User Datagram
Protocol
(UDP)

UDP: Функциониране RFC 768 Дейтаграмна услуга - Няма изграждане и разпадане на съединение - Няма повторни предавания при установяване на грешки Всяка UDP дейтаграма се доставя независимо от другите Доставка с най-добро възможно усилие (best effort) Дейтаграмите могат да се загубят, да бъдат доставени не поред и т.н. - Дейтаграмите не се номерират Недостатъци Ненадеждна услуга Доставката и предотвратяване на дублирания не са гарантирани Неподходящ за трафик, чувствителен към загуби. Предимства По-бърз от ТСР По-малко допълнителни разходи (режийни) от TCP Поддържа multicasting (TCP не може!) Подходящ за предаване на интерактивен мултимедиен

трафик

UDP: Контрол на потока и на грешките?

- Няма контрол на потока
- Слаб контрол на грешките
 - Само контролна сума, по желание.
- Затова тези видове контрол трябва да се поддържат от приложния протокол, използващ транспортните услуги на UDP.

UDP: Използване

- Приложни протоколи с прост комуникационен механизъм тип Заявка/отговор, например DNS.

 – Ако заявката или отговорът се изгубят, ще се направи нов опит за предаване след изгичане на времето за изчакване.
- Приложения, работещи в реално време, без нужда от повторно предаване

 — Глас, видео, телеметрия.

 Некритични приложения

 — Мониторинг
- Broadcast анонсиране, актуализация на маршрути в RIP, ...
- Приложни протоколи със собствен контрол на потока и на грешките
 - Trivial FTP (TFTP)
 - Протоколи за управление (например, SNMP)
 - Multicasting предаване
- В безжична среда

 За да се избегнат някои ТСР проблеми, например ненужни
- повторни предавания поради липса на потвърждения. Приложенията могат да дефинират свои собствени схеми за потвърждение и правила за повторно предаване

UDP дизайн: Контролен модул (Control-Block Module)

Получава: ID на процеса и номер на порта.

- Претърсва контролната таблица за свободен запис (FREE)
- Ако (<u>липева</u> свободен запис)
 1. Изтрива на 1 стар запис, по предварително зададена стратегия.
 - Създава на нов запис със статус IN-USE
 - Добавя ID на процеса и номер на порта

Връща се в началото

	State	Process ID	Port number	Incoming Queue number	Outgoing Queue number
	IN-USE	23	52010	34	56
	IN-USE	34	52201		61
	FREE				
Control-Block Table					

Real-time
Transport
Protocol
(RTP)

RTP: Функциониране (прод.)

- Трансфер на данни в реално време между участници в мултимедийна сесия
 - Multicast или unicast
- Всеки източник
 - Има свой собствен независим RTP поток
 - Например, микрофон или уеб камера
 - Идентифициран е в RTP заглавната част
 - Поставя времева щампа (timestamp)
- Може да съществуват няколко потока между 2 хоста
 - Например, 4 потока при видео разговор.
 - 2 потока за аудио (по 1 във всяка посока)
 - 2 потока за видео (по 1 във всяка посока)
- Много от техниките за кодиране обединяват аудиото и видеото в един поток
 - Например, MPEG1/2

RTP: Функциониране (прод.)

- RTP пакетите се номерират
 - С последователни номера
 - За откриване на липсващи пакети
 - <u>Повторно предаване не се използва</u> (тъй като няма смисъл за приложения, работещи в реално време)
 - Няма контрол на потока
 - Няма контрол на грешките
 - Няма потвърждения
 - <u>Липсващата стойност</u> или се прескача от приложението (например, прескачане на видео кадър), или се възстановява чрез интерполация (например, при аудио).
- RTP данните съдържат кодирано аудио/видео
 - Различни профили
 - Например, 1 аудио поток.
 - За всеки профил има няколко формата за кодиране
 - Напр. ИКМ/РСМ, делта-модулация, GSM кодиране, MP3 и др.
 - Форматът е указан в полето Payload Type

Real-time
Transport

<u>Control</u>
Protocol
(**RTCP**)

RTCP

- Real-time Transport Control Protocol
 - Не транспортира данни
 - Подпомага RTP
 - RTP използва само 1 вид съобщение за пренасяне на данни от източника до получателя
 - Повече видове съобщения са необходими в една сесия
 - Добавя функционалност на системно ниво:
 - Управление на потока
 - Например, получателят да може да <u>интегрира</u> и <u>синхронизира</u> отделните пакетни потоци заедно.
 - Контрол на качеството на обслужване (QoS)
 - Например, източникът да бъде информиран за качеството на аудио/видео разпространението с цел приспособяване към състоянието на мрежата в момента (напр. пропускателна способност, закъснение, вариране на закъснението, ...).
 - Контрол на обратната връзка
 - Например, получателят изпраща информация обратно към източника, която може да се използва за диагностициране на неизправности в аудио/видео разпространението.
- RFC 1889, 3550

