Homework 6

OSCAR RAMIREZ

Question 5 NYU Tandon CS Extended Bridge Summer 2022 NetID: or 2092

Question 5:

Use the definition of θ in order to show the following: a. $5n^3 + 2n^2 + 3n = \theta(n^3)$

Proof:

Let
$$f(n) = 5n^3 + 2n^2 + 3n$$
 and $g(n) = (n^3)$, we will prove that $c_2 * g(n) \le f(n) \le c_1 * g(n)$ for any $n_0 \ge 1$.

For any
$$n \ge 1$$
, we know that $5n^3 \le 5n^3 + 2n^2 + 3n$.
So if we take $c_2 = 5$, and $n_0 = 1$, then $5n^3 \le 5n^3 + 2n^2 + 3n$.
Therefore, $\mathbf{5} * \mathbf{g}(\mathbf{n}) \le \mathbf{f}(\mathbf{n})$ and $\mathbf{f} = \mathbf{\Omega}(\mathbf{g})$

For any $n \ge 1$, we know that n^2 and n^3 are larger than n. So, we know that $5n^3 + 2n^2 + 3n \le 5n^3 + 2n^3 + 3n^3$. So if we take $c_1 = 10$ and $n_0 = 1$, then $5n^3 + 2n^2 + 3n \le 10n^3$. Therefore, $\mathbf{f}(\mathbf{n}) \le \mathbf{10} * \mathbf{g}(\mathbf{n})$ and $\mathbf{f} = \mathbf{O}(\mathbf{g})$

There for if we take
$$c_1 = 10$$
, $c_2 = 5$ and $n_0 = 1$,
then for all $n \ge n_0$, $f = O(g)$ and $f = \Omega(g)$,
Therefore, $\mathbf{f} = \theta(\mathbf{g}) = \theta(\mathbf{n}^3)$

b.
$$\sqrt{7n^2 + 2n - 8} = \theta(n)$$

Proof:

Let
$$f(n) = \sqrt{7n^2 + 2n - 8}$$
 and $g(n) = (n)$, we will prove that $c_2 * g(n) \le f(n) \le c_1 * g(n)$ for any $n_0 \ge ?$.

Using the expression $7n^2 + 2n - 8$, we can see that $7n^2 \le 7n^2 + 2n - 8$, when $2n - 8 \ge 0$. This gives us $n_0 = \sqrt{4} = 2$. So we take $c_2 = \sqrt{7n^2}$ and round $\sqrt{7}$ down to 2 and take $c_2 = 2$. So, for all $n \ge 2$, $2n \le \sqrt{7n^2 + 2n - 8}$. Therefore, $2 * \mathbf{g}(\mathbf{n}) \le \mathbf{f}$ and $\mathbf{f} = \mathbf{\Omega}(\mathbf{g})$

Using the expression $7n^2 + 2n - 8$, we know that $7n^2 + 2n - 8 \le 7n^2 + 2n^2$. So, we know that $7n^2 + 2n - 8 \le 9n^2$. $\sqrt{9n^2}$ gives us 3n. So if we take $c_1 = 3$ and $n_0 = 2$, then $\sqrt{7n^2 + 2n - 8} \le 3n$. Therefore, $\mathbf{f}(\mathbf{n}) \le 3 * \mathbf{g}(\mathbf{n})$ and $\mathbf{f} = \mathbf{O}(\mathbf{g})$

> There for if we take $c_1 = 3$, $c_2 = 2$ and $n_0 = 2$, then for all $n \ge n_0$, f = O(g) and $f = \Omega(g)$, Therefore, $2 * \mathbf{g}(\mathbf{n}) \le \mathbf{f} \le 3 * \mathbf{g}(\mathbf{n})$ and $\mathbf{f} = \theta(\mathbf{g}) = \theta(\mathbf{n})$