Задача А. Хеши префиксов

Имя входного файла: hash.in
Имя выходного файла: hash.out
Ограничение по времени: 2 seconds
Ограничение по памяти: 256 мегабайта

Полиномиальным хешом строки s длины n будем называть величину

$$h(s) = \left(\sum_{i=0}^{n-1} s[i]t^{n-i-1}\right) \bmod r.$$

Здесь как s[i] обозначен ASCII-код i-го символа строки s при нумерации с нуля. Например, для строки "abacaba" хеш вычисляется как $(97t^6 + 98t^5 + 97t^4 + 99t^3 + 97t^2 + 98t + 97)$ mod r.

Заданы числа t и r и строка s. Найдите хеши всех префиксов строки s.

Формат входного файла

Первая строка входного файла содержит числа t и r $(1 \le t \le 10^9, 2 \le r \le 10^9)$.

Вторая строка содержит строку s (длина строки от 1 до 10^5 , строка состоит только из латинских букв).

Формат выходного файла

Пусть длина строки s равна n. Выведите n чисел, хеши строк s[0..0], s[0..1], ..., s[0..n-1].

hash.in	hash.out
7 19	2
abacaba	17
	7
	15
	12
	11
	3

Задача В. Двухкратная подстрока

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка S длины n и число k. Найдите в строке S такую подстроку длины k, которая встречается в ней по крайней мере два раза, или выясните, что такой подстроки нет.

Формат входного файла

В первой строке задана строка S; её длина n- от 1 до $100\,000$ символов, включительно. Во второй строке задано целое число $k\ (1\leq k\leq n)$. Строка состоит только из маленьких букв английского алфавита.

Формат выходного файла

Если подстроки длины k, встречающейся хотя бы два раза, не существует, выведите слово «NONE». В противном случае выведите любую из таких подстрок.

стандартный ввод	стандартный вывод
ast	NONE
1	
blinkingblueblogger	in
2	
aaaaaab	aaaaa
5	

Задача С. Z-функция

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дана непустая строка S, длина которой N не превышает 10^6 . Будем считать, что элементы строки нумеруются от 1 до N.

Требуется для всех i от 1 до N вычислить её z-функцию z[i].

Формат входного файла

Одна строка длины $N, 0 < N \leqslant 10^6,$ состоящая из маленьких латинских букв.

Формат выходного файла

Выведите N чисел — значения z-функции для каждой позиции, разделённые пробелом.

стандартный ввод	стандартный вывод
abracadabra	0 0 0 1 0 1 0 4 0 0 1

Задача D. Префикс-функция

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дана непустая строка S, длина которой N не превышает 10^6 . Будем считать, что элементы строки нумеруются от 1 до N.

Требуется для всех i от 1 до N вычислить её префикс-функцию $\pi[i]$.

Формат входного файла

Одна строка длины $N, 0 < N \leqslant 10^6,$ состоящая из маленьких латинских букв.

Формат выходного файла

Выведите N чисел — значения префикс-функции для каждой позиции, разделённые пробелом.

стандартный ввод	стандартный вывод
abracadabra	0 0 0 1 0 1 0 1 2 3 4

Задача Е. Пароль

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 seconds
Ограничение по памяти: 256 megabytes

Астерикс, Обеликс и их временные спутники Суффикс и Префикс наконец нашли храм Гармонии. Однако его двери были прочно заперты, и даже Обеликсу было не под силу их открыть.

Чуть позже они обнаружили строку s, которая была высечена в камне над воротами храма. Астерикс предположил, что это пароль для входа в храм, и громко вслух произнес эту надпись. Однако ничего не произошло. Тогда Астерикс предположил, что паролем является некоторая подстрока t строки s.

Префикс считал, что строки t является началом строки s. Суффикс считал, что строки t должна быть концом строки s. Обеликс же посчитал, что t должна находиться где-то внутри строки s, то есть не являться ни ее началом, ни ее концом.

Астерикс выбрал подстроку t так, чтобы угодить всем своим спутникам. Кроме того, из всех допустимых вариантов Астерикс выбрал наиболее длинный (потому что Астерикс любит длинные строки). Когда Астерикс произнес строку t — двери храма открылись.

Вам известна строка s. Найдите строку t или определите, что таких строк не существует, а все написанное выше — всего лишь легенда.

Формат входного файла

Дана строка s длины от 1 до 10^6 (включительно), состоящая из строчных латинских букв.

