My Solution

Yuanbin Zhou 7 April 2025

Create Analytical Datasets

- Merge data from different sheets, based on client ID
- [in the next slide]Analyze data and its distribution
- Data pre-processing:
 - Remove anomalies data, for example, age<18, tenure>12*age
 - Use zero, median or KNN to fill missing values depends on concrete cases
 - Use log function to handle right-skewed data
- Feature selection
 - Use Recursive Feature Elimination to select top 10 features
 - Filter out highly co-related features
- For data that has sale and revenue data, keep as training data
- For data that don't have sale and revenue data, keep as test dataset
- Remove duplicated data if any

Analyze Data

- Anomaly data: age with zero, tenure>12*age:
- Data missing in the dataset
 - If Count_CA/SA... missing, ActBal_CA/SA... also missing
 - · Safe to fill with zero for empty data
 - 5 Count_CC is not empty, but ActBal_CC missing
 - Use median value to fill
 - Data missing in Inflow_Outflow
 - Use KNNImputer
 - Sex only has one missing
- Right-skewed data: balance and transactions data (e.g., ActBal_CA in the second pic)
 - Use log function to handle, may also possible use sqrt, Yeo-Johnson
- Slightly imbalance data: output class Sale_MF
 - Use over-sampling techniques

Develop Propensity Models

- Include numeric and category features
- Numeric features: to standardize features, using StandardScaler method,
 - Use KNN/zero to fill empty data
- Category features: encode as a one-hot numeric array
- Different features concatenated into a single feature space use columntransformer
- Apply the pipeline to preprocess the data and with a final classifier
- Handle imbalance data use oversampling SMOTE
- Use cross validation to split training and validation data set
- Classifier use XGBoost with binary_logistic

Optimize Targeting Strategy

- Pipeline is similar to the previous
- Use regression model instead of classification model
- Evaluation metrics: RMSE

Maximize Revenue

- Calculate expected revenue=likelihood*revenue
- For each client, get the maximum expected revenue from either CC, CL, MF
- Based on the above data, get top 100 clients that maximize revenue
- May also possible to use ILP to solve the problem if constraints put to the number of each type of offer.

