

Recommender Workshop

Part 1: Introduction

Customers Running Machine Learning On AWS Today

Σ

SOpenAI

🗱 slack

witlee

Zillow

SOpenAI

DVIDIA

mapbox

Pinterest

iTranslate

NASA

UCLA

inhealthcare

🐴 Mapillary

gumgum^a

Vonage

yelp

BeeLiked

Machine Learning at AWS

Our mission:

Put machine learning in the hands of every developer and data scientist

The Amazon Machine Learning Stack

Recommender Workshop Agenda

- Part 1: Introduction (You Are Here)
 - Overview of Machine Learning Process, Amazon SageMaker
 - Hands-on: Data Exploration
- Part 2: Collaborative Filtering
 - Core Concepts for Recommendations
 - Hands-on: K-Means Clustering
- Part 3: Matrix Factorization
 - Refining Recommendations
 - Hands-on: Factorization Machine
- Part 4: Hyperparameter Tuning
 - Key Concepts
 - Hands-on: Hyperparameter Tuning

Let's Review the ML Process

Why We built Amazon SageMaker: The Model Training Undifferentiated Heavy Lifting

- Setup and manage
 Notebook Environments
- Setup and manage Training Clusters
- Write Data Connectors
- Scale ML algorithms to large datasets
- Distribute ML training algorithm to multiple machines
- Secure Model artifacts

Why We built Amazon SageMaker: The Model Deployment Undifferentiated Heavy Lifting

 Setup and manage Model Inference Clusters

Business Problem -

- Manage and Scale Model Inference APIs
- Monitor and Debug Model Predictions
- Models versioning and performance tracking
- Automate New Model version promotion to production (A/B testing)

Easily build, train, and deploy machine learning models

Easily build, train, and deploy machine learning models

SageMaker Built-in Algorithms

K-means Clustering
PCA
Neural Topic Modelling
Factorisation Machines
Linear Learner
XGBoost
Latent Dirichlet Allocation
Image Classification
Seq2Seq
DeepAR Forecasting
BlazingText (word2vec)
Random Cut Forest
kNN
Object Detection

SageMaker Built-in Algorithms

K-means Clustering
PCA
Neural Topic Modelling
Factorisation Machines
Linear Learner – Regression
XGBoost
Latent Dirichlet Allocation
Image Classification
Seq2Seq
Linear Learner –
Classification

Bring Your Own Algorithms

ML Algorithms

R

MXNet

TensorFlow

Caffe

PyTorch

Keras

CNTK

...

SageMaker Built-in Algorithms

K-means Clustering
PCA
Neural Topic Modelling
Factorisation Machines
Linear Learner – Regression
XGBoost
Latent Dirichlet Allocation
Image Classification
Seq2Seq
Linear Learner –
Classification

Bring Your Own Algorithms

MXNet
TensorFlow
Caffe
PyTorch
Keras
CNTK

SageMaker Built-in Algorithms

K-means Clustering
PCA
Neural Topic Modelling
Factorisation Machines
Linear Learner – Regression
XGBoost
Latent Dirichlet Allocation
Image Classification
Seq2Seq
Linear Learner –
Classification
DeepAR Forecasting

Bring Your Own Algorithms

ML Algorithm: R MXNet FensorFlow Caffe PyTorch Keras CNTK

MXNet & TensorFlow SDK

TensorFlow SDK MXNet (Gluon) SDK

Apache Spark Estimator

Apache Spark Python library Apache Spark Scala library

Easily build, train, and deploy machine learning models

Easily build, train, and deploy machine learning models

Recommender Workshop Repository

http://bit.ly/2wkaV0N

Our Data Set: Movielens

- Public Data Set produced by GroupLens Research
- https://grouplens.org/datasets/movielens/

```
data = pd.read csv("u.data", sep='\t', header=None,
In [15]:
               names=['userid', 'movieid', 'rating', 'timestamp'])
          data.head()
Out[15]:
             userid movieid rating timestamp
           0
                196
                       242
                               3 881250949
                186
                       302
                                  891717742
           2
                                  878887116
                22
                       377
           3
                244
                        51
                                  880606923
           4
                166
                       346
                                  886397596
```


Recommender Workshop Activity

- Log into https://bootrun.awsapps.com/start
- Change to us east 1 region
- Find the Amazon SageMaker service, then find Notebooks
- Spin up new notebook instance
 - Recommended: ml.m4.xlarge type
- Within notebook instance, open Terminal
 - cd SageMaker
 - git clone https://github.com/shirkeyaws/sagemakerrecommender-workshop (aka http://bit.ly/2wkaV0N)
- In Jupyter, within the repo path, find: 01_exploring_data.ipynb

NEXT: Part 2

