COLLECTED WORKS Published works

Mathematical Reflections

by Alexandre GROTHENDIECK

Ce texte a été transcrit et édité par Mateo Carmona. La transcription est aussi fidèle que possible au typescript. Cette édition est provisoire. Les remarques, commentaires et corrections sont bienvenus.

https://agrothendieck.github.io/

CONTENTS

1950	9
Sur la complétion du dual d'un espace vectoriel localement convexe	9
Quelques résultats relatifs à la dualité dans les espaces (F)	10
Critères généraux de compacité dans les espaces vectoriels localement convexes	11
1951	11
Quelques résultats sur les espaces vectoriels topologiques	12
Sur une notion de produit tensoriel topologique d'espaces vectoriels topologiques, et une classe remarquable d'espaces vectoriels liée à cette	
notion	13
1952	13
Critères de compacité dans les espaces fonctionnels généraux	14
Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires	15
1953	15
Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$	16

Sur les espaces de solutions d'une classe générale d'équations aux dérivées partielles	17
Sur certains espaces de fonctions holomorphes I	18
Sur certains espaces de fonctions holomorphes II	19
1954	19
Quelques points de la théorie des produits tensoriels topologiques	20
Sur certains sous-espaces vectoriels de L^p	21
Résultats nouveaux dans la théorie des opérations linéaires I	22
Résultats nouveaux dans la théorie des opérations linéaires II	23
Sur les espaces (F) et (DF)	24
Espaces vectoriels topologiques	25
Topological vector spaces	26
1955	26
Produits tensoriels topologiques et espaces nucléaires	27
Erratum au mémoire : Produits tensoriels topologiques et espaces nucléaires	28
Une caractérisation vectorielle-métrique des espaces L_1	29
Réarrangements de fonctions et inégalités de convexité dans les algèbres de von Neumann munies d'une trace	30
1956	30
Résumé de la théorie métrique des produits tensoriels topologiques	31

Théorèmes de finitude pour la cohomologie des faisceaux	32
La théorie de Fredholm	33
Sur le mémoire de A. Weil. Généralisation des fonctions abéliennes	34
Sur certaines classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers	35
1957	35
Classes de faisceaux et théorème de Riemann-Roch	36
Sur la classification des fibrés holomorphes sur la sphère de Riemann	37
Un résultat sur le dual d'une C*-algèbre	38
Sur Quelques Points d'Algèbre Homologique	39
Sur les faisceaux algébriques et les faisceaux analytiques cohérents	40
1958	40
Classification des groupes algébriques semi-simples	41
La théorie des classes de Chern	42
Torsion homologique et sections rationnelles	43
Sur quelques propriétés fondamentales en théorie des intersections	44
Sur une note de Mattuck-Tate	45
The cohomology theory of abstract algebraic varieties	47
1960	50
FGA I	51

SGA 1	52
Techniques de construction en géométrie analytique	53
1961	53
EGA II	54
EGA III-1	55
SGA 2	56
Fondements de la géométrie algébrique	57
The trace of certain operators	58
1962	58
SGA 3	59
Résidus et dualité	60
1963	60
EGA III-2	61
SGA 4	62
1964	62
EGA IV-1	63
Formule de Lefschetz et rationalité des fonctions L	64
1965	64
EGA IV-2	65
SGA 5	66

Le groupe de Brauer I : Algèbres d'Azumaya et interprétations diverses	67
Le groupe de Brauer II : Théories cohomologique	68
1966	68
EGA IV-3	69
SGA 6	<i>7</i> 0
Crystals and the De Rham cohomology of schemes	71
Un théorème sur les homomorphismes de schémas abéliens	75
1967	75
EGA IV-4	76
SGA 7	77
Critères différentiels de régularité pour les localisés des algèbres analy- tiques	78
1968	78
Le groupe de Brauer III : Exemples et compléments	79
Catégories cofibrées additives et complexe cotangent relatif	80
Classes de Chern et représentations linéaires des groupes discrets	81
Hodge's general conjecture is false for trivial reasons	82
1969	85
Standard Conjectures on Algebraic Cycles 1. Introduction	86 86

3. The conjecture 1 (of Lefschetz type)	89 90
Conclusions	91
1970	91
Représentations linéaires et compactification profinie des groupes discret	s 92
Groupes de Barsotti-Tate et Cristaux de Dieudonné	93
Travaux de Heisouké Hironaka sur la résolution des singularités	94
Groupes de Barsotti-Tate et cristaux	98
1. Généralités	98
 Groupe formel associé à un groupe de BT	100 100
4. Filtration du cristal de Dieudonné et déformations de groupes de BT	100
5. Groupes de BT à isogénie près	103
Bibliographie	105
1971	105
The tame fundamental group of a formal neighbourhood of a divisor with	1
normal crossings on a scheme	106
Platitude d'une adhérence schématique et lemme de Hironaka généralise	é 107
Undated	107
Grothendieck-Mumford correspondance	108
Grothendieck-Serre correspondance	109

SUR LA COMPLÉTION DU DUAL D'UN ESPACE VECTORIEL LOCALEMENT CONVEXE

Note de M. Alexandre Grothendieck, présentée par M. Élie Cartan Séance du 6 février 1950

C. R. Acad. Sc. Paris 230, 605-606 (1950)¹

¹ https://agrothendieck.github.io/divers/completion50scan.pdf

QUELQUES RÉSULTATS RELATIFS À LA DUALITÉ DANS LES ESPACES (F)

Note de M. Alexandre Grothendieck, présentée par M. Arnaud Denjoy Séance du 30 octobre 1950

C. R. Acad. Sci. Paris 230, 1561-1563 (1950)²

²https://agrothendieck.github.io/divers/espLF50scan.pdf

CRITÈRES GÉNÉRAUX DE COMPACITÉ DANS LES ESPACES VECTORIELS LOCALEMENT CONVEXES. PATHOLOGIES DES ESPACES (LF)

Note de M. Alexandre Grothendieck, présentée par M. Arnaud Denjoy Séance du 30 octobre 1950

C. R. Acad. Sci. Paris 231, 940-941 (1950)¹

https://agrothendieck.github.io/divers/espF50scan.pdf

QUELQUES RÉSULTATS SUR LES ESPACES VECTORIELS TOPOLOGIQUES

C. R. Acad. Sci. Paris 233, 839-841 (1951)¹

https://agrothendieck.github.io/divers/quelques51scan.pdf

SUR UNE NOTION DE PRODUIT TENSORIEL TOPOLOGIQUE D'ESPACES VECTORIELS TOPOLOGIQUES, ET UNE CLASSE REMARQUABLE D'ESPACES VECTORIELS LIÉE À CETTE NOTION

C. R. Acad. Sci. Paris 233, 1556-1558 (1951)¹

¹https://agrothendieck.github.io/divers/remarq51scan.pdf

CRITÈRES DE COMPACITÉ DANS LES ESPACES FONCTIONNELS GÉNÉRAUX

Amer. J. Math. 74, 168-186 (1952)¹

1 https://agrothendieck.github.io/divers/fonctgen52scan.pdf

RÉSUMÉ DES RÉSULTATS ESSENTIELS DANS LA THÉORIE DES PRODUITS TENSORIELS TOPOLOGIQUES ET DES ESPACES NUCLÉAIRES

Ann. Inst. Fourier 4, 73-112 (1952)¹

¹ https://agrothendieck.github.io/divers/resessent52scan.pdf

SUR LES APPLICATIONS LINÉAIRES FAIBLEMENT COMPACTES D'ESPACES DU TYPE C(K)

Canadian J. Math. 5, 129-173 (1953)1

¹https://agrothendieck.github.io/divers/linfaib53scan.pdf

SUR LES ESPACES DE SOLUTIONS D'UNE CLASSE GÉNÉRALE D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES

J. Analyse Math. 2, 243-280 (1953)¹

¹ https://agrothendieck.github.io/divers/derpart53scan.pdf

SUR CERTAINS ESPACES DE FONCTIONS HOLOMORPHES I

J. reine angew. Math. 192, 35-64 (1953)¹

1 https://agrothendieck.github.io/divers/fonctholI53scan.pdf

SUR CERTAINS ESPACES DE FONCTIONS HOLOMORPHES II

J. reine angew. Math. 192, 77-95 (1953)1

1https://agrothendieck.github.io/divers/fonctholII53scan.pdf

QUELQUES POINTS DE LA THÉORIE DES PRODUITS TENSORIELS TOPOLOGIQUES

Segundo symposium sobre algunos problemas matemáticos que se están estudiando en Latino América, Julio 1954, 173-177. Centro de Cooperación Científica de la UNESCO para América Latina, Montevideo, Uruguay, 1954

20

SUR CERTAINS SOUS-ESPACES VECTORIELS DE L^p

Canadian J. Math. 6, 158-160 (1954)1

1https://agrothendieck.github.io/divers/certvect54scan.pdf

RÉSULTATS NOUVEAUX DANS LA THÉORIE DES OPÉRATIONS LINÉAIRES I

C. R. Acad. Sci. Paris 239, 577-579 (1954)¹

1https://agrothendieck.github.io/divers/oplinI54scan.pdf

RÉSULTATS NOUVEAUX DANS LA THÉORIE DES OPÉRATIONS LINÉAIRES II

C. R. Acad. Sci. Paris 239, 607-609 (1954)¹

1https://agrothendieck.github.io/divers/oplinII54scan.pdf

SUR LES ESPACES (F) ET (DF)

Summa Brazil. Math. 3, 57-123 (1954)¹

1https://agrothendieck.github.io/divers/FDF54scan.pdf

ESPACES VECTORIELS TOPOLOGIQUES

Instituto de Matemática Pura e Aplicada, Universidad de Sao Paulo, (1954)¹

1https://agrothendieck.github.io/divers/gpablo54scan.pdf

TOPOLOGICAL VECTOR SPACES

Translated by O. Chaljub. Notes on Math. and its App. Gordon and Breach Science Publishers, New-York-London-Paris, 1973¹

¹https://agrothendieck.github.io/divers/gpablo54en.pdf

PRODUITS TENSORIELS TOPOLOGIQUES ET ESPACES NUCLÉAIRES

Mem. Amer. Math. Soc. n° 16, 19551

1https://agrothendieck.github.io/divers/ptten52scan.pdf

ERRATUM AU MÉMOIRE : PRODUITS TENSORIELS TOPOLOGIQUES ET ESPACES NUCLÉAIRES

Ann. Inst. Fourier 6, 117-120 (1955-56)1

1 https://agrothendieck.github.io/divers/pttenscan.pdf

UNE CARACTÉRISATION VECTORIELLE-MÉTRIQUE DES ESPACES L_1

Canad. J. Math. 7, 552-561 (1955)1

1https://agrothendieck.github.io/divers/carvectscan.pdf

RÉARRANGEMENTS DE FONCTIONS ET INÉGALITÉS DE CONVEXITÉ DANS LES ALGÈBRES DE VON NEUMANN MUNIES D'UN TRACE

Sém. N. Bourbaki, 1956, exp. no 113, p. 127-1391

¹ https://agrothendieck.github.io/divers/rearrangscan.pdf

RÉSUMÉ DE LA THÉORIE MÉTRIQUE DES PRODUITS TENSORIELS TOPOLOGIQUES

Bol. Soc. Mat. Sao Paulo 8, 1-79 (1956)¹

¹https://agrothendieck.github.io/divers/thmet.pdf

THÉORÈMES DE FINITUDE POUR LA COHOMOLOGIE DES FAISCEAUX

Bull.Soc. Math. France 84, 1-7 (1956)1

1 https://agrothendieck.github.io/divers/theorfinscan.pdf

LA THÉORIE DE FREDHOLM

Bull. Soc. Math. France 84, 319-384 (1956)¹

1https://agrothendieck.github.io/divers/fred54scan.pdf

SUR LE MÉMOIRE DE WEIL. GÉNÉRALISATIONS DES FONCTIONS ABÉLIENNES

Sém. N. Bourbaki, 1958, exp. n 141, p. 57-71¹

1 https://agrothendieck.github.io/divers/memweilscan.pdf

SUR CERTAINES CLASSES DE SUITES DANS LES ESPACES DE BANACH, ET LE THÉORÈME DE DVORETZKY-ROGERS

Bol. Soc. Mat. Sao Paulo 8, 81-110, (1956)¹

¹https://agrothendieck.github.io/divers/certclass.pdf

CLASSES DE FAISCEAUX ET THÉORÈME DE RIEMANN-ROCH

notes miméographiées, Princeton 1957. Reproduit dans SGA 61

¹https://agrothendieck.github.io/divers/RRRscan.pdf

SUR LA CLASSIFICATION DES FIBRÉS HOLOMORPHES SUR LA SPHÈRE DE RIEMANN

Amer. J. Math. 79, 121-138 (1957)¹

¹https://agrothendieck.github.io/divers/fibholscan.pdf

UN RÉSULTAT SUR LE DUAL D'UNE C*-ALGÈBRE

J.Math. Pures Appl., 36, 97-108 (1957)

SUR QUELQUES POINTS D'ALGÈBRE HOMOLOGIQUE

Tôhoku Math. J. 9, 119-221 (1957)1

Some Aspects of Homological Algebra. Translation by M. L. Barr and M. Barr

¹https://agrothendieck.github.io/divers/tohscan.pdf

SUR LES FAISCEAUX ALGÉBRIQUES ET LES FAISCEAUX ANALYTIQUES COHÉRENTS

Séminaire Henri Cartan, tome 9 (1956-1957), exp. n° 2, p. 1-161

1https://agrothendieck.github.io/divers/falgfnalscan.pdf

CLASSIFICATION DES GROUPES ALGÉBRIQUES SEMI-SIMPLES

C. Chevalley avec la collaboration de Pierre Cartier, Alexandre Grothendieck et Michel Lazard.

Texte révisé en 2003 par Pierre Cartier, Springer-Verlag, Berlin, 2004.²

2https://agrothendieck.github.io/divers/chev58.pdf

LA THÉORIE DE CLASSES DE CHERN

Bull. Soc. Math. France 86, 137-154 (1958)³

³https://agrothendieck.github.io/divers/clchernscan.pdf

TORSION HOMOLOGIQUE ET SECTIONS RATIONNELLES

Sém. Claude Chevalley, tome 3 (1958), exp. no 5, p. 1-294

⁴https://agrothendieck.github.io/divers/torhomscan.pdf

SUR QUELQUES PROPRIÉTÉS FONDAMENTALES EN THÉORIE DES INTERSECTIONS

Séminaire Claude Chevalley, tome 3 (1958), exp. n° 4, p. 1-36⁵

5https://agrothendieck.github.io/divers/interscan.pdf

SUR UNE NOTE DE MATTUCK-TATE

J. reine angew. Math. 200, 208-215 (1958)⁶

1. Dans un travail récent [4], Mattuck et Tate déduisent l'inégalité fondamentale de A. Weil qui établit l'hypothèse de Riemann pour les corps de fonctions [7] comme conséquence facile du théorème de Riemann-Roch pour les surfaces. En essayant de comprendre la portée exacte du leur méthode, je suis tombé sur l'énoncé suivant, connu en fait depuis 1937 [2] [6] [1] (comme me l'a signalé J. P. Serre), mais apparemment peu connu et utilisé:

Г٦

2. Nous allons déduire sur X, nous désignerons par l(D) la dimension de l'espace vectoriel des fonctions f sur X telles que $(f) \ge -D$ donc l(D) ne dépend que de la classe de D. Rappelons l'inégalité de Riemann-Roch

[]

3. Ce qui précède n'utilisait pas à proprement parler la méthode de Mattuck-Tate (si ce n'est en utilisant l'inegalité de Riemann-Roch sur les surfaces). Nous allons indiquer maintenant comment la méthode de ces auteurs, convenablement généralisée, donne d'autres inégalités que celle de A. Weil. Nous nous appuierons sur le

Remarques. Le corollaire 1 devient faux si on ne fait pas l'hypothèse que

⁶https://agrothendieck.github.io/divers/NMTatescan.pdf

K/2 est encore une classe de diviseurs. En effet, toutes les hypothèses sauf cette dernière sont vérifiées si X est un surface non singulière rationnelle. Or, à partir d'une telle surface, on construit facilement une surface birationnellement équivalente par éclatements successifs, dont l'index τ soit < 0 (contrairement à (3.7 ter)). En effet, on vérifie aisément que lorsqu'on fait éclater un point dans une surface non singulière projective, l'index diminue d'une unité. (Cette remarque, ainsi que l'interprétation de l'inégalité (3.7) a l'aide de l'index, m'a été signalée par J. P Serre).

La disparité des énoncés qu'on déduit du théorème (3.2) est due au fait qu'il n'est pas relatif à un élément arbitraire de l'espace vectoriel E de Néron-Séveri introduit plus haut, mais à un élément du "lattice" provenant des diviseurs sur X. On notera d'ailleurs que dans le cas particulier où X est le produit des deux courbes C et C', le théorème 3.2 ne contient rien de plus que l'inégalité de A. Weil.

THE COHOMOLOGY THEORY OF ABSTRACT ALGEBRAIC VARIETIES

Proc. Int. Congress Math. (Edinburgh, 1958), 103-118. Cambridge Univ. Press, New York, 1960⁷

It is less than four years since cohomological methods (i.e. methods of Homological Algebra) were introduced into Algebraic geometry in Serre's fundamental paper [?], and it seems already certain that they are to overflow this part of mathematics in the coming years, from the foundations up to the most advanced parts. All we can do here is to sketch briefly some of the ideas and results. None of these have been published in their final form, but most of them originated in or were suggested by Serre's paper.

Let us first give an outline of the main topics of cohomological investigation in Algebraic geometry, as they appear at present. The need of a theory of cohomology for 'abstract' algebraic varieties was first emphasized by Weil, in order to be able to give a precise meaning to his celebrated conjectures in Diophantine geometry [?]. Therefore the initial aim was to find the 'Weil cohomology' of an algebraic variety, which should have as coefficients something 'at least as good' as a field of characteristic 0, and have such formal properties (e.g. duality, Künneth formula) as to yield the analogue of Lefschetz's 'fixed-point formula'. Serre's general idea

⁷https://agrothendieck.github.io/divers/cohaavscan.pdf

has been that the usual 'Zariski topology' of a variety (in which the closed sets are the algebraic subset) is a suitable one for applying methods of Algebraic Topology. His first approach was hoped to yield at least the right Betti numbers of a variety, it being evident from the start that it could not be considered as the Weil cohomology itself, as the coefficient field for cohomology was the ground field of a variety, and therefore not in general of characteristic 0. In fact, even the hope of getting the 'true' Betti numbers has failed, and so have other attempts of Serre's [?] to get Weil's cohomology by taking the cohomology of the variety with values, not in the sheaf of local rings themselves, but in the sheaves of Witt-vectors constructed on the latter. He gets in this way modules over the ring W(k) of infinite Witt vectors on the ground field k, and W(k) is a ring of characteristic 0 even if k is of characteristic $p \neq 0$. Unfortunately, modules thus obtained over W(k) may be infinitely generated, even when the variety V is an abelian variety [?]. Although interesting relations must certainly exist between these cohomology groups and the 'true ones', it seems certain now that the Weil cohomology has to be defined by a completely different approach. Such an approach was recently suggested to me by the connections between sheaf-theoretic cohomology and cohomology of Galois groups on the one hand, and the classification of unramified coverings of a variety on the other (as explained quite unsystematically in Serre's tentative Mexico paper [?]), and by Serre's idea that a 'reasonable' algebraic principal fiber space with structure group G, defined on a variety V, if it is not locally trivial, should become locally trivial on some covering of V unramified over a given point of V. This has been the starting point of a definition of the Weil cohomology (involving both 'spatial' and Galois cohomology), which seems to be the right one, and which gives clear suggestions how Weil's conjectures may be attacked by the machinery of Homological algebra. As I have not begun theses investigations seriously as yet, and as moreover this theory has a quite distinct flavor from the one of the theory of algebraic coherent sheaves which we shall now be concerned with, we shall not dwell any longer on Weil's cohomology. Let us merely remark that the definition alluded to has already been the starting-point of a theory of cohomological dimension of fields, developed recently by Tate [?].

