

8.2 IPv6 Network Addresses

Cisco Networking Academy® Mind Wide Open®

The Need for IPv6

- IPv6 is designed to be the successor to IPv4.
- Depletion of IPv4 address space has been the motivating factor for moving to IPv6.
- Projections show that all five RIRs will run out of IPv4 addresses between 2015 and 2020.
- With an increasing Internet population, a limited IPv4 address space, issues with NAT and an Internet of things, the time has come to begin the transition to IPv6!
- IPv4 has a theoretical maximum of 4.3 billion addresses, plus private addresses in combination with NAT.
- IPv6 larger 128-bit address space provides for 340 undecillion addresses.
- IPv6 fixes the limitations of IPv4 and includes additional enhancements, such as ICMPv6.

IPv4 and **IPv6** Coexistence

The migration techniques can be divided into three categories: Dual-stack, Tunnelling, and Translation.

Dual-stack

Dual-stack: Allows IPv4 and IPv6 to coexist on the same network. Devices run both IPv4 and IPv6 protocol stacks simultaneously.

IPv4 and IPv6 Coexistence (cont.)

Tunnelling

Tunnelling: A method of transporting an IPv6 packet over an IPv4 network. The IPv6 packet is encapsulated inside an IPv4 packet.

IPv4 and IPv6 Coexistence (cont.)

Translation

Translation: The Network Address Translation 64 (NAT64) allows IPv6-enabled devices to communicate with IPv4-enabled devices using a translation technique similar to NAT for IPv4. An IPv6 packet is translated to an IPv4 packet, and vice versa.

IPv6 Addressing

Hexadecimal Number System

- Hexadecimal is a base sixteen system.
- Base 16 numbering system uses the numbers 0 to 9 and the letters A to F.
- Four bits (half of a byte) can be represented with a single hexadecimal value.

	1	
Hexadecimal	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

IPv6 Addressing

Hexadecimal Number System (cont.)

Look at the binary bit patterns that match the decimal and hexadecimal values

Hexadecimal	Decimal	Binary
00	0	0000 0000
01	1	0000 0001
02	2	0000 0010
03	3	0000 0011
04	4	0000 0100
05	5	0000 0101
06	6	0000 0110
07	7	0000 0111
08	8	0000 1000
0A	10	0000 1010
0F	15	0000 1111
10	16	0001 0000
20	32	0010 0000
40	64	0100 0000
80	128	1000 0000
C0	192	1100 0000
□ CA	202	1100 1010
F0	240	1111 0000
FF	255	1111 1111

IPv6 Addressing

IPv6 Address Representation

- 128 bits in length and written as a string of hexadecimal values
- In IPv6, 4 bits represents a single hexadecimal digit, 32 hexadecimal value = IPv6 address

2001:0DB8:0000:1111:0000:0000:0000:0200

FE80:0000:0000:0000:0123:4567:89AB:CDEF

- Hextet used to refer to a segment of 16 bits or four hexadecimals
- Can be written in either lowercase or uppercase

IPv6 Address Representation (cont.)

Rule 1- Omitting Leading 0s

- The first rule to help reduce the notation of IPv6 addresses is any leading 0s (zeros) in any 16-bit section or hextet can be omitted.
- 01AB can be represented as 1AB.
- 09F0 can be represented as 9F0.
- 0A00 can be represented as A00.
- 00AB can be represented as AB.

Preferred	2001:0DB8:000A:1000:0000:0000:0000:0100
No leading 0s	2001: DB8: A:1000: 0: 0: 100
Compressed	2001:DB8:A:1000:0:0:100

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Rule 2 - Omitting All 0 Segments

- A double colon (::) can replace any single, contiguous string of one or more 16bit segments (hextets) consisting of all 0's.
- Double colon (::) can only be used once within an address otherwise the address will be ambiguous.
- Known as the compressed format.

Preferred	FE80:0000:0000:0000:0123:4567:89AB:CDEF
Omit leading 0s	FE80: 0: 0: 123:4567:89AB:CDEF
Compressed	FE80::123:4567:89AB:CDEF

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

- IPv6 does not use the dotted-decimal subnet mask notation
- Prefix length indicates the network portion of an IPv6 address using the following format:
 - IPv6 address/prefix length
 - Prefix length can range from 0 to 128
 - Typical prefix length is /64

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

There are three types of IPv6 addresses:

- Unicast
- Multicast
- Anycast.

Note: IPv6 does not have broadcast addresses.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1

Types of IPv6 Addresses

IPv6 Unicast Addresses

Unicast

- Uniquely identifies an interface on an IPv6-enabled device.
- A packet sent to a unicast address is received by the interface that is assigned that address.

IPv6 Unicast Addresses

Types of IPv6 Addresses

IPv6 Unicast Addresses

Global Unicast

- Similar to a public IPv4 address
- Globally unique
- Internet routable addresses
- Can be configured statically or assigned dynamically

Link-local

- Used to communicate with other devices on the same local link
- Confined to a single link; not routable beyond the link

Loopback

- Used by a host to send a packet to itself and cannot be assigned to a physical interface.
- All-0s except for the last bit, represented as ::1/128 or just ::1.

Unspecified Address

- All-0's address represented as ::/128 or just ::
- Cannot be assigned to an interface and is only used as a source address.
- An unspecified address is used as a source address when the device does not yet have a permanent IPv6 address or when the source of the packet is irrelevant to the destination.

