BÀI 2. PHÉP TÍNH LOGARIT

- CHƯƠNG 6. LOGARIT
- | FanPage: Nguyễn Bảo Vương

PHẦN C. BÀI TẬP TRẮC NGHIỆM (PHÂN MÚC ĐỘ)

1. Câu hỏi dành cho đối tượng học sinh trung bình – khá

- Cho a là số thực dương khác 1. Mệnh đề nào dưới đây đúng với mọi số dương x, y? Câu 1.
 - A. $\log_a \frac{x}{y} = \log_a x \log_a y$

$$\mathbf{B.} \, \log_a \frac{x}{y} = \log_a \left(x - y \right)$$

C. $\log_a \frac{x}{y} = \log_a x + \log_a y$

D. $\log_a \frac{x}{v} = \frac{\log_a x}{\log_a v}$

Lời giải

Chọn A

Theo tính chất của logarit.

- Câu 2. Với mọi số thực dương a,b,x,y và $a,b \ne 1$, mệnh đề nào sau đây sai?

 - $\underline{\mathbf{A}} \cdot \log_a \frac{1}{x} = \frac{1}{\log_a x}$. $\underline{\mathbf{B}} \cdot \log_a (xy) = \log_a x + \log_a y$.
 - C. $\log_b a \cdot \log_a x = \log_b x$.

 $\mathbf{D.} \, \log_a \frac{x}{y} = \log_a x - \log_a y \,.$

Lời giải

Với mọi số thực dương a,b,x,y và $a,b \ne 1$. Ta có: $\log_a \frac{1}{x} = \log_a x^{-1} \ne \frac{1}{\log_a x}$. Vậy A sai.

Theo các tính chất logarit thì các phương án B, C và D đều đúng.

- Trong các mênh đề sau, mênh đề nào đúng? Câu 3.
 - $\underline{\mathbf{A}}$, $\log_a b^{\alpha} = \alpha \log_a b$ với mọi số a, b dương và $a \neq 1$.
 - **B.** $\log_a b = \frac{1}{\log_a a}$ với mọi số a, b dương và $a \ne 1$.
 - C. $\log_a b + \log_a c = \log_a bc$ với mọi số a,b dương và $a \ne 1$.
 - **D.** $\log_a b = \frac{\log_c a}{\log_a b}$ với mọi số a,b,c dương và $a \ne 1$.

Lời giải

Chon A.

- Câu 4. Cho a,b là hai số thực dương tùy ý và $b \neq 1$. Tìm kết luận đúng.
 - **A.** $\ln a + \ln b = \ln (a + b)$.

- **B.** $\ln(a+b) = \ln a \cdot \ln b$.
- C. $\ln a \ln b = \ln (a b) \cdot \underline{\mathbf{D}} \cdot \log_b a = \frac{\ln a}{\ln h}$.

Lời giải

Theo tính chất làm Mũ-Log.

- Cho hai số dương $a, b (a \ne 1)$. Mệnh đề nào dưới đây **SAI**? Câu 5.
 - $\underline{\mathbf{A}}$. $\log_a a = 2a$.
- **B.** $\log_{\alpha} a^{\alpha} = \alpha$. **C.** $\log_{\alpha} 1 = 0$.
- **D.** $a^{\log_a b} = b$

Chọn A

Câu 6. Với các số thực dương a,b bất kì. Mệnh đề nào dưới đây **đúng**?

A. $\log(ab) = \log a \cdot \log b$.

B. $\log \frac{a}{b} = \frac{\log a}{\log b}$.

 $\underline{\mathbf{C}}$. $\log(ab) = \log a + \log b$.

D. $\log \frac{a}{b} = \log b - \log a$.

Lời giải

Ta có $\log(ab) = \log a + \log b$.

Câu 7. Với các số thực dương a,b bất kì. Mệnh đề nào dưới đây đúng?

<u>A.</u> $\ln(ab) = \ln a + \ln b$ **B.** $\ln\left(\frac{a}{b}\right) = \frac{\ln a}{\ln b}$ **C.** $\ln(ab) = \ln a \cdot \ln b$ **D.** $\ln\left(\frac{a}{b}\right) = \ln b - \ln a$

Lời giải

<u>C</u>họn <u>A</u>.

Với các số thực dương a, b bất kì. Mệnh đề nào sau đây đúng? Câu 8.

A. $\log(ab) = \log a \cdot \log b$.

B. $\log \frac{a}{b} = \log b - \log a$.

C. $\log \frac{a}{b} = \frac{\log a}{\log b}$. $\underline{\mathbf{D}} \cdot \log(ab) = \log a + \log b$.

Với các số thực dương a, b bất kì ta có:

+) $\log \frac{a}{b} = \log a - \log b$ nên **B**, **C** sai.

D.

 $+\log(ab) = \log a + \log b$ nên A sai, **D** đúng.

Vây chon

Cho a,b,c>0, $a\neq 1$ và số $\alpha\in\mathbb{R}$, mệnh đề nào dưới đây **sai**? Câu 9.

A. $\log_a a^c = c$

B. $\log_{a} a = 1$

C. $\log_a b^a = \alpha \log_a b$ D. $\log_a |b-c| = \log_a b - \log_a c$

Lời giải

Chọn D

Theo tính chất của logarit, mệnh đề sai là $\log_a |b-c| = \log_a b - \log_a c$.

Câu 10. Cho a,b,c là các số dương $(a,b\neq 1)$. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

A. $\log_a \left(\frac{b}{a^3} \right) = \frac{1}{3} \log_a b$.

B. $a^{\log_b a} = b$.

C. $\log_{\alpha} b = \alpha \log_{\alpha} b(\alpha \neq 0)$.

 $\underline{\mathbf{D}}$. $\log_a c = \log_b c \cdot \log_a b$.

Lời giải

Chon D

Câu 11. Với a, b là các số thực dương tuỳ ý thoả mãn $a \ne 1$ và $\log_a b = 2$, giá trị của $\log_{a^2} \left(ab^2\right)$ bằng

A. 2.

 $C. \frac{1}{2}$.

Ta có
$$\log_{a^2}(ab^2) = \frac{\log_a(ab^2)}{\log_a a^2} = \frac{1 + \log_a b^2}{2} = \frac{1 + 2\log_a b}{2} = \frac{1 + 2.2}{2} = \frac{5}{2}.$$

Câu 12. Với a là số thực dương tùy ý, $\log_7(7a)$ bằng

$$\mathbf{A.1} - \log_7 a$$
.

$$\underline{\mathbf{B}}$$
 1+log₇ a .

C.
$$1+a$$
.

Lời giải

$$\log_7(7a) = \log_7 7 + \log_7 a = 1 + \log_7 a$$

Câu 13. Với α là số thực dương tùy ý, $\ln(3a) - \ln(2a)$ bằng:

$$\mathbf{A}$$
. $\ln a$.

B.
$$\ln \frac{2}{3}$$
.

C.
$$\ln(6a^2)$$
.

$$\underline{\mathbf{D}}$$
. $\ln \frac{3}{2}$.

Lời giải

Chọn B

Ta có
$$\ln(3a) - \ln(2a) = \ln \frac{3a}{2a} = \ln \frac{3}{2}$$
.

Câu 14. Với mọi số thực a dương, $\log_2 \frac{a}{2}$ bằng

$$\mathbf{A.} \; \frac{1}{2} \log_2 a \, .$$

B.
$$\log_2 a + 1$$
.

$$\underline{\mathbf{C}}$$
, $\log_2 a - 1$.

D.
$$\log_2 a - 2$$
.

Lời giải

Chon C

Có
$$\log_2 \frac{a}{2} = \log_2 a - \log_2 2 = \log_2 a - 1$$
.

Câu 15. Với mọi a,b thỏa mãn $\log_2 a - 3\log_2 b = 2$, khẳng định nào dưới đây đúng?

A.
$$a = 4b^3$$

A.
$$a = 4b^3$$
. **B.** $a = 3b + 4$.

C.
$$a = 3b + 2$$
.

D.
$$a = \frac{4}{b^3}$$
.

Lời giải

Chon A

DK: a, b > 0

$$\log_2 a - 3\log_2 b = 2 \Leftrightarrow \log_2 a - \log_2 b^3 = 2 \Leftrightarrow \log_2 \frac{a}{b^3} = 2$$
$$\Leftrightarrow \frac{a}{b^3} = 4 \Leftrightarrow a = 4b^3$$

Câu 16. Với a là số thực dương tùy ý, $4\log \sqrt{a}$ bằng

$$\mathbf{A} \cdot -2\log a$$
.

B.
$$2\log a$$
.

$$\mathbf{C}$$
. $-4 \log a$.

Lời giải

Chon B

Với
$$a > 0$$
, ta có $4 \log \sqrt{a} = 4 \log \left(a^{\frac{1}{2}} \right) = 4 \cdot \frac{1}{2} \log a = 2 \log a$.

Câu 17. Với a là số thực dương tùy ý, $4\log \sqrt{a}$ bằng

$$\mathbf{A.} - 4 \log a$$
.

B.
$$8\log a$$
.

$$\mathbf{C}$$
. $2\log a$.

D.
$$-2 \log a$$
.

Lời giải

Chon C

Ta có: $4\log \sqrt{a} = 4\log a^{\frac{1}{2}} = 2\log a$.

Câu 18. Với a là số thực dương tùy ý, $\log(100a)$ bằng

A. $1-\log a$.

B. $2 + \log a$.

C. $2-\log a$.

D. $1 + \log a$.

Lời giải

Chọn B

 $\log(100a) = \log(100) + \log a = 2 + \log a$

Câu 19. Với a,b là các số thực dương tùy ý và $a \ne 1$, $\log_{\frac{1}{b}} \frac{1}{b^3}$ bằng

 $\underline{\mathbf{A}}$. $3\log_a b$.

B. $\log_a b$.

C. $-3\log_a b$. **D.** $\frac{1}{3}\log_a b$.

Lời giải

Chon A

 $\log_{\frac{1}{b}} \frac{1}{b^3} = -\log_a b^{-3} = 3\log_a b$

Câu 20. Với a là số thực dương tuỳ ý, log(100a) bằng

A. $2 - \log a$.

B. $2 + \log a$.

C. $1 - \log a$.

D. $1 + \log a$.

Lời giải

Chon B

Với a > 0, ta có

 $\log(100a) = \log 100 + \log a = \log 10^2 + \log a = 2 + \log a.$

Câu 21. Với a,b là các số thực dương tùy ý và $a \ne 1$, $\log_{\frac{1}{b}} \frac{1}{b^3}$ bằng

A. $\log_a b$.

B. $-3\log_a b$.

C. $\frac{1}{2}\log_a b$.

 $\underline{\mathbf{D}}$. $3\log_a b$.

Lời giải

Chon D

Ta có: $\log_{\frac{1}{b}} \frac{1}{b^3} = \log_{a^{-1}} b^{-3} = 3\log_a b$.

Câu 22. Cho a > 0 và $a \ne 1$, khi đó $\log_a \sqrt[4]{a}$ bằng

A. 4.

 $\underline{\mathbf{B}} \cdot \frac{1}{4}$.

 $C_{\bullet} - \frac{1}{4}$.

D. -4.

Lời giải

Chon B

Ta có: $\log_a \sqrt[4]{a} = \log_a a^{\frac{1}{4}} = \frac{1}{4}$.

Câu 23. Cho a > 0 và $a \ne 1$ khi đó $\log_a \sqrt[3]{a}$ bằng

A. -3.

 $\underline{\mathbf{B}} \cdot \frac{1}{3}$.

 $C_{\bullet} - \frac{1}{3}$.

D. 3.

Lời giải

Chon B

 $\log_a \sqrt[3]{a} = \frac{1}{2} \log_a a = \frac{1}{2}$.

Câu 24. Cho a > 0 và $a \ne 1$, khi đó $\log_a \sqrt[5]{a}$ bằng

 $\underline{\mathbf{A}} \cdot \frac{1}{5}$.

B. $-\frac{1}{5}$.

C. 5.

D. −5

Lời giải

Chon A

Ta có $\log_a \sqrt[5]{a} = \log_a a^{\frac{1}{5}} = \frac{1}{5} \log_a a = \frac{1}{5}$.

Câu 25. Cho a > 0 và $a \ne 1$, khi đó $\log_a \sqrt{a}$ bằng

A. 2.

B. −2.

 $C_{\cdot} - \frac{1}{2}$.

 $\underline{\mathbf{D}} \cdot \frac{1}{2}$.

Lời giải

Chon D

Với a > 0 và $a \ne 1$, ta có: $\log_a \sqrt{a} = \log_a a^{\frac{1}{2}} = \frac{1}{2} \log_a a = \frac{1}{2}$.

Câu 26. Với a là số thực dương tùy ý, $\log_3(9a)$ bằng

A. $\frac{1}{2} + \log_3 a$. **B.** $2\log_3 a$.

C. $(\log_3 a)^2$.

<u>D</u>. $2 + \log_3 a$.

Lời giải

Chon D

Ta có $\log_3(9a) = \log_3 9 + \log_3 a = \log_3 3^2 + \log_3 a = 2 + \log_3 a$.

Câu 27. Với a,b là các số thực dương tùy ý và $a \ne 1$, $\log_{a^5} b$ bằng:

A. $5\log_a b$.

B. $\frac{1}{5} + \log_a b$.

C. $5 + \log_a b$.

 $\underline{\mathbf{D}}$. $\frac{1}{5}\log_a b$.

Lời giải

Chọn

Câu 28. Với a, b là các số thực dương tùy ý và $a \ne 1$, $\log_{a^2} b$ bằng

 $\mathbf{A.} \ \frac{1}{2} + \log_a b \ . \qquad \qquad \underline{\mathbf{B.}} \ \frac{1}{2} \log_a b \ .$

C. $2 + \log_a b$. **D.** $2 \log_a b$.

Lời giải

Chọn B

Ta có $\log_{a^2} b = \frac{1}{2} \log_a b$.

Câu 29. Với a,b là các số thực dương tùy ý và $a \ne 1$, $\log_{a^3} b$ bằng

A. $3 + \log_a b$

B. $3\log_a b$

C. $\frac{1}{3} + \log_a b$ D. $\frac{1}{3} \log_a b$

Chọn D

Ta có: $\log_{a^3} b = \frac{1}{3} \log_a b$.

Câu 30. Với a là số thực dương tùy ý, $\log_5(5a)$ bằng

A.
$$5 + \log_5 a$$
.

B.
$$5 - \log_5 a$$
.

$$\underline{\mathbf{C}}$$
. $1 + \log_5 a$.

