Initialization

September 23, 2024

1 Initialization

Welcome to the first assignment of Improving Deep Neural Networks!

Training your neural network requires specifying an initial value of the weights. A well-chosen initialization method helps the learning process.

If you completed the previous course of this specialization, you probably followed the instructions for weight initialization, and seen that it's worked pretty well so far. But how do you choose the initialization for a new neural network? In this notebook, you'll try out a few different initializations, including random, zeros, and He initialization, and see how each leads to different results.

A well-chosen initialization can: - Speed up the convergence of gradient descent - Increase the odds of gradient descent converging to a lower training (and generalization) error

Let's get started!

1.1 Important Note on Submission to the AutoGrader

Before submitting your assignment to the AutoGrader, please make sure you are not doing the following:

- 1. You have not added any extra print statement(s) in the assignment.
- 2. You have not added any *extra* code cell(s) in the assignment.
- 3. You have not changed any of the function parameters.
- 4. You are not using any global variables inside your graded exercises. Unless specifically instructed to do so, please refrain from it and use the local variables instead.
- 5. You are not changing the assignment code where it is not required, like creating extra variables.

If you do any of the following, you will get something like, Grader Error: Grader feedback not found (or similarly unexpected) error upon submitting your assignment. Before asking for help/debugging the errors in your assignment, check for these first. If this is the case, and you don't remember the changes you have made, you can get a fresh copy of the assignment by following these instructions.

1.2 Table of Contents

- Section ??
- Section ??

so sánh hiệu quả của các phương pháp khởi tạo khác nhau, bao gồm khởi tạo ngẫu nhiên, khởi tạo bằng 0 và khởi tạo He

khởi tạo tốt giúp huấn luyện neural nhanh và đỡ lỗi

• Section ??

```
• Section ??
           - Section ??
       • Section ??
           - Section ??
       • Section ??
           - Section ??
       • Section ??
    \#\# 1 - Packages
[ ]: ### v1.1
[1]: import numpy as np
     import matplotlib.pyplot as plt
     import sklearn
     import sklearn.datasets
     from public_tests import *
     from init_utils import sigmoid, relu, compute_loss, forward_propagation, __
     →backward_propagation
     from init_utils import update_parameters, predict, load_dataset,_
     ⇒plot_decision_boundary, predict_dec
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     %load_ext autoreload
     %autoreload 2
     # load image dataset: blue/red dots in circles
     # train_X, train_Y, test_X, test_Y = load_dataset()
    ## 2 - Loading the Dataset
[2]: train_X, train_Y, test_X, test_Y = load_dataset()
```


sử dụng mang neural để phân loại data ,phân tách điểm đỏ và xanh

For this classifier, you want to separate the blue dots from the red dots.

3 - Neural Network Model có 3 cách khởi tạo :theo zeros ,random ,he

You'll use a 3-layer neural network (already implemented for you). These are the initialization methods you'll experiment with: - Zeros initialization - setting initialization = "zeros" in the input argument. - Random initialization - setting initialization = "random" in the input argument. This initializes the weights to large random values.

- He initialization - setting initialization = "he" in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015.

Instructions: Instructions: Read over the code below, and run it. In the next part, you'll implement the three initialization methods that this model() calls.

```
[3]: def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = □

→True, initialization = "he"):

"""

Implements a three-layer neural network: □

→LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.

Arguments:

X -- input data, of shape (2, number of examples)

Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of □

→shape (1, number of examples)

learning_rate -- learning rate for gradient descent

num_iterations -- number of iterations to run gradient descent

print_cost -- if True, print the cost every 1000 iterations
```

