VEKTORSKE FUNKCIJE

19. april 2022.

Vektorske funkcije

Sa E označimo skup tačaka trodimenzionalnog prostora. Neka je O fiksna tačka (koordinatni početak). Vektor \overrightarrow{OP} , gde je P promenljiva tačka iz E, je vektor položaja tačke P u odnosu na dati koordinatni sistem.

Označimo sa $X_0(E)=\{\overrightarrow{OP}:P\in E\}$. Preslikavanje $f:E\to X_0(E)$ dato sa $f(P)=\overrightarrow{OP},\ P\in E$ je bijekcija. Skup $X_0(E)$ ćemo kraće označavati sa X_0 .

Neka je $\emptyset \neq D \subset \mathbb{R}$ i neka su $x:D \to \mathbb{R}, \ y:D \to \mathbb{R}, \ z:D \to \mathbb{R}$ tri realne funkcije realne promenljive. Svako preslikavanje $\vec{r}:D \to X_0$ definisano sa

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, \quad t \in D,$$

zovemo vektorskom funkcijom jedne skalarne promenljive.

Definicija

Ako je $\emptyset \neq D \subset \mathbb{R}^n$ i ako su $x:D \to \mathbb{R}, \ y:D \to \mathbb{R}, \ z:D \to \mathbb{R}$ tri realne funkcije n realnih promenljivih, tada se preslikavanje $\vec{r}:D \to X_0$ zadato sa

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, \quad t \in D,$$

zove vektorska funkcija n realnih promenljivih.

Ako je a $\in \mathbb{R}^n$ tačka nagomilavanja oblasti definisanosti $\emptyset \neq D \subset \mathbb{R}^n$ vektorske funkcije $\vec{r}: D \to X_0$, tada za vektor \vec{c} kažemo da je **granična** vrednost vektorske funkcije \vec{r} u tački a ako

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall t \in D \setminus \{a\})(d(a,t) < \delta \Rightarrow |\vec{r}(t) - \vec{c}| < \varepsilon).$$

Pišemo da je $\lim_{t\to a} \vec{r}(t) = \vec{c}$.

Iz same definicije granične vrednosti vidimo da je

$$\lim_{t\to a} \vec{r}(t) = \lim_{t\to a} x(t)\vec{i} + \lim_{t\to a} y(t)\vec{j} + \lim_{t\to a} z(t)\vec{k}.$$

Ako oko vrha M vektora \vec{c} opišemo otvorenu loptu $L(M,\varepsilon)$ poluprečnika ε , to sledi da postoji $\delta \in \mathbb{R}^+$, tako da za svako $t \in L(a,\delta) \setminus \{a\}$, vrh S vektora $\vec{r}(t)$ pripada $L(M,\varepsilon)$, tj. svi vektori \overrightarrow{MS} leže u otvorenoj lopti $L(M,\varepsilon)$.

Napomena

Ako je $\vec{c}=(c_1,c_2,c_3)$ i ako za svako $t\in D$ sa $\tau(t)$ označimo vrh vektora $\vec{r}(t),$ tada važi

$$\lim_{t\to a} \vec{r}(t) = \vec{c} \Leftrightarrow \lim_{t\to a} \tau(t) = (c_1, c_2, c_3).$$

Za vektorsku funkciju $\overrightarrow{r}:D\to X_0,\ D\subset\mathbb{R}^n,\ kažemo\ da$ je neprekidna u tački $a\in D$ ako

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall t \in D)(d(a,t) < \delta \Rightarrow |\overrightarrow{r}(t) - \overrightarrow{r}(a)| < \varepsilon).$$

Vektorska funkcija $\overrightarrow{r}:D\to X_0,\ D\subset\mathbb{R}^n$ je **neprekidna** ako je neprekidna u svakoj tački $a\in D$.

Iz same definicije neprekidnosti sledi da je funkcija \overrightarrow{r} neprekidna u tački a ako i samo ako su komponente $x:D\to\mathbb{R},\,y:D\to\mathbb{R},\,z:D\to\mathbb{R}$ funkcije $\overrightarrow{r}:D\to X_0$ neprekidne u tački a.

Kao i kod skalarne funkcije, sledi da je vektorska funkcija \overrightarrow{r} neprekidna u tački nagomilavanja $a \in D$ ako i samo ako važi da je

$$\lim_{t\to a}\overrightarrow{r}(t)=\overrightarrow{r}(a),$$

a ako je $a \in D$ izolovana tačka definicionog skupa D vektorske funkcije \overrightarrow{r} , tada je \overrightarrow{r} automatski neprekidna u datoj tački.

Vektorska funkcija $\overrightarrow{r}: D \to X_0, \ D \subset \mathbb{R}^n$, je **neprekidna nad skupom** $E \subset D$ ako je restrikcija funkcije \overrightarrow{r}_E $(\overrightarrow{r}_E(t) = \overrightarrow{r}(t), \ t \in E)$ neprekidna funkcija za svako $t \in E$.

Ako je $D=I=[a,b]\subset\mathbb{R}$ i ako je $\overrightarrow{r}:I\to X_0$ neprekidna funkcija, tada skup tačaka

$$L = \{ \mathcal{T}(t) : t \in I \}$$

zovemo kriva u prostoru, odnosno hodograf vektorske funkcije \overrightarrow{r} .

Primetimo da je L kriva ako i samo ako je $\mathcal{T}:[a,b]\to\mathbb{R}^3$ neprekidna funkcija.

Kriva
$$L$$
 je parametarski data sa L :
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$
 a u vektorskom obliku sa $\overrightarrow{r} = \overrightarrow{r}(t)$, $t \in [a, b]$.

Ako je

$$M((x(a),y(a),z(a)) \equiv N(x(b),y(b),z(b))$$

za krivu *L* kažemo da je **zatvorena**.

Ako sve tačke krive L leže u jednoj ravni, onda kažemo da je L ravna kriva.

Definicija

Ako je (X,d) metrički prostor, **spojnicom (lukom)** u prostoru X nazivamo svako neprekidno preslikavanje $s:I\to X$ intervala $I=[0,1]\subset\mathbb{R}$ u prostor X.

Ako su tačke a = s(0) i b = s(1) različite, tada kažemo da spojnica s **povezuje tačke** a i b.

Teorema

Skup $L \subset \mathbb{R}^3$ je kriva ako i samo ako je spojnica.

Dokaz. Ako je L spojnica, očigledno je da je L kriva.

Neka je $L=\{\tau(t):t\in[a,b]\}$ kriva u prostoru. Tada je $\tau:[a,b]\to\mathbb{R}^3$ neprekidna funkcija. Ako posmatramo funkciju $h:[0,1]\to[a,b]$ zadatu sa h(x)=(b-a)x+a, vidimo da za nju važi

- h je monotono rastuća bijekcija,
- h je neprekidna funkcija nad [0, 1],
- h^{-1} je neprekidna funkcija nad [a, b].

Preslikavanje $f=\tau\circ h$ je neprekidno preslikavanje zatvorenog intervala [0,1] na tačke krive L, pa je L spojnica.

Za skup $\emptyset \neq A \subset X$ kažemo da je **povezan** (**lučno povezan**) u metričkom prostoru (X, d), ako za svake dve različite tačke a, $b \in A$, postoji spojnica $s : I \to A$ koja povezuje tačke a i b.

Ako je skup X povezan u metričkom prostoru (X, d), tada kažemo da je metrički prostor (X, d) povezan.

Definicija

Ako je skup $A \subset X$ istovremeno otvoren i povezan u metričkom prostoru (X,d) i $A_1 \subset A^*$, tada za skup $A \cup A_1$ kažemo da je **oblast**. Specijalno, ako je $A_1 = \emptyset$, tada se za A kaže i **otvorena oblast**, a ako je $A_1 = A^*$, tada se za $A \cup A_1 = A \cup A^* = \overline{A}$ kaže i **zatvorena oblast**.

Iz same definicije zatvorene oblasti ne sledi da je svaki neprazan zatvoren skup, zatvorena oblast.

Primer

Skup
$$A = \{(x, x) : x \in [0, 1]\}$$
 je zatvoren, ali nije zatvorena oblast, jer je $A^{\circ} = \emptyset$.

Definicija

Za skup L \subset E = \mathbb{R}^3 kažemo da je Žordanova^a kriva ili Žordanov luk sa krajevima ako:

- 1°) postoji interval I = [a, b] i preslikavanje $\tau : I \to E$, tako da je $L = \{\tau(t) : t \in I\}$;
- 2°) τ je bijektivno preslikavanje intervala I na L;
- 3°) τ je neprekidno preslikavanje.

Tačke $A = \tau(a)$, $B = \tau(b)$ zovemo krajevi krive L.

^aŽordan, K. (Camil Jordan, 1838-1922) - francuski matematičar

Ako umesto 2°) uzmemo da važi

 2^*) τ je bijekcija skupa [a,b) na L i $\tau(a) = \tau(b)$, onda kažemo da je L zatvorena Žordanova kriva.

Tvrđenje

Ako je $L_1 = \{M(x,y) : x^2 + y^2 = 1\}$, tada je kriva L zatvorena Žordanova kriva ako i samo ako postoji preslikavanje $f: L_1 \to L$, tako da važi

- 1) f je bijektivno preslikavanje skupa L_1 na L;
- 2) f je neprekidno preslikavanje;
- 3) $f^{-1}: L \to L_1$ je neprekidno preslikavanje.

Tvrđenje

Neka je L $\subset \tau = \mathbb{R}^2$ ravna zatvorena Žordanova kriva. Tada

- 1) $\mathbb{R}^2 \setminus L = \Omega_1 \cup \Omega_2$, gde su Ω_1 i Ω_2 dve disjunktne otvorene oblasti;
- 2) $L = \Omega_1^* = \Omega_2^*$;
- 3) Jedna od oblasti, npr. uzmimo da je to Ω_1 , je ograničen skup i nju zovemo unutrašnjost krive L, dok je druga Ω_2 neograničen skup i nju zovemo spoljašnjost krive L.

Za ravnu oblast $G \subset \tau = \mathbb{R}^2$ kažemo da je jednostruko povezana ako unutrašnjost svake Žordanove krive $L \subset G$ pripada oblasti G.