Mathematik 1 Skript zum Modul Mathematik 1 für inf, swt und msv

 Simon König

INHALTSVERZEICHNIS

Grui	ndlagen	3
1.1	Logik	3
	1.1.1 Logische Junktoren	3
1.2	Prädikatenlogik und Quantoren	3
1.3	Beweise	4
	1.3.1 Direkter Beweis	4
	1.3.2 Indirekter Beweis	4
	1.3.3 Widerspruchsbeweis	4
Men	ngen, Relationen und Abbildungen	5
2.1	Mengen	5
2.2	Relationen und Abbildungen	5
2.3		6
2.4		7
2.5		7
2.6		8
2.7	Teilbarkeit und Primzahlen	8
Kom	nplexe Zahlen	10
3.1	Polarkoordinaten-Darstellung	11
Alge		12
4.1	Einführung	12
4.2	Erste Strukturen	12
Line	eare Algebra	15
5.1	Vektorräume	15
Line	eare Abbildungen	20
	1.1 1.2 1.3 Mer 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Kon 3.1 Alge 4.1 4.2 Line 5.1	1.1.1 Logische Junktoren 1.2 Prädikatenlogik und Quantoren 1.3 Beweise 1.3.1 Direkter Beweis 1.3.2 Indirekter Beweis 1.3.3 Widerspruchsbeweis Mengen, Relationen und Abbildungen 2.1 Mengen 2.2 Relationen und Abbildungen 2.3 Abbildungen 2.4 Mächtigkeit von Mengen 2.5 Zahlenmengen 2.6 Summen- und Produktzeichen 2.7 Teilbarkeit und Primzahlen Komplexe Zahlen 3.1 Polarkoordinaten-Darstellung Algebraische Strukturen 4.1 Einführung 4.2 Erste Strukturen Lineare Algebra 5.1 Vektorräume

1: GRUNDLAGEN

1.1: Logik

Definition 1.1: Aussage

Eine Aussage ist ein Satz, von dem es Sinn macht, zu fragen, ob er wahr oder falsch ist.

1.1.1: Logische Junktoren

Wir verknüpfen mehrere Aussagen zu größeren aussagelogischen Formeln mithilfe von logischen Junktoren:

NEGATION: $\neg A$ Konjuktion: $A \wedge B$ Disjunktion: $A \vee B$

Durch verwenden dieser grundlegenden Junkoren kann man alle Verknüpfungen darstellen. Um Schreibarbeit zu sparen gibt es verkürzende Schreibweisen

Implikation: $A \Rightarrow B \equiv \neg (A \land \neg B)$

ÄQUIVALENZ: $A \Leftrightarrow B \equiv (A \wedge B) \vee (\neg A \wedge \neg B)$

1.2: Prädikatenlogik und Quantoren

Ein Prädikat ist ein Ausdruck, der die Form einer Aussage hat, aber Variablen enthält.

P(m) := "m ist eine gerade Zahl."

Eine Aussage wird daraus erst, wenn wir angeben, für welche m das Prädikat gelten soll.

Sei M eine Menge und P(m) für jedes $m \in M$ eine Aussage. Wir beschreiben die Aussage mit dem *Allquantor*:

$$\forall m \in M : P(m)$$

d.h. P(m) soll für jedes $m \in M$ gelten.

Mit dem Existenzquantor bekommt das Prädikat eine andere Bedeutung:

$$\exists m \in M : P(m)$$

d.h. es soll mindestens ein $m \in M$ existieren, für das P(m) gilt.

BEISPIEL $M=\mathbb{N}, P(m)$: "m ist eine gerade Zahl." $(\forall m\in M: P(m))$ ist falsch. $(\exists m\in M: P(m))$ ist jedoch wahr.

Bemerkung:

• Verneinung von quantifizieren Prädikat-Aussagen: "Prädikat verneinen und Quantoren tauschen."

$$\neg(\forall m \in M : P(m)) \equiv \exists m \in M : \neg P(m)$$

• Bei Quantoren kommt es auf die Reihenfolge an:

 $\begin{array}{ll} \forall n \in \mathbb{N} & \exists m \in \mathbb{N} : m \geq n & \text{ist wahr} \\ \exists n \in \mathbb{N} & \forall m \in \mathbb{N} : m \geq n & \text{ist falsch} \end{array}$

1.3: Beweise

1.3.1: Direkter Beweis

1.3.2: Indirekter Beweis

1.3.3: Widerspruchsbeweis

2: MENGEN, RELATIONEN UND ABBILDUNGEN

2.1: Mengen

Eine Menge ist eine wohldefinierte Gesamtheit von Objekten, den Elementen der Menge.

$$\mathsf{z.B.}\,\mathbb{Q} = \left\{\frac{p}{q} \,\middle|\, p \in \mathbb{Z}, q \in \mathbb{N}\right\}$$

Definition 2.1: Teilmenge

Eine Menge M_1 ist *Teilmenge* von M, wenn

$$\forall x \in M_1 : x \in M$$
$$\Rightarrow M_1 \subseteq M$$

Für jede Menge M gilt $\varnothing \subseteq M$ und $M \subseteq M$.

