ЕМ-алгоритм.

Ссылка на видеокурс от МИАН

Сегодня рассматриваются методы ЕМ-алгоритм (Expectation-Maximization — ожидание-максимизация) и к-средних (k-means), который является упрощением первого. Оба метода из информации, представленной в виде многомерных данных, выделяют классы, на которую ее можно разбить. Классификация выполняется автоматически (без учителя).

Постановка задачи и идея

Имеем множество X, на котором определена некоторая метрика ρ . X — метрическое пространство. В качестве X удобно рассматривать пространство \mathbb{R}^N с евклидовой метрикой $\|\cdot\|$.

Имеем множество образцов $X_L \subset X$ — обучающая выборка. Задача состоит в том, чтобы по множеству X_L построить метод классификации, который будет разбивать все множество X по аналогии с X_L на K кластеров. Количество классов K задано заранее.

Пусть X_L^k , $k=1,2,\ldots,K$ представляет собой множество с элементами k-го класса, тогда

$$X_L = \bigcup_{k=1}^K X_L^k.$$

Пусть имеется **центральный элемент** $\mu_k \in M_k$.

Рассмотрим произвольный $x \in X_L$. Если этот $x \in X_L^{k^*}$ $k^* \in \{1, 2, \dots, K\}$, то

$$\rho(x, \mu_{k^*}) = \min_{k=1}^{K} \rho(x, \mu_k). \tag{1}$$

То есть элемент обучающей выборки x принадлежит классу k^* , если x ближе всего к его центру тяжести μ_{k^*} .

Если окажется так, что $\rho(x, \mu_{k^*}) = \rho(x, \mu_{k^{**}})$, то нужно принять дополнительное соглашение о выборе класса для x. Пусть, например, из равносильных классов будет выбран тот, что имеет меньший номер. Тогда запись (1) будет однозначно определять класс, к которому принадлежит выбранный x.

Алгоритм к-средних

- 1. Инициализируем $\{\mu_k\}$ произвольно, таким образом, что $\mu_k \neq \mu_l$ при $k \neq l$. Это могут быть случайные элементы множества X_L . Выбор центров является наиболее важным шагом, определяющим исход кластеризации. Если этот выбор неудачен, то следует улучшить схему инициализации.
- 2. Выбираем произвольный элемент $x \in X_L$. На этом элементе происходит обучение.
- 3. Как только выбраны центры получена разбивка на классы

$$X_L^k = \{\mu_k\}.$$

Находим k^* , такой, что

$$\rho(x, \mu_{k^*}) = \min_k \rho(x, \mu_k),$$

то есть $x \in X_I^{k^*}$.

4. Добавляем x в найденное подмножество

$$X_L^{k^*} = X_L^{k^*} \cup \{x\}.$$

Курс: Стохастический анализ и его приложения в машинном обучении.

5. Проводим процедуру усреднения. Находим новый центр класса

$$\mu_{k^*} = \frac{x_{k^*}^1 + x_{k^*}^2 + \dots + x_{k^*}^{|X_k^{k^*}|}}{|X_k^{k^*}|}.$$

6. Переход к шагу 2.

На выходе получаем усредненные $\{\mu_k\}$, которые занимают точные положения центров классов.

Многомерное нормальное распределение

EM-алгоритм применяется в предположении, что классифицируемые многомерные данные представляют собой смесь многомерных **нормальных распределений**, то есть каждый класс описывается некоторым нормальным распределением.

На графике представлен пример смеси из двухкомпонентных нормальных распределений. Математическое ожидание — центр эллипса (эллипсоида, если N>2) рассеивания, а полуоси — среднеквадратичные отклонения (корень квадратный из дисперсии) каждой из компонент.

Задача обучения состоит в отнесении объекта к соответствующему кластеру, иными словами, нахождения параметров каждого из нормальных распределений.

Основанием для такого предположения, как правило, являются предельные законы в теории вероятностей, в частности центральная предельная теорема. Утверждение состоит в том, что сумма большого количества слабо зависимых (независимых) случайных величин (которые либо одинаково распределены, либо распределены по-разному, но так, что ни одна из них не превалирует над другими) имеет распределение, близкое к нормальному. На практике это часто применяется так, что сумма независимых и часто неизвестных факторов аппроксимируется нормальным распределением.

ЕМ-алгоритм

Будем рассматривать элементы из N-мерного пространства $x \in \mathbb{R}^N$. Обучающая выборка — это некоторые, выбранные нами элементы $\{x^m\}_{m=1}^M$, где $x^m = (x_1^m, x_2^m, \dots, x_N^m)$ $m=1,\dots,M$. Традиционно, K>1 — количество классов, на которое требуется разбить исходное множество.

Каждый класс описывается многомерным нормальным распределением. Математическое ожидание для каждого кластера есть N-мерный вектор

$$\mu_k = (\mu_{k1}, \mu_{k2}, \dots, \mu_{kN}), \quad k = 1, 2, \dots, K,$$

Курс: Стохастический анализ и его приложения в машинном обучении.

у которого компоненты суть математические ожидания соответствующих компонент некоторого вектора x, принадлежащего этому кластеру.

Многомерное нормальное распределение описывается **ковариационной матрицей**. Для простоты будем считать, что каждая компонента вектора x будет независимой друг от друга случайной величиной. Поэтому ковариации между компонентами равны 0 и матрица ковариации диагональная — на диагонали дисперсии каждой из компонент

$$\sigma_k^2 = (\sigma_{k1}^2, \sigma_{k2}^2, \dots, \sigma_{kN}^2), \quad k = 1, 2, \dots, K.$$

Целью алгоритма является построение вероятностей, что объект x^m принадлежит кластеру k. Эти вероятности будем обозначать через g_{mk} . Ясно, что

$$\sum_{k=1}^{K} g_{mk} = 1, \quad m = 1, 2, \dots, M.$$

Как и для сети Кохонена, следует проводить процедуру нормировки исходных данных.

