

190F Foundations of Data Science

Lecture 14

Statistics

Announcements

Probability & Simulation

Calculation

Roll a fair die 4 times.

What is P(get at least one 6)?

Calculation

Roll a fair die 20 times. What is P(get at least one 6)? Three ways to compute it:

Calculation: Use math.

Enumeration: Count all outcomes.

Estimation: Randomly sample outcomes. Estimate.

Statistical Inference & Simulation

Terminology

- Statistical Inference: Making conclusions based on data in random samples
- Parameter: A number associated with a population.
- Statistic: A number calculated from a sample drawn at random from a population.

A statistic can be used to **estimate** a parameter, or to **test hypotheses** about the process that generated the data.

Simulating a Statistic

- Figure out the code to generate one value of the statistic
- Create an empty array in which you will collect all the simulated values
- For each repetition of the process:
 - Simulate one value of the statistic
 - Append this value to the collection array
- At the end of all the repetitions, the array will contain all the simulated values

(Demo)

Probability Distribution of a Statistic

- Values of a statistic vary because random samples vary
- "Sampling distribution" or "probability distribution" of the statistic consists of:
 - All possible values of the statistic,
 - and all the corresponding probabilities
- Can be hard to calculate
 - Either have to do the math,
 - or have to generate all possible samples and calculate the statistic based on each sample

Empirical Distribution of a Statistic

- Empirical distribution of the statistic:
 - Based on simulated values of the statistic
 - Consists of all the observed values of the statistic,
 - and the proportion of times each value appeared

 Good approximation to the probability distribution of the statistic if the number of repetitions in the simulation is large.

(Demo)

Jury Selection

Swain vs. Alabama, 1965

- Talladega County, Alabama
- Robert Swain, black man convicted of crime
- Appeal: one factor was all-white jury
- Only men 21 years or older were allowed to serve
- 26% of this population were black
- Swain's jury panel consisted of 100 men
- 8 people on the panel were black (8%)

Supreme Court Ruling

 About disparities between the percentages in the eligible population and the jury panel, the Supreme Court wrote:

"... the overall percentage disparity has been small and reflects no studied attempt to include or exclude a specified number of [blacks]"

The Supreme Court denied Robert Swain's appeal

Sampling from a Distribution

Sample at random from a categorical distribution:

```
sample_proportions(sample_size, pop_distribution)
```

- Samples at random from the population
- Returns an array containing the distribution of the categories in the sample

(Demo)

A Genetic Model

Steps in Assessing a Model

- Come up with a statistic that will help you decide whether the data support the model or an alternative view of the world.
- Simulate the statistic under the assumptions of the model.
- Draw a histogram of the simulated values. This is the model's prediction for how the statistic should come out.
- Compute the observed statistic from the sample in the study.
- Compare this value with the histogram.
- If the two are not consistent, that's evidence against the model.

Gregor Mendel, 1822-1884

A Model

- Pea plants of a particular kind
- Each one has either purple flowers or white flowers
- Mendel's model:
 - Each plant is purple-flowering with chance 75%,
 - regardless of the colors of the other plants
- Question:
 - Is the model good, or not?

Choosing a Statistic

- Start with percent of purple-flowering plants in sample
- If that percent is much larger or much smaller than 75, that is evidence against the model
- **Distance** from 75 is the key
- Statistic:
 - | sample percent of purple-flowering plants 75 |
- If the statistic is large, that is evidence against the model
 (Demo)

Testing Hypotheses

Choosing One of Two Viewpoints

- Based on data
 - "Chocolate has no effect on cardiac disease."
 - "Yes, it does."
 - "This jury panel was selected at random from eligible jurors."
 - "No, it has too many people with college degrees."

Estimation

How many enemy planes?

Assumptions

- Planes have serial numbers 1, 2, 3, ..., N.
- We don't know N.
- We would like to estimate N based on the serial numbers of the planes that we see.

The main assumption

• The serial numbers of the planes that we see are a uniform random sample drawn with replacement from 1, 2, 3, ..., N.

Discussion question

If you saw these serial numbers, what would be your estimate of N?

One idea: 291. Just go with the largest one.

The largest number observed

- Is it likely to be close to N?
 - How likely?
 - o How close?

Option 1. We could try to calculate the probabilities and draw a probability histogram.

Option 2. We could simulate and draw an empirical histogram.

(Demo)

Verdict on the estimate

- The largest serial number observed is likely to be close to N.
- But it is also likely to underestimate N.

Another idea for an estimate:

Average of the serial numbers observed $\sim N/2$

New estimate: 2 times the average

(Demo)