EE6320 RF Integrated Circuits Project: Mixer Design

Mixer Performance Summary Table

	Design Metric	<u>Performance</u>	<u>Specification</u>
Conversion Gain	Minimum Peak Gain in the specified band $[f_{RF} = f_{LO}]$	22.915dB	>20 dB
	Maximum Peak Gain in the specified band $[f_{RF}=f_{LO}]$	22.933dB	>20 dB
	Peak Gain flatness in specified band [Max-Min Gain]	0.02dB	-
	$3dB$ RF Bandwidth [From the plot of $f_{RF} = f_{LO}$]	3.35GHz	-
	Minimum Band-Edge Gain in the specified band $[f_{RF} = f_{LO} + 10MHz]$	22.91dB	>20 dB
	Maximum Band-Edge Gain in the specified band [f_{RF} = f_{LO} + 10 MHz]	22.93dB	>20 dB
Noise Figure	Maximum SSB Noise Figure for $f_{LO} = 925 \text{ MHz}$	6.97544dB	≤ 10 dB
	Maximum SSB Noise Figure for f_{LO} = 942.5 <i>MHz</i>	6.99216dB	≤ 10 dB
	Maximum SSB Noise Figure for f_{LO} = 960 MHz	7.0044dB	≤ 10 dB
<u>Linearity - IIP</u> 2	Input power used for extrapolation	-40dBm	-
	Power of Fundamental Tone at output (at chosen input power)	-22dBm	-
	Power of IM ₂ Tone at output (at chosen input power)	-90dBm	-
	Extrapolated IIP2	31.7466dBm	≥ +30dBm
<u>Linearity - <i>IIP</i></u> 3	Input power used for extrapolation	-40dBm	-
	Power of Fundamental Tone at output (at chosen input power)	-20.5dBm	-
	Power of IM ₃ Tone at output (at chosen input power)	-100dBm	-
	Extrapolated IIP ₃	0.216dBm	≥ 0 dBm
<u>Power</u>	Mixer DC power consumption [Excluding Bias]	1.44mW	Minimize
	Bias circuit power consumption	42.3μW	Minimize
<u>Other</u>	Sum of all resistances [excluding bias]	2ΚΩ	-
	Sum of biasing resistances	2ΜΩ	-
	Sum of all capacitances [Including AC coupling]	2μF	-
	Sum of all inductances	NA	

Load chosen (each R_load)	1ΚΩ	-
Differential Mixer Input Capacitance (C_gs Caps)	118fF	-
Simulator Used	Cadence Virtuoso	-

Name: RESHUL JINDAL
Roll No: EE24M106

LNA + Mixer Performance Summary Table

	<u>Design Metric</u>	<u>LNA</u>	<u>Mixer</u>	<u>Cascade</u>	
				<u>Expected</u>	<u>Simulated</u>
Conversion <u>Gain</u>	fin = flo, flo = 925 MHz	40.453dB	22.933dB	63.386dB	59.9dB
	$f_{IN} = f_{LO} + 10MHz$, $f_{LO} = 925 MHz$	40.705dB	22.93dB	63.635dB	60.4dB
	fin = flo, flo = 942.5 MHz	40.86dB	22.924dB	63.784dB	60.72dB
	f _{IN} = f _{LO} + 10MHz, f _{LO} = 942.5 MHz	41.03dB	22.92dB	64dB	61.1dB
	fin = flo, flo = 960 MHz	41.12dB	22.95dB	64.07dB	61.325dB
	f _{IN} = f _{LO} + 10MHz, f _{LO} = 960 MHz	41.2dB	22.91dB	64.11dB	61.575dB
Noise <u>Figure</u>	f _{IN} = f _{LO} + 10MHz, f _{LO} = 925 MHz	1.94dB	6.97544dB	2.03dB	1.937dB
	$f_{IN} = f_{LO} + 10MHz$, $f_{LO} = 942.5 MHz$	1.92dB	6.99216dB	2.047dB	1.924dB
	f _{IN} = f _{LO} + 10MHz, f _{LO} = 960 MHz	1.927dB	7.0044dB	2.046dB	1.922dB
					_
Linearity <u>IIP3</u>	Input power used for extrapolation	-60dBm	-40dBm	-	-70dBm
	Power of Fundamental Tone at output (at chosen input power)	-40.24dBm	-20.5dBm	-	-8.91dBm
	Power of <i>IM</i> ₃ Tone at output (at chosen input power)	-160.486dBm	-100dBm	-	-65.61dBm

