CSE1003-Digital Logic Design

Module:5 Sequential Circuits-I Part-2

Dr.Penchalaiah Palla

Dept. of Micro and Nanoelectronics School of Electronics Engineering,VIT, Vellore

Module:5 Sequential Circuits-I

Module:5 | SEQUENTIAL CIRCUITS – I

6 hours

Flip Flops - Sequential Circuit: Design and Analysis - Finite State Machine: Moore and Mealy model - Sequence Detector.

Module:6 | SEQUENTIAL CIRCUITS – II

7 hours

Registers - Shift Registers - Counters - Ripple and Synchronous Counters - Modulo counters - Ring and Johnson counters

Introduction: Sequential Circuits

Combinational

- The outputs depend only on the current input values
- > It uses only logic gates

Sequential

- The outputs depend on the current and past input values
- It uses logic gates and storage elements
- Example
 - Vending machine
- They are referred as finite state machines since they have a finite number of states

Sequential Logic Design with Flip-flops

- Introduction
- Flip-flop Characteristic Tables
- Sequential Circuit Analysis
- Flip-flop Input Functions
- Analysis: Example #2
- Analysis: Example #3
- Flip-flop Excitation Tables

Sequential Logic Design with Flip-flops

- Sequential Circuit Design
- Design: Example #1
- Design: Example #2
- Design: Example #3
- Design of Synchronous Counters

Introduction

- Sequential circuits has an extra dimension time.
- Combinational circuit output depends only on the present inputs
- Sequential circuit output depends on the history of past inputs as well
- More powerful than combinational circuit, able to model situations that cannot be modeled by combinational circuits
- Building blocks of synchronous sequential logic circuits: gates and flip-flops.
- Flip-flops make up the memory M while the gates form one or more combinational subcircuits C₁, C₂, ..., C_q.

Difference Between Analysis and Design

- Analysis: Starting from a circuit diagram, derive the state table or state diagram.
- Characteristic tables are used in analysis.

- Design: Starting from a set of specifications (in the form of state equations, state table, or state diagram), derive the logic circuit.
- Excitation tables are used in design.

Flip-flop Characteristic Tables

Each type of flip-flop has its own behavior. The characteristic tables for the various types of flipflops are shown below:

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

JK Flip-flop

D	Q(t+1)	
0	0	Reset
1	1	Set

D Flip-flop

S	R	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	?	Unpredictable

SR Flip-flop

T	Q(t+1)	
0	Q(t)	No change
1	Q(t)'	Toggle

T Flip-flop

- Given a sequential circuit diagram, analyze its behaviour by deriving its state table and hence its state diagram.
- Requires state equations to be derived for the flip-flop inputs, as well as output functions for the circuit outputs other than the flip-flops (if any).
- We use A(t) and A(t+1) to represent the present state and next state, respectively, of a flip-flop represented by A.
- Alternatively, we could simply use A and A+ for the present state and next state respectively.

Example #1 (using D flip-flops):

State equations:

$$A^{+} = A.x + B.x$$

$$B^+ = A'.x$$

Output function:

$$y = (A + B).x'$$

Figure 1.

- From the state equations and output function, we derive the state table, consisting of all possible binary combinations of present states and inputs.
- State table
 - Similar to truth table.
 - Inputs and present state on the left side.
 - Outputs and next state on the right side.
- m flip-flops and n inputs $\rightarrow 2^{m+n}$ rows.

State table for the circuit of Figure 1:

State equations: Output function:

$$A^{+} = A.x + B.x$$
 $y = (A + B).x'$

$$y = (A + B).x$$

$$B^+ = A'.x$$

Pres	sent		Next				
Sta	ate_	<u>Input</u>	_St	ate_	<u>Output</u>		
_ <i>A</i> _	В	X	A⁺	B ⁺	У		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	1		
0	1	1	1	1	0		
1	0	0	0	0	1		
1	0	1	1	0	0		
1	1	0	0	0	1		
1	1	1	1	0	0		

Alternate form of state table:

Present State		Input		ext ate	Output
A	В	X	A^{+}		
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Present	Next	State	Output		
State	<i>x</i> =0	<i>x</i> =1	<i>x</i> =0	<i>x</i> =1	
AB	$A^{\dagger}B^{\dagger}$	A ⁺ B ⁺	У	У	
00	00	01	0	0	
01	00	11	1	0	
10	00	10	1	0	
11	00	10	1	0	

- From the state table, we can draw the state diagram.
- State diagram
 - Each state is denoted by a circle.
 - Each arrow (between two circles) denotes a transition of the sequential circuit (a row in state table).
 - ❖ A label of the form a/b is attached to each arrow where a denotes the inputs while b denotes the outputs of the circuit in that transition.
- Each combination of the flip-flop values represents a state. Hence, m flip-flops \rightarrow up to 2^m states.

State diagram of the circuit of Figure 1:

Present	Next	State	Output		
State	<i>x</i> =0	<i>x</i> =1	<i>x</i> =0	<i>x</i> =1	
AB	A ⁺ B ⁺	A ⁺ B ⁺	У	У	
00	00	01	0	0	
01	00	11	1	0	
10	00	10	1	0	
11	00	10	1	0	

Flip-flop Input Functions

- The outputs of a sequential circuit are functions of the present states of the flip-flops and the inputs. These are described algebraically by the *circuit* output functions.
 - Arr In Figure 1: y = (A + B).x'
- The part of the circuit that generates inputs to the flip-flops are described algebraically by the flip-flop input functions (or flip-flop input equations).
- The flip-flop input functions determine the next state generation.
- From the flip-flop input functions and the characteristic tables of the flip-flops, we obtain the next states of the flip-flops.

Flip-flop Input Functions

- Example: circuit with a JK flip-flop.
- We use 2 letters to denote each flip-flop input: the first letter denotes the input of the flip-flop (J or K for JK flip-flop, S or R for SR flip-flop, D for D flip-flop, T for T flip-flop) and the second letter denotes the name of the flip-flop.

$$JA = B.C'.x + B'.C.x'$$

 $KA = B + y$

Flip-flop Input Functions

In Figure 1, we obtain the following state equations by observing that $Q^+ = DQ$ for a D flip-flop:

$$A^+ = A.x + B.x$$
 (since $DA = A.x + B.x$)
 $B^+ = A'.x$ (since $DB = A'.x$)

 Given Figure 2, a sequential circuit with two JK flipflops A and B, and one input x.

$$KA = B.x'$$

JA = B

$$JB = x'$$

$$KB = A'.x + A.x' = A \oplus x$$

Obtain the flip-flop input functions from the circuit:

Flip-flop input functions:

$$JA = B$$
 $JB = x'$ $KA = B.x'$ $JB = A'.x + A.x' = A \oplus x$

 Fill the state table using the above functions, knowing the characteristics of the flip-flops used.

J	Κ	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

Pres	sent		Next					
sta	state Input state		Flip-flop inputs					
Α	В	X	A ⁺	B^{+}	JA	KA	JB	KB
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Draw the state diagram from the state table.

Pres		Input	Next state		F	lip-flo _l	p inpu	ts
A	В	X	A ⁺	B ⁺	JA	KA	JB	KB
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

 Derive the state table and state diagram of the following circuit.

Figure 3.

Flip-flop input functions:

$$JA = B$$

$$JB = KB = (A \oplus x)' = A.x + A'.x'$$

$$KA = B'$$

Flip-flop input functions:

$$JA = B$$
 $JB = KB = (A \oplus x)' = A.x + A'.x'$ $KA = B'$

State table:

sent		N	ext					
ate_	<u>Input</u>	_st	ate	<u>Output</u>	_FI	ip-flo	<mark>p inpu</mark>	<u>ıts</u>
В	X	A ⁺	B ⁺	У	JA	KA	JB	KB
0	0	0	1	0	0	1	1	1
0	1	0	0	1	0	1	0	0
1	0	1	0	1	1	0	1	1
1	1	1	1	0	1	0	0	0
0	0	0	0	1	0	1	0	0
0	1	0	1	0	0	1	1	1
1	0	1	1	0	1	0	0	0
1	1	1	0	1	1	0	1	1
	B 0	ate Input B x 0 0 0 1 1 0 0 0 1 1 0 0 0 1	ate Input st B X A ⁺ 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0	ate Input state B X A ⁺ B ⁺ 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1	ate Input state Output B X A ⁺ B ⁺ y 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	ate Input state Output Flight B X A* B* Y JA 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1	ate Input state Output Flip-flog B X A* B* Y JA KA 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 <	ate Input state Output Flip-flop input B X A+ B+ y JA KA JB 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

State diagram:

Present Input		Input	Next state		Output	Flip-flop inputs				
		<u> </u>	A ⁺			JA	KA	JB	KB	
0	0	0	0	1	0	0	1	1	1	
0	0	1	0	0	1	0	1	0	0	
0	1	0	1	0	1	1	0	1	1	
0	1	1	1	1	0	1	0	0	0	
1	0	0	0	0	1	0	1	0	0	
1	0	1	0	1	0	0	1	1	1	
1	1	0	1	1	0	1	0	0	0	
1	1	1	1	0	1	1	0	1	1	

Flip-flop Excitation Tables

- Design: Starting from a set of specifications (in the form of state equations, state table, or state diagram), derive the logic circuit.
- Excitation tables are used in design.

Flip-flop Excitation Tables

Excitation tables: given the required transition from present state to next state, determine the flip-flop

input(s).

Q	Q [†]	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Flip-flop

Q	Q [†]	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

SR Flip-flop

Q	Q⁺	D
0	0	0
0	1	1
1	0	0
1	1	1

D Flip-flop

•	Q	Q⁺	<i>T</i>
	0	0	0
	0	1	1
	1	0	1
	1	1	0

T Flip-flop

Sequential Circuit Design

Design procedure:

- Start with circuit specifications description of circuit behaviour.
- Derive the state table.
- Perform state reduction if necessary.
- Perform state assignment.
- Determine number of flip-flops and label them.
- Choose the type of flip-flop to be used.
- Derive circuit excitation and output tables from the state table.
- Derive circuit output functions and flip-flop input functions.
- Draw the logic diagram.

 Given the following state diagram, design the sequential circuit using JK flip-flops.

Circuit state/excitation table, using JK flip-flops.

Present	Next State					
State	<i>x</i> =0	<i>x</i> =1				
AB	$A^{\dagger}B^{\dagger}$	A ⁺ B ⁺				
00	00	01				
01	10	01				
10	10	11				
11	11	00				

	()	
Q	Q [†]	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0
	<i>,</i> –	<i>C</i> 1 1	

JK Flip-flop's excitation table.

Pres		Input	Ī	Next state		lip-flo _l	p inputs	
A	В	<u> </u>	A ⁺	B ⁺	JA	KA	JB	KB
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Block diagram.

Design: Example #1

From state table, get flip-flop input functions.

Pres sta	sent ate	Input	_	ext ate	Flip-flop inputs			ts
A	В	<u></u>	A^+ B^+		JA	KA	JB	KB
0	0	0	0	0	0	X	0	Χ
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Flip-flop input functions.

$$JA = B.x'$$

 $KA = B.x$

$$JB = x$$

 $KB = (A \oplus x)'$

Logic diagram:

 Design, using D flip-flops, the circuit based on the state table below. (Exercise: Design it using JK flipflops.)

Pres	sent		Next								
sta	ate	Input	sta	ate	Output						
A	В	X	A^+ B^+		У						
0	0	0	0	0	0						
0	0	1	0	1	1						
0	1	0	1	0	0						
0	1	1	0	1	0						
1	0	0	1	0	0						
1	0	1	1	1	1						
1	1	0	1 1		0						
1	1	1	0	0	0						

 Determine expressions for flip-flop inputs and the circuit output y.

Present state		Input	Output			
A B		X	A ⁺	B ⁺	у	
0	0	0	0	0	0	
0	0	1	0	1	1	
0	1	0	1	0	0	
0	1	1	0	1	0	
1	0	0	1	0	0	
1	0	1	1	1	1	
1	1	0	1	1	0	
1	1	1	0	0	0	

Design: Example #2

From derived expressions, draw logic diagram:

Design with unused states.

