Digital Logic Circuits

Homework from Previous Lecture

What is the difference between Computer Organization, Computer Design, and Computer Architecture?

Computer Architecture

is concerned with the structure and behavior of the computer from the user's point of view.

It is the **external view** of the computer that anyone who is likely to program a computer should understand.

Computer Organization

is concerned with the way that hardware components operate and the way they are connected to form the computer.

It is the **internal view** of the computer and the roles various internal components play during program execution.

Computer Design

is concerned with the hardware design of the computer.

It is concerned with decisions like which hardware should be used and how they should be connected.

In this lecture, we will study

i. Logic gates

ii. Boolean algebra

iii. K-maps and K-map simplification

iv. Combinational circuits (half adder, full adder)

In order to manipulate binary information, logic circuits called *gates* are required.

Gates are blocks of hardware that produce an output of either 0 or 1, depending on the given inputs.

Name	Symbol	Algebraic Function	Truth Table
AND	A — x B — x	x=A*B or x=AB	A B x 0 0 0 0 1 0 1 0 0 1 1 1
OR	A — x B — x	x=A+B	A B x 0 0 0 0 1 1 1 0 1 1 1 1

Name	Symbol	Algebraic Function	Truth Table
Inverter (aka NOT)	A ——×	x=A'	A x 0 1 1 0
Buffer	A ——×	x=A	A x 0 0 1 1

Name	Symbol	Algebraic Function	Truth Table
NAND (Not AND)	A — X B — X	x=(AB)′	A B x 0 0 1 0 1 1 1 0 1 1 1 0
NOR (Not OR)	A — — — x	x=(A+B)'	A B x 0 0 1 0 1 0 1 0 0 1 1 0

Name	Symbol	Algebraic Function	Truth Table
Exclusive OR (XOR)	A — x B — x	x=A⊕B or x= A'B+AB'	A B x 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive NOR (XNOR)	A	x=(A⊕B)' or x=A'B'+AB	A B x 0 0 1 0 1 0 1 0 0 1 1 1

Draw a logic diagram for the following Boolean expression:

$$F=AB+A'C$$

A B AB A'C.

$$F=AB+A'C$$

Boolean Algebra

Boolean algebra is the algebra that deals with binary variables and logic operations.

Binary Varibles: A, B, x, y, etc.

Basic Logic Operation: AND, OR, Complement

A boolean function is expressed using binary varibles, ogic operation symbols, paratheses, and an equal sign (=).

For instance,

$$F = x + y'z$$

is a boolean function, where the function F is equal to 1 if x is 1 or if both y' and z are equal to 1, and 0 otherwise.

Other Representations of a Boolean Function

Algebraic Expression	Logic Diagram	Tro	uth '	Table	e
		Х	у	Z	F
F = x + y' z			0 0 1 1 0 0 1 1	0 1 0 1 0 1	0 1 0 0 1 1 1

Identities and DeMorgan's Theorem

Identities

(1)
$$x + 0 = x$$

(3)
$$x + 1 = 1$$

(5)
$$x + x = x$$

(7)
$$x + x' = 1$$

(9)
$$x + y = y + x$$

(11)
$$x + (y + z) = (x + y) + z$$

$$(13) x(y+z) = xy + xz$$

(15)
$$(x+y)' = x'y'$$

$$(17) (x')' = x$$

(2)
$$x \cdot 0 = 0$$

$$(4) x \cdot 1 = x$$

(6)
$$x \cdot x = x$$

$$(8) x \cdot x' = 0$$

$$(10) xy = yx$$

$$(12) x(yz) = (xy)z$$

(14)
$$x + yx = (x + y)(x + z)$$

(16)
$$(xy)' = x' + y'$$

$$F = ABC + ABC' + A'C$$
 $F = AB(C + C') + A'C$
 $F = AB(1) + A'C$
 $F = AB + A'C$

DeMorgan's Theorem is crucial for dealing with NAND and NOR gates.

NOR gate: The function (x+y)' is equivalent to (x'y').

