

Class: Machine Learning

Support Vector Machines

Instructor: Matteo Leonetti

Learning outcomes

 Derive the formulation of support vector machines as a constrained optimisation problem

Multiple separation boundaries

Is any one better than the others?

The Best Discriminating Boundary

What is special about this line?

The Constraints

Classes: {-1,1}

Let's redefine the output of the classifier:

$$y(x) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 < 0 \end{cases}$$

Example

Line: $x_1 + x_2 - 4 = 0$

point: $\langle 1, 1 \rangle$ desired class: t = -1

point: $\langle 3, 3 \rangle$ desired class: t=1

point: $\langle 2, 1 \rangle$ desired class: t=1

output: $1+1-4=-2 \le 0 \Rightarrow y=-1$

output: $3+3-4=2>0 \Rightarrow y=1$

output: $2+1-4=-1 \le 0 \Rightarrow y=-1$

The Constraints

Line: $x_1 + x_2 - 4 = 0$

point: $\langle 1, 1 \rangle$ desired class: t = -1 output: $1 + 1 - 4 = -2 \le 0 \Rightarrow y = -1$

point: $\langle 3,3 \rangle$ desired class: t=1 output: $3+3-4=2>0 \Rightarrow y=1$

point: $\langle 2, 1 \rangle$ desired class: t=1 output: $2+1-4=-1 \le 0 \Rightarrow y=-1$

When the point is classified correctly:

$$ty = 1$$

Since: $y(x) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 < 0 \end{cases}$ This is the same as:

$$t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \ge 0$$

Canonical form

$$t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) = 0$$

Means the classifier is undecided, and should be avoided.

We can do so by imposing that: $t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \ge \epsilon \text{ with } \epsilon > 0$

By dividing both sides of the inequality by a constant, we can make ϵ any number (other than 0). We like 1:

$$t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \ge 1$$

This is called the *canonical* form of the constraints.

Example of Constraint

Line:
$$x_1 + x_2 - 4 = 0$$

$$w = \langle -4, 1, 1 \rangle$$

The closest point is $\langle 3,3 \rangle$

$$t(\mathbf{w}^{T}\langle3,3\rangle+w_{0})=1(\langle1,1\rangle^{T}\cdot\langle3,3\rangle-4)=2$$

$$t(\mathbf{w}^{T}\langle4,3\rangle+w_{0})=1(\langle1,1\rangle^{T}\cdot\langle4,3\rangle-4)=3$$

So right now, for any point x: $t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \ge 2$

I can rescale the weights so that for the closest point: $t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) = 1$

$$\frac{t(\mathbf{w}^T\langle 3,3\rangle + w_0)}{2} = 1\left(\frac{\langle 1,1\rangle^T}{2} \cdot \langle 3,3\rangle - \frac{4}{2}\right) = 1\left(\langle 0.5,0.5\rangle^T\langle 3,3\rangle - 2\right) = 1$$

So, with the new vector: $\mathbf{w}' = \langle -2, 0.5, 0.5 \rangle$

 $t(\mathbf{w'}^T \mathbf{x} + \mathbf{w'}_0) \ge 1$ Which is the canonical form

Constraints

We consider a vector w valid only if:

$$t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \ge 1$$

The Margin

The margin is the distance between the closest point to the separation boundary, and the boundary itself.

Recall from the perceptron...

The Margin

The margin is the distance between the closest point to the separation boundary, and the boundary itself

$$t = \{-1, +1\}$$

$$\frac{t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)}{\|\mathbf{w}\|} = |d|$$

Let's look at this again...

Classes: {-1,1}

$$y(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} + w_0 > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x} + w_0 \leq 0 \end{cases}$$

 $x_1 + x_2 - 4 = 0$ Line:

point: $\langle 1,1 \rangle$

point: $\langle 3,3 \rangle$ desired class: t=1

desired class: t = -

 $d||\mathbf{w}||$

output: $1+1-4=-2 \le 0 \Rightarrow y=-1$

output: $3+3-4 \neq 2 > 0 \Rightarrow y=1$

Maximum margin

We saw that for the closest points: $t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) = 1$

Therefore:

$$|d| = \frac{t(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

We can maximise it by minimising: $\|\mathbf{w}\|$

The SVM Formulation

Margin as large as possible

minimise:
$$\frac{1}{2} ||\mathbf{w}||^2$$

Subject to the constraints: $t_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0) \ge 1$

Every point is on the correct side, no point is on the hyperplane

Conclusion

Chapter 8.1