

VZH Series

Features

- $4 \phi \sim 18 \phi$, 105° C, 2,000 ~ 5,000 hours assured
- · Large capacitance with ultra low impedance capacitors
- · Designed for surface mounting on high density PC board
- · RoHS Compliance

Marking color: Black

Specifications

Opcomodions														
Items	Performance													
Category Temperature Range	-55°C ~ +105°C													
Capacitance Tolerance	±20% (at 120Hz, 20°C)													
Leakage Current (at 20°C)	I = 0.01CV or 3 (μ A) whichever is greater (after 2 minutes) Where, C = rated capacitance in μ F, V = rated DC working voltage in V													
Tanδ (at 120Hz, 20°C)		Rated Volt Tanō (ma	ax) 0.30	10 0.26 tance exc	16 0.22 eeds 1,	2 0.	25 35 50 0.16 0.13 0.10 0µF, 0.02 shall be added ev		0.10	63 0.08 ery 1,000	80 0.0 0µF incr	8	100 0.07	
	Impedance ratio shall not exceed the values given in the table below.													
		Ra	ited Voltage		6.3	10	16	25	35	50	63	80	100]
Low Temperature Characteristics (at 120Hz)		Impedance	Z(-25°C)/Z(+20°C)	4	3	2	2	2	2	2	2	2	1
Characteristics (at 120112)		Ratio	Z(-55°C)/Z(+20°C)	8	5	4	3	3	3	3	3	3	7
Endurance		ove specificatic		e Change ηδ Current	!	2,000 Hrs for ϕ D \leq 6.3mm & 8×6.5L & 10 ϕ ×7.7L; 5,000 Hrs for ϕ D \geq 8mm Within ±30% of initial value Less than 300% of specified value Within specified value he capacitors are restored to 20°C after the rated voltage applied to 20°C.						e applied	for 2,000 ~	
Shelf Life Test		ove specification	Test Time 1,000 Hrs Capacitance Change Within ±30% of initial value Tanŏ Less than 300% of specified value Leakage Current Within specified value ons shall be satisfied when the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the option of the capacitors are restored to 20℃ after exposing the capacitors						them f	or 1,000	hours at 105			
Ripple Current and Frequency Multipliers			Frequency(H: Multiplier	z)	50, 60		120		1k 0.85		10k up			

Diagram of Dimensions

Lead	Spacing a	Unit: mm					
ϕD	L	Α	В	С	W	P ± 0.2	Fig. No.
4	5.7 ± 0.3	4.3	4.3	5.1	0.5 ~ 0.8	1.0	1
5	5.7 ± 0.3	5.3	5.3	5.9	0.5 ~ 0.8	1.5	1
6.3	5.7 ± 0.3	6.6	6.6	7.2	0.5 ~ 0.8	2.0	1
6.3	7.7 ± 0.3	6.6	6.6	7.2	0.5 ~ 0.8	2.0	1
8	6.5 ± 0.3	8.3	8.3	9.0	0.5 ~ 0.8	2.3	1
8	10 ± 0.5	8.3	8.3	9.0	0.7 ~ 1.1	3.1	1
10	7.7 ± 0.3	10.3	10.3	11.0	0.7 ~ 1.3	4.7	1
10	10 ± 0.5	10.3	10.3	11.0	0.7 ~ 1.3	4.7	1
12.5	13.5 ± 0.5	13.0	13.0	13.7	1.1 ~ 1.4	4.4	2
12.5	16 ± 0.5	13.0	13.0	13.7	1.1 ~ 1.4	4.4	2
16	16.5 ± 0.5	17.0	17.0	18.0	1.1 ~ 1.4	6.4	2
16	21.5 ± 0.5	17.0	17.0	18.0	1.1 ~ 1.4	6.4	2
18	16.5 ± 0.5	19.0	19.0	20.0	1.1 ~ 1.4	6.4	2
18	21.5 ± 0.5	19.0	19.0	20.0	1.1 ~ 1.4	6.4	2

(*): For $4 \sim 6.3 \phi$ is 0.4 max.

