Answer Key 10

▼ 袁磊祺

December 24, 2019

P12

- 5 : $||f||'' \le ||f||$, $||f||' \le (b-a)||f||$
 - \therefore if in the sense of $\| \| f_n \to f$, then in the sense of $\| \|', \| \|'' f_n \to f$
 - $\exists f_n \in C^k[a,b], \ f \in C^k[a,b]$, in the sense of $\|\ \|f_n \nrightarrow f$, but in the sense of $\|\ \|',\ \|\ \|'' \ f_n \to f$
 - norm $\| \ \|'$ is not equal to norm $\| \ \|''$ (k=0)

P18

- 4 (i) ∵ integral is linear
 - $\therefore I$ is linear

(ii) for
$$f_n(x) = \begin{cases} 1 & -n < x < n \\ x + n + 1 & -n - 1 \le x \le -n \\ n + 1 - x & n \le x \le n + 1 \\ 0 & \text{other} \end{cases}$$

$$f_n \in C_c(R), ||f_n|| = 1, \lim_{n \to +\infty} I(f_n) = +\infty$$

 $\therefore I$ is not bounded

P26

5 suppose m=n=1 construct a discontinuous function $y_i=\begin{cases} \ln |x|,\ x\neq 0\\ 0,\ x=0 \end{cases}$ and evidently the preimage of a compact set is also compact

 \therefore negative