Multiple Linear Regression: Estimation

EC 320: Introduction to Econometrics

Winter 2022

Prologue

Other Things Being Equal

Goal: Isolate the effect of one variable on another.

• All else equal, how does increasing X affect Y.

Challenge: Changes in X often coincide with changes in other variables.

 Failure to account for other changes can bias OLS estimates of the effect of X on Y.

A potential solution: Account for other variables using multiple linear regression.

Easier to defend the exogeneity assumption.

Other Things Equal?

OLS picks $\hat{\beta}_0$ and $\hat{\beta}_1$ that trace out the line of best fit. Ideally, we wound like to interpret the slope of the line as the causal effect of X on Y.

Confounders

However, the data are grouped by a third variable W. How would omitting W from the regression model affect the slope estimator?

Confounders

The problem with W is that it affects both Y and X. Without adjusting for W, we cannot isolate the causal effect of X on Y.

Controlling for Confounders

The Relationship between Y and X, Controlling for a Binary Variable W 1. Start with raw data. Correlation between X and Y: 0.361

Controlling for Confounders

#> 1 (Intercept) 1.11 0.104 10.6 3.57e-21 #> 2 X -0.518 0.0731 -7.09 2.32e-11

#> 3 W

3.88 0.208 18.6 2.32e-45

```
lm(Y \sim X, data = df) \% > \% tidy()
\# # A tibble: 2 × 5
#> <chr> <dbl> <dbl> <dbl>
#> 1 (Intercept) 1.51 0.169 8.91 3.36e-16
#> 2 X 0.494 0.0811 6.10 5.53e- 9
lm(Y \sim X + W, data = df) \%\% tidv()
#> # A tibble: 3 × 5
#> <chr> <dbl> <dbl> <dbl> <dbl>
```

More explanatory variables

Simple linear regression features one outcome variable and one explanatory variable:

$$Y_i = \beta_0 + \beta_1 X_i + u_i.$$

Multiple linear regression features one outcome variable and multiple explanatory variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_k X_{ki} + u_i.$$

Why?

- Better explain the variation in Y.
- Improve predictions.
- Avoid bias.

OLS Estimation

As was the case with simple linear regressions, OLS minimizes the sum of squared residuals (RSS).

However, residuals are now defined as

$$\hat{u}_i = Y_i - \hat{eta}_0 - \hat{eta}_1 X_{1i} - \hat{eta}_2 X_{2i} - \cdots - \hat{eta}_k X_{ki}.$$

To obtain estimates, take partial derivatives of RSS with respect to each $\hat{\beta}$, set each derivative equal to zero, and solve the system of k+1 equations.

• Without matrices, the algebra is difficult. For the remainder of this course, we will let R do the work for us.

Coefficient Interpretation

Model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_k X_{ki} + u_i.$$

Interpretation

- The intercept $\hat{\beta}_0$ is the average value of Y_i when all of the explanatory variables are equal to zero.
- Slope parameters $\hat{\beta}_1, \dots, \hat{\beta}_k$ give us the change in Y_i from a one-unit change in X_i , holding the other X variables constant.

Algebraic Properties of OLS

The OLS first-order conditions yield the same properties as before.

- 1. Residuals sum to zero: $\sum_{i=1}^{n} \hat{u}_i = 0$.
- 2. The sample covariance between the independent variables and the residuals is zero.
- 3. The point $(\bar{X}_1, \bar{X}_2, \dots, \bar{X}_k, \bar{Y})$ is always on the fitted regression "line."

Fitted values are defined similarly:

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_{1i} + \hat{eta}_2 X_{2i} + \dots + \hat{eta}_k X_{ki}.$$

The formula for \mathbb{R}^2 is the same as before:

$$R^2 = rac{\sum (\hat{Y}_i - ar{Y})^2}{\sum (Y_i - ar{Y})^2}.$$

Model 1:
$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$
.

Model 2:
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + v_i$$

True or false?

Model 2 will yield a lower \mathbb{R}^2 than Model 1.

• Hint: Think of R^2 as $R^2=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}$.

Model 1

Problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

To see this problem, we can simulate a dataset of 10,000 observations on y and 1,000 random x_k variables. **No relations between** y **and the** x_k !

