FORMULAS FOR REFERENCE

SPHERE	Surface area	$= 4\pi r^2$
	Volume	$= \frac{4}{3}\pi r^3$
CYLINDER	Area of curved surface	$= 2\pi rh$
	Volume	$= \pi r^2 h$
CONE	Area of curved surface	$= \pi r l$
	Volume	$= \frac{1}{3}\pi r^2 h$
PRISM	Volume	= base area × height
PYRAMID	Volume	$= \frac{1}{3} \times \text{base area} \times \text{height}$

-1-

There are 54 questions in this paper.

The diagrams in this paper are not necessarily drawn to scale.

- 1. Evaluate 1.15 ÷ 15 correct to 3 significant figures.
 - A. 0.076
 - B. 0.077
 - C. 0.0766
 - D. 0.0767
 - E. 0.076
- $2. \qquad \frac{27^x}{3^y} =$
 - A. $\frac{9x}{y}$
 - $\mathbf{B}. \qquad 9^{\frac{\mathbf{x}}{y}}$
 - C. 9^{x-y}
 - $\mathbf{D}, \qquad 3^{\frac{3x}{y}} \dots$
 - E. 3^{3x-y} .

- 3. Find the L.C.M. of $4x^2yz$ and $6xy^3$.
 - A. 2xy
 - B. $12x^2y^3$
 - C. $12x^2y^3z$
 - $D. 24x^2y^3z$
 - $E. 24x^3y^4z$
- 4. If $A = 2\pi r^2 + 2\pi r h$, then h =
 - A. A-r.
 - B. $\frac{A}{r}$
 - $C. \qquad \frac{A}{2\pi r} r$
 - D. $r \frac{A}{2\pi r}$
 - $E. \qquad \frac{A}{2\pi r} 2\pi r^2$

- 5. Find the remainder when $x^3 x^2 + 1$ is divided by 2x + 1.
 - A. -11
 - $B. \qquad \frac{5}{8}$
 - C. $\frac{7}{8}$
 - D. $\frac{9}{8}$
 - E. 5
- 6. Which of the following expressions has/have b-c as a factor?
 - I. ab ac
 - II. a(b-c)-b+c
 - III. a(b-c)-b-c
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only
 - E. I, II and III

- 7. Solve 1 < -3x + 4 < 10.
 - A. -2 < x < 1
 - B. -1 < x < 2
 - C. x < -2 or x > 1
 - D. x < -1 or x > 2
 - E. no solution
- 8. If $\frac{2}{x^2-1} = \frac{a}{x+1} + \frac{b}{x-1}$, find a and b.
 - A. a = 2, b = 1
 - B. a = 1, b = 2
 - C. a = 1, b = 1
 - D. a = 1, b = -1
 - E. a = -1, b = 1

96-CE-MATHS II-6

- 9. In the figure, (x, y) is any point in the shaded region (including the boundary). Which of the following is/are true?
 - I. $x \le y$ II. $x + y \le 4$
 - III. $x \le 6$
 - A. I only
 - B. Honly
 - C. III only
 - D. I and III only
 - E. II and III only

- 10. Solve $\begin{cases} x^2 + y^2 = 13 \\ x + y = 1 \end{cases}$.
 - $\begin{cases} x = -1 \\ y = 3 \end{cases}$
 - $\mathbf{B.} \qquad \begin{cases} x = -\mathbf{c} \\ y = 7 \end{cases}$
 - C. $\begin{cases} x = 2 \\ y = -1 \end{cases} \text{ or } \begin{cases} x = -3 \\ y = 4 \end{cases}$
 - D. $\begin{cases} x = -2 \\ y = 3 \end{cases} \text{ or } \begin{cases} x = 3 \\ y = -2 \end{cases}$
 - E. $\begin{cases} x = -6 \\ y = 7 \end{cases} \text{ or } \begin{cases} x = 7 \\ y = -6 \end{cases}$

- 11. If α and β are the roots of the equation $2x^2 + 4x 3 = 0$, find $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
 - A. $-\frac{22}{3}$
 - B. $-\frac{16}{3}$
 - C. $-\frac{14}{3}$
 - D. $-\frac{8}{3}$
 - E. $\frac{2}{3}$
- 12. Find the *n*-th term of the A.P. 4, 2, 0, -2, ...
 - A. 2+2n
 - B. 4 2n
 - C. 4 + 2n
 - D. 6 2n
 - E. (5-n)n

- 13. The sum to infinity of a G.P. is 2. If the first term is $\frac{3}{2}$, find the common ratio.
 - **A**. $-\frac{1}{2}$
 - **B**. $-\frac{1}{4}$
 - C. $\frac{1}{4}$
 - $D. \qquad \frac{1}{2}$
 - E. $\frac{3}{2}$
- 14. Shop A offers a 10% discount on a book marked at P. Shop B offers a 15% discount on the same book marked at Q. If the selling price of the book is the same in both shops, express Q in terms of P.
 - $A. \qquad Q = P + 5$
 - B. $Q = \frac{17}{18} P$
 - C. $Q = \frac{20}{21}P$
 - $D. \qquad Q = \frac{21}{20} P$
 - E. $Q = \frac{18}{17} P$

- 15. In the figure, area of $\triangle ACD$: area of $\triangle BCD =$
 - A. 1:1.
 - B. a:b.
 - C. b:a.
 - D. $a^2:b^2$.
 - $E. \qquad b^2: a^2.$

1 cm

O() 120°

16. In the figure, O is the centre of the circle. AB and AC are tangents to the circle at B and C respectively. Area of the shaded region =

-9-

- A. $(2-\frac{\pi}{6})$ cm².
- B. $(2-\frac{\pi}{3})$ cm².
- $C. \qquad (\sqrt{3} \frac{\pi}{6}) \text{ cm}^2.$
- $D. \qquad (\sqrt{3} \frac{\pi}{3}) \text{ cm}^2.$
- $E. \qquad (\frac{\sqrt{3}}{2} \frac{\pi}{6}) \text{ cm}^2.$

- 17. In the figure, the area of ABCD is
 - A. 36.
 - B. 40
 - C. 44.
 - D. $4\sqrt{21} + 24$.
 - E. $4\sqrt{29} + 24$.

18. In the figure, A and B are two right solid cylinders with the same base radius 1. If the heights of A and B are 1 and 2 respectively, find the total surface area of A

the total surface area of B

- **A**. $\frac{1}{8}$
- $\mathbf{B}. \qquad \frac{1}{4}$
- C. $\frac{1}{2}$
- **D**. $\frac{3}{5}$
- E. $\frac{2}{3}$

- 10 -

- 19. If $0^{\circ} \le \theta \le 360^{\circ}$, solve $2 \sin \theta = -\sqrt{3}$.
 - A. 120° or 240°
 - B. 120° or 300°
 - C. 150° or 330°
 - D. 210° or 330°
 - E. 240° or 300°
- $20. \qquad \frac{\frac{1}{\cos \theta} \cos \theta}{\tan^2 \theta} =$
 - A. $\sin \theta$.
 - B. $\cos \theta$.
 - C. $\cos^2 \theta$.
 - D. $\frac{1}{\cos\theta}$
 - E. $\frac{1}{\tan \theta}$

- 21. The figure shows the graph of $y = \frac{1}{2}\cos 2x$. The point P is
 - A. $(\frac{\pi}{2}, 2)$.
 - B. $(\pi, \frac{1}{2})$.
 - C. $(\pi, 1)$.
 - D. $(2\pi, \frac{1}{2})$
 - E. $(2\pi, 1)$.

- 22. If $0 \le x \le \pi$, solve $2\sin x + 3\cos x = 0$ correct to 3 significant figures.
 - A. 0.588
 - B. 0.983
 - C. 2.16
 - D. 2.55
 - E. no solution

- 23. The figure shows a cube. Which of the following is/are equal to $\angle AGE$?
 - I. ∠AGF
 - II. ∠BDF
 - III. ∠DEG
 - A. I only.
 - B. II only.
 - C. III only.
 - D. I and II only.
 - E. II and III only.

- 24. In the figure, find x correct to 3 significant figures.
 - A. 2.71
 - B. 2.98
 - C. 3.31
 - D. 3.88
 - E. 4.14

- 25. In the figure, O is the centre of the circle. Find x.
 - A. 20°
 - B. 27.5°
 - C. 35°
 - D. 37.5°
 - E. 40°

- 26. In the figure, O is the centre of the circle. PA is the tangent to the circle at A and CB //PA. Find x.
 - A. 21°
 - B. 24°
 - C. 42°
 - D. 45°
 - E. 48°

27. The figure shows a right circular cylinder with AC being a diameter of its upper face. AB and CD are two vertical lines on the curved surface. A curve is drawn on the surface of the cylinder from B to C. Find its shortest possible length.

B.
$$2\sqrt{\pi^2+4}$$
 cm

C.
$$4\sqrt{2}$$
 cm

D.
$$4\sqrt{\pi^2+1}$$
 cm

E.
$$4\sqrt{\pi^2+4}$$
 cm

4 cm

28. In the figure, ABCDE is a regular pentagon and ABF is an equilateral triangle. Find x.

9. If a, b and c are all positive, which of the following may represent the graph of ax + by + c = 0?

A.

B.

C.

D.

E.

30. The equation of the circle centred at (a, b) and tangential to the x-axis is

A.
$$x^2 + y^2 - 2ax - 2by + a^2 = 0$$
.

B.
$$x^2 + y^2 - 2ax - 2by + b^2 = 0$$
.

C.
$$x^2 + y^2 - 2ax - 2by + a^2 + b^2 = 0$$
.

D.
$$x^2 + y^2 + 2ax + 2by + a^2 = 0$$
.

E.
$$x^2 + y^2 + 2ax + 2by + b^2 = 0$$
.

31. Find the equation of the straight line which passes through (3, -1) and is perpendicular to 2x - y + 1 = 0.

A.
$$x + 2y - 1 = 0$$

B.
$$x + 2y + 1 = 0$$

C.
$$x-2y-5=0$$

D.
$$2x + y - 5 = 0$$

E.
$$2x - y - 7 = 0$$

32. The bar chart below shows the number of electronic dictionaries sold in a shop last week:

Of those electronic dictionaries sold last week, what percentage were sold on Sunday?

- 33. Which of the following *cannot* be read directly from a cumulative frequency curve?
 - I. Mean
 - II. Median
 - III. Mode
 - A. I only
 - B. II only
 - C. I and II only
 - D. I and III only
 - E. II and III only
- 34. There are 10 parcels. Two of them contain one pen each. If a man opens the parcels at random, what is the probability that he can find the two pens by opening two parcels only?
 - A. $\frac{1}{25}$
 - B. $\frac{1}{45}$
 - C. $\frac{1}{50}$
 - D. $\frac{1}{90}$
 - E. $\frac{1}{100}$

- 35. In a certain game, the probability that John will win is 0.3. If he plays the game 3 times, find the probability that he will win at least once.
 - A. 0.147
 - B. 0.441
 - C. 0.657
 - **D**. 0.9
 - E. 0.973
- 36. Simplify $\frac{1}{x-1} + \frac{1}{x+1} + \frac{3x-1}{1-x^2}$.
 - A. $\frac{1}{1-x}$
 - B. $\frac{1}{1+x}$
 - C. $-\frac{1}{1+x}$
 - $\mathbf{D.} \qquad \frac{3x+1}{1-x^2}$
 - $E. \qquad \frac{1-5x}{1-x^2}$

- 37. m and n are multiples of 3 and 4 respectively. Which of the following must be true?
 - I. mn is a multiple of 12.
 - II. The H.C.F. of m and n is even.
 - III. The L.C.M. of m and n is even.
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only
 - E. I, II and III
- 38. Let x > y > 0. If $\log(x+y) = a$ and $\log(x-y) = b$, then $\log \sqrt{x^2 y^2} =$
 - A. $\frac{a+b}{2}$
 - B. $\frac{ab}{2}$
 - C. $\sqrt{a+b}$.
 - D. \sqrt{ab} .
 - E. $\sqrt{a} + \sqrt{b}$.

- 39. If $\left(\frac{\sqrt{3}}{3} \frac{1}{2}\right) x = 1$, then $x = \frac{1}{3}$
 - $A. \qquad -\frac{\sqrt{3}}{3} + \frac{1}{2}$
 - B. $\frac{\sqrt{3}}{3} + \frac{1}{2}$.
 - C. $-4\sqrt{3}-6$.
 - D. $4\sqrt{3} 6$.
 - E. $4\sqrt{3} + 6$.
- 40. If 3 is a root of the equation $x^2 x + c = 0$, solve $x^2 x + c > 0$.
 - A. x < -2 or x > 3
 - B. x < 2 or x > 3
 - C. x > -6
 - D. -2 < x < 3
 - E. 2 < x < 3

- 41. The curve in the figure is the graph of $y = -x^2 + bx + c$. Find the area of the rectangle OPQR.
 - A. bc
 - $\mathbf{B}. \qquad b^2$
 - C. c^2
 - D. $b^2 4c$
 - $E. \qquad b^2 + 4c$

42. If the common difference of the A.P. a_1 , a_2 , a_3 , ... is d, then the common difference of the A.P. $2a_1 + 3$, $2a_2 + 3$, $2a_3 + 3$, ... is

- 23 -

- A. 2.
- B. 3.
- \mathbf{C} . d.
- D. 2d.
- E. 2d + 3.

- 43. The length of a rectangle is decreased by 20%. If the area remains unchanged, find the percentage increase of its width.
 - A. $1\frac{1}{4}\%$
 - B. $12\frac{1}{2}\%$
 - C. $16\frac{2}{3}\%$
 - D. 20%
 - E. 25 %
- 44. The following table shows the compositions of Tea A and Tea B which are mixtures of Chinese tea and Indian tea:

	Ratio of Chinese tea and Indian tea by weight
Tea A	3:1
Tea B	2:3

If 4 kg of tea A and 10 kg of tea B are mixed, find the ratio of Chinese tea and Indian tea in the mixture.

- A. 2:5
- B. 16:17
- C. 1:1
- D. 5:4
- E. 23:17

45. The figure shows a frustum of a right circular cone. The radii of the upper face and the base are 1 cm and 2 cm respectively. If the height is 3 cm, find the volume.

B.
$$\frac{9}{2}\pi$$
 cm³

C.
$$\frac{11}{2}\pi$$
 cm³

E.
$$\frac{15}{2}\pi$$
 cm³

46. In the figure, if $\frac{\text{Area of triangle } CDE}{\text{Area of triangle } BCE} = \frac{1}{2}$

find $\frac{\text{Area of triangle }CDE}{\text{Area of trapezium }ABCD}$

A.
$$\frac{1}{10}$$

B.
$$\frac{1}{9}$$

C.
$$\frac{1}{8}$$

D.
$$\frac{1}{7}$$

E.
$$\frac{1}{6}$$

3 cm

_____2 cm_

47. In the figure, find θ correct to the nearest degree.

48. In the figure, the bearings of two ships A and B from a lighthouse L are 020° and 080° respectively. B is 400 m and at a bearing of 130° from A. Find the distance of B from L.

B.
$$\frac{400}{\sin 60^{\circ}}$$
 m

$$C. \qquad \frac{400\sin 50^{\circ}}{\sin 60^{\circ}} \text{ n}$$

$$D. \qquad \frac{400\sin 70^{\circ}}{\sin 60^{\circ}} \text{ m}$$

$$E. \qquad \frac{400\sin 70^{\circ}}{\sin 80^{\circ}} \text{ m}$$

49. The figure shows a right prism with a right-angled triangle as the cross-section. Find the angle between the line BF and the plane ABCD correct to the nearest degree.

50. In the figure, O is the centre of the circle. AP, AB and BR are tangents to the circle at P, Q and R respectively. Which of the following must be true?

- 27 -

$$I. \quad AP + BR = AB$$

III.
$$\angle AOB = \frac{1}{2} \angle POR$$

51. In the figure, ABCD is a trapezium with AB //DC. AH bisects $\angle BAD$ and DH bisects $\angle ADC$. Which of the following must be true?

I.
$$\angle AHD = 90^{\circ}$$

II.
$$\angle ADC = \angle BCD$$

III.
$$\angle BAD + \angle BCD = 180^{\circ}$$

52. In the figure, DE : EF =

- 53. A (-3, 2) and B (1, 3) are two points. C is a point on the AB produced such that AB:BC=1:2. Find the coordinates of C.
 - A. $\left(-\frac{5}{3}, \frac{7}{3}\right)$
 - B. $\left(-\frac{1}{3}, \frac{8}{3}\right)$
 - C. $(3, \frac{7}{2})$
 - D. (5, 4)
 - E. (9, 5)
- 54. $C_1: x^2 + y^2 = 4$ and $C_2: x^2 + y^2 = 9$ are two circles. A chord AB of C_2 touches C_1 . Find the length of AB.
 - A. $\sqrt{5}$
 - B. $2\sqrt{5}$
 - C. $\sqrt{65}$
 - D. $2\sqrt{65}$
 - E. 10

END OF PAPER