Standalone Deep-Leaning

- **112.** [#12.Lab] Run Pytorch on GPU
- **113.** [#13.Lec] Overfitting, Regularization
- [#14.Lec] Hyperparameter Tuning Guide

CPU VS GPU Architecture

CPU

Central Processing Unit

GPU

Graphics Processing unit

CPU VS GPU Architecture

How to use GPU with Pytorch?

```
In [ ]: model = MLPModel(784, 10, [1000])
  device = torch.device('cuda:0' if torch.cuda.is_available() else 'gpu')
  model.to(device)
```

Overfitting

Model Capacity

Model Capacity가 높아질 수록 더 복잡한 현상을 예측할 수 있다.

계속 capacity를 늘리면?

Overfitting

True Risk

- ※ 실제 loss 값
- ※ 모든 데이터 다 구할 수 없음ex) 전세계 모든 사람의 얼굴 표정

Empirical Risk

- **※** training set에 대한 loss 값
- ※ 구할 수 있는 데이터

Empirical Risk 🖳

True Risk 🚹

Overfitting

Overfitting을 해결하려면?

- ▼ Test set과 Training set의 분리
- ▼ 적절한 capacity 찾기
- ☑ 너무 깊게 학습하지 않도록 Training 중단
- **✓** Regularization

Regularizations

Regularization

가중치 벌칙

- 규제항은 훈련집합과 무관하며, 데이터 생성 과정에 내재한 사전 지식에 해당
- 규제항은 매개변수를 작은 값으로 유지하므로 모델의 용량을 제한하는 역할 (수치적 용량을 제한함)
- 큰 가중치에 벌칙을 가해 작은 가중치를 유지하려고 주로 L2놈이나 L1놈을 사용

L1 놈

$$\underbrace{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{규제를 적용한 목적함수}} = \underbrace{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{목적함수}} + \lambda \underbrace{\|\mathbf{\Theta}\|_{1}}_{\text{규제 항}}$$

$$\nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) = \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + \lambda \mathbf{sign}(\mathbf{\Theta})$$

Regularization

L2 놈

$$\underbrace{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{규제를 적용한 목적함수}} = \underbrace{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})}_{\text{목적함수}} + \lambda \underbrace{\|\mathbf{\Theta}\|_2^2}_{\text{규제 항}}$$

$$\nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) = \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + 2\lambda \mathbf{\Theta}$$

Ridge	Lasso
L2-norm regularization	L1-norm regularization
변수 선택 불가능	변수 선택 가능

(a) Standard Neural Net

(b) After applying dropout.

기울기 소실 문제

- ※ 오차 역전파는 출력층으로부터 하나씩 앞으로 되돌아가며 각 층의 가중치를 수정하는 방법
- ※ 가중치를 수정하려면 미분 값, 즉 기울기가 필요함
- 謎 여러 층을 전파할수록 기울기가 점점 사라져 가중치를 수정하기가 어려운 현상

기울기 소실 문제의 원인

활성화 함수로 사용된 시그모이드 함수의 특성 때문 0.3 이하의 값을 반복하여 곱하는 상쇄 효과가 발생

- ※ x가 0보다 작으면 모든 값을 0으로, 0보다 크면 x를 그대로
- ※ 현재 가장 많이 사용되는 활성화 함수
- ※ x가 0보다 크기만 하면 미분값이 1이 됨
- 謎 여러 은닉층을 거쳐 곱해지더라도 맨 처음 층까지 사라지지않고 남아있을 수 있음

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Hyperparameter

최적의 딥러닝 모델 구현을 위해 학습률이나 배치크기, 훈련 반복 횟수, 가중치 초기화 방법 등 인간의 선험적 지식을 기반으로 딥러닝 모델에 설정하는 변수

Purpose of Hyperparameter Tuning?

Increase Model Performance

Reduce True Risk (Generalization Error) of Model

Reduce True Risk on Validation Set, approximately

Model Realated

- ***** Number of hidden layer
- **X** Number of hidden unit
- ***** Activation Function

Optimization Related

- ** Type of Optimizer
- ***** Learning rate
- **X** L2 coef
- ****** Dropout Rate
- ****** Batch Size
- **#** Epoch

```
# 컨볼루션 신경망의 설정

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), input_shape=(28, 28, 1), activation='relu'))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=2))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(10, activation='softmax'))
```

```
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
# 모델 최적화 설정
MODEL DIR = './model/'
if not os.path.exists(MODEL DIR):
    os.mkdir(MODEL DIR)
modelpath="./model/{epoch:02d}-{val loss:.4f}.hdf5"
checkpointer = ModelCheckpoint(filepath=modelpath, monitor='val loss', verbose=1, save best only=True)
early stopping callback = EarlyStopping(monitor='val loss', patience=10)
# 모델의 실행
history = model.fit(X train, Y train, validation data=(X test, Y test),
                    epochs=30, batch_size=200, verbose=0, callbacks=[early_stopping_callback,checkpointer])
```