

Question 1. Data preprocessing in NLP.

- a) It is possible to tokenize based on space alone?
 - 1. True for Vietnamese, False for Chinese
 - 2. False for Vietnamese, True for Chinese
 - 2. True for Vietnamese, True for Chinese
 - 2. False for Vietnamese, False for Chinese
- b) As preprocessing, one should always tokenize and lemmatize the data:
 - 1. True
 - 2. False
- c) What is the tokenization of the following sentence?

There aren't any mistakes!

- 1. [There] [are] [not] [any] [mistakes] [!]
- 2. [There] [aren] ['t] [any] [mistakes] [!]
- 3. [There] [aren't] [any] [mistakes!]
- 4. it depends on the tokenizer

Question 2. What is the expression of $p(Y = y \mid X = \mathbf{x})$ for the binary logistic regression, as a function of the parameters $\mathbf{w} \in \mathbb{R}^d$:

Question 3. Let V be the size of the vocabulary, $\mathbf{p} \in \mathbb{R}^V$ and $b \in \mathbb{R}$ such that:

$$\mathbf{p}_i = \log (P(W = i | Y = 1)) - \log (P(W = i | Y = 0)),$$

 $b = \log (P(Y = 1)) - \log (P(Y = 0)).$

Let $\mathbf{x} \in \mathbb{R}^V$ a vector representing the bag of words of a document D. What is the expression of the log probability ratio $\frac{P(Y=1,D)}{P(Y=0,D)}$ in the case of categorical naive Bayes?

Question 9. Let $c \in \mathbb{R}$ and $\mathbf{s} \in \mathbb{R}^d$. Let note f the softmax operator, such that $f_i(\mathbf{s}) = \frac{\exp(s_i)}{\sum_{i=1}^d \exp(s_i)}$.

We have:

1.
$$f_i(\mathbf{s}) < f_i(\mathbf{s} + c)$$

2.
$$f_i(\mathbf{s}) > f_i(\mathbf{s} + c)$$

3.
$$f_i(\mathbf{s}) = f_i(\mathbf{s} + c)$$

4. It depends on the sign of *c*.

Question 10. Given the confusion matrix, where y is the ground truth and \hat{y} is the prediction of the model:

$$\begin{array}{c|cccc} & y=1 & y=-1 \\ \hline \hat{y}=1 & \text{TP} & \text{FP} \\ \hat{y}=-1 & \text{FN} & \text{TN} \end{array}$$

What is the expression of the recall:

$$1. \ \mathtt{RE} = \frac{\mathtt{TP}}{\mathtt{FP} + \mathtt{FN}}$$

$$2. \ \text{RE} = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

$$3. \ \text{RE} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

4.
$$RE = \frac{TP}{TP + TN}$$

Question 11. Given a query $\mathbf{q} \in \mathbb{R}^d$ and a set of keys and values $\mathbf{k}_i \in \mathbb{R}^d$, $\mathbf{v}_i \in \mathbb{R}^d$ for $i \in \{1, ..., N\}$, what is the expression of the output of the attention mechanism?

Question 12. How is the word order captured in transformer networks?

Question 13. What is the perplexity of a sentence $W = (w_1, ..., w_T)$:

1.
$$PP(W) = \left(\prod_{t=1}^{T} P(w_t \mid w_{t-1}, \dots, w_1)\right)^{-T}$$

2.
$$PP(W) = \left(\prod_{t=1}^{T} P(w_t \mid w_{t-1}, \dots, w_1)\right)^{-\frac{1}{T}}$$

3.
$$PP(W) = \left(\sum_{t=1}^{T} P(w_t \mid w_{t-1}, \dots, w_1)\right)^{-T}$$

4.
$$PP(W) = \sum_{t=1}^{T} P(w_t \mid w_{t-1}, \dots, w_1)^{-\frac{1}{T}}$$

Question 14. In word2vec, negative sampling is used

- 1. To make the training more efficient
- 2. To regularize the model
- 3. To avoid overflow in the softmax
- 4. To avoid exploding gradient

Question 15. Gradient clipping in a recurrent neural network:

- 1. prevents gradient explosion
- 2. prevents vanishing gradient
- 3. regularizes the model to avoid overfitting
- 4. approximates the gradient with truncation in time

Question 16. We have a dataset split for positive (+) and negative (-) movie reviews:

- + the story was amazing
- + movie was super good
- not a good storymovie was boring
- story is bad

We have a new review:

story was good

We want to know what is the most likely label and the associated joint probability given by a Naive Bayes model?

- 1. The most likely label is + and $P(+, \text{ story was good}) = \frac{1}{540}$
- 2. The most likely label is + and $P(+, \text{ story was good}) = \frac{1}{640}$
- 3. The most likely label is and $P(-, \text{ story was good}) = \frac{3}{2500}$
- 4. The most likely label is and $P(-, \text{ story was good}) = \frac{1}{2500}$

Question 17. We have a dataset containing N=600 words in total with a vocabulary of 25 unique words. We want to estimate the probability of the following sentence:

<s> i study machine learning

with a counted based model. To do so, we provide the unigrams counts for 8 tokens:

i	want	study	math	<s></s>	machine	learning	like
30	132	25	174	50	36	60	64

as well as their bigram counts:

$w_1 \backslash w_2$	<s></s>	i	want	study	math	machine	learning	like
<s></s>	0	20	0	0	0	1	5	0
i	0	0	4	9	3	0	0	10
want	0	1	0	1	2	6	3	0
study	0	0	0	0	11	7	4	4
math	0	0	0	5	0	0	0	0
machine	0	0	0	6	0	0	6	5
learning	0	0	2	0	0	3	0	22
like	0	8	0	1	0	2	8	0

(For example c(i want) = 4 and c(want i) = 1)

We remind that, by convention, $P(\langle s \rangle) = 1$.

- a. What is the probability of the sentence given by a unigram model?
 - 1. $\frac{1}{40000}$
 - 2. $\frac{1}{60000}$
 - 3. $\frac{1}{80000}$
 - 4. $\frac{1}{120000}$
- b. What is the probability of the sentence given by a bigram model?
 - 1. $\frac{1}{60}$
 - 2. $\frac{1}{120}$
 - 3. $\frac{1}{250}$
 - 4. $\frac{1}{400}$