# 初心者也ッション: 統計学(再)入門

**BeginneR Session: Statistics 101 (Re)** 

22<sup>nd</sup> April 2023, Tokyo.R #105 Yuta Kanzawa @yutakanzawa



Data Scientist at Zurich Insurance Company Limited, Japan Branch



#### 神沢雄大 Yuta Kanzawa

• データサイエンティスト@チューリッヒ保険会社 **⊘** ZURICH



- 日本支店
- Twitter: <a href="mailto:oyutakanzawa">oyutakanzawa</a>
- 好きなもの: オペラとワイン
  - ・ワーグナー
  - ブルゴーニュ (WSET Lv 3→?)
- 使用可能言語:7
  - 人間:日本語、英語、ドイツ語
  - コンピューター: R, Python, SAS, SQL



#### ポートフォリオ



Source: https://www.nta.go.jp/taxes/sake/shiori-gaikyo/seizogaikyo/kajitsu/pdf/h30/30wine01.pdf





Source: Japan Sommelier Association https://www.sommelier.jp/exam/pdf/qualifiedholders.pdf \*Sommelier Excellence (2019-2020), Senior Sommelier (2013-2018), Senior Wine Adviser (2013-2015)







#### アジェンダ

- ・今日話すこと
  - 統計学の基礎知識
  - R
  - 気をつけるポイント

- ・対象(以下のいずれか)
  - 統計学を使ってみたい人
  - 統計学を復習したい人

- 今日話さないこと
  - 統計解析の方法

#### おことわり

• 大まかな説明をします。厳密な定義は書籍を参照して下さい。

• 企業でビジネスやサービスに関するデータ分析を行うという文脈を前提において下さい。アカデミアやR&Dの分析には当てはまらない可能性があります。

• 自分で考えて試して下さい。

#### TL;DR

- 母集団と標本
  - 標本
  - サンプルサイズの決め方
  - ・バイアス
- 統計量
  - 相関≠因果
  - ・ 散布図も描く!
- 仮説検定
  - 多重比較、p値ハックに気をつける!

# Ch 1: 母集団と標本

**Population & sample** 

#### 「母集団」

- 分析の対象となる集団全体
  - (parent) population
  - Universe
  - 例:
    - 日本国民 → 特定可能
    - あるサービスの全契約者 → 特定可能
    - ある商品の購入者 → 特定可能/不特定多数
    - Rユーザー → 不特定多数

#### 「標本」

- ・母集団の一部 (部分集合)
  - Sample
  - 母集団全体の把握、調査が困難な場合 → 標本を調査。
    - 母集団の特性を反映するよう無作為抽出(することが多い)。
  - 例:
    - ・ 日本国民 → 内閣支持率の電話アンケート (Cf 国勢調査)
    - あるサービスの全契約者 → 顧客満足度調査
- ・標本の要素数 → 「標本サイズ」、「サンプルサイズ」
  - 俗に「n数」
  - ・注:「標本数」、「サンプル数」→ 集合の数

#### サンプルサイズ

- どのくらいが適切なのか?
  - SurveyMonkeyの「標本サイズカルキュレータ」\*
  - 山根の公式(信頼度95%)
    - $\frac{N}{1+Ne^2}$  (Nは母集団のサイズ、eは許容誤差)
  - ・ 厳密には効果量と検出力から計算。
- 例
  - ・日本の人口=約1億2000万人 → サンプルサイズ=約400人
    - 許容誤差5%

<sup>\*</sup> https://jp.surveymonkey.com/mp/sample-size-calculator/

#### バイアス

- ・標本の抽出に偏り → 母集団と異なる傾向
- 例(アンケート調査)
  - Rユーザーだけに聞く。
  - インターネットで調査する。

## Ch 2: 統計量 Statistics

#### 基本統計量

| 種類   | 英語                 | 説明           | Rの関数                |
|------|--------------------|--------------|---------------------|
| 平均值  | mean, average      | 値の大小を均一にしたもの | mean()              |
| 中央値  | median             | 値をソートした時の中央  | <pre>median()</pre> |
| 分散   | variance           | 値のばらつき       | var()               |
| 標準偏差 | standard deviation | 分散の平方根       | sd()                |
| 最大値  | maximum            | 最も大きい値       | max()               |
| 最小值  | minimum            | 最も小さい値       | min()               |
| 最頻値  | mode               | 同じ値の数が最も多いもの | table()             |

#### 標本と不偏

- 不偏推定量:母集団の統計量を標本から推定したもの
  - 標本に偏りがなければ標本の統計量を母集団の統計量と見なせる。
    - ・ 厳密には期待値が一致することが条件。
- ・標準偏差と分散
  - ・標本の分散の期待値は母集団とは異なる。
    - →標本から計算した標準偏差(分散の平方根)≠母集団
      - 標本標準偏差: $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2}$  vs 不偏標準偏差: $\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$ 
        - 注1:分母を要チェック!n-1で割る方(右)を「標本」と呼ぶことも。sd()関数はn-1で割る。
        - 注2:このn-1で割る「不偏標準偏差」は母集団の標準偏差の不偏推定量ではない。

#### 相関係数

- ・2つの変数の値の変動の一致度と方向を表す順序尺度。
  - ・ピアソンの積率相関係数
  - その他
    - スピアマンの順位相関係数
    - ケンドールの順位相関係数
    - •級内相関係数(ICC)、など。
  - ・値の比に意味はない。
    - ・誤り: 「1.0は0.1の10倍相関が強い。」
  - ・相関関係の**有無を決める閾値は存在しない**(自分で決める)。
- cor()関数
  - 引数methodに指定(デフォルトは"pearson")。

#### 相関≠因果

- ・相関関係があっても因果関係があるとは限らない!
  - Correlation doesn't imply causation!
  - 例:チョコレート消費量とノーベル賞受賞者数\*
    - 擬似相関
    - 歴史的経緯?
    - 1人当たりGDP?



