MLP 비정형 데이터 활용 분석 세미 프로젝트

연방준비제도 기준 금리 예측

Team: 슈퍼 두퍼

김동현, 김주성, 백동열, 서웅진

연방준비제도 기준 금리 예측

Executive Summary

연방준비제도(연준) The Federal Reserve System(Fed)

章서

- 1. 연방준비제도 로고 네이버 블로그
- 2. 유럽 사진 한국인이 선호하는 첫 유럽 여행 추천 여행지 BEST 7 여행톡톡
- 3. 천원 지폐 개인 사진
- 4. 악수 비즈니스 영어회화 일정 말하기 네이버 블로그
- 5. 산업 이미지 4차 산업혁명 시대 기술의 혁신은 무엇? 네이버 블로그

연방준비제도 기준 금리 예측

Executive Summary

1. 경제 성장

- GDP, GDI

2. 경제 상황

- CPI(소비자 물가 지수), 인플레이션
- UNRATE(실업률)

3. 금융 시장

- 주식 및 부동산 시장

4. 재정 정책

- 정부 지출 및 세금의 변화에 따른 영향

5. 국제 경제 환경

- USD(환율)
- ECB_IR(유럽 중앙은행 기준 금리), KR_IR(한국 중앙은행 기준 금리)

Content

프로젝트 배경 및 목적

구성원 역할

1 팀 - 수행 절차 및 방법

- 수행 결과

2 팀 - 수행 절차 및 방법 - 수행 결과

프로젝트 배경: 전 세계 경제에 영향을 끼치는 연준 기준 금리에 대하여 알아보고자 함.

프로젝트 목적:

- 1. 연준 기준 금리에 영향을 미치는 주요 요인 탐색.
- 2. 탐색한 주요 요인들을 통한 연준 기준 금리 예측.

연방준비제도 기준 금리 예측 구성원 역할

1 팀 – 빅데이터 모델링 기법

김주성: 비정형 데이터(news, youtube) 크롤링, EDA, 모델링, 평가, 예측

백동열: 정형 데이터 크롤링 및 전 처리, 정형/비정형 데이터 통합, EDA, 모델링, 평가, 예측

서웅진: 비정형 데이터(BeigeBook) 크롤링, EDA, 모델링, 평가, 예측

2 팀 – 통계 분석 기법

김동현: 회귀분석을 사용해서 기준 금리에 영향을 끼치는 요인, 인과관계 찾기

분석 도구

- 1. 개발 환경 및 프로그래밍 언어 Jupyter notebook, Python
- 2. 크롤링 도구 pandas_datareader, yfinance, openpyxl(EXCEL xlsx 데이터 로딩)
- 3. 정형/비정형 데이터 분석 및 평가 도구 Keras, NLTK
- 4. 데이터 시각화 WordCloud, Matplotlib, Seaborn

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

****** Target = DFEDTARU

정형 데이터

■ 데이터 준비

○ 데이터 수집

○ 데이터 전 처리

■ 데이터 분석

○ 텍스트 데이터 분석

o EDA

○ 모델링 및 모델 평가

데이터	데이터 입수처	데이터 사용방법	사용여부
연준 기준 금리 상한	pandas_datareader 모듈	DataFrame	Υ
연준 기준 금리 예측치	investing.com	엑셀xlsx	Υ
실질 국내총생산 성장률	https://fred.stlouisfe d.org/	엑셀csv	Υ
실업 률	https://fred.stlouisfe d.org/	엑셀csv	Υ
소비자 물가 지수	https://fred.stlouisfe d.org/	엑셀csv	Υ
명목이자율(미국 국채 10년물)	yfinanace 모듈	DataFrame	Υ
한은 USD환율	https://ecos.bok.or.k r/	엑셀csv	Υ
한은 기준 금리	https://ecos.bok.or.k r/	엑셀csv	Υ
ECB 기준 금리	https://data.ecb.euro pa.eu	엑셀csv	Υ

비정형 데이터

데이터	┃ 데이터 입수처	사용여부
Beige Book	https://fred.stlouisfed.org	Υ
	,	·
	/	
Youtube metadata	Youtube API	N
Naver metadata	https://search.naver.com	N
	.1	

