NUMERICS OF MACHINE LEARNING LECTURE 04 COMPUTATION-AWARE GP INFERENCE

Jonathan Wenger 10 November 2022

UNIVERSITÄT TÜBINGEN

FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR THE METHODS OF MACHINE LEARNING

Where are we in the course?

- ▶ Last week: Contemporary way of solving linear systems for GP regression on large datasets
- This week: Probabilistic numerics approach to (approximate) GP regression

Today

- Learning to approximate GPs with probabilistic numerics.
- Quantifying approximation error probabilistically.
- Iterative numerical methods for GPs as active learning agents.
- Philosophical connections between data and computation.
- Exact uncertainty quantification for GPs in (sub-)quadratic time.

Recap: Scalable GP Approximations

An archetypical supervised machine learning model

Goal: Learn an unknown function $f_*: \mathbb{R}^d \to \mathbb{R}$ from a training dataset of example input-output pairs.

$$f \sim \mathcal{GP}(\mu, k)$$

$$y \mid f(X) \sim \mathcal{N}(f(X), \sigma^{2}I)$$

$$f \mid X, y \sim \mathcal{GP}(\mu_{post}, k_{post})$$

$$\mu_{\text{post}}(\mathbf{X}) = \mu(\mathbf{X}) + k(\mathbf{X}, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1}(y - \mu(\mathbf{X}))$$

$$k_{\text{post}}(\mathbf{X}_0, \mathbf{X}_1) = k(\mathbf{X}_0, \mathbf{X}_1) - k(\mathbf{X}_0, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1}k(\mathbf{X}, \mathbf{X}_1)$$

Recap: Gaussian Process Inference via the Partial Cholesky

$$f \sim \mathcal{GP}(\mu, k)$$

$$\mathbf{y} \mid f(\mathbf{X}) \sim \mathcal{N}(f(\mathbf{X}), \sigma^2 \mathbf{I})$$

$$f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_{\text{post}}, k_{\text{post}})$$

$$\begin{split} \mu_{\text{post}}(\mathbf{x}) &= \mu(\mathbf{x}) + k(\mathbf{x}, \mathbf{X}) \mathbf{C}_i(\mathbf{y} - \mu(\mathbf{X})) \\ k_{\text{post}}(\mathbf{x}_0, \mathbf{x}_1) &= k(\mathbf{x}_0, \mathbf{x}_1) - k(\mathbf{x}_0, \mathbf{X}) \mathbf{C}_i k(\mathbf{X}, \mathbf{x}_1) \end{split}$$

Recap: Learning to Invert the Kernel Matrix

The Cholesky decomposition as a learning algorithm for the inverse kernel matrix

Algorithm Cholesky with Inverse Approximation

```
Input: spd matrix A
Output: lower triangular L_i, s.t. L_i L_i^{\mathsf{T}} \approx A, low-rank C_i \approx A^{-1}
                    1 procedure Cholesky(A)
                                                            A' \leftarrow A, C_0 = 0
                                                          for i \in \{1, \ldots, n\} do
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // Action
             d_{i} \leftarrow C_{i} - A_{i} S_{i} 
 d_{i} \leftarrow C_{i} - A_{i} S_{i} 
 d_{i} \leftarrow S_{i}^{\mathsf{T}} A d_{i} = e_{i}^{\mathsf{T}} A' e_{i} = \|e_{i}\|_{A'}^{2}  /\!\!/ \text{Norm. constant} 
 d_{i} \leftarrow A_{i} - A_{i} - A_{i} d_{i}  /\!\!/ \text{Matrix observation} 
 d_{i} \leftarrow A_{i} - A_{
                                                                            L_i = (L_{i-1} \ i)
                                                                      end for
                                                                      return Li, Ci
              13 end procedure
```

Goal: (Low-rank) Approximation $C_i \approx A^{-1}$

Observation: Matrix approx. \rightarrow inverse approx.?

$$L_{i}L_{i}^{\mathsf{T}} \approx A$$

$$(A^{-1}L_{i})(A^{-1}L_{i})^{\mathsf{T}} \approx A^{-1}$$

$$= C_{i}$$

Computational complexity: $\#flops \in \mathcal{O}(in^2)$

Cholesky can be seen as an iterative learning algorithm for the kernel matrix and its inverse.

Recap: Interpreting the Pivoting Strategy as Active Learning

The selection of datapoints, i.e. choice of actions s_i , matters a lot for convergence.

Recap: Can we find better actions?

Why restrict ourselves to just unit vectors to probe the matrix residual?

Partial Cholesky

$$A'e_{i} = A(I - C_{i-1}A)s_{i} = Ad_{i}$$

$$= \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Other Method?

$$A'e_{i} = A(I - C_{i-1}A)s_{i} = Ad_{i}$$

$$= \begin{pmatrix} & & & \\ \vdots & & & \\ & * & & \\ \vdots & & & \\ * & & & \\ \vdots & & & \\ * & & & \\ \vdots & & & \\ * & & & \\ * & & \\ \vdots & & & \\ * & \\ * & & \\ *$$

Can we learn the kernel matrix (inverse) in a more efficient way via different actions?

Recap: Method of Conjugate Gradients

Goal: Approximately solve linear system Ax = b with few matrix-vector multiplies.

Idea: Rephrase as quadratic optimization problem and optimize. Let

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Ax - b^{\mathsf{T}}x$$

then
$$\nabla f(x) = 0 \iff Ax = b \iff r(x) := b - Ax = 0$$
.

Ouestion: How should we optimize?

- 1. Gradient descent: Follow $d_i = r(x_i) = -\nabla f(x_i)$ s.t. $\langle d_i, d_i \rangle = 0$.
- 2. Conjugate direction method: Follow d_i s. t. $\langle d_i^{\mathsf{T}} d_i \rangle_A = d_i^{\mathsf{T}} A d_i = 0$ for $i \neq j$. \implies convergence in at most *n* steps.
- 3. Conjugate gradient method: First step $d_0 = r(x_0)$.

