4. 找一张包含线条的图像,用霍夫变换进行线检测,并统计线条的数目。尝试不同的参数设置,并给 出结果比较。

经过灰度处理后,我们使用 cv2.Canny(image, threshold1, threshold2, apertureSize, L2gradient)进行边缘检测。其中,较大的 threshold2 用于检测图像中明显的边缘,但一般情况下检测的效果不会那么完美,边缘检测出来是断断续续的。所以这时候用较小的 threshold1 用于将这些间断的边缘连接起来。在这次作业中,threshold1 和 threshold2 的值分别是 100 和 400。不同的 threshold 值会导致不同的边缘检测结果,进而导致不同的霍夫变换结果。

之后, 我们使用 cv2.HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) 进行线检测,并将所以被检测的线绘在原图上。其中: rho 为生成极坐标时像素扫描步长, theta 为生成极坐标时候的角度步长, threshold 为一条线的最少点数。

霍夫变换后的图片	- (-d)	0(41, 44,	threshold	line
$\rho(\text{rho})$	θ(theta)	(min_points)		
	1	1	100	206
	1	1	180	70
	1	1	250	17

	1	30	100	32
	1	1	500	1
	1	10	180	28
	1	45	180	29
	5	1	180	3328
de and Barrelow & a min was a second of	20	1	180	534
	50	1	180	119

	100	1	180	34
TO AND THE RESIDENCE OF THE PARTY OF THE PAR				

当 threshold(min_points)越大,检测直线越少。θ越大,生成极坐标时候的角度步长越大,可能越来越多角度的直线无法检测。ρ越大,生成极坐标时像素扫描步长月大,检测直线越少。

5. 用线拟合的方式,对下图中的个文字行,插入删除线。

霍夫变换后输出图像:

EM for Gaussian mixture model

- Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters (comprising the means and covariances of the components and the mixing coefficients)
 - 1. Initialize the means μ_{π} covariances Σ , and mixing coefficients π_{π} and evaluate the initial value of the log likelihood.
 - E step. Evaluate the responsibilities using the current parameter values
 - M step. Re-estimate the parameters using the current responsibilities
 - Evaluate the log likelihood and check the convergence

EM for Gaussian mixture model

- Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters (comprising the means and covariances of the components and the mixing coefficients)
 - Initialize the means μ_a covariances Σ, and mixing coefficients π_a, and evaluate the initial value of the log likelihood.
 - 2. E step. Evaluate the responsibilities using the current parameter
 - 9. M step. Re-estimate the parameters using the current responsibilities
 - 4. Evaluate the log likelihood and check the convergence