

1^{ère} année Master MAS Méthode de Monte-Carlo et Simulation Année : 2018/2019

Examen Final

EXERCICE N° 1:

- 1. On considère la variable aléatoire X de fonction de répartition \mathbb{F} . Montrer que la variable aléatoire définie par $U = \mathbb{F}(X)$, suit la loi uniforme $\mathcal{U}[0,1]$.
- 2. On considère la variable aléatoire U qui suit la loi uniforme $\mathcal{U}[0,1]$ et une fonction de répartition \mathbb{F} . Montrer que la variable aléatoire définie par $X=\mathbb{F}^{-1}(U)$, a pour fonction de répartition \mathbb{F} .

Une variable aléatoire est de loi uniforme sur [a,b], si sa densité est définie comme $f(x)=\frac{1}{b-a}\mathbb{1}_{[a,b]}(x)$.

- 3. Montrer que si U suit la loi uniforme $\mathcal{U}[0,1]$, alors (b-a)U+a suit la loi uniforme $\mathcal{U}[a,b]$.
- 4. Quelle est la loi de a(2U-1)?
- 5. Déterminer la loi de la variable aléatoire X en sortie du code suivant :

$$X<-2+runif(1)-1$$

Exercice N° 2:

On considère la variable aléatoire X de densité

$$f(x) = Cxe^{-\frac{4}{15}x^2}, \qquad x \in \mathbb{R}_+.$$

- 1. Calculer C pour que f soit bien une densité de probabilité.
- 2. Déterminer la fonction de répartition \mathbb{F}_X de X.
- 3. Écrire une fonction qui permet de simuler n variables aléatoires de X.

Soit g une densité de probabilité définie par :

$$g(x) = Ke^{-\frac{2}{15}x^2}, \quad x \in \mathbb{R}_+.$$

- 4. Déterminer K de sorte que g soit une densité de probabilité sur \mathbb{R}_+ .
- 5. Trouver la plus petite constante M telle que $f(x) \leq Mg(x)$ sur $[0, +\infty[$.
- 6. Donner une représentation graphique des courbes de f et Mg.
- 7. Utiliser la méthode de rejet pour simuler à partir de f avec l'enveloppe g.