Binary search

Goldsmiths Computing

November 24, 2018

Motivation

- · simple, efficient search algorithm
- · one or two intersting practical lessons

Definition

Given a suitable data structure, binary search is a search algorithm for an item within that structure that can exclude half of the search space with a single comparison.

Tree representation

Binary search on trees

```
function BINARY-SEARCH(tree,k)

if tree = NIL then

return false

else if tree.key = k then

return true

else if k < tree.key then

return BINARY-SEARCH(tree.left,k)

else

return BINARY-SEARCH(tree.right,k)

end if

end function
```

Sorted array (implicit tree) representation

Binary search on sorted arrays

```
function BINARY-SEARCH(A,lo,hi,k)
    \mathsf{mid} \leftarrow \left| \frac{\mathsf{lo+hi-1}}{2} \right|
    if lo = hi then
        return false
    else if A[mid] = k then
        return true
    else if k < A[mid] then
        return BINARY-SEARCH(A,lo,mid,k)
    else
        return BINARY-SEARCH(A,mid+1,hi,k)
    end if
end function
```

Recurrence relationship

$$T(N) = T\left(\frac{N}{2}\right) + 1$$

Recurrence relationship

$$T(N) = T\left(\frac{N}{2}\right) + 1$$

$$T\left(\frac{N}{2}\right)$$

Recurrence relationship

$$T(N) = T\left(\frac{N}{2}\right) + 1$$

Recurrence relationship

$$T(N) = T\left(\frac{N}{2}\right) + 1$$

Recurrence relationship

$$T(N) = T\left(\frac{N}{2}\right) + 1$$

Recurrence relationship

$$T(N) = T\left(\frac{N}{2}\right) + 1$$

Master theorem

$$T(N) = aT\left(\frac{N}{b}\right) + f(n)$$

•
$$a = 1$$
; $b = 2$; $f(n) \in \Theta(1) = \Theta(n^0)$ so $c = 0$

•
$$\log_h a = 0 = c \text{ so case } 2$$

$$\Rightarrow \Theta(\log N)$$

Work

- 1. as written in these slides, the algorithm binary search on sorted arrays contains a trap for the unwary: it is mathematically correct, but if translated directly into Java or C++ it would cause problems.
 - Reading: Jon Bentley, Programming Pearls, Column 4: Writing Correct Programs
 - Bentley's implementation of binary search in the above column has (at least) one serious bug
- 2. (week of 21st January) implement binary search (correctly!)