Design of Shell and Tube Heat Exchanger Semester 5 PBL Heat and Mass Transfer

DHA Suffa University Department of Mechanical Engineering

	ME201024	Kamil Rasheed Siddiqui
	ME201042	Obaidullah Baloch
Authors	ME201055	Ameer Hamza Ali Khan
	ME201049	Rehan Amir
	ME201018	Syed Ali Abbas

Course Instructor

Engr. Syed Zaid Hasany

Table of Contents

Problem Statement	3
Properties of Fluids	4
Assumptions	
Fluid Properties	
Calculations	6
References	12
Tube Pressure Formulae	13
Shell Pressure Formulae	14

Problem Statement

Following are the input physical parameters:

	Fluid	T _i (°C)	T _o (°C)	Mass Flow Rates (kg/s)
Shell Side	Kerosene	200	94	5.52
Tube Side	Crude Oil	38	77	18.8

Shell diameter = 1.5 m

Tube diameter = 0.05 m

Baffle Spacing = 0.5 m

In the design problem you are expected to:

- 1. Calculate the heat transfer
- 2. Calculate overall heat coefficient
- 3. Calculate the area
- 4. Incorporate the fouling factor of a typical STHX with the given conditions
- 5. Find out appropriate number of tubes, length and thickness of the tubes
- 6. Calculate the pressure drop
- 7. Comment on the results
- 8. Propose improvement measures
- 9. Prepare a small report with all the design considerations, calculations and results.

Note: Use appropriate values of the missing or required parameters in the problem.

Properties of Fluids

Physical properties of 42° API Kerosene:

Kerosene	Inlet	Mean	Outlet	Units
Temperature	200	147	94	°C
Specific Heat	2.72	2.47	2.26	kJ/kg°C
Thermal Conductivity	0.130	0.132	0.135	W/m°C
Density	690	730	770	kg/m ³
Viscosity	0.22	0.43	0.8	mNs/m²

Physical Properties of 34° API Light Crude Oil

Crude Oil	Inlet	Mean	Outlet	Units
Temperature	38	57.5	77	°C
Specific Heat	1.93	1.97	2.01	kJ/kg°C
Thermal Conductivity	0.133	0.134	0.135	W/mºC
Density	800	820	840	kg/m ³
Viscosity	2.4	3.2	4.3	mNs/m ²

Assumptions

- 1 Shell and 2, 4, 6 etc (any multiple of 2), tube passes
 - Number of tubes assumed = 6
- Tube Outer Diameter = 10% of Tube Inner Diameter

Fluid Properties

- Thermal Conductivity of Copper Tubes (K) = 385 W/m°C
- $R_{fi} = 0.00035$
- $R_{fo} = 0.00020$
- Specific Gravity of Kerosene (Sk) = 0.785
- Specific Gravity of Crude Oil (Sc) = 0.850

Calculations

I shell and L, Y, 6 etc tube passes of hence,

hence,

n = 26 tubes

Tube!

m = pAnne 820 x T x0.05° x b

= 1,946 ms -1

Pe = NDf = 1.946 x 0.05 x 210

8.2 x 10 -3

= 24938.125 = 0.24983 x 10

(Re > 10000, hence Purbalent
Flow)

Pr = M CP = 8.2 × 10-3 × 1.97 × 10 3 = 0.184

NU2 ND 2 0.023 Re0.8 PIDM

1(0.08) 20.028 (0.249 x105)0.8 (47.04)0.4

11-82 h 2 946.5 W/mt.K

Shell:

hased on type of fluids.

m70.0 = 10 Q = A; U; Nm 1445. L5 x103 = Ai x 525.70 x 8004 Ai = 84.84 m2 Q = A000 A ?m 1448.25 ×103 = A0 × 482.77 × 80.04 Ao 2 37,40 m2 ": Taking Ao as it is highest area.

Ao = NT Pol 37.40 = 67 x 0.06 xL (200 000) ml + L= 198.42m (length of all tubes) 198.42 = 198.42 = 88.07 m 05.757 = 10 Me 6 (length of 1 tube)

