Tests of inflated zeros for censored Poisson regression model

1 Models

1.1 Poisson Model

Poisson Regression: $Y_i|X_i \sim i.d.$ Poisson (μ_i) , $\log(\mu_i) = x_i^T \beta$

Poisson Model: $P(Y_i = y_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!}, y_i \ge 0$

1.2 ZIP Model

ZIP Regression: $Y_i|X_i \sim i.d.$ ZIP (ω_i, μ_i) , $\operatorname{logit}(\omega_i) = u_i^T \beta_{\omega}$, $\operatorname{log}(\mu_i) = x_i^T \beta_{\mu}$ ZIP Model:

$$P(Y_i = y_i) = \begin{cases} \omega + (1 - \omega)e^{-\mu_i}, & y_i = 0\\ (1 - \omega)\frac{e^{-\mu_i}\mu_i^{y_i}}{y_i!}, & y_i > 0 \end{cases}$$
(1.1)

1.3 Censored Poisson Model

Censored Poisson Regression:

$$Y_{i}|X_{i} \sim i.d.\operatorname{Poisson}(\mu_{i})$$

$$Z_{i} = \min\{Y_{i}, L\} = \begin{cases} y_{i} & , y_{i} < L \\ L & , y_{i} \geq L \end{cases};$$

$$Z_{i}|X_{i} \sim i.d. \text{ CensoredPoisson}(\mu_{i}, L), \ \log(\mu_{i}) = x_{i}^{T}\beta$$

$$(1.2)$$

Censored Poisson Model:

$$P(Z_{i} = z_{i}) = P \left\{ \min(Y_{i}, L) = z_{i} \right\}$$

$$= \begin{cases} P(Y_{i} = z_{i}) &, z_{i} < L \\ P(Y_{i} \ge L) &, z_{i} = L \\ 0 &, z_{i} > L \end{cases}$$

$$= \begin{cases} \frac{e^{-\mu_{i}\mu_{i}^{z_{i}}}}{z_{i}!} &, 0 \le z_{i} < L \\ \sum_{y_{i}=L}^{\infty} P(Y_{i} = y_{i}) &, z_{i} = L \\ 0 &, z_{i} > L \end{cases}$$

$$(1.3)$$

Likelihood function of censored Poisson:

$$d_{i} = I_{(z_{i} \geq L)}$$

$$c_{i} = P(Y_{i} \geq L) = \sum_{y_{i} = L}^{\infty} P(Y_{i} = y_{i})$$

$$L_{1} = \prod_{i=1}^{n} \left\{ \left[\frac{e^{-\mu_{i}} \mu_{i}^{z_{i}}}{z_{i}!} \right]^{(1-d_{i})} \left[\sum_{y_{i} = L}^{\infty} P(Y_{i} = y_{i}) \right]^{d_{i}} \right\}$$

$$(1.4)$$

Log-likelihood function of censored Poisson:

$$l_1 = log(L_1) = \sum_{i=1}^{n} \left\{ (1 - d_i) log \left[\frac{e^{-\mu_i} \mu_i^{z_i}}{z_i!} \right] + d_i log(c_i) \right\}$$
 (1.5)

1.4 Censored ZIP Model

Censored ZIP Regression:

$$Y_{i}|X_{i} \sim i.d. \text{ ZIP}(\omega_{i}, \mu_{i})$$

$$Z_{i} = \min \{Y_{i}, L\} = \begin{cases} y_{i} & , y_{i} < L \\ L & , y_{i} \geq L \end{cases}$$

$$Z_{i}|X_{i} \sim i.d. \text{ CensoredZIP}(\omega_{i}, \mu_{i}, L), \text{ logit}(\omega_{i}) = u_{i}^{T}\beta_{\omega}, \text{ log}(\mu_{i}) = x_{i}^{T}\beta_{\mu}$$

$$(1.6)$$

Censored ZIP Model:

$$P(Z_{i} = z_{i}) = P \{ min(Y_{i}, L) = z_{i} \}$$

$$= \begin{cases} P(Y_{i} = z_{i}) &, z_{i} < L \\ P(Y_{i} \ge L) &, z_{i} = L \\ 0 &, z_{i} > L \end{cases}$$

$$= \begin{cases} \omega + (1 - \omega)P(Y_{i} = 0) &, z_{i} = 0 \\ (1 - \omega)P(Y_{i} = z_{i}) &, 0 < z_{i} < L \\ (1 - \omega)\sum_{y_{i}=L}^{\infty} P(Y_{i} = y_{i}) & z_{i} = L \\ 0 &, z_{i} > L \end{cases}$$

$$= \begin{cases} \omega + (1 - \omega)e^{-\mu_{i}} &, z_{i} = 0 \\ (1 - \omega)\sum_{y_{i}=L}^{\infty} P(Y_{i} = y_{i}) & z_{i} = L \\ (1 - \omega)\sum_{y_{i}=L}^{\infty} P(Y_{i} = y_{i}) & z_{i} = L \\ 0 &, z_{i} > L \end{cases}$$

$$(1.7)$$

Likelihood function of censored ZIP model:

$$r_i = I_{(z_i=0)}$$

$$d_i = I_{(z_i \ge L)}$$

$$c_i = P(Y_i \ge L) = \sum_{y_i=L}^{\infty} P(Y_i = y_i)$$

$$L_{2} = \prod_{i=1}^{n} \left\{ \left[(1-\omega) \sum_{y_{i}=L}^{\infty} P(Y_{i} = y_{i}) \right]^{d_{i}} \left[\left(\omega + (1-\omega)e^{-\mu_{i}}\right)^{r_{i}} \left((1-\omega) \frac{e^{-\mu_{i}} \mu_{i}^{z_{i}}}{z_{i}!} \right)^{1-r_{i}} \right]^{1-d_{i}} \right\}$$

Log-likelihood function of censored ZIP model:

$$l_{2} = log(L_{2}) = \sum_{i=1}^{n} \left\{ (1 - d_{i}) \left[\left(r_{i} \bullet log(\omega + (1 - \omega)e^{-\mu_{i}}) \right) + (1 - r_{i})log\left((1 - \omega) \left(\frac{e^{-\mu_{i}} \mu_{i}^{z_{i}}}{z_{i}!} \right) \right) \right] + d_{i} \bullet log((1 - \omega) \bullet c_{i}) \right\}$$

2 Hypothesis

$$H_0: \omega = 0 \ vs. \ H_1: \omega > 0$$

3 Test

3.1 Wald Test

Wald statistics:

$$\frac{\hat{\omega}}{\hat{\sigma}} \sim N(0,1)$$
 or $\frac{\hat{\omega}^2}{\hat{\sigma}^2} \sim \chi^2(1)$

Method:

from MLE of the CZIP we can get $\hat{\omega}$; then use Fisher Information matrix to get estimate the var of $\hat{\omega}$; that we have Wald statistics $\frac{\hat{\omega}^2}{\hat{\sigma}^2}$ and it follows $\chi^2(1)$.

3.2 LR Test

LR statistics:

$$S_{LR} = 2 \left[l_2(\hat{\omega}, \hat{\beta}) - l_1(0, \hat{\beta}) \right] \sim \chi^2(1)$$

3.3 Score Test

Score statistics:

$$S_{score} \sim N(0,1)$$

Method: let $\theta = \frac{\omega}{1-\omega}$; then from MLE of the CZIP we can get $\hat{\theta}, \hat{\beta}$; then let $\theta = 0$ equaling to $\omega = 0$, so we have $\hat{\theta}_0$; then use Fisher Information matrix to get estimate the var of $\hat{\theta}_0$; that we have Score statistics $\frac{\hat{\theta}_0}{\sigma_{\theta_0}} \sim N(0, 1)$.

