清华大学第 631 期 博士生学术论坛

活动手册

2021 年 4 月 17 日 北京 清华大学

主办:清华大学研究生院协办:清华大学研究生会

承办:清华大学数学科学系

目录

委员会名单	5
会议日程安排	6
特邀报告	7
17 日上午 (分会场一 (郑裕形讲堂))	7
学生报告时间表	8
17 日上午 (分会场一 (郑裕形讲堂),基础数学与应用数学方向)	t 8
17 日上午 (分会场二 (A304), 概率统计、计算数学与运筹学方向)	. 9
17 日上午(分会场三(A404),应用数学方向)	. 10
学生报告时间表	11
学生报告时间表 17 日下午(分会场一(郑裕形讲堂),基础数学与应用数 学方向)	
17 日下午 (分会场一 (郑裕彤讲堂),基础数学与应用数	t . 11
17 日下午 (分会场一 (郑裕彤讲堂),基础数学与应用数学方向)	t 11 t 12
17 日下午 (分会场一 (郑裕彤讲堂),基础数学与应用数学方向)	11
17 日下午 (分会场一 (郑裕彤讲堂),基础数学与应用数学方向)	11
17日下午(分会场一(郑裕彤讲堂),基础数学与应用数学方向)	11

委员会名单

▶ 指导委员会:

邹文明老师 李 思老师 黄忠亿老师 陈志杰老师

▶ 学术委员会:

陈炳仪 陈 敬 桂政平 武丽娜

▶ 组织委员会:

邓邦明 陈志杰 吴承原 程泽涛 张港回

论坛期间如果发生任何问题请联系:

吴承原 15651779535 程泽涛 18810833216

会议日程安排

4月17日

08:20~08:40 注册

08:40~08:50 开幕式,系主任邹文明致辞(分会场一)

08:50~09:00 赵访熊奖学金颁奖(分会场一)

09:00~09:45 特邀报告: 刘正伟教授(分会场一)

09:45~10:00 茶歇

10:00~12:05 学术报告(分会场一,分会场二,分会场三)

12:05~13:30 午餐及中午休息

13:30~15:10 学术报告(分会场一,分会场二,分会场三)

15:10~15:30 茶歇

15:30~18:00 学术报告 (分会场一, 分会场二, 分会场三)

特邀报告

17 日上午 (分会场一 (郑裕形讲堂))

报告題目 TITLE	量子傅立叶分析						
报告人	刘正伟教授 单位 清华大学						
报告摘要	量子傅里叶分析是研究量子对称性的 和拓扑性质。这个报告中,我们将分果、应用和最新进展。	•					

学生报告时间表

17 日上午 (分会场一 (郑裕彤讲堂),基础数学与应用数学方向)

时间	姓名	題目			
10:00~10:25	涂绪山	Regularity for Monge-Ampére Equations with oblique data			
10:25~10:50	陈炳仪	Explicit bound of the discrepancy of divisors computing minimal log discrepancies on surfaces			
10:50~11:15	钟一鸣	A Special Type of Sextics, the Related K3 Surfaces and Deligne-Mostow's Theory			
11:15~11:40	关志达	Four dimensional biharmonic hypersurfaces in nonze space forms have constant mean curvature			
11:40~12:05	李培根	Exponential sums and rigid cohomology			

学生报告时间表

17 日上午 (分会场二 (A304), 概率统计、计算数学与运筹学方向)

时间	姓名	題目		
10:00~10:25	陈昌	Efficient Computations for Phase Field Crystal Models		
10:25~10:50	苗浡瑞	A novel spectral method for the semi-classical Schrödinger equation based on the Gaussian wave-packet transform		
10:50~11:15	谢鹏程	Derivative-free optimization methods for special constrained grey box optimization problems		
11:15~11:40	盖阔	深度神经网络与 Wasserstein 空间的测地线		
11:40~12:05	王玖鳞	Closing the gap between necessary and sufficient conditions for local non-global minimizer of trust region subproblem		

学生报告时间表

17 日上午 (分会场三 (A404), 应用数学方向)

10:00~10:25	郭淑媛	On the Optimal Locations of Nodes of Sturm-Liouville Problems		
10:25~10:50	焦小沛	New classes of finite dimensional filters with non-maximal rank estimation algebra on state dimension n and linear rank n-2		
10:50~11:15	曾泓博	Existence and uniqueness for variational problem from progressive lens design		
11:15~11:40	胡奕啸	带随机采样的冻结高斯波束方法的地震成像研究		
11:40~12:05	刘爽	Spreading and Competition in Periodic and Advective Habitats		

学生报告时间表

17 日下午 (分会场一 (郑裕彤讲堂),基础数学与应用数学方向)

时间	姓名	題目		
13:30~13:55	韩丽娜	Hall polynomials for tame quivers with automorphism		
13:55~14:20	自云鹏	Geometry of the Winger Pencil		
14:20~14:45	蔡书哲	玻色子的玻尔兹曼方程:凝聚与不凝聚		
14:45~15:10	杨佐	Normalized solutions of nonlinear Schrödinger equations		
15:30~15:55	张禾	Irreducible Tensor Modules over Quantum Coordinate Algebra of type A		
15:55~16:20	殷鑫	Positive least energy solutions for k-coupled critical systems involving fractional Laplacian		
16:20~16:45	宣一	Exterior John Domains and Quasisymmetric mappings		
16:45~17:10	王军	On generalized configuration space and its homotopy groups		
17:10~17:35	柳翔	Embeddings of templates in 3-spaces		

