Exercice 1

Partie 1

1.

Nombre de parties n	Fréquence gain si maintien x_n	Fréquence gain si changement 1 - x_n
10	0.4	0.6
100	0.31	0.69
1000	0.321	0.679
10000	0.3308	0.6692
100000	0.33439	0.66561
1000000	0.333587	0.666413

2.

n = 100

n = 1000

n = 10000

3. Quand n devient grand , x_n tend vers 1/3

4.

p	q
1/3	2/3

5. Il vaut mieux modifier sont choix

6.

La probabilité que la voiture soit dans une autre porte que celle choisie est de 2/3, lorsque l'on retire une autre porte , cette probabilité ne change pas. Ainsi , en changeant de porte , la probabilité d'avoir la voiture sera de 2/3

Partie 2

1. a.

	m	σ
Valeur exacte	1/3	2/9
Valeur approchée	0.33333	0.22222

b.

Paramètre	m	σ / sqrt(n)
Valeur exacte	1/3	2/900
Valeur approchées	0.33333	0.0022222

c.

k	Ensemble I _k
1	[0.33111;0.33556]
2	[0.32889;0.33778]
3	[0.32667;0.34000]
4]-∞; 0.32667[U]0.34000;+∞[

d.

k	Ensemble I _k	$P(X_n \in I_k)$
1	[0.33111;0.33556]	0.68269
2	[0.32889;0.33778]	0.95450

3	[0.32667;0.34000]	0.99730
4]-∞; 0.32667[U]0.34000;+∞[0.00270

Dans une loi normal on s'attend à 68.27% pour 1σ , 95.45% pour 2σ et 99.73% pour 3σ . Ces résultats correspondent aux pourcentages attendus.

f.

k	$\mathbf{f}_{ ext{ok}}$
1	0.357
2	0.667
3	0.853
4	0.147

g.

k	$P(X_n \in I_k)$	f_{ok}
1	0.68269	0.357
2	0.95450	0.667
3	0.99730	0.853
4	0.00270	0.147

h.

i.

Paramètre	Moyenne		Ecart-type	
Théorique	m	1/3	σ / sqrt(n)	2/900
Fréquence observées	m1	0.33118	σ1	0.01515

Exercice 2

1.

n	(4/n) sum(i=1,n,z _i)
100	3.12
1000	3.14
10000	3.1344
100000	3.1496
1000000	3.14134

2.

n = 100

Evolution de l'estimation de Pi en fonction du nombre d'itérations

n = 1000

Evolution de l'estimation de Pi en fonction du nombre d'itérations

n = 10000

Evolution de l'estimation de Pi en fonction du nombre d'itérations

3. a.

Paramètre	m	σ / sqrt(n)
Valeur exacte	pi	(4/100)*(sqrt(pi/4 * (1-pi/4)))
Valeur approchée	3.14159	0.016422

b.

k	Ensemble I _k
1	[3.12517;3.15801]
2	[3.10875;3.17444]
3	[3.09233;3.19086]
4]-∞; 3.09233[U]3.19086;+∞[

c.

k	Ensemble I _k	$P(4Z_n \in I_k)$
1	[3.12517;3.15801]	0.68267
2	[3.10875;3.17444]	0.95450
3	[3.09233;3.19086]	0.99730
4]-∞; 3.09233[U]3.19086;+∞[0.0027

e.

k	$ \mathbf{f}_{ m ok} $
1	0.6882
2	0.9538
3	0.997
4	0.003

f.

k	$P(4Z_n \in I_k)$	f_{ok}
1	0.68267	0.6882

2	0.95450	0.9538
3	0.99730	0.997
4	0.0027	0.003

Les critère de normalisé sont approchées dans l'échantillon produit

g.

h.

Paramètre	Moyenne		Ecart-type	
Théorique attendu	M = pi	3.14159	4*sqrt((pi/4(1 - pi/4))/n)	0,016422
Fréquence observées	m1	3.14136	σ1	0.016440