

Цель работы:

познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

В работе используются:

измерительный микроскоп с опак-иллюминатором, плоско-выпуклая линза; пластинка из чёрного стекла, ртутная лампа типа ДРШ, щель, линзы, призма прямого зрения, объектная шкала.

1 Теория

Рис. 1: Экспериментальная установка

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверх-

ности, находящейся на расстоянии r от оси системы, имеем $r^2 = R^2 - (R-d)^2 = 2Rd - d^2$, где R — радиус кривизны сферической поверхности (рис. 1).

При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{2R} + \frac{\lambda}{2}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r_m' :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)m\lambda R}{2}}$$

2 Экспериментальная установка

Схема экспериментальной установки приведена на рис. 2. Опыт выполняется с помощью измерительного микроскопа. На столик микроскопа помещается держатель с полированной пластинкой из чёрного стекла. На пластинке лежит исследуемая линза.

Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора, коллиматора (щель Sи объектив) и призмы прямого зрения . Эти устройства с помощью рейтеров располагаются на оптической скамье. Свет от монохроматора попадает на расположенный между объективом и окуляром микроскопа опак-иллюминатор (ОИ) специальное устройство, служащее

Рис. 2: Экспериментальная установка

для освещения объекта при работе в отражённом свете. Внутри опак-иллюминатора находится полупрозрачная стеклянная пластинка P, наклоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект. Пластинка может поворачиваться вокруг горизонтальной оси X, опак-иллюминатор вокруг вертикальной оси.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях помощью винтов препаратоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси с помощью микрометрического винта .

Оптическая схема монохроматора позволяет получить в плоскости входного окна опакиллюминатора достаточно хорошо разделённые линии спектра ртутной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, т.е. точка источника и точка наблюдения спектра совпадают. Интерференционная картина не зависит от показателя преломления линзы и определяется величиной зазора между линзой и пластинкой (кольца равной толщины).

Сначала микроскоп настраивается на кольца Ньютона в белом свете (свете ртутной лампы), затем при помощи монохроматора выделить из спектра яркую зелёную линию и провести измерения диаметров колец в монохроматическом свете.

3 Ход работы

После настройки микроскопа проведем измерения диаметров колец Ньютона. Измерения будем проводить в безразмерных единицах окулярной шкалы, переведённых затем в реальную величину с помощью калиброванной объектной шкалы.

Теперь определим калибровку окулярной шкалы. Она равна k=0,1 мм.

Оценим систематическую погрешность измерения величин на окуляре как $\sigma_l=0,02$ (из-за цены деления).

С помощью призмы разобьем свет ртутной лампы на зеленый ($\lambda_g=546$ нм) и желтый ($\lambda_y=578$ нм).

Будем последовательно измерять расстояния l_1 от верхнего края 7-ого «набора» колец до нуля до центра, затем аналогично будем измерять расстояния l_2 от нижнего края до нуля. Результаты занесем в таблицу.

Построим график зависимости радиусов колец от их номера.

Таблица 1: Измерение ди	аметров колец Ньютона
-------------------------	-----------------------

m	Темные кольца			Светлые кольца		
	l_1	l_2	r_m^2	l_1	l_2	$(r'_m)^2$
0	4.71	3.72	0.25	4.15	4.15	0
1	5	3.24	0.77	4.78	3.43	0.46
2	5.45	2.92	1.6	5.16	3.08	1.08
3	5.59	2.65	2.16	5.44	2.79	1.76
4	5.83	2.42	2.91	5.7	2.54	2.5
5	6.02	2.23	3.59	5.91	2.32	3.22
6	6.17	2.06	4.22	6.09	2.11	3.96
7	6.47	1.89	5.24	6.25	1.97	4.58

Рис. 3: График зависимости r_m^2 и $(r_m^\prime)^2$ от номера m

Таблица 2: Расчет апроксимированной прямой y = ax + b для темных колец

	Оценка	Стандартное отклонение
b	0.13	0.08
a	0.70	0.01

Таблица 3: Расчет апроксимированной прямой y = ax + b для светлых колец

		Стандартное отклонение
\overline{b}	-0.17	0.06
a	0.67	0.01

При биениях мы наблюдали следующее количество полос между центрами четких систем $\Delta m=12$. Вычислим отсюда разность длин волн желтого и зеленого света ртутной лампы $\Delta \lambda=\lambda_y-\lambda_g$:

$$(\Delta m + 1)\lambda_g = \Delta m \lambda_y \rightarrow \Delta \lambda = \frac{\lambda_g}{\Delta m} \approx \boxed{45 \text{ HM}}$$

Далее вычислим цену деления окулярнои шкалы. На 5.67 ед. шкалы помещается 60 делении (0.6 мм), т.е.:

$$rac{0,6}{5,67} = 0,106 rac{{}^{
m MM}}{{}^{
m eд.}}$$
 шкалы

Определим радиус кольца. Так как $\frac{r_m^2}{m} = k^2 a,$ отсюда

$$R = \frac{r_m^2}{m\lambda} = [(1.28 \pm 0.02) \text{ cm}]$$

4 Вывод

Мы получили из эксперимента, что разница длин волн желтого и зеленого света ртутной лампы примерно равна $\Delta\lambda=45$ нм, в то время как табличный результат = 33 нм. Это возникает вследствие большой неточности определения числа Δm . Также по графикам зависимости радиусов колец Ньютона от их номеров нам удалось рассчитать радиус линзы $-R=(1,28\pm0,02)$ см.