

AGH

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA **W KRAKOWIE**

Projekt 4 Ekonometria Finansowa i Dynamiczna Maciej Nagły, Karol Kuciński, Mateusz Mulka Informatyka i Ekonometria

II stopień, studia stacjonarne

Spis treści

Wstęp	3
Przygotowanie danych	4
Badanie przydatności modeli warunkowej wariancji do obliczania VaR	5
Test Kupca	5
Test Christoffersena	6
Metoda historyczna Value at Risk	8
Metoda wariancji-kowariancji Value at Risk	8
GARCH	9
GJR-GARCH	11
E-GARCH	14
Podsumowanie	16

Wstęp

Na podstawie danych dziennych cen zamknięcia bitcoina (skrótowo określanego również BTC) z okresu 2014-2024 zbadano przydatność modeli warunkowej wariancji do obliczenia VaR.

Rozważono modele:

- GARCH
- GJR-GARCH
- EGARCH

Każdy z warunkowym rozkładem normalnym oraz t-studenta. Badanie przeprowadzono w oknach o długości dwóch lat przesuwanych co notowanie. Rozważono VaR(1%) oraz VaR(5%) obliczane na następne notowanie. Uzyskane wyniki VaR porównano z wynikami dla metody historycznej oraz wariancji-kowariancji. W każdym przypadku zbadano zgodność rozkładu warunkowego reszt z przyjętym rozkładem warunkowym.

Do oceny jakości modeli obliczających Value at Risk zostały wykorzystane test Kupca i test Christoffersena.

Przygotowanie danych

Wykorzystano okna co dwa lata, w przypadku giełd kryptowalutowych giełda działa każdego dnia dlatego jako okno dwuletnie wykorzystano liczbę dni równą 730 dni. Dane nie zawierały braków. Zdecydowaliśmy się na wyświetlenie wykresów ceny BTC w dolarach, a także logarytmicznych stóp zwrotu.

Jak możemy zauważyć, cena BTC zachowuje 4 letnie cykle, które można opisać następująco : rok 1 – akumulacja (cena stabilizuje się po poprzedniej hossie i bessie, inwestorzy akumulują BTC), rok 2 – powolne wzrosty BTC, przygotowanie do hossy, rok 3 – dynamiczne wzrosty BTC (to tutaj hossa nabiera

tempa, warto jednak zauważyć, że w tym okresie obecne są również spadki wynoszące 20-30% co wpływa na bardzo dużą zmienność tego aktywa), rok 4 – bessa (dynamiczna korekta cen). Warte zauważenia jest to, że taka cykliczność charakteryzuje się bardzo duża zmiennością, co możemy zauważyć na obu powyższych wykresach. Z uwagi na fakt, że nasze dane są tylko z okresu 2014-2024, poniższa grafika przygotowana przez Stockmoney Lizards obrazuje opisaną sytuacje jeszcze dokładniej. Cykliczność BTC wynika w dużej mierze z obecności halvingów, jest to wydarzenie mające miejsce co około 4 lata, powodujące obniżenie podaży tej kryptowaluty o połowę, warto tutaj również zaznaczyć, że bitcoin ma ograniczone max supply, to znaczy, że nigdy nie powstanie więcej niż 21 000 000 sztuk BTC . Na podstawie takiej tokenomi oraz zależności zauważonych w szeregu czasowym, spodziewamy się, że w dalszych rozważaniach możemy zauważyć heteroskedastyczność szeregu lub niewielkie zmiany w dopasowaniu naszych modeli.

Badanie przydatności modeli warunkowej wariancji do obliczania VaR

Test Kupca

Test Kupca opiera się na sprawdzeniu, czy częstość przekroczeń poziomu VaR jest zgodna z teoretycznym prawdopodobieństwem p, przy założeniu, że model jest poprawny.

H0: Proporcja przekroczeń ($p=p^{-}(x/n)$) jest zgodna z poziomem ufności.

H1: Proporcja przekroczeń nie jest zgodna z poziomem ufności (p≠p^ (x/n))

Prawdopodobieństwo uzyskania x przekroczeń w próbie o długości n jest opisane rozkładem dwumianowym:

$$pr(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Statystykę oparta na ilorazie wiarygodności można zapisać w postaci:

$$LR_{uc} = 2 \left[\log L_A - \log L_o \right]$$

Funkcja wiarygodności przy założeniu poprawności modelu

$$L_0 = p^x (1-p)^{n-x}$$

Funkcja wiarygodności w przypadku hipotezy alternatywnej

$$L_A = \hat{p}^x (1 - \hat{p})^{n-x}$$

$$\hat{p} = x/n$$

X – liczba przekroczeń

N – długość próbki

P - poziom ufności (np 0,01)

Statystyka ma asymptotycznie rozkład $\chi 2$ z jednym stopniem swobody. Hipotezę zerową odrzuca się, jeśli wartość tej statystyki przekroczy poziom krytyczny rozkładu $\chi 2$ (1)

Test Christoffersena

Test Christoffersen'a rozszerza test Kupca sprawdzając czy przekroczenia występują w sposób losowy, tzn. czy prawdopodobieństwo przekroczenia VaR w dowolnym momencie jest niezależne od przeszłych przekroczeń. W poprawnie funkcjonującym modelu przekroczenia poziomu VaR powinny mieć charakter losowy. Warto zauważyć, że brak niezależności nie oznacza, że model nie będzie spełniał kryterium Kupca.

H0: Przekroczenia są niezależne ($\pi_0 = \pi_1$).

H1: Przekroczenia nie są niezależne $(\pi_0 \neq \pi_1)$.

Statystyka oparta na ilorazie wiarygodności ma postać:

$$LR_{ind} = 2\left[\log L_A - \log L_o\right]$$

Funkcja wiarygodności hipotezy alternatywnej:

$$L_A = (1 - \pi_{01})^{T_{00}} \pi_{01}^{T_{01}} (1 - \pi_{11})^{T_{10}} \pi_{11}^{T_{11}}$$

Funkcja wiarygodności przy założeniu poprawności modelu:

$$L_0 = (1-p)^{T_{00}+T_{10}} p^{T_{01}+T_{11}}$$

Macierz przejść

$$\begin{bmatrix} 1 - \pi_{01} & \pi_{01} \\ 1 - \pi_{11} & \pi_{11} \end{bmatrix}$$

T_{ij} - oznacza liczbę przejść ze stanu i do stanu j

T₀₀: Przejście z 0 (brak przekroczenia) na 0 (brak przekroczenia)

T₀₁: Przejście z 0 na 1 (przekroczenie)

T₁₀: Przejście z 1 na 0

T₁₁: Przejście z 1 na 1

$$\pi_{\rm o_1} = \frac{T_{\rm o_1}}{T_{\rm oo} + T_{\rm o_1}}$$

$$\pi_{11} = \frac{T_{11}}{T_{10} + T_{11}}$$

 $\pi_{ij} = pr(I_{t+1} = j | I_t = i)$ prawdopodobieństwo przejścia z i (brak przekroczenia) do j (przekroczenie)

Podobnie jak w przypadku testu Kupca, jeśli L R_{ind} przekracza wartość krytyczną rozkładu $\chi 2$ z jednym stopniem swobody, odrzucamy hipotezę zerową.

Metoda historyczna Value at Risk

Metoda historyczna VaR stanowi jedną z najpopularniejszych technik szacowania ryzyka finansowego. Opiera się ona na rzeczywistym rozkładzie historycznych stóp zwrotu danego aktywa – w tym przypadku bitcoina. Jest to jedna z najprostszych metod szacowania ryzyka, która nie zakłada występowania założonego rozkładu prawdopodobieństwa stóp zwrotu. Główne kroki w implementacji temody historycznej to:

- Zebranie danych historycznych
- Obliczanie percentyli na podstawie danych obliczane są percentyle dla ustalonych poziomów ufności np. 1% lub 5% jak w przypadku tego projektu
- Interpretacja wyników, przykładowo: wartość VaR na poziomie 1% oznacza, że w 1% przypadków oczekiwane straty mogą być równe lub większe od tej wartości, bazując na danych historycznych.

Metoda historyczna VaR ma kilka zalet, takich jak bezpośrednie wykorzystanie danych empirycznych i unikanie błędów wynikających z niewłaściwego założenia rozkładu stóp zwrotu. Jednakże, jej skuteczność może być ograniczona w sytuacjach, gdy struktura rynku ulega zmianie lub występuje autokorelacja i heteroskedastyczność w szeregu czasowym.

Metoda wariancji-kowariancji Value at Risk

Metoda wariancji-kowariancji VaR opiera się na założeniu, że stopy zwrotu instrumentów finansowych, podlegają rozkładowi normalnemu. Jest to metoda, która wykorzystuje właściwości statystyczne szeregów czasowych do oszacowania ryzyka finansowego.

