This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/12, 15/13, C07K 13/00 A61K 37/02

(11) International Publication Number:

WO 92/01787

A1

(43) International Publication Date:

6 February 1992 (06.02.92)

(21) International Application Number:

PCT/GB91/01253

(22) International Filing Date:

25 July 1991 (25.07.91)

(30) Priority data: 9016299.1

25 July 1990 (25.07.90)

(71) Applicant (for all designated States except US): CAM-BRIDGE ANTIBODY TECHNOLOGY LIMITED [GB/GB]; The Daly Research Laboratories, Babraham Hall, Cambridge, Cambridgeshire CB2 4AT (GB).

(72) Inventors; and (75) Inventors/Applicants (for US only): JOHNSON, Kevin, Stuart [GB/GB]; 32 Holmehill, Godmanchester, Cambridgeshire PE18 8EX (GB). JACKSON, Ronaid, Henry [GB/GB]; 31 Kingston Street, Cambridge CB1 2NU (GB). CHISWELL, David, John [GB/GB]; 1 Sandhill House, Middle Claydon, Buckingham MK18 2LD (GB).

(74) Agent: STUART, I., A.; Mewburn Ellis, 2 Cursitor Street, London EC4A 1BQ (GB).

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC, MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL, NL (European patent), NO, PL, RO, SD, SE, SE (European patent), SN + (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent), US.

Published

With international search report.

(54) Title: BINDING DOMAINS

(57) Abstract

This invention concerns binding domains e.g. single chain variable domains which are synthetic analogues of other single chain variable domains of members of an immunoglobulin family or superfamily. In the analogue, one or more amino acid residues is altered as compared to the other domain, so that the analogue is more hydrophilic than the natural domain. The altered amino acid is substituted with a residue which occurs in an analogous position in a member of an immunoglobulin family or superfamily. This increased hydrophilicity means that the synthetic analogue will show less non-specific binding than the natural domain. The analogue may retain the binding specificity of the natural domain. Alternatively, the complementarity determining regions may be altered to change the binding specificity. The invention also concerns methods for making these binding domains.

+ DESIGNATIONS OF "SU"

It is not yet known for which States of the former Soviet Union any designation of the Soviet Union has effect.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austrin	ES	Spain	· MG	Madagaseur
AU	Australia	PI	Finland	ML	Mali
BB	Barbados	PR	France	MN	Mongolia
BE	Belgium	GA.	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaris	CN	Guinca	NL.	Netherlands
BJ	Benin	GR	Grecce	NO	Norway
BR	Brazil	AU	Hungary	PL	Poland
CA	Canada	n	Italy	RO .	Romania
æ	Central African Republic	JP	Japan	SD	Surlan
œ	Congo	KP	Democratic People's Republic	SE	Swoden
CH	Switzerland		of Korea	SN	Scnegal
a	Côte d'Ivoire	KR	Republic of Korea	ม +	Soviet Union
CM	Cameroon	L	Licchtenstein	TD	Ched
CS	Crochoslovakia	LK	Sri Lanka	TG	Togo
DR	Cermany	ш	Luxembourg	iis	United States of
					Current serves or

15

20

25

BINDING DOMAINS

The present invention relates to molecules comprising binding domains and methods for their preparation and use. In particular the present invention relates to molecules comprising domains which are synthetic analogues of a natural single variable domain of a member of an immunoglobulin family or superfamily.

The present invention also relates to methods for designing said molecules comprising domains, the molecules so designed, and kits and methods for use of said molecules in therapy and diagnosis.

Antibodies and other members of the immunoglobulin superfamily, such as T cell receptors, have the ability to recognise molecules eg. antigens, specifically and bind them with high affinity. In naturally occurring antibodies, the binding site for antigen is formed by the juxtaposition of variable (V) domains from both heavy (H) and light (L) chains. Within each of these chains are three stretches of amino acids, the complementarity determining regions (CDRs), which comprise the residues which interact with antigens. The three CDRs alternate with four framework regions (FR). Winter et al. demonstrated that a single V domain was able to bind antigen with high affinity and specificity [Ward et al. Nature 341, 544-546 (1989)]. It was proposed that these single domain antibodies (VH) would have advantages for

SUBSTITUTE SHEET

10

15

20

25

several applications owing to their small size (relative molecular mass (rmm)=13,000) compared to whole antibodies (rmm=160,000) and other antibody fragments.

However, VH domains have unique disadventages that disappointingly limit their utility. The difficulties encountered reflect at least two properties of VH domains which may be related. They are expressed in low quantities when cloned in bacteria (ca. 200µg/ml of culture supernatant compared to 10mg/ml for Fv fragments) and during purification of VH domains, substantial amounts of material are lost. Concentration of the VH single domain, for example using ultrafiltration and purification on chromatography columns, often leads to poor recoveries. This probably reflects non-specific binding to surfaces. This has been observed directly by Ward et al. (1989) supra., who isolated a high proportion of single-domain antibodies exhibiting significant (and non-specific) binding to plastic. vivo, non-specific binding in tissues would lead to poor performance in applications such as tumour imaging or cancer therapy studies.

These difficulties are not generally experienced with whole antibodies or with fragments of antibodies such as Fv or Fab fragments. Therefore, the problems appear to be a characteristic of antibody fragments containing unpaired single domains.

Thus, the present invention seeks to ameliorate any of the above or other problems associated with single

10

15

20

25

variable domain binding members, whilst retaining antigen binding for their full commercial exploitation.

The present applicant has realised that the most likely cause of the unfavourable properties of single domain antibodies is the exposure to aqueous solvent, of the hydrophobic face of a single variable domain eg. the VH single domain. In native antibodies, this face interacts with the adjacent hydrophobic face of the VL domain and is buried within the antibody molecule. Exposure of the face would lead to strong interactions with surfaces, for example chromatography matrices, from which material could not be recovered. Additionally, the present applicant believes that exposure of the face to aqueous solvent may lead to decreased stability of the single variable domain eg. the VH single domain, leading to turn to unfolding and loss of binding activity during purification procedures. Most importantly, this hydrophobic face is a potential source of non-specific binding, which considerably limits the utility of these single variable domain molecules in vivo and in vitro.

Although the VH single domain is quite small, its activity depends on a complex tertiary structure comprising interactions between disparate parts of the molecule [Chothia, C. et al. J. Mol. Biol. 186, 651-663 (1985)]. In several cases, there are side-chains in the framework which have important interactions with those in the antigen combining site. For example, in the antiprogesterone antibody DB3, tryptophan 47 (framework) has

20

25

been shown to contact progesterone (Arevalo, J.H., Taussig, M. and Wilson, I. personal communication), and -hydroxy vitamin K in the -hydroxy vitamin K-binding antibody IgG1 NEW [Twining, S.S. and Atassi, M.Z. J. Biol. Chem. 253, 5259 (1978)]. In some antibodies, interactions of residue 71 (framework) with CDR residues have been shown to be important for the maintenance of antigen binding [Chothia, C. et al. Nature 342, 877-883 (1989)]. It will be apparent to those skilled in the art, that any modifications to the basic antibody or variable domain structure will most likely have pleiotropic consequences on the tertiary structure of the antibody or variable domain and render them unable to ; bind antigen with the desired specificity and affinity. This is exemplified in recent experiments with antilysozyme single-domain antibodies. A single amino acid change, substituting Asn 35 with His, was found to improve the expression level in E.coli by about 1000 fold. Critically however, the altered molecule was found: to bind lysozyme only very weakly (E.S.Ward, L.Reichmann, G.P. Winter, personal communication). Because the interactions responsible for assembly of the active structure, particularly of VH domains, are not completely understood, any amino acid changes made to the basic structure must be selected extremely carefully. Selection of any changes is further complicated by the fact that the residues at the interface of the VH single domain with the VL domain, come from the CDRs as well as:

15

20

25

 (\bar{a}, \bar{c})

the framework. The framework residues (for example, residues 37,39,45,47,91,93 and 103) at the interface of the anti-lysozyme antibody D 1.3 [Amit, A.G. et al, Science 233 747-753 (1986), Chothia, C. et al., Science 233, 755-758 (1986)] are highly conserved in antibodies They are invariant or, rarely, have of all species. substitutions which are usually conservative, i.e. replacement of the amino acid with one having similar chemical properties. For example, aliphatic hydrophobic residues are usually substituted by similar aliphatic Thus, if substitutions are made in these residues. framework residues, there is a strong risk of disrupting the structure of the molecule and hence binding of antigen by the antibody or single variable domain eq. VH. The CDR residues vary between antibodies and determine the specificity and affinity of binding to antigen. Since the applicant wishes to retain the capacity to bind a variety of antigens with high affinity and specificity, the ability to vary these CDR residues needs to be retained.

The present invention therefore provides a molecule comprising a binding domain having a polypeptide sequence which is an analogue of part or all of a naturally occurring molecule comprising a binding domain having specificity for a particular binding member, in which analogue one or more amino acids are altered to reduce the hydrophobicity of said analogue as compared to the natural binding substance.

15

20

The analogue may have substantially the same binding characteristics as the natural binding substance eg. with respect to specificity, affinity, or avidity. In some cases these characteristics may be improved. The alteration may be any amino acid alteration which reduces hydrophobicity of the polypeptide sequence eg. amino acid substitution, deletion or addition.

The molecule comprising a binding domain may comprise an antibody or other receptor molecule and fragments and derivatives of antibodies and receptor molecules. In particular, the molecule may comprise a single variable domain of the type that is present in an antibody molecule. The alteration may be in a complementarity determining region and/or in a framework region. Preferably, the alteration is in a framework region. Where the alteration reducing hydrophobicity, is in a framework region, the complementarity determining regions may also be altered by way of amino acid substitution, deletion, addition or inversion to alter the specificity and or binding characteristics of the binding substance.

The molecule comprising a binding domain may comprise any one or more of the alterations described in examples 2 to 11.

25 Thus the present invention provides a single chain variable domain which is a synthetic analogue of another single chain variable domain of a member of an immunoglobulin family or superfamily, and in which

15

20

25

analogue, one or more interface amino acids residues of the domain is altered as compared to the said another domain, in which a said altered amino acid is substituted with a residue which occurs in an analogous position in a member of an immunoglobulin family or superfamily, so that the analogue is more hydrophilic than the said another domain.

The altered amino acid residue may be in a framework region. The altered amino acid residue may be in a complementarity determining region. The synthetic analogue may have essentially the same binding activity as the said another domain. The sequence of a complementarity determining region may be additionally altered by way of amino acid substitution, deletion, addition, or inversion, to alter the specificity and/or binding characteristics of the analogue as compared to the said another domain.

The single chain variable domain may be a synthetic analogue of a single variable immunoglobulin heavy chain domain. In which case, the one or more of the amino acid residues 37,39,45,47,91,93 and 103 may be altered. The amino acid alterations may comprise one or more of the following:

- i) substitution of valine 37 with glutamine or threonine;
 - ii) substitution of glutamine 39 with glutamate;
- iii) substitution of leucine 45 with glutamine;
 - iv) substitution of tryptophan 47 with aspartate or

20

25

8 .

glycine;

- v) substitution of tyrosine 91 with threonine, serine or methionine;
- vi) substitution of alanine 93 with serine or significant serine s
 - vii) substitution of tryptophan 103 with glutamate or tyrosine or threonine;
 - viii) substitution of valine 37, leucine 45, tryptophan 47, alanine 93 and/or tryptophan 103
 with any of asparagine, threonine or serine;
 - ix) substitution of valine 37 with threonine and glutamine 39 with glutamate and tryptophan 47 with glycine;
- x) substitution of tyrosine 91 with serine or

 methionine and alanine 93 with glutamate and
 tryptophan 103 with threonine.

The single chain variable domains according to the present invention may be coupled to a further molecular moiety. The further molecular moiety may be an enzymic-, fluorescent-, or radio-label, or a portion of an immunoglobulin.

The present invention also provides diagnostic kits which comprise a single chain variable domain as described above together with one or more ancillary reagents for carrying out the diagnostic test.

The present invention also provides therapeutic composition which comprises at least a single chain variable domain as described above. The composition may

10

25

also comprise one or more excipients.

In an aspect of the invention there is provided single chain variable domains eg. VH single chain domain frameworks, with improved properties as indicated above and which allow the generation of specificities for various binding partners by substitution of different CDRs into the new framework. The applicant also provides that the framework residues of molecules comprising single domains previously isolated are substituted to make them more polar. The modified molecule should retain the ability to bind the desired antigen. Preferably, the changes would not render the interface immunogenic when administered to humans.

The present invention also provides a method for making a single chain variable domain which is a hydrophilic synthetic analogue of another single chain variable domain of a member of an immunoglobulin family or superfamily, which comprises:

- (1) inspecting the interface regions of a said single20 chain variable domain to identify hydrophobic amino acid residues; and
 - (11) producing a said analyse of said single chain variable domain in (i) in which one or more of said hydrophobic residues is substituted with a less hydrophobic residue which occurs in an analogous position in a member of an immunoglobulin family or superfamily.

The method may comprise:

(a) obtaining the nucleotide sequence encoding one

25

immunoglobulin,

used separately.

or more of the identified hydrophobic amino acid residues;

- (b) using site directed mutagenesis to alter the nucleotide sequence to introduce a triplet coding for the substitute amino acid,
- (c) using the altered nucleotide sequence in a recombinant expression system to express the synthetic analogue.

In the method, more than one amino acid residue may

10 be substituted. The substitute amino acids may be
derived from naturally monomeric members of the
immunoglobulin superfamily. The naturally monomeric
member may be Thy-1. The synthetic analogue may have
essentially the same binding activity as the said another

15 domain.

Where the molecule comprising a binding domain is an immunoglobulin, or a fragment or derivative of an immunoglobulin, an amino acid site suitable for alteration may be identified by:

- 20 i) examining the molecule for hydrophobic amino acids expected to be on the surface of the binding substance,
 ii) more specifically examining the amino acid residues related to those expected to be buried at the interface of the heavy and light chain domains of an
- iii) examining those residues identified in (ii) that would be exposed to the solvent when the single domain is

An appropriate alteration to make may be identified with reference to the homologous amino acid sequences of members of a family of related substances. For example, the amino acid sequence of a molecule at the site for alteration identified as described above, may be altered to make it homologous at that site in one or more members of the family group.

The family of related substances may comprise a family of immunoglobulins, fragments and derivatives thereof. Alternatively, the family of related substances may comprise a family of proteins containing domains structurally related to the immunoglobulins ie. an immunoglobulin superfamily.

The nucleotide sequence may be altered by site directed mutagenesis using oligonucleotides designed to introduce the required alterations. Alternatively, the alteration may be achieved by use of the technique known as polymerase chain reaction.

The present invention also embraces kits having molecules comprising binding domains as herein provided. The kits may be diagnostic, purification or catalysis kits. The present invention further embraces pharmaceutical products which contain molecules comprising binding domains according to the present invention.

Binding Domain

TERMINOLOGY

This describes an area on the surface of a protein,

SUBSTITUTE SHEET

. 10

15

20

25

or a cavity which specifically binds to, and is therefore defined as complementary with a particular spatial and polar organisation of another molecule. A domain is folded within itself and independently of other parts of the same protein and independently of a complementary binding member.

Immunoglobulin

This describes a group of structurally related proteins consisting of two pairs of heavy polypeptide chains and two pairs of light polypeptide chain, all linked together by disulphide bonds. They have a binding domain for another molecule such that a given immunoglobulin binds specifically to that another molecule.

The protein can be natural or partly or wholly synthetically produced. The term also covers any protein having a binding domain which is homologous to an immunoglobulin binding domain.

Herein the numbering of immunoglobulin amino acid residues is according to Kabat E.A. et al. in "Sequences of Proteins of Immunological Interest" U.S. Department of Health and Human Services 1987.

Antibody

This describes an immunoglobulin whether natural or partly or wholly synthetically produced. The term also covers any protein having a binding domain which is homologous to an immunoglobulin binding domain. These proteins can be derived from natural sources, or partly

or wholly synthetically produced.

Example antibodies are the immunoglobulin isotypes and the Fab, $F(ab^{1})_{2}$, scFv, Fv, dAb, Fd fragments.

Immunoglobulin Superfamily

5 This describes a family of polypeptides, the members of which have at least one domain with a structure related to that of the variable or constant domain of immunoglobulin molecules. The domain contains two β-sheets and usually a conserved disulphide bond (see A.F. Williams and A.N. Barclay 1988 Ann. Rev Immunol. 6 381-

Example members of an immunoglobulin superfamily are CD4, platelet derived growth factor receptor (PDGFR), intercellular adhesion molecule. (ICAM). Except where the context otherwise dictates, reference to immunoglobulins and immunoglobulin analogs in this application includes members of the immunoglobulin superfamily and analogs thereof.

Interface

405.

This describes the region on a given heavy or light chain of an immunoglobulin which associates with the complementary heavy or light chain.

Framework

25

Each chain of an immunoglobulin has a constant (C) and a variable (V) region. Each V region is made up from three complementarity determining regions (CDR) separated by four framework regions (FR). The CDRs are variable stretches of amino acid sequences and provide the

10

function of binding to another molecule. It is the possibility of variability which provides immunoglobulins with various binding specificities. The FRs are substantially constant stretches of amino acid sequences which interpose the CDRs.

In order that the present invention is more fully understood, it will now be described in more detail, firstly in general outline and secondly with reference to specific examples provided by way of illustration only and not by way of limitation. The following description refers to the figures in which:

Figure 1 shows the nucleotide and amino acid sequence of the VH domain of the anti-lysozyme antibody D1.3 cloned in pUCl19;

- 15 Figure 2 shows mutant oligonucleotides for substitution of residues found in naturally occurring immunoglobulin heavy chains;
 - Figure 3 shows mutant oligonucleotides for substitution with homologous residues from Thy-1;
- 20 Figure 4 shows mutant sequences obtained by substitutions of Thy-1 residues into VHD1.3;

 Figure 5 shows oligonucleotides for the random substitution of asparagine, serine or threonine into VHD1.3:
- Figure 6 shows a graph illustrating lysozyme binding activity of TG1 (control), VHD1.3, VHTHY-1 and VHTHY-2; Figure 7 shows a graph illustrating lysozyme binding activity of pUC119 (control), VHD1.3, VHMutTrp, VHMutLeu

15

20

25

and VHThy-3;

Figure 8 shows a graph illustrating lysozyme binding activity of pUC119 (control), VHD1.3, VHThy-1, Thy-2, VHThy-1, Thy-3 and VHMutWD;

5 Figure 9 shows the nucleotide sequence of the vector fdPs/Bs around the cloning site and indicates the Pstl and BstEll restriction sites; and

Figure 10 shows a graph illustrating lysozyme binding activity of vector fdPs/Bs (control), fdVHThylThy2, fdVHD1.3 and phage antibody D1.3.

The applicant has devised three related strategies for the selection of alterations to the frameworks. This invention enables the generation of antibodies and single variable domains eg. VH domains with improved properties for in vivo and in vitro use.

1. <u>Substitution with VH Interface Residues Found in Naturally Occurring Immunoglobulin Heavy Chains</u>

There is considerable amino acid sequence homology between different immunoglobulins. Homologies are detected by lining up different sequences one above the other, and sliding the chains along relative to one another, until the best level of identity between the different sequences is arrived at. These analyses are generally performed on a computer. As noted above, the framework residues are highly conserved, ie. particular amino acids will be present in the same positions in a series of different antibodies. Rare substitutions do occur, however, and the applicant searched for naturally-

15

20

occurring substitutions of VH interface residues. This was performed by reference to readily available compilations of antibody sequences [e.g. Kabat, E.A. et al. in "Sequences of Proteins of Immunological Interest" U.S. Department of Health and Human Services (1987)]. This analysis enables natural variants at any position to be identified. As these variant residues occur naturally (though infrequently) in antibodies, the applicant realised that they are less likely to severely disrupt domain structure. These natural substitutions most often occur once per antibody molecule. However, the applicant also combines the available substitutions from several antibodies, together in the same molecule. It is possible that different combinations of natural substitutions can be used.

2. Substitution with Residues that have been Identified at the Homologous Position in Other Proteins of the Immunoglobulin Superfamily

Of particular interest, are proteins which have domains containing the immunoglobulin fold (a tertiary structure characteristic of antibody domains that has been found in other proteins), but which do not associate with another domain.

Examples of molecules which contain a single domain 25 homologous to immunoglobulin variable domains include: Thy1, Po myelin, CD7, CD28 and CTLA-4 [Williams, A.F. and Barclay, A.N. Ann. Rev. Immunol. 6, 381-405 (1988)].

Other proteins contain more than one unpaired,

6

antibody-like domain. CD4 and MRC OX-2 each contain N-terminal domains homologous to variable domains of antibody molecules ('V'-type domains, one in MRC OX2, two in CD4), and a C-terminal domain homologous to constant domains of antibody molecules ('C'-type domain, one each in MRC OX2 and CD4) [Williams, A.F. and Barcley, A.N. Ann. Rev. Immunol. 6, 381-405 (1988)].

The similarity in tertiary structure between these unpaired domain proteins and the domains comprising 10 antibodies is reflected to some extent in homologies at the amino acid sequence level. Amino acid homologies are assigned in much the same way as in 1 above, although the alignment of sequences in this case can be problematic. For Thy-1, the alignment with VH residues 37,39,91 and 93 is relatively straightforward. However, VH residues 45 15 and 47 have been published in two different alignments with Thy-1 [A.F. Williams and J. Gagnon, Science 216 696-703, 1982; A.F. Williams and A.N. Barclay, Ann. Rev. Immunol. 6 381-405, 1988]. Exploration of alternative 20 substitutions may be necessary to identify the most appropriate, in cases where there is more than one possible alignment.

There is a possibility that the modified VH interface exposed in the VH single domain would be antigenic in humans. This would be a disadvantage for in vivo therapeutic use. Substitution with residues which occur naturally in human Thy-1 may reduce this potential antigenic response.

SUBSTITUTE SHEET

15

3. <u>Semi-Random Insertion of Polar Amino Acids at</u> Interface Residues

This strategy enables the improvement of single domains using a less direct method. Oligonucleotides for mutagenesis are synthesized with a mixture of bases in some positions to give ambiguities for amino acid insertion at certain triplets. For example, the present applicant has designed a strategy which will allow the random insertion of the highly polar residues asparagine, serine or threonine by the use of codons with ambiguities at the second position. These residues could be inserted for instance at the interface positions 37,45,47,93 and 103 of the VH domain. The 243 possible frameworks resulting from this mutagenesis can then be screened to identify which of the semi-random combinations have the desired properties. Strategies for screening the resulting semi-random population would include estimation of antigen binding affinity and non-specific binding by ELISA (see below).

This is one example of a number of strategies which can be used to vary interface residues in a semi-random manner without recourse to the strategies outlined in 1) and 2) above.

The present invention allows the binding affinity
25 and specificity of identified antibodies to be
incorporated into single domain molecules with improved
properties for in vivo and in vitro applications.

The frameworks generated using the model system.

15

20

25

using the VH domain of antibody D1.3 (VHD1.3) can be used as frameworks for antibodies of any specificity by replacement of part(s), or all, of its CDRs with those from an antibody molecule of desired affinity and specificity. There are numerous ways in which this can be accomplished. For instance, following the determination of the sequence of the CDRs of the antibody of desired properties (eg., binding specificity), an oligonucleotide or series of oligonucleotides is synthesized which encodes these CDRs and the framework regions containing the nucleotide substitutions necessary to make the antibody/antibody domain more polar. oligonucleotide can then be amplified using PCR, cloned into a suitable vector such as pUC119, and the product expressed in bacteria.

Alternatively, the relevant changes at the interface can be introduced into an existing single domain antibody of desired specificity to improve the properties of that antibody. This can be achieved by a variety of methods, for example by site-directed mutagenesis, or PCR (for example using the method of Hemsley, A. et al. [Nuc. Acids Res. 16. 6545-6551 (1989)].

In addition to this, the improved single domain antibodies show reduced non-specific. The properties of the single chain variable domains provided hereby enable selection of single domain antibodies of the desired specificity and affinity, for example, using single domains cloned into fd phage. The frameworks described

10

15

20

in this invention could be cloned into fd phage and the existing CDRs replaced by repertoires of CDRs to create a new population of single domain antibody molecules that can be screened for the desired binding specificities. Alternatively, for instance, single domain antibodies may be isolated as described by Ward et al (1989, supra), but may require improvements in their affinity and specificity. The CDRs from these antibodies can be cloned into the polar frameworks described in this invention and inserted into single domains cloned into fd. Random mutagenesis of these CDRs can then be phage. performed and selection of antibodies of the desired affinity and specificity performed using affinity methods.

Examples 15 and 16 herein show that a derivative of VHD1.3 with a more polar framework can be displayed on phage as a fusion with gene III protein (McCafferty J. et al. 1990 Nature 348 p552-554) with retention of binding activity. Display on phage would enable the generation of combinations of substitutions at framework residues by semi-random mutagenesis procedures (an example of which is given in example 11) and the subsequent selection of those with favourable binding properties.

Since the improved single domain antibodies of the present invention constitute superior versions of conventional single domain antibodies, they can be used in many of the ways as are immunoglobulins (Ig) and their superfamily of molecules or fragments. For example, Ig

15

20

25

molecules have been used in research, therapy (e.g. cancer therapy, modulation of immune status and therapy of diseases caused by pathogens), diagnosis (for example, estimation of hormonal status), in modulation of activities of hormones or growth factors, in detection, in biosensors, in catalysis, in purification of other molecules and in screening regimes for therapeutic compounds in the pharmaceutical industries. The lower non-specific binding of the improved single domain antibodies should prove especially useful for the above applications.

The increased hydrophilicity may be of particular importance for their use as binding molecules in affinity chromatography, especially weak affinity chromatography (Zopf, D. and Ohlson, S., Nature 346 87-89, 1990).

Anti-idiotypic improved single domain antibodies can also be made. Anti-idiotypic specificities [Methods Enzymol. 178. J.J. Langone ed. Academic Press (1989)] are made in a two-stage process. Firstly, antibody A directed against a particular antigen or epitope is itself used to raise other antibodies. A proportion of the anti-A antibodies, antibodies B, will be directed against the antigen combining sites of antibody A, such that the antigen combining sites of B are complementary to that of A. In effect, the antigen combining site of antibody B, the anti-idiotype, mimics in structure the original antigen or epitope recognised by antibody A. The original antigen can be a protein or any other

compound, for example a carbohydrate or a steroid, and the antibody used at any stage in the procedure could be an improved single domain antibody. The final anti-idiotypic antibody can be an improved single domain antibody produced as described herein, or a molecule of the immunoglobulin superfamily from which the anti-idiotypic determinant(s) are transferred into an improved single domain antibody framework.

Such anti-idiotypic molecules are advantageous in a variety of applications [Methods Enzymol. 178. J.J. Langone ed. Academic Press (1989)]. These include vaccines for treating cancers and diseases caused by bacteria, viruses and parasites. They may be used for blocking cellular receptors for the aforementioned pathogens as well as blocking cellular receptors for hormones. They may also be advantageous in diagnostic procedures, for example in place of antigen or peptide in ELISA. Anti-idiotypic specificities are known to be useful in the pharmaceutical industries [Methods Enzymol.

20 <u>178</u>. J.J. Langone ed. Academic Press (1989)].

The present invention relates to improved single domain antibodies and receptors derived from molecules of the immunoglobulin (Ig) superfamily, methods for selecting and effecting said improvements, and methods for and kits use of said antibodies or receptors in research, therapy, diagnosis, purifications, catalysis and discovery of novel therapeutics.

EXAMPLE 1. PREPARATION OF VH D1.3 WITH A MORE POLAR

10

15

20

25

FRAMEWORK BY SUBSTITUTION OF VALINE 37 WITH GLUTAMINE

Figure 1 shows the nucleotide and amino acid sequence of the pUC119 VHD1.3 clone used for mutagenesis studies (Ward et al, 1989, supra). The amino acid. residues in the VH domain that interact with the VL have been identified as 37,39,45,47,91,93 and 103 (Amit et al, (1986) supra, Chothia, C. et al (1986) supra). acids occurring naturally in VH domains were surveyed using a compilation of immunoglobulin sequences [for example, Kabat, E.A. et al. in "Sequences of Proteins of Immunological Interest" U.S. Department of Health and Human Services (1987)]. Substitutions have been found at positions 37,39,45,47,91,93 and 103 in naturally occurring heavy chains. The most polar substitutions at each of these residues in antibodies sequenced to date were chosen for replacement of interface residues by mutagenesis in the following examples.

Residue 37 is valine in 385 out of 434 sequences surveyed. In 48 other sequences, an aliphatic amino acid was substituted. In the single remaining example, a case of human heavy chain disease, a significantly more polar residue, glutamine, was substituted. An oligonucleotide was designed for incorporation of this change in VHD1.3 (VHMUTVAL, shown in figure 2). This mutation and the other mutations described in the examples below can be assembled in different combinations to make further novel derivatives.

In Vitro Mutagenesis

SUBSTITUTE SHEET

10

25

(-,-

- (1) The oligonucleotides detailed in fig. 2 were synthesised on an Applied Biosystems 391 DNA synthesiser and purified on Urea-acrylamide gels using standard techniques [Sambrook, J. et al. in "Molecular Cloning: a laboratory manual (second edition)". Cold Spring Harbor Laboratory Press, 11.23] prior to in vitro mutagenesis.
- (2) Preparation of single stranded DNA template for mutagenesis. The VH D1.3 antibody gene (Ward et al, 1989, supra) used to exemplify this invention was carried on plasmid pUC 119 (Sambrook, J. et al. in "Molecular. Cloning: a laboratory manual (second edition)". Spring Harbor Laboratory Press 1.14). Single-stranded template DNA was prepared by infecting TG1 cells carrying

the plasmid with M13 K07 helper phage using standard

- techniques for growth and purification (Sambrook, J. et 15[.] al. in "Molecular Cloning: a laboratory manual (second edition)". Cold Spring Harbor Laboratory Press 4.46).
- (3) Site-directed mutageneses were performed using the "In vitro Mutagenesis system, Oligonucleotide directed (version 2)" (Amersham International) exactly as per 20 manufacturers instructions. Ampicillin-resistant colonies resulting from the mutageneses were grown overnight in 2YT (2YT-per litre of water, 16g Bactotryptone, 10g Yeast extract, 5g NaCl) containing 100µg/ml. ampicillin. These cultures were diluted in fresh 2YT and single stranded template DNA prepared by M13 K07 infection as in (2) above. Mutants were verified by DNA

sequencing using the Sequenase version 2.0 kit.

