

PROPOSAL PROGRAM KREATIVITAS MAHASISWA ACIRO 2.0: PENGEMBANGAN TUNING KONTROL GERAKAN ROBOT DENGAN FUZZY LOGIC

BIDANG KEGIATAN PKM KARSA CIPTA

Diusulkan oleh:

Fikri Aldi Nugraha Ketua;1164038; 2016

Lalita Chandiany Adiputri Anggota 1; 1164043; 2016

Dezha Aidil Martha Anggota 2; 1174025; 2017

POLITEKNIK POS INDONESIA BANDUNG 2018

PENGESAHAN PKM-KARSACIPTA

1. Judul Kegiatan : ACIRO 2.0: PENGEMBANGAN TUNING KONTROL

GERAKAN ROBOT DENGAN FUZZY LOGIC

2. Bidang Kegiatan : PKM-KC

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Fikri Aldi Nugraha

b. NIM : 1164038

c. Jurusan : Teknik Informatika

d. Universitas/Institut/Politeknik : Politeknik Pos Indonesia

e. Alamat Rumah dan No Tel./HP : Jl. Sarimanis 1 No.3 Blok 18 Kel. Sarijadi Kec. Sukasari

Kota Bandung / 081223787729

f. Email : <u>fikrialdinugraha@gmail.com</u>

4. Anggota Pelaksana Kegiatan/Penulis : 2 Orang

Dosen Pendamping

a. Nama Lengkap dan Gelar : M. Yusril Helmi Setyawan, S. Kom., M. Kom

b. NIDN/NIDK : 0407117405

c. Alamat Rumah dan No Tel./HP : Pesona Bangun Indah Persada D20 Tani Mulya Bandung

Barat/ 081320249906

6. Biaya Kegiatan Total

a. Kemristekdikti : Rp. 12.500.000

b. Sumber lain (sebutkan . . .) :-

7. Jangka Waktu Pelaksanaan : 5 Bulan

Menyetujui

Ketua Program Studi D4 Teknik Informatika

(M.Yusril Helmi Setyawan, S.Kom., M.Kom)

NIP/NIK. 113.74.163

Wakil Direktur Bidang Kemahasiswaan dan Kerjasama Politeknik Pos Indonesia

(Hilman Setiadi, S.E., S.Pd., M.T)

NIK. 101.66.010

Bandung, 09 Januari 2019

Ketua Pelaksana Kegiatan,

(Fikri Aldi Nugraha)

NIM. 1164038

Dosen Pendamping,

(M. Yusril Helmi Setyawan, S.Kom., M.Kom)

NIDN. 0407117405

DAFTAR ISI

DAFTAR ISI	i
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Identifikasi Masalah	1
1.3 Tujuan	2
1.4 Luaran	2
1.5 Kegunaan	2
BAB 2. LANDASAN TEORI	3
2.1 Prototipe	3
2.2 Robot	3
2.3 Motor DC	4
2.4 Prinsip Kerja Motor DC	4
2.5 Metode Penelitian	4
2.5.1 Metode Fuzzy Logic	4
2.5.2 Kontrol Fuzzy	5
BAB 3. TAHAP PELAKSANAAN	6
3.1 Pelaksanaan Kegiatan	6
3.2 Langkah Kerja Penelitian	6
3.3.1 Desain Prototipe ACIRO 2.0	7
3.3.2 Alur Kerja Sistem	8
BAB 4. BIAYA DAN JADWAL KEGIATAN	9
4.1 Anggaran Biaya	9
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	10
LAMPIRAN	11
Lampiran 1. Biodata Ketua, Anggota dam Dosen Pembimbing	11
Lampiran 2. Justifikasi Anggaran Kegiatan.	16
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	18
Lampiran 4. Surat Pernyataan Ketua Pelaksana.	19
Lampiran 5. Gambaran Teknologi yang akan Diterapkembangkan	20

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Kaca gedung di Indonesia mempunyai ukuran dan pola yang berbeda-beda. Pembersihan kaca pada gedung perlu dilakukan secara rutin agar kebersihan kaca tetap terjaga. Namun pekerjaan membersihkan kaca gedung memiliki resiko kecelakaan yang cukup tinggi. Menurut Kementrian Tenaga Kerja dan Transmigrasi (Kemenakertrans) mencatat angka kecelakaan pembersihan kaca gedung periode Januari-Oktober 2017 mencapai 21% [1]. Selain adanya 1 orang petugas pembersih kaca jatuh dan tewas pada tanggal 11 Oktober 2017 [2].

Hal tersebut dapat diatasi dengan adanya tenaga bantuan yang dapat mengurangi resiko kecelakaan, maka dengan itu telah dibuatlah robot pembersih kaca. Definisi robot itu sendiri adalah seperangkat alat mekanik yang bisa melakukan tugas fisik, baik dengan pengawasan dan kontrol manusia, ataupun menggunakan program yang telah didefinisikan terlebih dulu (kecerdasan buatan) [2]. Robot pembersih kaca yang telah dibuat peneliti sebelumnya yang disebut ACIRO (*Automatic Glass Cleaner Robot*) ini memiliki kinerja secara otomatis. Dimana robot tersebut dapat membersihkan kaca secara vertikal dan ketika robot sudah mencapai jarak tertinggi sensor akan membaca jarak tersebut kemudian robot akan kembali membersihkan kaca dengan arah gerakan yang berlawanan, tetapi memiliki beberapa kekurangan diantaranya dalam segi rangka yang belum kukuh, robot tidak bisa disesuaikan berdasarkan kondisi permukaan kaca, belum adanya kontrol kecepatan motor DC yang menyebabkan tidak dapat membersihkan kaca secara maksimal serta pergerakan motor DC tidak sesuai dengan karakteristik permukaan kaca dan implementasi tuning gerakan kecepatan motor DC belum ada.

Oleh karena itu kami mengembangkan robot pembersih kaca ACIRO (Automatic Glass Cleaner Robot) dengan mengatasi kekurangan yang terdapat pada robot sebelumnya. Robot ini akan didesain ulang agar dapat disesuaikan berdasarkan kondisi permukaan kaca pada bangunan serta rangka lebih kukuh dari robot sebelumnya, kemudian adanya kontrol kecepatan motor DC mengunakan Logika Fuzzy yang dapat digunakan untuk melakukan tuning kecepatan berdasarkan permukaan kaca.

1.2 Identifikasi Masalah

- 1. Bagaimana mengontrol kecepatan motor DC menggunakan Logika Fuzzy.
- 2. Bagaimana implementasi fuzzy logic pada board arduino sebagai pengontrol gerakan robot pembersih kaca.

1.3 Tujuan

- 1. Melakukan kontrol kecepatan motor DC menggunakan Logika Fuzzy.
- 2. Mengetahui cara implementasi fuzzy logic pada board arduino sebagai pengontrol gerakan robot pembersih kaca.
- 3. Mengimplementasikan teori serta pengetahuam yang didapat selama perkuliahan.

1.4 Luaran

Luaran yang diharapkan pada penelitian ini adalah alat yang disebut ACIRO 2.0 (Automatic Glass Cleaner Robot), buku petunjuk teknis pengoperasian dan paper journal nasional dan internasional bereputasi.

1.5 Kegunaan

Dengan adanya alat ini diharapkan dapat : meningkatkan performa kinerja robot pembersih kaca dalam tunning kontrol gerakan robot. Selain itu juga untuk mengurangi tingkat kecelakaan bagi pekerja pembersih kaca dan sebagai ajang untuk aktualisasi kompetensi mahasiswa dilingkungan masyarakat melalui produk dan inovasi berbasis teknologi.

BAB 2. LANDASAN TEORI

2.1 Prototipe

Prototipe adalah contoh atau model awal yang dibangun untuk menguji sebuah konsep atau proses atau aksi sebagai sesuatu yang digandakan atau dipelajarinya. Pengertian prototipe tidak selalu merujuk pada ukuran, artinya prototipe tidak selalu harus berukuran sama dengan produk yang akan dibuat. Prototipe bisa berukuran lebih kecil atau lebih besar dibanding dengan produk yang akan dibuat asalkan aksi atau proses yang akan terjadi sebenarnya. Tujuan pembuatan prototipe adalah untuk perbaikan atau penyempurnaan rancangan [3].

2.2 Robot

Robot merupakan sebuah alat yang dapat melakukan tugas fisik, baik bekerja secara manual maupun otomatis, Istilah robot berasal dari bahasa Cheko "*robota*" yang berarti pekerja yang tidak mengenal lelah atau bosan. Robot dapat digunakan dalam berbagai hal, yang memiliki sistem yang berbeda pada setiap fungsi yang berbeda. Salah satu contoh aplikasi dari robot adalah kemampuan membersihkan debu pada kaca.

Pengertian robot banyak diartikan secara berbeda – beda yang mana setiap sumber yang berbeda memiliki arti yang berbeda pula. Berikut pengertian robot yang berasal dari beberapa sumber :

- 1. Kamus Webster
 - "Robot adalah sebuah alat otomatis yang melakukan fungsi berdasarkan kebutuhan manusia".
- 2. Kamus Oxford
 - "Robot adalah mesin yang mampu melakukan serangkaian tindakan kompleks secara otomatis, terutama yang diprogram oleh komputer".
- 3. Robot *Institute of America*
 - "Robot adalah manipulator multifungsi yang dapat diprogram ulang yang dirancang untuk memindahkan bahan, bagian, alat atau perangkat khusus lainnya melalui gerakan terprogram yang bervariasi untuk kinerja berbagai tugas".
- 4. International Standard Organization (ISO 8373)
 - "Robot adalah sebuah manipulator yang terkendali, multifungsi, dan mampu diprogram untuk bergerak dalam tiga sumbu atau lebih, yang tetap berada di tempat atau bergerak untuk digunakan dalam aplikasi otomasi industri".

Berdasarkan beberapa definisi diatas, menunjukkan bahwa robot tidak dapat diartikan secara mutlak, tergantung dari sudut pandang dan funsional terhadap robot yang dibuat [4].

2.3 Motor DC

Motor DC merupakan jenis motor yang paling sederhana, yang memiliki dua kabel, yaitu catu daya dan ground. Pemberian catu daya boleh dibolak balik-balik untuk memberikan efek arah putaran yang berbeda. Motor jenis ini biasa digunakan pada kipas angin atau menggerakkan roda mobil mainan. Motor DC memiliki dua bagian penting. Bagian pertama adalah stator, yaitu bagian yang tidak berputar dan bagian kedua dinamakan rotor, yakni bagian yang berputar. Di rotor inilah, poros diletakkan. Di ujung poros dapat dipasang objek (misalnya *pulley*) yang ingin diputar [5].

2.4 Prinsip Kerja Motor DC

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti [6]. Seperti pada gambar berikut:

2.1 Gambar Prinsip Kerja Motor DC

2.5 Metode Penelitian

2.5.1 Metode Fuzzy Logic

Fuzzy Logic pertama kali dikenalkan kepada public oleh Lutfi A. Zadeh, sumber (Analisa Dan Desain Sistem Fuzzy: Sri Kusumadewi) seorang professor di University of California di Berkeley. Fuzzy Logic digunakan untuk menyatakan hukum operasional dari suatu sistem dengan ungkapan bahasa, bukan dengan persamaan matematis. Banyak sistem yang terlalu kompleks untuk dimodelkan secara akurat, meskipun dengan persamaan matematis yang kompleks. Dalam masalah seperti ini, ungkapan bahasa yang digunakan dalam fuzzy logic dapat membantu mendefenisikan karakteristik operasional sistem dengan lebih baik. Ungkapan bahasa untuk karakteristik sistem biasanya dinyatakan dalam bentuk implikasi logika misalnya, aturan JIKAMAKA [8].

