Chem2110 Quiz 2 19 October, 2011

TIME: 1 Hour

NAME: MODEL ANSWERS ID NUMBER: MSS/FL/2011

1 H 1.008																	2 He 4.003
3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na 22.99	Mg 24.31											Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55 Cs 132.9	56 Ba 137.3	57 La* 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226	89 Ac [†] (227)															

Question	Maximum Marks	Score
1	50	
2	35	
Total	85	

QUESTION 1

Chromium(III) chromate

QUESTION 1	
(a) Write the <u>name</u> of each of	f the following substances:
BrF	bromine monofluoride
Bi ³⁺	bismuth(III) ion
HCN(aq)	hydrocyanic acid
CsO_2	cesium superoxide
$Au(NO_2)_3$	gold(III) nitrite
$H_3PO_3(aq)$	phosphorous acid
P_4O_{10}	tetraphosphorus decoxide
Pt(IO) ₂	platinum(11) hypoiodite
Sn(SCN) ₄	tin(IV) thiocyanate
Cu_2Te	copperfi) telluride
NaHCO ₃	Sodium hydrogen carbonate (bicar
(b) Give a chemical formula	for each of the following substances: (11)
Aluminium bromate	A1(8103)3
Water vapour	H20(9)
Cadmium formate	(HCOO)2 Cd
Ammonium permanganate	NH4 MnO4
Potassium hydrogen phosphar	te K_2HPO_4
Calcium hydride	CaH2
Xenon tetrachloride gas	XeC149)
Iron(III) hydrogen sulfite	Fe (HSO ₃)3
Hydroiodic acid	HI (aq)
Zinc nitrate	$Z_n(NO_3)_2$

(c) Complete the following statements:
(i) (NH ₄) ₂ SO ₄ is described as ionic whereas NH ₃ is described as or or
covalent
(ii) Sr is the <u>Symbol</u> of strontium whereas SrSe is the <u>Chemical formula</u> of
strontium selenide.
(iii) Na is a <u>neutral</u> atom whereas Na ⁺ is a <u>positively charged</u> atom.
(iv) One of the atoms of the element <u>magnesium</u> contains 13 <u>neutrons</u> and 12 protons in the <u>nucleus</u> . Therefore, the symbol of this element is <u>25 Mg</u> .
(v) CoSO4·7H2O is hydrated whereas CoSO4 is anhydrous; th
name of CoSO4·7H2O is cobalt(11) sulfate heptahydrate
(vi) Metalloids are also known as <u>Semimetals</u>
(vii) An atomic orbital is represented by the symbol from the
equation in quantities incommes.
(viii) Atomic orbitals in any subshell are <u>degenerate</u> . Therefore, the maximum number of unpaired electrons in any subshell is <u>2l+1</u> according to <u>Hund's</u> rule.
(ix) The nonmetals with two unpaired electrons in the p subshell are collectively known as the
chalcogens
(x) 1H, 2H and 3H are isotopes of hydrogen
(xi) The Pauli exclusion principle states that it is not possible for any two electrons
in a given atom to have the same set of four quantum numbers.
(xii) According to the Aufbau principle, atomic orbitals are filled with electrons
from the lowest to the highest energy levels, starting with the s subshell.
(xiii) The Heisenberg uncertainty principle is stated mathematically as follows:
$\Delta x \cdot \Delta(mv) \ge h/4\pi$
Δ(mv) stands for the uncertainty in the momentum of the movin
pasticle

QUESTION 2

(a) Which of the following orbital designations or quantum numbers are allowed? (vor X)

n = 4, $\ell = 2$, $m_{\ell} = 3$, $m_{s} = +\frac{1}{2}$

 $n = 3, \ell = -2$

(b) What is the maximum number of atomic orbitals or electrons in an atom that can have the following quantum numbers? (2 marks)

 $n = 6, m_{\ell} = 1$

unpaired electrons

 $n=3, \ell=1, m_s=+\frac{1}{2}$

electrons

n = 6, $\ell = 3$, $m_{\ell} = 3$

atomic orbitals

c) Two transition elements in Period 4 have atoms with two unpaired electrons in the ground state.

Give the names of these two transition elements:

nickel

(d) A certain element in Period 4 has the largest number of unpaired electrons in the ground state.

One atom of this element has 26 neutrons.

Give the atomic symbol of this element.

(c) An unknown element, X, is in Group 5A.(i) This element has five Valence

(ii) Give the chemical formula of the compound which an ion of X forms with the mercury(I) ion.

- (d) An certain atom has the electron configuration [Kr]5s¹4d¹⁰. \Rightarrow atomic number = 47
 - (i) Is this atom in the ground state or excited state?

(ii) Give the chemical formula of the compound which the ion of this element forms with the dichromate ion.

Ag+, Cr207 - Ag2 Cr207

- (10)
- (e) Assume that the last electron in an atom of aluminium occupies the p_x orbital in the ground state.
 - (i) <u>Draw</u> and <u>describe</u> this p_x orbital which contains the unpaired electron.

The $3p_x$ orbital has two lobes that lie directly on the x-axis. There is a nucleus at the centre. This atomic orbital has one radial (or spherical) node (n-l-1=3-1-1=1). This orbital is in the third shell (n=3). (5)

(ii) Give the set of quantum numbers for the last electron in the atom of aluminium.

$$3P_{\chi}^{1} \Rightarrow n=3, l=1, m_{\ell}=1, m_{S}=\frac{1}{2}$$
(2)