Final Report

Ling-En Huang

Introduction

Project Overview:

Develop models to predict stock prices and the direction of price movement.

Objective:

Predict actual stock prices.

Predict the direction of stock price movement (up or down).

Methodology

Approach:

Data Collection: Historical stock prices, market indicators.

Data Preprocessing: Masks, data selection

Model Selection: Various machine learning models for prediction.

Tools and Frameworks:

Python, PyTorch, Pandas, Numpy, Sklearn, Mplfinance, Pandas_ta.

Workflow

Data collection

Experimental Setup

Data Sources: 5 min SPY stock market data from Alpha Vantage

Data preprocessing: labeling data, filter data, normalization, etc.

Datasets:

5 min SPY data from 2018 to 2023

Labeling data

Average True Range [1] (ATR: is a technical indicator that measures how volatile a stock has been over past 14 bars)

$$\left(\frac{1}{n}\right)\sum_{i}^{n}\mathrm{TR}_{i}$$

where:

 $TR_i = Particular true range, such as first day's TR,$ then second, then third n = Number of periods $\mathrm{TR} \ = \ \mathrm{Max} \left[(\mathrm{H} - \mathrm{L}), |\mathrm{H} - \mathrm{C}_p|, |\mathrm{L} - \mathrm{C}_p| \right]$

where:

H = Today's high

L = Today's low

 $C_p =$ Yesterday's closing price

Max = Highest value of the three terms

so that:

(H - L) = Today's high minus the low

 $|\mathrm{H}-\mathrm{C}_p|=\mathrm{Absolute}$ value of today's high minus

yesterday's closing price

 $|L - C_p|$ = Absolute value of today's low minus yesterday's closing price

Labeling data

Label the candle as

- +1 (Green) if the candle reaches current closed price + 1 * ATR first
- -1 (Red) if the candle reaches current closed price 1 * ATR first

Filter data (First mask)

1. Average bar range (ABR: average bar range for past 10 bars.):

Highlight the Bar(with green and red color) that is larger than the 1.05 * ABR

Candlestick Chart with ATR for 2023-02-17T00:00:00.000000000

Training / Testing data with the first mask (large bar)

Training: 2020, 2021 SPY 5 min data

Testing: 2022, 2023 SPY 5 min data selected 50 days from this period.

Total: 1453

1	-1
750 (51.62%)	703 (48.38%)

Filter data (Second mask)

2. Non-overlap candle size is >= the whole candle size * 0.4

Testing Data with the second mask distribution

Total: 834

1	-1
420 (50.36%)	414 (49.64%)

Create features and labels (1)

Sequence length: 20, 30, 40, 50, 60

Take sequence = 10 for example:

Features

Open	High	Low	Close
241.9180	242.3220	241.5500	242.0110
242.2080	242.4310	241.8940	242.0350
242.2260	242.3490	241.7760	241.9090
242.0990	242.2770	241.7310	241.9490
242.1400	242.4940	241.7810	242.1800
242.3660	242.6930	242.0560	242.2970
242.4860	242.7380	242.1830	242.4240
242.6150	242.7200	242.2280	242.3430
242.5420	242.7750	242.2460	242.4150
242.2080	242.4310	241.8940	242.0350

Label =
$$+1$$
 or -1

Create features and labels (2)

Open	High	Low	Close
241.9180	242.3220	241.5500	242.0110
242.2080	242.4310	241.8940	242.0350
242.2260	242.3490	241.7760	241.9090
242.0990	242.2770	241.7310	241.9490
242.1400	242.4940	241.7810	242.1800
242.3660	242.6930	242.0560	242.2970
242.4860	242.7380	242.1830	242.4240
242.6150	242.7200	242.2280	242.3430
242.5420	242.7750	242.2460	242.4150
242.2080	242.4310	241.8940	242.0350

