

EMPOWER pre-webinar # 4 Wearables

AI-based Telemonitoring | Medizinische Klinik und Poliklinik I 18.09.2024 | Dr. Christian Gölz & Prof. Dr. Solveig Vieluf

AI-based telemonitoring group

Digital tools for studying the integrated heart

- Cardiology implemented in the whole body approach
- Understanding the patients health better by monitoring the patient
 - Throughout the hospital stay (multimodal data)
 - Beyond the doctors visit (wearable data, questionnaires and diaries)

Definition of wearables

 Wearables are gadgets or accessories with integrated sensors that can be worn on the body to continuously collect user specific physiological data.

Wearables are popular

- The global wearable technology market size was estimated at USD 61.30 billion in 2022 and was expected to reach USD 71.91 billion in 2023.
- The global wearable technology market is expected to grow at a compound annual growth rate of 14.6% from 2023 to 2030 to reach USD 186.14 billion by 2030
- Some key players operating in the wearable technology market include Adidas;
 Apple Inc.; Fitbit, Inc.; Garmin Ltd.; SAMSUNG; Sony Corporation; and Xiaomi.
- Key factors that are driving the wearable technology market growth include increasing smartphones & multimedia device demand, infrastructure developments in the mobile industry, and rising disposable income in developing economies.
- https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
- https://datareportal.com/reports/digital-2023-deep-dive-the-rise-of-wearables

Multitude of shapes, forms, and functionalities

Ash et al., 2020

Wearables

Advantages

- Non-invasive
- Easy to use
- Comparably affordable
- Unobtrusive to wear
- Can detect multiple physiological signals from different modalities
- Allow for long-term recordings
- Data volume comparably small

Disadvantages

- Low signal quality
- mostly low resolution
- Measure at the body periphery
- Battery life
- Data storage and processing capacities

Multimodal devices

Actigraphy

- Records magnitude and frequency of movements over time
- Core sensor is typically a 3 axis accelerometer

Actigraphy

- Records magnitude and frequency of movements over time
- Core sensor is typically a 3 axis accelerometer

Actigraphy

- Records magnitude and frequency of movements over time
- Core sensor is typically a 3 axis accelerometer

• Other sensors: Gyroscopes, Magnetometers, Barometer, GPS etc.

Measures derived from actigraphy

- Physical activity levels
 - Step counts, Stair counts, Activities...
- Monitoring rest/activity cycles
- Sleep monitoring
- Circadian and rest-activity patterns
- Seizure detection

Photoplethysmography (PPG)

- PPG is a noninvasive optical technique used to measure blood volume changes in the microvascular tissue.
- It shines light into the skin (red, green, infrared) and detects the amount of light absorbed or reflected, respectively.
- Blood volume fluctuates during each heart cycle generating a characteristic PPG curve

Measures typically derived from PPG

- Heart rate
- Heart rate variability
- Respiratory rate
- Blood Oxygen Saturation (SpO2)
- Vascular Age

Code

- To code along:
 - https://tinyurl.com/3f3tkzrs (Google account required)
 - https://tinyurl.com/yfdmtdd8 (No account required but slower)

Main challenges analyzing wearable

- User
 - Compliance
 - User Variability
- Data accuracy and device reliability
 - Signal quality, time shifts in internal clock
 - Data loss
 - Standardization across different devices and related to gold standards and testing protocols
- Interoperability
- Data access
- Data privacy, regulatory approvals
- Labeling for model training

Main findings generated from wearable data

- Heart rate and arrhythmia detection
 - Perez, Marco V., et al. "Large-scale assessment of a smartwatch to identify atrial fibrillation." New England Journal of Medicine 381.20 (2019): 1909-1917.
- COVID-19 Early Detection
 - Quer, Giorgio, et al. "Wearable sensor data and self-reported symptoms for COVID-19 detection." Nature Medicine 27.1 (2021): 73-77.
- Sleep and Circadian Rhythms
 - Lyall, Laura M., et al. "Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: a cross-sectional study of 91 105 participants from the UK Biobank." The Lancet Psychiatry 5.6 (2018): 507-514.
- Physical activity and mortality risk
 - Lee, I-Min, et al. "Association of step volume and intensity with all-cause mortality in older women." *JAMA internal medicine* 179.8 (2019): 1105-1112

Closing statements

- Wearables offer a valuable addition to multimodal research by providing continuous, real-time, physiological data outside the clinical setting.
- They enable researchers to monitor health metrics in natural environments, which is adding a unique perspective to whole body research.
- This allows for more personalized insights and early detection of health changes and thereby empower patients to act immediately.

Thank you!

Christian.Goelz@med.uni-muenchen.de & Solveig.vieluf@med.uni-muenchen.de