NAND gate: The function (xy)' is equivalent to (x'+y').

For this reason, NOR and NAND gates haves two distinct graphical symbols.

Two graphical symbols for NOR gate

Two graphical symbols for NAND gate

Both NOR and NAND gates are called UNIVERSAL GATES

Why K-Maps?

Increase in complexity of algebraic expression

Increase in complexity of logic diagram

Complexity can be reduced by simplifying the algebraic expression with the help of Karnaugh Map or K-Map.

Minterms

A minterm is a Boolean expression resulting in 1 for the output of a single cell, and 0s for all other cells in a Karnaugh map or a truth table.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

minterms, namely:
A'B'C, AB'C', AB'C, ABC', and ABC
(because for F= A'B'C, F=AB'C',
F=AB'C, F=ABC', and F=ABC, the
output is 1, and for all other Boolean
expressions, the output is 0).

In this sample truth table, we have five

Representing Truth Tables as Minterms

A	В	С	<u>F</u>
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F(A, B, C) = \Sigma (1, 4, 5, 6, 7)$$

Here, the cells 1, 4, 5, 6, and 7 represent the minterms.

K-Maps

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

F(A, B, C) =
$$\Sigma$$
 (1, 4, 5, 6, 7)

K-Maps for 2, 3, and 4 variable functions

В	, C			
A	00	01	11	10
0	0		3	2
1	4	5	7	6

C , D						
A, B	00	01	11	10		
00	0	1	3	2		
01	4	5	7	6		
11	12	13	15	14		
10	8	9	11	10		

$$F(A, B, C, D) = \Sigma (0, 2, 5, 7, 8, 10, 13, 15)$$

K-Map Simplification

$$F(A, B, C, D) = \Sigma (0, 2, 5, 7, 8, 10, 13, 15)$$

K-Map Simplification

(other solutions are also possible)

, C	, D			
A, B	00	01	11	10
00	0	1	1	0
01	1	1	0	1
11	1	1	0	1
10	0	1	1	0

$$F = BC + B'D + BCD'$$

The maps we have seen so far can also be referred to as the 'SUM OF PRODUCTS' form of K-Maps

Another Representation of K-Maps:

Product of Sums (POS)

Α	В	С	F	
0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	0 1 0 0 1 1 1	$F(A, B, C) = \Pi (0, 2, 3)$

Maxterms

A maxterm is a Boolean expression resulting in 0 for the output of a single cell, and 1s for all other cells in a Karnaugh map or a truth table.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

In this sample truth table, we have three maxterms, namely:

A'+B'+C', A'+B+C', and A'+B+C

(because for F= A'+B'+C', F=A'+B+C', and F=A'+B+C, the output is 0, and for all other Boolean expressions, the output is 1).

Representing Truth Tables as Maxterms

A	В	С	<u>F</u>
C	0	0	0
C		1	1
C	1	0	0
C	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F(A, B, C) = \Pi (0, 2, 3)$$

Here, the cells 0, 2, and 3 represent the maxterms.

$$F(A, B, C, D) = \Sigma (1, 3, 4, 5, 6, 9)$$

11, 12, 13, 14)

$$F(A, B, C, D) = \Pi (0, 2, 7, 8, 10, 15)$$

POS Simplification

 $F(A, B, C, D) = \Pi (3, 6, 7, 11, 12, 13, 14, 15)$

, C	, D			
A, B	00	01	11	10
00	1	1	0	1
01	1	1	0	0
11	0	0	0	0
10	1	1	0	1

POS Simplification

 $F(A, B, C, D) = \Pi (3, 6, 7, 11, 12, 13, 14, 15)$

POS Simplification

$$F = (C' + D') (A' + B') (B' + C')$$

(other solutions are also possible)

5-Variable K-Maps

Cell 0 can be considered to be 'adjacent' to cell 16, cell 1 can be considered to be adjacent to cell 17, and so on.

