

Ù&@^œ^¦ÊÁQ}&È		FÍ»ÁVã¦oÁ, ĐịÁÙ^ã;{ã&ÁÖ^∙ã;}
PÔX	Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ ã), *ÁÛ^• ♂{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied allay holl the bullabol

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$	0.00	$C_d = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>1988.51</u>	<u>6646.05</u>	k
Compressive Load =	<u>4912.26</u>	<u>5085.66</u>	k
Lateral Load =	<u>7.09</u>	2376.67	k
Moment (Weak Axis) =	0.02	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Weight of Concrete = 145 pcf

Compressive Strength = 2500 psi Yield Strength = 60000 psi

Overturning Check

 $M_O = 159549.3 \text{ in-lbs}$

Resisting Force Required = 2417.41 lbs

S.F. = 1.67

Weight Required = 4029.02 lbs Minimum Width = <u>36 in</u> in

Weight Provided = 7177.50 lbs

Sliding

548.33 lbs Force = Friction = 0.4

Weight Required = 1370.81 lbs

Resisting Weight = 7177.50 lbs 0 lbs

Additional Weight Required =

Cohesion

Sliding Force = 548.33 lbs Cohesion = 130 psf

> 33.00 ft² Area = Resisting = 3588.75 lbs

Additional Weight Required = 0 lbs

Shear Key

Additional Force = 0 lbs

Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft

2500 psi $f'_c =$

Length = 8 in Footing Reinforcement

Use fiber reinforcing with (3) #5 rebar.

A minimum 132in long x 36in wide x 18in tall ballast foundation is required

to resist overturning.

Use a 132in long x 36in wide x 18in tall ballast foundation to resist sliding.

Friction is OK.

Use a 132in long x 36in wide x 18in tall ballast foundation. Cohesion is OK.

Shear key is not required.

Bearing Pressure

Ballast Width <u>36 in</u> <u>39 in</u> <u>37 in</u> <u>38 in</u> $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3 \text{ ft}) =$ 7178 lbs 7377 lbs 7576 lbs 7776 lbs

ASD LC		1.0D	+ 1.0S			1.0D+	+ 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D+	- 0.6W	
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	1463 lbs	1463 lbs	1463 lbs	1463 lbs	1956 lbs	1956 lbs	1956 lbs	1956 lbs	2454 lbs	2454 lbs	2454 lbs	2454 lbs	-909 lbs	-909 lbs	-909 lbs	-909 lbs
F _B	1511 lbs	1511 lbs	1511 lbs	1511 lbs	2025 lbs	2025 lbs	2025 lbs	2025 lbs	2539 lbs	2539 lbs	2539 lbs	2539 lbs	-3059 lbs	-3059 lbs	-3059 lbs	-3059 lbs
F _V	123 lbs	123 lbs	123 lbs	123 lbs	960 lbs	960 lbs	960 lbs	960 lbs	804 lbs	804 lbs	804 lbs	804 lbs	-1097 lbs	-1097 lbs	-1097 lbs	-1097 lbs
P _{total}	10151 lbs	10351 lbs	10550 lbs	10750 lbs	11158 lbs	11358 lbs	11557 lbs	11756 lbs	12170 lbs	12370 lbs	12569 lbs	12768 lbs	338 lbs	458 lbs	577 lbs	697 lbs
M	3557 lbs-ft	3557 lbs-ft	3557 lbs-ft	3557 lbs-ft	5936 lbs-ft	5936 lbs-ft	5936 lbs-ft	5936 lbs-ft	6852 lbs-ft	6852 lbs-ft	6852 lbs-ft	6852 lbs-ft	1474 lbs-ft	1474 lbs-ft	1474 lbs-ft	1474 lbs-ft
е	0.35 ft	0.34 ft	0.34 ft	0.33 ft	0.53 ft	0.52 ft	0.51 ft	0.50 ft	0.56 ft	0.55 ft	0.55 ft	0.54 ft	4.36 ft	3.22 ft	2.55 ft	2.12 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	248.8 psf	248.0 psf	247.2 psf	246.4 psf	240.0 psf	239.4 psf	238.8 psf	238.3 psf	255.5 psf	254.5 psf	253.5 psf	252.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	366.4 psf	362.4 psf	358.6 psf	355.0 psf	436.2 psf	430.3 psf	424.7 psf	419.4 psf	482.0 psf	474.9 psf	468.1 psf	461.7 psf	66.0 psf	43.4 psf	41.2 psf	42.2 psf

Maximum Bearing Pressure = 482 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

A minimum 132in long x 36in wide x 18in tall

Overturning Check

1207.7 ft-lbs $M_O =$

805.14 lbs Resisting Force Required =

S.F. = 1.67

Weight Required = 1341.91 lbs Minimum Width = 36 in in Weight Provided = 7177.50 lbs

ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E		
Width		36 in			36 in			36 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	210 lbs	553 lbs	210 lbs	810 lbs	2422 lbs	810 lbs	61 lbs	162 lbs	61 lbs	
F _V	1 lbs	0 lbs	1 lbs	3 lbs	0 lbs	3 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	9096 lbs	7178 lbs	9096 lbs	9269 lbs	7178 lbs	9269 lbs	2660 lbs	7178 lbs	2660 lbs	
М	2 lbs-ft	0 lbs-ft	2 lbs-ft	8 lbs-ft	0 lbs-ft	8 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	
f _{min}	275.5 psf	217.5 psf	275.5 psf	280.4 psf	217.5 psf	280.4 psf	80.6 psf	217.5 psf	80.6 psf	
f _{max}	275.7 psf	217.5 psf	275.7 psf	281.4 psf	217.5 psf	281.4 psf	80.6 psf	217.5 psf	80.6 psf	

Maximum Bearing Pressure = 281 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity =	3.779 k 12.808 k 7.421 k	Rear Strut Maximum Axial Load = 4.655 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k
Utilization =	<u>51%</u>	Utilization = <u>63%</u>
<u>Diagonal Strut</u> Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity =	1.724 k 12.808 k 7.421 k	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>23%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.019 \text{ in} \\ \end{array}$

N/A

reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

The racking structure's

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 102 \text{ in}$$

$$J = 0.432$$

$$282.18$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

Not Used

$$\phi F_L = 27.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 102$$

$$J = 0.432$$

$$179.449$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{\theta_{b}}\right)$$

$$S1 = \left(\frac{\sigma_b}{1.6Dc} \right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.0$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rh/t -

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

38.9 ksi

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_L = \phi b[Bbr-mDbr*h/t]$

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$Sy = 0.599 \text{ in}^3$$

$$M_{\text{max}}Wk = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$\theta_{x}$$

$$S1 = \left(\frac{Bt - \frac{\partial y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ kg}i$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = \sqrt{\frac{1.6Dc}{1.6Dc}}$$

 $S1 = 0.51461$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.2$$

3.4.16

$$D/t = 7.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.1 & 1.$$

$$S2 = C_t$$

S2 = 141.0

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$
 2.366 in^4

 $\phi F_L = 1.3 \phi y F c y$

73.8

43.2 ksi

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{max}St = 3.363 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 33.3 \, \, ksi \\ y = & 923544 \, \, mm^4 \\ & 2.219 \, \, in^4 \\ x = & 40 \, \, mm \\ Sy = & 1.409 \, \, in^3 \\ M_{max} W \, k = & 3.904 \, \, k\text{-ft} \end{array}$$

Compression

S2 =

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

S1 =12.21 (See 3.4.16 above for formula)

32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$

1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{\mathsf{L}} &= \phi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_{\mathsf{L}} &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

N/A for Weak Direction

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C$$

$$\varphi F_L = 1.17 \varphi y F_C y$$

 $\varphi F_L = 38.9 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{1}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.16.1

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

$$S1 = \frac{BbT - \frac{1}{\theta_b} 1.SFCy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$CC = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

Sy =

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$
3.4.10
$$Rb/t = 0.0$$

$$\begin{pmatrix} Bt - \frac{\theta_y}{\theta_b} Fcy \end{pmatrix}^2$$

$$S2 = 131.3$$

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

 $Strut = \underline{55x55}$

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{\rm b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

24.5

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St =$ 28.2 ksi

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$y = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1 N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

y =

Sx =

 $M_{max}St =$

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi cc = 0.76536$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_L = 18.9268$ ksi

$$\begin{split} \phi cc &= 0.76536 \\ \phi F_L &= \phi cc (Bc\text{-}Dc\text{+}\lambda) \\ \phi F_L &= 18.9268 \text{ ksi} \end{split}$$
 3.4.9
$$\begin{array}{ll} b/t &= 24.5 \\ S1 &= 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 &= 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L &= \phi c [Bp\text{-}1.6Dp\text{+}b/t] \\ \phi F_L &= 28.2 \text{ ksi} \\ \\ b/t &= 24.5 \\ S1 &= 12.21 \\ S2 &= 32.70 \\ \phi F_L &= \phi c [Bp\text{-}1.6Dp\text{+}b/t] \\ \phi F_L &= 28.2 \text{ ksi} \\ \end{split}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-112.091	-112.091	0	0
2	M14	٧	-112.091	-112.091	0	0
3	M15	V	-179.345	-179.345	0	0
4	M16	V	-179.345	-179.345	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	257.809	257.809	0	0 -
2	M14	V	199.522	199.522	0	0
3	M15	V	112.091	112.091	0	0
4	M16	У	112.091	112.091	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

