Εισαγωγή στη Σχεδίαση Συστημάτων VLSI $6^{\eta} \ \epsilon \rho \gamma \alpha \sigma \tau \eta \rho \iota \alpha \kappa \dot{\eta} \ \dot{\alpha} \sigma \kappa \eta \sigma \eta$

Α' Ενότητα: Ολοκληρωμένα περιβάλλοντα σχεδίασης

Σε αυτή την ενότητα θα γίνει η σχεδίαση ενός σύνθετου κυκλώματος με χρήση ολοκληρωμένων εργαλείων που προσφέρουν τη δυνατότητα να εκφραστεί ένα κύκλωμα με διαφορετικές μορφές. Συγκεκριμένα, η ροή σχεδίασης ενός κυκλώματος που θα ακολουθηθεί είναι:

- 1. Κατασκευή σχηματικού διαγράμματος στο πρόγραμμα DSCH
- 2. Εξαγωγή κώδικα Verilog, όπως προκύπτει από την μετατροπή σε αρχείο.ν του DSCH
- 3. Εισαγωγή κώδικα Verilog στο MICROWIND για την υλοποίηση του layout.

ΠΑΡΑΤΗΡΗΣΗ:

Στο πρόγραμμα DSCH λόγω κάποιου σφάλματος στο πρόγραμμα στην μεταφορά των πολυπλεκτών 2:1 η είσοδος ελέγχου είναι σαν να έχει αναστραφεί, οπότε η σειρά που θα εκτελεστούν οι πράξεις δεν θα είναι αυτή που αντιστοιχίζεται στην εκφώνηση, αλλά θα είναι πρόσθεση, αφαίρεση, AND και XOR

Ερώτηση 1:

Σε αυτό το ερώτημα θα υλοποιηθεί η αριθμητική και λογική μονάδα των τριών bit που εκτελεί τις πράξεις λογικό XOR, λογικό AND, αφαίρεση και πρόσθεση.

Η μονάδα αυτή επιλέγει κάθε φορά ποια πράξη θα εκτελεστεί με βάση τον 2-bit κωδικό Op[1:0] με βάση την παρακάτω αντιστοίχιση πράξεων-Op:

Operation	Op_0	Op_1
XOR	0	0
AND	0	1
Αφαίρεση	1	0
Πρόσθεση	1	1

Αρχικά, θα σχεδιαστεί η μονάδα στο πρόγραμμα DSCH. Για να γίνει αυτό χρειάστηκε η κατασκευή μια μονάδα-κύτταρο που θα χρησιμοποιηθεί για την κατασκευή της 3-bit μονάδας. Η σχηματική απεικόνιση αυτής της μονάδας φαίνεται παρακάτω.

Στο διπλανό σχήμα, όλα τα σήματα είναι 1-bit εκτός από το Op[1:0], που είναι δύο bit. Σαν εισόδους δέχεται τα A_j , B_j και παράγει το output $_j$ και έχει ως εισόδους ελέγχου το κρατούμενο εισόδου Cin_j , με την αντίστοιχη έξοδο του $Cout_j$, και τα B_i invervse και Op που βγαίνουν στην έξοδο χωρίς καμία αλλοίωση.

Στο παρακάτω σχήμα, έχουμε μια πύλη AND και μια πύλη XOR, που εισέρχονται σε έναν πολυπλέκτη, ο οποίος αποφασίζει αν θα λειτουργήσει η πράξη AND ή XOR. Η πρόσθεση και η αφαίρεση υλοποιείται από τον Full Adder και μια πύλη XOR, με την οποία επιτρέπεται η ελεγχόμενη αντιστροφή της εισόδου B.

- Όταν έχω A+B, το B περνάει αυτούσιο στον F-A.
- Όταν έχω Α-Β, το Β αναστρέφεται και μετά εισέρχεται στον F-A.

Στην κυκλωματική υλοποίηση, χρησιμοποιείται και ένας ακόμη πολυπλέκτης, ο οποίος επιλέγει αν θα πάρει τις λογικές πράξεις ή τις αριθμητικές πράξεις, με βάση το Op[1:0] που αντιστοιχίζει τις πράξεις σε τιμές δυαδικού συστήματος. Συγκεκριμένα,

- Όταν το Op είναι 1 τότε επιλέγει να ενεργοποιηθεί το σήμα Ε₀, δηλαδή θα επιλεχθούν οι λογικές πράξεις.
- Όταν το Op είναι 0 τότε επιλέγει να ενεργοποιηθεί το σήμα Ε₁, δηλαδή θα επιλεχθεί είτε η πράξη AND είτε η πράξη XOR.

Για την κατασκευή της 3-bit ALU μονάδας, όπως φαίνεται στο παρακάτω κύκλωμα, έχουν χρησιμοποιηθεί 3 μονάδες-κύτταρα 1-bit ALU,με το B_inverse να εξαρτάται από το Op και οι έξοδοι της μιας μονάδας να αποτελούν είσοδοι της επόμενης.

Κυκλωματική Διάταξη:

Ακολουθώντας την παραπάνω διαδικασία, πρώτα κατασκευάστηκε η 1-bit ALU, όπως φαίνεται στην ακόλουθη κυκλωματική διάταξη στο DSCH.

Αυτή η υλοποίηση της 1-bit ALU, χρησιμοποιήθηκε σαν κύτταρο για την υλοποίηση της 3-bit ALU. Συγκεκριμένα, συνδέθηκαν τρεις 1-bit ALU στη σειρά με τις εξόδους της πρώτης να αποτελούν της εισόδους της δεύτερης κτλ. Με αυτό τον τρόπο προέκυψε η ακόλουθη κυκλωματική διάταξη της 3-bit ALU στο DSCH.

Από αυτή την κυκλωματική διάταξη, βγήκε ο παρακάτω κώδικας Verilog με την εντολή Make Verilog File.

Αυτό το αρχείο κώδικα χρησιμοποιήθηκε στο MICROWIND, όπου και έδωσε την ακόλουθη κυκλωματική διάταξη για την 3-bit ALU μονάδα.

Γραφική Παράσταση:

Από την παραπάνω γραφική παράσταση φαίνεται η σωστή λειτουργία της μονάδας αφού για Op=[11] η μονάδα λειτουργεί σαν πύλη XOR, όπου η έξοδος είναι 1 όταν και οι δύο είσοδοι είναι διαφορετικοί, για Op=[10] η μονάδα λειτουργεί σαν πύλη AND, όπου η έξοδος είναι 1 μόνο όταν και οι δύο ισούνται με τη μονάδα, για Op=[01] η μονάδα λειτουργεί σαν πρόσθεση και για Op=[00] η μονάδα λειτουργεί σαν αφαίρεση.

Β' Ενότητα : Μελέτη Κατανάλωσης Ισχύος σε κυκλώματα CMOS - VLSI

Σε αυτό το μέρος της άσκησης θα εργαστούμε πάνω στην πύλη ΑΝD και θα μελετηθούν κάποιες μεταβολές που υφίσταται η ισχύς ανάλογα με διάφορες μεταβολές στις κυματομορφές εισόδου και ανάλογα με διάφορες τιμές χωρητικότητας φορτίου εξόδου.

Η πύλη ΑΝΟ αθροίζει λογικά τις εισόδους της και στην έξοδο βγάζει 1 μόνο όταν και οι δύο κυματομορφές εισόδου είναι 1.

Πίνακας αληθείας ΑΝΟ:

Δ	R	OUT
	0	001
0	0	0
0	1	0
1	0	0
1	1	1

Ερώτηση 1:

Για την κατασκευή της πύλης AND στο MICROWIND χρησιμοποιήθηκε το ακόλουθο αρχείο Verilog κώδικα.

```
module And(A[1],A[0],And_Out);
input A[1],A[0];
output And_Out;
wire;
and #(18) and2_1(And_Out,A[1],A[0]);
endmodule
//Simulation parameters in Verilog Format
always
#200 A[1]=~A[1];
#400 A[0]=~A[0]
```

Με compile του παραπάνω κώδικα προέκυψε η παρακάτω κυκλωματική διάταξη στην οποία προστέθηκε ένα φορτίο χωρητικότητας $C=0.01 \mathrm{pF}$.

Κυκλωματική διάταξη:

Η πρώτη προσομοίωση έτρεξε για την ονομαστική περίοδο εισόδων T (A[0]=4nsec, A[1]=2nsec) για διάρκεια (timescale) ίση με 20nsec.

Στις επόμενες προσομοιώσεις αυξήθηκε η συχνότητα των παλμοσειρών με χρήση της εντολής faster, που διπλασιάζει τη συχνότητα.

Η κατανάλωση δυναμικής ισχύος βρέθηκε από τις επιμέρους προσομοιώσεις εκεί που δείχνει το βελάκι στις παρακάτω εικόνες.

Συγκεντρώνοντας τα παραπάνω αποτελέσματα προκύπτει ο ακόλουθος πίνακας μεταβολής της ισχύος σε σχέση με την συχνότητα.

Προσομοιώσεις	Κατανάλωση δυναμικής ισχύος (μW)
1	2,965
2	5,873
3	11,686
4	22,649
5	32,125

Από τα παραπάνω αποτελέσματα φαίνεται ότι όσο αυξάνεται η συχνότητα αυξάνεται και η κατανάλωση δυναμικής ισχύος. Αυτό επαληθεύεται και από τον ακόλουθο τύπο, στον οποίο φαίνεται η αναλογική σχέση μεταξύ $P_{dynamic}-f$:

$$P_{dynamic} = P_{switching} + P_{short\text{-circuit}}$$
 , όπου
$$P_{dynamic} = \alpha^* C^* V_{DD}{}^{2*} f$$

Ερώτηση 2:

Σε αυτό το ερώτημα θα μελετηθεί η μεταβολή της κατανάλωσης δυναμικής ισχύος όταν μεταβάλλεται το rise time και το fall time κατά 0,01.

Η πρώτη προσομοίωση έτρεξε για τους χρόνους $t_l=0.950$ nsec και $t_h=0.950$ nsec για διάρκεια timescale ίση με 20nsec.

Στις επόμενες προσομοιώσεις αυξήθηκαν το rise time και το fall time κατά 0,01 και η κατανάλωση δυναμικής ισχύος βρέθηκε από τις επιμέρους προσομοιώσεις, στο γνωστό σημείο.

Συγκεντρώνοντας τα παραπάνω αποτελέσματα προκύπτει ο ακόλουθος πίνακας μεταβολής της ισχύος σε σχέση με την συχνότητα.

Προσομοιώσεις	Κατανάλωση δυναμικής ισχύος (μW)
1	5,853
2	5,871
3	5,898
4	5,929

5	5,963

Από τα παραπάνω αποτελέσματα φαίνεται ότι όσο αυξάνονται τα rise time και τα fall time κατά 0.01 παρατηρείται ότι η συνολική δυναμική ισχύς αυξάνεται. Αυτό οφείλεται στο γεγονός ότι έχουμε ομαλή μετάβαση από high σε low και από low σε high, δηλαδή κάθε φορά θα έχουμε μεγαλύτερο διάστημα το γινόμενο Ι*V. Ένας ακόμη λόγος που οφείλεται για αυτή τη μικρή αύξηση είναι γιατί κάθε φορά η ισχύ που παράγεται από το ρεύμα βραχυκύκλωσης, όταν τα nMOS και pMOS άγουν μερικώς, «προστίθεται» σε αυτούς του χρόνους μετάβασης με αποτέλεσμα να αυξάνει τα high low.

Ερώτηση 3:

Σε αυτό το ερώτημα θα μετρηθεί η κατανάλωση ισχύος για διάφορες τιμές του πυκνωτή κάνοντας μια «sweep analysis» στο Parametric Analysis του MICROWIND. Από τη θεωρία γνωρίζουμε ότι η κατανάλωση ισχύος σε ένα κύκλωμα οφείλεται στη δυναμική και στη στατική κατανάλωση. Όμως, σε αυτή την περίπτωση η στατική ισχύς δεν θα υπολογιστεί, επειδή τα ρεύματα διαρροής είναι αμελητέα και έτσι έχουν μικρή συνεισφορά στην κατανάλωση. Επιπλέον, η δυναμική κατανάλωση επηρεάζεται από την φόρτιση και την εκφόρτιση των πυκνωτών.

Το αποτέλεσμα αυτής της ανάλυσης είναι το ακόλουθο:

Από το παραπάνω διάγραμμα φαίνεται ότι όσο αυξάνεται η χωρητικότητα του πυκνωτή αυξάνεται και η αντίστοιχη κατανάλωση με γραμμικό τρόπο. Αυτό επαληθεύεται και από τον ακόλουθο τύπο:

$$P_{\text{switching}} = \alpha * C * V_{DD}^2 * f$$

Όπου

• $P_{dynamic} = P_{switching} + P_{short-circuit}$, με $P_{short-circuit}$ σταθερό και άρα αμελητέο για τη μελέτη

• V_{DD}: τάση τροφοδοσίας

• f : συχνότητα

α : παράγοντας δραστηριότητας μεταγωγής

C : συνολική χωρητικότητα κυκλώματος

Ερώτηση 4:

Σε αυτό το ερώτημα θα μετρηθεί η κατανάλωση ισχύος για διάφορες τιμές της τροφοδοσίας κάνοντας μια «sweep analysis» στο Parametric Analysis του MICROWIND. Το αποτέλεσμα αυτής της ανάλυσης είναι το ακόλουθο:

Από το παραπάνω διάγραμμα φαίνεται ότι καθώς αυξάνεται η τάση τροφοδοσίας V_{DD} αυξάνεται και η $P_{switching}$ ανάλογα με το V_{DD}^2 , κάτι που γίνεται περισσότερο εμφανές όσο αυξάνεται η τιμή της τάσης τροφοδοσίας.