Assignment 5 solution

Rana Gargawi 213008717 & Yara Atawna 213967698

Question 1:

<u>b)</u>

Let us define the equivalence of high-order function g and its CPS version g\$ as follows:

```
For any CPS-equivalent parameters f1...fn and f1$...fn$ (g$ f1$...fn$ cont) is CPS-equivalent to (cont (g f1...fn))
```

Following this definition, we show that pipe\$ is equivalent to pipe, by induction on the size of the list.

```
Base: N=1

(cont (pipe(f1$))) = (cont f1$)

(pipe$ f1$ cont) = (cont (lambda (x cont2) (f1$ x cont2))) = (cont f1$)

Induction step:

Assuming (pipe$ f1$ ... fn$ cont) = (cont (pipe f1$ ... fn$))

(pipe$ (f1$ ... fn$ fn+1$ cont)) =

(pipe$ f2$ ... fn+1$ (lambda (f2-n$) (cont (lambda (x cont2) (f1$ x (lambda (res) (fn2-n$ res cont2)))))) =

((lambda (f2-n$) (cont (lambda (x cont2) (f1$ x (lambda (res) (fn2-n$ res cont2)))))) (pipe f2$ ... fn+1$)

)

= (cont (lambda (x cont2) ((pipe f2$ ... fn+1$) x (lambda (res) (fn2-n$ res cont2))))

= (cont (f2-n$ (pipe f1$ f2$ ... fn+1$))
```

Question 2:

d)

reduce1-IzI: for a reduce of a finite lazy list

reduce2-IzI: for a reduce of one specific prefix of a given infinite lazy list

reduce3-IzI: for a reduce of each prefix of an infinite lazy list (as the case of Q2e)

g) Advantage: can be applied for any approximation level, in contrast to pi-sum which is fixed to one given 'b' limit.

Disadvantage: generates a lot of closures.

3.3 Proof tree [10 points]	
Draw the proof tree for the query:	
?- path(a,b, P)	
?- path (a, b, P) Is it a finite or an infinite tree? Is it a success or a failure tree? Path (a, b, P) Path (a, b, P) Rath (a, b, P) Path (a, b, P) Rath (a, b, P) Path (b, P) Path (b, P) Path (b, P)	
Nodez-c) 17- Nodez-b	
P'=[C16]	[Note 3=6] 2 P'=[b16]
e 29e (616)	
edge (C16)	
True	

3.1 Unification [20 points]

What is the result of these	operations? Provide algorithm steps,	and explain in case of failure
What is the result of these	operations: I Tovide algorithm steps,	and explain in case of failure.

1. unify[
$$x(y(y), T, y, z, k(K), y), x(y(T), T, y, z, k(K), L)$$
]

2. unify[f(a, M, f, F, Z, f,
$$x(M)$$
), f(a, $x(Z)$, f, $x(M)$, $x(F)$, f, $x(M)$)]

4. unify[
$$z(a(A, x, Y), D, g), z(a(d, x, g), g, Y)$$
]

1)
$$5 = 23$$
 $A = \chi(y(y), T, y, z, \lambda(k), y)$

```
2) 5= £ 3 ,A= F(a,M,f,F B,F, X(U)), B= (a, x(2), f, x(u), x(F),f,x(u))
(A) 5=50 & M= X(Z) }
   Aos=f(a, xe), f, F, Z, f, x(xc))
  BOS = f (a, x(2), f, x(x@) x(F), f, x(x(3))
(2) S = S \circ \{ f = X(X(Z)) \}
 AOS = f(a, xe), f, x(x), 2, f, x(xc))
BOS = f(a, x(2), f, x(x(2)), x(x(x,2)),f,x(x(2))
   5- 502 X(x(x(2)))}
             א מנקיל
4) S=23, f= 2(a(A, x, y), D, g), T=2(a, G, x, g), g, y)
(1) S = So 2 a (1, X, 9) = a (A, X, y) 3 = { J=A, 9= y }
 fos= Z (a (AIXIY), D, Y)
 Pos=ZCa(AIXIY), Y, Y)
(a) S= So & y=Dq = { J=A, g=D, y=Dq
fos= 2 (a(AIXID), DID)
POS=ZCa(AIXID), XIO)
       Anss 37-A, 9-D, Y-D3
```