Adversarially Trained Actor Critic for Offline Reinforcement Learning

Presentor: Tian Xu xut@lamda.nju.edu.cn

Nanjing University, Nanjing, China

Based on:

Ching-An Cheng, Tengyang Xie, Nan Jiang, Alekh Agarwal. "Adversarially Trained Actor Critic for Offline Reinforcement Learning." ICML (Outstanding Paper), 2022.

November 8, 2022

Motivation

Two desiderata for an offline RL algorithm.

- ➤ Safe Policy Improvement: with a proper hyperparameter, the learned policy should outperform the behavioral policy. Robust Policy Improvement (RPI): safe policy improvement holds across large hyperparameter choices.
 - RPI is important for some risk-sensitive tasks like healthcare.
 - RPI makes policy finetuning with additional online interactions possible.
- Learning Optimality: the learned policy should outperform the policy whose state-action distribution is well covered by the dataset.

Existing theoretical and empirical works fail to satisfy both two properties, especially the RPI property.

Main Contributions

- ► The authors proposed a <u>Stackelberg game formulation</u> based on the <u>relative pessimism</u>. Built upon this Stackelberg game, they developed the method adversarially trained actor critic (ATAC).
- ► Theoretically, they proved that ATAC satisfies the properties of both robust policy improvement and learning optimality.
- Empirically, ATAC has a scalable implementation, which is verified to hold the mentioned two desiderata on D4RL benchmarks.

Background

- ▶ Infinite-horizon discounted MDP: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma, s_0)$.
- ► Policy value and Q-function:

$$J(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) | \pi\right], Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) | (s_{0}, a_{0}) = (s, a), \pi\right].$$

- ► For a policy π , the Bellman operator \mathcal{T}^{π} : $(\mathcal{T}^{\pi}f)(s,a) := R(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} [f(s',\pi)]$, where $f(s',\pi) = \mathbb{E}_{a' \sim \pi(\cdot \mid s')} [f(s',a')]$.
- $\blacktriangleright \text{ State-action distribution: } d^{\pi}(s,a) = (1-\gamma)\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \mathbb{I}\left(s_{t}=s, a_{t}=a\right) \mid \pi\right].$
- ▶ The data-weighted squared ℓ_2 -norm: $\|f\|_{2,\mu}^2 = \mathbb{E}_{(s,a)\sim\mu}\left[f(s,a)^2\right]$.

Offline RL and Function Approximation

In the offline setting, we only have access to a pre-collected dataset $\mathcal{D}=\{(s,a,r,s')\}$, where $(s,a)\sim \mu=d^\mu, r=R(s,a), s'\sim P(\cdot|s,a)$ and μ is the behavioral policy.

They consider the function approximation setting. The learner have access to a value function class $\mathcal{F} \subseteq (\mathcal{S} \times \mathcal{A} \to [0, V_{\max}])$ and a policy class $\Pi \subseteq (\mathcal{S} \to \Delta(\mathcal{A}))$.

- ▶ Assumption 1 (Realizability): $\forall \pi \in \Pi, Q^{\pi} \in \mathcal{F}$.
- ▶ Assumption 2 (Bellman Completeness): $\forall f \in \mathcal{F}, \forall \pi \in \Pi, \ \mathcal{T}^{\pi}f \in \mathcal{F}.$
- The theoretical results also hold when the above assumptions are satisfied approximately.
- ► These two assumptions are <u>necessary</u> for efficient learning with function approximation in the offline setting. [Foster et al., 2022, Wang et al., 2021]

Key Idea: Relative Pessimism

Optimize for the best worst-case performance compared with the behavior policy.

$$\widehat{\pi}^* \in \operatorname*{arg\,max}_{\pi \in \Pi} \underbrace{ \underset{\mathsf{Pessimism}}{\mathsf{lower}} \underset{\mathsf{Relative}}{\mathsf{J}}(\pi) - J(\mu)}_{\mathsf{Relative}}.$$

Stackelberg Game Formulation

$$\widehat{\pi}^* \in \underset{\pi \in \Pi}{\operatorname{argmax}} \mathcal{L}_{\mu} (\pi, f^{\pi})$$
s.t.
$$f^{\pi} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathcal{L}_{\mu} (\pi, f) + \beta \mathcal{E}_{\mu} (\pi, f)$$

where $\mathcal{L}_{\mu}(\pi, f) := \mathbb{E}_{(s,a) \sim \mu}[f(s,\pi) - f(s,a)], \ \mathcal{E}_{\mu}(\pi, f) := \mathbb{E}_{\mu}\left[\left((f - \mathcal{T}^{\pi}f)(s,a)\right)^{2}\right]$ is the Bellman error and β is the hyperparameter.

- $\widehat{\pi}^*$ maximizes the value function on $a \sim \pi(\cdot|s)$ predicted by f^{π} , and minimizes the value function on $a \sim \mu(\cdot|s)$ predicted by f^{π} .
- f^{π} performs the relatively pessimistic policy evaluation of π compared with μ (we will prove $\mathcal{L}_{\mu}\left(\pi,f^{\pi}\right) \precsim J(\pi) J(\mu)$). On the one hand, the Bellman error $\mathcal{E}_{\mu}(\pi,f)$ ensures f^{π} 's Bellman consistency on data. On the other hand, $\mathcal{L}_{\mu}(\pi,f)$ ensures f^{π} 's relative pessimism.

Robust Policy Improvement

Proposition 1 (Robust Policy Improvement).

Suppose that the realizability assumption holds and $\mu \in \Pi$, for any $\beta \geq 0$, we have that

$$\mathcal{L}_{\mu}(\pi, f^{\pi}) \leq (1 - \gamma)(J(\pi) - J(\mu)), \ \forall \pi \in \Pi.$$

Furthermore, it holds that $J(\widehat{\pi}^*) \geq J(\mu)$.

- Relative pessimism: The first claim suggests that $\widehat{\pi}^*$ optimizes the lower bound of $J(\pi) J(\mu)$ up to constants. This lower bound is tight when π is the behavior policy μ .
- ► The second claim shows that the policy that solves this Stackelberg game holds the robust policy improvement property. The RPI property is mainly due to the relative pessimism.

Analysis

Claim I: For any $\pi \in \Pi$, $Q^{\pi} \in \mathcal{F}$ and $f^{\pi} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathcal{L}_{\mu}(\pi, f) + \beta \mathcal{E}_{\mu}(\pi, f)$, we have

$$\begin{split} \mathcal{L}_{\mu}(\pi, f^{\pi}) &\leq \mathcal{L}_{\mu}(\pi, f^{\pi}) + \beta \mathcal{E}_{\mu}(\pi, f^{\pi}) \\ &\leq \mathcal{L}_{\mu}(\pi, Q^{\pi}) + \beta \mathcal{E}_{\mu}(\pi, Q^{\pi}) \\ &= \mathcal{L}_{\mu}(\pi, Q^{\pi}) & \mathcal{E}_{\mu}(\pi, Q^{\pi}) = 0 \\ &= \mathbb{E}_{(s,a) \sim d^{\mu}} \left[Q^{\pi}(s, \pi) - Q^{\pi}(s, a) \right] \\ &= \mathbb{E}_{(s,a) \sim d^{\mu}} \left[-A^{\pi}(s, a) \right] \\ &= (1 - \gamma) \left(J(\pi) - J(\mu) \right). & \text{policy difference lemma} \end{split}$$

$$=(1-\gamma)(J(\pi)-J(\mu))$$
.

Claim II:
$$(1 - \gamma) (J(\widehat{\pi}^*) - J(\mu)) \ge \mathcal{L}_{\mu}(\widehat{\pi}^*, f^{\widehat{\pi}^*}) + \beta \mathcal{E}_{\mu}(\widehat{\pi}^*, f^{\widehat{\pi}^*})$$

$$\ge \mathcal{L}_{\mu}(\widehat{\pi}^*, f^{\widehat{\pi}^*}) \qquad \qquad \mathcal{E}_{\widehat{\pi}^*}(\widehat{\pi}^*, f^{\widehat{\pi}^*}) \ge 0$$

$$\ge \mathcal{L}_{\mu}(\mu, f^{\mu}) \qquad \qquad \mu \in \Pi$$

$$= 0.$$

Useful fact: $\mathcal{L}_{\mu}(\pi, f^{\pi}) \leq \mathcal{L}_{\mu}(\pi, Q^{\pi}) = (1 - \gamma)(J(\pi) - J(\mu)).$

Why Relative Pessimism Leads to Robust Improvement

Relative Pessimism:

$$\widehat{\pi}^* \in \underset{\pi \in \Pi}{\operatorname{argmax}} \mathcal{L}_{\mu} \left(\pi, f^{\pi} \right)$$
 s.t.
$$f^{\pi} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathcal{L}_{\mu}(\pi, f) + \beta \mathcal{E}_{\mu}(\pi, f)$$
 where
$$\mathcal{L}_{\mu}(\pi, f) := \mathbb{E}_{(s, a) \sim \mu} [f(s, \pi) - f(s, a)].$$
 Absolute Pessimism (a variant of [Xie et al., 2021]):
$$\widetilde{\pi}^* \in \underset{\pi \in \Pi}{\operatorname{argmin}} f^{\pi}(s_0, \pi)$$
 s.t.
$$f \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} f^{\pi}(s_0, \pi) + \beta \mathcal{E}_{\mu}(\pi, f)$$

$$\forall \pi, f^{\pi}(s_0, \pi) \leq f^{\pi}(s_0, \pi) + \beta \mathcal{E}_{\mu}(\pi, f) \leq Q^{\pi}(s_0, \pi) + \beta \mathcal{E}_{\mu}(\pi, Q^{\pi}) = Q^{\pi}(s_0, \pi).$$

