CS&IT

ENGINERING

Operating System

REVISION

CPU Scheduling- Part-01

Recap of Previous Lecture

Topic

Process Concepts

Threads and Multithreading

Topic

CPU Scheduler

Topic

Round Robin (RR)

Topic

Priority Scheduling

Topic

Multilevel Queue

Topic: Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

-> If Process her very less or almost no To Burst then Such Process is known as _CPU Bound_. Load store add store read from file

wait for I/O

Store increment Index Write to file

wait for I/O

Load store And store Read from file

wait for I/O

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

- The CPU scheduler selects from among the processes in ready queue, and allocates a CPU core to one of them
 - Queue may be ordered in various ways \ FIFO + LIFO + Priority + - ->
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- For situations 1 and 4, there is no choice in terms of scheduling. A new process (if one exists in the ready queue) must be selected for execution.
- For situations 2 and 3, however, there is a choice.

Topic: Preemptive and Nonpreemptive Scheduling

- When scheduling takes place only under circumstances 1 and 4, the scheduling scheme is nonpreemptive.
- Otherwise, it is preemptive.
- Under Nonpreemptive scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it releases it either by terminating or by switching to the waiting state.
- Virtually all modern operating systems including Windows, MacOS, Linux, and UNIX use preemptive scheduling algorithms.

Topic: Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the CPU scheduler; this involves:
 - Switching context
 - Switching to user mode
 - Jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running

Topic: Scheduling Criteria

- CPU utilization keep the CPU as busy as possible → Man of Thrubut:
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until

the first response is produced.

CPU Scheduling (Problem)

FCFS SJF SRTF Rig F.S

S1 S2 S3 S4 S5

Process Times

	-				<u></u>	A.T		4
6	W.TI	BTI	JOBTI	W.Tz	R.T2	W·T3	R.13	
(Pa	i) R.Q	сри	<u>J</u> o	R.Q	cpu	R.a	СРЧ	
	A.T = CT-A.T T= TAT-(Y JOBT= WIE			a Sel P1 P2	9 72-T P2 P3 P3 P		n=3	-Man(cT)- Min(AT)
7	hruput (M) =	2				W -	-> Curi

Response Jime (RT)

Jor Process

: The Jime @ which the

Process gets onto cpu

for the First Time

2) For Request q a Process De process during its lifetime may be associated with Several Requests;

-> Each Request will have its Response

R.T. of the Regi of Mx is the Jime @ which the Regi is Submitted into R. Q & the Jime @ which its result (response) is generated by executing on apa

Topic: Scheduling Algorithm Optimization Criteria

Round Robin

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

Scheduling Techniques (Algo's) Non-Pre Emplive SRIF; FCFS LRTF; SJF Priority; Prosity

Topic: First-Come, First-Served (FCFS) Scheduling

Bel Parameter: AT

Proces	s	Burst Time		
P_1	0	24		
P ₂	0	3		
P_3	O	3		

-o Mode: N.R.

Av.R.T = 0+24+27

- Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

P_1			P ₂	P ₃
0		24	27	30

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17_

1)
$$\mathcal{L} = 33 - 2 = 31$$

2) Av. TAT = $(3 + 6 + 2 + 3 + 8)/5 = \frac{22}{5} = 4.4$
3) Av. w.T = $(0 + 2 + 0 + 0 + 0)/5 = 0.4$

4)
$$Av \cdot R.T = 0 + 2 + 0 + 0 + 0 = 0.4$$

Concurrent
$$\overline{10}$$
.

 $C_{24-0} = \frac{24}{24}$

/cpu Illmans = $\frac{3}{24} = \frac{1}{8}$

Av. $\overline{147} = \frac{13+21+15}{3} = \frac{49}{3}$

Av. $\overline{w} = \frac{1}{3} + \frac{1}{3} +$

$$Av \cdot RT = \frac{0+0+1}{7} = \frac{1}{3}$$

$$RT(P_1) = 0$$

 $RT(P_2) = 0$
 $RT(P_3) = 1$

Topic: Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
- SJF is optimal gives minimum average waiting time for a given set of processes
- Preemptive version called shortest-remaining-time-first
- How do we determine the length of the next CPU burst?
 - Could ask the user
 - Estimate

Topic: Example of SJF

Process	Burst Time		
P_1	6		
P ₂	8		
P_3	7		
P_4	3		

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Av. w.T =
$$0 + 2 + 0 + 3 + 0 = 1$$

Av. R.T = $0 + 2 + 0 + 3 + 0 = 1$
Av. R.T = $0 + 2 + 0 + 3 + 0 = 1$

Topic: Determining Length of Next CPU Burst

- Can only estimate the length should be similar to the previous one
- Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging
 - 1. t_n = actual length of n^{th} CPU burst
 - 2. τ_{n+1} = predicted value for the next CU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha) \tau_n.$$

Commonly, α set to $\frac{1}{2}$

Topic: Examples of Exponential Averaging

- $\alpha = 0$
 - $\tau_{n+1} = \tau_n$
 - Recent history does not count
- $\alpha = 1$
 - $\tau_{n+1} = \alpha t_n$
 - Only the actual last CPU burst counts
- If we expand the formula, we get:
 - $\tau_{n+1} = \alpha t_n + (1 \alpha)\alpha t_{n-1} + ...$
 - + $(1 \alpha)^{j} \alpha t_{n-j} + ...$
 - $+(1-\alpha)^{n+1}\tau_0$
- Since both α and (1 α) are less than or equal to 1, each successor predecessor term has less weight than its predecessor

Topic: Shortest Remaining Time First Scheduling

- Preemptive version of SJN
- Whenever a new process arrives in the ready queue, the decision on which process to schedule next is redone using the SJN algorithm.
- Is SRT more "optimal" than SJN in terms of the minimum average waiting time for a given set of processes?

Topic: Example of Shortest-Remaining-Time-First

Now we add the concepts of varying arrival times and preemption to the analysis

Process	Arrival Time	Burst Time		
P_1	0	87		
P ₂	1	× 4		
P_3	2	9		
P_4	3	5		

/Av.	W.T =	9-	+ 15+	2 =	26 - (
					4
/ Av.	P.T -	CJ	-0-1	E12	

Preemptive SJF Gantt Chart

• Average waiting time = $\{(10-1) + (1-1) + (17-2) + (5-3)\}/4 = 26/4 = 6.5$

2 mins Summary

Topic One: Scheduling Criteria

Topic Two : classification

Topic Three : FCFS

Topic Four S. J. F

Topic Five : S. R.T.F

THANK - YOU