

Lets talk about...

Python Packages

Python Data Analysis Library

"When working with tabular data, such as data stored in spreadsheets or databases, pandas is the right tool for you. Pandas will help you to explore, clean and process your data."

- The Official Pandas Documentation

O Sophine Clachar

Python Data Analysis Library

"When working with tabular data, such as data stored in spreadsheets or databases, pandas is the right tool for you. Pandas will help you to explore, clean and process your data."

- The Official Pandas Documentation

import pandas as pd

O Sophine Clachar

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

>>> Series

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

```
1 #create a series
 2 grades = [97, 88, 75, 81, 92]
 3 result = pd.Series(grades)
 4 result
    97
    75
    81
    92
dtype: int64
```


>>> Series

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

```
grades = [97, 88, 75, 81, 92]
names = ['Jane', 'John', 'George', 'Judy', 'Elroy']
 3 result = pd.Series(grades, index=names)
 4 result
Jane
           97
           88
John
           75
George
           81
Judy
Elroy
           92
dtype: int64
```


>>> Series

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

1 result['John']

88

>>> Series

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

1 re	sult.describe
count	5.000000
mean	86.600000
std	8.734987
min	75.000000
25%	81.000000
50%	88.000000
75%	92.000000
max	97.000000
dtype:	float64

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

>>> Series

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

>>> DataFrame

A dataframe is a data structure that allows us to store tabular data. The columns in a dataframe is a series, and each column can represent a different data type.

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

>>> DataFrame

A dataframe is a data structure that allows us to store tabular data. The columns in a dataframe is a series, and each column can represent a different data type.

```
student_dict = {'jane': [97, 88.6, 92.7], 'john': [89, 70, 99.7], 'mary': [86, 92.5, 87]}
grades_df = pd.DataFrame(student_dict)
grades_df
```

jane john mary

0 97.0 89.0 86.0

1 88.6 70.0 92.5

2 92.7 99.7 87.0

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

>>> DataFrame

A dataframe is a data structure that allows us to store tabular data. The columns in a dataframe is a series, and each column can represent a different data type.

```
student_dict = {'jane': [97, 88.6, 92.7], 'john': [89, 70, 99.7], 'mary': [86, 92.5, 87]}
grades_df = pd.DataFrame(student_dict, index=['exam 1', 'exam 2', 'exam 3'])
grades_df
```

	jane	john	mary
exam 1	97.0	89.0	86.0
exam 2	88.6	70.0	92.5
exam 3	92.7	99.7	87.0

>>> Series

A series is one-dimensional (array-like) data structure that contains a sequence of homogenous values. Each value in the sequence has an associated label, called an index.

>>> DataFrame

A dataframe is a data structure that allows us to store tabular data. The columns in a dataframe is a series, and each column can represent a different data type.

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

```
1 #load data from a csv file
2 shark_df = pd.read_csv('gsaf.csv')
3 type(shark_df)
```

pandas.core.frame.DataFrame

**** Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

© Sophine Clachar

>>> Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

1	shark_df	.head()	#view	the first	5 observ	ations	;									
	Case Number	Date	Year	Туре	Country	Area	Location	Activity	Name	Sex	Age	Injury	Fatal (Y/N)	Time	Species	Inv
0	2021.09.10	10- Sep-2021	2021.0	NaN	EGYPT	NaN	Sidi Abdel Rahmen	Swimming	Mohamed	М	NaN	Laceration to arm caused by metal object	NaN	NaN	No shark invovlement	Dr. M.
1	2021.09.09	09- Sep-2021	2021.0	Unprovoked	USA	Florida	Ponce Inlet, Volusia County	Surfing	Doyle Neilsen	М	!6	Minor injury to right arm	N	13h20	NaN	Da _? N∈
2	2021.09.05	05- Sep-2021	2021.0	Unprovoked	AUSTRALIA	New South Wales	Emerald Beach	Surfing	Timothy Thompson	М	31	FATAL	Υ	10h30	White xhark	В. 1
3	2021.09.03.b	03- Sep-2021	2021.0	Unprovoked	British Overseas Territory	Turks and Caicos	NaN	NaN	male	М	NaN	Wrist bitten	N	NaN	NaN	
4	2021.08.28	28- Aug-2021	2021.0	Unprovoked	USA	Texas	Galveston Island, Galveston County	Boogie boarding	male	М	!!	Lacerations both sides of lower leg immediatel	N	11h45	NaN	T. Cr K Trackin

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

1 $shark_df.shape$ #view the number of observations and variables

(6700, 16)

© Sophine Clachar

>>> Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

```
1 shark_df.info() #show the properties of the data frame
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6700 entries, 0 to 6699
Data columns (total 16 columns):
    Column
                             Non-Null Count Dtype
    Case Number
                             6696 non-null
                                             object
    Date
                             6700 non-null
                                             object
    Year
                             6698 non-null
                                             float64
    Type
                             6685 non-null
                                             object
    Country
                             6650 non-null
                                             object
    Area
                             6228 non-null
                                             object
                             6146 non-null
    Location
    Activity
                             6131 non-null
                                             object
8
    Name
                             6485 non-null
                                            object
9
                             6126 non-null
    Sex
                                             object
10
    Age
                             3769 non-null
                                             object
11 Injury
                             6668 non-null
                                             object
 12
    Fatal (Y/N)
                             6147 non-null
                                             object
13
    Time
                             3245 non-null
14
    Species
                             3684 non-null
15 Investigator or Source 6681 non-null
dtypes: float64(1), object(15)
memory usage: 837.6+ KB
```

DS 3000

**** Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

© Sophine Clachar

>>> Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

>>> Accessing data

The data frame is made up of observations (rows) and variables (columns). We can select one or more variables and/or observations from the data frame using techniques like slicing and subsetting.