Metoda wariancji-kowariancji VaR:

- Zakłada, że stopy zwrotu mają rozkład normalny.
- VaR jest obliczany jako:

$$VaR = -(\mu + z_{\alpha} \cdot \sigma)$$

gdzie:

- μ średnia stopa zwrotu,
- σ odchylenie standardowe stóp zwrotu,
- z_α wartość krytyczna dla poziomu ufności α (np. 2.33 dla 1%).

Wyniki uzyskane z modeli GARCH zostaną porównane z rezultatami otrzymanymi przy użyciu metody historycznej i metody wariancji-kowariancji. Analiza ta pozwoli ocenić, które podejście najlepiej odzwierciedla rzeczywiste ryzyko związane z bitcoinem, biorąc pod uwagę dynamiczny i nieprzewidywalny charakter rynku kryptowalut.

W każdym przypadku zbadamy zgodność rozkładu warunkowego reszt z przyjętym rozkładem warunkowym, aby upewnić się, że wybrane modele poprawnie odzwierciedlają strukturę i dynamikę zmienności bitcoina.

GARCH

Model GARCH - Generalized Autoregressive Conditional Heteroskedasticity

Używany do analizy szeregów czasowych. Często wykorzystywany analizie finansowej zmienności cen instrumentów finansowych. Jest to rozszerzenie modelu ARCH, które umożliwia bardziej elastyczne uwzględnianie dynamiki zmienności w czasie.

Model GARCH(1,1)
$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

σ_t² – wariancja warunkowa w czasie t

 ϵ_{t-1}^2 – błąd losowy z poprzedniego okresu

 ω , α , β – parametry modelu

Badając przydatności modelu warunkowej wariancji GARCH użyto dwóch różnych rozkładów składnika losowego:

- Rozkład normlany
- Rozkład t-studenta

Celem analizy jest porównanie jak różne założenia dotyczące rozkładu wpływają na prognozowaną zmienność oraz wartość VaR.

Poniższa tabela przedstawia podsumowanie liczby przekroczeń dla każdego z wykorzystanych modeli.

Dla każdego okna sprawdzono liczbę przekroczeń, jeżeli liczba ta była większa niż dopuszczalny poziom ufności α =[0.01, 0.05] do tabeli dodawano 1 za każde okno.

- → 99% ufności, czyli dopuszczamy, że w 1% przypadków rzeczywista strata przekroczy prognozowany VaR.
- → 95% ufności, czyli dopuszczamy, że w 5% przypadków rzeczywista strata przekroczy prognozowany VaR.

Model	poziom ufności	liczba przekroczeń
GARCH (Normalny)	VaR 1%	51
GARCH (Normalny)	VaR 5%	113
GARCH (t-Studenta)	VaR 1%	41
GARCH (t-Studenta)	VaR 5%	112
Metoda historyczna	VaR 1%	2893
Metoda historyczna	VaR 5%	2731
Wariancja-kowariancja	VaR 1%	51
Wariancja-kowariancja	VaR 5%	121

Największą liczbę przekroczeń dla wszystkich okien zaobserwowano w przypadku metody historycznej, zarówno dla poziomu ufności 99% jak i 95%. Model GARCH z rozkładem normalnym oraz metoda wariancji-kowariancji dały zbliżone wyniki. Przy poziomie ufności 99% uzyskano identyczną liczbę przekroczeń równą 51. Na poziomie ufności 95%, liczba przekroczeń wyniosła 113 dla modelu GARCH z rozkładem normalnym i 121 dla metody wariancji-kowariancji.

Przeprowadzając badanie analizie poddano 2941 okna, każde o długości 730 dni. Pożądane są wyniki, dla których na poziomie ufności 99% liczba przekroczeń wynosi 29, natomiast na poziomie ufności 95% 147 przekroczenia. Najbliższe wyniki do liczby przekroczeń 29 na poziomie ufności 99% uzyskano osiągnięto dla modelu GARCH z rozkładem t-Studenta(41). GARCH z t-Studentem radzi sobie lepiej dla ekstremalnych zdarzeń (grube ogony t-Studenta lepiej opisują rzadkie zdarzenia). Na poziomie istotności 95% najbliższa liczbę odrzuceń do 147 uzyskano dla modelu wariancji-kowariancji (121 przekorczeń).

