Durée	activités	Résumer du cours	Evaluation
Durée 2h	activitésActivité 1Soit f une fonction numérique définie par $f(x) = \frac{1}{x^2 + 1}$ 1) Déterminer D_f l'ensemble de définition de la fonction f 2) Montrer que $(\forall x \in D_f); f(x) \le 1$ 3) Montrer que $(\forall x \in D_f); f(x) \ge 0$ 4) Déduire que $(\forall x \in D_f); 0 \le f(x) \le 1$	I. <u>Généralités</u>	Exercice 01: 1) Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = 1 - \frac{1}{x}$ Montrer que f est majorée par 1 sur \mathbb{R}^*_+ 2) Soit g la fonction définie par $g(x) = \frac{\sqrt{x} - 3}{\sqrt{x} + 1}$ a) Déterminer D_g . b) Montrer que la fonction g est majorée par 1 et minorée par -3. c) Interpréter les résultats géométriquement. Exercice 02 Soit f une fonction numérique définie sur \mathbb{R} par $f(x) = 2\sin(x) + \cos(x)$. Montrer que $(\forall x \in \mathbb{R}); f(x) \le 3$

	2. Extremums d'une fonction numérique	Exercice 03
	Définition	Soit f une fonction définie par
	Soit f une fonction définie sur I et soit a un élément de I.	$f(x) = x + \frac{4}{3}$
1h	On dit $f(a)$ est une valeur minimale de f sur I si pour tout	χ
	$x \text{ de I on a } f(x) \ge f(a)$.	1) Déterminer D_f l'ensemble de
	On dit $f(a)$ est une valeur maximale de f sur I si pour tout x	définition de la fonction f
	de I on a $f(x) \ge f(a)$	2) Montrer que $f(2)$ est une valeur
	Si $f(a)$ est une valeur maximale ou une valeur minimale de	minimale de la fonction f sur $]0;+\infty[$
	f sur I alors le point $A(a; f(a))$ est un extremum de f sur I.	
	3. Fonction périodique	3) Montrer que $f(-2)$ est une valeur
	Définition	maximale de la fonction f sur $]-\infty;0[$
	Soit f une fonction numérique et D_f son ensemble de	Evansias 04
	définition et soit T un nombre réel.	Exercice 04 Scient for at 1 trais fonctions
	On dit que f est une fonction périodique et T sa période si	Soient f, g et h trois fonctions
	et seulement si :	numériques telles que $f(x) = \cos^2(x)$,
1h	$\forall x \in D$ on $\mathcal{O}\left((x+T) \in D_f\right)$	$g(x) = \sin(2\pi x) \text{ et } h(x) = \tan(2x)$
	$\forall x \in D_f \text{ on a } \begin{cases} (x+T) \in D_f \\ f(x+T) = f(x) \end{cases}$	Montrer que les fonctions f, g et h
	Exemple	sont des fonctions périodiques et π ;1 et
	$f: x \mapsto \cos(x)$ et $g: x \mapsto \sin(x)$ sont des fonctions	$\frac{\pi}{2}$ sont respectivement leurs périodes.
	périodiques et 2π leur période.	2
	$h: x \mapsto \tan(x)$ est une fonction périodique et π sa période.	
	<u>Remarque</u>	Exercice 05
	Si f est une fonction périodique et T alors	Etudier l'égalité de f et g dans
	$(\forall x \in D_f), (\forall k \in \mathbb{Z}) \text{ on a } f(x+kT) = f(x)$	les cas suivants :
	4. Comparaison de deux fonctions	$\bullet f(x) = \frac{x}{x^2}$ et $g(x) = \frac{1}{x}$
2h	Egalité de deux fonctions	$- \oint f(x) = \sqrt{(x+1)^2} \text{ et } g(x) = x+1$
	Soient f et g deux fonctions numériques et D_f et D_g ses	$\int_{-2\pi}^{2\pi} \int_{-2\pi}^{2\pi} \int_{$
	ensembles de définitions respectives.	• $f(x) = \frac{x^2 - 1}{x + 1}$ et $g(x) = x - 1$.
1	I .	

