# HCC/HCF4095B HCC/HCF4096B

### GATE J-K MASTER-SLAVE FLIP-FLOPS

- 16 MHz TOGGLE RATE (typ.) AT Vpp - Vss = 10V
- **GATED INPUTS**
- QUIESCENT CURRENT SPECIFIED TO 20v FOR HCC DEVICE
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100 nA AT 18V AND 25oC FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD No 13 A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

#### **DESCRIPTION**

The **HCC4095B/4096B** (extended temperature range) and **HCF4095B/4096B** (intermediate temperature range) are monolithic integrated circuits, available in 14 lead dual in-line plastic or ceramic package and plastic micropackage.

The **HCC/HCF4095B** and **HCC/HCF4096B** are J-K Master-Slave Flip-Flops featuring separate AND gating of multiple J and Kinputs. The gated J-Kinput control transfer of information into the master section during clocked operation. Information on the J-K

inputs is transferred to the Q and  $\overline{Q}$  outputs on the positive edge of the clock pulse. SET and RESET inputs (active high) are provided for asynchronous operation.



#### **PIN CONNECTIONS**



September 1988 1/13

#### **FUNCTIONAL DIAGRAMS**



#### **LOGIC DIAGRAM**



#### **TRUTH TABLES**

#### SYNCHRONOUS OPERATION (S=0 R=0)

|     | ore Positive ransition | Outputs After Positive<br>Clock Transition |   |  |
|-----|------------------------|--------------------------------------------|---|--|
| J * | K *                    | Q                                          | Q |  |
| 0   | 0                      | No Change                                  |   |  |
| 0   | 1                      | 0                                          | 1 |  |
| 1   | 0                      | 1 0                                        |   |  |
| 1   | 1                      | Toggles                                    |   |  |

#### ASYNCHRONOUS OPERATION (J and K DON'T CARE)

| S | R | Q     | Q     |
|---|---|-------|-------|
| 0 | 0 | No CI | hange |
| 0 | 1 | 0     | 1     |
| 1 | 0 | 1     | 0     |
| 1 | 1 | 0     | 0     |

 $<sup>0 =</sup> V_{SS}, 1 = V_{DD}$ 



<sup>\*</sup> For 4095B J = J1 • J2 • <u>J3</u>, K = K1 • K2 • <u>K3</u> \* For 4095B J = J1 • J2 • <u>J3</u>, K = K1 • K2 • <u>K3</u>

#### **ABSOLUTE MAXIMUM RATING**

| Symbol            | Parameter                                                               | Value                         | Unit     |
|-------------------|-------------------------------------------------------------------------|-------------------------------|----------|
| V <sub>DD</sub> * | Supply Voltage: HCC Types HCF Types                                     | -0.5 to +20<br>-0.5 to +18    | V        |
| Vi                | Input Voltage                                                           | -0.5 to V <sub>DD</sub> + 0.5 | V        |
| II                | DC Input Current (any one input)                                        | ± 10                          | mA       |
| P <sub>tot</sub>  | Total Power Dissipation (per package) Dissipation per Output Transistor | 200                           | mW       |
|                   | for Top = Full Package Temperature Range                                | 100                           | mW       |
| T <sub>op</sub>   | Operating Temperature: <b>HCC</b> Types <b>HCF</b> Types                | -55 to +125<br>-40 to +85     | °C<br>°C |
| T <sub>stg</sub>  | Storage Temperature                                                     | -65 to +150                   | °C       |

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol   | Parameter                        | Value                | Unit |
|----------|----------------------------------|----------------------|------|
| $V_{DD}$ | Supply Voltage: HCC Types        | 3 to 18              | V    |
|          | HCF Types                        | 3 to 15              | V    |
| $V_{I}$  | Input Voltage                    | 0 to V <sub>DD</sub> | V    |
| Top      | Operating Temperature: HCC Types | -55 to +125          | °C   |
|          | HCF Types                        | -40 to +85           | °C   |

<sup>\*</sup> All voltage values are referred to V<sub>SS</sub> pin voltage.

#### STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

|                                   |             |        |      | Test Con | ditios |                 | Value |      |       |                   |      |       |      |      |
|-----------------------------------|-------------|--------|------|----------|--------|-----------------|-------|------|-------|-------------------|------|-------|------|------|
| Symbol                            | Parame      | ter    | (V)  | Vo       | lo     | V <sub>DD</sub> | TLO   | w *  |       | 25 °C             |      | Тню   | эн * | Unit |
|                                   |             |        |      | (V)      | (μA)   | (V)             | Min.  | Max. | Min.  | Тур.              | Max. | Min.  | Max. |      |
| ΙL                                | Quiescent   |        | 0/5  |          |        | 5               |       | 1    |       | 0.02              | 1    |       | 30   |      |
|                                   | Current     | HCC    | 0/10 |          |        | 10              |       | 2    |       | 0.02              | 2    |       | 60   |      |
|                                   |             | Types  | 0/15 |          |        | 15              |       | 4    |       | 0.02              | 4    |       | 120  | ^    |
|                                   |             |        | 0/20 |          |        | 20              |       | 20   |       | 0.04              | 20   |       | 600  | μΑ   |
|                                   |             | HCF    | 0/5  |          |        | 5               |       | 4    |       | 0.02              | 4    |       | 30   |      |
|                                   |             | Types  | 0/10 |          |        | 10              |       | 8    |       | 0.02              | 8    |       | 60   |      |
|                                   |             | 1,700  | 0/15 |          |        | 15              |       | 16   |       | 0.02              | 16   |       | 120  |      |
| VoH                               | Output High | •      | 0/5  |          | < 1    | 5               | 4.95  |      | 4.95  |                   |      | 4.95  |      |      |
|                                   | Voltage     |        | 0/10 |          | < 1    | 10              | 9.95  |      | 9.95  |                   |      | 9.95  |      | V    |
|                                   |             |        | 0/15 |          | < 1    | 15              | 14.95 |      | 14.95 |                   |      | 14.95 |      |      |
| Vol                               | Output Low  |        | 5/0  |          | < 1    | 5               |       | 0.05 |       |                   | 0.05 |       | 0.05 |      |
|                                   | Voltage     |        | 10/0 |          | < 1    | 10              |       | 0.05 |       |                   | 0.05 |       | 0.05 | V    |
|                                   |             |        | 15/0 |          | < 1    | 15              |       | 0.05 |       |                   | 0.05 |       | 0.05 |      |
| V <sub>IH</sub>                   | Input High  |        |      | 4.5      | < 1    | 5               | 3.5   |      | 3.5   |                   |      | 3.5   |      |      |
|                                   | Voltage     |        |      | 9        | < 1    | 10              | 7     |      | 7     |                   |      | 7     |      | V    |
|                                   |             |        |      | 13.5     | < 1    | 15              | 11    |      | 11    |                   |      | 11    |      |      |
| V <sub>IL</sub>                   | Input Low   |        |      | 0.5      | < 1    | 5               |       | 1.5  |       |                   | 1.5  |       | 1.5  |      |
|                                   | Voltage     |        |      | 1        | < 1    | 10              |       | 3    |       |                   | 3    |       | 3    | V    |
|                                   |             |        |      | 1.5      | < 1    | 15              |       | 4    |       |                   | 4    |       | 4    |      |
| Іон                               | Output      |        | 0/5  | 2.5      |        | 5               | -2    |      | -1.6  | -3.2              |      | -1.15 |      |      |
|                                   | Drive       | HCC    | 0/5  | 4.6      |        | 5               | -0.64 |      | -0.51 | -1                |      | -0.36 |      |      |
|                                   | Current     | Types  | 0/10 | 9.5      |        | 10              | -1.6  |      | -1.3  | -2.6              |      | -0.9  |      |      |
|                                   |             |        | 0/15 | 13.5     |        | 15              | -4.2  |      | -3.4  | -6.8              |      | -2.4  |      | mA   |
|                                   |             |        | 0/5  | 2.5      |        | 5               | -1.53 |      | -1.36 | -3.2              |      | -1.1  |      |      |
|                                   |             | HCF    | 0/5  | 4.6      |        | 5               | -0.52 |      | -0.44 | -1                |      | -0.36 |      |      |
|                                   |             | Types  | 0/10 | 9.5      |        | 10              | -1.3  |      | -1.1  | -2.6              |      | -0.9  |      |      |
|                                   |             |        | 0/15 | 13.5     |        | 15              | -3.6  |      | -3.0  | -6.8              |      | -2.4  |      |      |
| loL                               | Output      | нсс    | 0/5  | 0.4      |        | 5               | 0.64  |      | 0.51  | 1                 |      | 0.36  |      |      |
|                                   | Sink        | Types  | 0/10 | 0.5      |        | 10              | 1.6   |      | 1.3   | 2.6               |      | 0.9   |      |      |
| Curre                             | Current     | Types  | 0/15 | 1.5      |        | 15              | 4.2   |      | 3.4   | 6.8               |      | 2.4   |      | mA   |
|                                   |             | HCF    | 0/5  | 0.4      |        | 5               | 0.52  |      | 0.44  | 1                 |      | 0.36  |      |      |
|                                   |             | Types  | 0/10 | 0.5      |        | 10              | 1.3   |      | 1.1   | 2.6               |      | 0.9   |      |      |
|                                   |             | 1,7003 | 0/15 | 1.5      |        | 15              | 3.6   |      | 3.0   | 6.8               |      | 2.4   |      |      |
| I <sub>IH</sub> , I <sub>IL</sub> | Input Leaka | ge     | 0/18 | - ا برم  | nut    | 18              |       | ±0.1 |       | ±10 <sup>-5</sup> | ±0.1 |       | ±1   | ^    |
|                                   | Current     | -      | 0/15 | Any In   | put    | 15              |       | ±0.3 |       | ±10 <sup>-5</sup> | ±0.3 |       | ±1   | μΑ   |
| Cı                                | Input Capac | itance |      | Any In   | put    |                 |       |      |       | 5                 | 7.5  |       |      | pF   |

