

noForth website

Sipeed Longan Nano board (RISC-V) with noForth r(cv)

- 1. Sipeed Longan Nano board
 - i/o port connections
 - Connectors
 - Hardware
- 2. i/o Ports
 - Port addresses
 - Port register offsets
 - Values for port control (CRL/CRH)-Registers
- 3. RS232/USB driver
- 4. noForth memory map (all variants)
- 5. Interrupt vector table

In this text we refer to these two documents:

- GD32VF103_Datasheet_Rev1.0.pdf
- GD32VF103_User_Manual_EN_V1.2.pdf

1. Sipeed Longan Nano board

Sipeed Longan Nano board (with RISC-V GD32VF103CBT6) Core Sub-Architecture: RISC-V IMAC

- Antratek: Sipeed Longan Nano board
- Seed: Sipeed Longan Nano board

i/o port connections

Port A	Port B	Port C
PA.0 - B00T0		PC.0
PA.1 - LED		PC.1
PA.2 - LED		PC.2
PA.3		PC.3
PA.4		PC.4
PA.5		PC.5
PA.6		PC.6
PA.7		PC.7
PA.8 - TXD	PB.8	PC.8
PA.9 - RXD	PB.9	PC.9
PA.10	PB.10	PC.10
PA.11		PC.11 - USB
PA.12	PB.12 - TF CS SD	PC.12 - USB
PA.13 - JTMS	PB.13 - SPI1_SCK SD	PC.13 - LED
	PB.14 - SPI1 MISO SD	
PA.15 - JTDI	PB.15 - SPI1_MOSI SD	PC.15 - OSC32_OUT

Connectors

J1 = i/o PA, PB, 3V3, 5V and GND

J2 = i/o PA, PB, PC, RESET and VBAT

J3 = RS232/JTAG, 3V3 & GND

J4 = USB-C Programming connector

J5 = LCD connector

J6 = Micro SD connector

Hardware

- Three color led on PA.1, PA2 and PC.13
- Switch BOOT0 on PA.0
- Switch for boot mode setting
- Reset switch RESET
- JTAG/Serial 8-pin connector
- LCD connector
- Micro SD connector
- 32.768 crystal

2. i/o ports

Port addresses

The GD32VF103CBT6 port registers are memory mapped. First the base addresses for the i/o-ports:

Port-A = 40010800 Port-B = 40010C00 Port-C = 40011000

Port register offsets

Label - PA/	PB/PC	- Function
x_CRL	00	Control reg. P0 to P7
x_CRH	04	Control reg. P8 to P15
x_{IDR}	80	Input data reg.
x_ODR	0C	Output data reg.
x_BSRR	10	Set/Reset reg. P0 to P15
x_BRR	14	Reset reg. P0 to P15
x_LCKR	18	Lock register

Values for port control (CRL/CRH)-Registers

- 0: Analog Input
- 1: Output Push/Pull, 10 MHz
- 2: Output Push/Pull, 2 MHz
- 3: Output Push/Pull, 50 MHz
- 4: Floating Input (Reset state)
- 5: Open-Drain Output, 10 MHz
- 6: Open-Drain Output, 2 MHz
- 7: Open-Drain Output, 50 MHz
- 8: Input with pull-up / pull-down
- 9: Alternate Function, Push/Pull, 10 MHz
- A: Alternate Function, Push/Pull, 2 MHz
- B: Alternate Function, Push/Pull, 50 MHz
- C: Reserved
- D: Alternate Function, Open-Drain, 10 MHz
- E: Alternate Function, Open-Drain, 2 MHz
- F: Alternate Function, Open-Drain, 50 MHz

The reset value for all port control registers is 44444444. More info in the GD32VF103_User_Manual_EN_V1.2.PDF (page 101).

3. RS232/USB driver

The USB chip on the SEED board is a dongle with the PL2303TA Prolific USB-chip. This chip needs a specific driver under Windows XP/7/8/10. Unzip this file and execute PL2303-Prolific_DriverInstaller_v1200.exe. The default baudrate for the GD32VF controller is 115200 baud.