công thức he:W = np.random.randn(shape) * np.sqrt(2 / n_prev) w là matrix cần shape:sl nơ ron hiện tại nhân với nơ ron trước np.random.randn(shape) tạo 1 matrix ngẫu nhiên với kích thước shape n_prev sl nơ ron của lớp trước

```
initialization -- flag to choose which initialization to use_\(\)
\hookrightarrow ("zeros", "random" or "he")
   Returns:
   parameters -- parameters learnt by the model
   grads = {}
   costs = [] # to keep track of the loss
   m = X.shape[1] # number of examples
   layers_dims = [X.shape[0], 10, 5, 1]
   # Initialize parameters dictionary.
   if initialization == "zeros":
       parameters = initialize_parameters_zeros(layers_dims)
   elif initialization == "random":
       parameters = initialize_parameters_random(layers_dims)
   elif initialization == "he":
       parameters = initialize_parameters_he(layers_dims)
   khởi tạo matrix w và b cho các trọng số zeros ,random,he
   # Loop (gradient descent)
   for i in range(num_iterations):
       # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR ->__
\hookrightarrow SIGMOID.
       a3, cache = forward_propagation(X, parameters)
       # Loss
       cost = compute_loss(a3, Y)
       # Backward propagation.
       grads = backward_propagation(X, Y, cache)
       # Update parameters.
       parameters = update_parameters(parameters, grads, learning_rate)
       # Print the loss every 1000 iterations
       if print_cost and i % 1000 == 0:
           print("Cost after iteration {}: {}".format(i, cost))
           costs.append(cost)
   # plot the loss
   plt.plot(costs)
   plt.ylabel('cost')
   plt.xlabel('iterations (per hundreds)')
   plt.title("Learning rate =" + str(learning_rate))
```

triển khai một mạng neural 3 lớp với cấu trúc: LINEAR -> RELU -> LINEAR -> SIGMOID. initialization: Xác định phương pháp khởi tạo tham số, có thể là "zeros", "random" hoặc "he".

```
plt.show()
return parameters
```

4 - Zero Initialization khởi tạo para w và b cho initialize para zeros

There are two types of parameters to initialize in a neural network: - the weight matrices $(W^{[1]},W^{[2]},W^{[3]},...,W^{[L-1]},W^{[L]})$ - the bias vectors $(b^{[1]},b^{[2]},b^{[3]},...,b^{[L-1]},b^{[L]})$

Exercise 1 - initialize_parameters_zeros

Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry," but try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes.

```
[5]: # GRADED FUNCTION: initialize parameters zeros
     def initialize parameters zeros(layers dims):
         11 11 11
         layer_dims -- python array (list) containing the size of each layer.
         parameters -- python dictionary containing your parameters "W1", "b1", ..., __
      \rightarrow "WL", "bL":
                           W1 -- weight matrix of shape (layers_dims[1], _
      \hookrightarrow layers\_dims[0])
                          b1 -- bias vector of shape (layers_dims[1], 1)
                           WL -- weight matrix of shape (layers_dims[L],_
      \hookrightarrow layers\_dims[L-1])
                          bL -- bias vector of shape (layers dims[L], 1)
         parameters = {}
         L = len(layers_dims)
                                           # number of layers in the network
         for l in range(1, L):
              #( 2 lines of code)
              # parameters['W' + str(l)] =
              \# parameters['b' + str(l)] =
              # YOUR CODE STARTS HERE Tao một ma trận trọng số (W) cho lớp hiện tại l
             parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l -__
             sl nơ rơn của lớp hiện tại và lớp trước được khởi tạo thành 0
             parameters['b' + str(1)] = np.zeros((layers_dims[1], 1))
             1 là bias luôn là môt vector côt.
              # YOUR CODE ENDS HERE
         return parameters
```

Sự đối xứng: Khi tất cả các trọng số đều bằng 0, mọi nơ-ron trong lớp đầu tiên sẽ nhận được cùng một đầu vào. Điều này dẫn đến việc tất cả nơ-ron học cùng một thứ, phá vỡ khả năng học các đặc trưng đa dạng của mạng.

```
[6]: parameters = initialize_parameters_zeros([3, 2, 1])
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["W2"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    initialize_parameters_zeros_test(initialize_parameters_zeros)
W1 = [[0. 0. 0.]
    [0. 0. 0.]]
b1 = [[0.]
    [0.]]
W2 = [[0. 0.]]
b2 = [[0.]]
All tests passed.
```

