CHAPTER 2

ARRAYS

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C", Computer Science Press, 1992.

Arrays

Definition:

- (1) A set of index and value
- (2) Using consecutive memory
- (3) Support "Random Access" and "Sequential Access"
- (4) Insert/Delete an element: O(n)

	1	2	3	• • • • • •	n
Array A					

Arrays in C

int list[5], *plist[5];

implementation of 1-D array

list[0]	base address $= l_0$
list[1]	l_0 + sizeof(int)
list[2]	l_0 + 2*sizeof(int)
list[3]	l_0 + 3*sizeof(int)
list[4]	^l ₀₊ 4*size(int)

Arrays in C (Continued)

Compare int *list1 and int list2[5] in C.

Same: list1 and list2 are pointers.

Difference: list2 reserves five locations.

Notations:

```
list2 - a pointer to list2[0]
(list2 + i) - a pointer to list2[i]=(&list2[i])
```

Addressing(1-Dimension Arrays)

Declare:

suppose l_0 : start address

Then
$$A[i] = l_0 + (i-1) \times d$$

Addressing(1-Dimension Arrays) (General case)

Declare:

suppose l_0 : start address

Then
$$A[i] = l_0 + (i-l) \times d$$

Addressing(2-Dimension Arrays)

Declare: m row, n column, size=m*n

A[1~m, 1~n]

suppose l_0 : start address

d: size of each element

Row-Major: $A[i, j] = l_0 + ((i-1) \times n + (j-1)) \times d$

Column-Major: $A[i, j] = l_0 + ((j-1) \times m + (i-1)) \times d$

Addressing(2-Dimension Arrays) (General case)

Declare:

name
$$(u_1-l_1+1)$$
 row, (u_2-l_2+1) column A[$l_1\sim u_1,\ l_2\sim u_2$]

suppose l_0 : start address

d: size of each element

Row-Major:
$$A[i, j] = l_0 + ((i - l_1) \times (u_2 - l_2 + 1) + (j - l_2)) \times d$$

Column-Major:

$$A[i,j] = l_0 + ((j-l_2) \times (u_1 - l_1 + 1) + (i-l_1)) \times d$$

Addressing(3-Dimension Arrays)

Declare:

$$A[1\sim u_1, 1\sim u_2, 1-u_3]$$

d: size of each element

Row-Major:

$$A[i, j, k] = l_0 + (((i-1) \times u_2 \times u_3) + ((j-1) \times u_3) + (k-1)) \times d$$

Column-Major:

$$A[i, j, k] = l_0 + (((k-1) \times u_2 \times u_1) + ((j-1) \times u_1) + (i-1)) \times d$$

Addressing(3-Dimension Arrays) (General case)

Declare:

Row-major

$$A[1_1 \sim u_1, 1_2 \sim u_2, 1_3 - u_3]$$
column-major

suppose l_0 : start address

d: size of each element

Row-Major:
$$A[i, j, k] = l_0 + ((i - l_1) \times (u_2 - l_2 + 1) \times (u_3 - l_3 + 1) + (j - l_2) \times (u_3 - l_3 + 1) + (k - l_3)) \times d$$

Column-Major:
$$A[i, j, k] = l_0 + ((k - l_3) \times (u_2 - l_2 + 1) \times (u_1 - l_1 + 1)$$

$$((k-l_3)\times(u_2-l_2+1)\times(u_1-l_1+1) + (j-l_2)\times(u_1-l_1+1)+(i-l_1))\times d$$

Addressing(n-Dimension Arrays)

Declare: Row-major $A[1\sim u_1, 1\sim u_2, \dots 1-u_n]$

suppose l_0 : start address

d: size of each element

Row-Major: $A[a_1, a_2...a_n] = l_0 + (((a_1 - 1) \times u_2 \times u_3 \times ... \times u_n) + ((a_2 - 1) \times u_3 \times u_4 \times ... \times u_n) + ((a_3 - 1) \times u_4 \times u_5 \times ... \times u_n) + \vdots$ \vdots $(a_n - 1) \times d$

Addressing(n-Dimension Arrays)

Declare:

$$A[1\sim u_1, 1\sim u_2, \dots 1-u_n]$$

suppose l_0 : start address

d: size of each element

Column-Major:
$$A[a_1, a_2...a_n] = l_0 + (((a_n - 1) \times u_{n-1} \times u_{n-2} \times ... \times u_1) + ((a_{n-1} - 1) \times u_{n-2} \times u_{n-3} \times ... \times u_1) + ((a_{n-2} - 1) \times u_{n-3} \times u_{n-4} \times ... \times u_1) + \vdots$$

$$\vdots$$

$$(a_1 - 1) \times d$$

Ex)

 $A[-4\sim3, -3\sim2], l_0=100, d=1$

- (a) 若為 Row-major,則 A[1, 1]=?
- (b) 若為 Column-major, 則 A[1, 1]=?

中山資工87)

A[-2~7, -4~10, -2~1, -3~2, 1~10], l₀=38, d=8 (a) 若為 Row-major,則 A[0, 8, 0, 1, 8]=?