Gilt $M_1 \subseteq M$ und $M_1 \neq M$ ist M_1 eine echte Teilmenge von M, d.h. $M_1 \subset M$ oder $M_1 \subsetneq M$

POTENZMENGE

 $\mathcal{P}(M) = \operatorname{Pot}(M)$ ist die Menge aller Teilmengen von M.

SCHNITTMENGE

$$M_s = M_1 \cap M_2; \quad M_s := \{ m \in M_1 \mid m \in M_2 \}$$

Zwei Mengen M_1 und M_2 heißen $\emph{disjunkt}$, falls $M_1 \cap M_2 = \varnothing$

VEREINIGUNG

$$M_v = M_1 \cup M_2; \quad M_v := \{m \mid m \in M_2 \lor m \in M_2\}$$

DIFFERENZ

$$M_1 \setminus M_2 := \{ m \in M_1 \mid m \not\in M_2 \}$$

KARTESISCHES PRODUKT

$$M_1 \times M_2 := \{(m_1, m_2) \mid m_1 \in M_1 \land m_2 \in M_2\}$$

2.2: Relationen und Abbildungen

Definition 2.2: Relation

Eine Relation zwischen zwei Mengen M und N ist eine Teilmenge von $M \times N$.

$$R \subseteq M_1 \times M_2$$

ist $(x,y) \in R$, steht x mit y in Relation $\to x \sim y$. $R \subseteq M \times M$ heißt

reflexiv , falls $\forall x \in M: (x,x) \in R$ symmetrisch , falls $\forall x,y \in M: (x,y) \in M \Rightarrow (y,x) \in R$ antisymmetrisch , falls $\forall x,y \in R: (x,y) \in M \land (y,x) \in R \Rightarrow x=y$ transitiv , falls $\forall x,y,z \in M: (x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$

Definition 2.3: Äquivalenzrelation

Eine Relation heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.

Definition 2.4: Ordnungsrelation

Eine Relation heißt Ordnungsrelation, wenn sie reflexiv, antisymmetrisch und transitiv ist.

2.3: Abbildungen

Definition 2.5: Abbildung

Seien M und N zwei Mengen. Eine Zuordnungsvorschift, die jedem Element $x \in M$ ein Element $f(x) \in N$ zuweist, heißt Abbildung oder Funktion von M nach N.

$$f: M \to N, x \mapsto f(x)$$

M: Definitionsbereich, N: Wertebereich

Definition 2.6:

Sei $f: M \mapsto N$ eine Abbildung. Wir definieren

- $\operatorname{für} x \in M$ heißt $f(x) \in N$ das Bild von x
- für eine Teilmenge $A \subseteq M$ heißt $f(A) = \{f(x) \mid x \in A\}$ das Bild der Teilmenge A
- für eine Teilmenge $B \subseteq N$ heißt $f^{-1}(B) = \{x \in M \mid f(x) \in B\}$ das *Urbild* von B

Definition 2.7: Abbildungseigenschaften

Sei $f: M \to N$ eine Abbildung. Dann heißt f:

injektiv, wenn jedes Element $y \in N$ höchstens ein Urbild hat.

surjektiv, wenn jedes Element $y \in N$ mindestens ein Urbild hat. $\forall y \in N \; \exists x \in M : f(x) = y$

bijektiv, wenn jedes Element $y \in N$ genau ein Urbild hat. $\forall y \in N \ \exists ! x \in M : f(x) = y$

Bemerkung:

1. Bijektivität gilt genau dann, wenn es eine Umkehrabbildung f^{-1} gibt:

$$f:M\to N \qquad \qquad f^{-1}:N\to M$$

$$f\left(f^{-1}(x)\right)\quad \text{mit } x\in N \qquad \qquad f^{-1}\left(f(x)\right)=x\quad \text{mit } x\in M$$

2. Man kann jede Abbildung surjektiv machen, indem man den Wertebereich durch das Bild von f ersetzt: $N\coloneqq f(M)$

2.4: Mächtigkeit von Mengen

Die Mächtigkeit einer Menge ist die Anzahl ihrer Elemente. Man schreibt |M| für die Mächtigkeit von M. Zwei Mengen A und B sind gleich mächtig, wenn es eine bijektive Abbildung $f:A\to B$ gibt.

