

Operational research for urban solar development

"PV failure detection based on operational time series"

05/12/2023 - Morning Alexandre Mathieu

Agenda

Curriculum

PV performance model steps

Curriculum Plan

Today →

Day	Time	Duration	Content
Monday	9h45-11h15	1h30 + 1h30	50% Lecture / 50 %
27/11/2023	12h30-14h		Hands-on
Tuesday	8h-9h30	1h30 + 1h30	50% Lecture / 50 %
05/12/2023	9h45-11h15		Hands-on
Thursday	8h-11h	6h	25% Lecture / 75 %
07/12/2023	12h45-15h45		Project
Monday	8h-11h	6h	10% Lecture / 90 %
11/11/2023	12h30-15h30		Project
Friday 22/12/2023	8h-9h30	1h30	100 % Project

Curriculum Plan

	Day	Time	Duration	Content
Today	Monday 27/11/2023	9h45-11h15 12h30-14h	1h30 + 1h30	50% Lecture / 50 % Hands-on
	Tuesday	8h-9h30	1h30 + 1h30	50% Lecture / 50 %
	03/12/2023	31143-11113		Hallus-OH
	Thursday 07/12/2023	8h-11h 12h45-15h45	6h	25% Lecture / 75 % Project
_	ivionday	8h-iih		10% Lecture / 90 %
	11/11/2023	12h30-15h30	6h	Project
	Friday 22/12/2023	8h-9h30	1h30	100 % Project

For next time.

Make groups of 2
for the project.

Agenda

Curriculum

PV performance model steps

27/11/2023

27/11/2023

Today

Notebook recap 27/11/2023

The notebook is now corrected and can be read online:

https://github.com/AlexandreHugoMathieu/pvfault_detection_solar_academy/blob/master/notebooks/python_intro_poa.ipynb

Notebook recap 27/11/2023

Python commands 1/2

import numpy as np # import to your python instance the package "numpy" and rename it "np" (helpful for math calculations)

import pandas as pd # import to your python instance the package "pandas" (helpful for data structure and calculations)

ts = pd.Series([1, 2,3], index=['a','b','c']) # Initiate a pandas serie into variable "ts"<math>ts2 = ts + ts/2 + np.cos(ts) + np.pi # Make calculate with "ts" and store it into "ts2"print(ts2) # print serie ts

ts.plot(marker="o") # Make a plot of ts with "o" (circle) marker

$$\label{eq:df} \begin{split} & \text{df = pd.DataFrame() \# Initiate an empty dataframe into variable "df"} \\ & \text{df["first_column"] = ts \# Store "ts" serie in a column labeled "first_column"} \\ & \text{df["second_column"] = ts2 * 2 \# Store "ts2" serie in another column labeled "second_column"} \end{split}$$

.df.plot(marker="o") # Make a plot of df with "o" (circle) marker

df.loc["a", :] # Select the entire row with "a" as index
df.loc["a", "first_column"] # Select the value with "a" as index and "first_column" as column

Pvlib ref

ts

index values

df

1

2

6

h

b

index

1

2

*William F. Holmgren, Clifford W. Hansen, and Mark A. Mikofski. "pvlib python: a python package for modeling solar energy systems." Journal of Open Source Software, 3(29), 884, (2018).

https://doi.org/10.21105/joss.00884

Notebook recap 27/11/2023

Python commands 2/2

	poa_global	poa_direct	poa_diffuse	poa_sky_diffuse	poa_ground_diffuse
2022-01-01 00:00:00+01:00	NaN	NaN	NaN	NaN	NaN
2022-01-01 01:00:00+01:00	0.000000	0.000000	0.000000	0.000000	0.000000
2022-01-01 02:00:00+01:00	0.000000	0.000000	0.000000	0.000000	0.00000
2022-01-01 03:00:00+01:00	0.000000	0.000000	0.000000	0.000000	0.00000
2022-01-01 04:00:00+01:00	0.000000	0.000000	0.000000	0.000000	0.00000
2022-01-01 05:00:00+01:00	0.000000	0.000000	0.000000	0.000000	0.00000
2022-01-01 06:00:00+01:00	0.000000	0.000000	0.000000	0.000000	0.00000
2022-01-01 07:00:00+01:00	0.000000	0.000000	0.000000	0.000000	0.00000
2022-01-01 08:00:00+01:00	0.593235	0.000000	0.593235	0.589085	0.004150
2022-01-01 09:00:00+01:00	71.788066	46.706296	25.081770	24.724777	0.356993
2022-01-01 10:00:00+01:00	210.546485	150.470436	60.076049	59.167899	0.908150
2022-01-01 11:00:00+01:00	376.976885	313.961064	63.015821	61.519000	1.49682

from pvlib.irradiance import get_total_irradiance # import the function "get_total_irradiance from pvlib"

On another note, pvlib* is a very useful package for PV modeling with plenty of convenient functions, do not hesitate to look it up on the web

```
beta = 20 # tilt [°]
azimuth = 180 # azimuth [°]
rho = 0.2 # albedo
```

values

solar_position = pd.read_csv("solarpos_data.csv") # Import the data file "solarpos_data.csv" which contains the sun path (azimuth and elevation) with datetime index weather_data = pd.read_csv("sat_data.csv", index_col=0) # Import the data file "sat_data.csv" which irradiance (dni, ghi, dhi) with datetime index

data = get_total_irradiance(beta, azimuth, solar_position["zenith"], solar_position["azimuth"], weather_data["dni"], weather_data["ghi"], weather_data["dhi"], albedo=rho) # Directly apply the isotropic models

print(data.head(12)) # Show the first 12 lines of the DataFrame

Pvlib ref

https://doi.org/10.21105/joss.00884

^{*}William F. Holmgren, Clifford W. Hansen, and Mark A. Mikofski. "pvlib python: a python package for modeling solar energy systems." Journal of Open Source Software, 3(29), 884, (2018).

3. Shading / Terrain horizon mask

PVGIS: Website/Online Tool to estimate power production:

 Enables to extract the horizon mask with a Digital Surface Model (DSM). Time for some hands-on exercises, Again!

Go to: https://re.jrc.ec.europa.eu/pvg_tools/en/

3. Shading / Terrain horizon mask

PVGIS: Website/Online Tool to estimate power production:

https://re.jrc.ec.europa.eu/pvg_tools/en/

 Enables to extract the horizon mask with a Digital Surface Model (DSM).

Instructions:

- Generate a simulation on PVGIS
 - a. Click on the map on Grenoble and select the « Grid connected tab »
 - b. Vizualize
 - c. Extract the horizon file in csv format
- 2. Follow the instructions on the jupyter notebook and calculate the modified POA on one year.

https://github.com/AlexandreHugoMathieu/pvfault_detection_solar_academy/blob/master/notebooks/python_intro2_horizon_mask.ipynb