Oleg Alexandrov, com-

mons.wikimedia.org/w/index.php?curid=2267598

Recap: Algorithm: Method of Conjugate Gradients

Algorithm CG with Inverse Approximation

```
Input: spd matrix A, vector b, initial guess x_0
Output: approximate solution x_i \approx A^{-1}b, low-rank C_i \approx A^{-1}
       procedure CG(A, b, x_0)
                while ||r_i||_2 > \max(\delta_{\text{rtol}}||b||_2, \delta_{\text{atol}}) do
                        r_{i-1} \leftarrow b - Ax_{i-1}
                                                                                                             // Residual
                  \begin{array}{c} s_i \leftarrow r_{i-1} \\ \alpha_i \leftarrow s_i^\intercal r_{i-1} \\ d_i \leftarrow (I - C_{i-1} A) s_i \\ \eta_i \leftarrow s_i^\intercal A d_i = d_i^\intercal A d_i \\ C_i \leftarrow C_{i-1} + \frac{1}{2i} d_i d_i^\intercal \\ x_i \leftarrow x_{i-1} + \frac{2i}{\eta_i} d_i = C_i b \end{array}
                                                                                                                 // Action
                                                                                                       // Observation
                                                                                               // Search direction
                                                                                                // Norm. constant
                                                                                              // Inverse estimate
                                                                                             // Solution estimate
                end while
                return x<sub>i</sub>, C<sub>i</sub>
   12 end procedure
```


Oleg Alexandrov, com-

mons.wikimedia.org/w/index.php?curid=2267598

Recap: Algorithm: Method of Conjugate Gradients

can interpret CC as a learning algorithm for the matrix inverse as well

Algorithm CG with Inverse Approximation

```
Input: spd matrix A, vector b, initial guess x_0
Output: approximate solution x_i \approx A^{-1}b, low-rank C_i \approx A^{-1}
```

Algorithm Cholesky with Inverse Approximation

```
Input: spd matrix A
```

13 end procedure

```
Output: lower triangular L_i, s.t. L_iL_i^{\mathsf{T}} \approx A, low-rank C_i \approx A^{-1}
```

```
procedure CHOLESKY(A)

\begin{array}{c|cccc}
A' \leftarrow A, C_0 = 0 \\
\hline
\text{for } i \in \{1, \dots, n\} \text{ do} \\
\hline
Action

\begin{array}{c|ccccc}
A_i \leftarrow C_i - C_{i-1}A)s_i \\
\hline
A_i \leftarrow C_i - C_{i-1}A)s_i \\
\hline
A_i \leftarrow A \frac{1}{\sqrt{n}}d_i = e_i^T A'e_i = \|e_i\|_{A'}^2 \text{ // Norm. constant} \\
\hline
A_i \leftarrow A \frac{1}{\sqrt{n}}d_i & \text{// Matrix observation} \\
\hline
A_i \leftarrow A - L_i L_i^T = A(A^{-1} - C_i)A = A(I - C_i A) \\
\hline
A_i \leftarrow A - L_i L_i^T = A(A^{-1} - C_i)A = A(I - C_i A) \\
\hline
A_i \leftarrow A - C_i - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow A - C_i - C_i A \\
\hline
A_i \leftarrow
```

Recap: Stochastic Variational Gaussian Processes

Idea: Linear time GP approximation via inducing points.

Source: https://tiao.io/post/sparse-variational-gaussian-processes/

Can we design a method where we can trust the UO no matter how much computation we've done?

Exact UQ for GP approximation with arbitrary amounts of compute. Computation-aware GP Inference

Posterior and Computational Uncertainty in Gaussian Processes

Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig and John Cunningham

- IterGP: new class of GP approximations accounting for computational uncertainty.
- ▶ IterGP instances extend classic methods (Cholesky, CG, Nyström, ...).
- Strong theoretical guarantees.
- Modeling computational uncertainty either saves computation or improves generalization.

Paper arxiv https://arxiv.org/abs/2107.00243

$$f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_{\text{post}}, k_{\text{post}})$$

$$\mu_{\text{post}}(\mathbf{x}) = \mu(\mathbf{x}) + k(\mathbf{x}, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 I)^{-1}(\mathbf{y} - \mu(\mathbf{X}))$$
$$k_{\text{post}}(\mathbf{x}_0, \mathbf{x}_1) = k(\mathbf{x}_0, \mathbf{x}_1) - k(\mathbf{x}_0, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 I)^{-1}k(\mathbf{X}, \mathbf{x}_1)$$

$$f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_{\mathsf{post}}, k_{\mathsf{post}})$$

$$\begin{split} \mu_{\text{post}}(\textbf{\textit{x}}) &= \mu(\textbf{\textit{x}}) + k(\textbf{\textit{x}}, \textbf{\textit{X}})(k(\textbf{\textit{X}}, \textbf{\textit{X}}) + \sigma^2 \textbf{\textit{I}})^{-1}(\textbf{\textit{y}} - \mu(\textbf{\textit{X}})) \\ &= \mu(\textbf{\textit{x}}) + k(\textbf{\textit{x}}, \textbf{\textit{X}}) \underbrace{\textbf{\textit{v}}_*}_{\text{representer weights}} = \mu(\textbf{\textit{x}}) + \sum_{j=1}^n k(\textbf{\textit{x}}, \textbf{\textit{x}}_j)(\textbf{\textit{v}}_*)_j \end{split}$$

The posterior mean is a linear combination of kernel functions centered at datapoints.

Approximating Representer Weights

Iterative linear solvers approximate the representer weights

Observation: Iterative linear solvers (e.g. CG) approximate the representer weights $\mathbf{v}_i \approx \mathbf{v}_* = \hat{\mathbf{K}}^{-1} \mathbf{y}$.

$$\mu_{\text{post}}(\mathbf{X}) = \mu(\mathbf{X}) + k(\mathbf{X}, \mathbf{X}) \underbrace{\mathbf{v}_*}_{\text{representer weights}} = \mu(\mathbf{X}) + \sum_{j=1}^n k(\mathbf{X}, \mathbf{X}_j) (\mathbf{v}_*)_j$$

$$\approx \mu(\mathbf{X}) + k(\mathbf{X}, \mathbf{X}) \mathbf{v}_i$$

Can we quantify the approximation error $\|\mathbf{v}_* - \mathbf{v}_i\|$ in the representer weights *probabilistically*?.