25

EXAMPLE 2 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF GLUTAMINE 39 WITH GLUTAMATE

Using similar logic and methods to those described in example 1, an oligonucleotide VHMUTGLN (fig. 2) was designed for the introduction of a glutamate residue at position 39. This substitution is found in 1 of 420 heavy chains surveyed. Glutamate is considered to be marginally more polar than glutamine [Rose et al, Science 229 834-838, 1985].

10 EXAMPLE 3 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF LEUCINE 45 WITH GLUTAMINE

Using similar logic and methods to those described in example 1, an oligonucleotide VHMUTLEU (figure 2) was designed which introduces a substitution of leucine with glutamine at residue 45 (fig. 2). This modification is found in 2 of 402 sequences surveyed (396 have leucine at this position). One of the antibodies containing glutamine at this position is a mouse antibody specific for anti-B1, 6D-galactan.

20 EXAMPLE 4 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF TRYPTOPHAN 47 WITH ASPARTATE

Using similar logic and methods to those described in example 1, an oligonucleotide VHMUTWD (figure 2) was designed for the introduction of aspartate at position 47. This substitution is found in one of 392 heavy chains surveyed.

EXAMPLE 5 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF TYROSINE 91 WITH THREONINE

20

Using similar logic and methods to those described in example 1, an oligonucleotide VHMUTTYR was designed for the introduction of threonine at position 91. This substitution is found in one of 398 heavy chains surveyed.

EXAMPLE 6 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF ALANINE 93 WITH SERINE

Using similar logic and methods to those described in example 1, an oligonucleotide VHMUTALA (figure 2) was designed for substitution of alanine 93 with serine. This substitution is found in 4 of 410 heavy chains surveyed. One of these is in a mouse anti-B2,1 fructosan.

EXAMPLE 7 PREPARATION OF VH D1.3 WITH A MORE POLAR

15 FRAMEWORK BY SUBSTITUTION OF TRYPTOPHAN 103 WITH

GLUTAMATE OR TYROSINE

Using similar logic and methods to those described in example 1, two oligonucleotides VHMUTTRP and VHMUTWY (figure 2) were designed for the introduction of glutamate and tyrosine respectively at position 103. These substitutions are found once each in 308 heavy chains surveyed. Glutamate is much more polar than tryptophan. Tyrosine, although more polar than tryptophan is a more conservative substitution.

EXAMPLE 8 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF RESIDUES IN POSITIONS 37,39

AND 47 WITH HOMOLOGOUS RESIDUES FROM THE IMMUNOGLOBULIN FAMILY PROTEIN THY-1

SUBSTITUTE SHEET

15

20

25

(F)

Thy-1 is a single domain protein of the immunoglobulin superfamily. Alignment of the residues of Thy-1 with those of immunoglobulin heavy chains has been performed by Williams (A.F. Williams and J. Gagnon Science 216 696-703 1982; A.F. Williams and A.N. Barclay Ann. Rev. Immunol. 6 381-405, 1988). Although residues 37,39,91 and 93 of the VH domain interface were aligned with the same residues of Thy-1 in both publications, the residues at positions 45 and 47 were aligned with different residues reflecting the lower degree of homology of adjacent amino acids from these positions. The oligonucleotide VHTHY-1 (figure 3) was designed to incorporate the most polar residues at positions 37,39 and 47 found at homologous Thy-1 positions using the alignment published by Williams & Gagnon (1982), supra). Mutagenesis was performed as in example 1. The amino acid substitutions generated are shown in figure 4. EXAMPLE 9 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF RESIDUES IN POSITIONS 91,93 AND 103 WITH HOMOLOGOUS RESIDUES FROM THE IMMUNOGLOBULIN FAMILY PROTEIN THY-1

Using the strategy described in example 8, an oligonucleotide VHTHY-2 (figure 3) was designed to incorporate the most polar substitutions of VH residues 91,93 and 103 at homologous Thy-1 residues [Kabat, E.A. et al. in "Sequences of Proteins of Immunological Interest" U.S. Department of Health and Human Services (1987). Another oligonucleotide VHTHY-3 (figure 3) was

designed to incorporate the residues found at these positions in rat brain Thy-1 which appears most polar overall at residues homologous to the VH interface. Mutagenesis is as described in example 1. The amino acid changes generated are shown in figure 4.

EXAMPLE 10 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF RESIDUES IN POSITIONS 37,39,47,91,93 AND 103 WITH HOMOLOGOUS RESIDUES FROM THE IMMUNOGLOBULIN FAMILY PROTEIN THY-1

The amino acid changes detailed in examples 8 and 9 were combined by performing a mutagenesis experiment as in example 1 using the DNA sequence of mutant protein VHTHY-1 as template and mutant oligonucleotides VHTHY-2 and VHTHY-3 (figure 3) to incorporate site directed to changes.

EXAMPLE 11 PREPARATION OF VH D1.3 WITH A MORE POLAR FRAMEWORK BY SUBSTITUTION OF RESIDUES IN POSITIONS 37,45,47,93 AND 103 WITH ASPARAGINE, THREONINE OR SERINE

Oligonucleotides are prepared containing the triplet GXT at each of the positions 37,39,45,47,91,93 and 103 (where X is a random mixture of the bases C,G and T; figure 5). Use of these as mutagenesis primers as in example 1 would generate the insertion of Ser, Thr and Asn respectively depending on which base was incorporated. Derivatives generated are then screened for antigen binding and improved properties.

EXAMPLE 12: ASSESSMENT OF ANTIGEN BINDING STATUS OF VHTHY-1 AND VHTHY-2 MUTANT SINGLE DOMAIN ANTIBODIES

vat charge

20

10

VH D1.3 interface mutants VHThy-1 and VHThy-2 constructed as described in example 8 and 9 were assessed for lysozyme binding activity. Antigen binding status of mutant single domain antibodies was determined by ELISA (Enzyme Linked Immuno adSorbent Assay) according to techniques well known in the art.

This is just one of a whole range of methods that can be used to measure antigen-antibody binding. Others include Western blotting, competitive radioimmunassay and fluorescence quench.

The ELISA for lysozyme binding by mutant single domains was undertaken as follows:

Overnight cultures of ampicillin-resistant clones were diluted 1 in 10 into fresh 2YT (with 100μg/ml ampicillin) and grown for 1hr at 37°C. Isopropyl β-D-thiogalactopyranoside (IPTG) was added to 1mM final concentration and the cells cultured for a further 24-30 hrs at 37°C. Supernatants were prepared by centrifugation for use directly in the ELISA.

- 20 1) The plates (Falcon microtest III flexible plate) were coated with 200µl per well of lmg/ml hen egg lysozyme in 50mM NaHCO3, pH 9.6 overnight at room temperature.
- 2) The wells were rinsed with three washes of phosphate buffered saline (PBS), and blocked with 300µl per well 2% skimmed milk powder in PBS for two hours at 37°C.
 - 3) The wells were rinsed with three washes of PBS and 200µl of culture supernatant were added and incubated for

two hours at room temperature.

- 4) The wells were washed three times with 0.05% Tween 20 in PBS and three times in PBS.
- 5) 200µl of a suitable dilution (1 in 1000) of rabbit
 5 polyclonal antiserum against the Fv fragment in 2% skimmed milk powder in PBS was added to each well and incubated for two hours.
 - 6) Washes were repeated as in (4).
- 7) 200µl of a suitable dilution (1 in 5000) of goat
 10 anti-rabbit antibody (Sigma) coupled to horseradish
 peroxidase, in 2% skimmed milk powder in PBS, was added
 to each well and incubated at room temperature for one
 hour.
 - 8) Washes were repeated as in (4).
- 9) 200µl 2,2' azino-bis (3-ethylthiazolinesulphonic acid) [Sigma] (0.55mg/ml in citrate buffer (citrate buffer comprises: 54mls 50mM citric acid plus 46mls 50mM trisodium citrate per 100mls), with 1µl 30% hydrogen peroxide:water per 10 mls) was added to each well and the colour allowed to develop for up to ten minutes at room temperature.

The reaction was stopped by adding 0.05% sodium azide in 50mM citric acid pH4.3. ELISA plates were read at 405nm in a Titertek Multiskan M.C. to give an optical density reading for each well. The optical density reading is in proportion to the amount and affinity of the primary antibody used in the ELISA, in this case a single domain antibody.

5.

10

The result shown in figure 6 demonstrates that these mutants had retained their ability to bind lysozyme. The VHThy-1 mutant appears to have higher affinity/quantity of lysozyme binding activity than the parent VH D1.3, whereas mutant VHThy-2 has slightly less.

Given the complexity of the problem (see above), this result was surprising and reinforces the point that the properties of VH single domain antibodies can surprisingly be improved without unduly compromising antigen binding, as taught in this document.

EXAMPLE 13 ASSESSMENT OF ANTIGEN BINDING STATUS OF VHMUTTRP, VHMUTLEU AND VHTHY-3 MUTANT SINGLE DOMAIN ANTIBODIES

VHD1.3 interface mutants VHMutLeu, VHMutTrp and
15 VHThy-3 constructed as described in examples 3,7 and 9
respectively were assessed for lysozyme binding
activity., Antigen binding status of mutant single
binding domains was determined by ELISA as described in
example 12. The result shown in figure 7 demonstrates
20 that these mutants had retained their ability to bind
lysozyme.

EXAMPLE 14 ASSESSMENT OF ANTIGEN BINDING STATUS OF VHTHY
1, THY-2; VHTHY-1, THY-3 AND VHMUTWD MUTANT SINGLE DOMAIN

ANTIBODIES

25 VHD1.3 interface mutants VHThy-1, Thy-2; VHThy-1, Thy-3 and VHMutWD constructed as described in examples 10 and 4 respectively were assessed for lysozyme binding activity. Antigen binding status of mutant single

10

15

20

25

binding domains was determined by ELISA as described in example 12. The result shown in figure 8 demonstrates that these mutants had retained their ability to bind lysozyme.

Thus, extensive changes (6 amino acid substitutions) can be made at the VH interface increasing the polarity of the domain without affecting the ability to bind lysozyme. The approach used to select substitutions taught in this document may be expected to be applicable to any VH domain.

EXAMPLE 15 CLONING OF GENE ENCODING VHTHY-1, THY-2 INTO fdPs/Bs FOR DISPLAY ON PHAGE

The gene encoding the derivative VHThy-1, Thy-2, generated in example 10 by using the DNA sequence of the mutant protein VHThy-1 as template and the mutant oligonucleotide VHThy-2 to incorporate site directed changes, was subcloned into the vector fdPs/Bs for display of this VH domain on phage as a fusion with gene III protein. The vector fdPs/Bs is similar to fdCAT1 (McCafferty, J. et al, 1990 Nature 348 p552-554) except that it contains Pst1 and BstB11 restriction sites for cloning (Figure 9).

A miniprep of pUC119 VHThy-1, Thy-2 DNA was prepared using standard procedures (Sambrook et al, 1989 supra). The VHThy-1, Thy-2 encoding sequences were amplified by PCR using the primers RVHTHYFOR and KSJ6.

RVHTHYFOR

5' TGA GGA GAC GGT GAC CGT GGT GCC TTG GCC AGT G 3'

15

20

25

This incorporates a BstEll site at the 3' end of the VHThy-1, Thy-2 gene.

KSJ6

- 5' AGG TGC AGC TGC AGG AGT CAG G 3'
- 5 This incorporates a PstI site at the 5' end of the VHThy1, Thy-2 gene.

PCR was performed using 20mm Tris (pH7.3 at 70°C), 50mM KC1, 4mM MgCl2, 0.01% gelatin with 10uM each oligonucleotide, 1mM each dNTP, 5 units Tag polymerase and approximately 50ng pUC119VHThy-1, Thy-2 DNA in a total volume of 100µl. The product of the PCR reaction was ethanol precipitated and resuspended in 20ul 10mM Tris, pH8.0, 0.1 mM EDTA, A 10µl portion was digested using PstI (20 units) and BstEll (20 units) in NEB buffer 2 in a total volume of 50µl at 37°C for 2h (restriction enzymes obtained from New England Biolabs, CP Labs, Bishops Stortford). Following digestion, the reaction mixture was phenol extracted and ethanol precipitated. The product was electrophoresed on a 1% agarose Trisacetate-EDTA gel and the band of approximately 350bp excised and the DNA purified using Geneclean (Bio 101, La Vector DNA (fdPs/Bs RF form) was Jolla, California). prepared using standard procedures (Sambrook et al, 1989 supra). This DNA (1.2µg) was digested with PstI and BstEll (50 units) in 100µl NEB buffer 3 at 37°C for 90 The products were phenol extracted and ethanol min. precipitated and the resuspended DNA was phosphatased as described by Sambrook et al, (1989 supra). A preparative

10

15

20

25

0.7% Tris-borate-EDTA agarose gel was performed and the band of approximately 9kb excised and the DNA purified using Geneclean and resuspended in 10 µl 10mM Tris, pH8.0, 0.1mM EDTA. Ligation was performed using 5ul each. of the digested vector and insert DNA using 200 units of T4 DNA ligase in 10µl NEB ligase buffer. The ligation mixture (8µ1) was transformed into competent E.coli MC1061 cells prepared according to Sambrook et al. 1989 supra) and the mixture plated on 2YT agar containing 20µg/ml tetracycline. Colonies were picked, single stranded DNA was prepared (Sambrook et al, 1989 supra) and the DNA was sequenced using a Sequenase 2.0 kit (United Sates Biochemical, Cleveland, U.S.A.). sequence of the insert corresponded to VHThy-1, Thy-2. The derivative has been named fdVHThy-1, Thy-2.

A clone of VHD1.3 in fdPs/Bs was prepared starting from pUC119VHD1.3. The insert encoding VHD1.3 was prepared by digestion of pSW1-VHD1.3-TAG1 (Ward E.S. et al., 1989 supra) with PstI and BstE11. Other procedures were as above. This derivative has been named fdVHD1.3.

EXAMPLE 16 ELISA ASSAY OF VHTHY-1, THY-2 DOMAIN DISPLAYED ON PHAGE

The fdVHThy-1, Thy-2 phage constructed in example 15 was shown to be functional in the binding of the antigen, lysozyme, using an ELISA assay.

Viral particles were prepared by growing E.coli MC1061 cells containing fdVHThy-1, Thy-2; fdVHD1.3; phage antibody D1.3 (displaying scFvD1.3; McCafferty, J. et al.

25

1990 Nature 348 p552-554) or fdPs/Bs in 50ml 2YT medium containing 15µg/ml tetracycline for 16 to 24h. The culture supernatant was collected by centrifugation for 10 min at 10000rpm in an 8 x 50ml rotor. Phage particles were precipitated by adding 1/5 volume 20% polyethylene glycol (PEG)/2.5M NaCl and leaving at 4°C for 1h. Phage particles were pelleted by centrifugation for 15 min as described above and the pellets resuspended in sterile 10mM Tris, pH8.0 1mM EDTA containing 1% gelatin to 1/40 the of the original volume.

