Q# 0.15 Language Quick Reference

Primitive Types	
64-bit integers	Int
Double-precision floats	Double
Booleans	Bool
	e.g.: true or false
Qubits	Qubit
Pauli basis	Pauli
	e.g.: PauliI, PauliX, PauliY, or PauliZ
Measurement	Result
results	e.g.: Zero or One
Sequences of	Range
integers	e.g.: 110 or 510
Strings	String
	e.g.: "Hello Quantum!"
"Return no	Unit
information" type	e.g.: ()

Derived Types	
Arrays	elementType[]
Tuples	(type0, type1,) e.g.:(Int, Qubit)
Functions	<pre>input -> output e.g.: ArcCos : (Double) -> Double</pre>
Operations	<pre>input => output is variants e.g.: H : (Qubit => Unit is Adj)</pre>

User-Defined Ty	pes
Declare UDT with	newtype <i>Name</i> = (Type, Type);
anonymous items	e.g.: newtype <i>Pair</i> = (Int, Int);
Define UDT literal	Name(baseTupleLiteral)
	e.g.: let origin = Pair(0, 0);
Unwrap operator!	VarName!
(convert UDT to	<pre>e.g.: let originTuple = origin!;</pre>
underlying type)	(now originTuple = (0, 0))
Declare UDT with	newtype <i>Name</i> =
named items	(Name1: Type, Name2: Type);
	e.g.: newtype Complex =
	(Re : Double, Im : Double);
Accessing named	VarName::ItemName
items of UDTs	e.g.: complexVariable::Re
Update-and-	set VarName w/= ItemName <- val;
reassign for named	e.g.: mutable $p = Complex(0., 0.);$
UDT items	set p w/= Re <- 1.0;

Symbols and Variables	
	let varName = value
symbol	
Declare mutable symbol (variable)	mutable varName = initialValue
Update mutable symbol (variable)	set varName = newValue
Apply-and-reassign	<pre>set varName operator= expression e.g.: set counter += 1;</pre>

```
Functions and Operations
Define function
                    function Name(in0 : type0, ...)
(classical routine)
                    : returnType {
                        // function body
Call function
                    Name(parameters)
                    e.g.: let two = Sqrt(4.0);
Define operation
                    operation Name(in0 : type0, ...)
(quantum routine)
                    : returnType {
with explicitly
                        body { ... }
                        adjoint { ... }
specified body,
                        controlled { ... }
controlled and
                        adjoint controlled { ... }
adjoint variants
Define operation
                    operation Name(in0 : type0, ...)
with automatically
                    : returnType is Adj + Ctl {
generated adjoint
and controlled
variants
Call operation
                    Name(parameters)
                    e.g.: Ry(0.5 * PI(), q);
Call adjoint
                    Adjoint Name(parameters)
operation
                    e.g.: Adjoint Ry(0.5 * PI(), q);
Call controlled
                    Controlled Name(controlQubits,
operation
                        parameters)
                    e.g.: Controlled Ry(controls,
                        (0.5 * PI(), target));
```

Control Flow	
Iterate over a range of numbers	<pre>for index in range { // Use integer index } e.g.: for (i in 0N-1) { }</pre>
While loop (within functions)	while (condition) { }
Iterate over an array	for val in array { // Use value val } e.g.: for (q in register) { }
Repeat-until- success loop	<pre>repeat { } until (condition) fixup { }</pre>
Conditional statement	<pre>if (cond1) { } elif (cond2) { } else { }</pre>
Ternary operator	condition ? caseTrue caseFalse
Return a value	return value
Stop with an error	fail "Error message"
Conjugations (ABA^{\dagger}) pattern)	within { } apply { }

Arrays	
Allocate array	<pre>mutable name = new Type[length] e.g.: mutable b = new Bool[2];</pre>
Get array length	Length(name)
Access k-th element	name[k] NB: indices are 0-based
Assign k-th element (copy-and-update)	set name w/= k <- value e.g.: set b w/= 0 <- true;
Array literal	[value0, value1,] e.g.: let b = [true, false, true];
Array concatenation	array1 + array2 e.g.: let t = [1, 2, 3] + [4, 5];
Slicing (subarray)	name[sliceRange] e.g.: if t = [1, 2, 3, 4, 5], then t[1 3] is [2, 3, 4] t[3] is [4, 5] t[1] is [1, 2] t[0 2] is [1, 3, 5] t[1] is [5, 4, 3, 2, 1]

