Unit 6 Phases of Matter - Real gases

Real gases

- The <u>ideal gas</u> model assumes molecules <u>do not</u> interact. Real molecules <u>do</u> have interactions.
- At low densities (<u>low pressure</u>), molecules in the gas spend little time close together so the effect of any interactions is negligible and the <u>ideal gas</u> <u>equation</u> can be quite accurate.
- At high densities (<u>high pressure</u>), interactions start to have an effect and more accurate gas equations are needed, such as the <u>virial equation</u> or the van der Waals equation.

Van der Waals' Equation

- 1. **Repulsive interaction** (Size effect): The repulsive interaction between molecules implies that they cannot come closer than a certain distance. The actual volume in which the molecules can move is thus reduced compared with the volume of the container V. Therefore, we replace V in the ideal gas law by (V nb), where b is a constant specific to each gas.
 - 2. **Attractive forces**: The attractive forces reduce the pressure that the gas exerts. Thus, the observed pressure p will be less than the ideal gas pressure $P_{\rm ideal}$. Therefore, $P_{\rm ideal}$ in the ideal gas law is replaced by $(P + an^2/V^2)$ where a is a constant specific to each gas.

$$\left(P + a \frac{n^2}{V^2}\right) (V - nb) = nRT$$
attraction repulsion

van der Waals Constants for Gas Molecules		
Substance	a (L²-atm/mol²)	B (L/mol)
Не	0.0341	0.02370
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
H ₂	0.244	0.0266
Cl ₂	6.49	0.0562
H₂O	5.46	0.0305
NH ₃	4.17	0.0371
CH₄	2.25	0.0428
CO ₂	3.59	0.0427
CH₃OH	9.65	0.0670
C₃H ₈	8.78	0.0844
NO ₂	5.354	0.0442
SO ₂	6.803	0.0563

Virial Equation

• Compressibility factor: $z \equiv PV/(nRT)$; ideal gas: z = 1

$$z = \frac{PV}{nRT} = 1 + \frac{B_{2P}}{RT} \cdot P + \frac{B_{3P}}{RT} \cdot P^2 + \frac{B_{4P}}{RT} \cdot P^3 + \dots$$

 $B_{2p}, B_{2p}, B_{2p}, \dots$ are virial coefficients

• Experimental observations:

