Table des matières

Ι	Introduction Cas particulier	
		2
Π	Existence, unicité, régularité	4
1	Réécriture du problème de Cauchy	4
2	Existence et unicité	4
3	Régularité des solutions	9
4	Transformations	10
II	I Les équations linéaires	10
1	Changement de repère	12
2	Comment calculer e^{At} ?	13
3	Résolution des systèmes	15
IX	V Stabilité des équations linéaires	19
\mathbf{V}	Systèmes hamiltoniens	23

Première partie

Introduction

$$(E) : \dot{x(t)} = f(t, x(t))$$

 $x = (x_1, ..., x_n)^T$

 $f: U \to \mathbb{R}$ On a $U \subset \mathbb{R} \times \mathbb{R}^n$. On cherche x(t), et f est toujours donné.

♣ Définition: Solution de (E)

Une fonction $x:I\to\mathbb{R}^n$ est dite une solution de (E) si : 1. $(t,x(t))\in U$

- 2. x(t) satisfait (E)

Cas particulier $x^{(n)}(t) = g(t, x(t), \dot{x(t)}, ..., x^{(n-1)}(t))$ On pose $x_1 = x, x_2 = \dot{x}, ..., x_n = x^{(n-1)}$. Donc :

$$\begin{cases} \dot{x}_n &= g(t, x_1, ..., x_n) \\ \dot{x_1} &= x_2 \\ &\vdots \\ \dot{x_{n-1}} &= x_n \end{cases}$$

On passe d'une équation d'ordre n à un système d'équations d'ordre 1.

Étant donné $(t_0, x_0) \in U$, on peut trouver une solution x(t) tel que $t_0 \in I$ et $x(t_0) = x_0$.

Interprétation de l'équation :

- 1. t peut être vu comme le temps
- 2. $x = (x_1, ..., x_n)^T$ l'état du système à un temps donné.
- 3. $\dot{x} = f(x,t)$ la loi d'évolution.
- 4. (t_0, x_0) les données initiales
- 5. Résoudre le problème de Cauchy : prévoir l'évolution en sachant que $x(t_0) = x_0$
- 6. Résoudre (E): connaître toutes les solutions possibles.

$\blacksquare Exemple : Le pendule$

$$\ddot{\theta} = -\frac{g}{l}\sin\theta$$

On pose $x_1=\theta$ et $x_2=\dot{\theta}$. On a donc : $\left\{ \begin{array}{ll} \dot{x}_2&=&-\frac{g}{l}\sin x_1\\ \dot{x}_1&=&x_2 \end{array} \right.$

$$\begin{cases} \dot{x}_2 &= -\frac{g}{l}\sin x_1\\ \dot{x}_1 &= x_2 \end{cases}$$

Pour $\theta = x_1$ petit, $\sin x_1 \approx x_1$. On prend l=g.

$$\begin{cases} \dot{x}_2 &= x_1 \\ \dot{x_1} &= x_2 \end{cases} \Rightarrow \begin{cases} x_1(t) &= A\sin t + B\cos t = x_{2_0}\sin t + x_{1_0}\cos t \\ x_2(t) &= A\cos t - B\sin t = x_{2_0}\cos t - x_{1_0}\sin t \end{cases}$$

 $\mathrm{D}\text{'}\mathrm{o}\mathrm{\grave{u}}$:

$$\left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right) = \left(\begin{array}{cc} \cos t & -\sin t \\ -\sin t & -\cos t \end{array}\right) \left(\begin{array}{c} x_{1_0}(t) \\ x_{2_0}(t) \end{array}\right)$$

En traçant cela, on trouve une courbe appelée le portrait de phase.

Deuxième partie

Existence, unicité, régularité

Réécriture du problème de Cauchy 1

On supposera $f \in \mathcal{C}^0(U)$

$extbf{1}$ Proposition: Equivalence à (C)

Soit x(t) continue. Alors $\mathbf{x}(t)$ résoud

$$(C): \dot{x} = f(t, x), x(t_0) = x_0$$

si et seulement si x(t) est solution de

$$x(t) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau$$

Démonstration:

$$(\Leftarrow) x(t) \text{ continue} \quad \Rightarrow \quad f(\tau, x(\tau)) \text{ continue} \\ \Rightarrow \quad \int_{t_0}^t f(\tau, x(\tau)) d\tau \text{ est dérivable} \\ \Rightarrow \quad x(t) \text{ est dérivable}$$

On dérive l'égalité, et on trouve :

$$\dot{x(t)} = f(t, x(t)) \text{ et } x(t_0) = x_0$$

$$(\Rightarrow)x(t)$$
 continue $\Rightarrow f(t,x)$ continue $\Rightarrow \dot{x}$ continue

$$\int_{t_0}^t x(\tau)d\tau = \int_{t_0}^t f(\tau, x(\tau))d\tau$$
$$x(t) - x(t_0) = \int_{t_0}^t f(\tau, x(\tau))d\tau$$

2 Existence et unicité

Soit
$$x \in \mathbb{R}^n$$
 $||x|| = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$

$$U = \underbrace{J}_{\subset \mathbb{R}} \times \underbrace{\mathbb{X}}_{\subset \mathbb{R}^n}$$

** Définition: Lipschitzienne $f:U\to\mathbb{R}^n \text{ est lipschitzienne par rapport à }x\text{ s'il existe L>0 tel que :}$

$$||f(t,x) - f(t,\tilde{x})|| \le L||x - \tilde{x}||$$

4

⇔ Lemme: CS de lipschitzienne

 $\forall 1 \leq i, \ j \leq n \ \frac{\partial f_i}{\partial x_j}(t,x)$ existent dans U et sont bornées, ie

$$\forall \xi \in U, \ \left| \frac{\partial f_i}{\partial x_j}(\xi) \right| \le k$$

alors f est lipschitzienne par rapport à x (dans U)

Démonstration:

$$||f(t,x) - f(t,\tilde{x})|| = \left(\sum_{i=1}^{n} \left(\underbrace{f_{i}(t,x) - f_{i}(t,\tilde{x})}_{=\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(t,x^{*})(x_{j}-\tilde{x}_{j})}\right)^{2}\right)^{\frac{1}{2}}$$

$$\leq \left(\sum_{i=1}^{n} \sum_{j=1}^{n} k^{2} (x_{j} - \tilde{x}_{j})^{2}\right)^{\frac{1}{2}}$$

$$\leq \underbrace{\sqrt{n}k}_{I} ||x - \tilde{x}||$$

⇔ Corollaire: Avec la compacité

Si $f \in \mathcal{C}^1(U)$ alors $\forall V \subset U$, V compact, f est lipschitzienne sur V.

Démonstration:

$$f \in \mathcal{C}^1(U) \quad \Rightarrow \quad \frac{\partial f_i}{\partial x_j} \in \mathcal{C}^0(U)$$

$$\Rightarrow \quad \forall \xi \in V, \ \left| \frac{\partial f_i}{\partial x_j}(\xi) \right| \le k$$

⇔ Théorème: de Picard-Lindelöf ou Cauchy-Lipschitz

Considérons $\dot{x} = f(t,x), \ f: U \to \mathbb{R}^n$ est supposée :

- 2. f-lipschitzienne par rapport à x (dans U) alors $\exists \delta; \exists x: [t_0 \delta; t_0 + \delta] \to \mathbb{R}^n$ tel que : 1. x(t) est solution du problème de Cauchy

- 2. x(t) est unique $3. \ x^m(t) = x_0 + \int_{t_0}^t f(\tau, x^{m-1}(\tau)) d\tau \text{ converge vers la solution } \mathbf{x}(t).$

Démonstration:

$$\exists \rho; V_{\rho} = \{(t, x) | |t - t_{0}| \le \rho, ||x - x_{0}|| \le \rho\} \subset U$$
$$\exists M; \ \forall (t, x) \in V_{\rho}, \ ||f(t, x)|| \le M$$

Posons $\delta = \min\{\rho, \frac{\rho}{M}\}$

$$V_{\delta} = \{(t, x) | |t - t_0| \le \delta \text{ et } ||x - x_0|| \le \rho \}$$

Posons $x^0(t)=x_0$ et $x^n(t)=x_0+\int_{t_0}^t f(\tau,x^{n-1}(\tau))d\tau$ On va prouver que $\forall m\geq 0, \forall t\in [t_0-\delta,t_0+\delta],$ on a :

$$(t, x^n(t)) \in V_\delta$$

Si m = 0, on a $||x^m(t) - x_0|| = ||x_0 - x_0|| = 0 \le \rho$. Supposons que $\forall 0 \le j \le m - 1$, $x^j(t)$ satisfait $(t, x^j(t)) \in V_\delta$.

$$||x^{m}(t) - x_{0}|| = \left\| \int_{t_{0}}^{t} f(\tau, x^{m-1}(\tau)) d\tau \right\|$$

$$\leq \int_{t_{0}}^{t} ||f(\tau, x^{m-1}(\tau))|| d\tau$$

$$\leq \underbrace{|t - t_{0}|}_{\leq \delta} M$$

$$\leq \rho$$

On va montrer par récurrence :

$$||x^m(t) - x^{m-1}(t)|| \le ML^{m-1} \frac{|t - t_0|^m}{m!}$$

$$m = 1 : ||x^{1}(t) - x_{0}|| = \left\| \int_{t_{0}}^{t} f(\tau, x^{0}(\tau)) d\tau \right\|$$

$$\leq \int_{t_{0}}^{t} ||f(\tau, x^{0}(\tau))|| d\tau$$

$$\leq M|t - t_{0}|$$

Supposons $||x^{m-1}(t) - x^{m-2}(t)|| \le ML^{m-2} \frac{|t-t_0|^{m-1}}{(m-1)!}$

$$\begin{aligned} ||x^{m}(t) - x^{m-1}(t)|| &= \left| \left| \int_{t_{0}}^{t} f(\tau, x^{m-1}(\tau)) - f(\tau, x^{m-2}(\tau)) d\tau \right| \right| \\ &\leq \int_{t_{0}}^{t} ||f(\tau, x^{m-1}(\tau)) - f(\tau, x^{m-2}(\tau))|| d\tau \\ &\leq \int_{t_{0}}^{t} L||x^{m-1}(\tau) - x^{m-2}(\tau)|| d\tau \end{aligned}$$
 Par récurrence :
$$\leq \int_{t_{0}}^{t} LML^{m-2} \frac{|\tau - t_{0}|^{m-1}}{(m-1)!} d\tau \\ &\leq ML^{m-1} \frac{|t - t_{0}|^{m}}{m!}$$

On pose
$$S(t) = x_0 + \sum_{j=1}^{\infty} (x^j(t) - x^{j-1}(t)) = \lim_{n \to +\infty} x^n(t)$$
 Or, $||x^m(t) - x^{m-1}(t)|| \le \frac{ML^{m-1}\delta^m}{m!} = a_m$ (δ dû au cylindre)
$$\frac{a_{m+1}}{a_m} = \frac{\delta L}{m+1} \xrightarrow[m \to +\infty]{} 0 < 1$$

 $\Rightarrow \sum_{m} a_{m}$ converge $\Rightarrow S(t)$ converge $\Rightarrow x^{n}(t)$ converge vers x(t).

Prouvons à présent le deuxième point :

Soit
$$u:[a,b]\to\mathbb{R},\,u\geq0,$$
 tel que $u\in\mathcal{C}^0[a,b].$
$$\exists \alpha,\beta;u(t)\leq\alpha+\beta\int_{t_0}^tu(\tau)d\tau\Rightarrow u(t)\leq\alpha\exp(\beta(t-t_0))$$

Démonstration :

 $u(t) \le \alpha + \beta \int_{t_0}^t u(\tau)d\tau = v(t).$

$$\frac{dv}{dt} = \beta u \le \beta v \ (\dot{v} - \beta v \le 0)$$
$$\frac{d}{dt} \left(e^{-\beta t} v \right) = \beta e^{-\beta t} v + e^{-\beta t} \dot{v} = e^{-\beta t} (\dot{v} - \beta v) \le 0$$

D'où $e^{-\beta t}v$ décroissante, ie pour $t > t_0$:

$$e^{-\beta t}v \leq e^{-\beta t_0}\alpha$$
$$u \leq v \leq \alpha e^{\beta(t-t_0)}$$

(Si $t_0 > t$, on obtient $u \le \alpha e^{|\beta(t-t_0)|}$)

On reprend la démonstration : Supposons x(t) et $\hat{x}(t)$ deux solutions.

$$||x(t) - \hat{x}(t)|| = ||x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau - x_0 - \int_{t_0}^t f(\tau, \hat{x}(\tau)) d\tau||$$

$$= ||\int_{t_0}^t f(\tau, x(\tau)) - f(\tau, \hat{x}(\tau)) d\tau||$$

$$\leq \int_{t_0}^t \underbrace{||f(\tau, x(\tau)) - f(\tau, \hat{x}(\tau))||}_{\leq L||x(\tau) - \hat{x}(\tau)||} d\tau$$

$$\leq 0 + L \int_{t_0}^t ||x(\tau) - \hat{x}(\tau)|| d\tau$$

D'après le théorème de Gronwall, on a :

$$||x(\tau) - \hat{x}(\tau)|| \le 0 \Rightarrow x(t) = \hat{x}(t)$$

Théorème: de Banach du point fixe

Soit (X,d) un espace métrique complet. Soit T une contraction. Alors $T:X\to X$ possède un unique point fixe x^* , ie $T(x^*)=x^*$ De plus, $X^m\xrightarrow[m\to +\infty]{}X^*$, quelque soit X^0 arbitraire, avec $X^m=T(x^{m-1})$

Démonstration (du théorème de Picard-Lindelof, avec le théorème du point fixe):

$$V_{\rho} = \{(t, x); |t - t_0| \le \rho, ||x - x_0|| < t\} \subset \mathbb{U}$$

On pose $M = \max_{(t,x) \in V_{\rho}} ||f(t,x)||$ et $\delta = \min\{\rho, \frac{b}{M}, \frac{q}{L}\}$, avec 0 < q < 1 arbitraire.

 $V_{\delta} = \{(t, x); |t - t_0| \le \delta, ||x - x_0|| < t\}$

 $\mathcal{C} = \{g : [t_0 - \delta, t_0 + \delta] \to \mathbb{X} \text{ continues } ; ||g(t) - x_0|| \le b\}$

Pour $g \in \mathcal{C}$, $||g||_{\mathcal{C}} = \max_{t \in I} ||g(t)||_2$.

Pour $g, h \in \mathcal{C}$, on pose $d(g, h) = ||g - h||_{\mathcal{C}}$.

 (\mathcal{C}, d) est un espace complet. Posons, pour $x \in \mathcal{C}$,

$$\mathcal{L}(x)(t) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau$$

 \mathcal{L} est:

1. $\mathcal{L}: \mathcal{C} \to \mathcal{C}$

2. \mathcal{L} est une contraction.

Pour montrer 1:

$$||\mathcal{L}(x)(t) - x_0|| = ||\int_{t_0}^t f(\tau, x(\tau))d\tau||$$

D'où:

$$||\mathcal{L}(x)(t) - x_0|| \le \int_{t_0}^t ||f(\tau, x(\tau))|| d\tau \le M \underbrace{|t - t_0|}_{\le \delta \le \frac{b}{bt}} \le b$$

Pour montrer 2:

$$d(\mathcal{L}(x), \mathcal{L}(x')) = || \int_{t_0}^t f(\tau, x(\tau)) d\tau - \int_{t_0}^t f(\tau, x'(\tau)) d\tau ||$$

$$\leq \int_{t_0}^t \underbrace{|| f(\tau, x(\tau)) - f(\tau, x'(\tau)) ||}_{\leq L||x - x'||} d\tau$$

$$\leq q \max_{t \in I} ||x - x'||$$

$$\leq q||x - x'||_{\mathcal{C}}$$

$$\leq q \times d(x, x')$$

 $\Rightarrow \exists! \text{ point fixe}; x(t) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau$

 $\Leftrightarrow \dot{x} = f(t, x) \text{ avec } x(t_0) = x_0$

Soit $U = J \times \mathbb{X}$ (en particulier, $U = \mathbb{R} \times \mathbb{R}^n$).

 $X(t,x_0)$ définie sur I_{x_0} est dite maximale si $\forall \tilde{X}(t,x_0)$, une autre solution, $t\in \tilde{I}_{x_0}$, on a $\tilde{I}_{x_0}\subset I_{x_0}$

$$I_{x_0} \subset I_{x_0}$$

 $X(t,x_0)$ est dite globale si $I_{x_0}=J$ (en particulier, $I_{x_0}=\mathbb{R})$

IPropriété:

Si $X(t, x_0)$ est globale, alors elle est maximale.

3 Régularité des solutions

Soit $x(t) := x(t, t_0, x_0)$ une solution du problème de Cauchy.

Si $f \in \mathcal{C}^k(U)$ alors x(t) est \mathcal{C}^{k+1} par rapport à t.

Démonstration:

Pour k=0, on a

$$\dot{x}(t) = f(t, x(t))$$

et alors x(t) est dérivable par rapport à $t. \Rightarrow x(t)$ est C^0 .

Donc f(t, x(t)) est \mathcal{C}^0 par rapport à t, donc $\dot{x}(t)$ est \mathcal{C}^0 par rapport à t, et donc x(t) est \mathcal{C}^1 par rapport à t.

Supposons x(t) \mathcal{C}^l par rapport à t, $l \leq k$. On a $f \in \mathcal{C}^l$. Alors, x(t) est \mathcal{C}^{l+1} .

Posons $Z(t, x_0) = \frac{\partial X(t, t_0, x_0)}{\partial x_0} \in \mathcal{M}_n$ (matrice jacobienne).

⇒ Théorème:

- Soit $f \in \mathcal{C}^2(U)$. 1. $X(t,t_0,x_0)$ est \mathcal{C}^1 par rapport à x_0 2. $Z(t,x_0)=Z(t)$ satisfait l'équation différentielle $\dot{Z}=A(t)Z$, où $z(t_0)=Id$ et $A(t)=\frac{\partial f(t,X(t))}{\partial x}$ 3. Si $f \in \mathcal{C}^k(U)$ alors $X(t,t_0,x_0)$ est \mathcal{C}^{k-1} par rapport à X_0

Démonstration:

$$\dot{x} = f(t, x), \ x(t_0) = x_0.$$

$$\dot{z} = \frac{\partial f}{\partial x}(t, x)z, \ z(t_0) = Id.$$

D'après le théorème de Picard-Linderlöf, il existe (x(t), z(t)) solution et

$$x^{m}(t) = x_{0} + \int_{t_{0}}^{t} f(\tau, x^{m-1}(\tau)) d\tau \xrightarrow[m \to +\infty]{} x(t)$$

$$z^{m}(t) = x_{0} + \int_{t_{0}}^{t} \frac{\partial f}{\partial x}(\tau, x^{m-1}(\tau)) z^{m-1}(\tau) d\tau \xrightarrow[m \to +\infty]{} z(t)$$

On veut démontrer que $\frac{\partial x^m(t)}{\partial x_0}=z^m(t)$ par récurrence. Pour m=0, $x^0(t)=x_0,\ z^0=Id$ et $\frac{\partial x^0}{\partial x_0}=Id=z^0$

Supposons $\frac{\partial x^{m-1}}{\partial x_0} = z^{m-1}(t)$.

$$\begin{split} \frac{\partial x^m(t)}{\partial x_0} &= \frac{\partial}{\partial x_0} \left(x_0 + \int_{t_0}^t f(\tau, x^{m-1}(\tau)) d\tau \right) \\ &= Id + \int_{t_0}^t \frac{\partial f(\tau, x^{m-1}(\tau))}{\partial x_0} d\tau \\ &= Id + \int_{t_0}^t \frac{\partial}{\partial x} (f(\tau, x^{m-1}(\tau))) \frac{\partial x^{m-1}(\tau)}{\partial x_0} d\tau \\ &= Id + \int_{t_0}^t \frac{\partial}{\partial x} (f(\tau, x^{m-1}(\tau))) z^{m-1}(\tau) d\tau \\ &= z^m(t) \end{split}$$

On fait tendre m vers plus infini, et on trouve :

$$\frac{\partial x(t)}{\partial x_0} = z(t)$$

On pose à présent $\dot{x} = f(t, x, \lambda)$, avec $(t, \lambda) \in U$ et $\lambda \in \Lambda \subset \mathbb{R}^p$ (p paramètres).

- Soit $f \in \mathcal{C}^2(U \times \Lambda)$. Alors

 1. $X(t, t_0, X_0, \lambda)$ est \mathcal{C}^1 par rapport à λ 2. $Z(t, x_0, \lambda) = Z(t)$ satisfait l'équation différentielle $\dot{Z} = A$

$$\dot{Z} = A(t)Z + B(t)$$

où
$$A(t) = \frac{\partial f(t,x(t),\lambda)}{\partial x}$$
, $B(t) = \frac{\partial f(t,x(t),\lambda)}{\partial \lambda}$ et $z(t_0) = 0_{\mathcal{M}_{m \times p}}$

4 Transformations

$$\dot{x} = f(x), \ x \in \mathbb{X}$$

Supposons que $\forall x_0$, la solution $x(t, x_0)$ existe $\forall t \in \mathbb{R}$.

Posons $\gamma_t(x_0) = x(t, x_0)$.

- $\gamma_t \text{ satisfait}:$ 1. $\gamma_0(x_0) = x_0$ 2. $\gamma_s(\gamma_t(x_0)) = \gamma_{s+t}(x_0) = \gamma_{t+s}(x_0)$ 3. $\gamma_{-t}(\gamma_t(x_0)) = x_0 \Rightarrow (\gamma_t)^{-1} = \gamma_{-t}$

 $\{\gamma_t, t \in \mathbb{R}\}\$ forment un groupe à 1 paramètre de transformation de X. On appelle $\gamma_t(x_0)$ le flot de $\dot{x} = f(x)$.

Troisième partie

Les équations linéaires

♣ Définition: Équations linéaires homogènes

$$\dot{x}(t) = Ax(t) \text{ où } x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \ A \in \mathcal{M}_n(\mathbb{R}) \text{ Pour } 1 \le i \le n :$$

$$\dot{x_i} = \sum_{j=1}^n a_{ij} x_j$$
 où $A = (a_{ij})_{1 \le i, j \le n}$

Les équations sont :

- linéaires
- homogènes
- autonomes

Le problème de Cauchy possède-t-il une solution?

D'après le théorème de Picard-Linderlöf, $\dot{x} = Ax$, $x(0) = x_0$ possède une solution, car :

- $-f(x) = Ax \in \mathcal{C}^0(\mathbb{R}^n)$
- -f(x) est lipschitzienne car :

$$||f(x) - f(\tilde{x})|| = ||A(x - \tilde{x})|| \le ||A|| \times ||x - \tilde{x}||$$

Alors $x(t,x_0)$ existe, est unique et définie globalement. Mais comment trouver $x(t,x_0)$?

♣ Définition: Exponentielle de matrice

$$e^A = \sum_{i=0}^{\infty} \frac{A^i}{i!}$$

1 Propriété:

 e^A est bien définie, ie $e^A:\mathbb{R}^n\to\mathbb{R}^n$ est une application linéaire bien définie

Démonstration:

Pour montrer la convergence, regardons la somme partielle :

$$\begin{split} ||x+Ax+\ldots+\frac{A^k}{k!}x|| & \leq & ||Id+A+\ldots+\frac{A^k}{k!}||\times||x|| \\ & \leq & \sum_{i=0}^k ||\frac{A^k}{k!}||\times||x|| \\ & \leq & \sum_{i=0}^l \frac{a^k}{k!}\times||x|| \text{ en posant } a=||A|| \\ & \leq & e^a||x|| \end{split}$$

D'où:

$$\frac{||e^Ax||}{||x||} \le e^a$$

Donc e^A est bien définie. La linéarité est immédiate. QED.

⇒ Théorème:

La solution $x(t, x_0)$ de $\dot{x} = Ax$ est $x(t, x_0) = e^{At}x_0$

Démonstration:

$$\frac{d}{dt}x(t,x_0) = \frac{d}{dt}\left(Id + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots\right)x_0$$

$$= \left(A + A^2t + \frac{A^3t^2}{2!} + \dots\right)x_0$$

$$= Ae^{At}x_0$$

$$= Ax(t,x_0)$$

1 Changement de repère

On pose y = Tx où $T: \mathbb{R}^n \to \mathbb{R}^n$ inversible, $T \in \mathcal{M}_n(\mathbb{R})$

Ainsi, $\dot{y} = TAT^{-1}y = \tilde{A}y$

De même; on pose w = Tz, ce qui nous donne : $\dot{w} = TAT^{-1}w$

⇒ Théorème:

$$e^{\tilde{A}t} = Te^{At}T^{-1}$$

La solution transformée résoud l'équation transformée.

Démonstration:

$$\begin{array}{lcl} e^{\tilde{A}t} & = & e^{TAT^{-1}t} \\ & = & Id + TAT^{-1}t + \frac{(TAT^{-1}t)^2}{2!} + \frac{(TAT^{-1}t)^3}{3!} + \dots \\ & = & Id + TAT^{-1}t + \frac{TA^2T^{-1}t^2}{2!} + \frac{TA^3T^{-1}t^3}{3!} + \dots \end{array}$$

$$\begin{split} Te^{At}T^{-1} &= T\left(Id + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots\right)T^{-1} \\ &= Id + TAT^{-1}t + \frac{TA^2Tt^2}{2!} + \frac{TA^3T^{-1}t^3}{3!} + \dots \end{split}$$

2 Comment calculer e^{At} ?

Supposons A diagonalisable. $\exists T : \mathbb{R}^n \to \mathbb{R}^n$:

$$\tilde{A} = TAT^{-1} = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

 $\Rightarrow T^{-1}e^{\tilde{A}t}T = e^{At}$, avec :

$$e^{\tilde{A}t} = \begin{pmatrix} e^{\lambda_1 t} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\lambda_n t} \end{pmatrix}$$

Maintenant, si A n'est pas diagonalisable :

⇔ Théorème: de Jordan

Il existe $T: \mathbb{C}^n \to \mathbb{C}^n$ tel que :

$$TAT^{-1} = \tilde{A} = \begin{pmatrix} D_1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & D_L & 0 & \cdots & 0 \\ 0 & \cdots & 0 & J_1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & J_K \end{pmatrix}$$

où :

$$D_{j} = \underbrace{\begin{pmatrix} \lambda_{j} & 0 \\ & \ddots & \\ 0 & \lambda_{j} \end{pmatrix}}_{v_{j}} J_{k} = \underbrace{\begin{pmatrix} \lambda_{k} & 1 & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & \lambda_{k} \end{pmatrix}}_{\mu_{j}}$$

avec D_j et J_k deux matrices carrées dont la taille est celle de la multiplicité de la racine $(v_j$ et $\mu_j)$.

$$n = v_1 + \dots + v_L + \mu_1 + \dots + \mu_k$$

A chaque bloc D_i correspond v_i vecteurs propres. (vecteurs de la base canonique)

A chaque J_K correspond un vecteur propre.

A chaque valeur propre λ_k de multiplicité μ_k correspond un bloc de Jordan s'il y a moins de μ_k vecteurs propres indépendants correspondant à λ_k .

Exemple:

Soit n=1, λ une valeur propre de multiplicité 4.

- 1er cas : 4 vecteurs propres indépendants :

$$\tilde{A} = \begin{pmatrix} \lambda & & 0 \\ & \lambda & \\ & & \lambda \\ 0 & & \lambda \end{pmatrix}$$

– 2ème cas : 3 vecteurs propres indépendants e_1, e_2, e_3 :

$$\begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

-3ème cas : 2 vecteurs indépendants e_1 et e_3 :

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

– 4ème cas : 2 vecteurs indépendants e_1 et e_3 :

$$\begin{pmatrix} \lambda & & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

– 5ème cas : 1 seul vecteur indépendant e_1 :

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

 \Rightarrow Lemme:

$$e^{\tilde{A}} = \begin{pmatrix} e^{D_1} & & & & & 0 \\ & \ddots & & & & \\ & & e^{D_L} & & & \\ & & & e^{J_1} & & \\ & & & \ddots & \\ 0 & & & & e^{J_k} \end{pmatrix}$$

Démonstration : Soit $\tilde{A} = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$.

$$\begin{split} \tilde{A}^2 &= \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} = \begin{pmatrix} A_1^2 & 0 \\ 0 & A_2^2 \end{pmatrix} \\ \tilde{A}^k &= \begin{pmatrix} A_1^k & 0 \\ 0 & A_2^k \end{pmatrix} \end{split}$$

Tous les résultats s'en suivent par récurrence immédiate.

1 Propriété:

Soit $J=\lambda Id+N$ où

$$N = \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 \end{pmatrix}$$

alors

$$e^{Jt} = \begin{pmatrix} e^{\lambda t} & te^{\lambda t} & \cdots & \frac{t^{n-1}}{(n-1)!}e^{\lambda t} \\ & \ddots & \ddots & \vdots \\ & & \ddots & te^{\lambda t} \\ 0 & & & e^{\lambda t} \end{pmatrix}$$

Démonstration:

Si AB=BA $\Rightarrow e^{A+B} = e^A e^B$ N est une matrice nilpotente : on a $N^{\mu} = 0$, avec μ la taille de la matrice.

$$e^{Nt} = \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{\mu-1}}{(\mu-1)!} \\ & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t^2}{2!} \\ & & & \ddots & t \\ 0 & & & 1 \end{pmatrix}$$

3 Résolution des systèmes

 $\dot{y}=\tilde{A}y$ admet donc comme solution au problème de Cauchy $y(t)=e^{\tilde{A}t}y_0$ $y(t)\in\mathbb{C}^n$ est une combinaison linéaire de $e^{\lambda_j t},\,1\leq j\leq L$ et de $e^{\lambda_i t},te^{\lambda_i t},...,t^{\mu_i-1}e^{\lambda_i t},\,1\leq i\leq k$

⇔ Lemme:

Si $y(t) \in \mathbb{C}^n$ est une solution de $\dot{y} = Ay$ alors $\Re(y(t)) \in \mathbb{R}^n$ et $\Im(y(t)) \in \mathbb{R}^n$ sont des solutions de $\dot{y} = Ay$, $y \in \mathbb{R}^n$

Démonstration:

On a $y(t) = v(t) = iw(t) \in \mathbb{C}^n$ et :

$$\dot{y}(t) = \frac{d}{dt}(v(t) + iw(t))$$

$$= \frac{d}{dt}v(t) + i\frac{d}{dt}w(t)$$

$$= A(v(t) + iw(t))$$

$$= Av(t) + iAw(t)$$

D'où $\dot{v}(t) = Av(t)$ et $\dot{w}(t) = Aw(t)$

Conclusion : $y(t) \in \mathbb{R}^n$ solution de $\dot{y}(t) = Ay(t), y \in \mathbb{R}^n$ est exprimé par :

- Si
$$\lambda_j \in \mathbb{R} : e^{\lambda_j t}$$

- Si $\lambda_j = \alpha_j + i\beta_j \in \mathbb{C} : e^{(\alpha_j + i\beta_j)t} = e^{\alpha_j t} (\cos \beta_j t + i \sin \beta_j t)$

Ainsi, par la conclusion précédente sur les combinaisons linéaires : $-\ \lambda_j \in \mathbb{R}: e^{\lambda_j t},\ te^{\lambda_j t},...,\ t^{\mu_j-1}e^{\lambda_j-1}$

$$-\lambda_i \in \mathbb{R}: e^{\lambda_j t}, te^{\lambda_j t}, ..., t^{\mu_j - 1}e^{\lambda_j - 1}$$

$$-\lambda_j \in \mathbb{C}: e^{\alpha_j t} \cos \beta_k t, ..., t^{\mu_k - 1} \cos(\beta_k t) e^{\alpha_k t} \text{ et } e^{\alpha_j t} \sin \beta_k t, ..., t^{\mu_k - 1} \sin(\beta_k t) e^{\alpha_k t}$$

x=Ty est combinaire linéaire de tout cela.

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

IPropriété:

Tr(A) ne dépend pas de la base choisie.

Démonstration:

$$\det(A - \lambda Id) = \begin{vmatrix} a_{11} - \lambda & a_{ij} \\ & \ddots \\ a_{ij} & a_{nn} - \lambda \end{vmatrix}$$

$$= (-\lambda)^n + (-\lambda)^{n-1} \sum_{i=1}^n a_{ii} + \dots$$

$$= (\lambda_1 - \lambda)(\lambda_2 - \lambda) \dots (\lambda_n - \lambda)$$

$$= (-\lambda)^n + (-\lambda)^{n-1} \sum_{i=1}^n \lambda_i + \dots$$

$$\Rightarrow \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i$$

⇔ Corollaire:

1.
$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

2.
$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

1 Propriété:

1.
$$e^{\operatorname{Tr}(A)} = \det e^A$$

- 2. e^A est toujours inversible
- 3. e^A préserve l'orientation
- 4. $A=-A^T$ (A antisymétrique) \Rightarrow det $e^A=1$ 5. $A=-A^T$ \Rightarrow e^A est une matrice orthogonale

Démonstration:

1. $\exists T : \mathbb{C}^n \to \mathbb{C}^n$;

$$TAT^{-1} = \tilde{A} = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \ddots & & \vdots \\ & & \ddots & \vdots \\ 0 & & & \lambda_n \end{pmatrix}$$

$$\operatorname{Tr}(\tilde{A}) = \sum_{i=1}^n \lambda_i \Rightarrow e^{\operatorname{Tr}(\tilde{A})} = \prod_{i=1}^n e^{\lambda_i}$$

$$e^{\tilde{A}} = \begin{pmatrix} e^{\lambda_1} & * & \cdots & * \\ & \ddots & & \vdots \\ & & \ddots & \vdots \\ 0 & & & e^{\lambda_n} \end{pmatrix}$$

$$\det e^{\tilde{A}} = \prod_{i=1}^n e^{\lambda_i} = \operatorname{Tr}(\tilde{A})$$

On a $A = T^{-1}AT$

$$\det(e^A) = \det(e^{T^{-1}\tilde{A}T}) = \det(T^{-1}e^{\tilde{A}T}) = \det e^{\tilde{A}} = e^{\sum_{i=1}^n \lambda_i} = e^{\operatorname{Tr}(A)}$$

- 2. $\det e^A > 0$ (d'après 1) $\Rightarrow e^A$ inversible.
- 3. Soit \mathbb{R}^n accompagné de sa base $(B_1,...,B_n) = \mathcal{B}$.
- $\{\mathcal{B}\}$: ensemble des bases.

$$\{\mathcal{B}\} = \{\mathcal{B}'\} \cup \{\mathcal{B}''\}$$

 \mathcal{B}' : base directe. \mathcal{B}'' : base indirecte.

$$B'_1 \xrightarrow{T} B'_2 : \det T > 0$$

 $B''_1 \xrightarrow{T} B''_2 : \det T > 0$
 $B'_1 \xrightarrow{T} B''_1 : \det T < 0$

 $\det e^A > 0 \implies e^A : \mathbb{R}^n \to \mathbb{R}^n$ conserve l'orientation.

4. On a forcément

$$A = \begin{pmatrix} 0 & a_{ij} \\ & \ddots \\ -a_{ji} & 0 \end{pmatrix}$$
$$\operatorname{Tr}(A) = \sum_{i=1}^{n} 0 = 0 \Rightarrow \det e^{A} = e^{\operatorname{Tr}(A)} = 1$$

5.

$$A + A^T = 0 \Rightarrow e^{A + A^T} = Id$$

= $e^A e^{A^T}$

Or, $(e^A)^T = e^{A^T}$, donc :

$$Id = e^A (e^A)^T \Rightarrow e^A$$
 orthogonale

⇔ Théorème: de Liouville

On passe d'un espace B à \tilde{B} défini ainsi :

$$\tilde{B} = \{ \gamma_t(x_0), x_0 \in B \} = \{ e^{At} x_0, x_0 \in B \} = e^{At} B$$

On a alors :

$$\operatorname{Vol}(\tilde{B}) = e^{\operatorname{Tr}(A)t} \operatorname{Vol}(B)$$

${\bf D\'{e}monstration:}$

On prend $B = B_{\rho} = (\rho_1, ..., \rho_n)$

$$\begin{aligned} \operatorname{Vol}(\tilde{B}_{\rho}) &= \operatorname{Vol}(e^{At}B_{\rho}) \\ &= \det(e^{At}\rho) \\ &= \det(e^{A}t) \times \det(\rho) \\ &= e^{\operatorname{tr}(A)t} \times \det(\rho) \\ &= e^{\operatorname{Tr}(A)t} \times \operatorname{Vol}(B_{\rho}) \end{aligned}$$

Quatrième partie

Stabilité des équations linéaires

 $\dot{x} = Ax; \ x \in \mathbb{R}^n, \ x(t, x_0) = e^{At}x_0$ $0 = x_0$, un point d'équilibre.

⇔ Lemme:

Soit $\omega > \Lambda$, avec $\Lambda = \max_{\lambda_i \in \sigma(A)} \Re(\lambda_i)$. Alors $\exists M; ||x(t, x_0)|| \le e^{\omega t} ||x_0||$

Démonstration:

A reprendre.

⇔ Théorème:

Les conditions suivantes sont équivalentes :

- 1. $x(t, x_0) \xrightarrow[t \to +\infty]{} 0$, $\forall x_0 \in \mathbb{R}^n$ (stabilité asymptotique)
- 2. $\exists M > 0, \ \exists K > 0; \ \|x(t, x_0)\| \le Me^{-kt} \|x_0\|, \ \forall x_0 \in \mathbb{R}^n$ 3. $\Lambda < 0, \text{ où } \Lambda = \max_{\lambda_i \in \sigma(A)} \Re(\lambda_i)$

x est dit asymptotiquement stable si et seulement si A est asymptotiquement stable.

Démonstration:

A reprendre

 $x_e \in \mathbb{R}^n$ est un point d'équilibre (ou point stationnaire) si $\forall t, f(t, x_e) = 0$.

1 Propriété: Solution passant par un point d'équilibre

Soit $x(t,t_0,x_0)$ la solution de $\dot{x}=f(t,x)$ passant par x_0 en t_0 . La solution $x(t) = x(t, t_0, x_0)$ passant par un point d'équilibre x_e est $\forall t, x(t) = x_e$

Démonstration : On a $\frac{dx(t)}{dt} = \frac{d}{dt}x_e = 0$ et de l'autre côté, $f(t,x(t)) = f(t,x_e) = 0$, donc x(t) passe par x_e

♦ Définition: Stabilité

Un point d'équilibre $x_e \in \mathbb{R}^n$ est dit stable si

$$\forall \varepsilon > 0, \ \exists \delta = \delta(x_0, t_0), \forall t > t_0, \|x_0 - x_e\| < \delta \Rightarrow \|x(t, t_0, x_0) - x_e\| < \varepsilon$$

- Le point d'équilibre x_e est dit asymptotiquement stable si : x_e est stable $\|x(t,t_0,x_0)-x_e\| \xrightarrow[t\to+\infty]{} 0, \forall x_0 \text{ tel que } \|x_0-x_e\| < \delta = \delta(t_0)$

 $\dot{x} = f(t, x), x_e$ point d'équilibre. On peut supposer $x_e = 0$ (sinon, on pose $\tilde{x} = x - x_e$ et on a $\tilde{x}_e = 0$). Considérons $\dot{x} = f(t, x)$ et $x_e = 0$ un point d'équilibre. On a $\dot{x} = f(t, x) = Ax + B(t)x + g(t, x)$.

⇒ Théorème: de Liapounov

Supposons que $||B(t)|| \xrightarrow[t \to +\infty]{} 0$ et $\frac{||g(t,x)||}{||x||} \xrightarrow[||x|| \to 0]{} 0$ Soit $\Re(\lambda_i) < 0, \forall \lambda_i \in \sigma(A)$. Alors : $\exists M, k > 0; \forall t \text{ suffisament grand}; \forall ||x_0|| < \delta, ||x(t,x_0)|| \leq Me^{-k(t-t_0)} ||x_0||$

$$\exists M, k > 0; \forall t \text{ suffisament grand}; \forall ||x_0|| < \delta, ||x(t, x_0)|| < Me^{-k(t-t_0)} ||x_0||$$

(en particulier, $x_e=0$ est localement asymptotiquement stable) (Revoir le résultat du théorème)

Démonstration:

$$\frac{\|g(t,x)\|}{\|x\|} \xrightarrow{\|x\| \to 0} 0 \Rightarrow \|g(t,x)\| \le b(\delta)\|x\|, \forall \|x\| < \delta \text{ et } b(\delta) \xrightarrow{\delta \to 0} 0$$

$$\|B(t)\| \xrightarrow{t \to +\infty} 0 \Rightarrow \|B(t)\| < b(\delta), \forall t \ge t_0 \text{ suffisament grand}$$

$$x = e^{A(t-t_0)}z \Leftrightarrow z = e^{A(t_0-t)}x$$

$$\dot{x} = \underbrace{Ae^{A(t-t_0)}z}_{=0} + e^{A(t-t_0)}\dot{z}$$

$$= f(t,x) = Ax + B(t)x + g(t,x)$$

$$\dot{z} = e^{A(t_0-t)}(B(t)x + g(t,x))$$

$$z(t) - z(t_0) = \int_{t_0}^t e^{A(t_0-\tau)}(B(\tau)x + g(\tau,x))d\tau$$

$$x(t) = e^{A(t-t_0)} + \int_{t_0}^t e^{A(t_0-\tau)}(B(\tau)x + g(\tau,x))d\tau$$

Or, $\Re(\lambda_i) < 0 \Rightarrow \exists M, \tilde{k} > 0; ||e^{At}|| \leq Me^{-\tilde{k}t}$

$$||x(t)|| \leq Me^{-\tilde{k}(t-t_0)}||x_0|| + \int_{t_0}^t Me^{-\tilde{k}(t_0-\tau)}(||B(\tau)|||x|| + ||g(\tau,x)||d\tau$$

$$||x(t)||e^{\tilde{k}(t-t_0)}| \leq M||x_0|| + \int_{t_0}^t e^{A(t_0-\tau)} 2b(\delta)||x(\tau)||d\tau$$

On applique le lemme de Gronwall sur $||x(t)||e^{\tilde{k}(t-t_0)}$:

$$\alpha = M \|x_0\|, u(t) = \|x(t)\| e^{\tilde{k}(t-t_0)}, \beta = 2Mb(\delta)$$
$$\|x(t)\| e^{\tilde{k}(t-t_0)} \le M \|x_0\| e^{2Mb(\delta)(t-t_0)}$$
$$\|x(t)\| \le M \|x_0\| e^{(2Mb-\tilde{k})(t-t_0)}$$

Si δ suffisament petit, $b \to 0$. Ainsi, si on est assez proche de x, $2Mb\delta - \tilde{k} < 0$

⇔ Théorème:

Sous les mêmes hypothèses,

$$\exists \lambda_j; \ \Re(\lambda_j) > 0 \Rightarrow x_e = 0 \text{ non stable}$$

 $V: \mathfrak{X}(\subset \mathbb{R}^n) \to \mathbb{R}, \ V(0) = 0$ est la fonction de Liapounov.

V définie positive si $V(x) > 0 \forall x \in \mathfrak{X}^*$.

V définie négative si $V(x) < 0 \forall x \in \mathfrak{X}*.$

V semi-définie positive si $V(x) \ge 0 \forall x \in \mathfrak{X}$.

V semi-définie négative si $V(x) \leq 0 \forall x \in \mathfrak{X}$.

♦ Définition:

La dérivée de V le long de f est :

$$\frac{d}{dt}V(x(t)) = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} \frac{d}{dt} x_i(t)$$

$$= \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} (x(t)) f_i(t, x(t))$$

$$= \left(\frac{\partial V}{\partial x_1} \cdots \frac{\partial V}{\partial x_n}\right) \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$$

 $L_f V = \sum_{i=1}^n \frac{\partial V}{\partial x_i} f_i$ (dérivée orbitale)

⇔ Théorème:

 $\dot{x}=f(t,x),\ x_e=0\ {\rm point\ d'\'equilibre}.$ Supposons que f soit $\mathcal{C}^1.$

$$\exists V \in \mathcal{C}^1; V(0) = 0, V > 0, L_f V \leq 0 \Rightarrow x_e = 0$$
 stable.

Démonstration:

On veut:

$$\forall \varepsilon > 0, \exists \delta > 0; \|x_0 - x_e\| < \delta \Rightarrow \|x(t, x_e) - x(t, x_e)\| < \varepsilon$$
$$\|x_0\| < \delta \Rightarrow \|x(t, x_0)\| < \varepsilon$$

 $\exists R \text{ tel que } \{x; ||x|| \leq R\} \subset \mathfrak{X} \text{ et que dans cet ensemble, } V(x) > 0etL_fV(x) \leq 0$

Fixons $\varepsilon > 0$; $B := \{x; \ \varepsilon ||x|| \le R\}$.

Posons $m = \min_{x \in B} V(x) > 0$ (m exists car V est \mathcal{C}^1 et B complet). $\exists \delta; \forall x \in S = \{x; ||x|| < \delta\}, \ V(x) < m \ (\text{car } V(0) = 0).$

On aimerait avoir $x_0 \in S \Rightarrow ||x(t, x_0)|| \le \varepsilon$. Supposons le contraire. $\exists t_1 \text{ (1er moment après } t_1 \text{ tel que } ||x(t, x_e)|| = \varepsilon.$

$$\int_{t_0}^{t_1} \frac{d}{dt} V(x(t)) dt = V(x(t-1)) - V(x(t_0))$$

$$= \int_{t_0}^{t_1} L_f V(x(t)) dt$$

$$\leq 0$$

$$\Rightarrow V(x(t_1)) \le V(\underbrace{x(t_0)}) < m \Rightarrow \text{ Contradiction !}$$

Donc $||x(t)|| < \varepsilon$

Sous les mêmes hypothèses,

$$\exists V \in \mathcal{C}^1(\mathfrak{X}); V > 0, L_f V < 0 \Rightarrow x_e = 0$$
 localement asymptotiquement stable

 $\exists V \in \mathcal{C}^1(\mathfrak{X}); V > 0, L_fV < 0 \Rightarrow x_e = 0 \text{ localement asymptotiquement stable}$ Si de plus, $\mathfrak{X} = \mathbb{R}^n$ et V est radially unbounded $(V(x) \xrightarrow{\|x\| \to \infty} \infty)$ alors ce point est globalement asymptotique-

Démonstration:

Nous devons prouver que $X(t) \xrightarrow[t \to +infty]{} 0.$ On observe que :

$$V(x(t)) \xrightarrow[t \to +\infty]{} 0 \leftrightarrow x(t) \xrightarrow[t \to +\infty]{} 0$$

(car V s'annule uniquement en 0)

Or,
$$L_f V(x(t)) < 0 \implies V(x(t))$$
 décroit avec le temps
$$\Rightarrow V(x(t)) \ge b \ge 0$$

Prouvons que b = 0. Suppsons donc le contraire : b > 0.

$$\exists a > 0$$
; $||x(t)| \ge a$ (vu que $V(x(t)) \ge b$)

Notons $A = \{x; \ a \le ||x|| \le R\}$ et $-\mu = \max_{x \in A} L_f V(x) < 0$.

$$\int_{t_0}^{t} \frac{d}{dt} V(x(s)) ds = V(x(t)) - V(x(t_0))$$

$$= \int_{t_0}^{t} \underbrace{L_f V(x(s))}_{leau} ds$$

$$\Rightarrow V(x(t)) \le V(x(t_0)) - \mu(-t_0) < 0$$
 pour t suffisament grand.