<sup>\*</sup> T<sub>LOW</sub> = -55 °C for **HCC** device: -40 °C for **HCF** device.

The Noise Margin for both "1" and "0" level is: 1V min. with  $V_{DD}$  = 5 V, 2 V min. with  $V_{DD}$  = 10 V, 2.5 V min. with  $V_{DD}$  = 15 V



<sup>\*</sup> T<sub>HIGH</sub> = +125 °C for **HCC** device: +85 °C for **HCF** device.

**DYNAMIC ELECTRICAL CHARACTERISTICS** ( $T_{amb} = 25$  °C,  $C_L = 50$  pF,  $R_L = 200$  K $\Omega$ , typical temperature coefficent for all  $V_{DD}$  values is 03 %/°C, all input rise and fall times= 20 ns)

| Symbol                        | Parameter                     | Test Conditions    |        | Value |      |      |  |
|-------------------------------|-------------------------------|--------------------|--------|-------|------|------|--|
| Syllibol                      |                               | V <sub>DD</sub> (V | ) Min. | Тур.  | Max. | Unit |  |
| tplH                          | Propagation Delay Time        | 5                  |        | 250   | 500  |      |  |
| t <sub>PHL</sub>              |                               | 10                 |        | 100   | 200  | ns   |  |
|                               |                               | 15                 |        | 75    | 150  |      |  |
| tplH                          | Propagation Delay Time        | 5                  |        | 150   | 300  |      |  |
| t <sub>PHL</sub>              | (Set or Reset)                | 10                 |        | 75    | 150  | ns   |  |
|                               |                               | 15                 |        | 50    | 100  |      |  |
| t <sub>THL</sub>              | Transition Time               | 5                  |        | 100   | 200  |      |  |
| $t_{TLH}$                     |                               | 10                 |        | 50    | 100  | ns   |  |
|                               |                               | 15                 |        | 40    | 80   |      |  |
| f <sub>CL</sub>               | Maximum Clock Input Frequency | 5                  | 3.5    | 7     |      |      |  |
|                               |                               | 10                 | 8      | 16    |      | MHz  |  |
|                               |                               | 15                 | 12     | 24    |      |      |  |
| t <sub>W</sub>                | Clock Pulse Width             | 5                  | 140    | 70    |      |      |  |
|                               |                               | 10                 | 60     | 30    |      | ns   |  |
|                               |                               | 15                 | 40     | 20    |      |      |  |
| t <sub>r</sub> t <sub>f</sub> | Clock Input Rise or Fall Time | 5                  |        |       | 15   |      |  |
|                               |                               | 10                 |        |       | 5    | μs   |  |
|                               |                               | 15                 |        |       | 5    |      |  |
| tw                            | Set or Reset Pulse Width      | 5                  | 200    | 100   |      |      |  |
|                               |                               | 10                 | 100    | 50    |      | ns   |  |
|                               |                               | 15                 | 50     | 25    |      |      |  |
| t <sub>setup</sub>            | Data Setup Time               | 5                  | 400    | 200   |      |      |  |
|                               |                               | 10                 | 160    | 80    |      | ns   |  |
|                               |                               | 15                 | 100    | 50    |      |      |  |

Typical Output Low (sink) Current Characteristics



Minimum Output low (sink) Current Characteristics



Typical Output High (source) Current Characteristics



Typical Propagation Delay Time vs Load Capacitance



Typical Clock Frequency vs Supply Voltage (Toggle Mode)



Minimum Output High (source) Current Characteristics



Typical Transition Time vs Load Capacitance



Typical Power Power Dissipation Vs. Input Clock Frequency



#### TYPICAL APPLICATIONS

T-type Flip-Flop



D-type Flip-Flop



### Synchronous Binary Divide by Ten Counter



#### **WAVEFORMS**

Propagation Delay, Transition and Setup Time



Clock Pulse Rise and Fall Time



#### **TEST CIRCUITS**

Quiescent Device Current.



Noise Immunity.



Input Leakage Current.





## **Plastic DIP14 MECHANICAL DATA**

| DIM. |      | mm    |      |       | inch  |       |  |  |
|------|------|-------|------|-------|-------|-------|--|--|
|      | MIN. | TYP.  | MAX. | MIN.  | TYP.  | MAX.  |  |  |
| a1   | 0.51 |       |      | 0.020 |       |       |  |  |
| В    | 1.39 |       | 1.65 | 0.055 |       | 0.065 |  |  |
| b    |      | 0.5   |      |       | 0.020 |       |  |  |
| b1   |      | 0.25  |      |       | 0.010 |       |  |  |
| D    |      |       | 20   |       |       | 0.787 |  |  |
| E    |      | 8.5   |      |       | 0.335 |       |  |  |
| е    |      | 2.54  |      |       | 0.100 |       |  |  |
| e3   |      | 15.24 |      |       | 0.600 |       |  |  |
| F    |      |       | 7.1  |       |       | 0.280 |  |  |
| I    |      |       | 5.1  |       |       | 0.201 |  |  |
| L    |      | 3.3   |      |       | 0.130 |       |  |  |
| Z    | 1.27 |       | 2.54 | 0.050 |       | 0.100 |  |  |



