Introduction to Algorithms Lecture 7: DP Exercises

Cormen, Leiserson, Rivest, and Stein. MIT Press. 2022.

April 22, 2025

Introduction to Algorithms

Content has been extracted from *Introduction to Algorithms*, Fourth Edition, by Cormen, Leiserson, Rivest, and Stein. MIT Press. 2022.

 $Visit\ \mathtt{https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/.}$

Plan

Matrix-chain multiplication

Optimal binary search trees

Matrix-chain multiplication

Problem: Given a sequence (chain) $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, compute the product $A_1 A_2 \cdots A_n$ using standard matrix multiplication (not Strassen's method) while minimizing the number of scalar multiplications.

How to parenthesize the product to minimize the number of scalar multiplications?

Matrix-chain multiplication

- ▶ Suppose multiplying matrices A and B: $C = A \cdot B$.
- ightharpoonup The matrices must be compatible: number of columns of A equals number of rows of B.
- ▶ If A is $p \times q$ and B is $q \times r$, then C is $p \times r$ and takes pqr scalar multiplications.

Example

 $A_1: 10 \times 100, A2: 100 \times 5, A3: 5 \times 50.$ Compute $A_1A_2A_3$, which is 10×50 .

- Try parenthesizing by $((A_1A_2)A_3)$. First perform $10 \times 100 \times 5 = 5000$ multiplications, then perform $10 \times 5 \times 50 = 2500$, for a total of 7500.
- ▶ Try parenthesizing by $(A_1(A_2A_3))$. First perform $100 \times 5 \times 50 = 25,000$ multiplications, then perform $10 \times 100 \times 50 = 50,000$, for a total of 75,000.
- ► The first way is 10 times faster.

Input to the Problem

- Let A_i be $p_{i-1} \times p_i$. The input is the sequence of dimensions $\langle p_0, p_1, p_2, \dots, p_n \rangle$.
- ▶ **Note**: Not actually multiplying matrices. Just deciding an order with the lowest cost.

Counting the Number of Parenthesizations

- Let P(n) denote the number of ways to parenthesize a product of n matrices. P(1) = 1.
- ▶ When $n \ge 2$, can split anywhere between A_k and A_{k+1} for k = 1, 2, ..., n-1. Then have to split the subproducts.
- ► Get

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

▶ The solution is $P(n) = \Omega\left(\frac{4^n}{n^{\frac{3}{2}}}\right)$. So brute force is a bad strategy.

Step 1: Structure of an optimal solution

- ▶ Let $A_{i:j}$ be the matrix product $A_i A_{i+1} \cdots A_j$.
- ▶ If i < j, then must split between A_k and A_{k+1} for some $i \le k < j \Rightarrow$ compute $A_{i:k}$ and $A_{k+1:j}$ and then multiply them together.
- ► Cost is

cost of computing $A_{i:k}$

- + cost of computing $A_{k+1:j}$
- + cost of multiplying them together.

Optimal substructure

- ▶ Suppose that optimal parenthesization of $A_{i:j}$ splits between A_k and A_{k+1} .
- ▶ Then the parenthesization of $A_{i:k}$ must be optimal.
- ▶ Otherwise, if there's a less costly way to parenthesize it, you'd use it and get a parenthesization of $A_{i:j}$ with a lower cost. Same for $A_{k+1:j}$.
- ▶ Therefore, to build an optimal solution to $A_{i:j}$:
 - ightharpoonup split it into how to optimally parenthesize $A_{i:k}$ and $A_{k+1:j}$,
 - find optimal solutions to these subproblems,
 - ▶ and then combine the optimal solutions.
- ▶ Need to consider all possible splits.

- ▶ Define the cost of an optimal solution recursively in terms of optimal subproblem solutions.
- Let m[i, j] be the minimum number of scalar multiplications to compute $A_{i:j}$. For the full problem, want m[1, n].
 - ▶ If i = j, then just one matrix m[i, i] = 0 for i = 1, 2, ..., n.
 - ▶ If i < j, then suppose the optimal split is between A_k and A_{k+1} , where $i \le k < j$.
 - Then $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_ip_j$.

