Fahrzeugmechatronik I Modellbildung

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Seite 2

Parameter	
Masse	m
Schwerpunktlage	u_{xS} , u_{yS} , u_{zS}
Trägheitstensor	$\begin{bmatrix} J_{xx} & J_{xy} & J_{xz} \\ sym & J_{yy} & J_{yz} \\ sym & sym & J_{zz} \end{bmatrix}$

Seite 3

Kennwertermittlung Massenparameter

	\			_ (
_	ar	4	A 14 1		

Masse

Schwerpunktlage

Massenträgheitsmoment um eine Achse

Trägheitstensor

Bestimmung über Zeichnung

Volumenbestimmung, Dichte, Zerlegung in Elementarkörper

Zerlegung in Elementarkörper

Zerlegung in Elementarkörper, Satz von Steiner

Transformationen

Seite 4

Ermittlung der Masse Verfahren der Frequenzmessung – Variante 1

Ermittlung der Masse Verfahren der Frequenzmessung – Variante 2

Eizenfrequens unit Zusatzfeolo

Nuy
$$f^{L} - f^{2} = \frac{1}{(d\pi)^{2}} \left(\frac{C}{u} - \frac{C + \Delta C}{u} \right)$$

$$= -\frac{1}{(2\pi)^{2}} \Delta C$$

$$= \frac{1}{(2\pi)^{2}} \Delta C$$

Seite 6

Parameter	Ermittlung durch Messung	Bestimmung über Zeichnung
Masse	• Wiegen • Frequenzmessung	Volumenbestimmung, Dichte, Zerlegung in Elementarkörper
Schwerpunktlage	AushängenErmittlung vonAufstandskräften	Zerlegung in Elementarkörper
Massenträgheits- moment um eine Achse	einfacher Pendalversuch	Zerlegung in Elementarkörper, Satz von Steiner
Trägheitstensor	Transformationen	Transformationen

Ermittlung der Schwerpunktlage Aushängen

Seite 8

Parameter	Ermittlung durch Messung	Bestimmung über Zeichnung
Masse	• Viegen • Frequenzmessung	Volumenbestimmung, Dichte, Zerlegung in Elementarkörper
Schwerpunktlage	AushängenErmittlung von Aufstandskräften	Zerlegung in Elementarkörper
Massenträgheits- moment um eine Achse	einfacher Pendelversuch	Zerlegung in Elementarkörper, Satz von Steiner
Trägheitstensor	Transformationen	Transformationen

Seite 9

Ermittlung der Schwerpunktlage Bestimmung von Aufstandskräften

Bauteil mit 2 Struktursymmetrieebenen

Ermittlung der Schwerpunktlage Bestimmung von Aufstandskräften

Bauteile ohne Struktursymmetrie

Ermittlung der Schwerpunktlage Bestimmung von Aufstandskräften

Seite 12

Parameter	Ermittlung durch Messung	Bestimmung über Zeichnung
Masse	• Viegen • Frequenzmessung	Volumenbestimmung, Dichte, Zerlegung in Elementarkörper
Schwerpunktlage	• Aushängen • Ermittung von Aufstandskräften	Zerlegung in Elementarkörper
Massenträgheits- moment um eine Achse	einfacher Pendelversuch	Zerlegung in Elementarkörper, Satz von Steiner
Trägheitstensor	Transformationen	Transformationen

Ermittlung eines Massenträgheitsmomentes Einfacher Pendelversuch

Ermittlung eines Massenträgheitsmomentes Einfacher Pendelversuch

Ermittlung eines Massenträgheitsmomentes Einfacher Pendelversuch - Praxiseinsatz

Bild 5: Einspannvorrichtung für die Messung der tatsächlichen Massenträgheit des Autos Figure 5: Inertia jig used to measure the real inertia of the complete car (driver included)

Quelle: ATZ Extra 12/08, Formular Student Germany, "Konstruktion einer Radaufhängung", Team Quebec

Seite 16

Parameter	Ermittlung durch Messung	Bestimmung über Zeichnung
Masse	V/iegenFrequenzmessung	Volumenbestimmung, Dichte, Zerlegung in Elementarkörper
Schwerpunktlage	• Aushängen • Ermittung von Aufstandskräften	Zerlegung in Elementarkörper
Massenträgheits- moment um eine Achse	einfacher Pendelversuch	Zerlegung in Elementarkörper, Satz von Steiner
Trägheitstensor	Transformationen	Transformationen

Ermittlung des Trägheitstensors Verfahren des Energievergleichs

Für die Ermittlung des Trägheitstensors sind 6 Werte zu bestimmen

$$\mathbf{J}^{S} = \begin{pmatrix} J_{xx} & J_{yx} & J_{zx} \\ J_{yx} & J_{yy} & J_{zy} \\ J_{zx} & J_{zy} & J_{zz} \end{pmatrix}$$

