Comparative Structure Analysis

Jordan Prych (PID: A17080226)

Table of contents

library(bio3d)

S	tep 1: Get a Sequence	2
		3
S	tep 3: Download Structures	1
S	tep 4: Align and Superpose	3
S	tep 5: PCA	3
	MSD ANALYSIS)
	lphaFold with HIP-pr dimer analysis	Ĺ
	redicted Alignment Error for Domains	
F	esidue Conservation from Alignment File	2
	lpha Fold With Novel Protein	1
1	isualization of the Models	3
	we run through a complete "pipeline" of structure analysis that begins with a single ence identifier and ends in a PCA analysis. b:	3
	Q10. Which of the packages above is found only on BioConductor and not CRAN?	
msa		
	Q11. Which of the above packages is not found on BioConductor or CRAN?	
bio3	l-view	
	Q12. True or False? Functions from the devtools package can be used to install packages from GitHub and BitBucket?	
True		

Step 1: Get a Sequence

retrieve a sequence for the protein we are interested in. We will take ADK "lake_A"

```
id <- "1ake_A"
aa <- get.seq(id)</pre>
Warning in get.seq(id): Removing existing file: seqs.fasta
Fetching... Please wait. Done.
aa
                                                                             60
              1
              \tt MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
pdb|1AKE|A
              1
                                                                             60
                                                                             120
pdb|1AKE|A
              DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDRI
                                                                             120
            121
                                                                             180
              VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
pdb|1AKE|A
            121
                                                                             180
            181
                                                 214
pdb|1AKE|A
              YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
            181
                                                 214
Call:
  read.fasta(file = outfile)
Class:
  fasta
Alignment dimensions:
  1 sequence rows; 214 position columns (214 non-gap, 0 gap)
+ attr: id, ali, call
     Q13. How many amino acids are in this sequence, i.e. how long is this sequence?
214 \text{ AA long}
```

Step 2: BLAST Search

Run a BLAST search of the PDB for all related sequences to our input aa

blast <- blast.pdb(aa)</pre>

hits <- plot(blast)</pre>

* Possible cutoff values: 260 11

Yielding Nhits: 18 87

* Chosen cutoff value of: 260 Yielding Nhits: 18

Step 3: Download Structures

These are our "top hits" i.e. all the structures in the PDB database relates to our input sequences.

hits\$pdb.id

```
[1] "1AKE_A" "8BQF_A" "4X8M A" "6S36_A" "8Q2B_A" "8RJ9_A" "6RZE_A" "4X8H_A"
 [9] "3HPR_A" "1E4V_A" "5EJE A" "1E4Y_A" "3X2S_A" "6HAP_A" "6HAM_A" "8PVW_A"
[17] "4K46_A" "4NP6_A"
#Download related PDB files
files <- get.pdb(hits$pdb.id, path="pbds", split=TRUE, gzip=TRUE)
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/1AKE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/8BQF.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/4X8M.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/6S36.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/8Q2B.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/8RJ9.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/6RZE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
```

pbds/4X8H.pdb exists. Skipping download

```
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/3HPR.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/1E4V.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/5EJE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/1E4Y.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/3X2S.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/6HAP.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/6HAM.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/8PVW.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/4K46.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pbds", split = TRUE, gzip = TRUE):
pbds/4NP6.pdb exists. Skipping download
                                                                             0%
                                                                             6%
                                                                            11%
                                                                         | 17%
```


Warning in pdbsplit(pdb.files = names(rtn), ids = ids, path = file.path(path, : unmatched pdb files: 4X8H

Warning in pdbsplit(pdb.files = names(rtn), ids = ids, path = file.path(path, : unmatched ids: 4X8H_A

Step 4: Align and Superpose

```
pbds <- pdbaln(files, fit = TRUE, exefile="msa")</pre>
Reading PDB files:
pbds/split chain/1AKE A.pdb
pbds/split_chain/8BQF_A.pdb
pbds/split_chain/4X8M_A.pdb
pbds/split_chain/6S36_A.pdb
pbds/split_chain/8Q2B_A.pdb
pbds/split_chain/8RJ9_A.pdb
pbds/split_chain/6RZE_A.pdb
pbds/split_chain/3HPR_A.pdb
pbds/split_chain/1E4V_A.pdb
pbds/split_chain/5EJE_A.pdb
pbds/split_chain/1E4Y_A.pdb
pbds/split_chain/3X2S_A.pdb
pbds/split_chain/6HAP_A.pdb
pbds/split_chain/6HAM_A.pdb
pbds/split_chain/8PVW_A.pdb
pbds/split chain/4K46 A.pdb
pbds/split_chain/4NP6_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
     PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
     PDB has ALT records, taking A only, rm.alt=TRUE
       PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
Extracting sequences
pdb/seq: 1
             name: pbds/split_chain/1AKE_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 2
             name: pbds/split_chain/8BQF_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 3
             name: pbds/split_chain/4X8M_A.pdb
```

Align releated PDBs

```
name: pbds/split_chain/6S36_A.pdb
pdb/seq: 4
   PDB has ALT records, taking A only, rm.alt=TRUE
             name: pbds/split_chain/8Q2B_A.pdb
pdb/seq: 5
   PDB has ALT records, taking A only, rm.alt=TRUE
             name: pbds/split chain/8RJ9 A.pdb
pdb/seq: 6
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 7
             name: pbds/split_chain/6RZE_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 8
             name: pbds/split_chain/3HPR_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 9
             name: pbds/split_chain/1E4V_A.pdb
              name: pbds/split_chain/5EJE_A.pdb
pdb/seq: 10
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 11
              name: pbds/split_chain/1E4Y_A.pdb
pdb/seq: 12
              name: pbds/split_chain/3X2S_A.pdb
              name: pbds/split_chain/6HAP_A.pdb
pdb/seq: 13
pdb/seq: 14
              name: pbds/split_chain/6HAM_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
              name: pbds/split_chain/8PVW_A.pdb
pdb/seq: 15
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 16
              name: pbds/split_chain/4K46_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 17
              name: pbds/split_chain/4NP6_A.pdb
```

Step 5: PCA

Let's use our old friend PCA to make sense of the confusing, complicated structure relationships.

```
pca <- pca(pbds)
plot(pca, 1:2)</pre>
```


RMSD ANALYSIS

RMSD is a common measure of structural distance used in structural biology.

```
rd <- rmsd(pbds, fit=T)
```

Warning in rmsd(pbds, fit = T): No indices provided, using the 182 non NA positions

```
range(rd)
```

[1] 0.000 5.546

Let's make a trajectory (or movie) of the main confrontational changes captured by PC1. We will use the mktrj().

```
mktrj(pca, file="pca~results.pdb")
```


Figure 1: Main Confrontational Changes by PC1 $\,$

Back of the envelope comparison of the PDB size to UniProt

```
uniprot <- 253206171
pdb <- 231029
pdb/uniprot *100
```

[1] 0.09124146

AlphaFold with HIP-pr dimer analysis

```
results_dir1 <- "HIVprdimer_23119"

pdb_filesA <- list.files(path=results_dir1, pattern="*.pdb", full.names=TRUE)

basename(pdb_filesA)

[1] "HIVprdimer_23119_unrelaxed_rank_001_alphafold2_multimer_v3_model_1_seed_000.pdb"
[2] "HIVprdimer_23119_unrelaxed_rank_002_alphafold2_multimer_v3_model_5_seed_000.pdb"
[3] "HIVprdimer_23119_unrelaxed_rank_003_alphafold2_multimer_v3_model_4_seed_000.pdb"
[4] "HIVprdimer_23119_unrelaxed_rank_004_alphafold2_multimer_v3_model_2_seed_000.pdb"
[5] "HIVprdimer_23119_unrelaxed_rank_005_alphafold2_multimer_v3_model_3_seed_000.pdb"

library(bio3d)

pdbs3 <- pdbaln(pdb_filesA, fit=TRUE, exefile="msa")

Reading PDB files:</pre>
```

HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_001_alphafold2_multimer_v3_model_1_seed_000 HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_002_alphafold2_multimer_v3_model_5_seed_000 HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_003_alphafold2_multimer_v3_model_4_seed_000 HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_004_alphafold2_multimer_v3_model_2_seed_000 HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_005_alphafold2_multimer_v3_model_3_seed_000

Extracting sequences

```
pdb/seq: 1 name: HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_001_alphafold2_multimer_pdb/seq: 2 name: HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_002_alphafold2_multimer_pdb/seq: 3 name: HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_003_alphafold2_multimer_pdb/seq: 4 name: HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_004_alphafold2_multimer_pdb/seq: 5 name: HIVprdimer_23119/HIVprdimer_23119_unrelaxed_rank_005_alphafold2_multimer_
```

pdbs3

[Truncated_Name:1]HIVprdimer [Truncated_Name:2]HIVprdimer [Truncated_Name:3]HIVprdimer [Truncated_Name:4]HIVprdimer [Truncated_Name:5]HIVprdimer	PQITLWQRPLVTIKIGGQLKEA PQITLWQRPLVTIKIGGQLKEA PQITLWQRPLVTIKIGGQLKEA PQITLWQRPLVTIKIGGQLKEA	. 50 LLDTGADDTVLEEMSLPGRWKPKMIGGI LLDTGADDTVLEEMSLPGRWKPKMIGGI LLDTGADDTVLEEMSLPGRWKPKMIGGI LLDTGADDTVLEEMSLPGRWKPKMIGGI LLDTGADDTVLEEMSLPGRWKPKMIGGI LLDTGADDTVLEEMSLPGRWKPKMIGGI **********************************
[Truncated_Name:1]HIVprdimer [Truncated_Name:2]HIVprdimer [Truncated_Name:3]HIVprdimer [Truncated_Name:4]HIVprdimer [Truncated_Name:5]HIVprdimer	GGFIKVRQYDQILIEICGHKAI GGFIKVRQYDQILIEICGHKAI GGFIKVRQYDQILIEICGHKAI GGFIKVRQYDQILIEICGHKAI	
[Truncated_Name:1]HIVprdimer [Truncated_Name:2]HIVprdimer [Truncated_Name:3]HIVprdimer [Truncated_Name:4]HIVprdimer [Truncated_Name:5]HIVprdimer	QITLWQRPLVTIKIGGQLKEAL QITLWQRPLVTIKIGGQLKEAL QITLWQRPLVTIKIGGQLKEAL QITLWQRPLVTIKIGGQLKEAL	. 150 LDTGADDTVLEEMSLPGRWKPKMIGGIG LDTGADDTVLEEMSLPGRWKPKMIGGIG LDTGADDTVLEEMSLPGRWKPKMIGGIG LDTGADDTVLEEMSLPGRWKPKMIGGIG LDTGADDTVLEEMSLPGRWKPKMIGGIG *********************************
[Truncated_Name:1]HIVprdimer [Truncated_Name:2]HIVprdimer [Truncated_Name:3]HIVprdimer [Truncated_Name:4]HIVprdimer [Truncated_Name:5]HIVprdimer	GFIKVRQYDQILIEICGHKAIG GFIKVRQYDQILIEICGHKAIG GFIKVRQYDQILIEICGHKAIG GFIKVRQYDQILIEICGHKAIG	
<pre>Call: pdbaln(files = pdb_filesA,</pre>	it = TRUE, exefile = "m	sa")
Class:		

12

```
pdbs, fasta
```

```
Alignment dimensions:
```

```
5 sequence rows; 198 position columns (198 non-gap, 0 gap)
```

```
+ attr: xyz, resno, b, chain, id, ali, resid, sse, call
```

Now we can calculate RMSD

```
rd2 <- rmsd(pdbs3, fit=TRUE)
```

Warning in rmsd(pdbs3, fit = TRUE): No indices provided, using the 198 non NA positions

```
range(rd2)
```

[1] 0.000 14.376

Now we can draw a heatmap

```
library(pheatmap)

colnames(rd2) <- paste0("m",1:5)
rownames(rd2) <- paste0("m",1:5)
pheatmap(rd2)</pre>
```


Now we can plot the pLDDT values across all models $\,$

```
pdb <- read.pdb("1hsg")</pre>
```

Note: Accessing on-line PDB file

```
plotb3(pdbs3$b[1,], typ="l", lwd=2, sse=pdb)
points(pdbs3$b[2,], typ="l", col="red")
points(pdbs3$b[3,], typ="l", col="blue")
points(pdbs3$b[4,], typ="l", col="darkgreen")
points(pdbs3$b[5,], typ="l", col="orange")
abline(v=100, col="gray")
```


To improve the superimposition/fitting of our models:

core <- core.find(pdbs3)</pre>

```
core size 197 of 198
                      vol = 4916.702
core size 196 of 198
                      vol = 4311.481
                      vol = 4101.445
core size 195 of 198
core size 194 of 198
                      vol = 3907.124
core size 193 of 198
                      vol = 3711.925
core size 192 of 198
                      vol = 3546.511
core size 191 of 198
                      vol = 3440.437
core size 190 of 198
                      vol = 3317.571
core size 189 of 198
                      vol = 3220.079
core size 188 of 198
                      vol = 3142.057
                      vol = 3066.79
core size 187 of 198
core size 186 of 198
                      vol = 3015.892
                      vol = 2959.969
core size 185 of 198
core size 184 of 198
                      vol = 2913.74
core size 183 of 198
                      vol = 2880.923
core size 182 of 198
                      vol = 2848.081
core size 181 of 198
                      vol = 2857.001
core size 180 of 198
                      vol = 2871.24
core size 179 of 198
                      vol = 2905.696
```

```
core size 178 of 198 vol = 2953.776
core size 177 of 198
                      vol = 3020.847
core size 176 of 198
                      vol = 3087.22
core size 175 of 198
                      vol = 3109.99
core size 174 of 198
                      vol = 3129.601
core size 173 of 198
                      vol = 3135.085
core size 172 of 198
                      vol = 3092.283
core size 171 of 198
                      vol = 3036.012
core size 170 of 198
                      vol = 2947.995
core size 169 of 198
                      vol = 2886.897
core size 168 of 198
                      vol = 2829.355
core size 167 of 198
                      vol = 2746.377
core size 166 of 198
                      vol = 2671.189
core size 165 of 198
                      vol = 2600.848
core size 164 of 198
                      vol = 2534.651
core size 163 of 198
                      vol = 2464.3
core size 162 of 198
                      vol = 2390.171
core size 161 of 198
                      vol = 2322.47
core size 160 of 198
                      vol = 2236.698
core size 159 of 198
                      vol = 2160.475
core size 158 of 198
                      vol = 2077.281
core size 157 of 198
                      vol = 2003.596
core size 156 of 198
                      vol = 1939.94
core size 155 of 198
                      vol = 1859.188
core size 154 of 198
                      vol = 1781.083
core size 153 of 198
                      vol = 1699.1
                      vol = 1622.558
core size 152 of 198
core size 151 of 198
                      vol = 1546.319
core size 150 of 198
                      vol = 1473.01
core size 149 of 198
                      vol = 1414.087
core size 148 of 198
                      vol = 1352.547
core size 147 of 198
                      vol = 1295.278
core size 146 of 198
                      vol = 1246.999
core size 145 of 198
                      vol = 1203.962
core size 144 of 198
                      vol = 1163.009
core size 143 of 198
                      vol = 1110.955
core size 142 of 198
                      vol = 1064.672
core size 141 of 198
                      vol = 1028.458
core size 140 of 198
                      vol = 986.121
core size 139 of 198
                      vol = 944.003
core size 138 of 198
                      vol = 895.914
core size 137 of 198
                      vol = 853.508
core size 136 of 198 vol = 827.977
```

```
core size 135 of 198
                     vol = 796.874
core size 134 of 198
                      vol = 772.763
core size 133 of 198
                      vol = 743.108
core size 132 of 198
                      vol = 707.65
core size 131 of 198
