17주차 인공지능

인공지능

· 강사소개

링크드인

한서우

안 물어요...! 모르는 거, 궁금한 거 아무거나 물어 봐주세요. 아는 거 답하는 것과 모르는 내용 찾는 것을 좋아합니다.

이력/경력

- (현) 한국전자기술연구원 인공지능 개발자/연구자
- (현) Webarter Inc. CTO, Co-founder
- (현) 국제인공지능&윤리협회 자문위원

전자공학과 석사 졸업 미국 카네기멜론대학 AI 교육프로그램 이수(전액 정부 지원금) 전자공학과 학사 졸업

1. Python 복습

이전 수업에서 배운 Python을 까먹지는 않았는지 복습하는 시간을 가질거에요.

2. 행렬 개념 확인

인공지능에서 자주 등장하는 행렬에 대한 정의 및 기본 성질에 대해 배울거에요.

3. 인공지능 개념

인공지능이란 무엇인지 그리고 인공지능의 초기 모델에 대해 배울거에요.

- 01. Python
- 02. Numpy
- 03. 행렬
- 04. 인공지능
- 05. XOR과 MLP
- 06. Q&A

01 Python

❷ Python 을 배우는 이유

1. 쉬운 문법

2. 높은 확장성 및 이식성

3. 활발한 생태계

❷ 쉬운 문법

```
public class Main{
   public static void main(String[] args){
        System.out.print("Hello World!");
      }
}
```

Python 코드

print("Hello World!")

```
# include <stdio.h>

Int main(){
    print("Hello World!");
}
```

	메모리	시간	
С	1116KB	0ms	
Python	29076KB	64ms	
Java	14168KB	132ms	

01 Python

❷ 활발한 생태계

Apr 2022	Apr 2021	Change	Progra	mming Language	Ratings	Change
1	3	^		Python	13.92%	+2.88%
2	1	•	9	С	12.71%	-1.61%
3	2	•	<u>(</u>	Java	10.82%	-0.41%
4	4		9	C++	8.28%	+1.14%
5	5		9	C#	6.82%	+1.91%
6	6		VB	Visual Basic	5.40%	+0.85%
7	7		JS	JavaScript	2.41%	-0.03%
8	8		ASM	Assembly language	2.35%	+0.03%
9	10	^	SQL	SQL	2.28%	+0.45%
10	9	•	php	PHP	1.64%	-0.19%

출처: <u>TIOBE</u>

❷ Python 대표 **자료형**

	예시	특징 1	특징 2	특징 3	특징 4
숫자	123, 1.1	int, float	연산자를 통해 수학적 연산을 할 수 있음		immutable
불	False, True	Logical operator : and, or, not			immutable
문자열	'a', "ABC"	홑따옴표 또는 겹따옴표로 표현	순서가 있다	iterable	immutable
리스트	[1, '2', 3]	여러 자료를 저장할 수 있음	순서가 있다	iterable	mutable
딕셔너리	{ 'a' : 10, 'b' : 20 }	Key 와 value 의 순서쌍으로 이루어짐	Hashing 알고리즘을 통해 자료 탐색이 상당히 빠름	iterable	mutable
집합	{10, 20, 30}	중복을 허용하지 않음	자료의 중복을 제거할때 주로 사용	iterable	mutable

01 Python

Numpy

❷ Python 모듈과 패키지

모듈: 함수나 변수 또는 클래스를 모아 놓은 파일

패키지: 연관된 여러 모듈의 묶음

라이브러리: 여러 모듈과 패키지를 묶어 부르는 말

❷ 모듈 불러오기

```
# my_module.py
def plus(a,b):
    c = a + b
    return c
```

```
# main.py
import my_module
print(my_module.plus(2,3))

import my_module as mm
print(mm.plus(2,3))
```

```
# main.py
from my_module import plus
print(plus(2,3))
```

