# FÍSICA MATEMÁTICA II

Versión del 5 de julio de 2017

# Prefacio

Este apunte se confeccionó con contribuciones de Guillermo Rubilar, Oscar Fuentealba, y parte del código LATEX de los apuntes de Sean Mauch [1].

Esta obra ha sido publicada bajo una licencia GPL v3. El código fuente (pdf)LATEX, así como las figuras en formato editable están disponibles en el repositorio GitHub del proyecto.

Otros apuntes en https://github.com/gfrubi.

"...Así, nosotros los mortales, somos inmortales en lo que creamos en común."

Albert Einstein.

# Índice general

| Pr | efac | io        |                                                                     | ]  |
|----|------|-----------|---------------------------------------------------------------------|----|
| 1. | Aná  | álisis de | e Fourier                                                           | 1  |
|    | 1.1. | Resum     | nen: Series de Fourier                                              | 1  |
|    |      | 1.1.1.    | Propiedades Generales                                               | 1  |
|    |      | 1.1.2.    | Convolución                                                         | 3  |
|    |      | 1.1.3.    | Relación de Parseval                                                | 3  |
|    |      | 1.1.4.    | Convergencia                                                        | 4  |
|    |      | 1.1.5.    | Fenómeno de Gibbs                                                   | 4  |
|    | 1.2. | Cambi     | io de Intervalo                                                     | 4  |
|    |      | 1.2.1.    | Delta de Dirac                                                      | 5  |
| 2. | Lat  | transfo   | rmada de Fourier                                                    | 7  |
|    |      | 2.0.1.    | Ejemplo: Distribución Gaussiana                                     | 8  |
|    | 2.1. | Propie    | edades de la Transformada de Fourier                                | 9  |
|    |      | 2.1.1.    | Delta de Dirac                                                      | 9  |
|    |      | 2.1.2.    |                                                                     | 9  |
|    |      | 2.1.3.    | Teorema de Convolución                                              | 11 |
|    |      | 2.1.4.    | Teorema de Parseval                                                 | 12 |
|    |      | 2.1.5.    | Ancho de la función y su transformada                               | 12 |
|    | 2.2. | Genera    | alización a mayores dimensiones                                     | 14 |
|    | 2.3. | Transf    | formada de Fourier seno y coseno                                    | 14 |
| 3. | Ecu  | acione    | s Diferenciales parciales de la Física                              | 15 |
|    | 3.1. |           | cación de E.D.P. lineales de segundo orden y Condiciones de Borde . | 17 |
|    |      | 3.1.1.    | Condiciones de Borde y condiciones suficientes para determinar so-  |    |
|    |      |           | luciones                                                            | 17 |
|    |      | 3.1.2.    | Ejemplo: Difusión del calor unidimensional                          | 18 |
| 4. |      |           | o de Separación de Variables                                        | 20 |
|    |      |           | enadas Cartesianas                                                  | 21 |
|    | 4.2. |           | lo: Ecuación de Laplace en dominio rectangular                      | 21 |
|    |      |           | Ejemplo: Ecuación de la onda unidimensional                         | 23 |
|    |      |           | enadas polares                                                      | 25 |
|    | 4.4. |           | enadas Cilíndricas                                                  | 26 |
|    | 4 5  | 01        | J T-f2-:                                                            | 00 |

| <b>5.</b> | Fun  | ciones  | de Legendre, Asociadas de Legendre y Armónicos Esféricos | <b>2</b> 8 |
|-----------|------|---------|----------------------------------------------------------|------------|
|           | 5.1. | E.D.O   | . Asociada de Legendre                                   | 28         |
|           |      | 5.1.1.  | E.D.O de Legendre                                        | 28         |
|           |      | 5.1.2.  | Polinomios de Legendre y función generadora              | 28         |
|           |      | 5.1.3.  | Relación de ortogonalidad                                | 32         |
|           |      | 5.1.4.  | Series de Legendre                                       | 32         |
|           |      | 5.1.5.  |                                                          | 33         |
|           |      | 5.1.6.  |                                                          | 37         |
|           | 5.2. | Funcio  | ones asociadas de Legendre                               | 43         |
|           |      | 5.2.1.  | Expresiones explícitas                                   | 44         |
|           |      | 5.2.2.  |                                                          | 45         |
|           |      | 5.2.3.  | 9                                                        | 46         |
|           |      | 5.2.4.  | 0                                                        | 46         |
|           |      | 5.2.5.  | Paridad                                                  | 46         |
|           |      | 5.2.6.  |                                                          | 46         |
|           | 5.3. |         | ones Armónicas Esféricas                                 | 46         |
|           |      |         |                                                          |            |
| <b>6.</b> | Fun  | ciones  | de Bessel                                                | 50         |
|           | 6.1. | Ecuaci  | ión de Bessel                                            | 50         |
|           | 6.2. | Solucio | ón en serie en torno a $z=0$                             | 50         |
|           | 6.3. | Relaci  | ones de Recurrencia                                      | 54         |
|           |      | 6.3.1.  | Representación integral ***                              | 56         |
|           |      | 6.3.2.  | Forma asintótica                                         | 57         |
|           |      | 6.3.3.  | Ceros de las funciones de Bessel                         | 57         |
|           |      | 6.3.4.  | Relaciones de Ortogonalidad                              | 58         |
|           | 6.4. | Funcio  | ones de Bessel de orden entero                           | 59         |
|           |      | 6.4.1.  |                                                          | 60         |
|           |      | 6.4.2.  |                                                          | 61         |
|           |      | 6.4.3.  | Sumatorias de funciones de Bessel                        | 62         |
|           | 6.5. | Funcio  | ones de Bessel de orden semi-entero                      | 63         |
|           | 6.6. | Funcio  | ones de Bessel de segunda especie                        | 63         |
|           |      | 6.6.1.  | Representación integral                                  | 64         |
|           |      | 6.6.2.  | Relaciones de Recurrencia                                | 64         |
|           | 6.7. |         | ones de Hankel                                           | 65         |
|           | 6.8. |         | ones modificadas de Bessel                               | 65         |
|           |      | 6.8.1.  | Funciones Modificadas de Bessel de segunda especie       | 67         |
|           | 6.9. | Funcio  | ones Esféricas de Bessel                                 | 68         |
|           |      | 6.9.1.  | Relaciones de Recurrencia                                | 69         |
|           |      | 6.9.2.  | Expresiones explícitas                                   | 69         |
|           |      | 6.9.3.  | Relaciones de Ortogonalidad                              | 71         |
|           |      | 6.9.4.  | Funciones esféricas de Hankel                            | 71         |
|           |      | 6.9.5.  | Forma asintótica                                         | 71         |
|           |      | 6.9.6.  | Funciones modificadas esféricas de Bessel                | 71         |
| 7.        | Fun  | ciones  | de Green                                                 | 74         |
|           | 7.1. | Motiva  | ación                                                    | 74         |
|           | 7.2. | Genera  | alización                                                | 75         |
|           | 7.3. | Simetr  | ría de la función de Green                               | 76         |
|           | 7.4. | Expres  | siones explícitas de algunas funciones de Green          | 77         |
|           |      | 741     | Operador Laplaciano                                      | 77         |

|               |       | 7.4.2. Operador de Helmoltz                                  | 78  |
|---------------|-------|--------------------------------------------------------------|-----|
| 8.            | Ten   | sores                                                        | 81  |
|               | 8.1.  | Tensores Cartesianos                                         | 81  |
|               | 8.2.  | Bases ortogonales                                            | 81  |
|               | 8.3.  | Transformaciones ortogonales                                 | 82  |
|               | 8.4.  | Convención de suma de Einstein                               | 84  |
|               | 8.5.  | Vectores                                                     | 84  |
|               | 8.6.  | Escalares                                                    | 85  |
|               | 8.7.  | Tensores                                                     | 85  |
|               | 8.8.  | Operaciones tensoriales                                      | 89  |
|               | 0.0.  | 8.8.1. Multiplicación por escalar                            | 89  |
|               |       | 8.8.2. Adición de tensores                                   | 89  |
|               |       | 8.8.3. Producto ("tensorial") de tensores                    | 89  |
|               |       | 8.8.4. Contracción de índices                                | 89  |
|               |       | 8.8.5. Permutación de índices                                | 90  |
|               |       | 8.8.6. Tensores simétricos y antisimétricos                  | 90  |
|               | 8.9.  |                                                              | 91  |
|               | 0.9.  | Símbolo de Levi-Civita y pseudo-tensores                     | 91  |
|               | 0 10  | 8.9.1. (Pseudo)-tensor dual                                  |     |
|               | 8.10. | Análisis tensorial cartesiano                                | 96  |
|               |       | 8.10.1. Campo tensorial                                      | 96  |
|               |       | 8.10.2. Derivación                                           | 96  |
|               |       | 8.10.3. Divergencia, rotor, Laplaciano                       | 97  |
|               |       | 8.10.4. Integración                                          | 97  |
| Α.            | La I  | Delta de Dirac                                               | 100 |
|               | A.1.  | La "función" $\delta$                                        | 100 |
|               |       | A.1.1. Derivada de la delta de Dirac                         | 101 |
|               | A.2.  | Delta de Dirac evaluada en una función y cambios de variable |     |
|               |       | A.2.1. Otras identidades                                     |     |
|               |       | A.2.2. Representación integral                               |     |
|               |       | A.2.3. La delta de Dirac tridimensional                      |     |
|               |       |                                                              |     |
| В.            | Coo   | ordenadas curvilineas                                        | 104 |
|               | B.1.  | Coordenadas Cartesianas                                      | 104 |
|               | B.2.  | Coordenadas Cilíndricas                                      | 105 |
|               | B.3.  | Coordenadas Esféricas                                        | 105 |
| $\mathbf{C}.$ | Fun   | ción Gamma                                                   | 107 |
| _             | 0.1   |                                                              | 100 |
| ப.            |       |                                                              | 108 |
|               |       |                                                              | 108 |
|               |       | Funciones de Laguerre asociadas                              |     |
|               |       | Funciones de Hermite                                         |     |
|               | D.4.  | Polinomios de Chebyshev                                      | 113 |

# Capítulo 1

# Análisis de Fourier

# 1.1. Resumen: Series de Fourier

# 1.1.1. Propiedades Generales

Si  $f(\theta)$  es una función (real o compleja) periódica, de periodo  $2\pi$ , su **serie de Fourier** es dada por

$$f(\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos(n\theta) + b_n \sin(n\theta) \right). \tag{1.1}$$

Recuerde que las funciones  $\{\cos(n\theta), \sin(n\theta)\}_{n=0}^{\infty}$  forman una base completa para el espacio de las funciones periódicas de periodo  $2\pi$  [2].

Usando las relaciones de ortogonalidad

$$\int_{-\pi}^{\pi} \cos(m\theta) \cos(n\theta) d\theta = \int_{-\pi}^{\pi} \sin(m\theta) \sin(n\theta) d\theta = \pi \delta_{mn},$$
 (1.2)

$$\int_{-\pi}^{\pi} \cos(m\theta) \sin(n\theta) d\theta = 0, \tag{1.3}$$

podemos encontrar las expresiones para los **coeficientes de Fourier**  $a_n$  y  $b_n^{-1}$ :

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta, \qquad n = 0, 1, 2, \cdots.$$
 (1.4)

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \operatorname{sen}(n\theta) d\theta \qquad n = 0, 1, 2, \cdots.$$
 (1.5)

Equivalentemente,  $f(\theta)$  puede expandirse en términos proporcionales a las funciones  $e^{in\theta}$ , con  $n = 0, \pm 1, \pm 2, \cdots$ :

$$f(\theta) = \sum_{n = -\infty}^{\infty} c_n e^{in\theta}, \tag{1.6}$$

donde los coeficientes (complejos)  $c_n$  están dados por

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta. \tag{1.7}$$

Lo anterior puede ser verificado a partir de (1.1), (1.4) y (1.5) usando la relación  $e^{in\theta} = \cos(n\theta) + i \sin(n\theta)$ , o directamente a partir de la relación de ortogonalidad

$$\int_{-\pi}^{\pi} e^{in\theta} e^{-im\theta} d\theta = 2\pi \delta_{nm}. \tag{1.8}$$

<sup>&</sup>lt;sup>1</sup>Es conveniente definir  $b_0 := 0$ , tal como se incluye en (1.5).

Los coeficientes de las series (1.1) y (1.6) están relacionados por

$$c_n = \begin{cases} \frac{1}{2}(a_n - ib_n) & \text{para } n \ge 0, \\ \frac{1}{2}(a_{-n} + ib_{-n}) & \text{para } n \le -1, \end{cases}$$
 (1.9)

o bien,

$$a_n = c_n + c_{-n}, b_n = i(c_n - c_{-n}), n = 0, 1, 2, \cdots.$$
 (1.10)

Si  $f(\theta)$  es una función real entonces sus respectivos coeficientes complejos  $c_n$  satisfacen la relación

$$c_n^* = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) (e^{-in\theta})^* d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{in\theta} d\theta = c_{-n}$$
 (1.11)

donde  $z^*$  representa el complejo conjugado de z.

## Ejemplo: Función Signo

Sea la función signo (periódica)  $f(\theta)$ , definida por

$$f(\theta) := \begin{cases} -1, & \theta \in [-\pi, 0) \\ 1, & \theta \in [0, \pi] \end{cases}$$
 (1.12)

Es directo ver que por tratarse de una función impar,  $a_n = 0$  para  $n = 0, 1, 2, \dots$  Sin embargo,

$$b_n = \frac{1}{\pi} \int_{-\pi}^0 f(\theta) \sin(n\theta) d\theta + \frac{1}{\pi} \int_0^{\pi} f(\theta) \sin(n\theta) d\theta$$
 (1.13)

$$= \frac{1}{\pi} \int_{-\pi}^{0} (-1) \sin(n\theta) d\theta + \frac{1}{\pi} \int_{0}^{\pi} (1) \sin(n\theta) d\theta$$
 (1.14)

$$= \frac{1}{\pi} \int_0^{\pi} \sin(n\theta) d\theta + \frac{1}{\pi} \int_0^{\pi} \sin(n\theta) d\theta$$
 (1.15)

$$= \frac{2}{\pi} \int_0^{\pi} \sin(n\theta) d\theta \tag{1.16}$$

$$= \frac{2}{\pi} \left( \frac{-\cos(n\theta)}{n} \right) \Big|_{0}^{\pi} \tag{1.17}$$

$$= -\frac{2}{\pi} \left( \frac{\cos(n\pi) - 1}{n} \right),\tag{1.18}$$

pero como  $\cos(n\pi) = (-1)^n$ , entonces

$$b_n = -\frac{2}{\pi} \left( \frac{(-1)^n - 1}{n} \right). \tag{1.19}$$

Así, notando que

$$b_n = \begin{cases} 0, & n \text{ par} \\ \frac{4}{n\pi}, & n \text{ impar} \end{cases} , \tag{1.20}$$

podemos escribir

$$f(\theta) = \sum_{n \text{ impar}} \frac{4}{n\pi} \operatorname{sen}(n\theta) = \sum_{k=0}^{\infty} \frac{4}{\pi} \frac{\operatorname{sen}[(2k+1)\theta]}{(2k+1)} = \sum_{k=1}^{\infty} \frac{4}{\pi} \frac{\operatorname{sen}[(2k-1)\theta]}{(2k-1)}.$$
 (1.21)

Definiendo el k-ésimo término de la serie como

$$T_k(\theta) := \frac{4}{\pi} \frac{\sin[(2k+1)\theta]}{(2k+1)},\tag{1.22}$$

y la **serie de Fourier truncada** hasta el término n-ésimo en la forma

$$S_n(\theta) := \sum_{k=0}^n T_k(\theta), \tag{1.23}$$

podemos graficar algunas funciones  $S_n$  que, a medida que n aumenta, se acercan más y más a la función original.



Figura 1.1: Serie de Fourier de la función Signo, truncada hasta n = 3.

## 1.1.2. Convolución

La relación o "Teorema" de Convolución establece una relación entre los coeficientes  $C_n^{(1\cdot2)}$  de la expansión de Fourier de la función producto  $f_1(\theta)f_2(\theta)$  y los respectivos coeficientes  $C_n^{(1)}$  y  $C_n^{(2)}$  de las funciones  $f_1(\theta)$  y  $f_2(\theta)$ .

$$c_n^{(1\cdot2)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_1(\theta) f_2(\theta) e^{-in\theta} d\theta$$
 (1.24)

$$= \frac{1}{2\pi} \sum_{m} \int_{-\pi}^{\pi} f_1(\theta) C_m^{(2)} e^{im\theta} e^{-in\theta} d\theta$$
 (1.25)

$$= \frac{1}{2\pi} \sum_{m} C_m^{(2)} \int_{-\pi}^{\pi} f_1(\theta) e^{-i(n-m)\theta} d\theta$$
 (1.26)

$$=\sum_{m} C_{m}^{(2)} C_{n-m}^{(1)} \tag{1.27}$$

$$c_n^{(1\cdot2)} = \sum_m C_m^{(2)} C_{n-m}^{(1)}.$$
(1.28)

#### 1.1.3. Relación de Parseval

Si elegimos  $f_1(\theta) = f^*(\theta), f_2(\theta) = f(\theta)$  y n = 0 en (1.28), encontramos

$$\int_{-\pi}^{\pi} |f(\theta)|^2 d\theta = 2\pi \sum_{n} |C_n|^2.$$
 (1.29)

## 1.1.4. Convergencia

• Una sucesión  $S_n(\theta)$  de funciones definidas en el intervalo  $\theta \in [-\pi, \pi]$  converge en media a una función  $f(\theta)$  si

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} \left[ f(\theta) - S_n(\theta) \right]^2 d\theta = 0. \tag{1.30}$$

"La sucesión  $S_n$  converge a  $f(\theta)$  excepto en un conjunto de medida cero"

• Una sucesión  $S_n(\theta)$  de funciones converge uniformemente a una función  $f(\theta)$  si para todo  $\epsilon > 0$  existe un N > 0 tal que

$$|f(\theta) - S_n(\theta)| < \epsilon, \quad \forall n > N,$$
 (1.31)

para cada  $\theta$  (N independiente de  $\theta$ ).

**Teorema 1** [3]: Si  $f(\theta)$  es una función es "muy suave por tramos" (es decir, si la función, su primera y segunda derivadas son continuas por tramos) en el intervalo  $(-\pi, \pi)$  entonces su serie de Fourier converge a

$$\frac{1}{2} [f(\theta - 0) + f(\theta + 0)], \qquad \theta \in (-\pi, \pi), \tag{1.32}$$

$$\frac{1}{2} [f(-\pi + 0) + f(\pi - 0)], \qquad \theta = \pm \pi.$$
 (1.33)

La convergencia es uniforme en cada subintervalo cerrado donde  $f(\theta)$  es continua.

**Teorema 2** [3]: Si una función definida en un intervalo cerrado [a,b] satisface las condiciones de Dirichlet (es decir, si  $f(\theta)$  es continua por tramos, y si el intervalo (a,b) puede ser dividido en un número finito de subinteralos donde  $f(\theta)$  es monotona) entonces también se satisfacen las propiedades de convergencia del Teorema 1.

**Teorema 3** [3]: Si la función  $f(\theta)$  es cuadrado-integrable en  $(-\pi, \pi)$   $(f \in \mathcal{L}^2(-\pi, \pi),$  es decir, si  $\int_{-\pi}^{\pi} |f(\theta)|^2 d\theta$  es finito) entonces su serie de Fourier converge en media a  $f(\theta)$ .

**Ojo!:** Esto no cubre todas las posibilidades de convergencia! Ej.  $f(\theta) = \ln(\cos(\theta/2))$  (Ver [3], pag. 168).

## 1.1.5. Fenómeno de Gibbs

Si la función  $f(\theta)$ , continua por tramos, posee una discontinuidad en un punto  $\theta_0$ , si bien la serie truncada converge uniformemente en puntos en la vecindad de  $\theta_0$ , ésta siempre sobreestima/subestima el valor de la función en puntos cercanos a  $\theta_0$ . La región donde ocurre esta sobreestimación/subestimación es cada vez más pequeña a medidad que se agregan términos a la serie truncada, pero el monto de la sobreestimación/subestimación es siempre finito. De hecho, se puede mostrar<sup>2</sup> que la serie de Fourier sobreestima el "salto" de la función en la discontinuidad por aproximadamente 17.9%.

# 1.2. Cambio de Intervalo

Es simple extender los resultados anteriores al caso de funciones periódicas de periodo arbitrario. Si f(t) es una función de periodo T=b-a entonces

$$g(\theta) := f(a + \frac{T}{2\pi}\theta) \tag{1.34}$$

<sup>&</sup>lt;sup>2</sup>Ver por ejemplo [2], capítulo 14.

es una función de periodo  $2\pi$  en la variable  $\theta$ . Por lo tanto, podemos expandir  $g(\theta)$  en serie de Fourier,

$$g(\theta) = \sum_{n = -\infty}^{\infty} c_n e^{in\theta}, \qquad c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) e^{-in\theta} d\theta.$$
 (1.35)

Usando (1.34), y realizando el cambio de variable de integración a  $t := a + L\theta/2\pi$ , podemos expresar los coeficientes  $c_n$  como

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) e^{-in\theta} d\theta \tag{1.36}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + \frac{T}{2\pi}\theta) e^{-in\theta} d\theta \tag{1.37}$$

$$= \frac{1}{2\pi} \int_{a-T/2}^{b+T/2} f(t)e^{-in\frac{2\pi}{T}(t-a)} \frac{2\pi}{T} dt$$
 (1.38)

$$= \frac{1}{T} e^{\frac{2\pi i n a}{T}} \int_{a}^{b} f(t) e^{-\frac{2\pi i n}{T} t} dt.$$
 (1.39)

Definimos la **frecuencia fundamenal**  $\omega_1 := 2\pi/T$  y las frecuencias armónicas  $\omega_n := n\omega_1$ ,  $n = 0, \pm 1, \pm 2, \cdots$ . Entonces, la función original  $f(t) = g(2\pi(t-a)/L)$  puede escribirse como

$$f(t) = \sum_{n} f_n e^{i\omega_n t}, \qquad (1.40)$$

donde

$$f_n := \frac{1}{T} \int_a^b f(t)e^{-i\omega_n t} dt.$$
(1.41)

# 1.2.1. Delta de Dirac

Podemos encontrar una representación de la (extensión periódica de la) delta de Dirac  $\delta(t)$  (ver apéndice A para más detalles) en términos de una serie de Fourier. En este caso, los coeficientes  $f_n$  se reducen a:

$$f_n = \frac{1}{T} \int_a^b \delta(t) e^{-i\omega_n t} dt \tag{1.42}$$

$$=\frac{1}{T}. (1.43)$$

Por lo tanto,

$$\delta(t) = \frac{1}{T} \sum_{n} e^{i\omega_n t} = \frac{1}{T} \left[ 1 + 2 \sum_{n=1}^{\infty} \cos\left(\frac{2\pi nt}{T}\right) \right]. \tag{1.44}$$

Definimos el k-ésimo término de la serie como

$$T_k(t) := \begin{cases} \frac{1}{T}, & \text{si } k = 0\\ \frac{2}{T} \sum_{k=1}^{\infty} \cos\left(\frac{2\pi kt}{T}\right), & \text{si } k = 1, 2, \dots \end{cases}$$
(1.45)

y la serie de Fourier truncada hasta el término n-ésimo en la forma:

$$S_n(t) := \sum_{k=0}^{n} T_k(t). \tag{1.46}$$

Es importante notar, como puede comprobarse al graficar la serie, que lo que se obtiene es en realidad la  $extensi\'on\ peri\'odica$  (de periodo T) de la delta de Dirac.



Figura 1.2: Serie de Fourier de la Delta de Dirac con período  $T=2\pi,$  truncada hasta n=4.

# Capítulo 2

# La transformada de Fourier

Las series de Fourier permiten representar una función periódica como superposición de funciones seno y coseno (o exponenciales de argumento imaginario). Es posible extender el método de expansión de Fourier al caso de funciones no-periódicas, resultando las llamadas integrales de Fourier. Podemos entender estas integrales de Fourier como el límite contínuo de las series de Fourier.

Consideremos una función f(t) de periodo T, y como intervalo fundamental a (-T/2, T/2). Entonces, usando (1.40) y (1.41) podemos escribir

$$f(t) = \sum_{n = -\infty}^{\infty} \left[ \frac{1}{T} \int_{-T/2}^{T/2} f(\xi) e^{-i\omega_n \xi} d\xi \right] e^{i\omega_n t}.$$
 (2.1)

Equivalentemente, podemos expresar la suma en (2.1) en términos de la frecuencias  $\omega_n$  y la diferencia (en este caso, constante) entre ellas  $\Delta \omega := \omega_{n+1} - \omega_n = 2\pi/T$ :

$$f(t) = \sum_{\omega_n = -\infty}^{\infty} \left[ \frac{1}{2\pi} \int_{-T/2}^{T/2} f(\xi) e^{-i\omega_n \xi} d\xi \right] e^{i\omega_n t} \Delta\omega. \tag{2.2}$$

En el límite  $T \to \infty$ , (y por lo tanto  $\Delta\omega \to 0$ ), la función f(t) puede considerarse como una función no-periódica arbitraria definida en todo el intervalo  $(-\infty, \infty)$ . Por otro lado, la suma se transforma en una integral<sup>1</sup>. Por lo tanto, en este límite obtenemos la identidad

$$f(t) = \int_{-\infty}^{\infty} \left[ \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi) e^{-i\omega\xi} d\xi \right] e^{i\omega t} d\omega, \tag{2.3}$$

a partir de la cual podemos definir la **transformada de Fourier** de la función f(t) como

$$\boxed{\tilde{f}(\omega) := \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt,}$$
(2.4)

de modo que la "transformada inversa" resulta ser

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{i\omega t} d\omega.$$
 (2.5)

Observaciones:

• Cuidado! La derivación anterior es "heurística" (e.d. no rigurosa).

<sup>&</sup>lt;sup>1</sup>Recuerde la definición de integral de Riemann:  $\int_a^b f(x) \, dx := \lim_{\Delta x_i \to 0} \sum_{x_i} f(x_i) \Delta x_i.$ 

- Otras notaciones:  $\tilde{f}(\omega) = g(\omega) = \mathcal{F}(f)(\omega)$ .
- El factor  $1/2\pi$  en la definición (2.5) es hasta cierto punto convencional. Lo importante es la identidad (2.3). Por ejemplo, en lugar de estos factores, podría introducirse  $\alpha$  en (2.4) y  $1/2\pi\alpha$  en (2.5), con una constante  $\alpha$  arbitraria. Otras elecciones populares son  $\alpha = 1$  y  $\alpha = 1/\sqrt{2\pi}$ .
- Note que en (2.5) la integral se extiende sobre "frecuencias positivas y negativas".
- Compare (2.4) con la definición de la **transformada de Laplace**:  $F(s) := \int_0^\infty f(t)e^{-st}dt$ .
- En Física es costumbre denotar, en el caso en que se considere una función de la posición,  $f(t) \to f(x)$  y usar el número de onda k en lugar de la frecuecia  $\omega$ , de modo que la expansión adopta la forma  $f(x) = (1/2\pi) \int_{-\infty}^{\infty} \tilde{f}(k) e^{ikx} dk$ .

# 2.0.1. Ejemplo: Distribución Gaussiana

Considere la distribución gaussiana definida por

$$f(t) := e^{-\alpha t^2}, \qquad \alpha > 0, \tag{2.6}$$

entonces su transformada de Fourier es dada por

$$\tilde{f}(\omega) = \int_{-\infty}^{\infty} e^{-\alpha t^2} e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} e^{-\alpha t^2 - i\omega t} dt.$$
(2.7)

Notando que

$$-\alpha t^{2} - i\omega t = -\alpha \left( t^{2} + \frac{\omega}{\alpha} t \right)$$

$$= -\alpha \left( t^{2} + \frac{\omega}{\alpha} t + \left( \frac{i\omega}{2\alpha} \right)^{2} - \left( \frac{i\omega}{2\alpha} \right)^{2} \right)$$

$$= -\alpha \left( t + \frac{i\omega}{2\alpha} \right)^{2} + \alpha \left( \frac{i\omega}{2\alpha} \right)^{2}$$

$$= -\alpha \left( t + \frac{i\omega}{2\alpha} \right)^{2} - \left( \frac{\omega^{2}}{4\alpha} \right), \qquad (2.8)$$

se halla entonces que

$$\tilde{f}(\omega) = \int_{-\infty}^{\infty} e^{-\alpha \left(t + \frac{i\omega}{2\alpha}\right)^2 - \left(\frac{\omega^2}{4\alpha}\right)} dt$$

$$= e^{-\frac{\omega^2}{4\alpha}} \int_{-\infty}^{\infty} e^{-\alpha \left(t + \frac{i\omega}{2\alpha}\right)^2} dt,$$
(2.9)

pero haciendo el cambio de variables  $x:=\sqrt{\alpha}(t+i\omega/4\alpha)$ , entonces  $dx=\sqrt{\alpha}\,dt$ , luego

$$\tilde{f}(\omega) = e^{-\frac{\omega^2}{4\alpha}} \int_{-\infty}^{\infty} e^{-x^2} \frac{dx}{\sqrt{\alpha}}.$$
(2.10)

Además, recordando que

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi},\tag{2.11}$$

encontramos finalmente que

$$\mathcal{F}[e^{-\alpha t^2}] = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\omega^2}{4\alpha}}.$$
 (2.12)



Figura 2.1: Distribución gaussiana y su transformada de Fourier con  $\alpha = 1$ .

**Tarea:** Verifique que, efectivamente, la transformada inversa reproduce la función original, es decir,

$$\mathcal{F}^{-1}[e^{-\frac{\omega^2}{4\alpha}}] = \sqrt{\frac{\alpha}{\pi}}e^{-\alpha t^2}.$$
 (2.13)

# 2.1. Propiedades de la Transformada de Fourier

## 2.1.1. Delta de Dirac

$$\mathcal{F}[\delta(t-\xi)] = \int_{-\infty}^{\infty} \delta(t-\xi)e^{-i\omega t} dt$$
 (2.14)

$$=e^{-i\omega\xi} \tag{2.15}$$

$$\delta(t-\xi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(t-\xi)} d\omega.$$
 (2.16)

## 2.1.2. Transformada de Fourier de la derivada de una función

$$\mathcal{F}[f'(t)] = \int_{-\infty}^{\infty} f'(t)e^{-i\omega t} dt$$
 (2.17)

$$= \left[ f(t)e^{-i\omega x} \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} (-i\omega)f(t)e^{-i\omega t} dt$$
 (2.18)

$$= \left[ f(t)e^{-i\omega x} \right]_{-\infty}^{\infty} + i\omega \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$
 (2.19)

$$= i\omega \mathcal{F}[f(t)] + f(t)e^{-i\omega t}\Big|_{-\infty}^{\infty}.$$
 (2.20)

Entonces, si la función f(t) se anula en el infinito, es decir si  $\lim_{t\to\pm\infty} f(t)=0$ , tendremos que

$$\mathcal{F}[f'(t)] = (i\omega)\mathcal{F}[f(t)].$$
(2.21)

Aplicación sucesiva de esta relación, bajo las mismas condiciones, conduce a

$$\mathcal{F}\left[f^{(n)}(t)\right] = (i\omega)^n \mathcal{F}[f(t)]. \tag{2.22}$$

## Ejemplo: Función escalón.

Sea la función escalón H(t) tal que

$$H_c(t) := \begin{cases} 0, & \text{si } t < c, \\ 1, & \text{si } t > c \end{cases}$$
 (2.23)



Figura 2.2: Función escalón.

con la interesante propiedad que

$$\frac{dH}{dt}(t) = \delta(t - c). \tag{2.24}$$

Es de relevancia mencionar que ingenuamente podríamos pasar por alto el hecho que la función escalón no satisface la hipótesis que  $\lim_{t\to\pm\infty} H(t-c) = 0$  y recordando (2.15) podríamos pretender calcular la transformada de Fourier simplemente usando la expresión (2.21), lo que nos conduciría erróneamente a que

$$\mathcal{F}[H(t-c)] = \frac{1}{i\omega}e^{-ic\omega}.$$
 (2.25)

Sin embargo, al emplear directamente la definición de la transformada de Fourier vemos que

$$\mathcal{F}[H](\omega) = \int_{-\infty}^{\infty} H(t)e^{-i\omega t}dt$$

$$= \int_{c}^{\infty} 1 \cdot e^{-i\omega t}dt$$

$$= \frac{e^{-i\omega t}}{-i\omega} \Big|_{c}^{\infty}, \qquad (2.26)$$

y debido a que

$$\frac{e^{-i\omega t}}{-i\omega}\Big|_{\infty} = \lim_{t \to \infty} \frac{e^{-i\omega t}}{-i\omega} \tag{2.27}$$

no existe (el límite no tiende a un valor único), entonces se concluye que la transformada de Fourier de la función escalón tampoco. Sin embargo, la relación completa (2.20) sigue siendo válida y suministra una expresión equivalente a (2.26).

## 2.1.3. Teorema de Convolución

El teorema de convolución suministra una útil relación entre la transformada de Fourier de un producto de funciones y las transformadas de Fourier de cada una de las funcioses.

$$\mathcal{F}[f_1(t)f_2(t)] = \int_{-\infty}^{\infty} f_1(t)f_2(t)e^{-i\omega t} dt$$
 (2.28)

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f_1(t) \left( \int_{-\infty}^{\infty} \tilde{f}_2(\omega') e^{i\omega' t} d\omega' \right) e^{-i\omega t} dt$$
 (2.29)

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f_1(t) e^{-i(\omega - \omega')t} dt \right) \tilde{f}_2(\omega') d\omega'$$
 (2.30)

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}_1(\omega - \omega') \tilde{f}_2(\omega) d\omega'. \tag{2.31}$$

Por lo tanto,

$$\tilde{f}_{1\cdot 2}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}_1(\omega - \omega') \tilde{f}_2(\omega) d\omega'.$$
 (2.32)

Análogamente, la relación entre las transformadas inversas es

$$\mathcal{F}^{-1}[\tilde{f}_1(\omega)\tilde{f}_2(\omega)] = \int_{-\infty}^{\infty} f_1(\xi)f_2(t-\xi) \,d\xi.$$
 (2.33)

## Ejemplo

Usando el teorema de convolución podemos encontrar la transformada de Fourier de

$$f(t) = \frac{1}{t^4 + 5t^2 + 4}. (2.34)$$

$$f(t) = \frac{1}{(t^2+1)(t^2+4)}$$
 (2.35)

$$\mathcal{F}\left[\frac{c}{t^2+c^2}\right] = \pi e^{-c|\omega|}, \quad \text{para } c > 0.$$
 (2.36)

$$\mathcal{F}[f(t)] = \mathcal{F}\left[\frac{1}{t^2 + 1} \frac{1}{t^2 + 4}\right] \tag{2.37}$$

$$= \frac{1}{2\pi} \frac{\pi}{1} \frac{\pi}{2} \left( \int_{-\infty}^{\infty} e^{-|\eta|} e^{-2|\omega - \eta|} d\eta \right)$$
 (2.38)

$$= \frac{\pi}{4} \left( \int_{-\infty}^{0} e^{\eta} e^{-2|\omega - \eta|} d\eta + \int_{0}^{\infty} e^{-\eta} e^{-2|\omega - \eta|} d\eta \right)$$
 (2.39)

Si  $\omega > 0$ ,

$$\mathcal{F}[f(t)] = \frac{\pi}{4} \left( \int_{-\infty}^{0} e^{-2\omega + 3\eta} \, d\eta + \int_{0}^{\omega} e^{-2\omega + \eta} \, d\eta + \int_{\omega}^{\infty} e^{2\omega - 3\eta} \, d\eta \right)$$
(2.40)

$$= \frac{\pi}{4} \left( \frac{1}{3} e^{-2\omega} + e^{-\omega} - e^{-2\omega} + \frac{1}{3} e^{-\omega} \right)$$
 (2.41)

$$= \frac{\pi}{2} \left[ \frac{2}{3} e^{-\omega} - \frac{1}{3} e^{-2\omega} \right]. \tag{2.42}$$

Si  $\omega < 0$ ,

$$\mathcal{F}[f(t)] = \frac{\pi}{4} \left( \int_{-\infty}^{\omega} e^{-2\omega + 3\eta} \, d\eta + \int_{\omega}^{0} e^{2\omega - \eta} \, d\eta + \int_{0}^{\infty} e^{2\omega - 3\eta} \, d\eta \right)$$
 (2.43)

$$= \frac{\pi}{4} \left( \frac{1}{3} e^{\omega} - e^{2\omega} + e^{\omega} + \frac{1}{3} e^{2\omega} \right) \tag{2.44}$$

$$= \frac{\pi}{2} \left[ \frac{2}{3} e^{\omega} - \frac{1}{3} e^{2\omega} \right]. \tag{2.45}$$

Podemos expresar los resultados para ambos signos de  $\omega$  como:

$$\mathcal{F}[f(t)] = \frac{\pi}{2} \left[ \frac{2}{3} e^{-|\omega|} - \frac{1}{3} e^{-2|\omega|} \right].$$
 (2.46)

Otra forma de encontrar la transformada de

$$f(t) = \frac{1}{t^4 + 5t^2 + 4} \tag{2.47}$$

es expandir la función en fracciones parciales:

$$f(t) = \frac{1}{3} \frac{1}{t^2 + 1} - \frac{1}{3} \frac{1}{t^2 + 4},\tag{2.48}$$

$$\mathcal{F}[f(t)] = \frac{1}{3}\mathcal{F}\left[\frac{1}{t^2+1}\right] - \frac{1}{3}\mathcal{F}\left[\frac{1}{t^2+4}\right]$$
(2.49)

$$=\frac{1}{3}\frac{\pi}{1}e^{-|\omega|}-\frac{1}{3}\frac{\pi}{2}e^{-2|\omega|}.$$
 (2.50)

#### 2.1.4. Teorema de Parseval

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\tilde{f}(\omega)|^2 d\omega.$$
 (2.51)

### 2.1.5. Ancho de la función y su transformada

Definimos el valor medio de t respecto a la función (distribución) f(t) como

$$\langle t \rangle := \frac{\int f^*(t)t f(t) dt}{\int |f(t)|^2 dt} = \frac{\int t |f(t)|^2 dt}{\int |f(t)|^2 dt}$$
 (2.52)

y, análogamente, el valor medio de  $\omega$  respecto a la transformada  $\tilde{f}(\omega)$  por

$$\langle \omega \rangle := \frac{\int \tilde{f}^*(\omega)\omega \tilde{f}(\omega)d\omega}{\int |\tilde{f}(\omega)|^2 d\omega} = \frac{\int \omega |\tilde{f}(\omega)|^2 d\omega}{\int |\tilde{f}(\omega)|^2 d\omega}.$$
 (2.53)

De forma similar, la **varianza** de t respecto a f(t) es definida por

$$(\Delta t)^{2} := \frac{\int f^{*}(t)(t - \langle t \rangle)^{2} f(t) dt}{\int |f(t)|^{2} dt} = \frac{\int (t - \langle t \rangle)^{2} |f(t)|^{2} t}{\int |f(t)|^{2} dt}.$$
 (2.54)

Finalmente, la varianza de  $\omega$  respecto a  $\tilde{f}(\omega)$  es dada por:

$$(\Delta\omega)^2 := \frac{\int \tilde{f}^*(\omega)(\omega - \langle \omega \rangle)^2 \tilde{f}(\omega) d\omega}{\int |\tilde{f}(\omega)|^2 d\omega} = \frac{\int (\omega - \langle \omega \rangle)^2 |\tilde{f}(\omega)|^2 \omega}{\int |\tilde{f}(\omega)|^2 d\omega}.$$
 (2.55)

Sea f(t) una función tal que  $\lim_{t\to\pm\infty}f(t)=0$  y f'=df/dt, entonces  $\tilde{f}'=i\omega\tilde{f}$ , y podemos escribir  $\omega\tilde{f}=-i\tilde{f}'$ . Por lo tanto

$$(\Delta\omega)^2 \int |\tilde{f}|^2 d\omega = \int |i\tilde{f}' + \langle\omega\rangle\tilde{f}|^2 d\omega$$
$$= \int |\mathcal{F}[if' + \langle\omega\rangle f]|^2 d\omega. \tag{2.56}$$

Pero empleando el teorema de Parseval se encuentra que

$$(\Delta\omega)^2 \int |\tilde{f}|^2 d\omega = 2\pi \int |if' + \langle \omega \rangle f|^2 dt. \tag{2.57}$$

Recordando la desigualdad (triangular) de Schwarz, que establece que  $\forall f_1, f_2$  se cumple que

$$\left(\int |f_1|^2 dt\right) \left(\int |f_2|^2 dt\right) \ge \left|\int f_1^* f_2 dt\right|,\tag{2.58}$$

y considerando  $f_1(t):=(t-\langle t\rangle)f(t)$  y  $f_2(t):=if'(t)+\langle \omega\rangle f(t),$  se tiene que

$$\left(\int |f|^2 dt\right) (\Delta t)^2 \cdot (\Delta \omega)^2 \left(\int |f|^2 dt\right) \ge \left|\int f^*(t)(t - \langle t \rangle) \left(if'(t) + \langle \omega \rangle f(t)\right) dt\right|^2. \quad (2.59)$$

Si definimos I como la integral del segundo miembro de la ecuación precedente, podemos hallar que

$$I = \int \left[ if^*tf' + \langle \omega \rangle f^*tf - \langle t \rangle if^*f' - \langle t \rangle \langle \omega \rangle |f|^2 \right] dt$$

$$= i \int \left( f^*t \frac{df}{dt} - \langle t \rangle f^* \frac{df}{dt} \right) dt + \langle \omega \rangle \langle t \rangle \int |f|^2 dt - \langle t \rangle \langle \omega \rangle \int |f|^2 dt$$

$$= i \int f^*(t - \langle t \rangle) \frac{df}{dt} dt. \tag{2.60}$$

Notando que

$$\operatorname{Im}(I) = \frac{1}{2} \int \left[ f^*(t - \langle t \rangle) \frac{df}{dt} + \left( \frac{df}{dt} \right)^* (t - \langle t \rangle) f \right] dt$$

$$= \frac{1}{2} \int \left( \frac{d}{dt} [f^*(t - \langle t \rangle) f] - f^* f \right) dt$$

$$= \frac{1}{2} (t - \langle t \rangle) |f|^2 \Big|_{-\infty}^{\infty} - \frac{1}{2} \int |f|^2 dt.$$
(2.61)

Para que  $\int |f|^2 dt$  y  $\langle t \rangle$  sean finitos, suponemos que  $|f|^2 \to 0$  y  $t|f^2| \to 0$  cuando  $t \to \pm \infty$ . En tal caso

$$Im(I) = -\frac{1}{2} \int |f|^2 dt.$$
 (2.62)

Además, como  $|I|^2 = [\text{Re}(I)]^2 + [\text{Im}(I)]^2 \ge [\text{Im}(I)]^2$ , podemos escribir que

$$(\Delta t)^2 (\Delta \omega)^2 \left( \int |f|^2 dt \right)^2 \ge [\text{Im}(I)]^2 = \frac{1}{4} \left( \int |f|^2 dt \right)^2,$$
 (2.63)

de donde se deduce que

$$(\Delta t)^2 \cdot (\Delta \omega)^2 \ge \frac{1}{4} \tag{2.64}$$

o, finalmente,

$$\Delta t \cdot \Delta \omega \ge \frac{1}{2}. \tag{2.65}$$

## **Ejemplo**

Un ejemplo instructivo es el caso de la función gaussiana (2.6). En este caso un cálculo simple muestra que

$$\langle t \rangle = 0, \qquad \Delta t = \frac{1}{2\sqrt{\alpha}}.$$
 (2.66)

Similarmente, para la transformada (2.12), que tiene la misma forma funcional, tendremos que

$$\langle \omega \rangle = 0, \qquad \Delta \omega = \sqrt{\alpha}.$$
 (2.67)

Verificamos que en ambos casos los valores medios son una medida del "valor central" y que la varianza cuantifica el "ancho" de cada distribución. La distribución gaussiana es especial en el sentido que satura la desigualdad (2.65), ya que en este caso

$$\Delta t \cdot \Delta \omega = \frac{1}{2}.\tag{2.68}$$

# 2.2. Generalización a mayores dimensiones

En D dimensiones:

$$\mathcal{F}[f(\vec{x})] = \tilde{f}(\vec{k}) := \int f(\vec{x})e^{i(\vec{k}\cdot\vec{x})}d^Dx, \qquad (2.69)$$

$$f(\vec{x}) = \mathcal{F}^{-1}(\tilde{f}) := \frac{1}{(2\pi)^D} \int \tilde{f}(\vec{k}) e^{-i(\vec{k}\cdot\vec{x})} d^D k.$$
 (2.70)

\*\*\* cambio convención! listo hasta aquí \*\*\*

# 2.3. Transformada de Fourier seno y coseno

# Capítulo 3

# Ecuaciones Diferenciales parciales de la Física

En Física es común encontrar sistemas descritos por  $campos^1$  ( $\Psi$ ), que satisfacen ecuaciones diferenciales parciales (EDP's). Entre las más frecuentes destacan las siguientes:

• Ecuación de Laplace:

$$\nabla^2 \Psi = 0, \qquad \Psi(\vec{x}). \tag{3.1}$$

Esta ecuación aparece, por ejemplo, en el estudio de:

- Electrostática. El **potencial eléctrico**  $\phi$  en una región sin cargas satisface la ec. de Laplace.
- Hidrodinámica. Un fluido irrotacional incompresible en un movimiento estacionario con campo de velocidad  $\vec{v} = -\vec{\nabla}\Psi$  satisface

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0 \quad \Rightarrow \quad \vec{\nabla} \cdot \vec{v} = -\nabla^2 \Psi = 0. \tag{3.2}$$

- Distribución de Temperatura estacionaria: Aquí  $\Psi = T(\vec{x}, t)$  es el campo de temperaturas de un material, la ecuación del Calor, ver (3.6), se reduce a la ec. de Laplace para  $T(\vec{x})$ .
- Gravitación. Análogo al caso electrostático, con  $\Psi = \phi$  = potencial gravitacional.
- Ecuación de Poisson

$$\nabla^2 \Psi = g(\vec{x}),\tag{3.3}$$

donde  $g(\vec{x})$  es una función "fuente" conocida. Esta EDP es *inhomogénea*, y por lo tanto sus soluciones generales pueden escribirse como  $\Psi = \Psi_h + \Psi_p$ , donde  $\Psi_h$  es solución de la ecuación homogenea correspondiente (en este caso, la ec. de Laplace), y  $\Psi_p$  una **solución particular** de la ec. de Poisson.

Por ejemplo, el potencial electrostático  $\phi(\vec{x})$  satisface

$$\nabla^2 \phi = -\frac{1}{\varepsilon_0} \rho(\vec{x}), \tag{3.4}$$

donde  $\varepsilon_0$  es la permeabilidad del vacío y  $\rho(\vec{x})$  la densidad (volumétrica) de carga eléctrica.

<sup>&</sup>lt;sup>1</sup>Es decir, funciones que dependen de la posición y/o del tiempo.

• Ecuación de Helmholtz:

$$\nabla^2 \Psi \pm k^2 \Psi = 0. \tag{3.5}$$

Esta ecuación, conocida también como la ecuación de difusión independiente de tiempo, aparece en el estudio de

- Ondas elásticas en sólidos.
- Acústica.
- Ondas electromagnéticas.
- Reactores nucleares.
- Ecuación de difusión dependiente del tiempo ( $\alpha$  = difusividad térmica)

$$\nabla^2 \Psi - \frac{1}{\alpha} \frac{\partial \Psi}{\partial t} = 0. \tag{3.6}$$

• Ecuación de la onda dependiente del tiempo

$$\nabla^2 \Psi - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0, \tag{3.7}$$

o bien

$$\Box \Psi = 0, \qquad \Box := \frac{1}{v^2} \frac{\partial^2}{\partial t^2} - \nabla^2. \tag{3.8}$$

Esta EDP aparece en modelos de:

- Ondas elásticas en sólidos, membranas, cuerdas, etc.
- Ondas electromagnéticas en regiones sin fuentes.
- Ondas sonoras.
- Ecuación de Klein-Gordon:

$$\Box \Psi - \frac{m^2 c^2}{\hbar^2} \Psi = 0. \tag{3.9}$$

• Ecuación de Schrödinger:

$$-\frac{\hbar^2}{2m}\nabla^2\Psi + V(\vec{x})\Psi = i\hbar\frac{\partial\Psi}{\partial t}.$$
 (3.10)

Observaciones:

- Todas estas ecuaciones son lineales en la función desconocida.
- Las ecuaciones fundamentales de la física atmosférica son no-lineales, así como también las ecuaciones involucradas en los problemas de turbulencia.
- Estas ecuaciones son casi todas de segundo orden excepto las ecuaciones de Maxwell y de Dirac que son de primer orden.

Las técnicas generales para (intentar) resolver *EDP lineales* que consideraremos en este curso son:

1. Método de separación de variables: La ecuación diferencial parcial es desdoblada en ecuaciones diferenciales ordinarias lineales. La solución de la EDP es construida como superposición de soluciones que son el producto de funciones dependientes de cada variable. Usando este método es posible reducir la ec. de la onda, la ec. del calor, y la ec. de Klein-Gordon a la ec. de Helmholtz.

- 2. **Método de las transformadas integrales** (Fourier, Laplace, etc.), para resolver EDP inhomogéneas.
- 3. Método de las funciones de Green, para resolver EDP inhomogéneas.

# 3.1. Clasificación de E.D.P. lineales de segundo orden y Condiciones de Borde

Una E.D.P. lineal de segundo orden de la forma [4]

$$\sum_{i=1}^{m} a_j(\vec{x}) \frac{\partial^2 \Psi}{\partial x_j^2} + F\left(\vec{x}, \Psi, \vec{\nabla} \Psi\right) = 0, \tag{3.11}$$

o que pueda reducirse a (3.11) por medio de algún cambio de variables, puede clasificarse en los siguientes tres tipos:

- Elípticas en  $\vec{x}_0$ : si en el punto  $\vec{x}_0$  todos los coeficientes  $a_j(\vec{x}_0)$  son no-nulos y tienen el mismo signo. Ejemplo clásico: Ec. de Laplace.
- Ultrahiperbólicas en  $\vec{x}_0$ : si en el punto  $\vec{x}_0$  todos los coeficientes  $a_j(\vec{x}_0)$  son no-nulos, pero no tienen el mismo signo. Si sólo uno de los coeficientes tiene signo diferente del resto, la E.D.P. es hiperbólica. Ejemplo clásico: Ec. de onda.
- Parabólica en  $\vec{x}_0$ : si en el punto  $\vec{x}_0$  al menos uno de los coeficientes  $a_j(\vec{x}_0)$  se anula. Ejemplo clásico: Ec. de difusión del calor.

Si una E.D.P. de segundo orden es de un tipo dado en todos los puntos de su dominio, se dice simplemente que es de ese tipo (es decir, el tipo no cambia de punto a punto). Esto ocurre, en particular con las E.D.P.'s de segundo orden con coeficientes constantes.

# 3.1.1. Condiciones de Borde y condiciones suficientes para determinar soluciones

La solución de une EDP requiere especificar información adicional a la ecuación. Esta información recibe el nombre de **Condiciones de Borde** (C. de B.), o **condiciones de Frontera**, o bien **condiciones iniciales** y generalizan las conficiones iniciales necesarias para resulver una EDO.

En el caso de EDP's de segundo orden, existen tres tipos principales de C. de B.:

- C. de B. **tipo Dirichlet**: donde el valor de la función  $(\Psi)$  es especificada en la frontera de la región considerada.
- C. de B. tipo Neumann: donde el valor de la derivada normal de función en la frontera  $(\partial \Psi/\partial t := \hat{n} \cdot \vec{\nabla} \Psi)$  es especificada.
- C. de B. **tipo Cauchy**: donde se especifican *simultaneamente* C. de B. tipo Dirichlet y Neumann en la frontera.

Por ejemplo, en electroestática (donde el potencial electrostático  $\phi$  satisface la ecuación de Poisson), una C. de B. tipo Dirichlet significa especificar un valor del potencial en la frontera, mientras que una C. de B. tipo Neumann equivale a especificar el valor de la componente del campo eléctrico normal a la frontera.

Existen teoremas de existencia y unicidad de soluciones de EDP's de segundo orden, dependiendo de si la ecuación es parabólica, hiperbólica o elíptica:

Teorema: Existe solución única en cada uno de los siguientes casos:

- E.D.P. elípticas + C.de B. tipo *Dirichlet o Neumann* sobre una (hiper)superficie cerrada.
- E.D.P. hiperbólica + C.de B. tipo Cauchy sobre una (hiper)superficie abierta.
- E.D.P. parabólica + C.de B. tipo *Dirichlet o Neumann* sobre una (hiper)superficie abierta.

# 3.1.2. Ejemplo: Difusión del calor unidimensional

Usando la transformada de Fourier espacial (o temporal) podemos resolver la ecuación de difusión del calor unidimensional, es decir,

$$\alpha \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial \psi}{\partial t} = 0, \tag{3.12}$$

en el dominio  $-\infty < x < \infty, \, t \geq 0,$  y sujeta a las siguientes condiciones de contorno

$$\lim_{x \to \pm \infty} \psi(x, t) = 0, \tag{3.13}$$

$$\psi(x,0) = \phi(x). \tag{3.14}$$

Aplicando la tranformada de Fourier espacial a la ecuación (3.12), se obtiene

$$\alpha \mathcal{F}_x \left[ \frac{\partial^2 \psi}{\partial^2 x} \right] - \mathcal{F}_x \left[ \frac{\partial \psi}{\partial t} \right] = 0, \tag{3.15}$$

además por la condición de contorno (3.13) tenemos que

$$\mathcal{F}_x\left[\frac{\partial^2 \psi}{\partial 2x}\right] = (ik)^2 \mathcal{F}_x[\psi] = (ik)^2 \tilde{\psi}(k,t), \tag{3.16}$$

y como

$$\mathcal{F}_x[\frac{\partial \psi}{\partial t}] = \frac{\partial}{\partial t} \mathcal{F}_x[\psi], \tag{3.17}$$

entonces

$$-\alpha k^2 \tilde{\psi}(k,t) - \frac{\partial}{\partial t} \tilde{\psi}(k,t) = 0.$$
 (3.18)

Por lo tanto, obtenemos una ecuación diferencial más simple, donde la dependencia espacial original ha sido ahora reducida a una dependencia algebraica:

$$\frac{\partial}{\partial t}\tilde{\psi}(k,t) = -\alpha\,\tilde{\psi}(k,t). \tag{3.19}$$

Rsolviendo esta ecuación respeto a la variable t, encontramos

$$\tilde{\psi}(k,t) = \tilde{\psi}(k,0) e^{-\alpha k^2 t}. \tag{3.20}$$

Por otro lado, empleando la condición (3.14) vemos que

$$\tilde{\psi}(k,0) = \mathcal{F}_x[\psi(x,0)] = \mathcal{F}_x[\psi(x)] = \tilde{\phi}(k). \tag{3.21}$$

En consecuencia,

$$\tilde{\psi}(k,t) = \tilde{\phi}(k) e^{-\alpha k^2 t}. \tag{3.22}$$

Con esto, la solución  $\psi(x,t)$  del problema es dada por la transformada inversa,

$$\psi(x,t) = \mathcal{F}^{-1}[\tilde{\psi}(k,t)] = \mathcal{F}^{-1}[\tilde{\phi}(k) e^{-\alpha k^2 t}]$$
 (3.23)

o, más explícitamente,

$$\psi(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\psi}(k,t) e^{ikx} dk$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\phi}(k) e^{-\alpha k^2 t} e^{ikx} dk,$$
(3.24)

con

$$\tilde{\phi}(k) = \int_{-\infty}^{\infty} \phi(x)e^{ikx}dx. \tag{3.25}$$

Por ejemplo, si

$$\phi(x) = T_0 \,\delta(x),\tag{3.26}$$

entonces

$$\tilde{\phi}(k) = T_0 \mathcal{F}_x[\delta(x)] = T_0. \tag{3.27}$$

Por consiguiente,

$$\psi(x,t) = T_0 \mathcal{F}^{-1}[e^{-\alpha k^2 t}]. \tag{3.28}$$

Adaptando nuestro resultado para la transformada inversa de la función gaussiana, es decir (2.13), podemos escribir

$$\mathcal{F}^{-1}[e^{-\alpha k^2 t}] = \frac{1}{2\sqrt{\pi \alpha t}} e^{-x^2/4\alpha t}.$$
 (3.29)

Por lo tanto, se ha hallado que<sup>2</sup>

$$\psi(x,t) = \frac{T_0}{2\sqrt{\pi\alpha t}}e^{-\frac{x^2}{4\alpha t}}, \qquad \forall t > 0.$$
(3.30)

<sup>&</sup>lt;sup>2</sup>En el repositorio de estos apuntes, en particular en este link puede encontrar un notebook con grficos y animaciones de la solución.

# Capítulo 4

# El Método de Separación de Variables

El método de separación de variables (MSV, originalmente introducido por Daniel Bernoulli, 1700-1782) para encontrar soluciones de EDP's lineales consiste en reducir la EDP a un conjunto de EDO's para un conjunto de funciones auxiliares. Cada una de estas funciones auxiliares depende sólo de una de las variables independientes del problema. La solución es entonces construida como una superposición (e.d. combinación lineal) de soluciones separables, consistentes en productos de las funciones auxiliares.

Más expl'citamente, el MSV consiste en:

- Buscar soluciones separables de la EDP. Esto conduce a un conjunto de EDO's.
- Construir una superposición general de soluciones separables, e imponer las condiciones de contorno y/o iniciales del problema.

Si bien en general el MSV sigue los pasos anteriores, en la práctica es útil considerar un paso intermedio:

• Imponer las condiciones de contorno/iniciales homogéneas a cada función separable. Esto simplifica mucho el cálculo puesto que típicamente elimina muchas posibles contribuciones a la (futura) combinación lineal. Esto sólo puede ser realizado con las condiciones de borde/iniciales homogéneas para EDP's lineales y homogéneas, puesto que si la solución separable satisface estas condiciones entonces cualquier superposición lineal lo hará. Además, no se pierde generalidad con este método, puesto que (puede demostrarse que) las funciones separables obtenidas son linealmente independientes.

En resumen, es conveniente aplicar el MSV de la siguiente forma:

- Buscar soluciones separables de la EDP (conjunto de EDO's).
- Imponer las condiciones de borde/iniciales homogéneas a las soluciones separables.
- Construir una combinación lineal general con las soluciones separables anteriores.
- Determinar los coeficientes de la combinación lineal que aseguran que la solución final satisface las condiciones de borde/iniciales inhomogéneas.

# 4.1. Coordenadas Cartesianas

# 4.2. Ejemplo: Ecuación de Laplace en dominio rectangular

Buscaremos la solución  $\Psi(x,y)$  que satisface la ecuación de Laplace bidimensional

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0, \tag{4.1}$$

en el rectángulo 0 < x < 1, 0 < y < 2, con la condición de borde

$$\Psi(x,2) = x(1-x), \tag{4.2}$$

y con  $\Psi = 0$  en los otros tres lados.

Primero buscamos soluciones separables de la EDP, de la forma

$$\Psi_{\text{sep}}(x,y) = X(x)Y(y). \tag{4.3}$$

Al reemplazar en (4.1) y dividir por  $\Psi_{\rm sep}$  encontramos

$$\frac{1}{X(x)}\frac{d^2X}{dx^2} + \frac{1}{Y(y)}\frac{d^2Y}{dy^2} = 0, (4.4)$$

lo que implica que término debe ser igual a una constante, es decir

$$\frac{1}{X(x)}\frac{d^2X}{dx^2} = \lambda, \qquad \frac{d^2X}{dx^2} - \lambda X(x) = 0, \tag{4.5}$$

$$\frac{1}{Y(y)}\frac{d^2Y}{dy^2} = -\lambda, \qquad \frac{d^2Y}{dy^2} + \lambda Y(y) = 0.$$
 (4.6)

La forma explícita de estas ecuaciones depende del valor, y en particular del signo, de la constante de separación  $\lambda$ , que por ahora tiene valor desconocido: Por ejemplo,

$$X_{\lambda}(x) = \begin{cases} c_1 e^{\sqrt{\lambda}x} + c_2 e^{-\sqrt{\lambda}x}, & \text{si } \lambda > 0\\ c_1 + c_2 x, & \text{si } \lambda = 0\\ c_1 \cos(\sqrt{-\lambda}x) + c_2 \sin(\sqrt{-\lambda}x), & \text{si } \lambda < 0 \end{cases}$$
(4.7)

Similarmente,

$$Y_{\lambda}(y) = \begin{cases} \bar{c}_1 \cos(\sqrt{\lambda}y) + \bar{c}_2 \sin(\sqrt{\lambda}y), & \text{si } \lambda > 0\\ \bar{c}_1 + \bar{c}_2 y, & \text{si } \lambda = 0\\ \bar{c}_1 e^{\sqrt{-\lambda}y} + \bar{c}_2 e^{-\sqrt{-\lambda}y}, & \text{si } \lambda < 0 \end{cases}$$
(4.8)

Así, hemos encontrado infinitas soluciones separables, cada una de la forma

$$\Psi_{\lambda}^{\text{sep}}(x,y) = X_{\lambda}(x)Y_{\lambda}(y), \tag{4.9}$$

para cada valor posible de la constante de separación  $\lambda$ . Como esta constante puede tomar distintos valores, y como la EDP es lineal, entonces cualquier combinación lineal de la forma

$$\Psi(x,y) = \sum_{\lambda} \Psi_{\lambda}^{\text{sep}}(x,y) = \sum_{\lambda} X_{\lambda}(x) Y_{\lambda}(y), \tag{4.10}$$

es también solución.

Procedemos ahora a imponer las condiciones de borde a la solución. Los cálculos se simplifican si imponemos primero las condiciones de borde homogéneas. Por ejemplo, la condición  $\Psi(0,y) = 0$ ,  $\forall y \in [0,2]$  (borde izquierdo del dominio) requiere que

$$\Psi(0,y) = \sum_{\lambda} \Psi_{\lambda}^{\text{sep}}(0,y) = \sum_{\lambda} X_{\lambda}(0) Y_{\lambda}(y) = 0. \tag{4.11}$$

La última expresión es una combinación lineal de los coeficientes (constantes)  $X_{\lambda}(0)$  y las funciones  $Y_{\lambda}(y)$ . Ya que las funciones  $Y_{\lambda}(y)$  son l.i. en esta combinación será nula sólo si  $X_{\lambda}(0) = 0$ . Análogamente, la condición  $\Psi(1, y) = 0$ ,  $\forall y \in [0, 2]$  requiere  $X_{\lambda}(1) = 0$ . Estas dos condiciones sobre las funciones  $X_{\lambda}(x)$  restringen fuertemente los valores posibles de  $\lambda$ . En nuestro caso particular, sólo valores negativos de esta constante de separación son permitidos. Esto ocurre si  $\lambda = -n^2\pi^2$ ,  $n = 1, 2, \ldots$ , y entonces

$$X_n(x) = c_n \operatorname{sen}(n\pi x), \qquad \lambda = -n^2 \pi^2, \qquad n = 1, 2, \dots$$
 (4.12)

Para estos valores de  $\lambda$ , las soluciones para Y(y) son de la forma

$$Y_n(y) = \bar{c}_1 e^{\pi ny} + \bar{c}_2 e^{-\pi ny}. (4.13)$$

Imponemos ahora la condición de borde en la frontera inferior del dominio, es decir,  $\Psi(x,0)=0$ , lo que se traduce en  $Y_n(0)=0$ . Esto sólo puede ser satisfecho si  $\bar{c}_1+\bar{c}_2=0$ , por lo que la solución se reduce a

$$Y_n(y) = \bar{c}_1 \left( e^{\pi ny} - e^{-\pi ny} \right) = 2\bar{c}_1 \operatorname{senh}(\pi ny).$$
 (4.14)

Con esto, la solución adopta la forma

$$\Psi(x,y) = \sum_{n=0}^{\infty} d_n \operatorname{sen}(n\pi x) \operatorname{senh}(\pi n y), \tag{4.15}$$

donde los coeficientes son arbitrarios. Es instructivo verificar que esta expresión es solución de la EDP (4.1), y de las condiciones de borde homogéneas del problema. El valor de los coeficientes  $d_n$  queda determinado por la condición de borde no-homogénea restante (borde superior).

Imponemos por tanto que

$$\Psi(x,2) = \sum_{n=0}^{\infty} d_n \operatorname{sen}(n\pi x) \operatorname{senh}(2\pi n) \stackrel{!}{=} f(x), \tag{4.16}$$

con f(x) = x(1-x). Esto significa que los coeficientes  $d_n \operatorname{senh}(2\pi n)$  son los coeficientes de la expansión de Fourier (seno) de la función f(x) en el intervalo [0, 1]. Usando las relaciones de ortogonalidad de las funciones  $\operatorname{senh}(\pi nx)$ ,

$$\int_0^1 \operatorname{sen}(\pi n x) \operatorname{sen}(\pi m x) dx = \frac{1}{2} \delta_{nm}, \tag{4.17}$$

encontramos

$$d_n \operatorname{senh}(2\pi n) = 2 \int_0^1 f(x) \operatorname{sen}(\pi n x) dx, \tag{4.18}$$

y por lo tanto

$$d_n = \frac{2}{\sinh(2\pi n)} \int_0^1 f(x) \sin(\pi nx) dx.$$
 (4.19)

En el ejemplo particular en que f(x) = x(1-x), luego de calcular la integral correspondiente, encontramos que

$$d_n = \begin{cases} \frac{8}{\pi^3 n^3} \frac{1}{\operatorname{senh}(2\pi n)}, & \text{para } n \text{ impar} \\ 0, & \text{para } n \text{ par} \end{cases}$$
(4.20)

Con todo esto, y denotanto n=2k-1, con  $k=1,2,3,\cdots$ , encontramos que nuestra solución es dada por la siguiente serie:

$$\psi(x,y) = \frac{8}{\pi^3} \sum_{k=1}^{\infty} \frac{\sin[(2k-1)\pi x]}{(2k-1)^3} \frac{\sinh[(2k-1)\pi y]}{\sinh[2\pi(2k-1)]}.$$
 (4.21)



Figura 4.1: La solución a nuestro problema, en 3D y colores. Código Python aquí.

## 4.2.1. Ejemplo: Ecuación de la onda unidimensional

Usaremos ahora el MSV para encontrar una solución del siguiente problema:

$$\frac{\partial^2 \psi}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} = 0, \tag{4.22}$$

en el dominio  $x \in [0, L], t \geq 0$ , con las condiones de borde (homogéneas)

$$\psi(0,t) = 0, \qquad \psi(L,t) = 0, \tag{4.23}$$

y las siguientes condiciones iniciales

$$\psi(x,0) = \psi_0(x), \qquad \frac{\partial \psi}{\partial t}(x,0) = v_0(x),$$

$$(4.24)$$

suponiendo que  $\psi_0(x)$  y  $v_0(x)$  son dadas, pero arbitrarias de la variable x.

Buscamos entoces una solución separable,  $\psi_{\rm sep}(x,t)=X(x)T(t)$ . Reemplazando en la EDP (4.22) y dividiendo por  $\psi_{\rm sep}$  encontramos:

$$\frac{1}{X}\frac{d^2X}{dx^2} = \frac{1}{v^2}\frac{1}{T}\frac{d^2T}{dt^2}.$$
 (4.25)

Como el primer miembro de la ecuación (4.25) depende de x y el segundo miembro de t, ambos deben necesariamente ser constantes con respecto a ambas variables, vale decir

$$\frac{1}{X}\frac{d^2X}{dx^2} = \lambda, \qquad \frac{1}{v^2}\frac{1}{T}\frac{d^2T}{dt^2} = \lambda, \tag{4.26}$$

donde la constante de separación  $\lambda$  puede asumir valores reales. Luego, podemos escribir la siguiente EDO para X(x) como

$$\frac{d^2X}{dx^2} = \lambda X,\tag{4.27}$$

cuya solución es de la forma

$$X(x) = \begin{cases} A\cos(x\sqrt{-\lambda}) + B\sin(x\sqrt{-\lambda}), & \text{si } \lambda < 0\\ A'x + B', & \text{si } \lambda = 0\\ A''e^{x\sqrt{\lambda}} + B''e^{-x\sqrt{\lambda}}, & \text{si } \lambda > 0 \end{cases}$$
(4.28)

Las condiciones de borde homogéneas pueden trasladarse a las funciones X(x), que entonces deben satisfacer que X(0) = 0 y X(L) = 0. Tal como en el ejemplo anterior, no es difícil verificar que estas conficiones pueden ser satisfechas sólo si  $\lambda < 0$ , A = 0, y además

$$\sqrt{-\lambda} = \frac{n\pi}{L}, \qquad n = 1, 2, \dots$$
 (4.29)

Por lo tanto, los valores permitidos para la constante de separación, también llamados "autovalores", son

$$\lambda_n = -\frac{n^2 \pi^2}{L^2}, \qquad n = 1, 2, \dots$$
 (4.30)

Mientrás que las "autofunciones" correspondientes están dadas por

$$X_n(x) = B_n \sin\left(\frac{n\pi x}{L}\right), \qquad n = 1, 2, \dots$$
(4.31)

Dada la restricción (4.30), la EDO para la  $T_n(t)$  adopta la forma

$$\frac{d^2T_n}{dt^2} = -\frac{n^2\pi^2v^2}{L^2}T_n, (4.32)$$

cuya solución general está dada por

$$T_n(t) = C_n \cos\left(\frac{n\pi vt}{L}\right) + D_n \sin\left(\frac{n\pi vt}{L}\right),$$
 (4.33)

con  $C_n$  y  $D_n$  constantes arbitrarias. De esta forma, hemos encontrado soluciones separables de la forma

$$\psi_n^{\text{sep}}(x,t) = \left[ C_n \cos \left( \frac{n\pi vt}{L} \right) + D_n \sin \left( \frac{n\pi vt}{L} \right) \right] B_n \sin \left( \frac{n\pi x}{L} \right). \tag{4.34}$$

Redefiniendo el valor de las constantes como  $a_n := C_n B_n$  y  $b_n := D_n B_n$  se encuentra que

$$\psi_n(x,t) = \left[ a_n \cos\left(\frac{n\pi v}{L}t\right) + b_n \sin\left(\frac{n\pi v}{L}t\right) \right] \sin\left(\frac{n\pi x}{L}\right), \qquad n = 1, 2, \dots$$
 (4.35)

Es directo verificar que cada una de estas soluciones satisface las condiciones de contorno homogéneas (4.23). Sin embargo, ninguna de ellas, por separado satisface las condiciones iniciales (4.24). Podemos encontrar la solución al problema usando el hecho que la (4.22) es lineal y homogénea. Debido a esto, una superposición de soluciones  $\psi_n(x,t)$ , con distintos n, será también solución de la EDP. Además, esta superposición satisface las condiciones de borde (para cualquier valor de los coeficientes que determinan la combinación lineal), ya que son condiciones de borde homogéneas.

Consideremos por tanto, una superposición general de todas las soluciones separables  $\psi_n(x,t)$  disponibles

$$\psi(x,t) = \sum_{n=1}^{\infty} \psi_n^{\text{sep}}(x,t)$$
(4.36)

$$= \sum_{n=1}^{\infty} \left[ A_n \cos \left( \frac{n\pi v}{L} t \right) + B_n \sin \left( \frac{n\pi v}{L} t \right) \right] \sin \left( \frac{n\pi x}{L} \right). \tag{4.37}$$

Finalmente, los coeficientes pueden ser calculados al imponer las condiciones iniciales:

$$\psi_0(x) = \psi(x,0) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right), \tag{4.38}$$

$$v_0(x) = \frac{\partial \psi}{\partial t}(x, 0) = \sum_{n=1}^{\infty} \left(\frac{n\pi v}{L}\right) b_n \sin\left(\frac{n\pi x}{L}\right). \tag{4.39}$$

De esta forma, multiplicando las ecuaciones precedentes por  $\sin(n\pi x/L)$  y empleando la relación de ortogonalidad en (1.2), se encuentra que  $A_n$  y  $B_n$  son dadas por

$$A_n = \frac{2}{L} \int_0^L \psi_0(x) \sin\left(\frac{k\pi x}{L}\right) dx, \qquad B_n = \frac{2}{n\pi v} \int_0^L v_0(x) \sin\left(\frac{k\pi x}{L}\right) dx. \tag{4.40}$$

Puede encontrar la discusión de un ejemplo en este notebook.

# 4.3. Coordenadas polares

Considere la ecuación de Laplace bidimensional, en coordenadas polares  $(r, \varphi)$  Las soluciones separables de la ecuación son de la forma

$$\Psi_{\text{sep}}(r,\varphi) = R(r)\Phi(\varphi), \qquad 0 < r < \infty, \quad 0 < \varphi < 2\pi,$$
 (4.41)

La condición de periodidad  $\Psi(r,\varphi)=\Psi(r,\varphi+2\pi)$  y restringe los valores de la constante de saparación.

$$\Psi(r,\varphi) = c_0 + c_1 \ln(r) + \sum_{n=1}^{\infty} \left( A_n \cos(n\varphi) + B_n \sin(n\varphi) \right) \left( C_n r^{-n} + D_n r^n \right), \tag{4.42}$$

donde  $c_0, c_1, A_n, B_n, C_n$  y  $D_n$  son constantes.

$$\Psi(r = R, \varphi) = f(\varphi), \tag{4.43}$$

# 4.4. Coordenadas Cilíndricas

# 4.5. Coordenadas Esféricas

La ecuación de Helmholtz (modificada),

$$\nabla^2 \Psi + \alpha \Psi = 0, \tag{4.44}$$

adopta, en coordenadas esféricas, la forma:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\Psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\Psi}{\partial\varphi^2} + \alpha\Psi = 0. \tag{4.45}$$

Buscaremos soluciones separables de la forma

$$\Psi_{\text{sep}}(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi). \tag{4.46}$$

Introduciendo (4.46) en (4.45), multiplicando por  $r^2 \operatorname{sen}^2 \theta$  y dividiendo por  $\Psi_{\text{sep}}$ , se obtiene

$$\sin^2\theta \left[ \frac{1}{R} \frac{d}{dr} \left( r^2 \frac{dR}{dr} \right) + \frac{1}{\Theta \sin\theta} \frac{d}{d\theta} \left( \sin\theta \frac{d\Theta}{d\theta} \right) + \alpha r^2 \right] + \frac{1}{\Phi} \frac{d^2\Phi}{d\varphi^2} = 0. \tag{4.47}$$

De esta forma, podemos realizar la primera separación, ya que necesariamente

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d\varphi^2} = \text{const.} = -m^2. \tag{4.48}$$

Las soluciones univaluadas, e.d. que satisfacen la condición de borde períodica  $\Phi(\varphi+2\pi) = \Phi(\varphi)$ , son

$$\Phi(\varphi) = e^{\pm im\varphi}, \qquad m = 0, \pm 1, \pm 2, \cdots. \tag{4.49}$$

Con esto, (4.47) se reduce a

$$\sin^2 \theta \left[ \frac{1}{R} \frac{d}{dr} \left( r^2 \frac{dR}{dr} \right) + \frac{1}{\Theta \sin \theta} \frac{d}{d\theta} \left( \sin \theta \frac{d\Theta}{d\theta} \right) + \alpha r^2 \right] - m^2 = 0$$
 (4.50)

que, al dividir por sen<sup>2</sup>  $\theta$  implica que

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \alpha r^2 + \frac{1}{\Theta \operatorname{sen}\theta}\frac{d}{d\theta}\left(\operatorname{sen}\theta\frac{d\Theta}{d\theta}\right) - \frac{m^2}{\operatorname{sen}^2\theta} = 0. \tag{4.51}$$

Esta ecuación está nuevamente separada, ya que los primeros dos términos dependen sólo de r mientras que los últimos dos sólo de  $\theta$ . Por lo tanto, podemos introducir una segunda constante de separación, Q, tal que las EDO's separadas se escriben como:

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \left(\alpha r^2 - Q\right)R = 0,\tag{4.52}$$

$$\frac{1}{\operatorname{sen}\theta} \frac{d}{d\theta} \left( \operatorname{sen}\theta \frac{d\Theta}{d\theta} \right) + \left( Q - \frac{m^2}{\operatorname{sen}^2\theta} \right) \Theta = 0. \tag{4.53}$$

#### Caso $\alpha = 0$ , ecuación de Laplace

La ecuación (4.52) es una ecuación tipo Euler y puede ser resuelta con la substitución  $r:=e^t$ ,  $y=U(r)=U(e^t)$ , o bien con el Ansatz

$$U(r) = r^l, \quad l = \text{const.} \tag{4.54}$$

Reemplazando esta solución en la ecuación encontramos la condición l(l-1) = Q. La solución general de la ecuación para U(r) es entonces

$$R(r) = A \cdot r^{l_1} + B \cdot r^{l_2},\tag{4.55}$$

donde A y B son constantes arbitrarias y  $l_1$  y  $l_2$  son las soluciones de la ecuación cuadrática  $l^2 - l - Q = 0$ .

### Caso de simetría axial

Si por alguna razón justificada (usualmente, de simetría de la situación física) se busca una solución axialmente simétrica, es decir, independiente de la variable  $\varphi$ , entonces  $\Psi = \Psi(r,\theta)$ . Desde el punto de vista de la formulación del problema más general (sin simetría) este caso particular requiere que m=0, ya que en ese caso las soluciones angulares  $\Phi(\varphi)$  son constantes y por tanto la solución no dependerá de  $\varphi$ . En este caso, la ecuación se reduce a

$$\frac{1}{\operatorname{sen}\theta} \frac{d}{d\theta} \left( \operatorname{sen}\theta \frac{d\Theta}{d\theta} \right) + Q\Theta = 0 \tag{4.56}$$

que, como veremos a continuación, es equivalente a la EDO de Legendre.

# Capítulo 5

# Funciones de Legendre, Asociadas de Legendre y Armónicos Esféricos

# 5.1. E.D.O. Asociada de Legendre

Substituyendo  $x := \cos \theta$  tendremos que la ecuación diferencial (4.53) para  $\Theta(\theta)$  se transforma en

$$\frac{d}{dx}\left((1-x^2)\frac{dy}{dx}\right) + \left[Q - \frac{m^2}{1-x^2}\right] \cdot y(x) = 0, \qquad x \in [-1,1],\tag{5.1}$$

de modo que, dada una solución y(x), la solución de (4.53) es dada por  $\Theta(\theta) = y(\cos \theta)$ .

# 5.1.1. E.D.O de Legendre

En el caso m=0, la ecuación (5.1) es llamada ecuación diferencial de Legendre:

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{dy}{dx}\right] + Qy = 0, \qquad x \in [-1,1]. \tag{5.2}$$

En la sección 5.1.5 estudiaremos la solución general de esta ecuación, para valores arbitrarios de la constante Q. Ahí verificaremos que

**Teorema:** La ecuación (5.2) sólo posee soluciones finitas en los puntos extremos  $(x = \pm 1)$  si y sólo si

$$Q = n(n+1), \qquad n = 0, 1, 2, \cdots,$$
 (5.3)

es decir, sólo si  $Q = 0, 2, 6, 12, 20, 30, \ldots$  En este caso las soluciones finitas son los **Polinomios de Legendre** de orden n.

# 5.1.2. Polinomios de Legendre y función generadora

Antes de abordar el problema más general, introduciremos los polinomios de Legendre por medio de su **función generadora**. Para esto, consideramos el siguiente argumento: La función (en coordenadas esféricas  $(r, \theta, \varphi)$ )

$$\Psi(r,\theta) = \frac{1}{\sqrt{r^2 + a^2 - 2ar\cos\theta}} \tag{5.4}$$

es una solución axialmente simétrica (e.d. independiente de  $\varphi$ ) de la ecuación de Laplace. Esto puede verificarse fácilmente a partir del potencial electrostático que genera una

carga puntual de magnitud q ubicada sobre el eje z, a una distancia a del origen, que es determinado por la ley de Coulomb. Este potencial es precisamente  $\phi = (q/4\pi\varepsilon_0)\Psi(r,\theta)$ .

Expandiendo (5.4) en potencias de t := a/r, para r > a, obtenemos

$$\Psi(r,\theta) = \frac{1}{\sqrt{r^2 + a^2 - 2ar\cos\theta}} \tag{5.5}$$

$$=\frac{1}{r}\frac{1}{\sqrt{1+t^2-2xt}}\tag{5.6}$$

$$=\frac{1}{r}\sum_{n=0}^{\infty}P_n(x)t^n\tag{5.7}$$

$$= \frac{1}{a} \sum_{n=0}^{\infty} P_n(x) t^{n+1}, \tag{5.8}$$

donde hemos introducido nuevamente  $x := \cos \theta$ . De esta forma, tenemos una solución finita para todo t < 1 que consiste en una superposición de soluciones separables  $P_n(x)$  y  $t^{n+1}$ . Comparando esta solución con (4.55) vemos que (5.8) corresponde al caso particular en que Q = n(n+1). Por lo tanto, esperamos que las funciones  $P_n(x)$  satisfagan la ecuación (5.2) en este caso.

Con esta motivación, podemos definir las funciones de Legendre de orden n,  $P_n(x)$ , como los coeficientes de la expansión en serie de Taylor de la "función generadora"  $g(t,x) := (1-2xt+t^2)^{-1/2}$ , tal que

$$g(t,x) := \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n.$$
 (5.9)

Equivalentemente, tenemos entonces que

$$P_n(x) = \frac{1}{n!} \left[ \frac{\partial^n g(t, x)}{\partial t^n} \right]_{t=0}.$$
 (5.10)

#### Expresiones explícitas

Los primeros cuatro polinomios son

$$P_0(x) = 1,$$

$$P_1(x) = x,$$

$$P_2(x) = \frac{1}{2}(3x^2 - 1),$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x),$$

$$P_4(x) = \frac{35x^4}{8} - \frac{15x^2}{4} + \frac{3}{8},$$

$$P_5(x) = \frac{63x^5}{8} - \frac{35x^3}{4} + \frac{15x}{8}.$$

#### Serie de potencias

Podemos encontrar una primera expresión para las funciones  $P_n(x)$  en términos de una serie de potencias. Para esto, podemos expandir la función generadora en una serie, usando

$$(1-x)^{-1/2} = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2} x^n,$$
 (5.11)

con la identificación  $x \to 2xt - t^2$ , de modo que

$$g(t,x) = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2} (2xt - t^2)^n$$
(5.12)

$$=\sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2} t^n (2x-t)^n$$
 (5.13)

(5.14)

Empleamos ahora la expansión binomial,

$$(a+b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^{n-k} b^k,$$
 (5.15)

con a = 2x y b = -t. Entonces, podemos escribir

$$g(t,x) = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2} t^n \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} (2x)^{n-k} (-t)^k$$
 (5.16)

$$=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\frac{(-1)^{k}(2n)!}{2^{n+k}n!k!(n-k)!}x^{n-k}t^{n+k}.$$
(5.17)

Podemos expresar esta suma doble cambiando de variable de suma desde (n,k) hasta  $(\bar{n},k)$ , con  $\bar{n}:=n+k$ . Esto implica reemplazar n en la expresión anterior por  $\bar{n}-k$  y el rango de variación de estas variables. Si  $\bar{n}=0,1,2,\ldots$ , entonces  $k=0,1,\cdots,[\bar{n}/2]$ , ya que en la suma original  $n-k=\bar{n}-2k>0$ . Por lo tanto

$$g(t,x) = \sum_{\bar{n}=0}^{\infty} \sum_{k=0}^{[\bar{n}/2]} \frac{(-1)^k (2\bar{n} - 2k)!}{2^{\bar{n}} k! (\bar{n} - k)! (\bar{n} - 2k)!} x^{\bar{n} - 2k} t^{\bar{n}},$$
 (5.18)

y por lo tanto

$$P_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k (2n-2k)!}{2^n k! (n-k)! (n-2k)!} x^{n-2k}.$$
 (5.19)

#### **Propiedades**

Los polinomios de Legendre satisfacen las siguientes propiedades:

Normalización

$$P_n(1) = 1. (5.20)$$

En otras palabras, los  $P_n$  son normalizados de modo que para x = 1 ellos asumen siempre el valor 1.

■ Simetría

$$P_n(-x) = (-1)^n P_n(x). (5.21)$$

Los polinomios  $P_n$  son funciones simétricas si n es par y antisimétricas si n es impar

• Valor en el origen:

$$P_n(0) = \begin{cases} 0 & \text{si } n \text{ par} \\ \frac{(-1)^m (2m)!}{2^{2m} (m!)^2} & \text{si } n = 2m \text{ (par)} \end{cases}$$
 (5.22)

■ Completitud: Los polinomios de Legendre  $P_n$  forman un conjunto completo de funciones definidas en [-1,1].



Figura 5.1: Primeros cinco polinomios de Legendre. Código Python disponible aquí.



Figura 5.2: Derivada de los primeros cinco polinomios de Legendre. Código Python disponible aquí.

### Fórmula de Rodrigues

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
 (5.23)

Relaciones de recurrencia

$$nP_{n-1}(x) + (n+1)P_{n+1}(x) = (2n+1)xP_n(x), (5.24)$$

$$(2n+1)P_n(x) = P'_{n+1}(x) - P'_{n-1}(x). (5.25)$$

# 5.1.3. Relación de ortogonalidad

$$\frac{d}{dx}\left[(1-x^2)P_n'\right] + n(n+1)P_n = 0, \quad \frac{d}{dx}\left[(1-x^2)P_m'\right] + m(m+1)P_m = 0.$$
 (5.26)

$$[n(n+1) - m(m+1)] \int_{-1}^{1} P_n(x) P_m(x) dx = 0$$
 (5.27)

$$\int_{-1}^{1} P_n(x) P_m(x) dx = 0, \qquad n \neq m.$$
 (5.28)

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{mn}.$$
 (5.29)

Como los polinomios de Legendre son ortogonales, se sigue que son linealmente independientes (l.i.), ya que

$$\sum_{n=0}^{\infty} a_n P_n(x) = 0, \tag{5.30}$$

sí y sólo si  $a_n = 0$ .

### 5.1.4. Series de Legendre

Es posible expandir una función f(x), definida en el intervalo  $x \in [-1,1]$  y continua por tramos, en una **serie de Legendre**, es decir, en una suma de polinomios de Legendre, de la forma

$$f(x) = \sum_{n=0}^{\infty} a_n P_n(x),$$
 (5.31)

en el sentido que la serie coverge en media a la función f(x) para todo x en [-1,1].

Podemos encontrar una expresión para los coeficientes usando la relación de ortogonalidad (5.29):

$$a_n = \frac{2n+1}{2} \int_{-1}^1 f(x) P_n(x) dx.$$
 (5.32)

### Expansión de Legendre de la Delta de Dirac

En el caso en que  $f(x) = \delta(x-a)$  tendremos que

$$a_n = \frac{2n+1}{2} \int_{-1}^{1} \delta(x-a) P_n(x) dx$$
 (5.33)

$$=\frac{2n+1}{2}P_n(a), (5.34)$$

y entonces

$$\delta(x-a) = \sum_{n=0}^{\infty} \frac{2n+1}{2} P_n(a) P_n(x). \tag{5.35}$$

En particular, usando (5.22) encontramos

$$\delta(x) = \sum_{m=0}^{\infty} \frac{(-1)^m (4m+1)(2m)!}{2^{2m+1} (m!)^2} P_{2m}(x).$$
 (5.36)



Figura 5.3: Serie (truncada a orden 50) de la serie de Legendre de  $\delta(x)$ .

## 5.1.5. Solución en serie de Potencias (Método de Frobenius)

Primero escribimos la E.D.O. de Legendre (5.2) en su forma estandar:

$$(1 - x2) y'' - 2xy' + Qy = 0, (5.37)$$

o bien

$$y'' - \frac{2x}{1 - x^2}y' + \frac{Q}{1 - x^2}y = 0. (5.38)$$

Como los coeficientes de y' y y son funciones analíticas en la vencindad de x = 0, podemos encontrar una solución en serie de Taylor en torno a ese punto:

$$y = \sum_{k=0}^{\infty} a_k x^k,$$

$$y' = \sum_{k=0}^{\infty} k a_k x^{k-1},$$

$$y'' = \sum_{k=2}^{\infty} (k-1)k a_k x^{k-2}$$

$$= \sum_{k=0}^{\infty} (k+1)(k+2)a_{k+2} x^k.$$

Sustituyendo estas series en (5.37) obtenemos

$$\sum_{k=0}^{\infty} (k+1)(k+2)a_{k+2}x^k - \sum_{k=0}^{\infty} (k-1)ka_kx^k - 2\sum_{k=0}^{\infty} ka_kx^k + Q\sum_{k=0}^{\infty} a_kx^k = 0, \quad (5.39)$$

$$\sum_{k=0}^{\infty} \left[ (k+1)(k+2)a_{k+2} - ((k-1)k + 2k - Q) a_k \right] x^k = 0.$$
 (5.40)

Igualando los coeficientes de cada término  $x^k$  obtenemos las relaciones de recurrencia

$$a_{k+2} = \frac{k(k+1) - Q}{(k+1)(k+2)} a_k, \qquad k = 0, 1, 2, \cdots.$$
 (5.41)

A partir de ellas, podemos encontrar todos los coeficientes  $a_k$ , con  $k \geq 2$  a partir de  $a_0$  y  $a_1$ :

$$a_{k} = \begin{cases} \frac{a_{0}}{k!} \prod_{\substack{l=0\\l \text{ par}}}^{k-2} (l(l+1) - Q), & k \text{ par,} \\ \frac{a_{1}}{k!} \prod_{\substack{l=1\\l \text{ impar}}}^{k-2} (l(l+1) - Q), & k \text{ impar.} \end{cases}$$
(5.42)

Por lo tanto, la solución general será una combinación lineal de la forma

$$y(x) = a_0 y_1(x) + a_1 y_2(x), (5.43)$$

donde  $y_1(x)$  es una función par en x e  $y_2(x)$  es una función impar en x, dadas por

$$y_1(x) = \sum_{m=0}^{\infty} \left( \frac{1}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l(l+1) - Q) \right) x^{2m} =: \sum_{m=0}^{\infty} b_m x^{2m},$$
 (5.44)

$$y_2(x) = \sum_{m=0}^{\infty} \left( \frac{1}{(2m+1)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l(l+1) - Q) \right) x^{2m+1} =: \sum_{m=0}^{\infty} c_m x^{2m+1}.$$
 (5.45)

En general, tanto  $y_1(x)$  como  $y_2(x)$  serán series infinitas, ya que los correspondientes coeficientes de cada  $x^k$ , dados por un producto de factores, serán no nulos excepto si existe un valor de l tal que l(l+1)-Q=0. Esto sólo ocurrirá si la constante Q es de la forma Q=n(n+1), con algún valor de  $n=0,1,2,\cdots$ . Si este es el caso, entonces una de las series se truncara, reduciéndose a un polinomio.

### Convergencia

Analicemos primero el caso genérico en que  $Q \neq n(n+1)$ . Como dijimos, las dos soluciones l.i.  $y_1(x)$  e  $y_2(x)$  serán series infinitas, debiendo por tanto analizar su convergencia.

Consideramos primero el **test de D'Alambert**<sup>1</sup>. Para el caso de  $y_1(x)$  tenemos que  $y_1(x) = \sum_{m=0}^{\infty} u_m$ , con

$$u_m = \frac{x^{2m}}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l(l+1) - Q) = a_{2m} x^{2m},$$
 (5.46)

y entonces

$$\lim_{m \to \infty} \left| \frac{u_{m+1}}{u_m} \right| = \lim_{m \to \infty} \left| \frac{b_{m+1} x^{2m+2}}{b_m x^{2m}} \right| = \lim_{m \to \infty} \left| \frac{a_{2m+2}}{a_{2m}} \right| x^2$$
 (5.47)

$$= \lim_{m \to \infty} \left| \frac{(2m(2m+1) - Q)}{(2m+1)(2m+2)} \right| x^2 = x^2.$$
 (5.48)

Por lo tanto, podemos afirmar que  $y_1(x)$  es convergente para |x| < 1. Para analizar la convergencia cuando  $x = \pm 1$  podemos usar el test de Gauss<sup>2</sup>. En nuestro caso  $(u_m > 0)$  para m suficientemente grande) y

$$\frac{u_m}{u_{m+1}} = \frac{(2m+1)(2m+2)}{(2m(2m+1)-Q)} = \left[1 + \frac{1}{m} + \frac{Q}{8m^2}\left(2 + \frac{1}{m} + O(\frac{1}{m^2})\right)\right]. \tag{5.49}$$

Por lo tanto, h=1 y entonces  $y_1(x)$  es una serie divergente en  $x=\pm 1$ .

Análogamente, puede verificarse que las mismas conclusiones son válidas para  $y_2(x)$ . En resumen,

si  $Q \neq n(n+1)$  las soluciones de la ec. de Legendre son divergentes en los extremos del intervalo considerado, e.d. en  $x = \pm 1$ .

Caso 
$$Q = n(n+1)$$

Analicemos ahora con más detalle el caso en que Q=n(n+1), puesto que aquí obtendremos series truncadas (es decir, polinomios) que naturalmente son funciones finitas en todo el intervalo considerado, incluyendo los extremos. De (5.41) vemos que  $a_{n+2}=0$ , y por consiguiente todos los coeficientes de orden superior de la forma  $a_{n+2p}$  serán nulos, con  $p=1,2,\cdots$ . Por lo tanto, si n es par entonces será la serie  $y_1(x)$  la que se truncará, mientras que  $y_2(x)$  continuará siendo una serie infinita. Por otro lado, si n es impar  $y_1(x)$  tendrá infinitos términos, mientras que  $y_2(x)$  se reduce a un polinomio. El orden del correspondiente polinomio truncado es n en ambos casos  $(a_n$  es el último término no nulo). Esperamos por lo tanto que estos polinomios sean proporcionales a los polinomios de Legendre de orden n. A partir de (5.44) e (5.45), y usando l(l+1)-n(n+1)=(l-n)(l+n+1) encontramos que

$$y_{1,n}(x) = \sum_{m=0}^{n/2} b_m x^{2m}, \qquad b_m = \frac{1}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n)(l+n+1), \qquad n \text{ par},$$
 (5.50)

También llamado "Cauchy ratio test": Si  $\lim_{n\to\infty} |u_{n+1}/u_n| < 1$  entonces  $\sum_{n=0}^{\infty} u_n$  es una serie convergente. Si  $\lim_{n\to\infty} |u_{n+1}/u_n| > 1$  la serie es divergente. Si  $\lim_{n\to\infty} |u_{n+1}/u_n| = 1$  el test de Cauchy no suministra información. Ver, por ejemplo, [2], sección 5.2.

<sup>&</sup>lt;sup>2</sup>Si  $u_n > 0 \ \forall n \ y \ u_n/u_{n+1} = 1 + h/n + B(n)/n^2$  donde h es una constante y B(n) una función acotada de n para  $n \to \infty$  entonces la serie  $\sum_n u_n$  converge si h > 1 y diverge si  $h \le 1$ . Ver, por ejemplo, [2], sección 5.2.

$$y_{2,n}(x) = \sum_{m=0}^{(n-1)/2} c_m x^{2m+1}, \qquad c_m = \frac{1}{(2m+1)!} \prod_{\substack{l=1 \ l \text{ impar}}}^{2m-1} (l-n)(l+n+1), \qquad n \text{ impar. } (5.51)$$

Luego de algo de álgebra, podemos verificar que

$$b_m = \frac{(-1)^m}{(2m)!} \frac{(n+2m)![(n/2)!]^2}{n!(n/2-m)!(n/2+m)!},$$
(5.52)

y con ello, podemos escribir la solución  $y_{1,n}$  como

$$y_{1,n}(x) = \frac{[(n/2)!]^2}{n!} \sum_{m=0}^{n/2} \frac{(-1)^m}{(2m)!} \frac{(n+2m)!}{(n/2-m)!(n/2+m)!} x^{2m}.$$
 (5.53)

Finalmente, cambiando índice de suma desde m hasta k := n/2 - m, de modo que 2m = n - 2k, podemos escribir

$$y_{1,n}(x) = \frac{[(n/2)!]^2}{n!} \sum_{k=0}^{n/2} \frac{(-1)^{n/2-k}}{(n-2k)!} \frac{(2n-2k)!}{k!(n-k)!} x^{n-2k}$$
(5.54)

$$= (-1)^{n/2} \frac{[(n/2)!]^2}{n!} \sum_{k=0}^{n/2} \frac{(-1)^k}{(n-2k)!} \frac{(2n-2k)!}{k!(n-k)!} x^{n-2k}$$
 (5.55)

$$= (-1)^{n/2} \frac{[(n/2)!]^2}{n!} 2^n P_n(x), \qquad n = 0, 2, 4, \cdots.$$
 (5.56)

En el último paso hemos identificado la serie de potencias (5.19) de los polonomios de Legendre.

Análogamente, para n impar podemos expresar los coeficientes  $c_m$  como

$$c_m = \frac{(-1)^m}{(2m+1)!} \frac{(n+2m)! \left[\left(\frac{n-1}{2}\right)!\right]^2}{n! \left(\frac{n-2m-1}{2}\right)! \left(\frac{n+2m-1}{2}\right)!},\tag{5.57}$$

de modo que

$$y_{2,n}(x) = \sum_{m=0}^{(n-1)/2} \frac{(-1)^m}{(2m+1)!} \frac{(n+2m)! \left[\left(\frac{n-1}{2}\right)!\right]^2}{n! \left(\frac{n-2m-1}{2}\right)! \left(\frac{n+2m-1}{2}\right)!} x^{2m+1}$$
(5.58)

$$= \frac{\left[\left(\frac{n-1}{2}\right)!\right]^2}{n!} \sum_{m=0}^{(n-1)/2} \frac{(-1)^m}{(2m+1)!} \frac{(n+2m)!}{\left(\frac{n-2m-1}{2}\right)! \left(\frac{n+2m-1}{2}\right)!} x^{2m+1}$$
 (5.59)

Cambiamos ahora índice de suma, definiendo k tal que 2m + 1 = n - 2k, y encontramos

$$y_{2,n}(x) = \frac{[n/2]!^2}{n!} \sum_{k=0}^{(n-1)/2} \frac{(-1)^{\frac{n-2k-1}{2}}}{(n-2k)!} \frac{(2n-2k-1)!}{k!(n-k-1)!} x^{n-2k}$$
(5.60)

$$= \frac{[n/2]!^2}{n!} (-1)^{(n-1)/2} \sum_{k=0}^{[n/2]} \frac{(-1)^k}{(n-2k)!} \frac{(2n-2k)!}{(2n-2k)} \frac{1}{k!} \frac{(n-k)}{(n-k)!} x^{n-2k}$$
 (5.61)

$$= \frac{[n/2]!^2}{n!} \frac{(-1)^{[n/2]}}{2} \sum_{k=0}^{[n/2]} \frac{(-1)^k}{(n-2k)!} \frac{(2n-2k)!}{k!(n-k)!} x^{n-2k}$$
(5.62)

$$= \frac{[n/2]!^2}{n!} (-1)^{[n/2]} 2^{n-1} P_n(x), \qquad n = 1, 3, 5, \cdots.$$
 (5.63)

En resumen, usando una notación algo más compacta, podemos escribir:

$$P_n(x) := (-1)^{[n/2]} 2^{-2[n/2]} \frac{n!}{[n/2]!^2} \times \begin{cases} y_{1,n}(x), & n \text{ par} \\ y_{2,n}(x), & n \text{ impar.} \end{cases}$$
 (5.64)

### 5.1.6. Funciones de Legendre de segunda especie

Como hemos visto, en el caso en que Q = n(n+1) una de las series  $(y_1 \text{ si } n \text{ es par}, y_2 \text{ si } n \text{ es impar})$  se trunca, reduciéndose (salvo factores constantes) a los polinomios de Legendre. Por lo tanto, para cada n, existe una segunda solución de la ec. de Legendre, que quedaa expresada como serie infinita, que convergen para  $x \in (-1,1)$  pero diverge en  $x = \pm 1$ . Estas funciones son llamadas las **funciones de Legendre de segunda especie**,  $Q_n(x)$ , que por conveniencia definiremos usando factores análogos a aquellos encontrados en (5.56) y (5.56):

$$Q_n(x) := \begin{cases} (-1)^{n/2} \frac{[(n/2)!]^2}{n!} 2^n y_{2,n}(x), & n \text{ par} \\ (-1)^{(n+1)/2} \frac{[(\frac{n-1}{2})!]^2}{n!} 2^{n-1} y_{1,n}(x), & n \text{ impar.} \end{cases}$$
(5.65)

### Relaciones de Recurrencia

A partir de las definiciones (5.65) es posible verificar la siguiente importante propiedad:

Las funciones de Legendre de segunda especie satisfacen las mismas relaciones de recurrencia que los polinomios de Legendre.

Como consecuencia, todas las relaciones de recurrencia que derivamos para los polinomios de Legendre son válidas para las correspondientes funciones de segunda especie. Podemos verificar nuevamente a partir de estas identidades que cada  $Q_n(x)$  satisface la E.D.O. de Legendre.

En particular, se demostrarán las siguientes relaciones (a partir de las cuales pueden derivarse todas las otras):

$$nQ_{n-1}(x) + (n+1)Q_{n+1}(x) = (2n+1) x Q_n(x), (5.66)$$

$$(2n+1)Q_n(x) = Q'_{n+1}(x) - Q'_{n-1}(x). (5.67)$$

En este caso, las soluciones adoptan la forma (ver (5.44) y (5.44), comparar con (5.50) y (5.51)):

$$y_{1,n}(x) = \sum_{m=0}^{+\infty} b_m x^{2m}, \qquad b_m = \frac{1}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n)(l+n+1), \qquad b_0 = 1,$$
 (5.68)

$$y_{2,n}(x) = \sum_{m=0}^{+\infty} c_m x^{2m+1}, \qquad c_m = \frac{1}{(2m+1)!} \prod_{\substack{l=1 \ l \text{ impar}}}^{2m-1} (l-n)(l+n+1), \qquad c_0 = 1. \quad (5.69)$$

A partir de las definiciones en (5.65), podemos escribir:

$$Q_{n-1}(x) := \begin{cases} (-1)^{\frac{n}{2}} \frac{\left[\left(\frac{n-2}{2}\right)!\right]^2}{(n-1)!} 2^{n-2} y_{1,n-1}(x), & n \text{ par} \\ (-1)^{\frac{n-1}{2}} \frac{\left[\left(\frac{n-1}{2}\right)!\right]^2}{(n-1)!} 2^{n-1} y_{2,n-1}(x), & n \text{ impar,} \end{cases}$$
(5.70)

$$Q_{n+1}(x) := \begin{cases} (-1)^{\frac{n+2}{2}} \frac{\left[\left(\frac{n}{2}\right)!\right]^2}{(n+1)!} 2^n y_{1,n+1}(x), & n \text{ par} \\ (-1)^{\frac{n+1}{2}} \frac{\left[\left(\frac{n+1}{2}\right)!\right]^2}{(n+1)!} 2^{n+1} y_{2,n+1}(x), & n \text{ impar.} \end{cases}$$
(5.71)

Por lo tanto,

$$nQ_{n-1}(x) + (n+1)Q_{n+1}(x)$$

$$= \begin{cases} (-1)^{\frac{n}{2}} \frac{\left[ \left( \frac{n}{2} \right)! \right]^{2}}{(n)!} 2^{n} \left[ y_{1,n-1}(x) - y_{1,n+1} \right], & n \text{ par} \\ (-1)^{\frac{n+1}{2}} \frac{\left[ \left( \frac{n-1}{2} \right)! \right]^{2}}{(n)!} 2^{n-1} \left[ -n^{2} y_{2,n-1}(x) + (n+1)^{2} y_{2,n+1} \right], & n \text{ impar.} \end{cases}$$
(5.72)

Para evaluar el lado derecho de (5.72) usamos las expresiones en serie (5.68) y (5.69). Para  $y_{1,n}(x)$  tenemos que

$$y_{1,n-1}(x) = \sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n+1)(l+n) x^{2m},$$
 (5.73)

$$y_{1,n+1}(x) = \sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n-1)(l+n+2) x^{2m}.$$
 (5.74)

Reescribimos ahora ambas expresiones como

$$y_{1,n-1}(x) = \sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l-n)(l+n-1) x^{2m},$$
 (5.75)

$$y_{1,n+1}(x) = \sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l-n-2)(l+n+1) x^{2m}.$$
 (5.76)

Luego, ya que

$$\prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l+n-1) = n \prod_{\substack{l=3\\l \text{ impar}}}^{2m-1} (l+n-1) = n \prod_{\substack{l=1\\l \text{ impar}}}^{2m-3} (l+n+1),$$
(5.77)

$$\lim_{\substack{l \text{ impar} \\ l \text{ impar}}} \lim_{\substack{l \text{ impar} \\ l \text{ impar}}} \lim_{\substack{l \text{ impar} \\ l \text{ impar}}} \lim_{\substack{l = 1 \\ l \text{ impar}}} (l - n - 2) = -(n + 1) \prod_{\substack{l = 3 \\ l \text{ impar}}}^{2m - 1} (k - n - 2) = -(n + 1) \prod_{\substack{l = 1 \\ l \text{ impar}}}^{2m - 3} (l - n), \quad (5.78)$$

tenemos que (5.75) y (5.76) son equivalentes a:

$$y_{1,n-1}(x) = n \sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-3} (l+n+1)(l-n)(2m-1-n) x^{2m},$$
 (5.79)

$$y_{1,n+1}(x) = -(n+1) \sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l-n)(l+n+1)(2l+n) x^{2m}.$$
 (5.80)

Entonces,

$$y_{1,n-1}(x) - y_{1,n+1}(x) = (2n+1) \sum_{m=1}^{+\infty} \frac{1}{(2m-1)!} \prod_{\substack{l=1 \ l \text{ impar}}}^{2m-3} (l-n)(l+n+1) x^{2m}$$
(5.81)  

$$= (2n+1) \sum_{m=0}^{+\infty} \frac{1}{(2m+1)!} \prod_{\substack{l=1 \ l \text{ impar}}}^{2m-1} (l-n)(l+n+1) x^{2m+2} (5.82)$$
  

$$= (2n+1) x y_{2,n}(x).$$
(5.83)

Por otro lado, de la expresión en serie (5.69) para  $y_{2,n}(x)$ , y siguiendo el mismo recién empleado, tenemos que

$$y_{2,n+1}(x) = \sum_{m=0}^{+\infty} \frac{1}{(2m+1)!} \prod_{\substack{l=1 \ l \text{ impar}}}^{2m-1} (l-n-1)(l+n+2)x^{2m+1}$$
 (5.84)

$$= \sum_{m=0}^{+\infty} \frac{1}{(2m+1)!} \prod_{\substack{l=1\\l \text{ par}}}^{2m-2} (l-n)(l+n+3)x^{2m+1}$$
 (5.85)

$$= \frac{1}{n+1} \sum_{m=0}^{+\infty} \frac{(2m+n+1)}{(2m+1)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n)(l+n+1)x^{2m+1}.$$
 (5.86)

Similarmente,

$$y_{2,n-1}(x) = \sum_{m=0}^{+\infty} \frac{1}{(2m+1)!} \prod_{\substack{l=1 \ \text{impar}}}^{2m-1} (l-n+1)(l+n)x^{2m+1}$$
 (5.87)

$$= \sum_{m=0}^{+\infty} \frac{1}{(2m+1)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n+2)(l+n+1)x^{2m+1}$$
 (5.88)

$$= -\frac{1}{n} \sum_{m=0}^{+\infty} \frac{(2m-n)}{(2m+1)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n)(l+n+1)x^{2m+1}.$$
 (5.89)

De este modo, usando (5.86) y (5.89), encontramos que

$$(n+1)^{2}y_{2,n+1}(x) - n^{2}y_{2,n+1}(x) = (2n+1)\sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n)(l+n+1)x^{2m} 5.90)$$

$$= (2n+1)x y_{1,n}(x). \tag{5.91}$$

Finalmente, reemplazamos (5.83) y (5.91) en (5.72), y obtenemos

$$nQ_{n-1}(x) + (n-1)Q_{n+1}(x) = \begin{cases} (-1)^{\frac{n}{2}} \frac{\left[\left(\frac{n}{2}\right)!\right]^{2}}{(n)!} 2^{n} (2n+1)xy_{2,n}(x), & n \text{ par} \\ (-1)^{\frac{n+1}{2}} \frac{\left[\left(\frac{n-1}{2}\right)!\right]^{2}}{(n)!} 2^{n-1} (2n+1)xy_{1,n}(x), & n \text{ impar} \end{cases}$$

$$= (2n+1)x \begin{cases} (-1)^{\frac{n}{2}} \frac{\left[\left(\frac{n}{2}\right)!\right]^{2}}{(n)!} 2^{n} y_{2,n}(x), & n \text{ par} \\ (-1)^{\frac{n+1}{2}} \frac{\left[\left(\frac{n-1}{2}\right)!\right]^{2}}{(n)!} 2^{n-1} y_{1,n}(x), & n \text{ impar} \end{cases}$$

$$= (2n+1)xQ_{n}(x), \qquad (5.94)$$

demostrando así la identidad (5.66).

Para demostrar la segunda relación de recurrencia, (5.66), calculamos:

$$Q'_{n+1}(x) - Q'_{n-1}(x) (5.95)$$

$$= \begin{cases} (-1)^{\frac{n}{2}} \frac{\left[\left(\frac{n}{2}\right)!\right]^{2}}{(n)!} 2^{n} \left[-\frac{1}{n+1} y'_{1,n+1}(x) - \frac{1}{n} y'_{1,n-1}\right], & n \text{ par} \\ (-1)^{\frac{n+1}{2}} \frac{\left[\left(\frac{n-1}{2}\right)!\right]^{2}}{(n)!} 2^{n-1} \left[(n+1) y'_{2,n+1}(x) + n y'_{2,n-1}\right], & n \text{ impar.} \end{cases}$$
(5.96)

Usamos nuevamente las expresiones en serie de las funciones  $y_{1,n}(x)$ , y entonces

$$y'_{1,n+1}(x) = \sum_{m=1}^{+\infty} \frac{1}{(2m-1)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n-1)(l+n+2) x^{2m-1}$$
 (5.97)

$$= \sum_{m=0}^{+\infty} \frac{1}{(2m+1)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m} (l-n-1)(l+n+2) x^{2m+1}$$
 (5.98)

$$= -(n+1)\sum_{m=0}^{+\infty} \frac{2m+n+2}{(2m+1)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l-n)(l+n+1) x^{2m+1}.$$
 (5.99)

Análogamente,

$$y'_{1,n-1}(x) = \sum_{m=1}^{+\infty} \frac{1}{(2m-1)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n+1)(l+n) x^{2m-1}$$
 (5.100)

$$= \sum_{m=0}^{+\infty} \frac{1}{(2m+1)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m} (l-n+1)(l+n) x^{2m+1}$$
 (5.101)

$$= n \sum_{m=0}^{+\infty} \frac{(2m-n+1)}{(2m-1)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m+1} (l-n)(l+n+1) x^{2m+1}.$$
 (5.102)

A partir de (5.99) y (5.102) podemos escribir

$$-\frac{1}{(n+1)}y'_{1,n+1}(x) - \frac{1}{n}y'_{1,n-1} = \sum_{m=0}^{+\infty} \frac{(2n+1)}{(2m+1)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l-n)(l+n+1) x^{2m+1} (5.103)$$

$$= (2n+1) y_{2,n}(x). \tag{5.104}$$

Por otro lado,

$$y'_{2,n+1}(x) = \sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l-n-1)(l+n+2) x^{2m}$$
 (5.105)

$$= \frac{1}{n+1} \sum_{m=0}^{+\infty} \frac{(2p+n+1)}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n)(l+n+1) x^{2m}, \qquad (5.106)$$

y similarmente,

$$y'_{2,n-1}(x) = \sum_{m=0}^{+\infty} \frac{1}{(2m)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} (l-n+1)(l+n) x^{2m}$$
 (5.107)

$$= -\frac{1}{n} \sum_{m=0}^{+\infty} \frac{(2p-n)}{(2m)!} \prod_{\substack{l=0 \ l \text{ par}}}^{2m-2} (l-n)(l+n+1) x^{2m}.$$
 (5.108)

Además, (5.106) y (5.108) implican que

$$(n+1)y'_{2,n+1}(x) + ny'_{2,n-1}(x) = \sum_{m=0}^{+\infty} \frac{(2n+1)}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-n)(l+n+1) x^{2m} (5.109)$$

$$= (2n+1) y_{1,n}(x)$$
(5.110)

Finalmente, reemplazando (5.104) y (5.110) en (5.96) llegamos a

$$Q'_{n+1}(x) - Q'_{n-1}(x) = \begin{cases} (-1)^{\frac{n}{2}} \frac{\left[\left(\frac{n}{2}\right)!\right]^{2}}{(n)!} 2^{n} (2n+1) y_{2,n}(x), & n \text{ par} \\ (-1)^{\frac{n+1}{2}} \frac{\left[\left(\frac{n-1}{2}\right)!\right]^{2}}{(n)!} 2^{n-1} (2n+1) y_{1,n}(x), & n \text{ impar} \end{cases}$$

$$= (2n+1)Q_{n}(x), \qquad (5.112)$$

que es precisamente la segunda relación de recurrencia (5.66).

### Expresiones explícitas para $Q_n(x)$

Afortunadamente, es posible encontrar expresiones para las funciones  $Q_n(x)$  en términos de funciones conocidas. Para esto, primero calculamos  $Q_0(x)$ :

$$Q_0(x) = y_{2,0}(x) = \sum_{m=0}^{\infty} \frac{1}{(2m+1)!} \prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} l(l+1) x^{2m+1},$$
 (5.113)

Pero,

$$\prod_{\substack{l=1\\l \text{ impar}}}^{2m-1} l(l+1) = 1 \cdot 2 \cdot 3 \cdot 4 \cdots (2m-1)(2m) = (2m)!. \tag{5.114}$$

Por lo tanto,

$$Q_0(x) = \sum_{m=0}^{\infty} \frac{(2m)!}{(2m+1)!} x^{2m+1} = \sum_{m=0}^{\infty} \frac{x^{2m+1}}{(2m+1)}.$$
 (5.115)

Esta serie es conocida, ya que vimos que

$$\ln\left(\frac{1+x}{1-x}\right) = 2\sum_{m=0}^{\infty} \frac{x^{2m+1}}{(2m+1)},\tag{5.116}$$

y con esto encontramos finalmente que

$$Q_0(x) = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right).$$
 (5.117)

Análogamente, para n=1 tenemos que

$$Q_1(x) = -y_{1,1}(x) = \sum_{m=0}^{\infty} \frac{1}{(2m)!} \prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-1)(l+2) x^{2m},$$
 (5.118)

En este caso, el producto puede escribirse como

$$\prod_{\substack{l=0\\l \text{ par}}}^{2m-2} (l-1)(l+2) = -1 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdots (2m-5)(2m-2)(2m-3)(2m) = -\frac{(2m)!}{2m-1}. (5.119)$$

Entonces,

$$Q_1(x) = \sum_{m=0}^{\infty} \frac{x^{2m}}{(2m-1)} = -1 + \sum_{m=1}^{\infty} \frac{x^{2m}}{(2m-1)}$$
 (5.120)

$$= -1 + \sum_{n=0}^{\infty} \frac{x^{2n+2}}{(2n+1)} = -1 + x \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)}.$$
 (5.121)

Por lo tanto,

$$Q_1(x) = \frac{x}{2} \ln \left( \frac{1+x}{1-x} \right) - 1.$$
 (5.122)

Conociendo  $Q_0(x)$  y  $Q_1(x)$  podemos encontrar expresiones para las funciones de  $Q_n(x)$  de orden superior usando las relaciones de recurrencia (5.66), ya que

$$Q_{n+1}(x) = \frac{1}{(n+1)} \left[ (2n+1)xQ_n(x) - nQ_{n-1}(x) \right].$$
 (5.123)

Por ejemplo,

$$Q_2(x) = \frac{1}{2} \left[ 3xQ_1(x) - Q_0(x) \right]$$
 (5.124)

$$= \frac{1}{2} \left[ -3x + \frac{3}{2}x^2 \ln\left(\frac{1+x}{1-x}\right) - \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) \right]$$
 (5.125)

$$= -\frac{1}{4}(1 - 3x^2)\ln\left(\frac{1+x}{1-x}\right) - \frac{3}{2}x. \tag{5.126}$$

Análogamente, encontramos que

$$Q_3(x) = \frac{1}{4}(5x^3 - 3x)\ln\left(\frac{1+x}{1-x}\right) - \frac{5}{2}x^2 + \frac{2}{3}.$$
 (5.127)



Figura 5.4: Primeras cinco funciones de Legendre de segunda especie.

# Propiedades de las funciones $Q_n(x)$

• Paridad:

$$Q_n(-x) = (-1)^{n+1}Q_n(x) (5.128)$$

• Valor en el origen:

$$Q_n(0) = \begin{cases} 0, & n \text{ par} \\ (-1)^{(n+1)/2} \frac{\left[ \left( \frac{n-1}{2} \right)! \right]^2}{n!} 2^{n-1}, & n \text{ impar.} \end{cases}$$
 (5.129)

• Valor en extremo del intervalo:

$$\lim_{x \to 1} Q_n(x) = +\infty. \tag{5.130}$$

# 5.2. Funciones asociadas de Legendre

Podemos construir soluciones para la ecuación (5.1) a partir del siguiente teorema:

Si  $P_Q^m(x)$  es una solución de  $({\bf 5.1})$  para un valor de Q y m datos, entonces

$$u(x) := (1 - x^2)^{(m+1)/2} \frac{d}{dx} \left[ (1 - x^2)^{-m/2} P_Q^m(x) \right]$$
 (5.131)

es también solución de (5.1), pero con m+1 en lugar de m.

Este resultado permite entonces generar nuevas soluciones, con distintos valores de m, a partir de una solución conocida, y en particular a partir de  $P_n^0$  que definimos como los polinomios de Legendre,  $P_n^0(x) := P_n(x)$ . A partir de esto, podemos definir las funciones asociadas de Legendre  $P_n^m$  tales que

$$P_n^{m+1}(x) = (1-x^2)^{(m+1)/2} \frac{d}{dx} \left[ (1-x^2)^{-m/2} P_n^m(x) \right]$$
(5.132)

Iterando la relación (5.132) obtenemos, para  $m=0,1,2,\cdots,$ 

$$P_n^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_n(x).$$
 (5.133)

Por otro lado, las funciones con m negativo pueden calcularse usando

$$P_n^{-m}(x) = (-1)^m \frac{(n-m)!}{(n+m)!} P_n^m(x), \qquad m = 0, 1, 2, \cdots.$$
 (5.134)

Ya que las funciones  $P_n(x)$  son polinomios de orden n, vemos que existen soluciones  $P_n^m(x)$  no nulas sólo si

$$m = 0, \pm 1, \pm 2, \cdots, \pm n \qquad \Leftrightarrow \qquad |m| \le n.$$
 (5.135)

Es decir, existen 2n+1 valores permitidos de m para cada  $n=0,1,2,\cdots$ .

# 5.2.1. Expresiones explícitas

$$P_1^1(x) = (1 - x^2)^{1/2}, (5.136)$$

$$P_2^1(x) = 3x(1-x^2)^{1/2}, (5.137)$$

$$P_2^2(x) = 3(1 - x^2), (5.138)$$

$$P_3^1(x) = \frac{3}{2}(1 - x^2)^{1/2}(5x^2 - 1), \tag{5.139}$$

$$P_3^2(x) = 15(1-x^2)x, (5.140)$$

$$P_3^3(x) = 15(1-x^2)^{3/2}. (5.141)$$

(5.142)



Figura 5.5: Funciones Asociadas de Legendre: n = 1.



Figura 5.6: Funciones Asociadas de Legendre: n=2.



Figura 5.7: Funciones Asociadas de Legendre: n=3.

# 5.2.2. Fórmula de Rodrigues

$$P_n^m(x) = \frac{1}{2^n n!} (1 - x^2)^{m/2} \frac{d^{m+n}}{dx^{m+n}} (x^2 - 1)^n.$$
 (5.143)

### 5.2.3. Función generadora

$$\frac{(2m)! (1-x^2)^{m/2}}{2^m m! (1-2tx+t^2)^{m+1/2}} = \sum_{n=0}^{\infty} P_{n+m}^m(x) t^n$$
 (5.144)

### 5.2.4. Relaciones de recurrencia

$$(2n+1)xP_n^m = (n+m)P_{n-1}^m + (n+m+1)P_{n+1}^m$$
(5.145)

$$(2n+1)(1-x^2)^{1/2}P_n^m = P_{n+1}^{m+1} - P_{n-1}^{m+1}$$

$$= (n+m)(n+m-1)P_{n-1}^{m-1} - (n-m+1)(n-m+2)P_{n+1}^{m-1}$$
(5.146)
$$= (5.147)$$

### 5.2.5. Paridad

A partir de (5.133) y la paridad de los polinomios  $P_n(x)$  encontramos que

$$P_n^m(-x) = (-1)^{m+m} P_n^m(x). (5.148)$$

Además

$$P_n^m(\pm 1) = \begin{cases} (\pm 1)^n, & m = 0\\ 0, & m \neq 0 \end{cases} . \tag{5.149}$$

# 5.2.6. Ortogonalidad

$$\int_{-1}^{1} P_n^m(x) P_{n'}^m(x) dx = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} \delta_{n,n'}.$$
 (5.150)

### 5.3. Funciones Armónicas Esféricas

Volvemos ahora al problema original de encontrar las soluciones de la ecuación de Laplace. Usando (4.46), (4.49) y el hecho que las funciones asociadas de Legendre son soluciones de (5.1), podemos expresar la solución de (4.45) como

$$\Psi(r,\theta,\varphi) \propto R(r)P_l^m(\cos\theta)e^{im\varphi}.$$
 (5.151)

Es por esto muy útil y común definir las funciones armónicas esféricas  $Y_l^m(\theta, \varphi)$  que, incorporando una normalización conveniente, son definidas por:

$$Y_l^m(\theta,\varphi) := (-1)^m \sqrt{\frac{2l+1}{4\pi}} \cdot \sqrt{\frac{(l-m)!}{(l+m)!}} \cdot P_l^m(\cos\theta) \cdot e^{im\varphi}. \tag{5.152}$$

En la tabla 5.1 se presentan los casos más usados.

Como consecuencia de su definición, las funciones armónicas esféricas satisfacen las siguientes útiles propiedades:

■ Simetría:

$$Y_l^{-m} = (-1)^m (Y_l^m)^*. (5.153)$$

Cuadro 5.1: Algunas funciones armónicas esféricas comúnmente usadas (l, m = 0, ..., 3).

• Ortonormalidad:

$$\oint Y_l^m(\theta,\varphi) \cdot (Y_{l'}^{m'})^*(\theta,\varphi) d\Omega = \int_0^{2\pi} \int_0^{\pi} Y_l^m(\theta,\varphi) \cdot (Y_{l'}^{m'})^*(\theta,\varphi) \operatorname{sen} \theta d\theta d\varphi = \delta_{ll'} \delta_{mm'},$$
(5.154)

donde  $d\Omega = \sin \theta d\theta d\varphi$  es el elemento de ángulo sólido.

- Como consecuencia de la ortogonalidad de las funciones  $Y_l^m$ , éstas son linealmente independientes.
- $\blacksquare$  Las funciones  $Y_l^m$  forman un sistema completo de funciones. Toda función  $f(\theta,\varphi)$  que satisface

$$\int |f(\theta,\varphi)|^2 d\Omega < \infty, \tag{5.155}$$

pueden ser desarrollada en términos de funciones armónicas esféricas:

$$f(\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_l^m(\theta,\varphi), \qquad (5.156)$$

con coeficientes  $a_{lm}$  dados por

$$a_{lm} = \oint f(\theta, \varphi)(Y_l^m)^*(\theta, \varphi) d\Omega.$$
 (5.157)

• La completitud de  $Y_l^m$  se expresa por:

$$\sum_{l=0}^{\infty} \sum_{m=-l}^{l} (Y_l^m)^*(\theta, \varphi) Y_l^m(\theta', \varphi') = \delta(\varphi - \varphi') \delta(\cos \theta - \cos \theta').$$
 (5.158)

Las funciones armónicas esféricas satisfacen

$$\hat{L}^{2}(\theta,\varphi)Y_{l}^{m} = l(l+1)Y_{l}^{m}, \tag{5.159}$$

donde  $\hat{L}^2$  es el operador definido por

$$-\hat{L}^2 := \frac{1}{\operatorname{sen}\theta} \frac{\partial}{\partial \theta} \left( \operatorname{sen}\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\operatorname{sen}^2\theta} \frac{\partial^2}{\partial \varphi^2}. \tag{5.160}$$

En otras palabras, las funciones  $Y_l^m$  son funciones propias del operador  $\hat{L}^2$ , con valor propio l(l+1). En términos de  $\hat{L}^2$ , podemos escribir el operador de Laplace como:

$$\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r \cdot) - \frac{1}{r^2} \hat{L}^2. \tag{5.161}$$



Figura 5.8: Representación gráfica de (la parte real de) algunas funciones armónicas esféricas. Código Python aquí.

### Teorema de adición de armónicos esféricos

$$P_n(\cos \gamma) = \frac{4\pi}{2n+1} \sum_{m=-n}^n Y_n^m(\theta_1, \varphi_1) (Y_n^m)^*(\theta_2, \varphi_2), \tag{5.162}$$

donde  $\gamma$  es el el ángulo entre las direcciones definidas por los pares  $(\theta_1, \varphi_1)$  y  $(\theta_2, \varphi_2)$ , por lo que están relacionados por

$$\cos \gamma = \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \cos(\varphi_1 - \varphi_1). \tag{5.163}$$

Un caso particular interesante de esta identidad se encuentra cuando ambas direcciones son iguales, de modo que  $\theta_1 = \theta_2 = \theta$  y  $\varphi_1 = \varphi_2 = \varphi$ , de modo que  $\gamma = 0$  y entonces

$$P_n(0) = \frac{4\pi}{2n+1} \sum_{m=-n}^{n} |Y_n^m(\theta, \varphi)|^2.$$
 (5.164)

De aquí obtenos directamente que

$$\sum_{m=-n}^{n} |Y_n^m(\theta, \varphi)|^2 = \frac{2n+1}{4\pi},\tag{5.165}$$

lo que además permite encontrar la siguiente cota superior para el módulo de las funciones armónicas esféricas:

$$|Y_n^m(\theta,\varphi)| \le \sqrt{\frac{2n+1}{4\pi}}. (5.166)$$

El teorema de adición es muy útil en Física puesto que permite realizar expansiones de funciones como  $|\vec{x}_1 - \vec{x}_2|^{-1}$  que aparece comúnmente en distintas expresiones

Si  $r_2 < r_1$ , con  $r_1 = |\vec{x}_1|$  y  $r_2 = |\vec{x}_2|$  entonces

$$\frac{1}{|\vec{x}_1 - \vec{x}_2|} = \frac{1}{\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos\gamma}} = \frac{1}{r_1} \frac{1}{\sqrt{1 + t^2 - 2t\cos\gamma}},\tag{5.167}$$

donde hemos definido  $t := r_2/r_1 < 1$ . Entonces

$$\frac{1}{|\vec{x}_1 - \vec{x}_2|} = \frac{1}{r_1} \sum_{n=0}^{\infty} P_n(\cos \gamma) t^n$$
 (5.168)

$$= \frac{1}{r_1} \sum_{n=0}^{\infty} t^n \frac{4\pi}{2n+1} \sum_{m=-n}^n Y_n^m(\theta_1, \varphi_1) (Y_n^m)^*(\theta_2, \varphi_2)$$
 (5.169)

$$=4\pi \sum_{n,m} \frac{1}{2n+1} \frac{r_2^n}{r_1^{n+1}} Y_n^m(\theta_1, \varphi_1) (Y_n^m)^*(\theta_2, \varphi_2).$$
 (5.170)

En común encontrar esta identidad escrita de la siguiente forma:

$$\frac{1}{|\vec{x} - \vec{x}'|} = 4\pi \sum_{n,m} \frac{1}{2n+1} \frac{r_{<}^n}{r_{>}^{n+1}} Y_n^m(\theta, \varphi) (Y_n^m)^*(\theta', \varphi'), \tag{5.171}$$

donde  $r_{>} = max(r, r')$  y  $r_{<} = min(r, r')$ .

## Ecuación de Laplace y armónicos esféricos

En el caso de la ecuación de Laplace, podemos entonces usar el resultado en (4.55), con Q = n(n+1), para escribir una expresión general para la solución (finita para  $\theta = 0$  y  $\theta = \pi$ ), en coordenadas esféricas:

$$\Psi(r,\theta,\varphi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left( A_{nm} r^n + \frac{B_{nm}}{r^{n+1}} \right) Y_n^m(\theta,\varphi).$$
 (5.172)

# Capítulo 6

# Funciones de Bessel

# 6.1. Ecuación de Bessel

Consideraremos aquí la ecuación diferencial de Bessel con argumento complejo,  $z \in \mathbb{C}$ , ya que sus soluciones suminitrarán funciones que satisfacen la E.D.O. de Bessel con variables reales y la E.D.O. modificada de Bessel. Finalmente, buscaremos soluciones de la ecuación con un coeficiente  $\nu^2$  real y positivo, pero no necesariamente entero.

En resumen, buscamos soluciones de la ecuación

$$z\frac{d}{dz}\left(z\frac{dy}{dz}\right) + (z^2 - \nu^2)y(z) = 0, (6.1)$$

que puede ser escrita como

$$y'' + \frac{1}{z}y' + \left(1 - \frac{\nu^2}{z^2}\right)y = 0.$$
 (6.2)

# **6.2.** Solución en serie en torno a z=0

Buscaremos soluciones en serie de potencias de (6.134). Es conveniente encontrar una serie en torno a z=0 (el "punto más simétrico de la ecuación"). Sin embargo, este punto es un punto singular de la ecuación, por lo que en general no es posible expresar la solución como una serie de la forma  $y(z) = \sum_{n=0}^{\infty} a_n z^n$ . Para entender esto más claramente, recuerde que los coeficientes  $a_n$  serían entonces proporcionales a la n-ésima derivada de la solución y(z), evaluada en z=0. Por lo tanto, encontrar la solución de esta forma es equivalente a requerir que cada una de las derivadas de la solución sean finitas en z=0. Como la E.D.O. es de segundo orden, se requieren dos condiciones iniciales, que pueden elegirse como y(0) e y'(0). Las derivadas superiores quedan determinadas por la E.D.O. Sin embargo, vemos de (6.2) que y''(0) (y las derivadas superiores) será en general divergente, aún en el caso en que se elija y'(0), debido al término  $(v^2/z^2)y(z)$ .

Afortunadamente, sí es posible encontrar soluciones de la forma<sup>1</sup>

$$y(z) = z^{\alpha} \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} a_n z^{n+\alpha},$$
 (6.3)

<sup>&</sup>lt;sup>1</sup>Una forma alternativa de verificar que este es el caso es realizar el cambio de variable  $y(z) := z^{\alpha} f(z)$  y ajustar la constante  $\alpha$  de modo que la E.D.O. resultante para la función f(z) sí pueda expresarse como una serie de potencias de la forma  $f(z) = \sum_{n=0}^{\infty} a_n z^n$ .

donde  $\alpha$  es una constante (no necesariamente un entero) que será elegida convenientemente. Suponiendo (6.3), las derivadas de y(z) adoptan la forma siguiente:

$$y' = \sum_{n=0}^{\infty} (n+\alpha)a_n z^{n+\alpha-1}, \quad y'' = \sum_{n=0}^{\infty} (n+\alpha)(n+\alpha-1)a_n z^{n+\alpha-2}.$$
 (6.4)

Substituyendo estas expansiones en (6.2) encontramos

$$0 = z^{2}y'' + zy' + (z^{2} - \nu^{2})y$$
(6.5)

$$= \sum_{n=0}^{\infty} (n+\alpha)(n+\alpha-1) a_n z^{n+\alpha} + \sum_{n=0}^{\infty} (n+\alpha) a_n z^{n+\alpha} + \sum_{n=0}^{\infty} a_n z^{n+\alpha+2} - \nu^2 \sum_{n=0}^{\infty} a_n z^{n+\alpha}$$
(6.6)

$$= \sum_{n=0}^{\infty} \left[ (n+\alpha)^2 - \nu^2 \right] a_n z^{n+\alpha} + \sum_{n=2}^{\infty} a_{n-2} z^{n+\alpha}$$
 (6.7)

$$= (\alpha^2 - \nu^2)a_0 z^{\alpha} + \left[ (\alpha + 1)^2 - \nu^2 \right] a_1 z^{\alpha + 1} + \sum_{n=2}^{\infty} \left[ \left( (n + \alpha)^2 - \nu^2 \right) a_n + a_{n-2} \right] z^{n+\alpha}.$$
(6.8)

Por lo tanto, los coeficientes deben satisfacer las siguientes condiciones:

$$(\alpha^2 - \nu^2)a_0 = 0,$$
  $[(\alpha + 1)^2 - \nu^2]a_1 = 0,$   $((n + \alpha)^2 - \nu^2)a_n + a_{n-2} = 0.$  (6.9)

Encontramos así una relación de recurrencia entre  $a_n$  y  $a_{n-2}$ , que permite entonces expresar todos los coeficientes  $a_n$  con n par en términos de  $a_0$  y todos los con n impar en términos de  $a_1$ .

Como buscamos soluciones no nulas, suponemos primero que  $a_0 \neq 0$ . Entonces la primera condición en (6.9) implica que  $\alpha = \pm \nu$ . En este caso la segunda condición en (6.9) se reduce a  $(1+2\alpha)a_1=0$ . Analizaremos primero el caso genérico en que  $\alpha \neq -1/2$ . Entonces necesariamente  $a_1=0$  y sólo los coeficientes pares, de la forma  $a_{2k}$ ,  $k=0,1,2,\cdots$ , serán no nulos. De la relación de recurrencia en (6.9) obtenemos

$$a_n = -\frac{a_{n-2}}{n(n+2\alpha)}. (6.10)$$

Aplicación sucesiva de (6.10) conduce a

$$a_{2k} = \frac{a_0(-1)^k}{2^{2k}k!} \frac{1}{(1+\alpha)(2+\alpha)(3+\alpha)\cdots(k+\alpha)}$$
(6.11)

$$= \frac{a_0(-1)^k}{2^{2k}k!} \frac{\Gamma(1+\alpha)}{\Gamma(k+\alpha+1)}, \qquad k = 0, 1, 2, \cdots.$$
 (6.12)

Aquí hemos introducido la función Gamma, ver apéndice  ${\Bbb C}$ . Por lo tanto, para  $\alpha=\nu$  hemos encontrado una solución de la forma

$$y_{\nu}(z) = a_0 \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{2k} k!} \frac{\Gamma(1+\nu)}{\Gamma(k+\nu+1)} z^{2k+\nu}, \tag{6.13}$$

donde  $a_0$  es una constante arbitraria. Es conveniente definir las funciones de Bessel de primera especie y orden  $\nu$ ,  $J_{\nu}(z)$ , como las soluciones correspondientes al caso en que  $a_0 := 1/2^{\nu}\Gamma(\nu+1)$ , de modo que

$$J_{\nu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+1)} \left(\frac{z}{2}\right)^{2k+\nu}.$$
 (6.14)

Expandiendo los primeros términos, encontramos:

$$J_{\nu}(z) = \frac{1}{\Gamma(\nu+1)} \left(\frac{z}{2}\right)^{\nu} - \frac{1}{\Gamma(\nu+2)} \left(\frac{z}{2}\right)^{\nu+2} + \cdots$$
 (6.15)

$$= \frac{1}{\Gamma(\nu+1)} \left(\frac{z}{2}\right)^{\nu} \left[1 - \frac{1}{(\nu+1)} \left(\frac{z}{2}\right)^2 + \cdots\right]. \tag{6.16}$$

Como la E.D.O. de Bessel (6.134) depende del cuadrado de  $\nu$ , tendremos que

$$J_{-\nu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k-\nu+1)} \left(\frac{z}{2}\right)^{2k-\nu},\tag{6.17}$$

es también una solución (que equivale al caso  $\alpha = -\nu$ ).

 $Si \ \nu \ es \ positivo, \ pero \ no \ es \ entero$ , entonces tanto  $\Gamma(k+\nu+1)$  como  $\Gamma(k-\nu+1)$  asumen valores finitos y por lo tanto  $J_{\nu}$  y  $J_{-\nu}$  están bien definidas para todo z. Para valores de z cercanos a cero tendremos entonces que  $J_{\nu} \approx (z/2)^{\nu}/\Gamma(1+\nu)$  y  $J_{-\nu} \approx (z/2)^{-\nu}/\Gamma(1-\nu)$ . Por lo tanto,  $J_{\nu}(0) = 0$  mientras que  $J_{-\nu}(0)$  es divergente. Por otro lado,  $J_{0}(0) = 1$ . En particular, esto muestra que  $J_{\nu}$  y  $J_{-\nu}$  son linealmente independientes si  $\nu$  no es entero. En este caso la solución general de (6.134) es de la forma

$$y(z) = c_1 J_{\nu}(z) + c_2 J_{-\nu}(z). \tag{6.18}$$

Por razones históricas y de conveniencia futura se definen adicionalmente las funciones de Bessel de segunda especie de orden  $\nu$ ,  $Y_{\nu}(z)$  (también llamadas funciones de Neumann y denotadas por  $Y_{\nu}(z)$ ), por

$$Y_{\nu}(z) = N_{\nu}(z) := \frac{\cos(\pi\nu)J_{\nu}(z) - J_{-\nu}(z)}{\sin(\pi\nu)}.$$
 (6.19)

Entonces la solución general de (6.134) puede expresarse como una combinación lineal de la función de Bessel y de Neumann correspondiente:

$$y(z) = c_3 J_{\nu}(z) + c_4 Y_{\nu}(z). \tag{6.20}$$

Caso en que  $\alpha = -1/2$ 

En este caso en general tendremos que  $a_0 \neq 0$  y  $a_1 \neq 0$ , y la relación de recurrencia (6.10) se reduce a

$$a_n = -\frac{a_{n-2}}{n(n-1)}. (6.21)$$

Como consecuencia encontramos que, si n es par, entonces

$$a_{2k} = \frac{(-1)^k a_0}{(2k)!},\tag{6.22}$$

mientras que si n es impar,

$$a_{2k+1} = \frac{(-1)^k a_1}{(2k+1)!}. (6.23)$$

Así, la solución es de la forma

$$y(z) = z^{-1/2} \left( \sum_{k=0}^{+\infty} a_{2k} z^{2k} + \sum_{k=0}^{+\infty} a_{2k+1} z^{2k+1} \right)$$
 (6.24)

$$= z^{-1/2} \left( a_0 \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} z^{2k} + a_1 \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1} \right).$$
 (6.25)

Por lo tanto, la solución general de la E.D.O. de Bessel con  $\nu^2=1/4$  es de la forma

$$y(z) = z^{-1/2} \left( a_0 \cos(z) + a_1 \sin(z) \right).$$
(6.26)

Podemos verificar que estas soluciones no son independientes, sino que compinaciones lineales de  $J_{1/2}(z)$  y  $J_{-1/2}(z)$ , ya que

$$J_{1/2}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+1/2+1)} \left(\frac{z}{2}\right)^{2k+1/2}$$
(6.27)

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+3/2)} \left(\frac{z}{2}\right)^{2k+1/2}$$
 (6.28)

$$= \left(\frac{2}{\pi z}\right)^{1/2} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
 (6.29)

$$= \left(\frac{2}{\pi z}\right)^{1/2} \operatorname{sen} z. \tag{6.30}$$

Aquí hemos usado

$$\Gamma(k+\frac{3}{2}) = (k+\frac{1}{2})\Gamma(k+\frac{1}{2}) \tag{6.31}$$

$$=(k+\frac{1}{2})(k-\frac{1}{2})\Gamma(k-\frac{1}{2}) \tag{6.32}$$

$$= (k + \frac{1}{2})(k - \frac{1}{2})(k - \frac{3}{2})\Gamma(k - \frac{3}{2}) \tag{6.33}$$

$$= \cdots \tag{6.34}$$

$$= (k + \frac{1}{2})(k - \frac{1}{2})(k - \frac{3}{2})\frac{1}{2}\Gamma(\frac{1}{2})$$
(6.35)

$$= \frac{\sqrt{\pi}}{2^{k+1}} \underbrace{1 \cdot 3 \cdot 5 \cdots (2k-1)(2k+1)}_{k+1 \text{ terminos}}$$
(6.36)

$$=\frac{\sqrt{\pi}}{2^{2k+1}}\frac{(2k+1)!}{k!}. (6.37)$$

Análogamente,

$$J_{-1/2}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k-1/2+1)} \left(\frac{z}{2}\right)^{2k+1/2}$$
(6.38)

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+1/2)} \left(\frac{z}{2}\right)^{2k+1/2} \tag{6.39}$$

$$= \left(\frac{2}{\pi z}\right)^{1/2} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k} \tag{6.40}$$

$$= \left(\frac{2}{\pi z}\right)^{1/2} \cos z,\tag{6.41}$$

ya que

$$\Gamma(k + \frac{1}{2}) = \frac{\Gamma(k + \frac{3}{2})}{(k + \frac{1}{2})}$$
(6.42)

$$=\frac{\sqrt{\pi}}{2^{2k+1}}\frac{(2k+1)!}{(k+\frac{1}{2})k!}\tag{6.43}$$

$$=\frac{\sqrt{\pi}}{2^{2k}}\frac{(2k)!}{k!}. (6.44)$$

Caso en que  $\alpha^2 \neq \nu^2$ 

Suponemos ahora que  $\alpha^2 \neq \nu^2$ , entonces  $a_0 = 0$  con lo cual  $a_{2k} = 0$  y además  $a_1 \neq 0$ . Luego,  $(\alpha + 1)^2 - \nu^2 = 0$ . Reemplazando esto útlimo en (6.9), se obtiene que

$$a_n = -\frac{a_{n-2}}{(n-1)(n+1+2\alpha)}. (6.45)$$

Aplicando sucesivamente (6.45), encontramos

$$a_{2k+1} = \frac{(-1)^k a_1}{2^{2k} k!} \frac{1}{(\alpha+2)(\alpha+3)(\alpha+4)\cdots(\alpha+k+1)}$$
(6.46)

$$= \frac{(-1)^k a_1}{2^{2k} k!} \frac{\Gamma(\alpha+2)}{\Gamma(\alpha+k+2)}.$$
 (6.47)

Así, para  $\alpha = \nu - 1$  se tiene que la solución toma la forma

$$y_{\nu}(z) = a_1 \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{2k} k!} \frac{\Gamma(1+\nu)}{\Gamma(k+\nu+1)} z^{2k+\nu}.$$
 (6.48)

Eligiendo  $a_1 = 1/(2^{\nu}\Gamma(1+\nu))$ , se obtiene nuevamente la función de Bessel de primera especie, dada por (6.14).

### 6.3. Relaciones de Recurrencia

Las funciones de Bessel  $J_{\nu}(z)$  satisfacen las siguientes relaciones de recurrencia:

$$J_{\nu-1}(z) + J_{\nu+1}(z) = \frac{2\nu}{z} J_{\nu}(z), \tag{6.49}$$

$$J_{\nu-1}(z) - J_{\nu+1}(z) = 2J_{\nu}'(z). \tag{6.50}$$

Podemos verificar estas relaciones usando directamente la expresión en serie de potencias (6.14). En efecto,

$$J_{\nu-1}(z) + J_{\nu+1}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu)} \left(\frac{z}{2}\right)^{2k+\nu-1} + \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+2)} \left(\frac{z}{2}\right)^{2k+\nu+1}$$
(6.51)
$$= \frac{2}{z} \left[ \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu)} \left(\frac{z}{2}\right)^{2k+\nu} + \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+2)} \left(\frac{z}{2}\right)^{2k+\nu+2} \right]$$
(6.52)
$$= \frac{2}{z} \left[ \sum_{k=0}^{\infty} \frac{(-1)^k(k+\nu)}{k!\Gamma(k+\nu+1)} \left(\frac{z}{2}\right)^{2k+\nu} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(k-1)!\Gamma(k+\nu+1)} \left(\frac{z}{2}\right)^{2k+\nu} \right]$$
(6.53)
$$= \frac{2}{z} \left[ \sum_{k=0}^{\infty} \frac{(-1)^k(k+\nu)}{k!\Gamma(k+\nu+1)} \left(\frac{z}{2}\right)^{2k+\nu} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\Gamma(k+\nu+1)} \frac{k}{k!} \left(\frac{z}{2}\right)^{2k+\nu} \right]$$
(6.54)
$$= \frac{2}{z} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+1)} \left[ (k+\nu) - k \right] \left(\frac{z}{2}\right)^{2k+\nu}$$
(6.55)
$$= \frac{2\nu}{z} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+1)} \left(\frac{z}{2}\right)^{2k+\nu}$$
(6.56)
$$= \frac{2\nu}{z} J_{\nu}(z).$$
(6.57)

De manera análoga, realizando ahora la resta de  $J_{\nu-1}(z)$  y  $J_{\nu+1}(z)$  obtenemos (ver (6.51) y (6.55)):

$$J_{\nu-1}(z) - J_{\nu+1}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu)} \left(\frac{z}{2}\right)^{2k+\nu-1} - \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+2)} \left(\frac{z}{2}\right)^{2k+\nu+1}$$
(6.58)  
$$= \frac{2}{z} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+1)} \left[(k+\nu) + k\right] \left(\frac{z}{2}\right)^{2k+\nu}$$
(6.59)

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{k\Gamma(k+\nu+1)} (2k+\nu) \left(\frac{z}{2}\right)^{2k+\nu-1}$$
 (6.60)

$$=2\frac{d}{dz}\sum_{k=0}^{\infty}\frac{(-1)^k}{k!\Gamma(k+\nu+1)}\left(\frac{z}{2}\right)^{2k+\nu}$$
(6.61)

$$=2J_{\nu}'(z). \tag{6.62}$$

A partir de las relaciones (6.49) y (6.50) podemos derivar otras relaciones. Por ejemplo, sumando (6.49) y (6.50) llegamos a

$$J_{\nu-1}(z) = J_{\nu}'(z) + \frac{\nu}{z} J_{\nu}(z) \tag{6.63}$$

$$= z^{-\nu} \frac{d}{dz} [z^{\nu} J_{\nu}(z)]. \tag{6.64}$$

Similarmente, la suma de (6.49) y (6.50) conduce a

$$J_{\nu+1}(z) = -J_{\nu}'(z) + \frac{\nu}{z}J_{\nu}(z)$$
(6.65)

$$= -z^{\nu} \frac{d}{dz} \left[ z^{-\nu} J_{\nu}(z) \right]. \tag{6.66}$$

Finalmente, podemos verificar que estas relaciones implican que las funciones  $J_{\nu}(z)$  satisfacen la ecuación de Bessel. A partir de (6.63) tenemos que  $zJ'_{\nu}=zJ_{\nu-1}-\nu J_{\nu}$ . Derivando y multiplicando por z esta relación, tenemos que

$$z\frac{d}{dz}(zJ_{\nu}') = z\left(J_{\nu-1} + zJ_{\nu-1}' - \nu J_{\nu}'\right) \tag{6.67}$$

$$= zJ_{\nu-1} + z^2J'_{\nu-1} - \nu zJ'_{\nu}. \tag{6.68}$$

Usando (6.65) (reemplazando  $\nu$  por  $\nu-1$ ) para reescribir el segundo término de (6.68) y nuevamente (6.63) en el último término, llegamos a

$$z\frac{d}{dz}(zJ_{\nu}') = zJ_{\nu-1} + z\left[(\nu-1)J_{\nu-1} - zJ_{\nu}\right] - \nu(zJ_{\nu-1} - \nu J_{\nu})$$
(6.69)

$$= -(z^2 - \nu^2)J_{\nu},\tag{6.70}$$

que es equivalente a la ecuación (6.134).

# 6.3.1. Representación integral \*\*\*

Las funciones de Bessel de orden  $\nu$  y argumento real pueden expresarse como la siguiente integral en el plano complejo

$$J_{\nu}(x) = 2\pi i \int_{\mathcal{C}} e^{(x/2)(t-t^{-1})} t^{-\nu-1} dt,$$
(6.71)

donde  $t \in \mathbb{C}$  está integrado sobre el contorno  $\mathcal{C}$  indicado en la figura XXX.

Podemos probar esta relación a partir de la siguiente representación de la función Gamma (ver, por ejemplo, la expresión (11.21) [4]):

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{\mathcal{C}} e^t t^{-z} dt. \tag{6.72}$$

Primero, reescribimos el integrando de (6.71) como

$$e^{(x/2)(t-t^{-1})}t^{-\nu-1} = e^{xt/2}e^{-x/2t}t^{-\nu-1}$$
(6.73)

$$= e^{xt/2} \left[ \sum_{k=0}^{\infty} \frac{1}{k!} \left( \frac{-x}{2t} \right)^k \right] t^{-\nu - 1}$$
 (6.74)

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left(\frac{x}{2}\right)^k e^{xt/2} t^{-k-\nu-1}.$$
 (6.75)

Entonces, integrando esta relación sobre  $\mathcal{C}$ , encontramos

$$\int_{\mathcal{C}} e^{(x/2)(t-t^{-1})} t^{-\nu-1} dt = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left(\frac{x}{2}\right)^k \int_{\mathcal{C}} e^{xt/2} t^{-k-\nu-1} dt.$$
 (6.76)

| $\alpha_{m,n}$ | n = 1     | n=2        | n=3        | n=4        | n=5        |
|----------------|-----------|------------|------------|------------|------------|
| m = 0          | 2.4048255 | 5.5200781  | 8.6537279  | 11.7915344 | 14.9309177 |
| m = 1          | 3.8317059 | 7.0155866  | 10.1734681 | 13.3236919 | 16.4706300 |
| m = 2          | 5.1356223 | 8.4172441  | 11.6198411 | 14.7959517 | 17.9598194 |
| m = 3          | 6.3801619 | 9.7610231  | 13.0152007 | 16.2234661 | 19.4094152 |
| m = 4          | 7.5883424 | 11.0647094 | 14.3725366 | 17.6159660 | 20.8269329 |

Cuadro 6.1: Las primeras raíces  $\alpha_{m,n}$  de  $J_m(x)$ , m = 0, 1, 2, 3, 4. Código Python disponible en este notebook.

