STQD6114 TEXT DATA ANALYSIS III:

SENTIMENT ANALYSIS

NOR HAMIZAH MISWAN

Introduction

- Sentiment: a view, an opinion
- Sentiment analysis: a process of computationally identifying and categorizing sentiments typically expressed in a text
- Determining emotional tone behind a series of word

Why?

- Social media monitoring gain overview on public opinions for a certain topic
- Able to quickly understand consumer needs and react to it
- Example: Expedia Canada commercial case

Loves the German bakeries in Sydney. Together with my imported honey it feels like home	Positive
@VivaLaLauren Mine is broken too! I miss my sidekick	Negative
Finished fixing my twitterI had to unfollow and follow everyone again	Negative
@DinahLady I too, liked the movie! I want to buy the DVD when it comes out	Positive
@frugaldougal So sad to hear about @OscarTheCat	Negative
@Mofette briliant! May the fourth be with you #starwarsday #starwars	Positive
Good morning thespians a bright and sunny day in UK, Spring at last	Positive
@DowneyisDOWNEY Me neither! My laptop's new, has dvd burning/ripping software but I just can't copy the files somehow!	Negative

Filem (Antarabangsa)	bangsa) Kutipan		Bilangan	Markah
	(USD)*	Positif	Negatif	Akhir
Avengers: Age of	1,405,413,868	542	94	85.22
Ultron				
Furious 7	1,516,045,911	529	101	83.97
Jurassic World	1,670,400,637	764	248	75.49
Minions	1,159,398,397	448	406	52.46
Star Wars: The Force	2,066,960,090	303	132	69.66

Hotel	Skor sentimen keseluruhan Agoda	Skor penarafan Agoda	Skor sentimen keseluruhan Booking.com	Skor penarafan Booking.com
One World	6.85	8.5	6.59	8.5
Pullman Putrajaya	6.6	8	6.66	8.2
Vibrant Studio	6.87	8.6	8.23	8.8
Golden Triangle	6.37	7.1	6.47	7.1
The Gardens	6.83	8.3	6.79	8.4
Ascott Kuala Lumpur	6.57	8.5	6.64	8.3
Summer Suite	7.27	8.4	7.1	8.7
Sarang Vacation	7.1	8.6	6.8	9.1

ntimen keseluruhan dengan skor bintang

Skor sentimen keseluruhan Booking.com Skor Bintang Booking.com

	6.0	-	6.59	10
	6.8	9.1	6.66	10
Vibrant Studio	6.87	7	8.23	0
Golden Triangle	6.37	7	6.47	0
The Gardens	6.83	10	6.79	10
Ascott Kuala Lumpur	6.57	9	6.64	10
Summer Suite	7.27	8	7.1	0
Sarang Vacation	7.1	6	6.8	0

- Teaching machine to identify context and sentiment of human language is very difficult
- Human language itself is already complex, and add on the lack of intuitively in a machine: how can we do it?
- Example: Wow, Astro doesn't broadcast when its rain! Verrryyyyyy goooodddd!!
- A human know that the above sentence need to be read in a sarcastic way; hence it is a negative tone, however a machine sees the word "good" & might categorize as a positive tone statement
- Hence, the algorithm is evolving (as we talk!) to include comprehensively phrases/statements to increase the ability of a machine in conducting the sentiment analysis.

- Hence, the sentiment analysis results needs to be taken 'with a pinch of salt' (in precaution; with warning)
- It is not 100% accurate (yet!) but it do provides the overview / general idea especially on public sentiment

Data Preprocessing (Cleaning & Scrubbing)

- ❖ Text input
- Tokenization: splitting a string into its desired constitutes parts.

- Stop word filtering
- Negation handling: not good, not not good; not pretty, not n ot pretty, pretty ugly?
- Stemming

Data Sentiment Analysis

- Classification: classifying positive, negative words
- Sentiment class: determine the polarity of the topic or the data

How to determine the sentiment score

Capitalization

Words that are capitalized often signify a stronger expression

Emotion

- Usage of emotions alone
- Usage of emotions along with the words

The length of phrase

- Longer phrases
- Repetition on synonymous words

Examples:

- I am beautiful
- > I am very beautiful
- > I am BEAUTIFUL
- > I am superrrr beautiful
- ➤ BeautifullIIIIII

Sentiment Analysis in R (Simple codes)

Data prepping:

```
library(tm)
library(SnowballC)
library (wordcloud)
text=readLines(file.choose())
docs=Corpus (VectorSource (text))
inspect(docs)
toSpace=content transformer(function(x,pattern)gsub(pattern," ",x))
docs=tm map(docs, toSpace, "/")
docs=tm map(docs, toSpace, "@")
docs=tm map(docs, toSpace, "\\|")
docs=tm map(docs, content transformer(tolower))
docs=tm map(docs,removeNumbers)
docs=tm map(docs,removeWords, stopwords("english"))
docs=tm map(docs, removeWords, c("dan", "dengan", "atau", "sebagai", "yang", "itu", "ini", "
asm", "dari", "daripada"))
docs=tm map(docs, removePunctuation)
docs=tm map(docs, stripWhitespace)
docs=tm map(docs, stemDocument)
dtm=TermDocumentMatrix(docs)
m=as.matrix(dtm)
v=sort(rowSums(m), decreasing=TRUE)
d=data.frame(word=names(v), freq=v)
                                                                         Cathy Kelly It Started with Pans
m=d$word
```

Sentiment Analysis in R

Sentiment analysis:

```
mysentiment<-function(m)
{
mydictpos=c("baik","cantik","bijak","kuat")
mydictneg=c("jahat","buruk","bodoh","lemah")
pos_score=sum(!is.na(match(m,mydictpos)))
neg_score=(-1)*sum(!is.na(match(m,mydictneg)))
sentiment_score=pos_score+neg_score
sentiment_score
}</pre>
```


