

STAT 6519- Regression Models

PREDICTION MODEL OF REAL ESTATE SALES PRICE

Submitted to:

Dr. Zhaozhi Fan

Submitted by:

Md Rakibul Alam ID No. 201794937 Towhidul Islam ID No. 201995392 Shajib Kumar Guha ID No. 201893129

Table of Content

Executive Summary	1
Introduction	1
Objective	1
Literature Review	1-2
Regression Model	1
R and Rstudio	1
ANOVA	2
Multicollinearity	2
\mathbb{R}^2	2
Model Adequacy Check	2
Transformation	3
Outlier, Leverage points and Influential points	2-3
Methodology & Interpretation	3-
Data Cleaning	4
ANOVA for Model-1	5
Multicollinearity Check for Model-1	5
ANOVA for Model-2	6
Initial Fit (R ² and adjustedR ²)	6
Model Adequacy Check for Model-2	7
Transformation of Model-2	7-8
Identification of Leverage points and Influential points	9
Removal of Influential Points and Model 2_3	10
Conclusion	10
Appendix	11-25

List of Figures

Figure-1: QQplot for normality test (left) & Residual Plot (right)	7
Figure-2: QQplot for normality test & Residual Plot for Model 2_1	8
Figure-3: QQplot for normality test & Residual Plot for Model 2_2	8
Figure-4: Residual Plot for Model 2_2 (showing COVRATIO limit)	9
Figure-5: QQplot for normality test & Residual Plot for Model 2_3	10
Figure-6: Residual Plot for Model 2 3 (showing COVRATIO limit)	10

List of Tables

Table-1: Description of Dataset	3
Table-2: Summary Statistics	5
Table-3: Data format conversion	4
Table- 4: Analysis of Variance Table for Model-1	5
Table- 5: Multicollinearity Check for Model-1	6
Table- 6: Analysis of Variance Table for Model-2	6

1 Executive Summary

Regression analysis is one of the most widely used techniques for analyzing multifactor data. It has broad area and usefulness from the conceptually logical process of using to express the relationship between a variable of interest and a set of related predictor variables. Computing plays an important role in regression analysis. In our project R language under RStudio IDE has been used. We predict the residential homes sales price in a mid-western city as a function of various characteristics of the home and surrounding property. 522 sets of data along with 12 variables have been used initially to fit the model. Issues such as multicollinearity has been observed. Residual analysis has been applied to the reduced model and tried to follow the pattern to determine whether the transformation is needed or not. In this work, we also checked possible outliers, high leverage points, and influential points using diagonal elements of hat matrix, COOK'S D, DFFITS, DFBETAS and COVRATIO. On the base of these analyses, 169 observations (influential points) have been removed and finally the reduced model was determined that revealed as the most satisfactory model.

2 Introduction

The regression method is frequently used as a guided approach to data modeling. There are several types of regression modeling:

- Simple linear regression
- Multiple linear regression
- Polynomial regression
- Logistic regression
- Generalized linear regression etc.

Linear statistical methods are widely used as part of this modeling process. In the biological, physical, and social sciences, as well as in business and engineering, linear models are useful in both the planning stages of research and analysis of the resulting data.

For our assumed project, the city tax assessor was interested in predicting residential home sales prices in a mid- western city as a function of various characteristics of the home and surrounding property. Data on 522 arms-length transactions were obtained for home sales during the year 2002. Using this dataset we have developed a linear regression model to predict the real estate sales price.

3 Objective

The objective of our project is to develop a model to predict the real estate sales price for given data set. R language under IDE RStudio has been used to code the model, diagnostics and corresponding treatment.

4 Literature Review

4.1 Regression Model

Regression analysis is one of the powerful statistical methods to find the proper relation within a dataset, genrally, between the independent variables (predictors) and a dependent variable (outcome). Among several methods of regression analysis, linear regression is the basic foundation of modeling history and is largely used for many practical applications.

4.2 R and Rstudio

R is one of the programming language developed in 1995 at the University of Auckland as an environment for statistical computing and graphics. This language used for statistical computing while RStudio uses the R language to develop statistical programs.

4.3 ANOVA

The analyst utilizes the ANOVA test results in an F-test to generate additional data that aligns with the proposed regression models. The ANOVA test allows a comparison of more than two groups at the same time to determine whether a relationship exists between them. The result of the ANOVA formula, the F statistic (also called the F-ratio), allows for the analysis of multiple groups of data to determine the variability between samples and within samples.

4.4 Multicollinearity

In multiple regression, two or more independent variables might be correlated with each other. This situation is referred as collinearity. On the other hand, if there is an extreme situation where collinearity can be found among three or more variables even if no pair of variables has a particularly high correlation is called mulicollinearity. In the presence of multicollinearity, the solution of the regression model becomes unstable.

$4.5 R^2$

The definition of R-squared is fairly straight-forward; it is the percentage of the response variable variation that is explained by a linear model. The R-squared (R²) ranges from 0 to 1 and represents the proportion of information (i.e. variation) in the data that can be explained by the model. The adjusted R-squared adjusts for the degrees of freedom.

4.6 Model Adequacy check

The major assumptions we considered so far:

- 1. The relationship between the response y and regressor is linear, at least approximately
- 2. Error term has zero mean and constant variance
- 3. Errors are normally distributed
- 4. Errors are uncorrelated

The assumptions can be checked with residual diagnostics.

4.7 Transformation

The usual approach for dealing with inequality of variance is to apply a suitable transformation. In practice, transformation of the response is generally employed to stabilize variance.

4.8 Outlier, Leverage point and influential point

An **outlier** is a data for which response variable does not satisfy the trend of the rest of the data.

A data point has high **leverage** if it has "extreme" predictor x values. With a single predictor, an extreme x value is simply one that is particularly high or low. With multiple predictors, extreme x values may be particularly high or low for one or more predictors, or may be "unusual" combinations of predictor values. The hat matrix plays an important role in identifying influential observations. The diagonal elements of hat matrix may be interpreted as the amount of leverage. We traditionally assume that any observation for which the hat diagonal exceeds twice the average (2*p)/n is remote enough from the rest of the diagonal data to considered a leverage point.

A data point is **influential** has a great influence on the results of a regression model in form of R square and adjusted R square. It is therefore important to detect influential observations and to take them into consideration when interpreting the results To measure the influential points COOK'S D, DFFITS, DFBETAS and COVRATIO are used.

Outliers and high leverage points has good chance to be influential, but we generally have to investigate further to determine whether or not they are actually influential.

5 Methodology & Interpretation

Data on 522 arms-length transactions were obtained for home sales during the year 2002. Each line of the data set has an identification number and provides information on 12 other variables. Description of the dataset has been given in Table- 1.

Table-1: Description of Dataset

Variable	Variable Name	Description
Number		
1	Identification number	1-522
2	Sales price	Sales price of residence (dollars)
3	Finished square feet	Finished area of residence (square feet)
4	Number of bedrooms	Total number of bedrooms in residence
5	Number of bathrooms	Total number of bathrooms in residence
6	Air conditioning	Presence or absence of air conditioning:
		1 if yes; 0 otherwise
7	Garage size	Number of cars that garage will hold
8	Pool	Presence or absence of swimming pool:
		1 if yes; 0 otherwise
9	Year built	Year property was originally constructed
10	Quality	Index for quality of construction: 1 indicates high
		quality; 2 indicates medium quality; 3 indicates low
		quality
11	Style	Qualitative indicator of architectural style 12
12	Lot size	Lot size (square feet)

13	Adjacent to highway	Presence or absence of adjacency to highway:1 if
		yes; 0 otherwise

5.1 Data Cleaning

From our inspection result, four categorical variables (qualitative variables that take on values which are names or labels) are found: air conditioning, quality, style and adjacent to the highway. These categorical variable need to be converted to indicator (dummy) variable. Conversion results are shown in Table 2.

Table-2: Data format conversion

Variable	Type of Variable			Value	e		
Price	Num	360000	340000	250000	205500	275500	
Area	Num	3032	2058	1780	1638	2196	
#bedroom	Num	4	4	4	4	4	
#bathroom	Num	4	2	3	2	3	
Air_conditioning	Factor levels "NO","YES":	2	2	2	2	2	
Garage_capacity	Num	2	2	2	2	2	
Pool	Factor levels "NO","YES":	1	1	1	1	1	
Year	Num	1972	1976	1980	1963	1968	
Quality	Factor levels "HIGH","LOW","MEDIUM	3	3	3	3	3	
Style	Factor levels "1","2","3","4","10"	1	1	1	1	7	
Lot_area	Num	22221	22912	21345	17342	21786	
Adj_to_highway	Factor levels "NO","YES":	1	1	1	1	1	
AGE	Num	26	22	18	35	30	

Before using data to develop model we need to clean our data based on summary statistics as shown in Table 3. Summary statistics are performed on numeric data. Summary statistics show that there is no missing value of any observation. However, the minimum number of bathroom and bedroom in one real estate is zero which needs to be looked into. The mean and median values have no strange difference. However, there is slight positive skewness (1.55) in price variable (mean of price > median of price).

Table-3: Summary Statistics

Numeric Variable	Minimum	Maximum	Mean	Median	Std.deviation	Missing values
Price	84000	920000	277894	229900	137923.4	0
Area	980	5032	2261	2061	711.0659	0
#bedroom	0	7	3.471	3	1.014358	0
#bathroom	0	7	2.642	3	1.064169	0
Garage_capacity	0	7	2.1	2	0.6539705	0
Lot_area	4560	86830	24370	22200	11684.08	0
Age	0	113	31.1	32	17.63792	0

5.2 ANOVA for Model 1

Considering 5% significance level, from ANOVA table for Model-1, it has been found that two of the variables i. e. Pool and Adjacent to highway are statistically insignificant (p value greater than 0.05).

Table- 4: Analysis of Variance Table for Model-1

Variables	Degree of freedom	Sum Sq.	Mean Sq.	F value	Probability(>F)
Area	1	6.6555e+12	6.6555e+12	2032.2755	2.2e-16 ***
Bedroom	1	2.7613e+10	2.7613e+10	8.4316	0.00385 **
Bathroom	1	1.4271e+11	1.4271e+11	43.5771	1.041e-10 ***
Air Conditioning	1	3.3417e+10	3.3417e+10	10.2040	0.00149 **
Garage capacity	1	2.0019e+11	2.0019e+11	61.1288	3.179e-14 ***
Pool	1	1.2314e+08	1.2314e+08	0.0376	0.84632
Quality	2	8.5703e+11	4.2852e+11	130.8490	2.2e-16 ***
Style	9	1.3094e+11	1.4548e+10	4.4424	1.287e-05 ***
Lot Area	1	6.2251e+10	6.2251e+10	19.0086	1.580e-05 ***
Adjacent to Highway	1	7.2275e+09	7.2275e+09	2.2069	0.13802
Age	1	1.5320e+11	1.5320e+11	46.7809	2.321e-11 ***
Residual	509	1.6407e+12	3.2749e+09		
Residual			3.2749e+09		2.321e-11

5.3 Multicollinearity Check for Model-1

For a given predictor, multicollinearity can be understood by the variance inflation factor (or VIF), which measures how much the variance of a regression coefficient is inflated due to multicollinearity in the model.

As a rule of thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of collinearity (James et al. 2014). A generalized version of the VIF, called the GVIF, exists for testing sets of predictor variables and generalized linear models. From the Table-5 of R output, it has been found that the GVIF values are in suggested limit. Hence, there can be seen no multicollinearity among the regressors of model 1.

Table- 5: Multicollinearity Check for Model-1

Name of Variables	GVIF
Area	4.665851
Bedroom	1.733497
Bathroom	3.204204
Air conditioning	1.407803
Garage capacity	1.669460
Pool	1.093521
Quality	4.034712
Style	3.227237
Lot area	1.192550
Adj to highway	1.032620
AGE	2.092467

5.4 ANOVA for Model-2

After removal of two insignificant variables (Pool and Adjacent to highway) model 1 has been updated and renamed as Model 2. . From ANOVA table for Model 2 it has been found that all variables are statistically significant.

Table- 5: Analysis of Variance Table for Model-2

Project Data	Degree of	Sum Sq.	Mean Sq.	F value	Probability(>F)
	freedom				
Area	1	6.6555e+12	6.6555e+12	2017.6288	2.2e-16 ***
Bedroom	1	2.7613e+10	2.7613e+10	8.3708	0.003978**
Bathroom	1	1.4271e+11	1.4271e+11	43.2630	1.202e-10 ***
Air Conditioning	1	3.3417e+10	3.3417e+10	10.1305	0.001549 **
Garage capacity	1	2.0019e+11	2.0019e+11	60.6883	3.856e-14 ***
Quality	2	8.5698e+11	4.2849e+11	129.8976	2.2e-16 ***
Style	9	1.3055e+11	1.4506e+10	4.3976	1.501e-05 ***
Lot Area	1	6.1416e+10	6.1416e+10	18.6183	1.923e-05 ***
Age	1	1.4332e+11	1.4332e+11	43.4471	1.102e-10 ***
Residual	503	1.6592e+12	3.2987e+09		
Significant .codes rang	ge: 0 '***' 0.	001 '**, 0.01 '*	0.05 '.' 0.1 ' ' 1		

5.5 Initial Fit (R²and adjustedR²)

The summary statistics of model 2 below tells us the value of R^2 and adjusted R^2 are 0.8326 and 0.8266 respectively (see Appendix-2). Hence, variance of almost 83% dataset values can be explained by model 2.

Multiple R-squared: 0.8326, Adjusted R-squared: 0.8266

5.6 Model Adequacy Check for Model-2

The normal probability plots (in RStudio, QQplot considered for normality test) help in verifying the assumption of normal distribution. This Figure-1 shows sharp upward and downward curves at both extremes which does not look ok. This indicates that the distribution is heavy tailed.

Figure-1: QQ plot for normality test (left) & Residual Plot (right)

A plot of residual versus the corresponding fitted (predicted) values is useful for detecting several common types' model inadequacies. Here, externally studentized residual vs predicted value plot takes the outward-opening funnel pattern as shown in Figure-2. This figure implies that the variance of the errors is not constant and the variance is the expanding with predicted sales price.

5.7 Transformation of Model-2

Figure-2: QQ plot for normality test & Residual Plot for Model 2 1

Additionally, Log transformation was implemented on model 2. The transformed model (model 2_2) of model 2 for the real estate sales data with transformed variable $y^* = \log(y)$ shows much better residual plot (see Figure-3).

Figure-3: Residual Plot for Model 2_2

Moreover, the summary statistics shows that this transformed model (model 2_2) has satisfactory value of R^2 =0.8423 and adjusted R^2 = 0.8367 (see Appendix-4).

```
Multiple R-squared: 0.8423, Adjusted R-squared: 0.8367
```

ANOVA result shows that regressor '#bedroom' is insignificant. Therefore, new model 3 removing this variable was made up. Unfortunately, model 3 shows higher number of influential points and less improvement of R square and adjusted R square. Therefore, finally transformed model (model 2 2) has been selected for further operations.

5.8 Identification of Leverage points and Influential points

Leverage point: For our data set of project the value of (2*p)/n is 0.04 (where, parameter P=10 and total number of observations, n=522). On the base of these there are 22 points has been selected as potential leverage points. R output column named as "hat" of Appendix 5 indicates the value of diagonal elements of hat matrix.

DFBETAS: For the project data set the value of $2/\sqrt{n} = 0.0875$. Appendix 5 reveals the values of DFBETAS which exceed 0.0875.

DFFITS: We have also investigated the deletion influence of the ith observation on the predicted value or fitted value. This leads to DFFITS method. Any observation for which

DFFITS>2 $\sqrt{p/n}$ warrants attention. Here, the value of $2\sqrt{p/n}$ =0.277. Table of Appendix-5 reveals the values of DFFITS which exceed 0.277.

A Measure of Model Performance (COVRATIO): The diagnostics COOK'S D, DFFITS, DFBETAS provide insight about the effect of observations on estimated coefficients and fitted values. They do not provide information about overall precision of estimation. If COVERATIO > 1+(3p)/n or if COVERATIO < 1-(3p)/n, them the ith point should be influential. Here, 1+(3p)/n=1.06 and 1-(3p)/n=0.94. In our study, the influential points are considered based on COVRATIO method. On the base of COVRATIO 169 observations have been detected. Which has been shown in Appendix-5 and graphically presented in Figure- 4.

Figure-4: Residual Plot for Model 2 2 (showing COVRATIO limit)

5.9 Removal of Influential Points and Model 2_3

After the removable of 169 observations, data set for model 2_2 has been updated and renamed as model 2_3. The residual plot reveals more satisfactory pattern (see Figure- 5).

Figure-5: QQ plot for normality test & Residual Plot for Model 2_3

Again on the base of COVRATIO, influential points have been detected (see Figure- 6). But from a practically viewpoint, is fairly small in amount.

Figure-6: Residual Plot for Model 2_3 (showing COVRATIO limit)

6 Conclusion and Recommendation

After going through all possible processes such as ANOVA test, multicollinearity, normality test, residual analysis, transformation of model, possible outliers detection, high potential leverage points and influential points identification for developing a suitable regression model that can predict the residential homes sales, and the final model has been shown below.

 $\label{eq:log-condition} \begin{tabular}{ll} Log (Real Estate Sales Price) = $11.69 + .0003278$ Area + .006826 Bedroom + .07356 Bathroom + .01653 Air Condition Yes + .04477 Garage Capacity - .2697 Quality Low - .221 Quality Medium - .05775 Style 2 + .011 Style 3- .2294 Style 4 -.09534 Style 5 -.1155 Style 6 -.09976 Style 7 + .000002 Lot Area - .004229 Age \\ \end{tabular}$

- The number of bathroom has the highest influence to increase the real estate sales price.
- Low Quality has the highest influence to decrease the real estate sales price.
- The existence of pool and location of real estate adjacent to the highway make negligible effect on the real estate prices.
- Among significant contributors of real estate sales price, lot area has the least impact.
- The model validation part can be performed in future.
- The robust regression model can be implemented to reduce the impact of extreme outliers.
- This model is for Midwestern city, for other cities this model may not work. Therefore, it should be careful to use this model in other cities.

Appendix

1. Dataset

1.	1	360000	3032	4	4	1	2	0	1972	2	1	222	21	0	1	26	2.	262	261000	2404	5	3	1	3	1	1973	2	2	17791	0
2.	2	340000	2058	4		1		0	1976		1	229		0		26		263	174500		3					1960	2	1	16356	0
3.	3	250000	1780	4	3	1	2	0	1980	2	1	2134	15	0		26		264	244900	2107	3	2	0	2	0	1947	2	6	30050	0
4.	4	205500	1638	4		1		0	1963	2	1	1734		0		26		265	274900	2788	4					1984	2	7	18960	0
5.	5	275500	2196	4	3	1	2	0	1968	2	7	2178	36	0		26	6.	266	214000	2416	3	3	1	2	0	1984	2	3	15594	0
6.	6	248000	1966	4	3	1	5	1	1972	2	1	1890)2	0		26	7.	267	283000	2430	3	4	1	3	0	1984	2	6	18164	0
7.	7	229900	2216	3	2	1	2	0	1972	2	7	1863	39	0		26	8.	268	177900	1584	3	2	1	2	0	1989	2	2	13947	0
8.	8	150000	1597	2	1	1	1	0	1955	2	1	221	12	0		26	9.	269	237500	1873	3	3	1	2	0	1978	2	3	21998	0
9.	9	195000	1622	3	2	1	2	0	1975	3	1	1432	21	0		27	0.	270	202150	1644	4	3	1	2	0	1976	2	2	19499	0
10.	10	160000	1976	3	3			0	1918		1	323	58	0			1.	271	235000	2400	4				0	1976	2	7	44347	0
11.	11	190000	2812						1966		7	566		0		27		272	217000	2094	4			2		1984	2	3	18617	0
12.	12	559000	2791	3				0	1992		1	305		0		27		273	285000				1			1981	2	7	18985	0
13.	13	535000	3381	5				0	1988		7	231		0		27		274	217500	1752	3					1976	2	2	24053	0
14.	14	525000	3459	5				0	1978		5	353		0		27		275	210000	1738	5					1983	2	3	15206	0
15.	15	299900	2090	3			2	0	1987		1	240		0		27		276	183340	2068	3					1977	2	1	24325	0
16.	16	527000 169900	3232	5				0	1984		6			0		27		277	252000	2428	4					1966	2	7	22727	0
17. 18.	17 18	335250	1502 2747					0	1956 1993		1 7	289 222		0		27 27		278 279	237000 205000	2090 1820				2		1969 1944	2	1 2	22055 28023	U A
19.	19	323900	2890	4					1954		7	419		0		28		280	285000	3219	4			2		1944	2	6	28200	0
20.	20	200000	1825	3	3	1	2	0	1957		1	302		0			81.	281	210000	2654	3					1962	2	1	28882	0
21.	21	211000	1578	4					1986		2	188		ő		28		282	280000		4			2		1956	2	1	27700	Ô
22.	22	212000	1763	3				0	1959		1	247		-		28		283	207000		3					1976	2	2	22983	ő
23.	23	245000	2517	4				0	1965		1	232		Ö		28		284	221000	2786	4					1976	2	7	22875	Ö
24.	24	140400	1872						1985		3					28		285	257000	1794	3					1960	2	3	21691	0
25.	25	295000	3266	3	3	1	2	0	1908	2	6	248	81	0		28	86.	286	274000	2768	3	3	0	2	0	1921	2	7	26268	0
26.	26	170900	2020	1	2	1	1	0	1956	2	1	213	85	0		28	37.	287	262000	2288	3	2	1	2	0	1963	2	3	16975	0
27.	27	229000	2164	4	2	1	2	0	1965	2	1	282	91	0		28	88.	288	204400	2028	3	2	1	2	0	1951	2	1	26777	0
28.	28	218500	2080	3	2	1	2	1	1959	2	1	147	52	0		28	19.	289	254900	2620	5	3	1	2	0	1966	2	7	27989	0
29.	29	160000	2208	2				0	1985		7	803		0		29		290	244000	1644	3					1980	2	2	32164	0
30.	30	259000	3048	6			3	0	1960		7	293		0			1.	291	213000	1888	3					1958	2	1	14757	0
31.	31	164500	1460	3		1			1978		1	999		0		29		292	240000		4			2		1964	2	7	22041	0
32.	32	280000	2540	3				0	1940		5	424		0		29		293	235000		4					1972	2	7	24705	0
33. 34.	33 34	154000 272000	2208 2560	2 4				0	1985 1977		7 5	674 361		0		29 29		294 295	206000 237000	1824 1942	4					1959 1972	2	1 2	14748 23105	0
35.	35	180000	2061	4				0	1958		1	201		0		29		296	274000	2184	4					1977	2	3	19090	ñ
36.	36	157500	1980	3				ő	1957		1	325		Ô		29		297	275000	2578	3					1965	2	7	22299	Ô
37.	37	242500	3308	5	4			0	1928		5			0		29		298	218400	2036	4					1960	2	7	21996	0
38.	38	182000	2616	5	3	0		0	1955		5	111	23	0		29	9.	299	156000	1384	2	1			0	1961	2	1	26706	0
39.	39	178000	1460	4	2	1	2	0	1961	3	1	270	95	0		30	0.	300	220000	1826	4	3	1	2	0	1952	2	1	19870	0
40.	40	171900	1580	2	1	0		0	1951		4	124	17	0			1.	301	171500	1681	3	2				1957	2	1	15985	0
41.	41	165500	1460	3		1			1960		1	224		0		30		302	180000					2		1962	2	1	26769	0
42.	42	183500	1540	3				0	1992		3	158		0		30		303	204000	1910	3					1958	2	3	15423	0
43. 44.	43 44	135000	1388	2	1			0	1951		1	261		0 0		30		304 305	307000	2664	4					1962	2	7	22684	0
44. 45.	45	175000 149500	1624 1580		2 1				1948 1966		1	392 111		0		30		306	265000 209900	2116 2030	3			2		1976 1959	2	1	33344 21914	0
46.	46	177500	1820		2		2		1960		1	221		0		30		307	173000	1940						1956	2	3	11610	0
47.	47	155000	1733	4				0	1936		4	223		Õ		30		308	189000		3					1965	2	3	21780	Õ
48.	48	145000	1896	3					1925		6	327		Ö		30		309	222500	2120	3			2		1959	2	1	17883	Õ
49.	49	178000	2038	2	2	0	2	0	1918	3	7	478	84	0		31	0.	310	265000	2152	4	3	1	2	0	1987	2	1	26075	0
50.	50	156000	1436	3	2	0	3	0	1920	3	1	435	94	0		31	1.	311	264670	1984	4	3	1	2	0	1966	2	1	31204	0
51.	51	159000	1690	3	2	0	1	0	1922	3	5	285	18	0		31	2.	312	200750	1575	3	3	1	2	0	1957	2	1	25543	0
52.	52	160000	1496				1		1900		5			0		31		313	227900	1798	3		1			1978	2	2	17820	0
53.	53	112000	1668	.2			.1	0	1948		.1	196		0			4.	314	255000	2017	3					1958	2	3	86571	0
54.	54	84000							1951			1768		0		31		315	208500	1904	3					1978	2	2	15559	0
55. 56.	55 56	155000 360000	2562 2304	5	4			0	1885 1978		7 1	408 702		0		31	6.	316 317	226900 215000	1718 1776	3 4					1976 1980	2	2	49613 22839	0
57.	57	104000	1268					0	1947		1	210		0		31		318	222950	2609	4					1961	2	1	26087	0
58.	58	420000	2283	3		1			1997		1	185		1		31		319	239900							1955	2	2	13520	Ô
59.	59	355000	2060	2				0	1997		1	386		1		32		320	176000							1959	2	3	15623	Õ
60.	60	165000	2087	2		1	2	0	1966		1	247		1			21.	321	228000	1764	2				0	1985	2	3	8105	0
61.	61	244000	2081	4	2	1	2	0	1980	2	3	249	93	1		32	2.	322	204900	1626	3	3	1	2	1	1968	2	2	15288	0
62.	62	179900	1696	3	3	1	2	0	1978	2	2	222	94	1		32	23.	323	258000	2012	5	3	1	2	0	1967	2	2	21303	0
63.	63	253000	2222	4	2	0	2	0	1955	2	1	715	27	1		32	4.	324	241850	2090	4	4	1	2	0	1963	2	7	22010	0
64.	64	200000	2110	5	3	1	2	0	1957	2	1	153	32	1		32	25.	325	198500	2192	4	2	1	2	0	1963	2	2	22851	0
65.		200000									1	155		1		32			243000							1965		7	21881	0
66.	66	147700						0	1957		1			1		32		327			4					1963	2	2	15810	0
67.	67	188700	1748	3	2		2	0	1972		1	239		1		32		328	233000		4				0	1966	2	2	17159	0
68.	68	177000 585000	1985	3		0	2	0	1948		1	699				32		329	205000 205000		3					1983	2	7	16555	0
69. 70.	69 70	549900	2558 4000	6				1	1984 1979		3 10	246			1		80. 81.	330 331	189000	1974 1696	3					1954 1968	2	1	26196 31851	0
70. 71.	71	675000	3942	4		1			1979		7	189			1	33		332	204900					2		1969	2	7	23986	0
72.	72	830000	3889		4				1991		7	283		0	1		3.	333			4					1979	2	2	24698	0
73.	73	920000	3857	4				ő	1997		1	327		Ö	1		4.	334	193000	1796	3					1963	2	2	29281	Ö
74.	74	855000	4756					0	1990		7	222			1		5.	335	260000		5					1971	2	3	35240	Ö
75.	75	585500	3302	4			3	0	1982		7	264		0	1		6.	336	188000		2					1960	2	1	22009	0
76.	76	399000						0	1989		9	247		0	1	33		337	190500							1984	2	3	22583	0
77.	77	790000				1			1997		7	220			1		8.	338	230000							1959	2	1	22223	0
78.	78	665000	4746				3		1996		7	233		0	1	33		339			4			2			2	1	42322	0
79. 80.	79 80	725000 647000	3242 2464	3			3		1989 1992		1	271 317		0	1		10. 11.	340 341	235000 275000				1	2		1978 1966	2	2 7	39267 22381	0 0
81.	81	780000	4419		5				1992		1	561		-	1		12.		205000								2	3	27235	0
82.															1		3.		280000											
-				-	-	-	-	-		-				-	•	٠.						-			-			-		-

83.	83	578000	3808	5	4	1 3	3 (198	32	1	7	23324	0		344.	344	190000	1919	3	4	1	2	0	1938	2	7	20093	0
84.	84	500000	3376	5	4	1 2	2 (194	17	1	7	18452	0		345.	345	232500	2080	3	2	1	2	0	1968	2	1	32021	0
85.	85	484530	2940	3	3	1 3	3 1	197	79	1	7	20639	0		346.	346	259500	2108	4	4	1	2	0	1978	2	7	24685	0
86.	86	609000	2654	5	3	1 3	3 (199	7	1	1	12821	0		347.	347	275000	2480	3	3	1	2	0	1964	2	1	22144	0
87.	87	635000	2672	4	3	1 3	3 (199	95	1	1	28049	0		348.	348	183900	1746	3	2	1	2	0	1974	2	2	52136	0
88.	88	519000	3386	4	4	1 3		199)4	1	7	24008	0		349.	349	290000	2703	3	3	0	4	0	1963	2	1	43599	0
89.	89	625100	3648	4	4	1 3	3 (199	2	1	7	26604	0		350.	350	217950	1640	4	2	1	2	0	1979	2	3	21314	0
90.	90	585444	3455	4	5	1 3	3 (199	95	1	7	22468	0		351.	351	220000	2196	4	3	1	2	0	1972	2	7	17899	0
91.	91	399900	3321	3	4	1 3	3 1	197	71	1	7	15012	0		352.	352	185000	1701	3	2	1	1	0	1982	2	2	21938	0
92.	92	389900	2817	4	_	1 3				1	7	31214	0		353.	353	288000	2250	3			2		1949	2	4	23684	0
93.	93	649000	3210	3		1 3				1	1	30033	0		354.	354	197500	2502	4		1	2		1964	2	6	23749	0
94.	94	535000	3588	4		1 3				1	7	22530	Õ		355.	355	179975	1762	4		1	2		1959	2	1	15742	Õ
95.	95	640000	2705	3		1 3					í	22196	Ô		356.	356	195000	2016	4			2		1963	2	2	18102	Ô
96.	96	600000	2344	4		1 2					1	86004	Õ		357.	357	228400	1904	3		1		-	1976	2	2	14945	ő
97.	97	582500	4264	-		1 4				-	7	24983	Õ		358.	358	194750	1652	5			2		1960	2	ī	24644	ő
98.	98	545000	2615			1 3					1	21722	Ô		359.	359	195000	2042	4			2		1963	2	2	21849	0
99.	99	480000	3608	6		1 3					7	25219	0		360.	360	210000	2019	4		1	3		1960	2	2	14837	0
100.	100	595000	2479	4	4			0 19		1	1	29805	0		361.	361	239550	2791	5		1	3	-	1946	2	4	22863	0
101.	101	610000	3251	3	4			1 19		i	1	25570	0		362.	362	242000	2514	4		1	1		1953	2	5	17535	0
		570000	2547	2	3			1 19 0 19		1	1	21789	0			363	185000	1746	3			2			2	3	12386	0
102.	102									-			•		363.									1984				
103.	103	479000	5032	7	3			0 19		1	7	22000	0		364.	364	175000	1930	3		1	2		1956	2	2	15923	0
104.	104	545000	4973	6	6			1 19		1	7	56139	0		365.	365	165000	1552	3		1	3		1959	2	3	27068	0
105.	105	335000	2582	4	3		-	0 19		1	2	23256	0		366.	366	185000	1566	4		1	2		1993	2	2	13504	0
106.	106	629000	3139	6	4	-	2			1	1	21810	0		367.	367	173194	1669	3	_	1	2		1964	2	2	24643	0
107.	107	505500	3516	4	4			0 19		1	7	19867	0		368.	368	205150	1814	3		1	2		1978	2	2	18714	0
108.	108	528750	2129	0	0			0 19		1	1	37414	0		369.	369	214200	1794	3		1	3		1976	2	2	24308	0
109.	109	370000	2936	4	4		-	0 19		1	7	16437	0		370.	370	182500	1691	3		1	_		1968	2		21961	0
110.	110	529000	3351	5	4		-	0 19		1	7	24216	0		371.	371	205000	1834	4		1	2		1959	2	1	30726	0
111.	111	490000	3136	4	4		-	0 19		1	7	27158	0		372.	372	208000	1984	5		1	2		1961	2	1	22047	0
112.	112	535000	3525	4	5		-	0 19		1	7	27501	0		373.	373	225000	1966	4			2		1962	2	1	24871	0
113.	113	612000	3917	6	5	1	3	0 19	95	1	7	37972	0		374.	374	170000	1669	3	2	1	2	0	1967	2	2	21253	0
114.	114	442500	2702	4	3	1	3	0 19		1	1	39643	0		375.	375	216000	2132	4	3	1	2		1976	2	1	41332	0
115.	115	500000	3644	3	4	1	3	0 19	84	1	7	21895	0		376.	376	180000	2007	4	3	1	2	0	1959	2	3	15992	0
116.	116	539000	3072	4	4	1	3	0 19	92	1	1	25158	0		377.	377	169200	1964	4	2	1	2	0	1964	2	7	18162	0
117.	117	545500	3233	4	4	1	3	0 19	91	1	7	22961	0		378.	378	213000	2325	4	3	1	3	0	1973	2	3	16699	0
118.	118	424000	2918	4	4	1	3	0 19	88	1	7	22003	0		379.	379	210000	2196	4	3	1	2	0	1965	2	7	29329	0
119.	119	325000	3266	4	3	1	3	0 19	85	1	7	16640	0		380.	380	185000	2061	3	2	1	2	0	1956	2	2	25379	0
120.	120	367000	2940	4	7	1	2	0 19	88	1	7	22003	0		381.	381	179900	1828	3	2	1	2	0	1956	2	3	37150	0
121.	121	470000	3430	3	4	1	2	1 19	66	1	7	25018	0		382.	382	196000	1956	4	3	1	2	0	1968	2	1	20486	0
122.	122	393000	2472	4	4	1	3	0 19	87	1	1	21784	0		383.	383	219900	1852	6	3	1	2	0	1968	2	2	20800	0
123.	123	530000	2878	4	4	1	3	0 19		1	1	68351	0		384.	384	159900	1795	1	2	1	2	0	1980	2	11	26467	0
124.	124	400000	2537	3	3			0 19	93	1	1	11053	0		385.	385	170000	1580	2	1	0	1	0	1950	3	5	10799	0
125.	125	403500	3858	4	4			0 19		1	7	22224	Ó		386.	386	169900	1708	3			1		1950	3	1	11413	Ô
126.	126	550000	2742	3	3			0 19		i	í	22306	ŏ		387.	387	189500	1700	4		ŏ	2		1953	3	i	14023	ŏ
127.	127	380000	3460	5	4	1	2	0 19	72	1	1	18571	Õ		388.	388	195000	1742	1		1	2		1961	3	1	18250	Õ
128.	128	500000	3836	5	4			0 19		i	5	48465	Õ		389.	389	215000	1890	4		1	2		1961	3	1	22110	Õ
129.	129	465000	4453	7	5			0 19		i	7	15595	0		390.	390	171000	1512				1		1956	3	1	14774	ő
130.	130	451500	4080	5	4			0 19		i	7	22134	0		391.	391	179900	1840	3			2		1953	3	1	40832	ő
131.	131	336000	3301	3	4			0 19		1	3	18741	0		392.	392	120000	1060	2		0	2		1947	3	1	15001	0
131.	132	550000	3828	4	5		2			1	1	17051	0		393.	393	175000	1540	3			2		1957	3	1	45458	0
133.	133	450000	2973	4	3	-	_	0 19		2	7	21999	0		394.	394	232900	1550	4		1	2	•	1962	3	2	14998	0
134.	134	440000	2821	5	4			1 19		2	1	32914	0		394. 395.	394	229900	2787	4		1	1		1902	3	5	39558	0
			2950		3			0 19		2	1		0			396	174900		2		1	2		1982	3	1	25193	0
135.	135	515000		5				0 19 0 19		2	3	21598	0		396.	390		1528					-	1962	3	5		0
136. 137.	136 137	415000 380000	2362 3092	3	3		_				3	21604 20081	0		397. 398.	398	168900 229500	1928 2329	2		0 1	2		1960		7	26393 28179	0
				3	4					2			-						3						3			
138.	138	489500	2866	4	4			0 19		2	7	22424	0		399.	399	236000	1940	4		1	2		1959	3	1	15073	0
139.	139	478000	3369	5	4		-	0 19		2	7	21161	0		400.	400	205500	2114	5		1	2		1966	3	7	14526	0
140.	140	460000	3068	4	4		-	0 19		2	7	18289 21999	0		401.	401	212000	1799	3		1	2		1962	3		16210	0
141.	141	379900 390000	2380	3	3		-	0 19 0 19		2	1		0		402.	402	205000	1864	3	2	1	2		1940	3	1	25628	0
142.	142		2225	2	3	-	•			-	1	38722	•		403.	403	193000	1581	3		1	2	•	1956	3	1	15064	
143.	143	338000	2655	3	3	-	_	0 19		2	1	21960	0		404.	404	180000	1652	3		1	2		1959	3	3	21875	0
144.	144	675000	3855	4	4			0 19		2	7	35845	0		405.	405	184000	1592	4		0	2		1977	3	1	25943	0
145.	145	440000	2892	4	4		-	0 19		2	6	35839	0		406.	406	144900	1520				1		1953	3	4	36359	0
146.	146	500000	3832	4	Ξ.		_	0 19		2	1	28722	U		407.	407	255000			2				1955	3	1	31257	U
147.	147 148	470000 317500	3164	6	4			0 19 0 19		2	7	20505	0		408.	408 409	137000	1464	2			1		1957	3	1	14999	0
148.			2620								7	12266			409. 410		178000 296000	1702				2		1961	3		21898	0
149.	149	430000	3076	6	4			0 19		2		26648	0		410.	410	296000 186500	2180	3		1	2		1952	3	1	29617	0
150.	150	430000	4022	6	4			0 19		2	7	18429	0		411.	411		1486	2		1	2		1958	3	1	18479	
151.	151	475000	3377	4 5	3 4			0 19 0 19		2	7 7	22495	0 0		412.	412 413	170000	1364	2 4		0	2		1942 1977	3	1 2	26369 30691	0
152.	152	389000	2858									23981			413.		219000	1540			1							
153.	153	400000	3540	4	4			1 19		2	7	18012	0		414.	414	188000	1608	4		1	2		1969	3	2	19380	0
154.	154	395000	3045	4	3			0 19		2	7	34356	0		415.	415	195250	1668	3		1	2		1956	3	3	17060	0
155.	155	395000	4150	4	3			0 19		2	7	21778	0		416.	416	175000	1944	3		1	2		1951	3	1	43562	0
156.	156	296000	1778	2	2			0 19		2	7	24022	0		417.	417	215000	1883	4		1	2		1956	3	1	19932	0
157.	157	387500	2412	2	3			0 19		2	3	22676	0		418.	418	197500	2215			0	2		1948	3	6	25540	0
158.	158	353000	2668	4				0 19		2	2	18384	0		419.	419	249900	1916	2		1	2		1954	3	1	20576	0
159.	159	350000	2274	4	3			0 19			1	22049	0		420.	420	180000	1508	2		1	2		1959	3	1	32469	0
160.	160	437632		4	3			0 19		2	5	22844	0		421.	421	174900	1809			1	2		1958	3		16782	0
161.	161	447500	2526	2	2			0 19		2	1	28248	0		422.	422	189900	1958	4		0	2		1935	3	5	22788	0
162.	162	318500	2449	4	4			0 19		2	3	22075	0		423.	423	154000	1592	2			2		1951	3	1	10332	0
163.	163	352000	3131	4				0 19		2	7	15209	0		424.	424	150000	1636			1	2		1950	3	1	10000	0
164.	164	295000	2536	3	3			0 19		2	7	39427	0		425.	425	189900	1800	3		0	2		1964	3	2	13566	0
165.	165	313500	3314	2	3	1	3	0 19	84	2	7	24339	0		426.	426	157000	1600	3	1	0	2	0	1950	3	5	10807	0
166.	166	330000	2230	3	2	1	2	0 19	86	2	1	24798	0		427.	427	182000	1550	3	1	1	2		1966	3	1	15100	0
167.	167	400000	2631	4	4	0	2	0 19	85	2	7	44885	0		428.	428	187650	1578	3	1	1	2	0	1958	3	1	14631	0
168.	168	325000	2638	4	3	1	2	0 19	78	2	3	25747	0		429.	429	175000	1644	3	1	1	2	0	1956	3	1	12999	0
169.	169	340000	2756	4	3	1	2	1 19	73	2	7	22546	0		430.	430	189900	1556	3	2	1	1	0	1959	3	3	19840	0
170.	170	399900	3262	5	4		2	0 19	78	2	7	25541	0		431.	431	175000	1672			1	2	0	1949	3	1	22617	0
171.	171	249900	1936	4	4			0 19		2	3	12850	0		432.	432	159900	1650	2		1	1	0	1957	3	1	14997	0
172.	172	389000	3148	4	4	1	3	1 19	69	2	7	16587	0		433.	433	184900	1676	3	2	0	2	0	1956	3	1	16156	0
173.	173	364500	2616	3	4			0 19		2	7	32655	0		434.	434	174900	1960	2		0	2		1947	3	1	16953	0
174.	174	357500	3630	4	3			0 19		2	7	23283	0		435.	435	143000					1		1951	3	5	20096	0
175.		295000									3	19300	0		436.	436		1728							3		10999	0
														•														

176.	176	274500	1926	5	3	1	2	0	1986	2	7	26418	0	437.	437	173500	1586	3	2	1	1	0	1958	3	1	15862	0
177.	177	259000	2556	3	2	1	2	0	1957	2	1	80886	0	438.	438	161800	1592	2	1	0	1	0	1951	3	1	18686	0
178.	178	415000	2282	5	4	1	2	0	1987	2	3	23003	0	439.	439	148000	1514	2	2	1	1	0	1964	3	1	16209	0
179.	179	443000	3314	3	4	1	3	0	1986	2	7	22012	0	440.	440	177000	1952	4	2	1	2	0	1963	3	1	24377	0
180.	180	249000	2001	3	3	1	2	Õ	1981	2	3	23812	Ö	441.	441	149900	1550	3	1	1	2	Õ	1956	3	1	14311	Õ
				5		1	2	0	1976	2		23139	Õ		442						1	0	1957		1	14942	0
181.	181	330000	2607		2	-		-			3			442.		170000	1544	2	2	0		-		3	-		-
182.	182	291000	2840	4	4	1	2	0	1965	2	7	23079	0	443.	443	142000	1566	3	1	0	1	0	1959	3	1	15228	0
183.	183	418000	3036	3	5	0	2	0	1977	2	7	33746	0	444.	444	186900	1650	3	2	1	2	0	1961	3	1	22000	0
184.	184	320000	2240	4	2	1	3	0	1974	2	3	18682	0	445.	445	152900	1392	2	2	0	2	0	1951	3	1	29199	0
185.	185	264000	1788	3	3	0	2	Õ	1969	2	1	18484	Ö	446.	446	350000	2981	5	4	1	2	Õ	1950	3	6	49756	Õ
								-			-																-
186.	186	381000	2620	5	4		2	0	1965	2	7	28093	0	447.	447	130000	1412	2	1	0	1	0	1940	3	1	16752	0
187.	187	250000	1480	3	3	1	2	0	1984	2	3	14230	0	448.	448	167900	2180	4	2	0	2	0	1948	3	3	15001	0
188.	188	360000	2588	3	3	1	2	1	1968	2	2	19004	0	449.	449	184900	1704	2	2	1	2	0	1954	3	1	16759	0
189.	189	369500	3138	4	4	1	2	0	1969	2	7	18190	0	450.	450	178000	1600	3	2	1	2	0	1957	3	3	15090	0
190.	190	285400	2460	5	4		2	ŏ	1979	2	7	27492	ŏ	451.	451	111000	1276	3	2	0	1	ŏ	1951	3	1	11554	ŏ
																											U
191.	191	409000	3566	4	4	1	2	0	1976	2	7	18044	0	452.	452	207000	1666	4	2	0	1	0	1954	3	1	39523	0
192.	192	333000	2692	5	4	1	3	0	1984	2	7	22020	0	453.	453	190000	1760	3	2	1	2	0	1974	3	2	20193	0
193.	193	362000	2958	5	4	1	3	0	1987	2	7	45200	0	454.	454	230000	1836	3	2	0	2	0	1946	3	1	46339	0
194.	194	387500	3164	4	4	1	2	1	1966	2	7	23856	0	455.	455	165000	1636	3	1	0	2	0	1953	3	1	20125	0
195.	195	239000	2058	3	3	1	2	0	1969	2	2	21046	Ö	456.	456	210000	1748	3	2	1	2	Õ	1957	3	1	14512	Õ
																									-		-
196.	196	299900	2717	3	4	1	2	0	1983	2	7	22083	0	457.	457	226000	2556	4	2	0	2	0	1923	3	6	36276	0
197.	197	335000	2920	4	3	1	3	0	1987	2	7	22434	0	458.	458	149900	1511	4	1	1	1	0	1954	3	1	14821	0
198.	198	275000	2554	5	3	1	2	0	1960	2	7	21820	0	459.	459	155000	1524	3	2	1	2	0	1958	3	1	21875	0
199.	199	328000	2805	3	4	1	2	0	1988	2	7	22582	0	460.	460	219900	1821	4	2	1	2	0	1956	3	1	16696	0
200.	200	333000	2736	4	3		2	ĭ	1979	2	7	29591	Ö	461.	461	132000	1596	1	1	0	0	Õ	1940	3	1	28357	Õ
								-										-							-		
201.	201	397000	3516	5	7	1	3	0	1996	2	7	34795	0	462.	462	195000	2392	4	2	0	2	0	1960	3	1	30265	0
202.	202	374800	3536	6	4	1	2	1	1978	2	7	19997	0	463.	463	155900	1748	2	1	1	2	0	1956	3	1	16231	0
203.	203	520000	2138	5	3	1	3	0	1956	2	1	86830	0	464.	464	119900	1384	2	1	0	0	0	1949	3	1	30002	0
204.	204	325000	2718	4	4	1	3	0	1978	2	6	22842	0	465.	465	175000	1628	3	1	1	2	1	1957	3	1	17069	0
205.	205	295000	2178	5	3	1	2	0	1958	2	1	25891	0	466.	466	304000	1911	4	2	1	2	0	1953	3	1	86248	Ó
								-			-					190000						-			-		-
206.	206	415000	3152	5	4	1	2	0	1980	2	6	24446	0	467.	467		1624	4	3	0	1	0	1959	3	3	15002	0
207.	207	224900	2611	3	3	1	2	0	1987	2	7	6924	0	468.	468	229100	1956	3	2	1	2	1	1984	3	6	14710	0
208.	208	265000	2060	4	3	1	2	0	1981	2	2	13091	0	469.	469	187500	2012	4	2	0	2	0	1953	3	5	14925	0
209.	209	299900	2448	4	4	1	3	0	1979	2	7	26790	0	470.	470	173000	1590	2	2	1	2	0	1956	3	1	22336	0
210.	210	390000	4050	6	5	1	2	1	1966	2	7	18262	0	471.	471	170000	1687	2	1	1	1	0	1941	3	4	20925	Ó
211.	211	271000	2414	3	3	1	2	0	1914	2	7	24357	Õ	472.	472	179000	1816	4		1	2	0	1956	3	3	16508	0
						-		-											1								U
212.	212	330000	3072	4	3		2	0	1966	2	7	16431	0	473.	473	162500	1622	3	1	1	1	0	1956	3	3	16120	0
213.	213	350000	2525	3	3	1	3	0	1983	2	4	27138	0	474.	474	172000	1604	4	2	1	2	0	1954	3	1	14964	0
214.	214	310000	2866	5	3	1	3	0	1961	2	7	25249	0	475.	475	153200	1592	4	2	0	1	0	1956	3	1	16396	0
215.	215	340000	3246	4	4	1	3	0	1987	2	7	52218	0	476.	476	220000	1922	3	2	1	2	0	1952	3	1	33579	0
216.	216	307000	2707	4	4	i	2	Õ	1992	2	7	22094	Õ	477.	477	174000	1892	3	ī	i	1	0	1955	3	3	14712	ő
				-		-																					-
217.	217	304000	2300	5	3		2	0	1961	2	3	35824	0	478.	478	200000	1628	3	1	1	2	0	1959	3	1	15412	0
218.	218	275900	1860	3	3	1	2	0	1957	2	1	40741	0	479.	479	161000	1644	2	2	1	2	0	1956	3	1	17030	0
219.	219	315000	3636	5	3	1	2	0	1976	2	7	19776	0	480.	480	135000	1450	3	1	1	2	0	1955	3	1	15868	0
220.	220	295000	1910	4	3	1	2	0	1968	2	1	30996	0	481.	481	190000	1592	3	2	1	2	0	1959	3	1	22748	0
221.	221	251010	2280	4	2	i	2	Õ	1956	2	i	25543	Õ	482.	482	153800	1654	2	ī	0	2	0	1962	3	i	25874	ő
				-		-		-			-														-		-
222.	222	335000	3386	4	5	0	2	0	1965	2	7	38428	0	483.	483	144900	1388	2	1	1	2	0	1950	3	1	10568	0
223.	223	343500	2324	5	4	1	3	0	1967	2	3	22435	0	484.	484	165000	1670	3	2	0	2	0	1953	3	1	18525	0
224.	224	297000	1970	4	3	1	2	0	1972	2	3	25814	0	485.	485	186000	1953	3	2	1	1	0	1956	3	1	17129	0
225.	225	281000	2062	3	3	1	2	1	1977	2	2	23608	0	486.	486	167000	2008	3	1	1	2	0	1963	3	1	21860	0
226.	226	235000	2617	4	3	i	2	0	1985	2	7	8903	0	487.	487	189600	1650	3	2	i	2	0	1960	3	i	34724	ň
				-		-		-														-			-		0
227.	227	237000	2612	4	3		2	0	1985	2	7	10144	0	488.	488	170000	1578	3	1	1	2	0	1975	3	1	22485	0
228.	228	274900	2472	3	3	1	2	0	1969	2	7	22451	0	489.	489	189500	1618	3	2	1	2	0	1962	3	1	27539	0
229.	229	229900	1922	4	2	1	2	0	1957	2	1	15791	0	490.	490	153500	1642	3	1	0	2	0	1959	3	1	14901	0
230.	230	259000	1852	3	2	1	2	0	1984	2	3	22204	0	491.	491	159900	2008	1	2	1	2	0	1941	3	1	31657	0
231.	231	245000	2239	3	3	1	2	0	1986	2	3	22216	0	492.	492	158000	1604	3	2	1	1	0	1960	3	1	23534	Ô
232.	232	208000	2068			-		0	1979	2		34773	Õ			175000	2035			1		0	1962		7	20131	Õ
				3	2		2	-			1			493.	493			4	2		3	-		3			-
233.	233	421000	2101	3	3	0	2	0	1956	2	1	65499	0	494.	494	147000	1534	3	2	0	1	0	1955	3	3	15361	0
234.	234	320000	2200	4	3	1	2	0	1968	2	1	31450	0	495.	495	155000	1624	2	2	1	2	0	1955	3	1	16721	0
235.	235	256000	1972	3	3	0	2	0	1989	2	3	32027	0	496.	496	150000	1700	4	2	1	1	0	1954	3	1	15391	0
236.	236	275000	2007	3	3	1	2	1	1959	2	3	21311	0	497.	497	165000	1630	3	2	1	2	0	1978	3	2	24963	0
237.	237	222000	2612	4	3		2	Ô	1985	2	7	8229	Õ	498.	498	147000	1526	3	2	1	1	ŏ	1957	3	ī	15007	ŏ
238.	238	249900	2124	4	1		3		1974	2	2	21834	0	499.	499	146250	1672	3		1	2	0	1949	3	1	22617	0
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																									-
239.	239	273500	2612	4	3		2	0	1985	2	7	8924	0	500.	500	177500	1588	4	2	1	2	0	1980	3	2	21925	0
240.	240	218500			2		2	0	1984	2	3	10210	0	501.		153650		4			2	0	1950	3	6	9126	U
241.	241	377000	2767	3	3	1	3	0	1941	2	4	75232	0	502.	502	199500	1674	4	2	0	2	0	1947	3	1	33237	0
242.	242	220000	2025	3	3		2	0	1989	2	3	19618	0	503.	503	186000	1980	3	1	0	1	0	1927	3	6	47679	0
243.	243	192900		4	2		2		1962	2	2	21779	Ö	504.	504	139900	1396	1	1	Õ	2	Ö	1950	3	1	25879	Õ
244.	244	298750	2460	4	3	1	2		1967	2	3	23907	0	505.	505	160000	1178	1		0	2	0	1959	3	1	9941	0
																			1								
245.	245	315000		3	3		3		1972	2	7	23947	0	506.	506	125000	1263	2	2	0	0	0	1955	3	1	12357	0
246.	246	315000	2004	4	3	1	2	0	1967	2	3	24453	0	507.	507	359900	2377	5	2	1	2	0	1937	3	6	51005	0
247.	247	465900	2852	4	3	1	2	1	1961	2	7	34040	0	508.	508	184500	1304	3	1	1	2	0	1951	3	1	21305	0
248.	248	239500		3	3	1	2	0	1977	2	1	15237	0	509.	509	155000	1340	3	1	0	0	0	1952	3	1	5666	0
249.		276000		3	3	1	2	0	1989	2	7	17433	0		510	150000	1559	2	1	0	2	0	1952	3	1	23999	0
	249													510.													
250.	250	226000		4	3		2	0	1978	2	7	12145	0	511.	511	146000	1412	1	2	1	0	0	1920	3	1	4560	0
251.	251	235000	2528	3	3	1	2	0	1977	2	3	26469	0	512.	512	129000	1198	2	2	1	2	0	1925	3	1	20918	0
252.	252	247000	2030	4	3	1	3	0	1988	2	3	23202	0	513.	513	145000	1424	2	1	1	2	0	1947	3	1	16414	0
253.	253	182000		2	2		2	0	1985	2	7	6734		514.	514	200000	1370	4	1	0	1	0	1925	3	4	8000	0
254.	254	180000		2	1	1	0		1938	2	3	39776	0	515.	515	149900	1584	3	2	1	2	0	1957	3	1	13514	0
																											-
255.	255	249000		5	3		2		1965	2	1	21512	0	516.	516	132000	1567	2	1	1	1	0	1934	3	4	12249	0
256.	256	260000		4	3		2	0	1969	2	2	21149	0	517.	517	136900	1409	2	1		1	0	1951	3	1	28421	0
257.	257	219900	2612	3	3	1	2	0	1986	2	7	11288	0	518.	518	137000	1655	2	1	0	1	0	1935	3	1	54651	0
258.	258	295000		4	3		3			2	2	23976		519.	519	185000			2			0	1939	3	6	17999	0
259.	259	290000		4			2		1971	2	7	23488	ŏ	520.	520	133500		3			2		1950	3	1	14805	ŏ
260.	260	300000				1				2	3	21232		520. 521.		124000	1480							3	1		0
															521												
261.	261	354900	3000	5	4	1	3	U	1973	2	7	21643	0	522.	522	95500	1184	2	1	U	1	U	1951	3	1	14786	U

$\begin{tabular}{ll} \textbf{2. Summarty Table of R output for model-2} \end{tabular}$

call:

lm(formula = Project_data\$Price ~ Project_data\$Area + Project_data\$`#bedroom`
+ Project_data\$`#bathroom` + Project_data\$Air_conditioning +Project_data\$Gara
ge_capacity + Project_data\$Quality + Project_data\$Style + Project_data\$Lot_ar
ea + Project_data\$AGE)

Residuals:

Min 1Q Median 3Q Max -200847 -26187 -3558 22509 262697

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.613e+05	2.487e+04	6.485	2.12e-10	***
Project_data\$Area	1.007e+02	7.627e+00	13.205	< 2e-16	***
<pre>Project_data\$`#bedroom`</pre>	-4.613e+03	3.265e+03	-1.413	0.15836	
<pre>Project_data\$`#bathroom`</pre>	1.087e+04	4.213e+03	2.580	0.01018	*
<pre>Project_data\$Air_conditioningYES</pre>	3.231e+03	7.954e+03	0.406	0.68470	
Project_data\$Garage_capacity	9.210e+03	4.970e+03	1.853	0.06446	
Project_data\$QualityLOW	-1.428e+05	1.424e+04	-10.032	< 2e-16	***
Project_data\$QualityMEDIUM	-1.327e+05	1.051e+04	-12.626	< 2e-16	***
Project_data\$Style2	-2.492e+04	9.138e+03	-2.727	0.00661	**
Project_data\$Style3	-1.318e+04	8.699e+03	-1.516	0.13026	
Project_data\$Style4	1.548e+04	1.810e+04	0.855	0.39285	
Project_data\$Style5	-2.500e+04	1.487e+04	-1.681	0.09331	
Project_data\$Style6	-5.425e+03	1.492e+04	-0.364	0.71637	
Project_data\$Style7	-4.200e+04	8.585e+03	-4.892	1.34e-06	***
Project_data\$Style9	-8.719e+04	5.819e+04	-1.498	0.13466	
Project_data\$Style10	-7.644e+04	5.873e+04	-1.302	0.19366	
Project_data\$Style11	-9.799e+04	5.816e+04	-1.685	0.09263	
Project_data\$Lot_area	1.286e+00	2.339e-01	5.498	6.13e-08	***
Project_data\$AGE	-1.351e+03	2.049e+02	-6.591	1.10e-10	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 57430 on 503 degrees of freedom F-statistic: 139 on 18 and 503 DF, p-value: < 2.2e-16

3. Summarry Table of R output for transformed model (model 2 1) of model 2

call:

lm(formula = ystar ~ Project_data\$Area + Project_data\$`#bedroom` +
 Project_data\$`#bathroom` + Project_data\$Air_conditioning +Project_data\$Ga
rage_capacity + Project_data\$Quality + Project_data\$Style +Project_data\$Lot_a
rea + Project_data\$AGE)

Residuals:

Min 1Q Median 3Q Max -177.802 -25.567 -2.051 25.277 139.888

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept) 3.827e+02 2.060e+01 18.574 < 2e-16 *** 8.383e-02 6.317e-03 13.271 < 2e-16 *** Project_data\$Area Project_data\$`#bedroom` -1.683e+00 2.704e+00 -0.622 0.53398 Project_data\$`#bathroom` 1.151e+01 3.489e+00 3.297 0.00104 ** Project_data\$Air_conditioningYES 7.935e+00 6.588e+00 1.205 0.22895 Project_data\$Garage_capacity 8.454e+00 4.117e+00 2.054 0.04053 * Project_data\$QualityLOW -1.142e+02 1.179e+01 -9.682 < 2e-16 *** -9.548e+01 8.704e+00 -10.970 < 2e-16 *** Project_data\$QualityMEDIUM Project_data\$Style2 -2.062e+01 7.569e+00 -2.725 0.00666 ** Project_data\$Style3 -7.604e+00 7.205e+00 -1.055 0.29178 Project_data\$Style4 1.689e+01 1.499e+01 1.127 0.26034 -1.561e+01 1.231e+01 -1.267 0.20559 Project_data\$Style5 Project_data\$Style6 2.239e+00 1.236e+01 0.181 0.85629 Project_data\$Style7 -3.081e+01 7.111e+00 -4.333 1.78e-05 *** -4.518e+01 4.820e+01 -0.937 0.34903 Project_data\$Style9 Project_data\$Style10 -6.355e+01 4.864e+01 -1.306 0.19202 Project_data\$Style11 -9.498e+01 4.817e+01 -1.972 0.04916 * Project_data\$Lot_area 1.209e-03 1.937e-04 6.243 9.13e-10 *** -1.165e+00 1.697e-01 -6.867 1.94e-11 *** Project_data\$AGE

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 47.57 on 503 degrees of freedom Multiple R-squared: 0.8449, Adjusted R-squared: 0.8394 F-statistic: 152.2 on 18 and 503 DF, p-value: < 2.2e-16.