Finalmente, realizando el cambio de variable x' := xt/2 y usando (6.72) reescribimos al última integral como

$$\int_{\mathcal{C}} e^{xt/2} t^{-k-\nu-1} dt = \frac{2}{x} \int_{\mathcal{C}} e^{t'} \left(\frac{2t'}{x}\right)^{-k-\nu-1} dt'$$
 (6.77)

$$= \left(\frac{2}{x}\right)^{-k-\nu} \int_{\mathcal{C}} e^{t'} t'^{-k-\nu-1} dt' \tag{6.78}$$

$$= \left(\frac{2}{x}\right)^{-k-\nu} \frac{2\pi i}{\Gamma(k+\nu+1)}.$$
 (6.79)

Sustituyendo (6.79) en (6.75) llegamos directamente al resultado deseado, luego de indentificar la expansión en serie de potencias (6.14) de la función  $J_{\nu}(x)$ .

A partir de (6.71) podemos encotrar la expresión alternativa:

$$J_{\nu}(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(\nu\theta - x \sin\theta) d\theta - \frac{\sin(\nu\pi)}{\pi} \int_{0}^{\infty} e^{-\nu t - x \sinh t} dt.$$
 (6.80)

### 6.3.2. Forma asintótica

A partir de la representación integral (6.71) es posible encontrar una expresión asintótica para las funciones de Bessel, válida para valores "grandes" de x:

$$J_{\nu}(x) \approx \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\nu\pi}{2} - \frac{\pi}{4}\right), \qquad x \gg \left|\nu^2 - \frac{1}{4}\right|.$$
 (6.81)

#### 6.3.3. Ceros de las funciones de Bessel

Frecuentemente, es necesario evaluar las raíces, o ceros, de las funciones de Bessel. La función de Bessel  $J_{\nu}(x)$  tiene infinitas raíces (ver, por ejemplo, figura 6.3). Denotaremos  $\alpha_{\nu,n}$  a la n-ésima raiz de la función  $J_{\nu}(x)$ , es decir, tal que  $J_{\nu}(\alpha_{\nu,n}) = 0$  y  $\alpha_{\nu,n+1} < \alpha_{\nu,n}$ ,  $n = 1, 2, \cdots$ . Los valores de estas raíces son calculadas numéricamente a partir, por ejemplo, de la expresión en serie (6.14) para las funciones de Bessel. En la tabla 6.1 se muestran algunos de estos ceros.:



Figura 6.1: Algunos ceros de las funciones  $J_m(x)$ . Código Python disponible en este notebook.



Figura 6.2: Diferencias entre ceros sucesivos de las funciones  $J_m(x)$ . Código Python disponible en este notebook.

Es también frecuente requerir calcular las raíces de las derivadas de las funciones de Bessel. Éstas serán denotadas por  $\beta_{\nu,n}$  y entonces satisfacen  $J'_{\nu}(\beta_{\nu,n}) = 0$  y  $\beta_{\nu,n+1} < \alpha_{\beta,n}$ ,  $n = 1, 2, \cdots$ . La tabla 6.2 resume algunos de estos valores:

## 6.3.4. Relaciones de Ortogonalidad

Para  $\nu \geq 0$ ,  $n, m = 1, 2, \dots$  y a > 0, tenemos que

$$\int_0^a J_{\nu} \left( \frac{\alpha_{\nu,n}}{a} \rho \right) J_{\nu} \left( \frac{\alpha_{\nu,m}}{a} \rho \right) \rho \, d\rho = \delta_{n,m} \frac{a^2}{2} \left[ J_{\nu+1}(\alpha_{\nu,n}) \right]^2. \tag{6.82}$$

| $\beta_{m,n}$ | n = 1     | n=2       | n = 3      | n=4        | n=5        |
|---------------|-----------|-----------|------------|------------|------------|
| m = 0         | 3.8317059 | 7.0155866 | 10.1734681 | 13.3236919 | 16.4706300 |
| m = 1         | 1.8411837 | 5.3314427 | 8.5363163  | 11.7060049 | 14.8635886 |
| m = 2         | 3.0542369 | 6.7061331 | 9.9694678  | 13.1703708 | 16.3475223 |
| m = 3         | 4.2011889 | 8.0152366 | 11.3459243 | 14.5858482 | 17.7887478 |
| m = 4         | 5.3175531 | 9.2823962 | 12.6819084 | 15.9641070 | 19.1960288 |

Cuadro 6.2: Las primeras raíces  $\beta_{m,n}$  de  $J'_m(x)$ , m=0,1,2,3,4. Código disponible en este notebook.

Similarmente,

$$\int_{0}^{a} J_{\nu} \left( \frac{\beta_{\nu,n}}{a} \rho \right) J_{\nu} \left( \frac{\beta_{\nu,m}}{a} \rho \right) \rho \, d\rho = \delta_{n,m} \frac{a^{2}}{2} \left( 1 - \frac{\nu^{2}}{\beta_{\nu,n}^{2}} \right) \left[ J_{\nu} (\beta_{\nu,n}) \right]^{2}. \tag{6.83}$$

# 6.4. Funciones de Bessel de orden entero



Figura 6.3: Primeras cinco funciones de Bessel de primera especie y orden entero. Código Python aquí.

Consideremos el caso en que  $\nu=n=0,1,2,\cdots,$  entonces (6.14) se reduce a

$$J_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+n+1)} \left(\frac{z}{2}\right)^{2k+n},$$
(6.84)

y como  $\Gamma(k+n+1)$  tiene argumento entero, coincide con el factorial (k+n)!. Por lo tanto,

$$J_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(k+n)!} \left(\frac{z}{2}\right)^{2k+n}.$$
 (6.85)

Por otro lado, reemplazando  $\nu = -n$ , con  $n = 0, 1, 2, \dots$ , en (6.14) (o, equivalentemente  $\nu = n$  en (6.15)), obtenemos

$$J_{-n}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k-n+1)} \left(\frac{z}{2}\right)^{2k-n}.$$
 (6.86)

Aquí hay que mirar cuidadosamente el caso en que (k-n+1) asume valores enteros negativos, puesto que en esos casos la función  $\Gamma(k-n+1)$  diverge. Los casos en que  $k-n+1=0,1,2,\cdots$  se presentan cuando  $k=n-1,n-2,\cdots,0$  respectivamente. Como  $1/\Gamma(k-n+1)\to 0$  en estos casos<sup>2</sup>, entonces los coeficientes de la suma en (6.86) tenderán a cero para todo  $k=0,1,\cdots,n-1$ . Por lo tanto, sólo contribuirán los términos con  $k\geq n$ . Entonces (6.86) se reduce a

$$J_{-n}(z) = \sum_{k=n}^{\infty} \frac{(-1)^k}{k!\Gamma(k-n+1)} \left(\frac{z}{2}\right)^{2k-n}$$
 (6.87)

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k+n}}{(k+n)!\Gamma(k+1)} \left(\frac{z}{2}\right)^{2k+n}$$
 (6.88)

$$= (-1)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+n)!k!} \left(\frac{z}{2}\right)^{2k+n}$$
 (6.89)

$$= (-1)^n J_n(z). (6.90)$$

Note además que, como puede verse de su expresión en serie, las funciones  $J_n(z)$  tienen paridad n, es decir,

$$J_n(-z) = (-1)^n J_n(z). (6.91)$$

### 6.4.1. Función generadora de Funciones de Bessel de orden entero

Consideramos la función g(t,z) definida por

$$g(t,z) := \sum_{n=-\infty}^{\infty} J_n(z)t^n, \qquad t, z \in \mathbb{C}.$$
(6.92)

De esta forma, podemos entender a g(t, z) como la función generadora de las funciones de Bessel de orden entero, por medio de la expansión (de Laurent) en potencias de t.

Para determinar la forma explícita de g(t, z) podemos proceder como sigue. Derivamos (6.92) con respecto a z y usamos la relación de recurrencia (6.50) para expresar  $J'_n(z)$  en

<sup>&</sup>lt;sup>2</sup>En otras palabras, estamos considerando (o definiendo)  $J_{-n}$  como el límite de  $J_{-\nu}$  cuando  $\nu$  se acerca al entero  $n: J_{-n}(z) := \lim_{\nu \to n} J_{-\nu}(z)$ .

términos de  $J_{n-1}(z)$  y  $J_{n+1}(z)$ . Con esto, podemos escribir:

$$\frac{\partial g}{\partial z} = \sum_{n = -\infty}^{\infty} J_n'(z)t^n \tag{6.93}$$

$$= \frac{1}{2} \sum_{n=-\infty}^{\infty} \left( J_{n-1}(z) - J_{n+1}(z) \right) t^n \tag{6.94}$$

$$= \frac{1}{2} \left[ t \sum_{n=-\infty}^{\infty} J_{n-1}(z) t^{n-1} - t^{-1} \sum_{n=-\infty}^{\infty} J_{n+1}(z) t^{n+1} \right]$$
 (6.95)

$$= \frac{1}{2} (t - t^{-1}) \sum_{n = -\infty}^{\infty} J_n(z) t^n$$
 (6.96)

$$= \frac{1}{2} (t - t^{-1}) g(t, z). \tag{6.97}$$

Podemos encontrar una expresión para la función generadora a partir de esta relación, considerándola como una ecuación diferencial para g(t, z). La solución es necesariamente de la forma

$$g(t,z) = f(t) e^{\frac{z}{2}(t-t^{-1})}.$$
 (6.98)

Finalmente, la función f(t) puede determinarse evaluando (6.92) para z = 0 y luego comparando con (6.98):

$$g(t,0) = f(t) = \sum_{n=-\infty}^{\infty} J_n(0)t^n = J_0(0) = 1.$$
 (6.99)

Aquí usamos el hecho que todas las funciones de Bessel de orden entero se anulan en z = 0, excepto para n = 0, ya que  $J_0(0) = 1$ .

Por lo tanto, obtenemos:

$$g(t,z) = e^{\frac{z}{2}(t-t^{-1})} = \sum_{n=-\infty}^{\infty} J_n(z)t^n.$$
 (6.100)

### 6.4.2. Representación integral

Substituyendo  $t = e^{i\theta}$  en (6.100) encontramos,

$$g(t, e^{i\theta}) = e^{iz \operatorname{sen} \theta} = \sum_{n = -\infty}^{\infty} J_n(z)e^{in\theta}.$$
(6.101)

Esto significa que las funciones de Bessel son los coeficientes de la expansión en serie de Fourier de la función  $e^{iz \operatorname{sen} \theta}$ . Por lo tanto,

$$J_n(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{iz \sin \theta} e^{-in\theta} d\theta.$$
 (6.102)

Equivalentemente, ya que el integrando es periódico de periodo  $2\pi$ , podemos desplazar el intervalo de integración a  $[-\pi,\pi]$ , y escribir

$$J_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(z \sin \theta - n\theta)} d\theta.$$
 (6.103)

Como  $e^{i(z \sin \theta - n\theta)} = \cos(z \sin \theta - n\theta) + i \sin(z \sin \theta - n\theta)$ , vemos que el integrando se divide en una contribución par y otra impar en  $\theta$ . Por lo tanto,

$$J_n(z) = \frac{1}{\pi} \int_0^{\pi} \cos(z \sin \theta - n\theta) d\theta.$$
 (6.104)

En particular,

$$J_0(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{iz \operatorname{sen} \theta} d\theta = \frac{1}{\pi} \int_{0}^{\pi} \cos(z \operatorname{sen} \theta) d\theta.$$
 (6.105)

### 6.4.3. Sumatorias de funciones de Bessel

Adicionalmente, de la relación (6.101) podemos escribir,

$$e^{iz \operatorname{sen} \theta} = J_0(z) + \sum_{n=1}^{\infty} \left( J_n(z)e^{in\theta} + J_{-n}(z)e^{-in\theta} \right)$$
 (6.106)

$$= J_0(z) + \sum_{n=1}^{\infty} \left( J_n(z)e^{in\theta} + (-1)^n J_n(z)e^{-in\theta} \right)$$
 (6.107)

$$= J_0(z) + \sum_{\substack{n=1\\n \text{ impar}}}^{\infty} J_n(z) \left( e^{in\theta} - e^{-in\theta} \right) + \sum_{\substack{n=2\\n \text{ par}}}^{\infty} J_n(z) \left( e^{in\theta} + e^{-in\theta} \right)$$
(6.108)

$$= J_0(z) + 2i \sum_{\substack{n=1\\ n \text{ impar}}}^{\infty} J_n(z) \operatorname{sen}(n\theta) + 2 \sum_{\substack{n=2\\ n \text{ par}}}^{\infty} J_n(z) \cos(n\theta)$$
(6.109)

$$= J_0(z) + 2i\sum_{n=1}^{\infty} J_{2n-1}(z)\operatorname{sen}[(2n-1)\theta] + 2\sum_{n=1}^{\infty} J_{2n}(z)\operatorname{cos}(2n\theta).$$
 (6.110)

Si el argumento de las funciones es real (z = x) entonces, igualando la parte real e imaginaria de ambos lados de la igualdad, obtenemos

$$\cos(x \sin \theta) = J_0(x) + 2\sum_{n=1}^{\infty} J_{2n}(x)\cos(2n\theta),$$
(6.111)

$$sen(x sen \theta) = 2 \sum_{n=1}^{\infty} J_{2n-1}(x) sen[(2n-1)\theta].$$
 (6.112)

En particular, si  $\theta = 0$ , obtenemos la relación

$$J_0(x) + 2\sum_{n=1}^{\infty} J_{2n}(x) = 1. (6.113)$$

## 6.5. Funciones de Bessel de orden semi-entero

Podemos encontrar las otras funciones de Bessel de orden semi-entero usando las relaciones de recurrencia (6.49) y (6.50). Por ejemplo

$$J_{3/2}(z) = \frac{(1/2)}{z} J_{1/2}(z) - J'_{1/2}(z)$$

$$= \frac{1}{2z} \left(\frac{2}{\pi}\right)^{1/2} z^{-1/2} \operatorname{sen} z - \left(-\frac{1}{2}\right) \left(\frac{2}{\pi}\right)^{1/2} z^{-3/2} \operatorname{sen} z - \left(\frac{2}{\pi}\right)^{1/2} z^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z + 2^{-1/2} \pi^{-1/2} z^{-3/2} \operatorname{sen} z - 2^{-1/2} \pi^{-1/2} \cos z$$

$$= \left(\frac{2}{\pi}\right)^{1/2} z^{-3/2} \operatorname{sen} z - \left(\frac{2}{\pi}\right)^{1/2} z^{-1/2} \cos z \tag{6.117}$$

$$= \left(\frac{2}{\pi}\right)^{1/2} \left(z^{-3/2} \operatorname{sen} z - z^{-1/2} \cos z\right). \tag{6.118}$$

# 6.6. Funciones de Bessel de segunda especie

Como hemos ya discutido en la sección 6.2, cuando  $\nu$  no es un entero, las funciones de Bessel de segunda especie, también llamadas funciones de Neumann  $Y_{\nu}(z)$  (ó  $N_{\nu}(z)$ ), definidas por

$$Y_{\nu}(z) := \frac{J_{\nu}(z)\cos(\nu\pi) - J_{-\nu}(z)}{\sin(\nu\pi)}, \qquad \nu \neq n = 0, \pm 1, \pm, 2, \cdots,$$
(6.119)

son soluciones linealmente independientes de  $J_{\nu}(z)$  de ecuación de Bessel. Esta combinación lineal particular es útil puesto que, entre otras cosas, suministra una expresión complementaria a las funciones  $J_{\nu}(z)$  en lo que respecta a su forma asintótica. En efecto, a partir de (6.81) encontramos que

$$Y_{\nu}(x) \approx \sqrt{\frac{2}{\pi x}} \operatorname{sen}\left(x - \frac{\nu \pi}{2} - \frac{\pi}{4}\right), \qquad x \gg \left|\nu^2 - \frac{1}{4}\right|.$$
(6.120)

Además, puede usarse la misma expresión (6.119) en el caso en que  $\nu$  es entero ( $\nu = n$ ). Sabemos que en este caso,  $J_{-n}(z)$  no es linealmente independiente de  $J_{-n}(z)$  ya que se cumple que  $J_{-n}(z) = (-1)^n J_n(z)$ . No obstante, podemos usar (6.119) para encontrar la segunda solución linealmente independiente  $Y_n(z)$ , como el límite de (6.119) cuando el parámetro  $\nu$  se acerca al entero n, es decir,

$$Y_n(z) := \lim_{\nu \to n} \frac{J_{\nu}(z)\cos(\nu\pi) - J_{-\nu}(z)}{\sin(\nu\pi)}, \qquad n = 0, \pm 1, \pm, 2, \cdots.$$
 (6.121)

Note que los coeficientes de la combinación lineal (6.119) son tales que el límite es no trivial, ya que tanto el numerador como el denominador tienden a cero cuando  $\nu$  tiende a n. Por esto, usando la regla de L'Hôpital, encontramos que

$$Y_n(z) = \frac{1}{\pi} \left[ \frac{\partial J_{\nu}(z)}{\partial \nu} - (-1)^n \frac{\partial J_{-\nu}(z)}{\partial \nu} \right]_{\nu=n}.$$
 (6.122)

Puede (hágalo!) verificarse que la función definida por (6.122), efectivamente satisface la ecuación de Bessel (6.134). Además, de (6.122) se sigue, usando  $(\partial J_{\nu}/\partial \nu)_{\nu=-n} = -(\partial J_{-\nu}/\partial \nu)_{\nu=n}$ , que

Por otro lado, de la expansión (6.15) obtenemos que cerca de z=0, y para  $\nu>0$ ,

$$Y_{\nu}(z) \approx -\frac{1}{\operatorname{sen}(\nu\pi)} \frac{1}{\Gamma(1-\nu)} \left(\frac{2}{z}\right)^{\nu} = -\frac{1}{\pi} \Gamma(\nu) \left(\frac{2}{z}\right)^{\nu}. \tag{6.124}$$

Aquí hemos usamos la identidad (C.6). Por lo tanto, para  $\nu \to n$ , obtenemos

$$Y_n(z) \approx -\frac{1}{\pi}(n-1)! \left(\frac{2}{z}\right)^n, \qquad z \approx 0, \qquad n > 0,$$
 (6.125)

de donde vemos que estas funciones divergen en el origen. Note que incluso  $Y_0(z)$  diverge en z=0, ya que<sup>3</sup>

$$Y_0(z) \approx \frac{2}{\pi} \left[ \ln \left( \frac{z}{2} \right) + \gamma \right], \qquad z \approx 0,$$
 (6.127)

donde  $\gamma = -\Psi_0(1)$  es la constante de Euler-Mascheroni,  $\gamma = 0.5772 \cdots$ .

### 6.6.1. Representación integral

$$Y_n(x) = \frac{1}{\pi} \int_0^{\pi} \sin(x \sin \theta - n\theta) d\theta - \frac{1}{\pi} \int_0^{\infty} \left[ e^{nt} + (-1)^n e^{-nt} \right] e^{-x \sinh t} dt.$$
 (6.128)

### 6.6.2. Relaciones de Recurrencia

A partir de la definición (6.121) y las relaciones de recurrencia para las funciones de Bessel (6.49) y (6.50), puede verificarse que las funciones de Bessel de segunda especie satisfacen las mismas relaciones de recurrencia que las de primera especie:

$$Y_{\nu-1}(z) + Y_{\nu+1}(z) = \frac{2\nu}{z} Y_{\nu}(z), \tag{6.129}$$

$$Y_{\nu-1}(z) - Y_{\nu+1}(z) = 2Y_{\nu}'(z). \tag{6.130}$$

$$Y_0(z) = \frac{2}{\pi} \left( \frac{\partial J_{\nu}}{\partial \nu} \right)_{\nu=0} = \frac{2}{\pi} \left[ -\frac{\Psi_0(\nu+1)}{\Gamma(\nu+1)} \left( \frac{z}{2} \right)^{\nu} + \frac{1}{\Gamma(\nu+1)} \left( \frac{z}{2} \right)^{\nu} \ln \left( \frac{z}{2} \right) + \cdots \right]_{\nu=0} = \frac{2}{\pi} \left[ -\Psi_0(1) + \ln \left( \frac{z}{2} \right) + \cdots \right]. \tag{6.126}$$

 $<sup>^3</sup>$ A partir de (6.122), se encuentra, usando la función digamma  $\Psi_0(z) := \Gamma'(z)/\Gamma(z)$ , que



Figura 6.4: Primeras cinco funciones de Bessel de segunda especie (funciones de Neumann) de orden entero. Código Python aquí.

# 6.7. Funciones de Hankel

En muchas aplicaciones físicas (especialmente cuando se estudian soluciones de la ecuación de onda) es conveniente introducir otro par de funciones linealmente independientes, llamadas funciones de Hankel y denotadas por  $H_{\nu}^{(1)}$  y  $H_{\nu}^{(2)}$ , definidas por

$$H_{\nu}^{(1)}(z) := J_{\nu}(z) + iY_{\nu}(z),$$
 (6.131)

$$H_{\nu}^{(2)}(z) := J_{\nu}(z) - iY_{\nu}(z). \tag{6.132}$$

Las funciones de Hankel son linealmente independientes para todo  $\nu$ , y satisfacen las mismas relaciones de recurrencia que las funciones de Bessel. La utilidad de su definición resulta clara al considerar su forma asintótica. Usando (6.81) y (6.120) se encuentra que

$$H_{\nu}^{(1)}(x) \approx \sqrt{\frac{2}{\pi x}} e^{i(x-\nu\pi/2-\pi/4)}, \quad H_{\nu}^{(2)}(x) \approx \sqrt{\frac{2}{\pi x}} e^{-i(x-\nu\pi/2-\pi/4)}, \quad x \gg \left|\nu^2 - \frac{\pi}{4}\right|.$$
 (6.133)

### 6.8. Funciones modificadas de Bessel

La ecuación modificada de Bessel es

$$x\frac{d}{dx}\left(x\frac{dy}{dx}\right) - (x^2 + \nu^2)y(x) = 0.$$

$$(6.134)$$

Las soluciones finitas en x=0 de esta ecuación son de la forma  $y(x)=J_{\nu}(ix)$ . Como estamos especialmente interesados en el caso en que tanto x como y son reales, es conveniente definir las funciones modificadas de Bessel de primera especie y orden  $\nu$ :

$$I_{\nu}(x) := i^{-\nu} J_{\nu}(ix). \tag{6.135}$$

La función  $I_{\nu}(x)$  así definida es real. En efecto, de la expansión en serie (6.14)

$$I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) \tag{6.136}$$

$$= i^{-\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+1)} \left(\frac{ix}{2}\right)^{2k+\nu}$$
 (6.137)

$$= i^{-\nu} \sum_{k=0}^{\infty} \frac{(-1)^k i^{\nu} i^{2k}}{k! \Gamma(k+\nu+1)} \left(\frac{x}{2}\right)^{2+\nu}.$$
 (6.138)

Por lo tanto,

$$I_{\nu}(x) = \sum_{k=0}^{\infty} \frac{1}{k!\Gamma(k+\nu+1)} \left(\frac{x}{2}\right)^{2k+\nu}.$$
 (6.139)

Nuevamente,  $I_{\nu}$  y  $I_{-\nu}$  son linealmente independientes, excepto si  $\nu$  es entero, ya que en este último caso se satisface que

$$I_{-n}(x) = I_n(z) (6.140)$$



Figura 6.5: Primeras cinco funciones modificadas de Bessel (de primera especie) de orden entero. Código Python aquí.

La correspondiente forma asintótica de las funciones modificadas de Bessel  $I_{\nu}(x)$  es

$$I_{\nu}(x) \approx \frac{1}{\sqrt{2\pi x}} e^x, \qquad x \gg \left| \nu^2 - \frac{1}{4} \right|.$$
 (6.141)

Las funciones  $I_{\nu}(x)$  satisfacen las siguientes relaciones de recurrencia, que se siguen a partir de (6.49), (6.50) y (6.135):

$$I_{\nu-1}(x) + I_{\nu+1}(x) = 2I_{\nu}'(x), \tag{6.142}$$

$$I_{\nu-1}(x) - I_{\nu+1}(x) = \frac{2\nu}{x} I_{\nu}(x). \tag{6.143}$$

#### 6.8.1. Funciones Modificadas de Bessel de segunda especie

En analogía con lo visto en la sección 6.6, es conveniente introducir las funciones de segunda especie, ahora denotadas por  $K_{\nu}(x)$ , y definidas de la forma siguiente:

$$K_{\nu}(x) := \frac{\pi}{2} \left[ \frac{I_{-\nu}(x) - I_{\nu}(x)}{\operatorname{sen}(\nu \pi)} \right], \qquad \nu \neq n = 0, \pm 1, \pm 2, \cdots.$$
 (6.144)

Note que como consecuencia de esta definición  $K_{-\nu}(x) = K_{\nu}(x)$ , por lo que es suficiente considerar  $\nu \geq 0$ . Con estas definiciones,  $I_{\nu}$  y  $K_{\nu}$  son l.i. para todo  $\nu$ , y su forma asintótica es nuevamente "complementaria" ya que

$$K_{\nu}(x) \approx \sqrt{\frac{\pi}{2x}} e^{-x}.$$
 (6.145)

En el caso de  $\nu$  entero, la definición se realiza como el límite  $\nu \to n$ , es decir,

$$K_n(x) := \lim_{\nu \to n} \frac{\pi}{2} \left[ \frac{I_{-\nu}(x) - I_{\nu}(x)}{\operatorname{sen}(\nu \pi)} \right], \qquad n = 0, 1, 2, \dots$$
 (6.146)

Usando nuevamente la regla de L'Hôpital, podemos escribir

$$K_n(x) = \frac{(-1)^n}{2} \left[ \frac{\partial I_{-\nu}(x)}{\partial \nu} - \frac{\partial I_{\nu}(x)}{\partial \nu} \right]_{\nu=n}.$$
 (6.147)



Figura 6.6: Primeras cinco funciones modificadas de Bessel de segunda primera especie y orden entero. Código Python aquí.

Las funciones  $K_{\nu}(x)$  satisfacen las siguientes relaciones de recurrencia

$$K_{\nu-1}(x) + K_{\nu+1}(x) = -2K'_{\nu}(x),$$
 (6.148)

$$K_{\nu-1}(x) - K_{\nu+1}(x) = -\frac{2\nu}{x} K_{\nu}(x),$$
 (6.149)

como puede verificarse a partir de (6.142), (6.143), (6.144) y (6.147). Note la diferencia de signo de estas relaciones con respecto a las correspondientes a las funciones de primera especie, (6.142) y (6.143).

#### 6.9. Funciones Esféricas de Bessel

Como vimos, en coordenadas esféricas la ecuación radial proveniente de la separación de variables de la ecuación de Helmholtz es (4.52). Además, las soluciones finitas en  $\theta = 0$  y  $\theta = \pi$  (es decir, sobre el eje z) de (4.53) requieren que Q = n(n+1). La ecuación resultante tiene entonces soluciones de la forma

$$R_n(r) = \frac{u_n(kr)}{\sqrt{r}},\tag{6.150}$$

donde  $k = \sqrt{|\alpha|}$  y  $u_n(x)$  es solución de la ecuación (modificada, si  $\alpha < 0$ ) de Bessel de orden semientero,  $\nu = n + 1/2$ .

En el caso en que  $\alpha > 0$ , las soluciones u(x) serán entonces combinaciones de funciones de Bessel de primera y segunda especie. Por esto, es conveniente definir las funciones esféricas de Bessel (de primera y segunda especie) por:

$$j_n(x) := \sqrt{\frac{\pi}{2x}} J_{n+1/2}(x), \tag{6.151}$$

$$y_n(x) := \sqrt{\frac{\pi}{2x}} Y_{n+1/2}(x) = (-1)^{n+1} \sqrt{\frac{\pi}{2x}} J_{-n-1/2}(x).$$
 (6.152)

El factor  $\sqrt{\pi/2}$  es incluido por conveniencia, ya que entonces (ver (6.30) y (6.41)) las primeras funciones resultan ser simples:

$$j_0(x) = \frac{\sin x}{x}, \qquad y_0(x) = -\frac{\cos x}{x}.$$
 (6.153)

Podemos encontrar una expresión en serie simple a partir<sup>4</sup> de (6.14),

$$J_{n+1/2}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+n+3/2)} \left(\frac{x}{2}\right)^{2k+n+1/2}$$
(6.154)

$$= \sqrt{\frac{x}{2}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+n+3/2)} \left(\frac{x}{2}\right)^{2k+n}$$
 (6.155)

$$= \sqrt{\frac{x}{2}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{2^{2k+2n+1}\Gamma(k+n+1)}{\pi^{1/2}\Gamma(2k+2n+2)} \left(\frac{x}{2}\right)^{2k+n}$$
(6.156)

$$=\sqrt{\frac{2x}{\pi}}2^{2n}\sum_{k=0}^{\infty}\frac{(-1)^k}{k!}\frac{2^{2k}(k+n)!}{(2k+2n+1)!}\left(\frac{x}{2}\right)^{2k+n}$$
(6.157)

$$=\sqrt{\frac{2x}{\pi}}2^n x^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{(k+n)!}{(2k+2n+1)!} x^{2k}.$$
 (6.158)

Por lo tanto,

$$j_n(x) = 2^n x^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{(k+n)!}{(2k+2n+1)!} x^{2k}.$$
(6.159)

Análogamente, para la función esférica de segunda especie, encontramos

$$y_n(x) = \frac{(-1)^{n+1}}{2^n x^{n+1}} \sum_{k=0}^{\infty} \frac{(-1)^k (k-n)!}{k! (2k-2n)!} x^{2k}.$$
 (6.160)

<sup>&</sup>lt;sup>4</sup>y usando la "fórmula de duplicación de Legendre", ver por ejemplo ec. (10.66b) de [2]:  $\Gamma(z+1)\Gamma(z+1/2) \equiv 2^{-2z}\pi^{1/2}\Gamma(2z+1)$ , con z=k+n+1/2.

Estas ecuaciones satisfacen entonces la EDO esférica de Bessel:

$$\frac{d}{dx}\left(x^2\frac{dy}{dx}\right) + [x^2 - n(n+1)]y(x) = 0.$$
 (6.161)

#### 6.9.1. Relaciones de Recurrencia

A partir de las relaciones de recurrencia para  $J_{\nu}$  y  $Y_{\nu}$ , ver (6.49), (6.50), (6.129) y (6.130), podemos derivar directamente las correspondientes relaciones para las funciones esféricas, obteniendo:

$$j_{n-1}(x) + j_{n+1}(x) = \frac{2n+1}{x} j_n(x), \qquad n j_{n-1}(x) - (n+1) j_{n+1}(x) = (2n+1) j'_n(x).$$
 (6.162)

Similarmente (6.64) y (6.66) implican que

$$j_{n-1}(x) = x^{-n-1} \frac{d}{dx} \left[ x^{n+1} j_n(x) \right], \qquad (6.163)$$

$$j_{n+1}(x) = -x^n \frac{d}{dx} \left[ x^{-n} j_n(x) \right]. \tag{6.164}$$

Aplicando sucesivamente (6.164) obtenemos una expresión en términos de la función  $j_0(x)$ :

$$j_n(x) = (-x)^n \left(\frac{1}{x}\frac{d}{dx}\right)^n j_0(x).$$
 (6.165)

Similarmente,

$$y_n(x) = (-x)^n \left(\frac{1}{x}\frac{d}{dx}\right)^n y_0(x).$$
 (6.166)

#### 6.9.2. Expresiones explícitas

De este modo, usando (6.153) encontramos las siguientes útiles expresiones:

$$j_n(x) = (-x)^n \left(\frac{1}{x} \frac{d}{dx}\right)^n \frac{\sin x}{x},$$
(6.167)

$$y_n(x) = -(-x)^n \left(\frac{1}{x}\frac{d}{dx}\right)^n \frac{\cos x}{x}.$$
 (6.168)

Con ellas podemos calcular explícitamente las funciones que necesitemos. Por ejemplo:

$$j_0(x) = \frac{\operatorname{sen} x}{x},\tag{6.169}$$

$$j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x},\tag{6.170}$$

$$j_2(x) = \left(\frac{3}{x^2} - 1\right) \frac{\sin x}{x} - \frac{3\cos x}{x^2},\tag{6.171}$$

$$j_3(x) = \left(\frac{15}{x^3} - \frac{6}{x}\right) \frac{\sin x}{x} - \left(\frac{15}{x^2} - 1\right) \frac{\cos x}{x},\tag{6.172}$$

$$y_0(x) = -j_{-1}(x) = -\frac{\cos x}{x},\tag{6.173}$$

$$y_1(x) = j_{-2}(x) = -\frac{\cos x}{x^2} - \frac{\sin x}{x},$$
 (6.174)

$$y_0(x) = -j_{-1}(x) = -\frac{\cos x}{x},$$

$$y_1(x) = j_{-2}(x) = -\frac{\cos x}{x^2} - \frac{\sin x}{x},$$

$$y_2(x) = -j_{-3}(x) = \left(-\frac{3}{x^2} + 1\right) \frac{\cos x}{x} - \frac{3 \sin x}{x^2},$$
(6.173)
$$(6.175)$$

$$y_3(x) = j_{-4}(x) = \left(-\frac{15}{x^3} + \frac{6}{x}\right) \frac{\cos x}{x} - \left(\frac{15}{x^2} - 1\right) \frac{\sin x}{x}.$$
 (6.176)



Figura 6.7: Primeras cinco funciones esféricas de Bessel de primera especie de orden entero. Código Python aquí.



Figura 6.8: Primeras cinco funciones esféricas de Bessel de segunda especie (funciones de Newmann) de orden entero. Código Python aquí.

#### 6.9.3. Relaciones de Ortogonalidad

Nuevamente, podemos encontrar relaciones válidas para las funciones esféricas a partir de aquellas derivadas para las funciones de Bessel  $J_{\nu}$ . A partir de (6.82) se sigue directamente que

$$\left[ \int_0^a j_n \left( \frac{\bar{\alpha}_{n,m}}{a} r \right) j_n \left( \frac{\bar{\alpha}_{n,m'}}{a} r \right) r^2 dr = \delta_{m,m'} \frac{a^3}{2} \left[ j_{n+1}(\bar{\alpha}_{n,m}) \right]^2, \right]$$
(6.177)

donde  $\bar{\alpha}_{n,m}$  denota la *m*-ésima raiz de la la función esférica  $j_n(x)$ . Ya que  $j_n$  es proporcional a  $J_{n+1/2}$ , entonces  $\bar{\alpha}_{n,m} = \alpha_{n+1/2,m}$ .

#### 6.9.4. Funciones esféricas de Hankel

$$h_n^{(1)}(x) = j_n(x) + iy_n(x), (6.178)$$

$$h_n^{(2)}(x) = j_n(x) - iy_n(x). (6.179)$$

$$h_n^{(1)}(x) = (-i)^{n+1} \frac{e^{ix}}{x} \sum_{m=0}^n \frac{i^m}{m!(2x)^m} \frac{(n+m)!}{(n-m)!}$$
(6.180)

#### 6.9.5. Forma asintótica

Para  $x \ll 1$ ,

$$j_n(x) \approx \frac{2^n n!}{(2n+1)!} x^n,$$
 (6.181)

$$y_n(x) \approx -\frac{(2n)!}{2^n n!} \frac{1}{x^{n+1}}.$$
 (6.182)

Para  $x \gg n(n+1)$ ,

$$j_n(x) \approx \frac{1}{x} \operatorname{sen}\left(x - \frac{n\pi}{2}\right),$$
 (6.183)

$$y_n(x) \approx -\frac{1}{x}\cos\left(x - \frac{n\pi}{2}\right),$$
 (6.184)

$$h_n^{(1)}(x) \approx -\frac{i}{x}e^{i(x-n\pi/2)} = (-i)^{n+1}\frac{e^{ix}}{x},$$
 (6.185)

$$h_n^{(2)}(x) \approx \frac{i}{x} e^{-i(x-n\pi/2)} = (i)^{n+1} \frac{e^{-ix}}{x}.$$
 (6.186)

#### 6.9.6. Funciones modificadas esféricas de Bessel

Análogamente, la solución de le ecuación modificada esférica de Bessel,

$$\frac{d}{dx}\left(x^{2}\frac{dy}{dx}\right) + \left[-x^{2} - n(n+1)\right]y(x) = 0,$$
(6.187)

es una combinación lineal de las funciones modificadas esfércias de Bessel de primera y segunda especie,  $i_n(x)$  y  $k_n(x)$  respectivamente, definidas en términos de las funciones (modificadas) de Bessel como

$$i_n(x) := i^{-n} j_n(ix) = \sqrt{\frac{\pi}{2x}} I_{n+1/2}(x), \qquad k_n(x) := -i^n y_n(ix) = \sqrt{\frac{\pi}{2x}} K_{n+1/2}(x).$$
 (6.188)

#### Relaciones de Recurrencia

$$i_{n-1}(x) - i_{n+1}(x) = \frac{2n+1}{x}i_n(x), \tag{6.189}$$

$$ni_{n-1}(x) + (n+1)i_{n+1}(x) = (2n+1)i'_n(x),$$
 (6.190)

$$k_{n-1}(x) - k_{n+1}(x) = -\frac{2n+1}{x}k_n(x), \tag{6.191}$$

$$nk_{n-1}(x) + (n+1)k_{n+1}(x) = -(2n+1)k'_n(x), (6.192)$$

$$i_{n+1}(x) = x^n \frac{d}{dx}(x^{-n}i_n), \qquad k_{n+1}(x) = -x^n \frac{d}{dx}(x^{-n}k_n).$$
 (6.193)

#### Formas asintóticas

$$i_n(x) \approx \frac{2^n n!}{(2n+1)!} x^n, \qquad k_n(x) \approx \frac{(2n)!}{2^n n!} x^{-n-1}, \qquad x \ll 1,$$
 (6.194)

$$i_n(x) \approx \frac{e^x}{2x}, \qquad k_n(x) \approx \frac{-e^x}{x}, \qquad x \gg \frac{n(n+1)}{2}.$$
 (6.195)

#### Expresiones explícitas

$$i_n(x) = x^n \left(\frac{1}{x}\frac{d}{dx}\right)^n \frac{\sinh x}{x}, \qquad k_n(x) = (-1)^n x^n \left(\frac{1}{x}\frac{d}{dx}\right)^n \frac{e^{-x}}{x}, \tag{6.196}$$

$$i_0(x) = \frac{\operatorname{senh}(x)}{x},\tag{6.197}$$

$$i_1(x) = \frac{\operatorname{senh}(x)}{x} - \cosh(x), \tag{6.198}$$

$$i_2(x) = \frac{\cosh(x)}{x} - \frac{\sinh(x)}{x^2},$$
 (6.199)

$$i_3(x) = \frac{\operatorname{senh}(x)}{x} + \frac{3 \operatorname{senh}(x)}{x^3} - \frac{3 \operatorname{cosh}(x)}{x^2},$$
 (6.200)

$$i_4(x) = -\frac{6 \operatorname{senh}(x)}{x^2} - \frac{15 \operatorname{senh}(x)}{x^4} + \frac{\cosh(x)}{x} + \frac{15 \cosh(x)}{x^3}, \tag{6.201}$$

$$k_0(x) = \frac{e^{-x}}{x},\tag{6.202}$$

$$k_1(x) = \frac{e^{-x}}{x} + \frac{e^{-x}}{x^2},\tag{6.203}$$

$$k_2(x) = \frac{e^{-x}}{x} + \frac{3e^{-x}}{x^2} + \frac{3e^{-x}}{x^3},\tag{6.204}$$

$$k_3(x) = \frac{e^{-x}}{x} + \frac{6e^{-x}}{x^2} + \frac{15e^{-x}}{x^3} + \frac{15e^{-x}}{x^4},$$
(6.205)

$$k_4(x) = \frac{e^{-x}}{x} + \frac{10e^{-x}}{x^2} + \frac{45e^{-x}}{x^3} + \frac{105e^{-x}}{x^4} + \frac{105e^{-x}}{x^5}.$$
 (6.206)



Figura 6.9: Primeras cinco funciones esféricas modificadas de Bessel de primera especie de orden entero. Código Python aquí.



Figura 6.10: Primeras cinco funciones esféricas modificadas de Bessel de segunda especie (funciones de Newmann) de orden entero. Código Python aquí.

# Capítulo 7

# Funciones de Green

### 7.1. Motivación

El método de las funciones de Green<sup>1</sup> permite reducir el problema de encontrar una solución de una *E.D.P. lineal inhomogénea* a una forma estándar.

Por ejemplo, en electrostática, el potencial satisface la ecuación de Poisson (3D):

$$\nabla^2 \phi = -\frac{\rho(x)}{\varepsilon_0}. (7.1)$$

Además, sabemos que para una carga puntual ubicada en el punto con coordenadas  $\vec{x}'$ 

$$\phi(\vec{x}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\vec{x} - \vec{x}'|},\tag{7.2}$$

y que el potencial producido por una distribución continua de carga con densidad  $\rho(\vec{x})$  es

$$\phi(\vec{x}) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} dV'. \tag{7.3}$$

En ambos casos se eligió el potencial nulo en el infinito. Vemos entonces que en la solución general (7.3) aparece la función

$$G(\vec{x}, \vec{x}') = -\frac{1}{4\pi} \frac{1}{|\vec{x} - \vec{x}'|}. (7.4)$$

de modo que

$$\phi(\vec{x}) = \int_{V} G(\vec{x}, \vec{x}') \left( -\frac{\rho(\vec{x}')}{\varepsilon_0} \right) dV'. \tag{7.5}$$

La función (7.4) satisface

$$\nabla^2 G(\vec{x}', \vec{x}) = \delta^{(3)}(\vec{x} - \vec{x}'). \tag{7.6}$$

Como veremos a continuación, la propiedad (7.6) es la que permite encontrar soluciones de la ecuación inhomogénea (7.1).

$$\nabla^2 \phi(\vec{x}) = \nabla^2 \int_V G(\vec{x}, \vec{x}') \left( -\frac{\rho(\vec{x}')}{\varepsilon_0} \right) dV'$$
 (7.7)

$$= \int_{V} \left[ \nabla^{2} G(\vec{x}, \vec{x}') \right] \left( -\frac{\rho(\vec{x}')}{\varepsilon_{0}} \right) dV'$$
 (7.8)

$$= \int_{V} \delta(\vec{x} - \vec{x}') \left( -\frac{\rho(\vec{x}')}{\varepsilon_0} \right) dV'$$
 (7.9)

$$= -\frac{\rho(\vec{x})}{\varepsilon_0}. (7.10)$$

<sup>&</sup>lt;sup>1</sup>George Green (1793-1841): matemático británico. Ver http://es.wikipedia.org/wiki/George\_Green.

#### 7.2. Generalización

Consideremos la E.D.P. lineal inhomogénea de la forma (en d-dimensiones)

$$\hat{L}\Psi = f(\vec{x}),\tag{7.11}$$

donde  $f(\vec{x})$  es una función "fuente" conocida, y  $\hat{L}$  es el operador lineal definido por

$$\hat{L}\Psi = \vec{\nabla} \cdot \left[ p(\vec{x}) \vec{\nabla} \Psi \right] + q(\vec{x}) \Psi, \tag{7.12}$$

y  $p(\vec{x})$  y  $q(\vec{x})$  son funciones conocidas.

Para solucionar la E.D.P. (7.11) buscamos primero la función de Green  $G(\vec{x}, \vec{x}')$  asociada al operador  $\hat{L}$ , definida como la función que satisface

$$\hat{L}G(\vec{x}', \vec{x}) = \delta(\vec{x} - \vec{x}'). \tag{7.13}$$

La utilidad de introducir la función de Green es que, conociendo una solución de (7.11), es posible escribir la solución del problema inhomogéneo general (7.11) como

$$\boxed{\Psi(\vec{x}) = \int_{V} G(\vec{x}, \vec{x}') f(\vec{x}') dV' + \oint_{\partial V} p(\vec{x}') \left[ \Psi(\vec{x}') \vec{\nabla}' G(\vec{x}, \vec{x}') - G(\vec{x}, \vec{x}') \vec{\nabla}' \Psi(\vec{x}') \right] \cdot d\vec{S}'.}$$
(7.14)

Aquí V denota el dominio en el que la solución  $\Psi$  es válida (es decir,  $\vec{x} \in V$ ) y  $\partial V$  su frontera.

Para probar (7.14) partimos desde la integral sobre  $\partial V$  en el en lado derecho de (7.14), que luego podemos escribir como una integral de volumen, por medio del teorema de Gauss:

$$I = \oint_{\partial V} p(\vec{x}') \left[ \Psi(\vec{x}') \vec{\nabla}' G(\vec{x}, \vec{x}') - G(\vec{x}, \vec{x}') \vec{\nabla}' \Psi(\vec{x}') \right] \cdot d\vec{S}'$$
 (7.15)

$$= \int_{V} \vec{\nabla}' \cdot \left[ p(\vec{x}') \Psi(\vec{x}') \vec{\nabla}' G(\vec{x}, \vec{x}') - p(\vec{x}') G(\vec{x}, \vec{x}') \vec{\nabla}' \Psi(\vec{x}') \right] dV'$$

$$(7.16)$$

$$= \int_{V} \left[ \Psi(\vec{x}') \vec{\nabla}' \cdot \left( p(\vec{x}') \vec{\nabla}' G(\vec{x}, \vec{x}') \right) - G(\vec{x}, \vec{x}') \vec{\nabla}' \cdot \left( p(\vec{x}') \vec{\nabla}' \Psi(\vec{x}') \right) \right] dV' \tag{7.17}$$

$$= \int_{V} \left[ \Psi(\vec{x}') \left( \hat{L}' G(\vec{x}, \vec{x}') \right) - G(\vec{x}, \vec{x}') \left( \hat{L}' \Psi(\vec{x}') \right) \right] dV' \tag{7.18}$$

$$= \int_{V} \left[ \Psi(\vec{x}') \delta(\vec{x} - \vec{x}') - G(\vec{x}, \vec{x}') f(\vec{x}') \right] dV'$$
 (7.19)

$$= \Psi(\vec{x}) - \int_{V} G(\vec{x}, \vec{x}') f(\vec{x}') dV'. \tag{7.20}$$

En el último paso, hemos asumido que el punto  $\vec{x} \in V$  para evaluar la integral que involucra la delta de Dirac. El resultado (7.14) se sigue de igualar (7.15) y (7.20).

La solución de la ecuación (7.13) queda determinada, además de la función fuente  $f(\vec{x})$ , por las condiciones de borde del problema. Típicamente, estas condiciones de borde se expresan como condiciones que la solución debe satisfacer en la frontera  $\partial V$ . Esta información modifica la solución a través de los términos de borde en (7.14). Sin embargo, la integral sobre  $\partial V$  en (7.14) depende tanto del valor de la incógnita como de su derivada normal, y usualmente no se conoce simultáneamente estos dos valores. Más aún, en general puede ser inconsistente imponer simultáneamente el valor de  $\Psi$  y de su derivada normal en  $\partial V$ .

• Si las condiciones de Borde son tipo Dirichlet, es decir, la función  $\Psi$  es conocida en  $\partial V$ , entonces el primer término en la integral sobre  $\partial V$  en (7.14) es queda determinado

luego de encontrar la función de Green, no así el segundo término. Por esta razón, en estos casos es *conveniente* elegir una función de Green que satisfaga condiciones de borde tipo Dirichlet homogéneas en  $\partial V$ , es decir

$$G(\vec{x}, \vec{x}') = 0, \quad \forall \vec{x}' \in \partial V.$$
 (7.21)

Entonces la solución se reduce a

$$\Psi(\vec{x}) = \int_{V} G(\vec{x}, \vec{x}') f(\vec{x}') dV' + \oint_{\partial V} p(\vec{x}') \Psi(\vec{x}') \vec{\nabla}' G(\vec{x}, \vec{x}') \cdot d\vec{S}'$$
 (7.22)

$$= \int_{V} G(\vec{x}, \vec{x}') f(\vec{x}') dV' + \oint_{\partial V} p(\vec{x}') \Psi(\vec{x}') \frac{\partial G(\vec{x}, \vec{x}')}{\partial n'} dS'. \tag{7.23}$$

• Si las condiciones de borde son tipo Neumann, es decir se conoce  $\partial \Psi/\partial n = \hat{n} \cdot \vec{\nabla} \Psi$  sobre  $\partial V$ , entonces es conveniente escoger una función de Green que satisfaga condiciones de Neumann homogéneas en la frontera:

$$\frac{\partial G(\vec{x}, \vec{x}')}{\partial n'} = 0, \qquad \forall \ \vec{x}' \in \partial V. \tag{7.24}$$

Entonces, la solución es dada por

$$\Psi(\vec{x}) = \int_{V} G(\vec{x}, \vec{x}') f(\vec{x}') dV' - \oint_{\partial V} p(\vec{x}') G(\vec{x}, \vec{x}') \vec{\nabla}' \Psi(\vec{x}') \cdot d\vec{S}'$$
 (7.25)

$$= \int_{V} G(\vec{x}, \vec{x}') f(\vec{x}') dV' - \oint_{\partial V} p(\vec{x}') G(\vec{x}, \vec{x}') \frac{\partial \Psi(\vec{x}')}{\partial n'} dS'. \tag{7.26}$$

Note que, sin embargo, dependiendo del operador  $\hat{L}$  puede no ser posible elegir la función de Green tal que  $\hat{n} \cdot \vec{\nabla}' G(\vec{x}, \vec{x}') = 0$  sobre toda la frontera  $\partial V$ . Esto ocurre, en el importante caso del operador Laplaciano,  $\hat{L} = \nabla^2$ .

#### 7.3. Simetría de la función de Green

En el caso particular en el que el operador  $\hat{L}$  es el operador Laplaciano, vemos que la función de Green (7.4) es simétrica bajo intercambio de argumentos, es decir,  $G(\vec{x}, \vec{x}') = G(\vec{x}', \vec{x})$ . Puede verificarse que esta propiedad puede implementarse en casos más generales, siempre que se satisfagan ciertas condiciones de contorno. Para ver esto, usamos el resultado general (7.14) en el caso particular en que elegimos  $\Psi(\vec{x}) = G(\vec{x}'', \vec{x})$ , con  $\vec{x}' \in V$ , y entonces  $f(\vec{x}) = \delta(\vec{x}'' - \vec{x})$ . En este caso, encontramos que

$$G(\vec{x}'', \vec{x}) = \int_{V} G(\vec{x}, \vec{x}') \delta(\vec{x}'' - \vec{x}') dV'$$

$$+ \oint_{\partial V} p(\vec{x}') \left[ G(\vec{x}'', \vec{x}') \vec{\nabla}' G(\vec{x}, \vec{x}') - G(\vec{x}, \vec{x}') \vec{\nabla}' G(\vec{x}'', \vec{x}') \right] \cdot d\vec{S}'$$

$$= G(\vec{x}, \vec{x}'') + \oint_{\partial V} p(\vec{x}') \left[ G(\vec{x}'', \vec{x}') \vec{\nabla}' G(\vec{x}, \vec{x}') - G(\vec{x}, \vec{x}') \vec{\nabla}' G(\vec{x}'', \vec{x}') \right] \cdot d\vec{S}'.$$
 (7.28)

Por lo tanto, la función de Green es simétrica si la integral del segundo término en (7.28) se anula. Esto puede ocurrir, típicamente, si la función de Green se anula en la frontera:

$$G(\vec{x}, \vec{x}') = 0, \qquad \forall \ \vec{x}' \in \partial V \tag{7.29}$$

### 7.4. Expresiones explícitas de algunas funciones de Green

La función de Green definida por la ecuación (7.13) no es única. Si  $G_1(\vec{x}, \vec{x}')$  es solución, entonces  $G_2(\vec{x}, \vec{x}') := G_1(\vec{x}, \vec{x}') + H(\vec{x}, \vec{x}')$  también es solución, si  $H(\vec{x}, \vec{x}')$  es solución del problema homogéneo asociado,

$$\hat{L}H(\vec{x}, \vec{x}') = 0. \tag{7.30}$$

Este hecho permite considerar soluciones soluciones particulares simples como base para otras funciones de Green, que pueden obtenerse agregando una solución de la ecuación homogénea de modo que la función resultante satisfaga las condiciones de borde que simplifiquen el problema.

### 7.4.1. Operador Laplaciano

En este caso  $p(\vec{x}) = 1$  y  $q(\vec{x}) = 0$ . En Física, usualmente se busca la función de Green que "respete la homogeneidad e isotropía del espacio". La primera condición (homogeneidad) significa que G función que depende de  $\vec{x}$  y  $\vec{x}'$  sólo a través de su diferencia  $\vec{x} - \vec{x}'$ . La segunda condición (isotropía=invariancia bajo rotaciones) implica que G sólo depende del módulo de  $\vec{x} - \vec{x}'$ . Esto reduce la función de Green básicamente a una función de una variable, ya que entonces

$$G(\vec{x}, \vec{x}') = G(|\vec{x} - \vec{x}'|). \tag{7.31}$$

D=3

En coordenadas esféricas centradas en  $\vec{x}'$ 

$$\nabla^2 G = \frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{dG}{dr} \right) = \delta^{(3)}(r) \tag{7.32}$$

por lo tanto

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dG}{dr}\right) = 0, \qquad r \neq 0. \tag{7.33}$$

La solución para  $r \neq 0$  se encuentra entonces rápidamente integrando esta ecuación, obteniendo

$$G(r) = \alpha + \frac{\beta}{r}. (7.34)$$

Por otro lado, la condición (7.32) implica, usando el teorema de Gauss, que

$$\int_{\partial V} \vec{\nabla} G \cdot d\vec{S} = \int_{\partial V} \frac{dG}{dr} r^2 d\Omega = 1, \tag{7.35}$$

que requiere entonces que  $-4\pi\beta=1$ . Finalmente, en la mayoría de los problemas es conveniente elegir una función de Green que se anule para distancias muy grandes, es decir, tal que  $\lim_{r\to\infty} G(r)=0$ . Esta condición impone que  $\alpha=0$  (note que, equivalentemente, esta condición implica agregar la solución homogénea  $H=-\alpha$  a la función de Green original), y por lo tanto

$$G(\vec{x} - \vec{x}') = -\frac{1}{4\pi} \frac{1}{|\vec{x} - \vec{x}'|}.$$
 (7.36)

D=2

En coordenadas polares  $(\rho, \varphi)$  centradas en  $\vec{x}'$ , con  $G = G(\rho)$ 

$$\nabla^2 G = \frac{1}{\rho} \frac{d}{d\rho} \left( \rho \frac{dG}{d\rho} \right) = \delta^{(2)}(\rho). \tag{7.37}$$

Integrando la ecuación para  $\rho \neq 0$ , es decir,

$$\frac{1}{\rho} \frac{d}{d\rho} \left( \rho \frac{dG}{d\rho} \right) = 0, \tag{7.38}$$

encontramos que

$$G(\rho) = \alpha + \beta \ln \rho. \tag{7.39}$$

Nuevamente, el teorema de Gauss (versión 2D),

$$\int_{\partial S} \vec{\nabla} G \cdot d\vec{S} = \oint \frac{dG}{d\rho} \rho \, d\varphi = 2\pi\beta = 1. \tag{7.40}$$

De esto modo, eliminando el término constante (que es una solución de la ecuación homogénea), encontramos

$$G(\vec{x} - \vec{x}') = \frac{1}{2\pi} \ln |\vec{x} - \vec{x}'|.$$
 (7.41)

#### 7.4.2. Operador de Helmoltz

En el caso del operador de Helmholtz  $\hat{L} = \nabla^2 + k^2$ , que corresponde al caso  $p(\vec{x}) = 1$  y  $q(\vec{x}) = k^2$ .

En cada caso, buscaremos las funciones de Green de la forma  $G(\vec{x}, \vec{x}') = G(|\vec{x} - \vec{x}'|)$ 

D = 3

En coordenadas esféricas centradas en  $\vec{x}'$ 

$$(\nabla^2 + k^2)G = \frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{dG}{dr} \right) + k^2 G = \delta^{(3)}(r), \tag{7.42}$$

por lo tanto

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dG}{dr}\right) + k^2G = 0, \qquad r \neq 0.$$
 (7.43)

Para solucionar (7.43) realizamos el cambio de variable G(r) = u(r)/r, que conduce a  $r^2dG/dr = ru' - u$ . Con esto, (7.43) se reduce a  $u'' + k^2u = 0$ . Por lo tanto, las soluciones son de la forma

$$G(r) = \alpha \frac{e^{ikr}}{r} + \beta \frac{e^{-ikr}}{r}.$$
 (7.44)

Con esta solución, válida para  $r \neq 0$ , retornamos a la ecuación (7.42) que, luego de integrar sobre una esfera de radi R centrada en r = 0 y usando el teorema de Gauss, implica que

$$1 = \oint_{\partial V} \vec{\nabla} G \cdot d\vec{S} + k^2 \int_{V} G \, dV \tag{7.45}$$

$$= \oint_{\partial V} \frac{dG}{dr} r^2 d\Omega + k^2 \int_{V} Gr^2 dr d\Omega \tag{7.46}$$

$$=4\pi G'R^2 + 4\pi k^2 \int_0^R Gr^2 dr$$
 (7.47)

$$= 4\pi \left[ \alpha (ikR - 1) e^{ikR} - \beta (ikR + 1) e^{-ikR} \right] + 4\pi k^2 \int_0^R \left[ \alpha e^{ikr} + \beta e^{-ikr} \right] r dr \quad (7.48)$$

$$= -4\pi(\alpha + \beta). \tag{7.49}$$

De esta forma encontramos las condición

$$\alpha + \beta = -\frac{1}{4\pi},\tag{7.50}$$

que permite escribir la solución (7.44) como

$$G(r) = -\frac{1}{4\pi} \frac{e^{ikr}}{r} - i\beta \frac{\operatorname{sen}(kr)}{r}.$$
(7.51)

Note que el segundo término es una solución de la ecuación de Helmholtz homogñenea (es proporcional a la función esférica de Bessel  $j_0(kr)$ ). Por lo tanto, es posible elegir

$$G^{+}(\vec{x}, \vec{x}') = -\frac{1}{4\pi} \frac{e^{ik|\vec{x} - \vec{x}'|}}{|\vec{x} - \vec{x}'|},$$
(7.52)

que corresponde a la elección  $\beta=0.$  Análogamente, pode<br/>omos considerar la función de Green

$$G^{-}(\vec{x}, \vec{x}') = -\frac{1}{4\pi} \frac{e^{-ik|\vec{x} - \vec{x}'|}}{|\vec{x} - \vec{x}'|},$$
(7.53)

que se encuentra en el caso en que  $\beta = -1/4\pi$ .

D=2

En coordenadas polares  $(\rho, \varphi)$  centradas en  $\vec{x}'$ , con  $G = G(\rho)$ 

$$(\nabla^2 + k^2)G = \frac{1}{\rho} \frac{d}{d\rho} \left( \rho \frac{dG}{d\rho} \right) + k^2 G = \delta^{(2)}(\rho). \tag{7.54}$$

Para  $\rho \neq 0$ ,

$$\frac{1}{\rho}\frac{d}{d\rho}\left(\rho\frac{dG}{d\rho}\right) + k^2G = 0. \tag{7.55}$$

Definiendo  $x := k\rho$  esta ecuación se reduce a

$$x\frac{d}{dx}\left(x\frac{dG}{dx}\right) + x^2G(x) = 0, \qquad x \neq 0,$$
(7.56)

que es la ecuación de Bessel de orden  $\nu = 0$ , ver (6.134). Por lo tanto, su solución general es de la forma

$$G(\rho) = \alpha J_0(k\rho) + \beta N_0(k\rho) = \tilde{\alpha} H_0^{(1)}(k\rho) + \tilde{\beta} H_0^{(2)}(k\rho). \tag{7.57}$$

Nuevamente, retornando a la ecuación original (7.54) e integrando sobre un círculo S de radio R centrado en  $\rho = 0$ , obtenemos

$$1 = \oint_{\partial S} \vec{\nabla} G \cdot d\vec{S} + k^2 \int_{S} G \, dS \tag{7.58}$$

$$=2\pi \left[R\frac{dG}{d\rho}(kR) + k^2 \int_0^R G\rho \,d\rho\right] \tag{7.59}$$

$$=2\pi \left[kR\left(\tilde{\alpha}H_0^{\prime(1)}(kR)+\tilde{\beta}H_0^{\prime(2)}(kR)\right)+\int_0^{kR}\left(\tilde{\alpha}H_0^{(1)}(x)+\tilde{\beta}H_0^{(2)}(x)\right)x\,dx\right].$$
(7.60)

Usando las identidades  $H_0^{\prime(1)}(x)=-H_1^{(1)}(x)$  y  $xH_0^{(1)}(x)=d[xH_1^{(1)}(x)]/dx$  y similarmente para  $H_0^{\prime(2)}$  y  $H_1^{\prime(2)}$ , evaluamos la expresión anterior, obteniendo

$$1 = -2\pi \lim_{x \to 0} \left( \tilde{\alpha} x H_1^{(1)}(x) - \tilde{\beta} x H_1^{(2)}(x) \right)$$
 (7.61)

$$=2\pi \left[\tilde{\alpha}\frac{2i}{\pi} - \tilde{\beta}\frac{2i}{\pi}\right] \tag{7.62}$$

$$=4i(\tilde{\alpha}-\tilde{\beta}). \tag{7.63}$$

Con esto, la solución adopta la forma

$$G(\rho) = -\frac{i}{4}H_0^{(1)}(k\rho) + \tilde{\beta}\left(H_0^{(1)}(k\rho) + H_0^{(2)}(k\rho)\right)$$
 (7.64)

$$= -\frac{i}{4}H_0^{(1)}(k\rho) + 2\tilde{\beta}J_0(k\rho). \tag{7.65}$$

Tal como en el caso anterior, el término proporcional a  $\tilde{\beta}$  es una solución del problema homogéneo. Si elegimos  $\tilde{\beta}=0$ , encontramos la siguiente función de Green:

$$G^{(1)}(\vec{x}, \vec{x}') = -\frac{i}{4}H_0^{(1)}(k|\vec{x} - \vec{x}'|).$$
(7.66)

Alternativamente, si se elige  $\tilde{\alpha} = 0$ , se encuentra

$$G^{(2)}(\vec{x}, \vec{x}') = \frac{i}{4} H_0^{(2)}(k|\vec{x} - \vec{x}'|). \tag{7.67}$$

# Capítulo 8

# **Tensores**

#### 8.1. Tensores Cartesianos

En muchas áreas de la Física es útil, y frecuentemente necesario, definir objetos con múltiples componentes respecto a un sistema de coordenadas (SC). En general, los valores de las componentes de estos objetos cambian al ser calculados respecto de otro SC. En particular, es posible clasificar este tipo de objetos de acuerdo a cómo cambian sus componentes bajo una transformación de coordenadas (TC). Esta clasificación permite en particular definir tensores como conjunto de cantidades (las "componentes del tensor") tales que su relación al cambiar de SC es sencilla (en particular, lineal y homogénea). En este tipo de análisis es importante recordar que la definición de vectores y tensores depende del tipo de transformación (en general, de coordenadas) bajo consideración. Esto se debe a que, algunas cantidades pueden formar tensores respecto a un tipo de transformación. pero no serlo respecto a otro tipo de transformaciones. En otras palabras, la definición de tensores es relativa a la transformación considerada. En distintos contextos y teorías físicas es conveniente considerar transformaciones de distinto tipo (que en general están relacionadas con la invariancia de las leyes físicas respectivas bajo ese tipo de transformación). Por ejemplo, en mecánica de Newton (y en general, en teorías no-relativistas) es conveniente asegurar que las leyes físicas consideradas sean válidas independientemente de la orientación de los ejes cartesianos elegidos para un determinado cálculo. En otras palabras, es necesario considerar cómo cambian las diversas cantidades bajo **rotaciones**. Para esto, es útil definir cantidades que sean vectores y tensores respecto a transformaciones ortogonales de coordenadas (TOC, es decir, rotaciones). Por otro lado, en la teoría de Relatividad Especial se considera que (ct, x, y, z) son las cuatro coordenadas asociadas a un evento dado, respecto a un Sistema de Referencia Inercial (SRI). Las transformaciones de las coordenadas del mismo evento entre dos SRI's son en ese caso las transformaciones de Lorentz. que pueden expresarse como una transformación lineal de las coordenadas (ct, x, y, z). En este contexto es útil entonces considerar (definir) cantidades que transformen como "cuadritensores bajo transformaciones de Lorentz. Note, sin embargo, que un vector respecto a TOC no define necesariamente un vector bajo transformaciones de Lorentz.

Analizaremos primero la definición, las propiedades básicas y la utilidad práctica de los tensores respecto a TOC.

# 8.2. Bases ortogonales

Considere un espacio Euclideano n-dimensional  $(E_n)$ , donde cada punto de  $E_n$  tiene coordenadas  $x_i$ ,  $i = 1, \dots, n$ , con respecto a un **sistema ortogonal de coordenadas** 

(SOC) K.

Consideramos una base ortonormal (BON)  $\{\hat{e}_i\}$   $(i=1,\cdots,n)$  de vectores, es decir, tal que

 $\left[\hat{e}_i \cdot \hat{e}_j = \delta_{ij},\right] \tag{8.1}$ 

donde  $\delta_{ij}$  denota la **Delta de Kronecker**, definida como los  $n^2$  valores dados por

$$\delta_{ij} := \begin{cases} 1, & \text{si } i = j \\ 0, & \text{si } i \neq j \end{cases}$$
 (8.2)

Note que esta Delta de Kronecker puede ser representada matricialmente por la matriz identidad  $n \times n$ .

En el espacio euclideano  $E_n$  es posible definir (consistentemente) el **vector posición**  $\vec{x}$ , que une el origen del SCO con un punto con coordenadas  $x_i$ , por

$$\vec{x} = \sum_{i=1}^{n} x_i \hat{e}_i. \tag{8.3}$$

En este sentido, las coordenadas  $x_i$  son componentes del vector  $\vec{x}$  en la base  $\{\hat{e}_i\}$ , y pueden expresarse como

$$x_i = \vec{x} \cdot \hat{e}_i. \tag{8.4}$$

En general, la BON  $\{\hat{e}_i\}$  permite descomponer cada vector  $\vec{A}$  en sus respectivas componentes:

$$\vec{V} = \sum_{i=1}^{n} v_i \hat{e}_i, \tag{8.5}$$

donde

$$v_i = \vec{V} \cdot \hat{e}_i. \tag{8.6}$$

# 8.3. Transformaciones ortogonales



Figura 8.1: Una transformación ortogonal (rotación) de bases ortonormales.

Consideremos ahora un nuevo SOC  $x'_i$  relacionado con el SOC  $x_i$  por medio de una **transformación ortogonal (TO) de coordenadas**, es decir, una **rotación**, ver figura 8.1.

Esta transformación induce una nueva BON  $\{\hat{e}'_i\}$ . Respecto a esta nueva base, un vector  $\vec{V}$  tiene componentes  $\vec{v}_i$  tales que

$$\vec{V} = \sum_{i=1}^{n} v_i' \hat{e}_i'. \tag{8.7}$$

Es posible relacionar las bases  $\{\hat{e}_i\}$  y  $\{\hat{e}'_i\}$  ya que cada vector  $\hat{e}'_i$  puede escribirse como una combinación lineal de los vectores base  $\hat{e}_i$ , esto es, existe una relación de la forma

$$\hat{e}_i' = \sum_{j=1}^n a_{ij} \hat{e}_j. {(8.8)}$$

La condición que la transformación (8.8) sea efectivamente una TO, es decir, que transforme una BON en una nueva BON impone (n(n+1)/2) condiciones sobres los  $(n^2)$  coeficientes (la "matriz") de transformación  $a_{ij}$ . En efecto,

$$\delta_{ij} = \hat{e}_i' \cdot \hat{e}_j' \tag{8.9}$$

$$= \left(\sum_{k=1}^{n} a_{ik} \hat{e}_k\right) \cdot \left(\sum_{l=1}^{n} a_{jl} \hat{e}_l\right) \tag{8.10}$$

$$= \sum_{k=1}^{n} \sum_{l=1}^{n} a_{ik} a_{jl} \left( \hat{e}_k \cdot \hat{e}_l \right)$$
 (8.11)

$$= \sum_{k=1}^{n} \sum_{l=1}^{n} a_{ik} a_{jl} \, \delta_{kl} \tag{8.12}$$

$$=\sum_{k=1}^{n} a_{ik} a_{jk}, (8.13)$$

y por lo tanto,

$$\sum_{k=1}^{n} a_{ik} a_{jk} = \delta_{ij}.$$
(8.14)

En notación matricial,

$$\mathbb{A} \cdot (\mathbb{A}^{\top}) = \mathbb{I}. \tag{8.15}$$

Al calcular el determinante de (8.15) encontramos que

$$(\det \mathbb{A})^2 = 1, \tag{8.16}$$

por lo que necesariamente det  $\mathbb{A} = 1$  o bien det  $\mathbb{A} = -1$ . Si det  $\mathbb{A} = 1$  decimos que la TO es una **transformación propia**, mientras que si det  $\mathbb{A} = -1$  ella es **impropia**. En todo caso det  $\mathbb{A} \neq 0$ , de modo que la inversa  $\mathbb{A}^{-1}$  siempre existe y es única. De (8.15) vemos entonces que la matriz inversa de una transformación ortogonal coincide con su transpuesta,

$$\mathbb{A}^{-1} = \mathbb{A}^{\top}, \tag{8.17}$$

y por lo tanto se satisface además que

$$(\mathbb{A}^{\top}) \cdot \mathbb{A} = \mathbb{I}, \tag{8.18}$$

o, en notación de índices,

$$\left[\sum_{k=1}^{n} a_{ki} a_{kj} = \delta_{ij}.\right] \tag{8.19}$$

Puede verificarse a partir de estas propiedades básicas que el conjunto de todas las transformaciones ortogonales en un espacio Euclideano n-dimensional forman un  $\mathbf{grupo}^1$ : el grupo ortogonal<sup>2</sup> n-dimensional, O(n).

<sup>&</sup>lt;sup>1</sup>Ver, por ejemplo, http://es.wikipedia.org/wiki/Grupo\_(matematica).

<sup>&</sup>lt;sup>2</sup>Ver, por ejemplo, http://es.wikipedia.org/wiki/Grupo\_ortogonal.

Usando (8.4) y (8.8) podemos relacionar las coordenadas  $x_i$  (asociadas a un mismo vector posición  $\vec{x}$ ) en respecto a los dos SOC:

$$x_i' = \sum_{j=1}^n a_{ij} x_j,$$
 (8.20)

### 8.4. Convención de suma de Einstein

Es conveniente introducir la **convención de suma de Einstein**, que establece que en toda expresión donde se repitan dos índices iguales, se subentiende que existe una suma sobre todo el rango de variación del índice. De esta forma, (8.5), (8.7), (8.8), (8.14), (8.14) y (8.4) pueden abreviarse de la forma siguiente,

$$\vec{V} = v_i \hat{e}_i, \tag{8.21}$$

$$\vec{V} = v_i' \hat{e}_i', \tag{8.22}$$

$$\hat{e}_i' = a_{ij}\hat{e}_i, \tag{8.23}$$

$$a_{ik}a_{jk} = \delta_{ij}, (8.24)$$

$$a_{ki}a_{kj} = \delta_{ij}, \tag{8.25}$$

$$x_i' = a_{ij}x_j. (8.26)$$

#### 8.5. Vectores

Como vimos, un vector  $\vec{V}$  puede ser descompuesto tanto en una base ortonormal K como en otra K'. A partir de esto, podemos encontrar la forma en que están relacionadas las componentes de  $\vec{V}$  respecto a dos SOC's. Usando (8.6) y (8.23) encontramos, análogamente a (8.26) que

$$v_i' = a_{ij}v_j. (8.27)$$

Esta propiedad puede ser considerada como la definición de (las componentes de) un vector:

**Definición:** Diremos que el conjunto de n números  $\{v_1, v_2, \cdots, v_n\}$ , definidos en cada BO (SOC), son las componentes de un vector (cartesiano) si y sólo si bajo toda TO's (e.d., definidas por una matriz  $\mathbb{A}$  que satisface (8.17)), sus valores están relacionados por

$$v_i' = a_{ij}v_j.$$
 (8.28)

Note que en un espacio Euclideano las coordenadas  $x_i$  de un punto de  $E_n$  transforman de acuerdo a (8.26) bajo TO's y pueden por lo tanto ser consideradas como las componentes de un vector (del "vector posición"  $\vec{x}$ )<sup>3</sup>.

Otro ejemplo de vector es la velocidad de una partícula (moviéndose en  $E_n$ ). Si  $x_i(t)$  son las coordenadas de la trayectoria de la partícula en función del tiempo t entonces la

<sup>&</sup>lt;sup>3</sup>El hecho que las coordenadas transformen como componentes de un vector *no es* un resultado general. Al considerar la definición de vectores y tensores respecto a transformaciones generales de coordenadas, o en particular bajo transformaciones no-lineales, no es posible considerar las coordenadas de los puntos del espacio como componentes de un vector, simplemente porque su ley de transformación difiere de la ley válida para los objetos definidos como vectores. En estos casos se define un vector por la ley de transformación  $v'_i = (\partial x'_i/\partial x_j)v_j$ , que en el caso de transformaciones lineales coincide con (8.28), ya que  $\partial x'_i/\partial x_j = a_{ij}$ .

velocidad instantánea transforma como ("es") un vector bajo TO's. En efecto, la velocidad instantánea es definida, en cada SOC, por  $v_i := dx_i/dt$ . Entonces, en un SOC K' relacionado con K por medio de (8.26), tendremos que las "nuevas" componentes de la velocidad serán

 $v_i' := \frac{dx_i'}{dt} = \frac{d}{dt}(a_{ij}x_j) = a_{ij}\frac{dx_j}{dt} = a_{ij}v_j.$ (8.29)

Aquí hemos asumido que los coeficientes  $a_{ij}$  son independientes del tiempo (constantes). De forma análoga, la aceleración es también un vector bajo TO's.

Note que no toda colección de n-valores definidos en cada SOC pueden considerarse componentes de un vector. Por ejemplo, la densidad de masa  $\rho$  de un cuerpo, su temperatura T, y la componente z de su momentum  $p_z$ , son cantidades que pueden definirse en cada SOC, sin embargo, el conjunto de 3 cantidades  $(\rho, T, p_z)$  no forman las componentes de un vector, simplemente porque sus valores no están relacionados bajo TO's de la forma (8.28).

#### 8.6. Escalares

Un escalar es una cantidad que no cambia su valor al rotar el SOC, es decir, una cantidad que permanece invariante bajo TO's. Ejemplos de cantidades escalares en Mecánica Clásica (no-relativista) son: la masa de un cuerpo, el volumen de un cuerpo, el coeficiente de roce entre dos superficies, la temperatura, la energía cinética, etc. En términos matemáticos, si  $\phi$  es una cantidad definida en cada SOC, entonces ella es un escalar si y sólo si

$$\phi' = \phi. \tag{8.30}$$

Otro ejemplo de una cantidad escalar bajo TO's es el producto escalar entre vectores. Si  $A_i$  y  $B_i$  son las componentes de dos vectores  $\vec{A}$  y  $\vec{B}$  respectivamente, entonces su producto escalar permanece invariante:

$$A_i'B_i' = (a_{ij}A_i)(a_{ik}B_k) (8.31)$$

$$= (a_{ij}a_{ik})A_jB_k \tag{8.32}$$

$$= \delta_{jk} A_j B_k \tag{8.33}$$

$$=A_{j}B_{j} \tag{8.34}$$

$$= A_i B_i. (8.35)$$

#### 8.7. Tensores

Tanto en Mecánica, como en Electrodinámica, es habitual encontrar cantidades con más de un índice (es decir, con más de n componentes), del tipo  $T_{ij}$ ,  $A_{ijk}$ , etc.

