Ex 1. Recall that for A-B-bimodule M and left A-module X and left B-module Y, we have a left B-module given by $\operatorname{Hom}_A(M,X)$ and a left A-module $M \otimes_A X$. This question is to complete the missing pieces in Section 25 of the lecture notes; the setup remains the same throughout all parts.

- (1) For a left KG-module V and a subgroup $H \leq G$, show that $\mathrm{Res}_H^G(V) \cong \mathrm{Hom}_{KG}(KG,V)$ as KH-module.
- (2) Show that $\operatorname{Res}_{H}^{G}(V) \cong KG \otimes_{KG} V$ as KH-module.
- (3) Describe the G-action on $Hom_{KH}(KG, V)$.
- (4) For a KH-module U, consider the map $\alpha: KG \otimes U \to \operatorname{Hom}_{KH}(KG, U)$ given by

$$g \otimes u \mapsto \left(x \mapsto \begin{cases} (xg)u & \text{if } xg \in H \\ 0 & \text{otherwise.} \end{cases} \right)$$

Show that this defines a KG-module homomorphism.

(5) Show that the map $\beta : \operatorname{Hom}_{KH}(KG, U) \to KG \otimes_{KH} U$ given by

$$f \mapsto \sum_{i=1}^{k} t_i \otimes f(t_i^{-1}),$$

Show that this defines a KG-module homomorphism.

(6) Show that $\alpha\beta$ and $\beta\alpha$ are both the identity map.

Ex 2. Consider two 2-part partitions $\lambda = (n - \ell, \ell)$ and $\mu = (n - k, k)$ with $0 \le \ell \le k \le n/2$.

- (1) Show that $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}\mathfrak{S}_n}(M^{\lambda}, M^{\mu}) = \ell + 1$.
- (2) Show that $M^{(n-k,k)} \cong \bigoplus_{i=0}^k S^{(n-i,i)}$ for $r \leq n/2$ when n is even and for $r \leq (n-1)/2$ when n is odd.

Hint:

- (a) Both (1) and (2) can be done with character theory (of course, tableaux combinatorics is also possible).
- (b) $M^{\lambda} \cong K\Omega_{\ell}$ where Ω_{ℓ} is the set of ℓ -subsets of [n].
- (c) For (1), see Proposition 20.3 of lecture notes.
- (d) For (2), starts with k = 1, then try k = 2, etc.

Ex 3. Let $\lambda = (3,2) \vdash 5$. Write down the standard λ -polytabloids, and show that S^{λ} any other λ -polytabloids is in the span of the standard ones.

Ex 4. Let \mathfrak{t} be any λ -tableau for $\lambda \vdash n$.

Let λ' be the partition obtained from reflecting λ along the diagonal y=-x (with origin being the top-left corner of Young daigram; e.g. $\lambda=(4,3)\Rightarrow \lambda'=(2^3,1)$).

Let \mathfrak{t}' be the λ' -tableau given by reflecting \mathfrak{t} along the same diagonal. Suppose that $S^{(1^n)} = Ku$.

$$\rho_{\mathfrak{t}'} := \sum_{\sigma \in R_{\mathfrak{t}'}} \sigma \in K \mathfrak{S}_n$$

Consider a map $\theta: M^{\lambda'} \to S^{\lambda} \otimes S^{(1^n)}$ given by

$$\{\mathfrak{t}'\} \mapsto \rho_{\mathfrak{t}'}(\{\mathfrak{t}\} \otimes u).$$

- (1) Explain why $\rho_{\mathfrak{t}'}(\{\mathfrak{t}\} \otimes u) = (\kappa_{\mathfrak{t}}\{\mathfrak{t}\}) \otimes u$.
- (2) Show that $\theta(\lbrace \sigma \mathfrak{t}' \rbrace) = \operatorname{sgn}(\sigma) \kappa_{\sigma \mathfrak{t}} \lbrace \sigma \mathfrak{t} \rbrace \otimes u$ for any $\sigma \in \mathfrak{S}_n$.
- (3) Show that θ is a surjective $K\mathfrak{S}_n$ -module homomorphism.
- (4) Show that the coefficient of $\{\mathfrak{t}\}$ in $\rho_{\mathfrak{t}}\kappa_{\mathfrak{t}}\{\mathfrak{t}\}$ is $\#R_{\mathfrak{t}}$.

 Hint: Coefficient of $\{\mathfrak{t}\}$ in a vector v is the same as the coefficient of $\{\sigma^{-1}\mathfrak{t}\}$ in $\sigma^{-1}v$.
- (5) Deduce that $S^{\lambda'} \nsubseteq \ker \theta$.
- (6) Recall that for any simple KG-module V and a 1-dimensional KG-module S, the tensor product $V \otimes_K S$ is also simple. Suppose that char $K \nmid |\mathfrak{S}_n|$, show that $S^{\lambda} \otimes_K S^{(1^n)} \cong S^{\lambda'}$.