SEGURANÇA E GESTÃO DE RISCO

CRIPTPGRAFIA E GESTÃO DE CHAVES

LUIS AMORIM

11 Jun 2022

2 AGENDA

- Noções de criptografia
- Gestão de chaves

- Criptografia
 (kryptós=secreto,escondido + grápho=grafia,escrita)
- O que é?
 - "Escrita secreta por meio de abreviaturas ou de sinais convencionados de modo a preservar a confidencialidade da informação"
- Em que consiste?
 - Transformação de textos originais, chamados texto original (plaintext) ou texto claro (cleartext), em informação transformada, chamada texto cifrado (ciphertext), texto código (codetext) ou simplesmente cifra (cipher), que têm a aparência de um texto random ilegível

- O Porquê da Criptografia?
 - Proteger dados (informação)
 - Informações Militares (Tácticas/Estratégias)
 - Informações Científicas (Segurança de Estado)
 - Informações Industriais (Espionagem Industrial)
 - Informações Bancárias (Movimentos Bancários)
 - Informações Comerciais (Comércio Electrónico)
 - Informações Pessoais
 - Etc...

• Utilização de criptografia para protecção

- A International Association for Cryptologic Research (IACR) é uma organização científica internacional que mantém a pesquisa nesta área.
 - Organiza conferências
 - Crypto 2022, 13 18 August 2022, Santa Barbara, USA.
 - **Eurocrypt 2022**, 23 27 April 2023, Lyon, France.
 - Workshops
 - Real World Crypto Symposium, 13 15 April 2022, Amsterdam, The Netherlands
 - Cryptographic Hardware and Embedded Systems (CHES),

18 - 21 September 2022, Leuven, Belgium.

- Fast Software Encryption, 20 24 March 2023, Beijing, China
- Publicações

- Protecção da informação
 - O foco da segurança da informação deve ser
 - protegê-la de algum mal (roubo, alteração, acesso não autorizado)
 - · ao mesmo tempo que mantém a informação disponível para quen

• A cifra tem-se tornado uma comodidade, vindo já embebida em aplicações ou bases de dados.

- As ameaças que a informação enfrenta:
 - Perda ou Roubo de Media Tapes ou discos de bakup armazenados ou em transito
 - Roubo de Informação por utilizadores com acesso
 - Distribuição não intencional (envio para um destinatário diferente)
 - Hacking (aplicacional), alterando aplicações ou configurações com impacto nos dados
 - Roubo de dispositivos móveis

- Utilização de criptografia
 - Numa primeira fase generalizou-se a protecção dos dados em transito:
 - SSL
 - VPNs
 - Mas devemos também considerar os riscos da informação permanecer em claro nas origem e no destino
 - roubar um carro no parque ou garagem é muito mais fácil do que tentar roubá-lo numa autoestrada

Protecção da informação em vários pontos

- Segurança de dados armazenados
 - Cifrar dados armazenados em disco, tape,...
 - Mas podemos estar a aplicar uma medida desnecessária à maioria dos dados.
 - Necessário pensar como partilhar alguns dos dados com utilizadores que não têm acesso a chaves ou por razões de auditoria
- Segurança nos Servidores
 - A utilização de dispositivos cifrados (tudo cifrado) pode não ser a melhor opção para atacantes internos.
 - Segurança a nível aplicacional
 - Os dados quando utilizados pelas aplicações ganham contexto e significado, quem e como deve aceder
 - Para além do controlo de acessos que já está vulgarizado, existem já soluções ao nível aplicacional que fazem uso de PKIs:
 - gestão documental;
 - e-mail;
 - autenticação de utilizadores;
 - software publishing.

- Protecção da informação em vários pontos
 - Segurança dos Terminais de utilizador
 - Considerando como forte ameaça causada pelo Teletrabalho
 - onde o acesso remoto a informação
 - cópia dessa informação para pastas locais, nos PCs ou Portáteis
 - e-mails com attachs em claro para contas pessoais
 - acumulação durante largos anos de informação desnecessária para o trabalho actual), mas que não é apagada
 - Face à mobilidade e número de dispositivos que cada utilizador dispõe, é necessário controlar um conjunto variado de dispositivos:
 - SmartPhones,
 - PDAs,
 - PENs USB,
 - cartões de memória, ...

• A resposta pode ser proteger a diversos níveis, de acordo com o tipo de informação ou dispositivo:

DriveLock

- discos, Tapes, PENs
- File System
- ou um nível acima DRM

Sistemas criptográficos simétricos

• Usam a mesma chave para encriptar e desencriptar mensagens; ou pelo menos, chaves que possam ser determinadas de forma simples e directa uma a partir da outra.