псу

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	459.907	2	1227.249	2	.759	1	.003	1	0	1	0	1
2		min	-584.66	3	-1581.817	3	.028	15	0	15	0	1	0	1
3	N7	max	.023	9	1253.899	1	187	15	0	15	0	1	0	1
4		min	154	2	-458.695	3	-5.457	1	012	1	0	1	0	1
5	N15	max	.02	9	3778.661	2	0	1	0	1	0	1	0	1
6		min	-1.802	2	-1529.624	3	0	11	0	11	0	1	0	1
7	N16	max	1646.89	2	3912.049	2	0	3	0	3	0	1	0	1
8		min	-1828.206	3	-5112.349	3	0	1	0	2	0	1	0	1
9	N23	max	.023	9	1253.899	1	5.457	1	.012	1	0	1	0	1
10		min	154	2	-458.695	3	.187	15	0	15	0	1	0	1
11	N24	max	459.907	2	1227.249	2	028	15	0	15	0	1	0	1
12		min	-584.66	3	-1581.817	3	759	1	003	1	0	1	0	1
13	Totals:	max	2564.592	2	12591.847	2	0	1						
14		min	-2998.605	3	-10722.997	3	0	11						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	58.943	1	507.684	1	-3.762	15	0	3	.14	1	0	1
2			min	1.948	15	-805.345	3	-114.918	1	016	2	.005	15	0	3
3		2	max	58.943	1	354.774	1	-2.888	15	0	3	.044	1	.648	3
4			min	1.948	15	-566.747	3	-88.129	1	016	2	.001	15	407	1
5		3	max	58.943	1	201.864	1	-2.015	15	0	3	.002	3	1.071	3
6			min	1.948	15	-328.149	3	-61.34	1	016	2	027	1	67	1
7		4	max	58.943	1	48.954	1	-1.141	15	0	3	001	12	1.268	3
8			min	1.948	15	-89.551	3	-34.551	1	016	2	072	1	789	1
9		5	max	58.943	1	149.046	3	195	10	0	3	003	12	1.24	3
10			min	1.948	15	-103.956	1	-7.762	1	016	2	092	1	763	1
11		6	max	58.943	1	387.644	3	19.027	1	0	3	003	15	.986	3
12			min	1.948	15	-256.867	1	403	3	016	2	087	1	592	1
13		7	max	58.943	1	626.242	3	45.816	1	0	3	002	15	.507	3
14			min	1.948	15	-409.777	1	.691	12	016	2	056	1	277	1
15		8	max	58.943	1	864.839	3	72.605	1	0	3	.002	2	.182	1
16			min	1.948	15	-562.687	1	1.564	12	016	2	003	3	197	3
17		9	max	58.943	1	1103.437	3	99.395	1	0	3	.081	1	.785	1
18			min	1.948	15	-715.597	1	2.438	12	016	2	0	3	-1.126	3
19		10	max	58.943	1	1342.035	3	126.184	1	.016	2	.188	1	1.534	1
20			min	1.948	15	-868.508	1	3.311	12	0	12	.003	12	-2.281	3
21		11	max	58.943	1	715.597	1	-2.438	12	.016	2	.081	1	.785	1
22			min	1.948	15	-1103.437	3	-99.395	1	0	3	0	3	-1.126	3
23		12	max	58.943	1	562.687	1	-1.564	12	.016	2	.002	2	.182	1
24			min	1.948	15	-864.839	3	-72.605	1	0	3	003	3	197	3
25		13	max	58.943	1	409.777	1	691	12	.016	2	002	15	.507	3
26			min	1.948	15	-626.242	3	-45.816	1	0	3	056	1	277	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]_LC	y-y Mome	LC	z-z Mome	LC
27		14	max	58.943	1	256.867	_1_	.403	3	.016	2	003	15	.986	3
28			min	1.948	15	-387.644	3	-19.027	1	0	3	087	1	592	1
29		15	max	58.943	1_	103.956	_1_	7.762	1	.016	2	003	12	1.24	3
30			min	1.948	15	-149.046	3	.195	10	0	3	092	1	763	1
31		16	max	58.943	1	89.551	3	34.551	1	.016	2	001	12	1.268	3
32		47	min	1.948	15	-48.954	1	1.141	15	0	3	072	1	789	1
33		17	max	58.943	1	328.149	3	61.34	1	.016	2	.002	3	1.071	3
34		40	min	1.948	15		1	2.015	15	0	3	027	1	67	1
35		18	max	58.943	1	566.747 -354.774	3	88.129	1	<u>.016</u> 0	3	.044 .001	1	.648	3
36 37		19	min	1.948 58.943	1 <u>5</u>	805.345	3	2.888 114.918	15 1	.016	2	<u></u> .14	15 1	407 0	1
38		19	max min	1.948	15		1	3.762	15	016	3	.005	15	0	3
39	M14	1	max	30.396	1	553.616	1	-3.894	15	.011	3	.163	1	0	1
40	IVI 1 4		min	1.004	15	-647.657	3	-118.978		014	2	.005	15	0	3
41		2	max	30.396	1	400.705	1	-3.021	15	.011	3	.063	1	.525	3
42		_	min	1.004	15	-464.108	3	-92.189	1	014	2	.002	15	451	1
43		3	max	30.396	1	247.795	1	-2.147	15	.011	3	.003	3	.877	3
44			min	1.004	15			-65.4	1	014	2	012	1	757	1
45		4	max	30.396	1	94.885	1	-1.274	15	.011	3	0	12	1.055	3
46			min	1.004	15	-97.011	3	-38.61	1	014	2	061	1	919	1
47		5	max	30.396	1	86.538	3	401	15	.011	3	002	12	1.06	3
48			min	1.004	15	-58.025	1	-11.821	1	014	2	084	1	936	1
49		6	max	30.396	1	270.087	3	14.968	1	.011	3	003	15	.891	3
50			min	1.004	15	-210.936	1	604	3	014	2	083	1	809	1
51		7	max	30.396	1	453.636	3	41.757	1	.011	3	002	15	.55	3
52			min	1.004	15	-363.846	1	.557	12	014	2	056	1	538	1
53		8	max	30.396	1	637.185	3	68.546	1	.011	3	0	10	.035	3
54			min	1.004	15		1	1.43	12	014	2	004	1	137	2
55		9	max	30.396	1	820.734	3	95.335	1	.011	3	.073	1	.438	1
56			min	1.004	15	-669.666	1_	2.303	12	014	2	0	3	654	3
57		10	max	30.396	1	1004.283	3	122.124	1	.014	2	.176	1	1.143	1
58			min	1.004	15		1_	3.177	12	011	3	.002	12	-1.516	3
59		11	max	30.396	1	669.666	1	-2.303	12	.014	2	.073	1	.438	1
60		40	min	1.004	15	-820.734	3	-95.335	1	011	3	0	3	654	3
61		12	max	30.396	1	516.756	1	-1.43	12	.014	2	0	10	.035	3
62		40	min	1.004	15	-637.185	3	-68.546	1	011	3	004	1	137	2
63		13	max	30.396	1	363.846	1	557	12	.014	3	002	15	.55	3
64		14	min	1.004 30.396	15			-41.757	1	011 014	2	056	1 1 5	<u>538</u>	1
65 66		14	max min	1.004	15	210.936 -270.087	3	.604 -14.968	3	.014 011	3	003 083	15	.891 809	3
67		15		30.396				11.821	1	.014	2	002	12	1.06	3
68		13	min	1.004	15	-86.538	3	.401	15	011	3	084	1	936	1
69		16	max	30.396	1	97.011	3	38.61	1	.014	2	<u>.00+</u>	12	1.055	3
70		10	min	1.004	15	-94.885	1	1.274	15	011	3	061	1	919	1
71		17	max	30.396	1	280.559	3	65.4	1	.014	2	.003	3	.877	3
72		- '	min	1.004	15	-247.795	1	2.147	15	011	3	012	1	757	1
73		18	max	30.396	1	464.108	3	92.189	1	.014	2	.063	1	.525	3
74			min	1.004	15	-400.705	1	3.021	15	011	3	.002	15	451	1
75		19	max	30.396	1	647.657	3	118.978	1	.014	2	.163	1	0	1
76			min	1.004	15	-553.616	1	3.894	15	011	3	.005	15	0	3
77	M15	1	max	-1.048	15	741.162	2	-3.893	15	.014	2	.163	1	0	2
78			min	-31.617	1	-369.438	3	-118.981	1	01	3	.005	15	0	3
79		2	max	-1.048	15	533.109	2	-3.02	15	.014	2	.063	1	.301	3
80			min	-31.617	1	-268.463	3	-92.192	1	01	3	.002	15	602	2
81		3	max	-1.048	15	325.056	2	-2.147	15	.014	2	.002	3	.507	3
82			min	-31.617	1	-167.488	3	-65.403	1	01	3	012	1	-1.007	2
83		4	max	-1.048	15	117.003	2	-1.273	15	.014	2	0	12	.618	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-31.617	1	-66.513	3	-38.613	1	01	3	061	1	-1.216	2
85		5	max	-1.048	15	34.462	3	4	15	.014	2	002	12	.633	3
86			min	-31.617	1	-91.05	2	-11.824	1	01	3	085	1	-1.228	2
87		6	max	-1.048	15	135.438	3	14.965	1	.014	2	003	15	.553	3
88			min	-31.617	1	-299.103	2	503	3	01	3	083	1	-1.044	2
89		7	max	-1.048	15	236.413	3	41.754	1	.014	2	002	15	.377	3
90			min	-31.617	1	-507.156	2	.618	12	01	3	056	1	663	2
91		8	max	-1.048	15	337.388	3	68.543	1	.014	2	0	10	.106	3
92		T .	min	-31.617	1	-715.209	2	1.491	12	01	3	004	1	096	1
93		9	max	-1.048	15	438.363	3	95.332	1	.014	2	.073	1	.688	2
94		1 3	min	-31.617	1	-923.262	2	2.365	12	01	3	0	3	26	3
95		10		-1.048	15	539.338	3	122.121	1	.01	3	.176	<u> </u>	1.658	2
		10	max	-31.617		-1131.315	2	3.238	12		2	.003	12	722	3
96		4.4	min		1_					014					
97		11	max	-1.048	15	923.262	2	-2.365	12	.01	3	.073	1_	.688	2
98		10	min	-31.617	1_	-438.363	3	-95.332	1	014	2	0	3	26	3
99		12	max	-1.048	15	715.209	2	-1.491	12	.01	3	0	10	.106	3
100			min	-31.617	1	-337.388	3	-68.543	1	014	2	004	_1_	096	1
101		13	max	-1.048	15	507.156	2	618	12	.01	3	002	15	.377	3
102			min	-31.617	1	-236.413	3	-41.754	1	014	2	056	1_	663	2
103		14	max	-1.048	15	299.103	2	.503	3	.01	3	003	15	.553	3
104			min	-31.617	1	-135.438	3	-14.965	1	014	2	083	1	-1.044	2
105		15	max	-1.048	15	91.05	2	11.824	1	.01	3	002	12	.633	3
106			min	-31.617	1	-34.462	3	.4	15	014	2	085	1	-1.228	2
107		16	max	-1.048	15	66.513	3	38.613	1	.01	3	0	12	.618	3
108			min	-31.617	1	-117.003	2	1.273	15	014	2	061	1	-1.216	2
109		17	max	-1.048	15	167.488	3	65.403	1	.01	3	.002	3	.507	3
110			min	-31.617	1	-325.056	2	2.147	15	014	2	012	1	-1.007	2
111		18	max	-1.048	15	268.463	3	92.192	1	.01	3	.063	<u> </u>	.301	3
112		10	min	-31.617	1	-533.109	2	3.02	15	014	2	.002	15	602	2
113		19	max	-1.048	15	369.438	3	118.981	1	.01	3	.163	1	0	2
114		10	min	-31.617	1	-741.162	2	3.893	15	014	2	.005	15	0	3
115	M16	1	max	-2.062	15	695.208	2	-3.766	15	.012	1	.141	1	0	2
116	IVITO		min	-62.421	1	-333.232	3	-115.154	1	013	3	.005	15	0	3
117		2		-2.062	15	487.155	2	-2.893	15	.012	1	.045	1	.267	3
118			max	-62.421	1	-232.257	3		1	013	3				2
		2	min		_	279.102	2	-88.365			1	.001	15	558	3
119		3	max	-2.062	15			-2.019	15	.012		0	3	.439	
120		1	min	-62.421	1_	-131.282	3	-61.576	1_	013	3	026	1_	92	2
121		4	max	-2.062	15	71.048	2	-1.146	15	.012	1	002	12	.515	3
122		-	min	-62.421	1_	-30.307	3	-34.787	1_	013	3	072	1_	-1.086	2
123		5	max	-2.062	15	70.668	3	273	15	.012	1	003	12	.496	3
124		_	mın		1_	-137.005		-7.998	1	013	3	092	1_	-1.054	2
125		6	max		15	171.644	3	18.792	1	.012	1	003	<u>15</u>	.382	3
126			min	-62.421	1	-345.058		058	3	013	3	087	_1_	827	2
127		7	max		15	272.619	3	45.581	1	.012	1	002	15	.172	3
128			min	-62.421	1	-553.111	2	.898	12	013	3	056	1_	403	2
129		8	max		15	373.594	3	72.37	1_	.012	1	.001	2	.218	2
130			min	-62.421	1	-761.164	2	1.771	12	013	3	003	3	133	3
131		9	max	-2.062	15	474.569	3	99.159	1	.012	1	.08	_1_	1.035	2
132			min	-62.421	1	-969.217	2	2.644	12	013	3	0	3	534	3
133		10	max	-2.062	15	575.544	3	125.948	1	.013	3	.187	1	2.049	2
134			min		1	-1177.27	2	3.517	12	012	1	.003	12	-1.03	3
135		11	max		15	969.217	2	-2.644	12	.013	3	.08	1	1.035	2
136			min	-62.421	1	-474.569		-99.159	1	012	1	0	3	534	3
137		12	max		15	761.164	2	-1.771	12	.013	3	.001	2	.218	2
138		_ · -	min	-62.421	1	-373.594	3	-72.37	1	012	1	003	3	133	3
139		13	max		15		2	898	12	.013	3	002	15	.172	3
140		10	min	-62.421	1	-272.619		-45.581	1	012	1	056	1	403	2
170			111111	UZ.7Z I		212.013	J	TU.UU I		.012		.000			

