Eigenvalues

EE24BTECH11047 - Niketh Prakash Achanta

1 Introduction

1.1 Eigenvalues \rightarrow What?

In linear algebra, an eigenvector or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector, \mathbf{v} is scaled by a constant factor, λ when the linear transformation is applied to it:

$$A\mathbf{v} = \lambda \mathbf{v}$$

The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor λ .

1.2 Choice of algorithm

To find eigenvalues of matrices, multiple algorithms have been designed with varying time complexities. A widely used option is the **QR** algorithm.

1.3 Working of algorithm

The \mathbf{QR} algorithm involves the \mathbf{QR} decomposition, where the given matrix is converted and denoted as the product of an orthogonal (\mathbf{Q}) and an upper-triangular (\mathbf{R}) matrix.

2 Comparison

The table below compares selected algorithms for computing eigenvalues, focusing on their descriptions and time complexities.

Algorithm	Description	Time Complexity
Power Method	Iteratively finds the dominant eigenvalue and eigenvector.	$O(n^2)$ per iteration
QR Algorithm	Computes all eigenvalues using QR factorization.	$O(n^3)$ per iteration
Jacobi Method	Rotates the matrix to diagonal form, suitable for symmetric matrices.	$O(n^3)$

3 Implementation

3.1 QR decomposition

To apply QR decomposition, there are various methods. I have chosen Givens' rotations to decompose the initial matrix.

1

3.2 Givens' Rotations

In the method of Givens Rotation, similar to Gram-Schmidt and Householder Transformation, we try to decompose each column vector in A to a set of linear combinations of orthogonal vectors in Q. We map the column vector to a set of orthogonal vectors by rotating it, instead of reflecting it.

3.3 Iterative QR decomposition

Once the QR decomposition is applied once on the given matrix, we get the product QR. Then a matrix A_1 is defined as:

$$A_1 = RQ$$

The decomposition is then done again on this new matrix A_1 , and this goes on till A_k is found, where $k \to \infty$.

3.4 Convergence

The diagonal entries of A_k converge to the eigenvalues of matrix A.

3.5 Complexity

The time complexity of the QR algorithm is calculated to be $O(n^3)$ where n is the order of the matrix.

3.6 Choice of programming language

I have chosen "C" language to implement this algorithm.

4 Conclusion

In conclusion, QR algorithm works as an all-purpose algorithm, as:

- · It works for all square matrices.
- · It finds all eigenvalues (real and complex).
- · When applied to symmetric matrices, the QR algorithm converges faster and directly computes real eigenvalues, leveraging the matrix's properties.