Nome:	Cognome:
Matricola:	FIRMA:

Esame di Ricerca Operativa - 31 luglio 2013 Facoltà di Scienze MM.FF.NN. - Verona

Problema 1 (3+2 punti):

La PhotoMegaLux, azienda leader nella produzione di materiali ad uso fotografico, sta studiando i tempi di reazione di un nuovo acido per lo sviluppo di fotografie professionali. Sperimentalmente sono stati calcolati i tempi di sviluppo di una fotografia in base alla quantità di acido impiegato. In tabella sono riportati i tempi di sviluppo t in funzione delle quantità q di acido, per come rilevati empiricamente su 5 campioni di un provino.

campione	1	2	3	4	5
litri	0.3	0.5	0.6	0.7	0.9
secondi	30	15	4.5	3.5	2.6

La colonna (i+1)-esima della tabella $(1 \le i \le 5)$ dice che sul campione i, dove sono stati utilizzati q_i litri di acido, la reazione ha avuto luogo in t_i secondi.

Sulla base dei dati sperimentali si vuole trovare una legge del tipo $t = Aq^2 + Bq + C$ che approssimi il più possibile l'andamento del tempo di reazione dell'acido. In particolare, si vorrebbe determinare una tripla di valori per i coefficienti $A, B \in C$ in modo che lo scostamento massimo $\max_{i=1}^5 |t_i - Aq_i^2 - Bq_i - C|$ sia il più contenuto possibile.

- ((3pt)) Fornire un modello di programmazione lineare per tale problema specifico.
- ((2pt)) Fornire un modello in forma astratta che si riferirisca ad un numero n arbitrario di campioni (una sequenza di n coppie (q_i, t_i)).

Problema 2 (5 punti):

Si supponga di avere uno zaino di capacitá B e di voler trasportare un sottoinsieme dei seguenti n=19 oggetti a massima somma dei valori, soggetti al vincolo che la somma dei pesi non ecceda B.

indice	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
peso	13	4	22	52	27	22	29	23	9	47	48	20	5	15	17	24	13	5	17
valore	26	10	42	60	40	42	32	40	22	99	64	20	8	24	40	44	24	12	32

In un classico approccio di programmazione dinamica, si introduce un problema DP[i][b] per ogni $i=0,1,2,\ldots,n$ e per ogni $b=0,1,2,\ldots,B$.

- **2.1(1pt)** Come si inizializzano i B+1 problemi DP[0][b] corrispondenti al caso base di nessun oggetto tra cui scegliere?
- **2.2** (1pt) Quale è il significato del problema DP[i][b]?
- **2.3** (1pt) Quale ricorrenza esprime il valore di DP[i][b] in termini di problemi più piccoli?
- **2.4 (1pt)** Una volta riempita la tabella di programmazione dinamica, come posso ottenere il valore della soluzione ottima del problema originale?
- **2.5** (1pt) E come posso produrre una tale soluzione ottima? (Chiarezza e coincisione).

Problema 3 (4 punti):

Nel seguente array di interi, trovare un sottointervallo di interi consecutivi la somma dei cui valori sia massima.

5 -1 4 -5 7 -18 31 -20 23 -31 16 -32 5 -15 30 -22 6 -8 21 -25 13 -51 21 -13 24 -19 25

- **3.1(1pt)** quale è il massimo valore di somma di un sottointervallo? Quale sottointervallo devo prendere?
- **3.2** (1pt) e nel caso sia richiesto di partire dal primo elemento?
- **3.3 (1pt)** e nel caso sia richiesto di includere il 18-esimo elemento?
- **3.4 (1pt)** e nel caso sia richiesto di includere sia il 14-esimo che il 16-esimo elemento?

tipo intervallo	max sum	parte da pos.	arriva a pos.	parte da val.	arriva a val.
qualsiasi					
include primo					
include 18-esimo					
include 14-esimo e 16-esimo					

Problema 4 (4 punti):

Si consideri la seguente sequenza di numeri naturali.

15	23	25	30	22	33	44	50	21	41	67	26	47	35	60	62	24	27	19	42	61	29	45	54	28
					•						-	-	-		•		-				-			

- **4.1(1pt)** trovare una sottosequenza crescente che sia la più lunga possibile. Specificare quanto è lunga e fornirla.
- **4.2(2pt)** una sequenza è detta una N-sequenza, o sequenza crescente con un possibile ripensamento, se esiste un indice *i* tale cha ciascuno degli elementi della sequenza esclusi al più il primo e l'*i*-esimo sono strettamente maggiori dell'elemento che immediatamente li precede nella sequenza. Trovare la più lunga N-sequenza che sia una sottosequenza della sequenza data. Specificare quanto è lunga e fornirla.
- **4.3(1pt)** trovare la più lunga sottosequenza crescente che includa l'elemento di valore 21. Specificare quanto è lunga e fornirla.

tipo sottosequenza	max lung	sottosequenza ottima
crescente		
N-sequenza		
crescente con 21		

Problema 5 (15 punti):

Si consideri il grafo G, con pesi sugli archi, riportato in figura.

- 5.1.(2pt) Dire, certificandolo, (1) se il grafo G è planare oppure no; (2) se il grafo G' ottenuto da G rimpiazzando l'arco go con l'arco gh è planare oppure no.
- 5.2.(2pt) Fornendo i certificati del caso, dire quale sia il minimo numero di archi la cui rimozione renda bipartito: (1) il grafo G; (1) il grafo G'.
- 5.3.(1pt) Trovare un albero ricoprente di G di peso minimo.
- 5.4.(3pt) Per ciascuno dei seguenti archi dire, certificandolo, se esso appartenga a (tutte / a nessuna / a qualcuna ma non a tutte) le soluzioni ottime: fg, wx, ln.
- 5.5.(1pt) Trovare tutti gli alberi ricoprenti di peso minimo. (Dire quanti sono e specificare con precisione come generarli).
- 5.6.(1pt) Trovare un albero dei cammini minimi da s e determinare le distanze di tutti i nodi da s.
- 5.7.(1pt) Trovare tutti gli alberi dei cammini minimi da s. (Dire quanti sono e specificare con precisione come generarli).
- 5.8.(2pt) Trovare un massimo flusso dal nodo s al nodo t.
- 5.9.(2pt) Certificare l'ottimalità del flusso massimo dal nodo s al nodo t.

Problema 6 (8 punti):

$$\max 11x_1 - 5x_2 - 3x_3
\begin{cases}
10x_1 - x_2 + 2x_3 \le 8 \\
10x_1 - 5x_2 + x_3 \le -10 \\
x_1, x_2, x_3 \ge 0
\end{cases}$$

- **6.1(1pt)** Impostare il problema ausiliario.
- **6.2(2pt)** Risolvere il problema ausiliario per ottenere una soluzione ammissibile di base al problema originario.
- **6.3(2pt)** Risolvere il problema originario all'ottimo.
- **6.4(1pt)** Quanto si sarebbe disposti a pagare per ogni unità di incremento per l'availability nei due vincoli? (Per piccole variazioni.)
- **6.5(1pt)** Fornire una soluzione primale, parametrizzata negli incrementi, che evidenzi la nostra disponibilità a pagare tale prezzo.
- **6.6(1pt)** Fino a dove si sarebbe disposti a pagare tale prezzo?

LEGGERE CON MOLTA ATTENZIONE:

PROCEDURA DA SEGUIRE PER L'ESAME -controllo

- 1) Vostro nome, cognome e matricola vanno scritti, prima di incominciare il compito, negli appositi spazi previsti nell'intestazione di questa copertina. Passando tra i banchi verificherò l'esatta corrispondenza di alcune di queste identità. Ulteriori verifiche alla consegna.
- 2) Non è consentito utilizzare alcun sussidio elettronico, né consultare libri o appunti, nè comunicare con i compagni.
- 3) Una volta che sono stati distribuiti i compiti non è possibile allontanarsi dall'aula per le prime 2 ore. Quindi:
- (1) andate al bagno prima della distribuzione dei compiti e (2) non venite all'esame solo per fare i curiosi (i testi vengono pubblicati sul sito immediatamente dopo l'esame).

Procedura da seguire per ogni esercizio -assegnazione punti

- 1) La risoluzione completa degli esercizi deve trovare spazio in fogli da inserire in questa copertina ripiegata a mo' di teca (intestazione con vostri dati personali su faccia esterna della teca, per facilità di controllo).
- 2) Per tutti i fogli consegnati oltre alla copertina, vi conviene che riportino anche essi NOME, COGNOME e MATRICOLA per scongiurare rischi di smarrimenti. In genere vi conviene consegnare tutto, tranne inutili ripetizioni.
- 3) Trascrivere i risultati ottenuti negli appositi riquadri della copertina, ove previsti.
- 4) Assicurarsi di fornire i certificati idonei ovunque richiesti.

COMUNICAZIONE ESITI E REGISTRAZIONE VOTI -completamento esame

I voti verrano comunicati e resi disponibili tramite ESSE3. Dal 18 in sù i voti verranno registrati automaticamente a valle di un intervallo di tempo concessovi per eventualmente rifiutare il voto.