NAME : SRAVANI KAMISETTY

SID : 304414410

MATHEMATICAL MODELLING - CS170 - ASSIGNMENT 2

## QUESTION 2:

## c) Coefficients for 4 degree polynomial fit exponential fit:

| Name         | cases_poly                                          | cases_expo       | death_poly                                          | death_expo       |
|--------------|-----------------------------------------------------|------------------|-----------------------------------------------------|------------------|
| GUINEA       | -0.0000<br>0.0007<br>-0.1143<br>8.5771<br>63.3879   | 0.0118<br>4.7876 | 0.0000<br>0.0001<br>-0.0279<br>3.5991<br>53.1402    | 0.0115<br>4.4142 |
| LIBERIA      | -0.0001<br>0.0194<br>-1.2931<br>30.2170<br>-99.6852 | 0.0454<br>2.8798 | -0.0000<br>0.0088<br>-0.5858<br>13.9945<br>-42.7402 | 0.0432<br>2.5062 |
| SIERRA LEONE | 0.0000<br>0.0010<br>-0.0731<br>9.0056<br>0.7709     | 0.0287<br>4.2917 | 0.0000<br>-0.0025<br>0.2100<br>-1.7810<br>8.2319    | 0.0309<br>3.0423 |



The polynomial fit is better than exponential fit for both cases and deaths for guinea  $\$ 



The polynomial fit is better than exponential fit for both cases and deaths for liberia.



The polynomial fit is better than exponential fit for both cases and deaths for sierra-loeone as well.

```
clear all;
folder = '/home/kami/Documents/FALL/modelling/hw2/Homework2Updated/';
csvfile = { 'quinea.csv' 'liberia.csv' 'sierra-leone.csv' };
for i=1:3
   filename = strcat(folder,csvfile{i});
   clear data time dateNum;
   data = csvread( filename, 1, 0 );
   %figure
   time = 1:size(data,1);
   [rows, cols] = size(data);
   for j=1:rows
        dateNum(j) = datenum(2014, data(j, 1), data(j, 2)) -
datenum (2014, data (1, 1), data (1, 2));
   end
    times = [dateNum(:).^4, dateNum(:).^3, dateNum(:).^2, dateNum(:).^1];
    times(:,5) = times(:,3) ./ times(:,3);
    times(1,5) = 1;
    cases_poly = pinv(times) * data(:,3);
    death_poly = pinv(times) * data(:,4) ;
    times_expo = dateNum(:);
    times_expo(:,2) = times_expo(:,1) . / times_expo(:,1);
    times_expo(1,2) = 1;
    cases_expo = pinv(times_expo) * log(data(:,3));
    death_expo = pinv(times_expo) * log(data(:,4));
    figure;
    %Plot cases poly and expo
    hold all;
    plot (dateNum(:), data(:, 3), 'g*');
    plot(dateNum(:),times*cases_poly,'b-');
    plot (dateNum(:), exp(times_expo*cases_expo), 'r');
    r_cases_poly = norm((times*cases_poly) - data(:,3));
    r_cases_expo = norm(exp(times_expo*cases_expo) - (data(:,3)));
    %Plot deaths poly and expo
    plot(dateNum(:), data(:, 4), 'g*');
    plot(dateNum(:),times*death_poly,'b-');
    plot (dateNum(:), exp(times_expo*death_expo), 'r');
    r_death_poly = norm((times*death_poly) - data(:,4));
    r_death_expo = norm(exp(times_expo*death_expo) - (data(:,4)));
    title(strcat(csvfile{i}, sprintf(' Erorr: Cases poly-
%d',r_cases_poly),sprintf('; Cases expo-%d',r_cases_expo),sprintf('; Death expo-
%d',r_death_expo),sprintf('; Death poly-%d',r_death_poly)));
    legend('Cases curve', 'Cases poly', 'Cases expo', 'Death curve', 'Death
poly','Death expo');
    hold off;
   %plot( time, data(:,3), 'r.-', time, data(:,4), 'b.-')
   %title( csvfile{i}, 'FontSize', 24 )
end
```

```
QUESTION 3:
a)
clear all;
folder = '/home/kami/Documents/FALL/modelling/hw2/Homework2Updated/';
csvfile = 'mpg.csv';
filename = strcat(folder,csvfile);
data = csvread( filename, 1, 0 );
mpg = data(:,8);
displacement = data(:,6);
%part 1: coefficients and error
A = [\log(displacement), ones(7287,1)];
x = A \setminus log(mpg)
A1 = A*x ;
R = norm(A1-log(mpg));
R2_a = norm(A1)/norm(log(mpg));
x =
   -0.6237
    3.8273
R = 12.9807
b)
cylinders = data(:,5);
classsize = data(:,10);
guzzler = data(:,11);
\tilde{A}_b = [ones(7287,1), displacement, cylinders, classsize, guzzler];
mpg_1 = mpg.^{-1};
x_b = A_b \setminus mpg_1
A1_b = A_b * x_b;
norm(mpg_1-A1_b)
R2_b = norm(A1_b)/norm(mpg_1);
>> x_b
x_b =
    0.0157
    0.0060
    0.0014
    0.0007
    0.0037
>>R2_b
R2_b = 0.9921
```

```
C)
origin=data(:,3);
auto_trans=data(:,4);
drive=data(:,7);
A=[];
r_max=0;
flag=0;
for i=0:1 %origin
    for j=0:1 %auto_trans
        for k=0:1 %cyl
            for l=0:1 %displ
                 for m=0:1 %drive
                     for n=0:1 %cl_sz
                         A=[];
                         if (i==1)
                             A=[A origin];flag=1;
                         end
                         if (j==1)
                             A=[A auto_trans];flag=1;
                         end
                         if(k==1)
                             A=[A cylinders];flag=1;
                         end
                         if (1==1)
                             A=[A displacement];flag=1;
                         end
                         if(m==1)
                             A=[A drive];flag=1;
                         end
                         if(n==1)
                             A=[A classsize];flag=1;
                         end
                         if (flag==1)
                             A=[A classsize.^0]; %Just adding the 1s
                             y=mpg.^-1;
                             A_pseudo=pinv(A);
                             x_coeff=A_pseudo*y;
                             new_y=A*x_coeff;
                             r_square_six=norm(new_y)/norm(y);
                             if(r_square_six>r_max)
                                 r_max=r_square_six;
                                 r_set=[i j k l m n];
                             end
                             flag=0;
                         end
                     end
                end
            end
        end
    end
end
Maximum R-Squared Error for 1/(cityMPG): 0.992845
Sets included (1 1 1 1 1 1)
The best fit is with all the 6 variables taken together.
```

```
origin = data(:,3);
drive = data(:,7);
autotrans = data(:,4);
A_3 = [origin, autotrans, cylinders, displacement, drive, classsize];
year = data(:,2);
A_d = [cylinders, displacement, drive, classsize, year, mpg_1];
A_{cor} = corr(A_d);
[u,s,v] = svd(A_cor);
u =
                                           -3.0601e-02
  -4.9397e-01
               -1.8880e-01
                              3.4746e-01
                                                        -4.7278e-01
                                                                      -6.1250e-01
  -5.0976e-01
               -1.1387e-01
                              3.2562e-01
                                           -9.5907e-02
                                                        -1.6661e-01
                                                                       7.6432e-01
  -3.3615e-01
                4.7453e-01
                             -2.9199e-01
                                            7.4484e-01
                                                        -1.4385e-01
                                                                       3.3003e-02
  -2.9443e-01
                5.5786e-01
                             -3.9397e-01
                                           -6.5944e-01
                                                         -9.7887e-02
                                                                      -4.9501e-02
   1.7321e-01
                6.3258e-01
                              7.2989e-01
                                           -7.3703e-04
                                                          1.8254e-01
                                                                       -6.1489e-02
                              5.7037e-03
                                                          8.2773e-01
  -5.1619e-01
               -1.2182e-01
                                           1.4840e-02
                                                                      -1.8256e-01
octave:236> s
s =
Diagonal Matrix
   3.264634
                      0
                                  0
                                             0
                                                         0
                                                                     0
          0
               1.091556
                                  0
                                             0
                                                         0
                                                                     0
          0
                          0.862701
                                                         0
                                                                     0
                      0
                                             0
          0
                      0
                                      0.555754
                                                                     0
                                  0
                                                         \cap
          0
                      0
                                  0
                                             0
                                                 0.163063
                                                                     0
          0
                      0
                                  0
                                             0
                                                             0.062291
octave:237> v
\nabla =
               -1.8880e-01
  -4.9397e-01
                              3.4746e-01
                                           -3.0601e-02
                                                        -4.7278e-01
                                                                      -6.1250e-01
  -5.0976e-01
               -1.1387e-01
                              3.2562e-01
                                           -9.5907e-02
                                                         -1.6661e-01
                                                                       7.6432e-01
                4.7453e-01
                                            7.4484e-01
                                                         -1.4385e-01
  -3.3615e-01
                             -2.9199e-01
                                                                        3.3003e-02
  -2.9443e-01
                5.5786e-01
                             -3.9397e-01
                                           -6.5944e-01
                                                         -9.7887e-02
                                                                      -4.9501e-02
                6.3258e-01
                              7.2989e-01
                                           -7.3703e-04
                                                          1.8254e-01
   1.7321e-01
                                                                      -6.1489e-02
  -5.1619e-01
               -1.2182e-01
                              5.7037e-03
                                           1.4840e-02
                                                          8.2773e-01
                                                                      -1.8256e-01
e)plot(1:6, s);
Plot of singular values
```



```
for i=1:6
  variance(i) = s(i,i)/trace(s);
end
plot(1:6, variance);
```

Plot of ratio of singular values.





Elbow is at 2.

```
The first 3 eigen vectors are:
octave:31> u(:,1:3)
ans =
  -0.4939721
                           0.3474625
             -0.1888034
  -0.5097648
              -0.1138690
                           0.3256194
  -0.3361468
               0.4745285
                          -0.2919902
  -0.2944298
               0.5578587
                          -0.3939745
  0.1732060
               0.6325838
                           0.7298870
  -0.5161855 -0.1218247
                           0.0057037
```

```
The dominant loadings are:
First eiegen vector = -0.5161 = 1/\text{cityMPG}
Second eigen vector = 0.6325 = year
Third eigen vector = 0.72988 = year
This can be interpreted as: the fuel economy depends on the year in which the
vehicle was manufactured and the city gallons/mile value of the engine.
g)
pc = A_d * u(:,1:3);
c1=0; c2=0; c3=0;
for i=1:rows(pc)
     if origin(i) == 1
         c1 = c1+1;
         color1(c1,:) = pc(i,:);
     elseif origin(i) == 2
         c2 = c2 +1;
         color2(c2,:) = pc(i,:);
     else
         c3 = c3 + 1;
         color3(c3,:) = pc(i,:);
     end
end
plot3(color3(:,1),color3(:,2),color3(:,3),'g.');
hold on
plot3(color2(:,1),color2(:,2),color2(:,3),'b.');
plot3(color1(:,1),color1(:,2),color1(:,3),'r.');
```





A G P R ? [345.7, 1273]

The 3 principal components do not separate the data which is visible in the above

```
plot. Hence the column origin is not an separating factor in the data.
QUESTION 4:
a)
clear all;
folder = '/home/kami/Documents/FALL/modelling/hw2/Homework2Updated/';
csvfile = 'LApower.csv';
filename = strcat(folder,csvfile);
data = csvread( filename, 1, 0 );
logPowerJul = data(:,7);
logSqMts = data(:, 27);
avglogTempJul = data(:,19);
b = logPowerJul - logSqMts;
a = [avglogTempJul.^3, avglogTempJul.^2, avglogTempJul.^1, ones(2322,1)];
x =
    0.0009
   -0.1936
   13.4209
 -311.2345
b)
plot( data(:,19),logPowerJul - logSqMts,'r*');
hold on;
plot( data(:,19), a*x,'b*');
```



```
C)
b1 = logPowerJul;
a1 = [ones(2322,1), avglogTempJul, data(:,29), data(:,28), logSqMts];
x2 = a1 \b1;
b1\_recon = a1*x2;
error = norm(b1_recon)/norm(b1);
x2 =
   0.5933
  -0.0003
  -0.0001
   0.0151
   0.4522
error =
   0.9944
d)
count = 0;
for i=1:2322
   if data(1,30) > 50
      count = count +1;
end
plotmatrix(matrix);
```



```
corr_data = corr(matrix);
[u,s,v] = svds(corr_data,3)
octave:366> corr_data
corr_data =
  1.0000e+00 -1.4713e-02
                            1.1919e-01 -5.3941e-02 -2.0106e-01
                                                                  3.2594e-02
                                                                              -3.4383e-01
  -1.4713e-02
               1.0000e+00
                           -3.4876e-01
                                        4.1746e-01
                                                      1.6299e-01
                                                                   4.1257e-04
                                                                               3.4425e-01
                                        -5.8200e-01
                                                    -2.9617e-01
                                                                  2.0962e-02
                                                                              -6.2075e-01
  1.1919e-01
              -3.4876e-01
                            1.0000e+00
  -5.3941e-02
              4.1746e-01 -5.8200e-01
                                        1.0000e+00
                                                      2.0234e-01
                                                                 -3.1553e-02
                                                                              4.8836e-01
  -2.0106e-01
               1.6299e-01
                          -2.9617e-01
                                        2.0234e-01
                                                      1.0000e+00
                                                                  4.0938e-01
                                                                               4.7079e-01
  3.2594e-02
               4.1257e-04
                           2.0962e-02
                                        -3.1553e-02
                                                      4.0938e-01
                                                                  1.0000e+00
                                                                              -3.7132e-02
  -3.4383e-01
              3.4425e-01 -6.2075e-01
                                       4.8836e-01
                                                      4.7079e-01 -3.7132e-02
                                                                              1.0000e+00
 -0.1970757
             -0.1572453 -0.8032445
  0.3517073
             -0.2102558
                         -0.3423795
  -0.4901318
             0.1619316
                         0.0682201
  0.4503140
             -0.2545647
                         -0.2219935
  0.3528940
              0.5682655
                         -0.0060950
   0.0556704
              0.7190736
                         -0.3626823
  0.5165442 -0.0069838
                         0.2281751
Diagonal Matrix
   2.6980
                Ω
                         0
           1.3325
                         0
                    1.0796
       0
                0
  -0.1970757
             -0.1572453
                         -0.8032445
             -0.2102558
  0.3517073
                         -0.3423795
  -0.4901318
             0.1619316
                         0.0682201
  0.4503140
             -0.2545647
                         -0.2219935
  0.3528940
             0.5682655
                         -0.0060950
   0.0556704
              0.7190736
                         -0.3626823
  0.5165442 -0.0069838
                         0.2281751
```