Interlude: Gaussians provide the Linear Algebra of Inference

products of Gaussians are Gaussians

$$\mathcal{N}(x; a, A) \mathcal{N}(x; b, B)$$

$$= \mathcal{N}(x; c, C) \mathcal{N}(a; b, A + B)$$

$$C := (A^{-1} + B^{-1})^{-1} \quad c := C(A^{-1}a + B^{-1}b)$$

linear projections of Gaussians are Gaussians

$$\begin{aligned} p(z) &= \mathcal{N}(z; \mu, \Sigma) \\ \Rightarrow & p(Az) &= \mathcal{N}(Az, A\mu, A\Sigma A^{\mathsf{T}}) \end{aligned}$$

marginals of Gaussians are Gaussians

$$\int \mathcal{N}\left[\begin{pmatrix} \mathbf{X} \\ \mathbf{y} \end{pmatrix}; \begin{pmatrix} \mu_{\mathbf{X}} \\ \mu_{\mathbf{y}} \end{pmatrix}, \begin{pmatrix} \Sigma_{\mathbf{XX}} & \Sigma_{\mathbf{XY}} \\ \Sigma_{\mathbf{yX}} & \Sigma_{\mathbf{yy}} \end{pmatrix}\right] \, \mathrm{d}\mathbf{y} = \mathcal{N}(\mathbf{X}; \mu_{\mathbf{X}}, \Sigma_{\mathbf{XX}})$$

▶ (linear) conditionals of Gaussians are Gaussians

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

$$= \mathcal{N}\left(x; \mu_x + \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

Bayesian inference becomes linear algebra

$$\begin{split} &\text{If } p(x) = \mathcal{N}(x; \mu, \Sigma) \qquad \text{and} \qquad p(y \mid x) = \mathcal{N}(y; A^\mathsf{T} x + b, \Lambda), \text{ then} \\ &p(B^\mathsf{T} x + c \mid y) = \mathcal{N}[B^\mathsf{T} x + c; B^\mathsf{T} \mu + c + B^\mathsf{T} \Sigma A (A^\mathsf{T} \Sigma A + \Lambda)^{-1} (y - A^\mathsf{T} \mu - b), B^\mathsf{T} \Sigma B - B^\mathsf{T} \Sigma A (A^\mathsf{T} \Sigma A + \Lambda)^{-1} A^\mathsf{T} \Sigma B) \end{split}$$

Learning the solution of linear systems while quantifying computational uncertainty

Goal: Quantify approximation error when solving $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}\mathbf{y}$ probabilistically, i.e. $\mathbf{v}_* \sim \mathcal{N}(\mathbf{v}_i, \mathbf{\Sigma}_i)$.

Prior: $\mathbf{v}_* \sim \mathcal{N}(\mathbf{v}_0, \mathbf{\Sigma}_0)$

Approx. Representer Weights v_i

Representer Weights v *

Learning the solution of linear systems while quantifying computational uncertainty

Goal: Quantify approximation error when solving $\mathbf{v}_* = \hat{\mathbf{K}}^{-1} \mathbf{y}$ probabilistically, i.e. $\mathbf{v}_* \sim \mathcal{N}(\mathbf{v}_i, \mathbf{\Sigma}_i)$.

Prior: $v_* \sim \mathcal{N}(v_0, \Sigma_0)$

Likelihood: Observe representer weights indirectly via matrix-vector multiplication with the residual:

$$\alpha_i \coloneqq \mathbf{s}_i^\mathsf{T} \mathbf{r}_{i-1} = \mathbf{s}_i^\mathsf{T} ((\mathbf{y} - \boldsymbol{\mu}) - \hat{\mathbf{K}} \mathbf{v}_{i-1}) = \mathbf{s}_i^\mathsf{T} \hat{\mathbf{K}} (\mathbf{v}_* - \mathbf{v}_{i-1})$$

Approx. Representer Weights v_i

lacksquare Representer Weights $oldsymbol{v}_*$

Learning the solution of linear systems while quantifying computational uncertainty

Goal: Quantify approximation error when solving $\mathbf{v}_* = \hat{\mathbf{K}}^{-1} \mathbf{y}$ probabilistically, i.e. $\mathbf{v}_* \sim \mathcal{N}(\mathbf{v}_i, \mathbf{\Sigma}_i)$.

Prior: $v_* \sim \mathcal{N}(v_0, \Sigma_0)$

Likelihood: Observe representer weights indirectly via matrix-vector multiplication with the residual:

$$\alpha_i \coloneqq \mathbf{s}_i^\mathsf{T} \mathbf{r}_{i-1} = \mathbf{s}_i^\mathsf{T} ((\mathbf{y} - \boldsymbol{\mu}) - \hat{\mathbf{K}} \mathbf{v}_{i-1}) = \mathbf{s}_i^\mathsf{T} \hat{\mathbf{K}} (\mathbf{v}_* - \mathbf{v}_{i-1})$$

Posterior: Affine Gaussian inference!

lacktriangle Approx. Representer Weights $oldsymbol{v}_i$

Representer Weights v *

Learning the solution of linear systems while quantifying computational uncertainty

Goal: Quantify approximation error when solving $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}\mathbf{y}$ probabilistically, i.e. $\mathbf{v}_* \sim \mathcal{N}(\mathbf{v}_i, \mathbf{\Sigma}_i)$.

Prior: $v_* \sim \mathcal{N}(v_0, \Sigma_0)$

Likelihood: Observe representer weights indirectly via matrix-vector multiplication with the residual:

$$\alpha_i := s_i^\mathsf{T} r_{i-1} = s_i^\mathsf{T} ((y - \mu) - \hat{K} v_{i-1}) = s_i^\mathsf{T} \hat{K} (v_* - v_{i-1})$$

Posterior: $\mathbf{v}_* \mid \alpha_i \sim \mathcal{N}(\mathbf{v}_i, \mathbf{\Sigma}_i)$, where

$$\begin{aligned} v_{i} &= v_{i-1} + \sum_{j-1}^{i=d_{j}} \widehat{K}s_{i}^{\dagger} (s_{j}^{\mathsf{T}} \widehat{K} \Sigma_{i-1} \widehat{K}s_{i}^{\dagger})^{-1} s_{j}^{\mathsf{T}} \widehat{K} (v_{*} - v_{i-1}) \\ &= C_{i}(y - \mu) \underbrace{s_{i}}_{j=d_{i}} \underbrace{s_{i}}_{j=1} \widehat{K}s_{i} (s_{j}^{\mathsf{T}} \widehat{K} \Sigma_{i-1} \widehat{K}s_{i})^{-1} s_{j}^{\mathsf{T}} \widehat{K} \Sigma_{i-1} \\ &= \Sigma_{i} - \sum_{j-1}^{i} \widehat{K}s_{j} (s_{j}^{\mathsf{T}} \widehat{K} \Sigma_{i-1} \widehat{K}s_{i})^{-1} s_{j}^{\mathsf{T}} \widehat{K} \Sigma_{i-1} \end{aligned}$$

$$= \Sigma_{0} - C_{i} = \Sigma_{0} - \sum_{j=1}^{i} \frac{1}{\eta_{i}} d_{j} d_{j}^{\mathsf{T}} = \Sigma_{0} - S_{i} (S_{j}^{\mathsf{T}} \widehat{K}S_{i})^{-1} S_{j}^{\mathsf{T}} \end{aligned}$$

lacktriangle Approx. Representer Weights $oldsymbol{v}_i$

Representer Weights v *

Choosing the "Right" Linear Solver Prior

eberhard karls UNIVERSITÄT TÜBINGEN

1

The GP makes assumptions about the representer weights

Problem: How to choose the linear solver prior?

Approx. Representer Weights v_i

lacksquare Representer Weights $oldsymbol{v}_*$

Choosing the "Right" Linear Solver Prior

eberhard karls UNIVERSITÄT TÜBINGEN

1

The GP makes assumptions about the representer weights

Problem: How to choose the linear solver prior?

Remember: $\mathbf{y} = f(\mathbf{X}) + \boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

Gaussian process prior $f \sim \mathcal{GP}(0, k)$ gives:

$$\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{k}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}) = \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}})$$

igoplus Approx. Representer Weights $oldsymbol{v}_i$

lacksquare Representer Weights $oldsymbol{
u}_*$

Choosing the "Right" Linear Solver Prior

The GP makes assumptions about the representer weights.

Problem: How to choose the linear solver prior?

Remember: $\mathbf{v} = f(\mathbf{X}) + \boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

Gaussian process prior $f \sim \mathcal{GP}(0, k)$ gives:

$$\mathbf{y} \sim \mathcal{N}(\mathbf{0}, k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}) = \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}})$$

$$\mathbf{v}_* = \hat{\mathbf{K}}^{-1} \mathbf{y} \sim \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}}^{-1}) = \mathcal{N}(\mathbf{v}_0, \mathbf{\Sigma}_0)$$

Approx. Representer Weights v_i

Chicken & Eqq Problem: How can we get a probabilistic error estimate for $v_i \approx v_*$, if we need \hat{K}^{-1} for it?

Computation-Aware Gaussian Process Inference

Gaussian Processes

Mathematical posterior: $f_{\diamond} \mid \mathbf{v}_{*} \sim \mathcal{N}(\mu_{*}(\mathbf{X}_{\diamond}), k_{*}(\mathbf{X}_{\diamond}, \mathbf{X}_{\diamond}))$. s.t.

$$\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_*, \quad \text{and} \quad k_*(\cdot, \cdot) = k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)$$

Learning the Representer Weights

Infer representer weights via probabilistic linear solver: $p(\mathbf{v}_*) = \mathcal{N}(\mathbf{v}_*; \mathbf{v}_i, \mathbf{\Sigma}_i)$, s.t.

$$\mathbf{v}_i = \mathbf{C}_i(\mathbf{y} - \boldsymbol{\mu})$$
 and $\mathbf{\Sigma}_i = \mathbf{\Sigma}_0 - \mathbf{C}_i = \hat{\mathbf{K}}^{-1} - \mathbf{C}_i$

Combined Uncertainty

Marginal distribution: $p(f_{\diamond}) = \int p(f_{\diamond} \mid v_*) p(v_*) dv_* = \mathcal{N}(f_{\diamond}; \mu_i(X_{\diamond}), k_i(X_{\diamond}, X_{\diamond}))$, s.t.

$$\mu_i(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_i$$

$$k_i(\cdot, \cdot) = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{K}^{-1}k(\mathbf{X}, \cdot) + k(\cdot, \mathbf{X})\boldsymbol{\Sigma}_ik(\mathbf{X}, \cdot)}_{\text{mathematical uncertainty}} \bullet \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\boldsymbol{C}_ik(\mathbf{X}, \cdot)}_{\text{computational uncertainty}} \bullet \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\boldsymbol{C}_ik(\mathbf{X}, \cdot)}_{\text{combined uncertainty}} \bullet$$

Probabilistic Quantification of Approximation Error

The covariance can be interpreted as a squared erro

Combined Uncertainty

Belief about the true function is captured by $f \sim \mathcal{GP}(\mu_i, k_i)$, s.t.

$$\mu_{i}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_{i}$$

$$k_{i}(\cdot, \cdot) = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{K}^{-1}k(\mathbf{X}, \cdot)}_{\text{mathematical uncertainty}} + \underbrace{k(\cdot, \mathbf{X})\boldsymbol{\Sigma}_{i}k(\mathbf{X}, \cdot)}_{\text{computational uncertainty}} = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\boldsymbol{C}_{i}k(\mathbf{X}, \cdot)}_{\text{combined uncertainty}}$$

Remember:
$$Cov(f(\mathbf{x}), f(\mathbf{x})) = \mathbb{E}[(f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})])^2] = \mathbb{E}[(f(\mathbf{x}) - \mu(\mathbf{x}))^2]$$

Probabilistic Quantification of Approximation Error

The covariance can be interpreted as a squared erro

Combined Uncertainty

Belief about the true function is captured by $f \sim \mathcal{GP}(\mu_i, k_i)$, s.t.

$$\mu_{i}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_{i}$$

$$k_{i}(\cdot, \cdot) = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{K}^{-1}k(\mathbf{X}, \cdot) + k(\cdot, \mathbf{X})\boldsymbol{\Sigma}_{i}k(\mathbf{X}, \cdot)}_{\text{computational uncertainty}} = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\boldsymbol{C}_{i}k(\mathbf{X}, \cdot)}_{\text{combined uncertainty}}$$

Remember:
$$Cov(f(\mathbf{x}), f(\mathbf{x})) = \mathbb{E}[(f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})])^2] = \mathbb{E}[(f(\mathbf{x}) - \mu(\mathbf{x}))^2]$$

$$k_{\text{post}}(\mathbf{x}, \mathbf{x}) = \underbrace{k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, \mathbf{X})\hat{k}^{-1}k(\mathbf{X}, \mathbf{x})}_{\text{mathematical uncertainty}} = \mathbb{E}[(f(\mathbf{x}) - \mu_*(\mathbf{x}))^2]$$

Probabilistic Quantification of Approximation Error

The covariance can be interpreted as a squared error

Combined Uncertainty

Belief about the true function is captured by $f \sim \mathcal{GP}(\mu_i, k_i)$, s.t.

$$\mu_{i}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_{i}$$

$$k_{i}(\cdot, \cdot) = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{K}^{-1}k(\mathbf{X}, \cdot) + k(\cdot, \mathbf{X})\boldsymbol{\Sigma}_{i}k(\mathbf{X}, \cdot)}_{\text{computational uncertainty}} = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\boldsymbol{C}_{i}k(\mathbf{X}, \cdot)}_{\text{combined uncertainty}}$$

Remember: $Cov(f(\mathbf{x}), f(\mathbf{x})) = \mathbb{E}[(f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})])^2] = \mathbb{E}[(f(\mathbf{x}) - \mu(\mathbf{x}))^2]$

$$k_{\text{post}}(\mathbf{x}, \mathbf{x}) = \underbrace{k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, \mathbf{X})\hat{K}^{-1}k(\mathbf{X}, \mathbf{x})}_{\text{mathematical uncertainty}} = \mathbb{E}[(f(\mathbf{x}) - \mu_*(\mathbf{x}))^2]$$

$$k_i^{\text{comp}}(\mathbf{x}, \mathbf{x}) = \underbrace{k(\mathbf{x}, \mathbf{X})\boldsymbol{\Sigma}_i k(\mathbf{X}, \mathbf{x})}_{\text{computational uncertainty}} = \underbrace{\boldsymbol{\Sigma}_i = \text{Cov}(\mathbf{v}_*) = \mathbb{E}[(\mathbf{v}_* - \mathbf{v}_i)^2]}_{\mathbf{E}[(\mathbf{v}_* - \mathbf{v}_i)^2]}$$

eberhard karls UNIVERSITAT TUBINGEN

eberhard karls UNIVERSITAT TUBINGEN

Computation-Aware GP Inference Illustrated

Interpreting computational and combined uncertainty as error quantification

Computation-Aware GP Inference Illustrated

eberhard karls UNIVERSITÄT TÜBINGEN

Interpreting computational and combined uncertainty as error quantification

Computation-Aware GP Inference Illustrated

Interpreting computational and combined uncertainty as error quantification


```
Input: prior mean \mu, prior kernel k, training data X, y
Output: (combined) GP posterior \mathcal{GP}(\mu_i, k_i)
         procedure ITERGP(\mu, k, X, y)
                  (\mu_0, k_0) \leftarrow (\mu, k)
                  \mu \leftarrow \mu(X)
                  \hat{K} \leftarrow k(\hat{X}, \hat{X}) + \sigma^2 I
                  while not STOPPINGCRITERION() do
                        \begin{array}{ll} \mathbf{s}_i \leftarrow \text{POLICY()} & \text{\# Select action via policy.} \\ f_{l-1} \leftarrow (\mathbf{y} - \boldsymbol{\mu}) - \hat{\mathbf{K}} \mathbf{v}_{l-1} & \text{\# Predictive residual.} \\ \alpha_i \leftarrow \mathbf{s}_i^\mathsf{T} f_{l-1} & \text{\# Observation of linear solver.} \\ d_i \leftarrow \mathbf{\Sigma}_{l-1}^\mathsf{T} \hat{\mathbf{K}} \mathbf{s}_i = (I - C_{l-1}^\mathsf{T} \hat{\mathbf{K}}) \mathbf{s}_i & \text{\# Search direction.} \end{array}
                \eta_i \leftarrow s_i^T \hat{\mathbf{X}} \Sigma_{i-1} \hat{\mathbf{K}} s_i = s_i^T \hat{\mathbf{K}} d_i // Normalization constant. C_i \leftarrow C_{i-1} + \frac{1}{4} d_i d_i^T // Inverse approx. C_i \approx \hat{K}^{-1}. v_i \leftarrow v_{i-1} + \frac{d \partial_i}{2} d_i // Representer weights estimate.
                   \Sigma_i \leftarrow \Sigma_0 - C_i // Computational rep. w. uncertainty.
                  end while
                  p(v_*) \leftarrow \mathcal{N}(v_*; v_i, \Sigma_i) // Belief about representer weights.
                  \mu_i(\cdot) \leftarrow \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_i // Approximate posterior mean.
                 k_i(\cdot,\cdot) \leftarrow k(\cdot,\cdot) - k(\cdot,X)C_ik(X,\cdot) // Combined uncertainty.
                  return \mathcal{GP}(\mu_i, k_i)
   19 end procedure
```

