目录

第1章e	evi-Civita 联络	1
1.1	切联络	1
1.2	抽象 Riemann 流形上的联络	2
	1.2.1 度量联络	2
1.3	对称联络	6
1.4	指教映射	11
1.5	法邻域和法坐标	14

第1章 Levi-Civita 联络

1.1 切联络

定义 1.1

设 $M\subseteq\mathbb{R}^n$ 是嵌入子流形, $\gamma:I\to M$ 是光滑曲线, V 是沿 γ 的在 TM 中取值的向量场, 则 V 既可以视作 M 的关于切向联络的沿 γ 的向量场, 又可以视作 \mathbb{R}^n 的关于欧式联络的沿 γ 的向量场. 令 \overline{D}_tV 表示 V 关于欧式联络 $\overline{\nabla}$ 的协变导数, $D_t^\top V$ 表示 V 关于切向联络 ∇^\top 的协变导数.

命题 1.1

设 $M\subseteq\mathbb{R}^n$ 是嵌入子流形, $\gamma:I\to M$ 是 M 上的光滑曲线, V 是取值在 TM 的沿 γ 的光滑向量场. 则对于每个 $t\in I$,

$$D_{t}^{\top}V\left(t\right) = \pi^{\top}\left(\overline{D}_{t}V\left(t\right)\right)$$

Idea 能直接使用的是两种联络的关系,建立两种曲线协变导数的联系需要通过曲线导数与联络的关系,间接使用两种联络间的关系.曲线协变导数与联络的关系是通过坐标表示实现的,而两者联络的关系是通过正交投影实现的,因此我们需要找到与正交投影相容的坐标表示,即我们需要适配于M的正交标架.M的嵌入性给出了这样的正交标架 (命题??).

Proof 任取 $t_0\in I$, 存在 $\gamma(t_0)$ 在 \mathbb{R}^n 上的邻域 U, 使得 U 上存在 \mathbb{R}^n 的适配于 TM 的 正交标架 (E_1,\cdots,E_n) , 这组标架的前 k 个 (E_1,\cdots,E_k) 在 $M\cap U$ 上的限制构成 TM 的一个正交标架, 其中 $k=\dim M$. 取充分小的 $\varepsilon>0$, 使得 $\gamma((t_0-\varepsilon,t_0+\varepsilon))\subseteq U$, 则 V 在 $(t_0-\varepsilon,t_0+\varepsilon)$ 可以被分解为

$$V(t) = V^{1}(t) E_{1|_{\gamma(t)}} + \cdots + V^{k}(t) E_{k|_{\gamma(t)}}$$

此时有

$$\pi^{\top} \left(\overline{D}_{t} V \left(t \right) \right) = \pi^{\top} \left(\sum_{i=1}^{k} \left(\dot{V}^{i} \left(t \right) \left. E_{i} \right|_{\gamma(t)} + V^{i} \left(t \right) \left. \overline{\nabla}_{\gamma'(t)} \left. E_{i} \right|_{\gamma(t)} \right) \right)$$

$$= \sum_{i=1}^{k} \left(\dot{V}^{i} \left(t \right) \left. E_{i} \right|_{\gamma(t)} + V^{i} \left(t \right) \pi^{\top} \left(\overline{\nabla}_{\gamma'(t)} \left. E_{i} \right|_{\gamma(t)} \right) \right)$$

$$= \sum_{i=1}^{k} \left(\dot{V}^{i} \left(t \right) \left. E_{i} \right|_{\gamma(t)} + V^{i} \left(t \right) \left. \nabla_{\gamma'(t)}^{\top} \left. E_{i} \right|_{\gamma(t)} \right) \right)$$

$$= D_{t}^{\top} V \left(t \right)$$

推论 1.1

设 $M\subseteq\mathbb{R}^n$ 是嵌入子流形. 一个光滑曲线 $\gamma:I\to M$ 是关于 M 上切联络的测地线, 当且仅当对于所有的 $t\in I$ 它的加速度 $\gamma''(t)$ 与 $T_{\gamma(t)}M$ 正交.

Proof 由于 \mathbb{R}^n 上的欧式联络的联络系数均为 0, 于是 γ' 沿 γ 的欧式协变导数就是加速度: $\overline{D}_t\gamma'(t)=\gamma''(t)$. 故 γ 是测地线, 当且仅当 $\overline{D}_t\gamma'(t)=\gamma''(t)\equiv 0$, 当且仅当 $\pi^\top\left(\gamma''(t)\right)\equiv 0$, 即 $\gamma''(t)$ 与 $T_{\gamma(t)}M$ 正交对于所有的 $t\in I$ 成立.

1.2 抽象 Riemann 流形上的联络

1.2.1 度量联络

定义 1.2

设 g 是光滑 (带边) 流形 M 上的联络或伪联络. 称 TM 上的联络 ∇ 是与 g 相容的, 或为一个度量联络, 若它对于所有的 $X,Y,Z\in\mathfrak{X}(M)$ 满足以下乘积律:

$$\nabla_X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

命题 1.2 (度量联络的等价刻画)

 $\Diamond(M,g)$ 是(带边)Riemann 流形或伪-Riemann 流形, ∇ 是 TM 上的一个联络, 则以下几条等价:

- 1. ∇ 与 g 相容: $\nabla_X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$.
- 2. g 关于 ∇ 平行: $\nabla g \equiv 0$ ^a.

3. 在任意光滑局部标架 (E_i) 下, ∇ 的联络系数满足

$$\Gamma_{ki}^{l}g_{lj} + \Gamma_{kj}^{l}g_{il} = E_{k}\left(g_{ij}\right).^{\mathbf{b}}$$

4. 若 V,W 是沿任意光滑曲线 γ 的光滑向量场, 则

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle V, W \rangle = \langle D_t V, W \rangle + \langle V, D_t W \rangle$$

- 5. 若 V,W 是沿 M 上的光滑曲线 γ 平行的向量场, 则 $\langle V,W \rangle$ 沿 γ 是常值的.
- 6. 任给 M 上的光滑曲线 γ , 每个沿 γ 的平行移动都是线性的等距同构.
- 7. 给定 M 上的任意光滑曲线 γ , 每个在 γ 一点处的正交基, 都可以延拓成沿 γ 平行的正交标架.

