Visual Event Recognition

December 9, 2013

Supervisor: A/P Xu Dong

Examiner: A/P Cham Tat Jen

Presented by Gong Li

Introduction

Goal - recognize various videos based on their content

- Youtube statistics
 - 100 hours of videos are uploaded every minute
 - Over 6 billion hours of video are watched each month
- Vine and Instagram

- Currently, video search is heavily relying on texts associated with videos
- Explore other approaches to index and retrieve videos

Outline

- Introduction
- Video Recognition
 - Bag of Words
 - Gaussian Mixture Models
 - Concept Attributes
 - Compressed Videos
- Oomain Adaptations

- Feature Replication
- Adaptive SVM
- Domain Transfer SVM
- Adaptive MKL
- Experiments
- 4 Conclusion
- Demo
- 6 References

- Introduction
- Video Recognition
 - Bag of Words
 - Gaussian Mixture Models
 - Concept Attributes
 - Compressed Videos
- Oomain Adaptations

- Feature Replication
- Adaptive SVM
- Domain Transfer SVM
- Adaptive MKL
- Experiments
- 4 Conclusion
- Demo
- 6 References

Naive Bag of Words

- M: number of sampled frames
- V: size of visual vocabulary

Better Bag of Words - Soft Assignment

- Straightforward approach [5]
 - Assign top N nearest words to each feature
 - Update the histogram by adding different weights to these N words
- Gaussian Mixture Models Assignment [1]

Better Bag of Words - Weighting Schemes [8]

Inverse document frequency of visual word t_i

$$idf(t_i) = \log(N/n_i) \tag{1}$$

- N is the total number of images in the corpus
- n_i is the number of images having visual word t_i
- Various different weighting schemes

Name	Factors	Value for t_i
bxx	binary	1 if t_i presents, 0 if not
txx	tf	tf _i
txc	tf, normalization	$\frac{tf_i}{\sum_i tf_i}$
tfx	tf, idf	$tf_i \cdot \overline{\log(N/n_i)}$
tfc	tf, idf, normalization	$\frac{tf_i \cdot \log(N/n_i)}{\sum_i tf_i \cdot \log(N/n_i)}$

Table: Weighting schemes for visual-word feature [8]

Aligned Space-Time Pyramid Matching [4] at level 0

- Incorporate Earth Mover's Distance (EMD) [7]
- Given two videos P and Q

$$P = \{(p_1, 1/m), ..., (p_m, 1/m)\}, Q = \{(q_1, 1/n), ..., (q_n, 1/n)\}$$

Solve the below optimization problem

minimize

$$\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij}$$

distance between p_i and q_j flow between p_i and q_i

subjective to $f_{ij} \geq 0$ $1 \leq i \leq m, 1 \leq j \leq n$

$$\sum_{j=1}^{n} f_{ij} \le 1/m \quad 1 \le i \le m$$

$$\sum_{i=1}^{m} f_{ij} \le 1/n \quad 1 \le j \le n$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = 1 \quad (2)$$

Distance between P and Q

$$D_{PQ} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij}}{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij}}$$
(3)

Aligned Space-Time Pyramid Matching [4] at level I

- Each video is divided into 8¹ non-overlapped sub-videos
- Given two videos P and Q

$$P = (p_1, \dots, p_R), Q = (q_1, \dots, q_R), \text{ where } R = 8^I$$

Presented by Gong Li

Aligned Space-Time Pyramid Matching [4] at level I

- Calculate pairwise distance matrix D
 - D_{ij} is the EMD distance between sub-video p_i and q_i
- Align sub-videos in P with sub-videos in Q

$$\hat{F}_{ij} = \underset{F_{ij}}{\text{arg min}} \sum_{i=1}^{R} \sum_{j=1}^{R} F_{ij} D_{ij}$$
 subject to
$$\sum_{i=1}^{R} F_{ij} = 1, \quad \forall i$$

$$\sum_{i=1}^{R} F_{ij} = 1, \quad \forall i$$
 (4)

$$D_{I}(P,Q) = \frac{\sum_{i=1}^{R} \sum_{j=1}^{R} \hat{F}_{ij} D_{ij}}{\sum_{i=1}^{R} \sum_{j=1}^{R} F_{ij} F_{ij}}$$
(5)

Experiments of Aligned Space-Time Pyramid Matching

Data set

	Wedding	Sports	Show	Picnic	Parade	Birthday	Total
Kodak	27	75	57	6	14	16	195

Table: Number of videos in each class from Kodak

Kernel types

Kernel type	Kernel function
Gaussian	$\exp(-\gamma D^2(I_i,I_j))$
Laplacian	$\exp(-\sqrt{\gamma}D(I_i,I_j)$
ISD	$\frac{1}{\gamma D^2(I_i,I_j)+1}$
ID	$\frac{1}{\sqrt{\gamma}D(I_i,I_j)+1}$

- $D(I_i, I_j)$ represents the distance between I_i and I_j
- $\gamma = \frac{1}{A}$, A is the mean value of the squared distances between training samples
- Fused scores

$$f^{Fuse} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{1 + \exp(-f_i)}$$
 (6)

Experiments of Aligned Space-Time Pyramid Matching

- Division of training and testing samples
 - randomly select 3 videos from each class as training samples
 - the rest of videos act as testing samples
- Evaluation metric: Mean Average Precision
- Experimental results at different levels using histograms built by naive bag of words

	Gaussian	Laplacian	ISD	ID	Fused scores
Level 0	44.38 ± 2.13	44.90 ± 2.73	44.01 ± 2.13	$\textbf{45.36} \pm \textbf{3.13}$	44.33 ± 2.61
Level 1 (Unaligned)	43.08 ± 3.14	$\textbf{43.85} \pm \textbf{3.84}$	$\textbf{43.22} \pm \textbf{3.11}$	43.85 ± 3.56	43.55 ± 3.46
Level 1 (Aligned)	43.61 ± 2.97	43.40 ± 3.18	43.46 ± 2.97	$\textbf{43.22} \pm \textbf{3.11}$	44.08 ± 3.25

Table: Means and standard deviations (percent) of MAPs at different levels

Experiments of Aligned Space-Time Pyramid Matching

 Experimental results using histograms built by better bag of words at level 0 distance

	Gaussian	Laplacian	ISD	ID	Fused scores
bxx	40.20 ± 2.57	38.35 ± 2.31	39.93 ± 2.58	38.23 ± 2.08	39.34 ± 2.55
txx	44.28 ± 2.14	44.90 ± 2.73	44.01 ± 2.13	$\textbf{45.36} \pm \textbf{3.13}$	44.33 ± 2.61
txc	$\textbf{42.15} \pm \textbf{4.73}$	$\textbf{45.01} \pm \textbf{3.45}$	$\textbf{43.47} \pm \textbf{4.56}$	$\textbf{45.38} \pm \textbf{3.20}$	44.11 ± 3.90
tfx	43.76 ± 2.99	44.14 ± 3.36	43.61 ± 3.03	44.05 ± 3.51	44.18 ± 3.22
tfc	43.71 ± 1.37	$\textbf{46.02} \pm \textbf{1.84}$	$\textbf{44.93} \pm \textbf{1.64}$	$\textbf{46.21} \pm \textbf{1.83}$	$\textbf{45.28} \pm \textbf{1.62}$
Easy soft	$\textbf{43.54} \pm \textbf{2.12}$	44.77 ± 2.41	43.52 ± 2.08	$\textbf{45.24} \pm \textbf{2.47}$	44.79 ± 2.55
Gaussian soft	$\textbf{44.77} \pm \textbf{2.80}$	$\textbf{45.23} \pm \textbf{2.76}$	44.90 ± 3.01	$\textbf{45.23} \pm \textbf{2.87}$	$\textbf{45.20} \pm \textbf{3.04}$

Table : Means and standard deviations (percent) of MAPs using different mechanisms to build histograms at level 0

Gaussian Mixture Models to Represent Videos [10]

- Global GMM built from training data
- Specialized GMM by adaption

Specialized GMM of video P and Q

$$P = (\mu_1^p, \cdots, \mu_K^p), Q = (\mu_1^q, \cdots, \mu_K^q)$$

• Given global GMM as $\Theta = \{w_1, \mu_1, \Sigma_1, \cdots\}$, the distance of P and Q

$$d(P,Q) = \frac{1}{2} \sum_{k=1}^{K} w_k (\mu_k^p - \mu_k^q)^T \Sigma_k^{-1} (\mu_k^p - \mu_k^q)$$
 (7)

4□ > 4♠ > 4≧ > 4≧ > ≥ 90

Experiments on GMM

	Gaussian	Laplacian	ISD	ID	Fused scores
spherical 128	24.70 ± 1.41	$\textbf{43.04} \pm \textbf{1.61}$	26.92 ± 1.00	$\textbf{43.64} \pm \textbf{0.96}$	32.91 ± 2.20
spherical 64	23.99 ± 1.40	$\textbf{42.35} \pm \textbf{1.64}$	25.62 ± 1.11	$\textbf{43.42} \pm \textbf{1.18}$	29.01 ± 1.10
full 128	25.69 ± 7.57	21.39 ± 7.32	26.49 ± 8.38	21.93 ± 7.75	21.79 ± 7.29
full 64	25.23 ± 0.94	29.69 ± 1.81	25.68 ± 1.34	$\textbf{30.74} \pm \textbf{1.67}$	26.74 ± 1.63

Table: Means and standard deviations (percent) of MAPs using different GMMs

- Spherical covariance using ID kernel performed the best
- Spherical covariance performed better than full covariance

Concept Attributes to Represent Videos [6]

- Recognize complex events
- Make use of pre-trained detectors (even by others)

Experiments on Concept Attributes

	Wedding	Sports	Show	Picnic	Parade	Birthday	Total
Kodak	27	75	57	6	14	16	195
Youtube	91	260	200	85	119	151	906

Table: Number of videos in each class from Kodak and Youtube

	Recognition Accuracy
Kodak o Kodak	38.5 ± 12.7
$Youtube \to Kodak$	30.0 ± 6.9
Baseline	41.6 ± 11.5

Table: Means and standard deviations (percent) of recognition accuracies

Compress Videos

- Run K-Means on sampled frames of a video
- Build a graph for each cluster
- Ohoose representative frames from each graph

Experiments on Compressed Videos

 Size of Youtube videos is compressed from 4.42 GB to 3.17 GB. (28.41% reduced)

Training videos	Testing videos	Original videos	Compressed videos
60	846	38.9 ± 2.9	38.6 ± 2.8
120	786	$\textbf{45.7} \pm \textbf{2.2}$	44.5 ± 1.6
180	726	49.5 ± 1.8	48.3 ± 1.9
240	666	52.0 ± 2.1	50.6 ± 2.1

Table: Means and standard deviations (percent) of MAPs over six events

- Compressed videos performed slightly worse than original videos
- With more training samples, the performance increases

- Introduction
- Video Recognition
 - Bag of Words
 - Gaussian Mixture Models
 - Concept Attributes
 - Compressed Videos
- Oomain Adaptations

- Feature Replication
- Adaptive SVM
- Domain Transfer SVM
- Adaptive MKL
- Experiments
- 4 Conclusion
- Demo
- 6 References

Domain Adaptations

- Feature Replication [2] (FR)
- Adaptive Support Vector Machine [9] (A-SVM)
- Domain Transfer Support Vector Machine [3] (DTSVM)
- Adaptive Multiple Kernel Learning [4] (A-MKL)

Feature Replication (FR)

• Mapping functions to augment samples $\{x\}$ from different domains

$$\Phi^{T}(\mathbf{x}) = (\mathbf{x}, \mathbf{x}, \mathbf{0}), \quad \Phi^{A}(\mathbf{x}) = (\mathbf{x}, \mathbf{0}, \mathbf{x})$$
 (8)

- Kernelized meaning of the above augmenting
 - If x_i and x_j come from the same domain,

$$\hat{K}(x_i, x_j) = \theta(x_i)^T \cdot \theta(x_j) + \theta(x_i)^T \cdot \theta(x_j)
= 2K(x_i, x_j)$$
(9)

• If x_i and x_j come from different domains,

$$\hat{K}(x_i, x_j) = \theta(x_i)^T \cdot \theta(x_j)
= K(x_i, x_j)$$
(10)

To summarize,

 $\hat{K}(x_i, x_j) = \begin{cases} 2K(x_i, x_j) & \text{if } x_i \text{ and } x_j \text{ come from the same domain} \\ K(x_i, x_j) & \text{otherwise} \end{cases}$

Adaptive Support Vector Machine (A-SVM)

Domain Transfer Support Vector Machine (DTSVM)

• Some way to reduce the difference in distribution of D^T and D^A

- Seek a special kernel function $\varphi(x)$ which minimizes the difference
 - Find the optimal weights $(d_1, d_2, ..., d_M)$ of multiple kernels

• Define the mismatch between D^A and D^T as

$$DIST_{k}(\mathcal{D}^{A}, \mathcal{D}^{T}) = \|\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \varphi(x_{i}^{A}) - \frac{1}{n_{T}} \sum_{i=1}^{n_{T}} \varphi(x_{i}^{T})\|$$
 (11)

Simplify the square of equation (4) to

$$DIST_k^2(\mathcal{D}^A, \mathcal{D}^T) = tr(\mathbf{KS})$$
 (12)

where
$$\mathbf{s} = [\underbrace{\frac{1}{n_A}, ..., \frac{1}{n_A}}_{n_A}, \underbrace{\frac{-1}{n_T}, ..., \frac{-1}{n_T}}_{n_T}]^T$$
, $\mathbf{S} = \mathbf{s}\mathbf{s}^\mathsf{T}$, $\mathbf{K} = \begin{bmatrix} K^{A,A} & K^{A,T} \\ K^{T,A} & K^{T,T} \end{bmatrix}$

• Incorporate $\mathbf{d} = [d_1, d_2, ..., d_M]^T$ into equation (5)

$$DIST_k^2(\mathcal{D}^A, \mathcal{D}^T) = \Omega(\mathbf{d}) = \mathbf{h}^T \mathbf{d}$$
 (13)

where $\mathbf{h} = [tr(\mathbf{K_1S}), \cdots, tr(\mathbf{K_MS})]^T$, and $\mathbf{K_m} = [\varphi(x)^T \varphi(x)]$ is the mth base kernel matrix

- Optimization problem of DTSVM:
 - Distribution mismatch
 - SVM structural risk function

minimize
$$G(\mathbf{d}) = \frac{1}{2}\Omega^2(\mathbf{d}) + \theta J(\mathbf{d})$$
 (14)

where
$$J(\mathbf{d}) = \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} (\sum_{m=1}^{M} d_{m} \varphi_{m}(x_{i})^{T} \varphi_{m}(x_{j}))$$

- ullet Iteratively update coefficient ${f d}$ and the dual variable lpha
 - lacktriangledown Update the dual variable lpha
 - Update the coefficient d using gradient descent method

$$\mathbf{d}_{t+1} = (1 - \eta_t)\mathbf{d}_t + \eta_t \mathbf{d}_t^{new} \tag{15}$$

where $\mathbf{d}_t^{\textit{new}} = \theta(\mathbf{h}\mathbf{h}^\mathsf{T} + \varepsilon \mathbf{I}_\mathsf{M})^{-1}\mathbf{q}$, $\mathbf{q} = [\frac{1}{2}(\alpha_t \diamond \mathbf{y})^\mathsf{T}\mathbf{K}_1(\alpha_t \diamond \mathbf{y}), \cdots, \frac{1}{2}(\alpha_t \diamond \mathbf{y})^\mathsf{T}\mathbf{K}_\mathsf{M}(\alpha_t \diamond \mathbf{y})]$, η_t is the learning rate.

Final decision function

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i \left(\sum_{m=1}^{M} d_m \mathbf{K}_m(x_i, x) \right) + b$$
 (16)

Adaptive Multiple Kernel Learning [4] (A-MKL)

Adaptive SVM

$$f(x) = \sum_{k=1}^{M} t_k f_k^A(x) + \Delta f(x)$$
 (17)

Domain Transfer SVM

$$f(x) \neq \sum_{m=1}^{M} d_m w_m^T \varphi_m(x) + b \tag{18}$$

Adaptive MKL

$$f(x) = \sum_{p=1}^{P} \beta_p f_p(x) + \sum_{m=1}^{M} d_m w_m^T \varphi_m(x) + b$$
 (19)

- Seek a hyperplane which is close to that of all labeled samples
- Reduce the mismatch of different domains

Experiments of Domain Adaptation Approaches

Data set

	Wedding	Sports	Show	Picnic	Parade	Birthday	Total
Kodak	27	75	57	6	14	16	195
Youtube	91	260	200	85	119	151	906

Table: Number of videos in each class from Kodak and Youtube

Distances using various approaches

Setting Name	Content
MAP(1)	Level 0 distance in Aligned Space-Time Pyramid Matching
MAP(2)	unaligned Level 1 distance in Aligned Space-Time Pyramid Matching
MAP(3)	aligned Level 1 distance in Aligned Space-Time Pyramid Matching
MAP(4)	Level 0 distance using histograms built in "tfc" weighting scheme
MAP(5)	Level 0 distance using histograms built by straightforward soft assignment
MAP(6)	Level 0 distance using histograms built by GMM soft assignment
MAP(7)	distances calculated by specialized GMMs built on 128 dimensional SIFT
	features with spherical covariance
MAP(8)	two set of distances: MAP(3) + MAP(6)

Table: Experimental distance set

Base kernel matrices

Kernel type	Kernel function
Gaussian	$\exp(-\gamma D^2(I_i,I_j))$
Laplacian	$\exp(-\sqrt{\gamma}D(I_i,I_j)$
ISD	$\frac{1}{\gamma D^2(I_i,I_j)+1}$
ID	$\frac{1}{\sqrt{2}D(l_i,l_i)+1}$

ullet $D(I_i,I_j)$ represents the distance between I_i and I_j

- $\gamma = 2'\gamma_0$
 - $\gamma_0 = \frac{1}{A}$, A is the mean value of the squared distances between training samples
 - $I \in (-3, -2, \cdots, 1)$
 - 4×5 combinations \rightarrow 20 base kernel matrices
- Division of training and testing samples
 - 3 videos for each class in Kodak domain as \mathcal{D}_{I}^{T} , and the left
 - the left Kodak videos as \mathcal{D}_{u}^{T}
 - ullet all Youtube videos as fully labeled \mathcal{D}^A
- Evaluation metric: Mean Average Precision

Experimental Results

	SVM_T	SVM_AT	FR	A-SVM	DTSVM	A-MKL
MAP(1)	44.33 ± 2.61	52.21 ± 2.54	52.33 ± 2.20	47.03 ± 3.26	47.14 ± 3.26	54.29 ± 2.21
MAP(2)	43.55 ± 3.46	55.37 ± 2.26	55.95 ± 3.79	$\textbf{45.86} \pm \textbf{4.39}$	50.97 ± 1.38	54.26 ± 3.46
MAP(3)	44.08 ± 3.25	57.56 ± 3.02	53.91 ± 1.48	$\textbf{45.42} \pm \textbf{3.62}$	53.32 ± 2.56	$\textbf{57.45} \pm \textbf{1.64}$
MAP(4)	45.27 ± 1.63	51.83 ± 2.27	52.55 ± 2.00	$\textbf{45.94} \pm \textbf{1.70}$	52.31 ± 2.56	53.05 ± 2.21
MAP(5)	44.79 ± 2.55	47.80 ± 1.67	51.89 ± 1.99	47.41 ± 3.13	45.05 ± 4.07	51.08 ± 2.87
MAP(6)	45.20 ± 3.04	56.90 ± 2.79	54.03 ± 4.02	$\textbf{46.62} \pm \textbf{3.14}$	53.41 ± 3.29	$\textbf{59.16} \pm \textbf{3.38}$
MAP(7)	32.91 ± 2.20	$\textbf{33.15} \pm \textbf{1.78}$	41.78 ± 3.98	37.07 ± 3.52	$\textbf{46.61} \pm \textbf{2.41}$	$\textbf{35.88} \pm \textbf{1.98}$
MAP(8)	44.69 ± 2.84	60.21 ± 1.94	55.29 ± 3.00	$\textbf{46.28} \pm \textbf{4.23}$	57.01 ± 2.45	$\textbf{61.40} \pm \textbf{1.91}$

Table: Means and standard deviations (percent) of MAPs over six events

- In all cases, SVM_AT performed better than SVM_T
- S Gaussian soft assignment outperformed the other approaches
- OTSVM performed amazingly in MAP(7)
- A-MKL performed the best by selecting two distance matrices smartly

ロト (個) (重) (重) 重 ののの

Recognition Accuracy as Evaluation Metric

Recognition accuracy is defined as

$$recognition accuracy = \frac{correct predictions}{number of testing samples}$$
 (20)