Conradiction!

Cinquième partie

Systèmes hamiltoniens

riangle Définition:

Un système hamiltonien dans \mathbb{R}^{2n} muni des coordonnées $(q_1,...,q_n,p_1,...,p_n)$ est :

$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}}$$

$$\dot{p}_{i} = -\frac{\partial H}{\partial q_{i}}$$

 $\forall 1 \leq i \leq n$ où $H: \mathbb{R}^{2n} \to \mathbb{R}, \ \mathcal{C}^1$ est appellé l'hamiltonien.

♦ Définition:

 $I: \mathfrak{X} \to \mathbb{R}$ est une intégrale première de $\dot{x} = f(x)$ si $I(x(t, x_0)) = c \ \forall t$

1 Propriété:

I est une intégrale première si et seulement si $L_f I = 0$

Démonstration:

I intégrale première si et seulement si $I(x(t,x_0))=c$ donc si et seulement si $\frac{d}{dt}I(x(t,x_0))=0$.

$$\Leftrightarrow \sum_{i=1}^{n} \frac{\partial I}{\partial x_i}(x(t, x_0)) f_i(t, x, x_0) = 0 \ \forall x_0 \Leftrightarrow L_f I = 0$$

I Propriété:

H est une intégrale première de son système hamiltonien.

Démonstration:

On doit montrer que $L_f H = 0$.

$$L_f H = \sum_{i=1}^n \frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} + \sum_{i=1}^n \frac{\partial H}{\partial p_i} \left(-\frac{\partial H}{\partial q_i} \right) = 0$$

Soit $(q_e, p_e) = x_e$ un point d'équilibre. On peut supposer que $(q_e, p_e) = (0, 0)$. Supposons que H(0, 0) = (0, 0) (sinon, on pose $\tilde{H} = H - H(0, 0)$ et le système d'équations hamiltoniennes ne change pas).

- Si dans un voisinage de (0,0), H est définie positive alors le système est stable en (0,0) Si dans unn voisinage de (0,0), H est définie négative, alors le système est stable en (0,0)(dans les deux cas : pas de stabilité asymptotique!)

Démonstration:

Il suffit de poser dans le premier cas V = H et dans le deuxième cas V = -H.

$$(q, p) \in \mathbb{R}^2$$
, avec $H = \frac{1}{2}p^2 + \phi(q)$

- (q,p) ∈ R², avec H = ½p² + φ(q)
 1. (q_e, p_e) est un point d'équilibre du système hamiltonien si et seulement si p_e = 0 et φ'(q_e) = 0
 2. Si φ"(q_e) > 0 ⇒ q_e stable Si φ"(q_e) < 0 ⇒ q_e instable

Démonstration:

$$\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m} = 0 \Leftrightarrow p = 0$$
$$\dot{p} = -\frac{\partial H}{\partial q} = -\phi'(q) = 0 \Leftrightarrow \phi'(q) = 0$$

Supposons $q_e=0$. On peut aussi supposer que $\phi(q_e)=\phi(0)=0$ (Sinon, on pose $\tilde{\phi}=\phi-\phi(q_e)$)

Autour de $q_e = 0$, on a :

$$\phi(q) = \phi(0) + \phi'(0)q + \frac{1}{2}\phi'''(0)q^2 + o(q^3)$$

$$= \frac{1}{2}q^2 + o(q^3)$$

$$= \frac{1}{2}(b + o(q))$$

Si b>0:

On pose $\tilde{q} = q(b + o(q))^{\frac{1}{2}}$. Ainsi, $\phi(q) = \frac{1}{2}\tilde{q}^2$ On coordonnées (\tilde{q}, p) , on a :

$$H = \frac{1}{2m}p^2 + \frac{1}{2}\tilde{q}^2$$

qui est une intégrale première. donc

$$H(x(t)) = H\left(\begin{pmatrix} \tilde{q}(t) \\ p(t) \end{pmatrix} \ \right) = cste$$

En traçant cela, on obtient des ellipses. La stabilité est immédiate. Si b<0:

$$\phi(q) = -\frac{1}{2}q^2(-b + o(q)) = -\frac{1}{2}\tilde{q}^2$$

avec $\tilde{q} = q(-b + o(q))^{\frac{1}{2}}$

En coordonnées (\tilde{q}, p) , on a

$$H(x(t)) = \frac{1}{2m}p^2 - \frac{1}{2}\tilde{q}^2 = cste$$

car c'est une intégrale première. On retrouve des hyperboles, d'où le fait que ce soit instable.

⇔ Corollaire:

$$\begin{cases} \dot{x} &= y \\ \dot{y} &= f(x) \end{cases}$$

2. (x_e,y_e) point d'équilibre si et seulement si $y_e=0,\,f(x_e)=0$

3. Si $f'(x_e) > 0 \Rightarrow (x_e, 0)$ instable Si $f'(x_e) < 0 \Rightarrow (x_e, 0)$ stable

Démonstration:

$$H(x,y) = \frac{1}{2}y^2 - \int_0^x f(x)dx$$

Et on utilise le théorème précédent! Pour le troisième point, on pose $\phi'(x_e) = -f(x_e)$

⇔ Théorème:

Pour le système mécanique général

$$H = \frac{1}{2} \sum_{i=0}^{n} \frac{p_i^2}{m_i} + \phi(q), \ \phi(q) = \phi(q_0, ..., q_n)$$

1. (q_e,p_e) point d'équilibre si et seulement si $p_e=0$ et $\forall 0\leq i\leq n,\ \frac{\partial\phi}{\partial q_i}(q_e)=0$

2. Si ϕ possède en q_e un minimum strict local alors le système est stable en q_e 3. Soient $q_e e=0,\,\phi(0)=0$ et

$$\phi(q) = -\sum_{i=0}^{n} a_i q_i^{2k} + O(|q|^{2k+1})$$

telle qu'en $q=0,\,\phi$ admet un maximum. Alors le système n'est pas stable.