Matrix Calculus

Omid Safarzadeh

December 24, 2021

Introduction

- Matrix operations
 - Matrix Multiplication
 - Properties of determinants
 - Inverse Matrix
 - Matrix Transpose
 - Properties of transpose
- Partioned Matrices
- Eigenvalues and Eigenvectors
- Matrix decomposition
 - LU decomposition
 - Cholesky decomposition
 - QR decomposition
 - SVD
- Matrix Differentiation
- 6 Reference

Matrix Multiplication [Bar09]

Definition 1.1

Let A be $m \times n$, and B be $n \times p$, and let the product AB be

$$C = AB$$

then C is a $m \times p$ matrix, with element (i,j) given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

for all i = 1, 2..., m, j = 1, 2, ..., p.

Omid Safarzadeh Matrix Calculus December 24, 2021 3/38

Properties of determinants [Bar09]

We already know that for a $2x^2$ matrix, we have

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow \det A = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

- det l=1
- If you exchange two rows of a matrix, you reverse the sign of its determinant from positive to negative or from negative to positive.
- The determinant behaves like a linear function on the rows of the matrix:

$$\begin{vmatrix} ta + a' & tb + b' \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$

Omid Safarzadeh Matrix Calculus December 24, 2021 4/3

Properties of determinants

- If two rows of a matrix are equal, its determinant is zero.
- If $i \neq j$ subtracting t times row i from row j doesn't change the determinant

$$\begin{vmatrix} a & b \\ c - ta & d - tb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

- If A has a row that is all zeros, then det A = 0.
- The determinant of a triangular matrix is the product of the diagonal entries (pivots) $d_1, d_2, ..., d_n$.
- $\det AB = (\det A)(\det B)$
- $\det A^T = \det A$

Inverse Matrix[]

Definition 1.2

An $n \times n$ square matrix A is called invertible, if there exists an $n \times n$ square matrix B such that

$$AB = BA = I_n$$

where I_n denotes the $n \times n$ identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the inverse of A, denoted by A^{-1}

Matrix Transpose []

Definition 1.3

The transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A^T . For example, consider matrix A as:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Transpose of matrix A will be defined as:

$$A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Omid Safarzadeh Matrix Calculus December 24, 2021 7/38

Matrix Transpose

Proposition 1.1

Let A be $m \times n$, and B be $n \times p$, and let the product AB be

$$C = AB$$

then

$$C^T = B^T A^T$$

Proposition 1.2

Let A and B be $n \times n$, Let the product AB be given

$$C = AB$$

then

$$C^{-1} = B^{-1}A^{-1}$$

Properties of transpose[]

•
$$AB^T = A(B^T)$$

•
$$(A^T)^T = A$$

$$(A \pm B)^T = A^T \pm B^T$$

•
$$(\kappa A)^T = \kappa A^T$$

•
$$(AB)^T = B^T A^T$$

9/38

Partioned Matrices [Bar09]

Definition 2.1

Let A be $m \times n$ and write:

$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$$

where B is $m_1 \times n_1$, E is $m_2 \times n_2$, C is $m_1 \times n_2$, D is $m_2 \times n_1$, $m_1 + m_2 = m$, and $n_1 + n_2 = n$. The above is said to be a partition of the matrix A.

10/38

Omid Safarzadeh Matrix Calculus December 24, 2021

Partioned Matrices

Proposition 2.1

Let A be a square, nonsingular matrix of order m. Partition A as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

so that A_{11} is a nonsingular matrix of order m_1 , A_{22} is a nonsingular matrix of order m_2 , and $m_1 + m_2 = m$. Then

$$A^{-1} = \begin{bmatrix} (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & -A_{11}A_{12}(A_{22} - A_{22}A_{11}^{-1}A_{12})^{-1} \\ -A_{22}^{-1}A_{21}(A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} \end{bmatrix}$$

11/38

Omid Safarzadeh Matrix Calculus December 24, 2021

Eigenvalues and Eigenvectors

To explain eigenvalues, we first explain eigenvectors. Almost all vectors change direction, when they are multiplied by A. Certain exceptional vectors x are in the same direction as Ax. Those are the "eigenvectors". Multiply an eigenvector by A, and the vector Ax is a number λ times the original x.