                      vol = 669.172
core size 130 of 198
                      vol = 634.655
core size 129 of 198
                      vol = 594.035
core size 128 of 198
                      vol = 559.154
core size 127 of 198
                      vol = 525.971
                      vol = 493.19
core size 126 of 198
core size 125 of 198
                      vol = 466.473
core size 124 of 198
                      vol = 438.433
                      vol = 410.725
core size 123 of 198
core size 122 of 198
                      vol = 401.38
core size 121 of 198
                      vol = 391.76
core size 120 of 198
                      vol = 362.084
core size 119 of 198
                      vol = 338.183
                      vol = 312.338
core size 118 of 198
core size 117 of 198
                      vol = 282.176
core size 116 of 198
                      vol = 262.215
core size 115 of 198
                      vol = 241.577
core size 114 of 198
                      vol = 225.151
core size 113 of 198
                      vol = 204.137
core size 112 of 198
                      vol = 185.038
core size 111 of 198
                      vol = 162.728
core size 110 of 198
                      vol = 146.181
core size 109 of 198
                      vol = 133.352
core size 108 of 198
                      vol = 123.207
core size 107 of 198
                      vol = 109.228
core size 106 of 198
                      vol = 98.824
core size 105 of 198
                      vol = 89.735
core size 104 of 198
                      vol = 81.206
core size 103 of 198
                      vol = 74.188
core size 102 of 198
                      vol = 67.042
core size 101 of 198
                      vol = 62.043
core size 100 of 198
                      vol = 58.432
core size 99 of 198
                     vol = 55.149
core size 98 of 198
                     vol = 51.114
core size 97 of 198
                     vol = 45.798
core size 96 of 198
                     vol = 41.161
core size 95 of 198
                     vol = 35.619
                     vol = 29.784
core size 94 of 198
core size 93 of 198 vol = 23.233
```

```
core size 92 of 198 vol = 16.669
 core size 91 of 198 vol = 9.459
 core size 90 of 198 vol = 4.595
 core size 89 of 198 vol = 3.161
 core size 88 of 198 vol = 2.678
core size 87 of 198 vol = 2.293
core size 86 of 198 vol = 1.935
core size 85 of 198 vol = 1.619
core size 84 of 198 vol = 1.367
core size 83 of 198 vol = 1.09
core size 82 of 198 \text{ vol} = 0.906
core size 81 of 198 vol = 0.764
core size 80 of 198 vol = 0.649
core size 79 \text{ of } 198 \text{ vol} = 0.596
core size 78 of 198 vol = 0.53
core size 77 of 198 vol = 0.486
FINISHED: Min vol (0.5) reached
core.inds <- print(core, vol=0.5)</pre>
# 78 positions (cumulative volume <= 0.5 Angstrom^3)
 start end length
```

```
xyz <- pdbfit(pdbs3, core.inds, outpath="corefit_structures3")</pre>
```

Now we can examine the RMSF values between positions of the structure

10 25

28 48

53 93

16

21

41

1

2

3

```
rf <- rmsf(xyz)
plotb3(rf, sse=pdb)
abline(v=100, col="gray", ylab="RMSF")</pre>
```


Predicted Alignment Error for Domains

```
library(jsonlite)
# Listing of all PAE JSON files
pae_files <- list.files(path=results_dir1,</pre>
                         pattern=".*model.*\\.json",
                         full.names = TRUE)
pae1 <- read_json(pae_files[1],simplifyVector = TRUE)</pre>
pae5 <- read_json(pae_files[5],simplifyVector = TRUE)</pre>
attributes(pae1)
$names
[1] "plddt"
               "max_pae" "pae"
                                    "ptm"
                                               "iptm"
# Per-residue pLDDT scores
# same as B-factor of PDB..
head(pae1$plddt)
```

[1] 87.69 90.81 90.38 90.88 93.44 86.06

```
pae1$max_pae
```

[1] 15.47656

```
pae5$max_pae
```

[1] 29.32812

Here is the model 1 plot but using the same data range as the plot for model 5

Residue Conservation from Alignment File

[1] "HIVprdimer_23119/HIVprdimer_23119.a3m"

```
aln <- read.fasta(aln_file[1], to.upper = TRUE)

[1] " ** Duplicated sequence id's: 101 **"

[2] " ** Duplicated sequence id's: 101 **"</pre>
```

```
dim(aln$ali)
```

[1] 5378 132


```
con <- consensus(aln, cutoff = 0.9)
con$seq</pre>
```

For final visualization, we can map this conservation score of the occupancy column of a PDB file for Mol* viewing

```
m1.pdb <- read.pdb(pdb_filesA[1])
occ <- vec2resno(c(sim[1:99], sim[1:99]), m1.pdb$atom$resno)
write.pdb(m1.pdb, o=occ, file="m1_conserv.pdb")</pre>
```


Figure 2: Dimer colored by sequence conservation. DTGA motif highlighted in green

Alpha Fold With Novel Protein

First, take the sequence of the novel protein to search AFDB

The top hit was named "Interferon-induced protein with tetratric opeptide repeats 5" from Gallus gallus with ID A0A125RM76.

Visit corresponding AFDB structure page

Next, input the FAFSA sequence into AlphaFold2.

Figure 3: AlphaFold Structure model colored by IDDT Values

Figure 4: Sequence Coverage in MSA

Visualization of the Models

we can use Mol^* for visualization of your model PDB files

Next we can color by pLDDT scores $\,$

#IFIT5 results results_dir <- "ifit5_14356"

pdb_files <- list.files(path=results_dir, pattern="*.pdb", full.names=TRUE)
basename(pdb_files)</pre>

```
[1] "ifit5_14356_unrelaxed_rank_001_alphafold2_ptm_model_5_seed_000.pdb"
```

- [2] "ifit5_14356_unrelaxed_rank_002_alphafold2_ptm_model_3_seed_000.pdb"
- [3] "ifit5_14356_unrelaxed_rank_003_alphafold2_ptm_model_4_seed_000.pdb"
- [4] "ifit5_14356_unrelaxed_rank_004_alphafold2_ptm_model_2_seed_000.pdb"
- [5] "ifit5_14356_unrelaxed_rank_005_alphafold2_ptm_model_1_seed_000.pdb"

library(bio3d)

```
pdbs2 <- pdbaln(pdb_files, fit=TRUE, exefile="msa")</pre>
```

Reading PDB files:

ifit5_14356/ifit5_14356_unrelaxed_rank_001_alphafold2_ptm_model_5_seed_000.pdb ifit5_14356/ifit5_14356_unrelaxed_rank_002_alphafold2_ptm_model_3_seed_000.pdb ifit5_14356/ifit5_14356_unrelaxed_rank_003_alphafold2_ptm_model_4_seed_000.pdb ifit5_14356/ifit5_14356_unrelaxed_rank_004_alphafold2_ptm_model_2_seed_000.pdb ifit5_14356/ifit5_14356_unrelaxed_rank_005_alphafold2_ptm_model_1_seed_000.pdb

Extracting sequences

pdbs2

[Truncated_Name:1]ifit5_1435 MST [Truncated_Name:2]ifit5_1435 MST [Truncated_Name:3]ifit5_1435 MST [Truncated_Name:4]ifit5_1435 MST [Truncated_Name:5]ifit5_1435 MST

1 50

51 100

[Truncated_Name:1]ifit5_1435 [Truncated_Name:2]ifit5_1435 [Truncated_Name:3]ifit5_1435 SNYNLLSYVYHLKLSDEEALEYLQKAEEEIKKYYPGEIDRRSLVTWGNYA SNYNLLSYVYHLKLSDEEALEYLQKAEEEIKKYYPGEIDRRSLVTWGNYA SNYNLLSYVYHLKLSDEEALEYLQKAEEEIKKYYPGEIDRRSLVTWGNYA

[Truncated_Name:4]ifit5_1435 [Truncated_Name:5]ifit5_1435						
[1141104004_144101]11100_1100			-	********		
	51			•	•	100
	101					150
[Truncated_Name:1]ifit5_1435				KLSNTAHLKIQ		
$[{\tt Truncated_Name:2}] {\tt ifit5_1435}$				KLSNTAHLKIQ	-	
[Truncated_Name:3]ifit5_1435		•		KLSNTAHLKIQ	•	
[Truncated_Name:4]ifit5_1435		•		KLSNTAHLKIQ	•	
[Truncated_Name:5]ifit5_1435	WIYYHM	IGRYEEAQV	YINKVENSCK	KLSNTAHLKIQ	LPEIYAEQGFA	LLKF
	*****	******	*******	******	******	****
	101	•	•	•	•	150
	151					200
[Truncated_Name:1]ifit5_1435	GGKYYN	IRAKECFKN	IALREEPNNPE	FNAGYAIAVYR	LEEFSYRRCEE	VDSS
[Truncated_Name:2]ifit5_1435	GGKYYN	IRAKECFKN	IALREEPNNPE	FNAGYAIAVYR	LEEFSYRRCEE	VDSS
[Truncated_Name:3]ifit5_1435	GGKYYN	IRAKECFKN	IALREEPNNPE	FNAGYAIAVYR	LEEFSYRRCEE	VDSS
[Truncated_Name:4]ifit5_1435	GGKYYN	IRAKECFKN	IALREEPNNPE	FNAGYAIAVYR	LEEFSYRRCEE	VDSS
[Truncated_Name:5]ifit5_1435	GGKYYN	IRAKECFKN	IALREEPNNPE	FNAGYAIAVYR	LEEFSYRRCEE	VDSS
	*****	******	*******	******	******	****
	151	•	•	•	•	200
	201					250
[Truncated_Name:1]ifit5_1435	LEPLKR	RALKLNPMD	TYLLALLALK	LQDSDQVDEAE	KCIEEGMKKTP	YLPY
[Truncated_Name:2]ifit5_1435	LEPLKR	RALKLNPMD	TYLLALLALK	LQDSDQVDEAE	KCIEEGMKKTP	YLPY
[Truncated_Name:3]ifit5_1435	LEPLKR	RALKLNPMD	TYLLALLALK	LQDSDQVDEAE	KCIEEGMKKTP	YLPY
[Truncated_Name:4]ifit5_1435	LEPLKR	RALKLNPMD	TYLLALLALK	LQDSDQVDEAE	KCIEEGMKKTP	YLPY
[Truncated_Name:5]ifit5_1435	LEPLKR	RALKLNPMD	TYLLALLALK	LQDSDQVDEAE	KCIEEGMKKTP	YLPY
	*****	******	******	******	******	***
	201		•		•	250
	251		•			300
[Truncated_Name:1]ifit5_1435	FLRYAA	KFYRRKKE	CLDKAQEVLER	ALEISPKSTFL	LHQLGLCYRAK	LYEL
[Truncated_Name:2]ifit5_1435	FLRYAA	KFYRRKKE	CLDKAQEVLER	ALEISPKSTFL	LHQLGLCYRAK	LYEL
[Truncated_Name:3]ifit5_1435	FLRYAA	KFYRRKKE	LDKAQEVLER	ALEISPKSTFL	LHQLGLCYRAK	LYEL
[Truncated_Name:4]ifit5_1435	FLRYAA	KFYRRKKE	LDKAQEVLER	ALEISPKSTFL	LHQLGLCYRAK	LYEL
[Truncated_Name:5]ifit5_1435	FLRYAA	KFYRRKKE	LDKAQEVLER	ALEISPKSTFL	LHQLGLCYRAK	LYEL
	*****	******	******	*****	*****	****
	251	•	•	•	•	300
	301					350
[Truncated_Name:1]ifit5_1435	KNSTRY	PPQDQIEE	LIQICISHFK	VVTEQKPKFFS.	ALIDLARMYAE	ANMY

```
[Truncated_Name:2]ifit5_1435
                             KNSTRYPPQDQIEELIQICISHFKVVTEQKPKFFSALIDLARMYAEANMY
[Truncated_Name:3]ifit5_1435
                             KNSTRYPPQDQIEELIQICISHFKVVTEQKPKFFSALIDLARMYAEANMY
[Truncated_Name:4]ifit5_1435
                             KNSTRYPPQDQIEELIQICISHFKVVTEQKPKFFSALIDLARMYAEANMY
[Truncated_Name:5]ifit5_1435
                             KNSTRYPPQDQIEELIQICISHFKVVTEQKPKFFSALIDLARMYAEANMY
                             ***************
                           301
                                                                            350
                           351
                                                                            400
                             RKAEETFQKALNVNILTCSNKQEICYFYGNFLQYKKKSESEAIKYYKEGL
[Truncated_Name:1]ifit5_1435
[Truncated_Name:2]ifit5_1435
                             RKAEETFQKALNVNILTCSNKQEICYFYGNFLQYKKKSESEAIKYYKEGL
[Truncated_Name:3]ifit5_1435
                             RKAEETFQKALNVNILTCSNKQEICYFYGNFLQYKKKSESEAIKYYKEGL
[Truncated_Name:4]ifit5_1435
                             RKAEETFQKALNVNILTCSNKQEICYFYGNFLQYKKKSESEAIKYYKEGL
[Truncated_Name:5]ifit5_1435
                             RKAEETFQKALNVNILTCSNKQEICYFYGNFLQYKKKSESEAIKYYKEGL
                             *****************
                           351
                                                                            400
                           401
                                                                            450
[Truncated_Name:1]ifit5_1435
                             KNGNYCFAEKIRQYLKRLLEKRIQGGLGGEDDFSTLGLIHKLDGEKLEAI
[Truncated_Name:2]ifit5_1435
                             KNGNYCFAEKIRQYLKRLLEKRIQGGLGGEDDFSTLGLIHKLDGEKLEAI
[Truncated Name:3]ifit5 1435
                             KNGNYCFAEKIRQYLKRLLEKRIQGGLGGEDDFSTLGLIHKLDGEKLEAI
[Truncated Name:4]ifit5 1435
                             KNGNYCFAEKIRQYLKRLLEKRIQGGLGGEDDFSTLGLIHKLDGEKLEAI
[Truncated Name:5]ifit5 1435
                             KNGNYCFAEKIRQYLKRLLEKRIQGGLGGEDDFSTLGLIHKLDGEKLEAI
                             *****************
                           401
                                                                            450
                           451
                                                        479
[Truncated_Name:1]ifit5_1435
                             ECYEKANEYNPDNEEYLSVLLELRLSLSS
[Truncated_Name:2]ifit5_1435
                             ECYEKANEYNPDNEEYLSVLLELRLSLSS
[Truncated_Name:3]ifit5_1435
                             ECYEKANEYNPDNEEYLSVLLELRLSLSS
[Truncated_Name:4]ifit5_1435
                             ECYEKANEYNPDNEEYLSVLLELRLSLSS
[Truncated_Name:5]ifit5_1435
                             ECYEKANEYNPDNEEYLSVLLELRLSLSS
                             *********
                           451
                                                        479
Call:
 pdbaln(files = pdb_files, fit = TRUE, exefile = "msa")
Class:
 pdbs, fasta
Alignment dimensions:
  5 sequence rows; 479 position columns (479 non-gap, 0 gap)
```

