solution

April 28, 2024

1 Tema 1 ML - Paunoiu Darius Alexandru

```
[]: import pandas as pd
     from sklearn.model_selection import train_test_split
     import matplotlib.pyplot as plt
     # Assuming df is your DataFrame after loading the CSV
     statistics_df = pd.read_csv("date_tema_1_iaut_2024.csv")
     pd.set_option('display.max_columns', None)
     RANDOM_STATES = [42, 10, 15, 21, 13, 30, 35, 37, 45, 53]
     RANDOM_STATE = RANDOM_STATES[0]
     # List of categorical columns you mentioned
     def prelucrate data(df):
         df['Sedentary_hours_daily'] = df['Sedentary_hours_daily'].str.replace(',',u

¬'.').astype(float)
         df['Age'] = df['Age'].str.replace(',', '.').astype(float).astype(int)
         df['Est_avg_calorie_intake'] = df['Est_avg_calorie_intake'].astype(int)
         df['Height'] = df['Height'].str.replace(',', '.').astype(float)
         df['Water_daily'] = df['Water_daily'].str.replace(',', '.').astype(float)
         df['Weight'] = df['Weight'].str.replace(',', '.').astype(float)
         df['Physical_activity_level'] = df['Physical_activity_level'].str.
      →replace(',', '.').astype(float)
         df['Technology_time_use'] = df['Technology_time_use'].astype(object)
         df['Main_meals_daily'] = df['Main_meals_daily'].str.replace(',', '.').
      →astype(float).astype(int).astype(object)
         df['Regular_fiber_diet'] = df['Regular_fiber_diet'].str.replace(',', '.').
      ⇒astype(float).astype(int).astype(object)
     prelucrate_data(statistics_df)
     print(statistics_df.dtypes)
     # Splitting the DataFrame into train and test datasets
     train_df, test_df = train_test_split(statistics_df, test_size=0.2,__
      →random_state=42)
     # Printing the shapes of the train and test datasets
```

```
print("Test dataset shape:", test_df.shape)
     statistics_df.tail()
    Transportation
                                      object
    Regular_fiber_diet
                                      object
    Diagnostic_in_family_history
                                      object
    High_calorie_diet
                                      object
    Sedentary_hours_daily
                                     float64
                                       int64
    Age
    Alcohol
                                      object
    Est_avg_calorie_intake
                                       int64
    Main_meals_daily
                                      object
    Snacks
                                      object
    Height
                                     float64
    Smoker
                                      object
    Water_daily
                                     float64
    Calorie_monitoring
                                      object
    Weight
                                     float64
    Physical_activity_level
                                     float64
    Technology_time_use
                                      object
    Gender
                                      object
    Diagnostic
                                      object
    dtype: object
    Train dataset shape: (1536, 19)
    Test dataset shape: (385, 19)
[]:
                  Transportation Regular_fiber_diet Diagnostic_in_family_history \
     1916 Public_Transportation
                                                                               yes
     1917 Public_Transportation
                                                   3
                                                                               yes
                                                   3
     1918 Public_Transportation
                                                                               yes
                                                   3
     1919 Public_Transportation
                                                                               yes
     1920 Public_Transportation
                                                   3
                                                                               yes
          High_calorie_diet Sedentary_hours_daily
                                                            Alcohol \
                                                     Age
     1916
                        yes
                                               3.08
                                                      20
                                                          Sometimes
     1917
                                               3.00
                                                      21
                                                          Sometimes
                        yes
     1918
                                               3.26
                                                      22
                                                          Sometimes
                        yes
     1919
                                               3.61
                                                      24
                                                          Sometimes
                        yes
     1920
                        yes
                                               3.83
                                                      23
                                                          Sometimes
           Est_avg_calorie_intake Main_meals_daily
                                                        Snacks Height Smoker
     1916
                             2744
                                                  3
                                                     Sometimes
                                                                  1.71
                                                                           no
     1917
                             2977
                                                  3
                                                     Sometimes
                                                                  1.75
                                                                           nο
     1918
                             2422
                                                  3
                                                                  1.75
                                                     Sometimes
                                                                           no
     1919
                             2372
                                                     Sometimes
                                                                  1.74
                                                                           no
```

print("Train dataset shape:", train_df.shape)

```
1920
                             2336
                                                 3 Sometimes
                                                                 1.74
                                                                          no
                                               Weight Physical_activity_level \
           Water_daily Calorie_monitoring
     1916
              1.728139
                                           131.408528
                                                                      1.676269
     1917
              2.005130
                                           133.742943
                                                                      1.341390
                                       no
     1918
              2.054193
                                           133.689352
                                                                      1.414209
                                       no
     1919
              2.852339
                                           133.346641
                                                                      1.139107
                                       no
     1920
              2.863513
                                           133.472641
                                                                      1.026452
                                       no
          Technology_time_use Gender Diagnostic
                            1 Female
     1916
                                              D6
                            1 Female
     1917
                                              D6
     1918
                            1 Female
                                              D6
     1919
                            1 Female
                                              D6
     1920
                            1 Female
                                              D6
[]: # Class distribution overall
     class_counts = statistics_df['Diagnostic'].value_counts()
     class_counts.plot(kind='bar')
     plt.xlabel('Diagnostic')
     plt.ylabel('Count')
     plt.title('Overall Class Distribution')
     plt.show()
```



```
[]: train_class_counts = train_df['Diagnostic'].value_counts()
    test_class_counts = test_df['Diagnostic'].value_counts()

plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    train_class_counts.plot(kind='bar')
    plt.xlabel('Diagnostic')
    plt.ylabel('Count')
    plt.title('Train Dataset Class Distribution')

plt.subplot(1, 2, 2)
    test_class_counts.plot(kind='bar')
    plt.xlabel('Diagnostic')
    plt.ylabel('Count')
    plt.title('Test Dataset Class Distribution')

plt.title('Test Dataset Class Distribution')
```



```
[]: import pandas as pd
     import numpy as np
     from scipy.stats import tmean, tstd, median_abs_deviation, iqr, tmin, tmax
     # Identify numerical columns
     numerical_columns = statistics_df.select_dtypes(include=['int64', 'float64']).
      ⇔columns
     # Initialize a dictionary to store the results
     results = {}
     # Calculate the required statistics for each numerical column
     for col in numerical_columns:
         results[col] = {
             'Mean': tmean(statistics_df[col]),
             'Standard Deviation': tstd(statistics_df[col]),
             'Mean Absolute Deviation': np.mean(np.abs(statistics_df[col] - np.
      →mean(statistics_df[col]))),
             'Min': tmin(statistics_df[col]),
             'Max': tmax(statistics_df[col]),
             'Difference between Min and Max': tmax(statistics_df[col]) -
      ⇔tmin(statistics_df[col]),
             'Median': np.median(statistics_df[col]), # SciPy does not have a_
      \hookrightarrow median function
             'Median Absolute Deviation': median_abs_deviation(statistics_df[col]),
             'Interquartile Range': iqr(statistics_df[col]),
         }
```

```
stats_df = pd.DataFrame(results).transpose()
     stats_df
Г1:
                                           Standard Deviation \
                                     Mean
     Sedentary_hours_daily
                                 3.693571
                                                    21.759835
                                44.454971
                                                   633.322337
     Age
     Est_avg_calorie_intake
                              2253.687663
                                                   434.075794
                                 3.573488
                                                    58.098160
     Height
     Water_daily
                                 2.010367
                                                     0.611034
     Weight
                               205.637344
                                                  3225.653536
     Physical_activity_level
                                 1.012640
                                                     0.855526
                              Mean Absolute Deviation
                                                           Min
                                                                      Max \
     Sedentary hours daily
                                             1.133885
                                                          2.21
                                                                   956.58
                                            40.949876
                                                         15.00 19685.00
     Age
     Est_avg_calorie_intake
                                           375.362344 1500.00
                                                                  3000.00
    Height
                                             3.738525
                                                           1.45
                                                                  1915.00
                                                          1.00
     Water_daily
                                             0.470801
                                                                     3.00
                                           254.647671
                                                          -1.00 82628.00
     Weight
     Physical_activity_level
                                             0.702160
                                                          0.00
                                                                     3.00
                              Difference between Min and Max
                                                                    Median \
                                                      954.37
                                                                  3.130000
     Sedentary_hours_daily
     Age
                                                    19670.00
                                                                 22.000000
     Est_avg_calorie_intake
                                                      1500.00 2253.000000
    Height
                                                      1913.55
                                                                  1.700000
    Water_daily
                                                        2.00
                                                                  2.000000
                                                    82629.00
    Weight
                                                                 80.386078
    Physical_activity_level
                                                        3.00
                                                                  1.000000
                              Median Absolute Deviation Interquartile Range
     Sedentary_hours_daily
                                               0.440000
                                                                     0.870000
     Age
                                               3.000000
                                                                     7.000000
     Est_avg_calorie_intake
                                             380.000000
                                                                   757,000000
     Height
                                               0.070000
                                                                     0.140000
     Water_daily
                                               0.444917
                                                                     0.874479
     Weight
                                              24.386078
                                                                    46.205365
     Physical_activity_level
                                               0.815768
                                                                     1.567523
[]: import pandas as pd
     import matplotlib.pyplot as plt
     # Identify discrete, nominal or ordinal columns
     categorical_columns = statistics_df.select_dtypes(include=['object',__

¬'category', 'int8']).columns
     print(categorical_columns)
```

