Analysis: Inconstant Ordering

Test Set 1

It is given that a valid string must start with A.

For ${f N}=1$, the only block B_1 should therefore start with a character greater than ${\Bbb A}.$ To keep building the alphabetically first valid string, we start B_1 with ${\Bbb B}$ which is just greater than ${\Bbb A}.$ We keep on incrementing the character as we move right to ensure that B_1 is strictly increasing. Notice that we will eventually end up with a prefix of BCDE..XYZ as $B_1.$ As ${f L_i} \le 25$, we will never run out of characters for this.

For ${\bf N}=2$, we construct the first block B_1 using the process described for ${\bf N}=1$. We now evaluate the possible ways to fill the strictly decreasing second block B_2 . We try to start B_2 with the smallest possible character to get the alphabetically first string. This implies that B_2 will end with the smallest character in the alphabet which is ${\bf A}$. So, we start filling B_2 from the end with ${\bf A}$ and move to the left, incrementing the character.

Let b_1 be the last character in B_1 and b_2 be the first character in B_2 . If $b_1 > b_2$, then we will always get a valid string as it ensures that B_2 is strictly decreasing. On the other hand if $b_1 \leq b_2$, then the final string is invalid. For example, if $\mathbf{L_1} = 2$ and $\mathbf{L_2} = 4$, the resulting string from the above process will be ABCDCBA which is invalid.

To ensure that B_2 is always strictly decreasing, we update b_1 with the character just greater than b_2 . This will guarantee that the string is valid and alphabetically the first one. Again as $\mathbf{L_i} \leq 25$, we will never run out of characters while filling B_2 . In the above example, ABCDCBA now transforms to a valid string ABEDCBA.

Test Set 2

We generalize the above solution for N > 2.

If ${\bf N}$ is even, we can divide the blocks into ${\bf N}/2$ pairs as $|{\bf L_1,L_2|L_3,L_4|...|L_{N-1},L_N|}$ and solve the ${\bf N}/2$ pairs independently using the same approach as for ${\bf N}=2$. We can do this as every such pair of blocks will end with ${\bf A}$.

If N is odd, we solve for N-1 blocks using the above approach and for the last block L_N , we treat it as the case when N=1.

The time complexity is $O(\mathbf{L_1} + \mathbf{L_2} + \cdots + \mathbf{L_N})$ for each test case.