Problem A. Две строки

Input file: стандартный ввод
Output file: стандартный вывод

Time limit: 1 секунда Memory limit: 256 мегабайт

Вам дано $2 \cdot N$ чисел, заданных в порядке невозрастания. Вам нужно расположить их в таблицу, состоящую из 2-х строк и N столбцов, минимизировав сложность.

Сложность произвольной таблицы считается следующим образом. В каждой строке и столбце обозначим через x_i и y_j соответственно значение максимального элемента. Тогда значение сложности для таблицы равно произведению суммы x_i по всем строкам на сумму y_j по всем столбцам.

Ваша задача найти минимальное значение сложности, которое может быть получено, если располагать данные числа в таблицу, состоящую из 2-х строк и N столбцов.

Input

В первой строке задано число $N~(1 \le N \le 10^6)$ — половина количества элементов последовательности.

В каждой из следующих $2 \cdot N$ строк задаются числа a_i в порядке невозрастания $(1 \le a_i \le 10^6)$.

Output

В первой строке выведите одно число — минимальное значение сложности.

стандартный ввод	стандартный вывод
3	130
6	
5	
4	
3	
2	
1	

Problem B. Таблица

Input file: стандартный ввод
Output file: стандартный вывод

Time limit: 1 секунда Memory limit: 256 мегабайт

Вам задана таблица размером $N \cdot M$, состоящая из нулей и единиц. Пусть выбрана некоторая непрерывная последовательность столбцов X и непрерывная последовательность из строк Y. Будем говорить, что клетки таблицы, стоящие на пересечении столбцов X и строк Y, образуют подтаблицу. Подтаблица называется хорошей, если количество столбцов в X равняется количеству строк в Y, и подтаблица не меняется при её транспонировании (то есть подтаблица симметрична относительно своей главной диагонали).

Ваша задача — найти размер максимальной хорошей подтаблицы.

Input

В первой строке заданы натуральные числа N и M $(1 \le N, M \le 300)$ — количество строк и столбцов в таблице соответственно.

В каждой из следующих N строк задано M элементов таблицы, каждый из которых равен 0 или 1.

Output

 ${\bf B}$ единственной строке выведите целое число — максимальный размер квадратной симметричной подтаблицы.

стандартный ввод	стандартный вывод
5 3	3
101	
010	
101	
000	
101	
1 1	1
0	

Problem C. Великая стена

Input file: стандартный ввод Output file: стандартный вывод

Time limit: 3 секунды Memory limit: 256 мегабайт

В этой задаче мы проследим альтернативную историю Великой Китайской Стены.

Великая Китайская Стена состоит из n метровых участков, пронумерованных по порядку целыми числами от 1 до n. Каждый участок характеризуется своей высотой в метрах — целым неотрицательным числом. До начала нашей истории Стена ещё не построена, поэтому высота каждого участка равна нулю.

Происходят события двух видов.

- 1. Укрепление Стены (запись: «defend a b c»). Император вызывает к себе вассалов из приграничных провинций и велит им сделать так, чтобы промежуток Стены, охватывающий участки от a до b включительно, имел высоту не менее c метров. Это значит, что все участки меньшей высоты на этом промежутке нужно достроить до высоты c, а остальные оставить нетронутыми. Приказ императора выполняется немедленно, то есть до наступления следующего события.
- 2. Нападение варваров (запись: «attack d e»). Варвары подходят к Стене снаружи и занимают позиции напротив промежутка Стены, охватывающего участки от d до e включительно. После этого они находят такой участок на этом промежутке, у которого высота как можно меньше, и пытаются через него проникнуть на территорию Китая. Нападение также происходит немедленно, до наступления следующего события.

Для восстановления достоверной альтернативно-исторической картины не хватает одного: для каждого нападения варваров указать минимальную высоту Стены на соответствующем промежутке, а также какой-нибудь участок из этого промежутка с такой высотой. По заданной последовательности событий найдите эти числа.

Input

В первой строке заданы через пробел два целых числа n и m-длина Стены в метрах и количество событий соответственно ($1 \le n \le 10^6, \ 0 \le m \le 10^5$). В следующих m строках описаны события в порядке их следования. Если событие описывает укрепление Стены, оно задано в форме «defend a b c» ($1 \le a \le b \le n, \ 1 \le c \le 10^7$). Если же событие описывает нападение варваров, оно задано в форме «attack d e» ($1 \le d \le e \le n$).

Output

В ответ на каждое нападение варваров выведите строку, содержащую два числа, разделённые пробелом. Первое из этих чисел — минимальная высота Стены на соответствующем промежутке. Второе — номер любого метрового участка Стены на этом промежутке, имеющего такую высоту.

стандартный ввод	стандартный вывод
10 8	4 2
defend 1 6 4	5 9
defend 3 8 6	6 4
defend 5 10 5	5 2
attack 2 10	
attack 9 9	
attack 4 7	
defend 2 9 5	
attack 2 10	

Problem D. Простая последовательность

Input file: стандартный ввод Output file: стандартный вывод

Time limit: 2 секунды Memory limit: 256 метабайт

Вам дана последовательность A из N цифр, каждая из которых либо 1, либо 2. Нужно ответить на M запросов с параметрами k_i : для числа k_i найти непрерывный отрезок цифр последовательности, сумма которых равна k_i , или ответить, что такого не существует.

