1 Supóngase que 5 terminales están conectados mediante una línea compartida a un computador central. El computador central va preguntando por turno a los diversos terminales si tienen algo que transmitir. Si la respuesta es afirmativa, el terminal accede a la línea. Entonces, si hay 3 terminales que quieren enviar un mensaje, calcular la probabilidad de que el computador haga 2 preguntas hasta encontrar un terminal que quiera transmitir.

Solución: Para i=1,2,3,4,5 sean los sucesos $\{T_i=\text{el terminal }-i-\text{solicita transmitir}\}$. Si el computador central hace 2 preguntas es que el segundo terminal solicita transmitir; entonces, la probabilidad de que el primer terminal preguntado no quiera transmitir pero el segundo sí es

$$P(\overline{T}_1 \cap T_2) = P(\overline{T}_1) P(T_2 \mid \overline{T}_1) = \frac{2}{5} \cdot \frac{3}{4} = \frac{3}{10}.$$

- $\mathbf{2}$ De un grupo de 3 españoles, 2 franceses y 1 alemán se elige un grupo de 3. LLamando X al número de españoles e Y al de alemanes, hállese
 - (a) (1 punto) La función de cuantía conjunta.
 - (b) (0'3 puntos) Media de X y de Y.
 - (c) (0'4 puntos) Covarianza.
 - (d) (0'3 puntos) $E(X \mid Y = 1)$.

Solución:

(a) Los casos posibles son $\binom{6}{3} = 20$. La tabla es la siguiente

(b) Las funciones de cuantía marginales son

X	0	1	2	3
f_1	1/20	9/20	9/20	1/20

$$E(X) = 1 \cdot \frac{9}{20} + 2 \cdot \frac{9}{20} + 3 \cdot \frac{1}{20} = \frac{3}{2}.$$

 $E(Y) = \frac{1}{2}.$

(c) Como E
$$(XY)=1\cdot 1\cdot \frac{6}{20}+2\cdot 1\cdot \frac{3}{20}=\frac{3}{5},$$
la covarianza es

$$Cov(X,Y) = \frac{3}{5} - \frac{3}{2}\frac{1}{2} = -\frac{3}{20}.$$

(d) La distribución condicional es

$X \mid Y = 1$	0	1	2	3
g_1	1/10	6/10	3/10	0

La esperanza es

$$E(X \mid Y = 1) = 1 \cdot \frac{6}{10} + 2 \cdot \frac{3}{10} = 1'2.$$

- **3** Un vendedor puede visitar cada día a un cliente con probabilidad 0'7 ó a ninguno. En cada visita puede vender y ganar 100€ con probabilidad 0'6 ó no vender (y no ganar). Calcular
 - (a) (1 punto) La función de cuantía del número de ventas diarios.
 - (b) (1 punto) La media y desviación de las ganancias diarias.

Solución: Llamemos X al número de visitas, Y al de ventas y G a las ganancias. La tabla de la cuantía de X es

X	0	1
f	0'3	0'7

(a) El número de ventas puede ser 1, con probabilidad $0'7 \cdot 0'6 = 0'42$ (ha de visitar y tener éxito en la visita) ó 0 con probabilidad 0'58; por tanto

Y	0	1
f	0'58	0'42

Se deduce que

- E(Y) = 0'42.
- $E(Y^2) = 0'42.$
- $Var(Y) = 0'42 0'42^2 = 0'2436$
- (b) Como G = 100Y, se tiene
 - $E(G) = 100 \cdot 0'42 = 42 \in$
 - $Var(G) = 100^2 \cdot 0'2436 = 2436$
 - $\sigma_G = \sqrt{2436} = 49'36 \in$
- 4 (2 puntos) Se sabe que la talla media de una población en edad escolar sigue una distribución normal con media 165 cm y desviación típica de 12 cm. Si un centro tiene 1400 alumnos matriculados, se pide:
 - (a) ¿Cuál es el número de alumnos que miden más de 155 cm?
 - (b) ¿Qué proporción (%) de alumnos miden entre 150 y 178 cm?
 - (c) ¿Qué talla permite asegurar que el $67\,\%$ de la población está por debajo de ella?

Solución:

(a) Hay que calcular la probabilidad de que un alumno mida más de 155 cm y aplicarlo a los 1400 alumnos. Como la variable no es una N(0,1), hay que tipificar:

$$P(X > 155) = 1 - P(X \le 155)$$

$$= 1 - P\left(Z \le \frac{155 - 165}{12}\right)$$

$$= 1 - \Phi(-0'83) = \Phi(0'83) = 0'7967.$$

Luego, la cantidad de alumnos es $1400 \cdot 0'7967 = 1115,38 \approx 1116$.

(b)

$$\begin{split} \mathbf{P} \left(150 \leq X \leq 178 \right) &= \mathbf{P} \left(\frac{150 - 165}{12} \leq Z \leq \frac{178 - 165}{12} \right) \\ &= \mathbf{P} \left(\frac{-15}{12} \leq Z \leq \frac{13}{12} \right) \\ &= \Phi(1'08) - \Phi(-1'25) = 0'8599 - 1 + 0'8944 = 0'7543. \end{split}$$

Luego el 75'43% miden entre 150 y 165 cm.

(c) Se pide una talla k tal que P (X < k) = 0'67. Así pues:

$$P(X < k) = P\left(Z < \frac{k - 165}{12}\right) = \Phi\left(\frac{k - 165}{12}\right) = 0'67.$$

Buscando en las tablas, para $z=0'44\Rightarrow\Phi=0'6700$, luego $\frac{k-165}{12}=0'44\Rightarrow k=165+12\cdot0'44=170'28$. Solución: k=170'28 cm.