 $\phi D \leq 6.3$ mm

6.3V

Dimension: $\phi D \times L(mm)$

Ripple Current: mA/rms at 100k Hz, 105°C

Dime	ensior	n and Permissible Ripple Current										Im	Impedance: Ω/ at 100k Hz, 20°C						
	V. DC 6.3V (0J)					OV (1A)		16	6V (1C)		2	5V (1E))	35V (1V)			50V (1H)		
μF	Contents	ϕ D×L	Imp.	mA	φD×L	Imp.	mA	φD×L	Imp.	mA	φD×L	Imp.	mA	φD×L	Imp.	mA	φD×L	Imp.	mA
1	010																4×5.7	2.9	60
2.2	2R2																4×5.7	2.9	60
3.3	3R3																4×5.7	2.9	60
4.7	4R7													4×5.7	1.35	80	5×5.7	1.52	85
10	100							4×5.7	1.35	80	4×5.7	1.35	80	5×5.7	0.80	150	6.3×5.7	0.88	165
22	220	4×5.7	1.35	80	4×5.7	1.35	80	5×5.7	0.80	150	5×5.7	0.80	150	6.3×5.7	0.44	230	6.3×5.7	0.88	165
33	330	4×5.7	1.35	80	5×5.7	0.80	150	6.3×5.7	0.44	230	6.3×5.7	0.44	230	6.3×5.7	0.44	230	6.3×7.7	0.68	185
47	470	5×5.7	0.80	150	6.3×5.7	0.44	230	6.3×5.7	0.44	230	6.3×5.7	0.44	230	6.3×5.7	0.44	230	6.3×7.7 8×6.5	0.68 0.68	185 185
68	680													8×6.5	0.36	280	8×10	0.34	369
100	101	6.3×5.7	0.44	230	6.3×5.7	0.44	230	6.3×5.7	0.44	230	6.3×7.7 8×6.5	0.36 0.36	280 280	8×10	0.17	450	8×10 10×10	0.34 0.18	369 553
150	151	6.3×5.7	0.44	230	6.3×5.7	0.44	230	6.3×7.7 8×6.5	0.36 0.36	280 280	8×10	0.17	450	8×10 10×7.7	0.17 0.17	450 450	10×10	0.18	553
220	221	6.3×7.7	0.36	280	6.3×7.7 8×6.5	0.36 0.36	280 280	6.3×7.7	0.36	280	8×10 10×7.7	0.17 0.17	450 450	10×10	0.09	670	12.5×13.5	0.12	650
330	331	8×6.5 8×10	0.36 0.17	280 450	8×10 10×7.7	0.17 0.17	450 450	8×10 10×7.7	0.17 0.17	450 450	8×10	0.17	450	10×10 12.5×13.5	0.090 0.070	670 820	12.5×13.5	0.12	650
470	471	8×10 10×7.7	0.17 0.17	450 450	8×10 10×7.7	0.17 0.17	450 450	8×10 10×10	0.17 0.09	450 670	10×10	0.09	670	12.5×16	0.060	950	16×16.5	0.073	1,000
680	681	8×10 10×7.7	0.17 0.17	450 450	10×10	0.09	670	10×10	0.09	670	12.5×13.5	0.070	820	12.5×16	0.060	950	16×16.5	0.073	1,000
1,000	102	8×10	0.17	450	10×10	0.09	670	12.5×13.5	0.070	820	12.5×16	0.060	950	16×16.5	0.054	1,260	18×16.5	0.066	1,500
1,500	152	10×10	0.09	670	12.5×13.5	0.070	820	12.5×16	0.060	950	16×16.5	0.054	1,260	18×16.5 16×21.5	0.048 0.038	1,500 1,630	18×21.5	0.05	1,620
2,200	222	12.5×13.5	0.070	820	12.5×16	0.060	950	16×16.5	0.054	1,260			1,260	18×21.5	0.038	1,750			
3,300	332	12.5×16	0.060	950	16×16.5	0.054	1,260	16×16.5 16×21.5	0.054 0.038	1,260 1,630	18×16.5 16×21.5 18×21.5	0.038	1,500 1,630 1,750						
4,700	472	16×16.5	0.054	1,260	16×16.5	0.054	1,260	18×16.5 16×21.5	0.048 0.038	1,500 1,630									
6,800	682	18×16.5		1,500	18×16.5	0.048	1,500												
8,200	822	16×21.5 18×16.5 16×21.5	0.038 0.048 0.038	1,630 1,500 1,630	16×21.5 18×21.5	0.038	1,630 1,750												

