

调整果树负载量带来的相反效应

- 用疏果或修剪降低果树负载 量会增加剩下的果实的大小
- 用疏果或修剪降低果树负载 量会降低产量
- 衡量疏果的利弊的最佳方式 是将果实的大小考虑进去, 把产量/英亩换算成产值/英 亩

最佳果树负载量是在产值最大时达到的

在大多数年份里,果实 大小和果树负载量存在 显著负相关性。

最佳果树负载量是多少? 何为最佳疏果强度?

- 2003-2004年,年份相同但果树树体大小不同的四个嘎拉果园的最佳果树负载量为7-10.5个果实/每平方厘米树干横切面积。
- 2005年为枯水年,最佳果树负载量显著降低。

多大的单果重可获得最佳的产值回报?

除了枯水年,嘎拉的最佳果实大小一般为每箱100个果实(约为170克)。

不同年限果实大小的差异

2007年嘎拉的果实大小比2010年小70克(2英寸嘎拉果和3英寸嘎拉果之差)

疏果效果的浮动性是由以下因素导致的:

- 1. 化学试剂的浓度
- 2. 果实大小
- 3. 施用的方式 喷洒器的设置-水量,空气的速度,液滴的大小
- 4. 吸收化学疏果剂的过程
 - -角质层的厚度
 - -化学蔬果剂施用时和施用后的环境(温度,湿度,覆盖率,蔬果剂干燥速率)
- 5. 树的敏感性
 - -花密度
 - -初始座果率
 - 一温度
 - -光照
 - -树势

我们可以准确控制果树负载量吗?

精确负载量管理

- 1. 通过修剪将花芽调整到一定数目
- 2. 多次施用疏果剂以达到一定的果实数目
- 3. 手工疏果以达目标数

计算每棵树的果实数目(高纺锤形)

- 决定每公顷的产量(75吨/公顷)和所期望的果实大小(200克)=375,000个/公顷(375,000个果实每公顷/3000株每公顷=125个果实每株)
- 2. 在花蕾露出粉红色时,对5株有代表性的树的短枝进行统计(这一例子:200个开花的短枝×每枝5朵花=1,000个潜在果实/每株)
- 3. 计算所需要的果实的百分率(决定疏果的任务) (每株需要125 个果/每树的潜在果实数为1000个 = 12.5%)
- 4. 计算每株树最佳的花芽量 (125个果/每树 × 1.5 = 188个花芽/每树)

用修剪疏果(降低花芽量)目标: 1.5花芽:1果实

2013年嘠拉的疏芽程度

果园	比例: 花芽: 终果数	果园	上例
1	1.13	16	3.48
2	1.31	17	4.38
3	1.47	18	5.80
4	1.64	平均	2.39
5	1.74		
6	1.82		
7	1.83		
8	1.85		
9	1.94		
10	2.05		
11	2.11		
12	2.64		
13	2.70		
14	2.88		
15	3.26		

一季内疏果处理效果的变化

用化学试剂疏果时,不同库之间对资源会有竞争

- 1. 同一花序之内不同果实的竞争
- 2. 相邻花序之间果实的竞争
- 3. 果实与新梢的竞争
- 4. 根系与新梢的竞争

以碳素为基础的关于果实生长和脱落的假说

幼果对化学试剂的敏感性主要决定于当下碳素的供应

- 温度和光照影响碳素的生产
- 温度影响果实极其竞争库的对碳素的需求
- 当果实生长对碳素的需求超过树体所能提供的量时,不具竞争力的果实最先脱落。
- 当碳素供应不足时,树体对化学疏果剂更敏感; 当碳素供应过量时敏感度降低。

帝国在疏果期间新梢生长和果实生长之间竞争

光照不足所导致的碳水化合物减少不会影响新梢生长,但光照量过低会严重减缓果实生长,在最低光照情况下不能座果。

化学疏果的时期

- 花期
 - 硫代硫酸铵 (ATS)
 - 石硫合剂和鱼油
 - 普洛马林
 - Maxcel (6-苯甲基腺嘌呤)
 - NAA(萘乙酸)
- 花瓣脱落期(5-6mm)
 - 西维因
 - Maxcel + 西维因
 - NAA + 西维因
 - Maxcel + NAA
- 果实直径在10-13 mm时
 - NAA + 西维因
 - Maxcel + 西维因
 - Maxcel + NAA
- 果实直径在15-20 mm时
 - NAA + 西维因
 - Maxcel +西维因 + 油
 - Ethrel (乙烯利) + 油

