Nearly Optimal Sparse Group Testing

Venkata Gandikota, *Purdue University*Elena Grigorescu, *Purdue University*Sidhart Jaggi, *The Chinese University of Hong Kong*Samson Zhou, *Purdue University*

Group Testing

Task: Identify a small set of defects among a larger population using tests

Test = a subset of the items

A test is positive if a defective item is included; negative otherwise

Goal: Minimize the number of tests

Background

Motivation: Identify WW2 draftees with syphillis

 Each test is expensive, but blood may be pooled

Blood from individual can be used in multiple tests

How to identify infected individuals?

Adaptive Group Testing

Non-adaptive Group Testing (NAGT)

Non-adaptive Group Testing (NAGT)

Non-adaptive Group Testing (NAGT)

Non-adaptive Group Testing

"Classical" NAGT

- Upper Bound: $O(d^2 \log n)$ (Du, Hwang '00)
- Explicit: $O(d^2 \log n)$ (Porat, Rothschild '08)
- Lower Bound: $\Omega(d^2 \log_d n)$ (D'yachkov, Rykov '82)
- Noisy tests (CheraghchiHKV '11)
- Efficient Decoding (IndyKRN'10)
- Graph-Constrained (CheraghchiKMS'11)
- Phase-Transitions (Scarlett, Cehver'16)

Real World Limitations

Each item can be included in at most γ tests

 $(\gamma$ -divisible items)

Each test can include at most ρ items $(\rho \text{ -sized tests})$

Our Results: γ -divisible items

Theorem. Given n items, with d defects: $\Omega\left(\gamma d(n/d)^{1/\gamma}\right) \text{ tests are needed in the NAGT,} \\ \gamma \text{ -divisible items model.}$

Theorem. \exists a randomized algorithm: $T = O\left((\gamma d)\left(\frac{n-d}{\varepsilon}\right)^{1/\gamma}\right)$

Theorem. \exists a deterministic algorithm: $T = O\left(\frac{d^2\gamma}{\varepsilon}\left(\frac{n\varepsilon}{d^2}\right)^{1/\gamma}\right)$

Our Results: ρ -sized tests

Theorem. Given n items, with d defects:

$$\Omega\left(\frac{n}{\rho}\frac{\log(n/d)}{\log(n/\rho d)}\right)$$
 tests are needed in the

NAGT, p-sized tests model.

Theorem. \exists a randomized algorithm: $T = O\left(\frac{n}{\rho}\log\left(\frac{n}{\varepsilon}\right)\right)$

Theorem. \exists a deterministic algorithm: $T = O\left(\frac{n}{\rho}\left(\frac{d^2 \log n}{\varepsilon \log(n/\rho)}\right)\right)$

- 1. Background
- 2. Achievability: Randomized Construction
- 3. Achievability: Deterministic Construction
- 4. Lower Bounds

- 1. Background
- 2. Achievability: Randomized Construction
- 3. Achievability: Deterministic Construction
- 4. Lower Bounds

Upper Bounds: Randomized

• Consider the γ -divisible items model

Upper Bounds: Randomized

- Recall: Total items tested is at most γn
- Idea: Have each test include roughly $\frac{\gamma n}{T}$ items.
- Columns of test matrix M are uniformly sampled from $\{0,1\}^T$ with weight \mathcal{Y} .
- How to decode?

Decoding Algorithm Philosophy

Innocent until proven guilty

Defective until proven innocent

Decoding Algorithm

- Algorithm: Marks item i non-defective if some test which includes i is negative
- Observations:
 - CANNOT incorrectly identify defective items
 - Incorrectly marks non-defective item i if all tests
 which include i are positive

Upper Bounds: Randomized

- Recall: Total number of positive tests is at most $d\gamma$.
- Probability an item is included only in positive tests: $\binom{d\gamma}{\gamma}/\binom{T}{\gamma}$
- Union bound over all (n-d) non-defective items, so we require:

$$(n-d)\binom{d\gamma}{\gamma}/\binom{T}{\gamma}<\epsilon$$

Upper Bounds: Randomized

- Recall: Total number of positive tests is at most $d\gamma$.
- Probability an item is included only in positive tests: $\binom{d\gamma}{\gamma}/\binom{T}{\gamma}$
- Union bound over all (n-d) non-defective items, so we require:

$$(n-d)\binom{d\gamma}{\gamma}/\binom{T}{\gamma} < \epsilon \Rightarrow T > (e\gamma d)\left(\frac{n-d}{\epsilon}\right)^{1/\gamma}$$

- 1. Background
- 2. Achievability: Randomized Construction
- 3. Achievability: Deterministic Construction
- 4. Lower Bounds

- 1. Background
- 2. Achievability: Randomized Construction
- 3. Achievability: Deterministic Construction
- 4. Lower Bounds

- Intuition: Should be able to "encode" each item so that test outcomes uniquely identify defects
- Idea: Use γ -dimensional hypergrid, represent each item by base-b representation, where $b = n^{1/\gamma}$

If n = 9, $\gamma = 2$, d = 1, the above test uniquely determines that item 5 is defective.

