Suma		Producto	
Suma $y = u + v$	y' = u' + v'	y = u v	y' = u'v + v'u
<i>y - u v</i> Resta	y - u + v	Cociente	y - u v + v u
y = u - v	y'=u'-v'	$y = \frac{u}{v}$	$y' = \frac{u'v - v'u}{v^2}$
y = k	y'= 0		
y = x	y'=1	y = u	y'= u'
y = k x	y'=k	y = k u	y'=k u'
$y = \frac{1}{x}$	$y' = \frac{-1}{x^2}$	$y = \frac{1}{u}$	$y' = \frac{-u'}{u^2}$
$y = x^2$	y'=2x	$y = u^2$	y'=2uu'
$y = x^n$	$y'=n x^{n-1}$	$y = u^n$	$y'=nu^{n-1}u'$
$y = e^x$	$y'=e^x$	$y = e^u$	$y'=u'e^u$
$y = a^x$	$y'=a^x \ln a$	$y = a^u$	$y'=u'a^u \ln a$
$y = \ln x$	$y' = \frac{1}{x}$	$y = \ln u$	$y' = \frac{u'}{u}$
$y = \log_a x$	$y' = \frac{1}{x \ln a}$	$y = \log_a u$	$y' = \frac{u'}{u \ln a}$
$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$	$y = \sqrt{u}$	$y' = \frac{u'}{2\sqrt{u}}$
$y = \operatorname{sen} x$	$y' = \cos x$	$y = \operatorname{sen} u$	$y' = u' \cos u$
$y = \cos x$	$y' = -\sin x$	$y = \cos u$	$y' = -u' \operatorname{sen} u$
$y = \tan x$	$\begin{cases} y' = 1 + \tan^2 x \\ = \frac{1}{\cos^2 x} = \sec^2 x \end{cases}$	$y = \tan u$	$\begin{cases} y' = (1 + \tan^2 u) u' \\ = \frac{u'}{\cos^2 u} = u' \sec^2 u \end{cases}$
$y = \cot x$	$y' = \frac{-1}{\sin^2 x} = -\csc^2 x$	$y = \cot u$	$y' = \frac{-u'}{\sin^2 u} = -u' \csc^2 u$
y = arcsen x	$y' = \frac{1}{\sqrt{1 - x^2}}$	y = arcsen u	$y' = \frac{u'}{\sqrt{1 - u^2}}$
$y = \arccos x$	$y' = \frac{-1}{\sqrt{1 - x^2}}$	$y = \arccos u$	$y' = \frac{-u'}{\sqrt{1 - u^2}}$
$y = \arctan x$	$y' = \frac{1}{1+x^2}$	$y = \arctan u$	$y' = \frac{u'}{1 + u^2}$
Derivación logarítmica		$\mathbf{2)} \ln y = \ln \left(u^{v} \right)$	$3) \ln y = v \ln u$
	$4) \frac{y'}{y} = v' \ln u + v \frac{u'}{u}$	$5) y' = y \left(v' \ln u + \frac{1}{2} \right)$	$+ v \frac{u'}{u} $ 6) $y' = u'' \left(v' \ln u + v \frac{u'}{u} \right)$

Siendo: y, u, v funciones de x; a, k, n constantes.