

Introducing {workboots} Generate prediction intervals from tidymodel workflows

Mark Rieke @markjrieke 2022-07-27

A model without {workboots}

On its own, XGBoost can only generate point predictions

A model with {workboots}

With workboots, we can generate prediction intervals!

Motivation/Background

about me

- Sr. CX Analyst, MHHS
- Patient satisfaction survey data
- Administer, understand, improve
- Answering questions

Monthly Patient Satisfaction Scores Why the large drop in April?

Patient Satisfaction Scores by Hospital Are these real differences across the hospitals?

Response Rates by Distribution Method

Which method gets more responses?

What are the drivers of patient satisfaction?

What will our score be?

How many responses are we expecting?

Package Overview

model building timeline

model building timeline

workboots

workboots checklist

- ✓ Normally distributed residuals
- ✓ Time to run
- ✓ Actually need powerful model

how this works

- 1. Generate resamples
- 2. Fit many models to resamples
- 3. Predict on new data
- 4. Summarize prediction range

using workboots

- 1. Set up a workflow
- 2. Generate predictions
- 3. Summarise results

set up a workflow

penguins %>% glimpse()

```
#> Rows: 333
#> Columns: 7
#> $ species
                       <fct> Adelie, Adelie, Adelie, ...
#> $ island
                       <fct> Torgersen, Torgersen, To...
#> $ bill_length_mm
                       <db7> 39.1, 39.5, 40.3, 36.7, ...
#> $ bill_depth_mm
                       <db7> 18.7, 17.4, 18.0, 19.3, ...
#> $ flipper_length_mm
                       <int> 181, 186, 195, 193, 190,...
#> $ body_mass_g
                       <int> 3750, 3800, 3250, 3625, ...
                       <fct> male, female, female, fe...
#> $ sex
```

ADELIFI

CHINSTRAPI

set up a workflow


```
library(tidymodels)
# setup our data
data("penguins")
penguins <- penguins %>% drop_na()
set.seed(123)
penguins_split <- initial_split(penguins)</pre>
penguins_test <- testing(penguins_split)</pre>
penguins_train <- training(penguins_split)</pre>
```

set up a workflow


```
# setup a basic preprocessing recipe
penguins_rec <-</pre>
  recipe(body_mass_g ~ ., data = penguins_train) %>%
  step_dummy(all_nominal())
# put together a workflow
penguins_wf <-
  workflow() %>%
  add_recipe(penguins_rec) %>%
  add_model(boost_tree("regression"))
```

time for workboots!

generate predictions


```
library(workboots)
# generate a bootstrap prediction interval
set.seed(345)
penguins_preds <-</pre>
  penguins_wf %>%
  predict_boots(
    n = 2000,
    training_data = penguins_train,
    new_data = penguins_test,
    interval = "prediction"
```

generate predictions


```
penguins_preds
```

```
#> # A tibble: 84 x 5
#> rowid .preds
#> <int> 1 1 <tibble [2,000 x 2]>
#> 2 <tibble [2,000 x 2]>
#> 3 <tibble [2,000 x 2]>
#> 4 <tibble [2,000 x 2]>
#> 5 <tibble [2,000 x 2]>
#> # ... With 79 more rows
```

summarise results


```
penguins_preds %>%
 summarise_predictions() %>% select(-.preds)
#> # A tibble: 84 x 5
#> rowid .pred .pred_lower .pred_upper
#> <int> <db1> <db1> <db1>
#> 1 1 3465. 2913.
                          3994.
#> 2 2 3535. 2982.
                          4100.
#> 3 3604. 3050.
                          4187.
#> 4 4157. 3477. 4764.
#> 5 5 3868. 3305. 4372.
#> # ... With 79 more rows
```

Predicting Palmer Penguin Pounds

workboots allows us to generate prediction intervals

generate predictions


```
library(workboots)
# generate a bootstrap prediction interval
set.seed(345)
penguins_preds <-</pre>
  penguins_wf %>%
  predict_boots(
    n = 2000,
    training_data = penguins_train,
    new_data = penguins_test,
    interval = "confidence"
```

{workboots} can generate multiple interval types

Ames, Iowa

generate importances


```
# generate a bootstrap variable importances
set.seed(345)
penguins_vi <-
   penguins_wf %>%
   vi_boots(
        n = 2000,
        training_data = penguins_train
)
```

generate importances


```
penguins_vi
#> # A tibble: 8 x 2
#> variable
                      .importances
#> <int>
                      <7ist>
#> 1 flipper_length_mm <vi [2,000 x 2]>
#> 2 species_Gentoo <vi [1,928 x 2]>
#> 3 bill_length_mm <vi [2,000 x 2]>
#> 4 bill_depth_mm <vi [2,000 x 2]>
             < vi [2,000 \times 2] >
#> 5 sex_male
#> # ... With 3 more rows
```

summarise importances


```
penguins_vi %>%
  summarise_importance() %>% select(-.importances)
#> # A tibble: 8 x 2
#> variable
                         .importance .importance_lower
#> <int>
                               \langle db 1 \rangle
                                                   \langle db 1 \rangle
#> 1 flipper_length_mm
                               0.464
                                                   0.254
#> 2 species_Gentoo
                              0.402
                                                   0.044
#> 3 bill_length_mm
                              0.045
                                                   0.027
#> 4 bill_depth_mm
                              0.040
                                                   0.024
#> 5 sex_male
                            0.046
                                                   0.020
#> # ... With 3 more rows, and 1 more variable:
         .importance_upper <db1>
```

Bootstrap estimations of variable importance Uses vip::vi() under the hood

give it a shot!

- Specific tool, specific job
- Generate prediction intervals
- Use any model type

thank you!

connect with me!

Social

- twitter: @markjrieke
- github: github.com/markjrieke
- Linkedin: linkedin.com/in/mark-j-rieke-ab4b0ab4

additional resources

Packages

- ngboostForecast: Probabilistic forecasting with Python's ngboost [CRAN/github]
- ggdist: Visualizations of distributions and uncertainty [CRAN/github]
- spin: Functions for simulating prediction intervals [github]
- ungeviz: Tools for visualizing uncertainty with ggplot2 [github]

Reading

- Bootstrap Methods and their Application, (Davison and Hinkley)
- Improvements on Cross Validation the .632+ Bootstrap Method, (Efron and Tibshirani)
- <u>Tidy Modeling with R (Kuhn and Silge)</u>
- Applied Predictive Modeling (Kuhn and Johnson)

Backup

