浙江大学

本科实验报告

课程名称: B/S 体系软件设计

姓 名: 王嘉茗

学院: 计算机学院

系: 计算机科学与技术

专 业: 计算机科学与技术

学 号: 3190105663

指导教师: 胡晓军

2023年 1月 3日

浙江大学实验报告

课程名称:	B/S 体系	软件设计	•	_实验类型	i:	大	程		
实验项目名称:	智	能家居管	理系统						
学生姓名:王嘉	茗	_ 专业:	计算机科学与技术	<u> </u>	学号:		<u>3190</u>	1056	563
同组学生姓名:	无		指导老	师:	胡晓军			_	
实验地点:	个人 PC		实验日	期: 2023	3 年	1	月	3	日

1引言

1.1 编写目的

软件需求规则说明书描述了"智能家居管理系统"的Web端功能性需求和非功能性需求。这一文档旨在对 开发人员的工作有一个总体的评估,以及对测试计划文档中测试人员的工作进行评估,还有对最后产品 的质量性能的评测。

1.2 背景

智能家居是在互联网影响之下物联化的体现。智能家居通过物联网技术将家中的各种设备(如音视频设备、照明系统、窗帘控制、空调控制、安防系统、数字影院系统、影音服务器、影柜系统、网络家电等)连接到一起,提供家电控制、照明控制、电话远程控制、室内外遥控、防盗报警、环境监测、暖通控制、红外转发以及可编程定时控制等多种功能和手段。与普通家居相比,智能家居不仅具有传统的居住功能,兼备建筑、网络通信、信息家电、设备自动化,提供全方位的信息交互功能,甚至为各种能源费用节约资金。

1.3 定义

- 功能测试(Functional Testing): 也称为行为测试(Behavioral Testing),根据产品特征、操作描述和用户方案,测试一个产品的特性和可操作行为以确定它们满足设计需求。本地化软件的功能测试,用于验证应用程序或网站对目标用户能正确工作。使用适当的平台、浏览器和测试脚本,以保证目标用户的体验将足够好,就像应用程序是专门为该市场开发的一样。
- 边界测试(Boundary Testing): 边界测试用来探测和验证代码在处理极端的或偏门的情况时 会发生什么。
- 压力测试(Stress Testing):软件压力测试是一种基本的质量保证行为,它是每个重要软件测试工作的一部分。软件压力测试的基本思路很简单:不是在常规条件下运行手动或自动测试,而是在计算机数量较少或系统资源匮乏的条件下运行测试。通常要进行软件压力测试的资源包括内部内存、CPU可用性、磁盘空间和网络带宽。
- 接口测试(Interface Communication Testing):接口测试的目的是测试接口(外部的或内部的),尤其是那些与系统相关联的外部接口。测试的重点是要检查数据的交换,传递和控制管理过程,还包括处理的次数。外部接口测试一般是作为系统测试来看待的。
- 边界值分析(Boundary Value Analysis, BVA): 边界值分析法就是对输入或输出的边界值 进行测 试的一种黑盒测试方法。通常边界值分析法是作为对等价类划分法的补充,这种情况 下,其测试用 例来自等价类的边界。

1.4 参考资料

《软件设计文档国家标准》

《软件工程项目开发文档范例》

《Software Requirements edition2》 Karl E. Wiegers

《软件需求》刘伟琴、刘洪涛译

2 测试概要

我们将从如下角度对该软件做出详细的测试。在接下来的测试文档里面,会以各种功能模块进行测试, 在模块里面,会涵盖表中所示的测试内容。

测 试项目 名称	测试目的	测试内容
功能测试	针对具体实现测试每个模块功能是否正常	用户类 场景类 设备类
功能验证 测试	利用黑盒测试系统功能是否齐全,各个功能 是否正确执行	登录注册 查看用户信息 创建场景创建设备
边界测试	测试程序对边界情况是否正确处理	登录注册 创建场景 创建设备
压力测试	测试系统在高负载情况下的功能和性能的承 受情况	登录注册 查看用户信息 创建场景创建设备
用户接口 测试	测试用户能否通过网页界面完成想要执行的 操作	登录注册 查看用户信息 创建场景创建设备

