

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 3

 Название:
 Проектирование устройств управления на основе ПЛИС

 Дисциплина:
 Основы проектирования устройств ЭВМ

Студент	ИУ6-62Б		С.В. Астахов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			
		(Подпись, дата)	(И.О. Фамилия)

Вариант 20

Введение

Цель работы: закрепление на практике теоретических знаний о способах реализации устройств управления, исследование способов организации узлов ЭВМ, освоение принципов проектирования цифровых устройств на основе ПЛИС.

Условие:

Индивидуальные условия приведены в таблицах 1-3.

Таблица 1 - варианты диаграмм и активных сигналов

Вариант	Диаграмма	Активные сигналы М в состоянии										
	переходов	S1	S2	S3	S4	S5	S6					
20	4	2	0	1, 7	5, 6	3	4					

Таблица 2 - условия переходов и наименование отладочной плат

Bap.	Плата		Условия переходов													
		У1	У2	У3	У4	У5	У6	У7	У8	У9	У10	У11	У12	У13	У14	У15
20	Nexus2	(a)	EF	CD	AC	ABC	D	AF	<u>@</u>	(a)	@	@	AB	@	ABC	EF+A

Таблица 3 - активные сигналы для переходов

Bap.	Условия переходов														
	У1	У2	У3	У4	У5	У6	У7	У8	У9	У10	У11	У12	У13	У14	У15
20	-	-	4,3,2	0	5,7	-	5	-	-	-	-	-	-	-	

Этап 1

Задание:

В лабораторной работе необходимо разработать и реализовать на ПЛИС XC3S200 или XC3E-500 управляющий автомат схемного типа, обрабатывающий входное командное слово $C=\{A,B,C,D,E,F\}$, выдающий сигналы управления $M=\{M0,...,Mk-1\}$ операционному блоку.

Ход работы:

На рисунке 1 показана схема отладки устройства управления с помощью отладочного набора XC3S200.

Рисунок 1 - схема отладки устройства управления

Схема переходов/состояний цифрового автомата, лежащего в основе устройства управления, хема отладки устройства управления приведена на рисунке 2.

Рисунок 2 - схема переходов/состояний автомата

Результаты моделирования модуля, реализующего цифровой автомат, приведены на рисунках 3-4. Из них следует, что он работает корректно.

Рисунок 3 – временная диаграмма тестирования

	180 ns	200 ns	220 ns	240 ns	260 ns	280 ns	300 ns	320 ns	340 ns
X	000000		000101 000000	110000 000000	000111	000000		001000 000111	000000
10000	0000	0100	X0000001X	00010000	00001000		00000100	X0000	1000 00
				10000	ps				
	s1		X s6	s5	X	s1		x5 X	s1

Рисунок 4 – временная диаграмма тестирования

Исходный код модуля верхнего уровня разрабатываемого устройства приведен в листинге 1.

Листинг 1 – описание устройства

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity main is
PORT ( CLK : IN std_logic;
      COUNT : IN std_logic;
      RESET : IN std logic;
      SW : IN std_logic_vector (5 DOWNTO 0);
      LED : OUT std_logic_vector (7 DOWNTO 0));
end main;
architecture Behavioral of main is
COMPONENT control_unit
PORT (
    C : IN std_logic_vector (5 DOWNTO 0);
    CLK : IN std_logic;
      RST : IN std_logic;
    M : OUT std_logic_vector (7 DOWNTO 0) );
END COMPONENT;
COMPONENT stab
PORT (
      RST: IN STD_LOGIC; --Системный сигнал сброса
      CLK: IN STD_LOGIC; --Сигнал синхронизации
      COUNT: IN STD_LOGIC; --Сигнал кнопки с дребезгом
      CNT: OUT STD_LOGIC --Сигнал кнопки, очищенный от дребезга
```

```
);
END COMPONENT;

SIGNAL CNT_int:std_logic;

begin

stab_inst : stab
PORT MAP (CLK=>CLK,
COUNT=>COUNT,
RST=>RESET,
CNT=>CNT_int);

control_unit_inst : control_unit
PORT MAP (C=>SW,
RST=>RESET,
M=>LED,
CLK=>CNT_int);

end Behavioral;
```

Вывод: в ходе выполнения лабораторной работы были закреплены на практике навыки разработки устройств управления на языке VHDL (в данном случае — устройства управления с жесткой логикой на основе цифровых автоматов).