Deep Hallucination Classification

Proiectul are ca scop clasificarea imaginilor de tipul "Deep Hallucination" în una dintre cele 96 de clase. Cele două metode de învățare automată utilizate în cadrul acestui proiect sunt Naive Bayes și KNN.

Modelul Naive Bayes

Detalii implementare:

- Fiecare imagine este citită inițial sub forma unui vector de pixeli, acest vector având forma 64x64x3, deoarece o imagine este compusă din 64 de linii, fiecare conținând 64 de coloane, astfel încât are 64x64 de pixeli, iar pentru fiecare dintre acești pixeli se cunosc cele 3 valori RGB.
- Vectorul corespunzător fiecărei imagini este redimensionat la o singură dimensiune, iar apoi fiecare vector rezultat este adăugat într-un vector de caracteristici care conține informațiile pentru fiecare imagine în parte. Acest proces este aplicat în mod identic pentru cele trei seturi de date: setul de antrenament, setul de validare si setul de testare.
- Valorile din cadrul acestor vectori de caracteristici sunt apoi discretizate, obținânduse astfel o formă prelucrată a celor trei vectori mentionati mai sus.
- Se folosește clasificatorul Multinomial Naive Bayes (din cadrul bibliotecii sklearn) pentru a antrena modelul pe datele de antrenament (vectorul de caracteristici prelucrat și clasele corespunzătoare fiecărei imagini reprezentate în cadrul acestuia).
- După antrenare, modelul este folosit pentru a prezice clasele imaginilor de validare. Acuratețea modelului este evaluată utilizând datele de validare și este calculată ca raport între numărul de predicții corecte și numărul total de imagini de validare.
- După afișarea ratei de acuratețe a predicției făcute pentru imaginile de validare, sunt calculate și afișate pentru fiecare clasă în parte valorile de precizie și recall, precum și matricea de confuzie. Mai multe detalii despre acestea sunt prezentate mai jos.
- Acelaşi procedeu se repetă şi pentru imaginile de test, unde modelul nostru încearcă în mod similar ca în cazul imaginilor de validare să prezică clasele corespunzătoare acestora, rezultatele prezicerii fiind în final scrise într-un fișier CSV.

Optimizarea hiperparametrilor și preprocesarea datelor:

- În ceea ce privește prelucrarea datelor, aspectul de care a trebuit ținut cont a fost numărul de intervale în care dorim să se facă discretizarea datelor. În final, a fost aleasă valoarea 17, deoarece aceasta obținea cel mai bun scor în cadrul competiției. Totuși, un lucru interesant de menționat este faptul că valoarea 6 a fost cea aleasă inițial, deoarece pentru datele de validare obținea cea mai mare acuratețe (cu o diferență infimă de doar 0.001), însă în cadrul competiției submisia în care numărul de intervale era 6 era cu aproximativ 0.01 mai slabă decât cea în care numărul acestora era 17.

Ratele de acuratețe obținute pentru diverse valori alese pentru numărul de intervale:

Număr intervale	Acurateţe
1	0.036
2	0.036
3	0.153
4	0.178
5	0.183
6	0.192
7	0.184
8	0.190
9	0.185
10	0.190
11	0.191
12	0.189
13	0.191
14	0.188
15	0.189
16	0.188
17	0.191
18	0.188
19	0.188
20	0.189
21	0.191
22	0.187
23	0.186
24	0.187
25	0.190
26	0.187
27	0.188
28	0.187
29	0.185
30	0.190
31	0.187
32	0.187

33	0.186
34	0.187
35	0.186
36	0.185
37	0.184
38	0.184
39	0.185
40	0.186
41	0.186
42	0.183
43	0.183
44	0.185
45	0.185
46	0.185
47	0.184
48	0.183
49	0.185
50	0.184

- De asemenea, se merită menționat și faptul că s-a încercat și o a doua normalizare, înaintea celei despre care am discutat până acum. Această normalizare consta în scăderea mediei valorilor trasaturilor (pixelilor) unei imagini și împărțirea rezultatului la deviația standard a imaginii. Cu toate acestea, am renunțat rapid la această abordare, deoarece în urma câtorva teste s-a observat că rata de acuratețe obținută pe testele de validare este mult mai redusă, fiind constantă indiferent de numărul de intervale (mai precis, 0.036).

