Assignment 3: Yen-Chun Wang 1003320934 & Zhijian Wang 1003341010

1. (a) First find the closure for the left side of each dependency

 $LPR^+ = LPQRST$

 $LR^+ = LRST$

 $M^+ = LMO$

 $MR^+ = LMNORST$

Since none of the closures of the FDs cover every element, all of the FDs violate BCNF.

(b) Decompose V using FD $MR \rightarrow N$. $MR^+ = LMNORST$

 $T_1 = \overline{MPQR}$ and $T_2 = LMNORST$

Since none of the FDs project onto T_1 , it is in BCNF and has no FDs.

Decompose V_2 using FD $M \to LO$ since M is not a superkey.

 $M^+ = LMO$

 $T_2 = LMO$ and $T_3 = MRST$

- T_2 is in BCNF because the only projected FD is $M \to LO$ and M is a superkey for LMO.
- T_3 is also in BCNF because the only projected FD is $MR^+ = ST$ and MR is a superkey for MRST.

Using $V_1 = T_2, V_2 = T_1, V_3 = T_3$

Therefore, we end up with 3 tables in BCNF:

 $V_1 = LMO$

with $FD = \{ M \to LO \}$

 $V_2 = MPQR$

with no FDs

 $V_3 = MRST$

with FD = $\{MR \rightarrow ST\}$

- 2. (a) First, split the RHS of each FD in T
 - 1. $AB \rightarrow C$
 - 2. $AB \rightarrow D$
 - 3. $ACDE \rightarrow B$
 - $4. \ ACDE \rightarrow F$
 - 5. $B \rightarrow A$
 - 6. $B \rightarrow C$
 - 7. $B \rightarrow D$
 - 8. $CD \rightarrow A$
 - 9. $CD \rightarrow F$
 - 10. $CDE \rightarrow F$
 - 11. $CDE \rightarrow G$
 - 12. $EB \rightarrow D$

Then, check if we can remove elements from left side of FD.

- 1. $B \to C$ discard A
- 2. $B \to D$ discard A
- 3. $ACDE \rightarrow B$ no discard
- 4. $CD \rightarrow F$ discard AE
- 5. $B \to A$ no discard
- 6. $B \to C$ no discard
- 7. $B \to D$ no discard
- 8. $CD \rightarrow A$ no discard
- 9. $CD \to F$ no discard
- 10. $CD \to F$ discard E
- 11. $CDE \rightarrow G$ no discard
- 12. $B \to D$ discard E

Then, reduce duplicates to get a new set of FDs.

- 1. $ACDE \rightarrow B$
- 2. $B \rightarrow A$
- 3. $B \to C$
- 4. $B \rightarrow D$
- 5. $CD \rightarrow A$
- 6. $CD \rightarrow F$
- 7. $CDE \rightarrow G$

Then, check each FD to see if it is redundant.

- 1. $ACDE \rightarrow B$ not redundant.
- 2. $B \to A$ redundant because $B \to CD$ and $CD \to A$, so $B \to A$ is implied even if not specified.
- 3. $B \to C$ not redundant.
- 4. $B \to D$ not redundant.
- 5. $CD \rightarrow A$ not redundant.
- 6. $CD \rightarrow F$ not redundant.
- 7. $CDE \rightarrow G$ not redundant.

Therefore, the resulting minimal basis is:

$$\{ACDE \rightarrow B, B \rightarrow C, B \rightarrow D, CD \rightarrow A, CD \rightarrow F, CDE \rightarrow G\}$$

(b) Since E never shows up on any right side of the FDs, we know it is part every key.

Since G only shows up on the right side of the FDs, we know it can not be a part of any key.

By calculating the closures of each combination with above conditions, we come up with a key of BE because $BE^+ = ABCDEFG$.

- (c) Simply create new tables for each FD of the minimal basis.
 - $P_1 = ABCDE$
 - $P_2 = ACDF$
 - $P_4 = CDEG$

Since the key shows up in P_1 , we don't need to add another table.

(d) Since the $B \to CD$ is a non-trivial FD in P_1 , but $B^+ = ABCD$ and does not include E, meaning B is not a superkey. This violates BCNF, which means there is redundancy in the table.