The Perspective of Lower Bound Maximization

- For illustration, we consider the bandit problem with two actions $(a^1, a^2, r(a^1) > r(a^2))$. The policy π : $\pi(a^1) = x$, $\pi(a^2) = 1 x$. The behavior policy μ : $\mu(a^1) = \mu$, $\mu(a^2) = 1 \mu$, where $\mu \in (0, 1)$.
- For relative pessimism, we can ensure that the constructed lower bound is sharp at $\pi = \mu$ for any $\beta \ge 0$. $\mathcal{L}_{\mu}(\mu, f^{\mu}; \beta) = (1 \gamma) (J(\mu) J(\mu)) = 0$ for any $\beta \ge 0$.
- For absolute pessimism, the constructed lower bound could be loose at $\pi = \mu$ for some $\beta \geq 0$. For example, when $\beta = 0$, $f^{\pi}(s_0, \pi) = -\infty, \forall \pi \in \Pi$ if \mathcal{F} contains all state-action functions.

The Perspective of Imitation Learning

When $\beta = 0$:

$$\widehat{\pi}^* \in \underset{\pi \in \Pi}{\operatorname{argmax}} \mathcal{L}_{\mu} (\pi, f^{\pi})$$
s.t.
$$f^{\pi} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathcal{L}_{\mu} (\pi, f).$$

We re-formulate it as

$$\begin{aligned} \max_{\pi \in \Pi} \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathcal{L}_{\mu}(\pi, f) &= \max_{\pi \in \Pi} \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}_{(s, a) \sim d^{\mu}} \left[f(s, \pi) - f(s, a) \right] \\ &\stackrel{(a)}{=} \max_{\pi \in \Pi} - \mathbb{E}_{s \sim d^{\mu}} \left[\mathsf{IPM}(\pi(\cdot|s), \mu(\cdot|s)) \right]. \end{aligned}$$

In (a), it resembles BC which minimizes the policy difference in terms of IPM distance on states induced by d^{μ} . Here f can be interpreted as the test/discriminator function to distinguish the actions sampled from $\pi(\cdot|s)$ and $\mu(\cdot|s)$.

 $Offline \ RL + Relative \ Pessimism = Imitation + Bellman \ Regularization.$

Adversarially Trained Actor Critic

How to utilize this Stackelberg game formulation to design algorithm?

- $\mathcal{L}_{\mu}(\pi, f) = \mathbb{E}_{(s, a) \sim \mu}[f(s, \pi) f(s, a)] \text{ and } \mathcal{E}_{\mu}(\pi, f) = \mathbb{E}_{\mu}\left[\left((f \mathcal{T}^{\pi}f)(s, a)\right)^{2}\right] \text{ is defined with } \mu \text{ and } \mathcal{T}^{\pi}, \text{ which is unknown to the learner.}$
- ▶ Empirical estimates: $\mathcal{L}_{\mathcal{D}}(f,\pi) := \mathbb{E}_{\mathcal{D}}[f(s,\pi) f(s,a)].$

$$\mathbb{E}_{\mu} \left[\left(f(s, a) - \mathcal{T}^{\pi} f(s, a) \right)^{2} \right] = \mathbb{E}_{\mu \times (P, R)} \left[\left(f(s, a) - r - \gamma f(s', \pi) \right)^{2} \right]$$

$$- \mathbb{E}_{\mu} \left[\mathbf{Var}_{(R, P)} \left[r + \gamma f(s', \pi) | s, a \right] \right]$$

$$\mathcal{E}_{\mathcal{D}}(f, \pi) := \mathbb{E}_{\mathcal{D}} \left[\left(f(s, a) - r - \gamma f(s', \pi) \right)^{2} \right]$$

$$- \min_{f' \in \mathcal{F}} \mathbb{E}_{\mathcal{D}} \left[\left(f'(s, a) - r - \gamma f(s', \pi) \right)^{2} \right] .$$

▶ We directly know that $\mathcal{L}_{\mathcal{D}}(f,\pi)$ can approximate $\mathcal{L}_{\mu}(f,\pi)$ well. Later, we will show that $\mathcal{E}_{\mathcal{D}}(f,\pi)$ is a good estimate of the true Bellman error $\mathcal{E}_{\mu}(\pi,f)$ [Antos et al., 2008].

Solving the Stackelberg game

$$\begin{split} \widehat{\pi}^* &\in \underset{\pi \in \Pi}{\operatorname{argmax}} \mathcal{L}_{\mathcal{D}}\left(\pi, f^{\pi}\right) \\ \text{s.t.} \quad f^{\pi} &\in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathcal{L}_{\mathcal{D}}(\pi, f) + \beta \mathcal{E}_{\mathcal{D}}(\pi, f) \end{split}$$

Best Response:
$$f_k \in \arg\min_{f \in \mathcal{F}} \mathcal{L}_{\mathcal{D}}\left(\pi_k, f\right) + \beta \mathcal{E}_{\mathcal{D}}\left(\pi_k, f\right)$$
Repeat for K iterations

No-regret Learning: $\pi_{k+1} = \operatorname{NoRegret}(\pi_k, f_k)$

Output:
$$\overline{\pi} = \mathbf{Unif}(\{\pi_1, \cdots, \pi_K\})$$

No-regret Learning Oracle

Definition 1 (No-regret policy optimization oracle).

An algorithm PO is called a no-regret policy optimization oracle if for any sequence of value functions f_1, \cdots, f_K where each $f_k : \mathcal{S} \times \mathcal{A} \to [0, V_{\text{max}}]$, PO outputs a sequence of policies π_1, \cdots, π_K output by PO satisfy, for any comparator $\pi \in \Pi$:

$$\varepsilon_{\mathrm{opt}}^{\pi} := \frac{1}{1 - \gamma} \sum_{k=1}^{K} \mathbb{E}_{\pi} \left[f_k(s, \pi) - f_k\left(s, \pi_k\right) \right] = o(K).$$

In some scenarios, we can apply natural policy gradient based on multiplicative weights updates (an instance of mirror descent) [Shalev-Shwartz, 2012].

$$\pi_{k+1}(a \mid s) \propto \pi_k(a \mid s) \exp(\eta f_k(s, a))$$
, with step size η .

Theoretical Guarantees: RPI

Theorem 2 (Robust Policy Improvement).

Assume that \mathcal{F} satisfies the realizability and $\mu \in \Pi$, consider that $\overline{\pi}$ is the learned policy, with probability at least $1 - \delta$,

$$J(\mu) - J(\bar{\pi}) \leq \widetilde{\mathcal{O}}\left(\frac{1}{(1-\gamma)^2 N^{1/2}} + \frac{\beta}{(1-\gamma)^3 N}\right) + \frac{\varepsilon_{\mathsf{opt}}^\mu}{K}.$$

- ▶ RPI: As long as $\beta = o(N)$, $\overline{\pi}$ is guaranteed to outperform μ when N is large and the number of iteration K is large. This robust policy improvement property is due to the relative pessimism principle.
- When $\beta=0$, ATAC based on relative pessimism is still guaranteed to learn a policy which is no worse than the behavior policy μ . On the other hand, the methods based on absolute pessimism degenerates when the Bellman error loss is removed.

Proof Sketch: Error Decomposition

As
$$\overline{\pi}$$
 is the mixture policy between $\{\pi_1,\cdots,\pi_K\}$, $J(\mu)-J(\overline{\pi})=\frac{1}{K}\sum_{k=1}^K J(\mu)-J(\pi^k)$,
$$J(\mu)-J(\pi^k)=\mathbb{E}_{s\sim d^\mu}\left[Q^{\pi^k}(s,\mu)-Q^{\pi^k}(s,\pi^k)\right] \qquad \qquad \text{Policy difference lemma}$$

$$=-\mathcal{L}_\mu(\pi_k,Q^{\pi_k})$$

$$=\mathcal{L}_\mu\left(\pi_k,f_k\right)-\mathcal{L}_\mu(\pi_k,Q^{\pi_k})-\mathcal{L}_\mu\left(\pi_k,f_k\right)$$

$$=\mathcal{L}_\mu\left(\pi_k,f_k\right)-\mathcal{L}_\mu(\pi_k,Q^{\pi_k})+\mathbb{E}_{s\sim d^\mu}\left[f_k(s,\mu)-f_k(s,\pi_k)\right].$$

Recall $f_k = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{L}_{\mathcal{D}}(\pi_k, f) + \beta \mathcal{E}_{\mathcal{D}}(\pi_k, f)$ Intuition: ignoring the statistical error $(f_k = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{L}_{\mu}(\pi_k, f) + \beta \mathcal{E}_{\mu}(\pi_k, f))$, we directly have $\mathcal{L}_{\mu}(\pi_k, f_k) - \mathcal{L}_{\mu}(\pi_k, Q^{\pi_k}) \leq 0$ due to the lower bound argument.