<sup>\*</sup> https://www.biostat.jhsph.edu/courses/bio621/misc/Chocolate%20consumption%20cognitive%20function%20and%20nobel%20laurates%20(NEJM).pdf

#### 見せかけの回帰

- 相関関係も因果関係もないのに、そうであると誤認してしまう。
  - ・時系列データの回帰
    - 単位根過程(ランダムウォーク)
    - 例:モッツァレラチーズの消費量と土木工学博士号の取得者数\*
      - 厳密には見せかけの相関ではない。
      - 経済状況?

#### Per capita consumption of mozzarella cheese correlates with

#### Civil engineering doctorates awarded



<sup>\*</sup> https://www.tylervigen.com/spurious-correlations#stat012ac8597b4e674c25da6937ec9f649f

#### 外れ値と分位点



- 外れ値:データ全体の中で極端に大きいor小さい値
  - 定量的には**分位点**を計算して判断する。
    - 分位点:データを昇順ソートした時の位置(順位)を百分率で表したもの
      - percentile
      - 0%点 = 最小値、50%点 = 中央値(第2四分位点)、100%点 = 最大値
    - quantile()関数(引数probsに小数表記で渡す。)
  - 箱ひげ図:ggplot2のgeom\_boxplot()関数
- 外れ値か否かを決める閾値は存在しない(自分で決める)。
  - •経験的には上下1%か5%とすることが多い(正規分布なら2 $\sigma$ や3 $\sigma$ )。
  - 外れ値は上限値や下限値で**置き換える**(か除外する)。

<sup>\*</sup> https://commons.wikimedia.org/wiki/File:Elements\_of\_a\_boxplot\_en.svg

#### アンスコムの数値例

- 平均、分散、相関係数、回帰直線が同じになってしまう4つのデータ
  - 内蔵のanscombeデータセット(発展形: datasauRusパッケージ\*)
  - 外れ値の影響が顕著。
- 定量的なことをするだけでなく散布図も描きましょう!



<sup>\*</sup> https://cran.r-project.org/web/packages/datasauRus/

#### 正規分布

- 正規分布
  - データがこの確率分布に従うことが多く、便利。
  - 正規分布を前提にしている手法がある。
    - 例:線形回帰(最小2乗法)→誤差(残差)が正規分布に従う。
- でも、自分のデータが正規分布かどうかは全く別の話。
  - ・正規分布か否か調べる。→正規性の検定
    - シャピロ-ウィルク検定: shapiro.test()関数
      - 正規分布に従う母集団から抽出された標本か否か。
    - コルモゴロフ-スミルノフ検定: ks.test()関数
      - 2つの母集団の確率分布が異なるか否か。



 $<sup>*\</sup> https://commons.wikimedia.org/wiki/File:Standard\_deviation\_diagram\_micro.svg$ 

# Ch 3: 仮説検定

**Hypothesis test** 

#### 検定

- 帰無仮説:検定で棄却されることを前提とする仮説
  - 例:「2つの標本の平均値が等しい。」
  - p値:帰無仮説が真である確率
- 有意水準:帰無仮説を棄却する(採用しない)p値の閾値
  - 間違いである確率
  - 分野、内容に依る(経験的には0.1%~10%)。
- 両側検定と片側検定
  - 「等しい」という帰無仮説 → 両側
  - 「大きくない」、「小さくない」という帰無仮説 → 片側
    - 有意水準→両側検定の半分にする。



#### 色々な検定

| 調べたいもの  | 検定             | Rの関数                      |
|---------|----------------|---------------------------|
| 割合      | 母比率の差の検定       | <pre>prop.test()</pre>    |
| 平均值     | ウェルチのt検定       | t.test()                  |
| 度数分布    | ピアソンのχ2乗検定     | <pre>chisq.test()</pre>   |
| 正規性(再掲) | シャピロ-ウィルク検定    | <pre>shapiro.test()</pre> |
|         | コルモゴロフ-スミルノフ検定 | ks.test()                 |

#### アンチパターン

- 多重比較
  - 有意水準:本来有意でないはずが有意になる確率(間違いの確率)
  - 複数回比較(検定)を行う。→「間違い」が起こりやすくなる。
  - 対処法:
    - 有意水準を下げる(キツくする)。
    - ダネットの検定、テューキーの範囲検定
- p値ハック
  - サンプルサイズが大きいほど有意になりやすい。
  - 禁止:有意になるまでデータを増やす。



### まとめ Long story short

#### Long story short

- 母集団と標本
  - 標本
  - サンプルサイズの決め方
  - ・バイアス
- 統計量
  - 相関≠因果
  - ・ 散布図も描く!
- 仮説検定
  - 多重比較、p値ハックに気をつける!

#### 参考書

- •『統計学入門』(東京大学教養学部統計学教室、1991年)
- ・『戦略的データサイエンス入門』(Provost、Fawcett、2014年)
- 『Rではじめるデータサイエンス』(Wickham, Grolemund、2017年)
- 『ビジネスデータサイエンスの教科書』(Taddy、2020年)









# Enjoy!