SVM multi-class classification

	SVM_T	SVM_AT	FR	A-SVM	DTSVM	A-MKL
one-vs-all	49.94 ± 6.96	57.85 ± 1.91	57.18 ± 8.59	48.25 ± 8.43	55.82 ± 0.83	$\textbf{58.87} \pm \textbf{0.90}$
one-vs-one	33.67 ± 14.67	51.64 ± 0.45	57.18 ± 6.21	36.05 ± 12.62	50.85 ± 0.80	$\textbf{55.14} \pm \textbf{2.10}$

Table: Means and standard deviations (percent) of average recognition accuracies

	SVM_T	SVM_AT	FR	A-SVM	DTSVM	A-MKL
one-vs-all	0.98	8.54	10.53	12.52	11.33	27.87
one-vs-one	1.49	4.08	5.68	7.16	5.05	10.94

Table: Average running time (seconds)

- One-vs-all outperformed one-vs-one
- Trade-offs between running time and accuracy
 - One-vs-all requires more time
 - 2 Domain adaptations require more time

- Introduction
- Video Recognition
 - Bag of Words
 - Gaussian Mixture Models
 - Concept Attributes
 - Compressed Videos
- Oomain Adaptations

- Feature Replication
- Adaptive SVM
- Domain Transfer SVM
- Adaptive MKL
- Experiments
- Conclusion
- Demo
- 6 References

Conclusion

- What have been done in this FYP
 - Successfully implemented a recognition system to recognize videos
 - Explored 4 various approaches to recognize videos
 - Studied and implemented 4 domain adaptation methods to boost the performance
 - Oesigned and developed a web application to demonstrate the work
- Future recommendations
 - Incorporate more types of features: space-time feature and acoustic feature
 - 2 Employ more attribute detectors
 - 3 Combine various domain adaptation methods

- Introduction
- 2 Video Recognition
 - Bag of Words
 - Gaussian Mixture Models
 - Concept Attributes
 - Compressed Videos
- Oomain Adaptations

- Feature Replication
- Adaptive SVM
- Domain Transfer SVM
- Adaptive MKL
- Experiments
- Conclusion
- Demo
- 6 References

Demo

- Introduction
- 2 Video Recognition
 - Bag of Words
 - Gaussian Mixture Models
 - Concept Attributes
 - Compressed Videos
- Oomain Adaptations

- Feature Replication
- Adaptive SVM
- Domain Transfer SVM
- Adaptive MKL
- Experiments
- 4 Conclusion
- Demo
- 6 References

- - A. Agarwal and B. Triggs, "Hyperfeatures–multilevel local coding for visual recognition," in *Computer Vision–ECCV 2006*. Springer, 2006, pp. 30–43.
 - H. Daumé III, "Frustratingly easy domain adaptation," in ACL, vol. 1785, no. 1786, 2007, p. 1787.
 - L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank, "Domain transfer svm for video concept detection," in *Computer Vision and Pattern Recognition*, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1375–1381.
 - L. Duan, D. Xu, I. W.-H. Tsang, and J. Luo, "Visual event recognition in videos by learning from web data," *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol. 34, no. 9, pp. 1667–1680, 2012.
- Y.-G. Jiang, C.-W. Ngo, and J. Yang, "Towards optimal bag-of-features for object categorization and semantic video retrieval,"

- in *Proceedings of the 6th ACM international conference on Image and video retrieval.* ACM, 2007, pp. 494–501.
- J. Liu, Q. Yu, O. Javed, S. Ali, A. Tamrakar, A. Divakaran, H. Cheng, and H. S. Sawhney, "Video event recognition using concept attributes." in *WACV*, 2013, pp. 339–346.
- Y. Rubner, C. Tomasi, and L. J. Guibas, "The earth mover's distance as a metric for image retrieval," *International Journal of Computer Vision*, vol. 40, no. 2, pp. 99–121, 2000.
- J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo, "Evaluating bag-of-visual-words representations in scene classification," in *Proceedings of the international workshop on Workshop on multimedia information retrieval.* ACM, 2007, pp. 197–206.
 - J. Yang, R. Yan, and A. G. Hauptmann, "Cross-domain video concept detection using adaptive syms," in *Proceedings of the 15th international conference on Multimedia*. ACM, 2007, pp. 188–197.

X. Zhou, X. Zhuang, S. Yan, S.-F. Chang, M. Hasegawa-Johnson, and T. S. Huang, "Sift-bag kernel for video event analysis," in *Proceedings of the 16th ACM international conference on Multimedia*. ACM, 2008, pp. 229–238.