Proof Sketch: Error Decomposition

We only need to address the statistical error. Construct the empirical objective $\mathcal{L}_{\mathcal{D}}(\pi_k, f_k) + \beta \varepsilon_{\mathcal{D}}(\pi_k, f_k)$.

$$\mathcal{L}_{\mathcal{D}}(\pi_{k}, f_{k}) + \beta \varepsilon_{\mathcal{D}}(\pi_{k}, f_{k}).$$

$$\mathcal{L}_{\mu}(\pi_{k}, f_{k}) - \mathcal{L}_{\mu}(\pi_{k}, Q^{\pi_{k}})$$

$$= \mathcal{L}_{\mathcal{D}}(\pi_{k}, f_{k}) - \mathcal{L}_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}}) + \underbrace{\left|\mathcal{L}_{\mu}(\pi_{k}, f_{k}) - \mathcal{L}_{\mathcal{D}}(\pi_{k}, f_{k})\right| + \left|\mathcal{L}_{\mu}(\pi_{k}, Q^{\pi_{k}}) - \mathcal{L}_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}})\right|}_{\varepsilon_{\text{stat}}}$$

$$\leq \mathcal{L}_{\mathcal{D}}(\pi_{k}, f_{k}) + \beta \varepsilon_{\mathcal{D}}(\pi_{k}, f_{k}) - \mathcal{L}_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}}) + \varepsilon_{\text{stat}}^{1}$$

$$= \mathcal{L}_{\mathcal{D}}(\pi_{k}, f_{k}) + \beta \varepsilon_{\mathcal{D}}(\pi_{k}, f_{k}) - \mathcal{L}_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}}) - \beta \varepsilon_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}}) + \beta \varepsilon_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}}) + \varepsilon_{\text{stat}}^{1}$$

$$\leq \beta \varepsilon_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}}) + \varepsilon_{\text{stat}}^{1}$$

$$\leq \beta \varepsilon_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}}) + \varepsilon_{\text{stat}}^{1}$$

$$\leq \beta \varepsilon_{\mathcal{D}}(\pi_{k}, Q^{\pi_{k}}) + \varepsilon_{\text{stat}}^{1}$$

In the last inequality, $\varepsilon_{\mathcal{D}}(\pi_k,Q^{\pi_k}) = |\varepsilon_{\mathcal{D}}(\pi_k,Q^{\pi_k}) - \varepsilon_{\mu}(\pi_k,Q^{\pi_k})| \leq \varepsilon_{\mathsf{stat}}^2$. $\varepsilon_{\mathsf{stat}}^1$ can be directly upper bounded by Hoeffding's inequality. We will upper bound $\varepsilon_{\mathsf{stat}}^2$.

The Bellman Error Proxy

Theorem 3.

For any
$$\delta \in (0,1)$$
, w.p. $\geq 1 - \delta$, $\forall \pi \in \Pi$,

$$\mathcal{E}_{\mathcal{D}}(\pi, Q^{\pi}) = \mathcal{E}_{\mathcal{D}}(\pi, Q^{\pi}) - \|Q^{\pi} - \mathcal{T}^{\pi} Q^{\pi}\|_{2, \mu}^{2} \leq \frac{23V_{\max}^{2} \log\left(2|\mathcal{F}||\Pi|/\delta\right)}{n}.$$

The Bellman Error Proxy

 $\mathcal{E}_{\mathcal{D}}(f,\pi) := \mathbb{E}_{\mathcal{D}}\left[\left(f(s,a) - r - \gamma f\left(s',\pi\right)\right)^2\right] - \min_{f' \in \mathcal{F}} \mathbb{E}_{\mathcal{D}}\left[\left(f'(s,a) - r - \gamma f\left(s',\pi\right)\right)^2\right].$ $\mathcal{E}_{\mathcal{D}}(f,\pi) \text{ is a proxy of the Bellman error } \|f - \mathcal{T}^\pi f\|_{2,\mu}^2. \text{ To understand this claim, the key observation builds upon the classical bias-variance decomposition. Let <math display="block">g \in \operatorname{argmin}_{f' \in \mathcal{F}} \mathbb{E}_{\mathcal{D}}\left[\left(f'(s,a) - r - \gamma f\left(s',\pi\right)\right)^2\right] \text{ be the empirical minimizer of the regression problem.}$

$$\mathcal{E}_{\mathcal{D}}(f,\pi) \approx \mathbb{E}_{\mu \times (P,R)} \left[\left(f(s,a) - r - \gamma f(s',\pi) \right)^{2} \right] - \mathbb{E}_{\mu \times (P,R)} \left[\left(g(s,a) - r - \gamma f(s',\pi) \right)^{2} \right]$$

