US Accidents (2016-2021)

MVA Assignment D4

Ander Barrio Campos Biel Caballero Vergés Miona Dimic Gerard Gómez Jorba Odysseas Kyparissis Cecilia Pérez Pérez

Table of contents

- 1. Introduction
- 2. Univariate and Bivariate Descriptive Statistics
- 3. PCA
- 4. MCA
- 5. MFA
- 6. Association Rules Mining Analysis
- 7. Hierarchical Clustering
- 8. Profiling of Clusters
- 9. Decision Trees
- 10. LDA
- 11. Gantt Diagram
- 12. Final Conclusions

1. Introduction

Motivation

 Tackle the problematic surrounding road accidents using data.

General description

- Large dataset
- Qualitative, quantitative and binary variables are included.
- Dataset includes information regarding:
 - Where the accident happened?
 - When did it happen?
 - How it affected the road?
 - What severity did it imply?
 - What where the conditions surrounding it?

Dataset

US Accidents that took place from 2016-2021

Data source

https://www.kaggle.com/datasets/sobhan moosavi/us-accidents

2. Univariate and Bivariate Descriptive

Statistics

- Absence of traffic control indicators
- > More frequent accident occurrence over years
- Majority of accidents with Severity level 2
- Minor influence of weather conditions
- 74% of recorded US accidents are in the State of California

3. PCA

- Number of selected PCs
- General conclusion → not very valid
- Weather condition associated variables

4. MCA

- Number of selected dimensions is 12
- General conclusion → two clear groups are formed
- Weather_Condition (without precipitation) and Year explain dimension 1 and Road Elements for dimension 2

5. MFA

Weather condition + time

6. Association Rules Mining Analysis

7. Hierchical Clustering

- Preprocessing
 - Selecting Accidents of California 2020
 - ~20K observations
- Clustering method
 - Agglomerative HC
 - Gower distance
- Metrics
 - Daisy Squared
- Aggregation criteria
 - Ward method

7. Hierchical Clustering

- Selection of optimal number of clusters
 - NbClust
 - cindex, dunn, frey, mcclain
 - Silhouette coefficient

8. Profiling of Clusters

Temperature distribution for each cluster

Humidity distribution for each cluster

8. Profiling of Clusters

Prop. of all levels of Severity within each cluster

Prop. of each level of Weather Condition within all clusters

8. Profiling of Clusters

Prop. of all levels of Bump within each cluster

Prop. of all levels of Traffic_Signal within each cluster

Significant features per cluster

Cluster 1- Distance, Precipitation, Crossing and Traffic Signal

Cluster 2 - Humidity and Precipitation, Stop, Weather Condition, Crossing and Severity.

Cluster 3 - Distance, Crossing, Traffic Signal and Severity

Cluster 4 - Season and Severity

9. Decision Trees

Tree 4 and 7

PredClass tree 4 and 7	1	2	3
Severity 1	3029	115	37
Severity 2	705	5564	474
Severity 3	599	778	1021
Severity 4	398	466	449

9. Decision Trees

Tree 2

PredClass tree 2	1	2	3	4
Severity 1	3144	0	19	18
Severity 2	870	5683	165	25
Severity 3	638	1078	547	135
Severity 4	412	565	124	212

- Explanatory Continuous Variables Used:
 - Temperature(F), Humidity(%), Pressure(in), Precipitation(in), Distance(mi) and Visibility(mi)
 - Number of variables: 6
- Qualitative Target Variable:
 - Severity
 - 4 Cardinality Levels: Severity1, Severity2, Severity3, Severity4
- Splitting Dataset into Training Testing Sets:
 - 66% Training Set (13635 observations)
 - 33% Test Set (6716 observations)
- Training LDA on the Training Set
 - Separation explained:

	Discriminant Functions		
Separation Explained	LD1	LD2	LD3
	62%	30%	8%

LDA1 and LDA2 Projection of Training Data

Stacked Histogram of the 1st Discriminant Function Values

Stacked Histogram of the 2nd Discriminant Function Values

Training Set - Validation Metrics

Accuracy: 0.49

• MCR: 0.51

Precision-Recall-F1 Table

	Severity1	Severity2	Severity3	Severity4
Precision	0.269	0.5046	0.340	0.407
Recall	0.006	0.929	0.143	0.040
F1	0.012	0.6540	0.2022	0.073

Testing Set - Validation Metrics

Accuracy: 0.48

• MCR: 0.52

• Precision-Recall-F1 Table

	Severity1	Severity2	Severity3	Severity4
Precision	0.339	0.496	0.298	0.4659
Recall	0.011	0.9248	0.1265	0.0627
F1	0.0216	0.6460	0.1776	0.1106

11. Gantt Diagram

12. Final Conclusions

- Data was challenging to manage and to extract firm conclusions
- Weather Condition and Traffic Signs do not influence severity of the accident
- Location makes a difference in the number of accidents
- Occurrence of accident is strongly correlated with human actions
- To improve the analysis human factors (speed of the vehicle, time of accident, ...) should be added

Thank you