Teoria współbieżności

Zadanie 4 - **Teoria śladów**

Ryszard Pręcikowski 401433

12 listopada 2021

1 Gramatyka

Pokolorowane na niebiesko prostokąty oznaczają nowe elementy, a na czerwono połączenia. W produkcjach zachowywane są oryginalne połączenia elementów, ale w miejscu dodawanego musi być null.

Nowo dodane symbole nie mają żadnych połączeń (są do nulli) oprócz właśnie dodanego.

1.1 Produkcja startowa

$$(P1) S \longrightarrow M$$

1.2 Doczepienie elementu z zachodniej strony

$$(PW) \hspace{1cm} M \hspace{1cm} \longrightarrow \hspace{1cm} M \hspace{1cm} M$$

1.3 Doczepienie elementu z południowej strony

1.4 Połączenie elementów sąsiadujących

2 Generowanie siatki 3×3

3 Alfabet

Indeksy dolne są jedynie oznaczeniami ułatwiającymi rozróżnienie produkcji.

$$A = \{P1\} \cup \{PW_n | 1 \leqslant n \leqslant 2\} \cup \{PS_n | 1 \leqslant n \leqslant 6\} \cup \{PJ_n | 1 \leqslant n \leqslant 4\}$$

4 Słowo generujące siatkę

 $P1, PW_1, PW_2, PS_1, PS_2, PS_3, PJ_1, PS_4, PJ_2, PS_5, PS_6, PJ_3, PJ_4$

5 Wizualizacja działania

Rysunek 1: P1

Rysunek 2: PW_1

Rysunek 3: PW_2

Rysunek 4: PS_1

Rysunek 5: PS_2

Rysunek 6: PS_3

Rysunek 7: PJ_1

Rysunek 8: PS_4

Rysunek 9: PJ_2

Rysunek 10: PS_5

Rysunek 11: PS_6

Rysunek 12: PJ_3

Rysunek 13: PJ_4

6 Relacja (nie)zależności dla alfabetu

$$D = \{sym\{(P1,*), (PW_1, PS_2), (PW_1, PW_2), (PS_2, PS_1), (PS_3, PW_1), \\ (PJ_1, PW_1), (PJ_1, PS_1), (PJ_1, PS_3), (PS_4, PS_3), \\ (PJ_2, PW_1), (PJ_2, PS_1), (PJ_2, PS_2), (PJ_2, PS_3), (PJ_2, PS_4), (PS_4, PW_2), (PS_4, PS_3), \\ (PJ_3, PW_2), (PJ_3, PW_1), (PJ_3, PS_3), (PJ_3, PS_5), \\ (PJ_4, PW_2), (PJ_4, PW_1), (PJ_4, PS_3), (PJ_4, PS_5), (PJ_4, PS_4), (PJ_4, PS_6), (PS_5, PW_1), (PS_5, PW_2), \\ (PS_6, PW_1), (PS_6, PW_2), (PS_6, PS_5)\}\} \cup I_A$$

 $I=A^2\backslash D$

7 Postać normalna Foaty

$$FNF = [P1][PW_1, PS_1][PW_2, PS_2, PS_3][PJ_1, PS_4, PS_5][PJ_2, PS_6, PJ_3][PJ_4]$$
(1)

8 Algorytm generujący kwadraty $N \times N$

Rozumowanie dla algorytmu generującego kwadraty $N\times N$ jest analogiczne do 3×3 . Poniżej zostało przedstawione działanie algorytmu dla N=5.

М	-	М	-	М	-	М	-	М	
		1		1		1		1	
		М		М		М		M	
				Ī		Ī		1	
				М		М		M	
						Ī		1	
						М		M	
								1	
								M	

M - M - M - M - M
I I I I I I I
M - M - M - M - M
I I I I I I I
M - M - M - M - M
I I I I I I
M M M - M - M - M
I I I I I

M - M - M - M - M
I - I - I - I - I
M - M - M - M - M
I - M - M - M - M
I - I - I - I - I
M - M - M - M - M
I - M - M - M - M
I - M - M - M - M