W celu sprawdzenia zgodność rozkładu warunkowego reszt z przyjętym rozkładem warunkowym wykorzystano test Shapiro-Wilka dla rozkładu normalnego i test Jarque'a-Bera dla rozkładu t-Studenta.

shapiro_pvalue_normal jarque_bera_pvalue_t					
count	2.924000e+03	2.924000e+03			
mean	4.463581e-12	2.108057e-34			
min	1.129543e-27	0.000000e+00			
25%	2.252695e-24	0.000000e+00			
50%	2.776484e-16	1.286009e-157			
75%	5.496318e-14	6.009890e-59			
max	1.297514e-10	3.789955e-32			
std	1.755124e-11	1.711975e-33			

Dla testu Shapiro-Wilka minimalna wartość p-value wynosi 1.13×10^{-27} , natomiast maksymalna $1,30 \times 10^{-10}$. Bardzo niskie p-value sugeruje, że reszty **nie są zgodne z rozkładem normalnym.**

W przypadku testu Jarque'a-Bera średnia wartość p-value wynosi 2.11×10⁻³⁴. Maksymalna oraz minimalna wartość p-valu jest bardzo niska bliska 0. Również tutaj bardzo niskie wartości p oznaczają, że **reszty nie odpowiadają rozkładowi t-Studenta**.

W celu zbadania czy częstość przekroczeń poziomu VaR jest zgodna z teoretycznym prawdopodobieństwem oraz czy przekroczenia występują w sposób losowy przeprowadzono testy Kupca oraz Christoffesena dla każdego badanego okna.

Poniższa tabela przedstawia wyniki testów Kupca oraz Christoffersena dla wszystkich okien.

Model	Alpha	test Kupca (odrzucone)	test Christoffesena (odrzucone)
metoda historyczna	0,01	2924	0
metoda wariancji kowariancji	0,01	815	234
GARCH (normalny)	0,01	1542	103
GARCH (t-student)	0,01	1447	135
metoda historyczna	0,05	2924	525
metoda wariancji kowariancji	0,05	763	419
GARCH (normalny)	0,05	1771	596
GARCH (t-student)	0,05	2038	621
·			

Wyniki nie są zadawalające, liczba odrzuceń testu Kupca oraz Christoffesena jest bardzo duża w większości przypadków. Być może takie wyniki testów mogą być spowodowane bardzo dużą zmienność

bitcoina, którego dzienne zmiany mogą wahać się nawet o 20%. W przypadku metody historycznej przy poziomie istotności 0,01, hipoteza zerowa testu Kupca została odrzucona aż 2924 razy, co oznacza że proporcja przekroczeń nie jest zgodna z ustalonym poziomem ufności dla 2924 okien. Co ciekawe, test Christoffesena dla tego samego modelu nie został odrzucony ani raz. Najmniej odrzuceń testu Kupca zaobserwowano dla metody wariancji-kowariancji przy poziomie istotności 0,05 (763 odrzucenia). Z kolei model GARCH z rozkładem t-Studenta i poziomem istotności 0,01 wykazał 135 odrzuceń testu Christoffesena, sugerując że 135 razy odrzucono hipotezę zerowo i przyjmując hipotezę alternatywną za prawdziwą, która mówi że przekroczenia nie są niezależne. Dla poziomu istotności 0,05 dla każdego modelu liczba odrzuceń testu Christoffesena jest mniejsza niż dla alpha =0,01. Analogiczna sytuacja występuje dla GARCH gdzie na poziomie istotności 0,01 liczba odrzuceń obu testów jest mniejsza.

Żaden z modeli nie okazał się zdecydowanie lepszy od pozostałych.

GJR-GARCH

Jednym z zaawansowanych modeli stosowanych w analizie zmienności jest GJR-GARCH. Model ten rozszerza klasyczny model GARCH, wprowadzając mechanizm asymetrycznego wpływu zmian cen na zmienność, co umożliwia uwzględnienie szoków cenowych. Zastosowanie modelu GJR-GARCH może potencjalnie wpłynąć na lepsze zrozumienie dynamiki ryzyka inwestycyjnego, poprawę prognozy przyszłej zmienności, oceny ryzyka portfela inwestycyjnego przez miary takie jak VaR. Tak jak opisaliśmy w dziale "Przygotowanie danych", w przypadku Bitcoina występuje bardzo wysoka zmienność, warto tutaj zauważyć, że w okresie hossy pozytywne wiadomości ze świata mają bardzo mocny wpływ na wzrost ceny, podobnie w trakcie bessy negatywne informacje wywierają znacznie większy wpływ na cenę niż te pozytywne, możemy zatem zauważyć asymetryczne reakcje rynku w kontekście zmienności ceny BTC. Dodatkowo rynek kryptowalut, podobnie jak wiele innych rynków finansowych, posiada mechanizmy pozwalające na inwestycje z dźwignią, co ponownie powiązane jest z większą zmiennością aktywa w przypadku likwidacji dużych pozycji. Z wyżej wymienionych powodów zakładamy, że model ten może poradzić sobie lepiej od klasycznego modelu GARCH, jednak nie jest to pewne. Wiele zależy tutaj od doboru parametrów, czego jednak nie analizujemy w ramach tego projektu.

