Rockchip RK2108_EVB用户使用指南

版本: **V1.0**

日期: 2019.09

<u>前言</u>

概述

本文档主要介绍RK2108_EVB基本功能特点、硬件接口和使用方法。旨在帮助相关开发人员更快、更准确地使用该EVB,进行相关产品的应用开发。

产品版本

本文档对应的产品版本如下:

产品名称	版本	描述
RK2108_EVB_V10	V1.0	RK2108主板
RK2108_EVB_AUDIO_EXTBOARD_V10	V1.0	外扩音频板

适用对象

本文档主要适用于以下人员:

- 技术支持工程师
- 硬件开发工程师
- 音频算法工程师
- 嵌入式软件开发工程师
- 测试工程师

修订记录

日期	版本	作者	修改说明
2019.09	V1.0	Xhf	初稿

目录

1.	RK2	2108	6
	1.1.	名词解释	
	1.2.	RK2108_EVB系统框图	6
	1.3.	RK2108开发板组件	7
2.	RK2	2108_EVB硬件接口介绍	8
	2.1.	RK2108_EVB整机效果图	8
	2.2.	主板硬件接口介绍	9
	2.3.	RK2108_EVB外接AUDIO扩展板硬件接口介绍	10
	2.4.	电源	12
3.	RK2	2108_EVB开发板模块简述	13
	3.1.	DC输入	13
	3.2.	模块电源	13
	3.3.	电流检测电路	13
	3.4.	Flash Memory	14
	3.5.	USB 烧写口	
	3.6.	系统升级按键	
	3.7.	WIFI模组	15
	3.8.	UART调试	16
	3.9.	60PIN连接座	
	3.10.	RESET按键	17
	3.11.	CIF摄像头电路	
	3.12.	LCDC屏幕接口电路	
	3.13.	M4 JTAG电路	
	3.14.	DSP JTAG电路	19
	3.15.	功能按键	
4.	音頻	顷板	
	4.1.	音频板方案说明	
	4.2.	音频板介绍	
		.1. I2S麦克风阵列	
		.2. PDM麦克风阵列子板	
	4.2		
	4.2	3.1 4.74% 3.1	
	4.2	- 74/94 B H	
5.	开发	板固件烧写	
	5.1.	驱动安装	
	5.2.	烧写固件	
		.1. 设备进入烧写模式	
		.2. 烧写方式一: 下载镜像	
6.	调试	试明	
	6.1.	串口调试	
7	沙	· 車币	30

插图目录

图 1-2 RK2108_EVB 系统框图	6
图 2-1 整机实物图	8
图 2-2 主板 TOP 层接口图	9
图 2-3 主板 BOT 层接口图	9
图 2-4 外接 AUDIO 板硬件 TOP 层接口图	10
图 2-5 外接 AUDIO 板硬件 BOT 层接口图	11
图 3-1 开发板电源输入	13
图 3-2 开发板分立电源	13
图 3-3 电源测试电路	14
图 3-4 SPI_FLASH 与 MASKROM 按键	14
图 3-4 开发板 USB 烧写口	15
图 3-5 开发板升级按键	15
图 3-6 开发板 WIFI+BT 模组	16
图 3-7 开发板 UART 调试接口	16
图 3-8 60PIN 连接座	17
图 3-9 RESET 按键	17
图 3-10 CIF 摄像头电路	18
图 3-11 LCDC 接口电路	18
图 3-12 M4 JTAG 接口电路	19
图 3-13 DSP JTAG 接口电路	19
图 4-1 音频板框图	21
图 4-4 I2S 麦克风排列顺序示意图	22
图 4-5 I2S 麦克风原理图	22
图 4-6 PCM 麦克风排列顺序示意图	22
图 4-7 PDM 麦克风原理图	23
图 4-8 麦克风阵列子板接口图	23
图 4-9 Codec 电路电路图	24
图 4-10 功放电路图	24
图 5-1 开发板驱动助手安装	25
图 5-2 勾选烧录固件并选择路径	26
图 6-1 获取当前端口 COM 号	27
图 6-2 串口工具 SecureCRT 界面	27
图 6-3 配置串口信息	28
图 6-4 配置串口丁且选项	29

