Introduction to Big Data Science

10th Period
Essence in Data Mining
- Classification -

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model.
 Usually, the given data set is divided into training and test
 sets, with training set used to build the model and test set
 used to validate it.

Illustrating Classification Task

Training Set

Refund	Marital Status	Taxable Income	Cheat
No	Single	75K	?
Yes	Married	50K	?
No	Married	150K	?
Yes	Divorced	90K	?
No	Single	40K	?
No	Married	80K	?

Test Set

Big Data Science

Examples of Classification Task

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent

 Categorizing news stories as finance, weather, entertainment, sports, etc

Classification vs. Prediction

Classification

- predicts categorical class labels
- Most suited for nominal attributes
- Less effective for ordinal attributes

Prediction

- models continuous-valued functions or ordinal attributes, i.e., predicts unknown or missing values
- e.g., Linear regression

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Nearest-Neighbor Classifiers
- Naïve Bayes Classifiers and Bayesian Belief Networks
- Neural Networks
- Support Vector Machines

Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Training Set

Refund	Marital Status	Taxable Income	Cheat
No	Single	75K	?
Yes	Married	50K	?
No	Married	150K	?
Yes	Divorced	90K	?
No	Single	40K	?
No	Married	80K	?

Test Set

Big Data Science

Start from the root of tree.

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Decision Tree Classification Task

Big Data Science

Decision Tree Induction

- Large search space
 - Exponential size, with respect to the set of attributes
 - Finding the optimal decision tree is computationally infeasible
- Efficient algorithm for accurate suboptimal decision tree
 - Greedy strategy
 - Grow the tree by making locally optimally decisions in selecting the attributes

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest, basis of others)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class,
 y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorith

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - —How to specify the attribute test condition?
 - —How to determine the best split?
- Determine when to stop splitting

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - —How to specify the attribute test condition?
 - —How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more computational intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - —How to specify the attribute test condition?
 - —How to determine the best split?
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0,10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5

Non-homogeneous,High degree of impurity

C0: 9 C1: 1

øHomogeneous,

•Low degree of impurity

Measures of Node Impurity

Gini Index

Entropy

Misclassification error

How to Find the Best Split

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0
C2	6
⊚Gini=0.000	

C1	1	
C2	5	
⊚Gini=0.278		

C1	2
C2	4
₀Gini=0.444	

C1	3
C2	3
@Gini=0.500	

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$\Phi P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$ $\Phi Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$\Phi$$
P(C1) = 1/6 P(C2) = 5/6
 Φ Gini = 1 - (1/6)² - (5/6)² = 0.278

$$\Phi$$
P(C1) = 2/6 P(C2) = 4/6
 Φ Gini = 1 - (2/6)² - (4/6)² = 0.444

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

How to Find the Best Split

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini	= 0.500

$= 1 - (5/7)^2 - (2/7)^2$ = 0.408

~Cini/NI1)

= 0.32

	N1	N2				
C1	5	1				
C2	2	4				
Gini=0.371						

ωGini(Children)
= 7/12 * 0.408 +
5/12 * 0.32
= 0.371

Categorical Attributes: Computing Gini Index

 For each distinct value, gather counts for each class in the dataset

Use the count matrix to make decisions

	CarType								
	Family	Sports	Luxury						
C1	1	8	1						
C2	3	0	7						
Gini	0.163								

©Two-way split©(find best partition of values)

	CarType							
	{Sports, Luxury} {Family							
C1	9	1						
C2	7 3							
Gini	0.468							

	CarType						
	{Sports}	{Family, Luxury}					
C1	8	2					
C2	0	10					
Gini	0.167						

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A
 v and A > v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		No No			0	Ye	s	Yes		Υє	Yes No		lo N		lo N		No		No	
•			Taxable Income																				
Sorted Values	; _ →	(60		70		7	5	85	5	90)	9	5	10	00	12	20	12	125		220	
Split Positions	-	5	5	6	5	7	72 8		87		92		97		110		122		172		230		
		\	>	\=	>	<=	>	<=	^	"	>	V =	>	<=	>	<=	>	\=	>	"	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	75	0.3	43	0.4	117	0.4	100	<u>0.3</u>	<u>800</u>	0.3	43	0.3	75	0.4	00	0.4	20

Alternative Splitting Criteria based on INFO

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

C1	0
C2	6

$$\Phi$$
P(C1) = 0/6 = 0 P(C2) = 6/6 = 1
 Φ Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

$$\Phi$$
P(C1) = 1/6 P(C2) = 5/6
 Φ Entropy = - (1/6) $\log_2 (1/6)$ - (5/6) $\log_2 (5/6)$ = 0.65

$$\Phi$$
P(C1) = 2/6 P(C2) = 4/6
 Φ Entropy = - (2/6) $\log_2 (2/6)$ - (4/6) $\log_2 (4/6)$ = 0.92

Splitting Based on INFO...

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions;

n_i is number of records in partition i

- Measures Reduction in Entropy achieved because of the split.
 Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting Based on INFO...

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$\Phi P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $\Phi Error = 1 - max(0, 1) = 1 - 1 = 0$

$$\Phi$$
P(C1) = 1/6 P(C2) = 5/6
 Φ Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6

$$\Phi P(C1) = 2/6$$
 $P(C2) = 4/6$
 $\Phi Error = 1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$

Comparison among Splitting Criteria

For a 2-class problem:

(p is the fraction of records belonging to one of the two classes.)

Big Data Science

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - —How to specify the attribute test condition?
 - —How to determine the best split?
- Determine when to stop splitting

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have same (or similar) attribute values
 - What to do? majority voting
- Early termination (to be discussed later)

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets