Machine Learning from Data

Lecture 6: Spring 2021

Today's Lecture

- Bounding the Growth Function
- Models are either Good or Bad
- The VC Bound

Putting Everything Together

• The growth function:

The growth function $m_{\mathcal{H}}(N)$ considers the worst possible $\mathbf{x}_1, \dots, \mathbf{x}_N$. $m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|.$

I give you a set of k^* points $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$ on which \mathcal{H} implements $< 2^{k^*}$ dichotomys.

- (a) k^* is a break point.
- (b) k^* is not a break point.
- (c) all break points are $> k^*$.
- (d) all break points are $\leq k^*$.
- (e) we don't know anything about break points.

For every set of k^* points $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}, \mathcal{H}$ implements $< 2^{k^*}$ dichotomys.

- (a) k^* is a break point.
- (b) k^* is not a break point.
- (c) all $k \ge k^*$ are break points.
- (d) all $k < k^*$ are break points.
- (e) we don't know anything about break points.

To show that k is *not* a break point for \mathcal{H} :

- (a) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} can shatter.
- (b) Show \mathcal{H} can shatter any set of k points.
- (c) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} cannot shatter.
- (d) Show \mathcal{H} cannot shatter any set of k points.
- (e) Show $m_{\mathcal{H}}(k) = 2^k$.

To show that k is a break point for \mathcal{H} :

- (a) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} can shatter.
- (b) Show \mathcal{H} can shatter any set of k points.
- (c) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} cannot shatter.
- (d) Show \mathcal{H} cannot shatter any set of k points.
- (e) Show $m_{\mathcal{H}}(k) > 2^k$.

Back to the puzzle

How many dichotomies can you list on 4 points so that no 2 is shattered.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{X}_3	\mathbf{X}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0

The combinatorial relationship

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3
•	0	0	0	0	0	0
	0	0	•	0	0	0
	0	•	0	0	0	•
	•	0	0	0	•	0
					_	_

How many dichotomies can you list on 4 points so that no subset of 3 is shattered.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	0	•	•
0	•	0	•
•	0	0	•
0	•	•	0
•	0	•	0
•	•	0	0

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	0	•	•
0	•	0	•
•	0	0	•
0	•	•	0
•	0	•	0
•	•	0	0

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	•
β	0	0		•
	0		0	•
	•	0	0	•

 α : prefix appears once

 β : prefix appears twice

$$B(4,3) = \alpha + 2\beta$$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
B	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	
B	0	0		•
ρ	0		0	•
	•	\circ	\circ	

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0			0
α	•	0		0
	•		\circ	0
	0	0	0	0
β	0	0		0
ρ	0		\circ	0
	•	\circ	\circ	0
	0	0	0	
β	0	0	•	
ρ	0	•	0	
	•	0	0	

Fill the table values

					κ			
		1	2	3	4	5	6	• • •
	1	1						
	2	1	3					
N	3	1		7				
	4	1			15			
	5	1				31		
	6	1					63	
	÷	:						٠

$$B(N, 1) = 1$$

$$B(N, N) = 2^{N} - 1$$

$$B(N, k) \le B(N - 1, k) + B(N - 1, k - 1)$$

					k			
		1	2	3	4	5	6	• • •
	1	1						
	2	1	3					
N	3	1	4	7				
1 V	4	1			15			
	5	1				31		
	6	1					63	
	:	:	:	:	:	:	:	٠

$$B(N, k) \le B(N - 1, k) + B(N - 1, k - 1)$$

					k			
		1	2	3	4	5	6	
	1	1						
	2	1	3					
N	3	1	4	7				
	4	1	5	11	15			
	5	1	6	16	26	31		
	6	1	7	22	42	57	63	
	:	:	÷	:	:	:	:	٠

Analytic Bound

•

Proof: (Induction on N.)

1. Verify for
$$N = 1$$
: $B(1,1) \le {1 \choose 0} = 1$

2. Suppose
$$B(N,k) \leq \sum_{i=0}^{k-1} {N \choose i}$$
.

Lemma.
$$\binom{N}{k} + \binom{N}{k-1} = \binom{N+1}{k}$$
.

$$B(N+1,k) \leq B(N,k) + B(N,k-1)$$

$$\leq \sum_{i=0}^{k-1} {N \choose i} + \sum_{i=0}^{k-2} {N \choose i}$$

$$= \sum_{i=0}^{k-1} {N \choose i} + \sum_{i=1}^{k-1} {N \choose i-1}$$

$$= 1 + \sum_{i=1}^{k-1} ({N \choose i} + {N \choose i-1})$$

$$= 1 + \sum_{i=1}^{k-1} {N+1 \choose i}$$

$$= \sum_{i=0}^{k-1} {N+1 \choose i}$$

✓ Can we get a polynomial bound on $m_{\mathcal{H}}(N)$ even for infinite \mathcal{H} ?

Can we replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(N)$ in the generalization bound?

The ghost data set: a 'fictitious' data set \mathcal{D}' :

 $E'_{\rm in}$ is like a test error on N new points.

 $E_{\rm in}$ deviates from $E_{\rm out}$ implies $E_{\rm in}$ deviates from $E'_{\rm in}$.

 $E_{\rm in}$ and $E'_{\rm in}$ have the same distribution.

 $\mathbb{P}[(E'_{\text{in}}(g), E_{\text{in}}(g)) \text{ "deviate"}] \ge \frac{1}{2} \mathbb{P}[(E_{\text{out}}(g), E_{\text{in}}(g)) \text{ "deviate"}]$

Number of dichotomys is at most $m_{\mathcal{H}}(2N)$.

Up to technical details, analyze a "hypothesis set" of size at most $m_{\mathcal{H}}(2N)$.

The Vapnik-Chervonenkis Bound (VC Bound)

$$\mathbb{P}\left[|E_{ ext{in}}(oldsymbol{g})-E_{ ext{out}}(oldsymbol{g})|>\epsilon
ight] \leq 4m_{\mathcal{H}}(2N)e^{-\epsilon^2N/8}, \qquad \qquad ext{for any $\epsilon>0$.}$$

$$\mathbb{P}\left[|E_{ ext{in}}(oldsymbol{g}) - E_{ ext{out}}(oldsymbol{g})| \leq \epsilon
ight] \geq 1 - 4m_{\mathcal{H}}(2N)e^{-\epsilon^2N/8}, \qquad ext{for any } \epsilon > 0.$$

$$E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \sqrt{rac{8}{N}\lograc{4m_{\mathcal{H}}(2N)}{\delta}},$$
 w.p. at least $1-\delta$.

Thanks!