Percentage of Chart Which Resembles Pac-man

ANALYZING EXPERIMENTS COMPARING RATES

Scott Klemmer

Analyzing your data in 3 questions

I.What does my data look like?

Explore your data graphically

Plot all your data

Plot several different summaries

2. What are the overall numbers?

Aggregate statistics for each condition Usually mean and standard deviation

3. Are the differences "real"?

Compute significance (p value)
Likelihood that results are due to chance

Say I have a coin

What attributes does our statistic need?

Pearson's Chi-Squared Test

'Normal' outcome variance

The Null Hypothesis

Critical Values for Chi-Squared

df \area	0.995	0.99	0.975	0.95	0.9	0.75	0.5	0.25	0.1	0.05	0.025	0.01	0.005
1	4E-05	2E-04	0.001	0.004	0.02	0.10	0.45	1.32	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	0.58	1.39	2.77	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75

Example: Is this a balanced coin?

• 20 tosses. I3 heads. At p<0.05, can we reject the null hypothesis that there is no difference between the test coin and an unbiased coin?

Example: Is this a balanced coin?

df \area	0.995	0.99	0.975	0.95	0.9	0.75	0.5	0.25	0.1	0.05	0.025	0.01	0.005
- 1	4E-05	2E-04	0.001	0.004	0.02	0.10	0.45	1.32	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	0.58	1.39	2.77	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75
		1 11	· · · C	/ 6	1710 01 0	. 11 /							

table from http://www.statsoft.com/textbook/distribution-tables/

What if the trend continued?

Say we tossed a coin 60 times, and saw the same pattern:
 39 heads out of 60

- We can reject the null hypothesis with 98% confidence
- Note (if the trend is robust) increasing sample size by a factor of 3 decreases the probability of a false positive by a factor of 9

df \area	0.995	0.99	0.975	0.95	0.9	0.75	0.5	0.25	0.1	0.05	0.025	0.01	0.005
1	4E-05	2E-04	0.001	0.004	0.02	0.10	0.45	1.32	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	O.21	0.58	1.39	2.77	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75

table from http://www.statsoft.com/textbook/distribution-tables/

Example: Improved click-throughs?

- A web site has a button labeled "sign up".
 10% of visitors click the button.
- To try and improve traffic, they change the button to "learn more", and start gathering data.
- Over a week, there were 1000 visitors to the site. I 19 clicked the "learn more" button.
- Can we say with confidence that the "learn more" button has a higher click-through rate than the "sign up" button?

Example: Improved click-throughs?

- df=1
- The odds that the observed difference happened by chance is (just barely) p<0.05
- The change (probably) improved click rate

df \area	0.995	0.99	0.975	0.95	0.9	0.75	0.5	0.25	0.1	0.05	0.025	0.01	0.005
•	4E-05	2E-04	0.001	0.004	0.02	0.10	0.45	1.32	2.71	3.84	5 02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	0.58	1.39	2.77	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75

Statistical testing

- Formalizes "we're pretty sure"
- Helps you generalize (or not) from small samples

This insight owes a lot to beer

Image: http://en.wikipedia.org/wiki/File:St._James%27s_Gate_Brewery,_Dublin,_Ireland.jpg Story: http://en.wikipedia.org/wiki/Student's_t-test

For 'normal', continuous data

- T-tests (compare 2 conditions)
- ANOVA (compare >2 conditions)

Data Often Ain't 'Normal'

Handling non-'normal' data

- Knowing is half the battle
- Run A/A tests
- Use randomized testing

Summary

- To get a feel for your data, graph it all
- Statistics provides tools to distinguish 'real' trends from 'mirages'
- We learned a common technique for comparing rates: the chi-squared test

To Learn More...

- Practical Statistics for HCI, Jacob
 Wobbrock, http://depts.washington.edu/aimgroup/proj/ps4hci
- Doing Psychology Experiments, David W. Martin
- Statistics as Principled Argument, Robert P. Abelson
- Learning to use statistical tests in psychology, Judith Greene, Manuela D'Oliveira