$$= \left(\mathbb{E}_{\mu} \left[\left(f(s,a) - \mathcal{T}^{\pi} f(s,a) \right)^{2} \right] + \mathbb{E}_{\mu} \left[\operatorname{Var}_{(R,P)} \left[r + \gamma f(s',\pi) | s,a \right] \right] \right)$$

$$- \left(\mathbb{E}_{\mu} \left[\left(g(s,a) - \mathcal{T}^{\pi} f(s,a) \right)^{2} \right] + \mathbb{E}_{\mu} \left[\operatorname{Var}_{(R,P)} \left[r + \gamma f(s',\pi) | s,a \right] \right] \right)$$

$$= \mathbb{E}_{\mu} \left[\left(f(s,a) - \mathcal{T}^{\pi} f(s,a) \right)^{2} \right] - \mathbb{E}_{\mu} \left[\left(g(s,a) - \mathcal{T}^{\pi} f(s,a) \right)^{2} \right].$$

 $\|g - \mathcal{T}^{\pi} f\|_{2,\mu}^2$ measures the difference between the empirical minimizer g and the population minimizer (Bayes-optimal minimizer) $\mathcal{T}^{\pi} f$, which diminishes as n increases.

Proof Sketch: The Bellman Error Proxy

$$\begin{split} \text{Lemma 4:} \ \left| \mathcal{E}_{\mathcal{D}}(f,\pi) - \left(\|f - \mathcal{T}^{\pi}f\|_{2,\mu}^{2} - \|g - \mathcal{T}^{\pi}f\|_{2,\mu}^{2} \right) \right| \leqslant \tilde{O}\left(\frac{\|g - f\|_{2,\mu}}{\sqrt{N}} \right) \\ \text{Lemma 5:} \ \left\| g - \mathcal{T}^{\pi}f \right\|_{2,\mu}^{2} \leq \tilde{O}\left(\frac{1}{N} \right) \\ \left| \mathcal{E}_{\mathcal{D}}(f,\pi) - \|f - \mathcal{T}^{\pi}f\|_{2,\mu}^{2} \right| \leq \tilde{O}\left(\frac{\|g - f\|_{2,\mu}}{\sqrt{N}} \right) \\ \downarrow \quad \text{Set } f = Q^{\pi} \\ \text{Theorem 3:} \ \mathcal{E}_{\mathcal{D}}(Q^{\pi},\pi) \leq \tilde{O}\left(\frac{\|g - Q^{\pi}\|_{2,\mu}}{\sqrt{N}} \right) = \tilde{O}\left(\frac{\|g - \mathcal{T}^{\pi}Q^{\pi}\|_{2,\mu}}{\sqrt{N}} \right) = \tilde{O}(\frac{1}{N}) \end{split}$$

Proof Sketch: The Bellman Error Proxy

Lemma 4.

For any
$$\delta \in (0,1)$$
, w.p. $\geq 1-\delta$, for any $f,g_1,g_2 \in \mathcal{F}$ and $\pi \in \Pi$,
$$\left| \left\| g_1 - \mathcal{T}^\pi f \right\|_{2,\mu}^2 - \left\| g_2 - \mathcal{T}^\pi f \right\|_{2,\mu}^2 \right.$$

$$\left. - \left(\mathbb{E}_{\mathcal{D}} \left[\left(g_1(s,a) - r - \gamma f\left(s',\pi\right) \right)^2 \right] - \mathbb{E}_{\mathcal{D}} \left[\left(g_2(s,a) - r - \gamma f\left(s',\pi\right) \right)^2 \right] \right) \right|$$

$$\leq \|g_1 - g_2\|_{2,\mu} \sqrt{\frac{24V_{\max}^2 \log(2|\mathcal{F}||\Pi|/\delta)}{n}} + \frac{V_{\max}^2 \log(2|\mathcal{F}||\Pi|/\delta)}{n}.$$

The proof builds upon the bias-variance decomposition. To establish a sharp bound, we need to use Bernstein's inequality, which introduces the variance term related to $||g_1 - g_2||_{2,u}$.

Lemma 5.

Consider a real-valued regression problem with feature space \mathcal{X} and label space $\mathcal{Y} \in [0, V_{\max}]$. Let $\{(X_i, Y_i)\}_{i=1}^n$ be the i.i.d. data where $X_i \sim P(\cdot)$ and $Y_i \sim Q(\cdot|X_i)$. Let $\mathcal{F} \subset \mathcal{X} \to \mathcal{Y}$ be the function class, which is assumed to be finite but exponentially large. Let $f^*(X) = \mathbb{E}[Y|X]$ be the Bayes-optimal minimizer. We assume that \mathcal{F} satisfies the realizability, i.e., $f^* \in \mathcal{F}$. Let \widehat{f}^* be the empirical risk minimizer on $\{(X_i, Y_i)\}_{i=1}^n$.

$$\hat{f}^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{L}(f) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2.$$

Then w.p. $\geq 1 - \delta$,

$$\mathbb{E}_{x \sim P(\cdot)} \left[\left(\hat{f}^*(x) - f^*(x) \right)^2 \right] \le \frac{8V_{\max}^2 \log 2 \left(|\mathcal{F}|/\delta \right)}{n}.$$

In offline RL, the realizability corresponds to the Bellman completeness, i.e., $\forall \pi \in \Pi$, $\forall f \in \mathcal{F}$, $\mathcal{T}^{\pi}f \in \mathcal{F}$.

Theoretical Guarantees: Learning Optimality

Theorem 6 (Learning Optimality).

Assume that \mathcal{F} satisfies the realizability and completeness. We define $\mathscr{C}(\nu;\mu,\mathcal{F},\pi):=\max_{f\in\mathcal{F}}\frac{\mathcal{E}_{\nu}(\pi,f)}{\mathcal{E}_{\mu}(\pi,f)}$. For any policy $\pi\in\Pi$, suppose that $\max_{k\in[K]}\mathscr{C}(d^{\pi};\mu,\mathcal{F},\pi_{k})\leq C$, with $\beta=\Theta\left(\sqrt[3]{V_{\max}N^{2}}\right)$, with high probability,

$$J(\pi) - J(\bar{\pi}) \le \mathcal{O}\left(\frac{\sqrt{C}}{(1-\gamma)^2 N^{1/3}}\right) + \frac{\varepsilon_{\mathrm{opt}}^{\pi}}{K}.$$

- $\mathscr{C}(\nu;\mu,\mathcal{F},\pi)$ measures how well the distribution ν is covered by the data distribution μ w.r.t π and \mathcal{F} . This is a sharper measure compared with the concentrability coefficient $(\mathscr{C}(\nu;\mu,\mathcal{F},\pi) \leq \max_{s,a} \nu(s,a)/\mu(s,a), \forall \pi, \forall \mathcal{F}).$
- ▶ This result shows that the learned policy can compete with any policy whose state-action distribution is covered by the dataset, when N is large and the number of iterations is large.

A Practical Implementation of ATAC

- In practice, the above process is approximated by a two-timescale gradient-based method.
- ▶ The critic is updated with a much faster rate η_{fast} than the actor with η_{slow} .
- The critic update with $\eta_{\rm fast}$ can mimic the best response procedure and the actor update with $\eta_{\rm slow}$ can mimic the no-regret learning procedure.

Practical Designs of Critic Update

- Projection: We parameterize \mathcal{F} as neural networks with ℓ_2 bounded weights. The projection is crucial to ensure stable learning across all β -values.
- ▶ A surrogate loss of the Bellman error $\mathcal{E}_{\mathcal{D}}(f,\pi)$:

$$\mathcal{E}_{\mathcal{D}}^{w}(f,\pi) := (1-w)\mathcal{E}_{\mathcal{D}}^{\mathrm{td}}(f,f,\pi) + w\mathcal{E}_{\mathcal{D}}^{\mathrm{td}}\left(f,\bar{f}_{\min},\pi\right),\,$$

where $w \in (0,1)$, $\mathcal{E}^{\mathrm{td}}_{\mathcal{D}}(f,f',\pi) := \mathbb{E}_{\mathcal{D}}[(f(s,a)-r-\gamma f'(s',\pi))^2]$ and $\bar{f}_{\min}(s,a) := \min_{i=1,2} \bar{f}_i(s,a)$. Using this surrogate loss significantly improves the optimization stability.

Practical Designs of Actor Update

- Actor loss with a single critic: While the critic optimization uses the double Q networks for numerical stability, the actor loss only uses one of the critics (f_1) . This is different from SAC which takes $\min_{i=1,2} f_i(s,a)$ as the objective.
- ▶ This design choice is critical to enable ATAC's IL behavior when β is low.

Experimental Evaluations

- ► Target: test the effectiveness of ATAC in terms of performance and robust policy improvement.
- Baseline: CQL, COMBO, TD3+BC, IQL, BC.
- Variants of ATAC:
 - An <u>absolute</u> pessimism version of ATAC (denoted $ATAC_0$): $\mathcal{L}_{\mathcal{D}}(f, \pi)$ in $\mathcal{L}_{\text{critic}}$ is replaced with $f(s_0, \pi)$.
 - Since ATAC does not have guarantees on last-iterate convergence, they report also the results of both the last iterate (denoted as ATAC and $ATAC_0$) and the best checkpoint (denoted as $ATAC^*$ and $ATAC_0$) selected among 9 checkpoints.

