Partie III. Langages unaires et automates (1h15mn)

On s'intéresse aux langages sur l'alphabet $\Sigma = \{a\}$; un tel langage est dit *unaire*. Un automate reconnaissant un langage unaire sera dit *unaire*. Lorsqu'on dessinera un automate unaire, il ne sera pas utile de faire figurer les étiquettes des transitions, toutes ces étiquettes étant l'étiquette a. C'est ce qui est fait dans cet énoncé.

Dans un automate unaire, on appelle *chemin* une suite q_1, \ldots, q_p d'états telle que, pour i compris entre 1 et p, il existe une transition de q_{i-1} vers q_i ; on dit qu'il s'agit d'un chemin de q_1 à q_p . On appelle *circuit* un chemin q_1, \ldots, q_p tel qu'il existe une transition de q_p vers q_1 .

Dans cet exercice, tous les automates considérés seront finis et auront un et un seul état initial. On dit qu'un automate est $\acute{e}mond\acute{e}$ si, pour tout état q, il existe d'une part un chemin de l'état initial à q et d'autre part un chemin de q à un état final.

On rappelle qu'un langage non vide est rationnel si et seulement s'il est reconnu par un automate ou encore si et seulement s'il est reconnu par un automate déterministe émondé.

Soient α et β deux entiers positifs ou nuls. On note $L(\alpha, \beta)$ le langage unaire défini par :

$$L(\alpha, \beta) = \{ a^{\alpha k + \beta} / k \in \mathbb{N} \}$$

- **Q 1.** Donner sans justification une condition nécessaire et suffisante pour que $L(\alpha, \beta)$ soit fini. Dans le cas où cette condition est satisfaite, donner sans justification le cardinal de $L(\alpha, \beta)$.
- **Q 2.** On considère l'automate A_1 ci-dessous. Indiquer sans justification deux entiers α_1, β_1 tels que A_1 reconnaisse le langage $L(\alpha_1, \beta_1)$.

 \mathbf{Q} 3. On considère l'automate A_2 ci-dessous :

Automate A_2

On note L_2 le langage reconnu par A_2 . Indiquer sans justification quatre entiers $\alpha_2, \beta_2, \alpha_3, \beta_3$ tels que A_2 reconnaisse le langage $L_2 = L(\alpha_2, \beta_2) \cup L(\alpha_3, \beta_3)$.

- **Q 4.** Construire un automate déterministe émondé A_3 en appliquant la procédure de déterminisation à l'automate A_2 .
- **Q 5.** En s'appuyant sur l'automate A_3 , indiquer sans justification cinq entiers $\alpha_4, \beta_4, \beta_5, \beta_6, \beta_7$ tel que A_3 reconnaisse le langage $L_3 = L(\alpha_4, \beta_4) \cup L(\alpha_4, \beta_5) \cup L(\alpha_4, \beta_6) \cup L(\alpha_4, \beta_7)$ (remarque : le langage L_3 est égal par ailleurs au langage L_2).

On dit ci-dessous qu'un automate est de la forme F si, en omettant les états finals, il peut se tracer selon le schéma ci-dessous :

Le chemin q_0, \ldots, q_{r-1} peut être vide, auquel cas on a r=0. Le circuit q_r, \ldots, q_s ne doit pas être vide mais on peut avoir r=s avec une transition de l'état q_r vers lui même (un tel circuit s'appelle aussi une boucle). On constate que les automates A_1 et A_3 sont de la forme F, mais non A_2 .

Q 6. Dessiner sans justification un automate de la forme F qui reconnaît le langage L(1,2). On fera figurer le ou les états finals.

ATTENTION : on ne demande aucune justification mais uniquement de tracer un automate de la forme F en choisissant correctement les longueurs du chemin et du circuit et en ajoutant le ou les état(s) final(s).

- **Q 7.** Dessiner un automate de la forme F qui reconnaît le langage $L(2,3) \cup L(5,2)$. On fera figurer le ou les état(s) final(s). Comme à la question précédente, on ne demande aucune justification.
- **Q 8.** En s'inspirant de la réponse à la question précédente, décrire sans justification un automate de la forme F qui reconnaît le langage $L(2,3) \cap L(5,2)$. Indiquer deux entiers α et β tels que $L(2,3) \cap L(5,2) = L(\alpha,\beta)$.
- **Q 9.** Montrer qu'un automate déterministe émondé qui reconnaît un langage unaire rationnel infini est de la forme F. Donner une condition nécessaire et suffisante portant sur les états finals pour qu'un automate de la forme F reconnaisse un langage infini.
- **Q 10.** Soit L un langage rationnel unaire infini. En s'appuyant sur la question précédente, montrer qu'il existe deux entiers $\alpha \geq 1$ et $\beta \geq 0$ tels que L contient $L(\alpha, \beta)$.
- **Q 11.** On considère une suite $(u_n)_{n\geq 0}$ de nombres entiers positifs ou nuls. On suppose que la suite $(u_{n+1}-u_n)_{n\geq 0}$ est positive et strictement croissante. Soit L le langage défini par

$$L = \{a^{u_n} / n \ge 0\}$$

En utilisant la question précédente, montrer que L n'est pas rationnel.

Q 12. Montrer que le langage L défini par $L = \{a^{n^2}/n \ge 0\}$ n'est pas rationnel.