by mimicking Gaussian elimination. If we assume that D is invertible, then we first solve for y, getting

$$y = D^{-1}(d - Cx),$$

and after substituting this expression for y in the first equation, we get

$$Ax + B(D^{-1}(d - Cx)) = c,$$

that is,

$$(A - BD^{-1}C)x = c - BD^{-1}d.$$

If the matrix $A - BD^{-1}C$ is invertible, then we obtain the solution to our system

$$x = (A - BD^{-1}C)^{-1}(c - BD^{-1}d),$$

$$y = D^{-1}(d - C(A - BD^{-1}C)^{-1}(c - BD^{-1}d)).$$

If A is invertible, then by eliminating x first using the first equation, we obtain analogous formulas involving the matrix $D - CA^{-1}B$. The above formulas suggest that the matrices $A - BD^{-1}C$ and $D - CA^{-1}B$ play a special role and suggest the following definition:

Definition 43.1. Given any $n \times n$ block matrix of the form

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where A is a $p \times p$ matrix and D is a $q \times q$ matrix, with n = p + q (so B is a $p \times q$ matrix and C is a $q \times p$ matrix), if D is invertible, then the matrix $A - BD^{-1}C$ is called the Schur complement of D in M. If A is invertible, then the matrix $D - CA^{-1}B$ is called the Schur complement of A in M.

The above equations written as

$$x = (A - BD^{-1}C)^{-1}c - (A - BD^{-1}C)^{-1}BD^{-1}d,$$

$$y = -D^{-1}C(A - BD^{-1}C)^{-1}c$$

$$+ (D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1})d,$$

yield a formula for the inverse of M in terms of the Schur complement of D in M, namely

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{pmatrix}.$$

A moment of reflection reveals that

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} (A - BD^{-1}C)^{-1} & 0 \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} \end{pmatrix} \begin{pmatrix} I & -BD^{-1} \\ 0 & I \end{pmatrix},$$

and then

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} I & 0 \\ -D^{-1}C & I \end{pmatrix} \begin{pmatrix} (A-BD^{-1}C)^{-1} & 0 \\ 0 & D^{-1} \end{pmatrix} \begin{pmatrix} I & -BD^{-1} \\ 0 & I \end{pmatrix}.$$

By taking inverses, we obtain the following result.