Quantum Gauss-Jordan Elimination for Code in Quantum

Kyungbae Jang, Hyunji Kim, and Hwajeong Seo

Contents

Our Contribution

Background & Related Work

Proposed Method

Performance & Evaluation

Conclusion & Future work

Our Contribution

- We propose quantum Gauss-Jordan elimination
 - Implemented only with quantum gates
 - without Grover's algorithm
- Efficient quantum Gauss-Jordan elimination for binary matrix

Quantum arithmetic for quantum cryptanalysis of code-based ciphers

Code-based Cryptography

- Applying coding theory to public key cryptosystems
 - Generates a pair of generation matrix and parity check matrix from the defined code
 - Used for Encryption and Decryption

NIST Post-Quantum Cryptography Standardization

- Post-quantum cryptography standardization contest in progress with NIST
 - In addition, round 4 is currently in progress

PQC Standardization Process: Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates

PQC Fourth Round Candidate Key-Establishment Mechanisms (KEMs)

The following candidate KEM algorithms will advance to the fourth round:

Public-Key Encryption/KEMs

Classic McEliece

- Classic McEliece is a Niederreiter system that uses a parity check matrix as its public key
 - A randomly generated vector with a weight condition t is the secret value

→ Public key (Parity check matrix)

Challenge

$$C = He = (00000011), e = ?$$

Information Set Decoding (ISD)

C = He = (00000011), e = ?

Challenge

X ISD Summary

- 1. Randomly select as many columns as the number of rows in the public key
- 2. The matrix constructed in this way is an information set, if the information set is invertible? Perform Gaussian Elimination
- 3. We can compute the inverse matrix of the information set → Information set ⁻¹
- 4. Check $C \times Information set^{-1}$'s weight
- 5. If we included all error locations in step 1, the attack succeeded, in case †, the attack failed in case †, the attack succeeded.

Information Set Decoding (ISD)

- When the result vector of [Generated Inverse X Ciphertext] is Weight t=2,
 - Attack success → The result vector tells us the positions of the values 1.

$$\begin{pmatrix} 11011010 \\ 11010101 \\ 111111100 \\ 000011000 \\ 10110000 \\ 10011100 \\ 01111100 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \text{Weight} = 2(t)$$

$$(H_{n-k})^{-1} \qquad C^{T}$$

• Means that the 1st and 2nd of the column selected in step 1 are $1 \rightarrow$ Recover Secret

Information Set Decoding (ISD) in Quantum

- Information Set Decoding is an attack algorithm that reduces the search space of brute force
- Efficient Brute force(ISD) → Acceleration using the Grover algorithm
 - \rightarrow Reduced complexity of square root ($\sqrt{}$)

Quantum Information Set Decoding (QISD)

- Overbeck–Sendrier's analysis for QISD [1]
 - Grover's algorithm cannot reduce the complexity of information set decoding to the square root

McEliece	Workload Cryptanalysis				
parameters	(in binary operations)				
m, t	classic	quantum			
	computer				
 -	2^{91}	2^{86}			
11,40	2^{98}	2^{94}			
12, 22	2^{93}	2^{87}			
12,45	2^{140}	2^{133}			

Quantum Information Set Decoding (QISD)

- Bernstein's QISD analysis in "Grover vs McEliece" paper[2]
 - Grover's algorithm can reduce the complexity of Information Set Decoding to the square root
 - But, on a theoretical level

Quantum Information Set Decoding (QISD)

We implement and analyze quantum Gauss-Jordan elimination

- 1. Randomly select as many columns as the number of rows in the public key
- 2. The matrix constructed in this way is an information set, if the information set is invertible? Perform Gaussian Elimination
- 3. We can compute the inverse matrix of the information set → Information set ⁻¹
- 4. Check $C \times Information set^{-1}$'s weight

Grover on ISD

1. Input Setting using butterfly network

2. Implement Quantum Gaussian Elimination

3. Weight check module for qubit vector

Quantum

Classical

 Previous work uses Grover's algorithm to implement quantum Gauss-Jordan elimination --> High quantum cost

QUANTUM GAUSS JORDAN ELIMINATION

DO NGOC DIEP¹ AND DO HOANG GIANG²

•

2. QGJE ALGORITHM

- Step 1 Use the Grover's Search algorithm to find out the first non-zero $a_{i1} \neq 0$.
- Step 2 If the search is successful, produce the first leading 1 in the first place as a_{11} , else change to the next column and repeat step 1.
- Step 3 Eliminate all other entries $a_{1,1}, \ldots, a_{N,1}$ in the column.
- Step 4 Change N to N-1, control if still N>0, repeat the procedure from the step 1.
- Step 5 In backward eliminate all $a_{N-1,N}, \ldots, a_{1,N}$.
- Step 6 Check if N > 0, change N to N 1 and repeat the step 5.

- We need to implement the following as a quantum circuit.
 - Swaps between rows
 - Eliminations between rows

Fig. 4. Primary goal of Gauss-Jordan elimination.

- We implement quantum Gauss-Jordan elimination only with quantum gates
 - Elimination → implemented with CCX, CCCX gates
 - Swaps → Implemented with Multi-Controlled Swap gates

```
Algorithm 1 Quantum implementation of elimination.
Input: S, c, l-th Column col_l of S (k qubits), and temp
    column t (k ancilla qubits)
Output: Eliminated l-th column col_l, S, and c
 1: for i = 0 to (k - l - 2) do
       for j = 0 to (k - l - 2 - i) do
           CCX(col_{l}[l+i], t[l+i+j+1], col_{l}[l+i+j+1])
           CCCX(col_{l}[l+i], t[l+i+j+1], c[l+i]), c[l+i]
   i + j + 1
          for p = 0 to (k - l - 2) do
 5:
              CCCX(col_{l}[l+i], t[l+i+j+1], col_{l+n+1}[l+i])
 6:
    [i]), col_{l+p+1}[l+i+j+1]
           end for
 7:
       end for
 9: end for
10: return col_l, S, and c
```

```
Algorithm 2 Quantum implementation of Arrange.

Input: k, l, target column col_t, and temp column t

Output: col_t (arranged)

1: for i=0 to (k-l-2) do

2: Multi(i+1)-Controlled Rotation(t[l \sim (l+i)], col_t)

3: end for

4: return col_t
```

Algorithm 3 Quantum implementation of Rotation.

```
Input: k, l, and col_t
Output: col_t (rotated)

1: for i=0 to (k-l-2) do

2: Swap(col_t[(l+i), col_t[(l+i+1)]

3: end for

4: return col_t
```

- Estimation of quantum resources required for quantum Gaussian-Jordan elimination
- In our implementation, the process of checking one row and one column
 for a wide range of the target matrix is repeated to perform quantum Gauss- Jordan

 → It is more efficient than using Grover's algorithm, but requires a lot of cost.

TABLE I
QUANTUM RESOURCES REQUIRED FOR OUR GAUSS-JORDAN
ELIMINATION.

H_k size Qubits	# Y	#CY	#CCY	#CCCY	#Multi-Controlled	Full	
	Quoits	π2 \	$\pi C \Lambda$	πССΛ	πСССА	Swap	Depth
8×8	88	56	70	140	546	1,064	1,404

Analysis & Conclusion

- Disadvantage of code-based ciphers
 - The key size is very large (very large memory capacity
 - Quantum attackers need very large memory (large qubits) and cost (gates and depth)to attack

```
3.1 Parameter set kem/mceliece348864 
 KEM with m=12,\ n=3488,\ t=64. Field polynomials f(z)=z^{12}+z^3+1
```

- mceliece348864 public key size → (768 X 3488) parity check matrix
 - In the case of QISD, setting the public key is an unconditional option
 - 2,678,784 (2.6 million) qubits required for public key setting
- Therefore, code-based cryptography is sufficiently resistant to quantum computers.
 - It is practically impossible to attack unless a new attack algorithm other than ISD comes out.

Thank you!