Name			i#		
Group Member Nan	ne:				
Group Member Nan	ne:				
Today's Goals: We we endianness affects sto					d, consider how
Work in groups of 2 and on Blackboard, w		-	•	•	
Get as much done as y member of the group comment at the top o This assignment is no possibly some commo minor problems. And panic - go see your pr	needs to do the file so that for a grade bents. A score la score of one	nis. Be sure to put the at the GTAs don't have out you will be given f of 3 means everythin e indicates that there	e names of e to look at eedback in g looks gre were some	the members of your your group's code m the form of a 'score' at. A score of two in	group into a nore than once. (1-3) and dicates some
1. Signed and unsign Signed and unsigned difference is the <i>sign</i>	are two differ	ent ways to interpret			
bits(6 bits wide)	decima	l value (if bits are uns	signed)	decimal value (if	bits are signed)
00 1011					
11 0101					
		26			
		39			
				-20	
				19	

2. Binary addition

Add these 8-bit binary numbers. Each time, circle (unsigned) and (signed) if overflow occurs when interpreted that way.

(#1)	Did overflow occur?	(#4)	Did overflow occur?
0001 0101 + 0110 1111	(unsigned) (signed)	0101 0101 + 0010 0100	(unsigned) (signed)
(#2) 1110 0111 + 1101 1010	(unsigned) (signed)	(#5) 1010 1100 + 0011 0011	(unsigned) (signed)
(#3) 1101 0001 + 0011 0111	(unsigned) (signed)	(#6) 1011 1100 + 1000 0101	(unsigned) (signed)

3. Power of 2 Multiply with Shift

Use shifts and add/subtracts to represent below multiplications. Use **three** shifts or less.

	Shift and add/subtract		Shift and add/subtract
X*33		X*60	
X*24		X*38	
X*77		X*142	

4. Unsigned power of 2 Divide with Shift

Fill in the table below bit using 8bit <u>un</u>signed and shifts. (0b is a notation we're using here to indicate binary values)

	In Bits	In Hex		In Bits	In Hex
53/22			144/25		
0x4B/2 ⁵			0xCF/2 ⁴		
0b01010001/2 ²			0b10110101/2 ⁴		

5.Endianness

An address always refers to a single byte. When a value needs more than one byte to be represented, we always use the following (increasing-address) bytes, e.g. a 4-byte int at address 0x200 actually takes up bytes at addresses 0x200, 0x201, 0x202, and 0x203. There's a choice to be made: with these four spots, what order do we put those multiple bytes? (biggest/leftmost byte, or smallest/rightmost byte at the starting address?).

Here are four definitions and their addresses. Fill in memory for a big- and little-endian system.

Definition	Starting Address	Size (bytes)	Hex Value
int x = 0x17011337;	0x200	4	0x17011337
char y = 0x21; // '!'	0x204	1	0x21
short z = 0xcafe;	0x206	2	0xCAFE
char[] s = "edu";	0x208	4	0x65,0x64,0x75,0x00

Big-Endian Memory:

0x20C
0x20B
0x20A
0x209
0x208
0x207
0x206
0x205
0x204
0x203
0x202
0x201
0x200

Little-Endian Memory:

0x20C
0x20B
0x20A
0x209
0x208
0x207
0x206
0x205
0x204
0x203
0x202
 0x201
0x200

Now we can do this in reverse. Given the following memory, fill in the hex values in this chart.

VALUE	ADDRESS
0x58	0x112
0x43	0x111
0x11	0x110
0x01	0x10F
0xFA	0x10E
0x00	0x10D
0xAF	0x10C
0x1C	0x10B
0x22	0x10A
0x00	0x109
0x18	0x108
0x25	0x107
0xA2	0x106
0x62	0x105
0x5A	0x104
0x99	0x103
0xFF	0x102
0x10	0x101
0x40	0x100

address	size	value (little-endian)	value (big-endian)
0x110	2	0x	0x
0x10C	4	0x	0x
0x104	8	0x	0x
0x100	4	0x	0x