Ch 10: Least-squares problems

10-1

 $G: \mathbb{R}^n \to \mathbb{R}$, $m \ge n$

 $Y: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$:

$$Y(\infty) = (Y_1(\infty), Y_2(\infty), \dots, Y_m(\infty))$$

Rewrite & using:

$$\Rightarrow J(x) = \nabla y \cos \tau$$

$$\nabla y \cos \tau$$

$$\vdots$$

$$\nabla y \cos \tau$$

Also note:

Also note:

$$\nabla f(x) = \sum_{j=1}^{\infty} \nabla_j (x) \nabla_j (x)^T + \sum_{j=1}^{\infty} \zeta_j (x) \nabla_j (x)^T + \sum_{j=1}^{\infty} \zeta_j (x) \nabla_j \zeta_j (x)$$

$$= J(x)^T J(x) + \sum_{j=1}^{\infty} \zeta_j \nabla_j^2 \zeta_j (x)$$

10-2

Basic idea:

Use $\nabla f(\infty) = J(\infty)^T \cdot r(\infty)$ $\nabla^2 f(\infty) = J(\infty)^T J(\infty)$

10.1 Background

Work with residual: $r_{J}(x) = \Phi(x; t_{J}) - 4J$ where we are trying to fit 4J.

10.2 Linear least-squares problems

 $r(x) = Jx - 4 \quad \text{for some } J, \text{ data } y.$ $F(x) = \frac{1}{2} |Jx - 4|^2, \quad y = r(0).$

 $\nabla f(x) = J^{T}(Jx-y), \nabla^{2}f(x) = J^{T}J$

since VY =0.

From $\nabla f(x) = 0$

= D [JT] x* = Jy normal egns

m zn and I has full column rank.

Concluding remarks:

* Excellent algorithms do exist.

* Levenberg - Marquadt method works

excellently, even for highly non-linear Droplewz

* Hybrid methods work for non-linear + large problems