ENG1456 - Lógica Fuzzy - Trabalho 1

Aluno: Matheus Carneiro Nogueira - 1810764

Professora: Ricardo Tanscheit

Sumário

1 Parte 1 - Fuzzy Rules

1

2 Parte 2 - Extração Manual de Regras

2

Resumo

Este documento consiste no relatório do trabalho 1 do módulo de Lógica Fuzzy da disciplina ENG1456 da PUC-Rio. O trabalho consiste na construção de um sistema de inferência fuzzy para a previsão de um passo a frente de uma série temporal. Para tal, será utilizado o programa Fuzzy Rules.

1 Parte 1 - Fuzzy Rules

Com o intuito de realizar a previsão de um passo a frente da série temporal, foram testados diversos tamanhos de janela, número de conjuntos fuzzy e tipos de operações de interseção dos antecedentes, implicação e defuzzificação. Como os testes foram numerosos, aqui está exibido apenas o resultado da melhor configuração encontrada. Além disso, vale comentar que foi separada 80% da série para treino, enquanto 20% final foi separado para testes.

A tabela abaixo exibe os resultados de algumas das configurações testadas.

Num_Conj	Janela	Intersec	Implicação	Defuzz	Diff treino	Diff teste
5	10	min	prod	alt lim	1.05	12.59
5	5	prod	prod	alt lim	1.49	1.70
5	15	min	min	alt lim	0.94	14.33
5	8	min	prod	alt lim	1.20	8.60
6	5	prod	prod	alt lim	1.31	2.00
6	7	prod	min	alt lim	1.04	3.59
6	10	min	min	alt lim	0.83	8.29
3	5	min	prod	alt lim	2.08	2.12

A fim de escolher a melhor configuração, avaliaremos o menor erro percentual de teste, isto é, *Diff teste*. Dito isso, a melhor configuração é:

Num_Conj	Janela	Intersec	Implicação	Defuzz	Diff treino	Diff teste
5	5	prod	prod	alt lim	1.49	1.70

Embora o erro de 1.7 não seja pequeno, será escolhida essa configuração, haja vista a quantidade de parâmetros testadas. Vale notar que, em alguns casos, o erro do treino foi menor para outras configurações quando comparadas com essa. Note que, na maior parte desses casos, o tamanho da janela utilizada foi maior do que o tamanho da janela da configuração escolhida. Uma janela grande demais pode gerar um erro pequeno no treino ao mesmo tempo que gera um erro grande no teste, o que indica o problema de overfitting.

A figura abaixo exibe a interface do Fuzzy Rules para as configurações selecionadas.

Figura 1: Interface para configuração selecionada

2 Parte 2 - Extração Manual de Regras

Tomando por base a melhor configuração obtida na seção 1 , foi realizado um passo a passo manual do procedimento de extração de regras para os dez primeiros dados do trecho da série especificado para a minha matrícula.

O passo a passo esquemático para a geração de regras consiste em:

- 1. Definir tamanho da janela $\rightarrow 5$
- 2. Determinar o horizonte de previsão $\rightarrow 1$
- 3. Para cada regra, executar:
 - (a) determinar o grau de pertinência dos valores da série dentro da janela e do horizonte
 - (b) atribuir, a cada variável, o conjunto de maior grau
 - (c) obter uma regra para cada par de entrada e saída
 - (d) Bônus:calcular o grau D(R) para desfazer possíveis conflitos

Como o enunciado solicita a extração para os 10 primeiros dados, 6 vezes pois, na sexta vez, usaremos o dado x_{11} que já está além dos 10 primeiros dados pedidos. Vale lembrar que os 5 primeiros termos, referentes à janela, são os antecedentes e o sexto termo é o consequente. Além disso, os valores dos graus de pertinência foram tirados da análise do gráfico do Fuzzy Rules.