>>> Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

>>> Accessing data

The data frame is made up of observations (rows) and variables (columns). We can select one or more variables and/or observations from the data frame using techniques like slicing and subsetting.

DS 3000

**** Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

>>> Accessing data

The data frame is made up of observations (rows) and variables (columns). We can select one or more variables and/or observations from the data frame using techniques like slicing and subsetting.

```
shark_df.Country #select a variable using dot notation

EGYPT
USA
AUSTRALIA
British Overseas Territory
USA

...

MUSTRALIA
AUSTRALIA
AUS
```

DS 3000

>>> Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

>>> Accessing data

The data frame is made up of observations (rows) and variables (columns). We can select one or more variables and/or observations from the data frame using techniques like slicing and subsetting.

© Sophine Clachar

>>> Load the data

Load files from our computer by providing the file path to the read_csv() function. If the data is on the web, provide the url.

>>> Inspect the data

View samples of the data and verify its contents: the number of rows, columns, the data types, etc.

>>> Accessing data

The data frame is made up of observations (rows) and variables (columns). We can select one or more variables and/or observations from the data frame using techniques like slicing and subsetting.

Data Ingestion: Web Scraping

Flat Files on the Web

```
Text, CSV and Excel files ...pandas also has pd.read_excel()
url = 'http://'
df = pd.read csv(url) #load the file from the url
```

>>> Web Scraping

Python provides various libraries that can be used to scrape data from web pages. Web scraping is often used to supplement our data

>>> Application Programming Interface (API)

An API allows us to interact with services on the web. There are both paid and open APIs (free to use); some APIs require authentication and others do not. However, they all have rules that should be followed to ensure that programmers use their resources fairly.

© Sophine Clachar

Data Ingestion: **APIs**

>>> Flat Files on the Web

```
Text, CSV and Excel files ...pandas also has pd.read_excel()
url = 'http://'
df = pd.read csv(url) #load the file from the url
```

>>> Web Scraping

Python provides various libraries that can be used to scrape data from web pages. Web scraping is often used to supplement our data

>>> Application Programming Interface (API)

An API allows us to interact with services on the web via and endpoint. Endpoints allow users to connect to resources and retrieve data. There are both paid and open APIs (free to use); some APIs require authentication and others do not. However, they all have rules that should be followed to ensure that programmers use their resources fairly.

Types of **Data**

Identify any problems with the data.
Scrutinize the data and determine if there are:
missing values, variables represented with
unsuitable data types, duplicates, unusual
values.

1	1 shark_df.head()															
	Case Number	Date	Year	Туре	Country	Area	Location	Activity	Name	Sex	Age	Injury	Fatal (Y/N)	Time	Species	Inv
0	2021.09.10	10- Sep-2021	2021.0	NaN	EGYPT	NaN	Sidi Abdel Rahmen	Swimming	Mohamed	М	NaN	Laceration to arm caused by metal object	NaN	NaN	No shark invovlement	Dr. M.
1	2021.09.09	09- Sep-2021	2021.0	Unprovoked	USA	Florida	Ponce Inlet, Volusia County	Surfing	Doyle Neilsen	М	!6	Minor injury to right arm	N	13h20	NaN	Da₁ N∈
2	2021.09.05	05- Sep-2021	2021.0	Unprovoked	AUSTRALIA	New South Wales	Emerald Beach	Surfing	Timothy Thompson	М	31	FATAL	Υ	10h30	White xhark	B. 1
3	2021.09.03.b	03- Sep-2021	2021.0	Unprovoked	British Overseas Territory	Turks and Caicos	NaN	NaN	male	М	NaN	Wrist bitten	N	NaN	NaN	
4	2021.08.28	28- Aug-2021	2021.0	Unprovoked	USA	Texas	Galveston Island, Galveston County	Boogie boarding	male	М	!!	Lacerations both sides of lower leg immediatel	N	11h45	NaN	T. Cr K Trackin

Identify any problems with the data.
Scrutinize the data and determine if there are:
missing values, variables represented with
unsuitable data types, duplicates, unusual
values.

1 shark_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6700 entries, 0 to 6699
Data columns (total 16 columns):

#	Column		Null Count	Dtype						
0	Case Number	6696	non-null	object						
1	Date	6700	non-null	object						
2	Year	6698	non-null	float64						
3	Type	6685	non-null	object						
4	Country	6700	non-null	object						
5	Area	6228	non-null	object						
6	Location	6146	non-null	object						
7	Activity	6131	non-null	object						
8	Name	6485	non-null	object						
9	Sex	6126	non-null	object						
10	Age		non-null	object						
11	Injury		non-null	object						
12	Fatal (Y/N)		non-null	object						
13	Time		non-null	object						
14	Species		non-null	object						
15	Investigator or Source		non-null	object						
dtypes: float64(1), object(15)										

memory usage: 837.6+ KB

04

Perform outlier detection. Identify the presence of unusual values within the data and (possibly) remove them using suitable methods such as: IQR or z-score.