- Sistemas criptográficos simétricos
 - Necessitam de um canal seguro para a divulgação das chaves.
 - Só os utilizadores do grupo podem ter acesso às chaves.
 - Com a saída de um utilizador do grupo, o sistema fica comprometido
 - Exemplos
 - Cifra de Vigenère
 - Sistema de Gronsfeld
 - Código Playfair
 - Substituição de Hill
 - Data Encryption Standard (DES)
 - International Data Encryption Algorithm (IDEA)
 - One Time Pad (One time key, ou Chave Única)
 - Advanced Encryption Standard (AES)

- Sistemas criptográficos assimétricos (chave pública)
 - Tipo de encriptação que usa duas chaves distintas, uma para a encriptação e outra para a desencriptação de mensagens (chave pública e chave privada, respectivamente).

- Sistemas criptográficos assimétricos (chave pública)
 - Evita o problema da divulgação das chaves, dos sistemas simétricos.
 - Cerca de 1000 vezes mais lento que os algoritmos simétricos
 - Utilizações mais comuns ...
 - Distribuição de chaves sem "segredos" pré-acordados
 - Assinaturas digitais e não repúdio
 - Identificação utilizando protocolos de "desafio-resposta" com chaves públicas
 - Encriptação (mas muito mais lento)
 - Exemplos
 - Diffie Hellman (# 1° sistema de chave pública inventado)
 - HM (Merkle e Hellman)
 - RSA (Ron Rivest, Adi Shamir e Leonard Adleman)
 - PGP (Pretty Good Privacy)

- Sistemas criptográficos assimétricos
 - PKI Public Key Infrastructure
 - Infraestrutura necessária para a gestão do "ciclo de vida" das chaves criptográficas de sistemas assimétricos
 - Geração
 - Distribuição
 - Renovação
 - Revogação
 - etc.
 - Chave Privada = Chave Privada
 - Certificado Digital = Chave Pública
 - + Metainformação (Subject, Issuer, Validity, Usage, etc.)

Digital Certificate:

- É um documento eletrónico que liga a identidade física de um entidade (pessoa, organização ou computador) à sua chave pública
- Em sistemas seguros (particularmente em PKIs) um certificado digital é emitido para
 - autenticar a(s) parte(s) envolvidas numa transação,
 - assinar eletronicamente documentos assegurando a integridade do seu conteúdo e/ou não repúdio de transações eletrónicas
- ITU-T X.509 define o formato dos certificados digitais

- Sistemas criptográficos assimétricos
 - Standards
 - Certificados Digitais: X509v3
 - Certificate Revocation Lists (CRLs)
 - Certificate Trust Lists (CTLs)
 - Sistemas de Directório: X500 (importante para a definição dos campos 'Subject' e 'Issuer')
 - Outros
 - EMV Certificate: utilizado na área da banca
 - 'more compact than x.509 certificates and are created using the ISO/IEC
 9796-2 digital signature algorithm that provides "message recovery"
 - PGP Pretty Good Privacy (Philip Zimmermann em 1991)

- A combinação dos dois métodos...
 - Codificando-se a mensagem com o método da chave simétrica e trocando a chave simétrica com o método de chave pública.
 - Chave de sessão simétrica
 - processamento mais rápido
 - Partilhada recorrendo a criptografia assimétrica
 - mais lenta.
 - mas mais segura

A Assinatura Digital

- Proporcionado pela criptografia assimétrica
- que permite garantir a autenticidade de quem envia a mensagem, associada à integridade do seu conteúdo
- No caso de se pretender enviar uma mensagem garantindo a integridade:
 - Mensagem é cifrada na origem com a chave privada
 - Destinatário utiliza a chave pública do emissor, para decifrar a mensagem
 - · Fica garantida assim a
 - autenticidade,
 - integridade e
 - não-repudiação da mensagem recebida

A Assinatura Digital

- Para assegurar o não-repúdio de forma eficiente deverá ser utilizado um Digest (informação resumida do documento)
 - Função Hashing
- É pouco prático ou inviável em documentos grandes, estar a utilizar a assinatura sobre todo o

documento

23 AGENDA

- Noções de criptografia
- Gestão de chaves

- A Cifra requer:
 - os dados a proteger
 - algoritmos de cifra
 - chaves de cifra