The basic equation is $Ax = \lambda x$. The number λ is an eigenvalue of A.

The eigenvalue λ tells whether the special vector x is stretched or shrunk or reversed or left unchanged—when it is multiplied by A.

Eigenvalues and Eigenvectors

Example 3.1

$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} \qquad det(A - \lambda) = \begin{bmatrix} 0.8 - \lambda & 0.3 \\ 0.2 & 0.7 - \lambda \end{bmatrix} = \lambda^2 - \frac{3}{2}\lambda + \frac{1}{2}$$
$$= (\lambda - 1)(\lambda - \frac{1}{2}) = 0.$$

Omid Safarzadeh Matrix Calculus December 24, 2021 13/1

Matrix decomposition [Wik21]

- In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices.
- Some decompositions related to solving systems of linear eqautions are listed below:
 - LU decomposition
 - Cholesky decomposition
 - QR decomposition
- And some decompositions based on eigenvalues are:
 - Singular value decomposition (SVD)

LU decomposition

- **lower–upper (LU) decomposition** factors a matrix as the product of a lower triangular matrix and an upper triangular matrix.
- Let A be a square matrix. Based on definition A = LU where L is a lower triangular matrix and U is a upper triangular matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}.$$

• For example, it is easy to verify (by expanding the matrix multiplication) that $a_{11}=\ell_{11}u_{11}$. If $a_{11}=0$, then at least one of ℓ_{11} and u_{11} has to be zero, which implies that either L or U is singular.

LU decomposition

Example 4.1

$$\begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} \ell_{11} & 0 \\ \ell_{21} & \ell_{22} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}.$$

• Expanding the matrix multiplication gives

$$\ell_{11}.u_{11} + 0.0 = 4$$

$$\ell_{11}.u_{12} + 0.u_{22} = 3$$

$$\ell_{21}.u_{11} + \ell_{22}.0 = 6$$

$$\ell_{21}.u_{12} + \ell_{22}.u_{22} = 3.$$

16 / 38

Omid Safarzadeh Matrix Calculus December 24, 2021

Example 8.1 cont.

• Hence,

$$\ell_{11} = \ell_{22} = 1$$

$$\ell_{21} = 1.5$$

$$u_{11} = 14$$

$$u_{12} = 3$$

$$u_{22} = -1.5$$

So we have:

$$\begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}.$$

Cholesky decomposition

- The **Cholesky decomposition** is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions.
- The Cholesky decomposition of a Hermitian positive-definite matrix A, is a decomposition of the form

$$A = LL^T$$

where L is a lower triangular matrix with real and positive diagonal entries, and L^T denotes the conjugate transpose of L.

$$A = LL^{T} = \begin{pmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{pmatrix} \begin{pmatrix} L_{11} & L_{21} & L_{31} \\ 0 & L_{22} & L_{32} \\ 0 & 0 & L_{33} \end{pmatrix}$$

Cholesky decomposition

Where

$$L_{j,j} = (\pm) \sqrt{A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2}$$

and

$$L_{i,j} = \frac{1}{L_{j,j}} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} \right) \quad \text{for } i > j.$$

19/38

Cholesky decomposition

Example 4.2

$$\begin{pmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 6 & -8 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{pmatrix}$$

• Calculating $L_{i,j}$ and $L_{i,j}$: Exercise!

20 / 38

Omid Safarzadeh Matrix Calculus December 24, 2021

QR decomposition

The QR decomposition (also called the QR factorization) of a matrix is a
decomposition of the matrix into an orthogonal matrix and a triangular
matrix. A QR decomposition of a real square matrix A is a decomposition of
A as

$$A = QR$$

where Q is an orthogonal matrix (i.e. $Q^TQ = I$) and R is an upper triangular matrix.

There are several methods for actually computing the QR decomposition.
 One of such method is the Gram-Schmidt process.