2.5.2 Kontrol Fuzzy

Fuzzy Logic Controller merupakan alternatif sistem kendali modern yang mudah karena tidak perlu dicari model matematis dari suatu sistem, tetapi tetap efektif karena memiliki respon sistem yang stabil. Tujuan utama dalam sistem pengontrolan adalah mendapatkan keluaran (output) sebagai respon dari masukan (input). Dalam pengontrolan dengan cara klasik, melibatkan formula — formula matematika yang cukup rumit. Hal ini berbeda dengan kontrol fuzzy. Kontrol fuzzy merupakan suatu sistem kontrol yang berdasar pada basis pengetahuan manusia didalam melakukan kontrol terhadap suatu proses. Konsep matematika yang mendasari logika fuzzy sangat sederhana dan mudah dimengerti. Pendekatan fuzzy melibatkan aturan — aturan yang dinyatakan dalam kata — kata dan tidak memerlukan presisi yang tinggi serta ada toleransi untuk data yang kurang tepat [7].

BAB 3. TAHAP PELAKSANAAN

3.1 Pelaksanaan Kegiatan

Waktu dan Tempat Penelitian

Waktu : Maret 2019 - Juli 2019,

Tempat : Lab. Teknik Informatika Politeknik Pos Indonesia

3.2 Langkah Kerja Penelitian

Pada pengembangan prototipe ini akan melalui beberapa tahapan sebagai berikut:

1. Studi Literatur

Studi Literatur dilakukan untuk mempelajari berbagai sumber referensi atau teori yang berkaitan dengan judul penelitian yaitu "Aciro 2.0: Pengembangan Tuning Kontrol Gerakan Robot Dengan Fuzzy Logic".

2. Perancangan Alat

Perancangan alat disesuaikan dengan kriteria kebutuhan seperti fitur kontrol kecepetan motor DC

3. Pengkodean dan Pembuatan Alat

Pada tahap ini, menterjemahkan desain sistem ke dalam bahasa pemrograman untuk membangun sistem yang diharapkan oleh user. Setelah sistem selesai dibangun, maka akan dilakukan pembuatan alat seperti Prototipe Pembersih Kaca.

4. Penerapan dan Pengujian Sistem

Pada tahap ini merupakan akhir dari pembuatan sebuah sistem, setelah melakukan analisis kebutuhan, desain sistem, pengkodean dan pembuatan alat. Kemudian dilakukan pengujian dengan tujuan untuk menemukan kesalahan-kesalahan pada sistem dan kemudian bisa diperbaiki

5. Pemeliharaan

Tahapan ini dilakukan jika sistem mengalami perubahan karena penyesuaian dengan lingkungan baru atau user membutuhkan perkembangan fungsional pada sistem.

6. Analisa

Tahap akhir dari langkah kerja penelitian adalah melakukan Analisa terhadap alat yang telah dibuat apakah hasilnya bisa sesuai dengan yang diharapkan.

7. Pelaporan

Hasil dari penelitian pengembangan prototipe pembersih kaca dianalisa dan dilaporkan dalam bentuk laporan akhir penelitian.

3.3 Desain Prototipe ACIRO 2.0 dan Alur Kerja Sistem

3.3.1 Desain Prototipe ACIRO 2.0

Berikut merupakan gambaran desain dari prototipe ACIRO 2.0

3.3.2 Alur Kerja Sistem

Cara kerja sistem pada robot pembersih kaca yaitu robot akan bergerak searah jarum jam dengan kecepatan motor DC sesuai dengan ketebalan debu yang menempel pada permukaan kaca. Ketika pembersih kaca mencapai jarak tertinggi maka led dan buzzer menyala sebagai indikator dan robot bergerak berlawanan arah jarum jam.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Anggaran biaya untuk PKM-KC ini akan dirincikan sebagai berikut:

Tabel 4.1 Ringkasan Anggaran Biaya Kegiatan

No.	Jenis Pengeluaran	Biaya (Rp)
1.	Perlengkapan yang diperlukan	Rp. 2.670.000
2.	Bahan habis pakai	Rp. 880.000
3.	Perjalanan	Rp. 150.000
4.	Lain-lain	Rp. 8.800.000
	Jumlah	Rp. 12.500.000

4.2 Jadwal Kegiatan

Kegiatan ini dilakukan selama 5 bulan, mulai dari tahap persiapan sampai laporan hasil program kreativitas mahasiswa. Penjelasannya sebagai berikut:

Tabel 4.2 Jadwal Kegiatan

No	Jenis	1	Bul	an I	1]	Bul	an 2	2]	Bul	an (3]	Bul	an 4	4	I	Bula	an 5	5
110	Kegiatan	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Persiapan																				
	pembuatan																				
	proposal																				
2	Proses																				
	Administrasi																				
3	Perancangan																				
	dan																				
	Pembangunan																				
	Sistem																				
4	Monitoring																				
	dan Uji Coba																				
5	Evaluasi dan																				
	Laporan Hasil																				
	Program																				

DAFTAR PUSTAKA

- [1] Kompas.co.id, 2017, Tanpa Perangkat Keselamatan Pembersih Jendela Kaca Jatuh dan Tewas [Online],
 (https://kompas.id/baca/metro/2017/10/11/tanpa-perangkat-keselamatan-pembersih-jendela-kaca-jatuh-dan-tewas/, diakses pada tanggal 25 desember 2018).
- [2] Store.tempo.co, 2017, Keselamatan Pekerja Pembersih Kaca Gedung Bertingkat [Online],
 (https://store.tempo.co/foto/detail/P1812201200655/keselamatan-pekerja-pembersih-kaca-gedung-bertingkat#.XCXLDFwzbcc, diakses pada tanggal 25 desember 2018).
- [3] Basjaruddin, Noor Cholis. "Pembelajaran Mekatronika Berbasis Proyek". Deepublish. Yogyakarta (2016).
- [4] Tresnawan, Dian, and Meidi Meidi. "Implementasi Metode Maze Dan Pid Pada Robot Vacuum Cleaner Automatic." *Jurnal Ilmiah Mikrotek* 1.4 (2016): 164-174.
- [5] Kadir, Abdul. "Simulasi Android." *PT Elex Media Komputindo. Jakarta* (2016).
- [6] Machrus Ali "Kontrol Kecepatan Motor DC Menggunakan PID Kontroller Yang Ditunning Dengan Firefly Algorithm." Jurnal Intake 3.2 (2014): 2087 4286.
- [7] Anton Hidayat, Nasrullah, Ramiati "Mengatur Kecepatan Motor Dc Dengan Menggunakan Metode Fuzzy Pada Alat Perontok Padi." Jurnal Informatika 2.1 (2016):2407-1730.
- [8] Pilipus Tarigan "Perancangan Alat Simulator Kontroler Lampu Rumah Berbasis Komputerisasi Dengan Menggunakan Metode Fuzzy Logic Control." Pelita Informatika Budi Darma (2013): 2301-9425.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota dam Dosen Pembimbing.

Ketua Tim

A. Identitas Diri

1	Nama Lengkap	Fikri Aldi Nugraha
2	Jenis Kelamin	L
3	Program Studi	D4 Teknik Informatika
4	NIM	1164038
5	Tempat dan Tanggal Lahir	Majalengka, 19 Juni 1998
6	E-mail	fikrialdinugraha@gmail.com
7	Nomor Telepon/HP	+6281223787729

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	Character Building Politeknik Pos Indonesia	Peserta	26-30 September 2016
2	PKM -KC	Anggota	2017
3			

C. Penghargaan yang pernah diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Bandung, 09 Januari 2019 Ketua Tim,

(Fikri Aldi Nugraha)

Anggota Tim

A. Identitas Diri

1	Nama Lengkap	Lalita Chandiany Adiputri
2	Jenis Kelamin	P
3	Program Studi	D4 Teknik Informatika
4	NIM	1164043
5	Tempat dan Tanggal Lahir	Cianjur, 27 Desember 1997
6	E-mail	lalitachandiany27@gmail.com
7	Nomor Telepon/HP	+6289694966905

D. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	Character Building Politeknik Pos Indonesia	Peserta	26-30 September 2016
2	PKM - KC	Anggota	2017
3			

E. Penghargaan yang pernah diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1		·	
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Bandung, 09 Januari 2019 Anggota Tim,

(Lalita Chandiany Adiputri)

Anggota Pelaksana

A. Identitas Diri

1	Nama Lengkap	Dezha Aidil Martha
2	Jenis Kelamin	L
3	Program Studi	-D4 Teknik Informatika
4	NIM	1174025
5	Tempat dan Tanggal Lahir	Payakumbuh, 17 Februari 1999
6	E-mail	dezhamartha17@gmail.com
7	Nomor Telepon/HP	+6282284836120

F. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	Character Building Politeknik Pos Indonesia	Peserta	26-30 September 2017
2	Himpunan	Ketua Himpunan	2019-2020

G. Penghargaan yang pernah diterima

No.	Jenis Penghargaan	Pihak Pemberi	Tahun
		Penghargaan	
1		•	
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Bandung, 09 Januari 2019 Anggota Tim,

(Dezha Aidil Martha)

Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Muhammad Yusril Helmi Setyawan, S.Kom., M.Kom
2	Jenis Kelamin	Laki-Laki
3	Program Studi	D4 Teknik Informatika
4	NIP/NIDN	113.74.163/0407117405
5	Tempat dan Tanggal Lahir	Rembang, 07 November 1974
6	Alamat E-Mail	yusrilhelmi@poltekpos.ac.id
7	Nomor Telepon/HP	085221441761

B. Riwayat Pendidikan*)

Gelar Akademik	S1/Sarjana	S2/Magister	S3/Doktor
Nama Institusi	STMIK Tasikmalaya	STMIK LIKMI	
Jurusan/Prodi ·	Teknik Informatika	Sistem Informasi	
Tahun Masuk-Lulus	2004-2006	2010-2012	

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Kemanan Jaringan Komputer	Wajib	3
2	Jaringan Komputer	Wajib	4
3	Administrasi Jaringan Komputer	Wajib	3
4	Sistem Operasi	Wajib	4

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Membangun Model Intrusion Detection	Internal	2014
	System Untuk Pembelajaran Praktikum		
	Kemanan Jaringan Komputer		
2	Prototipe Smart Trash Bin Berbasis Tcp/Ip	Internal	2015
3	Simulasi Paket-Paket Broadcast Dan	PDP DIKTI	2016
	Implementasi Subnetting Untuk	*	
	Meningkatkan Pemahaman Mahasiswa		
	Dalam Pembelajaran Jaringan Komputer		
4	Pengembangan Gerakan Flexi – Extensi	Internal	2017
	3rd Hand Robotic Untuk Stock Keeper di	,	
	Aktifitas Pergudangan Dengan Prediksi		1
	Menggunakan Metode Adaptive Neuro		
	Fuzzy Inference System		

	Simulasi Interoperabilitas Sistem	PDP DIKTI	2018	
	Pengalamatan IPv4 dan Ipv6 pada			
	Perangkat-Perangkat Jaringan Komputer			

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Pemanfaatan Teknologi Cerdas Untuk Meningkatkan Kualitas Pemeliharaan Tanaman Hidroponik	Internal	2016
2			***************************************
3			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Bandung, 09 Januari 2019 Dosen Pendamping,

(M. Yusril Helmi Setyawan, S.Kom., M.Kom)

Lampiran 2. Justifikasi Anggaran Kegiatan.

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai(Rp)
-Microcontroller	1	500.000	500.000
-Sensor Ultrasonic	1	350.000	350.000
-Sensor Debu	1	450.000	450.000
-Motor Dc	1	200.000	200.000
-Motor Servo	1	150.000	150.000
-Buzzer	1	19.000	19.000
-Led	1	1000	1000
-Breadboard	1	100.000	100.000
-Kabel Jumper	5	60.000	300.000
-Obeng	1	50.000	50.000
-LCD	1	150.000	150.000
-Power Supply	1	400.000	400.000
		SUB TOTAL (Rp)	2.670.000
2. Biaya Habis Pakai	Volume	Harga Satuan (Rp)	Nilai(Rp)
-Selotip	5	20.000	100.000
-HVS	2	40.000	80.000
-Tinta	2	250.000	500.000
-ATK	1	100.000	100.000
-Doubletip	5	20.000	100.000
		SUB TOTAL (Rp)	880.000
3. Perjalanan	Volume	Harga Satuan (Rp)	Nilai(Rp)
Keperluan Pembelian			
Bahan:			
-Perjalanan ke Tukang	10 liter	10.000	100.000
Las			
-Perjalanan Pembelian	5 liter	10.000	50.000
Komponen			
		SUB TOTAL (Rp)	150.000

4. Lain- lain	Volume	Harga Satuan (Rp)	Nilai(Rp)	
-Biaya Jasa	1	1.500.000	1.500.000	
Perbengkelan				
-Biaya Pengelasan	1	2.500.000	2.500.000	
-Biaya Pemakaian	3	300.000	900.000	
Pulsa				
-Biaya Berlangganan	3	300.000	900.000	
Internet (Bulanan)				
- Prosiding	1	3.000.000	3.000.000	
International				
SUB TOTAL (Rp) 8.800.000				
TOTAL 1 + 2 + 3 +4 (Rp) 12.500.000				
Terbilang (Sebelas Juta Delapan Ratus Sembilan Puluh Enam ribu)				

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas.

No.	Nama /	Program	Bidang	Alokasi	Uraian Tugas
	NIM	Studi	Ilmu	Waktu	
				(Jam/	
				Minggu)	
1	Fikri Aldi	D4 Teknik	Software	20 Jam /	- Mengkoordinasi
	Nugraha/	Informatika	Engineering	Minggu	anggota
	1164038				- Menganalisis
					sistem
					- Membuat
					laporan
2	Lalita	D4 Teknik	Software	20 Jam /	- Merancang
	Chandiany	Informatika	Engineering	Minggu	desain alat
	Adiputri /				- Merangkai alat
	1164043				- Melaksanakan
					pembuatan alat
3	Dezha Aidil	D4 Teknik	Software	20 Jam /	- Membuat
	Martha/	Informatika	Engineering	Minggu	Algoritma
	1174025				- Memprogram
					Robot

Lampiran 4. Surat Pernyataan Ketua Pelaksana.

POLITEKNIK POS INDONESIA

Jl. Sariasih No. 54 Kel. Sarijadi Kec. Sukasari Kota Bandung 40151 Telp. 022-2009562, 2009570 Fax. 022-2009568

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA *)

Yang bertanda tangan di bawah ini:

Nama

: Fikri Aldi Nugraha

NPM

: 1164038

Program Studi

: D4 Teknik Informatika

Jurusan

: Teknik Informatika

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul "ACIRO 2.0: PENGEMBANGAN TUNING KONTROL GERAKAN ROBOT DENGAN FUZZY LOGIC" yang diusulkan untuk tahun anggaran 2019 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Mengetahui,

Ketua Program Studi D4 Teknik Informatika

Bandung, 09 Januari 2019 Yang menyatakan, Ketua Pelaksana Kegiatan

G2F7AFF494966306

(Fikri Aldi Nugraha) NIM. 1164038

(M. Yusril Helmi Setyawan, S.Kom., M.Kom.) NIK. 113.74.163

Lampiran 5. Gambaran Teknologi yang akan Diterapkembangkan.

