certain sur les splines de lissage grâce à la facilité d'implémentation de cette méthode et à une demande de puissance de calcul plus faible que pour les splines.

• La piste du krigeage pour l'optimisation du réseau actuel n'a pas donné de résultat positif. Il faudra tester d'autres méthodes, peut-être des méthodes empiriques.

Illustration de ce que donne l'interpolation spatiale

Splines de lissage

Surf. rep. pol - ldw

