CS & IT

Lecture No. 14

By- SATISH YADAV SIR

02 Semi Group

03 Monoid

04 Group

- 1) closed a & G. b & G. a * b & G.
- 2) Associative a*(b*c)=(a*b)*c.
- 3) Identity. axe = a 4) Inverse., axa = e.

$$2 + (-2) = 0$$

4) Inverse:
$$0 \times 1 = 1$$

- 1) (10 sed.
- 2) Associative.

4)
$$a \times \frac{1}{a} = 1(a=0)$$

Group.

Infinite Groups.

$$(Z,+)$$

finite Group:

 $w^3 = 1$

Cayley table

{2, w, w2 | x

$$(\omega^2) + 1 = (\omega^2)$$

X. e1 e2

21

62

1) Closed.

2) Associative.

3) identity:

4) Inverse.:

1 = 1 W = w2

1) closed /

- 2) Associative v

3) identity

4) Inverse.

Subgroup.

His called subgroup of G.

- HSG.
- H should also satisfy.
 - A) Closed.
 - Associative.

 - inverse.

- 2
 - 2

3

4

2

2

0

- 0

- 5 0

 $\begin{cases} \{0,1,2,3,4,5\}, \oplus 6 \} \\ \{-1,3,5\}, \oplus \{-1$

2)

) HCG / Anot subgroup

coz, identity element is absent

0,1,2,3,4,5] (+6)

{{0,1,2,3,4,5}},⊕6 }

Thm: if His subgroup of G. then
$$\frac{|G|}{|H|}$$
. (viceversa is not True).

 $H = \{0, 2, 4\}$ $|G| = 6$.

 $H = \{1, 3, 5\}$
 $|H| = 3$
 $|H| = 3$

Every Group contain 2 Trivial Subgroup.

if |G| = 84, then what will be maximime size of subgroup.

- 11 - size of proper subgroup

784.

G be group with subgroup
$$H&k$$
. $|G|=660$ $|K|=66$

what are the possible values of H.

(+) 6	0	1	2	3	4	5
→ O	0	1	2	3	4	5
1	1	2	3	4	5	0
	2	3	4	5	0	1.
3	3	4	5	0	1	2
4	4	5	0	1	. 2	- 3
5	5	0	1	2		-

$$\alpha' = \alpha.$$

$$\alpha^{2} = \alpha * \alpha$$

$$\alpha^{3} = \frac{\alpha * \alpha * \alpha}{\alpha^{2} * \alpha}$$

$$\alpha^{2} = \frac{\alpha^{2} * \alpha}{\alpha^{3} * \alpha}$$

$$\alpha^{4} = \frac{\alpha * \alpha * \alpha * \alpha}{\alpha^{3} * \alpha}$$

$$\alpha^{3} = \frac{\alpha^{4} \cdot \alpha^{4} \cdot \alpha}{\alpha^{4} \cdot \alpha^{4} \cdot \alpha}$$

0

Subgroup of cyclic Group is also cyclic Group.

$$4 = 0$$

$$4 = 0$$
Subgyoup

2 has generated $\{0,2,4\}$

(+) 6	0	1	2	3	7	5	
→ O	0	1	2	3	4	5	
1		2	3	4	5	0	
	2	3	4	5	0	1.	
3	3	4	5	O,	1	2	
4		5	Ò	1	. 2	. 3	
5	5	0	1	2		-	

$$3^{1} = 3$$

 $3^{2} = 3 \oplus 63 = 0$
 $3^{3} = 0 \oplus 63 = 3$
 $(3) = \{0, 3\}$

5

0

4

0

2

5065=4 53= 4 06 5 = 3 5°= 3065 = 2. 55= 20,5=1. 56= 1065=0 5=0065=5

I has generated every element in the Group.

I is called Generator.

Group -> Generator -> cyclic Group.

Group + commutative = Abelian Group.

Closed Jugebric Structure Associative

identity

nverse.

Semigroup

monoid

Group.

- b) $\{-1, 1\}$ under addition
- c) $\{-1, 0, 1\}$ under addition
- d) $\{10n | n \in \mathbb{Z}\}$ under addition
- e) The set of all one-to-one functions $g: A \rightarrow A$, where $A = \{1, 2, 3, 4\}$, under function composition
- f) $\{a/2^n | a, n \in \mathbb{Z}, n \ge 0\}$ under addition
- (a) Yes. The identity is 1 and each element is its own inverse.
- (b) No. The set is not closed under addition and there is no identity.
- (c) No. The set is not closed under addition.
- (d) Yes. The identity is 0; the inverse of 10n is 10(-n) or -10n.
- (e) Yes. The identity is 1_A and the inverse of $g: A \to A$ is $g^{-1}: A \to A$.
- (f) Yes. The identity is 0; the inverse of $a/(2^n)$ is $(-a)/(2^n)$.
- **4.** Let $G = \{q \in \mathbb{Q} | q \neq -1\}$. Define the binary operation \circ on G by $x \circ y = x + y + xy$. Prove that (G, \circ) is an abelian group.
- **5.** Define the binary operation \circ on **Z** by $x \circ y = x + y + 1$. Verify that (**Z**, \circ) is an abelian group.
- (i) For all $a,b,c \in G$, $(a \circ b) \circ c = (a+b+ab) \circ c = a+b+ab+c+(a+b+ab)c = a+b+ab+c+ac+bc+abc$ $a \circ (b \circ c) = a \circ (b+c+bc) = a+b+c+bc+a(b+c+bc) = a+b+c+bc+ab+ac+abc$. Since $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a,b,c \in G$ it follows that the (closed) binary operation is associative.
- (ii) If $x, y \in G$, then $x \circ y = x + y + xy = y + x + yx = y \circ x$, so the (closed) binary operation is also commutative.
- (iii) Can we find $a \in G$ so that $x = x \circ a$ for all $x \in G$? $x = x \circ a \implies x = x + a + xa \implies 0 = a(1+x) \implies a = 0$, because x is arbitrary, so 0 is the identity for this (closed) binary operation.
- (iv) For $x \in G$, can we find $y \in G$ with $x \circ y = 0$? Here $0 = x \circ y = x + y + xy \Longrightarrow -x = y(1+x) \Longrightarrow y = -x(1+x)^{-1}$, so the inverse of x is $-x(1+x)^{-1}$. It follows from (i) (iv) that (G, \circ) is an abelian group.

