CS1 Week 3 Annotaated

System properties, Linearization

Recap Last week

What are block diagrams?

A. schematic for designing electrical circuits

B. simple graphical representation of a system's inputs, outputs, and functions

C. secret diagrams for Minecraft building blocks

What are block diagrams?

A. schematic for designing electrical circuits

B. simple graphical representation of a system's inputs, outputs, and functions

C. secret diagrams for Minecraft building blocks

Which is the block diagram for feedback interconnection?

Which is the block diagram for feedback interconnection?

What are (I) and (II) labeled as in an closed-loop system by convetion?

- A. (I): Plant P; (II): Controller C
- B. (I): Controller C; (II): Plant P

- **C.** (I): System 1; (II): System 2
- **D.** (I): Monitor; (II): Operator

What are (I) and (II) labeled as in an closed-loop system by convetion?

- A. (I): Plant P; (II): Controller C
- B. (I): Controller C; (II): Plant P

- **C.** (I): System 1; (II): System 2
- **D.** (I): Monitor; (II): Operator

What is the transfer function $\Sigma_{u \to y}$?

A. Σ_1

B. Σ_2

C. $\Sigma_1\Sigma_2$

D. $\Sigma_2\Sigma_1$

What is the transfer function $\Sigma_{u \to v}$?

$$U$$
 Σ_1 Σ_2 Y

A. Σ_1

 $\mathbf{B.} \quad \boldsymbol{\Sigma}_2$

C. $\Sigma_1\Sigma_2$

D. $\Sigma_2\Sigma_1$

A *transfer function* in control systems describes the mathematical relationship between a system's input and output, showing how the input is transformed to produce the output. In this case we have a SISO system so the sigmas are *commutative*.

Course Schedule

	Subject	Week
Modeling -	Introduction, Control Architectures, Motivation	1
	Modeling, Model examples	2
	System properties, Linearization	3
Analysis —	Analysis: Time response, Stability	4
	Transfer functions 1: Definition and properties	5
	Transfer functions 2: Poles and Zeros	6
	Proportional feedback control, Root Locus	7
	Time-Domain specifications, PID control, Computer implementation	8
	Frequency response, Bode plots	9
L	The Nyquist condition, Time delays	10
Synthesis -	Frequency-domain Specifications, Dynamic Compensation, Loop Shaping	11
	Time delays, Successive loop closure, Nonlinearities	12
	Describing functions	13
	Intro to Uncertainty and Robustness	14

Today

- 1. <u>System Classification</u>
- 2. <u>Linearization</u>

1. System Classification

Why System Classification?

- *System classification* = organizing systems into categories based on inputoutput behavior
- It provides a *framework* to describe and compare different types of systems
- Helps to predict how a system will respond under various conditions
- Clarifies if the system is *physically realizable* (e.g. causal vs. non-causal)

Input/Output Model

In CS1 we usually deal with SISO LTI (Single Input Single Output, Linear Time-Invariant systems)

A system Σ can be classified in the following ways:

- 1. Linear vs Non-linear
- 2. Causal vs Non-causal
- 3. Static (memoryless) vs Dynamic
- 4. Time-invariant vs Time-variant

Linearity

For a system to be **linear** two conditions have to be fullfilled:

- Additivity: $\Sigma(u_1 + u_2) = \Sigma u_1 + \Sigma u_2$
- Homogeneity: $\Sigma(ku) = k\Sigma u \quad k \in \mathbb{R}$

Both can be summarized to:

$$\sum (\alpha u_1 + \beta u_2) = \alpha \Sigma u_1 + \beta \Sigma u_2 = \alpha y_1 + \beta y_2 \qquad \alpha, \beta \in \mathbb{R}$$

This implies the idea of superposition. That means that, when a system is linear, we can:

- 1. Break down "complicated" input signal into simpler components $u = u_1 + u_2$
- 2. Compute the output for each simple input seperately $y_1 = \Sigma u_1$; $y_2 = \Sigma u_2$
- 3. Sum all the outputs to obtain the reponse of the complicated input $y = y_1 + y_2$

Remember: Differentiation and Integration are linear operations!

Linear vs Non-linear: Examples

Examples of **linear** systems:

• Integrator:
$$y(t) = \int_{-\infty}^{t} u(\tau) d\tau$$

• Derivative:
$$y(t) = \dot{u}(t)$$

• Time shifts:
$$y(t) = u(t - \tau)$$

• Time scaling:
$$y(t) = u(t^2)$$

Examples of **non-linear** systems:

•
$$y(t) = u(t)^2$$

$$y(t) = u(t) + a$$

Classify the system as linear or non-linear

$$y(t) = t^2 u(t-1)$$

A. linear

B. non-linear

u(t-1) -> [x m(t-1) + Buz(t-1)]

Classify the system as linear or non-linear

$$y(t) = t^2 u(t-1)$$

$$y(t) = t^{2}u(t-1) \qquad \gamma = t^{2} \left[x \left(u(t-1) \right) + \beta \left(u(t-1) \right) \right]$$

linear

non-linear

Classify the system as linear or non-linear

$$y(t) = \sin(u(t))$$

A. linear

B. non-linear

$$\overline{Z} = \underline{Sin(\cdot)}$$

Classify the system as linear or non-linear
$$y(t) = \sin(u(t))$$
 $Z(du_{1}+\beta u_{2}) = \sin(du_{1}+\beta u_{2})$ $\pm d\sin(du_{1}+\beta u_{2}) = du_{1}+\beta u_{2}$

A. linear

B. non-linear

Causality

A system is said to be **causal**, *iff* the future input doesn't affect the present output.

- output depends on the past and current inputs
- The time domain for a causal system is $(-\infty, t]$
- All practically realizable systems are causal. Otherwise you could predict the future

Examples of **causal** systems:

Output doesn't depend on future inputs

•
$$y(t) = u(t)$$

•
$$y(t) = u(t - \tau), \ \forall \tau > 0$$

$$u(t - \tau)$$

Examples of **non-causal** systems:

•
$$y(t) = u(t - \tau), \forall \tau < 0$$

$$u(t + \zeta)$$

Static vs Dynamic

- A system is **static (memoryless)** if its output at any time depends only on the input at that same time (current input)
- If the output depends on past or future values of the input, the system is dynamic
- Systems described by ODEs are always dynamic!
- Static systems are usually described by algebraic equations

Examples of **static** systems:

•
$$y(t) = 2^{t+1}u(t)$$

Examples of **dynamic** systems:

• Integrator:
$$y(t) = \int_{-\infty}^{t} u(\tau) d\tau$$

• Derivative:
$$y(t) = \dot{u}(t)$$

• Future/Past Inputs:
$$y(t) = u(t - \tau), \forall, \tau \neq 0$$

Time invariant vs. Time-varying

A time invariant system will always have the same output to a certain input, independent of when the input is applied. Formally this means that we can shift the input in time and the output will also be shifted.

Example of **time invariant** system:

•
$$y(t) = u(t-1)u(t+2)$$

Example of **time-varying** system:

•
$$y(t) = \cos(t)u(t)$$

Time invariant vs. Time-varying formally

A system is time-invariant if:

$$\sigma_{\tau} y = \sigma_{\tau} \Sigma u = \Sigma \sigma_{\tau} u$$

or, equivalently if:

$$y(t-\tau) = (\Sigma \tilde{u})(t)$$

where $\tilde{u}(t) = u(t-\tau)$

Example: Is the following system time invariant?

$$y(t) = u(t) + 3u(t-2)$$

Input shift:

- $u_{\tau}(t) = u(t \tau)$
- Output with shifted input: $y_{\tau}(t) = u_{\tau}(t) + 3u_{\tau}(t-2) = u(t-\tau) + 3u(t-2-\tau)$ Shifted output: $y(t-\tau) = u(t-\tau) + 3u((t-\tau) + 3u(t-2-\tau))$

Output with shifted input is the same as shifted output \rightarrow system is **time invariant**

Exam Question W18

$$y(t) = n^3 t^3 u(t), n \in R$$

Mark all correct statements.

- A. Causal
- **B.** Linear
- **C.** Memoryless/Static
- **D.** Time-invariant

Exam Question W18

$$y(t) = n^{3}t^{3}u(t), n \in \mathbb{R}$$

$$- n^{3}t^{3}dy_{1} + \beta n^{3}t^{3}y_{2} = dy_{1} + \beta y_{2}$$

Mark all correct statements

$$u_{\gamma} = u(t-t)$$
 $u_{\gamma} = u(t-t)$
 $u_{\gamma} = u(t-t)$

2. Linearization

State-Space Model

• Recall: standard form, this will be called state-space model

$$\dot{x}(t) = f(x(t), u(t)) \checkmark$$

$$y(t) = f(x(t), u(t))$$

One characteristic of **LTI systems**, is that we can write the state space model in the form:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

where A,B,C, and D are constant matrices/vectors.

• Reminder: In a minimal realization, the system order equals the dimension of the state vector $\boldsymbol{x}(t)$

State-Space Model

For LTI systems the state-space model can be written as:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

in minimal realization

- Where A,B,C,D are generally matrices
- The order of the system is given by the dimension of the state vector x(t)
- Higher order ODEs can be converted in the following way (LinAlg):

$$\frac{\partial}{\partial t} + \frac{36}{36} + \frac{70}{20} = 1$$

$$\theta^{(n)} = f(\theta^{(n-1)}, \theta^{(n-2)}, \dots, \theta) \Rightarrow x(t) = \begin{pmatrix} \theta \\ \dots \\ \theta^{(n-1)} \end{pmatrix} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \Rightarrow f(x_1, x_2, \dots, x_n)$$

$$\times (t) = \begin{bmatrix} \partial \\ \vdots \\ \partial \end{bmatrix} = \begin{bmatrix} \times 1 \\ \times 1 \end{bmatrix} \times (t) = \begin{bmatrix} \partial \\ \vdots \\ \partial \end{bmatrix} = \begin{bmatrix} \times 1 \\ \times 1 \end{bmatrix} \times \begin{bmatrix} \times 1 \\ \times 1 \end{bmatrix}$$

Equilibrium Points

• Given a non-linear system:

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

- To apply the LTI state-space notation, we need to *linearize* the system around equilibrium points
- A point (xe, ue) is an equilibrium point if $\dot{x} = f(x_e, u_e) = 0$

Linearization Procedure

1. Find equilibrium points (i.e. states where the system doesn't change)

Solve
$$\dot{x}(t) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$
 to find equilibrium points (x_e, ue) $q = 7$

2. Use definitions of A, B, C and D. Plug in
$$x = x_e$$
 and $u = u_e$

$$A = \frac{\partial f(x, u)}{\partial x}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}\Big|_{(x_e, u_e)} \in \mathbb{R}^{n \times n} \qquad C = \frac{\partial g(x, u)}{\partial x}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n} \end{bmatrix}\Big|_{(x_e, u_e)} \in \mathbb{R}^{p \times n}$$

$$B = \frac{\partial f(x, u)}{\partial u}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_m} \end{bmatrix}\Big|_{(x_e, u_e)} \in \mathbb{R}^{n \times m} \qquad D = \frac{\partial g(x, u)}{\partial u}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial g_1}{\partial u_1} & \cdots & \frac{\partial g_1}{\partial u_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial u_1} & \cdots & \frac{\partial g_n}{\partial u_m} \end{bmatrix}\Big|_{(x_e, u_e)} \in \mathbb{R}^{p \times m}$$

Aufgabe: Gegeben ist das folgende nichtlineare System mit Zustandsvektor x(t)und Eingang u(t).

Die Systemgleichungen lauten:

$$\dot{x}(t) = \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} u(t) + 5x_1(t) \cdot x_2(t) + 1 \\ u(t) \cdot x_1(t) \end{bmatrix} . \quad \blacksquare \quad \bigcirc$$

and stektor
$$x(z)$$
 $1/u + 5 \times 1 \cdot x_2 + 1 = 0 - 5 \quad U_i = 1/l$
 $2/u - x_1 = 0 \rightarrow x_1 \cdot e = 0/l$
 $3/2 = x_1 \cdot u + 2x_2 \rightarrow x_2 \cdot e = 1/l$

Der Systemausgang ist gegeben durch

$$y(t) = x_1(t) \cdot u(t) + 2x_2(t)$$
.

(1.5 Punkte) Berechnen Sie den reellen Gleichgewichtspunkt u_e , $x_{1.e}$, $x_{2.e}$, y_e für einen Eingang $u_e \neq 0$, für den $y_e = 2$ gilt.

$$u_{
m e} =$$
 $x_{
m 1,e} =$
 $x_{
m 2,e} =$

Linearization Example Solution

Aufgabe: Gegeben ist das folgende nichtlineare System mit Zustandsvektor x(t) und Eingang u(t).

Die Systemgleichungen lauten:

$$\dot{x}(t) = \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} u(t) + 5x_1(t) \cdot x_2(t) + 1 \\ u(t) \cdot x_1(t) \end{bmatrix}.$$

Der Systemausgang ist gegeben durch

$$y(t) = x_1(t) \cdot u(t) + 2x_2(t)$$
.

F14 (1.5 Punkte) Berechnen Sie den reellen Gleichgewichtspunkt u_e , $x_{1,e}$, $x_{2,e}$, y_e für einen Eingang $u_e \neq 0$, für den $y_e = 2$ gilt.

$$u_{e} = u_{e} = -1$$
 $x_{1,e} = x_{1,e} = 0 x_{2,e} = 1$

Linearization Example

Bringen Sie das System in die Zustandsraumdarstellung und nutzen Sie die Variablen $x_e = [x_{1,e},x_{2,e}]^\mathsf{T}$ und u_e um die nötigen Matrizen **symbolisch** auszuwerten.

F16 (0.5 Punkte)

F17 (0.5 Punkte)

$$c= \qquad \qquad d=$$

$$A = \frac{\partial f(x, u)}{\partial x}\Big|_{(x_{0}, u_{0})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}\Big|_{(x_{0}, u_{0})} \in \mathbb{R}^{n \times n} \qquad C = \frac{\partial g(x, u)}{\partial x}\Big|_{(x_{0}, u_{0})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{n}} \end{bmatrix}\Big|_{(x_{0}, u_{0})} \in \mathbb{R}^{n \times m} \qquad D = \frac{\partial g(x, u)}{\partial u}\Big|_{(x_{0}, u_{0})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{0}, u_{0})} \in \mathbb{R}^{n \times m} \qquad D = \frac{\partial g(x, u)}{\partial u}\Big|_{(x_{0}, u_{0})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{0}, u_{0})} \in \mathbb{R}^{p \times n}$$

$$\dot{x}(t) = \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} = \begin{bmatrix} u(t) + 5x_{1}(t) \cdot x_{2}(t) + 1 \\ u(t) \cdot x_{1}(t) \end{bmatrix} = \underbrace{f_{1}}_{u(t)}$$

$$y(t) = x_{1}(t) \cdot u(t) + 2x_{2}(t) = \underbrace{g_{1}}_{u(t)}$$

$$\dot{x}_{1}(t) = \underbrace{f_{2}}_{u(t)} =$$

Linearization Example

Bringen Sie das System in die Zustandsraumdarstellung und nutzen Sie die Variablen $x_e=[x_{1,e},x_{2,e}]^\mathsf{T}$ und u_e um die nötigen Matrizen **symbolisch** auszuwerten.

F15 (1 Punkt)

$$A = \begin{bmatrix} 5 & 0 \\ -1 & 0 \end{bmatrix}$$

F16 (0.5 Punkte)

b =

F17 (0.5 Punkte)

$$c= \qquad \qquad d=$$

$$A = \frac{\partial f(x,u)}{\partial x}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial g}{\partial x_{1}} & \cdots & \frac{\partial g}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}} \end{bmatrix}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}} \end{bmatrix}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}$$

Linearization Example Solution

Bringen Sie das System in die Zustandsraumdarstellung und nutzen Sie die Variablen $x_e = [x_{1,e},x_{2,e}]^\mathsf{T}$ und u_e um die nötigen Matrizen **symbolisch** auszuwerten.

F15 (1 Punkt)

$$_{A}=A=\begin{bmatrix}5&0\\-1&0\end{bmatrix}$$

F16 (0.5 Punkte)

$$b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

F17 (0.5 Punkte)

$$c = c = [-1 \ 2]$$
 $d = d = [0]$

Control Systems 1 Exam Spring 2021

$$A = \frac{\partial f(x, u)}{\partial x}\Big|_{(x_{e}, u_{e})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}\Big|_{(x_{e}, u_{e})} \in \mathbb{R}^{n \times n} \qquad C = \frac{\partial g(x, u)}{\partial x}\Big|_{(x_{e}, u_{e})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e}, u_{e})} \in \mathbb{R}^{n \times m} \qquad D = \frac{\partial g(x, u)}{\partial u}\Big|_{(x_{e}, u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e}, u_{e})} \in \mathbb{R}^{n \times m} \qquad D = \frac{\partial g(x, u)}{\partial u}\Big|_{(x_{e}, u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e}, u_{e})} = \begin{bmatrix} \dot{u}(t) + 5x_{1}(t) \cdot x_{2}(t) + 1 \\ \dot{u}(t) \cdot x_{1}(t) \end{bmatrix}$$

 $y(t) = x_1(t) \cdot u(t) + 2x_2(t)$

Questions?

Feedback?

Too fast? Too slow? Less theory, more exercises?

I would appreciate your feedback. Please let me know.

https://docs.google.com/forms/d/e/1FAIpQLSdHl0kjWo63aNzDkAV0cnmQadCAj5L0 D7v7aSh0BK7BBdEgpA/viewform?usp=header

