

Einführung in Datenbanken

März 2025

Plan für die Woche

Strukturierung

einer Tabelle

Plan für heute

- Problemstellung
- Was sind Datenbanken und Datenbankmanagementsysteme?
- Aufbau einer relationalen Datenbank
- Aufbau und Strukturierung einer Tabelle

Welche Probleme können auftreten?

 Eine Firma nutzt f\u00fcr die Verwaltung von Kundendaten verschiedene Textdokumente. Jeder Mitarbeiter hat eine eigene Version auf seinem Desktop.
 Welche Probleme k\u00f6nnen auftreten?

Welche Probleme können auftreten?

 Eine Firma nutzt für die Verwaltung von Kundendaten verschiedene Textdokumente. Jeder Mitarbeiter hat eine eigene Version auf seinem Desktop.
 Welche Probleme können auftreten?

Redundanz:

In einem Dateisystem werden dieselben Daten mehrfach gespeichert

<u>Dateninkonsistenz</u>:

Redundante Daten werden nicht einheitlich aktualisiert. Somit existieren unterschiedliche Versionen derselben Information

Vorstellungen

Was ist eine Datenbank?

Definition

- Eine Datenbank ist eine strukturierte Sammlung von Daten
- die Daten sind so organisiert, dass sie effizient verwaltet und abgerufen werden können
- große Mengen an Informationen können gespeichert, verwaltet und analysiert werden

Beispiele einer Datenbank

- Alltagsbeispiele:
 - Terminkalender
 - Kontakte
 - Notizen
 - Fotogalerie
- weitere Beispiele:
 - Amazon, eBay: Speichern von Produktinformationen, Bestellungen, Kundendaten
 - Facebook, Instagram: Speichern von großen Mengen an Benutzerdaten, Beiträgen, Interaktionen
 - Banken, Finanzinstitute: Speichern von Kontoinformationen, Tätigen von Transaktionen
 - Gesundheitswesen: Patientenakten, Terminpläne
 - Netflix, Spotify: Benutzerpräferenzen, Wiedergabelisten

Arten von Datenbanken

- SQL-Datenbanken (Relationale Datenbanken)
 - MySQL, PostgreSQL, Microsoft SQL Server
 - Häufig in Unternehmensanwendungen, Webseiten und Applikationen
- NoSQL-Datenbanken (Nicht-relationale Datenbanken)
 - MongoDB
 - Ideal für Anwendungen, die große Mengen unstrukturierter Daten verarbeiten müssen (soziale Netzwerke, Echtzeitanalyse,...)
- Cloud-Datenbanken
 - Amazon RDS, Azure SQL Database
 - Werden in einer Cloud gehostet und bieten Skalierbarkeit und Flexibilität für Unternehmen, die ihre Datenverarbeitungslast dynamisch anpassen müssen
- Objektdatenbanken
 - Db4o, ObjectDB
 - Speichern Daten in Form von Objekten

Arten von Datenbanken

- SQL-Datenbanken (Relationale Datenbanken)
 - MySQL, PostgreSQL, SQLite, ...
 - Häufig in Unternehmensanwendungen, Webseiten und Applikationen
- NoSQL-Datenbanken (Nicht-relationale Datenbanken)
 - MongoDB
 - Ideal für Anwendungen, die große Mengen unstrukturierter Daten verarbeiten müssen (soziale Netzwerke, Echtzeitanalyse,...)
- Cloud-Datenbanken
 - Amazon RDS, Azure SQL Database
 - Werden in einer Cloud gehostet und bieten Skalierbarkeit und Flexibilität für Unternehmen, die ihre Datenverarbeitungslast dynamisch anpassen müssen
- Objektdatenbanken
 - Db4o, ObjectDB
 - Speichern Daten in Form von Objekten

Relationale Datenbankmanagementsysteme (RDBMS)

- RDBMS: Relationale Datenbankmanagementsysteme
 - Datenbankmanagementsysteme ist eine Software zur Verwaltung von Datenbanken
- Aufgaben:
 - Speichern und Organisieren von Daten
 - Bereitstellung von Zugriffmöglichkeiten auf die Daten (mittels SQL)
 - Verwaltung von Sicherheit und Integrität
 - Gewährleistung von Mehrbenutzung
- Beispiele: MySQL, PostgreSQL, Oracle, Mircrosoft SQL Server, SQLite,...