De x_1 até x_6

$$x_1 = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_1 = 0.45 \end{cases}$$

$$x_2 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_3 = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_1 = 0.45 \end{cases}$$

$$x_4 = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_1 = 0.45 \end{cases}$$

$$x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_6 = 1.37 = \begin{cases} SE_3 = 0.20 \\ SE_4 = 0.80 \end{cases}$$

Atribuindo o maior grau de pertinência.

$$x_1 = 1.31 = \begin{cases} SE_3 = 0.55 \\ x_2 = 1.34 = \begin{cases} SE_3 = 0.70 \\ x_3 = 1.31 = \begin{cases} SE_3 = 0.55 \\ x_4 = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_3 = 0.55 \end{cases} \\ x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.80 \end{cases}$$

Criando a regra e calculando o grau D(R).

- Se $x_1 = SE_3$ e $x_2 = SE_3$ e $x_3 = SE_3$ e $x_4 = SE_3$ e $x_5 = SE_3$, então $x_6 = SE_4$.
- $D(R) = 0.55 \cdot 0.70 \cdot 0.55 \cdot 0.55 \cdot 0.70 \cdot 0.80 = 0.065$

De x_2 até x_7

$$x_2 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_3 = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_1 = 0.45 \end{cases}$$

$$x_4 = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_1 = 0.45 \end{cases}$$

$$x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_6 = 1.37 = \begin{cases} SE_3 = 0.20 \\ SE_4 = 0.80 \end{cases}$$

$$x_7 = 1.36 = \begin{cases} SE_3 = 0.45 \\ SE_4 = 0.55 \end{cases}$$

$$x_2 = 1.34 = \begin{cases} SE_3 = 0.70 \\ x_3 = 1.31 = \begin{cases} SE_3 = 0.55 \\ x_4 = 1.31 = \begin{cases} SE_3 = 0.55 \\ x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.80 \end{cases} \\ x_7 = 1.36 = \begin{cases} SE_4 = 0.55 \end{cases}$$

Criando a regra e calculando o grau D(R).

• Se
$$x_2 = SE_3$$
 e $x_3 = SE_3$ e $x_4 = SE_3$ e $x_5 = SE_3$ e $x_6 = SE_4$, então $x_7 = SE_4$.

•
$$D(R) = 0.70 \cdot 0.55 \cdot 0.55 \cdot 0.70 \cdot 0.80 \cdot 0.55 = 0.065$$

De x_3 até x_8

$$x_{3} = 1.31 = \begin{cases} SE_{3} = 0.55 \\ SE_{1} = 0.45 \end{cases}$$

$$x_{4} = 1.31 = \begin{cases} SE_{3} = 0.55 \\ SE_{1} = 0.45 \end{cases}$$

$$x_{5} = 1.34 = \begin{cases} SE_{3} = 0.70 \\ SE_{4} = 0.30 \end{cases}$$

$$x_{6} = 1.37 = \begin{cases} SE_{3} = 0.20 \\ SE_{4} = 0.80 \end{cases}$$

$$x_{7} = 1.36 = \begin{cases} SE_{3} = 0.45 \\ SE_{4} = 0.55 \end{cases}$$

$$x_{8} = 1.35 = \begin{cases} SE_{4} = 0.45 \\ SE_{3} = 0.55 \end{cases}$$

$$x_3 = 1.31 = \begin{cases} SE_3 = 0.55 \\ x_4 = 1.31 = \begin{cases} SE_3 = 0.55 \\ x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ x_6 = 1.37 = \begin{cases} SE_4 = 0.80 \\ SE_4 = 0.55 \end{cases} \\ x_7 = 1.36 = \begin{cases} SE_4 = 0.55 \\ SE_3 = 0.55 \end{cases}$$

Criando a regra e calculando o grau D(R).

• Se
$$x_3 = SE_3$$
 e $x_4 = SE_3$ e $x_5 = SE_3$ e $x_6 = SE_4$ e $x_7 = SE_4$, então $x_8 = SE_3$.