Date despre acuratețe, precizie si recall:

- Cu scopul de a avea o mai bună viziune asupra predicțiilor făcute de către model, pentru fiecare clasă în parte, au fost calculate valorile True Positive, False Positive, True Negative și False Negative corespunzătoare, iar apoi aceste date au fost folosite pentru calcularea valorilor de precizie și recall (datele afișate mai jos sunt pentru un număr de 17 intervale):

Clasa	Precision	Recall
0	0.000	0.000
1	0.250	0.077
2	0.385	0.357
3	0.273	0.231
4	0.571	0.364
5	0.308	0.364
6	0.222	0.222
7	0.040	0.100
8	0.143	0.154

Γ		1 2 100
9	0.214	0.429
10	0.111	0.091
11	0.000	0.000
12	0.429	0.250
13	0.188	0.600
14	0.167	0.333
15	0.000	0.000
16	0.067	0.100
17	0.286	0.667
18	0.158	0.400
19	0.154	0.462
20	0.250	0.067
21	0.500	0.333
22	0.321	0.692
23	0.455	0.500
24	0.222	0.182
25	0.083	0.100
26	0.000	0.000
27	0.556	0.139
28	0.800	0.571
29	0.143	0.286
30	0.222	0.500
31	0.000	0.000
32	0.000	0.000
33	0.000	0.000
34	0.056	0.167
35	0.143	0.111
36	0.000	0.000
37	0.000	0.000
38	0.083	0.045
39	0.000	0.000
40	0.000	0.000
41	0.000	0.000
42	0.000	0.000
43	0.077	0.125
44	0.182	0.182
45	0.500	0.375
46	0.211	0.333
47	0.400	0.667
48	0.400	0.091
49	0.000	0.000
50	0.000	0.000
50	0.500	0.250
51 52		
	0.069	0.286
53	0.105	0.167
54 55	0.000	0.000
55	0.400	0.167
56	0.000	0.000

57	0.000	0.000
58	0.118	0.154
59	0.238	0.625
60	0.250	0.023
61	0.200	0.273
62	0.200	0.273
63		
	0.000	0.000
64	0.100	0.100
65	0.000	0.000
66	0.167	0.375
67	0.100	0.167
68	0.167	0.143
69	0.400	0.286
70	0.240	0.857
71	0.214	0.250
72	0.500	0.400
73	0.000	0.000
74	1.000	0.071
75	0.600	0.250
76	0.462	0.667
77	0.167	0.250
78	0.300	0.300
79	0.143	0.143
80	0.167	0.091
81	0.111	0.067
82	0.000	0.000
83	0.125	0.111
84	0.167	0.091
85	0.500	0.455
86	0.000	0.000
87	0.200	0.083
88	0.067	0.83
89	0.500	0.125
90	0.000	0.000
91	0.000	0.000
92	0.000	0.000
93	0.533	0.533
94	0.500	0.091
95	0.071	0.167
	3.07 1	3.707

⁻ De asemenea, a fost construită și matricea de confuzie corespunzătoare predicțiilor făcute (cu cât un pătrațel este mai închis la culoare, cu atât valoarea corespunzătoare acestuia din cadrul matricei de confuzie este mai mare; un pătrațel alb înseamnă valoarea 0):

Modelul KNN:

Detalii implementare:

- Similar ca în cazul modelului Naive Bayes, inițial fiecare imagine este citită sub forma unui vector de pixeli, acest vector fiind de forma 64x64x3, întrucât o imagine este compusă din 64 de linii, fiecare conținând 64 de coloane, astfel având 64x64 de pixeli, iar pentru fiecare dintre acești pixeli cunoscându-se cele 3 valori RGB.