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
141			max	-2.062	15	345.058	2	.058	3	.013	3	003	15	.382	3
142			min	-62.421	1	-171.644	3	-18.792	1	012	1	087	1	827	2
143		15	max	-2.062	15	137.005	2	7.998	1	.013	3	003	12	.496	3
144			min	-62.421	1	-70.668	3	.273	15	012	1	092	1	-1.054	2
145		16	max	-2.062	15	30.307	3	34.787	1	.013	3	002	12	.515	3
146			min	-62.421	1	-71.048	2	1.146	15	012	1	072	1	-1.086	2
147		17	max	-2.062	15	131.282	3	61.576	1	.013	3	0	3	.439	3
148			min	-62.421	1	-279.102	2	2.019	15	012	1	026	1	92	2
149		18	max	-2.062	15	232.257	3	88.365	1	.013	3	.045	1	.267	3
150		10	min	-62.421	1	-487.155	2	2.893	15	012	1	.001	15	558	2
151		19	max	-2.062	15	333.232	3	115.154	1	.013	3	.141	1	0	2
152		19	min	-62.421	1	-695.208	2	3.766	15	012	1	.005	15	0	3
153	M2	1		1128.593	1	2.283	4	.842	1	0	3	0	3	0	1
154	IVIZ				3	.538		.028			1	0	1	0	1
		2	min	-1440.93			15		15	0					
155		2		1128.921	1	2.267	4	.842	1	0	1	0	15	0	15
156		2	min	-1440.684	3	.534	15	.028	15	0				0	4
157		3	max		1	2.252	4	.842	1	0	3	0	1	0	15
158		_	min	-1440.438	3	.53	15	.028	15	0	1	0	15	001	4
159		4		1129.578	1	2.237	4	.842	1	0	3	0	1	0	15
160		_	min	-1440.191	3	.527	15	.028	15	0	1	0	15	002	4
161		5		1129.907	1	2.222	4	.842	1	0	3	0	1	0	15
162			min	-1439.945	3	.523	15	.028	15	0	1	0	15	002	4
163		6	max	1130.235	1	2.206	4	.842	1	0	3	0	1	0	15
164			min	-1439.699	3	.52	15	.028	15	0	1	0	15	002	4
165		7	max	1130.564	_1_	2.191	4	.842	1	0	3	.001	1	0	15
166			min	-1439.452	3	.516	15	.028	15	0	1	0	15	003	4
167		8	max	1130.892	1	2.176	4	.842	1	0	3	.001	1	0	15
168			min	-1439.206	3	.512	15	.028	15	0	1	0	15	003	4
169		9	max	1131.22	1	2.161	4	.842	1	0	3	.001	1	0	15
170			min	-1438.96	3	.509	15	.028	15	0	1	0	15	004	4
171		10	max	1131.549	1	2.145	4	.842	1	0	3	.002	1	001	15
172			min	-1438.713	3	.505	15	.028	15	0	1	0	15	004	4
173		11	max	1131.877	1	2.13	4	.842	1	0	3	.002	1	001	15
174			min	-1438.467	3	.502	15	.028	15	0	1	0	15	005	4
175		12	max	1132.206	1	2.115	4	.842	1	0	3	.002	1	001	15
176			min	-1438.221	3	.498	15	.028	15	0	1	0	15	005	4
177		13	max	1132.534	1	2.1	4	.842	1	0	3	.002	1	001	15
178			min	-1437.974	3	.494	15	.028	15	0	1	0	15	006	4
179		14		1132.863	1	2.084	4	.842	1	0	3	.002	1	001	15
180			min	-1437.728	3	.491	15	.028	15	0	1	0	15	006	4
181		15		1133.191	1	2.069	4	.842	1	0	3	.003	1	002	15
182			min		3	.487	15	.028	15	0	1	0	15	007	4
183		16		1133.519	1	2.054	4	.842	1	0	3	.003	1	002	15
184			min		3	.484	15	.028	15	0	1	0	15	007	4
185		17		1133.848	1	2.038	4	.842	1	0	3	.003	1	002	15
186		17	min	-1436.989	3	.48	15	.028	15	0	1	.003	15	002	4
187		18		1134.176	1	2.023	4	.842	1	0	3	.003	1	002	15
188		10	min		3	.477	15	.028	15	0	1	0	15	002	4
189		19		1134.505	<u> </u>	2.008	4	.842	1		3	.003	1	002	15
		19								0	1				
190	Ma	4	min	-1436.496	3	.473	15	.028	15	0	_	0	15	009	4
191	M3	1	max		2	8.079	4	.019	1	0	3	0	1	.009	4
192		_	min		3	1.9	15	0	15	0	1	0	15	.002	15
193		2	max		2	7.307	4	.019	1	0	3	0	1	.005	2
194			min		3	1.718	15	0	15	0	1	0	15	.001	12
195		3	max		2	6.534	4	.019	1	0	3	0	1	.003	2
196			min	-553.099	3	1.536	15	0	15	0	1	0	15	0	3
197		4	max	435.94	2	5.762	4	.019	1	0	3	0	1	0	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC	_			LC
198		_	min	-553.226	3	1.355	15	0	15	0	1_	0	15	002	3
199		5	max	435.769	2	4.989	4	.019	1	0	3	0	1	0	15
200			min	-553.354	3	1.173	15	0	15	0	1_	0	15	003	3
201		6	max	435.599	2	4.217	4	.019	11	0	3	0	1	001	15
202		_	min	-553.482	3	.992	15	0	15	0	1_	0	15	004	4
203		7	max	435.429	2	3.444	4	.019	1	0	3	0	1	001	15
204			min	-553.61	3	.81	15	0	15	0	1	0	15	006	4
205		8	max	435.258	2	2.672	4	.019	1	0	3	0	1	002	15
206			min	-553.738	3	.629	15	0	15	0	1	0	15	007	4
207		9	max	435.088	2	1.9	4	.019	1	0	3_	0	1	002	15
208		4.0	min	-553.865	3	.447	15	0	15	0	1	0	15	008	4
209		10	max	434.917	2	1.127	4	.019	1	0	3	0	1	002	15
210			min	-553.993	3_	.265	15	0	15	0	1_	0	15	009	4
211		11	max	434.747	2	.456	2	.019	1	0	3	0	1	002	15
212			min	-554.121	3_	038	3	0	15	0	_1_	0	15	009	4
213		12	max	434.577	2	098	15	.019	1	0	3	0	1	002	15
214			min	-554.249	3	49	3	0	15	0	1_	0	15	009	4
215		13	max	434.406	2	279	15	.019	1	0	3	0	1	002	15
216			min	-554.376	3	-1.19	4	0	15	0	1_	0	15	009	4
217		14	max	434.236	2	461	15	.019	1	0	3	0	1	002	15
218			min	-554.504	3	-1.963	4	0	15	0	1_	0	15	008	4
219		15	max	434.066	2_	642	15	.019	1_	0	3	0	1	002	15
220			min	-554.632	3	-2.735	4	0	15	0	1_	0	15	007	4
221		16	max	433.895	2	824	15	.019	1_	0	3	0	1	001	15
222			min	-554.76	3	-3.507	4	0	15	0	1	0	15	006	4
223		17	max	433.725	2	-1.006	15	.019	1_	0	3	0	1	001	15
224			min	-554.887	3	-4.28	4	0	15	0	1_	0	15	004	4
225		18	max	433.555	2	-1.187	15	.019	1	0	3	0	1	0	15
226			min	-555.015	3	-5.052	4	0	15	0	1	0	15	002	4
227		19	max	433.384	2	-1.369	15	.019	1	0	3	0	1	0	1
228			min	-555.143	3	-5.825	4	0	15	0	1	0	15	0	1
229	M4	1	max	1250.833	1_	0	1	187	15	0	1	0	1	0	1
230			min	-460.994	3	0	1	-5.678	1	0	1	0	10	0	1
231		2	max	1251.003	1	0	1	187	15	0	1_	0	15	0	1
232			min	-460.867	3	0	1	-5.678	1	0	1	0	1	0	1
233		3	max	1251.174	1	0	1	187	15	0	1	0	15	0	1
234			min	-460.739	3	0	1	-5.678	1	0	1	001	1	0	1
235		4	max	1251.344	1	0	1	187	15	0	1	0	15	0	1
236			min	-460.611	3	0	1	-5.678	1	0	1	002	1	0	1
237		5	max	1251.514	1	0	1	187	15	0	1_	0	15	0	1
238			min	-460.483	3	0	1	-5.678	1	0	1	002	1	0	1
239		6		1251.685	1_	0	1	187	15	0	1	0	15	0	1
240				-460.356	3	0	1	-5.678	1	0	1	003	1	0	1
241		7		1251.855	1	0	1	187	15	0	1	0	15	0	1
242				-460.228	3	0	1	-5.678	1	0	1	004	1	0	1
243		8		1252.025	1_	0	1	187	15	0	1	0	15	0	1
244			min	-460.1	3	0	1	-5.678	1	0	1	004	1	0	1
245		9	max	1252.196	1	0	1	187	15	0	1	0	15	0	1
246			min	-459.972	3	0	1	-5.678	1	0	1	005	1	0	1
247		10		1252.366	1	0	1	187	15	0	1	0	15	0	1
248				-459.845	3	0	1	-5.678	1	0	1	006	1	0	1
249		11		1252.536	1	0	1	187	15	0	1	0	15	0	1
250				-459.717	3	0	1	-5.678	1	0	1	006	1	0	1
251		12		1252.707	1	0	1	187	15	0	1	0	15	0	1
252		_		-459.589	3	0	1	-5.678	1	0	1	007	1	0	1
253		13		1252.877	1	0	1	187	15	0	1	0	15	0	1
254				-459.461	3	0	1	-5.678	1	0	1	008	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14		1253.047	<u>1</u>	0	1	187	15	0	1	0	15	0	1
256				-459.334	3	0	1	-5.678	1	0	1	008	1	0	1
257		15		1253.218	_1_	0	1_	187	15	0	_1_	0	15	00	1
258				-459.206	3	0	1	-5.678	1	0	1_	009	1	0	1
259		16		1253.388	1_	0	1	187	15	0	1	0	15	0	1
260		47		-459.078	3	0	1	<u>-5.678</u>	1	0	1	01	1	0	1
261		17		1253.558	1	0	1	187	15	0	1	0	15	0	1
262		10		-458.95	3	0	1	-5.678 187	1	0	<u>1</u> 1	01	1 15	0	1
263		18		1253.729	<u>1</u> 3	0	1		15 1	0	1	0	15	<u> </u>	1
264 265		19	min	-458.822 1253.899	<u>ာ</u> 1	0	1	<u>-5.678</u> 187	15	0	1	011 0	15	0	1
266		19		-458.695	3	0	1	-5.678	1	0	1	012	1	0	1
267	M6	1		3577.027	<u> </u>	2.974	2	0	1	0	1	0	1	0	1
268	IVIO			-4654.965	3	146	3	0	1	0	1	0	1	0	1
269		2		3577.355	_ <u></u>	2.963	2	0	1	0	1	0	1	0	3
270		_		-4654.719	3	155	3	0	1	0	1	0	1	0	2
271		3		3577.684	1	2.951	2	0	1	0	1	0	1	0	3
272		Ŭ		-4654.472	3	163	3	0	1	0	1	0	1	001	2
273		4		3578.012	1	2.939	2	0	1	0	1	0	1	0	3
274			min	-4654.226	3	172	3	0	1	0	1	0	1	002	2
275		5		3578.341	1	2.927	2	0	1	0	1	0	1	0	3
276				-4653.98	3	181	3	0	1	0	1	0	1	003	2
277		6		3578.669	1	2.915	2	0	1	0	1	0	1	0	3
278			min	-4653.733	3	19	3	0	1	0	1	0	1	003	2
279		7	max	3578.998	1	2.903	2	0	1	0	1	0	1	0	3
280			min	-4653.487	3	199	3	0	1	0	1	0	1	004	2
281		8	max	3579.326	1	2.891	2	0	1	0	1	0	1	0	3
282			min	-4653.241	3	208	3	0	1	0	1	0	1	005	2
283		9	max	3579.655	1_	2.879	2	0	1	0	1_	0	1	0	3
284			min	-4652.994	3	217	3	0	1	0	1_	0	1	005	2
285		10		3579.983	1_	2.867	2	0	1	0	1	0	1	0	3
286			min	-4652.748	3_	226	3	0	1	0	1_	0	1	006	2
287		11		3580.311	1_	2.855	2	0	1	0	1_	0	1	0	3
288		4.0			3_	235	3	0	1	0	1_	0	1	006	2
289		12	max		1_	2.844	2	0	1	0	1	0	1	0	3
290		40		-4652.255	3	244	3	0	1	0	1	0	1	007	2
291		13		3580.968	1	2.832	2	0	1	0	1	0	1	0	3
292		4.4		-4652.009	3_	253	3	0	1	0	1_	0	1	008	2
293		14		3581.297 -4651.763	1	2.82	2	0	1	0	1	0	1	0	3
294 295		15	min	3581.625	3	262 2.808	2	0	1	0	1	0	1	008 0	3
296		10		-4651.516	3	27	3	0	1	0	1	0	1	009	2
297		16		3581.954	<u>ა</u> 1	2.796	2	0	1	0	1	0	1	<u>009</u> 0	3
298		10		-4651.27	3	279	3	0	1	0	1	0	1	01	2
299		17		3582.282	<u> </u>	2.784	2	0	1	0	1	0	1	<u>01</u> 0	3
300		'		-4651.024	3	288	3	0	1	0	1	0	1	01	2
301		18		3582.61	1	2.772	2	0	1	0	1	0	1	0	3
302		'0		-4650.778	3	297	3	0	1	0	1	0	1	011	2
303		19		3582.939	1	2.76	2	0	1	0	1	0	1	0	3
304			min	-4650.531	3	306	3	0	1	0	1	0	1	011	2
305	M7	1		1581.091	2	8.112	4	0	1	0	1	0	1	.011	2
306					3	1.904	15	0	1	0	1	0	1	0	3
307		2		1580.92	2	7.339	4	0	1	0	1	0	1	.009	2
308				-1721.47	3	1.722	15	0	1	0	1	0	1	002	3
309		3	max	1580.75	2	6.567	4	0	1	0	1	0	1	.006	2
310				-1721.598	3	1.541	15	0	1	0	1	0	1	004	3
311		4	max	1580.58	2	5.794	4	0	1	0	1	0	1	.004	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1721.726	3	1.359	15	0	1	0	1	0	1	005	3
313		5	max	1580.409	2	5.022	4	0	1	0	_1_	0	_1_	.002	2
314			min	-1721.854	3	1.178	15	0	1	0	1	0	1	006	3
315		6	max	1580.239	2	4.25	4	0	1	0	1	0	1	0	2
316			min	-1721.981	3	.996	15	0	1	0	1	0	1	007	3
317		7	max	1580.069	2	3.477	4	0	1	0	_1_	0	1	001	15
318			min	-1722.109	3	.814	15	0	1	0	1	0	1	007	3
319		8		1579.898	2	2.71	2	0	1	0	1	0	1	002	15
320			min	-1722.237	3	.575	12	0	1	0	1	0	1	008	3
321		9		1579.728	2	2.108	2	0	1	0	1	0	1	002	15
322			min	-1722.365	3	.274	12	0	1	0	1	0	1	008	4
323		10	max	1579.558	2	1.507	2	0	1	0	_1_	0	_1_	002	15
324			min	-1722.492	3	119	3	0	1	0	1	0	1	009	4
325		11	max	1579.387	2	.905	2	0	1	0	1	0	1	002	15
326			min	-1722.62	3	57	3	0	1	0	1	0	1	009	4
327		12	max	1579.217	2	.303	2	0	1	0	1	0	1	002	15
328			min	-1722.748	3	-1.021	3	0	1	0	1	0	1	009	4
329		13	max	1579.047	2	275	15	0	1	0	1	0	1	002	15
330			min	-1722.876	3	-1.473	3	0	1	0	1	0	1	009	4
331		14	max	1578.876	2	457	15	0	1	0	1	0	1	002	15
332			min	-1723.003	3	-1.93	4	0	1	0	1	0	1	008	4
333		15	max	1578.706	2	638	15	0	1	0	1	0	1	002	15
334			min	-1723.131	3	-2.702	4	0	1	0	1	0	1	007	4
335		16	max	1578.536	2	82	15	0	1	0	1	0	1	001	15
336			min	-1723.259	3	-3.475	4	0	1	0	1	0	1	006	4
337		17	max	1578.365	2	-1.001	15	0	1	0	1	0	1	0	15
338			min	-1723.387	3	-4.247	4	0	1	0	1	0	1	004	4
339		18	max	1578.195	2	-1.183	15	0	1	0	1	0	1	0	15
340			min	-1723.514	3	-5.019	4	0	1	0	1	0	1	002	4
341		19	max	1578.025	2	-1.364	15	0	1	0	1	0	1	0	1
342			min	-1723.642	3	-5.792	4	0	1	0	1	0	1	0	1
343	M8	1	max	3775.595	2	0	1	0	1	0	1	0	1	0	1
344			min	-1531.924	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3775.765	2	0	1	0	1	0	1	0	1	0	1
346			min	-1531.796	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3775.935	2	0	1	0	1	0	1	0	1	0	1
348			min	-1531.668	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3776.106	2	0	1	0	1	0	1	0	1	0	1
350			min	-1531.541	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3776.276	2	0	1	0	1	0	1	0	1	0	1
352			min	-1531.413	3	0	1	0	1	0	1	0	1	0	1
353		6		3776.446	2	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		3776.617	2	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357	<u> </u>	8		3776.787	2	0	1	0	1	0	1	0	1	0	1
358			min	-1531.03	3	0	1	0	1	0	1	0	1	0	1
359		9		3776.957	2	0	1	0	1	0	1	0	1	0	1
360				-1530.902	3	0	1	0	1	0	1	0	1	0	1
361		10		3777.128	2	0	1	0	1	0	1	0	1	0	1
362				-1530.774	3	0	1	0	1	0	1	0	1	0	1
363		11		3777.298	2	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3777.468	2	0	1	0	1	0	1	0	1	0	1
366		12	min		3	0	1	0	1	0	1	0	1	0	1
367		13		3777.639	2	0	1	0	1	0	1	0	1	0	1
368		· ·	min	-1530.391	3	0	1	0	1	0	1	0	1	0	1
500													_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3777.809	2	0	1	0	_1_	0	1	0	1	0	1
370			min	-1530.263	3	0	1	0	1_	0	1	0	1	0	1
371		15	max	3777.979	2	0	1	0	_1_	0	1	0	1	0	1
372			min	-1530.135	3	0	1	0	1_	0	1	0	1	0	1
373		16	max		2	0	1_	0	_1_	0	_1_	0	1	0	1
374			min	-1530.008	3	0	1	0	1_	0	1	0	1	0	1
375		17		3778.32	2	0	1	0	1	0	1	0	1	0	1
376				-1529.88	3	0	1	0	_1_	0	1_	0	1	0	1
377		18	max		2	0	1	0	1_	0	1_	0	1	0	1
378		4.0	min	-1529.752	3_	0	1	0	1_	0	1	0	1	0	1
379		19		3778.661	2	0	1	0	1_	0	1	0	1	0	1
380	N440		min		3_	0	1	0	1_	0	1_	0	1	0	1
381	M10	1		1128.593	1_	2.283	4	028	<u>15</u>	0	1	0	1	0	1
382				-1440.93	3	.538	15	842	1_	0	3	0	3	0	1
383		2		1128.921	1	2.267	4	028	<u>15</u>	0	1_	0	15	0	15
384		2		-1440.684	3	.534	15	842	1_	0	3	0	1	0	4
385		3	max	1129.25 -1440.438	1	2.252	<u>4</u> 15	028	<u>15</u>	0	<u>1</u>	0	1 <u>5</u>	0	15
386		4	min		3	.53		842	1_	0		0		001	4
387		4		1129.578 -1440.191	1	2.237	4 15	028	<u>15</u> 1	0	1	0	15	0	15
388		5		1129.907	<u>3</u>	.527 2.222	4	842 028	15	0	<u>3</u>	0	15	002 0	15
390		o o	min	-1439.945	3	.523	15	842	1	0	3	0	1	002	
391		6		1130.235	<u> </u>	2.206	4	042	15	0	<u> </u>	0	15	002 0	15
392		0	min	-1439.699	3	.52	15	842	1	0	3	0	1	002	4
393		7		1130.564	<u> </u>	2.191	4	028	15	0	<u>3</u> 1	0	15	002 0	15
394			min	-1439.452	3	.516	15	842	1	0	3	001	1	003	4
395		8		1130.892	_ <u></u>	2.176	4	028	15	0	1	0	15	0	15
396		0	min	-1439.206	3	.512	15	842	1	0	3	001	1	003	4
397		9	max		1	2.161	4	028	15	0	1	0	15	- <u>.003</u> 0	15
398		3		-1438.96	3	.509	15	842	1	0	3	001	1	004	4
399		10		1131.549	1	2.145	4	028	15	0	1	0	15	001	15
400		- 10	min		3	.505	15	842	1	0	3	002	1	004	4
401		11		1131.877	1	2.13	4	028	15	0	1	0	15	001	15
402			min	-1438.467	3	.502	15	842	1	0	3	002	1	005	4
403		12		1132.206	1	2.115	4	028	15	0	1	0	15	001	15
404			min	-1438.221	3	.498	15	842	1	0	3	002	1	005	4
405		13	max	1132.534	1	2.1	4	028	15	0	1	0	15	001	15
406			-	-1437.974	3	.494	15	842	1	0	3	002	1	006	4
407		14	max	1132.863	1	2.084	4	028	15	0	1	0	15	001	15
408			min	-1437.728	3	.491	15	842	1	0	3	002	1	006	4
409		15		1133.191	1	2.069	4	028	15	0	1	0	15	002	15
410				-1437.482	3	.487	15	842	1	0	3	003	1	007	4
411		16		1133.519	1	2.054	4	028	15	0	1	0	15	002	15
412				-1437.235	3	.484	15	842	1	0	3	003	1	007	4
413		17		1133.848	_1_	2.038	4	028	15	0	1	0	15	002	15
414				-1436.989	3	.48	15	842	1_	0	3	003	1	008	4
415		18		1134.176	_1_	2.023	4	028	15	0	_1_	0	15	002	15
416				-1436.743	3	.477	15	842	1_	0	3	003	1	008	4
417		19		1134.505	1_	2.008	4	028	15	0	1	0	15	002	15
418				-1436.496	3	.473	15	842	1_	0	3	003	1_	009	4
419	M11	1		436.451	2	8.079	4	0	15	0	1_	0	15	.009	4
420				-552.843	3	1.9	15	019	1_	0	3	0	1_	.002	15
421		2	max		2_	7.307	4	0	<u>15</u>	0	1	0	15	.005	2
422		_	min		3	1.718	15	019	1_	0	3	0	1_	.001	12
423		3	max		2	6.534	4	0	<u>15</u>	0	1_	0	15	.003	2
424				-553.099	3	1.536	15	019	1_	0	3	0	1	0	3
425		4	max	435.94	2	5.762	4	0	15	0	<u>1</u>	0	15	0	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
426			min	-553.226	3	1.355	15	019	1	0	3	0	1	002	3
427		5	max	435.769	2	4.989	4	0	15	0	1	0	15	0	15
428			min	-553.354	3	1.173	15	019	1	0	3	0	1	003	3
429		6	max		2	4.217	4	0	15	0	1	0	15	001	15
430			min	-553.482	3	.992	15	019	1	0	3	0	1	004	4
431		7	max		2	3.444	4	0	15	0	1	0	15	001	15
432			min	-553.61	3	.81	15	019	1	0	3	0	1	006	4
433		8	max	435.258	2	2.672	4	0	15	0	1	0	15	002	15
434			min	-553.738	3	.629	15	019	1	0	3	0	1	007	4
435		9	max	435.088	2	1.9	4	0	15	0	1	0	15	002	15
436			min	-553.865	3	.447	15	019	1	0	3	0	1	008	4
437		10	max		2	1.127	4	0	15	0	1	0	15	002	15
438			min	-553.993	3	.265	15	019	1	0	3	0	1	009	4
439		11	max		2	.456	2	0	15	0	1	0	15	002	15
440			min	-554.121	3	038	3	019	1	0	3	0	1	009	4
441		12	max		2	098	15	0	15	0	1	0	15	002	15
442			min	-554.249	3	49	3	019	1	0	3	0	1	009	4
443		13	max	434.406	2	279	15	0	15	0	1	0	15	002	15
444			min	-554.376	3	-1.19	4	019	1	0	3	0	1	009	4
445		14	max	434.236	2	461	15	0	15	0	1	0	15	002	15
446			min	-554.504	3	-1.963	4	019	1	0	3	0	1	008	4
447		15	max		2	642	15	0	15	0	1	0	15	002	15
448			min	-554.632	3	-2.735	4	019	1	0	3	0	1	007	4
449		16	max	433.895	2	824	15	0	15	0	1	0	15	001	15
450			min	-554.76	3	-3.507	4	019	1	0	3	0	1	006	4
451		17	max	433.725	2	-1.006	15	0	15	0	1	0	15	001	15
452			min	-554.887	3	-4.28	4	019	1	0	3	0	1	004	4
453		18	max	433.555	2	-1.187	15	0	15	0	1	0	15	0	15
454			min	-555.015	3	-5.052	4	019	1	0	3	0	1	002	4
455		19	max	433.384	2	-1.369	15	0	15	0	1	0	15	0	1
456			min	-555.143	3	-5.825	4	019	1	0	3	0	1	0	1
457	M12	1	max	1250.833	1	0	1	5.678	1	0	1	0	10	0	1
458			min	-460.994	3	0	1	.187	15	0	1	0	1	0	1
459		2	max	1251.003	1	0	1	5.678	1	0	1	0	1	0	1
460			min	-460.867	3	0	1	.187	15	0	1	0	15	0	1
461		3	max	1251.174	1_	0	1	5.678	1	0	1	.001	1	0	1
462			min	-460.739	3	0	1	.187	15	0	1	0	15	0	1
463		4	max		_1_	0	1	5.678	1	0	1	.002	1	0	1
464			min	-460.611	3	0	1	.187	15	0	1	0	15	0	1
465		5	max	1251.514	_1_	0	1	5.678	1	0	1	.002	1	0	1
466				-460.483	3	0	1	.187	15	0	1	0	15	0	1
467		6	max	1251.685	_1_	0	1	5.678	1	0	1	.003	1	0	1
468			min		3	0	1	.187	15	0	1	0	15	0	1
469		7		1251.855	1_	0	1	5.678	1	0	1	.004	1	0	1
470			min		3	0	1	.187	15	0	1	0	15	0	1
471		8	max	1252.025	_1_	0	1	5.678	1	0	1	.004	1_	0	1
472			min	-460.1	3	0	1	.187	15	0	1	0	15	0	1
473		9		1252.196	_1_	0	1	5.678	1	0	1	.005	1	0	1
474				-459.972	3	0	1	.187	15	0	1	0	15	0	1
475		10		1252.366	_1_	0	1	5.678	1	0	1	.006	1	0	1
476				-459.845	3	0	1	.187	15	0	1	0	15	0	1
477		11	max	1252.536	1_	0	1	5.678	1	0	1	.006	1	0	1
478			min		3	0	1	.187	15	0	1	0	15	0	1
479		12	max	1252.707	1	0	1	5.678	1	0	1	.007	1	0	1
480			min		3	0	1	.187	15	0	1	0	15	0	1
481		13	max	1252.877	1_	0	1	5.678	1	0	1	.008	1	0	1
482			min	-459.461	3	0	1	.187	15	0	1	0	15	0	1

Schletter, Inc. HCV

Job Number :
Model Name : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
483		14	max	1253.047	_1_	0	1	5.678	1	0	1	.008	_1_	0	1
484			min	-459.334	3	0	1	.187	15	0	1	0	15	0	1
485		15	max	1253.218	1	0	1	5.678	1	0	1	.009	1	0	1
486			min	-459.206	3	0	1	.187	15	0	1	0	15	0	1
487		16	max	1253.388	1	0	1	5.678	1	0	1	.01	1	0	1
488			min	-459.078	3	0	1	.187	15	0	1	0	15	0	1
489		17	max	1253.558	1	0	1	5.678	1	0	1	.01	1	0	1
490			min	-458.95	3	0	1	.187	15	0	1	0	15	0	1
491		18	max	1253.729	1	0	1	5.678	1	0	1	.011	1	0	1
492			min	-458.822	3	0	1	.187	15	0	1	0	15	0	1
493		19	max		1	0	1	5.678	1	0	1	.012	1	0	1
494			min	-458.695	3	0	1	.187	15	0	1	0	15	0	1
495	M1	1	max	114.921	1	805.321	3	-1.948	15	0	1	.14	1	0	3
496			min	3.762	15	-506.571	1	-58.897	1	0	3	.005	15	016	2
497		2	max		1	804.283	3	-1.948	15	0	1	.109	1	.253	1
498			min	3.873	15	-507.955	1	-58.897	1	Ö	3	.004	15	425	3
499		3	max		3	588.386	1	-1.92	15	0	3	.078	1	.508	1
500			min	-198.981	2	-603.5	3	-58.19	1	0	1	.003	15	832	3
501		4	max		3	587.002	1	-1.92	15	0	3	.047	1	.198	1
502			min	-198.61	2	-604.538	3	-58.19	1	0	1	.002	15	513	3
503		5	max	331.029	3	585.619	1	-1.92	15	0	3	.016	1	004	15
504			min	-198.24	2	-605.576	3	-58.19	1	0	1	0	15	194	3
505		6	max	331.307	3	584.235	1	-1.92	15	0	3	0	15	.126	3
506		ľ	min	-197.869	2	-606.613	3	-58.19	1	0	1	015	1	447	2
507		7	max	331.585	3	582.852	1	-1.92	15	0	3	001	15	.446	3
508			min	-197.498	2	-607.651	3	-58.19	1	0	1	045	1	754	2
509		8	max	331.863	3	581.468	1	-1.92	15	0	3	003	15	.767	3
510			min	-197.128	2	-608.689	3	-58.19	1	0	1	076	1	-1.06	2
511		9	max		3	53.443	2	-2.924	15	0	9	.046	1	.894	3
512			min	-151.489	2	.42	15	-88.605	1	0	3	.002	15	-1.212	2
513		10	max	339.573	3	52.06	2	-2.924	15	0	9	0	10	.873	3
514		1.0	min	-151.119	2	.002	15	-88.605	1	0	3	0	1	-1.24	2
515		11	max	339.851	3	50.676	2	-2.924	15	0	9	002	15	.852	3
516			min	-150.748	2	-1.726	4	-88.605	1	0	3	047	1	-1.267	2
517		12	max	347.181	3	409.502	3	-1.876	15	0	2	.075	1	.745	3
518			min	-105.066	2	-690.727	2	-57.002	1	Ö	3	.002	15	-1.124	2
519		13	max		3	408.465	3	-1.876	15	0	2	.045	1	.529	3
520		1	min	-104.696	2	-692.111	2	-57.002	1	0	3	.001	15	759	2
521		14	max		3	407.427	3	-1.876	15	0	2	.015	1	.313	3
522			min	-104.325	2	-693.495	2	-57.002	1	0	3	0	15	394	2
523		15		348.015	3	406.389	3	-1.876	15	0	2	0	15	.099	3
524		1	min		2	-694.878	2	-57.002	1	0	3	015	1	054	1
525		16		348.293	3	405.351	3	-1.876	15	0	2	001	15	.34	2
526				-103.583	2	-696.262	2	-57.002	1	0	3	045	1	115	3
527		17		348.571	3	404.314	3	-1.876	15	0	2	002	15	.707	2
528				-103.213	2	-697.645	2	-57.002	1	0	3	075	1	329	3
529		18	max		15	696.988	2	-2.062	15	0	3	004	15	.356	2
530		1	min		1	-332.24	3	-62.466	1	0	2	108	1	163	3
531		19	max		15	695.604	2	-2.062	15	0	3	005	15	.013	3
532		ľ	min		1	-333.278	3	-62.466	1	0	2	141	1	012	1
533	M5	1	max		1	2684.018		0	1	0	1	0	1	.032	2
534			min	6.622	12	-1731.15	1	0	1	0	1	0	1	0	3
535		2	max		1	2682.98	3	0	1	0	1	0	1	.943	1
536			min		12	-1732.533	1	0	1	0	1	0	1	-1.416	3
537		3		1049.191	3	1731.675	1	0	1	0	1	0	<u> </u>	1.816	1
538				-674.948	2	-1876.801	3	0	1	0	1	0	1	-2.777	3
539		4		1049.469		1730.291	1	0	1	0	1	0	1	.903	1
		•							•						

Model Name

Schletter, Inc. HCV

er :

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-674.577	2	-1877.839	3	0	1	0	1	0	1	-1.786	3
541		5	max	1049.747	3_	1728.907	1	0	1	0	1	0	_1_	.024	9
542			min	-674.207	2	-1878.876	3	0	1	0	1	0	1	795	3
543		6	max	1050.025	3	1727.524	1	0	1	0	1	0	1	.197	3
544			min	-673.836	2	-1879.914	3	0	1	0	1	0	1	988	2
545		7	max	1050.303	3	1726.14	1	0	1	0	1	0	1	1.189	3
546			min	-673.465	2	-1880.952	3	0	1	0	1	0	1	-1.891	2
547		8	max	1050.582	3	1724.757	1	0	1	0	1	0	1	2.182	3
548			min	-673.094	2	-1881.99	3	0	1	0	1	0	1	-2.794	2
549		9	max	1060.131	3	179.801	2	0	1	0	1	0	1	2.509	3
550			min	-576.741	2	.417	15	0	1	0	1	0	1	-3.184	2
551		10	max	1060.409	3	178.417	2	0	1	0	1	0	1	2.432	3
552			min	-576.371	2	0	15	0	1	0	1	0	1	-3.278	2
553		11	max	1060.687	3	177.033	2	0	1	0	1	0	1	2.356	3
554			min	-576	2	-1.656	4	0	1	0	1	0	1	-3.372	2
555		12	max	1070.438	3	1245.104	3	0	1	0	1	0	1	2.068	3
556			min	-479.734	2	-2072.587	2	0	1	0	1	0	1	-3.02	2
557		13	max	1070.716	3	1244.066	3	0	1	0	1	0	1	1.411	3
558			min	-479.363	2	-2073.971	2	0	1	0	1	0	1	-1.926	2
559		14	max	1070.994	3	1243.028	3	0	1	0	1	0	1	.755	3
560			min	-478.993	2	-2075.355	2	0	1	0	1	0	1	842	1
561		15	max	1071.272	3	1241.991	3	0	1	0	1	0	1	.264	2
562			min	-478.622	2	-2076.738	2	0	1	0	1	0	1	002	13
563		16	max	1071.55	3	1240.953	3	0	1	0	1	0	1	1.361	2
564			min	-478.251	2	-2078.122	2	0	1	0	1	0	1	556	3
565		17	max		3	1239.915	3	0	1	0	1	0	1	2.458	2
566			min	-477.88	2	-2079.505	2	0	1	0	1	0	1	-1.211	3
567		18	max	-7.22	12	2357.923	2	0	1	0	1	0	1	1.266	2
568		1	min	-252.271	1	-1150.254	3	0	1	0	1	0	1	633	3
569		19	max	-7.035	12	2356.539	2	0	1	0	1	0	1	.024	1
570		1.0	min	-251.9	1	-1151.292	3	0	1	Ö	1	0	1	025	3
571	M9	1	max	114.921	1	805.321	3	58.897	1	0	3	005	15	0	3
572	1110		min	3.762	15	-506.571	1	1.948	15	0	1	14	1	016	2
573		2	max	115.292	1	804.283	3	58.897	1	0	3	004	15	.253	1
574		_	min	3.873	15	-507.955	1	1.948	15	0	1	109	1	425	3
575		3	max	330.473	3	588.386	1	58.19	1	0	1	003	15	.508	1
576			min	-198.981	2	-603.5	3	1.92	15	0	3	078	1	832	3
577		4	max	330.751	3	587.002	1	58.19	1	0	1	002	15	.198	1
578			min	-198.61	2	-604.538	3	1.92	15	0	3	047	1	513	3
579		5	max		3	585.619	1	58.19	1	0	1	0	15	004	15
580				-198.24	2	-605.576		1.92	15	0	3	016	1	194	3
581		6	max		3	584.235	1	58.19	1	0	1	.015	1	.126	3
582			min		2	-606.613		1.92	15	0	3	0	15	447	2
583		7		331.585	3	582.852	1	58.19	1	0	1	.045	1	.446	3
584			min		2	-607.651	3	1.92	15	0	3	.001	15	754	2
585		8		331.863	3	581.468	1	58.19	1	0	1	.076	1	.767	3
586			min		2	-608.689	3	1.92	15	0	3	.003	15	-1.06	2
587		9		339.295	3	53.443	2	88.605	1	0	3	002	15	.894	3
588				-151.489	2	.42	15		15	0	9	046	1	-1.212	2
589		10		339.573	3	52.06	2	88.605	1	0	3	0	1	.873	3
590		10		-151.119	2	.002	15	2.924	15	0	9	0	10	-1.24	2
591		11		339.851	3	50.676	2	88.605	1	0	3	.047	1	.852	3
592					2	-1.726	4	2.924	15	0	9	.002	15	-1.267	2
593		12	min	347.181		409.502	3	57.002	1	0	3	002	15	.745	3
		12			3								15		
594		40	min		2	<u>-690.727</u>	2	1.876	15	0	2	075	_	-1.124 520	2
595		13		347.459	3	408.465	3	57.002	1	0	3	001	15	.529	3
596			min	-104.696	2	-692.111	2	1.876	15	0	2	045	_1_	759	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	347.737	3	407.427	3	57.002	1	0	3	0	15	.313	3
598			min	-104.325	2	-693.495	2	1.876	15	0	2	015	1	394	2
599		15	max	348.015	3	406.389	3	57.002	1	0	3	.015	1	.099	3
600			min	-103.954	2	-694.878	2	1.876	15	0	2	0	15	054	1
601		16	max	348.293	3	405.351	3	57.002	1	0	3	.045	1	.34	2
602			min	-103.583	2	-696.262	2	1.876	15	0	2	.001	15	115	3
603		17	max	348.571	3	404.314	3	57.002	1	0	3	.075	1	.707	2
604			min	-103.213	2	-697.645	2	1.876	15	0	2	.002	15	329	3
605		18	max	-3.878	15	696.988	2	62.466	1	0	2	.108	1	.356	2
606			min	-115.523	1	-332.24	3	2.062	15	0	3	.004	15	163	3
607		19	max	-3.766	15	695.604	2	62.466	1	0	2	.141	1	.013	3
608			min	-115.152	1	-333.278	3	2.062	15	0	3	.005	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.133	2	.006	3 1.07e-2	2	NC	1_	NC	1
2			min	0	15	034	3	003	2 -2.602e-3	3	NC	1	NC	1
3		2	max	0	1	.2	3	.017	1 1.205e-2	2	NC	5	NC	1
4			min	0	15	008	9	0	10 -2.605e-3	3	873.672	3	NC	1
5		3	max	0	1	.389	3	.04	1 1.339e-2	2	NC	5	NC	2
6			min	0	15	101	1	0	10 -2.608e-3	3	482.883	3	5119.885	1
7		4	max	0	1	.503	3	.06	1 1.473e-2	2	NC	5	NC	3
8			min	0	15	154	1	.002	10 -2.611e-3	3	379.9	3	3427.262	1
9		5	max	0	1	.529	3	.07	1 1.608e-2	2	NC	5	NC	3
10			min	0	15	151	1	.002	10 -2.614e-3	3	362.282	3	2945.783	1
11		6	max	0	1	.469	3	.067	1 1.742e-2	2	NC	5	NC	3
12			min	0	15	095	1	0	10 -2.617e-3	3	405.732	3	3082.07	1
13		7	max	0	1	.34	3	.052	1 1.877e-2	2	NC	5	NC	2
14			min	0	15	012	9	001	10 -2.62e-3	3	545.433	3	3992.754	1
15		8	max	0	1	.177	3	.029	1 2.011e-2	2	NC	1	NC	2
16			min	0	15	.003	15	004	10 -2.623e-3	3	968.454	3	7204.322	1
17		9	max	0	1	.244	2	.018	3 2.145e-2	2	NC	4	NC	1
18			min	0	15	.005	15	007	2 -2.626e-3	3	1846.275	2	NC	1
19		10	max	0	1	.287	2	.018	3 2.28e-2	2	NC	3	NC	1
20			min	0	1	038	3	012	2 -2.629e-3	3	1326.052	2	NC	1
21		11	max	0	15	.244	2	.018	3 2.145e-2	2	NC	4	NC	1
22			min	0	1	.005	15	007	2 -2.626e-3	3	1846.275	2	NC	1
23		12	max	0	15	.177	3	.029	1 2.011e-2	2	NC	1	NC	2
24			min	0	1	.003	15	004	10 -2.623e-3	3	968.454	3	7204.322	1
25		13	max	0	15	.34	3	.052	1 1.877e-2	2	NC	5	NC	2
26			min	0	1	012	9	001	10 -2.62e-3	3	545.433	3	3992.754	1
27		14	max	0	15	.469	3	.067	1 1.742e-2	2	NC	5	NC	3
28			min	0	1	095	1	0	10 -2.617e-3	3	405.732	3	3082.07	1
29		15	max	0	15	.529	3	.07	1 1.608e-2	2	NC	5	NC	3
30			min	0	1	151	1	.002	10 -2.614e-3	3	362.282	3	2945.783	1
31		16	max	0	15	.503	3	.06	1 1.473e-2	2	NC	5	NC	3
32			min	0	1	154	1	.002	10 -2.611e-3	3	379.9	3	3427.262	1
33		17	max	0	15	.389	3	.04	1 1.339e-2	2	NC	5	NC	2
34			min	0	1	101	1	0	10 -2.608e-3	3	482.883	3	5119.885	1
35		18	max	0	15	.2	3	.017	1 1.205e-2	2	NC	5	NC	1
36			min	0	1	008	9	0	10 -2.605e-3	3	873.672	3	NC	1
37		19	max	0	15	.133	2	.006	3 1.07e-2	2	NC	1	NC	1
38			min	0	1	034	3	003	2 -2.602e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.267	3	.005	3 6.162e-3	2	NC	1	NC	1
40			min	0	15	405	2	003	2 -4.761e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	Ö	1	.523	3	.012	1 7.287e-3	2	NC	5	NC	1
42			min	0	15	651	2	001	10 -5.707e-3	3	798.39	3	NC	1
43		3	max	0	1	.742	3	.032	1 8.411e-3	2	NC	5	NC	2
44			min	0	15	867	2	0	10 -6.653e-3	3	429.573	3	6542.563	1
45		4	max	0	1	.9	3	.051	1 9.536e-3	2	NC	5	NC	2
46			min	0	15	-1.034	2	.001	10 -7.599e-3	3	319.914	1	4075.942	1
47		5	max	0	1	.985	3	.061	1 1.066e-2	2	NC	15	NC	3
48			min	0	15	-1.139	2	.002	10 -8.545e-3	3	275.469	1	3366.795	1
49		6	max	0	1	.996	3	.06	1 1.179e-2	2	NC	15	NC	2
50			min	0	15	-1.181	2	0	10 -9.49e-3	3	262.201	1	3433.23	1
51		7	max	0	1	.945	3	.048	1 1.291e-2	2	NC	15	NC	2
52			min	0	15	-1.169	2	0	10 -1.044e-2	3	266.964	2	4364.228	1
53		8	max	0	1	.855	3	.027	1 1.403e-2	2	NC	15	NC	2
54			min	0	15	-1.12	2	003	10 -1.138e-2	3	285.143	2	7734.688	1
55		9	max	0	1	.765	3	.016	3 1.516e-2	2	NC	5	NC	1
56			min	0	15	-1.062	2	007	2 -1.233e-2	3	310.127	2	NC	1
57		10	max	0	1	.721	3	.016	3 1.628e-2	2	NC	5	NC	1
58			min	0	1	-1.033	2	011	2 -1.327e-2	3	324.585	2	NC	1
59		11	max	0	15	.765	3	.016	3 1.516e-2	2	NC	5	NC	1
60			min	0	1	-1.062	2	007	2 -1.233e-2	3	310.127	2	NC	1
61		12	max	0	15	.855	3	.027	1 1.403e-2	2	NC	15	NC	2
62			min	0	1	-1.12	2	003	10 -1.138e-2	3	285.143	2	7734.688	1
63		13	max	0	15	.945	3	.048	1 1.291e-2	2	NC	15	NC	2
64			min	0	1	-1.169	2	0	10 -1.044e-2	3	266.964	2	4364.228	1
65		14	max	0	15	.996	3	.06	1 1.179e-2	2	NC	15	NC	2
66			min	0	1	-1.181	2	0	10 -9.49e-3	3	262.201	1	3433.23	1
67		15	max	0	15	.985	3	.061	1 1.066e-2	2	NC	15	NC	3
68			min	0	1	-1.139	2	.002	10 -8.545e-3	3	275.469	1	3366.795	1
69		16	max	0	15	.9	3	.051	1 9.536e-3	2	NC	5	NC	2
70			min	0	1	-1.034	2	.001	10 -7.599e-3	3	319.914	1	4075.942	1
71		17	max	0	15	.742	3	.032	1 8.411e-3	2	NC	5	NC	2
72			min	0	1	867	2	0	10 -6.653e-3	3	429.573	3	6542.563	1
73		18	max	0	15	.523	3	.012	1 7.287e-3	2	NC	5	NC	1
74			min	0	1	651	2	001	10 -5.707e-3	3	798.39	3	NC	1
75		19	max	0	15	.267	3	.005	3 6.162e-3	2	NC	1	NC	1
76			min	0	1	405	2	003	2 -4.761e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.273	3	.005	3 4.059e-3	3	NC	1	NC	1
78			min	0	1	404	2	002	2 -6.363e-3	2	NC	1	NC	1
79		2	max	0	15	.449	3	.012	1 4.863e-3	3	NC	5	NC	1
80			min	0	1	713	2	0	10 -7.525e-3	2	660.99	2	NC	1
81		3	max	0	15	.604	3	.032	1 5.667e-3	3	NC	5	NC	2
82			min	0	1	98	2	0	10 -8.688e-3	2	354.275	2	6518.878	1
83		4	max	0	15	.724	3	.051	1 6.47e-3	3	NC	5	NC	2
84			min	0	1	-1.177	2	.002	10 -9.85e-3	2	263.941	2	4062.843	
85		5	max	0	15	.801	3	.062	1 7.274e-3	3	NC	15	NC	3
86			min	0	1	-1.289	2	.002	10 -1.101e-2	2	230.486	2	3355.544	
87		6	max	0	15	.834	3	.06	1 8.078e-3	3	NC	15	NC	2
88			min	0	1	-1.316	2	.001	10 -1.218e-2	2	223.804		3419.516	
89		7	max	0	15	.828	3	.048	1 8.882e-3	3	NC	15	NC	2
90			min	0	1	-1.27	2	0	10 -1.334e-2	2	235.78	2	4339.501	1
91		8	max	0	15	.796	3	.027	1 9.686e-3	3	NC	15	NC	2
92			min	0	1	-1.177	2	003	10 -1.45e-2	2	263.856	2	7651.457	1
93		9	max	0	15	.757	3	.015	3 1.049e-2	3	NC	5	NC	1
94			min	0	1	-1.08	2	006	2 -1.566e-2	2	301.7	2	NC	1
95		10	max	0	1	.737	3	.015	3 1.129e-2	3	NC	5	NC	1
96			min	0	1	-1.033	2	01	2 -1.683e-2	2	324.302	2	NC	1
97		11	max	0	1	.757	3	.015	3 1.049e-2	3	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [LC
98			min	0	15	-1.08	2	006	2 -1.566e-		301.7	2	NC	1
99		12	max	0	1	.796	3	.027	1 9.686e-		NC	15	NC	2
100			min	0	15	<u>-1.177</u>	2	003	10 -1.45e-		263.856	2	7651.457	1
101		13	max	0	1	.828	3	.048	1 8.882e-		NC	15	NC	2
102		4.4	min	0	15	-1.27	2	0	10 -1.334e-		235.78	2	4339.501	1
103		14	max	0	1	.834	3	.06	1 8.078e-		NC 000 004	<u>15</u>	NC 2440 F46	2
104		4.5	min	0	15	<u>-1.316</u>	2	.001	10 -1.218e-		223.804	2	3419.516	1
105		15	max	0	15	.801	3	.062	1 7.274e-		NC	<u>15</u>	NC	3
106		16	min	0	1	<u>-1.289</u>	2	.002	10 -1.101e-		230.486	2	3355.544	1
107 108		16	max	0	15	<u>.724</u> -1.177	3	.051 .002	1 6.47e-3		NC 263.941	<u>5</u>	NC 4062.843	1
109		17	min max	0	1	.604	3	.032	1 5.667e-		NC	5	NC	2
110		17	min	0	15	98	2	0	10 -8.688e-		354.275	2	6518.878	1
111		18	max	0	1	<u>96</u> .449	3	.012	1 4.863e-		NC	5	NC	1
112		10	min	0	15	713	2	0	10 -7.525e-		660.99	2	NC	1
113		19	max	0	1	.273	3	.005	3 4.059e-		NC	1	NC	1
114		10	min	0	15	404	2	002	2 -6.363e-		NC	1	NC	1
115	M16	1	max	0	15	.117	1	.004	3 7.282e-		NC	1	NC	1
116	10110		min	0	1	092	3	002	2 -9.057e-		NC	1	NC	1
117		2	max	0	15	.002	13	.017	1 8.341e-		NC	5	NC	1
118			min	0	1	069	2	0	10 -1.007e-	2 1	1105.029	2	NC	1
119		3	max	0	15	.046	3	.041	1 9.399e-		NC	5	NC	2
120			min	0	1	215	2	.001	10 -1.108e-		616.575	2	5118.787	1
121		4	max	0	15	.076	3	.06	1 1.046e-		NC	5	NC	3
122			min	0	1	297	2	.002	15 -1.209e-	2 1	493.783	2	3417.538	1
123		5	max	0	15	.069	3	.07	1 1.152e-	2 3	NC	5	NC	3
124			min	0	1	304	2	.002	15 -1.31e-	2 1	486.019	2	2929.186	1
125		6	max	0	15	.028	3	.067	1 1.258e-	2 3	NC	5	NC	3
126			min	0	1	237	2	.002	10 -1.411e-		578.126	2	3052.284	1
127		7	max	0	15	.001	13	.053	1 1.363e-		NC	5	NC	2
128			min	0	1	113	2	0	10 -1.512e-		892.262	2	3923.766	1
129		8	max	0	15	.068	1	.03	1 1.469e-		NC	4	NC	2
130			min	0	1	118	3	002	10 -1.613e-		2647.188	2	6930.695	1
131		9	max	0	15	.189	1	.013	3 1.575e-		NC	4_	NC	1
132		40	min	0	1	187	3	005	2 -1.714e-		2151.758	3	NC NC	1
133		10	max	0	1	.243	1	.013	3 1.681e-		NC	5_	NC	1
134		44	min	0	1	218	3	009	2 -1.816e-		1621.238	1_	NC NC	1
135		11	max	0	1	.189	1	.013	3 1.575e-		NC	4	NC NC	1
136		12	min	0	15	187	3	005	2 -1.714e-		2151.758	3	NC NC	•
137 138		12	max min	0	15	.068 118	3	.03 002	1 1.469e- 10 -1.613e-	2 3	NC 2647.188	4	NC 6030 605	1
139			max	0	1	.001	13	.053	1 1.363e-		NC	5	NC	2
140		13	min	0	15	113	2	0	10 -1.512e-		892.262	2	3923.766	
141		14	max	0	1	.028	3	.067	1 1.258e-		NC	5	NC	3
142		14	min	0	15	237	2	.002	10 -1.411e-		578.126	2	3052.284	1
143		15	max	0	1	.069	3	.002	1 1.152e-		NC	5	NC	3
144		10	min	0	15	304	2	.002	15 -1.31e-		486.019	2	2929.186	
145		16	max	0	1	.076	3	.06	1 1.046e-		NC	5	NC	3
146			min	0	15	297	2	.002	15 -1.209e-		493.783	2	3417.538	1
147		17	max	0	1	.046	3	.041	1 9.399e-		NC	5	NC	2
148			min	0	15	215	2	.001	10 -1.108e-		616.575	2	5118.787	1
149		18	max	0	1	.002	13	.017	1 8.341e-		NC	5	NC	1
150			min	0	15	069	2	0	10 -1.007e-	2 1	1105.029	2	NC	1
151		19	max	0	1	.117	1	.004	3 7.282e-		NC	1	NC	1
152			min	0	15	092	3	002	2 -9.057e-		NC	1	NC	1
153	M2	1	max	.005	1	.004	2	.005	1 -3.71e-	6 15	NC	1	NC	1
154			min	007	3	008	3	0	15 -1.124e-	4 1	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
155		2	max	.005	1	.004	2	.004	1_	-3.438e-6	<u>15</u>	NC	_1_	NC	_1_
156		_	min	006	3	007	3	0	15	-1.041e-4	_1_	NC	1_	NC	1
157		3	max	.005	1	.003	2	.004	1_	-3.167e-6	<u>15</u>	NC	_1_	NC	1_
158			min	006	3	007	3	0	15		<u>1</u>	NC	1_	NC	1
159		4	max	.004	1	.003	2	.003	1_	-2.896e-6	<u>15</u>	NC	_1_	NC	1_
160			min	006	3	007	3	0	15	-8.769e-5	1_	NC	1_	NC	1
161		5	max	.004	1	.002	2	.003	1_	-2.625e-6	15	NC	_1_	NC	1
162			min	005	3	006	3	0	15	-7.946e-5	1_	NC	1_	NC	1
163		6	max	.004	1	.002	2	.003	1	-2.354e-6	15	NC	1_	NC	1
164			min	005	3	006	3	0	15	-7.123e-5	1_	NC	1_	NC	1
165		7	max	.003	1	.001	2	.002	1	-2.083e-6	<u>15</u>	NC	_1_	NC	1_
166			min	004	3	006	3	0	15	-6.3e-5	1_	NC	1	NC	1
167		8	max	.003	1	0	2	.002	1	-1.812e-6	15	NC	_1_	NC	1
168			min	004	3	005	3	0	15		1_	NC	1_	NC	1
169		9	max	.003	1	0	2	.002	1	-1.541e-6	<u> 15</u>	NC	1_	NC	1_
170			min	004	3	005	3	0	15	-4.654e-5	1_	NC	1	NC	1
171		10	max	.003	1	0	2	.001	1	-1.269e-6	15	NC	1_	NC	1
172			min	003	3	005	3	0	15	-3.831e-5	1	NC	1	NC	1
173		11	max	.002	1	0	2	.001	1	-9.983e-7	15	NC	1	NC	1
174			min	003	3	004	3	0	15	-3.008e-5	1	NC	1	NC	1
175		12	max	.002	1	0	2	0	1	-7.272e-7	15	NC	1	NC	1
176			min	003	3	004	3	0	15	-2.185e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	0	1	-4.561e-7	15	NC	1	NC	1
178			min	002	3	003	3	0	15		1	NC	1	NC	1
179		14	max	.001	1	0	15	0	1	-1.85e-7	15	NC	1	NC	1
180			min	002	3	003	3	0	15	-5.394e-6	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	2.836e-6	1	NC	1	NC	1
182			min	001	3	002	3	0	15	-4.583e-7	3	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.106e-5	1	NC	1	NC	1
184			min	001	3	002	3	0	15	1.944e-7	12	NC	1	NC	1
185		17	max	0	1	0	15	0	1	1.929e-5	1	NC	1	NC	1
186			min	0	3	001	3	0	15	6.284e-7	15	NC	1	NC	1
187		18	max	0	1	0	15	0	1	2.752e-5	1	NC	1	NC	1
188			min	0	3	0	3	0	15	8.995e-7	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	3.575e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	1.171e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.655e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.115e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	3.314e-6	1	NC	1	NC	1
194			min	0	2	001	4	0	15	1.095e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	1.778e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	5.846e-7	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	3.225e-5	1	NC	1	NC	1
198		T	min	0	2	005	4	0	15		15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	4.672e-5	1	NC	1	NC	1
200			min	0	2	002	4	0	15		15	NC	1	NC	1
201		6	max	.001	3	007	15	0	1	6.118e-5	1	NC	1	NC	1
202			min	001	2	002	4	0	15	2.01e-6	15	NC	1	NC	1
203		7	max	.002	3	002	15	.001	1	7.565e-5	1	NC	1	NC	1
204			min	001	2	002 01	4	0	15	2.485e-6		9294.042	4	NC	1
205		8	max	.002	3	003	15	.001	1	9.012e-5	1 <u>15</u>	NC	1	NC NC	1
206		0	min	001	2	003 011	4	0	15	2.96e-6		8284.125	4	NC	1
207		9		.002	3	003	15	.002	1	1.046e-4	1 <u>15</u>	NC	1	NC NC	1
208		9	max	002	2	003 012	4	00 <u>2</u>	15		15		4	NC NC	1
		10	min										<u>4</u> 1		1
209		10	max	.002	3	003	15	.002	1	1.191e-4	1_	NC		NC NC	
210		4.4	min	002	2	013	4	0	15		-	7376.133	4	NC NC	1
211		_11_	max	.003	3	003	15	.002	1_	1.335e-4	_1_	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	002	2	013	4	0	15	4.385e-6		7325.127	4	NC	1
213		12	max	.003	3	003	15	.002	1	1.48e-4	1_	NC	_1_	NC	1
214			min	002	2	012	4	0	15	4.86e-6	15	7525.882	4	NC	1
215		13	max	.003	3	003	15	.003	1	1.625e-4	_1_	NC	_1_	NC	1
216			min	003	2	012	4	0	15	5.335e-6	15	8022.195	4_	NC	1
217		14	max	.004	3	002	15	.003	1	1.769e-4	1_	NC	1	NC NC	1
218		4.5	min	003	2	011	4	0	15	5.811e-6		8926.697	4	NC NC	1
219		15	max	.004	3	002	15	.003	1	1.914e-4	1_	NC NC	1_	NC NC	1
220		4.0	min	003	2	009	4	0	15	6.286e-6	<u>15</u>	NC NC	1_	NC NC	1
221		16	max	.004 003	3	002 007	15	.003	15	2.059e-4	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	003 .004	3		15	<u> </u>		6.761e-6	<u>15</u>	NC NC	1	NC NC	1
224		17	max	003	2	001 006	1	004 0	15	2.203e-4 7.236e-6	<u>1</u> 15	NC NC	1	NC NC	1
225		18	min max	.005	3	<u>006</u> 0	15	.004	1	2.348e-4	1 <u>15</u>	NC NC	1	NC NC	1
226		10	min	004	2	004	1	0	15	7.711e-6	15	NC	1	NC	1
227		19	max	.005	3	- <u>004</u> 0	15	.004	1	2.493e-4	1	NC	1	NC	1
228		13	min	004	2	003	1	0	15	8.186e-6	15	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	15	6.302e-8	3	NC	1	NC	2
230	IVIT	<u> </u>	min	001	3	005	3	004	1	-4.713e-6	1	NC	1	5684.041	1
231		2	max	.003	1	.003	2	<u>.00-</u>	15	6.302e-8	3	NC	1	NC	2
232			min	001	3	004	3	004	1	-4.713e-6	1	NC	1	6190.473	1
233		3	max	.003	1	.003	2	0	15	6.302e-8	3	NC	1	NC	2
234			min	0	3	004	3	004	1	-4.713e-6	1	NC	1	6792.683	1
235		4	max	.002	1	.003	2	0	15	6.302e-8	3	NC	1	NC	2
236			min	0	3	004	3	003	1	-4.713e-6	1	NC	1	7515.645	1
237		5	max	.002	1	.002	2	0	15	6.302e-8	3	NC	1	NC	2
238			min	0	3	004	3	003	1	-4.713e-6	1	NC	1	8393.298	1
239		6	max	.002	1	.002	2	0	15	6.302e-8	3	NC	1	NC	2
240			min	0	3	003	3	003	1	-4.713e-6	1	NC	1	9472.707	1
241		7	max	.002	1	.002	2	0	15	6.302e-8	3	NC	1_	NC	1_
242			min	0	3	003	3	002	1	-4.713e-6	1_	NC	1	NC	1
243		8	max	.002	1	.002	2	0	15	6.302e-8	3	NC	_1_	NC	1
244			min	0	3	003	3	002	1	-4.713e-6	1_	NC	1_	NC	1
245		9	max	.002	1	.002	2	0	15	6.302e-8	3_	NC	_1_	NC	1
246			min	0	3	003	3	002	1	-4.713e-6	_1_	NC	_1_	NC	1
247		10	max	.001	1	.002	2	0	15	6.302e-8	3	NC	_1_	NC	1
248			min	0	3	002	3	001	1_	-4.713e-6	1_	NC	1_	NC	1
249		11	max	.001	1	.001	2	0	15	6.302e-8	3_	NC	1_	NC NC	1
250		40	min	0	3	002	3	001	1_	-4.713e-6	1_	NC	_1_	NC NC	1
251		12	max	.001	1	.001	2	0	15	6.302e-8	3	NC	1_	NC NC	1
252		40	min	0	3	002	3	0		-4.713e-6		NC NC	1	NC NC	1
253		13	max	0	3	.001	2	0		6.302e-8	3	NC NC	1	NC NC	1
254		1.1	min	0	1	002	2	0	1 1 1 5	-4.713e-6	1_	NC NC	<u>1</u> 1	NC NC	1
255		14	max	0 0	3	0	3	0	1	6.302e-8	<u>3</u> 1	NC NC	1	NC NC	1
256 257		15	min max	0	1	001 0	2	<u> </u>	15	-4.713e-6 6.302e-8	3	NC NC	1	NC NC	1
258		15	min	0	3	001	3	0	1	-4.713e-6	1	NC	1	NC	1
259		16		0	1	0	2	0	15		3	NC	1	NC	1
260		10	max	0	3	0	3	0	1	-4.713e-6	1	NC	1	NC	1
261		17	max	0	1	0	2	0	15	6.302e-8	3	NC NC	1	NC NC	1
262		17	min	0	3	0	3	0	1	-4.713e-6	1	NC NC	1	NC NC	1
263		18	max	0	1	0	2	0	15	6.302e-8	3	NC	1	NC	1
264		10	min	0	3	0	3	0	1	-4.713e-6	1	NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.302e-8	3	NC	1	NC	1
266			min	0	1	0	1	0	1	-4.713e-6	1	NC	1	NC	1
267	M6	1	max	.016	1	.016	2	0	1	0	1	NC	4	NC	1
268			min	021	3	024	3	0	1	0	1	2031.27	3	NC	1
			1111111	1021	_		_			•	_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio L			
269		2	max	.016	1	.014	2	00	1	0	_1_		4	NC	1_
270		_	min	02	3	022	3	0	1	0	1_		3	NC	1
271		3	max	.015	1	.013	2	0	1	0	_1_		4	NC	1_
272			min	019	3	021	3	0	1	0	1		3	NC	1
273		4	max	.014	1	.012	2	0	1	0	_1_		4	NC	1
274		_	min	018	3	02	3	0	1	0	1_		3	NC	1
275		5	max	.013	1	.011	2	0	1	0	1_		4	NC	1
276			min	017	3	018	3	0	1	0	1_		3	NC	1
277		6	max	.012	1	.009	2	0	1	0	1_		1	NC	1
278		_	min	015	3	<u>017</u>	3	0	1	0	1_		3	NC	1
279		7	max	.011	1	.008	2	0	1	0	1		1	NC	1
280			min	014	3	016	3	0	1	0	1_		3	NC NC	1
281		8	max	.01	1	.007	2	0	1	0	1		1	NC_	1
282			min	013	3	014	3	0	1	0	1		3	NC	1
283		9	max	.009	1	.006	2	0	1	0	1		1	NC NC	1
284		4.0	min	012	3	013	3	0	1	0	1_		3	NC NC	1
285		10	max	.008	1	.005	2	0	1	0	1		1	NC NC	1
286		4.4	min	011	3	012	3	0	1	0	1_		3	NC NC	1
287		11	max	.007	1	.004	2	0	1	0	1_		1	NC NC	1
288		40	min	01	3	01	3	0	1	0	1_		3	NC NC	1
289		12	max	.006	1	.003	2	0	1	0	1		1	NC	1
290		40	min	008	3	009	3	0	1	0	1_		3	NC NC	1
291		13	max	.005	1	.002	2	0	1	0	1		1	NC NC	1
292		4.4	min	007	3	008	3	0	1	0	1_		3	NC NC	1
293		14	max	.005	1	.002	2	0	1	0	1_		1	NC NC	1
294		4.5	min	006	3	006	3	0		0	1_		3	NC NC	1
295		15	max	.004	1	.001	2	0	1	0	1		1	NC NC	1
296		4.0	min	005	3	005	3	0	1	0	1_		3	NC NC	1
297		16	max	.003	1	0	2	0	1	0	1		1	NC NC	1
298		17	min	004	3	004	3	0	1	0	<u>1</u> 1		1	NC NC	1
299		17	max	.002	3	0	2	0	1	0			1	NC NC	1
300		18	min	002	1	003 0	3	0	1	0	<u>1</u> 1		1	NC NC	1
301		10	max	0 001	3	001	3	<u> </u>	1	0	1		1	NC NC	1
303		19	min	<u>001</u> 0	1	<u>001</u> 0	1	0	1		1		1	NC NC	1
304		19	max	0	1	0	1	0	1	0	1		1	NC NC	1
305	M7	1	min	0	1	0	1	0	1	0	1		1	NC NC	1
306	IVI /		max	0	1	0	1	0	1	0	1		1	NC NC	1
307		2	min	0	3	<u> </u>	2	0	1	0	1	NC ·	-	NC NC	1
308			max	0	2	002	3	0	1	0	1		1	NC	1
309		3	max	.002	3	<u>002</u> 0	15	0	1	0	1	NC ·	1	NC NC	1
310			min	002	2	005	3	0	1	0	1		1	NC	1
311		4	max	.002	3	003 001	15	0	1	0	1		1	NC NC	1
312		_	min	002	2	007	3	0	1	0	1		1	NC	1
313		5	max	.002	3	007 002	15	0	1	0	1		1	NC NC	1
314			min	003	2	002	3	0	1	0	1	NC ·		NC	1
315		6	max	.004	3	002	15	0	1	0	1		1	NC	1
316			min	004	2	00 <u>2</u> 01	3	0	1	0	1		3	NC NC	1
317		7	max	.005	3	002	15	0	1	0	1		1	NC	1
318			min	005	2	002 011	3	0	1	0	1		3	NC	1
319		8	max	.006	3	003	15	0	1	0	1		1	NC	1
320			min	005	2	012	3	0	1	0	1		3	NC	1
321		9	max	.007	3	003	15	0	1	0	1		1	NC	1
322		-	min	006	2	013	3	0	1	0	1		3	NC	1
323		10	max	.008	3	003	15	0	1	0	1		1	NC NC	1
324		10	min	007	2	013	3	0	1	0	1		3	NC	1
325		11	max	.008	3	003	15	0	1	0	-		1	NC	1
J_U			man												