On dit que f et g sont égales si les deux conditions suivantes 2) Soient f et g deux fonctions définies sont vérifiées:

$$\bullet D_f = D_g = D$$

$$\bullet (\forall x \in D); f(x) = g(x)$$

Soient f et g deux fonctions numériques définies sur I. On dit que f est inférieur ou égal à g si et seulement si $(\forall x \in I)$; $f(x) \le g(x)$ et on écrit $f \le g$

Interprétation graphique

Si $f \le g$ alors (C_f) est au-dessous de (C_g) sur I.

Si $f \ge g$ alors (C_f) est au-dessus de (C_g) sur I.

Si $f \le 0$ alors (C_f) est au-dessous d'axe des abscisses sur I

Si $f \ge 0$ alors (C_f) est au-dessus d'axe des abscisses sur I.

5. Image d'un intervalle par une fonction Définition

Soit f une fonction numérique définie sur un intervalle I $(I \subset D_{\scriptscriptstyle f}).$

L'ensemble des éléments f(x), tel que $x \in I$, s'appelle l'image de l'intervalle I par la fonction f et se note f(I)telle que $f(I) = \{f(x) | x \in I\}$.

OTechnique

Soit f une fonction numérique définie sur un intervalle Iet soit [a;b] un intervalle de I

Si f est croissante sur [a;b] alors f([a;b]) = [f(a);f(b)].

- sur \mathbb{R} par $f(x) = x^2 2x + 1$ et $g(x) = -2x^2 + 4x + 1$
- a- Comparer f et g pour tout x dans ces intervalles suivants $]-\infty;0];]2;+\infty[$ et [0;2].
- b- Déduire les positions relatives des courbes sur $]-\infty;0]$; $]2;+\infty[$ et [0;2]

Exercice 06

Soit f une fonction définie sur l'intervalle $I = \begin{bmatrix} -3, 4 \end{bmatrix}$ dont la courbe est la suivante

- 1) Dresser le tableau de variations de f sur I
- 2) Déterminer les extremums de la fonction f, puis le nombre de solutions de l'équation f(x) = 1
- 3) Déterminer graphiquement : f([-2;0]), f([-3;-2]), f([0;2]) et f([3;4]).

	Si f est décroissante sur $[a;b]$ alors $f([a;b]) = [f(b);f(a)]$.
	Si f change la monotonie $sur[a;b]$ alors
	$f([a;b]) = [V_{\min}; V_{\max}]$ où V_{\min} et V_{\max} sont respectivement la
	valeur minimale et la valeur maximale de f sur I .
	6. Monotonie d'une fonction numérique
2h	a. <u>Définition</u>
	Soit f une fonction définie sur I et soient a et b deux
	nombres réels dans I
	6. Si $a < b$ et $f(a) < f(b)$ alors on dit que la fonction f
	est strictement croissante sur I
	7. Si $a < b$ et $f(a) > f(b)$ alors on dit que la fonction f
	est strictement décroissante sur I.
	8. Si $a < b$ et $f(a) = f(b)$ alors on dit que la fonction f
	est constante sur I.
	b. <u>Monotonie et parité</u>

Propriété

Si f est paire:

Si f est impaire.

Propriété

Soit f une fonction numérique et D_f son ensemble de définition symétrique par rapport à 0 et soit I un intervalle

Si f est croissante sur I alors f est décroissante sur J Si f est décroissante sur I alors f est croissante sur J.

