- 1. Determine which of the following sets are subspaces of \mathbb{R}^n ?
 - (A) $\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | x_1 = 0 \text{ or } x_n = 0\}.$
 - (B) $\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | x_1 + 2x_n = 0\}.$
 - (C) $\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | \sum_{i=1}^n x_i = 1\}.$
- 2. Determine which sets of vectors are linearly independent.
 - (A) The vectors x + 1, $x^2 x + 1$, $x^2 + 3x 2$, $2x^2 + 8x + 1$ in P_2 .
 - (B) The vectors $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 7 & 3 \end{pmatrix}$ in $\mathbb{R}^{2 \times 2}$.
 - (C) The vectors $e^x + e^{-x}$, $e^x e^{-x}$, e^{2x} in $\mathbb{C}[0,1]$.
- 3. Please explain whether the following are subspaces of $\mathbb{R}^{2\times 2}$ or not.
 - a) all 2×2 matrices with integer entries.
 - b) all 2×2 matrices A such that det(A) = 0.
 - c) all matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$.
- 4. Let $W = \mathbb{R}^3$, $S_1 = \{(x, y, z) | x y + z = 0\}$, $S_2 = \{(x, y, z) | 2x + y z = 0\}$.
 - a) Is $S_1 \cap S_2$ a subspace of W? Describe the reason.
 - b) Is $S_1 \cup S_2$ a subspace of W? Describe the reason.
- 5. Are the following sets of vectors linearly independent?
 - a) u = (4,6,6,-4), v = (4,5,6,-1), w = (1,2,3,-1).
 - b) u = (1,2,100), v = (9,9,10), w = (7,8,0), x = (7,8,9).
 - c) u = (1,2,3), v = (4,5,6), w = (7,8,9).
- 6. Determine the values t such that $\{v_1, v_2, v_3\}$ is linearly independent, where $v_1 = (t, 1, 1, 1)^T$, $v_2 = (1, t, 1, t)^T$, $v_3 = (1, 1, t, 1)^T$.
- 7. Find the largest possible number of independent vectors from the following vector set:

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, \ v_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}, \ v_5 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \ v_6 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}.$$

- 8. Let $f_1 = e^{-x}$, $f_2 = e^{-2x}$, $f_3 = e^{-3x}$ and f_1 , f_2 , f_3 are function in $\mathbb{C}^n[-1,1]$.
 - a) Compute the Wronskian of f_1 , f_2 , f_3 .
 - b) Are these vectors f_1 , f_2 , f_3 linearky independent in $\mathbb{C}^n[-1,1]$?

- **9.** Are the following functions linearly independent or dependent on the positive x-axis?
 - a) $\cos x$, $\sin x$, $\sin 2x$.
 - b) $\ln(x)$, $-\ln(x^2)$, $\ln(x^3)$.
- 10. Find a matrix $A \in \mathbb{R}^{3\times 3}$ such that for $x, y, z \in \mathbb{R}$, $A \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x 2y + 3z = 0 \right\}$.
- 11. Find a basis of $U = span\{(1, -1, 3, 2), (0, -1, 2, 1), (2, 1, 0, 1), (3, 5, -3, 0)\}.$
- 12. Find the dimension of the vector space spanned by $B = \left\{ \sin t, \cos t, 2\cos(t + \frac{\pi}{4}) \right\}$.
- 13. Let $X = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1 + x_2 + x_3 + x_4 = 0\}$ and $Y = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x, y \in \mathbb{R}\}$ be subspaces of \mathbb{R}^4 . What is the dimension of $X \cap Y$?
- 14. Let V be the vector space of all 2×2 matrices over the field \mathbb{F} . Let W_1 be the set of matrices of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$ and let W_2 be the set of matrices of the form $\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$. Find the dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$.
- 15. Let $V = \mathbb{F}^{2 \times 2}$, $W_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c \in \mathbb{F} \right\}$ and $W_2 = \left\{ \begin{pmatrix} 0 & a \\ -a & b \end{pmatrix} \middle| a, b \in \mathbb{F} \right\}$. Find the dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$.
- 16. Let W_1 be the set of 3×3 matrices of the form $\begin{bmatrix} x & 0 & z \\ 0 & -x & 0 \\ y & 0 & x \end{bmatrix}$, $x, y, z \in \mathbb{R}$, W_2 be the set of 3×3 matrices of the form $\begin{bmatrix} -a & 0 & b \\ 0 & a & 0 \\ c & 0 & a \end{bmatrix}$, $a, b, c \in \mathbb{R}$. Find the dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$.
- 17. Use the Lagrange interpolation formula to find a polynomial f with real coefficients such that f has degree ≤ 3 and f(-1) = -6, f(0) = 2, f(1) = -2, f(2) = 6.
- 18. Suppose the product of A and B is the zero matrix: AB = 0, then the __(1)__ space of A contains the __(2)__ space of B.