import 라는 키워드를 이용해 다른 모듈의 함수, 변수, 클래스를 불러올 수 있음

이때, 모듈 이름.(함수 or 변수 or 클래스) 로 사용할 수 있음

또는 from 이라는 키워드를 통해 특정 함수, 변수, 클래스를 불러올 수도 있음

Numpy

- C언어로 구현된 Python 라이브러리
- 고성능 수치 계산을 위해 제작
- ndarray: 다차원 배열 클래스

코드

```
import numpy as np

a = np.array([1, 2, 3]) # 넘파이 ndarray 객체의 생성
print(a)
print(a.shape) # a 객체의 형태(shape)
print(a.ndim) # a 객체의 차원
print(a.dtype) # a 객체 내부 자료 형
print(a.itemsize) # a 객체 내부 자료 형이 차지하는 메모리 크기(byte)
print(a.size) # a 객체의 전체 크기(항목의 수)
```

출력창

```
array([1, 2, 3])
(3, )
1
dtype('int32')
4
3
```

☑ 배열(array) vs. 행렬(matrix) vs. 벡터(vector)

- 배열(array): 컴퓨터에서 일반적으로 사용하는 개념으로 수를 포함하는 어떤 데이터의 묶음을 의미
- 벡터(vector): 1차원으로 묶은 수를 부르며 행만 구성된 것을 행벡터, 열만 구성된 것을 열벡터라 부름
- 행렬(matrix): 2차원으로 묶은 수를 의미, 우리가 알고 있는 수많은 행렬 계산식에 사용

☑ 배열(array) vs. 행렬(matrix) vs. 벡터(vector)

- 배열(array): 컴퓨터에서 일반적으로 사용하는 개념으로 수를 포함하는 어떤 데이터의 묶음을 의미
- 벡터(vector): 1차원으로 묶은 수를 부르며 행만 구성된 것을 행벡터, 열만 구성된 것을 열벡터라 부름
- 행렬(matrix): 2차원으로 묶은 수를 의미, 우리가 알고 있는 수많은 행렬 계산식에 사용

03 행렬

❷ 행렬의 정의

- 행렬(matrix)은 숫자들을 직사각형 형태로 행과 열에 따라 나열한 것
- 예를 들어, 아래 행렬 A는 행이 2개, 열이 3개로 구성

3 columns

$$A = \begin{bmatrix} -2 & 5 & 6 \\ 5 & 2 & 7 \end{bmatrix} \quad \stackrel{\textstyle 2 \text{ rows}}{\longleftarrow} \quad 2 \text{ rows}$$

❷ 행렬의 차원

- 행렬의 차원은 크기를 나타냄 → 이는 행과 열 순서로 행과 열의 숫자를 나타 냄
- 행렬 A는 행이 2개, 열이 3개 있으므로, 차원을 2X3이라고 표기하며, "2 곱하기 3"이라고 읽음

3 columns

$$A = \begin{bmatrix} -2 & 5 & 6 \\ 5 & 2 & 7 \end{bmatrix} \quad \longleftarrow \quad 2 \text{ rows}$$

- B 행의 개수?
- B 열의 개수?
- □X□ 행렬

$$B= \left[egin{array}{cccc} -8 & -4 \ 23 & 12 \ 18 & 10 \end{array}
ight]$$

- B 행의 개수?
- B 열의 개수?
- 3 X 2 행렬
- 행렬의 차원을 다룰 땐, **행 X 열** 이라는 것을 기억!

$$B= egin{bmatrix} -8 & -4 \ 23 & 12 \ 18 & 10 \end{bmatrix}$$

- F 행의 개수?
- F 열의 개수?
- □ X □ 행렬

$$F= \left[egin{array}{c} -2 \ 0 \ 10 \end{array}
ight]$$

- F 행의 개수?
- F 열의 개수?
- 3 X 1 행렬

$$F= \left[egin{array}{c} -2 \ 0 \ 10 \end{array}
ight]$$

- 행렬의 요소란? 단순히 행렬에 있는 수
- 행렬 안에 있는 각 요소는 그것이 위치한 행과 열로 이름을 지음
- $g_{1,2} =$
- $g_{2,1} =$

$$G = \left[egin{array}{ccccc} 4 & 14 & -7 \ 18 & 5 & 13 \ -20 & 4 & 22 \end{array}
ight]$$

