PUSH DOWN AUTOMATA

Definition 5.1 A Pushdown Automaton

A pushdown automaton (PDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$, where

Q is a finite set of states.

 Σ and Γ are finite sets, the *input* and *stack* alphabets.

 q_0 , the initial state, is an element of Q.

 Z_0 , the initial stack symbol, is an element of Γ .

A, the set of accepting states, is a subset of Q.

 δ , the transition function, is a function from $Q \times (\Sigma \cup \{\Lambda\}) \times \Gamma$ to the set of finite subsets of $Q \times \Gamma^*$.

PUSH DOWN AUTOMATA

Definition 5.2 Acceptance by a PDA

If $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ and $x \in \Sigma^*$, the string x is accepted by M if

$$(q_0, x, Z_0) \vdash_M^* (q, \Lambda, \alpha)$$

for some $\alpha \in \Gamma^*$ and some $q \in A$. A language $L \subseteq \Sigma^*$ is said to be accepted by M if L is precisely the set of strings accepted by M; in this case, we write L = L(M). Sometimes a string accepted by M, or a language accepted by M, is said to be accepted by final state.

Definition 5.10 A Deterministic Pushdown Automaton

A pushdown automaton $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is deterministic if it satisfies both of the following conditions.

- 1. For every $q \in Q$, every $\sigma \in \Sigma \cup \{\Lambda\}$, and every $X \in \Gamma$, the set $\delta(q, \sigma, X)$ has at most one element.
- 2. For every $q \in Q$, every $\sigma \in \Sigma$, and every $X \in \Gamma$, the two sets $\delta(q, \sigma, X)$ and $\delta(q, \Lambda, X)$ cannot both be nonempty.

A language L is a deterministic context-free language (DCFL) if there is a deterministic PDA (DPDA) accepting L.

S-> [S] | SS | ^

Move Number	State	Input	Stack Symbol	Move
1	q_0	1	Z_0	$(q_1, [Z_0)$
2	q_1	E		$(q_1, [[])$
3	q_1]		(q_1,Λ)
4	q_1	Λ	Z_0	(q_0, Z_0)
	none			

S-> [S] | SS | ^

$$(90, EJL)_{20}$$
 — (D) $(91, JEJ, E20)_{-(3)}$ $(91, EJ, E3)_{-(4)}$ $(90, EJ, E3)_{20}$

$$(90, [3, 20)$$
 $(91, 3, [20)$
 $(91, 1, 20)$
 $(91, 1, 20)$
 $(91, 1, 20)$
 $(91, 1, 20)$
 $(91, 1, 20)$

S-> [S] | SS | ^

aabb

Accepted

babb

L Réjected

L= {x belongs to $\Sigma^* \mid n_a(x) = n_b(x)$ }

1 90 a Zo
$$(91, 920)$$

2 90 b Zo $(91, b20)$ - Pysh
3 91 a a $(91, a9)$
4 91 b b $(91, bb)$
5 91 a b $(91, h)$
6 91 b a $(91, h)$
7 91 h 20 $(99, 20)$

L= {x belongs to $\Sigma^* \mid n_a(x) = n_b(x)$ }

Move Number	State	Input	Stack Symbol	Move
Ĭ	q_0	а	Z_0	(q_1, aZ_0)
2	q_0	b	Z_0	(q_1, bZ_0)
3	q_1	а	a	(q_1, aa)
4	q_1	b	b	(q_1,bb)
5	q_1	а	b	(q_1,Λ)
6	q_1	b	a	(q_1,Λ)
7	q_1	Λ	Z_0	(q_0, Z_0)
	none			

L= {x belongs to $\Sigma^* \mid n_a(x) = n_b(x)$ }

(91,9b, 20)

L= {x belongs to $\Sigma^* \mid n_a(x) = n_b(x)$ }

Move Number	State	Input	Stack Symbol	Move
1	q_0	a	Z_0	(q_1, AZ_0)
2	q_0	b	Z_0	(q_1, BZ_0)
3	q_1	$a \geq$	A	(q_1, aA)
4	q_1	b	B	(q_1, bB)
5	q_1	a	a	(q_1, aa)
6	q_1	b	b	(q_1, bb)
7	q_1	a	b	(q_1,Λ)
8	q_1	b	a	(q_1,Λ)
9	q_1	a	B	(q_0,Λ)
10	q_1	b	A	(q_0,Λ)
	none			

- Language of Palindrome cannot be accepted by Deterministic Push Down Automata
- Every Context- Free Languages are accepted by Push- Down Automata
- Every Context-Free Languages cannot be accepted by Deterministic Push Down Automata
- PDA is more powerful as compared to DPDA. i.e. PDA accepts more CFLs

Try This