3 面向对象测试

3.1 系统整体构架

智能家具管理系统对应的类图如下

3.2 具体类测试

3.2.1 单元测试

用户信息管理类

测试内容	测试结果
用户登录后的状态	通过
用户退出登录后的状态	通过
提供用户信息的信息内容	通过
用户修改信息后的后端数据	通过

场景信息管理类

测试内容	测试结果
场景创建后的状态	通过
场景删除后的状态	通过

设备信息管理类

测试内容	测试结果
设备创建后的状态	通过
设备删除后的状态	通过
设备修改状态后的状态	通过
设备接收信号后的状态	通过

3.2.2 类模型一致性测试

为了确保类与类之间也可以正常合作,还需要对所有类的 CRC 模型进行测试。下面分别列出来针对每一个类的 CRC 模型和对应需要测试的项目

用户类: 重点检查用户登录是否正确,检查显示的用户信息是否与数据库一致,检查用户修改信息后数据库修改情况。

类名: 用户	
描述: 使用该系统的用户	
功能	合作类
用户登录	Database
用户登出	Database
用户查看信息	Database

类名: 用户	
用户修改信息	Database

4 功能验证测试

这一章主要针对系统的各项基本功能分模块进行测试。

功能名称	输入	预期输出	实际输出
注册	点击注册账户链接	跳转至账户注册页面	与预 期输 出相 符
获取用 户信息	登录该用户账号	显示相应的信息	与预 期输 出相 符
获取场 景信息	登录创建场景的用户账号	显示相应的场景信息	与预 期输 出相 符
创建设备	输入需要创建的设备的各种信息,并点击创建 按钮	设备被创建成功,并成功 显示	与预 期输 出相 符
创建场景	输入需要创建的场景的各种信息,并点击创建 按钮	场景被创建成功,并成功 显示	与预 期输 出相 符
修改设 备上报 信息	点击设备详细信息界面中的具体设备信息界 面,通过右侧的开关的等按钮可调整设备上报 信息。	弹出修改成功的相关信息, 刷新界面设备信息成功更新	与预 期输 出相 符

5 边界测试

这一章主要针对各项功能的边界输入进行测试,以确保系统的鲁棒性。

功能名称	输入	预期输出	实际输出
创建用户	刚好满足最大或最小长度ID	创建成功	与预期相符
查看场景信息	未创建过场景	显示0条记录	与预期相符
查看设备信息	未创建过设备	显示0条记录	与预期相符

功能名称	输入	预期输出	实际输出
查看设备详细信息	模拟终端和系统同时改变	都响应	与预期相符
用户登录	错误的用户名或密码	登陆失败	与预期相符
用户登录	不输入用户名或密码	登陆失败	与预期相符
用户注册	输入与原有数据库数据冲突的ID或手机号	注册失败	与预期相符
用户注册	某一行信息不填	注册失败	与预期相符

6 压力测试

下面是当服务器处于高负载运行的情况下做出的测试。

功能名称	输入	输出
创建用户	正常输入注册信息	系统运行正常
获取用户信息	进入用户主页	系统运行正常
搜索场景	搜索场景	系统运行不正常
创建场景	正常输入场景信息	系统运行正常
创建设备	正常输入设备信息	系统运行正常
删除设备	点击删除设备	系统运行正常
获取上报信息	刷新界面	系统运行正常
上报信息	对设备进行相应操作	系统运行正常

7 用户接口测试

7.1 用户登录界面

功能名称	预期操作	实际操作
输入用户名、密码并登录	用户操作方便	与预期相符
单击注册按钮跳转到注册界面	用户易于找到该按钮	与预期相符
单击登录按钮,登陆成功时跳转到资源管理界面	用户易于找到该按钮	与预期相符
登陆失败时显示错误信息	用户易于理解错误信息	与预期相符

7.2 用户注册界面

功能名称	预期操作	实际操作
输入注册所需信息	用户操作方便	与预期相符
注册信息不符合要求时显示错误信息	用户易于理解错误信息	与预期相符

功能名称	预期操作	实际操作
单击注册按钮时,注册成功	用户易于找到该按钮	与预期相符
注册完毕后,点击返回登录按钮可以跳转登陆界面	用户易于找到该按钮	与预期相符

7.3 用户界面

功能名称	预期操作	实际操作
用户查看自己的信息	用户易于理解	与预期相符
修改用户信息	用户易于理解,操作方便	与预期相符
进入设备或场景管理界面	用户易于理解,操作方便	与预期相符

7.4 场景管理界面

功能名称	预期操作	实际操作
查看已创建的场景信息	用户易于理解,操作方便	与预期相符
删除已创建的场景	用户易于理解,操作方便	与预期相符
创建新的场景	用户易于理解,操作方便	与预期相符

7.5 设备管理界面

功能名称	预期操作	实际操作
查看已创建的设备信息	用户易于理解,操作方便	与预期相符
删除已创建的设备	用户易于理解,操作方便	与预期相符
创建新的设备	用户易于理解,操作方便	与预期相符

7.6 设备详细信息展示界面

功能名称	预期操作	实际操作
查看已拥有的设备信息	用户易于理解,操作方便	与预期相符
查看设备的具体上报信息以及更新时间	用户易于理解,操作方便	与预期相符
修改设备的上报信息	用户易于理解,操作方便	与预期相符

8 对软件功能的结论

具体地实现了智能家居管理系统,支持用户注册登录,个人信息的查看与修改,场景信息的展示,场景的创建,设备信息的展示,设备的创建,以及各种具体设备的详细信息展示和上报信息。

经过测试,系统总体功能正常,性能正常,稳定性较高,具有一定的鲁棒性,并发性不高,与用户的交互界面友好。基本达到预期目标。

9分析摘要

9.1 能力

经过上述面向对象测试、功能测试、边界测试、压力测试和用户接口测试,本智能家具管理系统实现了所有基础功能,如用户登录注册、场景与设备相关的管理功能、模拟设备发送信号的接收等。同时能够应对某些边界情况,具有一定的稳定性,基本达到了需求分析中所分析的基本需求。

9.2 限制

本系统当前版本实现了常规智能家居管理系统的基础功能,在应对大流量、高并发方面能力有限。在之后的版本中可以不断完善和优化相关功能,同时也可以扩展更多的功能,更好地为用户提供服务。