Since $x, y \in \mathbb{Z} \Longrightarrow x + y + 1 \in \mathbb{Z}$, the operation is a (closed) binary operation (or \mathbb{Z} is closed under o). For all $w, x, y \in \mathbb{Z}$, $w \circ (x \circ y) = w \circ (x + y + 1) = w + (x + y + 1) + 1 = (w + x + 1) + y + 1 = (w \circ x) \circ y$, so the (closed) binary operation is associative. Furthermore, $x \circ y = x + y + 1 = y + x + 1 = y \circ x$, for all $x, y \in \mathbb{Z}$, so o is also commutative. If $x \in \mathbb{Z}$ then $x \circ (-1) = x + (-1) + 1 = x = (-1) \circ x$, so -1 is the identity element for o. And finally, for

- **8.** For any group G prove that G is abelian if and only if $(ab)^2 = a^2b^2$ for all $a, b \in G$.
- 9. If G is a group, prove that for all $a, b \in G$,

a)
$$(a^{-1})^{-1} = a$$

b)
$$(ab)^{-1} = b^{-1}a^{-1}$$

- 10. Prove that a group G is abelian if and only if for all $a, b \in G$, $(ab)^{-1} = a^{-1}b^{-1}$.
- 8. Proof: Suppose that G is abelian and that a, b ∈ G. Then (ab)² = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a²b², by using the associative property for a group and the fact that this group is abelian.
 Conversely, suppose that G is a group where (ab)² = a²b² for all a, b ∈ G. If x, y ∈ G, then (xy)² = x²y² ⇒ (xy)(xy) = x²y² ⇒ x(yx)y = x(xy²) ⇒ (yx)y = xy² (by Theorem 16.1 (c)) ⇒ (yx)y = (xy)y ⇒ yx = xy (by Theorem 16.1 (d)). Therefore, the group G is abelian.
- (a) The result follows from Theorem 16.1(b) since both (a⁻¹)⁻¹ and a are inverses of a⁻¹.
 (b) (b⁻¹a⁻¹)(ab) = b⁻¹(a⁻¹a)b = b⁻¹(e)b = b⁻¹b = e and (ab)(b⁻¹a⁻¹) = a(bb⁻¹)a⁻¹ = a(e)a⁻¹ = aa⁻¹ = e. So b⁻¹a⁻¹ is an inverse of ab, and by Theorem 16.1(b), (ab)⁻¹ = b⁻¹a⁻¹.
- 10. G abelian $\implies a^{-1}b^{-1} = b^{-1}a^{-1}$. By Exercise 9(b), $b^{-1}a^{-1} = (ab)^{-1}$, so G abelian $\implies a^{-1}b^{-1} = (ab)^{-1}$. Conversely, if $a, b \in G$, then $a^{-1}b^{-1} = (ab)^{-1} \implies a^{-1}b^{-1} = b^{-1}a^{-1} \implies ba^{-1}b^{-1} = a^{-1} \implies ba^{-1} = a^{-1} \implies ba^{-1} = a^{-1} \implies ba^{-1}b \implies b = a^{-1}ba \implies ab = ba \implies G$ is abelian.
- **5.** Let G be a group with subgroups H and K. If |G| = 660, |K| = 66, and $K \subset H \subset G$, what are the possible values for |H|?

From Lagrange's Theorem we know that $|K| = 66 (= 2 \cdot 3 \cdot 11)$ divides |H| and that |H| divides $|G| = 660 (= 2^2 \cdot 3 \cdot 5 \cdot 11)$. Consequently, since $K \neq H$ and $H \neq G$, it follows that |H| is $2(2 \cdot 3 \cdot 11) = 132$ or $5(2 \cdot 3 \cdot 11) = 330$.

- 11. Let H and K be subgroups of a group G, where e is the identity of G.
 - a) Prove that if |H| = 10 and |K| = 21, then $H \cap K = \{e\}$.
- (a) Let $x \in H \cap K$. $x \in H \Longrightarrow o(x)|10 \Longrightarrow o(x) = 1, 2, 5$, or 10. $x \in K \Longrightarrow o(x)|21 \Longrightarrow o(x) = 1, 3, 7$, or 21. Hence o(x) = 1 and x = e.

