Chapter 5. Minimax Analysis

• The Minimax Rule

Let

 $\mathcal{D}^* = \{\text{all randomized decision rules } \delta^* :$

$$R(\theta, \delta^*) < \infty \text{ for all } \theta \in \Theta$$
.

A decision rule δ_0 is a **minimax decision rule** if it minimizes $\sup_{\theta} R(\theta, \delta)$ among all decision rules in \mathcal{D}^* , i.e., if

$$\sup_{\theta \in \Theta} R(\theta, \delta_0) = \inf_{\delta \in \mathcal{D}^*} \sup_{\theta \in \Theta} R(\theta, \delta^*).$$

The quantity, $\sup_{\theta \in \Theta} R(\theta, \delta_0)$, is called the **minimax** value.

• Admissibility of the Minimax Rule

Theorem 1: If δ_0 is a unique minimax rule, then δ_0 is admissible.

Proof: Suppose δ_0 is not admissible. Then, there exists δ_1 such that

$$R(\theta, \delta_1) \leq R(\theta, \delta_0)$$
 for all $\theta \in \Theta$

and

$$R(\theta, \delta_1) < R(\theta, \delta_0)$$

for some θ . It follows that

$$\sup_{\theta \in \Theta} R(\theta, \delta_1) \le \sup_{\theta \in \Theta} R(\theta, \delta_0),$$

which implies that δ_1 is also minimax. This contradicts the uniqueness of the minimax rule.

• Determination of Minimax Rules

Theorem 2: If δ_0 is admissible and has a constant risk function over Θ , then δ_0 is minimax.

Proof: If δ_0 is not minimax, then there exists δ_1 such that

$$\sup_{\theta \in \Theta} R(\theta, \delta_1) < \sup_{\theta \in \Theta} R(\theta, \delta_0).$$

Since $R(\theta, \delta_0) = c$ for some constant c, then

$$R(\theta, \delta_1) < c = R(\theta, \delta_0)$$

for all $\theta \in \Theta$. This contradicts the admissibility of δ_0 .

Let δ^{π} be the Bayes rule with respect to π . Then the Bayes risk is

$$r(\pi) = r(\pi, \delta^{\pi}) = \int_{\Theta} R(\theta, \delta^{\pi}) dF^{\pi}(\theta).$$

Definition: A prior π is said to be *least favorable* if for all prior distribution π' ,

$$r(\pi) = r(\pi, \delta^{\pi}) \ge r(\pi') = r(\pi', \delta^{\pi'}).$$

Theorem 3: Suppose π is a distribution on Θ such that

$$r(\pi, \delta^{\pi}) = \int_{\Theta} R(\theta, \delta^{\pi}) dF^{\pi}(\theta) = \sup_{\theta \in \Theta} R(\theta, \delta^{\pi}).$$

Then

- (1) δ^{π} is minimax.
- (2) If δ^{π} is the unique Bayes rule with respect to π , then it is the unique minimax rule.
- (3) π is least favorable.

Note: The condition

$$r(\pi, \delta^{\pi}) = \int_{\Theta} R(\theta, \delta^{\pi}) dF^{\pi}(\theta) = \sup_{\theta \in \Theta} R(\theta, \delta^{\pi})$$

says that the average of $R(\theta, \delta^{\pi})$ equals to its maximum. This will happen when the risk function is constant or when π assigns probability 1 to the set on which the risk function taken on its maximum.

Proof: (1) Let δ be any other decision rule. Then

$$\sup_{\theta \in \Theta} R(\theta, \delta) \ge \int_{\Theta} R(\theta, \delta) dF^{\pi}(\theta)$$

$$\ge \int_{\Theta} R(\theta, \delta^{\pi}) dF^{\pi}(\theta) = r(\pi, \delta^{\pi})$$

$$= \sup_{\theta \in \Theta} R(\theta, \delta^{\pi}).$$

Thus, δ^{π} is minimax.

The proof of (2) is analogous to that of (1) with the replacement of " \geq " by ">".

(3) Let π' be any other prior distribution on Θ . Then

$$r(\pi', \delta^{\pi'}) = \int_{\Theta} R(\theta, \delta^{\pi'}) dF^{\pi'}(\theta)$$

$$\leq \int_{\Theta} R(\theta, \delta^{\pi}) dF^{\pi'}(\theta) \quad (\delta^{\pi'} \text{ is Bayes w.r.t. } \pi')$$

$$\leq \sup_{\theta \in \Theta} R(\theta, \delta^{\pi}) = r(\pi, \delta^{\pi}).$$

This completes the proof.

Corollary 1 (Theorem 17 of the textbook): If $\delta_0^* \in \mathcal{D}^*$ is Bayes with respect to $\pi_0 \in \Theta^*$, where Θ^* denotes the set of all π for which $L(\pi, a) < \infty$ for all $a \in \mathcal{A}$, and

$$R(\theta, \delta_0^*) \le r(\pi_0, \delta_0^*)$$

for all $\theta \in \Theta$, then δ^* is minimax and π_0 is least favorable.

Proof: If

$$R(\theta, \delta_0^*) \le r(\pi_0, \delta_0^*),$$

then

$$r(\pi_0, \delta_0^*) = \sup_{\theta \in \Theta} R(\theta, \delta_0^*).$$

Thus, Corollary 1 directly follows from Theorem 3. \square

Corollary 2 (Equalizer Rules): If a Bayes rule δ^{π} has constant risk, then it is minimax.

Corollary 3 (Sub-Equalizer Rules): Let

$$W_{\pi} = \{\theta : R(\theta, \delta^{\pi}) = \sup_{\theta' \in \Theta} R(\theta, \delta^{\pi})\}.$$

If $P^{\pi}(W_{\pi}) = 1$, then δ^{π} is minimax.

