

Projekt: MSS54 Modul: LAA\_DIAG

Seite 1 von 9

Projekt: MSS54

Modul: Kraftstoffsystemdiagnose

|            | Abteilung | Datum    | Name | Filename |
|------------|-----------|----------|------|----------|
| Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |



Projekt: MSS54 Modul: LAA\_DIAG

Seite 2 von 9

| 1. ALLGEMEINES                                                                                                                                                      | 3              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2. ÜBERWACHUNG AUF ÖLVERDÜNNUNG                                                                                                                                     | 3              |
| 2.1. Sperren der KSD 2.1.1. Inkrementieren von ksd_oel_sperr 2.1.2. Dekrementieren von ksd_oel_sperr                                                                | 3<br>3<br>4    |
| 3. KRAFTSTOFFSYSTEMDIAGNOSE                                                                                                                                         | 4              |
| 3.1. Ausschaltbedingungen                                                                                                                                           | 4              |
| 3.2. Eintrittsbedingungen                                                                                                                                           | 5              |
| <ul><li>3.3. Diagnoseablauf</li><li>3.3.1. Ermittlung der Eintrittsadaption</li><li>3.3.2. Ermittlung der Lambdaabweichung</li><li>3.3.3. Diagnoseverlauf</li></ul> | <b>5</b> 5 5 6 |
| 4. KONSTANTEN, KENNLINIEN, KENNFELDER, VARIABLEN                                                                                                                    | 8              |
| 4.1. Konstanten                                                                                                                                                     | 8              |
| 4.2. Variablen                                                                                                                                                      | 8              |

|            | Abteilung | Datum    | Name | Filename |
|------------|-----------|----------|------|----------|
| Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |



Projekt: MSS54 Modul: LAA\_DIAG

Seite 3 von 9

## 1. Allgemeines

Für OBDII muß ein Fehler im Kraftstoffversorgungssystem erkannt werden, so daß verhindert werden kann, daß es zu einer Abweichung der Gemischvorsteuerung kommt und somit der Mittelwert des Regelfaktors von EINS abweicht.

Die Gemischadaption wird zunächst versuchen einen solchen Fehler zu lernen, um auch im dynamischen Betrieb den Fehler korrigieren zu können. Allerdings können diese additiven und multiplikativen Adaptionen nur in bestimmten Grenzen (etwa +/- 25%) Abweichungen kompensieren.

# 2. Überwachung auf Ölverdünnung

Bei ausgasendem Kraftstoff im Motoröl kann es bei einer Erwärmung nach Motorstart, zu einer Lambdaabweichung bis an die Magergrenze kommen. Um eine Fehldiagnose zu vermeiden, wird die KSD so lange gesperrt, bis der Kraftstoffanteil im Öl wieder unter die "kritische" Grenze gesunken ist.

## 2.1. Sperren der KSD

Um die Diagnose zu sperren, wird der Zähler ksd\_oel\_sperr betrachtet.

Überschreitet dieser Zähler eine Schwelle, so wird auf Ölverdünnung erkannt:

⇒ BIT 7 in **ksd\_st** wird gesetzt

Solange diese Bedingung gesetzt ist, wird die Kraftstoffsystemdiagnose gesperrt.

#### 2.1.1. Inkrementieren von ksd\_oel\_sperr

**Beim Eintritt** in den Betriebszustand **START** (um auch Startabbrüche zu berücksichtigen) wird der Zähler **ksd\_oel\_sperr**, der **nichtflüchtig** abgespeichert wurde, abhängig von der Starttemperatur des Motors **inkrementiert** und anschließend auf die **Ölverdünnungsschwelle verglichen**.

(Begrenzung von ksd\_oel\_sperr auf 255)

|            | Abteilung | Datum    | Name | Filename |
|------------|-----------|----------|------|----------|
| Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |



Projekt: MSS54 Modul: LAA\_DIAG

Seite 4 von 9

#### 2.1.2. Dekrementieren von ksd\_oel\_sperr

In jedem Motorlauf wird der Maximalwert der Öltemperatur toel\_max ermittelt.

Je nach der Max-Öl-Temperatur wird der Zähler ksd\_oel\_sperr beim Übergang zu KL15\_AUS dekrementiert und anschließend nichtflüchtig abgespeichert.

ksd\_oel\_sperr(adapt) = ksd\_oel\_sperr(akt) - KL\_KSD\_OEL\_DEC(toel\_max)

## 3. Kraftstoffsystemdiagnose

Für diese Diagnose wird der **Lambdaregler** inklusive der **Lambdaadaptionen** betrachtet und auf Überschreitungen hin überprüft. Die Funktion läuft im 100ms-Raster ab.