※ 월별로 데이터가 복수 건 존재하여 비사용

※ 데이터 수집 기간: 2008.12.31 ~ 2024.07.31

1. 정형/비정형 시계열 데이터로 변환

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

	DATE	DFEDTARU	DFEDTARL	IR_FORCAST	GDPGR	UNRATE	PCEPI	TNX	USD	KR_IR	ECB_IR
0	2008-12-01	0.25	0.00	0.50	-8.5	7.3	88.098	2.244	1259.5	3.0	2.50
1	2009-01-01	0.25	0.00	0.25	-4.5	7.8	88.108	2.844	1379.5	2.5	2.00
2	2009-02-01	0.25	0.00	0.25	-4.5	8.3	88.266	3.041	1534.0	2.0	2.00
3	2009-03-01	0.25	0.00	0.25	-4.5	8.7	88.169	2.685	1383.5	2.0	1.50
4	2009-04-01	0.25	0.00	0.25	-0.7	9.0	88.295	3.124	1282.0	2.0	1.25
184	2024-04-01	5.50	5.25	5.50	2.8	3.9	123.109	4.686	1382.0	3.5	4.50
185	2024-05-01	5.50	5.25	5.50	2.8	4.0	123.146	4.514	1384.5	3.5	4.50
186	2024-06-01	5.50	5.25	5.50	2.8	4.1	123.243	4.343	1376.7	3.5	4.25
187	2024-07-01	5.50	5.25	5.50	2.8	4.1	123.243	4.128	1376.5	3.5	4.25

2. 정형/비정형 데이터 통합

DATE	DFEDTARU	DFEDTARL	IR_FORCAST	GDPGR	UNRATE	PCEPI	TNX	USD	KR_IR	ECB_IR	BB_text
2008- 12-01	0.25	0.00	0.50	-8.5	7.3	88.098	2.244	1259.5	3.0	2.50	Prepared at the Federal Reserve Bank of Minnea
2009- 01-01	0.25	0.00	0.25	-4.5	7.8	88.108	2.844	1379.5	2.5	2.00	Prepared at the Federal Reserve Bank of St. Lo
2009- 02-01	0.25	0.00	0.25	-4.5	8.3	88.266	3.041	1534.0	2.0	2.00	Prepared at the Federal Reserve Bank of St. Lo
2009- 03-01	0.25	0.00	0.25	-4.5	8.7	88.169	2.685	1383.5	2.0	1.50	Prepared at the Federal Reserve Bank of San Fr
2009- 04-01	0.25	0.00	0.25	-0.7	9.0	88.295	3.124	1282.0	2.0	1.25	Prepared at the Federal Reserve Bank of Dallas

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

텍스트 데이터 전 처리

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA

연방준비 은행 지역명 목록 제거

```
# 연방준비은행 지역 목록 제거st louis와 같은 경우도 감안
federal_reserve_banks = |
   "boston",
   "new york",
   "philadelphia",
   "cleveland",
   "richmond",
   "atlanta",
   "chicago",
   "st. louis",
   "minneapolis",
   "kansas city",
   "dallas",
   "san francisco",
   "st",
   "louis"
def remove_federal_reserve_banks(text, bank_list):
   # 소문자 변환 및 정규표현식을 사용하여 지역 이름 제거
   for bank in bank_list:
        bank_pattern = re.compile(re.escape(bank), re.IGNORECASE)
       text = bank_pattern.sub('', text)
   return text
df_irp['BB_text'] = df_irp['BB_text'].apply(lambda x: remove_federal_reserve_banks(x, federal_reserve_banks))
```

텍스트 데이터 분석

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

텍스트 데이터 감성 분석

sia = SentimentIntensityAnalyzer()

def get_vader_sentiment(text):
 sentiment = sia.polarity_scores(text)
 return sentiment['neg'], sentiment['neu'], sentiment['pos'], sentiment['compound']

df[['BB_neg', 'BB_neu', 'BB_pos', 'BB_sentiment']] = df['BB_text'].apply(lambda text: pd.Series(get_vader_sentiment(text)))

