

Haute École de Bruxelles École Supérieure d'Informatique Bachelor en Informatique

Rue Royale, 67. 1000 Bruxelles 02/219.15.46 - esi@heb.be

DEV 2 **Algorithmique**

2016

Activité d'apprentissage enseignée par :

L. Beeckmans, M. Codutti, G. Cuvelier, C. Leruste & E. Levy

Document produit avec LATEX. Version du 21 novembre 2015.

Ce document est distribué sous licence Creative Commons Paternité - Partage à l'Identique 2.0 Belgique (http://creativecommons.org/licenses/by-sa/2.0/be/). Les autorisations au-delà du champ de cette licence peuvent être demandées à esi-dev1-list@heb.be.

Table des matières

1	Les	tableaux à 2 dimensions	5					
	1.1	Définition	5					
	1.2	Notations						
	1.3	La troisième dimension (et au-delà)	8					
	1.4	Parcours d'un tableau à deux dimensions	8					
	1.5	Exercices						
2	L'o	rienté objet	15					
	2.1	Motivation	15					
	2.2	Illustration: une durée	15					
	2.3	Utiliser	19					
	2.4		19					
3	La liste							
	3.1	La classe Liste	22					
	3.2	Comment implémenter l'état	23					
	3.3	Implémentation du comportement						
	3.4		27					
	3.5	Exercices	27					
4	Rep	présentation des données	29					
	4.1	Se poser les bonnes questions	29					
	4.2	Les structures de données						
	4.3	Exercices						

Les tableaux à 2 dimensions

1.1 Définition

La dimension d'un tableau est le nombre d'indices qu'on utilise pour faire référence à un de ses éléments. Attention de ne pas confondre avec la taille!

En DEV_1 , nous avons introduit les tableaux à une dimension. Un seul indice suffisait à localiser un de ses éléments. Pour le dire autrement, chaque case possédait **un** numéro. De nombreuses situations nécessitent cependant l'usage de tableaux à deux dimensions. Ils vous sont déjà familiers par leur présence dans beaucoup de situations courantes : calendrier, grille horaire, grille de mots croisés, sudoku, jeux se déroulant sur un quadrillage (damier, échiquier, scrabble...). Dans ces situations, chaque case est désignée par **deux** numéros.

1.2 Notations

1.2.1 Déclarer

Pour **déclarer** un tableau à 2 dimensions, on écrira :

nomTableau : tableau de $nbLignes \times nbColonnes$ TypeElément

où nbLignes et nbColonnes sont des expressions entières quelconques.

Exemple:

tab : tableau de 5×10 entiers

déclare un tableau de 5 lignes par 10 colonnes dont chaque case contient un entier.

1.2.2 Utiliser

Pour **accéder** à une case du tableau on donnera les deux indices entre crochets. Comme en DEV_1 , on va considérer que la première ligne et la première colonne portent le numéro (l'indice) 0.

Exemple:

afficher tab[2,4] // affiche le 5^e élément de la 3^e ligne du tableau nommé tab.

1.2.3 Visualiser

Notez que la vue sous forme de tableau avec des lignes et des colonnes est une vision humaine. Il n'y a pas de lignes ni de colonnes en mémoire. Pour être précis, on devrait juste parler de première dimension et de deuxième dimension mais la notion de ligne et de colonne est un abus de langage qui simplifie le discours.

On pourrait aussi visualiser un tableau à deux dimensions comme un tableau à une dimension dont chacun des éléments est lui-même un tableau à une dimension.

Exemple : Soit le tableau déclaré ainsi :

tabLettres : tableau de 4×5 caractères

On peut le visualiser à l'aide d'une grille à 4 lignes et 5 colonnes.

	0	1	2	3	4
0	d	h	V	q	Z
1	j	g	k	О	u
2 3	i	f	У	r	t
3	n	d	e	a	s

Ainsi, la valeur de tabLettres[2,3] est le caractère 'r'.

La vision « tableau de tableaux » (ou décomposition en niveaux) donnerait :

0	1	2	3
		0 1 2 3 4	
d h v q z	j g k o u	i f y r t	n d e a s

Dans cette représentation, le tableau tabLettres est d'abord décomposé à un premier niveau en quatre éléments auxquels on accède par le premier indice. Ensuite, chaque élément de premier niveau est décomposé en cinq éléments de deuxième niveau accessibles par le deuxième indice.

1.2.4 Exemples

Exemple 1 - **Remplir les coins.** Dans ce petit exemple, on a un tableau de chaines et on donne des valeurs aux coins.

"NO"		"NE"
"SO"		"SE"

```
// Déclare un tableau et donne des valeurs aux coins. 
algorithme remplirCoins()

grille: tableau de 3\times 5 entiers

grille[0,0] \leftarrow "NO"

grille[0,4] \leftarrow "NE"

grille[2,0] \leftarrow "SO"

grille[2,4] \leftarrow "SE"

fin algorithme
```

Exemple 2 – Gestion des stocks. Reprenons l'exemple du stock de 10 produits qui a servi d'introduction au chapitre sur les tableaux mais, cette fois, pour chaque jour de la semaine.

1.2. NOTATIONS 7

	article0	article1	article2		article7	article8	article9
lundi	$\operatorname{cpt}[0,0]$	$\operatorname{cpt}[0,1]$	$\operatorname{cpt}[0,2]$		$\operatorname{cpt}[0,7]$	$\operatorname{cpt}[0,8]$	$\operatorname{cpt}[0,9]$
mardi	cpt[1,0]	$\operatorname{cpt}[1,1]$	$\operatorname{cpt}[1,2]$		$\operatorname{cpt}[1,7]$	$\operatorname{cpt}[1,8]$	cpt[1,9]
mercredi	cpt[2,0]	$\operatorname{cpt}[2,1]$	$\operatorname{cpt}[2,2]$		$\operatorname{cpt}[2,7]$	$\operatorname{cpt}[2,8]$	$\operatorname{cpt}[2,9]$
jeudi	cpt[3,0]	$\operatorname{cpt}[3,1]$	$\operatorname{cpt}[3,2]$	• • •	cpt[3,7]	cpt[3,8]	$\operatorname{cpt}[3,9]$
vendredi	$\operatorname{cpt}[4,0]$	$\operatorname{cpt}[4,1]$	$\operatorname{cpt}[4,2]$		cpt[4,7]	$\operatorname{cpt}[4,8]$	$\operatorname{cpt}[4,9]$
samedi	$\operatorname{cpt}[5,0]$	$\operatorname{cpt}[5,1]$	$\operatorname{cpt}[5,2]$		$\operatorname{cpt}[5,7]$	$\operatorname{cpt}[5,8]$	$\operatorname{cpt}[5,9]$
dimanche	$\operatorname{cpt}[6,0]$	$\operatorname{cpt}[6,1]$	$\operatorname{cpt}[6,2]$		$\operatorname{cpt}[6,7]$	$\operatorname{cpt}[6,8]$	$\operatorname{cpt}[6,9]$

```
// Calcule et affiche la quantité vendue de 10 produits
// pour chaque jour de la semaine (de 0 : lundi à 6 : dimanche).

algorithme statistiquesVentesSemaine()

cpt : tableau de 7×10 entiers

initialiser(cpt)

// Pour chaque jour de la semaine
pour jour de 0 à 6 faire

traiterStock1Jour(cpt, jour)
pour produit de 0 à 9 faire
afficher "quantité vendue de produit ", produit, " ce jour ", jour, " : ", cpt[jour,i]
fin pour
fin pour
fin pour
fin algorithme
```

```
// Initialise le tableau d'entiers à 0

algorithme initialiser(entiers↓↑: tableau de 7×10 entiers)

pour i de 0 à 6 faire

pour j de 0 à 9 faire

entiers[i,j] ← 0

fin pour

fin pour

fin pour

fin algorithme
```

```
// Effectue le traitement du stock pour une journée.

algorithme traiterStock1Jour(cpt↓↑: tableau de 7×10 entiers, jour : entier)

numéroProduit, quantité : entiers

afficher "Introduisez le numéro du produit :"

demander numéroProduit

tant que numéroProduit ≥ 0 faire

afficher "Introduisez la quantité vendue :"

demander quantité

cpt[jour,numéroProduit] ← cpt[jour,numéroProduit] + quantité

afficher "Introduisez le numéro du produit :"

demander numéroProduit

fin tant que

fin algorithme
```

Pour plus d'exemples, allez faire un tour à la section 1.4 page suivante.

1.3 La troisième dimension (et au-delà)

Certaines situations complexes nécessitent l'usage de tableaux à 3 voire plus de dimensions.

Pour déclarer un tableau statique à k dimensions, on écrira :

nomTableau : tableau de taille $\mathsf{Dim1} \times \ldots \times \mathsf{tailleDimK}$ Type $\mathsf{El\'ement}$

1.4 Parcours d'un tableau à deux dimensions

Comme nous l'avons fait pour les tableaux à une dimension, envisageons le parcours des tableaux à deux dimensions (n lignes et m colonnes). Nos algorithmes sont valables quel que soit le type des éléments. Utilisons T pour désigner un type quelconque.

```
tab : tableau de n 	imes m T
```

Commençons par des cas plus simples où on ne parcourt qu'une seule des dimensions puis attaquons le cas général.

1.4.1 Parcours d'une dimension

On peut vouloir ne parcourir qu'une seule ligne du tableau. Si on parcourt la ligne l, on visite les cases $(l,0), (l,1), \ldots, (l,m-1)$. L'indice de ligne est constant et c'est l'indice de colonne qui varie.

Ce qui donne l'algorithme :

```
// Parcours de la ligne ligne d'un tableau à deux dimensions algorithme affichageElémentsLigne(tab : tableau de n × m T, ligne : entier)

pour colonne de 0 à m-1 faire

afficher tab[ligne,colonne] // On peut faire autre chose qu'afficher fin pour fin algorithme
```

Retenons : pour parcourir une ligne, on utilise une boucle sur les colonnes.

Symétriquement, on pourrait considérer le parcours de la colonne c avec l'algorithme suivant.

```
// Parcours de la colonne colonne d'un tableau à deux dimensions

algorithme affichageElémentsColonne(tab : tableau de n × m T, colonne : entier)

pour ligne de 0 à n-1 faire

afficher tab[ligne,colonne] // On peut faire autre chose qu'afficher fin pour

fin algorithme
```

Si le tableau est carré (n = m) on peut aussi envisager le parcours des deux diagonales.

Pour la diagonale descendante, les éléments à visiter sont $(0,0),(1,1),(2,2),\ldots,(n-1,n-1)$.

Une seule boucle suffit comme le montre l'algorithme suivant.

```
// Parcours de la diagonale descendante d'un tableau carré

algorithme affichageElémentsDiagonaleDescendante(tab : tableau de n × n T)

pour i de 0 à n-1 faire

afficher tab[i,i] // On peut faire autre chose qu'afficher fin pour

fin algorithme
```

Pour la diagonale montante, on peut envisager deux solutions, avec deux indices ou un seul en se basant sur le fait que $i + j = n - 1 \Rightarrow j = n - 1 - i$.


```
// Parcours de la diagonale montante d'un tableau carré - 1 indice

algorithme affichageElémentsDiagonaleMontante(tab : tableau de n × n T)

pour i de 0 à n-1 faire

afficher tab[i, n - 1 - i] // On peut faire autre chose qu'afficher fin pour
fin algorithme
```

1.4.2 Parcours des deux dimensions

Parcours par lignes et par colonnes

Les deux parcours les plus courants sont les parcours ligne par ligne et colonne par colonne. Les tableaux suivants montrent dans quel ordre chaque case est visitée dans ces deux parcours.

Parc	$_{ m igne}$			
1	2	3	4	5
6	7	8	9	10
11	12	13	14	15

Pa	arcou	rs col	onne	par o	coloni	n
	1	4	7	10	13	
	2	5	8	11	14	
	3	6	9	12	15	

Le plus simple est d'utiliser deux boucles imbriquées

```
// Parcours d'un tableau à 2 dimensions, ligne par ligne
algorithme affichageElémentsLigneParLigne(tab : tableau de n × m T)

pour lg de 0 à n-1 faire

pour col de 0 à m-1 faire

afficher tab[lg,col] // On peut faire autre chose qu'afficher fin pour
fin pour
fin algorithme
```

```
// Parcours d'un tableau à 2 dimensions, colonne par colonne
algorithme affichageElémentsColonneParColonne(tab : tableau de n × m T)

pour col de 0 à m-1 faire

pour lg de 0 à n-1 faire

afficher tab[lg,col] // On peut faire autre chose qu'afficher fin pour
fin pour
fin pour
fin algorithme
```

Mais on peut obtenir le même résultat avec une seule boucle si l'indice sert juste à compter le nombre de passages et que les indices de lignes et de colonnes sont gérés manuellement.

L'algorithme suivant montre ce que ça donne pour un parcours ligne par ligne. La solution pour un parcours colonne par colonne est similaire et laissée en exercice.

```
// Parcours d'un tableau à 2 dimensions via une seule boucle
algorithme affichageElémentsLigneParLigne(tab : tableau de n \times m T)
    lg, col: entiers
    lg \leftarrow \mathbf{0}
    \mathsf{col} \leftarrow 0
    pour i de 0 à (n*m)-1 faire
                                                                    // On peut faire autre chose qu'afficher
        afficher tab[lg,col]
                                                                                  // Passer à la case suivante
        \mathsf{col} \leftarrow \mathsf{col} + 1
        si col = m alors
                                                   // On déborde sur la droite, passer à la ligne suivante
            col \leftarrow 0
            \lg \leftarrow \lg + 1
        fin si
    fin pour
fin algorithme
```

L'avantage de cette solution apparaitra quand on verra des situations plus difficiles.

Interrompre le parcours

Comme avec les tableaux à une dimension, envisageons l'arrêt prématuré lors de la rencontre d'une certaine condition. Et, comme avec les tableaux à une dimension, transformons d'abord nos **pour** en **tant que**.

Par exemple, montrons les deux parcours ligne par ligne, avec une et deux boucle(s).

```
// Parcours d'un tableau à 2 dimensions via une seule boucle et un tant que
algorithme affichageElémentsLigneParLigne(tab : tableau de n \times m T)
    lg, col, i: entiers
    lg \leftarrow 0
    \mathsf{col} \leftarrow 0
    i \leftarrow 0
    tant que i < n*m faire
                                                                                                           // \ ou \ "lg < n"
         afficher tab[lg,col]
                                                                          // On peut faire autre chose qu'afficher
                                                                                      // Passer à la case suivante
         \mathsf{col} \leftarrow \mathsf{col} + 1
         si col = m alors
                                                        // On déborde sur la droite, passer à la ligne suivante
             \mathsf{col} \leftarrow \mathsf{0}
             \mathsf{lg} \leftarrow \mathsf{lg} + 1
         fin si
         \mathsf{i} \leftarrow \mathsf{i} + 1
    fin tant que
fin algorithme
```

On peut à présent introduire le test comme on l'a fait dans les algorithmes de parcours des tableaux à une dimension.

Illustrons-le au travers de deux exemples où on cherche un élément particulier. Le premier introduit un test en utilisant un booléen alors que le second introduit un test sans utiliser de booléen.

```
// Parcours avec test d'arrêt - deux boucles et un booléen
algorithme chercherEléments(tab : tableau de n \times m T)
   lg, col: entiers
   trouvé : booléen
   trouv\acute{e} \leftarrow faux
   lg \leftarrow 0
   tant que \lg < n ET NON trouvé faire
       col \leftarrow 0
        tant que col < m ET NON trouvé faire
           si tab[lg, col] est l'élément recherché alors
              trouvé ← vrai
                                                       // Ne pas modifier les indices si arrêt demandé
           sinon
               \mathsf{col} \leftarrow \mathsf{col} + 1
           fin si
       fin tant que
       si NON trouvé alors
                                                       // Ne pas modifier les indices si arrêt demandé
           \lg \leftarrow \lg + 1
       fin si
   fin tant que
    // Tester trouvé pour savoir si on a trouvé l'élément recherché
fin algorithme
```

```
// Parcours avec test d'arrêt - une boucle et pas de booléen
algorithme chercherEléments(tab : tableau de n \times m T)
    lg, col, i: entiers
    lg \leftarrow 0
    \mathsf{col} \leftarrow 0
    i \leftarrow \mathbf{0}
    tant que i < n*m ET tab[lg, col] n'est pas l'élément recherché faire
        \mathsf{col} \leftarrow \mathsf{col} + 1
                                                                                    // Passer à la case suivante
        si col = m alors
                                                    // On déborde sur la droite, passer à la ligne suivante
            col \leftarrow 0
            \lg \leftarrow \lg + 1
        fin si
        i \leftarrow i + 1
    fin tant que
    // L'élément recherché a été trouvé si i < n*m.
fin algorithme
```

Parcours plus compliqué - le serpent

Envisageons un parcours plus difficile illustré par le tableau suivant.

1	2	3	4	5
10	9	8	7	6
11	12	13	14	15

Le plus simple est d'adapter l'algorithme de parcours avec une seule boucle en introduisant un sens de déplacement, ce qui donne l'algorithme :

```
// Parcours du serpent dans un tableau à deux dimensions
algorithme affichageElémentsSerpent(tab : tableau de n \times m T)
    lg, col, depl: entiers
    lg \leftarrow 0
    \mathsf{col} \leftarrow 0
                                                                               // 1 pour avancer, -1 pour reculer
    \mathsf{depl} \leftarrow 1
    pour i de 0 à (n*m)-1 faire
                                                                        // On peut faire autre chose qu'afficher
         afficher tab[lg, col]
         si 0 \le col + depl ET col + depl < m alors
             \mathsf{col} \leftarrow \mathsf{col} + \mathsf{depl}
                                                                                    // On se déplace dans la ligne
         sinon
             \text{lg} \leftarrow \text{lg} + 1
                                                                                   // On passe à la ligne suivante
             \mathsf{depl} \leftarrow \mathsf{-depl}
                                                                                            // et on change de sens
         fin si
    fin pour
fin algorithme
```

1.5 Exercices

1 Affichage

Écrire un algorithme qui affiche tous les éléments d'un tableau à n lignes et m colonnes a) ligne par ligne b) colonne par colonne

2 Les nuls

Écrire un algorithme qui reçoit un tableau $(n \times m)$ d'entiers et qui affiche la proportion d'éléments nuls dans ce tableau.

3 Tous positifs

Écrire un algorithme qui reçoit un tableau $(n \times m)$ d'entiers et qui vérifie si tous les nombres qu'il contient sont strictement positifs. Bien sûr, on veillera à éviter tout travail inutile; la rencontre d'un nombre négatif doit arrêter le module.

4 Le tableau de cotes

Soit un tableau à n lignes et m colonnes d'entiers où une ligne représente les notes sur 20 d'un étudiant et les colonnes toutes les notes d'un cours.

Écrire un algorithme recevant ce tableau en paramètre et affichant le pourcentage d'étudiants ayant obtenu une moyenne supérieure à 50%.

1.5. EXERCICES 13

5 Le carré magique

Un carré magique est un tableau d'entiers carré (c'est-à-dire possédant autant de lignes que de colonnes) ayant la propriété suivante : si on additionne les éléments d'une quelconque de ses lignes, de ses colonnes ou de ses deux diagonales, on obtient à chaque fois le même résultat.

Écrire un algorithme recevant en paramètres le tableau $(n \times n)$ d'entiers représentant le carré et renvoyant une valeur booléenne indiquant si c'est un carré magique ou pas.

6 Le triangle de Pascal

Le triangle de Pascal est construit de la façon suivante :

- ▶ la ligne initiale contient un seul élément de valeur 1;
- ▷ chaque ligne possède un élément de plus que la précédente;
- ▷ chaque ligne commence et se termine par 1;
- ▷ pour calculer un nombre d'une autre case du tableau, on additionne le nombre situé dans la case située juste au-dessus avec celui dans la case à la gauche de la précédente.

Écrire un algorithme qui reçoit en paramètre un entier n, et qui renvoie un tableau contenant les n+1 premières lignes du triangle de Pascal (indicées de 0 à n).

 ${\rm N.B.}$: le « triangle » sera bien entendu renvoyé dans un tableau carré. Quid des cases non occupées ?

Par exemple, pour n qui vaut 5, on aura le tableau suivant :

1					
1	1				
1	2	1			
1	3	3	1		
1	4	6	4	1	
1	5	10	10	5	1

7 Lignes et colonnes

Écrire un algorithme qui reçoit un tableau d'entiers à 2 dimensions en paramètre et qui retourne un booléen indiquant si ce tableau possède 2 lignes ou 2 colonnes identiques.

Dans l'affirmative, cet algorithme renverra également en paramètres les informations suivantes :

- ▷ les indices des lignes ou colonnes identiques
- ⊳ un caractère valant 'L' ou 'C' selon qu'il s'agit de lignes ou de colonnes

Dans la négative, les valeurs de ces paramètres seront indéterminées ou quelconques, elles ne seront de toute façon pas utilisées par le module appelant.

8 Le contour du tableau

On donne un tableau d'entiers tab $\operatorname{\mathsf{Ent}}$ à n lignes et m colonnes. Écrire un algorithme retournant la somme de tous les éléments impairs situés sur le bord du tableau.

Exemple: pour le tableau suivant, l'algorithme doit renvoyer 32

3	4	6	11
2	21	7	9
1	5	12	3

Et pour le suivant, l'algorithme doit renvoyer 6

4	1	2	8	5

9 À vos pinceaux!

On possède un tableau à n lignes et n colonnes dont les éléments de type Couleur valent NOIR ou BLANC. On suppose que le tableau est initialisé à BLANC au départ. Écrire un algorithme qui noircit les cases de ce tableau comme le suggèrent les dessins suivants (les exemples sont donnés pour un tableau 10×10 mais les algorithmes doivent fonctionner quelle que soit la taille du tableau).

Notes

- ▷ Le zèbre doit toujours présenter des lignes obliques et parallèles, quelle que soit la taille.
- ▶ La spirale est un véritable défi et vous est donné comme exercice facultatif. Ne le faites pas si vous êtes en retard.

10 Exercices sur la complexité

Quelle est la complexité

- a) d'un algorithme de parcours d'un tableau $n \times n$?
- b) des algorithmes que vous avez écrits pour les exercices : "Les nuls", "Tous positifs", "Le carré magique" et "Le contour d'un tableau"?
- c) des algorithmes que vous avez écrits pour résoudre les exercices du pinceau?

L'orienté objet

Le cours de Java vous a présenté la programmation orienté objet. Dans ce chapitre, nous allons rapidement revoir ce sujet et présenter comment nous allons l'utiliser dans ce cours. Nous nous contenterons de parler d'encapsulation. Les autres piliers de l'orienté objet (héritage et polymorphisme) ne seront pas vus cette année.

2.1 Motivation

Au cours de Java, vous avez vu que l'orienté objet permet de structurer une application en regroupant dans un même *objet* des données et le code qui va manipuler ces données.

Une autre façon de voir l'orienté objet est de constater qu'une classe permet de définir un nouveau type de données. La notion de structure permet déjà cela mais de façon limitée car elle ne reprend que des données et pas du code. Avec l'orienté objet, on dispose de méthodes définissant ce qu'on peut faire avec des données (les objets) de ce type. C'est ainsi que nous l'utiliserons pour définir les listes dans un prochain chapitre.

2.2 Illustration : une durée

Voyons tout cela au travers d'un exemple complet. Il est parfois utile d'avoir à sa disposition un type de données permettant de représenter une durée. Utiliser plusieurs entiers (un pour les heures, un autre pour les minutes, un autre encore pour les secondes) n'est pas pratique. Utiliser une structure est déjà mieux mais offre moins d'avantage que l'orienté objet. Voyons comment définir ce nouveau type de données en orienté objet.

2.2.1 Ce que l'on veut vraiment

Avant tout, il faut bien préciser ce que l'on veut décrire et bien faire la distinction entre un *moment* et une *durée*. L'« heure » est un concept multifacettes. Parle-t-on de l'heure comme moment dans la journée ou de l'heure comme représentant une durée? Dans le premier cas, elle ne peut dépasser 24h et la différence entre 2 heures n'a pas de sens (ou plus précisément n'est pas une heure, mais une durée!). Ce que nous nous proposons de créer ici est une durée, correspondand au deuxième cas. Et pour être plus précis encore, nous allons nous limiter à une précision à la seconde près, pas plus ¹.

^{1.} Ajouter plus de précision ne serait pas plus compliqué à faire.

2.2.2 Le comportement (les méthodes)

La première question à se poser est celle des services qu'on veut fournir, c'est-à-dire des méthodes publiques de la classe. On doit pouvoir *construire* une durée. On doit pouvoir connaître le nombre de jours, d'heures, minutes ou secondes correspondant à une durée. On doit pouvoir effectuer des calculs avec des durées (addition, soustraction). Enfin, on doit pouvoir comparer des durées. Arrêtons-nous là, mais en pratique, on pourrait trouver encore bon nombre d'autres méthodes qu'il serait intéressant de fournir.

Voici comment nous allons noter tout cela au cours d'algorithmique.

```
classe Durée
public:
   constructeur Durée(secondes : entier)
   constructeur Durée(heure, minute, seconde : entiers)
   \textbf{m\'ethode} \ \textit{getJour()} \rightarrow \mathsf{entier}
                                                                       // nb de jours dans une durée
   méthode getHeure() \rightarrow entier
                                                                        // entier entre 0 et 23 inclus
   méthode getMinute() → entier
                                                                        // entier entre 0 et 59 inclus
   méthode getSeconde() → entier
                                                                        // entier entre 0 et 59 inclus
   méthode getTotalJours() \rightarrow entier
                                                                         // Le nombre total de jours
   méthode getTotalHeures() → entier
                                                                         // Le nombre total d'heures
   méthode getTotalMinutes() → entier
                                                                      // Le nombre total de minutes
   m\'ethode \ getTotalSecondes() 
ightarrow entier
                                                                     // Le nombre total de secondes
   méthode ajouter (autreDurée : Durée)
   méthode différence(autreDurée : Durée) → Durée
    méthode plusPetit(autreDurée : Durée) \rightarrow booléen
fin classe
```

0

Quelques remarques

- ▷ On a deux constructeurs, ce qui offre plus de souplesse pour initialiser un objet. Ceci est un exemple supplémentaire du concept de « surcharge ».
- ▶ Faisons bien la distinction entre les méthodes getXXX() et getTotalXXX(). Par exemple, la méthode getMinute() retourne la valeur de la composante « minutes » dans une représentation HMS tandis que la méthode getTotalMinutes() retourne le nombre total de minutes entières pour cette durée. Ex : pour 1h23'12", getMinute() retourne 23 et getTotalMinutes() retourne 83. Idem avec les jours, les heures et les secondes.
- ▶ Les méthodes getTotalXXX() retournent le nombre (toujours entier) de XXX contenus dans la durée. Exemple, avec la durée 0h23'52", getTotalMinutes() retourne 23 et pas 24 (autrement dit, il n'y a pas d'arrondi vers le haut).
- ▶ Il n'y a pas de *mutateur* (setXXX()). Ce qui signifie qu'on ne peut pas changer directement la valeur de l'objet après son initialisation. On aurait pu en définir mais nous n'avons pas jugé utile de le faire dans ce cas précis.
- ▶ La méthode ajouter() ne retourne rien. En effet, elle ajoute la durée à l'objet sur lequel est appelée la méthode. C'est un choix; on aurait aussi pu dire que la méthode ne modifie pas l'objet mais en retourne un autre qui représente la somme. Dans ce cas, on l'aurait plutôt appelée « plus() ».
- ▶ La méthode différence(), elle, renvoie toujours une durée (positive).
- Nous ne définissons pas de méthode d'affichage similaire au toString() qu'on retrouve en Java. L'affichage correct de l'information ne fait pas partie des préoccupations de ce cours. On supposera que "afficher objet" affiche correctement les données associées à l'objet.

2.2.3 La représentation de l'état (les attributs)

La question suivante est : « Comment représenter une durée en interne ? ». Plusieurs possibilités existent. Par exemple :

- ▷ via le nombre d'heures, de minutes et de secondes
- via le nombre total de secondes
- ▷ via une chaine, par exemple au format « HH :MM :SS » où HH pourrait éventuellement excéder 23.

Le premier choix semble le plus évident mais réfléchissons-y de plus près. D'une part, pourquoi se limiter aux heures. On pourrait introduire un champ 'jour' (après tout on a bien une méthode getJour()).

Quel critère doit vraiment nous permettre de décider? Il faut une représentation qui soit suffisante (tout est représenté) et qui permette d'écrire des méthodes lisibles et si possible efficaces (c'est-à-dire où le calcul est rapide). Selon ces critères, la deuxième représentation est de loin la meilleure.

Voilà comment nous indiquons les attributs d'une classe.

```
classe Durée
privé:
totalSecondes : entier
public:
// idem
fin classe
```

2.2.4 L'implémentation

On est à présent prêt pour écrire le code des méthodes. Pour une meilleure lisibilité, nous gardons les signatures des méthodes dans la classe et nous détaillons leur contenu en dehors. Ce qui donne :

```
classe Durée
privé:
   totalSecondes: entier
   constructeur Durée(secondes : entier)
   constructeur Durée(heure, minute, seconde : entiers)
   méthode getJour() \rightarrow entier
                                                                    // nb de jours dans une durée
   méthode getHeure() → entier
                                                                     // entier entre 0 et 23 inclus
   méthode getMinute() → entier
                                                                     // entier entre 0 et 59 inclus
   méthode getSeconde() \rightarrow entier
                                                                     // entier entre 0 et 59 inclus
   méthode getTotalHeures() \rightarrow entier
                                                                      // Le nombre total d'heures
   méthode getTotalMinutes() \rightarrow entier
                                                                    // Le nombre total de minutes
   méthode getTotalSecondes() \rightarrow entier
                                                                   // Le nombre total de secondes
   méthode ajouter (autreDurée : Durée)
   méthode différence(autreDurée : Durée) → Durée
   méthode plusPetit(autreDurée : Durée) → booléen
fin classe
```

```
constructeur Durée(secondes : entier)
   si secondes < 0 alors
      erreur "paramètre négatif"
   fin si
   total Secondes \leftarrow secondes
fin constructeur
constructeur Durée(heure, minute, seconde : entiers)
   si heure < 0 OU minute < 0 OU seconde < 0 alors
       erreur "un des paramètres est négatif"
   fin si
   totalSecondes \leftarrow 3600*heure + 60*minute + seconde
fin constructeur
// Retourne le nombre de jours dans une représentation JJ/HH :MM :SS
méthode getJour() \rightarrow entier
   retourner totalSecondes DIV (3600*24)
fin méthode
// Retourne le nombre d'heures dans une représentation JJ/HH :MM :SS
méthode getHeure() \rightarrow entier
   // On doit enlever les jours éventuels
   retourner (totalSecondes DIV 3600) MOD 24
fin méthode
// Retourne le nombre de minutes dans une représentation JJ/HH :MM :SS
méthode getMinute() \rightarrow entier
   // On doit enlever les heures éventuelles
   retourner (totalSecondes DIV 60) MOD 60
fin méthode
// Retourne le nombre de secondes dans une représentation JJ/HH :MM :SS
méthode getSeconde() \rightarrow entier
   // On doit enlever les minutes éventuelles
   retourner totalSecondes MOD 60
fin méthode
// Retourne le nombre entier d'heures complètes
méthode getTotalHeures() → entier
   retourner totalSecondes DIV 3600
fin méthode
// Retourne le nombre entier de minutes complètes
\textbf{m\'ethode} \ \textit{getTotalMinutes}() \rightarrow \text{entier}
   retourner totalSecondes DIV 60
fin méthode
// Retourne le nombre entier de secondes complètes
méthode getTotalSecondes() → entier
   retourner totalSecondes
fin méthode
méthode ajouter (autreDurée : Durée)
   total Secondes \leftarrow total Secondes + autre Dur\'ee.total Secondes
fin méthode
méthode différence(autreDurée : Durée) \rightarrow Durée
   retourner nouvelle Durée(valeurAbsolue(totalSecondes - autreDurée.totalSecondes))
fin méthode
méthode plusPetit(autreDurée : Durée) \rightarrow booléen
   retourner totalSecondes < autreDurée.totalSecondes
fin méthode
```

2.3. UTILISER 19

2.3 Utiliser

Pour utiliser le nouveau type de donnée créé, il faut l'instancier, c'est-à-dire créer un nouvel objet de ce type. Nous allons reprendre une notation très proche de Java.

Illustrons cela au travers d'un petit algorithme qui calcule la différence entre deux durées.

```
      algorithme diffDurée()
      durée1, durée2 : Durée
      // Les variables sont déclarées/créées

      durée1 ← nouveau Durée(3, 4, 49)
      // Les objets sont créés

      durée2 ← nouveau Durée(3, 24, 37)
      // Les objets sont créés

      afficher durée2.différence(durée1)

      fin algorithme
```

2.4 Quelques éléments de syntaxe

Clarifions certaines notations liées aux objets.

▷ On peut directement afficher un objet. Cela affiche son état, c'est-à-dire les valeurs de ses attributs.

```
rendezVous : Durée
rendezVous ← nouveau Durée(14, 23, 56)
afficher rendezVous // affichera 14, 23 et 56 dans un format lisible quelconque
```

▷ De même, on peut directement lire un objet, ce qui a pour effet de créer un objet avec un état correspondant aux valeurs lues pour ses attributs.

```
rendezVous : Durée
demander rendezVous
```

- ▶ Le signe « = » peut être utilisé pour comparer deux objets. Ils seront considérés comme égaux s'ils sont dans le même état, c'est-à-dire que leurs attributs ont la même valeur.
- ▷ Lorsqu'on déclare un objet, il n'est pas encore créé. On peut utiliser la valeur spéciale « rien » pour indiquer ou tester qu'un objet n'est pas encore créé.

```
\begin{array}{lll} \mathsf{parcours} : \mathsf{Dur\acute{e}e} & // \mathsf{parcours} = \mathsf{rien} \\ \mathsf{parcours} \leftarrow \mathsf{nouveau} \; \mathsf{Dur\acute{e}e}(\; 14, \, 23, \, 56 \,) & // \; \mathsf{parcours} \neq \mathsf{rien} \\ \mathsf{si} \; \mathsf{parcours} \neq \mathsf{rien} \; \mathsf{alors} \\ | \; \mathsf{parcours} \leftarrow \mathsf{rien} & // \; \mathsf{parcours} = \mathsf{rien} \\ \mathsf{fin} \; \mathsf{si} & // \; \mathsf{parcours} = \mathsf{rien} \end{array}
```


La liste

Imaginons qu'on désire manipuler par programme une liste de contacts ou encore une liste de rendez-vous. Cette liste va varier; sa taille n'est donc pas fixée. Utiliser un tableau à cet effet n'est pas l'idéal. En effet, la taille d'un tableau ne peut plus changer une fois le tableau créé. Il faudrait le surdimensionner, ce qui n'est pas économe.

Il serait intéressant de disposer d'une structure qui offre toutes les facilités d'un tableau tout en pouvant « grandir » si nécessaire. Construisons une telle structure de données et appelons-la « Liste » pour rester en phase avec son appellation commune en Java.

Par exemple, considérons une liste de courses. On pourrait la représenter ainsi :

- 1. "fromage"
- 2. "pain"
- 3. "salami"

On pourrait ajouter un élément en fin de liste, par exemple de l'eau, pour obtenir la liste :

- 1. "fromage"
- 2. "pain"
- 3. "salami"
- 4. "eau"

On pourrait aussi supprimer un élément de la liste, par exemple le pain, et obtenir :

- 1. "fromage"
- 2. "salami"
- 3. "eau"

On pourrait aussi insérer un élément dans la liste, par exemple une baguette, ce qui décale, de facto, la position des suivants.

- 1. "fromage"
- 2. "salami"
- 3. "baguette"
- 4. "eau"

Et encore plein de choses que nous allons détailler.

3.1 La classe Liste

Nous verrons plus loin comment réaliser une classe Liste en pratique mais nous pouvons déjà définir le comportement qu'on en attend (les méthodes qu'elle doit fournir).

Ce comportement sera identique quel que soit le type des éléments de la liste; une liste de chaines et une liste d'entiers ne se distinguent que par le type de certains paramètres et valeurs de retour. Ici, nous indiquons T pour indiquer un type quelconque; vous pouvez le remplacer par ce qui vous convient : entier, chaine, Date....

```
classe Liste de T
                                                                       // T est un type quelconque
privé:
    // sera complété plus tard
 public:
                                                                          // construit une liste vide
   constructeur Liste de T()
   méthode get(pos : entier) \rightarrow T
                                                               // donne un élément en position pos
                                                             // modifie un élément en position pos
   méthode set(pos : entier, valeur : T)
   méthode taille() \rightarrow entier
                                                              // donne le nombre actuel d'éléments
   méthode ajouter(valeur : T)
                                                                // ajoute un élément en fin de liste
   méthode insérer(pos : entier, valeur : T)
                                                               // insère un élément en position pos
                                                                     // supprime le dernier élément
   méthode supprimer()
   méthode supprimerPos(pos : entier)
                                                              // supprime l'élément en position pos
   méthode supprimer(valeur : T) \rightarrow booléen
                                                            // supprime l'élément de valeur donnée
                                                                                      // vide la liste
   méthode vider()
   méthode estVide() → booléen
                                                                             // la liste est-elle vide?
   méthode existe(valeur \downarrow : T, pos \uparrow : entier) \rightarrow booléen
                                                                            // recherche un élément
fin classe
```

Quelques précisions s'imposent :

- ▶ Les méthodes « get » et « set » permettent de connaitre ou modifier un élément de la liste. On considère, au cours d'algorithmique, que le premier élément de la liste est en position 0.
- > « ajouter » ajoute un élément en fin de liste (elle grandit donc d'une unité)
- ▷ « insérer » insère un élément à une position donnée (entre 0 et taille-1). L'élément qui s'y trouvait est décalé d'une position ainsi que tous les éléments suivants.
- ▶ La méthode « supprimerPos » supprime un élément d'une position donnée en décalant les éléments suivants. On pourrait imaginer une technique plus rapide consistant à placer le dernier élément à la place de l'élément supprimé mais ce faisant on changerait l'ordre relatif des éléments ce qui va à l'encontre de l'idée intuitive qu'on se fait d'une liste. Cette amélioration pourrait plutôt s'envisager dans une structure de type ensemble pour lequel il n'y a pas d'ordre relatif entre les éléments.
- ▶ La version de « supprimer » avec une valeur en paramètre enlève un élément de valeur donnée. Elle retourne un booléen indiquant si la suppression a pu se faire ou pas (ce qui sera le cas si la valeur n'est pas présente dans la liste). Si la valeur existe en plusieurs exemplaires, on prendra la convention arbitraire que la méthode n'en supprime que la première occurrence.
- ▶ La méthode « existe » permet de savoir si un élément donné existe dans la liste.
 - ⊳ si c'est le cas, elle précise aussi sa position dans le paramètre sortant pos
 - ⊳ si l'élément n'existe pas, ce paramètre est indéterminé
 - ▷ si l'élément est présent en plusieurs exemplaires, la méthode donne la position de la première occurrence.
- ▷ En pratique, il serait intéressant de chercher un élément à partir d'une partie de l'information qu'elle contient mais c'est difficile à exprimer de façon générique c'est-à-dire lorsque le type n'est pas connu à priori.

Exemple: manipulations de base

Soit l'algorithme suivant :

```
algorithme ex1()

| : Liste d'entiers
| ← nouvelle Liste d'entiers()
| l.ajouter(42)
| l.ajouter(54)
| l.set(1,44)
| l.insérer(1,43)
| l.supprimerPos(2)
| l.supprimer(42)
| l.vider
| fin algorithme
```

Après sa création, la liste est vide. Ensuite, elle passe par les états suivants :

```
0. 42 0. 42 0. 42 0. 42 0. 42 0. 43
1. 54 1. 44 1. 43 1. 43
2. 44
```

Enfin, le dernier appel la vide complètement

Exemple: recherche du minimum

Dans le chapitre sur les tableaux, vous avez fait un exercice consistant à afficher tous les indices où se trouve le minimum d'un tableau. Reprenons-le et modifions-le afin qu'il retourne la liste des indices où se trouvent les différentes occurrences du minimum. On pourrait l'écrire ainsi :

```
\textbf{algorithme} \ \textit{indicesMinimum} (\texttt{tab}: \texttt{tableau} \ \texttt{de} \ \texttt{n} \ \texttt{entiers}) \rightarrow \texttt{Liste} \ \texttt{d'entiers}
    min: entier
    indicesMin: Liste d'entiers
    min \leftarrow tab[0]
    indicesMin ← nouvelle Liste d'entiers()
    indicesMin.ajouter(0)
    pour i de 1 à n-1 faire
        si tab[i] = min alors
             indicesMin.ajouter( i )
        sinon si tab[i] < min alors
             indicesMin.vider()
             indicesMin.ajouter( i )
             min \leftarrow tab[i]
         fin si // rien à faire si tab[i] > min
    fin pour
    retourner indicesMin
fin algorithme
```

3.2 Comment implémenter l'état

Cette liste est bien utile mais comment la réaliser en pratique? Comment représenter une liste variable d'éléments? Pour l'instant, la seule structure qui peut accueillir plusieurs éléments de même type est le tableau. Nous allons donc prendre comme attribut principal de la liste un tableau que nous appellerons éléments. Comment, dès lors, contourner le problème de la limitation de la taille de ce tableau?

Repartons donc de la notion de tableau et tentons de comprendre sa limitation. Lors de sa création, un tableau se voit attribuer un espace bien précis et contigu en mémoire. Il se peut

très bien que l'espace « juste après » soit occupé par une autre variable ce qui l'empêche de grandir. La parade est claire : si un tableau s'avère trop petit lors de son utilisation, il suffit d'en créer un autre plus grand ailleurs en mémoire et d'y recopier tous les éléments du premier. Évidemment, cette opération est couteuse en temps et on cherchera à l'effectuer le moins souvent possible.

Quelle taille donner au nouveau tableau? L'idée qui vient immédiatement est d'augmenter la taille d'une unité afin d'accueillir le nouvel élément mais cette approche implique de fréquents agrandissements. Il est plus efficace d'augmenter la taille proportionnellement, par exemple en la multipliant par un facteur 2.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 5	7]
---	-----	---	--	--	--	---

Taille logique et taille physique. À tout moment, le tableau aura une et une seule taille même si celle-ci pourra changer au cours du temps. Puisqu'on multipliera la taille du tableau par 2 pour des raisons d'efficacité, il y aura toutefois une différence entre la taille physique d'un tableau et sa taille logique. La taille physique est le nombre de cases réservées pour le tableau alors que la taille logique est le nombre de cases effectivement occupées. Dans ce qui suit, on s'arrangera pour que les cases occupées soient groupées à gauche du tableau (il n'y a pas de trou). Pour l'utilisateur, seule la taille logique a un sens (on lui cache les détails d'implémentation).

Exemple: pour le tableau suivant, la taille logique est de 6 (c'est cette taille qui a du sens pour l'utilisateur de la liste) et la taille physique est de 8.

	2	5	4	8	3	12		
--	---	---	---	---	---	----	--	--

Quand il faut insérer un élément (en position valide) ou en ajouter un en fin de liste, deux cas se présentent :

- ▷ si la taille logique est plus petite que la taille physique, il suffit d'ajouter l'élément dans le tableau et d'adapter la taille logique.
- \triangleright si la taille logique est égale à la taille physique, il faut procéder à un agrandissement du tableau.

Les tableaux dynamiques. En DEV_1 , nous n'avons vu que des tableaux qu'on appellera statiques, qui sont créés lors de leur déclaration. Ici, nous avons besoin de tableaux qu'on appellera dynamiques, créés dans le code (comme le sont les tableaux en Java).

Introduisons une notation. Un tableau dynamique sera déclaré puis créé ainsi :

Implémentation. Présentons les attributs nécessaires et l'algorithme d'agrandissement du tableau.

```
classe Liste de T
privé:
   éléments : tableau de T
   tailleLogique: entier
   taillePhysique: entier
privé:
   méthode agrandir()
       nouveauTab : tableau de T
        taillePhysique \leftarrow taillePhysique * 2
        nouveauTab \leftarrow nouveau tableau de taillePhysique T
        pour i de 0 à tailleLogique-1 faire
           nouveauTab[i] \leftarrow \'el\'ements[i]
        fin pour
        \acute{e} l \acute{e} ments \leftarrow nouveau Tab
   fin méthode
fin classe
```

Réduction du tableau. Tout comme on agrandit le tableau si nécessaire, on pourrait le réduire lorsque des suppressions d'éléments le rendent sous-utilisé (par exemple lorsque la taille logique devient inférieure au tiers de la taille physique). Nous n'aborderons pas cette problématique cette année.

3.3 Implémentation du comportement

fin si

fin méthode

éléments[tailleLogique] \leftarrow valeur tailleLogique \leftarrow tailleLogique + 1

Nous avons à présent toutes les cartes en main pour écrire les méthodes publiques de la classe.

```
constructeur Liste de T()
                                                                         // la liste est vide au départ
   tailleLogique \leftarrow 0
   taillePhysique \leftarrow 32
                                                               // une bonne valeur pour commencer
   éléments \leftarrow nouveau tableau de taillePhysique T
fin constructeur
méthode get(pos : entier) \rightarrow T
   si pos < 0 OU pos \ge tailleLogique alors
       erreur "position invalide"
   fin si
   retourner éléments[ pos ]
fin méthode
méthode set(pos: entier, valeur: T)
   si pos < 0 OU pos \ge tailleLogique alors
       erreur "position invalide"
   fin si
   éléments[ pos ] \leftarrow valeur
fin méthode
méthode taille() \rightarrow entier
                                                                          // et pas la taille physique!
   retourner tailleLogique
fin méthode
méthode ajouter(valeur : T)
   si tailleLogique = taillePhysique alors
       agrandir()
                                                                    // méthode privée détaillée supra
```

```
méthode supprimer()

// supprime le dernier élément

si tailleLogique = 0 alors

erreur "liste vide"

fin si

tailleLogique ← tailleLogique - 1

fin méthode
```

```
\begin{tabular}{lll} \textbf{m\'ethode} & supprimerPos(pos:entier) \\ & \textbf{si} & pos < 0 \ OU \ pos \ge tailleLogique \ \textbf{alors} \\ & \textbf{erreur} \ "position invalide" \\ & \textbf{fin si} \\ & d\'ecalerGauche(\ pos+1\ ) \\ & tailleLogique \leftarrow \ tailleLogique - 1 \\ & \textbf{fin m\'ethode} \\ \end{tabular}
```

```
méthode supprimer(valeur : T) → booléen

estPrésent : booléen

pos : entier

estPrésent ← existe(valeur, pos)

si estPrésent alors

| supprimer( pos )

fin si

retourner estPrésent

fin méthode
```

```
\begin{array}{c|c} \textbf{m\'ethode} & \textit{vider}() \\ & \text{tailleLogique} \leftarrow 0 \\ & \textit{fin m\'ethode} \end{array} \qquad // \text{ Les \'el\'ements ne sont pas effac\'es mais sont ignor\'es}
```

La recherche se fait sur un élément complet.

Prenons comme exemple une liste de contacts. Lors d'une recherche, on doit fournir **tout** le contact à rechercher. Il s'agit juste de savoir s'il est présent et où. Une autre méthode intéressante serait de retrouver un contact à partir d'une partie de l'information, par exemple son nom. Cette méthode est fort proche de notre méthode de recherche mais il serait très difficile de l'écrire génériquement. On vous demandera d'écrire explicitement une telle méthode de recherche en cas de besoin.

3.4 Et sans tableau dynamique?

Certains langages (c'est le cas de Cobol) ne permettent pas de créer dynamiquement un nouveau tableau. Il vous faudra travailler avec un tableau classique en le créant suffisamment grand.

Les algorithmes d'ajout/suppression/recherche vus pour la liste peuvent être appliqués tels quels à un tableau statique à une modification près : lors d'un ajout dans un tableau plein, on ne peut pas l'agrandir ; il faut générer une erreur.

3.5 Exercices

1 Manipulation d'une liste

Écrire un algorithme qui crée la liste suivante :

- 0.494
- 1. 209
- 2. 425

affiche sa taille, demande si la valeur 425 est présente, supprime la valeur 209 puis insére la valeur 101 en tête de liste.

2 Liste des premiers entiers

Écrire un algorithme qui reçoit un entier n en paramètre et retourne la liste contenant les entiers de 1 à n dans l'ordre décroissant. On peut supposer que n est positif.

A

3 Somme d'une liste

Écrire un algorithme qui calcule la somme des éléments d'une liste d'entiers.

4 Les extrêmes

Écrire un algorithme qui supprime le minimum et le maximum des éléments d'une liste d'entiers. On peut supposer que le maximum et le minimum sont uniques.

5 Anniversaires

Écrire un algorithme qui reçoit une liste de structure Personne (nom + prénom + date de naissance) et retourne la liste de ceux qui sont nés durant un mois passé en paramètre (donné sous la forme d'un entier entre 1 et 12).

6 Concaténation de deux listes

Écrire un algorithme qui reçoit 2 listes et ajoute à la suite de la première les éléments de la seconde ; la seconde liste n'est pas modifiée par cette opération.

7 Fusion de deux listes

Soit deux listes **ordonnées** d'entiers (redondances possibles). Écrire un algorithme qui les fusionne. Le résultat est une liste encore ordonnée contenant tous les entiers des deux listes de départ (qu'on laisse inchangées).

Exemple: Si les 2 listes sont (1, 3, 7, 7) et (3, 9), le résultat est (1, 3, 3, 7, 7, 9).

8 Le nettoyage

Écrire un algorithme qui reçoit une liste de chaines en paramètre et supprime de cette liste tous les éléments de valeur donnée en paramètre. L'algorithme retournera le nombre de suppressions effectuées.

9 Éliminer les doublons d'une liste

Soit une liste **ordonnée** d'entiers avec de possibles redondances. Écrire un algorithme qui enlève les redondances de la liste.

Exemple: Si la liste est (1, 3, 3, 7, 8, 8, 8), le résultat est (1, 3, 7, 8).

- a) Faites l'exercice en créant une nouvelle liste (la liste de départ reste inchangée)
- b) Refaites l'exercice en modifiant la liste de départ (pas de nouvelle liste)

10 Rendez-vous

Soit la structure « RendezVous » composée d'une date et d'un motif de rencontre. Écrire un algorithme qui reçoit une liste de rendez-vous et la met à jour en supprimant tous ceux qui sont désormais passés.

Représentation des données

Nous voici arrivés au terme de ce cours d'algorithmique. Ce chapitre apporte une synthèse des différentes notions vues tout au long de vos cours d'algorithmiques de 1^{re} année et propose quelques pistes de réflexion quant au choix d'une bonne représentation des données qui se pose lors de la résolution de problèmes de programmation avancés.

Pour la plupart de ces exercices, la difficulté tient en partie dans le bon choix d'une représentation des données et de la démarche algorithmique la plus adéquate à mettre en œuvre pour agir sur ces données en vue d'obtenir le résultat escompté. Noter que l'efficacité d'un algorithme est lié étroitement au choix de la représentation.

4.1 Se poser les bonnes questions

Revenons à la case départ : nous avons commencé ce cours en situant les notions de **problème** et de **résolution**. Nous avons vu qu'un problème bien spécifié s'inscrit dans le schéma :

étant donné [la situation de départ] **on demande** [l'objectif]

Une fois le problème correctement posé, on peut partir à la recherche d'une **méthode de résolution**, c'est-à-dire d'un algorithme en ce qui concerne les problèmes à résoudre par les moyens informatiques.

