ISOM 2700: Operations Management Session 8.2 Coordinating Supply Chain: Risk-sharing Contracts

Huijun Chen
Dept. of ISOM, HKUST

Risk Management and Operational Hedging

- What is risk?
 - Undesirable consequences of uncertainty
 - Variance

- Two types of risk
 - Operational risk: the risk of a mismatch between supply and demand, which reduces expected profit flows
 - **Financial risk:** the risk associated with finance, including financial transactions that include company loans in risk of default

Video: Supply Chain Risk

Risk Management and Operational Hedging

- Hedging: to mitigate these risks:
 - Operational hedging are constructions in supply chains to reduce operational risks that may increase expected profits as well as reduce its variance

- **Financial hedging** are constructions with financial instruments to reduce the variance of profits

Outline

- Hedging operational risk via contracts
 - Wholesale price contract
 - Revenue sharing contract
 - Returns contract

What is a Contract?

• A contract is a set of rules to control / modify the goods/cash flows in the supply chain

• To be effective, the contract should be verifiable and enforceable.

Double marginalization

- Suboptimal supply chain performance occurs because ...
 - Each firm makes decisions based on their own margin, not the supply chain's margin.
 - This is called *double marginalization*.

Example: Umbra Visage (UV)

• Zamatia makes sunglass at a cost of \$35 and sells them to UV for \$75.

• UV sells the sunglasses to customers for \$115 and salvages left over inventory for \$25 per unit.

• Customer demand is normal with mean 250 and standard deviation 125.

Example: Umbra Visage (UV)

- Optimal Decisions for UV:
 - $C_u = 115 75 = 40$, $C_o = 75 25 = 50$
 - Critical ratio = 40 / 90 = 0.44

- Optimal Decisions for the entire Supply chain:
 - $C_u = 115 35 = 80, C_o = 35 25 = 10$
 - Critical ratio = 80 / 90 = 0.89

Supply chain's critical ratio is much higher than UV's critical ratio!

The wholesale price contract

- The supplier charges a fixed wholesale price
 w for every unit delivered to the retailer
- Given the wholesale price, the retailer decides how many units to order

Game I: wholesale price contract

- A supplier produces a product at per unit cost \$100, and sells it to a retailer at the wholesale price w, which is the supplier's decision
- The retailer decides how many units of products to order, q, before the sales season
- The uncertain demand $D\sim N(1000,200)$ is realized
- The retail price is \$400 and each unit of leftover inventory has zero salvage value

Game I: wholesale price contract

Procedure of Excel Simulation

- **Step 1.** Setup the excel spreadsheet
- Step 2. Supplier: Determine the wholesale price w
- Step 3. Retailer: Determine how many units to order q
- **Step 4.** Report the supplier and the retailer's expected profits over 300 simulation runs

Game I: Discussion

• The most profitable supplier?

• The highest total profit?

• What's the best possible outcome (first-best profit)?

• Did anyone achieve the best possible outcome?

Double Marginalization under Wholesale Price Contract: w=300

Centralized Supply Chain (first-best outcome)

- Cost of over production:
 Co=c=100
- Cost of under production:

$$Cu = p - c = 400 - 100 = 300$$

• Critical fractile:

$$Cu/(Co+Cu)=300/400=0.75$$

• Supply chain's optimal production quantity: norminv(0.75,1000,200)

```
=1135
```

Decentralized Supply Chain under wholesale price contract

- Cost of over ordering: Co=w=300
- Cost of under ordering: Cu=p-w=400-300=100
- Critical fractile: Cu/(Co+Cu)=100/400=0.25
- The retailer's optimal order quantity:

```
norminv(0.5,1000,200)
=865
```

The retailer orders less than the supply chain optimum.

The revenue sharing contract

- The supplier charges a fixed price w for every unit delivered to the retailer
- For each unit of sales to an end consumer, the retailer pays the supplier a fixed percentage share y of the retail price to the supplier
- The retailer decides how many units of products to order before the sales season

Game II: revenue sharing contract

For every unit of sales, retailer gets 400(1-y) and supplier gets 400y

Procedure of Excel Simulation

- Step 1. Setup the excel spreadsheet
- Step 2. Supplier: Determine the wholesale price w and revenue share percentage y
- Step 3. Retailer: Determine how many units to order using Newsvendor formula
- Step 4. Report the supplier and the retailer's average profits over 300 simulation runs

Discussion of Game II

• The most profitable supplier?

• Is the best possible outcome achieved?

• How to achieve the best possible outcome?

Selling to Retailer under Revenue Sharing Contract: w=30, y=0.7

For every unit of sales: retailer gets \$400*(1-0.7)=\$120 supplier gets \$400*0.7=\$280.

What is the retailer's optimal order quantity under the above revenue sharing contract?

Achieving Coordination under Revenue Sharing Contract: w=30, y=0.7

- Cost of over ordering: Co=w=30
- Cost of under ordering: Cu=p(1-y)-w=400(1-0.7)-30=90

• Critical fractile: Cu/(Co+Cu)=90/120=0.75

• The retailer's optimal order quantity: norminv(0.75,1000,200)=1135

Achieving Win-Win Outcome

	Wholesale Price	Revenue Sharing
Supplier's Profit	173020	195003
Retailer's Profit	75524	83573
Supply chain's profit	248544	278576

- Both the supplier and the retailer are strictly better off under the revenue sharing contract than under the wholesale price contract.
- Revenue sharing contract allows the decentralized supply chain to achieve the same profit as the centralized supply chain.

How did we pick w=30 and y=0.7?

Key idea: let the critical file of the retailer under decentralized supply chain equal to the first-best critical fractile

- the wholesale price can be considered as an internal transfer; does not impact supply chain's total profit
- What matters is: retailer will order the optimal quantity as the first-best outcome

The returns contract

- The supplier charges a fixed price w for every unit delivered to the retailer
- For each unit of leftover inventory, the supplier pays the retailer a fixed refund **r** to the retailer

Game III: returns contract

Procedure of Excel Simulation

- Step 1. Setup the excel spreadsheet
- Step 2. Supplier: Determine the wholesale price w and return refund r
- Step 3. Retailer: Determine the optimal order quantity using Newsvendor formula
- Step 4. Report the supplier and the retailer's average profits over 300 simulation runs

Discussion of Game III

• Is the best possible outcome achieved?

• How to achieve the best possible outcome?

Selling to Retailer under Returns Contract

```
Production cost c=\$100
Retail price p=\$400
Wholesale price w=\$300
The supplier refund the retailer r=\$266.67 for every unsold unit
```

What is the retailer's optimal order quantity?

- Cost of overordering: Co=w-r=300-266.67=33.33
- Cost of underordering: Cu=p-w=400-300=100
- Critical fractile: Cu/(Co+Cu)=100/(100+33.33)=0.75
- The retailer's optimal order quantity: norminv(0.75,1000,200) =1135 units

Achieving Win-Win Outcome

	Wholesale Price Contract	Returns Contract
Supplier's Profit	173020	195003
Retailer's Profit	75524	83573
Total profit	248544	278576

- Returns contract allows demand risks to be shared among supply chain members
- Returns contract achieves not only supply chain coordination, but also win-win outcome for both the supplier and the retailer.

Summary

	Integrated Firm	Wholesale Price Contract	Revenue Sharing Contract	Returns Contract
Underage cost	p-c	p-w	p(1-y)-w	p-w
Overage cost	С	W	W	w-r
First-best outcome?	Yes	No	Yes, if y is chosen appropriately	Yes, if r is chosen appropriately

Summary

 $S = \min(D, Q)$: the sales when ordering quantity is Q and demand is D

	Integrated Firm	Wholesale Price Contract	Revenue Sharing Contract	Returns Contract
Underage cost	p-c	p-w	p(1-y)-w	p-w
Overage cost	С	W	W	w-r
Critical ratio	$\frac{p-c}{p}$	$\frac{p-w}{p}$	$\frac{P(1-y)-w}{p(1-y)}$	$\frac{p-w}{p-r}$
Retailer profit	NA	Sp - Qw	Sp(1-y)-Qw	Sp - Qw + (Q - S)r
Supplier profit	NA	Q(w-c)	Q(w-c) + Spy	Q(w-c)-(Q-S)r
First-best outcome?	Yes	No	Yes, if y is chosen appropriately	Yes, if r is chosen appropriately

Takeaway

When designing contracts, think about...

Total profit pie

- What behavior would **maximize system-wide efficiency** (e.g., retailer setting a lower retail price, stocking a larger quantity)?
- How can contract **provide incentives** for this behavior (e.g., lower marginal cost of acquisition, manufacturer bears portion of risk of overstocking by accepting returns)?
- Who is at the best position to absorb risks?

How to split pie

- Contract terms must be set so that they are attractive to both firms

Video: Problem Walkthrough