Persuading Voters

(Ricardo Alonso-Odilon Amara('16))

Presenter: Renjie Zhong 2020200977@ruc.edu.cn

Renmin University of China

September 2022

Presenter: Renjie Zhong Renmin University of China
Persuading Voters 1 / 22

Motivation

- Information is the cornerstone of democracy.
- Often it is provided by a third party.
- The third party (politician) can increase the probability of approval by strategically designing information.

A Hook

Table 1: Payoffs from Approving the Proposal.

Focus

- How does the politician strategically design the policy experiment?
- When the equilibrium payoff of the equili voters?
- **3** How do the voting rules affect **the information** provision (with commitment) and the voters' welfare?

Applications

- Voting for Public Goods
- Promotion
- Democracy Politics
- Corporate Governance

Main Findings

- Under a simple-majority rule, the politician's influence always makes a majority of voters weakly worse off.
- 2 This negative influence can happen even when voters' preferences are very aligned.
- Voters face a trade-off between control and information.
- 4 When their preferences are aligned, each voter has single-peaked preferences over k-voting rules and even prefers unanimity over any other k-voting rule

Related Literature

- 1 Information Design: Multiple Receivers in A Game
 - lonso and C'amara (2016), Michaeli (2014), Taneva (2014) and Wang (2013)
- 2 Institution rule endogenously affects the information
 - Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996) and Jackson and Tan (2013)

The Model: Voters

- *n* > 1: voters
- $X = \{x_1, x_0\}$: two alternatives
- Θ : finite state space with $\theta_i < \theta_{i+1}$ for all $i \in \{1, 2, ..., T\}$ and $T \geq 2$
- $p = (p_{\theta})_{\theta} \in \Theta$: common prior belief
- $u_i(x,\theta), u_i: X \times \Theta \to R$: voters payoff function
- $\delta = (\delta_{\theta}^{i})_{\theta \in \Theta} = (u_{i}(x_{1}, \theta) u_{i}(x_{2}, \theta))_{\theta \in \Theta}$:the voters type

The Model: Politician and Voting Rules

- Politician
 - ullet Payoff function: $V(x_1, heta) = 1$ and $V(x_0, heta) = 0$ for all heta
 - Policy experiment;
 - ① commits to public experiment $\pi = \pi(\cdot | \theta)$
 - ② finite realization space $S: \pi(\cdot | \theta) \in \Delta(S)$ (Let $q = q(s|\pi.p)$ be the updated posterior belief of voters)
- Voting Rules
 - Proposal x_1 is selected iff it receives at least k votes, where $k \in \{1, 2, ..., n\}$ is the established electoral rule.

The Model: Equlibrium Selection

- *i*'s expected net payoff from implementing the proposal: $\langle \mathbf{q}, \theta \rangle = \sum_{\theta \in \Theta} \delta_{\theta} \mathbf{q}_{\theta} \ge 0$
- optimal voting strategy: $a(q, \theta) = 1$ if $\langle q, \theta \rangle \geq 0$ and $a(q,\theta) = 0$ if $\langle q,\theta \rangle < 0$ where $a: \Delta(\Theta) \times \mathbb{R}^n \to \{0,1\}$
- Politician's problem: maximize $E_{\pi}[v(q)] \Leftrightarrow$ maximize Pr(Approval)

The Model: A Formal Definition of the Aligned Preference

- δ^i and δ^j rank states in the same order: for every pair $\theta, \theta' \in \Theta$, we have $\delta^i_{\theta} > \delta^i_{\theta'} \Leftrightarrow \delta^j_{\theta} > \delta^j_{\theta'}$
- δ^i and δ^j agree under full information: for every $\theta \in \Theta$, we have $\delta_{\theta}^{i} \geq 0 \Leftrightarrow \delta_{\theta}^{J} \geq 0$

The Model: Other Definitions

- policy implementation brings payoff $\delta^i_{ heta}$ to voter i under state heta
- the win set: $W_k = \{q \in \Delta(\Theta) | \sum_{i=1}^n a(q, \theta_i) \ge k\}$
- the set of approval states: $D(\theta) = \{\theta \in \Theta | \delta_{\theta} \ge 0\}$
- ullet the set of approval beliefs: $A(q)=\{q\in\Delta(\Theta)|\langle q, heta
 angle\geq 0\}$
- the set of strong rejection beliefs: $R(q) = \{q \in \Delta(\Theta) | \theta \in D \Rightarrow q(\theta) = 0\}$
- all coalitions containg at least n k + 1 voters: B
- the set of strong rejection beliefs (with a coalition): $R_k = \bigcup_{b \in B} \bigcap_{\delta \in b} R(\delta)$

Dictator: the Optimal Experiment

- If $p \in A(p)$, no need to run an experiment
- Proposition:

So suppose that $p \notin A(p)$ and $W \neq \phi$. An optimal π involves $\{s^+, s^-\}$, where s^+ induces posterior $q^+ \in A(q)$ while s induces posterior $q^- \in R(\delta)$. q^+ and q^- satisfies:

- **1** q^+ , q^- max $\frac{||q^--p||}{||q^+-p||}$
- (2) q^+ , q^- , p are collinear(Bayes Plausibility)
- Then the equilibrium approval probability: $Pr(Approval) = \frac{||q^+ - p||}{||q^- - p|| + ||q^+ - p||}$

Dictator: the Optimal Experiment

- Intuition (Figure $|\Theta| = 3$)
 - $\mathbf{0}$ π max approval probability $\Leftrightarrow \pi \max q^+$ $\Leftrightarrow q^+$ is more "closer" to p while q^- is more "further" away from p
 - 2 Collinearity: Bayes Plausibility implies that p is the convex combination of q^+ and q^-

Dictator: the Optimal Experiment

Figure 1: Simplex Representing the Beliefs of Dictator δ , with $\delta_{\theta_3} > 0 > \delta_{\theta_2} > \delta_{\theta_1}$

Dictator: Cut off State

Proposition:

There exists a θ^* such that, for every optimal experiment:

- 1 the voter approvals for any δ_{θ} if $\delta_{\theta} > \delta_{\theta^*}$
- 2 the voter rejects for any δ_{θ} if $\delta_{\theta} > \delta_{\theta^*}$
- 3 Indifference: the dictator is indifferent to approval and rejection
- Intuition: the politician bundles the rejection states with the smallest incremental loss, i.e the smallest $|\delta_{\theta}|$

k-voting rule: Optimal Experiment

- if $p \in co(W_k)$, then it is easy to run an experiment to successfully persuade the voters
- Suppose $p \notin co(W_k)$ and $W_k \neq \phi$.
- Proposition:

An optimal π^* involves running π_1 followed by π_2 that induce the following $\tau_1, \tau_2 \in \Delta(\Delta(\Theta))$:

- **1** $supp(\tau_1) = \{q^-, q^+\}$, s.t. $\tau_1 q^+ + (1 \tau_1)q^- = p$
 - $q^+ \in co(W_k)$
 - q^- s.t. at least k voters believe that $Pr[\delta^i_{ heta} < 0] = 1$
 - $q^+, q^- \max \frac{||q^- p||}{||q^+ p||}$
- $2 \ \operatorname{supp}(\tau_2) \in W_k \ \operatorname{and} \ E_{\tau_2}[q] = q^+$
- **Intuition**: think of $co(W_k)$ as a single receiver and τ_2 is for forming the coalition

k-voting rule: Optimal Experiment

Figure 2: Optimal Experiment for Example 2

Welfare Analysis

- let $u_{\nu}^{\prime}(p)$ be i's payoff without any π
- let $u_{\nu}^{i}(\pi^{*})$ be i's payoff with π^{*}

Proposition:

- 1 If k = n, then $u_k^i(\pi^*) \geq u_k^i(p)$
- 2 If k < n, then $u_{\nu}^{i}(\pi^{*}) \geq u_{\nu}^{i}(p)$ for at most k-1 voters, while $u_{k}^{i}(\pi^{*}) \leq u_{k}^{i}(p)$ for at least n-k+1 voters. And these at least n - k + 1 voters are strictly worse off if no optimal π^* satisfies $Supp|\pi^*|=2$

Intuition:

- 1 Choose a less informative experiment to strictly increase the probability of approval.
- No optimal experiment with only two realizations implies the politician must be targeting different winning coalitions.
- Corollary: If $p \notin W_{\frac{n+1}{2}}$, then a majority of voters prefer unamanity over simple majority.

k-voting rule: Single Peaked Preference

Prposition:

Suppose all voters rank in the same order, then they have single peaked preference over $k(\theta)$:

The voter's expected utility is non-decreasing in k, for $k(\theta) > k$, while non-increasing for $k(\theta) < k$

Intuition: Considering the cutoff state

The sufficient Conditions for the "Monotone" Preference

Proposition:

- Suppose all voters:
 - nank states in the same order
 - 2 agree under full information
- Then, every voter weakly prefers a k + 1-voting rule to a k-voting rule, for $k \in \{1, 2, ..., n\}$.
- Consequently, every voter weakly prefers unanimity over any other k-voting rule.

Intuition:

- $\mathbf{0}$ θ_{k}^{*} is the same cut-off state for all voters
- 2 All voters view the weak representative voter as too easy to persuade and, thus, prefer a higher k rule.

Extensions

- Controller knows the State
- Controller's Payoff Depends on the State
- Preference Shocks
- Heterogenous Prior Beliefs
- Optimal Endorsement: Another Interpretation