Algèbre linéaire et bilinéaire I – TD₄

Partie 1 : Familles libres

Exercice 1:

Les familles suivantes de \mathbb{R}^3 sont-elles libres?

- 1. (u, v) avec u = (1, 2, 3) et v = (-1, 4, 6);
- 2. (u, v, w) avec u = (1, 2, -1), v = (1, 0, 1) et w = (0, 0, 1);
- 3. (u, v, w) avec u = (1, 2, -1), v = (1, 0, 1) et w = (-1, 2, -3).

Exercice 2:

On considère dans \mathbb{R}^3 les vecteurs $v_1 = (1, 1, 0), v_2 = (4, 1, 4)$ et $v_3 = (2, -1, 4)$.

- 1. Montrer que la famille (v_1, v_2) est libre. Faire de même pour (v_1, v_3) , puis pour (v_2, v_3) .
- 2. La famille (v_1, v_2, v_3) est-elle libre?

Exercice 3:

Soit E le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que la famille (\cos , \sin) de E est libre.
- 2. Montrer que la famille $(x \mapsto e^x, x \mapsto e^{2x}, x \mapsto e^{x^2})$ de E est libre (on pourra faire une étude asymptotique en $+\infty$).
- 3. Montrer que la famille $(x \mapsto |x-a|)_{a \in \mathbb{R}}$ de E est libre.

Partie 2: Bases et dimension

Exercice 4:

On considère le sous-espace vectoriel F de \mathbb{R}^4 défini par

$$F = \{(x, y, z, t) \in \mathbb{R}^4, x + y = 0 \text{ et } x + z = 0\}.$$

- 1. Donner une base de F.
- 2. Compléter la base trouvée en une base de \mathbb{R}^4 .
- 3. On pose $u_1 = (1, 1, 1, 1)$, $u_2 = (1, 2, 3, 4)$ et $u_3 = (-1, 0, -1, 0)$. La famille (u_1, u_2, u_3) est-elle libre?
- 4. On pose $G = \text{Vect}(\{u_1, u_2, u_3\})$. Quelle est la dimension de G?
- 5. Donner une base de $F \cap G$.
- 6. En déduire que $F + G = \mathbb{R}^4$.

Exercice 5:

Soient F et G deux sous-espaces vectoriels de \mathbb{R}^5 de dimension 3. Montrer que $F \cap G \neq \{0_E\}$.

Exercice 6 : Formule de Grassmann

Soit E un \mathbb{K} -espace vectoriel et soient F et G deux sous-espaces vectoriels de E de dimension finie. Montrer que :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

1. Justifier l'existence d'un supplémentaire H de $F \cap G$ dans F. En déduire que

$$\dim H = \dim F - \dim(F \cap G).$$

- 2. Montrer que $F + G = H \oplus G$.
- 3. Conclure.

Exercice 7:

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soient F et G des sous-espaces vectoriels de E

montrer que dim $F = \dim G$ si, et seulement si, F et G ont un supplémentaire commun dans E, c'est-à-dire qu'il existe un sous-espace vectoriel H de E tel que $E = F \oplus H = G \oplus H$.

- 1. Montrer le sens indirect.
- 2. Montrer que le sens direct est vrai dans le cas où dim $F = \dim G = n$.
- 3. On suppose que le sens direct est vrai pour un $p \leq n$ donné (si dim $F = \dim G = p$, alors F et G ont un supplémentaire commun dans E) et on veut montrer que le sens direct est vrai pour p-1.
 - (a) Soient F et G deux sous-espaces vectoriels de dimension p-1 < n. Montrer par l'absurde que $F \cup G \neq E$.
 - (b) Soit $x \in E \setminus (F \cup G)$. Calculer $\dim(F + \text{Vect}(\{x\}))$ et $\dim(G + \text{Vect}(\{x\}))$.
 - (c) Montrer que F et G ont un supplémentaire commun dans E.
- 4. Conclure.

Partie 3 : Applications linéaires

Exercice 8:

Considérons l'application $f: \mathbb{R}^3 \to \mathbb{R}^4$ définie par

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f(x, y, z) = (x + z, y - x, z + y, x + y + 2z).$$

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^4)$.
- 2. Déterminer une base de Ker(f).
- 3. L'application f est-t-elle injective? Est-elle surjective?

Exercice 9:

Soient E, F et G trois \mathbb{K} -espaces vectoriels, soit $f \in \mathscr{L}(E, F)$ et soit $g \in \mathscr{L}(F, G)$. Montrer que $g \circ f = 0_{\mathscr{L}(E,G)} \iff \operatorname{Im}(f) \subset \operatorname{Ker}(g).$