Black-Box Optimization Benchmarking Template for Noiseless Function Testbed

March 24, 2015

1 Results

Results from experiments according to [?] on the benchmark functions given in [?, ?] are presented in Figures ??, ??, ??, ??, ??, and ?? and Tables ?? and ??. The **expected running time** (ERT), used in the figures and table, depends on a given target function value, $f_t = f_{\text{opt}} + \Delta f$, and is computed over all relevant trials as the number of function evaluations executed during each trial while the best function value did not reach f_t , summed over all trials and divided by the number of trials that actually reached f_t [?, ?]. **Statistical significance** is tested with the rank-sum test for a given target Δf_t using, for each trial, either the number of needed function evaluations to reach Δf_t (inverted and multiplied by -1), or, if the target was not reached, the best Δf -value achieved, measured only up to the smallest number of overall function evaluations for any unsuccessful trial under consideration if available.

Figure 1: Empirical cumulative distribution functions (ECDF), plotting the fraction of trials with an outcome not larger than the respective value on the x-axis. Left subplots: ECDF of number of function evaluations (FEvals) divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ where Δf is the target just not reached by the GECCO-BBOB-2009 best algorithm within a budget of $k \times {\rm DIM}$ evaluations, where k is the first value in the legend. Legends indicate for each target the number of functions that were solved in at least one trial within the displayed budget.Right subplots: ECDF of the best achieved Δf for running times of $0.5D, 1.2D, 3D, 10D, 100D, 100D, \ldots$ function evaluations (from right to left cycling cyan-magenta-black...) and final Δf -value (red), where Δf and Df denote the difference to the optimal function value. Light brown lines in the background show ECDFs for the most difficult target of all algorithms benchmarked during BBOB-2009. The top row shows results for 5-D and the bottom row for 20-D.

Figure 2: Subgroups of functions 5-D. See caption of Figure ?? for details.

Figure 3: Subgroups of functions 20-D. See caption of Figure ?? for details.

Figure 4: ERT loss ratio. Left: plotted versus given budget FEvals = #FEs in log-log display. Box-Whisker plot shows 25-75%-ile (box) with median, 10-90%-ile (caps), and minimum and maximum ERT loss ratio (points). The black line is the geometric mean. The vertical line gives the maximal number of function evaluations. Right: tabulated ERT loss ratios in 5-D (top table) and 20-D (bottom table). maxFE/D gives the maximum number of function evaluations divided by the dimension. $RL_{\rm US}/D$ gives the median number of function evaluations for unsuccessful trials.

Figure 5: ERT loss ratio versus given budget FEvals divided by dimension in log-log display. Crosses give the single values on the indicated functions, the line is the geometric mean. The vertical line gives the maximal number of function evaluations in the respective function subgroup.

Figure 6: Expected number of f-evaluations (ERT, lines) to reach $f_{\rm opt} + \Delta f$; median number of f-evaluations (+) to reach the most difficult target that was reached not always but at least once; maximum number of f-evaluations in any trial (×); interquartile range with median (notched boxes) of simulated runlengths to reach $f_{\rm opt} + \Delta f$; all values are divided by dimension and plotted as \log_{10} values versus dimension. Shown is the ERT for targets just not reached by the artificial GECCO-BBOB-2009 best algorithm within the given budget $k \times {\rm DIM}$, where k is shown in the legend. Numbers above ERT-symbols indicate the number of trials reaching the respective target. The light thick line with diamonds indicates the respective best result from BBOB-2009 for the most difficult target. Slanted grid lines indicate a scaling with $\mathcal{O}({\rm DIM})$ compared to $\mathcal{O}(1)$ when using the respective 2009 best algorithm.

