

Sistema de mapeo de interiores mediante mediciones láser

Autor:

Director:

Manuel Rafael Navarro Fuentes

Rafael Muñoz Salinas

Junio de 2020

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos y restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos y restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

1. Introducción

Desafío: Diseñar un sistema de **bajo coste** capaz de realizar **SLAM** (Simultaneous Localization And Mapping).

Utilidad: Entornos industriales, entornos domésticos, etc.

1. Introducción

1.1 SLAM

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos y restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

2. Antecedentes

- Diversas técnicas para resolver **SLAM** (cámaras, gps, LiDAR, otros sensores).

- Robots de limpieza (conga).

- Implementaciones en ROS (Robot Operating System).

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos y restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

3. Objetivos y restricciones

3.1 - Objetivos principales

- El sistema será capaz de crear un mapa e identificarse en este al mismo tiempo.
- El sistema podrá ser portado por un humano.
- Se dispondrá de una interfaz gráfica de usuario.
- · Se podrán crear y probar simulaciones.
- El mapa podrá ser exportado.

3. Objetivos y restricciones

3.2 Restricciones

- Se tratará de usar librerías de código abierto.
- El sistema contará con un robusto control de errores.
- El lenguaje de programación utilizado será C++.
- Como sistema operativo se usará Ubuntu.
- Como entorno de desarrollo se usará Qt Creator.

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos, restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

4. Recursos

4.1 Recursos hardware

- Ordenador portátil personal:
 - Procesador: APU AMD Quad-Core A8-3530MX (1.9GHz, 4MB L2 Cache)
 - Memoria RAM: 6GB DDR3
 - Sistema de almacenamiento: 750 GB (5400 rpm S-ATA)
- LiDAR: RPLIDAR A1M8
 - Capacidad de muestreo: 8000 muestras/s
 - Rango de medición: 0.15-12m
 - Consumo: 1.7WH

4. Recursos

4.1 Recursos software

- Librerías y frameworks: OpenCV, Qt, Qt Creator, LevMarq, RPLIDAR SDK.
- Sistema operativo: Ubuntu 18.04.
- Lenguaje de programación: C++.

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos, restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

Dividido en dos partes:

- 1. Interfaz gráfica de usuario.
- 2. Resolución a SLAM.

5.1 Diseño de la interfaz gráfica de usuario

- 1. Definir el **tipo de mapa**
- 2. Diseñar una función de error
- 3. Diseñar el algoritmo de optimización

- Definir el tipo de mapa
 - Tipo rejilla: el espacio se divide en celdas.
 - Ocupación: cada celda dispondrá de una probabilidad de ocupación Esta ocupación se actualizará con las mediciones del LiDAR.

- Diseñar una función de error
 - Dadas las mediciones del LiDAR y una pose se comprobará la probabilidad de ser la pose real en el mapa de ocupación.

- Diseñar el algoritmo de optimización
 - Levenberg Marquardt
 - Optimización por mínimos cuadrados amortiguados
 - Búsqueda local
 - Fuerza bruta
 - Optimización utilizando un gran número de comprobaciones
 - Búsqueda por rangos

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos y restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

6. Experimentación

Parámetros a mejorar:

- Variación del ángulo, componente X y componente Y
- Rango de búsqueda del ángulo, componente X y componente Y

Métricas de evaluación:

- Tiempo de cómputo
- Veces que el sistema se pierde
- Veces que el sistema se encuentra
- Tolerancia a cambios bruscos
- Precisión

6. Experimentación

Escenario de prueba

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos y restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

7. Resultados

7.1 Fuerza Bruta

Parameters	Tiempo de cómputo(ms)	Veces perdido	Veces encontrado
1/1/2/40/40/100	~7100	0	0
1/1/2/30/30/80	~3400	0	0
1/1/2/20/20/60	~1100	0	0
2/2/3/40/40/100	~1250	0	0
2/2/3/30/30/80	~600	0	0
2/2/3/20/20/60	~230	0	0
2/2/4/40/40/100	~900	0	0
2/2/4/30/30/80	~400	0	0
2/2/4/20/20/60	~190	0	0
3/3/4/40/40/100	~460	0	0
3/3/4/30/30/80	~220	0	0
3/3/4/20/20/60	~120	0	0
4/4/5/40/40/100	~260	1	1

2/2/4/20/20/60

7. Resultados

7.2 Levenberg Marquardt

Parameters	Tiempo de cómputo	Veces perdido	Veces encontrado
1/1/1	~60	4	1
1/1/1.5	~60	2	0
1/1/2	~60	3	1
2/2/1.5	~60	3	1
2/2/2	~60	2	1
2/2/3	~60	1	0
2/2/4	~60	3	0
3/3/1.5	~60	2	1
3/3/2	~60	4	0
3/3/3	~60	1	0
3/3/4	~60	1	0
3/3/5	~60	1	0
4/4/6	~60	3	0
5/5/6	~60	2	0
6/6/6	~60	2	0

3/3/5

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos y restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

8. Demostración

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos y restricciones
- 4. Recursos
- 5. Diseño del sistema
- 6. Experimentación
- 7. Resultados
- 8. Demostración
- 9. Conclusiones y futuras mejoras

9. Conclusiones y futuras mejoras

9.1 Conclusiones

- El sistema desarrollado cumple con los objetivos
- Fuerza bruta es un método robusto pese a sus desventajas
- Levenberg Marquardt puede ser aplicado en equipos de bajas características
- Fuerza bruta -> 5 frames por segundo
- Levenberg Marquardt -> 12 frames por segundo

9. Conclusiones y futuras mejoras

9.2 Futuras mejoras

- Añadir más opciones a la aplicación
 - Crear simulaciones a gusto del usuario
 - Realizar zoom en el mapa
- Añadir algoritmos para la resolución de SLAM
 - Metaheurísticas
 - Redes neuronales
- Añadir un factor de momento para Levenberg Marquardt