Was ist der Unterschied zwischen einem Datenbankmanagementsystem und einer Datenbank?

Datenbanken: Enthalten die Daten DBMS: Software zur Verwaltung von Datenbanken

Zusammenfassung

Vorteile einer Datenbank:

Vermeidung von Redundanz und Dateninkonsistenz

Gleichzeitiger Zugriff ohne Datenverlust oder Inkonsistenzen

Zur Verwaltung von Datenbanken kann ein Datenmanagementsystem genutzt werden

SMART INDUSTRY CAMPUS

Aufbau

Aufbau einer Datenbank

- Eine Sammlung von Tabellen, auch Entität oder Relation genannt
- Beispiel anhand eines Online-Shops:
 - Tabelle von Kunden
 - Tabelle von Produkten
 - Tabelle von Bestellungen
 - Tabelle von Verkäufern

– ...

Kunden-Tabelle

Kunde

•Name: Andrea Mustername

•Straße: Musterstraße 10

•Ort: 12345 Musterort

Tabellen

- die grundlegende Struktur zur Speicherung von Daten
- besteht aus Zeilen (Datensätzen) und Spalten (Attribute)
- Beispiel: Andrea ist ein Kunde

Kunde

•Name: Andrea Mustername

•Straße: Musterstraße 10

•Ort: 12345 Musterort

Attribute •	Kunden Relat	tion (Tabellenname)	
	Name	Straße	Ort
	Andrea Mustername	Musterstraße 10	12345 Musterort
Datensätze –	Hans Zimmermann	Musterstraße 15	Keine Ahnung
	Andrea Mustername	Berlinerstraße 123	12345 Berlin

Welche Probleme können auftreten?

Name	Straße	Ort
Andrea Mustername	Musterstraße 10	12345 Musterort
Hans Zimmermann	Musterstraße 15	ABC keine Ahnung
Andrea Mustername	Berlinerstraße 123	12345 Berlin

Welche Probleme können auftreten?

- Problem 1:
 - Mehrere Leute haben den gleichen Namen: Wie können wir sie unterscheiden?
- Problem 2:
 - Inkonsistenzen in der Datenbank: Kann man das Eintragen vereinheitlichen?

Name	Straße	Ort
Andrea Mustername	Musterstraße 10	12345, Musterort
Andrea Mustername	Berlinerstraße 123	12345 Berlin
Hans, Zimmermann	Musterstr. 15	ABC keine Ahnung

SMART INDUSTRY CAMPUS

Problem 1: Wie kann man mehrere gleiche Einträge unterscheiden?

- das Ziel ist es, dass jeder Datensatz eindeutig identifiziert werden kann
- das kann durch ein <u>eindeutiges Attribut</u> oder <u>eine Kombination von Attributen</u> in einer Tabelle erfolgen
- das eindeutige Attribut wird als Primärschlüssel bezeichnet

Zusammengesetzter Primärschlüssel

- eindeutige Kennzeichnung eines Datensatzes durch eine Kombination von Attributen
 - Die Kombination muss stabil sein und sich nicht oft ändern

Eindeutige Kombination Kunden							
· ·	Name	Straße	Ort				
	Andrea Mustername	Musterstraße 10	12345 Musterort				
Datensätze \prec	Hans Zimmermann	Musterstraße 15	12345 Musterort				
	Andrea Mustername	Berlinerstraße 123	12345 Berlin				

Wenn möglich, vermeiden!

Primärschlüssel

eindeutige Kennzeichnung eines Datensatzes durch ein Attribut

Primärschlüssel 🔪	Kunden			
	KundenID	Name	Straße	Ort
	1	Andrea Mustername	Musterstraße 10	12345 Musterort
Datensätze –	2	Hans Zimmermann	Musterstraße 15	12345 Musterort
	3	Andrea Mustername	Berlinerstraße 123	12345 Berlin

Was wäre der Primärschlüssel?

