Regression:

Fit y = aon + b with nun.

least squares error.

(ie, to find a, b)

 $e_1^2 + e_2^2 + ... + e_n^2 = kast square out = E.$ $e_1 = (a + bn_4 - y_1)^2$ $e_2 = (a + bn_2 - y_2)^2$ $e_3 = (a + bn_2 - y_2)^2$

Prof. Kedukod Babushri Kinivasi Department of Mathematics, MIT Manipal

$$E = \int_{\lambda=1}^{n} (a + bx_n - y_n)^2$$

$$\frac{\partial E}{\partial a} = 0 \Rightarrow \int_{\lambda=1}^{\infty} 2(\alpha + b) 2(\alpha + b) = 0$$

$$\Rightarrow a \stackrel{n}{\sum}_{i=1}^{1} + b \stackrel{n}{\sum}_{i=1}^{n} y_{i} = \stackrel{n}{\sum}_{i=1}^{n} y_{i}$$

$$\Rightarrow an + b = \begin{cases} \hat{y}_{i} \\ \hat{y}_{i} \end{cases} = \begin{cases} \hat{y}_{i} \\ \hat{y}_{i} \end{cases} = \begin{cases} \hat{y}_{i} \\ \hat{y}_{i} \end{cases} = \begin{cases} \hat{y}_{i} \\ \hat{y}_{i} \end{cases}$$

$$\frac{\partial E}{\partial b} = 0 \Rightarrow \hat{I}_{ai} = (a + bx_i - y_i) \cdot v_i = 0$$

当 及为, + 与产业; = 产业, 处, 少。一(2) (i), (2) au called normal equations. Solve u, w to get a, b. y = ax +b -> ngression equation of y on su.

Prof. Kedukodi Babushri Srinivas, Devartment of Mathematics, MIT Manipal

$$\Rightarrow XV = Y$$

$$\Rightarrow X^{T}XV = X^{T}Y$$

$$\Rightarrow Y = (X^{T}X)^{T}X^{T}Y \rightarrow liast$$
squares
solution.

i.e.,
$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 2x & 2x & \cdots & 2x \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 \\ 2x & 1 & 2x \\ 1 & 1 & 1 & 1 \\ 3x & 1 & 2x \\ 1 & 1 & 1 & 1 \\ 3x & 1 & 2x \\ 3x &$$

Prof. Kedukodi Babushri Srinivas, Department of Mathematics, MIT Manipal

$$\begin{bmatrix}
\frac{N}{N} \\ \frac{N}{N} \\ \frac{N}{N} \end{bmatrix} = \begin{bmatrix} \frac{N}{N} \\ \frac{N}{N} \end{bmatrix} + b \begin{bmatrix} \frac{N}{N} \\ \frac{N}{N} \end{bmatrix} = \begin{bmatrix} \frac{N}{N} \\ \frac{N$$

Prof. Kedukodi Babushri Srinivas, Department of Mathematics, MIT Manipal

To fit:
$$2 = a + bx + cy \rightarrow plane$$

Find a, b, C .

$$a + bx_1 + cy_1 \stackrel{?}{=} 2$$

$$a + bx_1 + cy_2 \stackrel{?}{=} 2$$

$$\vdots$$

$$a + bx_n + cy_n \stackrel{?}{=} 2n$$

$$[1 \quad 34 \quad y_1] [a] [2]$$

$$\begin{bmatrix} 1 & \alpha_1 & y_1 \\ 1 & \alpha_2 & y_2 \\ \vdots & \alpha_n & y_n \end{bmatrix} \begin{bmatrix} \alpha \\ 6 \\ c \end{bmatrix} = \begin{bmatrix} 2_1 \\ 2_2 \\ \vdots \\ 2_n \end{bmatrix}_{n \times 1}$$

Prof. Kodukodi Babushik Prinivas, Department Mathematics, MIT Manipal

$$a + bx_1 + cx_1^2 \stackrel{?}{=} y_1$$
 $a + bx_1 + cx_1^2 \stackrel{?}{=} y_2$

$$\vdots$$
 $a + bx_1 + cx_1^2 \stackrel{?}{=} y_n$

$$\Rightarrow xv = y$$

$$\Rightarrow x^{T}xv = x^{T}y$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ q_1 & q_2 & q_1 & q_2 \\ q_1 & q_2 & \dots & q_n \\ q_1 & q_2 & \dots & q_n \end{bmatrix} \begin{bmatrix} q_1 & q_1 & q_2 \\ q_2 & q_2 & \dots & q_n \\ q_1 & q_2 & \dots & q_n \\ q_2 & q_2 & \dots & q_n \end{bmatrix} \begin{bmatrix} q_1 & q_2 & \dots & q_n \\ q_2 & q_2 & \dots & q_n \\ q_2 & q_2 & \dots & q_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ q_n & q_n & \dots & q_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ q_n & q_n & \dots & q_n \\ \vdots & \vdots & \vdots & \vdots \\ q_n & q_n & \dots & q_n \\ \vdots & \vdots & \vdots & \vdots \\ q_n & q_n & \dots & q_n \\ \vdots & \vdots & \vdots & \vdots \\ q_n & \vdots$$

Srinivas, Department of Mathematics, MIT Manipal

$$A + bn_i + cn_i^2 = y_i$$
 $A = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$

9L	<u>y</u>
0	8L
0	3
2	12
2 F	rof. Kadukodi Babushri Srinivas, Department of Mathematics, MIT Manipal

normal
yuations
to fit
a parabola

Boly	- 9L	u	ا الما	91; ³	2.15	2;4;	なり
		0	0	0	0	0	0
	0	2	O			ŭ	
	1	3	1	J	1	3	3
	2	12	4	8	16	24	48
	ડ	29	9	27	81	87	261
Ix	i = 6	Σy; =	工站	∑Ri ″	工好	三 4;9;	∑x; y; = 812
	'	ty b	14	36	98	n 114	

n=4 data points.

$$a(4) + b(6) + c(14) = 46$$

$$a(6) + b(14) + c(36) = 114$$

$$a(14) + b(36) + c(48) = 312$$

$$\Rightarrow a = 2$$

$$b = -3$$

$$c = 4$$

Q. Fit z = a + bx + cy ; give

92	y	2
0	0	7
0	t	17
1	0	5
	,	15

normal equations: