PERTURBATION AND DYNARE

INTRODUCTION

Tools for Macroeconomists: The essentials

Petr Sedláček

TOOLS FOR MACROECONOMISTS: THE ESSENTIALS

- Monday Wednesday: Solving DSGE models
 - Perturbation in theory and practice
 - Numerical integration, function approximation
 - Projection methods
- Thursday Friday: Parameterizing DSGE models
 - Kalman filter and Maximum likelihood estimation
 - Introduction into Bayesian estimation and MCMC methods
- Additional material and extensions

Introduction

OVERVIEW FOR TODAY

Introduction into numerical methods

Perturbation

- · main idea
- first-order perturbation and certainty equivalence

Impulse responses and simulation

- definitions and implementation
- computing business cycle statistics

Implementing perturbation (Dynare)

- introduction into Dynare
- incorporating Dynare into other code
- tips and tricks

Introduction

WHY DSGE's?

WHY (DSGE) MODELS?

Why not only use tons of data?

• even with super-cool techniques like machine learning?

DSGE models give

- more discipline than reduced-form methods
- discipline comes from "cross-equation" restrictions
 - stochastics of exogenous variables
 - together with forward-looking behavior of agents
 - result in implication for evolution of endogenous variables

PRIOR TO DSGE MODELS...

- · long tradition of large macroeconometric models
- these reduced-form systems have certain drawbacks
 - · no "GE"
 - no forward-looking behavior
- · changes after Kydland and Prescott (1982)
 - other critical contributions by Hansen, Lucas, Sargent and Sims
- a nice discussion of current state of macro (and identification)
 - Jón Steinsson: A New Macroeconomics?

Introduction

WHAT WILL WE COVER?

WHAT WILL WE COVER?

Computational tools for "Rep-Agent models"

- · what do we need to solve for?
 - policy rules (functions)
- why is this a tough problem?
 - forward looking behavior
 - dynamics today depend on expectations of future dynamics
 - focus on recursive problems
 - even then
 - analytical solutions are rare
 - "S" in DSGE necessitates computation of expectations

WHAT WILL WE COVER?

- 1) Tools for solving DSGE models
 - · characterize unknown functions (in several ways)
 - projection
 - perturbation
 - value function iteration
- 2) Tools for parameterizing DSGE models
 - · discussion of alternative methods
 - · calibration, estimation, matching moments
 - · we'll cover estimation in more detail
 - Maximum Likelihood estimation
 - · Introduction into Bayesian estimation