Eine Menge heißt abzählbar unendlich, falls $|A| = |\mathbb{N}|$ d.h. falls es eine bijektive Abbildung $f: A \to \mathbb{N}$ gibt.

Sie heißt *überabzählbar unendlich*, falls $|A| > |\mathbb{N}|$.

Es gilt immer auch für unendliche Mengen, dass |M| < |Pot(M)|.

Für endliche Mengen gilt $|Pot(M)| = 2^{|M|}$

2.5: Zahlenmengen

Definition 2.8: Natürliche Zahlen

Die natürlichen Zahlen sind eine Menge \mathbb{N} , auf der eine Abbildung $f: \mathbb{N} \to \mathbb{N}$ erklärt ist, die folgende Eigenschaften hat, wobei f(n) der Nachfolger von n heißt.

 $\mathbb{N}1$ Es gibt genau ein Element in \mathbb{N} , das nicht Nachfolger eines anderen Elements ist.

 $\mathbb{N}2$ f ist injektiv

 $\mathbb{N}3$ Ist $M\subseteq\mathbb{N}$ eine Teilmenge, die folgende Eigenschaften hat:

```
1. 1 \in M
```

2. Falls $m \in M$ und $f(m) \in M$

Dann gilt: $M = \mathbb{N}$

$$\mathsf{D.h.}\, M\subseteq \mathbb{N}: 1\in M \land (m\in M\Rightarrow f(m)\in M)\Rightarrow M=\mathbb{N}$$

Man kann zeigen, dass die natürlichen Zahlen durch diese Eigenschaften (die Peano-Axiome) gekennzeichnet sind. Das heißt, dass es im wesentlichen nur eine solche Menge mit einer solchen Abbildung f gibt, nämlich $\mathbb N$.

Das Axiom $\mathbb{N}3$ heißt auch Induktionsaxiom. Aus ihm folgt:

Satz 2.1: Vollständige Induktion

Sei A(n) für jede natürliche Zahl $n \in \mathbb{N}$ eine Aussage, für die gilt:

- A(1) ist wahr
- $\forall n \in \mathbb{N} : A(n) \Rightarrow A(n+1)$

dann ist A(n) für alle $n \in \mathbb{N}$ wahr.

Definition 2.9: Graph einer Abbildung

Sei $f:M\to N$ eine Abbildung. Der Graph von f ist eine Teilmenge $\{(x,f(x))\,|\,x\in M\}\subseteq M\times N$. Für Funktionen $f:\mathbb{R}\to\mathbb{R}$ ist der Graph eine Teilmenge der Ebene \mathbb{R}^2 .

Fasst man eine Funktion als eine Relation auf, so ist der Graph das selbe wie R. $\operatorname{Graph}(f) = R \subseteq \mathbb{R} \times \mathbb{R}$

Definition 2.10: Verkettung

Seien $f:M \to N$ und $g:N \to P$ Abbildungen. Dann ist die Verkettung:

$$g \circ f : M \to P$$

 $g \circ f(x) := g(f(x))$

Definition 2.11: Identität

Für jede Menge M ist

$$id_M: M \to M, x \mapsto x$$

die identische Abbildung auf M.

2.6: Summen- und Produktzeichen

$$\sum_{k=-m}^{n} a_k := a_m + a_{m+1} + \ldots + a_n$$

Bei der Summe ist k der Summationsindex, m die untere und n die obere Summationsgrenze

$$\prod_{k=m}^{n} a_k \coloneqq a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$$

Bemerkung:

- Ist die obere Summationsgrenze kleiner als die untere, so handelt es sich um eine *leere Summe*, ihr Wert ist 0.
- Entsprechend ist der Wert des leeren Produkts 1.

2.7: Teilbarkeit und Primzahlen

Definition 2.12: Teilbarkeit

Seien $n\in\mathbb{Z}, m\in\mathbb{N}$. Die Zahl m heißt ein Teiler von n, in Zeichen $k\cdot m=n$, wenn es ein $k\in\mathbb{Z}$ gibt, so dass $k\cdot m=n$. In diesem Fall heißt n auch teilbar durch m. Die Zahl 0 ist durch alle $m\in\mathbb{Z}$ teilbar. Falls $m|n_1$ und $m|n_2$, dann folgt $m|n_1+n_2$.