## **Ceramic DIP14/1 MECHANICAL DATA**

| DIM. |      | mm    |      | inch  |       |       |  |  |
|------|------|-------|------|-------|-------|-------|--|--|
| J    | MIN. | TYP.  | MAX. | MIN.  | TYP.  | MAX.  |  |  |
| Α    |      |       | 20   |       |       | 0.787 |  |  |
| В    |      |       | 7.0  |       |       | 0.276 |  |  |
| D    |      | 3.3   |      |       | 0.130 |       |  |  |
| E    | 0.38 |       |      | 0.015 |       |       |  |  |
| e3   |      | 15.24 |      |       | 0.600 |       |  |  |
| F    | 2.29 |       | 2.79 | 0.090 |       | 0.110 |  |  |
| G    | 0.4  |       | 0.55 | 0.016 |       | 0.022 |  |  |
| Н    | 1.17 |       | 1.52 | 0.046 |       | 0.060 |  |  |
| L    | 0.22 |       | 0.31 | 0.009 |       | 0.012 |  |  |
| М    | 1.52 |       | 2.54 | 0.060 |       | 0.100 |  |  |
| N    |      |       | 10.3 |       |       | 0.406 |  |  |
| Р    | 7.8  |       | 8.05 | 0.307 |       | 0.317 |  |  |
| Q    |      |       | 5.08 |       |       | 0.200 |  |  |



## **SO14 MECHANICAL DATA**

| DIM.   |      | mm   |       |        | inch  |       |  |  |  |
|--------|------|------|-------|--------|-------|-------|--|--|--|
| Dilvi. | MIN. | TYP. | MAX.  | MIN.   | TYP.  | MAX.  |  |  |  |
| Α      |      |      | 1.75  |        |       | 0.068 |  |  |  |
| a1     | 0.1  |      | 0.2   | 0.003  |       | 0.007 |  |  |  |
| a2     |      |      | 1.65  |        |       | 0.064 |  |  |  |
| b      | 0.35 |      | 0.46  | 0.013  |       | 0.018 |  |  |  |
| b1     | 0.19 |      | 0.25  | 0.007  |       | 0.010 |  |  |  |
| С      |      | 0.5  |       |        | 0.019 |       |  |  |  |
| c1     |      |      | 45°   | (typ.) |       |       |  |  |  |
| D      | 8.55 |      | 8.75  | 0.336  |       | 0.344 |  |  |  |
| Е      | 5.8  |      | 6.2   | 0.228  |       | 0.244 |  |  |  |
| е      |      | 1.27 |       |        | 0.050 |       |  |  |  |
| e3     |      | 7.62 |       |        | 0.300 |       |  |  |  |
| F      | 3.8  |      | 4.0   | 0.149  |       | 0.157 |  |  |  |
| G      | 4.6  |      | 5.3   | 0.181  |       | 0.208 |  |  |  |
| L      | 0.5  |      | 1.27  | 0.019  |       | 0.050 |  |  |  |
| М      |      |      | 0.68  |        |       | 0.026 |  |  |  |
| S      |      |      | 8° (ı | max.)  |       |       |  |  |  |



### **PLCC20 MECHANICAL DATA**

| DIM.     |      | mm   |       | inch  |       |       |  |
|----------|------|------|-------|-------|-------|-------|--|
| <b>5</b> | MIN. | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |  |
| А        | 9.78 |      | 10.03 | 0.385 |       | 0.395 |  |
| В        | 8.89 |      | 9.04  | 0.350 |       | 0.356 |  |
| D        | 4.2  |      | 4.57  | 0.165 |       | 0.180 |  |
| d1       |      | 2.54 |       |       | 0.100 |       |  |
| d2       |      | 0.56 |       |       | 0.022 |       |  |
| E        | 7.37 |      | 8.38  | 0.290 |       | 0.330 |  |
| е        |      | 1.27 |       |       | 0.050 |       |  |
| e3       |      | 5.08 |       |       | 0.200 |       |  |
| F        |      | 0.38 |       |       | 0.015 |       |  |
| G        |      |      | 0.101 |       |       | 0.004 |  |
| М        |      | 1.27 |       |       | 0.050 |       |  |
| M1       |      | 1.14 |       |       | 0.045 |       |  |



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A



This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.