3.1 Quelques rappels de l'an dernier

Définition 1.3.

- Une suite est une application $u: \mathbb{N} \to$
- Pour $n \in \mathbb{N}$, on note u(n) ou u_n le n-ème terme ou terme général de la suite.

▶ Note 1.3.

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n>n_0}$.

Exemple 1.3.

- $(\sqrt{n})_{n>0}$ est la suite de termes : 0, 1, $\sqrt{2}$, $\sqrt{3}$,...
- $(F_n)_{n\geq 0}$ définie par $F_0=1$, $F_1=1$ et la relation $F_{n+2}=F_{n+1}+F_n$ pour $n\in\mathbb{N}$ (suite de Fibonacci que vous pouvez retrouver au grand oral). Les premiers termes sont 1, 1, 2, 3, 5, 8, 13, ... Chaque terme est la somme des deux précédents.

Définition 2.3.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- $(u_n)_{n\in\mathbb{N}}$ est majorée si : $\exists M\in\mathbb{R}, \forall n\in\mathbb{N}, u_n\leq M$.
- $(u_n)_{n\in\mathbb{N}}$ est minorée si : $\exists m\in\mathbb{R} \quad \forall n\in\mathbb{N} \quad u_n\geq m$.
- $\bullet \ (u_n)_{n\in \mathbb{N}}$ est $born\acute{e}$ si elle est majorée et minorée, ce qui revient à dire :

$$\exists (m, M) \in \mathbb{R}^2, \quad \forall n \in \mathbb{N}, \quad m \le u_n \le M$$

Démontrer que la suite (u_n) définie sur \mathbb{N} par $u_n = \cos(n^3) + 3$ est bornée.

3.2 Sens de variation d'une suite

Définition 3.3.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- $(u_n)_{n\in\mathbb{N}}$ est croissante si $\forall n\in\mathbb{N}$,
- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si $\forall n\in\mathbb{N}$
- $(u_n)_{n\in\mathbb{N}}$ est décroissante si $\forall n\in\mathbb{N}$,
- $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante si $\forall n\in\mathbb{N}$,
- $(u_n)_{n\in\mathbb{N}}$ est monotone si elle est
- $(u_n)_{n\in\mathbb{N}}$ est strictement monotone si elle est strictement croissante ou strictement décroissante.

Exemple 2.3.

Cas d'une suite croissante mais non strictement croissante.

Remarques.

- Il peut arriver qu'une suite soit *croissante* (resp. décroissante) à partir d'un certain rang n_0 : pour tout $n \ge n_0$, $u_{n+1} \ge u_n$ (resp. $u_{n+1} \le u_n$).
- Il existe des suites ni croissantes ni décroissantes, par exemple la suite u définie pour tout entier naturel non nul par $u_n = \frac{(-1)^n}{n}$:

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si :
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite à termes **strictement positifs**, elle est croissante si et seulement si :
- ightharpoonup Application 2.3. Étudier la monotonie des suites u et v définies par :

1.
$$u_{n+1} = -2u_n^2 + u_n$$
 et $u_0 = -3$ où $n \in \mathbb{N}$

$$2. \ v_n = \frac{2^n}{3^{n+4}} \text{ où } n \in \mathbb{N}$$

3.3 Limite infinie d'une suite

3.3.1 Limite infinie

Définition 4.3.

Une suite (u_n) a pour limite $+\infty$ quand n tend vers $+\infty$, si tout intervalle de la forme A; $+\infty$ [contient tous les termes u_n à partir d'un certain rang.

Autrement dit, pour tout réel A, il existe un entier n_0 tel que pour tout entier $n \ge n_0$, on ait $u_n > A$.

On note:

$$\lim_{n \to +\infty} u_n =$$

▶ Note 2.3.

On dit dans ce cas que la suite (u_n) diverge vers $+\infty$.

Illustration.