学生报告时间表

17 日下午 (分会场二 (A304), 概率统计、计算数学与运筹学方向)

时间	姓名	題目	
13:30~13:55	肖敬松	Consistent community detection approach in the non- parametric weighted stochastic blockmodel with unknown number of communities	
13:55~14:20	宋逸伦	The Pre-commitment KMM Problem in a continuous-time framework	
14:20~14:45	胡家琦	Robust equilibrium strategies in a defined benefit pension plan game	
14:45~15:10	马伟东	Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis and FDR Control With Knockoff Features	

学生报告时间表

17 日下午 (分会场二 (A304), 概率统计、计算数学与运筹学方向)

时间	姓名	題目		
15:30~15:55	陈键	Stochastic Control of a Class of Dynamical Systems via Path Limits		
15:55~16:20	袁冯毅	Retirement decision and optimal consumption-investment under addictive habit persistence		
16:20~16:45	王夏恺	Multi-phase segmentation using modified complex Cahn-Hilliard equations		
16:45~17:10	黄艾彤	Reconstruction of Sparse Polynomials via Quasi- Orthogonal Matching Pursuit Method		
17:10~17:35	郑三棚	A modified moving least-squares suitable for scattered data fitting with outliers		
17:35~18:00	桂升	Molecular Sparse Representation by a 3D Ellipsoid Radial Basis Function Neural Network via L1 Regularization		

学生报告时间表

17 日下午 (分会场三 (A404), 应用数学方向)

时间	姓名	題目		
13:30~13:55	孙祎泽	The distillability of entanglement of bipartite reduced density matrices of a tripartite state		
13:55~14:20	徐子翔	On color isomorphic patterns in proper colorings		
14:20~14:45	张瑾珂	Theory and Design of PID Controller for Nonlinear Uncertain Systems		
14:45~15:10	寿凌云	Global weak solutions for fluid-particle models		
15:30~15:55	赵爽	Outflow/Inflow Problem for Two-Phase Flow		
15:55~16:20	苗慧敏	Feedback particle filter with correlated noises		

附件一 学生报告摘要

基础数学与应用数学方向

报告題目 TITLE	Hall polynomials for tame quivers with automorphism				
作者姓名	韩丽娜	学号	2015311024	导师姓名	邓邦明
关键词	Ringel-Hall alg	gebra; Green's	formula; Hall polyno	omial; Quiver v	with automorphism.
学术	Let Q be a finite quiver together with an automorphism σ , denoted by (Q, σ) . It is known that the pair (Q, σ) defines a family of algebras $\mathfrak{A}(Q, \sigma; q)$ over finite fields \mathbb{F}_q of q elements. In this paper we study Hall polynomials for the algebras $\mathfrak{A}(Q, \sigma; q)$				
报告	under the assumption that Q is a tame quiver. We can define the notion of decom-				
摘要	under the assumption that Q is a tame quiver. We can define the notion of decomposition sequences for (Q, σ) which parameterize isoclasses (=isomorphism classes) of finite dimensional modules over $\mathfrak{A}(Q, \sigma; q)$. The main purpose of this paper is to prove that Hall polynomial exists for each triple of decomposition sequences for (Q, σ) . If σ is an identity automorphism, we recover the main results in both Hubery [Represent. Theory 14 (2010), 355–378] and Deng–Ruan [J. Algebra 475 (2017), 171–206].				

报告題目 TITLE	Geometry of the Winger Pencil				
作者姓名	自云鹏	学号	2016311026	导师姓名	Eduard Looijenga
关键词	Winger Pencil	& Moduli Spa	ce & Icosahedral Syr	mmetry	
学术	We investigate the moduli of genus 10 curves that are endowed with a faithful action of the icosahedral group A_5 . We show among other things that this has				
报告	the structure of a Deligne-Mumford stack whose underlying coarse moduli space essentially consists of two copies of the pencil of plane sextics that was introduced by Winger in 1924, but with the unique unstable member (a triple conic) replaced				
摘要	by Winger in 1924, but with the unique unstable member (a triple conic) replaced by a smooth non-planar curve. The orbifold defined by any member has genus zero and comes with 4 orbifold points. We show that by numbering the points, we get a fine moduli space whose base is naturally a finite cover of $\mathcal{M}_{0,4}$.				

报告题目 TITLE	On the Optimal Locations of Nodes of Sturm-Liouville Problems							
作者姓名	郭淑媛	学号	2017311247	导师姓名	章梅荣			
关键词	_	Eigenfunction; location of node; eigenvalue; Sturm-Liouville operator; complete continu continuous differentiability; optimization problem						
学术	By a node of the Sturm-Liouville problem, it means an interior zero of an eigenfunction. It is well-known that the set of nodes can be used to recover the potentials							
报告	consider noc	les as nonlinea	ar functionals of pote	entials from the	this talk, we will first Lebesgue spaces and s in the usual norms			
摘要	an application tion problem	on, we will devons on the uniq	elop a direct variatio	nal approach to	tes are considered. As a solve some optimizagenfunction when the			

报告題目 TITLE	玻色子的玻尔兹曼方程: 凝聚与不凝聚						
作者姓名	蔡书哲 学号 2019311322 导师姓名 卢旭光						
关键词	玻色子; 硬位势	; 有限实践凝	聚;均衡位势;有限日	时间不凝聚。			
学术							
报告	们论证在此	前提下,如果低		方程能导出粒-	子的玻尔兹曼方程。我 子有有限时间凝聚;而。		
摘要							

报告题目 TITLE	New classes of finite dimensional filters with non-maximal rank estimation algebra on state dimension $\bf n$ and linear rank $\bf n$ -2						
作者姓名	焦小沛	学号	2017311703	导师姓名	丘成栋		
关键词	finite dimensio	onal filters; esti	mation algebra; Wor	ng's Ω -matrix;	non-maximal rank		
学术		-			there has been lots of ecursive filters. In this		
报告	filters with	arbitrary state	e space dimension n	and linear ran	s of finite dimensional k $n-2$. Importantly, the entries of Wong's		
摘要					I can be C^{∞} functions.		