## 3.1. Ausschaltbedingungen

- der Motor läuft noch keine bestimmte Zeit KL\_KSD\_T\_MOT
- ein Diagnosefehler liegt vor:

!B\_WDK\_FEHLERFREI\_DPR

B\_TPU\_360MODE

B HFM FEHLER

**B\_TEV\_FEHLER** 

**B\_TEFC\_FEHLER** 

B\_SLS\_KLEMM\_FEHLER

B\_SLV\_SH\_TO\_GND

B\_LA\_VKAT1/2\_HUB\_FEHLER

B\_LASV1/2\_FEHLER

B\_LSHV1/2\_FEHLER

- Ölverdünnung wurde erkannt (B KSD OEL SPERR)
- die Motortemperatur liegt noch unter der MIN-Schwelle K\_KSD\_TMOT\_MIN oder schon über der MAX-Schwelle K\_KSD\_TMOT\_MAX
- die Ansauglufttemperatur größer einer Schwelle K\_KSD\_TAN ist
- eine Wartezeit aufgrund der Betätigung der Bremse aufgezogen wurde (B\_S\_BLS\_TIME\_LA)
- ⇒ sobald eine dieser Ausschaltbedingungen erfüllt ist, wird in ksd\_st das BIT0 /BIT1 gesetzt

|            | Abteilung | Datum    | Name | Filename |
|------------|-----------|----------|------|----------|
| Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |



Projekt: MSS54 Modul: LAA\_DIAG

Seite 5 von 9

## 3.2. Eintrittsbedingungen

Um die Diagnose freizugeben, müssen folgenden Bedingungen erfüllt sein (bankselektiv):

der Lambdaregler muß seit einer bestimmten Zeit (Anzahl von P-Sprüngen) aktiv sein

$$B_LA1/2$$
 & ( $Ia_p_spr_count1/2 > K_KSD_P_SPR$ )

keine Tankentlüftungsadaption findet statt und das TE-Ventil ist zu

$$B_TE_LERN & tetv <= 0$$

keine Ausschaltbedingung ist vorhanden

BIT0 / BIT1 in ksd\_st

#### 3.3. Diagnoseablauf

Diese Diagnose läuft kontinuierlich innerhalb des Driving Cycle ab, d.h. sobald die Diagnose-zeit **K\_KSD\_DIAG\_T abgelaufen** ist und die Fehlerbehandlung stattgefunden hat, wird der **gesamte Ablauf erneut aufgezogen**.

Sind die Einschaltbedingungen erfüllt, werden die Eintrittsadaptionen (Faktor / Offset) festgehalten, um eine definierte Abweichung zu erhalten. Es werden allerdings keine Adaptionen weggespeichert, wenn in diesem Diagnosepart ein Fehler erkannt oder einer der Fehlerzähler angezählt wurde. Grund dafür ist, daß die Adaptionsabweichungen auf die Adaptionen bezogen werden sollen, bei denen der Fehler aufgetreten ist (sonst kann ein Fehler gelernt werden).

#### 3.3.1. Ermittlung der Eintrittsadaption

Folgende Werte werden bei jedem neues KSD - Durchlauf weggespeichert:

 $ksd_laa_f1/2$  =  $laa_f1/2$ 

ksd\_laa\_offset1/2 = laa\_offset1/2

Diese Eintrittsadaptionen werden nichtflüchtig abgespeichert, so daß auch für den nächsten Driving Cycle, bei einem Fehlerfall vom richtigen Adaptionswert ausgegangen wird.

#### 3.3.2. Ermittlung der Lambdaabweichung

| - 1 |            |           |          |      |          |
|-----|------------|-----------|----------|------|----------|
|     |            | Abteilung | Datum    | Name | Filename |
|     | Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |





Projekt: MSS54 Modul: LAA\_DIAG

Seite 6 von 9

Die gesamte Lambdaabweichung setzt ich aus dem Delta der Adaptionsabweichungen, bezogen auf die Eintrittsadaptionen und dem Lambdaregler (gemittelt) zusammen:

#### 3.3.3. Diagnoseverlauf

Bei der Diagnose wird generell unterschieden, ob man sich im Leerlauf oder in der Teillast bewegt:

Sobald die Lambdaabweichung **ksd\_lam1/2** die MIN- bzw. MAX-Schwellen überschreitet, wird der Zeitzähler ksd II max t1/2 bzw. ksd II min t1/2 inkrementiert:

#### Teillast:

Hierfür gelten folgende Randbedingungen:

■ Drehzahlbereich: K\_KSD\_N\_MIN < n < K\_KSD\_N\_MAX</li>■ RF-Bereich: K\_KSD\_RF\_MIN < rf < K\_KSD\_RF\_MAX</li>

|            | Abteilung | Datum    | Name | Filename |
|------------|-----------|----------|------|----------|
| Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |



Projekt: MSS54 Modul: LAA\_DIAG

Seite 7 von 9

Sobald die Lambdaabweichung **ksd\_lam1/2** die MIN- bzw. MAX-Schwellen überschreitet, wird der Zeitzähler ksd\_tl\_max\_t1/2 bzw. ksd\_tl\_min\_t1/2 inkrementiert:

ksd\_lam1/2 > K\_KSD\_TL\_LAM\_MAX => ksd\_tl\_max\_t1/2

ksd\_lam1/2 < K\_KSD\_TL\_LAM\_MIN => ksd\_tl\_min\_t1/2

Generell werden die Zähler wieder gestoppt, sobald die Schwellen wieder unterschritten / überschritten werden. Somit werden über die gesamte Diagnosezeit die Zeiten aufaddiert, in denen die Diagnoseschwellen überschritten werden.

#### Fehlerbehandlung:

Ist die Diagnosezeit **K\_KSD\_DIAG\_T** abgelaufen, werden die Zeitzähler, welche die Grenzwertüberschreitungen darstellen, auf zeitliche Diagnoseschwellen überprüft. Überschreitet eine dieser Zeitzähler eine Schwelle, so wird ein Fehler eingetragen:

#### Wenn:

ksd\_II\_max1/2 > K\_KSD\_LL\_MAX\_T

⇒ ksd1/2\_ed: KSD1/2\_FEHLER SH\_TO\_UB

ksd\_II\_min1/2 > K\_KSD\_LL\_MIN\_T

⇒ kds1/2\_ed: KSD1/2\_FEHLER SH\_TO\_GND

ksd\_tl\_max1/2 > K\_KSD\_TL\_MAX\_T

⇒ ksd1/2\_ed: KSD1/2\_FEHLER OPENLOAD

ksd\_tl\_min1/2 > K\_KSD\_TL\_MIN\_T

⇒ ksd1/2\_ed: KSD1/2\_FEHLER UNPLAUSIBEL

Um kurzzeitige Abweichung zu erkennen, welche zwar noch zu keinem Fehlereintrag geführt haben, werden Info-Variablen gesetzt - d.h. dies sind Zähler (ksd\_ll\_max\_trig1/2, ksd\_ll\_min\_trig1/2, ksd\_tl\_min\_trig1/2 und ksd\_tl\_max\_trig1/2), die hochgezählt werden, sobald Über-/Unterschreitungen erkannt wurden (ksd\_ll/tl\_min/max\_t1/2 != 0). Diese Info-Variablen findet man auch im DS2-Tool - keine nichtflüchtige Speicherung, da das Ganze immer auf einen Motorlauf bezogen sein soll - die Aussagekraft sinkt, wenn es auf das gesamte Motorleben bezogen werden würde!!!.

Wird keine der Schwellen überschritten, so wird ein eingetragener Fehler geheilt.

|            | Abteilung | Datum    | Name | Filename |
|------------|-----------|----------|------|----------|
| Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |



Projekt: MSS54 Modul: LAA\_DIAG

Seite 8 von 9

## 4. Konstanten, Kennlinien, Kennfelder, Variablen

#### 4.1. Konstanten

K\_KSD\_N\_MAXMax. Drehzahlschwelle für TL-DiagnoseK\_KSD\_N\_MINMin. Drehzahlschwelle für TL-DiagnoseK\_KSD\_RF\_MAXMax. RF-Schwelle für TL-DiagnoseK\_KSD\_RF\_MINMin. RF-Schwelle für TL-Diagnose

K\_KSD\_TMOT\_MIN/MAX Ein-/Ausschaltbedingung: TMOT-Schwellen

K\_KSD\_TAN Einschaltbedingung: TAN-Schwelle

K\_KSD\_P\_SPR Einschaltbedingung: Anzahl P-Sprüng d. Lambdareglers
K\_KSD\_V Geschwindigkeitsschwelle füer LL-Diagnose, da sonst

