Quality choice with reputation effects: Evidence from hospices in California

Rubaiyat Alam

Boston University

Motivation

Hospices provide palliative care to dying patients.

- 1. Large industry, deficiencies in quality.
- 2. Insightful for regulated-price healthcare markets.
- 3. Quality choice under reputation effects.
 - Reputation of a firm reflects its past quality choices.
 - ullet Current quality $\uparrow \Longrightarrow$ reputation $\uparrow \Longrightarrow$ future sales \uparrow

This paper shows:

- 1. Hospices choose quality to build reputation, gain market share.
- 2. Counterfactual policies \implies better hospice quality.

Hospice industry

- 1. Serve dying patients at residences.
 - Regular visits for pain-control, living arrangements.
- 2. Patient's choice aided by social worker/physician/community.
- 3. More visits \implies higher quality.
 - Measure of hospice quality = Average visits-per-patient.
- 4. No price competition: Paid fixed rate per-patient per-day by Medicare.
- 5. Hospice reputation \rightarrow patient's choice.
 - Quality not contractible: hospice unilaterally decides visits.
 - Goodwill and name recognition.
 - Good track record ⇒ better known and suggested ⇒ higher market share.

Structural model

Estimate structural model of hospice industry.

Reputation of a hospice = stock of its current and past quality choices, partially depreciates every period.

- 1. Demand: Consumers choose among hospices in market.
 - Hospice characteristics and reputations ightarrow choice.
- 2. Supply: Hospices choose quality every year.
 - Dynamic oligopoly model.
 - Trade off improving reputation with higher cost.

Structural model

Data:

- Home Health Agencies And Hospice Annual Utilization Reports.
- Restrict to 28 counties in California.
- Panel data on hospices at the firm level.
- Annual data covering 2002-2018.
- For each hospice-year: total patients served, total visits made by staff, hospice characteristics, etc.

Descriptive statistics:

- Total hospices in market: 1–23.
- Average visits-per-patient: 15–60.
- Moderate entry, little exit.

Structural model: Demand

Demand model: Discrete choice (with outside option), nested logit.

The utility of consumer i for hospice j in period t is given by:

$$u_{ijt} = \alpha_{m(j)} + X'_{jt}\beta + \psi_{jt} + \xi_{jt} + \zeta_i + (1 - \sigma_n)\tilde{\varepsilon}_{ijt}$$
$$\xi_{jt} = \rho \xi_{jt-1} + \epsilon_{jt}$$

- $\alpha_{m(j)} = \text{county FE}$.
- X_{jt} = observed hospice characteristics.
- ψ_{jt} = hospice j's reputation.
- ξ_{jt} = Persistent unobserved hospice characteristic.
- ullet $\epsilon_{jt}=$ innovation distributed independently with mean zero.

Structural model: Demand

Reputation follows a stock transition equation:

$$\psi_{jt} = (1 - \tau)\psi_{jt-1} + \eta a_{jt}$$

where a_{it} = average-visits-per-patient by hospice j in period t.

Assuming $\psi_{j0} = 0$:

$$\psi_{jt} = \eta[a_{jt} + (1-\tau)a_{jt-1} + (1-\tau)^2 a_{jt-2} + \ldots]$$

Combining:

$$u_{ijt} = \alpha_{m(j)} + X'_{jt}\beta + \xi_{jt} + \zeta_i + (1 - \sigma_n)\tilde{\varepsilon}_{ijt} + \eta[a_{jt} + (1 - \tau)a_{jt-1} + (1 - \tau)^2 a_{jt-2} + \ldots]$$
$$\xi_{jt} = \rho \xi_{jt-1} + \epsilon_{jt}$$

Results: Demand

Using Berry (1994), with BLP IVs and fuel-cost:

$$In(s_{jt}) - In(s_{0t}) = \alpha_m + X'_{jt}\beta + \sigma_n In(s_{j|gt}) + \xi_{jt} +$$

$$\eta[a_{jt} + (1 - \tau)a_{jt-1} + (1 - \tau)^2 a_{jt-2} + \dots]$$

$$\xi_{jt} = \rho \xi_{jt-1} + \epsilon_{jt}$$

	Demand
τ	0.530
	(0.156)
ρ	0.756
	(0.072)
σ_n	0.597
	(0.034)
η	0.012
	(0.003)

Structural model: Supply

Intuition: marginal cost is increasing linearly in quality choice.

Cost of serving each patient at quality a_i :

$$MC_j(a_j) = \gamma_0 + \left(\gamma_1 + \gamma_{fp}FP_j + \gamma_{rural}RURAL_j\right)a_j$$

- a_j = average visits-per-patient.
- FP_i = For-profit status.
- $RURAL_j = Rural$ hospice indicator.

All patients of hospice j receive quality a_j .

Structural model: Supply

Hospice *j*'s per-period profit:

$$\bar{\pi}(a_j, \mathbf{a}_{-j}, \mathbf{x}_m; \theta) = M_m s_j(a_j, \mathbf{a}_{-j}, \mathbf{x}_m) [P_m^{MCAR} - MC_j(a_j; \theta)]$$

- $\theta = \cos \theta$ parameters.
- *MC* = marginal cost.
- x_m = state variable in market m.
- $a_{-i} = actions of rivals.$
- M_m = market size.
- $s_j(\cdot)$ = hospice j's market share.
- P^{MCAR} = Medicare payment over length-of-stay

Structural model: Supply

Hospice quality choice:

- Has dynamic effect through reputation stock.
 - Current quality \rightarrow future profits.
 - Embed per-period profit into value function.
- Simultaneous-move dynamic oligopoly.
 - Discrete time (year), infinite horizon.

Dynamic game estimation:

- Aim: Recover hospice cost function.
- Firm and market state variables.
- Entry and exit of rivals.
- Method: Bajari, Benkard and Levin (2007).

Results: Supply

Dynamic game estimation:

- 1. Additional visit per patient costs the hospice \$200.
 - Includes staff wages, cost of medical supplies and operation.
- 2. For-profits more efficient than non-profits by \$93 per visit.
- 3. Rural hospices suffer cost disadvantage of \$22 per visit.

Counterfactuals

Study counterfactual policies that may improve hospice quality.

- Representative market.
- 3 identical hospices.
- No entry/exit.
- Calculate equilibrium quality choices via policy iteration.

Counterfactuals: reputation persistence

Study impact of changing the persistence of reputation (τ) .

Mimics policies like online review sites that make quality information widely available and easier to find.

Counterfactuals: Medicare prices

Study how hospice quality changes as Medicare rates increase:

Counterfactuals: contract design

Tying reimbursement to quality choice:

The following contract structures all achieve 29 average visits-per-patient:

Per-day rate	Per-visit rate	Medicare cost
186.7	0.0	1.0
150.0	50.0	0.93
100.0	110.0	0.82
50.0	170.0	0.71

Contributions

- 1. Importance of reputation for i) patients choosing medical providers and ii) medical providers choosing quality.
- 2. Contribute to a very sparse literature on hospices in Economics.
- 3. Estimate novel structural model of reputation accumulation through quality choice.

Conclusion

- 1. Reputation \rightarrow consumer choice and hospice quality.
- 2. Build structural model of reputation accumulation through quality choice, recover hospice cost function.
- 3. Policy counterfactuals:
 - Persistence of reputation ↑ and Medicare prices ↑ ⇒
 hospice quality ↑.
 - A hybrid per-day and per-visit reimbursement scheme achieves the same quality as the current per-day scheme at nearly 30% lower spending.