분석 데이터 준비

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o **EDA**
- 모델링 및 모델 평가

DATE	DFEDTARU	DFEDTARL	IR_FORCAST	GDPGR	UNRATE	PCEPI	TNX	USD	KR_IR	ECB_IR	BB_text	BB_neg	BB_neu	BB_pos	BB_sentiment
2008- 12-01	0.25	0.00	0.50	-8.5	7.3	88.098	2.244	1259.5	3.0	2.50	Prepared at the Federal Reserve Bank of Minnea	0.080	0.839	0.082	0.9133
2009- 01-01	0.25	0.00	0.25	-4.5	7.8	88.108	2.844	1379.5	2.5	2.00	Prepared at the Federal Reserve Bank of St. Lo	0.061	0.865	0.074	0.9952
2009- 02-01	0.25	0.00	0.25	-4.5	8.3	88.266	3.041	1534.0	2.0	2.00	Prepared at the Federal Reserve Bank of St. Lo	0.061	0.865	0.074	0.9952
2009- 03-01	0.25	0.00	0.25	-4.5	8.7	88.169	2.685	1383.5	2.0	1.50	Prepared at the Federal Reserve Bank of San Fr	0.083	0.839	0.078	0.5459
2009- 04-01	0.25	0.00	0.25	-0.7	9.0	88.295	3.124	1282.0	2.0	1.25	Prepared at the Federal Reserve Bank of Dallas	0.092	0.826	0.082	-0.6999

텍스트 데이터 BB_Sentiment 추이

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

히트 맵

상관계수 높은 변수들의 추이

- 데이터 수집
- 데이터 전 처리

■ 데이터 분석

- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

UNRATE 음의 상관관계

- 연방준비제도 기준 금리 예측 1 팀 수행 절차 및 방법

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

CNN RNN LSTM MLP

변수 선택 **단일 변수 사용**

model.add(Dense(1))

■ 데이터 준비

○ 데이터 수집

○ 데이터 전 처리

■ 데이터 분석

○ 텍스트 데이터 분석

o EDA

○ 모델링 및 모델 평가

모델링
model = Sequential()
model.add(Conv1D(32, 3, activation='relu',
input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(MaxPooling1D(2))
model.add(Dropout(0.2))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))

model.compile(optimizer=Adam(learning_rate=0.001),

loss='mean_squared_error', metrics='acc')

history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.1)

CNN

요인 명	변수 명
소비자 물가 지수	PCEPI
실업 률	UNRATE
Beige book 감정	BB_Sentiment
국내총생산 성장률	GDPGR
한은 USD환율	USD
명목이자율	TNX
한은 기준 금리	KR_IR

PCEPI 활용 모델 예측 손실 그래프

nt	0.025 - 0.020 - 0.015 - 0.010 -		M^	L	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		rain loss
	0.005 -	1	~~ √	1	$\sim\sim$	٩٨.٨.	^
		0	20	40	60	80	100
				Epoc	ns		

볼드체: 모델링에 사용된 변수 <mark>초록색 볼드체: 최종 채택된 변수</mark>

1팀 - 수행절차및방법 연방준비제도 기준 금리 예측

■ 데이터 준비

- 데이터 수집
- 데이터 전 처리

■ 데이터 분석

- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

변수 선택 단일 변수 사용

모델링

model = Sequential()

model.add(SimpleRNN(64, return_sequences=True, input_shape=(sequence_length, 1)))

model.add(Dropout(0.2))

model.add(SimpleRNN(64))

model.add(Dropout(0.2)) model.add(Dense(1))

model = Sequential()

model.compile(optimizer=Adam(learning_rate=0.001),

loss='mean_squared_error', metrics = 'acc')

history = model.fit(X_train, y_train, epochs=100, batch_size=32,validation_split=0.1)

RNN

요인 명	변수 명
소비자 물가 지수	PCEPI
실업률	UNRATE
Beige book 감정	BB_Sentiment
국내총생산 성장률	GDPGR
한은 USD환율	USD
명목이자율	TNX
한은 기준 금리	KR_IR

모델링에 사용된 변수 볼드체: 초록색 볼드체: 최종 채택된 변수

PCEPI 활용 모델 예측 손실 그래프

LSTM

- 데이터 준비
- 데이터 수집
- 데이터 전 처리
- 데이터 분석
- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

변수 선택 **높은 상관계수를 가진 변수들 사용**

모델링

model = Sequential()

model.add(LSTM(units=64, return_sequences=True))

model.add(Dropout(0.5))

model.add(LSTM(units=32))

model.add(Dropout(0.5))

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam',

loss=**'mean_squared_error**', metrics=['acc'])

history = model.fit(X_train, y_train, epochs=200, batch_size=32, validation_data=(X_val, y_val),

callbacks=[early_stopping, model_checkpoint])

요인 명	변수 명
소비자 물가 지수	PCEPI
실업률	UNRATE
Beige book 감정	BB_Sentiment
국내총생산 성장률	GDPGR
한은 USD환율	USD
명목이자율	TNX
한은 기준 금리	KR_IR

×

볼드체: 모델링에 사용된 변수 <mark>초록색 볼드체: 최종 채택된 변수</mark>

모델 예측 손실 그래프

LSTM

모델 예측 그래프

미래 예측 그래프(12개월)

■ 데이터 준비

- 데이터 수집
- 데이터 전 처리

■ 데이터 분석

- 텍스트 데이터 분석
- o EDA
- 모델링 및 모델 평가

MLP

종속 변수 df['Target'] = (df['DFEDTARU'] >= 5.5).astype(int)

변수 선택

모든 변수 사용

모델링
model = Sequential()
model.add(Dense(64, input_dim=X_train.shape[1],
activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss=**'binary_crossentropy**', metrics=['accuracy'])

history = model.fit(X_train, y_train, epochs=20, batch_size=32, validation_split=0.2)

변수 명
PCEPI
UNRATE
BB_Sentiment
GDPGR
USD
TNX
KR_IR

※

볼드체: 모델링에 사용된 변수 초록색 볼드체: 최종 채택된 변수

모델 예측 정확도 및 Confusion Matrix

Test Accuracy: 97%

모델 별 미래 예측치

모델명	실제값	예측값	차이
LSTM	5.25	0.09348	5.15652
SimpleRNN	5.25	0.1124600023031234	5.13754
CNN	5.25	0.08139999955892563	5.1686

변수 별 미래 예측치

요인명	실제값	예측값	차이
연준 기준 금리 예측치	5.25	0.68483	4.56517
실질 국내총생산 성장률	5.25	0.1169200018048286	5.13308
실업률	5.25	0.3256700038909912	4.92433
개인 소비 지출: 체인형 가격 지수	5.25	1.1114200353622437	4.13858
명목이자율	5.25	0.1074199974536895	5.14258
한은 USD환율	5.25	0.1628700047731399	5.08713
한은 기준 금리	5.25	-0.1071600019931793	5.35716
ECB 기준 금리	5.25	-0.2653700113296509	5.51537
Beige book 감정	5.25	0.07388000190258026	5.17612

연방준비제도 기준 금리 예측 1 팀 – 수행 결과

1. CNN

- 단일 요인으로 평가 결과, 높은 성능이 나타남.

2. RNN

- 1) 단일 요인인 소비자 물가 지수로 평가 시 가장 성능이 우수.
- 2) 단일 요인들을 평가 시 연준에서 발표하는 주요 시장 요인이 다른 시장 요인보다 적합.

3. LSTM

- 1) LSTM을 이용하여 모델 예측 및 미래 예측 진행.
- 2) 모델 예측 정확성은 낮은 편은 아니었지만, 미래 예측 정확성은 높지 않음

4. MLP

- 1) 경제 지표를 활용하여 이진 기법(동결 및 상승/ 하락)으로 연준 기준 금리 예측.
- 2) 높은 정확도로 분류를 하였음.

연방준비제도 기준 금리 예측 1 팀 – 수행 결과

1. CNN

- 단일 요인으로 평가 결과, 높은 성능이 나타남.

2. RNN

- 1) 단일 요인인 소비자 물가 지수로 평가 시 가장 성능이 우수.
- 2) 단일 요인들을 평가 시 **연준에서 발표하는 주요 시장 요인**이 다른 시장 요인보다 적합.

3. LSTM

- 1) LSTM을 이용하여 모델 예측 및 미래 예측 진행.
- 2) 모델 예측 정확성은 낮은 편은 아니었지만, 미래 예측 정확성은 높지 않음.

요인명	변수 명	오차	순위
소비자 물가 지수	PCEPI	4.56243	1
실업률	UNRATE	5.03995	2
Beige book 감정	BB_BOOK	5.16333	3
국내총생산 성장률	GDPGR	5.17827	4
한은 USD환율	USD	5.20678	5
명목이자율	TNX	5.22471	6
한은 기준 금리	KR_IR	5.34476	7

4. MLP

- 1) 경제 지표를 활용하여 이진 기법(동결 및 상승/ 하락)으로 연준 기준 금리 예측.
- 2) 높은 정확도로 분류를 하였음.

연역 논증

:일반적인 원칙이나 전제에서 특정한 결론을 이끌어내는 논리적 사고 방법

가설: 소비자 물가 지수가 오르면 연준 금리도 오르고, 소비자 물가 지수가 내리면 금리도 내릴 것이다.

Why?

중앙은행의 목표는 물가 안정이기 때문.

- 가설 설정
- 가설 설정
- 데이터 준비
- 데이터 수집
- 데이터 분석
- 회귀 분석

- 가설 설정
- 가설 설정
- 데이터 준비
- 데이터 수집
- 데이터 분석
- 회귀 분석

정형 데이터

- 1. 소비자 물가 지수 (CPI, Core CPI)
- 2. 생산자 물가 지수 (PPI)
- 3. 실업률 (Unemployment Rate)
- 4. GDP 성장률 (GDP Growth Rate)
- 5. 장단기 국채 금리 (Treasury Yields)

정형 데이터

- 1. 소비자 물가 지수 (CPI, Core CPI)
- CPI: 식료품비, 주거비, 의류비, 교통비 등 소비자가 구입하는 상품과 서비스의 가격 변동 지수.
- Core CPI: CPI에서 변동성이 높은 식료품과 에너지 가격을 제외한 지수.
- 2. 생산자 물가 지수 (PPI)
- 3. 실업률 (Unemployment Rate)
- 4. GDP 성장률 (GDP Growth Rate)
- 5. 장단기 국채 금리 (Treasury Yields)

- 가설 설정
- 가설 설정
- 데이터 준비
- 데이터 수집
- 데이터 분석
- 회귀 분석

```
■ 가설 설정
```

- 가설 설정
- 데이터 준비
- 데이터 수집
- 데이터 분석
- 회귀 분석

```
# 변수 선택
X = merged_df[['CORE_CPI_LAG6', 'CPI_LAG12']]
y = merged_df['FED_FUNDS']

# 회귀 분석
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()

predictions = model.get_prediction(X)
pred_summary = predictions.summary_frame(alpha=0.05)
pred_mean = pred_summary['mean']
pred_mean_se = pred_summary['mean_se']

ci_lower_std = pred_mean - 5 * pred_mean_se
ci_upper_std = pred_mean + 5 * pred_mean_se
```

연준 기준 금리 예측 그래프

가설 검정

1. 소비자 물가 지수 (CPI) - 12개월 시차

1.1 상관계수: 0.81

1.2 회귀계수 : 0.05

1.3 P-값 : 2.09E-43

2. Core CPI - 6개월 시차

2.1 상관계수 : 0.79

2.2 회귀계수 : 0.04

2.3 P-값: 6.83E-40

3. 인과관계 확인

예상대로 물가가 금리를 선행해서 유의미한 상관관계 존재.

결론

CPI와 Core CPI는 금리를 각각 12개월, 6개월 앞에서 가장 설명력을 보여줌

연방준비제도 기준 금리 예측 느낀 점

- **김동현:** 데이터를 통해서 생각을 검증하면서 기존에 미국 연준 금리 시스템과 경제의 관계에 대해 몰랐던 점도 알게 되었고 이해가 더 깊어 졌습니다.
- **김주성:** 이번 세미 프로젝트를 진행하면서 모델링이 특정 상황에서 어떻게 성능을 발휘하는지 배울 수 있는 시간 이었습니다. 또한, 기준금리에 영향을 미치는 여러 경제적 사회적 요인들을 알아 볼 수 있는 좋은 기회였습니다.
- **백동열:** 크롤링, 텍스트 분석, 딥러닝 코딩 협업을 통해 데이터 수집/텍스트 분석 기법/딥러닝 프로세스를 이해할 수 있었습니다.
- 서웅진: 데이터 분석의 흐름에 대하여 이해할 수 있었고, 연준 금리에 대하여 공부함으로써 경제에 대하여 조금이나마 배울 수 있었습니다.

Thank You.

연방준비제도 기준 금리 예측 출처 및 깃허브 주소

1. 연방준비제도 로고 – 네이버 블로그

https://blog.naver.com/torso001/222069965145

2. 유럽 사진 - 한국인이 선호하는 첫 유럽 여행 추천 여행지 BEST 7 – 여행톡톡

https://www.tourtoctoc.com/news/articleView.html?idxno=4507

3. 천원 지폐 – 개인 사진 - 작성자 본인 제공(서웅진) 4. 악수 – 비즈니스 영어회화 일정 말하기 – 네이버 블로그

https://blog.naver.com/yell_wlstn/80142624721
5. 산업 이미지 – 4차 산업혁명 시대 기술의 혁신은 무엇? – 네이버 블로그

https://blog.naver.com/kyungmyung2015/223485824433

깃허브 주소

https://github.com/UngJinSeo/MLP_Finance_Fed