3.3.2 Premières limites de référence

Propriété 1.3.

$$\bullet \lim_{n \to +\infty} n =$$

$$\bullet \lim_{n \to +\infty} n^2 =$$

$$\bullet \ \lim_{n \to +\infty} \sqrt{n} =$$

$$\bullet \lim_{n \to +\infty} n^k =$$

pour tout entier $k \geqslant 1$

Description 3.3. Soit la suite (u_n) définie sur \mathbb{N} par $u_n = 5n - 4$.

- 1. Conjecturer la limite de la suite (u_n) .
- 2. Résoudre l'inéquation $u_n > A$ où A est un réel donné.
- 3. Justifier alors que la suite (u_n) a pour limite $+\infty$.

3.4 Limite finie d'une suite

3.4.1 Suite convergente

Définition 5.3.

Une suite (u_n) admet pour limite le réel ℓ quand n tend vers $+\infty$, si tout intervalle ouvert contenant ℓ contient tous les termes de la suite à partir d'un certain rang n_0 .

On note:

$$\lim_{n \to +\infty} u_n =$$

▶ Note 3.3.

On dit dans ce cas que la suite (u_n) converge vers ℓ .

Illustration.

3.4.2 Suites de référence

Propriété 2.3.

$$\bullet \ \lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\bullet \lim_{n \to +\infty} \frac{1}{n^2} = 0$$

$$\bullet \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

•
$$\lim_{n \to +\infty} \frac{1}{n^k} = 0$$
 pour tout entier $k \geqslant 1$

Théorème 1.3. Unicité de la limite

Si une suite (u_n) admet une limite le réel ℓ quand n tend vers $+\infty$ alors cette limite est unique et on note :

$$\lim_{n \to +\infty} u_n = \ell$$

3.4.3 Des suites sans limite

Une suite n'a pas nécessairement de limite. C'est le cas par exemple pour les suites « alternées » ou celles dont les valeurs oscillent. Dans ces cas, on dira que ces suites sont également divergentes.

Exemple 3.3.

La suite (u_n) définie sur \mathbb{N} par $u_n = (-1)^n$ alterne entre les valeurs -1 et 1:

3.5 Théorèmes d'encadrement et de comparaison

3.5.1 Théorème d'encadrement des limites dit « des gendarmes »

Théorème 2.3. Admis

Si les suites (u_n) , (v_n) et (w_n) sont telles que :

- à partir d'un certain rang $v_n \leqslant u_n \leqslant w_n$;
- (v_n) et (w_n) ont la même limite finie ℓ ,

alors la suite (u_n) converge et a pour limite ℓ .

Application 4.3. Déterminer la limite de la suite v définie sur \mathbb{N}^* par $v_n = \frac{2 + \sin n^2}{3n}$.

3.5.2 Théorème de comparaison

Théorème 3.3.

Soient (u_n) , (v_n) deux suites définies sur \mathbb{N} .

Si à partir d'un certain rang, $u_n\geqslant v_n$ et si $\lim_{n\to +\infty}v_n=+\infty$ alors :

$$\lim_{n \to +\infty} u_n = +\infty$$

$D\'{e}monstration.$		

Le même type de théorème existe pour $-\infty$ et il se démontre de la même manière.

Théorème 4.3.

Soient (u_n) et (v_n) deux suites définies sur \mathbb{N} .

Si à partir d'un certain rang, $u_n \leqslant v_n$ et si $\lim_{n \to +\infty} v_n = -\infty$ alors :

$$\lim_{n \to +\infty} u_n = -\infty$$

3.6 Opérations et limites

3.6.1 Somme

Limite de (u_n)	ℓ	ℓ	$+\infty$	$-\infty$
Limite de (v_n)	ℓ'	$\pm \infty$	$+\infty$	$-\infty$
Limite de $(u_n + v_n)$	$\ell + \ell'$	$\pm \infty$	$+\infty$	$-\infty$

Dans le cas où $\lim_{n\to+\infty} u_n = -\infty$ et $\lim_{n\to+\infty} v_n = +\infty$ on ne peut pas tirer de conclusion générale pour (u_n+v_n) , il s'agit d'une forme indéterminée, forme que l'on essaiera de lever en fonction de l'expression donnée. En tout état de cause, il n'y a pas de résultat général.

3.6.2 Produit

Limite de (u_n)	ℓ	$\ell \neq 0$	$+\infty$	$+\infty$	$-\infty$
Limite de (v_n)	ℓ'	$\pm \infty$	$+\infty$	$-\infty$	$-\infty$
Limite de $(u_n \times v_n)$	$\ell \times \ell'$	$*\infty$	$+\infty$	$-\infty$	$+\infty$

*: + ou - appliquer la règle des signes.

Dans le cas où $\lim_{n\to+\infty} u_n = 0$ et $\lim_{n\to+\infty} v_n = \pm \infty$, on ne peut pas tirer de conclusion générale pour $(u_n \times v_n)$, il s'agit d'une forme indéterminée qui nécessitera une étude particulière.

3.6.3 Quotient

Limite de (u_n)	ℓ	ℓ	$+\infty$	$-\infty$
Limite de (v_n)	$\ell' \neq 0$	$\pm\infty$	$\ell' \neq 0$	$\ell' \neq 0$
Limite de $\left(\frac{u_n}{v_n}\right)$	$\frac{\ell}{\ell'}$	0	*∞	*∞

*: + ou - appliquer la règle des signes.

Dans les cas où $\lim u_n = \pm \infty$ et $\lim v_n = \pm \infty$, $\lim u_n = 0$ et $\lim v_n = 0$, on ne peut pas tirer de conclusion générale pour $\left(\frac{u_n}{v_n}\right)$, il s'agit de formes indéterminées.

3.7 Limites de suites monotones

Propriété 3.3.

Si une suite croissante a pour limite ℓ , alors tous les termes de la suite sont inférieurs ou égaux à ℓ .

Théorème 5.3. Admis

- Toute suite croissante majorée converge, c'est-à-dire admet une limite finie.
- Une suite décroissante minorée converge, c'est-à-dire admet une limite finie.

▶ Note 4.3.

Ce théorème se nomme le théorème de convergence monotone.

Ce théorème est un théorème d'existence, il justifie l'existence d'une limite finie mais ne précise pas cette limite!

Théorème 6.3. Admis

- Une suite croissante non majorée a pour limite $+\infty$.
- Une suite décroissante non minorée a pour limite $-\infty$.

3.8 Limites des suites arithmétiques et géométriques

3.8.1 Suites arithmétiques

Propriété 4.3.

Soit (u_n) une suite arithmétique de raison r.

- Si r < 0 on a $\lim_{n \to +\infty} u_n = -\infty$.
- Si r = 0 alors la suite est **constante** et égale à u_0 , $\lim_{n \to +\infty} u_n = u_0$.
- Si r > 0 alors on a $\lim_{n \to +\infty} u_n = +\infty$.

3.8.2 Suites géométriques

Propriété 5.3.

Soit la suite géométrique (q^n) définie sur \mathbb{N} avec q un réel.

- Si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$.
- Si q = 1 alors $\lim_{n \to +\infty} q^n = 1$.
- Si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$.
- Si $q \leqslant -1$ alors la suite (q^n) n'a pas de limite.

Propriété 6.3.

Soit (u_n) la suite géométrique de raison q et de premier terme u_0 .

	$u_0 < 0$	$u_0 > 0$	
$q \leqslant -1$	Pas de limite		
-1 < q < 1	la suite (u_n) tend vers 0		
q = 1	la suite (u_n) tend vers u_0		
q > 1	la suite (u_n) tend vers $-\infty$	la suite (u_n) tend vers $+\infty$	