Details:

Firstly,
$$\theta = \frac{\omega}{1-\omega}$$
, $p_i = e^{-\mu_i}$;

Then, from MLE of the CZIP we can get $\hat{\theta}, \hat{\beta}$;

$$\frac{\partial l_2}{\partial \theta} = \sum_{i=1}^n \left\{ \frac{-1}{\theta + 1} + (1 - d_i) \left[\frac{r_i}{\theta + p_i} \right] \right\}$$
 (3.1)

$$\frac{\partial l_2}{\partial \beta} = \sum_{i=1}^n \left\{ (1 - d_i) \left[\frac{-r_i \mu_i p_i x_i^T}{\theta_i + p_i} + (1 - r_i)(z_i - \mu_i) x_i^T \right] + \frac{d_i}{c_i} \frac{\partial c_i}{\partial \beta} \right\}$$
(3.2)

and,

$$\frac{\partial c_{i}}{\partial \beta} = \frac{\partial \sum_{y_{i}=L}^{\infty} P(Y_{i} = y_{i})}{\partial \beta}
= \frac{\partial \left[1 - \sum_{y_{i}=0}^{L-1} P(Y_{i} = y_{i})\right]}{\partial \beta}
= - \sum_{y_{i}=0}^{L-1} \frac{\partial P(Y_{i} = y_{i})}{\partial \beta}
= - \sum_{y_{i}=0}^{L-1} \frac{\partial \frac{e^{-\mu_{i}\mu_{i}^{y_{i}}}}{(y_{i})!}}{\partial \beta}
= - \sum_{y_{i}=0}^{L-1} (y_{i} - \mu_{i})P(Y_{i} = y_{i})x_{i}^{T}
= \mu_{i} \sum_{k=0}^{L-1} P(Y_{i} = y_{i}) - y_{i} \sum_{k=0}^{L-1} P(Y_{i} = y_{i})
= \mu_{i} \sum_{k=0}^{L-1} P(Y_{i} = y_{i}) - \mu_{i} \sum_{k=0}^{L-2} P(Y_{i} = y_{i})
= \mu_{i} P(Y_{i} = L - 1)$$
(3.4)

So,

$$\frac{\partial l_2}{\partial \beta} = \sum_{i=1}^n \left\{ (1 - d_i) \left[\frac{-r_i \mu_i p_i}{\theta_i + p_i} + (1 - r_i)(z_i - \mu_i) \right] + \frac{d_i}{c_i} \mu_i P(Y_i = L - 1) \right\} x_i^T$$
 (3.5)

Then let $\theta = 0$,

$$\frac{\partial l_2}{\partial \theta}|_{\theta=0} = \sum_{i=1}^n \left\{ \frac{(1-d_i)r_i - p_i}{p_i} \right\}$$
(3.6)

$$\frac{\partial l_2}{\partial \beta}|_{\theta=0} = \sum_{i=1}^n \left\{ (1-d_i) \left[-r_i \mu_i + (1-r_i)(z_i - \mu_i) \right] + \frac{d_i}{c_i} \mu_i P(Y_i = L-1) \right\} x_i^T$$
 (3.7)

Next, use Fisher Information matrix to get estimate the var of $\hat{\theta_0}$. Finally, we have Score statistics $\frac{\hat{\theta_0}}{\sigma_{\theta_0}} \sim N(0,1)$.

3.4 He Test

He statistics:

$$\sqrt{n}\,(\hat{s}-0) \to N(0,\tau^2) \tag{3.8}$$

 τ^2 is (1,1)term of $A^{-1}BA^{-T}$ (1,1);

$$A(\gamma) = E\left[\frac{\partial}{\partial \gamma} \Psi_i(Y_i, \gamma)\right]$$
(3.9)

$$B(\gamma) = Var(\Psi_i(Y_i, \gamma)) \tag{3.10}$$

Details:

$$E(r_{i}) = P(z_{i} = 0)$$

$$= P(Y_{i} = 0)$$

$$= p_{i}$$

$$s = \frac{1}{n} \sum_{i=1}^{n} (r_{i} - E(r_{i}))$$

$$= \frac{1}{n} \sum_{i=1}^{n} (r_{i} - p_{i})$$
(3.12)

