TD3 analyse

Félix Yvonnet

28 septembre 2023

Ex1: Espaces de Baire

- 1. Soit \mathcal{O} un ouvert d'un espace de Baire E. Montrons que \mathcal{O} est un espace de Baire. Soit (U_n) une suite d'ouverts de \mathcal{O} dense dans \mathcal{O} et $D = \bigcap_{n \in \mathbb{N}} U_n$. Alors la suite $U'_n = U_n \cup \overline{\mathcal{O}}^c$ est dense dans E. De plus c'est bien une suite d'ouverts car ouvert d'un ouvert. Ainsi $D' = \bigcap_{n \in \mathbb{N}} U'_n$ dense dans E et $D = D' \cap \mathcal{O}$ dense dans \mathcal{O} .
- 2. Soit E un espace topologique localement compact et (U_n) une suite d'ouverts dense dans E avec $D = \bigcap_{n \in \mathbb{N}} U_n$. On fait les compact emboités avec la preuve usuelle de Baire pour avoir la suite qui converge comme il faut.

 On fixe donc un voisinage $V \neq \emptyset$ de E. Alors $V \cap U_0 \neq \emptyset$ par densité de U_0 . On pose donc $x_0 \in V \cap U_0$. Or $U_0 \cap V \in \mathcal{V}(x_0)$ donc (E) localement

On fixe donc un voisinage $V \neq \emptyset$ de E. Alors $V \cap U_0 \neq \emptyset$ par densité de U_0 . On pose donc $x_0 \in V \cap U_0$. Or $U_0 \cap V \in \mathcal{V}(x_0)$ donc (E localement compact) il existe K_0 compact avec $K_0 \subset U_0 \cap V$. En particulier \mathring{K}_0 ouvert non vide. On peut donc prendre par récurrence $x_{n+1} \in U_{n+1} \cup \mathring{K}_n$. La suite (K_n) ainsi construite est une suite de compact car $K_n \subset U_n \cap V$. Ainsi:

$$\bigcap_{n \in \mathbb{N}} K_n \text{ est non vide} \Rightarrow \exists x \in K_n, \ \forall n \in \mathbb{N}$$
$$\Rightarrow \exists x \in U_n, \ \forall n \in \mathbb{N} \text{ et } x \in V$$
$$\Rightarrow \exists x \in D \cap V.$$

Ex2: Autour du th de Baire

- 1. Soit (e_n) une base (infinie dénombrable) de E un evn. Soit $F_n = Vect(e_0, \cdots, e_n)$. L'ensemble F_n est fermé (car evn de dim finie) donc $\mathring{F_n} = \emptyset$ car sinon il contiendrait B(0,r) et donc E par linéarité. $E = \bigcup_{n \in \mathbb{N}} F_n$ donc si E est complet alors par th de Baire E est d'intérieur vide ce qui est absurde. Ainsi E n'est pas complet. Par exemple $\mathbb{R}[X]$ n'est jamais complet T
- 2. Soit $\varepsilon > 0$, l'espace $]0, +\infty[$ est de Baire (car localement compact, voir 2). Soit $n \in \mathbb{N}$. Posons $F_n = \{x > 0 | \forall p \geq n, |f(px)| \leq \varepsilon\}$. L'ensemble F_n est fermé car il s'écrit $F_n = \bigcap_{p \geq n} \underbrace{\{x > 0 | |f(px)| \leq \varepsilon\}}_{\text{fermé car } f \text{ continue}}$. Par th de Baire, il

existe $N \geq 0$ tq F_n n'est pas d'intérieur vide. Ainsi il existe $]a,b[\subset F_N.$ Soit $y \in E$. On souhaite se ramener à $f(y) = f(\frac{py}{p})$ pour appliquer le résultat. Pour ça il existe $P \geq N$ tq $]Pa, +\infty[=\bigcup_{k \geq P}]k_a, k_b[$. Alors $P > \max(N, \frac{a}{b-a})$. Choisissons y > Pa, alors il existe $k \geq P$ tq $\frac{y}{k} \in]a,b[$. Ainsi $\frac{y}{k} \in F_N$ et donc $|f(y)| = |f(p\frac{y}{p})| \leq \varepsilon$.

Ex3 : Dans un métrique complet, un G_{δ} -dense n'est pas dénombrable

- 1. $x_0 \in E, \mathcal{O}\setminus\{x\}, x \in E, r > 0. \ \mathcal{O}\cap B(x,r) \neq \emptyset \text{ ouvert} \Rightarrow \exists x_1 \in \mathcal{O}\cap B(x,r)$ et $\exists r' \text{ tq } B(x_1) \subset \mathcal{O}\cap B(x,r)$. Si $x_0 \notin B(x_1,r')$ alors $B(x,r)\cap (\mathcal{O}\setminus\{x_0\}) \neq \emptyset$. Si $x_0 \notin B(x_1,r')$, comme x_1 n'est pas isolé, on a $B(x_1,r')\setminus\{x_0\} \neq \emptyset$ donc $B(x,r)\cap (\mathcal{O}\setminus\{x_0\}) \neq \emptyset$ donc $\mathcal{O}\setminus\{x\}$ est dense.
- 2. (U_n) ouverts denses et $D=\bigcap_{n\in\mathbb{N}}U_n$ (x_n) les éléments de D dénombrable. $\mathcal{O}_n=U_n\backslash\{x_n\}$ par 1) \mathcal{O}_n dense et ouvert. Donc $\bigcap_{n\in\mathbb{N}}\mathcal{O}_n=\emptyset$ Ce qui contredit Baire!

Ex4 : Un espace métrique non complet n'est pas de Baire

pas vu pas fait

Ex 6 : Point de continuité d'une limite simple de fonctions continue

- 1. (a) $G = \left(\bigcup_{n \in \mathbb{N}} \mathring{F_n}\right)^c$ est un fermé. $G \cap \mathring{F_n} = \emptyset \Rightarrow F \cap F_n$ est d'intérieur vide et fermé. Par Baire $\bigcup_{n \in \mathbb{N}} (G \cap F_n)$ est d'intérieur vide. Or $\bigcup_{n \in \mathbb{N}} (G \cap F_n) = G \cap \bigcup_{n \in \mathbb{N}} F_n = G \cap E = G$. D'où $G^c = \bigcup_{n \in \mathbb{N}} \mathring{F_n}$ est dense.
 - (b) $F_{n,\varepsilon} = \{x \in E | \forall p \geq n, \ d(f_n(x), f_p(x)) < \varepsilon\}$. Alors $\Omega_{\varepsilon} = \bigcup_{n \in \mathbb{N}} F_{n,\varepsilon}^{\circ}$ ouvert car union d'ouverts. De plus $E = \bigcup_{n \in \mathbb{N}} F_{n,\varepsilon}$ car f_n converge simplement vers f et $F_{n,\varepsilon} = \bigcap_{p \geq n} \{x \in E | d(f_n(x), f_p(x)) \leq \varepsilon\}$ est une intersection de fermés (car f c^0) donc un fermé. Ainsi par 1a, Ω_{ε} est dense dans E.
 - (c) $D = \bigcap_{\varepsilon>0} \Omega_{\varepsilon}$ dense dans E par Baire. $x_0 \in \Omega_{\varepsilon}$, $\exists n \text{ tq } x_0 \in \mathring{F_{n,\varepsilon}} \Rightarrow \exists v \in \mathcal{V}(x_0) \text{ tq } \forall x \in V, \ \forall p \geq n, \ d(f_n(x), f_p(x)) \leq \varepsilon \text{ en faisant tendre } p \text{ vers } +\infty \text{ on obtient } \forall x \in V, \ d(f_n(x), f(x)) \leq \varepsilon. \text{ Or } f_n \text{ est continue donc } \exists w \in \mathcal{V}(x_0) \text{ tq } \forall x \in w, \ d(f_n(x_0), f_n(x)) \leq \varepsilon. \text{ Pour } x \in V \cap w \in \mathcal{V}(x_0), \text{ on a } d(f(x), f(x_0)) \leq d(f(x), f_n(x)) + d(f_n(x), f_n(x_0)) + d(f_n(x), f_n(x_0)) = 0$

 $d(f_n(x_0), f(x_0)) \leq 3\varepsilon$. Si $x_0 \in D$, alors c'est vrai pour tout ε rationnel $\Rightarrow f$ est continue sur $D \Rightarrow f$ est continue sur une partie dense de $E \Rightarrow f$ est continue sur E.

2. $f'(x) = \lim_{n \to \infty} \frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}}$ donc idem.

Ex7 (TD1): A propos de Banach-Steinhaus

 \Rightarrow OK

 $\Leftarrow \tau$ topologique sur E pour laquelle E est un evt qui admet une base de voisinage de 0 convexe. $S = \{\text{semi-normes sur } E \text{ continues pour } \tau \}$ et τ' topologique engendrée par S. $\tau' \subset \tau$ par def de la topologique initiale. On doit montrer que $\tau \subset \tau'$.

Soit $x \in E$ on montre que tout voisinage pour τ est un voisinage pour τ' . On peut se concentrer sur des voisinages de 0. Soit $v \in \mathcal{V}(0)$. L'application multiplication pat un scalaire est continue. (Jauges) on introduit $\eta > 0$, w un τ -voisinage de 0 tq si $|\lambda| < \eta$ et $v \in w$ alors $\lambda v \in V$. On peut toujours prendre w convexe. Ainsi $\Omega = \bigcup_{|\lambda| < \eta} \lambda w$ convexe.

 $\forall x \in E, \ p(x) = \inf\{\lambda > 0 | x \in \lambda\Omega\}$ on vérifie que p est bien une semi norme :

- positivement homogène : $p(tx) = tp(x) \forall t > 0. \ tx \in \lambda \Omega \Leftrightarrow x \in \frac{\lambda}{t} \Omega.$
- homogène : Ω symétrique ie si $x \in \Omega$ alors $-x \in \Omega$ et donc p(-x) = p(x)
- inégalité triangulaire : $x=ta\in t\Omega,\ y=sh\in s\Omega,\ alors\ x+y\in (s+t)\Omega$ par convexité de Ω .
- p est continue : $u \in V, \varepsilon > 0$. $v \in E$ tq $v u \in \varepsilon \Omega$. $u + \varepsilon \Omega$ voisinage de u et $|p(u) p(v)| \le p(u v) \le \varepsilon$. Ainsi $u + \varepsilon \Omega \subset (p(v) \varepsilon, p(v) + \varepsilon)$

On en déduit que la p-boule de centre 0 et de rayon $\frac{1}{2}$ est un voisinage de 0 pour τ' . Cette boule est incluse dans V donc V est τ' -voisinage de 0.

Idée : localement convexe \simeq avoir une base de semi norme.