Scilab Practical 3: Simpson's 1/3rd Method

Using suitable loop write a sci-lab program to obtain approximate value of integral using Simpson's 1/3rd rule (Correct up to five decimal places).

- 1) $\int_0^2 (1 + 2x^3) dx$ by dividing intervals into 10 subintervals.(Roll. No: 1-10)
- 2) $\int_0^1 e^{-2x} dx$ by dividing intervals into 8 subintervals. (Roll. No: 11-20)
- 3) $\int_7^{7.8} (4 + x^2) dx$ by dividing intervals into 8 subintervals. (Roll. No: 21-30)
- 4) $\int_{-3}^{3} x^4 dx$ by dividing intervals into 12 subintervals. (Roll. No: 31-40)
- 5) $\int_{1}^{2} \frac{5}{x} dx$ by dividing intervals into 10 subintervals. (Roll. No: 41-50)
- 6) $\int_0^1 \frac{1}{1+5x} dx$ by dividing intervals into 8 subintervals. (Roll. No: 51-60)
- 7) $\int_{-1}^{1} \frac{1}{1+3x^2} dx$ by dividing intervals into 12 subintervals. (Roll. No: 61 onwards)

Scilab Practical 4: Simpson's 3/8th Method

Using suitable loop write a sci-lab program to obtain approximate value of integral using Simpson's 3/8th rule (Correct up to five decimal places).

- 1) $\int_{-1}^{1} \frac{1}{1+3x^2} dx$ by dividing intervals into 12 subintervals.(Roll. No: 1-10)
- 2) $\int_0^1 \frac{1}{1+5x} dx$ by dividing intervals into 9 subintervals. (Roll. No: 11-20)
- 3) $\int_{1}^{2} \frac{5}{x} dx$ by dividing intervals into 6 subintervals. (Roll. No: 21-30)
- 4) $\int_{-3}^{3} x^4 dx$ by dividing intervals into 9subintervals. (Roll. No: 31-40)
- 5) $\int_7^{7.8} (4 + x^2) dx$ by dividing intervals into 12 subintervals. (Roll. No: 41-50)

- 6) $\int_0^1 e^{-2x} dx$ by dividing intervals into 9 subintervals. (Roll. No: 51-60)
- 7) $\int_0^2 (1+2x^3) dx$ by dividing intervals into 9subintervals. (Roll. No: 61 onwards)

Specimen Outcome Printout

Name:	A.Y	Roll No. :	Division:
SCI-LAB PRACTICAL 1: SIM	PSON'S 1/3RD METHOD		
QUESTION:			
INPUT			
OUTPUT			
x0=			
xn=			
n=			
h=			
x=			
y=			
Total coordinates of y=			
Sum of extremes coordinates	X=		
Sum of Even coordinates E=			
Sum of Odd coordinates O=			
Solution by Simpson's 1/3 rd re	ule I =		

Specimen Outcome Printout

Name:	A.Y	Roll No. :	Division:	
SCI-LAB PRACTICAL 2: SIMPSON'S 1/3RD METHOD				
QUESTION:				
INPUT				
OUTPUT				
x0=				
xn=				
n=				
h=				
x=				
y=				
Total coordinates of y=				
Sum of extreme coordinate	tes X=			
Sum of Multiples of three	coordinates T=			
Sum of Remaining coordi	nates R=			
Solution by Simpson's 3/8	Bth Rule I=			