UNIVERSITY of HOUSTON ECE

Quantifying Error

ECE 3340 – David Mayerich

ISO 5725 – Precision, Trueness, and Accuracy

- *Trueness* how well results agree with *true* values t(x)
- **Precision** how well results agree with *each other*
- Accuracy how closely a result agrees with reality
- Bias systematic error that deviates in a predictable way (affects trueness)
- *Uncertainty* unpredictable deviations in the result (affects precision)

Error

- An error is a deviation of a result from reality
 - A systematic error is introduced by bias this can often be corrected
 - A random error is a product of uncertainty and impossible to correct
 - Random errors can often be controlled or bounded
- Calculating Error: assume t(x) is the true result, and c(x) is the result of a computation:

- Absolute error:
$$E_a = |t(x) - c(x)|$$

- Relative error:
$$E_r = \left| \frac{E_a}{t(x)} \right|$$

What are the relative and absolute errors for the evaluations below?

$$-t(x) = 1.5 \qquad c(x) = 1$$

$$-t(x) = 1.5$$
 $c(x) = 1$
 $-t(x) = 1,000,000.5$ $c(x) = 1,000,000$

Absolute vs. Relative Error

- Scientific and engineering applications are less sensitive to small errors in large values
- Relative error can compare values at widely varying scales often represented as a *percentage error* $E_R \times 100$
- Most computing systems are designed to minimize relative error

Relative Error – true values near zero

- Undefined when the true value is zero
 - there isn't a defined way to deal with a true value of t(x) = 0

- Options include:
 - regularization specify a small value ϵ :

$$E_r = \frac{E_a}{|t(x)| + \epsilon}$$

- specify a value for f(x) = 0:

$$E_r = \begin{cases} \frac{|t(x) - p(x)|}{t(x)} & \text{if } t(x) \neq 0\\ 1 & \text{otherwise} \end{cases}$$

Relative Error – Interval Measurements

Invalid for interval measurements:

- relative error requires a ratio scale with a natural zero
- ratio measurements allow quantitative comparisons
 - zero in a ratio measurement indicates that there is zero of something
 - "it's twice as cold today as it was yesterday" only makes sense in Kelvin

Uncertainty Due To Imprecision

- First major form of error we will encounter is *imprecision*:
 - Form of *uncertainty* due to limits in numerical representation
 - limited number of digits available to represent any value
- How do we represent $x_1 = 31.26$, $x_2 = 31.24$ with only 3 digits of precision? How about $x_3 = 31.25$?
- We obey standard rounding rules:
 - chop off excess digits
 - look at the most significant digit chopped: if it is ≥ 5 , increase the least significant digit kept
- This affects *precision*, but does it affect *trueness*?
 - Note that 5 is the **midpoint** between representable numbers, but we consistently round **up**. This introduces a slight upward bias to all of our calculations.

Summary

• Absolute error:
$$E_a = |true - calculated|$$

• Relative error:
$$E_r = \left| \frac{E_a}{true} \right|$$

- If the true value is zero:
 - $-E_r=0$ if E_a is zero (there is no error)
 - $-E_r = 1$ otherwise (the error is 100%)
- Relative error only makes sense for ratio measurements
 - ratio measurements have a natural zero point
- Relative error is more important in practice
 - $-\pm 1$ ton is a lot for a truck, but not a lot for a cargo ship

