Signal Processing Lab1

Vu Hoang Minh, MAIA 21/10/2016

1 Problem 1

1.1 Dirac signal

1.2 Step signal

1.3 Ramp signal

1.4 Geometric signal

1.5 Box signal

1.6 Sine signal

2 Random signals

2.1 Gaussian signal

Discuss: The bigger the value of N is, the better the data fits to the theoretical Gaussian signal.

2.2 Uniform signal

2.3 Autocorrelation

Conclusion: The autocorrelation of a continuous-time white noise signal will have a strong peak (represented by a Dirac delta function) at $\tau=0$ and will be absolutely 0 for all other τ . Thus, the first figure represents white noise, but not the second one.

2.4 Cross-correlation

Comments the results: The cross-correlation is similar in nature to the convolution of two functions. That is why we see the pulses at signal 1, 2 and 3 when we cross-correlate signal 1, 2 and 3 with the combined signal, respectively.