Without loss of generality, we can assume $\dim(\operatorname{Image}(g)) = 1$. Assume that g is only defined in the set $[-N,N] \times [-M,M]$ where N,M are arbitary. We have that

$$\int_{[-N,N]\times[-M,M]} g(x,y)dF(x,y) = \lim_{n,m\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} g(x^*,y^*)\Delta F_{i,j}$$

where with $x_i = \frac{-(n-i)N+iN}{n} = \frac{2iN-nN}{n}$, $y_i = \frac{-(m-i)M+iM}{m} = \frac{2iM-mM}{m}$, we have

$$\Delta F_{i,j} = F(x_i, y_j) - F(x_{i-1}, y_j) - F(x_i, y_{j-1}) + F(x_{i-1}, y_{j-1})$$

$$= \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} f(x, y) dx dy$$

Hence,

$$\int_{[-N,N]\times[-M,M]} g(x,y)dF(x,y) = \lim_{n,m\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} g(x^*,y^*) \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} f(x,y)dxdy$$

$$E[g(X,Y)] = \int_{[-N,N]\times[-M,M]} g(x,y)f(x,y)dxdy$$

$$= \lim_{n,m\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} g(x,y)f(x,y)dxdy$$

We know that g is uniformly continuous as it is continuous in a compact set, we have that with large enough n,m

$$|g(x,y) - g(x^*, y^*)| < \epsilon$$

Hence,

$$\left| \int_{[-N,N] \times [-M,M]} g(x,y) dF(x,y) - E[g(X,Y)] \right|$$

$$= \left| \lim_{n,m \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} (g(x,y) - g(x^*,y^*)) f(x,y) dx dy \right|$$

$$< \left| \lim_{n,m \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} \epsilon f(x,y) dx dy \right|$$

$$= \epsilon \left| \lim_{n,m \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} f(x,y) dx dy \right|$$

Since, ϵ is arbitary, $\int_{[-N,N]\times[-M,M]}g(x,y)dF(x,y)=E[g(X,Y)]$, and since N,M are arbitary,

$$\int_{\mathbb{R}^2} g(x,y) dF(x,y) = E[g(X,Y)]$$