	Present state		Input	Next state						Flip-flop inputs				
A	В	С	X	A ⁺	B ⁺	C ⁺	SA	RA	SB	RB	SC	RC	У	
0	0	1	0	0	0	1	0	X	0	Х	Х	0	0	
0	0	1	1	0	1	0	0	X	1	0	0	1	0	
0	1	0	0	0	1	1	0	X	X	0	1	0	0	
0	1	0	1	1	0	0	1	0	0	1	0	X	0	
0	1	1	0	0	0	1	0	X	0	1	X	0	0	
0	1	1	1	1	0	0	1	0	0	1	0	1	0	
1	0	0	0	1	0	1	X	0	0	X	1	0	0	
1	0	0	1	1	0	0	X	0	0	X	0	X	1	
1	0	1	0	0	0	1	0	1	0	X	X	0	0	
1	0	1	1	1	0	0	X	0	0	X	0	1	1	

Given these

Derive these

Unused state 000:

			 										
0	0	0	0	X	X	X	X	X	X	X	X	X	X
0	0	0	1	X	X	X	X	X	X	X	X	X	X

Design: Example #3

From state table, obtain expressions for flip-flop inputs.

Design: Example #3

 From state table, obtain expressions for flip-flop inputs (cont'd).

Design: Example #3

Design: Example #3

From derived expressions, draw logic diagram:

- Counter: a sequential circuit that cycles through a sequence of states.
- Binary counter: follows the *binary sequence*. An n-bit binary counter (with n flip-flops) counts from 0 to 2^n -1.
- Example 1: A 3-bit binary counter (using T flip-flops).

Present state			Next state			Flip-flop inputs		
A_2	A ₁	A_0	A_2^+	A_1^+	A_0^+	TA ₂	<i>TA</i> ₁	TA_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

3-bit binary counter (cont'd).

Present			Next			Flip-flop		
	state	!		<u>state</u>	<u> </u>		<u>nputs</u>	
A_2	A ₁	A_0	A_2^+	A_1^{\dagger}	A_0^{\dagger}	TA ₂	TA ₁	TA_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

3-bit binary counter (cont'd).

$$TA_2 = A_1.A_0$$
 $TA_1 = A_0$ $TA_0 = 1$

Example 2: Counter with non-binary sequence:

$$000 \rightarrow 001 \rightarrow 010 \rightarrow 100 \rightarrow 101 \rightarrow 110$$
 and back to 000

	ese state			Next		Flip-flop in			p inp	uts	
A	В	C	A ⁺	B^{+}	C ⁺	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X

$$JA = B$$

 $KA = B$

$$JB = C$$

$$JC = B'$$

$$KC = 1$$

Counter with non-binary sequence (cont'd).

$$JA = B$$
 $JB = C$ $JC = B'$
 $KA = B$ $KB = 1$ $KC = 1$

Summary

- Sequential circuits have memory and they are more powerful than combinational circuits.
- Analyzing sequential circuits
 - Flip-flop characteristic table
 - State Table
 - State diagram
- Designing sequential circuits
 - Flip-flop excitation table
 - State assignment
 - Circuit output function
 - Flip-flop input function

Summary 45

Finite State Machine (FSM)

■This is what we have been waiting for in this class. Using combinational and sequential logics, now you can design a lot of clever digital logic circuits for functional products. We will learn different steps you take to go from word problems to logic circuits. We first talk about a simplified version of FSM which is a counter.

Moore/Mealy machines

There are two different ways to express the FSMs with respect to the output. Both have different advantages so it is good to know them.

Finite state machines: more than counters

- FSM: A system that visits a finite number of logically distinct states
- Counters are simple FSMs
 - Outputs and states are identical
 - Visit states in a fixed sequence without inputs
- FSMs are typically more complex than counters
 - Outputs can depend on current state and on inputs
 - State sequencing depends on current state and on inputs

FSM design

- Counter-design procedure
 - 1.State diagram
 - 2.State-transition table
 - 3. Next-state logic minimization
 - 4.Implement the design

FSM-design procedure

- 1.State diagram
- 2.state-transition table
- 3. State minimization
- 4. State encoding
- 5. Next-state logic minimization
- 6.Implement the design

Example: A vending machine

- 15 cents for a cup of coffee
- Doesn't take pennies or quarters
- Doesn't provide any change

- State diagram
- 2. state-transition table
- State minimization
- State encoding
- Next-state logic minimization
- Implement the design