Dominant loadings are marked in **Bold**. In the first principal component, the max eigen vector value corresponds to last element I.e: Percent SFR. Hence this part shows the max spread. Similarly second principal component has maximum spread about the AvgYearBuilt. And the third has the max spread about logPowerJul(i,1) - logSqMts(i,1). In simpler words this means that the variation in the data is best shown by Percent SFR followed by Avg year built and logPowerJul(i,1) - logSqMts(i,1).

```
OUESTION 5:
a)
function [ avgFace, ksingularValues, eigenFaces ] = eigFaces( loc, s, k )
      %row wise
      % Read all the images
      filelist = readdir(loc);
      for i=1:s
       x = imread(strcat(loc, filelist(i+2,1))(1,1){1});
       a = reshape(x, 1, 64*64);
       images(i,:) = a;
      end
      %Calculate mean
      [rows, cols] = size(images);
      for i=1:cols
        mean(i) = round(sum(images(:,i)/rows));
      end
      im = reshape(mean, 64, 64);
      im = (im - min(im(:))) / (max(im(:)) - min(im(:)));
      imshow(im);
        avgFace = im;
      %Create caricature
      for i=1:rows
      caricature(i,:) = images(i,:) - mean(1,:);
      end
      replacement = cov(caricature);
      [u,l,v] = svds(replacement,k);
      ksingularValues = diag(l)
      eigenFaces = v;
      for i=1:k
        figure
        im = reshape(eigenFaces(:,i),64,64);
        im= (im-min(im(:))) / (max(im(:))-min(im(:)));
        imshow(im);
        axis off
      end
end
ocatve:4> eigFaces('/home/Documents/FALL/hw2/Homework2Updated/eigenfaces/', 177,4);
ksingularValues =
   1.5880e+05
   1.1480e+05
   7.6793e+04
   5.9086e+04
                        🗎 🗊 Figure 1
                      File Edit
Mean Face :
```





```
b)
function [ avgFace, ksingularValues, eigenFaces ] = eigFaces( loc,k )
      %row wise
      % Read all the images
      filelist = readdir(loc);
      cf = 0; cm = 0;
      for i=1:168
      x = imread(strcat(loc, filelist(i+2,1))(1,1){1});
       a = reshape(x, 1, 64*64);
       images(i,:) = a;
         if strcmp(face_features{i,2}, 'Female') && strcmp(face_features{i,3},
'Blue')
           cf += 1;
               images_female_blue(cf,:) = a;
       end
           strcmp(face_features{i,2}, 'Male') && strcmp(face_features{i,3}, 'Blue')
       if
           cm += 1;
               images_male_blue(cm,:) = a;
       end
      end
      %Calculate mean
```

```
[rows,cols] = size(images_male_blue);
      for i=1:cols
        mean_m(i) = round(sum(images_male_blue(:,i)/rows));
      [rows, cols] = size(images_female_blue);
      for i=1:cols
        mean_f(i) = round(sum(images_female_blue(:,i)/rows));
      end
      %Create caricature
      for i=1:rows
      caricature_f(i,:) = images_female_blue(i,:) - mean_f(1,:);
      end
      for i=1:rows
      caricature_m(i,:) = images_male_blue(i,:) - mean_m(1,:);
      end
      replacement = cov(caricature_f);
      [uf,lf,vf] = svds(replacement,k);
      ksingularValues = diag(lf)
      eigenFaces = vf;
      replacement = cov(caricature_m);
      [um, lm, vm] = svds(replacement, k);
      ksingularValues = diag(lm)
      eigenFaces = vm;
      for i=1:k
        figure
          %subplot(6,5,i);
        im = reshape(eigenFaces(:,i),64,64);
        im= (im-min(im(:))) / (max(im(:))-min(im(:)));
        imshow(im);
        axis off
      end
end
FEMALE K=30 EIGEN FACES
```



## MALE K=30 EIGEN FACES



```
cf = 0; cm = 0;
      for i=1:168
       x = imread(strcat(loc, filelist(i+2,1))(1,1){1});
       a = reshape(x, 1, 64*64);
       images(i,:) = a;
         if strcmp(face_features{i,2}, 'Female') && strcmp(face_features{i,3},
'Blue')
           flag = 1;
         for j = 1:10
   if strcmp(filelist(i+2,1),image_to_omit{j,1})
                 flag = 0;
            end
         if flag == 1
            cf += 1;
            images(cf,:) = a;
         end
       end
           strcmp(face_features{i,2}, 'Male') && strcmp(face_features{i,3}, 'Blue')
           flag = 1;
         for j = 1:10
            if strcmp(filelist(i+2,1),image_to_omit{j,1})
            end
         if flag == 1
            cf += 1;
            images(cf,:) = a;
         end
       end
      end
      %Calculate mean
      [rows, cols] = size(images_female_blue);
      for i=1:cols
        mean_f(i) = round(sum(images_female_blue(:,i)/rows));
      [rows, cols] = size(images_male_blue);
      for i=1:cols
        mean_m(i) = round(sum(images_male_blue(:,i)/rows));
      end
      figure
      im = reshape(mean_f, 64, 64);
      im= (im-min(im(:))) / (max(im(:))-min(im(:)));
      imshow(im);
        avgFace = im;
      figure
      im = reshape(mean_m, 64, 64);
      im= (im-min(im(:))) / (max(im(:))-min(im(:)));
      imshow(im);
      figure
      im = reshape(mean_f-mean_m,64,64);
      im= (im-min(im(:))) / (max(im(:))-min(im(:)));
      imshow(im);
end
```

Female mean- Male mean



Avg Male Face









## [-19.81, -1.837]

GPR? female\_singular\_Values =

run\_eigen\_faces
1.0e+05 \*

8.7041

5.3455

2.7811

2.0929

1.6299 1.3608

1.0906 0.9244 0.7754 0.6539

0.5806

0.4975 0.4802

0.4248

0.3715

0.3484 0.3117 0.2819

0.2632

0.2287

0.1958

0.1649

0.1598 0.0000

0.0000

```
0.0000
     0.0000
          0
          0
    1.0e+05 *
     4.2833
     3.2753
     1.7863
     1.2890
     1.0972
     0.9487
     0.6857
     0.6806
     0.5425
     0.4383
     0.4070
     0.3817
     0.3633
     0.3147
     0.2977
     0.2884
     0.2602
     0.2363
     0.2147
     0.2064
     0.1878
     0.1766
     0.1603
     0.1372
     0.1347
     0.1215
     0.1202
     0.1137
     0.1045
    0.0985
c) function [ female_face, male_male ] = eigFaces( loc, face_features, k )
      %row wise
      % Read all the images
      filelist = readdir(loc);
      cf = 0; cm = 0; count = 0;
      for i=1:177
       x = imread(strcat(loc, filelist(i+2,1))(1,1){1});
       a = reshape(x, 1, 64*64);
         if strcmp(face_features{i,2}, 'Female') && strcmp(face_features{i,3}, 'Blue')
          cf += 1;
         count += 1;
         images_female_blue(cf) = count;
         images(count,:) = a;
       end
       if strcmp(face_features{i,2}, 'Male') && strcmp(face_features{i,3}, 'Blue')
          cm += 1;
         count += 1;
         images_male_blue(cm) = count;
         images(count,:) = a;
       end
      end
      %Calculate mean
      [rows, cols] = size(images);
      for i=1:cols
        mean(i) = round(sum(images(:,i)/rows));
```

end

```
%Create caricature
[rows, cols] = size(images);
for i=1:rows
caricature(i,:) = images(i,:) - mean(1,:);
replacement = cov(caricature);
[u,l,v] = svds(replacement,k);
c = v' * double(caricature');
[rows, cols] = sizeof(c)
max = 0;
[rows, cols] = size(images_female_blue);
for i=1:rows
 index = images_female_blue(i,1);
 coeff = norm(c(:,index));
 if (max < coeff)</pre>
   max = coeff;
     coeff_female = c(:,index);
     %female_face = images(index,:);
    end
end
female_face = mean + v' * coeff_female;
im = reshape(female_face,64,64);
imshow(im);
max = 0;
[rows,cols] = size(images_male_blue);
for i=1:rows
index = images_male_blue(i,1);
coeff = norm(c(:,index));
 if (max < coeff)</pre>
   max = coeff;
   coeff_male = c(:,index);
    %male_face = images(index,:);
    end
end
male_face = mean + v' * coeff_male;
im = reshape(male_face, 64, 64);
imshow(im);
```