Für ein körperfestes Koordinatensystem <u>e</u>₀ gilt für die kinetische Energie einer reinen Drehung um den Schwerpunkt:

$$E_{kin} = \frac{1}{2} \boldsymbol{\omega}^{T} \cdot \mathbf{J}^{S} \cdot \boldsymbol{\omega} = \frac{1}{2} \begin{bmatrix} \boldsymbol{\omega}_{x} & \boldsymbol{\omega}_{y} & \boldsymbol{\omega}_{z} \end{bmatrix} \begin{bmatrix} \boldsymbol{J}_{xx} & \boldsymbol{J}_{yx} & \boldsymbol{J}_{zx} \\ \boldsymbol{J}_{yx} & \boldsymbol{J}_{yy} & \boldsymbol{J}_{zy} \\ \boldsymbol{J}_{zx} & \boldsymbol{J}_{zy} & \boldsymbol{J}_{zz} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{x} \\ \boldsymbol{\omega}_{y} \\ \boldsymbol{\omega}_{z} \end{bmatrix}$$

$$= \frac{1}{2} \left(J_{xx} \omega_{x}^{2} + J_{yy} \omega_{y}^{2} + J_{zz} \omega_{z}^{2} + 2J_{yx} \omega_{y} \omega_{x} + 2J_{zx} \omega_{z} \omega_{x} + 2J_{zy} \omega_{z} \omega_{y} \right)$$

Ermittlung des Trägheitstensors Verfahren des Energievergleichs

Mit dem Massenträgheitsmoment J_{kk} um eine Achse gilt für die kinetische Energie

 $E_{kin} = \frac{1}{2} J_{kk} \cdot \omega_k^2$

Für die Komponenten von ω ausgedrückt im \underline{e}_0 –Koordinatensystem ergibt sich

$$\omega_{x} = \omega_{k} \cos \alpha_{k}$$

$$\omega_{y} = \omega_{k} \cos \beta_{k}$$

$$\omega_{z} = \omega_{k} \cos \gamma_{k}$$

Die Winkel α_k, β_k und γ_k müssen gemessen werden.

Ermittlung des Trägheitstensors Verfahren des Energievergleichs

Die kinetische Energie bei einer Drehung um die k-Achse ist gleich der kinetischen Energie der gleichen Drehung ausgedrückt im <u>e</u>₀ –System

$$E_{kin} = \frac{1}{2} J_{kk} \cdot \omega_k^2 = \frac{1}{2} \left(J_{xx} \omega_x^2 + J_{yy} \omega_y^2 + J_{zz} \omega_z^2 + 2J_{yx} \omega_y \omega_x + 2J_{zx} \omega_z \omega_x + 2J_{zy} \omega_z \omega_y \right)$$

Daraus folgt:

$$J_{kk} = J_{xx} \cos^2 \alpha_k + J_{yy} \cos^2 \beta_k + J_{zz} \cos^2 \gamma_k$$
$$+ 2J_{yx} \cos \alpha_k \cos \beta_k + 2J_{zx} \cos \alpha_k \cos \gamma_k + 2J_{zy} \cos \beta_k \cos \gamma_k$$

Werden nun 6 Versuche durchgeführt, ergeben sich 6 Bestimmungsgleichungen für die 6 unbekannten Tensorkomponenten.

Seite 20

Ermittlung des Trägheitstensors Verfahren des Energievergleichs

Es werden i=1,...,K Versuche um K k_i -Achsen durchgeführt und die Messgleichung

$$y = A \cdot x$$

aufgestellt. Hierbei sind

$$\mathbf{y} = [J_{11}, J_{22}, ..., J_{KK}]^T$$

$$\mathbf{x} = \begin{bmatrix} J_{xx}, J_{yy}, J_{zz}, J_{yx}, J_{zx}, J_{zy} \end{bmatrix}^T$$

$$\mathbf{A} = \begin{bmatrix} \cos^2 \alpha_1 & \cos^2 \beta_1 & \cos^2 \gamma_1 & 2\cos \alpha_1 \cos \beta_1 & 2\cos \alpha_1 \cos \gamma_1 & 2\cos \beta_1 \cos \gamma_1 \\ \dots & \dots & \dots & \dots & \dots \\ \cos^2 \alpha_K & \cos^2 \beta_K & \cos^2 \gamma_K & 2\cos \alpha_K \cos \beta_K & 2\cos \alpha_K \cos \gamma_K & 2\cos \beta_K \cos \gamma_K \end{bmatrix}$$

Seite 21

Vielen Dank für Ihre Aufmerksamkeit!