Svuotamento di un gas sovrassaturo ad opera di un cluster supercritico

Leonardo Pozzati 14 Luglio 2015

Outline

- 1 Introduzione al fenomeno analizzato
 - Modello di riferimento: lattice gas con dinamica di Kawasaki

2 Due modelli per studiare la crescita supercritica

3 I risultati nuovi ottenuti in questo lavoro

Metastabilià: un approccio dinamico

Equilibrio metastabile

Equilibrio caratterizzato da un tempo di vita molto più lungo di quello di un generico stato eccitato, ma comunque finito.

Metastabilià: un approccio dinamico

Equilibrio metastabile

Equilibrio caratterizzato da un tempo di vita molto più lungo di quello di un generico stato eccitato, ma comunque finito.

Il punto di vista sulla metastabilità

- Consideriamo la metastabilità come un problema dinamico:
 - dato un sistema fisico con hamiltoniana H e spazio delle configurazioni $\mathcal X$
 - studiamo la convergenza all'equilibrio di una catena di Markov, definita sullo spazio delle configurazioni in modo che la misura stazionaria, a cui la catena converge, coincida con la misura di Gibbs.

Il modello conservativo di riferimento

■ Sia $\Lambda_{\beta} \subset \mathbb{Z}^2$ un reticolo quadrato finito, centrato nell'origine e con condizioni periodiche al bordo;

Il modello conservativo di riferimento

- Sia $\Lambda_{\beta} \subset \mathbb{Z}^2$ un reticolo quadrato finito, centrato nell'origine e con condizioni periodiche al bordo;
- a ogni sito $\underline{x} \in \Lambda_{\beta}$ si associ una variabile di occupazione $\eta(\underline{x})$, che assume i valori 0 o 1;

Il modello conservativo di riferimento

- Sia $\Lambda_{\beta} \subset \mathbb{Z}^2$ un reticolo quadrato finito, centrato nell'origine e con condizioni periodiche al bordo;
- a ogni sito $\underline{x} \in \Lambda_{\beta}$ si associ una variabile di occupazione $\eta(\underline{x})$, che assume i valori 0 o 1;
- a una generica configurazione $\eta \in \mathcal{X}_{\Lambda_{\beta}} = \{0,1\}^{|\Lambda_{\beta}|}$ del gas reticolare si associ l'energia

$$H(\boldsymbol{\eta}) = -U \sum_{(\underline{x},\underline{y}) \in \Lambda_{\beta}^*} \eta(\underline{x}) \eta(\underline{y})$$

Il modello conservativo di riferimento

- Sia $\Lambda_{\beta} \subset \mathbb{Z}^2$ un reticolo quadrato finito, centrato nell'origine e con condizioni periodiche al bordo;
- a ogni sito $\underline{x} \in \Lambda_{\beta}$ si associ una variabile di occupazione $\eta(\underline{x})$, che assume i valori 0 o 1;
- a una generica configurazione $\eta \in \mathcal{X}_{\Lambda_{\beta}} = \{0,1\}^{|\Lambda_{\beta}|}$ del gas reticolare si associ l'energia

$$H(\, \boldsymbol{\eta}) = -U \sum_{(\underline{x},\underline{y}) \in \Lambda_{\beta}^*} \eta(\underline{x}) \eta(\underline{y})$$

- Λ_{eta}^* indica l'insieme dei legami in Λ_{eta}

Il modello conservativo di riferimento

- Sia $\Lambda_{\beta} \subset \mathbb{Z}^2$ un reticolo quadrato finito, centrato nell'origine e con condizioni periodiche al bordo;
- a ogni sito $\underline{x} \in \Lambda_{\beta}$ si associ una variabile di occupazione $\eta(\underline{x})$, che assume i valori 0 o 1;
- a una generica configurazione $\eta \in \mathcal{X}_{\Lambda_{\beta}} = \{0,1\}^{|\Lambda_{\beta}|}$ del gas reticolare si associ l'energia

$$H(\, \boldsymbol{\eta}) = -U \sum_{(\underline{x},\underline{y}) \in \Lambda_{\beta}^*} \eta(\underline{x}) \eta(\underline{y})$$

- Λ_{eta}^* indica l'insieme dei legami in Λ_{eta}
- U>0 caratterizza l'energia di legame tra primi vicini.

lacksquare Per questo modello, fissiamo una densità in Λ_eta

$$\rho = \frac{1}{|\Lambda_\beta|} \sum_{\underline{x} \in \Lambda_\beta} \eta(\underline{x}) = \boxed{ e^{-\Delta\beta} \quad \text{con } \Delta > 0 }$$

lacksquare Per questo modello, fissiamo una densità in Λ_eta

$$\rho = \frac{1}{|\Lambda_{\beta}|} \sum_{\underline{x} \in \Lambda_{\beta}} \eta(\underline{x}) = \boxed{e^{-\Delta \beta} \quad \text{con } \Delta > 0}$$

a cui corrisponde un numero di particelle in Λ_{β} $N=\rho |\Lambda_{\beta}|$

■ Per questo modello, fissiamo una densità in Λ_{β}

$$\rho = \frac{1}{|\Lambda_{\beta}|} \sum_{\underline{x} \in \Lambda_{\beta}} \eta(\underline{x}) = \boxed{e^{-\Delta\beta} \quad \text{con } \Delta > 0}$$

a cui corrisponde un numero di particelle in Λ_{eta} $N=
ho|\Lambda_{eta}|$

Osservazione sui volumi Λ_{eta}

Perché ci siano particelle dobbiamo scegliere $|\Lambda_{\beta}| = e^{\Theta\beta}$.

lacktriangle Per questo modello, fissiamo una densità in Λ_{β}

$$\rho = \frac{1}{|\Lambda_\beta|} \sum_{\underline{x} \in \Lambda_\beta} \eta(\underline{x}) = \boxed{ e^{-\Delta\beta} \quad \text{con } \Delta > 0 }$$

a cui corrisponde un numero di particelle in Λ_{eta} $N=
ho|\Lambda_{eta}|$

Osservazione sui volumi Λ_eta

Perché ci siano particelle dobbiamo scegliere $|\Lambda_{\beta}| = e^{\Theta\beta}$.

$$|\Lambda_{\beta}| = e^{\Theta\beta}$$

■ Per questo modello, fissiamo una densità in Λ_{β}

$$\rho = \frac{1}{|\Lambda_{\beta}|} \sum_{\underline{x} \in \Lambda_{\beta}} \eta(\underline{x}) = \boxed{e^{-\Delta\beta} \quad \text{con } \Delta > 0}$$

a cui corrisponde un numero di particelle in Λ_{β} $N=\rho |\Lambda_{\beta}|$

Osservazione sui volumi Λ_eta

Perché ci siano particelle dobbiamo scegliere $|\Lambda_{\beta}| = e^{\Theta\beta}$.

$$|\Lambda_{\beta}| = e^{\Theta\beta}, \quad \Delta \in (U, 2U)$$

lacktriangle Per questo modello, fissiamo una densità in Λ_{eta}

$$\rho = \frac{1}{|\Lambda_\beta|} \sum_{\underline{x} \in \Lambda_\beta} \eta(\underline{x}) = \boxed{ e^{-\Delta\beta} \quad \text{con } \Delta > 0 }$$

a cui corrisponde un numero di particelle in Λ_{eta} $N=
ho|\Lambda_{eta}|$

Osservazione sui volumi Λ_{β}

Perché ci siano particelle dobbiamo scegliere $|\Lambda_{\beta}| = e^{\Theta\beta}$.

$$|\Lambda_{\beta}| = e^{\Theta\beta}, \quad \Delta \in (U, 2U), \quad \beta \to \infty$$

lacktriangle Per questo modello, fissiamo una densità in Λ_{eta}

$$\rho = \frac{1}{|\Lambda_\beta|} \sum_{\underline{x} \in \Lambda_\beta} \eta(\underline{x}) = \boxed{e^{-\Delta\beta} \quad \text{con } \Delta > 0}$$

a cui corrisponde un numero di particelle in Λ_{β} $N=\rho |\Lambda_{\beta}|$

Osservazione sui volumi Λ_{eta}

Perché ci siano particelle dobbiamo scegliere $|\Lambda_{\beta}| = e^{\Theta\beta}$.

$$|\Lambda_{\beta}| = e^{\Theta\beta}, \quad \Delta \in (U, 2U), \quad \beta \to \infty, \quad N = e^{(\Theta - \Delta)\beta} \to \infty.$$

Conseguenza di lavorare con volumi $\Lambda_{\beta} = e^{\Theta\beta}$

L'interesse verso volumi $|\Lambda_{\beta}|$ esponenziali in β comporta la scelta di una dinamica stocastica a tempi continui.

Conseguenza di lavorare con volumi $\Lambda_{\beta} = e^{\Theta \beta}$

L'interesse verso volumi $|\Lambda_{\beta}|$ esponenziali in β comporta la scelta di una dinamica stocastica a tempi continui.

lacksquare Definiamo la catena Markov $(oldsymbol{\eta}_t)_{t\geq 0}$ sul modello:

Conseguenza di lavorare con volumi $\Lambda_{\beta}=e^{\Theta\beta}$

L'interesse verso volumi $|\Lambda_{\beta}|$ esponenziali in β comporta la scelta di una dinamica stocastica a tempi continui.

- lacksquare Definiamo la catena Markov $(oldsymbol{\eta}_t)_{t\geq 0}$ sul modello:
 - ad ogni legame $b=(\underline{x},\underline{y})\in\Lambda_{\beta}^*$, associamo un campanello che suona a tempi esponenzialmente dirtribuiti

Conseguenza di lavorare con volumi $\Lambda_{\beta}=e^{\Theta\beta}$

L'interesse verso volumi $|\Lambda_{\beta}|$ esponenziali in β comporta la scelta di una dinamica stocastica a tempi continui.

- \blacksquare Definiamo la catena Markov $(\eta_t)_{t\geq 0}$ sul modello:
 - ad ogni legame $b=(\underline{x},\underline{y})\in\Lambda_{\beta}^*$, associamo un campanello che suona a tempi esponenzialmente dirtribuiti
 - quando suona il campanello associato a b, consideriamo la configurazione η^b con le particelle scambiate rispetto al legame b

Conseguenza di lavorare con volumi $\Lambda_{\beta}=e^{\Theta\beta}$

L'interesse verso volumi $|\Lambda_\beta|$ esponenziali in β comporta la scelta di una dinamica stocastica a tempi continui.

- \blacksquare Definiamo la catena Markov $(\eta_t)_{t\geq 0}$ sul modello:
 - ad ogni legame $b=(\underline{x},\underline{y})\in\Lambda_{\beta}^*$, associamo un campanello che suona a tempi esponenzialmente dirtribuiti
 - quando suona il campanello associato a b, consideriamo la configurazione η^b con le particelle scambiate rispetto al legame b
 - questa nuova configurazione η^b è accettata con una probabilità proporzionale al fattore di Boltzmann

Conseguenza di lavorare con volumi $\Lambda_{eta}=e^{\Thetaeta}$

L'interesse verso volumi $|\Lambda_{\beta}|$ esponenziali in β comporta la scelta di una dinamica stocastica a tempi continui.

- lacksquare Definiamo la catena Markov $(\eta_t)_{t\geq 0}$ sul modello:
 - ad ogni legame $b=(\underline{x},\underline{y})\in\Lambda_{\beta}^*$, associamo un campanello che suona a tempi esponenzialmente dirtribuiti
 - quando suona il campanello associato a b, consideriamo la configurazione η^b con le particelle scambiate rispetto al legame b
 - questa nuova configurazione η^b è accettata con una probabilità proporzionale al fattore di Boltzmann

$$e^{-\beta[H(\boldsymbol{\eta}^b)-H(\boldsymbol{\eta})]_+}$$

■ Tra la variabile di occupazione $\eta(\underline{x})$ e la variabile di spin $\sigma(\underline{x})$ del modello di Ising con interazione di coppia J e campo esterno h

$$\eta(\underline{x}) = \frac{1 + \sigma(\underline{x})}{2}$$

■ Tra la variabile di occupazione $\eta(\underline{x})$ e la variabile di spin $\sigma(\underline{x})$ del modello di Ising con interazione di coppia J e campo esterno h

$$\eta(\underline{x}) = \frac{1 + \sigma(\underline{x})}{2}$$

■ La descrizione del comportamento metastabile di questo modello conservativo, nel limite termodinamico, è approssimabile in termini grancanonici, con hamiltoniana

$$H_{\lambda}(\boldsymbol{\eta}) = H(\boldsymbol{\eta}) - \lambda N$$

■ Tra la variabile di occupazione $\eta(\underline{x})$ e la variabile di spin $\sigma(\underline{x})$ del modello di Ising con interazione di coppia J e campo esterno h

$$\eta(\underline{x}) = \frac{1 + \sigma(\underline{x})}{2}$$

■ La descrizione del comportamento metastabile di questo modello conservativo, nel limite termodinamico, è approssimabile in termini grancanonici, con hamiltoniana

$$H_{\lambda}(\boldsymbol{\eta}) = H(\boldsymbol{\eta}) - \lambda N$$
 se $\rho = e^{\lambda \beta}$

■ Tra la variabile di occupazione $\eta(\underline{x})$ e la variabile di spin $\sigma(\underline{x})$ del modello di Ising con interazione di coppia J e campo esterno h

$$\eta(\underline{x}) = \frac{1 + \sigma(\underline{x})}{2}$$

■ La descrizione del comportamento metastabile di guesto modello conservativo, nel limite termodinamico, è approssimabile in termini grancanonici, con hamiltoniana

$$H_{\lambda}(\eta) = H(\eta) - \lambda N$$
 se $\rho = e^{\lambda \beta}$

■ In particolare, se $\lambda = -\Delta$ si ottiene la corrispondenza sui parametri

$$J = U/2$$

$$J = U/2 \qquad \qquad h = 2U - \Delta$$

Osservazione

La scelta $\Delta\in(U,2U)$ è collegata alla presenza di una lunghezza critica per la crescita di una goccia della stabile.

