Universität Osnabrück Theoretische Informatik Sommersemester 2014

Übungsblatt 3 zur Informatik 0: Einführung in die Theoretische Informatik

Ausgabe: 9. Mai Besprechung: 19.–21. Mai

Aufgabe 3.1. Endliche Sprachen

Zeigen Sie, dass jede endliche Sprache regulär ist.

Aufgabe 3.2. $DEA \rightarrow regul\"{a}re\ Grammatik \rightarrow NDEA$

(a) Wandeln Sie den folgenden DEA—gemäß dem Vorgehen aus der Vorlesung!—in eine reguläre Grammatik um.

(b) Wandeln Sie die entstandene reguläre Grammatik—gemäß dem Vorgehen aus der Vorlesung!—in einen NDEA um.

Aufgabe 3.3. $NDEA \rightarrow DEA$

Gegeben sei der folgende NDEA. Wandeln Sie ihn—gemäß dem Vorgehen aus der Vorlesung!—in einen DEA um.

Aufgabe 3.4. Regulärer Ausdruck \rightarrow NDEA

Gegeben sei der reguläre Ausdruck

$$((b|a)^*d|c)$$

Wandeln Sie ihn—gemäß dem Vorgehen aus der Vorlesung!—in einen NDEA um.

Hinweis: Beachten Sie dabei, dass Sie nichts vereinfachen. Insbesondere alle ε -Übergänge sollen erhalten bleiben.

Aufgabe 3.5. Kreuzworträtsel, Endliche Automaten

Lösen Sie das folgende Kreuzworträtsel. Jedes Wort ist durch seinen akzeptierenden DEA oder NDEA gegeben. *Hinweis*: Vielleicht hilft es Ihnen, die EAen zunächst in reguläre Ausdrücke umzuschreiben. Dafür ist Platz unterhalb.

Aufgabe 3.6. $DEA \rightarrow Regul\"{a}rer Ausdruck$

Gegeben sei der folgende DEA. Wandeln Sie ihn—gemäß dem Vorgehen aus der Vorlesung!—in einen regulären Ausdruck um.

 $\mathit{Hinweis}$: Damit die Tabellen nicht zu groß werden, können Sie sich beispielsweise $x := (\varepsilon |a|b)$ definieren.

Good luck!