4. noForth memory map (all variants)

RAM 20000000 - 20007FFF

```
20000000 HOT
                   \ warm Udata (max 200 bytes)
     ... UHERE
                   \ start of free Uspace
20000200 FLYBUF
                   \ FLYER buffer (400 bytes)
20000600 FLYBUF/
20000680 S0
                   \ data stack (80 bytes down)
                   \ return stack (200 bytes down)
20000880 R0
20000880 TIB
                   \ input buffer (80 bytes)
20000900 TIB/
20000900 SYSBUF
                   \ TIDY buffer (400 bytes)
20000D00 SYSBUF/
                   \ start of alloted RAM
                   \ start of free RAM space
     ... HERE
20008000 RAMBORDER
```

FLASH ROM 00000000 - 0001FFFF

```
0000 interrupt vectors
0200 FROZEN \ cold Udata (max 200 bytes)
0400 ORIGIN \ start of dicionary
... CHERE \ start of free dictionary space
1F000 BORDER
```

- BORDER and RAMBORDER are changeable uvalues (Udata).
- Udata is saved to FROZEN by FREEZE.
- At start-up (and reset or COLD) noForth moves the Udata at FROZEN to HOT.

5. Interrupt vector table

See GD32VF103_User_Manual_EN_V1.2.PDF for more details (page 93-100).

```
- Reset ( Jump opcode )
000C
     - CLIC INT SFT
001C - CLIC INT TMR
0044 - CLIC INT BWEI
0048 - CLIC INT PMOVI
004C - WWDGT interrupt
0050 - LVD from EXTI interrupt
0054 - Tamper interrupt
0058 - RTC global interrupt
005C - FMC global interrupt
0060 - RCU global interrupt
0064 - EXTI Line0 interrupt
     - EXTI Line1 interrupt
006C - EXTI Line2 interrupt
0070 - EXTI Line3 interrupt
0074 - EXTI Line4 interrupt
0078 - DMA0 channel0 global interrupt
007C - DMA0 channel1 global interrupt
0080 - DMA0 channel2 global interrupt
0084 - DMA0 channel3 global interrupt
0088 - DMA0 channel4 global interrupt
008C - DMA0 channel5 global interrupt
0090 - DMA0 channel6 global interrupt
0094 - ADC0 and ADC1 global interrupt
0098 - CANO TX interrupts
009C - CANO RXO interrupts
     - CANO RX1 interrupts
00A4 - CANO EWMC interrupts
00A8 - EXTI line[9:5] interrupts
00AC - TIMERO break interrupt
00B0 - TIMERO update interrupt
00B4 - TIMERO trigger and channel commutation interrupts
00B8 - TIMER0 channel capture compare interrupt
     - TIMER1 global interrupt
00C0 - TIMER2 global interrupt
00C4 - TIMER3 global interrupt
00C8 - I2C0 event interrupt
00CC - I2CO event interrupt
00D0 - I2C1 event interrupt
00D4 - I2C1 event interrupt
00D8 - SPI0 global interrupt
00DC - SPI1 global interrupt
00E0 - USARTO global interrupt
00E4 - USART1 global interrupt
00E8 - USART2 global interrupt
00EC - EXTI line[15:10] interrupts
00F0 - RTC alarm from EXTI interrupt
00F4 - USBFS wakeup from EXTI interrupt
0114 - TIMER4 global interrupt
0118 - SPI2 global interrupt
011C - UART3 global interrupt
0120 - UART4 global interrupt
0124 - TIMER5 global interrupt
0128 - TIMER6 global interrupt
012C - DMA1 channel0 global interrupt
0130 - DMA1 channel1 global interrupt
0134 - DMA1 channel2 global interrupt
0138 - DMA1 channel3 global interrupt
013C - DMA1 channel4 global interrupt
0148 - CAN1 TX interrupt
014C - CAN1 RX0 interrupt
0150 - CAN1 RX1 interrupt
0154 - CAN1 EWMC interrupt
0158 - USBFS global interrupt
```