Wzór na model GJR-GARCH(1,1):

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \gamma \epsilon_{t-1}^2 I_{t-1} + \beta \sigma_{t-1}^2$$

- gdzie:
- σ_t^2 to warunkowa wariancja w czasie t,
- ω , α , γ , β to parametry modelu,
- ϵ_{t-1} to błąd losowy z poprzedniego okresu,
- I_{t-1} to wskaźnik przyjmujący wartość 1, gdy $\epsilon_{t-1} < 0$, i 0 w przeciwnym przypadku.

Analiza została przeprowadzona w analogiczny sposób jak w przypadku poprzedniego modelu, wyniki zebrane zostały do poniższych tabel :

Model	poziom ufności	liczba przekroczeń
GJR-GARCH (Normalny)	VaR 1%	53
GJR-GARCH (Normalny)	VaR 5%	118
GJR-GARCH (t-Studenta)	VaR 1%	45
GJR-GARCH (t-Studenta)	VaR 5%	117
Metoda historyczna	VaR 1%	2893
Metoda historyczna	VaR 5%	2731
Wariancja-kowariancja	VaR 1%	51
Wariancja-kowariancja	VaR 5%	121

W przypadku użycia modelu VaR 1% oczekujemy, że liczba przekroczeń wyniesie 1%, analogicznie w przypadku VaR 5% wynikiem do którego dążymy jest 5%. Liczba dwuletnich okien w naszych danych wynosi 2941.

- W przypadku modelu GJR-GARCH z rozkładem normalnym, dla poziomu ufności 99% (VaR 1%) liczba przekroczeń wynosi 53, co odpowiada 1,8% przekroczeń. Dla poziomu ufności 95% natomiast liczba przekroczeń wynosi 118, co daje 4,01% przekroczeń, czyli wartość bliższą oczekiwanej 5%. Widzimy tutaj błędy w szacowaniu modelu.
- W przypadku GJR-GARCH z rozkładem t-Studenta dla VaR 1% liczba przekroczeń wynosi 45, czyli 1,53% przekroczeń, natomiast dla VaR 5% jest to 117 przekroczeń – odpowiednik 3,98% przekroczeń.

Możemy tutaj zaobserwować, że model z użytym rozkładem t-studenta radzi sobie lepiej. Najprawdopodobniej wynika to z faktu, że rozkład t-studenta charakteryzuje się grubszymi ogonami niż rozkład normalny. Oznacza to, że rozkład ten lepiej opisuje rzadkie, ekstrzemalne zdarzenia, takie jak gwałtowne zmiany cen Bitcoina.

Wyniki z metod historycznych i wariancji-kowariancji pozostają bez zmian, widzimy, że metoda wariancji-kowariancji radzi sobie podobnie do GJR-GARCH z rozkładem normalnym (co jest logiczne biorąc pod uwagę założenia tej metody), z drugiej strony metoda historyczna daje bardzo słabe wyniki – przekroczenia na poziomie około 93% i 98%, wynika to z bardzo dużej historycznej zmienności rynku.

shapiro_pvalue_normal jarque_bera_pvalue_t				
count	2.924000e+03	2.924000e+03		
mean	5.378464e-12	1.220609e-34		
min	1.366105e-26	0.000000e+00		
25%	4.928941e-23	0.000000e+00		
50%	3.853727e-16	4.094692e-157		
75%	1.212180e-13	1.471344e-57		
max	1.491054e-10	2.256287e-32		
std	2.042957e-11	1.056735e-33		

W przypadku testu zgodności rozkładu reszt, widzimy w przypadkach obu testów wartość p-value na poziomie bardzo zbliżonym do 0 , co wskazuje że reszty nie są zgodne z badanym rozkładem (normalnym/t-studenta zależnie od testu). Modele z rozkładami normalnymi i t-Studenta mają trudności z dokładnym odwzorowaniem rozkładu reszt dla zmienności cen bitcoina. W przypadku

dalszej chęci modelowania BTC warto byłoby przeanalizować inne parametry modelu GJR-GARCH oraz inne rozkłady.

