

CALIFORNIA HIGH SPEED TRAIN TULARE COUNTY CONTRACT PACKAGE 2/3 SUSPENSION VELOCITIES BORINGS S0028R, S0067R & S0072R

Report 13296-01 rev 0 October 25, 2013

CALIFORNIA HIGH SPEED TRAIN TULARE COUNTY CONTRACT PACKAGE 2/3 SUSPENSION VELOCITIES BORINGS S0028R, S0067R & S0072R

Report 13296-01 rev 0 October 25, 2013

Prepared for:

Gregg Drilling & Testing, Inc. 950 Howe Road Martinez, California 94553 925-313-5800

Prepared by

GEO*Vision* Geophysical Services 1124 Olympic Drive Corona, California 92881 (951) 549-1234

TABLE OF CONTENTS

TABLE OF CONTENTS	3
TABLE OF FIGURES	4
TABLE OF TABLES	4
INTRODUCTION	5
SCOPE OF WORK	5
INSTRUMENTATION	7
Suspension Velocity Instrumentation	7
MEASUREMENT PROCEDURES	10
Suspension Velocity Measurement Procedures	10
DATA ANALYSIS	11
SUSPENSION VELOCITY ANALYSIS	11
RESULTS	13
Suspension Velocity Results	13
SUMMARY	14
DISCUSSION OF SUSPENSION VELOCITY RESULTS	
QUALITY ASSURANCE	15
SUSPENSION VELOCITY DATA RELIABILITY	16

Table of Figures

Figure 1:	Concept illustration of P-S logging system	17
Figure 2:	Example of filtered (1400 Hz lowpass) record	18
Figure 3.	Example of unfiltered record	19
Figure 4:	Boring S0028R, Suspension R1-R2 P- and S _H -wave velocities	20
Figure 5:	Boring S0067R, Suspension R1-R2 P- and S _H -wave velocities	24
Figure 6:	Boring S0072R, Suspension R1-R2 P- and S _H -wave velocities	28
	Table of Tables	
Table 1. I	Boring locations and logging dates	5
Table 2. I	Logging dates and depth ranges	16
Table 3. E	Boring S0028R, Suspension R1-R2 depths and P- and S _H -wave velocities	21
Table 4.	Boring S0067R, Suspension R1-R2 depths and P- and S _H -wave velocities	25
Table 5. I	Boring S0072R, Suspension R1-R2 depths and P- and S _H -wave velocities	29
	APPENDICES	
APPENI	DIX A SUSPENSION VELOCITY MEASUREMENT QUALITY	
	ASSURANCE SUSPENSION SOURCE TO RECEIVER	
	ANALYSIS RESULTS	
APPENI	DIX B GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE	
	CALIBRATION RECORDS	

INTRODUCTION

Boring geophysical measurements were collected in three uncased borings located along the proposed alignment of the California High Speed Train, in Tulare County, California. Geophysical data acquisition was performed between September 4, 2013 and October 4, 2013 by Robert Steller and Victor Gonzalez of **GEO**Vision. Data analysis was performed by Robert Steller and Victor Gonzalez. Report preparation was performed by Emily Feldman and reviewed by Robert Steller of **GEO**Vision. The work was performed for ARUP, under subcontract with Gregg Drilling & Testing, Inc. (Gregg). Randy Dockery served as the point of contact for Gregg and Martin Walker served as the point of contact for ARUP.

This report describes the field measurements, data analysis, and results of this work.

SCOPE OF WORK

This report presents the results of boring geophysical measurements collected between September 4, 2013 and October 4, 2013, in three uncased borings, as detailed below. The purpose of these studies was to supplement stratigraphic information obtained during ARUP's soil sampling program and to acquire shear wave velocities and compressional wave velocities as a function of depth.

	DATES	ELEVATION (1)	COORDINATES (DEGREES) (1)	
BORING	LOGGED	(NAVD88, FEET)	LATITUDE	LONGITUDE
S0028R	9/4/2013	263	36.518282°	-119.723833°
S0067R	9/9/2013	NA	36.05088°	-119.52260°
S0072R	10/4/2013	NA	35.90814°	-119.41770°

⁽¹⁾ Coordinates approximated from Google Earth imagery or handheld GPS, WGS84 datum

Table 1. Boring locations and logging dates

The OYO Suspension PS Logging System (Suspension System) was used to obtain in-situ horizontal shear (S_H) and compressional (P) wave velocity measurements at 1.6 foot intervals. Measurements followed **GEO***Vision* Procedure for P-S Suspension Seismic Velocity Logging, revision 1.5. The acquired data was analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves.

A detailed reference for the suspension PS velocity measurement techniques used in this study is:

<u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

INSTRUMENTATION

Suspension Velocity Instrumentation

Suspension velocity measurements were performed using the suspension PS logging system, manufactured by OYO Corporation, and their subsidiary, Robertson Geologging. This system directly determines the average velocity of a 3.3-foot high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.3 feet, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in these surveys is approximately 25 feet, with the center point of the receiver pair 12.5 feet above the bottom end of the probe.

The probe receives control signals from, and sends the digitized receiver signals to, instrumentation on the surface via an armored 4- or 7-conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a sheave of known circumference fitted with a digital rotary encoder.

The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_H-waves in the surrounding soil and rock as it passes through the casing and grout annulus and impinges upon the wall of the boring. These waves propagate

through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_H -waves at the receivers is performed using the following steps:

- Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_Hwave signature distinct from the P-wave signal.
- 3. The 6.3 foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In faster soils or rock, the isolation cylinder is extended to allow greater separation of the P- and S_H-wave signals.
- 4. In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe (feet versus inches scale), preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals.

Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Suspension PS digital recorder is performed every twelve months using a NIST traceable frequency source and counter.

MEASUREMENT PROCEDURES

Suspension Velocity Measurement Procedures

Borings S0028R, S0067R and S0072R were logged as uncased boreholes filled with drilling fluid. Measurements followed the **GEO***Vision* Procedure for P-S Suspension Seismic Velocity Logging, revision 1.5. Prior to each logging run, the probe was positioned with the top of the probe at the top of the surface casing and the electronic depth counter was set to the distance between the mid-point of the receiver and the top of the probe, minus the height of any casing stick-up, as verified with a tape measure, and recorded on the field logs. The probe was lowered to the bottom of the borings, stopping at 1.6 foot intervals to collect data, as summarized in Table 2.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth were viewed on the computer display, checked, and recorded on disk before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the borings.

DATA ANALYSIS

Suspension Velocity Analysis

Using the proprietary OYO program PSLOG.EXE version 1.0, the recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 1.0 meter segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into a Microsoft Excel[®] template (version 2003 SP2) to complete the velocity calculations based upon the arrival time picks made in PSLOG. The Microsoft Excel[®] analysis files are included in the boring specific directories on the data disk (CD-R) that accompanies this report.

The P-wave velocity over the 6.3-foot interval from source to receiver 1 (S-R1) was also picked using PSLOG, and calculated and plotted in Microsoft Excel[®], for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 4.8 feet to correspond to the mid-point of the 6.3-foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

As with the P-wave records, the recorded digital waveforms were analyzed to locate clear S_H -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital Fast Fourier Transform – Inverse Fast Fourier Transform (FFT – IFFT) lowpass filtering was used to remove the higher frequency P-wave signal from the S_H -wave signal. Different filter cutoffs were used to separate P- and S_H -waves

at different depths, ranging from 600 Hz in the slowest zones to 2000 Hz in the regions of highest velocity. At each depth, the filter frequency was selected to be at least twice the fundamental frequency of the S_H -wave signal being filtered.

Generally, the first maxima were picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_H-wave velocity calculated from the travel time over the 6.3-foot interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 4.8 feet to correspond to the mid-point of the 6.3-foot S-R1 interval. Travel times were obtained by picking the first break of the S_H-wave signal at the near receiver and subtracting the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact.

These data and analysis were reviewed by Robert Steller as a component of **GEO**Vision's inhouse data validation program.

Figure 2 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 2, the time difference over the 3.3 foot interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H -wave velocity of 1745 feet/second. Whenever possible, time differences were determined from several phase points on the S_H -waveform records to verify the data obtained from the first arrival of the S_H -wave pulse. Figure 3 displays the same record before filtering of the S_H -waveform record with a 1400 Hz FFT - IFFT digital lowpass filter,

illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H -wave by residual P-wave signal.

RESULTS

Suspension Velocity Results

Suspension R1-R2 P- and S_H -wave velocities for borings S0028R, S0067R and S0072R are plotted in Figures 4 through 6, respectively. The suspension velocity data presented in these figures are presented in Tables 3 through 5, respectively. The Microsoft Excel[®] analysis files are included in the data sub-directories on the disk (CD-R) that accompanies this report.

