ESTRUZI SUCCE APPRICAZIONI

- (1) Size $f: \mathbb{R}^3 \to \mathbb{R}^4$ le reguente applicatione $f(x_1y_1z) = (x 2y + z, 3x + 2y + 11z, x + 3z, 2x y + 5z)$
- 2) Verificare che & e' limerre

Fricologo Sione WeV spati vettoriali on un comper K. $f: V \rightarrow W$ e' lineare of $f(A\vec{v} + \beta\vec{w}) = Af(\vec{v}) + \beta f(\vec{w}) \ \forall v_i w \in V$

Consider $\vec{w}_1, \vec{w}_2 \in \mathbb{R}^3 \in A_1 \beta \in \mathbb{R}$ Verific se $f(\vec{w}_1 + \vec{\beta}\vec{w}_2) = A_1 f(\vec{w}_1) + \beta_1 f(\vec{w}_2)$ $f(\vec{w}_1 + \vec{\beta}\vec{w}_2) = f(\vec{w}_1 + \vec{\beta}\vec{w}_2, \vec{w}_1 + \vec{\beta}\vec{w}_2) = \vec{w}_1 = (x_1, y_1, z_1)$ $\vec{w}_2 = (x_1, y_2, z_2)$

 $= \left(2 \cdot (\alpha x_1 + \beta x_2) - 2 \cdot (\alpha y_1 + \beta y_2) + \alpha z_1 + \beta z_2 \right)$ $3 \cdot (\alpha x_1 + \beta x_2) + 2 (\alpha y_1 + \beta y_2) + M \cdot (\alpha z_1 + \beta z_2), \qquad f(\vec{e_1}) = (1, 3, 1, 2)$ $\alpha x_1 + \beta x_2 + 3 \cdot (\alpha z_1 + \beta z_2),$

 $2 \cdot (\alpha x_1 + \beta x_2) - (\alpha y_1 + \beta y_2) + 5(x_1 + \beta z_2) =$

 $= \left(2 d x_{1} + 2 \beta x_{2} - 2 d y_{1} - 2 \beta y_{2} + d z_{1} + \beta z_{2} \right)$ $3 d x_{1} + 3 \beta x_{2} + 2 d y_{1} + 2 \beta y_{2} + M d z_{1} + M d z_{2} \right)$ $d x_{1} + \beta x_{2} + 3 d z_{1} + 3 d z_{2} \right)$

 $2 dx_1 + 2\beta x_2 - dy_1 - \beta y_2 + 5 dz_1 + 5 \beta z_2 =$

 $= \left(2x_1 - 2y_1 + z_1 + \beta(2x_2 - 2y_2 + z_2), d(3x_1 + 2y_1 + Mz_1) + \beta(3x_2 + 2y_2 + Mz_2), d(x_1 + 2z_2) + \beta(x_2 + 2z_2) \right)$

 $2\left(x_1+3z_1\right)+\beta(x_2+3z_3),$

 $= \alpha \cdot f(\vec{w}_1) + \beta \cdot f(\vec{w}_2)$

b) Sovivere la matrice A associata a ξ respetto alle basi commiche. $A = [f(e_1), f(e_2), f(e_3)]$

 $\begin{cases}
\vec{e_2} = \xi((1,0,0)) = (1,3,1,2) & \xi(\vec{e_2}) = \xi((0,1,0)) = (-2,2,0,-1) \\
\xi(\vec{e_3}) = \xi((0,0,1)) = (1,11,3,5)
\end{cases}$

 $\Rightarrow A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & 2 & 11 \\ 1 & 0 & 3 \\ 2 & -1 & 5 \end{bmatrix} \quad \Leftarrow \quad \begin{cases} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - 2y + z \\ 3x + 2y + 11z \\ x + 3z \\ 2x - y + 5z \end{pmatrix}$

C) Troubse the base for
$$\frac{1}{2}$$
 and $\frac{1}{2}$ by $\frac{1}{2}$ $\frac{1$

2 Sieu f: R3 > R3 l'endomorfisms definits de

 \Rightarrow ($\forall 1, \forall \alpha, \alpha, \alpha$) $\notin J_{mm}(f), \forall \alpha \in \mathbb{R}$.

 $\{(x_1y_1z) = (x+3y+4z, 2x+y+3z, -x+2y+2)$ 2) Trovere, la matrice A che rappresente f rispetto ella base conomica di \mathbb{R}^3 $A = \begin{bmatrix} 2 & 3 & 4 \\ -1 & 1 & 3 \\ 2 & 1 \end{bmatrix}$ b) Calcolare la dimensione dell' Smm(f).

(Rivero) dim (Imm(f)) = rg(A)

Osservo de $\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} \neq 0$, me 3^{20} col = 1^{2} col + 2^{2} col $\Rightarrow rg(A) = 2$

C) Thouse une base per Ver(f) $Ver(f) = \begin{cases} \vec{v} \in \mathbb{R}^3 : f(\vec{v}) = \vec{o}_{\mathbb{R}^3} \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3 : x + 3y + 4z = 0, 2x + y + 3z = 0, \\ richleto x \longrightarrow -x + 2y + z = 0 \end{cases}$ $= \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, 5z + 5y = 0 \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, y, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, z) \in \mathbb{R}^3, x = z + 2y, y = -z \end{cases} = \begin{cases} (x, z) \in \mathbb{R}^3, x = z$

d) Per quali valori di $h \in \mathbb{R}$ il vettore $(2,3,h) \in \text{Sam}(f)$? $\begin{vmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\ 2 & h \end{vmatrix} = 2 \begin{vmatrix} 3 & 2 \\ 2 & h \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\ 2 & h \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\ 2 & h \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\$

=> h+1=0 (=> h=-1

• Se h = -1 =) $ray(1 \ 3 \ 2) = 2$ imports $1^{\circ} rig - 2^{\circ} rig = 3^{\circ} rig$ =) $(2,3,h) \in 3mm(f) \implies h = -1$

el Dipe se l'applications f e' iniettive, surrettive e bijettive.

(Rivord) f e' iniethive \Leftrightarrow Ver(f) $\{\vec{j}\}\$ (> teo 3 slide)

"Imm(f) = W \Rightarrow f e' numerica con $f: V \rightarrow W$, VeW satisfies.

- . Jim $(3mm(f)) = 2 \Rightarrow 3mm(f) \neq R^3 \Rightarrow f non e miotive$. But punts precedente $Var(f) \neq \{3\} \Rightarrow f non e' iniotive$
- => of man e' briettiva.
- 3) Sion data la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 3 & 1 & 3 \end{pmatrix}$

3) % determining le equazione de applicazione lineare $f: \mathbb{K}^3 \rightarrow \mathbb{K}^3$ avente A quale matrice rispetto alla base comonica di R3. f(x,y,z) = (X + 2y + 3z, -y - z, 2X + y + 3z)b) Si determining une base per Ver(f) e la dimensione di Jmm(f) $\begin{cases} x + 2y + 3z = 0 \\ -y - z = 0 \\ 2x + y + 3z = 0 \end{cases} \Rightarrow \begin{cases} y = -y \\ x + 2y - 3y = 0 \\ 2x + y + 3z = 0 \end{cases} \Rightarrow \begin{cases} y, y, -y \\ y(1, 1, -1) \end{cases}$ \Rightarrow $\ker(\{1\}) = \{(x,y,z) \in \mathbb{R}^3 \mid x + zy + 3z = 0, -y - z = 0, 2x + y + 3z = 0\} =$ $= \frac{1}{2} (x, y, z) \in \mathbb{R}^{3} | z = -y, x = y = {[1, 1, -1]} = 0 \rightarrow boxe$ $\operatorname{dim}(\operatorname{Smm}(f)) = \operatorname{dim}(\mathbb{R}^3) - \operatorname{dim}(\operatorname{Ver}(f)) = 3 - 1 = 2$ c) Si verifichi se posti $\vec{N} = (2,0,4)$ e $\vec{W} = (-3,1,3)$ valgar $\vec{V}_{mom}(\vec{p}) = [\vec{v},\vec{W}]$ dion (Jmm (f)) = 2 => Kg(A) = 2 Dalla matrice A considers le prime due colonne $\operatorname{Jmm}(\xi) = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -\frac{1}{3} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, (-1) \cdot \begin{pmatrix} 3 \\ -\frac{1}{3} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -3 \\ -\frac{1}{3} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \vec{N}, \vec{W} \end{bmatrix}$ d) Si determini dim (Tomon (f) o Ner (f)) dim (Jmm(f) n Ker(f)) = dim (Jmm(f)) + dim (Ker(f)) - dim (R3) = = 2 + 1 - 3 = 0(4) Al variare di $K \in \mathbb{R}$, si consideri l'applicazione lineare $\beta: \mathbb{R}^3 \to \mathbb{R}^3$ definite des $\begin{pmatrix} 1 & -3 & 1 \\ 1 & -4 & 2 \\ 0 & -4 & 1 \end{pmatrix}$ f(x,y,z) = ((k+1)x - 3y + kz, x - ky + 8z, -ky + z)a) de determini per queli valori d' UEIR l'applicazione of nom e'intettiva Ner(R) = { (x,y,2) ∈ R3 : (n+1) x - 3y + Nz = 0, x - ky + 2z = 0, - ky + z=0 }= = $\{(x_1, y_1, z) \in \mathbb{R}^3 : (k+1) \times -3y + kz = 0, x + ky = 0, z = +ky = 0\}$ $= \{(x,y,z) \in \mathbb{R}^3 : (u+1) (-uy) - 3y + u^2y = 0, x = -uy, z = uy\} = 0$ $= \frac{1}{2}(x_1y_1z) \in \mathbb{R}^3: -k^2y - ky - 3y + k^2y = 0, x = -ky, z = ky = 0$ $= \{ (x_1y_1z) \in \mathbb{R}^3 : (k+3)y=0, x=-ky, z=ky \}$ Affinche & sia iniethina occorre che Ker(f)=}(0,0,0)}, ma qui si vuole il

b) Per valori di K trovati al punto 2), si determini una box per Ker(f) e una per Jomon (f).

• Se
$$K = -3 \Rightarrow B_1 = \{ [-3, 1, 3] \}$$
 por $Wer(\xi)$
 $K = -3 \Rightarrow A = \begin{pmatrix} -2 & -3 & -3 \\ -1 & 3 & 2 \\ 0 & 3 & 1 \end{pmatrix}$ $rg(A) \leq 3 \quad e \begin{vmatrix} -2 & -3 \\ -1 & 3 \end{vmatrix} \neq 0$

$$\Rightarrow \begin{vmatrix} -2 & -3 & -3 \\ 3 & 2 \end{vmatrix} = -2 \begin{vmatrix} 3 & 2 \\ 3 & 1 \end{vmatrix} - \begin{vmatrix} -3 & -3 \\ 3 & 1 \end{vmatrix} = -2(3-6) - (-3+9) = 6-6=0$$

$$\Rightarrow rg(A) = dirm(\exists mm(\xi)) = 2 \Rightarrow B_2 = \{ (-2, -1, 0), (-3, 3, 3) \}$$

c) Si dimostri che $\mathbb{R}^3 = \text{Smm}(f) \oplus \text{ker}(f)$ dim(ker(f)) = 1, dim(Smm(f)) = 23 vettori di \mathbb{B}_1 e \mathbb{B}_2 somo lin. indip., infetti: $(-3 - 2) \xrightarrow{f-3} \text{ne}(B) \leq 3 \text{ e. ro}(B) \geq 2$

 $B = \begin{pmatrix} -3 & -2 & -3 \\ \frac{1}{3} & 0 & 3 \end{pmatrix} \quad \text{Mg}(B) \leq 3 \quad \text{e} \quad \text{rg}(B) \geq 2$

 \Rightarrow dim (\Im mm(f) + \ker (f)) = 3 \Rightarrow $\mathbb{R}^3 = \Im$ mm(f) + \ker (f) \Rightarrow \Rightarrow dim (\mathbb{R}^3) = 3

Da Grassmann dim (Smm (f) () Ker(f)) = 0 => 3mm(f) (Ker(f))

Discutere e risolvere al variare di 2 E R il sequente sistema lineare, riducendo la matrice a gradini.

 $\begin{cases} X - y + 2 = 2 \\ 2X - y + 32 = -1 \end{cases} \begin{bmatrix} A_1b \end{bmatrix} = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 2 & -1 & 3 & -1 \\ 1 & 0 & 2 & \lambda \end{pmatrix} = R_2 = R_2 - 2R_1$

 $\Rightarrow A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{vmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} = 0 \Rightarrow rg(A) = 2$

 $| \begin{array}{c} 1 & -1 & 2 \\ 0 & 1 & -5 \\ 0 & 0 & \lambda_{+}3 \end{array} | = (\lambda_{+}3) \implies \text{le } \lambda_{+}3 \neq 0 \iff \lambda_{+}-3 \implies \text{reg}([A,b]) = 3$ $\implies \text{reg}(A) \neq \text{reg}([A,b]) \Rightarrow \text{le sistema e' impossibile}$ $\bullet \text{de } \lambda_{-}-3 \implies \text{reg}([A,b]) = 2$

 \Rightarrow rg(A) = rg([A,b]) \Rightarrow il sistema e' compatibile e ammete $\infty^{3-2} = \infty^{1}$ soluzioni

Sie $f: \mathbb{R}^4 \rightarrow \mathbb{R}^4$ un'applicazione limeone definita da f(x,y,z,t) = (x+z,y,2x+2z-y,-3y+x+z)

a) Si determining bouse e dim (Ner(f)).

$$\begin{aligned} & \ker(\xi) = \left\{ \begin{array}{c} (x_1 y_1 \xi_1 + 1) \in \mathbb{R}^4 \mid x_{+2} = 0 , y = 0, 2x + 2\xi - y = 0, -3y_{+}x_{+2} = 0 \right\} \\ &= \left\{ (x_1 y_1 \xi_1 + 1) \in \mathbb{R}^4 \mid x = -\xi, y = 0, -2\xi + 2\xi = 0, x = -\xi \right\} = \\ &= \left\{ (x_1 y_1 \xi_1 + 1) \in \mathbb{R}^4 \mid x = -\xi, y = 0 \right\} = \left\{ (-\xi_1 0, \xi_1 + 1) : \xi_1 + \xi_2 \right\} = \\ &= \left[\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right] \implies & \dim(\operatorname{Ver}(\xi)) = 2 \end{aligned}$$

b) Si determining base e dim (4mm (f)):