### Decentralized Optimization and Learning

# **Modern Convex Optimization Methods**

Mingyi Hong
University Of Minnesota

M. Hong would like to thank Dr. Prashant Khanduri for helping prepare the slides.

### **Outline**

- Alternating Direction Method of Multipliers (ADMM)
  - o Dual Ascent
  - o Dual Decomposition
  - Augmented Lagrangian Method
  - o ADMM: Convergence
- Decentralized ADMM
  - Assumptions
  - o Convergence: Proof Sketch
- EXTRA
  - Assumptions
  - Convergence
- Connection: EXTRA and Primal-Dual Methods

### ADMM Basics: Dual Ascent<sup>1</sup>

#### Problem

$$\begin{aligned} & \text{minimize}_{\boldsymbol{x}} & & f(\boldsymbol{x}) \\ & \text{subject to} & & A\boldsymbol{x} = b \end{aligned}$$

with  $x \in \mathbb{R}^n$ , with  $A \in \mathbb{R}^{p \times n}$  and  $f : \mathbb{R}^n \to \mathbb{R}$  is convex

#### Dual Ascent

$$\boldsymbol{x}^{k+1} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \left\{ L(\boldsymbol{x}, \boldsymbol{y}^k) = f(\boldsymbol{x}) + (\boldsymbol{y}^k)^T (A\boldsymbol{x} - b) \right\}$$
$$\boldsymbol{y}^{k+1} = \boldsymbol{y}^k + \alpha^k (A\boldsymbol{x}^{k+1} - b)$$

with  $\alpha^k > 0$  being the step-size

<sup>&</sup>lt;sup>1</sup>Boyd, et al., Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc, 2011.

# **Dual Decomposition**

#### Problem

$$\mathsf{minimize}_{m{x}} = \sum_{i=1}^m f_i(m{x}_i)$$
  $\mathsf{subject}\ \mathsf{to}\quad Am{x} = b$  where  $m{x} = (m{x}_1, \dots, m{x}_m) \in \mathbb{R}^n$  with  $m{x}_i \in \mathbb{R}^{n_i}$  with  $i \in [a]$ 

where  $\boldsymbol{x}=(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_m)\in\mathbb{R}^n$  with  $\boldsymbol{x}_i\in\mathbb{R}^{n_i}$  with  $i\in[m]$  and

$$A = [A_1, \dots, A_m]$$
 with  $A_i \in \mathbb{R}^{p \times n_i} \Rightarrow A oldsymbol{x} = \sum_{i=1}^m A_i oldsymbol{x}_i$ 

**Dual Decompostion** (the Lagrangian function becomes separable over i)

$$\mathbf{x}_{i}^{k+1} = \underset{\mathbf{x}_{i}}{\operatorname{argmin}} \left\{ L_{i}(\mathbf{x}_{i}, \mathbf{y}^{k}) = f_{i}(\mathbf{x}_{i}) + (\mathbf{y}^{k})^{T} A_{i} \mathbf{x}_{i} - (1/m) (\mathbf{y}^{k})^{T} b \right\}$$
$$\mathbf{y}^{k+1} = \mathbf{y}^{k} + \alpha^{k} (A \mathbf{x}^{k+1} - b)$$

# **Proporties: Dual Decomposition**

#### Implementation



Dual decomposition with a central server and m=4.

- Pro: Decomposes across x for each  $i \in [m]$
- Con: Requires strong convexity to ensure convergence
- Solution: Use Augmented Lagrangian method

# **ADMM Basics: Augmented Lagrangian Method**

• **Problem:** For  $\rho > 0$ ,

$$\begin{aligned} & \text{minimize}_{\boldsymbol{x}} & & f(\boldsymbol{x}) + \frac{\rho}{2} \|A\boldsymbol{x} - b\|^2 \\ & \text{subject to} & & A\boldsymbol{x} = b \end{aligned}$$

Augmented Lagrangian Method

$$\boldsymbol{x}^{k+1} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \ \underbrace{\{L_{\rho}(\boldsymbol{x}, \boldsymbol{y}^k) \!=\! f(\boldsymbol{x}) + (\boldsymbol{y}^k)^T (A\boldsymbol{x} - b) + \frac{\rho}{2} \|A\boldsymbol{x} - b\|^2}_{\text{Augmented Lagrangian}}\}$$

$$\boldsymbol{y}^{k+1} = \boldsymbol{y}^k + \alpha^k (A\boldsymbol{x}^{k+1} - b)$$

- Pro: Better convergence
- Con: Does not decompose for  $f(x) = \sum_{i=1}^m f_i(x_i)$
- **Solution:** ADMM blends decomposability of dual ascent with superior convergence properties of method of multipliers

# Alternating Direction Method of Multipliers (ADMM)

• **Problem** Let  $f: \mathbb{R}^{n_x} \to \mathbb{R}$  and  $g: \mathbb{R}^{n_z} \to \mathbb{R}$  be convex

$$\begin{aligned} & \text{minimize}_{\boldsymbol{x},\boldsymbol{z}} & & f(\boldsymbol{x}) + g(\boldsymbol{z}) \\ & \text{subject to} & & A\boldsymbol{x} + B\boldsymbol{z} = c \end{aligned}$$

with  $x \in \mathbb{R}^{n_x}$  and  $z \in \mathbb{R}^{n_z}$  and  $A \in \mathbb{R}^{p \times n_x}$ ,  $B \in \mathbb{R}^{p \times n_z}$ 

Augmented Lagrangian

$$L_{\rho}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{y}) = f(\boldsymbol{x}) + g(\boldsymbol{z}) + \boldsymbol{y}^{T}(A\boldsymbol{x} + B\boldsymbol{z} - c) + \frac{\rho}{2}||A\boldsymbol{x} + B\boldsymbol{z} - c||^{2}$$

ADMM

$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} L_{\rho}(\mathbf{x}, \mathbf{z}^{k}, \mathbf{y}^{k})$$

$$\mathbf{z}^{k+1} = \underset{\mathbf{z}}{\operatorname{argmin}} L_{\rho}(\mathbf{x}^{k+1}, \mathbf{z}, \mathbf{y}^{k})$$

$$\mathbf{y}^{k+1} = \mathbf{y}^{k} + \rho(A\mathbf{x}^{k+1} + B\mathbf{z}^{k+1} - c)$$

### Performance of ADMM

**LASSO**<sup>2</sup>: Given  $b \in \mathbb{R}^n$  and  $A \in \mathbb{R}^{n \times p}$  solve:

$$\min_{\boldsymbol{x}} \frac{1}{2} \|b - A\boldsymbol{x}\|^2 + \lambda \|\boldsymbol{x}\|_1$$

Rephrased in form suitable for ADMM as:

$$\min_{x,z} \underbrace{\frac{1}{2} \|b - Ax\|^2}_{f(x)} + \underbrace{\lambda \|z\|_1}_{g(z)} \quad \text{subject to} \quad \underbrace{x = z}_{\text{linear constraint}}$$

# **ADMM Comparison**<sup>3</sup>

Comparison of various algorithms for lasso regression: 100 random instances with  $n=200,\,p=50$ 



<sup>&</sup>lt;sup>3</sup>Ryan Tibshirani, Convex Optimization, Lecture Slides, Fall 2018

# Properties of ADMM

- Slow to converge to high accuracy
- Converges to modest accuracy within a few iterations
  - Sufficient for many applications
  - Well suited for large scale problems in machine learning and statistical estimation
- Computations can be distributed across multiple nodes

# **Assumptions**

### Assumption 1

The (extended-real-valued) functions  $f: \mathbb{R}^{n_x} \to \mathbb{R} \cup \{+\infty\}$  and  $g: \mathbb{R}^{n_z} \to \mathbb{R} \cup \{+\infty\}$  are closed, proper, and convex.

```
A function f satisfies Assumption 1 \iff epif = \{(\boldsymbol{x},t) \in \mathbb{R}^n \times \mathbb{R} : f(\boldsymbol{x}) \leq t\} closed, non-empty, convex set
```

For simplicity, we will assume that both f and g differentiable. Otherwise, subgradient notation will be used.

# **Assumptions**

### **Assumption 2**

The unaugmented Lagrangian defined as:

$$L_0(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{y}) = f(\boldsymbol{x}) + g(\boldsymbol{z}) + \boldsymbol{y}^T (A\boldsymbol{x} + B\boldsymbol{z} - c)$$

has a saddle point.

There exists  $(x^*, z^*, y^*)$  such that (possibly non-unique)

$$L_0({m x}^*, {m z}^*, {m y}) \leq L_0({m x}^*, {m z}^*, {m y}^*) \leq L_0({m x}, {m z}, {m y}^*)$$
 for all  ${m x}, {m z}, {m y}$ 

# Convergence

Under **Assumption 1** and **Assumption 2**, ADMM iterates satisfy:

• **Residual convergence:** The iterates approach feasibility, i.e., the residuals satisfy

$$r^k = A \boldsymbol{x}^k + B \boldsymbol{z}^k - c \to 0$$
 as  $k \to \infty$ 

• Objective convergence:  $f(\boldsymbol{x}^k) + g(\boldsymbol{z}^k) \to p^*$  as  $k \to \infty$ , where  $p^*$  is

$$p^* = \inf\{f(x) + g(z) : Ax + Bz - c = 0\}$$

• Dual variable convergence:  ${m y}^k o {m y}^*$  as  $k o \infty$  where  ${m y}^*$  is a dual optimal value

# **Optimality of ADMM**

Necessary and sufficient conditions for optimality (KKT conditions)

• Primal Feasibility

$$A\boldsymbol{x}^* + B\boldsymbol{z}^* - c = 0 \tag{1.1}$$

Stationarity

$$0 = \nabla f(\boldsymbol{x}^*) + A^T \boldsymbol{y}^* \tag{1.2}$$

$$0 = \nabla g(\boldsymbol{z}^*) + B^T \boldsymbol{y}^* \tag{1.3}$$

- Using  $z^{k+1} = \operatorname{argmin}_z L_{\rho}(x^{k+1}, z, y^k)$  check! that (1.3) is always satisfied by  $z^{k+1}$  and  $y^{k+1}$
- To achieve optimality: (1.1) and (1.2) need to be satisfied

# **Optimality of ADMM**

• Dual Residual: Stationarity condition (1.2) Using  ${m x}^{k+1} = \mathop{\rm argmin}_x L_{
ho}({m x}, {m z}^k, {m y}^k)$ , we get (Check!)

$$\underbrace{\rho A^T B(\boldsymbol{z}^{k+1} - \boldsymbol{z}^k)}_{s^{k+1}} = \partial f(\boldsymbol{x^{k+1}}) + A^T \boldsymbol{y}^{k+1}$$

 $s^{k+1}$  is referred to a dual residual

• Primal Residual: Denote

$$r^{k+1} = Ax^{k+1} + Bz^{k+1} - c$$

as the primal residual

#### Goal:

 $r^k, s^k \to 0 \; \Rightarrow \; (1.1) \; {\sf and} \; (1.2) \; {\sf hold} \; \Rightarrow \; {\sf Optimality} \; {\sf of} \; {\sf ADMM}$ 

### Proof Sketch: ADMM I

**Define:** Lyupanov Function:

$$V^{k} = \frac{1}{\rho} \| \boldsymbol{y}^{k} - \boldsymbol{y}^{*} \|^{2} + \rho \| B(\boldsymbol{z}^{k} - \boldsymbol{z}^{*}) \|^{2}$$

The proof relies on three basic inequalities:

• Inequality I:

$$V^{k+1} \le V^k - \rho ||r^{k+1}||^2 - \rho ||B(z^{k+1} - z^k)||^2$$

• Inequality II:

$$p^{k+1} - p^* \le -(\boldsymbol{y}^{k+1})^T r^{k+1} - \rho(B(\boldsymbol{z}^{k+1} - \boldsymbol{z}^k))^T (-r^{k+1} + B(\boldsymbol{z}^{k+1} - \boldsymbol{z}^*))$$

• Inequality III:

$$p^* - p^{k+1} \le \boldsymbol{y}^{*T} r^{k+1}$$

### Proof Sketch: ADMM II

• Iterating Inequality I above, we get

$$\rho \sum_{k=0}^{\infty} (\|r^{k+1}\|^2 + \|B(z^{k+1} - z^k)\|^2) \le V_0$$

this implies  $r^k \to 0$  and  $B(\boldsymbol{z}^{k+1} - \boldsymbol{z}^k) \to 0$  as  $k \to \infty$  $\circ B(\boldsymbol{z}^{k+1} - \boldsymbol{z}^k) \to 0$  further implies that the *dual residual*  $s^{k+1} \to 0$  (follows from definition of  $s^k$ )

• Inequality II and Inequality III imply  $p^k \to p^*$  as  $k \to \infty$ , i.e., objective convergence

Inequalities II and III are used to derive Inequality I

### **Distributed ADMM**

#### Problem

$$\mathsf{minimize}_{m{x}_1, \dots, m{x}_m, z} \sum_{i=1}^m f_i(m{x}_i)$$
 subject to  $m{x}_i = m{z}, i = 1, \dots, m$ 

• ADMM steps can be **distributed** across *m* nodes:

$$egin{aligned} & m{x}_i^{k+1} = \operatorname*{argmin}_{m{x}_i} f_i(m{x}_i) + rac{
ho}{2} \| m{x}_i - m{z}^k + m{u}_i^k \|^2 \ & m{z}^{k+1} = rac{1}{m} \sum_{i=1}^m (m{x}_i^{k+1} + m{u}_i^k) \ & m{u}_i^{k+1} = m{u}_i^k + m{x}_i^{k+1} - m{z}^{k+1} \end{aligned}$$

# **Distributed Implementation**

• Simple manipulation yields (Check!):

$$egin{aligned} m{x}_i^{k+1} &= rgmin_{m{x}_i} f_i(m{x}_i) + rac{
ho}{2} \|m{x}_i - rac{1}{m} \sum_{i=1}^m m{x}_i^k + m{u}_i^k\|^2 \ m{u}_i^{k+1} &= m{u}_i^k + m{x}_i^{k+1} - rac{1}{m} \sum_{i=1}^m m{x}_i^{k+1} \end{aligned}$$

• Parallel Updates



Distributed ADMM with m=4.

# **Decentralized Setup**

- Distributed ADMM: Central server for sharing of iterates
  - o Congestion, Privacy concerns, Single point of failure
- **Decentralized ADMM:** No central server, nodes exchange information with their immediate neighbors
  - No risk of network congestion, Better privacy, Robust to individual node failures



### Decentralized ADMM<sup>4</sup>

#### • Problem

$$\mathsf{minimize}_{\boldsymbol{x}} \ \sum_{i=1}^m f_i(\boldsymbol{x})$$

#### Model

- $\circ \ m$  agents/nodes present in the network
- $\circ$  Each agent has access to local function  $f_i:\mathbb{R}^n o \mathbb{R}$

#### Network

- $\circ$  m agents connected via E edges (2E arcs)
- $\circ$  Symmetric directed graph:  $\mathcal{G} = \{\mathcal{V}, \mathcal{A}\}$
- $\circ$  Set of vertices:  $\mathcal V$  with  $|\mathcal V|=m$ , Set of Arcs:  $\mathcal A$  with  $|\mathcal A|=2E$

<sup>&</sup>lt;sup>4</sup>Shi, et al., On the linear convergence of the ADMM in decentralized consensus optimization, IEEE Transactions on Signal Processing 62.7 (2014): 1750-1761.

### **ADMM vs DGD**



Relative error for least squares consensus ADMM vs DGD with step-size  $\frac{1}{k^{1/3}}$ 

### **Problem Formulation**

#### Reformulation suitable for ADMM

$$\begin{aligned} & \mathsf{minimize}_{\{\boldsymbol{x}_i\},\{\boldsymbol{z}_{ij}\}} \ \sum_{i=1}^m f_i(\boldsymbol{x}_i) \\ & \mathsf{subject to} \ \boldsymbol{x}_i = \boldsymbol{z}_{ij}, \boldsymbol{x}_j = \boldsymbol{z}_{ij}, \forall (i,j) \in \mathcal{A} \end{aligned}$$

#### Standard ADMM form

$$\begin{aligned} & \text{minimize}_{\boldsymbol{x},\boldsymbol{z}} \ f(\boldsymbol{x}) + g(\boldsymbol{z}) \\ & \text{subject to} \ A\boldsymbol{x} + B\boldsymbol{z} = 0 \end{aligned}$$

with 
$$\boldsymbol{x} \in \mathbb{R}^{mn}$$
,  $\boldsymbol{z} \in \mathbb{R}^{2En}$  and  $g(\boldsymbol{z}) = 0$   
• Matrices:  $A = [A_1; A_2]$  and  $B = [-I_{2En}; -I_{2En}]$   
Check! Dimensions and structure of  $A$ ?

