

May 12, 2021 Notation; m! It of training examples x input variable/texture y output variable/feature (x, y), one training example (x", y (i)); ith training example Supervised Learning, Iraining Set Learning Algorithm input > h > output

× hypothesis y h is a function that maps x's to y's. If y is continous, regression, If y has discrete categories, classification.

So how do ne represent his $h_0(x) = \theta_0 + \theta_1 \times -\infty$ it's a linear function for now

or h(x) $f(x) = \theta_0 + \theta_1 \times -\infty$ A Linear regression whose variable, a.k.a. univariate

Linear regression w/ one variable, a.k.a. universate linear regression

Cost Function! ho(x) = 0, $x \to 0$, and 0, are trained parameters The idea is to choose Θ_0 , Θ_1 , S_1 , h(x) is close to y for our training examples (x, y). e.g. Minimize square difference of prediction and actual output. In E [holx(i)) - y(i)]2, minimize $=\Theta_0$ f $\Theta_1 \times$ Cost Function; The to is just for cancelling out
the 2 from the derivative - convenient $J(\theta_0, \theta_i) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_0(x^{(i)}) - y^{(i)} \right)^2 A Mean Squared

Lyminimize this

Error$

takes the average difference of all the results of the hypothesis

For
$$J(O_0, O_1)$$
?

For $J(O_0, O_1)$?

So then what is the algorithm we use to minimize our cost function?

J(0,)

Parabola cuz

Let ho(x) = 0,x for now

 $\theta_1 = 1.5$

0,=1

0,=0,5

0,=0

ha(x)