| Dernière mise à jour | Méca 1                | Denis DEFAUCHY |
|----------------------|-----------------------|----------------|
| 28/11/2019           | Révisions de 1° année | TD1 - Sujet    |

# Méca – Révisions de 1° année

# TD2

## Bielle/Manivelle Résolution géométrique Résolution cinématique Résolution statique



| Programme - Compétences |           |                                                                       |
|-------------------------|-----------|-----------------------------------------------------------------------|
|                         |           | Loi entrée sortie géométrique et cinématique                          |
| C11                     | RESOUDRE  | · Fermeture géométrique ;                                             |
|                         |           | · Fermeture cinématique.                                              |
|                         |           | Actions mécaniques dans les liaisons, équations de mouvement          |
| C12                     | RESOUDRE  | · Théorème des actions réciproques ;                                  |
|                         |           | · Hyperstatisme.                                                      |
|                         |           | Modèle cinématique d'un mécanisme                                     |
| B219                    | RESOUDRE  | · Liaison cinématiquement équivalente ;                               |
|                         | RESOUDIL  | · Mobilité d'une chaîne ouverte ;                                     |
|                         |           | · Hyperstatisme et mobilité d'une chaîne fermée.                      |
| B11                     | MODELISER | Isolement d'un solide ou d'un système de solides                      |
| B12                     | WODELISER | · Approche mécanique ;                                                |
|                         | MODELISER | · Modélisation cinématique des liaisons entre solides :               |
| B217                    |           | - liaisons parfaites normalisées,                                     |
| 0217                    |           | - degré de liberté,                                                   |
|                         |           | - liaisons réelles.                                                   |
|                         | MODELISER | Modélisation des actions mécaniques                                   |
| B220                    |           | · Modèle local (densité surfacique, linéique et volumique d'effort) : |
|                         |           | - contact parfait ;                                                   |
|                         |           | - modélisation du frottement sec - Lois de Coulomb ;                  |
|                         |           | - modélisation de résistance au roulement ;                           |
|                         |           | - modélisation de résistance au pivotement ;                          |
|                         |           | · Modèle global (torseur d'action mécanique) ;                        |
|                         |           | · Modèle global du frottement visqueux.                               |
| B221                    | MODELISER | · Principe fondamental de la statique.                                |

| Dernière mise à jour | Méca 1                | Denis DEFAUCHY |
|----------------------|-----------------------|----------------|
| 28/11/2019           | Révisions de 1° année | TD1 - Sujet    |

# Exercice 1: Loi E/S géométrique et cinématique - Principe Fondamental de la Statique - Dynamique

## Système Bielle Manivelle



On s'intéresse au mécanisme de transformation de mouvement entre la translation du piston et la rotation du vilebrequin.

| Dernière mise à jour | Méca 1                | Denis DEFAUCHY |
|----------------------|-----------------------|----------------|
| 28/11/2019           | Révisions de 1° année | TD1 - Sujet    |

## Schéma cinématique

En PSI, il vous faudra savoir proposer un modèle cinématique. Nous validerons cette compétence en

TP. Pour ce TD, le voici :



Remarque : il y a autant de paramétrage de personnes qui le proposent, c'est pourquoi il est important de s'accorder dès le départ sur un modèle.

On supposera dans la suite que le mouvement d'entrée, imposé, est le mouvement de la pièce 1 par rapport à 0.

| Dernière mise à jour | Méca 1                | Denis DEFAUCHY |
|----------------------|-----------------------|----------------|
| 28/11/2019           | Révisions de 1° année | TD1 - Sujet    |

#### Etude géométrique

Question 1: Etablir les 3 équations géométriques scalaires du problème dans la base o

Question 2: Etablir la relation entrée/sortie en position  $\lambda_{30}=f(\theta_{10})$  – On justifiera le besoin d'avoir  $L_2\geq L_1$  ainsi que la présence de deux solutions avant de choisir la bonne En général, on s'arrête là. Mais non ! Il y a 4 inconnues et 3 équations. Lorsqu'une inconnue est donnée, on peut déterminer les 3 autres, et cela peut être utile pour la suite! Alors...

Question 3: En déduire les expressions des autres paramètres géométriques  $\theta_{32}$  et  $\theta_{21}$  en fonction du seul paramètre géométrique  $\theta_{10}$  et des constantes

Question 4: Exprimer  $\tan(\theta_{21}+\theta_{10})$  en fonction du seul paramètre géométrique  $\theta_{10}$  et des constantes (utile dans la suite)

On peut, à l'aide des équations géométriques, obtenir les relations cinématiques d'un mécanisme, par dérivation.

Question 5: Exprimer la relation  $\dot{\lambda}_{30}=f(\dot{\theta}_{10})$ , faisant intervenir les paramètres géométriques – On fera apparaître  $\tan(\theta_{21}+\theta_{10})$  dans l'expression

Remarque : lorsque l'on réalise une fermeture cinématique ou une résolution statique, on présuppose qu'une étude géométrique a été réalisée. La paramètres géométriques  $\lambda_{ij}$  et  $\theta_{ij}$  sont supposés connus. Vous verrez en effet dans les formules de la suite, apparaître ces paramètres.

#### Etude cinématique

On impose les notations, en mécanisme plan :  $\{\mathcal{V}_{ji}\}=egin{pmatrix} 0 & U_{ji} \\ 0 & V_{ji} \\ R_{ji} & 0 \end{pmatrix}_P^{\mathfrak{B}_k}$ 

Question 6: Proposer les 4 torseurs cinématiques des liaisons du mécanismes, et réalisez les choix de points et bases qui seront utiles pour la suite

Question 7: Etablir les 2 équations vectorielles de la fermeture cinématique du système en B

Question 8: Etablir les 3 équations scalaires de la fermeture cinématique du système dans  $\mathfrak{B}_0$ 

Question 9: Déterminer les 3 inconnues  $R_{32}$ ,  $R_{21}$  et  $V_{30}$  en fonction de l'unique inconnue cinématique  $R_{10}$  et des paramètres géométriques

Remarquez que pour tracer l'évolution de la vitesse de sortie  $\theta_{30}$  en fonction d'une vitesse d'entrée constante  $R_{10}$  pour toutes les positions de l'entrée  $\theta_{10}$  (par exemple), il est nécessaire de connaître  $\theta_{21}$  en fonction de  $\theta_{10}$ .

Question 10: Exprimer  $V_{30}$  en fonction de l'unique inconnue cinématique  $R_{10}$ , de l'unique paramètre géométrique variable  $\theta_{10}$  et des constantes

Question 11: Comparer la relation entrée/sortie obtenue par fermeture cinématique avec la relation issue de la fermeture géométrique dérivée

Question 12: Mettre le système sous forme matricielle, discuter de sa solvabilité et proposer une démarche de résolution numérique

| Dernière mise à jour | Méca 1                | Denis DEFAUCHY |
|----------------------|-----------------------|----------------|
| 28/11/2019           | Révisions de 1° année | TD1 - Sujet    |

#### Etude statique complète

On impose les notations, en mécanisme plan :

$$\left\{ \mathcal{T}_{j \to i} \right\} = \left\{ \begin{matrix} X_{ji} & 0 \\ Y_{ji} & 0 \\ 0 & N_{ji} \end{matrix} \right\}_{P}^{\mathfrak{B}_{k}}$$

On suppose deux actions extérieures et on néglige l'effet de la gravité :

$$\{\mathcal{T}_{ext\to 1}\} = \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & C \\ \end{pmatrix}_{A}^{\mathfrak{B}_{0}} \quad ; \quad \{\mathcal{T}_{ext\to 3}\} = \begin{cases} 0 & 0 \\ F & 0 \\ 0 & 0 \\ \end{pmatrix}_{D}^{\mathfrak{B}_{0}}$$

Question 13: Proposer les 4 torseurs statiques des liaisons du mécanismes, et réalisez les choix de points et bases qui seront utiles pour la suite

Question 14: Déterminer les 3 équations issues de l'isolement de la pièce 1 en B dans  $\mathfrak{B}_0$ 

Question 15: Déterminer les 3 équations issues de l'isolement de la pièce 2 en B dans  $\mathfrak{B}_0$ 

Question 16: Déterminer les 3 équations issues de l'isolement de la pièce 3 en C dans  $\mathfrak{B}_0$ 

Question 17: En déduire le système de 9 équations du problème statique

Question 18: Mener la résolution de ce système pour trouver les 8 inconnues de liaison et la relation entre F et C

Question 19: Mettre le système sous forme matricielle, discuter de sa solvabilité et proposer une démarche de résolution numérique

#### Etude statique par stratégie d'isolements

On suppose que les torseurs des liaisons sont exprimés dans la base  $0: \{\mathcal{T}_{j \to i}\} = \begin{pmatrix} X_{ji} & 0 \\ Y_{ji} & 0 \\ 0 & N_{ji} \end{pmatrix}_{p}^{\mathfrak{B}_{0}}$ 

Question 20: Justifier le fait que  $\overrightarrow{R_{21}} = R_{21}\overrightarrow{x_2} = \overrightarrow{R_{32}} = R_{32}\overrightarrow{x_2}$ 

Question 21: Justifier le fait que  $Y_{32}=F$  et déterminer l'expression de  $R_{32}$ 

Question 22: En déduire la relation entre F et C

Remarquez que pour tracer l'évolution du couple C en fonction d'une force F constante pour toutes les positions de l'entrée  $\theta_{10}$  (par exemple), il est nécessaire de connaître  $\theta_{21}$  en fonction de  $\theta_{10}$ .

#### Etude dynamique (5/2)

Le théorème de l'énergie cinétique dit la chose suivante :  $\frac{dEc}{dt} = P_{int} + P_{ext}$ 

Lorsqu'il est appliqué à un système statique  $\left(\frac{dEc}{dt}=0\right)$  sans frottements  $(P_{int}=0)$ , il donne :  $P_{ext}=0$ , Soit :

$$\{T_{ext\to 1}\}\{\mathcal{V}_{10}\} + \{T_{ext\to 3}\}\{\mathcal{V}_{30}\} = 0$$

Question 23: Retrouver la relation statique entrée/sortie à l'aide du TEC et de la relation cinématique entrée/sortie