# **ADMM Updates**

• Augmented Lagrangian: Dual variable  $oldsymbol{y} \in \mathbb{R}^{4En}$ 

$$L_{\rho}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{y}) = f(\boldsymbol{x}) + \boldsymbol{y}^{T}(A\boldsymbol{x} + B\boldsymbol{z}) + \frac{\rho}{2} ||A\boldsymbol{x} + B\boldsymbol{z}||^{2}$$

• ADMM updates

$$\begin{split} \boldsymbol{x} - \text{update}: & \quad \nabla f(\boldsymbol{x}^{k+1}) + A^T \boldsymbol{y}^k + \rho A^T (A \boldsymbol{x}^{k+1} + B \boldsymbol{z}^k) = 0 \\ \boldsymbol{z} - \text{update}: & \quad B^T \boldsymbol{y}^k + \rho B^T (A \boldsymbol{x}^{k+1} + B \boldsymbol{z}^{k+1}) = 0 \\ \boldsymbol{y} - \text{update}: & \quad \boldsymbol{y}^{k+1} - \boldsymbol{y}^k - \rho (A \boldsymbol{x}^{k+1} + B \boldsymbol{z}^{k+1}) = 0 \end{split}$$

Goal: Manipulate update equations above to yield decentralized implementation of ADMM!

# Manipulating ADMM Updates I

- ullet Multiplying  $oldsymbol{y}$  update by  $A^T$  and adding with the  $oldsymbol{x}$  update
- ullet Multiplying  $oldsymbol{y}$  update by  $B^T$  and adding with the  $oldsymbol{z}$  update
- We get

$$\nabla f(\boldsymbol{x}^{k+1}) + A^T \boldsymbol{y}^{k+1} + \rho A^T B(\boldsymbol{z}^k - \boldsymbol{z}^{k+1}) = 0$$
$$B^T \boldsymbol{y}^{k+1} = 0$$
$$\boldsymbol{y}^{k+1} - \boldsymbol{y}^k - \rho (A \boldsymbol{x}^{k+1} + B \boldsymbol{z}^{k+1}) = 0$$

- Take  $\mathbf{y} = [\beta; \gamma]$  with  $\beta, \gamma \in \mathbb{R}^{2En}$
- Recall:  $B = [-I_{2En}; -I_{2En}]$ , therefore the second equation implies

$$\beta^{k+1} = -\gamma^{k+1}$$

# Manipulating ADMM Updates II

Using  $\beta^{k+1} = -\gamma^{k+1}$  from previous slide:

- With initialization  $\beta^0 = -\gamma^0$  and  ${m z}^0 = \frac{1}{2} A_+^T {m x}^0$
- With some manipulation (check!), the update equations can be equivalently written as:

$$\nabla f(\boldsymbol{x}^{k+1}) + A_{-}\beta^{k+1} - \rho A_{+}(\boldsymbol{z}^{k} - \boldsymbol{z}^{k+1}) = 0$$

$$\beta^{k+1} - \beta^{k} - \frac{\rho}{2}A_{-}^{T}\boldsymbol{x}^{k+1} = 0$$

$$\frac{1}{2}A_{+}^{T}\boldsymbol{x}^{k} - \boldsymbol{z}^{k} = 0$$
(1.4)

with, 
$$A_{+} = A_{1}^{T} + A_{2}^{T}$$
 and  $A_{-} = A_{1}^{T} - A_{2}^{T}$  (Recall:  $A = [A_{1}; A_{2}]$ )

Equation (1.4) will be used in the analysis of Decentralized ADMM!

# Finally: Algorithm Updates

- With initialization  $\beta^0 = -\gamma^0$  and  ${m z}^0 = \frac{1}{2} A_+^T {m x}^0$
- With some more manipulation (check!), the update equations can be further simplified to

$$\begin{split} \boldsymbol{x} - \text{update} : \nabla f(\boldsymbol{x}^{k+1}) + \alpha^k + 2\rho W \boldsymbol{x}^{k+1} - \rho L_+ \boldsymbol{x}^k &= 0 \\ \alpha - \text{update} : & \alpha^{k+1} - \alpha^k - \rho L_- \boldsymbol{x}^{k+1} &= 0 \end{split}$$

$$L_{+} = \frac{1}{2}A_{+}A_{+}^{T}, L_{-} = \frac{1}{2}A_{-}A_{-}^{T}, W = \frac{1}{2}(L_{+} + L_{-}) \text{ and } \alpha = A_{-}\beta.$$

- Matrices  $A_+$ ,  $A_-$ ,  $L_+$ ,  $L_-$  and W capture the **network** topology
  - $\circ$   $A_{+}$  and  $A_{-}$ : Unoriented and oriented incidence matrices
  - $\circ$   $L_{+}$  and  $L_{-}$ : Signless and signed Laplacian matrices
  - W: Degree matrix

# **Algorithm: Fully Decentralized Implementation**

Algorithm updates translate to the following updates for the ith node **Just using definitions of** W**,**  $L_+$  **and**  $L_-$ 

### Decentralized Consensus Optimization Based on ADMM

- Input: Functions  $f_i$ ; initialize  $x_i^0 = 0$ ,  $\alpha_i^0 = 0$ , set  $\rho > 0$
- For  $k=0,1,\ldots,$  every agent i do
- ullet Update  $oldsymbol{x}_i^{k+1}$  by solving

$$\nabla f_i(\boldsymbol{x}_i^{k+1}) + \alpha_i^k + 2\rho |\mathcal{N}_i| \boldsymbol{x}_i^{k+1} - \rho \left( |\mathcal{N}_i| \boldsymbol{x}_i^k - \sum_{j \in \mathcal{N}_i} \boldsymbol{x}_j^k \right) = 0$$

- ullet Update  $lpha_i^{k+1} = lpha_i^k + 
  hoigg(|\mathcal{N}_i|m{x}_i^{k+1} \sum_{j\in\mathcal{N}_i}m{x}_j^{k+1}igg)$
- End For

# **Assumptions**

### **Assumption 3 (Strong Convexity)**

Local objective functions are strongly convex, i.e, for each agent  $i \in [m]$  given any  $x_1, x_2 \in \mathbb{R}^n$ :

$$\langle 
abla f_i(m{x}_1) - 
abla f_i(m{x}_2), m{x}_1 - m{x}_2 
angle \geq m_f \|m{x}_1 - m{x}_2\|^2$$
 with  $m_{f_i} > 0$ 

Assumption 3 implies f is also strongly convex, with parameter  $m_f = \min_i m_{f_i}$ 

### **Assumption 4 (Lipschitz Continuity)**

The gradients of the local objective functions are Lipschitz continuous, i.e. for each agent  $i \in [m]$  given any  $x_1, x_2 \in \mathbb{R}^n$ :

$$\|\nabla f_i(x_1) - \nabla f_i(x_2)\| \le M_{f_i} \|x_1 - x_2\|$$
 with  $M_{f_i} > 0$ 

Assumption 4 implies f is also Lipschitz continuous with  $M_f = \max_i M_{f_i}$ 

1-29

### **Definitions**

### **Definition 1.1 (Q-Linear Convergence)**

A sequence  $\pmb{y}^k$  , Q-linearly converges to a point  $y^*$  if there exist a number  $\sigma \in (0,1)$  such that

$$\lim_{k\to\infty} \frac{\|\boldsymbol{y}^{k+1} - \boldsymbol{y}^*\|}{\|\boldsymbol{y}^k - \boldsymbol{y}^*\|} = \sigma$$

### Main Result

#### Define:

$$\boldsymbol{u}^k = [\boldsymbol{z}^k; \beta^k], \; \boldsymbol{u}^* = [\boldsymbol{z}^*; \beta^*] \text{ and } G = [\rho I_{2En} \ 0_{2En}; 0_{2En} \ \frac{1}{\rho} I_{2En}]$$

#### Theorem 1.2

Under Assumptions 3 and 4, and proper initialization, for any  $\mu > 0$ ,  $u^k$  is Q-linearly convergence to  $u^*$  w.r.t. G-norm:

$$\|m{u}^{k+1} - m{u}^*\|_G^2 \leq rac{1}{1+\delta} \|m{u}^k - m{u}^*\|_G^2$$

for  $\delta>0$ , with  $\delta$  dependent on the network and function parameters. Also,  $x^k$  converges as:

$$\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\|^2 \le \frac{1}{m_f} \|\boldsymbol{u}^k - \boldsymbol{u}^*\|_G^2$$

**Proper initialization:** Dual variable  $\beta$  is in the column space of  $A_{-}^{T}$ 

### Proof Sketch: I

**Step 1:** Use update equations (1.4), KKT conditions, and strong convexity to show:

$$\|\boldsymbol{u}^k - \boldsymbol{u}^{k+1}\|_G^2 + m_f \|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\|^2 \le \|\boldsymbol{u}^k - \boldsymbol{u}^*\|_G^2 - \|\boldsymbol{u}^{k+1} - \boldsymbol{u}^*\|_G^2$$

- lacktriangle First, subtract update equations (1.4) and the KKT conditions
- Use strong convexity, the equations derived in (I) above, and the definition of G to reach the conclusion

### **Proof Sketch II**

Step 2: Prove: 
$$\| {m u}^k - {m u}^{k+1} \|_G^2 + m_f \| {m x}^{k+1} - {m x}^* \|^2 \ge \delta \| {m u}^{k+1} - {m u}^* \|_G^2$$

Note: Combining this with the conclusion of Step I leads to the main result of Theorem 1.2

lacktriangle Definition of u and G implies equation above is equivalent to:

$$\rho \| \boldsymbol{z}^{k+1} - \boldsymbol{z}^k \|^2 + \frac{1}{\rho} \| \beta^{k+1} - \beta^k \|^2 + m_f \| \boldsymbol{x}^{k+1} - \boldsymbol{x}^* \|^2 \\
\ge \delta \rho \| \boldsymbol{z}^{k+1} - \boldsymbol{z}^* \|^2 + \frac{\delta}{\rho} \| \beta^{k+1} - \beta^* \|^2$$

- **Deliver** Bound  $||z^{k+1} z^*||^2$ : Use (1.4) & KKT conditions (Simple!)
- **Our Description** Bound  $\|\beta^{k+1} \beta^*\|^2$ : Next!

### **Proof Sketch III**

**Step 3:** Finally, upper bound:  $\|\beta^{k+1} - \beta^*\|^2$ 

- Use Lipschitz continuity of local functions, (1.4) and KKT conditions
- $m{ ilde{m{9}}}$  Finally, utilize initialization  $m{ ilde{m{\beta}}}$  lies in the column space of  $A_-^T$

Conclude, Step II and combine with Step I to retrieve the statement of Theorem 1.2.

Note: R-linear convergence of sequence  $oldsymbol{x}^k$  follows from the statement of **Step I** 

# Takeaway from Decentralized ADMM

- A general consensus optimization problem can be reformulated in ADMM framework
- Global **linear convergence** for strongly convex objectives
- Convergence guarantees capture the effect of
  - Topology of the network
  - Condition number of the objective function
- Other variations
  - Inexact Consensus<sup>5</sup>
  - Asynchronous with convex objectives<sup>6</sup>
  - o Linearize the objective<sup>7</sup>

<sup>5</sup>Chang et al., Multi-agent distributed optimization via inexact consensus ADMM, IEEE Transactions on Signal Processing 2014

 $^6$ Wei et al., On the O(1/K) convergence of asynchronous distributed alternating direction method of multipliers, IEEE GlobalSIP, 2013.

<sup>7</sup>Ling et al., DLM: Decentralized Linearized Alternating Direction Method of Multipliers, IEEE Transactions on Signal Processing 2015

# **EXTRA**<sup>8</sup>

#### • Problem:

$$minimize_{\boldsymbol{x}} f(\boldsymbol{x}) = \frac{1}{m} \sum_{i=1}^{m} f_i(\boldsymbol{x})$$
 (1.5)

with  ${m x} \in \mathbb{R}^n$  and  $f_i: \mathbb{R}^n o \mathbb{R}$ 

- $\circ$  Set of m nodes
- $\circ~$  Each node  $i \in [m]$  has access to  ${\bf convex}$  function  $f_i$

Goal: Solve the problem in a decentralized fashion!

<sup>&</sup>lt;sup>8</sup>Shi et al., Extra: An exact first-order algorithm for decentralized consensus optimization, SIAM Journal on Optimization 25.2 (2015): 944-966.

#### DGD vs ADMM vs EXTRA

- Recall from last lecture: DGD to solve (1.5)
  - Fixed step-size: Neighborhood convergence
  - Decreasing step-size: Slow convergence
- ADMM
  - Can be computationally expensive
  - Requires successive minimizations
- EXTRA: Exact First-Order Algorithm
  - Exact convergence with fixed step-size
  - Faster than DGD
  - $\circ$  Convex objectives: O(1/k), Strongly convex objectives: **Linear**

**EXTRA**: Utilizes the gradient estimate of the previous iteration.

# **Assumptions**

## **Assumption 5 (Mixing Matrix)**

Consider a connected network  $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$  with  $\mathcal{V} = [m]$  agents and a set of undirected edges  $\mathcal{E}$ . The mixing matrices  $W = [w_{ij}] \in \mathbb{R}^{m \times m}$  and  $\tilde{W} = [\tilde{w}_{ij}] \in \mathbb{R}^{m \times m}$  satisfy

- (Decentralized) If  $i \neq j$  and  $(i,j) \notin \mathcal{E}$ , then  $w_{ij} = 0$ .
- ② (Symmetry)  $W = W^T$ ,
- (Null Space)  $null\{I W\} \supseteq span\{1\}$ 
  - Eigenvalues of W lie in (-1,1]
  - Slightly simplified assumption, for full details see the original paper

## **Assumption**

# Assumption 6 (Convex objective with Lipschitz continuous gradient)

Objective functions  $f_i$  are proper closed convex and Lipschitz differentiable:

$$\|
abla f_i(m{x}_1) - 
abla f_i(m{x}_2)\| \leq M_{f_i} \|m{x}_1 - m{x}_2\|$$
 for all  $m{x}_1, m{x}_2 \in \mathbb{R}^n$ 

where  $M_{f_i} > 0$ 

• Function  $f(\mathbf{x}) = \sum_{i=1}^m f_i(\mathbf{x}_i)$  is  $M_f$ -Lipschitz with  $M_f = \max_i \{M_{f_i}\}$ 

## Assumption 7 (Solution Existence)

Problem (1.5) has a non-empty set of optimal solutions:  $\mathcal{X}^* \neq \emptyset$ 

# Algorithm: EXTRA

#### Algorithm: **EXTRA**

- Choose  $\alpha>0$  and mixing matrices  $W\in\mathbb{R}^{m\times m}$  and  $\tilde{W}\in\mathbb{R}^{m\times m}$
- For i = 1, 2, ..., m
- ullet Pick any  $oldsymbol{x}_i^0 \in \mathbb{R}^n$
- $\mathbf{x}_i^1 = \sum_{j=1}^m w_{ij} \mathbf{x}_j^0 \alpha \nabla f_i(\mathbf{x}_i^0)$
- For k = 0, 1, ... do

$$\mathbf{x}_{i}^{k+2} = \mathbf{x}_{i}^{k+1} + \sum_{j=1}^{m} w_{ij} \mathbf{x}_{j}^{k+1} - \sum_{j=1}^{m} (w_{ij} + 1)/2 \mathbf{x}_{j}^{k}$$
$$-\alpha \left[ \nabla f_{i}(\mathbf{x}_{i}^{k+1}) - \nabla f_{i}(\mathbf{x}_{i}^{k}) \right]$$

- End For
- End For

## **Algorithm: EXTRA**

Stacking the iterates together, we have the following compact form

$$x^{k+2} = x^{k+1} + Wx^{k+1} - \frac{I+W}{2}x^k - \alpha(\nabla f(x^{k+1}) - \nabla f(x^k))$$
(1.6)

## Convergence

- Denote  $\mathbf{x} \in \mathbb{R}^{m \times n}$  and  $\mathbf{x}^* \in \mathbb{R}^{m \times n}$  as a matrices with ith rows  $x_i^T$  and  $x_i^{*T}$ , respectively
- Introduce auxiliary sequence:

$$\mathbf{q}^k = \sum_{t=0}^k U \mathbf{x}^t \quad \text{with} \quad U = (\tilde{W} - W)^{1/2}$$

and for each k

$$z^k = (q^k; x^k), \quad z^* = (q^k; x^*), \quad G = (I \quad 0; 0 \quad \tilde{W})$$

#### Theorem 1.3

Under Assumptions 5, 6 and 7 if  $\alpha$  satisfies  $0<\alpha<\frac{2\lambda_{\min}(W)}{M_f}$  , then

$$\frac{1}{k} \sum_{t=1}^{k} \|\mathbf{z}^{t} - \mathbf{z}^{t-1}\|_{G}^{2} = O\left(\frac{1}{k}\right).$$

## **EXTRA vs DGD: Performance**



Performance of EXTRA vs DGD for least squares consensus problem

## Connection: Extra and Primal-Dual Methods 10

- Notations: Assume n=1, denote  $\boldsymbol{x}=(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_m)^T\in\mathbb{R}^m$
- $W = \mathbb{R}^{n \times n}$  mixing matrix
- Goal is to solve (1.5), repeated here for convenience

$$\mathsf{minimize}_{\boldsymbol{x}} \ f(\boldsymbol{x}) = \sum_{i=1}^{m} f_i(\boldsymbol{x}) \tag{1.7}$$

EXTRA update rule

$$\boldsymbol{x}^{1} = W\boldsymbol{x}^{0} - \alpha \nabla f(\boldsymbol{x}^{0})$$

$$\boldsymbol{x}^{k+2} = W\boldsymbol{x}^{k+1} - \alpha \nabla f(\boldsymbol{x}^{k+1}) - (I+W)/2\boldsymbol{x}^{k} + \alpha \nabla f(\boldsymbol{x}^{k})$$
(1.8)

<sup>&</sup>lt;sup>9</sup>Jakovetić, A unification and generalization of exact distributed first-order methods, IEEE Transactions on Signal and Information Processing over Networks, 2018.

<sup>&</sup>lt;sup>10</sup>Mokhtari et al., DSA: Decentralized double stochastic averaging gradient algorithm, Journal of Machine Learning Research, vol. 17, pp. 1-35, 2016.

## **Connection: Extra and Primal-Dual Methods**

- Equivalent Reformulation: Let us denote  $\mathcal{L} = I \mathcal{W}$
- Goal is to minimize

$$\mathsf{minimize}_{\boldsymbol{x}}\ f(\boldsymbol{x}) = \sum_{i=1}^m f_i(\boldsymbol{x}_i) \ \mathsf{subject\ to} \ \underbrace{\frac{1}{\alpha}\mathcal{L}^{1/2}\boldsymbol{x} = 0}_{\mathsf{Ensures\ consensus}} \ (1.9)$$

• 
$$\mathcal{L}^{1/2} m{x} = 0 \Longleftrightarrow m{x}_1 = m{x}_2 =, \ldots, = m{x}_m$$
 (Check!)

This implies that (1.7) is **equivalent** to (1.9)

## **Connection: Extra and Primal-Dual Methods**

• Augmented Lagrangian: From (1.9), penalty parameter  $\rho = \alpha$ ,

$$L_{\alpha}(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{x}) + \frac{1}{\alpha} \boldsymbol{y}^T \mathcal{L}^{1/2} \boldsymbol{x} + \frac{1}{2\alpha} \boldsymbol{x}^T \mathcal{L} \boldsymbol{x}$$

• Using the notation:  $u^k = \frac{1}{\alpha} \mathcal{L}^{1/2} y^k$ , we can write the **primal-dual** update as (Check!)

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha \left( \frac{1}{\alpha} \mathcal{L} \mathbf{x}^k + \nabla f(\mathbf{x}^k) + \mathbf{u}^k \right)$$
$$\mathbf{u}^{k+1} = \mathbf{u}^k + \frac{1}{\alpha} \mathcal{L} \mathbf{x}^{k+1}$$
(1.10)

#### Lemma 1.4

The sequence  $\{x^k\}$  generated by **EXTRA** (1.8), with initialization  $x_i^0 = x_j^0$ ,  $\forall i, j$ , is same as the sequence generated by **primal-dual** iterations (1.10) with the same initialization  $x_i^0 \ \forall i \in [m]$  and  $u^0 = 0$ .

## Story Thus Far

- We studied Primal-Dual Methods: ADMM
  - Distributed/Decentralized implementations of ADMM
  - o Assumptions and Convergence Guarantees
- We studied EXTRA
  - Limitations of DGD
  - Assumptions and Performance
- Finally, we studied connection between EXTRA and Primal-Dual methods
  - Specifically, we noted that EXTRA can be developed with a specific Primal-Dual construction

Next: Gradient Tracking, Push-Sum methods

# Gradient Tracking<sup>11</sup>

- Alternate approach to EXTRA
- Goal: To solve (1.7) in a decentralized fashion
- Gradient Tracking Based Algorithm
  - o Idea: Maintain an iterative estimate of the true gradient
- Static undirected networks
- Convex and Strongly convex objectives
  - $\circ$  Sublinear convergence of O(1/k) for convex objectives
  - Linear convergence for strongly-convex objectives

<sup>&</sup>lt;sup>11</sup>Guannan et al., Harnessing smoothness to accelerate distributed optimization, IEEE Transactions on Control of Network Systems, 2017.

# **Assumptions**

## Assumption 8 (Mixing Matrix, W)

Graph  $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ , consensus weight matrix  $W = [w_{ij}] \in \mathbb{R}^{m \times m}$ :

- For  $i, j \in \mathcal{E}$ , we have  $w_{ij} > 0$  other wise  $w_{ij} = 0$
- W is doubly stochastic

## Assumption 9 (Convexity and Lipschitz smoothness)

Local functions  $f_i$  for all  $i \in [m]$  are convex and  $M_f$ -smooth

## Assumption 10 (Strong Convexity)

Local functions  $f_i$  for all  $i \in [m]$  are  $m_f$ -strongly convex

Recall: Assumptions 3, 4 and 6 used earlier

# **Algorithm: Gradient Tracking**

#### Algorithm: Gradient Tracking for Decentralized Optimization

- ullet Initialize:  $oldsymbol{x}_i^0$  and  $oldsymbol{g}_i^0 = 
  abla f_i(x_i^0)$
- ullet For  $k=0,1,\dots$  do
- Iterate update

$$\boldsymbol{x}_i^{k+1} = \sum_{j=1}^m w_{ij} \boldsymbol{x}_j^k - \alpha \boldsymbol{g}_i^k$$

Descent direction update

$$oldsymbol{g}_i^{k+1} = \sum_{i=1}^m w_{ij} oldsymbol{g}_i^k + 
abla f_i(oldsymbol{x}_i^{k+1}) - 
abla f_i(oldsymbol{x}_i^k)$$

End For

## **Convergence of Gradient Tracking Algorithm**

#### Theorem 1.5

Under Assumptions 8 and 9, we have for all  $i \in [m]$ 

$$f(\hat{\boldsymbol{x}}_i^{k+1}) - f^* \le O\left(\frac{1}{k}\right)$$

where  $\hat{x}_i^{k+1}$  is a running average of iterates for ith agent

Choice of step-size  $\alpha$  depends on  $m_f$  and W

## Comparison to EXTRA

#### **Pros:**

- Easy to extended to many centralized methods
- Achieves optimality for both residuals and the objective error which is a more direct measure of optimality
  - EXTRA without strong convexity, achieved convergence in terms of the optimality residuals (see Theorem 1.3)

#### Con:

 $\bullet$  Step-size depends on W, whereas for  $\mathbf{EXTRA}$  it is independent of W

# Performance: Gradient Tracking vs EXTRA and DGD



Performance of **Gradient tracking** vs **EXTRA** [22] and DGD for linear regression problem. **DGD** 1 is **DGD** with fixed step-size and **DGD** 2 is **DGD** with vanishing step-size; **CGD** is the centralized Gradient Descent

# (Sub) Gradient Push Methods<sup>12</sup>

- Based on Push-Sum algorithm
- Goal: To solve (1.7) in a decentralized fashion
  - Time-Varying and Directed Networks
  - Does not assume smoothness: Only bounded subgradients

## **Assumption 11 (Uniform Strong Connectivity)**

Graph 
$$\mathcal{G}^k = \{\mathcal{V}, \mathcal{E}^k\}$$

- Vertex set: V with |V| = m
- Edge set at time k:  $\mathcal{E}^k$

$$(k+1)B-1$$

ullet  $\mathcal{G}^k$  is uniformly strongly connected, i.e.,  $\mathcal{E}^k_B = igcup_{i=kB} \mathcal{E}^i$  is

strongly connected for every  $k \geq 0$ 

 $<sup>^{12}</sup>$ Nedić et al., Distributed optimization over time-varying directed graphs." IEEE Transactions on Automatic Control, 2014.

# **Algorithm**

#### Notation

- $\begin{array}{l} \circ \ \ \textbf{Neighbourhoods:} \ \mathcal{N}^k_{i, \mathsf{in}} = \{j: (j, i) \in \mathcal{E}^k\} \cup \{i\} \ \mathsf{is} \ \mathsf{the} \ \mathsf{in}, \ \mathsf{and} \\ \mathcal{N}^k_{i, \mathsf{out}} = \{j: (i, j) \in \mathcal{E}^k\} \cup \{i\} \ \mathsf{is} \ \mathsf{the} \ \mathsf{out} \ \mathsf{neighbourhood} \\ \end{array}$
- $\circ$  Out-Degree:  $d_i^k = |\mathcal{N}_{i, \mathsf{out}}^k|$
- ullet Subgradient:  $oldsymbol{g}_i^k$  is the (sub)gradient of the function  $f_i$  at  $oldsymbol{x}_i^{k+1}$

#### **Assumption 12 (Convex Bounded Subgradient)**

- Each function  $f_i$  is convex over  $\mathbb{R}^n$  and the set  $\mathcal{X}^* = \operatorname{argmin}_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$  is non-empty
- ② Subgradients  $g_i$  are bounded, i.e.,  $||g_i|| \leq L_i$

# Algorithm: (Sub) Gradient Push

Each node  $i \in [m]$  maintains variables  $m{y}_i^k, m{z}_i^k \in \mathbb{R}^n$  and scalar  $u_i^k$ 

## Algorithm: (Sub) Gradient Push

- Initialize:  $z_i^0$  and  $u_i^0 = 1$  for all  $i \in [m]$
- For  $k=0,1,\ldots$ , and for all  $i\in[m]$  do

$$egin{aligned} oldsymbol{y}_i^{k+1} &= \sum_{j \in \mathcal{N}_{i, ext{in}}^k} rac{oldsymbol{z}_j^k}{d_j^k} \ u_i^{k+1} &= \sum_{j \in \mathcal{N}_{i, ext{in}}^k} rac{u_j^k}{d_j^k} \ oldsymbol{x}_i^{k+1} &= rac{oldsymbol{y}_{i+1}^{k+1}}{y_i^{k+1}} \ oldsymbol{z}_i^{k+1} &= oldsymbol{y}_i^{k+1} - lpha^{k+1} oldsymbol{q}_i^{k+1} \end{aligned}$$

#### End For

# Convergence: (Sub) Gradient Push

#### Theorem 1.6

Under Assumptions 11 and 12 and with non-increasing step-sizes  $\alpha^k>0$  satisfying:  $\sum_{k=1}^\infty \alpha^k=\infty$  and  $\sum_{k=1}^\infty (\alpha^k)^2<\infty$ :

$$\lim_{k\to\infty} \boldsymbol{x}_i^k = \boldsymbol{x}^*$$

for some  $x^* \in \mathcal{X}^*$ 

#### Theorem 1.7

With  $\alpha^k=\frac{1}{\sqrt{k}}$  and each node maintaining  $\tilde{\boldsymbol{x}}_i^{k+1}=\frac{\alpha^{k+1}\boldsymbol{x}_i^{k+1}+S^k\tilde{\boldsymbol{x}}^k}{S^{k+1}}$  for k>0 with  $S^0=0$  and  $S^k=\sum_{s=1}^k\alpha^k$ :

$$f(\tilde{\boldsymbol{x}}_i^{k+1}) - f(\boldsymbol{x}^*) \le O\left(\frac{\ln k}{\sqrt{k}}\right)$$

#### **Conclusion**

- Primal-Dual algorithms for decentralized optimization
- EXTRA, Gradient tracking and Push-(Sub)Gradient method
- Many algorithms exist based on combination of similar ideas for decentralized optimization over directed and dynamic networks
  - EXTRA and Push-Sum<sup>13</sup>
  - Push-Sum and Gradient Tracking (DIGing based methods)<sup>14</sup>

Next: Non-convex decentralized optimization

<sup>&</sup>lt;sup>13</sup>Zeng et al., Extrapush for convex smooth decentralized optimization over directed networks." arXiv preprint arXiv, 2015.

<sup>&</sup>lt;sup>14</sup>Nedic et al., Achieving geometric convergence for distributed optimization over time-varying graphs." SIAM Journal on Optimization 2017.