 ${}^{\mathbf{b}}\Gamma$ 的左下指标是作用在 g_{ij} 的标架, Γ 的方下指标表示 g_{ij} 中跑动的指标, 指标随着 Γ 的上标跑动.

Proof 首先证明 1. \iff 2., 由命题??, 对称 2-张量 q 的全协变导数由以下给出

$$(\nabla g)(Y, Z, X) = (\nabla_X g)(Y, Z) = X(g(Y, Z)) - g(\nabla_X Y, Z) - g(Y, \nabla_X Z)$$

 $\mathbf{\sharp \Psi} \ X \left(g \left(Y, Z \right) \right) = \nabla_X \left\langle Y, Z \right\rangle.$

为了说明 $2. \iff 3$., 考虑 ∇_a 在光滑局部标架 (E_i) 下的分量

$$g_{ij;k} = E_k (g_{ij}) - g_{lj} \Gamma_{ki}^l - g_{il} \Gamma_{kj}^l$$

 $\nabla q \equiv 0$ 当且仅当这些分量全为零.

现在来说明 $1.\iff 4...$ 设 V,W 是沿光滑曲线 $\gamma:I\to M$ 的光滑向量场. 给定 $t_0\in I$, 在 $\gamma(t_0)$ 的一个邻域上选择坐标系 (x^i) , 并设 $V=V^i\partial_i,W=W^j\partial_j$, 对于某些光滑函数 $V^i,W^j:(t_0-\varepsilon,t_0+\varepsilon)\to\mathbb{R}$ 成立. 由 ∂_i,∂_j 的可扩张性, 我们得到

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle V, W \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \left(V^i W^j \langle \partial_i, \partial_j \rangle \right)$$

$$= \left(\dot{V}^i W^j + V^i \dot{W}^j \right) \langle \partial_i, \partial_j \rangle + V^i W^j \nabla_{\gamma'(t)} \langle \partial_i, \partial_j \rangle$$

若 1. 成立, 则

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle V, W \rangle = \left[\left(\dot{V}^i W^j \langle \partial_i, \partial_j \rangle + V^i W^j \langle \nabla_{\gamma'(t)} \partial_i, \partial_j \rangle \right) \right] + \left[\left(V^i \dot{W}^j \langle \partial_i, \partial_j \rangle \right) + V^i W^j \langle \partial_i, \nabla_{\gamma'(t)} \partial_j \rangle \right]$$

$$= \langle D_t V, W \rangle + \langle V, D_t W \rangle$$

在 t_0 附近成立. 反之, 若 4. 成立, 则对于任意的 X, 选取 $\gamma:(-1,1)\to M$, 使得

 $^{{}^}a
abla g$ 可以看成是平行移动偏离刚性的程度

 $\left(\gamma \left(0 \right), \gamma' \left(0 \right) \right) = \left(p, X_p \right)$, \mathbb{N}

$$\nabla_{X_{p}} \langle Y_{p}, Z_{p} \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \langle Y (\gamma (t)), Z (\gamma (t)) \rangle$$

$$= \langle D_{t} Y (\gamma (t)), Z (\gamma (t)) \rangle + \langle Y (\gamma (t)), D_{t} Z (\gamma (t)) \rangle$$

$$= \langle \nabla_{X_{p}} Y_{p}, Z_{p} \rangle + \langle Y_{p}, \nabla_{X_{p}} Z_{p} \rangle$$

故

$$\nabla_X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

在 p 附近成立.

现在来说明 $4. \implies 5. \implies 6. \implies 7. \implies 4.$

若 4. 成立, 设 V,W 是沿 γ 平行的, 有 $D_tV,D_tW=0$, 从而 $\frac{\mathrm{d}}{\mathrm{d}t}\langle V,W\rangle=0$, 故 $\langle V,W\rangle$ 是常值的.

若 5. 成立, 任取 $T_{\gamma(t_0)}M$ 上的两个向量 v_0,w_0 , 设 V,W 是它们沿 γ 平行的向量场, 使得 $V(t_0)=v_0,W(t_0)=w_0$, $P_{t_0t_1}^{\gamma}=V(t_1)$, $P_{t_0t_1}^{\gamma}=W(t_1)$. 因为 $\langle V,W\rangle$ 是沿 γ 常值的, 立即有 $\langle P_{t_0t_1}^{\gamma}v_0,P_{t_0t_1}^{\gamma}w_0\rangle=\langle V(t_1),W(t_1)\rangle=\langle V(t_0),W(t_0)\rangle=\langle v_0,w_0\rangle$, 个 $P_{t_0t_1}^{\gamma}$ 是一个线性的等距同构.

若 6. 成立, 设 $\gamma:I\to M$ 是光滑曲线, (b_i) 是 $T_{\gamma(t_0)}M$ 的一个正交基, $t_0\in I$. 可以 将每个 b_i 通过平行移动扩展为沿 γ 平行的一个光滑向量场 E_i , 由于对于任意的 $t_1\in I$, $P_{t_0t_1}^{\gamma}$ 是线性同构, 故 (E_i) 在 γ 的每个点是都是标准正交基.

若 7. 成立, 设 V,W 是沿光滑曲线 γ 的光滑向量场, 则存在沿 γ 平行的正交标架 (E_i) . 我们设 $V=V^iE_i,W=W^jE_j$,则正交性意味着 $g_{ij}=\langle E_i,E_j\rangle$,沿 γ 取常值(± 1 或 0). 平行性给出 $D_tV=D_t\left(V^iE_i\right)=\dot{V}^iE_i+V^iD_tE_i=\dot{V}^iE_i$,类似地 $D_tW=\dot{W}^iE_i$,于是

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle V, W \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i} V^{i} W^{i} \right)$$

$$= \sum_{i} \left(\dot{V}^{i} W^{i} + \dot{W}^{i} V^{i} \right)$$

$$= \dot{V}^{i} W^{j} \langle E_{i}, E_{j} \rangle + V^{i} \dot{W}^{j} \langle E_{i}, E_{j} \rangle$$

$$= \langle D_{t} V, W \rangle + \langle V, D_{t} W \rangle$$

推论 1.2

设 (M,g) 是(带边)Riemann-流形或伪-Riemann 流形, ∇ 是 M 上的度量联络, γ : $I \to M$ 是一个光滑曲线.

- 1. $|\gamma'(t)|$ 是常值, 当且仅当对于任意的 $t \in I$, 都有 $D_t \gamma'(t)$ 与 $\gamma'(t)$ 正交;
- 2. 若 γ 是测地线, 则 $|\gamma'(t)|$ 是常值.

 \Diamond

Proof

1.

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \gamma'(t), \gamma'(t) \rangle = 2 \langle D_t \gamma'(t), \gamma'(t) \rangle$$

故 $|\gamma'(t)|$ 是常值, 当且仅当 $\frac{\mathrm{d}}{\mathrm{d}t}\langle\gamma'(t),\gamma'(t)\rangle\equiv0$, 当且仅当 $\langle D_t\gamma'(t),\gamma'(t)\rangle\equiv0$, 即 $D_t\gamma'(t)$ 恒与 $\gamma'(t)$ 正交.

2. 若 γ 是测地线, 则 $\gamma'(t)$ 沿 $\gamma(t)$ 平行, 即 $D_t\gamma'(t)=0$, 故 $\langle D_t\gamma'(t),\gamma'(t)\rangle=0$, $D_t\gamma'(t)$ 与 $\gamma'(t)$ 正交, 由 1. 可知 $|\gamma'(t)|$ 是常值.

命题 1.3

u 设 \mathbb{R}^n 或 $\mathbb{R}^{r,s}$ 的嵌入 Riemann 子流形或伪 Riemann 子流形,则 M 上的切联络与诱导度量或伪度量相容.

4

Proof 设 $X,Y,Z\in\mathfrak{X}(M)$, $\tilde{X},\tilde{Y},\tilde{Z}$ 是它们在 \mathbb{R}^n 或 $\mathbb{R}^{r,s}$ 上的一个开子集的光滑延扬. 对于 M 上的点, 我们有

$$\nabla_{X}^{\top}(Y,Z) = X \langle Y,Z \rangle = \tilde{X} \langle \tilde{Y}, \tilde{Z} \rangle$$

$$= \overline{\nabla}_{\tilde{X}} \langle \tilde{Y}, \tilde{Z} \rangle$$

$$= \langle \overline{\nabla}_{\tilde{X}} \tilde{Y}, \tilde{Z} \rangle + \langle \tilde{Y}, \overline{\nabla}_{\tilde{X}} \tilde{Z} \rangle$$

$$= \langle \pi^{\top} (\overline{\nabla}_{\tilde{X}} \tilde{Y}, \tilde{Z}) \rangle + \langle \tilde{Y}, \pi^{\top} (\overline{\nabla}_{\tilde{X}} \tilde{Z}) \rangle^{1}$$

$$= \langle \nabla_{X}^{\top}, Z \rangle + \langle Y, \nabla_{X}^{\top} Z \rangle$$

 $^{{}^{1}}$ 因为 $ilde{Z}, ilde{Y}$ 都与 M 相切

1.3 对称联络

定义 1.3 (对称联络)

称光滑流形 M 的切丛上的一个联络 ▽ 是对称的, 若

$$\nabla_X Y - \nabla_Y X \equiv [X, Y], \quad \forall X, Y \in \mathfrak{X}(M)$$

定义 1.4 (联络的挠张量)

设 M 是光滑流形, ∇ 是 M 的切丛上的联络, 定义联络的挠张量为一个 (1,2)-张量场 $\tau:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$

$$\tau\left(X,Y\right) = \nabla_X Y - \nabla_Y X - [X,Y]$$

Proof 由于 $\nabla_X Y$ 和 $\nabla_Y X$ 分别不具有关于 Y 的 C^∞ (M)-线性和关于 X 的 C^∞ (M)-线性,因此需要说明 τ 关于这两个分量的 C^∞ (M)-线性,从而得到 τ 确实给出一个 (1,2)- 张量场,

$$\nabla_X Y = \left(X \left(Y_k \right) + X^i Y^j \Gamma_{ij}^k \right) E_k$$

$$\nabla_Y X = \left(Y \left(X_k \right) + Y^i X^j \Gamma_{ij}^k \right) E_k$$

$$\tau \left(X, Y \right) = \nabla_X Y - \nabla_Y X - \left[X, Y \right] = \left(X^i Y^j \right) \left(\Gamma_{ij}^k - \Gamma_{ji}^k \right) E_k$$

任取 $f \in C^{\infty}(M)$, 我们有

$$\tau\left(fX,Y\right) = \left(\left(fX\right)^{i}Y^{j}\right)\left(\Gamma_{ij}^{k} - \Gamma_{ji}^{k}\right)E_{k} = f\left(X^{i}Y^{j}\right)\left(\Gamma_{ij}^{k} - \Gamma_{ji}^{k}\right)E_{k}$$

故 τ 关于 X 是 $C^{\infty}(M)$ -线性的, 由对称性可知关于 Y 的 $C^{\infty}(M)$ -线性.

由上面的论证过程,可以立即得到以下对称联络的等价刻画:

命题 1.4

设 M 是光滑流形,▽ 是其切丛上的一个联络, 则以下几条等价

- 1. ▽ 是对称的;
- 2. ∇ 的挠张量 τ ≡ 0;
- 3. 在任意一组局部坐标标架下, $\Gamma_{ij}^k = \Gamma_{ji}^k, \forall i, j, k$.

命题 1.5

设 M (伪) 欧氏空间的一个嵌入 (伪) Riemann 子流形,则 M 的切联络是对称的. $oldsymbol{\wedge}$

Proof 设 M 是 \mathbb{R}^n 的嵌入 Riemann 子流形或伪-Riemann 子流形,其中 \mathbb{R}^n 配备了欧式度量或伪欧式度量 $\bar{q}^{(r,s)}, r+s=n$. 令 $X,Y\in\mathfrak{X}(M)$,令 \tilde{X},\tilde{Y} 是 X,Y 在分为空间上的一个开子集的扩张. $\iota:M\hookrightarrow\mathbb{R}^n$ 是含入映射. 立即有 X,Y 是 ι -相关于 $\left[\tilde{X},\tilde{Y}\right]$ 的, 由李括号的自然性, $\left[X,Y\right]$ 是 ι -相关于 $\left[\tilde{X},\tilde{Y}\right]$ 的. 特别地, $\left[\tilde{X},\tilde{Y}\right]$ 与 M 相切, 且在 M 上的限制等于 $\left[X,Y\right]$. 因此

$$\nabla_{X}^{\top}Y - \nabla_{Y}^{\top}X = \pi^{\top} \left(\overline{\nabla}_{\tilde{X}} \tilde{Y}|_{M} - \overline{\nabla}_{\tilde{Y}} \tilde{X}|_{M} \right)$$

$$= \pi^{\top} \left(\left[\tilde{X}, \tilde{Y} \right]|_{M} \right)$$

$$= \left[\tilde{X}, \tilde{Y} \right]|_{M}$$

$$= \left[X, Y \right]$$

定理 1.1 (Riemann 几何基本定理)

设 (M,g) 是 (带边) (伪) Riemann 流形. 则存在唯一的 TM 上的联络 ∇ , 使得 ∇ 与 g 相容且是对称的. 此联络称为是 g 的 Levi-Civita 联络 (若 g 正定, 则也称为 Riemann 联络).

Idea 证明唯一性的想法以联络的度量性为基础考察 $\langle \nabla_X Y, Z \rangle$, 说明它是无关于联络选取的. 为此, 利用对称性, 将形式 $\langle \nabla_X Y, Z \rangle$ 的项适当填上与 ∇ 无关的项写成统一的一个.

对于存在性,由于唯一性的证明给出了联络和向量场度量的公式,借由此公式以及度量,给出局部上的一个坐标表示,唯一性允许我们将每个局部上的联络拼成总体上的联络.

Proof 通过给 ∇ 一个无关于联络选取的公式来给出唯一性. 设 ∇ 是满足性质的联络, $X,Y,Z\in\mathfrak{X}(M)$. 由联络对度量的相容性

$$X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$
$$Y \langle Z, X \rangle = \langle \nabla_Y Z, X \rangle + \langle Z, \nabla_Y X \rangle$$
$$Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle$$

利用对称性替换每个式子的最后一项, 得到

$$X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_Z X \rangle + \langle X, [X, Z] \rangle$$
$$Y \langle Z, X \rangle = \langle \nabla_Y Z, X \rangle + \langle Z, \nabla_X Y \rangle + \langle Z, [Y, X] \rangle$$
$$Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Y Z \rangle + \langle X, [Z, Y] \rangle$$

 \bigcirc

前两项相加减去后一项, 得到

 $X\langle Y,Z\rangle+Y\langle Z,X\rangle-Z\langle X,Y\rangle=2\langle \nabla_XY,Z\rangle+\langle X,[Y,Z]\rangle+\langle Z,[Y,X]\rangle-\langle X,[Z,Y]\rangle$ 解出 $\langle \nabla_XY,Z\rangle$ 得到

 $\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left(X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle X, [Y, Z] \rangle - \langle Z, [Y, X] \rangle + \langle X, [Z, Y] \rangle \right)$

现在设 ∇^1 和 ∇^2 是 TM 上的两个与 g 相容的对称联络. 由于右侧不依赖于联络的选取, 因此 $\langle \nabla_X^1 Y - \nabla_X^2 Y, Z \rangle = 0$ 对于所有的 X,Y,Z 成立. 从而 $\nabla_X^1 Y = \nabla_X^2 Y$ 对于所有的 X,Y 成立, $\nabla^1 = \nabla^2$.

接下来说明存在性, 设 $(U,(x^i))$ 是任意一个局部光滑坐标卡. 按上面的公式定义 $\langle \nabla_{\partial_i} \partial_i, \partial_l \rangle$, 其中每个李括号都是零, 我们得到

$$\langle \nabla_{\partial_i} \partial_j, \partial_l \rangle = \frac{1}{2} \left(\partial_i \langle \partial_j, \partial_l \rangle + \partial_j \langle \partial_l, \partial_i \rangle - \partial_l \langle \partial_i, \partial_j \rangle \right) \tag{1.1}$$

利用以下记号

$$g_{ij} = \langle \partial_i, \partial_j \rangle, \quad \nabla_{\partial_j} \partial_j = \Gamma_{ij}^m \partial_m$$

得到

$$\Gamma_{ij}^{m}g_{ml} = \frac{1}{2} \left(\partial_{i}g_{jl} + \partial_{j}g_{li} - \partial_{l}g_{ij} \right)$$

设 g^{kl} 是逆度量, 按 l 与上式加权求和, 并利用 $g_{ml}g^{kl}=\delta_m^k$, 得到

$$\Gamma_{ij}^k = \Gamma_{ij}^m \delta_m^k = \Gamma_{ij}^m g_{ml} g^{kl} = \frac{1}{2} g^{kl} \left(\partial_i g_{jl} + \partial_j g_{li} - \partial_l g_{ij} \right)$$
 (1.2)

由此足够定义出局部上的联络 ▽, 按照

$$\nabla_X Y = \left(X \left(Y^k \right) + X^i Y^j \Gamma_{ij}^k \right) \partial_k$$

注意到公式

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{kl} \left(\partial_i g_{jl} + \partial_j g_{li} - \partial_l g_{ij} \right) \tag{1.3}$$

右侧关于 i,j 对称. 因此 $\Gamma^k_{ij}=\Gamma^k_{ji}$, 这表明我们在局部上定义出的联络是对称的. 计算

$$\Gamma_{ki}^{l}g_{lj} + \Gamma_{kj}^{l}g_{il} = \frac{1}{2} \left(\partial_{k}g_{ij} + \partial_{i}g_{kj} - \partial_{j}g_{ki} \right) + \frac{1}{2} \left(\partial_{k}g_{ji} + \partial_{j}g_{ki} - \partial_{i}g_{kj} \right)$$
$$= \partial_{k}q_{ij}$$

由度量联络的第三条等阶刻画 (1.2), ∇ 与 g 相容.

