Projeto Interdisciplinar - MySQFome

Profa. Suzana - Estatística

Dados de média aritmética, mediana, moda e até desvio padrão. Dando continuidade podem agora compararem os números dos projetos entre eles para ver se há correlação. Ou seja, aplicar a correlação de variáveis.

Correlação entre as variáveis

Comparando os números de dois projetos e fazendo a correlação de variáveis entre elas.

MySQFome - X	Pet - Y	X.Y	X ²	Y ²
39	13	507	1521	169
64	76	4864	4096	5776
28	28	784	784	784
17	47	799	289	2209
101	16	1616	10201	256
55	86	4730	3025	7396
$\Sigma x = 304$	Σy =266	$\Sigma xy = 13300$	$\Sigma x^2 = 19916$	$\Sigma y^2 = 16590$

Fórmula de Correlação de Variáveis

$$R = \frac{\sum XY - \frac{\sum X \sum Y}{n}}{\sqrt{\left[\sum X^{2} - \frac{(\sum X)^{2}}{n}\right]\left[\sum Y^{2} - \frac{(\sum Y)^{2}}{n}\right]}}$$

R = coeficiente de correlação

n = numero de termos

*Substituição na formula

$$R = \frac{13300 - \frac{(304 \times 266)}{5}}{\sqrt{[19916 - \frac{(304)^2}{5}][16590 - \frac{(266)^2}{5}]}}$$

$$R = \frac{2872,8}{3215,9}$$

$$R = 0.89$$

A condição para saber se existe correlação entre elas está na regra:

Portanto:

$$0 \le 0.89 \le 1$$

Existe correlação e do tipo positiva.

Aplicando a equação da reta para saber as estimativas de dados, e fazendo o calculo com os valores, substituindo na formula::

$$\hat{y} = A + Bx$$

$$B = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

$$\overline{X} \mid \overline{Y} = \frac{\sum_{i=1}^k X_i . n_i}{\sum_{i=1}^k n_i} = \frac{X_1 . n_1 + X_2 . n_2 + + X_k . n_k}{n_1 + n_2 + + n_k}$$

Obtemos, Y= 43 aproximadamente.