#FEs/D		1.2	3	10		#succ
$\mathbf{f_1}$	2.5e+1:4.8	1.6e+1:7.6	1.0e-8:12	1.0e-8:12		15/15
	2.1(2)	3.6(3)	∞	∞	$\infty 25$	0/15
$\overline{\mathbf{f_2}}$	1.6e + 6:2.9		4.0e+4:15	6.3e + 2:58	1.0e-8:95	15/15
	1.7(1)	1.1(0.9)	$4.2_{(4)}$	∞	$\infty 25$	0/15
f_3	1.6e + 2:4.1	1.0e+2:15	6.3e+1:23	2.5e+1:73	1.0e+1:716	
	3.0(3)	$1.7_{(2)}$	4.8(5)	∞	$\infty 25$	0/15
f_4	2.5e + 2:2.6	1.6e+2:10	1.0e+2:19	4.0e+1:65	1.6e+1:434	
	2.7(4)	1.4(1)	4.4(6)	∞	$\infty 25$	0/15
f_5	6.3e+1:4.0	4.0e+1:10	1.0e-8:10	1.0e-8:10	1.0e-8:10	15/15
	1.9(1)	$2.7_{(2)}$	∞	∞	$\infty 25$	0/15
f_6	1.0e + 5:3.0	2.5e+4:8.4	1.0e+2:16	2.5e+1:54	2.5e-1:254	
	2.5(1)	2.6(2)	$7.1_{(7)}$	∞	$\infty 25$	0/15
$\overline{\mathbf{f_7}}$	1.6e + 2:4.2	1.0e + 2:6.2	2.5e+1:20	4.0e+0.54	1.0e+0:324	
	1.5(1)	2.0(3)	5.5(7)	∞	$\infty 25$	0/15
f_8	1.0e + 4:4.6	6.3e + 3:6.8	1.0e + 3:18	6.3e+1:54	1.6e+0:258	15/15
	2.3(0.4)	4.0(3)	$9.3_{(15)}$	∞	$\infty 25$	0/15
$\overline{f_9}$	2.5e+1:20	1.6e+1:26	1.0e+1:35	4.0e + 0.62	1.6e-2:256	
	∞	∞	∞	∞	$\infty 25$	0/15
f ₁₀	2.5e+6:2.9	6.3e+5:7.0	2.5e+5:17	6.3e + 3:54	2.5e+1:297	15/15
	2.1(2)	1.7(2)	1.4(1)	∞	$\infty 25$	0/15
$\overline{\mathbf{f_{11}}}$	1.0e+6:3.0	6.3e+4:6.2	6.3e+2:16	6.3e+1:74	6.3e-1:298	
	1.8(0.9)	$3.1_{(2)}$		4.8(3)	$\infty 25$	0/15
f ₁₂	4.0e + 7:3.6	1.6e + 7:7.6	4.0e+6:19	1.6e + 4:52	1.0e+0:268	15/15
	1.3(1)	2.7(3)	$9.2_{(13)}$	∞	$\infty 25$	0/15
$\overline{\mathbf{f_{13}}}$	1.0e + 3:2.8	6.3e+2:8.4	4.0e + 2:17	6.3e+1:52	6.3e-2:264	15/15
	2.0(2)	2.3(4)	6.5(8)	∞	$\infty 25$	0/15
f ₁₄	1.6e+1:3.0	1.0e+1:10		2.5e-1:53	1.0e-5:251	15/15
	3.1(3)	1.5(1)	2.0(3)	∞	$\infty 25$	0/15
f ₁₅	1.6e + 2:3.0	1.0e + 2:13	6.3e+1:24	4.0e+1:55	1.6e + 1:289	5/5
	2.2(5)	2.9(5)	6.9(12)	∞	$\infty 25$	0/15
f ₁₆	4.0e + 1:4.8	2.5e+1:16	1.6e+1:46	1.0e+1:120	4.0e+0:334	15/15
	1.5(2)	3.5(5)	2.3(2)	2.9(6)	$\infty 25$	0/15
f ₁₇	1.0e+1:5.2	6.3e+0:26		2.5e+0:110	6.3e-1:412	15/15
	4.9(4)	14(13)	6.2(8)	∞	$\infty 25$	0/15
f ₁₈	6.3e+1:3.4	4.0e+1:7.2		1.6e+1:58		
	2.1(4)	$2.7_{(2)}$		6.3(13)	$\infty 25$	0/15
f ₁₉	1.6e-1:172	1.0e-1:242	6.3e - 2:675	4.0e-2:3078	2.5e - 2:4946	
	∞	∞	∞	∞	$\infty 25$	0/15
f ₂₀	6.3e + 3:5.1			2.5e+0:69	1.0e+0.851	
	1.8(3)	1.9(3)	24(36)	∞	$\infty 25$	0/15
f_{21}		2.5e+1:11	1.6e+1:31	6.3e+0.73		
	1.8(2)	1.3(0.9)	1.7(2)	∞	$\infty 25$	0/15
f ₂₂	6.3e+1:3.6			1.0e+1:71	1.6e+0:341	
	3.1(3)	4.2(5)	5.4(6)	∞	$\infty 25$	0/15
f_{23}	1			2.5e+0:84		
	2.0(3)	1.5(2)		4.4(4)	∞25	0/15
f_{24}		4.0e+1:37	4.0e+1:37	2.5e+1:118	1.6e + 1:692	15/15
	3.5(3)	∞	∞	∞	$\infty 25$	0/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009. The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear in the second row of each cell, the best ERT (preceded by the target Δf -value in italics) in the first. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Bold entries are statistically significantly better (according to the rank-sum test) compared to the best algorithm in BBOB-2009, with p=0.05 or $p=10^{-k}$ when the number k>1 is following the \downarrow symbol, with Bonferroni correction by the number of functions.

Results of Experimental Data 1 in 5-D.

#FEs/D	0.5	1.2	3	10	50	#succ
$\mathbf{f_1}$	6.3e+1:24	4.0e+1:42	1.0e-8:43	1.0e-8:43	1.0e-8:43	15/15
	∞	∞	∞	∞	$\infty 100$	0/15
$\mathbf{f_2}$	4.0e+6:29	2.5e+6:42	1.0e + 5:65	1.0e + 4:207	1.0e-8:412	15/15
	1.2(0.9)	2.1(3)	∞	∞	$\infty 100$	0/15
f_3	6.3e+2:33	4.0e + 2:44	1.6e+2:109	1.0e + 2:255	2.5e+1:3277	15/15
	14(15)	33(51)	∞	∞	$\infty 100$	0/15
f_4	6.3e+2:22	4.0e+2:91	2.5e+2:250	1.6e + 2:332	6.3e+1:1927	15/15
	66(75)	∞	∞	∞	$\infty 100$	0/15
f ₅	2.5e+2:19	1.6e + 2:34	1.0e-8:41	1.0e-8:41	1.0e-8:41	15/15
	7.9(10)	∞	∞	∞	$\infty 100$	0/15
f_6	2.5e+5:16	6.3e+4:43	1.6e+4:62	1.6e + 2:353	1.6e+1:1078	15/15
	28(46)	∞	∞	∞	$\infty 100$	0/15
f ₇	1.0e + 3:11	4.0e+2:39	2.5e + 2:74	6.3e+1:319	1.0e+1:1351	15/15
	1.7(1)	∞	∞	∞	$\infty 100$	0/15
f ₈	4.0e+4:19	2.5e+4:35	4.0e+3:67	2.5e+2:231	1.6e + 1:1470	15/15
	∞	∞	∞	∞	$\infty 100$	0/15
f_9	1.0e + 2:357	6.3e+1:560	4.0e+1:684	2.5e+1:756	1.0e+1:1716	15/15
	∞	∞	∞	∞	$\infty 100$	0/15
f ₁₀	1.6e+6:15	1.0e + 6:27	4.0e+5:70	6.3e+4:231	4.0e+3:1015	15/15
	48(88)	∞	∞	∞	∞100	0/15
f ₁₁	4.0e+4:11	2.5e + 3:27	1.6e + 2:313	1.0e + 2:481	1.0e+1:1002	15/15
	3.0(4)	6.0(8)	∞	∞	$\infty 100$	0/15
f ₁₂	1.0e+8:23	6.3e + 7:39	2.5e + 7:76	4.0e+6:209	1.0e + 1:1042	15/15
	61(69)	∞	∞	. ∞	$\infty 100$	0/15
f ₁₃	1.6e + 3:28	1.0e + 3:64	6.3e + 2:79	4.0e+1:211	2.5e+0:1724	15/15
	52(51)	∞	∞	. ∞	$\infty 100$	0/15
f ₁₄	2.5e+1:15	1.6e + 1:42	1.0e+1:75	1.6e + 0:219	6.3e-4:1106	15/15
	100(79)	∞	∞	∞	∞100	0/15
f ₁₅	6.3e + 2:15	4.0e+2:67	2.5e + 2:292	1.6e + 2:846	1.0e + 2:1671	15/15
	92(112)	<i>.</i> ∞	∞	∞	$\infty 100$	0/15
f ₁₆	4.0e+1:26	2.5e+1:127	1.6e + 1:540	1.6e + 1:540	1.0e+1:1384	15/15
	3.8(5)	∞	∞	∞	$\infty 100$	0/15
f ₁₇	1.6e+1:11	1.0e + 1:63	6.3e + 0:305	4.0e + 0.468	1.0e + 0:1030	15/15
	5.6(4)	22(43)	∞	~	$\infty 100$	0/15
f ₁₈	4.0e+1:116	2.5e+1:252	1.6e + 1:430	1.0e+1:621	4.0e+0:1090	15/15
	6.1(4)	∞	∞	∞	· ∞100	0/15
f ₁₉	1.6e-1:2.5e5	1.0e-1:3.4e5	6.3e-2:3.4e5	4.0e-2:3.4e5	2.5e-2:3.4e5	3/15
	∞	∞	∞	∞	$\infty 100$	0/15
f ₂₀	1.6e + 4:38	1.0e + 4:42	2.5e + 2:62	2.5e+0:250	1.6e + 0:2536	15/15
	38(42)	34(41)	∞	∞	$\infty 100$	0/15
f ₂₁	6.3e+1:36	4.0e+1:77	4.0e+1:77	1.6e + 1:456	4.0e+0:1094	15/15
	∞	. ∞	. ∞	∞	· ∞100	0/15
f_{22}	6.3e+1:45	4.0e+1:68	4.0e+1:68	1.6e+1:231	6.3e+0:1219	15/15
	∞	∞	∞	∞	$\infty 100$	0/15
f ₂₃	6.3e+0:29	4.0e+0:118	2.5e+0:306	2.5e+0:306	1.0e + 0:1614	15/15
	0.94(0.8)	13(8)	∞	∞	∞100	0/15
f_{24}	2.5e+2:208	1.6e + 2:918	1.0e + 2:6628	6.3e+1:9885	4.0e+1:31629	15/15
	~	∞	∞	∞	∞100	0/15
1						

Table 2: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009. The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear in the second row of each cell, the best ERT (preceded by the target Δf -value in italics) in the first. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Bold entries are statistically significantly better (according to the rank-sum test) compared to the best algorithm in BBOB-2009, with p=0.05 or $p=10^{-k}$ when the number k>1 is following the \downarrow symbol, with Bonferroni correction by the number of functions.

Results of Experimental Data 1 in 20-D.