HW 3

- 1) Problem 2.17 (a) (c).
- 2) Problem 2.40.
- 3) Problem 3.1.
- 4) A biased coin with $P(\{\text{head}\})=0.6$ is tossed three times. Let the binomial random variable X represent the number of heads obtained on any triple toss. Find (or sketch) the PMF of X.
- 5) Determine which of the following are valid distribution functions (CDFs). Justify your answer. *Hint*: you can use MATLAB to plot and verify the properties of the CDF for the range of *x*.

a.
$$F_X(x) = \begin{cases} 1 - e^{-\frac{x}{2}} & x \ge 0\\ 0 & x < 0 \end{cases}$$

b.
$$F_X(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.5 \cos\left(\frac{\pi(x-1)}{2}\right) 0 < x \le 2 \\ 1 & x \ge 2 \end{cases}$$

c.
$$F_X(x) = \frac{x}{a} (u(x-a) - u(x-2a))$$
, where $u(x)$ is the unit step function.

VIGOMAR KIM ALGADOR ENGR-120-01 SU23 HOMEWORK #3

1. (a)
$$\binom{8}{2}_{C} = \frac{8!}{2!(8-2)!} = \frac{8!}{2!6!} = 28$$

(b) $(1-P)P(1-P)(1-P)(1-P)P(1-P)(1-P) = P^{2}(1-P)^{6}$

(c) $Pr[2 \text{ bits error}] = \binom{8}{5}_{C} \cdot P^{2}(1-P)^{6}$

2. (a) $Pr[1_{R}] = Pr[1_{R}/1_{S}] \cdot Pr[1_{S}] + Pr[1_{R}/0_{S}] \cdot Pr[0_{S}]$
 $= \frac{3}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{18} = \frac{4}{4}$

(b) $Pr[error] = Pr[error|1_{S}] \cdot Pr[1_{S}] + Pr[error|0_{S}] \cdot Pr[0_{S}]$
 $= 2q \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{3}{18} = \frac{1}{6}$

(c) $Pr[1_{S}|1_{R}] = \frac{Pr[1_{R}|1_{S}] \cdot Pr[1_{S}]}{Pr[1_{R}]} = \frac{\frac{3}{4} \cdot \frac{1}{2}}{\frac{4}{4}} = \frac{3}{4}$

3. (a) $n(k=0)=5$
 $n(k=1)=7$
 $P_{R}[k=1] = \frac{3}{4}$

5. $p_{R}[k=1] = \frac{3}{4}$

4. $P\{x=0\} = \binom{3}{6}(0.6)^{9}(0.4)^{3} = 0.064$
 $P\{x=1\} = \binom{3}{2}(0.6)^{1}(0.4)^{2} = 0.288$
 $P\{x=2\} = \binom{3}{2}(0.6)^{2}(0.4)^{2} = 0.216$

