Analysis of San Francisco Bay Area Bike Share Project 01

Database Foundations for Business Analytics

Professor Farzad Kamalzadeh

BUAN 6320

Analysis Done By

- Hajra Katlia (Hxk190028)
- Kushagra Rastogi (Kxr220031)
- Rana Udayveer Singh (RXX210005)
- Siddhesh Madhukar Koli (Sxk220091)

Dataset

We conduct analysis on the <u>San Francisco Bay Area Bike Share</u> dataset. The dataset weighs in at 2 GB. The dataset provides information on the reasonably priced, quick, and simple bike excursions in and around the San Francisco Bay Area. It includes details on the designated stations for picking up and dropping off bikes, the number of bikes and docks that are available, individual bike trips, and the weather forecast for a certain day for a given zip code.

Business Understanding

Data from the Bay Area Bike Share System is included in the collection. The San Francisco Municipal Transportation Agency (SFMTA) launched the Bay Area Bike Share System in 2013 to provide the general public with accessible and reasonably priced transportation. SFMTA gathered information on the trips made by users from various places in order to gain a better understanding of how the Bay Area Bike Share System is used.

In addition to understanding commute patterns in the San Francisco area, we are using this data to assess other Bay Area Bike Share system aspects. The average trip duration, number of bikes available at a specific location and time, average temperature, precipitation, humidity, and other weather-related variables on each day of the trip, as well as the latitude and longitude of the station locations, can all be determined using this data. It can also be used to track bike patterns depending on the day of the week and time.

After the study, different conclusions might be taken from this dataset. The Bay Area Bike Share system's effectiveness can be increased by determining the ideal time, place, and weather condition factors. For instance, if the weather is favorable and the peak usage hours have been recorded, the number of bikes provided to a certain station may be increased. It is possible to completely remove the bike-share program from the system if it is not being utilized as frequently at a specific station.

In order to increase the availability of bikes and docks at various stations, this analysis will look at popular routes, how the weather affects the use of bike-share services and demand patterns for excursions that may be made on two wheels throughout the day and week. The average travel time can be shortened, the number of bikes at busy stations can be increased, and the optimal temperature and time can be checked to modify the supply chain of bikes accordingly. These are all things that can be maximized after analyzing this data.

We intend to obtain comprehensive data regarding the ratio of subscribers to customers at a specific station at the conclusion of the analysis. We will investigate the best area to advertise in order to turn

customers into subscribers. It would be necessary to increase the number of bikes and docks available at stations with strong demand. Which season of the year has the lowest demand and is best for carrying out maintenance work?

Understanding Data

Data from the San Francisco Bay Area Bike Share includes tables with information on the weather, station name and coordinates, trip, and trip status.

Station

Column Name	Datatype	Description
id	INT	Station id
name	VARCHAR	Name of t <mark>he st</mark> ation
latitude	DOUBLE	Latitude of station
longitude	DOUBLE	Longitude of station
dock_cou <mark>nt</mark>	INT	Nu <mark>mber of</mark> docks av <mark>aila</mark> ble
city	V <mark>ARCHA</mark> R	Station city
installation_date	DATETIME	Sta <mark>tion ins</mark> tallation date

Station id (id) is the primary key in the station table

Status

Co <mark>lumn</mark> Name	D <mark>atatyp</mark> e	Descr <mark>iptio</mark> n
station_id	INT	Uni <mark>que</mark> station id
bikes_available	INT	Number of bikes available
docks_available	INT	Number of docs available
time	DATETIME	Time of the trip

Time of the trip (time) is the primary key in the status table

Trip

Column Name	Datatype	Description	
id	INT	Station id	
duration	DOUBLE	Duration of the trip	
start_date	DATETIME	Start date of the trip	
start_station_name	VARCHAR Strt station name		
start_station_id	INT	Station id where the trip starts	
end_date	DATETIME	Date when the trip ends	
en <mark>d_sta</mark> tion_id	INT Station id where the tr		
bike_id	INT	Bike id of t <mark>he tr</mark> ip	
subscription_type	VARCHAR Subscription type of the		
zip_code	VARCHAR	Zip codes	

Station id (id) is the primary key in the trip table

Weather

Column Na <mark>me</mark>	D <mark>atatyp</mark> e	Des cription	
date	DATETIME	Date of the trip	
min_temperature_f	INT	Minimum temp <mark>erat</mark> ure on the day of the trip	
max_temp <mark>erature_</mark> f	INT Maximum temperature day of the trip		
min_humidity	INT	Minimum humidity on the day of the trip	
max_humidity	INT	Maximum humidity on the day of the trip	
min_sea_level_pressure	INT	Minimum sea level pressure on the day of the trip	

max_sea_level_pressure	INT	Maximum sea level pressure on the day of the trip	
min_visibility_miles	INT	Minimum visibility on the day of the trip	
max_visibility_miles	INT	Maximum visibility on the day of the trip	
min_wind_speed_mph	INT	Minimum wind speed on the day of the trip	
precipitation_inches	INT	Precipitation inches	
clo <mark>ud_</mark> cover	INT	Cloud cover of the day	
events	V <mark>ARCHA</mark> R	Events on the d <mark>ay of</mark> the trip	
wind_dr_deg <mark>rees</mark>	INT	Wind in degrees on trip day	
zip_code	INT	Zip code of the location	

Date of the trip (date) is the primary key in the weather table

The date column in the dataset connects the trip table and the weather table. Through the start station id, the travel, status, and station are connected. The station ID serves as a link between a station and a station's coordinates. Therefore, they all are dependent on each other.

No column names were altered because they all seemed understandable and straightforward. There were no duplicate values found in either of the tables. However, there were some missing values within the tables.

- None of the columns in the station table had any missing values.
- None of the status table columns have any missing values.
- There are no empty columns in the trip table.
- The columns in the weather table has various missing value. Columns with the missing values are mentioned below:

Weather Table					
Column Name	Missing Values				
max_temperature_f	4				
min_temperature_f	4				
max_humidity	4				
min_humidity	4				
max_sea_level_pressure	4				
min_sea_level_pressure	1				
max_visibility_miles	13				
min_v <mark>isibility_</mark> miles	13				
max_w <mark>ind_spe</mark> ed_mp <mark>h</mark>	1				
precip <mark>itation_</mark> inches	1				
wind_dr_degrees	1				

Statistics of the data

Station table								
Coulumn name	Pango Lower limit	Range Upper limit	Mode		Mean	Median	Count	Varience
Codidilli lialle	Kange Lower IIIIII	range Opper minic	Mode	Occurance time	Ivicali	Wedian	Count	Varience
id	NA	NA	NA	NA	NA	NA	70	NA
name	NA	NA	NA	NA	NA	NA	70	NA
latitude	37.329732	37.80477	37.329732	1	37.59024338	37.6311635	70	0.040809629
longitude	-122.418954	-121.877349	-121.901782	1	-244.872782	-122.6543662	70	0.043240967
dock_count	11	27	27	4	17.6571	15	70	15.85387755
city	NA	NA	NA	NA	NA	NA	70	NA
installation_date	8/5/2013	4/9/2014	NA	NA	NA	NA	70	NA

Status table								
Coulumn name	Range Lower limit	Pango Unnor limit	Mod	de	Mean	Median	Count	Varience
Codidilii ilaile	Range Lower IIIIII	kange Opper illilit	Mode	Occurance time	IVIEdII			
station_id	NA	NA	NA	NA	NA	NA	1984434	NA
bikes_available	0	27	2	49125	8.393	8	1984434	15.92707
docks_available	0	27	25	1309	9.2825	9	1984434	17.40902055
time	8/29/2013 12:06	8/31/2015 23:59	NA	NA	NA	NA	1984434	NA

	Trip table							
Coulumn name	Range Lower limit	Pango Unnor limit	Mod	de	Mean	Median	Count	Varience
Couldilli liallie	Kange Lower IIIIII	Kange Opper IIIIIt	Mode	Occurance time	Weali	Wedian	Count	Varience
id	4069	913460	NA	NA	NA	NA	669959	NA
duration	60	17270400	63	41	1107.9498	517	669959	495303737.6
start_date	8/29/2013 9:08	8/31/2015 23:26	NA	NA	NA	NA	669959	NA
start_station_name	NA	NA	NA	NA	NA	NA	669959	NA
start_station_id	2	84	NA	NA	NA	NA	669959	NA
end_date	8/29/2013 9:11	8/31/2015 23:39	NA	NA	NA	NA	669959	NA
end_station_name	NA	NA	NA	NA	NA	NA	669959	NA
end_station_id	2	84	NA	NA	NA	NA	669959	NA
bike_id	9	878	NA	NA	NA	NA	669959	NA
subscription_type	NA	NA	NA	NA	NA	NA	669959	NA
zip_code	NA	NA	NA	NA	NA	NA	669959	NA

Weather table								
Coulumn name	Panga Lawar limit	Range Upper limit	Mod	le	Mean	Median	Count	Varience
Coulumn name	Kange Lower IIIIII	kange Opper illilit	Mode	Occurance time	iviean	Median	Count	varience
date	8/29/2013	8/31/2015	NA	NA	NA	NA	3665	NA
max_temperature_f	44	102	74	98	70.5809888	70	3661	70.298617
min_temperature_f	25	75	61	99	51.94728216	53	3661	55.35996325
max_humidity	24	100	93	391	85.4469676	86	3661	85.1134296
min_humidity	4	93	57	157	46.45804486	48	3661	208.3052877
max_sea_level_pressure_inches	29.5	30.65	30.07	88	30.07499727	30.06	3661	0.018083188
min_sea_level_pressure_inches	30.37	30.37	29.97	103	29.96583515	29.95	3664	0.017811038
max_visibility_miles	5	20	10	3357	10.55531216	10	3652	4.81156269
min_visibility_miles	0	20	10	2137	8.22973713	10	3652	8.189553819
max_wind_Speed_mph	0	128	23	121	16.39847162	16	3664	60.62997583
precipitation_inches	0	3	NA	NA	NA	NA	3664	NA
events	NA	NA	NA	NA	NA	NA	3665	NA
wind_dir_degrees	0	2772	286	25	266.6058952	297	3664	10410.87962
zip_code	NA	NA	NA	NA	NA	NA	3665	NA

Database Design
The following schema design states the entities within the bike sharing data

Schema design Before Normalization

The table below shows the Primary key and Foreign key of the entities:

	, ,						
Table	Pr <mark>imary K</mark> ey	Foreign Key					
Station	id	NA					
Status	(station_id, time)	station_id					
Trip	id	start_station_id					
Weather	date	NA					

Functional Dependencies

Station Table

```
\{id\} \rightarrow \{Name, Dock Count\} \checkmark  \{id\} \rightarrow \{Name, City, Longitude, Latitude\} \rightarrow Violates BCNF (X) \rightarrow Decomposes into <math>\{id, Name\}, \{id, City, longitude, Latitude\} \checkmark
```

Status Table

```
{station_id} → {Name, Dock Count} ✓
```

Trip Table

```
{id} → {start_station_id, end_station_id, start_station_name, end_station_name} → Violates BCNF (X)
→ Decomposes into {id, start_station_id, end_station_id}, {station_id, station_name} ✓
```

Weather Table

There is no functional dependency as every column in the weather table is calculated independently.

Normalizing Tables

After examining the first schema, we concluded that the tables still have some redundancy when viewed collectively. As a result, we chose to divide the tables, make new tables, and keep the information about the station's name and city in a different table that can also be utilized by trips.

Initial Functional Dependencies

```
 \{Station\_Id\} \rightarrow \{Name, Dock\_count\} \\ \{Station\_Id\} \rightarrow \{bikes\_available, \\ docks\_available\} \\ \{Trip\_Id\} \rightarrow \{start\_station\_id, end\_station\_id\} \\ \{Start\_station\_Id\} \rightarrow \{city, longitude, latitude\} \\ \{Start\_station\_id\} \rightarrow \{start\_station\_id, end\_station\_id\} \\ \{Start\_station\_id\} \rightarrow \{start\_station\_id\} \\ \{start\_stat
```

Checking for any given FDs, BCNF Conditions

$\{Station_Id\} \rightarrow \{Name, Dock_count\} \rightarrow$	Station_id, Name and Dock_count are in the same table, and station_id is the key 🗸
	Station_id, bikes_available and docks_available are in the same table, and station_id is the key 🗸
{Trip_id} → {start_station_id, end_station} →	Trip_id, start_station_id, end_station_id are in the same table, and trip id is the key ✓
{start_station_id} → {city, longitude, latitude}	Start_station_id, city, longitude, and latitude are in the same table, and id is the key ✓
{station_id} → {Name, Dock_count, bikes_available, docks_available}	They aren't in the same table ✓

We can conclude that the supplied schema is in BCNF based on the conditions that were tested above.

Modified Schema Design

Table	Primary Key	Foreign Key
Trip	id	NA
Station	NA	start_station_id
Station_coordinates	id	Id (from station table)
Status	station_id	start_station_id
Weather	NA	start_date

Data Cleaning

Importing Data

SQL displayed a security error stating that the current files were not located in a secure location when the file was being uploaded. We upload the file in a secure location first, then upload it in SQL to correct the problem. This fixed the issue, allowing us to upload the file in SQL.

Formatting Issues

When importing the data, an error occurred because the date format was text and not YYYY-MM-DD. By altering the date format, this was resolved.

Query Running Time

Each inquiry had a readout time interval of just 30 seconds. However, each of our inquiries took 1300 seconds. As a result, we kept experiencing errors. We navigated to edit → preferences → SQL editor → MySQL session to fix the problem. DBMS timeout interval was set to 0 by command. We were able to perform our 1300-second query with ease because it didn't stop after 30 seconds.

Non-Numerical Value

The zip codes contain a variety of non-numerical values, including rows with values typed as "nil," which prevents the data from being imported because the column is a numeric one. We resolved the problem by substituting blank values for "nil."