$$F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$$

Or

 $F(A, B, C, D, E) = m_1, m_2, m_3, m_5, m_7, m_{11}, m_{13}, m_{17}, m_{19}, m_{23}, m_{29}, m_{31}$

, D	A = 0								
B, C	00	01	11	10					
00	0	1	1	1					
01	0	1	1	0					
11	0	1	0	0					
10	0	0	1	0					

, D	, E	А		
B, C	00	01	11	10
00	0	1	1	0
01	0	0	1	0
11	0	1	1	0
10	0	0	0	0

, D	, E	A =		
B, C	00	01	11	10
00	0	1	1	1
01	0	1	1	0
11	0	1	0	0
10	0	0	1	0

, D	, E	А		
B, C	00	01	11	10
00	0	1	1	0
01	0	0	1	0
11	0	1	1	0
10	0	0	0	0

A = 0					、 D	, E	А	= 1	
В, С	00	01	11	10	В, С	00	01	11	10
00	0	1	1	1	00	0	1	1	0
01	0	1	1	0	01	0	0	1	0
11	0	1	0	0	11	0	1	1	0
10	0	0	1	0	10	0	0	0	0

A = 0				、 D	, E	А	= 1		
В, С	00	01	11	10	В, С	00	01	11	10
00	0	1	1	1	00	0	1	1	0
01	0	1	1	0	01	0	0	1	0
11	0	1	0	0	11	0	1	1	0
10	0	0	1	0	10	0	0	0	0

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

A'B'E+ A'B'C'D+A'CD'E+A'C'DE

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

A'B'E+ A'B'C'D+A'CD'E+A'C'DE

AB'DE

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

A'B'E + A'B'C'D + A'CD'E + A'C'DE

AB'DE+ABCE

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

A'B'E+ A'B'C'D+A'CD'E+A'C'DE

B'C'E

AB'DE+ABCE

$$F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$$

F = A'B'E + A'B'C'D + A'CD'E + A'C'DE + B'C'E + AB'DE + ABCE

Alternative Representations of 5-Variable K-Maps

Reflection Maps
Overlay Maps

5-Variable Reflection K-Map

Think of this line as a mirror

C	, D, E							
A, B	000	001	011	010	110	111	101	100
00	0	1	1	1	0	1	1	0
01	0	0	1	0	0	0	1	0
11	0	0	0	0	0	1	1	0
10	0	1	1	0	0	1	0	0

C	, D, E							
A, B	000	001	011	010	110	111	101	100
00	0	1	1	1	0	1	1	0
01	0	0	1	0	0	0	1	0
11	0	0	0	0	0	1	1	0
10	0	1	1	0	0	1	0	0

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

\ C	, D, E							
A, B	000	001	011	010	110	111	101	100
00	0		1	1	0	1	1	0
01	0	0	1	0	0	0	1	0
11	0	0	0	0	0	1	1	0
10	0	1	1	0	0	1	0	0

B'C'E+A'B'C'D

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

C	, D, E							
A, B	000	001	011	010	110	111	101	100
00	0			1	0	1	1	0
01	0	0	1	0	0	0	1	0
11	0	0	0	0	0	1	1	0
10	0	1	1	0	0	1	0	0

B'C'E+A'B'C'D+A'C'DE

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

\ C	, D, E							
A, B	000	001	011	010	110	111	101	100
00	0	1	1	1	0	1	1	0
01	0	0	1	0	0	0	1	0
11	0	0	0	0	0	1	1	0
10	0	1	1	0	0	1	0	0

B'C'E+A'B'C'D+A'C'DE+ABCE

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

\ C	, D, E							
A, B	000	001	-011	010	110	111	101	100
00	0	1		1	0	[1	1	0
01	0	0	1	0	0	0	1	0
11	0	0	0	0	0	1	1	0
10	0	1	1	0	0	1	0	0

B'C'E+A'B'C'D+A'C'DE+ABCE+A'B'E

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

C	, D, E							
A, B	000	001	-011	010	110	111	101	100
00	0	1		1	0	1	1	0
01	0	0	1	0	0	0	1	0
11	0	0	0	0	0	1	1	0
10	0	1	1	0	0	1	0	0

B'C'E+A'B'C'D+A'C'DE+ABCE+A'B'E+A'CD'E

 $F(A, B, C, D, E) = \Sigma (1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31)$

B'C'E+A'B'C'D+A'C'DE+ABCE+A'B'E+A'CD'E+AB'DE

Overlay Maps?

