# Análise de dados de Acidentes Aereos (Período 2008-2018)

# Objetivos

Identificar, através dos anos, quais os principais tipos de acidentes em cada região do país,e observar as rotas com maiores números de ocorrências. Para isso iremos levantar:

- •Identificar as cidades com maiores ocorrencias e colocar quais os principais tipos de acidentes, se houve óbitos, quais os principais tipos de aeronaves e o segmento;
- Relação entre os tipos de operação e a classificação da ocorrencia;
- · Classificação por regiões do país;
- · Mostrar as ocorrências no país inteiro, depois mostrar as regioes de maiores ocorrencias;
- Mostrar o numero de acidentes, quantidade de fatais, principais motivos e as principais áreas de atuação.

### Bibliotecas

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import itertools as it
```

```
import seaborn as sns
import plotly.offline as py
import plotly.graph_objs as go
import folium
import os

from decimal import Decimal
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import StandardScaler
```

# Funções

```
def tem numero(string): # Retornar se string possue numero
  return any(char.isdigit() for char in string)
def remove repetidos(array): # Remover Elementos Repetidos do Array
   [] = []
    for i in array:
        if i not in l:
            l.append(i)
    l.sort()
    return l
def numero em cima(rects, ax):
    for rect in rects:
        height = rect.get height()
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3),
                    textcoords="offset points",
                    ha='center', va='bottom')
```

Tratando Dados

Dados Originais - Opendata AIG Brazil (Centro de Investigação e Prevenção de Acidentes Aeronáuticos - CENIPA)

```
dados = pd.read_csv('https://raw.githubusercontent.com/jhiltonsantos/ADS-Estatistica-IFPI/master/Projeto9
dados.dataframeName = 'Accidents'
nRow, nCol, = dados.shape
dados.head(2)
```

| $\Box$ |   | codigo_ocorrencia | ocorrencia_classificacao | ocorrencia_tipo             | ocorrencia_dia | ocorrencia_horario | ocorrencia_cida |
|--------|---|-------------------|--------------------------|-----------------------------|----------------|--------------------|-----------------|
|        | 0 | 201211159478138   | ACIDENTE                 | FALHA DO MOTOR<br>EM VOO    | 2012-11-15     | 12:40:00           | ABADIA DE GO    |
|        | 1 | 200912289948837   | ACIDENTE                 | PERDA DE<br>CONTROLE EM VOO | 2009-12-28     | 17:30:00           | ACEG            |

2 rows × 116 columns

Remover Dados Que Não Serão Manipulados (Fator\_\*)

```
remover_fator = []
for i in range(1, len(dados.columns)):
   if tem_numero(dados.columns[i]) == True:
        remover_fator.append(dados.columns[i])

dados.drop(columns=remover_fator, inplace=True)
dados.head(2)
```

| ocorrencia_cida | ocorrencia_horario | ocorrencia_dia | ocorrencia_tipo             | ocorrencia_classificacao | codigo_ocorrencia |   |
|-----------------|--------------------|----------------|-----------------------------|--------------------------|-------------------|---|
| ABADIA DE GO    | 12:40:00           | 2012-11-15     | FALHA DO MOTOR<br>EM VOO    | ACIDENTE                 | 201211159478138   | 0 |
| ACEG            | 17:30:00           | 2009-12-28     | PERDA DE<br>CONTROLE EM VOO | ACIDENTE                 | 200912289948837   | 1 |

### Adicionando Coluna "ano" aos Dados

```
data_ocorrencias = []
for i in range(len(dados)):
    data_ocorrencias.append(dados['ocorrencia_dia'][i])

anos_ocorrencias = []
ano = []
for i in range(len(data_ocorrencias)):
    ano.append(data_ocorrencias[i].split('-'))
    anos_ocorrencias.append(ano[i][0])

