Lliçó 4. GRAFS PONDERATS.

Siga un graf ponderat tal que $\mathbf{w}_{ij} \geq 0$.

Aquest algoritme troba els camins més curts i els seus pesos des del vèrtex 1 a la resta.

S'assignen diverses etiquetes als vèrtexs del graf. En algun moment alguns vèrtexs podran tindre etiquetes variables i la resta etiquetes fixes.

Denotarem al conjunt de vèrtexs amb etiqueta fixa per P i al conjunt de vèrtexs amb etiqueta variable per T.

Lliçó 4. GRAFS PONDERATS.

ALGORITME DE DIJKSTRA

Pas 1. Inicialització:

$$P = \{1\}$$
 $T = \{2, 3, ..., n\}$
 $u_1 = 0$
 $u_j = w_{1j}$ $j \in \Gamma(1)$
 $u_j = \infty$ $j \notin \Gamma(1)$

Pas 2. Designació d'etiqueta variable com fixa.

Determinar $k \in T / u_k = \min_{j \in T} \{u_j\}$

Fer
$$T := T \sim \{k\}$$
 y $P := P \cup \{k\}$

Si $T = \emptyset$, STOP; u_j és el pes del camí més curt de 1 a j, j = 2, 3, ..., n

Pas 3. Actualització:

$$\forall j \in \Gamma(k) \cap T, \quad u_j := \min\{u_j, u_k + w_{kj}\}\$$

Anar al Pas 2.

Lliçó 4. GRAFS PONDERATS.

EXEMPLE: Considerem el següent graf ponderat:

Desitgem calcular els camins més curts i els seus pesos des del vèrtex 1 a la resta. Aplicarem l'algoritme de Dijkstra.

Llicó 4. GRAFS PONDERATS.

EXEMPLE:

Inicialització Iteració 1 $T = \{2, 3, 4, 5, 6\}$ $P = \{1\}$, $u_1 = 0$ $u_2 = w_{12} = 3$ $u_3 = \infty$ $u_4 = w_{14} = 2$ $u_5 = \infty$ $u_6 = \infty$

Iteració 2

$T = \{2,3,5,6\}$ $P = \{1,4\}, \ \Gamma(4) \cap T = \{2,5\}$ $u_2 = \min\{\underline{u_2}, u_4 + w_{42}\} = \min\{3, 2+8\} = 3$ $u_3 = \infty$ $u_5 = \min\{u_5, \underline{u_4 + w_{45}}\} = \min\{\infty, 2+4\} = 6$ $u_6 = \infty$ Iteració 3 $T = \{3,5,6\}$ $P = \{1,4,2\}, \ \Gamma(2) \cap T = \{3\}$ $u_3 = \min\{u_3, \underline{u_2 + w_{23}}\} = \min\{\infty, 3+10\} = 13$ $u_5 = 6$ $u_6 = \infty$


```
Iteració 4
T = \{3,6\}
P = \{1,4,2,5\}, \ \Gamma(5) \cap T = \{3\}
u_3 = \min\{u_3, \underline{u_5 + w_{53}}\} = \min\{13,6+2\} = 8
u_6 = \infty
Iteració 5
T = \{6\}
```

$$P = \{0\}$$

 $P = \{1, 4, 2, 5, 3\}, \ \Gamma(3) \cap T = \{6\}$
 $u_6 = \min\{u_6, u_3 + w_{36}\} = \min\{\infty, 8 + 3\} = 11$
Iteració 6
 $T = \emptyset$
 $P = \{1, 4, 2, 5, 3, 6\}, \ STOP$

Llicó 4. GRAFS PONDERATS.

EXEMPLE:

	Camí	Pes
De 1 a 2	1 2	$u_2 = 3$
De 1 a 3	$1\ 4\ 5\ 3$	$u_3 = 8$
De 1 a 4	1 4	$u_4=2$
De 1 a 5	1 4 5	$u_5 = 6$
De 1 a 6	$1\ 4\ 5\ 3\ 6$	$u_6 = 11$

Lliçó 4. GRAFS PONDERATS.

Anomenarem u_{ii} al pes del camí més curt de i a j.

Utilitzarem les variables:

 $u_{ij}^{(m)}$: pes del camí més curt del vèrtex **i** al **j** amb la restricció que no continga als vèrtexs m, m+1, ..., n (exceptuant als extrems **i** i **j** si és el cas).

Aquestes variables poden calcular-se recursivamente utilitzant les equacions: $u_{i\,i}^{(1)} = w_{ij} \quad \forall i,j$

$$u_{ij}^{(m+1)} = w_{ij} \quad \forall i, j$$
 $u_{ij}^{(m+1)} = \min \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} \quad \forall i, j,$
 $m = 1, 2, \dots n$

I és possible veure que $u_{ij} = u_{ij}^{\ (n+1)}$, amb el que tindrem els pesos dels camins més curts entre tots els parells de vèrtexs.

Lliçó 4. GRAFS PONDERATS.

$$\begin{array}{cccc}
u_{ij}^{(1)} &= & w_{ij} & \forall i, j \\
u_{ij}^{(m+1)} &= & \underline{\min} \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} & \forall i, j, \\
m &= 1, 2, \dots n
\end{array}$$

Per a actualitzar un element que ocupe la fila i i columna j en la iteració m+1, hem de calcular:

El mínim entre el mateix element de la iteració anterior **m** i la suma de dos elements:

- el que ocupa la mateixa fila i la columna de la iteració m,
- el que ocupa la mateixa columna **j** i la fila de la iteració **m**.

(m=3)

Llicó 4. GRAFS PONDERATS.

EXEMPLE:

$$W = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \infty & 3 & \infty & 2 & \infty & \infty \\ 2 & \infty & \infty & 10 & 6 & \infty & \infty \\ 3 & \infty & 1 & \infty & 9 & \infty & 3 \\ 4 & 1 & 8 & \infty & \infty & 4 & \infty \\ 5 & \infty & \infty & \infty & \infty & \infty & \infty \\ 6 & \infty & \infty & 1 & \infty & 4 & \infty \end{bmatrix}$$

		1	2	3	4	5	6
	1	8	3	8	2	∞	8
	2	8	8	10	6	8	8
(m=2)	3	8	1	8	9	8	3
	4	1	[4]	oo	[3]	4	oo.
	5	oo.	oo.	oo	00	∞	∞
	6	∞	∞	1	∞	4	∞

 $\begin{array}{rcl} u_{ij}^{(1)} & = & w_{ij} & \forall i,j \\ \\ u_{ij}^{(m+1)} & = & \min \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} & \forall i,j, \\ \\ & m = 1,2, \dots n \end{array}$

		1	2	5	4	3	6
	1	oo.	3	[13]	2	∞	oc .
1892	2	∞	∞	10	6	∞	∞
	3	× ×	1	[11]	[7]	8	3
	4	1	4	[14]	3	4	8
	5	oc	∞	∞	oc	∞	∞
	6	∞	∞	1	8	4	∞

(m=5)

Llicó 4. GRAFS PONDERATS.

EXEMPLE:

$u_{ij}^{(1)}$	=	$w_{ij} \forall i,j$
$u_{ij}^{(m+1)}$	=	$\min\left\{u_{ij}^{(m)},u_{im}^{(m)}+u_{mj}^{(m)}\right\} \forall i,j,$
		$m=1,2,\ldots n$

	1	2	3	4	5	6
1	[3]	3	13	2	[6]	16
2	[7]	[10]	10	6	[10]	13
3	[8]	1	11	7	[11]	3
4	1	4	14	3	4	17
5	∞	∞	∞	∞	8	8
6	[9]	2	1	8	4	4

(m=7)

Llicó 4. GRAFS PONDERATS.