 Also the __(3)__ space of B contains the __(4)__ space of A. Fill in those blank words (1) (2) (3) (4).
- 19. Suppose $\{x_1, x_2, x_3\}$ is a linearly independent set of vectors in \mathbb{R}^3 . Find the values d such that $\{x_1 + 2x_2, x_1 + dx_2 + 3x_3, x_2 + dx_3\}$ is also linearly independent in \mathbb{R}^3 .
- 20. If vectors $x_1, x_2, ..., x_n$ are linearly independent for n > 2 and n can be an odd or even number. Determine $(x_1 + x_2), (x_2 + x_3), (x_3 + x_4), ..., (x_n + x_1)$ to be linearly dependent or independent.
- 21. Let $A \in \mathbb{R}^{3\times 3}$ and $\{v_1, v_2, v_3\}$ be a linearly independent subset of \mathbb{R}^3 . If $Av_1 = 3v_1 + 2v_2 + v_3$, $Av_2 = v_1 + 2v_2 v_3$ and $Av_3 = v_1 + v_2 + v_3$, find det (A).
- 22. Let $W_1 = span\{(1,2,3), (2,1,1)\}$ and $W_2 = span\{(1,0,1), (3,0,-1)\}$. Find a basis for $W_1 \cap W_2$.
- 23. Assume U is the space spanned by $\{(1, -2, 0, 3), (0, 1, 0, -1)\}$ and V is the space spanned by $\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)\}$. Find a basis for $U \cap V$.