Debugging (classical)	
Print a string	Message("Hello Quantum!")
Print an	Message(\$"Value = {val}")
interpolated string	

Resources

Documentation	
Quantum	https://docs.microsoft.com/
Development Kit	quantum
Q# Language	https://docs.microsoft.com/
Reference	quantum/language
Q# Libraries	https://docs.microsoft.com/
Reference	qsharp/api

Q# Code Reposit	tories
QDK Samples	https://github.com/microsoft/
	quantum
QDK Libraries	https://github.com/microsoft/
	QuantumLibraries
Quantum Katas	https://github.com/microsoft/
(tutorials)	QuantumKatas
Q# compiler and	https://github.com/microsoft/
extensions	qsharp-compiler
Simulation	https://github.com/microsoft/
framework	qsharp-runtime
Jupyter kernel and	https://github.com/microsoft/
Python host	iqsharp
Source code for	https://github.com/
the documentation	MicrosoftDocs/quantum-docs-pr

Qubit AllocationAllocate a register of N qubitsuse reg = Qubit[N]; // Qubits in reg start in $|0\rangle$.Allocate one qubit Allocate a mix of qubit registers and individual qubitsuse one = Qubit(); ... (Qubit[N], Qubit(), ...);

Measurements	
Measure qubit in	M(oneQubit)
Pauli Z basis	yields a Result (Zero or One)
Reset qubit to $ 0\rangle$	Reset(<i>oneQubit</i>)
Reset an array of	ResetAll(register)
qubits to $ 00\rangle$	

Working with Q# from command line

Command Line Basics	
cd <i>dirname</i>	
cd ~	
cd	
mkdir <i>dirname</i>	
code .	

Working with Q# Projects	
Create new project	<pre>dotnet new console -lang Q#output project-dir</pre>
Change directory to project directory	cd project-dir
Build project	dotnet build
Run all unit tests	dotnet test

Math reference

Complex Arithmetic					
i^2	-1				
(a+bi) + (c+di)	(a+c) + (b+d)i				
(a+bi)(c+di)	$a \cdot c + a \cdot di + b \cdot ci + (b \cdot d)i^2 =$				
	$= (a \cdot c - b \cdot d) + (a \cdot d + b \cdot c)i$				
Complex conjugate	$\overline{a+bi} = a-bi$				
Division $\frac{a+bi}{c+di}$	$\frac{a+bi}{c+di} \cdot 1 = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{(a+bi)(c+di)}{c^2+d^2}$				
Modulus $ a+bi $	$\sqrt{a^2+b^2}$				
$e^{i\theta}$	$\cos \theta + i \sin \theta$				
e^{a+bi}	$e^a \cdot e^{bi} = e^a \cos b + ie^a \sin b$				
r^{a+bi}	$r^a \cdot r^{bi} = r^a \cdot e^{bi \ln r} =$				
	$= r^a \cos(b \ln r) + i \cdot r^a \sin(b \ln r)$				
Polar form $re^{i heta}$ to	$a = r \cos \theta$				
Cartesian form $a+bi$	$b = r \sin \theta$				
Cartesian form $a+bi$	$r = \sqrt{a^2 + b^2}$				
to polar form $re^{i heta}$	$ heta = \operatorname{arctan}(rac{b}{a})$				

Gates ı	reference					
	Qubit gates					
Gate	Matrix representation	Ket-bra representation	Applying to $ \psi angle=lpha 0 angle+eta 1 angle$	Applying to basis states:	$\ket{0}, \ket{1}, \ket{+}, \ket{-}$ and	$ \pm i\rangle = \frac{1}{\sqrt{2}}(0\rangle \pm i 1\rangle)$
Χ	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ 0\rangle \langle 1 + 1\rangle \langle 0 $	$ \psi\rangle = \alpha 1\rangle + \beta 0\rangle$	$X 0\rangle = 1\rangle X 1\rangle = 0\rangle$	$X \mid + \rangle = \mid + \rangle$ $X \mid - \rangle = - \mid - \rangle$	$egin{aligned} X \left i ight angle &= i \left -i ight angle \ X \left -i ight angle &= -i \left i ight angle \end{aligned}$
Υ	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$i(\ket{1}\bra{0}-\ket{0}\bra{1})$	$Y \psi\rangle = i(\alpha 1\rangle - \beta 0\rangle)$	$Y 0\rangle = i 1\rangle$ $Y 1\rangle = -i 0\rangle$	$Y \mid + \rangle = -i \mid - \rangle$ $Y \mid - \rangle = i \mid + \rangle$	$egin{aligned} Y\ket{i} &= \ket{i} \ Y\ket{-i} &= -\ket{-i} \end{aligned}$
Z	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ 0\rangle \left< 0 \right - \left 1 \right> \left< 1 \right $	$Z \left \psi \right\rangle = \alpha \left 0 \right\rangle - \beta \left 1 \right\rangle$	$Z 0\rangle = 0\rangle$ $Z 1\rangle = - 1\rangle$	$Z \mid + \rangle = \mid - \rangle$ $Z \mid - \rangle = \mid + \rangle$	$egin{aligned} Z\ket{i} &= \ket{-i} \ Z\ket{-i} &= \ket{i} \end{aligned}$
1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$ 0\rangle \langle 0 + 1\rangle \langle 1 $	$I\ket{\psi}=\ket{\psi}$			
Н	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	$ 0 angle\left\langle + + 1 angle\left\langle - ight.$	$H \psi\rangle = \alpha +\rangle + \beta -\rangle = \frac{\alpha + \beta}{\sqrt{2}} 0\rangle + \frac{\alpha - \beta}{\sqrt{2}} 1\rangle$	$H 0\rangle = +\rangle H 1\rangle = -\rangle$	$H \mid + \rangle = \mid 0 \rangle$ $H \mid - \rangle = \mid 1 \rangle$	$H \left i \right\rangle = e^{i\pi/4} \left -i \right\rangle$ $H \left -i \right\rangle = e^{-i\pi/4} \left i \right\rangle$
S	$egin{bmatrix} 1 & 0 \ 0 & i \end{bmatrix}$	$\left 0\right\rangle \left\langle 0\right +i\left 1\right\rangle \left\langle 1\right $	$S\left \psi\right\rangle = \alpha\left 0\right\rangle + i\beta\left 1\right\rangle$	$S 0\rangle = 0\rangle$ $S 1\rangle = i 1\rangle$	$S \mid + \rangle = \mid i \rangle$ $S \mid - \rangle = \mid -i \rangle$	$S i\rangle = -\rangle$ $S -i\rangle = +\rangle$
Т	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	$\left 0\right\rangle \left\langle 0\right +e^{i\pi/4}\left 1\right\rangle \left\langle 1\right $	$T\left \psi\right\rangle = \alpha\left 0\right\rangle + e^{i\pi/4}\beta\left 1\right\rangle$	$T\ket{0}=\ket{0}$	$T\ket{1}=e^{i\pi/4}\ket{1}$	
$R_x(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$	$\begin{array}{l} \cos\frac{\theta}{2}\left 0\right\rangle\left\langle 0\right -i\sin\frac{\theta}{2}\left 1\right\rangle\left\langle 0\right -\\ -i\sin\frac{\theta}{2}\left 0\right\rangle\left\langle 1\right +\cos\frac{\theta}{2}\left 1\right\rangle\left\langle 1\right \end{array}$	$\begin{array}{l} R_x(\theta) \left \psi \right> = \ (\alpha \cos \frac{\theta}{2} - i\beta \sin \frac{\theta}{2}) \left 0 \right> + \\ + \left(\beta \cos \frac{\theta}{2} - i\alpha \sin \frac{\theta}{2}\right) \left 1 \right> \end{array}$	$R_x(\theta) 0\rangle = \\ = \cos \frac{\theta}{2} 0\rangle - i \sin \frac{\theta}{2} 1\rangle$	$egin{aligned} R_x(heta) \ket{1} &= \ &= \cos rac{ heta}{2} \ket{1} - i \sin rac{ heta}{2} \ket{0} \end{aligned}$	
$R_y(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$	$\cos\frac{\theta}{2}\ket{0}\bra{0} + \sin\frac{\theta}{2}\ket{1}\bra{0} - \\ -\sin\frac{\theta}{2}\ket{0}\bra{1} + \cos\frac{\theta}{2}\ket{1}\bra{1}$	$\begin{split} R_y(\theta) \left \psi \right\rangle &= \left(\alpha \cos \frac{\theta}{2} - \beta \sin \frac{\theta}{2} \right) \left 0 \right\rangle + \\ &+ \left(\beta \cos \frac{\theta}{2} + \alpha \sin \frac{\theta}{2} \right) \left 1 \right\rangle \end{split}$	$\begin{array}{l} R_y(\theta) \left 0 \right\rangle = \\ = \cos \frac{\theta}{2} \left 0 \right\rangle + \sin \frac{\theta}{2} \left 1 \right\rangle \end{array}$	$\begin{array}{l} R_y(\theta) \left 1 \right\rangle = \\ = \cos \frac{\theta}{2} \left 1 \right\rangle - \sin \frac{\theta}{2} \left 0 \right\rangle \end{array}$	
$R_z(\theta)$	$\begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$	$e^{-i\theta/2}\left 0\right\rangle \left\langle 0\right +e^{i\theta/2}\left 1\right\rangle \left\langle 1\right $	$R_z(\theta) \psi\rangle = \alpha e^{-i\theta/2} 0\rangle + \beta e^{i\theta/2} 1\rangle$	$R_z(\theta) 0\rangle = e^{-i\theta/2} 0\rangle$	$R_z(\theta) 1\rangle = e^{i\theta/2} 1\rangle$	
$R_1(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	$ 0\rangle \langle 0 + e^{i\theta} 1\rangle \langle 1 $	$R_1(\theta) \psi\rangle = \alpha 0\rangle + \beta e^{i\theta} 1\rangle$	$R_1(\theta) 0\rangle = 0\rangle$	$R_1(\theta) 1\rangle = e^{i\theta} 1\rangle$	
Two-a	ubit gates					
Gate	Matrix Representation	Ket-Bra Representation	Applying to $ \psi\rangle=lpha 00 angle+eta$	$ 01\rangle + \gamma 10\rangle + \delta 11\rangle$ Ap	oplying to basis states	
CNOT	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	$\begin{array}{l} 00\rangle\langle00 + 01\rangle\langle01 + 11\rangle\langle\\ \text{or}\\ 0\rangle\langle0 \otimes I + 1\rangle\langle1 \otimes X \end{array}$	$ 10 + 10 angle\langle11 $ CNOT $ \psi angle=lpha 00 angle+eta 01 angle$			$NOT\ket{10} = \ket{11}$ $NOT\ket{11} = \ket{10}$
SWAP	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$ 00\rangle \langle 00 + 01\rangle \langle 10 + 10\rangle$	$\langle 01 + 11 angle \langle 11 $ SWAP $ \psi angle = lpha 00 angle + oldsymbol{\gamma} oldsymbol{01} angle$			$WAP\ket{10} = \ket{01}$ $WAP\ket{11} = \ket{11}$
Controlle	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ 0\rangle\langle 0 \otimes I + 1\rangle\langle 1 \otimes U$	$CU\ket{\psi} = lpha\ket{00} + eta\ket{01} + (\gamma a_{0,0} + \delta a_{0,1})\ket{10} + (\gamma a_{0,0} + \delta a_{0,1})\ket{10} + (\gamma a_{0,0} + \delta a_{0,1})$			$\begin{array}{l} U \left 10 \right\rangle = a_{0,0} \left 10 \right\rangle + a_{1,0} \left 11 \right\rangle \\ U \left 11 \right\rangle = a_{0,1} \left 10 \right\rangle + a_{1,1} \left 11 \right\rangle \end{array}$
Toffoli	(CCNOT) gate					

Gate	Matrix Representation Ket-Bra Representation	Applying to $ \psi\rangle = \alpha 000\rangle + \beta 001\rangle + \gamma 010\rangle + \delta 011\rangle + \epsilon 100\rangle + \lambda 101\rangle + \eta 110\rangle + \kappa 111\rangle$	Applying to basis states	
CCNOT	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} (I_2 - 11\rangle \langle 11) \otimes I_1 + 11\rangle \langle 11 \otimes X$	$\begin{array}{l} CCNOT \left \psi \right\rangle \ = \ \alpha \left 000 \right\rangle \ + \ \beta \left 001 \right\rangle \ + \ \gamma \left 010 \right\rangle \ + \\ \delta \left 011 \right\rangle + \epsilon \left 100 \right\rangle + \lambda \left 101 \right\rangle + \kappa \left 110 \right\rangle + \boldsymbol{\eta} \left 111 \right\rangle \end{array}$	$CCNOT 001\rangle = 001\rangle$ $CCNOT 010\rangle = 010\rangle$	$\begin{array}{l} {\sf CCNOT} 100\rangle = 100\\ {\sf CCNOT} 101\rangle = 101\\ {\sf CCNOT} 110\rangle = 111\\ {\sf CCNOT} 111\rangle = 110 \end{array}$