LAST NAME:			FIRST NAME:			CIRCLE:								
								Li	2:30pm	Li 5	:30pm Z	weck	10am	Zweck 1pm
1	/12	2	/12	3	/15	4	/12	5	/12	6	/12	Т	/75	ó

MATH 2415 (Fall 2017) Exam I, Sep 29th

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 90 minute exam is worth 75 points.

- (1) [12 pts] Let $\mathbf{v} = (-1, 0)$ and $\mathbf{w} = (2, 1)$.
- (a) Make a labelled sketch showing the vector projection of \mathbf{v} onto \mathbf{w} .

(b) Calculate the vector projection of \mathbf{v} onto \mathbf{w} .

(2)	12	pts

(a) Let L be the line through the point $\mathbf{p} = (1,0,3)$ that contains the vector $\mathbf{v} = (0,1,2)$. Let P be the plane x + y + z = 7. The line L and the plane P intersect in a point. Find the coordinates of this point.

(b) Let L_1 and L_2 be the lines parametrized by $\mathbf{r}_1(t) = (1, t, 0)$ and $\mathbf{r}_2(t) = (t, 2t, 3t)$, respectively. Do the lines L_1 and L_2 lie in the same plane? Explain.

(3) [15 pts] Make a labelled sketch of the traces of the surface

$$y^2 - 4x^2 - z^2 = 1$$

in the planes $x=0,\,z=0,$ and y=k for $k=0,\,\pm 1,\,\pm 2.$ Then sketch the surface.

- (4) [12 pts] Let C be the parametrized curve $\mathbf{r}(t) = (3\cos 2t, 4\sin 2t, 5t)$.
- (a) Show that the curve C lies on an elliptical cylinder.

(b) Find a parametrization of the tangent line to the curve C at $t=\pi/8$.

(5)	12	pts
(0)	12	Publ

(a) Parametrize the curve that is given by the intersection of the surfaces $x^2 + y^2 = 4$ and $z = x^2 - 3y^2$.

(b) Let $z = f(x, y) = xe^{-y}$. Make a labelled sketch showing the contours of f(x, y) = k for k = -1, k = 0 and k = 1.

- (a) Let P be the point with cylindrical coordinates $(r, \theta, z) = (\sqrt{3}, \frac{\pi}{4}, -1)$. Find the spherical coordinates of P.

(b) Convert the equation $z=-\sqrt{x^2+y^2}$ into spherical coordinates.