Question Number	Answer				
16(a)	H _α / nm	Point			
	656.2837	В			
	656.2797	С			
	656.2757	A	(1		1
16(b)	MAX 2 from:		(1)		1
	Light from the edge of the Sun moving toward the Earth is received with a shorter wavelength [Accept "point A" for "edge moving toward the Earth" and "blue shift" for "shorter wavelength"] (1)				
	Light from the edge of the Sun moving away from the Earth is received with a longer wavelength [Accept "point B" for "edge moving away from the Earth" and "red shift" for "longer wavelength"] (1)				
	There is a variation in the relative velocity between the Earth and different points on the Sun's surface [Can be awarded if A and B incorrectly linked to change in wavelength] [Reference to Doppler effect can score max 1]				2
16(c)	Use of $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ with $\lambda = 656.2797$ nm (1)				
	Use of $v = \frac{2\pi r}{T}$ to calculate T (1)				
	Conversion of T into days. (1)				
	T = 27.8 days which is approximately 28 days (1)				
	OR				
	Conversion of $T = 28$ days into seconds				
	Use of $v = \frac{2\pi r}{T}$ to calculate v [1820 m s ⁻¹]				
	Use of $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ with $\lambda = 656.2797$ nm (1)				
	$v = 1830 \text{ m s}^{-1} \text{ which is approximately } 1820 \text{ m s}^{-1}$ (1)				
	OR				
	Conversion of $T = 28$ days into seconds				
	Use of $v = \frac{2\pi r}{T}$ to calculate $v [1820 \text{ m s}^{-1}]$				
	Use of $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ with $\lambda = 656.2797$ nm to calculate $\Delta \lambda$				
	$\Delta \lambda = 3.98 \times 10^{-3} \text{m which is approximately } 4.0 \times 10^{-3} \text{m} $ (1)				
	Full credit for other approaches e.g. comparison of calculated value of v/c from $T=28$ days and calculated value of v/c from $\frac{\Delta\lambda}{\lambda}$				4
	··				
	Example of calculation $v = c \times \frac{\Delta \lambda}{\lambda} = 3.00 \times 10^8 \text{ m s}^{-1} \times \frac{(656.2837 - 656.2797) \text{ nm}}{656.2797 \text{ nm}} = 1828 \text{ m s}^{-1}$				
	$T = \frac{2\pi r}{v} = \frac{2\pi \times 7.0 \times 10^8 \text{ m}}{1828 \text{ m s}^{-1}} = 2.41 \times 10^6 \text{ s}$				
	$T = \frac{2.41 \times 10^6 \text{ s}}{86400 \text{ s day}^{-1}} = 27.8 \text{ days}$				

7

Total for question 16