Clase 13.1

Teorema 1.

Si existe f'(x), entonces f es continua en x

Nota: El teorema recíproco no siempre se cumple

Teorema 2. Algebra de derivadas

Si existe f'(x) y existe g'(x) entonces:

i. Existe
$$(f \pm g)'(x) = f'(x) \pm g'(x)$$

ii. Existe
$$(f.g)'(x) = f'(x)g(x) + g'(x)f(x)$$

iii. Existe
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g_{(x)}^2}$$
; $g(x) \neq 0$

Ejemplos

1. Encontrar las derivadas de las siguientes funciones:

a.
$$f(x) = x^2 + \sin x$$

b.
$$f(x) = 4x^3$$

c.
$$f(x) = x^{-2}$$

$$d. f(x) = \frac{e^x}{x^2}$$

e.
$$f(x) = xe^x$$

2. Demostrar que las derivadas de las siguientes funciones trigonométricas son:

a.
$$(\tan x)' = (\sec x)^2 = \sec^2(x)$$

b.
$$(ctgx)' = -csc^2(x)$$

c.
$$(secx)' = secx.tgx$$

d.
$$(cscx)' = -cscx.ctgx$$

EJERCICIOS PROPUESTOS

Encontrar las derivadas de las siguientes funciones:

a.
$$f(x) = 2x^2 - 3x + 4$$

b.
$$f(x) = cos^2(x)$$

c.
$$f(x) = x\sqrt[3]{x}$$

d.
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

e.
$$f(x) = x \cdot \cos x$$

f.
$$f(x) = \frac{\sin x}{x}$$

Teorema 3. Derivación de funciones compuestas. Regla de la cadena

Si f = u(v(x)), y existe v'(x) y existe u'(y) con y = v(x), entonces existe f'(x) = u'(v(x)).v'(x)

Ejemplos

1. Calcular las derivadas de las siguientes funciones:

a.
$$y = a^x$$
; $con a > 0$ $constante$

b.
$$y = \log x$$

c.
$$y = \log_5 x$$

$$d. f(x) = \sin(x^2)$$

e.
$$f(x) = (x^2 + 2)^5$$

f.
$$f(x) = e^{2x} \ln x$$

g.
$$f(x) = e^{3x}$$

h.
$$f(x) = 4^x$$

EJERCICIOS PROPUESTOS

Encontrar las derivadas de las siguientes funciones:

a.
$$f(x) = \sqrt{x^3 - 2x^2 + x - 2}$$

b.
$$f(x) = \sec\left(\frac{x-1}{x+1}\right)$$

b.
$$f(x) = \sec\left(\frac{x-1}{x+1}\right)$$

c. $f(x) = \sqrt{\sqrt{x^3 + x} - 2}$

d.
$$f(x) = \ln(x+1)^2$$

Clase 13.2

Teorema 4. Derivadas de funciones inversas

Sea f continua y estrictamente monótona en el intervalo [a, b]. Sea g la función inversa de f. Si existe f'(x) para todo $x \in]a, b[$, entonces:

$$g'(x) = \frac{1}{f'(x)}$$
; $con f'(x) \neq 0$

Ejemplos

1. Si f(x) = 3x + 2, calcular la derivada de la función inversa

Sea
$$g(x) = \frac{x-2}{3} = \frac{x}{3} - \frac{2}{3} = f^{-1}(x)$$
 la inversa de $f(x)$

Entonces
$$g'(x) = \frac{1}{f'(x)} = \frac{1}{3}$$

Lo que equivale a obtener la derivada de $(f^{-1}(x))' = \frac{1}{3}$

2. Calcular la derivada de $y = arcsenx = sin^{-1} x$

$$y = \sin x \quad \to \to x = \sin^{-1} y$$

$$(\sin^{-1} y)' = \frac{1}{(\sin x)'} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 x}} = \frac{1}{\sqrt{1 - y^2}}$$

Entonces: $(arcsenx)' = \frac{1}{\sqrt{1-x^2}}$

- 3. Demostrar que las derivadas de las siguientes funciones trigonométricas inversas son:
- a. $(arccosx)' = \frac{-1}{\sqrt{1-x^2}}$
- b. $(arctgx)' = \frac{1}{1+x^2}$
- c. $(arcctgx)' = \frac{-1}{1+x^2}$
- d. $(arcsecx)' = \frac{1}{|x|\sqrt{x^2-1}}$
- e. $(arccscx)' = \frac{-1}{|x|\sqrt{x^2-1}}$

Derivadas de funciones implícitas

Existen expresiones matemáticas en las cuales no está "despejada" la variable dependiente y (o incluso no es factible despejar). Es decir la función no se presenta como y = f(x)

Para derivar se considera justamente que y = f(x) y se deriva utilizando el teorema del álgebra de derivadas y la regla de la cadena.

Ejemplos

- 1. Encontrar $\frac{dy}{dx} = y'$ si tenemos que $x^2y^3 2xy = 6x + y + 1$
- 2. Encontrar y' si $x^2 + y^2 = 4$
- 3. Encontrar la pendiente de la recta tangente a la curva $4x^2 + y^2 = 20$ en el punto (2, -2)

EJERCICIOS PROPUESTOS

- 1. Encontrar las derivadas de las siguientes funciones:
- a. $y = sen^{-1}(x^2)$
- b. $y = tg^{-1}\sqrt{x^2 + 2}$
- c. $\sin x = x(1 + \tan y)$
- $d. \quad y = \cos(xy)$

Clase 13.3 PAE

Objetivo. Encontrar las derivadas de las siguientes funciones

- $1. \quad f(x) = \frac{x \sqrt{x}}{x + \sqrt{x}}$
- 2. Determinar el valor de x en la cual la función $y = x^2 2x + 1$ tiene una derivada nula.
- 3. Encuentre la ecuación de la recta tangente a la curva $y=(x-2)^2+3$ en el punto x=2
- 4. Encuentra la derivada de la función $y = 3 \sin x + 4 \tan x$
- 5. Hallar la derivada de $y = \ln(x^2 + 2x 1)$

- 6. Calcular la derivada de $y=3^{\sqrt{x+1}}$
- 7. Calcular la derivada de $y=2^{senx}$
- 8. Encontrar la derivada de $f(x) = \frac{arc senx}{x}$
- 9. Encontrar y' si 2senx cosy = 1
- 10. Encontrar la derivada de $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$

Trabajo Autónomo TA 2.13

Resolver todos los ejercicios propuestos de cada tema presentado en esta semana