- 행렬의 요소란? 단순히 행렬에 있는 수
- 행렬 안에 있는 각 요소는 그것이 위치한 행과 열로 이름을 지음
- $g_{1,2} = 14$
- $g_{2,1} = 18$

$$G = \left[egin{array}{ccccc} 4 & 14 & -7 \ 18 & 5 & 13 \ -20 & 4 & 22 \ \end{array}
ight]$$

- 행렬의 요소란? 단순히 행렬에 있는 수
- 행렬 안에 있는 각 요소는 그것이 위치한 행과 열로 이름을 지음
- 일반적으로 행렬 A의 i번째 행과 j번째 열에 있는 요소는 $_{---}$ 로 나타냄

$$G = \left[egin{array}{cccccc} 4 & 14 & -7 \ 18 & 5 & 13 \ -20 & 4 & 22 \ \end{array}
ight]$$

- 행렬의 요소란? 단순히 행렬에 있는 수
- 행렬 안에 있는 각 요소는 그것이 위치한 행과 열로 이름을 지음
- 일반적으로 행렬 A의 i번째 행과 j번째 열에 있는 요소는 $a_{i,j}$ 로 나타냄

$$G = \left[egin{array}{cccccc} 4 & 14 & -7 \ 18 & 5 & 13 \ -20 & 4 & 22 \end{array}
ight]$$

❷ 행벡터와 열벡터

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ \vdots & \vdots & & \\ a_{m1} & a_{m2} & a_{mn} \end{bmatrix} = \begin{pmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \mathbf{a}_{m}^{T} \end{pmatrix} = (\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots \mathbf{b}_{n})$$

$$\mathbf{a}_{i} = \begin{pmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{pmatrix} \qquad \mathbf{b}_{j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

https://slidesplayer.org/slide/16205381/

❷ 행렬과 스칼라배

성질	예제
곱셈의 결합법칙	(cd)A = c(dA)
분배법칙	c(A+B) = cA + cB
	(c+d)A = cA + dA
곱셈법 단위원 법칙	1A = A
곱셈법 0의 법칙	$0 \cdot A = O$
	$c \cdot O = O$
곱셈의 닫힘법칙	cA는 A 와 같은 차원을 가진 행렬입니다.

❷ 행렬과 스칼라배

- 행렬을 다룰 때, 우리는 실수를 스칼라라고 부름
- 스칼라배란 실수와 행렬의 곱셈을 뜻함
- 스칼라배에서, 행렬의 각 요소는 주어진 스칼라에 곱해짐

$$egin{bmatrix} \mathbf{2} \cdot egin{bmatrix} 5 & 2 \ 3 & 1 \end{bmatrix} = egin{bmatrix} \mathbf{2} \cdot 5 & \mathbf{2} \cdot 2 \ \mathbf{2} \cdot 3 & \mathbf{2} \cdot 1 \end{bmatrix}$$

$$=\left[egin{array}{cc} 10 & 4 \ 6 & 2 \end{array}
ight]$$

❷ 행렬과 스칼라배 다른 예시(판서)

성질	예제
곱셈의 결합법칙	(cd)A = c(dA)
분배법칙	c(A+B) = cA + cB
	(c+d)A = cA + dA
곱셈법 단위원 법칙	1A = A
곱셈법 0의 법칙	$0 \cdot A = O$
	$c \cdot O = O$
곱셈의 닫힘법칙	cA는 A 와 같은 차원을 가진 행렬입니다.