EXEMPLE:

$$\begin{array}{rcl} u_{ij}^{(1)} & = & w_{ij} & \forall i, j \\ \\ u_{ij}^{(m+1)} & = & \min \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} & \forall i, j, \\ \\ & m = 1, 2, \dots n \end{array}$$

	1	2	3	4	5	6
1	3	3	13	2	6	16
2	7	10	10	6	10	13
3	8	1	[4]	7	[7]	16 13 3
4	1	4	14	3	4	17
5	×	∞	∞	∞	∞	∞
6	9	2	1	8	4	4

Lliçó 4. GRAFS PONDERATS.

Per a facilitar la construcció dels camins més curts una vegada calculats els seus pesos, es pot utilitzar una altra matriu:

$$\Theta^{(m)} = [\theta_{ij}^{(m)}]$$

on $\theta_{ij}^{(m)}$ representa el vèrtex anterior al j en el camí més curt de ${\bf i}$ a ${\bf j}$ en la iteració ${\bf m}$.

Inicialment
$$\theta_{ij}^{(1)}=i \text{ si } u_{ij}^{(1)}<+\infty$$
 i:

$$\theta_{ij}^{(m+1)} = \begin{cases} \theta_{ij}^{(m)} & \text{si } u_{ij}^{(m+1)} = u_{ij}^{(m)} \\ \theta_{mj}^{(m)} & \text{si } u_{ij}^{(m+1)} < u_{ij}^{(m)} \end{cases}$$

Lliçó 4. GRAFS PONDERATS.

$$\theta_{ij}^{(m+1)} = \begin{cases} \theta_{ij}^{(m)} & \text{si}(u_{ij}^{(m+1)} = u_{ij}^{(m)}) \\ \theta_{mj}^{(m)} & \text{si}(u_{ij}^{(m+1)} < u_{ij}^{(m)}) \end{cases}$$

Si un element de la matriu de pesos no es modifica en la iteració m+1, aleshores el corresponent element de la matriu $\Theta^{(m+1)}$ tampoc es modifica.

Si un element de la matriu de pesos es modifica en la iteració m+1, aleshores el corresponent element de la matriu $\Theta^{(m+1)}$ es modifica pel que ocupa la seua mateixa columna, i fila m.

Llicó 4. GRAFS PONDERATS.

EXEMPLE

(m=1)

	I	- 2	3	4	3	6
1	8	3	∞	2	∞	∞
2	8	8	10	6	8	∞
3	σ.	1	∞	9	∞	3
4	1	8	∞	∞	4	∞
5	oc	oo.	∞	∞	∞	∞
_6	8	8	1	∞	4	∞

\Box	1	2	3	4	5	6
1		1		1		
2			2	2		
3		3		3		3
4	4	4			4	
5						
6			6		6	

(m=2) $\frac{2}{3}$

						v
1	8	3	× ×	2	o	8
2	8	8	10	6	8	8
3	8	1	8	9	8	3
4	1	[4]	oo	[3]	4	∞
5	oc	∞	oo	∞	∞	∞
_6	∞	∞	1	∞	4	∞

1	2	3	4	5	6
	1		1		
		2	2		
	3		3		3
4	[1]		[1]	4	
		6		6	
	4	1 2 1 3 4 [1]	1 2 3 1 2 3 4 [1] 6	1 2 3 4 1 1 2 2 3 3 4 [1] [1]	1 2 3 4 5 1 1 2 2 3 3 4 [1] [1] 4 6 6

(m=3)

	1	2	3	4	5	6
1	∞	3	[13]	2	∞	- oo
2	∞	∞	10	6	∞	∞
3	σ.	1	[11]	[7]	8	3
4	1	4	[14]	3	4	oc
5	∞	∞	∞	oc	∞	∞
6	∞	∞	1	∞	4	∞

\Box	1	2	3	4	5	6
1		1	[2] 2	1		
_2			2	2		
3		3	[2]	[2]		3
4	4	1	[2]	1	4	
5						
_6			6		6	

Lliçó 4. GRAFS PONDERATS.

3

EXEMPLE:		1	2	3	4	5	6	I	\Box	1	2	3	4	5	6
	1	× ×	3	[13]	2	8	oc .		1 2		1	[2] 2	1 2		
(m=3)	$\frac{2}{3}$	8	 1	[11]	6 [7]	8	3		3		3	[2]	[2]		3
(== -)	4	1	4	[14]	3	4	oo		4	4	1	[2]	1	4	
	5	∞ ∞	∞	∞ 1	00	∞ 4	8		5			6		6	
		1	2	3	4	5	6	l I	_	1	2	3	4	5	6
	1	00	3	13	2	00	[16]		1		1	2	1		[3]
(1)	2	œ	[11]	10	6	∞	[13]		2 3		[3] 3	2 2	2		[3]
(m=4)	3	1	4	11	7	4	[17]		4	4	1	2	1	4	[3]
	5	œ	œ	œ	œ	œ	œ		5						
	6	œ	[2]	1	[8]	4	[4]	l	6		[3]	6	[2]	6	[3]
_	I	1	2	3	4	5	6	I	\Box	1	2	3	4	5	6
-	1	[3]	3	13	2	[6]	16		1	[4]	1	2	1	[4]	3
(m=5)	2 3	[7] [8]	[10]	10 11	6 7	[10] [11]	13		2 3	[4] [4]	[1]	2	2	[4] [4]	3
	4	1	4	14	3	4	17		4	4	1	2	1	4	3
	5	00	00	∞	∞	- oo	00	l	5						

[4]

Lliçó 4. GRAFS PONDERATS.

EXEMPLE:		1	2	3	4	5	6
	1	[3]	3	13	2	[6]	16
	2	[7]	[10]	10	6	[10]	13
(m=5)	3	[8]	1	11	7	[11]	3
	4	1	4	14	3	4	17
	- 5	œ	œ	∞	œ	8	8
	6	[9]	2	1	8	4	4

	1	2	3	4	5	6
1	[4]	1	2	1	[4]	3
2	[4]	[1]	2	2	[4]	3
3	[4]	3	2	2	[4]	3
4	4	1	2	1	4	3
5						
6	[4]	3	6	2	6	3

		1	2	3	4	5	6
	1	3	3	13	2	6	16
	2	7	10	10	6	10	13
(m=6)	3	8	1	11	7	11	3
	4	1	4	14	3	4	17
	5	oc	∞	∞	∞	∞	œ
	6	9	2	1	8	4	4

\Box	1	2	3	4	5	6
1	4	1	2	1	4	3
2	4	1	2	2	4	3
3	4	3	2	2	4	3
4	4	1	2	1	4	3
5						
6	4	3	6	2	6	3

		1	2	3	4	5	6
	1	3	3	13	2	6	16
	2	7	10	10	6	10	13
(m=7)	3	8	1	[4]	7	[7]	3
	4	1	4	14	3	4	17
	5	oc	∞	∞	00	∞	× ×
	6	9	2	1	8	4	4

	1	2	3	4	5	6
1	4	1	2	1	4	3
2	4	1	2	2	4	3
3	4	3	[6] 2	2	[6]	3
4	4	1	2	1	4	3
5						
6	4	3	6	2	6	3

Lliçó 4. GRAFS PONDERATS.

EXEMPLE:		1	2	3	4	5	6
	1	3	3	13	2	6	16
	2	7	10	10	6	10	13
(m=7)	3	8	1	[4]	7	เ7ม	3
	4	1	4	14	3	4	17
	5	oc	∞	∞	∞	∞	∞
	6	9	2	1	8	4	4

	1	2	3	4	5	6
1	4	1	2	1	4	3
2	4	1		2	4	3
2 3	4	3	[6] 2	2	61 4	3 3 3
	4	1	2	1	4	
4 5						3
6	4	3	6	2	6	3

IDENTIFICACIÓ DE CAMINS:

Camí més curt de 3 a 5:

- 1. Pes: $u_{35}^{(7)} = 7$
- 2. Camí:
 - Vèrtex anterior al 5: $heta_{35}^{(7)}=6$
 - Vèrtex anterior al 6: $heta_{36}^{(7)}=$ 3

Lliçó 4. GRAFS PONDERATS.

EXEMPLE	<u>. </u>	1	2	3	4	5	6
	1	3	3	13	2	6	16
	2	7	10	10	6	10	13
(m=6)	3	8	1	11	7	11	3
	4	1	4	14	3	4	17
	5	oc	∞	∞	∞	∞	œ
	6	9	2	1	8	4	4

	1	2	3	4	5	6
1	4	1	2	1	4	3
2	4	1	2	2	4	3
3	4	3	2	2	4	3
4	4	1	2	1	4	3
5						
6	4	3	6	2	6	3

IDENTIFICACIÓ DE CAMINS:

Camí més curt de 3 a 5 sense passar pel vèrtex 6:

Necessitem les dades de la iteració 6.

- 1. Pes: $u_{35}^{(6)} = 11$
- 2. Camí:
 - Vèrtex anterior al 5: $heta_{35}^{(6)}=4$
 - ullet Vèrtex anterior al 4: $heta_{34}^{(6)}=$ 2
 - ullet Vèrtex anterior al 2: $heta_{32}^{(6)}=$ 3

Llicó 4. GRAFS PONDERATS.

EXEMPLE: Considerem un graf amb V={A,B,C,D,E,F} i matriu de pesos:

$$\Omega = \begin{bmatrix} \infty & 2 & \infty & 5 & 8 & \infty \\ \infty & \infty & 1 & 2 & 6 & \infty \\ 1 & \infty & \infty & 3 & \infty & \infty \\ \infty & \infty & \infty & \infty & 3 & \infty \\ 1 & \infty & 7 & \infty & \infty & 4 \\ 3 & \infty & \infty & \infty & \infty & \infty \end{bmatrix}$$

Suposem que desitgem calcular el camí més curt de A a E i el seu pes, amb la condició que no continga els vèrtexs C i F com a interns.

Haurem de reordenar els vèrtexs del graf de manera que els vèrtexs per on no volem que el camí passe siguen els últims.

Lliçó 4. GRAFS PONDERATS.

EXEMPLE: Camí més curt de A a E i el seu pes, amb la condició que no continga els vèrtexs C i F com a interns.

Possibles reordenacions:

- A, B, D, E, C, F: Parar en la iteració 5.
- B, D, A, E, C, F: Parar en la iteració 3.

		A	B	C	D	E	F
	A	∞	2	∞	5	8	∞
	$B \mid$	∞	∞	1	2	6	∞
$\Omega =$	$C \mid$	1	∞	∞	3	∞	∞
	$D \mid$	∞	∞	∞	∞	3	∞
	$E \mid$	1	∞	7	∞	∞	4
	F	3	∞	∞	∞	∞	∞

Permutem files

	A	B	C	D	E	F
B	∞	∞	1	2	6	∞
D	∞	∞	∞	∞	3	∞
A	∞	2	∞	5	8	∞
E	1	∞	7	∞	∞	4
C	1	∞	∞	3	∞	∞
F	3	∞	∞	∞	∞	∞

Permutem columnes

	B	D	\boldsymbol{A}	E	C	F
B	∞	2	∞	6	1	∞
D						∞
A	2	5	∞	8	∞	∞
E	∞	∞	1	∞	7	4
C				∞		
F	∞	∞	3	∞	∞	∞

Lliçó 4. GRAFS PONDERATS.

EXEMPLE: Amb la matriu reordenada iniciem l'algoritme de Floyd-Warshall.

		B	D	\boldsymbol{A}	E	C	F
	B	∞	2	∞	6	1	∞
	D	∞	∞	∞	3	∞	∞
$\Omega^{(2)} \equiv$	A	2	[4]	∞	8	[3]	∞
	E	$ \infty $	∞	1	∞	7	4
	C	$ \infty $	3	1	∞	∞	∞
	F	∞	∞	3	∞	∞	∞

Lliçó 4. GRAFS PONDERATS.

EXEMPLE: Amb la matriu reordenada iniciem l'algoritme de Floyd-Warshall.

Llicó 4. GRAFS PONDERATS.

EXEMPLE: Amb la matriu reordenada iniciem l'algoritme de Floyd-Warshall.

IDENTIFICACIÓ DE CAMINS:

Camí més curt de A a E sense passar pels vèrtexs C, F:

- 1. Pes: $u_{AR}^{(3)} = 7$
- 2. Camí:

Llicó 4. GRAFS PONDERATS.

DEFINICIÓ:

Siga G un graf ponderat i no dirigit. Direm que T és un **arbre** generador de mínim pes si T és un arbre generador tal que la suma dels pesos associats a les seues arestes és mínima.

EXEMPLE: El de telecomunicacions.

següent Aquest arbre generador no és de graf representa una xarxa pes mínim: El seu pes és 20. Hi ha arbres amb menor pes: 12.

Llicó 4. GRAFS PONDERATS.

ALGORITME DE KRUSKAL

Siga G = (V,A) un graf no dirigit i amb pesos \mathbf{w}_i associats a cada aresta $\mathbf{e}_i \in A$, i = 1, 2, ..., m i amb n vèrtexs.

PAS 1. $T = \emptyset$.

PAS 2. Ordenar en orde creixent les arestes de G, és a dir,

$$e_1, e_2, \ldots, e_m / \omega_1 \leq \omega_2 \leq \cdots \leq \omega_m$$
.

PAS 3. Afegir arestes en T de forma ordenada sempre que no es formen cicles fins a tindre en T, n-1 arestes

Lliçó 4. GRAFS PONDERATS.

EXEMPLE: El següent graf representa una xarxa de telecomunicacions. Aplicarem l'algoritme de Kruskal per a obtindre un arbre generador de pes mínim.

Primer ordenem les arestes de l'arbre en orde creixent de pesos:

Aresta: e_7 e_9 e_3 e_1 e_4 e_8 e_6 e_5 e_2

Pes: 1 2 2 3 3 4 5 6 6

Llicó 4. GRAFS PONDERATS.

Aresta: e_7 e_9 e_3 e_1 e_4 e_8 e_6 e_5 e_2 Pes: 1 2 2 3 3 4 5 6 6

Anem afegint arestes en T de forma ordenada sempre que no es formen cicles fins a tindre en T, 6-1 arestes.

Llicó 4. GRAFS PONDERATS.

ALGORITME DE PRIM

Siga G un graf no dirigit ponderat amb n vèrtexs.

Pas 1.
$$T = \emptyset$$
, $U = \{v^*\}$ $v^* \in V(G)$
 $L(u) = w(u, v^*)$ (∞ si $\not\exists$ aresta) $\forall u \in V(G)$

- Pas 2. Trobar $u^* \in V(G)$ tal que $L(u^*) = \min_{u \in U} \{L(u)\}$
- **Pas 3.** Afegir u^* a U, és a dir, $U := U \cup \{u^*\}$ Afegir l'aresta e incident amb u^* amb pes $L(u^*)$ a T, és a dir, $T := T \cup \{e\}$
- Pas 4. Si card(U) = n, STOP.

Si
$$card(U) < n$$
, fer
$$L(u) := \min \{L(u), w(u^*, u)\} \quad \forall u \notin U$$
 i anar al Pas 2.

Llicó 4. GRAFS PONDERATS.

EXEMPLE: Apliquem l'algoritme de Prim al següent graf.

$$T = \emptyset$$
, $U = \{e\}$.

$$L(a) = \omega_{ea} = 3,$$

$$L(b) = \infty$$
,

$$L(c) = \omega_{ec} = 6,$$

$$L(d) = \infty$$
,

$$L(f) = \omega_{ef} = 2.$$

Selectionem $\min_{u \notin U} \{L(u)\} = L(f)$.

Afegim el vèrtex f a U i l'aresta $\{e, f\}$ a T.

Llicó 4. GRAFS PONDERATS.

EXEMPLE: Apliquem l'algoritme de Prim al següent graf.

$$T = \{\{e, f\}\}, \ U = \{e, f\}.$$

$$L(a) = \min\{L(a), \omega_{fa}\} = \min\{3, \infty\} = \omega_{ea} = 3,$$

$$L(b) = \min\{\overline{L(b)}, \omega_{fb}\} = \min\{\infty, \infty\} = \infty,$$

$$L(c) = \min\{L(c), \omega_{fc}\} = \min\{6, 3\} = \omega_{fc} = 3,$$

$$L(d) = \min\{L(d), \overline{\omega_{fd}}\} = \min\{\infty, 6\} = \omega_{fd} = \mathbf{6}.$$

Selectionem $\min_{u \notin U} \{L(u)\} = L(a)$.

Afegim el vèrtex a a U i l'aresta $\{e, a\}$ a T.

Llicó 4. GRAFS PONDERATS.

EXEMPLE: Apliquem l'algoritme de Prim al següent graf.

$$T = \{\{e, f\}, \{e, a\}\}, \ U = \{e, f, a\}.$$

$$L(b) = \min\{L(b), \underline{\omega_{ab}}\} = \min\{\infty, 4\} = \omega_{ab} = 4,$$

$$L(c) = \min\{L(c), \overline{\omega_{ac}}\} = \min\{3, 2\} = \omega_{ac} = 2,$$

$$L(d) = \min\{\underline{L(d)}, \omega_{ad}\} = \min\{6, \infty\} = \omega_{fd} = 6.$$

Selectionem $\min_{u \notin U} \{L(u)\} = L(c)$.

Afegim el vèrtex c a U i l'aresta $\{a,c\}$ a T.

Llicó 4. GRAFS PONDERATS.

EXEMPLE: Apliquem l'algoritme de Prim al següent graf.

$$T = \{\{e, f\}, \{e, a\}, \{a, c\}\}, \ U = \{e, f, a, c\}.$$

$$L(b) = \min\{L(b), \omega_{cb}\} = \min\{4, \infty\} = \omega_{ab} = 4,$$

$$L(d) = \min\{\overline{L(d)}, \underline{\omega_{cd}}\} = \min\{6, 1\} = \omega_{cd} = \mathbf{1}.$$

Selectionem $\min_{u \notin U} \{L(u)\} = L(d)$.

Afegim el vèrtex d a U i l'aresta $\{c,d\}$ a T.

Llicó 4. GRAFS PONDERATS.

EXEMPLE: Apliquem l'algoritme de Prim al següent graf.

$$T = \{\{e, f\}, \{e, a\}, \{a, c\}, \{c, d\}\},\$$

$$U = \{e, f, a, c, d\}.$$

$$L(b) = \min\{\underline{L(b)}, \omega_{db}\} = \min\{4, 5\} = \omega_{ab} = 4,$$

Selectionem $\min_{u \notin U} \{L(u)\} = L(b)$.

Afegim el vèrtex b a U i l'aresta $\{a,b\}$ a T.

Llicó 4. GRAFS PONDERATS.

EXEMPLE: Apliquem l'algoritme de Prim al següent graf.

$$T = \{\{e, f\}, \{e, a\}, \{a, c\}, \{c, d\}, \{a, b\}\},\$$

$$U = \{e, f, a, c, d, b\}, \text{ parar.}$$

T és un arbre generador de mínim pes, amb pes 2+3+2+1+4=12.

