VE215 Lab 5

Filter Lab

Data Sheet				
Name: Date:	Student ID: TA's Signature:			

Note: You will get grade deductions if you violate the following rules:

- 1. You are required to sign in the Logbook once you get your seat.
- 2. You are supposed to restore all the equipment and materials before you leave the lab.
- 3. You mustn't move any of the equipment and the material without TA's permission.

Procedures:

- 1. According to the pre-lab assignments, you are supposed to fill in the **Expected Data columns** in the tables below before the lab.
- 2. During the lab:
 - i) Construct the circuit for each type of filter. Resister: $\mathbf{R} = 982\Omega$; Capacitor: $\mathbf{C} = 0.1\mu \mathbf{F}$; Inductor: $\mathbf{L} = 1\mathbf{mH}$.
 - ii) Set the Input Signal in the function generator to be **Sine Wave** with amplitude of $5 V_{ppk}$ and **change the frequency** accordingly.
 - iii) Use the oscilloscope to detect the **amplitudes** of the **Input and Output** signals. Record them respectively in the first two column in the tables.
 - iv) Additionally for the **Band-reject Filter**, when the frequency approach the critical frequency at which the **Transfer Function Magnitude** reaches its minimum, the **Output Signal Amplitude** changes rapidly. For a more accurate result, you can (but not strictly required to) add some more rows to record the data (**Table V**).
- 3. After the lab, you should calculate with the experimental data for the "Transfer function magnitude" and "Transfer function magnitude, in dB" columns.

I) Low-pass Filter

Frequency	Input signal	Output	Transfer	Expected	Transfer	Expected
	amplitude,	signal	function	transfer	function	transfer
	Vppk	amplitude,	magnitude	function	magnitude,	function
		(m)Vppk		magnitude	in dB	magnitude,
						in dB
1 MHz						
100 kHz						
50 kHz						
10 kHz						
5 kHz						
1 kHz						
500 Hz						

II) High-pass Filter

Frequency	Input signal	Output	Transfer	Expected	Transfer	Expected
	amplitude,	signal	function	transfer	function	transfer
	Vppk	amplitude,	magnitude	function	magnitude,	function
		Vppk		magnitude	in dB	magnitude,
						in dB
1 MHz						
100 kHz						
50 kHz						
10 kHz						
5 kHz						
1 kHz						
500 Hz						
100 Hz						

III) Band-pass Filter

Frequency	Input signal	Output	Transfer	Expected	Transfer	Expected
	amplitude,	signal	function	transfer	function	transfer
	Vppk	amplitude,	magnitude	function	magnitude,	function
		(m)Vppk		magnitude	in dB	magnitude,
						in dB
1 MHz						
500 kHz						
100 kHz						
50 kHz						
10 kHz						
1 kHz						
500 Hz						

IV) Band-reject Filter

Frequency	Input signal	Output	Transfer	Expected	Transfer	Expected
	amplitude,	signal	function	transfer	function	transfer
	Vppk	amplitude,	magnitude	function	magnitude,	function
		(m)Vppk		magnitude	in dB	magnitude,
						in dB
1 MHz						
500 kHz						
300 kHz						
200 kHz						
100 kHz						
50 kHz						
10 kHz						
5 kHz						
1 kHz						
500 Hz						

Theoretically find the corresponding frequency when the output signal amplitude reaches its minimal value and fill in the following table:

V) Band-reject Filter (Not Strictly Required)

Frequency	Input signal	Output	Transfer	Expected	Transfer	Expected
	amplitude,	signal	function	transfer	function	transfer
	Vppk	amplitude,	magnitude	function	magnitude,	function
		(m)Vppk		magnitude	in dB	magnitude,
						in dB
Critical:						