算法设计与分析基础 Introduction to the Design and Analysis of Algorithms

第7章 时空权衡

本章主要内容

- 时空权衡的方法
- 计数排序
- 串匹配中的输入增强技术
- 散列法
- B树
- 要求
 - 掌握时空权衡的概念及基本方法,掌握时空权衡的方法 在常见问题中的应用。

时空权衡算法思想

- 时空权衡在算法设计中是一个众所周知的问题
 - 对问题的部分或全部输入做预处理,然后对获得的额外信息进行存储,以加速后面问题的求解——输入增强
 - 使用<mark>额外空间</mark>来实现更快和(或)更方便的数据 存取——预构造

时空权衡

时空权衡是指在算法的设计中,对算法的时间和空间作出权衡。

常见的以空间换取时间的方法有:

- 输入增强
 - 计数排序
 - 字符串匹配中的输入增强技术
- 预构造
 - 散列法
 - B树

计数排序

- 针对待排序列表中的每个元素,算出列表中 小于该元素的元素个数,并把结果记录在一 张表中。
 - 这个"个数"指出了元素在有序列表中的位置
 - 可以用这个信息对列表的元素排序,这个算法 称为"比较计数"

• 思路: 针对待排序列表中的每一个元素,算出列表中小于该元素的元素个数,把结果记录在一张表中。

数组 A[05]		62	31	84	96	19	47
初始	Count []	0	0	0	0	0	0
i=0 遍之后	Count []	3	0	1	1	0	0
<i>i</i> = 1 遍之后	Count []		1	2	2	0	1
i=2 遍之后	Count []			4	3	0	1
i=3 遍之后	Count []	See and the second			5	0	1
i=4 遍之后	Count []					0	2
最终状态	Count []	3	1	4	5	0	2
粉组 如 57	i i						
数组 S[05]		19	31	47	62	84	96

$$for(i=0; i < n; i++)$$
 Count[i]=0;

$$for(i=0;i < n-1;i++)$$

$$for(j=i+1; j < n; j++)$$

$$for(i=0; i < n; i ++) S[Count[i]] = A[i];$$

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

$$=\sum_{n=2}^{n-2}[(n-1)-(i+1)+1]$$

$$=\sum_{i=0}^{n-2}(n-1-i)$$

$$=\frac{n(n-1)}{2}$$

第七章 时

计数排序

- 该算法执行的键值比较次数和选择排序一样多,并且还占用了线性数量的额外空间,所以几乎不能来做实际的应用
- 但在一种情况下还是卓有成效的——待排序的元素值来 自一个已知的小集合
 - 如待排序集合只有多个1,2元素(更一般:元素位于下界 ℓ 和上界 ι 之间的整数)
 - 那么我们可以使用计数排序方法,扫描列表中1和2的数目然后重排列就可以了(只有我们可以改写给定的元素时才成立)

计数排序

- 另一种更现实的情况: 待排序的数组元素有一些其他信息和键值相关(不能改写列表的元素)
 - 将A数组元素复制到一个新数组S[0...n-1]中
 - A中元素的值如果等于最小的值*l*,就被复制到S的前F[0]个元素中,即位置0到F[0]-1中
 - <u>值等于[+1的元素</u>被复制到位置F[0]至(F[0]+F[1])-1, 以此类推。
- 因为这种频率的累积和在统计中称为**分布**,这个 方法也称为"**分布计数**"。

计数排序算法分析实例

13 11 12	13	12	12
----------	----	----	----

数组值	11	12	13
频率	1	3	2
分布值	1	4	6

算法 DistributionCountingt(A[0n-1],L,	U)
for(j←0 to u-l) D[j]←0;	
for(i←0 to n-1) D[A[i]-I]←D[A[i]-I]+1;	
for(j←1 to U-L) D[j]←D[j-1]+D[j];	
for(i←n-1 downto 0){	
j←A[i]-L;	١
S[D[j]-1] ← A[i];	-\
D[j] ← D[j]-1;	
}	
return S;	١

Λ	151		10
H	101	=	12

$$A[4] = 12$$

$$A[3] = 13$$

$$A[2] = 12$$

$$A[1] = 11$$

$$A[0] = 13$$

D[0..2]

ļ	1	4	6
I	1	3	6
	1	2	6
	1	2	5
	1	1	5
I	0	1	5

S[0..5]

			12		
		12			
					13
	12				
11					10000000
				13	

第七章 时空权衡

```
算法 DistributionCounting(A[0...n-1], Lu)
 //分布计数法对有限范围整数的数组排序
 for(j=0;j \le u-\ell;++i) D[j]=0;//初始化频率数组
 for(i=0;i < n; ++i) D[A[i]-l]++;//计算频率值
 for(j=1;j \le u-\ell; ++j) D[j]+=D[j-1];//重用分布
for(i=n-1;i>=0;--i)
    j = A[i] - \ell;
    S[D[j]-1] = A[i];
    D[j]--;
 return S;
          >假设数组值的范围是固定的,
          那么这是一个线性效率的算法
          ▶但重点是:除了空间换时间之
          外,分布技术排序的这种高效是
          因为利用了输入列表独特的自然
 2018/4/5
```


散列法

- 考虑一种非常高效的实现字典的方法
 - 字典是一种抽象数据类型,即一个在其元素上定义了查找、插入和删除操作的元素集合
 - 集合的元素可以是容易类型的,一般为记录
- 散列法的基本思想是: 把键分布在一个称为散列表的一维数组H[0, ..., m-1]中。
 - 可以通过对每个键计算某些被称为"散列函数"的预定 义函数h的值,来完成这种发布
 - 该函数为每个键指定一个称为"散列地址"的位于0到m-1之间的整数

散列法

- 散列函数需要满足两个要求:
 - 一 散列函数需要把键在散列表的单元格中尽可能均匀地分布(所以m常被选定为质数,甚至必须考虑键的所有比特位)
 - 散列函数必须容易计算
- 散列的主要版本:
 - 开散列(分离链)
 - 闭散列(开式寻址)

开散列(分离链)

- 键被存储在附着于散列表单元格上的链表中, 散列地址相同的记录存放于同一单链表中
- 查找时: 首先根据键值求出散列地址, 然后在该地址所在的单链表中搜索:

开散列(分离链)

- 查找效率取决于链表的长度,而这个长度又取决于字典和散列表的长度以及散列函数的质量
 - 若散列函数大致均匀地将n个键分布在散列表的m 个单元格中,每个链表的长度大约相当于n/m个
 - Arr 成功查找和不成功查找中平均需检查的个数S和U: $S ≈ 1 + \frac{\alpha}{U} = \alpha$
 - ▶之所以能得到这样卓越的效率,不仅是因 为这个方法本身就非常精巧,而且也是以额 外的空间为代价的
 - >插入和删除在平均情况下都是属于Θ(1)

• 所有的键值都存储在散列表本身中,而没有使用链表(这表示表的长度m至少必须和键的数量一样大)

$$S \approx \frac{1}{2}(1 + \frac{1}{1 - \alpha})$$
 $U \approx \frac{1}{2} \left[1 + \frac{1}{(1 - \alpha)^2} \right]$

号来标记曾被占用过的位置,以把它们和那些从未被只用过的位置区别开来

PARTED

闭散列 (开式寻址)

所有键都存储在散列表本身,采用线性探查解决冲突,即碰撞发生时,如果下一个单元格空,则放下一个单元格,如果不空,则继续找到下一个空的单元格,如果到了表尾,则返回到表首继续。

PIL

MONEY

ΔRE

SOON

	娃		А		FUU	L	AND	піз	MIC	INE I	AKE	SOON	PARTED	
	散列地址		1		9		6	10		7	11	11	12]
	0	1	2	3	4	5	6	7	8	9	10) 11	12	
ſ		A								FOO	L			1
ſ		A								FOO	L			1
		A					AND			FOO	L H	S		
Ī		A					AND			FOO	L H	S		
		A					AND	MONEY		FOO	L H	S		Ī
ĺ		A					AND	MONEY		FOO	L H	S ARE		1
Ī		A					AND	MONEY		FOO	L H	S ARE	SOON	1
	PAETED	A					AND	MONEY		FOO	L H	S ARE	SOON	
_		20	10 //	1/5				第七音 时经	3 XV 7#F		-	-	25	

