Chapter 1: Analysis of Large Graphs: Link Analysis, PageRank

崔金华

邮箱:jhcui@hust.edu.cn 主页:https://csjhcui.github.io/ 办公地址:东湖广场柏景阁1单元1568 室

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between political blogs(民主党和共和党)

Polarization of the network [Adamic-Glance, 2005]

Graph Data: Information Nets

Citation networks and Maps of science

[Börner et al., 2012]

Graph Data: Communication Nets

Graph Data: Technological Networks

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Directed Graph

Broad Question

- How to organize the Web?
- First try: Human created web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.
 Need to find relevant and trusted webs!

Web Search: 2 Challenges

- 2 challenges of web search:
- (1) Web contains many sources of information.
 - Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- All web pages are not equally "important"
 - www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importance's of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms

PageRank: The "Flow" Formulation

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links.
 - So In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page j's own importance is the sum of the votes on its in-links

10/28/2022

华中科技大学人机物系统与安全实验室

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

The web in 1839

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solving the Flow Equations

3 equations, 3 unknowns, no constants

- No unique solution
- All solutions equivalent modulo the scale factor

Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1$$

• Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: Matrix Formulation

- 1、Stochastic adjacency matrix(邻接矩阵)M
 - Let page i has d_i out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d}$ else $M_{ji} = 0$
 - M is a column stochastic matrix, columns sum to 1

$$M = \begin{bmatrix} y & a & m \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix}$$

PageRank: Matrix Formulation

- 2、Rank vector(秩向量)r: vector with an entry per page
 - $lacktriangleright r_i$ is the importance score of page i
 - Initial, each page has 1/n importance score, when total n pages.

$$\sum_i r_i = 1$$

$$r = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

Now, the flow equations can be written

$$r = M \cdot r$$

M fixed. how to calculate r?

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Example

- Remember the flow equation:
- Flow equation in the matrix form

$$r_j = \sum_{i \to j} \frac{1}{d_i}$$

$$M \cdot r = r$$

Suppose page i links to 3 pages, including j

Eigenvector Formulation

The flow equations can be written

$$r = M \cdot r$$

- So the **rank vector r** is an **eigenvector** (特征向量) of the stochastic web matrix **M**
 - In fact, its first or principal eigenvector with corresponding eigenvalue 1
 - Largest eigenvalue of *M* is 1 since *M* is column stochastic (with non-negative entries)
 - We know ${m r}$ is unit length and each column of ${m M}$ sums to one, so ${m Mr} \leq {m 1}$

NOTE(线性代数相关知识): x is an eigenvector with the corresponding eigenvalue λ if:

$$Ax = \lambda x$$

We can now efficiently solve for r!
 The method is called Power iteration (幂迭代法)

Example: Flow Equations & M

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,....,1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_{1} < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the \mathbf{L}_1 norm Can use any other vector norm, e.g., Euclidean

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

d_i out-degree of node i

PageRank: How to solve?

Power Iteration:

- Set $r_i = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Go to 1

Example:

	у	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

. . .

PageRank: How to solve?

Power Iteration:

• Set
$$r_i = 1/N$$

• 1:
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2:
$$r = r'$$

Go to 1

Example:

$$r_y$$
 $r_a = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$ $1/3$ $5/12$ $9/24$ $6/15$ $1/3$ $1/3$ $11/24$... $6/15$ $1/3$ $1/6$ $3/12$ $1/6$ $3/15$ Iteration 0, 1, 2, ...

	у	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- $m{p}(t)$... vector whose $m{i}^{ ext{th}}$ coordinate is the prob. that the surfer is at page $m{i}$ at time $m{t}$
- lacksquare So, $m{p}(m{t})$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time *t*+*1*?
 - Follows a link uniformly at random $p(t+1) = M \cdot p(t)$

- Suppose the random walk reaches a state $p(t+1) = M \cdot p(t) = p(t)$ then p(t) is stationary distribution of a random walk
- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy <u>certain conditions</u>, the <u>stationary distribution is unique</u> and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

PageRank: The Google Formulation

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$
 or equivalently $r = Mr$

- Does this converge(收敛)?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

Example:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

$$r = Mr$$

	a	b
a	0	1
b	1	0

蜘蛛陷阱问题!

Does it converge to what we want?

Example:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

$$r = Mr$$

	a	b
a	0	0
b	1	0

死角问题!

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

- (2) Spider traps:
 - (all out-links are within the group)
 - Random walked gets "stuck" in a trap
 - And eventually spider traps absorb all importance