Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Отчёт

По лабораторной работе №7

««Синтез команд БВЭМ»»

по дисциплине «Основы профессиональной деятельности»

Вариант: 11701

Работу выполнил:

Поленов Кирилл Александрович

Группа Р3113

Работу приняла:

Ткешелашвили Нино Мерабиевна

Оглавление

Вадание	3
Микропрограмма	
Грассировка микропрограммы	
Гестовая программа	
Методика проверки программы	5
Зыволы	6

Задание

Лабораторная работа №7

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

Введите номер варианта 11701

- 1. BGC ADDR переход к команде, расположенной по адресу, на которую указывает адресная часть команды, если аккумулятор содержит число, большее чем 8191
- 2. Код операции FEXX
- 3. Тестовая программа должна начинаться с адреса 04F1₁₆

Микропрограмма

Адрес МП	Микрокоманда	Описание	Комментарий		
E0	81f4024002	If CR(9) = 1 then GOTO F4	Если 9й бит CR равен 1, переход на МК по адресу F4		
F4	81F7804010	if AC(15) = 1 then GOTO F7	Если число в АС отрицательно, переход на МК по адресу F7		
F5	80F7204010	if AC(13) = 0 then GOTO F7	Если 13й бит числа в АС равен нулю, переход на МК по адресу F7		
F6	805C101040	GOTO BR @ 5C	Переход на цикл исполнения безусловного перехода		
F7	80C4101040	GOTO INT @ C4	Переход на цикл прерывания		

Трассировка микропрограммы

МР до выборки МК	MR	IP	CR	AR	DR	BR	AC	NZVC	МР (СчМК)	
Случай, когда перехода не происходит										
E0	81F4024002	4F3	FE03	4F2	FE03	04F2	1FFF	0000	F4	
F4	81F7804010	4F3	FE03	4F2	FE03	04F2	1FFF	0000	F5	
F5	80F7204010	4F3	FE03	4F2	FE03	04F2	1FFF	0000	F7	
F7	80C4101040	4F3	FE03	4F2	FE03	04F2	1FFF	0000	C4	
	Случай, когда переход происходит									
E0	81F4024002	4FB	FE03	4FA	FE03	04FA	2000	0000	F4	
F4	81F7804010	4FB	FE03	4FA	FE03	04FA	2000	0000	F5	
F5	80F7204010	4FB	FE03	4FA	FE03	04FA	2000	0000	F6	
F6	805C101040	4FB	FE03	4FA	FE03	04FA	2000	0000	5C	
5C	0020011002	4FB	FE03	4FA	FE03	0003	2000	0000	5D	
5D	0004009024	4FE	FE03	4FA	FE03	0003	2000	0000	5E	
5E	80C4101040	4FE	FE03	4FA	FE03	0003	2000	0000	C4	

Тестовая программа

```
ORG 0x4E0
test1_n: WORD 0x1FFF; 8191
test2_n: WORD 0x2000 ; 8192
test1_res: WORD ?
test2_res: WORD ?
ORG 0x4F1
start:LD $test1_n
           WORD 0xFE03 ;goto test1_f
test1_p:
           LD #0x1
           ST $test1_res
           JUMP test_2
test1_f:
           CLA
           ST $test1_res
           JUMP test_2
test_2:
           LD $test2_n
           WORD 0xFE03 ;goto test1_p
test2_f:
           CLA
           ST $test2_res
           JUMP main
test2_p:
           LD #0x1
           ST $test2_res
           JUMP main
           LD $test1_res
main:
           AND $test2_res
           CMP #0x1
           BEQ success
           LD #0xFF
           HLT
success:
           LD #0x1
```

HLT

Методика проверки программы

- 1. Запустить БЭВМ через терминал в режиме Dual при помощи команды java Dmode=dual -jar bcomp-ng.jar
- 2. В терминале ввести следующую последовательность команд:

```
ma mw 81f4024002 f4 ma mw 81f7804010 mw 80f7204010 mw 805C101040 mw 80C4101040
```

- 3. Загрузить тестовую программу в БЭВМ. Для этого перейти во вкладку «Ассемблер», вставить скопированную программу и нажать кнопку «Компилировать»
- 4. Ввести тестовое число по адресу 0х4Е0. Для этого: ввести с клавиатуры 0000 0100 1110 0000 в регистр IR нажать кнопку «Ввод адреса» ввести число в двоичной системе счисления с клавиатуры в регистр IR нажать кнопку «Чтение»
- 5. Повторить шаг 4 для адреса 0х4Е1
- 6. Переключить тумблер «Работа/Останов» в режим «Работа»
- 7. Нажать кнопку пуск
- 8. Дождаться завершения программы
- 9. Посмотреть число в регистре **AC**. Если оно равно 1 (**0000 0000 0000 0001** в 2-чной системе счисления), то оба теста прошли успешно. Иначе, один из тестов был провален. Для того, чтобы зафиксировать какой из, сделать следующую последовательность действий:
 - 1. Ввести адрес **0х4E2 (0000 0100 1110 0010**) в клавишный регистр **IR** и нажать кнопку «Чтение»
 - 2. Посмотреть на регистр DR. Если его значение равно 1 (0000 0000 0000 0001), то тест на **переход при числе меньшем, чем 8192** был пройден успешно. Если его значение равно 0 (0000 0000 0000 0000), то тест был провален.
 - 3. Повторить последовательность действий из пункта 9.1 для адреса **0х4E3** (**0000 0100 1110 0011**)
 - 4. Посмотреть на регистр DR. Если его значение равно 1 (0000 0000 0000 0001), то тест на переход при числе большем либо равном 8192 был пройден успешно. Если его значение равно 0 (0000 0000 0000 0000), то тест был провален.

Выводы

В ходе данной лабораторной работы я:

- Познакомился с МПУ БЭВМ и синтезировал свою команду