LE SÉQUENÇAGE ET L'ASSEMBLAGE DES GÉNOMES

Comment obtenir la séquence du génome d'un individu ?

BOUILLÉ Pauline CORDIER Mathis

► <u>SÉQUENÇAGE DES GÉNOMES</u>

- Histoire
- Machines
- Aujourd'hui

► <u>ASSEMBLAGE DES SÉQUENCES</u>

- Assemblage Shotgun
- Assemblage par graphe de chevauchement
- Assemblage par graphe de De Bruijin

SÉQUENÇAGE DES GÉNOMES

Objectif du séquençage :
 Obtenir la séquence ATCG
 pour comprendre l'expression
 des gènes

 Obtention d'un grand nombre de sous-séquences de la séquence du génome

INTRODUCTION

Histoire

1977	Frederick Sanger Biomimétisme : inspiré de la manière dont les enzymes reproduisent les brins d'ADN Utilisation de produits radioactifs et résultats sur plaque de gel 160 nucléotides par jour		
1990	Produits fluorescents à la place de radioactifs et résultats sur capillaires en verre Début du projet Génome Humain		
2000	Automatisation: 500.000 nucléotides par jour		
2003	Projet Génome Humain : Première séquence du génome humain 20 institutions engagées dans le monde entier Séquence composée de 3 Mrd de nucléotides Coût estimé : 3 Mrd €		
2006	Nanotechnologies : Séquençage à Haut Débit Tout est automatisé et résultats sur puce électronique 1 Mrd de nucléotides peuvent être obtenus en quelques heures		

Machines

Aujourd'hui

Méthode	Longueur de la lecture	Précision	Lectures par expérience	Temps d'expérience	Coût par million de bases
lon semiconductor (Séquençage Ion Torrent)	Jusqu'à 400 Mb	98 %	Jusqu'à 80 millions	2 heures	1 \$
Pyroséquençage (454)	700 Mb	99,9 %	1 million	1 jour	10 \$
Séquençage par synthèse (Illumina)	50 à 300 Mb	99,9 %	Jusqu'à 6 milliards	1 à 11 jours	0.05/0.15 \$

Aujourd'hui

Nom	Nombre de machines
Illumina HiSeq 2000	5490
Illumina Genome Analyser 2x	411
Roche 454	382
ABI SOLID	326
Ion Torrent	301
Illumina MiSeq	299
Ion Proton	104
Pacific Biosciences	50
Oxford Nanopore MinION	14
Illumina NextSeq	3

ASSEMBLAGE DES SÉQUENCES

Assemblage de Novo : Aucune référence pour le génome étudié

Comment assembler les séquences recueillies ?

INTRODUCTION

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Séquençage aléatoire dans un insert

On séquence de nombreux fragments de l'insert

Comment assembler ces fragments ?

ASSEMBLAGE SHOTGUN

- Soit L la taille de l'ADN étudié.
 Soit N le nombre de nucléotides total des lectures.
 Soit n la taille de chaque lecture.
- ▶ On a donc la profondeur de lecture : $P = \frac{N}{L}$
- On peut considérer que l'évènement Ω suivant: $\Omega^x = \{\text{Une base de la séquence cible est représentée dans } x \text{ lectures} \}$ suit une loi de Poisson de paramètre P, i.e.

$$\mathbb{P}(\Omega^x) = \frac{P^x}{x!}e^{-P}$$

Alors on a
$$taux_{adn_lu} = 1 - \mathbb{P}(\Omega^0)$$
 $= 1 - e^{-P}$

$$N_{trous} = N_{lecture} \cdot \mathbb{P}(\Omega^0) = \frac{N}{n} \cdot e^{-P}$$

$$Taille_{trous} = L/N_{lecture} = \frac{n}{P}$$

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTTT
TATCTCGACTCTAGGCCCTCA

TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCG

GGCGTCGATATCT

GGCGTCTATATCT

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

10 Fragments: 177 nucléotides

1 Insert: 35 nucléotides

Profondeur: $P = \frac{177}{35} \approx 5 X$

CTAGGCCCTCAATTTTT CTCTAGGCCCTCGATTTTT GGCTCTAGGCCCTCGTTTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA TATCTCGACTCTAGGCC TCTATATCTCGGCTCTAGG GGCGTCTATATCTCG GGCGTCGATATCT **GGCGTCTATATCT** GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT

- Il peut y avoir des différences entre les fragments
- On ne connait pas l'ordre des séquences

► ASSEMBLAGE PAR GRAPHE DE CHEVAUCHEMENT

Construction d'un graphe de chevauchement directement depuis les reads Simplification du graphe Assemblage par le graphe

► ASSEMBLAGE PAR GRAPHE DE DE BRUIJN

Construction d'un graphe des *k-mer* Élimination des reads originaux Assemblage par le graphe

DEUX APPROCHES D'ASSEMBLAGE

ASSEMBLAGE PAR CHEVAUCHEMENT (OLC)

- Chaque sommet du graphe correspond à un fragment
- Les arêtes représentent les chevauchements entre les fragments
- Le nombre de bases qui se chevauchent entre les deux fragments est indiqué au niveau de l'arête

Le graphe peut contenir des cycles
 La séquence du génome elle-même peut être circulaire

Séquence à retrouver	to_every_thing_turn_turn_there_is_a_season
Taille des reads	7
Taille minimale des chevauchements entre 2 reads	3

On supprime alors tous les reads qui n'apportent pas d'information supplémentaire

Nous les supprimons en commençant par ceux qui traversent le moins de nœuds possibles du graphe

Avec R1,R2,R3, nous aurions

En supprimant les arêtes concernées nous obtenons le graphe suivant :

Nous avons alors obtenu 2 contigs et une zone que nous ne pouvons pas traiter

La zone illisible se situe sur l'endroit correspondant à la série de « .._turn_.. » Les répétitions sont un gros facteurs d'erreurs ou d'incertitudes

CONSENSUS

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Il s'agit de s'accorder sur la séquence qui semble être la vraie, c'est-à-dire qu'il faut conserver le nucléotide le plus fréquent sur les bases où il y a un doute

DÉFAUTS DE LA MÉTHODE

Cette méthode peut-être lente Ajouté à cela le très grand nombre de bases, elle devient très lente!

En effet, Soit N le nombre de reads Nombre de calculs :

 $O(N^2)$

ASSEMBLAGE PAR GRAPHE DE DE BRUIJN (DBG)

K-MER

➤ Sous-partie de la séquence de taille K

La méthode de De Bruijn utilise les K-1-mers

GRAPHE DE DE BRUIJN

A_LONG_LONG_TIME

Les 8 premiers 5-mers associés à la séquence

Les 4-mers associés à la séquence

Deux lectures du graphe sont possibles

$$ZA \rightarrow AB \rightarrow BE \rightarrow EF \rightarrow FA \rightarrow AB \rightarrow BC \rightarrow CD \rightarrow DA \rightarrow AB \rightarrow BY$$

$$ZA \rightarrow AB \rightarrow BC \rightarrow CD \rightarrow DA \rightarrow AB \rightarrow BE \rightarrow EF \rightarrow FA \rightarrow AB \rightarrow BY$$

PROBLÈME DE MULTIPLES CHEMINS

NOEUDS DÉSÉQUILIBRÉS

DIFFÉRENCES DE SÉQUENÇAGE

TEMPS DE CALCUL

- Pour chaque K-mer, on ajoute 1 arête et 2 nœuds
 Donc cela équivaut à du O(1)
- Soit N la taille de la séquence
 Il y a N-K K-mers
 Donc cela équivaut à du O(N)
- Nous avons alorsNombre de calculs :

O(N)

OLC	De Bruijn	De Bruijn	De Bruijn
t >= 75	k = 61	k = 67	k = 59

Table 1. Assembly statistics for C. elegans data set

	SGA	Velvet	ABySS	SOAPdenovo
Scaffold N50 size	26.3 kbp	31.3 kbp	23.8 kbp	31.1 kbp
Aligned contig N50 size	16.8 kbp	13.6 kbp	18.4 kbp	16.0 kbp
Mean aligned contig size	4.9 kbp	5.3 kbp	6.0 kbp	5.6 kbp
Sum aligned contig size	96.8 Mbp	95.2 Mbp	98.3 Mbp	95.4 Mbp
Reference bases covered	96.2 Mbp	94.8 Mbp	95.9 Mbp	95.1 Mbp
Reference bases covered by contigs ≥1 kb	93.0 Mbp	92.1 Mbp	93.9 Mbp	92.3 Mbp
Mismatch rate at all assembled bases	1 per 21,545 bp	1 per 8786 bp	1 per 5577 bp	1 per 26,585 bp
Mismatch rate at bases covered by all assemblies	1 per 82,573 bp	1 per 18,012 bp	1 per 8209 bp	1 per 81,025 bp
Contigs with split/bad alignment (sum size)	458 (4.4 Mbp)	787 (7.2 Mbp)	638 (9.1 Mbp)	483 (4.4 Mbp)
Total CPU time	41 h	2 h	5 h	13 h
Max memory usage	4.5 GB	23.0 GB	14.1 GB	38.8 GB

CONCLUSION

- ► <u>MIT</u>
- ► <u>INSERM</u>
- ► <u>TED</u>
- Wikipédia
- ▶ Biorigami
- > SNJ Jussieu Sorbonne
- ► IRO Université de Montreal
- ▶ France-Génomique

BIBLIOGRAPHIE