Osservazione

La scelta $\Delta \in (U,2U)$ è collegata alla presenza di una lunghezza critica per la crescita di una goccia della stabile.

■ Per capirlo, sfruttiamo il rapporto con il modello di Ising

Osservazione

La scelta $\Delta \in (U,2U)$ è collegata alla presenza di una lunghezza critica per la crescita di una goccia della stabile.

■ Per capirlo, sfruttiamo il rapporto con il modello di Ising

$$H(\boldsymbol{\sigma}) = -J \sum_{(\underline{x},\underline{y}) \in \Lambda_L^*} \sigma(\underline{x}) \sigma(\underline{y}) - h \sum_{\underline{x} \in \Lambda_L} \sigma(\underline{x})$$

Osservazione

La scelta $\Delta \in (U,2U)$ è collegata alla presenza di una lunghezza critica per la crescita di una goccia della stabile.

■ Per capirlo, sfruttiamo il rapporto con il modello di Ising

$$H(\boldsymbol{\sigma}) = -J \sum_{(\underline{x},\underline{y}) \in \Lambda_L^*} \sigma(\underline{x}) \sigma(\underline{y}) - h \sum_{\underline{x} \in \Lambda_L} \sigma(\underline{x})$$

■ Per l'energia E(l) di una goccia quadrata $\sigma_{\ell \times \ell}$ di spin positivi immersa in un mare di spin negativi, che indichiamo con \ominus , si ha

$$E(l) = H(\sigma_{l \times l}) - H(\ominus) = 4Jl - hl^2.$$

■ L'energia della goccia $\sigma_{\ell \times \ell}$ di spin positivi ha un andamento parabolico con un massimo per $l_c = \lceil \frac{2J}{h} \rceil$

Osservazione: significato fisico di ℓ_c

Il superamento della taglia critica implica che l'energia di volume della goccia di spin positivi prevale sul termine di superficie e la sua crescita è energeticamente favorita.

■ Per la corrispondenza vista tra i due modelli, si ricava la taglia critica per il lattice gas

$$\ell_c = \frac{U}{2U - \Delta}$$

■ Per la corrispondenza vista tra i due modelli, si ricava la taglia critica per il lattice gas

$$\ell_c = \frac{U}{2U - \Delta}$$

La scelta di Δ implica una taglia critica non banale

$$\Delta \in (U, 2U) \Longrightarrow \ell_c \in (1, \infty)$$

Modello semplificato per la nucleazione

 Vediamo i risultati rigorosi noti per la nucleazione della fase stabile in un modello semplificato

Modello semplificato per la nucleazione

 Vediamo i risultati rigorosi noti per la nucleazione della fase stabile in un modello semplificato

Modello semplificato per la nucleazione

 Vediamo i risultati rigorosi noti per la nucleazione della fase stabile in un modello semplificato

 \blacksquare All'interno di Λ , manteniamo la dinamica di Kawasaki;

 Vediamo i risultati rigorosi noti per la nucleazione della fase stabile in un modello semplificato

- All'interno di Λ , manteniamo la dinamica di Kawasaki;
- all'esterno di Λ, l'interazione di coppia viene rimossa e la dinamica del gas è modellizata in termini di random walk indipendenti.

Bontà della descrizione in termini di I.R.W.

La validità della modellizzazione in termini di random walk indipendenti è garantita dai risultati di un lavoro di ricerca che riguarda l'approssimazione della dinamica di Kawasaki per un gas rarefatto.

Bontà della descrizione in termini di I.R.W.

La validità della modellizzazione in termini di random walk indipendenti è garantita dai risultati di un lavoro di ricerca che riguarda l'approssimazione della dinamica di Kawasaki per un gas rarefatto.

■ Per questo modello, consideriamo le due configurazioni di riferimento

$$\blacksquare = \{ \boldsymbol{\eta} \in \mathcal{X} : \boldsymbol{\eta}(\underline{x}) = 1 \quad \forall \underline{x} \in \Lambda \},
\square = \{ \boldsymbol{\eta} \in \mathcal{X} : \boldsymbol{\eta}(\underline{x}) = 0 \quad \forall \underline{x} \in \Lambda \}.$$

Bontà della descrizione in termini di I.R.W.

La validità della modellizzazione in termini di random walk indipendenti è garantita dai risultati di un lavoro di ricerca che riguarda l'approssimazione della dinamica di Kawasaki per un gas rarefatto.

■ Per questo modello, consideriamo le due configurazioni di riferimento

■ Infine, immaginiamo di avere una condizione iniziale in cui la scatola Λ è vuota.

Fissiamo $\Delta \in (\frac{3}{2}U, 2U)$, con $U/(2U-\Delta)$ non intero. Poniamo quindi $\ell_c = \lceil U/(2U-\Delta) \rceil$ e sia $\lim_{\beta \to \infty} (1/\beta) |\Lambda_\beta| = \infty$

Fissiamo $\Delta \in (\frac{3}{2}U, 2U)$, con $U/(2U-\Delta)$ non intero. Poniamo quindi $\ell_c = \lceil U/(2U-\Delta) \rceil$ e sia $\lim_{\beta \to \infty} (1/\beta) |\Lambda_\beta| = \infty$

■ I cluster $\ell_1 \times \ell_2$ quadrati o quasi quadrati sono destinati a crescere solo se il loro lato minore è maggiore di ℓ_c .

Fissiamo $\Delta \in (\frac{3}{2}U, 2U)$, con $U/(2U-\Delta)$ non intero. Poniamo quindi $\ell_c = \lceil U/(2U-\Delta) \rceil$ e sia $\lim_{\beta \to \infty} (1/\beta) |\Lambda_\beta| = \infty$

- I cluster $\ell_1 \times \ell_2$ quadrati o quasi quadrati sono destinati a crescere solo se il loro lato minore è maggiore di ℓ_c .
- Esiste una configurazione critica per la transizione $\square \to \blacksquare$ in Λ , la cui forma è

Fissiamo $\Delta \in (\frac{3}{2}U, 2U)$, con $U/(2U-\Delta)$ non intero. Poniamo quindi $\ell_c = \lceil U/(2U-\Delta) \rceil$ e sia $\lim_{\beta \to \infty} (1/\beta) |\Lambda_\beta| = \infty$

- I cluster $\ell_1 \times \ell_2$ quadrati o quasi quadrati sono destinati a crescere solo se il loro lato minore è maggiore di ℓ_c .
- Esiste una configurazione critica per la transizione $\square \to \blacksquare$ in Λ , la cui forma è

Il terzo risultato riguarda il tempo di rilassamento all'equilibrio. Una volta superata la configurazione critica, il raggiungimento della fase stabile avviene in tempi relativamente brevi.

