I. ประพจน์

(ตัวเชื่อมประพจน์และตารางค่าความจริง)

р	q	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T
นิเสธ		ข้อควรรู้			
p	~ p	$F \wedge p$	$\equiv F$	$p \land \sim 1$	$p \equiv F$
T	F	$T \lor p \equiv T$		$p \lor \sim p \equiv T$	
F	T	$F \to p \equiv T$		$p \leftrightarrow p \equiv T$	
		$p \to T \equiv T$		$p \leftrightarrow \sim p \equiv F$	

 $\underline{\mathbf{Ex}}$ ให้ค่าความจริงของประพจน์ $[(p \leftrightarrow q) \lor (q \to r)] \lor \sim s$ เป็นเท็จ จงหาค่าความจริงของ p, q, r และ s

Sol

q,s มีค่าความจริงเป็นจริง และ p,r มีค่าความจริงเป็น<u>เท็จ</u>

II. ประพจน์ที่สมมูลกัน/ ประพจน์ที่นิเสธกัน

(ความหมายของสมมูลและนิเสธ

😻 สมมูล คือ มีค่าความจริง <mark>เหมือนกัน</mark> ทุกกรณี

ข นิเสธ คือ มีค่าความจริง ตรงข้ามกัน ทุกกรณี

วิธีตรวจสอบสมมูลและนิเสธ

ใช้กฎพีชคณิต

1. กฎการสลับที่ Commutative Laws	$p \land q \equiv q \land p$	$p \lor q \equiv q \lor p$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $\equiv p \lor q \lor r$	
2. กฎการเปลี่ยนกลุ่ม Associative Laws	$(p \land q) \land r \equiv p \land (q \land r)$ $\equiv p \land q \land r$		
3. กฎการกระจาย Distributive's Laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $(q \lor r) \land p \equiv (q \land p) \lor (r \land p)$	$p\lor (q\land r) \equiv (p\lor q)\land (p\lor r)$ $(q\land r)\lor p \equiv (q\lor p)\land (r\lor p)$	
4. De Morgan's Laws	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$	
5. อื่นๆ	$\sim (\sim p) \equiv p$		
	$p \rightarrow q \equiv \sim p \lor q$	$\sim (p \rightarrow q) \equiv p \land \sim q$	
	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$	$\sim (p \leftrightarrow q) \equiv \sim p \leftrightarrow q \equiv p \leftrightarrow \sim q$	
	$T \wedge p \equiv p$	$p \wedge p \equiv p$	
1	$F \lor p \equiv p$	$p \lor p \equiv p$	
	$T \rightarrow p \equiv p$	$T \leftrightarrow p \equiv p$	
	$p \rightarrow F \equiv \sim p$	$F \leftrightarrow p \equiv \sim p$	

$$\underline{\mathrm{Ex}}$$
 จงแสดงว่า $(p \lor q) \to r$ สมมูลกับ $(p \to r) \land (q \to r)$

Sol
$$(p \lor q) \to r \equiv \sim (p \lor q) \lor r$$
$$\equiv (\sim p \land \sim q) \lor r$$
$$\equiv (\sim p \lor r) \land (\sim q \lor r)$$
$$\equiv (p \to r) \land (q \to r)$$

$$\underline{\mathrm{Ex}}$$
 จงแสดงว่า $(p o q) \wedge \sim q$ กับ $p \vee q$ เป็นนิเสธกัน

$$\begin{array}{ccc} \underline{\mathrm{Sol}} & \sim [(p \to q) \land \sim q] \equiv \sim (p \to q) \lor q \\ & \equiv (p \land \sim q) \lor q \\ & \equiv (p \lor q) \land (\sim q \lor q) \\ & \equiv (p \lor q) \land T \\ & \equiv p \lor q \end{array}$$

III. สัจนิรันดร์

ความหมายของสัจนิรันดร์

ประพจน์ที่มีค่าความจริงเป็น จริงทุกกรณี

วิธีตรวจสอบสัจนิรันดร์

- 😻 สมมติให้ประพจน์รวมเป็นเท็จ แล้วหาข้อขัดแย้งของประพจน์ย่อย
 - "ถ้า ขัดแย้ง แสดงว่า เป็นสัจนิรันดร์"
 - "ถ้า ไม่ขัดแย้ง แสดงว่า ไม่เป็นสัจนิรันคร์"
- 🕶 ใช้กฎพีชคณิต สุดท้ายต้องได้ ค่าความจริงเป็นจริง

 $\underline{\mathbf{E}\mathbf{x}}$ จงตรวจสอบว่า $[(p
ightarrow q) \wedge \sim q]
ightarrow \sim p$ เป็นสัจนิรันดร์หรือไม่

