Chapitre 11. Compléments sur les nombres réels

1 Partie entière

1.1 Caractère archimédien des réels et définitions

Proposition 1.1 (Caractère archimédien de \mathbb{R}). On a $\forall x \in \mathbb{R}$, $\exists n \in \mathbb{Z} : n > x$

Proposition 1.2. Soit $x \in \mathbb{R}$

Alors il existe un unique entier $n \in \mathbb{Z}$ tel que $n \le x < n+1$

Cet entier n est appelé partie entière (inférieure) de x et noté |x|

Corollaire 1.3 (du caractère archimédien).

- * On a $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}^* : \frac{1}{n} < \varepsilon$
- * (Propriété d'Archimède) : $\forall x,y \in \mathbb{R}_+^*$, $\exists n \in \mathbb{N} : nx > y$

1.2 Premières propriétés

Proposition 1.4.

- * On a $\forall x \in \mathbb{R}, |x| \le x < |x| + 1$ et $x 1 < |x| \le x$
- * $\forall n \in \mathbb{Z}, \forall x \in \mathbb{R}, |x+n| = |x| + n$
- * $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, n \le x \iff n \le \lfloor x \rfloor$
- * La fonction $\lfloor \cdot \rfloor$ croît : $\forall x, y \in \mathbb{R}, x \leq y \implies \lfloor x \rfloor \leq \lfloor y \rfloor$

1.3 Division euclidienne dans \mathbb{R}

Théorème 1.5. Soit $x \in \mathbb{R}$ et $T \in \mathbb{R}_+^*$

Il existe un unique couple $(q, r) \in \mathbb{Z} \times [0, T]$ tel que x = qT + r

2 Vocabulaire de la proximité

2.1 Points δ -proches

Proposition 2.1. Soit $x, y \in \mathbb{R}$ et $\delta \geq 0$

LASSÉ:

(i)
$$|x - y| \le \delta$$

(ii)
$$x - \delta \le y \le x + \delta$$

(iii)
$$y \in [x - \delta, x + \delta]$$

(iv)
$$y - \delta \le x \le y + \delta$$

(v)
$$x \in [y - \delta, y + \delta]$$

Si ces assertions sont vraies, on dit que x et y sont δ -proches.

Proposition 2.2 (Inégalité triangulaire). Soit $x, y, z \in \mathbb{R}$ et $\delta, \eta \geq 0$

Alors, si x et y sont δ -proches et que y et z sont η -proches alors x et z sont $(\delta + \eta)$ -proches.

2.2 Points adhérents à une partie

Définition 2.3. Soit $A \subseteq \mathbb{R}$ et $x \in \mathbb{R}$

On dit que x est adhérent à A si $\forall \delta > 0$, $\exists a \in A : |x - a| \leq \delta$

On note \overline{A} ou Adh(A) et on appelle adhérence de A l'ensemble des points adhérents à A.

2.3 Densité

Proposition 2.4. Soit $A \subseteq \mathbb{R}$

LASSÉ:

- (i) Tout intervalle ouvert non vide rencontre *A* (a une intersection non vide avec *A*)
- (ii) $\forall x \in \mathbb{R}, \forall \delta > 0, \exists a \in A : |x a| < \delta$
- (iii) $\overline{A} = \mathbb{R}$

Quand ces assertions sont vraies, on dit que A est dense (dans \mathbb{R})

Proposition 2.5. \mathbb{Q} est dense dans \mathbb{R}

Corollaire 2.6. $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R}

3 Bornes supérieures et inférieures

3.1 Définition et existence

Définition 3.1.

- * Soit $A \subseteq \mathbb{R}$ une partie non vide et majorée.
 - La borne supérieure de *A* (si elle existe) est le plus petit des majorants de *A*.

On la note $\sup(A)$

- * De même, si $A \subseteq \mathbb{R}$ est non vide et minorée,
 - On appelle borne inférieure de *A* le plus grand des minorants de *A*.

On la note $\inf(A)$

Théorème 3.2 (Propriété de la borne supérieure).

Toute partie non vide et majorée de R possède une borne supérieure.

Proposition 3.3. Si $A \subseteq \mathbb{R}$ admet un maximum, alors $\sup(A) = \max(A)$

Corollaire 3.4. Soit $A \subseteq \mathbb{R}$ non vide et majorée.

Si $\sup(A) \notin A$, alors A n'a pas de maximum.

3.2 Caractérisation et utilisation pratique

Proposition 3.5. Soit $A \subseteq \mathbb{R}$ non vide et majorée et $S \in \mathbb{R}$

LASSÉ:

- (i) $S = \sup(A)$
- (ii) (caractérisation epsilonesque) : S majore A et $\forall \varepsilon > 0$, $\exists a \in A : a \geq S \varepsilon$
- (iii) *S* majore *A* et $S \in \overline{A}$
- (iv) (caractérisation sequentielle): S majore A et il existe une suite $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ telle que $a_n\xrightarrow[n\to+\infty]{}S$

Proposition 3.6 (Passage à la borne supérieure des inégalités larges).

Soit $A \subseteq \mathbb{R}$ non vide et majorée et $M \in \mathbb{R}$

Alors $\sup(A) \leq M \iff M$ majore A

4 Compléments

4.1 Sous-groupes de $\mathbb R$

Théorème 4.1. Tout sous-groupe de $(\mathbb{R},+)$ est monogène ou dense.

4.2 Retour sur le caractère archimédien

<u>Rémarque</u> : la propriété de la borne supérieure entraı̂ne le caractère archimédien de \mathbb{R} , càd $\forall x \in \mathbb{R}$, $\exists n \in \mathbb{Z} : n > x$

4.3 Classification des intervalles

Théorème 4.2. Soit $I \subseteq \mathbb{R}$ un intervalle.

Alors il existe $a, b \in \mathbb{R}$ tel que

$$I \in \{\emptyset, \{a\}, [a,b], [a,b[,]a,b],]a,b[, [a,+\infty[,]a,+\infty[,]-\infty,b],]-\infty,b[, \mathbb{R}\}$$