Calibrating Photometric Stereo by Holistic Reflectance Symmetry Analysis

Zhe Wu, Ping Tan National University of Singapore

Motivation

The generalized bas-relief(GBR) ambiguity [1]

$$G = \begin{pmatrix} 1 & 0 & \mu \\ 0 & 1 & \nu \\ 0 & 0 & \lambda \end{pmatrix}$$

$$\widehat{\boldsymbol{n}} = \frac{G\boldsymbol{n}}{\|G\boldsymbol{n}\|}, \widehat{\boldsymbol{s}} = \frac{G^{-T}\boldsymbol{s}}{\|G^{-T}\boldsymbol{s}\|}$$

Resolve GBR by identifying special normals.

specular spike [2]

isotropic & reciprocal pairs [3]

diffuse maxima[4]

Disadvantages of these methods:

- Rely on the identification of special points
- Do not use all available information

Solve GBR in a global approach?

References

- [1] P. Belhumeur, D. Kriegman, and A. Yuille. The basrelief Ambiguity. *IJCV*, 1999
- [2] O. Drbohlav and M. Chaniler. Can two specular pixels calibrate photometric stereo? *ICCV*, 2005
- [3] P. Tan, L. Quan, and T. Zickler. The geometry of reflectance symmetries. TPAMI, 2011
- [4] P. Favaro and T. Papadhimitri. A closed-form solution to uncalibrated photometric stereo via diffuse maxima. CVPR, 2012
- [5] N. Alldrin, S. Mallick, and D. Kriegman. Resolving the generalized bas-relief ambiguity by entropy minimization. CVPR, 2007
- [6] B. Shi, Y. Matsushita, Y. Wei, C. Xu, and P. Tan. Selfcalibrating photometric stereo. CVPR, 2010

Theory

The GBR ambiguity is uniquely determined by restoring the 'low-rank' structure of BRDF slices estimated from at least two images! (see the paper for proofs)

Auto-calibration Method

Experimental Results

Real datasets (more in the paper) Normal

Calibrated Our

Calibrated

method

Top: calibrated method; Bottom: our method. method

BRDF slice

Evaluation with known shape & BRDF

method

method

An input image

Comparison on mean normal error (deg)

Method	Apple	Duck	Pear	Pear2
[5]	9.0	7.5	9.7	23.8
[6]	8.9	6.6	24.9	23.7
[2]	8.7	7.7	4.6	13.8
[3]	9.8	7.3	N/A	N/A
[4]	7.0	7.4	7.3	9.2
ours	7.8	5.7	4.4	11.7