Приведем сам алгоритм.

1. Инициализируем веса

$$w_k = \frac{1}{K}, \quad k = 1, 2, \dots, K.$$

2. Инициализируем математические ожидания для каждого кластера

$$\mu_{kn} = x_n^k, \quad k = 1, 2, \dots, K, \quad n = 1, 2, \dots, N.$$

3. Инициализируем дисперсии для каждого кластера

$$\sigma_{kn}^2 = \frac{1}{MK} \sum_{m=1}^{M} (x_n^m - \mu_{kn})^2, \quad k = 1, 2, \dots, K, \quad n = 1, 2, \dots, N.$$

Для нахождения дисперсии центрируем на мат. ожидание.

Как и в предыдущем методе, исход кластеризации зависит от удачного выбора инициализирующих значений.

4. Е-шаг

Проводим оценку вероятностей

$$g_{mk} = \frac{w_k p_k(x^m)}{w_1 p_1(x^m) + w_2 p_2(x^m) + \dots + w_K p_K(x^m)}, \quad m = 1, 2, \dots, M, \quad k = 1, 2, \dots, K,$$

где $p_k(x)$ — плотность многомерного нормального распределения, соответствующее k-ому кластеру

$$p_k(x) = \frac{1}{\sqrt{\det \sum_k (2\pi)^{N/2}}} \exp\left\{-\frac{1}{2} \sum_{n=1}^N \left(\frac{x_n - \mu_{kn}}{\sigma_{kn}}\right)^2\right\},$$

где \sum_k — матрица ковариаций k-го класса, $\det \sum_k = \sigma_{k1}^2 \cdot \sigma_{k2}^2 \dots \sigma_{kN}^2$. Ясно, что матрица ковариаций не должна вырождаться.

5. М-шаг

Обновление коэффициентов

$$w_k = \frac{1}{M} \sum_{m=1}^M g_{mk}, \quad k = 1, 2, \dots, K,$$

$$\mu_{kn} = \frac{1}{Mw_k} \sum_{m=1}^M g_{mk} x_n^m, \quad k = 1, 2, \dots, K, \quad n = 1, 2, \dots, N,$$

$$\sigma_{kn}^2 = \frac{1}{Mw_k} \sum_{m=1}^M g_{mk} (x_n^m - \mu_{kn})^2, \quad k = 1, 2, \dots, K, \quad n = 1, 2, \dots, N.$$

6. Повторяем шаги 4 и 5 заданное количество раз.

На выходе алгоритма получаем вероятности g_{mk} . Объект x^m принадлежит кластеру k^* , если

$$g_{mk^*} = \max_{k=1,2,...,K} g_{mk}.$$

Пример 1. Смесь гауссиан

Сначала создадим искусственную выборку исходных данных (точек на плоскости), из смеси двух гауссиан.

Теперь разделим это множество на два кластера с помощью алгоритма k-means (за 1000 итераций).

Видим, что с высокой точностью алгоритм разделил заданную случайную смесь. Ошибся только в спорных точках.

Алгоритм хорошо себя показывает именно на смесях из ярко выраженных нормальных распределений. Если рассматривать более сложные кластерные структуры, то разбиение, скорее всего, будет некорректным.

Пример 2. Классификация предприятий

Курс: Стохастический анализ и его приложения в машинном обучении.

В качестве другого примера применим ЕМ-алгоритм для кластеризации предприятий.

При K=2 матрица вероятностей примет следующий вид:

Название	Гигантское	Крупное и среднее
Газпром	1.00	$3.75 \cdot 10^{-116}$
Новатэк	$1.75 \cdot 10^{-213}$	1.00
Лукойл	$6.46 \cdot 10^{-92}$	1.00
Сбер	1.00	$1.48 \cdot 10^{-100}$
Яндекс	$3.72 \cdot 10^{-199}$	1.00
MTC	$3.47 \cdot 10^{-247}$	1.00
Уралкалий	$2.82 \cdot 10^{-273}$	1.00
Казаньоргсинтез	$2.43 \cdot 10^{-271}$	1.00
TMK	$3 \cdot 10^{-265}$	1.00
РКК "Энергия"	$4.51 \cdot 10^{-273}$	1.00

При K=3:

Название	Гигантское	Крупное	Среднее
Газпром	1.00	$1.92 \cdot 10^{-69}$	0.00
Новатэк	0.00	$2.51 \cdot 10^{-2}$	0.974916613
Лукойл	$6.07 \cdot 10^{-245}$	1.00	$2.61 \cdot 10^{-22}$
Сбер	1.00	$1.34 \cdot 10^{-59}$	0.00
Яндекс	0.00	$1.2 \cdot 10^{-6}$	0.999998799
MTC	0.00	$5.99 \cdot 10^{-6}$	0.999994008
Уралкалий	0.00	$6.01 \cdot 10^{-8}$	0.99999994
Казаньоргсинтез	0.00	$6.19 \cdot 10^{-8}$	0.999999938
TMK	0.00	$6.65 \cdot 10^{-7}$	0.999999335
РКК "Энергия"	0.00	$5.56 \cdot 10^{-8}$	0.999999944

Видим, что ЕМ-алгоритм справился с классификацией предприятий также, как и сеть Кохонена.

ЕМ-алгоритм использует совершенно иной подход к кластеризации данных, чем сеть Кохонена, но является не менее эффективным и рабочим.

Приложение

Код алгоритмов и комментарии к нему в приложении.