5-Variable Overlay K-Map

C, D, E								
A, B	000	001	011	010	100	101	111	110
00	0	1	3	2	4	5	7	6
01	8	9	11	10	12	13	15	14
11	24	25	27	26	28	29	31	30
10	16	17	19	18	20	21	23	22

5-Variable Reflection K-Map

5-Variable Overlay K-Map

Reflection maps use the 'Gray Code'

Simplification of Overlay Map

 $F(A, B, C, D, E) = \Sigma (3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28)$

\ C	, D, E							
A, B	000	001	011	010	100	101	111	110
00	0	0	1	0	0	1	1	1
01	0	1	1	1	1	1	0	1
11	1	1	0	1	1	0	0	0
10	0	1	1	1	1	1	0	1

Simplification of Overlay Map

 $F(A, B, C, D, E) = \Sigma (3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28)$

5-Variable K-Map with Don't Care Conditions

F(A, B, C, D, E)= Σ (1, 2, 3, 8, 9, 10, 12, 15, 16, 17, 18, 22, 26, 27) +d(0, 4, 11, 19, 28, 30, 31)

, D	, E	Α =		
B, C	00	01	11	10
00	X	1	1	1
01	Х	0	0	0
11	1	0	1	0
10	1	1	X	1

, D	, E	А		
B, C	00	01	11	10
00	1	1	X	1
01	0	0	0	1
11	Х	0	Х	Х
10	0	0	1	1

Homework

Simplify the following Boolean function:

 $F(A,B,C,D,E)=\Sigma(0, 1, 2, 3, 8, 12, 15, 16, 17, 18, 19, 22, 28, 31)$

K-Maps with Don't Care Conditions

Sometimes, we have function where it doesn't matter whether the output is 0 or 1; it can be either.

These are known as 'DON'T CARE CONDITIONS'. Such conditions are marked with an 'x' in the map.

$$F(A, B, C) = \Sigma(0, 2, 7) + d(1, 3, 5)$$

Map Simplification in the Presence of Don't Care Conditions

$$F = A' + A'C$$

Combinational Circuits

Combinational Circuits

A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs.

Adders

Addition is the most basic digital arithmetic operation.

A combinational circuit that adds **two bits** is called a HALF-ADDER

and

the one that adds **three bits** (i.e., two significant bits and a previous carry) is called a FULL-ADDER.

Half-Adder

Truth Table						
Inj	out	Output				
A	В	Sum	Carry			
0	0	0	0			
0	1	1	0			
1	0	1	0			
1	1	0	1			

Truth Table

Logic Diagram

S (sum)= A'B+AB'=
$$A \oplus B$$

C (carry)= AB

Full-Adder

Α	В	Carry-In	Sum	Carry-Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Truth Table

S (sum)=
$$A \oplus B \oplus C_{in}$$

 C_{out} (carry)= $AB+(A \oplus B)C_{in}$

Homework 1

Simplify the following Boolean functions:

1.
$$F(A,B,C,D)=\Sigma(1, 3, 7, 8, 9, 12, 13, 14, 15)$$

2.
$$F(A,B,C,D)=\Pi(0, 2, 4, 5, 8, 10, 12, 13)$$

Homework 2

Given the following Boolean function:

$$F=x+x'y'$$

- 1. List the truth table
- 2. Draw the logic circuit

Boolean Function			Truti	n Table		
	×	у	x'	y'	x'y' x+x'y' (=F)	
F = x + x' y'						

In the next lecture, we will study...

- i. Flip Flops
- ii. Sequential circuits
- iii. Decoders
- iv. Multiplexers
- v. Registers