报告題目 TITLE	Regularity for Monge-Ampére Equations with oblique data						
作者姓名	涂绪山	学号	2017311231	导师姓名	简怀玉		
关键词	Monge-Ampére	e equations; N	eumann problem; Sc	hauder estimat	te; Liouville theorem.		
学术	_	· ·	-		ne oblique problem of n. Under suitable as-		
报告	vex solution	s in semi-spac	e, as well as the W^2	$^{,1}, W^{2,p} \text{ and } C$	rem for viscosity con- $C^{2,\alpha}$ estimate. For the ension of the classical		
摘要	schauder est	imate and Lion the space dime	uville theorem for the	e Neumann pro	oblem of Possion equa- o show that our results		

报告题目 TITLE	Explicit bour ancies on sur		screpancy of divis	ors computing m	ninimal log discrep-
作者姓名	陈炳仪	学号	2016311023	导师姓名	丘成栋
关键词	birational geon	netry; minima	l log discrepany		
学术报告	of divisors consurfaces with for their con-	omputing min nout giving an jecture in the	posed a conjecture c nimal log discrepanci explicit bound. In t surface case. Some e	ies. They proved this talk, I will give	heir conjecture for e an explicit bound
摘要	the bound is	optimal.			

报告题目 TITLE	A Special T Theory	ype of Sexti	cs, the Related K	X3 Surfaces	and Deligne-Mostow's
作者姓名	钟一鸣	学号	2016311024	导师姓名	Eduard Looijenga
关键词	singular plane tions	sextic curves, l	K3 surfaces, Deligne-l	Mostow theory	, complex ball uniformiza-
学术	We study m	oduli spaces c	of certain sextic curv	es with singula	arity of degree 3 from
报告摘要	both perspe ways we can	ctives of Delig a describe the We show that	ne-Mostow theory a moduli space via ari	nd periods of thmetic quotie	K3 surfaces. In both nts of complex hyper- as can be unified by a

报告题目 TITLE	Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature						
作者姓名	关志达	学号	2015310999	导师姓名	李海中		
关键词	Biharmonic ma	aps; Biharmon	ic hypersurfaces; Co	enstant mean curv	vature.		
学术 报告	prove that for constant me	our dimension can curvature.	al biharmonic hyper	surfaces in nonze ne positive answe	odazzi equations, we ro space forms have er to the conjecture onal hypersurfaces.		
摘要							

报告题目 TITLE	Exponential sums and rigid cohomology					
作者姓名	李培根	学号	2016311025	导师姓名	扶磊	
关键词	exponential su	ms; rigid coho	mology; Dwork coho	mology.		
学术 报告	defined by B ber to study	erthelot and the the exponent	he Dwork cohomologial sums. Furthermo	y introduced by ore, we can use	n the rigid cohomology y Adolphson and Sper- e the results of Dwork socrystal on the torus.	
摘要						

报告题目 TITLE	Normalized s	Normalized solutions of nonlinear Schrödinger equations							
作者姓名	杨佐 学号 2016311011 导师姓名 邹文								
关键词	Schrödinger equation; Normalized solution; Multiplicity; Orbital stability.								
学术	tion of nonli	Due to its important applications in many physical problems, the normalized solution of nonlinear Schrödinger equations has gradually attracted the attention of a large number of researchers in recent years:							
报告摘要		<	$\begin{cases} -\Delta u + \lambda u = g(u), \\ u \in H^1(\mathbb{R}^N), \int_{\mathbb{R}^N} du du = \int_{\mathbb{R}^N$	$x \in \mathbb{R}^N,$ $u^2 dx = c,$					
"•-~	is unknown. the normaliz	We first introzed solution of	oduce the existence, a single Schrödinger new results related	multiplicity, an equation under	Lagrange multiplier λ ad other properties of r different conditions. zed solution to other				

报告題目 TITLE	Existence and uniqueness for variational problem from progressive lens design						
作者姓名	曾泓博	学号	2018311297	导师姓名	简怀玉		
关键词	Variational pro			tion; fourth-or	der elliptic partial differ-		
学术				<u> </u>	ich is a combination of e the existence for the		
报告	a minimiser	as background	d surfaces to approx	imate the fund	a. Then, choosing such ctional by a quadratic		
摘要	· · · · · · · · · · · · · · · · · · ·	-	existence and unique quadratic functional		olution to the Euler-		

报告题目 TITLE	Irreducible Tensor Modules over Quantum Coordinate Algebra of type A						
作者姓名	张禾	学号	2017311227	导师姓名	张贺春		
关键词	quantum coord	dinate algebra;	irreducible module;	tensor module	; box-diagram.		
学术报告摘要	irreducible t	tensor modules	s over quantum coor	dinate algebra	isaki's construction of when the group is of are studied to get the		