 \triangleright But that's assuming you know the value of k. Have to try all possible values and pick the best, so that

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

- ➤ That formula gives the cost of an optimal solution, but not how to construct it.
 - ▶ Define s[i,j] to be a value of k to split $A_{i:j}$ in an optimal parenthesization.
 - Then s[i;j] = k such that $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$.

Step 3: Compute the optimal costs

- ightharpoonup Could implement a recursive algorithm based on the above equation for m[i,j] but it would take exponential time.
- ► There are not all many subproblems:
 - ▶ just one for each i, j such that $1 \le i \le j \le n$.
 - there are $\binom{n}{2} + n = \Theta(n^2)$ of them.
 - ▶ thus, a recursive algorithm would solve the same subproblem over and over.
- ▶ In other words, this problem has overlapping subproblems.

Step 3: Compute the optimal costs

- ▶ Here is a tabular, bottom-up method to solve the problem.
- ▶ It solves subproblems in order of increasing chain length.

```
MATRIX-CHAIN-ORDER (p, n)
    let m[1:n, 1:n] and s[1:n-1, 2:n] be new tables
2 for i = 1 to n
                                      // chain length 1
3 	 m[i,i] = 0
4 for l = 2 to n
   for l = 2 to n // l is the chain length
for i = 1 to n - l + 1 // chain begins at A_i
            j = i + l - 1 // chain ends at A_i
      m[i,j] = \infty
            for k = i to j - 1 // try A_{i \cdot k} A_{k+1 \cdot j}
                q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
                if q < m[i, j]
10
                     m[i, j] = q // remember this cost
11
                     s[i, j] = k // remember this index
12
   return m and s
```

Step 3: Compute the optimal costs

- ▶ Here is a tabular, bottom-up method to solve the problem.
- ▶ It solves subproblems in order of increasing chain length.

```
MATRIX-CHAIN-ORDER (p, n)
    let m[1:n, 1:n] and s[1:n-1, 2:n] be new tables
2 for i = 1 to n
                                        // chain length 1
3 	 m[i,i] = 0
4 for l=2 to n  // l is the chain length

5 for i=1 to n-l+1  // chain begins at A_i

6 j=i+l-1  // chain ends at A_j
7 m[i,j] = \infty
8 for k = i to j - 1 // try A_{i \cdot k} A_{k+1 \cdot i}
                 q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
                 if q < m[i, j]
10
                      m[i,j] = q // remember this cost
11
                      s[i, j] = k // remember this index
12
    return m and s
```

Time: $O(n^3)$, from triply nested loops. Also $\Omega(n^3) \Rightarrow \Theta(n^3)$.

Step 4: Construct an optimal solution

- ▶ With the s table filled in, recursively print an optimal solution.
- ▶ Initial call is Print-Optimal-Parens(s, 1, n).

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Plan

Matrix-chain multiplication

Optimal binary search trees

Optimal binary search trees

- ▶ Given sequence $K = \langle k_1, k_2, \dots, k_n \rangle$ of n distinct keys, sorted $(k_1 < k_2 < \dots < k_n)$.
- ▶ Want to build a binary search tree from the keys.
- ▶ For k_i , have probability p_i that a search is for k_i .
- ▶ Want BST with minimum expected search cost.

BST Cost

Actual cost = # of items examined.

For k_i , $cost = depth_T(k_i) + 1$, where $depth_T(k_i) = depth k_i$ in BST T.

E[search cost in T]

$$= \sum_{i=n}^{n} (depth_{T}(k_{i}) + 1) \cdot p_{i}$$

$$= \sum_{i=n}^{n} depth_{T}(k_{i}) \cdot p_{i} + \sum_{i=1}^{n} p_{i}$$

$$= 1 + \sum_{i=n}^{n} depth_{T}(k_{i}) \cdot p_{i}$$

Example

i	1	2	3	4	5
$\overline{p_i}$.25	.2	.05	.2	.3

i	$depth_T(k_i)$	$\operatorname{depth}_{T}(k_{i}) \cdot p_{i}$
1	1	.25
2	0	0
3	2	.1
4	1	.2
5	2	.6
		1.15

▶ Therefore, E[search cost] = 2.15.

Example

i	$depth_T(k_i)$	$depth_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	3	.15
4	2	.4
5	1	.3
		1.10

▶ Therefore, E[search cost] = 2.10, which turns out to be optimal.

Observations

- ▶ Optimal BST might not have smallest height.
- Optimal BST might not have highest-probability key at root.

Build by exhaustive checking?

- ► Construct each *n*-node BST.
- ► For each, put in keys.
- ► Then compute expected search cost.
- ▶ But there are $\Omega\left(\frac{4^n}{n^{\frac{3}{2}}}\right)$ different BSTs with n nodes.

Step 1: The structure of an optimal BST

Consider any subtree of a BST. It contains keys in a contiguous range k_i, \ldots, k_j for some $1 \le i \le j \le n$.

If T is an optimal BST and T contains subtree T' with keys k_i, \ldots, k_j , then T' must be an optimal BST for keys k_i, \ldots, k_j .

Step 1: The structure of an optimal BST

Use optimal substructure to construct an optimal solution to the problem from optimal solutions to subproblems:

- ▶ Given keys k_i, \ldots, k_j (the problem).
- ▶ One of them, k_r , where $i \le r \le j$, must be the root.
- ▶ Left subtree of k_r contains k_i, \ldots, k_{r-1} .
- ightharpoonup Right subtree of k_r contains k_{r+1}, \ldots, k_j .

Step 1: The structure of an optimal BST

- ► If
 - you examine all candidate roots k_r , for $i \leq r \leq j$, and
 - ▶ you determine all optimal BSTs containing k_i, \ldots, k_{r-1} and containing k_{r+1}, \ldots, k_j ,

then you're guaranteed to find an optimal BST for k_i, \ldots, k_j .

Subproblem domain:

- Find optimal BST for k_i, \ldots, k_j , where $i \geq 1, j \leq n$, $j \geq i 1$.
- ▶ When j = i 1, the tree is empty.

Define $e[i, j] = \text{expected search cost of optimal BST for } k_i, \dots, k_j$.

- ▶ If j = i 1, then e[i, j] = 0.
- ▶ If $j \ge i$,
 - ▶ Select root k_r , for some $i \le r \le j$.
 - Make an optimal BST with k_i, \ldots, k_{r-1} as the left subtree.
 - ▶ Make an optimal BST with k_{r+1}, \ldots, k_j as the right subtree.
 - Note: when r = i, left subtree is k_i, \ldots, k_{i-1} ; when r = j, right subtree is k_{j+1}, \ldots, k_j . These subtrees are empty.

When a subtree becomes a subtree of a node:

- ▶ Depth of every node in subtree goes up by 1.
- ► Expected search cost increases by

$$w(i,j) = \sum_{l=i}^{j} p_l$$

If k_r is the root of an optimal BST for k_i, \ldots, k_j :

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

- ▶ But $w(i,j) = w(i,r-1) + p_r + w(r+1,j)$.
- ► Therefore, e[i, j] = e[i, r 1] + e[r + 1, j] + w(i, j)

That equation assumes that we already know which key is k_r . We don't.

▶ Try all candidates, and pick the best one:

$$e[i,j] = \begin{cases} 0 & \text{if } j = i - 1, \\ \min \{e[i,r-1] + e[r+1,j] + w(i,j) : i \le r \le j\} & \text{if } i \le j. \end{cases}$$

► Could write a recursive algorithm. . .

Introduction to Algorithms

Content has been extracted from *Introduction to Algorithms*, Fourth Edition, by Cormen, Leiserson, Rivest, and Stein. MIT Press. 2022.

 $Visit\ \mathtt{https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/.}$