9 Метод динамічного програмування

9.1 Алгоритми

Задача. Розглядається задача оптимального керування

$$\mathcal{J}(u,x) = \sum_{k=0}^{N-1} g_k(x(k), u(k)) + \Phi(x(N)) \to \min$$

при умовах

$$x(k+1) = f_k(x(k), u(k)), \quad k = 0, 1, \dots, N-1,$$

 $x(k) \in \mathcal{X}_k, \quad k = 0, 1, \dots, N,$
 $u(k) \in \mathcal{U}_k, \quad k = 0, 1, \dots, N-1.$

Знайти оптимальне керування, оптимальну траєкторію, функцію Белмана і оптимальне значення критерію якості.

Алгоритм 9.1. 1. $\mathcal{B}_N(z) = \Phi(z)$.

2. Для $s=\overline{N-1..0}$ записуємо і розв'язуємо дискретне рівняння Белмана:

$$\mathcal{B}_s(z) = \min_{u \in \mathcal{U}_s} (g_s(z, u) + \mathcal{B}_{s+1}(f_s(z, u)))$$

для всіх $z \in \mathcal{X}_s$, запам'ятовуючи $\{u_*(s)\}$.

3. Знаходимо $x_*(0)$ як

$$x_*(0) = \arg\min_{z \in \mathcal{X}_0} \mathcal{B}_0(z).$$

- 4. Знаходимо \mathcal{J}_* як $\mathcal{J}_* = \mathcal{B}_0(x_*(0))$.
- 5. Для $s=\overline{0..N-1}$ відновлюємо $x_*(s+1)$ за відомим керуванням:

$$x_*(s+1) = f_s(x_*(s), u_*(s)).$$

9.2 Аудиторне заняття

Задача 9.1. Знайти оптимальне керування, оптимальну траєкторію, функцію Белмана і оптимальне значення критерія якості задачі оптимального керування

$$\mathcal{J}(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{2} u^{2}(k) + x^{2}(3) \to \inf$$

за умов

$$x(k+1) = 2x(k) + u(k), \quad x(0) = 1, k = 0, 1, 2.$$

Typ $x, u \in \mathbb{R}^1$.

Розв'язок. Випишемо функції що фігурують в задачі:

$$g_k(x(k), u(k)) = u^2(k), \quad \Phi(x(N)) = x^2(3), \quad f_k(x(k), u(k)) = 2x(k) + u(k).$$

$$\mathcal{B}_3(z) = \Phi(z) = z^2.$$

Послідовно знаходимо u_* :

1. Запишемо визначення $u_*(2)$:

$$u_*(2) = \arg\min_{u(2)} (g_2(z, u(2)) + \mathcal{B}_3(f_2(z, u(2)))) =$$

$$= \arg\min_{u(2)} (u^2(2) + f_2^2(z, u(2))) =$$

$$= \arg\min_{u(2)} (u^2(2) + (2z + u(2))^2).$$

Знайдемо $u_*(2)$ з умови

$$0 = \frac{\partial}{\partial u(2)} \left(u_*^2(2) + (2z + u_*(2))^2 \right) = 2u_*(2) + 2(2z + u_*(2)) = 4u_*(2) + 4z,$$

звідки $u_*(2) = -z$.

Знайдемо

$$\mathcal{B}_2(z) = (g_2(z, u_*(2)) + \mathcal{B}_3(f_2(z, u_*(2)))) =$$

$$= u_*^2(2) + (2z + u_*(2))^2 = z^2 + (2z - z)^2 = 2z^2.$$

2. Запишемо визначення $u_*(1)$:

$$u_*(1) = \arg\min_{u(1)} (g_1(z, u(1)) + \mathcal{B}_2(f_1(z, u(1)))) =$$

$$= \arg\min_{u(1)} (u^2(1) + 2f_1^2(z, u(1))) =$$

$$= \arg\min_{u(1)} (u^2(1) + 2(2z + u(1))^2).$$

Знайдемо $u_*(1)$ з умови

$$0=\frac{\partial}{\partial u(1)}\left(u_*^2(1)+2(2z+u_*(1))^2\right)=2u_*(1)+4(2z+u_*(1))=6u_*(1)+8z,$$
 звідки $u_*(1)=-\frac{4}{3}z.$

Знайдемо

$$\mathcal{B}_1(z) = (g_1(z, u_*(1)) + \mathcal{B}_2(f_1(z, u_*(1)))) =$$

$$= u_*^2(1) + 2(2z + u_*(1))^2 = \frac{16}{9}z^2 + 2\left(2z - \frac{4}{3}z\right)^2 = \frac{8}{3}z^2.$$

3. Запишемо визначення $u_*(0)$:

$$u_*(0) = \arg\min_{u(0)} (g_0(z, u(0)) + \mathcal{B}_1(f_0(z, u(0)))) =$$

$$= \arg\min_{u(0)} (u^2(0) + \frac{8}{3}f_0^2(z, u(0))) =$$

$$= \arg\min_{u(0)} (u^2(0) + \frac{8}{3}(2z + u(0))^2).$$

Знайдемо $u_*(0)$ з умови

$$0 = \frac{\partial}{\partial u(0)} \left(u_*^2(0) + \frac{8}{3} (2z + u_*(0))^2 \right) =$$

$$= 2u_*(0) + \frac{16}{3} (2z + u_*(0)) = \frac{22}{3} u_*(0) + \frac{32}{3} z,$$

звідки $u_*(0) = -\frac{16}{11}z$.

Знайдемо

$$\mathcal{B}_0(z) = (g_0(z, u_*(0)) + \mathcal{B}_1(f_0(z, u_*(0)))) =$$

$$= u_*^2(0) + \frac{8}{3}(2z + u_*(0))^2 = \frac{256}{121}z^2 + \frac{8}{3}\left(2z - \frac{16}{11}z\right)^2 = \frac{32}{11}z^2.$$

Оскільки $\mathcal{X}_0 = \{x_0\}$, то $x_*(0) = x_0$, $\mathcal{J}_* = \frac{32x_0^2}{11}$.

Відновимо тепер траєкторію:

1.
$$x_*(1) = f_0(x_*(0), u_*(0)) = 2x_0 + u_*(0) = 2x_0 - \frac{16}{11}x_0 = \frac{6x_0}{11}.$$

2.

$$x_*(2) = f_1(x_*(1), u_*(1)) = 2\frac{6x_0}{11} + u_*(1) = \frac{12x_0}{11} - \frac{4}{3}\frac{6x_0}{11} = \frac{4x_0}{11}.$$

3. $x_*(3) = f_2(x_*(2), u_*(2)) = 2\frac{4x_0}{11} + u_*(2) = \frac{8x_0}{11} - \frac{4x_0}{11} = \frac{4x_0}{11}.$

Задача 9.2. Знайти оптимальне керування і функцію Белмана задачі оптимального керування

$$\mathcal{J}(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} u^2(k) + x^2(N) \to \inf$$

за умов

$$x(k+1) = x(k) + u(k), x(0) = x_0, k = 0, 1, \dots, N-1.$$

Тут $x, u \in \mathbb{R}^1$. Точка $x_0 \in \mathbb{R}^1$ – відома.

Розв'язок. Будемо шукати функцію Белмана у вигляді

$$\mathcal{B}_s(z) = b(s) \cdot z^2.$$

Зауважимо, що $\mathcal{B}_N(z)=z^2$, тому b(N)=1.