The proofs of the above two corollaries are straightforward.

Let π_n be a sequence of prior distributions and also let δ_n is the Bayes rule with respect to π_n . Write

$$r_n = r(\pi_n, \delta_n) = \int_{\Theta} R(\theta, \delta_n) dF^{\pi_n}(\theta).$$

Assume

$$r = \lim_{n \to \infty} r_n < \infty.$$

Definition: A sequence π_n is said to be least favorable if for every π ,

$$r(\pi, \delta_{\pi}) \leq r$$
.

Theorem 4: Suppose π_n is a sequence of prior distributions with Bayes risk $r_n \to r$, and δ is a decision rule such that

$$\sup_{\theta \in \Theta} R(\theta, \delta) \le r.$$

Then

- (1) δ is minimax.
- (2) the sequence π_n is least favorable if the equality holds.

Proof: (1) Suppose δ' is any other decision rule. Then

$$\sup_{\theta \in \Theta} R(\theta, \delta') \ge \int_{\Theta} R(\theta, \delta') dF^{\pi_n}(\theta) \ge r_n$$

for any n. Thus,

$$\sup_{\theta \in \Theta} R(\theta, \delta') \ge \lim_{n \to \infty} r_n = r \ge \sup_{\theta \in \Theta} R(\theta, \delta),$$

which implies that δ is minimax.

(2) Let π denote any prior distribution. Then

$$r_{\pi} = r(\pi, \delta_{\pi}) = \int_{\Theta} R(\theta, \delta^{\pi}) dF^{\pi}(\theta)$$

$$\leq \int_{\Theta} R(\theta, \delta) dF^{\pi}(\theta) \leq \sup_{\theta \in \Theta} R(\theta, \delta) = r.$$

Hence, $\{\pi_n\}$ is least favorable.

Example 1: Suppose that $X \sim N(\theta, 1)$ and that it is desired to estimate θ under squared-error loss. We seek to prove that the usual estimator, $\delta_0(x) = x$, is minimax.

Solution:

Method 1: By the Bylth's theorem, we have shown that δ_0 is admissible. Since

$$R(\theta, \delta_0) = E_{\theta}[(\theta - \delta_0)^2] = 1,$$

which is constant. Thus, Theorem 2 gives that δ_0 is admissible.

Method 2: Suppose that we cannot apply the Bylth's theorem. Let $\pi(\theta) = 1$. Then δ_0 is the generalized Bayes rule. Consider a sequence of proper prior $\pi_n = N(0, n)$. Then,

$$\delta_n = \left(\frac{n}{n+1}\right)x,$$

and

$$r_n = r(\pi_n, \delta_n) = \int_{-\infty}^{\infty} R(\theta, \delta_n) \pi_n(\theta) d\theta$$
$$= \int_{-\infty}^{\infty} \frac{1}{(n+1)^2} \left(n^2 + \theta^2 \right) \pi_n(\theta) d\theta = \frac{n}{n+1}.$$

Thus,

$$\lim_{n \to \infty} r_n = 1.$$

Since $R(\theta, \delta_0) = 1$, $\sup_{\theta} R(\theta, \delta_0) = 1$. Theorem 4 leads to that $\delta_0 = x$ is minimax and the sequence $\{N(0, n)\}$ is least favorable.

Example 2: Assume $X \sim \mathcal{B}(n, \theta)$ is observed, and that it is desired to estimate θ under squared-error loss. Then, $\delta = \frac{x}{n}$ is admissible and it is also UMVUE. Is δ minimax?

Solution: How to show that $\delta = \frac{x}{n}$ is admissible?

To examine whether $\delta = \frac{x}{n}$ is minimax, we find an equalizer rule of the form $\delta(x) = ax + b$. Clearly,

$$R(\theta, \delta) = E_{\theta}[(aX + b - \theta)^{2}]$$

$$= E_{\theta}[\{a(X - n\theta) + b + (an - 1)\theta\}^{2}]$$

$$= a^{2}n\theta(1 - \theta) + [b + (an - 1)\theta]^{2}$$

$$= \theta^{2}[-a^{2}n + (an - 1)^{2}] + \theta[a^{2}n + 2b(an - 1)] + b^{2}.$$

For the risk to be constant in θ , we must have

$$-a^2n + (an - 1)^2 = 0$$

and

$$a^2n + 2b(an - 1) = 0.$$

Solving these equations for a and b gives

$$a = (n + \sqrt{n})^{-1}$$
 and $b = \sqrt{n}/[2(n + \sqrt{n})]$.

Thus,

$$\delta_0(x) = ax + b = \frac{x + \sqrt{n}/2}{n + \sqrt{n}}$$

is an equalizer rule.

To complete the argument, we must show that δ_0 is Bayes. It is easy to see that if $\theta \sim \mathcal{B}e(\alpha, \beta)$, then the Bayes estimator is

$$\frac{x+\alpha}{n+\alpha+\beta}.$$

Hence, the equalizer rule $\delta 0$ is clearly of this form with

$$\alpha = \beta = \sqrt{n}/2.$$

Hence δ_0 is Bayes, and Corollary 2 gives that δ_0 is minimax and the least favorable prior is $\mathcal{B}e(\sqrt{n}/2, \sqrt{n}/2)$. Since δ_0 is δ , then $\delta = x/n$ cannot be minimax.

Straightforward calculation yields

$$R(\theta, \delta_0) = \frac{1}{[4(1+\sqrt{n})^2]}$$

and

$$R(\theta, \delta = x/n) = \frac{\theta(1-\theta)}{n}.$$

From Figure 5.9 on page 375 of the textbook, we can see that the minimax rule compares very favorably with $\delta(x) = x/n$ for small n but rather unfavorably for large n.