La fonction f garde le même sens de variations sur I et sur J.

de \mathbb{R}^+ et J son symétrique par rapport à 0

c. Monotonie de f + k et k.f

Exercice 07

Soit f une fonction numérique définie

$$par f(x) = \frac{3}{x} + \frac{x}{3}$$

- 1) Déterminer D_f
- **2)** Etudier la parité de la fonction f
- 3) Montrer que pour tous a et b dans $]0;+\infty[$; on $aT = \frac{ab-9}{3ab}$.
- **4)** Déduire le sens de variations de la fonction f sur $[3;+\infty[$ et]0;3]
- **5)** Dresser le tableau de variations de f sur D_f en précisant sa valeur maximale et sa valeur minimale.
- 6) Soit f une fonction définie par :

х	-4	- 3	1	3	4
f(x)	5 \	\ ₁ /	1		

- a) Compléter le tableau si f est paire.
- b) Compléter le tableau si f est **impaire**.

Exercice 08

2h	

Activité 02

On considère les fonctions f et g telles que : $f(x) = \sqrt{x-2}$ et g(x) = x-1

- a) Calculer g(5) puis déduire f(g(5))
- b) Calculer g(4) puis déduire f(g(4))
- c) Peut-on calculer f(g(1))?
- 2) Déterminer un intervalle I tel que $(\forall x \in I)$; $f(g(x)) \in \mathbb{R}$, puis déduire l'expression de f(g(x)) pour tout $x \in I$

Soit f une fonction numérique et $k \in \mathbb{R}^*$

- La fonction f + k et la fonction f ont même sens de variations.
- Si k > 0 alors la fonction k.f et la fonction f ont même sens de variations
- Si k < 0 alors la fonction k.f et la fonction f ont des sens de variations contraires

II. <u>Composée de deux fonctions</u>

1. <u>Définition</u>

Soit f une fonction numérique définie sur I et soit g une fonction numérique définie sur J telle que $(\forall x \in I)$; $f(x) \in J$. La composée de la fonction f et g, dans cet ordre, est la fonction qu'on note gof telle que $(\forall x \in I)$; gof(x) = g(f(x)).

Remarque

- \circ Ensemble de définition de gof est : $D_{\mathit{gof}} = \left\{x \in \mathbb{R} \, / \, x \in D_f \, \text{ et } f(x) \in D_g \right\}$
- $\circ \ x \in D_{gof} \Leftrightarrow x \in D_f \ \text{et} \ f(x) \in D_g.$

2. <u>La monotonie de la composée de deux fonctions</u> <u>Propriété</u>

Soit f une fonction numérique définie sur I et soit g une fonction numérique définie sur J telle que $(\forall x \in I)$; $f(x) \in J$.

- Si f et g ont même sens de variations alors la fonction gof est croissante sur I .
- ullet Si f et g ont des sens de variations contraires alors la fonction gof est décroissante sur I.

Exemple

Soit f une fonction numérique dont le tableau de variations est comme suit

Dresser le tableau de variations de f-3Dresser le tableau de variations de 2fet -2f

Exercice 09

Soient f et g les fonctions définies par :

$$f(x) = x^2 + 1$$
 et $g(x) = \frac{3x}{x - 1}$

- Déterminer l'ensemble de définition de chacune des fonctions f;g; gof et fog.
- 2) Déterminer l'expression de (gof)(x)pour tout $x \in D_{gof}$ et (fog)(x) pour tout $x \in D_{fog}$.
- **3)** Écrire sous forme d'une composée de deux fonctions dans les cas suivants :

$$h: x \mapsto \frac{x^2}{x^2 + 8}$$
; $h: x \mapsto \frac{\sqrt{x} - 2}{2\sqrt{x} + 3}$;
 $h: x \mapsto \frac{x^2 + 1}{|x| + 3}$

4) Soient *u* et *w* deux fonctions telles que

$$v(x) = x - 1$$
 et $w(x) = 2x^2 + 3x - 1$

2h

Soient f et g	deux fonctions telles que $f(x) = x - 1$ et
$g(x) = \sqrt{x}$	

Soit h une fonction numérique définie par h = gofEtudier la monotonie de la fonction h sur D_h

III. Représentation graphique des fonction

$$x \mapsto \sqrt{x+a} \ \underline{et} \ x \mapsto ax^3$$

La représentation graphique de la fonction $x \mapsto ax^3$

 $(a \neq 0)$

On considère f une fonction numérique définie sur \mathbb{R} par $f(x) = ax^3 \ (a \neq 0)$ et (C_f) sa courbe dans le repère orthonormé $(O; \vec{i}; \vec{j})$.

