1. TEORETICKÝ ÚVOD

- Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Základní součástí obvodu je operační zesilovač se zpětnou vazbou v neinvertujícím zapojení.
- Napěťové zesílení operačního zesilovače je dáno vztahem:

$$A_U = \frac{R_{ZP} + R_1}{R_1}$$

- V tomto zapojení tvoří kondenzátor Cv společně s rezistorem R derivační článek.
- Pro derivační článek platí:

$$f_D = \frac{1}{2\pi * C_V * R}$$

2. SCHÉMA

Schéma č. 1 - Měření nízkofrekvenčního zesilovače s OZ

3. TABULKA POUŽITÝCH PŘÍSTROJŮ

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámka
OSC	Osciloskop	OWON DS50 32EV		ELM učebna 2
Z	SS zdroj	DIAMETRAL M27		ELM učebna 2
Cv	Kapacitní dekáda	DIAMETRAL RLCD 1000	19- 0047/10	10 pF až 999,9 nF, tolerance 10%
FG	Generátor funkcí	DG 1022		ELM učebna 2
Rzp	Odporová dekáda	DIAMETRAL RLCD 1000	19- 0047/10	1 až 999999Ω, tolerance 1%

Tabulka č. 1 - Použité přístroje

4. Postup měření

- Vypočítali jsme RzP a nastavili hodnotu na odporové dekádě.
- Zapojili jsme obvod podle schématu č. 1.
- Změřili jsme napěťový přenos.
- Vypočítali jsme CV, nastavili hodnotu na kapacitní dekádě a zapojili do obvodu.
- Změřili jsme maximální nezkreslený rozkmit a znatelně zkreslený rozkmit.
- Změřili jsme přenosovou charakteristiku.

5. TABULKY ZMĚŘENÝCH A VYPOČÍTANÝCH HODNOT

$R_{ZP}\left[\Omega ight]$	Cv [nF]
8465,4	79,577471

Tabulka č. 2 - Hodnoty dekády

Veličina	Označení	Hodnota [V]
Uo	Výstupní napětí	9,6
U _{P-Pmax}	Maximální nezkreslený rozkmit	24,4
U _{P-P,Z}	Znatelně zkreslený rozkmit	27,4

Tabulka č. 3 - Hodnoty napětí

Veličina	Zadané	Skutečné
A_{U}	10	9,6
au	20 dB	19,64542466

Tabulka č. 4 - Zadaný a skutečný napěťový přenos

f [Hz]	Uоит [V]	Au	au [dB]
10	0,2	0,4	-7,96
50	0,6	1,2	1,58
100	1,2	2,4	7,60
200	3,2	6,4	16,12
500	4,6	9,2	19,28
1000	4,8	9,6	19,65
2000	4,8	9,6	19,65
5000	4,8	9,6	19,65
10000	4,8	9,6	19,65
20000	4	8	18,06
50000	2,6	5,2	14,32

Tabulka č. 5 - Měření přenosové charakteristiky zesilovače, U_I = 500m V_{pp}

f _d [Hz]	U _{fd} [V]
200	3,2

Tabulka č. 6 - Odečet frekvence fd

6. Vzor výpočtu

1. Výpočet odporu R_{ZP}

$$R_{ZP} = R_1 * (A_U - 1) = 940.6 * (10 - 1) = 8465.40$$

2. Výpočet napěťového přenosu au a Au

$$A_U = \frac{U_2}{U_1} = \frac{9.6}{1} = 9.6$$

$$a_U = 20logA_U = 20log9,6 = 19,6452466dB$$

3. Výpočet kondenzátoru Cv

$$C_V = \frac{1}{2\pi * f_D * R} = \frac{1}{2\pi * 200 * 10000} = 79,577471nF$$

7. GRAFY

Graf č. 1 - Frekvenční přenosová charakteristika

8. ZÁVĚR

Chyby měřících přístrojů:

- 1. Odhad chyby měření odporů a kondenzátorů a odporové dekády
- Jako kondenzátor a odpor jsme použili jednu dekádu, kde pro odpor je tolerance pod
 1% a pro kapacitu pod 10%. K měření úlohy byla chyba zanedbatelná.
- 2. Odhad chyby napětí
- Použitý osciloskop má velice malou chybu, která se vyskytuje v setinách voltu, a tak byla v úloze úplně zanedbatelná.
- 3. Odhad chyby měření fD
- Osciloskop měřil frekvenci velmi přesně s reakcí i na nejmenší změny, a tak lze usoudit,
 že chyba byla zanedbatelná.

Zhodnocení:

- 1. Zadáno bylo navrhnout zesilovač s napěťovým přenosem au 20 dB. Odpor R_{ZP} nám výpočtem vyšel $8465,4\Omega$.
- 2. Zadáno bylo změřit výstupní harmonické napětí, jenž bylo 9,6V. Vypočítali jsme skutečný napěťový přenos, jenž byl 19,6dB. Změřili jsme maximální nezkreslený rozkmit a znatelně omezený rozkmit výstupního napětí, hodnoty byly 24,4V_{pp} a 27,4V_{pp}.
- 3. Vazební kondenzátor nám vyšel 76,577471nF. Přenosovou charakteristiku se nám podařilo bez problémů změřit.