The second main topic for cohomological methods is the cohomology theory of

algebraic coherent sheaves, as initiated by Serre. Although inadequate for Weil's purposes, it is at present yielding a wealth of new methods and new notions, and gives the key even for results which were not commonly thought to be concerned with sheaves, still less with cohomology, such as Zariski's theorem on 'holomorphic functions' and his 'main theorem' - which can be stated now in a more satisfactory way, as we shall see, and proved by the same uniform elementary methods. The main parts of the theory, at present, can be listed as follows:

- (a) General finiteness and asymptotic behaviour theorems.
- (b) Duality theorems, including (respectively identical with) a cohomological theory of residues.
- (c) Riemann-Roch theorem, including the theory of Chern classes for algebraic coherent sheaves.
- (d) Some special results, concerning mainly abelian varieties.

The third main topic consists in the application of the cohomological methods to local algebra. Initiated by Koszul and Cartan-Eilenberg in connection with Hilbert's 'theorem of syzygies', the systematic use of these methods is mainly due again to Serre. The results are the characterization of regular local rings as those whose global cohomological dimension is finite, the clarification of Cohen-Macaulay's equidimensionality theorem by means of the notion of cohomological codimension [?], and specially the possibility of giving (for the first time as it seems) a theory of intersections, really satisfactory by its algebraic simplicity and its generality. Serre's result just quoted, that regular local rings are the the only ones of finite global cohomological dimension, accounts for the fact that only for such local rings does a satisfactory theory of intersections exist. I cannot give any details here on these subjects, nor on various results I have obtained by means of a local duality theory, which seems to be the tool which is to replace differential forms in the case of unequal characteristics, and gives, in the general context of commutative algebra, a clarification of the notion of residue, which as yet was not at all well understood. The motivation of this latter work has been the attempt to get a global theory of duality in cohomology for algebraic varieties admitting arbitrary

singularities, in order to be able to develop intersection formulae for cycles with arbitrary singularities, in a non-singular algebraic variety, formulas which contain also a 'Lefschetz formula mod p' [?]. In fact, once a proper local formalism is obtained, the global statements become almost trivial. As a general fact, it appears that, to a great extent, the 'local' results already contain a global one; more precisely, global results on varieties of dimension n can frequently be deduced from corresponding local ones for rings of Krull dimension n+1.

We will therefore

[]

EGA I Le langage des schémas

Publications Mathématiques de l'IHÉS⁸

%https://agrothendieck.github.io/divers/ega1.pdf

SGA 1 Revêtements Étales et Groupe Fondamental, $1960-1961^9$

⁹https://arxiv.org/abs/math/0206203

TECHNIQUES DE CONSTRUCTION EN GÉOMÉTRIE ANALYTIQUE

Séminaire Henri Cartan, tome 13, Faisc. n° 1 et 2 (1960-1961)¹⁰

¹⁰https://agrothendieck.github.io/divers/tcgascan.pdf

EGA II

Étude globale élémentaire de quelques classes de morphismes

Publications Mathématiques de l'IHÉS¹¹

11https://agrothendieck.github.io/divers/ega2.pdf

EGA III-1 Étude cohomologique des faisceaux cohérents

Publications Mathématiques de l'IHÉS¹²

¹²https://agrothendieck.github.io/divers/ega31.pdf

SGA 2 Cohomologie Locale et Théorèmes de Lefschetz Locaux et Globaux, $1961-1962^{13}$

FONDEMENTS DE LA GÉOMÉTRIE ALGÉBRIQUE

(Extraits du Sém. Bourbaki 1957-62), Secrétariat Math. IHP, 11 rue Pierre et Marie Curie, 75005 Paris, (1962)¹⁴

¹⁴https://agrothendieck.github.io/divers/FGAscan.pdf

THE TRACE OF CERTAIN OPERATORS

Studia Math. 20, 141-143 (1961)¹⁵

15https://agrothendieck.github.io/divers/tracopscan.pdf

SGA 3 Schémas en groupes, 1962-1964¹⁶

16

RÉSIDUS ET DUALITÉ, PRÉNOTES POUR UN SÉMINAIRE HARTSHORNE 1963

R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin-Heildelberg-New York, 1966¹⁷

¹⁷https://agrothendieck.github.io/divers/resduascan.pdf

EGA III-2

Étude cohomologique des faisceaux cohérents

Publications Mathématiques de l'IHÉS¹⁸

18https://agrothendieck.github.io/divers/ega32.pdf

SGA 4

Théorie des topos et cohomologie étale des schémas, 1963-1964¹⁹

19

EGA IV-1

Étude locale des schémas et des morphismes de schémas

Publications Mathématiques de l'IHÉS²⁰

²⁰https://agrothendieck.github.io/divers/ega41.pdf

FORMULE DE LEFSCHETZ ET RATIONALITÉ DES FONCTIONS ${\cal L}$

Sém. N. Bourbaki, 1966, exp. no 279, p. 41-55²¹

21https://agrothendieck.github.io/divers/lefsLscan.pdf

EGA IV-2

Étude locale des schémas et des morphismes de schémas

Publications Mathématiques de l'IHÉS²²

²²https://agrothendieck.github.io/divers/ega42.pdf

SGA 5 Cohomologie ℓ -adique et fonctions L, 1965-1966 23

23

LE GROUPE DE BRAUER I : ALGÈBRES D'AZUMAYA ET INTERPRÉTATIONS DIVERSES

Sém. N. Bourbaki, 1966, exp. no 290, p. 199-219²⁴

24https://agrothendieck.github.io/divers/bra1scan.pdf

LE GROUPE DE BRAUER II : THÉORIES COHOMOLOGIQUES

Sém. N. Bourbaki, 1966, exp. no 297, p. 287-307²⁵

²⁵https://agrothendieck.github.io/divers/bra2scan.pdf

EGA IV-3

Étude locale des schémas et des morphismes de schémas

Publications Mathématiques de l'IHÉS 26

²⁶https://agrothendieck.github.io/divers/ega43.pdf

SGA 6 Théorie des Intersections et Théorème de Riemann-Roch, 1966-1967²⁷

27

CRYSTALS AND THE DE RHAM COHOMOLOGY OF SCHEMES, NOTES BY J. COATES AND O. JUSSILA

Dix exposés sur la cohomologie des schémas, 306-358. North Holland, Amsterdam; Masson, Paris, 1968²⁸

Introduction

These notes are a rough summary of five talks given at I.H.E.S in November and December 1966. The purpose of these talks was to outline a possible definition of a *p*-adic cohomology theory, via a generalization of the De Rham cohomology which was suggested by work of Monsky-Washnitzer [?] and Manin [?].

The contents of the notes are by no means intended to be a complete theory. Rather, they outline the start of a program of work which has still not been carried out²⁹.

1. De Rham cohomology

1.1. Differentiable Manifolds. Let X be a differentiable manifold, and $\underline{\Omega}_{X/\mathbb{C}}^{\bullet}$

²⁸https://agrothendieck.github.io/divers/CRCSscan.pdf

²⁹For a more detailed exposition and progress in this direction, we refer to the work of P. Berthelot, to be developed presumably in SGA 8.

the complex of sheaves of differential forms on X, whose coefficients are complex valued differentiable functions on X.

Theorem 1.1. (De Rham) — There is a canonical isomorphism

$$H^*(X, \mathbb{C}) \xrightarrow{\sim} H^*(\Gamma(X, \underline{\Omega}_{X/\mathbb{C}}^{\bullet})),$$

where $H^*(X, \mathbb{C})$ is the canonical cohomology of X with complex coefficients.

To prove this, one observes that, by Poincaré's lemma, the complex $\underline{\Omega}_{X/C}^{\bullet}$ is a *resolution* of the constant sheaf \underline{C} on X, and that the sheaves $\underline{\Omega}_{X/C}^{j}$ are *fine* for $j \geq 0$, so that $H^{i}(X,\underline{\Omega}_{X/C}^{j}) = 0$ for i > 0 and $j \geq 0$, whence the assertion.

An analogous result holds for the complex of sheaves of differential forms on X, whose coefficients are real valued differentiable functions on X.