Model	Alpha	test Kupca (odrzucone)	test Christoffesena (odrzucone)
metoda historyczna	0,01	2924	0
metoda wariancji kowariancji	0,01	815	234
GJR-GARCH (normalny)	0,01	1643	114
GJR-GARCH (t-student)	0,01	1446	129
metoda historyczna	0,05	2924	525
metoda wariancji kowariancji	0,05	763	419
GJR-GARCH (normalny)	0,05	1746	597
GJR-GARCH (t-student)	0,05	2047	641

Test kupca:

Metoda historyczna daje wyniki z liczbą odrzuceń wynoszącą ponad 99%, co oznacza że model jest całkowicie niedopasowany do danych i nie estymuje poprawnie liczby przekroczeń. HO została tu odrzucona w 99,42% przepadków. W przypadku metody wariancji-kowariancji dla poziomów 1% i 5% liczba odrzuceń HO jest odpowiednio równa 27,71% i 25,94%. Wyniki wskazują na częściowe niedoszacowanie ryzyka, model jest lepszy niż metoda historyczna ale nadal ma trudności z poprawnym przewidywaniem liczby przekroczeń. Przechodząc do zbudowanego przez nas modelu GJR-GARCH, w przypadku rozkładu normalnego HO odrzucamy w 55,87 % przypadków dla VaR 1% i 59,37% przypadków dla VaR 5%. Wyniki te wskazują na niedoszacowanie modelu, jednak widać że model ten radzi sobie dużo lepiej niż metoda historyczna. Podobna sytuacja ma miejsce w przypadku GJR-GARCH z t-studenta – tutaj mamy wyników 49,17% dla VaR 1% i 69,6% dla VaR 5%.

Test Christoffesena:

Metoda historyczna – H0 przyjęta w prawie 100% przepadków dla VaR 1%,co sugeruje losowość przekroczeń, dla VaR 5% H0 nie została odrzucona w 17,85% przypadków – wskazuje to na problemy z niezależnością przy wyższym poziomie istotności. W przypadku metody wariancji-kowariancji odrzucenia H0 są na pozimie odpowiednio 7,96% i 14,25%. Model wykazuje pewne problemy z niezależnością przekroczeń, zwłaszcza przy wyższym poziomie istotności. Model GJR-GARCH z rozkadem normalnym odrzucał H0 w 3,88% przepadków dla VaR 1%, widzimy zatem dobrą niezależnośc przekroczeń przy niskim poziomie istotności, w przypadku VaR 5% wyniki były jednak gorsze, H0 zostało odrzucone w 20,3% przypadków, co sugeruje umiarkowane problemy z niezależnością. Model GJR-GARCH miał podobne ale trochę gorsze wyniki – odpowiednio 4,39% i 21,8% przekroczeń.

Mimo losowości przekroczeń metoda historyczna nie jest adekwatna z powodu niedoszacowania ryzyka. W przypadku metody wariancji-kowariancji widzimy że jest ona lepsza od metody historycznej ale ma trudności z dokładnym przewidywaniem liczby przekroczeń i wykazuje problemy z ich niezależnością. Stworzone przez nas modele GJR-GARCH dają względnie zadowalające wniki w kwestii niezależności przekroczeń. Ponownie widzimy tutaj przewagę modelu GJR-GARCH z rozkładem tstudenta nad modelem GJR-GARCH z rozkładem normalnym. Biorąc pod uwagę wyniki obu testów na raz można wyciągnąć wnioski, że model GJR-GARCH z użytym rozkładem t-studenta radzi sobie

najlepiej, zwłaszcza dla VaR 1% jednak oba modele GJR-GARCH dają podobne wyniki zgodnie z użytymi testami.

Ponownie żaden z modeli nie okazał się istotnie lepszy od pozostałych.

