COMP3310/6331 - #4

Media: Fiber

<u>Dr Markus Buchhorn:</u> <u>markus.buchhorn@anu.edu.au</u>

Optical Fibre Characteristics

- When copper just won't do...
- Light (weight), very robust to oxidation, water, electrical interference, ...
- Can go a long way
- But
 - not very flexible (it breaks, cracks),
 - not easy to join (need to melt it)
- Easy to make thin cables
 - Copper down to 0.03mm diameter
 - Standard Fibre down to 8micron diameter (0.008mm)
 - And can go well below 1 micron in the lab
- Not as cheap(?)

Quick change in language

- In copper we talk about <u>frequency</u> (f or \mathbf{v}) [in Hz or s⁻¹]
- In Fibre we talk about <u>wavelength</u> (λ) [in meters]
- High frequency

 Short wavelength
- c (speed) = $f * \lambda$ (speed in that media)

 $c_{vacuum} = 300,000 km/s$ $c_{copper,glass} \approx 2/3 c$

time

Huge change in performance

• Copper we use kHz (10³) to MHz (10⁶), Wireless to GHz (10⁹)

Optical we start at THz (10¹²) and up

- VDSL 12 MHz = 25 m
- Wifi 2.4GHz = 12.5 cm
- Yellow light = 600nm = 500 THz

How it works – Physics!

- Index of refraction = c/(speed of light in that material) = "n"
- Cross from one material to the other
 = change of speed = change of direction
- Make a fibre cable:
 - Take a glass fibre core,
 - Wrap it in different glass
 - Protect it with a plastic jacket

How it works

- Get the angle and change of material right:
 - Total internal reflection
 - Within a 'critical angle'

Step-index fibre

Straight line is slowest Reduces modal distortion

Each ray = a "mode"

Modal distortion

Cladding

6

n_{clad}

Multimode vs Singlemode

- These are "multi-mode" fibres
 - With significant modal distortion
- Make core much narrower
 - a few wavelengths?
 - "single mode" fibre
- Performance goes way up
- So does Cost

Fibre standards

- For the cable
 - Multimode fibres, OM1 (62/125μm), OM2-OM5 (50/125 μm)
 - Singlemode fibres, ITU G.652-G.657 (9/125 μm)
 - Performance expectations more than actual manufacturing
- For the connector
 - So, so many standards
 - Vary by sector
 - 30+ on Wikipedia

MTRJ

MTP

- Do not mix up your cables
 - MMF into SMF does mechanically work, but "performance suffers".

Fibre connectors

- Need to be "perfect"!
- Glass face to Glass face
 - Dust is a serious enemy
 - Most use curved (or sometimes angled) faces, reduce reflections at the end
- Terminating copper cables involves scissors and pliers
- Terminating fibre involves melting and polishing glass/plastic
 - Thinner than a human hair
- Splicing fibre directly via melting (good), or glueing (less good)
 - But glue is cheaper...

Losses in fibre

- Attenuation 0.4-3 dB/km, due to
 - Scattering (structures+materials in the fibre)
 - Absorption (materials in the fibre)
 - Distances of many km are trivial
 - 8km still yields 75% of the original light.
- Attenuation depends on wavelength
- Fibres have multiple passbands
 - Due to various materials and manufacturing techniques
 - Always improving, both absorption and range

Other losses in fibre

- Chromatic dispersion
 - Index of Refraction varies with wavelength
 - A pure single wavelength is hard to do (even for a laser)
 - Soliton pulses fix it
- Polarisation mode dispersion
 - Core shape helps fix it

"Loss budgets"

- You have an energy budget
 - How much you can send
 - How much you need to receive (for a reasonably clear signal)

- Loss due to the fibre [0.4-1.0 db/km for SMF]
- Loss due to (mechanical) connectors [0.3dB each]
- Loss due to (physical) splicing [0.3dB each]

Going round corners

- Copper has tight bending radius
 - N times diameter
- Fibre does not
 - Fractures, causing attenuation and/or interference
 - MMF better than SMF
- Fibre testing
 - Send a pulse, look what gets through and what comes back!

Multi-core cable design

- Individual fibres are fragile
- Fibres with sub-fibres or hollow channels
- Cable bundles up to 1024 fibres
 - Business proposition:
 - Costs as much to bury/hang as a single fibre
 - Each cable can carry the whole internet...
 - People often still want their own fibre path
 - Security
 - Guaranteed performance
 - New technologies
 - Concept of 'dark' and 'grey' fibre
 - An empty glass you can fill how you want, or
 - A slot alongside others to add your wavelength

THz channels

- A single wavelength of light at 500 THz can carry 1+Pb/s?
- Electronics can't (yet) keep up better to slow down!
 - Use ASK, PSK
 - FDM becomes WDM multiple wavelengths of light
 - Can also do Polarisation Division Multiplexing
- Signal muxing can be done optically up to a point
 - Add-drop multiplexers (ADM) add/separate a particular wavelength
- WDM can be coarse (CWDM) and dense (DWDM)
 - Usually use each wavelength as a separate channel

Transmitting over light

- Convert electronic data to optical signalling
 - OOK->QPSK++
- You can <u>pulse an led</u>
 - Fast-ish, and very cheap
 - Don't get very bright or nicely shaped pulses
 - Too broad a colour range
 - Used in MMF
- You can <u>chop a laser</u>
 - Semiconductor lasers are now 100micron in size
 - And wavelength tunable on the fly
 - And use an "Optical Mach-Zehnder" modulator
 - Used in SMF

How fast can you go?

- Depends on "fast"
- Highest absolute speed (2012): 1Pb/s over 50km (that's 1,000,000Gb/s...)
 - And (2017)10.2Pb/s over 11km
- High speed over long distances (2009): 100Gb/s over 7000km times 155λ
 - And (2016) 65Tb/s over 6600km (?)
- Various techniques, with multiple wavelengths, multiple cores, pre-distortion, ...
- Better measure: bandwidth*distance
 - -2016: $4*10^5$ (Tb/s).km
 - -2012: $5*10^4$ (Tb/s).km
 - 2012 used very specialised fibre, 2009 was commodity fibre
 - 2017 Internet traffic estimate: 122,000PBytes/month = 0.5Pb/s...
 - And these measures don't include energy costs!

How far can you go?

- Without effort, 1-2 km over MMF, 50-100 km over SMF
- Want more? Brighter lasers gets difficult
- Regenerate/Repeat every 50-100 km
 - Expensive optics and electronics, reconstruct signal and retransmit perfectly
 - Optical-electronic-optical "OEO" interfaces
- Amplify every 50-100 km
 - Cheap electronics, and can even be done optically (erbium doping)
 - Amplifies signal <u>and</u> noise.
 - Record: 2015 Melbourne to Melbourne, via Sydney&Perth = 10,358km @100Gb/s?

Undersea cabling

Underwater cables are safe!

Doing more with less

- Unlike copper, fibre is not (easily) a shared medium
 - Point-to-point
- Can use a single fibre for RX and TX at the same time
 - Optical splitters at both ends
 - Can get crosstalk, in connectors, and within fibre
- Still more common to have a fibre pair though

Last mile and fibre

- Lots of discussion about 'costs'
 - Compare capital costs of installing fibre vs copper
 - Compare running costs of fibre vs copper
 - Compare performance of fibre vs copper

- General approach mix it up:
 - Push fibre as close as you "can" (afford, achieve)
 - To the home? To the driveway? To some nearby node?
 - then use copper for the last bit (with DSL)
 - While keeping an eye on the electronics

Some FTTx models

- Leverage what is already in the ground/on the poles
 - Most homes have landline phones = capital investment
- Reduce the average distance of copper
 - Push fibre as deeply as "affordable" (by who?)

What needs power?
What needs managing?
Who is sharing?

23

Compare FTTx with HFC

- Fibre To The ... (FTTx):
 - FTTP/FTTH,
 - FTTB,
 - FTTC/K/F/dp,
 - FTTN
- Hybrid Fibre Coax (HFC)
 - "FTTN" to get you close,
 - Then shared (coax) copper
 - To a lot of houses, 50-100's in NBN
- And again try to make it cheap to run...
 - What is active, smart, powered, etc.
 - And what isn't.

(G)PON

- (Gigabit) Passive Optical Networking
- Using the flexibility of optics
 - And the allure of cheap broadband
- TDM out to the active Optical Network Units or Terminals (ONU/ONT)
- TDM out to the (passive) splitters
 - From the Optical Line Terminals (OLT)
- WDM: RX and TX on a single fibre,
 - SDM: Make more money out of the cable

