Cue-based retrieval

Similarity-based interference in sentence comprehension: A new computational model

Felix Engelmann¹, Lena Jaeger², & Shravan Vasishth²

¹University of Manchester, UK ²University of Potsdam, Germany

August, 2016

Cue-based retrieval

Cue-based retrieval

Cue-based retrieval in ACT-R Retrieval interference

Extended Model

Associative cues Prominence

Simulations

Conclusion

Anderson et al. (2004); Lewis and Vasishth (2005)

Cue-based retrieval

•00000

Simulations

Anderson et al. (2004); Lewis and Vasishth (2005)

The retrieval time of an item is a function of its activation A_i :

$$RT = Fe^{-(f \times A_i)} \tag{1}$$

$$A_i = B_i + S_i \tag{2}$$

Base-level activation:

Cue-based retrieval

000000

$$B_i = \ln(\sum_{j=1}^n t_j^{-d}) + \beta_i \tag{3}$$

An item receives spreading activation from all matching cues:

$$S_i = \sum_j W_j S_{ji} \tag{4}$$

Cue-based retrieval (ACT-R, LV05)

Anderson et al. (2004); Lewis and Vasishth (2005)

Cue-based retrieval

The spreading activation depends on the associative strength between each cue and the item:

$$S_{ji} = MAS - \ln(fan_{ji}) \tag{5}$$

The cue-item association is weakened by competitor items matching the cue:

$$fan_{ji} = 1 + items_j (6)$$

This is called the fan effect.

Inhibitory interference

Cue-based retrieval

000000

a. The surgeon $^{+masc}_{+c-com}$ who treated Jennifer $^{-masc}_{-c-com}$ had pricked himself $^{masc}_{c-com}\}$. . . TARGET

b. The surgeon $^{+masc}_{+c\text{-}com}$ who treated Jonathan $^{+masc}_{-c\text{-}com}$ had pricked himself $^{masc}_{c\text{-}com}\}$. . . - - - DISTRACTOR -TARGET

Facilitatory interference

d. The surgeon who treated Jennifer had pricked herself $\{f_{c-com}^{em}\}$ had pricked herself $\{f_{c-com}^{em}\}$...

Retrieval interference - Summary

Cue-based retrieval

TARGET-MATCH: inhibitory interference

- a. The surgeon $^{+masc}_{+c-com}$ who treated Jennifer $^{-masc}_{-c-com}$ had pricked himself $^{masc}_{c-com}\}$...
- b. The surgeon $^{+masc}_{+c\text{-}com}$ who treated Jonathan $^{+masc}_{-c\text{-}com}$ had pricked himself $\{^{masc}_{c\text{-}com}\}$. . . ____ (DISTRACTOR)- _ _ _ _

TARGET-MISMATCH: facilitatory interference

- c. The surgeon $_{+c-com}^{-fem}$ who treated Jonathan $_{-c-com}^{-fem}$ had pricked herself $\{_{c-com}^{fem}\}$...
- d. The surgeon who treated Jennifer had pricked herself $\{f_{c-com}^{fm}\}$... had pricked herself $\{f_{c-com}^{fm}\}$...

Two extensions to the cue-based retrieval model

Principle I: Associative Cues

Cue-based retrieval

- ▶ A retrieval cue can be associated with multiple feature values in certain contexts (acquired through associative learning).
- Predicts unexpected slow-down in reciprocals (Kush & Phillips, 2014) and Mandarin reflexives (Jäger, Engelmann, & Vasishth, 2015) due to cue confusion.

Simulations

Principle II: Prominence

- ▶ The general saliency of items affects the interference effect.
- Predicts unexpected speed-up for experiments with distractors in subject position and being the discourse topic (Cunnings & Felser, 2013; Sturt, 2003).

Cue-feature associations are acquired through usage-based associative learning.

Cue-feature associations are acquired through usage-based associative learning.

The had pricked himself reflexive surgeon

Cue-feature associations are acquired through usage-based associative learning.

The surgeon had pricked himself ${masc \brace c-com}$ reflexive ${fem \brace c-com}$

Cue-feature associations are acquired through usage-based associative learning.

The had pricked himself reflexive surgeon herself itself

Cue-feature associations are acquired through usage-based associative learning.

The had pricked himself reflexive surgeon herself itself themselves

Cue-feature associations are acquired through usage-based associative learning.

The	surgeon	had pricked	himself herself itself themselves	$\left\{egin{array}{l} masc \\ c-com \end{array} ight\} \left\{egin{array}{l} fem \\ c-com \end{array} ight\} \left\{egin{array}{l} c-com \end{array} ight\} \left\{egin{array}{l} c-com \end{array} ight\}$	reflexive
The	patients	liked	each other	${\left\{ egin{matrix} plur \\ c-com \end{smallmatrix} \right\}}$	reciproca

Cue-based retrieval

Cue-feature associations are acquired through usage-based associative learning.

The	surgeon	had pricked	himself herself itself themselves	${masc \atop c\text{-}com}$ ${fem \atop c\text{-}com}$ ${neut \atop c\text{-}com}$ ${plur \atop c\text{-}com}$	reflexive
The	patients	liked	each other	$\left\{ _{c\text{-}com}^{plur}\right\}$	reciproca
			ziji	$\left\{^{anim}_{c\text{-}com}\right\}$	Mandarin

Cue-feature associations are acquired through usage-based associative learning.

Simulations

HIGH SELECTIVITY	himself herself itself themselves	$egin{cases} masc \ c ext{-}com \ fem \ c ext{-}ccom \ com \ for \ c-com \ for \ f$	reflexive
LOW SELECTIVITY	each other	$\left\{ _{c\text{-}com}^{plur}\right\}$	reciprocal
	ziji	$\left\{^{anim}_{c\text{-}com}\right\}$	Mandarin

Reflexives (HIGH SELECTIVITY)

Cue-based retrieval

Simulations

Reciprocals (LOW SELECTIVITY)

Implementation – Associative Cues

Cue-based retrieval

The association between cue j and item i reflects the probability of the item i being needed given cue j (Schneider & Anderson, 2012, Eq. 2a):

$$S_{ji} = MAS + \ln[P(i|j)] \tag{7}$$

P(i|j) is defined by the **match quality** of item i with cue j in proportion to the match quality of all other active memory items v with j:

$$P(i|j) = \frac{Q_{ji}}{\sum_{v} Q_{jv}} \tag{8}$$

The individual match quality of cue j with item i depends on the associative strength between j and all features K of i:

$$Q_{ji} = \sum_{k \in K} M_{jk} \tag{9}$$

Predictions – Associative Cues

Cue-based retrieval

Target - Match - Mismatch

Predictions – Associative Cues

Cue-based retrieval

Inhibitory interference in target-mismatch for low cue-feature selectivity (feature-co-occurrence)

- Reciprocals
 Kush and Phillips (2014) (Hindi)
- 2. Mandarin reflexives Jäger et al. (2015)

Principle II: Prominence

Stronger inhibitory effect in target-match with prominent distractor.

Subject position

Cue-based retrieval

Cunnings and Felser (2013); Patil, Vasishth, and Lewis (2012); Van Dyke and McElree (2011)

- (1)The surgeon who treated **Jonathan** had pricked himself with a used syringe needle.
- (2) The tough soldier that **Fred** treated in the military hospital introduced himself to all the nurses.

Discourse topic

James has worked at the army hospital for years. The soldier that he treated on the ward wounded himself while on duty in the Far Fast.

Implementation – Prominence

Cue-based retrieval

The individual match quality of cue j with item i, Q_{ii} depends on the associative strength between j and all features K of i, weighted by the general saliency of the item:

$$Q_{ji} = \sum_{k \in K_i} M_{jk} \times saliency_i \tag{10}$$

The saliency of an item is defined as:

$$saliency_i = \frac{1}{1 + qe^{-(B_i + p_i - \tau)}} \tag{11}$$

 $p_i = \text{The prominence of } i$

q =The quality correction factor QCF

 B_i = The base-level activation of i

Predictions - Prominence

Predictions – Prominence

Engelmann, Jäger, and Vasishth (manuscript)

1. Stronger inhibitory effect in target-match with subject OR topicalized distractor. Cunnings and Felser (2013); Patil et al. (2012); Van Dyke and McElree (2011)

2. Facilitatory effect in target-match with subject AND topicalized distractor. Cunnings and Felser (2013); Sturt (2003)

Cue confusion in Hindi reciprocals

Cue confusion in Mandarin reflexives

Distractor prominence

Distractor prominence

Summary

Cue-based retrieval

An extended model of cue-based retrieval accounts for experimental design and task-specific adaptation:

- 1. Distractor prominence and associative cues extend models of cue-based retrieval
- 2. Distractor Prominence explains facilitatory interference in target-match conditions.
- 3. Cue Confusion explains inhibitory interference in target-mismatch conditions.
- 4. Simple mechanisms (associative cues, interruption through regression) generate adaptive behaviour: Associative cues \times dependency context \rightarrow speed-up / slow-down.

Software

The inter-act model of cue-based retrieval in sentence processing: https://engelmann.shinyapps.io/inter-act

Open issues

- 1. Experimental investigation of distractor prominence and cue confusion.
- 2. Acquisition of cue-feature associations.

Cue Confusion experiment

- a. Reflexive; distractor-match

 The nurse who cared for the children had pricked themselves . . .
- b. Reflexive; distractor-mismatch
 The nurse who cared for the child had pricked themselves . . .
- c. Reciprocal; distractor-match

 The nurse who cared for the children had pricked each other . . .
- d. Reciprocal; distractor-mismatch
 The nurse who cared for the child had pricked each other . . .

- Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. *Psychological Review*, 111(4), 1036–60.
- Cunnings, I., & Felser, C. (2013). The role of working memory in the processing of reflexives. *Language and Cognitive Processes*, *28*(1-2), 188–219.
- Jäger, L., Engelmann, F., & Vasishth, S. (2015). Retrieval interference in reflexive processing: Experimental evidence from Mandarin, and computational modeling. *Frontiers in Psychology*, *6*(617).
- Kush, D., & Phillips, C. (2014). Local anaphor licensing in an SOV language: Implications for retrieval strategies. Frontiers in Psychology, 5(1252).
- Lewis, R. L., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled memory retrieval. *Cognitive Science*, *29*(3), 375–419.
- Lewis, R. L., Vasishth, S., & Van Dyke, J. (2006). Computational principles of working memory in sentence comprehension.

- Trends in Cognitive Sciences, 10(10), 447–454.
- Patil, U., Vasishth, S., & Lewis, R. L. (2012). Retrieval interference in syntactic processing: The case of reflexive binding in English. (Manuscript submitted)
- Sturt, P. (2003). The time-course of the application of binding constraints in reference resolution. Journal of Memory and Language, 48, 542-562.
- Van Dyke, J., & McElree, B. (2011). Cue-dependent interference in comprehension. Journal of Memory and Language, 65(3), 247-263.