		Not	e
		I	II
Name Vorname	1		
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	$\begin{vmatrix} 6 \end{vmatrix}$		
Wiederholungsklausur			
MA9202 Mathematik für Physiker 2			
(Analysis 1)	8		
Prof. Dr. S. Warzel	9		
2. April 2015, 8:30 - 10:00 Uhr			
•	\sum		
Hörsaal: Reihe: Platz:			
Hinweise:	I		
Überprüfen Sie die Vollständigkeit der Angabe: ${f 9}$ Aufgaben		Erstkorrel	ctur
Bearbeitungszeit: 90 min	П		
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt	Zweitkorrektur		
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
ur von der Aufsicht auszufüllen: örsaal verlassen von bis			
orzeitig abgegeben um			

 $Be sondere\ Bemerkungen:$

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}$ die folgende Aussage:

$$\sum_{k=1}^{n} \frac{k}{(k+1)!} = 1 - \frac{1}{(n+1)!}$$

2. Komplexe Zahlen

[8 Punkte]

(a) Geben Sie Real- und Imaginärteil von $\sqrt{\mathrm{i}}$ an.

$$\operatorname{Re}\left(\sqrt{i}\right) =$$

$$\mathrm{Im}\left(\sqrt{i}\right) =$$

(b) Zeigen Sie, dass $\arg(1+e^{i\alpha})=\frac{\alpha}{2},$ falls $\alpha\in(-\pi,\pi).$

3. Konvergenz von Folgen und Reihen	[7 Punkte]
(a) Welchen Grenzwert besitzt die Folge $\left(\sqrt{n^2-n}-n\right)_{n\in\mathbb{N}}$?	
$\square - \infty \qquad \square - \frac{1}{2} \qquad \square \ 0 \qquad \square \ \frac{1}{2} \qquad \square \ 1 \qquad \square \ \infty$	\square existiert nicht
(b) Welchen Wert besitzt die Reihe $\sum_{n=0}^{\infty} \frac{1 - (-2)^n}{3^n}$?	[2]
$\Box -\frac{3}{4} \Box -\frac{1}{2} \Box 0 \Box \frac{3}{5} \Box \frac{2}{3} \Box \frac{9}{10}$	$\square \infty$ \square undefiniert
(c) Wo liegt der Grenzwert der Reihe $\sum_{n=1}^{\infty} \frac{1}{(-n)^n}$?	[3]
\square bei $-\infty$ \square in $(-\infty,0)$ \square bei 0 \square in $(0,\infty)$	\square bei $+\infty$ \square undefiniert

4. Potenzreihen	[5 Punkte]
Gegeben ist die Potenzreihe $P(z) = \sum_{n=1}^{\infty}$	$\frac{1}{2}\left(1+\frac{1}{n}\right)^{-n^2}z^n$. Bestimmen Sie ihren Konvergenzradius R .
76-1	

5. Zwischenwertsatz Es sei $f: \mathbb{R} \to \mathbb{R}$ eine 2π -periodische stetige Funktion. Zeigen Sie, dass $f(x_0) = f(x_0 + \pi)$.	[7 Punkte] es ein $x_0 \in \mathbb{R}$ gibt, so dass				
$f(x_0) = f(x_0 + \pi)$. HINWEIS: Man betrachte die Funktion $F(x) = f(x) - f(x + \pi)$.					

6. Ableitungen der Umkehrfunktion

[6 Punkte]

Sei $f:(-2,0)\to\mathbb{R}$ eine zweimal stetig differenzierbare, streng monoton steigende und surjektive Funktion mit f(-1)=1, f'(-1)=2, f''(-1)=3. Wie lautet die Umkehrfunktion und ihre Ableitungen im Punkt 1?

$$f^{-1}(1) =$$

$$(f^{-1})'(1) =$$

$$(f^{-1})''(1) =$$

7. Integration

[6 Punkte]

Sei $f:[0,1] \to [0,1]$ stetig differenzierbar mit f(0)=1, f(1)=0 und f'(x)<0. Zeigen Sie, dass

$$\int_{0}^{1} f^{-1}(y) dy = \int_{0}^{1} f(x) dx.$$

8.	Fourierreihen	[9 Punkte]

Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und 2π -periodisch, mit den Fourierkoeffizienten $\hat{f}_k \in \mathbb{C}$, wobei $\hat{f}_0 = 0$. Sei F eine Stammfunktion von f. Zeigen Sie, dass für die Fourierkoeffizienten \hat{F}_k von F gilt:

$$\hat{F}_k = \frac{\hat{f}_k}{\mathrm{i}k} \quad \text{für } k \neq 0$$

9. Matrixexponential

[9 Punkte]

Gegeben ist die Matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

(a) Berechnen Sie A^n für $n \in \mathbb{N}$.

[3]

$$A^n =$$

(b) Berechnen Sie $\exp(tA)$, $t \in \mathbb{R}$.

[4]

$$\exp(tA) = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$$

(c) Berechnen Sie die Lösung x(t) des Anfangswertproblems $\dot{x} = Ax$, $x(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. [2]

$$x(t) =$$