该证明的过程给出了计算 Levi-Civita 联络的一些公式

命题 1.6

设 (M,g) 是(带边)(伪)Riemann 流形, 令 ∇ 是它的 Levi-Civita 联络.

1. 设 $X,Y,Z \in \mathfrak{X}(M)$,则

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \Big(X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle Y, [X, Z] \rangle - \langle Z, [Y, X] \rangle + \langle X, [Z, Y] \rangle \Big)$$

$$(1.4)$$

(Koszul's formula)

2. 在任意 M 的光滑坐标卡下,Levi-Civita 联络的联络系数由以下给出

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{kl} \left(\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij} \right)$$

3. 设 (E_i) 是开子集 $U\subseteq M$ 上的一个光滑局部标架,令 $c_{ij}^k:U\to\mathbb{R}$ 是按以下方式定义的 n^3 个光滑函数:

$$[E_i, E_j] = c_{ij}^k E_k$$

则 Levi-Civita 联络在这组标架下的联络系数为

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{kl} \left(E_{i} g_{jl} + E_{j} g_{il} - E_{l} g_{ij} - g_{jm} c_{il}^{m} - g_{lm} c_{ji}^{m} + g_{im} c_{lj}^{m} \right)$$

4. 若 g 是 Riemann 度量, (E_i) 是光滑局部正交标架, 则

$$\Gamma_{ij}^k = \frac{1}{2} \left(c_{ij}^k - c_{ik}^j - c_{jk}^i \right)$$

a称为 Christoffel 符号

Proof 前两条在上面的定理中的证明过程中已经给出了. 将 E_i, E_j, E_l 带入方程 1.4中, 得到

$$\Gamma_{ij}^{q} g_{ql} = \langle \nabla_{E_{i}} E_{j}, E_{l} \rangle
= \frac{1}{2} \left(E_{i} g_{jl} + E_{j} g_{il} - E_{l} g_{ij} - \langle E_{j}, c_{il}^{m} E_{m} \rangle - \langle E_{l}, c_{ji}^{m} E_{m} \rangle + \langle E_{i}, c_{lj}^{m} E_{m} \rangle \right)
= \frac{1}{2} \left(E_{i} g_{jl} + E_{j} g_{il} - E_{l} g_{ij} - g_{jm} c_{il}^{m} - g_{lm} c_{ji}^{m} + g_{im} c_{lj}^{m} \right)$$

两边作用一个逆度量 g^{kl} , 得到

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{kl} \left(E_{i} g_{jl} + E_{j} g_{il} - E_{l} g_{ij} - g_{jm} c_{il}^{m} - g_{lm} c_{ji}^{m} + g_{im} c_{lj}^{m} \right)$$

若 (E_i) 正交,我们有 $g^{ij}=g_{ij}=\delta_{ij}$,得到

$$\begin{split} \Gamma^k_{ij} &= \frac{1}{2} \left(E_i \delta_{jk} + E_j \delta_{ik} - E_k \delta_{ij} - c^j_{ik} - c^k_{ji} + c^i_{kj} \right) \\ &= \frac{1}{2} \left(c^k_{ij} - c^j_{ik} - c^i_{jk} \right), \quad (i, j, k$$
两本同)

命题 1.7

- 1. (伪) -欧氏空间上的 Levi-Civita 联络就是欧式联络;
- 2. 若 M 是 (伪) 欧氏空间上的嵌入 (伪) 黎曼子流形, 则 M 上的 Levi-联络就是切联络 $abla^{ op}$

Proof 欧式联络是度量的且是对称的,Levi-Civita 联络的唯一性表明 Levi-Civita 联络就是欧式联络. 第二条由命题1.5, 和命题1.3给出.

命题 1.8 (联络的自然性)

设 (M,g) 种 $\left(\tilde{M},\tilde{g}\right)$ 是 (带边) (伪) Riemann 流形, ∇ 是 g 的 Levi-Civita 联络, $\tilde{\nabla}$ 是 \tilde{g} 的 Levi-Civita 联络. 若 $\varphi:M\to \tilde{M}$ 是等距同构, 则 $\varphi^*\tilde{\nabla}=\nabla$.

Proof 由 Levi-Civita 联络的唯一性, 只需要证明拉回联络 $\varphi^*\tilde{\nabla}$ 是对称且与 g 相容的. 对于任意的 $X,Y\in\mathfrak{X}(M)$ 和 $p\in M$, 我们有

$$\langle Y_p, Z_p \rangle = \langle d\varphi_p(Y_p), d\varphi_p(Z_p) \rangle = \langle (\varphi_* Y)_{\varphi(p)}, (\varphi_* Z)_{\varphi(p)} \rangle$$

换言之,

$$\langle Y, Z \rangle = \langle \varphi_* Y, \varphi_* Z \rangle \circ \varphi$$

