Uncertainty Quantification in Physical and Biological Applications Course Introduction

Mitchel J. Colebank

MATH 728 - Spring 2025 University of South Carolina Department of Mathematics

January 2025

• This course will be equal parts mathematical theory and computation.

- This course will be equal parts mathematical theory and computation.
 - Both are important, given the need for new methods for UQ and better algorithms for specific applications.

- This course will be equal parts mathematical theory and computation.
 - Both are important, given the need for new methods for UQ and better algorithms for specific applications.
- The lectures will be recorded for you to watch later on, and I will provide an "online attendance" option for specific circumstances.

- This course will be equal parts mathematical theory and computation.
 - Both are important, given the need for new methods for UQ and better algorithms for specific applications.
- The lectures will be recorded for you to watch later on, and I will provide an "online attendance" option for specific circumstances.
 - I will take attendance and expect you to be here, though I understand things come up.

- This course will be equal parts mathematical theory and computation.
 - Both are important, given the need for new methods for UQ and better algorithms for specific applications.
- The lectures will be recorded for you to watch later on, and I will provide an "online attendance" option for specific circumstances.
 - I will take attendance and expect you to be here, though I understand things come up.
- There will be several homework assignments.

- This course will be equal parts mathematical theory and computation.
 - Both are important, given the need for new methods for UQ and better algorithms for specific applications.
- The lectures will be recorded for you to watch later on, and I will provide an "online attendance" option for specific circumstances.
 - I will take attendance and expect you to be here, though I understand things come up.
- There will be several homework assignments.
 - These should be manageable; the goal is to know how to implement UQ methods, which requires practical applications.

- This course will be equal parts mathematical theory and computation.
 - Both are important, given the need for new methods for UQ and better algorithms for specific applications.
- The lectures will be recorded for you to watch later on, and I will provide an "online attendance" option for specific circumstances.
 - I will take attendance and expect you to be here, though I understand things come up.
- There will be several homework assignments.
 - These should be manageable; the goal is to know how to implement UQ methods, which requires practical applications.

 Homework assignments will be based on the lectures leading up to the due date.

- Homework assignments will be based on the lectures leading up to the due date.
- Most homework will ask you to apply a UQ concept to a mathematical model (e.g., perform sensitivity analysis).

- Homework assignments will be based on the lectures leading up to the due date.
- Most homework will ask you to apply a UQ concept to a mathematical model (e.g., perform sensitivity analysis).
 - I will provide these models to you in either MATLAB or Python.

- Homework assignments will be based on the lectures leading up to the due date.
- Most homework will ask you to apply a UQ concept to a mathematical model (e.g., perform sensitivity analysis).
 - I will provide these models to you in either MATLAB or Python.
- You are welcome (and encouraged) to work in groups of 2 or 3, but you must turn in individual assignments.

- Homework assignments will be based on the lectures leading up to the due date.
- Most homework will ask you to apply a UQ concept to a mathematical model (e.g., perform sensitivity analysis).
 - I will provide these models to you in either MATLAB or Python.
- You are welcome (and encouraged) to work in groups of 2 or 3, but you must turn in individual assignments.
 - I highly recommend using Latex or Word for typesetting; I will provide .tex files of the homework PDF for your use.

 We will have final projects at the end of the course (date TBD).

- We will have final projects at the end of the course (date TBD).
- This will involve :

- We will have final projects at the end of the course (date TBD).
- This will involve :
 - Applying a more complex/new UQ method to one of the existing models provided; OR

- We will have final projects at the end of the course (date TBD).
- This will involve :
 - Applying a more complex/new UQ method to one of the existing models provided; OR
 - Applying a technique we have covered to a new model that is of interest to you.

- We will have final projects at the end of the course (date TBD).
- This will involve :
 - Applying a more complex/new UQ method to one of the existing models provided; OR
 - Applying a technique we have covered to a new model that is of interest to you.
- My hope is that the final project contributes to an Aim or paper in your graduate studies, so please think about how you may use this class in your research!

The book

 The textbook is one of the best in the field (and written by a leader in UQ!)

The book

- The textbook is one of the best in the field (and written by a leader in UQ!)
- It is not required, but it is highly recommended (especially if you plan on using or conducting research in UQ).

Outline of semester

- Applications and examples (0.5 weeks; chapters 2 and 3)
- ② Fundamentals of probability, random processes, and statistics (1.5 weeks; chapters 4 and 6)
- Representation of random inputs (1 week; chapter 5)
- Parameter selection techniques, sensitivity analyses, active subspaces (3 weeks; chapters 7-10)
- Frequentist and Bayesian model calibration (3 weeks; chapters 11-12)
- Output
 Uncertainty propagation (2 weeks; chapter 13)
- Model discrepancy (1 week; chapter 14)
- 3 Surrogate/reduced order modeling (2.5 weeks; chapters 15-19)
- Sparse grids (0.5 weeks (if time allows) chapter 20)

Questions

Any questions about class content?

Introductions

Lets take 5-10 minutes to introduce ourselves!