+ attr: xyz, resno, b, chain, id, ali, resid, sse, call

```
pca <- pca(pdbs2)
plot(pca)</pre>
```


RMSD is a standard measure of structural distance between coordinate sets. We can use rmsd() function to calculate the RMSD between all pairs and models.

```
rd <- rmsd(pdbs2, fit=TRUE)
```

Warning in rmsd(pdbs2, fit = TRUE): No indices provided, using the 479 non NA positions

```
range(rd)
```

[1] 0.000 0.684

Draw a heatmap of these RMSD matrix values

```
library(pheatmap)

colnames(rd) <- paste0("m",1:5)
rownames(rd) <- paste0("m",1:5)
pheatmap(rd)</pre>
```


Let's plot the pLDDT values across all models. This information is stored in the B-factor column of each model and that this is stored in our aligned pdbs object as pdbs\$b with a row per structure/model

```
plotb3(pdbs2$b[1,], typ="l", lwd=2, sse=pdb)
```

Warning in plotb3(pdbs2\$b[1,], typ = "l", lwd = 2, sse = pdb): Length of input 'sse' does not equal the length of input 'x'; Ignoring 'sse'

```
points(pdbs2$b[2,], typ="1", col="red")
points(pdbs2$b[3,], typ="1", col="blue")
points(pdbs2$b[4,], typ="1", col="darkgreen")
points(pdbs2$b[5,], typ="1", col="orange")
abline(v=100, col="gray")
```


core <- core.find(pdbs2)</pre>

```
core size 478 of 479
                      vol = 6.063
core size 477 of 479
                      vol = 5.75
core size 476 of 479
                      vol = 5.467
core size 475 of 479
                      vol = 5.286
core size 474 of 479
                      vol = 5.1
core size 473 of 479
                      vol = 4.95
core size 472 of 479
                      vol = 4.801
core size 471 of 479
                      vol = 4.654
core size 470 of 479
                      vol = 4.505
core size 469 of 479
                      vol = 4.361
core size 468 of 479
                      vol = 4.223
core size 467 of 479
                      vol = 4.078
                      vol = 3.954
core size 466 of 479
core size 465 of 479
                      vol = 3.841
core size 464 of 479
                      vol = 3.709
core size 463 of 479
                      vol = 3.588
core size 462 of 479
                      vol = 3.467
core size 461 of 479
                      vol = 3.352
core size 460 of 479
                      vol = 3.244
core size 459 of 479
                      vol = 3.126
```

```
core size 458 of 479
                     vol = 3.019
core size 457 of 479
                       vol = 2.91
core size 456 of 479
                       vol = 2.806
core size 455 of 479
                       vol = 2.718
core size 454 of 479
                       vol = 2.629
core size 453 of 479
                       vol = 2.543
core size 452 of 479
                       vol = 2.462
core size 451 of 479
                       vol = 2.393
core size 450 of 479
                       vol = 2.332
core size 449 of 479
                       vol = 2.282
core size 448 of 479
                       vol = 2.229
core size 447 of 479
                       vol = 2.181
core size 446 of 479
                       vol = 2.14
core size 445 of 479
                       vol = 2.099
core size 444 of 479
                       vol = 2.072
core size 443 of 479
                       vol = 2.029
core size 442 of 479
                       vol = 1.985
                       vol = 1.944
core size 441 of 479
core size 440 of 479
                       vol = 1.913
core size 439 of 479
                       vol = 1.887
core size 438 of 479
                       vol = 1.856
core size 437 of 479
                       vol = 1.824
core size 436 of 479
                       vol = 1.79
core size 435 of 479
                       vol = 1.759
core size 434 of 479
                       vol = 1.725
core size 433 of 479
                       vol = 1.689
core size 432 of 479
                       vol = 1.659
core size 431 of 479
                       vol = 1.63
core size 430 of 479
                       vol = 1.607
core size 429 of 479
                       vol = 1.579
core size 428 of 479
                       vol = 1.548
core size 427 of 479
                       vol = 1.523
core size 426 of 479
                       vol = 1.494
core size 425 of 479
                       vol = 1.472
core size 424 of 479
                       vol = 1.45
core size 423 of 479
                       vol = 1.425
core size 422 of 479
                       vol = 1.4
core size 421 of 479
                       vol = 1.377
core size 420 of 479
                       vol = 1.357
core size 419 of 479
                       vol = 1.334
core size 418 of 479
                       vol = 1.313
core size 417 of 479
                       vol = 1.295
core size 416 \text{ of } 479 \text{ vol} = 1.271
```

```
core size 415 of 479
                     vol = 1.247
core size 414 of 479
                       vol = 1.228
core size 413 of 479
                       vol = 1.207
core size 412 of 479
                       vol = 1.191
core size 411 of 479
                       vol = 1.168
core size 410 of 479
                       vol = 1.148
core size 409 of 479
                       vol = 1.133
core size 408 of 479
                       vol = 1.114
core size 407 of 479
                       vol = 1.092
                       vol = 1.076
core size 406 of 479
core size 405 of 479
                       vol = 1.06
core size 404 of 479
                       vol = 1.041
core size 403 of 479
                       vol = 1.032
core size 402 of 479
                       vol = 1.018
core size 401 of 479
                       vol = 1
core size 400 of 479
                       vol = 0.982
core size 399 of 479
                       vol = 0.964
                       vol = 0.952
core size 398 of 479
core size 397 of 479
                       vol = 0.934
core size 396 of 479
                       vol = 0.925
core size 395 of 479
                       vol = 0.908
core size 394 of 479
                       vol = 0.893
core size 393 of 479
                       vol = 0.876
core size 392 of 479
                       vol = 0.86
core size 391 of 479
                       vol = 0.845
core size 390 of 479
                       vol = 0.831
core size 389 of 479
                       vol = 0.82
core size 388 of 479
                       vol = 0.809
core size 387 of 479
                       vol = 0.799
core size 386 of 479
                       vol = 0.785
core size 385 of 479
                       vol = 0.772
core size 384 of 479
                       vol = 0.761
core size 383 of 479
                       vol = 0.749
core size 382 of 479
                       vol = 0.737
core size 381 of 479
                       vol = 0.727
core size 380 of 479
                       vol = 0.717
core size 379 of 479
                       vol = 0.708
core size 378 of 479
                       vol = 0.697
core size 377 of 479
                       vol = 0.687
core size 376 of 479
                       vol = 0.68
core size 375 of 479
                       vol = 0.673
core size 374 of 479
                       vol = 0.666
core size 373 \text{ of } 479 \text{ vol} = 0.66
```

```
core size 372 of 479 vol = 0.652
core size 371 of 479
                      vol = 0.643
core size 370 of 479
                      vol = 0.636
core size 369 of 479
                      vol = 0.627
core size 368 of 479
                      vol = 0.62
core size 367 of 479
                      vol = 0.615
core size 366 of 479
                      vol = 0.607
core size 365 of 479
                      vol = 0.601
core size 364 of 479
                      vol = 0.595
core size 363 of 479
                      vol = 0.589
core size 362 of 479
                      vol = 0.583
core size 361 of 479
                      vol = 0.576
core size 360 of 479
                      vol = 0.571
core size 359 of 479
                      vol = 0.566
core size 358 of 479
                      vol = 0.56
core size 357 of 479
                      vol = 0.554
core size 356 of 479
                      vol = 0.548
core size 355 of 479
                      vol = 0.544
core size 354 of 479
                      vol = 0.539
core size 353 of 479
                      vol = 0.534
core size 352 of 479
                      vol = 0.527
core size 351 of 479
                      vol = 0.521
core size 350 of 479
                      vol = 0.515
core size 349 of 479
                      vol = 0.51
core size 348 of 479
                      vol = 0.505
core size 347 of 479 vol = 0.5
core size 346 \text{ of } 479 \text{ vol} = 0.495
FINISHED: Min vol (0.5) reached
```