Initialize representer weights belief

$$egin{aligned} oldsymbol{v}_0 &= \mathbf{0} \ oldsymbol{C}_0 &= \mathbf{0} \ oldsymbol{\Sigma}_0 &= oldsymbol{\Sigma}_0 - oldsymbol{C}_0 = \hat{oldsymbol{\mathcal{K}}}^{-1} \end{aligned}$$


```
Input: prior mean \mu, prior kernel k, training data X, y
Output: (combined) GP posterior \mathcal{GP}(\mu_i, k_i)
           procedure ITERGP(\mu, k, X, y)
                      (\mu_0, k_0) \leftarrow (\mu, k)
                      \mu \leftarrow \mu(X)
                      \hat{K} \leftarrow k(\hat{X}, \hat{X}) + \sigma^2 I
                      while not STOPPINGCRITERION() do
                             \begin{array}{ll} \textbf{s}_i \leftarrow \text{POLICY}() & \text{\# Select action via policy.} \\ \textbf{r}_{l-1} \leftarrow (\textbf{y} - \boldsymbol{\mu}) - \hat{\textbf{K}} \textbf{v}_{l-1} & \text{\# Predictive residual.} \\ \alpha_i \leftarrow \textbf{s}_l^\intercal \textbf{r}_{l-1} & \text{\# Observation of linear solver.} \\ \textbf{d}_i \leftarrow \boldsymbol{\Sigma}_{l-1}^\intercal \hat{\textbf{K}} \textbf{s}_i = (I - \textbf{C}_{l-1}^\intercal \hat{\textbf{K}}) \textbf{s}_i & \text{\# Search direction.} \end{array}
                   \eta_i \leftarrow \mathbf{S}_i^\intercal K \mathbf{\Sigma}_{i-1} K s_i = \mathbf{S}_i^\intercal K \mathbf{d}_i // Normalization constant. C_i \leftarrow \mathbf{C}_{i-1} + \frac{1}{d^2} \mathbf{d}_i \mathbf{d}_i^\intercal // Inverse approx. C_i \approx \hat{K}^{-1}. v_i \leftarrow v_{i-1} + \frac{dy}{d^2} \mathbf{d}_i // Representer weights estimate. \mathbf{\Sigma}_i \leftarrow \mathbf{\Sigma}_0 - \mathbf{C}_i^\intercal // Computational rep. w. uncertainty.
                      end while
                     p(v_*) \leftarrow \mathcal{N}(v_*; v_i, \Sigma_i) // Belief about representer weights.
                     \mu_i(\cdot) \leftarrow \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_i' // Approximate posterior mean.
                     k_i(\cdot,\cdot) \leftarrow k(\cdot,\cdot) - k(\cdot,X)C_ik(X,\cdot) // Combined uncertainty.
                     return \mathcal{GP}(\mu_i, k_i)
   19 end procedure
```

Select action via policy

$$s_i = Policy()$$


```
Input: prior mean \mu, prior kernel k, training data X, y
Output: (combined) GP posterior \mathcal{GP}(\mu_i, k_i)
        procedure ITERGP(\mu, k, X, y)
                 (\mu_0, k_0) \leftarrow (\mu, k)
                 \mu \leftarrow \mu(X)
                \hat{K} \leftarrow k(\hat{X}, \hat{X}) + \sigma^2 I
                 while not STOPPINGCRITERION() do
                       \begin{array}{ll} s_i \leftarrow \mathsf{POLICY}() & \text{\# Select action via policy.} \\ r_{l-1} \leftarrow (y-\mu) - \hat{K}v_{l-1} & \text{\# Predictive residual.} \\ \alpha_i \leftarrow s_i^\mathsf{T} r_{l-1} & \text{\# Observation of linear solver.} \\ d_i \leftarrow \Sigma_{l-1}^\mathsf{T} \hat{K}s_i = (I-C_{l-1}^\mathsf{T} \hat{K})s_i & \text{\# Search direction.} \end{array}
               \eta_i \leftarrow s_i^T \hat{\mathbf{X}} \Sigma_{i-1} \hat{\mathbf{K}} s_i = s_i^T \hat{\mathbf{K}} d_i // Normalization constant. C_i \leftarrow C_{i-1} + \frac{1}{4} d_i d_i^T // Inverse approx. C_i \approx \hat{K}^{-1}. v_i \leftarrow v_{i-1} + \frac{d \partial_i}{2} d_i // Representer weights estimate.
                   \Sigma_i \leftarrow \Sigma_0 - \mathcal{E}_i // Computational rep. w. uncertainty.
                 end while
                 p(v_*) \leftarrow \mathcal{N}(v_*; v_i, \Sigma_i) // Belief about representer weights.
                 \mu_i(\cdot) \leftarrow \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_i // Approximate posterior mean.
                k_i(\cdot,\cdot) \leftarrow k(\cdot,\cdot) - k(\cdot,X)C_ik(X,\cdot) // Combined uncertainty.
                 return \mathcal{GP}(\mu_i, k_i)
  19 end procedure
```

Observe projected residual

$$\alpha_i = \mathbf{s}_i^\mathsf{T} \mathbf{r}_{i-1} = (\hat{\mathbf{K}} \mathbf{s}_i)^\mathsf{T} (\mathbf{v}_* - \mathbf{v}_{i-1})$$

Compute search direction


```
Input: prior mean \mu, prior kernel k, training data X, y
Output: (combined) GP posterior \mathcal{GP}(\mu_i, k_i)
    procedure ITERGP(\mu, k, X, y)
         (\mu_0, k_0) \leftarrow (\mu, k)
         \mu \leftarrow \mu(X)
         \hat{K} \leftarrow k(\hat{X}, \hat{X}) + \sigma^2 I
         while not STOPPINGCRITERION() do
       end while
         p(v_*) \leftarrow \mathcal{N}(v_*; v_i, \Sigma_i) // Belief about representer weights.
         \mu_i(\cdot) \leftarrow \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_i' // Approximate posterior mean.
         k_i(\cdot,\cdot) \leftarrow k(\cdot,\cdot) - k(\cdot,X)C_ik(X,\cdot) // Combined uncertainty.
         return \mathcal{GP}(\mu_i, k_i)
 19 end procedure
```

Update precision matrix approximation

$$C_i = C_{i-1} + rac{1}{\eta_i} d_i d_i^{\mathsf{T}}$$

$$= \begin{pmatrix} | & | \\ d_1 \cdots d_i \\ | & | \end{pmatrix} \begin{pmatrix} rac{1}{\eta_1} & & \\ & \ddots & \\ & & rac{1}{\eta_1} \end{pmatrix} \begin{pmatrix} -d_1^{\mathsf{T}} - \\ \vdots \\ -d_i^{\mathsf{T}} - \end{pmatrix}$$

Precision Matrix


```
Input: prior mean \mu, prior kernel k, training data X, y
Output: (combined) GP posterior \mathcal{GP}(\mu_i, k_i)
       procedure ITERGP(\mu, k, X, y)
               (\mu_0, k_0) \leftarrow (\mu, k)
               \mu \leftarrow \mu(X)
               \hat{K} \leftarrow k(\hat{X}, \hat{X}) + \sigma^2 I
               while not STOPPINGCRITERION() do
             \begin{array}{ll} \eta_i \leftarrow \mathbf{S}_i^\intercal \hat{K} \mathbf{\Sigma}_{i-1} \hat{K} \mathbf{S}_i = \mathbf{S}_i^\intercal \hat{K} \mathbf{d}_i & \text{M normalization constant.} \\ C_i \leftarrow \mathbf{C}_{i-1} + \frac{1}{\alpha l_i} d_i^\intercal d_i^\intercal & \text{Inverse approx. } C_i \approx \hat{K}^{-1}. \\ v_i \leftarrow v_{i-1} + \frac{\alpha l_i}{2} d_i & \text{Representer weights estimate.} \\ \mathbf{\Sigma}_i \leftarrow \mathbf{\Sigma}_0 - \hat{C}_i^\intercal & \text{Computational rep. w. uncertainty.} \end{array}
               end while
               p(v_*) \leftarrow \mathcal{N}(v_*; v_i, \Sigma_i) // Belief about representer weights.
               \mu_i(\cdot) \leftarrow \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_i // Approximate posterior mean.
               k_i(\cdot,\cdot) \leftarrow k(\cdot,\cdot) - k(\cdot,X)C_ik(X,\cdot) // Combined uncertainty.
               return \mathcal{GP}(\mu_i, k_i)
  19 end procedure
```

Update precision matrix approximation

$$C_{i} = C_{i-1} + \frac{1}{\eta_{i}} d_{i} d_{i}^{\mathsf{T}}$$

$$= \begin{pmatrix} | & | \\ d_{1} \cdots d_{i} \\ | & | \end{pmatrix} \begin{pmatrix} \frac{1}{\eta_{1}} & & \\ & \ddots & \\ & & \frac{1}{\eta_{i}} \end{pmatrix} \begin{pmatrix} -d_{1}^{\mathsf{T}} - \\ \vdots \\ -d_{i}^{\mathsf{T}} - \end{pmatrix}$$

Update representer weights belief

$$\mathbf{v}_i = \mathbf{C}_i(\mathbf{y} - \boldsymbol{\mu}) = \mathbf{v}_{i-1} + \frac{\alpha_i}{\eta_i} \mathbf{d}_i$$

 $\Sigma_i = \Sigma_i - \mathbf{C}_i$

What about the partial Cholesky and CG? Connection to Other GP Approximations

Connection to Other GP Approximation Methods

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
IterGP-EVD $\operatorname{ev}_i(\hat{K})$ (partial) eigenvalue decomp. IterGP-CG $\operatorname{s}_i^{\operatorname{PCG}}$ or $\hat{P}^{-1}r_i$ (preconditioned) CG	Method	Actions s_i	Classic Analog
	IterGP-EVD IterGP-CG	$\operatorname{ev}_i(\hat{k})$ $\mathbf{s}_i^{\operatorname{PCG}}$ or $\hat{P}^{-1}\mathbf{r}_i$	(partial) eigenvalue decomp. (preconditioned) CG

Figure: Computational uncertainty is small where there either is no data (●) or computation was "targeted" (○).

Connection to SVGP

One can construct a similar approximation to SVGP with proper uncertainty quantification.

IterGP-PseudoInput has complexity $\mathcal{O}(n^2i)$. Are we restricted to quadratic time?

Taking a second look at the computational complexity of IterGF

Question: How costly is one iteration of IterGP for a specific policy?

Kernel matrix $\hat{\mathbf{K}}$ appears in three ways:

- ▶ Observation: $\alpha_i \leftarrow \mathbf{s}_i^{\mathsf{T}}((\mathbf{y} \boldsymbol{\mu}) \hat{\mathbf{K}}\mathbf{v}_{i-1})$
- ► Search direction: $d_i \leftarrow (I C_{i-1}\hat{K})s_i$
- ► Normalization const.: $\eta_i \leftarrow \mathbf{s}_i^\mathsf{T} \hat{\mathbf{K}} \mathbf{d}_i$

Taking a second look at the computational complexity of IterGF

Question: How costly is one iteration of IterGP for a specific policy?

Kernel matrix $\hat{\mathbf{K}}$ appears in three ways:

- ▶ Observation: $\alpha_i \leftarrow \mathbf{s}_i^\mathsf{T}((\mathbf{y} \boldsymbol{\mu}) \hat{\mathbf{k}}\mathbf{v}_{i-1}) \Longrightarrow \mathbf{s}_i^\mathsf{T}\hat{\mathbf{k}}\mathbf{d}_j$
- ► Search direction: $d_i \leftarrow (I C_{i-1}\hat{K})s_i$
- ► Normalization const.: $\eta_i \leftarrow \mathbf{s}_i^\mathsf{T} \hat{\mathbf{K}} \mathbf{d}_i$

Question: How costly is one iteration of IterGP for a specific policy?

Kernel matrix $\hat{\mathbf{K}}$ appears in three ways:

- Observation: $\alpha_i \leftarrow \mathbf{s}_i^{\mathsf{T}}((\mathbf{y} \boldsymbol{\mu}) \hat{\mathbf{K}}\mathbf{v}_{i-1}) \Longrightarrow \mathbf{s}_i^{\mathsf{T}}\hat{\mathbf{K}}\mathbf{d}_i$
- Search direction:

$$d_i \leftarrow (I - C_{i-1}\hat{K})s_i = s_i - \sum_{j=1}^i \frac{1}{\eta_j} d_j d_j^\mathsf{T} \hat{K} s_i \Longrightarrow s_i^\mathsf{T} \hat{K} d_j$$

Normalization const.: $\eta_i \leftarrow s_i^\mathsf{T} \hat{K} d_i$

Taking a second look at the computational complexity of IterGP

Question: How costly is one iteration of IterGP for a specific policy?

