Fall Semester 2022-2023

Continuous Assessment Test - I

Model Paper 1

Course Code: BMAT101L Course Title: Calculus Max. Time: 50 minutes Max. Marks: 50 **Slot:** Answer all the questions 10 marks CO₁ BT1 1. Easy Find the stationary points and the absolute maxima and absolute minima of $f(x) = x^4 - 16$ in [1,2]. Also, use Lagrange's mean-value theorem to find the constant $c \in (1,2)$ such that f'(c) = -15. 2. Medium BT1 10 marks **CO1** (a) Using an appropriate substitution, find the area of the region enclosed by the curves $y = \sin x$ and $y = \cos x$ between the ordinates x = 0 and $x = \pi/2$. (b) If the region enclosed by the curve $y = x\sqrt{2-x}$ between the ordinates x = 0 and x = 2 is revolved about the x-axis, compute the volume of the solid so generated. BT2 10 marks CO₂ 3. Easy (a) Examine the continuity of $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$ (b) If $f(x, y, z) = xy^2 - yz^3 + 2zx^2$, where $x = \sin t$, $y = \cos t$, z = t/2. Find the total derivative of f with respect to t. 4. Tough 10 marks CO₂ Consider p = x - 2y + 3z, q = 2x + y - z, $r = x - \frac{y}{3} + \frac{2z}{3}$. Compute the Jacobian $J\left(\frac{p,q,r}{x,y,z}\right)$ at any point (x, y, z). Also examine the possibility of functional dependence of p, q and r. If so, find the relation among them. CO₂ BT1 5. Medium 10 marks Find cubic approximation for $f(x, y) = xe^y$ at the origin, using Taylor's formula.