the mean female and male faces. A face is classified as female face if Zf< Zm else as male face. After comparing the classification with the real values from the face\_features.m we can tell weather a decesion is right ot wrong. At the end, after classifying all images percentage of success is calculated. function [ decesion ] = eigFaces( filename, loc,face\_features ) %row wise % Read all the images filelist = readdir(loc); cf = 0; cm = 0;for i=1:168 $x = imread(strcat(loc, filelist(i+2,1))(1,1){1});$ a = reshape(x, 1, 64\*64);images(i,:) = a;if strcmp(face\_features{i,2}, 'Female') && strcmp(face\_features{i,3}, 'Blue') cf += 1;images\_female\_blue(cf,:) = a; end if strcmp(face\_features{i,2}, 'Male') && strcmp(face\_features{i,3}, 'Blue') cm  $+=^{-}1;$ images\_male\_blue(cm,:) = a; end end %Calculate mean [rows, cols] = size(images\_female\_blue); for i=1:cols mean\_f(i) = round(sum(images\_female\_blue(:,i)/rows)); end [rows,cols] = size(images\_male\_blue); for i=1:cols mean\_m(i) = round(sum(images\_male\_blue(:,i)/rows)); x = imread(filename);a = reshape(x, 1, 64\*64);input\_image = a;

diff\_f = norm(double(images(i,:)) - mean\_f);
diff\_m = norm(double(images(i,:)) - mean\_m);

if diff\_m < diff\_f
 decesion = 0;</pre>

decesion = 1;

To classify images I calculated the squared difference Zm, Zf between each face and

end

else

end

d)

```
Classifier which uses the difference between the mean and every face to find out the
percentage of success foe this classifier
function [ percentage ] = eigFaces( loc, face_features )
      %row wise
      % Read all the images
      filelist = readdir(loc);
      cf = 0; cm = 0;
      for i=1:168
       x = imread(strcat(loc, filelist(i+2,1))(1,1){1});
       a = reshape(x, 1, 64*64);
       images(i,:) = a;
         if strcmp(face_features{i,2}, 'Female') && strcmp(face_features{i,3}, 'Blue')
           cf += 1;
         images_female_blue(cf,:) = a;
       end
       if strcmp(face_features{i,2}, 'Male') && strcmp(face_features{i,3}, 'Blue')
           cm += 1;
         images_male_blue(cm,:) = a;
       end
      end
      %Calculate mean
      [rows,cols] = size(images_female_blue);
      for i=1:cols
        mean_f(i) = round(sum(images_female_blue(:,i)/rows));
      end
      [rows, cols] = size(images_male_blue);
      for i=1:cols
        mean_m(i) = round(sum(images_male_blue(:,i)/rows));
      end
      true =0; false =0;
      for i=1:168
        diff_f = norm(double(images(i,:)) - mean_f);
        diff_m = norm(double(images(i,:)) - mean_m);
        if (strcmp(face_features{i,2}, 'Male') && diff_m < diff_f) ||</pre>
( strcmp(face_features{i,2}, 'Female') && diff_f<diff_m)</pre>
             true += 1;
          else
             false +=1;
          end
      percent = true/(true+false) * 100
end
Percentage of success :
percent = 64.286
OUESTION 1:
d)
octave:11> sort(roots(poly(hilb(7))),'descend')
ans =
   1.6609e+00
   2.7192e-01
   2.1290e-02
```

1.0086e-03

```
2.9386e-05
   4.8568e-07
   3.4939e-09
octave:12> sort(roots(poly(magic(7))),'descend')
ans =
   175.000
    56.485
    31.088
    25.397
   -25.397
   -31.088
   -56.485
octave:16> sort(roots(poly(pascal(7,1))),'descend')
ans =
   1.00013 + 0.00000i
  -1.00000 + 0.00000i
   1.00000 + 0.00013i
  1.00000 - 0.00013i
  -1.00000 + 0.00000i
  -1.00000 - 0.00000i
   0.99987 + 0.00000i
octave:17> svd(pascal(7,1))
ans =
   34.958043
    6.857853
    2.160743
    1.000000
    0.462804
    0.145818
    0.028606
They are not the same in the case of Pascal (7,1)
octave:18> sort(roots(poly(vander(1:7))), 'descend')
ans =
   5.5645e+02
   1.4196e+02
   5.1654e+00
  1.0014e-02
  -3.7270e-01
  -3.5714e+01
  -4.5750e+02
octave:19> svd(vander(1:7))
ans =
   1.2899e+05
   1.4653e+03
   4.8179e+01
   4.0750e+00
   9.3089e-01
   1.3659e-01
   5.2738e-03
They are not the same in case of Vander (1:7)
octave:20> sort(roots(poly(rosser())), 'descend')
ans =
   1.0201e+03 + 0.0000e+00i
  -1.0200e+03 + 0.0000e+00i
   1.0199e+03 + 3.8475e-02i
   1.0199e+03 - 3.8475e-02i
   1.0000e+03 + 4.8404e-03i
```

```
1.0000e+03 - 4.8404e-03i
   9.8049e-02 + 0.0000e+00i
  -1.1304e-13 + 0.0000e+00i
octave:21> svd(rosser())
ans =
   1.0200e+03
   1.0200e+03
   1.0200e+03
   1.0199e+03
   1.0000e+03
   1.0000e+03
   9.8049e-02
   9.6347e-15
e)
octave:23> digits(50);
octave:23> s = svd(hilb(7));
octave:29> for i=1:7
> x = vpa(s(i))
> end
1.660885338926931353853433392941951751708984375
x =
0.271920198149345149207789518186473287642002105712890625\\
0.0212897549083279243042898798421447281725704669952392578125\\
0.0010085876107701306769737215063287294469773769378662109375\\
x =
2.938636814593281233482652270438961750187445431947708129883E-5
4.856763361741647858072206539459259033719717990607023239136E-7
3.493898595023221180814080802238055789565862596646184101701E-9
octave:41> %cond num
octave:41>
1.660885338926931353853433392941951751708984375/3.4938985950232211808140808022380557895
65862596646184101701E-9
         4.7537e+08
ans =
octave:31> s = svd(magic(7))
s =
   175.000
    57.436
    57.436
    31.553
    31.553
    24.609
    24.609
octave: 32 > for i=1:7
> x = vpa(s(i))
> end
x =
175.0
57.43562359326133304193717776797711849212646484375
x =
```

```
57.4356235932613259365098201669752597808837890625
x =
31.55255885444730523659018217585980892181396484375
31.55255885444730523659018217585980892181396484375
24.608640193839217857885159901343286037445068359375
24.608640193839196541603087098337709903717041015625
octave:42> %cond num
octave: 42> 175.0/24.608640193839196541603087098337709903717041015625
ans = 7.1113
octave:33> s = svd(pascal(7,1))
   34.958043
    6.857853
    2.160743
    1.000000
    0.462804
    0.145818
    0.028606
octave:34> for i=1:7
> x = vpa(s(i))
> end
34.9580431092000623038984485901892185211181640625
6.85785251495807113286673484253697097301483154296875
2.1607434783941936728979271720163524150848388671875
0.999999999999988897769753748434595763683319091796875
x =
0.462803664571591222287594291628920473158359527587890625\\
0.1458182423461046595125623070998699404299259185791015625\\
0.028605720202250765893392525640592793934047222137451171875\\
octave:43> %cond num
octave:43>
34.9580431092000623038984485901892185211181640625/0.02860572020225076589339252564059279
3934047222137451171875
ans = 1222.1
octave:35> s = svd(vander(1:7))
   1.2899e+05
   1.4653e+03
   4.8179e+01
   4.0750e+00
   9.3089e-01
   1.3659e-01
   5.2738e-03
octave:36> for i=1:7
> x = vpa(s(i))
```

```
> end
128993.3575442936853505671024322509765625
1465.273250697774756190483458340167999267578125
48.17945739251121040069847367703914642333984375
4.074977241020729223919261130504310131072998046875
0.93089037201777291574700257115182466804981231689453125
x =
0.1365864819040193689492213025005185045301914215087890625\\
0.00527383954289458410646940222932244068942964076995849609375
octave:37>%condition-num
128993.3575442936853505671024322509765625/0.0052738395428945841064694022293224406894296
4076995849609375
       2.4459e+07
ans =
octave:38> s = svd(rosser())
s =
   1.0200e+03
   1.0200e+03
   1.0200e+03
   1.0199e+03
   1.0000e+03
   1.0000e+03
   9.8049e-02
   9.6347e-15
octave:39> for i=1:8
> x = vpa(s(i))
> end
x =
1020.049018429996749546262435615062713623046875
1020.04901842999652217258699238300323486328125
1019.99999999999772626324556767940521240234375
1019.901951359278655218076892197132110595703125
999.9999999999772626324556767940521240234375
x =
999.999999999996589394868351519107818603515625
0.09804864072158099574938461273632128722965717315673828125\\
9.634722438889376192608137485197386978467244331159058390313E-15
octave:40> %cond num
octave:40>
1020.049018429996749546262435615062713623046875/9.6347224388893761926081374851973869784
67244331159058390313E-15
```

```
ans =
         1.0587e+17
f)
function imagesvd(varargin)
              Principal component analysis of monochrome and color images.
% IMAGESVD
      IMAGESVD('file1.fmt','file2.fmt', ...) reads the specified image
      files. Any format known to IMREAD is acceptable.
응
      IMAGESVD, with no arguments, provides popup menu access to several
응
응
      images from the NCM and demos directories.
양
    Copyright 2013 Cleve Moler and The MathWorks, Inc.
      imagesvd('slide') is the callback from the rank slider.
imagesvd('menu') is the callback from the popup menu.
응
if nargin == 0 || ~isequal(varargin{1},'slide')
    if nargin == 0 || ~isequal(varargin{1}, 'menu')
       % Initialize uicontrols
       sha
       c1f
       set(gcf,'menu','none','numbertitle','off','name','Imagesvd');
       X = [];
                                            %Store numeric values in X if the input is a
matrix.
       if nargin > 0
           L = {'Your Matrix'};
           X = varargin{1};
           L = {'detail.mat', 'durer.mat', 'fern.png', 'clown.mat', ...
                'earth.mat', 'mandrill.mat', 'gatlin.mat'};
       end
       startwith = 1;
       h.popup = uicontrol('units','norm','pos',[.10 .03 .20 .05], ...
'style','popup','val',startwith,'string',L, ...
'callback','imagesvd(''menu'')');
       h.slider = uicontrol('units','norm','pos',[.38 .02 .24 .04], ...
       'style', 'slider', 'value', 0, 'callback', 'imagesvd(''slide'')');
h.limit = uicontrol('units', 'norm', 'pos', [.62 .02 .05 .04], ...
           'style','text');
       h.rank = uicontrol('units','norm','pos',[.42 .06 .16 .04], ...
'style','text','string','');
h.close = uicontrol('units','norm','pos',[.80 .03 .10 .05], ...
           'string','close','callback','close');
       h.X = X;
                                            %Copy numeric matrix into structure h.
       set (gcf, 'userdata', h)
   end
   % Read or load a new image.
   % Monochrome is a single 2-D array of intensities.
% Color is a 3-D array of red, green and blue intensities.
   h = get(gcf, 'userdata');
   L = get(h.popup, 'string');
   name = L{get(h.popup, 'val')};
                                                %If it does not find .mat in the name,
   if isempty(strfind(name, '.mat'))
assume we passed a numeric matrix.
       % Read numeric matrix.
       X = h.X;
       \$ \mbox{If } X \mbox{ is not between 0 and 1, normalize it!}
       maximum = max(max(X));
       minimum = min(min(X));
       X = (X - minimum) / (maximum - minimum);
   else
```

```
% Load .mat file containing indexed image 'X' and colormap 'map'.
      % Convert to intensities.
      load(name)
      if norm(diff(map'),1) == 0
         % Monochrome image
         T = map(X, 1);
         X = reshape(T, size(X));
      else
         % Color image
         T = [map(X, 1) map(X, 2) map(X, 3)];
         X = reshape(T, [size(X) 3]);
      end
   end
   % Resize large images to reduce computation time.
   [m,n,p] = size(X);
   while m >= 768
      i = 1:2:m-1;
      j = 1:2:n-1;
      X = (X(i,j,:)+X(i+1,j,:)+X(i,j+1,:)+X(i+1,j+1,:))/4;
      [m,n,p] = size(X);
   end
   % Slider parameters depend upon size the image.
   mn = min(m,n);
   set(h.slider,'val',1,'min',0,'max',mn,'sliderstep',[1/mn 10/mn])
set(h.limit,'string',int2str(mn))
   set(h.rank,'string','')
   % Compute the singular value decomposition of the image.
   msg = uicontrol('units', 'norm', 'pos', [.25 .56 .50 .10], ...
       'style','text','fontsize',14, ...
       'string',['Computing ' int2str(n*p) '-by-' int2str(m) ' SVD...']);
   drawnow
   X = reshape(X, m, p*n);
   [V,S,U] = svd(X',0);
   % Save the SVD in the figure's user data.
   h.U = U;
   h.S = S;
   h.V = V;
   h.m = m;
   h.n = n;
   h.p = p;
   set (gcf, 'userdata', h)
   delete (msg);
end
% Update the plot.
h = get(gcf, 'userdata');
U = h.U;
S = h.S;
V = h.V;
m = h.m;
n = h.n;
p = h.p;
% Obtain the rank from the slider.
r = round(get(h.slider, 'value'));
set(h.slider,'value',r)
```

```
set(h.rank,'string',['rank = ' num2str(r)]);
% Rank r approximation.
%******************* Modify/Add your code here **************
k = 1:r;
Y = U(:,k) *S(k,k) *V(:,k)';

X = U * S * V';
error = X - Y;
maximum = max( max( error ) );
minimum = min( min( error ) );
error = ( error - minimum ) / ( maximum - minimum );
error = reshape(error,m,n,p);
imager(error)
drawnow
function imager(X)
% Display the image.
X(X<0) = 0;
X(X>1) = 1;
if ndims(X) == 3
   image(X)
else
   image(255*X)
   colormap(gray(256));
end
axis image
axis off
```



```
(a) Implementation of mysvd()
       function [U, S, V] = mysvd(X)
            [Q1 L] = Jacobi(X' * X);
[Q2 L] = Jacobi(X * X');
           U = Q2;
           V = Q1;
           S = L.^{(1/2)};
      end
      function [Q L] = Jacobi(X)
                n = size(X, 1);
                Q = id_function(n);
             for j = 1 : (n-1)
                    for i = (n-1) : (-1) : (j+1)
                           i1 = i+1;
                           x = X(i,j);
                           y = X(i1, j);
                           T = QRotation(x,y);
                           Q(1:n, i:i1) = Q(1:n, i:i1) * T;
X(i:i1, j:n) = T' * X(i:i1, j:n);
X(j:n, i:i1) = X(j:n, i:i1) * T;
                     end
             end
             OffDiagonal = 1 - id_function(n);
             OffDiagonal == (OffDiagonal == 1);
             while( ((X(OffDiagonal) ' * X(OffDiagonal))^(1/2)) /
             ((ones\_function(1,n) * (X' * X) * ones\_function(n,1))^(1/2)) > n * n *
             eps )
                for i = 1: (n-1)
                   i1 = i+1;
                   x = X(i,i);
                   y = X(i1, i);
                   T = QRotation(x, y);
                  Q(1:n, i:i1) = Q(1:n, i:i1) * T;
X(i:i1, 1:n) = T' * X(i:i1, 1:n);
                  X(1:n, i:i1) = X(1:n, i:i1) * T;
                end
              end
              L = X .* id_function(n);
```

```
function T = QRotation(x, y)
             c = 1;
             s = 0;
             if (abs_function(y) > 0)
                if (abs_function(y) >= abs_function(x))
                   cotangent = x/y;
                   s = 1/((1 + cotangent^2)^(1/2));
                   c = s * cotangent;
                   tangent = y/x;
                   c = 1/((1 + tangent^2)^(1/2));
                   s = c * tangent;
                end
             end
             T = [c -s ; s c];
           end
           function I = id_function(n)
              I(1:n, 1:n) = 0;
              I (1: n+1 : end) = 1;
           end
           function 0 = ones_function(n,p)
              O(1:n,1:p) = 1;
           end
           function X = abs_function(X)
             X = -1 .* X .* (X<0) + X.* (X>=0);
           end
Results of implementation:
>> A = hilb(7)
A =
                                    0.2500
                                                                    0.1429
    1.0000
               0.5000
                          0.3333
                                               0.2000
                                                         0.1667
    0.5000
               0.3333
                          0.2500
                                    0.2000
                                               0.1667
                                                         0.1429
                                                                    0.1250
    0.3333
               0.2500
                                    0.1667
                                               0.1429
                         0.2000
                                                         0.1250
                                                                    0.1111
    0.2500
               0.2000
                          0.1667
                                    0.1429
                                               0.1250
                                                         0.1111
                                                                    0.1000
    0.2000
               0.1667
                          0.1429
                                    0.1250
                                               0.1111
                                                         0.1000
                                                                    0.0909
    0.1667
               0.1429
                          0.1250
                                    0.1111
                                               0.1000
                                                         0.0909
                                                                    0.0833
                                    0.1000
               0.1250
                          0.1111
                                               0.0909
                                                         0.0833
                                                                    0.0769
    0.1429
>> [U S V] = mysvd(A)
U =
    0.7332
              -0.6232
                         0.2608
                                   -0.0752
                                              0.0160
                                                        -0.0025
                                                                    0.0002
                        -0.6706
                                              -0.2279
    0.4364
               0.1631
                                    0.5268
                                                         0.0618
                                                                   -0.0098
    0.3198
               0.3215
                        -0.2953
                                   -0.4257
                                              0.6288
                                                        -0.3487
                                                                    0.0952
                          0.0230
                                   -0.4617
    0.2549
               0.3574
                                              -0.2004
                                                         0.6447
                                                                   -0.3713
                                   -0.1712
    0.2128
               0.3571
                         0.2337
                                              -0.4970
                                                        -0.1744
                                                                    0.6825
    0.1831
               0.3446
                          0.3679
                                    0.1827
                                              -0.1849
                                                        -0.5436
                                                                   -0.5911
    0.1609
               0.3281
                          0.4523
                                    0.5098
                                              0.4808
                                                         0.3647
                                                                    0.1944
  S =
   1.6609
                                                        0
                                                                        0
                        0
                                        0
0
        0
                   0.2719
                                        0
                                                        0
                                                                        0
0
                0
```