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L			LC
326			min	008	2	013	4	0	1	0	1_		3	NC	1
327		12	max	.009	3	003	15	0	1	0	_1_		<u>1_</u>	NC	1
328			min	008	2	013	4	0	1	0	1_		4	NC	1
329		13	max	.01	3	003	15	0	1	0	_1_		1_	NC	1
330			min	009	2	012	4	0	1	0	1		4	NC	1
331		14	max	.011	3	003	15	0	1	0	1_		1_	NC	1
332			min	01	2	011	1	0	1	0	1		4	NC	1
333		15	max	.012	3	002	15	0	1	0	1	NC	1	NC	1
334			min	011	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.013	3	002	15	0	1	0	1	NC	1	NC	1
336			min	012	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.013	3	001	15	0	1	0	1	NC	1	NC	1
338			min	012	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.014	3	0	15	0	1	0	1	NC	1	NC	1
340			min	013	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.015	3	0	15	0	1	0	1	NC	1	NC	1
342			min	014	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	2	.012	2	0	1	0	1		1	NC	1
344			min	004	3	015	3	0	1	0	1		1	NC	1
345		2	max	.009	2	.011	2	0	1	0	1		1	NC	1
346		_	min	003	3	014	3	0	1	0	1		1	NC	1
347		3	max	.008	2	.011	2	0	1	0	1		1	NC	1
348			min	003	3	013	3	0	1	0	1		1	NC	1
349		4	max	.008	2	.01	2	0	1	0	1		1	NC	1
350			min	003	3	012	3	0	1	0	1		1	NC	1
351		5	max	.007	2	.009	2	0	1	0	1		1	NC	1
352			min	003	3	011	3	0	1	0	1		1	NC	1
353		6	max	.007	2	.009	2	0	1	0	1		1	NC	1
354		 	min	003	3	011	3	0	1	0	1		1	NC	1
355		7	max	.006	2	.008	2	0	1	0	1		1	NC	1
356			min	002	3	01	3	0	1	0	1		1	NC	1
357		8	max	.002	2	.007	2	0	1	0	1		1	NC	1
358		- 0	min	002	3	009	3	0	1	0	1		1	NC	1
359		9		.005	2	.007	2	0	1	0	+		1	NC	1
360		9	max min	002	3	008	3	0	1	0	1		1	NC	1
361		10		.002	2	.006	2	0	1		+		1	NC NC	1
		10	max						1	0			1		
362		11	min	002	2	007	3	0	1	0	1		•	NC NC	1
363		11	max	.004		.005	2	0	1	0	1		<u>1</u>	NC NC	1
364		40	min	002	3	007	3	0	•	0	1_	110	•	NC NC	1
365		12	max	.004	2	.005	2	0	1	0	1		1_	NC NC	1
366		40	min	001	3	006	3	0	1	0	1_	NC NC	4	NC NC	
367		13	max	.003	2	.004	2	0	1	0	1		1_	NC NC	1
368		4.	min	001	3	005	3	0	1	0	1_		1_	NC NC	1
369		14	max	.003	2	.003	2	0	1	0	1_		1	NC	1
370		4-	min	001	3	004	3	0	1	0	1_		1_	NC	1
371		15	max	.002	2	.003	2	0	1	0	_1_		1_	NC	1
372			min	0	3	003	3	0	1	0	_1_		1_	NC	1
373		16	max	.002	2	.002	2	0	1_	0	_1_		1_	NC	1
374			min	0	3	002	3	0	1	0	1_		1_	NC	1
375		17	max	.001	2	.001	2	0	1	0	_1_		1_	NC	1
376			min	0	3	002	3	0	1	0	1	110	1	NC	1
377		18	max	0	2	0	2	0	1	0	_1_		1_	NC	1
378			min	0	3	0	3	0	1	0	1_		1	NC	1
379		19	max	0	1	0	1	0	1	0	1_		1_	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.005	1	.004	2	0	15	1.124e-4	1	NC	1	NC	1
382			min	007	3	008	3	005	1	3.71e-6	15	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Membe		С		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
383	2		nax	.005	1	.004	2	0	15	1.041e-4	_1_	NC	_1_	NC	1
384	_		nin	006	3	007	3	004	1	3.438e-6	15	NC	1_	NC	1
385	3		nax	.005	1	.003	2	0	15	9.591e-5	_1_	NC	1_	NC	1
386			min	006	3	007	3	004	1_	3.167e-6	15	NC	1_	NC	1
387	4		nax	.004	1	.003	2	0	15	8.769e-5	1_	NC NC	1_	NC NC	1
388			min	006	3	007	3	003	1_1	2.896e-6	<u>15</u>	NC NC	1_	NC NC	1
389	5		nax	.004	1	.002	2	0	15	7.946e-5	1_	NC NC	1	NC	1
390			min	005	3	006	3	003	1_	2.625e-6	<u>15</u>	NC NC	1_	NC NC	1
391	6		nax	.004 005	3	.002	2	0	15	7.123e-5	1_	NC NC	1	NC NC	1
392 393	7		min	.003	1	006 .001	2	003 0	15	2.354e-6 6.3e-5	<u>15</u> 1	NC NC	1	NC NC	1
394	/		nax min	003 004	3	006	3	002	1	2.083e-6	15	NC NC	1	NC NC	1
395	8		nax	.003	1	_ 000 0	2	<u>002</u> 0	15	5.477e-5	1	NC	1	NC	1
396	0		nin	004	3	005	3	002	1	1.812e-6	15	NC NC	1	NC	1
397	9		nax	.003	1	<u>.005</u>	2	0	15	4.654e-5	1	NC	1	NC	1
398			nin	004	3	005	3	002	1	1.541e-6	15	NC	1	NC	1
399	10		nax	.003	1	0	2	0	15	3.831e-5	1	NC	1	NC	1
400			nin	003	3	005	3	001	1	1.269e-6	15	NC	1	NC	1
401	11		nax	.002	1	0	2	0	15	3.008e-5	1	NC	1	NC	1
402			nin	003	3	004	3	001	1	9.983e-7	15	NC	1	NC	1
403	12		nax	.002	1	0	2	0	15	2.185e-5	1	NC	1	NC	1
404			min	003	3	004	3	0	1	7.272e-7	15	NC	1	NC	1
405	13		nax	.002	1	0	15	0	15	1.362e-5	1	NC	1	NC	1
406			min	002	3	003	3	0	1	4.561e-7	15	NC	1	NC	1
407	14	l m	nax	.001	1	0	15	0	15	5.394e-6	1	NC	1	NC	1
408		n	min	002	3	003	3	0	1	1.85e-7	15	NC	1	NC	1
409	15	5 n	nax	.001	1	0	15	0	15	4.583e-7	3	NC	1	NC	1
410		r	min	001	3	002	3	0	1	-2.836e-6	1	NC	1	NC	1
411	16	n	nax	0	1	0	15	0	15	-1.944e-7	12	NC	1	NC	1
412		n	min	001	3	002	3	0	1	-1.106e-5	1	NC	1	NC	1
413	17	'n	nax	0	1	0	15	0	15	-6.284e-7	<u>15</u>	NC	_1_	NC	1
414			min	0	3	001	3	0	1	-1.929e-5	1_	NC	1_	NC	1
415	18		nax	0	1	0	15	00	15	-8.995e-7	15	NC	_1_	NC	1
416			min	0	3	0	3	0	1	-2.752e-5	<u>1</u>	NC	1_	NC	1
417	19		nax	0	1	0	1	0	1	-1.171e-6	<u>15</u>	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-3.575e-5	1_	NC	1	NC	1
419 M11	1		nax	0	1	0	1	0	1	1.115e-5	_1_	NC	1	NC	1
420			min	0	1	0	1	0	1_	3.655e-7	15	NC NC	1_	NC	1
421	2		nax	0	3	0	15	0	15	-1.095e-7	<u>15</u>	NC NC	1	NC	1
422	2		min	0	2	001	4	0	1_	-3.314e-6	1	NC NC	<u>1</u> 1	NC NC	1
423	3		nax	0	3	002	15	0	1	-5.846e-7		NC NC	1	NC NC	1
424 425	4		min	0	3	003 001	4		15	-1.778e-5		NC NC	1		1
426	4		nax min	0	2	001 005	15 4	0	15	-1.06e-6 -3.225e-5	<u>15</u> 1	NC NC	1	NC NC	1
427	5		nax	.001	3	005 002	15	0		-3.225e-5 -1.535e-6		NC NC	1	NC NC	1
428	3		nin	0	2	002	4	0	1	-4.672e-5		NC NC	1	NC NC	1
429	6		nax	.001	3	007	15	0	15	-2.01e-6	15	NC	1	NC	1
430	- 0		nin	001	2	002	4	0	1	-6.118e-5		NC	1	NC	1
431	7		nax	.002	3	009	15	0	15	-2.485e-6		NC	1	NC	1
432			nin	001	2	002	4	001	1	-7.565e-5		9294.042	4	NC	1
433	8		nax	.002	3	003	15	<u>001</u>	15	-2.96e-6	15	NC	1	NC	1
434			nin	001	2	011	4	001	1	-9.012e-5		8284.125	4	NC	1
435	9		nax	.002	3	003	15	0	15	-3.435e-6		NC	1	NC	1
436			nin	002	2	012	4	002	1	-1.046e-4		7680.58	4	NC	1
437	10		nax	.002	3	003	15	0	15	-3.91e-6	15	NC	1	NC	1
438			nin	002	2	013	4	002	1	-1.191e-4		7376.133	4	NC	1
439	11		nax	.003	3	003	15	0	15			NC	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

