月考考试试卷(B卷)

课程名称:	高等数学	_ 任课教师 :	
学院:		专业:	年级:

姓名: ______ 校园卡号: _____

题 号	ı	=	Ш	四	五	六	七	八		总分
分 数										
阅卷教师										

- 1. 求方程 $x\frac{dy}{dx} = 6y x^2y^2$ 的通解。
- 2. 求方程 $\frac{dy}{dx} + \frac{y}{x} = e^{xy}$ 的通解。
- 3. 求方程 $(x^2-1)y'-xy+1=0$ 的通解。
- 4. 求方程 $y'' 6y' + 9y = (x+1)e^{3x}$ 的通解。
- 5. 求方程 $\frac{dy}{dx} = \frac{y}{y^3 + x}$ 的通解。
- 6. 求方程y'' + 4y' + 29y = 0的通解。
- 7. 求方程 $y'' 6y' + 8y = 1 + xe^{2x}$ 的通解。
- 8. 求经过直线 L: $\begin{cases} 4x y + 3z 1 = 0 \\ x + 5y z + 2 = 0 \end{cases}$ 并且和平面2x y + 5z + 2 = 0垂直的平面。
- 9. 求经过点(1, 1, 1)并且与直线 $\begin{cases} y = 2x \\ z = x 1 \end{cases}$ 和直线 $\begin{cases} y = 3x 4 \\ z = 2x 1 \end{cases}$ 都相交的直线方程。
- 10. 求与直线 $\begin{cases} x + 2z 1 = 0 \\ y 3z 2 = 0 \end{cases}$ 并且经过 (2, 4, 0) 的直线方程。
- 11. 求直线 L: $\begin{cases} 2x 4y + z = 0 \\ 3x y 2z 9 = 0 \end{cases}$ 在平面4x y + z = 1 上的投影直线方程。
- 12. 求螺旋线 $x = 2\cos t, y = 2\sin t, z = 3t$,在点(1, $\sqrt{3}$, π)处的切线方程和法平面方程。

1、这是 n=2 时的伯努利不等式,令
$$z=y^{-1}$$
,算得 $\frac{d}{dx}=-y^{-1}$ dx

代入原方程得到
$$\frac{dz}{dx} = -\frac{6}{x}z + x$$
, 这是线性方程,求得它的通解为 $z = \frac{c}{x^6} + \frac{x^2}{8}$

带回原来的变量 y,得到 $\frac{1}{y} = \frac{c}{x^6} + \frac{x^2}{8}$ 或者 $\frac{x^6}{y} - \frac{x^8}{8} = c$, 这就是原方程的解。

此外方程还有解 y=0.

2,

解:
$$\frac{dy}{dx} = e^{xy} - xy = \frac{xe^{xy} - y}{x}$$
$$xdy = (xe^{xy} - y)dx$$
$$xdy + ydx = xe^{xy}dx$$
$$dxy = xe^{xy}dx$$
$$\frac{dxy}{e^{xy}} = xdx$$
$$-e^{-xy} = \frac{1}{2}x^2 + c$$

故通解为: $\frac{1}{2}x^2 + e^{-xy} + c = 0$

3. $M: y' = \frac{x}{x^2 - 1}y - \frac{1}{x^2 - 1}$

$$y = e^{\int \frac{x}{x^2 - 1} dx} \left(\int -\frac{1}{x^2 - 1} e^{\int -\frac{x}{x^2 - 1} dx} + c \right)$$

$$= \frac{\left(x^2 - 1 \right)^{\frac{1}{2}} \left[\int -\frac{1}{x^2 - 1} \frac{1}{\left(x^2 - 1 \right)^{\frac{1}{2}}} dx + c \right]}{\left(x^2 - 1 \right)^{\frac{1}{2}}}$$

$$= \frac{1}{12} \left[\int -\frac{dx}{1 - \frac{3}{2}} + c \right]$$

$$= \begin{cases} c\sqrt{1-x^2} + x & -1 < x < 1 \\ c\sqrt{x^2 - 1} + x & |x| > -1 \end{cases}$$

4.解:
$$Y = (C_1 + C_2 x)e^{3x}$$
, 设 $y^* = x^2 (Ax + B)e^{3x}$. 代入方秋
$$6Ax + 2B = x + 1 \Rightarrow A = \frac{1}{6}, B = \frac{1}{2}.$$
$$y = Y + y^* = (C_1 + C_2 x)e^{3x} + \frac{1}{6}x^2(x+3)e^{3x}.$$

5.解:
$$\frac{dx}{dy} - \frac{x}{y} = y^2$$
, 则 $x = e^{-\int (-\frac{1}{y})dy} (\int y^2 e^{\int (-\frac{1}{y})dy} dy + C) =$ 注意: $y = 0$ 也是方程的根.

6.#: $y = e^{-2x}(C_1 \cos 5x + C_2 \sin 5x)$

7.解:
$$Y = C_1 e^{2x} + C_2 e^{4x}$$
, 设 $y_1^* = A$.

代入方程
$$y'' - 6y' + 8y = 1$$
得 $8A = 1 \Rightarrow A = \frac{1}{8}$.

代入方程
$$y'' - 6y' + 8 = xe^{2x}$$
得 $-4Ax + 2A - 2B = x \Rightarrow Ax + 2A - 2B =$

$$y = Y + y^* = Y + y_1^* + y_2^* = C_1 e^{2x} + C_2 e^{4x} + \frac{1}{8} - \frac{1}{4}x(x)$$

8.解: π 的点法式7x+14y+5=0(平面族).

9.解: *L*的点向式
$$\frac{x}{1} = \frac{y}{1} = \frac{z+1}{2}$$
, *L*的交面式 $\begin{cases} 3x - y - z - 2x - 1 \\ 2x - z - 1 \end{cases}$

10.解: *L*的点向式
$$\frac{x-1}{-2} = \frac{y-2}{3} = \frac{z}{1}$$
, *L*_{//}的点向式 $\frac{x-2}{-2} = \frac{z}{1}$

11.解: *L*的点向式
$$\frac{x-\frac{18}{5}}{9} = \frac{y-\frac{9}{5}}{7} = \frac{z}{10}$$
, L_{v} 的交面式 $\begin{cases} 17x+31y-37z \\ 4x-1 \end{cases}$

12. 下册 53 页例 3.11.