03 행렬

❷ 행렬의 덧셈, 뺄셈 예시(Numpy)

코드 import numpy as np A = np.array([10, 11, 12, 13, 14])B = np.array([0, 1, 2, 3, 4])print(A+B) print(A-B) C = np.array([[5, 6], [7, 8]])D = np.array([[10, 20], [30, 40]])print(C+D) print(C-D)

출력창

❷ 행렬의 곱셈

- 두 행렬 A의 열의 개수와 행렬 B의 행의 개수가 같을 때, 행렬 A의 제 i 행의 각 성분과 행렬 B의 제 j 행의 각 성분을 그 순서대로 곱하여 더한 것을 (i, j) 성분 으로 하는 행렬을 A와 B의 곱이라 함
- 기호로 AB라 나타냄

❷ 행렬의 곱셈 예시(판서)

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

03 행렬

❷ 행렬의 곱셈 예시(Numpy)

```
import numpy as np

A = np.array([[1, 2], [3, 4]])
print(A.shape) # A 객체의 형태(shape)
B = np.array([[5, 6], [7, 8]])
print(B.shape) # B 객체의 형태(shape)
C = np.dot(A, B)
print(C) # C 객체
```

출력창

```
(2, 2)
(2, 2)
[ [19 22]
[43 50] ]
```

❷ 행렬의 전치행렬

• 전치행렬(transposed matrix)이란? 어떤 행렬의 행과 열을 서로 맞바꾼 행렬

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

$$\mathsf{B} = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \Rightarrow \mathsf{B}^\mathsf{T} = \begin{bmatrix} x & z \\ y & w \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix} \Rightarrow C^{\mathsf{T}} = \begin{bmatrix} 1 & -3 \\ 1 & 5 \\ 1 & -2 \\ 1 & 7 \end{bmatrix}$$

❷ 행렬의 전치행렬 예시(Numpy)

호력창 import numpy as np [[1, 3] [2, 4]] A = np.array([[1, 2], [3, 4]]) print(A.transpose()) # A 객체의 전치행렬 print(np.transpose(A)) # A 객체의 전치행렬

[[1, 3] [2, 4]] [[1, 3] [2, 4]]

❷ 행렬의 단위행렬

- 단위행렬 E란? 왼쪽 위에서 오른쪽 아래로 대각선 방향의 성분이 1이고 다른 성분이 모두 0인 n차 정사각형 행렬을 n차 단위 행렬이라고 함
- 숫자에서 1과 같은 역할

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

❷ 행렬의 역행렬

- 역행렬(inverse matrix)이란? 어떤 행렬 A와 곱했을 때, 곱셈에 대한 **항등원**인 **단위행렬 E**가 나오게 하는 행렬을 행렬 A의 역행렬이라고 함
- 행렬 A의 역행렬은 기호로 A⁻¹라고 함

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 (단, ad - bc \neq 0)

❷ 행렬의 역행렬 예시(판서)

❷ 행렬의 전치행렬 예시(Numpy)

import numpy as np A = np.array([[0, 1], [2, 3]]) print(np.linalg.inv(A)) # A 객체의 역행렬

출력창

[[-1.5, 0.5] [1., 0.]]

04 인공지능

❷ 인공지능 강의 목표

- 인공지능 실시간 강의는 온라인 강의의 예습이 핵심 목표 → 수식은 최소로, 알짜배기 개념 강의
- 실시간 강의 이해 기반, 온라인 강의에서 심화 학습 진행
- 실시간 강의의 난이도가 너무 쉽다고 생각되면, 언제든지 디스 코드를 이용한 피드백 요청
- 온라인 강의에서 어려운 내용이 있었다면, 언제든지 디스 코드를 이용한 추가 설명 요청

❷ 인공지능 설명

• 인공지능이란? 컴퓨터가 인간처럼 생각하고 학습하고 판단하여 스스로 행동 하도록 만드는 기술

https://www.menerga-adria.com/blog/2017/10/24/data-centers-cooling-and-ai/

https://www.sciencetimes.com/articles/29732/20210218/new-study-takes-closer-hologram-infused-food.htm

❷ 인공지능 역사

- AI 발전을 이끄는 기술의 등장(뉴럴 네트워크 개발의 이정표)
- "글로벌 인공지능 연구의 4대 키워드와 시사점" NIA 한국정보화진흥원

Andrew L. Beam(2017), "Deep Learning 101"

