Course Notes for

CS 1501 Algorithm Implementation

By
John C. Ramirez
Department of Computer Science
University of Pittsburgh

- These notes are intended for use by students in CS1501 at the University of Pittsburgh and no one else
- These notes are provided free of charge and may not be sold in any shape or form
- These notes are NOT a substitute for material covered during course lectures. If you miss a lecture, you should definitely obtain both these notes and notes written by a student who attended the lecture.
- Material from these notes is obtained from various sources, including, but not limited to, the following:
 - Algorithms in C++ by Robert Sedgewick
 - Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne
 - Introduction to Algorithms, by Cormen, Leiserson and Rivest
 - Various Java and C++ textbooks
 - Various online resources (see notes for specifics)

- Consider BST search for key K:
 - For each node T in the tree we have 4 possible results:
 - 1) T is empty (or sentinel node) indicating item not found.
 - 2) K matches T.key and item is found.
 - 3) K < T.key and we go to left child.
 - 4) K > T.key and we go to right child.
 - Consider now the same basic technique, but proceeding left or right based on the current bit within the key:
 - We still have a tree and 1) and 2) are the same
 - But 3) and 4) will be different.

- Call this tree a Digital Search Tree (DST).
- DST search for key K:
 - For each node T in the tree we have 4 possible results:
 - 1) T is empty (or a sentinel node) indicating item not found.
 - 2) K matches T.key and item is found.
 - 3) Current bit of K is a 0 and we go to left child.
 - 4) Current bit of K is a 1 and we go to right child.
 - Each time we move down in the tree we go to the next bit in the key.
 - ▶ Look at example on next page. →

Note:

Go left on 0 bit Go right on 1 bit

Run-times?

- ▶ Given N random keys, the height of a DST should average O(log₂N).
 - Think of it this way if the keys are random, at each branch it should be equally likely that a key will have a 0 bit or a 1 bit.
 - Thus the tree should be well-balanced.
- In the worst case, we are bound by the number of bits in the key (say it is b number of bits).
 - So in a sense we can say that this tree has a constant run-time, if the number of bits in the key is a constant.
 - This is an improvement over the BST.

But DSTs have drawbacks:

- 1) Data is not sorted.
 - If we want sorted data, we would need to extract all of the data from the tree and sort it.
- 2) Bitwise operations are not always easy.
 - Some languages do not provide for them at all, and for others it is costly.
- 3) What about keys of different lengths?
 - What if a key is a prefix of another key that is already present?
 - Where would we put it?

- 4) In addition to our bitwise comparisons, we are still doing comparisons of the entire key.
 - Note that we use the bits to branch, but we use the whole key for the equality test.
 - May do b key comparisons in the worst case!
 - If a key is long and comparisons are costly, this can be inefficient.
 - BST does key comparisons as well, but does not have the additional bit comparison.
 - All of these issues make DSTs less than desirable as an implementation of a symbol table.
 - But maybe we can improve them...

- Let's first address the last problem (4):
 - ▶ How to reduce / eliminate the number of comparisons (of the entire key)?
 - This will also resolve (1) and (3).
 - We will resolve (2) soon.
 - We'll modify our tree slightly.
 - All values will be in exterior nodes at leaves in the tree.
 - Interior nodes will not contain keys, but will just direct us down the tree toward the leaves, based on the current bit value.
 - In fact, we do not need to store the keys themselves at all.

- Each path from the root to a leaf represents a unique key.
 - Thus the keys are "stored" within the trie, but implicitly via the paths to the leaves rather than explicitly.
- This gives us a Radix Search Trie:
 - Trie is from reTRIEval (see text).
 - See example with same data as DST on next slide. →
 - Note that the tree is taller because all bits in the keys are used.
 - Note also that the keys are being stored in the leaves.
 - This is assuming the symbol table is storing (key, key) pairs.
 - Normally, the symbol table will have (key, value) pairs where the value differs from the key.

- Benefit of simple Radix Search Tries
 - No comparisons of the entire key
 - Thus solves problem (4) of DSTs
 - Do not require keys to be stored
 - Paths from root implicitly define the keys
 - Can handle keys with common prefixes
 - Simply allow interior nodes to have values as well
 - Put value in next node after last bit of key to indicate the termination of a key
 - Thus solves problem (3) of DSTs

- An "inorder" traversal of the tree will give the data in "sorted" order (problem (1)).
 - Look again at the tree in slide 11 to see this.

Drawbacks:

- The tree will have more overall nodes than a DST.
 - Bits to each key are fully elaborated as branches in the tree.
 - Thus, we need to traverse b+1 levels of the tree to find a key of b bits, regardless of the number of keys in the tree.
- Many nodes will have an unused value reference.
 - Every node has this reference, but most will not store a value.
- We are still doing bit operations (problem 2).

- Asymptotic run-time is similar to DST
 - Since all bits are elaborated, every successful search requires b bit comparisons where b is the number of bits in the key.
 - This was the worst case for the DST
 - However, we require no comparisons of the entire key
 - So, again, a benefit to RST is that the entire key does not need to be stored or compared

Improving Tries

- How can we improve tries?
 - If we can reduce the heights we will shorten the path length to the leaves
 - If we can process multiple bits at a time we can avoid bit operations
- We will examine a two variations that improve over the basic trie
 - Multiway Trie (in text as R-way Trie)
 - Allow more than 2 branches per node
 - de la Brandeis Tree (DLB)
 - Maintain fast lookups while reducing memory

- RST that we have seen considers the key 1 bit at a time.
 - This causes a maximum height in the tree of b, where b is the bits in the longest key stored.
 - A search miss, as explained in Proposition H on p. 743 of Sedgewick, will require on average lg₂N nodes to be examined (similar to BST).
- If we considered m bits at a time, then we could reduce the tree height.
 - Maximum height is now b/m since m bits are consumed at each level.
 - Let $R = 2^{m}$
 - Average nodes on search miss is now O(log_RN), since we branch in R directions at each node.

Multiway Tries

- Let's look at an example
 - Consider 2²⁰ (1 meg) keys of length 40 bits
 - Simple RST will have
 - > Worst Case height = 40
 - > Ave. nodes per miss = $O(log_2[2^{20}]) \approx 20$
 - Multiway Trie using 8 bits would have
 - > Worst Case height = 40/8 = 5
 - > Ave. nodes per miss = $O(log_{256}[2^{20}]) \approx 2.5$
- ▶ This is a considerable improvement
- Let's look at an example using character data (ex: a String)

Multiway Tries

Consider a String: DATUM

- This is 40 bits, 8 bits per character
 - If we considered it 1 bit at a time, our tree would have a height of 40
 - However, if we can consider it 1 character (8 bits) at a time we can reduce the height to 40/8 = 5
- How can we do this?
 - Each bit has 2 possible values (1 or 0)
 - Each character has $2^8 = 256$ possible values (ASCII)
 - Thus we need to somehow allow 256-way branching at each node in our tree
 - How can we do this?
 - > Interesting question!

- Let's define a node in our tree to be an array of 256 pointers (references)
 - Each reference will point to a child node on the next level of the tree
 - Our array will be indexed on all of the possible character values in the ASCII set
 - Recall that ASCII values are simply integers from 0-255 which are interpreted as character values
 - We can use these values to index our array, giving us:

Multiway Tries

- Now the value of each character in the String will determine the index and branch to take
- Branching based on characters reduces the height greatly
 - If a string with K characters has n bits, it will have n/8
 (= K) characters and therefore at most K levels
- Character / byte comps are simple, so, we eliminate the bit comparison problem mentioned previously as item (2)
- ▶ Thus, given N strings in a multiway trie, we have
 - Theta(1) for a successful search or insert
 - Theta(K) in terms of the key length
 - Theta(Ig_RN) node accesses for unsuccessful search

- So what is the catch (or cost)?
 - Memory
 - Multiway Tries use considerably more memory than simple tries
 - Each node in the multiway trie contains R (= 2^m)
 pointers/references
 - In example with ASCII characters, R = 256
 - With simple words, R could be 26
 - Many of these are unused, especially
 - During common paths (prefixes), where there is no branching (or "one-way" branching)
 - > Ex: through and throughout
 - At the **lower levels** of the tree, where previous branching has likely separated keys already
 - > Unique suffixes of words

Multiway Trie Structure

- As mentioned, a node represents the possible characters at a given position in the key
 - This is represented by an array of references
 - Indices on array are the characters in the character set
 - A non-null value at an index indicates that a key exists with that char at that point in the key
 - Branching occurs when more than one of the pointers is non-null
- Each new key added will have some prefix represented by nodes already in the trie, followed by a suffix represented by new nodes

- Keys of different lengths are handled as follows:
 - In addition to the array of pointers, each node has a field to indicate if a key terminates there
 - It is set to true to indicate that the string up to that point is a key
 - It is set to false to indicate that the string up to that point is not a key
 - > Rather it is only a prefix to a key
- Note that keys are not directly stored in the trie at all
 - Rather each path from the root to a terminator node represents an individual key in the trie

- Alternatively, if we make our trie symbol table, for each node we can have a reference to store the associated value
 - Recall that a symbol table maps keys to values
 - For a given node, if the value reference is non-null, then that node terminates a key, and the key (expressed as a path from the root to that node) is thus in the trie
 - Note that we need to proceed one level down from that last match
 - For a given node, if the value reference is null, then that node is within a key but does not terminate it, so the path from the root to that node is a prefix of a key only

Ex: Consider strings: bye, by, get, got and

See TrieST.java and DictTest.java

- Let's review again the 4 issues with DSTs:
 - Data is not sorted As with the simple RST a traversal here (done correctly) will produce the data in sorted order (look at figure in previous slide)
 - 2) Bitwise operations are not easy comparing 8 bits (a char) at a time IS easy and efficient
 - 3) What about keys of different lengths? We just saw how to handle this with a termination field or value reference
 - Comparisons of the entire key these are not done at all

- Multiway tries solve these issues nicely
 - But with a cost of a lot of memory
 - ▶ This is especially evident when the symbol table is not very dense
 - i.e. most of the possible string keys do not actually exist in the symbol table
 - Yet we have references to all possible children in each node
 - Think about a dictionary of real words vs. the number of possible permutations of letters
 - Is there a way to keep (mostly) the "good" of a multiway trie while reducing memory?

