CHAPITRE 3:

Les relations binaires et les applications

Cours 2

Les applications

Injection, Surjection, Bijection:

1. Injection:

Soit $f: E \to F$ une application.

f est dite *injective* si et seulement si : $\forall x_1, x_2 \in E : f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$. Ou encore : $\forall x_1, x_2 \in E : x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$.

Autrement dit:

f est dite injective si et seulement si tout élément de l'ensemble d'arrivée possède **au plus** un antécédent par f.

Exemples:

1. f est-elle injective ?

f est injective

f n'est pas injective car d admet deux antécédents

2. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = 2x - 3$$

Montrer que f est injective.

Soient
$$x_1, x_2 \in \mathbb{R}$$
 tels que $f(x_1) = f(x_2)$
 $f(x_1) = f(x_2) \Rightarrow 2x_1 - 3 = 2x_2 - 3$
 $\Rightarrow 2x_1 = 2x_2$
 $\Rightarrow x_1 = x_2$

D'où f est injective.

3.
$$f: R - \{1\} \rightarrow R$$

$$x \mapsto f(x) = \frac{3x}{1-x}$$

Montrer que f est injective.

Soient $x_1, x_2 \in \mathbb{R} - \{1\}$ tels que $f(x_1) = f(x_2)$

$$f(x_1) = f(x_2) \Rightarrow \frac{3x_1}{1 - x_1} = \frac{3x_2}{1 - x_2}$$

$$\Rightarrow 3x_1(1 - x_2) = 3x_2(1 - x_1)$$

$$\Rightarrow 3x_1 - 3x_1x_2 = 3x_2 - 3x_2x_1$$

$$\Rightarrow 3x_1 = 3x_2$$

$$\Rightarrow x_1 = x_2.$$

D'où f est injective.

4. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = (x-2)^2$$

f est-elle injective?

Soient $x_1, x_2 \in \mathbb{R}$ tels que $f(x_1) = f(x_2)$

$$f(x_1) = f(x_2) \Rightarrow (x_1 - 2)^2 = (x_2 - 2)^2$$

$$\Rightarrow |x_1 - 2| = |x_2 - 2|$$

$$\Rightarrow x_1 - 2 = x_2 - 2 \lor x_1 - 2 = -(x_2 - 2)$$

$$\Rightarrow x_1 = x_2 \lor x_1 = -x_2 + 4$$

On remarque que : f(0) = 4 et f(4) = 4 mais $0 \ne 4$ donc f n'est pas injective.

5. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = -x^2 - 2x + 3$$

Résoudre f(x) = 0. f est-elle injective ?

$$f(x) = 0 \Longrightarrow -x^2 - 2x + 3 = 0$$

 $\Delta = 16 > 0$ donc les solutions sont $x_1 = 1 \lor x_2 = -3$

f n'est pas injective car f(1) = 0 et f(-3) = 0 mais $1 \neq -3$.

6.
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x, y) \mapsto f(x, y) = (x - y, xy)$$

Calculer $f(\{(1,1),(0,0),(-1,-1)\})$. f est-elle injective?

$$f(\{(1,1),(0,0),(-1,-1)\}) = \{f(x,y) \in \mathbb{R}^2 / (x,y) \in \{(1,1),(0,0),(-1,-1)\}\}$$

$$(x,y) \in \{(1,1),(0,0),(-1,-1)\} \Rightarrow (x,y) = (1,1) \lor (x,y) = (0,0) \lor (x,y) = (-1,-1)$$

$$f(1,1) = (0,1), f(0,0) = (0,0) \text{ et } f(-1,-1) = (0,1)$$

Donc $f(\{(1,1),(0,0),(-1,-1)\}) = \{(0,1),(0,0)\}$

f n'est pas injective car f(1,1) = f(-1,-1) = (0,1) mais $(1,1) \neq (-1,-1)$.

7.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = -x^2 + 2$$

Déterminer $f^{-1}(\{2,0,3\})$. f est-elle injective ?

$$f^{-1}({2,0,3}) = {x \in R/f(x) \in {2,0,3}}$$

$$f(x) \in \{2,0,3\} \Rightarrow f(x) = 2 \lor f(x) = 0 \lor f(x) = 3$$

$$f(x) = 2 \Rightarrow -x^2 + 2 = 2$$
$$\Rightarrow -x^2 = 0$$

$$\Rightarrow x^2 = 0$$

$$\rightarrow r - 0$$

$$f(x) = 0 \Longrightarrow -x^2 + 2 = 0$$

$$\Rightarrow -x^2 = -2$$

$$\Rightarrow x^2 = 2$$

$$\Rightarrow |x| = \sqrt{2}$$

$$\Rightarrow x = \sqrt{2} \lor x = -\sqrt{2}$$

$$f(x) = 3 \Longrightarrow -x^2 + 2 = 3$$

$$\Rightarrow -x^2 = 1$$

$$\Rightarrow x^2 = -1$$
 impossible car $\forall x \in \mathbb{R}, \ x^2 \ge 0$.

Donc
$$f^{-1}(\{2,0,3\}) = \{0,\sqrt{2},-\sqrt{2}\}$$

f n'est pas injective car $f(\sqrt{2}) = f(-\sqrt{2}) = 0$ mais $\sqrt{2} \neq -\sqrt{2}$.

2. Surjection:

Soit $f: E \to F$ une application.

f est dite surjective si et seulement si : $\forall y \in F, \exists x \in E : y = f(x)$

Autrement dit:

f est dite surjective si et seulement si tout élément de l'ensemble d'arrivée possède **au moins** un antécédent par f.

"L'équation y = f(x) admet au moins une solutions".

Exemples:

1. f est-elle surjective ?

f n'est pas surjective car d n'a pas d'antécédent

f est surjective

2.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = 2x - 3$$

Montrer que f est surjective.

Soit
$$y \in R$$
 tel que $y = f(x)$

$$y = f(x) \Rightarrow 2x - 3 = y$$
$$\Rightarrow 2x = y + 3$$

$$\Rightarrow x = \frac{y+3}{2} \in \mathbb{R}$$
.

Donc $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} : y = f(x)$

D'où f est surjective.

3. $f: R - \{1\} \rightarrow R$

$$x \mapsto f(x) = \frac{3x}{1-x}$$

Soit $y \in \mathbb{R} - \{1\}$ tel que y = f(x)

$$y = f(x) \Rightarrow y = \frac{3x}{1-x}$$

$$\Rightarrow y(1-x)=3x$$

$$\Rightarrow y - yx = 3x$$

$$\Rightarrow$$
 3x + yx = y

$$\Rightarrow x(3+y)=y$$

Pour y = -3 il n'existe pas $x \in \mathbb{R} - \{1\}$ tel que y = f(x).

D'où f n'est pas surjective.

4. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = -x^2 - 2x + 3$$

Résoudre f(x) = 5. f est-elle surjective ?

$$f(x) = 5 \Rightarrow -x^2 - 2x - 2 = 0$$

$$\Rightarrow x^2 + 2x + 2 = 0$$

 $\Delta = -4 < 0$ pas de solutions dans \mathbb{R} .

Donc y = 5 n'a pas d'antécédents.

D'où f n'est pas surjective.

5. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = (x-2)^2$$

Déterminer $f^{-1}(\{0,16,-2\})$. f est-elle surjective ?

$$f^{-1}(\{0,16,-2\}) = \{x \in \mathbb{R}/f(x) \in \{0,16,-2\}\}$$

$$f(x) \in \{0,16,-2\} \Rightarrow f(x) = 0 \lor f(x) = 16 \lor f(x) = -2$$

$$f(x) = 0 \Longrightarrow (x-2)^2 = 0$$

$$\Rightarrow x-2=0$$

$$\Rightarrow x = 2$$

$$f(x) = 16 \Rightarrow (x-2)^2 = 16$$
$$\Rightarrow |x-2| = 4$$
$$\Rightarrow x-2 = 4 \lor x-2 = -4$$
$$\Rightarrow x = 6 \lor x = -2$$

$$f(x) = -2 \Rightarrow (x-2)^2 = -2$$
 impossible car $\forall x \in \mathbb{R}, (x-2)^2 \ge 0$
Donc $f^{-1}(\{0,16,-2\}) = \{0,6,-2\}$
On a $f^{-1}(\{-2\}) = \phi$ donc f n'est pas surjective.

Proposition1:

Soit $f: E \to F$ une application.

f est surjective si et seulement si f(E) = F (Im f = F)

Exemples:

1. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = |x|$$

f n'est pas surjective car $f(E) = f(R) = R_+ \neq R = F$.

2.
$$f: \mathbb{R} \to \mathbb{R}_+^*$$

 $x \mapsto f(x) = e^x$

f est surjective car $f(E) = f(R) = R_+^* = F$

3.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = \sin x$$

Modifier l'ensemble d'arrivée pour $\,f\,$ soit surjective.

f est surjective si et seulement si f(E) = f(R) = [-1,1] = F

Donc $f: \mathbb{R} \to [-1,1]$ est surjective

$$x \mapsto f(x) = \sin x$$

3. Bijection:

Soit $f: E \to F$ une application.

On dit que f est bijective si et seulement si elle est injective et surjective à la fois.

i.e. Tout élément y de F possède un et un seul antécédent x de E .

i.e.
$$\forall y \in F, \exists! x \in E : y = f(x)$$

(l'équation y = f(x) admet une et une seule solution x dans E, $\forall y \in F$).

Exemples:

1. f est-elle bijective ?

f n'est pas bijective car elle n'est ni injective ni surjective

f n'est pas bijective car elle n'est pas injective.

E

f n'est pas bijective car elle n'est surjective

E

f est bijective

2. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = 2x - 3$$

f est bijective car elle est injective et surjective (déjà vue).

3. $f: R - \{1\} \rightarrow R - \{-3\}$

$$x \mapsto f(x) = \frac{3x}{1-x}$$

Montrons que f est bijective i.e. $\forall y \in \mathbb{R} - \{-3\}, \exists ! x \in \mathbb{R} - \{1\} : y = f(x)$ Soit $y \in \mathbb{R} - \{-3\}$ tel que y = f(x)

$$y = f(x) \Rightarrow y = \frac{3x}{1-x}$$

$$\Rightarrow y(1-x)=3x$$

$$\Rightarrow y - yx = 3x$$

$$\Rightarrow$$
 3x + yx = y

$$\Rightarrow x(3+y) = y$$

$$\Rightarrow x = \frac{y}{3+y} \text{ car } y \neq -3$$

Donc il existe un unique x. Reste à montrer que $x \in \mathbb{R} - \{1\}$ $(x \neq 1)$

Raisonnons par l'absurde : supposons que x = 1

$$x = 1 \Rightarrow 1 = \frac{y}{3+y}$$

$$\Rightarrow 3+y=y$$

$$\Rightarrow 3=0 \text{ impossible.}$$

Donc $x \neq 1$.

 $\forall y \in \mathbb{R} - \{-3\}, \exists ! x \in \mathbb{R} - \{1\}: y = f(x).$ D'où f est bijective.

4.
$$f: \mathbb{R}_+ \to [1, +\infty[$$

 $x \mapsto f(x) = \sqrt{x+1}$

Montrons que f est bijective i.e. $\forall y \in [1,+\infty[,\exists!x \in \mathbb{R}_+ : y = f(x)]$

Soit $y \in [1,+\infty[$ tel que y = f(x).

$$y = f(x) \Rightarrow y = \sqrt{x+1}$$
$$\Rightarrow y^2 = x+1$$
$$\Rightarrow x = y^2 - 1$$

On a
$$y \in [1,+\infty[$$

 $y \ge 1 \Rightarrow y^2 \ge 1$
 $\Rightarrow y^2 - 1 \ge 0$

Donc $\forall y \in [1,+\infty[,\exists! x \in \mathbb{R}_+ : y = f(x)]$. D'où f est bijective.

4. Application réciproque :

Soit $f: E \to F$ une application.

$$x \mapsto y = f(x)$$

Si f est bijective alors f admet une application réciproque, notée f^{-1} définie par :

$$f^{-1}: F \to E$$
$$y \mapsto x = f^{-1}(y)$$

Exemples:

1.
$$f: \mathbf{R}_+ \to \mathbf{R}_+$$
 est bijective $f^{-1}: \mathbf{R}_+ \to \mathbf{R}_+$ $x \mapsto f(x) = x^2$ $x \mapsto f^{-1}(x) = \sqrt{x}$

2.
$$f: \mathbb{R} \to \mathbb{R}_{+}^{*}$$
 est bijective $f^{-1}: \mathbb{R}_{+}^{*} \to \mathbb{R}$
 $x \mapsto f(x) = e^{x}$ $x \mapsto f^{-1}(x) = \ln x$

3.
$$f: \mathbb{R} \to \mathbb{R}$$
 est bijective $f^{-1}: \mathbb{R} \to \mathbb{R}$
 $x \mapsto f(x) = 2x - 3$ $x \mapsto f^{-1}(x) = \frac{x + 3}{2}$

4.
$$f: R - \{1\} \to R - \{-3\}$$
 est bijective $f^{-1}: R - \{-3\} \to R - \{1\}$
 $x \mapsto f(x) = \frac{3x}{1-x}$ $x \mapsto f^{-1}(x) = \frac{x}{3+x}$

5.
$$f: \mathbb{R}_+ \to [1, +\infty[$$
 est bijective $f^{-1}: [1, +\infty[\to \mathbb{R}_+ \\ x \mapsto f(x) = \sqrt{x+1}]$ $x \mapsto f^{-1}(x) = x^2 - 1$

Proposition1:

Si $f: E \to F$ est une application bijective, alors il existe une application réciproque f^{-1} qui est bijective de F dans E vérifiant $f^{-1} \circ f = Id_E$, $f \circ f^{-1} = Id_F$ et $\left(f^{-1}\right)^{-1} = f$.

Exemple:

$$f: R - \{1\} \to R - \{-3\}$$
 est bijective $f^{-1}: R - \{-3\} \to R - \{1\}$
 $x \mapsto f(x) = \frac{3x}{1-x}$ $x \mapsto f^{-1}(x) = \frac{x}{3+x}$

Déterminons $f^{-1} \circ f$ et $f \circ f^{-1}$ $f^{-1} \circ f : R - \{1\} \rightarrow R - \{1\}$ Soit $x \in R - \{1\}$

$$f^{-1} \circ f(x) = f^{-1}(f(x)) = f^{-1}\left(\frac{3x}{1-x}\right) = \frac{\frac{3x}{1-x}}{3 + \frac{3x}{1-x}} = \frac{\frac{3x}{1-x}}{\frac{3}{1-x}} = \frac{3x}{3} = x$$

$$f \circ f^{-1} : \mathbf{R} - \{-3\} \to \mathbf{R} - \{-3\}$$

Soit $x \in \mathbf{R} - \{-3\}$

$$f \circ f^{-1}(x) = f(f^{-1}(x)) = f\left(\frac{x}{3+x}\right) = \frac{3\frac{x}{3+x}}{1-\frac{x}{3+x}} = \frac{3x}{\frac{3+x}{3+x}} = \frac{3x}{3} = x.$$

Proposition2:

Une application $f: E \to F$ est bijective si et seulement si : Il existe une application $g: F \to E$ telle que $g \circ f = id_E$ et $f \circ g = Id_F$. g est appelée l'application réciproque de f, notée f^{-1} .

Exemple:

$$f: [1, +\infty[\to \mathbb{R}_+ \\ x \mapsto \sqrt{x-1}] \qquad g: \mathbb{R}_+ \to [1, +\infty[\\ x \mapsto x^2 + 1]]$$

Calculer $g\circ f$ et $f\circ g$. Que peut-on conclure ?

$$g \circ f : [1, +\infty[\rightarrow [1, +\infty[$$
Soit $x \in [1, +\infty[$

$$g \circ f(x) = g(f(x)) = g(\sqrt{x-1}) = (\sqrt{x-1})^2 + 1 = (x-1) + 1 = x$$
Donc $g \circ f = id_{[1, +\infty[}$

$$f \circ g : \mathbf{R}_{+} \to \mathbf{R}_{+}$$
Soit $x \in \mathbf{R}_{+}$

$$f \circ g(x) = f(g(x)) = f(x^{2} + 1) = \sqrt{(x^{2} + 1) - 1} = \sqrt{x^{2}} = |x| = x \text{ car } x \in \mathbf{R}_{+}.$$
Donc $f \circ g = id_{\mathbf{R}_{+}}$

Conclusion:

On a $g \circ f = id_{[1,+\infty[} = id_E$ et $f \circ g = id_{R_+} = Id_F$, d'après la proposition2 : f est bijective et son application réciproque est $f^{-1} = g$.

Proposition3:

Soient $f: E \to F$ et $g: F \to G$ deux applications.

- 1. si f et g sont injectives alors $g \circ f$ est injective.
- 2. si f et g sont surjectives alors $g \circ f$ est surjective.
- 3. si f et g sont bijectives alors $g \circ f$ est bijective et $(g \circ f)^{-1} = g^{-1} \circ f^{-1}$.