Elliptic Integrals

• The period of the pendulum for arbitrary initial amplitude θ_0 is given by

$$T = 4\sqrt{\frac{L}{g}} F\left(\frac{\pi}{2}, k\right)$$

where **L** is the length of the pendulum, **g** is the gravitational acceleration, **k** = $\sin(\theta_0/2)$ is related to the initial angle, while $F(\phi,k)$ is the incomplete elliptic integral of the first kind defined by

$$F(\phi, k) = \int_0^{\phi} \frac{du}{\sqrt{1 - k^2 \sin^2 u}}$$

- Here ϕ = am (F,k) is also called the Jacobi amplitude¹.
- Assume L/g = 1 and k = 0.8 throughout the exercise.

Elliptic Integrals

- Write a code to compute
 - 1. The oscillation period **T**;
 - 2. The relative error when compared to the small-angle approximation;
 - 3. For the more general case, find $\phi(t)$ by inverting the equation $t = F(\phi,k)$ at regularly spaced interval t = 0.0, 0.1, 0.2, ..., 30.0. A plot can be used for the purpose. Use both Bisection and Newton method in your implementation.
- Provide a single .pdf document including
 - the result of point 1) and 2);
 - the plot in point 3);
 - Any extra explanation you may consider useful;
 - the C++ code (max 100 lines, do not include quadrature rules or root solvers).
- Time can be passed through functions using a global variable (e.g. static double g_time), whose value is updated in the main() function.