EXPLORING 2nd edition SCIENCE

For the Junior Cycle

Michael O'Callaghan • Pat Doyle • Orla Molamphy • Ger Reilly

Unit 3 Chemical World Chapter 16 Building blocks

Michael O'Callaghan • Pat Doyle • Orla Molamphy • Ger Reilly

What are atoms?

Atoms are the basic building blocks of all materials. The word 'atom' comes from a Greek word describing something that cannot be divided. When atoms were discovered, scientists thought of them as solid balls, like snooker balls, which could not be split into anything smaller.

Element

An element is a substance made up of only one type of atom.

If you burn a piece of wood, you will get a black solid.
That solid is called carbon.
Carbon is an element because it is made up of only carbon atoms and cannot be broken down into anything simpler.

Element

The periodic table shows a list of all the elements.

1 H																	2 He
Hydrogen 3	4]										5	6	7	8	9	Helium 10
Li	Be											Boron	C	Nitrogen	Охудеп	Fluorine	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Phosphorus	Sulfur	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc Scandium	Titanium	Vanadium	Cr	Mn Manganese	Fe	Co	Nickel	Cu	Zn	Ga	Ge	As Arsenic	Se Selenium	Br Bromine	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Yttrium	Zr	Nb Niobium	Mo Molybdenum	T _C	Ru	Rh	Palladium	Ag	Cd	In	Sn	Sb	Te	lodine	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La*	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Cestum 87	88	89	104	Tantalum	Tungsten 106	Rhenium 107	108	109	Platinum 110	Gold 111	Mercury	Thallium	114	Bismuth 115	Polonium 116	Astatine 117	Radon 118
Fr	Ra	Actinium	Rf	Db Dubnium	Sg	Bh	Hs Hassium	Mt	Ds Darmstadtlum	Rg	Cn	1	Uuq				

*	58 Ce	59 Dr	60 Nd	61 Dm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dv	67 Ho	68 Er	69 Tm	70 Yb	71
**		Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Symbol

Each element has a symbol (see some examples below). H is the symbol for hydrogen. Fe is the symbol for iron, which comes from the Latin name *ferrum*.

Element	Symbol
Oxygen	О
Carbon	С
Potassium	K
Nitrogen	N

Molecules

A molecule is formed when two or more atoms join (bond) together chemically.

Compounds

When a molecule is made up of two or more different types of elements chemically combined, we call it a compound. All compounds are molecules, but not all molecules are compounds.

Hydrogen gas (H2) and oxygen gas (O2) are not compounds because each is composed of one element. Water (H2O) and carbon dioxide (CO2) are compounds because each is made up of more than one type of element. All compounds are non-elements.

Dichloromethane

Making models

You can use models to show how atoms bond (join) to each other. Model kits have different coloured balls for each element and sticks to join one ball to another.

Structure of the atom

The atom is made up of smaller particles called sub-atomic particles. These are:

- o Protons
- o Neutrons
- o Electrons.

The three particles in the atom are quite different from each other

Structure of the atom

The properties of protons, neutrons and electrons

Particle	Charge	Mass	Location
Proton	+1	1	Nucleus
Neutron	0	1	Nucleus
Electron	-1	Negligible	Shells

Structure of the atom

All the particles are extremely small. Electrons are so small it would take almost 2000 of them to have the same mass as a single proton or neutron.

Atomic and mass numbers

Atoms of different elements differ from each other by the number of protons, neutrons and electrons they have.

Every element has its own atomic number. The atomic number tells you how many protons (which is the same as the number of electrons) there are in one atom of the element.

There is also the mass number.

The mass number tells you how many protons and neutrons there are in the atom.

Atomic number

3 protons

3 electrons

Mass number

7 - 3 = 4 neutrons

How electrons are arranged

Electrons whizz around the nucleus in energy levels called shells, or orbits. The first shell can hold only two electrons; the second and third shells can each hold up to eight electrons.

Electrons fill up the shells one by one, starting with the first shell. When a shell is full, they start a new one. All atoms would 'like' to have full electron shells, but in most atoms the outer shell is not full, and this makes the atom 'want' to react to fill it.

Bohr model

A Danish scientist called Niels Bohr was the first person to suggest the idea of electron shells containing electrons orbiting the nucleus. The way these electrons are arranged is called the electron configuration. The way they are explained is called the Bohr model.

Photo credits

- Shutterstock
- Science Photo Library
- Michael Philips
- Compuscript