# Real Analysis, Week 11, Spring 2024

Karen Navasardyan

AUA

April 3, 2024

$$f_n(x)$$

$$f_n(x)$$

$$1)f_n(x) = nx,$$

$$f_n(x)$$

$$1)f_n(x) = nx, 2)f_n(x) = \frac{x}{n},$$

$$f_n(x)$$

$$1)f_n(x) = nx,$$
  $2)f_n(x) = \frac{x}{n},$   $3)f_n(x) = x^n,$ 

$$f_n(x)$$

$$(1)f_n(x) = nx,$$
  $(2)f_n(x) = \frac{x}{n},$   $(3)f_n(x) = x^n,$ 

$$4) f_n(x) = \frac{\sin(n^2 x)}{n},$$

$$f_n(x)$$

$$1) f_n(x) = nx, 2) f_n(x) = \frac{x}{n}, 3) f_n(x) = x^n,$$
$$4) f_n(x) = \frac{\sin(n^2 x)}{n}, 5) f_n(x) = \sqrt{x^2 + \frac{1}{n}}.$$

Let  $\{f_n\}$  be a sequence of functions on  $A \subset \mathbb{R}$ , let  $A_0 \subset A$ , and let  $f: A_0 \to \mathbb{R}$ . We say that the **sequence**  $\{f_n\}$  **converges on**  $A_0$  **to** f if, for each  $x \in A_0$ , the sequence  $\{f_n(x)\}$  converges to f(x).

Let  $\{f_n\}$  be a sequence of functions on  $A \subset \mathbb{R}$ , let  $A_0 \subset A$ , and let  $f: A_0 \to \mathbb{R}$ . We say that the **sequence**  $\{f_n\}$  **converges on**  $A_0$  **to** f if, for each  $x \in A_0$ , the sequence  $\{f_n(x)\}$  converges to f(x). In this case we call f the **limit on**  $A_0$  **of the sequence**  $\{f_n\}$ .

Let  $\{f_n\}$  be a sequence of functions on  $A \subset \mathbb{R}$ , let  $A_0 \subset A$ , and let  $f: A_0 \to \mathbb{R}$ . We say that the **sequence**  $\{f_n\}$  **converges on**  $A_0$  **to** f if, for each  $x \in A_0$ , the sequence  $\{f_n(x)\}$  converges to f(x). In this case we call f the **limit on**  $A_0$  **of the sequence**  $\{f_n\}$ .

When such a function f exists, we say that the sequence  $\{f_n\}$  is convergent on  $A_0$ , or that  $\{f_n\}$  converges pointwise on  $A_0$ .

## ${\bf Examples.}$

 $1)f_n(x) = nx,$ 

## Examples.

$$1)f_n(x) = nx,$$

$$2)f_n(x) = \frac{x}{n},$$

## Examples.

$$1)f_n(x) = nx,$$

$$2)f_n(x) = \frac{x}{n},$$

$$3)f_n(x) = x^n,$$

$$4)f_n(x) = \frac{\sin(n^2x)}{n},$$

## Examples.

$$1)f_n(x) = nx,$$

$$4)f_n(x) = \frac{\sin(n^2x)}{n}$$

$$2)f_n(x) = \frac{x}{n}$$

1) 
$$f_n(x) = nx$$
,  $2) f_n(x) = \frac{x}{n}$ ,  $3) f_n(x) = x^n$ ,  $4) f_n(x) = \frac{\sin(n^2 x)}{n}$ ,  $5) f_n(x) = \sqrt{x^2 + \frac{1}{n}}$ .

$$5)f_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

A sequence  $f_n(x)$  of functions on  $A \subset \mathbb{R}$  converges uniformly on  $A_0 \subset A$  to a function  $f: A_0 \to \mathbb{R}$  if

$$\forall \varepsilon > 0 \quad \exists n_0 = n_0(\varepsilon) \quad s.t. \quad \forall n \ge n_0 \quad |f_n(x) - f(x)| < \varepsilon$$

$$for \quad all \ x \in A_0.$$

A sequence  $f_n(x)$  of functions on  $A \subset \mathbb{R}$  converges uniformly on  $A_0 \subset A$  to a function  $f: A_0 \to \mathbb{R}$  if

$$\forall \varepsilon > 0 \quad \exists n_0 = n_0(\varepsilon) \quad s.t. \quad \forall n \ge n_0 \quad |f_n(x) - f(x)| < \varepsilon$$

$$for \quad all \ x \in A_0.$$

In this case we say that the sequence  $f_n(x)$  is uniformly convergent on  $A_0$ .

We write

$$f_n(x) \rightrightarrows f(x)$$
 on  $A_0$ , (for  $x \in A_0$ ).



A sequence  $f_n(x)$  of functions on  $A \subset \mathbb{R}$  converges uniformly on  $A_0 \subset A$  to a function  $f: A_0 \to \mathbb{R}$  if

$$\forall \varepsilon > 0 \quad \exists n_0 = n_0(\varepsilon) \quad s.t. \quad \forall n \ge n_0 \quad |f_n(x) - f(x)| < \varepsilon$$

$$for \quad all \ x \in A_0.$$

In this case we say that the sequence  $f_n(x)$  is uniformly convergent on  $A_0$ .

We write

$$f_n(x) \rightrightarrows f(x)$$
 on  $A_0$ , (for  $x \in A_0$ ).

If the sequence  $f_n$  is uniformly convergent on  $A_0$  to f, then this sequence also converges pointwise on  $A_0$  to f.



A sequence  $f_n(x)$  of functions on  $A \subset \mathbb{R}$  does not converge uniformly on  $A_0$  to a function  $f: A_0 \to \mathbb{R}$  if and only if for some  $\varepsilon_0 > 0$  there is a subsequence  $f_{n_k}$  of  $f_n$  and a sequence  $x_k$  in  $A_0$  such that

$$|f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0 \quad \forall k \in \mathbb{N}.$$

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$



$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$



$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$



$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

converges pointwise on  $\mathbb{R}$  to f(x) = 0, but  $f_n(x)$  does not converge on  $\mathbb{R}$  uniformly.



K.Navasardyan Real Analysis

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$



A sequence  $f_n(x)$  of functions on  $A \subset \mathbb{R}$  converges uniformly on A to f if and only if

$$\lim_{n \to \infty} \left( \sup_{x \in A} |f_n(x) - f(x)| \right) = 0.$$

A sequence  $f_n(x)$  of functions on  $A \subset \mathbb{R}$  converges uniformly on A to f if and only if

$$\lim_{n \to \infty} \left( \sup_{x \in A} |f_n(x) - f(x)| \right) = 0.$$

**Examples.** 1) Prove that the sequence  $f_n(x) = xe^{-nx}$  converges uniformly on  $[0, \infty)$ .

A sequence  $f_n(x)$  of functions on  $A \subset \mathbb{R}$  converges uniformly on A to f if and only if

$$\lim_{n \to \infty} \left( \sup_{x \in A} |f_n(x) - f(x)| \right) = 0.$$

**Examples.** 1) Prove that the sequence  $f_n(x) = xe^{-nx}$  converges uniformly on  $[0, \infty)$ .

2) Study the uniformly convergence of  $f_n(x) = x^n - x^{2n}$  on the interval [0,1].

## Cauchy Criterion for Uniform Convergence

A sequence  $f_n(x)$  of functions on  $A \subset \mathbb{R}$  converges uniformly on A to a function f if and only if

$$\forall \varepsilon > 0 \quad \exists n_0 = n_0(\varepsilon) \quad s.t. \quad \forall m, n > n_0$$

$$|f_n(x) - f_m(x)| < \varepsilon \quad for \ all \quad x \in A.$$

Let  $f_n$  be a sequence of functions defined on a subset D of  $\mathbb{R}$  with values in  $\mathbb{R}$ , the series

$$\sum_{n=1}^{\infty} f_n(x)$$

is called a **series of function**.

Let  $f_n$  be a sequence of functions defined on a subset D of  $\mathbb{R}$  with values in  $\mathbb{R}$ , the series

$$\sum_{n=1}^{\infty} f_n(x)$$

is called a **series of function**. If the sequence of partial sums

$$S_m(x) = \sum_{n=1}^m f_n(x)$$

converges at any point of D to a function f(x), then we say that the series converges to f pointwise on D.

If the sequence  $S_n(x)$  of partial sums is uniformly convergent on D to f, we say that  $\sum_{n=1}^{\infty} f_n(x)$  is **uniformly** convergent on D, or that it converges to f uniformly on D.

## Cauchy Criterion

Let  $f_n$  be a sequence of functions on  $D \subset \mathbb{R}$ . The series

 $\sum_{n=1}^{\infty} f_n(x)$  is uniformly convergent on D if and only if

$$\forall \varepsilon > 0 \quad \exists n_0 \quad s.t. \quad \forall m > n_0 \quad \forall p \in \mathbb{N}$$

$$\left| \sum_{n=m+1}^{m+p} f_n(x) \right| < \varepsilon \quad for \ all \ \ x \in D.$$

#### Weierstrass M-Test

Let  $a_n$  be a sequence of positive real numbers such that

$$|f_n(x)| < a_n$$
 for  $x \in D$ ,  $n \in \mathbb{N}$ . If the series  $\sum_{n=1}^{\infty} a_n$  is

convergent, then  $\sum f_n(x)$  is uniformly convergent on D.

#### Weierstrass M-Test

Let  $a_n$  be a sequence of positive real numbers such that

$$|f_n(x)| < a_n \text{ for } x \in D, \ n \in \mathbb{N}. \text{ If the series } \sum_{n=1}^{\infty} a_n \text{ is }$$

convergent, then  $\sum_{n=1}^{\infty} f_n(x)$  is uniformly convergent on D.

If the series of functions  $\sum_{n=1}^{\infty} f_n(x)$  converges uniformly on a set A, then  $f_n(x) \Rightarrow 0$  on A.

**Example.** Study the uniform convergence of following series on the set A

$$\sum_{n=1}^{\infty} \frac{nx^2}{1 + n^6 x^4}, \qquad A = \mathbb{R}$$

**Example.** Study the uniform convergence of following series on the set A

$$\sum_{n=1}^{\infty} \frac{nx^2}{1 + n^6x^4}, \qquad A = \mathbb{R}$$

$$\sum_{n=1}^{\infty} e^{-nx}, \quad a) \ A = (0.1, +\infty),$$

**Example.** Study the uniform convergence of following series on the set A

$$\sum_{n=1}^{\infty} \frac{nx^2}{1 + n^6 x^4}, \qquad A = \mathbb{R}$$

$$\sum_{n=0}^{\infty} e^{-nx}, \quad a) \ A = (0.1, +\infty), \quad b) \ A = (0, +\infty)$$

## Interchange of limits

#### Theorem

Let  $f_n$  be a sequence of functions on a set  $X \subset \mathbb{R}$  and suppose that  $f_n$  uniformly converges on X to a function  $f: X \to \mathbb{R}$ , as  $n \to \infty$ . If there exists the limit  $\lim_{x \to x_0} f_n(x)$  for each  $n \in \mathbb{N}$ , then

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x).$$

Suppose  $\sum_{i=1}^{n} f_n(x)$  converges to f(x) uniformly on X, and

suppose 
$$\lim_{x\to x_0} f_n(x) = c_n$$
 for each  $n \in \mathbb{N}$ . Then  $\sum_{n=1}^{\infty} c_n$ 

converges and

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \lim_{x \to x_0} f_n(x)$$

### Theorem (Continuity)

Let  $f_n$  be a sequence of continuous functions on a set  $X \subset \mathbb{R}$  and suppose that  $f_n$  uniformly converges on X to a function  $f: X \to \mathbb{R}$ . Then f is continuous on X.

### Theorem (Continuity)

Let  $f_n$  be a sequence of continuous functions on a set  $X \subset \mathbb{R}$  and suppose that  $f_n$  uniformly converges on X to a function  $f: X \to \mathbb{R}$ . Then f is continuous on X.

Suppose  $\sum_{n=1}^{\infty} f_n(x)$  converges to f(x) uniformly on X, and suppose  $f_n$  is continuous on X for each  $n \in \mathbb{N}$ . Then f is also continuous on X.

## Dini's Theorem (Supplementary)

Let  $f_n : [a, b] \to \mathbb{R}$  be a sequence of continuous functions and suppose for each  $x \in [a, b]$ 

$$f_1(x) \le f_2(x) \le f_3(x) \le \cdots$$
,  $(or f_1(x) \ge f_2(x) \ge \cdots)$ .

If  $f_n$  converges on [a, b] to a continuous function f, then the convergence of the sequence is uniformly.

# Interchange of Limit and Integral

#### Theorem

Let  $f_n$  be a sequence of integrable functions on [a, b] and suppose that  $f_n$  converges uniformly on [a, b] to f. Then f is integrable on [a, b] and

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

Let  $f_n$  be a sequence of continuous functions on [a, b] and suppose that  $f_n$  converges uniformly on [a, b] to f. Then

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

Let  $f_n$  be a sequence of continuous functions on [a, b] and suppose that  $f_n$  converges uniformly on [a, b] to f. Then

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

Calculate the following limit:

$$\lim_{n \to \infty} \int_0^2 \frac{nx^2 + \ln(n+x)}{n+x^2} dx.$$

Suppose that the functions  $f_n$ ,  $n \in \mathbb{N}$ , are integrable on the interval [a,b]. If the series  $\sum_{n=1}^{\infty} f_n$  converges to f uniformly on [a,b], then f is integrable and

$$\int_{a}^{b} \left( \sum_{n=1}^{\infty} f_n(x) \right) dx = \int_{a}^{b} f(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx$$

Calculate the integral

$$\int_{1}^{2} \sum_{n=0}^{\infty} n3^{-nx} dx.$$

# Interchange of Limit and Derivative

#### Theorem

Let (a, b) be a bounded interval and let  $f_n$  be a sequence of differentiable functions on (a, b). Suppose that there exists  $x_0 \in (a, b)$  s.t.  $f_n(x_0)$  converges, and that the sequence  $f'_n$  converges uniformly on (a, b). Then the sequence  $f_n$  converges uniformly on (a, b) to a differentiable function f and

$$\left(\lim_{n\to\infty} f_n(x)\right)' = f'(x) = \lim_{n\to\infty} f'_n(x).$$

Counterexamples. 1)  $f_n(x) = \frac{1}{n} \arctan x^n$  at the point  $x_0 = 1$ .

Counterexamples. 1)  $f_n(x) = \frac{1}{n} \arctan x^n$  at the point  $x_0 = 1$ .

2) The series  $\sum_{n=0}^{\infty} \frac{1}{2^n} \cos(3^n x)$  converges uniformly on  $\mathbb{R}$ , but its sum does not have derivative at any point in  $\mathbb{R}$ .

Counterexamples. 1)  $f_n(x) = \frac{1}{n} \arctan x^n$  at the point  $x_0 = 1$ .

2) The series  $\sum_{n=0}^{\infty} \frac{1}{2^n} \cos(3^n x)$  converges uniformly on  $\mathbb{R}$ , but its sum does not have derivative at any point in  $\mathbb{R}$ .



Let (a, b) be a bounded interval and let  $f_n$  be a sequence of differentiable functions on (a, b). Suppose that there exists

$$x_0 \in (a,b)$$
 s.t.  $\sum_{n=1}^{\infty} f_n(x_0)$  converges, and that the series

 $\sum_{n=1}^{\infty} f'_n$  converges uniformly on (a,b). Then the series  $\sum_{n=1}^{\infty} f_n$  converges uniformly on (a,b) and

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

### Example.

Prove that

$$f(x) = \sum_{n=1}^{\infty} \frac{\arctan nx}{n^3 + x^2}$$

is continuous differentiable on  $\mathbb{R}$ .