•
$$D(R) = 0.55 \cdot 0.55 \cdot 0.70 \cdot 0.80 \cdot 0.55 \cdot 0.55 = 0.051$$

De x_4 até x_9

$$x_4 = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_1 = 0.45 \end{cases}$$

$$x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_6 = 1.37 = \begin{cases} SE_3 = 0.20 \\ SE_4 = 0.80 \end{cases}$$

$$x_7 = 1.36 = \begin{cases} SE_3 = 0.45 \\ SE_4 = 0.55 \end{cases}$$

$$x_8 = 1.35 = \begin{cases} SE_4 = 0.45 \\ SE_3 = 0.55 \end{cases}$$

$$x_9 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_4 = 1.31 = \begin{cases} SE_3 = 0.55 \\ x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ x_6 = 1.37 = \begin{cases} SE_4 = 0.80 \\ x_7 = 1.36 = \begin{cases} SE_4 = 0.55 \\ SE_3 = 0.55 \end{cases} \\ x_8 = 1.35 = \begin{cases} SE_3 = 0.55 \\ SE_3 = 0.70 \end{cases}$$

Criando a regra e calculando o grau D(R).

• Se
$$x_4 = SE_3$$
 e $x_5 = SE_3$ e $x_6 = SE_4$ e $x_7 = SE_4$ e $x_8 = SE_3$, então $x_9 = SE_3$.

•
$$D(R) = 0.55 \cdot 0.70 \cdot 0.80 \cdot 0.55 \cdot 0.55 \cdot 0.70 = 0.065$$

De x_5 até x_{10}

$$x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_6 = 1.37 = \begin{cases} SE_3 = 0.20 \\ SE_4 = 0.80 \end{cases}$$

$$x_7 = 1.36 = \begin{cases} SE_3 = 0.45 \\ SE_4 = 0.55 \end{cases}$$

$$x_8 = 1.35 = \begin{cases} SE_4 = 0.45 \\ SE_3 = 0.55 \end{cases}$$

$$x_9 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_{10} = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_1 = 0.45 \end{cases}$$

$$x_5 = 1.34 = \begin{cases} SE_3 = 0.70 \\ x_6 = 1.37 = \begin{cases} SE_4 = 0.80 \\ x_7 = 1.36 = \begin{cases} SE_4 = 0.55 \\ x_8 = 1.35 = \begin{cases} SE_3 = 0.55 \\ x_9 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_3 = 0.55 \end{cases} \end{cases}$$

Criando a regra e calculando o grau D(R).

• Se
$$x_5 = SE_3$$
 e $x_6 = SE_4$ e $x_7 = SE_4$ e $x_8 = SE_3$ e $x_9 = SE_3$, então $x_{10} = SE_3$.

•
$$D(R) = 0.70 \cdot 0.80 \cdot 0.55 \cdot 0.55 \cdot 0.70 \cdot 0.55 = 0.065$$

De x_6 até x_{11}

$$x_6 = 1.37 = \begin{cases} SE_3 = 0.20 \\ SE_4 = 0.80 \end{cases}$$

$$x_7 = 1.36 = \begin{cases} SE_3 = 0.45 \\ SE_4 = 0.55 \end{cases}$$

$$x_8 = 1.35 = \begin{cases} SE_4 = 0.45 \\ SE_3 = 0.55 \end{cases}$$

$$x_9 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_4 = 0.30 \end{cases}$$

$$x_{10} = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_1 = 0.45 \end{cases}$$

$$x_{11} = 1.29 = \begin{cases} SE_3 = 0.13 \\ SE_2 = 0.87 \end{cases}$$

$$x_6 = 1.37 = \begin{cases} SE_4 = 0.80 \\ x_7 = 1.36 = \begin{cases} SE_4 = 0.55 \\ x_8 = 1.35 = \begin{cases} SE_3 = 0.55 \\ x_9 = 1.34 = \begin{cases} SE_3 = 0.70 \\ SE_3 = 0.55 \end{cases} \\ x_{10} = 1.31 = \begin{cases} SE_3 = 0.55 \\ SE_2 = 0.87 \end{cases}$$

Criando a regra e calculando o grau D(R).

- Se $x_6 = SE_4$ e $x_7 = SE_4$ e $x_8 = SE_3$ e $x_9 = SE_3$ e $x_{10} = SE_3$, então $x_{11} = SE_2$.
- $D(R) = 0.80 \cdot 0.55 \cdot 0.55 \cdot 0.70 \cdot 0.55 \cdot 0.87 = 0.082$

Com isso, finalizamos o passo a passo manual de extração de regras para os 10 primeiros termos da série.