Crescita supercritica: un problema aperto

Non esiste una descrizione rigorosa

A differenza del modello di Ising, per il quale si hanno risultati rigorosi in molti regimi, la conservatività del modello comporta difficoltà aggiuntive:

Crescita supercritica: un problema aperto

Non esiste una descrizione rigorosa

- A differenza del modello di Ising, per il quale si hanno risultati rigorosi in molti regimi, la conservatività del modello comporta difficoltà aggiuntive:
 - ad esempio, l'effetto di spogliamento del gas ad opera del cluster comporta l'impossibilità di disaccoppiare la dinamica e descrivere la crescita supercritica con una teoria semplice.

Semplificazioni del modello

Cosa ci interessa maggiormente

Siamo interessati a capire il comportamento del gas.

Semplificazioni del modello

Cosa ci interessa maggiormente

Siamo interessati a capire il comportamento del gas.

Semplifichiamo il problema iniziale

■ Il gas viene descritto in termini di random walk indipendenti, semplici e simmetrici su un reticolo bidimensionale Λ_L , con condizioni periodiche al bordo.

Semplificazioni del modello

Cosa ci interessa maggiormente

Siamo interessati a capire il comportamento del gas.

Semplifichiamo il problema iniziale

- Il gas viene descritto in termini di random walk indipendenti, semplici e simmetrici su un reticolo bidimensionale Λ_L , con condizioni periodiche al bordo.
- Al centro di questo reticolo, sistemiamo una trappola che simula la goccia, trascurandone sia l'aspetto geometrico sia quello dinamico.

■ È un modello particellare con una dinamica stocastica:

- É un modello particellare con una dinamica stocastica:
 - \blacksquare per t=0, distribuiamo in modo uniforme N particelle sui siti di un reticolo Λ_L con condizioni periodiche al bordo;

- È un modello particellare con una dinamica stocastica:
 - lacktriangledown per t=0, distribuiamo in modo uniforme N particelle sui siti di un reticolo Λ_L con condizioni periodiche al bordo;
 - lacktriangle per t>0, le dinamica delle particelle è quella di random walk indipendenti, semplici e simmetrici;

- È un modello particellare con una dinamica stocastica:
 - lacktriangledown per t=0, distribuiamo in modo uniforme N particelle sui siti di un reticolo Λ_L con condizioni periodiche al bordo;
 - per t > 0, le dinamica delle particelle è quella di random walk indipendenti, semplici e simmetrici;
 - nel centro del reticolo c'è un sito particolare:

- È un modello particellare con una dinamica stocastica:
 - lacktriangle per t=0, distribuiamo in modo uniforme N particelle sui siti di un reticolo Λ_L con condizioni periodiche al bordo;
 - per t > 0, le dinamica delle particelle è quella di random walk indipendenti, semplici e simmetrici;
 - nel centro del reticolo c'è un sito particolare:
 - se un random walk arriva su questo sito, resta intrappolato

- È un modello particellare con una dinamica stocastica:
 - per t=0, distribuiamo in modo uniforme N particelle sui siti di un reticolo Λ_L con condizioni periodiche al bordo;
 - per t > 0, le dinamica delle particelle è quella di random walk indipendenti, semplici e simmetrici;
 - nel centro del reticolo c'è un sito particolare:
 - se un random walk arriva su questo sito, resta intrappolato
 - se la trappola è popolata, ha una probabilità finita $p_{\rm e} \in [0,1]$ di riemettere una singola particella con probabilità 1/4 su ognuno dei suoi primi vicini.

- È un modello particellare con una dinamica stocastica:
 - per t = 0, distribuiamo in modo uniforme N particelle sui siti di un reticolo Λ_L con condizioni periodiche al bordo;
 - per t > 0, le dinamica delle particelle è quella di random walk indipendenti, semplici e simmetrici;
 - nel centro del reticolo c'è un sito particolare:
 - se un random walk arriva su questo sito, resta intrappolato
 - se la trappola è popolata, ha una probabilità finita $p_{\rm e} \in [0,1]$ di riemettere una singola particella con probabilità 1/4 su ognuno dei suoi primi vicini.

Abbiamo bisogno di un secondo modello

La simulazione numerica del comportamento di questo modello è molto complessa: serve un secondo modello che aiuti nelle simulazioni.

■ Definiamo sul reticolo Λ_L una funzione $\rho(\underline{x},t) \colon \Lambda_L \times \mathbb{N} \to \mathbb{R}_+$

- Definiamo sul reticolo Λ_L una funzione $\rho(\underline{x},t) \colon \Lambda_L \times \mathbb{N} \to \mathbb{R}_+$
 - Per t=0, scegliamo due numeri reali $\tilde{\rho}_{\rm o}<\rho$ e inizializziamo $\rho(\underline{x},t)$

$$\rho(\underline{x},0) = \begin{cases} \tilde{\rho}_{\mathbf{o}} & \text{se } \underline{x} = \underline{0}, \\ \tilde{\rho} & \text{altrimenti} \end{cases}$$

- Definiamo sul reticolo Λ_L una funzione $\rho(\underline{x},t) \colon \Lambda_L \times \mathbb{N} \to \mathbb{R}_+$
 - Per t=0, scegliamo due numeri reali $\tilde{\rho}_{\mathrm{o}}<\rho$ e inizializziamo $\rho(\underline{x},t)$

$$\rho(\underline{x},0) = \begin{cases} \tilde{\rho}_{\mathrm{o}} & \text{ se } \underline{x} = \underline{0}, \\ \tilde{\rho} & \text{ altrimenti} \end{cases}$$

- Per t > 0, l'evoluzione temporale dipende dal sito

$$\rho(\underline{x},t+1) = \begin{cases} \sum_{\substack{\underline{x}' \neq \underline{0} \\ |\underline{x}' - \underline{x}|_L = 1}} \frac{\rho(\underline{x}',t)}{4} + \frac{\tilde{\rho}_{\mathbf{o}}}{4} & \text{se } |\underline{x}|_L = 1, \\ \sum_{|\underline{x}' - \underline{x}|_L = 1} \frac{\rho(\underline{x}',t)}{4} & \text{se } |\underline{x}|_L > 1. \end{cases}$$