P- and S_H-wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figures A-1 through A-3 to aid in visual comparison. It should be noted that R1-R2 data are an average velocity over a 3.3-foot segment of the soil column; S-R1 data are an average over 6.3 feet, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in Tables A-1 through A-3 and are included in the Microsoft Excel[®] analysis files on the disk (CD-R) that accompanies this report. The Microsoft Excel[®] analysis files include Poisson's Ratio calculations, tabulated data and plots. The data presented in this report is marked as rev 1 or above, with rev 0 being the unprocessed data, as collected in the field.

SUMMARY

Discussion of Suspension Velocity Results

Suspension PS velocity data are ideally collected in an uncased fluid filled boring, drilled with rotary mud (rotary wash) methods. These borings were well suited for the collection of suspension PS velocity data.

Suspension PS velocity data quality is judged based upon 5 criteria:

- 1. Consistent data between receiver to receiver (R1 − R2) and source to receiver (S − R1) data.
- 2. Consistent relationship between P-wave and S_H -wave (excluding transition to saturated soils)
- 3. Consistency between data from adjacent depth intervals.
- 4. Clarity of P-wave and S_H-wave onset, as well as damping of later oscillations.
- 5. Consistency of profile between adjacent borings, if available.

Boring S0028R shows excellent correlation between R1-R2 and S-R1 data, as well as good correlation between P-wave and S_H -wave velocities, other than at transitions into saturated soils, as discussed below. Adjacent depth give similar velocities and waveforms, and the onset of P- and S_H -wave signals are clear, and well damped. There are a number of P- and S_H -wave velocity spikes in this boring that are indicative of thin cemented layers. They are centered at 25, 48, 84, 97, 114 and 135 feet. There is an increase in P-wave velocity not present in the S_H -wave velocity data to over 5000 feet/second at about 104 feet, indicating saturated soils below this depth. There is also an increase in P-wave velocity not present in the S_H -wave velocity data between 65 and 70 feet indicating a possible perched water table at this depth.

Boring S0067R shows excellent correlation between R1 - R2 and S - R1 data, as well as good correlation between P-wave and S_H -wave velocities, other than at transitions into saturated soils, as discussed below. Adjacent depth give similar velocities and waveforms, and the onset of P-and S_H -wave signals are clear, and well damped. There is an increase in P-wave velocity not present in the S_H -wave velocity data to over 5000 feet/second at about 52 feet, indicating saturated soils below this depth. There is also an increase in P-wave velocity not present in the S_H -wave velocity data between 32 and 45 feet indicating a possible perched water table in this depth range.

Boring S0072R shows excellent correlation between R1 - R2 and S - R1 data, as well as good correlation between P-wave and S_H -wave velocities, other than at transitions into saturated soils, as discussed below. Adjacent depth give similar velocities and waveforms, and the onset of P-and S_H -wave signals are clear, and well damped. There is an increase in P-wave velocity not present in the S_H -wave velocity data to over 5000 feet/second at about 20 feet, indicating saturated soils below this depth.

Quality Assurance

These boring geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under **GEO**Vision quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Use of independent verification of velocity data by comparison of receiver-to-receiver and source-to-receiver velocities
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

Suspension Velocity Data Reliability

P- and S_H -wave velocity measurement using the Suspension Method gives average velocities over a 3.3-foot interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable with estimated precision of +/- 5%. Depth indications are very reliable with estimated precision of +/- 0.2 feet. Standardized field procedures and quality assurance checks contribute to the reliability of these data.

Table 2. Logging dates and depth ranges

BORING NUMBER	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	CASED OR UNCASED	SAMPLE INTERVAL (FEET)	DATE LOGGED
S0028R	SUSPENSION 01	9.84 – 152.56	UNCASED	1.6	9/4/2013
S0067R	SUSPENSION 01	3.28 – 152.56	UNCASED	1.6	9/9/2013
S0072R	SUSPENSION 01	4.92 – 152.56	UNCASED	1.6	10/4/2013

Figure 1: Concept illustration of P-S logging system

Figure 2: Example of filtered (1400 Hz lowpass) record

Figure 3. Example of unfiltered record

CALIFORNIA HIGH SPEED TRAIN BORING S0028R Receiver to Receiver $\rm V_{s}$ and $\rm V_{p}$ Analysis

Figure 4: Boring S0028R, Suspension R1-R2 P- and S_H-wave velocities

Table 3. Boring S0028R, Suspension R1-R2 depths and P- and S_H-wave velocities

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0028R

American Units				
Depth at				
Midpoint				
Between			Poisson's	
Receivers	V_s	V _p	Ratio	
(ft)	(ft/s)	(ft/s)		
9.8	-	-	-	
11.5	560	1050	0.31	
13.1	540	960	0.28	
14.8	560	990	0.27	
16.4	520	960	0.29	
18.0	780	1980	0.41	
19.7	640	1610	0.40	
21.3	1110	2380	0.36	
23.0	2080	3880	0.30	
24.6	2490	4830	0.32	
26.3	1780	3170	0.27	
27.9	1360	2870	0.36	
29.5	1160	2310	0.33	
31.2	990	1830	0.30	
32.8	860	1680	0.32	
34.5	970	1750	0.28	
36.1	930	1730	0.30	
37.7	1040	1900	0.29	
39.4	970	1860	0.31	
41.0	920	2100	0.38	
42.7	970	1740	0.27	
44.3	950	1980	0.35	
45.9	940	2110	0.38	
47.6	1270	2710	0.36	
49.2	1190	2250	0.30	
50.9	1000	2360	0.39	
52.5	1040	1950	0.30	
54.1	1030	1950	0.31	
55.8	1050	1840	0.26	
57.4	1090	1970	0.28	
59.1	1030	1880	0.29	
60.7	1030	1870	0.28	
62.3	1210	2270	0.30	
64.0	1320	2650	0.34	
65.6	1230	3370	0.42	
67.3	1290	4830	0.46	
68.9	1280	4330	0.45	

Metric Units				
Depth at				
Midpoint				
Between			Poisson's	
Receivers	V _s	V _p	Ratio	
(m)	(m/s)	(m/s)		
3.0	-	-	-	
3.5	170	320	0.31	
4.0	160	290	0.28	
4.5	170	300	0.27	
5.0	160	290	0.29	
5.5	240	600	0.41	
6.0	200	490	0.40	
6.5	340	730	0.36	
7.0	640	1180	0.30	
7.5	760	1470	0.32	
8.0	540	970	0.27	
8.5	410	880	0.36	
9.0	350	710	0.33	
9.5	300	560	0.30	
10.0	260	510	0.32	
10.5	300	530	0.28	
11.0	280	530	0.30	
11.5	320	580	0.29	
12.0	300	570	0.31	
12.5	280	640	0.38	
13.0	300	530	0.27	
13.5	290	600	0.35	
14.0	290	640	0.38	
14.5	390	830	0.36	
15.0	360	690	0.30	
15.5	310	720	0.39	
16.0	320	590	0.30	
16.5	310	590	0.31	
17.0	320	560	0.26	
17.5	330	600	0.28	
18.0	310	570	0.29	
18.5	310	570	0.28	
19.0	370	690	0.30	
19.5	400	810	0.34	
20.0	370	1030	0.42	
20.5	390	1470	0.46	
21.0	390	1320	0.45	

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0028R

American Units			
Depth at	Depth at Velocity		
Midpoint			
Between	.,	.,	Poisson's
Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	
70.5	1130	4830	0.47
72.2	1060	3660	0.45
73.8	1110	2730	0.40
75.5	1300	2950	0.38
77.1	1410	3400	0.40
78.7	1360	2600	0.31
80.4	1410	2670	0.31
82.0	1410	2850	0.34
83.7	1780	3440	0.32
85.3	1740	3170	0.29
86.9	1240	2510	0.34
88.6	1170	2530	0.36
90.2	1210	2530	0.35
91.9	1160	2100	0.28
93.5	1080	2110	0.32
95.1	1300	2650	0.34
96.8	1890	3440	0.28
98.4	1570	2850	0.28
100.1	1130	2270	0.34
101.7	1170	2540	0.37
103.4	1260	4690	0.46
105.0	1160	5290	0.47
106.6	1120	5460	0.48
108.3	1210	5650	0.48
109.9	1230	5560	0.47
111.6	1210	5330	0.47
113.2	1670	5800	0.45
114.8	1720	6470	0.46
116.5	1320	6120	0.48
118.1	1240	5850	0.48
119.8	1180	5510	0.48
121.4	1170	5560	0.48
123.0	1260	5650	0.47
124.7	1170	5700	0.48
126.3	1110	5460	0.48
128.0	1180	5650	0.48
129.6	1120	5460	0.48
131.2	1160	5290	0.47
132.9	1410	5560	0.47