Difference *10 or
Difference *100

Features

0	Liada	1	Olana
Open	High	Low	Close
NaN	NaN	NaN	NaN
2.90	1.09	3.44	0.24
0.18	-0.82	-1.18	-1.26
-1.27	-0.72	-0.45	0.40
0.41	2.17	0.50	2.31
2.26	1.99	2.75	1.17
1.20	0.45	1.27	1.27
1.29	-0.18	0.45	-0.81
-0.73	0.55	0.18	0.72
0.68	-0.18	0.36	-0.05

Label = +1 or -1

Normalization

Standard Scaler from sklearn

```
scaler = StandardScaler()

vfor i in range(features.shape[0]):
    features[i] = scaler.fit_transform(features[i])
```

Min Max

```
scaler = MinMaxScaler()
for i in range(features.shape[0]):
    features[i] = scaler.fit_transform(features[i])
```

Do normalization to each individual columns.

Open	High	Low	Close
241.9180	242.3220	241.5500	242.0110
242.2080	242.4310	241.8940	242.0350
242.2260	242.3490	241.7760	241.9090
242.0990	242.2770	241.7310	241.9490
242.1400	242.4940	241.7810	242.1800
242.3660	242.6930	242.0560	242.2970
242.4860	242.7380	242.1830	242.4240
242.6150	242.7200	242.2280	242.3430
242.5420	242.7750	242.2460	242.4150
242.2080	242.4310	241.8940	242.0350

Metrics

Accuracy: when model make decisions, the right or wrong of that decisions.

Models used

Long Short-Term Memory(LSTM)

Transformer

LSTM model design

```
import torch
import torch.nn as nn
class LSTMModel(nn.Module):
    def init (self, hidden dim=256, num layers=2):
        super(). init ()
        self.input_projection = nn.Linear(4, hidden_dim // 4)
        self.act = nn.ReLU()
        self.r = nn.LSTM(hidden_dim // 4, hidden_dim, num_layers, batch_first=True, bidirectional=False, dropout=0.1)
        self.l = nn.Linear(1*num_layers*hidden dim, 1)
        self.init_weights()
    def init_weights(self):
        for name, param in self.r.named parameters():
            if 'bias' in name:
                 nn.init.constant_(param, 0.0)
            elif 'weight_ih' in name:
                 nn.init.kaiming_normal_(param)
            elif 'weight_hh' in name:
                 nn.init.orthogonal (param)
    def forward(self, x):
        batch_size = x.shape[0]
        x = self.act(self.input_projection(x))
        lstm_out, (h_n, c_n) = self_r(x)
        x = h_n.permute(1, 0, 2).flatten(1)
        x = self_{\cdot}l(x)
        return x
```

LSTM Hyper-parameters

Learning rate	Epochs	Input dim	Hidden dim	Output dim	hidden_lay er	dropout	seq_lengt h	Batch size	
0.001	100	4	128	1	256	0.1	20~60	128	

Adding the second mock (I STM)

Adding ti	ie second	mask (LS	1 IVI <i>)</i>
Seq_len	20	30	40

99.98%

49.28%

50.38%

50.28%

50.33%

T:765

T:718

T:834

T:657

99.87%

51.80%

51.80%

51.99%

51.94%

T:729

T:772

T:666

T:834

Training Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

50

99.40%

53.36%

53.39%

52.91%

52.99%

T:768

T:722

T:635

T:834

99.27%

49.88%

49.70%

49.37%

49.34%

T:762

T:711

T:656

T:834

60

96.37%

48.80%

50.08%

49.64%

48.92%

T:744

T:695

T:834

Change normalization method MinMay

99.97%

51.80%

52.43%

52.79%

52.66%

T:716

T:771

T:834

T:637

Training Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

Change normalization method_iviliniviax					
Seq_len	20	30	40	50	

99.41%

49.40%

49.67%

50.51%

50.55%

T:732

T:614

T:691

T:834

99.90%

50.60%

52.19%

51.73%

51.24%

T:769

T:723

T:663

T:834

60

99.92%

51.44%

50.52%

50.89%

51.15%

T:780

T:731

T:834

T:673

98.79%

52.40%

52.07%

52.52%

51.87%

T:750

T:714

T:653

LSTM difference x 10 (without normalization)