报告題目 TITLE	带随机采样的冻结高斯波束方法的地震成像研究						
作者姓名	胡奕啸	学号	2016311006	导师姓名	黄忠亿		
关键词	高频地震波;	到时地震成像;	随机采样; 冻结高	斯波束方法			
学术 报告	并针对其计	算量的特点提:		结高斯波束方法	地震成像的数值方法, 、, 在保持一定的精度 行方法的验证。		
摘要							

报告题目 TITLE	Positive least energy solutions for k-coupled critical systems involving fractional Laplacian							
作者姓名	殷鑫 学号 2016311010 导师姓名 邹文明							
关键词	k-coupled critial asymptotic below	- · · · · · · · · · · · · · · · · · · ·	actional laplacian; p	ositive least en	nergy solution; existence;			
	_	,	ne following k -coupled	· ·				
学术		$\begin{cases} (-\Delta)^{s} u_{i} + \lambda_{i} u_{i} = \mu_{i} u_{i}^{2^{*}-1} + \sum_{j=1, j \neq i}^{k} \beta_{ij} u_{i}^{\frac{2^{*}}{2}-1} u_{j}^{\frac{2^{*}}{2}} & \text{in } \Omega, \\ u_{i} = 0 & \text{in } \mathbb{R}^{N} \backslash \Omega, i = 1, 2, \cdots, k. \end{cases}$						
报告		($u_i = 0$ in $\mathbb{R}^N \setminus \Omega$	$i=1,2,\cdots$,k.			
摘要	Sobolev crit $\Omega \subset \mathbb{R}^N$ is a with the hor We characte system for t that the leas Moreover, we system in \mathbb{R}^n Besides, we	ical exponent, smooth boun nogeneous Dirize the positive he purely coopst energy of the ve establish the N , as well as C	$N > 2s$, $-\lambda_s(\Omega) <$ ded domain, where λ richlet boundary data we least energy solution perative case $\beta_{ij} > 0$ to e k -coupled system of existence of positional positions of the asymptotic behavior of the expectation of the expectat	$\lambda_i < 0, \mu_i > 0$, $\lambda_s(\Omega)$ is the first im. For of the k -course with $N > 4s$. Hecreases as k give least energy	$=\frac{2N}{N-2s}$ is a fractional $0, \ \beta_{ij} = \beta_{ji} \neq 0$ and t eigenvalue of $(-\Delta)^s$ pled fractional critical It's interesting to see grows.			

报告题目 TITLE	Exterior John Domains and Quasisymmetric mappings						
作者姓名	宣一 学校 中国科学院数学与 导师姓名 刘劲松 系统科学研究院						
关键词	John Domains	, Quasisymme	tric Maps				
学术报告	John Domains, Quasisymmetric Maps An exterior John domain is a John domain which is the exterior of a compact set. We prove that a quasiconformal mapping from the exterior of the closed unit ball to the exterior of a compact set is quasisymmetric with respect to the length inner distance if and only if its image is an exterior John domain.						
摘要							

报告題目 TITLE	Spreading and Competition in Periodic and Advective Habitats								
作者姓名	刘爽	刘爽 学校 中国人民大学 导师姓名 楼元							
关键词	Periodic, Adve	ective, Principa	al eigenvalue						
学术	In this talk, we shall discuss the dynamics of reaction-diffusion-advection models for single and two competing species in one-dimensional periodic habitat. We establish								
报告	As applicati	the monotone dependence of the principal eigenvalue on diffusion and drift rates. As applications, we first estiblish the critical threshold for the persistence and the							
摘要	two competi	monotone dependence of the minimal wave speed on the drift rate. We also consider two competing species model and study the local and global stability of semi-trivial steady states. This is a joint work with Prof. Yuan Lou (The Ohio State University).							

报告题目 TITLE	On generalized configuration space and its homotopy groups								
作者姓名	王军 学校 首都师范大学 导师姓名 赵学志								
关键词	Generalized co	nfiguration sp	ace; Stiefel Manifolds	s; Homotopy g	roups				
学报播	学术 Generalized configuration space; Stiefel Manifolds; Homotopy groups "Let M be a subset of vector space or projective space. Generalizing the classical configuration space, the author considers the generalized configuration space of M which is formed by ordered n -tuples of elements of M where any k elements of each n -tuple are linearly independent. Denote generalized configuration space of M by $W_{k,n}(M)$. In addition to be a generalization of classical configuration space, the generalized configuration space is also a generalization of Stiefel manifold. In this paper, the author studies topological property of the generalized configura-								

报告題目 TITLE	On color isomorphic patterns in proper colorings						
作者姓名	徐子翔	学校	首都师范大学	导师姓名	葛根年		
关键词	Proper edge co	oloring, Color	isomorphic, Even cyc	ele, Subdivision	ns		
学术	"Given a graph H and an integer $k \geq 2$, let $f_k(n, H)$ be the smallest number of colors C such that there exists a proper edge coloring of the complete graph K_n						
报告	and Tyomky	with C colors containing no k vertex disjoint color isomorphic copies of H . Conlon and Tyomkyn initiated the study of this function using a variety of combinatorial, probabilistic and algebraic techniques. In this talk, we first review some known					
摘要	results and results on the	methods of Cone even cycle of	onlon and Tyomkyn.	Then we will sion of comple	l introduce some new ete graph K_t . Finally,		

报告題目 TITLE	Embeddings of templates in 3-spaces							
作者姓名	柳翔	学校	首都师范大学	导师姓名	赵学志			
关键词	3-manifold, en	nbedding, fibra	tion, isotopy, link, Si	male flow, spat	ial graph, template			
学术	knots and li	nks as periodic	c orbits arising from	a 3-dimensiona	which is used to model al flow. For embedded			
报告	isotopy. For	templates in $S3$, we introduce isotopic invariants that can classify Smale flows up to isotopy. For 3-dimensional Euclidean space, following the Hirsch-Smale theory we						
摘要	1	•	s of immersions, as work with XueZhi ZHA		ngs, of a template and			

报告題目 TITLE	Global weak solutions for fluid-particle models						
作者姓名	寿凌云	学校	首都师范大学	导师姓名	李海梁		
关键词	Two-phase flow, Compressible Navier-Stokes, Vlasov, Vlasov-Fokker-Planck, Global existence, Large time behavior						
学术	In this talk, we will present our recent results about fluid-particle two phase flow, which consists of compressible Navier-Stokes equations with density-dependent vis-						
报告	cosity coefficient and Vlasov equation (or Vlasov-Fokker-Planck equation) coupled each other though a nonlinear drag force. The existence, uniqueness, and regular-						
摘要	initial data	are established			ne problem for general lobal solution are ana-		

报告題目 TITLE	Outflow/Inflow Problem for Two-Phase Flow							
作者姓名	赵爽	学校	首都师范大学	导师姓名	李海梁			
关键词	Stationary solu	ition, Nonlinea	ar stability, Two-phase	e flow, Inflow p	oroblem, Outflow problem.			
学术	In this talk, we present recent investigation on inflow/outflow problem for full two- phase flow, which consists of two compressible Navier-Stokes equations coupled each							
报告	Enskog expa	other through the drag force relaxation mechanisms and is derived by the Chapman- Enskog expansion from the Vlasov-Navier-Stokes for mixed fluid-particle motion. The existence of the unique stationary solution is shown respectively corresponding						
摘要	to supersoni	c, sonic, and s	ubsonic flow at far fie	eld. The nonlin	near stability and long h Professor Hai-Liang			

报告題目 TITLE	reedback particle litter with correlated hoises						
作者姓名	苗慧敏	学校	北京航空航天大学	导师姓名	罗雪		
关键词	Feedback parti	icle nonlinear	filtering (NLF)				
学报摘	signal-observation derived by me sity and the Then we should that if the iso are the polynomenor.	vation nonlinear veloped in [23] of the case when process. The endinimizing the conditional power igorously the power initial condition contents.	ar filtering (NLF) may for the first time. The scalar signal property of the scalar signal density and the scalar signal s	odel with inde In this paper, process is corrected inputs (K L) divergence of stribution of the sobtained is compirical distribution for the context scalar NLF pr	cle filter (FPF) for the spendent white noises, we shall extend this elated with the scalar, u) satisfied has been of the conditional dense controlled particles. consistent, in the sense ribution are the same, trol input u is given if oblem with transition extory performance not		

概率统计、计算数学与运筹学方向

报告題目 TITLE	Multi-phase segmentation using modified complex Cahn-Hilliard equations						
作者姓名	王夏恺	学号	2016311007	导师姓名	黄忠亿		
关键词	Cahn-Hilliard	equations; Mu	lti-phase segmentation	on; mean curva	ture term;.		
学术	In this report, we propose a novel PDE-based model for the multi-phase segmentation problem by using a complex version of Cahn-Hilliard equations. Specifically, we						
报告	curvature te	rm and the fit	ting term to the evol	ution of its rea	as by adding the mean al part, which helps to applying the K-means		
摘要	solve the pr employed.	oposed system Numerical exp	of equations, a sem	i-implicit finit ed to demonst	nase segmentation. To e difference scheme is crate the feasibility of ed ones.		

报告題目 TITLE	Efficient Computations for Phase Field Crystal Models						
作者姓名	陈昌	学号	2020311335	导师姓名	包承龙		
关键词	phase field crystal models, stationary states, adaptive accelerated Bregman proximal gradient methods						
学术	· · · · · · · · · · · · · · · · · · ·				dient (AB-BPG) algo- crystal model. Based		
报告	on modern optimization techniques, a practical linear search approach is used to obtain adaptive step sizes and ensures a energy dissipating property. The convergence property of the proposed method is established without the requirement of global						
摘要	Lipschitz co	ntinuity. Num		computing La	ndau-Brazovskii (LB)		

报告題目 TITLE	Stochastic Control of a Class of Dynamical Systems via Path Limits						
作者姓名	陈键	学号	2015311030	导师姓名	陈金文		
关键词	stochastic cont	rol; dynamical	l system, large devia	tion, path limit	- J•		
学术	In this report, Some limit theorems are derived for a class of controlled Markov systems with small noises. The aim is to understand the effects of strategies of actions						
报告	can be consi	dered. In deriv	ving the limits, we ap	oply a large de	for associated utilities viation approach with gence theorem is then		
摘要	schitz contir of the limits	nuous, even are s on the strate	e allowed to be disco	ontinuous in the which involves	to be smooth or Lipe states. Dependence a certain differential		

