

Description

The VSM13P10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. It is ESD protested.

General Features

V_{DS} =-100V,I_D =-3A

 $R_{DS(ON)}\,{<}200 m\Omega \ @\ V_{GS}{=}{-}10V \quad (Typ:170 m\Omega)$

 $R_{DS(ON)}$ <230m Ω @ V_{GS} =-4.5V (Typ:200m Ω)

- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density celldesign for ultra low on-resistance

Application

- Power switch
- DC/DC converters

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM13P10-S8	VSM13P10	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-3	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	-2.1	А	
Pulsed Drain Current	I _{DM}	-20	А	
Maximum Power Dissipation	P _D	2.5	W	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	50	°C/W

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±10	μA
On Characteristics (Note 3)				•		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1	-1.9	-3	V
Drain-Source On-State Resistance	В	V _{GS} =-10V, I _D =-3A	-	170	200	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-2A		200	230	
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-3A	2	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =-25V,V _{GS} =0V,	-	760	-	PF
Output Capacitance	Coss	F=1.0MHz	-	260	-	PF
Reverse Transfer Capacitance	C_{rss}	F = 1.0IVII 12	-	170	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	14	-	nS
Turn-on Rise Time	t _r	V _{DD} =-50V,I _D =-3A	-	18	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10V, R_{GEN} =9 Ω	-	50	-	nS
Turn-Off Fall Time	t _f		-	18	-	nS
Total Gate Charge	Qg	\/ - 50\/ - 24	-	25	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-50V, I_{D} =-3A, V_{GS} =-10V	-	5	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	7	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-3A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	-3	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =-3A	-	35	_	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	46	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}\text{C}$,V_{DD}=-50V,V_G=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

2.0 Lieu 2.0 1.0 0.0 0 25 50 75 100 125 150

4.0

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

 T_C Case Temperature($^{\circ}C$)

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance