

On Shapley Value in Data Assemblage Under Independent Utility

Xuan Luo¹, Jian Pei^{1, 2}, Zicun Cong¹, and Cheng Xu¹
¹Simon Fraser University, Canada
²Duke University, United States

Transforming Data into Value

• Challenges:

Data Marketplace

Problem Formulation

• Given a set of data owners $\|\mathcal{O}\| = \{o_1, o_2, \dots, o_n\}$, a coalition plan \mathcal{P} and a reward from a data buyer. Then how to distribute the reward to the data owners?

Existing Method

• Shapley Value: given a set of data owners $\|\mathscr{O}\| = \{o_1, o_2, \dots, o_n\}$,

$$\psi(o_i) = \frac{1}{\|\mathcal{O}\|} \sum_{\mathcal{S} \subseteq \mathcal{O} \setminus \{o_i\}} \frac{Utility(\mathcal{S} \cup \{o_i\}) - Utility(\mathcal{S})}{\binom{n-1}{\|\mathcal{S}\|}}$$

Coalition plan \mathscr{P} :

$$Proj_{name, department}(o_2 \bowtie o_4) \cup$$

$$Proj_{name, department}(o_3 \bowtie o_4) \cup$$

 o_{5}

Data Assemblage

Coalition Set

name	department
Alice	CS
Kate	Math

Existing Method

• Shapley Value: given a set of data owners $\mathcal{O} = \{o_1, o_2, \dots, o_n\}$,

$$\psi(o_i) = \frac{1}{\|\mathcal{O}\|} \sum_{\mathcal{S} \subseteq \mathcal{O} \setminus \{o_i\}} \frac{Utility(\mathcal{S} \cup \{o_i\}) - Utility(\mathcal{S})}{\binom{n-1}{\|\mathcal{S}\|}}$$

• E.g.,

•
$$Utility({o_2} \cup {o_1}) - Utility({o_2}) = 0$$

•
$$Utility({o_3} \cup {o_1}) - Utility({o_3}) = 0$$

•
$$Utility({o_4} \cup {o_1}) - Utility({o_4}) = 1$$

•
$$Utility({o_5} \cup {o_1}) - Utility({o_5}) = 0$$

• ..

name department
Kate Math

Coalition plan \mathscr{P} :

 $Proj_{name, department}(o_1 \bowtie o_4) \cup$

 $Proj_{name, department}(o_2 \bowtie o_4) \cup$

 $Proj_{name, department}(o_3 \bowtie o_4) \cup$

 o_5

Data Assemblage

Coalition Set

name department

Alice CS

Kate Math

Existing Method

• Shapley Value: given a set of data owners $\mathcal{O} = \{o_1, o_2, \dots, o_n\}$,

$$\psi(o_i) = \frac{1}{\|\mathcal{O}\|} \sum_{\mathcal{S} \subseteq \mathcal{O} \setminus \{o_i\}} \frac{Utility(\mathcal{S} \cup \{o_i\}) - Utility(\mathcal{S})}{\binom{n-1}{\|\mathcal{S}\|}}$$

- E.g.,
 - $Utility(\emptyset \cup \{o_1\}) Utility(\emptyset) = 0$
 - $Utility({o_2} \cup {o_1}) Utility({o_2}) = 0$
 - $Utility({o_3} \cup {o_1}) Utility({o_3}) = 0$
 - $Utility({o_4}) \cup {o_1}) Utility({o_4}) = 1$
 - $Utility({o_5} \cup {o_1}) Utility({o_5}) = 0$
 - ...

$$\psi(o_1) = \frac{1}{6}$$

id name 2 Kate

id department1 CS2 Math

name department
Kate Math

Coalition plan \mathscr{P} :

 $Proj_{name, department}(o_1 \bowtie o_4) \cup$

 $Proj_{name, department}(o_2 \bowtie o_4) \cup$

 $Proj_{name, department}(o_3 \bowtie o_4) \cup$

 o_5

Data Assemblage

Coalition Set

name department

Alice CS

Kate Math

Challenges

Combinatoric nature

Exponential with respect to the number of data owners

Challenges

Our Method: IUSV

Independent Utility Assumption

Our Method: IUSV

Independent Utility Assumption

The **independent utility assumption** holds on a data set $D = \{t_1, ..., t_l\}$ if the utility of the data set L(t)

set $Utility(D) = \sum_{i=1}^{n} Utility(t_i)$, and for any

 $1 \le i, j \le l, Utility(t_i)$ and $Utility(t_j)$ are non-negative and independent from each other.

id name

Alice

id name 1 Alice

id name2 Kate

id department

1 CS

2 Math

name department
Kate Math

Coalition plan \mathscr{P} :

 $Proj_{name, department}(o_1 \bowtie o_4) \cup$

 $Proj_{name, department}(o_2 \bowtie o_4) \cup$

 $Proj_{name, department}(o_3 \bowtie o_4) \cup \\$

 o_5

Data Assemblage

The **independent utility assumption** holds on a data set $D = \{t_1, ..., t_l\}$ if the utility of the data set $Utility(D) = \sum_{i=1}^{l} Utility(t_i)$, and for any

 $1 \le i, j \le l, Utility(t_i)$ and $Utility(t_j)$ are nonnegative and independent from each other.

Coalition Set

name	department
Alice	CS
Kate	Math

Let
$$t_1$$
 = (Alice, CS), $Utility(t_1) = 1$

Let
$$t_2 = (Kate, Math), Utility(t_2) = 1$$

$$Utility(D) = Utility(t_1) + Utility(t_2) = 2$$

Kate Math

Coalition Set $tuple_id$ name department t_1 Alice CS t_2 Kate Math

$$\psi(o_1) = \psi_{t_1}(o_1) + \psi_{t_2}(o_1)$$

 $\psi(o_1) = \psi_{t_1}(o_1) + \psi_{t_2}(o_1)$

Problem of calculating $\psi(o_i)$ with respect to the coalition set D

Kate Math

Under Independent Utility Assumption

Problem of calculating $\psi_t(o_i)$ with respect to a tuple $t \in D$

• Synthesis:

- For a given tuple t, a **synthesis** is a set of data owners that can produce t according to the coalition plan \mathcal{P} .
- E.g., for t_2 , $\{o_3, o_4\}$, $\{o_1, o_3, o_4\}$
- Minimal Synthesis
 - E.g., for t_2 , $\{o_3, o_4\}$
- Synthesis types:
 - Single-owner Synthesis
 - E.g., for t_2 , $\{o_5\}$
 - Multi-owner Synthesis
 - E.g., for t_2 , $\{o_3, o_4\}$

• Synthesis:

- For a given tuple t, a **synthesis** is a set of data owners that can produce t according to the coalition plan \mathcal{P} .
- E.g., for t_2 , $\{o_3, o_4\}$, $\{o_1, o_3, o_4\}$

• E.g., for
$$t_2$$
, $\{o_3, o_4\}$

- Synthesis types:
 - Single-owner Synthesis
 - E.g., for t_2 , $\{o_5\}$
 - Multi-owner Synthesis
 - E.g., for t_2 , $\{o_3, o_4\}$

Kate Math

• Synthesis:

- For a given tuple t, a **synthesis** is a set of data owners that can produce t according to the coalition plan \mathcal{P} .
- E.g., for t_2 , $\{o_3, o_4\}$, $\{o_1, o_3, o_4\}$
- Minimal Synthesis
 - E.g., for t_2 , $\{o_3, o_4\}$

- Single-owner Synthesis
 - E.g., for t_2 , $\{o_5\}$
- Multi-owner Synthesis
 - E.g., for t_2 , $\{o_3, o_4\}$

name department

Kate Math

• $\|\mathcal{O}_t\| \le \|\mathcal{O}\|$, where \mathcal{O}_t is the number of data owners contributing to t

Special Case

- Case 1: only single-owner synthesis exists
 - Closed-form solution in constant time $\psi_t(o_i) = \frac{Utility(t)}{\|\mathcal{O}_t\|}$
 - E.g., assume a tuple t with minimal syntheses: $\{\{o_6\}, \{o_7\}, \{o_8\}\}$
- Case 2: there is a unique multi-owner synthesis (UMOS)

Closed-form solution in linear time
$$\psi_t(o_i) = \frac{Utility(t)}{\|\mathcal{O}_t\| \times \binom{\|\mathcal{O}_t\| - 1}{m-1}}$$
 for o_i in the UMOS, where m is the number of data owners in the UMOS

• E.g., for t_2 , $\{\{o_3, o_4\}, \{o_5\}\}$

Special Case

- Case 1: only single-owner synthesis exists
 - Closed-form solution in constant time $\psi_t(o_i) = \frac{Utility(t)}{\|\mathcal{O}_t\|}$
 - E.g., assume a tuple t with minimal syntheses: $\{\{o_6\}, \{o_7\}, \{o_8\}\}$
- Case 2: there is a unique multi-owner synthesis (UMOS)

Closed-form solution in linear time
$$\psi_t(o_i) = \frac{Utility(t)}{\|\mathcal{O}_t\| \times \binom{\|\mathcal{O}_t\| - 1}{m-1}}$$
 for o_i in the UMOS, where m is the number of data owners in the UMOS

• E.g., for t_2 , $\{\{o_3, o_4\}, \{o_5\}\}$

General Case

- General idea: $\forall \mathcal{S} \subseteq \mathcal{O}_t \setminus \{o_i\}$, enumerate \mathcal{S} and evaluate $Utility_t(\mathcal{S})$ by checking whether \mathcal{S} is a synthesis of t
- Drawback: high computational cost when $\|\mathcal{O}_t\|$ is large
- SC Algorithm
 - General idea: $\forall \mathcal{S} \subseteq \mathcal{O}_t \setminus \{o_i\}$, use the combination of minimal syntheses to find all such \mathcal{S} that $Utility_t(\mathcal{S} \cup \{o_i\}) Utility_t(\mathcal{S}) = Utility(t)$
 - Drawback: high computational cost when the number of minimal syntheses is large
- A heuristic method to choose between SL and SC algorithms

General Case

- SL Algorithm
 - General idea: $\forall \mathcal{S} \subseteq \mathcal{O}_t \setminus \{o_i\}$, enumerate \mathcal{S} and evaluate $Utility_t(\mathcal{S})$ by checking whether \mathcal{S} is a synthesis of t
 - Drawback: high computational cost when $\|\mathcal{O}_t\|$ is large

- SC Algorithm
 - General idea: $\forall \mathcal{S} \subseteq \mathcal{O}_t \setminus \{o_i\}$, use the combination of minimal syntheses to find all such \mathcal{S} that $Utility_t(\mathcal{S} \cup \{o_i\}) Utility_t(\mathcal{S}) = Utility(t)$
 - Drawback: high computational cost when the number of minimal syntheses is large
- A heuristic method to choose between SL and SC algorithms

Experimental Results

Scalability with respect to number of data owners

Experimental Results

Scalability with respect to number of data owners

Closed form solution in the majority cases

Conclusion

- We identify independent utility assumption
- We develop an exact Shapley value computation method under the assumption
 - Closed form solution in the majority cases
 - Fast algorithms in general case
- Experiments show improving performance by orders of magnitudes

Thanks Q&A