The Mean of Means

Question:

You want to calculate the average number of users ('num_users') per deal for Amir's entire company dataset. Instead of calculating the mean for all deals, you repeatedly sample and calculate the mean, then compare with the overall mean.

Explanation of the Question:

This exercise focuses on approximating the mean of a dataset by taking repeated random samples of size 20. The sample means are calculated and printed alongside the overall mean of the dataset to show the accuracy of sampling.

Answer:

```
# Import necessary libraries
import numpy as np
import pandas as pd
# Set seed to 321 for reproducibility
np.random.seed(321)
# Initialize an empty list to store sample means
sample means = []
# Loop 30 times to take 30 means
for i in range(30):
  # Take a sample of size 20 from num users column of all deals with
replacement
  cur sample = all deals['num users'].sample(20, replace=True)
  # Take mean of the current sample
  cur mean = np.mean(cur sample)
  # Append the mean to sample means
  sample means.append(cur mean)
# Print the mean of sample means
print(np.mean(sample means))
# Print the mean of the num users column in amir deals
print(np.mean(amir deals['num users']))
```

Explanation of the Answer:

This corrected solution involves setting a random seed for reproducibility, then taking 30 samples, each of size 20, from the 'num_users' column of the 'all_deals' dataset. The mean of each sample is calculated and stored in a list. Finally, the mean of the sample means is compared to the mean of the 'num_users' column in 'amir_deals' to validate the accuracy of the sampling approach.