553.633/433

Homework #11

Due Monday 11/26/18

Four problems:

- **6.2.** (textbook) Use a plot to determine when the process seems to achieve stationarity. Start with $X_0 = 0$, which is not a very good starting point, but one that allows the M-H algorithm to demonstrate its utility with even a poorly chosen initial condition.
- **6.6** (**textbook**) Assume that "plot the data" in part (b) of the problem statement means plot the data in three histograms of the marginal density functions, one for each ρ . Assume no burn-in period. Consolidate the values of X and the values of Y into one histogram for each ρ since the marginal density of X and Y is the same. So, each histogram represents the approximation of f_X (same as f_Y) at the given ρ . Given the three histograms, offer a brief comment about the relative performance of the Gibbs sampler for the three values of ρ . Which value of ρ provides the best performance and, briefly, why?
- **A. Gibbs sampling with a Bernoulli distribution.** The sampling need not be performed according to continuous random variables and associated probability *density* functions. Consider the following example associated with a Bernoulli distribution.

Suppose that a matrix of joint probabilities for two random variables, X and Y, is

$$\begin{bmatrix} P(X=0,Y=0) & P(X=0,Y=1) \\ P(X=1,Y=0) & P(X=1,Y=1) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.2 \\ 0.5 & 0.2 \end{bmatrix}.$$

Given the above as a target distribution, there are four "full conditionals" that we need to determine, corresponding to the entries in a Markov transition matrix. We are interested in the 2×2 transition matrix P governing the probability for the variable X of going from X_k to X_{k+1} . Show that this transition matrix is:

$$P = \begin{bmatrix} 0.3889 & 0.6111 \\ 0.2619 & 0.7381 \end{bmatrix}.$$

- **B.** Consider a simple state-space model with scalar state and measurement: $x_{k+1} = Fx_k$ and $z_k = x_k + v_k$, where the v_k are i.i.d. with mean 0 and variance σ^2 . Answer the following based on use of the Kalman filter for the state estimation:
- (a) Give the recursion (a difference equation) for the error-variance P_{k+1} in terms of P_k and the model parameters F and σ^2 . Solve the difference equation in terms of F, σ^2 , and the initial state variance P_0 . Present the solution in a closed form that does *not* include a cumulative summation such as $\sum_{i=1}^K (\cdot)$, where K depends on k.

(b) From the results in part (a), summarize what is known about the accuracy of the Kalman filter estimate for large k in the cases |F| < 1, |F| = 1, and |F| > 1.