Análisis Funcional

Primer Cuatrimestre – 2019 Examen Final

Guido Arnone

Índice general

Índice general		1	
1.	Preliminar		2
	1.0.1.	Proyectores, Teoremas de Representación y Sumas Hilbertianas	2
	1.0.2.	Operadores Compactos	6
	1.0.3.	Teoría Espectral	7
2.	El teorema espectral, cálculo funcional continuo y aplicaciones		11
	2.0.1.	El teorema espectral	11
	2.0.2.	Cálculo Funcional	12
	2.0.3.	Aplicaciones	15
Bibliografía		18	

Parte 1

Preliminares

Recuerdo primero algunos resultados que vimos en la materia y serán necesarios para la demostración del teorema espectral.

1.0.1. Proyectores, Teoremas de Representación y Sumas Hilbertianas

Teorema 1.0.1 (de la proyección ortogonal). Sea H un espacio de Hilbert y K \subset H un subcojunto convexo, cerrado y no vacío. Dado f \in H, existe un único $\mathfrak{u} \in$ K tal que

$$\|\mathbf{f} - \mathbf{u}\| = \min_{\mathbf{v} \in \mathbf{K}} \|\mathbf{f} - \mathbf{v}\|.$$

Más aún, el vector u se caracteriza por satisfacer

$$\begin{cases} u \in K \\ (f - u, v - u) \le 0 \quad (\forall v \in K) \end{cases}$$

Notamos $P_K f := u$.

Demostración. Sea $\{v_n\}_{n\geq 1}\subset K$ una sucesión que realiza $d:=\inf_{v\in K}\|f-v\|$ de forma decreciente y veamos que $\{v_n\}_{n\geq 1}$ es de Cauchy. Notemos $d_n:=\|f-v_n\|$ para cada $n\in \mathbb{N}$. Usando la identidad del paralelogramo, es

$$\left\| f - \frac{v_n + v_m}{2} \right\|^2 + \left\| \frac{v_n - v_m}{2} \right\|^2 = \frac{d_n^2 + d_m^2}{2}$$
 (1.1)

para cada n, m \in N. Como K es convexo, sabemos que $1/2(\nu_n+\nu_m)\in$ K y por lo tanto es $\|f-\frac{\nu_n+\nu_m}{2}\|^2\geq d^2$. De (1.1) tenemos así

$$\|\nu_n - \nu_m\|^2 \le 4\left(\frac{d_n^2 + d_m^2}{2} - d^2\right)$$
,

lo que efectivamente muestra que $\{v_n\}_{n\geq 1}$ es de Cauchy. Existe entonces un cierto límite $u\in K$ que realiza d(f,K).

Sea ahora $v \in K$ y $v_t = tv + (1-t)u$. Como $\phi(t) = \|f - v_t\|^2$ se minimiza en 0, es $0 \le \phi'(0) = -2(f-u,v-u)$ y entonces $(f-u,v-u) \le 0$. Recíprocamente, si $u \in K$ es tal que $(f-u,v-u) \le 0$ para todo $v \in K$ entonces

$$\|f - u\|^2 - \|f - v\|^2 = 2(f - u, v - u) \le 0$$
 (1.2)

lo que dice que u realiza d(f, K).

De esta caracterización vemos la unicidad: si u y u' minimizan d(f, K) es entonces

$$\|u - u'\|^2 = (u - f, u - u') + (f - u', u - u') = (f - u, u' - u) + (f - u', u - u') \le 0,$$

lo que muestra que u = u'.

Corolario 1.0.1. Sea H un espacio de Hilbert y K \subset H un convexo cerrado no vacío. Entonces P_K es continua y $||P_K f_1 - P_K f_2|| \le ||f_1 - f_2||$.

Demostración. Sea $u_i = P_M f_i$. Como es $(f_i - u_i, v - u_i) \le 0$ para todo $v \in K$, tenemos que

$$(f_2 - f_1, u_1 - u_2) + ||u_1 - u_2||^2 \le 0.$$

Ahora, por la desigualdad de Cauchy-Schwartz es

$$\|\mathbf{u}_1 - \mathbf{u}_2\|^2 \le (f_1 - f_2, \mathbf{u}_1 - \mathbf{u}_2) \le \|f_1 - f_2\| \|\mathbf{u}_1 - \mathbf{u}_2\|,$$

de forma que $||P_K f_1 - P_K f_2|| = ||u_1 - u_2|| \le ||f_1 - f_2||$.

Corolario 1.0.2. Sea H un espacio de Hilbert y $M \le H$ un subespacio cerrado. La aplicación $f \in H \mapsto P_M f \in H$ es un operador continuo. Más aún, P_M es un proyector y para cada $f \in H$ el vector $P_M f$ se caracteriza como el único tal que (f - u, v) = 0 para todo $v \in M$.

Demostración. La linealidad es consecuencia de la caracterización de $P_M f$ que probamos a continuación, mismo el hecho de que P_M es un proyector. La suficiencia está dada por el **Teorema 1.0.1**, así que veremos la necesidad.

Como para cada $v \in M$ es $P_M f \pm v \in M$, tenemos que

$$0 > (f - P_M f, (P_M f \pm v) - P_M f) = \pm (f - P_M f, v)$$

y por lo tanto $(f - P_M f, v) = 0$.

Teorema 1.0.2 (de representación de Riesz). Sea H un espacio de Hilbert. Sin $\phi \in H^*$ es un funcional lineal, existe un único $u \in H$ tal que

$$\langle \varphi, \nu \rangle = (\mathfrak{u}, \nu)$$

para todo $v \in H$.

Demostración. Basta ver que j : $v \in H \mapsto (v, -) \in H^*$ tiene imagen densa. Sea Φ : $H^* \to \mathbb{R}$ un funcional que se anula en j(H). Como H es reflexivo, sabemos que Φ = ev_x para cierto $x \in H$ y por lo tanto es

$$0 = \Phi(\mathfrak{j}(\mathfrak{y})) = \mathfrak{j}(\mathfrak{y})(\mathfrak{x}) = (\mathfrak{y}, \mathfrak{x})$$

para todo y \in H. En consecuencia debe ser x = 0 y $\Phi \equiv 0$.

Proposición 1.0.1. Sea H un espacio de hilbert y $S \leq H$ un subespacio.

- (i) S^{\perp} es cerrado.
- (i) $S^{\perp\perp} = \overline{S}$.

- (iii) $S^{\perp} = H$ si y sólo si $S = \{0\}$.
- (iv) S es denso si y sólo si $S^{\perp} = \{0\}$

Demostración. Hacemos cada inciso por separado.