Input

В первой строке задано два целых числа N и M $(1 \le N, M \le 10^6)$ — количество цифр в последовательности и количество запросов соответственно. Во второй строке задано N цифр a_i $(1 \le a_i \le 2)$ — последовательность A. В следующих M строках задаются числа k_i $(1 \le k_i \le 2 \cdot 10^6)$ — параметры запросов.

Output

Для каждого запроса выведите в отдельной строке числа l, r $(1 \le l \le r \le N)$ — границы отрезка с суммой равной параметру запроса, или "NO" (без кавычек), если такого отрезка не существует.

стандартный ввод	стандартный вывод
5 3 21212	1 3
21212	2 2
5	NO
1	
7	

Problem E. Перестановки

Input file: стандартный ввод
Output file: стандартный вывод

Time limit: 1 секунда Memory limit: 256 метабайт

Вам дана последовательность из 5n чисел A_1, A_2, \ldots, A_{5n} . Вам также дана последовательность запросов следующих трех типов:

1. "? *x y*"

Здесь x и y целые числа такие, что $1 \le x \le y \le 5n$. Найдите сумму чисел на позициях от x до y включительно: $A_x + A_{x+1} + \cdots + A_y$.

2. "< *x*"

Здесь x это целое число такое, что $1 \le x \le 5n-1$. Циклически сдвиньте последовательность влево x раз, таким образом заменив последовательность A на последовательность $A_{x+1}, A_{x+2}, \ldots, A_{5n}, A_1, \ldots, A_x$.

3. "# P"

Здесь P это перестановка длины 5. Разрежьте последовательность на куски из 5-элементных непрерывных отрезков и примените перестановку P к каждому из них. Таким образом, каждый отрезок $A_{5k+1}, \ldots, A_{5k+5}$ заменяется на $A_{5k+P_1}, \ldots, A_{5k+P_5}$.

Input

В первой строке задается целое число $n\ (1 \le n \le 2 \cdot 10^4)$. Во второй строке содержится 5n целых чисел $A_i\ (|A_i| \le 10^4)$.

В третьей строке задано целое число $m\ (0 \le m \le 10^5)$ — количество запросов. Следующие m строк содержат запросы в формате, описанном в условии.

Output

Для каждого запроса, начинающегося на "?", выведите сумму на отдельной строке.

стандартный ввод	стандартный вывод
2	55
1 2 3 4 5 6 7 8 9 10	35
10	13
? 1 10	7
< 3	42
? 2 6	13
# 3 1 2 5 4	
? 3 4	
? 5 5	
< 8	
? 2 9	
# 5 4 3 2 1	
? 5 6	

Problem F. Мины на прямой

Input file: стандартный ввод
Output file: стандартный вывод

Time limit: 15 секунд Memory limit: 256 мегабайт

На прямой Ox расположены n мин, i-я из них имеет координату x_i и радиус действия r_i . Взрыв i-й мины вызывает цепную реакцию: взрываются мины с центрами, расположенными на отрезке $[x_i-r_i;x_i+r_i]$ (включая концы), далее взрываются мины с центрами, находящимися в радиусе действия этих мин, и так далее. Требуется для каждой мины узнать, сколько мин взорвется в итоге, если взорвать эту мину.

Input

В первой строке задано целое число T — количество тестовых примеров.

Первая строка каждого тестового примера содержит целое число n ($1 \le n \le 10^5$) — количество мин. Каждая из последующих n строк содержит по два целых числа x_i и r_i ($-10^{18} \le x_i \le 10^{18}$, $0 \le r_i \le 2 \cdot 10^{18}$), задающие координату и радиус поражения соответствующей мины.

Гарантируется, что размер входа не превышает 10^7 байт.

Output

Для каждого тестового примера в отдельной строке выведите n целых чисел d_i . i-е из этих чисел должно быть равно количеству мин, которые взорвутся при подрыве i-й мины.

стандартный ввод	стандартный вывод
1	4 3 3 3 4
5	
0 2	
2 1	
3 2	
4 1	
6 3	

Problem G. Выбор отрезков

Input file: стандартный ввод
Output file: стандартный вывод

Time limit: 4 секунды Memory limit: 256 метабайт

На луче Ox задан набор из m отрезков. Изначально весь луч Ox белый. На каждом шаге выбирается отрезок с минимальной суммарной длиной белых участков, который не выбирался на предыдущих шагах. Если таких несколько, то среди них выбирается отрезок с наименьшим номером. Далее весь этот отрезок красится в чёрный цвет.

Вам требуется вывести порядок, в котором будут выбираться отрезки.

Input

Первая строка содержит 2 натуральных числа n и m $(1 \le n \le 10^9, 1 \le m \le 300\,000)$ — максимально возможная координата концов отрезка и количество отрезков.

Далее следует m строк. i-я из них содержит два натуральных числа a_i, b_i ($1 \le a_i < b_i \le n$), описывающих очередной отрезок $[a_i; b_i]$. Отрезки нумеруются в порядке следования во входных данных.

Гарантируется, что $a_i < a_{i+1}$, а также никакой отрезок не содержится в другом отрезке.

Output

Выведите в m строках m натуральных чисел, по одному на строку, — порядок, в котором будут выбираться отрезки.

Examples

стандартный ввод	стандартный вывод
15 4	2
1 6	1
3 7	3
6 11	4
10 14	

Note

Отрезки в примере:

