עבודה עצמית 2

שאלה 1

נתון המשחק בעל עץ המשחק

נניח כי לשחקן I יש אסטרטגיות ו- B שמוגדרות נניח כי לשחקן

$$T(x_0) = e_2, B(x_0) = e_1$$

ונניח כי ולשחקן II יש אסטרטגיות t ו- שמוגדרות

$$t(x_1) = e_3, b(x_1) = e_4.$$

רשמו את המשחק בצורה אסטרטגית.

שאלה 2

נתון המשחק הבא בצורה רחבה:

ונתונים האסטרטגיות הבאות:

$$s_{I,0}(x_0) = e_1$$
,
 $s_{I,1}(x_0) = e_2$, $s_{I,1}(x_4) = e_7$
 $s_{I,2}(x_0) = e_2$, $s_{I,2}(x_4) = e_8$
 $s_{II,1}(x_3) = e_5$,
 $s_{II,2}(x_3) = e_6$.

רשמו אותו בצורה אסטרטגית.

שאלה 3 משה ואהרון משתתפים במשחק טלוויזיה, שבו על כל אחד מהם להגיש בכתב בתוך מעטפה סגורה אחת משתי הבקשות הבאות והבקשות של שניהם תתבצענה:

- תן לי 1,000 ₪.
- .№4,000 תן לו
- א) רשמו את המשחק בצורה אסטרטגית.
- ב) כיצד השחקנים ינהגו במשחק ומדוע? ו

שאלה 4 האם במשחקים הבאים סילוק חוזר של אסטרטגיות נשלטות חזק מסתיים בווקטור אסטרטגיות יחיד? אם כן, מה הוא ווקטור זה?

(N

II שחקן שחקן L R I שחקן H $egin{array}{c|c} 4,2&0,1\\ T&3,3&1,1 \end{array}$

E)

II שחקן שחקן L R I שחקן H $\begin{bmatrix} 2,3 & 1,4 \\ T & 0,2 & 0,4 \end{bmatrix}$

κ)

II שחקן שחקן $rac{a \quad b \quad c}{a \quad b \quad c}$ I שחקן $rac{\alpha}{\beta} = rac{1,0 \quad 3,0 \quad 2,1}{3,1 \quad 0,1 \quad 1,2}$ $\gamma = 2,1 \quad 1,6 \quad 0,2$

שאלה 5 מצאו את כל ווקטורי האסטרטגיות הרציונליים במשחקים הבאים.

(N

$$\begin{array}{c|cccc}
II & L & R \\
\hline
T & 9,5 & 5,3 \\
B & 8,6 & 8,4
\end{array}$$

(Z

I	a	b	c	d
T	6, 2	6,3	7,6	2,8
В	8, 5	6,9	4,6	4, 7

(3)

I	a	b	c	d
T	-1,20	-7, -7	-1, 2	-5, 8
M	27, 20	13, -1	21, 2	13, -1
B	-5,20	-3, 5	7, -1	3, -4

(τ

I	a	b	c	d
α	3, 7	0, 13	4,5	5,3
β	5, 3	4, 5	4,5	3, 7
γ	4, 5	3, 7	4,5	5, 3
δ	4, 5	4,5	4,5	4, 5

שאלה 6 במשחקים הבאים, מצאו את השיווי משקל נאש של המשחק.

(N

$$\begin{array}{c|cccc} II & L & R \\ \hline H & 4,8 & 5,10 \\ T & 3,7 & 6,20 \\ \end{array}$$

(2

$$\begin{array}{c|cccc}
II & L & R \\
\hline
H & 2,3 & 1,5 \\
T & 0,0 & 4,1
\end{array}$$

()

I	a	b	c	d
α	2, 13	4,8	6,5	8,2
β	6, 4	2,3	3,8	8,4
γ	0,9	7, 7	2,7	14, 10
δ	4,0	0,4	4,6	6,0

(†

I	a	b	c	d
α	-5, 5	-4, 4	-5, 1	0, 4
β	-4, 1	-3, 3	-2, 2	1, 1
γ	0,0	1, -1	-4, 4	-3, 3
δ	-1, 6	2, -2	7, 11	5, 2

פתרונות

שאלה 1

I	t	t
T	5, 2	5,2
В	10,7	2,4

שאלה 2

 $s_{I,0}$

תתקבל מסלול המשחק

 $w=x_0 e_1 x_1.$

התשלומים לכל שחקן יהיו

$$u_I(s_{I,0}) = 0$$
, $u_{II}(s_{I,0}) = 0$.

P=1 בהסתברות

$$s_{I,1}, s_{II,1}$$

$$w = \begin{cases} x_0 \ e_2 \ x_2 \ e_3 \ x_3 \ e_5 \ x_5 \ e_9 \ x_9 & P = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} \quad u = (5, -1) \\ x_0 \ e_2 \ x_2 \ e_3 \ x_3 \ e_5 \ x_5 \ e_{10} \ x_{10} & P = \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3} \quad u = (-2, 5) \\ x_0 \ e_2 \ x_2 \ e_4 \ x_4 \ e_7 \ x_7 & P = \frac{1}{2} & u = (1, 1) \end{cases}$$

חוחלת החשלוחי

$$E = \frac{1}{6}(5, -1) + \frac{1}{3}(-2, 5) + \frac{1}{2}(1, 1) = \left(\frac{2}{3}, 2\right) .$$

$$s_{I,2}, s_{II,1}$$

$$w = \begin{cases} x_0 \ e_2 \ x_2 \ e_3 \ x_3 \ e_5 \ x_5 \ e_9 \ x_9 & P = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} \quad u = (5, -1) \\ x_0 \ e_2 \ x_2 \ e_3 \ x_3 \ e_5 \ x_5 \ e_{10} \ x_{10} & P = \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3} \quad u = (-2, 5) \\ x_0 \ e_2 \ x_2 \ e_4 \ x_4 \ e_8 \ x_8 \ e_{11} \ x_{11} & P = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \quad u = (0, 2) \\ x_0 \ e_2 \ x_2 \ e_4 \ x_4 \ e_8 \ x_8 \ e_{12} \ x_{12} & P = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \quad u = (-1, 1) \\ x_0 \ e_2 \ x_2 \ e_4 \ x_4 \ e_8 \ x_8 \ e_{13} \ x_{13} & P = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \quad u = (1, 1) \end{cases}$$

תוחלת התשלום:

$$E = \frac{1}{6}(5, -1) + \frac{1}{3}(-2, 5) + \frac{1}{8}(0, 2) + \frac{1}{4}(-1, 1) + \frac{1}{8}(1, 1) = \left(\frac{1}{24}, \frac{17}{8}\right).$$

$$s_{I,1}, s_{II,2}$$

$$w = \begin{cases} x_0 \ e_2 \ x_2 \ e_3 \ x_3 \ e_6 \ x_6 & P = \frac{1}{2} \quad u = (2,0) \\ x_0 \ e_2 \ x_2 \ e_4 \ x_4 \ e_7 \ x_7 & P = \frac{1}{2} \quad u = (1,1) \end{cases}.$$
 תוחלת התשלום:
$$E = \frac{1}{2}(2,0) + \frac{1}{2}(1,1) = \left(\frac{3}{2},\frac{1}{2}\right) \ .$$

$$E = \frac{1}{2}(2,0) + \frac{1}{2}(1,1) = \left(\frac{3}{2}, \frac{1}{2}\right)$$
.

$$s_{I,2}, s_{II,2}$$

$$w = \begin{cases} x_0 e_2 x_2 e_3 x_3 e_6 x_6 & P = \frac{1}{2} & u = (2,0) \\ x_0 e_2 x_2 e_4 x_4 e_8 x_8 e_{11} x_{11} & P = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} & u = (0,2) \\ x_0 e_2 x_2 e_4 x_4 e_8 x_8 e_{12} x_{12} & P = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} & u = (-1,1) \\ x_0 e_2 x_2 e_4 x_4 e_8 x_8 e_{13} x_{13} & P = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} & u = (1,1) \end{cases}$$

תוחלת התשלום:

$$E = \frac{1}{2}(2,0) + \frac{1}{8}(0,2) + \frac{1}{4}(-1,1) + \frac{1}{8}(1,1) = \left(\frac{7}{8}, \frac{5}{8}\right) .$$

$$II \mid s_{II,1} \mid s_{II,2}$$

I	$s_{II,1}$	$s_{II,2}$
$s_{I,0}$	0,0	0,0
$s_{I,1}$	$\frac{2}{3}, 2$	$\frac{3}{2}, \frac{1}{2}$
$s_{I,2}$	$\frac{1}{24}, \frac{17}{8}$	$\left[\frac{7}{8}, \frac{5}{8}\right]$

המשחק בצורה אסטרטגית המתקבל מתואר בטבלה למטה.

שאלה 3

נקרא משה שחקן I ונקרא אהרון שחקן II. המשחק בצורה אסטרטגית הינה: (N

$$II$$
 שחקן שחקן A B
$$I$$
 שחקן A $(1000,1000)$ $(5000,0)$ B $(0,5000)$ $(4000,4000)$

(1

$$1000 = u_I(A, A) > u_I(B, A) = 0,$$

$$5000 = u_I(A, B) > u_I(B, B) = 4000$$

. לכן האסטרטגיה $s_I=A$ שולטת חזק

$$1000 = u_{II}(A, A) > u_{II}(A, B) = 0,$$

$$5000 = u_{II}(B, A) > u_{II}(B, B) = 4000$$

לכן האסטרטגיה $s_{II}=A$ שולטת חזק.

A על פי ההנחות של שני השחקנים רציונלים, אז שניהם ישחקו לפי אסטרטגיה

שאלה 4

(N

(4,2) משלום סופי:

HL :פתרון באסטרטגיות שולטות חזק

(2

(1,4) תשלום סופי:

.HR :פתרון באסטרטגיות שולטות חזק

()

(2,1) תשלום סופי:

lpha c :פתרון באסטרטגיות שולטות חזק

שאלה 5

(N

TL :פתרון באסטרטגיות שולטות חזק

(2

I	a	b	c	d		I^{II}	a			
T	-1,20	-7, -7	-1, 2	-5, 8	$ \begin{vmatrix} b \prec a \\ c \prec a \\ d \prec a \end{vmatrix} $	T	-1, 20	$T \prec M$ $B \prec M$	I^{II}	a
M	27, 20	13, -1	21, 2	13, -1		M	27, 20	\longrightarrow	M = 2	27, 20
B	-5,20	-3, 5	7, -1	3, -4		B	-5, 20			

Ma :פתרון באסטרטגיות שולטות חזק

()

I	a	b	c	d
α	3,7	0, 13	4,5	5,3
β	5,3	4,5	4, 5	3,7
γ	4,5	3,7	4, 5	5,3
δ	4,5	4,5	4, 5	4,5

	I	a	b	d
$\alpha \preceq \gamma$	β	5, 3	4,5	3, 7
\longrightarrow	γ	4, 5	3,7	5,3
	δ	4, 5	4,5	4, 5

$$\begin{array}{c|cccc}
II & b & d \\
\hline
\gamma & 3,7 & 5,3 \\
\delta & 4,5 & 4,5
\end{array}$$

$$\begin{array}{c|c}
 & II & d \\
\hline
 & I & 5,3 \\
\hline
 & \delta & 4,5
\end{array}$$

$$\begin{array}{c|c}
 & II & d \\
\hline
 & 7 & 5, 3
\end{array}$$

 $.\gamma d$:פתרון שולטות שולטרטגיות פתרון

שאלה 6

(N

$$\begin{array}{c|cccc}
II & L & R \\
\hline
H & 4,8 & 5,10 \\
T & 3,7 & 6,20
\end{array}$$

שיווי משקל נאש:

$$(s_I^*, s_{II}^*) = (T, R)$$
.

:הסבר

$$4 = u_I(T, R) > u_I(H, R) = 1 ,$$

$$1 = u_{II}(T, R) > u_{II}(T, L) = 0 .$$

(1

$$\begin{array}{c|cccc} II & L & R \\ \hline H & 2,3 & 1,5 \\ T & 0,0 & 4,1 \\ \end{array}$$

שיווי משקל נאש:

 $(s_I^*, s_{II}^*) = (T, R)$.

:הסבר

$$6 = u_I(T, R) > u_I(H, R) = 5,$$

$$20 = u_{II}(T, R) > u_{II}(T, L) = 7.$$

()

I	a	b	c	d
α	2, 13	4,8	6,5	8,2
β	6, 4	2,3	3,8	8,4
γ	0,9	7, 7	2,7	14, 10
δ	4,0	0,4	4,6	6,0

:שיווי משקל נאש

$$(s_I^*, s_{II}^*) = (\gamma, d)$$
.

:הסבר

$$14 = u_I(\gamma, d) > u_I(\alpha, d) = 8$$
, $14 = u_I(\gamma, d) > u_I(\beta, d) = 8$, $14 = u_I(\gamma, d) > u_I(\delta, d) = 6$,

$$14 = u_I(\gamma, d) > u_I(\beta, d) = 8$$
,

$$4 = u_I(\gamma, d) > u_I(\delta, d) = 6 ,$$

$$10 = u_{II}(\gamma, d) > u_{II}(\gamma, a) = 9$$
, $10 = u_{II}(\gamma, d) > u_{II}(\gamma, b) = 7$, $10 = u_{II}(\gamma, d) > u_{II}(\gamma, c) = 7$.

$$10 = u_{II}(\gamma, d) > u_{II}(\gamma, b) = 7$$
,

$$10 = u_{II}(\gamma, d) > u_{II}(\gamma, c) = 7$$

(†

I	a	b	c	d
α	-5, 5	-4, 4	-5, 1	0, 4
β	-4, 1	-3, 3	-2, 2	1,1
γ	0,0	1, -1	-4, 4	-3, 3
δ	-1, 6	2, -2	7, 11	5, 2

:שיווי משקל נאש

 $(s_I^*, s_{II}^*) = (\delta, c)$.

:הסבר

$$7 = u_I(\delta, c) > u_I(\alpha, c) = -5 ,$$

$$7 = u_I(\delta, c) > u_I(\alpha, c) = -5$$
, $7 = u_I(\delta, c) > u_I(\beta, c) = -2$, $7 = u_I(\delta, c) > u_I(\gamma, c) = -4$,

$$7 = u_I(\delta, c) > u_I(\gamma, c) = -4 ,$$

$$11 = u_{II}(\delta, c) > u_{II}(\delta, a) = 6$$

$$11 = u_{II}(\delta, c) > u_{II}(\delta, a) = 6 , 11 = u_{II}(\delta, c) > u_{II}(\delta, b) = -2 , 11 = u_{II}(\delta, c) > u_{II}(\delta, d) = 2 .$$

$$11 = u_{II}(\delta, c) > u_{II}(\delta, d) = 2.$$