Simulating the Exponential Distribution

Marco Letico
02 August 2017

Overview

In this project we will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with exp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. We set lambda = 0.2 for all of the simulations. We will investigate the distribution of averages of 40 exponentials within a thousand simulations.

```
# Set parameters
myLambda <- 0.2
n <- 40
nsim <- 1000
set.seed(1088)

# Create a matrix with 1000 simulation and 40 exponentials. Every simulation for one row.
mySim <- matrix(rexp(n * nsim, rate = myLambda), nsim, n)</pre>
```

1. Show the sample mean and compare it to the theoretical mean of the distribution.

Sample mean vs Theoretical mean

In the plot above we can notice how the means are approximately the same as the number of simulation increases. Below we show the values.

```
sampleMean <- mean(myMean)
theoMean <- 1/myLambda

## [1] "Sample mean: 5.02009326208063"

## [1] "Theoretical mean: 5"</pre>
```

2. Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

Sample Variance vs Theoretical Variance

The result below shows that also the sample variance is close to the theoretical variance.

```
# Perform the variance for every simulation
myVariance <- apply(mySim, 1, var)

sampleVariance <- mean(myVariance)
theoVariance <- (1/myLambda)^2

## [1] "Sample variance: 25.364971171212"

## [1] "Theoretical variance: 25"</pre>
```

3. Show that the distribution is approximately normal.

To show we have to apply the Central Limit Theorem (CLT), that states that: $\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$ has a distribution like that of a standard normal for large n.

```
legend("topright", legend = c("Sim Density Distr", "Std Normal Distr"),
      col = c("blue", "red"), lty=c(1,1))
```

Mean Distribution vs Standard Normal Distribution

