$$f: A \longrightarrow B$$
 $g: B \longrightarrow A$
 $g \circ f: A \longrightarrow A$, $f \circ g: B \longrightarrow B$

If f is invertible ($\equiv f$ is bijection) & g is the inverse, then $g \circ f = I_A$, $f \circ g = I_B$

Conversely, suppose we have $gof = I_A$ & $fog = I_B$ then f is invertible $b \in B$, then $g(b) \in A$, then f(g(B)) = b1) so, f is onto

Suppose,
$$f(a) = f(b)$$
 apply g and get $a = b$
2) so, f is one-one

② If
$$g \circ f = I_A$$
, then f is one-one

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$

Composition of maps is associative But $g \circ f = f \circ g$ is false

Suppose X is a non-empty set. A map $X_*X \to X$ is also called a binary operation on X.

Binary operation is denoted by ab or a+b or akb or a.b

Eg: {a,b,c}

	(a	Ь	
a		Ь	С	a
	9	C	a	C
	2	a	a	а

How many binary operations are there on 60,6,03?

$$b(ai) = (bi)c$$

$$|| \qquad ||$$

$$ba \xrightarrow{N^0} cc$$

$$|| \qquad ||$$

$$C \qquad a$$

$$a(b_{i}) \stackrel{?}{=} (ab) c$$
 $a.a$
 $b.c$
 $a.a$
 a

$$C(ab) \stackrel{?}{=} (ca)b$$

$$C(ab) \stackrel{!}{=} (ca)b$$

This operation is commutative.

Are comm. operations associative?

Try to find one onda, b, c.j.

Suppose X is a set with a binary operation. Then an element $e \in X$ is called an identity element of X if $ex = \pi e = \pi$ $\forall \pi \in X$

Suppose e de are both identity then

So there is atmost one identity element in for a binary operation.

Composition is a binary operation on maps (A, A) non-commutative Lassociative.

Suppose e is the identity of a binary operation on a set X.

Let $x \in X$

Suppose $y \in X$ is such that ny = yn = ethen we say that y is an inverse of n

Suppose ZEX such that nz=zn=e

ny = x==yn=zn=e

Inverses are not unique

#Groups

Defn: Suppose a is a non-empty set together with a binary operation.

Then a is a group if it satisfies the following properties:

- 1) Associativity, (ny) = x(yz) + x,y, z & Cr
- 2 Existence of identity, there exist an element each such that x = ex = x $x \in G$
- 3 Enistence of inverse: For nEG there exists yEG s.t.

 Ny=yn=e

Enample:

- 1 Z with addition
- 2 Q, R, C with addition
- 3 Qx, IRx, Cx with multiplication

6
$$\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$$
 with addition of congruence classes.

Notation: The inverse of x is normally denoted by x-1. But if the operation is denoted by then the inverse of x is denoted by -x.

$$Z = 2e = Z(xy) = (Zx)y = ey = y$$

Associativity forces inverse of an element to be unique in a group Suppose y & z are inverses of n

Cancellation law holds in Gr

 G_7 = the set of bijection from S to itself with composition of images

$$S_3$$
 $\chi = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
 $y = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$

$$xy = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
 $yx = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$

clearly yn + ny

The number of elements in $S_3 = 6$ S_3 is a non-commutative group. The commutative groups are called abelian groups otherwise non-abelian.

A bijection of a set is also called permutation.

Sn = the group of permutation of a set of n elements with respect to composition of images

The size of Sn = n?

Mn = { Roots of nn = 1} wrt multiplication