§ 1.7. Proof 1. Differences between Axiom, Theorem, Corollary, lemma

"Axiom: a true mathematical Statement whose truth is accepted without proof.

Ex. To get a unique line, we'll need two different points.

2) Theorem: A time mathematical Statement Whose thath can be verified (proved) also the it for something significant or interesting.

4-Color theoren: (textbook. page 763. Theorem 1)

3) Corollary: A Mathematical result that can be deducted from, and is thereby a Consequence of some earlier results H1=2, 2+2=4, 3+3=6, => n+n=2n

4) Lemma: A Mathematical result that is useful in establishing the truth of Some other result.

2. Counter example (dispose the statement)

 $(\forall x)$ p(x) $\rightarrow Q(x)$ = Time which means p(x) $\rightarrow Q(x)=T$ for each $x \in D$ if $p(x) \rightarrow Q(x) = False$ for at least 1 $X \in \mathbb{D}$, then $\forall x p(x) \rightarrow Q(x) = F$. Ex. If $x \in \mathbb{R}$, then $(x^2-1)^2 > 0$

False. x=1 or x=-1 => $(x^2-1)^2=0$

② $p(x) = 3x^2 - 4x + 1$ is even where $x \in \mathbb{Z}^+$ $p(1) = 3 \cdot 4 + (1 = 0) \text{ even}$ $p(2) = 3(2)^2 - 4(2) + (1 = (2 - 8 + 1 = 5) \text{ odd}!$ $p(3) = 3(2)^2 - 4(2) + (1 = (2 - 8 + 1 = 5) \text{ odd}!$ $p(4) = 3(2)^2 - 4(2) + (1 = (2 - 8 + 1 = 5) \text{ odd}!$ $p(5) = 3(2)^2 - 4(2) + (1 = (2 - 8 + 1 = 5) \text{ odd}!$ $p(6) = 3(2)^2 - 4(2) + (1 = (2 - 8 + 1 = 5) \text{ odd}!$ $p(7) = 3 \cdot 4 + (1 = 0) \text{ even}$ $p(8) = 3(2)^2 - 4(2) + (1 = (2 - 8 + 1 = 5) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2 + 1 = 6) \text{ odd}!$ $p(8) = 3(2)^2 - 4(2) + (2$

- 3. Trivial Us. Vacuous.
 - 9 Third Pf $\forall x p(x) \rightarrow Q(x) = Tme$. ? $\longrightarrow T = T$

 - Ex. let $n \in \mathbb{Z}$, if $n^3 > 0$, then 3 is odd. ? \rightarrow T = Tme

By trivial pf, the statement is time.

Ex. Let $n \in \mathbb{Z}$, if 3 is even, then $n^3 > 0$.

F \rightarrow ? = T

By vacuous pf, the statement is true.

3. Direct Proof

Vx p(x) -> Q(x), Assume p(x) = True for some orbitrary x., Show Q(x) = True for this element x.

- ** Assume you are familiar with the following properties:
 - 1) The negative of every integer is still an integer. Ex. X & 2 , -X & 3
 - 2) The sum(difference) of every two lategers is lateger. Ex. X+7 X62, 762 => X+762.
 - 3) The product of every two lategers is an integer. Ex. 367, x67, => 3. x 67