一、填空和多项选择题(每题3分,共21分)

1. 答案: -8.

2. 答案: 2.

3. 答案: k > 5.

4. 答案: $y_1^2 - y_2^2 - y_3^2$.

5. 答案: -12.

6. 答案: 7.

7. 答案: BD.

二、计算题(共60分)

1.
$$(10 \, f)$$
求向量组 $\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 5 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 4 \\ 4 \\ 6 \\ 10 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 4 \\ 3 \\ 4 \\ 6 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 8 \end{bmatrix}$ 张成的子空间的维数,

以及该向量组的一个极大无关组,并用该极大无关组线性表示其余向量.

$$\widetilde{\mathbf{M}}: \ (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) = \begin{bmatrix} 1 & 4 & 4 & 1 \\ 2 & 4 & 3 & 2 \\ 3 & 6 & 4 & 4 \\ 5 & 10 & 6 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 4 & 1 \\ 2 & 4 & 3 & 2 \\ 0 & 0 & -1/2 & 1 \\ 0 & 0 & -3/2 & 3 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 4 & 4 & 1 \\ 0 & -4 & -5 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & -4 & -5 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 2 & 0 & 5 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \dots \quad (6 \ \%)$$

故 $\alpha_1, \alpha_2, \alpha_3$ 为一个极大无关组,该向量组张成的子空间的维数为 3. ·····(2分)

2. (10 分) 矩阵
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 5 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 满足方程 $A^2 + B = AB + A^*$, 求矩阵 B .

解: |A| = 1, 故 $A^2 + B = AB + A^* \Rightarrow A^3 + AB = A^2B + |A|E = A^2B + E$. $\Rightarrow A^3 - E = (A^2 - A)B$. 易知 |A - E| 可逆,

故
$$AB = A^2 + A + E \Rightarrow B = A + E + A^{-1}$$
. (4 分)

$$A^{-1} = |A|^{-1}A^* = A^* = \begin{pmatrix} -3 & 2 & 0 \\ 5 & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$
(3 $\%$)

故
$$B = \begin{pmatrix} 3 & 2 & 0 \\ 5 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix} + E + \begin{pmatrix} -3 & 2 & 0 \\ 5 & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 0 \\ 10 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$
(3 分)

3. (8 分) 已知
$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ 和 $\beta_1 = \begin{pmatrix} 5 \\ 1 \\ 7 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 7 \\ 2 \\ 9 \end{pmatrix}$ 为 \mathbf{R}^3 的同一个子空

间的两组基. 求出基 α_1,α_2 到基 β_1,β_2 的过渡矩阵,进一步求 $\beta_1+\beta_2$ 在基 α_1,α_2 下的坐标.

解: $β_1$, $β_2$ 可由 $α_1$, $α_2$ 线性表示,

$$(\alpha_1, \alpha_2, \beta_1, \beta_2) = \begin{bmatrix} 1 & 1 & 5 & 7 \\ -1 & 2 & 1 & 2 \\ 3 & -1 & 7 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 5 & 7 \\ 0 & 3 & 6 & 9 \\ 0 & -4 & -8 & -12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

由此易知 $\beta_1 + \beta_2$ 在基 α_1, α_2 下的坐标为 $\binom{3}{2} \quad \binom{4}{1} = (7,5)^T$(2 分)

4. (12 分) 当
$$a,b$$
 取何值时,方程组
$$\begin{cases} x_1 - x_2 - 6x_3 - x_4 = b \\ x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 2x_1 + x_2 - 6x_3 + 4x_4 = -1 \\ 3x_1 + 2x_2 + ax_3 + 7x_4 = -1 \end{cases}$$
有解的求出

通解.

$$\widetilde{\mathbf{H}}: \begin{bmatrix} 1 & -1 & -6 & -1 & b \\ 1 & 1 & -2 & 3 & 0 \\ 2 & 1 & -6 & 4 & -1 \\ 3 & 2 & a & 7 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & 3 & 0 \\ 0 & -1 & -2 & -2 & -1 \\ 0 & -1 & a+6 & -2 & -1 \\ 0 & -2 & -4 & -4 & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -4 & 1 & -1 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a+8 & 0 & 0 \\ 0 & 0 & 0 & b+2 \end{bmatrix}$$

当 b ≠ -2 时,方程组无解.

当 b = -2 时,方程组有解. 分两种情况进行讨论:

- (1) 若 a = -8, 则通解为 $\xi = \xi_0 + k_1\eta_1 + k_2\eta_2$, 其中 k_1, k_2 为可任意取值的常数, $\xi_0 = (-1,1,0,0)^T$, $\eta_1 = (4,-2,1,0)^T$, $\eta_2 = (-1,-2,0,1)^T$.

