

UNIVERSIDAD DE TALCA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL EN COMPUTACIÓN

Hardware-accelerated algorithms for approximate search engines

ERIK REGLA

Profesor Guía: RODRIGO PAREDES

Memoria para optar al título de Ingeniero Civil en Computación

Curicó – Chile mes, año

UNIVERSIDAD DE TALCA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL EN COMPUTACIÓN

Hardware-accelerated algorithms for approximate search engines

ERIK REGLA

Profesor Guía: RODRIGO PAREDES

Profesor Informante: PROFESOR INFORMANTE 1

Profesor Informante: PROFESOR INFORMANTE 2

Memoria para optar al título de Ingeniero Civil en Computación

El presente documento fue calificado con nota:

Curicó – Chile

mes, año

AGRADECIMIENTOS

Agradecimientos a ...

TABLA DE CONTENIDOS

		pág	ina
De	edicat	ria	I
Ag	gradeo	mientos	II
Ta	bla d	Contenidos	III
Ín	dice d	Figuras	VI
Ín	dice d	Tablas	VII
Re	sume	v	'III
1.	Intro	luction	9
	1.1.	Context	9
		.1.1. Motivation	9
		.1.2. Goals	9
2.	Requ	red knowledge	10
	2.1.	Approximate search indexing	11
	2.2.	Metric spaces	11
		2.2.1. Dimensionality crux	11
		2.2.2. Pivot-based indices	11
		2.2.3. Permutant-based indices	11
	2.3.	General overview	11
	2.4.	Permutant-based indices	11
	2.5.	Permutant-based search	11
	2.6.	Hardware acceleration	11
		2.6.1. GPGPU	11
		2.6.2. ASIC	11
		2.6.3. FPGA	11
		2.6.4. Design synthesis	11
		65 High Lavel Synthesis	11

	2.7.	Embebbed Linux	1 1							
	2.8.	Adapteva Parallela	11							
		2.8.1. Hardware	11							
		2.8.2. Inner workings	11							
3.	Met	Metric Space indexing 1								
	3.1.	Dataset description	12							
	3.2.		12							
4.	Soft	ware implementation analysis	13							
	4.1.	Algorithm analysis	13							
		4.1.1. Index generation	13							
		4.1.2. Approximate search	13							
	4.2.		13							
			13							
			13							
5.	Accelerator Implementation 14									
	5.1.	High Level Synthesis	14							
			14							
		5.1.2. Latency	14							
			14							
			14							
			14							
	5.2.		14							
			14							
			14							
	5.3.	Permutation generation	14							
		5.3.1. Analysis	14							
		5.3.2. Implementations	14							
6.	Hardware-Software interoperation 1:									
	6.1.	AXI4 Protocol	15							
		6.1.1. AXI4 Protocol	15							
		612 AVIAL:	1 4							

		6.1.3.	AXI4Full	15			
		6.1.4.	AXI4Stream	15			
	6.2.	Implen	nentation	15			
		6.2.1.	Direct Memory Access	15			
		6.2.2.	Devicetree	15			
		6.2.3.	AMBA	15			
		6.2.4.	Userspace IO	15			
7.	Resu	ılts		16			
	7.1.	Origina	al implementation benchmarks	16			
	7.2.	Accele	rated implementation benchmarks	16			
	7.3.	Compa	arison between results	16			
8.	Cone	clusions		17			
Gl	osario)		18			
Bil	Bibliografía 15						
Ar	exos						
A:	A: HLS IP C++ code						

ÍNDICE DE FIGURAS

página

ÍNDICE DE TABLAS

página

RESUMEN

Aquí va el resumen (en Castellano)...

1. Introduction

Introduction to the problem

1.1. Context

Aquí va el texto de la primera sección del capítulo 1...

1.1.1. Motivation

1.1.2. Goals

2. Required knowledge

2.1. Aproximate search indexing

- 2.2. Metric spaces
- 2.2.1. Dimensionality crux
- 2.2.2. Pivot-based indices
- 2.2.3. Permutant-based indices
- 2.3. General overview
- 2.4. Permutant-based indices
- 2.5. Permutant-based search
- 2.6. Hardware acceleration
- 2.6.1. **GPGPU**
- 2.6.2. **ASIC**
- 2.6.3. FPGA
- 2.6.4. Design synthesis
- 2.6.5. High Level Synthesis
- 2.7. Embebbed Linux
- 2.8. Adapteva Parallela
- 2.8.1. Hardware
- 2.8.2. Inner workings

3. Metric Space indexing

- 3.1. Dataset description
- 3.2. Implemented algorithm

4. Software implementation analysis

- 4.1. Algorithm analysis
- 4.1.1. Index generation
- **4.1.2.** Approximate search
- 4.2. Code analysis and benchmarking
- **4.2.1.** Permutation distance
- 4.2.2. Permutation generation

5. Accelerator Implementation

5.1. High Level Synthesis

- 5.1.1. Overview
- **5.1.2.** Latency
- 5.1.3. Thoughput
- **5.1.4.** Directives
- 5.1.5. Impact of coding style

5.2. Permutation distance

- 5.2.1. Analysis
- 5.2.2. Implementations

5.3. Permutation generation

- 5.3.1. Analysis
- **5.3.2.** Implementations

6. Hardware-Software interoperation

- 6.1. AXI4 Protocol
- 6.1.1. AXI4 Protocol
- **6.1.2. AXI4Lite**
- **6.1.3. AXI4Full**
- 6.1.4. AXI4Stream
- **6.2.** Implementation
- **6.2.1.** Direct Memory Access
- 6.2.2. Devicetree
- **6.2.3.** AMBA
- **6.2.4.** Userspace IO

7. Results

- 7.1. Original implementation benchmarks
- 7.2. Accelerated implementation benchmarks
- 7.3. Comparison between results

8. Conclusions

Glosario

El primer término: Este es el significado del primer término, realmente no se bien lo que significa pero podría haberlo averiguado si hubiese tenido un poco mas de tiempo.

El segundo término: Este si se lo que significa pero me da lata escribirlo...

Bibliografía

A. HLS IP C++ code

Aquí va el texto del primer anexo...