- Aceste imagini sunt normalizate prin scăderea valorii medii a fiecărei imagini din vectorul de caracteristici (valori ale pixelilor) și împărțirea rezultatului la deviația standard. Apoi, imaginile sunt adăugate într-un vector de caracteristici care conține informațiile pentru fiecare imagine în parte. Acest proces este identic pentru toate cele 3 seturi de date: setul de antrenament, setul de validare și setul de testare.
- Imaginile din setul de validare sunt apoi clasificate folosind metoda celor mai apropiați vecini. Pentru a face acest lucru, luăm fiecare imagine de validare în parte și calculăm distanța acesteia față de fiecare imagine din setul de antrenament (folosim distanța Euclidiană sau distanța Manhattan). După aceea, din totalul imaginilor de antrenament selectăm primele 'numarVecini' imagini sortate crescător după distanța obținută, și folosind informațiile din fișierul CSV de antrenament aflăm clasele corespunzătoare fiecăreia dintre aceste imagini. În final, selectăm clasa cu cele mai multe apariții între acești 'numarVecini' vecini și o adăugăm în lista noastră de predicții.
- Astfel, după ce am obținut pentru fiecare imagine din setul de validare o predicție, procedăm similar ca în cazul modelului Naive Bayes: afișăm rata de acuratețe obținută pentru setul de date, iar apoi, pentru fiecare clasă în parte, valorile de precizie și acoperire (recall), și de asemenea matricea de confuzie.
- Acelaşi procedeu se repetă şi pentru imaginile de test, predicțiile făcute în acest caz fiind scrise într-un fișier CSV.

Optimizarea hiperparametrilor și preprocesarea datelor:

- De-a lungul numeroaselor rulări ale algoritmului, au fost încercate multiple variante pentru parametri, dar și pentru prelucrarea datelor.
- În ceea ce privește prelucrarea datelor, s-au încercat două abordări, inițial una în care imaginile erau folosite așa cum erau citite, fără modificări făcute asupra caracteristicilor corespunzătoare acestora, iar apoi s-a încercat normalizarea acestora, folosind procedeul menționat mai sus (cel cu valoarea medie și deviația standard).
- De asemenea, pentru calculul distanței dintre două imagini, au fost testate atât distanța Euclidiană, cât și distanța Manhattan.
- Dacă imaginile sunt clasificate fără a fi normalizate, distanța Euclidiană oferă valori ale acurateței mai bune, în timp ce folosirea distanței Manhattan va rezulta într-o acuratețe mult mai scăzută. Dacă imaginile sunt normalizate, distanța Manhattan este cea care oferă rezultate mai bune. În general, acuratețea cea mai bună se obține în cazul în care normalizăm valorile corespunzătoare imaginilor și folosim distanța Manhattan (cel puțin pe datele de validare). Cu toate acestea, în cadrul submisiei din competiție am încărcat o variantă care folosește normalizare și distanța

Euclidiană, deoarece am observat faptul că distanța Manhattan în combinație cu normalizarea datelor oferă rezultate mai bune abia după încheierea competiției.

- Un alt parametru de care a trebuit ținut cont a fost numărul de vecini. În cadrul submisiei din competiție a fost folosit un număr de 26 de vecini, dar în general (în cazul în care folosim normalizare + distanța Manhattan) cel mai bun rezultat (pentru datele de validare) se obține pentru un număr de 9 sau 12 vecini.

În imaginile de mai jos se pot observa majoritatea valorilor testate pentru cazurile menționate mai sus.

Fără normalizare + distanța Euclidiană:

Număr vecini	Acuratețe
3	0.097
6	0.112
9	0.108
12	0.120
15	0.121
18	0.119
21	0.118
24	0.122
27	0.122
30	0.126
33	0.137

Fără normalizare + distanța Manhattan:

Număr vecini	Acuratețe
3	0.064
6	0.061
9	0.060
12	0.053
15	0.048
18	0.052
21	0.050
24	0.046
27	0.046
30	0.048
33	0.048
36	0.046
39	0.044
42	0.043
45	0.041
48	0.042
51	0.039

54	0.041
57	0.038
60	0.036
63	0.036
66	0.035
69	0.036
72	0.034
75	0.035
78	0.033
81	0.033
84	0.033
87	0.033
90	0.033

Cu normalizare + distanța Euclidiană:

Număr Vecini	Acuratețe
3	0.158
6	0.180
9	0.183
12	0.188
15	0.192
18	0.194
21	0.189
24	0.194
27	0.202
30	0.198
33	0.196
36	0.194
39	0.192
42	0.190
45	0.189
48	0.185
51	0.185
54	0.185
57	0.182
60	0.179
63	0.179
66	0.181
69	0.181
72	0.184
75	0.183
78	0.182
81	0.178
84	0.179
87	0.181
25	0.198

26	0.203
28	0.198
200	0.157
400	0.143
500	0.137

Cu normalizare + distanța Manhattan:

Numar vecini	Acuratețe
3	0.220
4	0.213
5	0.228
6	0.234
7	0.234
8	0.236
9	0.242
10	0.233
11	0.238
12	0.242
13	0.241
14	0.241

Date despre acuratete, precizie si recall:

Cu scopul de a avea o mai bună vizune asupra predicțiilor făcute de către model, pentru fiecare clasă în parte, au fost calculate valorile TruePositive, FalsePositive, TrueNegative, FalseNegative corespunzătoare, iar apoi aceste date au fost folosite pentru calcularea valorilor precizie și recall (datele afișate mai jos sunt pentru cazul în care se folosește normalizare, distanța utilizată este cea Euclidiană, iar numărul de vecini este de 26):

Clasa	Precision	Recall
0	0.125	0.077
1	0.000	0.000
2	0.156	0.500
3	0.500	0.154
4	0.222	0.182
5	0.161	0.455
6	0.000	0.000
7	0.125	0.100
8	0.143	0.077
9	0.108	0.571
10	0.000	0.000

44	0.000	2.222
11	0.000	0.000
12	0.455	0.417
13	0.111	0.800
14	0.308	0.333
15	0.250	0.214
16	0.125	0.100
17	0.222	0.333
18	0.205	0.533
19	0.000	0.077
20	0.600	0.200
21	1.000	0.167
22	0.191	0.692
23	0.375	0.300
24	0.158	0.545
25	0.000	0.000
26	0.250	0.143
27	0.395	0.417
28	0.353	0.429
29	0.400	0.286
30	0.200	0.250
31	0.143	0.222
32	0.054	0.286
33	0.500	0.091
34	0.138	0.667
35	0.000	0.000
36	1.000	0.111
37	0.000	0.000
38	0.290	0.409
39	0.500	0.111
40	0.000	0.000
41	0.000	0.000
42	0.000	0.000
43	0.000	0.000
44	1.000	0.091
45	0.000	0.000
46	1.000	0.167
47	0.296	0.889
48	0.667	0.182
49	0.000	0.000
50	0.333	0.100
51	0.000	0.000
52	0.231	0.429
53	0.375	0.250
54	0.000	0.000
55	0.000	0.000
56	1.000	0.000
57	1.000	0.111
57 58		
30	0.286	0.308

59	0.065	0.250
60	1.000	0.154
61	0.000	0.000
62	0.000	0.000
63	0.000	0.000
64	1.000	0.100
65	0.047	0.500
66	0.083	0.125
67	0.000	0.000
68	0.071	0.143
69	0.267	0.286
70	0.106	1.000
71	0.333	0.083
72	0.500	0.200
73	0.000	0.000
74	1.000	0.071
75	0.714	0.417
76	0.400	0.222
77	0.000	0.000
78	0.167	0.700
79	0.125	0.143
80	0.333	0.182
81	0.286	0.133
82	0.000	0.000
83	1.000	0.111
84	0.000	0.000
85	0.667	0.364
86	1.000	0.125
87	0.000	0.000
88	0.143	0.083
89	0.000	0.000
90	0.000	0.000
91	0.000	0.000
92	0.500	0.143
93	0.000	0.000
94	0.385	0.455
95	0.250	0.167

⁻ De asemenea, a fost construită și matricea de confuzie corespunzătoare predicțiilor făcute (cu cât un pătrațel este mai închis la culoare, cu atât valoarea corespunzătoare acestuia din cadrul matricei de confuzie este mai mare; un pătrațel alb înseamnă valoarea 0):