E-GARCH

Jednym z bardziej zaawansowanych modeli stosowanych w analizie zmienności jest EGARCH. W odróżnieniu od modeli opartych na klasycznej strukturze GARCH, EGARCH wykorzystuje logarytm wariancji warunkowej, co zapewnia większą elastyczność w modelowaniu ekstremalnych zjawisk na rynku finansowym. Dzięki tej konstrukcji model EGARCH pozwala na uwzględnienie zarówno asymetrii reakcji rynku, jak i nietypowo dużych skoków zmienności, co czyni go szczególnie użytecznym w analizie rynków charakteryzujących się wysoką nieprzewidywalnością. Tak jak było już wspominane rynek kryptowalut, a w szczególności Bitcoin, jest znany z intensywnych i asymetrycznych reakcji na zdarzenia zewnętrzne, jak również z częstych okresów wysokiej zmienności. Wprowadzenie modelu EGARCH do analizy takich rynków daje możliwość głębszego zrozumienia dynamiki zmienności cen i lepszego uchwycenia zjawisk, których nie uwzględniają standardowe modele. Dodatkowo, model ten eliminuje konieczność narzucania warunku dodatniości wariancji, co jest istotnym ułatwieniem przy modelowaniu danych o niestandardowym rozkładzie. Zastosowanie EGARCH na rynku kryptowalut może zatem potencjalnie prowadzić do dokładniejszych prognoz i bardziej precyzyjnego oszacowania ryzyka inwestycyjnego. Niemniej jednak skuteczność tego modelu, podobnie jak innych, zależy od właściwego doboru parametrów, co pozostaje poza zakresem tej analizy.

Wzór na model EGARCH (1,1)

$$\ln(\sigma_t^2) = \omega + \beta \ln(\sigma_{t-1}^2) + \alpha \frac{\epsilon_{t-1}}{\sigma_{t-1}} + \gamma |\frac{\epsilon_{t-1}}{\sigma_{t-1}}|$$

Gdzie:

 $\ln(\sigma_t^2)$ – logarytm warunkowej wariancji w czasie t, $\omega, \beta, \alpha, \gamma$ – parametry modelu, ϵ_{t-1} – błąd losowy z poprzedniego okresu, $\frac{\epsilon_{t-1}}{\sigma_{t-1}}$ – znormalizowany błąd losowy.

Analiza została przeprowadzona w analogiczny sposób jak w przypadku poprzedniego modelu, wyniki zebrane zostały do poniższych tabel :

Model	Poziom ufności	Liczba przekroczeń
EGARCH (Normalny)	VaR 1%	47
EGARCH (Normalny)	Var 5%	105
EGARCH (t-Studenta)	VaR 1%	29
EGARCH (t-Studenta)	Var 5%	67
Meoda historyczna	VaR 1%	2893
Meoda historyczna	Var 5%	2731
Wariancja-kowariancja	VaR 1%	51
Wariancja-kowariancja	Var 5%	121

W przypadku użycia modelu VaR 1% oczekujemy, że liczba przekroczeń wyniesie 1%, analogicznie w przypadku VaR 5% wynikiem do którego dążymy jest 5%. Liczba dwuletnich okien w naszych danych wynosi 2941.

- W przypadku modelu GJR-GARCH z rozkładem normalnym, dla poziomu ufności 99% (VaR 1%) liczba przekroczeń wynosi 47, co odpowiada 1,6% przekroczeń. Dla poziomu ufności 95% natomiast liczba przekroczeń wynosi 105, co daje 3,57% przekroczeń, czyli wartość bliższą oczekiwanej 5%. Widzimy tutaj błędy w szacowaniu modelu.
- W przypadku GJR-GARCH z rozkładem t-Studenta dla VaR 1% liczba przekroczeń wynosi 29, czyli 1% przekroczeń, natomiast dla VaR 5% jest to 67 przekroczeń – odpowiednik 2,27% przekroczeń.

Możemy tutaj zaobserwować, że model z użytym rozkładem t-studenta radzi sobie lepiej w przypadku VaR 1% gdzie dokładnie 1% przypadków była przekroczeniami. Analizując jednak przekroczenia przy poziomie ufności 5%, lepsze wyniki okazuje się mieć model z rozkładem normalnym.

Wyniki z metod historycznych i wariancji-kowariancji pozostają bez zmian, widzimy, że metoda wariancji-kowariancji radzi sobie podobnie do EGARCH z rozkładem normalnym (co jest logiczne biorąc pod uwagę założenia tej metody), z drugiej strony metoda historyczna daje bardzo słabe wyniki – przekroczenia na poziomie około 93% i 98%, wynika to z bardzo dużej historycznej zmienności rynku.

	shapiro_pvalue_normal	jarque_bera_pvalue_t
count	2.924000e+03	2.924000e+03
mean	5.230429e-12	5.950916e-33
min	4.086421e-28	0
25%	2.191609e-24	0
50%	3.199258e-16	1.871845e-168
75%	5.833340e-14	2.705818e-65
max	1.735677e-10	1.526168e-30
std	2.101800e-11	6.032091e-32

W przypadku testu zgodności rozkładu reszt, widzimy w przypadkach obu testów wartość p-value na poziomie bardzo zbliżonym do 0 , co wskazuje że reszty nie są zgodne z badanym rozkładem (normalnym/t-studenta zależnie od testu). Modele z rozkładami normalnymi i t-Studenta mają trudności z dokładnym odwzorowaniem rozkładu reszt dla zmienności cen bitcoina. W przypadku dalszej chęci modelowania BTC warto byłoby przeanalizować inne parametry modelu EGARCH oraz inne rozkłady.

