The MOS Transistor

JFET - Junction Field Effect Transistor

MOSFET - Metal Oxide Semiconductor Field Effect Transistor

n-channel MOSFET (nMOS) & p-channel MOSFET (pMOS)

The MOS Transistor

Bulk Contact

CROSS-SECTION of NMOS Transistor

Switch Model of NMOS Transistor

Switch Model of PMOS Transistor

MOS transistors Symbols

NMOS Enhancement

NMOS Depletion

PMOS Enhancement

NMOS with Bulk Contact

JFET and MOSFET Transistorsor

Figure 12.1 n-channel enhancement MOSFET showing channel length L and channel width W.

 SiO_2 Thickness = 0.02-0.1 µm

Device characteristics depend on L,W, Thickness, doping levels

Operation in the Cutoff region

Figure 12.3 For $v_{GS} < V_{to}$, the pn junction between drain and body is reverse biased and $i_D = 0$.

When $v_{GS}=0$ then $i_D=0$ until $v_{GS}>V_{t0}$ (V_{t0} -threshold voltage)

Operation in the Triode Region

For $v_{DS} < v_{GS} - V_{t0}$ and $v_{GS} > V_{t0}$ the NMOS is operating in the triode region

Resistor like characteristic (R between S & D, Used as voltage controlled R)

For small v_{DS} , i_D is proportional to the excess voltage v_{GS} - V_{tO}

Operation in the Triode Region

$$i_{D} = K \left[2 \left(v_{GS} - V_{t0} \right) v_{DS} - v_{DS}^{2} \right]$$

$$K = \left(\frac{W}{L} \right) \frac{KP}{2}$$

Device parameter KP for NMOSFET is $50 \mu A/V^2$

Operation in the Saturation Region (v_{DS} is increased)

Example 12.1

An nMOS has W=160 μ m, L=2 μ m, KP= 50 μ A/V² and V_{to}=2 V.

Plot the drain current characteristic vs drain to source voltage for $v_{GS}=3$ V.

$$i_{D} = K \left[2(v_{GS} - V_{t0})v_{DS} - v_{DS}^{2} \right]$$

$$i_{D} = K(v_{GS} - V_{t0})^{2} \qquad K = \left(\frac{W}{L}\right)\frac{KP}{2}$$

Figure 12.6 Characteristic curves for an NMOS transistor.

It is constructed by interchanging the n and p regions of n-channel MOSFET.

Figure 12.8 Circuit symbol for PMOS transistor.

How does p-channel MOSFET operate?

- -voltage polarities
- -iD current
- -schematic

Figure 12.9 Answer for Exercise 12.3.

Equivalentna šema u oblasti zasićenja

- · Gate se ponaša kao otvoreno kolo
- S-D izlazno kolo se ponaša kao strujni izvor

Vdd Q Vss

CMOS

NOT gate (inverter)

Konstrukcija JFET - a

Geometrija provodnog kanala u omskoj oblasti rada JFET –a

Izlazna karakteristika JFET -a

- Uštinućam kanala, tj. povećanje napona V_{DS} ipak dovodi do smanjenja dužine neuštinutog dela kanala i tako da se izlazne karakteristike u izvesnoj meri iskose
- Ova pojava može se modelovati po ugledu na bipolarne tranzistore sa erlijevim naponom V_A, data izrazom

