Homework 8 for Math 2371

Zhen Yao

Problem 1. Let K be the collection of all $n \times n$ stochastic matrices. Show that K is convex in the n^2 dimensional linear space of $n \times n$ real matrices. Find all extreme points of K.

Proof.

(1) Suppose $A = (a_{ij})_{n \times n}$ and $B = (b_{ij})_{n \times n}$ are stochastic matrices. Then for any $t \in (0,1)$, we can have

$$\sum_{i=1}^{n} t a_{ij} + (1-t)b_{ij} = t \sum_{i=1}^{n} a_{ij} + (1-t) \sum_{i=1}^{n} b_{ij} = 1.$$

Then, tA + (1 - t)B is also stochastic matrix. Hence, K is a convex set.

(2) The permutation matrices are extreme points of K. Suppose permutation matrix $P = \frac{A+B}{2}$, where A and B are stochastic matrices. Since $a_{ij}, b_{ij} \in [0,1]$ and $P_{ij} = \frac{a_{ij}+b_{ij}}{2}$, then we have A = B = P. Thus, P is an extreme point.

Also, for any matrix $M = (m_{ij})_{n \times n}$ that is not a permutation matrix, it is not an extreme point. Indeed, there exist i, j such that $m_{ij} \in (0, 1)$. Then there exist stochastic matrices A, B where $m_{ij} = \frac{a_{ij} + b_{ij}}{2}$. Thus, M is not an extreme point.

Problem 2. Let $P = (P_{ij})_{n \times n}$ be an entrywise positive matrix and λ be its dominant eigenvalue. Show that

$$\min_{i} \sum_{j=1}^{n} P_{ij} \le \lambda(P) \le \max_{i} \sum_{j=1}^{n} P_{ij}.$$

Proof. Suppose λ be its dominant eigenvalue, then $\lambda > 0$ and there exists eigenvector h with $h_i > 0$. Then, we have $Ph = \lambda h$ and

$$\sum_{i=1}^{n} \sum_{j=1}^{n} P_{ij} h_j = \sum_{i=1}^{n} \lambda h_j.$$

Then, with the change of order of the summation, we have

$$\left(\min_{i} \sum_{j=1}^{n} P_{ij}\right) \left(\sum_{j=1}^{n} h_{j}\right) \leq \lambda \sum_{j=1}^{n} h_{j} \leq \left(\max_{i} \sum_{j=1}^{n} P_{ij}\right) \left(\sum_{j=1}^{n} h_{j}\right),$$

and hence

$$\min_{i} \sum_{j=1}^{n} P_{ij} \le \lambda(P) \le \max_{i} \sum_{j=1}^{n} P_{ij}.$$

Problem 3. Let $P = (P_{ij})_{n \times n}$ be an entrywise positive matrix and λ be its dominant eigenvalue. Suppose $u, v \in \mathbb{R}^n$ are two positive vector such that

$$Pu = \lambda u, P^T v = \lambda v.$$

Show that

$$\lim_{k \to \infty} \frac{1}{\lambda^k} P^k = \frac{1}{(u, v)} u v^T.$$

Proof. For matrix P/λ , it has dominant eigenvalue 1. Now suppose w is a generalized eigenvector of P with eigenvalue β . With Perron theorem, we have $|\beta| < \lambda$, then

$$\lim_{k \to \infty} \left(\frac{P}{\lambda}\right)^k w = 0.$$

Then $(P/\lambda)^k$ converges to a matrix M which fixes u and v. We claim $M = \frac{1}{(u,v)}uv^T$. First we note that $v^TM = \frac{1}{(u,v)}(v^Tu)v^T = v^T$ and Mu = u. Then any other generalized eigenvector w for eigenvalue $\beta \neq \lambda$, we have Mw = 0. If not, $Mw = \frac{1}{(u,v)}uv^Tw \neq 0$, which implies $v^T w \neq 0$, and then for all k > 0,

$$\lambda^k v^T w = v^T P^k w = v^T \left(P^k w \right),$$

and hence

$$v^T w = \frac{1}{\lambda^k} v^T \left(P^k w \right),$$

which is a contradiction, since

$$\lim_{k \to \infty} \frac{1}{\lambda^k} P^k w = 0.$$

Thus, we have

$$\lim_{k \to \infty} \frac{1}{\lambda^k} P^k = \frac{1}{(u, v)} u v^T.$$