MA52300 Introduction to Partial Differential Equations

Midterm Exam

Date: October 17, 2016

Duration: 120 min

Name:	Solutions	
PIIID.		

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

1. Consider the Cauchy problem

$$u_{x_1}^2 + u_{x_2}^2 = u$$
 in \mathbb{R}^2 , $u(x_1, 0) = ax_1^2$ for $x_1 \in \mathbb{R}$.

- (a) For what positive constants a is there a (classical) solution? Is it unique?
- (b) Find all solutions of the Cauchy problem above.

Solution: (a) This is a fully nonlinear PDE of first order F(Du, u, x) = 0, where $F(p, z, x) = p_1^2 + p_2^2 - z$. The characteristics $(\mathbf{p}(s), z(s), \mathbf{x}(s))$ then satisfy

$$\dot{p}^{1} = -F_{x_{1}} - F_{z}p^{1} = p^{1}, \qquad p^{1}(0) = p_{1}^{0}$$

$$\dot{p}^{2} = -F_{x_{2}} - F_{z}p^{2} = p^{2}, \qquad p^{2}(0) = p_{2}^{0}$$

$$\dot{z} = p \cdot F_{p} = 2(p^{1})^{2} + 2(p^{2})^{2} = 2z, \quad z(0) = a(x^{0})^{2}$$

$$\dot{x}^{1} = F_{p_{1}} = 2p^{1}, \qquad x^{1}(0) = x^{0}$$

$$\dot{x}^{2} = F_{p_{2}} = 2p^{2} \qquad x^{2}(0) = 0$$

where p_1^0 , p_2^0 must satisfy the admissibility conditions

$$p_1^0 = (ax_1^2)_{x_1}|_{x_1 = x^0} = 2ax^0, \quad (p_1^0)^2 + (p_2^0)^2 = a(x^0)^2.$$

Plugging p_1^0 into the second equation gives

$$(p_2^0)^2 = (a - 4a^2)(x^0)^2$$

which can be satisfied in an open neighborhood of x^0 iff $a-4a^2 \ge 0$. Since a>0, this gives

$$0 < a \le 1/4$$
.

Moreover, we obtain

$$p_2^0 = \pm \sqrt{a - 4a^2} x^0.$$

This will produce two admissible triples $(\mathbf{p}^0, z^0, \mathbf{x}^0)$ if 0 < a < 1/4, but only one if a = 1/4. Moreover, if 0 < a < 1/4 and $x_0 \neq 0$, then $F_{p_2} = 2p_2^0 \neq 0$ and thus the local existence theorem will imply that we have at least two solutions near $(x^0, 0)$. When a = 1/4, the local existence theorem is not applicable. However, the unique solution exists by explicit computations in part (b).

(b) We next solve the characteristic system. We readily have

$$p^{1}(s) = 2ax^{0}e^{s}, \quad p^{2}(s) = \pm\sqrt{a - 4a^{2}}x^{0}e^{s}, \quad z(s) = a(x^{0})^{2}e^{2s}$$

and hence also

$$x^{1}(s) = 4ax^{0}e^{s} + (1 - 4a)x^{0}, \quad x^{2}(s) = \pm 2\sqrt{a - 4a^{2}}x^{0}(e^{s} - 1).$$

We then notice that we only need to express x^0e^s in terms of $x_1 = x^1(s)$ and $x_2 = x^2(s)$ in order to find u. We have

$$x^{0}e^{s} = \frac{\mp x^{1}(s)2\sqrt{a-4a^{2}} - x^{2}(s)(1-4a)}{\mp 8a\sqrt{a-4a^{2}} \mp 2\sqrt{a-4a^{2}}(1-4a)} = x^{1}(s) \pm x^{2}(s)\sqrt{1/(4a)-1}$$

This gives

$$u(x_1, x_2) = a \left(x_1 \pm x_2 \sqrt{1/(4a) - 1} \right)^2,$$

which can indeed be verified to be a classical solution (including the case a = 1/4).

2. Let L be a positive number and consider the initial boundary value problem

$$u_{tt} - u_{xx} = 0$$
 in $(0, L) \times (0, \infty)$,
 $u(x, 0) = \phi$, $u_t(x, 0) = \psi$ for $x \in [0, L]$,
 $u(0, t) = 0$, $u_x(L, t) = 0$ for $t > 0$.

- (a) Find the compatibility condition and prove the existence of a C^2 solution under such a condition.
- (b) Prove that this solution is 4L-periodic in t; i.e.,

$$u(x, t + 4L) = u(x, t).$$

Solution: (a) We first note that we need $\phi \in C^2([0,L])$ and $\psi \in C^1([0,L])$. Next, if we have a C^2 solution, then we must have

$$u(0,t) = 0$$
, $u_t(0,t) = 0$, $u_{tt}(0,t) = u_{xx}(0,t)$, $u_x(L,t) = 0$, $u_{xt}(L,t) = 0$

and thus, letting $t \to 0+$ we obtain

$$\phi(0) = 0$$
, $\psi(0) = 0$, $\phi_{xx}(0) = 0$, $\phi_x(L) = 0$, $\psi_x(L) = 0$.

These are necessary conditions. We will next show that they are also sufficient. Indeed, extend first ϕ and ψ to by even symmetry w.r.t. x = L, to [L, 2L] and then, by odd symmetry w.r.t. x = 0 to [-2L, 0], and finally by 4L-periodicity to all of \mathbb{R} :

$$\tilde{\phi}(x) = \begin{cases} \phi(2L - x) & x \in [L, 2L] \\ -\tilde{\phi}(-x) & x \in [-2L, 0] \\ \tilde{\phi}(x - 4kL) & x \in [(4k - 2)L, (4k + 2)L] \end{cases}$$

and similarly for ψ . Note the resulting extensions $\tilde{\phi} \in C^2(\mathbb{R})$ and $\tilde{\psi} \in C^1(\mathbb{R})$ because of the compatibility conditions above (matching derivatives up to the required order). The solution is then given by the D'Alembert's formula

$$u(x,t) = \frac{\tilde{\phi}(x+t) + \tilde{\phi}(x-t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} \tilde{\psi}(\xi) d\xi,$$

which will be C^2 .

(b) To show 4L-periodicity, simply notice that the extensions $\tilde{\phi}$ and $\tilde{\psi}$ are 4L-periodic, as well as

$$\int_{-2L}^{2L} \tilde{\psi}(\xi) d\xi = 0,$$

implying also that $\Psi(x) = \int_0^x \tilde{\psi}(\xi) d\xi$ is 4L-periodic in x. Hence u(x,t) is also 4L-periodic in t, by the D'Alembert's formula.

3. Consider the Cauchy problem in \mathbb{R}^2

$$u_{xx} + uu_{yy} - u_y = u^2$$
, $u|_{\Gamma} = 1$, $u_y|_{\Gamma} = x$,

where $\Gamma = \{(x, \sin x) : x \in \mathbb{R}\}.$

- (a) Show that it has a real-analytic solution near the origin.
- (b) Compute the second order partial derivatives u_{xx} , u_{xy} , u_{yy} at (0,0).

Solution: (a) As Γ , initial data, and fully nonlinear operator are real analytic, we only need to verify the non-characteristic condition at the origin – the existence of the real analytic solution will follow from the Cauchy-Kovalevskaya theorem.

Since Γ is given by $w = y - \sin x = 0$, the non-characteristic condition is readily satisfied:

$$\sum_{|\alpha|=2} a_{\alpha} \nu^{\alpha} = \sum_{|\alpha|=2} a_{\alpha} (Dw)^{\alpha} = w_x^2 + u w_y^2 = \cos^2 x + 1 \neq 0.$$

(b) We differentiate u along Γ , which is equivalent to differentiating the identity

$$u(x, \sin x) = 1.$$

w.r.t. x. We obtain

$$u_x + \cos x u_y = 0 \quad \Rightarrow \quad u_x = -x \cos x \text{ on } \Gamma$$

Differentiating one more time we obtain

$$u_{xx} + u_{xy}\cos x = -\cos x + x\sin x.$$

Differentiating $u_y(x, \sin x) = x$, we have

$$u_{xy} + u_{yy}\cos x = 1$$

Combining these two equations with the PDE, we have the following three identities at (0,0):

$$u_{xx} + u_{xy} = -1$$
, $u_{xy} + u_{yy} = 1$, $u_{xx} + u_{yy} = 1$.

This gives

$$u_{xx} = -1/2$$
, $u_{xy} = -1/2$, $u_{yy} = 3/2$

at (0,0).

4. Let Ω be unbounded open set and $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be harmonic in Ω . Show that if $\lim_{\substack{|x| \to \infty \\ x \in \Omega}} u(x) = 0$ [20pt]

$$\sup_{\overline{\Omega}} |u| = \sup_{\partial \Omega} |u|.$$

[Hint. Apply the maximum principle in the open set $\Omega_R = \Omega \cap B_R$ and let $R \to \infty$.]

Solution: Let $\Omega_R = \Omega \cap B_R$ for a large R > 0. The boundary $\partial \Omega_R$ is then decomposed into the union of $\Gamma_R = \partial \Omega \cap B_R$ and $\gamma_R = \overline{\Omega} \cap \partial B_R$.

Next, let $x \in \Omega$ be arbitrary and R > |x|. Then, by the maximum principle (for bounded open sets)

$$|u(x)| \leq \sup_{\Omega_R} |u| \leq \sup_{\partial \Omega_R} |u| = \max \left\{ \sup_{\Gamma_R} |u|, \sup_{\gamma_R} |u| \right\} \leq \max \left\{ \sup_{\partial \Omega} |u|, \sup_{\gamma_R} |u| \right\} \rightarrow \sup_{\partial \Omega} |u|$$

as $\sup_{\gamma_R} |u| \to 0$ from the given limit of u at infinity. Thus,

$$\sup_{\Omega} |u| \le \sup_{\partial \Omega} |u|,$$

which is equivalent to the desired equality.

5. (a) Let u be a positive harmonic function in a ball $B_R(x_0)$. Prove that for any multi-index α

[20pt]

$$|D^{\alpha}u(x_0)| \le \frac{C_{\alpha}u(x_0)}{R^{|\alpha|}}.$$

[Hint: Use the interior estimates in $B_{R/2}(x_0)$ combined with the Harnack inequality in $B_R(x_0)$]

(b) Use the estimate in part (a) to prove the Liouville theorem for positive harmonic functions: if u is a positive harmonic function in \mathbb{R}^n , then u is constant in \mathbb{R}^n .

Solution: By the interior estimates, applied in $B_{R/2}(x_0)$, we have

$$|D^{\alpha}u(x_0)| \le \frac{C_{|\alpha|}}{(R/2)^{n+|\alpha|}} ||u||_{L^1(B_{R/2}(x_0))}.$$

On the other hand

$$||u||_{L^1(B_{R/2}(x_0))} = \int_{B_{R/2}(x_0)} |u| = \int_{B_{R/2}(x_0)} u = \alpha_n (R/2)^n u(x_0),$$

by the Mean Value Theorem (one can use the Harnack inequality here instead of MVT). Hence,

$$|D^{\alpha}u(x_0)| \le \frac{C_{\alpha}}{R^{|\alpha|}}u(x_0).$$

(b) Applying (a) with $|\alpha| = 1$ gives

$$|Du(x_0)| \le \frac{C}{R}u(x_0)$$

for any R > 0. Letting $R \to \infty$, we obtain

$$Du(x_0) = 0.$$

Since $x_0 \in \mathbb{R}^n$ is arbitrary, this is equivalent to $u \equiv const.$