

GRADO EN INGENIERÍA INFORMÁTICA

Aplicación práctica ACSI curso 2022-2023

Carlos Lozano Alemañy

A partir de realizar los cambios pertinentes en el documento modelo.qnp para represenar el modelo del enunciado del problema 5.1 realiza las modificaciones pertinentes para determinar los siguientes apartados:

a. Programad el cálculo de las demandas de los 2 dispositivos, y la demanda total (D) y su impresión. ¿Cuál es el cuello de botella (Db)? ¿Cuál es el punto de saturación (N*)? Imprimid todas esas variables.

```
NUMERO DE USUARIOS= 10
- MEAN VALUE ANALYSIS ("MVA") -
* NAME * SERVICE * BUSY PCT * CUST NB * RESPONSE * THRUPUT *
* * * * *
*CPU *0.3000E-01*0.2412 *0.3074 *0.3824E-01* 8.039 *
*TERMINAL * 8.000 *0.0000E+00* 8.039 * 8.000 * 1.005 *
*********
      MEMORY USED: 6944 WORDS OF 4 BYTES
       ( 0.14 % OF TOTAL MEMORY)
DEMANDA CPU= 0.2400
DEMANDA DISCO = 0.7000
DEMANDA TOTAL = 0.9400
CUELLO DE BOTELLA = 0.7000
N* = 12.77
  36 /END/
```

Como se ve en la imagen, el cuello de botella es el Disco, que tiene la demanda más grande.

b. Programad el cálculo del tiempo de respuesta del sistema (R) y el tiempo TOTAL (R+Z), así como el número de usuarios trabajando y reflexionando (imprimid los valores).

```
1
NUMERO DE USUARIOS=
             10
- MEAN VALUE ANALYSIS ("MVA") -
* NAME * SERVICE * BUSY PCT * CUST NB * RESPONSE * THRUPUT *
*0.3000E-01*0.2412 *0.3074 *0.3824E-01* 8.039 * * * * * * * *
*CPU
*TERMINAL * 8.000 *0.0000E+00* 8.039 * 8.000 * 1.005 *
           * *
MEMORY USED: 6934 WORDS OF 4 BYTES
       ( 0.14 % OF TOTAL MEMORY)
R = 1.951
    9.951
R+Z =
Nr = 1.961
Nz = 8.039
37 /END/
```

c. Volved a vuestro modelo original y cread otro disco gemelo al original (7 visitas) y equilibrad las cargas, ¿qué variaciones se observan en los cálculos?

Al equilibrar las cargas cada uno tendrá 3,5 visitas. Si comparamos con el modelo original, apenas hay cambios significativos respecto a este, pues a pesar de haber añadido un disposity más al sistema, las cargas se han equilibrado entre ambos.

d. Volved a vuestro modelo original e iterad el modelo hasta 30 usuarios con saltos de 1 y construid una tabla .xls o similar y dos gráficas con líneas, en la que se vea la variación del tiempo de respuesta (R) y la productividad del sistema (X) con el número de usuarios incremental.

Productividad frente Ni(30)

Como muestran las imágenes un mayor número de usuarios implica un mayor tiempo de respuesta y como consecuencia una menor productividad. La primera gráfica seigue una tendencia exponencial mientras uqe la seguynda no alcanza 1,5 trabajos/seg.

e. Representad las 4 asíntotas del modelo original en sendas gráficas y el N* (ver libro páginas 140 -141 o transparencias del tema 5).

Como vemos en ambas imágenes, cuando hay 13 usuarios ambas asimptotas se cruzan, es decir, ese es el punto de saturación del sistema.

f. Realizad lo mismo que en el apartado d y e con el modelo de dos discos gemelos (apartado c).

Tiempo de respuesta frente a Ni(30)

Productividad frente a Ni(30)

Como muestran las imágenes un mayor número de usuarios implica un mayor tiempo de respuesta y como consecuencia una menor productividad. La primera gráfica seigue una tendencia exponencial mientras uqe la seguynda no alcanza 2,5 trabajos/seg.

En este caso el punto de saturación ocurre cuando hay 26 usuarios en el sistema.

PROGRAMA

Está en el pdf adjunto en la entrega