Rotacije opisane s kvaternioni Seminar

Timotej Mlakar Fakulteta za matematiko in fiziko Oddelek za matematiko

17. april 2023

1 Uvod

Rotacije prostora \mathbb{R}^3 navadno opišemo z linearnimi preslikavami prostora oziroma njim pripadajočimi matrikami. V splošni uporabi je za opis orientacije objekta tako imenovan $Sistem\ Eulerjevih\ kotov.$ Znameniti $Eulerjev\ izrek\ o\ rotacijah\ namreč\ pravi,\ da\ se\ da\ vsako\ rotacijo\ opisati\ s\ tremi\ parametri\ oziroma\ koti.$

Težava nastopi, ko moramo tako rotacijo zapisati. Za vsakega od kotov potrebujemo svojo preslikavo, ki jo nato komponiramo z drugima dvema, da dobimo končno preslikavo:

$$R = BCD$$
.

kjer je R končna rotacija, B, C, D pa so rotacije posameznih ravnin glede na želeni kot/parameter. Za elemente matrike, ki pripada R, potrebujemo 9 podatkov [footnote člank], ki jih izračunamo z matričnim množenjem.

V splošnem sistem deluje, vendar problem nastopi, kadar moramo zaporedoma aplicirati več takih preslikav; problem je v številu operacij pri matričnem množenju. To nas motivira, da uporabimo drug, bolj učinkovit pristop.

Za motivacijo uporabimo analog rotacij v dveh dimenzijah, in sicer množenje kompleksnih števil. Spomnio se, da množenje kompleksnega števila z z enotskim komplekstim številom $e^{i\theta}$ zavrti z okoli koordinatnega izhodišča za kot θ . Podobno bi želeli narediti v našem, 3-razsežnem prostoru, vendar za to potrebujemo množenje. Ta problem je rešil Sir William Rowan Hamilton, ko je oktobra leta 1843 na mostu Brougham Bridge dognal identitete za

množenje v 4-razsežnem prostoru. Ta ugotovitev je bila tako odmevna, da je trenutek za vedno zabeležen v kamnu na mostu, kjer je vklesano

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$i^2 = j^2 = k^2 = ijk = -1$$

& cut it on a stone of this bridge.

Ekvivalentno Eulerjevim kotom s pomočjo kvaternionov dobimo tako imenovane *Eulerjeve parametre*, s katerimi lahko poljubno rotacijo/orientacijo opišemo samo s štirimi parametri. Prav tako je za večkratno apliciranje preslikav rotacij sedaj potrebnih veliko manj operacij. To nas motivira, da predpise preslikav rotacij zapišemo s kvaternionskim množenjem.

2 Kvaternionska algebra

2.1 Definicije in oznake

Definicija 1 Naj bo V 4-razsežen vektorski prostor nad R. Izberemo bazo $\{1, i, j, k\}$. Elementi V so oblike $\mathbf{q} = q_0 \mathbf{1} + q_1 i + q_2 j + q_3 k = q_0 + \vec{q}$. Vektorski prostor V opremimo z operacijo množenja tako, da definiramo množenje njegovih baznih elementov, in sicer

$$\begin{aligned} \mathbf{11} &= \mathbf{1}, \quad \mathbf{1}i = i, \quad \mathbf{1}j = j, \quad \mathbf{1}k = k, \\ &ij = k, \quad jk = i, \quad ki = j, \\ &i^2 = j^2 = k^2 = ijk = -1\mathbf{1}. \end{aligned}$$

Naj bosta $p, q \in \mathbb{H}$. Definiramo seštevanje in množenje s skalarjem kot običajno

$$p + q = (p_0 + q_0) + (\vec{p} + \vec{q}),$$

 $\lambda q = \lambda (q_0 + \vec{q}) = \lambda q_0 + (\lambda \vec{q}).$

Prav tako definiramo običajno množenje v skladu z definicijo množenja baznih elementov. Tedaj lahko produkt pq napišemo kot

$$pq = (p_0q_0 - \vec{p}\vec{q}) + (p_0\vec{q} + q_0\vec{p} + \vec{p} \times \vec{q}),$$

kjer je $\vec{p}\vec{q}$ običajni skalarni produkt v \mathbb{R}^3 . Tedaj V postane 4-razsežna algebra nad \mathbb{R} , označimo \mathbb{H} in jo imenujemo Kvaternionska algebra.

Opomba 1 Za $p, q \in \mathbb{H}, \lambda \in \mathbb{R}$ velja

$$(\lambda p)q = p(\lambda q) = \lambda(pq).$$

Definicija 2 Naj bo $q = q_0 + \vec{q} \in \mathbb{H}$. $S \bar{q} = q_0 - \vec{q}$ označimo konjugirani kvaternion q.

Velja, da je $q\bar{q} \in \mathbb{R}$. Tako lahko definiramo še

$$q^{-1} = \frac{1}{q\overline{q}}\overline{q}.$$

Prav tako lahko vidimo da je $\overline{p \cdot q} = \overline{q} \cdot \overline{p}$. Ker množenje kvaternionov ni komutativno, v splošnem $\overline{pq} \neq \overline{qp}$. Ker je $\mathbb H$ algebra, je na njej smiselno definirati skalarni produkt.

Definicija 3 Naj bosta $p, q \in \mathbb{H}$. Definiramo skalarni produkt kvaternionov

$$\langle p, q \rangle = \frac{1}{2} (\overline{p}q + \overline{q}p).$$

Norma porojena s skalarnim produktom je tedaj

$$|q| = ||q|| = \sqrt{\langle q, q \rangle}.$$

Opomba 2 Iz definicije skalarnega produkta takoj sledi $\langle q, q \rangle = q\overline{q} = \overline{q}q$. Podobno kot absolutna vrednost na \mathbb{R} in \mathbb{C} je norma na kvaternionih multiplikativna.

Za poljubna $p, q \in \mathbb{H}$ torej velja |pq| = |p||q|. Oglejmo si $|pq|^2$

$$|pq|^2 = \langle pq, pq \rangle = pq\overline{pq}.$$

Spomnimo se, da $\overline{p \cdot q} = \overline{q} \cdot \overline{p}$. Torej je

$$pq\overline{pq} = p \cdot q \cdot \overline{q} \cdot \overline{p} = p|q|^2 \overline{p}.$$

Ker je $|q|^2$ skalar, pri množenju komutira s kvaternioni. Torej

$$p|q|^2\overline{p} = |q|^2p\overline{p} = |q|^2|p|^2 = |p|^2|q|^2.$$

Sledi torej |pq| = |p||q|.

Podobno kot pri rotaciji kompleksne ravnine, kjer množimo s števili iz enotske krožnice, tukaj potrebujemo enotske kvaternione.

Definicija 4 Naj bo $q \in \mathbb{H}$. Kvaternion q imenujemo versor oziroma enotski kvaternion, če velja |q| = 1. Če je $q \in \mathbb{H}$ poljuben $|q| \neq 1$ versor kvaterniona q dobimo z normiranjem. Označimo ga z $U_q = \frac{q}{|q|}$. Množico versorjev označimo s \mathbf{Q}_e

Če velja $u \in \mathbb{H}, u = \vec{u}$ in |u| = 1, kvaternion u imenujemo čisti oziroma pravi versor. Množico pravih versorjev označimo z U_e .

Kvaternione oblike $q = q_0 \mathbf{1}, q_0 \in \mathbb{R}$ imenujemo skalarni kvaternioni.

Če vzamemo množici \mathbf{Q}_e in \mathbf{U}_e skupaj z operacijo množenja se izkaže, da sta podgrupi edinki \mathbb{H} . Ker je $\mathbf{U}_e \subseteq \mathbf{Q}_e$, je tudi \mathbf{U}_e podgrupa edinka grupe \mathbf{Q}_e . Ker nobena od teh množic ni zaprta za seštevanje, ni nobena ideal \mathbb{H} .

Opomba 3 Za čista versorja $u, v \in U_e$ velja da $\langle u, v \rangle = 0 \iff uv + vu = 0$.