What if we have multiple defects?

 These tests cannot distinguish whether the red items or the blue items are defective.

- What if we have multiple defects?
- Idea: Divide and Conquer!

 Each gray box catches one defective item with high probability

- How many blocks are necessary? $\frac{d^2}{\varepsilon}$
- Probability that no two defects fall into the same block:

$$\begin{split} &1\left(1-\frac{1}{cd^2}\right)\left(1-\frac{2}{cd^2}\right)\cdots\left(1-\frac{d-1}{cd^2}\right)\\ &\geq \left(1-\frac{d}{cd^2}\right)^d = \left(1-\frac{1}{cd}\right)^d\\ &\geq 1-\frac{1}{c} = 1-\epsilon \qquad \text{(by Bernoulli's Inequality)} \end{split}$$

• In summary: $\frac{d^2}{\varepsilon}$ blocks, each requiring $\gamma \left(\frac{n\varepsilon}{d^2}\right)^{1/\gamma}$ tests, for a total of $T = \frac{d^2\gamma}{\varepsilon} \left(\frac{n\varepsilon}{d^2}\right)^{1/\gamma}$

- 1. Background
- 2. Achievability: Randomized Construction
- 3. Achievability: Deterministic Construction
- 4. Lower Bounds

- 1. Background
- 2. Achievability: Randomized Construction
- 3. Achievability: Deterministic Construction
- 4. Lower Bounds

Classical NAGT Design Philosophy

> Each test gives~1 bit of information

- Total number of items tested is at most γn
- "Light" tests: each includes less than $\frac{n}{\varepsilon d \log \left(\frac{T}{\gamma d}\right)}$ items.
- "Heavy" tests: each includes at least $\frac{n}{\varepsilon d \log \left(\frac{T}{\gamma d}\right)}$ items.

"Light" tests: each includes less than items.

$$\frac{n}{\varepsilon d \log \left(\frac{T}{\gamma d}\right)}$$

• "Heavy" tests: each includes at least items.

$$\frac{n}{\varepsilon d \log \left(\frac{T}{\gamma d}\right)}$$

$$X \to Y \to \hat{X} \qquad \leq T \left(\frac{\gamma d}{T} + 3\delta\right) \log\left(\frac{T}{\gamma d}\right) + \epsilon \gamma d \log\left(\frac{T}{\gamma d}\right) \\ \leq (1 + 2\epsilon)\gamma d \log\left(\frac{T}{\gamma d}\right) \\ \leq (\text{for appropriate choice of } \delta).$$

$$\begin{split} H(Y) &= \sum_{i \in S_1} H(Y_i) + \sum_{i \in S_2} H(Y_i) \\ &\leq T \left(\frac{\gamma d}{T} + 3\delta\right) \log\left(\frac{T}{\gamma d}\right) + \epsilon \gamma d \log\left(\frac{T}{\gamma d}\right) \\ &\leq (1 + 2\epsilon) \gamma d \log\left(\frac{T}{\gamma d}\right) \qquad X \longrightarrow Y \longrightarrow \hat{X} \\ H(X) &= H(X|\hat{X}) + I(X;\hat{X}) \\ &\leq H(\epsilon) + \epsilon \log(|\mathcal{X}| - 1) + H(Y) \\ \log\left(\binom{n}{d}\right) \leq -2\epsilon \log\epsilon + \epsilon \log\left(\binom{n}{d}\right) \text{ Data processing inequality} \\ &+ (1 + 2\epsilon) \gamma d \log\left(\frac{T}{\gamma d}\right). \quad \text{Fano's inequality} \end{split}$$

Entropy over all possible combinations of d defects

$$H(Y) = \sum_{i \in S_1} H(Y_i) + \sum_{i \in S_2} H(Y_i)$$

$$\leq T \left(\gamma d + 2\delta \right) \log \left(T \right) + \operatorname{cordlog} \left(T \right)$$

Implies
$$T = \Omega(\gamma d(n/d)^{1/\gamma})$$

$$\log \left(\binom{n}{d} \right) \leq -2\epsilon \log \epsilon + \epsilon \log \left(\binom{n}{d} \right) \text{ Data processing inequality} \\ + (1+2\epsilon)\gamma d \log \left(\frac{T}{\gamma d} \right). \text{ Fano's inequality}$$

Entropy over all possible combinations of d defects

- 1. Background
- 2. Achievability: Randomized Construction
- 3. Achievability: Deterministic Construction
- 4. Lower Bounds

- 1. Background
- 2. Achievability: Randomized Construction
- 3. Achievability: Deterministic Construction
- 4. Lower Bounds
- ?? Results for zero-error tests and noisy tests

Further Results

• Noisy tests: Tests can give incorrect result with probability σ .

Theorem: CANNOT recover defectives with probability at least 1- ϵ for arbitrary ϵ < 1/2 and γ = o(log n).

Questions?