Definition 2.13: Größter gemeinsamer Teiler

Sei $a \in \mathbb{Z}$, die Menge aller Teiler von a ist $\mathcal{D}(a) \coloneqq \{d \in \mathbb{N} \mid d \mid a\}$. Die Menge aller gemeinsamer Teiler von a und b mit $a,b \in \mathbb{Z} \setminus \{0\}$ ist $\mathcal{D}(a,b) = \mathcal{D}(a) \cap \mathcal{D}(b)$. Die Zahl $\operatorname{ggT}(a,b) = \max(\mathcal{D}(a,b))$ heißt größter gemeinsamer Teiler von a und b. Da eine ganze Zahl (außer der 0) nur endlich viele Teiler hat, existiert ggT(a,b).

Definition 2.14: Primzahl

Eine natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler besitzt, nämlich 1 und die Zahl selbst.

$$p \in \mathbb{N} \operatorname{mit} |\mathcal{D}(p)| = 2$$

Satz 2.2:

Jede natürliche Zahl $n \in \mathbb{N} \land n \ge 2$ ist ein Produkt aus Primzahlen (1 ist das leeren Produkt).

Beweis:

A(n): "Jede natürliche Zahl kleiner oder gleich n ist das Produkt von Primzahlen."

IA A(2) ist wahr, denn 2 ist selbst eine Primzahl.

IS Fallunterscheidung:

- 1. n+1 ist prim. Dann ist A(n+1) wahr.
- 2. n+1 ist nicht prim. Dann gibt es natürliche Zahlen 1 und m, sodass $n+1=l\cdot m$, wobei l,m< n+1.

Nach Induktionsvoraussetzung sind somit l und m Produkte von Primzahlen, somit auch n+1.

3: KOMPLEXE ZAHLEN

Definition 3.1: Komplexe Zahlen

Wir definieren $\mathbb C$ als Menge $\mathbb C:=\mathbb R\times\mathbb R$, d.h. wir definieren die komplexen Zahlen als zusammengesetzte Zahlen, also als die Menge der geordneten Paare von reellen Zahlen. Wobei wir folgende Abbildungen mit $\mathbb C\times\mathbb C\to\mathbb C$ auf $\mathbb C$ festlegen:

ADDITION

$$(a,b) + (c,d) := (a+b,c+d)$$

MULTIPLIKATION

$$(a,b)\cdot(c,d):=(ac-bd,ad+bc)$$

Bemerkung:

Die Menge der reellen Zahlen kann als Teilmenge von $\mathbb C$ aufgefasst werden. $\mathbb R\subset\mathbb C$ indem man die injektive Abbildung $\mathbb R\to\mathbb C, a\mapsto(a,0)$ benutzt. Die oben definierten Verknüpfungen schränken sich dann auf die Verknüpfungen in $\mathbb R$ ein:

•
$$(a,0) + (b,0) = (a+b,0)$$

•
$$(a,0) \cdot (b,0) = (a \cdot b - 0, a \cdot 0 + b \cdot 0) = (a \cdot b,0)$$

In diesem Sinne ist \mathbb{C} eine *Erweiterung* des Körpers \mathbb{R} .

Definition 3.2: Imaginäre Einheit

Wir führen die imaginäre Einheit ein. i := (0, 1) damit gilt:

$$(0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 0 \cdot 1) = (-1,0) = i^2 = -1$$

Es gilt also $\mathfrak{i}^2=-1$, daher schreibt man auch $\mathfrak{i}=\sqrt{-1}$. Die Zahlen $(0,y)=y\cdot\mathfrak{i},y\in\mathbb{R}$ heißten imaginäre Zahlen. Wir können uns wegen $\mathbb{C}=\mathbb{R}\times\mathbb{R}$ komplexe Zahlen als Punkte bzw. Vektoren in der *Gauß'schen Zahlenebene* vorstellen.

Satz 3.1:

Für jede komplexe Zahl $(a, b) \in \mathbb{C}$ gilt:

$$(a,b) = a + bi$$

Beweis:

durch ausrechnen der rechten Seite:

$$a + b\mathbf{i} = (a, 0) + (b, 0) \cdot (0, 1)$$

= $(a, 0) + (b \cdot 0 - 0 \cdot 1, b \cdot 1 + 0 \cdot 0)$
= $(a, 0) + (0, b) = (a, b)$

Bemerkung:

Wie man leicht nachrechnet, gelten wie in $\mathbb R$ die Kommutativ-, Assoziativ- und Distributivgesetze.

Definition 3.3: Konjugiert komplexe Zahl

Sei $z=a+b\mathfrak{i}\in\mathbb{C}$. Dann heißt \overline{z} die konjugiert komplexe Zahl $\overline{z}=a-b\mathfrak{i}$ von z.

Satz 3.2: Eigenschaften der konjugiert komplexen Zahl

Seien $z,w\in\mathbb{C}$ dann gilt:

- 1. $\overline{z+w} = \overline{z} + \overline{w}$
- 2. $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. $\frac{1}{2}(z+\overline{z})=\mathfrak{Re}(z)$
- 4. $\frac{1}{2}(z-\overline{z})=\mathfrak{Im}(z)$
- 5. $z \cdot \overline{z} > 0 \in \mathbb{R}$ falls $z \neq 0$

Definition 3.4: Betrag einer komplexen Zahl

Mit der komplexen Zahl $z=a+b\mathfrak{i}$ und $a,b\in\mathbb{R}$ gilt für den Betrag von z:

$$|z| = \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2}$$

$$|z| = |\overline{z}|$$

Insbesondere lässt sich das multiplikative Inverse wie folgt ausdrücken:

$$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \frac{a - b\mathfrak{i}}{a^2 + b^2}$$

3.1: Polarkoordinaten-Darstellung

4: ALGEBRAISCHE STRUKTUREN

4.1: Einführung

Definition 4.1: Verknüpfung

Sei M eine Menge. Eine Abbildung $M \times M \to M, (a,b) \mapsto a \star b$ nennt man Verknüpfung.

- 1. Eine Verknüpfung heißt kommutativ, falls $a\star b=b\star a \quad \forall a,b\in M$ gilt.
- 2. Sie heißt assoziativ, falls $a\star(b\star c)=(a\star b)\star c= \quad \forall a,b,c\in M$ gilt. Man kann auch $a\star b\star c$ schreiben.
- 3. Ein Element $e \in M$ heißt neutrales Element bezüglich der Verknüpfung \star , falls $a\star e=e\star a=a \quad \forall a\in M$ gilt.

Definition 4.2: Invertierbarkeit

Sei M eine Menge mit einer Verknüpfung \star , die ein neutrales Element e besitzt, ein Element $a \in M$ heißt invertierbar, falls es ein Element $a^{-1} \in M$ gibt, so dass gilt:

$$a \star a^{-1} = a^{-1} \star a = e$$

4.2: Erste Strukturen

Definition 4.3: Gruppe

Eine Menge G mit einer Verknüpfung \star heißt Gruppe, falls

- **G1** Die Verknüpfung assoziativ ist,
- G2 ein neutrales Element besitzt,
- G3 jedes Element invertierbar ist.

Falls die Verknüpfung zusätzlich kommutativ ist, nennt man die Gruppe eine *abel'sche Gruppe* oder auch kommutative Gruppe.

Definition 4.4: Ring

Sei M eine Menge mit zwei Verknüpfungen $(+,\cdot)$ und den folgenden Eigenschaften:

- **R1** (M, +) ist eine abel'sche Gruppe mit neutralem Element 0.
- **R2** die Verknüpfung · ist assoziativ mit neutralem Element 1.

R3 es gelten die Distributivgesetze:

$$(a+b) \cdot c = ac + bc$$

 $c \cdot (a+b) = ca + cb$

R4 $0 \neq 1$

Dan heißt M ein Ring (genauer ein Ring mit Eins - unitärer Ring).

Ist zusätzlich auch die Multiplikation \cdot kommutativ und ist $M \setminus \{0\}$ eine Gruppe bezüglich \cdot (d.h. besitzt jedes Element ein Inverses bzgl. \cdot) so heißt M Körper.

Satz 4.1: Eindeutigkeit der neutralen Elemente

In einer Gruppe ist das neutrale Element stats eindeutig, d.h. ist e ein neutrales Element und gibt es ein Element:

$$a \in G, \forall g \in G: a \star g = g \star a = g$$

Dann ist a = e!

Beweis:

Gelte $a \star g = g$ für ein $g \in G$. Dann folgt:

$$(a \star g) \star g^{-1} = g \star g^{-1}$$

Mit G1 und G3 gilt:

$$a \star (g \star g^{-1}) = e$$

Dann folgt mit G3:

$$a\star e=e$$
 und damit $a=e$

Bemerkung:

Ähnlich dazu der Beweis, dass inverse Elemente eindeutig bestimmt sind.

Definition 4.5: Homomorphismus

Seien (G,\star) und (H,*) Gruppen. Eine Abbildung $f:G\to H$ heißt (Gruppen-)Homomorphismus, falls gilt:

$$f(a \star b) = f(a) * f(b) \quad \forall a, b \in G$$

Lemma 4.1:

Ein Gruppenhomomorphismus $f:G\to H$ bildet stets das neutrale Element in G auf das neutrale Element in H ab.