440	Member	Sec	min	x [in]	LC 2	y [in]	LC 4	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 4	(n) L/z Ratio	LC 1
440		12	min max	002 .003	3	013 003	15	002 0	15	-4.86e-6	15	NC	1	NC NC	1
442		12	min	002	2	003 012	4	002	1	-1.48e-4	1	7525.882	4	NC	1
443		13	max	.003	3	003	15	0	15	-5.335e-6	15	NC	1	NC	1
444			min	003	2	012	4	003	1	-1.625e-4	1	8022.195	4	NC	1
445		14	max	.004	3	002	15	0	15	-5.811e-6	15	NC	1	NC	1
446			min	003	2	011	4	003	1	-1.769e-4	1	8926.697	4	NC	1
447		15	max	.004	3	002	15	0	15	-6.286e-6	15	NC	1	NC	1
448			min	003	2	009	4	003	1	-1.914e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	0	15	-6.761e-6	<u>15</u>	NC	1_	NC	1
450			min	003	2	007	1	003	1	-2.059e-4	1_	NC	1_	NC	1
451		17	max	.004	3	001	15	0	15	-7.236e-6	<u>15</u>	NC	_1_	NC	1
452		40	min	003	2	006	1	004	1_	-2.203e-4	1_	NC	1_	NC	1
453		18	max	.005	3	0	15	0	15	-7.711e-6	<u>15</u>	NC	1_	NC	1
454		40	min	004	2	004	1	004	1_	-2.348e-4	1_	NC NC	1_1	NC NC	1
455		19	max	.005	3	0	15	0	15	-8.186e-6	<u>15</u>	NC NC	1	NC NC	1
456 457	M12	1	min	004 .003	1	003 .003	2	004 .004	1	-2.493e-4 4.713e-6	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	2
458	IVIIZ		max	001	3	005	3	0 <u></u>	15	-6.302e-8	3	NC NC	1	5684.041	1
459		2	max	.003	1	.003	2	.004	1	4.713e-6	<u> </u>	NC	1	NC	2
460			min	001	3	004	3	0	15	-6.302e-8	3	NC	1	6190.473	1
461		3	max	.003	1	.003	2	.004	1	4.713e-6	1	NC	1	NC	2
462		Ť	min	0	3	004	3	0	15	-6.302e-8	3	NC	1	6792.683	
463		4	max	.002	1	.003	2	.003	1	4.713e-6	1	NC	1	NC	2
464			min	0	3	004	3	0	15	-6.302e-8	3	NC	1	7515.645	1
465		5	max	.002	1	.002	2	.003	1	4.713e-6	1	NC	1	NC	2
466			min	0	3	004	3	0	15	-6.302e-8	3	NC	1	8393.298	1
467		6	max	.002	1	.002	2	.003	1	4.713e-6	1	NC	1	NC	2
468			min	0	3	003	3	0	15	-6.302e-8	3	NC	1	9472.707	1
469		7	max	.002	1	.002	2	.002	1	4.713e-6	1_	NC	1_	NC	1
470			min	0	3	003	3	0	15	-6.302e-8	3	NC	1_	NC	1
471		8	max	.002	1	.002	2	.002	1	4.713e-6	1_	NC	_1_	NC	1
472			min	0	3	003	3	0	15	-6.302e-8	3	NC	1_	NC	1
473		9	max	.002	1	.002	2	.002	1_45	4.713e-6	1_	NC NC	1_	NC NC	1
474		10	min	0	3	003	3	0	15	-6.302e-8	3	NC NC	<u>1</u> 1	NC NC	1
475 476		10	max min	.001 0	3	.002 002	3	<u>.001</u>	15	4.713e-6 -6.302e-8	<u>1</u> 3	NC NC	1	NC NC	1
477		11	max	.001	1	.002	2	.001	1	4.713e-6	<u> </u>	NC	1	NC	1
478			min	0	3	002	3	0	15	-6.302e-8	3	NC NC	1	NC	1
479		12	max	.001	1	.002	2	0	1	4.713e-6	1	NC	1	NC	1
480		12	min	0	3	002	3	0		-6.302e-8		NC	1	NC	1
481		13	max	0	1	.001	2	0	1	4.713e-6	1	NC	1	NC	1
482			min	0	3	002	3	0	15	-6.302e-8	3	NC	1	NC	1
483		14	max	0	1	0	2	0	1	4.713e-6	1	NC	1	NC	1
484			min	0	3	001	3	0	15	-6.302e-8	3	NC	1	NC	1
485		15	max	0	1	0	2	0	1	4.713e-6	1_	NC	1_	NC	1
486			min	0	3	001	3	0	15		3	NC	1_	NC	1
487		16	max	0	1	00	2	0	1	4.713e-6	_1_	NC	_1_	NC	1
488			min	0	3	0	3	0	15	-6.302e-8	3	NC	1_	NC	1
489		17	max	0	1	0	2	0	1	4.713e-6	1	NC	1_	NC	1
490		40	min	0	3	0	3	0	15	-6.302e-8	3	NC NC	1_	NC NC	1
491		18	max	0	1	0	2	0	1	4.713e-6	1	NC NC	1	NC NC	1
492 493		10	min	0	3	<u> </u>	3	0	15		3	NC NC	<u>1</u> 1	NC NC	1
493		19	max min	0	1	0	1	0	1	4.713e-6 -6.302e-8	3	NC NC	1	NC NC	1
494	M1	1	max	.006	3	.133	2	0	1	1.169e-2	<u>ာ</u> 1	NC NC	1	NC NC	1
496	IVII		min	003	2	034	3	0		-2.139e-2	3	NC	1	NC	1
TJU			11/011	.000		.00+	J	U	10	2.100C-Z	J	140		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.006	3	.065	2	0	15	5.697e-3	1	NC	4	NC	1
498			min	003	2	017	3	003	1	-1.058e-2	3	1699.503	2	NC	1
499		3	max	.006	3	.009	3	0	15	3.573e-5	<u>10</u>	NC	5	NC	1
500			min	003	2	008	2	005	1	-1.125e-4	3	820.691	2	NC	1
501		4	max	.006	3	.05	3	0	15	4.145e-3	2	NC 544	5	NC NC	1
502		-	min	003	2	089	2	004	1	-4.384e-3	3	519.524	2	NC NC	1
503		5	max	.006	3	.102	3	0	15	8.355e-3	1_	NC 075.044	5	NC NC	1
504			min	003	2	<u>174</u>	2	003	1	-8.656e-3	3	375.841	2	NC NC	1
505		6	max	.006	3	.157	3	0	15	1.257e-2	1	NC 200 FF7	15	NC NC	1
506		7	min	003	2	<u>256</u> .21	3	<u>001</u>	1	-1.293e-2	3	296.557 NC	2 15	NC NC	1
507 508		+	max	.005 003	3	329		0 0	3	1.678e-2 -1.72e-2	<u>1</u>	249.69		NC NC	1
509		8	min	.005	3	<u>329</u> .254	3	0	1	2.099e-2	<u>ာ</u> 1		2 15	NC NC	1
510		0	max	003	2	387	2	0	15	-2.147e-2	3	221.938	2	NC NC	1
511		9	max	.005	3	.282	3	0	15	2.33e-2	2		15	NC	1
512		1 3	min	003	2	424	2	0	1	-2.181e-2	3	207.48	2	NC	1
513		10	max	.005	3	.293	3	0	1	2.509e-2	2		15	NC	1
514		10	min	003	2	436	2	0	15	-1.953e-2	3	203.241	2	NC	1
515		11	max	.005	3	.286	3	0	1	2.688e-2	2		15	NC	1
516			min	002	2	424	2	0	15	-1.726e-2	3	208.185	2	NC	1
517		12	max	.005	3	.261	3	0	15	2.59e-2	2		15	NC	1
518		<u> </u>	min	002	2	386	2	0	1	-1.472e-2	3	224.064	2	NC	1
519		13	max	.005	3	.222	3	0	15	2.076e-2	2		15	NC	1
520			min	002	2	326	2	0	1	-1.178e-2	3	254.823	2	NC	1
521		14	max	.005	3	.173	3	.001	1	1.562e-2	2	NC	15	NC	1
522			min	002	2	25	2	0	15	-8.851e-3	3	307.452	2	NC	1
523		15	max	.005	3	.117	3	.003	1	1.049e-2	2	NC	5	NC	1
524			min	002	2	167	2	0	15	-5.917e-3	3	398.121	2	NC	1
525		16	max	.004	3	.059	3	.004	1	5.347e-3	2	NC	5	NC	1
526			min	002	2	082	2	0	15	-2.982e-3	3	566.163	2	NC	1
527		17	max	.004	3	.003	3	.004	1	3.54e-4	1_	NC	5	NC	1
528			min	002	2	005	2	0	15	-4.838e-5	3	925.63	2	NC	1
529		18	max	.004	3	.06	1	.003	1	8.435e-3	2	NC	4	NC	1
530			min	002	2	046	3	0	15	-3.569e-3	3	1959.664	1	NC	1
531		19	max	.004	3	.117	1	0	15	1.697e-2	2	NC	1	NC	1
532			min	002	2	092	3	0	1	-7.24e-3	3	NC	1	NC	1
533	<u>M5</u>	1	max	.018	3	.287	2	0	1	0	1	NC	1	NC NC	1
534			min	012	2	038	3	0	1	0	1_	NC NC	1	NC NC	1
535		2	max	.018	3	.141	2	0	1	0	1_	NC TOO SOT	5	NC	1
536			min	012	2	02	3	0	1	0	1_	796.027	2	NC NC	1
537		3	max	.018	3	.028	3	0	1	0	11	NC	5	NC NC	1
538		1	min	012	2	023	2	0	1	0	1_	374.425	2	NC NC	1
539		4	max	.018	3	.127	2	<u> </u>	1	0	1	NC 229.107	15 2	NC NC	1
540		-	min	012	2	219	3		1	0	1			NC NC	1
541 542		5	max min	.017 011	3	.262 432	2	<u>0</u> 	1	0	1	161.219	1 <u>5</u>	NC NC	1
543		6	max	.017	3	.413	3	0	1	0	1		15	NC	1
544		-	min	011	2	642	2	0	1	0	1	124.596	2	NC	1
545		7	max	.017	3	<u>042</u> .56	3	0	1	0	1		15	NC	1
546			min	011	2	833	2	0	1	0	1	103.348	2	NC	1
547		8	max	.016	3	.683	3	0	1	0	1		15	NC NC	1
548			min	011	2	987	2	0	1	0	1	90.953	2	NC	1
549		9	max	.016	3	<u>967</u> .762	3	0	1	0	1		15	NC	1
550			min	01	2	-1.084	2	0	1	0	1	84.582	2	NC	1
551		10	max	.016	3	.791	3	0	1	0	1		15	NC NC	1
552			min	01	2	-1.117	2	0	1	0	1	82.718	2	NC	1
553		11	max	.015	3	.771	3	0	1	0	1		15	NC	1
			max	.010											

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	01	2	-1.085	2	0	1	0	1	84.882	2	NC	1
555		12	max	.015	3	.704	3	0	1	0	1	4386.049	15	NC	1
556			min	01	2	985	2	0	1	0	1	91.94	2	NC	1
557		13	max	.015	3	.596	3	0	1	0	1	4994.31	15	NC	1
558			min	01	2	824	2	0	1	0	1	105.918	2	NC	1
559		14	max	.014	3	.459	3	0	1	0	1	6041.611	15	NC	1
560			min	01	2	625	2	0	1	0	1	130.406	2	NC	1
561		15	max	.014	3	.307	3	0	1	0	1	7857.919	15	NC	1
562			min	009	2	409	2	0	1	0	1	173.919	2	NC	1
563		16	max	.014	3	.153	3	0	1	0	1	NC	15	NC	1
564			min	009	2	199	2	0	1	0	1	257.897	2	NC	1
565		17	max	.013	3	.01	3	0	1	0	1_	NC	5	NC	1
566			min	009	2	015	2	0	1	0	1	439.827	1	NC	1
567		18	max	.013	3	.126	1	0	1	0	1	NC	5	NC	1
568			min	009	2	11	3	0	1	0	1	964.106	1	NC	1
569		19	max	.013	3	.243	1	0	1	0	1	NC	1	NC	1
570			min	009	2	218	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.006	3	.133	2	0	15	2.139e-2	3	NC	1	NC	1
572			min	003	2	034	3	0	1	-1.169e-2	1	NC	1	NC	1
573		2	max	.006	3	.065	2	.003	1	1.058e-2	3	NC	4	NC	1
574			min	003	2	017	3	0	15	-5.697e-3	1	1699.503	2	NC	1
575		3	max	.006	3	.009	3	.005	1	1.125e-4	3	NC	5	NC	1
576			min	003	2	008	2	0	15	-3.573e-5	10	820.691	2	NC	1
577		4	max	.006	3	.05	3	.004	1	4.384e-3	3	NC	5	NC	1
578			min	003	2	089	2	0	15	-4.145e-3	2	519.524	2	NC	1
579		5	max	.006	3	.102	3	.003	1	8.656e-3	3	NC	5	NC	1
580			min	003	2	174	2	0	15	-8.355e-3	1	375.841	2	NC	1
581		6	max	.006	3	.157	3	.001	1	1.293e-2	3		15	NC	1
582			min	003	2	256	2	0	15	-1.257e-2	1	296.557	2	NC	1
583		7	max	.005	3	.21	3	0	3	1.72e-2	3	NC	15	NC	1
584			min	003	2	329	2	0	1	-1.678e-2	1	249.69	2	NC	1
585		8	max	.005	3	.254	3	0	15	2.147e-2	3		15	NC	1
586			min	003	2	387	2	0	1	-2.099e-2	1	221.938	2	NC	1
587		9	max	.005	3	.282	3	0	1	2.181e-2	3	8831.866	15	NC	1
588			min	003	2	424	2	0	15	-2.33e-2	2	207.48	2	NC	1
589		10	max	.005	3	.293	3	0	15	1.953e-2	3	8645.975	15	NC	1
590			min	003	2	436	2	0	1	-2.509e-2	2	203.241	2	NC	1
591		11	max	.005	3	.286	3	0	15	1.726e-2	3	8831.628	15	NC	1
592			min	002	2	424	2	0	1	-2.688e-2	2	208.185	2	NC	1
593		12	max	.005	3	.261	3	0	1	1.472e-2	3		15	NC	1
594			min	002	2	386	2	0	15	-2.59e-2	2		2	NC	1
595		13	max	.005	3	.222	3	0	1	1.178e-2	3		<u>15</u>	NC	1
596			min	002	2	326	2	0		-2.076e-2	2		2	NC	1
597		14	max	.005	3	.173	3	0	15	8.851e-3	3		15	NC	1
598			min	002	2	25	2	001	1	-1.562e-2	2	307.452	2	NC	1
599		15	max	.005	3	.117	3	0	15	5.917e-3	3	NC	5	NC	1
600			min	002	2	167	2	003	1	-1.049e-2	2	398.121	2	NC	1
601		16	max	.004	3	.059	3	0	15	2.982e-3	3		5	NC	1
602			min	002	2	082	2	004	1	-5.347e-3	2	566.163	2	NC	1
603		17	max	.004	3	.003	3	0	15	4.838e-5	3	NC	5	NC	1
604			min	002	2	005	2	004	1	-3.54e-4	1	925.63	2	NC	1
605		18	max	.004	3	.06	1	0	15	3.569e-3	3	NC	4	NC	1
606			min	002	2	046	3	003	1	-8.435e-3	2	1959.664	1	NC	1
607		19	max	.004	3	.117	1	0	1	7.24e-3	3	NC	1	NC	1
608			min	002	2	092	3	0	15	-1.697e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 36	Inch Wid	lth
Address:		•	
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2718.0	1678.0	0.0	1678.0	
2	2718.0	1678.0	0.0	1678.0	
Sum	5436.0	3356.0	0.0	3356.0	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5436 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ec}	$_{d,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	a) ^{0.2} √ d aλ√ f ′c C a1 ^{1.9}	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	vc/Avco) Yec, v Ye	$_{\text{ed,V}} \varPsi_{\text{c,V}} \varPsi_{\text{h,V}} V_{\text{bx}}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
648.00	648.00	1.000	0.961	1.000	1.000	15593	0.70	10490

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	15.66	23247		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
845.64	1103.56	1.000	1.000	1.000	23247	0.70	24939

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2718	6071	0.45	Pass
Concrete breakout	5436	10231	0.53	Pass
Adhesive	5436	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1678	3156	0.53	Pass (Governs)
T Concrete breakout x+	3356	10490	0.32	Pass
Concrete breakout y-	1678	24939	0.07	Pass
Pryout	3356	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 36 Inch Width				
Address:					
Phone:					
E-mail:					

	Sec. D.7.3	0.67	0.53	120.3 %	1.2	Pass
--	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.