PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

Ministry of Higher Education & Scientific Research Djillali Liabes University Of Sidi Bel Abbes Exact Sciences Faculty

Probabilities & Statistics Department	First Name (Prénom):	
Academic Year: 2022/2023.		
First Year Master, Statistics (SA) &	Last Name (Nom):	
Probabilities (PA)		

FIRST SEMESTER EXAM: TECHNICAL ENGLISH 1

CORRIGE TYPE

Task n1: Give equivalents in French of the following terms:

Terms in English	Equivalents in French
Number	Nombre
Odd number	Nombre impair
Even number	Nombre pair
Random value	Valeur aléatoire
Prime number	Nombre premier
Decimal number	Nombre décimal
Rational number	Nombre rationnel
Angle	Angle
Acute angle	Angle aigu
Obtuse angle	Angle obtus
Right angle	Angle droit
Sine	Sinus
Cosine	Cosinus
Slope	Pente
Data	Données
Radius	Rayon
Function	Fonction
Derivative	Dérivée
Matrix	Matrice
Product	Produit
Scalar product	Produit scalaire
Root	Racine
Square root	Racine carrée
Greatest commom divisor	plus grand diviseur commun
Least commom divisor	Plus petit diviseur commun
Sample	Echantillon
Input	Donnée d'entrée
Output	Donnée de sortie (résultat)
parametric curve	Courbe paramétrique
Set	Ensemble
Subset	Sous-ensemble
Scale	Echelle
Sequence	Suite
Rhombus	Losange
isosceles	Isocèle

Task n2: Refer to each expression below:

f(x)	f of x
Sin(x)	Sine of x
tan(x)	Tangent of x
arccos(x)	Arccosine of x
$Sin(x)^2$	Sine squared of x
f	f prime
f"	f second (the second derivative of x)
$\frac{d^2y}{dx^2}$ $\frac{\partial^2y}{\partial x^2}$	d squared y by dx squared
$\overline{dx^2}$	
$\partial^2 y$	The second partial derivative of y with respect to x
$\overline{\partial x^2}$	squared
$\int f(x)dx$	Integral of f of x dx
$\int_a^b t^2 dt$	Integral from a to b of t squared dt
$\iint_{S} h(x,y)dxdy$	Double integral oves s of h of x y dx dy
x+1	x plus one all over tangent of y to the power of four
$\overline{tan(y^4)}$	
$3^{x-\cos(2x)}$	Three to the power of x minus cosine of two x
$\exp(x^3+y^3)$	Exponential of x cubed plus y cubed
$\forall x \in A$	For every x in A
$\exists x \in A$	It exists no x in A
AUB	A union B
A ∩ B = Ø	The intersection of A and B is an empty set

Task n3: Fill in the blanks within the following terms:

calculus, areas, procedures, rates, curves, applications, quantity, calculating

What is calculus? It is the mathematics of instantaneous <u>rates</u> of change – how rapidly is some particular <u>quantity</u> changing at this very instant? Calculus has two main branches. *Differential calculus*; which provides methods for <u>calculating</u> rates of change, and it has many geometric <u>applications</u>, in particular finding tangents to <u>curves</u>. *Integral calculus* does the opposite: given the rate of change of some quantity, it specifies the quantity itself. Geometric applications of integral calculus include the computation of <u>areas</u> and volumes. Perhaps the most significant discovery is this unexpected connection between two apparently unrelated classical geometric questions: finding tangents to a curve and finding areas. <u>Calculus</u> is about *functions*: <u>procedures</u> that take some general number and calculate an associated number. The procedure is usually specified by a formula, assigning to a given number x an associated number f(x).

GOOD LUCK 2/2