Solutions for Worksheet 5: Pumping Lemma for CFG

1. Show that L is not context free. $L = \{0^n \mid \text{where } n \text{ is prime.}\}$

Solution:

Assuming L is context free,

there is a pumping length p such that any string $s \in L$ of length $\geq p$ can be written as s = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uv^ixy^iz \in L$.

Let $s = uvxyz = 0^p$, where p is prime.

If v is 0^a and y is 0^b $(1 \le a + b \le p)$, $uv^{1+p}xy^{1+p}z$ will be $0^{p+p(a+b)} = 0^{p(1+a+b)} \notin L$, where p(1+a+b) is not prime.

 $L = \{w \mid \text{ where } w \in \{0,1\}^*, w \text{ is a palindrome with an equal } \# \text{ of 0's and 1's.} \}$

Solution:

Assuming L is context free,

there is a pumping length p such that any string $s \in L$ of length $\geq p$ can be written as s = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uv^ixy^iz \in L$.

Let $s = uvxyz = 0^p 1^{2p} 0^p$.

Case 1: v or y contains multiple types of characters.

Then, uv^2xy^2z will contain characters out of order. Therefore, $uv^2xy^2z \notin L$.

Case 2: v and y contain the same character.

If vy is 0^a $(1 \le a \le p)$, and it is in $0^p 1^{2p} 0^p$, $uv^2 xy^2 z$ will be $0^{p+a} 1^{2p} 0^p \notin L$, where # of 0's and 1's are different.

If vy is 1^a $(1 \le a \le p)$, and it is in $0^p 1^{2p} 0^p$, $uv^2 xy^2 z$ will be $0^p 1^{2p+a} 0^p \notin L$, where # of 0's and 1's are different.

If vy is 0^a $(1 \le a \le p)$, and it is in $0^p 1^{2p} 0^p$, $uv^2 xy^2 z$ will be $0^p 1^{2p} 0^{p+a} \notin L$, where # of 0's and 1's are different.

Case 3: v and y contain different characters.

If v is 0^a and y is 1^b ($2 \le a+b \le p$ and $a,b \ge 1$), and it is in $0^p1^{2p}0^p$, uv^2xy^2z will be $0^{p+a}1^{2p+b}0^p \notin L$, which is not palindrome. (# of 0's and 1's can be the same here.) If v is 1^a and y is 0^b ($2 \le a+b \le p$ and $a,b \ge 1$), and it is in $0^p1^{2p}0^p$, uv^2xy^2z will be $0^p1^{2p+a}0^{p+b} \notin L$, which is not palindrome. (# of 0's and 1's can be the same here.)

L = { $w \mid \text{where } w \in \{0,1\}^*, w \text{ has length 2 } mod 3, \text{ and the characters at position } \lceil \frac{n}{3} \rceil \text{ and } \lceil \frac{2n}{3} \rceil \text{ are 0's.}}$

Solution:

Assuming L is context free,

there is a pumping length p such that any string $s \in L$ of length $\geq p$ can be written as s = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uv^ixy^iz \in L$.

Let $s = uvxyz = 1^p 01^p 01^p$.

Case 1: v or y contains either of the 0's.

Then, uxz contains less than two 0's which does not satisfy the second requirement. (At least two 0's are required.) Therefore, $uxz \notin L$.

Case 2: v and y contain only the 1's.

To satisfy the second requirement: the characters at position $\lceil \frac{n}{3} \rceil$ and $\lceil \frac{2n}{3} \rceil$ are 0's, the three strings before/between/after 0's must have the same length.

However, pumping up/down can only change the length of two out of three strings.

 $L = \{w\overline{w} \mid \text{ where } w \in \{0,1\}^*, \overline{w} \text{ is a complement of } w.\}$

For example, if w = 000011, then $\overline{w} = 111100$.

The choice of string s is very important to this question.

Convince yourself that $s = 0^p 1^p 1^p 0^p$ will not work.

Solution:

Assuming L is context free,

there is a pumping length p such that any string $s \in L$ of length $\geq p$ can be written as s = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uv^ixy^iz \in L$.

Let $s = uvxyz = 0^p 1^p 0^p 1^p 0^p 1^p$.

Case 1: v or y contains multiple types of characters.

Then, uv^2xy^2z will contain characters out of order. Therefore, $uv^2xy^2z \notin L$.

Case 2: v and y contain the same character.

If vy is 0^a $(1 \le a \le p)$, and it is in $0^p 1^p 0^p 1^p 0^p 1^p$, $uv^2 xy^2 z$ will be $0^{p+a} 1^p 0^p 1^p 0^p 1^p \notin L$. If vy is 1^a $(1 \le a \le p)$, and it is in $0^p 1^p 0^p 1^p 0^p 1^p$, $uv^2 xy^2 z$ will be $0^p 1^{p+a} 0^p 1^p 0^p 1^p \notin L$. If vy is 0^a $(1 \le a \le p)$, and it is in $0^p 1^p 0^p 1^p 0^p 1^p$, $uv^2 xy^2 z$ will be $0^p 1^p 0^{p+a} 1^p 0^p 1^p \notin L$. The following solution process is also the same...

