Tutoriat 4

Grup factor. Teorema fundamentală de izomorfism pentru grupuri

Savu Ioan Daniel, Tender Laura-Maria - 25 noiembrie 2020 -

Exercițiul 1

Scrieți subgrupurile lui \mathbf{Z}_{12} și grupurile factor ale lui $\mathbf{Z}_{12}.$

Rezolvare:

Știm din curs că orice subgrup al lui Z_n este de forma dZ_n , unde d|n. Această proprietate apare doarece subgrupul generat de < a, b > = < (a, b) > si deci $< a_1, a_2, ..., a_k > = < (a_1, a_2, ..., a_k) >$. Cum $D_{12} = \{1, 2, 3, 4, 6, 12\}$ subgrupurile lui Z_{12} sunt: $Z_{12}, 2Z_{12}, 3Z_{12}, 4Z_{12}, 6Z_{12}, 12Z_{12}$, unde spre ex. $4Z_{12} = \{\overline{0}, \overline{4}, \overline{8}\}$. Pentru grupul factor, vom lua ca exemplu $H = \{\overline{0}, \overline{4}, \overline{8}\}$. Grupul factor este definit ca:

```
\begin{array}{l} \frac{G}{H}=\big\{\{\overline{y}|\overline{y}-\overline{x}\in H,\overline{y}\in Z_{12}\},\overline{x}\in Z_{12}\big\}\\ \text{Un element din grupul factor arata de forma}:\overline{x}+H.\\ \text{Prin urmare, }\frac{Z_{12}}{H}=\big\{\\ \overline{\overline{0}}=\{\overline{0},\overline{4},\overline{8}\},\\ \overline{\overline{1}}=\{\overline{1},\overline{5},\overline{9}\},\\ \overline{\overline{2}}=\{\overline{2},\overline{6},\overline{10}\},\\ \overline{\overline{3}}=\{\overline{3},\overline{7},\overline{11}\}\\ \big\} \end{array}
```

În mod analog se rezolvă și pentru restul de grupuri factor.

Exercițiul 2

Fie $f: \mathbf{Q} \to \mathbf{C}^*$, definită prin $f(\frac{m}{n}) = \cos(2\pi)\frac{m}{n} + i\sin 2\pi\frac{m}{n}$ și notăm cu U mulțimea $U = \{z \in \mathbf{C}^* | \exists n \in \mathbf{N}, z^n = 1\}$

- 1. Arătați că f este morfism de grupuri.
- 2. Determinați $\operatorname{Ker} f$ și $\operatorname{Im} f$.

3. Arătați că $\mathbf{Q}/\mathbf{Z} \cong U$.

Observație: Grupurile sunt $(\mathbf{Q}, +)$ și (\mathbf{C}, \cdot) .

Rezolvare:

1. Condiția ca f să fie morfism este ca

$$f(x+y) = f(x) \cdot f(y) \iff \cos 2\pi (x+y) + i \sin 2\pi (x+y) = (\cos 2\pi x + i \sin 2\pi x) \cdot (\cos 2\pi y + i \sin 2\pi y)$$

Ultima egalitate este adevărată din formulele lui de Moivre.

2. Observăm că mulțimea U este mulțimea rădăcinilor de ordin n ale unității, adică $U = \{\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \mid k \in \overline{(1,n-1)}\}.$ $z^n = 1 \Rightarrow |z^n| = 1 \Rightarrow |z|^n = 1 \Rightarrow |z| = 1.$ Ker $f = \{x \in \mathbf{Q} | f(x) = 1\} = \{x \in \mathbf{Q} | \cos 2\pi x + i \sin 2\pi x = 1\} = \{x \in \mathbf{Q} | x \in \mathbf{Z}\} = \mathbf{Z}$

Im $f = \{y \in \mathbf{C}^* | \exists x \in \mathbf{Q}, \text{ astfel incat } f(x) = y\} = \{y \in \mathbf{C}^* | \exists x \in \mathbf{Q}, \text{ astfel incat } \cos 2\pi x + i \sin 2\pi x = y\} = \{y \in \mathbf{C} | |y| = 1\} = U$

3. Putem demonstra că grupul factor \mathbf{Q}/\mathbf{Z} . este izomorf cu U folosindu-ne de **teorema fundamentală de izomorfism**.

