COL352 Lecture 10

Contents

1	Recap	1
2	Definitions	1
3	Content	1

1 Recap

Proof of the fact that $\{0^n1^n \mid n \in \mathbb{N}\}\$ is not regular.

We constructed a long enough string depending on |Q|, and used pigeonhole principle to claim some state was visited twice in the first n transitions. Then we pumped using the loop, and found a k such that pumping k times results in a string not in L, which gives a contradiction by the definition of the DFA D.

2 Definitions

3 Content

Note 1

Plan: Abstract out ideas from the last proof to get a necessary condition for L to be regular, or equivalently, a sufficient condition for L to be not regular.

Suppose $L \subseteq \Sigma^*$ is a regular language, and $D = (Q, \Sigma, \delta, q_0, A)$ be a DFA recognizing L.

Let p = |Q|. Consider $s \in L$ with $|s| = n \ge p$. Let $q_i = \hat{\delta}(q_0, s[1]s[2] \dots s[i])$.

By the pigeonhole principle, $\exists i, j$ such that $i < j \le p$ and $q_i = q_j$.

$$\hat{\delta}(q_i, s[i+1] \dots s[j]) = q_i = q_i.$$

Let
$$x = s[1] \dots s[i], y = s[i+1] \dots s[j], x = s[j+1] \dots s[n]$$
. So we have $s = xyz, |y| > 0, |xy| \le p$.

$$\hat{\delta}(q_i, y) = q_i, \hat{\delta}(q_0, x) = q_i, \hat{\delta}(q_i, z) = q_n \in A.$$

$$\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(q_i, z) = q_n \in A.$$
 So $xz \in L$.

$$\hat{\delta}(q_0, xy^k z) = q_n \in A.$$

Thus $\forall k \in \mathbb{N} \cup \{0\}$, we have $xy^kz \in L$.

Lemma 0.1

Pumping Lemma for Regular Languages

Let $L \in \Sigma^*$ be a regular language. Then $\exists p \in \mathbb{N}$ such that $\forall s \in L$ with $|s| \geq p$, $\exists x, y, z \in \Sigma^*$ such that

- 1. s = xyz
- 2. |y| > 0
- 3. |xy| < p
- 4. $\forall i \in \mathbb{N} \cup \{0\}, xy^i z \in L$

Proof. Let D be a DFA for L. Set p = |Q| and proceed as in the previous paragraph.

Note 2

This holds even when |L| is finite, just take p > the length of the longest string in L. Then this statement is vacuously true.

Lemma 0.2

Contrapositive of the Pumping Lemma for Regular languages

Let $L \in \Sigma^*$ be any regular language. If $\forall p \in \mathbb{N}, \exists s \in L \text{ with } |s| \geq p$, such that $\forall x, y, z \in \Sigma^*$,

$$(s=xyz) \wedge (|y|>0) \wedge (|xy| \leq p) \implies \exists i \in \mathbb{N} \cup \{0\} \text{ such that } xy^iz \not \in L$$

Then L is not regular.

Note 3

Guideline: Look at it like this sort of a game.

 \forall corresponds to moves by opponent. \exists corresponds to moves by you.

Opponent	You
Gives $p \in \mathbb{N}$	
	$s: s \in L, s \ge p$
$ x, y, z $ such that $s = xyz, y \neq \epsilon, xy \leq p$	
	$i \in \mathbb{N} \cup \{0\}$

You win if $xy^i \notin L$, opponent otherwise.

The pumping lemma says that if L is regular, then the opponent has a winning strategy, i.e., if you have a winning strategy, then L is not regular.

Example 1

Consider $\Sigma = \{0, 1\}, L = \{s \in \Sigma^* \mid \#0 = \#1 \text{ in } s\}.$

Answer.

Opponent	You
p	$0^p 1^p$
$0^p 1^p = xyz, y \neq \epsilon, xy \le p$	$i \neq 1$

 $|xy|=q\leq p,$ so $xy=0^q.$ Then done.

Example 2

Consider $\Sigma = \{0, 1\}, L = \{ww \in \Sigma^* \mid w \in \Sigma^*\}.$

Answer.

Opponent	You
p	$0^{p}1^{p}0^{p}1^{p}$
x, y, z	0 1 0 1
	any $i \neq 1$

Example 3

Consider $\Sigma = \{0, 1\}, L = \{0^i 1^j \in \Sigma^* \mid i > j\}.$

Answer.

Opponent	You
p x, y, z	$0^{p+1}1^p$
	i = 0

Note that when we play this, by a similar argument as above, we have |y| > 0, so the length of first prefix of 0 is $\leq p$, which gives a contradiction.

Example 4

Consider
$$\Sigma = \{a, b, c\}, L = \{a^{n_1}b^{n_2}c^{n_3} \in \Sigma^* \mid n_1 = 1 \implies n_2 = n_3\}.$$

Answer. The opponent always has a winning strategy. If we give ab^nc^n , then the opponent gives us $x = \epsilon, y = a, z = b^nc^n$. If we give $a^mb^nc^p$, the opponent gives us $x = \epsilon, y = a^m, z = b^nc^p$. However this language is not regular (apply pumping lemma on the reverse of this language, or show that the language of strings s such that as is in L is regular if L is regular, and use the pumping lemma on that).