Case 3: v and y contain different characters.

If v is 0^a and y is 1^b ($2 \le a + b \le p$ and $a, b \ge 1$), and it is in $0^p 1^p 0^p 1^p 0^p 1^p$, $uv^2 x y^2 z$ will be $0^{p+a} 1^{p+b} 0^p 1^p 0^p 1^p \notin L$.

If v is 1^a and y is 0^b ($2 \le a + b \le p$ and $a, b \ge 1$), and it is in $0^p 1^p 0^p 1^p 0^p 1^p$, $uv^2 x y^2 z$ will be $0^p 1^{p+a} 0^{p+b} 1^p 0^p 1^p \notin L$.

The following solution process is also the same...

$$L = \{0^i 1^j | where i \ge 0, i^2 = j.\}$$

Solution:

Assuming L is context free,

there is a pumping length p such that any string $s \in L$ of length $\geq p$ can be written as s = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uv^ixy^iz \in L$.

Let
$$s = uvxyz = 0^p 1^{p^2}$$
.

Case 1: v or y contains multiple types of characters.

Then, uv^2xy^2z will contain characters out of order. Therefore, $uv^2xy^2z \notin L$.

Case 2: v and y contain the same character.

If
$$vy$$
 is 0^a $(1 \le a \le p)$, and it is in $0^p 1^{p^2}$, $uv^2 xy^2 z$ will be $0^{p+a} 1^{p^2} \notin L$. If vy is 1^a $(1 \le a \le p)$, and it is in $0^p 1^{p^2}$, $uv^2 xy^2 z$ will be $0^p 1^{p^2+a} \notin L$.

Case 3: v and y contain different characters.

If v is 0^a and y is 1^b ($2 \le a + b \le p$ and $a, b \ge 1$), and it is in $0^p 1^{p^2}$, $uv^2 x y^2 z$ will be $0^{p+a} 1^{p^2+b} \notin L$.

For the above, assume $(p+a)^2 = p^2 + b$

$$p^2+2ap+a^2=p^2+b\equiv 2ap+a^2=b$$

Because
$$p > b, 2ap + a^2 \neq b$$
 and $(p+a)^2 \neq p^2 + b$

$$L = \{0^{i}1^{j}2^{k}$$
 | where $i, j, k \ge 0, i \times j = k.$ }

Solution:

Assuming L is context free,

there is a pumping length p such that any string $s \in L$ of length $\geq p$ can be written as s = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uv^ixy^iz \in L$.

Let
$$s = uvxyz = 0^p 1^p 2^{p^2}$$
.

Case 1: v or y contains multiple types of characters.

Then, uv^2xy^2z will contain characters out of order. Therefore, $uv^2xy^2z \notin L$.

Case 2: v and y contain the same character.

If
$$vy$$
 is 0^a $(1 \le a \le p)$, and it is in $0^p 1^p 2^{p^2}$, $uv^2 xy^2 z$ will be $0^{p+a} 1^p 2^{p^2} \notin L$. If vy is 1^a $(1 \le a \le p)$, and it is in $0^p 1^p 2^{p^2}$, $uv^2 xy^2 z$ will be $0^p 1^{p+a} 2^{p^2} \notin L$. If vy is 2^a $(1 \le a \le p)$, and it is in $0^p 1^p 2^{p^2}$, $uv^2 xy^2 z$ will be $0^p 1^p 2^{p^2+a} \notin L$.

Case 3: v and y contain different characters.

If v is 0^a and y is 1^b $(2 \le a + b \le p \text{ and } a, b \ge 1)$, and it is in $0^p 1^p 2^{p^2}$, $uv^2 xy^2 z$ will be $0^{p+a} 1^{p+b} 2^{p^2} \notin L$.

For the above, assume $(p+a)(p+b) = p^2$

$$p^{2} + (a+b)p + ab = p^{2} \equiv (a+b)p + ab = 0$$

Because
$$a, b, p > 0$$
, $(a + b)p + ab \neq 0$ and $(p + a)(p + b) \neq p^2$

If v is 1^a and y is 2^b ($2 \le a+b \le p$ and $a,b \ge 1$), and it is in $0^p 1^p 2^{p^2}$, $uv^2 xy^2 z$ will be $0^p 1^{p+a} 2^{p^2+b} \notin L$.

For the above, assume $p(p+a) = p^2 + b$

$$p^2 + ap = p^2 + b \equiv ap = b$$

Because
$$p > b$$
, $ap \neq b$ and $p(p+a) \neq p^2 + b$

Therefore, L is not context free by contradiction.

Solutions for Worksheet 5: Pumping Lemma for CFG

$$L = \{0^{i}1^{j}2^{k}3^{r} | \text{ where } i, j, k \ge 0, i+j=k, i=r \text{ or } j=r \text{ or both.}\}$$

Solution:

Assuming L is context free,

there is a pumping length p such that any string $s \in L$ of length $\geq p$ can be written as s = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uv^ixy^iz \in L$.

Let
$$s = uvxyz = 0^{p+1}1^p2^{2p+1}3^p$$
.

Case 1: v or y contains multiple types of characters.