SMD Aluminum Electrolytic Capacitors

Dimension: $\phi D \times L(mm)$

Ripple Current: mA/rms at 100k Hz, 105°C

Impedance: Ω/ at 100k Hz, 20°C

Dimension and Permissible Ripple Current

	V. DC	6:	3V (1J)		80)V (1K)		10	0V (2A)		
μF	ontents	ϕ D×L	Imp.	mA	φD×L	lmp.	mA	φD×L	lmp.	mA	
4.7	4R7	5×5.7	1.90	70							
10	100	6.3×5.7	1.20	130							
22	220	6.3×7.7	0.90	150	8×10	1.3	130	8×10	1.3	130	
33	330	8×10	0.50	280	8×10	1.3	130	10×10	0.7	200	
47	470	8×10	0.50	280	10×10	0.7	200	10×10	0.7	200	
100	101	10×10	0.25	450	10×10	0.7	200	12.5×13.5	0.32	450	
150	151	12.5×13.5	0.15	700	12.5×13.5	0.32	450	12.5×16	0.26	550	
220	221	12.5×13.5	0.15	700	12.5×16	0.26	550	16×16.5 18×21.5	0.17 0.15	650 950	
330	331	16×16.5	0.082	900	16×16.5	0.17	650	18×16.5 16×21.5	0.15 0.15	850 900	
470	471	16×16.5	0.082	900	16×21.5	0.15	900	18×21.5	0.15	950	
680	681	18×16.5 16×21.5	0.080 0.080	1,150 1,150	18×21.5	0.15	950				
1,000	102	18×21.5	0.06	1,250			-				

Part Numbering System

Pb-free and PET Carrier VZH Series 470µF ±20% 6.3V 8φ×10L Tape coating case <u>0J</u> <u>TR</u> **VZH 471** M 0810 Capacitance Tolerance Rated Voltage Package Type Terminal Lead Wire and Series Name Capacitance Case size Coating Type

Note: For more details, please refer to "Part Numbering System (SMD Type)" on page 15.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Lelon:

 VZH-470M2ATR-1010
 VZH-101M1HTR-0810
 VZH-101M1JTR-1010
 VZH-221M1CTR-0607
 VZH-471M1JTR-1616

 VZH-681M1ATR-1010
 VZH-101M1KTR-1010
 VZH-222M0JTR-1313
 VZH-222M1CTR-1616
 VZH-222M1ETR-1616

 VZH-2R2M1HTR-0406
 VZH-330M0JTR-0406
 VZH-330M1ATR-0506
 VZH-330M1CTR-0606
 VZH-330M1TR-0606

 VZH-330M1JTR-0810
 VZH-330M1VTR-0606
 VZH-331M0JTR-0810
 VZH-331M1ATR-0810
 VZH-331M1JTR-1616

 VZH-331M1KTR-1616
 VZH-331M1VTR-1313
 VZH-332M0JTR-1316
 VZH-332M1ATR-1616
 VZH-3R3M1HTR-0406

 VZH-470M0JTR-0506
 VZH-470M1ATR-0606
 VZH-471M1CTR-1010
 VZH-471M1HTR-1616
 VZH-472M0JTR-1616

 VZH-472M1ATR-1616
 VZH-4R7M1HTR-0506
 VZH-4R7M1JTR-0506
 VZH-680M1HTR-0810
 VZH-681M0JTR-0810

 VZH-681M1CTR-1010
 VZH-681M1HTR-1616
 VZH-681M1VTR-1316
 VZH-25V331MG10-RK
 VZH101M1ETR-0607K

 VZH331M1ETM-0810K
 VZH101M1ETR-0806K
 VZH-25V471MH10-RK
 VZH100M1ETM-0406K
 VZH220M1VTR-0506

 0505LEGT
 VZH471M1KTR-1816
 VZH101M1KTR-1010
 VZH471M1KTR-1010
 VZH471M1CTR-1010
 VZH221M1CTR-0607

 VZH470M2ATR-1010
 VZH471M1HTR-0810