# Transformar anos para inteiro
anos_int = []
for i in range(len(anos_ocorrencias)):
    anos_int.append(int(anos_ocorrencias[i]))
anos_int

dados['ano'] = anos_int
dados.head(2)
```

| ocorrencia_cida | ocorrencia_horario | ocorrencia_dia | ocorrencia_tipo             | ocorrencia_classificacao | codigo_ocorrencia |   |
|-----------------|--------------------|----------------|-----------------------------|--------------------------|-------------------|---|
| ABADIA DE GO    | 12:40:00           | 2012-11-15     | FALHA DO MOTOR<br>EM VOO    | ACIDENTE                 | 201211159478138   | 0 |
| ACEG            | 17:30:00           | 2009-12-28     | PERDA DE<br>CONTROLE EM VOO | ACIDENTE                 | 200912289948837   | 1 |

## Dados de Latitude e Longitude (Decimal) dos Estados - IBGE

dados\_lat\_long = pd.read\_csv('https://raw.githubusercontent.com/jhiltonsantos/ADS-Estatistica-IFPI/master
dados lat long.head(2)

| $\Box$ |   | ID  | LATITUDE | LONGITUDE | Mun/UF            | MUNICIPIO    | UF | Valor              |
|--------|---|-----|----------|-----------|-------------------|--------------|----|--------------------|
|        | 0 | 2.0 | -10.94   | -69.56    | ASSIS BRASIL - AC | ASSIS BRASIL | AC | 17.842.150.988.839 |
|        | 1 | 3.0 | -11.01   | -68.74    | BRASILEIA - AC    | BRASILEIA    | AC | 9.337.339.431.323  |
|        |   |     |          |           |                   |              |    |                    |

```
# Esses Dados já foram inseridos em um novo CSV (DADO PRONTOS)
```

```
# Criando colunas latitude e longitude
#dados['latitude'] = -9.42
#dados['longitude'] = -30.89

# Passando valores de base_geo_br.csv para dados
#for i in range(len(dados_lat_long)):
# for k in range(len(dados)):
# if (dados['ocorrencia_cidade'][k] == dados_lat_long['MUNICIPIO'][i]) and (dados['ocorrencia_uf'][k]
# dados['latitude'][k] = dados_lat_long['LATITUDE'][i]
# dados['longitude'][k] = dados_lat_long['LONGITUDE'][i]
#export csv = dados.to csv(r'drive/My Drive/dados prontos.csv', index = None, header=True)
```

#### Dados Prontos

dados\_prontos = pd.read\_csv('https://raw.githubusercontent.com/jhiltonsantos/ADS-Estatistica-IFPI/master/
dados\_prontos.head(2)

| $\Box$ |   | codigo_ocorrencia | ocorrencia_classificacao | ocorrencia_tipo             | ocorrencia_dia | ocorrencia_horario | ocorrencia_cida |
|--------|---|-------------------|--------------------------|-----------------------------|----------------|--------------------|-----------------|
| ·      | 0 | 201211159478138   | ACIDENTE                 | FALHA DO MOTOR<br>EM VOO    | 2012-11-15     | 12:40:00           | ABADIA DE GO    |
|        | 1 | 200912289948837   | ACIDENTE                 | PERDA DE<br>CONTROLE EM VOO | 2009-12-28     | 17:30:00           | ACEG            |

### 1. Ocorrências no País

## Ocorrencias no Mapa

```
+"<pr>>Modeto Aeronave: "+dados_prontos['aeronave_modeto'][i]+"<pr>"
+"<br>Ano Fabricacao Aeronave: "+str(dados_prontos['aeronave_ano_fabricacao'][i])+"<br>"
,
icon=folium.Icon(color='red', icon='info-sign'),
).add_to(mapa_br)</pr>
```

mapa\_br



Número de Fatalidades no Período de 2008 à 2018

```
dados m anos = pd.DataFrame({'ano': anos, 'mortes': [int(not null.loc[not null['ano'] == ano,
                                                                        ['quantidade fatalidades']].sum()
dados m anos = dados m anos.sort values('mortes')
dados m anos
          ano mortes
     10 2018
                   25
         2017
                   52
         2010
                   55
                   58
         2008
         2009
                   63
         2015
                   70
         2014
                   80
         2013
                   94
         2016
                   94
         2011
                  110
         2012
                  110
f, ax = plt.subplots()
pallete = sns.cubehelix palette(11, 3, 0.4, 0.60, 0.8, 0.6)
sns.barplot(dados m anos['ano'], dados m anos['mortes'], palette=pallete)
ax.set xlabel('Anos')
ax.set ylabel("Mortes")
ax.set_title('Mortes por ano')
```



## Relação de Acidentes x Incidentes

|   | ACIDENTE | INCIDENTE | tipo         |
|---|----------|-----------|--------------|
| 0 | 163      | 291       | Nordeste     |
| 1 | 242      | 321       | Norte        |
| 2 | 340      | 210       | Centro Oeste |
| 3 | 568      | 1405      | Sudeste      |
| 4 | 353      | 466       | Sul          |
|   |          |           |              |

```
x = np.arange(5)
width = 0.35
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, dados regioes['ACIDENTE'], width, label='ACIDENTE')
rects2 = ax.bar(x + width/2, dados regioes['INCIDENTE'], width, label='INCIDENTE')
ax.set ylabel('Ocorrências')
ax.set_title('REGIÕES\nACIDENTE vs INCIDENTE')
ax.set xticks(x)
ax.set_xticklabels(dados_regioes['tipo'])
ax.legend()
numero_em_cima(rects1, ax)
numero em cima(rects2, ax)
fig.tight layout()
plt.show()
\square
```



## Box Plot do Número de Mortes por Ano

```
plt.text(40, 0.6, 'Mediana de mortes: %.2f'%(np.median(np.array(dados_m_anos['mortes']))))
plt.text(40, 0.7, 'Média de mortes: %.2f'%(np.mean(np.array(dados_m_anos['mortes']))))
plt.boxplot(dados_m_anos['mortes'], 0, 'rs', 0)
plt.title('BoxPlot do numero de mortes por ano')
plt.show()
```





## Número do Tipos de Operações que mais ocorrem

```
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e numero de incidentes ')
plt.show()
```



```
f, ax = plt.subplots()
pallete = sns.cubehelix_palette(10, 5, 0.4, 0.60, 0.8, 0.6)

sns.barplot(qtd_acidentes_tipo['Acidentes'], qtd_acidentes_tipo['Tipo'], palette=pallete)

ax.invert_yaxis()
ax.set_xlabel('Quantidade de Acidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e numero de Acidentes ')

plt.show()
```



# 2. Classificação por Estados

#### Acidentes e Incidentes Por Estados

```
acidente = dados_prontos[dados_prontos.ocorrencia_classificacao == 'ACIDENTE']
incidente = dados_prontos[dados_prontos.ocorrencia_classificacao == 'INCIDENTE']

plt.title('ACIDENTES X INCIDENTES')
plt.xlabel('ESTADOS')
plt.ylabel('QUANTIDADE')

estado_aci = acidente['ocorrencia_uf']
estado_inc = incidente['ocorrencia_uf']

estado_aci.hist(figsize=(15,8), alpha=0.5, label='Acidentes', color='#FF26E1')

estado_inc.hist( figsize=(15,8), alpha=0.5, label='Incidentes', color='#1084EC')

https://colab.research.google.com/drive/17-wDFHEL3Yfc_5pKLSSyzvAZHLacdUS_#scrollTo=0Y_IBYiwwJ2E&printMode=true
```

plt.legend(loc='upper right')

## <matplotlib.legend.Legend at 0x7fec2cb05f98>



Bubble Map com a Quantidade de Ocorrência por Estados