Then, uv^2xy^2z will contain characters out of order. Therefore, $uv^2xy^2z \notin L$.

Case 2: v and y contain the same character.

If vy is 0^a $(1 \le a \le p)$, and it is in $0^{p+1}1^p2^{2p+1}3^p$, uv^3xy^3z will be $0^{p+1+2a}1^p2^{2p+1}3^p \notin L$.

If vy is 1^a $(1 \le a \le p)$, and it is in $0^{p+1}1^p2^{2p+1}3^p$, uv^3xy^3z will be $0^{p+1}1^{p+2a}2^{2p+1}3^p \notin L$.

If vy is 2^a $(1 \le a \le p)$, and it is in $0^{p+1}1^p2^{2p+1}3^p$, uv^3xy^3z will be $0^{p+1}1^p2^{2p+1+2a}3^p \notin L$

If vy is 3^a $(1 \le a \le p)$, and it is in $0^{p+1}1^p2^{2p+1}3^p$, uv^3xy^3z will be $0^{p+1}1^p2^{2p+1}3^{p+2a} \notin L$.

Case 3: v and y contain different characters.

If v is 0^a and y is 1^b $(2 \le a+b \le p \text{ and } a,b \ge 1)$, and it is in $0^{p+1}1^p2^{2p+1}3^p$, uv^3xy^3z will be $0^{p+1+2a}1^{p+2b}2^{2p+1}3^p \notin L$.

If v is 1^a and y is 2^b $(2 \le a+b \le p$ and $a,b \ge 1)$, and it is in $0^{p+1}1^p2^{2p+1}3^p$, uv^3xy^3z will be $0^{p+1}1^{p+2a}2^{2p+1+2b}3^p \notin L$.

If v is 2^a and y is 3^b ($2 \le a + b \le p$ and $a, b \ge 1$), and it is in $0^{p+1}1^p2^{2p+1}3^p$, uv^3xy^3z will be $0^{p+1}1^p2^{2p+1+2a}3^{p+2b} \notin L$.

$$L = \{ww^R w \mid \text{where } w \in \{0, 1\}^*.\}$$

The choice of string s is very important to this question.

Convince yourself that $s = 0^p 0^p 0^p$ and $s = 0^p 110^p 0^p 1$ will not work.

Solution:

Assuming L is context free,

there is a pumping length p such that any string $s \in L$ of length $\geq p$ can be written as s = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uv^ixy^iz \in L$.

Let
$$s = uvxyz = 0^p 1^p 1^p 0^p 0^p 1^p = 0^p 1^{2p} 0^{2p} 1^p$$
.

Case 1: v or y contains multiple types of characters.

Then, uv^2xy^2z will contain characters out of order. Therefore, $uv^2xy^2z \notin L$.

Case 2: v and y contain the same character.

If vy is 0^a $(1 \le a \le p)$, and it is in $0^p 1^{2p} 0^{2p} 1^p$, $uv^2 xy^2 z$ will be $0^{p+a} 1^{2p} 0^{2p} 1^p \notin L$.

The length of uv^2xy^2z is 6p+a, which means that w is at least 2p in length.

Counting from the beginning,

we can say that w has (p+a) 0's and some 1's.

Because there are two more w's remaining, we need (2p + 2a) 0's.

Because there are 2p 0's left, this case does not make sense.

If vy is 1^a $(1 \le a \le p)$, and it is in $0^p 1^{2p} 0^{2p} 1^p$, $uv^2 xy^2 z$ will be $0^p 1^{2p+a} 0^{2p} 1^p \notin L$. Follow the above approach.

If vy is 1^a $(1 \le a \le p)$, and it is in $0^p 1^{2p} 0^{2p} 1^p$, $uv^2 xy^2 z$ will be $0^p 1^{2p} 0^{2p+a} 1^p \notin L$. Follow the above approach.

If vy is 0^a $(1 \le a \le p)$, and it is in $0^p 1^{2p} 0^{2p} 1^p$, $uv^2 xy^2 z$ will be $0^p 1^{2p} 0^{2p} 1^{p+a} \notin L$. Follow the above approach.

Continued...

Case 3: v and y contain different characters.

If v is 0^a and y is 1^b ($2 \le a + b \le p$ and $a, b \ge 1$), and it is in $0^p 1^{2p} 0^{2p} 1^p$, $uv^2 xy^2 z$ will be $0^{p+a} 1^{2p+b} 0^{2p} 1^p \notin L$.

Follow the above approach.

If v is 1^a and y is 0^b ($2 \le a + b \le p$ and $a, b \ge 1$), and it is in $0^p 1^{2p} 0^{2p} 1^p$, $uv^2 xy^2 z$ will be $0^p 1^{2p+a} 0^{2p+b} 1^p \notin L$.

Follow the above approach.

If v is 0^a and y is 1^b ($2 \le a+b \le p$ and $a,b \ge 1$), and it is in $0^p 1^{2p} 0^{2p} 1^p$, $uv^2 xy^2 z$ will be $0^p 1^{2p} 0^{2p+a} 1^{p+b} \notin L$.

Follow the above approach.