Metric Units			
Depth at	Depth at Velocity		
Midpoint			
Between		.,	Poisson's
Receivers	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
21.5	350	1470	0.47
22.0	320	1120	0.45
22.5	340	830	0.40
23.0	400	900	0.38
23.5	430	1040	0.40
24.0	410	790	0.31
24.5	430	810	0.31
25.0	430	870	0.34
25.5	540	1050	0.32
26.0	530	970	0.29
26.5	380	760	0.34
27.0	360	770	0.36
27.5	370	770	0.35
28.0	350	640	0.28
28.5	330	640	0.32
29.0	400	810	0.34
29.5	580	1050	0.28
30.0	480	870	0.28
30.5	340	690	0.34
31.0	360	780	0.37
31.5	380	1430	0.46
32.0	350	1610	0.47
32.5	340	1670	0.48
33.0	370	1720	0.48
33.5	380	1690	0.47
34.0	370	1630	0.47
34.5	510	1770	0.45
35.0	520	1970	0.46
35.5	400	1860	0.48
36.0	380	1780	0.48
36.5	360	1680	0.48
37.0	360	1690	0.48
37.5	380	1720	0.47
38.0	360	1740	0.48
38.5	340	1670	0.48
39.0	360	1720	0.48
39.5	340	1670	0.48
40.0	350	1610	0.47
40.5	430	1690	0.47

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0028R

American Units			
Depth at	Velocity		
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	
134.5	1930	6470	0.45
136.2	1740	6230	0.46
137.8	1420	5850	0.47
139.4	1290	5800	0.47
141.1	1250	5750	0.48
142.7	1250	5700	0.47
144.4	1230	5700	0.48
146.0	1240	5460	0.47
147.6	1570	5750	0.46
149.3	1420	5750	0.47
150.9	1360	5800	0.47
152.6	1740	6470	0.46

Metric Units			
Depth at	Velocity		
Midpoint Between Receivers	V _s	V _p	Poisson's Ratio
(m)	(m/s)	(m/s)	
41.0	590	1970	0.45
41.5	530	1900	0.46
42.0	430	1780	0.47
42.5	390	1770	0.47
43.0	380	1750	0.48
43.5	380	1740	0.47
44.0	380	1740	0.48
44.5	380	1670	0.47
45.0	480	1750	0.46
45.5	430	1750	0.47
46.0	410	1770	0.47
46.5	530	1970	0.46

Notes: "-" means no data available at that particular interval of depth.

CALIFORNIA HIGH SPEED TRAIN BORING S0067R Receiver to Receiver V_s and V_p Analysis

Figure 5: Boring S0067R, Suspension R1-R2 P- and S_{H} -wave velocities

Table 4. Boring S0067R, Suspension R1-R2 depths and P- and S_H-wave velocities

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0067R

American Units				
Depth at	Velo	city		
Midpoint				
Between			Poisson's	
Receivers	V_s	V _p	Ratio	
(ft)	(ft/s)	(ft/s)		
3.3	430	910	0.36	
4.9	490	910	0.30	
6.6	480	1130	0.39	
7.6	710	1470	0.35	
8.5	640	1700	0.42	
9.8	850	1870	0.37	
11.5	790	2030	0.41	
13.1	660	1860	0.43	
14.8	600	1790	0.44	
16.4	550	1470	0.42	
18.0	620	1540	0.40	
19.7	720	1570	0.37	
21.3	740	1540	0.35	
23.0	740	1670	0.38	
24.6	840	1660	0.33	
26.3	870	1520	0.26	
27.9	840	1540	0.29	
29.5	770	1790	0.39	
31.2	750	2010	0.42	
32.8	880	2780	0.44	
34.5	1150	3580	0.44	
36.1	1000	3700	0.46	
37.7	750	4390	0.48	
39.4	820	4630	0.48	
41.0	830	4690	0.48	
42.7	880	3970	0.47	
44.3	890	4170	0.48	
45.9	850	2980	0.46	
47.6	1020	3140	0.44	
49.2	1270	3170	0.41	
50.9	1020	4170	0.47	
52.5	850	4830	0.48	
54.1	950	5650	0.49	
55.8	960	5460	0.48	
57.4	960	5750	0.49	
59.1	940	5950	0.49	
60.7	990	6170	0.49	

Metric Units			
Depth at Velocity			
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
1.0	130	280	0.36
1.5	150	280	0.30
2.0	150	340	0.39
2.3	220	450	0.35
2.6	200	520	0.42
3.0	260	570	0.37
3.5	240	620	0.41
4.0	200	570	0.43
4.5	180	550	0.44
5.0	170	450	0.42
5.5	190	470	0.40
6.0	220	480	0.37
6.5	220	470	0.35
7.0	230	510	0.38
7.5	260	510	0.33
8.0	260	460	0.26
8.5	260	470	0.29
9.0	230	550	0.39
9.5	230	610	0.42
10.0	270	850	0.44
10.5	350	1090	0.44
11.0	300	1130	0.46
11.5	230	1340	0.48
12.0	250	1410	0.48
12.5	250	1430	0.48
13.0	270	1210	0.47
13.5	270	1270	0.48
14.0	260	910	0.46
14.5	310	960	0.44
15.0	390	970	0.41
15.5	310	1270	0.47
16.0	260	1470	0.48
16.5	290	1720	0.49
17.0	290	1670	0.48
17.5	290	1750	0.49
18.0	290	1810	0.49
18.5	300	1880	0.49

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0067R

American Units			
Depth at	Velo	city	
Midpoint			
Between	.,	.,	Poisson's
Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	0.10
62.3	1000	6060	0.49
64.0	970	5750	0.49
65.6	880	5560	0.49
67.3	880	5750	0.49
69.2	1020	5950	0.48
70.5	1040	5750	0.48
72.2	1030	5650	0.48
73.8	1170	5560	0.48
75.5	1000	5850	0.48
77.1	940	5650	0.49
78.7	1040	5750	0.48
80.4	970	5460	0.48
82.0	950	5560	0.48
83.7	850	5800	0.49
85.3	940	5650	0.49
86.9	1090	5900	0.48
88.6	1010	5650	0.48
90.2	1030	5800	0.48
91.9	1080	5650	0.48
93.5	1100	5420	0.48
95.1	1000	5600	0.48
96.8	970	5560	0.48
98.4	1050	5380	0.48
100.4	1060	5250	0.48
102.0	1070	5420	0.48
103.4	1040	5700	0.48
105.0	1050	5560	0.48
106.6	1030	5420	0.48
108.3	1130	5290	0.48
109.9	1050	5420	0.48
111.6	960	5210	0.48
113.2	1040	5420	0.48
115.2	1100	5210	0.48
116.5	1050	5650	0.48
118.1	1100	5700	0.48
119.8	1140	5560	0.48
121.4	1100	5560	0.48
123.0	1120	5560	0.48
124.7	1160	5650	0.48

Metric Units			
Depth at	Velo	city	
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
19.0	300	1850	0.49
19.5	300	1750	0.49
20.0	270	1690	0.49
20.5	270	1750	0.49
21.1	310	1810	0.48
21.5	320	1750	0.48
22.0	310	1720	0.48
22.5	360	1690	0.48
23.0	310	1780	0.48
23.5	290	1720	0.49
24.0	320	1750	0.48
24.5	290	1670	0.48
25.0	290	1690	0.48
25.5	260	1770	0.49
26.0	290	1720	0.49
26.5	330	1800	0.48
27.0	310	1720	0.48
27.5	310	1770	0.48
28.0	330	1720	0.48
28.5	340	1650	0.48
29.0	310	1710	0.48
29.5	300	1690	0.48
30.0	320	1640	0.48
30.6	320	1600	0.48
31.1	330	1650	0.48
31.5	320	1740	0.48
32.0	320	1690	0.48
32.5	310	1650	0.48
33.0	340	1610	0.48
33.5	320	1650	0.48
34.0	290	1590	0.48
34.5	320	1650	0.48
35.1	330	1590	0.48
35.5	320	1720	0.48
36.0	330	1740	0.48
36.5	350	1690	0.48
37.0	340	1690	0.48
37.5	340	1690	0.48
38.0	350	1720	0.48

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0067R

American Units			
Depth at	Velo	city	
Midpoint Between	V	v	Poisson's
Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	
126.3	1110	5750	0.48
128.0	1130	5650	0.48
129.6	1040	5560	0.48
131.2	1010	5560	0.48
132.9	1030	5560	0.48
134.5	1000	5700	0.48
136.2	1020	5560	0.48
137.8	1100	5750	0.48
139.4	1170	5650	0.48
141.1	1190	5560	0.48
142.7	1170	5700	0.48
144.4	1330	5900	0.47
146.0	1510	6010	0.47
147.6	1440	5750	0.47
149.3	1350	5600	0.47
150.9	1230	5560	0.47
152.6	1210	5800	0.48

Metric Units			
Depth at	Velo	city	
Midpoint Between Receivers	V _s	V _p	Poisson's Ratio
(m)	(m/s)	(m/s)	
38.5	340	1750	0.48
39.0	340	1720	0.48
39.5	320	1690	0.48
40.0	310	1690	0.48
40.5	310	1690	0.48
41.0	310	1740	0.48
41.5	310	1690	0.48
42.0	340	1750	0.48
42.5	360	1720	0.48
43.0	360	1690	0.48
43.5	360	1740	0.48
44.0	410	1800	0.47
44.5	460	1830	0.47
45.0	440	1750	0.47
45.5	410	1710	0.47
46.0	370	1690	0.47
46.5	370	1770	0.48

CALIFORNIA HIGH SPEED TRAIN BORING S0072R Receiver to Receiver V_s and V_p Analysis

Figure 6: Boring S0072R, Suspension R1-R2 P- and S_H-wave velocities

Table 5. Boring S0072R, Suspension R1-R2 depths and P- and S_H-wave velocities

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0072R

American Units			
Depth at	Velo	city	
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	
4.9	670	1190	0.26
6.6	520	1260	0.40
8.2	600	1330	0.37
9.8	590	1330	0.38
11.5	540	1420	0.42
13.1	390	1700	0.47
14.8	480	1560	0.45
16.4	580	1840	0.44
18.0	610	3170	0.48
19.7	620	4760	0.49
21.3	540	5650	0.50
23.0	560	5560	0.49
24.6	530	5650	0.50
26.3	500	5380	0.50
27.9	680	5290	0.49
29.5	640	5290	0.49
31.2	650	5380	0.49
32.8	670	5380	0.49
34.5	640	5560	0.49
36.1	720	5850	0.49
37.7	720	5950	0.49
39.4	690	5950	0.49
41.0	680	5650	0.49
42.7	720	5650	0.49
44.3	760	5850	0.49
45.9	790	5950	0.49
47.6	870	6060	0.49
49.2	880	5850	0.49
50.9	850	6060	0.49
52.5	890	5950	0.49
54.1	680	5850	0.49
55.8	730	6170	0.49
57.4	880	6170	0.49
59.1	800	6170	0.49
60.7	970	6290	0.49
62.3	900	6060	0.49
64.0	1040	5950	0.48

Metric Units			
Depth at	Velo	city	
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
1.5	210	360	0.26
2.0	160	380	0.40
2.5	180	410	0.37
3.0	180	400	0.38
3.5	160	430	0.42
4.0	120	520	0.47
4.5	150	470	0.45
5.0	180	560	0.44
5.5	180	970	0.48
6.0	190	1450	0.49
6.5	170	1720	0.50
7.0	170	1690	0.49
7.5	160	1720	0.50
8.0	150	1640	0.50
8.5	210	1610	0.49
9.0	200	1610	0.49
9.5	200	1640	0.49
10.0	210	1640	0.49
10.5	200	1690	0.49
11.0	220	1780	0.49
11.5	220	1810	0.49
12.0	210	1810	0.49
12.5	210	1720	0.49
13.0	220	1720	0.49
13.5	230	1780	0.49
14.0	240	1810	0.49
14.5	270	1850	0.49
15.0	270	1780	0.49
15.5	260	1850	0.49
16.0	270	1810	0.49
16.5	210	1780	0.49
17.0	220	1880	0.49
17.5	270	1880	0.49
18.0	240	1880	0.49
18.5	290	1920	0.49
19.0	270	1850	0.49
19.5	320	1810	0.48

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0072R

American Units			
Depth at	Velo	city	
Midpoint			
Between	.,	.,	Poisson's
Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	0.10
65.6	930	5950	0.49
67.3	1000	6060	0.49
68.9	1230	6170	0.48
70.9	1170	6060	0.48
72.2	1100	6170	0.48
73.8	1190	6170	0.48
75.5	1190	6170	0.48
77.1	1170	6060	0.48
78.7	1130	6060	0.48
80.4	1060	5950	0.48
82.0	1080	5850	0.48
83.7	1190	5850	0.48
85.3	1120	6060	0.48
86.9	1100	6060	0.48
88.6	1160	6060	0.48
90.2	1150	5950	0.48
92.2	1080	5950	0.48
93.5	1070	5850	0.48
95.1	1030	5750	0.48
96.8	980	5650	0.48
98.1	950	5460	0.48
99.7	910	5380	0.49
101.7	900	5460	0.49
103.4	860	5380	0.49
105.0	840	5460	0.49
106.6	840	5460	0.49
108.3	860	5460	0.49
109.9	840	5560	0.49
111.6	820	5380	0.49
113.2	850	5460	0.49
114.8	910	5650	0.49
116.5	1010	5750	0.48
118.1	1130	5650	0.48
119.4	1160	5850	0.48
121.4	1090	5950	0.48
123.0	1040	5650	0.48
124.7	970	5750	0.49
126.3	1040	5650	0.48
128.0	1040	5650	0.48

Metric Units			
Depth at	Velo	city	
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
20.0	280	1810	0.49
20.5	300	1850	0.49
21.0	380	1880	0.48
21.6	360	1850	0.48
22.0	340	1880	0.48
22.5	360	1880	0.48
23.0	360	1880	0.48
23.5	360	1850	0.48
24.0	340	1850	0.48
24.5	320	1810	0.48
25.0	330	1780	0.48
25.5	360	1780	0.48
26.0	340	1850	0.48
26.5	330	1850	0.48
27.0	350	1850	0.48
27.5	350	1810	0.48
28.1	330	1810	0.48
28.5	330	1780	0.48
29.0	310	1750	0.48
29.5	300	1720	0.48
29.9	290	1670	0.48
30.4	280	1640	0.49
31.0	270	1670	0.49
31.5	260	1640	0.49
32.0	260	1670	0.49
32.5	260	1670	0.49
33.0	260	1670	0.49
33.5	260	1690	0.49
34.0	250	1640	0.49
34.5	260	1670	0.49
35.0	280	1720	0.49
35.5	310	1750	0.48
36.0	340	1720	0.48
36.4	350	1780	0.48
37.0	330	1810	0.48
37.5	320	1720	0.48
38.0	300	1750	0.49
38.5	320	1720	0.48
39.0	320	1720	0.48
39.0	320	1/20	0.48

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole S0072R

American Units			
Depth at	Velo	city	
Midpoint Between Receivers	V _s	V _p	Poisson's Ratio
(ft)	(ft/s)	(ft/s)	
129.6	1050	5650	0.48
131.6	1070	5850	0.48
133.2	1130	5650	0.48
134.8	990	5460	0.48
136.2	930	5460	0.48
138.1	850	5380	0.49
139.4	850	5560	0.49
141.1	870	5750	0.49
142.7	1270	6060	0.48
144.4	1360	6060	0.47
146.0	1150	5950	0.48
147.6	1010	5950	0.49
149.3	960	5950	0.49
151.3	920	5750	0.49
152.6	920	5850	0.49

Metric Units			
Depth at	Velo	city	
Midpoint Between Receivers	V _s	V _p	Poisson's Ratio
(m)	(m/s)	(m/s)	
39.5	320	1720	0.48
40.1	330	1780	0.48
40.6	340	1720	0.48
41.1	300	1670	0.48
41.5	280	1670	0.48
42.1	260	1640	0.49
42.5	260	1690	0.49
43.0	270	1750	0.49
43.5	390	1850	0.48
44.0	410	1850	0.47
44.5	350	1810	0.48
45.0	310	1810	0.49
45.5	290	1810	0.49
46.1	280	1750	0.49
46.5	280	1780	0.49

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

CALIFORNIA HIGH SPEED TRAIN BORING S0028R Source to Receiver and Receiver to Receiver Analysis

Figure A-1: Boring S0028R, Suspension S-R1 P- and S_H-wave velocities

Table A-1. Boring S0028R, S - R1 quality assurance analysis P- and S_H-wave data

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0028R

American Units			
Depth at Midpoint	Velo	city	
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio
(ft)	(ft/s)	(ft/s)	
14.7	440	960	0.37
16.3	490	1040	0.36
18.0	570	1140	0.33
19.6	700	1440	0.34
21.2	1000	1930	0.32
22.9	1470	2780	0.31
24.5	1930	3460	0.27
26.2	1730	2930	0.23
27.8	1300	2380	0.29
29.4	1150	2070	0.28
31.1	970	1850	0.31
32.7	920	1740	0.31
34.4	910	1790	0.33
36.0	930	1770	0.31
37.6	930	1820	0.32
39.3	960	1920	0.33
40.9	970	1980	0.34
42.6	980	2070	0.36
44.2	1000	2140	0.36
45.8	1000	2080	0.35
47.5	1050	2000	0.31
49.1	1060	1940	0.29
50.8	1040	1870	0.27
52.4	990	1850	0.30
54.0	950	1750	0.29
55.7	960	1740	0.29
57.3	940	1730	0.29
59.0	1010	1850	0.29
60.6	1090	1970	0.28
62.2	1120	2080	0.30
63.9	1180	2390	0.34
65.5	1210	3000	0.40
67.2	1160	3810	0.45
68.8	1090	3930	0.46
70.5	1090	3680	0.45
72.1	1110	3330	0.44
73.7	1170	3130	0.42

Metric Units			
Depth at Midpoint	Velo	ocity	
Between Source			Poisson's
and Near Receiver	V _s	V_p	Ratio
(m)	(m/s)	(m/s)	
4.5	130	290	0.37
5.0	150	320	0.36
5.5	170	350	0.33
6.0	210	440	0.34
6.5	300	590	0.32
7.0	450	850	0.31
7.5	590	1050	0.27
8.0	530	890	0.23
8.5	400	730	0.29
9.0	350	630	0.28
9.5	300	560	0.31
10.0	280	530	0.31
10.5	280	550	0.33
11.0	280	540	0.31
11.5	280	550	0.32
12.0	290	580	0.33
12.5	300	600	0.34
13.0	300	630	0.36
13.5	300	650	0.36
14.0	300	630	0.35
14.5	320	610	0.31
15.0	320	590	0.29
15.5	320	570	0.27
16.0	300	560	0.30
16.5	290	530	0.29
17.0	290	530	0.29
17.5	290	530	0.29
18.0	310	560	0.29
18.5	330	600	0.28
19.0	340	630	0.30
19.5	360	730	0.34
20.0	370	910	0.40
20.5	350	1160	0.45
21.0	330	1200	0.46
21.5	330	1120	0.45
22.0	340	1020	0.44
22.5	360	960	0.42

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0028R

American Units				
Depth at Midpoint	Velo	city		
Between Source			Poisson's	
and Near Receiver	V _s	V_p	Ratio	
(ft)	(ft/s)	(ft/s)		
75.4	1210	2900	0.39	
77.0	1330	2920	0.37	
78.7	1390	3030	0.37	
80.3	1450	3000	0.35	
81.9	1450	2880	0.33	
83.6	1420	2780	0.32	
85.2	1320	2560	0.32	
86.9	1270	2380	0.30	
88.5	1140	2260	0.33	
90.1	1090	2180	0.33	
91.8	1160	2290	0.33	
93.4	1250	2460	0.33	
95.1	1320	2440	0.29	
96.7	1410	2360	0.22	
98.3	1360	2640	0.32	
100.0	1290	2800	0.37	
101.6	1180	2990	0.41	
103.3	1130	3560	0.44	
104.9	1140	5060	0.47	
106.5	1110	5460	0.48	
108.2	1150	5460	0.48	
109.8	1260	5700	0.47	
111.5	1410	5680	0.47	
113.1	1410	5810	0.47	
114.7	1400	5700	0.47	
116.4	1390	5940	0.47	
118.0	1320	5780	0.47	
119.7	1230	5750	0.48	
121.3	1190	5750	0.48	
122.9	1180	5750	0.48	
124.6	1160	5750	0.48	
126.2	1150	5780	0.48	
127.9	1130	5680	0.48	
129.5	1200	5750	0.48	
131.1	1360	5860	0.47	
132.8	1510	6210	0.47	
134.4	1640	6490	0.47	
136.1	1680	6330	0.46	
137.7	1590	6090	0.46	
139.3	1400	5970	0.47	

Metric Units					
Depth at Midpoint	Velo	ocity			
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio		
(m)	(m/s)	(m/s)			
23.0	370	890	0.39		
23.5	410	890	0.37		
24.0	420	920	0.37		
24.5	440	910	0.35		
25.0	440	880	0.33		
25.5	430	850	0.32		
26.0	400	780	0.32		
26.5	390	730	0.30		
27.0	350	690	0.33		
27.5	330	670	0.33		
28.0	350	700	0.33		
28.5	380	750	0.33		
29.0	400	740	0.29		
29.5	430	720	0.22		
30.0	420	800	0.32		
30.5	390	850	0.37		
31.0	360	910	0.41		
31.5	340	1080	0.44		
32.0	350	1540	0.47		
32.5	340	1660	0.48		
33.0	350	1660	0.48		
33.5	380	1740	0.47		
34.0	430	1730	0.47		
34.5	430	1770	0.47		
35.0	430	1740	0.47		
35.5	420	1810	0.47		
36.0	400	1760	0.47		
36.5	380	1750	0.48		
37.0	360	1750	0.48		
37.5	360	1750	0.48		
38.0	350	1750	0.48		
38.5	350	1760	0.48		
39.0	340	1730	0.48		
39.5	370	1750	0.48		
40.0	410	1790	0.47		
40.5	460	1890	0.47		
41.0	500	1980	0.47		
41.5	510	1930	0.46		
42.0	480	1860	0.46		
42.5	430	1820	0.47		

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0028R

American Units				
Depth at Midpoint	Velocity			
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio	
(ft)	(ft/s)	(ft/s)		
141.0	1270	5860	0.48	
142.6	1270	5860	0.48	
144.3	1320	5970	0.47	
145.9	1370	6090	0.47	
147.6	1430	6090	0.47	
149.2	1610	6090	0.46	
150.8	1670	6210	0.46	
152.5	1550	6210	0.47	
154.1	1450	6090	0.47	
155.8	1330	5970	0.47	
157.4	1200	5860	0.48	

Metric Units					
Depth at Midpoint	Velocity				
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio		
(m)	(m/s)	(m/s)			
43.0	390	1790	0.48		
43.5	390	1790	0.48		
44.0	400	1820	0.47		
44.5	420	1860	0.47		
45.0	440	1860	0.47		
45.5	490	1860	0.46		
46.0	510	1890	0.46		
46.5	470	1890	0.47		
47.0	440	1860	0.47		
47.5	410	1820	0.47		
48.0	370	1790	0.48		

CALIFORNIA HIGH SPEED TRAIN BORING S0067RSource to Receiver and Receiver to Receiver Analysis

Figure A-2: Boring S0067R, Suspension S-R1 P- and S_H-wave velocities

Table A-2. Boring S0067R, S - R1 quality assurance analysis P- and S_H-wave data

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0067R

American Units			
Depth at Midpoint	Velo	city	
Between Source and	.,		Poisson's
Near Receiver	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	2.22
8.1	600	1350	0.38
9.8	620	1700	0.42
11.4	710	2020	0.43
12.4	690	2080	0.44
13.4	660	1990	0.44
14.7	640	1880	0.43
16.3	630	1790	0.43
18.0	640	1740	0.42
19.6	710	1600	0.38
21.2	750	1550	0.35
22.9	760	1520	0.33
24.5	780	1500	0.31
26.2	790	1470	0.30
27.8	780	1470	0.30
29.4	790	1670	0.35
31.1	800	1900	0.39
32.7	810	2440	0.44
34.4	860	3560	0.47
36.0	900	4140	0.48
37.6	860	4340	0.48
39.3	780	4590	0.49
40.9	800	4280	0.48
42.6	820	4060	0.48
44.2	890	3790	0.47
45.8	980	3460	0.46
47.5	940	2830	0.44
49.1	940	3060	0.45
50.8	940	4910	0.48
52.4	950	5190	0.48
54.0	930	5500	0.49
55.7	950	5550	0.48
57.3	970	5650	0.48
59.0	990	5700	0.48
60.6	990	5810	0.48
62.2	990	5810	0.49
63.9	990		
		5700 5700	0.48
65.5	990	5700	0.48

Metric Units				
Depth at Midpoint	Velo	city		
Between Source			Poisson's	
and Near Receiver	V_s	V _p	Ratio	
(m)	(m/s)	(m/s)		
2.5	180	410	0.38	
3.0	190	520	0.42	
3.5	220	610	0.43	
3.8	210	630	0.44	
4.1	200	610	0.44	
4.5	200	570	0.43	
5.0	190	550	0.43	
5.5	190	530	0.42	
6.0	220	490	0.38	
6.5	230	470	0.35	
7.0	230	460	0.33	
7.5	240	460	0.31	
8.0	240	450	0.30	
8.5	240	450	0.30	
9.0	240	510	0.35	
9.5	240	580	0.39	
10.0	250	740	0.44	
10.5	260	1080	0.47	
11.0	270	1260	0.48	
11.5	260	1320	0.48	
12.0	240	1400	0.49	
12.5	240	1300	0.48	
13.0	250	1240	0.48	
13.5	270	1160	0.47	
14.0	300	1050	0.46	
14.5	290	860	0.44	
15.0	290	930	0.45	
15.5	290	1500	0.48	
16.0	290	1580	0.48	
16.5	280	1680	0.49	
17.0	290	1690	0.48	
17.5	300	1720	0.48	
18.0	300	1740	0.48	
18.5	300	1770	0.49	
19.0	300	1770	0.49	
19.5	300	1740	0.48	
20.0	300	1740	0.48	