core.inds <- print(core, vol=0.5)</pre>

```
# 347 positions (cumulative volume <= 0.5 Angstrom^3)
   start end length
      10
         10
                   1
1
2
      12 44
                  33
3
      47 123
                  77
4
     125 127
                   3
     136 194
                  59
5
6
     197 281
                  85
7
     285 285
                   1
     287 295
                   9
8
9
     314 323
                  10
```

```
      10
      325
      328
      4

      11
      332
      385
      54

      12
      392
      392
      1

      13
      395
      400
      6

      14
      411
      414
      4
```

```
xyz <- pdbfit(pdbs2, core.inds, outpath="corefit_structures")</pre>
```


Figure 5: Core Superimposed structures colored by B-factor

Now we can examine the RMSF between positions of the structure.

rf <- rmsf(xyz)

```
plotb3(rf, sse=pdb)
```

Warning in plotb3(rf, sse = pdb): Length of input 'sse' does not equal the length of input 'x'; Ignoring 'sse'

```
abline(v=100, col="gray", ylab="RMSF")
```


Predicted Alignment Error for Domains

Alpha Fold produces an output called PAE. We read these files that Alpha Fold produces a useful inter-domain prediction for model $1\ {\rm and}\ 2$

```
pae1 <- read_json(pae_files[1],simplifyVector = TRUE)
pae5 <- read_json(pae_files[5],simplifyVector = TRUE)
attributes(pae1)</pre>
```

```
$names
```

```
[1] "plddt" "max_pae" "pae" "ptm"

# Per-residue pLDDT scores
# same as B-factor of PDB..
head(pae1$plddt)
```

[1] 46.03 51.16 63.62 66.38 78.19 79.62

pae1\$max_pae

[1] 30.98438

$pae5$max_pae$

[1] 31.1875

Here is a plot using the same z range. Here is model 1 plot using the same data range for model 5

Residue conservation from alignment file

[1] "ifit5_14356/ifit5_14356.a3m"

```
aln <- read.fasta(aln_file[1], to.upper = TRUE)</pre>
```

[1] " ** Duplicated sequence id's: 101 **"

```
dim(aln$ali)
```

[1] 1947 560

I am having an issue finding the PDB file for my novel protein. It does not pull up the same species.