- 24. Let the subspace V be generated by $v_1 = (2,0,0,8)$, $v_2 = (0,3,0,1)$, $v_3 = (2,0,1,2)$ and let the subspace W be generated by $w_1 = (1,2,3,4)$, $w_2 = (1,5,0,-3)$, $w_3 = (1,0,5,4)$. Find a basis for $V \cap W$.
- 25. Let V and W be vector spaces over a field \mathbb{F} of dimensions m and n, respectively. Let Z be a vector space given by $Z = \{(v, w) | v \in V \text{ and } w \in W\}$. What is the dimension of Z?
- 26. Let V be a vector space and $u, v \in V$. Prove that if $\{u, v\}$ is linearly independent, then $\{2u + v, u 2v\}$ is linearly independent.
- 27. Show that the function $f_1 = 1$, $f_2 = e^x$, $f_3 = e^{2x}$ form a linearly independent set of vectors in $\mathbb{C}^2(-\infty, \infty)$.
- 28. Let f(x) = x and g(x) = |x|.
 - a) Show that f and g are linearly independent in $\mathbb{C}[-1,1]$.
 - b) Show that f and g are linearly dependent in $\mathbb{C}[0,1]$.
- **29.** Let $L = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2} | a + d = 0 \}$.
 - a) Show that L is a subspace of $\mathbb{R}^{2\times 2}$.
 - b) Find the dimension of L.
- 30. Let M be the vector space of all 2×2 matrices. Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and $U = \{X \in M | AX = XA\}$.
 - a) Show that U is a subspace of M.
 - b) Find the dimension of U.
- 31. Let $v_1 = (1,0,0)$, $v_2 = (-1,1,1)$ and $v_3 = (0,4,2)$ be three vectors.
 - a) Prove that $\beta = \{v_1, v_2, v_3\}$ is a basis for three-dimensional Euclidean space \mathbb{R}^3 .
 - b) Let $x = (x_1, x_2, x_3)$ be a vector and $x = c_1v_1 + c_2v_2 + c_3v_3$. Derive the values of c_1 , c_2 and c_3 in terms of x_1 , x_2 and x_3 .
- 32. Prove that $\{1, x 1, x^2 2x + 1\}$ is a basis for P_2 .
- 33. Let $S = \{v_1, v_2, ..., v_k\}$ be the set of vectors in a vector space V. If $v_j \in S$ and v_j can be expressed as a linear combination of other vectors in S, prove that $S \{v_j\}$ spans the same space as S.
- 34. Let V be a vector space over a field \mathbb{F} and $n \ge 2$ be a positive integer. Show that n distinct vectors $u_1, u_2, ..., u_n$ in V are linearly dependent if and only if some vector of them is a linear combination of the other n-1 vectors.
- 35. Prove that any nonempty subset of a linearly independent set of vectors $x_1, ..., x_n$ is also linearly independent.
- 36. Let $\alpha_1, \alpha_2, ..., \alpha_n$ be distinct numbers $\neq 0$. Show that $e^{\alpha_1 t}, e^{\alpha_2 t}, ..., e^{\alpha_n t}$ are linearly independent over the complex numbers.
- 37. Let v and w be two linearly independent column vectors in \mathbb{R}^3 , and let $A \in \mathbb{R}^{3\times3}$ be an invertible 3×3 matrix. Prove that the vectors Av and Aw are linearly independent.
- 38. Let A be an $n \times n$ matrix and assume $v, w \in \mathbb{R}^n$ are nonzero vectors with Av = v and Aw = 2w. Prove that $\{v, w\}$ is linearly independent.

- 39. Prove that if the vector $\{u, v, w, z\}$ are linearly independent, then $\{u + v + w, u + v + z, u + w + z, v + w + z\}$ are also linearly independent.
- 40. If $A \neq 0$ is a symmetric matrix and $B \neq 0$ is a skew-symmetric matrix in the space of $n \times n$ matrices, show that A and B are linearly independent.
- 41. Let W be the set of all vectors $b = (b_1, b_2, b_3)$ in \mathbb{R}^3 such that the system of linear equations

$$\begin{cases} x_1 - 2x_2 - x_3 = b_1 \\ 2x_1 - 3x_2 + x_3 = b_2 \\ 5x_1 - 8x_2 + x_3 = b_3 \end{cases}$$

has a solution.

- a) Show that W is a subspace of \mathbb{R}^3 .
- b) Find the dimension of W.
- 42. Let $V = \{\theta \in \mathbb{R} \middle| -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \}$. Define the following two operations \oplus and \cdot :

vector addition:
$$\alpha \oplus \beta = \tan^{-1}(\tan \alpha + \tan \beta)$$
, $\forall \alpha, \beta \in V$
scalar multiplication: $r \cdot \alpha = \tan^{-1}(r \tan \alpha)$, $\forall \alpha \in V, r \in \mathbb{R}$.

Show that V is a vector space.

- 43. Suppose that $S = \{u_1, u_2, ..., u_n\}$ is a set of vectors from \mathbb{R}^m . Prove that S is linearly independent if and only if the set $S' = \{u_1, \sum_{i=1}^2 u_i, \sum_{i=1}^3 u_i, ..., \sum_{i=1}^n u_i\}$ is linearly independent.
- 44. Let S be a set. For each $s \in S$, the characteristic function of s is the function $\chi_s: S \to \mathbb{R}$ defined by $\chi_s(t) = \begin{cases} 1 & \text{if } t = s \\ 0 & \text{if } t \neq s \end{cases}$.

 Prove that if $s_1, s_2, ..., s_k \in S$ are distinct, then their characteristic function $\chi_{s_1}, \chi_{s_2}, ..., \chi_{s_k}$ are linearly independent over \mathbb{R} .