(12分) 用正交变换将下述二次型化为标准形.

$$f(x_1, x_2, x_3) = x_1^2 + 4x_1x_2 + 8x_1x_3 + 4x_2^2 - 4x_2x_3 + x_3^2.$$

解: 二次型
$$f$$
 对应矩阵为 $A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & -2 \\ 4 & -2 & 1 \end{pmatrix}$. $|\lambda E - A| = (\lambda - 5)^2 (\lambda + 4)$,

故 A 的特征值为 $\lambda_1 = \lambda_2 = 5$, $\lambda_3 = -4$.

对特征值 $\lambda_1 = \lambda_2 = 5$, 解齐次线性方程组 $(\lambda_1 E - A)X = 0$,

可得基础解系 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,0,1)^T$. 正交化得 $\beta_1 = \alpha_1 = (1,2,0)^T$,

$$\beta_2 = \frac{1}{5}(4, -2.5)^T$$
. 单位化可得 $\gamma_1 = \frac{\beta_1}{\|\beta_1\|} = \frac{1}{\sqrt{5}}(1.2.0)^T$, $\gamma_2 = \frac{\beta_2}{\|\beta_2\|} = \frac{1}{3\sqrt{5}}(4, -2.5)^T$.

.....(5分)

对特征值 $\lambda_3=-4$,解齐次线性方程组 $(\lambda_3E-A)X=0$,可得基础解系 $\alpha_3=(-2,1,2)^T, \text{ 单位化可得 } \gamma_3=\frac{1}{3}(-2,1,2)^T.$ ··········· $(2\ \beta)$

$$\diamondsuit \ \ Q = (\gamma_1, \gamma_2, \gamma_3) = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} & -\frac{2}{3} \\ \frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} & \frac{1}{3} \\ 0 & \frac{5}{3\sqrt{5}} & \frac{2}{3} \end{pmatrix}.$$

则正交变换 Y = QX 可将二次型 f 化为标准形 $5y_1^2 + 5y_2^2 - 4y_3^2$ (2 分)

6. (8分)给定两个互质的整数 a,b, 其中 $b \ge 2$, 欲求整数 x 使得 ax-1为 b 的整数倍. 对此问题,古希腊数学家欧几里得提出了辗转相除法. 我国北宋数学家秦九韶则提出了大衍求一术,从线性代数的角度来看,

即为如下方法: 首先构造矩阵 $\begin{pmatrix} a & 1 \\ h & 0 \end{pmatrix}$. 接下来对 $\begin{pmatrix} a & 1 \\ h & 0 \end{pmatrix}$ 作第 3 类

初等行变换(即倍加变换,要求为整数倍),将之化作形如 $\begin{pmatrix} 1 & x \\ y & z \end{pmatrix}$ 的矩阵,

则 ax-1 为 b 的整数倍(此处不需证明这个结论).

据此,求正整数 x, $1 \le x \le 36$, 使得 94x - 1 为 37 的倍数.

解:
$$\binom{94}{37} \stackrel{1}{0} \rightarrow \binom{20}{37} \stackrel{1}{0} \rightarrow \binom{20}{17} \stackrel{1}{-1} \rightarrow \binom{3}{17} \stackrel{2}{-1} \rightarrow \binom{3}{2} \stackrel{2}{-11} \rightarrow \binom{1}{2} \stackrel{13}{-11}$$
.

......(5分)
故得 $x = 13$.

三、证明题(共19分)

1. (7分) 证明: 向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的充分必要条件是向量组 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关.

证明:
$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
.(4分)

注意
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 可逆. 故 $(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1}$.

由此可知题设中所给的两个向量组相互等价,又因其向量个数相同,故二者是 否线性无关是相互等价的. (3分)

2. (6 分) 设方阵 A 使得 $A^3 = 2A$, 证明 $A^2 - E$ 可逆,求 $A^2 - E$ 的逆矩阵. 证明: (1) A 的特征值只能为 $0,\sqrt{2},-\sqrt{2}$. 故 $A^2 - E$ 的特征值必为

(2)
$$A^3 = 2A \Rightarrow A^4 = 2A^2$$
, 令 $B = A^2$, 则有 $B^2 - 2B = (B - E)^2 - E = 0$, 故 $(B - E)^2 = E$, 因而 $(B - E)^{-1} = B - E$, 即有 $(A^2 - E)^{-1} = A^2 - E$.

.....(3分)

- 3. (6分) 设 A 为 n 阶方阵, $A^2 = A$. 证明: α 为齐次线性方程组 AX = 0 的解,充分必要条件为,存在向量 β 使得 $\alpha = \beta A\beta$. 证明:
- (1) 若 α 为齐次线性方程组 AX = 0 的解,令 $\beta = \alpha$, 则 $\beta A\beta = \alpha$. ··· (3分)
- (2) 若 $\alpha = \beta A\beta$, 则 $A\alpha = A(\beta A\beta) = A\beta A^2\beta = A\beta A\beta = 0$. ····· (3分)