- Definiamo sul reticolo Λ_L una funzione $\rho(\underline{x},t) \colon \Lambda_L \times \mathbb{N} \to \mathbb{R}_+$
 - Per t=0, scegliamo due numeri reali $\tilde{\rho}_{\mathrm{o}}<\rho$ e inizializziamo $\rho(\underline{x},t)$

$$\rho(\underline{x},0) = \begin{cases} \tilde{\rho}_{\mathbf{o}} & \text{se } \underline{x} = \underline{0}, \\ \tilde{\rho} & \text{altrimenti} \end{cases}$$

- Per t > 0, l'evoluzione temporale dipende dal sito

$$\rho(\underline{x},t+1) = \begin{cases} \sum_{\substack{\underline{x}' \neq \underline{0} \\ |\underline{x}' - \underline{x}|_L = 1}} \frac{\rho(\underline{x}',t)}{4} + \frac{\tilde{\rho}_{\mathbf{o}}}{4} & \text{se } |\underline{x}|_L = 1, \\ \sum_{|\underline{x}' - \underline{x}|_L = 1} \frac{\rho(\underline{x}',t)}{4} & \text{se } |\underline{x}|_L > 1. \end{cases}$$

$$\rho(\underline{0},t+1) = N - \sum_{x \neq 0} \rho(\underline{x},t+1) \qquad \qquad \text{con } N = \tilde{\rho}|\Lambda_L|$$

$$\mathbb{E}[n(\underline{x},t)] = \rho(\underline{x},t) \quad \forall \underline{x} \in \Lambda_L, t \in \mathbb{N}_0.$$

■ Il modello deterministico è il "valore aspettato" di quello stocastico. Se indichiamo con $n(\underline{x},t)$ il numero di particelle del sito \underline{x} al tempo t, abbiamo

$$\mathbb{E}[n(\underline{x},t)] = \rho(\underline{x},t) \quad \forall \, \underline{x} \in \Lambda_L, t \in \mathbb{N}_0.$$

- Per t=0, segue dalla distribuzione uniforme delle N particelle nel reticolo

$$\mathbb{E}[n(\underline{x},t)] = \rho(\underline{x},t) \quad \forall \, \underline{x} \in \Lambda_L, t \in \mathbb{N}_0.$$

- Per t=0, segue dalla distribuzione uniforme delle N particelle nel reticolo
- $\operatorname{Per}\ t>0$, si può ragionare come segue

$$\mathbb{E}[n(\underline{x},t)] = \rho(\underline{x},t) \quad \forall \, \underline{x} \in \Lambda_L, t \in \mathbb{N}_0.$$

- Per t=0, segue dalla distribuzione uniforme delle N particelle nel reticolo
- Per t > 0, si può ragionare come segue

$$\mathbb{E}[n(\underline{x},t)] = \rho(\underline{x},t) \quad \forall \, \underline{x} \in \Lambda_L, t \in \mathbb{N}_0.$$

- Per t=0, segue dalla distribuzione uniforme delle N particelle nel reticolo
- Per t > 0, si può ragionare come segue

$$\mathbb{E}[n(\underline{x},t)] = \rho(\underline{x},t) \quad \forall \, \underline{x} \in \Lambda_L, t \in \mathbb{N}_0.$$

- Per t=0, segue dalla distribuzione uniforme delle N particelle nel reticolo
- Per t > 0, si può ragionare come segue

Per studiare il cluster

- $n_{o}(t)$

particelle intrappolate al tempo \boldsymbol{t}

Per studiare il cluster

- $n_{\rm o}(t)$ particelle intrappolate al tempo t

- $n_\ell(t)$ particelle libere al tempo t

Per studiare il cluster

- $n_{
m o}(t)$ particelle intrappolate al tempo t

- $n_\ell(t) = N - n_{
m o}(t)$ particelle libere al tempo t

Per studiare il cluster

- $n_{
 m o}(t)$ particelle intrappolate al tempo t
- $n_\ell(t) = N n_{
 m o}(t)$ particelle libere al tempo t

Per studiare il gas: comportamento diffusivo del random walk

$$\mathbb{P}\left\{\,\underline{S}_{2n} = \underline{x}\,\right\} \left\{ \begin{aligned} &= O(n^{-1}), & \text{se } |\underline{x}|^2 < n, \\ &\leq O(n^{-1}e^{-\frac{|x|^2}{2n}}), & \text{se } |\underline{x}|^2 \geq n. \end{aligned} \right.$$

Strategia per lo studio del gas

- Scelgo un intero ℓ divisore del semilato L e ricopro il reticolo Λ_L con L/ℓ corone Ξ_i ,

Strategia per lo studio del gas

- Scelgo un intero ℓ divisore del semilato L e ricopro il reticolo Λ_L con L/ℓ corone Ξ_i ,
- analizzo le densità medie $\delta(i,t)$ delle corone in funzione del tempo.

Definizioni rigorose

lacktriangle Le corone Ξ_i corrispondono agli insiemi disgiunti

$$\Xi_i = \{ \underline{x} \in \Lambda_L : (i-1)\ell < |\underline{x}| \le i \ell \}, \quad i = 1, \dots, L/\ell.$$

Definizioni rigorose

■ Le corone Ξ_i corrispondono agli insiemi disgiunti

$$\Xi_i = \{ \underline{x} \in \Lambda_L : (i-1)\ell < |\underline{x}| \le i\ell \}, \quad i = 1, \dots, L/\ell.$$

■ Il modello stocastico richiede una media sul tempo

$$\Theta_{\tau} = [1 + (\tau - 1)\Delta, \tau\Delta] \bigcap \mathbb{N}^{+} \quad \forall \tau \in \mathbb{N}^{+}$$

Definizioni rigorose

■ Le corone Ξ_i corrispondono agli insiemi disgiunti

$$\Xi_i = \{ \underline{x} \in \Lambda_L : (i-1)\ell < |\underline{x}| \le i\ell \}, \quad i = 1, \dots, L/\ell.$$

■ Il modello stocastico richiede una media sul tempo

$$\Theta_{\tau} = [1 + (\tau - 1)\Delta, \tau\Delta] \bigcap \mathbb{N}^{+} \quad \forall \tau \in \mathbb{N}^{+}$$

lacksquare La densità della i-esima corona al tempo $au\Delta$ è data da

Definizioni rigorose

■ Le corone Ξ_i corrispondono agli insiemi disgiunti

$$\Xi_i = \{ \underline{x} \in \Lambda_L : (i-1)\ell < |\underline{x}| \le i\ell \}, \quad i = 1, \dots, L/\ell.$$