Parité de la fonction f

On a $(\forall x \in \mathbb{R})$; $-x \in \mathbb{R}$ et $f(-x) = a(-x)^3 = -ax^3 = -f(x)$ Donc f est une fonction impaire.

*Variations de f

f est une fonction impaire, alors il suffit de l'étudier sur \mathbb{R}^+ * \underline{Si} a > 0

Soient x et y dans \mathbb{R}^+ tels que x < y

$$x < y \Rightarrow x^3 < y^3 \Rightarrow ax^3 < ay^3 \Rightarrow f(x) < f(y)$$

Donc f est croissante sur \mathbb{R}^+

f est une fonction impaire, alors f est croissante aussi sur \mathbb{R}^-

Par conséquent f est croissante sur \mathbb{R}

Tableau de variations

Déterminer la fonction u telle que w = uov

Exercice 10

On considère les fonctions suivantes :

$$f(x) = x^2 - 2x - 1$$
 et $g(x) = \frac{x - 2}{x + 2}$

- 1) Déterminer D_f et D_g
- **2)** Déterminer D_{gof} puis calculer gof(x)
- **3)** Dresser le tableau de variations de *gof*

Exercice 11

Soient f et g deux fonctions définies par :

$$f(x) = 2x^3$$
 et $g(x) = \sqrt{x+3}$

Soient (C_f) et (C_g) respectivement les courbes de f et g dans un repère orthonormé $(O; \vec{i}; \vec{j})$

- 1) Vérifier que f(1) = g(1), puis interpréter le résultat graphiquement.
- **2)** Dresser le tableau de variations de f et g.
- **3)** a-Construire les courbes dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

b- Résoudre graphiquement l'inéquation $f(x) \ge g(x)$.

2h

\boldsymbol{x}	$-\infty$	0	+∞
f(x)		0	

Représentation graphique

$\underline{Si} a < 0$

Soient x et y dans \mathbb{R}^+ tels que x < y $x < y \Rightarrow x^3 < y^3 \Rightarrow ax^3 > ay^3 \Rightarrow f(x) > f(y)$

Donc f est décroissante sur \mathbb{R}^+

f est une fonction impaire , alors f est décroissante aussi sur \mathbb{R}^- . Par conséquent f est décroissante sur \mathbb{R}

Tableau de variations

x	$-\infty$	0	$+\infty$
f(x)		0	

Représentation graphique

c- Déterminer graphiquement $f([3;+\infty[)$

4) a-Déterminer D_{fog} .

b- Étudier les variations de la fonction $f \circ g$ à partir des variations des fonctions f et g sur $[3;+\infty[$

c- Calculer fog(x) pour tout D_{fog} .

2. Représentation graphique de la fonction $x \mapsto \sqrt{x+a}$ On considère f une fonction numérique définie sur \mathbb{R} par $f(x) = \sqrt{x+a}$ et $\left(C_f\right)$ sa courbe dans le repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$.

***Domaine de définition**
$$D_f = [-a; +\infty[$$

*Variations de f

Soient x et y dans D_f tels que x < y $x < y \Rightarrow x + a < y + a \Rightarrow \sqrt{x + a} < \sqrt{y + a} \Rightarrow f(x) < f(y)$

Donc f est croissante sur $[-a; +\infty[$

Tableau de variations

Représentation graphique

On peut construire la courbe de la fonction $f: x \mapsto \sqrt{x+a}$ à partir de la courbe d'une fonction $x \mapsto \sqrt{x}$ en utilisant une translation de vecteur $-a\vec{i}$