CSE 417T Introduction to Machine Learning

Lecture 15

Instructor: Chien-Ju (CJ) Ho

Logistics: Homework 3

Homework 3 is posted on the course website

- Due on March 25 (Wednesday), 2020
 - Homework 4 will be announced before the due of homework 3

Discussion on Exam 1

417T Part 2 Machine Learning Techniques

Focus of the rest of the semester

Decision Tree

Decision Tree <u>Hypothesis</u>

- \vec{x} = (annual income, have debt)
- $y \in \{approve, deny\}$

Credit Card Approval Example

Decision Tree <u>Hypothesis</u>

- Pros
 - Easy to interpret (interpretability is getting attention and is important in some domains)
 - Can handle multi-type data (Numerical, categorical. ...)
 - Easy to implement (Bunch of if-else rules)
- Cons

Decision Tree <u>Hypothesis</u>

Credit Card Approval Example

• Pros

- Easy to interpret (interpretability is getting attention and is important in some domains)
- Can handle multi-type data (Numerical, categorical. ...)
- Easy to implement (Bunch of if-else rules)

Cons

- Generally speaking, bad generalization
- VC dimension is infinity
- High variance (small change of data leads to very different hypothesis)
- Easily overfit
- Why we care?
 - One of the classical model
 - Building block for other models (e.g., random forest)

Learning Decision Tree from Data

• Given dataset *D*, how to learn a decision tree hypothesis?

x_1	x_2	x_3	у
+1	+1	+1	+1
+1	+1	-1	+1
+1	-1	+1	+1
+1	-1	-1	+1
-1	+1	+1	+1
-1	+1	-1	+1
-1	-1	+1	-1
-1	-1	-1	-1

- Potential approach
 - Find $g = argmin_{h \in H} E_{in}(h)$
 - Multiple decision trees with zero E_{in}

Learning Decision Tree from Data

- Conceptual intuition to deal with overfitting
 - Regularization: Constrain *H*

- Informally, minimize $E_{in}(\overrightarrow{w})$ subject to $size(tree) \leq C$
- This optimization is generally computationally intractable.
- Most decision tree learning algorithms rely on *heuristics* to approximate the goal.

Greedy-Based Decision Tree Algorithm

- DecisionTreeLearn(D): Input a dataset D, output a decision tree hypothesis
 - Create a root node r
 - If termination conditions are met
 - return a single node tree with leaf prediction based on D
 - Else: Greedily find a feature A to split according to split criteria
 - For each possible value v_i of A
 - Let D_i be the dataset containing data with value v_i for feature A
 - Create a subtree DecisionTreeLearn(D_i) that being the child of root r
- Most decision tree learning algorithms follow this template, but with different choices of heuristics

Example

x_1	x_2	x_3	у
+1	+1	+1	+1
+1	+1	-1	+1
+1	-1	+1	+1
+1	-1	-1	+1
-1	+1	+1	+1
-1	+1	-1	+1
-1	-1	+1	-1
-1	-1	-1	-1

DecisionTreeLearn(D)

Create a root node *r*

If termination conditions are met

return a single node tree with leaf prediction based on

Else: Greedily find a feature A to split according to split criteria

For each possible value v_i of A

Let D_i be the dataset containing data with value v_i for feature ACreate a subtree DecisionTreeLearn (D_i) that being the child of root r

Termination conditions not net Find a feature to split

DecisionTreeLearn

x_1	x_2	x_3	у
-1	+1	+1	+1
-1	+1	-1	+1
	-1	+1	-1
-1	-1	-1	-1

Decision Tree Learn

Decision Tree Learn

terminate

Don't terminate

Leaf prediction +1

Find next feature to split

Example Heuristics

- Termination conditions
 - When the dataset is empty
 - When all labels are the same
 - when all features are the same
 - When the depth of the tree is too deep
 - ...
- Leaf predictions
 - Majority voting
 - Average (for regression)
 - ...
- Split criteria?

```
DecisionTreeLearn(D)
Create a root node r
If termination conditions are met
return a single node tree with leaf prediction based on
Else: Greedily find a feature A to split according to split criteria
For each possible value v_i of A
Let D_i be the dataset containing data with value v_i for feature A
Create a subtree DecisionTreeLearn(D_i) that being the child of root r
```

Split Criteria

Which feature would you choose to split?

