In [123]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
from sklearn.model_selection import train_test_split,RandomizedSearchCV
from sklearn.linear_model import LinearRegression,LogisticRegression,RidgeClassifier
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
from sklearn.ensemble import RandomForestClassifier
```

In [2]:

```
df = pd.read_csv("water_potability.csv")
df.head()
```

Out[2]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbo
0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.3797{
1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.1800 ⁻
2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.86860
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.43652
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.55827
4							•

EDA

In [3]:

df.shape

Out[3]:

(3276, 10)

```
In [4]:
```

Hardness 0 Solids 0 Chloramines 0 Sulfate 781 Conductivity 0 Organic_carbon 0 Trihalomethanes 162 Turbidity 0 Potability dtype: int64

In [5]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ph	2785 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64
3	Chloramines	3276 non-null	float64
4	Sulfate	2495 non-null	float64
5	Conductivity	3276 non-null	float64
6	Organic_carbon	3276 non-null	float64
7	Trihalomethanes	3114 non-null	float64
8	Turbidity	3276 non-null	float64
9	Potability	3276 non-null	int64

dtypes: float64(9), int64(1)

memory usage: 256.1 KB

In [6]:

```
df.columns
```

Out[6]:

working on null values

```
In [7]:
df.isna().sum()
Out[7]:
                    491
ph
Hardness
                      0
                      0
Solids
Chloramines
                      0
Sulfate
                    781
Conductivity
                      0
Organic_carbon
                      0
Trihalomethanes
                    162
Turbidity
                      0
Potability
                      0
dtype: int64
In [8]:
df["ph"].fillna(df["ph"].mean(),inplace=True)
In [9]:
df["Sulfate"].fillna(df["Sulfate"].mean(), inplace=True)
In [10]:
df["Trihalomethanes"].fillna(df["Trihalomethanes"].mean(),inplace=True)
In [11]:
df.isna().sum()
Out[11]:
ph
                    0
Hardness
                    0
Solids
                    0
Chloramines
                    0
Sulfate
Conductivity
Organic_carbon
                    0
Trihalomethanes
                    0
Turbidity
                    0
                    0
Potability
dtype: int64
```

In [12]:

df.describe()

Out[12]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Org
count	3276.000000	3276.000000	3276.000000	3276.000000	3276.000000	3276.000000	
mean	7.080795	196.369496	22014.092526	7.122277	333.775777	426.205111	
std	1.469956	32.879761	8768.570828	1.583085	36.142612	80.824064	
min	0.000000	47.432000	320.942611	0.352000	129.000000	181.483754	
25%	6.277673	176.850538	15666.690297	6.127421	317.094638	365.734414	
50%	7.080795	196.967627	20927.833607	7.130299	333.775777	421.884968	
75%	7.870050	216.667456	27332.762127	8.114887	350.385756	481.792304	
max	14.000000	323.124000	61227.196008	13.127000	481.030642	753.342620	
4							•

univariate analysis

In [13]:

```
plt.figure(figsize=(15,15))
plt.suptitle("UNI ANALYSIS", fontsize=20 , fontweight="bold")
for i in range(len(df.columns)):
    plt.subplot(5,3,i+1)
    sns.kdeplot(x=df[df.columns[i]], shade=True , color = "r")
    plt.xlabel(df.columns[i])
    plt.tight_layout()
```


Bivariate Analysis

In [14]:

```
plt.figure(figsize=(15,15))
plt.suptitle("Bivariate ANALYSIS", fontsize=20 , fontweight="bold")
for i in range(len(df.columns)):
    plt.subplot(5,3,i+1)
    sns.scatterplot(x=df["ph"], y=df[df.columns[i]])
    plt.xlabel(df.columns[i])
    plt.tight_layout()
```


In [15]:

```
df.columns
```

Out[15]:

INSIGHTS

In [16]:

import plotly.express as px

In [17]:

fig = px.histogram(x= df["ph"], y=df["Hardness"], title= "Hardness contained in water w.
fig.show()

Hardness contained in water w.rto ph

In [18]:

fig = px.histogram(x= df["ph"], y=df["Chloramines"], title= "Chloramines contained in wa fig.show()

Chloramines contained in water w.rto ph

In [19]:

fig = px.histogram(x= df["ph"], y=df["Conductivity"], title= "Conductivity contained in
fig.show()

Conductivity contained in water w.rto ph

In [20]:

fig = px.histogram(x= df["ph"], y=df["Organic_carbon"], title= "Organic_carbon contained
fig.show()

Organic_carbon contained in water w.rto ph

In [21]:

fig = px.histogram(x= df["ph"], y=df["Solids"], title= "Solids contained in water w.rto
fig.show()

Solids contained in water w.rto ph

In [22]:

fig = px.histogram(x= df["ph"], y=df["Sulfate"], title= "Sulfate contained in water w.rt
fig.show()

Sulfate contained in water w.rto ph

In [23]:

fig = px.histogram(x= df["ph"], y=df["Trihalomethanes"], title= "Trihalomethanes contain
fig.show()

Trihalomethanes contained in water w.rto ph

In [24]:

fig = px.histogram(x= df["ph"], y=df["Turbidity"], title= "Turbidity contained in water
fig.show()

Turbidity contained in water w.rto ph

In [25]:

```
# fig = px.bar(df,df["Potability"] , y= df["ph"])
# fig.show()
```

In [26]:

sns.pairplot(df)

Out[26]:

<seaborn.axisgrid.PairGrid at 0x1f75f3d7130>

In [27]:

```
sns.countplot(x= df["Potability"])
```

Out[27]:

<AxesSubplot: xlabel='Potability', ylabel='count'>

Target column is high

Feature Engineering

Detecting Outliers

In [28]:

```
plt.figure(figsize=(10,10))
plt.suptitle("Outliers Analysis", fontsize=20, fontweight="bold")
for i in range(0,len(df.columns)):
    plt.subplot(5,3,i+1)
    sns.boxplot(x=df[df.columns[i]])
    plt.xlabel(df.columns[i])
    plt.tight_layout()
```

Outliers Analysis

ph

```
In [29]:
```

```
sns.boxplot(df["ph"])
```

Out[29]:

<AxesSubplot: >

In [30]:

```
df["ph"].describe()
```

Out[30]:

3276.000000 count 7.080795 mean 1.469956 std 0.000000 min 25% 6.277673 7.080795 50% 75% 7.870050 14.000000 Name: ph, dtype: float64

In [31]:

```
print(df["ph"].quantile(0.10))
print(df["ph"].quantile(0.90))
```

- 5.282194491912188
- 8.925046875415749

In [32]:

```
df["ph"] = np.where(df["ph"] <5.282194491912188, 5.282194491912188,df["ph"])
df["ph"] = np.where(df["ph"]>8.925046875415749, 8.925046875415749,df["ph"])
```

In [33]:

```
sns.boxplot(df["ph"])
```

Out[33]:

Hardness

```
In [34]:
```

```
sns.boxplot(df["Hardness"])
```

Out[34]:

<AxesSubplot: >

In [35]:

```
df["Hardness"].describe()
```

Out[35]:

count 3276.000000
mean 196.369496
std 32.879761
min 47.432000
25% 176.850538
50% 196.967627
75% 216.667456
max 323.124000

Name: Hardness, dtype: float64

In [36]:

```
print(df["Hardness"].quantile(0.10))
print(df["Hardness"].quantile(0.90))
```

155.2239641077801 236.35070740017414

In [37]:

```
df["Hardness"] = np.where(df["Hardness"] <155.2239641077801, 155.2239641077801,df["Hardn
df["Hardness"] = np.where(df["Hardness"]>236.35070740017414, 236.35070740017414,df["Hardness"]
```

In [38]:

```
sns.boxplot(df["Hardness"])
```

Out[38]:

Solids

```
In [39]:
```

```
sns.boxplot(df["Solids"])
```

Out[39]:

<AxesSubplot: >

In [40]:

```
df["Solids"].describe()
```

Out[40]:

count 3276.000000
mean 22014.092526
std 8768.570828
min 320.942611
25% 15666.690297
50% 20927.833607
75% 27332.762127
max 61227.196008

Name: Solids, dtype: float64

In [41]:

```
print(df["Solids"].quantile(0.10))
print(df["Solids"].quantile(0.90))
```

11740.528189473214 33814.93523020222

In [42]:

```
df["Solids"] = np.where(df["Solids"] <11740.528189473214, 11740.528189473214,df["Solids"
df["Solids"] = np.where(df["Solids"]>33814.93523020222,33814.93523020222,df["Solids"])
```

In [43]:

```
sns.boxplot(df["Solids"])
```

Out[43]:

<AxesSubplot: >

In [44]:

```
df.columns
```

Out[44]:

Chloramines

In [45]:

```
sns.boxplot(df["Chloramines"])
print(df["Chloramines"].quantile(0.10))
print(df["Chloramines"].quantile(0.90))
df["Chloramines"].describe()
```

- 5.181270677724534
- 9.122578323075329

Out[45]:

count	3276.000000
mean	7.122277
std	1.583085
min	0.352000
25%	6.127421
50%	7.130299
75%	8.114887
max	13.127000

Name: Chloramines, dtype: float64

In [46]:

```
df["Chloramines"] = np.where(df["Chloramines"] <5.181270677724534, 5.181270677724534,df[
df["Chloramines"] = np.where(df["Chloramines"]>9.122578323075329,9.122578323075329,df["C
sns.boxplot(df["Chloramines"])
```

Out[46]:

Sulfate

In [47]:

```
sns.boxplot(df["Sulfate"])
print(df["Sulfate"].quantile(0.10))
print(df["Sulfate"].quantile(0.90))
df["Sulfate"].describe()
```

290.055010521933 378.4783210497187

Out[47]:

3276.000000 count mean 333.775777 36.142612 std 129.000000 min 25% 317.094638 50% 333.775777 75% 350.385756 481.030642 max

Name: Sulfate, dtype: float64

In [48]:

```
df["Sulfate"] = np.where(df["Sulfate"] <290.055010521933, 290.055010521933,df["Sulfate"]
df["Sulfate"] = np.where(df["Sulfate"]>378.4783210497187, 378.4783210497187,df["Sulfate"]
sns.boxplot(df["Sulfate"])
```

Out[48]:

Conductivity

In [49]:

```
sns.boxplot(df["Conductivity"])
print(df["Conductivity"].quantile(0.10))
print(df["Conductivity"].quantile(0.90))
df["Conductivity"].describe()
```

325.1171240676143 533.2972414189196

Out[49]:

3276.000000 count mean 426.205111 80.824064 std min 181.483754 365.734414 25% 50% 421.884968 75% 481.792304 753.342620 max

Name: Conductivity, dtype: float64

In [50]:

```
df["Conductivity"] = np.where(df["Conductivity"] <325.1171240676143, 325.1171240676143,d
df["Conductivity"] = np.where(df["Conductivity"]>533.2972414189196, 533.2972414189196,df
sns.boxplot(df["Conductivity"])
```

Out[50]:

Organic_carbon

In [51]:

```
sns.boxplot(df["Organic_carbon"])
print(df["Organic_carbon"].quantile(0.10))
print(df["Organic_carbon"].quantile(0.90))
df["Organic_carbon"].describe()
```

10.123765383583503 18.50456708562831

Out[51]:

count	3276.000000
mean	14.284970
std	3.308162
min	2.200000
25%	12.065801
50%	14.218338
75%	16.557652
max	28.300000

Name: Organic_carbon, dtype: float64

In [52]:

```
df["Organic_carbon"] = np.where(df["Organic_carbon"] < 10.123765383583503, 10.1237653835
df["Organic_carbon"] = np.where(df["Organic_carbon"]>18.50456708562831, 18.5045670856283
sns.boxplot(df["Organic_carbon"])
```

Out[52]:

Trihalomethanes

In [53]:

```
sns.boxplot(df["Trihalomethanes"])
print(df["Trihalomethanes"].quantile(0.10))
print(df["Trihalomethanes"].quantile(0.90))
df["Trihalomethanes"].describe()
```

46.209472917430155 85.90009466879661

Out[53]:

3276.000000 count mean 66.396293 15.769881 std min 0.738000 56.647656 25% 50% 66.396293 75% 76.666609 124.000000 max

Name: Trihalomethanes, dtype: float64

In [54]:

```
df["Trihalomethanes"] = np.where(df["Trihalomethanes"] < 46.209472917430155, 46.20947291
df["Trihalomethanes"] = np.where(df["Trihalomethanes"]>85.90009466879661, 85.90009466879
sns.boxplot(df["Trihalomethanes"])
```

Out[54]:

Turbidity

In [55]:

```
sns.boxplot(df["Turbidity"])
print(df["Turbidity"].quantile(0.10))
print(df["Turbidity"].quantile(0.90))
df["Turbidity"].describe()
```

- 2.9518028252699757
- 4.977140682806077

Out[55]:

count	3276.000000
mean	3.966786
std	0.780382
min	1.450000
25%	3.439711
50%	3.955028
75%	4.500320
max	6.739000

Name: Turbidity, dtype: float64

In [56]:

```
df["Turbidity"] = np.where(df["Turbidity"] < 2.9518028252699757, 2.9518028252699757,df["
df["Turbidity"] = np.where(df["Turbidity"]>4.977140682806077, 4.977140682806077,df["Turb
sns.boxplot(df["Turbidity"])
```

Out[56]:

Handled Outliers

In [57]:

```
plt.figure(figsize=(10,10))
plt.suptitle("Outliers Analysis", fontsize=20, fontweight="bold")
for i in range(0,len(df.columns)):
    plt.subplot(5,3,i+1)
    sns.boxplot(x=df[df.columns[i]])
    plt.xlabel(df.columns[i])
    plt.tight_layout()
```


Feature Selection

FILTER METHOD

1. Pearson's correlation

In [58]:

```
plt.figure(figsize=(15,15))
sns.heatmap(data=df.corr(), annot= True)
```

Out[58]:

<AxesSubplot: >

fisher's score

In [59]:

from skfeature.function.similarity_based import fisher_score

In [60]:

```
x = df.drop("Potability", axis=1)
y = df["Potability"]
```

In [61]:

```
fisher_rank = fisher_score.fisher_score(x.to_numpy(),y)
s1 = pd.Series(fisher_rank, index= x.columns)
s1.sort_values().plot(kind="barh")
```

Out[61]:

<AxesSubplot: >

Variance threshold method

In [62]:

from sklearn.feature_selection import VarianceThreshold

```
In [63]:
```

```
var_th = VarianceThreshold(threshold = 0.3)
var_th.fit_transform(df)
arr = var_th.get_support()
np.where(arr == False)
df.columns[np.where(arr == False)]
```

Out[63]:

```
Index(['Potability'], dtype='object')
```

variance inflationn factor

In [64]:

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [65]:

```
x.values
```

Out[65]:

In [66]:

```
vif_lst = []
for i in range(x.shape[1]):
    vif = variance_inflation_factor(x.values,i)
    vif_lst.append(vif)
vif_lst
```

Out[66]:

```
[39.60268140646638, 50.81765606290291, 9.854114392291905, 31.12985728335243, 98.62440998694287, 36.253227605395594, 27.448437065991804, 26.83919183339501, 34.67773797589433]
```

In [67]:

```
s1 = pd.Series(vif_lst, index= x.columns)
s1.sort_values()
s1.sort_values().plot(kind= "barh")
```

Out[67]:

<AxesSubplot: >

Information Gain

In [68]:

from sklearn.feature_selection import mutual_info_regression

In [69]:

```
a1=mutual_info_regression(x,y)
s2 = pd.Series(a1, index= x.columns)
s2.sort_values().plot(kind="barh")
```

Out[69]:

<AxesSubplot: >

sulphate and Trihalomethanes will be dropped as these two features don't contribute in our target column

In [70]:

```
df_backup = df
df_backup.head(2)
```

Out[70]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbo
0	7.080795	204.890455	20791.318981	7.300212	368.516441	533.297241	10.37978
1	5.282194	155.223964	18630.057858	6.635246	333.775777	533.297241	15.1800 ⁻
4							•

In [71]:

```
df_new = df.drop(["Sulfate","Trihalomethanes"],axis=1)
```

In [72]:

```
df_new.head(2)
```

Out[72]:

	ph	Hardness	Solids	Chloramines	Conductivity	Organic_carbon	Turbidity
0	7.080795	204.890455	20791.318981	7.300212	533.297241	10.379783	2.963135
1	5.282194	155.223964	18630.057858	6.635246	533.297241	15.180013	4.500656
4							•

WRAPPER METHOD

Forward Elimination

In [73]:

```
from sklearn.feature_selection import SequentialFeatureSelector
from sklearn.neighbors import KNeighborsRegressor
import time
```

In [74]:

```
x1 = df.drop("Potability", axis=1)
y1 = df["Potability"]
```

In [75]:

```
strt_tm = time.time()
knn_model = KNeighborsRegressor()
sfs = SequentialFeatureSelector(knn_model, n_features_to_select=5, direction="forward",c
sfs.fit(x1,y1)
```

Out[75]:

```
▶ SequentialFeatureSelector▶ estimator: KNeighborsRegressor▶ KNeighborsRegressor
```

In [76]:

```
end_tm = time.time()
total = end_tm - strt_tm
print("total time taken: ", total)
a2 = sfs.get_support()
s3 = pd.Series(a2, x1.columns)
s3
```

total time taken: 4.894103765487671

Out[76]:

ph False Hardness True Solids True Chloramines True Sulfate False Conductivity False Organic_carbon True Trihalomethanes False Turbidity True dtype: bool

Backward Elimination

In [77]:

```
strt_tm = time.time()
knn_model = KNeighborsRegressor()
sfs = SequentialFeatureSelector(knn_model, n_features_to_select=5, direction="backward",
sfs.fit(x1,y1)
end_tm = time.time()
total = end_tm - strt_tm
print("total time taken: ", total)
a2 = sfs.get_support()
s3 = pd.Series(a2, x1.columns)
s3
```

total time taken: 0.4389803409576416

Out[77]:

ph False False Hardness Solids False Chloramines True Sulfate True Conductivity True Organic_carbon False Trihalomethanes True Turbidity True dtype: bool

```
In [78]:

df.drop("Sulfate",axis=1, inplace=True)

In [79]:

df.head()
```

Out[79]:

	ph	Hardness	Solids	Chloramines	Conductivity	Organic_carbon	Trihalome
0	7.080795	204.890455	20791.318981	7.300212	533.297241	10.379783	85
1	5.282194	155.223964	18630.057858	6.635246	533.297241	15.180013	56
2	8.099124	224.236259	19909.541732	9.122578	418.606213	16.868637	66
3	8.316766	214.373394	22018.417441	8.059332	363.266516	18.436524	85
4	8.925047	181.101509	17978.986339	6.546600	398.410813	11.558279	46
4							•

MOdel Evaluation

with df >> Sulfhate column in dropped

```
In [85]:
```

```
y_train.shape , y_test.shape

Out[85]:
((2620,), (656,))
```

Logistic Regression

In [86]:

```
lg_model = LogisticRegression()
lg_model.fit(x_train,y_train)
```

Out[86]:

```
LogisticRegression
LogisticRegression()
```

testing

In [87]:

```
y_pred = lg_model.predict(x_test)
acc_score = accuracy_score(y_test,y_pred)
print("Test_LG_Acc: ",acc_score)

con_matrix = confusion_matrix(y_test,y_pred)
print("Confusion_Matrix:\n " ,con_matrix)

clf_report = classification_report(y_test,y_pred)
print("Classification_report: \n" , clf_report )
```

```
Test_LG_Acc: 0.6280487804878049
Confusion_Matrix:
   [[412   0]
   [244   0]]
Classification report:
```

C_U_U_U_U_U		cpo. c.			
		precision	recall	f1-score	support
	0	0.63	1.00	0.77	412
	1	0.00	0.00	0.00	244
accur	racy			0.63	656
macro	avg	0.31	0.50	0.39	656
weighted	avg	0.39	0.63	0.48	656

Training

```
In [88]:
```

```
y_pred_train = lg_model.predict(x_train)
acc_score = accuracy_score(y_train,y_pred_train)
print("Train_LG_Acc: ",acc_score)
con_matrix = confusion_matrix(y_train,y_pred_train)
print("Confusion_Matrix:\n " ,con_matrix)
clf_report = classification_report(y_train,y_pred_train)
print("Classification_report: \n" , clf_report )
Train_LG_Acc: 0.6053435114503817
Confusion_Matrix:
  [[1586
            0]
 [1034
          0]]
Classification_report:
               precision
                            recall f1-score
                                                support
           0
                   0.61
                              1.00
                                        0.75
                                                  1586
           1
                   0.00
                              0.00
                                        0.00
                                                  1034
                                        0.61
                                                  2620
    accuracy
                                        0.38
                   0.30
                              0.50
                                                  2620
   macro avg
weighted avg
                   0.37
                              0.61
                                        0.46
                                                  2620
```

Random Forest

In [91]:

```
rf_model = RandomForestClassifier()
rf_model.fit(x_train,y_train)
```

Out[91]:

```
RandomForestClassifier
RandomForestClassifier()
```

In [92]:

```
y_pred_test = rf_model.predict(x_test)
conf_matrix = confusion_matrix(y_test,y_pred_test)
print("Confusion Matrix: \n",conf_matrix)

Acc = accuracy_score(y_test,y_pred_test)
print("Accuracy: ",Acc)

Clss_report = classification_report(y_test,y_pred_test)
print("Classification Report: \n", Clss_report)
```

Confusion Matrix:

[[357 55] [180 64]]

Accuracy: 0.6417682926829268

Classification Report:

	precision	recall	f1-score	support
0	0.66	0.87	0.75	412
1	0.54	0.26	0.35	244
accuracy			0.64	656
macro avg	0.60	0.56	0.55	656
weighted avg	0.62	0.64	0.60	656

In [93]:

```
y_pred_train = rf_model.predict(x_train)
conf_matrix = confusion_matrix(y_train,y_pred_train)
print("Confusion Matrix: \n",conf_matrix)

Acc = accuracy_score(y_train,y_pred_train)
print("Accuracy: ",Acc)

Clss_report = classification_report(y_train,y_pred_train)
print("Classification Report: \n", Clss_report)
```

Confusion Matrix:

[[1586 0] [0 1034]]

Accuracy: 1.0

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1586
1	1.00	1.00	1.00	1034
accuracy			1.00	2620
macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00	2620 2620

with df_new >> after feature selection sulfate, Trihalomethanes was dropped

Logistic Regression

```
In [100]:
```

```
lg_model = LogisticRegression()
lg_model.fit(x_train,y_train)
```

Out[100]:

```
v LogisticRegression
LogisticRegression()
```

In [101]:

```
y_pred = lg_model.predict(x_test)
acc_score = accuracy_score(y_test,y_pred)
print("Test_LG_Acc: ",acc_score)

con_matrix = confusion_matrix(y_test,y_pred)
print("Confusion_Matrix:\n " ,con_matrix)

clf_report = classification_report(y_test,y_pred)
print("Classification_report: \n" , clf_report )
```

```
Test_LG_Acc: 0.6280487804878049
Confusion_Matrix:
  [[412 0]
  [244 0]]
Classification_report:
```

	precision	recall	f1-score	support
0 1	0.63 0.00	1.00 0.00	0.77 0.00	412 244
accuracy macro avg weighted avg	0.31 0.39	0.50 0.63	0.63 0.39 0.48	656 656 656

In [102]:

```
y_pred_train = lg_model.predict(x_train)
acc_score = accuracy_score(y_train,y_pred_train)
print("Train_LG_Acc: ",acc_score)

con_matrix = confusion_matrix(y_train,y_pred_train)
print("Confusion_Matrix:\n " ,con_matrix)

clf_report = classification_report(y_train,y_pred_train)
print("Classification_report: \n" , clf_report )
```

```
Train_LG_Acc: 0.6053435114503817
Confusion_Matrix:
  [[1586 0]
  [1034 0]]
```

Classification report:

	precision	recall	f1-score	support
0	0.61	1.00	0.75	1586
1	0.00	0.00	0.00	1034
accuracy			0.61	2620
macro avg	0.30	0.50	0.38	2620
weighted avg	0.37	0.61	0.46	2620

df_backup >> all the features are present

```
In [103]:
df_backup.columns
Out[103]:
Index(['ph', 'Hardness', 'Solids', 'Chloramines', 'Conductivity',
       'Organic_carbon', 'Trihalomethanes', 'Turbidity', 'Potability'],
      dtype='object')
In [104]:
x2 = df_backup.drop("Potability",axis=1)
y2 = df_backup["Potability"]
In [109]:
x2_train,x2_test,y2_train,y2_test = train_test_split(x2,y2,test_size=0.2,random_state=42
In [110]:
lg_model = LogisticRegression()
lg_model.fit(x2_train,y2_train)
Out[110]:
 ▼ LogisticRegression
LogisticRegression()
```

In [112]:

```
y2_pred = lg_model.predict(x2_test)
acc_score = accuracy_score(y2_test,y2_pred)
print("Test_LG_Acc: ",acc_score)

con_matrix = confusion_matrix(y2_test,y2_pred)
print("Confusion_Matrix:\n " ,con_matrix)

clf_report = classification_report(y2_test,y2_pred)
print("Classification_report: \n" , clf_report )
```

```
Test_LG_Acc: 0.6280487804878049
Confusion_Matrix:
  [[412 0]
  [244 0]]
```

Classification report:

	precision	recall	f1-score	support
0	0.63	1.00	0.77	412
1	0.00	0.00	0.00	244
accuracy			0.63	656
macro avg	0.31	0.50	0.39	656
weighted avg	0.39	0.63	0.48	656

In [113]:

```
y2_pred_train = lg_model.predict(x2_train)
acc_score = accuracy_score(y2_train,y2_pred_train)
print("Train_LG_Acc: ",acc_score)

con_matrix = confusion_matrix(y2_train,y2_pred_train)
print("Confusion_Matrix:\n " ,con_matrix)

clf_report = classification_report(y2_train,y2_pred_train)
print("Classification_report: \n" , clf_report )
```

```
Train_LG_Acc: 0.6053435114503817
```

Confusion_Matrix:

[[1586 0] [1034 0]]

Classification_report:

	precision	recall	f1-score	support
0	0.61	1.00	0.75	1586
1	0.00	0.00	0.00	1034
accuracy			0.61	2620
macro avg	0.30	0.50	0.38	2620
weighted avg	0.37	0.61	0.46	2620

Random Forest

In [119]:

```
rf_model = RandomForestClassifier()
rf_model.fit(x2_train,y2_train)
```

Out[119]:

```
RandomForestClassifier
RandomForestClassifier()
```

In [120]:

```
y2_pred_test = rf_model.predict(x2_test)
conf_matrix = confusion_matrix(y2_test,y2_pred_test)
print("Confusion Matrix: \n",conf_matrix)

Acc = accuracy_score(y2_test,y2_pred_test)
print("Accuracy: ",Acc)

Clss_report = classification_report(y2_test,y2_pred_test)
print("Classification Report: \n", Clss_report)
```

```
Confusion Matrix:
```

[[350 62] [184 60]]

Accuracy: 0.625

Classification Report:

	precision	recall	f1-score	support
0	0.66	0.85	0.74	412
1	0.49	0.25	0.33	244
accuracy			0.62	656
macro avg	0.57	0.55	0.53	656
weighted avg	0.59	0.62	0.59	656

In [121]:

```
y2_pred_train = rf_model.predict(x2_train)
conf_matrix = confusion_matrix(y2_train,y2_pred_train)
print("Confusion Matrix: \n",conf_matrix)

Acc = accuracy_score(y2_train,y2_pred_train)
print("Accuracy: ",Acc)

Clss_report = classification_report(y2_train,y2_pred_train)
print("Classification Report: \n", Clss_report)
Confusion Matrix:
```

```
[[1586
           0]
     0 1034]]
Accuracy: 1.0
Classification Report:
               precision
                             recall f1-score
                                                 support
           0
                    1.00
                              1.00
                                         1.00
                                                    1586
           1
                    1.00
                              1.00
                                         1.00
                                                   1034
                                         1.00
                                                   2620
    accuracy
   macro avg
                    1.00
                              1.00
                                         1.00
                                                    2620
```

1.00

hyperparameter tunning

1.00

In [124]:

weighted avg

1.00

2620

Out[124]:

```
▶ RandomizedSearchCV▶ estimator: RandomForestClassifier▶ RandomForestClassifier
```

In [125]:

```
y2_pred_test = rscv_rf_model.predict(x2_test)
conf_matrix = confusion_matrix(y2_test,y2_pred_test)
print("Confusion Matrix: \n",conf_matrix)

Test_RF_Acc = accuracy_score(y2_test,y2_pred_test)
print("Accuracy: ",Test_RF_Acc)

Clss_report = classification_report(y2_test,y2_pred_test)
print("Classification Report: \n", Clss_report)
```

Confusion Matrix:

[[401 11] [224 20]]

Accuracy: 0.6417682926829268

Classification Report:

	precision	recall	f1-score	support
0	0.64	0.97	0.77	412
1	0.65	0.08	0.15	244
accuracy			0.64	656
macro avg	0.64	0.53	0.46	656
weighted avg	0.64	0.64	0.54	656

In [126]:

```
y2_pred_train = rscv_rf_model.predict(x2_train)
conf_matrix = confusion_matrix(y2_train,y2_pred_train)
print("Confusion Matrix: \n",conf_matrix)

Train_RF_Acc = accuracy_score(y2_train,y2_pred_train)
print("Accuracy: ",Train_RF_Acc)

Clss_report = classification_report(y2_train,y2_pred_train)
print("Classification Report: \n", Clss_report)
```

Confusion Matrix:

[[1575 11] [847 187]]

Accuracy: 0.6725190839694657

Classification Report:

	precision	recall	f1-score	support
0	0.65	0.99	0.79	1586
1	0.94	0.18	0.30	1034
accuracy			0.67	2620
macro avg	0.80	0.59	0.54	2620
weighted avg	0.77	0.67	0.60	2620

finally got accuracy with original data tessting = 64 and trAining=67

In []:		