D.
$$1 - \log_5 a$$
.

Lời giải

Chọn C

Ta có: $\log_5(5a) = \log_5 5 + \log_5 a = 1 + \log_5 a$.

Câu 31. Với a là số thực dương tùy ý, $\log_2 2a$ bằng

$$\underline{\mathbf{A}}$$
. $1 + \log_2 a$.

B.
$$1 - \log_2 a$$
.

C.
$$2 - \log_2 a$$
.

D.
$$2 + \log_2 a$$
.

Lời giải

Chọn A

$$\log_2 2a = \log_2 2 + \log_2 a = 1 + \log_2 a$$
.

Câu 32. Với a là số thực dương tùy ý, $\log_2 a^2$ bằng:

A.
$$2 + \log_2 a$$

A.
$$2 + \log_2 a$$
. **B.** $\frac{1}{2} + \log_2 a$. **C.** $2 \log_2 a$. **D.** $\frac{1}{2} \log_2 a$.

$$\underline{\mathbf{C}}$$
. $2\log_2 a$.

D.
$$\frac{1}{2}\log_2 a$$

Chọn C

Với a > 0; b > 0; $a \ne 1$. Với mọi α . Ta có công thức: $\log_a b^\alpha = \alpha \log_a b$.

Vậy: $\log_2 a^2 = 2 \log_2 a$.

Câu 33. Với a là hai số thực dương tùy ý, $\log_2(a^3)$ bằng

A.
$$\frac{3}{2}\log_2 a$$

B.
$$\frac{1}{3}\log_2 a$$

A.
$$\frac{3}{2}\log_2 a$$
. **B.** $\frac{1}{3}\log_2 a$. **C.** $3 + \log_2 a$. **D.** $3\log_2 a$.

$$\mathbf{\underline{D}}$$
. $3\log_2 a$

Lời giải

Chọn D

Ta có:
$$\log_2(a^3) = 3\log_2 a$$
.

Câu 34. Với a là số thực dương tùy ý, $\log_2 a^3$ bằng

A.
$$3 + \log_2 a$$
.

B.
$$3\log_2 a$$
.

C.
$$\frac{1}{3}\log_2 a$$
.

C.
$$\frac{1}{3}\log_2 a$$
. D. $\frac{1}{3} + \log_2 a$.

Lời giải

Chon B

Ta có
$$\log_2 a^3 = 3\log_2 a$$
.

Câu 35. Với a là số thực dương tùy ý, $\log_5 a^3$ bằng

$$\mathbf{A.} \; \frac{1}{3} \log_5 a \, .$$

A.
$$\frac{1}{3}\log_5 a$$
. **B.** $\frac{1}{3} + \log_5 a$. **C.** $3 + \log_5 a$.

C.
$$3 + \log_5 a$$

D.
$$3\log_5 a$$
.

Lời giải

Chọn D

$$\log_5 a^3 = 3\log_5 a$$

Câu 36. Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?

$$\mathbf{A.} \, \log_2 a = \log_a 2$$

B.
$$\log_2 a = \frac{1}{\log_2 a}$$

A.
$$\log_2 a = \log_a 2$$
 B. $\log_2 a = \frac{1}{\log_2 a}$ **C.** $\log_2 a = \frac{1}{\log_a 2}$ **D.** $\log_2 a = -\log_a 2$

$$\mathbf{D.} \, \log_2 a = -\log_a 2$$

Lời giải

Chọn C

Áp dụng công thức đổi cơ số.

Câu 37. Với a là số thực dương tùy ý, $\log_2 a^2$ bằng:

A.
$$\frac{1}{2}\log_2 a$$
.

B.
$$2 + \log_2 a$$
 C. $2 \log_2 a$.

C.
$$2\log_2 a$$

D.
$$\frac{1}{2} + \log_2 a$$
.

Lời giải

Chon C

Vì a là số thực dương tùy ý nên $\log_2 a^2 = 2\log_2 a$

Câu 38. Với a, b là hai số dương tùy ý, $\log(ab^2)$ bằng

A.
$$2(\log a + \log b)$$
 B. $\log a + \frac{1}{2}\log b$ **C.** $2\log a + \log b$ **D.** $\log a + 2\log b$

B.
$$\log a + \frac{1}{2} \log b$$

$$\mathbf{C.} \ 2\log a + \log b$$

D.
$$\log a + 2 \log b$$

Lời giải

Chọn D

Có
$$\log(ab^2) = \log a + \log b^2 = \log a + 2\log b$$
.

Câu 39. Cho *a* là số thực dương $a \ne 1$ và $\log_{\sqrt[3]{a}} a^3$. Mệnh đề nào sau đây đúng?

A.
$$P = \frac{1}{3}$$

B.
$$P = 3$$

C.
$$P = 1$$

D.
$$P = 9$$

Lời giải

Chọn D

$$\log_{\sqrt[3]{a}} a^3 = \log_{\frac{1}{a^3}} a^3 = 9.$$

Câu 40. Với a là số thực dương tùy ý, bằng $\log_5 a^2$

A.
$$\frac{1}{2}\log_5 a$$

B.
$$2 + \log_5 a$$

A.
$$\frac{1}{2}\log_5 a$$
. **B.** $2 + \log_5 a$. **C.** $\frac{1}{2} + \log_5 a$.

D.
$$2 \log_5 a$$
.

Lời giải

Vì a là số thực dương nên ta có $\log_5 a^2 = 2 \log_5 a$.

Câu 41. Với a là số thực dương tùy ý, $\ln(7a) - \ln(3a)$ bằng

A.
$$\frac{\ln 7}{\ln 3}$$

B.
$$\ln \frac{7}{3}$$

B.
$$\ln \frac{7}{3}$$
 C. $\ln (4a)$

$$\mathbf{D.} \; \frac{\ln(7a)}{\ln(3a)}$$

Lời giải

Chọn B

$$\ln(7a) - \ln(3a) = \ln\left(\frac{7a}{3a}\right) = \ln\frac{7}{3}.$$

Câu 42. Với a là số thực dương tùy ý, $\ln(5a) - \ln(3a)$ bằng:

A.
$$\ln \frac{5}{3}$$

$$\mathbf{B.} \; \frac{\ln 5}{\ln 3}$$

C.
$$\frac{\ln(5a)}{\ln(3a)}$$

D.
$$\ln(2a)$$

Lời giải

Chọn A

$$\ln(5a) - \ln(3a) = \ln\frac{5}{3}.$$

Câu 43. Với a là số thực dương tùy ý, $\log_3(3a)$ bằng:

$$\mathbf{A.} \ 1 - \log_3 a$$

B.
$$3\log_3 a$$

C.
$$3 + \log_3 a$$

D.
$$1 + \log_3 a$$

Lời giải

Chọn D

Câu 44. Với các số thực dương a,b bất kì. Mệnh đề nào dưới đây đúng.

A.
$$\ln(ab) = \ln a + \ln b$$
. **B.** $\ln(ab) = \ln a \cdot \ln b$.

B.
$$\ln(ab) = \ln a \cdot \ln b$$
.

C.
$$\ln \frac{a}{b} = \frac{\ln a}{\ln b}$$

C.
$$\ln \frac{a}{b} = \frac{\ln a}{\ln b}$$
. **D.** $\ln \frac{a}{b} = \ln b - \ln a$.

Lời giải

Chọn A

Theo tính chất của lôgarit: $\forall a > 0, b > 0 : \ln(ab) = \ln a + \ln b$

Câu 45. Cho *a* là số thực dương khác 1. Tính $I = \log_{\sqrt{a}} a$.

A.
$$I = -2$$
.

B.
$$I = 2$$

B.
$$I=2$$
 C. $I=\frac{1}{2}$ Lời giải

D.
$$I = 0$$

Chọn B

Với a là số thực dương khác 1 ta được: $I = \log_{\sqrt{a}} a = \log_{\frac{1}{2}} a = 2\log_a a = 2$

Câu 46. Với a là số thực dương tùy ý, $\log_3\left(\frac{3}{a}\right)$ bằng:

A.
$$1 - \log_3 a$$

B.
$$3 - \log_3 a$$

C.
$$\frac{1}{\log_3 a}$$

D.
$$1 + \log_3 a$$

Lời giải

Ta có
$$\log_3\left(\frac{3}{a}\right) = \log_3 3 - \log_3 a = 1 - \log_3 a$$
.

Câu 47. Cho $\log_a b = 2$ và $\log_a c = 3$. Tính $P = \log_a (b^2 c^3)$.

A.
$$P = 13$$

B.
$$P = 31$$

C.
$$P = 30$$

D.
$$P = 108$$

Lời giải

Chọn A

Ta có:
$$\log_a (b^2 c^3) = 2 \log_a b + 3 \log_a c = 2.2 + 3.3 = 13$$
.

Cho a và b là hai số thực dương thỏa mãn $a^3b^2 = 32$. Giá trị của $3\log_2 a + 2\log_2 b$ bằng **Câu 48.**

Lời giải

Chọn B

Ta có: $\log_2 a^3 b^2 = \log_2 32 \Leftrightarrow 3 \log_2 a + 2 \log_2 b = 5$

- **Câu 49.** Cho a, b là các số thực dương thỏa mãn $a \ne 1$, $a \ne \sqrt{b}$ và $\log_a b = \sqrt{3}$. Tính $P = \log_{\frac{\sqrt{b}}{a}} \sqrt{\frac{b}{a}}$.
 - **A.** $P = -5 + 3\sqrt{3}$
- **B.** $P = -1 + \sqrt{3}$
- C. $P = -1 \sqrt{3}$ D. $P = -5 3\sqrt{3}$

Lời giải

Chọn C

Cách 1: Phương pháp tự luận.

$$P = \frac{\log_a \sqrt{\frac{b}{a}}}{\log_a \frac{\sqrt{b}}{a}} = \frac{\frac{1}{2} (\log_a b - 1)}{\log_a \sqrt{b} - 1} = \frac{\frac{1}{2} (\sqrt{3} - 1)}{\frac{1}{2} \log_a b - 1} = \frac{\sqrt{3} - 1}{\sqrt{3} - 2} = -1 - \sqrt{3}.$$

Cách 2: Phương pháp trắc nghiệm.

Chọn a=2, $b=2^{\sqrt{3}}$. Bấm máy tính ta được $P=-1-\sqrt{3}$.

- Cho a và b là hai số thực dương thỏa mãn $a^2b^3 = 16$. Giá trị của $2\log_2 a + 3\log_2 b$ bằng
 - **A.** 2.

- **B.** 8.
- **C.** 16.
- **D.** 4.

Lời giải

Chon D

Ta có $2\log_2 a + 3\log_2 b = \log_2 (a^2b^3) = \log_2 16 = 4$

Câu 51. Với các số thực dương x, y tùy ý, đặt $\log_3 x = \alpha$, $\log_3 y = \beta$. Mệnh đề nào dưới đây đúng?

A.
$$\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = \frac{\alpha}{2} + \beta$$
 B. $\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = 9 \left(\frac{\alpha}{2} + \beta \right)$

C.
$$\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = \frac{\alpha}{2} - \beta$$
 D. $\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = 9 \left(\frac{\alpha}{2} - \beta \right)$

Lời giải

Chon D

$$\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = \frac{3}{2} \log_{27} x - 3 \log_{27} y = \frac{1}{2} \log_3 x - \log_3 y = \frac{\alpha}{2} - \beta.$$

- **Câu 52.** Cho a và b là hai số thực dương thỏa mãn $a^4b = 16$ Giá trị của $4\log_2 a + \log_2 b$ bằng
 - **A.** 4.

- **C.** 16.
- **D.** 8.

Lời giải

Chon A

$$4\log_2 a + \log_2 b = \log_2 a^4 + \log_2 b = \log_2 \left(a^4 b\right) = \log_2 16 = \log_2 2^4 = 4.$$

- **Câu 53.** Cho các số thực dương a,b với $a \ne 1$. Khẳng định nào sau đây là khẳng định đúng?
 - **A.** $\log_{a^2}(ab) = \frac{1}{4}\log_a b$ **B.** $\log_{a^2}(ab) = \frac{1}{2} + \frac{1}{2}\log_a b$
 - C. $\log_{a^2}(ab) = \frac{1}{2}\log_a b$ D. $\log_{a^2}(ab) = 2 + 2\log_a b$

Lời giải

Chọn B

Ta có:
$$\log_{a^2}(ab) = \log_{a^2} a + \log_{a^2} b = \frac{1}{2} \cdot \log_a a + \frac{1}{2} \cdot \log_a b = \frac{1}{2} + \frac{1}{2} \cdot \log_a b$$
.

Câu 54. Với a, b là các số thực dương tùy ý và a khác 1, đặt $P = \log_a b^3 + \log_{a^2} b^6$. Mệnh đề nào dưới đây đúng?

A.
$$P = 6 \log_a b$$

B.
$$P = 27 \log_a b$$

C.
$$P = 15\log_a b$$
 D. $P = 9\log_a b$

$$\mathbf{D.} \ P = 9\log_a b$$

Lời giải

Chon A

$$P = \log_a b^3 + \log_{a^2} b^6 = 3\log_a b + \frac{6}{2}\log_a b = 6\log_a b.$$

Câu 55. Với a là số thực dương bất kì, mệnh đề nào dưới đây đúng?

A.
$$\log(3a) = \frac{1}{3}\log a$$
 B. $\log(3a) = 3\log a$ **C.** $\log a^3 = \frac{1}{3}\log a$ **D.** $\log a^3 = 3\log a$

$$\mathbf{B.} \, \log(3a) = 3\log a$$

C.
$$\log a^3 = \frac{1}{3} \log a$$

$$\mathbf{D.} \, \log a^3 = 3 \log a$$

Lời giải

Chon D

Câu 56. Cho *a* là số thực dương khác 2. Tính $I = \log_{\frac{a}{4}} \left(\frac{a^2}{4} \right)$.

A.
$$I = 2$$

B.
$$I = -\frac{1}{2}$$
 C. $I = -2$

C.
$$I = -2$$

D.
$$I = \frac{1}{2}$$

Lời giải

Chọn A

$$I = \log_{\frac{a}{2}} \left(\frac{a^2}{4} \right) = \log_{\frac{a}{2}} \left(\frac{a}{2} \right)^2 = 2$$

Câu 57. Với mọi a, b, x là các số thực dương thoả mãn $\log_2 x = 5\log_2 a + 3\log_2 b$. Mệnh đề nào dưới đây đúng?

