10-701 Probability and MLE

(brief) intro to probability

Basic notations

- Random variable
 - referring to an element / event whose status is unknown:
 - A = "it will rain tomorrow"
- Domain (usually denoted by Ω)
 - The set of values a random variable can take:
 - "A = The stock market will go up this year": Binary
 - "A = Number of Steelers wins in 2019": Discrete
 - "A = % change in Google stock in 2019": Continuous

Axioms of probability (Kolmogorov's axioms)

A variety of useful facts can be derived from just three axioms:

- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

There have been several other attempts to provide a foundation for probability theory. Kolmogorov's axioms are the most widely used.

Priors

Degree of belief in an event in the absence of any other information

No rain

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8

Conditional probability

• P(A = 1 | B = 1): The fraction of cases where A is true if B is true

$$P(A = 0.2)$$

$$P(A|B = 0.5)$$

Conditional probability

- In some cases, given knowledge of one or more random variables we can improve upon our prior belief of another random variable
- For example:

```
p(slept in movie) = 0.5
p(slept in movie | liked movie) = 1/4
p(didn't sleep in movie | liked movie) = 3/4
```

Slept	Liked
1	0
0	1
1	1
1	0
0	0
1	0
0	1
0	1

Joint distributions

 The probability that a set of random variables will take a specific value is their joint distribution.

• Notation: $P(A \land B)$ or P(A,B)

Example: P(liked movie, slept)

If we assume independence then

$$P(A,B)=P(A)P(B)$$

However, in many cases such an assumption may be too strong (more later in the class)

P(class size > 20) = 0.6

P(summer) = 0.4

P(class size > 20, summer) = ?

Evaluation of classes

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	S	3
23	R	3
9	R	2
45	R	1

P(class size > 20) = 0.6

P(summer) = 0.4

P(class size > 20, summer) = 0.1

Evaluation of classes

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	S	3
23	R	3
9	R	2
45	R	1

P(class size > 20) = 0.6

P(eval = 1) = 0.3

P(class size > 20, eval = 1) = 0.3

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	S	3
23	R	3
9	R	2
45	R	1

P(class size > 20) = 0.6

P(eval = 1) = 0.3

P(class size > 20, eval = 1) = 0.3

Evaluation of classes

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	S	3
23	R	3
9	R	2
45	R	1

Chain rule

• The joint distribution can be specified in terms of conditional probability:

$$P(A,B) = P(A|B)*P(B)$$

 Together with Bayes rule (which is actually derived from it) this is one of the most powerful rules in probabilistic reasoning

Bayes rule

- One of the most important rules for this class.
- Derived from the chain rule:

$$P(A,B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Thus,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Thomas Bayes was an English clergyman who set out his theory of probability in 1764.

Bayes rule (cont)

Often it would be useful to derive the rule a bit further:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

This results from: $P(B) = \sum_{A} P(B,A)$ A B

P(B,A=1)

P(B,A=0)

Bayes Rule for Continuous Distribtuions

Standard form:

$$f(x|y) = \frac{f(y|x)f(x)}{f(y)}$$

Replacing the bottom:

$$f(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

AIDS test (Bayes rule)

Data

- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1% healthy people

AIDS test (Bayes rule)

Data

- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1% healthy people

Probability of having AIDS if test is positive:

AIDS test (Bayes rule)

Data

- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1% healthy people

Probability of having AIDS if test is positive:

$$P(a = 1|t = 1) = \frac{P(t = 1|a = 1)P(a = 1)}{P(t = 1)}$$

$$= \frac{P(t = 1|a = 1)P(a = 1)}{P(t = 1|a = 1)P(a = 1) + P(t = 1|a = 0)P(a = 0)}$$

$$= \frac{1 \cdot 0.001}{1 \cdot 0.001 + 0.01 \cdot 0.999} = 0.091$$
Only 9%!...

Continuous distributions

Statistical Models

- Statistical models attempt to characterize properties of the population of interest
- For example, we might believe that repeated measurements follow a normal (Gaussian) distribution with some mean μ and variance σ^2 , x \sim N(μ , σ^2)

where

$$p(x \mid \Theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

and $\Theta = (\mu, \sigma^2)$ defines the parameters (mean and variance) of the model.

How much do grad students sleep?

 Lets try to estimate the distribution of the time students spend sleeping (outside class).

Possible statistics

• X

Sleep time

•Mean of X:

E{*X*}

7.03

• Variance of X:

$$Var{X} = E{(X-E{X})^2}$$

3.05

The Parameters of Our Model

• A statistical model is a **collection** of distributions; the **parameters** specify individual distributions x \sim N(μ , σ ²)

• We need to adjust the parameters
only
so that the resulting
distribution **fits** the data well
only

The Parameters of Our Model

• A statistical model is a **collection** of distributions; the **parameters** specify individual distributions x \sim N(μ , σ^2)

• We need to adjust the parameters 0.15 so that the resulting 0.1 distribution **fits** the data well

Covariance: Sleep vs. GPA

Co-Variance of X1, X2:

Covariance $\{X1, X2\} = E\{(X1-E\{X1\})(X2-E\{X2\})\}$ = 0.88

Probability Density Function

Discrete distributions

Continuous: Cumulative Density Function (CDF): F(a)

Cumulative Density Functions

Total probability

$$P(\Omega) = \int_{-\infty}^{\infty} f(x)dx = 1$$

Probability Density Function (PDF)

$$\frac{d}{dx}F(x) = f(x)$$

Properties:

$$P(a \le x \le b) = \int_b^a f(x)dx = F(b) - F(a)$$

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to \infty} F(x) = 1$$

$$F(a) \ge F(b) \ \forall a \ge b$$

Density estimation: The Bayesian way

Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
 - —He says: I have a coin, if I flip it, what's the probability it will fall with the head up?
 - You say: Please flip it a few times:

- You say: The probability is: 3/5 because... frequency of heads in all flips
- —He says: But can I put money on this estimate?
- You say: ummm.... Maybe not.
 - Not enough flips (less than sample complexity)

What about prior knowledge?

- Billionaire says: Wait, I know that the coin is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ , we obtain a distribution over possible values of θ

Bayesian Learning

Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

• Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$
 posterior likelihood prior

Prior distribution

- From where do we get the prior?
 - Represents expert knowledge (philosophical approach)
 - Simple posterior form (engineer's approach)
- Uninformative priors:
 - Uniform distribution
- Conjugate priors:
 - Closed-form representation of posterior
 - P(q) and P(q|D) have the same algebraic form as a function of \theta

Conjugate Prior

P(q) and P(q|D) have the same form as a function of theta

Eg. 1 Coin flip problem

Likelihood given Bernoulli model:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

If prior is Beta distribution,

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Beta distribution

 $Beta(\beta_H, \beta_T)$ More concentrated as values of β_H , β_T increase

Beta conjugate prior

$$P(\theta) \sim Beta(\beta_H, \beta_T) \qquad P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$= \frac{1.6}{90.8}$$

$$= \frac{1.6}{0.4}$$

As we get more samples, effect of prior is "washed out"

Conjugate Prior

- $P(\theta)$ and $P(\theta|D)$ have the same form
- Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is ~ Multinomial($\theta = \{\theta_1, \theta_2, \dots, \theta_k\}$)

$$P(\mathcal{D} \mid \theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_k^{\alpha_k}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\prod_{i=1}^{k} \theta_i^{\beta_i - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

For Multinomial, conjugate prior is Dirichlet distribution.

Posterior Distribution

- The approach seen so far is what is known as a Bayesian approach
- Prior information encoded as a distribution over possible values of parameter
- Using the Bayes rule, you get an updated posterior distribution over parameters, which you provide with flourish to the Billionaire
- But the billionaire is not impressed
 - Distribution? I just asked for one number: is it 3/5, 1/2, what is it?
 - How do we go from a distribution over parameters, to a single estimate of the true parameters?

Maximum A Posteriori Estimation

Choose θ that maximizes a posterior probability

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D)$$

$$= \arg \max_{\theta} P(D \mid \theta)P(\theta)$$

MAP estimate of probability of head:

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$\hat{\theta}_{MAP} = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

Mode of Beta distribution

Density estimation: Learning

Density Estimation

A Density Estimator learns a mapping from a set of attributes to a Probability

Density estimation

- Estimate the distribution (or conditional distribution) of a random variable
- Types of variables:
 - Binary

coin flip, alarm

- Discrete

dice, car model year

- Continuous

height, weight, temp.,

When do we need to estimate densities?

- Density estimators are critical ingredients in several of the ML algorithms we will discuss
- In some cases these are combined with other inference types for more involved algorithms (i.e. EM) while in others they are part of a more general process (learning in BNs and HMMs)

Density estimation

Binary and discrete variables:

Easy: Just count!

Continuous variables:

Harder (but just a bit): Fit a model

Learning a density estimator for discrete variables

$$\hat{P}(x_i = u) = \frac{\text{\#records in which } x_i = u}{\text{total number of records}}$$

A trivial learning algorithm!

But why is this true?

We can define the likelihood of the data given the model as follows:

M is our model (usually a collection of parameters)

For example M is

- The probability of 'head' for a coin flip
- The probabilities of observing 1,2,3,4 and 5 for a dice

- etc.

$$\hat{P}(\text{dataset } | M) = \hat{P}(x_1 \land x_2 ... \land x_n | M) = \prod_{k=1}^n \hat{P}(x_k | M)$$

- Our goal is to determine the values for the parameters in M
- We can do this by maximizing the probability of generating the observed samples
- ullet For example, let ullet be the probabilities for a coin flip
- Then

$$L(x_1, ..., x_n \mid \Theta) = p(x_1 \mid \Theta) ... p(x_n \mid \Theta)$$

- The observations (different flips) are assumed to be independent
- For such a coin flip with P(H)=q the best assignment for Θ_h is $argmax_a = \#H/\#samples$
- Why?

Maximum Likelihood Principle: Binary variables

 For a binary random variable A with P(A=1)=q argmax_q = #1/#samples

Why?

Data likelihood:

$$P(D | M) = q^{n_1} (1 - q)^{n_2}$$

We would like to find:

$$\arg\max_{q} q^{n_1} (1-q)^{n_2}$$

Omitting terms that do not depend on q

Data likelihood: $P(D | M) = q^{n_1} (1-q)^{n_2}$

We would like to find: $\arg \max_{q} q^{n_1} (1-q)^{n_2}$

$$\frac{\partial}{\partial q} q^{n_1} (1-q)^{n_2} = n_1 q^{n_1-1} (1-q)^{n_2} - q^{n_1} n_2 (1-q)^{n_2-1}$$

$$\frac{\partial}{\partial q} = 0 \Rightarrow$$

$$n_1 q^{n_1-1} (1-q)^{n_2} - q^{n_1} n_2 (1-q)^{n_2-1} = 0 \Rightarrow$$

$$q^{n_1-1} (1-q)^{n_2-1} (n_1 (1-q) - q n_2) = 0 \Rightarrow$$

$$n_1 (1-q) - q n_2 = 0 \Rightarrow$$

$$n_1 = n_1 q + n_2 q \Rightarrow$$

$$q = \frac{n_1}{n_1 + n_2}$$

Log Probabilities

When working with products, probabilities of entire datasets often get too small. A possible solution is to use the log of probabilities, often termed 'log likelihood'

$$\log \hat{P}(\text{dataset } | M) = \log \prod_{k=1}^{n} \hat{P}(x_k | M) = \sum_{k=1}^{n} \log \hat{P}(x_k | M)$$

Maximizing this likelihood function is the same as maximizing P(dataset | M)

Log values between 0 and 1

In some cases moving to log space would also make computation easier (for example, removing the exponents) -6 0.2 0.6 0 0.4 0.8

Density estimation

Binary and discrete variables:

Easy: Just count!

Continuous variables:

Harder (but just a bit): Fit a model

But what if we only have very few samples?

• We can fit statistical models by maximizing the probability of generating the observed samples:

$$L(x_1, ..., x_n \mid \Theta) = p(x_1 \mid \Theta) ... p(x_n \mid \Theta)$$

(the samples are assumed to be independent)

• In the Gaussian case we simply set the mean and the variance to the sample mean and the sample variance:

$$\overline{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \overline{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{\mu})^2$$

MLE vs. MAP

Maximum Likelihood estimation (MLE)
 Choose value that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} P(D|\theta)$$

Maximum a posteriori (MAP) estimation
 Choose value that is most probable given observed data and prior belief

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$$

$$= \arg \max_{\theta} P(D|\theta)P(\theta)$$