化学疏花疏果剂的浓度

- 萘乙酸 浓度在 2.5ppm-15ppm 之间
 - 浓度在 5-10ppm 之间有些年份效果随浓度增加而增加,但在许多年份差别不大。
 - 浓度在 15 ppm 以上会过度抑制果实生长
- Maxcel 浓度在 50-150ppm 之间
 - 浓度直到 150 ppm效果随浓度增加而增加
 - 但超过 200ppm 会促使分枝
- 甲萘威 浓度在 600-1200ppm之间
 - 浓度高于600ppm时对浓度增加没有反应
 - 腐蚀花的疏花剂 浓度影响较小,但是浓度较高时可能导致对植物的毒害(烧叶)

BA或NAA对帝国苹果果实大小的影响

使用化学疏果剂时果实的大小

- 当果实的大小为 10 mm 时对NAA的敏感度最高。
- 当果实的大小为 12 mm时,对BA的敏感度最高。
- 近期的研究结果: 根据在弗吉尼亚进行的15年的研究,施用化学试剂时果实的大小对最终的结果并没有太大影响。
- 结论: 天气(碳水化合物的平衡)大概会比果实的大小影响更大。

疏果期内的疏果效率

天气对化学疏果的影响:

- 超过一两天的阴霾多云的天气降低碳水化合物的供应,增加自然落果量和化学疏果的效应。
- 高夜间温度(>60°F, 15.5°C) 提高对碳化合物的需求,增加自然落果量和对化学试剂的反应。
- 高日间温度(>85° F, 29.5° C)增加对碳化合物的需求并造成过度疏果。
- 凉爽天气(<65° F, 17° C) 减少果实对碳化合物的需求,导致 疏果效果较差。

New York State Integrated Pest Management Program

NEWA Network for Environment and Weather Applications

Search NEWA website

Enter Search...

Weather Data

Pest Forecasts

Station Pages

Results

More info

Crop Management

Crop Pages

About Weather Stations

Search

Apple Carbohydrate Thinning

Cornell Apple Carbohydrate Thinning Model

Map

Williamson (Demarree)	- 4
Select Date:	
06/08/2013	

Apple Carbohydrate Thinning Model for Williamson (Demarree)

Change green tip and/or bloom date and click "Calculate" to recalculate results.

Green tip date	Bloom date	Calculate
4/13/2013	5/6/2013	

Apple Carbohydrate Thinning Model Results								
Date	Max Temp (°F)	Min Temp (°F)	Solar Rad (MJ/m2)	Tree Ca				
				Production	Demand	Balance	4-Day Ave Balance	Thinning Recommendation
4/13	48	41	0.4	0.00	5.76	-5.76	-8.09	11 - 14
4/14	44	33	1.0	0.00	3.93	-3.93	-8.35	The second
4/15	73	34	4.1	0.00	10.23	-10.23	-11.36	
4/16	66	43	0.3	0.00	12.42	-12.42	-13.54	
4/17	52	35	6.0	0.00	6.84	-6.84	-11.89	la e
4/18	74	39	12.0	0.00	15.95	-15.95	-11	In the
4/19	73	44	0.3	0.00	18.95	-18.95	-9.21	-
4/20	44	34	1.5	0.00	5.82	-5.82	-8.23	
4/21	40	27	6.0	0.00	3.29	-3.29	-11.82	-
4/22	59	28	6.2	0.00	8.77	-8.77	-13.37	-
4/23	62	40	13.9	0.39	15.41	-15.03	-13.43	-
4/24	67	41	2.6	0.00	20.18	-20.18	-13.54	4