因此

$$\begin{split} X\left\langle Y,Z\right\rangle &=X\left(\left\langle \varphi_{*}Y,\varphi_{*}Z\right\rangle \circ \varphi\right)\\ &=\left(\left(\varphi_{*}X\right)\left\langle \varphi_{*}Y,\varphi_{*}Z\right\rangle\right) \circ \varphi\\ &=\left(\left\langle \tilde{\nabla}_{\varphi_{*}X}\left(\varphi_{*}Y\right),\varphi_{*}Z\right\rangle +\left\langle \varphi_{*}Y,\tilde{\nabla}_{\varphi_{*}X}\left(\varphi_{*}Z\right)\right\rangle\right) \circ \varphi\\ &=\left\langle \left(\varphi^{-1}\right)_{*}\tilde{\nabla}_{\varphi_{*}X}\left(\varphi_{*}Y\right),Z\right\rangle +\left\langle Y,\left(\varphi^{-1}\right)_{*}\tilde{\nabla}_{\varphi_{*}X}\left(\varphi_{*}Z\right)\right\rangle\\ &=\left\langle \left(\varphi^{*}\tilde{\nabla}\right)_{X}Y,Z\right\rangle +\left\langle Y,\left(\varphi^{*}\tilde{\nabla}\right)_{X}Z\right\rangle \end{split}$$

这表明拉回联络与 g 相容. 接下来考虑对称性, 我们有

$$\begin{split} \left(\varphi^*\tilde{\nabla}\right)_X Y - \left(\varphi^*\tilde{\nabla}\right)_Y X &= \left(\varphi^{-1}\right)_* \left(\tilde{\nabla}_{\varphi_*X} \left(\varphi_*Y\right) - \tilde{\nabla}_{\varphi_*Y} \left(\varphi_*X\right)\right) \\ &= \left(\varphi^{-1}\right)_* \left(\left[\varphi_*X, \varphi_*Y\right]\right)^2 \\ &= \left[X, Y\right] \end{split}$$

²因为 ♥ 是无挠的

推论 1.3 (测地线的自然性)

设 (M,g) 和 $\left(\tilde{M},\tilde{g}\right)$ 是 (带边) (伪) Riemann 流形, $\varphi:M\to \tilde{M}$ 是局部等距同构. 若 γ 是 M 上的测地线, 则 $\varphi\circ\gamma$ 是 M 上的测地线.

Proof 测地线是局部的,并且在微分同胚的拉回下是保持的3.

1.4 指数映射

在本节中,我们假设 (M,g) 是 (伪) 黎曼 n-流形,且配备 Levi-Civita 联络. 对于每一点 $p\in M$ 和 $v\in T_pM$,它们决定了唯一的一个极大测地线,记作 γ_v .

引理 1.1 (尺度变換引理)

对于每个 $p \in M, v \in T_pM$, $c, t \in \mathbb{R}$,

$$\gamma_{cv}\left(t\right) = \gamma_{v}\left(ct\right)^{\alpha}$$

只要上面两边其一有定义.

°速度越大,参数集越小

 \Diamond

Proof 若 c=0, 则对于所有的 $t\in\mathbb{R}$, 两边等于 p, 故不妨设 $c\neq 0$. 此时只需要证明若 $\gamma_v\left(ct\right)$ 存在, 则 $\gamma_{cv}\left(t\right)$ 也存在且二者相等(通过乘以 $\frac{1}{c}$).

设 γ_v 的最大区间是 $I\subseteq\mathbb{R}$,方便起见,记 $\gamma=\gamma_v$,定义新的曲线 $\tilde{\gamma}:c^{-1}I:\to M, \tilde{\gamma}(v)=\gamma(ct)$.

接下来说明 $\tilde{\gamma}$ 是以 p 为起点, cv 为初速度的测地线. 由定义易见 $\tilde{\gamma}(0)=\gamma(0)=p$, 又 $\dot{\tilde{\gamma}}^i(t)=\frac{\mathrm{d}}{\mathrm{d}t}\gamma^i(ct)=c\dot{\gamma}^i(ct)$, 故 $\tilde{\gamma}'(0)=c\gamma'(0)=cv$, 故 $\tilde{\gamma}$ 以 p 为起点, cv 为初速度. 现在设 D_t 和 \tilde{D}_t 分别是沿 γ 和 $\tilde{\gamma}$ 的协变导数, 则

$$\tilde{D}_{t}\tilde{\gamma}'(t) = \left(\frac{\mathrm{d}}{\mathrm{d}t}\dot{\tilde{\gamma}}^{k}(t) + \dot{\tilde{\gamma}}^{i}(t)\dot{\tilde{\gamma}}^{j}(t)\Gamma_{ij}^{k}(\tilde{\gamma}(t))\right)\partial_{k}$$

$$= \left(c^{2}\ddot{\gamma}^{i}(ct) + c^{2}\ddot{\gamma}^{i}(ct)\ddot{\gamma}^{j}(ct)\Gamma_{ij}^{k}(\gamma(ct))\right)\partial_{k}$$

$$= c^{2}D_{t}\gamma'(ct) = 0$$

因此 $\tilde{\gamma}$ 是测地线. 最后, 若 $\tilde{\gamma}$ 不是极大的, 则容易得到覆盖了 γ 的测地线, 与它的极大性矛盾, 故 $\tilde{\gamma}$ 是极大的.

综上可得
$$\gamma_{cv}\left(t\right)=\gamma_{v}\left(ct\right)$$

³相对于同一个微分同胚拉回的联络

定义 1.5 (指数映射)

1. 定义一个子集 $\mathcal{E} \subset TM$, 称为指数映射域

 $\mathscr{E} = \{v \in TM : \gamma_v$ 定义在包含了[0,1]的一个区间上 $\}$ 。

2. 在 $\mathscr E$ 上定义指数映射 $\exp:\mathscr E\to M$

$$\exp\left(v\right) = \gamma_v\left(1\right)^{\mathsf{b}}$$

3. 对于每个 $p \in M$, 指数映射在 p 上的限制, 记作 \exp_p , 为 \exp 在 $\mathscr{E}_p := \mathscr{E} \cap T_p M$ 上的限制.

"初速度不能太大, 需要允许物体可以自然地跑动单位时间

 $^{ extsf{b}}$ 以 p 为起点, 初速度为 v, 自然地跑动单位时间后, 在 M 上所处的位置.

命题 1.9 (指数映射的性质)

令 (M,g) 是 (伪) -Riemann 流形, $\exp:\mathscr{E}\to M$ 是它的指数映射, 则

- 1. $\mathscr E$ 是 TM 上包含了零截面的一个开集,并且每个 $\mathscr E_p\subseteq T_pM$ 都是关于 0 呈 星形的 $^{\circ}$.
- 2. 对于每个 $v \in TM$, 测地线 γ_v 由以下给出

$$\gamma_v\left(t\right) = \exp\left(tv\right)$$

若 t 使得两边中的一个有定义.

- 3. 指数映射是光滑的.
- 4. 对于每个 $p \in M$, 微分 $d\left(\exp_p\right)_0: T_0\left(T_pM\right) \simeq T_pM \to T_pM$ 在 $T_0\left(T_pM\right)$ 和 T_pM 的通常同构下是 T_pM 上的单位映射,

"对于任意的 $y \in \mathcal{E}_p$ 从 0 到 y 的线段落在 \mathcal{E}_p 上

Proof ⁴ 对于 2., 由尺度变换引理,

$$\exp(tv) = \gamma_{tv}(1) = \gamma_v(t)$$

若 t 使得上述其中一个有定义.

任取 $v\in\mathscr{E}_p$, 则 γ_v 至少在 [0,1] 上有定义. 因此对于任意的 $t\in[0,1]$, 尺度变换引理给出

$$\exp_{p}(tv) = \gamma_{tv}(1) = \gamma_{v}(t)$$

⁴未完成

是有定义的, 从而 $tv \in \mathcal{E}_p$, \mathcal{E}_p 关于 0 是星形集.

为了计算 $\mathrm{d}\left(\exp_p\right)_0(v)$, $v\in T_pM$, 选择 T_pM 上以 0 为起点, v 为初速度的曲线 τ , 并计算 $\exp_p\circ\tau$ 的初速度即可. 这里我们取 $\tau\left(t\right)=tv$, 则

$$d\left(\exp_{p}\right)_{0}\left(v\right) = \left.\frac{d}{dt}\right|_{t=0}\left(\exp_{p}\circ\tau\right)\left(t\right) = \left.\frac{d}{dt}\right|_{t=0}\exp_{p}\left(tv\right) = \left.\frac{d}{dt}\right|_{t=0}\gamma_{v}\left(t\right) = v$$

命题 1.10 (指数映射的自然性)

设 (M,g) 种 $\left(\tilde{M},\tilde{g}\right)$ 是 (伪) -Riemann 流形, $\varphi:M\to M$ 是局部等距同构. 则对于每个 $p\in M$, 下图交换:

Proof 任取 $v \in \mathscr{E}_p$,则 M 在的以 p 为起点,v 为初速度的极大测地线 γ_v 至少在 [0,1] 上有定义。由于 φ 是局部的等距同构, $\varphi \circ \gamma_v$ 也是一个极大测地线,它的起点为 $\varphi \circ \gamma_v (0) = \varphi (p)$,初速度为 $\frac{\mathrm{d}}{\mathrm{d}t} (\varphi \circ \gamma_v) (0) = \mathrm{d}\varphi_p \gamma_v' (0) = \mathrm{d}\varphi_p (v)$,我们有 $\varphi \circ \gamma_v = \gamma_{\mathrm{d}\varphi_p (v)}$ $\varphi \left(\exp_p (v) \right) = \varphi \left(\gamma_v (1) \right) = \gamma_{\mathrm{d}\phi_p (v)} (1) = \exp_{\varphi (p)} \circ \left(\mathrm{d}\varphi_p \right) (v)$

这就说明了图表的交换性.

命题 1.11

设 (M,g) 和 $\left(\tilde{M},\tilde{g}\right)$ 是 (伪) -Riemann 流形, M 是连通的. 设 $\varphi,\psi:M\to \tilde{M}$ 是局部等距同构, 使得对于某个 $p\in M$, $\varphi\left(p\right)=\psi\left(p\right)$, 且 $\mathrm{d}\varphi_{p}=\mathrm{d}\psi_{p}$, 则 $\varphi\equiv\psi$.

Proof 令

$$S = \{ q \in M : \varphi(q) = \psi(q), \, d\varphi_q = d\psi_q \}$$

任取 $p \in S$, 由自然性,

$$\varphi \circ \exp_p = \exp_{\varphi(p)} \circ d\varphi_p = \exp_{\psi(p)} \circ d\psi_p = \psi \circ \exp_p$$

由于 $\mathrm{d}\left(\exp_p\right)_0$ 是单位映射,存在包含了原点的开邻域 $U_0\subseteq T_pM$,和包含了 p 的开邻域 $V\subseteq M$,使得 \exp_p 成为它们之间的微分同胚,故 φ 和 ψ 在 p 的一个邻域上相等,微分的局部性又给出在其上 $\mathrm{d}\phi=\mathrm{d}\psi$,故 S 是一个开集.

此外, 任取 $q \in S^c$, 若 $\varphi(q) \neq \psi(q)$, 由 $\varphi - \psi$ 的连续性, 存在 q 使得 $\varphi \neq \psi$ 在其上成立; 若 $\varphi(q) = \psi(q)$ 但 $d\varphi_q \neq d\psi_q$,由 $d\phi - d\psi$ 的连续性, 存在 q 的邻域使得 $d\varphi \neq d\psi$ 在其上成立,故 S^c 是开集, S 是闭集.

最后, 连通性要求 S=M.

定义 1.6

称(伪)Riemann 流形 (M,g) 是测地完备的, 若每个极大测地线对于所有的 $t\in\mathbb{R}$ 有定义, 或者等价地说指数映射的定义域是整个 TM .