Convert the results to a DataFrame

```
# Initialize a dictionary to store the results
results = {}
# Calculate the count of unique values for each column
for col in categorical_columns:
    results[col] = statistics_df[col].nunique()
# Convert the results to a DataFrame
unique_counts_df = pd.DataFrame.from_dict(results, orient='index',_
 ⇔columns=['Unique Count'])
# Display the DataFrame
print(unique_counts_df)
# Plot a histogram for each column
for col in categorical_columns:
    statistics_df[col].value_counts().plot(kind='bar', title=col)
    plt.show()
Index(['Transportation', 'Regular_fiber_diet', 'Diagnostic_in_family_history',
       'High_calorie_diet', 'Alcohol', 'Main_meals_daily', 'Snacks', 'Smoker',
       'Calorie_monitoring', 'Technology_time_use', 'Gender', 'Diagnostic'],
      dtype='object')
                              Unique Count
Transportation
                                         5
Regular_fiber_diet
                                         4
Diagnostic_in_family_history
                                         2
High_calorie_diet
                                         2
                                         4
Alcohol
Main_meals_daily
                                         4
                                         4
Snacks
                                         2
Smoker
Calorie_monitoring
                                         2
                                         4
Technology_time_use
Gender
                                         2
                                         7
Diagnostic
```


	Transportation	Regular_fiber_diet	\
Transportation	1.613173	0.088864	
Regular_fiber_diet	0.088864	0.356925	
<pre>Diagnostic_in_family_history</pre>	-0.048862	0.003358	
High_calorie_diet	-0.029535	-0.012392	
Sedentary_hours_daily	0.422834	-0.137983	
Age	8.382093	-4.589061	
Alcohol	-0.015630	-0.027903	
Est_avg_calorie_intake	8.080411	-7.286559	

Main_meals_daily	-0.001890	0.069033		
Snacks	-0.026046	-0.027504		
Height	1.200332	-0.415074		
Smoker	-0.001645	0.002715		
Water_daily	0.040653	0.037126		
Calorie_monitoring	0.008656	0.008733		
Weight	82.964571	-25.592608		
Physical_activity_level	0.013698	-0.003526		
Technology_time_use	0.146976	-0.035743		
Gender	-0.087938	-0.096159		
Diagnostic	0.031402	0.245788		
<u> </u>				
	Diagnostic_in_family_h	nistory High_ca	alorie_diet	\
Transportation	-0.	048862	-0.029535	
Regular_fiber_diet	0.	003358	-0.012392	
Diagnostic_in_family_history	0.	148416	0.024699	
High_calorie_diet	0.	024699	0.103063	
Sedentary_hours_daily	0.	094913	0.071932	
Age	4.	174651	2.496830	
Alcohol	0.	006592	-0.014435	
Est_avg_calorie_intake	-6.	864424	2.786477	
Main_meals_daily	0.	015612	-0.005995	
Snacks	0.	031439	0.021901	
Height	0.	347992	0.223678	
Smoker	0.	.000649	-0.002779	
Water_daily	0.	036532	0.002342	
Calorie_monitoring	-0.	012481	-0.012147	
Weight	27.	775319	16.861625	
Physical_activity_level	-0.	017956	-0.029297	
Technology_time_use	0.	.006897	0.013275	
Gender	0.	019265	0.010898	
Diagnostic	0.	385575	0.154993	
<u> </u>				
	Sedentary_hours_daily	Age	Alcohol	\
Transportation	0.422834	8.382093	-0.015630	
Regular_fiber_diet	-0.137983	-4.589061	-0.027903	
Diagnostic_in_family_history	0.094913	4.174651	0.006592	
High_calorie_diet	0.071932	2.496830	-0.014435	
Sedentary_hours_daily	473.490415	-12.924928	0.376236	
Age	-12.924928	401097.182477	-5.632406	
Alcohol	0.376236	-5.632406	0.268677	
Est_avg_calorie_intake	273.718418	-84.411467	-0.293501	
Main_meals_daily	-0.735790	9.385148	-0.053053	
Snacks	0.062952	3.126387	-0.011072	
Height	-0.587676	-34.975499	-0.510293	
Smoker	-0.009673	-0.338645	-0.006128	
Water_daily	-0.071017	10.451026	-0.031022	
Calorie_monitoring	-0.023988	-1.008210	-0.000697	

```
Weight
                                           19.163702
                                                       -2773.142041
                                                                     49.098309
                                                                      0.036450
Physical_activity_level
                                           -0.476095
                                                          19.995552
Technology_time_use
                                            1.494694
                                                          -4.699622
                                                                      0.013008
Gender
                                           -0.252078
                                                          10.209111
                                                                      0.002635
Diagnostic
                                           -0.637862
                                                         -19.515486 -0.154355
                              Est_avg_calorie_intake Main_meals_daily \
Transportation
                                             8.080411
                                                              -0.001890
Regular fiber diet
                                            -7.286559
                                                               0.069033
Diagnostic_in_family_history
                                            -6.864424
                                                               0.015612
High_calorie_diet
                                             2.786477
                                                              -0.005995
Sedentary_hours_daily
                                           273.718418
                                                              -0.735790
                                           -84.411467
                                                               9.385148
Age
Alcohol
                                                              -0.053053
                                            -0.293501
Est_avg_calorie_intake
                                        188421.795103
                                                              -4.490091
Main_meals_daily
                                            -4.490091
                                                               0.692437
Snacks
                                             0.611156
                                                              -0.045057
Height
                                          -930.357530
                                                               0.915565
Smoker
                                                               0.004791
                                            -2.613285
Water daily
                                            -4.249024
                                                               0.038445
                                            -1.236498
                                                               0.002519
Calorie_monitoring
                                        -20457.233307
                                                             -21.213213
Weight
Physical_activity_level
                                            -1.738810
                                                               0.086682
Technology_time_use
                                             3.180425
                                                               0.019951
Gender
                                            -5.736378
                                                               0.011937
                                           -32.980618
Diagnostic
                                                               0.081474
                                 Snacks
                                               Height
                                                         Smoker
                                                                 Water_daily \
Transportation
                               -0.026046
                                             1.200332 -0.001645
                                                                    0.040653
Regular_fiber_diet
                              -0.027504
                                            -0.415074 0.002715
                                                                    0.037126
Diagnostic_in_family_history
                               0.031439
                                             0.347992 0.000649
                                                                    0.036532
High_calorie_diet
                               0.021901
                                             0.223678 -0.002779
                                                                    0.002342
Sedentary_hours_daily
                               0.062952
                                            -0.587676 -0.009673
                                                                   -0.071017
                               3.126387
                                           -34.975499 -0.338645
                                                                   10.451026
Age
Alcohol
                                            -0.510293 -0.006128
                               -0.011072
                                                                   -0.031022
Est_avg_calorie_intake
                               0.611156
                                         -930.357530 -2.613285
                                                                   -4.249024
Main meals daily
                                                                    0.038445
                              -0.045057
                                             0.915565 0.004791
Snacks
                               0.217145
                                             0.269326 -0.004320
                                                                    0.043916
                                                                   -1.181213
Height
                               0.269326 3375.396169 0.957860
Smoker
                              -0.004320
                                             0.957860 0.020400
                                                                   -0.002802
Water_daily
                               0.043916
                                            -1.181213 -0.002802
                                                                    0.373363
Calorie_monitoring
                              -0.010501
                                            -0.083130 0.001704
                                                                    0.001909
Weight
                              21.545168 -182.428303 -2.569740
                                                                  -28.511896
Physical_activity_level
                                                                    0.089479
                              -0.010111
                                            -0.237567 0.001530
Technology_time_use
                              -0.013616
                                            -0.370402 0.000680
                                                                    0.002872
Gender
                               0.021538
                                             0.072980 0.002425
                                                                    0.034726
Diagnostic
                               0.301313
                                             2.670596 -0.001431
                                                                    0.165964
```

