

Winning Space Race with Data Science

Moch Fremas Adisa Putra 28.12.2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data collection
 - Data wrangling
 - Exploratory Data Analysis with Data Visualization
 - Exploratory Data Analysis with SQL
 - Building an interactive map with Folium
 - Building a Dashboard with Plotly Dash
 - Predictive analysis (Classification)
- Summary of all results
 - Exploratory Data Analysis results
 - Interactive analytics demo in screenshots
 - Predictive analysis results

Introduction

- Project background and context
 SpaceX is the most successful company of the commercial space age, making space travel affordable. The company advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. Based on public information and machine learning models, we are going to predict if SpaceX will reuse the first stage.
- Problems you want to find answers
 - How do variables such as payload mass, launch site, number of flights, and orbits affect the success of the first stage landing?
 - Does the rate of successful landings increase over the years?
 - What is the best algorithm that can be used for binary classification in this case?

Methodology

Executive Summary

- Data collection methodology:
 - -Using SpaceX Rest API
 - -Using Web Scrapping from Wikipedia
- Perform data wrangling
 - Dealing with missing values
 - - Using One Hot Encoding to prepare the data to a binary classification
 - Filtering the data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - - Building, tuning and evaluation of classification models to ensure the best results

Data Collection

- Datasets are collected from Rest SpaceX API and webscrapping Wikipedia
 - The information obtained by the API are rocket, launches, payload information.
 - The Space X REST API URL is api.spacexdata.com/v4/

• The information obtained by the webscrapping of Wikipedia are launches, landing, payload information.

Data Collection - SpaceX API

1. Getting Response from API

2. Convert Response to JSON File

3. Transform data

getLaunchSite(data)
getPayloadData(data)
getCoreData(data)
getBoosterVersion(data)

4. Create dictionary with data

5. Create dataframe

data falcon9.to csv('dataset part 1.csv', index=False)

Data Collection - Scraping

1. Getting Response from HTML

response = requests.get(static_url)

2. Create BeautifulSoup Object

soup = BeautifulSoup(response.text, "html5lib")

3. Find all tables

html_tables = soup.findAll('table')

4. Get column names

```
for th in first_launch_table.find_all('th'):
    name = extract_column_from_header(th)
    if name is not None and len(name) > 0 :
        column_names.append(name)
```

5. Create dictionary

```
launch_dict= dict.fromkeys(column_names)
# Remove an irrelvant column
del launch dict['Date and time ( )']
 # Let's initial the launch dict with each value to be an empty list
launch_dict['Flight No.'] = []
launch dict['Launch site'] = []
launch dict['Payload'] = []
launch_dict['Payload mass'] = []
launch dict['Orbit'] = []
launch dict['Customer'] = []
launch dict['Launch outcome'] = []
# Added some new columns
launch dict['Version Booster']=[]
launch dict['Booster landing']=[]
launch dict['Date']=[]
launch dict['Time']=[]
```

6. Add data to keys

See notebook for the rest of code

7. Create dataframe from dictionary

df=pd.DataFrame(launch_dict)

8. Export to file

df.to_csv('spacex_web_scraped.csv', index=False)

Data Wrangling

- In the dataset, there are several cases where the booster did not land successully.
 - True Ocean, True RTLS, True ASDS means the mission has been successful.
 - False Ocean, False RTLS, False ASDS means the mission was a failure.
- We need to transform string variables into categorical variables where 1 means the mission has been successful and 0 means the mission was a failure.

EDA with Data Visualization

Scatter Graphs

- Flight Number vs. Payload Mass
- Flight Number vs. Launch Site
- Payload vs. Launch Site
- Orbit vs. Flight Number
- Payload vs. Orbit Type
- Orbit vs. Payload Mass

Scatter plots show relationship between variables. This relationship is called the correlation.

Bar Graph

Success rate vs. Orbit

Bar graphs show the relationship between numeric and categoric variables.

Line Graph

· Success rate vs. Year

Line graphs show data variables and their trends. Line graphs can help to show global behavior and make prediction for unseen data.

Link to code

EDA with SQL

- We performed SQL queries to gather and understand data from dataset:
 - Displaying the names of the unique lauunch sites in the space mission.
 - Display 5 records where launch sites begin with the string 'CCA'
 - Display the total payload mass carried by boosters launched by NASA (CRS).
 - Display average payload mass carried by booster version F9 v1.1.
 - List the date when the first successful landing outcome in ground pad was achieved.
 - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000.
 - List the total number of successful and failure mission outcomes.
 - List the names of the booster_versions which have carried the maximum payload mass.
 - List the records which will display the month names, faiilure landing_ouutcomes in drone ship, booster versions, launch_site for the months in year 2015.
- Rank the count of successful landiing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order. Link to code

Build an Interactive Map with Folium

- Folium map object is a map centered on NASA Johnson Space Center at Houson, Texas
 - Red circle at NASA Johnson Space Center's coordinate with label showing its name (folium.Circle, folium.map.Marker).
 - Red circles at each launch site coordinates with label showing launch site name (folium.Circle, folium.map.Marker, folium.features.Divlcon).
 - The grouping of points in a cluster to display multiple and different information for the same coordinates (folium.plugins.MarkerCluster).
 - Markers to show successful and unsuccessful landings. Green for successful landing and Red for unsuccessful landing.
 (folium.map.Marker, folium.lcon).
 - Markers to show distance between launch site to key locations (railway, highway, coastway, city) and plot a line between them.
 - (folium.map.Marker, folium.PolyLine, folium.features.DivIcon)
- These objects are created in order to understand better the problem and the data. We can show
 easily all launch sites, their surroundings and the number of successful and unsuccessful
 landings.

Link to code

Build a Dashboard with Plotly Dash

- Dashboard has dropdown, pie chart, rangeslider and scatter plot components
 - Dropdown allows a user to choose the launch site or all launch sites (dash_core_components.Dropdown).
 - Pie chart shows the total success and the total failure for the launch site chosen with the dropdown component (plotly.express.pie).
 - Rangeslider allows a user to select a payload mass in a fixed range (dash_core_components.RangeSlider).
 - Scatter chart shows the relationship between two variables, in particular Success vs Payload Mass (plotly.express.scatter).

Predictive Analysis (Classification)

Data preparation

- Load dataset
- Normalize data
- Split data into training and test sets.

Model preparation

- Selection of machine learning algorithms
- Set parameters for each algorithm to GridSearchCV
- Training GridSearchModel models with training dataset

Model evaluation

- Get best hyperparameters for each type of model
- Compute accuracy for each model with test dataset
- Plot Confusion Matrix

Model comparison

- Comparison of models according to their accuracy
- The model with the best accuracy will be chosen (see Notebook for result)

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

We note an upward trend in the success rate for each launch site.

Payload vs. Launch Site

Depending on the launch site, a heavier payload may be a consideration for a successful landing. On the other hand, a too heavy payload can make a landing fail.

Success Rate vs. Orbit Type

With this plot, we can see success rate for different orbit types. We note that ES-L1, GEO, HEO, SSO have the best success rate.

Flight Number vs. Orbit Type

The correlation between the number of flights and the success rate is evident in the LEO orbit, showing an increase as more flights occur. Conversely, the GTO orbit exhibits no discernible relationship between the success rate and the number of flights. It is plausible to assume that the notable success rates observed in certain orbits, such as SSO or HEO, stem from the insights gained during previous launches across various orbits.

Payload vs. Orbit Type

The success rate of launches in specific orbits is notably impacted by payload weight. For instance, increased payload weight enhances the success rate in the LEO orbit. Conversely, reducing the payload weight for a GTO orbit has a positive effect on launch success.

Launch Success Yearly Trend

Since 2013, we can see an increase in the Space X Rocket success rate.

All Launch Site Names

SQL Query

SELECT DISTINCT "LAUNCH_SITE" FROM SPACEXTBL

Explanation

The use of DISTINCT in the query allows to remove duplicate LAUNCH_SITE.

Results

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

SQL Query

SELECT * FROM SPACEXTBL WHERE "LAUNCH SITE" LIKE '%CCA%' LIMIT 5

Explanation

The WHERE clause followed by LIKE clause filters launch sites that contain the substring CCA. LIMIT 5 shows 5 records from filtering.

Result

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSF	KG_	Orbit	Customer
04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit		0	LEO	SpaceX
08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese		0	LEO (ISS)	NASA (COTS) NRO
22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2		525	LEO (ISS)	NASA (COTS)
08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1		500	LEO (ISS)	NASA (CRS)
01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2		677	LEO (ISS)	NASA (CRS)

Total Payload Mass

SQL Query

SELECT SUM("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "CUSTOMER" = 'NASA (CRS)'

Explanation

This query returns the sum of all payload masses where the customer is NASA (CRS).

Results

SUM("PAYLOAD_MASS__KG_")
45596

Average Payload Mass by F9 v1.1

SQL Query

SELECT AVG("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "BOOSTER_VERSION" LIKE '%F9 v1.1%'

Explanation

This query returns the average of all payload masses where the booster version contains the substring F9 v1.1.

Results

AVG("PAYLOAD_MASS__KG_") 2534.6666666666666

First Successful Ground Landing Date

SQL Query

SELECT MIN("DATE") FROM SPACEXTBL WHERE "Landing _Outcome" LIKE '%Success%'

Results

MIN("DATE")

01-05-2017

Explanation

With this query, we select the oldest successful landing.

The WHERE clause filters dataset in order to keep only records where landing was successful. With the MIN function, we select the record with the oldest date.

Successful Drone Ship Landing with Payload between 4000 and 6000

SQL Query

```
%sql SELECT "BOOSTER_VERSION" FROM SPACEXTBL WHERE "LANDING _OUTCOME" = 'Success (drone ship)' \
AND "PAYLOAD MASS KG" > 4000 AND "PAYLOAD MASS KG" < 6000;</pre>
```

Explanation

This query returns the booster version where landing was successful and payload mass is between 4000 and 6000 kg. The WHERE and AND clauses filter the dataset.

Results

F9 FT B1021 F9 FT B1026 F9 FT B1021.2 F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

SQL Query

%sql SELECT (SELECT COUNT("MISSION_OUTCOME") FROM SPACEXTBL WHERE "MISSION_OUTCOME" LIKE '%Success%') AS SUCCESS, \
(SELECT COUNT("MISSION_OUTCOME") FROM SPACEXTBL WHERE "MISSION_OUTCOME" LIKE '%Failure%') AS FAILURE

Results

SUCCESS FAILURE

Explanation

With the first SELECT, we show the subqueries that return results. The first subquery counts the successful mission. The second subquery counts the unsuccessful mission. The WHERE clause followed by LIKE clause filters mission outcome. The COUNT function counts records filtered.

Boosters Carried Maximum Payload

SQL Query

```
%sql SELECT DISTINCT "BOOSTER_VERSION" FROM SPACEXTBL \
WHERE "PAYLOAD_MASS__KG_" = (SELECT max("PAYLOAD_MASS__KG_") FROM SPACEXTBL)
```

Explanation

We used a subquery to filter data by returning only the heaviest payload mass with MAX function. The main query uses subquery results and returns unique booster version (SELECT DISTINCT) with the heaviest payload mass.

Results

Booster_Version
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

2015 Launch Records

SQL Query

```
%sql SELECT substr("DATE", 4, 2) AS MONTH, "BOOSTER_VERSION", "LAUNCH_SITE" FROM SPACEXTBL\
WHERE "LANDING _OUTCOME" = 'Failure (drone ship)' and substr("DATE",7,4) = '2015'
```

Explanation

This query returns month, booster version, launch site where landing was unsuccessful and landing date took place in 2015. Substr function process date in order to take month or year. Substr(DATE, 4, 2) shows month. Substr(DATE, 7, 4) shows year.

Results

MONTH	Booster_Version	Launch_Site
01	F9 v1.1 B1012	CCAFS LC-40
04	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

SQL Query

```
%sql SELECT "LANDING _OUTCOME", COUNT("LANDING _OUTCOME") FROM SPACEXTBL\
WHERE "DATE" >= '04-06-2010' and "DATE" <= '20-03-2017' and "LANDING _OUTCOME" LIKE '%Success%'\
GROUP BY "LANDING _OUTCOME" \
ORDER BY COUNT("LANDING _OUTCOME") DESC;</pre>
```

Result

Landing _Outcome	COUNT("LANDING _OUTCOME")
Success	20
Success (drone ship)	8
Success (ground pad)	6

Explanation

This query retrieves landing outcomes and their respective counts for missions that were successful and occurred between April 6, 2010, and March 20, 2017. The GROUP BY clause organizes the results based on landing outcomes, and the ORDER BY COUNT DESC displays the results in descending order.

Folium map – Ground stations

It is evident that SpaceX launch sites are situated along the coastline of the United States.

Folium map – Color Labeled Markers

Green marker represents successful launches. Red marker represents unsuccessful launches. We note that KSC LC-39A has a higher launch success rate.

Folium Map – Distances between CCAFS SLC-40 and its proximities

Is CCAFS SLC-40 in close proximity to railways?
Yes Is CCAFS SLC-40 in close proximity to
highways? Yes Is CCAFS SLC-40 in close
proximity to coastline? Yes
Do CCAFS SLC-40 keeps certain distance away from cities? No

Dashboard - Total success by Site

We observe that KSC LC-39A boasts the highest success rate among launches.

Dashboard - Total success launches for Site KSC LC-39A

We observe that KSC LC-39A has attained a success rate of 76.9% alongside a failure rate of 23.1%.

Dashboard - Payload mass vs Outcome for all sites with different payload mass selected

Low weighted payloads have a better success rate than the heavy weighted payloads.

Classification Accuracy

For accuracy test, all methods performed similar. We could get more test data to decide between them. But if we really need to choose one right now, we would take the decision tree.

```
tuned hyperparameters :(best parameters) {'criterion': 'entropy', 'max_depth': 12, 'max_features': 'sqrt', 'min_samples_leaf':
4, 'min_samples_split': 2, 'splitter': 'random'}
```

Confusion Matrix

Logistic regression

Decision Tree

As the test accuracy are all equal, the confusion matrices are also identical. The main problem of these models are false positives.

Conclusions

- Mission success can be attributed to various factors, including the launch site, the orbit, and notably, the cumulative number of previous launches. It is reasonable to posit that an accumulation of knowledge across launches has played a pivotal role in transitioning from launch failures to successes.
- The orbits with the best success rates are GEO, HEO, SSO, ES-L1.
- The success of a mission is contingent on the specific orbit, where payload mass emerges as a critical factor. Different orbits demand varying payload masses, with some favoring lighter loads and others requiring heavier ones. However, as a general trend, missions with lower payload masses tend to exhibit better performance compared to those with heavier payloads.
- Given the existing dataset, we lack the information needed to elucidate why certain launch sites outperform others (such as KSC LC-39A being the top launch site). To address this issue, obtaining additional data on atmospheric conditions or other pertinent factors could provide valuable insights.
- For this dataset, we choose the Decision Tree Algorithm as the best model even if the test accuracy between all the models used is identical. We choose Decision Tree Algorithm because 45 it has a better train accuracy.

