"NOT ANOTHER COAL STORY"

NEAR-TERM POWER SECTOR TRANSITIONS IN INDIA

15 May 2019 Seminar #3

Aman Malik RD III

Paris Agreement requires global unabated coal phase-out by 2050

Share of unabated coal in Global Electricity Generation (%)

Source: Rogelj et al., 2018

Global coal fleet is increasing albeit at a slower pace

Source: Carbon Brief

Global coal fleet is increasing albeit at a slower pace

After China, India has significant underconstruction and planned coal plants

Most coal plants in India are young and inefficient.

India's NDC

- To reduce the emissions intensity of its GDP by 33 to 35 percent by 2030 from 2005 level.
- To achieve about 40 % cumulative electric power installed capacity from non- fossil fuel-based energy resources by 2030.
- To create an additional carbon sink of 2.5 to 3 billion tonnes of CO2 equivalent through additional forest and tree cover by 2030.

Important Targets

- Renewable Energy Targets 175 GW in 2022 (excluding Large Hydro)
 - Solar 100 GW
 - Wind 60 GW
 - Remaining: Biomass and Small Hydro

Motivation

- How do current policies and NDC pledges:
 - Affect the future of coal power generation?
 - Impact future mitigation potential in line with the Paris Agreement?
- What are the potentials of coal alternatives to provide gross electricity?
- What short-term policies could help India to move to a cost-effective mitigation pathway?

Scenario design

Scenario name	Definition			
Early action	Currently implemented policies till 2020 followed by a carbon budget constraint till 2050, corresponding to well-below 2 C.			
Delayed action	Currently implemented policies and NDC till 2030 followed by carbon budget constraint till 2050, corresponding to well-below 2 C			

^{*} The budgets for national models were chosen by the respective teams, representing the maximum mitigation effort, till 2050, possible through their models.

^{*} The budgets for India for global models were the outcome of the global carbon budget which was the same across models (2011-2100 of 1000 GtCO2)

Bottom-up sources

National Electricity Plan, January 2018 Central Electricity Authority (CEA)

Coal power generation increases under NDC

Coal power generation increases under NDC

Coal power generation increases under NDC

- Most models project that under NDC policies India will continue to build coal power plants
- Large model spread in 2030 but many within bottom-up projections.

which leads to drastic reductions in cost-effective mitigation

• Coal based generation steeply declines post 2030 (reducing capacity factor, early retirement), with complete decarbonization in global models.

Early action avoids near-term coal build-up

2010 2020 2030 2040 2050 Year

Early action avoids near-term coal build-up

Which leads to lesser stranding but does not eliminate

Significant increase in Solar and Wind under implemented policies – exceeding current VRE targets

Significant increase in Solar and Wind under implemented policies – exceeding current VRE targets

Significant increase in Solar and Wind under implemented policies – exceeding current VRE targets

Early action increases near-term addition of both solar and wind

Early action increases near-term addition of both solar and wind

Role of nuclear in future decarbonization likely low

- Slow net addition: Up to 2x Longer construction times in India compared to world average.
- Under direct control
 of government control
 – no private entry.

And the same for gas- although many models are optimistic

- Decreasing gas generation (scarcity, high prices and no long distance gas infrastructure from gas-rich countries).
- Current stranded gas capacity of 14 GW.
- Some models are very optimistic about the potential for gas.
- Optimistic projections seem questionable, especially in global models, which in most cases do not explicitly represent bilateral trade or gas infrastructure.

Policies required to limit coal power production!

- Without explicit policies to limit coal based power generation, coal plants continue to be built. In spite of ambitious RE targets!
- Political infeasibility of immediate and high carbon price -> need for short term technological policies to be in line with Paris Agreement for e.g., no more new unabated coal beyond 2022 and continued natural retirement(red dot).
- Such a policy would prevent carbon lock-ins thereby reducing stranded assets and assisting future ambitious climate policies .

Conclusions and paper storyline

- India most likely continues to build coal plants under an NDC scenario; leads to early-retirement of coal under cost-effective mitigation.
- Solar and Wind more likely dominate future low-carbon energy mix, compared to nuclear and gas.
- To move towards cost-effective PA, a big step would be not building any more coal beyond under-construction; reduce carbon lock-ins.

Future Work: Carbon lock-ins of mitigation pathways the tendency of carbon-intensive technological systems to persist over time (inertia), locking -out lower-carbon alternatives

the tendency of carbon-intensive technological systems to Future Work: persist over time (inertia), locking -out lower-carbon alternatives

Carbon lock-ins of mitigation pathways Social and cultural Powerful economic, social, (§) preferences (habits) for

network, long-lived effects

Carbon lock-ins of mitigation pathways

Carbon lock-ins of mitigation pathways

Political Economy and Institutional Lock-ins

Institutional lock-ins are essentially caused by political economy agents in the society.

A proxy to represent PE could be Employment. For e.g., policies favouring job-formation are favoured and vice-versa.

Use Employment to study institutional lock-ins and political economy constraints of mitigation pathways

Employment numbers – bottom-up data

Table 1. Estimated Direct and Indirect Jobs in Renewable Energy, by Country and Technology

Ĭ				United			Dana	European Union ⁱ		
	World	China	Brazil	States	India	Japan	Bang- ladesh	Germany	a para	Rest of EU
	THOUSAND JOBS									
Solar PV	3,095	1,962	4	241.9	121	302	140	31.6	16	67
Liquid biofuels	1,724	51	783°	283.7 ^f	35	3		22.8	22	48
Wind power	1,155	509	32.4	102.5	60.5	5	0.33	142.9	22	165
Solar heating/ cooling	828	690	43.4 ^d	13	13.8	0.7		9.9	5.5	20
Solid biomass ^{a, g}	723	180		79.7 ^e	58			45.4	50	238
■ Biogas	333	145		7	85		15	45	4.4	15
≥ Hydropower (small-scale) ^b	211	95	11.5	9.31	12		5	6.7	4	35
♂ Geothermal energy ^a	182			35		2		17.3	37.5	62
○ CSP	23	11		5.2				0.7		3
Total	8,305 ^h	3,643	875.9	777.3	385	313	162.3	334 ^j	162	667 ^k
	•					Sales Pes				
≥ Hydropower (large-scale) ^b	1,519	312	183	28	236	18		6	9	46
Total (including large-scale hydropower)	9,824	3,955	1,058	806	621	330	162	340	171	714

Source: REN21 Global Status Report

Ex-post employment analysis

Source: Dominish et al., 2018

Questions and Discussion

Model	Emissions intensity (GDP) reduction of 33 to 35 percent by 2030 from 2005 level	40 % non-fossil installed capacity by 2030
AIM	61.4	0.458
IMAGE	56.5	0.491
POLES	39.3	0.505
REMIND	21.3	0.546
WITCH	40	0.480
AIM/Enduse	35	0.40
India MARKAL	50.3	0.474