Jméno a příjmení:

Podpis:

- 1. Je-li x>0 a současně y>0, pak platí $\left(x^{\frac{1}{2}}+y^{\frac{1}{2}}\right)^{-1}=$

b) $\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}}$ d) $\sqrt{-x} + \sqrt{-y}$

(30)

- 6

c) $\frac{1}{x^2} + \frac{1}{y^2}$ e) $x^{-\frac{1}{2}} + y^{-\frac{1}{2}}$

- 2. Z 50 zaměstnanců firmy jich 15 chodí do kurzu angličtiny a 10 do kurzu asertivity. 32 lidí nechodí do žádného z těchto kurzů. Kolik zaměstnanců chodí do obou uvedených kurzů?
 - a) 6 c) 8
- b) 7 d) 9

(30)- 6

- e) 10
- 3. Určete všechny hodnoty parametru p, pro které rovnice $x^2 2px + 2p = 0$ nemá reálné kořeny.
 - a) $p \in (0, \infty)$

b) $p \in (-2, 0)$

(30)

- c) $p \in (0, 2)$
- $d) p \in (-\infty, 0) \cup (2, \infty)$ e) $p \in (-\infty, -2) \cup (0, \infty)$

- 6

- 4. Parabola o rovnici $y = x^2 + 4x + 7$ má vrchol v bodě
 - a) [2, 3]c) [-2, 3]

- b) [2, -3]
- d) [-2, -3]

(30)- 6

- e) uvedená rovnice není rovnicí paraboly
- 5. Pro libovolná dvě čísla x,y splňující podmínku $y=\pi-x$ platí
 - a) $\sin x = \sin y$

b) $\sin x = \cos y$

(50)

c) $\cos x = \cos y$

d) $\cos x = \sin y$

- 10

- e) $\sin x = -\cos y$
- 6. Přímky $p: x = 1 + 2t; \ y = 3 t; \ t \in \mathbb{R}$ a q: x + 2y 7 = 0 jsou
 - a) kolmé

- b) různoběžné, ale nikoli kolmé
- (50)- 10

c) rovnoběžné různé

d) totožné

- e) mimoběžné
- 7. Odečteme-li totéž číslo od čísel 6, 10, 22, dostaneme první tři členy geometrické posloupnosti. Určete pátý člen této posloupnosti.
 - a) 60

b) 81

(50)- 10

c) 154

d) 162

e) 486

- 8. Mezi čísly a, b, c, d, e, f platí nerovnosti: a < d, b < f, c > b, d > c, e < c. Který z následujících vztahů může platit?
 - a) b = d

b) e = f

(50)

c) e = d

- d) Může platit kterýkoli z předchozích vztahů.
- 10

- e) Nemůže platit ani jeden z předchozích vztahů.
- Koule má poloměr R a válec má poloměr podstavy r=2R. Jaká je výška válce, je-li jeho objem roven jedné třetině objemu koule?
 - a) R/3

b) R/9

(50)- 10

c) 9/R

d) 16/R

- e) 16R

e) Jan nehraje tenis.

10.	Řešení rovnice $\sqrt{x+5} - \sqrt{x} = 2$ v oboru reálných čísel je		
	a) $x = 1/2$	b) $x = -1/2$	50
	c) $x = 1/4$	d) $x = 1/16$	- 10
	e) rovnice nemá řešení		
11.	Rovnost $4 x-1 + 2x+1 = -2x + 5$ platí pro		
	a) každé reálné x	b) neplatí pro žádné reálné x	(50)
	c) $x \in \langle 1, \infty \rangle$	d) $x \in \langle -1/2, 1 \rangle$	- 10
	e) $x \in (-\infty, -1/2)$, , , , , ,	
12.	Množina všech reálných řešení rovnice $\log(x+2) = 2 - \log(2x-6)$ je		
	a) prázdná	b) $\{-2\}$	<u>50</u>
	c) $\{-2,2\}$	d) $\{-7,8\}$	- 10
	e) {8}		
13.	Operace \ominus je definována jako $a\ominus b=b-3a$. Čemu je rovno $x\ominus x$, jestliže $1\ominus x=0$?		
	a) -6	b) -3	80
	c) -2/3	d) -1/3	- 16
	e) 0		
	Když bylo Anně, kolik je dnes Báře, byla Bára dvakrát mladší, než je Anna teď. Za 10 let bude Anna dvakrát starší, než je Bára teď. O kolik let je Anna starší než Bára?		
	a) 4	b) 5	80)
	c) 6	d) 7	- 16
	e) 8		
15.	Jiří koupil n kusů zboží celkem za 240 Kč. 12 kusů si nechal, zbytek prodal celkem za 120 Kč, přičemž na každém prodaném kusu vydělal 3 Kč. Jaká byla původní cena jednoho kusu zboží?		
	a) 3 Kč	b) 5 Kč	(80)
	c) 10 Kč	d) 12 Kč	- 16
	e) 15 Kč		
16.	Závodu se účastnilo 6 soutěžících z týmu A a 4 soutěžící z týmu B. Kolika způsoby mohla být obsazena první tři místa, jestliže víme, že závod vyhrál člen týmu A a na třetím místě je člen týmu B?		
	a) 18	b) 20	(80)
	c) 144	d) 192	- 16
	e) 240		
17.	Je dána funkce $f(x) = (2x+1)/(x-2)$. Pak $f(3t-1) =$		
	a) $(2t)/(t-1)$	b) $(3t+3)/(3t-2)$	(80)
	c) $(4t-1)/(t+2)$	d) $(5t+5)/(t-2)$	- 16
	e) $(6t-1)/(3t-3)$		
	Tři chlapci – Tomáš, Jan a Petr – se věnují každý jinému sportu – fotbalu, hokeji a tenisu – a chovají každý		
	jiné zvíře – psa, papouška a rybičky. Petr nemá rybičky. Jan má papouška. Hokejista má psa. Jan nehraje fotbal. Které tvrzení je pravdivé?		
	a) Petr hraje fotbal	b) Tomáš nehraje tenis.	80
	c) Tenista má rybičky.	d) Fotbalista má papouška.	- 16