一 计算题 (共267分)

1. (本题 5分)(0419)

在杨氏双缝实验中,设两缝之间的距离为 0.2 mm. 在距双缝 1 m 远的屏上观察干涉条纹,若入射光是波长为 400 nm 至 760 nm 的白光,问屏上离零级明纹 20 mm 处,哪些波长的光最大限度地加强? (1 nm=10⁻⁹ m)

2. (本题 5分)(0636)

如图所示,在杨氏双缝干涉实验中,若 $\overline{S_2P}-\overline{S_1P}=r_2-r_1=\lambda/3$,求P点的强度I与干涉加强时最大强度 I_{max} 的比值.

3. (本题 5分)(3181)

白色平行光垂直入射到间距为 a=0.25 mm 的双缝上,距 D=50 cm 处放置屏幕,分别求第一级和第五级明纹彩色带的宽度. (设白光的波长范围是从 400nm到 760nm. 这里说的"彩色带宽度" 指两个极端波长的同级明纹中心之间的距离.)(1 nm= 10^{-9} m)

4. (本题10分)(3182)

- 在双缝干涉实验中,波长 λ =550 nm 的单色平行光垂直入射到缝间距 a=2× 10^4 m 的双缝上,屏到双缝的距离 D=2 m. 求:
 - (1) 中央明纹两侧的两条第10级明纹中心的间距;
- (2) 用一厚度为 $e=6.6\times10^{-5}$ m、折射率为 n=1.58 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? (1 nm = 10^{-9} m)

5. (本题 5分)(3502)

在双缝干涉实验中,双缝与屏间的距离 D=1.2 m,双缝间距 d=0.45 mm,若测得屏上干涉条纹相邻明条纹间距为 1.5 mm,求光源发出的单色光的波长 λ .

6. (本题 5分)(3503)

在双缝干涉实验中,用波长 λ =546.1 nm (1 nm= 10^{-9} m)的单色光照射,双缝与屏的距离 D=300 mm. 测得中央明条纹两侧的两个第五级明条纹的间距为 12.2 mm,求双缝间的距离.

7. (本题 8分)(3613)

在图示的双缝干涉实验中,若用薄玻璃片(折射率 n_1 = 1.4)覆盖缝 S_1 ,用同样厚度的玻璃片(但折射率 n_2 = 1.7)覆盖缝 S_2 ,将使原来未放玻璃时屏上的中央明条纹处 O 变为第五级明纹. 设单色光波长 λ = 480 nm(1nm=10 $^{-9}$ m),求玻璃片的厚度 d(可认为光线垂直穿过玻璃片).

8. (本题 5分)(3615)

在双缝干涉实验中, 若缝间距为所用光波波长的 1000 倍, 观察屏与双缝相距 50 cm. 求相邻明纹的间距.

9. (本题 5分)(3617)

在双缝干涉实验中, 所用单色光的波长为 600 nm, 双缝间距为 1.2 mm 双缝与屏相距 500 mm, 求相邻干涉明条纹的间距.

10. (本题 8分)(3651)

薄钢片上有两条紧靠的平行细缝,用波长 λ =546.1 nm (1 nm=10 $^{-9}$ m)的平面 光波正入射到钢片上. 屏幕距双缝的距离为D=2.00 m,测得中央明条纹两侧的第五级明条纹间的距离为 Δx =12.0 mm.

- (1) 求两缝间的距离.
- (2) 从任一明条纹(记作 0)向一边数到第 20 条明条纹, 共经过多大距离?
- (3) 如果使光波斜入射到钢片上,条纹间距将如何改变?

11. (本题 8分)(3656)

在双缝干涉实验装置中,幕到双缝的距离 D 远大于双缝之间的距离 d. 整个双缝装置放在空气中. 对于钠黄光, λ =589.3 nm(1nm= 10^{-9} m),产生的干涉条纹相邻两明条纹的角距离(即相邻两明条纹对双缝中心处的张角)为 0.20° .

- (1) 对于什么波长的光,这个双缝装置所得相邻两明条纹的角距离将比用钠 黄光测得的角距离大 10%?
- (2) 假想将此整个装置浸入水中(水的折射率 n=1.33),相邻两明条纹的角距离有多大?

12. (本题10分)(3685)

在双缝干涉实验中,单色光源 S_0 到两缝 S_1 和 S_2 的距离分别为 l_1 和 l_2 ,并且 l_1 — l_2 =3 λ , λ 为入射光的波长,双缝之间的距离为 d,双缝到屏幕的距离为 D(D>>d),如图. 求:

- (1) 零级明纹到屏幕中央O点的距离.
- (2) 相邻明条纹间的距离.

13. (本题 5分)(3686)

在双缝干涉实验中,用波长 λ =500 nm 的单色光垂直入射到双缝上,屏与双缝的距离 D=200 cm,测得中央明纹两侧的两条第十级明纹中心之间距离为 Δx =2.20 cm,求两缝之间的距离 d. (1nm=10⁻⁹m)

14. (本题10分)(3687)

双缝干涉实验装置如图所示, 双缝与屏之间的距离 $D=120~{\rm cm}$,两缝之间的距离 $d=0.50~{\rm mm}$,用波长 $\lambda=500~{\rm nm}$ ($1~{\rm nm}=10^{-9}~{\rm m}$)的单色光垂直照射双缝.

- (1) 求原点 O (零级明条纹所在处)上方的第五级明条纹的坐标 x.
- (2) 如果用厚度 $l=1.0\times10^{-2}$ mm, 折射率 n=1.58 的透明薄膜复盖在图中的 S_1 缝后面,求上述第五级明条纹的坐标 x'.

15. (本题 5分)(5323)

在如图所示的瑞利干涉仪中, T_1 、 T_2 是两个长度都是l的气室,波长为 λ 的单色光的缝光源S放在透镜 L_1 的前焦面上,在双缝 S_1 和 S_2 处形成两个同相位的相干光源,用目镜E观察透镜 L_2 焦平面C上的干涉条纹.当

两气室均为真空时,观察到一组干涉条纹. 在向气室 T_2 中充入一定量的某种气体的过程中,观察到干涉条纹移动了 M 条. 试求出该气体的折射率 n (用已知量 M, λ 和 l 表示出来).

16. (本题 5分)(0448)

在折射率 n=1.50 的玻璃上,镀上n'=1.35 的透明介质薄膜. 入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对 $\lambda_1=600$ nm 的光波干涉相消,对 $\lambda_2=700$ nm 的光波干涉相长. 且在 600 nm 到 700 nm 之间没有别的波长是最大限度相消或相长的情形. 求所镀介质膜的厚度. $(1 \text{ nm} = 10^{-9} \text{ m})$

17. (本题 5分)(3192)

用波长为 l_1 的单色光垂直照射牛顿环装置时,测得中央暗斑外第 1 和第 4 暗环半径之差为 l_1 ,而用未知单色光垂直照射时,测得第 1 和第 4 暗环半径之差为 l_2 ,求未知单色光的波长 l_2 .

18. (本题 5分)(3195)

用波长 λ =500 nm 的单色光作牛顿环实验,测得第k个暗环半径 r_k =4 mm,第 k+10个暗环半径 r_{k+10} =6 mm,求平凸透镜的凸面的曲率半径R.

19. (本题 5分)(3196)

在牛顿环实验中,平凸透镜的曲率半径为 3.00 m,当用某种单色光照射时,测得第 k 个暗环半径为 4.24 mm,第 k+10 个暗环半径为 6.00 mm.求所用单色光的波长.

20. (本题 8分)(3197)

在如图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率 n_1 =1.50)之间的空气(n_2 =1.00)改换成水(n_2' =1.33),求第 k 个暗环半径的相对改变量($r_k - r_k'$)/ r_k .

21. (本题10分)(3198)

如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙 e_0 . 现用波长为 λ 的单色光垂直照射,已知平凸透镜的曲率半径为R,求反射光形成的牛顿环的各暗环半径.

22. (本题 8分)(3199)

在牛顿环装置的平凸透镜和平板玻璃间充以某种透明液体,观测到第 $_{10}$ 个明环的直径由充液前的 $_{14.8}$ cm 变成充液后的 $_{12.7}$ cm,求这种液体的折射率 $_{n}$.

23. (本题 8分)(3348)

折射率为 1.60 的两块标准平面玻璃板之间形成一个劈形膜(劈尖角 θ 很小).用 波长 λ =600 nm (1 nm =10⁻⁹ m)的单色光垂直入射,产生等厚干涉条纹. 假如在劈形膜内充满 n =1.40 的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小 Δl =0.5 mm,那么劈尖角 θ 应是多少?

24. (本题 8分)(3349)

用波长为 λ =600 nm (1 nm=10⁻⁹ m)的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角 θ =2×10⁻⁴ rad. 改变劈尖角,相邻两明条纹间距缩小了 Δl =1.0 mm,求劈尖角的改变量 $\Delta \theta$.

25. (本题 8分)(3350)

用波长 λ =500 nm (1 nm=10⁻⁹ m)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈形膜上. 劈尖角 θ =2×10⁻⁴ rad. 如果劈形膜内充满折射率为n=1.40 的液体. 求从劈棱数起第五个明条纹在充入液体前后移动的距离.

26. (本题 5分)(3512)

- 用波长为λ的单色光垂直照射由两块平玻璃板构成的空气劈形膜,已知劈尖角为θ. 如果劈尖角变为θ',从劈棱数起的第四条明条纹位移值Δα 是多少?

27. (本题 5分)(3513)

用波长为 λ_1 的单色光照射空气劈形膜,从反射光干涉条纹中观察到劈形膜装置的A点处是暗条纹.若连续改变入射光波长,直到波长变为 λ_2 ($\lambda_2 > \lambda_1$)时,A点再次变为暗条纹.求A点的空气薄膜厚度.

28. (本题 5分)(3514)

两块平板玻璃,一端接触,另一端用纸片隔开,形成空气劈形膜.用波长为*λ*的单色光垂直照射,观察透射光的干涉条纹.

- (1) 设A 点处空气薄膜厚度为e, 求发生干涉的两束透射光的光程差:
 - (2) 在劈形膜顶点处,透射光的干涉条纹是明纹还是暗纹?

29. (本题 5分)(3625)

用波长 λ =500 nm 的平行光垂直照射折射率 n=1.33 的劈形膜,观察反射光的等厚干涉条纹. 从劈形膜的棱算起,第 5 条明纹中心对应的膜厚度是多少?

30. (本题 5分)(3626)

两块长度 $_{10\text{ cm}}$ 的平玻璃片,一端互相接触,另一端用厚度为 $_{0.004\text{ mm}}$ 的纸片隔开,形成空气劈形膜. 以波长为 $_{500\text{ nm}}$ 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部 $_{10\text{ cm}}$ 的长度内呈现多少条明纹? $_{(1\text{ nm}=10^{-9}\text{ m})}$

31. (本题 5分)(3627)

在 Si 的平表面上氧化了一层厚度均匀的 SiO₂ 薄膜. 为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的 AB 段). 现用波长为 600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹. 在图中 AB 段共有 8 条暗

纹,且 B 处恰好是一条暗纹,求薄膜的厚度. (Si 折射率为 3.42,SiO₂ 折射率为 1.50)

32. (本题 8分)(3628)

用白光垂直照射置于空气中的厚度为 $0.50 \, \mu m$ 的玻璃片. 玻璃片的折射率为 1.50. 在可见光范围内($400 \, nm \sim 760 \, nm$)哪些波长的反射光有最大限度的增强? $(1 \, nm = 10^{-9} \, m)$

33. (本题 8分)(3629)

在牛顿环装置的平凸透镜和平玻璃板之间充以折射率 n=1.33 的液体(透镜和平玻璃板的折射率都大于 1.33). 凸透镜曲率半径为 300 cm,用波长 $\lambda=650$ nm $(1 \text{ nm}=10^{-9} \text{ m})$ 的光垂直照射,求第 10 个暗环的半径(设凸透镜中心刚好与平板接触,中心暗斑不计入环数).

34. (本题 8分)(3659)

图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是 R=400 cm. 用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm.

- (1) 求入射光的波长.
- (2) 设图中 OA=1.00 cm,求在半径为 OA 的范围内可观察到的明环数目.

35. (本题10分)(3660)

用波长为 500 nm $(1 \text{ nm}=10^{-9} \text{ m})$ 的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上. 在观察反射光的干涉现象中,距劈形膜棱边 l=1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.

- (1) 求此空气劈形膜的劈尖角 θ ;
- (2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹, *A* 处是明条纹还是暗条纹?
 - (3) 在第(2)问的情形从棱边到 A 处的范围内共有几条明纹?几条暗纹?

36. (本题 8分)(3705)

曲率半径为R的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为 λ 的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O点恰好接触.求:

- (1) 从中心向外数第 k 个明环所对应的空气薄膜的厚度 e_k .
- (2) 第 k 个明环的半径用 r_k ,(用 R,波长 λ 和正整数 k 表示,R 远大于上一问的 e_k .)

37. (本题 8分)(3706)

在牛顿环装置的平凸透镜和平玻璃板之间充满折射率 n=1.33 的透明液体(设平凸透镜和平玻璃板的折射率都大于 1.33). 凸透镜的曲率半径为 300 cm, 波长 $\lambda=650$ nm(1 nm= 10^{-9} m)的平行单色光垂直照射到牛顿环装置上,凸透镜顶部刚好与平玻璃板接触. 求:

- (1) 从中心向外数第十个明环所在处的液体厚度 e_{10} .
- (2) 第十个明环的半径 r_{10} .

38. (本题 5分)(3707)

波长为 λ 的单色光垂直照射到折射率为 n_2 的劈形膜上,如图所示,图中 $n_1 < n_2 < n_3$,观察反射光形成的干涉条纹.

- (1) 从形膜顶部 O 开始向右数起,第五条暗纹中心所对应的薄膜厚度 e_5 是多少?
 - (2) 相邻的二明纹所对应的薄膜厚度之差是多少?

39. (本题 5分)(3710)

波长 λ = 650 nm 的红光垂直照射到劈形液膜上,膜的折射率 n = 1.33,液面两侧是同一种媒质. 观察反射光的干涉条纹.

- (1) 离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少?
- (2) 若相邻的明条纹间距 l = 6 mm,上述第一条明纹中心到劈形膜棱边的距离 x 是多少?

40. (本题 8分)(5211)

一平凸透镜放在一平晶上,以波长为 λ =589.3 nm(1nm= 10^{-9} m)的单色光垂直照射于其上,测量反射光的牛顿环.测得从中央数起第 k 个暗环的弦长为 l_k =3.00 mm,第(k+5)个暗环的弦长为 l_{k+5} =4.60 mm,如图所示.求平凸透镜的球面的曲率半径 R.

二 理论推导与证明题 (共31分)

41. (本题10分)(3518)

如图所示,波长为 λ 的单色光以入射角 i 照射到放在空气(折射率为 n_1 =1)中的一厚度为 e、折射率为 n (n > n_1)的透明薄膜上,试推导在薄膜上、下两表面反射出来的两束光 1 和 2 的光程差.

42. (本题 5分)(1755)

如图所示的双缝干涉装置中, 假定两列光波 在屏上P点处的光场随时间t而变化的表示式各 为

$$E_1 = E_0 \sin \omega t$$

$$E_2 = E_0 \sin(\omega t + \theta)$$

 ϕ 表示这两列光波之间的相位差. 试证 P 点处的合

振幅为
$$E_p = E_m \cos\left(\frac{\pi d}{\lambda} \sin \theta\right)$$

式中 λ 是光波波长, E_m 是 E_p 的最大值.

43. (本题 8分)(3624)

曲率半径为R的平凸透镜和平玻璃板之间形成劈形空 气薄层,如图所示.用波长为λ的单色平行光垂直入射,观 察反射光形成的牛顿环. 设凸透镜和平玻璃板在中心点O恰好接触,试导出确定第k个暗环的半径r的公式.(从中 心向外数 k 的数目,中心暗斑不算)

44. (本题 8分)(3708)

利用牛顿环的条纹可以测定平凹透镜的凹球面的曲率半径,方 法是将已知半径的平凸透镜的凸球面放置在待测的凹球面上, 在两 球面间形成空气薄层,如图所示,用波长为2的平行单色光垂直照 射,观察反射光形成的干涉条纹.试证明若中心0点处刚好接触, 则第 k 个暗环的半径 r_k 与凹球面半径 R_2 , 凸面半径 $R_1(R_1 < R_2)$ 及入 射光波长λ的关系为

$$r_k^2 = R_1 R_2 k \lambda / (R_2 - R_1)$$
 $(k = 1, 2, 3 \cdots)$

三 回答问题 (共15分)

45. (本题 5分)(5212)

用波长为λ的平行单色光垂直照射图中所示的装 置,观察空气薄膜上下表面反射光形成的等厚干涉条 纹. 试在图中所示的装置下方的方框内画出相应的干 涉条纹,只画暗条纹,表示出它们的形状,条数和疏 密.

46. (本题 5分)(5213)

用波长为2的平行单色光垂直照射图中所示的装置,观察空气薄膜上下表面反射光形成的等厚干涉条纹.试在装置图下方的方框内画出相应的干涉条纹,只画暗条纹,表示出它们的形状,条数和疏密.

47. (本题 5分)(5214)

用波长为 2 的平行单色光垂直照射图中所示的装置,观察空气薄膜上下表面反射光形成的等厚干涉条纹.试在装置图下方的方框内画出相应的干涉条纹,只画暗条纹,表示出它们的形状,条数和疏密.