Omid Safarzadeh Matrix Calculus December 24, 2021 21 / 38

Gram-Schmidt process []

Consider the Gram-Schmidt procedure, with the vectors to be considered in the process as columns of the matrix A. That is,

$$A = \begin{bmatrix} a_1 | a_2 | & \dots & | a_n \end{bmatrix}.$$

Then,

$$u_1 = a_1, \quad e_1 = \frac{u_1}{||u_1||}$$

$$u_2 = a_2 - (a_2.e_1)e_1, \quad e_2 = \frac{u_2}{||u_2||}$$

$$u_{k+1} = a_{k+1} - (a_{k+1}.e_1)e_1 - \dots - (a_{k+1}.e_k)e_k, \quad e_1 = \frac{u_{k+1}}{||u_{k+1}||}$$

Note that ||.|| is the L₂ norm.

4□ > 4□ > 4 = > 4 = > = 90

22/38

Omid Safarzadeh Matrix Calculus December 24, 2021

QR decomposition

The resulting QR decomposition is

$$A = \begin{bmatrix} a_1 | a_2 | & \dots & | a_n \end{bmatrix} = \begin{bmatrix} e_1 | e_2 | & \dots & | e_n \end{bmatrix} \begin{bmatrix} a_1.e_1 & a_2.e_1 & \dots & a_n.e_1 \\ 0 & a_2.e_2 & \dots & a_n.e_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n.e_n \end{bmatrix} = QR.$$

• Note that once we find $e_1, ..., e_n$, it is not hard to write the QR factorization.

Omid Safarzadeh Matrix Calculus December 24, 2021 23 / 38

QR decomposition

Example 4.3

Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$

with the vectors $a_1 = (1, 1, 0)^T$, $a_2 = (1, 0, 1)^T$ and $a_3 = (0, 1, 1)^T$. Performing the Gram-Schmidt procedure, we obtain:

$$\begin{aligned} u_1 &= a_1 = (1,1,0)^t \\ e_1 &= \frac{u_1}{||u_1||} = \frac{1}{\sqrt{2}}(1,1,0) = (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0), \\ u_2 &= a_2 - (a_2.e_1)e_1 = (1,0,1) - \frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0) = (\frac{1}{2},-\frac{1}{2},1) \\ e_2 &= \frac{u_2}{||u_2||} = \frac{1}{\sqrt{3/2}}(\frac{1}{2},-\frac{1}{2},1) = (\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}}) \end{aligned}$$

$$u_3 = a_3 - (a_3.e_1)e_1 - (a_3.e_2)e_2$$

$$= (0,1,1) - \frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) - (\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}) = (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

$$e_3 = \frac{u_3}{||u_3||} = (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}).$$

Thus

$$Q = \begin{bmatrix} e_1 | e_2 | & \dots | e_n \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}.$$

$$R = \begin{bmatrix} a_1 \cdot e_1 & a_2 \cdot e_1 & a_3 \cdot e_1 \\ 0 & a_2 \cdot e_2 & a_3 \cdot e_2 \\ 0 & 0 & a_3 \cdot e_3 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{2}{\sqrt{2}} \end{bmatrix}.$$

←□▶←□▶←□▶←□▶ □ ♥Q♡

SVD

• singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any $n \times p$:

$$A_{n\times p}=U_{n\times n}S_{n\times p}V_{p\times p}^{T}$$

Where

$$U^T U = I_{n \times n}$$

$$V^T V = I_{p \times p}$$
 (i.e. U and V are orthogonal)

- The eigenvectors of A^TA make up the columns of V.
- The eigenvectors of AA^T make up the columns of U.
- The singular values in S are square roots of eigenvalues from AA^T or A^TA .

SVD

Example 4.4

To understand how to solve for SVD, let's take the example of the matrix:

$$A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

and

Since, $W\mathbf{x} = \lambda \mathbf{x}$ then $(W - \lambda I)\mathbf{x} = 0$

Example 8.4 cont.

$$\begin{bmatrix} 20 - \lambda & 14 & 0 & 0 \\ 14 & 10 - \lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & 0 & -\lambda \end{bmatrix} \mathbf{x} = (W - \lambda I)\mathbf{x} = 0$$

By solving the above equation, we have:

$$\lambda_1=\lambda_2=0$$

$$\lambda_3=15+\sqrt{221}\sim 29 \qquad \quad \lambda_4=15-\sqrt{221}\sim 0.117$$

This value can be used to determine the eigenvector that can be placed in the columns of U. Thus we obtain the following equations:

$$19.883x_1 + 14x_2 = 0$$
$$14x_1 + 9.883x_2 = 0$$
$$x_3 = x_4 = 0$$

Omid Safarzadeh Matrix Calculus December 24, 2021 28 / 38

Example 8.4 cont.

Upon simplifying the first two equations we obtain a ratio which relates the value of x_1 to x_2 . The values of x_1 and x_2 are chosen such that the elements of the S are the square roots of the eigenvalues. Thus a solution that satisfies the above equation $x_1 = -0.58$ and $x_2 = 0.82$ and $x_3 = x4 = 0$ Substituting the other eigenvalue we obtain:

$$-9.883x_1 + 14x_2 = 0$$
$$14x_1 - 19.883x_2 = 0$$
$$x_3 = x_4 = 0$$

Thus a solution that satisfies this set of equations is $x_1 = 0.82$ and $x_2 = -0.58$ and $x_3 = x_4 = 0$ (this is the first column of the U matrix). Combining these we obtain:

$$U = \begin{bmatrix} 0.82 & -0.58 & 0 & 0 \\ 0.58 & 0.82 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 8.4 cont.

Similarly A^TA makes up the columns of V so we can do a similar analysis to find the value of V.

$$A^{T}.A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 4 & 0 & 0 \\ 1 & 3 & 0 & 0 \end{bmatrix}$$

and similarly we obtain the expression:

$$V = \begin{bmatrix} 0.4 & -0.91 \\ 0.91 & 0.4 \end{bmatrix}$$

Finally as mentioned previously the S is the square root of the eigenvalues from AA^T or A^TA . and can be obtained directly giving us:

$$S = \begin{bmatrix} 5.47 & 0 \\ 0 & 0.37 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Matrix Differentiation [Bar09]

Let $\mathbf{y} = \psi(\mathbf{x})$, where \mathbf{y} is an m-element vector, and \mathbf{x} is an n-element vector. The symbol

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial m_n} \end{bmatrix}$$

will denote the $m \times n$ matrix of first-order partial derivatives of the transformation from \mathbf{x} to \mathbf{y} . Such a matrix is called the Jacobian matrix of the transformation $\psi()$.

Omid Safarzadeh Matrix Calculus December 24, 2021 31/38

- Notice that if \mathbf{x} is actually a scalar, then the resulting Jacobian matrix is a $m \times 1$ matrix; that is, a single column (a vector). On the other hand, if \mathbf{y} is actually a scalar, then the resulting Jacobian matrix is a $1 \times n$ matrix; that is, a single row (the transpose of a vector).
- Let $\mathbf{y} = \mathbf{A}\mathbf{x}$, where \mathbf{y} is $m \times 1$, \mathbf{x} is $n \times 1$, \mathbf{A} is $m \times n$, and \mathbf{A} does not depend on \mathbf{x} , then

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}$$

• Let $\mathbf{y} = \mathbf{A}\mathbf{x}$, where \mathbf{y} is $m \times 1$, \mathbf{x} is $n \times 1$, \mathbf{A} is $m \times n$, and \mathbf{A} does not depend on \mathbf{x} . Suppose that \mathbf{x} is a function of the vector \mathbf{z} , while \mathbf{A} is independent of \mathbf{z} . Then

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

• Let the scalar α be defined by

$$\alpha = \mathbf{y}^T \mathbf{A} \mathbf{x}$$

where \mathbf{y} is $m \times 1$, \mathbf{x} is $n \times 1$, \mathbf{A} is $m \times n$, and \mathbf{A} is independent of \mathbf{x} and \mathbf{y} , then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y}^{\mathsf{T}} \mathbf{A}$$

and

$$\frac{\partial \alpha}{\partial \mathbf{y}} = \mathbf{x}^T \mathbf{A}^T$$

ullet For the special case in which the scalar lpha is given by the quadratic form

$$\alpha = \mathbf{x}^T \mathbf{A}^T \mathbf{x}$$

where **x** is $n \times 1$, **A** is $n \times n$, and **A** does not depend on **x**, then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T).$$

