

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

شبكههاى عصبى كانولوشني

Convolutional Neural Networks

لايه كانولوشني

خروجی لایه کانولوشنی حاصل فیلتر کردن ماتریس ورودی با فیلتر مربوطه است که به صورت مکانی بر روی آن لغزانده میشود

ورودی یک ماتریس ۳ بعدی است

خروجی برابر با ضرب داخلی بین فیلتر و همسایگی مربوطه برای هر پیکسل است که معادل با ۷۵ ضرب و جمع است $w^T x + b$

32 Convolution Layer 32 28

$$-W_2 = (W_1 - F + 2P)/S + 1$$

$$- H_2 = (H_1 - F + 2P)/S + 1$$

$$- D_2 = K$$

لایه کانولوشنی

- است $W_1 \times H_1 \times D_1$ است ورودی یک حجم با ابعاد
 - ابرپارامترهای لایه کانولوشنی عبارتند از:
 - K تعداد فیلترها -
 - F اندازه فیلترها
 - S اندازه گام
 - P مقدار گسترش مرزها -
- است $W_2 \times H_2 \times D_2$ است خروجی یک حجم با ابعاد
- پارمترهای K بایاس که باید آموزش ببینند $F \cdot F \cdot D_1 \cdot K$ وزن فیلترها و K بایاس که باید آموزش ببینند ullet

لایه کانولوشنی در Keras

filters: Integer, the dimensionality of the output space

kernel_size: Specifying the height and width of the 2D convolution window

activation: Activation function to use. If you don't specify anything, no activation is applied

(see keras.activations)

strides: Specifying the strides of the convolution

padding: One of "valid" or "same"

شبیهسازی

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 128)	3584
conv2d_1 (Conv2D)	(None, 28, 28, 128)	147584
flatten (Flatten)	(None, 100352)	0
dense (Dense)	(None, 10)	1003530

Total params: 1,154,698 Trainable params: 1,154,698

Non-trainable params: 0

Output Shape	Param #
(None, 30, 30, 128)	3584
(None, 14, 14, 128)	147584
(None, 25088)	0
(None, 10)	250890
	(None, 30, 30, 128) (None, 14, 14, 128) (None, 25088)

Total params: 402,058 Trainable params: 402,058 Non-trainable params: 0

```
Epoch 1/10
500/500 [===========] - 8s 17ms/step - loss: 3.9606 - accuracy: 0.1535 - val loss: 2.2777 - val accuracy: 0.1178
500/500 [========== ] - 8s 17ms/step - loss: 2.1179 - accuracy: 0.2204 - val loss: 2.1473 - val accuracy: 0.1881
500/500 [========== ] - 8s 17ms/step - loss: 1.9560 - accuracy: 0.2870 - val loss: 1.9654 - val accuracy: 0.3169
Epoch 4/10
Epoch 5/10
500/500 [=========] - 8s 16ms/step - loss: 1.5726 - accuracy: 0.4372 - val loss: 1.6168 - val accuracy: 0.4404
Epoch 6/10
500/500 [=========] - 8s 16ms/step - loss: 1.3197 - accuracy: 0.5379 - val loss: 1.4584 - val accuracy: 0.5064
500/500 [==========] - 8s 16ms/step - loss: 1.0624 - accuracy: 0.6320 - val loss: 1.5194 - val accuracy: 0.5238
Epoch 8/10
500/500 [============] - 8s 16ms/step - loss: 0.8247 - accuracy: 0.7158 - val loss: 1.6274 - val accuracy: 0.5264
Epoch 9/10
500/500 [==========] - 8s 16ms/step - loss: 0.6205 - accuracy: 0.7847 - val loss: 1.8569 - val accuracy: 0.5369
500/500 [=========] - 8s 16ms/step - loss: 0.4384 - accuracy: 0.8489 - val_loss: 2.2961 - val_accuracy: 0.5358
```

```
Epoch 1/10
500/500 [======= - 5s 11ms/step - loss: 3.2766 - accuracy: 0.1728 - val loss: 2.3051 - val accuracy: 0.1016
500/500 [============ ] - 5s 10ms/step - loss: 2.2956 - accuracy: 0.1169 - val loss: 2.3022 - val accuracy: 0.1034
500/500 [==========] - 5s 10ms/step - loss: 2.2843 - accuracy: 0.1263 - val loss: 2.2962 - val accuracy: 0.1128
Epoch 4/10
500/500 [==========] - 5s 10ms/step - loss: 2.2708 - accuracy: 0.1405 - val_loss: 2.2218 - val_accuracy: 0.2192
Epoch 5/10
500/500 [=========] - 5s 10ms/step - loss: 1.9456 - accuracy: 0.2968 - val loss: 1.7332 - val accuracy: 0.3848
Epoch 6/10
500/500 [=========] - 5s 10ms/step - loss: 1.6547 - accuracy: 0.4096 - val loss: 1.5550 - val accuracy: 0.4618
500/500 [==========] - 5s 11ms/step - loss: 1.3392 - accuracy: 0.5275 - val_loss: 1.3940 - val_accuracy: 0.5233
Epoch 8/10
500/500 [======= - 5s 10ms/step - loss: 1.1706 - accuracy: 0.5935 - val loss: 1.3571 - val accuracy: 0.5468
Epoch 9/10
500/500 [========] - 5s 10ms/step - loss: 1.0184 - accuracy: 0.6461 - val loss: 1.3662 - val accuracy: 0.5593
500/500 [=========] - 5s 11ms/step - loss: 0.9017 - accuracy: 0.6888 - val loss: 1.3725 - val accuracy: 0.5742
```

لايه Pooling

- لایه Pooling در خروجی لایههای کانولوشنی قرار می گیرد و پیکسلهای همسایه را با یکدیگر ترکیب می کند تا ابعاد نقشههای ویژگی کاهش بیابد
 - یکی از دستاوردهای اصلی لایه Pooling کاهش ابعاد نورونها و کاهش تعداد پارامترهای شبکه است
 - لایه Pooling بر روی هر نقشه فعالیت به صورت جداگانه اعمال می شود
 - میانگین و ماکزیمم متداول هستند

لايه Pooling

1	1	0	5
2	8	2	1
0	0	6	3
3	1	2	5

8	5
3	6

3	2
1	4

224x224x64

$$-W_2 = (W_1 - F + 2P)/S + 1$$

$$- H_2 = (H_1 - F + 2P)/S + 1$$

$$- D_2 = D_1$$

لايه Pooling

- است $W_1 imes H_1 imes D_1$ است ورودی یک حجم با ابعاد
 - ابرپارامترهای لایه Pooling عبارتند از:
 - نحوه ادغام
 - F اندازه فیلترها
 - S اندازه گام
 - مقدار گسترش مرزها P
- است $W_2 \times H_2 \times D_2$ است خروجی یک حجم با ابعاد $W_2 \times H_2 \times D_2$
 - پارمتر ندارد

لایه Pooling در Keras

pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal) **strides**: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size

padding: One of "valid" or "same"

Layer (type)	Output Shape	Param #
conv2d_4 (Conv2D)	(None, 30, 30, 128)	3584
conv2d_5 (Conv2D)	(None, 28, 28, 128)	147584
max_pooling2d (MaxPooling2D)	(None, 14, 14, 128)	0
flatten_2 (Flatten)	(None, 25088)	0
dense_2 (Dense) ====================================	(None, 10)	250890

Total params: 402,058

Trainable params: 402,058 Non-trainable params: 0

شبیهسازی

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 30, 30, 128)	3584
conv2d_3 (Conv2D)	(None, 14, 14, 128)	147584
flatten_1 (Flatten)	(None, 25088)	0
dense_1 (Dense)	(None, 10)	250890

Total params: 402,058
Trainable params: 402,058
Non-trainable params: 0

Epoch 1/10 500/500 [======= - 5s 11ms/step - loss: 3.2766 - accuracy: 0.1728 - val loss: 2.3051 - val accuracy: 0.1016 500/500 [============] - 5s 10ms/step - loss: 2.2956 - accuracy: 0.1169 - val loss: 2.3022 - val accuracy: 0.1034 500/500 [==========] - 5s 10ms/step - loss: 2.2843 - accuracy: 0.1263 - val loss: 2.2962 - val accuracy: 0.1128 Epoch 4/10 500/500 [==========] - 5s 10ms/step - loss: 2.2708 - accuracy: 0.1405 - val_loss: 2.2218 - val_accuracy: 0.2192 Epoch 5/10 500/500 [============] - 5s 10ms/step - loss: 1.9456 - accuracy: 0.2968 - val_loss: 1.7332 - val accuracy: 0.3848 Epoch 6/10 500/500 [=========] - 5s 10ms/step - loss: 1.6547 - accuracy: 0.4096 - val loss: 1.5550 - val accuracy: 0.4618 500/500 [=========] - 5s 11ms/step - loss: 1.3392 - accuracy: 0.5275 - val_loss: 1.3940 - val_accuracy: 0.5233 Epoch 8/10 500/500 [=========] - 5s 10ms/step - loss: 1.1706 - accuracy: 0.5935 - val loss: 1.3571 - val accuracy: 0.5468 Epoch 9/10 500/500 [===========] - 5s 10ms/step - loss: 1.0184 - accuracy: 0.6461 - val_loss: 1.3662 - val_accuracy: 0.5593 500/500 [=========] - 5s 11ms/step - loss: 0.9017 - accuracy: 0.6888 - val loss: 1.3725 - val accuracy: 0.5742

شبکههای کانولوشنی برای دستهبندی

شىكە LeNet-5

- شبکه LeNet-5 در سال ۱۹۹۸ برای شناسایی اعداد و حروف دستنویس پیشنهاد شد
 - این شبکه تنها دارای ۵ لایه آموزشی است: ۲ لایه کانولوشنی و ۳ لایه کاملا متصل

https://colab.research.google.com/drive/1Fv3SuHgquWt5Yi4rbp4wKkrqsGQX2g9K?usp=sharing

https://colab.research.google.com/drive/1VzHF2z9hek1z9wLUw_3io6hpXW-vs-TW?usp=sharing

معماریهای CNN

CNN Architectures

معماریهای CNN

• معماریهای مختلف CNN از سال ۲۰۱۲ بهترین نتایج دستهبندی تصویر در چالش ImageNet را کسب کردهاند

30

25

28.2

25.8

AlexNet

• شبکه AlexNet یک شبکه دارای ۸ لایه آموزشی است که در سال ۲۰۱۲ پیشنهاد شد و توانست خطای top-5 در چالش ILSVRC'12 را به ۱۵.۳٪ کاهش دهد

AlexNet

معماریهای CNN

• معماریهای مختلف CNN از سال ۲۰۱۲ بهترین نتایج دستهبندی تصویر در چالش ImageNet را کسب کردهاند

30

28.2

25.8

VGG

- معماری VGG در سال ۲۰۱۴ تیم دوم مسابقه ILSVRC'14 شد
 - فیلترهای کوچکتر و لایههای بیشتر

		Softmax
		FC 1000
		FC 4096
	Softmax	FC 4096
	FC 1000	Pool
	FC 4096	3x3 conv, 512
	FC 4096	3x3 conv, 512
	Pool	3x3 conv, 512
	3x3 conv, 512	3x3 conv, 512
	3x3 conv, 512	Pool
	3x3 conv, 512	3x3 conv, 512
	Pool	3x3 conv, 512
	3x3 conv, 512	3x3 conv, 512
Softmax	3x3 conv, 512	3x3 conv, 512
FC 1000	3x3 conv, 512	Pool
FC 4096	Pool	3x3 conv, 256
FC 4096	3x3 conv, 256	3x3 conv, 256
Pool	3x3 conv, 256	3x3 conv, 256

Input

AlexNet

VGG16 VGG19

GoogLeNet

- شبكه GoogLeNet برنده مسابقه ILSVRC'14 با خطاى ۶.۷٪ شد
 - شبکه عمیقتر با پارامترهای کمتر
- فیلترهای همعرض (موازی) تحت عنوان Inception Module معرفی شدند
 - كانولوشنهاى داراى ابعاد مختلف
 - عملیات Pooling

• سپس، خروجی تمام فیلترها به هم الحاق میشوند (در عمق)

