STAT628 Module 2

Group 11

Body Fat Estimation Project

Shoura Maheshwari Chixu Ni Sreeja Kodati

TABLE OF CONTENTS

Getting Started

Model Selection

13 Final Model

04 Visualization

05 Discussion of results

Introduction

Laying the foundation: A Fat Chance at Simplicity, Robustness, and Accuracy

Data Preprocessing

From Raw to Refined: The Data Makeover

... Because if Garbage goes in, Garbage comes out

Simplicity

Dropping irrelevance

Handling anomalies, one by one.

Reducing dimensionality

Robustness

Outlier Management

Imputation

Robust Scaling

Variance Inflation Factor

Accuracy

Skewness Transformation

Robust Scaling

KNN-based Imputation

IS Preprocessing Important?

Improvement in how the model fits

02

Model Selection

The Three that Lasted . . .

Linear regression

Robust regression

Ridge regression


```
FOREARM
                                                                                                                  BMI
                                                                                                                  11 11
                          H & H
                                                          11 11
                                                                  11 11
                          H & H
                                                                  11 11
                                                                                                       H & H
                                                                                                                  11 11
                         HINT
                                                                  11 11
                                                                                                       H & H
                                                                                                                  11 11
                          H & H
                                                                  11 11
                                                                                                        H & H
                                                                                                                  11 11
                          H & H
                                                                                                        H & H
                                                                                                                  HARI
               H & H
               H & H
                          H & H
                                        High H H
                                                                  11 11
                                                                                                        H & H
                                                                                                                  H & H
                                                                                                                  H & H
High High
               H & H
                          Hay H
                                                                                                        H de H
               H & H
                          H & H
                                                                                                                  H & H
                                        HINTER HINTER
                                                                             11 11
                                                                                         H of H
                                                                                                        H & H
```

Choosing the Best Model

(Final Model)

	linear	robust	ridge
Number of predictors	3	4	7
R-squared	0.729	0.729	0.714
AIC	187.66	186.92	181.09
BIC	205.27	208.05	205.63
Variance Inflation Factors	1.394	2.194	5.889

U3 Final Model

Ultimate Model

BODYFAT = (0.1156) + (0.1113 * AGE) + (0.8928 * ABDOMEN) + (-0.2328 * WRIST)

	Coefficient	Std. Error	T-value	P-value
AGE	0.11133	0.03247	3.429	0.0007
ABDOMEN	0.89278	0.03899	22.898	<2e-16
WRIST	-0.23283	0.03641	-6.395	8.02e-10

All features are significant through T-test.

Model Diagnostics

The data satisfies all the assumptions for a linear model.

04

Visualizations (Shiny App)

SHINY APP

- 1. Model Comparison
- The Shiny app is designed to compare multiple linear regression models for predicting body fat using different sets of predictors.
- Users can select one of these models for comparison through a drop-down menu in the sidebar.
- 2. Body Fat Predictions
- Users can input values for age, abdomen circumference, and wrist circumference. These
 values are used to make predictions using the final model.

Shiny app for this project allows users to explore different linear regression models and compare their performance, and make predictions of body fat based on user-provided input data using the final model.

Visualizing Data with My Shiny App

Body Fat Model Comparison and Predictions

Final Model Information

AIC: 187.663742952713 BIC: 205.271047542025

R-squared: 0.729634868608451

(Intercept) AGE ABDOMEN WRIST -0.1156057 0.1113290 0.8927750 -0.2328325

Comparison Model Information

AIC: 182.786879019658 BIC: 207.437105444693

R-squared: 0.739066410609157

(Intercept) AGE CHEST ABDOMEN WRIST BMI -0.1043417 0.1246551 -0.2013444 0.8730707 -0.2216083 0.2044696

Prediction Results

No prediction available

05

Discussions Of Results

Discussion of Results

- 1. Most important question What trade-offs were made?
- 2. What factors led to the absence of BMI data in our final dataset?
- 3. Why is the final model, the best model?

Thank you!

AIC

Akaike Information Criterion, a kind of information criterion based on entropy AIC = -2 ln(L) + 2 k

Where L is the maximum likelihood and k is variable's number.

Smaller AIC, better model fits

BIC

Bayesian Information Criterions, information criterion similar to AIC, but with higher penalty on sample size to prevent overfit and complexity on large data.

$$BIC = -2ln(L) + ln(n) * k$$

Where L is likelihood, n the sample size and k variable's number

Smaller BIC, better model fits.

Difference of AIC and BIC

The principles of AIC and BIC are different.

AIC selects a good model for prediction from the perspective of prediction. BIC selects a model that best fits the existing data from the perspective of fitting, which is the model with the greatest marginal likelihood from the interpretation of Bayes factor.

VIF

VIF (Variance Inflation Factor) is an indicator of multicollinearity. Its formula is shown as

$$VIF_k = \frac{1}{1 - R_k^2}$$

Where R here is the coefficient of determination the k-th predictor fitted on other features except the outcome.

When multicollinearity exists, the parameters would be hard to estimate stably and to interpret, since the design matrix becomes ill-conditioned.

Usually multicollinearity can be thought to exist when mean VIF much larger than 1 or max VIF larger than 10.