Далі записуємо дискретне рівняння Белмана

$$b(s) \cdot z^2 = \min_{u} (u^2 + b(s+1) \cdot (z+u)^2).$$

Знайдемо u_* з умови

$$0 = \frac{\partial}{\partial u} \left(u^2 + b(s+1) \cdot (z+u)^2 \right) = 2u + 2b(s+1)(z+u),$$

звідки

$$u_*(s) = -\frac{b(s+1) \cdot x(s)}{1 + b(s+1)}.$$

Підставляючи це у дискретне рівняння Белмана отримаємо дискретне рівняння для знаходження b(s):

$$b(s) = \frac{b(s+1)}{b(s+1)+1}.$$

Звідси нескладно отримати $b(N-k)=\frac{1}{k+1},$ зокрема $b(0)=\frac{1}{N+1}.$

Далі нескладно отримати

$$u_*(s) = -\frac{x_0}{N+1},$$

a

$$x_*(s) = \frac{N-s}{N+1} \cdot x_0.$$

Воно й не дивно, бо задача має вигляд

$$u_0^2 + u_1^2 + \ldots + u_{n-1}^2 + (x_0 - u_0 - u_1 - \ldots - u_{n-1})^2 \to \min$$

Тобто мінімізуємо суму квадратів чисел зі сталою (x_0) сумою.

За теоремою Штурма, мінімум суми квадратів досягається коли всі ці квадрати рівні (і дорівнюють $\frac{1}{(N+1)^2}$), це відповідає знайденому нами керуванню.

Задача 9.3. Знайти оптимальне керування і функцію Белмана задачі оптимального керування

$$\mathcal{J}(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} (u(k) - v(k))^2 + x^2(N) \to \inf$$

за умов

$$x(k+1) = x(k) + u(k), x(0) = x_0, k = 0, 1, \dots, N-1.$$

Тут $x,u\in\mathbb{R}^1$. Точка $x_0\in\mathbb{R}^1$ – відома, v(k) – відомі, $k=0,1,\dots,N-1$.

Розв'язок. Будемо шукати функцію Белмана у вигляді

$$\mathcal{B}_s(z) = p(s) \cdot z^2 + q(s) \cdot z + r(s).$$

Зауважимо, що $\mathcal{B}_N(z)=z^2$, тому $p(N)=1,\,q(N)=r(N)=0.$

Далі записуємо дискретне рівняння Белмана

$$p(s) \cdot z^2 + q(s) \cdot z + r(s) = \min_{u} ((u - v)^2 + p(s + 1) \cdot (z + u)^2 + q(s + 1) \cdot (z + u) + r(s + 1)).$$

Знайдемо u_* з умови

$$0 = \frac{\partial}{\partial u} \left((u - v)^2 + p(s+1) \cdot (z+u)^2 + q(s+1) \cdot (z+u) + r(s+1) \right) =$$

= $2(u - v) + 2p(s+1) \cdot (z+u) + q(s+1),$

звідки

$$u_*(s) = \frac{2v(s) - 2p(s+1)x(s) - q(s+1)}{2 + 2p(s+1)}.$$

Підставляючи це у дискретне рівняння Белмана отримаємо дискретне рівняння для знаходження p(s), q(s), r(s):

$$p(s) \cdot z^{2} + q(s) \cdot z + r(s) = \left(\frac{2v(s) - 2p(s+1)z - q(s+1)}{2 + 2p(s+1)} - v(s)\right) + p(s+1) \cdot (z + 2v(s) - 2p(s+1)z - q(s+1))^{2} + q(s+1) \cdot (z + 2v(s) - 2p(s+1)z - q(s+1)) + r(s+1)$$

Збираючи коефіцієнти при відповідних степенях z знаходимо систему для знаходження p(s), q(s), r(s).

Задача 9.4.

Розв'язок.

Задача 9.5.

Розв'язок.

9.3 Домашне завдання

3adaчa 9.6.

Розв'язок.

Задача 9.7.

Розв'язок.

Задача 9.8.

Розв'язок.

Задача 9.9.

Розв'язок.

Задача 9.10.

Розв'язок.