Naj bosta $u, v \in \mathbf{U}_e$. Za poljuben versor iz \mathbf{U}_e velja $\overline{u} = -u$. Pogledamo $\langle u, v \rangle$:

$$\langle u, v \rangle = \frac{1}{2}(\overline{u}v + \overline{v}u) = \frac{1}{2}(-uv - vu) = -\frac{1}{2}(uv + vu).$$

Od tu sledi da $\langle u, v \rangle = 0 \iff uv + vu = 0.$

Tukaj opomnimo še naslednje: naj bo $u \in \mathbf{U}_e$. Ker |u| = 1 sledi, da je u neničeln kvaternion. Ker je $\mathbf{U}_e \subset \mathbb{H}$ in je \mathbb{H} algebra, je vsak neničenli kvaternion obrnljiv. Vemo torej, da obstaja tak u^{-1} da je

$$uu^{-1} = 1.$$

Ker je za poljuben $q \in \mathbb{H}, q^{-1} = \frac{1}{\overline{q}q} \overline{q}$, za $u \in \mathbf{U}_e$ pa velja $u\overline{u} = |u|^2$, je

$$u^{-1} = \frac{\overline{u}}{|u|^2} = \frac{-u}{1} = -u.$$

Če združimo ti dve dejstvi, velja še naslednja enakost:

$$uu^{-1} = -uu = -u^2 = 1 \Rightarrow u^2 = -1.$$

2.2 Zapis kvaternionov v polarni obliki

Podobno kot kompleksna števila lahko kvaternione zapišemo v polarni obliki. T.j. kompleksno število z = x + iy lahko zapišemo kot $|z|(\cos \theta + i \sin \theta)$. Z eulerjevo formulo lahko to kompleksno število zapišemo kot $z = e^{i\theta}$.

V kompleksni ravnini je ta zapis dobro definiran, saj imamo le eno kompleksno enoto i. V kvaternionih pa imamo celo množico čistih enotskih kvaternionov \mathbf{U}_e , s katerimi lahko zapišemo kvaternion.

Trditev 1 Naj bo $q \in \mathbb{H}$. Tedaj obstajajo $r, \theta \in \mathbb{R}$ in $u \in U_e$, da

$$q = r(\mathbf{1}\cos\theta + u\sin\theta).$$

Opomba 4 Preden dokažemo trditev opazimo, da tukaj zagotavljamo le obstoj in ne enoličnosti.

Preprost protiprimer za enoličnost je $q \in \mathbf{Q}_e, q = \mathbf{1} \cos \theta + u \sin \theta$. Pogledamo $\theta' = -\theta$ in $u' = \overline{u} = -u$. Tedaj je

$$1\cos\theta' + u'\sin\theta' = 1\cos(-\theta) - u\sin(-\theta) = 1\cos\theta + u\sin\theta = q.$$

Vidimo, da ima q torej 2 zapisa. Podobno sklepanje ponovimo za kvaternion 0. Za kvaternion 0 v enakosti zadoščata vsaka $u \in \mathbf{U}_e$ in $\theta \in \mathbb{R}$, saj je 0 možno dobiti le z množenjem enotskega kvaterniona s skalarjem 0.

Dokaz: Dovolj je pokazati to enakost za enotske kvaternione, saj ostale lahko dobimo kot produkt enotskega s skalarjem. Naj bo $q=q_0+\vec{q}\in\mathbf{Q}_e$. Ker sta q_0 in \vec{q} glede na definirani skalarni produkt pravokotna, opazujemo trikotnik s katetama dolžine q_0 in $|\vec{q}|$, ter hipotenuzo dolžine 1. Definiramo $\theta:=\arccos(q_0)$. Tu dopuščamo, da je q_0 tudi negativen, ali pa enak ± 1 . Tedaj je $\vec{q}=u\sin\theta$ za nek $u\in\mathbf{U}_e$, ki kaže v smeri \vec{q} . Velja torej

$$q = q_0 + \vec{q} = \cos \theta + u \sin \theta.$$

Zaradi lažjega računanja bomo polarni zapis kvaternionov spremeniti v eksponentni zapis. Spet se najprej spomnimo kompleksne ravnine, kjer lahko vsak $z \in \mathbb{C}$ zapišemo kot $|z|e^{i\varphi}$ za nek $\varphi \in \mathbb{R}$. To naredimo, saj je tako algebraična manipulacija kompleksnih izrazov lažja.