Beweis:

Sei e das neutrale Element in G. dann folgt:

$$f(e) * f(g) = f(e \star g) = f(g)$$

Es folgt dann, dass f(e) das neutrale Element in H ist.

Definition 4.6:

Sei G eine Gruppe mit Verknüpfung \star und neutralem Element e. Eine nichtleere Teilmenge $U\subseteq G$ heißt Untergruppe von G, falls gilt:

UG 1 $\forall a,b \in U: a \star b \in U$ (Abgeschlossenheit)

 $\mathbf{UG}\,\mathbf{2}\ \forall a\in U: a^{-1}\in U$

Immer gilt, dass der Kern eines Homomorphismus $f:G\to H$ d.h. $\mathrm{Kern}(f)=f^{-1}(\{e\})$ eine Untergruppe von G ist.

5: LINEARE ALGEBRA

5.1: Vektorräume

BEISPIEL

$$\mathbb{R}^{2} = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}$$

$$\mathbb{R}^{3} = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$$

$$\vdots$$

$$\mathbb{R}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) \mid x_{1}, \dots, x_{n} \in \mathbb{R}\}$$

Wir schreiben die Elemente von \mathbb{R}^n auch als sogenannte Spaltenvektoren:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ anstatt von } (x_1, x_2, \dots, x_n)$$

Mit der komponentenweisen Addition, der Vektoraddition:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

wird \mathbb{R}^n zu einer abel'schen Gruppe mit dem Nullvektor als neutrales Element und dem negierten Vektor als inverses Element bezüglich der Addition.

In der Vektorrechnung nennt man Zahlen (z.B. Elemente aus $\mathbb{R}, \mathbb{C}, \mathbb{Q}$) *Skalare*, um Zahlen und Vektoren deutlich zu unterscheiden.

$$\mathsf{Sei}\,x := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R} \,\mathsf{und}\,\lambda \in \mathbb{R}.\,\mathsf{Dann}\,\mathsf{ist}\,\mathsf{die}\,\mathsf{s} \textit{kalare}\,\mathsf{Multiplikation}\,x \cdot \lambda\,\mathsf{definiert}\,\mathsf{durch}\,x \cdot \lambda := \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}$$

Die beiden Operationen Vektoraddition und skalare Multiplikation sind kennzeichnend für einen Vektorraum.

Definition 5.1: Vektorraum

Sei K ein Körper, dessen neutrales Element bezüglich der Multiplikation mit 1_K bezeichnet wird. Sei V eine Menge mit einer Verknüpfung +, so dass (V,+) eine abel'sche Gruppe bildet.

Sei weiter eine Abbildung, genannt skalare Multiplikation $K \times V \to V$ gegeben, so dass folgende Bedingungen $\forall \alpha, \beta \in K; x, y \in V$ gelten:

V1
$$(\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$
 (assoziativ)

V2 $1_K \cdot x = x$ (neutrales Element des Körpers ist das neutrale bzgl·)

V3
$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
 (distributiv 1)

V 4
$$\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$$
 (distributiv 2)

Dann ist V ein Vektorraum über dem Körper K. Kurz auch K-Vektorraum. Die Verknüpfung + wird Vektorraddition genannt. Für $K=\mathbb{R}$ bzw. $K=\mathbb{C}$ spricht man auch von einem reellen, bzw. komplexen Vektorraum.

Elemente von V nennt man Vektoren.

BEISPIELE

- $\mathbb{R}^2, \mathbb{R}^3, \dots$
- $\bullet \mathbb{C}^2$
- $\{0\}$ ist ein Vektorraum für jeden Körper K.
- Sei $V=\{f\,|\, f:\mathbb{R}\to\mathbb{R}\}$ die Menge der reellen Funktionen in einer Variable. Durch die punktweise Addition

$$(f+g)(x) = f(x) + g(x)$$

und die punktweise skalare Multiplikation

$$(\lambda f)(x) = \lambda \cdot f(x)$$

wird V zu einem Vektorraum.

Definition 5.2: Untervektorraum

Sei V ein K-Vektorraum. Eine nichtleere Teilmenge $U\subseteq V$ heißt Untervektorraum bzw. Teilvektorraum, falls gilt:

UV 1 Abschluss unter Vektoraddition:

$$\forall u,v:u,v\in U\Rightarrow u+v\in U$$

UV 2 Abschluss unter skalarer Multiplikation:

$$\forall u \in U, \lambda \in K: \lambda \cdot u \in U$$

BEISPIELE Die folgenden sind Untervektorräume von \mathbb{R}^2 :

•
$$U_1 := \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \,\middle|\, x \in \mathbb{R} \right\}$$
 (die x -Achse)

•
$$U_2 \coloneqq \left\{ \begin{pmatrix} x \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$
 (die Winkelhalbierende des 1. und 3. Quadranten)

Lemma 5.1:

Für alle $\lambda \in K, v \in V$ wobei V ein K-Vektorraum ist, gilt:

1.
$$0_K \cdot v = 0_V$$

2.
$$(-\lambda) \cdot v = -(\lambda \cdot v)$$

Beweis:

1. Es gilt:

$$\begin{aligned} 0 \cdot v &= (0+0) \cdot v \underset{\text{(V3)}}{=} 0 \cdot v + 0 \cdot v \\ 0 \cdot v + (-(0 \cdot v)) &= (0 \cdot v + 0 \cdot v) + (-(0 \cdot v)) \\ &= 0 \cdot v + (0 \cdot v + (-0 \cdot v)) \\ 0 &= 0 \cdot v + 0 = 0 \cdot v \end{aligned}$$

Definition 5.3: Linearkombination

Seien v_1,v_2,\ldots,v_k Vektoren aus dem K-Vektorraum V und seien $\lambda_1,\lambda_2,\ldots,\lambda_k\in K$. Dann heißt der Vektor

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_k v_k = \sum_{j=1}^k \lambda_j v_j$$

Linearkombination von den Vektoren v_1, v_2, \ldots, v_k . Die Skalare $\lambda_1, \lambda_2, \ldots, \lambda_k$ heißen *Koeffizienten* der Linearkombination.

Sind in der Linearkombination alle Koeffizienten gleich Null, handelt es sich um die *triviale Linearkombination*. Gibt es hingegen mindestens einen Koeffizienten $\lambda_j \neq 0$, handelt es sich um einee *nichttriviale Linearkombination*.

Definition 5.4:

Sei V ein K-Vektorraum, $M\subseteq V$ eine Teilmenge. Dann heißt die Menge aller Linearkombinationen

$$\{\lambda_1 v_1 + \ldots + \lambda_k v_k \mid v_1, v_2, \ldots, v_k \in M, \lambda_1, \lambda_2, \ldots, \lambda_k \in K\}$$

der Spann oder die lineare Hülle von M.

$$\mathrm{Span}(M) := \left\{ \sum_{j=1}^{k} \lambda_j v_j \,\middle|\, \lambda_j \in K, v_j \in M \right\}$$

BEISPIELE

•
$$v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 in $\mathbb{R}^3 \leadsto \mathrm{Span}(\{v\}) = \left\{ \begin{pmatrix} \lambda \\ \lambda \\ 0 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$

• Span
$$\left(\left\{\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\right\}\right) = \left\{\begin{pmatrix}x_1\\x_2\\0\end{pmatrix} \middle| x_1,x_2 \in \mathbb{R}\right\}$$
 $(x_1,x_2\text{-Ebene})$

Satz 5.1:

Sei V ein K-Vektorraum und $M \subseteq V$. Dann ist $\mathrm{Span}(M)$ ein Untervektorraum von V.

Beweis:

- 1. $\operatorname{Span}(M)$ ist nicht leer, da der Nullvektor als leere Linearkombination mindestens enthalten ist.
- 2. Abschluss unter skalarer Multiplikation, sei $\lambda \in K, v \in \operatorname{Span}(M)$:

$$\begin{split} v &= \lambda_1 v_1 + \ldots + \lambda_k v_k \quad \text{wobei} \ v_1, \ldots, v_k \in M \\ \lambda v &= \lambda (\lambda_1 v_1 + \ldots + \lambda_k v_k) \\ &= \lambda (\lambda_1 v_1) + \ldots + \lambda (\lambda_k v_k) \\ &= (\lambda \lambda_1) v_1 + \ldots + (\lambda \lambda_k) v_k \end{split}$$

3. Abschluss unter Addition:

Definition 5.5: Erzeugendensystem

Gilt $V=\operatorname{Span}(M)$ für einen K-Vektorraum V und eine Teilmenge $M\subseteq V$, so sagt man M ist ein $\mathit{Erzeugendensystem}$ von V.

Interessant ist die minimale Anzahl an Vektoren in einem Erzeugendensystem, bzw. ein *minimales Erzeugendensystem*.

Definition 5.6: Lineare Abhängigkeit

Eine Menge von Vektoren $M\subseteq V$ heißt *linear abhängig*, wenn es eine nichttriviale Linearkombination gibt, die den Nullvektor ergibt. Andernfalls heißt M *linear unabhängig*!

