2 Baire の Category 定理・一様有界性原理

本節と次の節でBaire の Cathgory 定理とそれにより導かれる関数解析の3つの重要な定理「一様有界性原理」「開写像定理」「閉グラフ定理」を述べる.

2.1 Baire の Category 定理

定理 2.1 (Baire の Category 定理)

(X,d) を完備距離空間とする. X が可算個の閉集合 F_n により $X = \bigcup_{n=1}^{\infty} F_n$ と表されるならば、少なくとも 1 つの F_n は内点をもつ.

証明

- 結論を否定し、「いかなる F_n も内点を含まない」と仮定する.
- 仮定より F_1 は内点を含まないので $F_1 \neq X$ である.
- F_1^c は開集合で $F_1^c \neq \emptyset$ より、ある $x_1 \in X$ とある $\varepsilon_1 \in (0,1/2)$ が存在して $B_{\varepsilon_1}(x_1) \subset F_1^c$
- 仮定より F_2 は内点を含まないので $B_{\varepsilon_1/2}(x_1) \not\subset F_2$ である. よって開集合 $F_2^c \cap B_{\varepsilon_1/2}(x_1)$ は空でないため、ある $x_2 \in X$ とある $\varepsilon_2 \in (0,1/2^2)$ があって $B_{\varepsilon_2}(x_2) \subset B_{\varepsilon_1/2}(x_1) \cap F_2^c$ が成り立つ.
- 以下順に、 $0 < \varepsilon_n < 1/2^n, x_n \in X (n = 1, 2, \cdots)$ を

$$B_{\varepsilon_{n+1}}(x_{n+1}) \subset B_{\varepsilon_n/2}(x_n), B_{\varepsilon_n}(x_n) \cap F_n = \emptyset$$

となるようにとることができる.

• $\{x_n\}$ は Cauchy 列であることを示そう。任意に $\varepsilon > 0$ をとり, $n_0 \in \mathbb{N}$ を $(1/2^{n_0}) < \varepsilon$ となるようにとる。このとき $m > n > n_0$ ならば

$$d(x_m, x_n) \le d(x_m, x_{m-1}) + \dots + d(x_{n+1}, x_n)$$

$$\le \frac{1}{2^m} + \dots + \frac{1}{2^{n+1}} < \frac{1}{2^n} \le \frac{1}{2^{n_0}} < \varepsilon$$

である. したがって $\{x_n\}$ は Cauchy 列である. したがってある x_∞ に収束する.

• ところで、任意の $n \in \mathbb{N}$ に対して m > n ならば

$$d(x_n, x_\infty) \le d(x_n, x_m) + d(x_m, x_\infty)$$

$$\le \frac{\varepsilon_n}{2} + d(x_m, x_\infty) \to \frac{\varepsilon_n}{2} \quad (m \to \infty)$$

- したがって $d(x_n, x_\infty) < \varepsilon_n$ つまり $x_\infty \in B_{\varepsilon_n}(x_n)$ である.一方, $B_{\varepsilon_n}(x_n) \cap F_n = \emptyset$ より $x_\infty \notin F_n$ である.
- n は任意より $x_{\infty} \notin \bigcup_{n=1}^{\infty} F_n$ となるがこれは $X = \bigcup_{n=1}^{\infty} F_n$ に矛盾する. \square

2.2 一樣有界性原理

定理 2.2 (一樣有界性原理)

 $(X,\|\cdot\|_X), (Y,\|\cdot\|_Y)$ を Banach 空間, $\{T_\lambda\}_{\lambda\in\Lambda}$ を $\mathcal{L}(X,Y)$ に属する作用素の族とする.このとき任意の $x\in X$ に対して

$$\sup_{\lambda \in \Lambda} \|T_{\lambda} x\|_{Y} < \infty$$

ならば

$$\sup_{\lambda \in \Lambda} \|T_{\lambda}\|_{\mathscr{L}(X,Y)} < \infty$$

が成り立つ.

証明

- X の開球を $B_r^{(X)}(x_0), Y$ の開球を $B_r^{(Y)}(y_0)$ と表すことにする.
- $F_n = \{x \in X : \|T_{\lambda}x\|_Y \le n \ (\forall \lambda \in \Lambda)\}$ とおくとこれは X の閉集合である. 実際, $F_n = \bigcap_{\lambda \in \Lambda} T_{\lambda}^{-1}(B_n^{(Y)}(o_Y))$ と書け, T_{λ} の連続性から $T_{\lambda}^{-1}(\overline{B_n^{(Y)}(o_Y)})$ は閉集合であり, 任意濃度の個数の共通部分は閉集合であることから従う.
- 仮定から $X = \bigcup_{n=1}^{\infty} F_n$ が成り立つ. したがって Baire の Category 定理(定理 2.1)によりある $n_0 \in \mathbb{N}$ が存在して F_{n_0} は内点をもつ. つまり, $x_0 \in F_{n_0}$ と ある $\varepsilon_0 > 0$ が存在して $B_{\varepsilon_0}^{(X)}(x_0) \subset F_{n_0}$ が成り立つ.

$$||T_{\lambda}x||_{Y} = ||T_{\lambda}(x+x_{0}) - T_{\lambda}x_{0}||_{Y} \le 2n_{0}$$

が成り立つ.

• 任意の $x \in X(x \neq o_X)$ に対し, $y = \varepsilon_0 \frac{x}{2\|x\|_X}$ とすると $y \in B_{\varepsilon_0}^{(X)}(o_X)$ であるから $\|T_\lambda y\|_Y < 2n_0$ が成り立つ.この式を変形すると

$$||T_{\lambda}x||_{Y} \le \frac{4n_0}{\varepsilon} ||x||_{X}$$

となる。 n_0, ε は λ によらないので $\|T_\lambda\|_{\mathscr{L}(X,Y)} < \frac{4n_0}{\varepsilon_0} < \infty$ が成り立つ。 \Box

定理 2.3 (Banach-Steinhaus の定理)

 $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ を Banach 空間, $\{T_n\}$ を $\mathcal{L}(X,Y)$ に属する作用素の列とし,任意の $x \in X$ に対して $\{T_nx\}$ が収束するとする.このとき

$$Tx := \lim_{n \to \infty} T_n x$$

とおくと $T \in \mathcal{L}(X,Y)$ であり

$$||T||_{\mathscr{L}(X,Y)} \le \liminf_{n \to \infty} ||T_n||_{\mathscr{L}(X,Y)} \tag{2.1}$$

が成り立つ.

証明

- $T: X \to Y$ は線形であることは明らかである(証明せよ).
- 収束列は有界列であるので、任意の $x \in X$ に対して $\sup_{n \in \mathbb{N}} ||T_n x||_Y < \infty$ である. したがって一様有界性原理(定理 2.2)により $M_0 := \sup_{n \in \mathbb{N}} ||T_n||_{\mathscr{L}(X,Y)} < \infty$ である.
- $||T_n x||_Y \le ||T_n||_{\mathscr{L}(X,Y)} ||x||_X \le M_0 ||x||_X$ で $n \to \infty$ とすると $||Tx||_Y \le M_0 ||x||_X$ である. したがって $T \in \mathscr{L}(X,Y)$ である.
- (2.1) を示そう。 $m = \liminf_{n \to \infty} \|T_n\|_{\mathscr{L}(X,Y)} = \lim_{n \to \infty} \inf_{k \ge n} \|T_k\|_{\mathscr{L}(X,Y)}$ とおく。任意の $\varepsilon > 0$ に対してある $n_0 \in \mathbb{N}$ が存在して $n \ge n_0$ ならば $\inf_{k \ge n} \|T_k\|_{\mathscr{L}(X,Y)} < m + \varepsilon$ が成り立つ。
- したがって、

- $n = n_0$ で (2.2) を用いると $n_1 \ge n_0$ が存在して $||T_{n_1}||_{\mathscr{L}(X,Y)} < m + \varepsilon$ が成り立つ.
- $n_1+1 \ge n_0$ なので (2.2) より $n_2 \ge n_1+1$ が存在して $||T_{n_2}||_{\mathscr{L}(X,Y)} < m+\varepsilon$ が 成り立つ.
- $n_2+1 \ge n_0$ なので (2.2) より $n_3 \ge n_2+1$ が存在して $||T_{n_3}||_{\mathcal{L}(X,Y)} < m+\varepsilon$ が 成り立つ.
- 以上繰り返すことにより、ある自然数の単調増加列 $\{n_k\}$ に対して

$$||T_{n_k}||_{\mathscr{L}(X,Y)} < m + \varepsilon \quad (k = 1, 2, \cdots)$$

が成り立つ.

・これより

$$||T_{n_k}x||_Y \le ||T_{n_k}||_{\mathscr{L}(X,Y)}||x||_X < (m+\varepsilon)||x||_X$$

である.

• この式で $k \to \infty$ とすれば

$$||Tx||_Y \le (m+\varepsilon)||x||_X$$

が成り立つ. これより $\|T\|_{\mathscr{L}(X,Y)} \leq m + \varepsilon$ を得る. $\varepsilon > 0$ は任意より (2.1) を得る. \square