Flugzeugnummer	Fluggesellschaft	Pilotname	Abflugflughafen	Ankunftsflughafen
D-ABVP	Lufthansa	Frenchy	Frankfurt am Main	Dubai
F8350	Ryanair	Peter	Airport Baden- Baden	Palermo

Was wäre der Primärschlüssel?

Vorname	Nachname	Straße	Postleitzahl	Steuernummer
Max	Mustermann	Musterstraße	21234	984D084
Hendrik	Musterherr	Musterherrstraße	23452	F8350T7

Was wäre die einzigartige Kombination?

Artikel	Artikelbeschreibung	Firma	Produktionsdatum	Land
Bleistift	Silber und kann wieder wegradiert werden	FaberCastell	2014-08-20	Deutschland
Buntstift_rot	Roter Buntstift und kann wegradiert werden	Stabilo	2014-07-25	Belgien

Problem 2: Inkonsistenzen in der Tabelle

Name	Straße	Ort
Andrea Mustername	Musterstraße 10	12345, Musterort
Andrea Mustername	Berlinerstraße 123	12345 Berlin
Hanş, Zimmermann	Musterstr. 15	ABC keine Ahnung

Problem 2: Inkonsistenzen in der Tabelle

- durch eine Strukturierung der Datenbank kann Datenintegrität (= Daten sind konsistent) gewährleistet werden
 - Fehler können minimiert werden, wenn eine Struktur durchdacht wird
- Normalisierung als Leitlinie zur Strukturierung

Normalisierung

- Prozess der Strukturierung einer Datenbank, um Redundanz zu vermeiden und Datenintegrität zu gewährleisten
- es gibt verschiedene Normalformen, die eine Tabelle erreichen kann
 - Es gibt 6 Normalformen
 - 1NF, 2NF, 3NF, Boyce-Codd-Normalform, 4NF, 5NF
 - Standardmäßig wird versucht, zumindest die 2. Normalform mindestens einzuhalten

Erste Normalform (1 NF)

- alle Attribute haben nur einen Wert
 - = pro Spalte gibt es nur einen Wert

-z.B.

Kunde

•Name: Andrea Mustername

•Straße: Musterstraße 10

•Ort: 12345 Musterort

<u>Kunde</u>

•Vorname: Andrea

Nachname: Mustername

•Straße: Musterstraße

•Hausnummer: 10

Postleitzahl: 12345

Ort: Musterort

Erste Normalform (1 NF)

– Alle Attribute enthalten nur einen Wert = Pro Spalte ein Attribut

KundenID	Name	Straße	Ort
1	Andrea Mustername	Musterstraße 10	12345, Musterort
2	Andrea Mustername	Berlinerstraße 123	12345 Berlin
3	Hans, Zimmermann	Musterstr. 15	ABC keine Ahnung

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
1	Andrea	Mustername	Musterstraße	10	12345	Musterort
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin
3	Hans	Zimmermann	Musterstr.	15		

Aufgabe

Wandle folgende Tabelle in die erste Normalform um. Achtung: Primärschlüssel sind nicht angegeben, sie müssen hinzugefügt werden!

RNr.	Datum	Nam	е	Straße		Ort		Artikel	Anzahl	Preis	S
187	01.01.2012	Max	Mustermann	Musterstr.	1	12345	Musterort	Bleistift	5	1,00	€

https://www.datenbanken-verstehen.de/datenmodellierung/normalisierung/zweite-normalform/

Zweite Normalform (2 NF)

- 1 NF muss erfüllt sein
- jedes Nicht-Schlüssel-Attribut muss vom gesamten Primärschlüssel abhängig sein

SMART INDUSTRY CAMPUS

Zweite Normalform (2 NF)

- 1 NF muss erfüllt sein

Könnten in getrennten Tabellen stehen

– jedes Nicht-Schlüssel-Attribut muss vom gesamten Primärschlüssel abhängig sein

Kundenbezogen

Bestellungsbezogen

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort	BestellID	Artikel	Artikelbeschrei bung
1	Andrea	Mustername	Musterstraße	10	12345	Musterort	1	Bleistift	Kann wegradiert werden
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin	2	Kugelschreiber	Kann nicht wegradiert werden
3	Hans	Zimmermann	Musterstr.	15			3	Lineal	Zum Messen

Zweite Normalform (2 NF)