Формат выходного файла

Выведите строку t. Если подходящей строки t не существует — выведите «Just a legend» без кавычек.

stdin	stdout
fixprefixsuffix	fix
abcdabc	Just a legend

Задача F. Период строки

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Строка S имеет период T, если

$$\exists n > 0 : S = T^n = \underbrace{TT \dots T}_n.$$

Вам дана строка S. Ваша задача — найти минимальную по длине строку T, для которой $S=T^n$ при некотором $n\in\mathbb{N}$.

Формат входного файла

Строка S длиной от 1 до 10^6 символов.

Формат выходного файла

Единственное число — длина T.

стандартный ввод	стандартный вывод
abaabaabaaba	3

Задача G. Взлом хешей

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Полиномиальным хешом строки s длины n будем называть величину

$$h(s) = \left(\sum_{n=1}^{n-1} s[i]t^{n-i-1}\right) \mod r$$

Здесь как s[i] обозначен ASCII-код i-го символа строки s при нумерации с нуля. Например, для строки "abacaba" хеш вычисляется как $(97t^6 + 98t^5 + 97t^4 + 99t^3 + 97t^2 + 98t + 97) \ mod \ r$.

Заданы числа t и r. Требуется найти две различные строки, состоящие из строчных букв латинского алфавита и с длиной не более 10^6 , такие что хеши этих строк, посчитанные по приведенной выше формуле, равны.

Формат входного файла

В единственной строке входных данных находятся два целых числа t и r ($1 \le t < r \le 10^9$).

Формат выходного файла

Выведите две различные строки, такие что хеши этих строк, посчитанные по формуле из условия, совпадают. Длины строк не должны превышать 10^6 , а сами строки должны состоять только из строчных букв латинского алфавита.

Пример

стандартный ввод	стандартный вывод
7 151	ba
	dbca

Комментарий

$$h("ba") = (98 \cdot 7 + 97) \mod 151 = 783 \mod 151 = 28$$

 $h("dbca") = (100 \cdot 7^3 + 98 \cdot 7^2 + 99 \cdot 7 + 97) \mod 151 = 39892 \mod 151 = 28$

Задача Н. МУХ и стенки из кубиков

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Белые медведи Меньшиков и Услада из Санкт-Петербургского зоопарка и слоник Хорас из Киевского зоопарка где-то достали очень много деревянных кубиков. Из кубиков они стали строить башенки, ставя кубики один на другой, а башенки, поставленные в ряд, назвали стенкой. Стенка может состоять из башенок различных высот.

Хорас первым закончил собирать свою стенку и назвал ее слоном, эта стенка состоит из w башенок. Медведи тоже закончили собирать свою стенку, но никак ее не назвали. Их стенка состоит из n башенок. Хорас посмотрел на стенку медведей, и его заинтересовало, в скольких участках этой стенки он может «увидеть слона». «Увидеть слона» можно на участке из w последовательных башенок, если высоты башенок на участке как последовательность совпадают с высотами башенок в стенке Хораса. Чтобы увидеть больше слонов Хорас может поднимать или опускать всю свою стенку целиком, в том числе Хорас может опустить свою стенку ниже уровня пола (посмотрите рисунки к тестовым примерам для лучшего понимая).

От вас требуется посчитать количество участков, на которых можно «увидеть слона».

Формат входного файла

Первая строка содержит два целых числа n и w $(1 \le n, w \le 2 \cdot 10^5)$ — количества башенок в стенках медведей и слона соответственно. Вторая строка содержит n целых чисел a_i $(1 \le a_i \le 10^9)$ — высоты башенок в стенке медведей. Третья строка содержит w целых чисел b_i $(1 \le b_i \le 10^9)$ — высоты башенок в стенке слона.

Формат выходного файла

Выведите количество участков в стенке медведей, на которых можно «увидеть слона».

Примеры

stdin	stdout
13 5	2
2 4 5 5 4 3 2 2 2 3 3 2 1	
3 4 4 3 2	

Комментарий

Слева на иллюстрации изображена стенка Хораса из примера, справа — стенка медведей. Серым цветом выделены места, в которых можно «увидеть слона».

Задача І. Наибольшая общая подстрока

Имя входного файла: common.in
Имя выходного файла: common.out
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Найдите наибольшую общую подстроку строк s и t.

Формат входного файла

Первая строка входного файла содержит строку s, вторая — t ($1 \le |s|, |t| \le 100\,000$). Строки состоят из строчных латинских букв.

Формат выходного файла

Выведите длину наибольшей общей подстроки s и t.

common.in	common.out
ababb	3
abacabba	