# Compte Rendu : Configuration DHCP Relay & Routage RIP

# Mohammed Ryad DERMOUCHE

### 6 février 2025

# Table des matières

| 8 | Conclusion                                          | 5 |
|---|-----------------------------------------------------|---|
|   | 7.2 Ping entre deux machines du même réseau (LAN B) |   |
|   | 7.1 Ping entre deux machines du même réseau (LAN A) | 4 |
| 7 | Tests de Connectivité                               | 4 |
| 6 | Configuration du Routage RIP                        | 4 |
| 5 | Configuration du Routeur                            | 3 |
| 4 | Configuration du DHCP Relay (ip helper-address)     | 3 |
| 3 | Configuration du Serveur DHCP                       | 2 |
| 2 | Matériel et Topologie                               | 2 |
| 1 | Introduction                                        | 2 |

#### 1 Introduction

Dans ce document, nous présentons la configuration d'un réseau Packet Tracer composé de deux sous-réseaux distincts. Nous utilisons un seul serveur DHCP, situé dans le premier sous-réseau, pour attribuer des adresses IP dans les deux réseaux grâce à la fonctionnalité *DHCP Relay*. Le protocole de routage dynamique **RIP** est également mis en place pour faciliter le routage entre les différents réseaux.

### 2 Matériel et Topologie

Notre topologie comprend:

- Un **Routeur** central connecté à deux interfaces (LAN A et LAN B).
- Un **Serveur DHCP** dans le LAN A.
- Des **PC** dans chaque LAN (connectés via Switch et Hubs).

La figure 1 illustre la structure générale.



FIGURE 1 – Topologie générale du réseau (LAN A et LAN B reliés par le routeur).

### 3 Configuration du Serveur DHCP

Le Serveur DHCP se trouve dans le LAN A. Il dispose de deux pools DHCP:

- LAN A: distribution d'adresses IP dans le réseau 10.0.0.0/24
- LAN B: distribution d'adresses IP dans le réseau 192.168.2.0/24

Pour chaque pool, on renseigne le Network Address, le Subnet Mask, la Default Gateway, la Ip Start...

|  | Add          |                    |               | U.U.U.                 | U              |             |                |                |
|--|--------------|--------------------|---------------|------------------------|----------------|-------------|----------------|----------------|
|  |              |                    | Save          |                        |                | Remove      |                |                |
|  | Pool<br>Name | Default<br>Gateway | DNS<br>Server | Start<br>IP<br>Address | Subnet<br>Mask | Max<br>User | TFTP<br>Server | WLC<br>Address |
|  | LAN_A        | 10.0.0.1           | 8.8.8.8       | 10.0.0.10              | 255.255.2      | 246         | 0.0.0.0        | 0.0.0.0        |
|  | LAN_B        | 192.168.2.1        | 8.8.8.8       | 192.168.2.10           | 255.255.2      | 246         | 0.0.0.0        | 0.0.0.0        |

FIGURE 2 – Exemple de configuration des pools DHCP (LAN A et LAN B).

 ${\bf Remarque}:$  Le serveur DHCP est configuré avec l'adresse IP 10.0.0.2 et la passerelle 10.0.0.1 (routeur).



FIGURE 3 – Configuration de notre serveur DHCP.

### 4 Configuration du DHCP Relay (ip helper-address)

Pour que les PC du LAN B (192.168.2.0/24) puissent obtenir une adresse IP depuis le serveur DHCP qui se situe dans un autre réseau, nous configurons la commande ip helper-address sur l'interface du routeur connectée à LAN B.

Listing 1 – Extrait de configuration du DHCP Relay sur le routeur.

```
Router (config)# interface GigabitEthernet0/1
Router (config-\mathbf{if})# ip address 192.168.2.1 255.255.255.0
Router (config-\mathbf{if})# ip helper-address 10.0.0.2
Router (config-\mathbf{if})# no shutdown
```

Ainsi, les requêtes DHCP (en broadcast) émises depuis LAN B sont relayées au serveur DHCP du LAN A (adresse 10.0.0.2).