A.
$$x = 5a + 3b$$

C.
$$x = a^5b^3$$

D.
$$x = 3a + 5b$$

Lời giải

Chọn C

Có
$$\log_2 x = 5\log_2 a + 3\log_2 b = \log_2 a^5 + \log_2 b^3 = \log_2 a^5 b^3 \iff x = a^5 b^3$$
.

Câu 58. Cho a và b là hai số thực dương thỏa mãn $ab^3 = 8$. Giá trị của $\log_2 a + 3\log_2 b$ bằng

A. 6.

B. 2.

C. 3.

D. 8.

Lời giải

Chon C

Ta có $\log_2 a + 3\log_2 b = \log_2 a + \log_2 b^3 = \log_2 (ab^3) = \log_2 8 = 3$.

Câu 59. Cho $P = \sqrt[20]{3\sqrt[7]{27\sqrt[4]{243}}}$. Tính $\log_3 P$?

A. $\frac{45}{28}$.

<u>B.</u> $\frac{9}{112}$. C. $\frac{45}{56}$.

D. Đáp án khác.

Ta có:
$$P = \sqrt[20]{3\sqrt[7]{27\sqrt[4]{243}}} \Rightarrow P = 3^{\frac{1}{20}} \cdot 27^{\frac{1}{20} \cdot \frac{1}{7}} \cdot 243^{\frac{1}{20} \cdot \frac{1}{7} \cdot \frac{1}{4}} = 3^{\frac{9}{112}} \Rightarrow \log_3 P = \log_3 3^{\frac{9}{112}} = \frac{9}{112}.$$

Câu 60. Đặt $\log_3 2 = a$ khi đó $\log_{16} 27$ bằng

A.
$$\frac{3a}{4}$$

B.
$$\frac{3}{4a}$$

C.
$$\frac{4}{3a}$$

D.
$$\frac{4a}{3}$$

lời giải

Chọn B

Ta có
$$\log_{16} 27 = \frac{3}{4} \log_2 3 = \frac{3}{4 \cdot \log_3 2} = \frac{3}{4a}$$

2. Câu hỏi dành cho đối tương học sinh khá-giỏi

Với các số thực dương a, b bất kì. Mệnh đề nào dưới đây đúng?

A.
$$\log_2\left(\frac{2a^3}{b}\right) = 1 + 3\log_2 a + \log_2 b$$
.

B.
$$\log_2\left(\frac{2a^3}{b}\right) = 1 + \frac{1}{3}\log_2 a + \log_2 b$$
.

C.
$$\log_2\left(\frac{2a^3}{b}\right) = 1 + 3\log_2 a - \log_2 b$$

C.
$$\log_2\left(\frac{2a^3}{b}\right) = 1 + 3\log_2 a - \log_2 b$$
. D. $\log_2\left(\frac{2a^3}{b}\right) = 1 + \frac{1}{3}\log_2 a - \log_2 b$.

Lời giải

Chọn A

Ta có:
$$\log_2\left(\frac{2a^3}{b}\right) = \log_2\left(2a^3\right) - \log_2\left(b\right) = \log_2 2 + \log_2 a^3 - \log_2 b = 1 + 3\log_2 a - \log b$$
.

Câu 62. Cho $\log_3 a = 2$ và $\log_2 b = \frac{1}{2}$. Tính $I = 2\log_3 \left[\log_3 (3a)\right] + \log_{\frac{1}{2}} b^2$.

A.
$$I = \frac{5}{4}$$

B.
$$I = 0$$

B.
$$I=0$$
 C. $I=4$ **Lòi giải**

D.
$$I = \frac{3}{2}$$

Chon D

$$I = 2\log_3\left[\log_3\left(3a\right)\right] + \log_{\frac{1}{4}}b^2 = 2\log_3\left(\log_33 + \log_3a\right) + 2\log_{2^{-2}}b = 2 - \frac{1}{2} = \frac{3}{2}.$$

Câu 63. Với mọi số thực dương a và b thỏa mãn $a^2 + b^2 = 8ab$, mệnh đề nào dưới đây đúng?

A.
$$\log(a+b) = \frac{1}{2}(\log a + \log b)$$

B.
$$\log(a+b) = \frac{1}{2} + \log a + \log b$$

C.
$$\log(a+b) = \frac{1}{2}(1 + \log a + \log b)$$

D.
$$\log(a+b) = 1 + \log a + \log b$$

Lời giải:

Chọn C

Ta có
$$a^2 + b^2 = 8ab \Leftrightarrow (a+b)^2 = 10ab$$
.

Lấy log cơ số 10 hai vế ta được: $\log(a+b)^2 = \log(10ab) \Leftrightarrow 2\log(a+b) = \log 10 + \log a + \log b$.

Hay $\log(a+b) = \frac{1}{2}(1 + \log a + \log b)$.

Câu 64. Cho $\log_a x = 3, \log_b x = 4$ với a, b là các số thực lớn hơn 1. Tính $P = \log_{ab} x$.

A.
$$P = 12$$

B.
$$P = \frac{12}{7}$$

C.
$$P = \frac{7}{12}$$

D.
$$P = \frac{1}{12}$$

Lời giải

Chọn B

$$P = \log_{ab} x = \frac{1}{\log_x ab} = \frac{1}{\log_x a + \log_x b} = \frac{1}{\frac{1}{3} + \frac{1}{4}} = \frac{12}{7}$$

Câu 65. Cho x, y là các số thực lớn hơn 1 thoả mãn $x^2 + 9y^2 = 6xy$. Tính $M = \frac{1 + \log_{12} x + \log_{12} y}{2\log_{12} (x + 3y)}$.

A.
$$M = \frac{1}{2}$$

B.
$$M = \frac{1}{3}$$

A.
$$M = \frac{1}{2}$$
. **B.** $M = \frac{1}{3}$. **C.** $M = \frac{1}{4}$.

D.
$$M = 1$$

Lời giải

Chon D

Ta có
$$x^2 + 9y^2 = 6xy \Leftrightarrow (x - 3y)^2 = 0 \Leftrightarrow x = 3y$$
.

Khi đó
$$M = \frac{1 + \log_{12} x + \log_{12} y}{2 \log_{12} (x + 3y)} = \frac{\log_{12} (12xy)}{\log_{12} (x + 3y)^2} = \frac{\log_{12} (36y^2)}{\log_{12} (36y^2)} = 1.$$

Câu 66. Xét tất cả các số dương a và b thỏa mãn $\log_2 a = \log_8(ab)$. Mệnh đề nào dưới đây đúng?

A.
$$a = b^2$$
.

B.
$$a^3 = b$$
.

C.
$$a = b$$
.

D.
$$a^2 = b$$
.

Lời giải

Chon D

Theo đề ta có:

$$\log_2 a = \log_8(ab) \Leftrightarrow \log_2 a = \frac{1}{3}\log_2(ab) \Leftrightarrow 3\log_2 a = \log_2(ab)$$
$$\Leftrightarrow \log_2 a^3 = \log_2(ab) \Leftrightarrow a^3 = ab \Leftrightarrow a^2 = b$$

Câu 67. Xét số thực a và b thỏa mãn $\log_3(3^a.9^b) = \log_9 3$. Mệnh đề nào dưới đây đúng

A.
$$a + 2b = 2$$
.

B.
$$4a + 2b = 1$$
.

C.
$$4ab = 1$$
.

D.
$$2a + 4b = 1$$
.

Lời giải

Chọn D

Ta có:

$$\log_3(3^a.9^b) = \log_9 3 \iff \log_3(3^a.3^{2b}) = \log_{3^2} 3$$

$$\Leftrightarrow \log_3 3^{a+2b} = \log_3 3^{\frac{1}{2}} \Leftrightarrow a+2b = \frac{1}{2} \Leftrightarrow 2a+4b=1.$$

Câu 68. Cho a và b là các số thực dương thỏa mãn $4^{\log_2(ab)} = 3a$. Giá trị của ab^2 bằng

Lời giải

Chon A

Từ giả thiết ta có : $4^{\log_2(ab)} = 3a$

$$\Leftrightarrow \log_2(ab).\log_2 4 = \log_2(3a)$$

$$\Leftrightarrow 2(\log_2 a + \log_2 b) = \log_2 a + \log_2 3$$

$$\Leftrightarrow \log_2 a + 2\log_2 b = \log_2 3$$

$$\Leftrightarrow \log_2(ab^2) = \log_2 3$$

$$\Leftrightarrow ab^2 = 3$$

Câu 69. Cho a và b là hai số thực dương thỏa mãn $9^{\log_3(ab)} = 4a$. Giá trị của ab^2 bằng

A. 3.

B. 6.

 $\mathbf{C}.2$

Lời giải

Chọn D

Ta có: $9^{\log_3(ab)} = 4a \Leftrightarrow 2\log_3(ab) = \log_3(4a) \Leftrightarrow \log_3(a^2b^2) = \log_3(4a) \Rightarrow a^2b^2 = 4a$ $\Leftrightarrow ab^2 = 4$.

Câu 70. Với a, b là các số thực dương tùy ý thỏa mãn $\log_3 a - 2\log_9 b = 2$, mệnh đề nào dưới đây đúng?

A. $a = 9b^2$.

 $\mathbf{B} \cdot a = 9b$.

C. a = 6b.

D. $a = 9b^2$.

Lời giải

Chọn B

Ta có: $\log_3 a - 2\log_9 b = 2 \Leftrightarrow \log_3 a - \log_3 b = 2 \Leftrightarrow \log_3 \left(\frac{a}{h}\right) = 2 \Leftrightarrow a = 9b$.

Câu 71. Với a,b là các số thực dương tùy ý thỏa mãn $\log_3 a - 2\log_9 b = 3$, mệnh đề nào dưới đây đúng?

<u>A</u>. a = 27b.

B. a = 9b.

C. $a = 27b^4$.

D. $a = 27b^2$.

Lời giải

Chọn A

Ta có: $\log_3 a - 2\log_9 b = 3 \Leftrightarrow \log_3 a - \log_3 b = 3 \Leftrightarrow \log_3 \frac{a}{b} = 3 \Leftrightarrow \frac{a}{b} = 27 \Leftrightarrow a = 27b$.

Câu 72. Với a, b là các số thực dương tùy ý thỏa mãn $\log_2 a - 2\log_4 b = 4$, mệnh đề nào dưới đây đúng?

A. $a = 16b^2$.

B. a = 8b.

C. a = 16b.

D. $a = 16b^4$.

Lời giải

Chọn C

Ta có $\log_2 a - 2\log_4 b = 4$

 $\Leftrightarrow \log_2 a - 2\log_{2} b = 4$

 $\Leftrightarrow \log_2 a - 2 \cdot \frac{1}{2} \log_2 b = 4$

 $\Leftrightarrow \log_2 a - \log_2 b = 4$

 $\Leftrightarrow \log_2 \frac{a}{b} = 4$

 $\Leftrightarrow \frac{a}{b} = 2^4$

 $\Leftrightarrow a = 16b$

Câu 73. Với mọi a, b thỏa mãn $\log_2 a^3 + \log_2 b = 6$, khẳng định nào dưới đây đúng:

A. $a^3b = 64$.

B. $a^3b = 36$.

C. $a^3 + b = 64$. **D.** $a^3 + b = 36$.

Lời giải

Ta có $\log_2 a^3 + \log_2 b = 6 \Leftrightarrow a^3 b = 2^6 \Leftrightarrow a^3 b = 64$.

Câu 74. Với mọi a,b thỏa mãn $\log_2 a^3 + \log_2 b = 8$. Khẳng định nào dưới đây đúng?

A. $a^3 + b = 64$.

B. $a^3b = 256$.

C. $a^3b = 64$.

D. $a^3 + b = 256$.

Chon B

Ta có $\log_2 a^3 + \log_2 b = 8 \Rightarrow \log_2 (a^3 b) = 8 \Leftrightarrow a^3 b = 2^8 = 256$. Vây $a^3b = 256$.

Câu 75. Với mọi a,b thỏa mãn $\log_2 a^3 + \log_2 b = 5$, khẳng định nào dưới đây là đúng?

A.
$$a^3b = 32$$
.

B.
$$a^3b = 25$$
.

C.
$$a^3 + b = 25$$
.

D.
$$a^3 + b = 32$$
.

Lời giải

Chon A

Ta có: $\log_2 a^3 + \log_2 b = 5 \Leftrightarrow \log_2 (a^3 b) = 5 \Leftrightarrow a^3 b = 32$.

Câu 76. Với mọi a,b thỏa mãn $\log_2 a^2 + \log_2 b = 7$, khẳng định nào dưới đây đúng?

A.
$$a^2 + b = 49$$
.

B.
$$a^2b = 128$$
.

C.
$$a^2 + b = 128$$
.

D.
$$a^2b = 49$$
.

Lời giải

Chon B

Ta có: $\log_2 a^2 + \log_2 b = 7 \Leftrightarrow \log_2 (a^2 b) = 7 \Leftrightarrow a^2 b = 2^7 = 128$

Câu 77. Cho các số thực dương a,b thỏa mãn $\ln a = x; \ln b = y$. Tính $\ln (a^3b^2)$

A.
$$P = x^2 y^3$$

B.
$$P = 6xy$$

C.
$$P = 3x + 2y$$

D.
$$P = x^2 + v^2$$

Lời giải

Chon C

Ta có $\ln(a^3b^2) = \ln a^3 + \ln b^2 = 3\ln a + 2\ln b = 3x + 2y$

Câu 78. Giá trị của biểu thức $M = \log_2 2 + \log_2 4 + \log_2 8 + ... + \log_2 256$ bằng

Lời giải

Chọn C

Ta có $M = \log_2 2 + \log_2 4 + \log_2 8 + ... + \log_2 256 = \log_2 (2.4.8...256) = \log_2 (2^1.2^2.2^3...2^8)$ = $\log_2(2^{1+2+3+...+8})$ = $(1+2+3+...+8)\log_2 2 = 1+2+3+...+8 = 36$.

Câu 79. Cho $\log_8 c = m$ và $\log_{c^3} 2 = n$. Khẳng định **đúng** là

A.
$$mn = \frac{1}{9}\log_2 c$$
. **B.** $mn = 9$. **C.** $mn = 9\log_2 c$. **D.** $mn = \frac{1}{9}$.

B.
$$mn = 9$$

$$\mathbf{C.} \ mn = 9\log_2 c.$$

$$\mathbf{\underline{D}}. \ mn = \frac{1}{9}.$$

Lời giải

$$mn = \log_8 c \cdot \log_{c^3} 2 = \left(\frac{1}{3}\log_2 c\right) \cdot \left(\frac{1}{3}\log_c 2\right) = \frac{1}{9}.$$

Câu 80. Cho $a > 0, a \ne 1$ và $\log_a x = -1, \log_a y = 4$. Tính $P = \log_a (x^2 y^3)$

A.
$$P = 18$$
.

B.
$$P = 6$$
.

C.
$$P = 14$$
.

D.
$$P = 10$$
.

Lời giải

Ta có $\log_a(x^2.y^3) = \log_a x^2 + \log_a y^3 = 2\log_a x + 3\log_a y = 2.(-1) + 3.4 = 10$.

Câu 81. Với a và b là hai số thực dương tùy ý; $\log_2(a^3b^4)$ bằng

A.
$$\frac{1}{3}\log_2 a + \frac{1}{4}\log_2 b$$
 B. $3\log_2 a + 4\log_2 b$ **C.** $2(\log_2 a + \log_4 b)$ **D.** $4\log_2 a + 3\log_2 b$

$$\mathbf{\underline{B}.} \ 3\log_2 a + 4\log_2 b$$

$$\mathbf{C.}\ 2(\log_2 a + \log_4 b)$$

Chon B

Ta có: $\log_2(a^3b^4) = \log_2 a^3 + \log_2 b^4 = 3\log_2 a + 4\log_2 b$ nên **B** đúng

Cho các số dương a,b,c,d. Biểu thức $S = \ln \frac{a}{b} + \ln \frac{b}{c} + \ln \frac{c}{d} + \ln \frac{d}{a}$ bằng

C.
$$\ln\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a}\right)$$
. D. $\ln\left(abcd\right)$.

Lời giải

Cách 1:

Ta có
$$S = \ln \frac{a}{b} + \ln \frac{b}{c} + \ln \frac{c}{d} + \ln \frac{d}{a} = \ln \left(\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{d} \cdot \frac{d}{a} \right) = \ln 1 = 0$$
.

Cách 2:

Ta có:
$$S = \ln \frac{a}{b} + \ln \frac{b}{c} + \ln \frac{c}{d} + \ln \frac{d}{a} = \ln a - \ln b + \ln b - \ln c + \ln c - \ln d + \ln d - \ln a = 0$$
.

Câu 83. Cho x, y là các số thực dương tùy ý, đặt $\log_3 x = a$, $\log_3 y = b$. Chọn mệnh đề đúng.

A.
$$\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = \frac{1}{3} a - b$$
. **B.** $\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = \frac{1}{3} a + b$.

C.
$$\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = -\frac{1}{3} a - b$$
.

$$\underline{\mathbf{D}} \cdot \log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = -\frac{1}{3} a + b.$$

Do x, y là các số thực dương nên ta có:

$$\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = -\frac{1}{3} \log_3 \left(\frac{x}{y^3} \right) = -\frac{1}{3} \left(\log_3 x - \log_3 y^3 \right) = -\frac{1}{3} \left(\log_3 x - 3 \log_3 y \right)$$
$$= -\frac{1}{3} \log_3 x + \log_3 y = -\frac{1}{3} a + b.$$

Câu 84. Với a,b là các số thực dương tùy ý và a khác 1, đặt $P = \log_a b^3 + \log_{a^2} b^6$. Mệnh đề nào dưới đây đúng?

$$\mathbf{A.} \ P = 27 \log_a b$$

A.
$$P = 27 \log_a b$$
. **B.** $P = 15 \log_a b$. **C.** $P = 9 \log_a b$. **D.** $P = 6 \log_a b$.

$$\mathbf{C.} P = 9\log_a b.$$

$$\mathbf{\underline{D}}. \ P = 6\log_a b.$$

Lời giải

Ta có
$$P = \log_a b^3 + \log_{a^2} b^6 = 3\log_a b + 6 \cdot \frac{1}{2}\log_a b = 6\log_a b.$$

Câu 85. Với các số thực dương a,b bất kỳ $a \ne 1$. Mệnh đề nào dưới đây đúng?

$$\underline{\mathbf{A}} \cdot \log_a \frac{\sqrt[3]{a}}{b^2} = \frac{1}{3} - 2\log_a b.$$

B.
$$\log_a \frac{\sqrt[3]{a}}{b^2} = 3 - \frac{1}{2} \log_a b$$
.

C.
$$\log_a \frac{\sqrt[3]{a}}{b^2} = \frac{1}{3} - \frac{1}{2} \log_a b$$
.

D.
$$\log_a \frac{\sqrt[3]{a}}{b^2} = 3 - 2\log_a b$$
.

Lời giải

Ta có:

$$\log_{a} \frac{\sqrt[3]{a}}{b^{2}} = \log_{a} \sqrt[3]{a} - \log_{a} b^{2}$$

$$= \log_{a} a^{\frac{1}{3}} - 2\log_{a} b$$

$$= \frac{1}{3}\log_{a} a - 2\log_{a} b = \frac{1}{3} - 2\log_{a} b$$

Câu 86. Cho các số thực dương a,b,c với a và b khác 1. Khẳng định nào sau đây là đúng?

A. $\log_a b^2 \cdot \log_{\sqrt{b}} c = \log_a c$.

B. $\log_a b^2 \cdot \log_{\sqrt{b}} c = \frac{1}{4} \log_a c$.

 $\underline{\mathbf{C}}$. $\log_a b^2 \cdot \log_a c = 4 \log_a c$.

D. $\log_a b^2 \cdot \log_{1/b} c = 2 \log_a c$.

Lời giải

Chon C

Ta có: $\log_a b^2 . \log_{\sqrt{b}} c = 2\log_a b . \log_{\frac{1}{2}} c = 2\log_a b . 2\log_b c = 4\log_a b . \log_b c = 4\log_a c$.

Câu 87. Giả sử a,b là các số thực dương bất kỳ. Mệnh đề nào sau đây **sai**?

A. $\log(10ab)^2 = 2 + \log(ab)^2$

B. $\log(10ab)^2 = (1 + \log a + \log b)^2$

C. $\log(10ab)^2 = 2 + 2\log(ab)$

D. $\log(10ab)^2 = 2(1 + \log a + \log b)$

Lời giải

Chon B

$$\log(10ab)^{2} = \log 10^{2} + \log(ab)^{2} = 2 + \log(ab)^{2} \Rightarrow A \text{ dúng}$$

$$1 + \log a + \log b = \log(10ab) \Rightarrow (1 + \log a + \log b)^{2} = \log^{2}(10ab) \neq \log(10ab)^{2} \Rightarrow B \text{ sai}$$

$$\log(10ab)^{2} = \log 10^{2} + \log(ab)^{2} = 2 + 2\log(ab) \Rightarrow C \text{ dúng}$$

$$\log(10ab)^{2} = \log 10^{2} + \log(ab)^{2} = 2 + 2\log(ab) = 2(1 + \log a + \log b) \Rightarrow D \text{ dúng}$$

Cho $\log_a b = 3, \log_a c = -2$. Khi đó $\log_a \left(a^3 b^2 \sqrt{c} \right)$ bằng bao nhiều?

A. 13

B. 5

D. 10

Chon C

Ta có
$$\log_a \left(a^3 b^2 \sqrt{c} \right) = \log_a a^3 + \log_a b^2 + \log_a \sqrt{c} = 3 + 2 \log_a b + \frac{1}{2} \log_a c = 3 + 2.3 - \frac{1}{2}.2 = 8.$$

Câu 89. Rút gọn biểu thức $M = 3\log_{\sqrt{3}} \sqrt{x} - 6\log_9(3x) + \log_{\frac{1}{2}} \frac{x}{9}$.

<u>A.</u> $M = -\log_3(3x)$ **B.** $M = 2 + \log_3\left(\frac{x}{3}\right)$ **C.** $M = -\log_3\left(\frac{x}{3}\right)$ **D.** $M = 1 + \log_3 x$

Lời giải

Chọn A

DK: x > 0.

$$M = 3\log_3 x - 3(1 + \log_3 x) - \log_3 x + 2 = -1 - \log_3 x = -(1 + \log_3 x) = -\log_3 (3x).$$

Câu 90. Cho $\log_8 |x| + \log_4 y^2 = 5$ và $\log_8 |y| + \log_4 x^2 = 7$. Tìm giá trị của biểu thức P = |x| - |y|.

<u>A</u>. P = 56.

B. P = 16.

C. P = 8.

D. P = 64.

Điều kiên: $x, y \neq 0$

Cộng vế với vế của hai phương trình, ta được:

$$\log_8 |xy| + \log_4 x^2 y^2 = 12 \Leftrightarrow \log_2 |xy| = 9 \Leftrightarrow |xy| = 512$$
 (1)

Trừ vế với vế của hai phương trình, ta được:

$$\log_8 \left| \frac{x}{y} \right| + \log_4 \frac{y^2}{x^2} = -2 \Leftrightarrow \log_2 \left| \frac{x}{y} \right| = 3 \Leftrightarrow \left| \frac{x}{y} \right| = 8 \Leftrightarrow |x| = 8|y|. (2)$$

Từ (1) và (2) suy ra $|y| = 8 \Rightarrow |x| = 64 \Leftrightarrow P = 56$.

Câu 91. Cho hai số thực dương a, b. Nếu viết $\log_2 \frac{\sqrt[6]{64a^3b^2}}{ab} = 1 + x \log_2 a + y \log_4 b$ $(x, y \in \mathbb{Q})$ thì biểu thức P = xy có giá trị bằng bao nhiều?

A.
$$P = \frac{1}{3}$$

B.
$$P = \frac{2}{3}$$

B.
$$P = \frac{2}{3}$$
 C. $P = -\frac{1}{12}$ **D.** $P = \frac{1}{12}$

D.
$$P = \frac{1}{12}$$

Ta có
$$\log_2 \frac{\sqrt[6]{64a^3b^2}}{ab} = \log_2 64^{\frac{1}{6}} + \frac{1}{2}\log_2 a + \frac{1}{3}\log_2 b - \log_2 a - \log_2 b$$

= $1 - \frac{1}{2}\log_2 a - \frac{4}{3}\log_4 b$. Khi đó $x = -\frac{1}{2}$; $y = -\frac{4}{3} \Rightarrow P = xy = \frac{2}{3}$

Câu 92. Cho $\log_{700} 490 = a + \frac{b}{c + \log 7}$ với a, b, c là các số nguyên. Tính tổng T = a + b + c.

A.
$$T = 7$$
.

B.
$$T = 3$$
.

$$C$$
. $T=2$.

D.
$$T = 1$$
.

Ta có:
$$\log_{700} 490 = \frac{\log 490}{\log 700} = \frac{\log 10 + \log 49}{\log 100 + \log 7} = \frac{1 + 2 \log 7}{2 + \log 7} = \frac{4 + 2 \log 7 - 3}{2 + \log 7} = 2 + \frac{-3}{2 + \log 7}$$

Suy ra $a = 2$, $b = -3$, $c = 2$
Vây $T = 1$.

Câu 93. Cho a, b là hai số thực dương thỏa mãn $a^2 + b^2 = 14ab$. Khẳng định nào sau đây **sai**?

A.
$$2\log_2(a+b) = 4 + \log_2 a + \log_2 b$$
.

B.
$$\ln \frac{a+b}{4} = \frac{\ln a + \ln b}{2}$$
.

C.
$$2\log \frac{a+b}{4} = \log a + \log b$$
.

D.
$$2\log_4(a+b) = 4 + \log_4 a + \log_4 b$$
.

Lời giải

Ta có
$$a^2 + b^2 = 14ab \Leftrightarrow (a+b)^2 = 16ab$$
.

Suy ra
$$\log_4 (a+b)^2 = \log_4 (16ab) \Leftrightarrow 2\log_4 (a+b) = 2 + \log_4 a + \log_4 b$$
.

Câu 94. Cho x, y là các số thực dương tùy ý, đặt $\log_3 x = a$, $\log_3 y = b$. Chọn mệnh đề đúng.

A.
$$\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = \frac{1}{3} a - b$$
. **B.** $\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = \frac{1}{3} a + b$.

C.
$$\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = -\frac{1}{3} a - b$$
.

D.
$$\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = -\frac{1}{3} a + b$$
.

$$\log_{\frac{1}{27}} \left(\frac{x}{y^3} \right) = \log_{3^{-3}} \left(\frac{x}{y^3} \right) = -\frac{1}{3} \log_3 \left(\frac{x}{y^3} \right) = -\frac{1}{3} \left(\log_3 x - \log_3 y^3 \right) = -\frac{1}{3} \log_3 x + \log_3 y = -\frac{1}{3} a + b.$$

Câu 95. Cho $\alpha = \log_a x$, $\beta = \log_b x$. Khi đó $\log_{ab^2} x^2$ bằng.

- A. $\frac{\alpha\beta}{\alpha+\beta}$.

- $\underline{\mathbf{B}}$. $\frac{2\alpha\beta}{2\alpha+\beta}$. \mathbf{C} . $\frac{2}{2\alpha+\beta}$. \mathbf{D} . $\frac{2(\alpha+\beta)}{\alpha+2\beta}$.

Ta có:
$$\log_{ab^2} x^2 = 2\log_{ab^2} x = 2 \cdot \frac{1}{\log_x ab^2} = \frac{2}{\log_x a + \log_x b^2} = \frac{2}{\frac{1}{\log_a x} + 2 \cdot \frac{1}{\log_b x}}$$

$$=\frac{2}{\frac{1}{\alpha}+\frac{2}{\beta}}=\frac{2\alpha\beta}{\beta+2\alpha}.$$

Câu 96. Tính giá trị biểu thức $P = \log_{a^2} \left(a^{10} b^2 \right) + \log_{\sqrt{a}} \left(\frac{a}{\sqrt{b}} \right) + \log_{\sqrt[3]{b}} \left(b^{-2} \right)$

(với $0 < a \ne 1; 0 < b \ne 1$).

- A. $\sqrt{3}$.
- **B.** 1.

- **D.** 2.

Lời giải

Ta có:
$$P = \log_{a^2} \left(a^{10} b^2 \right) + \log_{\sqrt{a}} \left(\frac{a}{\sqrt{b}} \right) + \log_{\sqrt[3]{b}} \left(b^{-2} \right) = 5 + \log_a b + 2 - \log_a b - 6 = 1.$$

Câu 97. Đặt $M = \log_6 56, N = a + \frac{\log_3 7 - b}{\log_2 2 + c}$ với $a, b, c \in R$. Bộ số a, b, c nào dưới đây để có M = N?

A.
$$a = 3, b = 3, c = 1$$
.

A.
$$a = 3, b = 3, c = 1$$
. **B.** $a = 3, b = \sqrt{2}, c = 1$.

C.
$$a = 1, b = 2, c = 3$$

C.
$$a = 1, b = 2, c = 3$$
. **D.** $a = 1, b = -3, c = 2$

Lời giải

$$M = \log_6 56 = \frac{\log_3 56}{\log_3 6} = \frac{\log_3 2^3.7}{1 + \log_3 2} = \frac{3\log_3 2 + \log_3 7}{1 + \log_3 2} = \frac{3(1 + \log_3 2) + \log_3 7 - 3}{1 + \log_3 2} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 2 + 1} = 3 + \frac{\log_3 7 - 3}{\log_3 7 - 3} = 3 + \frac{\log_3 7 - 3}{\log_3 7 -$$

Vậy
$$M = N \Leftrightarrow \begin{cases} a = 3 \\ b = 3 \\ c = 1 \end{cases}$$

Câu 98. Tính $T = \log \frac{1}{2} + \log \frac{2}{3} + \log \frac{3}{4} + ... + \log \frac{98}{99} + \log \frac{99}{100}$

- **A.** $\frac{1}{10}$.

- **D.** 2.

$$T = \log \frac{1}{2} + \log \frac{2}{3} + \log \frac{3}{4} + \dots + \log \frac{98}{99} + \log \frac{99}{100} = \log \left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{98}{99} \cdot \frac{99}{100} \right) = \log \frac{1}{100} = \log 10^{-2} = -2.$$

Diện thoại: 0946798489 Câu 99. Cho
$$a,b,x>0$$
; $a>b$ và $b,x\ne 1$ thỏa mãn $\log_x\frac{a+2b}{3}=\log_x\sqrt{a}+\frac{1}{\log_b x^2}$.

Khi đó biểu thức $P = \frac{2a^2 + 3ab + b^2}{(a+2b)^2}$ có giá trị bằng:

A.
$$P = \frac{5}{4}$$

B.
$$P = \frac{2}{3}$$
.

A.
$$P = \frac{5}{4}$$
. **B.** $P = \frac{2}{3}$. **C.** $P = \frac{16}{15}$. **D.** $P = \frac{4}{5}$.

D.
$$P = \frac{4}{5}$$

$$\log_x \frac{a+2b}{3} = \log_x \sqrt{a} + \frac{1}{\log_b x^2} \Leftrightarrow \log_x \frac{a+2b}{3} = \log_x \sqrt{a} + \log_x \sqrt{b}$$

$$\Leftrightarrow a + 2b = 3\sqrt{ab} \Leftrightarrow a^2 - 5ab + 4b^2 = 0 \Leftrightarrow (a - b)(a - 4b) = 0 \Leftrightarrow a = 4b \text{ (do } a > b).$$

$$P = \frac{2a^2 + 3ab + b^2}{(a+2b)^2} = \frac{32b^2 + 12b^2 + b^2}{36b^2} = \frac{5}{4}.$$

Câu 100. Đặt $a = \log_2 3, b = \log_5 3$. Hãy biểu diễn $\log_6 45$ theo a và b.

A.
$$\log_6 45 = \frac{2a^2 - 2ab}{ab}$$
 B. $\log_6 45 = \frac{a + 2ab}{ab + b}$

B.
$$\log_6 45 = \frac{a + 2ab}{ab + b}$$

C.
$$\log_6 45 = \frac{2a^2 - 2ab}{ab + b}$$
 D. $\log_6 45 = \frac{a + 2ab}{ab}$

D.
$$\log_6 45 = \frac{a + 2ab}{ab}$$

Lời giải

Chon B

$$\log_6 45 = \frac{\log_2(3^2.5)}{\log_2(2.3)} = \frac{2\log_2 3 + \log_2 5}{1 + \log_2 3} = \frac{2a + \log_2 3 \cdot \log_3 5}{1 + a} = \frac{2a + \frac{\log_2 3}{\log_5 3}}{1 + a} = \frac{2a + \frac{a}{b}}{1 + a} = \frac{a + 2ab}{ab + b}$$

CASIO: Sto\Gán $A = \log_2 3$, $B = \log_5 3$ bằng cách: Nhập $\log_2 3 \cdot \sinh(x) \cdot A$ tương tự B

Thử từng đáp án A:
$$\frac{A+2AB}{AB} - \log_6 45 \approx 1,34$$
 (Loại)

Thử đáp án C:
$$\frac{A+2AB}{AB} - \log_6 45 = 0 \text{ (chọn)}.$$

Câu 101. Đặt $a = \log_3 2$, khi đó $\log_6 48$ bằng

A.
$$\frac{3a-1}{a-1}$$

B.
$$\frac{3a+1}{a+1}$$

C.
$$\frac{4a-1}{a-1}$$
 D. $\frac{4a+1}{a+1}$

D.
$$\frac{4a+1}{a+1}$$

Lời giải

Chọn D

Cách 1: Giải trực tiếp

$$\log_{6} 48 = \log_{6} 6.8 = \log_{6} 6 + \log_{6} 8 = 1 + \frac{1}{\log_{8} 6} = 1 + \frac{1}{\log_{2^{3}} 2.3} = 1 + \frac{1}{\frac{1}{3} (1 + \log_{2} 3)}$$

$$= \frac{1 + \log_2 3 + 3}{\left(1 + \log_2 3\right)} = \frac{4 + \frac{1}{a}}{1 + \frac{1}{a}} = \frac{4a + 1}{a + 1}$$
. Chọn đáp án D

Cách 2: Dùng máy tính Casio

Ta có $\log_6 48 = 2.1605584217$. Thay $a = \log_3 2 = 0.63092975375$ vào 4 đáp án thì ta chọn đáp án D vì $\frac{4a+1}{a+1}$ = 2.1605584217

Câu 102. Cho $\log_3 5 = a$, $\log_3 6 = b$, $\log_3 22 = c$. Tính $P = \log_3 \left(\frac{90}{11}\right)$ theo a, b, c?

- **A.** P = 2a b + c. **B.** P = 2a + b + c.
- **C.** P = 2a + b c. **D.** P = a + 2b c.

Lời giải

Ta có $\log_3 6 = b \Leftrightarrow \log_3 2 + 1 = b \Leftrightarrow \log_3 2 = b - 1$,

 $\log_3 22 = c \iff \log_3 2 + \log_3 11 = c \iff \log_3 11 = c - \log_3 2 = c - b + 1$.

Khi đó $P = \log_3\left(\frac{90}{11}\right) = \log_3 90 - \log_3 11 = 2 + \log_3 2 + \log_3 5 - \log_3 11 = 2b + a - c$.

Câu 103. Với $\log_{27} 5 = a$, $\log_3 7 = b$ và $\log_2 3 = c$, giá trị của $\log_6 35$ bằng

- **A.** $\frac{(3a+b)c}{1+c}$ **B.** $\frac{(3a+b)c}{1+b}$ **C.** $\frac{(3a+b)c}{1+a}$ **D.** $\frac{(3b+a)c}{1+c}$

Chon A

Ta có:
$$\log_{27} 5 = a \Rightarrow a = \frac{1}{3} \log_3 5 \Rightarrow 3a = \log_3 5 \Rightarrow \log_5 3 = \frac{1}{3a}$$

$$\log_3 7 = b \Rightarrow \log_7 3 = \frac{1}{h}$$
; $bc = \log_2 3 \cdot \log_3 7 = \log_2 7 \Rightarrow \log_7 2 = \frac{1}{bc}$;

$$3ac = \log_3 5 \cdot \log_2 3 = \log_2 5 \Rightarrow \log_5 2 = \frac{1}{3ac}$$

$$\log_6 35 = \log_6 5 + \log_6 7 = \frac{1}{\log_5 6} + \frac{1}{\log_7 6} = \frac{1}{\log_5 2 + \log_5 3} + \frac{1}{\log_7 3 + \log_7 2}$$

$$= \frac{1}{\frac{1}{3ac} + \frac{1}{3a}} + \frac{1}{\frac{1}{b} + \frac{1}{bc}} = \frac{(3a+b)c}{c+1}$$

Câu 104. Đặt $a = \log_2 3$; $b = \log_5 3$. Nếu biểu diễn $\log_6 45 = \frac{a(m+nb)}{b(a+n)}$ thì m+n+p bằng

A. 3

D. −3

Lời giải

Chọn B

$$\log_6 45 = \frac{\log_3 45}{\log_3 6} = \frac{\log_3 9 + \log_3 5}{\log_3 2 + \log_3 3} = \frac{2 + \frac{1}{b}}{\frac{1}{a} + 1} = \frac{a(2b+1)}{b(1+a)}$$

Suy ra $m = 1, n = 2, p = 1 \implies m + n + p = 4$

Câu 105. Cho các số thực dương a, b thỏa mãn $\log_3 a = x$, $\log_3 b = y$. Tính $P = \log_3 (3a^4b^5)$.

- **A.** $P = 3x^4v^5$
- **B.** $P = 3 + x^4 + y^5$ **C.** P = 60xy
- **D.** P = 1 + 4x + 5y

Lời giải

Chọn D

 $P = \log_3(3a^4b^5) = \log_3 3 + \log_3 a^4 + \log_3 b^5 = 1 + 4\log_3 a + 5\log_3 b = 1 + 4x + 5y.$

Câu 106. Biết $\log_6 3 = a, \log_6 5 = b$. Tính $\log_3 5$ theo a, b

$$\underline{\mathbf{A}} \cdot \frac{b}{a}$$

B.
$$\frac{b}{1+a}$$

C.
$$\frac{b}{1-a}$$

D.
$$\frac{b}{a-1}$$

Lời giải

Chọn A

$$\log_6 3 = a \Leftrightarrow 3 = 6^a, \log_6 5 = b \Leftrightarrow 5 = 6^b \Rightarrow \log_3 5 = \log_{6^a} 6^b = \frac{b}{a}$$

Câu 107. Cho $\log_{12} 3 = a$. Tính $\log_{24} 18$ theo a.

A.
$$\frac{3a-1}{3-a}$$
.

B.
$$\frac{3a+1}{3-a}$$

B.
$$\frac{3a+1}{3-a}$$
. **C.** $\frac{3a+1}{3+a}$. **D.** $\frac{3a-1}{3+a}$.

D.
$$\frac{3a-1}{3+a}$$

Chọn B

Ta có:
$$a = \log_{12} 3 = \frac{\log_2 3}{\log_2 12} = \frac{\log_2 3}{\log_2 (2^2.3)} = \frac{\log_2 3}{\log_2 (2^2) + \log_2 3} = \frac{\log_2 3}{2 + \log_2 3} \implies \log_2 3 = \frac{2a}{1-a}.$$

Ta có:
$$\log_{24} 18 = \frac{\log_2 18}{\log_2 24} = \frac{\log_2 \left(2.3^2\right)}{\log_2 \left(2^3.3\right)} = \frac{1 + 2\log_2 3}{3 + \log_2 3} = \frac{1 + 2.\frac{2a}{1 - a}}{3 + \frac{2a}{1 - a}} = \frac{3a + 1}{3 - a}.$$

Vậy
$$\log_{24} 18 = \frac{3a+1}{3-a}$$
.

Câu 108. Đặt $a = \log_2 3$ và $b = \log_5 3$. Hãy biểu diễn $\log_6 45$ theo a và b.

A.
$$\log_6 45 = \frac{2a^2 - 2ab}{ab}$$
. **B.** $\log_6 45 = \frac{a + 2ab}{ab}$.

C.
$$\log_6 45 = \frac{a + 2ab}{ab + b}$$
. **D**. $\log_6 45 = \frac{2a^2 - 2ab}{ab + b}$.

$$\log_6 45 = \frac{\log_3 45}{\log_3 6} = \frac{\log_3 3^2.5}{\log_3 2.3} = \frac{\log_3 3^2 + \log_3 5}{\log_3 2 + \log_3 3}$$

$$= \frac{2 + \frac{1}{\log_5 3}}{\frac{1}{\log_2 3} + 1} = \frac{2 + \frac{1}{b}}{\frac{1}{a} + 1} = \frac{\left(\frac{2b+1}{b}\right)}{\left(\frac{a+1}{a}\right)} = \frac{(2b+1)a}{b(a+1)} = \frac{a+2ab}{b+ab}$$

Câu 109. Đặt $a = \ln 2, b = \ln 5$, hãy biểu diễn $I = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + ... + \ln \frac{98}{99} + \ln \frac{99}{100}$ theo a và b.

$$\underline{\mathbf{A}} \cdot -2(a+b)$$

B.
$$-2(a-b)$$

C.
$$2(a+b)$$

D.
$$2(a-b)$$

Lời giải

$$I = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \dots + \ln \frac{98}{99} + \ln \frac{99}{100}$$
$$= \ln \left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{98}{99} \cdot \frac{99}{100} \right) = \ln \frac{1}{100} = \ln 10^{-2}$$
$$= -2 \ln 10 = -2 \left(\ln 2 + \ln 5 \right) = -2 \left(a + b \right).$$

Câu 110. Đặt $a = \log_2 3$; $b = \log_3 5$ Biểu diễn đúng của $\log_{20} 12$ theo a,b là

A.
$$\frac{ab+1}{b-2}$$
.

B.
$$\frac{a+b}{b+2}$$

B.
$$\frac{a+b}{b+2}$$
. **C.** $\frac{a+1}{b-2}$.

$$\underline{\mathbf{D}} \cdot \frac{a+2}{ab+2}$$
.

Ta có
$$\log_{20} 12 = \log_{20} 3 + 2\log_{20} 2 = \frac{1}{2\log_3 2 + \log_3 5} + \frac{2}{\log_2 5 + 2} = \frac{1}{2 \cdot \frac{1}{a} + b} + \frac{2}{ab + 2} = \frac{a + 2}{ab + 2}.$$

Câu 111. Cho $\log_2 3 = a$, $\log_2 5 = b$, khi đó $\log_{15} 8$ bằng

A.
$$\frac{a+b}{3}$$

B.
$$\frac{1}{3(a+b)}$$
 C. $3(a+b)$

C.
$$3(a+b)$$

$$\underline{\mathbf{D}}$$
. $\frac{3}{a+b}$

$$\log_{15} 8 = 3\log_{15} 2 = \frac{3}{\log_2 15} = \frac{3}{\log_2 3 + \log_2 5} = \frac{3}{a+b}$$

Câu 112. Giả sử $\log_{27} 5 = a$; $\log_8 7 = b$; $\log_2 3 = c$. Hãy biểu diễn $\log_{12} 35$ theo a, b, c?