Run the following code to train your model on 15,000 iterations using zeros initialization.

```
[7]: parameters = model(train_X, train_Y, initialization = "zeros")
    print ("On the train set:")
    predictions_train = predict(train_X, train_Y, parameters)
    print ("On the test set:")
    predictions_test = predict(test_X, test_Y, parameters)
```

```
Cost after iteration 0: 0.6931471805599453
Cost after iteration 1000: 0.6931471805599453
Cost after iteration 2000: 0.6931471805599453
Cost after iteration 3000: 0.6931471805599453
Cost after iteration 4000: 0.6931471805599453
Cost after iteration 5000: 0.6931471805599453
Cost after iteration 6000: 0.6931471805599453
Cost after iteration 7000: 0.6931471805599453
Cost after iteration 8000: 0.6931471805599453
Cost after iteration 9000: 0.6931471805599453
Cost after iteration 10000: 0.6931471805599453
Cost after iteration 10000: 0.6931471805599453
Cost after iteration 12000: 0.6931471805599453
Cost after iteration 13000: 0.6931471805599453
```

đo lường hiệu xuất của mô hình ,biểu thị hàm mất mát,lý tưởng phải nằm ngang nhưng đây nằm ngang cho thấy nó không hiệu quả .có thể do tốc độ học quá nhỏ

On the train set: Accuracy: 0.5 On the test set: Accuracy: 0.5

The performance is terrible, the cost doesn't decrease, and the algorithm performs no better than random guessing. Why? Take a look at the details of the predictions and the decision boundary:

```
[8]: print ("predictions_train = " + str(predictions_train))
print ("predictions_test = " + str(predictions_test))
0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0]]
0 0 0 0 0 0
```

```
[9]: plt.title("Model with Zeros initialization")
   axes = plt.gca()
   axes.set_xlim([-1.5,1.5])
   axes.set_ylim([-1.5,1.5])
   plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
```


do đầu vào luôn bằng 0 nên mô hình học và đưa ra kết quả như nhau nên nó học không hiệu quả

For a comprehensive explanation of this, you can read *Paul Mielke's* post, Symmetry Breaking versus Zero Initialization.

A simple explanation is provided below:

Note: For sake of simplicity calculations below are done using only one example at a time.

Since the weights and biases are zero, multiplying by the weights creates the zero vector which gives 0 when the activation function is ReLU. As z=0

$$a = ReLU(z) = max(0, z) = 0$$

At the classification layer, where the activation function is sigmoid you then get (for either input):

$$\sigma(z) = \frac{1}{1 + e^{-(z)}} = \frac{1}{2} = y_{pred}$$

As for every example you are getting a 0.5 chance of it being true our cost function becomes helpless in adjusting the weights.

giải công thức :nhưng ý chính ở trên vì trọng số và độ lệch bằng 0 nên nhân ra 0 ,ở relu ở lớp phân loại hàm kích hoạt là sigmoid bạn nhận được công thức và kết quả cho mỗi mẫu là 0.5 ,hàm cost trở nên bất lực trong điều chỉnh trọng số

nó cho ra cùng 1 dự đoán khi đầu vào là 1 và 0

Your loss function:

$$\mathcal{L}(a,y) = -y \ln(y_{pred}) - (1-y) \ln(1-y_{pred})$$

For y=1, y_pred=0.5 it becomes:

$$\mathcal{L}(0,1) = -(1)\ln(\frac{1}{2}) = 0.6931471805599453$$

For y=0, y_pred=0.5 it becomes:

$$\mathcal{L}(0,0) = -(1)\ln(\frac{1}{2}) = 0.6931471805599453$$

As you can see with the prediction being 0.5 whether the actual (y) value is 1 or 0 you get the same loss value for both, so none of the weights get adjusted and you are stuck with the same old value of the weights.