1.5 法邻域和法坐标

定义 1.7

设 (M,g) 是(伪)Riemann 流形, $p\in M$. 若 p 的邻域 U 是 $0\in T_pM$ 的某个星形 邻域在 \exp_p 下的微分同胚像, 则称 U 为 p 的一个法邻域 .

Proof 法邻域的存在性: 指数映射 \exp_p 将开集 $\mathscr{E}_p \subseteq T_pM$ 光滑地映到 M 上, 由于 $\mathrm{d}\left(\exp_p\right)_0$ 可逆, 知存在 $0 \in T_pM$ 的一个邻域 V, 以及 $p \in M$ 的一个邻域 U, 使得 \exp_p 成为 V 到 U 的一个微分同胚.

定义 1.8 (法坐标)

对于每个 T_pM 的正交基 (b_i) ,它决定了一个基同构 $B:\mathbb{R}^n\to T_pM$, $B(x^1,\cdots,x^n)=x^ib_i$. 若 $U=\exp_p(V)$ 是 p 的法邻域,可以将指数映射与同构复合,得到光滑坐标映射 $\varphi=B^{-1}\circ\left(\exp_p|_V\right)^{-1}:U\to\mathbb{R}^n$:

称这样的坐标为以 p 为中心的法坐标。

 lpha 将邻域按指数映射的对应线性化为切空间,切空间上可以轻松地找到正交坐标,给出了 U 上的正交坐标(下个命题中证明).

命题 1.12 (法坐标的唯一性)

设 (M,g) 是 (伪) Riemann n- 流形, $\pi \in M$, U 是以 p 为中心的一个法邻域. 对于每个以 p 中心的 U 上的法坐标卡, 坐标基在 p 点处正交; 并且对于每个 T_pM 的正交基 (b_i) , 存在唯一的 U 上的法坐标 (x^i) , 使得 $\partial_i|_p = b_i, i = 1, \cdots, n$. 当 g 正定时, 对于任意两个法坐标卡 (x^i) 和 (\tilde{x}^j) 都有

$$\tilde{x}^j = A_i^j x^i$$

对于某个(常值)正交矩阵 $(A_i^j) \in O(n)$ 成立.

Proof 设 φ 是 U 上以 p 为中心的法坐标, 坐标函数为 (x^i) . 则由定义有 $\varphi=B^{-1}\circ\exp_p^{-1}$, 其中 $B:\mathbb{R}^n\to T_pM$ 是由 T_pM 的一组正交基 (b_i) 决定的. 由于 $\mathrm{d}\left(\exp_p\right)_0$ 是单位映射且 B 是线性的, 故 $\partial_i|_p=\left(\mathrm{d}\varphi_p\right)^{-1}\left(\partial_i|_0\right)=B\left(\partial_i|_0\right)=b_i$, 故坐标基就是它的定义依赖的坐标基,故在 p 点处正交.

对于每个 T_pM 的正交基 (b_i) ,上面的计算表明它给出的法坐标就是满足条件的法坐标,故存在性得证.

若 $ilde{arphi} = ilde{B}^{-1} \circ \exp_p^{-1}$ 是另一个法坐标,则

$$\tilde{\varphi} \circ \varphi^{-1} = \tilde{B}^{-1} \circ \exp_v^{-1} \circ \exp_v \circ B = \tilde{B}^{-1} \circ B =: A$$

是 \mathbb{R}^n 上两个正交基的变换. 若 $\tilde{\varphi}$ 的坐标向量场与 b_i 相同, 则它是被 (b_i) 所决定的坐标, 我们有 $\tilde{B}=B$, 从而 $\tilde{\varphi}=\varphi$, 这就说明了唯一性.

最后, 若 q 正定, 则 A 是正交矩阵, 最后一个断言成立.

命题 1.13 (法坐标的性质)

设 (M,g) 是 (伪) Riemann 流形, $(U,(x^i))$ 是任意以 $p\in M$ 为中心的法坐标, 则

- 1. p 的坐标是 $(0, \dots, 0)$;
- 2. 若 g 是 Riemann 度量,则 p 处的度量分量为 $g_{ij}=\delta_{ij}$, 否则为 $g_{ij}=\pm\delta_{ij}$.
- 3. 对于每个 $v=v^i\partial_i|_p\in T_pM$,以 p 为起点,v 为初速度的测地线 γ_v 在法坐标下表示为线

$$\gamma_v\left(t\right) = \left(tv_1, \cdots, tv^n\right)$$

只要 t 落在某个包含了 0 且满足 $\gamma_v(I) \subseteq U$ 的区间 I 上

- 4. 在这组坐标下的 Christoffel 符号在 p 点处退化;
- 5. g_{ij} 在这组坐标下的所有一阶偏导数在 p 点处退化.

Proof 1. 由法坐标的定义直接得到,2. 由法坐标的正交性得到.3. 由

$$\gamma_v(t) = \exp_p(vt) = B^{-1}(vt) = (tv^1, \dots, tv^n)$$

任取 $v=v^i\partial_i|_p\in T_pM$, $\gamma_v\left(t\right)=(tv^1,\cdots,tv^n)$, $\dot{\gamma}_v\left(t\right)=(v^1,\cdots,v^n)$, $\ddot{\gamma}_v\left(t\right)=0$, 测地线方程化为

$$v^{i}v^{j}\Gamma_{ij}^{k}\left(tv\right)=0$$

取 t=0, 得到 $\Gamma_{ij}^k\left(0\right)v^iv^j=0$ 对于所有的 k,v 成立. 特别地, 对于固定的 a 取 $v=\partial_a$,得到 $\Gamma_{aa}^k=0$. 分别做替换 $v=\partial_a+\partial_b$ 和 $v=\partial_b-\partial_a$ 并相减后得到 $\Gamma_{ab}^k=0$, 在 p 处对于所有的 a,b,k 成立. 故 4. 得证. 最后 5. 由命题 1.2的 3. 将 E_k 替换为 ∂_k 并结合本命题的 4. 可以得到,