THEORY

Day 14: probability density function is represented an integral with function f(x). Our probability lies within the curve and is always 1. Density curve \rightarrow bell curve. Z-Score allows us to have a universal standard for density curves with different scales. They are directly proportional to the standard deviation and the delta from the mean of the graph.

Day 15: unimodal: one hump, bimodal: two humps. Mean is resistant whereas the mean is subject to change. Density curves decay to histograms (integral → to Reimann Sum). Whisker plots are an effective method to determine if a data set contains outliers (data points not belonging to the sample set). Left skew: long left tail. Sloping \rightarrow . Right skew: long right tail. Sloping \leftarrow

Day 16: error: since there is some error while taking sample data, we do allow for some buffer. We also do not measure exact but to a tolerance which is influenced by the buffer above. Central Limit Theorem: when population size is "large enough" \bar{x} is an approximation. Higher skew and outliers suggest a larger

Day 18: As $n \uparrow$, $SEM \downarrow$.

Day 19: H₁: $\mu < \mu_0 \leftarrow$ left side. H₁: $\mu \neq \mu_0 \leftarrow$ n σ on both side but no middle. H₁: $\mu > \mu_0 \leftarrow$ lower.tail = TRUE. Population distribution normality \Longrightarrow sample population distribution normality. Matched pairs design:

Day 20: Two Independent Samples t-Test: two unrelated treatments into one numerical response variable measured in two independent groups. Two different μ_1 and μ_2 . NHST approach; identify μ_i

FORMULAS

- $\Box = width \times \frac{1}{width}$ (finite curve)
- $\begin{array}{ll} \bullet & Z = \frac{x-\mu}{\sigma} \ (\text{z-score}) \\ \bullet & X \sim N(\mu \, , \sigma) \end{array}$
- $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$
- $SEM = \frac{s}{\sqrt{n}}$

- $= \sim t(K)$ [NHST]

- $IQR = Q_3 Q_1$
- K = 1.5
- Lower fence: $Q_1 K \times IQR$
- Upper fence: $Q_3 + K \times IQR$
- $t = \frac{\Delta \bar{x} \Delta \mu}{\Lambda}$
- df = n 1
- $df(\text{treatment}) = k 1 \text{ k} \leftarrow \text{number of categories}$
- $df(error) = N k N \leftarrow total sample size.$
- MSTr = SSTr/(k-1) SSTr \leftarrow sum of treatment
- MSE = SSE/(N-k) SSE \leftarrow sum of error
- $F = \frac{MSTr}{MSE}$

FRAMEWORK FLOW CHART

NPHT

- Parameter is μ [population mean]. $\mu_0 = \mu_1$
- \bar{X} is sample mean. Under CLT, normal distribution at μ_0 for H_0 and μ_1 for H_1 .
- We accept H_0 if \underline{not} in CR.

N-P Power Analysis

- Define parameter and its value under H₀ and H₁
- Define a test statistic and its sampling distribution under both hypothe-
- Use α to compute critical region
- Compute power and compare to 80

One-Sample T-Statistic [NP]

• If $t_{observed}$ in CR, then accept H_1 : $\mu = \mu_1$. Else accept H_0 : $\mu = \mu_0$

Two-Tailed Test

Take the upper and lower limit of the curve and the significance level (α) is the cut off point of being statistically significant. Treat as critical region. If in CR, then accept H_1 . Else accept H_0 .

NHST

- Define a parameter and it's value under H_0 .
- Define an interval representing an inequality
- Define a test statistic and its sampling distrubution under H₀
- Compute p-value. P-Value \leq sig level \implies reject H_0 & accept H_1 . P-Value > sig level \implies fail to reject H_0 . Can only be >, $< \neq$.

Two-Sided Test

- Nevman-Pearson
- Critical region is $\frac{1}{2}$ left tail and $\frac{1}{2}$ right tail of sampling distribution under H_0 . Power will \downarrow .
- · NHST
- · Find the "one-sided" p-value and double it.

ANOVA

- Null Hypothesis: $H_0: \mu_1 = \mu_2 = \mu_3$
- If the variability BETWEEN the means (Δx) in the numerator is relatively large compared to the variance within the samples (internal spread) in the denominator, the ratio will be much larger than 1.
- The samples then most likely do NOT come from a common population

- · Paired subjects receives their respective treatment or an individual gets two treatments. Also a subset of block design.
- H_0 : $\mu_d = 0$ (no difference) and H_a : $\mu_d \neq 0$ (difference).
- Requirements: large population, normal distribution, σ is unknown.