PSALTer results panel

 $S = \iiint (\frac{1}{6} \left(-4t_{3} \mathcal{R}^{\alpha_{\alpha}} \mathcal{R}^{\theta}_{i} + 6 \mathcal{R}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau (\Delta + \mathcal{K})_{\alpha\beta} + 8t_{3} \mathcal{R}^{\theta}_{\alpha} \partial_{i}f^{\alpha_{i}} - 3r_{3} \partial_{\beta}\mathcal{R}^{\theta}_{i} \partial_{i}\mathcal{R}^{\alpha\beta}_{\alpha} - 3r_{3} \partial_{i}\mathcal{R}^{\theta}_{\beta} \partial_{i}\mathcal{R}^{\alpha\beta}_{\alpha} - 8t_{3} \mathcal{R}^{\theta}_{i} \partial_{i}f^{\alpha}_{\alpha} + 4t_{3} \partial_{i}f^{\theta}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 8t_{3} \mathcal{R}^{\theta}_{i} \partial_{i}f^{\alpha}_{\alpha} - 8t_{3} \mathcal{R}^{\theta}_{i} \partial_{i}f^{\alpha}_{\alpha} - 8t_{3} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 4r_{2} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 4r_{2} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 8t_{3} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 8t_{3} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 4r_{2} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 4r_{2} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 8t_{3} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 8t_{3} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha} - 4r_{2} \partial_{i}f^{\alpha}_{\alpha}$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities	
0. ⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1	
$-2 \bar{\imath} k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1	
$2ik \cdot 1\sigma^{\perp \alpha} + 1\tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
1. T == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
$1^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
$1^+_{\cdot}\sigma^{\perp}^{\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3	
$2 \sigma^{\parallel \alpha \beta \chi} == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\kappa} $	5	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\kappa} \partial^{\kappa} \partial^{\chi} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\kappa} \partial^{\kappa} \partial^{\chi} \partial^{\chi$		
$2^+_{\cdot \tau} ^{\alpha \beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\alpha} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \alpha} + 2 \eta^{\alpha \beta} \partial_{\alpha} \partial^{\alpha} \partial^{$	5	
Total expected gauge generators:			

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$-\frac{26}{r_{.3}}$ +	$-\frac{39}{2r.+r.}_{3}$	$\frac{216}{r.+2r.}$	> 0
Polarisations:	2			

i olarisations. _{[2}

Unitarity conditions

 $(r_{.} < 0 \&\& (r_{.} < -\frac{r_{.}}{3} || r_{.} > -2 r_{.})) || (r_{.} > 0 \&\& -2 r_{.} < r_{.} < -\frac{r_{.}}{3})$