`1

<u>Claims</u>

1. An apparatus for taking absorbance-based chemical measurements comp	rising a
reagent-based optical chemical sensor comprising an analyte-selective reagent, me	eans for
enewing said reagent, means for allowing said reagent to reach equilibrium with an	analyte
and, means for calculating the sensor response from a ratio of the absorbance of said	reagent
determined relative to a blank solution.	
2. The apparatus of claim 1, wherein said analyte-selective reagent is color	imetric.
Huo 3. The apparatus of claim 1, wherein said analyte-selective reagent is floured.	vescent escent.
4. The apparatus of claim 1, wherein said means for renewing said reagent coa pump and at least one valve.	omprisés
5. The apparatus of claim 1, wherein said means for renewing said reagent is from a group consisting of at least one peristaltic pump, at least one syringe pump one positive displacement pump, at least one solenoid pump and valve and at least or valve.	, at least
6. The apparatus of claim 1, wherein said means for renewing said reagent casolenoid pump and valve.	omprises
7. The apparatus of claim 1, wherein said means for calculating the sensor includes the equation $A_R = A_{\lambda 1}/A_{\lambda 2}$, where A_R is said sensor response, $A_{\lambda 1}$ is absorba and $A_{\lambda 2}$ is absorbance at $\lambda 2$ and, wherein $A_{\lambda 1}$ and $A_{\lambda 2}$ are determined by	
$A_{\lambda} = -\log \underline{I}_{\lambda}$	

 $I_{\lambda 0.}$

20

8

1

- 8. The apparatus of claim 1, wherein said reagent-based optical chemical sensor is a 1 Submersible Autonomous Moored Instrument for CO₂. 2 9. The apparatus of claim 8, wherein said analyte-selective reagent is bromothymol 1 2 blue. The apparatus of claim 8, wherein said Submersible Autonomous Moored 1 Instrument for CO_2 comprises a spectrograph filter. 2 11. The apparatus of claim 8, wherein said Submersible Autonomous Moored 1 Instrument for CO₂ comprises a GaP photodiode. 2 12. The apparatus of claim 8, wherein said means for calculating the sensor response 1 includes the equation $A_R = A_{\lambda 1}/A_{\lambda 2}$, where A_R is said sensor response, $A_{\lambda 1}$ is absorbance at $\lambda 1$ 2 and $A_{\lambda2}$ is absorbance at $\lambda2$ and, wherein $A_{\lambda1}$ and $A_{\lambda2}$ are determined by 3 $A_{\lambda} = -\log \underline{I}_{\lambda}$ 4 I_{lo.} 5 13. A method of taking absorbance-based chemical measurements comprising the 1 2 steps of: utilizing a reagent-based optical chemical sensor comprising an analyte-3 a) selective reagent; 4 renewing said analyte-selective reagent; 5 b) equilibrating said renewed analyte-selective reagent to said analyte; and 6 c) calculating the sensor response from a ratio of the absorbance of said analyte-7 d)
 - 14. The method of claim 13, wherein said analyte-selective reagent is colorimetric.

selective reagent determined relative to a blank solution.

2

15. The method of claim 13, wherein said analyte-selective reagent is fluorescent. 1 16. The method of claim 13, wherein said reagent is renewed by a pump and at least 1 2 one valve. 17. The method of claim 16, wherein said pump and at least one valve are selected 1 from a group consisting of at least one peristaltic pump, at least one syringe pump, at least 2 one positive displacement pump, at least one solenoid pump and valve and at least one pinch 3 4 valve. 18. The method of claim 13, wherein said reagent is renewed by a solenoid pump and 1 2 valve. 19. The method of claim 13, wherein said sensor response is calculated using the 1 equation $A_R = A_{\lambda 1}/A_{\lambda 2}$, where A_R is said sensor response, $A_{\lambda 1}$ is absorbance at $\lambda 1$ and $A_{\lambda 2}$ is 2 absorbance at $\lambda 2$ and, wherein $A_{\lambda 1}$ and $A_{\lambda 2}$ are determined by 3 $A_{\lambda} = -\log \underline{I}_{\lambda}$ 4 $I_{\lambda 0.}$ 5 20. The method of claim 13, wherein said reagent-based optical chemical sensor is 1 a Submersible Autonomous Moored Instrument for CO₂. 2 21. The method of claim 20, wherein said analyte-selective reagent is bromothymol 1 blue. 2 The method of claim 20, wherein said Submersible Autonomous Moored 1 22.

Instrument for CO₂ comprises a spectrograph filter.

1 23. The method of claim 20, wherein said Submersible Autonomous Moored 2 Instrument for CO_2 comprises a GaP photodiode.

1 24. The method of claim 20, wherein said sensor response is calculated using the equation $A_R = A_{\lambda 1}/A_{\lambda 2}$, where A_R is said sensor response, $A_{\lambda 1}$ is absorbance at $\lambda 1$ and $A_{\lambda 2}$ is absorbance at $\lambda 2$ and wherein $A_{\lambda 1}$ and $A_{\lambda 2}$ are determined by $A_{\lambda} = -\log \underline{I}_{\lambda}$ 5 $I_{\lambda 0}$