报告题目 TITLE	Retirement habit persist		l optimal consum	ption-invest	ment under addictive
作者姓名	袁冯毅	学号	2019311332	导师姓名	梁宗霞
关键词		,	ng-control problem; r; Dual transformation	-	ence; Wealth-habit- wage
学报摘	strategies un retirement to mal stopping time horizon and wage rawage" triple convert the of the dual relation we soptimal straproportion of In numerical decisions and boundary: is sumption median return to make the sumption of the dual relation we should be a sumption of the dual relation we should be a sumption of the dual relation we should be a sumption of the	nder habit per ime. The opting and stochast in The problem in the war war ables based find the retirem tegies. We show that was a way jump up or and the problem in the way in the way in the retirem tegies. We show that was a way jump up or a way jump up or	sistence for an agent nization problem is for ic control problem (S m contains three star to derive the retirem ne complicated dual em to the dual one. I on an obstacle-type ment boundary of prints we that if the so-called be optimal for the agent we show how "de fact tegies. Moreover, we portion always jump	with the opportunited as a topping-Contract variables: when the variables: when the obtain the free boundary mal variables and "de facto weath de cobserve discous down upon and on the charms."	nent and consumption ortunity to design the in interconnected optical Problem) in a finite wealth x, habit level he of this "wealth-habit-posed and proved to retirement boundary problem. Using dual and feed-back forms of alth" exceeds a critical to retire immediately. The extrement intinuity at retirement retirement, while contage of marginal utility. It is to work longer.

报告题目 TITLE	Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis and FDR Control With Knockoff Features							
作者姓名	马伟东	学号	2016311034	导师姓名	杨瑛			
关键词	Feature screen sional discrimi		onsistency property, s	ure screening p	property, ultrahigh dimen-			
学术	1		0	0.	procedure for ultrahigh ned integral Pearson's			
报告	the sample s	dimensional discriminant analysis based on a new metric named integral Pearson's chi-squared (IPC) index. We allow the number of response classes to diverge with the sample size at a certain order and establish the sure screening and ranking consistency properties of the proposed procedure in the ultrahigh dimensional setting.						
摘要	We furthur	•		0	of knockoff features to			

报告题目 TITLE	Consistent community detection approach in the nonparametric weighted stochastic blockmodel with unknown number of communities						
作者姓名	肖敬松	学号	2017311265	导师姓名	杨瑛		
关键词	Weighted stock	nastic blockmo	odel; Nonparametric;	Clustering; Co	onsistency.		
学术 报告		,	e new concepts of con parametric approach	· ·	stochastic blockmodel he weighted SBM.		
摘要							

报告題目 TITLE	The Pre-commitment KMM Problem in a continuous-time framework							
作者姓名	宋逸伦	学号	2018311331	导师姓名	梁宗霞			
关键词	Pre-commitment KMM problem; Distorted Legendre transformation; Generalismethod; Smooth ambiguity; Portfolio selection; Efficient frontier.							
学 报 摘要	the dual meter formation as problem processor is amount of the original sum of weight is established problem. Be wealth and are presented higher ambiguitation as problem and are presented by the dual of the original sum of weight is established problem. Be wealth and are presented higher ambiguitation are presented to the original sum of weight is established problem.	thod develope and generalized oposed by Klib em is a portfol l ambiguity at biguous about maximize the KMM problem and on this problem desides, the eff the optimal stand guity aversion	ce a new distorted I d in Kramkov and S dual method, we in panoff et al. [20] in its selection under subtitude separately at the financial model two-fold utility of the is first transformed inder different priors plem to show the undicient frontier is contrategy are derived. CARA and HARA utends to be more commercial results are in the interval of	Schachermayer [22] evestigate the pre- a continuous-time mooth ambiguity. It and is an open proband searches the erminal wealth. It to an equivalent of Then, a generalization of the explicit forms of atilities, which find accrned about bad	J. Using the transcommitment KMM are framework. The st characterizes risk blem, where the inoptimal investment By convex analysis, one maximizing the sted duality theorem at tence of the KMM are optimal terminal strategies at that investor with market conditions.			

报告題目 TITLE	Robust equilibrium strategies in a defined benefit pension plan game						
作者姓名	胡家琦	学号	2020311316	导师姓名	梁宗霞		
关键词	Overfunded Dirium; Stochast			ochastic differe	ential game; Nash equilib-		
学报播	defined bend the investm union to cla risk-free ass about the fi case scenario of the addit expected dis surplus reach We formulat Explicit for programmin	efit (abbr. DE ent performantim a share of the tet and n risk; inancial marketo. The union's ional benefits, secounted utilitation and upper the the related the tet and optiming method. In the economic below.	B) pension plan. The ce of the fund surplus. The fund surplus. The firm of the tand care about the objective is to maximate the firm's two differency of the fund surple level before hitting a level before h	e sponsoring falus while the The financial mand the union the robust strate mize the expectant objectives are us and the prolonger level in the transfer of the same shown beer, numerical	aggregated overfunded irm is concerned with participants act as a narket consists of one a both are ambiguous egies under the worst eted discounted utility are to maximizing the tobability of the fund the worst case scenario. The firm and the union by stochastic dynamic results are illustrated estrategies in these two		