		•		,
Seq_len	20	30	40	50
Training	100%	99.85%	98.96%	100%

46.64%

48.07%

47.26%

46.52%

T:748

T:694

T:622

T:834

47.84%

47.34%

47.22%

47.48%

T:775

T:737

T:676

T:834

51.52%

50.15%

50.95%

51.73%

T:779

T:738

T:834

T:688

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

48.56%

49.93%

49.87%

48.97%

T:834

T:699

T:744

T:778

60

99.96%

52.40%

52.77%

52.33%

52.39%

T:773

T:730

T:834

LSTM difference x 100 (without normalization)

ESTIVI dilibrollos x 100 (Without Hormanzation)						
Seq_len	20	30	40	50		
Training	99.95%	99.95%	100%	99.87%		

50.48%

49.75%

49.63%

49.46%

T:736

T:679

T:599

T:834

51.68%

51.42%

50.93%

51.52%

T:757

T:636

T:701

T:834

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

51.32%

52.06%

51.89%

51.82%

T:688

T:743

T:834

T:607

60

52.52%

51.86%

52.83%

52.93%

T:765

T:725

T:834

T:644

99.98%

49.64%

48.84%

48.95%

49.09%

T:744

T:711

T:834

LSTM difference x10 no mask (without normalization)

			\		,
Seq_len	20	30	40	50	60
Training	96.75%	96.90%	97.68%	97.81%	96.70%

47.96%

47.96%

47.45%

47.23%

T:725

T:775

T:663

T:834

51.92%

51.88%

51.62%

52.05%

T:757

T:709

T:640

T:834

51.92%

49.62%

51.71%

51.95%

T:770

T:663

T:731

T:834

49.76%

49.85%

49.38%

49.35%

T:764

T:723

T:670

T:834

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

47.84%

48.31%

48.21%

47.77%

T:762

T:728

T:650

LSTM difference x 10 standard scaler

Seq_len	20	30	40
Training	100%	100%	99.98%

51.56%

50.36%

50.74%

51.33%

T:747

T:787

T:693

T:834

50.24%

51.35%

50.70%

50.65%

T:668

T:716

T:768

T:834

50.12%

50.44%

49.93%

49.81%

T:775

T:735

T:678

T:834

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

50

99.98%

53.36%

52.58%

53.00%

53.16%

T:734

T:775

T:679

T:834

60

100%

52.28%

50.98%

51.90%

51.86%

T:781

T:663

T:738

LSTM difference x 10 min max

50.24%

51.32%

50.95%

50.73%

T:685

T:749

T:834

T:604

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

Seq_len	20	30	40	50
Training	99.60%	97.19%	97.83%	99.25%

52.76%

53.31%

52.26%

53.69%

T:616

T:704

T:834

T:514

49.04%

50.09%

49.63%

49.66%

T:727

T:671

T:834

T:569

49.40%

47.54%

48.13%

48.83%

T:727

T:669

T:568

T:834

60

95.69%

49.88%

50.39%

50.92%

50.45%

T:672

T:834

T:614

Adding the fifth feature: Volume, and Training data

Training: 2018, 2018, 2020, 2021 SPY 5 min data

Testing: 2022, 2023 SPY 5 min data selected 50 days from this period.

