Step-1

The matrix A contains n eigenvalues \hat{I}_{n} , \hat{I}_{n} , ..., \hat{I}_{n} . Since, the matrix A is not a zero matrix, at least one of the eigenvalues of A must be nonzero.

Without loss of generality, let \hat{I}_n be a non zero eigenvalue.

Thus, we have $Ax = \lambda_n x$, where $\lambda_n \neq 0$ and $x \neq 0$.

Step-2

Let us apply the product $(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$ to the vector x. Thus, we get

$$\begin{split} \big(\big(A - \lambda_1 I \big) \big(A - \lambda_2 I \big) \cdots \big(A - \lambda_n I \big) \big) x &= \big(\big(A - \lambda_1 I \big) \big(A - \lambda_2 I \big) \cdots \big) \big(A - \lambda_n I \big) x \\ &= \big(\big(A - \lambda_1 I \big) \big(A - \lambda_2 I \big) \cdots \big) \big(A x - \lambda_n I x \big) \\ &= \big(\big(A - \lambda_1 I \big) \big(A - \lambda_2 I \big) \cdots \big) \big(\lambda_n x - \lambda_n x \big) \\ &= \big(\big(A - \lambda_1 I \big) \big(A - \lambda_2 I \big) \cdots \big) \big(0 \big) \\ &\qquad \big(\big(A - \lambda_1 I \big) \big(A - \lambda_2 I \big) \cdots \big(A - \lambda_n I \big) \big) x = 0 \end{split}$$

Step-3

Thus, we have shown that $\frac{\left[\left(A-\lambda_{1}I\right)\left(A-\lambda_{2}I\right)\cdots\left(A-\lambda_{n}I\right)=0\right]}{A-\lambda_{1}I}.$