CS 20 Laboratory 5: Combinational Circuit Design

1. (7pts, 1pt each) Show a single truth table which includes all the 7 outputs for all the possible values of DCBA.

	D	С	В	A	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
Α	1	0	1	0	1	1	1	0	1	1	1
b	1	0	1	1	0	0	1	1	1	1	1
С	1	1	0	0	1	0	0	1	1	1	0
d	1	1	0	1	0	1	1	1	1	0	1
E	1	1	1	0	1	0	0	1	1	1	1
F	1	1	1	1	1	0	0	0	1	1	1

2. (7pts, 1pt each) Solve for the minimized product-of-sums expressions of a, b, c, d, e, f, g. Show the groupings made using an annotated K-map.

k-map of expression a:

			BA		
		00	01	11	10
	00	1	0	1	1
DC	01	0	1	1	1
	11	1	0	1	1
	10	1	1	9	1

POS of expression a: $\mathbf{a} = (\mathbf{D} + \mathbf{C}' + \mathbf{B} + \mathbf{A}) (\mathbf{D} + \mathbf{C} + \mathbf{B} + \mathbf{A}') (\mathbf{D}' + \mathbf{C}' + \mathbf{B} + \mathbf{A}') (\mathbf{D}' + \mathbf{C} + \mathbf{B}' + \mathbf{A}')$

k-map of expression b:

,			BA		
		00	01	11	10
	00	1	1	1	1
DC	01	1	0	1	0
	11	0	1	0	0
	10	1	1	0	1

POS of expression b: $\mathbf{b} = (\mathbf{D} + \mathbf{C'} + \mathbf{B} + \mathbf{A'}) (\mathbf{D'} + \mathbf{C'} + \mathbf{A}) (\mathbf{D'} + \mathbf{B'} + \mathbf{A'}) (\mathbf{C'} + \mathbf{B'} + \mathbf{A})$

k-map of expression c:

			BA		
		00	01	11	10
	00	1	1	1	0
DC	01	1	1	1	1
	11	0	1	0	0
	10	1	1	1	1

POS of expression c: c = (D+C+B'+A)(D'+C'+B')(D'+C'+A)

k-map of expression d:

			BA		
		00	01	11	10
	00	1	0	1	1
DC	01	0	1	0	1
	11	1	1	0	1
	10	1	1	1	0

POS of expression d: $\mathbf{d} = (\mathbf{D} + \mathbf{C}' + \mathbf{B} + \mathbf{A}) (\mathbf{D} + \mathbf{C} + \mathbf{B}' + \mathbf{A}') (\mathbf{C}' + \mathbf{B}' + \mathbf{A}') (\mathbf{D}' + \mathbf{C} + \mathbf{B}' + \mathbf{A})$ k-map of expression e:

			BA		
		00	01	11	10
	00	1	G	0	1
DC	01	0	0	0	1
	11	1	1	1	1
	10	1	0	1	1

POS of expression e: e = (C+B+A')(D+C'+B)(D+A')

k-map of expression f:

			BA		
		00	01	11	10
	00	1	0	0	0
DC	01	1	1	0	1
	11	1	0	1	1
	10	1	1	1	1

POS of expression f: f = (D+C+A')(D+C+B')(D+B'+A')(D'+C'+B+A')

k-map of expression g:

			BA		
		00	01	11	10
	00	0	0	1	1
DC	01	1	1	()	1
	11	0	1	1	1
	10	1	1	1	1

POS of expression g: $\mathbf{g} = (\mathbf{D} + \mathbf{C} + \mathbf{B}) (\mathbf{D}' + \mathbf{C}' + \mathbf{B} + \mathbf{A}) (\mathbf{D} + \mathbf{C}' + \mathbf{B}' + \mathbf{A}')$

3. Modify/simplify the logic circuit design by using only 74LS02 ICs. Show the circuit diagram of the new design.

4. (6pts) Show through pictures that the implementation works correctly for all possible values of DCBA.

DCBA = 0000

DCBA = 0001

DCBA = 0010

DCBA = 0011

DCBA = 0100

DCBA = 0101

DCBA = 0110

DCBA = 0111

DCBA = 1000

DCBA = 1001

DCBA = 1010

DCBA = 1011

DCBA = 1100

DCBA = 1101

DCBA = 1110

DCBA = 1111

