Algorithm: Molecular Graph Realizability Check **Input:** A sequence of integer sets $S = \{V_1, V_2, \dots, V_n\}$, where each

 $V_i = \{v_{i1}, v_{i2}, \dots, v_{im}\}$ is a set of possible valences for chemical element i, sorted in ascending order. **Output:** Boolean value indicating whether the sequence is realizable

as a molecular graph. Procedure:

Initialization:

Select the maximum valence for each element: $d_i \leftarrow \max(V_i)$ for all i Compute total valence sum: $D = \sum_{i=1}^{n} d_i$

Step 1: Handshake Lemma Check

if D is odd then Find the smallest Δ such that $\Delta = d_i - v_j$ for some $v_j \in V_i \setminus \{d_i\}$,

sequentially checking the largest possible v_i until Δ is odd.

if such a Δ exists for any i then

Update valence: $d_i \leftarrow d_i - \Delta$, update $D \leftarrow D - \Delta$

Reject sequence

else

end if

end if end if

end if end if Step 2: Connectivity Check if D < 2(n-1) then

Reject sequence Step 3: Loop Prevention Check

if $D \ge 2 \max\{d_1, d_2, ..., d_n\}$ then Accept sequence as realizable

else

Identify the set of indices $I = \{j \mid d_i = \max(d_i)\}$

Select an index $i \in I$ where $d_i \neq d_{i+1}$, if such exists if a lower valence exists in V_i then

Reduce d_i to the next largest available valence in V_i

Update D and recurse with the modified sequence else Reject sequence