Learning rate	Epochs	Input dim	Hidden dim	Output dim	hidden_lay er	dropout	seq_lengt h	Batch size
0.001	150	4	128	1	256	0.1	20~60	128

Adding the fifth feature: Volume, and Training data

)			,	9	
Seq_len	20	30	40	50	60
Training	100%	99.30%	99.90%	98.79%	99.9

50.60%

52.19%

51.73%

51.24%

T:663

T:723

T:769

T:834

52.40%

52.07%

52.52%

51.87%

T:750

T:714

T:653

T:834

50.48%

52.82%

52.26%

51.23%

T:771

T:718

T:655

T:834

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

48.08%

47.72%

47.80%

47.59%

T:767

T:728

T:834

T:679

99.92%

51.44%

50.52%

50.89%

51.15%

T:780

T:834

T:673

Transformer model design

```
∨ class EncoderOnlyTransformerModel(nn.Module):
     def init (self, input dim, hidden dim, output dim, num layers, num heads, dropout):
         super(EncoderOnlyTransformerModel, self).__init__()
         self.seg len = sequence length
         self.fc1 = nn.Linear(input_dim, hidden_dim)
         self.positional encoding = PositionalEncoding(hidden dim, max len=self.seg len)
         self.encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dropout=dropout)
         self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
         self.fc2 = nn.Linear(hidden dim*self.seg len, output dim)
     def create mask(self, seg len, device):
         mask = nn.Transformer.generate_square_subsequent_mask(self=self, sz=seq_len).to(device)
         return mask
     def forward(self, src):
         src = self.fc1(src) # Linear layer
         src = src.permute(1, 0, 2) # Change shape to (seq_len, batch_size, hidden_dim)
         src = self.positional_encoding(src) # Apply positional encoding
         attention mask = self.create mask(src.size(0), src.device)
         output = self.transformer_encoder(src, mask=attention_mask)
         output = output.permute(1, 0, 2) # Change shape back to (batch size, seg len, hidden dim)
         output = output.reshape(output.size(0), -1) # Flatten the sequence (batch_size, seq_len * hidden dim)
         output = self.fc2(output) # Classification layer
         return output
```

Attention mask [2]

```
∨ class EncoderOnlyTransformerModel(nn.Module):
     def __init__(self, input_dim, hidden_dim, output_dim, num_layers, num_heads, dropout):
         super(EncoderOnlyTransformerModel, self).__init__()
         self.seg_len = sequence_length
         self.fc1 = nn.Linear(input dim, hidden dim)
         self.positional_encoding = PositionalEncoding(hidden_dim, max_len=self.seq_len)
         self.encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dropout=dropout)
         self.transformer encoder = nn.TransformerEncoder(self.encoder layer, num layers=num layers)
         self.fc2 = nn.Linear(hidden dim*self.seg len, output dim)
     def create_mask(self, seq_len, device):
         mask = nn.Transformer.generate square subsequent mask(self=self, sz=seq len).to(device)
         return mask
     def forward(self, src):
         src = self.fc1(src) # Linear layer
         src = src.permute(1, 0, 2) # Change shape to (seq_len, batch_size, hidden_dim)
         src = self.positional_encoding(src) # Apply positional encoding
         attention_mask = self.create_mask(src.size(0), src.device)
         output = self.transformer encoder(src, mask=attention mask)
         output = output.permute(1, 0, 2) # Change shape back to (batch_size, seq_len, hidden_dim)
         output = output.reshape(output.size(0), -1) # Flatten the sequence (batch_size, seq_len * hidden_dim)
         output = self.fc2(output) # Classification laver
         return output
```

Hyper-parameters

4

0.0001

500

Learning rate	Epochs	Input dim	Hidden dim	Output dim	num_layer s	num_head s	dropout	seq_lengt h	Batch size

0.1

4

20~60

64

128

Accuracy

Seq_len

Testing

Testing

Testing

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

Testing 51.62% 48.93% 50.38% 50.58% 51.34%	Training Accuracy	98.75%	98.46%	98.40%	98.01%	97.51%
Accuracy(>=0.5)	Testing	51.62%	48.93%	50.38%	50.58%	51.34%
	Accuracy(>=0.5)	T:1453	T:1453	T:1453	T:1453	T:1453

