Feature	Simple Linear Regression	Multiple Linear Regression
Definition	Predicts Y using one independent variable (X).	Predicts Y using two or more independent variables $(X_1, X_2,, X_n)$.
Equation	$Y = b_0 + b_1 X + \epsilon$	$Y=b_0+b_1X_1+b_2X_2++$ $b_nX_n+\epsilon$
Number of Predictors	One (<i>X</i>)	Two or more $(X_1, X_2,, X_n)$
Geometric Representation	A straight line in 2D space.	A hyperplane in $n+1$ dimensions.
Visualization	Can be plotted on a 2D graph.	Can be visualized in 3D if $n=2$, but not easily for $n>2$.
Use Case Example	Predicting salary based on experience.	Predicting salary based on experience, education, and skills.
Complexity	Simple and easy to interpret.	More complex but captures relationships between multiple features.

14. Suppose we model **salary** based on **experience** (X₁) and **education level** (X₂):

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

If experience and education together impact salary, we introduce an interaction term ($X_1 \times X_2$):

$$Y=eta_0+eta_1X_1+eta_2X_2+eta_3(X_1 imes X_2)+\epsilon$$

Here, β_3 ($X_1 \times X_2$) represents the additional effect when both experience and education interact.

24,25,26.

Feature	Linear Regression	Polynomial Regression
Relationship	Models a straight-line relationship	Models a curved relationship
Equation	$y=b_0+b_1x$	$y = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \dots$
Complexity	Simpler and easier to interpret	More complex, fits non-linear data
Flexibility	Limited in capturing patterns	Can capture non-linear trends
Risk	May underfit if data is non-linear	May overfit if too many polynomial terms are used