(i) Sea $\{x_n\}_{n\geq 1}\subset S^\perp$ tal que $x_n\to x$. Como para cada $y\in S$ es

$$(x,y) = (\lim_{n \to \infty} x_n, y) = \lim_{n \to \infty} (x_n, y) = 0,$$

debe ser $x \in S^{\perp}$. Por lo tanto, el ortogonal de S es cerrado.

- (ii) Basta ver que S es denso en $S^{\perp\perp}$. Sea $\varphi: S^{\perp\perp} \to \mathbb{R}$ es un funcional que se anula en S. Por el teorema de representación de Riesz, es $\varphi \equiv (\mathfrak{u}, -)$ para cierto $\mathfrak{u} \in H$. Como además φ se anula en S, sabemos que $\mathfrak{u} \in S^{\perp}$ y por lo tanto $\varphi \equiv 0$.
- (iii) En efecto, $S^{\perp} = H$ si y sólo si para todo $h \in H$ y $s \in S$ es

$$(s, h) = 0,$$

lo que equivale a decir s = 0 para todo $s \in S$.

(iv) Resta notar que S es denso si y sólo si $S^{\perp \perp} = \overline{S} = H$, y por (iii) esto ocurre si y sólo si $S^{\perp} = \{0\}$.

•

Definición 1.0.1. Sea H un espacio de Hilbert y $\mathfrak{a}: H \times H \to \mathbb{R}$ una función bilineal. Decimos que \mathfrak{a} es

- **continua** si existe $C \ge 0$ tal que $|\mathfrak{a}(x,y)| \le C||x||||y||$ para todo $x,y \in H$.
- **cohesiva** si existe $\theta > 0$ tal que $\mathfrak{a}(x,x) \ge \theta ||x||^2$ para todo $x \in H$.

Observación 1.0.1. Si a es una función bilineal continua y cohesiva en un espacio de Hilbert, induce un producto interno equivalente al original.

Teorema 1.0.3 (Stampacchia). Sea H un espacio de Hilbert y $\mathfrak{a}: H \times H \to \mathbb{R}$ una función bilineal continua y cohesiva. Si K \subset H es convexo cerrado y no vacío y $\phi \in H^*$ un funcional lineal, entonces existe un único vector $\mathfrak{u} \in K$ tal que

$$\mathfrak{a}(u,v-u) \geq \langle \phi,v-u \rangle \quad (\forall v \in K)$$

Si además a es simétrica, el vector u se caracteriza por

$$\begin{cases} u \in K \\ \frac{1}{2}\mathfrak{a}(u,u) - \langle \phi, u \rangle = \inf_{\nu \in K} \frac{1}{2}\mathfrak{a}(\nu,\nu) - \langle \phi, \nu \rangle \end{cases}$$

Demostración. content...

Teorema 1.0.4 (Lax-Milgram).

Demostración. content...

Definición 1.0.2. Sea H un espacio de Hilbert y $(E_n)_{n\geq 1}$ una sucesión de subespacios cerrados de

Definición 1.0.2. Sea H un espacio de Hilbert y $(E_n)_{n\geq 1}$ una sucesión de subespacios cerrados de H. Se dice que H es **suma hilbertiana** de $(E_n)_{n\geq 1}$ si

- $E_i \perp E_j \text{ si } i \neq j, y$
- gen $\{E_n\}_{n\geq 1}$ es denso.

Notamos $H = \bigoplus_{n=1}^{\infty} E_n$.

Teorema 1.0.5. Sea H un espacio de Hilbert con $H=\bigoplus_{n=1}^{\infty}E_n$ y $u\in H$. Si notamos $u_n=P_{E_n}u$ para cada $n\in \mathbb{N}$, entonces

- (i) $u = \sum_{n>1} u_n$.
- (ii) $\|u\|^2 = \sum_{n>1} \|u_n\|^2$.

Recíprocamente, si tomamos $u_n \in E_n$ para cada $n \in \mathbb{N}$ y es $\sum_{n \geq 1} \|u_n\|^2 < \infty$, entonces $u := \sum_{n \geq 1} u_n$ converge y se tiene que $u_n = P_{E_n} u$ para cada $n \in \mathbb{N}$.

 $\textit{Demostraci\'on}. \ \ Para\ cada\ k \in \mathbb{N}, \ definimos\ S_k := \textstyle\sum_{n=1}^k P_{E_n} \in \mathcal{L}(H). \ Por\ ortogonalidad\ se\ tiene\ que$

$$||S_k u||^2 = \sum_{n=1}^k ||u_n||^2 = \sum_{n=1}^k (u, u_n) = (u, S_k u).$$

pues definición de proyector P_{E_n} , es $(u_n,u_n-u)=0$ y por tanto $\|u_n\|^2=(u,u_n)$. Usando la desigualdad de Cauchy-Schwartz obtenemos

$$||S_k u||^2 \le ||u|| ||S_k u||,$$

por lo que debe ser $||S_k|| \le 1$.

Ahora, fijemos $\varepsilon > 0$. Por densidad existe $u_{\varepsilon} \in \text{gen} \{E_n\}_{n \geq 1}$ tal que $\|u - u_{\varepsilon}\| < \varepsilon$ y $k_0 \in \mathbb{N}$ tal que $S_k u_{\varepsilon} = u_{\varepsilon}$ si $k > k_0$. Por lo tanto, para todo $k > k_0$ es

$$\|S_k u - u_{\epsilon}\| = \|S_k(u - u_{\epsilon})\| \le \|u - u_{\epsilon}\| < \epsilon$$

y

$$\|S_k u - u\| \leq \|S_k u - u_\epsilon\| + \|u_\epsilon - u\| < 2\epsilon.$$

En otras palabras, vemos que $\sum_{n\geq 1}u_n=\text{l}\text{i}m_{n\to\infty}\,S_ku=u.$ De aquí es también que

$$\|u\|^2 = \|\lim_{n \to \infty} S_k u\|^2 = \lim_{n \to \infty} \|S_k u\|^2 = \sum_{n \geq 1} \|u_n\|^2.$$

Para terminar veamos el recíproco. Si tomamos $u_n \in E_n$ para cada $n \in \mathbb{N}$ tales que $\sum_{n \geq 1} \|u_n\|^2 < \infty$, entonces notando $s_k = \sum_{n=1}^k u_n$ por ortogonalidad vemos que

$$\|s_k-l\|^2 \leq \sum_{l < n \leq k} \|u_n\|^2.$$

Esto dice que $(s_k)_{k\geq 1}$ es de Cauchy, y en consecuencia $\lim_{k\to\infty} s_k = \sum_{n\geq 1} u_n$ existe. Por último, resta notar que por la continuidad de los proyectores es

$$P_{E_{\mathfrak{m}}}(\mathfrak{u}) = \sum_{\mathfrak{n} \geq 1} P_{E_{\mathfrak{m}}}(\mathfrak{u}_{\mathfrak{n}}) = \mathfrak{u}_{\mathfrak{m}}$$

para todo $\mathfrak{m} \in \mathbb{N}$.

Definición 1.0.3. Sea H un espacio de Hilbert. Una sucesión $\{e_n\}_{n\geq 1}$ se dice una **base hilbertiana** si

- $(e_n, e_m) = \delta_{nm}$ para todo $n, m \in \mathbb{N}$, y
- gen $\{e_n\}_{n>1}$ es denso.

Corolario 1.0.3. Sea H un espacio de Hilbert. Si $\{e_n\}_{n\geq 1}\subset H$ es una sucesión ortonormal, entonces esta es una base hilbertiana si y sólo si

$$u = \sum_{n>1} (u, e_n) e_n y ||u||^2 = \sum_{n>1} |(u, e_n)|^2.$$

para todo $u \in H$.

Recíprocamente, si $(\alpha_n)_{n\geq 1}\subset \ell^2$ entonces la serie $\sum_{n\geq 1}\alpha_ne_n$ converge en H a un elemento, y su norma es exactamente $\sum_{n\geq 1}\alpha_n^2$.

Observación 1.0.2. Si H admite una base Hilbertiana $\{e_n\}_{n\geq 1}$, la aplicación $\mathfrak{u}\in H\mapsto \{(\mathfrak{u},e_n)\}_{n\geq 1}\in \ell^2$ es un isomorfismo isométrico.

Teorema 1.0.6. Un espacio de Hilbert separable de dimensión infinita admite una base hilbertiana.

 $\textit{Demostración.} \ \ \text{Sea} \ \{\nu_n\}_{n\geq 1} \subset \ \text{H} \ \text{denso} \ y \ F_k = \langle \nu_1, \dots, \nu_k \rangle \ \text{para cada} \ k \in \mathbb{N}. \ \text{Por lo tanto, es}$

$$\overline{\bigcup_{k>1} F_k} = H.$$

Para cada $k \ge 1$, podemos tomar una base ortonormal B_{k+1} de F_{k+1} que extienda una base ortonormal de F_k . Tomando $B = \bigcup_{k \ge 1} B_k$ obtenemos así una base hilbertiana de H.

1.0.2. Operadores Compactos

Definición 1.0.4. Sean E y F dos espacios de Banach. Un operador $T \in \mathcal{L}(E,F)$ se dice **compacto** si $\overline{T(B_E)}$ es compacto. Equivalentemente, el operador T es compacto si para toda sucesión acotada $\{x_n\}_{n\geq 1}\subset E$ la sucesión $\{Tx_n\}_{n\geq 1}\subset F$ es precompacta.

Proposición 1.0.2. Si E y F dos espacios de Banach, el conjunto $\mathcal{K}(\mathsf{E},\mathsf{F})$ es un subsepacio cerrado de $\mathcal{L}(\mathsf{E},\mathsf{F})$.

Demostración. Supongamos que $T_n \rightrightarrows T$ para cierta sucesión $\{T_n\}_{n\geq 1} \subset \mathcal{K}(E)$ de operadores compactos. Veamos que $\overline{T(B_E)}$ es compacto, o equivalentemente, que $T(B_E)$ es totalmente acotada.

Fijemos $\varepsilon > 0$ y tomemos $n_0 \in \mathbb{N}$ tal que si $n > n_0$ entonces $||T - T_{n_0}|| < \varepsilon/2$. Como T_{n_0} es un operador compacto, existen $f_1, \ldots, f_j \in E$ tales que

$$T_{n_0}(B_E) \subset \bigcup_{s=1}^j B_{\epsilon/2}(f_s).$$

Afirmamos entonces que $T(B_E) \subset \bigcup_{s=1}^j B_{\epsilon}(f_s)$. En efecto, si $x \in B_E$, entonces existe $s \in [j]_0$ tal que $T_{n_0}x \in B_{\epsilon/2}(f_s)$ y por lo tanto, es

$$\|Tx-f_s\|\leq \|Tx-T_{n_0}x\|+\|T_{n_0}x-f_s\|<\epsilon/2+\epsilon/2=\epsilon.$$

•

Corolario 1.0.4. Sean E y F son espacios de Banach. Si T $\in \mathcal{L}(E,F)$ es un operador que es límite de operadores de rango finito, entonces es compacto.

Demostración. Como los operadores compactos forman un subespacio cerrado, resta notar que un operador de rango finito siempre es compacto.

Teorema 1.0.7. Sean E un espacio de Banach y H un espacio de Hilbert. Si $T \in \mathcal{L}(E,H)$ es un operador acotado, entonces existe una sucesión $(T_n)_{n\geq 1} \subset \mathcal{L}(E,H)$ de operadores de rango finito tal que $T_n \rightrightarrows T$.

Demostración. Veamos equivalentemente que los operadores de rango finito son densos en los operadores compactos.

Sea $\epsilon > 0$. Como T es compacto, existen $f_1, \ldots, f_j \in E$ tales que $\overline{T(B_E)} \subset \bigcup_{s=1}^j B_\epsilon(f_j)$. Definamos ahora $G = \langle f_1, \ldots, f_j \rangle$. Luego $T_\epsilon = P_{G_\epsilon} T$ es de rango finito g si g con g con g con g contacts g con g contacts g con g contacts g co

$$\begin{aligned} \|T_{\varepsilon}x - Tx\| &\leq \|T_{\varepsilon}x - f_{s}\| + \|f_{s} - Tx\| = \|P_{G_{\varepsilon}}(Tx - f_{s})\| + \|f_{s} - Tx\| \\ &\leq \|P_{G_{\varepsilon}}\|\|Tx - f_{s}\| + \|f_{s} - Tx\| \leq 2\varepsilon, \end{aligned}$$

lo que prueba que $\|T_{\epsilon} - T\| \le 2\epsilon$.

Observación 1.0.3. Sean E, F y G espacios de Banach y T $\in \mathcal{L}(E, F)$, S $\in \mathcal{L}(F, G)$ operadores acotados. Si S o T son compactos, ST lo es.

Teorema 1.0.8 (Alternativa de Fredholm). Sea E un espacio de Banach y $T \in \mathcal{K}(E)$ un operador compacto. Entonces

- (a) dim $N(I-T) < \infty$.
- (b) R(I-T) es cerrado y $R(I-T) = {}^{\perp}N(I-T^*)$.
- (c) $N(I-T) = \{0\} \iff R(I-T) = E$.
- $(d) \ dim \, N(I-T^*) = dim \, N(I-T).$

Demostración. content...

1.0.3. Teoría Espectral

Definición 1.0.5. Sea E un espacio de Banach y $T \in \mathcal{L}(E)$ un operador acotado. El **espectro** de T es el conjunto

$$\sigma(\mathsf{T}) := \{\lambda \in \mathbb{R} : \mathsf{T} - \lambda \mathsf{I} \text{ no es inversible}\}\$$

y el espectro puntual es

$$\sigma_{p}(T) = \{\lambda \in \mathbb{R} : \ker(T - \lambda I) \neq \{0\}\}.$$

Definimos también la **resolvente** de T como $\rho(T) := \mathbb{R} \setminus \sigma(T)$.

Proposición 1.0.3. Si E un espacio de Banach y $T \in \mathcal{L}(E)$ un operador acotado, el espectro de T es compacto y $\sigma(T) \subset [-\|T\|, \|T\|]$.

Demostración. Veamos primer que $\sigma(T) \subset [-\|T\|, \|T\|]$. Consideremos $\lambda \in \mathbb{R}$ tal que $|\lambda| > \|T\| \ge 0$ y veamos que $\lambda \in \rho(T)$.

Dicho de otra forma, veamos que para todo $y \in E$ la ecuación

$$x = \frac{1}{\lambda}(Tx - y)$$

tiene solución única. En efecto, por el teorema de punto fijo de Banach basta notar que la aplicación $J(x) := \frac{1}{\lambda}(Tx - y)$ es una contracción estricta, pues dados $u, v \in E$ es

$$||J(u) - J(v)|| = \frac{1}{|\lambda|} ||T(u - v)|| \le \frac{||T||}{|\lambda|} ||u - v||$$

y por hipótesis sabemos que $\frac{\|T\|}{|\lambda|} < 1$.

Para terminar, veamos que el espectro es cerrado mostrando que la resolvente es abierta. Fijemos $\lambda_0 \in \rho(T)$ y sea $\lambda \in \mathbb{R}$. Ahora, la aplicación

$$T - \lambda I = T - \lambda_0 I + (\lambda_0 - \lambda) I$$

será biyectiva si y sólo si para cada $y \in E$ la ecuación

$$x = (T - \lambda_0 I)^{-1} y + (\lambda - \lambda_0) (T - \lambda_0 I)^{-1} x$$

tiene solución única. Esto se satisface en particular cuando la aplicación $\widetilde{J}(x) := (T - \lambda_0 I)^{-1} y + (\lambda - \lambda_0)(T - \lambda_0 I)^{-1} x$ es contractiva, y con el mismo argumento que antes, vemos que esto se puede asegurar si

$$|\lambda - \lambda_0| < \|(T - \lambda_0 I)^{-1}\|^{-1}$$
.

Teorema 1.0.9. Sea E un espacio de Banach de dimensión infinita. Si $T \in \mathcal{K}(E)$ es un operador compacto, entonces

- (i) $0 \in \sigma(T)$.
- (ii) $\sigma(T) \setminus \{0\} = \sigma_p(T) \setminus \{0\}$.
- (iii) O bien $\sigma(T) = \{0\}$, o bien $\sigma(T)$ es finito, o bien es $\sigma(T) \setminus \{0\} = \{\lambda_n\}_{n \ge 1}$ con $\lambda_n \to 0$.

Demostración. Hacemos cada inciso por separado.

- (i) Si 0 no perteneciese al espectro de T, éste sería un operador inversible. Pero como a su vez es compacto, tendríamos que $I = T \circ T^{-1}$ es compacta, lo cual nunca ocurre en dimensión infinita.
- (ii) Sea $\lambda \in \sigma(T) \setminus \{0\}$. Notemos que $T \lambda I$ es inversible si y sólo si lo es $\lambda^{-1}T I$. Por la Alternativa de Fredholm, éste último es biyectivo si y sólo si es inyectivo. En consecuencia λ pertenece al espectro puntual de T.

(iii) Como el espectro es compacto, basta ver que para cada $n \in \mathbb{N}$ el conjunto

$$\sigma(T)\cap\left\{\lambda\in\mathbb{R}:|\lambda|\geq\frac{1}{n}\right\}$$

es finito. En particular este es discreto, así que debe ser contable. De ser infinito, esto dice además que $\sigma(T)$ tiene a 0 como punto de acumulación y podemos entonces reordenar sus elementos de forma que resulten una sucesión $\{\lambda\}_{n\in\mathbb{N}}$ tal que $\lambda_n\to 0$.

Si no fuera así, existiría por compacidad una sucesión $\{\lambda_n\}_{n\geq 1}\subset \sigma(T)$ tal que $\lambda_n\to\lambda\neq 0$. Veamos que esto es absurdo. En particular tendríamos para cada $n\in\mathbb{N}$ un vector unitario $e_n\in\ker(T-\lambda I)$.

Como la colección $\{e_n\}_{n\geq 1}$ es linealmente independiente, notando $E_n=\langle e_1,\ldots,e_n\rangle$ obtenemos una sucesión estrictamente creciente de subespacios cerrados que satisfacen $(T-\lambda_n I)(E_n)\subset E_{n-1}$.

Por el lema de Riesz, existen vectores unitarios $u_{n+1} \in E_n$ tales que

$$\frac{1}{2} \leq d(u_{n+1}, E_n)$$

para todo $n \ge 1$, y podemos definir entonces $\nu_n := \lambda_n^{-1} u_n$. Notemos que como $\{\lambda_n\}_{n \ge 1}$ converge y los vectores $\{u_n\}_{n \ge 1}$, esta es una sucesión acotada. Sin embargo, dados 1 < m < n se tiene que

$$\|Tv_m - Tv_n\| = \left\| \overbrace{\lambda_n^{-1}(T - \lambda_n I)u_n}^{\in E_{m-1}} - \overbrace{\lambda_m^{-1}(T - \lambda_m I)u_m}^{\in E_{m-1} \subset E_{n-1}} + u_n - u_m \right\| \ge d(u_n, E_{n-1}) \ge \frac{1}{2},$$

lo que contradice la compacidad de T.

Definición 1.0.6. Sea H un espacio de Hilbert y T $\in \mathcal{L}(H)$ Decimos que T es **autoadjunto** si para todo $x,y \in H$ se tiene que (Tx,y) = (x,Ty).

Teorema 1.0.10. Sea H es un espacio de Hilbert y T $\in \mathcal{L}(H)$ un operador autoadjunto. Notando

$$m = \inf_{\|x\|=1} (Tx, x) \ y \ M = \sup_{\|x\|=1} (Tx, x),$$

se tiene que $\sigma(T) \subset [m, M]$ y m, $M \in \sigma(M)$. Más aún, es $||T|| = máx\{||m||, ||M||\}$.

Demostración. Por simetría (tomando −T) basta probar las afirmaciones sobre M. En primer lugar, sea $\lambda > M$ y veamos que $\lambda \in \rho(T)$. Como para todo $x \in H$ es

$$(\mathsf{T} \mathsf{x}, \mathsf{x}) \le \mathsf{M} \|\mathsf{x}\|^2,$$

se tiene que

$$(\lambda x - Tx, x) \ge (\lambda - M) ||x||^2.$$

Al ser $\lambda - M > 0$, el cálculo anterior nos dice que la forma bilineal

$$\mathfrak{a}: H \times H \to \mathbb{R}$$
$$(x,y) \mapsto (\lambda x - Tx, y)$$

es continua y cohesiva. El teorema de Stampacchia nos asegura entonces que para todo $y \in H$ existe un único elemento $x \in H$ tal que $\mathfrak{a}(x, -) \equiv (y, -)$.

Dicho de otra forma, la ecuación

$$(\lambda I - T)x = y$$

tiene solución única para todo $y \in H$, y en consecuencia $T - \lambda I$ es inversible.

Veamos ahora que $M \in \sigma(T)$. Definimos ahora $\mathfrak{a}(x,y) := (Mx - Tx, y)$. Como T es autoadjunta sabemos que \mathfrak{a} es simétrica y positiva. Esto dice que esta función *«debe satisfacer Cauchy-Schwarz»*,

$$|\mathfrak{a}(x,y)| \le \mathfrak{a}(x,x)^{1/2} \cdot \mathfrak{a}(y,y)^{1/2} \quad (\forall x,y \in H).$$

Como $\mathfrak{a}(y,y) \le (|M| + ||T||)||y||^2$, poniendo y = Mx - Tx es

$$||Mx - Tx||^2 \le a(x, x)^{1/2} (|M| + ||T||)^{1/2} \cdot ||Mx - Tx||$$

y notando $C = (|M| + ||T||)^{1/2}$ en definitiva obtenemos que

$$\|Mx - Tx\| \le C \cdot \mathfrak{a}(x, x)^{1/2}$$

para todo $x \in H$.

Si ahora tomamos $\{x_n\}_{n\geq 1}$ unitarios tales que $(Tx_n,x_x)\to M$, vemos que MI-T no está acotado inferiormente pues

$$\|(MI-T)x_n\| \leq \mathfrak{a}(x_n,x_n)^{1/2} \to 0.$$

Consecuentemente T – MI no puede ser inversible, o lo que es lo mismo, debe ser $M \in \sigma(T)$.

Por último, si definimos $\mu := \max\{|m|, |M|\}$ entonces dados $x, y \in H$, al expandir $\mathfrak{a}(v, v)$ para $v \in \{x + y, x - y\}$ y restar vemos que

$$4(\mathsf{T} x,y) = (\mathsf{T} (x+y), x+y) - (\mathsf{T} (x-y), x-y) \leq M \|x+y\|^2 - m \|x-y\|^2$$

para todo $x,y \in H$. Desarrollando el lado derecho, llegamos a

$$|(\mathsf{Tx}, \mathsf{y})| \le \mu\left(\frac{\|\mathsf{x}\|^2 + \|\mathsf{y}\|^2}{2}\right)$$

y más aún, si $0 \neq \alpha \in \mathbb{R}$ debe ser

$$|(\mathsf{T} x, y)| = |(\mathsf{T} \alpha x, \alpha^{-1} y)| = \mu \left(\alpha^2 \frac{\|x\|^2 + \alpha^{-2} \|y\|^2}{2} \right).$$

Si $\|x\| \neq 0$, tomando $\alpha = \|y\|/\|x\|$ es $|(Tx,y)| \leq \mu \|x\| \|y\|$ y finalmente se obtiene

$$\|T\| = \sup_{\|x\|=1} \|Tx\| = \sup_{\|x\|, \|y\|=1} |(Tx, y)| \le \mu.$$

Corolario 1.0.5. Sea H un espacio de Hilbert y T $\in \mathcal{L}(H)$ un operador autoadjunto. Si $\sigma(T) = \{0\}$, es T = 0.

Parte 2

El teorema espectral, cálculo funcional continuo y aplicaciones

2.0.1. El teorema espectral

Teorema 2.0.1 (espectral para operadores compactos y autoadjuntos). Sea H un espacio de Hilbert separable. Si T $\in \mathcal{L}(H)$ es un operador compacto y autoadjunto, entonces existe una base ortonormal de autovectores $\{e_n\}_{n\geq 1}$ de T.

Demostración. Como T es compacto, sabemos que $\sigma(T)\setminus\{0\}=\sigma_p(T)\setminus\{0\}$ y $\sigma_p(T)=\{\lambda_n\}_{n\in F}$ para cierto F finito o numerable. Podemos suponer además que $\sigma(T)\neq\{0\}$, pues T es nula en caso contrario. Notando $\lambda_0:=0$ y $F_0=F\cup\{0\}$, definimos

$$E_n := \ker(T - \lambda_n I)$$

para cada $n \in F_0$.

Afirmamos que H es la suma hilbertiana de $(E_n)_{n\in F_0}$. En primer lugar, sabemos que $E_i\perp E_j$ si $i\neq j$ pues para cada $x\in E_i$ e $y\in E_i$ es

$$\lambda_i(x,y) = (\lambda_i x, y) = (Tx, y) = (x, Ty) = (x, \lambda_i y) = \lambda_i(x, y),$$

y esto implica que (x, y) = 0.

Por último, para concluir que $D=\text{gen }\{E_n\}_{m\in F_0}$ es denso veamos que $D^\perp=0$. Dado que $T(D)\subset D$, sabemos que $T(D^\perp)\subset D^\perp$ y podemos considerar entonces el operador $T_0\equiv T|_{D^\perp}^{D^\perp}$, que es autoadjunto (y compacto). Se tiene además que $\sigma(T)=\{0\}$, ya que si $u\in D^\perp$ es tal que $T_0u=Tu=\lambda u$ para cierto $\lambda\neq 0$, es entonces $u\in D\cap D^\perp=\{0\}$.

Como T_0 es autoadjunto y sólo tiene a cero en su espectro, es el operador nulo. Por lo tanto, tenemos que

$$D^{\perp} \subset \ker T \subset D$$
,

lo que muestra que $D^{\perp} = \{0\}.$

Para terminar, notemos que para cada $n \in F$ el subespacio E_n es de dimensión finita y por lo tanto posee una base ortonormal. Por otro lado, como H es separable, sabemos que existe una base ortonormal $E_0 = \ker T$. En consecuencia, la unión de las bases de cada E_n con $n \in F_0$ nos provee de una base de autovectores de T.

2.0.2. Cálculo Funcional

Extendiendo la noción de «polinomios evaluados en una matriz», el teorema espectral nos permitira darle sentido a la expresión f(T) para un operador compacto y autoadjunto T y cierta clase de funciones f. Concretamente,

Definición 2.0.1. Sea H un espacio de Hilbert (no necesariamente separable) y $T \in \mathcal{K}(H)$ un operador compacto y autoadjunto. Por el teorema espectral, sabemos entonces que $\sigma(T) = \{\lambda_n\}_{n \in F}$ con $F \subset \mathbb{N}$ contable y que H es la suma hilbertiana de los autoespacios $E_n = \ker(T - \lambda_n I)$ de T.

Por lo tanto si $x \in H$, entonces $x = \sum_{n \ge 1} P_{E_n}(x)$ y más aún se tiene que $Tx = \sum_{n \ge 1} \lambda_n P_{E_n}(x)$ pues cada vector $P_{E_n}(x)$ es un autovector de autovalor λ_n .

En vista de lo anterior, dada $f:\sigma(T)\to\mathbb{R}$ una función acotada definimos **la evaluación de** f **en** T como

$$ev_T(f)(x) := \sum_{n \geq 1} f(\lambda_n) P_{E_n}(x).$$

Observemos que esta función está bien definida pues $\sum_{n\geq 1} \|f(\lambda_n)P_{E_n}(x)\|^2 \leq \|f\|_{\infty}^2 \|x\|^2$, y más aún este argumento dice que $\|ev_T(f)\| \leq \|f\|_{\infty}$.

Notar además que esta definición no depende del orden de los autovalores: cualquier reordenamiento dá el mismo operador restringiendo a cada autoespacio, y como H es la suma hilbertiana de los mismos, la nueva definición debe coincidir con nueva

A partir de ahora H denotará un espacio de Hilbert. Fijamos también un operador T compacto y autoadjunto y un orden de sus de autovectores $\sigma(T) = \{\lambda_n\}_{n \in F}$ de T en el sentido anterior.

Teorema 2.0.2. La aplicación

$$\operatorname{ev}_T : B(\sigma(T), \mathbb{R}) \to \mathcal{L}(H)$$

$$f \mapsto \operatorname{ev}_T(f)$$

es un morfismo de álgebras de Banach continuo que satisface $\|ev_T\| \le 1$. Más aún, se tiene que $ev_T(1) = I$ y $ev_T(id) = A$. Notaremos $f(T) := ev_T(f)$.

Demostración. Al definir $\operatorname{ev}_T(f)$ vimos que se satisface $\|\operatorname{ev}_T(f)\| \leq \|f\|_{\infty}$. Por otro lado, es

$$ev_{T}(1)x = \sum_{n \ge 1} 1(\lambda_{n})P_{E_{n}}(x) = \sum_{n \ge 1} P_{E_{n}}(x) = x$$

y

$$\operatorname{ev}_{\mathsf{T}}(\operatorname{id})x = \sum_{n \geq 1} \operatorname{id}(\lambda_n) P_{\mathsf{E}_n}(x) = \sum_{n \geq 1} \lambda_n P_{\mathsf{E}_n}(x) = \sum_{n \geq 1} \mathsf{TP}_{\mathsf{E}_n}(x) = \mathsf{T}\left[\sum_{n \geq 1} P_{\mathsf{E}_n}(x)\right] = \mathsf{T}x,$$

así que $ev_T(1) = I y ev_T(id) = T$.

La linealidad es consecuencia de la linealidad de las series: si f, g : $\sigma(T) \to \mathbb{R}$ son acotadas y $\mu \in \mathbb{R}$, entonces

$$\begin{split} (f+\mu g)(T)x &= \sum_{n\geq 1} (f+\mu g)(\lambda_n) P_{E_n}(x) = \sum_{n\geq 1} f(\lambda_n) P_{E_n}(x) + \mu \sum_{n\geq 1} g(\lambda_n) P_{E_n}(x) \\ &= f(T)x + \mu g(T)x = (f(T) + \mu g(T))x. \end{split}$$

Por último, veamos que evT es un morfismo de álgebras de Banach: si f, $g: \sigma(T) \to \mathbb{R}$, entonces

$$f(T)g(T)x = f(T)\left[\sum_{n\geq 1}g(\lambda_n)P_{E_n}(x)\right] = \sum_{n\geq 1}g(\lambda_n)[f(T)P_{E_n}(x)] = \sum_{n\geq 1}f(\lambda_n)g(\lambda_n)P_{E_n}(x) = fg(T)x$$

para todo $x \in H$.

Proposición 2.0.1. Si $f : \sigma(T) \to \mathbb{R}$ es una función acotada, entonces

- (i) $\sigma(f(T)) = f(\sigma(T))$.
- (ii) f(T) es autoadjunta.
- (iii) $||f(T)|| = ||f|_{\sigma(T)}||_{\infty}$.
- (iv) Si $f \ge 0$ entonces $f(T) \ge 0$.

Demostración. Hacemos cada inciso por separado.

(i) Si $\lambda_j \in \sigma(T)$, existe $u_j \in E_j \setminus \{0\}$ y

$$f(T)u_j = f(\lambda_j)p_{E_i}(u_j) = f(\lambda_j)e_j$$

así que $f(\sigma(T)) \subset \sigma(f(T))$.

Recíprocamente, tomemos $\lambda \notin f(\sigma(T))$. Como esto dice que función $g(t) = (f(t) - \lambda)^{-1}$ está bien definida en $\sigma(T)$ y es allí acotada, está bien definida su evaluación g(T) en T. Como es $g(f - \lambda) = (f - \lambda)g = 1$, aplicando ev $_T$ obtenemos que

$$q(T)(f(T) - \lambda I) = (f(T) - \lambda I)q(T) = I.$$

y en consecuencia λ no pertenece al espectro de f(T),

(ii) Por un cálculo directo, tomando $x,y \in H$ se tiene que

$$(f(T)x,y) = \sum_{n \geq 1} f(\lambda_n)(P_{E_n}(x), P_{E_n}(y)) = (f(T)y, x) = (x, f(T)y).$$

(iii) Como es $\|ev_T\| \le 1$, ya sabemos que $\|f(T)\| \le \|f_{\sigma(T)}\|_{\infty}$. En vista de (i) tenemos la otra desigualdad, pues acotando inferiormente por los autovectores de norma 1 se tiene que

$$\|f(T)\| = \sup_{\|x\|=1} \|f(T)(x)\| \ge \sup_{\lambda \in \sigma(f(T))} |\lambda| = \sup_{\lambda \in f(\sigma(T))} |\lambda| = \|f|_{\sigma(T)}\|_{\infty}.$$

(iv) Supongamos ahora que $f \ge 0$ y sea $x \in H$. Por definición de f(T) es

$$(f(T)x, x) = \sum_{n>1} f(\lambda_n) ||P_{E_n}(x)||^2 \ge 0$$

pues por hipótesis sabemos que $f(\lambda_n) \ge 0$ para todo $n \ge 1$.

Observación 2.0.1. Lo anteriores resultados también valen cuando f está definida en un dominio que contiene al espectro (mientras esté acotada allí) precomoponiendo ev_T con la restricción de f al $\sigma(T)$. Más aún, el operador f(T) sólo depende de los valores que f toma en su espectro. En particular, esto nos dice que podemos definir f(T) para $f: \mathbb{R} \to \mathbb{R}$ continua o medible Borel.

Más aún, la aplicación $ev_T : \mathcal{C}(\mathbb{R}) \to \mathcal{L}(H)$ es el único morfismo de álgebras de Banach continuo que tiene a I por imagen de 1 y T por imagen de id.

Proposición 2.0.2. Si $f : \mathbb{R} \to \mathbb{R}$ es una función continua, entonces existe un operador compacto $S \in \mathcal{K}(H)$ tal que

$$f(T) = S + f(0)I.$$

Demostración. Por el teorema de Stone-Weierstraß, sabemos que existe una sucesión de polinomios $(p_n)_{n\geq 1}$ tal que $p_n\to f$ uniformemente y en particular, es $p_n(0)\to f(0)$. Ahora, para cada $n\in\mathbb{N}$ definimos

$$q_n = p_n - p_n(0),$$

y en vista de la observación anterior, se tiene que $q_n \to f - f(0)$. Aplicando ev_T y usando que ésta es continua, es

$$q_n(T) \to (f - f(0))(T) = f(T) - f(0)I.$$
 (2.1)

Fijemos ahora $n \in \mathbb{N}$. Como $q_n(0) = p_n(0) - p_n(0) = 0$, existe $r \in \mathbb{R}[X]$ tal que $q_n = Xr$. Por lo tanto, obtenemos $q_n(T) = (Xr)(T) = e\nu_T(X) \circ e\nu_T(r) = T \circ r(T)$. Al ser A un operador compacto, el operador $q_n(T)$ es compacto para cada $n \in \mathbb{N}$. En vista de (2.1), obtenemos finalmente que el operador f(T) - f(0)I es compacto. Resta notar entonces que

$$f(T) = (f(T) - f(0)I) + f(0)I.$$

Corolario 2.0.1. Si $f : \mathbb{R} \to \mathbb{R}$ es una función continua que se anula en 0, el operador f(T) resulta compacto. \square

Observación 2.0.2. Aún cuando f(T) no es compacto, la Proposición 2.0.2 nos dá información a través de la Alternativa de Fredholm. Por ejemplo, sabemos que el núcleo de la evaluación siempre es de dimensión finita.

Proposición 2.0.3. Si f, $g \in C(\mathbb{R}, \mathbb{R})$ son dos funciones continuas, entonces $(f \circ g)(T) = f(g(T))$.

Demostración. Como $\sigma(q(T)) = q(\sigma(T))$, es

$$f(g(T))x = \sum_{n \geq 1} f(g(\lambda_n)) P_{E_n}(x) = \sum_{n \geq 1} (f \circ g)(\lambda_n) P_{E_n}(x) = (f \circ g)(T).$$

•

2.0.3. Aplicaciones

En primer lugar, veamos que todo operador T compacto y autoadjunto «tiene una raíz enésima». Esto es, para cada $n \in \mathbb{N}$ existe un operador S tal que $S^n = T$.

Teorema 2.0.3. Sea H un espacio de Hilbert y T $\in \mathcal{L}(H)$ un operador compacto y autoadjunto. Dado $n \in \mathbb{N}$, se tiene que

- (i) Si n es impar, existe un único operador $S \in \mathcal{L}(H)$ tal que $S^n = T$.
- (ii) Si n es par, existe un operador positivo $S \in \mathcal{L}(H)$ tal que $S^n = T$ sí y solo si $T \ge 0$. En tal caso existe un único operador S positivo con esta propiedad.

Notaremos $A^{1/n} := S$ en ambos casos a este operador, que de existir resulta siempre compacto.

Demostración. Para cada $n \ge 1$, definimos (cuando sea posible) $f: t \in \sigma(T) \mapsto t^{1/n} \in \mathbb{R}$.

(i) Sea $S = f_n(A)$. Por definición, es $S^n = f_n(T) \circ \cdots \circ f_n(T) = f_n^n(T) = id(T) = T$. Además, si \widetilde{S} es tal que $\widetilde{S}^n = T$, entonces

$$\widetilde{S}=\text{id}(\widetilde{S})=(f^n_n\circ(t\mapsto t^n))(\widetilde{S})=f^n_n(\widetilde{S}^n)=f^n_n(T)=S.$$

(ii) Recordemos que como T es autoadjunta, es ínf $\sigma(T) = \inf_{\|x\|=1}(Tx,x)$ y por lo tanto tenemos que $T \geq 0$ si y sólo si $\sigma(T) \subset [0,+\infty)$. Esto nos permite hacer la misma construcción que antes para este caso, y como ahora es $f_n \geq 0$, de aquí se concluye que $T^{1/n} \geq 0$. Para la unicidad resta notar que si $\widetilde{S} \geq 0$ es otra raíz n-ésima, entonces $\widetilde{S} = |\widetilde{S}| = (\widetilde{S}^n)^{1/n} = T^{1/n}$.

Finalmente, como para todo $n \ge 1$ es $f_n(0) = 0$, sabemos que $T^{1/n}$ siempre resulta compacto. \blacklozenge

La siguiente aplicación es una adaptación del Teorema 12.44 de [3], que es una versión del teorema ergódico medio de Von Neumann para transformaciones unitarias,

Teorema. Si H es un espacio de Hilbert y $U \in \mathcal{L}(H)$ una transformación unitaria, entonces para cada $x \in H$ los *promedios* $\frac{1}{n}(x + Ux + \cdots + U^{n-1}x)$ convergen puntualmente a un elemento $y \in H$.

La demostración presente en [3] hace uso del teorema espectral en un caso más general. Usando que los autovalores de una transformación unitaria yacen en el círculo de radio 1, el teorema se reduce a un cálculo directo de convergencia puntual para una cierta sucesión de funciones.

Siguiendo la idea de esta demostración pero en el caso de operadores compactos y autoadjuntos, definimos a continuación el concepto de medida espectral y con esto probamos un resultado auxiliar de convergencia.

Concluimos con el **Teorema 2.0.4**, el cual afirma que si T es un operador compacto, autoadjunto y de norma 1, entonces sus promedios convergen puntualmente a la proyección ortogonal del subespacio de sus puntos fijos.

Teorema (Riesz-Markov-Kakutani). Sea X un espacio topológico Hausdorff y localmente compacto. Si $\psi: C(X) \to \mathbb{R}$ es un funcional lineal positivo, existe una única medida Borel regular μ en X tal que

$$\psi(f) = \int_X f d\mu.$$

para toda $f \in C(X)$.

Definición 2.0.2. Sea H un espacio de Hilbert y T : H \rightarrow H un operador compacto y autoadjunto. Para cada $h \in H$, la aplicación

$$f \in C(\sigma(T)) \mapsto (f(T)h, h) \in \mathbb{R}$$

resulta un funcional lineal positivo. El teorema de Riesz-Markov-Kakutani nos asegura entonces que existe una única medida Borel regular μ_h en $\sigma(T)$ que satisface

$$(f(T)h,h) = \int_{\sigma(T)} f d\mu_h$$

para toda $f:\sigma(T)\to\mathbb{R}$ continua. Llamamos a μ_h la **medida espectral de** T **asociada a** h.

Proposición 2.0.4. Sea H un espacio de Hilbert y T $\in \mathcal{K}(H)$ un operador compacto y autoadjunto. Si $(g_n)_{n\geq 1}\subset \mathcal{C}(\sigma(T),\mathbb{R})$ es una sucesión uniformemente acotada que converge puntualmente a cierta función $g:\sigma(T)\to\mathbb{R}$, la sucesión de operadores $\{g_n(T)\}_{n\geq 1}\subset \mathcal{L}(H)$ **sot**-converge a g(T).

Demostración. Observemos que por el teorema de convergencia dominada, para cada $h \in H$ es

$$(g_n(T)h,h) = \int_{g(T)} g_n d\mu_h \rightarrow \int_{g(T)} g d\mu_h = (g(T)h,h).$$

Usando la identidad de polarización, vemos que $(g_n(T)x,y) \to (g(T)x,y)$ para todo $x,y \in H$. Por lo tanto tenemos convergencia débil,

$$g_n(T)x \rightharpoonup g(T)x$$

para cada $x \in H$. Para terminar alcanza ver que siempre es $\|g_n(T)x\| \to \|g(T)x\|$.

Por hipótesis sabemos que las funciones $(g_n^2)_{n\geq 1}$ también están uniformemente acotadas y $g_n^2\to g^2$ puntualmente. Por lo tanto, el argumento anterior nos dice que para cada $x\in H$ es

$$\|g_n(T)x\|^2 = (g_n(T)x, g_n(T)x) = (g_n(T)g_n(T)x, x) = (g_n^2(T)x, x) \to (g^2(T)x, x) = \|g(T)x\|^2.$$

y tomando raíces vemos que $\|g_n(T)x\| \to \|g(T)x\|$.

Teorema 2.0.4 (un caso particular del teorema ergódico medio de Von Neumann). Sea H un espacio de Hilbert. Si T $\in \mathcal{K}(H)$ un operador compacto y autoadjunto tal que $\|T\| \le 1$, entonces los promedios de T **sot**-convergen al proyector π_T del subsepacio de puntos fijos de T. Es decir, si notamos $E_1 = \{x \in H : Tx = x\}$ y $\pi_T := P_{E_1}$, entonces

$$\frac{1}{n}\sum_{i=1}^n T^i x \xrightarrow{n\to\infty} \pi_T x.$$

para todo $x \in H$.

Demostración. Notemos en primer lugar que $\sigma(T) \subset [-\|T\|, \|T\|] \subset [-1, 1]$. Para cada $n \in \mathbb{N}$, definimos $g_n(x) := \frac{1}{n} \sum_{i=1}^n x^i$ para cada $x \in [-1, 1]$. Tenemos así que $\frac{1}{n} \sum_{i=1}^n T^i = g_n(T)$. Por otro lado, la proyección π_T coincide con la evaluación en T de

$$g(x) := \begin{cases} 1 & \text{si } x = 1 \\ 0 & \text{en caso contrario} \end{cases}$$

En vista de la **Proposición 2.0.4**, basta probar que la sucesión $(g_n)_{n\geq 1}$ está uniformemente acotada y converge puntualmente a g. Lo primero se deduce de que si $x\in [-1,1]$ entonces

$$|g_n(x)| \le \frac{1}{n} \sum_{i=1}^n |x|^i \le \frac{1}{n} \sum_{i=1}^n 1 = 1.$$

Ahora veamos la convergencia puntual. En primer lugar, la sucesión $(g_n(1))_{n\geq 1}$ es constantemente 1 y por lo tanto converge a g(1)=1. Por otro lado, sabemos que $g_n(-1)$ es cero para n par y -1/n para n impar. De aquí se ve que entonces que $g_n(-1)\to 0=g(-1)$. Finalmente, si $\lambda\in (-1,1)$ entonces

$$|g_n(\lambda)| \leq \frac{1}{n} \sum_{i=1}^n |\lambda|^i \leq \frac{1}{n} \sum_{i \geq 0} |\lambda|^i = \frac{1}{n} \cdot \frac{1}{1-|\lambda|} \to 0.$$

Consecuentemente, debe ser $g_n(\lambda) \to 0 = g(\lambda)$.

Bibliografía

- [1] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010.
- [2] M. Reed, B. Simon. Methods of Modern Mathematical Physics. Academic Press Inc., 1980.
- [3] W. Rudin. *Functional Analysis*. International Series in Pure and Applied Mathematics, McGraw-Hill, 1991.
- [4] G. Teschl. *Topics in Real and Functional Analysis*, versión del 9/7/19 (https://www.mat.univie.ac.at/gerald/ftp/book-fa/fa.pdf).