EXAMINER'S AMENDMENT

An examiner's amendment to the record appears below. Should the changes and/or additions be unacceptable to applicant, an amendment may be filed as provided by 37 CFR 1.312. To ensure consideration of such an amendment, it MUST be submitted no later than the payment of the issue fee.

Authorization for this examiner's amendment was given in a telephone interview with Cooper McDonald on September 01, 2009.

IN THE CLAIMS -

Please **replace** claims dated on 06/11/2009 to the following claims:

"1-71. (Canceled).

72. (Previously presented) A compound having the structural formula (A),

wherein:

 the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3 double bonds;

Art Unit: 1625

R¹ is selected from the group consisting of aryl, heterocycle, C₁₋C₁₀ alkoxy, C₁₋C₁₀ thioalkyl, C₁₋C₁₀ alkyl-amino, C₁₋C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkynyl, wherein each is optionally substituted with one or more R⁶;

- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene,
 C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N;
- R² and R⁴ are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, and heterocycle, or when one of R²⁵ or R²⁶ is present, R² or R⁴ is selected from the group consisting of (=O), (=S), and =NR²⁷;
- X is selected from the group consisting of C₁₋C₁₀ alkylene, C₂₋₁₀ alkenylene and C₂₋₁₀ alkynylene, where each optionally includes one or more heteroatoms selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R³ is a heterocycle substituted with one or more R¹⁷, provided that R³ optionally substituted with at least one R¹⁷ is not pyridinyl or 5-chlorothienyl;
- R⁵ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, and heterocycle;

Art Unit: 1625

- each R⁶ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -CO₂R¹⁸, -NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, -C(=O)R¹⁸, -C(=S)R¹⁸, -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C₁₋₁₈)alkyl, aryl(C₁₋₁₈)alkyloxy, aryl(C₁₋₁₈)alkylthio, heterocycle and C₁₋₁₈ hydroxyalkyl, where each is optionally substituted with one or more R¹⁹;

- R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle, -C(=O)R¹²; -C(=S) R¹², and an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;
- R⁹ and R¹⁸ are independently selected from the group consisting of hydrogen, -OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, -CH₂OCH(=O)R^{9a}, and -CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;
- R^{11} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, aryl, -C(=O) R^{12} , heterocycle, and an amino acid residue;
- R¹² is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and an amino acid residue;
- R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and an amino acid residue;

Art Unit: 1625

each R¹⁷ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₂₋₁₈ halogenated alkenyl, C₂₋₁₈ halogenated alkynyl, C₂₋₁₈ halogenated alkoxy, C₁₋₁₈ halogenated alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, OH, CN, NO₂, NR⁷R⁸, haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, CO₂H, CO₂R¹⁸, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl, arylalkyloxy, arylalkylthio, heterocyclic, and C₁₋₁₈ hydroxyalkyl, where each of said aryl, aryloxy, arylthio, arylalkyl, arylalkyloxy, arylalkylthio, heterocycle, C₁₋₁₈ hydroxyalkyl, arylsulfoxide, arylsulfone, or arylsulfonamide is optionally substituted with one or more R¹⁹;

- each R^{19} is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{2-18} alkenyloxy, C_{2-18} alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18} alkyl)oxy, arylthio, aryl(C_{1-18})alkylthio and aryl(C_{1-18})alkyl, where each is optionally substituted with 1 or more =O, -NR²⁰R²¹, -CN, C_{1-18} alkoxy, heterocycle, C_{1-18} haloalkyl, heterocycle alkyl, heterocycle connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;
- R²⁰ and R²¹ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, -C(=O)R¹², carboxylester-substituted heterocycle, and -C(=S)R¹²;

Art Unit: 1625

R²⁵ and R²⁶ are not present, or are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl and heterocycle, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, -CH₂OH, benzyloxy, and -OH; and

Page 6

R²⁷ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl(C₁₋₁₈)alkyl; and salts, tautomers, and stereoisomers thereof.

