Introduction to flow visualization

Thomas Torsney-Weir

What is flow visualization?

- A classic topic within scientific visualization
- The depiction of vector quantities (as opposed to scalar quantities)
- Applications include automotive simulation, aerodynamics, turbomachinery, meteorology, oceanography, medical visualization, sports

https://www.youtube.com/watch?v=A05n32BI0aY

Example

https://www.youtube.com/watch?v=kZBh-fpv2sY

Origins of flow data

flow simulation

- airplane-/ship-/car-design
- weather simulation (air-, sea-flows)
- medicine (blood flows, etc.)
- Simulation data is given as a set of samples on a grid
- Computational fluid dynamics (CFD)

flow measurement

- wind tunnels, water channels
- optical measurement techniques
- Vectors are measure using instrumental equipment, e.g. optical methods like particle image velocimetry

flow models

- differential equation systems (dynamic systems)
- Vectors are provided by an analytic formula, wherever needed

Computational fluid dynamics

- We often visualize Computational Fluid Dynamics (CFD) simulation data
- CFD is the discipline of predicting flow behavior, quantitatively
- data is (often) the result of a simulation of flow through or around an object of interest

some characteristics of CFD data:

- large, often gigabytes
- unsteady, time-dependent
- unstructured, adaptive resolution grids
- smooth

Tasks

- Find eddies
- How flows interfere with objects
- Forces over time
- Diffusion of one fluid into another

Tasks

Edmunds et al., "Aspects of Tidal Stream Turbine Modelling in the Natural Environment Using a Coupled BEM-CFD Model."

https://blog.pointwise.com/2015/07/10/this-week-in-cfd-204/

https://earth.nullschool.net/#current/wind/surface/level/

http://ii.uib.no/vis_old/teaching/vis-project/2008-fall/lie/index.html

<u>Challenges</u>

- effectively visualize both magnitude + direction, often simultaneously
- large data sets
- time-dependent data
- What should be visualized? (data filtering/feature extraction)

Challenges

Challenge: to effectively visualize both *magnitude + direction* often simultaneously

Direction only

Large datasets

Bauer et al., "In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms."

Examples

Platforms."

Why flow visualization?

Why flow visualization?

Types of flow

Steady (time-independent) flows:

- flow itself constant over time
- v(x), e.g., laminar flows
- simpler case for visualization

Time-dependent (unsteady) flows:

- flow itself changes over time
- v(x,t), e.g., turbulent flow
- often has moving objects
- more complex case

Steady state flow data

Data set name and year	Number of vertices	Size (MB)
McDonnell Douglas MD-80 '89 McDonnell Douglas F/A-18 '91 Space shuttle launch vehicle '90 Space shuttle launch vehicle '93 Space shuttle launch vehicle '96 Advanced subsonic transport '98 Army UH-60 Blackhawk '99	230,000 900,000 1,000,000 6,000,000 30,000,000 60,000,000 100,000,000	13 32 34 216 1,080 2,160 ~4,000

Steady state flow vis

Single Zone 100K Nodes 4 MB

(1985)

128 Zones 30M Nodes 1080 MB

(1996)

Unsteady flow data

Data set name and year	# vertices	# time steps	size (MB)
Tapered Cylinder '90 McDonnell Douglas F/A-18 '92 Descending Delta Wing '93 Bell-Boeing V-22 tiltrotor '93 Bell-Boeing V-22 tiltrotor '98	1,200,000 900,000 1,300,000	400 400 1,800 1,450 1,450	1,050 12,800 64,800 140,000 600,000

Unsteady flow data

Single Zone 128K Nodes 1 GB

(1990)

25 Zones (9 Moving) 2.8M Nodes 300 GB

(1996)

Flow vis taxonomy

analogous to indirect (vs. direct) volume visualization

Direct flow visualization:

- overview of current state of flow
- visualization with vectors popular
- arrows, icons, glyph techniques

Geometric flow visualization:

- use of intermediate objects, e.g., after vector field integration over time
- visualization of development over time
- streamlines, stream surfaces

Direct vs geometric flow vis

Further classification

direct: overview of vector field, minimal computation, e.g. glyphs, color mapping

texture-based: covers domain with a convolved texture, e.g., Spot Noise, LIC, ISA, IBFV(S)

geometric: a discrete object(s) whose geometry reflects flow characteristics, e.g. streamlines

feature-based: both automatic and interactive feature-based techniques, e.g. flow topology

Further classification

Direct

Texture-based

Feature-based

Dimensionality

Dimensions of visualization, not dataset

2D flow visualization

models, flow layers (2D section through 3D)

https://blog.pointwise.com/2015/07/10/this-week-in-cfd-204/

Dimensionality

Dimensions of visualization, not dataset

Visualization of flows on surfaces (2.5D)

- 3D flows around obstacles
- boundary flows on surfaces (locally 2D)

Dimensionality

Dimensions of visualization, not dataset

3D flow visualization

simulations, 3D models

Full example

Problem: vortices behind airplanes

Planes need to keep distance

Run wind tunnel experiments

Crossflow velocity

DNW tunnel Freestream velocity 60m/s

Surveying plane 1 0.03 wing spans behind wing tip

Surveying plane 9 1 wing spans behind wing

Surveying plane 12 2.5 wing spans behind wing

Surveying plane 17 6.8 wing spans behind wing

Conclusion

<u>Summary</u>

- Data is a set of vectors in 3D + time
- Visualization to see key aspects of flow
- Steady vs unsteady flow
- Direct vs geometric flow visualization

Reading/acknowledgements

Data Visualization: Principles and Practice, Chapter 6-Vector Visualization by A. Telea, AK Peters Ltd., 2008

Interactive Data Visualization: Foundations, Techniques, and Applications, Chapter 5-Visualization Techniques for Spatial Data, by M. Ward et al., AK Peters, Ltd., 2010

For material used in this lecture:

Robert S. Laramee

Hans-Georg Pagendarm

Roger Crawfis

Lloyd Treinish

David Kenwright

Terry Hewitt

Helwig Hauser

More videos

- Introduction to Vector: https://www.youtube.com/watch?v=A05n32BI0aY
- Aerodynamics in British cycling: https://www.youtube.com/watch?v=BSnPqvsFpJM
- CFD for pelotons: https://www.youtube.com/watch?v=kZBh-fpv2sY
- Flow visualization through the years: https://www.youtube.com/watch?v=-GMg536L4PU

References

- Edmunds, M., R. Malki, A. J. Williams, I. Masters, and T. N. Croft. "Aspects of Tidal Stream Turbine Modelling in the Natural Environment Using a Coupled BEM-CFD Model." International Journal of Marine Energy 7 (September 1, 2014): 20-42. https://doi.org/10.1016/j.ijome.2014.07.001.
- Bauer, A. C., H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland, et al. "In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms." Computer Graphics Forum 35, no. 3 (2016): 577–97. https://doi.org/10.1111/cgf.12930.