Unique Local

- Similar to private addresses for IPv4.
- Used for local addressing within a site or between a limited number of sites.
- In the range of FC00::/7 to FDFF::/7.

IPv4 Embedded (not covered in this course)

Used to help transition from IPv4 to IPv6.

IPv6 Link-Local Unicast Addresses

- Every IPv6-enabled network interface is REQUIRED to have a linklocal address
- Enables a device to communicate with other IPv6-enabled devices on the same link and only on that link (subnet)
- FE80::/10 range, first 10 bits are 1111 1110 10xx xxxx
- 1111 1110 1000 0000 (FE80) 1111 1110 1011 1111 (FEBF)

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPv6 Link-Local Unicast Addresses

Packets with a source or destination link-local address cannot be routed beyond the link from where the packet originated.

IPv6 Unicast Addresses

Structure of an IPv6 Global Unicast Address

- IPv6 global unicast addresses are globally unique and routable on the IPv6 Internet
- Equivalent to public IPv4 addresses

Currently, only global unicast addresses with the first three bits of 001 or 2000::/3 are being assigned

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPv6 Unicast Addresses Structure of an IPv6 Global Unicast Address

A global unicast address has three parts: Global Routing Prefix, Subnet ID, and Interface ID.

- Global Routing Prefix is the prefix or network portion of the address assigned by the provider, such as an ISP, to a customer or site, currently, RIR's assign a /48 global routing prefix to customers.
- 2001:0DB8:ACAD::/48 has a prefix that indicates that the first 48 bits (2001:0DB8:ACAD) is the prefix or network portion.

IPv6 Unicast Addresses Structure of an IPv6 Global Unicast Address (cont.)

- Subnet ID is used by an organization to identify subnets within its site
- Interface ID
 - Equivalent to the host portion of an IPv4 address.
 - Used because a single host may have multiple interfaces, each having one or more IPv6 addresses.

Reading a Global Unicast Address

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPv6 Unicast Addresses

Static Configuration of a Global Unicast Address


```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ipv6 address 2001:db8:acad:1::1/64
R1(config-if) #no shutdown
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if) #ipv6 address 2001:db8:acad:2::1/64
R1(config-if) #no shutdown
R1(config-if) #exit
R1(config-if) #exit
R1(config-if) #ipv6 address 2001:db8:acad:3::1/64
R1(config-if) #ipv6 address 2001:db8:acad:3::1/64
R1(config-if) #clock rate 56000
R1(config-if) #no shutdown
```


Windows IPv6 Setup

IPv6 Unicast Addresses

Dynamic Link-local Addresses

Link-Local Address

- After a global unicast address is assigned to an interface, an IPv6enabled device automatically generates its link-local address.
- Must have a link-local address that enables a device to communicate with other IPv6-enabled devices on the same subnet.
- Uses the link-local address of the local router for its default gateway
 IPv6 address.
- Routers exchange dynamic routing protocol messages using linklocal addresses.
- Routers' routing tables use the link-local address to identify the nexthop router when forwarding IPv6 packets.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Dynamic Link-local Addresses

Dynamically Assigned

The link-local address is dynamically created using the FE80::/10 prefix and the Interface ID.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Static Link-local Addresses

Configuring Link-local

```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ipv6 address fe80::1 ?
link-local Use link-local address

R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #exit
R1(config-if) #exit
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #ipv6 address fe80::1 link-local
```


Verifying IPv6 Address Configuration

Each interface has two IPv6 addresses -

- global unicast address that was configured
- 2. one that begins with FE80 is automatically added as a link-local unicast address

IPv6 Global Unicast Addresses

Verifying IPv6 Address Configuration

```
R1#show ipv6 route
IPv6 Routing Table - default - 7 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user
Static
<output omitted>
   2001:DB8:ACAD:1::/64 [0/0]
    via GigabitEthernet0/0, directly connected
   2001:DB8:ACAD:1::1/128 [0/0]
    via GigabitEthernet0/0, receive
   2001:DB8:ACAD:2::/64 [0/0]
    via GigabitEthernet0/1, directly connected
   2001:DB8:ACAD:2::1/128 [0/0]
    via GigabitEthernet0/1, receive
   2001:DB8:ACAD:3::/64 [0/0]
    via Serial0/0/0, directly connected
    2001:DB8:ACAD:3::1/128 [0/0]
    via Serial0/0/0, receive
   FF00::/8 [0/0]
    via Nullo, receive
R1#
```


9.3 Design Considerations for IPv6

Cisco | Networking Academy® | Mind Wide Open™

Subnetting an IPv6 Network

Subnetting Using the Subnet ID

An IPv6 Network Space is subnetted to support hierarchical, logical design of the network

IPv6 Subnetting IPv6 Subnet Allocation 2001:0DB8:ACAD:0001::/64 Address Block: 2001:0DB8:ACAD::/48 2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 G0/1 2001:0DB8:ACAD:0002::/64 5 subnets S0/0/0 2001:0DB8:ACAD:0003::/64 allocated from 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 65,536 available 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 subnets PC3 G0/0 S0/0/0 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 PC4 G0/1 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:FFFF::/64

Subnetting an IPv6 Network

Subnetting into the Interface ID

IPv6 bits can be borrowed from the interface ID to create additional IPv6 subnets.

Cisco | Networking Academy® | Mind Wide Open™