TD 2 - CONGRUENCE, RESTES CHINOIS

† Congruences et divisibilité

Exercice 1. Soient cinq entiers a, b, c, d, n. On suppose que $a \equiv b[n]$ et $c \equiv d[n]$. Montrer que

$$a + c \equiv b + d[n]$$
 et $ac \equiv bd[n]$

Exercice 2. (Critères de divisibilité)

- 1. Soit $n \in \mathbb{N}$ un entier. Montrer les critères de divisibilité suivants : n est divisible par
 - 2 si et seulement si son dernier chiffre est divisible par 2
 - 3 si et seulement si la somme de ses chiffres est divisible par 3
 - 4 si et seulement si l'entier formé par ses deux derniers chiffres est divisible par 4.
 - 5 si et seulement si son dernier chiffre est égal à 5 ou à 0.
 - 6 si et seulement si la somme de ses chiffres est divisible par 3 et son dernier chiffre est divisible par 2.
 - 7 si et seulement si son nombre de dizaines (pas son chiffre des dizaines, son nombre : 1047 donnerai 104) plus 5 fois le dernier chiffre est divisible par 7.
 - 8 si et seulement si l'entier formé par ses trois derniers chiffres est divisible par 8.
 - 9 si et seulement si la somme de ses chiffres est divisible par 9.
 - 11 si et seulement si son nombre de dizaines moins son dernier chiffre est divisible par 11.
- 2. Soit k un entier premier avec 10 et soit j tel que $10j \equiv 1[k]$. Montrer que n est divisible par k si et seulement son nombre de dizaines plus j fois son dernier chiffre est divisible par k.

Exercice 3.

- 1. Trouver tous les éléments inversibles de l'anneau $\mathbb{Z}/18\mathbb{Z}$.
- 2. Disposer les nombres $2, 3, \dots, 16$ en couples a, b tels que chaque couple vérifie $ab \equiv 1[17]$.
- 3. Donner l'inverse de chaque classe de congruence non nulle modulo 13.

Exercice 4.

- 1. Donner les restes (≥ 0) les plus petits possibles de $10^k + 1$ modulo 13 pour k = 1, 2, 3, 4.
- 2. Donner le plus petit reste ($\geqslant 0$) de 5^{22} modulo 23
- 3. Montrer que chaque entier est congru modulo 9 à un unique entier r avec $-4 \leqslant r \leqslant 4$.
- 4. Soient p un nombre premier impair et $a, b \in \mathbb{N}$.
 - a) Montrer que si $a \wedge p = 1$, alors $f_p(a) := \frac{a^{p-1}-1}{p}$ est un entier.
 - b) Montrer que si $ab \wedge p = 1$, alors $f_p(ab) \equiv f_p(a) + f_p(b)[p]$.

Exercice 5.

- 1. Soient p un nombre premier et a un entier non multiple de p. Rappelons que par convention, $a^0 = 1$. Montrer que la suite $(a^n [p])$ est périodique.
- 2. Pour tout $n \in \mathbb{N}$, calculer 2^n [7]. Quelle est la période de la suite $(2^n$ [7]).
- 3. Même question pour $(3^n [7])$.

† Équations en congruence

Exercice 6.

1. Trouver le plus petit entier positif (> 2) tel que

$$\begin{cases} x \equiv 1[3] \\ x \equiv 1[5] \\ x \equiv 1[7] \end{cases}$$

2. Trouver le plus petit entier positif (> 2) tel que

$$\begin{cases} x \equiv -1[7] \\ x \equiv -1[11] \\ x \equiv -1[13] \end{cases}$$

Exercice 7.

1. Trouver les entiers $x \in \mathbb{Z}$ tels que 261x + 2 soit un multiple de 305.

2. Soient
$$a, b \in \mathbb{Z}$$
. Trouver les entiers $x \in \mathbb{Z}$ tels que
$$\begin{cases} x \equiv a[12] \\ x \equiv b[19] \end{cases}$$

Exercice 8. Trouver toutes les solutions des systèmes de congruences suivants

$$\begin{cases} x \equiv 2[3] \\ x \equiv 3[5] \\ x \equiv 5[2] \end{cases} \text{ et } \begin{cases} x \equiv 1[4] \\ x \equiv 0[3] \\ x \equiv 0[7] \end{cases}$$

Exercice 9. Soient a, b, n trois entiers strictement positifs.

- 1. Montrer que l'équation $ax \equiv b[n]$ a au moins une solution si et seulement si $a \wedge n$ divise b.
- 2. Montrer que l'équation $ax \equiv b[n]$ admet une unique solution si et seulement si $a \wedge n = 1$.

Exercice 10. Soient
$$a, b \in \mathbb{Z}$$
. On considère le système
$$\begin{cases} x \equiv a[21] \\ x \equiv b[24] \end{cases}$$

À quelle condition existe-t-il au moins une solution? Sous cette condition, donner toutes les solutions du système.