輔大資管90)

Suppose there is an integer array M[5, 8], the address of M[0, 0], M[0, 3], and M[1, 2] are 100, 106, and 120 respectively. What is the address of M[4, 5]

交大資科90)

Assume in a byte machine. A is an array declared as A[-1~m, 2~n], and each element occupied 3 bytes. The address of A[3, 5] is at 180, and A[5, 3] is at 138

- (1) Find the address of the element A[-1, 2]
- (2) Find the value of m or n

雲科大資工90)

有一個二維陣列A,假設A[1,1]的位址是644,而A[3,3]的位址是676,請問A(14,14)的位址為何?

Summary:

二維陣列中,若給兩個已知的位址,則若是row-major 則代表要求lo與n,若是column-major則 代表要求lo與m 若給三個已知位址則代表可能需求d

$\underline{\mathbf{E}\mathbf{x}}$

 $\underline{\mathbf{E}\mathbf{x}}$

A[1, 1]=2, A[2, 3]=18, A[3, 2]=28, 求A[4, 5]=?

Sparse Martix

Sparse Martix

Represent:

- (1) Represented by a two-dimensional array
 - → Sparse matrix wastes space
- (2) 3-Tuple (Triples)
 - → Each element is characterized by <row, col, value>
- (3) Double Link-list
 - →We will discuss it in chapter 4

Triples

```
+\# \text{ of rows} = m
           row col value
                      \# of columns = n
                              \# of nonzero terms = k
[0]
                                                          col4 col5 col6
                                          col1 col2
                                                    col3
                         15
[1]
                                          15
                                                0
                                                     0
                                                          22 0
                                    row1
                         22
[2]
                                                     3
                                           0
                                                           0
                                               11
                                                               0
                                    row2
[3]
                       -15
                                                0
                                                     0
[4]
                         11
                                    row3
                  3
[5]
                                           0
                                                     0
                                                0
                                                           0
                                    row4
             3
[6]
                                                0
                                                     0
                                                           0
                                          91
                                                               0
                                    row5
                         91
                                           0
                                                0
                                                    28
                                                           0
                                                               0
                                    row6
[8]
                  3
                         28
                            Row-major
```

Transposing a Matrix

$$A_{m \times n} \longrightarrow A_{n \times m}^t$$

$$A_{ij} \rightarrow A_{ji}^t$$

 $\underline{\mathbf{E}\mathbf{x}}$

$$\begin{bmatrix} 0 & 7 \\ 1 & 8 \\ 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & 3 \\ 7 & 8 & 2 \end{bmatrix}$$

Transposing a Matrix (Algorithm 1)

For i=0 to k
put A[i, j, value] into A^t[j, i, value]
End

	10 W	varuc	
[0]	6	6	8
[1]	1	1	15
[2]	4	1	22
[3]	6	1	-15
[4]	2	2	11
[5]	3	2	3
[6]	4	3	-6
[7]	1	5	91
[8]	3	6	28

row col value

Transposing a Matrix (Algorithm 2)

		10 W	001	Varac
For j=1 to n do	[0]	6	6	8
For i=1 to k do	[1]	1	1	15
if (A[i].col=j) then	[2]	1	5	91
put A[i, j, value] into A ^t [j, i, value]	[3]	2	2	11
End	[4]	3	2	3
End	[5]	3	6	28
Time Complexity: O(n × k)	[6]	4	1	22
where k ≈ m×n	[7]	4	3	-6
→ when it's not "sparse" anymore	[8]	6	1	-15

row col value

Compared with matrix transport using 2-D array

$$\begin{bmatrix} 15 & 0 & 0 & 22 & 0 & -15 \\ 0 & 11 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 91 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 28 & 0 & 0 & 0 \end{bmatrix}$$

Time Complexity: O(m×n)

Transposing a Matrix (Algorithm 3)

```
Step1:
For i=1 to k do
 column element[A[i].col]++
End
Step2:
For i=2 to n do
 row start[i]=row start[i-1]+column element[i-1]
End
Step3:
For i=1 to k do
 A^{t}[row start[A[i].col]]=A[i]
 row start[A[i].col]++
End
```

Time Complexity: O(k+n) or O(Max(k, n))

Lower Triangular Matrix (row-major)

Store:

count=1
For i=1 to n do
 For j=1 to i do
 B[count]=A[i, j]
 count++
 End
End

Access:

if (i<j) then return 0 else

$$k = \frac{i(i-1)}{2} + j$$

return B[k]

An×n, 其中 Aij=0 if i<j

ı	1	2	3	4	5	 n(n+1)/2
В	(1,1)	(2,1)	(2,2)	(3,1)	(3,2)	(n,n)

Lower Triangular Matrix (column-major)

An n, 其中 Aij=0 if i<j

Access:

$$k = (n + (n-1) + ...(n - (j-1) + 1)) + (i - j + 1)$$

$$= \frac{(2n - j + 2)(j - 1)}{2} + (i - j + 1)$$

$$= \frac{(2n - j)(j - 1)}{2} + i$$

$$= n(j - 1) - \frac{j(j - 1)}{2} + i$$

i	1	2	3	4	5	••••	n(n+1)/2)
В	(1,1)	(2,1)	(3,1)	(4,1)			(n,n)	

Upper Triangular Matrix

Row-major:

$$k = n(i-1) - \frac{i(i-1)}{2} + j$$

Column-major:

$$k = \frac{(j-1) \times j}{2} + i$$

Symmetric Matrix

Definition:

- (1) Square Matrix
- (2) Band Matrix An,a,b