4. Summarry table of R output for transformed model (model 2 2) of model 2

call:

lm(formula = ystar ~ Project_data\$Area + Project_data\$`#bedroom` + Project_da
ta\$`#bathroom` + Project_data\$Air_conditioning +Project_data\$Garage_capacity
+ Project_data\$Quality + Project_data\$Style +Project_data\$Lot_area + Project_
data\$AGE)

Residuals:

Min 1Q Median 3Q Max -0.66269 -0.10683 -0.00283 0.10561 0.47938

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                1.184e+01 7.556e-02 156.674 < 2e-16 ***
                                2.902e-04 2.317e-05 12.528 < 2e-16 ***
Project_data$Area
                                3.027e-03 9.918e-03 0.305 0.760379
Project_data$`#bedroom`
Project_data$`#bathroom`
                                4.840e-02 1.280e-02 3.782 0.000174 ***
Project_data$Air_conditioningYES 5.143e-02 2.416e-02 2.129 0.033743 *
Project_data$Garage_capacity
                                3.515e-02 1.510e-02 2.328 0.020309 *
                               -3.726e-01 4.324e-02 -8.616 < 2e-16 ***
Project_data$QualityLOW
                               -2.692e-01 3.192e-02 -8.434 3.55e-16 ***
Project_data$QualityMEDIUM
Project_data$Style2
                               -6.618e-02 2.776e-02 -2.384 0.017488 *
                               -1.131e-02 2.642e-02 -0.428 0.668782
Project_data$Style3
Project_data$Style4
                                7.231e-02 5.497e-02 1.315 0.188949
Project_data$Style5
                               -3.307e-02 4.516e-02 -0.732 0.464355
                                3.185e-02 4.533e-02 0.703 0.482536
Project_data$Style6
Project_data$Style7
                               -9.339e-02 2.608e-02 -3.581 0.000375 ***
Project_data$Style9
                               -5.901e-02 1.768e-01 -0.334 0.738611
Project_data$Style10
                               -2.301e-01 1.784e-01 -1.290 0.197729
                               -3.783e-01 1.766e-01 -2.142 0.032713 *
Project_data$Style11
Project_data$Lot_area
                                4.703e-06 7.104e-07 6.620 9.21e-11 ***
Project_data$AGE
                               -4.150e-03 6.224e-04 -6.669 6.82e-11 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1745 on 503 degrees of freedom Multiple R-squared: 0.8423, Adjusted R-squared: 0.8367 F-statistic: 149.3 on 18 and 503 DF, p-value: < 2.2e-16

Analysis of Variance Table of transformed model (model 2_2) of model 2

Response: ystar

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Project_data\$Area	1	5137953	5137953	2270.4912	< 2.2e-16 ;	***
<pre>Project_data\$`#bedroom`</pre>	1	2419	2419	1.0692	0.3016	
<pre>Project_data\$`#bathroom`</pre>	1	155977	155977	68.9274	9.494e-16 *	***
<pre>Project_data\$Air_conditioning</pre>	1	46461	46461	20.5312	7.337e-06 ³	***
<pre>Project_data\$Garage_capacity</pre>	1	137666	137666	60.8353	3.607e-14 ³	***
Project_data\$Quality	2	475374	237687	105.0352	< 2.2e-16 ;	***
Project_data\$Style	9	81867	9096	4.0197	5.545e-05 *	***
Project_data\$Lot_area	1	57040	57040	25.2064	7.163e-07 ³	***
Project_data\$AGE	1	106710	106710	47.1557	1.940e-11 [*]	***
Residuals	503	1138252	2263			

5. Identification of Leverage points and Influential Points

dfb.1_ df	b.Pr_\$A	dfb.Prjct_dt\$`#bd`	` dfb.Prjct_dt\$`#bt`	dfb.P_\$A_	dfb.P_\$G
11 0.24	0.18	-0.41	-0.33	0.26	0.06
14 -0.02	0.00	-0.01	0.00	-0.01	0.02
24 -0.11	0.02	0.02	0.12	-0.02	0.03
25 -0.01	0.02	-0.01	0.00	0.01	0.00
36 -0.03	-0.01	0.01	0.07	-0.05	0.01
37 0.24	-0.12	-0.01	-0.09	-0.15	0.04
40 0.04	0.00	-0.02	0.00	-0.06	-0.02
47 0.00	0.01	-0.04	0.02	-0.03	0.02
54 -0.22	0.08	0.14	-0.03	0.16	0.07
55 0.04	-0.01	0.01	0.00	0.01	-0.02
70 0.00	0.00	0.00	0.00	0.00	0.00
76 0.00	0.00	0.00	0.00	0.00	0.00
80 0.20	-0.11	-0.02	-0.02	0.00	0.05
81 0.43	-0.19	0.14	-0.06	0.07	-0.68
96 0.10	-0.23	0.10	0.00	0.20	-0.14
103 0.19	-0.57	-0.44	0.61	0.06	0.07
104 0.40	-0.41	-0.05	-0.17	-0.04	0.18
108 0.39	0.03	-0.29	-0.44	0.05	0.09
120 -0.15	0.28	0.10	-0.49	-0.01	0.14
125 -0.03	-0.08	0.04	0.04	0.00	-0.01
133 -0.01	0.08	0.00	-0.08	0.02	-0.06
135 -0.14	0.24	0.17	-0.09	0.00	-0.09
136 -0.04	0.09	-0.10	0.04	0.02	-0.04
138 0.08	0.00	-0.01	0.11	-0.38	-0.04
148 -0.12	0.03	-0.07	-0.13	0.07	0.27
161 0.21	0.33	-0.20	-0.14	0.07	-0.57
203 -0.17	-0.14	0.19	-0.04	0.10	0.12
213 0.00	0.00	0.00	0.00	0.00	0.01
233 0.05	-0.03	-0.06	0.07	-0.23	-0.03
241 0.02	-0.01	0.01	-0.01	-0.01	-0.01
247 -0.05	0.05	0.00	-0.07	0.07	-0.06
264 0.05	-0.02	0.00	-0.02	-0.06	0.01
281 0.15	-0.07	0.23	-0.42	-0.05	0.07
314 -0.01	-0.01	0.00	0.02	0.01	0.02
353 0.00	0.01	-0.02	-0.01	0.01	0.01
361 0.15	-0.03	-0.10	-0.01	0.01	-0.15
362 0.00	0.00	0.00	0.00	0.00	0.00
384 0.00	0.00	0.00	0.00	0.00	0.00
395 -0.02	0.02	0.00	-0.01	0.03	-0.02
397 0.00	0.00	0.01	0.00	0.00	0.00

406 -0.07	0.03	-0.03		0.02		0.09	0.04
418 0.00	0.00	0.00		-0.01		-0.01	0.00
436 0.00	0.00	0.00		0.00		-0.01	0.01
dfb.P_\$QL df	b.P_\$QM	dfb.P_\$S2	dfb.P_\$S3	dfb.P_\$S4	dfb.P_\$S5	dfb.P_\$S6	dfb.P_\$S7
11 -0.30	-0.08	-0.06	-0.08	-0.03	0.08	0.08	-0.18
14 0.02	0.03	0.00	0.00	0.00	-0.07	0.00	0.01
24 0.03	-0.01	0.03	-0.30	-0.01	-0.04	-0.04	-0.03
25 -0.01	0.00	0.00	0.00	-0.01	-0.01	0.03	-0.01
36 0.07	-0.02	0.10	0.09	0.05	0.04	0.04	0.07
37 -0.05	-0.09	0.01	0.01	0.03	-0.42	0.09	0.12
40 0.00	-0.01	0.01	0.00	0.20	0.00	0.01	0.01
47 0.01	0.02	0.00	0.00	-0.15	0.00	0.00	-0.01
54 0.06	0.07	0.03	0.04	0.03	0.02	-0.01	-0.04
55 0.00	0.01	-0.03	-0.02	0.01	0.02	0.01	-0.04
70 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
76 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
80 -0.22	-0.24	-0.07	-0.07	0.00	0.01	0.02	-0.05
81 -0.20	-0.13	-0.01	0.01	0.00	0.07	0.12	0.25
96 -0.46	-0.49	0.00	0.04	-0.07	-0.08	-0.03	0.08
103 0.03	0.07	-0.05	-0.01	0.08	0.15	0.12	0.12
104 -0.18	0.04	-0.14	-0.09	0.01	0.14	0.16	0.11
108 -0.33	-0.28	-0.03	-0.05	-0.02	0.06	0.10	0.07
120 0.13	0.25	-0.01	-0.02	-0.06	-0.03	-0.04	-0.12
125 0.09	0.14	-0.04	-0.03	0.00	0.01	0.00	-0.07
133 0.06	0.09	-0.02	-0.02	-0.01	0.00	-0.01	0.08
135 0.08	0.17	-0.14	-0.16	-0.07	-0.12	-0.14	-0.30
136 0.06	0.07	0.00	0.23	0.00	-0.01	-0.02	-0.06
138 0.06	0.13	-0.02	-0.04	0.02	-0.03	-0.01	0.08
148 -0.11	-0.01	0.02	0.03	-0.06	-0.04	-0.03	0.19
161 0.06	0.15	-0.11	-0.17	-0.05	-0.04	-0.05	-0.23
203 0.00	0.03	-0.09	-0.05	-0.03	-0.05	-0.06	-0.01
213 0.01	0.01	0.00	0.00	0.03	0.00	0.00	0.00
233 -0.05	0.05	-0.06	-0.07	-0.02	-0.08	-0.06	-0.07
241 -0.01	-0.01	0.00	0.00	-0.06	0.00	0.00	0.00
247 0.01	0.05	0.00	0.00	-0.03	-0.02	-0.02	0.16
264 -0.05	-0.02	-0.01	-0.01	0.00	0.00	0.13	0.01
281 -0.14	-0.17	0.09	0.12	0.03	0.08	0.13	0.26
314 0.01	0.00	0.00	-0.02	0.00	0.00	0.00	-0.01
353 -0.02	0.01	-0.01	-0.02	0.26	0.00	0.00	-0.02
361 -0.02	-0.07	0.04	0.03	-0.51	0.03	0.05	0.10
362 0.00	0.00	0.00	0.00	0.00	-0.01	0.00	0.00
384 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
395 0.01	0.00	0.01	0.01	-0.01	0.05	-0.01	0.00
397 0.00	0.00	0.00	0.00	0.00	-0.02	0.00	0.00
406 0.01	0.02	-0.01	-0.01	-0.33	0.00	-0.02	-0.03