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
1	Andrea	Mustername	Musterstraße	10	12345	Musterort
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin
3	Hans	Zimmermann	Musterstr.	15		

Zweite Normalform (2 NF)

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
1	Andrea	Mustername	Musterstraße	10	12345	Musterort
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin
3	Hans	Zimmermann	Musterstr.	15		

BestellID	Artikel	Artikelbeschrei bung
1	Bleistift	Kann wegradiert werden
2	Kugelschreiber	Kann nicht wegradiert werden
3	Lineal	Zum Messen

Fremdschlüssel

- ein Fremdschlüssel ist ein Attribut in einer Tabelle, das auf einen Primärschlüssel einer anderen
 Tabelle verweist
- dadurch wird eine Verbindung zwischen zwei Tabellen hergestellt

Zweite Normalform (2 NF)

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
1	Andrea	Mustername	Musterstraße	10	12345	Musterort
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin
3	Hans	Zimmermann	Musterstr.	15		

Zweite Normalform (2 NF)

	KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
	1	Andrea	Mustername	Musterstraße	10	12345	Musterort
	2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin
\	3	Hans	Zimmermann	Musterstr.	15		

Primärschlüssel

	KundenID	BestellID	Artikel	Artikelbeschrei bung
	1	1	Bleistift	Kann wegradiert werden
	2	2	Kugelschreiber	Kann nicht wegradiert werden
Fremdschlüsse	3	3	Lineal	Zum Messen

Zu einer Bestellung gehört ein Kunde und eine Bestellung

Beziehungen

- in der Bestellungstabelle existiert nun eine KundenID (Fremdschlüssel),
 welche auf die KundenID (Primärschlüssel) der Kundentabelle verweist.
- Jeder Kunde kann somit eine oder mehrere Bestellungen aufgeben (1:n-Beziehung)
- Eine Bestellung muss somit immer einem existierenden Kunden zugeordnet sein

Aufgabe

Wandle folgende Tabelle in die zweite Normalform um. Achtung: Primärschlüssel sind nicht angegeben, sie müssen hinzugefügt werden!

Γ				Kunder	1							
	RNr.	Datum	Name	Vorname	Straße	HNr.	Plz	Ort	Artikel	Anzahl	Preis	Währung
١	187	01.01.2012	Mustermann	Max	Musterstr.	1	12345	Musterort	Bleistift	5	1,00	Euro
L												

https://www.datenbanken-verstehen.de/datenmodellierung/normalisierung/zweite-normalform/

Rechnung

Aufgabe

Wandle folgende Tabelle in die zweite Normalform um. Achtung: Primärschlüssel sind nicht angegeben, sie müssen hinzugefügt werden!

Rechr	nung			Kunden				Rechn	ung		
RNr.	Datum	Name	Vorname	Straße	HNr.	Plz	Ort	Artikel	Anzahl	Preis	Währung
187	01.01.2012	Mustermann	Max	Musterstr.	1	12345	Musterort	Bleistift	5	1,00	Euro

https://www.datenbanken-verstehen.de/datenmodellierung/normalisierung/zweite-normalform/

Lösung

Mögliche Lösung:

	Primar			Ku			
	KundenID	Name	Vorname	Straße	Hausnummer	Postleitzahl	Ort
	(1)						
\		Primār					
	KundenID	RechnungNr	Datum	Artikel	Anzahl	Preis	Währung
\bigvee	(A)						
'	T ₁			R_{ϱ}			
	Fre md						

https://www.datenbanken-verstehen.de/datenmodellierung/normalisierung/zweite-normalform/

Zusammenfassung Aufbau

- eine Datenbank besteht aus Tabellen
- eine Tabelle besteht aus mehreren Komponenten:
 - Attribute (Spalten)
 - Datensätze (Zeilen, bzw. Tupel)
 - Primärschlüsseln (Primary Keys)
 - Fremdschlüssel (Foreign Keys)
 - Beziehungen zwischen Tabellen

Dritte Normalform (Zusatz)

WIRD EMPFOHLEN, IST ABER NICHT ZWINGEND

Dritte Normalform (3 NF)

- 2 NF muss erfüllt sein

Zimmermann

Hans

– ein Nicht-Schlüssel-Attribut darf nicht von einem Nicht-Schlüsselattribut abhängen

15

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
1	Andrea	Mustername	Musterstraße	10	12345	Musterort
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin
						I/wadanID

Musterstr.

