# Programming Fundamentals: Introduction

# **Binary Code**

Binary numbering is a numbering system with base 2, Computers run on 0s and 1s. These codes represent different numbers, characters and functions.

We can find the decimal number with base 10 by the formula  $(d0 \times 2^0) + (d1 \times 2^1) + \dots + (dn \times 2^n)$ 

# For example 1101

$$(1 \times 2^{0}) + (0 \times 2^{1}) + (1 \times 2^{2}) + (1 \times 2^{3}) = 1 + 0 + 4 + 8 = 13$$
  
The decimal value of **1101** is **13**

We can divide a decimal by 2 until we reach 0 and keep the record of reminders from last to first.

#### For example **12**

$$12/2 = 5$$
,  $6/2 = 2$ ,  $3/2 = 1$ ,  $1/2 = 0$   
0 0 1 1

The binary of **12** is **1100** 

| Decimal<br>Number | Binary<br>Number | 4 Bit<br>Expression<br>(8421) |
|-------------------|------------------|-------------------------------|
| 0                 | 0                | 0000                          |
| 1                 | 1                | 0001                          |
| 2                 | 10               | 0010                          |
| 3                 | 11               | 0011                          |
| 4                 | 100              | 0100                          |
| 5                 | 101              | 0101                          |
| 6                 | 110              | 0110                          |
| 7                 | 111              | 0111                          |
| 8                 | 1000             | 1000                          |
| 9                 | 1001             | 1001                          |

# **Numbering Systems**

There are 2 other numbering systems octal numbering system with base 8 and hexa decimal numbering system with base 16

| Hex<br>base 16 | Decimal<br>base 10 |
|----------------|--------------------|
| 0              |                    |
| 1              | 1                  |
|                |                    |
| 2              | 2                  |
| 3              | 3                  |
| 4              | 4                  |
| 5              | 5                  |
| 6              | 6                  |
| 7              | 7                  |
| 8              | 8                  |
| 9              | 9                  |
| 10             | Α                  |
| 11             | В                  |
| 12             | С                  |
| 13             | D                  |
| 14             | E                  |
| 15             | F                  |

| Octalbase 10 | Decimalbase 10 |
|--------------|----------------|
| 0            | 0              |
| 1            | 1              |
| 2            | 2              |
| 3            | 3              |
| 4            | 4              |
| 5            | 5              |
| 6            | 6              |
| 7            | 7              |
| 8            | 10             |
| 9            | 11             |

#### Unit of Data

**Bit:** The smallest unit of data in computing, it has only two states 1 or 0. A combination of 8 bits is usually called one **Byte**. The table of unites of computational data is bellow.

| Unit             | Bytes          |                        |
|------------------|----------------|------------------------|
| 1 Kilobyte (KB)  | 1024 Bytes     | 10 <sup>3</sup> Bytes  |
| 1 Megabyte (MB)  | 1024 Kilobytes | 10 <sup>6</sup> Bytes  |
| 1 Gigabyte (GB)  | 1024 Megabytes | 10 <sup>9</sup> Bytes  |
| 1 Terabyte (TB)  | 1024 Gigabytes | 10 <sup>12</sup> Bytes |
| 1 Petabyte (PB)  | 1024 Terabytes | 10 <sup>15</sup> Bytes |
| 1 Exabyte (EB)   | 1024 Petabytes | 10 <sup>18</sup> Bytes |
| 1 Zettabyte (ZB) | 1024 Exabytes  | 10 <sup>21</sup> Bytes |

Computer languages are categorized into three types

- Machine Language
- Assembly Language
- High-level Language

**Machine Language:** It is a low-level computer language that is directly understandable by computer hardware.

| Machine Instruction | Machine Operation                                |  |
|---------------------|--------------------------------------------------|--|
| 0000000             | Stop Program                                     |  |
| 0000001             | Turn bulb fully on                               |  |
| 0000010             | Turn bulb fully off                              |  |
| 0000100             | Dim bulb by 10%                                  |  |
| 00001000            | Brighten bulb by 10%                             |  |
| 00010000            | If bulb is fully on, skip over next instruction  |  |
| 0010000             | If bulb is fully off, skip over next instruction |  |
| 0100000             | Go to start of program (address 0)               |  |

#### Languages

**Assembly Language:** It is a low-level computer language that is comprised of some symbolic operators and symbolic names.

load num1
add num2
store sum

**High-level Language:** More human-friendly and easier language and help in developing complex computer algorithms.

Sum = num1 + num2

The flowchart is a graphical representation of an algorithm. There are some basic symbols that help to determine the processing of algorithm

Display

Num3 is

not a

positive

Number

-No--▶



## Algorithm

An algorithm is simply a set of steps used to complete a specific task. For the addition of two numbers, the example algorithm is

Step 1: Start

Step 2: Declare three variables num1, num2 and sum.

Step 3: Read variables num1 and num2 from the user.

**Step 4:** Add num1 and num2 and save the calculation in sum.

**Step 5:** Display the sum.

Step 6: Stop.

#### Pseudo Code

expression in a formally-styled natural language rather than in a programming language but in the form of logical notation.

For example (Checking which number is big)

```
if num1 is greater than num2
    print num1 is greater.
if num2 is greater than num1
    print num2 is greater.
else
    print Both are the same.
```

# Pseudo Code

```
input limit
initialize counter to Zero
while counter is less than limit
print counter
add 1 to counter
end while
```

### Exercise

Write a Pseudo Code to print the biggest number in a list of 3 numbers.

Write the Pseudo Code of the prime numbers between 0 to 15.