วิธีที่ 1

(สมมติว่าเป็นเท็จ แล้วหาข้อขัดแย้ง)

$$[(p \to q) \land \sim q] \to \sim p$$

วิธีที่ 2

(กฎพีชคณิต)

$$[(p \to q) \land \sim q] \to \sim p \equiv \sim [(p \to q) \land \sim q] \lor \sim p$$

$$\equiv \sim (p \to q) \lor q \lor \sim p$$

$$\equiv \sim (\sim p \lor q) \lor (\sim p \lor q)$$

$$\equiv T$$

∴
$$[(p \rightarrow q) \land \sim q] \rightarrow \sim p$$
 เป็นสัจนิรันดร์

เกิดข้อขัดแย้ง

∴ $[(p \rightarrow q) \land \sim q] \rightarrow \sim p$ เป็นสัจนิรันดร์

IV. การอ้างเหตุผล

(วิธีตรวจสอบการอ้างเหตุผลว่าสมเหตุสมผลหรือไม่

พิสูจน์ว่า (เหตุ∧เหตุ∧ เหตุ∧ ... ∧เหตุ) → ผล เป็น "สั<mark>จนิรันดร์</mark>" หรือไม่ ถ้า <mark>เป็นสัจ</mark>นิรันดร์ จะสรุปได้ว่า <mark>"สมเหตุสมผล"</mark> ถ้า <mark>ไม่เป็นสัจนิรันดร์</mark> จะสรุปได้ว่า "<mark>ไม่สมเหตุสมผล"</mark>

 $\underline{\mathbf{E}\mathbf{x}}$ จงตรวจสอบว่า การอ้างเหตุผลต่อไปนี้ สมเหตุสมผลหรือไม่

เหตุ
$$\sim r \rightarrow \sim p$$
 $\sim q$ $r \rightarrow s$ $p \lor q$ ผล s

Sol

$$[(\sim r \rightarrow \sim p) \ \land \sim q \ \land \ (r \rightarrow s) \ \land \ (p \lor q)] \rightarrow s$$

เกิดข้อขัดแย้ง แสดงว่า

 $[(\sim r \rightarrow \sim p) \land \sim q \land (r \rightarrow s) \land (p \lor q)] \rightarrow s$ เป็นสัจนิรันคร์

.. การอ้างเหตุผลข้างต้นสมเหตุสมผล

V. ประโยคเปิดและตัวบ่งปริมาณ

ตัวบ่งปริมาณ

 $\forall x$ แทน "สำหรับทุกๆ x", $\exists x$ แทน "มี x บางตัว"

วิธีการหาค่าความจริงของประโยคที่มีตัวบ่งปริมาณ

$\forall x[P(x)]$	เป็น F เมื่อมี x บางตัว ที่ทำให้ $P(x)$ เป็น F
$\exists x[P(x)]$	เป็น T เมื่อมี x บางตัว ที่ทำให้ $P(x)$ เป็น T
$\forall x \forall y [P(x,y)]$	เป็น F เมื่อมี x,y บางตัว ที่ทำให้ $P(x,y)$ เป็น F
$\forall x \exists y [P(x,y)]$	เป็น F เมื่อมี x บางตัว คู่กับ y ทุกตัว ที่ทำให้ $P(x\ ,y)$ เป็น F
$\exists x \forall y [P(x,y)]$	เป็น T เมื่อมี x บางตัว คู่กับ y ทุกตัว ที่ทำให้ $P(x\ ,y)$ เป็น T
$\exists x \exists y [P(x,y)]$	เป็น T เมื่อมี x,y บางตัว ที่ทำให้ $P(x,y)$ เป็น T

สมมูลและนิเสธของประโยคเปิดที่มีตัวบ่งปริมาณ

สมมูล	ตัวบ่งปริมาณต้อง <mark>เหมือนกัน</mark> ประโยคเปิดต้อง สมมูลกัน เช่น $\forall x[P(x) \rightarrow Q(x)] \equiv \forall x[\sim P(x) \lor Q(x)]$	
นิเสธ	ตัวบ่งปริมาณต้อง ตรงข้ามกัน ประโยคเปิดต้อง <mark>เป็นนิเสธกัน เช่น $\Rightarrow \forall x[P(x) \to Q(x)] \equiv \exists x[P(x) \land \sim Q(x)]$</mark>	

VI. การให้เหตุผล

อุปนัย (Induction)	 สรุปผลจากการสังเกต/ ทดลอง/ ประสบการณ์ ช หา Pattern !! ผลสรุปอาจเป็นจริงหรือไม่ก็ได้ 	
นิรนัย (Deduction)	- สรุปผลจากเหตุที่มีอยู่ ผลลัพธ์จะสมเหตุสมผล ก็ต่อเมื่อ เหตุนั้นบังคับให้ต้องสรุปผลแบบนั้นอย่างเดียว ♥ ใช้แผนภาพเวนน์ - ออยเลอร์	