Combinatorial Optimization

Dozent: Stephan Held

October 14, 2022

Contents

1	Org	anization	
	1.1	Prerequisites	
	1.2	Exam	
	1.3	Books	
2	Matchings		
2		O .	
		Introduction	
	2.2	Bipartite Matching	
	2.3	The Tutte Matrix & Randomized Matching	
	2.4	Tutte's Matching Theorem	

1 Organization

1.1 Prerequisites

- Basic knowledge of graph algorithms
- Linear Programming (LP Duality)
- Programming skills in C++

1.2 Exam

- Qualification requires 50% of the points in theoretical & programming exercises
- Oral exam

1.3 Books

- "Combinatorial Optimization", Korte & Vygen
- \bullet "Understanding & Using Linear Programming", B. Gärtner, J. Matouset
- Skript (theorems & definitions)
- Further on website

2 Matchings

2.1 Introduction

Definition 1.

- 1. A matching M in a graph G = (V, E) is a set of pairwise disjointed edges, i.e. they don't have a common endpoint.
 - $\nu(G) := \max$ cardinality of a matching in G
- 2. An edge cover C of a graph G = (V, E) is a subset of E s.t. $C = \bigcup_{e \in C} e$. $\zeta(G) := \min$ cardinality of an edge cover in G
- 3. A matching is called *perfect* (or 1-factor) if it is an edge cover
- 4. $v \in V$ with $v \in e \in M$ is called M-covered
- 5. $v \in V$ is called *M-exposed* if it is not *M*-covered

Definition 2.

- 1. A $stable\ set$ (independent set) S is a set of pairwise non-adjacent vertices.
 - $\alpha(G) := \max$ cardinality of a stable set
- 2. A vertex cover C is a subset of V s.t. $E = \bigcup_{\{x,y\} \in E, x \in G} \{x,y\}$ $\tau(G) := \min$ cardinality of a vertex cover

Lemma 3.

1.
$$\alpha(G) + \tau(G) = |V|$$

- 2. $\nu(G) + \zeta(G) = |V|$ if G has no isolated vertices
- 3. $\zeta(G) = \alpha(G)$ if G is bipartite and has no isolated vertices

Problem. Cardinalty Matching Problem

Input: Graph G = (V, E)

Task: Find a maximum cardinality matching

Problem. Maximum Weight Matching Problem (MWMP)

Input: Graph $G, c: E \to \mathbb{R}$

Task: Find a matching M maximizing c(M)

Problem. Minimum Weight Perfect Matching (MWPMP)

Input: Graph $G, c: E \to \mathbb{R}$

Task: Find a perfect matching of minimum weight or decide that no perfect matching exists in G

Lemma 4. The MWMP is equivalent to the MWPMP (i.e. there exists a transformation with linear complexity)

Proof. Given a MWPMP instance (G, c), define c' := K - c $(K := 1 + \sum_{e \in E} |c(e)|)$.

- \Rightarrow Any maximum weight matching is a maximum cardinality matching Given a MVMP instance (G, c), define G' as 2 copies of G where the 2 copies of a vertex are joined by an edge.
- \Rightarrow G' has a perfect matching. Define:

$$c'(e) := \begin{cases} -c(e) & \text{if } e \text{ is in the first copy} \\ 0 & \text{else} \end{cases}$$

A minimum weight perfect matching in G' gives us a maximum weight matching in G.

Definition 5. Let G = (V, E) be a graph and $M \subseteq E$ a matching in G. A path P is M-alternating if its edges are alternatingly in and not in M. If both end points of this path are M-exposed, P is an M-augmenting path.

Lemma 6. Given a matching M in G and an inclusion-wise maximal M-alternating path P,

$$M\Delta P \coloneqq M \setminus P \cup P \setminus M$$

is a matching. If P is M-augmenting, then $|M\Delta P| = |M| + 1$.

Theorem 7 (Petersen 1891, Berge 1957). Augmenting Path Theorem Given a graph G = (V, E) and a matching M in G:

$$|M| = \nu(G) \Leftrightarrow \not\exists M$$
-augmenting path P in G

Proof.

"⇒": Clear

"\(\neq\)": Assume there exists a matching M' with |M'| > |M|. Let $G' := (V, M\Delta M')$.

- $\Rightarrow |\delta_{G'}(v)| \leq 2 \ \forall v \in V$
- \Rightarrow G' is the union of disjoint circuits and paths
- \Rightarrow all circuits are even and have the same number of edges from M and M'

- $\Rightarrow \exists$ a path P in G' starting and ending with an edge in M'
- $\Rightarrow P$ is an alternating path

2.2 Bipartite Matching

Theorem 8 (König 1931). If G is bipartite, then $\nu(G) = \tau(G)$

Proof. Add vertices s and t edges between them to all vertices of the respective partition. Direct all edges from s to t. Then $\nu(G)$ is maximum number of disjoint s-t-paths. Menger \Rightarrow This is equal to the minimum number of vertices that disconnect t from s.

Theorem 9 (Hall 1935). Let $G = (A \dot{\cup} B, E)$ be a bipartite graph. Then:

G has a matching covering $A \Leftrightarrow |\Gamma(X)| \geq |X| \quad \forall X \subseteq A$

Corollary 10. Marriage Theorem

$$|\Gamma(X)| \ge |X| \ \forall X \subseteq A \ and \ |A| = |B| \Leftrightarrow G \ has \ a \ perfect \ matching$$

Definition 11. The MWPMP for bipartite graphs is called *Assignment Problem*.

Theorem 12. The Assignment Problem can be solved in time $O(nm + n^2 \log m)$.

Proof. Use the Successive Shortest Paths algorithm in an auxiliary graph.

4

2.3 The Tutte Matrix & Randomized Matching

Definition 13. Let G be a simple, undirected graph. Let G' be an orientation of G and $(X_e)_{e \in E(G)}$. The *Tutte matrix* is defined as

$$T_G(X) := (T_{vw}^*)_{v,w \in V(G)}$$

where

$$t_{vw}^* := \begin{cases} X_{\{v,w\}} & \text{if } (v,w) \in E(G) \\ -X_{\{v,w\}} & \text{if } -(v,w) \in E(G) \\ 0 & \text{else} \end{cases}$$

Remark 14. $T_G(X)$ is shew-symmetric (i.e. $T_G(X) = -(T_G(X))^t$). rank $(T_G(X))$ is independent of the orientation of G. $\det(T_G(X))$ is a polyomial in X.

Theorem 15 (Tutte). A simple graph G has a perfect matching $\Leftrightarrow \det(T_G(X)) \neq 0$

Proof. Let $V(G) = \{v_1, \dots, v_n\}$ and S_n be the permutation group.

$$\det T_G(X) = \sum_{\pi \in S_n} \operatorname{sgn} \pi \cdot \prod_{i=1}^n t_{v_i, v_{\pi(i)}}^*$$

Let $S'_n := \{ \pi \in S_n \mid \prod_{i=1}^n t^*_{v_i, v_{\pi_i}} \neq 0 \}$. Each $\pi \in S_n$ corresponds to a digraph $H_{\pi} := (V(G), \{(v_i, v_{\pi(i)}) \mid i \in [n]^1\})$. We have $|\delta^+(v) = 1 = |\delta^-(v)|| \quad \forall v \in V(H_{\pi}) \Rightarrow H_{\pi}$ is the union of disjoint circuits. If $\pi \in S'_n$, then $H_{\pi} \subset G'$.

If there exists $\pi \in S'_n$ s.t. H_{π} is a collection of even circuits, then this immediately yields a perfect matching in G (using every second edge of each circuit).

Otherwise, $\forall \pi \in S'_n$, H_{π} contains an odd circuit. Let $r(\pi) \in S'_n$ arise from π by reversing edges on the unique odd circuit containing a vertex with minimum index $\Rightarrow r(r(\pi)) = \pi$ and $\operatorname{sgn}(\pi) = \operatorname{sgn}(r(\pi))$. The second part is true since for reversing an odd cycle, we need an even number of swaps. Let $v_{i_1}, \ldots, v_{i_{2k+1}}$ be the "first" odd circuit. Then $r(\pi)$ is attained by 2k swaps: For $j = 1, \ldots, k$ swap $(\pi(i_{2j-1}), \pi(i_{2k}))$ and $(\pi(i_{2j}), \pi(i_{2k+1}))$.