- O processo de cifrar é uma comodidade disponibilizada por um conjunto variado de ferramentas
- Ter em atenção que <u>nenhum</u> algoritmo é inquebrável
 - A questão é quanto tempo leva a quebrar
- O foco deve ser dado <u>também</u> ao nível da Gestão de chaves
 - Uma gestão de chaves fraca pode comprometer processos e algoritmos de cifra robustos
 - Dar acesso, apenas, a pessoas autorizadas e de acordo com políticas de aprovação e atribuição

- Para uma gestão eficaz, é necessário perceber que as chaves têm um ciclo de vida:
 - Geração de chaves
 - Armazenamento de chave
 - Distribuição de chave
 - Utilização da chave
 - Rotação da chave
 - Backup da chave
 - Recuperação de chave
 - Revogação da chave
 - Desactivação da chave
 - Aplicação de políticas
 - Auditorias

- O que é a Gestão de chaves
 - É o conjunto de técnicas e procedimentos relacionados com o ciclo de vida das chaves criptográficas
 - Mas também das relações entre as entidades emissoras
 - Mantendo as chaves e essas relações em segurança

Public Key Infrastructure (PKI)

- Certificate Authority (CA)
 - CA é uma organização que emite certificados utilizando uma assinatura digital, que vincula um certificado digital à identidade de uma entidade
- Registration Authority (RA):
 - RA autentica a identidade das entidades e requer à CA a emissão do certificado para cada uma desssa entidades
 - Hierarquicamente, a RA opera na dependência da CA e atua como interface da CA para com o utilizador ou entidade requerente
- Validation Authority (VA):
 - VA pode fazer parte do serviço fornecido pela CA ou por um terceiro.
 - Valida os certificados digitais, emite comprovativos digitais e serviços confiáveis de reconhecimento como prova de que uma transação eletrónica ocorreu

- Registration service: (RA)
 - Verifica Identidade e atributos especícicos da entidade (pessoa ou empresa). Resultados passados para "certificate generation service"
- Certificate generation service: (CA)
 - Cria e assinacertificados baseados na identidade e atributos verificados pelo "registration service".
- Dissemination service: (CA)
 - Dissemina os certificados aos requerente, e, se consentido por este, divulga para terceiras partes
 - Também é responsável por disseminar os termos e condições da CA, e as políticas e práticas de certificação
- Revocation management service: (CA)
 - Processa os pedidos e relatórios referentes à revogação, para determinar as medidas a serem tomadas.
 - Resultados distribuídos através do revocation status service.
- Revocation status service: (CA)
 - Providencia a informação do estado de revogação de certificados
 - Pode ser um servico em tempo-real, ou ser baseado em informação que é publicada periodicamente
- Subject device provision service: (opcional RA)
 - Disponibiliza um dispositivo de criação de assinatura
 - Exemplos de utilização:
 - Um serviço que gera o par de chaves e entrega a chave privada à entidade requerente;
 - Um serviço que prepara o subject's secure-signature-creation device (SSCD) e o entrega à entidade

Figure 1: Illustration of subdivision of certification services used in the present document

- Relações de confiança entre CAs
 - Existe um modelo hierárquico que estabelece as relações de confiança entre CAs diferentes, dentro da hierarquia de confiança mesmo.

- No entanto, se os seus CAs não compartilham de uma raiz comum CA, deve ser realizada uma certificação cruzada
- As CAs raiz devem desenvolver relações de confiança bilateral.
 - Constituindo um modelo híbrido de relações de confiança

- Alguns referenciais
 - CEN CWA 14167
 - Security Requirements for Trustworthy Systems Managing Certificates for Electronic Signatures
 - Part 1: System Security Requirements
 - Part 2: cryptographic module for CSP signing operations Protection Profile (MCSO-PP)
 - European Telecommunications Standards Institute (ETSI)
 - ETSITS 101456 Electronic Signatures and Infrastructures (ESI);.
 - Policy requirements for certification authorities issuing qualified certificates
 - Baseado no IETF RFC 3647 Internet X.509 Public Key Infrastructure
 - Para maior detalhe consultar o RFC 3647
 - ETSLTS 102 176 Algorithms and Parameters for Secure Electronic Signatures
 - Part 1: Hash functions and asymmetric algorithms
 - Part 2: Secure channel protocols and algorithms for signature creation devices
 - ETSLTS 101 861 Time stamping profile
 - Federal Information Processing Standard (FIPS), do NIST
 - FIPS 140-2 Security Requirements for Cryptographic Modules

SEGURANÇA E GESTÃO DE RISCO

2°SEM 2020/21

CRIPTPGRAFIA E GESTÃO DE CHAVES

LUIS AMORIM

17 Abr 2021