Bestellid	Artikei	Artikelbeschrei bung
1	Bleistift	Kann wegradiert werden
2	Kugelschreiber	Kann nicht wegradiert werden
3	Lineal	Zum Messen
	2	BleistiftKugelschreiber

Dritte Normalform (3 NF)

- 2 NF muss erfüllt sein

Zimmermann

Hans

– ein Nicht-Schlüssel-Attribut darf nicht von einem Nicht-Schlüsselattribut abhängen

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
1	Andrea	Mustername	Musterstraße	10	12345	Musterort
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin

Musterstr.

Nicht - Schlüsselattribute (= alles, was weder Fremd - noch Primarschlüssel ist)

15

Kundenid	Bestellin	Artikei	bung
1	1	Bleistift	Kann wegradiert werden
2	2	Kugelschreiber	Kann nicht wegradiert werden
3	3	Lineal	Zum Messen

Artikelbeschre

Dritte Normalform (3 NF)

2 NF muss erfüllt sein

Hans

– ein Nicht-Schlüssel-Attribut darf nicht von einem Nicht-Schlüsselattribut abhängen

15

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
1	Andrea	Mustername	Musterstraße	10	12345	Musterort
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin
2	Homo	7: 100 100 0 14100 0 10 10	Mustavatu	45		KundenID

Musterstr.

Z.B. ein Vorname bestimmt KEINEN Nachnamen (und andershenum)
Eine Andrea kann auch "Anderson" als Nachnamen
haben, nicht nur "Mustername"

Zimmermann

			bung
1	1	Bleistift	Kann wegradiert werden
2	2	Kugelschreiber	Kann nicht wegradiert werden
3	3	Lineal	Zum Messen

Artikel

BestellID

Artikelbeschrei

Dritte Normalform (3 NF)

2 NF muss erfüllt sein

Zimmermann

Hans

– ein Nicht-Schlüssel-Attribut darf nicht von einem Nicht-Schlüsselattribut abhängen

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl	Ort
1	Andrea	Mustername	Musterstraße	10	12345	Musterort
2	Andrea	Mustername	Berlinerstraße	123	12345	Berlin
2	Hono	Zimmermenn	Mustaratr	15		KundenID

Musterstr.

sind abhangig!

Ein Oft kann durch eine PLZ bestimmt werden!

15

2.B.: 74081 ist Heilbronn! Heilbronn bann 74081, 74076, ... sein

			bung
1	1	Bleistift	Kann wegradiert werden
2	2	Kugelschreiber	Kann nicht wegradiert werden
3	3	Lineal	Zum Messen

BestellID

Artikel

Dritte Normalform (3 NF)

2 NF muss erfüllt sein

– ein Nicht-Schlüssel-Attribut darf nicht von einem Nicht-Schlüssel-Attribut abhängen

KundenID	Vorname	Nachname	Straße	Hausnummer	Postleitzahl
1	Andrea	Mustername	Musterstraße	10	12345
2	Andrea	Mustername	Berlinerstraße	123	12345
3	Hans	Zimmermann	Musterstr.	15	1

p	Postleitzahl	Ort	
	12345	Musterort	
	12345	Berlin	

KundenID	BestellID	Artikel	Artikelbeschrei bung
1	1	Bleistift	Kann wegradiert werden
2	2	Kugelschreiber	Kann nicht wegradiert werden
3	3	Lineal	Zum Messen

SMART INDUSTRY CAMPUS

Zusammenfassung Normalformen

- verbessert die Datenstruktur durch Reduzierung von Abhängigkeiten
- 1 NF:
 - Alle Spalten enthalten keine mehrfachen Werte
 - Jede Zeile ist eindeutig identifizierbar
- 2 NF:
 - Tabelle muss 1 NF erfüllen
 - Alle Spalten müssen vollständig vom Primärschlüssel abhängen
- 3 NF:
 - Tabelle muss 2 NF erfüllen
 - Nicht-Schlüsselattribute hängen nicht voneinander ab