

1001350: Desenvolvimento de algoritmos I

Jander Moreira*

3 de abril de 2019

1 Apresentação

Esta atividade deve trabalhar o desenvolvimento básico de algoritmos e é voltado a problemas "menores", visando um grau de detalhe mais elevado nas soluções.

1.1 Orientações

Os alunos devem se organizar em grupos para fazer os exercícios iniciais na ordem apresentada. Para os demais exercícios, a resolução deve ser individual.

1.2 Objetivos

Os objetivos desta atividade incluem:

- Entendimento do fluxo e das estruturas de alteração do controle de fluxo (condicionais e repetições);
- Desenvolvimento de algoritmos formais.

2 Exercícios

2.1 Exercícios em grupos

Os grupos devem ser formados por dois ou três alunos. Recomenda-se que não haja resolução individual nem grupos maiores.

Exercício 1. livre

Escreva um algoritmo detalhado para, dada uma quantia monetária em reais (R\$), determinar a quantidade mínima de notas e moedas que a compõe.

Por exemplo, o valor R\$ 413,35 usa nove notas ou moedas, pois é formado minimamente por:

- quatro notas de 100;
- uma nota de 10;
- uma nota de 2;
- uma moeda de 1;
- uma moeda de 0,25;
- uma moeda de 0,10.

Exercício 2. livre

Existem registros dos valores de fechamento do câmbio do dólar para cada dia do ano. Para

os dias sem fechamento oficial (fins de semana e feriados, por exemplo) é replicado no registro o valor do último fechamento, perfazendo sempre 365 valores registrados. Anos bissextos ou outras situações atípidas devem ser ignoradas. Escreva um algoritmo que determine para uma sequência de registros como o descrito seu valor médio, apresentando esse resultado.

Exercício 3. livre

Uma lista contém, em cada linha, três informações sobre um dado aluno: seu RA, sua turma (A, B, C, \ldots) e sua nota (de 0,0 a 10,0).

A lista possui as seguintes características:

- Todos os alunos de uma mesma turma se encontram agrupados (ou seja, terminada uma turma, não há mais alunos dela até o final da lista);
- Não há ordem entre as turmas (ou seja, a turma B não aparece necessariamente antes da turma C):
- Nem todas as letras de turmas são necessariamente usadas (pode haver turmas B, C e F, sem existirem as turmas A, D e E);
- Dentro de uma mesma turma, não há qualquer ordem relativa a RA ou nota;
- O número de turmas e as quantidades de alunos por turma é desconhecido *a priori*.

 ${\cal O}$ Quadro 1 apresenta um exemplo de uma lista neste formato.

Escreva um algoritmo completo e com detalhes para processar uma sequência de dados como os da lista e apresentar, ao final, o número de turmas.

2.2 Exercícios individuais

Para os exercícios desta seção, a resolução deve ser individual. Dúvidas devem ser tiradas com o professor. Naturalmente, dúvidas também podem ser compartilhadas com os próprios colegas, desde que sejam pontuais e não a solução completa.

Exercício 4. livre

Um ano é considerado bissexto quando for múltiplo de quatro, exceto os múltiplos de 100, porém incluídos os múltiplos de 400. A Tabela 1 mostra uma lista de anos bissextos e não bissextos.

^{*}Jander Moreira – Universidade Federal de São Carlos – Departamento de Computação – $Rodovia\ Washington\ Luis,\ km\ 235$ – 13565-905 - $São\ Carlos/SP$ – Brasil – <code>jander@dc.ufscar.br</code>

Quadro 1 Exemplo de lista de notas.

77882	\mathbf{E}	8.5
76412	\mathbf{E}	4.0
77903	\mathbf{E}	8.2
76920	\mathbf{E}	8.0
79515	\mathbf{E}	4.4
78251	\mathbf{Z}	8.4
76171	\mathbf{Z}	5.0
77318	\mathbf{Z}	7.3
76518	\mathbf{Z}	5.3
76755	V	7.9
76260	V	5.3
75564	V	9.1
76742	V	5.9
77616	Ν	7.8
79063	N	8.1
76893	Ν	3.6
77932	N	5.9
75758	N	5.8
77158	N	8.4
76366	X	4.1
78607	X	9.2

Escreva um algoritmo para, dado um ano (inteiro maior que zero), apresentar **true** para anos bissextos ou **false** para os demais anos. O algoritmo deve apresentar em detalhes os cálculos e verificações realizados.

Desafio: use apenas uma estrutura **if** e combine as diversas partes da verificação com **e**s e **ou**s, evitando o aninhamento de **if**s distintos.

Exercício 5. livre

Um número perfeito n é um número natural (\mathbb{N}) tal que n é igual à soma de seus divisores, exceto ele mesmo. Por exemplo, 6 é perfeito (6=1+2+3), assim como o 28 (que é igual a 1+2+4+7+14).

Escreva um algoritmo que, a partir de um valor inteiro qualquer determine se ele é ou não perfeito, apresentando **true** ou **false**.

Apresente a solução ao professor.

Exercício 6. livre

Considere os registros de câmbio descritos no Exercício 2 e escreva um algoritmo para determinar o número de vezes em que a alta foi superior a 5% entre dois dias consecutivos.

Sobrou tempo?

Se ainda há tempo, continue resolvendo exercícios!

Tabela 1: Exemplos de alguns anos bissextos e não bissextos.

Ano	Múlt.4	Múlt.100	Múlt.400	Biss.
4	\sin	não	não	\sin
8	\sin	não	não	\sin
100	\sin	sim	não	não
200	\sin	sim	não	não
400	\sin	sim	sim	\sin
600	\sin	sim	não	não
800	\sin	sim	sim	\sin
1992	\sin	não	não	\sin
1997	não	não	não	não
2000	\sin	sim	sim	\sin
2008	\sin	não	não	\sin
2010	não	não	não	não
2100	\sin	sim	não	não
2900	\sin	sim	não	não
3000	\sin	\sin	não	não
3004	\sin	não	não	$_{ m sim}$

Exercício 7. livre

Considere os registros de câmbio descritos no Exercício 2 e escreva um algoritmo para determinar o período (maior número de dias consecutivos) em que houve somente alta. Valores de fechamento iguais ou menores ao o do dia anterior encerram, portanto, um período de interesse.

Exercício 8. livre

Um número \mathbb{N} é dito primo se ele tiver apenas dois divisores: a unidade e ele mesmo. Por esta definição, são primos: 2, 3, 5, 7, 11, por exemplo.

Escreva um algoritmo para, dado um valor inteiro qualquer, determinar se ele é ou não primo. A saída produzida deve ser **true** ou **false**.

3 Encerramento

Dúvidas e comentários devem ser postados no fórum de dúvidas do AVA. Retome os exercícios das seções 3.5 e 3.6 da lista de exercícios.

Revisão: 15 de março de 2019