Temperature-Centric Reliability Analysis and Optimization under Process Variation

Ivan Ukhov, Petru Eles, and Zebo Peng

Embedded Systems Laboratory Linköping University, Sweden

May 2015

Outline

- * Temperature analysis
- * Process variation
- * Reliability analysis
- * Reliability optimization

Temperature Analysis

* Transient

Power

Temperature Analysis

* Static steady state

Power

Temperature Analysis

* Dynamic steady state

Power

$$\begin{array}{ccc}
L_{\text{eff}} \neq L_{\text{eff}} \\
T_{\text{ox}} \neq T_{\text{ox}} \\
V_{\text{th}} \neq V_{\text{th}}
\end{array}$$

Electronic System

Electronic System

Survival function

Thermal-Cyclic Fatigue

Thermal-Cyclic Fatigue

$$N = \alpha (\Delta T)^{\beta} \exp\left\{\frac{\gamma}{T_{\text{max}}}\right\}$$

Goal

Given:

- * Electronic system
- * Process variation

Perform:

* Reliability analysis

Such that:

* Accurate and computationally efficient

$$R(t|\theta)$$

$$R(t|\Theta)$$

$$\theta = \{\theta_i\}_{i=1}^n$$

$$\theta = \{\theta_i\}_{i=1}^n$$

$$\theta = \{\theta_i(\text{system})\}_{i=1}^n$$

$$\theta = \{\theta_i\}_{i=1}^n$$

$$\theta = \{\theta_i(\text{system})\}_{i=1}^n$$

$$\theta = \{\theta_i(\text{system}(\text{uncertainty}))\}_{i=1}^n$$

Uncertainty Quantification

Monte Carlo

Monte Carlo

Monte Carlo

Solution

$$\theta_i(\xi) \approx \sum_j \hat{\theta}_{ij} \, \psi_j(\xi)$$

Orthogonal Polynomials

- * Hermite Gaussian
- * Laguerre Gamma
- * Jacobi → Beta
- * Gram-Schmidt -> Arbitrary

Spectral Projection

$$\hat{\theta}_{ij} = \langle \theta_i, \psi_j \rangle = \int_{\Omega} \theta_i(\xi) \, \psi_j(\xi) \, f(\xi) \, d\xi$$

Numerical Integration

$$\int_{D} g(x) f(x) dx \approx \sum_{i} g(x_{i}) w_{i}$$

Quadrature Rules

- * Gauß−Hermite → Hermite
- * Gauß−Laguerre → Laguerre
- * Gauß−Jacobi → Jacobi
- * Golub-Welsch → Arbitrary

Quadrature Rules

Abscissa Weight

0.0000 0.94531

 ± 0.95857 0.39362

 ± 2.02018 0.01995

Multiple Dimensions

Full-tensor product

Multiple Dimensions

Full-tensor product

Isotropic sparse grid

Multiple Dimensions

Full-tensor product grid

Isotropic sparse grid

Anisotropic sparse grid

Spectral Projection

Post-Processing

Post-Processing

$$\theta_i(\xi) \approx \sum_j \hat{\theta}_{ij} \, \psi_j(\xi)$$

$$\mathbb{E}\left[\theta_i\right] \approx \hat{\theta}_{i0}$$

$$\operatorname{War}\left[\theta_{i}\right] \approx \sum_{j>0} \hat{\theta}_{ij}^{2}$$

Reliability Analysis

$$R(t|\Theta)$$

Reliability Analysis

$$R(t|\theta)$$

- * Multiprocessor platform
- * Process variation
- * Periodic application
- * Thermal-cyclic fatigue

Objective

$$\min_{\mathcal{S}} \mathbb{E}[\text{Energy}]$$

```
Execution time(S) < Deadline
```

$$\mathbb{P}\left(\text{Temperature}(\mathcal{S}) > \text{Maximal}\right) < p_{\text{burn}}$$

$$\mathbb{P}\left(\text{Lifetime}(\mathcal{S}) < \text{Minimal}\right) < p_{\text{wear}}$$

Experimental Setup

- * 2 process parameters
- * 2, 4, 8, 16, and 32 cores
- * 40, 80, 160, 320, and 640 tasks
- * 10 test cases per pair cores/tasks

Probabilistic vs. Deterministic

Cores	Prob., min	Det., min	Fail, %
2	1	1	40
4	5	2	60
8	17	4	70
16	56	8	100
32	300	9	100

Thank you! Questions?

https://users.ece.cmu.edu/~iukhov