❷ 인공지능 유형

- 강인공지능 Strong AI (Artificial General Intelligence)
 - 인공지능이 사람과 똑같이 스스로 학습하여 똑같이 행동한다는 것을 의미
 - 자의식이 있는 인공지능
 - AI가 스스로 데이터를 찾아서 학습이 가능한 상태를 의미
 - 강인공지능의 예) SF 영화 속에서 스스로 생각하고 알아서 행동하는 로봇
- 약인공지능 Weak AI (Artificial Narrow Intelligence)
 - 강인공지능이 현실적으로 불가능한 상황
 - 현시점에서 활용되고 있는 대부분의 인공지능이 약인공지능임
 - 영상, 음성, 자연어 인식 등 특정 영역에만 활용이 가능
 - 알고리즘은 물론 기초 데이터와 규칙을 입력해야 함
 - 약인공지능의 예) 알파고(바둑), 인공지능 왓슨(암 진단)
- 초인공지능 (Artificial Super Intelligence)
 - 인간의 지식을 1,000배 이상 초월하고 모든 면에서 월등한 인공지능
 - 초인공지능의 예) 영화 속의 가상인물인 터미네이터

❷ 약인공지능 분류

❷ 머신러닝 학습 방법

- 머신러닝 알고리즘은 아래와 같이 4종류의 학습 방법으로 나뉨
- 예전에는 3 종류였는데, Semi-supervised learning이 최근 추가됨

Associative Rule

Dimensionality

Machine Learning

Clustering

Semi-Supervised

Regression

Learning

Classification

❷ 머신러닝 학습 방법

- 지도학습 (supervised learning)
 - -입력과 이에 대응하는 정답 데이터를 연관시키는 관계를 학습하는 방법
 - -입력과 출력 쌍이 데이터로 주어지는 경우 그들 사이의 대응 관계를 학습하게 됨

- -출력 없이 또는 출력 값을 알려주지 않고 주어진 입력만으로 스스로 모델을 구축하여 학습하는 방법.
- -입력만 있고 출력 즉 레이블(label)이 없는 경우에 적용하며, 입력 사이의 규칙성 등을 스스로 찾아내는 것이 학습의 주요 목표
- 준지도학습 (semi-supervised learning)
 - -적은 입력과 매칭하는 정답 데이터 쌍 그리고 정답이 없는 대량의 데이터의 관계를 학습하는 방법
 - -소량의 라벨 데이터에는 지도학습을 적용하고, 대용량 라벨 업는 데이터에는 비지도 학습을 적용
- 강화 학습 (reinforcement learning)
 - -주어진 입력에 대응하는 행동을 취하는 시스템에 대해 보상이 주어지게 되며, 이러한 보상을 이용하여 학습하는 방법
 - -지도 학습과 달리 주어진 입력에 대한 출력, 즉 정답 행동이 주어지지 않음
 - -주요 응용 분야 : 로봇, 게임, 내비게이션 등

❷ 머신러닝 학습 방법 퀴즈1

❷ 머신러닝 학습 방법 퀴즈2

- ① 관찰
- 2 정책에 따라 행동을 선택

- ③ 행동 실행!
- 4 보상이나 벌점을 받음

- 5 정책 수정(학습 단계)
- 최적의 정책을 찾을 때까지 반복

❷ 머신러닝 학습 방법 퀴즈3

04 인공지능

☑ 머신러닝 학습 방법 퀴즈4

❷ 인공지능 적용범위

❷ 인공지능 연구/활용 범위

04 인공지능

/*elice*/

❷ 인공지능 연구/활용 범위 퀴즈

https://blog.lgcns.com/2232

http://yhs968.blogspot.com/2019/09/part-2-deep-neural-networks-for-youtube.html

04 인공지능

/*elice*/

❷ 인공지능 연구/활용 범위 퀴즈

https://blog.lgcns.com/2232

Recommended

| अविशेष | American | American

speech -

speech to text

text to speech

https://www.news1.kr/articles/?3715761

http://yhs968.blogspot.com/2019/09/part-2-deep-neural-networks-for-youtube.html

634K views • 3 days ago

-阿賀県 TAKE A LOOK

(feat.경험담)