end

```
0
                            0
                                        0.0213
                                                               0
                                                                                0
  0
                    0
            0
                            0
                                              0
                                                         0.0010
                                                                                0
  0
                    0
           0
                                              0
                                                                          0.0000
                            0
                                                               0
  0
                   0
            0
                                              0
                                                               0
                                                                                0
                            0
  0.0000
                         0
                            Λ
                                              0
                                                               0
                                                                                \cap
  0
              0.0000 + 0.0000i
  V =
                                                              -0.0025
       0.7332
                 -0.6232
                             0.2608
                                       -0.0752
                                                    0.0160
                                                                           0.0002
                            -0.6706
       0.4364
                  0.1631
                                        0.5268
                                                   -0.2279
                                                               0.0618
                                                                          -0.0098
       0.3198
                  0.3215
                            -0.2953
                                        -0.4257
                                                    0.6288
                                                               -0.3487
                                                                           0.0952
       0.2549
                  0.3574
                              0.0230
                                        -0.4617
                                                   -0.2004
                                                               0.6447
                                                                          -0.3713
                  0.3571
                              0.2337
                                        -0.1712
       0.2128
                                                   -0.4970
                                                               -0.1744
                                                                           0.6825
                  0.3446
                              0.3679
                                                                          -0.5911
       0.1831
                                         0.1827
                                                   -0.1849
                                                               -0.5436
       0.1609
                  0.3281
                              0.4523
                                         0.5098
                                                   0.4808
                                                                0.3647
                                                                           0.1944
>> B = magic(7)
B =
    30
           39
                  48
                          1
                               10
                                      19
                                             28
    38
                   7
                                      27
                                             29
           47
                          9
                                18
                   8
                         17
                                26
                                      35
                                             37
    46
            6
     5
           14
                  16
                         25
                                34
                                       36
                                             45
    13
           15
                  24
                         33
                                42
                                       44
                                              4
           23
                                             12
    21
                  32
                         41
                                43
                                       3
    22
           31
                  40
                         49
                                 2
                                      11
                                             20
>> [U S V] = mysvd(B)
U =
    0.3780
              -0.5972
                          -0.0000
                                      0.5462
                                                  0.0000
                                                            -0.4496
                                                                        0.0000
                                     -0.1169
    0.3780
               -0.3478
                          -0.3820
                                                  0.3883
                                                            0.6377
                                                                       -0.1385
    0.3780
                0.1237
                          -0.5200
                                     -0.5326
                                                 -0.0452
                                                            -0.4937
                                                                        0.2049
    0.3780
                0.3602
                          -0.2274
                                      0.3002
                                                 -0.6425
                                                             0.2039
                                                                       -0.3621
                                                             0.0808
    0.3780
                                                  0.3795
                0.5227
                           0.1120
                                      0.3764
                                                                        0.5284
                           0.4783
    0.3780
                0.1952
                                     -0.2228
                                                  0.3389
                                                            -0.2122
                                                                       -0.6171
    0.3780
               -0.2569
                           0.5391
                                     -0.3505
                                                 -0.4189
                                                             0.2331
                                                                         0.3844
S =
  175.0000
                     0
                                 0
                                            0
                                                                   0
                                                                              0
          0
               57.4356
                                 0
                                            0
                                                       0
                                                                   0
                                                                              0
                                                                   0
          0
                      0
                          57.4356
                                            0
                                                       0
                                                                              0
                                     31.5526
                                                                   0
          0
                      0
                                 0
                                                       0
                                                                              0
          0
                      0
                                 0
                                            0
                                                 31.5526
                                                                   0
                                                                              0
          0
                      0
                                 0
                                            0
                                                       0
                                                            24.6086
                                                                              0
          0
                      0
                                 0
                                            0
                                                       0
                                                                   0
                                                                       24.6086
V =
                                                  0.0000
    0.3780
              -0.4269
                          -0.0000
                                      0.7054
                                                            0.4210
                                                                       -0.0000
    0.3780
               -0.3260
                           0.4065
                                     -0.0049
                                                  0.3638
                                                            -0.6617
                                                                       -0.1240
    0.3780
                0.1280
                           0.5622
                                     -0.4481
                                                  0.1172
                                                            0.5413
                                                                        0.1314
    0.3780
                0.6275
                          0.1841
                                      0.2907
                                                 -0.4759
                                                            -0.1902
                                                                       -0.2870
    0.3780
                0.4114
                          -0.4039
                                      0.1002
                                                  0.4522
                                                            -0.0901
                                                                        0.5496
    0.3780
              -0.0547
                          -0.5182
                                     -0.3215
                                                  0.1704
                                                            0.1438
                                                                       -0.6577
    0.3780
              -0.3593
                          -0.2306
                                     -0.3220
                                                 -0.6277
                                                                        0.3877
                                                            -0.1642
```

```
>> C = pascal(7,1)
C =
                                               0
      1
            0
                          0
                                 0
                                        0
           -1
     1
                   0
                          0
                                 0
                                        0
                                               0
           -2
                          0
                                 0
                                        0
                                               0
      1
                   1
           -3
                   3
                                 0
      1
                         -1
                                        0
                                               0
      1
           -4
                   6
                         -4
                                 1
                                        0
                                               0
                                 5
           -5
                  10
      1
                        -10
                                       -1
                                               0
           -6
                  15
                        -20
                                15
                                       -6
      1
                                               1
>> [U S V] = mysvd(C)
U =
                           0.2674
                                      -0.7385
                                                   0.5778
    0.0013
               -0.0313
                                                             -0.2144
                                                                          0.0472
                                                 -0.4652
    0.0084
               -0.1163
                           0.4827
                                      -0.3693
                                                              0.5833
                                                                         -0.2457
    0.0309
               -0.2684
                           0.5473
                                       0.1231
                                                 -0.3255
                                                             -0.4597
                                                                         0.5431
                           0.3342
                                       0.3693
                                                   0.2747
                                                             -0.1901
    0.0876
               -0.4598
                                                                        -0.6490
                                                                          0.4411
                                       0.1231
                                                              0.5196
    0.2096
               -0.5871
                          -0.1263
                                                   0.3404
    0.4452
               -0.4265
                          -0.4714
                                      -0.3693
                                                  -0.3777
                                                             -0.3043
                                                                         -0.1613
    0.8655
                0.4189
                           0.2146
                                       0.1231
                                                   0.0993
                                                              0.0611
                                                                          0.0248
S =
   34.9580
                                 0
                                             0
                                                        0
                                                                    0
                6.8579
                                                                    0
          0
                                 0
                                             0
                                                        0
                                                                                0
                            2.1607
                                                                    0
          0
                      0
                                             0
                                                        0
                                                                                0
                                       1.0000
                                                                    0
          0
                      0
                                 0
                                                        0
                                                                                0
          0
                      0
                                 0
                                             0
                                                   0.4628
                                                                    0
                                                                                0
          0
                      0
                                 0
                                             0
                                                        0
                                                              0.1458
                                                                                0
          0
                      0
                                 0
                                             0
                                                        0
                                                                    0
                                                                          0.0286
V =
   -0.0472
                0.2144
                           0.5778
                                      -0.7385
                                                   0.2674
                                                              0.0313
                                                                          0.0013
               -0.5833
                                      -0.3693
                                                              0.1163
                                                                          0.0084
    0.2457
                          -0.4652
                                                   0.4827
                0.4597
                          -0.3255
                                       0.1231
                                                   0.5473
                                                                          0.0309
   -0.5431
                                                              0.2684
    0.6490
                0.1901
                           0.2747
                                       0.3693
                                                   0.3342
                                                              0.4598
                                                                          0.0876
   -0.4411
               -0.5196
                           0.3404
                                       0.1231
                                                  -0.1263
                                                              0.5871
                                                                          0.2096
                0.3043
                           -0.3777
                                      -0.3693
                                                 -0.4714
    0.1613
                                                              0.4265
                                                                          0.4452
                           0.0993
   -0.0248
               -0.0611
                                       0.1231
                                                   0.2146
                                                             -0.4189
                                                                          0.8655
>> D = vander(1:7)
D =
            1
                          1
                                        1
                                                      1
                                                                    1
                                                                                  1
1
                                                                                  2
           64
                         32
                                       16
                                                      8
                                                                    4
1
          729
                        243
                                       81
                                                     27
                                                                    9
                                                                                  3
1
         4096
                       1024
                                      256
                                                     64
                                                                   16
                                                                                  4
1
        15625
                       3125
                                      625
                                                    125
                                                                   25
                                                                                  5
1
        46656
                       7776
                                     1296
                                                    216
                                                                   36
                                                                                  6
1
                                                                   49
                                                                                  7
       117649
                      16807
                                     2401
                                                    343
1
```

```
U =
    0.0000
              -0.0008
                         0.0269
                                   -0.3393
                                               0.8313
                                                         -0.4324
                                                                    0.0779
             -0.0180
    0.0005
                         0.1943
                                   -0.6473
                                              0.1015
                                                         0.6583
                                                                   -0.3150
                                                                    0.5861
    0.0059
              -0.1021
                         0.4913
                                   -0.4455
                                              -0.3811
                                                         -0.2467
    0.0326
              -0.3078
                         0.6230
                                    0.1669
                                              -0.0586
                                                         -0.3160
                                                                    -0.6205
    0.1234
              -0.5934
                         0.2282
                                    0.3794
                                              0.3306
                                                         0.4228
                                                                    0.3854
                                   -0.3019
    0.3667
              -0.6485
                         -0.5084
                                              -0.1977
                                                         -0.1974
                                                                    -0.1315
    0.9215
                         0.1465
                                    0.0667
                                               0.0388
                                                          0.0343
              0.3491
                                                                    0.0191
S =
   1.0e+05 *
    1.2899
                    0
                               0
                                          0
                                                     \cap
                                                               0
                                                                          0
         0
               0.0147
                               0
                                          0
                                                     0
                                                               0
                    0
                          0.0005
                                          0
                                                               0
                                                                          0
                                    0.0000
         0
                    0
                               0
                                                     0
                                                               0
                                                                          0
                    0
                               0
                                          0
                                               0.0000
                                                               0
         0
                                                                          \cap
         0
                    0
                               0
                                          0
                                                     0
                                                          0.0000
                                                                          0
         0
                    0
                               0
                                          0
                                                     0
                                                               0
                                                                     0.0000
V =
                         0.0263
                                   -0.0062
                                                         -0.0011
    0.9891
             -0.1445
                                              0.0024
                                                                    0.0002
               0.9347
                        -0.3063
                                   0.0950
                                              -0.0424
                                                         0.0223
                                                                   -0.0053
    0.1454
    0.0215
               0.3142
                         0.7855
                                   -0.4386
                                              0.2490
                                                         -0.1639
                                                                    0.0502
    0.0032
               0.0799
                         0.4913
                                    0.4415
                                              -0.4884
                                                         0.5114
                                                                   -0.2391
                         0.2029
    0.0005
               0.0184
                                    0.5859
                                              -0.0854
                                                         -0.5089
                                                                    0.5907
               0.0041
                         0.0726
                                    0.4297
                                                         -0.3653
                                                                    -0.7045
    0.0001
                                               0.4246
    0.0000
               0.0009
                         0.0249
                                    0.2751
                                               0.7142
                                                          0.5645
                                                                    0.3081
>> E = rosser()
E =
   611
         196
              -192
                     407
                             -8
                                   -52
                                          -49
                                                29
         899
                     -192
                             -71
                                   -43
                                          -8
   196
                113
                                                -44
  -192
         113
                899
                      196
                              61
                                    49
                                           8
                                                 52
   407
         -192
                196
                       611
                               8
                                    44
                                           59
                                                -23
                                          208
                                                208
    -8
         -71
                 61
                       8
                             411
                                  -599
   -52
         -43
                            -599
                 49
                       44
                                          208
                                                208
                                   411
                                              -911
   -49
          -8
                 8
                       59
                             208
                                   208
                                          99
    29
         -44
                 52
                      -2.3
                             208
                                   208
                                        -911
                                                 99
>> [U S V] = mysvd(E)
[] =
    0.6325
              0.0000
                        -0.2236
                                   -0.0623
                                              -0.3847
                                                         -0.0000
                                                                    0.6294
                                                                               0.0447
                                                         -0.7278
                         0.4472
                                              -0.2495
                                                                   -0.3147
    0.3162
              -0.0000
                                    0.0312
                                                                               0.0894
                                              0.7694
                                                                              -0.0894
    0.3162
              -0.0000
                         0.4472
                                   -0.0312
                                                         0.0000
                                                                    0.3147
    0.6325
               0.0000
                        -0.2236
                                    0.0623
                                               0.1248
                                                         0.3639
                                                                   -0.6294
                                                                              -0.0447
   -0.0000
               0.3162
                        -0.4472
                                   -0.3147
                                               0.3327
                                                         -0.3119
                                                                   -0.0312
                                                                               0.6261
    0.0000
              0.3162
                         0.4472
                                   0.3147
                                              -0.1872
                                                         0.4159
                                                                    0.0312
                                                                               0.6261
                        -0.2236
                                                         -0.1560
              -0.6325
                                   0.6294
   -0.0000
                                              0.1664
                                                                    0.0623
                                                                               0.3130
    0.0000
              -0.6325
                        0.2236
                                   -0.6294
                                              -0.0936
                                                         0.2080
                                                                   -0.0623
                                                                               0.3130
```