Fehlerkennungen möglich

K\_KSD\_LL\_LAM\_MAX obere Schwelle im LL für Lambdaabweichung -> ab hier

wird der Zeitzähler für die Überschreitung erhöht

K\_KSD\_LL\_LAM\_MIN untere Schwelle im LL für Lambdaabweichung -> ab hier

wird der Zeitzähler für die Unterschreitung erhöht

K\_KSD\_TL\_LAM\_MAX obere Schwelle in TL für Lambdaabweichung -> ab hier

wird der Zeitzähler für die Überschreitung erhöht

K\_KSD\_TL\_LAM\_MIN untere Schwelle im LL für Lambdaabweichung -> ab hier

wird der Zeitzähler für die Unterschreitung erhöht

K\_KSD\_LL\_MAX\_T
Diag.Schwelle/LL für den Zeitzähler d. Überschreitungen
K\_KSD\_LL\_MIN\_T
Diag.Schwelle/LL für den Zeitzähler d. Unterschreitungen
K\_KSD\_TL\_MAX\_T
Diag.Schwelle/TL für den Zeitzähler d. Überschreitungen
K\_KSD\_TL\_MIN\_T
Diag.Schwelle/TL für den Zeitzähler d. Unterschreitungen

K\_KSD\_DIAG\_T Diagnosezeit fuer KSD

K\_KSD\_OEL\_SPERR\_MAX Schwelle für die Erkennung Sprit imÖl

KL\_KSD\_T\_MOT Zeit, die der Motor gelaufen sein muß, bevor die

Diagnose beginnen darf

KL\_KSD\_OEL\_INC Erkennung auf Ölverdünnung - Inkrement, abh. von

tmot\_start beim START

KL\_KSD\_OEL\_DEC Erkennung auf Ölverdünnung - Dekrement, abh. von

toel\_max bei KL15\_AUS

#### 4.2. Variablen

laa\_schw\_st1/2 Statusbyte der Adaptionsfehlerschwellen

Bit 0: obere Adaptionsoffsetschwelle überschritten Bit 1: untere Adaptionsoffsetschwelle unterschritten Bit 2: obere Adaptionsfaktorschwelle überschritten Bit 3: untere Adaptionsfaktorschwelle unterschritten Bit 4: Begrenzung des Adaptionsoffsets ist aktiv Bit 5: Begrenzung des Adaptionsfaktors ist aktiv

|            | Abteilung | Datum    | Name | Filename |
|------------|-----------|----------|------|----------|
| Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |





Projekt: MSS54 Modul: LAA DIAG

Seite 9 von 9

Bit 6: Bit 7:

laa\_f1/2 Adaptionfaktor 1 bzw. 2

laa offset1/2 Adaptionsoffset 1 bzw. 2 ohne Drehzahlgewichtung mit

32 bit Aufloesung

ksd1/2 ed Fehlervariable fuer KSD

ksd\_st Statusbyte für KSD-Diagnose

Bit 0: Abbruchbedingung Bank1 ist vorhanden
Bit 1: Abbruchbedingung Bank2 ist vorhanden

Bit 2: Startadaptionen Bank1 wurden weggespeichert

Bit 3: Diagnosezeit Bank1 ist abgelaufen

Bit 4: Startadaptionen Bank2 wurden weggespeichert

Bit 5: Diagnosezeit Bank2 ist abgelaufen

Bit 6: -----Bit 7: Ölverdünnung wurde erkannt

ksd\_laa\_f1/2 Adaptionsfaktor1/2 beim Start der KSD

ksd\_laa\_offset1/2 Adaptionsoffset1/2 beim Start der KSD (laa\_offset1/2)

ksd\_f1/2\_delta Delta zwischen Adaptionsfaktor beim Start d. KSD u. aktuellem

Adaptionsfaktor

ksd\_offset1/2\_delta\_ms Delta zwischen Adaptionsoffset beim Start d. KSD u. aktuellem

Adaptionsoffset in ms

ksd\_offset1/2\_delta Betriebspunktunabhängiger Adaptionsoffset in %

ksd\_lam1/2 gesamte Lambdaabweichung (gemittelter Lambdawert

+ Delta Faktor[%] + Delta Offset[%]

ksd\_ll\_max\_t1/2Zeit, in der die gesamte Lambdaabweichung die max. Schwelle

im LL überschritten hat

ksd\_tl\_max\_t1/2Zeit, in der die gesamte Lambdaabweichung die max. Schwelle

in d. TL überschritten hat

ksd\_ll\_min\_t1/2 Zeit, in der die gesamte Lambdaabweichung die min. Schwelle

im LL unterschritten hat

ksd\_tl\_min\_t1/2 Zeit, in der die gesamte Lambdaabweichung die min. Schwelle

in d. TL unterschritten hat

ksd\_diag\_time1/2 Diagnosezeit der KSD

ksd\_oel\_sperr Zähler für die Erkennung auf Ölverdünnung

ksd\_tl/ll\_min/max\_t1/2 Info-Variablen, um Über-/Unterschreitungen, auch ohne

Fehlereinträge zu erkennen

|            | Abteilung | Datum    | Name | Filename |
|------------|-----------|----------|------|----------|
| Bearbeiter | EE-32     | 16.4.134 |      | 5.07     |