MAE 1 - ELECTROMAGNETISM

Angélique Rissons-Malivert 2020-2021

Introduction

Who am I?

- Angélique Rissons-Malivert
- ISAE-Supaero Professor

What am I doing here?

- o Academic: Microwave-Photonics teaching, Supaero 2A responsible
- Research: Optical telecommunication & Microwave-Photonics
 - Research team: PAMPA (Photonic Antenna Microwave PlasmA)
 - o Research Department : DEOS (Department Electronic and Signal)

How to contact me:

- Email: <u>Angelique.rissons@isae-supaero.fr</u>
- o Phone: + 33- (0)5-61-33-81-35
- Office: 07-1128 (meeting slot scheduled by email)

Outlines

- I. Introduction
- II. From Magnetostatic and Electrostatic to Electromagnetism Dynamics MaxwellEquation
- III. Wave Propagation in vacuum
- IV. Wave energy
- V. Wave propagation in matter
- VI. Boundary conditions (Reflection/refraction)

Electromagnetism Spectrum

Electromagnetism field Quantities & Keywords

Books:

- Foundations of Electromagnetism, Reitz, Milford, Christy.
- Equations de Maxwell Ondes électromagnetiques, M. &N. Hulin, Perrin
- Microondes Volume 1 & 2, Paul F. Combes

Physical Quantities:

- \vec{E} electric field vector, \vec{B} magnetic Field Vector, $\vec{H} = \frac{\vec{B}}{\mu_0}$ magnetic intensity vector, $\vec{D} = \varepsilon_0 \vec{E}$ electric displacement vector
- λ Wavelength From Microwave(few meters) to visible optics (500nm)
- f or v Frequency from MHz to PHz
- ϵ_0 vacuum permittivity (8.854 × 10⁻¹² F/m)
- μ_0 vacuum permeability ($4\pi imes 10^{-7}~H/m$)
- \sim c speed of the light (3 \times 10⁻⁸ m/s)

Keywords:

- Electrical & magnetic coupling or interaction
- Microwave
- Radiofrequency
- Induction
- Wave Propagation
- Wave corpuscular duality
- Plasma
- ***** Optics and Photonics

Exemple of applications

Application Field - Physical layer and Technologies

Instruments (Attitude control), Radar and Lidar, Communications and Navigation, Telemeasurement Astronomy, Structural Health Monitoring, Scientific space mission (Curiosity, PHARAO,...)

Outlines

- I. Introduction
- II. From Magnetostatic and Electrostatic to Electromagnetism Dynamic MaxwellEquation
- III. Wave Propagation in vacuum
- IV. Wave energy
- V. Wave propagation in matter
- VI. Boundary conditions (Reflection/refraction)

Electro and Magneto –static Maxwell Equations

From Electrostatic and Magnetostatic laws

Steady state Electromagnetic Field:

$$div \, \vec{E} = rac{
ho}{arepsilon_0} \, \, {
m or} \, \vec{
abla} \cdot \vec{E} = rac{
ho}{arepsilon_0}$$

Gauss Law

$$div \vec{B} = 0 \text{ or } \vec{\nabla} \cdot \vec{B} = 0$$

General Magnetism Law

$$\overrightarrow{curl}\overrightarrow{E} = 0$$
 or $\overrightarrow{\nabla} \times \overrightarrow{E} = 0$

Faraday Law

$$\overrightarrow{curl}\overrightarrow{B} = \mu_0\overrightarrow{J} \text{ or } \overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0\overrightarrow{J}$$

Ampere Law

Applications

- Faraday Law Induced Current
 - the cycle dynamo
- Ampere Law Displacement Charge Magnetorqer/ Foucault Current

EMC, Inductive coupling in an electronic board

Time-Varying Maxwell Equations

(1)
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

Local Gauss Law (electric flux density)

(2)
$$\vec{\nabla} \cdot \vec{B} = 0$$

General Magnetism Law

$$(3)\vec{\nabla}\times\vec{E}=-\frac{\partial\vec{B}}{\partial t}$$

Faraday Law (relationship between Electric and Magnetic Field)

(4)
$$\overrightarrow{V} \times \overrightarrow{B} = \mu_0 \left(\overrightarrow{j} + \epsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} \right)$$

(4) $\overrightarrow{V} \times \overrightarrow{B} = \mu_0 \left(\overrightarrow{j} + \epsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} \right)$ Ampere law (current flow in a wire creating a magnetic field)

Double cross product of Maxwell-Faraday equation

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} \cdot (\vec{\nabla} \cdot \vec{E}) - \Delta \vec{E}$$

$$-\vec{\nabla} \times \left(\frac{\partial \vec{B}}{\partial t}\right) = -\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{B})$$

Maxwell Ampere
$$\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$

$$\vec{\nabla} \cdot (\vec{\nabla} \cdot \vec{E}) - \Delta \vec{E} = -\frac{\partial}{\partial t} \left(\mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \right)$$

$$\Delta \vec{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{\varepsilon_0} \vec{\nabla} \rho + \mu_0 \frac{\partial \vec{J}}{\partial t}$$

Double cross product of Maxwell-Faraday equation

$$\vec{\nabla} \times \vec{E} = \left(\frac{\partial \vec{B}}{\partial t}\right)$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} \cdot (\vec{\nabla} \cdot \vec{E}) - \Delta \vec{E}$$

$$-\vec{\nabla} \times \left(\frac{\partial \vec{B}}{\partial t}\right) = -\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{B})$$

Maxwell Ampere $\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$

$$\vec{\nabla} \cdot (\vec{\nabla} \cdot \vec{E}) - \Delta \vec{E} = -\frac{\partial}{\partial t} \left(\mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \right)$$

Maxwell-Gauss eq.

$$\frac{
ho}{arepsilon_0}$$

$$\Delta \vec{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{\varepsilon_0} \vec{\nabla} \rho + \mu_0 \frac{\partial \vec{J}}{\partial t}$$

Double cross product of Maxwell-Faraday equation

$$\vec{\nabla} \times \vec{r} = \left(\frac{\partial \vec{B}}{\partial t}\right)$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} \cdot (\vec{\nabla} \cdot \vec{E}) - \Delta \vec{E}$$

$$-\vec{\nabla} \times \left(\frac{\partial \vec{B}}{\partial t}\right) = -\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{B})$$

Maxwell Ampere $\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$

$$\vec{\nabla} \cdot (\vec{\nabla} \cdot \vec{E}) - \Delta \vec{E} = -\frac{\partial}{\partial t} \left(\mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \right)$$

Maxwell-Gauss eq.

$$\frac{
ho}{arepsilon_0}$$

$$\Delta \vec{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{\varepsilon_0} \vec{\nabla} \rho + \mu_0 \frac{\partial \vec{J}}{\partial t}$$

B resolution

Double cross product of Maxwell-Ampere equation

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{B}) = \vec{\nabla} \cdot (\vec{\nabla} \cdot \vec{B}) - \Delta \vec{B}$$

$$\vec{\nabla} \times \left(\mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}\right) = \left(\mu_0 \vec{\nabla} \times \vec{J} + \varepsilon_0 \mu_0 \vec{\nabla} \times \frac{\partial \vec{E}}{\partial t}\right)$$

B field conservation

$$\frac{\partial}{\partial t} \left(\vec{\nabla} \times \vec{E} \right) = -\frac{\partial}{\partial t} \left(\frac{\partial \vec{B}}{\partial t} \right)$$

Maxwell-Faraday eq.

$$-\Delta \vec{B} = \mu_0 \vec{\nabla} \times \vec{J} - \varepsilon_0 \mu_0 \frac{\partial}{\partial t} \left(\frac{\partial \vec{B}}{\partial t} \right)$$

$$\Delta \vec{B} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} = -\mu_0 \, \vec{\nabla} \times \vec{J}$$

B resolution

Double cross product of Maxwell-Ampere equation

$$\vec{\nabla}$$
 ×

$$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{B} \right) = \left(\mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \right)$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{B}) = \vec{\nabla} \cdot (\vec{\nabla} \cdot \vec{B}) - \Delta \vec{B}$$

B field conservation

$$\vec{\nabla} \times \left(\mu_0 \vec{j} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}\right) = \left(\mu_0 \vec{\nabla} \times \vec{j} + \varepsilon_0 \mu_0 (\vec{\nabla} \times \frac{\partial \vec{E}}{\partial t})\right)$$

$$\frac{\partial}{\partial t} \left(\vec{\nabla} \times \vec{E} \right) = -\frac{\partial}{\partial t} \left(\frac{\partial \vec{B}}{\partial t} \right)$$

Maxwell-Faraday eq.

$$-\Delta \vec{B} = \mu_0 \vec{\nabla} \times \vec{J} - \varepsilon_0 \mu_0 \frac{\partial}{\partial t} \left(\frac{\partial \vec{B}}{\partial t} \right)$$

$$\Delta \vec{B} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} = -\mu_0 \, \vec{\nabla} \times \vec{J}$$

 $\overrightarrow{\overline{V}}$ Cross product of the Differentiating $(B \ or \ E)$

Navier Equation form

Introduce $\overrightarrow{\nabla}$ dot product of \overrightarrow{A}

$$\Delta \vec{A} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{A}}{\partial t^2}$$

$$\Delta \vec{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{\varepsilon_0} \vec{\nabla} \rho + \mu_0 \frac{\partial \vec{J}}{\partial t}$$

$$\Delta \vec{B} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} = -\mu_0 \, \vec{\nabla} \times \vec{J}$$

Results | Electromagnetism - Maxwell Equation(Spatial/temporal equations)

(1)
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

field)

(1) $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ Local Gauss Law (electric flux density) (2) $\vec{\nabla} \cdot \vec{B} = 0$ General Magnetism Law (3) $\vec{\nabla} \times \vec{E} = -\frac{\partial B}{\partial t}$ Faraday Law (relationship between E & B Field) (4) $\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$ Ampere law (current flow in a wire creating a B

E & B Resolution

Angelique RISSONS

$$\Delta \vec{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{\varepsilon_0} \vec{\nabla} \rho + \mu_0 \frac{\partial \vec{J}}{\partial t}$$

$$\Delta \vec{B} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} = -\mu_0 \vec{\nabla} \times \vec{J}$$

Electromagnetic Wave Equation?

17

PRACTICE QUIZZ ON LMS

Test your knowledge by this practice quizz on LMS https://lms.isae.fr/course/view.php?id=2445

Quizz open up to the next course 2