- 1.2.
- 1.3.
- 1.4.
- 1.5.
- **1.6.** Criticism of the ℓ -adic cohomology. If X is a scheme of finite type over an algebraically closed field k, and ℓ is any prime number $distinct^{30}$ from the characteristic of k, the ℓ -adic cohomology of X is defined to be
 - 1.7.
- **1.8. Proposals for a** *p***-adic Cohomology**. We only mention two proposals, namely Monsky and Washnitzer's method via special affine liftings (which we discuss in n° 2), and the method using the fppf (faithfully flat and finite presentation) topology.

By analogy with the ℓ -adic cohomology, the essential idea of the fppf topology was to consider the cohomology of X/k, with respect to the fppf topology, with coefficient groups in the category C^{ν} of finite schemes of $\mathbf{Z}/p^{\nu}\mathbf{Z}$ -modules. Examples of such schemes of modules are

³⁰the ℓ -adic cohomology is still defined for ℓ equal to the characteristic of k, but it no longer has too many reasonable properties.

2. The cohomology of Monsky and Wishnitzer

2.1. Approach via liftings.

Suppose X_0 is a scheme on a perfect field k

3. Connections on the De Rham cohomology

For the definition of a *connection* and a *stratification* on a sheaf, see Appendix I of these notes.

4. The infinitesimal topos and stratifying topos

We now turn to the definition of a more general category of coefficients for the De Rham cohomology. To this end we introduce two ringed topos, the *infinitesimal topos* and the *stratifying topos*.

We shall see later that in fact these two topos work well only in characteristic

5. Cěch calculations

We now consider the cohomology of the infinitesimal topos and the stratifying topos³¹

6. Comparison of the Infinitesimal and De Rham Cohomologies

6.1. The basic idea. Let *X* be a scheme above *S*, and *F* a quasi-coherent Module on *X* fortified with a stratification relative to *S*.

7. The crystalline topos and connecting topos

7.1. Inadequacy of infinitesimal topos. Let X_0 be a scheme above a perfect field k of characteristic p > 0. Then, regarding X_0 as being above $S = \operatorname{Spec} W(k)$ instead of k, the infinitesimal cohomology

$$H^*((X_0/S)_{inf}, \underline{O}X_0)$$

³¹For a general discussion of the cohomology of a topos, see (SGA 4 V).

is a graded module

Appendix

Let X be a scheme above the base S, and F a Module on X. For each positive integer n,

UN THÉORÈME SUR LES HOMOMORPHISMES DE SCHÉMAS ABÉLIENS

Inventiones Math. 2, 59-78 (1966)³²

³²https://agrothendieck.github.io/divers/homschabscan.pdf

EGA IV-4

Étude locale des schémas et des morphismes de schémas

Publications Mathématiques de l'IHÉS³³

³³https://agrothendieck.github.io/divers/ega44.pdf

SGA 7 Groupes de monodromie en géométrie algébrique, 1967-1969³⁴

34

CRITÈRES DIFFÉRENTIELS DE RÉGULARITÉ POUR LES LOCALISÉS DES ALGÈBRES ANALYTIQUES A. GROTHENDIECK ET J. DIEUDONNÉ

J. Algebra 5, 305-324 (1967)³⁵

35https://agrothendieck.github.io/divers/critdiffscan.pdf

LE GROUPE DE BRAUER III : EXEMPLES ET COMPLÉMENTS

IHES, Mars 1966. Dix exposés sur la cohomologie des schémas, 88-188. North Holland, Amsterdam et Masson, Paris, 1968³⁶

³⁶https://agrothendieck.github.io/divers/GBIII.pdf

CATÉGORIES COFIBRÉES ADDITIVES ET COMPLEXE COTANGENT RELATIF

Lecture Notes in Math. 79, Springer-Verlag, Berlin-New York, 1968³⁷

³⁷https://agrothendieck.github.io/divers/CCACCRscan.pdf

CLASSES DE CHERN ET REPRÉSENTATIONS LINÉAIRES DES GROUPES DISCRETS

Dix exposés sur la cohomologie des schémas, 215-305. North Holland, Amsterdam; Masson, Paris, 1968³⁸

38https://agrothendieck.github.io/divers/chernrepscan.pdf

HODGE'S GENERAL CONJECTURE IS FALSE FOR TRIVIAL REASONS

A. Grothendieck

(Received 27 October 1968)

Topology Vol. 8, pp. 299-303. Pergamon Press, 1969³⁹

§1. — The startling title is somewhat misleading, as everybody will think about a part of the Hodge conjecture which is most generally remembered, namely the part concerned with a criterion for a cohomology class (on a projective smooth connected scheme X over C) to be "algebraic", i.e. to come from an algebraic cycle with rational coefficients. This conjecture is plausible enough, and (as long as it is not disproved) should certainly be regarded as the deepest conjecture in the "analytic" theory of algebraic varieties. However in [6, p. 184], Hodge gave a more general formulation of his conjecture in terms of filtrations of cohomology spaces, and the main aim of my note is to show that for a rather trivial reason, this formulation has to be slightly corrected.

Consider on the complex cohomology

$$H^{i}(X^{an}, \mathbf{C}) = H^{i}(X^{an}, \mathbf{Q}) \otimes_{\mathbf{O}} \mathbf{C}$$

³⁹https://agrothendieck.github.io/divers/hodgescan.pdf

⁴⁰In fact, Hodge states his conjecture for integral cohomology. That this is too optimistic was proved in [1]

(X^{an} denotes the analytic space associated to the scheme X) the "Hodge filtration"

§2. — This makes clear how the Hodge conjecture should be corrected, to eliminate trivial counterexamples: namely the left hand side of (*) should be the largest sub-space of the right hand side, generating a subspace of $H^i(X^{an}, \mathbb{C})$ which is a sub-Hodge structure, i.e. stable under decomposition into p, q types. In other words, an element of $H^i(X^{an}, \mathbb{C})$ should belong to Filt p if and only if all its bihomogeneous components belong to the \mathbb{C} -vector space generated by the right hand side of (*).

This formulation may seem a little too cumbersome to inspire confidence. To make it look better, we may remark that it is equivalent to the conjunction of the usual Hodge conjecture

- §3. It may be of interest to review here the few non trivial instances known to the author where the Hodge conjecture has been checked.
 - a) The case p = 1, i = 2, i.e. the characterization of cohomology classes coming from divisors, due to Lefschetz, which has become trivial now through sheaf cohomology and the exact sequence of the exponential.
 - b) The case $i = \dim X$, any p, provided we make the following two assumptions, where Y denotes a "general" hyperplane section of X: 1°) The Hodge conjecture is true for $H^{i-2}(Y^{an}, \mathbb{C})$ in filtration p^{-1} (this condition is satisfied if $i \leq 4$). 2°) The part of $H^{i-1}(Y^{an}, \mathbb{C})$ orthogonal to the image of $H^{i-1}(Y^{an}, \mathbb{C})$ (the so-called "vanishing cycles" part of $H^{i-1}(Y^{an}, \mathbb{C})$) is contained in Filt' (if i = 3 and p = 1, this amounts to saying that the component of type (2,0) of the vanishing cycles subspace of $H^2(Y^{an}, \mathbb{C})$ is zero). For i = 3, this case is mentioned in Hodge's exposé [6]. It is not hard to establish, using Leray's spectral sequence for the "fibering" of X by a suitable pencil of hyperplane sections, and resolution of singularities.
 - c) The case of a product of elliptic curves, i = 2p, any p. This case is due to Tate (unpublished), who proves it by observing that the "Hodge classes" in

the cohomology of *X* are sums of products of Hodge classes of degree 2, so that a) applies.

- d) The case of a general cubic threefold in P^4 , i = 3, p = 1, due to Gherardelli $[2]^{41}$
- e) The case of a cubic fourfold in P^5 , i = 2p, p = 2, due to Griffiths, using e) and recent results of his [4].

§4. — In most concrete examples, it seems very hard to *check* the Hodge conjecture, due to the difficulty in explicitly determining the filtration Filt' of the cohomology, and even in determining simply the part of the cohomology coming from algebraic classes. It may be easier, for the time being, to *test* the Hodge conjectures in various non trivial cases, through various consequences of the Hodge conjectures which should be more amenable to direct verification. I would like to mention here two such consequences, which can be seen in act to be consequences already of the *usual* Hodge conjecture.

First, if X is as before, the dimensions of the graded components of the vector space associated to the arithmetic filtration Filt' (and indeed this very filtration itself, if we interpret complex cohomology as the de Rham cohomology, which makes a purely algebraic sense) is clearly invariant if we transform X by any automorphism of the field \mathbb{C} , or equivalently, if we change the topology of C by such an automorphism. In other words, if we have a smooth projective scheme X over a field K of char 0, then the invariants we get by different embeddings of K into the field \mathbb{C} are the same. Granting the Hodge conjecture, the same should be true if we replace the Filt' filtration by the filtration described in $\S 2$ in terms of the Hodge structure (which is a transcendental description). What if we take for instance for X a "general" abelian variety of given dimension of powers of it, or powers of a "general" curve C of given genus? The case of genus 1 checks by Tate's result recalled in example \mathbb{C}) above.

⁴¹(Added April 1969). This can be viewed also as a particular case of Hodge's result quoted in example b), and Manin has observed that this example extends to any *univational threefold X*. Cf. Manin: Correspondences, motives and monoidal transforms (in Russian), *Mat. Sbornik* 77 (1968), 475-507.

