Chapter 6

Differential Serpentine Delay Line

National Taiwan University of Science and Technology

Chun-Long Wang

Outline

- Literature Examples
- Motivations
- Differential Serpentine Delay Line
- Differential Serpentine Delay Line Using Timing-Offset Differential Signal
- Differential Serpentine Delay Line with Strongly-Coupled Turns
- Differential Serpentine Delay Line with Strongly-Coupled Turns Using Timing-Offset Differential Signal
- Scaled Down Verifications
- Conclusions

- Serpentine Delay Line [1]
 - Advantages
 - Easy Implementation with the PCB process
 - Disadvantages

• Laddering wave at the receiving signal, deteriorating the SI and reducing the time delay

[1] R. B. Wu and F. L. Chao, "Laddering wave in serpentine delay line," *IEEE Trans*. Compon., Packag., Manuf. Technol., B, vol. 18, no. 4, pp. 644-650, Nov. 1995.

- Spiral Delay Line [2]
 - Advantages
 - Noise uniformly distributes on the receiving signal, maintaining the SI and time delay
 - Disadvantages
 - Noise accumulates at the sending end

- Serpentine Delay Line with Guard Trace [3]
 - Advantages
 - Efficient suppression of the noise at the receiving end
 - Disadvantages
 - Guard trace will occupy additional areas

[3] G. H. Shiue, C. Y. Chao, and R. B. Wu, "Guard trace design for improvement on transient waveforms and eye diagrams of serpentine delay lines," *IEEE Transactions on Advanced Packaging*, vol. 33, pp. 1051-1060, Nov. 2010.

- Serpentine Delay Line with Guard Trace [4]
 - Advantages
 - More efficient suppression of the noise at the receiving end with only one via
 - Disadvantages
 - Noise at the sending end could not be efficient eliminated

[4] G. H. Shiue, J. H. Shiu, P. W. Chiu, and C. M. Hsu, "Improvements of time-domain transmission waveform and eye diagram of serpentine delay line using open-stub type guard traces in embedded microstrip line," *IEEE Trans*. Component., Package., Manuf. Technol., vol. 1, no. 11, pp. 1706-1717, Nov. 2011.

- Differential Serpentine Delay Line [5]
 - Advantages
 - Efficient suppression of the common-mode noise at the receiving end
 - Disadvantages
 - With even turns, the common-mode noise at the receiving end could not be efficiently eliminated

[5] G. H. Shiue, J. H. Shiu, Y. C. Tsai, and C. M. Hsu, "Analysis of common-mode noise for weakly coupled differential serpentine delay microstrip line in high-speed digital circuits," *IEEE Transactions on Electromagnetic Compatibility.*, vol., pp.00-00, 2011.

- Differential Spiral Delay Line [6]
 - Advantages
 - Efficient suppression of the common-mode noise at the receiving end
 - Disadvantages
 - Differential-mode noise at the sending end will be increased

- Differential Serpentine Delay Line with Strongly-Coupled Turns [7]
 - Advantages
 - More efficient suppression of the common-mode noise at the receiving end
 - Disadvantages
 - More differential-mode noise at the sending end will be increased

[7] G. H. Shiue, Y. C. Tsai, C. M. Hsu, and J. H. Shiu, "Common-mode noise reduction schemes for differential serpentine delay microstrip line in high-speed digital circuits," *IEEE 20th Topical Meeting on Electrical Performance of Electronic Packaging*, pp. 211-214, Oct. 2011.

- Differential Delay Line with Common-Mode Noise Filter [8]
 - Advantages
 - Broadband response of common-mode noise suppression at the receiving end and compact size
 - Disadvantages

• Ground bounce from vias, causing power integrity problems

[8] C.-H. Tsai and T.-L. Wu, "A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials," *IEEE Trans. Microw. Theory Tech.*, vol. 58, no.1, pp. 195-202, Jan. 2010.

Motivations

- To Increase the Routing Flexibility
 - Elimination of the Need of Vias
- To Save the Area
 - Elimination of the Need of Guard Traces
- To Efficiently Reduce the Common-Mode Noise at the Receiving End
 - No Matter Even or Odd Turns Are Used
- To Efficiently Reduce the Differential-Mode Noise at the Sending End
 - Elimination of the Strongly-Coupled Turns

- Topology
 - FR4 substrate with ε_r =4.4 and tan δ =0.02

W	S	Н	D
7.5 mil	9.5 mil	5.5 mil	24.75 mil

- Mixed Mode S-parameters
 - Differential- to Common-Mode Conversion

- Time-Domain Simulation Setup
 - Input Source
 - Differential signal with amplitude ±0.5 V and rise time 40 ps

- Time-Domain Simulation Results
 - TDT Common-Mode and TDR Differential-Mode Noises

TDT common-mode noise (V)

TDR Differential-mode noise (V)

0.0289

0.0356

- Time-Domain Simulation Setup
 - Input Source
 - Differential signal with amplitude ±0.5 V and rise time 40 ps

- Time-Domain Simulation Results
 - TDT Common-Mode and TDR Differential-

- Equivalent Mixed Mode S-parameters
 - Time- and Frequency-Domain Circuits

B

Time-Domain Simulation Circuit

Frequency-Domain Simulation Circuit

- Equivalent Mixed Mode S-parameters
 - From the Frequency-Domain Circuit

$$\begin{bmatrix} V_{1^{-}}(\omega)e^{j\omega\Delta t} \\ V_{2^{-}}(\omega) \\ V_{3^{-}}(\omega) \\ V_{4^{-}}(\omega) \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix} \begin{bmatrix} V_{1^{+}}(\omega)e^{-j\omega\Delta t} \\ V_{2^{+}}(\omega) \\ V_{3^{+}}(\omega) \\ V_{4^{+}}(\omega) \end{bmatrix} \qquad \begin{bmatrix} S^{d} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix}$$

$$\begin{bmatrix} V_{1}^{-}(\omega) \\ V_{2}^{-}(\omega) \\ V_{3}^{-}(\omega) \\ V_{4}^{-}(\omega) \end{bmatrix} = \begin{bmatrix} S_{11}e^{-j2\omega\Delta t} & S_{12}e^{-j\omega\Delta t} & S_{13}e^{-j\omega\Delta t} & S_{14}e^{-j\omega\Delta t} \\ S_{21}e^{-j\omega\Delta t} & S_{22} & S_{23} & S_{24} \\ S_{31}e^{-j\omega\Delta t} & S_{32} & S_{33} & S_{34} \\ S_{41}e^{-j\omega\Delta t} & S_{42} & S_{43} & S_{44} \end{bmatrix} \begin{bmatrix} V_{1}^{+}(\omega) \\ V_{2}^{+}(\omega) \\ V_{3}^{+}(\omega) \\ V_{4}^{+}(\omega) \end{bmatrix}$$

$$\left[S^{e} \right] = \begin{bmatrix} S_{11}^{e} & S_{12}^{e} & S_{13}^{e} & S_{14}^{e} \\ S_{21}^{e} & S_{22}^{e} & S_{23}^{e} & S_{24}^{e} \\ S_{31}^{e} & S_{32}^{e} & S_{33}^{e} & S_{34}^{e} \\ S_{41}^{e} & S_{42}^{e} & S_{43}^{e} & S_{44}^{e} \end{bmatrix} = \begin{bmatrix} S_{11}e^{-j2\omega\Delta t} & S_{12}e^{-j\omega\Delta t} & S_{13}e^{-j\omega\Delta t} & S_{14}e^{-j\omega\Delta t} \\ S_{21}e^{-j\omega\Delta t} & S_{22} & S_{23} & S_{24} \\ S_{31}e^{-j\omega\Delta t} & S_{32} & S_{33} & S_{34} \\ S_{41}e^{-j\omega\Delta t} & S_{42} & S_{43} & S_{44} \end{bmatrix}$$

• Equivalent Mixed Mode S-parameters

- Equivalent Time- and Frequency-Domain

Circuits

Differential Serpentine Delay Line Using Timing-Offset Differential Signal • Equivalent Mixed Mode *S*-parameters

- - Equivalent Differential-to-Common Mode Conversion

$$S_{c2d1}^{e} = \frac{1}{2} \left(S_{31}^{e} - S_{32}^{e} + S_{41}^{e} - S_{42}^{e} \right)$$

 Equivalent Differential-to-Common Mode Reflection

$$S_{c1d1}^e = \frac{1}{2} \left(S_{11}^e - S_{12}^e + S_{21}^e - S_{22}^e \right)$$

- Equivalent Differential-to-Differential Mode Reflection

$$S_{d1d1}^e = \frac{1}{2} \left(S_{11}^e - S_{12}^e - S_{21}^e + S_{22}^e \right)$$

- Equivalent Differential-to-Differential Mode **Transmission**

$$S_{d2d1}^e = \frac{1}{2} \left(S_{31}^e - S_{32}^e - S_{41}^e + S_{42}^e \right)$$

- Equivalent Mixed Mode S-parameters
 - Equivalent Differential-to-Common ModeConversion

Differential Serpentine Delay Line with Strongly-Coupled Turns

- Topology [9]
 - FR4 substrate with ε_r =4.4 and tan δ =0.02

W	S	Н	D
7.5 mil	9.5 mil	5.5 mil	24.75 mil

[9] G. H. Shiue, Y. C. Tsai, C. M. Hsu, and J. H. Shiu, "Common-mode noise reduction schemes for differential serpentine delay microstrip line in high-speed digital circuits," *IEEE 20th20* th Topical Meeting on Electrical Performance of Electronic Packaging, pp. 211-214, Oct. 2011.

Differential Serpentine Delay Line with Strongly-Coupled Turns

- Mixed Mode S-parameters
 - Differential- to Common-Mode Conversion

Differential Serpentine Delay Line with Strongly-Coupled Turns

- Time-Domain Simulation Setup
 - Input Source
 - Differential signal with amplitude ±0.5 V and rise time 40 ps

Differential Serpentine Delay Line with Strongly-Coupled Turns

- Time-Domain Simulation Results
 - TDT Common-Mode and TDR Differential-Mode Noises

TDR Differential-mode noise (V)

0.0154

0.0769

- Time-Domain Simulation Setup
 - Input Source
 - Differential signal with amplitude ±0.5 V and rise time 40 ps

- Time-Domain Simulation Results
 - TDT Common-Mode and TDR Differential-

- Time-Domain Simulation Results
 - TDT Common-Mode and TDR Differential-Mode Noises
 - Comparison between the four structures

- Equivalent Mixed Mode S-parameters
 - Equivalent Differential-to-Common ModeConversion

- Equivalent Mixed Mode S-parameters
 - Comparison between the Four Structures
 - Differential- to common-mode conversion

- Equivalent Mixed Mode S-parameters
 - Comparison between the Four Structures
 - Differential- to common-mode reflection
 - Differential- to differential-mode reflection

- Equivalent Mixed Mode S-parameters
 - Comparison between the Four Structures
 - Differential- to differential-mode transmission

Scaled Down Verifications

- Differential Serpentine Delay Line
 - 5.72 Times Scaled Down Topology
 - FR4 substrate with ε_r =4.4 and $\tan \delta$ =0.02

W	S	Н	D
1.089 mm	1.38 mm	0.8 mm	3.6 mm

Scaled Down Verifications

- Differential Serpentine Delay Line
 - Mixed Mode S-parameters

• Differential- to Common-Mode Conversion

Scaled Down Verifications

- Differential Serpentine Delay Line
 - Time-Domain Simulation Setup
 - Input source: differential signal with amplitude ±0.5 V and rise time 228 ps

- Differential Serpentine Delay Line
 - Time-Domain Simulation Setup
 - Measured and ADS sources used in simulation

- Differential Serpentine Delay Line
 - Time-Domain Results
 - TDT Common-Mode and TDR Differential-Mode Noises

- Differential Serpentine Delay Line
 - Time-Domain Simulation Setup
 - Input source: differential signal with amplitude ± 0.5 V, rise time 228 ps, and offset time 48 ps.

- Differential Serpentine Delay Line
 - Time-Domain Results

• TDT Common-Mode and TDR Differential-Mode

- Differential Serpentine Delay Line
 - Mixed Mode S-parameters
 - Differential- to Common-Mode Conversion

 Output

 Out

- Differential Serpentine Delay Line with Strongly-Coupled Turns
 - 5.72 Times Scaled Down Topology

W	S	Н	D
1.089 mm	1.38 mm	0.8 mm	3.6 mm

- Differential Serpentine Delay Line Strongly-Coupled Turns
 - Mixed Mode S-parameters
 - Differential- to Common-Mode Conversion

- Differential Serpentine Delay Line with Strongly-Coupled Turns
 - Time-Domain Simulation Setup
 - Input source: differential signal with amplitude ±0.5 V and rise time 228 ps

- Differential Serpentine Delay Line with Strongly-Coupled Turns
 - Time-Domain Results

• TDT Common-Mode and TDR Differential-Mode Noises

- Differential Serpentine Delay Line with Strongly-Coupled Turns
 - Time-Domain Simulation Setup
 - Input source: differential signal with amplitude ± 0.5 V, rise time 228 ps, and offset time 23 ps.

- Differential Serpentine Delay Line with Strongly-Coupled Turns
 - Time-Domain Results
 - TDT Common-Mode and TDR Differential-Mode

- Differential Serpentine Delay Line with Strongly-Coupled Turns
 - Mixed Mode S-parameters
 - Differential- to Common-Mode Conversion

Conclusions

- Various Differential Serpentine Delay Lines
 - TDT Common-Mode and TDR Differential-Mode Noises

	Conventional	Timing-offset differential signal	Strongly- coupled turns	Strongly-coupled turns with timing- offset differential signal
TDT commonmode noise (V)	0.0289	0.0117	0.0154	0.0065
TDR differential- mode noise (V)	0.0356	0.0357	0.0769	0.0801

Conclusions

- Various Scaled Down Differential Serpentine Delay Lines
 - TDT Common-Mode and TDR Differential-Mode Noises

		Conventional	Timing-offset differential signal	Strongly-coupled turns	Strongly-coupled turns with timing-offset differential signal
TDT common- mode noise (V)	Simulation (ADS source)	0.0215	0.0078	0.0105	0.0059
	Simulation (Measured source)	0.0199	0.0079	0.0103	0.0048
	Measurement	0.0194	0.0081	0.0098	0.0046
TDR differential- mode noise (V)	Simulation (ADS source)	0.0497	0.0497	0.0892	0.0892
	Simulation (Measured source)	0.0487	0.0487	0.0966	0.0966
	Measurement	0.0532	0.0533	0.0978	0.0978