A.
$$\frac{3b+3ac}{c+2}$$
.

B.
$$\frac{3b + 3ac}{c + 1}$$

B.
$$\frac{3b+3ac}{c+1}$$
. **C.** $\frac{3b+2ac}{c+3}$. **D.** $\frac{3b+2ac}{c+2}$.

D.
$$\frac{3b + 2ac}{c + 2}$$

$$\log_{27} 5 = a \Leftrightarrow \frac{1}{3} \log_3 5 = a \Leftrightarrow \frac{\log_2 5}{\log_2 3} = 3a \Leftrightarrow \log_2 5 = 3ac.$$

$$\log_8 7 = b \Leftrightarrow \frac{1}{3}\log_2 7 = b \Leftrightarrow \log_2 7 = 3b.$$

Xét
$$\log_{12} 35 = \frac{\log_2 35}{\log_2 12} = \frac{\log_2 \left(5.7\right)}{\log_2 \left(3.2^2\right)} = \frac{\log_2 5 + \log_2 7}{\log_2 3 + 2} = \frac{3ac + 3b}{c + 2}.$$

Câu 113. Cho $\log_3 5 = a$, $\log_3 6 = b$, $\log_3 22 = c$. Tính $P = \log_3 \left(\frac{90}{11}\right)$ theo a, b, c.

A.
$$P = 2a + b - c$$

B.
$$P = a + 2b - c$$

A.
$$P = 2a + b - c$$
. **B.** $P = a + 2b - c$. **C.** $P = 2a + b + c$. **D.** $P = 2a - b + c$.

D.
$$P = 2a - b + c$$

$$P = \log_3\left(\frac{90}{11}\right) = \log_3\left(\frac{180}{22}\right) = \log_3 180 - \log_3 22 = \log_3\left(36.5\right) - \log_3 22 = \log_3 36 + \log_3 5 - \log_3 22$$

$$= \log_3\left(6^2\right) + \log_3 5 - \log_3 22 = 2\log_3 6 + \log_3 5 - \log_3 22 = a + 2b - c.$$

$$\text{Vây } P = a + 2b - c.$$

Câu 114. Đặt $a = \log_2 3; b = \log_3 5$. Biểu diễn $\log_{20} 12$ theo a, b.

A.
$$\log_{20} 12 = \frac{a+b}{b+2}$$

B.
$$\log_{20} 12 = \frac{ab+1}{b-2}$$
.

C.
$$\log_{20} 12 = \frac{a+1}{b-2}$$
.

A.
$$\log_{20} 12 = \frac{a+b}{b+2}$$
. **B.** $\log_{20} 12 = \frac{ab+1}{b-2}$. **C.** $\log_{20} 12 = \frac{a+1}{b-2}$. $\underline{\mathbf{D}}$. $\log_{20} 12 = \frac{a+2}{ab+2}$.

Ta có
$$\log_{20} 12 = \frac{\log_2 12}{\log_2 20} = \frac{\log_2 4.3}{\log_2 4.5} = \frac{2 + \log_2 3}{2 + \log_2 5} = \frac{2 + \log_2 3}{2 + \log_2 3.\log_3 5} = \frac{a + 2}{ab + 2}.$$

Câu 115. Nếu $\log_2 3 = a$ thì $\log_{72} 108$ bằng

A.
$$\frac{2+a}{3+a}$$
.

B.
$$\frac{2+3a}{3+2a}$$

C.
$$\frac{3+2a}{2+3a}$$

Ta có
$$\log_{72} 108 = \frac{\log_2 108}{\log_2 72} = \frac{\log_2 (2^2.3^3)}{\log_2 (2^3.3^2)} = \frac{2 + 3\log_2 3}{3 + 2\log_2 3} = \frac{2 + 3a}{3 + 2a}.$$

Câu 116. Cho $\log_{30} 3 = a; \log_{30} 5 = b$. Tính $\log_{30} 1350$ theo $a, b; \log_{30} 1350$ bằng

A.
$$2a + b$$

B.
$$2a+b+1$$

C.
$$2a+b-1$$

D.
$$2a+b-2$$

Lời giải

Ta có
$$1350 = 30.45 = 30.9.5 = 30.3^{2}.5$$

Nên
$$\log_{30} 1350 = \log_{30} 30.3^2.5 = \log_{30} 30 + \log_{30} 3^2 + \log_{30} 5 = 1 + 2\log_{30} 3 + \log_{30} 5 = 1 + 2a + b$$

Câu 117. Đặt m = log 2 và n = log 7. Hãy biểu diễn $log 6125\sqrt{7}$ theo m và n

A.
$$\frac{6+6m+5n}{2}$$

A.
$$\frac{6+6m+5n}{2}$$
. **B.** $\frac{1}{2}(6-6n+5m)$. **C.** $5m+6n-6$. $\underline{\mathbf{D}}$. $\frac{6+5n-6m}{2}$.

C.
$$5m + 6n - 6$$
.

D.
$$\frac{6+5n-6m}{2}$$

Ta có
$$\log 6125\sqrt{7} = \log 5^3 7^{\frac{5}{2}} = 3\log 5 + \frac{5}{2}\log 7 = 3\log \frac{10}{2} + \frac{5}{2}\log 7$$

$$=3(1-\log 2)+\frac{5}{2}\log 7=3(1-m)+\frac{5}{2}n=\frac{6+5n-6m}{2}.$$

Vậy
$$\log 6125\sqrt{7} = \frac{6+5n-6m}{2}$$
.

Câu 118. Cho $\log_{27} 5 = a$, $\log_3 7 = b$, $\log_2 3 = c$. Tính $\log_6 35$ theo a, b và c.

A.
$$\frac{(3a+b)c}{1+c}$$

A.
$$\frac{(3a+b)c}{1+c}$$
. **B.** $\frac{(3a+b)c}{1+b}$. **C.** $\frac{(3a+b)c}{1+a}$. $\underline{\mathbf{p}}$. $\frac{(3b+a)c}{1+c}$.

C.
$$\frac{(3a+b)c}{1+a}$$

$$\underline{\mathbf{D}} \cdot \frac{(3b+a)c}{1+c}.$$

Chọn

Theo giả thiết, ta có $\log_{27} 5 = a \Leftrightarrow \frac{1}{2} \log_3 5 = a \Leftrightarrow \log_3 5 = 3a$.

Ta có $\log_2 5 = \log_2 3 \cdot \log_3 5 = 3ac$ và $\log_2 7 = \log_2 3 \cdot \log_3 7 = bc$.

Vậy
$$\log_6 35 = \frac{\log_2 35}{\log_2 6} = \frac{\log_2 5 + \log_2 7}{\log_2 2 + \log_2 3} = \frac{3ac + bc}{1 + c} = \frac{(3a + b)c}{1 + c}.$$

Câu 119. Cho $a = \log_2 m$ và $A = \log_m 16m$, với $0 < m \ne 1$. Mệnh đề nào sau đây đúng?

A.
$$A = \frac{4-a}{a}$$

A.
$$A = \frac{4-a}{a}$$
. **B.** $A = \frac{4+a}{a}$. **C.** $A = (4+a)a$. **D.** $A = (4-a)a$.

C.
$$A = (4 + a)a$$
.

D.
$$A = (4 - a)a$$
.

Ta có
$$A = \log_m 16m = \frac{\log_2 16m}{\log_2 m} = \frac{\log_2 16 + \log_2 m}{\log_2 m} = \frac{4+a}{a}$$
.

Câu 120. Biết $log_3 15 = a$, tính $P = log_{25} 81$ theo a ta được

A.
$$P = 2(a+1)$$

A.
$$P = 2(a+1)$$
 B. $P = 2(a-1)$

C.
$$P = \frac{2}{a+1}$$

D.
$$\frac{2}{a-1}$$

Lời giải

Chọn D

Ta có $\log_3 15 = a \Rightarrow 1 + \log_3 5 = a \Rightarrow \log_3 5 = a - 1$

$$P = \log_{25} 81 = \frac{\log_3 81}{\log_3 25} = \frac{4}{2\log_3 5} = \frac{4}{2(a-1)} = \frac{2}{a-1}$$

Câu 121. Cho $\log_3 5 = a$, $\log_3 6 = b$, $\log_3 22 = c$. Tính $P = \log_3 \frac{90}{11}$ theo a, b, c.

A.
$$P = 2a + b - c$$
 B. $P = a + 2b - c$ **C.** $P = 2a + b + c$ **D.** $P = 2a - b + c$

B.
$$P = a + 2b - c$$

C.
$$P = 2a + b + c$$

D.
$$P = 2a - b + c$$

Lời giải

Ta có:
$$P = \log_3 90 - \log_3 11 = \log_3 90 + \log_3 2 - \log_3 11 - \log_3 2$$

$$= \log_3 180 - \log_3 2 = \log_3 (5.36) - \log_3 2 = \log_3 5 + 2\log_3 6 - \log_3 2 = a + b - 2c$$

Câu 122. Nếu $\log_3 5 = a$ thì $\log_{45} 75$ bằng

A.
$$\frac{2+a}{1+2a}$$
. **B.** $\frac{1+a}{2+a}$. **C.** $\frac{1+2a}{2+a}$. **D.** $\frac{1+2a}{1+a}$.

B.
$$\frac{1+a}{2+a}$$

$$\underline{\mathbf{C}} \cdot \frac{1+2a}{2+a}$$

D.
$$\frac{1+2a}{1+a}$$

Lời giải

Ta có $\log_{45} 75 = 2.\log_{45} 5 + \log_{45} 3$.

Và
$$\log_{45} 5 = \frac{1}{\log_5 45} = \frac{1}{2\log_5 3 + 1} = \frac{1}{\frac{2}{a} + 1} = \frac{a}{a+2}; \log_{45} 3 = \frac{1}{\log_3 45} = \frac{1}{2 + \log_3 5} = \frac{1}{a+2}.$$

Do đó
$$\log_{45} 75 = \frac{2a}{a+2} + \frac{1}{a+2} = \frac{1+2a}{2+a}$$

Câu 123. Cho $\log_3 5 = a$, $\log_3 6 = b$, $\log_3 22 = c$. Tính $P = \log_3 \left(\frac{90}{11}\right)$ theo a, b, c.

A.
$$P = 2a + b - c$$
.

A.
$$P = 2a + b - c$$
. **B.** $P = a + 2b - c$. **C.** $P = 2a + b + c$. **D.** $P = 2a - b + c$.

C.
$$P = 2a + b + c$$

D.
$$P = 2a - b + c$$
.

Ta có
$$P = \log_3\left(\frac{90}{11}\right) = \log_3\left(\frac{180}{22}\right) = \log_3\left(\frac{5.6^2}{22}\right) = \log_3 5 + 2\log_3 6 - \log_3 22 = a + 2b - c$$
.

Câu 124. Cho $\log_{12} 3 = a$. Tính $\log_{24} 18$ theo a.

A.
$$\frac{3a+1}{3-a}$$
.

B.
$$\frac{3a+1}{3+a}$$

B.
$$\frac{3a+1}{3+a}$$
. **C.** $\frac{3a-1}{3+a}$. **D.** $\frac{3a-1}{3-a}$.

D.
$$\frac{3a-1}{3-a}$$

Ta có
$$a = \log_{12} 3 = \frac{1}{\log_{1} 12} = \frac{1}{1 + 2\log_{1} 2} \Leftrightarrow \log_{2} 3 = \frac{2a}{1 - a}$$
.

Khi đó:
$$\log_{24} 18 = \frac{\log_2(3^2.2)}{\log_2(2^3.3)} = \frac{1 + 2\log_2 3}{3 + \log_2 3} = \frac{1 + 2 \cdot \frac{2a}{1 - a}}{3 + \frac{2a}{1 - a}} = \frac{1 + 3a}{3 - a}.$$

Câu 125. Đặt $\log_a b = m, \log_b c = n$. Khi đó $\log_a (ab^2c^3)$ bằng

A.
$$1 + 6mn$$
.

B.
$$1 + 2m + 3n$$
.

D.
$$1 + 2m + 3mn$$
.

Lời giải

$$\log_a \left(ab^2 c^3 \right) = \log_a a + 2\log_a b + 3\log_a c$$

$$= 1 + 2m + 3\frac{\log_b c}{\log_b a} = 1 + 2m + 3\log_a b \cdot \log_b c = 1 + 2m + 3mn.$$

Câu 126. Đặt $a = \log_2 3$ và $b = \log_5 3$. Hãy biểu diễn $\log_6 45$ theo a và b

$$\underline{\mathbf{A}} \cdot \log_6 45 = \frac{a + 2ab}{ab + b}$$

B.
$$\log_6 45 = \frac{a + 2ab}{ab}$$

A.
$$\log_6 45 = \frac{a + 2ab}{ab + b}$$
 B. $\log_6 45 = \frac{a + 2ab}{ab}$ **C.** $\log_6 45 = \frac{2a^2 - 2ab}{ab}$ **D.** $\log_6 45 = \frac{2a^2 - 2ab}{ab + b}$

$$\frac{2}{a}$$
 D. $\log_6 45 = \frac{2a^2 - 2ab}{ab + b}$

Chọn A

$$\log_6 45 = \frac{\log_2(3^2.5)}{\log_2(2.3)} = \frac{2\log_2 3 + \log_2 3 \cdot \log_3 5}{1 + \log_2 3} = \frac{2a + \frac{a}{b}}{1 + a} = \frac{2ab + a}{ab + b}$$

Câu 127. Cho $\log_9 5 = a$; $\log_4 7 = b$; $\log_2 3 = c$. Biết $\log_{24} 175 = \frac{mb + nac}{pc + q}$. Tính A = m + 2n + 3p + 4q.

D. 29

Lời giải

Chọn B

Ta có
$$\log_{24} 175 = \log_{24} 7.5^2 = \log_{24} 7 + 2\log_{24} 5^2 = \frac{1}{\log_7 24} + \frac{2}{\log_5 24} = \frac{1}{\log_7 3 + \log_7 2^3} + \frac{2}{\log_5 3 + \log_5 2^3} = \frac{1}{\frac{1}{\log_3 7} + \frac{3}{\log_2 7}} + \frac{2}{\frac{1}{\log_3 5} + \frac{3}{\log_2 5}} = \frac{1}{\frac{1}{\log_2 7.\log_3 2} + \frac{3}{\log_2 7}} + \frac{2}{\frac{1}{\log_3 5} + \frac{3}{\log_2 5}} = \frac{1}{\frac{1}{2b.\frac{1}{c}} + \frac{3}{2b}} + \frac{2}{\frac{1}{2a} + \frac{3}{c.2a}} = \frac{1}{\frac{2b}{c+3} + \frac{3}{2b}} + \frac{2}{\frac{2}{2a} + \frac{3}{2ac}} = \frac{2b}{c+3} + \frac{4ac}{c+3} = \frac{2b+4ac}{c+3}.$$

$$A = m + 2n + 3p + 4q = 2 + 8 + 3 + 12 = 25$$

Câu 128. Với các số a, b > 0 thỏa mãn $a^2 + b^2 = 6ab$, biểu thức $\log_2(a+b)$ bằng

$$\underline{\mathbf{A}} \cdot \frac{1}{2} \big(3 + \log_2 a + \log_2 b \big).$$

B.
$$\frac{1}{2} (1 + \log_2 a + \log_2 b)$$
.

C.
$$1 + \frac{1}{2} (\log_2 a + \log_2 b)$$
. D. $2 + \frac{1}{2} (\log_2 a + \log_2 b)$.

Ta có:
$$a^2 + b^2 = 6ab \Leftrightarrow a^2 + b^2 + 2ab = 6ab + 2ab \Leftrightarrow (a+b)^2 = 8ab$$
 (*).

Do
$$a, b > 0 \Rightarrow \begin{cases} ab > 0 \\ a+b > 0 \end{cases}$$
, lấy logarit cơ số 2 hai vế của (*) ta được:

$$\log_2(a+b)^2 = \log_2(8ab) \Leftrightarrow 2\log_2(a+b) = 3 + \log_2 a + \log_2 b$$

$$\Leftrightarrow \log_2(a+b) = \frac{1}{2}(3 + \log_2 a + \log_2 b).$$

Câu 129. Biết $\log_7 12 = a$; $\log_{12} 24 = b$. Giá trị của $\log_{54} 168$ được tính theo a và b là

A.
$$\frac{ab+1}{a(8-5b)}$$
. **B.** $\frac{ab-1}{a(8+5b)}$. **C.** $\frac{2ab+1}{8a-5b}$.

B.
$$\frac{ab-1}{a(8+5b)}$$

C.
$$\frac{2ab+1}{8a-5b}$$
.

D.
$$\frac{2ab+1}{8a+5b}$$
.

Chon A

 $\overline{\text{Do log}_{7}} 12 = a \; ; \; \log_{17} 24 = b \implies a; b > 0$

•
$$\log_7 12 = a \iff \log_7 (2^2.3) = a \iff 2\log_7 2 + \log_7 3 = a$$
 (1)

•
$$\log_{12} 24 = b \Leftrightarrow \frac{\log_7 24}{\log_7 12} = b \Leftrightarrow \frac{3\log_7 2 + \log_7 3}{a} = b \Leftrightarrow 3\log_7 2 + \log_7 3 = ab$$
 (2)

Từ (1) và (2) ta có hệ phương trình:
$$\begin{cases} 2\log_7 2 + \log_7 3 = a \\ 3\log_7 2 + \log_7 3 = ab \end{cases} \Leftrightarrow \begin{cases} \log_7 2 = ab - a \\ \log_7 3 = 3a - 2ab \end{cases}$$

Mặt khác:
$$\log_{54} 168 = \frac{\log_7 168}{\log_7 54} = \frac{\log_7 (2^3.3.7)}{\log_7 (2.3^3)} = \frac{3\log_7 2 + \log_7 3 + 1}{\log_7 2 + 3\log_7 3}$$

$$\Rightarrow \log_{54} 168 = \frac{3(ab-a)+3a-2ab+1}{ab-a+3(3a-2ab)} = \frac{3ab-3a+3a-2ab+1}{ab-a+9a-6ab} = \frac{ab+1}{8a-5ab} = \frac{ab+1}{a(8-5b)}$$

Vậy
$$\log_{54} 168 = \frac{ab+1}{a(8-5b)}$$
.

Câu 130. Cho các số thực a, b thỏa mãn a > b > 1 và $\frac{1}{\log_a a} + \frac{1}{\log_a b} = \sqrt{2020}$. Giá trị của biểu thức

$$P = \frac{1}{\log_{ab} b} - \frac{1}{\log_{ab} a} \text{ bằng}$$

A.
$$\sqrt{2014}$$

B.
$$\sqrt{2016}$$

$$b \log_{ab} a$$

A. $\sqrt{2014}$.

B. $\sqrt{2016}$.

C. $\sqrt{2018}$.

Lòi giải

D.
$$\sqrt{2020}$$
.

Chọn B

Do a > b > 1 nên $\log_a b > 0$, $\log_b a > 0$ và $\log_b a > \log_a b$.

Ta có:
$$\frac{1}{\log_b a} + \frac{1}{\log_a b} = \sqrt{2020}$$

$$\Leftrightarrow \log_b a + \log_a b = \sqrt{2020}$$

$$\Leftrightarrow \log_b^2 a + \log_a^2 b + 2 = 2020$$

$$\Leftrightarrow \log_b^2 a + \log_a^2 b = 2018$$
 (*)

Khi đó, $P = \log_b ab - \log_a ab = \log_b a + \log_b b - \log_a a - \log_a b = \log_b a - \log_a b$

Suy ra:
$$P^2 = (\log_b a - \log_a b)^2 = \log_b^2 a + \log_a^2 b - 2 = 2018 - 2 = 2016 \Rightarrow P = \sqrt{2016}$$

Câu 131. Tìm số nguyên dương n sao cho

$$\log_{2018} 2019 + 2^2 \log_{\sqrt{2018}} 2019 + 3^2 \log_{\frac{3}{2018}} 2019 + \dots + n^2 \log_{\frac{g}{2018}} 2019 = 1010^2.2021^2 \log_{2018} 2019$$

A.
$$n = 2021$$
.

B.
$$n = 2019$$
.

C.
$$n = 2020$$
.

D.
$$n = 2018...$$

$$\log_{2018} 2019 + 2^2 \log_{\sqrt{2018}} 2019 + 3^2 \log_{\sqrt[3]{2018}} 2019 + \ldots + n^2 \log_{\sqrt[3]{2018}} 2019 = 1010^2.2021^2 \log_{2018} 2019 = 1010^2.2021^2 \log_{100} 2019 = 1010^2 \log_{100} 2019 = 1010^2 \log_{100} 2019 = 1010^2 \log_{100} 2019 = 1010^2 \log_{100} 2019 = 1010$$

$$\Leftrightarrow \log_{2018} 2019 + 2^3 \log_{2018} 2019 + 3^3 \log_{2018} 2019 + \dots + n^3 \log_{2018} 2019 = 1010^2 \cdot 2021^2 \log_{2018} 2019 = 1010^2 \cdot 2$$

$$\Leftrightarrow$$
 $(1+2^3+3^3+...+n^3)\log_{2018} 2019 = 1010^2.2021^2\log_{2018} 2019$

$$\Leftrightarrow$$
 1+2³+3³+...+ n^3 = 1010².2021²

$$\Leftrightarrow (1+2+...+n)^2 = 1010^2.2021^2$$

$$\Leftrightarrow \left[\frac{n(n+1)}{2}\right]^2 = 1010^2.2021^2$$

$$\Leftrightarrow \frac{n(n+1)}{2} = 1010.2021$$

$$\Leftrightarrow n^2 + n - 2020.2021 = 0$$

$$\Leftrightarrow \begin{bmatrix} n = 2020 \\ n = -2021 (\ell) \end{bmatrix}$$

Câu 132. Cho hàm số
$$f(x) = \log_2\left(x - \frac{1}{2} + \sqrt{x^2 - x + \frac{17}{4}}\right)$$
. Tính $T = f\left(\frac{1}{2019}\right) + f\left(\frac{2}{2019}\right) + \dots + f\left(\frac{2018}{2019}\right)$

A.
$$T = \frac{2019}{2}$$
.

B.
$$T = 2019$$
.

C.
$$T = 2018$$
.

D.
$$T = 1009$$
.

Ta có:
$$f(1-x) = \log_2\left(1-x-\frac{1}{2}+\sqrt{(1-x)^2-(1-x)+\frac{17}{4}}\right) = \log_2\left(\sqrt{x^2-x+\frac{17}{4}}-\left(x-\frac{1}{2}\right)\right)$$

 $f(x)+f(1-x) = \log_2\left(x-\frac{1}{2}+\sqrt{x^2-x+\frac{17}{4}}\right) + \log_2\left(\sqrt{x^2-x+\frac{17}{4}}-\left(x-\frac{1}{2}\right)\right)$
 $= \log_2\left[\left(x-\frac{1}{2}+\sqrt{x^2-x+\frac{17}{4}}\right)\left(\sqrt{x^2-x+\frac{17}{4}}-\left(x-\frac{1}{2}\right)\right)\right] = \log_2 4 = 2$
 $\Rightarrow T = f\left(\frac{1}{2019}\right) + f\left(\frac{2}{2019}\right) + \dots + f\left(\frac{2018}{2019}\right)$
 $= f\left(\frac{1}{2019}\right) + f\left(\frac{2018}{2019}\right) + f\left(\frac{2}{2019}\right) + f\left(\frac{2017}{2019}\right) + \dots + f\left(\frac{1009}{2019}\right) + f\left(\frac{1010}{2019}\right)$
 $= 1009.2 = 2018$

Câu 133. Gọi a là giá trị nhỏ nhất của $f(n) = \frac{\log_3 2.\log_3 3.\log_3 4...\log_3 n}{9^n}$ với $n \in \mathbb{N}$ và $n \ge 2$. Hỏi có bao nhiều giá trị của n để f(n) = a.

B. 4

C. 1 Lời giải D. vô số

Chọn A

$$f(n) = \frac{\log_3 2.\log_3 3.\log_3 4...\log_3 n}{9^n} = \frac{1}{9}\log_{3^9} 2.\log_{3^9} 3.\log_{3^9} 4...\log_{3^9} n$$

Ta có:

- Nếu
$$2 \le n \le 3^8 \Rightarrow 0 < \log_{3^9} k < 1 \Rightarrow f(n) = \frac{1}{9} \log_{3^9} 2.\log_{3^9} 3.\log_{3^9} 4...\log_{3^9} n \ge f(3^8)$$

- Nếu
$$n = 3^9 \Rightarrow f(3^9) = f(3^8) \cdot \log_{3^9} 3^9 = f(3^8)$$

- Nếu
$$n > 3^9 \Rightarrow \log_{3^9} n > 1 \Rightarrow f(n) = f(3^9) \cdot \log_{3^9} (3^9 + 1) \cdot ... \log_{3^9} n > f(3^9)$$

Từ đó suy ra $Min f(n) = f(3^9) = f(3^8)$.

Câu 134. Cho x, y và z là các số thực lớn hơn 1 và gọi w là số thực dương sao cho $\log_x w = 24$,

 $\log_{v} w = 40$ và $\log_{xvz} w = 12$. Tính $\log_{z} w$.

D.
$$-52$$
.

Lời giải

Chọn C

$$\log_x w = 24 \implies \log_w x = \frac{1}{24}$$

$$\log_y w = 40 \Rightarrow \log_w y = \frac{1}{40}$$

Lai do

$$\log_{xyz} w = 12 \Leftrightarrow \frac{1}{\log_{w}(xyz)} = 12 \Leftrightarrow \frac{1}{\log_{w} x + \log_{w} y + \log_{w} z} = 12 \Leftrightarrow \frac{1}{\log_{w} x + \log_{w} y + \log_{w} z} = 12$$
$$\Leftrightarrow \frac{1}{\frac{1}{24} + \frac{1}{40} + \log_{w} z} = 12 \Leftrightarrow \log_{w} z = \frac{1}{60} \Rightarrow \log_{z} w = 60.$$

Câu 135. Cho f(1)=1, f(m+n)=f(m)+f(n)+mn với mọi $m,n\in\mathbb{N}^*$. Tính giá trị của biểu thức

$$T = \log \left[\frac{f(96) - f(69) - 241}{2} \right].$$

A.
$$T = 9$$
.

B.
$$T = 3$$
.

C.
$$T = 10$$
.

D.
$$T = 4$$
.

Lời giải

Chọn B

$$\overline{\text{C\'o }f}(\overline{1}) = 1, \ f(m+n) = f(m) + f(n) + mn$$

$$\Rightarrow$$

$$f(96) = f(95+1) = f(95) + f(1) + 95 = f(95) + 96 = f(94) + 95 + 96 = \dots = f(1) + 2 + \dots + 95 + 96$$

$$\Rightarrow f(96) = 1 + 2 + \dots + 95 + 96 = \frac{96.97}{2} = 4656.$$

Turong tự
$$f(69) = 1 + 2 + ... + 68 + 69 = \frac{69.70}{2} = 2415$$
.

Vậy
$$T = \log \left[\frac{f(96) - f(69) - 241}{2} \right] = \log \left(\frac{4656 - 2415 - 241}{2} \right) = \log 1000 = 3.$$

Câu 136. Cho các số thực dương x, y, z thỏa mãn đồng thời $\frac{1}{\log_2 x} + \frac{1}{\log_2 y} + \frac{1}{\log_2 z} = \frac{1}{2020}$ và

 $\log_2(xyz) = 2020$. Tính $\log_2(xyz(x+y+z)-xy-yz-zx+1)$

D.
$$2020^2$$
.

Lời giải

Chọn A

Đặt
$$a = \log_2 x; b = \log_2 y; c = \log_2 z$$
.

Ta có
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2020}$$
 và $a + b + c = 2020$

$$\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)(a+b+c) = 1 \Leftrightarrow (a+b+c)(ab+ac+bc) = abc$$

$$\Leftrightarrow a^2b + ab^2 + abc + abc + b^2c + bc^2 + a^2c + ac^2 = 0$$

$$\Leftrightarrow (a+b)(b+c)(c+a) = 0$$

Vì vai trò a,b,c như nhau nên giả sử $a+b=0 \Rightarrow c=2020 \Rightarrow z=2^{2020}$ và xy=1.

$$\log_2(xyz(x+y+z)-xy-yz-zx+1) = \log_2(z(x+y+z)-1-yz-zx+1)$$
$$= \log_2(z^2) = 2\log_2 z = 4040$$

Câu 137. Cho ba số thực dương x, y, z theo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a ($a \ne 1$) thì $\log_a x$, $\log_{\sqrt{a}} y$, $\log_{\sqrt[3]{a}} z$ theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức $P = \frac{1959x}{y} + \frac{2019y}{z} + \frac{60z}{x}$.

A. 60.

B. 2019.

C. 4038.

D. $\frac{2019}{2}$.

Lời giải

Chon C

Ta có: x, y, z là ba số thực dường, theo thứ tự lập thành một cấp số nhân thì $y^2 = x.z$ (1). Với mỗi số thực a ($a \ne 1$), $\log_a x$, $\log_{\sqrt{a}} y$, $\log_{\sqrt[3]{a}} z$ theo thứ tự lập thành một cấp số cộng thì $2\log_{\sqrt{a}} y = \log_a x + \log_{\sqrt[3]{a}} z \Leftrightarrow 4\log_a y = \log_a x + 3\log_a z$ (2).

Thay (1) vào (2) ta được $2\log_a x.z = \log_a x + 3\log_a z \Leftrightarrow \log_a x = \log_a z \Leftrightarrow x = z$.

Từ (1) ta suy ra y = x = z.

Thay vào giả thiết thì P = 1959 + 2019 + 60 = 4038

Câu 138. Cho hàm số $f(x) = \frac{1}{2} \log_2 \left(\frac{2x}{1-x} \right)$ và hai số thực m, n thuộc khoảng (0;1) sao cho m+n=1. Tính f(m)+f(n).

A. 2.

B. 0.

<u>C</u>. 1.

D. $\frac{1}{2}$.

Lời giải

Chọn C

$$f(m) + f(n) = \frac{1}{2}\log_2\left(\frac{2m}{1-m}\right) + \frac{1}{2}\log_2\left(\frac{2n}{1-n}\right)$$

$$= \frac{1}{2}\left[\log_2\left(\frac{2m}{1-m}\right) + \log_2\left(\frac{2n}{1-n}\right)\right]$$

$$= \frac{1}{2}\log_2\left(\frac{2m}{1-m} \cdot \frac{2n}{1-n}\right)$$

$$= \frac{1}{2}\log_2\left(\frac{4mn}{1-m-n+mn}\right), \text{ vi } m+n=1$$

$$= \frac{1}{2}\log_2\left(\frac{4mn}{mn}\right) = \frac{1}{2}\log_24 = \frac{1}{2}.2 = 1.$$

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

Câu 139. Gọi *n* là số nguyên dương sao cho $\frac{1}{\log_3 x} + \frac{1}{\log_{3^2} x} + \frac{1}{\log_{3^3} x} + ... + \frac{1}{\log_{3^n} x} = \frac{190}{\log_3 x}$ đúng với mọi

x dương, $x \ne 1$. Tìm giá trị của biểu thức P = 2n + 3.

A.
$$P = 32$$
.

B.
$$P = 23$$
.

C.
$$P = 43$$
.

D.
$$P = 41$$
.

Lời giải

Chon D

$$\frac{1}{\log_3 x} + \frac{1}{\log_{3^2} x} + \frac{1}{\log_{3^3} x} + \dots + \frac{1}{\log_{3^n} x} = \frac{190}{\log_3 x}$$

$$\Leftrightarrow \log_{x} 3 + 2\log_{x} 3 + 3\log_{x} 3 + ... + n\log_{x} 3 = 190\log_{x} 3$$

$$\Leftrightarrow \log_{x} 3(1+2+3+...+n) = 190 \log_{x} 3$$

$$\Leftrightarrow$$
 1 + 2 + 3 + ... + n = 190

$$\Leftrightarrow \frac{n(n+1)}{2} = 190$$

$$\Leftrightarrow n^2 + n - 380 = 0$$

$$\Leftrightarrow$$
 $\begin{cases} n=19 \\ n=-20 \end{cases} \Rightarrow n=19 \text{ (do } n \text{ nguyên duong)} \Rightarrow P=2n+3=41$

Câu 140. Cho x, y, z là ba số thực dương lập thành cấp số nhân; $\log_a x$, $\log_{\sqrt{a}} y$, $\log_{\sqrt{a}} z$ lập thành cấp số cộng, với a là số thực dương khác 1. Giá trị của $p = \frac{9x}{y} + \frac{y}{z} + \frac{3z}{x}$ là $\underline{\mathbf{A}}$. 13. $\underline{\mathbf{B}}$. 3. $\underline{\mathbf{C}}$. 12. $\underline{\mathbf{L}}$ **òi giải**

D. 10.

Chọn A

x, y, z là ba số thực dương lập thành cấp số nhân nên ta có $xz = y^2$ (1).

 $\log_a x$, $\log_{\sqrt{a}} y$, $\log_{\sqrt[3]{a}} z$ lập thành cấp số cộng nên:

$$\log_a x + \log_{\sqrt[3]{a}} z = 2\log_{\sqrt{a}} y \iff \log_a x + 3\log_a z = 4\log_a y \iff xz^3 = y^4$$
 (2).

Từ (1) và (2) ta suy ra x = y = z.

Vậy
$$p = \frac{9x}{y} + \frac{y}{z} + \frac{3z}{x} = 9 + 1 + 3 = 13$$
.

Câu 141. Cho f(1) = 1; f(m+n) = f(m) + f(n) + mn với mọi $m, n \in \mathbb{N}^*$. Tính giá trị của biểu thức

$$T = \log \left\lceil \frac{f(2019) - f(2009) - 145}{2} \right\rceil$$

A. 3.

C. 5.

D. 10.

Lời giải

Chon B

Ta có
$$f(2019) = f(2009 + 10) = f(2009) + f(10) + 20090$$

Do đó
$$f(2019) - f(2009) - 145 = f(10) + 20090 - 145$$

$$f(10) = f(9) + f(1) + 9$$

$$f(9) = f(8) + f(1) + 8$$

......

$$f(3) = f(2) + f(1) + 2$$

$$f(2) = f(1) + f(1) + 1$$

Từ đó cộng vế với vế ta được: f(10) = 10.f(1) + 1 + 2 + + 8 + 9 = 55.

Vậy
$$\log \left[\frac{f(2019) - f(2009) - 145}{2} \right] = \log \frac{20090 - 145 + 55}{2} = \log 10000 = 4.$$

Câu 142. Có bao nhiều số nguyên dương n để $\log_n 256$ là một số nguyên dương?

A. 2.

D. 1.

Lời giải

Chọn C

$$\log_n 256 = 8.\log_n 2 = \frac{8}{\log_2 n}$$
 là số nguyên dương

$$\Leftrightarrow \log_2 n \in \{1; 2; 4; 8\} \Leftrightarrow n \in \{2; 4; 16; 256\}.$$

Vậy có 4 số nguyên dương.

Câu 143. Cho tam giác ABC có BC = a, CA = b, AB = c. Nếu a, b, c theo thứ tự lập thành một cấp số nhân thì

A. $\ln \sin A \cdot \ln \sin C = (\ln \sin B)^2$.

B. $\ln \sin A \cdot \ln \sin C = 2 \ln \sin B$.

 $\underline{\mathbf{C}}$. $\ln \sin A + \ln \sin C = 2 \ln \sin B$.

D. $\ln \sin A + \ln \sin C = \ln (2 \sin B)$.

Chọn C

 $a = 2R \sin A$ Theo định lý sin trong tam giác ABC ta có: $b = 2R \sin B$, với R là bán kính đường tròn ngoại $c = 2R \sin C$

tiếp tam giác ABC.

Vì a, b, c theo thứ tự lập thành một cấp số nhân nên ta có:

$$a.c = b^2 \Rightarrow (2R \sin A).(2R \sin C) = (2R \sin B)^2 \Rightarrow \sin A.\sin C = (\sin B)^2.$$

Do $0^{\circ} < \sin A$, $\sin B$, $\sin C \le 180^{\circ}$ nên $\sin A$, $\sin B$, $\sin C > 0$.

Vì thế ta có thể suy ra $\ln (\sin A. \sin C) = \ln [(\sin B)^2] \Rightarrow \ln \sin A + \ln \sin C = 2 \ln \sin B$.

Câu 144. Cho x = 2018!. Tính $A = \frac{1}{\log_{2018} x} + \frac{1}{\log_{2018} x} + \dots + \frac{1}{\log_{2018} 2018} x + \frac{1}{\log_{20122018} x}$

A.
$$A = \frac{1}{2017}$$

B.
$$A = 2018$$

A.
$$A = \frac{1}{2017}$$
. **B.** $A = 2018$. **C.** $A = \frac{1}{2018}$. **D.** $A = 2017$.

Lời giải

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

$$A = \frac{1}{\log_{2^{2018}} x} + \frac{1}{\log_{3^{2018}} x} + \dots + \frac{1}{\log_{2017^{2018}} x} + \frac{1}{\log_{2018^{2018}} x}$$

$$= \log_{x} 2^{2018} + \log_{x} 3^{2018} + \dots + \log_{x} 2017^{2018} + \log_{x} 2018^{2018}$$

$$= 2018 \cdot \log_{x} 2 + 2018 \cdot \log_{x} 3 + \dots + 2018 \cdot \log_{x} 2017 + 2018 \cdot \log_{x} 2018$$

$$= 2018 \cdot (\log_{x} 2 + \log_{x} 3 + \dots + \log_{x} 2017 + \log_{x} 2018) = 2018 \cdot \log_{x} (2.3 \cdot \dots \cdot 2017.2018)$$

Câu 145. (Chuyên Hùng Vương - Gia Lai - 2018) Tìm bộ ba số nguyên dương (a;b;c) thỏa mãn

 $\log 1 + \log(1+3) + \log(1+3+5) + \dots + \log(1+3+5+\dots+19) - 2\log 5040 = a + b\log 2 + c\log 3$

Lời giải

Ta có

$$\log 1 + \log(1+3) + \log(1+3+5) + \dots + \log(1+3+5+\dots+19) - 2\log 5040 = a + b\log 2 + c\log 3$$

$$\Leftrightarrow \log 1 + \log 2^2 + \log 3^2 + \dots + \log 10^2 - 2\log 5040 = a + b\log 2 + c\log 3$$

$$\Leftrightarrow \log(1.2^2.3^2.10^2) - 2\log 5040 = a + b\log 2 + c\log 3$$

$$\Leftrightarrow \log(1.2.3.10)^2 - 2\log 5040 = a + b\log 2 + c\log 3$$

$$\Leftrightarrow 2\log(1.2.3.10) - 2\log 5040 = a + b\log 2 + c\log 3$$

$$\Leftrightarrow 2(\log 10! - \log 7!) = a + b \log 2 + c \log 3 \Leftrightarrow 2 \log(8.9.10) = a + b \log 2 + c \log 3$$

$$\Leftrightarrow$$
 2+6log2+4log3 = $a+b$ log2+ c log3.

Vậy
$$a = 2$$
, $b = 6$, $c = 4$.

Câu 146. Tổng $S = 1 + 2^2 \log_{\sqrt{2}} 2 + 3^2 \log_{\frac{3}{2}} 2 + \dots + 2018^2 \log_{\frac{2018}{2}} 2$ dưới đây.

A.
$$1008^2.2018^2$$

$$\mathbf{C.}\ 1009^2.2018^2$$

D.
$$2019^2$$
.

Ta có
$$1^3 + 2^3 + 3^3 + ... + n^3 = \frac{\left(n(n+1)\right)^2}{4}$$
.

Mặt khác

$$\begin{split} S &= 1 + 2^2 \log_{\sqrt{2}} 2 + 3^2 \log_{\sqrt[3]{2}} 2 + \dots + 2018^2 \log_{20\sqrt[3]{2}} 2 = 1 + 2^2 \log_{\frac{1}{2}} 2 + 3^2 \log_{\frac{1}{2}} 2 + \dots + 2018^2 \log_{\frac{1}{2^{1018}}} 2 \\ &= 1 + 2^3 \log_2 2 + 3^3 \log_2 2 + \dots + 2018^3 \log_2 2 = 1 + 2^3 + 3^3 + \dots + 2018^3 = \left[\frac{2018 \left(2018 + 1 \right)}{2} \right]^2 \\ &= 1009^2 \cdot 2019^2 \,. \end{split}$$

Câu 147. Số $20172018^{20162017}$ có bao nhiều chữ số?

Lời giải

Số chữ số của một số tự nhiên x là: $\lceil \log x \rceil + 1$ ($\lceil \log x \rceil$ là phần nguyên của $\log x$).

Vậy số chữ số của số $20172018^{20162017}$ là

$$\left[\log 20172018^{20162017}\right] + 1 = 20162017\log\left(20172018\right) + 1 = 147278481.$$

Câu 148. Cho các số thực a,b,c thuộc khoảng $(1;+\infty)$ và $\log_{\sqrt{a}}^2 b + \log_b c \cdot \log_b \left(\frac{c^2}{b}\right) + 9\log_a c = 4\log_a b$.

Giá trị của biểu thức $\log_a b + \log_b c^2$ bằng

B.
$$\frac{1}{2}$$
.

D. 3.

Lời giải

Chon A

Đặt $\log_a b = x$, $\log_b c = y \implies \log_a c = xy$. Điều kiện: x, y > 0.

Bài toán trở thành:

Cho
$$4x^2 + y(2y-1) + 9xy - 4x = 0$$
. Tính $P = x + 2y$.

Rút x = P - 2y thay vào giả thiết, ta có:

$$4(P-2y)^2 + y(2y-1) + 9(P-2y)y - 4(P-2y) = 0$$

$$\Leftrightarrow 4P^2 - 7Py - 4P + 7y = 0.$$

$$\Leftrightarrow (P-1)(4P-7y)=0$$

$$\Leftrightarrow \begin{bmatrix} P = 1 \\ 4P - 7y = 0 \end{bmatrix}$$

Xét TH: $4P - 7y = 0 \iff 4x + y = 0$, loại vì x, y > 0. Vậy P = 1.

Theo dõi Fanpage: Nguyễn Bảo Vương * https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🕶 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIEU TOÁN) # https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.voutube.com/channel/UCO4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: https://www.nbv.edu.vn/