73. - 78. (Cancelled)

79. (Currently amended) A compound having the structural formula (C)

wherein:

- R¹ is selected from the group consisting of aryl, heterocycle, C₁₋C₁₀ alkoxy, C₁₋C₁₀ thioalkyl, C₁₋C₁₀ alkyl-amino, C₁₋C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkynyl, wherein each is optionally substituted with one or more R⁶;
- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N;

Art Unit: 1625

- R² and R⁴ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, and heterocycle;

- X is selected from the group consisting of C₁₋C₁₀ alkylene, C₂₋₁₀ alkenylene and C₂₋₁₀ alkynylene, where each optionally includes one or more heteroatoms selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R³ is aryl, aryloxy, arylthio, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl-N(R¹⁰)-, or heterocycle, each of which is optionally substituted with one or more R¹⁷, provided that for cycloalkenyl the double bond is not adjacent to a nitrogen, provided M-Q-R³ is not biphenyl, and provided that R³ substituted with at least one R¹⁷ is not pyridinyl or 5-chlorothienyl;
- R^5 is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, and heterocycle;
- each R⁶ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -CO₂R¹⁸, -NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, -C(=O)R¹⁸, -C(=S)R¹⁸, -SH, aryl, aryloxy,

Art Unit: 1625

arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C_{1-18})alkyl, aryl(C_{1-18})alkyloxy, aryl(C_{1-18})alkylthio, heterocycle and C_{1-18} hydroxyalkyl, where each is optionally substituted with one or more R^{19} ;

- R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle, -C(=O)R¹²; -C(=S) R¹², and an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;
- R⁹ and R¹⁸ are independently selected from the group consisting of hydrogen, -OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, -CH₂OCH(=O)R^{9a}, and -CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;
- R¹⁰ and R¹¹ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocycle, and an amino acid residue;
- R¹² is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and an amino acid residue;
- R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and an amino acid residue;
- each R¹⁷ is independently MQ- wherein M is a ring optionally substituted with one or more R¹⁹, and Q is a bond or a linking group connecting M to R³ that has 1 to 10 atoms and is optionally substituted with one or more R¹⁹, wherein the linking group is alkylene optionally substituted with oxy or thioester;
- each R¹⁹ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈

Art Unit: 1625

alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, -SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18} alkyl)oxy, arylthio, aryl(C_{1-18})alkylthio or aryl(C_{1-18})alkyl, where each is optionally substituted with 1 or more =O, -NR²⁰R²¹, -CN, C_{1-18} alkoxy, heterocycle, C_{1-18} haloalkyl, heterocycle alkyl, heterocycle connected to R¹⁷ by alkyl, alkoxyalkoxy and halogen;

- R²⁰ and R²¹ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, -C(=O)R¹², and or -C(=S)R¹²;
- and salts, tautomers, and stereoisomers thereof.
 - 80. (Cancelled)
- 81. (Previously presented) A compound according to claim 72, wherein R^3 is isoxazolyl substituted with one to three R^{17} .
 - 82.-85. (Cancelled)
- 86. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 72.
 - 87. -89. (Cancelled)

Art Unit: 1625

90. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 79.

- 91. (Previously presented) The compound of claim 72, wherein YR¹ is halophenyl or halomethyl-substituted phenyl.
- 92. (Previously presented) The compound of claim 91, wherein halophenyl is ortho-fluorophenyl.
- 93. (Previously presented) The compound of claim 72, wherein R¹⁷ is aryl or a heterocycle further substituted with 1, 2 or 3 R¹⁹.
- 94. (Previously presented) The compound of claim 72, wherein YR^1 is not an unsubstituted C_{3-10} cycloalkyl.
- 95. (Previously presented) The compound of claim 72 wherein R¹⁹ is trihalomethyl, trihalomethoxy, alkoxy or halogen.
- 96. (Previously presented) The compound of claim 72, wherein R^1 is aryl or aromatic heterocyle substituted with 1, 2 or 3 R^6 and wherein R^6 is halogen, C_{1-18} alkoxy or C_{1-18} haloalkyl.
 - 97. (Previously presented) The compound of claim 72, wherein Y is a bond.
- 98. (Previously presented) The compound of claim 72, wherein X is selected from the group consisting of -CH₂-, -CH(CH₃)-, -CH₂-CH₂-, -CH₂-CH₂-, -CH₂-CH₂-, -CH₂-

Art Unit: 1625

CH₂-CH₂, -(CH₂)₂₋₄-O-(CH₂)₂₋₄-, -(CH₂)₂₋₄-S-(CH₂)₂₋₄-, -(CH₂)₂₋₄-NR¹⁰-(CH₂)₂₋₄-, C₃₋₁₀ cycloalkylidene, C₂₋₆ alkenylene and C₂₋₆ alkynylene, wherein R¹⁰ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocyclic, and an amino acid residue.

