Übungsaufgaben Vorlesung Computational Intelligence:

gegeben: Fuzzy-System (3 Eingänge, 1 Ausgang) für eine Durchflussregelung

Eingänge Fuzzy-Regler:

- 1. Regeldifferenz e (linguistische Variable E),
- 2. Änderung der Regeldifferenz Δe/T_A (linguistische Variable DE, Abtastzeit T_A),
- 3. Führungsgröße w (linguistische Variable W)

Ausgang: Änderung der Stellgröße Ventilposition (linguistische Variable DU)

Zugehörigkeitsfunktionen der Eingangsgrößen:

Zugehörigkeitsfunktionen der Regeldifferenz in m³/h

Zugehörigkeitsfunktionen der (zeitlichen) Änderung der Regeldifferenz in m³/hs

Zugehörigkeitsfunktionen der Führungsgröße - Solldurchfluss w in m³/h

Ziel: Der Regler soll bei kleinen Solldurchflüssen w stärker reagieren als bei großen Solldurchflüssen, um die Nichtlinearität der Ventilkennlinie teilweise zu kompensieren, dazwischen soll ein Kompromiss erreicht werden.

Regelbasis mit 18 Regeln R_i, alle Regeln haben Regelplausibilitäten von Eins:

Regeln: R_1 : WENN E = NEG UND DE = NEG UND W = GR DANN DU = NM

 R_{10} : WENN E = NEG UND DE = NEG UND W = KL DANN DU = NG ...

Vollständige Regelbasis ist in Tabellenform gegeben:

Änderung der Stellgröße, wenn W = GR

Andcrung der Stengroße, weim W – OR					
Е	NEG	NU	POS		
DE					
NEG	R ₁ : NM	R ₂ : NK	R ₃ : NU		
NU	R ₄ : NK	R ₅ : NU	R ₆ : PK		
POS	R ₇ : NU	R ₈ : PK	R ₉ : PM		

Änderung der Stellgröße, wenn W = KL

Anderung der Stengrobe, weim W – KL						
	Е	NEG	NU	POS		
DE						
NEG		R ₁₀ : NG	R ₁₁ : NM	R ₁₂ : NU		
NU		R ₁₃ : NM	R ₁₄ : NU	R ₁₅ : PM		
POS		R ₁₆ : NU	R ₁₇ : PM	R ₁₈ : PG		

Zugehörigkeitsfunktionen der Ausgangsgröße (Änderung der Stellgröße DU):

Zugehörigkeitsfunktionen der zeitlichen Änderung der Stellgröße in % /s

Aufgaben:

- 1. Welche Typen von Zugehörigkeitsfunktionen werden für die Eingangs- und Ausgangsgrößen verwendet?
- 2. Was bedeuten die Kurzbezeichnungen für die linguistischen Terme?
- 3. Berechnen Sie für die Zugehörigkeitsfunktionen von E die Verknüpfungen a.) E = NU ODER POS mit den Operatoren Maximum, Summe, Beschränkte Summe und Algebraische Summe
 - b.) E = NU UND POS mit den Operatoren Minimum, Beschränkte Differenz und Produkt c.) E = NICHT POS
- 4. Fuzzifizieren Sie die Messwerte $e = 1 \text{ m}^3/\text{h}$, $\Delta e/T_A = 1 \text{ m}^3/\text{hs}$, $w = 10 \text{ m}^3/\text{hs}$
- 5. Berechnen Sie für die Messwerte in 4. die Ergebnisse der Prämissenauswertung, der Aktivierung und der Akkumulation unter Verwendung der Operatoren Produkt (UND) und Beschränkte Summe (ODER).
- 6. Berechnen Sie für die Messwerte in 4. die Ergebnisse der Prämissenauswertung, der Aktivierung und der Akkumulation unter Verwendung der Operatoren Minimum (UND) und Maximum (ODER).
- 7. Defuzzifizieren Sie die Ergebnisse von 5. und 6. mit der Schwerpunktmethode für Singletons.
- 8. Zeichnen Sie die Ergebnisse von 4.-7. für die Messwerte von 4. als Funktion von w mit den folgenden zusätzlichen Stützpunkten für $\Delta u/T_A$ (e, $\Delta e/T_A$,w):

 $Produkt/Beschränkte \ Summe: \qquad \Delta u/T_A (1,1,5) = 1.95; \qquad \Delta u/T_A (1,1,15) = 1.00;$

Minimum/Maximum: $\Delta u/T_A(1,1,5) = 2.27;$ $\Delta u/T_A(1,1,15) = 1.36;$

Wird bei beiden Operatorvarianten das Ziel des Reglers für alle Punkte erreicht?

9. Um welchen Reglertyp handelt es sich?