Logika i teoria mnogości

Ćwiczenia 14

Funkcje

 ${\bf Definicja}.\ Funkcją$ nazywamy relację binarną R, spełniającą warunek prawostronnej jednoznaczności:

$$\forall_{x,y,z} (\langle x,y \rangle \in R \quad \land \langle x,z \rangle \in R \Rightarrow y = z).$$

Zgodnie z tym warunkiem, dla każdego obiektu x istnieje najwyżej jeden obiekt y taki, że $< x, y > \in R$.

Definicja. Niech f będzie funkcją. Dla $x \in D(f)$ jedyny element y taki, że $\langle x, y \rangle \in f$ nazywamy wartością funkcji <math>f dla argumentu x i oznaczamy f(x).

$$(Df(x))\forall_{x \in D(f)}\forall_y (f(x) = y \Leftrightarrow < x, y > \in f)$$

Zbiór D(f) jest dziedziną funkcji f.

Mamy: $D^*(f) = \{f(x) : x \in D(f)\}$. Zbiór $D^*(f)$, czyli przeciwdziedzinę funkcji f, nazywamy też zbiorem wartości funkcji f.

Definicja. Niech f będzie funkcją. Mówimy, że funkcja f odwzorowuje zbiór X w zbiór Y, jeżeli D(f)=X i $D^*(f)\subset Y$. Piszemy $f:X\mapsto Y$.

Definicja. Niech f będzie funkcją. Mówimy, że funkcja f odwzorowuje zbiór X na zbiór Y, jeżeli D(f) = X i $D^*(f) = Y$. Piszemy $f: X \stackrel{na}{\mapsto} Y$.

Definicja. Funkcję f nazywamy r'oznowarto'sciow <math>q (albo: wzajemnie jednoznaczną, jedno-jednoznaczną), jeżeli spełnia warunek:

$$\forall x_1, x_2 \in D(f)(f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$$

Równoważnie: $\forall_{x_1,x_2 \in D(f)} (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)).$

Piszemy $f: X \stackrel{1-1}{\mapsto} Y$, jeżeli funkcja $f: X \mapsto Y$ jest różnowartościowa.

Definicja. Odwzorowaniem nazywamy trójkę < f, X, Y > taką, że f jest funkcją, X, Y są zbiorami i $f: X \mapsto Y$.

Definicja. Odwzorowanie $f: X \mapsto Y$ nazywamy:

iniekcjq, jeżeli $f: X \stackrel{1-1}{\mapsto} Y$,

suriekcjq, jeżeli $f: X \stackrel{na}{\mapsto} Y$,

bijekcją, jeżeli jest iniekcją i suriekcją.

Zadanie 1. Czy następujące relacje są funkcjami? Odpowiedź uzasadnić.

a)
$$R = \{ <0, 0>, <1, 0>, <1, 1> \}$$

b)
$$R = \{ <0, 0>, <1, 0>, <2, 1> \}$$

c)
$$R = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} : x + y = 0 \}$$

d)
$$R = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} : x \cdot y = 0 \}$$

- e) $R=\{< x,y>\in X\times Y: y$ jest rokiem urodzenia osoby $x\}, Y=\mathbb{N}, X$ -zbiór wszystkich ludzi.
- f) $R = \{ \langle x, y \rangle \in \mathbb{N} \times \mathbb{N} : x|y \}$

Definicja. Niech $f: X \mapsto Y$. Dla dowolnego $A \subset X$ określamy zbiór:

$$f[A] = \{f(x) : x \in A\} = \{y : \exists_x (x \in A \land y = f(x))\},$$

zwany obrazem zbioru A danym przez funkcję f.

Dla dowolnego $B \subset Y$ określamy zbiór:

$$f^{-1}[B] = \{x \in X : f(x) \in B\},$$

zwany przeciwobrazem zbioru B danym przez funkcję f.

Zadanie 2. Dana jest funkcja $f:\mathbb{R}\to\mathbb{R}$ i zbiór $A\subset\mathbb{R}$. Wyznaczyć obraz zbioru A w przekształceniu f.

a)
$$f(x) = 5x - 3$$
, $A = \{2, 3, 4\}$

b)
$$f(x) = 2x + 1$$
 $A = (-2, 1)$

c)
$$f(x) = |x|$$
 $A = < -3, 0$

d)
$$f(x) = \begin{cases} x - 2 & \text{dla } x < 1 \\ x + 4 & \text{dla } x \ge 1 \end{cases}$$
 $A = <0, 5 >$

Zadanie 3. Dana jest funkcja $f:\mathbb{R}\to\mathbb{R}$ i zbiór $B\subset\mathbb{R}$. Wyznaczyć przeciwobraz zbioru B w przekształceniu f.

a)
$$f(x) = 2x - 1$$
 $B = \{1, 3, 5\}$

b)
$$f(x) = 2 - 3x$$
 $B = < 5, \infty$)

c)
$$f(x) = 5$$
 $B = < 4,7$)

d)
$$f(x) = 5$$
 $B = < 1, 5$)

e)
$$f(x) = \begin{cases} x - 2 & \text{dla } x < 1 \\ x + 4 & \text{dla } x \ge 1 \end{cases}$$
 $B = <0, 6 >$

Zadanie 4. Wyprowadzić prawa dla obrazów i przeciwobrazów funkcji. Zakładamy, że $f:X\mapsto Y.$

a)
$$f[A_1 \cup A_2] = f[A_1] \cup f[A_2]$$
 dla $A_1, A_2 \subset X$

b)
$$f[\bigcup_{i\in I} A_i] = \bigcup_{i\in I} f[A_i] dla A_i \subset X \text{ przy } i\in I$$

c)
$$f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2]$$
, jeżeli $B_1, B_2 \subset Y$

d)
$$f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2]$$
, jeżeli $B_1, B_2 \subset Y$

e)
$$f^{-1}[\bigcap_{i\in I} B_i] = \bigcap_{i\in I} f^{-1}[B_i]$$
 przy $B_i \subset Y$ przy $i\in I, I\neq\emptyset$