- 99. (Previously presented) The compound of claim 72, wherein X is methylene.
- 100. (Previously presented) The compound of claim 72, wherein R³ is a heterocycle substituted with 0 to 3 R¹⁷.
- 101. (Previously presented) The compound of claim 100, wherein the R³ is an aromatic heterocycle.
- 102. (Previously presented) The compound of claim 101, wherein the heterocycle contains 1, 2 or 3 N, S or O atoms in the ring, is linked to X through a ring carbon atom and contains 4 to 6 total ring atoms.
- 103. (Previously presented) The compound of claim 72, wherein R^{17} is selected from the group consisting of C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl; arylalkyloxy; arylalkylthio and heterocycle, each being unsubstituted or substituted with 1 or more R^{19} .
- 104. (Previously presented) The compound of claim 72, wherein R⁹ and R¹⁸ are H, OH or alkyl.

Art Unit: 1625

105. (Previously presented) The compound of claim 72, wherein R⁵ is H.

- 106. (Previously presented) The compound of claim 72, wherein R⁶ is halogen.
- 107. (Previously presented) The compound of claim 72, wherein R^7 , R^8 , R^{11} , R^{15} , R^{16} , R^{20} , and R^{21} are independently H or C_{1-18} alkyl.
- 108. (Previously presented) The compound of claim 72, wherein R¹² is OH or alkyl.
- 109. (Previously presented) The compound of claim 72, wherein R^{19} is selected from the group consisting of H; C_{1-18} alkyl; C_{2-18} alkenyl; C_{2-18} alkynyl; C_{1-18} alkoxy; alkenyloxy; alkynyloxy; C_{1-18} alkylthio; C_{3-10} cycloalkyl; C_{4-10} cycloalkynyl; halogen; OH; CN; cyanoalkyl; NO_2 ; $NR^{20}R^{21}$; haloalkyl; haloalkyloxy; $C(=O)R^{18}$; $C(=O)OR^{18}$; Oalkenyl $C(=O)OR^{18}$; Oalkyl $C(=O)NR^{20}R^{21}$; aryl; heterocycle; -Oalkyl $OC(=O)R^{18}$; $C(=O)N(C_{1-6}$ alkyl), $N(H)S(O)(O)(C_{1-6}$ alkyl); arylalkyloxy; aryloxy; arylalkyloxy; and arylalkyl; each of which is unsubstituted or substituted with 1 or more =O; $NR^{20}R^{21}$; CN; alkoxy; heterocycle; haloalkyl- or alkyl-substituted heterocycle; and heterocycle linked to R^{17} by alkyl; alkoxyalkoxy and halogen.
- 110. (Previously presented) The compound of claim 109, wherein R¹⁹ is independently selected from the group consisting of halogen, NR²⁰R²¹, alkoxy, halo-substituted alkyl and halo-substituted alkoxy.

Art Unit: 1625

111. (Previously presented) The compound of claim 72, wherein R^{25} and R^{26} are not present.

- 112. (Previously presented) The compound of claim 72, wherein haloalkyl or haloalkyloxy is $-CF_3$ or $-OCF_3$.
- 113. (Previously presented) The compound of claim 72, wherein Y is a single bond, and R¹ is phenyl.
- 114. (Previously presented) The compound of claim 79, wherein Y is a single bond, and R¹ is aryl.
- 115. (Previously presented) The compound of claim 79, wherein X is $C_{1-}C_{10}$ alkylene, C_{2-10} alkenylene or C_{2-10} alkynylene.
- 116. (Previously presented) The compound of claim 79, wherein R³ is a heterocyle.
- 117. (Previously presented) The compound of claim 79, wherein R³ is a heterocycle substituted with R¹⁷ where Q is a bond and M is aryl.
- 118. (Previously presented) The compound of claim 79, wherein R^3 is isoxazole substituted with R^{17} where Q is a bond and M is aryl.

119. - 125. (Cancelled) "

Allowable Subject Matter

Art Unit: 1625

Claims 72, 79, 81, 86, 90-118 are allowed.

The following is an examiner's statement of reasons for allowance:

Claim 79 were rejected under 1039a) over Cardozo et al., WO 2004067516 in the previous office action and the rejection is withdrawn in light of applicant's amendment argument in the paper dated on 02/11/2009.

Any comments considered necessary by applicant must be submitted no late than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "comments on Statement of Reasons for Allowance."

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Niloofar Rahmani whose telephone number is 571-272-4329. The examiner can normally be reached on Monday through Friday from 8:30 am to 5:00 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Janet Andres, can be reached on 571-272-0867. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

/NILOOFAR RAHMANI/

09/03/2009

/D. Margaret Seaman/ Primary Examiner, Art Unit 1625