Ecuația Liapunov continuă

Ecuația Liapunov continuă : $A^TX + XA = C$, A și C aparțin lui R^n și sunt date. Se cere aflarea lui X aparținând lui R^n .

Descriere sol.m

Metoda de rezolvare reduce rezolvarea ecuației Liapunov continue la rezolvarea unor sisteme inferior triunghiulare. Astfel mai întâi aflăm forma Schur complexă astfel încât A = USU^H. Înlocuim în ecuația inițială și obținem: US^HU^HX + XUSU^H = C. Înmulțim ecuația cu U^H la stânga și cu U la dreapta. Deoarece U este matrice unitară(U*U^H = I_n) ecuația Liapunov devine S^HU^HXU + U^HXUS = U^HCU = Č . Notăm Y = U^HXU și ecuația devine S^HY + YS = Č. Scriem ecuația obținută pe coloane și ținând cont că S^H are o structură inferior triunghiulară nu mai rămâne decât să rezolvăm sistemele inferior triunghiulare (S^H + s_{ij}I_n)y_j=č_j - $\sum_{k=1}^{j-1} s_{kj} y_k$, j=1:n.

Descriere verif_val_proprii_opuse.m

Acest script calculează valorile matricei primite ca parametru și pentru verifică să nu există valori opuse adunându-le 2 câte 2. Dacă găsește două valori opuse afișează "Exista valori proprii opuse. Nu exista solutie unica." altfel afișează 'Nu exista valori proprii opuse. Exista soluție unica.'.

Descriere Gheoace_Mircea_321AB.m

Acesta este un script de verificare. El generează o matrice A din Rⁿ aleatoare apoi una aleatoare C din Rⁿ. Deoarece matricea C trebuie să fie simetrică notăm cu E partea ei inferior triunghiulară. Apoi salvăm în C matricea E adunată cu E^T obținând astfel matricea C simetrică. Verificăm că soluția este unică sau nu prin aflarea valorilor proprii. Dacă nu există valori proprii opuse soluția este unică. Aflam soluția ecuație Liapunov cu sol(A, C) și o verificăm calculându-l pe C_verif cu ajutorul lui A și a lui X calculat cu sol(A, C). Apoi verificăm că norma diferenței lui C cu C_verif să fie cât mai aproape de 0.

În continuare sunt două teste cu matrice de dimensiuni n=5 și n=6 aleatoare.

n = 6

	0.2745	0.6539	0.4804	0.7292	0.0827	0.1816
	0.8675	0.6577	0.3424	0.9376	0.4654	0.6914
A =	0.5594	0.1610	0.7771	0.5173	0.0219	0.2138
	0.4646	0.4324	0.3839	0.9031	0.8083	0.2981
	0.4303	0.5051	0.7116	0.2182	0.1792	0.7683
	0.7740	0.3753	0.4809	0.8732	0.1654	0.5012

	1.8189	0.0579	0.4368	0.5723	0.5651	0.8238
	0.0579	0.6002	0.0021	0.9511	0.7663	0.7513
C =	0.4368	0.0021	0.3027	0.4967	0.8087	0.6329
	0.5723	0.9511	0.4967	1.7197	0.6270	0.1806
	0.5651	0.7663	0.8087	0.6270	0.6771	0.5806
	0.8238	0.7513	0.6329	0.1806	0.5806	0.2973
	1 0100	0 0570	0 4260	0 5722	0 5651	0 023

0.8238 1.8189 0.0579 0.4368 0.5723 0.5651 0.0579 0.6002 0.0021 0.9511 0.7663 0.7513 0.4368 0.0021 0.3027 0.4967 0.8087 0.6329 C_verif = 0.5723 0.9511 0.4967 1.7197 0.6270 0.1806 0.6270 0.6771 0.5651 0.7663 0.8087 0.5806 0.8238 0.1806 0.5806 0.7513 0.6329 0.2973

Diferența dintre cele două C și C_verif este 9.2435e-15.

Rezultatul X este

Acum n = 5

	0.9783	0.8499	0.9970	0.0044	0.5426
	0.8499	1.8183	0.8454	0.8789	0.7462
C =	0.9970	0.8454	0.3377	0.8311	0.9280
C –	0.0044	0.8789	0.8311	0.7651	0.2715
	0.5426	0.7462	0.9280	0.2715	1.8887
	0.9783	0.8499	0.9970	0.0044	0.5426
	0.8499	1.8183	0.8454	0.8789	0.7462
C_verif	0.9970	0.8454	0.3377	0.8311	0.9280
	0.0044	0.8789	0.8311	0.7651	0.2715
	0.5426	0.7462	0.9280	0.2715	1.8887

Diferența dintre cele două C și C_verif este 2.4687e-14.

	3.3225	-2.9550	3.2895	-2.6976	-0.5217
	-2.9550	-2.0198	9.2053	3.8382	-7.4057
X =	3.2895	9.2053	0.3331	-20.7718	2.2642
	-2.6976	3.8382	-20.7718	-5.9453	21.9282
	-0.5217	-7.4057	2.2642	21.9282	-6.3073

Bibliografie

[CNA] – Metode de calcul numeric în automatică (B.Jora, C.Popeea, S.Barbulea), Ed. Enciclopedică, 1996. www.schur.pub.ro/download/mn/carte_mn.pdf