Data Testing

SELECT date,

The stat<mark>istic</mark>s data was obtained for each table using the following query. Each table's column name was modified, but each table's query was the same. This is for the station table:

```
2
                 AVG(max_temperature_f) as max_temperature_f,
  3
                 AVG(min_temperature_f) as min_temperature_f,
                 AVG(max_humidity) as max_humidity,
                 AVG(min_humidity) as min_humidity,
                 AVG(max_sea_level_pressure_inches) as max_sea_level_pressure_inches,
                 AVG(min_sea_level_pressure_inches) as min_sea_level_pressure_inches,
                 AVG(max_visibility_miles) as max_visibility_miles,
                 AVG(min_visibility_miles) as min_visibility_miles,
 10
                 AVG(max_wind_Speed_mph) as max_wind_Speed_mph,
                 AVG(precipitation_inches) as precipitation_inches,
 11
                 events.
 12
                 AVG(wind_dir_degrees) as wind_dir_degrees,
 13
                 zip_code
 14
        FROM weather
 15
 16
         GROUP BY date
 17
         ORDER BY DATE
 18
         limit 10;
                                                                                                                                                     Export: Wrap Cell Content: IA
                                                                                                                                              min_visibility
              max_temperature_f min_temperature_f
                                               max_humidity min_humidity
                                                                         max_sea_level_pressure_inches
                                                                                                   min_sea_level_pressure_inches
  2013-08-29
              78.6
                               62.8
                                                88.8
                                                            53
                                                                         30.064
                                                                                                   29.96599999999998
                                                                                                                                              10
  2013-08-30 84.6
                               62.4
                                                            42.4
                                                                         30.0540000000000002
                                                                                                   29.926
                                                                                                                                              9.4
  2013-08-31
             76.4
                               59.8
                                               88.2
                                                            51.6
                                                                         29.994
                                                                                                   29.910000000000004
                                                                                                                                              10
  2013-09-01 79.2
                                               83.4
                                                            44.4
                                                                        29,962
                                                                                                   29.885999999999996
                                                                                                                                              10
                               61
                                                                                                                             10
  2013-09-02 77.4
                               64.6
                                               85.8
                                                            58.8
                                                                         29.972
                                                                                                   29.89199999999996
                                                                                                                                              9.2
                                               83.4
                                                            39.4
                                                                                                                             10
                                                                                                                                              10
  2013-09-03 78
                               59.6
                                                                         30.014
                                                                                                   29.948
  2013-09-04 77.8
                               59.2
                                               84.2
                                                            44.4
                                                                         30.05
                                                                                                   29,964
                                                                                                                             10
                                                                                                                                              10
                                                                        30.0340000000000002
  2013-09-05 77.2
                               59
                                               83.4
                                                            43.6
                                                                                                   29.972
                                                                                                                             10
                                                                                                                                              10
  2013-09-06
             88.2
                               55.6
                                                83.2
                                                            28.4
                                                                         30.006
                                                                                                   29.82199999999996
                                                                                                                                              10
  2013-09-07 92.6
                               60.6
                                                                         29.880000000000003
                                                                                                   29.796
```


Refer to "Data Understanding" for the statistical data.

Analysis

In order to better organize the distribution of bikes and boost income by providing more rides at crowded stations, we chose to study the following parameters after learning about the industry.

679

666

Stations that often run out of bikes

Embarcadero at Vallejo

San Francisco Caltrain (Townsend at 4th)

2nd at Folsom

```
15 •
       SELECT DISTINCT
           name, COUNT(*) AS no_bikes_left
       FROM
17
          station AS s
18
              INNER JOIN
19
          status AS st ON s.id = st.station_id
20
21
22
          st.bikes_available = 0
23
       GROUP BY name
       ORDER BY no_bikes_left DESC
       LIMIT 5;
 25
                                     Export: Wrap Cell C
no_bikes_left
  name
                               779
  Commercial at Montgomery
  Market at 4th
                               686
```

• Cities with the most trips

```
#the cities with most trips
28
29 •
       SELECT DISTINCT
           city, COUNT(*) AS total_trips
30
31
       FROM
           station AS s
32
               INNER JOIN
33
34
           trip AS t ON s.id = t.start_station_id
       GROUP BY city
35
       ORDER BY total_trips DESC;
36
```


Most popular route in San Francisco

• Stations where docks ran out

How did the weather look like when we had the most customer trips(top 10)

Improvements that could be made based on the present business model include:

- There should be more bikes at Commercial at Montgomery station because that is where we see the most significant bike shortages.
- Most trips are made in Redwood City, while the fewest are made in San Francisco. Thus, it is important to plan the number of bikes each station will receive.
- Embarcadero at Bryant is the station that ran out of docks; consequently, the number of docks needs to be expanded.
- The most frequented route in San Francisco was discovered to be from SF Caltrain to Townsend at 4th. As a result, we must always ensure that docks are available along this route.
- The fact that fewer excursions were taken below and above the average maximum temperature (70 degrees Fahrenheit) indicates that the weather did not significantly affect the trips.

