Task Analysis Template

Job/MOS: PSYOP Forces

Mission:

Support MISO through planning aerial dissemination for sUAS platforms.

Collective Task:

Calculate release parameters for sUAS leaflet dissemination to support MISO objectives.

Critical Task List

Temp Task $\#$	Updated Task Description
0001	Update doctrinal constants to include sUAS-specific parameters; integrate traditional Tables D-1 through D-5 with digital flight data inputs.
0002	Validate the standard descent rate tailored to sUAS performance (e.g., baseline 2.5 ft/s with automated adjustments from onboard sensors).
0003	Integrate updated spread factors reflecting sUAS variable flight modes and digital payload release techniques (range: 0.2–0.4).
0004	Confirm standard sUAS airspeed, augmented by real-time GPS and wind corrections (e.g., 17 knots baseline with dynamic adjustments).
0005	Calculate descent time using altitude AGL combined with sUAS-specific descent profiles and adaptive velocity control.
0006	Compute forward drift using sUAS airspeed and integrated sensor–provided wind data along with descent time measurements.
0007	Determine lateral wind drift via real-time data from onboard meteorological sensors and descent time.
0008	Assess total drift distance by combining forward and lateral drift, using computational models for dynamic flight conditions.
0009	Calculate the major axis of the dispersion ellipse with updated spread factors and real-time descent dynamics.
0010	Determine the minor axis of the dispersion ellipse based on the maximum deviation measured with digital sensor inputs.

Temp Task #	Updated Task Description
0011	Compute the area of the dispersion ellipse utilizing integrated real-time flight monitoring data.
0012	Calculate leaflet density using payload count and updated area estimations via automated mission planning software.
0013	Identify the optimal release point by integrating drift calculations, terrain mapping, and precise GPS coordinates.
0014	Compute the required flight altitude for target coverage, including safety buffers and sUAS operational constraints.
0015	Develop a digital flight path using automated planning tools to achieve desired target coverage and optimize energy management.
0016	Assess compatibility of MISO products with digital dissemination methods and sUAS delivery constraints.
0017	Modify MISO product design (e.g., incorporating QR codes or digital links) for improved compatibility with sUAS payload delivery.
0018	Evaluate and verify the psychological effectiveness of modified products using real-time feedback and performance metrics.
0019	Conduct simulation-based exercises to verify calculation methods in a virtual environment before live mission deployment.
0020	Execute time-constrained scenario exercises to refine sUAS drop calculations under operational pressure.
0021	Validate calculation accuracy within required tolerances using integrated diagnostic software tools.
0022	Document revised calculation methodologies that incorporate sensor data and automated adjustment algorithms.
0023	Coordinate calculation methods with partner forces via secure digital communication networks.
0024 0025	Validate calculations through combined simulation and field exercises using various sUAS platforms. Troubleshoot calculation errors with onboard
	diagnostics and post-mission data analysis routines.

Temp Task $\#$	Updated Task Description
0026	Adapt calculations for different sUAS platforms (fixed-wing, rotary-wing) with respective performance characteristics.
0027	Integrate planning calculations into mission planning software to ensure cohesive operational execution.
0028	Brief team members on updated digital calculation methods and revised procedures for sUAS operations.
0029	Review and verify calculation integration with partner force systems using shared digital platforms.
0030	Maintain an up-to-date repository of calculation documentation that evolves with emerging technology and procedural improvements.