Secondly, and more coarsely, if we have a projective and smooth morphism $f: X \longrightarrow S$ of algebraic schemes over \mathbb{C} , we can for every $s \in S$ consider the complex cohomology of the fiber X, as a Hodge structure, and look at the filtration "rational over \mathbb{Q} " which it defines (and which conjecturally should be the arithmetic filtration). Hodge's conjecture would imply that the set of points $s \in S^{an}$ where the dimensions of the components of the associated graded space have fixed values has a very special structure: it should be the difference of two countable unions of Zariski-closed subsets of S, which in fact should even be definable over a fixed subfield of \mathbb{C} , of finite type over the field \mathbb{Q} . (A simple application of Baire's theorem, not using Hodge's conjecture, would give us only a considerably weaker structure theorem for the set in question, where Zariski-closed subsets would be reapleed by the images, under the projection of the universal covering \widetilde{S} of S^{an} , of analytic subsets of \widetilde{S}^{42} .)

REFERENCES

1.

 $^{^{42}}$ (Added April 1969) David Lieberman has informed me that he can prove the stronger result obtained by replacing \tilde{S} by S^{an} itself.

STANDARD CONJECTURES ON ALGEBRAIC CYCLES

Algebraic geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), 193-199. Oxford Univ. Press, London, 1969⁴³

1. Introduction

We state two conjectures on algebraic cycles, which arose fro an attempt at understanding the conjectures of Weil on the ζ -functions of algebraic varieties. These are not really new, and they were worked out about three years ago independently by Bombieri and myself.

The first is an existence assertion for algebraic cycles (considerably weaker than the Tate conjectures), and is inspired by and formally analogous to Lefschetz's structure theorem on the cohomology of a smooth projective variety over the complex field.

The second is a statement of positivity, generalising Weil's well-known positivity theorem in the theory of abelian varieties. It is formally analogous to the famous Hodge inequalities, and is in fact a consequence of these in characteristic zero.

WHAT REMAINS TO BE PROVED OF WEIL'S CONJECTURES? Before stating our conjectures, let us recall what remains to be proved in respect of the Weil conjectures, when approached through ℓ -adic cohomology.

⁴³https://agrothendieck.github.io/divers/stand.pdf

Let X/\mathbf{F}_q be a smooth irreducible projective variety of dimension n over the finite field $\overline{\mathbf{F}}_q$ with q elements, and ℓ a prime different from the characteristic. It has then been proved by M. Artin and myself that the Z-function of X can be expressed as

$$Z(t) = \frac{L'(t)}{L(t)},$$

$$L(t) = \frac{L_0(t)L_2(t)...L_{2n}(t)}{L_1(t)L_3(t)...L_{2n-1}(t)},$$

$$L_i(t) = \frac{1}{P_i(t)},$$

where $P_i(t)=t^{\dim H^i(\overline{X})}Q_i(t^{-1})$, Q_i being the characteristic polynomial of the action of the Frobenius endomorphism of X on $H^i(\overline{X})$ (here H^i stands for the i^{th} ℓ -adic cohomology group and \overline{X} is deduced from X by base extension to the algebraic closure of \mathbf{F}_q). But it has not been proved so far that

- (a) the $P_i(t)$ have integral coefficients, independent of $\ell(\neq \text{char } \mathbf{F})$;
- (b) the eigenvalues of the Forbenius endomorhisms on $H^i(\overline{X})$, i.e., the reciprocals of the roots of $P_i(t)$, are of absolute value $q^{i/2}$.

Our first conjecture meets question (a). The first and second together would, by an idea essentially due to Serre [?], imply (b).

2. A weak form of conjecture 1

From now on, we work with varieties over a ground field k which is algebraically closed and of arbitrary characteristic. Then (a) leads to the following question: If f is an endomorphism of a variety X/k and $\ell \neq \operatorname{char} k$, f induces

$$f^i: H^i(X) \longrightarrow H^i(x),$$

and each of these f^i has a characteristic polynomial. Are the coefficients of these polynomials rational integers, and are they independent of ℓ ? When X is smooth and proper of dimension n, the same question is meaningful when f is replaced by any cycle of dimension n in $X \times X$, considered as an algebraic correspondence.

In characteristic zero, one sees that this is so by using integral cohomology. If char k > 0, one feels certain that this is so, but this has not been proved so far.

Let us fix for simplicity an isomorphism

$$\ell^{\infty k^* \simeq Q_\ell/Z_\ell}$$
 (a heresy!).

We than have a map

$$\operatorname{cl}: \mathscr{F}^{i}(X) \otimes_{Z} Q \longrightarrow \operatorname{H}^{2i}_{\ell}(X)$$

which associates to an algebraic cycle its cohomology class. We denote by $C_{\ell}^{i}(X)$, and refer to its elements as algebraic cohomology classes.

A known result, due to Dwork-Faton, shows that for the integrality question (not to speak of the independence of the characteristic polynomial of ℓ), it suffices to prove that

$$\operatorname{Tr} f_i^N \in \frac{1}{m} \mathbf{Z}$$
 for every $N \ge 0$,

where m is a fixed positive integer⁴⁴. Now, the graph Γ_{f^N} in $X \times X$ of f^N defines a cohomology class on $X \times X$, and if the cohomology class Δ of the diagonal in $X \times X$ is written as

$$\Delta = \sum_{0}^{n} \pi_{i}$$

where π_i are the projections of Δ onto $H^i(X) \otimes H^{n-i}(X)$ for the canonical decomposition $H^n(X \times X) \simeq \sum_{i=0}^n H^i(X) \otimes H^{n-i}(X)$, a known calculation shows that

$$\operatorname{Tr}(f^N)_{H^i} = (-1)^i \operatorname{cl}(\Gamma_{f^N}) \pi_i \in \operatorname{H}^{4n}(X \times X) \approx \mathbf{Q}_{\ell}.$$

Assume that the π_i are algebraic. Then $\pi_i = \frac{1}{m}\operatorname{cl}(\prod_i)$, where \prod_i is an algebraic cycle, hence

$$\operatorname{Tr}(f^N)_{\mathbf{H}^i} = (-1)^i (\prod_i \Gamma_{f^N}) \in \frac{1}{m} \mathbf{Z}$$

and we are through.

WEAK FORM OF CONJECTURE 1. (C(X)): The elements π_i^{ℓ} are algebraic, (and come from an element of $\mathscr{F}^i(X) \otimes_{\mathbb{Z}} Q$, which is independent of ℓ).

N.B.

⁴⁴This was pointed out to me by S. Kleimann.

- 1. The statement in parenthesis is needed to establish the independence of P_i on ℓ .
- 2. If C(X) and C(Y) hold, $C(X \times Y)$ holds, and more generally, the Künneth components of any algebraic cohomology class on $X \times Y$ are algebraic.

3. The conjecture 1 (of Lefschetz type)

Let X be smooth and projective, and $\xi \in H^2(X)$ the class of a hyperplane section. Then we have a homomorphism

(*)
$$\cup \xi^{n-i} : H^{i}(X) \longrightarrow H^{2n-i}(X) \quad (i \le n).$$

It is expected (and has been established by Lefschetz [?], [?] over the complex field by transcendental methods) that this is an isomorphism for all characteristics. For i = 2j, we have the commutative square

[]

Our conjecture is then: (A(X)):

- (a) (*) is always an isomorphism (the mild form);
- (b) if i = 2j. (*) induces an isomorphism (or equivalently, an epimorphism) $C^{j}(X) \longrightarrow C^{n-j}(X)$.

N.B. If $C^{j}(X)$ is assumed to be finite dimensional, (b) is equivalent to the assertion that $\dim C^{n-j}(X) \leq \dim C^{j}(X)$ (which in particular implies the equality of these dimensions in view of (a)).

An equivalent formulation of the above conjecture (for all varieties X as above) is the following.

(B(X)): The Λ -operation (c.f. [?]) of Hodge theory is algebraic.

By this, we mean that there is an algebraic cohomology class λ in $H^*(X \times X)$ such that the map $\Lambda: H^*(X) \longrightarrow H^*(X)$ is got by lifting a class from X to $X \times X$ by the first projection, cupping with λ and taking the image in $H^*(X)$ by the Gysin homomorphism associated to the second projection

Note that $B(X) \Rightarrow A(X)$, since the algebricity of λ implies that of λ^{n-i} , and λ^{n-i} provides an inverse to $\bigcup \xi^{n-i} : H^i(X) \longrightarrow H^{2n-i}(X)$. On the other hand, it is

easy to show that $A(X \times X) \Rightarrow B(X)$ and this proves the equivalence of conjectures A and B.

The conjecture seems to be most amenable in the form of B. Note that B(X) is stable for products, hyperplane sections and specialisations. In particular, since it holds for projective spaces, it is also true or smooth varieties which are complete intersections in some projective space. (As a consequence, we deduce for such varieties the wished-for integrality theorem for the Z-function!). It is also verified for Grassmannians, and for abelian varieties (Liebermann [?]).

I have an idea of a possible approach to Conjecture *B*, which relies in turn on certain unsolved geometric questions, and which should be settled in any case.

Finally, we have the implication $B(X) \Rightarrow C(X)$ (first part), since the π_i can be expressed as polynomials with coefficients in \mathbf{Q} of λ and $L = \cup \xi$. To get the whole of C(X), one should naturally assume further that there is an element of $\mathscr{F}(X \times X) \otimes_Z Q$ which gives λ for every ℓ .

4. Conjecture 2 (of Hodge type)

For any $i \leq n$, let $P^i(X)$ be the "primitive part" of $H^i(X)$, that is, the kernel of $\bigcup \xi^{n-i+1} : H^i(X) \longrightarrow H^{2n-i+2}(X)$, and put $C^j_{P_r}(X) = P^{2j} \cap C^j(X)$. On $C^j_{P_r}(X)$, we have a Q-valued symmetric bilinear form given by

$$(x,y) \longrightarrow (-1)^{j} K(xy\xi^{n-2j})$$

where K stands for the isomorphism $H^{2n}(X) \simeq \mathbb{Q}_{\ell}$. Our conjecture is then that $(\mathrm{Hdg}(X))$: The above form is positive definite.

