1. (8 points) Below are 3 random samples of size n=1000 from six possible elliptical bivariate copulas: Gaussian with correlation parameter $\rho=-0.75,0,+0.75,$ or t(df=1) with correlation parameter $\rho=-0.75,0,+0.75$. Identify the distribution and ρ parameter that generated of each sample (e.g., t with $\rho=-.75$).

Solution:

Copula: t with $\rho = 0$ Copula: Gaussian with $\rho = +0.75$ Copula: t with $\rho = -0.75$

2. Consider a market consisting of 2 assets with bivariate Normal net returns:

$$m{R} = egin{bmatrix} R_1 \\ R_2 \end{bmatrix} \sim \mathrm{N} \left(m{\mu} = egin{bmatrix} 0.05 \\ 0.1 \end{bmatrix}, m{\Sigma} = 0.04 egin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
ight)$$

Note that the returns have the same variance and are perfectly positively correlated.

- (a) (6 points) Show that any portfolio consisting of the two assets will have variance $\mathbb{V}[R_p] = \mathbb{V}[wR_1 + (1-w)R_2] = 0.04, \ \forall w \in \mathbb{R}.$
- (b) (6 points) Now restrict the set of feasible portfolios to those without short-selling (i.e., $w \in [0,1]$). Assuming the risk-free interest rate is $\mu_f = 0.02$, find the Sharpe ratio of the tangency/market portfolio for this restricted model.

(Hint: the answer can be found geometrically from the (σ_p, μ_p) risk-return diagram.)

Solution:

(a)

$$V[R_p] = \mathbf{w}^{\top} \Sigma \mathbf{w}$$

$$= 0.04 \begin{bmatrix} w & (1-w) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} w \\ (1-w) \end{bmatrix}$$

$$= 0.04 \begin{bmatrix} w + (1-w) & w + (1-w) \end{bmatrix} \begin{bmatrix} w \\ (1-w) \end{bmatrix}$$

$$= 0.04 [w^2 + 2w(1-w) + (1-w)^2]$$

$$= 0.04 [w^2 + (2w - 2w^2) + (1 - 2w + w^2)] = 0.04$$

(b) Since every portfolio has the same variance, the feasible set without short-selling is the vertical line at $\sigma_p = \sqrt{0.04} = 0.2$, from returns $\mu_p \in [0.05, 0.1]$. Obviously, the only optimal portfolio, which is also the tangency portfolio, consists of only the higher-return asset (R_2) . The slope of the line with the risk-free return, i.e., the Sharpe ratio, is thus

$$\frac{\mu_2 - \mu_f}{\sigma_2} = \frac{0.1 - 0.02}{0.2} = \frac{0.08}{0.2} = 0.4$$

The following plot illustrates the situation:

