SPH3U 5.1 Work

1. Work done by a constant force

Mechanical work:	a force applied over a distance.
equation	a force applied over a distance. W=FDdcos & Units. I (Joules)
theta	O is the aude between F and ad
special case	0=0. in His case, W=FDA

How much mechanical work does a person do on a shopping cart if they apply a force of 25 N in the forward direction, and displace the cart 3.5 m in the same direction?

A curler applies a force of $15.0\ N$ on a curling stone and accelerates the stone from rest to a speed of $8.00\ m/s$ in $3.50\ s$. Assuming that the ice surface is level and frictionless, how much mechanical work does the curler do on the stone?

$$W = F \Delta d. \qquad \Delta d = ? \qquad V_1 = 0.00, V_0 = 8.00, \Delta t = 3.50 s.$$

$$\Delta d = \left(\frac{V_1 + V_0 f}{2}\right) \Delta f = \left(\frac{0 + 8}{2}\right)(3.5) = 14.0m.$$

$$W = F \Delta d = 15(14) = 2.10 \times 10^2 \text{ J}$$

2. Work done when force and displacement are in different directions

Calculate the mechanical work done by a custodian on a vacuum cleaner if the custodian exerts an applied force of $50.0 \, \text{N}$ on the vacuum hose and the hose makes a 30.0° angle with the floor. The vacuum cleaner moves $3.00 \, \text{m}$ to the right on a level, flat surface.

3. Special cases

Ranbir wears his backpack as he walks forward in a straight hallway. He walks at a constant velocity of 0.8 m/s for a distance of 12 m. How much mechanical work does Ranbir do on his backpack?

How much mechanical work is done on a stationary car if a student pushing with a 300 N force fails to displace the car?

A shopper pushes a shopping cart on a horizontal surface with a horizontal applied force of 41.0 N for 11.0 m. The cart experiences a force of friction of 35.0 N. Calculate the total mechanical work done on the shopping cart.

Homework: page 229: #1-3, 5-6, 9