One is easily reduced to the case when $\dim X = 2m$ is even, and j = m. REMARKS.

- (1) In characteristic zero, this follows readily from Hodge theory [?].
- (2) B(X) and $\mathrm{Hdg}(X \times X)$ imply, by certain arguments of Weil and Serre, the following: if f is an endomorphism of X such that $f^*(\xi) = q\xi$ for some $q \in \mathbf{Q}$ (which is necessarily > 0), then the eigenvalues of $f_{\mathrm{H}^i(X)}$ are algebraic integers of absolute value $q^{i/2}$. Thus, this implies all of Weil's conjectures.

- (3) The conjecture Hdg(X) together with A(X)(a) (the Lefschetz conjecture in cohomology) implies that numerical equivalence of cycles is the same as cohomological equivalence for any ℓ -adic cohomology if and only if A(X) holds.
- (4) In view of (3), B(X) and Hdg(X) imply that numerical equivalence of cycles coincides wit \mathbb{Q}_{ℓ} -equivalence for any ℓ . Further the natural map

$$Z^{i}(X) \otimes_{\mathbf{Z}} \mathbf{Q}_{\ell} \longrightarrow \mathbf{H}_{\ell}^{i}(X)$$

is a monomorphism, and in particular, we have

$$\dim_{\mathbf{Q}} C^i(X) \leq \dim_{\mathbf{Q}_{\ell}} H^i_{\ell}(X).$$

Note that for the deduction of this, we do not make use of the positivity of the form considered in Hdg(X), but only the fact that it is non-degenerate.

Another consequence of Hdg(X) and B(X) is that the stronger version of B(X), viz. that λ comes from an algebraic cycle with rational coefficients *independent of* ℓ , holds.

Conclusions

The proof of the two standard conjectures would yield results going considerably further than Weil's conjectures. They would form the basis of the so-called "theory of motives" which is a systematic theory of "arithmetic properties" of algebraic varieties, as embodied in their groups of classes of cycles for numerical equivalence. We have at present only a very small part of this theory in dimension one, as contained in the theory of abelian varieties.

Alongside the problem of resolution of singularities, the proof of the standard conjectures seems to me to be the most urgent task in algebraic geometry.

REPRÉSENTATIONS LINÉAIRES ET COMPACTIFICATION PROFINIE DES GROUPES DISCRETS

Manuscripta Math. 2, 375-396 (1970)⁴⁵

⁴⁵https://agrothendieck.github.io/divers/gdisscan.pdf

GROUPES DE BARSOTTI-TATE ET CRISTAUX DE DIEUDONNÉ

Sém. de Math. Sup. 45 (Été 1970). Les Presses de l'Université de Montréal, Montréal, Que., 1974⁴⁶

46https://agrothendieck.github.io/divers/barsdieudscan.pdf

TRAVAUX DE HEISOUKÉ HIRONAKA SUR LA RÉSOLUTION DES SINGULARITÉS

Actes, Congrès intern. math., 1970. Tome 1, p. 7 à 9.47

Le résultat principal de Hironaka est le suivant :

Théorème de Hironaka. — Soit X une variété algébrique sur un corps k de caractéristique nulle, U un ouvert (de Zariski) de X tel que U soit non singulier et partout dense. Il existe alors une variété algébrique non singulière X' et un morphisme propre $f: X' \longrightarrow X$, tels que le morphisme $f^{-1}(U) \longrightarrow U$ soit un isomorphisme, et que $D = X' - f^{-1}(U)$ soi un diviseur « à croisements normaux » dans X' (i.e. localement donné par une équation de la forme $f_1 f_2 \dots f_k = 0$, où les f_i font partie d'un système de « coordonnées locales »).

En fait le théorème complet de Hironaka est plus précis : il donne une information très précise sur la façon d'obtenir une telle « résolution » du couple (X,U) à l'aide d'une suite « d'éclatements » de nature très particulière. Cette précision supplémentaire est inutile dans toutes les applications connues du rapporteur, sauf pour nous dire que si X est projective, on peut choisir X' également projective. Le théorème complet de Hironaka est aussi plus général : il s'applique à tous les « schémas excellents » de caractéristique nulle, et en particulier aux schémas de

⁴⁷https://agrothendieck.github.io/divers/hirsingscan.pdf

type fini sur les anneaux de séries formelles ou de séries convergentes (au-dessus d'un corps de caractéristique nulle). Cela implique par exemple facilement que le théorème énoncé reste vrai au voisinage d'un point de X, lorsqu'on suppose maintenant que X est un espace analytique complexe (ou sur un corps valué complet algébriquement clos, plus généralement), et U est le complémentaire d'une partie fermée analytique de X. Il semble que Hironaka ait démontré également la version globale de ce résultat local.

Contrairement à ce qui était l'impression générale chez les géomètres algébristes avant qu'on ne dispose du théorème de Hironaka, celui-ci n'est pas un résultat tout platonique, qui donnerait seulement une sorte de justification après coup d'un point de vue en géométrie algébrique (celui où les variétés sont plongées à tout prix dans l'espace projectif) qui est désormais dépassé. C'est au contraire aujourd'hui un outil d'une très grande puissance, sans doute le plus puissant dont nous disposions, pour l'étude des variétés algébriques ou analytiques (en caractéristique zéro pour le moment). Cela est vrai pour l'étude des singularités d'une variété, mais également pour l'étude « globale » des variétés algébriques (ou analytiques) non singulières, notamment pour le cas des variétés non compactes. L'application du théorème de Hironaka pour ces dernières se présente généralement ainsi : X étant supposée quasi projective i.e. immergeable comme sousvariété (en général non fermée) dans l'espace projectif P, l'adhérence X de X dans P contient X comme ouvert partout dense non singulier, de sorte qu'on peut appliquer le théorème de Hironaka au couple (\overline{X}, X) . On en conclut que X est le complémentaire, dans une variété non singulière compacte X', d'un diviseur D à croisements normaux. Un tel théorème de structure pour X, et diverses variantes qu'on prouve de façon analogue, sont extrêmement utiles dans l'étude de X.

Les théorèmes démontrés à l'aide du théorème de Hironaka ne se comptent plus. Pour la plupart, on a l'impression que la résolution des singularités est vraiment au fond du problème, et me pourra être évitée par recours à des méthodes différents. Citons quelques-uns de ces résultats (sur un corps de car. nulle).

a) Si $f: X' \longrightarrow X$ est un morphisme birationnel et propre de variétés algébriques non singulières, alors les faisceaux $R^i j_*(\mathscr{O}_X)$ sont nuls pour i > 1 (Hironaka).

- b) Si X est une variété algébrique affine sur le corps des complexes, sa cohomologie complexe peut être calculée à l'aide du « complexe de De Rham algébrique », i.e. le complexe formé des formes différentielles algébriques sur X (Grothendieck ; divers raffinements, inspirés par une question soulevée par Atiyah et Hörmander, ont été développés par P. Deligne).
- c) Si X est une variété algébrique sur le corps des complexes, alors ses « groupes de cohomologie étales » à coefficients dans des faisceaux de torsion sont isomorphes aux groupes de cohomologie de l'espace localement compact sousjacent à X (M. Artin et A. Grothendieck).
- d) La construction par P. Deligne d0une théorie de Hodge pour les variétés algébriques complexes quelconques (supposées ni compactes ni non singulières) utilise de façon essentielle la résolution des singularités.
- e) Même remarque pour divers théorèmes de P. A. Griffiths et de ses élèves sur la « variation des structures de Hodge », ou pour divers théorèmes de E. Brieskorn sur l'étude locale de certains types de singularités (singularités de Klein des surfaces, points critiques isolés d'un germe de fonction holomorphe...).

Certains des résultats mentionnés dans d) et e) figureront sans doute dans des rapports des auteurs cités dans ce même Congrès.

Du point de vue technique, la démonstration du théorème de Hironaka constitue une prouesse peu commune. Le rapporteur avoue n'en avoir pas fait entièrement le tour. Aboutissement d'années d'efforts concentrés, elle est sans doute l'une des démonstrations les plus « dures » et les plus monumentales qu'on connaisse en mathématiques nouvelles, dont il est trop tôt d'évaluer le rôle dans le développement futur de la géométrie algébrique⁴⁸. Notons d'autre part que Hironaka souligne que plusieurs de ces idées étaient déjà en germe chez son maître, O. Zariski, qui avait beaucoup fait depuis longtemps pour populariser le prob-

⁴⁸Cela est d'autant plus vrai que le développement de la géométrie algébrique s'arrêtera court, comme tout le reste, si notre espèce devait disparaître dans les prochaines décades, — éventualité qui apparaît aujourd'hui de plus en plus probable.

lème de la résolution des singularités parmi un public réticent, et qui avait dans un travail classique traité le cas de la dimension 3.

Pour terminer, il faut souligner que le problème de la résolution des singularités est loin d'être résolu. En effet, seul le cas de la caractéristique nulle est actuellement réglé. La solution de nombreux problèmes de géométrie algébrique, en caractéristique p>0 comme en inégales caractéristiques, dépend de la démonstration d'un théorème analogue pour n'importe quel « schéma excellent », par exemple pour n'importe quelle variété algébrique sur un corps k de caractéristique arbitraire. Le cas de la dimension 2 a été traité par Abhyankar, et a déjà été un outil indispensable dans diverses questions, par exemple dans la théorie de Néon de la dégénérescence des variétés abéliennes ou des courbes algébriques (« théorème de réduction semistable »), et ses applications par Deligne-Mumford aux variétés de modules des courbes algébriques, en caractéristique quelconque. Depuis plusieurs années déjà, Hironaka travaille sur le cas de la dimension quelconque. Nul doute que le problème mérite qu'un mathématicien du format de H. Hironaka lui consacre dix ans d'efforts incessants. Nul doute aussi que tous les géomètres lui souhaitent, de tout coeur : Bon succès !