	418	0.00	0.00	0.00	0.00	0.00	0.00	0.01	L	0.00
	436	0.00	0.00	0.00	0.00	-0.04	0.00	0.00)	0.00
	dfb	.P_\$S9	dfb.P_\$S10	dfb.P_\$S11	dfb.P_\$L	dfb.P_\$AG	dffit	cov.r d	cook.d	hat
11	-0	.04	0.03	-0.08	-0.36	0.13	-0.92_*	0.81_*	0.04	0.09
14	0	.01	0.01	0.00	-0.01	0.01	-0.09	1.12_*	0.00	0.08
24	0	.01	-0.02	0.02	-0.07	0.15	-0.45	0.74_*	0.01	0.02
25	0	.00	0.00	0.00	-0.01	0.03	0.06	1.16_*	0.00	0.11
36	0	.01	0.00	0.02	-0.05	-0.06	-0.25	0.87_*	0.00	0.01
37	-0	.01	0.03	-0.01	-0.09	-0.21	-0.65_*	0.95	0.02	0.08
40	0	.00	0.00	0.00	-0.03	-0.03	0.22	1.14_*	0.00	0.11
47	0	.00	0.00	0.00	0.00	-0.01	-0.17	1.15_*	0.00	0.10
54	0	.02	-0.02	0.02	0.03	0.03	-0.35	0.88_*	0.01	0.02
55	-0	.01	0.00	-0.01	-0.01	-0.09	-0.12	1.13_*	0.00	0.09
70	0.	00	0.00	0.00	0.00	0.00	NaN	NaN	NaN	1.00_*
76	0.	00	0.00	0.00	0.00	0.00	NaN	NaN	NaN	1.00_*
80	-0	.05	-0.02	-0.02	0.05	-0.08	0.37	0.88_*	0.01	0.03
81	-0.	01	0.07	0.01	-0.09	-0.09	-0.86_*	1.05	0.04	0.15_*
96	-0.	05	-0.03	0.01	0.55	0.39	0.88_*	0.93	0.04	0.11_*
10	3 0	.03	0.11	-0.06	0.10	0.05	-0.96_*	0.79_*	0.05	0.09
10	4 0	.03	0.12	-0.04	-0.39	0.01	-0.95_*	0.61_*	0.05	0.05
10	8 -0	.07	0.04	-0.07	0.20	-0.17	0.78_*	0.90	0.03	0.09
12	0 0	.03	0.02	0.00	0.02	-0.04	-0.60_*	0.99	0.02	0.09
12	5 0	.02	0.03	0.00	0.03	-0.01	-0.31	0.88_*	0.01	0.02
13	3 0	.00	0.01	-0.01	0.01	-0.07	0.24	0.88_*	0.00	0.01
13	5 -0	.01	-0.06	0.00	-0.10	0.00	0.43	0.81_*	0.01	0.03
13	6 0	.00	0.00	-0.01	-0.01	-0.02	0.33	0.86_*	0.01	0.02
13	8 0	.01	0.00	0.00	-0.06	-0.14	0.49	0.80_*	0.01	0.03
14	8 0	.03	0.01	0.00	-0.19	0.45	0.60_*	0.88_*	0.02	0.06
16	1 -0	.05	0.00	-0.07	0.14	-0.37	0.75_*	0.87_*	0.03	0.08
20	3 0	.01	0.00	0.00	0.57	0.03	0.70_*	0.88_*	0.03	0.07
213	0.	00	0.00	0.00	0.00	-0.01	0.03	1.17_*	0.00	0.11_*
23	3 -0	.01	0.00	-0.02	0.32	-0.01	0.50	0.87_*	0.01	0.04
241	0.	00	0.00	0.00	-0.04	-0.01	-0.08	1.21_*	0.00	0.14_*
24	7 0	.01	0.01	0.00	0.11	0.07	0.31	0.80_*	0.01	0.01
26	4 0	.00	0.00	0.00	-0.01	0.01	0.16	1.12_*	0.00	0.08
28	1 0	.01	0.04	0.03	0.04	-0.11	-0.54	0.84_*	0.02	0.04
314	0.	00	0.00	0.00	-0.04	0.01	-0.06	1.17_*	0.00	0.11_*
35	3 0	.00	0.00	-0.01	-0.02	0.02	0.28	1.12_*	0.00	0.10
361	-0.	01	0.03	-0.01	0.09	-0.10	-0.60_*	1.06	0.02	0.11_*
36	2 0	.00	0.00	0.00	0.00	0.00	-0.01	1.12_*	0.00	0.07
384	0.	00	0.00	0.00	0.00	0.00	NaN	NaN	NaN	1.00_*
39	5 0	.00	0.00	0.00	0.01	0.01	0.07	1.13_*	0.00	0.09
39	7 0	.00	0.00	0.00	0.00	0.00	-0.02	1.11_*	0.00	0.07
40	6 0	.00	-0.01	0.00	-0.06	0.08	-0.36	1.12_*	0.01	0.11
41	8 0	.00	0.00	0.00	0.00	0.00	0.02	1.12_*	0.00	0.08

436 0.00 0.00 0.00 0.00 0.00 -0.04 1.15_* 0.00 0.10

6. Code Used in R

```
#import and attach the data
library(readx1)
Project data <- read excel("D:/MUN/STAT 6519/term project/Project data.xlsx")
attach(Project data)
#data type identification
str(Project data)
#summary statistics of data for data cleaning purpose
summary(Project data)
#conversion to indicator variable
Project data$Air conditioning<-as.factor(Project data$Air conditioning)
Project data$Pool<-as.factor(Project data$Pool)
Project data$Quality<-as.factor(Project data$Quality)
Project data$Style<-as.factor(Project data$Style)
Project data$Adj to highway<-as.factor(Project data$Adj to highway)
#initial model development
modelv1<-lm(Project data$Price~Project data$Area+
        Project data$`#bedroom`+
        Project data$`#bathroom`+
        Project data$Air conditioning+
        Project data$Garage capacity+
        Project data$Pool+
        Project data$Quality+
```

```
Project data$Style+
       Project data$Lot area+
       Project_data$Adj_to_highway+
       Project_data$AGE)
#check multicollinearity
library(car)
vif(modelv1)
#ANOVA
anova(modelv1)
#revised model
modelv2<-lm(Project_data$Price~Project_data$Area+
       Project_data\"#bedroom\+
       Project_data$`#bathroom`+
       Project data$Air conditioning+
       Project data$Garage capacity+
       Project data$Quality+
       Project_data$Style+
       Project_data$Lot_area+
       Project_data$AGE)
#ANOVA and summary
anova(modelv2)
summary(modelv2)
#model adequacy check
```

```
prd modelv2<-modelv2$fitted.values
resid modelv2<-rstudent(modelv2)</pre>
library(car)
qqPlot(resid_modelv2,xlab = 'Norm Quantiles',
    ylab = 'Externally Studentized Residual',
    grid = FALSE)
plot(prd modelv2,resid modelv2,xlab = 'Predicted Values',
  ylab = 'Externally Studentized Residual')
#transformation
ystar<-log(Project data$Price)
model 2 2<-lm(ystar~Project data$Area+
        Project data$`#bedroom`+
        Project data$`#bathroom`+
        Project_data$Air_conditioning+
        Project data$Garage capacity+
        Project data$Quality+
        Project data$Style+
        Project data$Lot area+
        Project data$AGE)
anova(model 2 2)
summary(model 2 2)
#after tranformation again check model adequacy
prd model 2 2<-model 2 2$fitted.values
resid model 2 2<-rstudent(model 2 2)
library(car)
```

```
qqPlot(resid model 2 2,xlab = 'Norm Quantiles',
    ylab = 'Externally Studentized Residual',
    grid = FALSE
plot(prd modely 2 2,resid modely 3,xlab = 'Predicted Values',
   ylab = 'Externally Studentized Residual')
#removing insignificant variable and check again
Model 3<-lm(ystar~Project data$Area+
        Project data$`#bathroom`+
        Project data$Air conditioning+
        Project data$Garage capacity+
        Project data$Quality+
        Project data$Style+
        Project data$Lot area+
        Project_data$AGE)
anova(model 3)
summary(model 3)
prd model 3 1<-model 3$fitted.values
resid_model 3_1<-rstudent(model 3)
library(car)
qqPlot(resid model 3,xlab = 'Norm Quantiles',
    ylab = 'Externally Studentized Residual',
    grid = FALSE)
plot(prd modely 3, resid modely 4, xlab = 'Predicted Values',
   ylab = 'Externally Studentized Residual')
```

```
summary(influence.measures(model 3))
#comparison between model 2_2 and model 3
anova(model 2 2,model 3)
#findout influential point
covratio general<-covratio(model 2 2)
covratio offlimit<-covratio general>1.06 | covratio general<0.94
covratio_offlimit
#removeal influential point
newproject data<-Project data[!covratio offlimit,]
plot(Project data$ID,covratio general)+
 abline(h=1.06,col='red')+
 abline(h=.94,col='red')
#final model after removal influential point
newproject data(-c(39,44,265),]
ystar 2<-log(newproject data$Price)
model 2_3<-lm(ystar_2~newproject_data$Area+
        newproject data$`#bedroom`+
        newproject data$`#bathroom`+
        newproject data$Air conditioning+
        newproject data$Garage capacity+
        newproject data$Quality+
        newproject data$Style+
        newproject data$Lot area+
```

```
newproject data$AGE)
anova(model 2_3)
summary(model 2_3)
#check model adequacy for final model
prd_model 2_3<-model 2_3$fitted.values
resid model2 3<-rstudent(model 2 3)
library(car)
qqPlot(resid model 2 3xlab = 'Norm Quantiles',
    ylab = 'Externally Studentized Residual',
    grid = FALSE)
plot(prd model 2 3,resid model 2 3,xlab = 'Predicted Values',
   ylab = 'Externally Studentized Residual')
covratio_general_model 2_3<-covratio(model 2_3)
covratio offlimit model 2 3<-covratio general>1.08 | covratio general<0.92
plot(newproject data$ID,covratio general model 2 3)+
 abline(h=1.08,col='red')+
 abline(h=.92,col='red')
```