- 1. ELISA plates were coated with lysozyme and blocked with PBS containing skimmed milk powder as described in example 12.
- 2. Wells were rinsed with PBS.
- 15 3. Concentrated phage (200µl) was added to each well as appropriate and incubated at room temperature for 2h.
 - 4. The wells were washed three times with 0.5% Tween 20 in PBS and three times with PBS.
- 5. Sheep anti-M13 serum (200µl; 1 in 1000) in PBS containing 2% skimmed milk powder was added to each well and incubated for 1h.
 - 6. Washing was repeated as in 4.
 - 7. Peroxidase conjugated rabbit anti-goat immunoglobulin (200µl; 1 in 5000; Sigma) was added and incubated for 1h.
 - 8. Washes were repeated as in 4.
 - 9. Peroxidase substrate was added as in example 12 and colour allowed to develop for 1h.

SUBSTITUTE SHEET

Both fdVHThy-1, Thy-2 and fdVHD1.3 gave ELISA signals 4 to 5 times above the value obtained with fdPs/Bs, whereas with phage antibody D1.3, the signal was approximately 8 times that with fdPs/Bs (Figure 10). Thus modification of the VH interface residues does not affect the ability of the domain to bind lysozyme when displayed on phage.

It will be appreciated by those skilled in the art that the present invention has been described above by

way of example only, and that considerable modifications to the procedure may be made to effect a similar outcome without departing from the scope of the invention.

15

CLAIMS

- 1. A single chain variable domain, which is a synthetic analogue of another single chain variable domain of a member of an immunoglobulin family or superfamily, and in which analogue, one or more interface amino acid residues of the domain is altered as compared to the said another domain, in which a said altered amino acid is substituted with a residue which occurs in an analogous position in a member of an immunoglobulin family or superfamily, so that the analogue is more hydrophilic than the said another domain.
- 2. A single chain variable domain according to claim 1 in which a said altered amino acid residue is in a framework region.
 - 3. A single chain variable domain according to claim 1 or claim 2 in which a said altered amino acid residue is in a complementarity determining region.
- 4. A single chain variable domain according to any one of claims 1 to 3 wherein the synthetic analogue has essentially the same binding activity as the said another domain.
- 5. A single chain variable domain according to claim 2 or claim 3 in which the amino acid sequence of a complementarity determining region is additionally altered by way of amino acid substitution, deletion,

addition, or inversion, to alter the specificity and/or binding characteristics of the analogue as compared to the natural domain.

- 6. A single chain variable domain according to any
 5 one of claims 1 to 5, which is a synthetic analogue of a single variable immunoglobulin heavy chain domain.
 - 7. A single chain variable domain according to claim 6, in which one or more of the amino acid residues 37, 39, 45, 47, 91, 93 and 103 is altered.
- 8. A single chain variable domain according to claim 6 or claim 7 in which the amino acid alterations comprise one or more of the following:
 - i) substitution of valine 37 with glutamine or threonine;
- 15 ii) substitution of glutamine 39 with glutamate;
 - iii) substitution of leucine 45 with glutamine;
 - iv) substitution of tryptophan 47 with aspartate or
 glycine;
- v) substitution of tyrosine 91 with threonine,
 20 serine or methionine;
 - vi) substitution of alanine 93 with serine or glutamate;
 - vii) substitution of tryptophan 103 with glutamate tyrosine or threonine;
- 25 viii) substitution of valine 37, leucine 45, tryptophan 47, alanine 93 and/or tryptophan 103

with any of asparagine, threonine or serine;

- ix) substitution of valine 37 with threonine and
 glutamine 39 with glutamate and tryptophan 47
 with glycine;
- 5 x) substitution of tyrosine 91 with serine or methionine and alanine 93 with glutamate and tryptophan 103 with threonine.
- 9. A single chain variable domain according to anyone of claims 1 to 8 which is coupled to a further10 molecular moiety.
 - 10. An immunoglobulin single chain variable domain according to claim 9 wherein the further molecular moiety is an enzymic-, fluorescent-, or radio-label, or a portion of an immunoglobulin.
- 11. A diagnostic kit which comprises a single chain variable domain according to any one of claims 1 to 10, together with one or more ancillary reagents for carrying out the diagnostic test.
- 12. A therapeutic composition which comprises at 20 least a single chain variable domain according to any one of claims 1 to 10.
 - 13. A method for making a single chain variable domain which is a hydrophilic synthetic analogue of another single chain variable domain of a member of an immunoglobulin family or superfamily, which comprises:
 - (1) inspecting the interface regions of a said single

chain variable domain to identify hydrophobic amino acid residues; and

- (ii) producing a said analogue of said single chain variable domain in (i) in which one or more of said hydrophobic residues is substituted with a less hydrophobic residue which occurs in an analogous position in a member of an immunoglobulin family or superfamily.
 - 14. A method according to claim 13 which comprises:
- (a) obtaining the nucleotide sequence encoding one

 or more of the identified hydrophobic amino
 acid residues;
 - (b) using site directed mutagenesis to alter the nucleotide sequence to introduce a triplet coding for the substitute amino acid,
- 15 (c) using the altered nucleotide sequence in a recombinant expression system to express the synthetic analogue.
 - 15. A method according to claim 13 or claim 14 wherein more than one amino acid residue is substituted.
- 16. A method according to any one of claims 13 to 15 wherein the substitute amino acids are derived from naturally monomeric members of the immunoglobulin superfamily.
- 17. A method according to claim 16 wherein the 25 naturally monomeric member is Thy-1.
 - 18. A method according to any one of claims 13 to

17 wherein the synthetic analogue has essentially the same binding activity as the said another domain.

	rba	n_	KYL	<u>L</u> PT	A A
GCATGCAAATTCTATT	TC <u>aaggag</u> ac	RGTCATAATS	ARATACCTA	TTGCCTACG	CRGC
10	20	30	40	· 5 0	6
PelB le	ader				
A G L L L L	A A O	PAM	<u>A</u> Q V	QLQ	E S
GCTGGATTGTTATTAC	TCGCTGCCCA	ACCAG CGATO	GCCCRGGTG	CAG <u>CT GCA G</u> G	AGTCA
70	80	90	100	110	120
				Pati	
	PSQ			T U S.	
GGRCCTGGCCTGGTGG				· · · · · · · · · · · · · · · · · · ·	
130	140	150	1 60	170	180
		11 B O	P P 6	K G L	- "
S L T G Y G TCATTAACCGGCTATG					E H
198	200	210	220	230	240
190	200	210	220	٠.	271
	ι	JHD1.3			
LGHIUG			H S R	LKS	R L
CTGGGRATGATTTGGG	GTGATGGRAA	CACAGACTAT	TARTTCAGC1	CTCARATCCA	
250	260	270	280	290	300
		·			
S. I. S. K D. H	S K S	QŲF	LKN		H T
RGCRTCRGCRAGGRCR					
310	320	330	340	350	360
DDTARY	YER	RER	D Y R	LDY	u 6
GATGACACAGCCAGGT					
370	380	390	400	410	420
				•••	
OGTTLT	USS				
CARGGCACCACTCTCA	CAGTCTCCTC	ATA ATARGAG	CTR		
430	440	450	•		

Fig 1.

Sequence of minus (-) strand of VIID1.3

5' CA AAT CAT TCC CAG CCA CTC CAG ACC CTT TCC TGG AGG CTG GCG AAC CCA GTT TAC ACC A 3'

5' CA AAT CAT TCC CAG AIC CTC CAG ACC CTT 3'

5' AG CCA CTC CIG A CC CTT TC 3'

(47 Trp->Asp)

VHMUTLEU

(45 Leu->Gln

VHMUTGLN

5' C TGG AGG CTC GCG AAC CCA 3'

| 39 GIn->GIU)

VHMUTVAL

37 Val->Gin)

5' TGG AGG CTG GCG CTG CCA GTT TAC ACC A 3'

Mutagenisiag Oligonuciostido

Sequence of minus (-) strand of VIID1.3

5' GGT GCC TTG GCC CCA GTA GTC AAG CCT ATA ATC TCT CTC TCT GGC ACA GTA GTA CCT GGC TGT3'

5' GT GCC TTG GCC CTC GTA GTC AAG CCT A3'

5' OT OCC TTG OCC OTA OTA OTC AAG CCT A3'

(103 Trp->Tyr)

(93 Ala->Ser)

VHMUTTYR

VHMUTALA

(91 Tyc->Thr)

(103 Trp->6lu)

VHMUTTRP

VHMUTWY

5' T CTC TCT GGA ACA GTA GTA 3'

5' TC TCT GGC A CA GGT GTA CCT GGC TGT3'

FIGURE 2.

(·

FIGURE 3.

Mutagenisiag Oligonecicotido

VHTHY-1

Sequence of minus (-) strand of VHD1.3

5' CA AAT CAT TCC CAG CCA CTC CAG ACC CTT TCC TGG AGG CTG GCG AAC CCA GTT TAC ACC A 3'

5' CA AAT CAT TCC CAG GCC CTC CAG ACC CTT TCC TGG AGG CTC GCG AGI CCA GTT TAC ACC A 3'

Mutagonizing Oligonucicotido most polar residues

УНТНУ-2

substituted)

VHTHY-3

substitutions from rat brain Thy-1]

Sequence of minus (-) strand of VIID1.3

5'6GT GCC TTG GCC CCA GTA GTC AAG CCT ATA ATC TCT CTC, TCT GGC ACA GTA GTA CCT GGC TGT3"

S'GGT GCC TTG GCC ACT GTA GTC AAG CCT ATA ATC TCT CTC TCT TTC ACA GGA GTA CCT GGC TGT3"

5'66T GCC TTG GCC AGT GTA GTC AAG CCT ATA ATC TCT CTC TCT TTC ACA CAT GTA CCT GGC TGT3"

Mutant protein							•	Amino acid sequence	T D W	£ 88	ouenb		of VE	VED1.3							
	gog	¥ > §	N m N	g a g	E > E	8 ≈ 8	ရှ ဝ ရွိ	S w B	= ≈ §	3 o 8	S × S	\$ 0 £	રી ન ફ્ર	ලි ක දි වි	2 = E	8 7 E	ခ္ စ ရွိ	So m M	51 Arr		
Vetsy-1					e S		M 69				• , •				0 8						
Mutant protein							~	Amino acid	aot		ectence		of VB	VED1.3							
	B to S	8 < 8	8 = 8	8 × 8	로 누 함	2 o 2	8 	Z = Q	g = 2	8 = 5	2 a 8	8 × 55	8 ¤ 8	8 1 E	15 a 58	162 × 25	103 203	ğ o ğ	5 o 5	8 o 8	5 4 5
VRTHY-2					စ ဦ		m (§				·-· .	-~					e Ş				
VethY-3			· A		M DIN		≈ §										e ğ				

(i)

FIGURE 5

Oligo for inscrtion at residues 37, 45 and 47

5' CA AAT CAT TCC CAG GXT CTC GXT ACC CTT TCC TGG AGG CTG GCG GXT CCA GTT TAC ACC A3"

Oligo for insertion at residues 93 and 103

5' GT GCC TTG GCC GXT GTA GTC AAG CCT ATA ATC TCT CTC TCT GXT ACA GTA GTA CCT G3'

Hg. 6.

 $\langle \hat{\mathbb{Q}}_{2} \rangle$

Figure 7.

Figure 8.

9/10

Gene III

(1624)

(1650)

filtet TCT CAC TCC GCT GAA ACT GIT GAA ACT

Fal Ps/Rs TCT CAC TCC GCT CAG GTC CAA CTG CAG AAG CTT ACG GTC ACC GTC TCC TCA ACT GTT GAA AGT
Pst 1

Pst 1

BstE11

Figure 9.

ELISA of fdVHThy-1, Thy-2 and controls

Figure 10.

International Application N

T C ASS	MCATON OF CIM		10						
		JECT MATTER (If several ch							
	. 5 C12N15/1	nt Cassification (IPC) or to bot 12; C12N15,		CO7K13/00;	A6	51K37/02			
II. PIELDS	SEARCHED								
		Minin	un Document	ation Searched					
Chastifica	tion System		Q	essification Symbols					
Int.Cl	. 5	C07K							
				n Minimum Documentation Incinied in the Fields Searched ⁸					
		D TO BE RELEVANT							
Category ^o	Citation of Do	ocusent, 11 with indication, who	re appropriate,	of the relevant passages 12		Relevant to Claim No.13			
X Y	1990 See page 1-23; pa	368 684 (MEDICAL 5, lines 19-32; age 13, lines 3-3 figs. 10.12	page 6;	page 7, lines		1-16,18 17			
X Y	December	22, lines 5-32; laims				1-6, 9-16,18 17			
	vol. 216 pages 69 WILLIAMS glycopro cited in	, 14 May 1982, L	leurona 1	Cell Thy-1		17			
				-/					
"A" document of the control of the c	"Special extegories of cited documents: 10 "A document defining the general state of the art which is not considered to be of particular relevance "E" surfler document but published on or after the international filling date and in confider with the application but dind to anderstand the principle or theory underlying the invention filling date "I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other seasor. "I document published after the international filling date but itself to exhibit a priority date claimed invention cannot be considered to inventive step when the document is continued with one or more other such documents, such combination being obvious to a person skilled in the srt. "A" document member of the same patent family								
. CERTIFIC									
	14 NOVEMB			Date of Mailing of this Interest 2 2. 11.		Report			
ternational S	earching Authority EUROPEAN	PATENT OFFICE		NAUCHE S.A.	1	A STATE OF THE PARTY OF THE PAR			

form PCT/ISA/210 (mount sheet) (Leavey 1915)

C	ENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SE		
Category °	Citation of Document, with Indication, where appropriate, of the relevant passages		Referent to Claim N
A	NATURE. vol. 341, 12 October 1989, LONDON GB pages 544 - 546; WARD, E.S. ET AL.: 'Binding activities of a repertoire of single immunoglobulin variable domains secreted from Esherichia Coli.' cited in the application see the whole document	1-	-18
	JOURNAL OF MOLECULAR BIOLOGY vol. 204, no. 1, 5 November 1988, ACADEMIC PRESS, H. B. JOVANICH, PUBL pages 155 - 164; JANIN, J. ET AL.: 'Surface, subunit interfaces and interior of oligomeric proteins.' see the whole document	1-	18
- ·	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 82, July 1985, WASHINGTON US pages 4592 - 4596; NOVOTNY, J. ET AL.: 'Structural invariants of antigen binding: comparison of immunoglobulin VL-VH AND VL-VL domain dimers.'	1-1	
	·		•.

Form PCT/ISA/210 (notes cleat) (January 1965)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. GB 9101253 SA 49593

This among lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 14/11/91

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
P-A-0368684	16-05-90	AU-A- WO-A- JP-T-	4520189 9005144 3502801	28-05-90 17-05-90 27-06-91
D-A-8809344	01-12-88	AU-B- AU-A- EP-A- JP-T-	612370 1804988 0318554 2500329	11-07-91 21-12-88 07-06-89 08-02-90
				-