6/2	11	57	20.7	89.58	69.55	20.03	52.36	thinner rate by 30%	
6/3	62	51	26.5	114.67	46.25	68.42	35.26	Increase chemical thinner rate by 30%	
6/4	67	46	27.2	119.81	46.45	73.36	7.33	Increase chemical thinner rate by 30%	
6/5	67	52	22.1	103.28	55.65	47.62	-11.56	Apply standard chemical thinner rate	
6/6	58	54	2.3	0.46	48.83	-48.37	-15.26	Apply standard chemical thinner rate	
6/7	60	55	3.8	12.01	55.31	-43.30	-13.56	Apply standard chemical thinner rate	
6/8	64	55	10.9	58.45	60.63	-2.18	-9.33	Apply standard chemical thinner rate	
6/9	76	56	26.2	112.14	79.34	32.80	0.57	Increase chemical thinner rate by 30%	
6/10	69	57	6.9	32.78	74.34	-41.56	-22.25	Decrease chemical thinner rate by 15%	
6/11	65	56	8.3	43.76	70.13	-26.37	-0.73	4	
6/12	73	53	25.8	116.44	79.03	37.42		-	
6/13	66	54	3.7	11.99	70.49	-58.50			
6/14	70	53	26.4	120.09	75.55	44.54		4	

精准疏果

- 1. 计算出每棵树所要的果实数目(确立目标)。
- 2. 在施用疏果剂<u>之前</u>,用碳水化合物模型评估 果树对疏果剂的敏感度。
- 3. 施用疏果剂
- 4. 在施用疏果剂<u>之后</u>,用果实生长模型评估化 学疏果剂的效力
- 5. 重复施用前,用碳水化合物的模型对果树的敏感度进行二次评估。
- 6. 二次疏果后,用果实生长模型再次评估化学 疏果剂的效力

以嘎拉为例介绍精准疏果

- 花期
 - ATS(硫代硫酸铵)(2.%)
- 花瓣脱落期 (5-6mm)
 - NAA (7.5ppm) + 西维因 (1品脱/100加仑)
- 果实直径在10-13 mm时
 - Maxcel(100ppm) + 西维因(600ppm) (对果树的上半部分喷施)
- 果实直径在18-20 mm时 (最后机会)
 - Maxcel (125ppm) + 西维因(600ppm) + 油(0.125%)(对果树的上半部分喷施)

Geneva 2013年嘎拉精准疏果的结果

处理	初果数	花期喷药 后	花落期喷 药后	果实10mm喷 药后	果实18mm喷 药后	目标果数
对照	4430	1536	1217	1299	1288	335
普尔马林+ 3次 Maxcel/西维因	4430	1524	992	933	673	335
Maxcel+ 3 次 Maxcel/西维因	4430	1051	992	981	567	335

精准果树负载量控制和随后的手工疏果

用计算出来的目标果实数精准的进行手工疏果

- 1. 在手工疏果的前后选有代表性树计数
- 2. 和疏果人员一起对结果进行总结
- 3. 简单树体结构更容易进行精准的管理

4. 高纺锤形/有4根铁丝的结果墙 = 每铁丝间

有约30个果实

连续成花

种子和新梢产生的赤霉素会通过果柄运到果台副稍,抑制花芽分化。

每棵树的总种子数和来年的开花量是相关的. 种子数目多 = 来年开花量小.

在夏季施用萘乙酸和/乙烯利, 可以抑制种子和新梢中产生的赤霉素,促进花芽的分化

成花的机制被认为是通过暂时抑制新梢的生长速度来达到的

连续4周喷洒低量的萘乙酸(5-7ppm) 连续4周喷洒低量的乙烯利(150ppm)

从6月21日起开始喷洒

对控制大小年的建议

- 1) 通过修剪来控制花芽数量 (精确修剪)
- 2) 在 80% 的花开放时使用 2% 的硫代硫酸铵 或
- 3)使用较为激进的落花时的疏果处理(10ppm NAA + Carbary1甲萘威).
- 4) 在果实大小为10 mm 时, 使用 7.5ppm NAA+ Carbary1 (甲萘威) 进行二次喷洒
- 5) 及早开始手工疏果,将幼树负载量调至 5个果/cm² TCA,盛果期树8个果/cm² TCA。
- 6) 从六月中旬起,每十天喷洒NAA 10ppm, 共四次(有些年份NAA有帮助)。

