

Proof of the Somos-4 Hankel Determinants Conjecture

Guoce Xin

ABSTRACT. By considering the fundamental equation $x = y - y^2 = z - z^3$, Somos conjectured that the Hankel determinants for the generating series $y(z)$ are the Somos-4 numbers. We prove this conjecture by using the quadratic transformation for Hankel determinants of Sulanke and Xin.

1. Introduction

A generating function $Q(x) = \sum_{n \geq 0} q_n x^n$ defines a sequence of Hankel matrices H_1, H_2, H_3, \dots , where H_n is an n by n matrix with entries $(H_n)_{i,j} = q_{i+j-2}$. Hankel determinants are determinants of these matrices. Traditionally, H_0 is defined to be the empty matrix with determinant 1.

In the year of 2000, Somos [6] considered the fundamental equation $x = y - y^2 = z - z^3$. He observed that three types of expansions give nice Hankel determinants. The first one is by expanding y as a series in x , which gives the generating function for Catalan numbers; the second one is by expanding y as a series in z , which gives a generating function related to Catalan and Motzkin numbers; the third one is by expanding z as a series in x , which gives the generating function for ternary trees. The first case was known by Shapiro [5], the third case was proved independently in [1, 2, 8], and the second case, known as the *Somos-4 conjecture*, is still open.

The Somos-4 conjecture can be restated as follows. Expanding y as a series in z gives

$$y = z + z^2 + z^3 + 3z^4 + 8z^5 + 23z^6 + \dots$$

Let $Q(z) = (y - z)/z^2$ and let $s_n = \det H_n(Q)$.

CONJECTURE 1 (Somos-4). *The Hankel determinants s_n defined above satisfy the recursion*

$$(1) \quad s_n s_{n-4} = s_{n-1} s_{n-3} + s_{n-2}^2,$$

with initial conditions $s_0 = 1, s_1 = 1, s_2 = 2, s_3 = 3$.

For instance,

$$H_3(Q) = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 8 \\ 3 & 8 & 23 \end{pmatrix}, \quad s_3 = \det H_3(Q) = 3.$$

Our main objective in this paper is to prove the above conjecture.

There are many classical tools of continued fractions for evaluating Hankel determinants, such as the J -fractions in Krattenthaler [4] or Wall [9] and the S -fractions in Jones and Thron [3, Theorem 7.2]. Our tool is by Sulanke and Xin's quadratic transformation for Hankel determinants [7] developed from the continued fraction method of Gessel and Xin [2].

2000 *Mathematics Subject Classification.* Primary 15A15; Secondary 30B70.

Key words and phrases. Hankel determinants, continued fractions.

2. Solving a system of recurrences

Proposition 4.1 of [7] defines a quadratic transformation \mathcal{T} , and asserts that for certain generating function F , we can find $\mathcal{T}(F)$ such that $\det(H_n(F)) = a \det(H_{n-d-1}(\mathcal{T}(F)))$, where a is a constant and d is a nonnegative integer. See [7] for detailed information. Here we only need the following special case.

LEMMA 2. Suppose $a \neq 0$. If the generating functions $F(x)$ and $G(x)$ are uniquely defined by

$$\begin{aligned} F(x) &= \frac{a+bx}{1+cx+dx^2+x^2(e+fx)F(x)}, \\ G(x) &= \frac{-\frac{a^3e+a^2d-acb+b^2}{a^2}-\frac{a^4f+ca^3d-c^2a^2b+2cab^2-ba^2d-b^3}{a^3}x}{1+cx-\frac{-2acb+2b^2+a^2d}{a^2}x^2+x^2(-1-\frac{b}{a}x)G(x)}, \end{aligned}$$

then $\det H_n(F) = a^n \det H_{n-1}(G)$.

Our proof is by iterative application of the above lemma. To be precise, define $Q_0(x) = Q(x)$, and recursively define $Q_{n+1}(x)$ to be the unique power series solution of

$$(2) \quad Q_{n+1}(x) = \frac{a_{n+1} + b_{n+1}x}{1 + c_{n+1}x + d_{n+1}x^2 + x^2(e_{n+1} + f_{n+1}x)Q_{n+1}(x)},$$

where

$$(3) \quad a_{n+1} = -\frac{a_n^3 e_n + a_n^2 d_n - a_n c_n b_n + b_n^2}{a_n^2}$$

$$(4) \quad b_{n+1} = -\frac{a_n^4 f_n + c_n a_n^3 d_n - c_n^2 a_n^2 b_n + 2 c_n a_n b_n^2 - b_n a_n^2 d_n - b_n^3}{a_n^3}$$

$$c_{n+1} = c_n$$

$$(5) \quad d_{n+1} = -\frac{-2 a_n c_n b_n + 2 b_n^2 + a_n^2 d_n}{a_n^2}$$

$$e_{n+1} = -1$$

$$(6) \quad f_{n+1} = -\frac{b_n}{a_n}$$

It is straightforward to represent $Q(x)$ as the unique power series solution of

$$Q(x) = \frac{1-x}{1-2x-x^2Q(x)}.$$

Therefore we shall set $a_0 = 1, b_0 = -1, c_0 = -2, d_0 = 0, e_0 = -1, f_0 = 0$. By Lemma 2, one can deduce that $\det(H_n(Q)) = a_0^n a_1^{n-1} \cdots a_{n-1}$. This transforms the recursion for s_n to that for a_n as follows:

$$(7) \quad a_n a_{n-1} a_{n-2} = 1 + 1/a_{n-1}.$$

We remark that the above recursion implies that $s_3 = s_2 + s_1^2$, which holds for the Somos-4 sequence.