(Teorema fundamentală de izomorfism pentru grupuri) Fie $f:G\to G'$ un morfism de grupuri. Atunci există un izomorfism de grupuri $\overline{f}:G/Kerf\to Imf.$

Aplicând teorema pe cazul nostru obținem că există izomorfismul $\overline{f}: \mathbf{Q}/\mathbf{Z} \to U.$ Deci,

$$\mathbf{Q}/\mathbf{Z} \cong U$$

Exercițiul 3

Folosind teorema de izomorfism pentru grupuri să se arate că grupul factor $(\mathbf{C}/\mathbf{R}, +)$ este izomorf cu grupul $(\mathbf{R}, +)$.

(Examen algebră, 04.06.2020, seria 13)

Rezolvare:

Fie $f: \mathbf{C} \to \mathbf{R}$, f(a+bi) = b. Vom demonstra că f este morfism. Fie $a+bi, c+di \in \mathbf{C}$, $a,b,c,d \in \mathbf{R}$.

 $f(a+bi+c+di) = f(a+c+(b+d)i) = b+d = f(a+bi)+f(c+di) \ \forall a+bi, \ c+di \in \mathbf{C} \Rightarrow f \ \text{morfism}.$

 $\text{Im} f = \mathbf{R}$ întrucât $f(x) \in \mathbf{R} \ \forall x \in \mathbf{C}$ și $\forall \ y \in \mathbf{R} \ \exists x$ astfel încât $f(x) = y, y = z + yi, z \in \mathbf{R}$.

Ker $f = \{x \in \mathbf{C} \mid f(x) = 0\}, f(x) = 0 \iff f(a+bi) = 0, \text{ unde } a+bi = x \iff b = 0 \iff x \in \mathbf{R}.$ Astfel Ker $f = \mathbf{R}$.

Conform teoremei de izomorfism pentru grupuri, există un izomorfism de grupuri $\overline{f}: G/Kerf \to Imf. \ \overline{f}: \mathbf{C}/\mathbf{R} \to \mathbf{R}. \ \hat{\mathbf{I}}$ n concluzie, $(\mathbf{C}/\mathbf{R}, +) \cong (\mathbf{R}, +)$.

Exercitiul 4

Fie G grupul factor $(\mathbf{Q}/\mathbf{Z}, +)$. Arătați că:

- 1. dacă $a,b \in \mathbf{N}^*$ sunt prime între ele, atunci $\operatorname{ord}\left(\frac{\widehat{a}}{b}\right) = b$
- 2. orice subgrup finit generat este ciclic
- 3. G nu este finit generat

Rezolvare:

- 1. În mod asemănător Exercițiului 1, putem scrie elementele grupului factor ca fiind : $\frac{\hat{a}}{b} = \frac{a}{b} + \mathbf{Z} = \{\frac{a}{b} + n | n \in \mathbf{Z}\}$. Astfel, observăm că pentru $k \in \mathbf{Z}$, $\hat{k} = \mathbf{Z}$ și $\hat{0} = \mathbf{Z}$. Prin urmare, pentru a determina ordinul lui $\frac{\hat{a}}{b}$ trebuie să vedem cel mai mic număr natural o pentru care $\frac{a}{b} * o \in \mathbf{Z}$. Cum a și b sunt prime între ele avem că o = b, deci $ord(\frac{\hat{a}}{b}) = b$.
- 2. Un subgrup generat de 2 elemente este de forma $<\frac{\widehat{a}}{b},\frac{\widehat{c}}{d}>=\{\frac{a\widehat{bx+bcy}}{\widehat{bd}}|x,y\in\mathbf{Z}\}$. Se poate demonstra faptul că elementele mulțimii sunt de forma $k*\frac{cmmdc(\widehat{a,c})}{cmmmc(\widehat{b,d})}, k\in\mathbf{Z}$ și deci $<\frac{\widehat{a}}{b},\frac{\widehat{c}}{d}>=<\frac{cmmdc(\widehat{a,c})}{cmmmc(\widehat{b,d})}>$ (această egalitate putând fi demonstrată folosind dubla incluziune). Aplicând inductiv pentru un numar arbitrar de numere relația de mai sus obținem că $<\frac{\widehat{a_1}}{b_1},\frac{\widehat{a_2}}{b_2},...,\frac{\widehat{a_n}}{b_n}>=<\frac{cmmdc(a_1,\widehat{a_2},...,a_n)}{cmmmc(b_1,\overline{b_2},...,b_n)}>$. Astfel, orice subgrup finit generat este ciclic.
- 3. Presupunem că G este finit generat. Conform subpunctului anterior, G este ciclic generat de un element de forma $\frac{a}{b}, a, b \in \mathbf{Z}$. Fracția poate fi adusă la forma ireductibilă și conform subpunctului 1, ordinul lui G este un numar natural și deci G are un numar finit de elmente, însă G are o infinitate de elemente, contradictie. Deci G nu este finit generat.