```
data = pd.DataFrame ({
    'lat' : [-23.52, -22.9, -19.81, -25.42, -30.03, -16.67, -1.45, -15.59, -3.1, -12.97, -27.59, -15
    'lon': [-46.63, -43.2, -43.95, -49.27, -51.23, -49.25, -48.5, -56.09, -60.02, -38.51, -48.54,
    'name': ['SP', 'RJ', 'MG', 'PR', 'RS', 'GO', 'PA', 'MT', 'AM', 'BA', 'SC',
                                                                                                  ' DF
    'value' : [1191, 496, 458, 428,
                                                  263. 244. 238. 216.
                                           344.
                                                                                 206. 160.
                                                                                                  15
})
map br = folium.Map(location=[-12, -50],
                zoom start = 4, control scale = True, prefer canvas=True)
data['value']=data.value.astype(float)
for i in range(0,len(data)):
  folium.Circle(
     location=[data.iloc[i]['lat'], data.iloc[i]['lon']],
     popup="<br/>br>ESTADO: "+data.iloc[i]['name']+"<br/>br>"+"<br/>br>QUANTIDADE DE ACIDENTES: " + str(int(data['value)])
     radius=data.iloc[i]['value']*300,
     color='crimson',
     fill=True,
     fill color='crimson'
  ).add_to(map br)
map br
```



## Quantidade de Acidentes por Estados

figsize=(15,8))



# 3. Classificação por Cidades

Mapa com as Dez Cidades com Maiores Números de Ocorrência

```
d_incidentes = pd.DataFrame ({
https://colab.research.google.com/drive/17-wDFHEL3Yfc_5pKLSSyzvAZHLacdUS_#scrollTo=0Y_lBYiwwJ2E&printMode=true
```

#### d incidentes

| $\stackrel{\square}{\longrightarrow}$ |   | fatalidade | lat    | lon    | cidade         | regiao       | estado | acidentes |
|---------------------------------------|---|------------|--------|--------|----------------|--------------|--------|-----------|
|                                       | 0 | 21         | -22.90 | -43.20 | RIO DE JANEIRO | SUDESTE      | RJ     | 239       |
|                                       | 1 | 12         | -23.54 | -46.63 | SAO PAULO      | SUDESTE      | SP     | 202       |
|                                       | 2 | 0          | -23.46 | -46.53 | GUARULHOS      | SUDESTE      | SP     | 137       |
|                                       | 3 | 9          | -19.81 | -43.95 | BELO HORIZONTE | SUDESTE      | MG     | 133       |
|                                       | 4 | 2          | -15.78 | -47.93 | BRASILIA       | CENTRO-OESTE | DF     | 123       |
|                                       | 5 | 19         | -23.31 | -51.16 | LONDRINA       | SUL          | PR     | 100       |
|                                       | 6 | 0          | -22.90 | -47.06 | CAMPINAS       | SUDESTE      | SP     | 96        |
|                                       | 7 | 0          | -30.03 | -51.23 | PORTO ALEGRE   | SUL          | RS     | 78        |
|                                       | 8 | 2          | -16.67 | -49.25 | GOIANIA        | CENTRO-OESTE | GO     | 76        |
|                                       | 9 | 1          | -12.97 | -38.51 | SALVADOR       | NORDESTE     | ВА     | 75        |

d\_incidentes['acidentes']=d\_incidentes.acidentes.astype(float)

for i in range(len(d incidentes)):



Número de Fatalidades nas Cinco Cidades com Maiores Ocorrências