Estimation Equation(EE):

$$\psi_1 = \frac{1}{n} \sum_{i=1}^{n} (r_i - p_i - s) \tag{3.13}$$

$$\psi_2 = \frac{\partial l_1}{\partial \beta} = \frac{1}{n} \sum_{i=1}^n \left[(1 - d_i)(z_i - \mu_i) + \frac{d_i}{c_i} \mu_i P(Y_i = L - 1) \right] x_i^T$$
(3.14)

4 Simulations

4.1 QQ plot Setting

$$\begin{split} &\text{nism}{=}100; \\ &\text{n}{=}\text{c}(50,\!100,\!200,\!500,\!1000); \\ &\text{aa}{=}\text{c}(\text{-}0.5,\!0.5,\!1,\!1.5) \\ &\text{case1:} \\ &\mu = e^{aa} \\ &\text{case2:} \\ &\mu = e^{aa-1.45x}, \\ &x \sim N(0,1) \\ &\text{case3:} \\ &\mu = e^{aa-1.45x}, \\ &x \sim U(0,1) \\ &\text{cut}{=}4\text{:}\\ &\text{figure1,2,3;} \\ &\text{cut}{=}7\text{:}\\ &\text{figure4,5,6;} \\ &\text{cut}{=}30\text{:}\\ &\text{figure7,8,9;} \end{split}$$

4.2 Power plot Setting

```
\begin{split} & \text{nism} = 100; \\ & \text{n} = \text{c}(50,100,200,500,1000); \\ & \text{case}1: \\ & \mu = e^{aa}, \\ & \omega = lp \\ & \text{case}2: \\ & \mu = e^{aa-1.45x}, \\ & \omega = lp, \\ & x \sim N(0,1) \\ & \text{case}3: \\ & \mu = e^{aa-1.45x}, \\ & \omega = lp, \\ & x \sim U(0,1) \\ & \text{cut} = 4: \\ & \text{figure}10,11,12; \\ & \text{cut} = 7: \\ & \text{figure}13,14,15; \\ & \text{cut} = 30: \\ & \text{figure}16,17,18; \end{split}
```

4.3 QQ plot

4.4 Power plot

Figure 1: Power plot case 1: $\mu = e^{aa}$;cut=4;

Figure 2: Power plot case 2: $\mu = e^{aa-1.45x}, x \sim N(0,1)$;cut=4

Figure 3: Power plot case 3: $\mu = e^{aa-1.45x}, x \sim U(0,1); \text{cut}=4$

Figure 4: Power plot case1: $\mu = e^{aa}$;cut=7;

Figure 5: Power plot case 2: $\mu = e^{aa-1.45x}, x \sim N(0, 1)$;cut=7

Figure 6: Power plot case 3: $\mu = e^{aa-1.45x}, x \sim U(0,1); \text{cut}=7$

Figure 7: Power plot case1: $\mu = e^{aa}$;cut=30;

Figure 8: Power plot case 2: $\mu = e^{aa-1.45x}, x \sim N(0, 1)$;cut=30

Figure 9: Power plot case 3: $\mu = e^{aa-1.45x}, x \sim U(0,1)$;cut=30

Figure 10: Power plot case 1: $\mu=e^{aa}, \omega=lp;$ cut=4;

Figure 11: Power plot case 2: $\mu = e^{aa-1.45x}, \omega = lp, x \sim N(0,1)$;cut=4

Figure 12: Power plot case 3: $\mu = e^{aa-1.45x}, \omega = lp, x \sim U(0,1)$;cut=4

Figure 13: Power plot case 1: $\mu=e^{aa}, \omega=lp;$ cut=7;

Figure 14: Power plot case 2: $\mu = e^{aa-1.45x}, \omega = lp, x \sim N(0,1)$;cut=7

Figure 15: Power plot case 3: $\mu = e^{aa-1.45x}, \omega = lp, x \sim U(0,1); \text{cut}=7$

Figure 16: Power plot case1: $\mu=e^{aa}, \omega=lp;$ cut=30;

Figure 17: Power plot case 2: $\mu = e^{aa-1.45x}, \omega = lp, x \sim N(0,1)$;cut=30

Figure 18: Power plot case 3: $\mu = e^{aa-1.45x}, \omega = lp, x \sim U(0,1); \text{cut=30}$