报告题目 TITLE	A novel spectified the Gaussian			ical Schrödin	ger equation based or			
作者姓名	苗浡瑞 学号 2020311323 导师姓名 朱毅							
关键词	semi-classical Schrödiner equation; Gaussian wave-packet transform; Hagedrn's war packets; spectral method.							
学报摘要	Schrödinger Hagedorn's merical anal tion as a mu differential of The Hamilto quadratic per constant. By dorn's wave- part is treat the GWPT cal analysis. Schrödinger equation an convergence	equation base semi-classical lysis. The GW arch less oscillate equations governian of the warturbation, why expanding the packets, we could by the Galavoids artificity. In this work equation with dathe GWPT with respect to	ed on the Gaussian wave-packets (HWP) PT equivalently recatory one (the w equatory one (the w equator) and the dynamics v equation consists on the isoforder $\mathcal{O}(\sqrt{\varepsilon})$ he solution of the w enstruct a spectral material boundary condition, we establish how that the GWPT is deterparameters. We pro-	wave-packet transfer of the so-called of the so-called of the so-called of a quadratic part of a quadrati	olve the semi-classical ansform (GWPT) and aroduce its related nucleoscillatory wave equa- with a set of ordinary of GWPT parameters. For and a small non-state rescaled Planck's uperposition of Hage-ee $\mathcal{O}(\sqrt{\varepsilon})$ perturbation cal implementation of ates rigorous numeritying the semi-classical errors of solving the w theme has the spectral packets in one dimentation of the properties of the			

报告题目 TITLE	Derivative-free optimization methods for special constrained grey box of mization problems 谢鹏程 学校 中国科学院数学与系统科学研究院 导师姓名 表亚湘							
作者姓名								
关键词	Derivative-free	optimization	; interpolation; trust	region; grey be	DX			
学术	_	•	0 0 0	-	h special structure by ction to derivative-free			
报告	problems, a	optimization algorithms, the update of the model for solving grey box optimization problems, and derivative-free optimization algorithms with penalty functions and the projection technique. The report also presents the application of the derivative-						
摘要	free algorith	-	the interpolation mod		constrained problems			

报告题目 TITLE	深度神经网络与 Wasserstein 空间的测地线							
作者姓名	盖阔	学校	中国科学院数学与 系统科学研究院	导师姓名	张世华			
关键词	深度神经网络、	残差网络、运	连续性方程、最优传输)				
学术	近的一些重-	深度学习在各个领域都取得了极大成功,但其内在原理仍然没有完全被人理解。最近的一些重要工作指出了深度学习与动力系统的关系。在本报告中我们建立了深度神经网路与连续性方程的联系以刻画其保测度性。在测度空间中有无数条曲线连接						
报告	l ' '			- '	向于拟合 Wasserstein			
摘要	相比于无跨 为什么残差 (line-shape s	连的网络(plai 网络相比于无路 score)和最优化	n network),残差网: 夸连的网络可以优化、 传输指标(optimal tr	络可以更好的打 泛化得更好。 ansport score)	7经网络的优化和泛化。 以合测地线,这解释了 我们设计了线形指标 去刻划真实网络对测 上验证了我们的理论。			

报告题目 TITLE	Closing the gap between necessary and sufficient conditions for local non-global minimizer of trust region subproblem						
作者姓名	王玖鳞	学校	北京航空航天大学	导师姓名	夏勇		
关键词	Trust region su	ıbproblem, Lo	cal minimizer, Optin	nality condition	n		
学术报告	Trust region subproblem, Local minimizer, Optimality condition The trust region subproblem has at most one local nonglobal minimizer. In characterizing this local solution, there is a clear gap between necessary and sufficient conditions. In this work, we surprisingly show that the sufficient second-order optimality condition remains necessary.						
摘要							

报告题目 TITLE	Reconstructi Method	onal Matching Pursuit						
作者姓名	黄艾彤 学校 北京航空航天大学 导师姓名 冯仁忠							
关键词	Reconstruction orthogonal ma			ive sensing, M	Iutual coherence, Quasi-			
学术	for construc	ting a sparse	approximation of fun	actions in term	ait (QOMP) algorithm as of expansion by or-			
报告	without nois	thonormal polynomials. For the two kinds of sampled data, data with noises and without noises, we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct s-sparse Legendre						
摘要	tions. The r	esults are also act of these th	extended to general b	oounded orthogonal polynomia	gonal system including als. Finally, numerical e QOMP method."			

报告題目 TITLE	A modified moving least-squares suitable for scattered data fitting with outliers						
作者姓名	郑三棚	学校	北京航空航天大学	导师姓名	冯仁忠		
关键词	Scattered data moving least s	,	, Outlier, Moving le	ast squares, V	Veight function, Modified		
学术报告	noise, which tion effect of the existed MMLS) is properties and weaken MLS. It is to outliers, the Because the classical ML moving leasifitting of seaments not on	are called out of the classical sence of outliers roposed, which the influence cheoretically processed to the computations of the computations of the computations of the computation of	liers. In dealing with moving least squares is. In this paper, a non-can recognize outlier of the outliers in fitter oven that if the only IMLS is close to that all process of the proparational efficiency of Ind (abbr. MLH) while with outliers by iterate	such scattered (abbr. MLS) nodified moving automatical ting by an add y noise existing to f MLS in the posed MMLS MMLS is higher than the proposed tive solution.	alues that contain high I data, the approxima- is greatly reduced due ag least squares (abbr. ly from scattered data led weight function in ag in scattered data is the absence of outliers. is consistent with the er than that of Levin's to also deal with the The numerical experi- hat the approximation		

报告题目 TITLE	The distillability of entanglement of bipartite reduced density matrices of a tripartite state						
作者姓名	孙祎泽	学校	北京航空航天大学	导师姓名	陈霖		
关键词	Distillability o	f entanglement	t, Reduced density of	perator, Schmi	dt rank		
学术报告摘要	density mate (2011 Phys. of rank at reduced den operator add In contrast, ators of ran proving a corank at mos	Rev. A 84 01: most three. In sity operators ditionally having we show that k two is a three projectured man	ipartite pure state has 2325). We extend this particular we show with rank two, then ng non positive particular the tripartite PPT see-qubit fully separatrix inequality for the	s been studied s result to the that if the st the third bip al transpose (n tate with two ble state. We be bipartite ma	hree bipartite reduced I in Hayashi and Chen tripartite mixed state tate has two bipartite artite reduced density on-PPT) is distillable. reduced density operobtain these facts by atrix M with Schmidt paper. We also prove it		

报告题目 TITLE	Theory and Design of PID Controller for Nonlinear Uncertain Systems				
作者姓名	张瑾珂	学校	中国科学院数学与 系统科学研究院	导师姓名	郭雷
关键词	PID control, nonlinear uncertain system, output regulation, agents-based systems			ents-based systems	
学术播	PID control, nonlinear uncertain system, output regulation, agents-based systems It is well-known that the classical proportional-integral-derivative (PID) controller plays a fundamental role in various engineering systems. However, up to now a theory that can explain the rationale why the linear PID can effectively deal with nonlinear uncertain dynamical systems and a method that can provide explicit design formula for the PID parameters are still lacking. This motivates our recent study on the theoretical foundation of the PID control. The main purpose of this paper is to extend the 1-D results to higher dimensional nonlinear uncertain systems and to improve the results significantly by a refined method. We will also consider a class of multi-agent uncertain nonlinear systems where each agent is controlled by a PID controller using its own regulation error. We will show that a parameter manifold can be constructed explicitly so that when the PID parameters are chosen from this manifold, the multi-agent systems will be globally stable and the tracking error of each agent will coverage to zero exponentially fast.				

报告題目 TITLE	Molecular Sparse Representation by a 3D Ellipsoid Radial Basis Function Neural Network via L1 Regularization				
作者姓名	桂升	学校	中国科学院数学与 系统科学研究院	导师姓名	卢本卓
关键词	Molecular shape; Gaussian density map; Radial basis function neural network; Sparse representation.				n neural network; Sparse
学报摘要					

附件二 与会学生名单

序号	姓名	手机
1	吴承原	15651779535
2	许先粮	13752131032
3	冯立	18410147271
4	王夏恺	17611677051
5	韩丽娜	18811327119
6	杨博寒	13708345090
7	朱芮萱	13521882090
8	徐瑾涛	18810050829
9	杨璐	15910936956
10	张跃进	18810960897
11	陈啸	13857115978
12	蔡立德	17710145752
13	刘志文	19801169712
14	李海波	18810623085
15	魏逸伦	18911653309
16	孙泽钜	18801002156
17	马行龙	15098796513
18	陈昌	18373259368
19	钟宇宸	17343060496

20	林天润	18210435184
21	自云鹏	18510465740
22	黄谭昊	18810618323
23	朱雨薇	18811718100
24	陈蕴灵	15311518044
25	李冀维	18513280877
26	江孝炜	17610769503
27	王跃然	18810610189
28	马晨阳	18602484053
29	陈键	18610330946
30	李梦妮	18811310667
31	胡潇宇	18810996878
32	田松涛	15672830402
33	杜婷	13142036658
34	郭淑媛	13146026955
35	殷思瑶	18810690556
36	陆李威	15706703006
37	林国昌	18101213016
38	徐黎闽	17888825947
39	裴少君	18813171062
40	袁冯毅	13051230311
41	孙楠	15124997208

42	吴雨檬	17549668387
43	刘思汉	13051863277
44	蔡书哲	15157771688
45	马伟东	18801307916
46	焦小沛	18801321174
47	王良熔	15158505192
48	涂绪山	18500325351
49	陈炳仪	18811366025
50	张思韫	18810518763
51	钟一鸣	18811472293
52	关志达	13021940229
53	郑璐予	18090308916
54	陈奕宏	18811125377
55	赵馨	17750662376
56	程泽涛	18810833216
57	胥夫鹏	17738419872
58	邱言哲	18701676268
59	朱晓鹏	15201519542
60	胡颀轩	18800130771
61	曹颖	18355117533
62	叶泽宇	18559296732
63	刘志文	19801169712
03	刈心又	19801169712

64	李培根	18810056854
65	李博	18892067211
66	曹霞霞	18810823538
67	林汛	15089640580
68	杨佐	15949172708
69	刘天昊	18810057226
70	肖敬松	13120195525
71	曾泓博	18801132175
72	张禾	18813052416
73	王昊昕	18801110809
74	李芮暄	13120393639
75	杨志强	18800128592
76	刘剑锋	17328305397
77	宋逸伦	13466392195
78	胡家琦	18800131057
79	胡奕啸	13051325272
80	王鹤锦	18800106657
81	要文慧	18810609326
82	冯昱	18726198230
83	苗浡瑞	15117907745
84	殷鑫	18801013236
85	刘杨	18800107539

86	曾思佳	17320265331
87	温瑨	18035200558
88	陈振	15562659667
89	谢鹏程	13203866776
90	宣一	18513603767
91	盖阔	18321789207
92	王玖鳞	18810592447
93	刘爽	18810907102
94	黄艾彤	18813007148
95	郑三棚	18910661227
96	孙祎泽	18810931286
97	王军	17611220760
98	徐子翔	13031172626
99	柳翔	13426353534
100	张瑾珂	15611660512
101	寿凌云	18801319117
102	赵爽	15910967506
103	苗慧敏	18513352003
104	桂升	15611536086
105	裴骞	18810515010
106	王欣薇	18810666575