```
cidades = ['RIO DE JANEIRO', 'SAO PAULO', 'BELO HORIZONTE', 'BRASILIA', 'GUARULHOS']
anos = sorted(list(set(dados_prontos['ano'])))
not_null = dados_prontos.dropna()
dic_apos = {i: [int/not null loc[not null['ano'] -- ano
https://colab.research.google.com/drive/17-wDFHEL3Yfc_5pKLSSyzvAZHLacdUS_#scrollTo=0Y_lBYiwwJ2E&printMode=true
```

|    | RIO DE JANEIRO | SAO PAULO | BELO HORIZONTE | BRASILIA | GUARULHOS | ano  |
|----|----------------|-----------|----------------|----------|-----------|------|
| 0  | 4              | 0         | 4              | 0        | 0         | 2008 |
| 1  | 0              | 0         | 0              | 0        | 0         | 2009 |
| 2  | 6              | 1         | 2              | 0        | 0         | 2010 |
| 3  | 3              | 0         | 0              | 0        | 0         | 2011 |
| 4  | 4              | 3         | 0              | 0        | 0         | 2012 |
| 5  | 0              | 1         | 0              | 0        | 0         | 2013 |
| 6  | 2              | 0         | 0              | 2        | 0         | 2014 |
| 7  | 0              | 0         | 3              | 0        | 0         | 2015 |
| 8  | 4              | 7         | 0              | 0        | 0         | 2016 |
| 9  | 0              | 0         | 0              | 0        | 0         | 2017 |
| 10 | 0              | 0         | 0              | 0        | 0         | 2018 |
|    |                |           |                |          |           |      |

```
line={'color': '#F15230',
                            'dash': 'dash'})
trace sp = go.Scatter(x=dados anos['ano'],
                     y=dados anos['SAO PAULO'],
                     mode = 'lines+markers',
                     name='SAO PAULO',
                     line={'color': '#F1C40F',
                            'dash': 'dash'})
trace br = go.Scatter(x=dados anos['ano'],
                     y=dados anos['BRASILIA'],
                     mode = 'lines+markers',
                     name='BRASILIA',
                     line={'color': '#F130EE',
                            'dash': 'dash'})
trace gu = go.Scatter(x=dados anos['ano'],
                     y=dados anos['GUARULHOS'],
                     mode = 'lines+markers',
                     name='GUARULHOS',
                     line={'color': '#0C701B',
                            'dash': 'dash'})
data = [trace bh, trace rj, trace sp, trace br, trace gu]
layout = go.Layout(title='Número de Fatalidades nas Cinco Cidades com Maiores Ocorrências',
                   yaxis = {'title':'Mortes'},
                   xaxis = {'title':'Anos'})
fig = go.Figure(data=data, layout=layout)
py.iplot(fig)
```

#### Número de Fatalidades nas Cinco Cidades com Majores Ocorrências



```
f, ax = plt.subplots()
pallete = sns.cubehelix_palette(10, 3, 0.4, 0.60, 0.8, 0.6)

sns.barplot(qtd_operacao_rj['Ocorrencia'], qtd_operacao_rj['Tipo'], palette=pallete)

ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade do Rio de Janeiro ')
plt.show()
```

#### Tipos de operação e Numero de Ocorrencias na Cidade do Rio de Janeiro



```
pallete = sns.cubehelix_palette(10, 3, 0.4, 0.60, 0.8, 0.6)
sns.barplot(qtd_operacao_rj['Ocorrencia'], qtd_operacao_rj['Tipo'], palette=pallete)
ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade do Belo Horizonte ')
plt.show()
```

#### Tipos de operação e Numero de Ocorrencias na Cidade do Belo Horizonte



```
sns.barplot(qtd_operacao_rj['Ocorrencia'], qtd_operacao_rj['Tipo'], palette=pallete)
ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade do São Paulo')
plt.show()
```

### Tipos de operação e Numero de Ocorrencias na Cidade do São Paulo



```
onotibal probl<sub>i</sub>qua_opeliaeao_ij[ ocoliene±a ], qua_opeliaeao_ij[ i±po ], parecre-parrecre,
```

```
ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade de Brasilia')
plt.show()
```

### Tipos de operação e Numero de Ocorrencias na Cidade de Brasilia



```
ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade de Guarulhos')
plt.show()
```



