CS/ECE 374 Fall 2018 Homework 0 Problem 2

Xinrui Ying (xinruiy2@illinois.edu)

(a) Consider the following recurrence.

$$T(n) = T(|n/2|) + 2T(|n/4|) + n$$
 $n \ge 4$, and $T(n) = 1$ $1 \le n < 4$.

• Prove by induction that $T(n) = O(n \log n)$. More precisely show that $T(n) \le an \log n + b$ for $n \ge 1$ where $a, b \ge 0$ are some fixed but suitably chosen constants (you get to choose and fix them).

Solution:

- (a) Choose a = 1, b = 1.
 - Base case: When n=1, T(1)=1, log1=0, so that $an log n+b=b=1 \ge T(1)$. When n=2, T(2)=1, log2=1, $an log n+b=b+2a=1+2a=3 \ge T(2)$. When n=3, T(3)=1, $an log n+b=b+3a log 3=1+3log 3 \ge T(3)$. So it holds for n=1,2,3.
 - Induction step: Suppose it is true for n = 4, 5, 6...k, we want to show that n = k + 1 also holds. There are two cases:
 - *k* is an even number:

Let k = 2j, $j \in \mathbb{N}$. n = k + 1 = 2j + 1. Then we have $T(k + 1) = T(\lfloor j + 1/2 \rfloor) + 2T(\lfloor 1/2j + 1/4 \rfloor) + k + 1$.

Since *j* is a natural number, then $T(k+1) = T(\lfloor j \rfloor) + 2T(\lfloor 1/2j \rfloor) + k + 1$. As $T(k) = T(\lfloor j \rfloor) + 2T(\lfloor 1/2j \rfloor) + k$, we have T(k+1) = T(k) + 1.

Since n = k is already true that $T(k) \le anlog n + b$, $T(k+1) = T(k) + 1 \le anlog n + b + 1 = anlog n + b + (1/log n) * log n = (an + (1/log n)) * log n + b$.

Since log n > 1, 1/log n < 1, and log(n+1) > log(n), then (an + (1/log n)) * log n + b < (an + a) * (log(n + 1)) + b = a(n + 1) * (log(n + 1)) + b.

Hence, we conclude that $T(k+1) \le (an + (1/\log n)) * \log n + b < a(n+1) * (\log(n+1)) + b$. The statement holds for n = k+1 when k is an even number.

- *k* is an odd number:

Let k = 2j + 1, $j \in \mathbb{N}$. n = k + 1 = 2(j + 1). We have $T(k + 1) = T(\lfloor (k+1)/2 \rfloor) + 2T(\lfloor (k+1)/4 \rfloor) + k + 1$. Since it's assume holds true for 1, 2 ... k, and k > = 4, then (k+1)/2 and (k+1)/4 are less than k that $T(\lfloor (k+1)/2 \rfloor) \le a(k+1)/2(\log(k+1)/2) + b$, $T(\lfloor (k+1)/4 \rfloor) \le a(k+1)/4(\log(k+1)/4) + b$.

b = 1, Combine both inequality, $T(k+1) = T(\lfloor (k+1)/2 \rfloor) + 2T(\lfloor (k+1)/4 \rfloor) + k+1 \le a(k+1)/2(\log(k+1)/2) + b + 2*(a(k+1)/4(\log(k+1)/4) + b) + k+1$.

Work on the right hand side, $a(k+1)/2(\log(k+1)/2) + b + 2 * (a(k+1)/4(\log(k+1)/4) + b) + k + 1 = a(k+1)/2(\log(k+1)/2) + (a(k+1)/2(\log(k+1)/4) + 3b + k + 1 = a(k+1)/2((\log(k+1)/2) + (\log(k+1)/4)) + 3 + k + 1.$

Since log(a/b) = loga - logb and log(ab) = loga + logb, a(k+1)/2((log(k+1)/2) + (log(k+1)/4)) = a(k+1)/2(2 * (log(k+1)) - log2 - log4).

According to piazza, log can be base on 2, a(k+1)/2(2*(log(k+1)) - log2 - log4) = a(k+1)log(k+1) - a(k+1)/2*(log2 + log4) = a(k+1)log(k+1) - a(k+1)/2*3.

Now we can see that $a(k+1)/2((\log(k+1)/2)+(\log(k+1)/4))+3+k+1=a(k+1)\log(k+1)-a(k+1)/2*3+3+(k+1)=(k+1)\log(k+1)-(k+1)+3=(k+1)\log(k+1)-(k+1)/2+3.$

 $k \ge 4$, (k+1)/2 > 2, 3-(k+1)/2 < 1. Hence, $(k+1)\log(k+1)-(k+1)/2+3 < (k+1)\log(k+1)+1 = a(k+1)\log(k+1)+1$, then we can conclude that $T(k+1) < a(k+1)\log(k+1)+b$.

Combine both cases, we proved that $T(n) \le anlog n + b$ for $n \ge 1$ when choosing a = 1, b = 1.