高等数学A(上)

第二章

本章重点

导数 — 描述函数变化快慢 微分 — 描述函数变化程度 微分学 — 基本概念是导数与微分

微分学

基本概念是导数与微分

中值定理

罗尔、拉格朗日、柯西

导数

描述函数 变化快慢

应用一

研究函数性质 及曲线性态

微分

描述函数变化程度

应用二

利用导数解决 实际问题

第二章 目录 CONTENTS

第一节 导数与微分的概念

第二节 导数与微分的运算性质

第三节 隐函数及由参数方程所确定的

函数的导数 相关变化率

第四节 高阶导数

第五节 微分中值定理与泰勒公式

第六节 洛必达法则

第七节 函数及其图像性态的研究

第三节 隐函数和参数方程求导相关变化率

一、隐函数的导数

二、对数求导法

三、由参数方程确定得函数的导数

四、相关变化率

一、隐函数的导数

由方程 F(x,y)=0 确定的函数 y=y(x) 称为隐函数.

由 y=f(x) 表示的函数称为显函数.

例如:

方程 $x+y^3-1=0$ 可确定显函数 $y=\sqrt[3]{1-x}$.

方程 $xy - e^x + e^y = 0$ 理论上可确定y = x的函数 y = y(x), 但此隐函数不能显化.

问题 隐函数不易显化或不能显化如何求导?

隐函数求导法则:用复合函数求导法则直接对方程两边求导.即

例1 求由方程 $xy - e^x + e^y = 0$ 所确定的隐函数的导数 $\frac{dy}{dx}$.

解 方程两边对
$$x$$
求导,得 $y+x$ $\frac{\mathrm{d}y}{\mathrm{d}x}-\mathrm{e}^x+\mathrm{e}^y\frac{\mathrm{d}y}{\mathrm{d}x}=0$, 解得 $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{e}^x-y}{x+\mathrm{e}^y}$.

例2 求由方程 $y^5 + 2y - x - 3x^7 = 0$ 所确定的隐函数在x = 0处的

导数
$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0}$$
.

解 方程两边对x求导,得

$$5y^4 \cdot \frac{dy}{dx} + 2 \cdot \frac{dy}{dx} - 1 - 21x^6 = 0 \quad \therefore \quad \frac{dy}{dx} = \frac{1 + 21x^6}{5y^4 + 2},$$

因当
$$x = 0$$
 时, $y = 0$, 故 $\frac{dy}{dx}\Big|_{x=0} = \frac{1}{2}$.

例3 求椭圆
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 在点 $\left(2, \frac{3}{2}\sqrt{3}\right)$ 处的切线方程.

解 椭圆方程两边对x求导,得

$$\frac{2x}{16} + \frac{1}{9} \cdot 2y \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = 0.$$

$$\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{9x}{16y}, \quad \therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} \bigg|_{\substack{x=2\\y=\frac{3}{2}\sqrt{3}}} = -\frac{\sqrt{3}}{4}$$

故切线方程为

二、对数求导法

观察函数
$$y = \frac{(x+1)\sqrt[3]{x-1}}{(x+4)^2 e^x}, y = x^{\sin x}$$
.

方法:

先在方程两边取对数,然后利用隐函数的求导方法求出导数.

一一对数求导法

适用范围:

多个函数相乘和幂指函数 $u(x)^{v(x)}$ 的情形.

例5 设
$$y = \frac{(x+1)\sqrt[3]{x-1}}{(x+4)^2 e^x}$$
, 求 y' .

解 等式两边取对数得

$$\ln y = \ln(x+1) + \frac{1}{3}\ln(x-1) - 2\ln(x+4) - x$$

上下两边对x求导得

$$\frac{y'}{y} = \frac{1}{x+1} + \frac{1}{3(x-1)} - \frac{2}{x+4} - 1$$

$$\therefore y' = \frac{(x+1)\sqrt[3]{x-1}}{(x+4)^2 e^x} \left[\frac{1}{x+1} + \frac{1}{3(x-1)} - \frac{2}{x+4} - 1 \right].$$

$$\ln ab = \ln a + \ln b$$

$$\ln \frac{a}{b} = \ln a - \ln b$$

$$\ln a^b = b \ln a$$

例6 设 $y = x^{\sin x}, (x > 0), 求 y'.$

解 等式两边取对数得

$$\ln y = \sin x \cdot \ln x$$

上式两边对x求导得

$$\frac{1}{y}y' = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}$$

$$\therefore y' = y \left(\cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \right)$$

