Math 435 09/26/2025 Notes

September 26, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. Let X be a space and let X^* be a partition of X. Then, the natural surjection $p: X \to X^*$ sends each element to the set which contains it, which induces the quotient topology U_p on X^* .

Today

• Constructing S^1

Example 1. Constructing the Circle, S^1 : Let X = [0,1] with the subspace topology where \mathbb{R} has the standard topology. Define $X^* = \{\{x\} | 0 < x < 1\} \cup \{0,1\}$. Which sets are in \mathscr{U}_p ? I.e., which sets are open in X^* ? Well, $U \in \mathscr{U}_p \iff p^{-1}(U) \stackrel{\circ}{\subset} [0,1]$. So which sets in \mathscr{U}_p have an open inverse image? If $(a,b) \subseteq [0,1]$, then $p(a,b) \subseteq X^*$ is open. Since we endowed X with the subspace topology, we have open intervals [0,a) and (b,1] in X. But in X^* , it isn't open, unless we say $0 = 1 = \{0,1\}$ with $(a,\{0,1\}] \cup [\{0,1\},b)$. Notably it cannot be open without both a and b. So the open sets of \mathscr{U} are $\{\{(a,b)|0 < a < b < 1\}, \{[\{0,1\},a) \cup (b,\{0,1\}]]\}\}$.