1.0e+03 \*

S =

```
1.0200
                                                                                                                                                0
                                                                                                                                                                                         0
                                                              0
                                                                                                       0
0
                                         0
                                                                                 0
                      0
                                                 1.0200
                                                                                                        \cap
                                                                                                                                                0
                                                                                                                                                                                         0
                                         0
0
                                                                                 0
                      0
                                                              0
                                                                                          1.0200
                                                                                                                                                0
                                                                                                                                                                                         0
0
                                         0
                                                                                 0
                      0
                                                               0
                                                                                                        0
                                                                                                                                  1.0199
                                                                                                                                                                                         0
0
                                         0
                                                                                 0
                      0
                                                                                                                                                0
                                                                                                                                                                           1.0000
                                                               0
                                                                                                        0
0
                                         0
                                                                                 0
                                                               0
                                                                                                        0
                                                                                                                                                0
1.0000
                                                       0
                                                                                               0
                                                               0
                      0
                                                                                                        0
                                                                                                                                                \cap
                                                                                                                                                                                         0
0
                           0.0001
                                                                                 0
                                                                        Ω
                                                                                                     Ω
                                                                                                                                 Ω
                                                                                                                                                                                                    0.0000 +0.0000i
                                                                                                                                                             Ω
                                                                                                                                                                                          Ω
V =
           0.6325
                                     0.0000
                                                              -0.2236
                                                                                         -0.0623
                                                                                                                    -0.3847
                                                                                                                                                -0.0000
                                                                                                                                                                              0.6294
                                                                                                                                                                                                         0.0447
           0.3162
                                   -0.0000
                                                                 0.4472
                                                                                           0.0312
                                                                                                                     -0.2495
                                                                                                                                                -0.7278
                                                                                                                                                                           -0.3147
                                                                                                                                                                                                         0.0894
                                   -0.0000
                                                                                                                       0.7694
                                                                                                                                                                                                      -0.0894
          0.3162
                                                                 0.4472
                                                                                          -0.0312
                                                                                                                                                  0.0000
                                                                                                                                                                              0.3147
          0.6325
                                                              -0.2236
                                                                                            0.0623
                                                                                                                                                  0.3639
                                      0.0000
                                                                                                                       0.1248
                                                                                                                                                                           -0.6294
                                                                                                                                                                                                      -0.0447
        -0.0000
                                      0.3162
                                                               -0.4472
                                                                                          -0.3147
                                                                                                                       0.3327
                                                                                                                                                -0.3119
                                                                                                                                                                           -0.0312
                                                                                                                                                                                                         0.6261
           0.0000
                                      0.3162
                                                                 0.4472
                                                                                            0.3147
                                                                                                                    -0.1872
                                                                                                                                                  0.4159
                                                                                                                                                                              0.0312
                                                                                                                                                                                                         0.6261
                                                              -0.2236
                                                                                                                                                -0.1560
        -0.0000
                                   -0.6325
                                                                                            0.6294
                                                                                                                       0.1664
                                                                                                                                                                              0.0623
                                                                                                                                                                                                         0.3130
           0.0000
                                   -0.6325
                                                                 0.2236
                                                                                         -0.6294
                                                                                                                    -0.0936
                                                                                                                                                  0.2080
                                                                                                                                                                           -0.0623
                                                                                                                                                                                                         0.3130
 (b)
function checkEquivalence(A)
                      [n,p] = size(A);
                      [U S V] = mysvd(A);
                      [U1 S1 V1] = svd(A);
                      X1 = [\cos(0) \sin(0)];
                      X2 = [\cos(pi) \sin(pi)];
                     Y = [1; i];
                      flag1 = 0; flag2 = 0;
                      %Checking for U
                      for I = 1: size(U,2)
                                 if( \sim ((uint8((X1*Y) * U(:,I)' * U1(:,I)) == 1) || (uint8((X2*Y) * U1(:,
U(:,I)' * U1(:,I)) ==1)))
                                           flag1 = 1;
                                end
                      end
                        %Checking for V
                        for I = 1:size(V, 2)
                                if( \sim((uint8((X1*Y) * V(:,I)' * V1(:,I)) == 1) || (uint8((X2*Y) *
V(:,I)' * V1(:,I)) ==1)))
                                            flag2=1;
                                end
                        end
                        if(flag1==1 || flag2==1)
                                   disp('The two SVD results are not unit equivalent');
                                   disp('The two SVD results are unit equivalent');
                        end
end
>> checkEquivalence(A)
The two SVD results are unit equivalent
>> checkEquivalence(B)
```

```
The two SVD results are not unit equivalent
-The difference is that column number 4 and 5 are flipped in the two results,
because the corresponding singular values are equal.
>> checkEquivalence(C)
The two SVD results are unit equivalent
>> checkEquivalence(D)
The two SVD results are unit equivalent
>> checkEquivalence(E)
The two SVD results are not unit equivalent
-The SVD that has been implemented appears to have a few columns different from the
built in SVD.
(c) function c = condition_number(A)
    [U S V] = mysvd(A);
    [n,p] = size(A);
    c = S(1,1)/S(n,p)
>> condition_number(A);
   2.8764e-08 - 4.6975e+08i
>> condition_number(B);
C =
    7.1113
>> condition_number(C);
C =
   1.2221e+03
>> condition_number(D);
C =
   2.4457e+07
>> condition_number(E);
```

6.0093e-09 - 9.8139e+07i