Отчет по лабораторным работам 1-3: "LATEX, Git, GPG"

по дисциплине

"Методы и средства защиты информации"

Певцов Игорь, гр.53501/3 25 мая 2015 г.

Содержание

1	Система верстки Т _Е Х и расширения №Т _Е Х			
	1.1	Цель работы		
	1.2	Ход р	аботы	
		1.2.1	Компиляция в командной строке	
		1.2.2	Оболочка TeXworks	
		1.2.3	Создание титульного листа, нескольких разделов, спис-	
			ка, несложной формулы	
		1.2.4	Классы документов, подключаемые пакеты	
		1.2.5	Верстка сложных формул	
	1.3	Вывод	ды	
2	Система контроля версий Git			
	2.1	Цель	работы	
	2.2	Ход р	аботы	
		2.2.1	Получение содержимого репозитория	
		2.2.2	Добавление новой папки и файла под контроль версий	
		2.2.3	Фиксация изменений в локальном репозитории	
		2.2.4	Просмотр различий после внесения изменений в файл	
		2.2.5	Отмена локальных изменений	
		2.2.6	Просмотр различий после внесения изменений в файл	
		2.2.7	Фиксация изменений в локальном и центральном ре-	
			позиториях	
		2.2.8	Получение изменений из центрального репозитория	
		2.2.9	Поэксперементировать с ветками	
	2.3	Вывод	ды	
3	\mathbf{GP}	GPG		
	3.1	Цель	работы	
	3.2	Ход работы		
		3.2.1	Создание ключевой пары OpenPGP	
		3.2.2	Экспорт ключевой пары	
		3.2.3	Установка ЭЦП на файл	
		3.2.4	Получение чужого сертификата	
		3.2.5	Проверка чужой подписи импортированным сертифи-	
			катом	
		3.2.6	Работа с командной строкой	
	9 9	Direc		

1 Система верстки T_FX и расширения L^AT_FX

1.1 Цель работы

Изучение принципов верстки ТЕХ, создание первого отчёта.

1.2 Ход работы

Файл .tex представляет из себя обычный текстовый файл содержащий макрокоманды текстовой разметки. Создать файл можно в любом текстовом редакторе, сохранив его с расширением .tex (Puc. 1).

Рис. 1: Простейший ТеХ документ.

1.2.1 Компиляция в командной строке

Компиляция исходного текста может производиться при помощи командной строки. После компиляции командой LATEX выходной файл имеет формат DVI(DeVice Independent) - аппаратно независимый формат файла, содержащий двоичные данные и не предназначенный для чтения человеком (Рис. 2).

Рис. 2: Компиляция в DVI-файл.

Для перевода файла в читабельный вид(PDF-файл) необходимо выполнить команду PDFLATEX (Puc. 3).

1.2.2 Оболочка TeXworks

Для выполнения работы был использован дистрибутив MiKTeX 2.9 для Windows. Данный дистрибутив включает в себя редактор TeXworks (Рис. 4) с интуитивно понятным интерфейсом, а также интегрированный и отдельный менеджеры пакетов. Редактор позволяет выбрать инструменты

Рис. 3: Получение PDF файла.

верстки в выпадающем меню и сразу же начать верстку нажатием кнопки. Также, в редакторе сразу же доступно окно просмотра PDF-файлов (справа на Рис. 4). Редакотр поддерживает добавление сценариев для расширения списка доступных функций редактора.

Рис. 4: Интерфейс редактора TeXworks.

1.2.3 Создание титульного листа, нескольких разделов, списка, несложной формулы

Создание простейшего титульного листа включает в себя задаваемые в преамбуле заголовок и имя автора. Для наполнения титульного листа используются команды:

```
\author{Певцов Игорь, гр.53501/3} \title{Отчет по лабораторным работам 1-3:\\"\LaTeX{}, Git, GPG"\\ по дисциплине\\"Методы и средства защиты информации"}
```

Непосредственно создание заголовка:

\maketitle

Отчет по лабораторным работам 1-3: "IATEX, Git, GPG" по дисциплине "Методы и средства защиты информации" Певцов Игорь, гр.53501/3

невцов игорь, гр.эээон/э 24 мая 2015 г.

Рис. 5: Титульный лист.

Создание разделов: \part[1]{Pasдел 1}

\part[2]{Раздел 2} \part[3]{Раздел 3}

Part II
2
Part III
3

Рис. 6: Разделы.

Создание списков (ненумерованых):

```
\begin{itemize}
\item{one}
\item{two}
\item{three}
\end{itemize}
```

Получившийся список:

- one
- two
- \bullet three

Запись формул.

$$f(x,y) = 3x^3 + 15y^2 + 10$$
\$

Получившаяся формула: $f(x,y) = 3x^3 + 15y^2 + 10$ Более сложные формулы набираются с использованием

\begin{equation}
formula
\end equation

1.2.4 Классы документов, подключаемые пакеты

Каждый файл в IATEX начинается с команды documentclass[...]..., в фигурных скобках которой задаются параметры оформления стиля документа, а в квадратных — список классовых опций. Всего в IATEX 5 основных классов документов:

- article для статей
- report для книг и статей
- book для книг
- ргос для докладов
- letter для оформления деловых писем .

Помимо основных, есть ещё множество дополнительных.

В ІРТЕХ помимо стандартных настроек существует возможность подключения сторонних пакетов со специфическими настройками. Такие пакеты расширений подключаются в шапке документа.

usepackage{listings} % предоставляет возможности цитирования кода в тексте с сохранением исходного форматирования.

1.2.5 Верстка сложных формул

Сложные формулы, на которые надо будет ставить ссылки в тексте, можно набирать, используя класс equation. Все ссылки подсчитываются автоматически, надо лишь сослаться на какую-либо ссылку при помощи команды ref.

$$L' = L\sqrt{1 - \frac{v^2}{c^2}} \tag{1}$$

1.3 Выводы

ЕТЕХ очень удобен при наборе сложных документов, имеющих множество формул, разделов и пр. ЕТЕХ позволяет сконцентрироваться на изменении содержания документа и переложить все форматирование на систему верстки. Пакет позволяет автоматизировать многие задачи набора текста и подготовки статей, включая набор текста на нескольких языках, нумерацию разделов и формул, перекрёстные ссылки, размещение иллюстраций и таблиц на странице, ведение библиографии и др. Кроме базового набора существует множество пакетов расширения ЕТЕХ. Готовя свой документ, автор указывает логическую структуру текста (разбивая его на главы, разделы, таблицы, изображения), а ЕТЕХ решает вопросы его отображения. Так содержание отделяется от оформления. Оформление при этом или определяется заранее (стандартное), или разрабатывается для конкретного документа.

2 Система контроля версий Git

2.1 Цель работы

Изучить систему контроля версий Git, освоить основные приемы работы с ней.

2.2 Ход работы

2.2.1 Получение содержимого репозитория

Содержимое репозитория получается простой консольной командой git clone https://github.com/magniii/InfoSecCourse2015.git

2.2.2 Добавление новой папки и файла под контроль версий

Добавление папок и файлов производится командой add с различными вариациями аргументов. Аргумент –all указывает на то, что Git должен добавить всю текущую директорию под контроль версий

```
mkdir testdir
cd testdir
echo abcd >> tmp
git add --all
```

2.2.3 Фиксация изменений в локальном репозитории

Изменения в локальном репозитории фиксируются командой commit git commit -a -m "pew"

2.2.4 Просмотр различий после внесения изменений в файл

Просмотр различий выполняется командой diff

```
echo 123 >> tmp
git diff master:./tmp ./tmp
```

2.2.5 Отмена локальных изменений

Сброс выполняется командой reset. Команда checkout возвращает репозиторий к указанному состоянию.

```
git reset HEAD ./tmp
git checkout ./tmp
```

2.2.6 Просмотр различий после внесения изменений в файл

```
echo qwerty >> tmp
git diff master:./tmp ./tmp
```

2.2.7 Фиксация изменений в локальном и центральном репозиториях

```
git commit -a -m "pew2"
git push
```

2.2.8 Получение изменений из центрального репозитория

git pull

2.2.9 Поэксперементировать с ветками

```
git checkout -b tmpbranch
git commit -a -m "pew3"
git push
git checkout master
git merge tmpbranch
git branch -D tmpbranch
```

2.3 Выводы

Система контроля версий Git ориентирована на работу с изменениями, а не с файлами. Преимуществами системы перед другими распределенными системами контроля версий является высокая производительность, развитые средства интеграции с другими VCS и продуманная система команд. Из недостатков можно отметить отсутствие сквозной нумерации коммитов, привязанность к ANSI-символам и применение хэшей SHA1 для идентификации ревизий.

3 GPG

3.1 Цель работы

Научиться создавать сертификаты, шифровать файлы и ставить ЭЦП.

3.2 Ход работы

3.2.1 Создание ключевой пары OpenPGP

Рис. 7: Ключи созданы.