Satz 5.2:

Eine Menge von Vektoren ist genau dann linear abhängig, wenn einen Vektor $v \in M$ gibt, der sich als Linearkombination mit Vektoren aus $M \setminus \{v\}$ darstellen lässt.

" \Rightarrow " Angenommen, M ist linear abhängig. Dann gibt es Vektoren v_1, \ldots, v_n und Koeffizienten $\lambda_1, \ldots, \lambda_n \in K$, so dass die Linearkombination *nichttrivial* den Nullvektor ergibt. Dann folgt:

$$\lambda_j v_j = -\lambda_1 v_1 - \lambda_2 v_2 - \dots - \lambda_{j-1} v_{j-1} - \lambda_{j+1} v_{j+1} - \dots - \lambda_n v_n \quad | \lambda_j \neq 0$$

$$v_j = \frac{1}{\lambda_j} \cdot (-\lambda_1 v_1 - \lambda_2 v_2 - \dots - \lambda_{j-1} v_{j-1} - \lambda_{j+1} v_{j+1} - \dots - \lambda_n v_n)$$

Damit ist v_i als nichttriviale Linearkombination von Vektoren aus $M \setminus \{v_i\}$ dargestellt.

" \Leftarrow " Angenommen, es gibt einen Vektor $v \in M$ sowie Vektoren $v_1, \ldots, v_n \in M \setminus \{v\}$ und Koeffizienten $\lambda_1, \ldots, \lambda_n \in K$, so dass gilt:

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

$$0 = \lambda_1 v_1 + \ldots + \lambda_n v_n - 1 \cdot v$$

Dies ist eine nichttriviale Linearkombination mit Vektoren aus M, die 0 ergibt.

Definition 5.7: Basis

Eine Teilmenge B eines Vektorraums V heißt Basis von V falls B ein linear unabhängiges Erzeugendensystem ist.

BEISPIELE

Satz 5.3: Charakterisierungen von Basen

Für eine Teilmene $B \subseteq V$ eines Vektorraums sind folgene Sätze äquivalent:

- B ist eine Basis
- ullet Jeder Vektor in V lässt sich auf genau eine Weise als Linearkombination von Vektoren aus B schreiben.
- ullet B ist ein minimales Erzeugendensystem von V.
- ullet B ist eine maximal linear unabhängige Teilmenge von V

Bemerkung:

Jeder Vektorraum besitzt eine Basis, jede Basis hat gleich viele Elemente. (auch \varnothing oder $|B|=\infty$ möglich)

Definition 5.8: Dimension

Die Anzahl der Elemente der Basis ${\cal B}$ eines Vektorraums ${\cal V}$ nennt man ${\it Dimension}$

 $\dim(B)$

6: LINEARE ABBILDUNGEN

Lineare Abbildungen sind Strukturerhaltende Abbildungen zwischen Vektorräumen, sie werden deshalb auch Vektorraumhomomorphismen genannt.

Definition 6.1: Lineare Abbildungen

Seien V und W Vektorräume über dem selben Körper K. Eine Abbildung $f:V\to W$ heißt linear , falls

- **L1** $\forall u, v \in V : f(u+v) = f(u) + f(v)$ (Additivität)
- **L 2** $\forall v \in V, \lambda \in K : f(\lambda v) = \lambda \cdot f(v)$ (Homogenität)

Bemerkung:

L 1 ist dazu äquivalent, dass f ein Gruppenhomomorphismus zwischen den abel'schen Gruppen (V,+) und (W,+) ist.

BEISPIELE

- Für alle $\lambda \in K$ ist $f: V \to V, v \mapsto \lambda v$ eine Lineare Abbildung
- Insbesondere sind die identische Abbildung

$$id_V: V \to V, v \mapsto v$$

und die Nullabbildung

$$n_V: V \to V, v \mapsto 0$$

linere Abbildungen.

• $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ ist *nicht* linear, denn

$$4 = f(2) = f(1+1) \neq f(1) + f(1) = 2$$

6.1: Matrizen

Allgemein lassen sich lineare Abbildungen durch sog. *Matrizen* darstellen. Sei A eine $m \times n$ -Matrix, d.h. ein rechteckiges Zahlenschema mit m Zeilen und n Spalten:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{21} & a_{22} & \cdots & a_{2n} \end{pmatrix} = ((a_{ij}))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Jede lineare Abbildung $f:K^n \to K^m$ lässt sich auf diese Weise mit einer $m \times n$ -Matrix mit Einträgen in K darstellen.