1. (worth 9 points) Let function f be defined by the polynomial below:

$$f(x) = 4x^5 + 2x^4 + 8x^3 + 9x^2 - 5x + 3$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials	
-f(x) ●	$-4x^5 - 2x^4 - 8x^3 - 9x^2 + 5x - 3$	
-f(-x) ●	$4x^5 - 2x^4 + 8x^3 - 9x^2 - 5x - 3$	
f(−x) •	$-4x^5 + 2x^4 - 8x^3 + 9x^2 + 5x + 3$	

2. (worth 20 points) In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	$\frac{f(x)}{8}$	g(x)	h(x)
1	8	6	9
2	6	1	5
3	1	5	6
4	3	2	2
5	4	9	7
6	7	8	4
7	9	4	3
8	5	7	8
9	2	3	1

3. (worth 3 points) Evaluate g(3).

$$g(3) = 5$$

4. (worth 3 points) Evaluate $h^{-1}(9)$.

$$h^{-1}(9) = 1$$

5. (worth 3 points) Assuming h is an **odd** function, evaluate h(-4).

If function h is odd, then

$$h(-4) = -2$$

6. (worth 3 points) Assuming f is an **even** function, evaluate f(-7).

If function f is even, then

$$f(-7) = 9$$

7. (worth 15 points) A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain. Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^3 + (-x)$$

 $p(-x) = x^3 - x$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^3 - x)$$
$$-p(-x) = -x^3 + x$$

c. Is polynomial p even, odd, or neither?

odd

d. Explain how you know the answer to part c.

We see that p(x) = -p(-x) for all x because p(x) and -p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an odd function.

8. (worth 10 points) I have drawn half of a function. Draw the other half to make it even or odd.

9. (worth 10 points) Let function f be defined with the equation below.

$$f(x) = \frac{x+6}{3}$$

a. Evaluate f(75).

step 1: add 6 step 2: divide by 3

$$f(75) = \frac{(75) + 6}{3}$$
$$f(75) = 27$$

b. Evaluate $f^{-1}(28)$.

step 1: multiply by 3 step 2: subtract 6

$$f^{-1}(x) = 3x - 6$$

$$f^{-1}(28) = 3(28) - 6$$

$$f^{-1}(28) = 78$$

10. (worth 6 points) The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

$$b(7) = 8$$

b. Evaluate $b^{-1}(3)$.

$$b^{-1}(3) = 1$$

- 11. (worth 18 points) Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-3	3	3	-3
-1	-7	7	-7	7
0	0	0	0	0
1	-7	7	-7	7
2	3	-3	-3	3

b. Is function f even, odd, or neither?

neither

c. How do you know the answer to part b?

Function f is neither because neither column -f(-x) nor column f(-x) matches column f(x) exactly.