ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЫСОКОТЕХНОЛОГИЧНЫХ СИСТЕМ

Материалы Всероссийской конференции с международным участием

Москва, РУДН, 20-24 апреля 2015 года

УДК 004:007 (063) ББК 32.81

Организаторы конференции: Российский университет дружбы народов;

Московский технический университет связи и информатики;

Институт проблем управления им. В. А. Трапезникова Российской академии наук;

Лаборатория информационных технологий Объединённого института ядерных исследований.

Мероприятие проводится при финансовой поддержке Российского фонда фундаментальных исследований, проект № 15-07-20169.

Программный комитет: Башарин Г. П., д.т.н., проф., РУДН; Боголюбов А. Н., д.ф.-м.н., проф., МГУ; Виницкий С. И., д.ф.-м.н., проф., ЛТФ ОИЯИ; Вишневский В. М., д.т.н., проф., НПФ «ИНСЕТ»; Гайдамака Ю. В., к.ф.-м.н., доцент, РУДН; Гнатич М. М., проф., University Р.J. Safarik, Kosice, Словакия; Гольдштейн Б. С., д.т.н., проф., СПб ГУТ, Гудкова И. А., к.ф.-м.н., доцент, РУДН; Дружинина О. В., д.ф.-м.н., проф., ВЦ (ФИЦ ИУ РАН); Ефимушкин В. А., к.ф.-м.н., доцент, ОАО «Интеллект Телеком»; Кореньков В. В., д.т.н., проф., ЛИТ ОИЯИ; Крянев А. В., д.ф.-м.н., проф., НИЯУ «МИФИ»; Кулябов Д. С., к.ф.-м.н., доцент, РУДН; Кучерявый А. Е., д.т.н., проф., СПб ГУТ; Кучерявый Е. А., проф., Tampere University of Technology, Финляндия; Ланеев Е.Б., д.ф.-м.н., проф., РУДН; Мартикайнен О.Е., проф., Service Innovation Research Institute, Финляндия; Наумов В. А., проф., Service Innovation Research Institute, Финляндия; Осипов Г. С., д.ф.-м.н., проф., ИСА (ФИЦ ИУ РАН); Пузынин И. В., д.ф.-м.н., проф., ЛИТ ОИЯИ; Пшеничников А. П., к.т.н., проф., МТУСИ; Ромашкова О. Н., д.т.н., проф., МГПУ; Самуйлов К. Е., д.т.н., проф., РУДН; Севастьянов А. Л., к.ф.-м.н., доцент, РУДН; Севастьянов Л. А., д.ф.-м.н., проф., РУДН; Степанов С. Н., д.т.н., проф., ОАО «Интеллект Телеком»; Стрельцова О. И., к.ф.-м.н., с.н.с., ЛИТ ОИЯИ; Толмачев И. Л., к.ф.-м.н., проф., РУДН; Хачумов В. М., д.т.н., проф., ИСА (ФИЦ ИУ РАН); Цирулев А. Н., д.ф.-м.н., проф., ТвГУ; Цитович И. И., д.ф.-м.н., доцент, ИППИ РАН; Шоргин С. Я., д.ф.-м.н., проф., ИПИ ФИЦ ИУ РАН; Шетинин Е. Ю., д.ф.-м.н., проф., СТАНКИН.

Оргкомитет:

Председатель: Самуйлов К. Е., д.т.н., профессор, РУДН.

Сопредседатели: Севастьянов Л. А., д.ф.-м.н., проф., РУДН; Толмачёв И. Л., к.ф.-м.н., профессор, РУДН. Учёный секретарь: Острикова Д. Ю., РУДН

Члены оргкомитета: Никитина Е. В., к.х.н, зам. декана РУДН; Гайдамака Ю. В., к.ф.-м.н., доцент, РУДН; Гудкова И. А., к.ф.-м.н., РУДН; Демидова А. В., РУДН; Диваков Д. В., РУДН; Королькова А. В., к.ф.-м.н., РУДН; Кулябов Д. С., к.ф.-м.н., доцент, РУДН; Масловская Н. Д., РУДН Соченков И. В., к.ф.-м.н., РУДН; Таланова М. О., РУДН.

Секпии:

Теория телетрафика и ее применения

Сопредседатели: д.т.н., проф. Башарин Г. П. (РУДН), к.т.н., проф. Пшеничников А. П. (МТУСИ), к.ф.-м.н. Гудкова И. А. (РУДН).

Секретарь: Масловская Н. Д. (РУДН).

Сети связи следующего поколения: управление, качество, архитектура

Сопредседатели: д.т.н., проф. Самуйлов К. Е. (РУДН), д.т.н., проф. Вишневский В. М. (НПФ), к.ф.-м.н., доцент Гайдамака Ю. В. (РУДН).

Секретарь: Таланова М. О. (РУДН)

Прикладные информационные системы

 ${\it Conpedcedameли:}\$ проф. Осипов Г. С., ИСА (ФИЦ ИУ РАН), проф. Толмачев И. Л. (РУДН).

Секретарь: к.ф.-м.н. Соченков И.В. (РУДН).

Высокопроизводительные технологии распределенных вычислений

Сопредседатели: д.т.н., проф. Кореньков В. В. (ЛИТ ОИЯИ), к.ф.-м.н., доцент Кулябов Д. С. (РУДН). Секретарь: к.ф.-м.н. Королькова А. В. (РУДН).

Математическое моделирование

Сопредседатели: д.ф.-м.н., проф. Севастьянов Л. А. (РУДН), д.ф.-м.н., проф. Крянев А. В. (НИЯУ «МИФИ»), д.ф.-м.н., проф. Дружинина О. В., ВЦ (ФИЦ ИУ РАН).

Секретари: Демидова А. В. (РУДН), Диваков Д. В. (РУДН).

И74 Информационно-телекоммуникационные технологии и математическое моделирование высокотехнологичных систем: материалы Всероссийской конференции с международным участием. Москва. РУЛН. 20–24 апреля 2015 г. — Москва: РУЛН. 2015. — 332 с.: ил.

ISBN 978-5-209-06416-9

УДК 004:007(063)

ББК 32.81

15B1 770-5-207-00410-5

© Коллектив авторов, 2015 © Российский университет дружбы народов, Издательство, 2015

7

Будочкина С.А. Симметрии уравнений и связанные с ними алгебраические структуры	228
Буурулдай А.Э., Шорохов С.Г. Построение дельта- и гамма-нейтральных портфелей	220
ОПЦИОНОВ	230
Вальда Васкес Л. Реализация алгоритмов AQM в ns-3	232
Васильев С. А., Болотова Г. О., Урусова Д. А. Построение асимптотических решений бесконечных систем нелинейных дифференциальных уравнений с малым параметром и неоднородные счетные цепи Маркова	235
Васильев С.А., Канзитдинов С.К., Коршок Е.О. Построение асимптотических решений сингулярно возмущенных стохастических дифференциальных уравнений бесконечного порядка	236
Васильев С. А., Полежаева И. С. Построение асимптотического решения краевой задачи для уравнения Кадышевского с периодическими краевыми условиями	238
Велиева Т.Р. Моделирование управляющего модуля маршрутизатора типа RED на GNS3	239
Вельможный Д.Э. О выборе и внедрении DLP-системы	242
Геворкян М. Н., Кулябов Д. С., Севастьянов Л. А., Егоров А. Д. Обзор стохастических методов Рунге-Кутты	245
Герасимов А.А., Пиунова А.П. Сравнительный анализ реализации протоколов Диффи-Хеллмана и Эль-Гамаля в эллиптической криптографии	249
Дашицыренов Г.Д. Постановка и решение задачи компьютерного синтеза тонкопленочной обобщенной волноводной линзы Люнеберга	252
Демидова А. В., Дружинина О. В., Масина О. Н. Построение стохастической модели динамики популяций, учитывающей конкуренцию и миграцию видов	255
Денисович А. П., Матюшенко С. И. Сравнительный анализ принципов назначения страховых премий в области краткосрочного страхования жизни	259
Диваков Д. В., Тютюнник А. А. Применение метода Канторовича к задаче моделирования открытых волноводов.	263
Дружинина О.В., Масина О.Н. Подход к исследованию систем интеллектного управления на основе сравнительного анализа полиномиальных TS-моделей	265
Еферина Е. Г., Королькова А. В., Кулябов Д. С., Малютин В. Б. Операторный метод для одношаговых процессов	269
Зорин А.В. Компьютерная реализация модели квантовых измерений	272
Игонина Е. В. Моделирование маятниковых систем интеллектного управления	275
Камнев А. В., Велиева Т. Р., Королькова А. В., Кулябов Д. С. Имитационное моделирование алгоритма RED в симуляторе NS-3	279
Касимов Ю. Ф., Мальцева Т. А. Анализ связи финальных потерь портфеля однородных ссуд и ранних показателей просрочки коммерческого банка	283
Крянев А.В., Пинегин А.А., Климанов С.Г., Рыжов А.А. Схемы выявления аномалий энерговыделения в активных зонах ядерных реакторов	286
Кузив Я.Ю. Компьютерная модель замкнутой развивающейся экономики на основе модели Чеонавского	289

ОБЗОР СТОХАСТИЧЕСКИХ МЕТОДОВ РУНГЕ-КУТТЫ

Геворкян М.Н. 1 , Кулябов Д. С. 1,2 , Севастьянов Л. А. 1,3 , Егоров А. Д. 4

¹Кафедра прикладной информатики и теории вероятностей Российский университет дружбы народов. ул. Миклухо-Маклая, д.б, Москва, 117198, Россия, mngevorkyan@sci.pfu.edu.ru, ds@sci.pfu.edu.ru

²Лаборатория информационных технологий, Объединённый институт ядерных исследований, ул. Жолио-Кюри 6, Дубна, Московская область, Россия, 141980.

³Лаборатория теоретической физики, Объединённый институт ядерных исследований, ул. Жолио-Кюри 6, Дубна, Московская область, Россия, 141980.

⁴Институт математики НАН Беларуси, Белоруссия, 220072, г. Минск, ул. Сурганова, 11. no@mail.ru

В докладе дан обзор стохастических численных методов Рунге-Кутты. Наиболее эффективные численные схемы реализованы программно на основе математического пакета Sage и с помощью языка программирования Julia.

Ключевые слова: стохастические дифференциальным уравнения, численные методы, методы Рунге-Кутты.

Работа частично поддержана грантами РФФИ № 14-01-00628, 15-07-08795, договором с БРФФИ № Ф14Л-002.

Введение

Стохастические математические модели используются в широком спектре прикладных областей науки: химическая кинетика, популяционная динамика, экономика, финансовая математика, страхование, фильтрация сигналов и т.д. Стохастические модели позволяют адекватнее отразить моделируемый процесс, как качественно, так и количественно. Математическим аппаратом этих моделей являются стохастические дифференциальные уравнения (СДУ). Точное аналитическое решение в конечном виде известно буквально для нескольких простейших случаев. Исходя из этого, значение численных методов для решения СДУ существенно возрастает.

Данная работа носит обзорный характер и основной ее целью является подробное введение в практическое использование стохастических численных схем типа Рунге-Кутты.

Стохастические численные метолы

Численные методы для решения обыкновенных дифференциальных уравнений начали разрабатываться несколько веков тому назад, а в течении двадцатого века были разработаны крайне мощные методы [1], позволяющие получать численные решения с любой необходимой для практических целей точность.

Стохастические численные методы развиты хуже, чем детерминированные [2]. Основные причины — это сравнительная новизна данной темы и более сложный математический аппарат. Направления поиска новых стохастических численных методов в целом совпадает со случаем классическим. Наглядное представление об этих направлениях дает схема, предложенная Бутчером (см. рис. 1).

Стохастические методы Рунге-Кутты

Среди детерминированных методов наиболее эффективными и простыми в реализации являются явные многостадийные методы типа Рунге-Кутты. Естественно, что их попытались обобщить на случай СДУ. Такие схемы получили названия стохастических численных методов Рунге-Кутты. Росслер в своих работах [3] ввел в рассмотрение обобщенную таблицу Бутчера, которая, как и обычная таблица Бутчера [1], используется для краткой записи массива коэффициентов метода. Также он записал формулы в аналогичном классическим схемам виде.

Запись общей схемы стохастического метода Рунге-Кутты громоздка и включает в себя многомерные массивы коэффициентов [3]. В зависимости от того, какая форма СДУ рассматривается (Ито или Стратоновича), а также какая сходимость требуется (сильная или слабая), численная схема модифицируется тем или иным способом, хотя по-прежнему остается далеко не такой простой, как детерминированная схема.

Рис. 1 Куб Бутчера

Конкретные реализации стохастических численных методов типа Рунге-Кутты для СДУ с многомерным винеровским процессом получены лишь для сильного порядка не больше 1,0 и слабого порядка сходимости не больше 3,0. Схемы более высокого порядка найдены лишь для одномерного винеровского процесса.

Построение численных схем стохастического Рунге-Кутты высоких порядков наталкивается на две ключевые трудности: сложность решения уравнений порядка и необходимость аппроксимации кратных интегралов Ито или Стратоновича.

Условия порядка стохастических методов Рунге-Кутты

Условиями порядка называются нелинейные алгебраические уравнения, связывающие коэффициенты метода между собой. Даже для детерминированной схемы число этих уравнений быстро увеличивается с ростом стадийности, которая связанна с порядком точности. Для получения этих уравнений используется формула Тейлора и аппарат помеченных деревьев, который позволяет получать условия порядка из наглядных графических построений [1]. Аппарат помеченных деревьев был распространен на случай стохастических методов Рунге-Кутты в работах [3-8].

Число условий порядка для стохастической численной схемы существенно больше детерминированного случая. Так, нахождение коэффициентов метода для СДУ с многомерным винеровским процессом и порядком сильной сходимости p=1.0 требует решения 6 условий порядка. Для СДУ со скалярным винеровским процессом и сильном порядком p=1,5 число условий равно 25. Для многомерного винеровского процесса и сильного порядка p=2.0 количество условий возрастает до 59 [3].

Аппроксимация кратных стохастических интегралов

Вторая трудность специфична лишь для стохастического случая. Она касается проблемы вычисления кратных интегралов Ито/Стратоновича [9]. Точную формулу для таких интегралов можно получить лишь в некоторых частных случаях, поэтому возникает задача их аппроксимации. Для аппроксимации двукратных интегралов в схеме с сильным порядком 1,0 необходимо суммировать большое число членов бесконечного ряда [2,10]. Для схем более высокого порядка приходится иметь дело уже с интегралами

большей кратности: третей, четвертой и т.д., эффективных способов аппроксимации которых по-видимому не существует.

Описание программной реализации

Для наиболее эффективных стохастических схем Рунге-Кутты была создана программная реализация на языках Julia [11] и Sage [12] (руthon). Язык Julia это высокоуровневый компилируемый язык, созданный специально для научных вычислений. Язык находится на стадии активной разработки, но уже обладает большими возможностями и хорошим набором стандартных библиотек. Были проведены численные эксперименты по сравнению схем между собой и с известными точными решениями.

Выволы

В работе дан обзор основных публикаций по стохастическим численным методам типа Рунге-Кутты. Изложены основные теоретические сведения, касающиеся численного решения СДУ с помощью стохастических многостадийных методов. Основной упор в изложении сделан на практическое использование данных схем. В отличие от детерминированного случая, стохастические численные схемы намного менее интуитивно понятны для неподготовленного читателя.

Литература

- 1. *Э. Хайрер, С. Нёрсетт, Г. Ваннер.* Решение обыкновенных дифференциальных уравнений. Нежесткие задачи / Под ред. С. С. Филиппова. 1 изд.— Москва: Мир, 1990. 512 с.— ISBN: 5-03-001179-X.
- 2. Kloeden P. E., Platen E. Numerical Solution of Stochastic Differential Equations.— 2 edition.— Berlin Heidelberg New York: Springer, 1995.— 632 p.— ISBN: 3-540-54062-8.
- 3. Rößler A. Strong and Weak Approximation Methods for Stochastic Differential Equations
- Some Recent Developments / Department Mathematik. Schwerpunkt Mathematische Statistik und Stochastische Prozesse. — 2010.
- 4. *Burrage K., Burrage P. M.* High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations // Appl. Numer. Math.—1996.— no. 22.— P. 81–101.
- 5. Burrage K., Burrage P.M., Belward J.A. A bound on the maximum strong order of stochastic Runge-Kutta methods for stochastic ordinary differential equations. // BIT.— 1997.— no. 37.— P. 771–780.
- 6. *Burrage K., Burrage P.M.* General order conditions for stochastic Runge-Kutta methods for both commuting and non-commuting stochastic ordinary differential equation systems //Appl. Numer. Math.— 1998. no. 28. P. 161–177.
- 7. Burrage K., Burrage P. M. Order conditions of stochastic Runge-Kutta methods by B-series // SIAM J. Numer. Anal. 2000. no. 38.— P. 1626–1646.
- 8. *Ерешко А. Ф. Филатова Д. В.* Анализ явных численных методов решения стохастических дифференциальных уравнений // Труды ИСА РАН. Динамика неоднородных систем. 2008.— Т. 32, № 2. С. 164–173.
- 9. Оксендаль Б. Стохастические дифференциальные уравнения. Введение в теорию и приложения. 5edition. Москва: Мир. ACT,2003. 385р. ISBN: 5-03-003477-3
- 10. Wiktorsson M. Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions//The Annals of Applied Probability.— 2001.— Vol. 11, no. 2. P. 470–487
- 11. Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman. Julia: A Fast Dynamic Language for Technical Computing, 2012, arXiv: 1209.5145
- 12. W. A. Stein et al. Sage Mathematics Software (Version x.y.z), The Sage Development Team, YYYY, http://www.sagemath.org.

REVIEW OF STOCHASTIC RUNGE-KUTTA SCHEMAS

Gevorkyan M.N.¹, Kuliabov D.S.^{1, 2}, Sevastianov L.A.^{1, 3}, Egorov A.D.⁴

¹Department of Applied Probability and Informatics, Peoples' Friendship University of Russia. Miklukho-Maklaya str., 6, Moscow, 117198, Russia, mngevorkyan@sci.pfu.edu.ru, ds@sci.pfu.edu.ru

²Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia.

³Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia.

⁴Institute of Mathematics of the National Academy of Sciences of Belarus, Belarus, 220072, Minsk, Surganov str., 11.

The report provides an overview of stochastic numerical Runge-Kutta methods. The most efficient numerical schemes are implemented in software based on mathematical package Sage and programming language Julia.

Key words: stochastic differential equations, numerical methods, Runge-Kutta methods. The work is partially supported by RFBR grants No's 14-01-00628 and 15-07-08795, agreement with BRFFR No F14D-002.