PRINTABLE VERSION

Quiz 8

Question 1

Find the derivative of the function $G(x) = \left(4\,x^3 + 2\,x^2\right)^5$.

a)
$$G'(x) = 5(-4x^3 + 2x^2)^4$$

b)
$$\bigcirc G'(x) = 5(12x^2 + 4x)^4$$

c)
$$G'(x) = 5(4x^3 + 2x^2)^4(12x^2 + 4x)$$

d)
$$\bigcirc G'(x) = (4x^3 + 2x^2)^4 (12x^2 + 4x)$$

e) $\bigcirc G'(x)$ does not exist.

Question 2

Find the derivative of the function $f(x) = 4 x^2 \cos(x) - x$.

a)
$$\int f'(x) = 8x\cos(x) - 4x^2\sin(x)$$

b)
$$\bigcirc f'(x) = 8x\cos(x) - 4x^2\sin(x) - 1$$

c)
$$\int f'(x) = -8x\cos(x) + 4x^2\sin(x) - 1$$

d)
$$\bigcap f'(x)$$
 does not exist.

e)
$$\bigcirc f'(x) = -8x\sin(x) - 1$$

Question 3

Find $\frac{d^2}{dx^2} \left[\left(5 x^2 - 4 x \right) \cos(x) \right]$.

a)
$$(-5x^2 + 4x + 10)\sin(x) - (20x - 8)\cos(x)$$

c)
$$(-5x^2 + 4x + 10)\cos^2(x) - (20x - 8)\sin(x)$$

d)
$$\bigcirc$$
 $(10x-4)\cos(x)-(5x^2-4x)\sin(x)$

e)
$$(-5x^2 + 4x + 10)\cos(x) - (20x - 8)\sin(x)$$

Question 4

For
$$g(x) = \frac{1}{4x^2 + 5x}$$
, find $g'(2)$.

- a) $\bigcirc \frac{1}{676}$
- **b)** $\bigcirc \frac{676}{21}$
- c) $\bigcirc \frac{21}{676}$
- **d)** $\bigcirc -\frac{21}{676}$
- **e)** $-\frac{1}{676}$

Question 5

$$rac{d}{dx}\left(\left(x^2-2x
ight)\cdotrac{d}{dx}\left(x+rac{6}{x}
ight)
ight)=$$

a)
$$0 3x^2 - 4x + 6$$

b)
$$\bigcirc 2x - 2 - \frac{12}{x^2}$$

c)
$$2x^2 + 12 - 2x - \frac{12}{x}$$

d)
$$\bigcirc 6x - 4$$

e)
$$02 + \frac{24}{x^3}$$

Ouestion 6

Find $\frac{dy}{dx}$ at x=0 given $y=u+\frac{1}{u}$ and $u=(1x+1)^5$.

a)
$$\bigcirc \frac{dy}{dx} = 0$$

$$\mathbf{b)} \quad \bigcirc \frac{dy}{dx} = -1$$

c)
$$\bigcirc \frac{dy}{dx} = 1$$

d)
$$\bigcirc \frac{dy}{dx} = 2$$

e)
$$\bigcirc \frac{dy}{dx} = 3$$

Question 7

Evaluate $(g \circ f)'(9)$, given that:

Print Test

$$f(8) = 8$$
 $f'(8) = 8$
 $f(9) = 9$ $f'(9) = 8$
 $f(10) = 9$ $f'(10) = 9$
 $g(8) = 8$ $g'(8) = 9$
 $g(9) = 10$ $g'(9) = 10$
 $g(10) = 9$ $g'(10) = 10$

- **a)** 79
- **b)** 82
- **c)** 081
- **d)** 080
- **e)** 083

Question 8

Express the deriviative $\frac{d}{dx}\left(\left(f(2x)\right)^2-1\right)$ in terms of f'.

a)
$$\bigcirc f(2x) \cdot f'(2x)$$

b)
$$\bigcirc 2 \cdot f(2x) \cdot f'(2x)$$

c)
$$\bigcirc 4 \cdot f(2x) \cdot f'(2x)$$

d)
$$\bigcirc 4x \cdot f'(2x)$$

e)
$$\bigcirc 4 \cdot f'(2x)$$

Question 9

Calculate the derivative of the given function $f(x)=4\sin^5(\sqrt{x})$

a)
$$\bigcirc f'(x) = 20\cos(\sqrt{x})$$

b)
$$\bigcirc f'(x) = rac{40\sin^4(\sqrt{x})\cos(\sqrt{x})}{\sqrt{x}}$$

c)
$$\bigcirc f'(x) = rac{10\sin^4(\sqrt{x})\cos(\sqrt{x})}{\sqrt{x}}$$

d)
$$0 f'(x) = 20\sin^4(\sqrt{x})\cos(\sqrt{x})$$

e)
$$\bigcirc f'(x) = rac{10\cos(\sqrt{x})}{\sqrt{x}}$$

Question 10

Find the equation of the tangent line for $f(x)=4\tan(x)$ at $x=\frac{\pi}{4}$

a)
$$y = 8\left(x - \frac{\pi}{4}\right) + 4$$

b)
$$y = \left(x - \frac{\pi}{4}\right) + 4\sqrt{2}$$

c)
$$y = 8\left(x - \frac{\pi}{4}\right)$$

d)
$$y = 4\left(x - \frac{\pi}{4}\right) + 8$$

e)
$$y = 4\left(x - \frac{\pi}{4}\right) + 4\sqrt{2}$$

Question 11

Determine the value(s) of x between 0 and 2π where the tangent lines are horizontal for $f(x) = 10\sin(x) - 10\cos(x)$.

a)
$$x = \frac{3\pi}{4}$$
 and $x = \frac{5\pi}{4}$

b)
$$\bigcirc x = \frac{\pi}{4}$$
 and $x = \frac{5\pi}{4}$

c)
$$\bigcirc x = 0$$
 and $x = \pi$

d)
$$x = \frac{3\pi}{4}$$
 and $x = \frac{7\pi}{4}$

e)
$$\bigcirc x = \frac{\pi}{2}$$
 and $x = \frac{3\pi}{2}$