Network Programming: Overview: From hardware to software

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - Server activated by request from client (vending machine analogy)

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - Server activated by request from client (vending machine analogy)

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - Server activated by request from client (vending machine analogy)

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - Server activated by request from client (vending machine analogy)

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - Server activated by request from client (vending machine analogy)

Hardware Organization of a Network Host

Computer Networks

- A network is a hierarchical system of boxes and wires organized by geographical proximity
 - SAN (System Area Network) spans cluster or machine room
 - Switched Ethernet, Quadrics QSW, ...
 - LAN (Local Area Network) spans a building or campus
 - Ethernet (hubs) is most prominent example
 - WAN (Wide Area Network) spans country or world
 - Typically high-speed point-to-point phone lines
- An internetwork (internet) is an interconnected set of networks
 - The Global IP Internet (uppercase "I") is the most famous example of an internet (lowercase "i")
- Let's see how an internet is built from the ground up

Lowest Level: Ethernet Segment

- Ethernet segment consists of a collection of hosts connected by wires (twisted pairs) to a hub
- Spans room or floor in a building
- Operation
 - Each Ethernet adapter has unique 48-bit MAC (Media Access Control) address
 - E.g., 00:16:ea:e3:54:e6
 - Hosts send bits to any other host in chunks called frames
 - Hub slavishly copies each bit from each port to every other port
 - Every host sees every bit
 - Note: Hubs are on their way out. Switches (bridges) cheap enough to replace them

Next Level: Switched Ethernet Segment

- Spans building or campus
- Switches learn which hosts (MAC@) are reachable from which ports and selectively copy frames from port to port

Conceptual View of LANs

For simplicity, hubs, switches, and wires are often shown as a collection of hosts attached to a single wire:

Next Level: internets

- Multiple incompatible LANs can be physically connected by specialized computers called routers
- The connected networks are called an internet (lower case)

LAN 1 and LAN 2 might be completely different, totally incompatible (e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, ...)

Logical Structure of an internet

- Ad hoc interconnection of networks
 - No particular topology
 - Vastly different router & link capacities
- Send packets from source to destination by hopping through networks
 - Router forms bridge from one network to another
 - Different packets may take different routes

The Notion of an internet Protocol

- How is it possible to send bits across incompatible LANs and WANs?
- Solution: protocol software running on each host and router
 - Protocol is a set of rules that governs how hosts and routers should cooperate when they transfer data from network to network.
 - Smooths out the differences between the different networks

What Does an internet Protocol Do?

Provides a naming scheme

- An internet protocol defines a uniform format for host addresses
- Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it

Provides a delivery mechanism

- An internet protocol defines a standard transfer unit (packet)
- Packet consists of header and payload
 - Header: contains info such as packet size, source and destination addresses
 - Payload: contains data bits sent from source host

Other Issues

- We are glossing over a number of important questions:
 - What if different networks have different maximum frame sizes? (segmentation)
 - How do routers know where to forward frames?
 - How are routers informed when the network topology changes?
 - What if packets get lost?
- These (and other) questions are addressed by the area of systems known as computer networking

Global IP Internet (upper case)

- Most famous example of an internet
- Based on the TCP/IP protocol family
 - IP (Internet Protocol) :
 - Provides basic naming scheme and unreliable delivery capability of packets from host-to-host
 - UDP (User Datagram Protocol)
 - Uses IP to provide unreliable datagram delivery from process-to-process without prior connection
 - TCP (Transmission Control Protocol)
 - Uses IP to provide reliable byte streams from process-to-process over connections
- Accessed via a mix of Unix file I/O and functions from the sockets interface

Hardware and Software Organization of an Internet Application

OSI (Open Systems Interconnection) model

- Conceptual model
- Loose connection with Internet Protocol Suite ("layering considered harmful" RFC 3439)

n	Name	Protocol Data Unit	Protocols (examples)
7	Application		НТТР
6	Presentation	Data	SSL, SSH, FTP
5	Session		TCP (sockets)
4	Transport	Segment Datagram	TCP UDP
3	Network	Packet	IP
2	Data link	Frame	<i>MAC-based</i> Ethernet, 802.11
1	Physical	Bit	

A Programmer's View of the Internet

- 1. Hosts are mapped to a set of 32/128-bit IP addresses
 - 140.192.193.60 (IPv4)
 - 2a03:2880:f127:83:face:b00c:0:25de (IPv6)
- 2. The set of IP addresses is mapped to a set of identifiers called Internet *domain names*
 - 140.192.193.60 is mapped to www.cdm.depaul.edu
- 3. A process on one Internet host can communicate with a process on another Internet host over a *connection*