DSP Practice Test #1.E

Name: _____ Start Time: _____

Problem 1:

For each fo the following systems below specify whether or not the system is (1) Linear, (20 time-invariant, (3) causal, (4) stable, or there is not enough information. The system input is x[n] and the output is y[n]

A)
$$y[n] = T\{x[n]\} = x[2n]$$

Linear? Y/N	Time-Invariant? Y/N	Causal? Y/N	Stable? Y/N
Cinear	VARIES	NON CAUSAL	STABLE

B)
$$y[n] = T\{x[n] + x[n-1]\}$$

Time-Invariant? Y/N	Time-Invariant? Y/N	Causal? Y/N	Stable? Y/N
CINEAR	INVARIANT	CAUSAL	STABLE

C)
$$y[n] = T\{x[n]\} = (x[-|n|])^2$$

Linear? Y/N	Time-Invariant? Y/N	Causal? Y/N	Stable? Y/N
NONLINEAR	VARIES	CAUSAL	STABLE

Problem 2:

Let a causal LTI system be described by the following z-transform: $H(z) = \frac{1 + \frac{1}{2}z^{-1}}{1 - 2z^{-1}}$

A) Determine the frequency response of the system
$$H\left(e^{j\omega}\right)$$

$$\mathcal{H}\left(e^{j\omega}\right) = \frac{1 + \frac{1}{2}e^{-j\omega}}{1 - 2e^{-j\omega}}$$

B) Determine the difference equation relating the input and the output of the system

of the system
$$Y[h] - 2y(h-1) = X[h] + \frac{1}{2}X(h-1)$$

C) Plot the pole-zero plot of system H(z)

D) What is the ROC for this causal system?

E) Is the system stable?

NO ROC does NOT Include unit

F) Is the system causal?

Problem 3:

Given an input random signal, x[n], that is white with zero mean and unit variance, that is put into a system that is described by the following difference equation:

$$y[n] = x[n+1] + x[n-1]$$

A) Determine the impulse response h[n] of the system

B) Determine the transfer function $H\left(e^{j\omega}\right)$ of the system

C) What is the autocorrelation of the input signal, x[n], $\phi_{xx}[m]$?

$$\phi_{XX}(m) = \sigma_{X^2} J(m) = J(m)$$

D) What is the power spectral density of the input signal, $S_{xx}(\omega)$?

E) What is the power spectral density of the output signal, $S_{yy}(\omega)$?

Problem 4:

Given the following pole plot for the causal system H(z)

A) Determine an equation for H(z) that corresponds to the pole-zero plot. $(1+2z^{-1})/(1+3z^{-1})$

$$H(z) = \frac{(1+2z^{-1})(1+z^{-1})(1-3z^{-1})}{(1+2z^{-1})(1-2z^{-1})}$$

B) Is the system stable?

C) Given the input $x[n] = -30 + e^{j\pi/3n} + (-1)^n$, what is the output y[n]?