9 Sept 2022

1.2 Classwork: Segment Addition Postulate and solving for length

1. Given \overline{ABC} , AB = 8, and BC = 4.

- (a) Find AC. Write your answer as an equation.
- (b) Name the postulate used in this problem: ______.
- 2. Given \overline{RST} , RS=5, and $RT=7\frac{1}{2}$. Find ST.

- 3. Given \overline{DEF} , DE = x + 4, EF = x + 2, DF = 14. Find DE.
 - (a) Label the diagram with the given values.

- (b) Write an equation:
- (c) Solve for x

(d) Answer the question.

Find DE by substituting for x.

(e) Check your answer

- 4. The points shown are in a straight line, \overline{XYZ} .
 - (a) Measure and label the lengths XY and YZ to the nearest centimeter.

(b) Write an equation employing the Segment Addition Postulate. (fill in the blanks with values in centimeters)

$$XZ = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

5. Points P = 14 and Q = 47 are shown below. Find PQ.

6. Given \overline{LMN} , LM = 3x + 1, MN = 7, LN = 17. Find x.

- (a) Write down an equation to represent the situation.
- (b) Solve for x.
- (c) Check your answer.