A. GROTHENDIECK

Collège de France 11, Place Marcelin - Berthelot, Paris 5^e (France)

H. HIRONAKA

Harvard University
Department of Mathematics,
2 Divinity Avenue
Cambridge, Massachusetts 02138
(U.S.A.)

GROUPES DE BARSOTTI-TATE ET CRISTAUX

Actes, Congrès intern. math., 1970. Tome 1, p. 431 à 436. Gauthier-Villars, Paris, 1971⁴⁹

Dans la suite, p désigne un nombre premier fixé. Nous nous proposons d'exposer l'esquisse d'une généralisation de la théorie de Dieudonné [4] des groupes formels sur un corps parfait de car. p, au cas « des groupes de Barsotti-Tate » (« groupes p-divisibles » dans la terminologie de Tate [5]) sur un schéma de base S sur lequel p est nilpotent. Un exposé plus détaillé se trouvera dans des notes développant un cours que j'ai donné sur ce sujet en juillet 1970 au Séminaire de Mathématique Supérieure de l'Université de Montréal, cf. aussi [7].

1. Généralités

Si S est un schéma, on identifie les schémas X sur S aux faisceaux (fppf) [2] qu'ils représentent. Les (faisceaux en) groupes sur S sont supposés commutatifs. Un groupe G sur S est appelé un groupe de Barsotti-Tate sur S (ou p-groupe de BT sur S, si on veut spécifier p), s'il satisfait aux conditions suivantes :

- a) p.G = G, i.e. G est p-divisible.
- b) G est de p-torsion, i.e. $G = \underset{n}{\underline{\lim}} p^n G$.

⁴⁹https://agrothendieck.github.io/divers/AGICM70.pdf

c) Les groupes $G(n) \stackrel{\text{def}}{=} \text{Ker}(p^n.\text{id}_G)$ sont (représentables par des S-schémas) finis localement libres.

En fait, il suffit (moyennant a) et b)) de supposer que $G(1) = {}_p G$ soit fini localement libre, pour que les G(n) le soient comme extensions multiples de groupes isomorphes à G(1). Notons que G(1) est de rang de la forme p^d , où d est une fonction sur S localement constante à valeurs dans les entiers naturels, et que pour tout n, G(n) est alors de rang p^{dn} . L'entier d s'appelle le rang ou la hauteur de groupe de Barsotti-Tate G. Remarquons qu'une extension de deux groupes de BT est un groupe de BT, et que le rang se comporte additivement pour les extensions. Notons aussi que l'image inverse par un changement de base $S' \longrightarrow S$ d'un groupe de BT est un groupe de BT.

Lorsque *p* est premier aux caractéristique résiduelles de *S*, la catégorie des groupes de BT sur *S* est équivalente à la catégorie des faisceaux *p*-adiques libres constants tordus sur *S* [3], en associant à *G* le faisceau *p*-adique

$$T_p(G) = \ll \underline{\lim} \gg G(n),$$

le morphisme de transition $G(n') \longrightarrow G(n)$ étant induit par la multiplication par $p^{n'-n}$ (pour $n' \ge n$). Si S est connexe et muni d'un point géométrique s, la catégorie en question est donc équivalente à celle des représentations linéaires continues du groupe fondamental $\pi = \pi_1(S,s)$ dans des \mathbb{Z}_p -modules libres de type fini.

Lorsque A est un schéma abélien sur S, son sous-groupe de p-torsion maximal

$$_{p^{\infty}}A = \varinjlim_{n} p^{n}A$$

est un groupe de BT, de rang égal à 2d, ou d est la dimension relative de A. Les propriétés de A ont tendance à se réfléter de façon très fidèle dans celles du groupe de BT associé, ce qui est une des raisons principales de l'intérêt des groupes de BT. Signalons à ce propos le

Théorème de Serre-Tate [6][7]. — Supposons que p soit localement nilpotent sur S (i.e. les car. résiduelles de S sont égales à p) et soit S' un voisinage infinitésimal de S. Alors, pour tout schéma abélien S sur S, les prolongements S' de S' « correspondent exactement » aux prolongements du groupe de S S' associe à S' en un groupe de S S' sur S'.

En fait, on obtient une équivalence entre la catégorie des schémas abéliens A' sur S', et la catégorie des triples (G',A,φ) d'un groupe de BT G' sur S', d'un schéma abélien A sur S, et d'un isomorphisme $\varphi:G'|S\simeq {}_{p\infty}A$.

2. Groupe formel associé à un groupe de BT

Si G est un faisceau sur S muni d'une section e, on définit de façon évidente le voisinage infinitésimal d'ordre n de cette section dans G, $Inf^n(G,e)$, et le voisinage infinitésimal d'ordre infini

$$\overline{G} = \operatorname{Inf}^{\infty}(G, e) = \varinjlim \operatorname{Inf}^{n}(G, e)$$

Lorsque G est un groupe de BT sur S et que p est localement nilpotent sur S, on prouve que \overline{G} est un groupe de Lie formel, qu'on appelle le groupe formel associé au groupe de BT G. Sa formation est fonctorielle en G et commute au changement de base. Lorsque S est réduit à un point, \overline{G} lui-même est un groupe de BT, et G est une extension d'un groupe de BT G/\overline{G} ind-étale par le groupe de BT ind-infinitésimal \overline{G} . La catégorie des groupes de BT ind-infinitésimaux n'est alors autre que celle des groupes de Lie formels qui sont p-divisibles, i.e. ou la multiplication par p est une isogénie [5].

3. Théorie de Dieudonné

Nous supposons maintenant p localement nilpotent sur S. Pour la notion de « cristal en modules localement libre » sur S, nous renvoyons à [1]; nous considérons ici S comme un schéma sur \mathbf{Z}_p , l'idéal ${}_p\mathbf{Z}_p$ de \mathbf{Z}_p étant muni de ses structures de puissances divisées. La théorie de Dieudonné généralisée consiste en la définition d'un « foncteur de Dieudonné ».

$$\mathbb{D}: \mathrm{BT}(S)^{\circ} \longrightarrow (S),$$

ou BT(S) désigne la catégorie des groupes de BT sur S. Ce foncteur est compatible avec les changements de base. On peut le construire par deux procédés assez distincts en apparence (méthode de l'exponentielle, et méthode des \natural -extensions), dont la description dépasse le cadre de cette note. La première méthode a l'avantage

de se prêter directement à la théorie des extensions infinitésimales de groupes de BT du paragraphe suivant ; la deuxième, de permettre une comparaison assez directe de ce foncteur et le foncteur défini classiquement par Dieudonné, dans le cas où S est le spectre d'un corps parfait : dans ce cas, on trouve un isomorphisme canonique entre ce dernier, et le foncteur que nous construisons.

Lorsque S est de caractéristique p, on dispose des morphismes de Frobenius et de Verschiebung (décalage) :

$$G \xrightarrow{F_G} G^{(p/S)},$$

d'où, en transformant par le foncteur de Dieudonné D, des morphismes

$$M \xrightarrow{F_M} M^{(p/S)}, \qquad M = D(G),$$

satisfaisant les conditions habituelles

$$F_M V_M = p.id_M$$
, $V_M F_M = p.id_{M(p/S)}$.

Un cristal M muni de morphisme F_M , V_M satisfaisant aux conditions précédentes sera appelé un *cristal de Dieudonné*. Ainsi, la théorie de Dieudonné généralisée nous fournit un foncteur contravariant de la catégorie des groupes de Barsotti-Tate sur S dans celle des cristaux de Dieudonné, compatible aux changements de base. Lorsque S est le spectre d'un corps parfait, le théorie de Dieudonné classique nous apprend que c'est une équivalence de catégories. Dans le cas général, on peut espérer que ce foncteur soit pleinement fidèle.

On peut d'ailleurs donner une description conjecturale assez simple de l'image essentielle de ce foncteur, que nous n'expliciterons pas ici.

4. Filtration du cristal de Dieudonné et déformations de groupes de BT

Nous supposons toujours p localement nilpotent. Avec la construction du cristal de Dieudonné $\mathbb{D}(G)$ d'un groupe de BT G, on trouve en même temps une filtration canonique du module localement libre $\mathbb{D}(G)_S$ sur S par un sous-module

localement facteur direct $\mathrm{Fil}(\mathbb{D}(G)_S)$. De façon précise, on trouve une suite exacte canonique

$$0 \longrightarrow \underline{\omega}_G \longrightarrow \mathbb{D}(G)_S \longrightarrow \underline{\check{\omega}}_{G^*} \longrightarrow 0,$$

où $\underline{\omega}_G$ est le faisceau localement libre sur S des 1-formes différentielles le long de la section unité du groupe de Lie formel \overline{G} associé à G (n° 2), et $G^* = \varinjlim_{v} G(n)^*$ désigne le groupe de BT dual de G (pour la dualité de Cartier), enfin désigne le module dual. La suite exacte envisagée est fonctorielle en G, et commute aux changements de base.

