Exercise Sheet 6 - Solutions Propositional Logic - Logical Equivalences & Normal Forms & SAT

1. Let $A = ((p \land q) \to r) \to (p \lor \neg r)$. To convert A to a DNF we first compute A's truth table:

p	q	r	$p \wedge q$	$(p \land q) \to r$	$\neg r$	$p \vee \neg r$	$\mid A \mid$
$\overline{\mathbf{T}}$	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	F	\mathbf{T}	\mathbf{T}
${f T}$	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{T}
${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{T}	\mathbf{T}	\mathbf{T}
${f F}$	\mathbf{T}	\mathbf{T}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
${f F}$	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{T}	\mathbf{T}	\mathbf{T}
${f F}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{T}	$oxed{\mathbf{T}}$	\mathbf{T}

We enumerate all the T rows:

- $p \wedge q \wedge r$
- $p \wedge q \wedge \neg r$
- $p \land \neg q \land r$
- $p \land \neg q \land \neg r$
- $\bullet \ \neg p \wedge q \wedge \neg r$
- $\bullet \neg p \wedge \neg q \wedge \neg r$

Finally, we combine those using \vee :

$$(p \land q \land r) \lor (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$$

- 2. To convert A to a CNF we first enumerate all the \mathbf{F} rows:
 - $\neg p \land q \land r$
 - $\neg p \land \neg q \land r$

We combine the negation of those using \wedge :

$$\neg(\neg p \land q \land r) \land \neg(\neg p \land \neg q \land r)$$

We then use de Morgan and double negation elimination to convert this formula to a CNF as follows:

- $\neg(\neg p \land q \land r) \land \neg(\neg p \land \neg q \land r)$
- $(\neg \neg p \lor \neg q \lor \neg r) \land \neg (\neg p \land \neg q \land r)$ by de Morgan
- $(\neg \neg p \lor \neg q \lor \neg r) \land (\neg \neg p \lor \neg \neg q \lor \neg r)$ by de Morgan

- $(p \lor \neg q \lor \neg r) \land (\neg \neg p \lor \neg \neg q \lor \neg r)$ by DNE
- $(p \vee \neg q \vee \neg r) \wedge (p \vee \neg \neg q \vee \neg r)$ by DNE
- $(p \lor \neg q \lor \neg r) \land (p \lor q \lor \neg r)$ by DNE
- 3. We will now convert A to a CNF using equivalences
 - $((p \land q) \rightarrow r) \rightarrow (p \lor \neg r)$
 - $(\neg (p \land q) \lor r) \to (p \lor \neg r)$ implication elimination
 - $\neg(\neg(p \land q) \lor r) \lor (p \lor \neg r)$ implication elimination
 - $(\neg \neg (p \land q) \land \neg r) \lor (p \lor \neg r)$ de Morgan
 - $((p \land q) \land \neg r) \lor (p \lor \neg r) \text{DNE}$
 - $(p \vee \neg r) \vee ((p \wedge q) \wedge \neg r)$ commutativity of \vee
 - $((p \vee \neg r) \vee (p \wedge q)) \wedge ((p \vee \neg r) \vee \neg r)$ distributivity of \vee over \wedge
 - $(((p \lor \neg r) \lor p) \land ((p \lor \neg r) \lor q)) \land ((p \lor \neg r) \lor \neg r) \text{distributivity of } \lor \text{ over } \land$
 - $(((p \lor \neg r) \lor p) \land ((p \lor \neg r) \lor q)) \land (p \lor \neg r \lor \neg r)$ associativity of \lor
 - $((p \lor \neg r \lor p) \land ((p \lor \neg r) \lor q)) \land (p \lor \neg r \lor \neg r)$ associativity of \lor
 - $((p \lor \neg r \lor p) \land (p \lor \neg r \lor q)) \land (p \lor \neg r \lor \neg r)$ associativity of \lor
 - $(p \vee \neg r \vee p) \wedge (p \vee \neg r \vee q) \wedge (p \vee \neg r \vee \neg r)$ associativity of \wedge

Through idempotence, commutativity and associativity, this could even be simplified further to:

$$(p \vee \neg r) \wedge (p \vee q \vee \neg r)$$

- 4. Here is a possible run of the algorithm:
 - $(p \lor t \lor s) \land (q \lor r \lor \neg s \lor \neg t) \land (p \lor \neg q \lor s) \land (p \lor q \lor r \lor \neg t) \land (q \lor r \lor \neg s) \land (\neg p \lor \neg s \lor \neg t) \land (\neg p \lor \neg q \lor s \lor \neg r) \land (\neg r \lor t)$
 - select p = T
 - $\bullet \ (q \lor r \lor \neg s \lor \neg t) \land (q \lor r \lor \neg s) \land (\neg s \lor \neg t) \land (q \lor s \lor \neg r) \land (\neg q \lor s \lor \neg r) \land (\neg r \lor t)$
 - select q = T
 - $(\neg s \lor \neg t) \land (s \lor \neg r) \land (\neg r \lor t)$
 - select r = T
 - $(\neg s \lor \neg t) \land (s) \land (t)$
 - select s = T
 - \bullet $(\neg t) \wedge (t)$
 - select $t = \mathbf{F}$
 - () empty clause **backtrack**
 - select t = T
 - () empty clause backtrack
 - select $s = \mathbf{F}$
 - () \wedge (t) empty clause **backtrack**
 - select $r = \mathbf{F}$
 - \bullet $(\neg s \lor \neg t)$
 - select $s = \mathbf{F}$
 - no more clauses **SAT**

Therefore this formula is satisfiable. It is for example satisfied by the valuation:

$$p = \mathbf{T}, q = \mathbf{T}, r = \mathbf{F}, s = \mathbf{F}, t = \mathbf{T}$$