Predictive Modeling

Danny Lumian, Ph.D.

Data Science Training Specialist

Office of Data Science Strategy

National Institutes of Health

Types of Targets

- Classification
 - Target to predict is one of a set of classes
 - Examples:
 - Spam or not spam
 - Type of a flower
 - Malignant or benign tumor
- Regression
 - Target to predict is numeric/continuous quantity
 - Examples:
 - Life expectancy
 - Cost of housing
 - Miles per gallon of a car

Three types of variables

- Independent Variable
 - Predictive variable(s)
 - May be manipulated by researcher, such as conditions in an experiment
- Dependent Variable
 - The outcome or target (y) variable of interest
- Controlled Variable
 - Variable that may impact the outcome or dependent variable
 - Measured to help ensure rigorous standards for an experiment

Train-Test Split

- It is common in machine learning to create a train-test split
- The train data is used to train the model
 - This data is "seen" by the model
- The test data is used to evaluate model performance
 - This data is "unseen" by the model
- Test metrics are usually more informative than train metrics as it shows how well the model generalizes its predictions
- Common splits are 80/20 or 70/30
- Can be useful to stratify data based on target

Dummy Coding Variables

Group Assignment	Group 2	Group 3
Group 1	0	0
Group 2	1	0
Group 1 Group 2 Group 1	0	0
Group 3	0	1
Group 2	1	0

Convert categorical variables to a set of binary variables Drop 1 group as the baseline All other groups get a new numeric column

Bias and Variance

- The <u>bias</u> error is an error from erroneous assumptions in the learning <u>algorithm</u>. High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting).
- The <u>variance</u> is an error from sensitivity to small fluctuations in the training set. High variance may result from an algorithm modeling the random <u>noise</u> in the training data (<u>overfitting</u>).

From Wikipedia: https://en.wikipedia.org/wiki/Bias%E2%80%93variance tradeoff

Underfitting vs Overfitting

Underfitting

- A model that does not capture the nuance of the data
- Example might be a model that just predicts the mean or dominant class
- Can add features or try a different model

Overfitting

- A model that does not generalize well
- Attends to meaningless patterns in the data
- Detected by good training metrics but poor test metrics
- Can remove features or tune the model

Classification Outcomes

- True Negatives (TN)
 - Top left quadrant
 - Was not a positive case and was not predicted as a positive case
- False Negatives (FN)
 - Top right quadrant
 - Was a positive case but was predicted as a negative case
- True Positives (TP)
 - Bottom left quadrant
 - Was a positive case and was predicted as a positive case
- False Positives (FP)
 - Bottom left quadrant
 - Was a negative case but was predicted as a positive case

Classification Metrics

- Accuracy (TP+TN)/Total
 - Percentage of total predictions that were correct
- Sensitivity (TP/(TP+FN))
 - True positive rate
- Specificity (TN/(TN+FP))
 - True negative rate
- Precision (TP/(TP+FP))
 - Positive prediction value
- F1-Score (2TP/(2TP+FP+FN))
 - Harmonic mean of precisions and sensitivity

Regression Metrics

$MSE = \frac{1}{n} \sum_{t=1}^{n} e_t^2$
$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$
$MAE = \frac{1}{n} \sum_{t=1}^{n} e_t $
$MAPE = \frac{100\%}{n} \sum_{t=1}^{n} \left \frac{e_t}{y_t} \right $

Missing Data

- Many models can not handle missing data
- There are several solutions to address this:
 - Remove missing data rows
 - Impute missing data
 - Example: fill with the mean or most common category
 - More sophisticated imputation methods exist

Imbalanced Data Sets

- Undersample
 - Remove rows of the more common class
- Oversample
 - Replicate the minority class
- Synthetic Data
 - Create fake data based on observations and use those data in the model

