Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Exercice 1: Bode 2° ordre

Solution antérieure

Question 1: Donner la réponse en régime permanent du sismographe z(t)

$$z(t) = -6\cos(t) + 2\sin(t) \ \forall t > 0$$

Question 2: Montrer que cette réponse se met sous la forme $z(t)=U_0A\sin(t+arphi)$ où A et arphi seront donnés

$$z(t) = -6\cos(t) + 2\sin(t) = \sqrt{(-6)^2 + 2^2} \left(\frac{-6}{\sqrt{(-6)^2 + 2^2}} \cos(t) + \frac{2}{\sqrt{(-6)^2 + 2^2}} \sin(t) \right)$$

$$z(t) = 2\sqrt{10} \left(\frac{-6}{2\sqrt{10}} \cos(t) + \frac{2}{2\sqrt{10}} \sin(t) \right)$$

$$z(t) = 2\sqrt{10} \left(\frac{-3}{\sqrt{10}} \cos(t) + \frac{1}{\sqrt{10}} \sin(t) \right)$$

$$z(t) = 2\sqrt{10} (\sin \varphi \cos(t) + \cos \varphi \sin(t))$$

$$\begin{cases} \sin \varphi = \frac{-3}{\sqrt{10}} \\ \cos \varphi = \frac{1}{\sqrt{10}} \end{cases} \Leftrightarrow \varphi = -\cos^{-1} \frac{1}{\sqrt{10}} = -1,25 \ rd = -71,6 \ ^{\circ}$$

$$z(t) = 2\sqrt{10} \cos(t + \varphi) = 6,32 \sin(t - 1,25) = 10 * 0,632 \sin(t - 1,25) = AU_0 \sin(t + \varphi)$$

$$\begin{cases} A = 0,632 \\ \varphi = -1,25 \end{cases}$$

Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Etude harmonique

On considère un séisme de pulsation ω tel que :

$$u(t) = U_0 \sin(\omega t) \, \forall t \ge 0$$

Question 3: Donner la forme de la réponse z(t) en régime permanent

$$u(t) = U_0 |H(j\omega)| \sin(\omega t + \varphi) \, \forall t \ge 0$$

On rappel la fonction de transfert du sismographe dont les paramètres ont été fixés :

$$H(p) = \frac{2}{p^2 + 3p + 2}$$

Question 4: Déterminer les coefficients caractéristiques de ce sismographe

$$H(p) = \frac{2}{p^2 + 3p + 2} = \frac{1}{0.5p^2 + 1.5p + 1} = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2}$$
$$\begin{cases} \frac{1}{\omega_0^2} = 0.5 \Leftrightarrow \omega_0 = \sqrt{2} \\ \frac{2z}{\omega_0} = 1.5 \Leftrightarrow z = 0.75\omega_0 \end{cases}$$

$$\begin{cases} K = 1\\ z = 0.75\sqrt{2}\\ \omega_0 = \sqrt{2} = 1.41 \end{cases}$$

$$H(p) = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{{\omega_0}^2}p^2} = \frac{1}{1 + \frac{2*0.75\sqrt{2}}{\sqrt{2}}p + \frac{1}{\sqrt{2}^2}p^2} = \frac{1}{1 + 1.5p + 0.5p^2}$$

Question 5: Proposer la forme factorisée de H(p)

$$\Delta = (1,5)^{2} - 2 = 0,25$$

$$\begin{cases} p_{1} = \frac{-1,5 - 0,5}{2 * 0,5} = -2 \\ \frac{-1,5 + 0,5}{2 * 0,5} = -1 \end{cases}$$

$$H(p) = \frac{1}{0,5(p+1)(p+2)} = \frac{1}{(1+p)\left(1 + \frac{1}{2}p\right)}$$

Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Question 6: Tracer le diagramme de Bode asymptotique du sismographe sur le document fourni

 $G_{dB} = 20log(K)$

G_0	$\frac{1}{T_i}$	$\log\left(\frac{1}{T_i}\right)$
0	1	0
O O	2	0,3

Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Réponse du sismographe au séisme étudié

Question 7: Déterminer une approximation de la réponse du sismographe au séisme étudié

$$20log(|H|) = G$$

$$|H| = 10^{\frac{G}{20}}$$

$$s_0 = |H|e_0$$

G	<i>H</i>	s_0	φ
0	1	U_0	$-\frac{\pi}{4} = -0.79 rd$ $-45 ^{\circ}$
$s(t) = U_0 \sin(t - 0.79)$			

Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Question 8: Déterminer précisément cette réponse par le calcul

$$H(p) = \frac{K}{ap^2 + bp + 1}$$

$$H(j\omega) = \frac{K}{(1 - a\omega^2) + jb\omega} \quad ; \quad |H(j\omega)| = \frac{K}{\sqrt{(1 - a\omega^2)^2 + (b\omega)^2}}$$

$$\varphi = \arg\left(\frac{K}{(1 - a\omega^2) + jb\omega}\right) = -\arg\left((1 - a\omega^2) + jb\omega\right) = \arg\left((1 - a\omega^2) - jb\omega\right)$$

$$= \arg(A + jB) \quad ; \quad \begin{cases} A = 1 - a\omega^2 \\ B = -b\omega \end{cases}$$

$$\varphi = \operatorname{sign}(B) \cos^{-1}\left(\frac{A}{\sqrt{A^2 + B^2}}\right) = -\cos^{-1}\left(\frac{1 - a\omega^2}{\sqrt{(1 - a\omega^2)^2 + (b\omega)^2}}\right)$$

$ H(j\omega) $	G_{db}	s_0	φ
0,63	-3,98	$0,63U_{0}$	−1,25 <i>rd</i> −71,57 °
$s(t) = 0.63U_0 \sin(t - 1.25)$			

Question 9: Comparer ce résultat à la solution obtenue par transformation de Laplace inverse

$$U_0 = 10$$

$$s(t) = 6.3 \sin(t - 1.25)$$

On retrouve exactement la même chose.

Question 10: Conclure sur ce résultat vis-à-vis du cahier des charges

Pour une entrée n'excédant pas $U_0=10\ mm$

La sortie appartient à : $z \in [0; 6,3] mm$

Le cahier des charges est respecté : $z \in [0; 20] mm$

Question 11: Par lecture graphique, donner la pulsation de l'onde sismique ω à partir de laquelle la précision de mesure devient incertaine

Valeur incertaine dès que : $z \le 1 mm$

II faut donc : $|H(j\omega)| \ge \frac{1}{U_0} = 0.1$

Soit : $G > 20 \log 0.1 = -20$

Par lecture graphique:

$$\omega \approx 4.3 \, rd. \, s^{-1}$$

Question 12: En conclure sur la plage de pulsations mesurables avec ce sismographe

$$\omega \in [0:4.3] \, rd. \, s^{-1}$$

Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Sismographe dans le vide

$$H(p) = \frac{2}{p^2 + 0.02p + 2}$$

Question 13: Déterminer les coefficients caractéristiques du sismographe dans le vide

$$H(p) = \frac{2}{p^2 + 0.02p + 2} = \frac{1}{0.5p^2 + 0.01p + 1} = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2}$$

$$\begin{cases} \frac{1}{\omega_0^2} = 0.5 \Leftrightarrow \omega_0 = \sqrt{2} \\ \frac{2z}{\omega_0} = 0.01 \Leftrightarrow z = 0.005\omega_0 \end{cases}$$

$$\begin{cases} K = 1 \\ z = 0.007 \\ \omega_0 = \sqrt{2} = 1.41 \end{cases}$$

$$\frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2} = \frac{1}{1 + \frac{2 * 0.007}{1.41}p + \frac{1}{1.41^2}p^2}$$

Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Question 14: Tracer le diagramme de Bode asymptotique du sismographe sur le document fourni

 $G_{dB} = 20log(K)$

G_0	$\frac{1}{T_i}$	$\log\left(\frac{1}{T_i}\right)$
0	1,41	0,15

Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Question 15: Déterminer une approximation de la réponse du sismographe au séisme étudié

$$20log(|H|) = G$$
$$|H| = 10^{\frac{G}{20}}$$
$$s_0 = |H|e_0$$

G	H	s_0	φ	
6,02	2	$2U_0$	$-\frac{\pi}{4} = -0.02 rd$ $-1.15 ^{\circ}$	
$s(t) = 2U_0 \sin(t - 0.02)$ $s(t) = 20 \sin(t - 0.02)$				

Dernière mise à jour	Réponse harmonique des	Denis DEFAUCHY
20/01/2020	systèmes du 1° et 2° ordre	TD2 - Correction

Question 16: Conclure sur ce résultat vis-à-vis du cahier des charges

Pour une entrée n'excédant pas $U_0=10\ mm$

La sortie appartient à : $z \in [0; 20] mm$

Le cahier des charges est respecté : $z \in [0; 20] mm$

Question 17: Que se passe-t-il si la pulsation du séisme ω se rapproche de $1,4\,rd.\,s^{-1}$

On se rapproche de la résonnance

$$\begin{cases} G_r = 20 \log \left(\frac{K}{2z\sqrt{1-z^2}} \right) = 36,99 \quad ; \quad |H| = 10^{\frac{G_r}{20}} = 70,7 \\ \omega_r = \omega_0 \sqrt{1-2z^2} = 1,4 \ rd. \ s^{-1} \end{cases}$$

L'amplitude du signal sera amplifiée, multipliée par un coefficient valant 70,7

$$U_{max} = 70.7U_0 = 707 \ mm = 70.7 \ cm$$

Le cahier des charges n'est plus respecté.

On va détériorer le sismographe.

Question 18: Par lecture graphique, donner la plage de pulsations de l'onde sismique ω mesurable par ce sismographes dans le vide

$$0.1 \le |H| \le 2$$

 $0 \le G \le 6.02$

$$\omega \in [0; 1]U[2; 4,5] rd. s^{-1}$$