	Calorie_mo	nitoring	Weight	\	
Transportation		0.008656	8.296457e+01		
Regular_fiber_diet		0.008733	-2.559261e+01		
Diagnostic_in_family_history	_	0.012481	2.777532e+01		
High_calorie_diet	_	0.012147	1.686162e+01		
Sedentary_hours_daily	_	0.023988	1.916370e+01		
Age			-2.773142e+03		
Alcohol			4.909831e+01		
Est_avg_calorie_intake			-2.045723e+04		
Main_meals_daily			-2.121321e+01		
Snacks			2.154517e+01		
Height			-1.824283e+02		
Smoker			-2.569740e+00		
Water_daily			-2.851190e+01		
Calorie_monitoring			-6.559527e+00		
Weight			1.040484e+07		
Physical_activity_level			7.405877e+00		
Technology_time_use			3.997895e+01		
Gender	_	0.008965	-2.128977e+01		
Diagnostic	_	0.076485	1.139335e+02		
	Physical_a	ctivity 1	ovol Tochnolo	gy_time_use	\
Transportation	Thysicar_a	•	.3698	0.146976	`
Regular_fiber_diet		-0.00		-0.035743	
_		-0.00		0.006897	
Diagnostic_in_family_history					
High_calorie_diet		-0.02		0.013275	
Sedentary_hours_daily		-0.47		1.494694	
Age		19.99		-4.699622	
Alcohol			6450	0.013008	
<pre>Est_avg_calorie_intake</pre>		-1.73		3.180425	
Main_meals_daily			6682	0.019951	
Snacks		-0.01		-0.013616	
Height		-0.23	7567	-0.370402	
Smoker		0.00	1530	0.000680	
Water_daily		0.08	9479	0.002872	
Calorie_monitoring		0.01	5701	-0.001766	
Weight		7.40	5877	39.978948	
Physical_activity_level		0.73	1924	0.038979	
Technology_time_use		0.03	8979	0.458564	
Gender			8889	-0.001048	
Diagnostic		-0.33		-0.113624	
	Gender	Diagnost			
Transportation	-0.087938	0.0314			
Regular_fiber_diet	-0.096159	0.2457	88		
<pre>Diagnostic_in_family_history</pre>	0.019265	0.3855	75		
High_calorie_diet	0.010898	0.1549	93		
Sedentary_hours_daily	-0.252078	-0.6378	62		

```
Age
                             10.209111 -19.515486
                             0.002635 -0.154355
Alcohol
Est_avg_calorie_intake
                             -5.736378 -32.980618
Main_meals_daily
                             0.011937
                                         0.081474
Snacks
                             0.021538 0.301313
Height
                             0.072980 2.670596
Smoker
                             0.002425 -0.001431
Water_daily
                             0.034726
                                        0.165964
Calorie_monitoring
                            -0.008965 -0.076485
Weight
                           -21.289766 113.933453
Physical_activity_level
                             0.078889
                                       -0.335834
Technology_time_use
                             -0.001048
                                       -0.113624
Gender
                             0.250056
                                       -0.035916
Diagnostic
                             -0.035916
                                        3.935906
```

```
[]: import seaborn as sns
    correlation_matrix = statistics_df.corr()

# Round the values to a maximum of 3 decimals
    rounded_corr_matrix = correlation_matrix.round(2)

# Create a heatmap of the sorted and rounded correlation matrix
    plt.figure(figsize=(12, 10))
    sns.heatmap(rounded_corr_matrix, annot=True, cmap='coolwarm')

# Set the title of the heatmap
    plt.title('Sorted and Rounded Correlation Matrix')

# Display the heatmap
    plt.show()
```



```
[]: import ast
    from sklearn.base import ClassifierMixin
    from sklearn.discriminant_analysis import StandardScaler
    from sklearn.impute import IterativeImputer
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import (
        accuracy_score,
        classification_report,
        f1_score,
        make_scorer,
        precision_score,
        recall_score,
)
    from sklearn.preprocessing import LabelEncoder
```

```
from sklearn.feature_selection import (
   SelectPercentile,
   VarianceThreshold,
   chi2,
   f_classif,
from sklearn.model_selection import GridSearchCV
from matplotlib.backends.backend_pdf import PdfPages
def prepare_dataset():
   df = pd.read_csv("date_tema_1_iaut_2024.csv")
   prelucrate_data(df)
    # Replace -1 with NaN in the 'Weight' column
   df["Weight"] = df["Weight"].replace(-1, np.nan)
    # Initialize the IterativeImputer
   imputer = IterativeImputer()
    # Perform the imputation on the 'Weight' column
   df["Weight"] = imputer.fit_transform(df[["Weight"]])
   # Convert categorical columns to numerical
   le = LabelEncoder()
   for col in df.columns:
        df[col] = le.fit_transform(df[col])
   X = df.drop("Diagnostic", axis=1)
   y = df["Diagnostic"]
    # Create a VarianceThreshold object
    selector = VarianceThreshold(threshold=0.1)
    # Fit and transform the selector to the data
   features_before = X.columns
   X = pd.DataFrame(
        selector.fit_transform(X), columns=X.columns[selector.get_support()]
   print(f"Features removed: {set(features_before) - set(X.columns)}")
    # Create a SelectPercentile object
   selector = SelectPercentile(f_classif, percentile=70)
   # Fit and transform the selector to the data
   features_before = X.columns
   X = pd.DataFrame(
        selector.fit_transform(X, y), columns=X.columns[selector.get_support()]
```

```
print(f"Features removed: {set(features before) - set(X.columns)}")
    # Standardize the features
   scaler = StandardScaler()
   X = scaler.fit_transform(X, y)
   return X, y
def find_best_params(classifier, param_grid, X, y, random_state=42):
    # Create train test
   X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=random_state
    # Convert the custom scorer into a scorer that can be used with GridSearchCV
   scorers = {
        "accuracy": make_scorer(accuracy_score),
        "precision": make_scorer(precision_score, average="weighted"),
        "recall": make_scorer(recall_score, average="weighted"),
        "f1": make_scorer(f1_score, average="weighted"),
   }
   for scr in [accuracy_score, f1_score, precision_score, recall_score]:
        for class_label in np.unique(y):
            scorers[f"{scr.__name__}_D{class_label}"] = make_scorer(
                lambda y_true, y_pred, class_label: scr(
                    y_true == class_label, y_pred == class_label
                ),
                greater_is_better=True,
                class_label=class_label,
            )
    # Initialize a GridSearchCV
   grid_search = GridSearchCV(
       estimator=classifier,
       param_grid=param_grid,
       cv=5,
       scoring=scorers,
       refit="f1",
       n_jobs=4,
    # Fit the GridSearchCV to the training data
   grid_search.fit(X_train, y_train)
```

```
# Print the best parameters
    print("Best parameters found: ", grid_search.best_params_)
    return grid_search, grid_search.best_params_
def evaluate_my_model(
    model: ClassifierMixin, grid_search: GridSearchCV, X, y, random_state=42
):
    # Create a DataFrame from cv_results_
    df = pd.DataFrame(grid_search.cv_results_)
    columns = [
        "params",
        "mean_test_accuracy",
        "std_test_accuracy",
        "mean_test_precision",
        "std_test_precision",
        "mean_test_recall",
        "std_test_recall",
        "mean_test_f1",
        "std_test_f1",
    ]
    for scr in [accuracy_score, f1_score, precision_score, recall_score]:
        for class_label in np.unique(y):
            columns.append(f"mean_test_{scr.__name__}_D{class_label}")
            columns.append(f"std_test_{scr.__name__}_D{class_label}")
    # Select the columns of interest
    df = df[columns]
    # Rename the columns
    df["params"] = df["params"].apply(lambda x: x.values())
    rename params_to = ",".join([x for x in grid_search.best_params_])
    df = df.rename(columns={"params": rename_params_to})
    # Highlight the row with the best parameters
    def highlight_max(s):
        is max = s == s.max()
        return ['font-weight: bold' if v else '' for v in is_max]
    # df.style.apply(highlight_max)
    df.style.highlight_max(color = 'pink', axis = 0)
    # df.style.apply(
         lambda \ x: \ [
              "font-weight: bold" if True else "" for _ in x
          ],
```

```
axis=1,
   # )
   # display(df)
  dfs = []
  for class_label in np.unique(y):
       cols = [rename_params_to]
       for scr in [accuracy_score, f1_score, precision_score, recall_score]:
           cols.append(f"mean_test_{scr.__name__}_D{class_label}")
           cols.append(f"std_test_{scr.__name__}_D{class_label}")
       dfs.append(df[cols])
       renamed_cols = [rename_params_to]
       for scr in [accuracy_score, f1_score, precision_score, recall_score]:
           renamed_cols.append(f"{scr.__name__}_D{class_label}")
           renamed_cols.append(f"{scr.__name__}_D{class_label}_std")
      dfs[-1].columns = renamed_cols
       # display(dfs[-1])
       # fiq, ax =plt.subplots(fiqsize=(12,4))
       # ax.axis('tight')
       # ax.axis('off')
       # the_table = ax.table(cellText=dfs[-1].values,colLabels=dfs[-1].
⇔columns, loc='center')
       # #https://stackoverflow.com/questions/4042192/
\hookrightarrow reduce-left-and-right-margins-in-matplotlib-plot
       # pp = PdfPages(f"foo{class_label}.pdf")
       # pp.savefiq(fiq, bbox_inches='tight')
       # pp.close()
      print(dfs[-1].to_latex(
           index=False, # To not include the DataFrame index as a column in_
→ the table
           # caption="Comparison of ML Model Performance Metrics", # The
⇒caption to appear above the table in the LaTeX document
           # label="tab:model comparison", # A label used for referencing the
⇒table within the LaTeX document
           # position="htbp", # The preferred positions where the table_{\sqcup}
→should be placed in the document ('here', 'top', 'bottom', 'page')
           # column format="/l/l/l/l/", # The format of the columns:
⇔left-aligned with vertical lines between them
           # escape=False, # Disable escaping LaTeX special characters in the
\hookrightarrow DataFrame
           # float_format="{:0.4f}".format # Formats floats to two decimal_
\hookrightarrowplaces
           ))
  X_train, X_test, y_train, y_test = train_test_split(
```

```
X, y, test_size=0.2, random_state=random_state
         )
         model.fit(X_train, y_train)
         y_pred = model.predict(X_test)
         accuracy = accuracy_score(y_test, y_pred)
         f1 = f1_score(y_test, y_pred, average="weighted")
         precision = precision_score(y_test, y_pred, average="weighted")
         recall = recall_score(y_test, y_pred, average="weighted")
         print(
             classification report(
                 y_test, y_pred, target_names=["D0", "D1", "D2", "D3", "D4", "D5", __
      ⇒"D6"1
         )
         return accuracy, f1, precision, recall
[]: # Initialize a RandomForestClassifier
     clf = RandomForestClassifier(random_state=42)
     # Define the parameter grid
     param_grid = {
         'n_estimators': [100, 150, 200],
         'max_depth': [15, 20, 25],
         'max_samples': [0.5, 0.7, 1.0],
     X, y = prepare dataset()
     grid_search, best_params = find_best_params(clf, param_grid, X, y, RANDOM_STATE)
    Features removed: {'Calorie monitoring', 'Smoker'}
    Features removed: {'Est_avg_calorie_intake', 'Physical_activity_level',
    'Technology_time_use', 'Sedentary_hours_daily', 'Water_daily'}
    Best parameters found: {'max_depth': 20, 'max_samples': 1.0, 'n_estimators':
    150}
[]: best clf = RandomForestClassifier(**best params, random state=RANDOM STATE)
     accuracy, f1, precision, recall = evaluate_my_model(best_clf, grid_search, X,_u
     →y, RANDOM_STATE)
     print(f"Accuracy: {accuracy}")
     print(f"F1 Score: {f1}")
     print(f"Precision: {precision}")
     print(f"Recall: {recall}")
     print(grid_search.best_index_)
    \begin{tabular}{lrrrrrrr}
```

\toprule

```
max_depth,max_samples,n_estimators & accuracy_score_DO & accuracy_score_DO_std &
f1_score_D0 & f1_score_D0_std & precision_score_D0 & precision_score_D0_std &
recall_score_DO & recall_score_DO_std \\
\midrule
dict values([15, 0.5, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict values([15, 0.5, 150]) & 0.930441 & 0.035409 & 0.930441 & 0.035409 &
0.930441 & 0.035409 & 0.930441 & 0.035409 \\
dict values([15, 0.5, 200]) & 0.941110 & 0.030649 & 0.941110 & 0.030649 &
0.941110 & 0.030649 & 0.941110 & 0.030649 \\
dict_values([15, 0.7, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([15, 0.7, 150]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([15, 0.7, 200]) & 0.941252 & 0.042004 & 0.941252 & 0.042004 &
0.941252 & 0.042004 & 0.941252 & 0.042004 \\
dict_values([15, 1.0, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([15, 1.0, 150]) & 0.941252 & 0.042004 & 0.941252 & 0.042004 &
0.941252 & 0.042004 & 0.941252 & 0.042004 \\
dict values([15, 1.0, 200]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([20, 0.5, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([20, 0.5, 150]) & 0.930441 & 0.035409 & 0.930441 & 0.035409 &
0.930441 & 0.035409 & 0.930441 & 0.035409 \\
dict_values([20, 0.5, 200]) & 0.941110 & 0.030649 & 0.941110 & 0.030649 &
0.941110 & 0.030649 & 0.941110 & 0.030649 \\
dict_values([20, 0.7, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([20, 0.7, 150]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([20, 0.7, 200]) & 0.941252 & 0.042004 & 0.941252 & 0.042004 &
0.941252 & 0.042004 & 0.941252 & 0.042004 \\
dict values([20, 1.0, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict values([20, 1.0, 150]) & 0.941252 & 0.042004 & 0.941252 & 0.042004 &
0.941252 & 0.042004 & 0.941252 & 0.042004 \\
dict_values([20, 1.0, 200]) & 0.941252 & 0.042004 & 0.941252 & 0.042004 &
0.941252 & 0.042004 & 0.941252 & 0.042004 \\
dict_values([25, 0.5, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([25, 0.5, 150]) & 0.930441 & 0.035409 & 0.930441 & 0.035409 &
0.930441 & 0.035409 & 0.930441 & 0.035409 \\
dict_values([25, 0.5, 200]) & 0.941110 & 0.030649 & 0.941110 & 0.030649 &
0.941110 & 0.030649 & 0.941110 & 0.030649 \\
dict_values([25, 0.7, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
```

```
dict_values([25, 0.7, 150]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict_values([25, 0.7, 200]) & 0.941252 & 0.042004 & 0.941252 & 0.042004 &
0.941252 & 0.042004 & 0.941252 & 0.042004 \\
dict values([25, 1.0, 100]) & 0.935846 & 0.039221 & 0.935846 & 0.039221 &
0.935846 & 0.039221 & 0.935846 & 0.039221 \\
dict values([25, 1.0, 150]) & 0.941252 & 0.042004 & 0.941252 & 0.042004 &
0.941252 & 0.042004 & 0.941252 & 0.042004 \\
dict values([25, 1.0, 200]) & 0.941252 & 0.042004 & 0.941252 & 0.042004 &
0.941252 & 0.042004 & 0.941252 & 0.042004 \\
\bottomrule
\end{tabular}
\begin{tabular}{lrrrrrrr}
\toprule
max_depth,max_samples,n_estimators & accuracy_score_D1 & accuracy_score_D1_std &
f1_score_D1 & f1_score_D1_std & precision_score_D1 & precision_score_D1_std &
recall_score_D1 & recall_score_D1_std \\
\midrule
dict values([15, 0.5, 100]) & 0.790476 & 0.040963 & 0.790476 & 0.040963 &
0.790476 & 0.040963 & 0.790476 & 0.040963 \\
dict values([15, 0.5, 150]) & 0.790476 & 0.034993 & 0.790476 & 0.034993 &
0.790476 & 0.034993 & 0.790476 & 0.034993 \\
dict_values([15, 0.5, 200]) & 0.800000 & 0.038686 & 0.800000 & 0.038686 &
0.800000 & 0.038686 & 0.800000 & 0.038686 \\
dict_values([15, 0.7, 100]) & 0.814286 & 0.046168 & 0.814286 & 0.046168 &
0.814286 & 0.046168 & 0.814286 & 0.046168 \\
dict_values([15, 0.7, 150]) & 0.828571 & 0.040963 & 0.828571 & 0.040963 &
0.828571 & 0.040963 & 0.828571 & 0.040963 \\
dict_values([15, 0.7, 200]) & 0.814286 & 0.034993 & 0.814286 & 0.034993 &
0.814286 & 0.034993 & 0.814286 & 0.034993 \\
dict_values([15, 1.0, 100]) & 0.819048 & 0.035635 & 0.819048 & 0.035635 &
0.819048 & 0.035635 & 0.819048 & 0.035635 \\
dict_values([15, 1.0, 150]) & 0.833333 & 0.026082 & 0.833333 & 0.026082 &
0.833333 & 0.026082 & 0.833333 & 0.026082 \\
dict values([15, 1.0, 200]) & 0.828571 & 0.031587 & 0.828571 & 0.031587 &
0.828571 & 0.031587 & 0.828571 & 0.031587 \\
dict_values([20, 0.5, 100]) & 0.776190 & 0.063174 & 0.776190 & 0.063174 &
0.776190 & 0.063174 & 0.776190 & 0.063174 \\
dict_values([20, 0.5, 150]) & 0.785714 & 0.060234 & 0.785714 & 0.060234 &
0.785714 & 0.060234 & 0.785714 & 0.060234 \\
dict_values([20, 0.5, 200]) & 0.800000 & 0.044160 & 0.800000 & 0.044160 &
0.800000 & 0.044160 & 0.800000 & 0.044160 \\
dict values([20, 0.7, 100]) & 0.809524 & 0.033672 & 0.809524 & 0.033672 &
0.809524 & 0.033672 & 0.809524 & 0.033672 \\
dict_values([20, 0.7, 150]) & 0.814286 & 0.046168 & 0.814286 & 0.046168 &
0.814286 & 0.046168 & 0.814286 & 0.046168 \\
dict_values([20, 0.7, 200]) & 0.814286 & 0.034993 & 0.814286 & 0.034993 &
```

```
0.814286 & 0.034993 & 0.814286 & 0.034993 \\