Sentiment Analysis by lexicon

Lexicon means dictionary

Example: affin, bing

```
## # A tibble: 2,477 x 2
##
      word
                  value
      <chr>>
##
                  <dbl>
    1 abandon
                      - 2
    2 abandoned
                     - 2
    3 abandons
                      - 2
    4 abducted
                      - 2
    5 abduction
                      -2
    6 abductions
                      - 2
    7 abhor
                      - 3
    8 abhorred
                      - 3
    9 abhorrent
                      - 3
## 10 abhors
                      - 3
## # ... with 2,467 more rows
```

```
## # A tibble: 6,786 x 2
      word
                  sentiment
      <chr>
                  <chr>>
    1 2-faces
                  negative
    2 abnormal
                  negative
    3 abolish
                  negative
    4 abominable
                  negative
    5 abominably
                  negative
    6 abominate
                  negative
    7 abomination negative
    8 abort
                  negative
    9 aborted
                  negative
## 10 aborts
                  negative
## # ... with 6,776 more rows
```


Sentiment Analysis by lexicon in R

We will refer to:

https://www.tidytextmining.com/sentiment.html

Another example:

https://rstudio-pubs-static.s3.amazonaws.com/30206 6_fe1dd2a635fa41198b18c87a64f5620c.html


```
library(tm) # for text mining
library(SnowballC) # for text stemming
library(wordcloud) # word-cloud generator
library(RColorBrewer) # color palettes
library(syuzhet) # for sentiment analysis
library(ggplot2) # for plotting graphs
# Read the text file from local machine, choose file interactively
text <- readLines(file.choose())</pre>
# Load the data as a corpus
docs <- Corpus(VectorSource(text))</pre>
#Replacing "/", "@" and "|" with space
toSpace <- content_transformer(function (x , pattern ) gsub(pattern, " ", x))
docs <- tm_map(docs, toSpace, "/")
docs <- tm_map(docs, toSpace, "@")
docs <- tm_map(docs, toSpace, "\|\\\\|\")
docs <- tm_map(docs, content_transformer(tolower))</pre>
docs <- tm map(docs, removeNumbers)
docs <- tm map(docs, removeWords, stopwords("english"))
docs <- tm map(docs, removeWords, c("s", "company", "team"))
docs <- tm map(docs, removePunctuation)
docs <- tm map(docs, stripWhitespace)
docs <- tm map(docs, stemDocument)
```


Build a term-document matrix

```
dtm <- TermDocumentMatrix(docs)
dtm m <- as.matrix(dtm)
dtm v <- sort(rowSums(dtm m),decreasing=TRUE) # Sort by descending value of frequency
dtm d <- data.frame(word = names(dtm v),freq=dtm v)
head(dtm d, 5) # Display the top 5 most frequent words
# Plot the most frequent words
barplot(dtm d[1:5,]$freq, las = 2, names.arg = dtm d[1:5,]$word,
      col ="lightgreen", main ="Top 5 most frequent words",
     ylab = "Word frequencies")
#generate word cloud
set.seed(1234)
wordcloud(words = dtm_d$word, freq = dtm_d$freq, min.freq = 5,
       max.words=100, random.order=FALSE, rot.per=0.40,
       colors=brewer.pal(8, "Dark2"))
# Word Association
findAssocs(dtm, terms = c("good", "work", "health"), corlimit = 0.25) # Find associations
findAssocs(dtm, terms = findFreqTerms(dtm, lowfreq = 50), corlimit = 0.25) # Find associations for words that occur at I
east 50 times
```

```
## Sentiment scores
# regular sentiment score using get_sentiment() function and method of your choice
# please note that different methods have different scales
syuzhet vector <- get sentiment(text, method="syuzhet")</pre>
head(syuzhet vector)
head(syuzhet vector,10) # see the first 10 elements of the vector
summary(syuzhet vector)
# bing
bing_vector <- get_sentiment(text, method="bing")</pre>
head(bing vector)
summary(bing_vector)
#afinn
afinn_vector <- get_sentiment(text, method="afinn")
head(afinn_vector)
summary(afinn vector)
#nrc
nrc_vector <- get_sentiment(text, method="nrc")</pre>
head(nrc vector)
summary(nrc vector)
```

```
#compare the first row of each vector using sign function
rbind(
  sign(head(syuzhet_vector)),
  sign(head(bing_vector)),
  sign(head(afinn_vector))
)
```



```
## Emotion classification
# run nrc sentiment analysis to return data frame with each row classified as one of the following
# emotions, rather than a score:
# anger, anticipation, disgust, fear, joy, sadness, surprise, trust
# and if the sentiment is positive or negative
d<-get_nrc_sentiment(text)</pre>
head (d,10) # head(d,10) - just to see top 10 lines
#Visualization
td<-data.frame(t(d)) #transpose
td_new <- data.frame(rowSums(td)) #The function rowSums computes column sums across rows for each level of a groupin
g variable.
names(td new)[1] <- "count" #Transformation and cleaning
td new <- cbind("sentiment" = rownames(td new), td new)
rownames(td new) <- NULL
td new2<-td new[1:8,]
#Plot 1 - count of words associated with each sentiment
quickplot(sentiment, data=td_new2, weight=count, geom="bar",fill=sentiment,ylab="count")+ggtitle("Survey sentiments")
         #Plot 2 - count of words associated with each sentiment, expressed as a percentage
         barplot(
          sort(colSums(prop.table(d[, 1:8]))),
          horiz = TRUE,
                                                                                                  Cathy Kelly It Started with Paris
          cex.names = 0.7,
          las = 1,
```

main = "Emotions in Text", xlab="Percentage"