$$= x^{\sin x} \left(\cos x \cdot \ln x + \frac{\sin x}{x} \right)$$

另种写法

利用换底公式改写

$$y = x^{\sin x} = e^{\sin x \ln x}$$

再用复合函数链式法则

$$y' = e^{\sin x \ln x} (\sin x \ln x)'$$

$$= y \left(\cos x \cdot \ln x + \sin x \cdot \frac{1}{x}\right)$$

$$= x^{\sin x} \left(\cos x \cdot \ln x + \frac{\sin x}{x} \right)$$

一般地
$$y = u(x)^{v(x)} (u(x) > 0)$$

殊途同归

取对数

$$: \ln y = v(x) \cdot \ln u(x)$$

$$\therefore \frac{y'}{y} = (v(x) \cdot \ln u(x))'$$

$$\therefore y' = y(v(x) \cdot \ln u(x))'$$

换底

$$y' = e^{v(x) \cdot \ln u(x)}$$

$$\therefore y' = e^{v(x) \cdot \ln u(x)} (v(x) \cdot \ln u(x))'$$

$$\therefore y' = y(v(x) \cdot \ln u(x))'$$

$$y' = u(x)^{v(x)} \left[v'(x) \cdot \ln u(x) + \frac{v(x)u'(x)}{u(x)} \right]$$

三、由参数方程确定的函数的导数

若参数方程 $\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$ 确定 y = x 间的 函数关系, 称此为由参数方程

所确定的函数.

$$\begin{cases} x = 2t, \\ y = t^2, \end{cases}$$

例如:
$$\begin{cases} x = 2t, \\ y = t^2, \end{cases}$$
 消去参数 t
$$y = \frac{x^2}{4} : y' = \frac{1}{2}x$$

摆线
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 消参困难!

问题 消参困难或无法消参如何求导?

在方程
$$\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$$
中,

① 设函数
$$x = \varphi(t)$$
具有单调连续的反函数 $t = \varphi^{-1}(x)$,

$$\therefore y = \psi[\varphi^{-1}(x)]$$

(2) 再设函数 $x = \varphi(t), y = \psi(t)$ 都可导, 且 $\varphi'(t) \neq 0$,

由复合函数及反函数的求导法则得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\psi'(t)}{\varphi'(t)} \qquad \boxed{\square} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\psi'(t)}{\varphi'(t)}$$

 $M_0\left(\frac{\sqrt{2a}}{2}, \frac{\sqrt{2b}}{2}\right)$

例7 已知椭圆的参数方程 $\begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases}$ 求椭圆在 $t = \frac{\pi}{4}$ 相应点处的

切线方程.

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{t=\frac{\pi}{4}} = \frac{b\cos t}{-a\sin t} \bigg|_{t=\frac{\pi}{4}} = -\frac{b}{a}. \quad \exists t = \frac{\pi}{4} \text{ iff, } x = \frac{\sqrt{2}}{2}a, y = \frac{\sqrt{2}}{2}b,$$

故所求切线方程为
$$y - \frac{\sqrt{2}}{2}b = -\frac{b}{a}(x - \frac{\sqrt{2}}{2}a)$$

即
$$bx + ay - \sqrt{2}ab = 0$$
.

四、相关变化率

设x = x(t)及y = y(t)都是可导函数,

$$x$$
与 y 之间存在某种关系 $\longrightarrow \frac{\mathrm{d}x}{\mathrm{d}t}$ 与 $\frac{\mathrm{d}y}{\mathrm{d}t}$ 之间也存在一定关系 称为相关变化率

相关变化率问题:已知其中一个变化率时如何求出另一个变化率?

解法: | 找出相关变量的关系式

对 *t* 求导

得相关变化率之间的关系式

求出未知的相关变化率

例9 一气球从离开观察员500m处离地面铅直上升,当气球高度为 500m时, 其速率为140m/min,观察员视线的仰角增加率是多少?

解 设气球上升t s后, 其高度为h m, 观察员视线的 仰角为 α ,则

$$\tan \alpha = \frac{h}{500} \quad \xrightarrow{\text{MDDM}_t \text{\vec{x}} \text{\vec{y}}} \quad \sec^2 \alpha \cdot \frac{d\alpha}{dt} = \frac{1}{500} \cdot \frac{dh}{dt}$$

$$\therefore \frac{\mathrm{d}h}{\mathrm{d}t} = 140 \,\mathrm{m/min}$$
,当 $h = 500 \mathrm{m}$ 时, $\sec^2 \alpha = 2$

$$\sec^2 \alpha = 1 + \tan^2 \alpha$$