To the Quantum Future

Assignment 0

Arihant Vashista, 22b0958

Solution 1

Eventown Problem

Consider a vector space $V \subset \mathbb{F}_2^n$ over \mathbb{F}_2 . For any vector $v_i \in V$, the j^{th} element is 1 if the j^{th} member is present in the i^{th} club and 0 otherwise. Consider the inner-product $\langle v_i, v_j \rangle$. This value represents the parity of the the number of people in the intersection of the i^{th} and j^{th} club. It is obvious that in \mathbb{F}_2 it is $0 \,\forall i, j$. So for any $v \in V, v \perp w \quad \forall w \in V$. In other words $\forall v \in V, v \in V^{\perp}$ or $V \subset V^{\perp}$. Also we know that $V \bigoplus V^{\perp} = \mathbb{F}_2^n$. Hence $2dimV \leq dimV + dimV^{\perp} = \dim \mathbb{F}_2^n = n$. So $dimV \leq n/2$. And since we defined V over \mathbb{F}_2 , $m = |V| \leq 2^{n/2}$

Oddtown Problem

Define a matrix $A \in \mathbb{F}_2^{n \times n}$ where $a_{ij} = 1$ if the i^{th} member belongs to the j^{th} club. The inner product of two columns of this matrix represent the parity of the number of members in the intersection of those two clubs which is 1 if both are same and 0 otherwise. Therefore it is easy to conclude that the matrix A^tA is $I_{m \times m}$ or $dim(A^tA) = m$. We also know that $dim(AB) \leq min(dim(A), dim(B))$. Therefore $m = dim(A^tA) \leq min(dim(A), dim(A^t)) \leq n$

Solution 2

$$\langle Ax, x \rangle = \langle x, Ax \rangle = \langle A^*x, x \rangle$$

$$\implies \langle (A - A^*)x, x \rangle = \langle Bx, x \rangle = 0 \quad \forall x \in V$$
(1)

We need to prove that $B = \mathbf{O}$. We begin by replacing putting (x+cy) where $x, y \in V$ instead of x in eqn(1).

$$\langle B(x+cy), (x+cy) \rangle = \langle (x+cy), B(x+cy) \rangle$$

Simplifying we get, $c\langle Bx, y\rangle = \bar{c}\langle Bx, y\rangle$. Put c=1, i to get the result that $\langle Bx, y\rangle = 0 \quad \forall x, y \in V$. Now put y=Bx to get ||Bx||=0. This implies $Bx=0 \quad \forall x \in V$. Hence nullity of B is n or rank(B) = 0. Which means that $B=\mathbf{O}$. The converse is trivial.

$$\langle (A - A^*)x, x \rangle = 0 \quad \forall x \in V$$

$$\implies \langle Ax, x \rangle = \langle A^*x, x \rangle = \langle x, Ax \rangle$$

Note: This solution is inspired by one of the questions we discussed in MA106 course

Solution 3

Here we use the fact that: Eigen values of Kronecker product of two matrices is the product of the eigen values of the indivisual matrices.

Proof: Suppose v_a and v_b are the eigen values of A and B wrt eigen values λ and μ . Now, $(A \otimes B)(v_a \otimes v_b) = Av_a \otimes Bv_b = \lambda v_a \otimes \mu v_b = \lambda \mu (v_a \otimes v_b)$.

Moving on to the question it is easy to observe that the following matices are: (a): $A \otimes X$, (b) $X \otimes A$ and (c) $A \otimes A$, where $A = \begin{bmatrix} 5 & 4 \\ 3 & 2 \end{bmatrix}$ and $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ with eigen values $\frac{7 \pm \sqrt{57}}{2}$ and ± 1 respectively. Hence the eigen values for the question are $\pm (\frac{7 \pm \sqrt{57}}{2})$ for part (a) and (b) and $(53 \pm 7\sqrt{57})$ and -2 for part (c)

Solution 4

 $1)\sqrt{\langle x, x \rangle}$ is a norm beacuse :

•
$$\sqrt{\langle x, x \rangle} = 0 \Rightarrow \langle x, x \rangle = 0 \Rightarrow \sum_{i} x_i^2 = 0 \Rightarrow x_i = 0 \quad \forall i$$

•
$$\sqrt{\langle sx, sx \rangle} = \sqrt{s\bar{s}\langle x, x \rangle} = \sqrt{|s|^2\langle x, x \rangle} = |s|\sqrt{\langle x, x \rangle}$$

•

$$|x + y|^{2} = \langle x + y, x + y \rangle$$

$$= x^{*}x + y^{*}x + x^{*}y + y^{*}y$$

$$\leq |x|^{2} + 2|x||y| + |y|^{2}$$

$$= (|x| + |y|)^{2}$$
(2)

eqn(2) is possible due to Cauchy-Schwartz theorem.

2) |x-y| is mertic because:

- $|x-y| \ge 0$ and equality exists when x-y=0 or x=y as proven above
- $|x-y| = \sqrt{\langle x-y, x-y \rangle} = \sqrt{\langle y-x, y-x \rangle} = |y-x|$
- $|x-z|=|(x-y)+(y-z)|\leq |x-y|+|y-z|$ as proven above in the third point.

 $\langle f_n|f_m\rangle$ can be calculated directly using integration. WLOG, assume $n\geq m$:

$$\langle f_n | f_m \rangle = \frac{3n - m}{6n^2}$$

To prove it is cauchy, we can find $|f_n - f_m| = \sqrt{\langle f_n - f_m | f_n - f_m \rangle}$ which turns out to be $(1 - \frac{m}{n}) \frac{1}{\sqrt{m}}$. It is obvious that for any n, we can set m as large as we want such that $|f_n - f_m| \le \epsilon \quad \forall n, m \ge N$ for some N. Hence the sequence f_n is cauchy.

Solution 5

Here we use the fact that : $\langle \alpha v_1 \otimes w_1 | \beta v_2 \otimes w_2 \rangle = \alpha^* \beta \langle v_1 | v_2 \rangle \langle w_1 | w_2 \rangle$. Therefore:

$$\langle U|V\rangle_{HS} = \langle TU|TV\rangle = \langle u|v\rangle$$

$$= \langle \sum_{i,j} \alpha_{ij} v_i \otimes w_j | \sum_{i',j'} \beta_{i'j'} v_i' \otimes w_j' \rangle$$

$$= \sum_{i,j,i',j'} \alpha_{ij}^* \beta_{i'j'} \langle v_i | v_i' \rangle \langle w_j | w_j' \rangle$$

To the Quantum Future

Now since $\{v_i\}$ and $\{w_j\}$ are orthonormal basis the above will be simplified to

$$\sum_{ij} \alpha_{ij}^* \beta_{ij}$$

Which is precisely equal to $tr(U^*V)$

For the second part, note that the tensor product $v_i \otimes w_j$ can be considered as a Kronecker product which under the basis \mathcal{B} reduces to

$$[a_{11}, a_{12}, \dots, a_{1n}, a_{21}, \dots, a_{2n}, \dots, a_{mn}]^T$$

where $a_{ij} = 1$ and 0 otherwise.

$$[0,0,\ldots,1,\ldots,0]^T$$

Hence now it is easy to see that $(TU)_{\mathcal{B}} = (u)_{\mathcal{B}}$ reduces to the given form

$$[\alpha_{11}, \alpha_{12}, \dots, \alpha_{1n}, \alpha_{21}, \dots, \alpha_{2n}, \dots, \alpha_{mn}]^T$$