THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial Week 7

STAT3023: Statistical Inference

Semester 2, 2023

1. Suppose $\mathbf{X} = (X_1, \dots, X_n)$ is a random sample from the Gamma distribution with shape α and rate θ , i.e.,

$$f_X(x) = \frac{\theta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x\theta}, \quad x > 0, \ \alpha > 0, \ \theta > 0.$$

Each X_i has expectation $E(X) = \alpha/\theta$, variance $Var(X) = \alpha/\theta^2$, and moment generating function $M_X(t) = (1 - t/\theta)^{-\alpha}$.

- (a) Assuming both α and θ to be unknown, write down the log likelihood function $\ell(\theta, \alpha; \mathbf{X})$ and the corresponding score functions $\frac{\partial \ell}{\partial \theta}$ and $\frac{\partial \ell}{\partial \alpha}$.
- (b) Verify that each score function has zero expectation.
- (c) Assuming α to be known:
 - (i) Calculate the Cramer Rao Lower Bound (CRLB) for the variance of an unbiased estimator of θ .
 - (ii) Is there any unbiased estimator of θ whose variance attain the CRLB?
 - (iii) Show that

$$S = \frac{\alpha - 1}{n} \sum_{i=1}^{n} \left(\frac{1}{X_i}\right)$$

is an unbiased estimator for θ . What is the MVU estimator for θ ?

- (iv) Identify a change of parameter $\eta = \eta(\theta)$ for which there exists an unbiased estimator with variance attained the CRLB.
- (v) For the parameter in the previous part, identify the MVU estimator whose variance attains the CRLB. Compute this variance.
- **2.** Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$ distribution.
 - (a) Show that (\bar{X}, S^2) is a sufficient statistic for (μ, σ^2) , where $\bar{X} = n^{-1} \sum_{i=1}^n X_i$ and $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i \bar{X})^2$.
 - (b) Find the best unbiased estimator for σ^p , where p > 0 and it is not necessarily an integer.
- 3. Let X_1, \ldots, X_n be a random sample from a distribution having pdf $f(x; \theta) = \theta x^{\theta-1}$ for 0 < x < 1. Using the likelihood ratio statistic, show the critical region for testing $H_0: \theta = 1$ against $H_1: \theta = 2$ takes the form $C = \{(x_1, \ldots, x_n): c \leq \prod_{i=1}^n x_i\}$ for some constant c.
- **4.** Let X_1, \ldots, X_n be a random sample from $N(\theta, 100)$. Show that the likelihood ratio statistic leads to the critical region $C = \{(x_1, \ldots, x_n) : c \leq \bar{x} = \sum_{i=1}^n x_i/n\},$

1

where c is some constant, for testing $H_0: \theta = 75$ against $H_1: \theta = 78$. Using this critical region, find n and c such that the type I error is 0.05 and the power is 0.9 approximately.