Решение заданий ОП "Квантовая теория поля, теория струн и математическая физика"

Семинары по квантовой механике – I (И.В. Побойко, Д.С. Антоненко, Н.А. Степанов)

Коцевич Андрей Витальевич, группа Б02-920 5 семестр, 2021

Содержание

1	Основы квантовой механики.	3
2	Матрица плотности	8
3	Связанные состояния. Мелкая яма	16
4	Непрерывный спектр. Задача рассеяния	28
5	Точно решаемые потенциалы. Часть 1	35
6	Точно решаемые потенциалы. Часть 2	42
7	Стационарная теория возмущений	51
8	Нестационарная теория возмущений	61
9	Адиабатическое приближение в нестационарных задачах. Фаза Берри	64
10	Стационарное адиабатическое приближение. Быстрые и медленные подси-	_
	стемы	68
11	Квазиклассическое приближение	7 2
12	Туннельные эффекты. Налбарьерное отражение	7 9

1 Основы квантовой механики.

Упражнения (20 баллов)

Упражнение 1. Унитарные матрицы (5 баллов).

Покажите, что унитарные матрицы, как и эрмитовы, диагонализуемы. *Указание*: покажите, что эрмитова и анти-эрмитова часть унитарного оператора диагонализуемы совместно.

Решение.

Разложим унитарный оператор на эрмитову и анти-эрмитову части:

$$\hat{U} = \frac{\hat{U} + \hat{U}^{\dagger}}{2} + i \frac{\hat{U} - \hat{U}^{\dagger}}{2i} \tag{1}$$

Вычислим их коммутатор, учитывая унитарность оператора \hat{U} ($\hat{U}^{\dagger}\hat{U}=\hat{U}\hat{U}^{\dagger}=\mathbb{I}$):

$$[\hat{U}+\hat{U}^{\dagger},\hat{U}-\hat{U}^{\dagger}]=\hat{U}\hat{U}+\hat{U}^{\dagger}\hat{U}-\hat{U}\hat{U}^{\dagger}-\hat{U}^{\dagger}\hat{U}^{\dagger}-\hat{U}\hat{U}^{\dagger}+\hat{U}^{\dagger}\hat{U}-\hat{U}\hat{U}^{\dagger}+\hat{U}^{\dagger}\hat{U}^{\dagger}=2(\hat{U}^{\dagger}\hat{U}-\hat{U}\hat{U}^{\dagger})=0 \quad (2)$$

Часть $\frac{\hat{U}+\hat{U}^\dagger}{2}$ эрмитова, $i\frac{\hat{U}-\hat{U}^\dagger}{2i}$ антиэрмитова. Докажем следующее предложение:

Предложение 1. Если операторы коммутируют, то их можно одновременно диагонализировать.

Доказательство. Пусть \vec{a} – собственный вектор оператора \hat{A} , соответствующий некратному собственному значению λ ($\hat{A}\vec{a}=\lambda\vec{a}$). Вектор $\hat{B}\vec{a}$ тоже будет принадлежать собственному значению λ матрицы A:

$$\hat{A}\hat{B}\vec{a} = \hat{B}\hat{A}\vec{a} = \lambda \hat{B}\vec{a} \tag{3}$$

Следовательно, вектор $B\vec{a}$ пропорционален \vec{a} , т.е. \vec{a} является собственным вектором матрицы \hat{B} .

В случае кратного собственного значения λ имеем несколько собственных векторов x_i , принадлежащим этому собственному значению. Пусть $Bx_i = b_{ij}x^j$, где b_{ij} — некоторые числа. Матрицу b_{ij} можно диагонализовать, выбрав в качестве принадлежащих λ собственных векторов матрицы A другие векторы $y_i = c_{ij}x^j$: $Ay_i = \lambda y_i$ и $By_i = \Lambda_i y_i$ (в последнем равенстве суммы по i нет).

Т.е. у операторов общая система собственных векторов. Можно перейти к базису, состоящему из собственных векторов, и в этом базисе обе матрицы будут диагональны. \Box

Таким образом, эрмитова и анти-эрмитовы части диагонализуемы совместно. Следовательно, и их сумма — унитарный оператор \hat{U} диагонализуем.

Упражнение 2. Замена базиса (5 баллов).

В квантовой механике замена базиса реализуется унитарными преобразованиями $|\psi'\rangle = \hat{U}\,|\psi\rangle$.

- 1. Покажите, что гамильтониан при этом заменяется на $\hat{H}' = \hat{U}\hat{H}\hat{U}^{\dagger}$.
- 2. Последнее утверждение необходимо модифицировать, если унитарное преобразование зависит явно от времени $\hat{U} = \hat{U}(t)$. Покажите, что в таком случае гамильтониан необходимо заменить на $\hat{H}' = \hat{U}\hat{H}\hat{U}^{\dagger} i\hbar\hat{U}\partial_t\hat{U}^{\dagger}$.

Решение.

Запишем нестационарное уравнение Шрёдингера:

$$i\hbar \frac{\partial |\psi\rangle}{\partial t} = \hat{H} |\psi\rangle \tag{4}$$

Очень жаль, что это конец демо-версии данного файла! Для получения полной версии перейдите по секретной ссылке.

