Model Documentation

Competition Name: Predict Future Sales

Name: Xin Jie Lee

Public Leaderboard: 0.922124

Private Leaderboard: 0.932341

Summary

• The most important training method used is XGBoost.

- The most important features are lagged values of mean encodings. Two types of mean encodings are used:
 - 1. Mean encoding without regularization
 - 2. Mean encoding using the expanding mean scheme
- The models are trained on a laptop with an Intel Core i7 4700MQ (Quad-core 2.4GHZ) and 8GB RAM. No GPUs were used during training. I increased my laptop's paging file size to 40GB in order to train the models.
- The final model is an ensemble of 3 models. Each of these model takes around 2 to 6 hours to train. The ensemble model is a simple stacking model using a ridge regression model. The training of the stacking model takes less than 10 mins.
- Tools used for this project are: Anaconda (Numpy, Pandas, Scikit-Learn), XGBoost, pickle.

Exploratory Data Analysis

- The EDA can be found in EDA.ipynb.
- There are two outliers in the data with regards to the number of items sold in a day by a shop.
 - o In month 24, shop 'id 12' sold 1000 of item 'id 20949'. It is likely that this item refers to plastic bags.
 - In month 33, shop 'id 12' sold 2169 of item 'id 11373'. It is likely that this item refers to a
 delivery service.
- There is an item, 'item id 6066', that costs more than \$300,000. The 99th percentile of item prices in the train set is \$5,999.
- Every shop in the test set contains the same number and type of items. This is not the case in the train set.
- There appears to be some seasonality trend in the sales of items.
- There are 102,796 'shop id', 'item id' pairs in the test dataset that is not in train dataset.

Feature Engineering and Selection

 Main features that were engineered were mean encodings and lagged values of these mean encodings.

- In model #1, expanding mean encodings of target (item_cnt_day), item_price and revenue grouped-by shop_id and item_id were generated. The 1-,2-,3-,4-,5-,6-,7-,8-,9-,10-,11- and 12-months lagged values of the expanding mean encodings were also generated.
- In model #2, the lagged mean encodings of target (item_cnt_day), item_price and revenue grouped-by (item_id, date_block_num), (shop_id, date_block_num), (item_category_id, date_block_num), (item_id, shop_id, date_block_num), (shop_id, item_category_id, date_block_num) were generated. The 1-,3-,6-,9- and 12-months lagged values of these mean encodings were generated as well.
- In model #3, the same mean encodings as model #2 were generated as well. The difference is that the 2-,4-,5-,7- and 8-months lagged values of the mean encodings were generated instead.
- Since the target shows some seasonality, I added a feature that tracked the month of the year (0 to 11).
- Since not all test shop-item pairs are found in the train set, we can also add all possible shop-item pairs to the training data and assign targets of 0 for shop-item pairs with no sale. However, this procedure would consume a lot of memory since we will be increasing the size of the training data tremendously. Hence, I opted not to do so for this project since I am training the models on my laptop.
- Did not perform feature selection.

Training Methods

- There are 3 models used for the final ensemble model:
 - 1. Model #1: XGBoost model with expanding mean encodings of target (item_cnt_day), item_price and revenue grouped-by shop_id and item_id. The 1-,2-,3-,4-,5-,6-,7-,8-,9-,10-,11- and 12-months lagged values of the expanding mean will also be generated. Code for this model is found in XGB Expanding Mean.ipynb.
 - 2. Model #2: XGBoost model with lagged mean encodings of target (item_cnt_day), item_price and revenue grouped-by (item_id, date_block_num), (shop_id, date_block_num), (item_category_id, date_block_num), (item_id, shop_id, date_block_num), (shop_id, item_category_id, date_block_num). No regularization was used for this mean encoding. The 1-,3-,6-,9- and 12-months lagged values of these mean encodings were generated. Code for this model is found in XGB_date.ipynb.
 - 3. Model #3: Same as model #2 but the 2-,4-,5-,7- and 8-months lagged values of the mean encodings will be generated instead. Code for this model is found in XGB_date.ipynb.
- Used 1 month of validation (month 33) for all three models. This month was used to manually
 cross-validate the model. There is the possibility that using more months as validation months
 could lead to better generalization of the model. I did not explore this due to time constraint.
- Performed manual parameter tuning rather than use a grid search to save time. There is the possibility that models' performance could be improved with more extensive parameter tuning.
- Tried other models such as Random Forest, but they did not perform as well as XGBoost models.
- I optimized the models with RMSE since the competition is evaluating the results based on RMSE.
- I did not eliminate the outliers when training the models. It is possible that doing so might improve the results.

Model Execute Time

- Model #1: About 2-3 hours
- Model #2 and Model #3: About 4-6 hours each
- Ensemble: About 10 minutes
- All of these models were trained on a laptop with an Intel Core i7 4700MQ (Quad-core 2.4GHZ) with no GPU.