

1/47

FIG. 1

[SEQ. ID NO: 3]

X-C-C-T-T-G-A-G-A-T-T-T-C-C-C-T-C
5' 3'

G-G-A-A-C-T-C-T-A-A-A-G-G-G-A-G-X
3' 5'

[SEQ. ID NO: 4]

X-C-C-T-T-G-A-G-A-T-T-T-C-C-C-T-C
G-G-A-A-C-T-C-T-A-A-A-G-G-G-A-G-X

FIG. 2

FIG. 3

FIG. 4

A-T-G-G-C-A-A-C-T-A-T-A-C-G-C-G-C-T-A-G
A-T-A-T-G-C-G-C-G-A-T-C-T-C-A-G-C-A-A-A
[SEQ. ID NO: 2] ↗
[SEQ. ID NO: 1] ↗
3' 5'
3' 5'

FIG. 5

6/47

BEST AVAILABLE COPY

FIG. 6A FIG. 6B FIG. 6C

FIG. 7

FIG. 8A

FIG. 8B

FIG. 9A**FIG. 9B**

FIG. 10

FIG. II

FIG. I2AComplementary Target

[SEQ. ID NO:12]

1

3' T-C-G-T-A-C-C-A-G-C-T-A-T-C-C
 5' A-G-C-A-T-G-G-T-C-G-A-T-A-G-G-A-A-A-C-G-A-C-T-C-T-A-G-C-G-C

3**2**

[SEQ. ID NO: 14]

[SEQ. ID NO: 13]

FIG. I2BProbes without Target**1**

3' T-C-G-T-A-C-C-A-G-C-T-A-T-C-C
 T-T-T-G-C-T-G-A-G-A-T-C-G-C-G

2**FIG. I2C**Half Complementary Target**1**

3' T-C-G-T-A-C-C-A-G-C-T-A-T-C-C
 5' A-G-C-A-T-G-G-T-C-G-A-T-A-G-G-A-T-G-G-C-A-A-C-T-A-T-A-C-G-C

4**2**

[SEQ. ID NO: 15]

FIG. I2DTarget - 6 bp**1**

3' T-C-G-T-A-C-C-A-G-C-T-A-T-C-C
 5' G-T-C-G-A-T-A-G-G-A-A-A-C-G-A-C-T-C-T-A-G-C-G-C

5**2**

[SEQ. ID NO: 16]

FIG. I2EOne bp Mismatch**1**

3' T-C-G-T-A-C-C-A-G-C-T-A-T-C-C
 5' A-G-C-A-T-G-G-T-T-G-A-T-A-G-G-A-A-A-C-G-A-C-T-C-T-A-G-C-G-C

6**2**

[SEQ. ID NO: 17]

FIG. I2FTwo bp Mismatch**1**

3' T-C-G-T-A-C-C-A-G-C-T-A-T-C-C
 5' A-G-C-A-T-G-T-T-G-A-T-A-G-G-A-A-A-C-G-A-C-T-C-T-A-G-C-G-C

7**2**

[SEQ. ID NO: 18]

FIG. 13A

FIG. 13B

14/47

FIG. I4A

FIG. I4B

FIG. 15A**FIG. 15B****FIG. 15C****FIG. 15D****FIG. 15E****FIG. 15F****FIG. 15G**

FIG. 16A

24 Base Template

5' TAC-GAG-TTG-AGA-ATC-CTG-AAT-GCG 3'
—S-ATG-CTC-AAC-TCT TAG-GAC-TTA-CGC-S —
1
2

FIG. 16B

48 Base Template with Complementary 24 Base Filler

5' TAC-GAG-TTG-AGA-CCG-TTA-AGA-CGA-GGC-AAT-CAT-GCA-ATC-CTG-AAT-GCG 3'
—S-ATG-CTC-AAC-TCT GGC-AAT-TCT-GCT-CCG-TTA-GTA-CGT TAG-GAC-TTA-CGC-S —
1
2

FIG. 16C

72 Base Template with Complementary 48 Base Filler

5' TAC-GAG-TTG-AGA-CCG-TTA-AGA-CGA-GGC-AAT-CAT-GCA-TAT-GGG-CGC-TTT-ACG-GAC-AAC-ATC-CTG-AAT-GCG 3'
—S-ATG-CTC-AAC-TCT GGC-AAT-TCT-GCT-CCG-TTA-GTA-CGT-ATA-TAA-CCT-GCG-CTG-TTG TAG-GAC-TTA-CGC-S —
1
2

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 17D

FIG. 17E

FIG. 18

20/47

FIG. 19A**FIG. 19B**

FIG. 20A

FIG. 20B

FIG. 22

FIG. 23

Anthrax PCR Product

5'G GCG GAT GAG TCA GTA GTT AAG GAG GCT CAT AGA GAA GTA ATT AAT
3'C CGC CTA CTC AGT CAT CAA TTC CTC CGA GTA TCT CTT CAT TAA TTA

TCG TCA ACA GAG GGA TTA TTG TTA AAT ATT GAT AAG GAT ATA AGA AAA
AGC AGT TGT CTC CCT AAT AAC AAT TTA TAA CTA TTC CTA TAT TCT TTT

ATA TTA TCC AGG GTT ATA TTG TAG AAA TTG AAG ATA CTG AAG GGC TT 3'
TAT AAT AGG TCC CAA TAT AAC ATC TTT AAC TTC TAT GAC TTC CCG AA 5'

141 mer Anthrax PCR product [SEQ ID NO:36]

3' CTC CCT AAT AAC AAT

[SEQ ID NO:37]

3' TTA TAA CTA TTC CTA

[SEQ ID NO:38]

Oligonucleotide-Nanoparticle Probes

Blocker Oligonucleotides

3' C CGC CTA CTC AGT CAT CAA TTC CTC CGA GT
3' A TCT CTT CAT TAA TTA AGC AGT TGT
3' TAT TCT TTT TAT AAT AGG TCC CAA TAT
3' AAC ATC TTT AAC TTC TAT GAC TTC CCG AA

[SEQ ID NO:39]

[SEQ ID NO:40]

[SEQ ID NO:41]

[SEQ ID NO:42]

FIG. 24

FIG. 25A

FIG. 25B

FIG. 26A

FIG. 26B

FIG. 27A

FIG. 27B

BEST AVAILABLE COPY

FIG. 27C**FIG. 27D**

FIG. 28A

FIG. 28B

FIG. 28C

FIG. 28D

FIG. 28E

FIG. 3|

FIG. 32

[SEQIDNO:56]

5' GGA TTA TTG TTA- -AAT ATT GAT AAG GAT 3'
CCT ANT AAC AAT TTA TAA CTA TTC CTA
[SEQ ID NO: 57] [SEQ ID NO: 58]

N = A (complementary),
G,C,T (mismatched)

- ## 1. ~~~ (target DNA)

Ag^+
hydroquinone
(pH 3.8)

BEST AVAILABLE COPY

FIG. 33

40/47

FIG. 34

FIG.35A

FIG.35B

BEST AVAILABLE COPY

FIG. 36A

FIG. 36B

C A T G

FIG.37A

FIG.37B

FIG. 38A

FIG. 38B

BEST AVAILABLE COPY

FIG. 39A

A — 50 nm

FIG. 39B

B — 50nm

FIG.39C

FIG.39D

FIG.39E

FIG.39F

FIG. 40

FIG. 41