깡스타일리스트

55K views • 3 weeks ago

Julius Chun

297K views • 10 months ago

❷ 인공지능 직군

❷ 인공지능 직군

05

XORIH MLP

◇ 논리게이트

- 논리 게이트는 디지털 회로를 만드는데 있어 가장 기본적인 요소
- 대부분의 논리 게이트들은 두 개의 입력과 한 개의 출력을 가짐
- 주어진 어떤 순간에 모든 단자는 두 개의 조건 중의 하나인데, 이것을 서로 다른 전압으로 표현하면 전압이 높음(1)과 낮음(0)임
- 기본 논리 게이트에는 AND, OR, XOR, NOT, NAND, 그리고 NOR 등 모두 6개의 종류가 있음

게이트	기호	의미	진리표	논리식
AND	А В	입력신호가 모두 1일 때 1출력	A B Y 0 0 0 0 1 0 1 0 1 1 1 1	$Y = A \cdot B$ Y = AB
OR	$A \longrightarrow Y$	입력신호 중 1개만 1이어도 1출력	A B Y 0 0 0 0 1 1 1 1 0 1 1 1	Y = A + B
NOT	А — У	입력된 정보를 반대로 변환하여 출력	A Y 0 1 1 0	Y = A' Y = A'
BUFFER	А — У	입력된 정보를 그대로 출력	A Y 0 0 1 1	Y = A
NAND	А	NOT + AND, 즉 AND의 부정	A B Y 0 0 1 0 1 1 1 0 1 1 0 0	$ Y = \overline{A \cdot B} \\ Y = \overline{AB} $
NOR	$A \longrightarrow Y$	NOT + OR, 즉 OR의 부정	A B Y 0 0 1 0 1 0 1 0 1 1 0	$Y = \overline{A \cdot B}$
XOR	А В Э	입력신호가 모두 같으면 0, 한 개라도 틀리면 1출력	A B Y 0 0 0 0 1 1 1 0 1 1 1 0	Y = <u>A</u> ⊕ B Y = AB + AB
XNOR	A	NOT + XOR, 즉 XOR의 부정	A B Y 0 0 1 0 1 0 1 0 0 1 1 1	Y = A ● B Y = A ⊕ B Y = AB + ĀĒ

▼ XOR 문제

- 여러 게이트의 특성을 기반으로 +, -를 구분하는 선형 경계를 찾는 문제
- 하나의 퍼셉트론으로 해결하는 방법을 강구

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	1

x_1	x_2	у
0	0	0
0	1	0
1	0	0
1	1	1

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

☑ 퍼셉트론

- 퍼셉트론(Perceptron)은 프랑크 로젠블라트(Frank Rosenblatt)가 1957년에 제안한 초기 형태의 인공 신경망
- 다수의 입력으로부터 하나의 결과를 내보내는 알고리즘
- 퍼셉트론은 실제 뇌를 구성하는 신경 세포 뉴런의 동작과 유사
- 신경 세포 뉴런은 가지돌기에서 신호를 받아들이고, 이 신호가 일정치 이상의 크기를 가지면 축삭 돌기를 통해서 신호를 전달

❷ 단층 퍼셉트론

- 아래 그림에서 원을 뉴런 혹은 노드라고 부름
- 입력 신호가 뉴런에 보내질 때는 각각 고유한 가중치가 곱해짐
- (w1,w2) 가중치는 각 신호가 결과에 주는 영향력을 조절하는 요소로 작용
- 즉, 가중치가 클 수록 해당 신호가 그만큼 더 중요함
- 그 신호를 받은 다음 뉴런은 이전 뉴런에서 보내온 신호의 총합이 정해진 한 계를 넘어설 때만 1을 출력
- 그 한계를 보통 임계 값 (theta)이라 함
- 가중치를 갖는 층이 한 층이기 때문에 단층 퍼셉트론이라고 부름

❷ 게이트 문제(코드)

• 단층 퍼셉트론(선형분류)로 OR 파이썬 코드로 모델링

x_2	y
0	0
1	1
0	1
1	1
	0

❷ 게이트 문제 퀴즈(코드)

• 단층 퍼셉트론(선형분류)로 AND 파이썬 코드로 모델링

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

❷ 게이트 문제 퀴즈(코드)

• 단층 퍼셉트론(선형분류)로 AND 파이썬 코드로 모델링

❷ 게이트 문제

• 단층 퍼셉트론(선형분류)로 XOR 파이썬 코드로 모델링

♥ 다층 퍼셉트론

- 단층 퍼셉트론은 입력층과 출력층만 존재하지만, 다층 퍼셉트론은 중간에 은 닉층(hidden layer)라 불리는 층을 더 추가함
- 선형적으로만 풀던 게이트 문제를 여러 층을 추가함으로써 비선형적으로 풀수 있게 됨
- 따라서, XOR 문제를 해결
- 은닉층은 2개일 수도, 수십, 수백개일 수도 있음
- 은닉층이 2개 이상인 신경망을 심층 신경망(Deep Neural Network, DNN)이라 함

❷ XOR 게이트 문제(코드)

• 단층 퍼셉트론(선형분류)로 XOR 파이썬 코드로 모델링

❷ 신경망, 활성함수

- 입력, 출력층 외 은닉층이 추가된 아래 그림을 신경망이라고 부름
- 활성화 함수(Activation function)은 가중치가 곱해진 신호의 총합이 활성화를 일으키는지, 즉 임곗값을 넘는지 판단함

- 활성화 함수는 이전 층(layer)의 결과값을 변환하여 다른 층의 뉴런으로 신호를 전달하는 역할
- 활성화 함수가 필요한 이유는 모델의 복잡도를 올리기 위함
- 비선형 문제를 해결하기 위해 단층 퍼셉트론을 쌓는 방법을 이용했는데 은닉층 (hidden layer)를 무작정 쌓기만 한다고 해서 비선형 문제를 해결할 수 있는 것은 아님
- 활성 함수를 사용하면 입력값에 대한 출력값이 비선형(nonlinear)적으로 나오므로 선형분류기를 비선형분류기로 만들 수 있음

❷ 활성함수 종류

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	-
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	-
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	-
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

☑ MLP Python 예제(코드)

- iris 데이터셋 MLP를 이용한 이진 분류 실습
- Python, numpy를 이용한 실습

❷ 손실함수

- 손실함수란 신경망을 학습시키는 과정에서 운련용 샘플과 모델의 결과 값을 특정 함수를 통해 비교하며, 이 함수를 칭함
- 적절한 구조를 가진 신경망 모델의 가중치를 변경시켜서, 최종적으로 우리가 원하는 함수를 높은 정확도로 구현하고자 함
- 이때, 가중치를 변경시키는 과정이 바로 '학습'

손실함수 종류

- 1 MSE(Mean Squared Error)
- (2) RMSE(Root Mean Squared Error)
- 3 Binary Cross Entropy
- (4) Categrical Cross Entropy
- (5) Sparse Category Cross Entropy
- 6 Focal Loss

- 경사하강법이란 1차 근삿값 발견용 최적화 알고리즘
- 기본 개념은 함수의 기울기(경사)를 구하고 경사의 절댓값이 낮은 쪽으로 계속 이동시켜 극값에 이를 때까지 반복시키는 것
- 보통 함수의 최솟값을 찾고자 할 때, 미분계수를 구함 > 컴퓨터에서는 미분을 안 이용함
- 실제 분석에서(특히, 딥러닝 알고리즘을 활용하는 경우) 보게 되는 함수들은 형태가 굉장히 복잡해서 미분계수와 그 근을 계산하기 어려운 경우가 많음
- 미분계수 계산 과정을 컴퓨터로 구현하는 것보다, 경사하강법을 구현하는 것이 훨씬 쉬움
- 데이터의 양이 매우 큰 경우 경사하강법과 같은 순차적인 방법이 계산량 측면에서 훨씬 효율적

06 Q&A

크레딧

/* elice */

코스 매니저

콘텐츠 제작자 한서우

강사 한서우

감수자

디자이너 한서우

연락처

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