For the special case where A is a symmetric matrix and

$$\alpha = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where **x** is $n \times 1$, **A** is $n \times n$, and **A** does not depend of **x**, then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = 2\mathbf{x}^T \mathbf{A}$$

ullet Let the scalar lpha defined by

$$\alpha = \mathbf{y}^T\mathbf{x}$$

where \mathbf{y} is $n \times 1$, \mathbf{x} is $n \times 1$, and both \mathbf{x} and \mathbf{y} are functions of the vector \mathbf{z} . Then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^{\mathsf{T}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^{\mathsf{T}} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

34 / 38

Omid Safarzadeh Matrix Calculus December 24, 2021

ullet Let the scalar lpha defined by

$$\alpha = \mathbf{x}^T \mathbf{x}$$

where **x** is $n \times 1$, and **x** is a function of the vector **z**, then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = 2\mathbf{x}^T \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

ullet Let the scalar lpha defined by

$$\alpha = \mathbf{y}^T \mathbf{A} \mathbf{x}$$

where **y** is $m \times 1$, **x** is $n \times 1$, **A** is $m \times n$, and both **x** and **y** are functions of the vector **z**, while **A** does not depend on **z**. Then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^T \mathbf{A}^T \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^T \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

ullet Let the scalar lpha defined by the quadratic form

$$\alpha = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where **x** is $n \times 1$, **A** is $n \times n$, and **x** is a function of the vector **z**, while **A** does not depend on **z**. Then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T) \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

• For the special case where A is a symmetric matrix and

$$\alpha = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where \mathbf{x} is $n \times 1$, \mathbf{A} is $n \times n$, and \mathbf{x} is a function of the vector \mathbf{z} , while \mathbf{A} does not depend on \mathbf{z} . Then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = 2\mathbf{x}^T \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

Omid Safarzadeh Matrix Calculus December 24, 2021 36 / 38

Lemma 5.1

Let A be a $m \times n$ matrix whose elements are functions of the scalar parameter α . Then the derivative of the matrix A with respect to the scalar parameter α is the $m \times n$ matrix of element-by-element derivatives:

$$\frac{\partial A^{-1}}{\partial \alpha} = \begin{bmatrix} \frac{\partial \alpha_{11}}{\partial \alpha} & \frac{\partial \alpha_{12}}{\partial \alpha} & \dots & \frac{\partial \alpha_{1n}}{\partial \alpha} \\ \frac{\partial \alpha_{21}}{\partial \alpha} & \frac{\partial \alpha_{22}}{\partial \alpha} & \dots & \frac{\partial \alpha_{2n}}{\partial \alpha} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \alpha_{m1}}{\partial \alpha} & \frac{\partial \alpha_{m2}}{\partial \alpha} & \dots & \frac{\partial \alpha_{mn}}{\partial \alpha} \end{bmatrix}$$

• Let **A** be a nonsingular, $m \times m$ matrix whose elements are functions of the scalar parameter α . Then

$$\frac{\partial \mathbf{A}^{-1}}{\partial \alpha} = \mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \alpha} \mathbf{A}^{-1}$$

References

- [] APPLIED NUMERICAL METHODS II. https://www.math.ucla.edu/yanovsky/Teaching/Math151B/handouts/Gra Accessed: 2010-09-30.
- Properties of Transpose and Inverse of a matrix.

 https://math.ryerson.ca/danziger/professor/MTH141/Handouts/elementa
 Accessed: 2010-09-30.
- [Bar09] Randal J. Barnes. "Matrix Differentiation (and some other stuff)". In: 2009.
- [Wik21] Wikipedia contributors. Matrix decomposition Wikipedia, The Free Encyclopedia. [Online; accessed 23-December-2021]. 2021. URL: https://en.wikipedia.org/w/index.php?title=Matrix_decomposition&oldid=1055701521.

38 / 38