Pseudo-code outline of the simulation:

Generate 10,000 observations on y
Generate 10,000 observations on variables x₁ through x₁₀₀₀
Regressions

LM₁: Regress y on x₁; record R²
LM₂: Regress y on x₁ and x₂; record R²
...
LM₁₀₀₀: Regress y on x₁, x₂, ..., x₁₀₀₀; record R²

Problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

R code for the simulation:

```
set.seed(1234)
#plan(multiprocess)
v \leftarrow rnorm(1e4) # 10000 obs
x \leftarrow matrix(data = rnorm(1e6), nrow = 1e4) # 10000 by 100 matrix
x \% \% cbind(matrix(data = 1, nrow = 1e4, ncol = 1) # 10000 by 1 vector
              . x)
r fun \leftarrow function(i) {
  tmp reg \leftarrow lm(y \sim x[,1:(i + 1)]) %>% summary()
  data.frame(
  k = i + 1.
  r2 = tmp reg$r.squared,
  r2_adj = tmp reg$adj.r.squared)
r_df \leftarrow future_map(1:(1e2-1), r_fun) \%>\% bind_rows()
r df
```

Problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

One solution: Adjusted ${\it R}^2$

Problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

One solution: Penalize for the number of variables, e.g., adjusted \mathbb{R}^2 :

$${ar{R}}^2 = 1 - rac{\sum_i \left(Y_i - \hat{Y_i}
ight)^2 / (n-k-1)}{\sum_i \left(Y_i - ar{Y}
ight)^2 / (n-1)}$$

Note: Adjusted \mathbb{R}^2 need not be between 0 and 1.

Example: 2016 Election

```
lm(trump margin ~ white, data = election) %>% glance()
#> # A tibble: 1 × 12
    r.squared adj.r.squared sigma statistic p.value df logLik AIC
                                                                     BTC
#> <dbl>
             <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#> 1 0.320 0.320 25.4 1462. 1.51e-262 1 -14472. 28950. 28969.
#> # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
lm(trump margin ~ white + poverty, data = election) %>% glance()
#> # A tibble: 1 × 12
    r.squared adj.r.squared sigma statistic p.value df logLik AIC
                                                                     BIC
#>
  <dbl>
             <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#>
#> 1 0.345 0.344 24.9 818. 4.20e-286 2 -14414. 28836. 28860.
#> # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

OLS Assumptions

Same as before, except for assumption 2:

- 1. **Linearity:** The population relationship is linear in parameters with an additive error term.
- 2. **No perfect collinearity:** No *X* variable is a perfect linear combination of the others.
- 3. **Exogeneity:** The X variable is exogenous (i.e., $\mathbb{E}(u|X)=0$).
- 4. **Homoskedasticity:** The error term has the same variance for each value of the independent variable (i.e., $Var(u|X) = \sigma^2$).
- 5. **Non-autocorrelation:** The values of error terms are independent from one another (i.e., $E[u_i u_j] = 0, \forall i \text{ s.t. } i \neq j$)
- 6. **Normality:** The population error term is normally distributed with mean zero and variance σ^2 (i.e., $u \sim N(0, \sigma^2)$)

Perfect Collinearity

Example: 2016 Election

OLS cannot estimate parameters for white and nonwhite simultaneously.

• white = 100 - nonwhite.

```
lm(trump_margin ~ white + nonwhite, data = election) %>% tidy()
```

R drops perfectly collinear variables for you.

Tradeoffs

There are tradeoffs to remember as we add/remove variables:

Fewer variables

- Generally explain less variation in y.
- Provide simple interpretations and visualizations (parsimonious).
- May need to worry about omitted-variable bias.

More variables

- More likely to find *spurious* relationships (statistically significant due to chance; do not reflect true, population-level relationships).
- More difficult to interpret the model.
- May still leave out important variables.

Omitted Variables

Omitted Variables

Omitted Variables

Explanatory variable	1	2
Intercept	-84.84	-6.34
	(18.57)	(15.00)
log(Spend)	-1.52	11.34
	(2.18)	(1.77)
Lunch		-0.47
		(0.01)

Data from 1823 elementary schools in Michigan

- Math Score is average fourth grade state math test scores.
- log(Spend) is the natural logarithm of spending per pupil.
- Lunch is the percentage of student eligible for free or reduced-price lunch.

Omitted-Variable Bias

Model 1: $Y_i = \beta_0 + \beta_1 X_{1i} + u_i$.

Model 2: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + v_i$

Estimating Model 1 (without X_2) yields **omitted-variable bias:**

$$ext{Bias} = eta_2 rac{ ext{Cov}(X_{1i}, X_{2i})}{ ext{Var}(X_{1i})}.$$

The sign of the bias depends on

- 1. The correlation between X_2 and Y, i.e., β_2 .
- 2. The correlation between X_1 and X_2 , i.e., $\mathrm{Cov}(X_{1i},X_{2i})$.