■ Il modello stocastico richiede una media sul tempo

$$\Theta_{\tau} = [1 + (\tau - 1)\Delta, \tau\Delta] \bigcap \mathbb{N}^{+} \quad \forall \tau \in \mathbb{N}^{+}$$

lacksquare La densità della i-esima corona al tempo $au\Delta$ è data da

$$\delta(i, \tau \Delta)_{\text{m.d.}} = \frac{1}{|\Xi_i|} \sum_{\underline{x} \in \Xi_i} \rho(\underline{x}, \tau \Delta)$$

Definizioni rigorose

■ Le corone Ξ_i corrispondono agli insiemi disgiunti

$$\Xi_i = \{ \underline{x} \in \Lambda_L : (i-1)\ell < |\underline{x}| \le i \ell \}, \quad i = 1, \dots, L/\ell.$$

■ Il modello stocastico richiede una media sul tempo

$$\Theta_{\tau} = [1 + (\tau - 1)\Delta, \tau\Delta] \bigcap \mathbb{N}^{+} \quad \forall \tau \in \mathbb{N}^{+}$$

lacksquare La densità della i-esima corona al tempo $au\Delta$ è data da

$$\delta(i,\tau\Delta)_{\mathsf{m.d.}} = \frac{1}{|\Xi_i|} \sum_{\underline{x} \in \Xi_i} \rho(\underline{x},\tau\Delta)$$

$$\delta(i, \tau \Delta)_{\text{r.w.}} = \frac{1}{|\Xi_i|} \frac{1}{\Delta} \sum_{t \in \Theta_{\tau}} \sum_{k=1}^{N} \mathbb{1}_{\left\{\underline{S}_k(t) \in \Xi_i\right\}}$$

Definizioni rigorose

■ Le corone Ξ_i corrispondono agli insiemi disgiunti

$$\Xi_i = \{ \underline{x} \in \Lambda_L : (i-1)\ell < |\underline{x}| \le i \ell \}, \quad i = 1, \dots, L/\ell.$$

■ Il modello stocastico richiede una media sul tempo

$$\Theta_{\tau} = [1 + (\tau - 1)\Delta, \tau\Delta] \bigcap \mathbb{N}^{+} \quad \forall \tau \in \mathbb{N}^{+}$$

lacksquare La densità della i-esima corona al tempo $au\Delta$ è data da

$$\delta(i, \tau \Delta)_{\text{m.d.}} = \frac{1}{|\Xi_i|} \sum_{\underline{x} \in \Xi_i} \rho(\underline{x}, \tau \Delta)$$

$$\delta(i,\tau\Delta)_{\mathrm{r.w.}} = \frac{1}{|\Xi_i|} \frac{1}{\Delta} \sum_{t \in \Theta_T} \sum_{k=1}^N \mathbb{1}_{\left\{\underline{S}_k(t) \in \Xi_i\right.\}}$$

- continua a valere la relazione tra i due modelli.

Obiettivo della taratura

Obiettivo della taratura

Ottenere una descrizione dettagliata del gas, nello spazio e nel tempo, minimizzando le incertezze sulle medie spaziotemporali del modello stocastico.

lacksquare Scelta del passo ℓ delle corone

Obiettivo della taratura

- lacksquare Scelta del passo ℓ delle corone
 - numero statisticamente rilevante di punti nelle corone;

Obiettivo della taratura

- lacksquare Scelta del passo ℓ delle corone
 - numero statisticamente rilevante di punti nelle corone;
 - numero di corone che permetta un'analisi spaziale dettagliata.

Obiettivo della taratura

- lacksquare Scelta del passo ℓ delle corone
 - numero statisticamente rilevante di punti nelle corone;
 - numero di corone che permetta un'analisi spaziale dettagliata.
- $lue{}$ Scelta dell'intervallo Δ tra misure consecutive

Obiettivo della taratura

- lacksquare Scelta del passo ℓ delle corone
 - numero statisticamente rilevante di punti nelle corone;
 - numero di corone che permetta un'analisi spaziale dettagliata.
- $lue{}$ Scelta dell'intervallo Δ tra misure consecutive
 - minimizzare la dispersione dei random walk tra due misure consecutive;

Obiettivo della taratura

- lacksquare Scelta del passo ℓ delle corone
 - numero statisticamente rilevante di punti nelle corone;
 - numero di corone che permetta un'analisi spaziale dettagliata.
- \blacksquare Scelta dell'intervallo \triangle tra misure consecutive
 - minimizzare la dispersione dei random walk tra due misure consecutive;
 - trascurare le incertezze dovute alle medie temporali.

Configurazioni simulate

Configurazioni simulate

- Reticoli Λ_L di semilato $L=50,60,\ldots,250,500,1000.$

Configurazioni simulate

Configurazioni simulate

- Reticoli Λ_L di semilato $L=50,60,\ldots,250,500,1000.$
- Densità iniziali $\tilde{\rho}=2^{-i}$, per $i=1,\dots,15$.

Configurazioni simulate

Configurazioni simulate

- Reticoli Λ_L di semilato $L = 50, 60, \dots, 250, 500, 1000.$
- Densità iniziali $\tilde{\rho}=2^{-i}$, per $i=1,\dots,15$.
- Trappola completamente assorbente e inizialmente vuota.

lacksquare Guardiamo il numero $n_{o}(t)$ di particelle intrappolate

■ Guardiamo il numero $n_o(t)$ di particelle intrappolate

$$n_{\mathbf{o}}(t) = \tilde{\rho} \sum_{\underline{x} \in \Lambda_L} \mathbb{P}_{\underline{x}} \left\{ \, \tau_o < t \, \right\}$$

■ Guardiamo il numero $n_o(t)$ di particelle intrappolate

$$n_{\mathbf{o}}(t) = \tilde{\rho} \sum_{\underline{x} \in \Lambda_L} \mathbb{P}_{\underline{x}} \left\{ \, \tau_o < t \, \right\}$$

i) trascuriamo le particelle per cui $|\underline{x}| > \sqrt{t}$, per via del comportamento diffusivo;

■ Guardiamo il numero $n_o(t)$ di particelle intrappolate

$$n_{\mathbf{o}}(t) = \tilde{\rho} \sum_{\underline{x} \in \Lambda_L} \mathbb{P}_{\underline{x}} \left\{ \, \tau_o < t \, \right\}$$

- i) trascuriamo le particelle per cui $|\underline{x}| > \sqrt{t}$, per via del comportamento diffusivo;
- ii) nel regime temporale $c^2 < t \ll |\Lambda_L|$, con $c \simeq 20$

lacksquare Guardiamo il numero $n_{o}(t)$ di particelle intrappolate

$$n_{\mathbf{o}}(t) = \tilde{
ho} \sum_{\underline{x} \in \Lambda_L} \mathbb{P}_{\underline{x}} \left\{ \tau_o < t \right\}$$

- i) trascuriamo le particelle per cui $|\underline{x}| > \sqrt{t}$, per via del comportamento diffusivo;
- ii) nel regime temporale $c^2 < t \ll |\Lambda_L|$, con $c \simeq 20$

$$\mathbb{P}_{\underline{x}} \left\{ \left. \tau_o < t \right. \right\} \sim 1 - \ln \left| \underline{x} \right|^2 / \ln t$$

 \blacksquare Per $n_o(t)$ a tempi piccoli, si ottiene

■ Per $n_o(t)$ a tempi piccoli, si ottiene

$$n_o(t) \simeq \sum_{|\underline{x}| < \sqrt{t}} \tilde{\rho} - \sum_{c < |\underline{x}| < \sqrt{t}} \tilde{\rho} \frac{\ln|\underline{x}|^2}{\ln t}$$

■ Per $n_o(t)$ a tempi piccoli, si ottiene

$$n_o(t) \simeq \sum_{|\underline{x}| < \sqrt{t}} \tilde{\rho} - \sum_{c < |\underline{x}| < \sqrt{t}} \tilde{\rho} \frac{\ln |\underline{x}|^2}{\ln t}$$
$$\simeq \pi \tilde{\rho} t - \left[\frac{4\pi \tilde{\rho}}{\ln t} \frac{r^2}{2} \left(\ln t - \frac{1}{2} \right) \right]_c^{\sqrt{t}}$$
$$\simeq \frac{\pi \tilde{\rho} t}{\ln t}$$

■ Per $n_o(t)$ a tempi piccoli, si ottiene

$$n_o(t) \simeq \sum_{|\underline{x}| < \sqrt{t}} \tilde{\rho} - \sum_{c < |\underline{x}| < \sqrt{t}} \tilde{\rho} \frac{\ln|\underline{x}|^2}{\ln t}$$

$$\simeq \pi \tilde{\rho} t - \left[\frac{4\pi \tilde{\rho}}{\ln t} \frac{r^2}{2} \left(\ln t - \frac{1}{2} \right) \right]_c^{\sqrt{t}}$$

$$\simeq \frac{\pi \tilde{\rho} t}{\ln t}$$

$$\frac{n_o(t) \ln t}{t} \simeq \pi \tilde{\rho}$$

■ La relazione $\frac{n_o(t) \ln t}{t} \simeq \pi \tilde{\rho}$ è stata verificata su ognuna delle configurazioni precedentemente illustrate.

- La relazione $\frac{n_o(t)\ln t}{t} \simeq \pi \tilde{\rho}$ è stata verificata su ognuna delle configurazioni precedentemente illustrate.
- Un esempio dell'andamento costante di $n_o(t) \ln t/t$, nel caso di semilato L=250 e densità iniziale unitaria, è dato da

- La relazione $\frac{n_o(t)\ln t}{t} \simeq \pi \tilde{\rho}$ è stata verificata su ognuna delle configurazioni precedentemente illustrate.
- Un esempio dell'andamento costante di $n_o(t) \ln t/t$, nel caso di semilato L=250 e densità iniziale unitaria, è dato da

■ Nel regime di tempi lunghi $t\gg |\Lambda_L|$, l'attenzione si è rivolta al numero di particelle ancora libere nel reticolo

$$n_{\ell}(t) = N - n_o(t)$$

■ Nel regime di tempi lunghi $t\gg |\Lambda_L|$, l'attenzione si è rivolta al numero di particelle ancora libere nel reticolo

$$n_{\ell}(t) = N - n_o(t)$$

- Un random walk partito da un generico sito del reticolo ha una probabilità finita di arrivare nell'origine per tempi $t\simeq L^2\ln L$

■ Nel regime di tempi lunghi $t\gg |\Lambda_L|$, l'attenzione si è rivolta al numero di particelle ancora libere nel reticolo

$$n_{\ell}(t) = N - n_o(t)$$

- Un random walk partito da un generico sito del reticolo ha una probabilità finita di arrivare nell'origine per tempi $t\simeq L^2\ln L$
- Il numero di random walk ancora liberi nel reticolo dopo tempi multipli di $L^2 \ln L$ decade esponenzialmente

$$n_{\ell}(t) = Ne^{-Bt}$$

■ Nel regime di tempi lunghi $t\gg |\Lambda_L|$, l'attenzione si è rivolta al numero di particelle ancora libere nel reticolo

$$n_{\ell}(t) = N - n_o(t)$$

- Un random walk partito da un generico sito del reticolo ha una probabilità finita di arrivare nell'origine per tempi $t\simeq L^2\ln L$
- Il numero di random walk ancora liberi nel reticolo dopo tempi multipli di $L^2 \ln L$ decade esponenzialmente

$$\left(n_{\ell}(t) = Ne^{-Bt} \right)$$

B è l'inverso del tempo caratteristico e dipende unicamente dal semilato reticolare ${\cal L}$ secondo la legge

$$B = \frac{B_o}{L^2 \ln L} \qquad \text{con } B_o \text{ costante.}$$

Per ricavare la costante B_o è più comodo lavorare con il logaritmo

$$\ln[n_{\ell}(t)] = N - B t$$

Per ricavare la costante B_o è più comodo lavorare con il logaritmo

$$\ln[n_{\ell}(t)] = N - B t$$

Si fissa una densità iniziale di riferimento $\tilde{\rho}$ e, al variare del semilato, con un fit lineare si ricavano i B(L) sperimentali

Per ricavare la costante B_o è più comodo lavorare con il logaritmo

$$\ln[n_{\ell}(t)] = N - B t$$

- Si fissa una densità iniziale di riferimento $\tilde{\rho}$ e, al variare del semilato, con un fit lineare si ricavano i B(L) sperimentali
- lacktriangle Con un secondo fit tra questi punti e l'andamento teorico di B(L), si ricava

$$B_o = 0.306 \pm 0.002$$

Regime dei tempi intermedi

Regime dei tempi intermedi: risultati nuovi

I risultati nuovi contenuti in questo lavoro riguardano la caratterizzazione del comportamento del gas nel regime dei tempi intermedi, per il quale non si hanno ancora risultati rigorosi su questo fenomeno.

■ Il destino del gas, per tempi lunghi, è uno svuotamento esponenziale.

- Il destino del gas, per tempi lunghi, è uno svuotamento esponenziale.
- Analizziamo la propagazione al suo interno dell'informazione della presenza della trappola:

- Il destino del gas, per tempi lunghi, è uno svuotamento esponenziale.
- Analizziamo la propagazione al suo interno dell'informazione della presenza della trappola:
 - fissiamo una soglia di svuotamento rispetto alla densità iniziale

- Il destino del gas, per tempi lunghi, è uno svuotamento esponenziale.
- Analizziamo la propagazione al suo interno dell'informazione della presenza della trappola:
 - fissiamo una soglia di svuotamento rispetto alla densità iniziale
 - analizziamo i tempi in cui le corone superano questa soglia

- Il destino del gas, per tempi lunghi, è uno svuotamento esponenziale.
- Analizziamo la propagazione al suo interno dell'informazione della presenza della trappola:
 - fissiamo una soglia di svuotamento rispetto alla densità iniziale
 - analizziamo i tempi in cui le corone superano questa soglia

Tempi intermedi: superficie di densità

■ Successivamente, sono stati analizzati gli andamenti delle densità in funzione dello spazio e del tempo.

Tempi intermedi: superficie di densità

■ Successivamente, sono stati analizzati gli andamenti delle densità in funzione dello spazio e del tempo.

Congettura di fattorizzazione delle densità

Si basa sull'analogia con l'equazione del calore, di cui il modello deterministico è una versione su un reticolo discreto.

Congettura di fattorizzazione delle densità

Si basa sull'analogia con l'equazione del calore, di cui il modello deterministico è una versione su un reticolo discreto.

- Se la densità $\delta(i,t)$ si fattorizza nel prodotto di una funzione spaziale e una temporale, abbiamo

$$\delta(i,t) = g(i) \cdot h(t) \Longrightarrow \ln[\delta(i,t)] = \ln[g(i)] + \ln[h(t)]$$

Congettura di fattorizzazione delle densità

Si basa sull'analogia con l'equazione del calore, di cui il modello deterministico è una versione su un reticolo discreto.

- Se la densità $\delta(i,t)$ si fattorizza nel prodotto di una funzione spaziale e una temporale, abbiamo

$$\delta(i,t) = g(i) \cdot h(t) \Longrightarrow \ln[\delta(i,t)] = \ln[g(i)] + \ln[h(t)]$$

- Fissiamo il tempo e calcoliamo la differenza del logaritmo della densità per due indici di corona $i \neq j$

$$\ln[\delta(i,\bar{t})] - \ln[\delta(j,\bar{t})] = \ln[g(i)] - \ln[g(j)] = \Delta_{i,j}$$

Congettura di fattorizzazione delle densità

Si basa sull'analogia con l'equazione del calore, di cui il modello deterministico è una versione su un reticolo discreto.

- Se la densità $\delta(i,t)$ si fattorizza nel prodotto di una funzione spaziale e una temporale, abbiamo

$$\delta(i,t) = g(i) \cdot h(t) \Longrightarrow \ln[\delta(i,t)] = \ln[g(i)] + \ln[h(t)]$$

- Fissiamo il tempo e calcoliamo la differenza del logaritmo della densità per due indici di corona $i \neq j$

$$\ln[\delta(i,\bar{t})] - \ln[\delta(j,\bar{t})] = \ln[g(i)] - \ln[g(j)] = \Delta_{i,j}$$

- L'indipendenza dal tempo delle quantità $\Delta_{i,j}$ suggerisce il modo naturale di verificare la congettura.

- La verifica della fattorizzazione è stata effettuata su tutto l'insieme di configurazioni simulate numericamente. I risultati possono essere riassunti come segue:
 - l'andamento temporale delle $\ln \delta(i,t)$ è di tipo lineare su tutte le corone.

- La verifica della fattorizzazione è stata effettuata su tutto l'insieme di configurazioni simulate numericamente. I risultati possono essere riassunti come segue:
 - l'andamento temporale delle $\ln \delta(i,t)$ è di tipo lineare su tutte le corone.
 - Il fit lineare di questi andamenti ha mostrato che queste rette sono parallele, dando una prima conferma per la congettura.

- La verifica della fattorizzazione è stata effettuata su tutto l'insieme di configurazioni simulate numericamente. I risultati possono essere riassunti come segue:
 - l'andamento temporale delle $\ln \delta(i,t)$ è di tipo lineare su tutte le corone.
 - Il fit lineare di questi andamenti ha mostrato che queste rette sono parallele, dando una prima conferma per la congettura.
 - La seconda conferma è stata data dall'analisi degli andamenti a tempo fissato.

- La verifica della fattorizzazione è stata effettuata su tutto l'insieme di configurazioni simulate numericamente. I risultati possono essere riassunti come segue:
 - l'andamento temporale delle $\ln \delta(i,t)$ è di tipo lineare su tutte le corone.
 - Il fit lineare di questi andamenti ha mostrato che queste rette sono parallele, dando una prima conferma per la congettura.
 - La seconda conferma è stata data dall'analisi degli andamenti a tempo fissato.

Ricostruzione dei fattori

È possibile ricostruire i due fattori a meno di una costante di normalizzazione, applicando il teorema fondamentale del calcolo integrale alle differenze dei logaritmi.

Ricostruzione dei fattori

È possibile ricostruire i due fattori a meno di una costante di normalizzazione, applicando il teorema fondamentale del calcolo integrale alle differenze dei logaritmi.

■ Per il fattore spaziale, si ha

$$\frac{g(i)}{g(i_0)} = \exp\left\{\frac{1}{(t_{\rm f} - t_0)} \sum_{j=i_0}^{i} \sum_{\tau=t_0}^{t_{\rm f}} \left[\ln \delta(j+1,\tau) - \ln \delta(j,\tau)\right]\right\}$$

Ricostruzione dei fattori

È possibile ricostruire i due fattori a meno di una costante di normalizzazione, applicando il teorema fondamentale del calcolo integrale alle differenze dei logaritmi.

■ Per il fattore spaziale, si ha

$$\frac{g(i)}{g(i_0)} = \exp\left\{\frac{1}{(t_f - t_0)} \sum_{j=i_0}^{i} \sum_{\tau=t_0}^{t_f} \left[\ln \delta(j+1, \tau) - \ln \delta(j, \tau)\right]\right\}$$

■ Per il fattore temporale, si ha

$$\frac{h(t)}{h(t_0)} = \exp\Big\{\frac{1}{(i_f - i_0)} \sum_{\tau = t_0}^{t} \sum_{j=i_0}^{i_f} \left[\ln \delta(j, \tau + 1) - \ln \delta(j, \tau)\right]\Big\}.$$

Esempio di ricostruzione dei due fattori

■ Concludiamo questa analisi con un esempio di ricostruzione dei due fattori, nel caso di semilato L=75, densità iniziale $\tilde{\rho}=2^{-8}$, $i_0=1$, $t_0=2\times 10^4$ e $t_f=8\times 10^4$

Esempio di ricostruzione dei due fattori

Concludiamo questa analisi con un esempio di ricostruzione dei due fattori, nel caso di semilato L=75, densità iniziale $\tilde{\rho}=2^{-8}$, $i_0=1$, $t_0=2\times 10^4$ e $t_f=8\times 10^4$

Ringraziamenti

Grazie per l'attenzione!