Vzamemo Taylorjev razvoj e^t :

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{6} + \frac{t^{4}}{24} + \cdots$$

V Taylorjev razvoj vstavimo $t = u\theta, u \in \mathbf{U}_e, \theta \in \mathbb{R}$. Dobimo

$$e^{u\theta} = 1 + u\theta + \frac{(u\theta)^2}{2} + \frac{(u\theta)^3}{6} + \frac{(u\theta)^4}{24} + \cdots$$

Spomnimo se, da ker je $u \in \mathbf{U}_e$, velja $u^2 = -1$. Ker e^t konvergira enakomerno povsod, lahko vrsto preuredimo, in sicer:

$$1 + u\theta + \frac{(u\theta)^2}{2} + \frac{(u\theta)^3}{6} + \frac{(u\theta)^4}{24} + \dots =$$

$$(1 + \frac{(u\theta)^2}{2} + \frac{(u\theta)^4}{24} + \dots) + (u\theta + \frac{(u\theta)^3}{6} + \dots) =$$

$$(1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} - \dots) + u(\theta - \frac{\theta^3}{6} + \frac{\theta^5}{120} - \dots)$$

V levem in desnem oklepaju vidimo taylorjev razvoj funkcij cos in sin. Sledi torej

$$e^{u\theta} = \cos\theta + u\sin\theta$$
.

Zgornjo trditev lahko sedaj spremenimo v lepšo obliko, t.j. za vsak $q \in \mathbf{Q}_e$ obstajata $\theta \in \mathbb{R}$ in $u \in \mathbf{U}_e$, da velja $q = e^{u\theta}$.

Opomba 5 Naj bosta $p, q \in \mathbf{Q}_e$. Vemo, da produkt kvaternionov ni komutativen, t. j. $pq \neq qp$. Če p in q zapišemo v polarni obliki, $p = e^{u\theta}, q = e^{v\varphi}$, lahko produkta napišemo kot

$$pq = e^{u\theta}e^{v\varphi}$$
 in $qp = e^{v\varphi}e^{u\theta}$.

Zaradi nekomutativnosti prav tako sledi da $e^{u\theta}e^{v\varphi} \neq e^{v\varphi}e^{u\theta}$. Če bi tak produkt obstajal, bi v eksponentu imeli primer nekomutativne vsote, kar pa je seveda v protislovju z definicijo vsote iz algebre \mathbb{H} .

Zanima nas, kdaj taki kvaternioni komutirajo.

Trditev 2 Naj bosta $p, q \in \mathbf{Q}_e$ taka, da $\exists u \in \mathbf{U}_e$, da $p = e^{u\theta}$ in $q = e^{u\varphi}$ za neka $\theta, \varphi \in \mathbb{R}$. Tedaj je pq = qp.

Dokaz: Zapišemo $p = \cos \theta + u \sin \theta$, $q = \cos \varphi + u \sin \varphi$. Spomnimo se, da skalarji komutirajo z vsemi kvaternioni. Torej je

$$pq = (\cos \theta + u \sin \theta)(\cos \varphi + u \sin \varphi)$$

$$= \cos \theta(\cos \varphi + u \sin \varphi) + u \sin \theta(\cos \varphi + u \sin \varphi)$$

$$= (\cos \varphi + u \sin \varphi)\cos \theta + (u \cos \varphi + u^2 \sin \varphi)\sin \theta$$

$$= (\cos \varphi + u \sin \varphi)\cos \theta + (\cos \varphi + u \sin \varphi)u \sin \theta$$

$$= (\cos \varphi + u \sin \varphi)(\cos \theta + u \sin \theta) = qp.$$

Trditev nam pove, da kvaternioni z različnim realnim argumentom in istim versorjem med sabo komutirajo. Prav tako komutirata kvaterniona, ki sta zapisana s konjugiranima versorjema, saj je to ekvivalentno negativnemu argumentu v polarnem zapisu.

3 Preslikava rotacije

3.1 Preslikava

Definicija 5 Naj bo $q \in \mathbf{Q}_e$. Označimo preslikavi $L_q, R_q : \mathbb{H} \to \mathbb{H}$ levega in desnega množenja:

$$L_q x = q x, R_q x = x q.$$

Vidimo, da sta L_q in R_q linearni preslikavi. Naj bosta $x,y\in\mathbb{H}$ in $\alpha,\beta\in\mathbb{R}.$

$$L_q(\alpha x + \beta y) = q(\alpha x + \beta y).$$

Uporabimo komutativnost skalarjev in levo distributivnost nad kvaternioni:

$$q(\alpha x + \beta y) = \alpha qx + \beta qy = \alpha L_q x + \beta L_q y.$$

S podobnim računom pokažemo, da je R_q tudi linearna. Poleg tega vidimo, da sta preslikavi ortogonalni, t.j., da ohranjata skalarni produkt. Iz tega sledi tudi, da sta preslikavi L_q in R_q izometriji prostora. Ti preslikavi med sabo komutirata, saj za $p,q\in \mathbf{Q}_e$ in fiksen $x\in \mathbb{H}$:

$$(L_p \circ R_q)x = p(xq) = (px)q = (R_q \circ L_p)x.$$

Njun kompozitum je prav tako ortogonalna preslikava Definiramo torej kompozitum preslikav kot posebno preslikavo

Definicija 6 Naj bosta $p,q\in \mathbf{Q}_e$. $S\ C:\mathbb{H}\to\mathbb{H}$ označimo kompozitum levega in desnega množenja

$$C_{p,q} = L_p \circ R_q = R_q \circ L_p$$
.

C je za poljubna $p,q\in\mathbf{Q}_e$ bijektivna in ortogonarlna. Ortogonalnost sledi iz kompozicije dveh ortogonalnih preslikac, surjektivnost je očitna. Injektivnost preverimo z uporabo pravil krajšanja v kvaternionski algebri \mathbb{H} . Če je namreč $C_{p,q}x=C_{p,q}y$, je to enako pxq=pyq. Ker lahko kvaternione okrajšamo, sledi x=y.

Naj bodo $p_1, q_1, p_2, q_2 \in \mathbf{Q}_e$. Označimo preslikavi C_{p_1,q_1}, C_{p_2,q_2} . Če preslikavi komponiramo, je rezultat ponovno preslikava take oblike, t.j. $C_{p_1p_2,q_2q_1}$. Inverz te preslikave je prav tako ortogonalna preslikava, namreč $C_{p,q}^{-1} = C_{p^{-1},q^{-1}}$. Imamo torej grupo preslikav za komponiranje nad \mathbf{Q}_e . Opomnimo samo, da se pri komponiranju teh preslikav vrstni red desnega množenja obrne.

Posebej omenimo množico preslikav oblike $C_{q,\overline{q}}$. Vemo, da se da q zapisati v polarni obliki kot $\cos \theta + u \sin \theta = e^{u\theta}$ za neka $u \in \mathbf{U}_e, \theta \in \mathbb{R}$. Ker je $q \in \mathbf{Q}_e$, je $\overline{q} = e^{-u\theta}$. Preslikavo $C_{q,\overline{q}}$ je torej možno zapisati kot

$$Cx := C_{q,\overline{q}}x = e^{u\theta}xe^{-u\theta}.$$

Ker je C ortogonalna preslikava, ohranja skalarni produkt. Spomnimo se, da so skalarni kvaternioni in čisti kvaternioni pravokotni, saj ce $\alpha \in \mathbb{R}$ in $q \in \mathbb{H} - \mathbb{R}$, je $\langle \alpha, q \rangle = \frac{1}{2}(\overline{\alpha}q + \overline{q}\alpha)$. Ker je $\alpha \in \mathbb{R}$, je $\overline{\alpha} = \alpha$. Torej je dalje skalarni produkt enak $\frac{1}{2}(\alpha q - \alpha q) = 0$. Prostor skalarjev je torej invarianten za preslikavo C. Od tu naprej označujemo prostor čistih kvaternionov z $\mathbb{H} - \mathbb{R} = \mathbb{E}^3$.

Izrek 1 Naj bo $u \in U_e$ in $\theta \in \mathbb{R}$. Preslikava $C = C_{q,\overline{q}}$ je rotacija ravnine, pravokotne na u za kot 2θ .

Dokaz: Najprej pogledamo, kaj se zgodi z kvaternioni, ki ležijo na ogrinjači versorja u. Naj bo $u \in \mathbf{U}_e$.

$$C_{q,\overline{q}}u = e^{u\theta}ue^{-u\theta}.$$

Ker je hkrati tudi $u \in \mathbf{Q}_e$, se u da zapisati kot $\cos \frac{\pi}{2} + u \sin \frac{\pi}{2} = e^{u\frac{\pi}{2}}$. Spomnimo se, da kvaternioni, izraženi z istim versorjem, med sabo komutirajo. Torej je

$$e^{u\theta}ue^{-u\theta} = e^{u\theta}e^{-u\theta}u = u.$$

Vidimo torej, da je tudi $Lin\{u\}$ invariantna. Preslikava C torej fiksira dve dimenziji prostora \mathbb{H} . Ker je preslikava C ortogonalna, ohranja tudi ortogonalni komplement $Lin\{u\}$. Označimo $L^{\perp}=(Lin\{u\})^{\perp}$. Naj bo $v\in L^{\perp}$. Za bazo ravnine, pravokotne na u, vzamemo kvaterniona v in $w=uv=u\times w$. Za v velja naslednje:

$$ve^{-u\theta} = v(\cos\theta - u\sin\theta)$$

$$= v\cos\theta - vu\sin\theta$$

$$= v\cos\theta + uv\sin\theta$$

$$= (\cos\theta + u\sin\theta)v = e^{u\theta}v.$$

Torej, če s C slikamo v:

$$C(v) = e^{u\theta}ve^{-u\theta} = e^{u\theta}e^{u\theta}v = e^{2u\theta}.$$

Če $e^{2u\theta}v$ zapišemo kot $v\cos 2\theta + uv\sin 2\theta = v\cos 2\theta + w\sin 2\theta$, vidimo podobno, kot bi imeli rotacijo \mathbb{R}^2 . Prav tako s C preslikamo w:

$$C(w) = e^{u\theta}we^{-u\theta} = e^{u\theta}uve^{-u\theta} = e^{u\theta}ue^{u\theta}v = e^{u\theta}e^{u\theta}uv = e^{2u\theta}w.$$

Žapišemo še w kot $w\cos 2\theta + wu\sin 2\theta = w\cos 2\theta - v\sin 2\theta$.

Ker je \mathbb{H} algebra, je obenem tudi vektorski prostor. Zato je smiselno napisati matriko preslikave C glede na bazo $\{v, w\}$. C tedaj ustreza matriki

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos 2\theta & -\sin 2\theta \\ 0 & \sin 2\theta & \cos 2\theta \end{bmatrix}$$

Preslikava C torej predstavlja transformacijo \mathbb{H} , ki fiksira skalarje \mathbb{R} in eno dimenzijo prostora \mathbb{E}^3 , ki sovpada z u, drugi dve pa obrne.

Omenimo še, da C ohranja orientacijo, saj je ortogonalna preslikava. Imamo torej rotacijo ravnine v pozitivni smeri.

3.2 Izbira smeri in baze

4 Rotacije opisane z Eulerjevimi koti

Angleško-slovenski slovar strokovnih izrazov

proper pravi
pure pravi, čisti
versor versor, enotski kvaternion
dot product skalarni produkt
by-product stranski učinek

Literatura

- [1] M. Aigner in G. M. Ziegler, *Proofs from THE BOOK*, 2. izdaja, Springer, Berlin–Heidelberg–New York, 2001.
- [2] N. Calkin in H. S. Wilf, Recounting the rationals, *Amer. Math. Monthly* **107** (2000), 360–363.
- [3] J. Grasselli, *Elementarna teorija števil*, DMFA založništvo, Ljubljana, 2009.