Topology, Assignment 4

Emmanuel Flores *

October 9, 2024

standard topology on \mathbb{R}^2 , is the product topology $\mathbb{R} \times \mathbb{R}$ the same as the standard topology on \mathbb{R}^2 .
Proof.
2. Prove that a topological space X is Hausdorf if and only if $\Delta = \{(x,x), x \in X\}$ is closed in the product space $X \times X$.
Proof.
3. Let (X, \mathcal{T}) be a topological space and $Y \subset X$ equipped with the subspace topology. Prove that a subset $U \subset Y$ is open in X if an only if Y is open in X .
Proof.
4. Prove that a set A is dense in a topological space (X,\mathcal{T}) if and only if every nonempty open set in X contains a point in A .
Proof.
4. 4.1 Find a topology on $\mathbb R$ that is not separable. 5. Suppose that $(X,\mathcal T)$ is a topological space that has a countable basis. Prove that X is separable.

^{*}eq.emmanuel@gmail.com