表格目录

表 2-1	RK2108_EV	/B 接口介绍表	10
表 2-2	外接 AUDIO) 板接口介绍表	11

1. RK2108

1.1. 名词解释

[I2S]:

Inter—IC Sound 集成电路内置音频总线

[PCM]:

Pulse Code Modulation 脉冲编码调制

[PDM]

Pulse Density Modulation 脉冲密度调制

[VAD]

Voice Activity Detection 语音活动检测

[RK]

Rockchip Electronics Co.,Ltd. 瑞芯微电子有限公司

1.2. RK2108_EVB 系统框图

RK2108_EVB主板使用12V/2A适配器供电,通过UART(串口)进行调试、验证各个功能模块。开发板具有WIFI+BT模组、Uart接口、红外接收头等功能模块,有利于芯片的深入研发与快速产品化。

RK2108_EVB的主板与扩展音频板通过60PIN _0.5mm的连接器连接,可支持模拟、I2S、PDM三种的麦克风阵列子板。板上还预留有RGB屏幕、JTAG、CIF等接口(其中部分IO口复用,详见RK2108数据手册)。

详细资源使用情况见下图:

图1-2 RK2108_EVB系统框图

1.3. RK2108 开发板组件

RK2108_EVB开发板主要包括以下物品:

- RK2108_EVB开发板+音频板;
- 电源适配器,规格:输入 100V AC~240V AC, 50Hz;输出 12V DC, 2A

2. RK2108_EVB硬件接口介绍

2.1. RK2108_EVB 整机效果图

图2-1 整机实物图

2.2. 主板硬件接口介绍

图2-2 主板TOP层接口图

图2-3 主板BOT层接口图

RK2108_EVB主板接口介绍如下表:

表2-1 RK2108_EVB接口介绍表

序号	接口说明	概述
01	UART_DEBUG接口(MICRO USB口)	用于设备的调试,串口波特率为115200。
02	POWER ME 测试接口(MICRO USB口)	用于EVB板各路电源测试
03	USB接口(MICRO USB口)	仅用于EVB板程序下载,不能用于连接其他外设。
04	12V/2A DC电源接口	外接12V/2A适配器
05	电源开关	整机电源开关按键
06	电源选择跳线	用于选择采用12V适配器或USB 5V供电
07	电池座	预留单节电池供电接口
08	MIC TEST	预留MIC测试口
09	I2S/PDM TEST□	预留I2S/PDM 测试口
10	按钮组	10组按键,包含已经定义的RECOVERY,
10		RESET,PWR_KEY,预留7组按钮可以自行定义。
11	LCD屏接口	用于测试RGB屏
12	音频测试板接口	预留I2S/PDM信号,用于外接音频板测试
		AUDIO/WIFI与CIF/LCDC功能切换选择,拨码处于"1"
13	功能选择拨码开关1	状态,选择AUDIO/WIFI功能,处于"on"状态,选择
		CIF/LCDC功能。
14	CIF接口	用于测试CIF摄像头
15	MASKROM按键	使设备进入MASKROM模式,用于固件烧写。
16	功能选择拨码开关2	JTAG功能切换选择,拨码处于"1"状态,JTAG功能打开,
		处于"on"状态,JTAG功能关闭。
17	M4 JTAG接口	用于M4调试
18	DSP JTAG接口	用于DSP调试
19	POWER ME测试接口(标准 USB口)	用于EVB板各路电源测试

2.3. RK2108_EVB 外接 AUDIO 扩展板硬件接口介绍

图2-4 外接AUDIO板硬件TOP层接口图

图2-5 外接AUDIO板硬件BOT层接口图

模拟麦克风阵列子板接口介绍如下:

表2-2 外接AUDIO板接口介绍表

-VCD D	极2.2 为 致NoDio恢复口升组及			
序号	接口说明	概述		
01	AUDIO PWM接口	用于验证PWM电路,PWM信号输入		
02	PWM OUT TEST接口	PWM电路音频输出口		
03	CODEC OUT TEST接口	CODEC电路音频输出口		
04	PDM MIC Connector	外接PDM小板		
05	RESERVE	预留		
06	PWM OUT	预留PWM电路音频测试口		
07	CODEC OUT	预留CODEC电路音频测试口		
08	连接座	60PIN_0.5mm_FPC座。用于连接RK2108_EVB主 板。		

2.4. 电源

RK2108_EVB开发板的电源板使用分立电源,详细电源架构可参阅参考原理图。

3. RK2108_EVB开发板模块简述

3.1. DC 输入

电源适配器供电输入的12V/2A电源,经过板上BUCK DCDC降压为5V后输入给系统电源使用。

图3-1 开发板电源输入

3.2. 模块电源

RK2108模块供电电源为DCDC+LDO分立电源模式。

图3-2 开发板分立电源

3.3. 电流检测电路

电流检测电路,配合POWER ME测试软件,可以监测EVB板各路电源的电压电流实时数据,评估EVB板功耗数据。

图3-3 电源测试电路

3.4. Flash Memory

- Flash预留有升级固件按键,如图3-3 MASKROM按键,在上电过程按住按键(或者在系统已经上电的情况下按住此按键,再按一下系统复位键)系统将进入MaskRom固件烧写模式。
- 板上焊接了SPI_FLASH,用于验证SFC。

图3-4 SPI_FLASH与MASKROM按键

3.5. USB 烧写□

开发板USB接口,如图3-4:

● USB口仅仅于固件烧写。

图3-4 开发板 USB 烧写口

3.6. 系统升级按键

开发板提供按键检测作为系统升级固件使用,连接USB,按住Recovery key上电(或复位),可以进入Rockusb 烧写模式。

图3-5 开发板升级按键

3.7. WIFI 模组

开发板上WIFI+BT模组采用AP6212模组,其特性如下:

- 支持WIFI(2.4G, 802.11 b/g/n)、BT4.0。
- BT数据采用UART通信方式。
- WIFI数据采用4bits SDIO 数据总线

图3-6 开发板WIFI+BT模组

3.8. UART 调试

开发板提供串口供开发调试使用,默认连接为Uart0,默认波特率115200。

图3-7 开发板UART调试接口

3.9. 60PIN 连接座

开发板预留60PIN接口连接座,方便用户外接扩展音频板。

图3-8 60PIN连接座

3.10. RESET 按键

开发板系统复位按键。

图3-9 RESET按键

3.11. CIF 摄像头电路

EVB板支持8bit CIF摄像头,摄像头型号CMK-OT1054-FG3(定制产品)。

图3-10 CIF摄像头电路

3.12. LCDC 屏幕接口电路

EVB板装配有8bit MCU LCD Panel , 型号为28G084。

图3-11 LCDC接口电路

3.13. M4 JTAG 电路

EVB板M4 JTAG用于Cortex-M4F部分调试。

图3-12 M4 JTAG接口电路

3.14. DSP JTAG 电路

EVB板M4 JTAG用于HiFi3 DSP调试。

图3-13 DSP JTAG接口电路

3.15. 功能按键

仅仅用于功能验证用。

图3-22 功能按键

4. 音频板

4.1. 音频板方案说明

图4-1 音频板框图

4.2. 音频板介绍

RK2108音频扩展板兼容2种麦克风阵列子板,分别为I2S麦克风阵列以及PDM麦克风阵列。下面分别介绍下这两种版本的麦克风阵列。

4.2.1.I2S麦克风阵列

如下图所示, I2S麦克风排列在PCB的BOT层板边。

Copyright 2019 @Fuzhou Rockchip Electronics Co., Ltd.

图4-4 I2S麦克风排列顺序示意图

电路中,每2个数字麦对应一个I2S SDI信号,如下图,因此2个麦需要使用2个SDI信号。

I2S 4MIC

图4-5 I2S麦克风原理图

图中, MIC1100, MIC1101的LR引脚接GND, 其输出占用I2S_SDI0信号中的左声道; 相反, MIC1102, MIC1103 的LR引脚接VCC_MICA, 表示右声道。使用I2S_SDI0、I2S_SDI1。

特别注意的是,SDI信号线通过一个100k电阻下拉,避免在麦克风的通讯切换间隙,总线进入不确定状态。

4.2.2.PDM麦克风阵列子板

如下图所示,PDM麦克风排列在PCB的TOP层板边。PDM和I2S麦克风阵列是复用接口,默认板上是贴PDM。

图4-6 PCM麦克风排列顺序示意图

电路中,每2个数字麦对应一个PDM SDI信号,如下图,因此4个麦需要使用2个SDI信号:

图4-7 PDM麦克风原理图

图中,MIC1106的LR引脚接GND,其输出占用PDM_SDI0信号中的左声道;相反,MIC1104的LR引脚接VCC MICA,表示右声道。另外一组配置情况相同,使用I2S SDI0、I2S SDI1。

特别注意的是,SDI信号线通过一个100k电阻下拉,避免在麦克风的通讯切换间隙,总线进入不确定状态。

4.2.3.连接座

麦克风阵列子板通过60Pin 0.5mm间距的连接器与RK2108 EVB主板连接,其接口定义如下:

图4-8 麦克风阵列子板接口图

4.2.4.Codec 电路与功放电路

音频板设计有CODEC电路,用于验证I2S信号

RK2108_EVB用户使用指南

图4-9 Codec 电路电路图

4.2.5.功放电路

功放电路用于验证CODEC电路,HT8691R是一款内置BOOST升压模块的D类音频功率放大器。

图4-10 功放电路图

5. 开发板固件烧写

5.1. 驱动安装

RK2108 EVB开发板使用需先安装驱动,驱动可于RK服务器下载,以管理员方式打开 "DriverInstall.exe",点击"驱动安装",提示安装驱动成功即可

图5-1 开发板驱动助手安装

注意事项:

- 目前支持的操作系统包括: WinXP,Win7_32,Win7_64,Win8_32,Win8_64,Win10_64。
- Xp系统在驱动安装完后,若还提示"发现新设备", 安装驱动时选择"自动安装"。
- 若之前已经安装过老版本驱动,请先点击"驱动卸载"后再进行"驱动安装"。

5.2. 烧写固件

5.2.1.设备进入烧写模式

打开目录"Android开发工具",连接开发板的USB,等待设备进入烧录模式,让设备进入烧录模式方法有以下4种:

- 未烧录过固件,上电,进入MASKROM模式。
- 烧录过固件,按住recovery按键上电或复位,系统将进入LOADER固件烧写模式,此模式下可烧写除loader以外的所有固件。
- 烧录过固件,按住MASKROM按键上电或复位,系统将进入MaskRom固件烧写模式,此模式下可烧写包括loader在内的所有固件。

5.2.2.烧写方式一: 下载镜像

烧录固件时,勾选要烧录的固件,点击最后一列空白方格,选择固件路径,如下图红色方框所示:

RK2108_EVB用户使用指南

图5-2 勾选烧录固件并选择路径

选择后点击按钮"执行",开始烧录。

- 若烧录过程中出现问题,需要在redmine上提问时,请提供...\AndroidTool_Release_Vxx\Log下的Log文件;
- 烧录完成后,若工具仍然显示处于LOADER状态,需要手动复位重启。或者可以修改工具根目录下的 config.ini,将RESET_AFTER_DOWNLOAD设置为TRUE (RESET_AFTER_DOWNLOAD=TRUE),即可在烧写后 由烧录工具自动进行软复位。

6. 调试说明

6.1. 串口调试

将PC与开发板连接,在PC设备管理器中获得找到当前端口COM号,如图所示:

图6-1 获取当前端口COM号

打开串口工具"SecureCRT",点击"快速连接"按钮,如图所示:

图6-2 串口工具SecureCRT界面

配置串口信息,端口选择连接开发板的端口号(流控RTS/CTS不需勾选),如图所示:

图6-3 配置串口信息

点击连接,就能正常连接设备了。

为方便调试,配置会话选项,点击工具栏"会话选项",配置如图所示:

图6-4 配置串口工具选项

注:开发过程中遇到问题,用该工具抓取LOG。在Redmine上提问时,以附件形式带上异常的LOG,以便工程师解决问题。

7. 注意事项

麦克风阵列EVB适用于实验室或者工程开发环境,在开始操作之前,请先阅读以下注意事项:

- 在拆封开发板包装和安装之前,为避免静电释放(ESD)对开发板硬件造成损伤,请采取必要的防静电措施。
- 手持开发板时请拿开发板的边沿,不要触碰到开发板上的外露金属部分,以免静电对开发板元器件造成 损坏。
- 请将麦克风阵列EVK放置于干燥的平面上,以保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如: 医疗设备)等。