 $\prod_{i=1}^n t_{v_i v_{\pi(i)}}^* = -\prod_{i=1}^n t_{v_i v_{r(\pi(i))}}^*$ since there is an odd number of sign changes to t^* . $\Rightarrow \det(T_G(X)) = 0$. We have shown that if G has no perfect matching, then $\det T_G(X) = 0$.

Assume that G has a perfect matching M. Define π as $\pi(i) = j, \pi(j) = i$ where $\{i, j\} \in M$. $\Rightarrow \prod_{i=1}^n t_{v_i v_{\pi(i)}}^* = \prod_{e \in M} -X_e^2$ cannot be canceled out. In particular, $\det T_G(X) \neq 0$.

Remark 16. Picking $X' \in [0,1]^{E(G)}$ at random, we almost surely have (since the zero set of a non-zero polynomial is a set of measure zero):

$$\det T_G(X') \neq 0 \Leftrightarrow G$$
 has a perfect matching

¹This is an abbreviation for $\{1, \ldots, n\}$.

Theorem 17 (Lovász 1979). Let G be a simple graph and $X \in [0,1]^{E(G)}$ chosen randomly. Then almost surely $\operatorname{rank}(T_G(X)) = 2\nu(G)$.

2.4 Tutte's Matching Theorem

Let $X \subseteq V(G)$. G - X consists of even and odd (in terms of the number of vertices) connected components. We define $q_G(X)$ to be the number of odd components in G - X.

Definition 18. A graph G satisfies the *Tutte Condition* if $q_G(X) \leq |X|$ for all $X \subseteq V(G)$. $\emptyset \neq X \subseteq V(G)$ is called barrier if $q_G(X) = |X|$.

Lemma 19. For any graph G and any $X \subseteq V(G)$:

$$q_G(X) - |X| \equiv |V(G)| \mod 2$$

Definition 20. A graph G is factor-critical if G-v has a perfect matching for all $v \in V(G)$. A matching is called near-perfect if it covers |V(G)| - 1 vertices.

Lemma 21. If G is factor-critical, then it is connected.

Theorem 22 (Tutte 1947). A graph G has a perfect matching \Leftrightarrow Tutte Condition holds (i.e. $q_G(X) \leq |X| \ \forall X \subseteq V(G)$)

Proof.

" \Rightarrow ": Clear

"\(\infty\)": We proceed by induction on |V(G)|. The case |V(G)| = 2 is clear.

Generally, if the Tutte Condition holds, then |V(G)| must be even (pick $X = \emptyset$). Proposition $19 \Rightarrow q_G(X) - |X|$ is even. Every $x \in V(G)$ induces a barrier $\{x\}$. Let X be a maximum barrier. Then G - X doesn't have any even components (since otherwise a single vertex of such a component could be added to X).

Claim: Each odd component is factor-critical.

Let C be an odd component in G - X, $v \in V(C)$. Assume that C - v does not have a perfect matching. Induction Hypothesis $\Rightarrow C - v$ violates Tutte Condition.

$$\begin{split} & \Rightarrow \exists Y \subseteq V(C-v) : q_{C-v}(Y) > |Y| \\ & \stackrel{19}{\Rightarrow} q_{C-v}(Y) \geq |Y| + 2 \\ & \text{Observe } X \cap \{v\} = Y \cap \{v\} = X \cap Y = \emptyset : \\ & q_G(X \cup Y \cup \{v\}) = q_G(X) - 1 + q_C(Y \cup \{v\}) \\ & = |X| - 1 + q_{C-v}(Y) \\ & \geq |X| - 1 + |Y| + 2 \\ & = |X \cup Y| + 1 \\ & = |X \cup Y \cup \{v\}| \end{split}$$

 $\Rightarrow X \cup Y \cup \{v\} \text{ is a barrier} \\ \Rightarrow \text{Claim}$

Let G' arise from G by contracting each odd component into a single vertex. We have $V(G') = X \dot{\cup} Z$ and G' is bipartite. We have to show that G' has a perfect matching. If not, then $\exists A \subseteq Z : |\Gamma_{G'}(A)| < |A| \Rightarrow q_G(\Gamma_{G'}(A)) \geq |A| > |\Gamma_{G'}(A)|$ which contradicts the Tutte Condition.

Theorem 23 (Berge 1958).

$$|V(G)| = 2\nu(G) + \max_{X \subseteq V(G)} (q_G(X) - |X|)$$