EECS 484 - Database Management Systems

Responsible Data Management

Not in your textbook

Outline

- Privacy
- Equity

Data Value

- Data sets are bought and sold every day.
- Value is in the organization of data.
- Increase value by doing work:
 - Data cleaning
 - Data integration
 - More convenient access tools
 - •
- Very poor theory on how to price.

Surveillance Capitalism

- Do we really get stuff for free from companies?
- How do TV networks make money?
- How do Google, Facebook, etc. make money?
- How do these differ?

Shoshana Zuboff

Privacy

- Ability to control sharing of information about self.
- Basic human need.
 - Even for people who have "nothing to hide"

Loss of Privacy

- Due to loss of control over personal data.
- I am OK with you having certain data about me that I have chosen to share with you or that is public, but I really do not want you to share my data in ways that I do not approve.

Anonymity

SHOR ORL: HRD://COH.St/ 10000040

NETFLIX PRIZE

Closeted Lesbian Sues Netflix For Potential Outing

By Laura Northrup on December 19, 2009 3:00 PM

Here's the problem with anonymized data: if it were truly anonymized, it wouldn't be useful to anyone for anything. With enough data about a person—say, their age, gender, and zip code—it's not hard to narrow down who someone is. That's the idea behind a class-action lawsuit against Netflix regarding the customer data they released to the public as part of the Netflix Prize project, a contest to help create better movie recommendations. A closeted lesbian alleges that the data available about her could reveal her identity.

Consumerist.com

Anonymity is Impossible

- Anonymity is virtually impossible, with enough other data.
 - Diversity of entity sets can be eliminated through joining external data
 - Random perturbation works only if we can guarantee a one-time perturbation
 - Aggregation works only if there is no known structure among entities aggregated
- Faces can be recognized in image data.
 - Progressively, even under challenging conditions, such as partial occlusion

Anonymity Techniques

K-Anonymity

- Require at least k entries in a group about which information is revealed.
- Hope that is enough to hide details about any one individual.
- But not provably safe.

Differential Privacy

- Only respond to aggregate queries about the data.
- Add carefully calibrated noise to the aggregate value being reported.
- Can guarantee (with high probability) not revealing detail data about presence of any individual in the data set.

Differential Privacy

- Widely used today
 - E.g. US Census Bureau
- Only method with provable guarantees
- But, repeated queries are a worry
- Concept of fixed 'epsilon' budget
- Also, complaints about added noise from some researchers

Facebook/Cambridge Analytica

- Your preferences can be predicted by the app, better than by your roommate, based on 70 "like"s on Facebook. (Better than your spouse with 300 "like"s).
- Once someone has such a powerful app, they really know you, and can "push your buttons".
- We need to limit such use if we are to feel free to share in the datafied world.

Choice May not be Yours to Make

 "The Golden State killer," Joseph DeAngelo, was identified on account of partial matches with DNA his cousins had entered at a genealogy website.

No Option to Exit

- In the past, one could get a fresh start by:
 - Moving to a new place
 - Waiting till the past fades
 - Reputations can be rebuilt over time.
- Big Data is universal and never forgets anything!!
 - Way back machine for the web
- Can we develop techniques to forget?

Outline

- Privacy
- Equity

Algorithmic Fairness

- Do the data "speak for themselves"?
- Can algorithms be biased?
- Can we make algorithms unbiased?
 - Is training data set representative of the population?
 - Is past population representative of future population?
 - Are observed correlations due to confounding processes?

Validity

- Bad data leads to bad decisions.
- buggy clara

- But most data are dirty.
- If decision-making is opaque, results can be bad in the aggregate, and catastrophic for an individual.
- What if someone has a loan denied because of an error in the data analyzed?

though may be good agregardy

Third Party Data

- Material decisions can often be made on the basis of public data or data provided by third parties.
- There often are errors in these data.
- Does the affected subject have a mechanism to correct errors?
 - Credit rating data on steroids.
- Does the affected subject even know what data were used?
- "Right of recourse"

Biased Data

- Data collection mechanisms often result in biases.
 - Whether these matter requires thought.
- Social media posts are not representative of the general population
 - Skew younger, better educated, more tech-savvy.
 - Over-represent people with strong opinions
- Medical tests often at one (or a few) local site(s)
 - But results are claimed to apply throughout the world.
 - Most humans are indeed alike.
 - But what about racial/genetic differences?
 - Environmental differences between rich and poor nations.

Equity

Treat people differently based on their circumstances to achieve comparable outcomes.

Equity ≠ Fairness

Equity vs Equality

Interaction Institute for Social Change interactioninstitute.org

Artist: Angus Maguire madewithangus.com

Example of Equity

- It is fair to spend an equal number of dollars per student in a public school.
 - Aggregate budget allocations often made this way.
- Equity requires addition spending on children with special needs.

Example of Equity

- It is fair to give each student in the class the same amount of time to take an exam.
- Equity requires allowing extra time for some students.

Example of Model Equity

- It is fair to measure every applicant's knowledge/potential through a standardized test, such as GRE.
- Equity requires taking into account studies showing the strong correlation between test performance and socioeconomic status (and gender and race and ...).

Example of Data Equity

- It is fair to create a training data set that is an unbiased sample of the population: each minority group is represented in proportion to its size in the population.
- Equity may require over-sampling of small minorities. If a small minority group "behaves" differently than others, the model may minimize aggregate error by ignoring the minority group.

Conclusion

 Data-driven automation can do a lot more, and do it a lot faster. But the "it" needs to be defined carefully.