This is why you can see that the model is predicting 0 for every example! No wonder it's doing so badly.

In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, so you might as well be training a neural network with $n^{[l]} = 1$ for every layer. This way, the network is no more powerful than a linear classifier like logistic regression.

What you should remember: - The weights $W^{[l]}$ should be initialized randomly to break symmetry. - However, it's okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly.

##5 - Random Initialization

To break symmetry, initialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you'll see what happens when the weights are initialized randomly, but to very large values.

Exercise 2 - initialize_parameters_random

Implement the following function to initialize your weights to large random values (scaled by *10) and your biases to zeros. Use np.random.randn(..,..) * 10 for weights and np.zeros((.., ..)) for biases. You're using a fixed np.random.seed(..) to make sure your "random" weights match ours, so don't worry if running your code several times always gives you the same initial values for the parameters.

```
[10]: # GRADED FUNCTION: initialize_parameters_random

def initialize_parameters_random(layers_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the size of each layer.

Returns:
```

khởi tạo trọng số ngẫu nhiên nhân với 10 tạo bias bằng 0 9 seed đảm bảo trọng số ngẫu nhiên luôn bằng nhau khi chạy n lần

```
parameters -- python dictionary containing your parameters "W1", "b1", ...,
       \hookrightarrow "WL", "bL":
                           W1 -- weight matrix of shape (layers_dims[1], _
       \hookrightarrow layers dims[0])
                           b1 -- bias vector of shape (layers_dims[1], 1)
                           WL -- weight matrix of shape (layers_dims[L], _
       \hookrightarrow layers\_dims[L-1])
                           bL -- bias vector of shape (layers_dims[L], 1)
                                            # This seed makes sure your "random"
          np.random.seed(3)
       →numbers will be the as ours
          parameters = {}
          L = len(layers_dims)
                                           # integer representing the number of layers
          for l in range(1, L):
              #( 2 lines of code)
              \# parameters['W' + str(l)] =
              # parameters['b' + str(l)] =
              # YOUR CODE STARTS HERE
              parameters['W' + str(1)] = np.random.randn(layers_dims[1],__
       \rightarrowlayers_dims[1 - 1]) *10
              parameters['b' + str(1)] = np.zeros((layers_dims[1], 1))
               # YOUR CODE ENDS HERE
          return parameters
[11]: parameters = initialize_parameters_random([3, 2, 1])
      print("W1 = " + str(parameters["W1"]))
      print("b1 = " + str(parameters["b1"]))
      print("W2 = " + str(parameters["W2"]))
      print("b2 = " + str(parameters["b2"]))
      initialize_parameters_random_test(initialize_parameters_random)
     W1 = [[17.88628473]]
                            4.36509851
                                          0.96497468]
      [-18.63492703 -2.77388203 -3.54758979]]
     b1 = [[0.]]
      [0.]]
     W2 = [[-0.82741481 -6.27000677]]
     b2 = [[0.]]
      All tests passed.
```

Run the following code to train your model on 15,000 iterations using random initialization.

Các trọng số được khởi tạo ngẫu nhiên với phạm vi lớn, trong khi các bias được khởi tạo bằng 0

```
[12]: parameters = model(train_X, train_Y, initialization = "random")
    print ("On the train set:")
    predictions_train = predict(train_X, train_Y, parameters)
    print ("On the test set:")
    predictions_test = predict(test_X, test_Y, parameters)
```