Kernel matrix $\hat{\mathbf{K}}$ appears in three ways:

- ▶ Observation: $\alpha_i \leftarrow \mathbf{s}_i^{\mathsf{T}}((\mathbf{y} \boldsymbol{\mu}) \hat{\mathbf{K}}\mathbf{v}_{i-1}) \Longrightarrow \mathbf{s}_i^{\mathsf{T}}\hat{\mathbf{K}}\mathbf{d}_i$
- Search direction: $d_i \leftarrow (I C_{i-1}\hat{K})s_i = s_i \sum_{j=1}^i \frac{1}{\eta_j} d_j d_j^\mathsf{T} \hat{K} s_i \Longrightarrow s_i^\mathsf{T} \hat{K} d_j$
- ► Normalization const.: $\eta_i \leftarrow \mathbf{s}_i^\mathsf{T} \hat{\mathbf{K}} \mathbf{d}_i$

Idea: Choose *i* actions with at most $\ell \ll n$ non-zero entries. $\implies \mathcal{O}(\ell^2)$ per iteration!

We only operate on the data that we target with computation \rightarrow arbitrary computation cost!

For IterGP it does not matter how large the dataset is, or whether we have it stored on our machine.

Theorem (Online GP Approximation with IterGP)

Let $n, n' \in \mathbb{N}$ and consider training data sets $\mathbf{X} \in \mathbb{R}^{n \times d}, \mathbf{y} \in \mathbb{R}^n$ and $\mathbf{X}' \in \mathbb{R}^{n' \times d}, \mathbf{y}' \in \mathbb{R}^{n'}$. Consider two sequences of actions $(\mathbf{s}_i)_{i=1}^n \in \mathbb{R}^n$ and $(\tilde{\mathbf{s}}_i)_{i=1}^{n+n'} \in \mathbb{R}^{n+n'}$ such that for all $i \in \{1, \dots, n\}$, it holds that

$$\tilde{\mathbf{s}}_i = \begin{pmatrix} \mathbf{s}_i \\ \mathbf{0} \end{pmatrix} \tag{1}$$

Then the posterior returned by IterGP for the dataset (X, y) using actions s_i is identical to the posterior returned by IterGP for the extended dataset using actions $\tilde{\mathbf{s}}_i$, i.e. it holds for any $i \in \{1, \dots, n\}$, that

$$\mathit{ITERGP}(\mu, k, \mathbf{X}, \mathbf{y}, (\mathbf{s}_i)_i) = (\mu_i, k_i) = (\tilde{\mu}_i, \tilde{k}_i) = \mathit{ITERGP}\left(\mu, k, \begin{pmatrix} \mathbf{X} \\ \mathbf{X}' \end{pmatrix}, \begin{pmatrix} \mathbf{y} \\ \mathbf{y}' \end{pmatrix}, (\tilde{\mathbf{s}}_i)_i \right).$$

An Approximation or a Better Model?

An alternative view of IterGP as a better model for the way we do inference with a computer

Observation: Only once we perform computation on data, does it enter our prediction.

► The distinction between data and computation vanishes from this perspective.

An Approximation or a Better Model?

An alternative view of IterGP as a better model for the way we do inference with a computer

Observation: Only once we perform computation on data, does it enter our prediction.

▶ The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

$$f \sim \mathcal{GP}(\mu, k)$$

An Approximation or a Better Model?

An alternative view of IterGP as a better model for the way we do inference with a compute

Observation: Only once we perform computation on data, does it enter our prediction.

▶ The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

$$f \sim \mathcal{GP}(\mu, k)$$

$$\tilde{\mathbf{y}} \mid f(\mathbf{X}) \sim \mathcal{N}(\mathbf{S}_{i}^{\mathsf{T}} f(\mathbf{X}), \sigma^{2} \mathbf{S}_{i}^{\mathsf{T}} \mathbf{S}_{i})$$

$$f \mid \mathbf{X}, \tilde{\mathbf{y}} \sim \mathcal{GP}(\mu_{i}, k_{i})$$

▶ IterGP's combined posterior is equivalent exact GP regression for linearly projected data.

How meaningful is computational and combined uncertainty? Theoretical Analysis

Combined Uncertainty as Worst Case Error

The combined uncertainty is a tight worst case bound on the relative error to the latent functio

Exact uncertainty quantification in quadratic / linear / constant time!

Combined Uncertainty as Worst Case Error

The combined uncertainty is a tight worst case bound on the relative error to the latent function

Theorem

error of approximate posterior mean

$$\sup_{g \in \mathcal{H}_{k^{\sigma}}: \|g\|_{\mathcal{H}_{k^{\sigma}}} \le 1} \underbrace{g(\mathbf{x}) - \mu_{*}^{g}(\mathbf{x})}_{\text{error of math. post. mean}} + \underbrace{\mu_{*}^{g}(\mathbf{x}) - \mu_{i}^{g}(\mathbf{x})}_{\text{computational error}} = \sqrt{k_{i}(\mathbf{x}, \mathbf{x}) + \sigma^{2}}, \quad \text{and}$$
 (2)

$$\sup_{g \in \mathcal{H}_{k\sigma}: ||g||_{\mathcal{H}_{k\sigma}} \le 1} \underbrace{\mu_*^g(\mathbf{X}) - \mu_i^g(\mathbf{X})}_{\text{computational error}} = \sqrt{k_i^{\text{comp}}(\mathbf{X}, \mathbf{X})}$$
(3)

Summary

- ► Approximate GPs by learning the representer weights.
- ► Can quantify approximation error *probabilistically*.
- Variants of IterGP defined via the policy learn actively.
- ▶ Distinction between data and computation vanishes.
- Exact UQ in arbitrary time with strong guarantees.

Please cite this course, as

```
@techreport(NoML22,
    title = {Numerics of Machine Learning},
    author = {N. Bosch and J. Grosse
    and P. Hennig and A. Kristladi
    and M. Pförtner and J. Schmidt
    and F. Schneider and L. Tatzel
    and J. Wenger},
    series = {Lecture Notes in Machine Learning},
    year = {2022},
    institution = {Tübingen Al Center},
}
```

Next Week

▶ How to simulate, i.e. *learn* the dynamics of systems that follow (partially-known) physical laws.