Por ejemplo, en Mecánica la relación entre el momentum angular de un cuerpo en rotación y su vector velocidad angular involucra el **tensor momento de inercia**  $I_{ij}$ . En efecto, considere un cuerpo caracterizado por su densidad  $\rho(x_i)$ , contenido en una región V, rotando rígidamente respecto a un eje caracterizado por la dirección  $\hat{\omega}$ , con velocidad angular  $\omega$ . Entonces su momentum angular respecto al origen del SOC, ubicado sobre el

eje de rotación, es dado por

$$\vec{L} = \int_{V} \vec{x} \times d\vec{p} \tag{8.36}$$

$$= \int_{V} \rho(x)\vec{x} \times \vec{v} \, dV \tag{8.37}$$

$$= \int_{V} \rho(x)\vec{x} \times (\vec{\omega} \times \vec{x}) \, dV. \tag{8.38}$$

Usando la identidad  $\vec{A} \times (\vec{B} \times \vec{C}) \equiv \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$ , podemos escribir

$$\vec{L} = \int_{V} \rho(x) \left[ \vec{\omega}(\vec{x} \cdot \vec{x}) - \vec{x}(\vec{\omega} \cdot \vec{x}) \right] dV, \tag{8.39}$$

o, en términos de componentes,

$$L_i = \int_V \rho(x) \left[ \omega_i(x_k x_k) - x_i(\omega_j x_j) \right] dV$$
(8.40)

$$= \int_{V} \rho(x) \left[ (\delta_{ij}\omega_j)(x_k x_k) - x_i(\omega_j x_j) \right] dV$$
(8.41)

$$= \left( \int_{V} \rho(x) \left[ \delta_{ij}(x_k x_k) - x_i x_j \right] dV \right) \omega_j, \tag{8.42}$$

es decir,

$$L_i = I_{ij} \,\omega_j, \tag{8.43}$$

con

$$I_{ij} := \int_{V} \rho(x) \left[ \delta_{ij}(x_k x_k) - x_i x_j \right] dV.$$
(8.44)

Note que este resultado expresa el hecho que, en general, el momentum angular de un cuerpo en rotación no es necesariamente paralelo al eje de rotación. Puede encontrar algunos ejemplos de tensores momento de inercia para distintos cuerpos respecto a SOC particulares aquí.

Analizemos ahora cómo cambian las componentes  $I_{ij}$  cuando ellas son calculadas en otro SOC. Si analizamos el movimiento respecto a un SOC rotado respecto al primero, de modo que las coordenadas de cada punto son ahora dadas por (8.26), entonces tendremos que las componentes  $I'_{ij}$  estarán dadas por

$$I'_{ij} := \int_{V} \rho'(x') \left[ \delta_{ij}(x'_k x'_k) - x'_i x'_j \right] dV'$$
(8.45)

$$= \int_{V} \rho(x) \left[ \delta_{ij}(x_k x_k) - (a_{il} x_l)(a_{jm} x_m) \right] dV$$
 (8.46)

$$= \int_{V} \rho(x) \left[ (a_{il}a_{jl})(x_k x_k) - (a_{il}x_l)(a_{jm}x_m) \right]$$
 (8.47)

$$= \int_{V} \rho(x) \left[ (a_{il} a_{jm} \delta_{lm})(x_k x_k) - (a_{il} x_l)(a_{jm} x_m) \right] dV$$
 (8.48)

$$= a_{il}a_{jm} \int_{V} \rho(x) \left[ \delta_{lm}(x_k x_k) - x_l x_m \right] dV \tag{8.49}$$

$$=a_{il}a_{jm}I_{lm}. (8.50)$$

Note que aquí hemos usado el hecho que la masa se considera un escalar, de modo que  $dm = \rho(x)dV = \rho'(x')dV'$ . Además, la condición (8.24) fue usada en para reescribir el primer término de (8.46) en la forma que aparece en la expresión (8.47).

En resumen,

$$I'_{ij} = a_{il}a_{jm} I_{lm}. (8.51)$$

Es simple verificar usando (8.51) y el hecho que  $\omega_i$  son componentes de un vector que  $L_i$ , dado por (8.43), efectivamente satisface la ley de transformación de un vector.

Vemos que las  $n^2$  cantidades  $I_{ij}$  cambian los valores de sus componentes al ser calculadas en distintos SOC, pero estos valores están relacionados de una forma (relativamente) simple. Las cantidades cuyas componentes transforman de la forma (8.51) son llamadas tensores de rango  $2^5$ .

**Definición:** Diremos que el conjunto de  $n^2$  cantidades  $T_{ij}$  (i, j = 1, ..., n) definidas en cada SOC, son las componentes de un **tensor cartesiano de rango 2** si y sólo si, bajo cada TO (de la forma (8.26), con la condición (8.24)) sus valores están relacionados por<sup>6</sup>

$$T'_{ij} = a_{ik}a_{jl}T_{kl}.$$
(8.52)

Note que la relación inversa es dada por

$$T_{ij} = a_{ki}a_{lj}T'_{kl}. (8.53)$$

Similarmente al caso del momentum angular, podemos analizar la **energía cinética** del cuerpo rotando rígidamente,

$$K = \frac{1}{2} \int_{V} \vec{v}^2 \, dm \tag{8.54}$$

$$= \frac{1}{2} \int_{V} \rho \, \vec{v}^2 \, dV \tag{8.55}$$

$$= \frac{1}{2} \int_{V} \rho \left( \vec{\omega} \times \vec{x} \right)^{2} dV \tag{8.56}$$

$$= \frac{1}{2} \int_{V} \rho \left[ \vec{\omega}^{2} \vec{x}^{2} - (\vec{\omega} \cdot \vec{x})^{2} \right] dV$$
 (8.57)

$$= \frac{1}{2} \int_{V} \rho \left[ (\omega_i \omega_i)(x_k x_k) - (\omega_i x_i)^2 \right] dV$$
 (8.58)

$$= \frac{1}{2} \int_{V} \rho \left[ (\omega_{i} \omega_{j} \delta_{ij})(x_{k} x_{k}) - \omega_{i} x_{i} \omega_{j} x_{j} \right] dV$$
 (8.59)

$$= \frac{1}{2}\omega_i\omega_j \left[ \int_V \rho \left[ \delta_{ij} x_k x_k - x_i x_j \right] dV \right], \tag{8.60}$$

es decir,

$$K = \frac{1}{2}I_{ij}\,\omega_i\omega_j. \tag{8.61}$$

Podemos verificar, como es de esperar, que la ley de transformación del tensor de inercia y del vector velocidad angular bajo TO's aseguran que la energía cinética es un escalar.

Note que si definimos las  $n^2$  cantidades  $\Omega_{ij} := \omega_i \omega_j$  (en cada SOC), entonces  $\Omega_{ij}$  forman las componentes de un tensor de rango 2. En términos de este tensor, la energía

<sup>&</sup>lt;sup>4</sup>De las cuales sólo n(n+1)/2 son linealmente independientes, debido a que  $I_{ij} = I_{ji}$ .

<sup>&</sup>lt;sup>5</sup>Otros ejemplos de tensores de rango 2 útiles en Física son: el tensor dieléctrico de un medio polarizable  $\kappa_{ij}$ , el tensor de tensiones de un fluido  $t_{ij}$ , el tensor de conductividad de un material conductor  $\sigma_{ij}$ , el tensor de deformación de un medio elástico  $\varepsilon_{ij} := (\partial_i u_j + \partial_j u_i)/2$  ( $u_i$  es el vector desplazamiento).

<sup>&</sup>lt;sup>6</sup>En notación matricial,  $\mathbb{T}' = \mathbb{A}\mathbb{T}\mathbb{A}^T$ .

cinética puede escribirse como  $K = I_{ij}\Omega_{ij}/2$ . Vemos entonces que "contracciones" (es decir, sumas de productos de componentes) entre tensores de rango 2 y dos vectores, así como entre dos tensores de segundo rango pueden definir cantidades escalares. Además, como ya vimos, la contracción  $I_{ij}\omega_j$  transforma como un vector. Estas propiedades corresponden a operaciones generales posibles entre tensores: la **multiplicación de tensores** define nuevos tensores (de rango superior), la **contracción de tensores** con vectores puede definir nuevos vectores o escalares. Por otro lado, dado un tensor de rango 2,  $A_{ij}$ , y un vector,  $B_i$ , podemos definir las nuevas  $n^3$  cantidades,  $C_{ijk} := A_{ij}B_k$ , que transformará de la forma siguiente:  $C'_{ijk} := a_{il}a_{jm}a_{kp}C_{lmp}$ . Cantidades que transforman de esta manera bajo TO's son llamados **tensores de rango 3**. Claramente, este tipo de construcción puede ser generalizada a objetos con más índices (componentes).

Note, sin embargo, que no toda operación definida a partir de las componentes de tensores definirá nuevos tensores vectores o escalares. Por ejemplo, la contracción  $I_{ii}\omega_i := I_{11}\omega_1 + I_{22}\omega_2 + \cdots I_{nn}\omega_n$  no es un escalar.

Generalizando los casos anteriores podemos definir un tensor cartesiano de rango r, de la forma siguiente:

**Definición:** Diremos que el conjunto de  $n^r$  cantidades  $T_{i_1 \dots i_r}$ , definidas en cada SOC, son las componentes de un tensor cartesiano de rango r si, bajo TO's (de la forma (8.26), con la condición (8.24)) sus valores están relacionados por

$$T'_{i_1 i_2 \cdots i_r} = a_{i_1 j_1} a_{i_2 j_2} \cdots a_{i_r j_r} T_{j_1 j_2 \cdots j_r}.$$
(8.62)

Algunas observaciones:

- Si r=2 recuperamos la definición de tensores de rango 2.
- Si r=1 recuperamos la definición de un vector. Por lo tanto, un vector es un tensor de rango 1.
- Podemos extender la definición general al caso r=0, de modo que se reduzca a T'=T, y así poder considerar a los escalares como tensores de rango 0.
- La transformación inversa a (8.62) es  $T_{i_1i_2\cdots i_r} = a_{j_1i_1}a_{j_2i_2}\cdots a_{j_ri_r}T'_{j_1j_2\cdots j_r}$ .
- Si todas las componentes de un tensor se anulan en un SOC, entonces ellas se anularán en todo SOC. Esta propiedad es una de las que hace el uso de tensores de gran utilidad, puesto que la anulación de un tensor es entonces una **propiedad intrínseca** de éste, independiente del SOC usado. En Física se busca encontrar y expresar las leyes de la naturaleza de una forma que asegure su validez (al menos) en todo SOC. Si una ley Física puede expresarse usando tensores (por ejemplo  $T_{i_1\cdots i_r} = Q_{i_1\cdots i_r}$ ) entonces esta ley será válida con la misma forma forma en todo SOC ( $T'_{i_1\cdots i_r} = Q'_{i_1\cdots i_r}$ ).
- La Delta de Kronecker  $\delta_{ij}$  puede ser considerada como un tensor de rango 2, ya que satisface  $\delta_{ij} = a_{ik}a_{jl} \, \delta_{kl}$  para TO's. Es, sin embargo, un "tensor especial" puesto que tiene la propiedad distintiva de que asume los *mismos valores* (1 ó 0) en cada SOC. Este tipo especial de tensores son llamados **tensores invariantes**.

Algunos tensores de rango 3 útiles en Física son: el **tensor piezoeléctrico**  $d_{ijk}$  (que relaciona el vector de polarización  $P_i$  con el tensor de tensiones  $t_{ij}$  en un material piezoeléctrico:  $P_i = d_{ijk}t_{jk}$ ), el **tensor de susceptibilidad eléctrica** de segundo orden  $\chi_{ijk}$ 

<sup>&</sup>lt;sup>7</sup>¿Por qué es esto algo deseable?. Porque se asume que todos los SOC son *equivalentes* en sus propiedades.

(que relaciona la contribución de segundo orden a la polarización de un material dieléctrico no-lineal con el campo eléctrico  $P_i^{(2)} = \varepsilon_0 \chi_{ijk} E_j E_k$ ).

Un ejemplo de tensor de rango 4 es el **tensor de electroestricción**  $\mu_{ijkl}$  (que relaciona el tensor de deformación de un material que presenta electroestricción con el campo eléctrico:  $\varepsilon_{ij} = \mu_{ijkl} E_i E_l$ . Ver esta página para otros ejemplos.

### 8.8. Operaciones tensoriales

#### 8.8.1. Multiplicación por escalar

Si  $\lambda$  es un escalar (tensor de rango 0) y  $A_{i_1\cdots i_r}$  son las componentes de un tensor de rango r, entonces

$$B_{i_1\cdots i_r} := \lambda \, A_{i_1\cdots i_r},\tag{8.63}$$

son también componentes de un tensor de rango r.

#### 8.8.2. Adición de tensores

Esta operación define un nuevo tensor a partir de dos tensores del mismo rango. El tensor suma tiene como componentes, por definición, la suma de las componentes correspondientes a cada tensor sumando. Si  $A_{i_1\cdots i_r}$  y  $B_{i_1\cdots i_r}$  son tensores de rango r, y definimos en cada SOC las  $n^r$  cantidades

$$C_{i_1\cdots i_r} := A_{i_1\cdots i_r} + B_{i_1\cdots i_r}, \tag{8.64}$$

entonces  $C_{i_1\cdots i_r}$  son componentes de un tensor de rango r.

Observación: Las dos propiedades anteriores implican que el conjunto de todos los tensores de un rango r dado forma un espacio vectorial lineal (de dimensión  $n^r$ ).

#### 8.8.3. Producto ("tensorial") de tensores

Si  $A_{i_1\cdots i_r}$  y  $B_{i_1\cdots i_s}$  son las componentes de dos tensores de rango r y s respectivamente, entonces las  $n^{r+s}$  cantidades definidas (en cada SOC) por

$$C_{i_1\cdots i_{r+s}} := A_{i_1\cdots i_r} \cdot B_{i_{r+1}\cdots i_{r+s}}, \tag{8.65}$$

son las componentes de un tensor de rango r + s.

Observación: Note que la posición de los índices en la definición del nuevo tensor es relevante. Por ejemplo, el tensor  $C_{ij} := A_i B_j$  es en general diferente de  $D_{ij} := A_j B_i$ . Vemos también que estos tensores estarán relacionados por una (o más) permutaciones de índices,  $D_{ij} = C_{ji}$ . Ver subsección 8.8.5 para mayores detalles.

#### 8.8.4. Contracción de índices

Si  $A_{i_1\cdots i_r}$  es un tensor de rango r, entonces las nuevas  $n^{r-2}$  cantidades obtenidas luego de sumar sobre el s-ésimo y el t-ésimo índice,

$$B_{i_1\cdots i_{r-2}} := A_{i_1\cdots j\cdots j\cdots i_{r-2}}, \qquad 1 \le s \le r, \quad 1 \le t \le r,$$
 (8.66)

son las componentes de un tensor de rango r-2.

Note que podemos alternativamente escribir

$$B_{i_1 i_2 \dots} := A_{i_1 \dots i_r} \delta_{i_s i_t}. \tag{8.67}$$

Por ejemplo, si  $A_{ijklm}$  son las componentes de un tensor de rango 5 entonces  $B_{ijk} := A_{iljlk}$  son componentes de un tensor de rango 3. Además,  $K = I_{ij}\omega_i\omega_j/2$  es un escalar,  $v^2 = v_iv_i$  es un escalar,  $L_i = I_{ij}L_j$  es un vector,  $\delta_{ii} = 3$  es un escalar, etc.

#### 8.8.5. Permutación de índices

La operación de permutar dos índices de un tensor, define un nuevo tensor del mismo rango. Por ejemplo, si  $A_{ijk}$  son las componentes de un tensor de rango 3, entonces

$$B_{ijk} := A_{kji}, \tag{8.68}$$

son componentes de un nuevo tensor de rango 3.

En general, si  $A_{i_1\cdots i_{s-1}i_si_{s+1}\cdots i_{t-1}i_ti_{t+1}\cdots i_r}$  son las componentes de un tensor de rango r entonces el arreglo de  $n^r$  cantidades definidas por la permutación de la  $i_s$ -ésima componente con la  $i_t$ -ésima componente,

$$B_{i_1\cdots i_{s-1}i_si_{s+1}\cdots i_{t-1}i_ti_{t+1}\cdots i_r} := A_{i_1\cdots i_{s-1}i_ti_{s+1}\cdots i_{t-1}i_si_{t+1}\cdots i_r}, \qquad 1 \le s \le r, \quad 1 \le t \le r,$$
(8.69)

son también componentes de un tensor de rango r.

#### 8.8.6. Tensores simétricos y antisimétricos

Un tensor de rango 2,  $T_{ij}$ , se dice **simétrico** si y sólo si

$$T_{ij} = T_{ji}, \qquad \forall i, j = 1, \dots, n. \tag{8.70}$$

Similarmente, un tensor de rango 2,  $T_{ij}$ , se dice **antisimétrico** si y sólo si

$$T_{ij} = -T_{ji}, \quad \forall i, j = 1, \dots, n.$$
 (8.71)

Las propiedades de simetría y antisimetría son independientes del SOC usado, es decir, son **propiedades intrínsecas** del tensor. En efecto, si  $T_{ij} = \pm T_{ji}$  entonces  $T'_{ij} = \pm T'_{ji}$  para toda TO, respectivamente.

Observación: Todo tensor de rango 2 puede ser descompuesto en una suma de un tensor simétrico y uno antisimétrico (la "parte" simétrica y antisimétrica, respectivamente):

$$T_{ij} \equiv S_{ij} + A_{ij}, \tag{8.72}$$

con

$$S_{ij} := T_{(ij)} := \frac{1}{2} (T_{ij} + T_{ji}) = S_{ji}, \tag{8.73}$$

$$A_{ij} := T_{[ij]} := \frac{1}{2} (T_{ij} - T_{ji}) = -A_{ji}.$$
(8.74)

Además, la parte simétrica puede descomponerse en una parte "sin traza" y en un término (proporcional a un) escalar:

$$S_{ij} \equiv \mathcal{S}_{ij} + \frac{1}{n} \delta_{ij} S, \tag{8.75}$$

con

$$S := S_{ii}, \qquad \mathcal{S}_{ij} := S_{ij} - \frac{1}{n} \delta_{ij} S \tag{8.76}$$

Esta descomposición es "irreducible" con respecto a TO's<sup>8</sup>, ya que  $S_{(ij)} \equiv S_{ij}$ ,  $A_{[ij]} \equiv A_{ij}$ ,  $S_{[ij]} \equiv A_{(ij)} \equiv 0$ ,  $S_{ii} \equiv 0$ .

Similarmente, un tensor de rango  $r \geq 2$  se dice (anti-)simétrico con respecto a la permutación de dos índices dados  $i_s$  y  $i_t$  si y sólo si

$$T_{i_1\cdots i_s\cdots i_t\cdots i_r} = (-)T_{i_1\cdots i_t\cdots i_s\cdots i_r}. (8.77)$$

<sup>&</sup>lt;sup>8</sup>es decir, no se puede "reducir" nuevamente la parte (anti-)simétrica en nuevas "sub"-partes (anti-)simétricas no triviales. Lo mismo ocurre con la traza

Por ejemplo,  $A_{ijkl}$  es (anti-) simétrico respecto al primer y tercer índice si  $A_{ijkl} = (-)A_{kjil}$ ,  $\forall i, j, k, l$ .

También puede definirse la operación de (anti-)simetrización con respecto a cualquier par de índices:

$$T_{i_1 \cdots (i_s | \cdots | i_t) \cdots i_r} := \frac{1}{2} \left( T_{i_1 \cdots i_s \cdots i_t \cdots i_r} + T_{i_1 \cdots i_t \cdots i_s \cdots i_r} \right), \tag{8.78}$$

$$T_{i_1\cdots[i_s|\cdots|i_t]\cdots i_r} := \frac{1}{2} \left( T_{i_1\cdots i_s\cdots i_t\cdots i_r} - T_{i_1\cdots i_t\cdots i_s\cdots i_r} \right). \tag{8.79}$$

Por ejemplo,

$$A_{i(j|k|l)m} := \frac{1}{2} \left( A_{ijklm} + A_{ilkjm} \right), \qquad A_{i[j|k|l]m} := \frac{1}{2} \left( A_{ijklm} - A_{ilkjm} \right). \tag{8.80}$$

Es posible extender el proceso de (anti-)simetrización a más índices, de modo que el tensor resultante sea (anti-)simétrico respecto a la permutación de cada par de índices. Por ejemplo,

$$T_{(ijk)} := \frac{1}{6} \left( T_{ijk} + T_{jik} + T_{jki} + T_{kji} + T_{kij} + T_{ikj} \right) \tag{8.81}$$

$$= \frac{1}{3} \left( T_{(ij)k} + T_{(jk)i} + T_{(ki)j} \right), \tag{8.82}$$

$$T_{[ijk]} := \frac{1}{6} \left( T_{ijk} - T_{jik} + T_{jki} - T_{kji} + T_{kij} - T_{ikj} \right) \tag{8.83}$$

$$= \frac{1}{3} \left( T_{[ij]k} + T_{[jk]i} + T_{[ki]j} \right). \tag{8.84}$$

Un tensor **completamente simétrico** de rango r,  $S_{i_1\cdots i_r} = S_{(i_1\cdots i_r)}$ , tiene (n+r-1)!/(n-1)!r! componentes linealmente independientes.

Similarmente, un tensor **completamente antisimétrico** de rango r,  $A_{i_1\cdots i_r} = A_{[i_1\cdots i_r]}$ , tiene n!/(n-r)!r! componentes linealmente independientes. En particular, un tensor totalmente antisimétrico de rango r=n, es decir de "rango máximo", tiene sólo una componente linealmente independiente. Por ejemplo, en  $E_3$ , podemos expresar todas las componentes de cualquier tensor de rango 3 totalmente antisimétrico  $A_{ijk}$  en términos (por ejemplo) sólo de su componente  $A_{123}$ :

$$A_{213} = -A_{123}, A_{231} = A_{123}, A_{112} = 0, (8.85)$$

etc.

# 8.9. Símbolo de Levi-Civita y pseudo-tensores

Es útil definir, en  $E_n$ , el símbolo de Levi-Civita<sup>9</sup>,  $\varepsilon_{i_1\cdots i_n}$ , como un objeto con n índices (es decir, tantos como la dimensión del espacio Euclideano en el que está definido), **totalmente** antisimétrico, es decir,

$$\varepsilon_{ijkl\cdots} = -\varepsilon_{jikl\cdots} = -\varepsilon_{kjil\cdots} = -\varepsilon_{ljki\cdots} = \cdots,$$
 (8.86)

tal que, en todo sistema de coordenadas,

$$\varepsilon_{123\cdots n} := 1. \tag{8.87}$$

<sup>&</sup>lt;sup>9</sup>Tullio Levi-Civita: (1873-1941), matemático italiano. Ver http://es.wikipedia.org/wiki/Tullio\_Levi-Civita.

Esta definición es equivalente a

$$\varepsilon_{i_1\cdots i_n} = \begin{cases} 1, & \text{si } i_1\cdots i_n \text{ es una permutación par de } 12\cdots n \\ -1, & \text{si } i_1\cdots i_n \text{ es una permutación impar de } 12\cdots n \\ 0, & \text{en otro caso} \end{cases}$$
 (8.88)

Un importante resultado es que todo tensor totalmente antisimétrico de rango máximo, es decir r=n (puesto que tiene sólo una componente linealmente independiente) es necesariamente proporcional al símbolo de Levi-Civita correspondiente. Esto permite escribir, por ejemplo,

$$A_{i_1 i_2 \cdots i_n} = A_{12 \cdots n} \,\varepsilon_{i_1 i_2 \cdots i_n}. \tag{8.89}$$

Una pregunta natural es si las componentes del símbolo de Levi-Civita pueden ser consideradas como componentes de un tensor, es decir, si satisfacen la relación

$$\varepsilon'_{i_1\cdots i_n} \stackrel{?}{=} a_{i_1j_1}\cdots a_{i_nj_n}\,\varepsilon_{j_1\cdots j_n}.\tag{8.90}$$

Ya que por definición  $\varepsilon_{i_1\cdots i_n}$  tiene los mismos valores (±1 ó 0) en todo sistema coordenado,  $\varepsilon'_{i_1\cdots i_n} = \varepsilon_{i_1\cdots i_n}$ . Por lo tanto, (8.90) es equivalente a

$$\varepsilon_{i_1\cdots i_n} \stackrel{?}{=} a_{i_1j_1}\cdots a_{i_nj_n}\,\varepsilon_{j_1\cdots j_n}.\tag{8.91}$$

Es directo verificar que el lado derecho de la expresión anterior es totalmente antisimétrico. Por lo tanto, sólo necesitamos calcular una componente, por ejemplo,  $a_{1j_1}a_{2j_2}\cdots a_{nj_n} \varepsilon_{j_1\cdots j_n}$ , ya que, de acuerdo con (8.89),

$$a_{i_1j_1}\cdots a_{i_nj_n}\,\varepsilon_{j_1\cdots j_n} = (a_{1j_1}a_{2j_2}\cdots a_{nj_n}\,\varepsilon_{j_1\cdots j_n})\,\varepsilon_{i_1\cdots i_n}.\tag{8.92}$$

Realizaremos el cálculo explícito en el caso en que n=3:

$$a_{1i}a_{2j}a_{3k}\,\varepsilon_{ijk} = \cdots \tag{8.93}$$

$$= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} (8.94)$$

$$+ a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} (8.95)$$

$$= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 (8.96)

$$= \det(\mathbb{A}) \tag{8.97}$$

$$=: a.$$
 (8.98)

Este resultado es general. En un espacio de dimensión n cualquiera, se tiene que

$$a_{1j_1}a_{2j_2}\cdots a_{nj_n}\,\varepsilon_{j_1j_2\cdots j_n}\equiv \det(\mathbb{A})=:a. \tag{8.99}$$

Con esto podemos ver que en general no se satisface la relación (8.91), sino que

$$\varepsilon_{i_1\cdots i_n} = a^{-1}a_{i_1j_1}\cdots a_{i_nj_n}\,\varepsilon_{j_1\cdots j_n}.$$
(8.100)

Por lo tanto, el símbolo de Levi-Civita no es un tensor con respecto a todas las TO's, ya que su ley de transformación no es en general la de un tensor. Recuerde que en el caso de TO's los valores posibles de a son  $a = \pm 1$  para transformaciones propias o impropias, respectivamente. Note además que debido a esto es posible reemplazar en (8.100)  $a^{-1} = a$ .

Por otro lado, el símbolo de Levi-Civita sí se comporta como un tensor si nos restringuimos a sólo considerar TO  $propias^{10}$  (a = 1). En muchas aplicaciones esta restricción es suficiente.

En todo caso, el símbolo de Levi-Civita es muy útil. Por ejemplo, en tres dimensiones, el tradicional producto vectorial entre vectores  $\vec{C} := \vec{A} \times \vec{B}$  puede escribirse usando este símbolo. Es simple verificar que las componentes de  $\vec{C}$  pueden expresarse como

$$C_i = \varepsilon_{ijk} A_i B_k. \tag{8.101}$$

Note que, como consecuencia del resultado anterior, si  $A_i$  y  $B_i$  son las componentes de dos vectores bajo TO's, entonces los tres valores  $C_i$  dados por (8.101) no forman un vector. En efecto, usando (8.101), (8.101) y la ley de transformación para las componentes de los dos vectores involucrados, obtenemos que

$$C_i' = a \, a_{ij} C_j. \tag{8.102}$$

Verificamos así que las componentes  $C_i$  no transforman, para transformaciones TO generales, como las componentes de un vector. En particular, si la transformación definida por  $a_{ij}$  es impropia, tendremos que

$$C_i' = -a_{ij}C_j, (8.103)$$

mientras que para transformaciones propias la ley será la misma que para tensores. Conjuntos  $C_i$  de cantidades que bajo una transformación ortogonal cualquiera transformen de acuerdo a (8.102) son llamados **pseudo-vectores**. De las propiedades aquí analizadas es claro que la diferencia entre un vector y un pseudo-vector sólo se manifiesta al estudiar cómo cambian sus componentes bajo TO's impropias. En otras palabras, si sólo se requiere tomar en cuenta transformaciones propias (rotaciones), entonces no es necesario distinguir entre vectores y pseudo-vectores, puesto que ambos tipos de cantidades tienen en ese caso idénticas propiedades.

La existencia de pseudo-vectores motiva (y en cierto sentido hace inevitable) definir otro tipo de objetos bajo TO's, los **pseudo-tensores**.

**Definición:** El conjunto de  $n^r$  números  $\mathcal{T}_{i_1\cdots i_r}$ , definidos en cada SOC, son componentes de un *pseudo*-tensor (cartesiano) de rango r si y sólo si bajo una TO arbitraria, sus valores están relacionados por

$$T'_{i_1 i_2 \cdots i_r} = a \, a_{i_1 j_1} a_{i_2 j_2} \cdots a_{i_n j_n} \, T_{j_1 j_2 \cdots j_r}.$$
(8.104)

#### Observaciones:

- La suma (diferencia) de pseudo-tensores del mismo rango es un pseudo-tensor del mismo rango.
- El producto (tensorial) de dos pseudo-tensores es un tensor (respecto a T.O.C.).
- El producto (tensorial) de un pseudo-tensor y un tensor es un pseudo-tensor.
- La contracción de dos índices de un pseudo-tensor, define un nuevo pseudo-tensor.
- Un pseudo-escalar (r = 0) es una cantidad que cambia de signo bajo una SOC impropia (con a = -1).
- En muchos casos no es necesario (o no se acostumbra) considerar TO impropias en el análisis. En tales situaciones no es necesario distinguir entre tensores y pseudotensores.

 $<sup>^{10}</sup>$ Esta restricción define el **grupo ortogonal especial**: SO(N), que es un subgrupo de O(N).

#### Algunas identidades

Es simple verificar que el símbolo de Levi-Civita puede escribirse como

$$\varepsilon_{i_1\cdots i_n} \equiv \begin{vmatrix} \delta_{i_11} & \delta_{i_12} & \cdots & \delta_{i_1n} \\ \delta_{i_21} & \delta_{i_22} & \cdots & \delta_{i_2n} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_{i_n1} & \delta_{i_12} & \cdots & \delta_{i_nn} \end{vmatrix}, \tag{8.105}$$

ya que se satisfacen las dos propiedades que definen completamente este objeto. En efecto, se verifica directamente que esta expresión implica  $\varepsilon_{12\cdots n}=1$ , ya que en este caso el lado derecho se reduce al determinante de la matriz identidad de dimensión n. Por otro lado, la expresión asegura la antisimetría total bajo intercambio de índices, ya que cada permutación de un par de índices es equivalente a un intercambio de filas en la matriz del lado derecho y el determinante cambia de signo bajo estas operaciones.

Usando la identidad (8.105) podemos calcular el producto de dos símbolos de Levi-Civita:

$$\varepsilon_{i_{1}i_{2}\cdots i_{n}}\varepsilon_{j_{1}j_{2}\cdots j_{n}} = \begin{vmatrix}
\delta_{i_{1}1} & \delta_{i_{1}2} & \cdots & \delta_{i_{1}n} \\
\delta_{i_{2}1} & \delta_{i_{2}2} & \cdots & \delta_{i_{2}n} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}1} & \delta_{i_{1}2} & \cdots & \delta_{i_{n}n}
\end{vmatrix} \begin{vmatrix}
\delta_{j_{1}1} & \delta_{j_{1}2} & \cdots & \delta_{j_{1}n} \\
\delta_{j_{2}1} & \delta_{j_{2}2} & \cdots & \delta_{j_{2}n}
\end{vmatrix} \vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}1} & \delta_{i_{1}2} & \cdots & \delta_{i_{n}n}
\end{vmatrix} \begin{vmatrix}
\delta_{j_{1}1} & \delta_{j_{1}2} & \cdots & \delta_{j_{n}n} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{j_{n}1} & \delta_{j_{1}2} & \cdots & \delta_{j_{n}1}
\end{vmatrix} = \begin{vmatrix}
\delta_{i_{1}1} & \delta_{i_{1}2} & \cdots & \delta_{i_{n}n} \\
\delta_{i_{2}1} & \delta_{i_{2}2} & \cdots & \delta_{i_{n}n}
\end{vmatrix} \begin{vmatrix}
\delta_{j_{1}1} & \delta_{j_{1}2} & \cdots & \delta_{j_{n}n} \\
\delta_{j_{1}2} & \delta_{j_{2}2} & \cdots & \delta_{j_{n}2} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}1} & \delta_{i_{1}2} & \cdots & \delta_{i_{n}n}
\end{vmatrix} \begin{vmatrix}
\delta_{j_{1}1} & \delta_{j_{2}1} & \cdots & \delta_{j_{n}n} \\
\delta_{j_{1}2} & \delta_{j_{2}2} & \cdots & \delta_{j_{n}2} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}q}\delta_{j_{1}q} & \delta_{i_{1}q}\delta_{j_{2}q} & \cdots & \delta_{i_{1}q}\delta_{j_{n}q} \\
\delta_{i_{2}q}\delta_{j_{1}q} & \delta_{i_{2}q}\delta_{j_{2}q} & \cdots & \delta_{i_{2}q}\delta_{j_{n}q} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}q}\delta_{j_{1}q} & \delta_{i_{n}q}\delta_{j_{2}q} & \cdots & \delta_{i_{n}q}\delta_{j_{n}q}
\end{vmatrix}$$

$$= \begin{vmatrix}
\delta_{i_{1}j_{1}} & \delta_{i_{1}j_{2}} & \cdots & \delta_{i_{1}j_{n}} \\
\delta_{i_{2}j_{1}} & \delta_{i_{2}j_{2}} & \cdots & \delta_{i_{2}j_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}q}\delta_{j_{1}q} & \delta_{i_{2}q}\delta_{j_{2}q} & \cdots & \delta_{i_{2}j_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}q}\delta_{j_{1}q} & \delta_{i_{2}j_{2}} & \cdots & \delta_{i_{2}j_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}q}\delta_{j_{n}q} & \delta_{i_{n}q}\delta_{j_{2}q} & \cdots & \delta_{i_{n}q}\delta_{j_{n}q}
\end{vmatrix}$$

$$= \begin{vmatrix}
\delta_{i_{1}j_{1}} & \delta_{i_{1}j_{2}} & \cdots & \delta_{i_{1}j_{n}} \\
\delta_{i_{2}j_{1}} & \delta_{i_{2}j_{2}} & \cdots & \delta_{i_{2}j_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}q}\delta_{j_{n}q} & \delta_{i_{n}q}\delta_{j_{n}q} & \delta_{i_{n}q}\delta_{j_{n}q}
\end{vmatrix}$$

$$= \begin{vmatrix}
\delta_{i_{1}j_{1}} & \delta_{i_{1}j_{2}} & \cdots & \delta_{i_{1}j_{n}} \\
\delta_{i_{2}j_{1}} & \delta_{i_{2}j_{2}} & \cdots & \delta_{i_{2}j_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}q}\delta_{j_{n}q} & \delta_{i_{n}q}\delta_{j_{n}q} & \delta_{i_{n}q}\delta_{j_{n}q}
\end{vmatrix}$$

$$= \begin{vmatrix}
\delta_{i_{1}j_{1}} & \delta_{i_{1}j_{2}} & \cdots & \delta_{i_{1}j_{n}} \\
\delta_{i_{2}j_{1}} & \delta_{i_{2}j_{2}} & \cdots & \delta_{i_{2}j_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{i_{n}q}\delta_{j_{n}q} & \delta_{i_{n}q}\delta_{j_{n}q} & \delta_{i_{n}q}\delta_{j_{n}q}
\end{vmatrix}$$

$$= \begin{vmatrix}
\delta_{i_{1}j_{1}} & \delta_{i_{1}j_{2}} & \cdots & \delta_{i_{1}j_{n$$

Note que, en (8.107) hemos reemplazado, en el segundo factor, el determinante de la matriz por el de la correspondiente matriz transpuesta.

En el caso tridimensional (n=3), desarrollando el determinante podemos escribir el resultado anterior como

$$\varepsilon_{ijk} \, \varepsilon_{lmp} \equiv \delta_{il} \delta_{jm} \delta_{kp} + \delta_{jl} \delta_{km} \delta_{ip} + \delta_{kl} \delta_{im} \delta_{jp} \\
- \delta_{kl} \delta_{jm} \delta_{ip} - \delta_{jl} \delta_{im} \delta_{kp} - \delta_{il} \delta_{km} \delta_{jp} \\
= 3! \, \delta_{[i|l} \delta_{|j|m} \delta_{|k]p}. \tag{8.111}$$

Contravendo dos índices en la identidad (8.110) encontramos

$$\varepsilon_{ijk}\,\varepsilon_{lmk} \equiv \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}.\tag{8.112}$$

Si seguimos contravendo, llegamos a

$$\varepsilon_{ijk}\,\varepsilon_{ljk} \equiv 2\,\delta_{il},\tag{8.113}$$

y, finalmente,

$$\varepsilon_{ijk}\,\varepsilon_{ijk} \equiv 6.$$
(8.114)

Estas identidades son muy útiles. Por ejemplo, usando (8.112) podemos demostrar que

$$(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) \equiv (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C}). \tag{8.115}$$

#### 8.9.1. (Pseudo)-tensor dual

Un (pseudo-)tensor totalmente antisimétrico de rango r en n dimensiones tiene el mismo número de componentes linealmente independientes (n!/(n-r)!r!) que un (pseudo-)tensor totalmente antisimétrico de rango n-r. Debido a esto, es posible definir un pseudo-tensor antisimétrico de rango n-r asociado a cada tensor antisimétrico de rango r, y viceversa. En otras palabras, existe una relación uno a uno entre pseudo-tensores antisimétricos de rango r-r y tensores antisimétricos de rango r.

Si  $A_{i_1\cdots i_r}$  es un tensor totalmente antisimétrico de rango r, entonces podemos definir el pseudo-tensor **dual** 

$$\mathcal{A}_{i_1\cdots i_{n-r}} := \frac{1}{r!} \epsilon_{i_1\cdots i_{n-r}j_1\cdots j_r} A_{j_1\cdots j_r}. \tag{8.116}$$

La relación inversa a (8.116) es

$$A_{i_1 \cdots i_r} := \frac{1}{(n-r)!} \epsilon_{i_1 \cdots i_r j_1 \cdots j_{n-r}} \mathcal{A}_{j_1 \cdots j_{n-r}}.$$
 (8.117)

En particular, en un espacio euclideano 3-dimensional, tenemos que a cada tensor de rango 3 totalmente antisimétrico,  $A_{ijk}$ , puede asociase un pseudo-escalar dual  $\mathcal{A}$  tal que

$$\mathcal{A} := \frac{1}{3!} \varepsilon_{ijk} A_{ijk}, \qquad A_{ijk} := \varepsilon_{ijk} \mathcal{A}. \tag{8.118}$$

Similarmente, todo tensor antisimétrico  $\vec{A}_{ij}$  tiene asociado un pseudo-tensor  $\mathcal{A}_i$  tal que

$$A_i := \frac{1}{2} \varepsilon_{ijk} A_{jk}, \qquad A_{ij} := \varepsilon_{ijk} A_k. \tag{8.119}$$

Además, a cada vector  $A_i$  puede asociarse un pseudo-tensor totalmente antisimétrico  $\mathcal{A}_{ij}$ , tal que

$$A_{ij} := \varepsilon_{ijk} A_k, \qquad A_i := \frac{1}{2} \varepsilon_{ijk} A_{jk}.$$
 (8.120)

Finalmente, a cada escalar A puede asociarse un pseudo-tensor totalmente antisimétrico  $A_{ijk}$ , tal que

$$\mathcal{A}_{ijk} := \varepsilon_{ijk} A, \qquad A := \frac{1}{3} \varepsilon_{ijk} \mathcal{A}_{ijk}.$$
 (8.121)

Como estas relaciones son uno a uno, un tensor antisimétrico dado contiene la misma información que su pseudo-tensor dual asociado, de modo que es posible elegir representar una cantidad física descrita por (pseuso-)tensores totalmente antisimétricos por el mismo tensor o por su dual. Un ejemplo de esto es el **momento multipolar magnético de rango** 1,  $M_{ij} = -M_{ji}$  que puede representarse alternativamente usando el (pseudo-)vector **momento magnético**  $\mu_i = \varepsilon_{ijk} M_{jk}/2$ .

#### 8.10. Análisis tensorial cartesiano

#### 8.10.1. Campo tensorial

En Física, es común describir sistemas físicos usando **campos tensoriales**, es decir, tensores definidos en cada punto del espacio.

$$x \in E_n \to \text{Tensor de rango } r,$$
 (8.122)

$$x_i \to T_{i_1 \cdots i_r}(x_i). \tag{8.123}$$

Si r = 0 hablamos de un **campo escalar** (por ejemplo, el potencial electrostático  $\phi(x)$ ), si r = 1 hablamos de un **campo vectorial** (por ejemplo, el campo eléctrico  $E_i(x)$ ), si r = 2 hablamos de un **campo tensorial de rango 2** (por ejemplo, el tensor dieléctrico  $\kappa_{ij}(x)$  de un medio inhomogéneo), etc.

#### 8.10.2. Derivación

Dado que un campo tensorial de rango r,  $T_{i_1\cdots i_r}(x_i)$ , consta de  $n^r$  cantidades definidas en cada punto (de alguna región) de  $E_n$ , es posible derivar cada una de estas cantidades respecto a las n coordenadas de las que depende, en cada SOC. Esto permite calcular  $n^{r+1}$  nuevas cantidades: las  $n^{r+1}$  derivadas parciales

$$\frac{\partial T_{i_1 \cdots i_r}}{\partial x_j}.\tag{8.124}$$

En general, adoptaremos la notación

$$\partial_j T_{i_1 \cdots i_n} := \frac{\partial T_{i_1 \cdots i_r}}{\partial x_j}. \tag{8.125}$$

Ahora probaremos que las  $n^{r+1}$  derivaras  $\partial_j T_{i_1 \cdots i_r}$  forman un tensor cartesiano de rango r+1 bajo TO's.

En efecto, si denotamos  $A_{ji_1\cdots i_r}:=\partial_j T_{i_1\cdots i_r}$ , entonces en otro SOC  $(x_i'=a_{ij}x_j)$  tendremos que

$$A'_{ji_1\cdots i_r} = \frac{\partial T'_{i_1\cdots i_r}}{\partial x'_j} \tag{8.126}$$

$$= \frac{\partial}{\partial x'_j} \left( a_{i_1 j_1} \cdots a_{i_r j_r} T_{j_1 \cdots j_r} \right) \tag{8.127}$$

$$= a_{i_1 j_1} \cdots a_{i_r j_r} \frac{\partial}{\partial x'_j} (T_{j_1 \cdots j_r}). \tag{8.128}$$

Usamos ahora la regla de la cadena para expresar las derivadas de  $T_{j_1\cdots j_r}$  respecto a las "nuevas" coodenadas  $x_i'$  en función de sus derivadas respecto a las coordenadas "antiguas"  $x_i$ . Usando la convención de suma de Einstein tenemos que, para cualquier función  $\Psi$ , se satisface

$$\frac{\partial \Psi(x')}{\partial x'_{i}} = \frac{\partial \Psi(x)}{\partial x_{k}} \frac{\partial x_{k}}{\partial x'_{i}}.$$
(8.129)

En nuestro caso (es decir, para TO's) tenemos que la transformación inversa está dada por  $x_i = a_{ji}x'_i$  y por lo tanto,

$$\frac{\partial x_k}{\partial x_j'} = a_{jk}. (8.130)$$

Con esto, al substituir (8.129) en (8.128) obtenemos

$$A'_{ji_1\cdots i_r} = a_{i_1j_1}\cdots a_{i_rj_r} \frac{\partial T_{j_1\cdots j_r}}{\partial x_k} \frac{\partial x_k}{\partial x'_j}$$
(8.131)

$$= a_{jk} a_{i_1 j_1} \cdots a_{i_r j_r} \frac{\partial T_{j_1 \cdots j_r}}{\partial x_k}$$
(8.132)

$$= a_{jk}a_{i_1j_1}\cdots a_{i_rj_r}A_{kj_1\cdots j_r}, \tag{8.133}$$

q.e.d.

### 8.10.3. Divergencia, rotor, Laplaciano

A partir del hecho que la derivación de un tensor cartesiano de rango r suministra un nuevo tensor cartesiano de rango r+1 es posible operar sobre este nuevo tensor con las operaciones disponibles (addición, multiplicación por escalar, contracción, permutación de índices, etc.).

Por ejemplo, dado un campo vectorial con componentes  $A_i$ , podemos calcular  $\partial_i A_j$  que se un tensor de rango 2, y luego la contracción  $\partial_i A_i$  que será entonces un escalar bajo TO's. Es fácil verificar que el escalar  $\partial_i A_i$  corresponde a la divergencia del vector  $A_i$ , ya que

$$\partial_i A_i = \partial_1 A_1 + \partial_2 A_2 + \dots + \partial_n A_n. \tag{8.134}$$

Por otro lado, dado un campo escalar  $\phi$ , entonces  $\partial_i \phi$  es el campo vectorial **gradiente del campo**  $\phi$ . Además, la divergencia del gradiente de  $\phi$ , es decir, el Laplaciano de  $\phi$  (que es un escalar bajo TO's) puede entonces escribirse en notación de componentes como

$$\nabla^2 \phi = \partial_i \partial_i \phi = \partial_1 \partial_1 \phi + \dots + \partial_n \partial_n \phi = \partial_1^2 \phi + \dots + \partial_n^2 \phi, \tag{8.135}$$

o, simplemente, en términos de operadores  $\nabla^2 = \partial_i \partial_i$ .

En tres dimensiones (n=3) podemos expresar el rotor  $\vec{C}:=\vec{\nabla}\times\vec{A}$  de un campo vectorial  $\vec{A}$  como

$$C_i = \varepsilon_{ijk} \partial_j A_k, \tag{8.136}$$

relación que en algunas ocasiones denotaremos

$$(\vec{\nabla} \times \vec{A})_i = \varepsilon_{ijk} \partial_j A_k. \tag{8.137}$$

Observación: Note que el rotor de un vector es en realidad un pseudo-vector.

#### 8.10.4. Integración

Otra operación comúnmente requerida es la integración de tensores, ya sea sobre una línea, superficie o volumen. A continuación probaremos que estas operaciones definen nuevos tensores bajo TO's.

#### Integrales de línea

Si  $T_{i_1\cdots i_r}(x)$  es un campo tensorial de rango r entonces, dada una curva  $\mathcal{C}$  parametrizada por  $x_i = x_i(\lambda)$ , es posible definir las siguientes n integrales de línea por cada una de las componentes del tensor original:

$$C_{ji_1\cdots i_r} := \int_{\mathcal{C}} T_{i_1\cdots i_r}(x) \, dx_j, \tag{8.138}$$

o, más explícitamente,

$$C_{ji_1\cdots i_r} := \int_{\lambda_1}^{\lambda_2} \left[ T_{i_1\cdots i_r}(x(\lambda)) \right] \left[ \frac{dx_j}{d\lambda}(\lambda) \right] d\lambda. \tag{8.139}$$

Entonces, en otro SOC, tendremos que

$$C'_{ji_1\cdots i_r} = \int_{\lambda_1}^{\lambda_2} \left[ T'_{i_1\cdots i_r}(x(\lambda)) \right] \left[ \frac{dx'_j}{d\lambda}(\lambda) \right] d\lambda. \tag{8.140}$$

$$= \int_{\lambda_1}^{\lambda_2} \left[ a_{i_1 j_1} \cdots a_{i_r j_r} T_{j_1 \cdots j_r} (x(\lambda)) \right] \left[ \frac{d(a_{jk} x_k)}{d\lambda} (\lambda) \right] d\lambda \tag{8.141}$$

$$= a_{jk}a_{i_1j_1}\cdots a_{i_rj_r} \int_{\lambda_1}^{\lambda_2} \left[T_{j_1\cdots j_r}(x(\lambda))\right] \left[\frac{dx_k}{d\lambda}(\lambda)\right] d\lambda \tag{8.142}$$

$$= a_{jk} a_{i_1 j_1} \cdots a_{i_r j_r} C_{k j_1 \cdots j_r}. \tag{8.143}$$

#### Integrales de superficie

Similarmente, podemos definir integrales de superficie. Si  $n_i(x)$  es un (pseudo-)vector unitario normal a la superficie S en el punto  $x_i$  podemos definir las  $n^{r+1}$  cantidades

$$C_{ji_1\cdots i_r} := \int_S T_{i_1\cdots i_r}(x) \, dS_j, \qquad dS_j := n_j dS.$$
 (8.144)

Note que aquí dS denota el elemento de superficie que, por definición, es un escalar, es decir, dS' = dS.

Tal como en el caso de las integrales de línea, es directo demostrar que estas nuevas cantidades son componentes de un (pseudo-)tensor de rango r + 1:

$$C'_{ji_1\cdots i_r} := \int_S T'_{i_1\cdots i_r}(x) \, n'_j \, dS' \tag{8.145}$$

$$:= \int_{S} \left[ a_{i_1 j_1} \cdots a_{i_r j_r} T_{j_1 \cdots j_r}(x') \right] (a_{jk} n_k) dS$$
 (8.146)

$$:= a_{jk} a_{i_1 j_1} \cdots a_{i_r j_r} \int_S T_{j_1 \cdots j_r}(x) \, n_k \, dS \tag{8.147}$$

$$:= a_{jk} a_{i_1 j_1} \cdots a_{i_r j_r} C_{k j_1 \cdots j_r}. \tag{8.148}$$

#### Integrales de volumen

Finalmente, consideraremos la definición de nuevos tensores por medio de la integración en un volumen (n-dimensional). A partir del campo tensorial de rango r,  $T_{i_1\cdots i_r}(x)$ , definimos

$$C_{i_1 \cdots i_r} := \int_V T_{i_1 \cdots i_r}(x) \, d^n x, \tag{8.149}$$

que son componentes de un nuevo tensor de rango r respecto a TO's, ya que

$$C'_{i_1\cdots i_r} = \int_V T'_{i_1\cdots i_r}(x) \, d^n x' \tag{8.150}$$

$$= \int_{V} \left[ a_{i_1 j_1} \cdots a_{i_r j_r} T_{j_1 \cdots j_r}(x) \right] \left| \frac{\partial x'}{\partial x} \right| d^n x$$
 (8.151)

$$= a_{i_1 j_1} \cdots a_{i_r j_r} \int_V T_{j_1 \cdots j_r}(x) |a| d^n x$$
 (8.152)

$$= a_{i_1 j_1} \cdots a_{i_r j_r} \int_V T_{j_1 \cdots j_r}(x) d^n x$$
 (8.153)

$$= a_{i_1 j_1} \cdots a_{i_r j_r} C_{j_1 \cdots j_r}. \tag{8.154}$$

#### Teorema de Gauss y Stokes

El teorema fundamental del cálculo (en varias variables) adopta, en notación tensorial, la forma

$$\left| \int_{\mathcal{C},A}^{B} (\partial_k T_{i_1 \cdots i_r}) \, dx_k = T_{i_1 \cdots i_r}(B) - T_{i_1 \cdots i_r}(A), \right| \tag{8.155}$$

donde C es una curva que une los puntos A y B.

En tres dimensiones (n = 3), tenemos que la forma general del Teorema de Green es

$$\int_{V} \partial_k T_{i_1 \cdots k \cdots i_r}(x) \, dV = \oint_{\partial V} T_{i_1 \cdots k \cdots i_r}(x) \, dS_k. \tag{8.156}$$

Es simple verificar que este teorema puede generalizarse a

$$\int_{V} \partial_{j} T_{i_{1} \cdots i_{r}}(x) dV = \oint_{\partial V} T_{i_{1} \cdots i_{r}}(x) dS_{j},$$

$$(8.157)$$

es decir, al caso en que no existe necesariamente una contracción de índices a ambos lados de la igualdad.

Por otro lado, el teorema de Stokes, adopta la forma

$$\int_{S} \varepsilon_{ijk} \partial_{j} T_{i_{1} \cdots k \cdots i_{r}} dS_{i} = \oint_{\partial S} T_{i_{1} \cdots k \cdots i_{r}} dx_{k}. \tag{8.158}$$

Nuevamente, este teorema puede ser generalizado al caso sin contracción:

$$\left| \int_{S} \varepsilon_{ijk} \partial_{j} T_{i_{1} \cdots i_{r}} dS_{i} = \oint_{\partial S} T_{i_{1} \cdots i_{r}} dx_{k}. \right|$$
 (8.159)

# Apéndice A

# La Delta de Dirac

## A.1. La "función" $\delta$

Decimos que  $\delta(x)$  es una delta de Dirac, si

$$\delta(x - a) = 0 \quad \forall x \neq a, \tag{A.1}$$

donde  $a \in \mathbf{R}$ , pero

$$\int_{b}^{c} f(x)\delta(x-a)dx = \begin{cases} 0 & \text{si } x \notin (b,c), \\ f(a) & \text{si } x \in (b,c), \end{cases}$$
(A.2)

para toda función f de clase  $C^1$ .

La noción general de una delta de Dirac es que ésta se anula para todo punto, excepto en x=a, y que allí "asume un valor divergente", pero tal que

$$\int_{-\infty}^{\infty} \delta(x - a) dx = 1. \tag{A.3}$$

La delta de Dirac, que en realidad no es una función en sentido estricto, puede ser entendida como el *límite de una sucesión de funciones*. Por ejemplo, si definimos

$$D_n(x-a) := \sqrt{\frac{n}{\pi}} \cdot e^{-n(x-a)^2}, \qquad n = 1, 2, 3, \dots,$$
 (A.4)

entonces es posible probar que

$$\int_{-\infty}^{\infty} D_n(x)dx = 1,\tag{A.5}$$

y además

$$\lim_{n \to \infty} D_n(x) = \begin{cases} 0 & \forall x \neq a, \\ \infty & \text{para } x = a. \end{cases}$$
(A.6)

$$\lim_{n \to \infty} \int_b^c D_n(x) f(x) dx = \begin{cases} 0 & \text{si } x \notin (b, c), \\ f(a) & \text{si } x \in (b, c). \end{cases}$$
(A.7)

Por lo tanto, escribimos

$$\lim_{n \to \infty} D_n(x) = \delta(x - a). \tag{A.8}$$

Una descripción matemáticamente consistente de la delta de Dirac puede ser dada en el marco de la *Teoría de Distribuciones*.

Otros ejemplos de sucesiones de funciones que convergen a una Delta de Dirac  $\delta(x)$  son:

$$D_n(x) = \frac{n}{\pi} \frac{1}{1 + n^2 x^2},\tag{A.9}$$

$$D_n(x) = \frac{1}{n\pi} \frac{\sin^2(nx)}{x^2}.$$
 (A.10)

#### A.1.1. Derivada de la delta de Dirac

Considerando la función  $\delta$  como si fuese una función normal, encontramos, integrando por partes, que

$$\int_{-\infty}^{\infty} \underbrace{\delta'(x-a)}_{:=\frac{d}{dx}\delta(x-a)} f(x)dx = \underbrace{\left[\delta(x-a)f(x)\right]_{-\infty}^{\infty}}_{=0} - \int_{-\infty}^{\infty} \delta(x-a)f'(x)dx = -f'(a), \quad (A.11)$$

es decir,

$$\int_{-\infty}^{\infty} \delta'(x-a)f(x)dx = -f'(a). \tag{A.12}$$

# A.2. Delta de Dirac evaluada en una función y cambios de variable

Por otro lado, de las reglas de cambio de variables, obtenemos

$$\delta(g(x)) = \sum_{i} \frac{\delta(x - x_i)}{|g'(x)|},$$
(A.13)

donde  $x_i$  son las soluciones nulas (simples!) de g, e.d., que satisfacen g(x) = 0. Por ejemplo,

$$\delta(ax) = \frac{1}{|a|}\delta(x). \tag{A.14}$$

Esto puede probarse de la forma siguiente: Si a>0 el cambio de variable de integración y=ax conduce a

$$\int_{-\infty}^{\infty} \delta(ax)f(x) dx = \int_{-\infty}^{\infty} \delta(y)f(\frac{y}{a}) dy = \frac{1}{a}f(0) = \int_{-\infty}^{\infty} \frac{1}{a}\delta(x)f(x) dx.$$
 (A.15)

Si a < 0, entonces el mismo cambio de variable conduce a

$$\int_{-\infty}^{\infty} \delta(ax)f(x) dx = \int_{\infty}^{-\infty} \delta(y)f(\frac{y}{a}) dy = -\frac{1}{a}f(0) = -\int_{-\infty}^{\infty} \frac{1}{a}\delta(x)f(x) dx.$$
 (A.16)

Estos dos resultados son equivalentes a la identidad (A.14).

Como caso particular, si a = -1 (A.14), encontramos

$$\delta(-x) = \delta(x), \tag{A.17}$$

e.d., la función  $\delta$  es una función par.

#### A.2.1. Otras identidades

La identidad

$$s(x+a)\delta(x) = s(a)\delta(x), \tag{A.18}$$

donde s(x) es una función continua y a una constante, se sigue de

$$\int_{-\infty}^{\infty} s(x+a)\delta(x)f(x) dx = s(a)f(0) = \int_{-\infty}^{\infty} s(a)\delta(x)f(x) dx. \tag{A.19}$$

Un caso particular de (A.18) es

#### A.2.2. Representación integral

La expresión

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk$$
(A.21)

puede ser derivada de la siguiente forma: La transformada de Fourier  $\tilde{f}(k)$  de una función f(x) es definida por

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \tilde{f}(k) dk, \tag{A.22}$$

donde

$$\tilde{f}(k) := \int_{-\infty}^{\infty} e^{-ikx} f(x) \, dx. \tag{A.23}$$

Para  $f(x) = \delta(x)$  obtenemos

$$\tilde{f}(k) := \int_{-\infty}^{\infty} e^{-ikx} \delta(x) \, dx = \left. e^{-ikx} \right|_{x=0} = 1,$$
 (A.24)

de modo que (A.22) se reduce a (A.21).

#### A.2.3. La delta de Dirac tridimensional

La definición de la delta de Dirac tridimensional  $\delta^{(3)}(\vec{x} - \vec{a})$  es análoga a aquella de la versión unidimensional:

$$\delta^{(3)}(\vec{x} - \vec{a}) = 0, \qquad \forall \ \vec{x} \neq \vec{a}, \tag{A.25}$$

pero

$$\int_{V} \delta^{(3)}(\vec{x} - \vec{a}) f(\vec{x}) dV = \begin{cases} 0 & \text{si } \vec{a} \notin V, \\ f(\vec{a}) & \text{si } \vec{a} \in V. \end{cases}$$
(A.26)

Esta definición puede ser usada, por ejemplo, para describir la densidad de carga de una carga puntual situada en  $\vec{x}'$ :

$$\rho(\vec{x}) = q \,\delta^{(3)}(\vec{x} - \vec{x}'),\tag{A.27}$$

de modo que

$$\int_{R^3} \rho(\vec{x}) \, dV = q. \tag{A.28}$$

Además, la siguiente identidad es de mucha utilidad:

$$\nabla^2 \frac{1}{|\vec{x} - \vec{x}'|} = -4\pi \,\delta^3(\vec{x} - \vec{x}').$$
(A.29)

Para probar esta identidad, debe mostrarse que: a)  $\nabla^2 \frac{1}{|\vec{x}-\vec{x}'|} = 0$ ,  $\forall \vec{x} \neq \vec{x}'$ , lo que puede ser directamente comprobado calculando las derivadas respectivas, y b)  $\int_V f(\vec{x}) \nabla^2 \frac{1}{|\vec{x}-\vec{x}'|} dV = -4\pi f(\vec{x}')$  para cualquier función de clase  $C^1$  en el volumen V, que contiene el punto  $\vec{x}'$ . Para probar esto último, es conveniente usar coordenadas esféricas centradas en el punto  $\vec{x}'$ , de modo que  $\frac{1}{|\vec{x}-\vec{x}'|} = \frac{1}{r}$ . Además, como la propiedad a) es válida es posible reemplazar el dominio de integración V (que incluye el punto  $\vec{x}'$ ) por una esfera E de radio R, centrada

en  $\vec{x}'$ , de modo que

$$\int_{V} f(\vec{x}) \nabla^{2} \frac{1}{r} dV = \int_{E} f(\vec{x}) \nabla^{2} \frac{1}{r} dV \tag{A.30}$$

$$= \int_{E} f(\vec{x}) \vec{\nabla} \cdot \left( \vec{\nabla} \frac{1}{r} \right) dV \tag{A.31}$$

$$= \int_{E} \left[ \vec{\nabla} \cdot \left( f \vec{\nabla} \frac{1}{r} \right) - \vec{\nabla} f \cdot \vec{\nabla} \frac{1}{r} \right] dV \tag{A.32}$$

$$= \oint_{\partial E} \left( f \vec{\nabla} \frac{1}{r} \right) \cdot d\vec{S} - \int_{E} \vec{\nabla} f \cdot \vec{\nabla} \frac{1}{r} \, dV \tag{A.33}$$

$$= -\oint_{\partial E} f \frac{1}{r^2} \left( \hat{r} \cdot d\vec{S} \right) + \int_{E} (\vec{\nabla} f \cdot \hat{r}) \frac{1}{r^2} dV \tag{A.34}$$

$$= -\oint_{\partial E} f \frac{1}{r^2} dS + \int_E \frac{\partial f}{\partial r} \frac{1}{r^2} dV$$
 (A.35)

$$= -\oint_{\partial E} f \, d\Omega + \int_{E} \frac{\partial f}{\partial r} \, dr d\Omega. \tag{A.36}$$

Si f es una función de clase  $C^1$ , ambos términos son finitos y su suma es independiente de R. En el límite  $R \to 0$ , el primer término tiende a  $-f|_{r=0} \oint d\Omega = -4\pi f(\vec{x}')$ , mientras que el segundo tiende a cero debido a la integral sobre la variable r, desde r=0 hasta r=R. De este modo, obtenemos

$$\int_{V} f(\vec{x}) \nabla^{2} \frac{1}{r} dV = \lim_{R \to 0} \left[ -\oint_{\partial E} f d\Omega + \int_{E} \frac{\partial f}{\partial r} dr d\Omega \right]$$
(A.37)

$$= -4\pi f(\vec{x}') + 0. \tag{A.38}$$

## Apéndice B

## Coordenadas curvilineas

### **B.1.** Coordenadas Cartesianas

Vector

$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z} \tag{B.1}$$

Gradiente:

$$\vec{\nabla}\Psi = \frac{\partial\Psi}{\partial x}\hat{x} + \frac{\partial\Psi}{\partial y}\hat{y} + \frac{\partial\Psi}{\partial z}\hat{z}$$
 (B.2)

Divergencia

$$\vec{\nabla} \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
 (B.3)

Rotor:

$$\vec{\nabla} \times \vec{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{z}$$
(B.4)

Laplaciano

$$\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}$$
 (B.5)

Desplazamiento:

$$d\vec{x} = dx\hat{x} + dy\hat{y} + dz\hat{z} \tag{B.6}$$

Elemento de superficie:

$$d\vec{S} = dy dz \hat{x} + dx dz \hat{y} + dx dy \hat{z}$$
 (B.7)

Elemento de volumen:

$$dV = dx dy dz (B.8)$$

#### B.2. Coordenadas Cilíndricas

Definición:

$$x = \rho \cos \varphi, \qquad y = \rho \sin \varphi, \qquad z = z$$
 (B.9)

$$\rho = \sqrt{x^2 + y^2}, \qquad \varphi = \arctan(y/x), \qquad z = z$$
(B.10)

Vector

$$\vec{A} = A_o \hat{\rho} + A_\omega \hat{\varphi} + A_z \hat{z} \tag{B.11}$$

Gradiente:

$$\vec{\nabla}\Psi = \frac{\partial\Psi}{\partial\rho}\hat{\rho} + \frac{1}{\rho}\frac{\partial\Psi}{\partial\varphi}\hat{\varphi} + \frac{\partial\Psi}{\partial z}\hat{z}$$
 (B.12)

Divergencia

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{\rho} \frac{\partial (\rho A_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_{z}}{\partial z}$$
(B.13)

Rotor:

$$\vec{\nabla} \times \vec{A} = \left(\frac{1}{\rho} \frac{\partial A_z}{\partial \varphi} - \frac{\partial A_{\varphi}}{\partial z}\right) \hat{\rho} + \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho}\right) \hat{\varphi} + \frac{1}{\rho} \left(\frac{\partial \left(\rho A_{\varphi}\right)}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \varphi}\right) \hat{z}$$
(B.14)

Laplaciano

$$\nabla^2 \Psi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial \Psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \Psi}{\partial \varphi^2} + \frac{\partial^2 \Psi}{\partial z^2}$$
 (B.15)

(B.16)

Desplazamiento:

$$d\vec{x} = d\rho\hat{\rho} + \rho d\varphi\hat{\varphi} + dz\hat{z} \tag{B.17}$$

Elemento de superficie:

$$d\vec{S} = \rho \, d\varphi \, dz \, \hat{\rho} + d\rho \, dz \, \hat{\varphi} + \rho \, d\rho \, d\varphi \, \hat{z} \tag{B.18}$$

Elemento de volumen:

$$dV = \rho \, d\rho \, d\varphi \, dz \tag{B.19}$$

### **B.3.** Coordenadas Esféricas

Definición:

$$x = r \operatorname{sen} \theta \cos \varphi, \qquad y = r \operatorname{sen} \theta \operatorname{sen} \varphi, \qquad z = r \cos \theta$$
 (B.20)

$$r = \sqrt{x^2 + y^2 + z^2}, \quad \theta = \arccos(\frac{z}{r}) = \arctan\frac{\sqrt{x^2 + y^2}}{z}, \quad \varphi = \arctan(y/x)$$
 (B.21)

Vector

$$\vec{A} = A_r \hat{r} + A_\theta \hat{\theta} + A_\varphi \hat{\varphi}$$

$$105$$
(B.22)

Gradiente:

$$\vec{\nabla}\Psi = \frac{\partial\Psi}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial\Psi}{\partial\theta}\hat{\theta} + \frac{1}{r\operatorname{sen}\theta}\frac{\partial\Psi}{\partial\varphi}\hat{\varphi}$$
(B.23)

Divergencia

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}$$
(B.24)

Rotor:

$$\vec{\nabla} \times \vec{A} = \frac{1}{r \sin \theta} \left( \frac{\partial}{\partial \theta} \left( A_{\varphi} \sin \theta \right) - \frac{\partial A_{\theta}}{\partial \varphi} \right) \hat{r} + \frac{1}{r} \left( \frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \varphi} - \frac{\partial}{\partial r} \left( r A_{\varphi} \right) \right) \hat{\theta} + \frac{1}{r} \left( \frac{\partial}{\partial r} \left( r A_{\theta} \right) - \frac{\partial A_{r}}{\partial \theta} \right) \hat{\varphi}$$
(B.25)

Laplaciano

$$\nabla^2 \Psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial \Psi}{\partial r} \right) + \frac{1}{r^2 \operatorname{sen} \theta} \frac{\partial}{\partial \theta} \left( \operatorname{sen} \theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{1}{r^2 \operatorname{sen}^2 \theta} \frac{\partial^2 \Psi}{\partial \varphi^2}$$
(B.26)

Desplazamiento:

$$d\vec{x} = dr\hat{r} + rd\theta\hat{\theta} + r \sin\theta d\varphi\hat{\varphi}$$
 (B.27)

Elemento de superficie:

$$d\vec{S} = r^2 \sin \theta \, d\theta \, d\varphi \, \hat{r} + r \sin \theta \, dr \, d\varphi \, \hat{\theta} + r \, dr \, d\theta \, \hat{\varphi}$$
 (B.28)

Elemento de volumen:

$$dV = r^2 \sin \theta \, dr \, d\theta \, d\varphi \tag{B.29}$$

Solución general (finita) de la Ecuación de Laplace:

$$\Psi(r,\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[ A_{lm} \cdot r^l + B_{lm} \cdot r^{-(l+1)} \right] \cdot Y_{lm}(\theta,\varphi).$$
 (B.30)

## Apéndice C

# Función Gamma

$$\Gamma(z) := \lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \cdots n}{z(z+1)(z+2)\cdots(z+n)} n^z,$$
 (C.1)

$$\Gamma(z) := \int_0^\infty e^{-t} t^{z-1} dt, \qquad \Re(z) > 0,$$
(C.2)

$$\frac{1}{\Gamma(z)} := ze^{\gamma z} \prod_{n=1}^{\infty} \left( 1 + \frac{z}{n} \right) e^{-z/n}, \tag{C.3}$$

donde  $\gamma = 0.577216 \cdots$  es la constante de Euler-Mascheroni<sup>1</sup>.

$$\Gamma(z+1) = z\Gamma(z),$$
 (C.4)

$$\Gamma(1+n) = n!, \qquad n = 0, 1, 2, \cdots,$$
 (C.5)

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\operatorname{sen}(z\pi)}.$$
 (C.6)

$$\Gamma(-n) \to \pm \infty, \qquad n = 0, 1, 2, \cdots.$$
 (C.7)

$$\Gamma(1/2) = \sqrt{\pi}.\tag{C.8}$$



Figura C.1: La función  $\Gamma$  con argumento real. Código Python aquí.

 $<sup>^{1}\</sup>gamma := \lim_{n \to \infty} (1 + 1/2 + 1/3 + \dots 1/n - \ln n).$ 

# Apéndice D

# Otras funciones especiales

## D.1. Funciones de Laguerre

Gráficos



Figura D.1: Funciones de Laguerre

#### Ecuación diferencial

$$x\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + ny = 0$$
 (D.1)

Ecuación diferencial (forma de Sturm-Liouville)

$$\frac{d}{dx}\left[\left(xe^{-x}\right)\frac{dy}{dx}\right] + ne^{-x}y = 0\tag{D.2}$$

#### Fórmula de Rodrigues

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$
(D.3)

### Función generadora

$$\frac{e^{-\frac{xt}{1-t}}}{(1-t)} = \sum_{n=0}^{\infty} \frac{L_n(x)}{n!} t^n$$
 (D.4)

#### Relaciones de Recurrencia

$$(n+1)L_{n+1}(x) = (2n+1-x)L_n(x) - n^2L_{n-1}(x)$$
(D.5)

## ${\bf Ortogonalidad}$

$$\int_0^\infty L_m(x)L_n(x)e^{-x} dx = \delta_{mn}$$
(D.6)

### D.2. Funciones de Laguerre asociadas

Ecuación diferencial

$$x\frac{d^2y}{dx^2} + (k+1-x)\frac{dy}{dx} + ny = 0$$
 (D.7)

Ecuación diferencial (forma de Sturm-Liouville)

$$\frac{d}{dx}\left[\left(x^{k+1}e^{-x}\right)\frac{dy}{dx}\right] + ne^{-x}x^{k}y = 0$$
(D.8)

Fórmula de Rodrigues

$$L_n^k(x) = \frac{e^x x^{-k}}{n!} \frac{d^n}{dx^n} (x^{n+k} e^{-x})$$
 (D.9)

Función generadora

$$(-1)^k t^k \frac{e^{-\frac{xt}{1-t}}}{(1-t)^{k+1}} = \sum_{n=0}^{\infty} \frac{L_n^k(x)}{n!} t^n$$
 (D.10)

Relaciones de Recurrencia

$$\frac{n-k+1}{n+1}L_{n+1}^k(x) + \left(x+m-2n-1\right)L_n^m(x) + n^2L_{n-1}^m(x) = 0$$
 (D.11)

Ortogonalidad

$$\int_{0}^{\infty} L_{m}^{k}(x)L_{n}^{k}(x)e^{-x}x^{k} dx = \frac{\Gamma(n+k+1)!}{n!}\delta_{mn}$$
 (D.12)

#### Aplicación en Física

Solución radial de ecuación de Schrödinger en potencial de Coulomb (átomo hidrogenoide).

## D.3. Funciones de Hermite

#### Gráficos



Figura D.2: Funciones de Hermite

#### Ecuación diferencial

$$\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 0 (D.13)$$

Ecuación diferencial (forma de Sturm-Liouville)

$$\frac{d}{dx}\left[\left(e^{-x^2}\right)\frac{dy}{dx}\right] + 2ne^{-x^2}y = 0 \tag{D.14}$$

Fórmula de Rodrigues

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$
 (D.15)

Función generadora

$$e^{2tx-t^2} = \sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n$$
 (D.16)

Relaciones de Recurrencia

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$$
(D.17)

## ${\bf Ortogonalidad}$

$$\int_{-\infty}^{\infty} H_m(x)H_n(x)e^{-x^2} dx = 2^n n! \sqrt{\pi}\delta_{mn}$$
 (D.18)

## Aplicación en Física

Oscilador armónico cuántico

## D.4. Polinomios de Chebyshev

#### Gráficos



Figura D.3: Polinomios de Chebyshev

http://en.wikipedia.org/wiki/File:Chebyshev\_Polynomials\_of\_the\_1st\_Kind\_ (n%3D0-5,\_x%3D(-1,1)).svg

#### Ecuación diferencial

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0$$
 (D.19)

Ecuación diferencial (forma de Sturm-Liouville)

$$\frac{d}{dx}\left[\left(\sqrt{1-x^2}\right)\frac{dy}{dx}\right] + \frac{n^2}{\sqrt{1-x^2}}y = 0 \tag{D.20}$$

#### Fórmula de Rodrigues

$$T_n(x) = \frac{(-1)^n \sqrt{1 - x^2}}{(2n - 1)(2n - 3)\cdots 1} \frac{d^n}{dx^n} (1 - x^2)^{n - \frac{1}{2}}$$
 (D.21)

#### Función generadora

$$\frac{1 - tx}{1 - 2tx + t^2} = \sum_{n=0}^{\infty} T_n(x)t^n$$
 (D.22)

#### Relaciones de Recurrencia

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 (D.23)

## Ortogonalidad

$$\int_{-1}^{1} \frac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \begin{cases} \pi & m=n=0\\ \frac{\pi}{2}\delta_{mn} & m=n=N \in \mathbb{N} \end{cases}$$
 (D.24)

#### Aplicación en Física

• Solución numérica de ecuaciones de fluidos.

# Bibliografía

- [1] Sean Mauch, Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers (2011), http://www.its.caltech.edu/~sean/. https://bitbucket.org/seanmauch/applied\_math.
- [2] G. Arfken and H.Weber, *Mathematical Methods for Physicists*, Fifth Edition, Academic Press, (2001).
- [3] E. Butkov, Mathematical Physics, Addison-Wesley (1968).
- [4] S. Hassani. Mathematical Physics: A Modern Introduction to Its Foundations, Springer (1999).
- [5] L. Santaló, *Vectores y Tensores con sus aplicaciones*, Editorial Universitaria de Buenos Aires, Séptima Edición (1969).