x_1	x_2	у
+1	+1	+1
+1	-1	+1
-1	+1	-1
-1	-1	-1

- Want the tree to be "smaller"
 - Intuition: choose the one that the labels are more "pure"
 - Example: choose the one maximizing information gain => ID3 Algorithm

Brief Intro to Information Entropy

- Assume there are K possible labels
- Entropy:
 - $H(D) = \sum_{i=1}^{K} p_i \log_2 \frac{1}{p_i}$
 - p_i : ratio of points with label i in the data
- Binary case with K=2

By definition $0 \log_2 \frac{1}{0} = 0; \ 1 \log_2 \frac{1}{1} = 0$

Brief Intro to Information Entropy

- Assume there are K possible labels
- Entropy:
 - $H(D) = \sum_{i=1}^{K} p_i \log_2 \frac{1}{p_i}$
 - p_i : ratio of points with label i in the data

By definition $0 \log_2 \frac{1}{0} = 0; \ 1 \log_2 \frac{1}{1} = 0$

• Binary case with K=2

- Interpretations of entropy
 - Expected # bit to encode a distribution
- Higher entropy
 - data is less "pure"
- "pure" data => all labels are +1 or -1 => entropy = 0
- Want to choose splits that lead to pure data, i.e., lower entropy

ID3: Using Information Gain as Selection Criteria

- Information gain of choosing feature A to split
 - $Gain(D,A) = H(D) \sum_i \frac{|D_i|}{|D|} H(D_i)$ [The amount of decrease in entropy]
- ID3: Choose the split that maximize Gain(D, A)

Notation: |D| is the number of points in D

DecisionTreeLearn(D)

Create a root node *r*

If termination conditions are met

return a single node tree with leaf prediction based on

Else: Greedily find a feature A to split according to split criteria

For each possible value v_i of A

Let D_i be the dataset containing data with value v_i for feature ACreate a subtree DecisionTreeLearn(D_i) that being the child of root r

- ID3 termination conditions
 - If all labels are the same
 - If all features are the same
 - If dataset is empty
- ID3 leaf predictions
 - Most common labels (majority voting)
- ID3 split criteria
 - Information gain

ID3: Using Information Gain as Selection Criteria

Information gain of choosing feature A to split

•
$$Gain(D,A) = H(D) - \sum_{i} \frac{|D_i|}{|D|} H(D_i)$$

• ID3: Choose the split that maximize Gain(D, A)

x_1	x_2	у
+1	+1	+1
+1	-1	+1
-1	+1	-1
-1	-1	-1

$$H(D) = 0.5 \log_2 2 + 0.5 \log_2 2 = 1$$

x_1	x_2	y
+1	+1	+1
+1	-1	+1

$$H(D_{x_1=1}) = 0$$
 $H(D_{x_1=-1}) = 0$

$$Gain(D, x_1) = 1$$

x_1	x_2	y
+1	+1	+1
-1	+1	-1

$$H(D_{x_2=1}) = 1$$
 $H(D_{x_2=-1}) = 1$

$$Gain(D, x_2) = 0$$

Further Addressing Overfitting

- More Regularization (Constrain H)
 - Do not split leaves past a fixed depth
 - Do not split leaves with fewer than *c* labels
 - Do not split leaves where the maximal information gain is less than au
- Pruning (removing leaves)
 - Evaluate each split using a validation set and compare the validation error with and without that split (replacing it with the most common label at that point)
 - Use statistical test to examine whether the split is "informative" (leads to different enough subtrees)

More Discussions

- Real-valued features (continuous x)
 - Need to select threshold for branching

- Regression (continuous y)
 - Change leaf prediction: e.g., average instead of majority vote
 - Change measure for "purity" of data: e.g., squared error of data

Ensemble Learning

The focus of the next two lectures

Ensemble Learning

- Assume we are given a set of learned hypothesis
 - $g_1, g_2, ..., g_M$
- What can we do?
 - Use validation to pick the best one
 - What if all of them are not good enough
- Can we aggregate them?

Is Aggregation a Good Idea?

 At a 1906 country fair, ~800 people participate in a contest to guess the weight of an ox.

 Reward is given to the person with the closest guess.

• The average guess is 1,197lbs. The true answer is 1,198lbs.

Is Aggregation a Good Idea?

- Maybe
 - If the hypothesis is "diverse", and "in average" they seem good
- Question:
 - How do we find a set of hypothesis that are diverse and "in average" good
 - How do we aggregate the set of hypothesis
- Ensemble learning
 - Bagging Random Forest (March 17)
 - Boosting AdaBoost (March 19)