PIZZO

Druga lista zadań

Zadanie 1. Niech L będzie językiem tych słów nad alfabetem $\{0,1\}$, które na 12 pozycji od końca mają 1. Ilu stanów potrzebuje deterministyczny automat skończony, by rozpoznać L? A ilu stanów potrzebuje niedeterministyczny automat skończony, by rozpoznać L?

Może teraz uda się rozwiązać łatwiej te dwa zadania:

Zadanie 2. Dla danego języka L nad alfabetem $\{a, b, c\}$ oraz funkcji $h: \Sigma \to \Sigma$, niech $h(L) = \{h(a_1) \dots h(a_k) \mid a_1 \dots a_k \in L\}$ będzie językiem powstałym przez zaaplikowanie funkcji h do każdej litery. Czy h(L) jest regularny jeśli L jest regularny? Czy L jest regularny jeśli h(L) jest regularny?

Zadanie 3. Dla danego języka L, niech L^R oznacza zbiór słów będących odwróceniami słów z L, np. dla $L = \{a, to, kanapa, pana, kota\}$ mamy $L^R = \{a, ot, apanak, anap, atok\}$. Czy dla każdego języka regularnego L język L^R jest regularny?

Zadanie 4. Udowodnij, że język $\{a^nb^mc^n\mid n,m\in\mathbb{N}\}$ nie jest regularny.

Zadanie 5. Niech L_5 będzie językiem nad alfabetem $\{0\}$ składającym się z unarnych zapisów liczb, które nie są wielokrotnościami liczby 120.

- \bullet Czy istnieje niedeterministyczny automat skończony, który rozpoznaje L_5 i ma mniej niż 20 stanów?
- \bullet Czy istnieje niedeterministyczny automat skończony, który rozpoznaje dopełnienie L_5 i ma mniej niż 100 stanów?

Zadanie 6. Niech L_6 będzie językiem nad alfabetem $A_6 = \{0, 1, ..., 9\}$ składającym się z tych słów, które zawierają wystąpienia wszystkich liter alfabetu.

- Czy istnieje niedeterministyczny automat skończony, który rozpoznaje L_6 i ma mniej niż 500 stanów?
 - Wskazówka: dla podzbioru $X \subseteq A_6$ niech w_X będzie dowolnym słowem zawierającym dokładnie wszystkie litery ze zbioru X, na przykład $w_{\{3,5,8\}} = 358$. Dla każdego $X \subset A_6 \setminus \{9\}$, rozpatrz przebieg akceptujący na słowie $w_X w_{\bar{X}}^{-1}$. Takich przebiegów jest 512, a stanów mniej niż 500 co z tego wynika?
- \bullet Czy istnieje dwukierunkowy deterministyczny automat skończony, który rozpoznaje dopełnienie L_6 i ma mniej niż 20 stanów?

Zadanie 7. Niech $L_7 = \{ww^R \mid w \in \{0,1\}^*\}$. Przez w^R oznaczamy odwrócenie słowa w.

- 1. Czy język L_7 da się rozpoznać dwukierunkowym automatem skończonym?
- 2. Czy każde przecięcie języka regularnego z L_7 jest językiem regularnym?
- 3. Czy istnieją dwa języki nieregularne, których przecięcie jest regularne?

 $^{^1{\}rm gdzie}\ \bar{X}$ to dopełnienie Xdo alfabetu A_6