dict_values([20, 1.0, 100]) & 0.809524 & 0.039841 & 0.809524 & 0.039841 &
0.809524 & 0.039841 & 0.809524 & 0.039841 \\
dict_values([20, 1.0, 150]) & 0.833333 & 0.049943 & 0.833333 & 0.049943 &
0.833333 & 0.049943 & 0.833333 & 0.049943 \\
dict values([20, 1.0, 200]) & 0.847619 & 0.046657 & 0.847619 & 0.046657 &
0.847619 & 0.046657 & 0.847619 & 0.046657 \\
dict_values([25, 0.5, 100]) & 0.776190 & 0.063174 & 0.776190 & 0.063174 &
0.776190 & 0.063174 & 0.776190 & 0.063174 \\
dict_values([25, 0.5, 150]) & 0.785714 & 0.060234 & 0.785714 & 0.060234 &
0.785714 & 0.060234 & 0.785714 & 0.060234 \\
dict_values([25, 0.5, 200]) & 0.800000 & 0.044160 & 0.800000 & 0.044160 &
0.800000 & 0.044160 & 0.800000 & 0.044160 \\
dict values([25, 0.7, 100]) & 0.804762 & 0.040963 & 0.804762 & 0.040963 &
0.804762 & 0.040963 & 0.804762 & 0.040963 \\
dict_values([25, 0.7, 150]) & 0.814286 & 0.046168 & 0.814286 & 0.046168 &
0.814286 & 0.046168 & 0.814286 & 0.046168 \\
dict_values([25, 0.7, 200]) & 0.814286 & 0.034993 & 0.814286 & 0.034993 &
0.814286 & 0.034993 & 0.814286 & 0.034993 \\
dict values([25, 1.0, 100]) & 0.809524 & 0.039841 & 0.809524 & 0.039841 &
0.809524 & 0.039841 & 0.809524 & 0.039841 \\
dict values([25, 1.0, 150]) & 0.833333 & 0.049943 & 0.833333 & 0.049943 &
0.833333 & 0.049943 & 0.833333 & 0.049943 \\
dict_values([25, 1.0, 200]) & 0.847619 & 0.046657 & 0.847619 & 0.046657 &
0.847619 & 0.046657 & 0.847619 & 0.046657 \\
\bottomrule
\end{tabular}
\begin{tabular}{lrrrrrrr}
\toprule
max_depth,max_samples,n_estimators & accuracy_score_D2 & accuracy_score_D2 std &
f1_score_D2 & f1_score_D2_std & precision_score_D2 & precision_score_D2_std &
recall_score_D2 & recall_score_D2_std \\
\midrule
dict values([15, 0.5, 100]) & 0.814905 & 0.052647 & 0.814905 & 0.052647 &
0.814905 & 0.052647 & 0.814905 & 0.052647 \\
dict values([15, 0.5, 150]) & 0.810254 & 0.064537 & 0.810254 & 0.064537 &
0.810254 & 0.064537 & 0.810254 & 0.064537 \\
dict_values([15, 0.5, 200]) & 0.810254 & 0.057443 & 0.810254 & 0.057443 &
0.810254 & 0.057443 & 0.810254 & 0.057443 \\
dict_values([15, 0.7, 100]) & 0.837844 & 0.066013 & 0.837844 & 0.066013 &
0.837844 & 0.066013 & 0.837844 & 0.066013 \\
dict_values([15, 0.7, 150]) & 0.837844 & 0.066013 & 0.837844 & 0.066013 &
0.837844 & 0.066013 & 0.837844 & 0.066013 \\
dict_values([15, 0.7, 200]) & 0.833298 & 0.064853 & 0.833298 & 0.064853 &
0.833298 & 0.064853 & 0.833298 & 0.064853 \\
dict_values([15, 1.0, 100]) & 0.837949 & 0.060662 & 0.837949 & 0.060662 &
0.837949 & 0.060662 & 0.837949 & 0.060662 \\
```

```
dict_values([15, 1.0, 150]) & 0.833298 & 0.063163 & 0.833298 & 0.063163 &
0.833298 & 0.063163 & 0.833298 & 0.063163 \\
dict_values([15, 1.0, 200]) & 0.828647 & 0.066876 & 0.828647 & 0.066876 &
0.828647 & 0.066876 & 0.828647 & 0.066876 \\
dict values([20, 0.5, 100]) & 0.838055 & 0.041161 & 0.838055 & 0.041161 &
0.838055 & 0.041161 & 0.838055 & 0.041161 \\
dict values([20, 0.5, 150]) & 0.828858 & 0.053619 & 0.828858 & 0.053619 &
0.828858 & 0.053619 & 0.828858 & 0.053619 \\
dict values([20, 0.5, 200]) & 0.810254 & 0.057443 & 0.810254 & 0.057443 &
0.810254 & 0.057443 & 0.810254 & 0.057443 \\
dict_values([20, 0.7, 100]) & 0.828647 & 0.066876 & 0.828647 & 0.066876 &
0.828647 & 0.066876 & 0.828647 & 0.066876 \\
dict_values([20, 0.7, 150]) & 0.837844 & 0.066013 & 0.837844 & 0.066013 &
0.837844 & 0.066013 & 0.837844 & 0.066013 \\
dict_values([20, 0.7, 200]) & 0.842495 & 0.064977 & 0.842495 & 0.064977 &
0.842495 & 0.064977 & 0.842495 & 0.064977 \\
dict_values([20, 1.0, 100]) & 0.842495 & 0.061558 & 0.842495 & 0.061558 &
0.842495 & 0.061558 & 0.842495 & 0.061558 \\
dict_values([20, 1.0, 150]) & 0.842495 & 0.061558 & 0.842495 & 0.061558 &
0.842495 & 0.061558 & 0.842495 & 0.061558 \\
dict values([20, 1.0, 200]) & 0.823996 & 0.071612 & 0.823996 & 0.071612 &
0.823996 & 0.071612 & 0.823996 & 0.071612 \\
dict_values([25, 0.5, 100]) & 0.838055 & 0.041161 & 0.838055 & 0.041161 &
0.838055 & 0.041161 & 0.838055 & 0.041161 \\
dict_values([25, 0.5, 150]) & 0.828858 & 0.053619 & 0.828858 & 0.053619 &
0.828858 & 0.053619 & 0.828858 & 0.053619 \\
dict_values([25, 0.5, 200]) & 0.810254 & 0.057443 & 0.810254 & 0.057443 &
0.810254 & 0.057443 & 0.810254 & 0.057443 \\
dict_values([25, 0.7, 100]) & 0.828647 & 0.066876 & 0.828647 & 0.066876 &
0.828647 & 0.066876 & 0.828647 & 0.066876 \\
dict_values([25, 0.7, 150]) & 0.837844 & 0.066013 & 0.837844 & 0.066013 &
0.837844 & 0.066013 & 0.837844 & 0.066013 \\
dict_values([25, 0.7, 200]) & 0.837844 & 0.069213 & 0.837844 & 0.069213 &
0.837844 & 0.069213 & 0.837844 & 0.069213 \\
dict values([25, 1.0, 100]) & 0.842495 & 0.061558 & 0.842495 & 0.061558 &
0.842495 & 0.061558 & 0.842495 & 0.061558 \\
dict values([25, 1.0, 150]) & 0.842495 & 0.061558 & 0.842495 & 0.061558 &
0.842495 & 0.061558 & 0.842495 & 0.061558 \\
dict_values([25, 1.0, 200]) & 0.823996 & 0.071612 & 0.823996 & 0.071612 &
0.823996 & 0.071612 & 0.823996 & 0.071612 \\
\bottomrule
\end{tabular}
```

