Lecture 17-18

Protein-protein docking

Computational Methods in Proteins

Protein-Protein Docking

Ab initio **Protein-protein docking** is the determination of the molecular structure of *complexes* formed by two or more proteins without the need for *experimental* measurement.

Docking Types

- Based on crystallization information
 - Bound docking
 - Unbound docking/predictive docking

- Based on protein flexibility
 - Rigid Body
 - Flexible Body

Rigid to Flexible

- Protein as a rigid body a conceptual model
 - No bond stretching/bending
 - Less number of degrees of freedom for the atoms
 - Manageable possibilities
 - Not a practical scenario.
- Protein as a flexible body a reality
 - Real life situation
 - Possibilities are enormous
 - Mathematical modeling of flexible body is difficult.

Protein Flexibility

Bad News	Good News
Dimensionality of the problem	Whole protein is not flexible ☺
If whole protein is flexible	
It varies from case to case	Predict the flexible regions a prior ☺
If flexibility occurs at some distance place not at the contact area	
If conformational changes occur after the binding/docking	

Protein flexibility is largely infeasible. Ligand flexibility is possible.

Algorithms for Protein Docking

- Shape Complementarity
 - (Connolly 1986, Cazals *et al* 2003)
- Fourier Technique

(Katchalski-Katzir et al, 1992 (FTDock))

- Shape Polynomial and Shape Descriptor
 - (Taubin et al 1989, Goldman et al 2000, Kazhdan et al 2003)
- Docking using Biochemical Information

(Gabb *et al* 1997, Ritchie and Kemp 2000, Chen and Weng 2002, Fernandez-Recio *et al* 2002, Dominguez *et al* 2003 (HADDOCK), Murakami and Jones 2006 (SHARP))

Meta-heuristic Approach

(SA - Goodsell and Olson 1990, GA - Poirrette et al 1997, Gardiner et al 2001)

Machine Learning Approach

(Neuvirth et al 2004, Bradford and Westhead 2005, Qi et al 2006)

Docking Search Strategies

Pseudo Random

- Simulated Annealing / Monte Carlo
- Genetic Algorithms

Directed Search

- Geometric Hashing
- Spherical Harmonic Surface Triangles

Brute-Force Search

- Explicit Grid Correlations
- Fast Fourier Transform (FFT) Correlations
- Spherical Polar Fourier Correlations

Scoring in docking methods

Integrated Scoring

FTDock (Katchalaski-Katzir (1992), PNAS)

Edge Scoring

PRUNE (Mitra and Pal (2011), Nucleic Acids Res.)

Docking Strategy

Generation methods

- Tagline "Higher the decoys; better the possibility of having a hit"
- How many is good?
- Move to discrete space

Generation methods

On an average some brute force method can generate $\sim 10^7$ decoys.

Generation methods

On an average some brute force method can generate $\sim 10^7$ decoys.

Assuming processing of each decoy takes 1 sec; total processing time ~115 days.

Fast Fourier Technique

$$\overline{a}_{l,m,n} = \begin{cases} 1 & \text{on the surface of the molecule} \\ \rho & \text{inside the molecule} \\ 0 & \text{outside the molecule,} \end{cases}$$

and

$$\overline{b}_{l,m,n} = \begin{cases} 1 & \text{on the surface of the molecule} \\ \delta & \text{inside the molecule} \\ 0 & \text{outside the molecule,} \end{cases}$$

Fast Fourier Technique

$$\overline{c}_{\alpha,\beta,\gamma} = \frac{1}{N^3} \sum_{o=1}^N \sum_{p=1}^N \sum_{q=1}^N \exp[2\pi i(o\alpha + p\beta + q\gamma)/N] \cdot C_{o,p,q}$$

Docking Strategy

Scoring methods

Ab initio scoring

Contact Area
Contact Packing
Non-bonded interactions
Solvation Energy
Etc.

Template based

Ab initio method

- ➤ Interface area (IA)
- Normalized interface packing (NIP)
- ➤ Normalized surface complementarity (NSc)
- Non-bonded energy (NE):

$$NE = \sum_{i < j}^{atoms} \left(\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^{6}} + \frac{q_{i}q_{j}}{4\Pi \varepsilon R_{ij}} \right)$$

➤ Solvation energy (SE):*

$$SE = \sum_{\text{interface atoms}} \Delta \sigma(\text{Atom Type}) \times \Delta ASA$$

Interface area

- Accessible surface area:
 - The surface area of a molecule which is accessible by the solvent molecules (mostly water, the universal solvent molecule)
- Interface atom:
 - An atom is called as an interface atom if it loses its accessible surface area (ASA) by more than 0.1Å²
- Interface area/Interacting surface:
 - The amount of ASA loses by all the interface atom is the interface area of a complex.