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0067R

American Units			
Depth at Midpoint	Velo	city	
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio
(ft)	(ft/s)	(ft/s)	
67.2	970	5810	0.49
68.8	1010	5810	0.48
70.5	1040	5810	0.48
72.1	1020	5700	0.48
74.1	1000	5550	0.48
75.4	1060	5650	0.48
77.0	1030	5750	0.48
78.7	990	5700	0.48
80.3	950	5700	0.49
81.9	950	5750	0.49
83.6	950	5750	0.49
85.2	1000	5810	0.48
86.9	1020	5750	0.48
88.5	1040	5810	0.48
90.1	1100	5750	0.48
91.8	1060	5650	0.48
93.4	1060	5780	0.48
95.1	1060	5630	0.48
96.7	1080	5500	0.48
98.3	1080	5430	0.48
100.0	1060	5480	0.48
101.6	1080	5500	0.48
103.3	1060	5410	0.48
105.2	1070	5390	0.48
106.9	1040	5340	0.48
108.2	1060	5410	0.48
109.8	1060	5410	0.48
111.5	1040	5390	0.48
113.1	1040	5390	0.48
114.7	1050	5410	0.48
116.4	1100	5460	0.48
118.0	1100	5480	0.48
120.0	1120	5500	0.48
121.3	1140	5500	0.48
122.9	1160	5410	0.48
124.6	1130	5500	0.48
126.2	1130	5410	0.48
127.9	1130	5530	0.48
129.5	1100	5630	0.48
131.1	1060	5630	0.48

Metric Units				
Depth at Midpoint	Velo	city		
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio	
(m)	(m/s)	(m/s)		
20.5	300	1770	0.49	
21.0	310	1770	0.48	
21.5	320	1770	0.48	
22.0	310	1740	0.48	
22.6	310	1690	0.48	
23.0	320	1720	0.48	
23.5	320	1750	0.48	
24.0	300	1740	0.48	
24.5	290	1740	0.49	
25.0	290	1750	0.49	
25.5	290	1750	0.49	
26.0	310	1770	0.48	
26.5	310	1750	0.48	
27.0	320	1770	0.48	
27.5	330	1750	0.48	
28.0	320	1720	0.48	
28.5	320	1760	0.48	
29.0	320	1720	0.48	
29.5	330	1680	0.48	
30.0	330	1660	0.48	
30.5	320	1670	0.48	
31.0	330	1680	0.48	
31.5	320	1650	0.48	
32.1	330	1640	0.48	
32.6	320	1630	0.48	
33.0	320	1650	0.48	
33.5	320	1650	0.48	
34.0	320	1640	0.48	
34.5	320	1640	0.48	
35.0	320	1650	0.48	
35.5	340	1660	0.48	
36.0	330	1670	0.48	
36.6	340	1680	0.48	
37.0	350	1680	0.48	
37.5	350	1650	0.48	
38.0	350	1680	0.48	
38.5	350	1650	0.48	
39.0	340	1690	0.48	
39.5	340	1720	0.48	
40.0	320	1720	0.48	

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0067R

American Units			
Depth at Midpoint	Velo	city	
Between Source and			Poisson's
Near Receiver	V _s	V_p	Ratio
(ft)	(ft/s)	(ft/s)	
132.8	1050	5580	0.48
134.4	1050	5630	0.48
136.1	1100	5550	0.48
137.7	1130	5700	0.48
139.3	1170	5680	0.48
141.0	1220	5750	0.48
142.6	1250	5830	0.48
144.3	1320	5970	0.47
145.9	1360	5860	0.47
147.6	1320	5920	0.47
149.2	1290	5780	0.47
150.8	1300	5700	0.47
152.5	1280	5630	0.47
154.1	1280	5650	0.47
155.8	1260	5730	0.47
157.4	1300	5860	0.47

Metric Units			
Depth at Midpoint	Velocity		
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio
(m)	(m/s)	(m/s)	
40.5	320	1700	0.48
41.0	320	1720	0.48
41.5	330	1690	0.48
42.0	350	1740	0.48
42.5	360	1730	0.48
43.0	370	1750	0.48
43.5	380	1780	0.48
44.0	400	1820	0.47
44.5	420	1790	0.47
45.0	400	1800	0.47
45.5	390	1760	0.47
46.0	400	1740	0.47
46.5	390	1720	0.47
47.0	390	1720	0.47
47.5	380	1750	0.47
48.0	400	1790	0.47

CALIFORNIA HIGH SPEED TRAIN S0072R Source to Receiver and Receiver to Receiver Analysis

Figure A-3: Boring S0072R, Suspension S-R1 P- and S_H-wave velocities

Table A-3. Boring S0072R, S - R1 quality assurance analysis P- and S_H-wave data

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0072R

American Units					
Depth at Midpoint					
Between Source		_	Poisson's		
and Near Receiver	V _s	V_p	Ratio		
(ft)	(ft/s)	(ft/s)			
9.8	590	1310	0.37		
11.4	580	1320	0.38		
13.0	590	1480	0.40		
14.7	580	1730	0.44		
16.3	570	2250	0.47		
18.0	540	2750	0.48		
19.6	540	4490	0.49		
21.2	520	5230	0.50		
22.9	520	5230	0.50		
24.5	530	5550	0.50		
26.2	540	5460	0.50		
27.8	550	5460	0.49		
29.4	590	5320	0.49		
31.1	660	5550	0.49		
32.7	670	5460	0.49		
34.4	670	5460	0.49		
36.0	650	5460	0.49		
37.6	650	5550	0.49		
39.3	670	5500	0.49		
40.9	690	5410	0.49		
42.6	730	5550	0.49		
44.2	750	5650	0.49		
45.8	780	5650	0.49		
47.5	830	5810	0.49		
49.1	780	5860	0.49		
50.8	710	5860	0.49		
52.4	710	5920	0.49		
54.0	700	5810	0.49		
55.7	740	5750	0.49		
57.3	770	5810	0.49		
59.0	880	5970	0.49		
60.6	890	6030	0.49		
62.2	940	6030	0.49		
63.9	960	6090	0.49		
65.5	1010	6150	0.49		
67.2	1050	6030	0.48		
68.8	1060	6030	0.48		
70.5	1160	6030	0.48		

Metric Units			
Depth at Midpoint	Velo	city	
Between Source			Poisson's
and Near Receiver	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
3.0	180	400	0.37
3.5	180	400	0.38
4.0	180	450	0.40
4.5	180	530	0.44
5.0	170	690	0.47
5.5	160	840	0.48
6.0	160	1370	0.49
6.5	160	1590	0.50
7.0	160	1590	0.50
7.5	160	1690	0.50
8.0	160	1660	0.50
8.5	170	1660	0.49
9.0	180	1620	0.49
9.5	200	1690	0.49
10.0	210	1660	0.49
10.5	210	1660	0.49
11.0	200	1660	0.49
11.5	200	1690	0.49
12.0	210	1680	0.49
12.5	210	1650	0.49
13.0	220	1690	0.49
13.5	230	1720	0.49
14.0	240	1720	0.49
14.5	250	1770	0.49
15.0	240	1790	0.49
15.5	220	1790	0.49
16.0	220	1800	0.49
16.5	210	1770	0.49
17.0	220	1750	0.49
17.5	240	1770	0.49
18.0	270	1820	0.49
18.5	270	1840	0.49
19.0	290	1840	0.49
19.5	290	1860	0.49
20.0	310	1870	0.49
20.5	320	1840	0.48
21.0	320	1840	0.48
21.5	350	1840	0.48

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0072R

American Units			
Depth at Midpoint	Velo	city	
Between Source			Poisson's
and Near Receiver	V _s	V_p	Ratio
(ft)	(ft/s)	(ft/s)	
72.1	1170	6030	0.48
73.7	1170	5920	0.48
75.7	1170	5920	0.48
77.0	1130	5920	0.48
78.7	1100	5920	0.48
80.3	1090	5920	0.48
81.9	1080	5920	0.48
83.6	1070	5920	0.48
85.2	1080	5920	0.48
86.9	1110	6030	0.48
88.5	1090	6030	0.48
90.1	1090	6030	0.48
91.8	1070	6030	0.48
93.4	1050	5920	0.48
95.1	1010	5860	0.48
97.0	960	5650	0.49
98.3	960	5460	0.48
100.0	910	5550	0.49
101.6	890	5460	0.49
102.9	870	5360	0.49
104.6	830	5460	0.49
106.5	830	5460	0.49
108.2	820	5500	0.49
109.8	820	5500	0.49
111.5	830	5500	0.49
113.1	840	5500	0.49
114.7	910	5500	0.49
116.4	1010	5650	0.48
118.0	1050	5650	0.48
119.7	1080	5750	0.48
121.3	1040	5810	0.48
122.9	1020	5810	0.48
124.3	1000	5810	0.48
126.2	1000	5700	0.48
127.9	1010	5750	0.48
129.5	1050	5750	0.48
131.1	1110	5700	0.48
132.8	1050	5650	0.48
134.4	980	5550	0.48
136.4	890	5460	0.49

Metric Units			
Depth at Midpoint	Velo	city	
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio
(m)	(m/s)	(m/s)	
22.0	360	1840	0.48
22.5	360	1800	0.48
23.1	360	1800	0.48
23.5	350	1800	0.48
24.0	340	1800	0.48
24.5	330	1800	0.48
25.0	330	1800	0.48
25.5	330	1800	0.48
26.0	330	1800	0.48
26.5	340	1840	0.48
27.0	330	1840	0.48
27.5	330	1840	0.48
28.0	320	1840	0.48
28.5	320	1800	0.48
29.0	310	1790	0.48
29.6	290	1720	0.49
30.0	290	1660	0.48
30.5	280	1690	0.49
31.0	270	1660	0.49
31.4	260	1640	0.49
31.9	250	1660	0.49
32.5	250	1660	0.49
33.0	250	1680	0.49
33.5	250	1680	0.49
34.0	250	1680	0.49
34.5	260	1680	0.49
35.0	280	1680	0.49
35.5	310	1720	0.48
36.0	320	1720	0.48
36.5	330	1750	0.48
37.0	320	1770	0.48
37.5	310	1770	0.48
37.9	310	1770	0.48
38.5	310	1740	0.48
39.0	310	1750	0.48
39.5	320	1750	0.48
40.0	340	1740	0.48
40.5	320	1720	0.48
41.0	300	1690	0.48
41.6	270	1660	0.49

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole S0072R

American Units			
Depth at Midpoint	Velo	city	
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio
(ft)	(ft/s)	(ft/s)	
138.0	860	5650	0.49
139.7	950	5750	0.49
141.0	1000	5750	0.48
143.0	1140	5860	0.48
144.3	1160	5970	0.48
145.9	1110	6090	0.48
147.6	990	5970	0.49
149.2	920	5860	0.49
150.8	890	5860	0.49
152.5	880	5860	0.49
154.1	880	5860	0.49
156.1	880	5810	0.49
157.4	900	5860	0.49

Metric Units			
Depth at Midpoint	Velo	city	
Between Source and Near Receiver	V _s	V _p	Poisson's Ratio
(m)	(m/s)	(m/s)	
42.1	260	1720	0.49
42.6	290	1750	0.49
43.0	310	1750	0.48
43.6	350	1790	0.48
44.0	350	1820	0.48
44.5	340	1860	0.48
45.0	300	1820	0.49
45.5	280	1790	0.49
46.0	270	1790	0.49
46.5	270	1790	0.49
47.0	270	1790	0.49
47.6	270	1770	0.49
48.0	270	1790	0.49

APPENDIX B BORING GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION RECORDS

MICRO PRECISION CALIBRATION, INC 12686 HOOVER ST GARDEN GROVE CA 92841 714-901-5659

Certificate of Calibration

Date: Jun 18, 2013 Cert No. 22008120191984

Customer: GEOVISION

MPC Control #:

Asset ID:

Size:

Temp/RH:

Gage Type:

Manufacturer:

Model Number:

1124 OLYMPIC DRIVE CORONA CA 92881

Work Order #: LA-90010899

Purchase Order #: 13161-130607-01

Serial Number: 15014
Department: N/A

Department: N/A
Performed By: STEVE BORING
Received Condition: IN TOLERANCE
Returned Condition: IN TOLERANCE
Cal. Date: June 13, 2013
Cal. Interval: 12 MONTHS

Cal. Due Date: June 13, 2014

Calibration Notes:

See attached data sheet for calculations.
Calibrated IAW customer supplied data form Rev 2.1
Frequency measurement uncertainty = 0.0005 Hz

BG9698

LOGGER

03331-0000

15014

OYO

N/A 71°F / 52 %

Unit calibrated with Laptop Panasonic Model CF-29,s/n: 5GKSA39492

Standards Used to Calibrate Equipment

I.D. Description. Model Serial Manufacturer Cal. Due Date Traceability # BD9000 CALIBRATOR 5500A 7375008 FLUKE Jun 15, 2013 1808504 T1100 COUNTER 53131A 3546A09912 HEWLETT PACKARD Feb 1, 2014 2200812063530

Procedures Used in this Event

Procedure Name Description

STEVE BORING

SUSPENSION PS SEISMIC Logger/Recorder Calibration Procedure rev2.1

Calibrating Technician:

QC Approval:

Jim Williams

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA's Publication and NIST Technical Note 1297, 1994 Edition. Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to SI through the National Institute of Standards and Technology (NIST) and/or recognized national or international standards laboratories. Services rendered include proper manufacturer's service instruction and are warranted for no less than thirty (30) days. This report may not be reproduced in part or in a whole without the prior written approval of the issuing MPC lab.

Page 1 of 1

(CERT, Rev 3)

BG 9698

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMEN'	T DATA									
System mfg.:		OYO			Model no.:		3331			
Serial no.:		15014			Calibration		6/13/2013			
By:		Steve Boring			Due date:		6/13/2014			
,										
Counter mfg.:		Hewlett P			Model no.:		53131A			
Serial no.:		3546A099			Calibration	date:	2/1/2013			
By:		Micro Pre	cision Ca	libration	Due date:		2/1/2014			
Signal genera	tor mfg.:	Fluke		Model no		:	5500A			
Serial no.:	Ü	7375008	(MPC BD	9000)	Calibration	date:	6/15/2012			
By:		Micro Pre			Due date:		6/15/2013			
l antan cantro	llar mafa .				· Madalna :					
Laptop contro	iler mig.:	Panasoni			Model no.:		CF-29			
Serial no.:		5GKSA39	1492	Calibration da		date:	N/A			
SYSTEM SET	TINGS:									
Gain:				10						
Filter				LCF: 5Hz;	HCF: 20kH	Z				
Range:				See sampl	e period in	table below				
Delay:				0 ms			1			
Stack (1 std)				1						
System date =	correct dat	te and time	9	6/13/2013	10:20					
•										
PROCEDURE										
Set sine wave				with amplitu	de of appro	ximately 0.2	25 volt peak			
Note actual fre										
Set sample pe										
	Pick duration of 9 cycles using PSLOG.EXE program, note duration on data form, and save as									
.sps file. Calculate average frequency for each channel pair and note on data form.										
Average frequency must be within +/- 1% of actual frequency at all data points.										
Maximum error ((AVG-ACT)/ACT*100)% As found -0.12% As left -0.12%									-0.12%	
Maximum em	אל-טיאו) ונ	1)///	00)70	As lourid		-0.1270	•	Asien	-0.1270	
Target	Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average	
Frequency	Frequency		Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency	
(Hz)		(microS)	Name	Hn (msec)		Hr (msec)	Hr (Hz)	V (msec)	V (Hz)	
50.00	(Hz) 50.00		401	180.0	50.00	179.8	50.06	180.0	50.00	
		200					100.0	90.00	100.0	
100.0	100.0	100	402	90.00	100.0	90.00				
200.0	200.0	50	403	45.00	200.0	45.00	200.0	45.00	200.0	
500.0	500.0	20	404	17.98	500.6	18.00	500.0	18.00	500.0	
1000	1000	10	405	9.000	1000	9.000	1000	9.000	1000	
2000	2000	5	406	4.495	2002	4.500	2000	4.500	2000	
							1,1	/		
A Makan										
Calibrated by:		Steve Boring			6/13/2013					
		Name				Date	<u> </u>	Signature)		
							111			
Witnessed by: Robert S			obert Steller 6/13/2013							
,		Name						Signature		
Su	spension P		Recorde	r/Logger Ca	libration Da		Rev 2.1 Fel	bruary 7, 201	2	

MICRO PRECISION CALIBRATION, INC 12686 HOOVER ST GARDEN GROVE CA 92841 714-901-5659

Certificate of Calibration

Date: Jun 5, 2013 Cert No. 2200812156209

Customer: GEOVISION

MPC Control #:

Asset ID:

Size:

Temp/RH:

Gage Type:

Manufacturer:

Model Number:

1124 OLYMPIC DRIVE CORONA CA 92881

Work Order #: LA-90010807

Purchase Order #: 13161-130510-01

Serial Number: 160024
Department: N/A

Cal. Due Date:

Performed By: STEVE BORING
Received Condition: IN TOLERANCE
Returned Condition: IN TOLERANCE
Cal. Date: May 30, 2013
Cal. Interval: 12 MONTHS

May 30, 2014

Calibration Notes:

See attached data sheet for calculations.
Calibrated IAW customer supplied data form Rev 2.1
Frequency measurement uncertainty = 0.0005 Hz
Unit calibrated with Laptop Panasonic s/n: 6AKSB97198

Standards Used to Calibrate Equipment

AM6768

160024

OYO

3403

N/A 71°F / 52 %

LOGGER

I.D.	Description.	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
BD7715	UNIVERSAL COUNTER	53131A	3416A05377	HEWLETT PACKARD	Jun 8, 2013	2008120206792
BD9000	CALIBRATOR	5500A	7375008	FLUKE	Jun 15, 2013	1808504

Procedures Used in this Event

Procedure Name Description

SUSPENSION PS SEISMIC Logger/Recorder Calibration Procedure rev2.1

Calibrating Technician:

QC Approval:

Jim Williams

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA's Publication and NIST Technical Note 1297, 1994 Edition. Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to SI through the National Institute of Standards and Technology (NIST) and/or recognized national or international standards laboratories. Services rendered include proper manufacturer's service instruction and are warranted for no less than thirty (30) days. This report may not be reproduced in part or in a whole without the prior written approval of the issuing MPC lab.

Page 1 of 1

(CERT, Rev 3)

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMENT	Γ DATA									
System mfg.:		OYO			Model no.:		3403			
Serial no.:		160024			Calibration date:		5/30/2013			
Ву:		Charles C	arter		Due date:		5/30/2014			
Counter mfg.:		Hewlett P	ackard		Model no.:		53131A			
Serial no.:		3416A053	377		Calibration	date:	6/8/2012			
Ву:		Micro Pre	cision		Due date:		6/8/2013			
Signal genera	tor mfa.:	Fluke			Model no.:		5500A			
Serial no.:	Ü	7375008		Calibration		date:	6/15/2012	3/15/2012		
Ву:		Fluke			Due date:		6/15/2013			
Laptop contro	ller mfa :	Panasoni	C		Model no.:		CF-29			
Serial no.:		6AKSB97		Calibratio				N/A		
SYSTEM SET	TINGS:				•					
Gain:	mos.			2						
Filter				10KHz					duration, and an arrangement of the second of	
Range:				See sampl	e period in	table below				
Delay:				0						
Stack (1 std)				1						
System date =	correct da	te and time	е	5/30/2013	-12 hours					
PROCEDURE: Set sine wave frequency to target frequency with amplitude of approximately 0.25 volt peak Note actual frequency on data form. Set sample period and record data file to disk. Note file name on data form. Pick duration of 9 cycles using PSLOG.EXE program, note duration on data form, and save as .sps file. Calculate average frequency for each channel pair and note on data form. Average frequency must be within +/- 1% of actual frequency at all data points.										
Maximum erro	00)%	As found	,	0.12%		As left	0.12%			
Target	Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average	
Frequency	Frequency		Name	9 cycles	Frequency		Frequency	9 cycles	Frequency	
(Hz)	(Hz)	(microS)		Hn (msec)	Hn (Hz)	Hr (msec)	Hr (Hz)	V (msec)	V (Hz)	
50.00	50.00	200	1	179.8	50.06	179.8	50.06	180.2	49.94	
100.0	100.00	100	2	90		90.1	99.89	90	100	
200.0	200.00	50	3	45.05	199.8	45.05	199.8	45	200	
500.0	500.00	20	4	18		18	500	18	500	
1000	1000.00	10	5	9	1000	9	1000	9	1000	
2000	2000.00	5	6	4.5	2000	4.5	2000	9 4.5	2000	
Calibrated by:		EVE	Bopen	16	5/30/2013	Stown				
Name				Date		Date	Signature			
Witnessed by:		STEVE BORIN Name Charles Carter			5/30/2013		Che	Charles Carlo		
•		Name				Date		Signature		
Supposion DS Sciemio Pocordor/Logger Calibration Data Form Poy 2.1 February 7 2012										

MICRO PRECISION CALIBRATION, INC 12686 HOOVER ST GARDEN GROVE CA 92841 714-901-5659

Certificate of Calibration

Date: Jun 5, 2013 Cert No. 2200812156204

Customer: GEOVISION

MPC Control #:

Asset ID:

Gage Type:

Temp/RH:

Manufacturer:

Model Number:

1124 OLYMPIC DRIVE CORONA CA 92881

Work Order #: LA-90010807

Purchase Order #: 13161-130510-01

Serial Number: 160023 Department: N/A

Performed By: STEVE BORING
Received Condition: IN TOLERANCE
Returned Condition: IN TOLERANCE
Cal. Date: May 30, 2013
Cal. Interval: 12 MONTHS

Cal. Due Date:

May 30, 2014

Calibration Notes:

See attached data sheet for calculations.
Calibrated IAW customer supplied data form Rev 2.1
Frequency measurement uncertainty = 0.0005 Hz
Unit calibrated with Laptop Panasonic s/n: 6AKSB97198

Standards Used to Calibrate Equipment

AM6767

160023

OYO

3403

N/A 71°F / 52 %

LOGGER

I.D. Description. Model Serial Manufacturer Cal. Due Date Traceability # BD7715 UNIVERSAL COUNTER 53131A 3416A05377 HEWLETT PACKARD Jun 8, 2013 2008120206792 BD9000 CALIBRATOR 5500A 7375008 FLUKE Jun 15, 2013 1808504

Procedures Used in this Event

Procedure Name Description

STEVE BORING

SUSPENSION PS SEISMIC Logger/Recorder Calibration Procedure rev2.1

Calibrating Technician:

QC Approval:

Jim Williams

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA's Publication and NIST Technical Note 1297, 1994 Edition. Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to SI through the National Institute of Standards and Technology (NIST) and/or recognized national or international standards laboratories. Services rendered include proper manufacturer's service instruction and are warranted for no less than thirty (30) days. This report may not be reproduced in part or in a whole without the prior written approval of the issuing MPC lab.

Page 1 of 1

(CERT, Rev 3)

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

System mfg.: Serial no.: By:		OYO 160023 Charles Carter			Model no.: Calibration Due date:	tion date: 5/30			
Counter mfg.: Serial no.: By:		Hewlett P 3416A053 Micro Pre	ackard 377		Model no.: Calibration Due date:	53131A			
Signal genera Serial no.: By:	tor mfg.:	Fluke 7375008 Fluke			Model no.: Calibration Due date:	date:	5500A 6/15/2012 6/15/2013		
Laptop contro Serial no.:	ller mfg.:	Panasoni 6AKSB97			Model no.: Calibration				
SYSTEM SETTINGS: Gain: Filter Range: Delay: Stack (1 std) System date = correct date and time				2 10KHz See sample period in table below 0 1 5/30/2013 +/-< 1 minute					
PROCEDURE: Set sine wave frequency to target frequency with amplitude of approximately 0.25 volt peak Note actual frequency on data form. Set sample period and record data file to disk. Note file name on data form. Pick duration of 9 cycles using PSLOG.EXE program, note duration on data form, and save as .sps file. Calculate average frequency for each channel pair and note on data form. Average frequency must be within +/- 1% of actual frequency at all data points.									
Maximum erro	or ((AVG-AC	T)/ACT*1	00)%	As found 0.12%			6 As left 0.12%		
Target Frequency (Hz)	Actual Frequency (Hz)	Sample Period (microS)	File Name	Time for 9 cycles Hn (msec)	Average Frequency Hn (Hz)	Time for 9 cycles Hr (msec)	Average Frequency Hr (Hz)	Time for 9 cycles V (msec)	Average Frequency V (Hz)
50.00	50.00	200	6	180	50	179.8	50.06	180	50
100.0	100.00	100	5	90	100	90	100	90.1	99.89
200.0	200.00	50	4	45.05	199.8	45	200	45	200
500.0	500.00	20	3	17.98	500.6	18	500	18	500
1000	1000.00	10	2	9	1000	9.01	998.9	9	1000
2000	2000.00	5	1	4.495	2002	4.5	2000	4.5	2000
Calibrated by:		STE	EVE "	BORIN	G	5/30/2013		for	
Witnessed by:		Name		BORIN		5/30/2013 Date		Signature Signature	al
Su	spension PS	Seismic	Recorder	/I odder Ca	libration Da	ta Form F	Rev 2.1 Fe	bruary 7 201	ソー・ト

INSTRUMENT DATA