2018/4/5

EOOI

 ΔND

쉎

第七章 时空权衡

- 散列法的基本思想:
 - 把键分布在一个称为散列表的一维数组H[0..m-1]中。
 - 可以利用<u>散列函数</u>来计算每个键的值,该函数为每个键指定一个称为<u>散列地址</u>的值,该值是位于0到m-1之间的整数。
 - 如果键是一个非负整数,则h(K)=K mod m
 - 如果键是某个字母表中的字母,则可以把该字母在字母表中的位置指定个键,记为ord(K)
 - 如果键是一个字符串 $\mathbf{c_0}\mathbf{c_1}...\mathbf{c_{s-1}}$,则定义
 - $h(K) = (\sum ord(c_i)) \mod m$
 - 或者h←0; for i←0 to s-1 do h←(h*C+ord(c_i)) mod m

- 一个散列函数必须满足的两个要求:
 - 需要把键在散列表的单元中尽可能的均匀分布
 - 必须是容易计算的
- 碰撞
 - 当三列表的长度m小于键的数量n时,会有两个或多个键被三列到同一个单元中
 - 即时m相对于n足够大,碰撞还是会发生
- 散列法的两个版本
 - 开散列(分离链)
 - 闭散列(开式寻址)

开散列(分离链)

• 在开散列中,键被存放于散列表单元的链表中。

A,FOOL,AND,HIS,MONEY,ARE,SOON,PARTED

键	A	FOOL AND		HIS	MONEY	ARE	SOON	PARTED
散列地址	1	9	6	10	7	11	11	12

0	1	2	3	4	5	6	7	8	9	10	11	12
1	<u> </u>					<u> </u>	<u> </u>		1	Ţ	<u> </u>	<u> </u>
	A					AND	MONEY		FOOL	HIS	ARE	PARTED
	*										1	
											SOON	* 1

- 一般来说,查找的效率取决于链表的长度,而这个长度有取决于 字典和散列表的长度以及散列函数的质量。
- 如果该散列函数大致均匀地将n个键分布在散列表的m个单元中,每个链表的长度大约相当于n/m,其**a** =n/m称为散列表的**负载因 子**。
- 成功查找中平均需检查的指针个数S=1+ a /2
- 不成功查找中平均需检查的指针个数U= a
- 通常情况下,我们希望负载因子和1不要相差太大。

闭散列 (开式寻址)

所有键都存储在三列表本身,采用线性探查解决冲突,即碰撞发生时,如果下一个单元格空,则放下一个单元格,如果不空,则继续找到下一个空的单元格,如果到了表尾,则返回到表首继续。

键	A	FOOL	AND	HIS	MONEY	ARE	SOON	PARTED
散列地址	1	9	6	10	7	11	11	12

0	1	2	3	4	5	6	7	8	9	10	11	12
	A								FOOL			
	A								FOOL			
	A					AND			FOOL	HIS		
	A					AND			FOOL	HIS		
	A					AND	MONEY		FOOL	HIS		
	A					AND	MONEY		FOOL	HIS	ARE	
	A					AND	MONEY		FOOL	HIS	ARE	SOON
PAETED	A					AND	MONEY		FOOL	HIS	ARE	SOON

- 闭散列的查找和插入操作是简单而直接的,但是删除操作则会带来不利的后果。
- 比起分离链,现行探查的数学分析是一复杂的多的问题。
- 对于复杂因子为**a**的散列表,成功查找和不成功查找 必须要访问的次数分别为:
 - S≈ $(1+1/(1-\alpha))/2$ U ≈ $(1+1/(1-\alpha)^2)/2$
 - 散列表的规模越大,该近似值越精确

- 空间换时间技术有两种主要的类型: 输入增强和预构造。
- 分布计数是一种特殊方法,用来对元素取值来自于一个小集合的列表排序。
- 串匹配的Horspool算法是Boyer-Moore算法的 简化,都以**输入增强**技术为基础,且从右向左 比较模式中的字符。
- <u>散列</u>是一种非常高效的实现字典的方法,分为 开散列和闭散列,其中必须采用碰撞解决机制。
- B树是一棵平衡查找树。

.给定字符串str1和str2,求 str1子串中包含str2所有字符 的最小子串长度。

