

KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY DEEMED TO BE UNIVERSITY, BHUBANESWAR – 24 (Decld. U/S 3 of UGC Act, 1956) OFFICE OF THE CONTROLLER OF EXAMINATIONS

KIIT Deemed to be University Online Mid Semester Examination(Autumn Semester-2021)

<u>Subject Name & Code:</u> MATH-I & MA 1003 <u>Applicable to Courses:</u> B. Tech. (All Branches)

Full Marks=20 Time:1 Hour

SECTION-A(Answer All Questions. All questions carry 2 Marks)

Time:20 Minutes (5×2=10 Marks)

Question No	Question Type(MCQ)	Question	CO Mapping
Q.No:1(a)	MCQ	The solution of the ODE $y' = 2e^{-x} \cos x$ is	CO1
		a. $y = 2e^{-x}(\sin x - \cos x) + c$	Ans. (d)
		b. $y = e^{-x}(\sin x + \cos x) + c$	
		$c. y = 2e^{-x}(\sin x + \cos x) + c$	
		$d. y = e^{-x}(\sin x - \cos x) + c$	
	MCQ	The solution of the ODE $y' = 2e^{-x} \sin x$ is	CO1 Ans. (c)
		$a. y = 2e^{-x}(\sin x - \cos x) + c$	Ans. (c)
		b. $y = e^{-x}(\sin x + \cos x) + c$	
		$c. y = -e^{-x}(\sin x + \cos x) + c$	
		d. $y = -2e^{-x}(\sin x + \cos x) + c$	
	MCQ	The equation of the curve, for which the angel between the tangent and the radius vector is twice	CO1 Ans. (b)
	MCQ	the vectorial angle is $r^2 = a \sin 2\theta$. This satisfies the differential equation a. $r \frac{dr}{d\theta} = \tan 2\theta$ b. $r \frac{d\theta}{dr} = \tan 2\theta$ c. $r \frac{dr}{d\theta} = \cos 2\theta$ d. $r \frac{d\theta}{dr} = \cos 2\theta$ The differential equation satisfying the relation	CO1
		$x = A\cos(mt - \alpha) \text{ is}$ a. $\frac{d^2x}{dt^2} = -m^2x$ b. $\frac{dx}{dt} = 1 - x^2$ c. $\frac{dx}{dt} = -m^2x$	Ans. (a)

		$d. \frac{d^2x}{dt^2} = -\alpha^2x$	
O N - (d-)	MCO		CO1
Q.No:1(b)	MCQ	An integrating factor of $(e^{x+y} - y)dx + (xe^{x+y} + 1)dy = 0 \text{ is}$	CO1 Ans. (b)
		a. e^x	
		b. e^{-x}	
		ce^x	
		d. x^2	
	MCQ	An integrating factor of the differential equation	CO1
		$y' \tan x = 2y - 8$ is	Ans. (a)
		a. $\cos ec^2x$	
		b. $\sin^2 x$	
		c. $\cos^2 x$	
		$d\cos ec^2 x$	
	MCQ	An integrating factor of	CO1
	Mey	$(x^4 + y^2) dx - xy dy = 0 \text{ is}$	Ans. (c)
		$a. x^3$	
		b. e^{x^3}	
		c. x^{-3}	
		d. e^{-3x}	
	MCQ	An integrating factor of the differential equation	CO1
		$y'\cot x - 2y = 1 is$	Ans. (d)
		a. $\cos ec^2x$	
		b. $\sin^2 x$	
		c. $\sec^2 x$	
		d. $\cos^2 x$	
Q.No:1(c)	MCQ	The form of the ODE $xy' - 2e^x y = 2xy$ is	CO1
		a. Linear and homogeneous	Ans. (a)
		b. Linear and non-homogeneous	
		c. Non-linear and non-homogeneous	
	MCQ	d. Non-linear and homogeneous A differential equation of the form	CO1
	Meq	y' + p(x)y = q(x), where $p(x)$ and $q(x)$ are	Ans. (b)
		nonzero functions of x , is always	
		a. Linear and homogeneous	
		b. Linear and non-exact	
		c. Nonlinear and exactd. Linear and exact	
	MCQ	How many integrating factors does a non-exact	CO1
		differential equation have?	Ans. (b)
		a. One b. Infinite	
		c. Zero	
		d. None of these	
	MCQ	The linearity principle of the differential equation	CO1
		is applicable to which of the following ODE?	Ans. (c)
		a. $\frac{d^2y}{dx^2} + y\left(\frac{dy}{dx}\right) = 0$	
		$dx^2 (dx)$	

		-2	
		b. $\frac{d^2y}{dx^2} + xy = \cos x$	
		CLV C	
		$c. \frac{d^2x}{dy^2} + y\left(\frac{dx}{dy}\right) + e^y x = 0$	
		d^2y dy	
		d. $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y + 1 = 0$	
Q.No:1(d)	MCQ	The homogeneous linear ODE for the given basis	CO2
		of solutions $e^{\sqrt{3}x}$ and $xe^{\sqrt{3}x}$ is	Ans. (a)
		a. $y'' - 2\sqrt{3}y' + 3y = 0$	
		b. $y'' + 2\sqrt{3}y' + 3y = 0$	
		c. $y'' + 2\sqrt{3}y' - 3y = 0$	
		d. $y'' - 2\sqrt{3}y' + \sqrt{3}y = 0$	
	MCQ	The homogeneous linear ODE for the given basis of solutions 1 and ln x is	CO2 Ans. (c)
		of solutions 1 and III x is $a. y'' = 0$	Alls. (C)
		b. $y'' + y' = 0$	
		c. xy'' + y' = 0	
		d. $x^2y'' = 0$	
	MCQ	The homogeneous linear ODE for the given basis	CO2
		of solutions $\cosh \frac{x}{2}$ and $\sinh \frac{x}{2}$ is	Ans. (b)
		a. $4y'' + y' = 0$	
		b. $4y'' - y = 0$	
		c. $4y'' - y' = 0$	
		d. $4y'' + y = 0$	
	MCQ	If the roots of Characteristic equation is $-1\pm i$ then the Euler-Cauchy equation is	CO2 Ans. (d)
		a. $x^2y'' + 2xy' + 2y = 0$	(u)
		b. $x^2y'' + 2xy' + y = 0$	
		c. $x^2y'' - 2xy' - 2y = 0$	
		d. $x^2y'' + 3xy' + 2y = 0$	
Q.No:1(e)	MCQ		CO2
<u> </u>		The solution of $yy'' = 2(y')^2$ is a. $y = Ax + B$	Ans. (d)
		b. $y = Ax^{-1} + B$	
		c. $y = (Ax + B)^{-2}$	
	MCQ	d. $y = (Ax + B)^{-1}$	CO2
	Meq	The solution of $yy'' = (y')^2$ is	Ans. (a)
		a. $y = Ae^{Bx}$	
		$b. y = Ae^{2Bx}$	
		$c. y = Ae^{-2Bx}$	
	7.00	d. y = Ax + B	~~~
	MCQ	The solution of $y'' = (y')^3$ is	CO2 Ans. (b)
			1 11100 (D)

	a. $x = Ay + B + \frac{y^2}{2}$ b. $x = Ay + B - \frac{y^2}{2}$ c. $x = y^2 + Ay + B$	
	$d. x = -y^2 + Ay + B$	
MCQ	The solution of $y'' = 2(y')^3$ is	CO2 Ans. (c)
	$a. x = Ay + B + \frac{y^2}{2}$	
	$b. x = y^2 + Ay + B$	
	$c. x = -y^2 + Ay + B$	
	$d. x = Ay + B - \frac{y^2}{2}$	

SECTION-B(Answer Any One Question. Each Question carries 10 Marks)

Time: 30 Minutes

(1×10=10 Marks)

Question No.	Question	CO Mapping
(Question Bank)		
Question No:2	(a) Solve the Initial Value Problem:	CO1 & CO2
	$xy' = y + 2x^3 \tan\left(\frac{y}{x}\right), \ y(1) = \frac{\pi}{2}$	
	(b)Reduce to first order and solve the ODE	
	$(1-x^2)y'' - 2xy' + 2y = 0, y_1 = x$	
Question No:3	(a) Test for exactness and solve the given ODE	CO1 & CO2
	$2x \tan y dx + \sec^2 y dy = 0.$	
	(b) Solve the Initial Value Problem:	
	$(xD^2 + 4D)y = 0$, $y(1) = 12$, $y'(1) = -6$.	
Question No:4	(a) Reduce to linear form then find a general solution.	CO1 & CO2
	$2yy' + y^2 \sin x = \sin x$	
	(b) Solve the Initial Value Problem:	
	y'' - 2y' - 24y = 0, $y(0) = 0$, $y'(0) = 20$.	
Question No:5	(a). Find the approximate solution to the Initial Value	CO1 & CO2
	Problem using Picard's method:	
	y' = xy + 1, $y(0) = 1$ in three Iterations.	
	(b) A body originally at $80 {}^{0}C$ cools down to $60 {}^{0}C$ in 20	
	minutes, the temperature of the air being $40~^{0}C$. What will be	
	the temperature of the body after 40 minutes from the original?	
Question No:6	(a) If an airplane has run of 2 km. starts with a speed 6 m/sec,	CO1 & CO2
	moves with constant acceleration, and makes the run in 1 min.	
	with what speed does it take off? (b) Find the general solution	
	(b). Find the general solution.	
	$x^3y' + 3x^2y = 5\sinh 10x$	