Performance

	Behavior	ATAC*	ATAC	$ATAC_0^*$	$ATAC_0$	CQL	COMBO	TD3+BC	IQL	BC
halfcheetah-rand	-0.1	4.8	3.9	2.3	2.3	35.4	38.8	10.2	-	2.1
walker2d-rand	0.0	8.0	6.8	7.6	5.7	7.0	7.0	1.4	-	1.6
hopper-rand	1.2	31.8	17.5	31.6	18.2	10.8	17.9	11.0	-	9.8
halfcheetah-med	40.6	54.3	53.3	43.9	36.8	44.4	54.2	42.8	47.4	36.1
walker2d-med	62.0	91.0	89.6	90.5	89.6	74.5	75.5	79.7	78.3	6.6
hopper-med	44.2	102.8	85.6	103.5	94.8	86.6	94.9	99.5	66.3	29.0
halfcheetah-med-replay	27.1	49.5	48.0	49.2	47.2	46.2	55.1	43.3	44.2	38.4
walker2d-med-replay	14.8	94.1	92.5	94.2	89.8	32.6	56.0	25.2	73.9	11.3
hopper-med-replay	14.9	102.8	102.5	102.7	102.1	48.6	73.1	31.4	94.7	11.8
halfcheetah-med-exp	64.3	95.5	94.8	41.6	39.7	62.4	90.0	97.9	86.7	35.8
walker2d-med-exp	82.6	116.3	114.2	114.5	104.9	98.7	96.1	101.1	109.6	6.4
hopper-med-exp	64.7	112.6	111.9	83.0	46.5	111.0	111.1	112.2	91.5	111.9
pen-human	207.8	79.3	53.1	106.1	61.7	37.5	-	-	71.5	34.4
hammer-human	25.4	6.7	1.5	3.8	1.2	4.4		-	1.4	1.5
door-human	28.6	8.7	2.5	12.2	7.4	9.9	-	-	4.3	0.5
relocate-human	86.1	0.3	0.1	0.5	0.1	0.2	-	-	0.1	0.0
pen-cloned	107.7	73.9	43.7	104.9	68.9	39.2	-	-	37.3	56.9
hammer-cloned	8.1	2.3	1.1	3.2	0.4	2.1	-	-	2.1	0.8
door-cloned	12.1	8.2	3.7	6.0	0.0	0.4	-	-	1.6	-0.1
relocate-cloned	28.7	0.8	0.2	0.3	0.0	-0.1	-	-	-0.2	-0.1
pen-exp	105.7	159.5	136.2	154.4	97.7	107.0	-	-	-	85.1
hammer-exp	96.3	128.4	126.9	118.3	99.2	86.7	-	-	-	125.6
door-exp	100.5	105.5	99.3	103.6	48.3	101.5	-	-	-	34.9
relocate-exp	101.6	106.5	99.4	104.0	74.3	95.0	-	-	-	101.3

Table 1. Evaluation on the D4RL dataset. Algorithms with score within ϵ from the best on each domain are marked in bold, where $\epsilon = 0.1 |J(\mu)|$. Baseline results are from the respective papers. For ATAC variants, we take the median score over 10 seeds.

ATAC and $ATAC^{\star}$ outperforms other model-free baselines consistently and model-based method COMBO mostly..

Robust Policy Improvement

- ▶ ATAC based on relative pessimism improves from behavior policies over a wide range of hyperparameters β . On the other hand, offline RL based on absolute pessimism has safe policy improvement only for well-tuned hyperparameters β .
- ▶ This empirical results validate the role of relative pessimism on robust policy improvement.

References I

- A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with bellman-residual minimization based fitted policy iteration and a single sample path. <u>Machine Learning</u>, 71(1): 89–129, 2008.
- D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and Y. Xu. Offline reinforcement learning: Fundamental barriers for value function approximation. In <u>Proceedings of the 35th Annual Conference on Learning Theory</u>, page 3489, 2022.
- S. Shalev-Shwartz. Online learning and online convex optimization. <u>Foundations and Trends in Machine Learning</u>, 4(2):107–194, 2012.
- R. Wang, D. P. Foster, and S. M. Kakade. What are the statistical limits of offline RL with linear function approximation? In <u>Proceedings of the 9th International Conference on Learning Representations</u>, 2021.

References II

T. Xie, C. Cheng, N. Jiang, P. Mineiro, and A. Agarwal. Bellman-consistent pessimism for offline reinforcement learning. arXiv, 2106.06926, 2021.