50.78%

50.72%

T:1118

50.80%

T:1246

T:961

40

50

51.22%

51.02%

T:1125

50.61%

T:1235

T:945

60

49.90%

51.09%

T:1149

51.54%

T:1267

T:960

50.49%

51.77%

T:1016

51.70%

T:1178

T:822

30

49.36%

49.05%

T:1105

49.15%

T:1237

T:934

20

Hyper-parameters (adding more layers and dropout)

128

0.0001

500

Learning rate Epochs Input dim Hidden dim Output dim num_layer num_head s dropout seq_lengt h size								
	-	Epochs	Input dim		num_layer	 dropout	. -	_

0.5

20~60

64

Transformer with the first mask

48.73%

T:1453

53.25%

50.72%

51.48%

T:246

T:483

T:744

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

Seq_len	20	30	40	50	60
Training Accuracy	82.20%	83.28%	87.63%	88.24%	90.27%

52.03%

T:1453

52.21%

53.24%

52.68%

T:385

T:633

T:913

51.20%

T:1453

50.00%

52.71%

52.49%

T:924

T:418

T:683

52.58%

T:1453

49.68%

51.85%

51.98%

T:1010

T:756

T:475

50.38%

T:1453

45.16%

47.78%

49.35%

T:774

T:519

Ensemble

Seq_len	20	30	40	50	60
Output probability	а	b	С	d	е

Ensemble probability	
(a+b+c+d+e) / 5	

Ensemble with the first mask

layer	1 layer	2 layer
Testing	50.79%	50.03%
Accuracy(>=0.5)	T:1453	T:1453
Testing	55.56%	33.33%
Accuracy(0.9, 0.1)	T:36	T:6
Testing	51.37%	40.43%
Accuracy(0.8, 0.2)	T:146	T:47
Testing	51.72%	53.21%
Accuracy(0.7, 0.3)	T:435	T:218
Testing	49.37%	50.43%
Accuracy(0.6, 0.4)	T:869	T:698

Transformer with the second mask

Seq_len	20	30	40
Training	92.02%	93.24%	95.16%

50.48%

47.51%

46.60%

49.07%

T:593

T:470

T:301

T:834

50.48%

51.16%

52.09%

50.08%

T:613

T:346

T:503

T:834

49.76%

48.86%

49.43%

49.74%

T:834

T:307

T:441

T:571

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

60

96.37%

50.00%

49.68%

50.09%

50.52%

T:673

T:433

T:581

T:834

50

95.93%

50.12%

48.98%

50.54%

50.84%

T:653

T:556

T:392

Transformer Hyper-parameters

Learning rate	Epochs	Input dim	Hidden dim	Output dim	num_layer s	num_head s	dropout	seq_lengt h	Batch size
0.0001	2000	4	128	1	2	4	0.5	20~60	64

Transformer difference x 10 no mask, standard scaler

Seq_len	20	30	40	50	60
Training	51.41%	51.29%	52.34%	51.46%	51.91%

50.12%

47.11%

48.13%

49.04%

T:732

T:669

T:588

T:834

49.88%

47.47%

49.22%

51.76%

T:732

T:644

T:834

T:554

50.24%

49.40%

50.00%

49.66%

T:727

T:583

T:666

T:834

46.16%

46.15%

45.84%

46.08%

T:714

T:661

T:572

T:834

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

51.20%

51.69%

51.45%

50.83%

T:653

T:720

T:834

T:561

Positional Encoding

```
class PositionalEncoding(nn.Module):
    def __init__(self, hidden_dim, max_len=5000):
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_len, hidden_dim)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, hidden_dim, 2).float() * (-math.log(10000.0) / hidden_dim))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

def forward(self, x):
        x = x + self.pe[:x.size(0), :]
        return x
```

Transformer difference x 10 no mask standard scaler

Seq_len 20 30 40 50 60	Training	91.31%	93.64%	92.91%	87.30%	90.11%
	Seq_len	20	30	40	50	60