Philiceness of tube = Deo - Dei 0.06 - 0.05 2000.0 2001M 210 MM

30.0x 0001 30.0 x 0001

```
Pube Pressure:
                         SLEU DEMINE!
b = 0.4137 Re-0.2885
 2 0.4137 (14988.125)-0.185
Re = 4m (hp/nt) (1000 - 700) × 700× 700
      TOHH
24988.125 = 4(18.0) (np/6)
          x(0.01)(8.2 x10-3)
np21 ~ 2 (even) 1 20 x = 30
42 m (np/nt) = 18.8 (1/6)
             2 8191.59
AP<sub>2</sub> proled disco
    = 0.030L1 x L x 198.42 x 3191.592 28.8 x10-8 Pa
      7. 5 x 1012 x 0.05 x 0.850 x1
 SP8 21.884 ×10-13 (Lnp-1.5) 4 | Sc
     = 1.884 ×10-18 (2(2) -1.5) (3191.59)2 0.850
     2 3.996 ×10-5 Pa 20 × 3 × (14 11) = 91
 DP 2 DP, + DP,
    = (3.8 ×10-3) + (3.996 ×10-1)
    2 3.84 x10-3 Pa Tall y &
```

Shell Pressure!

$$V = \frac{m}{14} = \frac{1.01}{730 \times 0.07} = 0.0133 \text{ m/n}$$

References

$$\dot{Q} = \dot{m}_c C_{pc} (T_{c, \text{ out}} - T_{c, \text{ in}})$$
 (13-9)

and

$$\dot{Q} = \dot{m}_h C_{ph} (T_{h, \text{in}} - T_{h, \text{out}})$$
 (13-10)

where the subscripts c and h stand for cold and hot fluids, respectively, and

 \dot{m}_{c} , $\dot{m}_{h} = {
m mass}$ flow rates C_{pc} , $C_{ph} = {
m specific}$ heats $T_{c, {
m out}}$, $T_{h, {
m out}} = {
m outlet}$ temperatures $T_{c, {
m in}}$, $T_{h, {
m in}} = {
m inlet}$ temperatures

$$\dot{Q} = UA_s \, \Delta T_{\rm lm} \tag{13-24}$$

where

$$\Delta T_{\rm lm} = \frac{\Delta T_1 - \Delta T_2}{\ln{(\Delta T_1/\Delta T_2)}} \tag{13-25}$$

$$\Delta T_{\rm lm} = F \, \Delta T_{\rm lm, \, CF} \tag{13-26}$$

$$P = \frac{t_2 - t_1}{T_1 - t_1} \tag{13-27}$$

and

$$R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{(\dot{m}C_p)_{\text{tube side}}}{(\dot{m}C_p)_{\text{shell side}}}$$
(13-28)

$$\frac{1}{U\!A_s} = \frac{1}{U_i A_i} = \frac{1}{U_o A_o} = R = \frac{1}{h_i A_i} + \frac{R_{f,i}}{A_i} + \frac{\ln{(D_o/D_i)}}{2\pi kL} + \frac{R_{f,o}}{A_o} + \frac{1}{h_o A_o} \quad \text{(13-8)}$$

Tube Pressure Formulae

Process Heat Transfer Principles and Applications Book • 2007

https://www.sciencedirect.com/book/9780123735881/process-heat-transfer

$$\Delta P_f = \frac{f \, n_p L G^2}{7.50 \times 10^{12} D_i s \phi} \tag{5.1}$$

where f = Darcy friction factor (dimensionless) L = tube length (ft) $G = \text{mass flux (lbm/h · ft}^2)$

 $D_i = \text{tube ID (ft)}$

 b_i = tube ID (II) s = fluid specific gravity (dimensionless) ϕ = viscosity correction factor (dimensionless) = $(\mu/\mu_w)^{0.14}$ for turbulent flow = $(\mu/\mu_w)^{0.25}$ for laminar flow

$$f = 0.4137 Re^{-0.2585} (5.2)$$

$$\Delta P_r = 1.334 \times 10^{-13} \alpha_r G^2 / s \tag{5.3}$$

Table 5.1 Number of Velocity Heads Allocated for Minor Losses on Tube Side

Flow regime	Regular tubes	U-tubes
Turbulent	$2n_p - 1.5$	$1.6 n_p - 1.5$
Laminar, $Re \ge 500$	$3.25 n_p - 1.5$	$2.38 n_p - 1.5$

Shell Pressure Formulae

https://www.enggcyclopedia.com/2019/05/shell-tube-heat-exchanger-pressuredrop/#pressure_drop_calculation

Effective Area = Ae = Ds × Bs × (P-Dt) / P where, Ds = shell diameter Bs = Baffle spacing P = pitch (distance between center axes of two adjacent tubes) Dt = Tube diameter $V = Mass \ flow/(\rho \times Ae \times 3600)$ $f_k = 1.79 \times (\rho \times V \times D/\mu)^{-1.9}$ $De = 4 \times (P^2 - (\pi \ Dt^2/4)) / \pi \ Dt$ $\Delta P = (\ (N+1) \times f_k \times Ds \times \rho V^2) / (\ 2 \times De)$ where, N = number of baffles