Interesting Topological Spaces in Algebraic Geometry

D. Zack Garza

Tuesday 28th July, 2020

Contents		
1	Ideas for Spaces	1
2	Analogies	2
1	Ideas for Spaces	
	 Curves Elliptic Curves Higher genus Hyperelliptic curves The modular curve Surfaces Compact Riemann surfaces * Bolza Surface (Genus 2) * Klein Quartic (Genus 3) * Hurwizt Surfaces Kummer surfaces Compact Complex Surfaces Rational ruled Enriques Surfaces K3 * Kahler Manifolds Kodaira Toric Hyperelliptic Properly quasi-elliptic General type Type VII 	

- Dimension 1: All elliptic curves (up to homeomorphism)

• Fake projective planes

• Calabi-Yau manifolds

• Conics

- Dimension 2: K3 surfaces
- Dimension 3 (threefolds): 500 million +, unknown if infinitely many
- The bananafold
- Hyperkähler
- Hurwitz schemes
- Topological galois groups, e.g. $G(\overline{F}/F)$ for $F = \mathbb{Q}, \mathbb{F}_p$.
- Spec (R) for R a DVR (a Sierpinski space)
- Quiver Grassmannians
- Rigid analytic spaces
- Affine line with two origins
- Moduli stack of elliptic curves $\mathcal{M}_{1,1}$.
- Abelian Surface
- Fano Varieties
- Curves: isomorphic to \mathbb{P}^1
- Surfaces: Del Pezzo surfaces
- Weighted projective space
- Toric Varieties
- Grassmannian
- Flag Varieties
- Moduli Spaces

Due to Kunihiko Kodaira's classification of complex surfaces, we know that any compact hyperkähler 4-manifold is either a K3 surface or a compact torus T^{4}. (Every Calabi–Yau manifold in 4 (real) dimensions is a hyperkähler manifold, because SU(2) is isomorphic to Sp(1).)

As was discovered by Beauville, the Hilbert scheme of k points on a compact hyperkähler 4-manifold is a hyperkähler manifold of dimension 4k. This gives rise to two series of compact examples: Hilbert schemes of points on a K3 surface and generalized Kummer varieties.

2 Analogies

Impossible goal: pick a category, understand all of the objects and all of the maps. Two main categories with a forgetful functor: $\mathbf{Diff} \longrightarrow \mathbf{Top}$.

Manifolds: classified by geometric structure in low dimensions (≤ 4), algebraic data/methods in high dimensions

- 2-manifolds: Uniformization
 - Simply connected Riemann surfaces are conformally equivalent to one of $\mathbb{H}, \mathbb{D}^{\circ}, \mathbb{CP}^{1}$.
- 3-manifolds: Thurston's Geometrization
 - Oriented prime 3-manifolds can be decomposed into geometric "pieces" of 8 possible types
 - Geometric structure: a diffeo $M\cong \tilde{M}/\Gamma$ where Γ is a discrete Lie group acting freely/transitively on X
- 4-manifolds: classified in the topological category by surgery, but not in the smooth category
- n-manifolds, $n \ge 5$: classified by surgery