52.76%

50.46%

52.88%

52.97%

T:834

T:434

T:573

T:657

49.64%

48.21%

48.77%

49.40%

T:751

T:689

T:834

T:614

50.72%

50.00%

50.21% T:719

50.39%

T:776

T:642

T:834

51.08%

52.97%

52.21%

50.62%

T:640

T:544

T:834

T:404

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>= 0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

50.00%

46.13%

47.44%

49.50%

T:834

T:336

T:489

T:606

Adding more training data

Training: 2018, 2018, 2020, 2021 SPY 5 min data

```
spy_data/spy_2018_rth_data.csv",
spy_data/spy_2019_rth_data.csv",
spy_data/spy_2020_rth_data.csv",
spy_data/spy_2021_rth_data.csv",
spy_data/spy_2022_rth_data.csv",
spy_data/spy_2023_rth_data.csv",
```

Transformer difference x 10 standard scaler

Adding m	h two mask	ks			
Seq_len	20	30	40	50	
Training	99.99%	100%	100%	100%	

60

51.20%

51.26%

52.23%

51.82%

T:674

T:741

T:593

T:834

100%

51.92%

52.48%

53.25%

52.89%

T:745

T:676

T:585

T:834

48.56%

50.51%

49.92%

49.78%

T:691

T:834

T:489

T:611

Accuracy

Testing

Testing

Testing

Testing

Accuracy(>=0.5)

Accuracy(0.9, 0.1)

Accuracy(0.8, 0.2)

Accuracy(0.7, 0.3)

49.64%

50.77%

50.00%

49.29%

T:700

T:626

T:518

T:834

49.16%

49.91%

49.37%

49.22%

T:709

T:632

T:537

T:834

Discussion

Models did not perform as expected:

When the training loss goes down, the testing loss goes up instead, which shows that the training data is too noisy for the model to find any pattern. (shown in next slide)

Possible Reasons:

High Market Noise: The stock market has significant noise, making it difficult to predict accurately.

Overfitting: Models might have overfitted the training data, failing to generalize well to new data.

Feature Selection: Potentially important features might have been overlooked for example, the sequence length.

Problems encountered

LSTM

```
epoch: 0 train loss 0.6890728155771891
epoch: 0 val loss 0.6940886772523714
New best model found at epoch 0 with val loss 0.6940886772523714
epoch: 1 train loss 0.6893789440393447
epoch: 1 val loss 0.6931033786826246
New best model found at epoch 1 with val loss 0.6931033786826246
epoch: 2 train loss 0.6894668489694595
epoch: 2 val loss 0.6925991989496186
New best model found at epoch 2 with val loss 0.6925991989496186
epoch: 3 train loss 0.6892596185207367
epoch: 3 val loss 0.6923506292771167
New best model found at epoch 3 with val loss 0.6923506292771167
epoch: 4 train loss 0.6888898173967998
epoch: 4 val loss 0.6922032880032156
New best model found at epoch 4 with val loss 0.6922032880032156
epoch: 5 train loss 0.688542636235555
epoch: 5 val loss 0.6924364059928834
epoch: 6 train loss 0.6882103641827901
epoch: 6 val loss 0.6922846779109925
epoch: 7 train loss 0.6879297544558843
epoch: 7 val loss 0.6927107248719283
epoch: 8 train loss 0.6875005096197129
epoch: 8 val loss 0.6927516310233769
epoch: 9 train loss 0.6870632092158
epoch: 9 val loss 0.6936417381594501
epoch: 98 val loss 3.152350272719316
epoch: 99 train loss 0.01031502036882254
epoch: 99 val loss 3.103265445063433
```

Transformer

```
Epoch [1/500]. Train Loss: 0.7254
epoch: 1 val loss 0.7013076060400234
New best model found at epoch 0 with val loss 0.7013076060400234
Epoch [2/500], Train Loss: 0.7063
epoch: 2 val loss 0.7028362441250658
Epoch [3/500]. Train Loss: 0.7072
epoch: 3 val loss 0.7054279150925283
Epoch [4/500], Train Loss: 0.7059
epoch: 4 val loss 0.7061669225767842
Epoch [5/500], Train Loss: 0.7009
epoch: 5 val loss 0.7083898510519914
Epoch [6/500], Train Loss: 0.7006
epoch: 6 val loss 0.7119343027355164
Epoch [7/500], Train Loss: 0.6990
epoch: 7 val loss 0.7111155465831906
Epoch [8/500], Train Loss: 0.6992
epoch: 8 val loss 0.7124045448979055
Epoch [9/500], Train Loss: 0.6974
epoch: 9 val loss 0.711611934534208
Epoch [10/500], Train Loss: 0.7004
epoch: 10 val loss 0.7144954570635097
Epoch [11/500], Train Loss: 0.6981
epoch: 11 val loss 0.7163006663322449
Epoch [12/500]. Train Loss: 0.6945
epoch: 12 val loss 0.7166589925608297
Epoch [499/500], Train Loss: 0.3065
epoch: 499 val loss 1.5637622470930805
Epoch [500/500], Train Loss: 0.3200
```

Discussion cont.

Learned:

Use of different deep learning models and techniques: for this project, I learned how to use pytorch with LSTM, Transformer. Besides, also learned transformer techniques like look ahead mask, making the time series prediction without the data leakage, positional encoding, making the model stronger so that can converge in training data.

Some strategies for daily traders: how to filter candles, how to get the relatively useful information in the candle chart.

Conclusion

I believe the problem is the highly randomness in stock market that cause the project challenging.

Future Work and Possible Improvements (information from one of my friend who is quantitative researcher from Points72):

Data filtering: using some independent indicators, different time dimension to find some useful information. However, this requires a lot of domain knowledge and data resource.

Investment target: In some unpopular investment target, which not so many hedge funds companies paying attention to, might have some chance to use deep learning method to get some benefits. However, if the target is unpopular, it might have problems of bid-ask spread which should be paid attention to.

Acknowledgement

Thanks to:

Supervisors: Prof. Marios Savvides, Ph.D. Han Zhang

Collaborators: Ph.D. Han Zhang

Appendix

How I sample the testing data

Using VIX distribution

Data set

5 minutes data of SPY from 2020 to 2023

Training data set: 2020

Testing data sampled from 2021 to 2023 with the VIX distribution

$$VIX < 15 = low VIX$$

$$VIX > 30 = high VIX$$

2021 to 2023 distribution

	Count	Percentage
Mid VIX	634	71.396396
Low VIX	199	22.409910
High VIX	55	6.193694

Autoregressive models' issues in stock market [3]

Normalization method design: using the futers testing data to do the Min Max, it's like you know the future's upper bound and lower bound and feed those info to the model.

Still need more discuss on how to do the normalization.

```
from sklearn.preprocessing import MinMaxScaler
 import numpy as np
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data[['Close', 'SMA_20', 'EMA_20', 'RSI', 'MACD']])
def create_sequences(data, seq_length):
    X, y = [], []
    for i in range(len(data) - seq_length):
        X.append(data[i:(i + seq_length), :])
        y.append(data[i + seq_length, 0])
    return np.array(X), np.array(y)
seq_length = 1
X, y = create_sequences(scaled_data, seq_length)
train_size = int(len(X) * 0.8)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]
```

Result

There is a serious delay with the predicted price, and it's just like simply draw the

line after the actual price.

Reference

[1]ATR https://www.investopedia.com/terms/a/atr.asp

[2]Attention mask

https://medium.com/analytics-vidhya/understanding-attention-in-transformers-models-57bada0cce3e

[3]Autoregessive model with LSTM https://www.linkedin.com/feed/update/urn:li:activity:7224362320712364032?utm_s ource=share&utm_medium=member_desktop