Model	Alpha	test Kupca (odrzucone)	test Christoffersena (odrzucone)
E-GARCH Normalny	0.01	1486	125
E-GARCH t-Studenta	0.01	1207	91
E-GARCH Normalny	0.05	1889	578
E-GARCH t-Studenta	0.05	2256	384

Test kupca:

W przypadku rozkładu normalnego H0, w zbudowanym przez nas modelu EGARCH, odrzucamy w 50,53% przypadków dla VaR 1% i 64,22% przypadków dla VaR 5%. Wyniki te wskazują na niedoszacowanie modelu, jednak widać że model ten radzi sobie dużo lepiej niż metoda historyczna,

której wyniki można znaleźć w poprzednich modelach. Podobna sytuacja ma miejsce w przypadku EGARCH z t-studenta – tutaj mamy wyników 41,04% dla VaR 1% i 76,71% dla VaR 5%.

Test Christoffesena:

Model EGARCH z rozkładem normalnym odrzucał H0 w 4,25% przepadków dla VaR 1%, widzimy zatem dobrą niezależność przekroczeń przy niskim poziomie istotności, w przypadku VaR 5% wyniki były jednak gorsze, H0 zostało odrzucone w 19,65% przypadków, co sugeruje umiarkowane problemy z niezależnością. Model EGARCH miał podobne ale trochę gorsze wyniki – odpowiednio 3.09% i 13,06% przekroczeń.

Stworzone przez nas modele EGARCH dają względnie zadowalające wyniki w kwestii niezależności przekroczeń. Ponownie widzimy tutaj przewagę modelu EGARCH z rozkładem t-studenta nad modelem EGARCH z rozkładem normalnym. Biorąc pod uwagę wyniki obu testów na raz można wyciągnąć wnioski, że model EGARCH z użytym rozkładem t-studenta radzi sobie najlepiej, zwłaszcza dla VaR 1% jednak oba modele EGARCH dają podobne wyniki zgodnie z użytymi testami.

Ponownie żaden z modeli nie okazał się istotnie lepszy od pozostałych.

Podsumowanie

Podsumowując, badanie na podstawie kryptowaluty Bitocoin przedstawiło przydatność modeli warunkowej wariancji do obliczenia VaR. Rozważone zostały modele GARCH, GJR-GARCH, EGARCH (każdy z rozkładami warunkowymi: normalnymi oraz t-studenta). Badanie zostało przeprowadzone na oknach o długości dwóch lat przesuwanych co notowanie. Rozważone zostały VaR (1%), oraz VaR (5%) obliczane na następne notowanie. Wyniki VaR zostały porównane z zastosowaniem metody historycznej i metody wariancji-kowariancji. W każdym przypadku również została zbadana zgodność rozkładu warunkowego reszt z przyjętym rozkładem warunkowym.

Podczas badania, w każdym przypadku można było zauważyć lepsze wyniki modeli z rozkładem warunkowym t-studenta. Można było się tego spodziewać z uwagi na "grubsze ogony", które ten rozkład posiada, biorąc pod uwagę specyfikę danych Bitocoina, które specyfikuje się bardzo dużą zmiennością. Ze względu na tą samą cechę, wyniki metody wariancji-kowariancji, oraz w szczególności metody historycznej wypadły bardzo kiepsko. Również testy Kupca oraz testy Christoffesena nie dały rady wskazać modelu, który byłby najlepszy wśród wszystkich utworzonych. W przypadku testu zgodności reszt, również w żadnym wypadku nie wyszło, aby którekolwiek reszty choć trochę przypominały dany rozkład warunkowy, który został przyjęty. Porównując między sobą rodzaje modeli: GARCH, GJR-GARCH oraz EGARCH, dla VaR(1%) najlepszym okazał się EGARCH, natomiast dla 5% GJR-GARCH. Wiele jednak w tej kwestii jest zależne od parametrów, które nie były badane w tym badaniu.