Cost after iteration 0: inf
Cost after iteration 1000: 0.6247924745506072
Cost after iteration 2000: 0.5980258056061102
Cost after iteration 3000: 0.5637539062842213
Cost after iteration 4000: 0.5501256393526495
Cost after iteration 5000: 0.5443826306793814
Cost after iteration 6000: 0.5373895855049121
Cost after iteration 7000: 0.47157999220550006
Cost after iteration 8000: 0.39770475516243037
Cost after iteration 9000: 0.3934560146692851
Cost after iteration 10000: 0.3920227137490125
Cost after iteration 11000: 0.38913700035966736
Cost after iteration 12000: 0.3861358766546214
Cost after iteration 13000: 0.38276694641706693

On the train set: Accuracy: 0.83 On the test set: Bạn có thể thấy hàm mất mát giảm dần theo thời gian, điều này cho thấy mô hình đang học được. Hàm mất mát giảm nhanh trong giai đoạn đầu, sau đó giảm chậm dần và cuối cùng đạt đến một mức ổn định. Kết quả này tốt hơn so với mô hình được khởi tạo với các trọng số bằng 0

```
Accuracy: 0.86
```

If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff. A more numerically sophisticated implementation would fix this, but for the purposes of this notebook, it isn't really worth worrying about.

In any case, you've now broken the symmetry, and this gives noticeably better accuracy than before. The model is no longer outputting all 0s. Progress!

```
[13]: print (predictions train)
                   print (predictions_test)
                  [[1\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 1
                        1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
                        1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1
                        1 1 1 1 0 0 0 1 1 1 1 0]]
                  [[1\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1
                        1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0]]
[14]: plt.title("Model with large random initialization")
                   axes = plt.gca()
                   axes.set_xlim([-1.5,1.5])
                   axes.set ylim([-1.5, 1.5])
                   plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
```

khởi tạo với số ngẫu nhiên quá lớn sẽ làm chậm quá trình tối ưu hóa Khởi tạo với các giá trị ngẫu nhiên nhỏ sẽ hiệu quả hơn.

Trọng số ngẫu nhiên lớn không hiệu quả. Trọng số ngẫu nhiên nhỏ hoạt động tốt hơn, nhưng kích thước tối ưu vẫn chưa được xác đinh.

Observations: - The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity. - Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.

In summary: - Initializing weights to very large random values doesn't work well. - Initializing with small random values should do better. The important question is, how small should be these random values be? Let's find out up next!

Optional Read:

The main difference between Gaussian variable (numpy.random.randn()) and uniform random variable is the distribution of the generated random numbers:

- numpy.random.rand() produces numbers in a uniform distribution.
- and numpy.random.randn() produces numbers in a normal distribution.

When used for weight initialization, randn() helps most the weights to Avoid being close to the extremes, allocating most of them in the center of the range.

An intuitive way to see it is, for example, if you take the sigmoid() activation function.

You'll remember that the slope near 0 or near 1 is extremely small, so the weights near those extremes will converge much more slowly to the solution, and having most of them near the center will speed the convergence.

6 - He Initialization

Finally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of $sqrt(1./layers_dims[1-1])$ where He initialization would use $sqrt(2./layers_dims[1-1])$.)

```
\#\#\# Exercise 3 - initialize_parameters_he
```

Implement the following function to initialize your parameters with He initialization. This function is similar to the previous initialize_parameters_random(...). The only difference is that instead of multiplying np.random.randn(..,..) by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation.

```
[17]: # GRADED FUNCTION: initialize_parameters_he
      def initialize_parameters_he(layers_dims):
           HHHH
          Arguments:
          layer_dims -- python array (list) containing the size of each layer.
          parameters -- python dictionary containing your parameters "W1", "b1", ...,
       \hookrightarrow "WL", "bL":
                            W1 -- weight matrix of shape (layers_dims[1],_
       \hookrightarrow layers_dims[0])
                           b1 -- bias vector of shape (layers_dims[1], 1)
                            WL -- weight matrix of shape (layers dims[L],,,
       \hookrightarrow layers\_dims[L-1])
                            bL -- bias vector of shape (layers_dims[L], 1)
          np.random.seed(3)
          parameters = {}
          L = len(layers dims) - 1 # integer representing the number of layers
          for l in range(1, L + 1):
               #( 2 lines of code)
               \# parameters['W' + str(l)] =
               \# parameters['b' + str(l)] =
               # YOUR CODE STARTS HERE
              parameters['W' + str(1)] = np.random.randn(layers_dims[1],__
       →layers_dims[l - 1]) * np.sqrt(2/layers_dims[l-1])
              parameters['b' + str(1)] = np.zeros((layers_dims[1], 1))
               # YOUR CODE ENDS HERE
          return parameters
```

khi ta nhân căn của 2/số lượng nơ ron của lớp trước đó với khởi tạo ,độ lệch nhỏ nếu số lương nơ ron lớp trước lớn hơn np.sqrt(2/layers_dims[l-1])

```
[18]: parameters = initialize_parameters_he([2, 4, 1])
      print("W1 = " + str(parameters["W1"]))
      print("b1 = " + str(parameters["b1"]))
      print("W2 = " + str(parameters["W2"]))
      print("b2 = " + str(parameters["b2"]))
      initialize_parameters_he_test(initialize_parameters_he)
      # parameters
     W1 = [[ 1.78862847 0.43650985]]
      [ 0.09649747 -1.8634927 ]
      [-0.2773882 -0.35475898]
      [-0.08274148 -0.62700068]]
     b1 = [[0.]]
      [0.]
      [0.]
      [0.]]
     W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]]
     b2 = [[0.]]
      All tests passed.
     Expected output
     W1 = [[1.78862847 0.43650985]]
      [ 0.09649747 -1.8634927 ]
      [-0.2773882 -0.35475898]
      [-0.08274148 -0.62700068]]
     b1 = [[0.] [0.] [0.] [0.]]
     W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]]
     b2 = [[0.]]
     Run the following code to train your model on 15,000 iterations using He initialization.
[19]: parameters = model(train_X, train_Y, initialization = "he")
      print ("On the train set:")
      predictions train = predict(train X, train Y, parameters)
      print ("On the test set:")
      predictions_test = predict(test_X, test_Y, parameters)
     Cost after iteration 0: 0.8830537463419761
     Cost after iteration 1000: 0.6879825919728063
     Cost after iteration 2000: 0.6751286264523371
     Cost after iteration 3000: 0.6526117768893805
     Cost after iteration 4000: 0.6082958970572938
     Cost after iteration 5000: 0.5304944491717495
     Cost after iteration 6000: 0.4138645817071794
     Cost after iteration 7000: 0.3117803464844441
     Cost after iteration 8000: 0.23696215330322562
     Cost after iteration 9000: 0.1859728720920684
```

```
Cost after iteration 10000: 0.15015556280371808
Cost after iteration 11000: 0.12325079292273551
Cost after iteration 12000: 0.09917746546525937
Cost after iteration 13000: 0.08457055954024283
Cost after iteration 14000: 0.07357895962677366
```


cost giảm cho thấy model học tốt

On the train set:

Accuracy: 0.9933333333333333

On the test set: Accuracy: 0.96

```
[20]: plt.title("Model with He initialization")
   axes = plt.gca()
   axes.set_xlim([-1.5,1.5])
   axes.set_ylim([-1.5,1.5])
   plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
```


Observations: - The model with He initialization separates the blue and the red dots very well in a small number of iterations.

7 - Conclusions

You've tried three different types of initializations. For the same number of iterations and same hyperparameters, the comparison is:

Model

Train accuracy

Problem/Comment

```
3-layer NN with zeros initialization
```

```
83%
  too large weights
  3-layer NN with He initialization
  99%
  recommended method
```

Congratulations! You've completed this notebook on Initialization.

Here's a quick recap of the main takeaways:

- Different initializations lead to very different results
- Random initialization is used to break symmetry and make sure different hidden units can learn different things
- Resist initializing to values that are too large!
- He initialization works well for networks with ReLU activations