3.2.2 Экспорт ключевой пары

----BEGIN PGP PUBLIC KEY BLOCK----Version: GnuPG v2

mQENBFViaaUBCACrPIqaN0NOkTWoEWE8XXF5XrmDgj9P1EhGUkavI/+100gdesFQ
LFz5xKvMeBP5PcSygJBojZ6W6ft8nNL8X1BIv4PdVKyxuP8qio3q574eKMPSdiiQ
AbGb/fCjZa5Enz0Fz33of3h974pgAy4qIlkrB7wm9Iuyx5RDFHKNlSOTH1D/fDyg
ng6MSfdWKhrTztOpHriEFOf5gwl8tPZEoz52M16Ax7aoBxJivqL2npCGWNB9ary3
tzKnWSskh55HbwHJPujgTcPYbFIF5u+lt0xxM1aSSq+RbKp8ntL/0UAD8*qSuc3p
ZwxcaG/3F/3ZTsUxtsTq193X8bsejxBkQwD/ABEBAAG0G1B1dnRzb3YgPGh1eGx1
eTkyQG1haWwucnU+iQE5BBMBCAAjBQJUYmmIAhsPBwsJCAcDAgEGFQgCCQ0LBBYC
AwECHgECf4AACgkQ+scn7CQIyDeS6Af/R/y354qX0bhyeEX0LpUxPojX5NYfi9r
FTrgt6LQ5aObmbLDBPtnhmRUv6vEC6eL6iWEEAfKIITNT3jML0yjRiPOxqc1BueT
Fai04cBM1d0EnkH4+F0VcbyGua3bEdGhuyr9Z72jgqM2RaBbr20pWumo70LqdYsH
LyMIpt31UW4H70T/djgy1rRL1Jy2CFvHjeCrSVjB3PiUdYmq/Z8awsr3RZf+EmpL
UFmv7KjDbhmj5V111b4RbvQQ1ix23dE8B0LgfkUutdHP5B+zjNyyquWrsGnMZEUy
z32zXF/OUCi5Tq2YDGuT6F80705MsYuGzeGUeHLXVZHiKwjggsPjXg==
=BwpT
=----END PGP PUBLIC KEY BLOCK-----

Рис. 8: Ключи экспортированы.

3.2.3 Установка ЭЦП на файл

Рис. 9: Файл подписан ЭЦП.

3.2.4 Получение чужого сертификата

Рис. 10: Чужой сертификат (karina.asc) подписан.

3.2.5 Проверка чужой подписи импортированным сертификатом

Рис. 11: Подлинность файла myfirst.pdf.sig подтверждена.

3.2.6 Работа с командной строкой

Создание ключа осуществляется командой:

gpg --gen-key

Просмотреть список ключей можно используя команду list

gpg --list-keys

Для импорта ключей используется команда

gpg --import importable.asc

Для экспорта применяется команда

gpg --armor --output exportable.asc --export exporter@mail.ru

3.3 Выводы

GPG позволяет выполнять операции шифрования и цифровой подписи сообщений, файлов и другой информации, представленной в электронном виде, в том числе прозрачное шифрование данных на запоминающих устройствах, например, на жёстком диске. GPG включает в себя внутреннюю схему проверки сертификатов, названную web of trust. GPG поддерживает

```
C:\Windows\system32\cmd.exe-gpg --gen-key

(c) Корпорация Майкрософт (Microsoft Corp.), 2009. Все права защищены.

C:\Users\expert>gpg --gen-key
gpg (GnuPG) 2.0.27; Copyright (C) 2015 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Bыберите тип ключа:
(1) RSA и RSA (по умолчанию)
(2) DSA и Elgamal
(3) DSA (только для подписи)
(4) RSA (только для подписи)
Ваш выбор? 4
ключи RSA могут иметь длину от 1024 до 4096 бит.
Какой размер ключа Вам необходим? (2048)
Запрошенный размер ключа - 2048 бит
Выберите срок действия ключа.

0 = без ограничения срока действия
<n> = срок действия - п недель
<n> <n> = срок действия - п недель
<n> <n> = срок действия - п недель
<n> <n> = срок действия - п лет
Срок действия ключа? (0)
Срок действия ключа? (0)
Срок действия ключа не ограничен
Все верно? (у/N) у

GnuPG необходимо составить ID пользователя в качестве идентификатора ключа.

Baше настоящее имя: Речтьоч
Адрес электронной почты: huxley92@mail.ru
Комментарий: кеураіг with cmd prompt
Вы выбрали следующий ID пользователя:
"Речтьоч (кеураіг with cmd prompt) <huxley92@mail.ru>"
Сменить (N)Имя, (C)Комментарий, (E)Адрес или (0)Принять/(Q)Выход?
```

Рис. 12: Создание ключа через консоль.

```
Microsoft Windows [Version 6.1.7601]
(c) Корпорация Майкрософт (Microsoft Corp.), 2009. Все права защищены.

C:\Users\expert>gpg --list-keys
C:\Users/expert/AppData/Roaming/gnupg/pubring.gpg

pub 2048R/2408C837 2015-05-25
uid [абсолютное] Pevtsov <huxley92@mail.ru>
pub 2048R/391EA659 2015-02-08
uid [ полное ] Karina Vilegzhanina <k.vilegzhanina@gmail.com>
```

Рис. 13: Просмотр списка ключей.

аутентификацию и проверку целостности посредством цифровой подписи. По умолчанию она используется совместно с шифрованием, но также может быть применена и к открытому тексту. Отправитель использует GPG для создания подписи алгоритмом RSA или DSA.