Soit maintenant S' un épaississement à puissances divisées de S, et supposons que, ou bien les puissances divisées envisagées sont nilpotentes, ou bien que les fibres de G sont connexes, ou qu'il en soit ainsi de celles de G^* (i.e. G(1) est unipotent). Considérons le module localement libre $\mathbb{D}(G)_{S'}$ sur S'. Pour tout prolongement G' de G en un groupe de BT sur S, $\mathbb{D}(G)_{S'}$ peut s'identifier à $\mathbb{D}(G')_{S}$, et à ce titre il est muni d'une filtration par un sous-module localement facteur direct Fil $\mathbb{D}(G')$, qui prolonge la filtration Fil $\mathbb{D}(G)$ dont on dispose déjà sur $\mathbb{D}(G)_s$. Ceci dit, on trouve que les prolongements de G en un groupe de BT G' sur S' « correspondent exactement » aux prolongements de la filtration qu'on a sur $\mathbb{D}(G)_{S}$ en une filtration de $\mathbb{D}(G)_{S'}$ par un sous-module localement facteur direct. Plus précisément, on trouve une équivalence entre la catégorie des groupes de BT G' sur S' (resp. ceux à fibres connexes, resp. ceux à fibres ind-unipotentes) avec la catégorie des couples (G, Fil), où G est un groupe de BT sur G (resp. un groupe de BT à fibres connexes, resp. à fibres und-unipotentes), et où Fil est une filtration de $\mathbb{D}(G)_{S'}$ par un sous-module localement facteur direct, prolongeant la filtration canonique de $\mathbb{D}(G)_{s}$.

Remarques.

1. Sans hypothèse sur les puissances divisées envisagées ou sur les fibres de *G*, on a en tous cas un foncteur

$$G' \mapsto (G, \operatorname{Fil}),$$

mais même si G est la somme du groupe constant $\mathbf{Q}_p/\mathbf{Z}_p$ et de son groupe de BT dual $_{p\infty}G_m$, il n'est plus vrai (si les puiss. div. ne sont pas nilpotentes)

qu'un prolongement de G soit connu quand on connaît le prolongement correspondant d'une filtration. Ceci est lié au fait que le logarithme sur 1+J (J l'idéal d'augmentation) n'est plus nécessairement injectif.

2. Soit toujours S un schéma où p soit localement nilpotent, et soit S₀ ← S le sous-schéma (p) défini par l'annulation de p. Alors S est un épaississement à puissances divisées de S, et si p ≠ 2, il est à puissances divisées (localement) nilpotentes. On peut donc appliquer la théorie de déformations précédentes, pour expliciter les groups de BT sur S en termes de groupes de BT sur le schéma S₀ de car. p, et du prolongement d'un filtration, à condition, si p = 2, de se borner aux groupes de BT à fibres connexes ou ind-unipotentes. Si la théorie de Dieudonné du n° 3 fournit une description complète de la catégorie des groupes de BT sur S₀ en termes cristallins (ce qui pour l'instant reste conjectural), on en déduit donc une description de la catégorie des groupes de BT sur S en termes purement « cristallins », avec toutefois le grain de sel habituel pour p = 2.

5. Groupes de BT à isogénie près

La catégorie des groupes de BT « à isogénie près » sur S est par définition la catégorie dont les objets sont les groupes de BT sur S, et ou $\operatorname{Hom}_{\operatorname{isog}}(G,G')$ est défini comme $\operatorname{Hom}(G,G')\otimes_{\mathbb{Z}}\mathbb{Q}$. Si p est localement nilpotent sur S, on trouve donc un foncteur de la catégorie des groupes de BT sur S à isogénie près, dans celle des cristaux sur S à isogénie près. Lorsque S' est un voisinage infinitésimal de S, l'idéal d'épaississement étant annulé par une puissance de p, on trouve que le foncteur restriction induit une équivalence de la catégorie des groupes de BT à isogénie près sur S', avec la catégorie analogue pour S: ainsi, la théorie des déformations infinitésimales à isogénie près est triviale.

Par un passage à la limite facile, on déduite des résultats du paragraphe précédent le résultat qui suit.

Soit A un anneau séparé et complet pour la topologie p-adique, $A_n = A/p^{n+1}A$. Pour tout groupe de BT G_0 sur $S_0 = \operatorname{Spec}(A_0)$, on définit par passage à la limite sur les $D(G_0)_{A_0}$ un A-module de type fini localement libre $M = \mathbb{D}(G_0)$, et si G_0 est prolongé en G sur A, M est muni d'une filtration par un sous-module facteur direct $M' = \operatorname{Fil} M \subset M$. Localisant par rapport à p, on trouve un A_p -module localement libre M_p , muni d'un facteur direct $\operatorname{Fil} M_p$. On trouve ainsi un foncteur $G_0 \longrightarrow \mathbb{D}(G_0)_p$ de la catégorie des groupes de BT à isogénie près sur A_0 , dans la catégorie des modules localement libres sur A_p , et un foncteur $G \mapsto (G_0, \operatorname{Fil})$ de la catégorie des groupes de BT à isogénie près G sur G0, dans la catégorie des couples G1, Fil) d'un groupe de BT à isogénie près G2 sur G3, et d'un sous-module facteur direct $\operatorname{Fil} \mathbb{D}(G_0)_p$. Ce dernier foncteur est pleinement fidèle.

Considérons notamment le cas où A est un anneau de valuation discrète complet à corps résiduel k parfait de car. p, et à corps des fractions K de caractéristique nulle. On trouve qu'un groupe de BT G sur A est connu à isogénie près, quand on connaît a) le groupe de BT $G_0 = G \otimes_A k$ sur k à isogénie près, ou ce qui revient au même, son espace de Dieudonné $E = D(G_0)_W \otimes_W L$ (ou L est le corps des fractions de l'anneau des vecteurs de Witt sur k), muni de F_E et V_E , et b) la filtration correspondante de $D(G_0)_p = E \otimes_L K$.

Remarques. — Le résultat qui précède soulève de nombreuses questions auxquelles je ne sais répondre :

- 1. Quelles sont les filtrations sur $E \otimes_L K$ qu'on peut obtenir par un groupe de BT à isogénie près sur A? Forment-elles un ouvert de Zariski d'un grassmanienne?
- 2. Comment peut-on expliciter G, et plus particulièrement sa fibre générique G_K (qu'on peut interpréter comme un vectoriel de dimension finie sur \mathbf{Q}_p sur lequel $\mathrm{Gal}(\overline{K}/K)$ opère), en termes du couple $(E,\mathrm{Fil}\subset E\otimes_L K)$, ou E est un L-vectoriel muni de F_E et V_E ?
- 3. Quels sont les modules galoisiens qu'on trouve à l'aide de groupes de BT à isogénie près G sur A? Comment, à l'aide d'un tel module galoisien, peuton reconstituer plus ou moins algébriquement le couple (E,Fil)? (Cette question se pose à cause du théorème de Tate [5], qui nous dit que G est connu quand on connaît le module galoisien associé.)

Enfin, pour traiter la cohomologie cristalline et ses relations avec la cohomologie *p*-adique, il y a lieu de se poser des questions analogues, où les cristaux de

Dieudonné avec filtrations à 2 crans sont remplacés par des cristaux avec un morphisme de Frobenius et des filtrations finies de longueur quelconque (la cohomologie en dimension n donnant lieu à des filtrations à n+1 crans). De plus, il y a lieu de ne pas se restreindre au cas des bases de dimension 1, et de revenir au cas des anneaux A supposés simplement séparés et complets pour la topologie p-adique.

Bibliographie

- [1] P. BERTHELOT. Cohomologie cristalline des schémas, *Notes aux C. R.*, du 18-8, 1-9 et 8-9-1968
- [2] M. DEMAZURE. In S. G. A. 3 IV (Springer Lecture Notes, No. 151).
- [3] P. JOUANOLOU. In S. G. A. 5 VI (Institut des Hautes Études Scientifiques).
- [4] U. I. MANIN. Théorie des groupes commutatifs formels sur des corps de car. finie, *Uspechi Mat. Nauk* (en russe), 18 (1963), pp 3-90.
- [5] J. TATE. p-divisible groups in local fields, *Proceedings of a Conference held at Driebergen* (The Netherlands) in 1966, Springer (Berlin), 1967.
- [6] Séminaire de J. TATE au Collège de France en 1968 (écrire à TATE, Dep. of Math., 2 Divinity Avenue, Cambridge, Mass., U. S. A.).
- [7] W. MESSING. The crystals associated to BARSOTTI-TATE groups, thèse, Princeton (1971).

(Collège de France,

11, Place Marcelin-Berthelot

Paris 5^e

France).

THE TAME FUNDAMENTAL GROUP OF A FORMAL NEIGHBOURHOOD OF A DIVISOR WITH NORMAL CROSSINGS ON A SCHEME A. GROTHENDIECK AND J. MURRE

Lecture Notes in Math. 208, Springer-Verlag, Berlin-New York, 1971⁵⁰

50https://agrothendieck.github.io/divers/tamefundscan.pdf

PLATITUDE D'UNE ADHÉRENCE SCHÉMATIQUE ET LEMME DE HIRONAKA GÉNÉRALISÉ

Manuscripta Math. 5, 323-339 (1971)⁵¹

⁵¹https://agrothendieck.github.io/divers/platadhscan.pdf

GROTHENDIECK-MUMFORD CORRESPONDANCE

D. Mumford. Selected Papers, Volume II^{52}

52https://agrothendieck.github.io/divers/GMCorr.pdf

GROTHENDIECK-SERRE CORRESPONDANCE

Pierre Colmez - Jean-Pierre Serre (Eds.), Société Mathématique de France, 2001. 1

1https://agrothendieck.github.io/divers/GSCorr.pdf