It is a surprise that the recursion system can be solved for arbitrary initial condition. For simplicity, we write $c_n = c$ and assume $e_0 = -1$ (otherwise start with Q_1). Our solution can be stated as follows.

THEOREM 3. Suppose $c_n = c, e_n = -1$, and a_n, b_n, d_n, f_n satisfy the recursion (3,4,5,6). Then

$$(8) \quad a_{n+2} a_{n+1} + a_{n+1} a_n = 2a_0 a_1 + a_0(f_0 + f_1 + c)(2f_1 + c) - (a_0(f_0 + f_1 + c))^2/a_{n+1}.$$

PROOF. We shall try to write everything in terms of the a 's. Using (6), we can replace b_n with $-a_n f_{n+1}$ everywhere. Therefore (3) becomes

$$(9) \quad d_n = a_n - a_{n+1} - c f_{n+1} - f_{n+1}^2.$$

Substituting (9) into (4) and simplifying gives

$$f_{n+2} a_{n+1} = a_n f_n + c a_n - c a_{n+1} + f_{n+1} a_n - f_{n+1} a_{n+1},$$

which can be written as

$$a_{n+1}(f_{n+2} + f_{n+1} + c) = a_n(f_{n+1} + f_n + c).$$

That is to say

$$(10) \quad a_{n+1}(f_{n+2} + f_{n+1} + c) = a_0(f_1 + f_0 + c).$$

Substituting (9) into (5) and simplifying gives

$$a_n - a_{n+2} = cf_{n+2} + f_{n+2}^2 - (cf_{n+1} + f_{n+1}^2) = (f_{n+2} - f_{n+1})(f_{n+2} + f_{n+1} + c).$$

Applying (10), we obtain

$$a_n a_{n+1} - a_{n+1} a_{n+2} = a_0(f_1 + f_0 + c)(f_{n+2} - f_{n+1}),$$

which leads to

$$(11) \quad a_0 a_1 - a_{n+1} a_{n+2} = a_0(f_1 + f_0 + c)(f_{n+2} - f_1).$$

Combining (10) and (11), we obtain (8). \square

Now we are ready to prove the Somos-4 Conjecture.

PROOF OF THE SOMOS-4 CONJECTURE. Applying Theorem 3 for the case $a_0 = 1, b_0 = -1, c = -2, d_0 = 0, e_0 = -1, f_0 = 0$, we obtain $a_1 = 2, f_1 = 1$, and

$$(12) \quad a_{n+2} = 4/a_{n+1} - a_n - 1/a_{n+1}^2.$$

Recall that we have transformed the recursion (1) to (7), which can be written as

$$a_n a_{n-1}^2 a_{n-2} - 1 - a_{n-1} = 0.$$

By applying (12) (with n replaced by $n - 2$) and simplifying, the above equation becomes

$$4a_{n-2}a_{n-1} - a_{n-2} - a_{n-2}^2a_{n-1}^2 - 1 - a_{n-1} = 0.$$

Denote by $T(n)$ the left-hand side of the above equation. We claim that $T(n) = 0$ for all n , so that (7) holds and the conjecture follows.

We prove the claim by induction on n . The claim is easily checked to be true for $n = 2$. Assume the claim hold for $n - 1$. By applying (12) (with n replaced by $n - 3$) and simplifying, we obtain

$$T(n) = 4a_{n-3}a_{n-2} - a_{n-2} - a_{n-3} - a_{n-3}^2a_{n-2}^2 - 1 = T(n - 1) = 0.$$

Thus the claim follows. \square

Acknowledgments. The author was grateful to Doron Zeilberger for calling his attention to the Somos-4 conjecture. This work was supported by the 973 Project, the PCSIRT project of the Ministry of Education, the Ministry of Science and Technology and the National Science Foundation of China.

References

1. Ö. Egecioğlu, T. Redmond, and C. Ryavec, From a polynomial Riemann hypothesis to alternating sign matrices, *Electron. J. Combin.* **8** (2001), no. 1, R36, 51 pp.
2. I. M. Gessel and G. Xin, The generating function of ternary trees and continued fractions, *Electron. J. Combin.*, **13** (2006), R53. (electronic).
3. W. B. Jones and W. J. Thron, Continued Fractions: Analytic Theory and Applications, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley, Reading, Mass., 1980.
4. C. Krattenthaler, Advanced determinant calculus: a complement, *Linear Algebra Appl.* **411** (2005), 68–166
The Andrews Festschrift (Maratea, 1998). Sem. Lothar. Combin. **42** (1999), Art. B42q, 67 pp. (electronic).
5. L. W. Shapiro, A Catalan triangle, *Discrete Math.* **14** no. 1 (1976), 83–90.
6. M. Somos, <http://grail.cba.csuohio.edu/~somos/nwic.html>.
7. R. A. Sulanke and G. Xin, Hankel Determinants for Some Common Lattice Paths, *Adv. in Appl. Math.*, to appear, appeared at Formal Power Series and Algebraic Combinatorics (FPSAC06).
8. U. Tamm, Some aspects of Hankel matrices in coding theory and combinatorics, *Electron. J. Combin.* **8** (2001), no. 1, A1, 31 pp.
9. H. S. Wall, *Analytic Theory of Continued Fractions*, Van Nostrand, New York, 1948.