Answer the following questions.

- 1. When is a diagonal matrix invertible? Write down the inverse in this case.
- 2. What is the purpose of the QR Algorithm? Write down its iteration instruction.
- 3. Consider the iteration $x_{k+1} = Mx_k + b$ for some matrix $M \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^n$. Name a sufficient condition for the convergence of this sequence. What is the limit in this case?
- 4. What is the definition of an orthogonal matrix? What does it mean for the columns of the matrix?

Solution:

- 1. (1P) $D = \operatorname{diag}(d_{ii})$ invertible $\Leftrightarrow d_{ii} \neq 0 \ \forall i$ (1P) Then $D^{-1} = \operatorname{diag}(\frac{1}{d_{ii}})$
- 2. (1P) Purpose: Compute eigenvalues of a matrix $A \in \mathbb{R}^{n \times n}$

(1P)
$$A_0 := A$$

for $i = 1, ..., n$
 $Q_i R_i := A_i$
 $A_{i+1} := R_i Q_i$

- 3. $\rho(M) < 1$ (1P) \Rightarrow $(x_k)_k$ converges to fixed point $x^* = Mx^* + b$ (1P)
- 4. (1P) $Q \in \mathbb{R}^{n \times n}$ orthogonal : $\Leftrightarrow Q^TQ = I$ (1P) Thus the columns of Q are mutually orthonormal.