\begin{tabular}{lrrrrrrr}

\toprule

max_depth,max_samples,n_estimators & accuracy_score_D3 & accuracy_score_D3_std &
f1_score_D3 & f1_score_D3_std & precision_score_D3 & precision_score_D3_std &
recall_score_D3 & recall_score_D3_std \\

\midrule dict_values([15, 0.5, 100]) & 0.877273 & 0.046798 & 0.877273 & 0.046798 & 0.877273 & 0.046798 & 0.877273 & 0.046798 \\ dict_values([15, 0.5, 150]) & 0.859091 & 0.048532 & 0.859091 & 0.048532 & 0.859091 & 0.048532 & 0.859091 & 0.048532 \\ dict_values([15, 0.5, 200]) & 0.859091 & 0.048532 & 0.859091 & 0.048532 & 0.859091 & 0.048532 & 0.859091 & 0.048532 \\ dict_values([15, 0.7, 100]) & 0.863636 & 0.014374 & 0.863636 & 0.014374 & 0.863636 & 0.014374 & 0.863636 & 0.014374 \\ dict_values([15, 0.7, 150]) & 0.872727 & 0.018182 & 0.872727 & 0.018182 & 0.872727 & 0.018182 & 0.872727 & 0.018182 \\ dict_values([15, 0.7, 200]) & 0.872727 & 0.018182 & 0.872727 & 0.018182 & 0.872727 & 0.018182 & 0.872727 & 0.018182 \\ dict values([15, 1.0, 100]) & 0.890909 & 0.026504 & 0.890909 & 0.026504 & 0.890909 & 0.026504 & 0.890909 & 0.026504 \\ dict_values([15, 1.0, 150]) & 0.890909 & 0.017008 & 0.890909 & 0.017008 & 0.890909 & 0.017008 & 0.890909 & 0.017008 \\ dict_values([15, 1.0, 200]) & 0.886364 & 0.014374 & 0.886364 & 0.014374 & 0.886364 & 0.014374 & 0.886364 & 0.014374 \\ dict values([20, 0.5, 100]) & 0.859091 & 0.046355 & 0.859091 & 0.046355 & 0.859091 & 0.046355 & 0.859091 & 0.046355 \\ dict values([20, 0.5, 150]) & 0.854545 & 0.044536 & 0.854545 & 0.044536 & 0.854545 & 0.044536 & 0.854545 & 0.044536 \\ dict_values([20, 0.5, 200]) & 0.859091 & 0.048532 & 0.859091 & 0.048532 & 0.859091 & 0.048532 & 0.859091 & 0.048532 \\ dict_values([20, 0.7, 100]) & 0.859091 & 0.017008 & 0.859091 & 0.017008 & 0.859091 & 0.017008 & 0.859091 & 0.017008 \\ dict_values([20, 0.7, 150]) & 0.863636 & 0.020328 & 0.863636 & 0.020328 & 0.863636 & 0.020328 & 0.863636 & 0.020328 \\ dict_values([20, 0.7, 200]) & 0.854545 & 0.027273 & 0.854545 & 0.027273 & 0.854545 & 0.027273 & 0.854545 & 0.027273 \\ dict_values([20, 1.0, 100]) & 0.886364 & 0.032141 & 0.886364 & 0.032141 & 0.886364 & 0.032141 & 0.886364 & 0.032141 \\ dict_values([20, 1.0, 150]) & 0.890909 & 0.022268 & 0.890909 & 0.022268 & 0.890909 & 0.022268 & 0.890909 & 0.022268 \\ dict values([20, 1.0, 200]) & 0.877273 & 0.027273 & 0.877273 & 0.027273 & 0.877273 & 0.027273 & 0.877273 & 0.027273 \\ dict_values([25, 0.5, 100]) & 0.859091 & 0.046355 & 0.859091 & 0.046355 & 0.859091 & 0.046355 & 0.859091 & 0.046355 \\ dict_values([25, 0.5, 150]) & 0.854545 & 0.044536 & 0.854545 & 0.044536 & 0.854545 & 0.044536 & 0.854545 & 0.044536 \\ dict_values([25, 0.5, 200]) & 0.859091 & 0.048532 & 0.859091 & 0.048532 & 0.859091 & 0.048532 & 0.859091 & 0.048532 \\ dict values([25, 0.7, 100]) & 0.859091 & 0.017008 & 0.859091 & 0.017008 & 0.859091 & 0.017008 & 0.859091 & 0.017008 \\ dict_values([25, 0.7, 150]) & 0.863636 & 0.020328 & 0.863636 & 0.020328 & 0.863636 & 0.020328 & 0.863636 & 0.020328 \\ dict_values([25, 0.7, 200]) & 0.854545 & 0.027273 & 0.854545 & 0.027273 &

```
0.854545 & 0.027273 & 0.854545 & 0.027273 \\
dict_values([25, 1.0, 100]) & 0.886364 & 0.032141 & 0.886364 & 0.032141 &
0.886364 & 0.032141 & 0.886364 & 0.032141 \\
dict_values([25, 1.0, 150]) & 0.890909 & 0.022268 & 0.890909 & 0.022268 &
0.890909 & 0.022268 & 0.890909 & 0.022268 \\
dict values([25, 1.0, 200]) & 0.877273 & 0.027273 & 0.877273 & 0.027273 &
0.877273 & 0.027273 & 0.877273 & 0.027273 \\
\bottomrule
\end{tabular}
\begin{tabular}{lrrrrrrr}
\toprule
max_depth,max_samples,n_estimators & accuracy_score_D4 & accuracy_score_D4_std &
f1_score_D4 & f1_score_D4_std & precision_score_D4 & precision_score_D4_std &
recall_score_D4 & recall_score_D4_std \\
\midrule
dict_values([15, 0.5, 100]) & 0.920235 & 0.038074 & 0.920235 & 0.038074 &
0.920235 & 0.038074 & 0.920235 & 0.038074 \\
dict_values([15, 0.5, 150]) & 0.912235 & 0.032702 & 0.912235 & 0.032702 &
0.912235 & 0.032702 & 0.912235 & 0.032702 \\
dict values([15, 0.5, 200]) & 0.912235 & 0.027375 & 0.912235 & 0.027375 &
0.912235 & 0.027375 & 0.912235 & 0.027375 \\
dict_values([15, 0.7, 100]) & 0.924235 & 0.038881 & 0.924235 & 0.038881 &
0.924235 & 0.038881 & 0.924235 & 0.038881 \\
dict_values([15, 0.7, 150]) & 0.932235 & 0.037148 & 0.932235 & 0.037148 &
0.932235 & 0.037148 & 0.932235 & 0.037148 \\
dict_values([15, 0.7, 200]) & 0.924235 & 0.023489 & 0.924235 & 0.023489 &
0.924235 & 0.023489 & 0.924235 & 0.023489 \\
dict_values([15, 1.0, 100]) & 0.916157 & 0.040962 & 0.916157 & 0.040962 &
0.916157 & 0.040962 & 0.916157 & 0.040962 \\
dict_values([15, 1.0, 150]) & 0.920157 & 0.035953 & 0.920157 & 0.035953 &
0.920157 & 0.035953 & 0.920157 & 0.035953 \\
dict_values([15, 1.0, 200]) & 0.928157 & 0.041305 & 0.928157 & 0.041305 &
0.928157 & 0.041305 & 0.928157 & 0.041305 \\
dict values([20, 0.5, 100]) & 0.916235 & 0.038930 & 0.916235 & 0.038930 &
0.916235 & 0.038930 & 0.916235 & 0.038930 \\
dict values([20, 0.5, 150]) & 0.916235 & 0.038930 & 0.916235 & 0.038930 &
0.916235 & 0.038930 & 0.916235 & 0.038930 \\
dict_values([20, 0.5, 200]) & 0.908235 & 0.027409 & 0.908235 & 0.027409 &
0.908235 & 0.027409 & 0.908235 & 0.027409 \\
dict_values([20, 0.7, 100]) & 0.916235 & 0.032179 & 0.916235 & 0.032179 &
0.916235 & 0.032179 & 0.916235 & 0.032179 \\
dict_values([20, 0.7, 150]) & 0.924235 & 0.029525 & 0.924235 & 0.029525 &
0.924235 & 0.029525 & 0.924235 & 0.029525 \\
dict_values([20, 0.7, 200]) & 0.920235 & 0.028454 & 0.920235 & 0.028454 &
0.920235 & 0.028454 & 0.920235 & 0.028454 \\
dict_values([20, 1.0, 100]) & 0.920157 & 0.033655 & 0.920157 & 0.033655 &
0.920157 & 0.033655 & 0.920157 & 0.033655 \\
```

```
dict_values([20, 1.0, 150]) & 0.928157 & 0.037231 & 0.928157 & 0.037231 &
0.928157 & 0.037231 & 0.928157 & 0.037231 \\
dict_values([20, 1.0, 200]) & 0.924157 & 0.038928 & 0.924157 & 0.038928 &
0.924157 & 0.038928 & 0.924157 & 0.038928 \\
dict values([25, 0.5, 100]) & 0.916235 & 0.038930 & 0.916235 & 0.038930 &
0.916235 & 0.038930 & 0.916235 & 0.038930 \\
dict values([25, 0.5, 150]) & 0.916235 & 0.038930 & 0.916235 & 0.038930 &
0.916235 & 0.038930 & 0.916235 & 0.038930 \\
dict values([25, 0.5, 200]) & 0.908235 & 0.027409 & 0.908235 & 0.027409 &
0.908235 & 0.027409 & 0.908235 & 0.027409 \\
dict_values([25, 0.7, 100]) & 0.916235 & 0.032179 & 0.916235 & 0.032179 &
0.916235 & 0.032179 & 0.916235 & 0.032179 \\
dict_values([25, 0.7, 150]) & 0.924235 & 0.029525 & 0.924235 & 0.029525 &
0.924235 & 0.029525 & 0.924235 & 0.029525 \\
dict_values([25, 0.7, 200]) & 0.920235 & 0.028454 & 0.920235 & 0.028454 &
0.920235 & 0.028454 & 0.920235 & 0.028454 \\
dict_values([25, 1.0, 100]) & 0.920157 & 0.033655 & 0.920157 & 0.033655 &
0.920157 & 0.033655 & 0.920157 & 0.033655 \\
dict_values([25, 1.0, 150]) & 0.928157 & 0.037231 & 0.928157 & 0.037231 &
0.928157 & 0.037231 & 0.928157 & 0.037231 \\
dict values([25, 1.0, 200]) & 0.924157 & 0.038928 & 0.924157 & 0.038928 &
0.924157 & 0.038928 & 0.924157 & 0.038928 \\
\bottomrule
\end{tabular}
\begin{tabular}{lrrrrrrr}
\toprule
max_depth,max_samples,n_estimators & accuracy_score_D5 & accuracy_score_D5_std &
f1 score D5 & f1 score D5 std & precision score D5 & precision score D5 std &
recall_score_D5 & recall_score_D5_std \\
\midrule
dict_values([15, 0.5, 100]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([15, 0.5, 150]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict values([15, 0.5, 200]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict_values([15, 0.7, 100]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict_values([15, 0.7, 150]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict_values([15, 0.7, 200]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict values([15, 1.0, 100]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([15, 1.0, 150]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([15, 1.0, 200]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
```

```
dict_values([20, 0.5, 100]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([20, 0.5, 150]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict values([20, 0.5, 200]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([20, 0.7, 100]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict_values([20, 0.7, 150]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict_values([20, 0.7, 200]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict values([20, 1.0, 100]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([20, 1.0, 150]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([20, 1.0, 200]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict values([25, 0.5, 100]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict values([25, 0.5, 150]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([25, 0.5, 200]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([25, 0.7, 100]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict_values([25, 0.7, 150]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict_values([25, 0.7, 200]) & 0.966667 & 0.032297 & 0.966667 & 0.032297 &
0.966667 & 0.032297 & 0.966667 & 0.032297 \\
dict_values([25, 1.0, 100]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict_values([25, 1.0, 150]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
dict values([25, 1.0, 200]) & 0.971429 & 0.023328 & 0.971429 & 0.023328 &
0.971429 & 0.023328 & 0.971429 & 0.023328 \\
\bottomrule
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\toprule
max_depth,max_samples,n_estimators & accuracy_score_D6 & accuracy_score_D6_std &
f1 score D6 & f1 score D6 std & precision score D6 & precision score D6 std &
recall_score_D6 & recall_score_D6_std \\
dict_values([15, 0.5, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
```

0.971429 & 0.023328 & 0.971429 & 0.023328 \\

```
dict_values([15, 0.5, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([15, 0.5, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict values([15, 0.7, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict values([15, 0.7, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict values([15, 0.7, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([15, 1.0, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([15, 1.0, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([15, 1.0, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([20, 0.5, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([20, 0.5, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict values([20, 0.5, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([20, 0.7, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([20, 0.7, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([20, 0.7, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([20, 1.0, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([20, 1.0, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([20, 1.0, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict values([25, 0.5, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict values([25, 0.5, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([25, 0.5, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([25, 0.7, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([25, 0.7, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([25, 0.7, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([25, 1.0, 100]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
```

```
dict_values([25, 1.0, 150]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
dict_values([25, 1.0, 200]) & 0.995918 & 0.008163 & 0.995918 & 0.008163 &
0.995918 & 0.008163 & 0.995918 & 0.008163 \\
bottomrule
\end{tabular}
```

	precision	recall	f1-score	support
DO	0.96	0.80	0.87	60
D1	0.75	0.88	0.81	52
D2	0.86	0.86	0.86	42
D3	0.88	0.90	0.89	49
D4	0.94	0.86	0.89	69
D5	0.91	0.98	0.94	60
D6	0.96	0.98	0.97	53
accuracy			0.89	385
macro avg	0.89	0.89	0.89	385
weighted avg	0.90	0.89	0.89	385

Accuracy: 0.8935064935064935 F1 Score: 0.8937436674764665 Precision: 0.8988330853810947 Recall: 0.8935064935064935

16

```
print(f"F1 Score: {f1}")
print(f"Precision: {precision}")
print(f"Recall: {recall}")
Features removed: {'Calorie_monitoring', 'Smoker'}
Features removed: {'Est avg_calorie_intake', 'Physical_activity_level',
'Technology_time_use', 'Sedentary_hours_daily', 'Water_daily'}
 KeyboardInterrupt
                                            Traceback (most recent call last)
 Cell In[166], line 16
       9 param_grid = {
             'n_estimators': [100, 150, 200, 250],
      10
             'max_depth': [10, 15, 20, 25, 30],
      11
      12
             'max_samples': [0.5, 0.7, 0.8, 1.0],
             'bootstrap': [True]
      13
      14 }
      15 X, y = prepare_dataset()
 ---> 16 grid_search, best_params =_
  ofind_best_params(clf, param_grid, X, y, RANDOM_STATE)
      17 best_clf = ExtraTreesClassifier(**best_params, random_state=RANDOM_STAT.)
      18 accuracy, f1, precision, recall = evaluate_my_model(best_clf, X, y,_
  →RANDOM STATE)
 Cell In[163], line 108, in find best params(classifier, param grid, X, y, I
  ⇔random_state)
      99 grid_search = GridSearchCV(
     100
             estimator=classifier,
     101
             param_grid=param_grid,
    (...)
     105
             n_jobs=4,
     106 )
     107 # Fit the GridSearchCV to the training data
 --> 108 grid_search.fit(X_train, y_train)
     110 # Print the best parameters
     111 print("Best parameters found: ", grid_search.best_params_)
 File ~/.local/lib/python3.10/site-packages/sklearn/base.py:1474, in fit contex.
  4<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)
             estimator. validate params()
    1467
    1469 with config_context(
             skip_parameter_validation=(
    1470
    1471
                 prefer_skip_nested_validation or global_skip_validation
    1472
             )
    1473 ):
 -> 1474
             return fit_method(estimator, *args, **kwargs)
```

```
File ~/.local/lib/python3.10/site-packages/sklearn/model_selection/_search.py:
 ⇔970, in BaseSearchCV.fit(self, X, y, **params)
    964
            results = self._format_results(
    965
                all_candidate_params, n_splits, all_out, all_more_results
    966
    968
            return results
--> 970 self. run search(evaluate candidates)
    972 # multimetric is determined here because in the case of a callable
    973 # self.scoring the return type is only known after calling
    974 first test score = all out[0]["test scores"]
File ~/.local/lib/python3.10/site-packages/sklearn/model_selection/_search.py:
 41527, in GridSearchCV._run_search(self, evaluate_candidates)
   1525 def _run_search(self, evaluate_candidates):
            """Search all candidates in param_grid"""
   1526
            evaluate candidates(ParameterGrid(self.param_grid))
-> 1527
File ~/.local/lib/python3.10/site-packages/sklearn/model_selection/_search.py:
 →916, in BaseSearchCV.fit.<locals>.evaluate candidates(candidate params, cv,,,
 →more_results)
    908 if self.verbose > 0:
    909
            print(
    910
                "Fitting {0} folds for each of {1} candidates,"
                " totalling {2} fits".format(
    911
    912
                    n_splits, n_candidates, n_candidates * n_splits
    913
    914
--> 916 out = parallel(
    917
            delayed(_fit_and_score)(
                clone(base estimator),
    918
    919
    920
                у,
    921
                train=train.
    922
                test=test,
    923
                parameters=parameters,
    924
                split_progress=(split_idx, n_splits),
    925
                candidate progress=(cand idx, n candidates),
    926
                **fit and_score_kwargs,
    927
            for (cand idx, parameters), (split_idx, (train, test)) in product(
    928
                enumerate(candidate_params),
    929
    930
                enumerate(cv.split(X, y, **routed_params.splitter.split)),
    931
    932)
    934 if len(out) < 1:
    935
            raise ValueError(
    936
                "No fits were performed. "
    937
                "Was the CV iterator empty? "
```

```
938
                "Were there no candidates?"
    939
            )
File ~/.local/lib/python3.10/site-packages/sklearn/utils/parallel.py:67, in_u
 →Parallel. call (self, iterable)
     62 config = get_config()
     63 iterable with config = (
            (_with_config(delayed_func, config), args, kwargs)
            for delayed func, args, kwargs in iterable
     66 )
---> 67 return super(). call (iterable_with_config)
File ~/.local/lib/python3.10/site-packages/joblib/parallel.py:1952, in Parallel

    call_ (self, iterable)

   1946 # The first item from the output is blank, but it makes the interpreter
   1947 # progress until it enters the Try/Except block of the generator and
   1948 # reach the first `yield` statement. This starts the aynchronous
   1949 # dispatch of the tasks to the workers.
   1950 next(output)
-> 1952 return output if self.return generator else list(output)
File ~/.local/lib/python3.10/site-packages/joblib/parallel.py:1595, in Parallel
 →_get_outputs(self, iterator, pre_dispatch)
   1592
            yield
   1594
            with self._backend.retrieval_context():
-> 1595
                yield from self._retrieve()
   1597 except GeneratorExit:
            # The generator has been garbage collected before being fully
   1598
            # consumed. This aborts the remaining tasks if possible and warn
   1599
   1600
            # the user if necessary.
   1601
            self._exception = True
File ~/.local/lib/python3.10/site-packages/joblib/parallel.py:1707, in Parallel

→ retrieve(self)

   1702 # If the next job is not ready for retrieval yet, we just wait for
   1703 # async callbacks to progress.
   1704 if ((len(self. jobs) == 0) or
   1705
            (self._jobs[0].get_status(
   1706
                timeout=self.timeout) == TASK_PENDING)):
-> 1707
            time.sleep(0.01)
   1708
            continue
   1710 # We need to be careful: the job list can be filling up as
   1711 # we empty it and Python list are not thread-safe by
   1712 # default hence the use of the lock
KeyboardInterrupt:
```

```
[]: from xgboost import XGBClassifier
     # Initialize a XGBClassifier
     clf = XGBClassifier(random_state=RANDOM_STATE)
     # Define the parameter grid
     param_grid = {
         'n_estimators': [100, 150, 200],
         'max depth': [10, 15, 20, 25],
         'learning_rate': [0.01, 0.1, 0.2],
     }
     X, y = prepare_dataset()
     best_params = find_best_params(clf, param_grid, X, y, RANDOM_STATE)
     best_clf = XGBClassifier(**best_params, random_state=RANDOM_STATE)
     accuracy, f1, precision, recall = evaluate_my_model(best_clf, X, y,_
     →RANDOM_STATE)
     print(f"Accuracy: {accuracy}")
     print(f"F1 Score: {f1}")
     print(f"Precision: {precision}")
     print(f"Recall: {recall}")
[]: from sklearn.svm import SVC
     # Initialize a SVC
     clf = SVC(random_state=RANDOM_STATE)
     # Define the parameter grid
     param_grid = {
         'C': [0.1, 1, 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],
         'kernel': ['linear', 'rbf', 'poly', 'sigmoid']
     }
     X, y = prepare_dataset()
     best_params = find_best_params(clf, param_grid, X, y, RANDOM_STATE)
     best_clf = SVC(**best_params, random_state=RANDOM_STATE)
     accuracy, f1, precision, recall = evaluate_my_model(best_clf, X, y,_
     →RANDOM_STATE)
     print(f"Accuracy: {accuracy}")
     print(f"F1 Score: {f1}")
     print(f"Precision: {precision}")
     print(f"Recall: {recall}")
```