	Extrapolated <i>IIP</i> ₃	0.123dBm	0.216dBm	-	-41.4dBm
<u>Power</u>	Total power consumption [Excluding Bias]	74.704mW	1.44mW	76.144mW	76.122mW
	Bias circuit power consumption	2.736mW	42.3μW	2.7783mW	2.7783mW

Mixer Schematic

Mixer Testbench

Design Variable Values

<u>Design Variable</u>	<u>Value</u>
Resistance (load, each side)	1ΚΩ
Length of all MOS	180nm

Width of Switch MOS (all 4)	90 x 270nm = 24.3μm
Width of Transconductance MOS (both MOS)	280 x 270nm = 75.6μm
Bias Current	23.5μΑ
V_LO Amplitude	0.95V

Fixed Constant Parameters

• Transconductance MOS C_gs: 118fF

• Current Mirror MOS: W = 15 x 270nm = 4.05μm, L = 180nm

• Coupling capacitances: 1µF (each)

• Bias Resistances: 1MΩ (each)

Conversion Gain of Mixer at 925 MHz

Conversion Gain of Mixer at 942.5 MHz

Conversion Gain of Mixer at 960 MHz

Noise Figure of Mixer at 925 MHz

Noise Figure of Mixer at 960 MHz

Mixer IIP2 Linearity

Mixer IIP3 Linearity

Mixer 3-dB Bandwidth

Mixer DC Power Consumption [Excluding Bias]

LNA + Mixer Testbench

LNA + Mixer Conversion Gain at 925 MHz

LNA + Mixer Conversion Gain at 942.5 MHz

LNA + Mixer Conversion Gain at 960 MHz

LNA + Mixer Noise Figure at 925 MHz

LNA + Mixer Noise Figure at 942.5 MHz

LNA + Mixer Noise Figure at 960 MHz

LO Waveform Characteristics

Characteristics taken are (for generalized manner, as flo varies for various analysis):

Frequency: flo HzTime period: 1/flo Hz

• Delay time: 0 (for I Lo signal), 0.25/flo (for Q Lo signal)

Pulse Width: 0.40/floRise/Fall Time: 0.10/flo

Procedure adopted for the Project

- 1. First, hand calculations were performed to get the conversion gain more than 20dB.
- 2. The NMOS characterization was done to determine the size of both transconductance as well as switching NMOS, while getting required gm.
- 3. After making the circuit DC operating point analysis was conducted to verify the DC voltages and the gm.
- 4. Now we do the HB analysis to find the conversion gain and verify it to be greater than required.
- 5. HB noise analysis gives the integrated noise figure, it was easily achievable below 10dB.
- 6. IIP3 linearity is a small bump in the road, we need to check the third order derivative of the current with respect to Vgs for that. We need to bias the transconductance NMOS therefore at the Vgs where we see this derivative is close to zero. Now, this Vgs is generally lower than what we designed the Mixer initially and conversion gain might drop after the change in Vgs, therefore its recommended to design for a conversion gain at least 3dB if not 5dB higher than the required value, initially.
- 7. IIP2 is met easily, now you cascade the two (LNA + Mixer)
- 8. All the simulations were performed on the cascaded combination.
- 9. Everything obtained in the cascade was as desired.

Path to the Project Files

/home/ee24m106/cadence_project/RFIC_courseproject/mixer_rf

Calculations done for the Project

apsara EE2UM106 RESHUL JINDAL Mirer Project Hand Calculations 1) Conversion Gain = 2 gmfs Gain > 20dB 2 gmls > 10 for Po = IKSZ gm = 15.7m ant très gents ve get exact lock so we ment design for gm = 20 mg so that after moderation of Vos due to 11P2 we still get gain > 20dB. We like a Current of 1.44 mA to bias the Cascods of transictors VOD - IR = 1-8 - 1.44 => 0.36 arculable Vo for the Steek of 2 transistors. 1K 1.44mA Mi and Me must be Sized accordingly. This Can't be halfal Up = 0.2 (assure) Calculated best we can Simulate it. D.36V Vbias (1) 1-44ma Vort 1 Vref=0.2V (+) 1-44mA

and the same apsara

We simulate these clets to find the Wo transistors take L= Lnin = 180 nm.

2) Noise figure expected estimation way fires &.

feg = fi + f2-1

Nhey - 10 (gro (feg)

for f= 925MH2 10 lg 10 f2)= 6.975 byf, = 1.94 f2 = 4.98 f1 = 1.56

Feg = 1.56 + 3.98

Si & mar 1 1 2 3 200 108 45 200

10 - 1 N/2 = 2:03 db 11 . 06 1

Similarly we can Calculate for other Cases as