A vending machine: (conceptual) state diagram

A vending machine: State transition table

present state	inputs D N	next state	output open
S0	0 0	S0	0
	0 1	S1 S2	0
	$egin{array}{ccc} 1 & 0 \\ 1 & 1 \end{array}$	X X	0 X
S1	0 0	S1	0
31	0 1	S3	0
	1 0	S4	ŏ
	1 1	X	X
S2	0 0	S2	0
	0 1	S5	0
	1 0	S6	0
	1 1	X	X
S3	0 0	S3	0
	0 1	S7	0
	1 0	S8	0
	1 1	X	X
S4	XX	S4	1
S5	X X	S5	1
S6	XX	S6	1
S7	X X	S7	1
S8	X X	S8	1

Generalized FSM model: Moore and Mealy

- Combinational logic computes next state and outputs
 - Next state is a function of current state and inputs
 - Outputs are functions of

Moore versus Mealy machines

Impacts start of the FSM design procedure

- Counter-design procedure
 - 1. State diagram
 - 2. State-transition table
 - 3. Next-state logic minimization
 - 4. Implement the design
- FSM-design procedure
 - 1. State diagram
 - 2. State-transition table
 - 3. State minimization
 - 4. State encoding
 - 5. Next-state logic minimization
 - 6. Implement the design

State Diagrams

- Moore machine
 - Each state is labeled by a pair:

state-name/output or state-name [output]

- Mealy machine
 - Each transition arc is labeled by a pair:

input-condition/output

Example $10 \rightarrow 01$: Moore or Mealy?

- ◆ Circuits recognize AB=10 followed by AB=01
 - What kinds of machines are they?

Example "01 or 10" detector: a Moore machine

- Output is a function of state only
 - Specify output in the state bubble

rasat	input	current	next state	current output
16361	IIIput	Sidic	State	Output
1	_	_	Α	0
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	D	0
0	0	С	E	0
0	1	С	С	0
0	0	D	E	1
0	1	D	С	1
0	0	Е	В	1
0	1	Е	D	1

Example "01 or 10" detector: a Mealy machine

- Output is a function of state and inputs
 - Specify outputs on transition arcs

input		next state	current output
_	_	Α	0
0	Α	В	0
1	Α	С	0
0	В	В	0
1	В	С	1
0	С	В	1
1	С	С	0
	input - 0 1 0 1 0 1	input state 0 A 1 A 0 B 1 B 0 C	A 0 A B 1 A C 0 B B 1 B C 0 C B

Comparing Moore and Mealy machines

- Moore machines
 - + Safer to use because outputs change at clock edge
 - May take additional logic to decode state into outputs
- Mealy machines
 - + Typically have fewer states
 - + React faster to inputs don't wait for clock
 - Asynchronous outputs can be dangerous
- We often design synchronous Mealy machines
 - Design a Mealy machine
 - Then register the outputs

Synchronous (registered) Mealy machine

- Registered state and registered outputs
 - No glitches on outputs
 - No race conditions between communicating machines

Example "=01": Moore or Mealy?

- ◆ Recognize AB = 01
 - Mealy or Moore?

Registered Mealy (actually Moore)

- Serial input string
 - OUT=1 if odd # of 1s in input
 - OUT=0 if even # of 1s in input
- Let's do this for Moore and Mealy

1. State diagram

Moore

Mealy

1. State-transition table Moore

Present State	Input	Next State	Present Output			
Even Even Odd Odd	0 1 0 1	Even Odd Odd Even	0 0 1 Present State	Input	lealy Next State	Present Output
			Even Even Odd Odd	0 1 0 1	Even Odd Odd Even	0 1 1 0

- 3. State minimization: Already minimized
 - Need both states (even and odd)
 - Use one flip-flop

4. State encoding Moore

Assignment Even 0 Odd 1

Present State	Input	Next State	Present Output
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Mealy

	Present State	Input	Next State	Present Output
•	0	0	0	0
	0	1	1	1
	1	0	1	1
	1	1	0	0

- 5. Next-state logic minimization
 - Assume D flip-flops
 - Next state = (present state) XOR (present input)

What was covered so far on FSM

- Finite state machines
 - FSM design procedure
 - 1. State diagram
 - 2. State-transition table
 - 3. State minimization
 - 4. State encoding
 - 5. Next-state logic minimization
 - 6. Implement the design
 - No Mealy machines