#### 5 Configuration du Routeur

Ci-dessous, la configuration générale des interfaces du routeur :



FIGURE 4 – Configuration des interfaces GigabitEthernet du routeur (LAN A & LAN B).

#### Exemple:

```
Listing 2 – Extrait CLI - Configuration IP sur le routeur.
```

```
Router (config)# interface GigabitEthernet0/0
Router (config-\mathbf{i}\mathbf{f})# ip address 10.0.0.1 255.255.255.0
Router (config-\mathbf{i}\mathbf{f})# no shutdown
Router (config-\mathbf{i}\mathbf{f})# exit
```

```
Router (config)# interface GigabitEthernet0/1
Router (config-if)# ip address 192.168.2.1 255.255.255.0
Router (config-if)# ip helper-address 10.0.0.2
Router (config-if)# no shutdown
```

### 6 Configuration du Routage RIP

Afin de permettre au routeur de gérer automatiquement les routes vers les deux sous-réseaux, nous utilisons **RIP**. On va ajouter les deux adresses des Réseaux A et B dans RIP . La figure 5 montre que le resultat a réussi dans Packet Tracer.

```
Router#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - ELGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

El - OSPF external type 1, E - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, Ia - IS-IS inter area

* - candidate default, U - per-user static route, O - OOR

F - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

C 10.0.0.0/24 is directly connected, GigabitEthernet0/0/0

192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.2.0/24 is directly connected, GigabitEthernet0/0/1

L 192.168.2.0/24 is directly connected, GigabitEthernet0/0/1
```

FIGURE 5 – Configuration RIP Réussie .

#### 7 Tests de Connectivité

Pour valider la configuration, nous effectuons plusieurs tests **ping**.

#### 7.1 Ping entre deux machines du même réseau (LAN A)

Par exemple, un PC 10.0.0.10 ping un autre PC 10.0.0.11 dans LAN A:

```
Command Prompt

Cisco Packet Tracer PC Command Line 1.0

Ci\ping 10.0.0.3 with 32 bytes of data:

Reply from 10.0.0.3 bytes=32 taskes NULL 128

Ping statistics for 10.0.0.3:

Rackets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Ims, Average = Oms

C:\>
```

FIGURE 6 – Ping réussi entre deux hôtes du LAN A.

#### 7.2 Ping entre deux machines du même réseau (LAN B)

De même, un PC 192.168.2.10 peut joindre un autre PC 192.168.2.11 dans LAN B :

#### 7.3 Ping entre deux réseaux distincts (LAN A et LAN B)

Le test final consiste à vérifier la communication inter-réseaux. Par exemple, un PC dans LAN A (10.0.0.10) tente de pinger un PC dans LAN B (192.168.2.10). La réussite du ping prouve que le DHCP Relay et le routage RIP sont fonctionnels.

```
Physical Config Desidop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\ping 192.168.2.12

Finging 192.168.2.12

Finging 192.168.2.12: bytes 93 timeclms TII-128

Reply from 192.168.2.12: byte
```

FIGURE 7 – Ping réussi entre deux hôtes du LAN B.

```
Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\ping 192.168.2.1 with 32 bytes of data:

Reply from 192.168.2.1: bytes=32 time<lms TTL=255
Ping statistics for 192.168.2.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\ping 10.0.0.3

Pinging 10.0.0.3 bytes=32 time<lms TTL=127
Reply from 10.0.0.3: bytes=32 time<lms TTL=127
```

FIGURE 8 – Ping réussi entre un hôte du LAN A et un hôte du LAN B.

#### 8 Conclusion

Grâce à cette configuration :

- Les PCs du LAN A et du LAN B reçoivent correctement leur adresse IP via DHCP.
- Le **DHCP Relay** (ip helper-address) permet au serveur DHCP non local d'attribuer des adresses au LAN B.
- Le routage RIP autorise la communication transparente entre les deux réseaux.

Tous les objectifs sont donc atteints : les machines de chaque sous-réseau peuvent se contacter (ou accéder à d'autres ressources externes si nécessaire).