Tout au long de l'année, nous avons vu divers modèles et techniques algorithmiques adaptés à des structures particulières (les nombres, les chaines, les tableaux, les variables structurées, les objets, les listes...). La plupart des exercices portaient directement sur ces structures (par ex. calculer la somme des nombres d'un tableau, extraire une sous-liste à partir d'une liste donnée). Ces exercices d'entrainement et de formation quelque peu théoriques constituent en fait des démarches algorithmiques de base qui trouvent toutes une place dans des problèmes plus complexes.

Mais la plupart des problèmes issus des situations de la vie courante auxquels se confronte le programmeur s'expriment généralement de manière plus floue : par ex. dresser la comptabilité des dépenses mensuelles d'une firme, faire un tableau récapitulatif du résultat des élections par cantons électoraux, faire une version informatique d'un jeu télévisé... Les exemples sont infinis!

C'est dans le cadre de ce genre de problème plus complexe que se pose le problème de la **représentation de données**. Une fois le problème bien spécifié (par les données et l'objectif) apparaissent naturellement les questions suivantes : quelles données du problème

sont réellement utiles à sa résolution? (Il est fréquent que l'énoncé d'un problème contienne des données superflues ou inutiles). Y a-t-il des données plus importantes que d'autres? (données principales ou secondaires). Les données doivent-elles être consultées plusieurs fois? Quelles données faut-il conserver en mémoire? Sous quelle forme? Faut-il utiliser un tableau? Une liste? Faut-il créer une nouvelle classe? Les données doivent-elles être classées suivant un critère précis? Ou la présentation brute des données suffit-elle pour solutionner le problème posé?

Les réponses ne sont pas directes, et les différents outils qui sont à notre disposition peuvent être ou ne pas être utilisés. Il n'y a pas de règles précises pour répondre à ces questions, c'est le flair et le savoir-faire développés patiemment par le programmeur au fil de ses expériences et de son apprentissage qui le guideront vers la solution la plus efficace. Parfois plusieurs solutions peuvent fonctionner sans pouvoir départager la meilleure d'entre elles.

Ce type de questionnement est peut-être l'aspect le plus délicat et le plus difficile de l'activité de programmation, car d'une réponse appropriée dépendra toute l'efficacité du code développé. Un mauvais choix de représentation des données peut mener à un code lourd et maladroit. En vous accompagnant dans la résolution des exercices qui suivent, nous vous donnerons quelques indices et pistes de réflexion, qui seront consolidées par l'expérience acquise lors des laboratoires de langages informatiques ainsi que par les techniques de modélisation vues au cours d'analyse.

4.2 Les structures de données

Rappelons brièvement les différentes structures étudiées dans ce cours :

- ▷ les données « simples » (variables isolées : entiers, réels, chaines, caractères, booléens)
- ▷ les variables structurées, qui regroupent en une seule entité une collection de variables simples
- ▷ le tableau, qui contient un nombre déterminé de variables de même type, accessibles via un indice ou plusieurs pour les tableaux multidimensionnels
- ⊳ les **objets**, qui combinent en un tout une série d'attributs et des méthodes agissant sur ces attributs
- ⊳ la **Liste**, qui peut contenir un nombre indéfini d'éléments de même type

D'autres structures particulières s'ajouteront dans le cours de 2^e année : les listes chainées, les piles, les files, les arbres et les graphes.

Chacune de ces structures possède ses spécificités propres quant à la façon d'accéder aux valeurs, de les parcourir, de les modifier, d'ajouter ou de supprimer des éléments à la collection.

4.3. EXERCICES 31

4.3 Exercices

1 Le lièvre et la tortue

 $lu~sur~le~net: \verb|http://mathemathieu.free.fr/2b/doc/pb_algo/problemes_et_algorithmique.pdf| | lu~sur~le~net: | lu~sur~le~ne$

« Le lièvre est plus rapide que la tortue. Pour donner plus de chance à la tortue de gagner une course de $5~\rm km$, on adopte la règle de jeu suivante :

On lance un dé.

Si le 6 sort, le lièvre est autorisé à démarrer et gagne la course en quelques secondes; sinon on laisse la tortue avancer d'un kilomètre.

On recommence le procédé jusqu'à la victoire du lièvre ou de la tortue. »

Écrire un algorithme simulant cette course.

2 Un jeu de poursuite

Deux joueurs A et B se poursuivent sur un circuit de 50 cases. Chaque case contient une valeur vrai ou faux indiquant si le joueur pourra rejouer. Au départ, A se trouve sur la case 1 et B est placé sur la case 26. C'est A qui commence. Chaque joueur joue à son tour en lançant un dé dont la valeur donne le nombre de cases duquel il doit avancer sur le jeu. Si la case sur laquelle tombe le joueur contient la valeur vrai il avance encore une fois du même nombre de cases (et de même s'il tombe encore sur vrai). Lorsqu'un joueur arrive sur la case 50 et qu'il doit encore avancer, il continue son parcours à partir de la case 1. Le jeu se termine lorsqu'un joueur rattrape ou dépasse l'autre.

Écrire un algorithme de simulation de ce jeu qui se terminera par l'affichage du vainqueur ainsi que le nombre de tours complets parcourus par ce vainqueur. Le lancement du dé sera simulé par l'appel de l'algorithme sans argument lancerDé() qui retourne une valeur aléatoire entre 1 et 6.

Aide : Définir la classe JeuPoursuite

Elle permet de représenter

- \triangleright le circuit des 50 cases
- ⊳ la position des 2 joueurs
- ▷ le nombre de tours effectués par chacun des joueurs
- $\,\triangleright\,$ qui est le joueur courant

Plusieurs possibilités existent; faites votre choix!

- \triangleright Le constructeur reçoit la configuration du circuit (pour savoir si les cases contiennent vrai ou faux)
- ▶ La méthode initialiser() initialise le jeu (placement des joueurs, ...).
- ▶ La méthode jouer() lance le jeu jusqu'à son terme et donne le vainqueur et le nombre de tours effectués.
- ▶ Vous êtes également fortement invités à définir d'autres méthodes en privé pour modulariser au mieux votre code. Par exemple, on pourrait définir
 - ▷ la méthode « jouerCoup » qui joue pour un joueur et indique s'il a rattrapé l'autre joueur (sans répétition si on arrive sur une case vrai)
 - ▷ la méthode « jouerTour » effectue la même tâche mais avec répétition si on arrive sur une case vrai. On fera évidemment appel à la méthode ci-dessus.
 - ⊳ la méthode « joueurSuivant » qui permet de passer au joueur suivant.

Avec ces 3 méthodes, la méthode publique « jouer » devient triviale.

3 La course à la case 64

Une piste de 65 cases (numérotées de 0 à 64) doit être parcourue le plus rapidement possible par quatre joueurs. Un tableau joueurs de quatre chaines contient les noms et prénoms des joueurs. Au départ, tous les joueurs se trouvent sur la case de départ (la case numéro 0). Les joueurs jouent à tour de rôle, dans l'ordre où ils apparaissent dans le tableau Joueur. Le joueur qui gagne est celui qui arrive le premier sur la case 64.

La longueur des déplacements est déterminée à l'aide d'un dé à six faces, un joueur pouvant avancer d'autant de cases que le nombre de points du dé. Si la case sur laquelle s'arrête un joueur est déjà occupée par un autre, ce dernier est renvoyé à la case départ. D'autre part, chaque fois qu'un joueur obtient la face 6, il a le droit de rejouer avant le tour du joueur suivant.

Écrire un algorithme de simulation de ce jeu qui fournit le nom du vainqueur. Comme dans l'exercice précédent, le lancement du dé est simulé par l'algorithme lancerDé() qui retourne une valeur aléatoire entre 1 et 6.

Imaginer la classe Course64 qui va permettre de résoudre ce problème. Comment faire pour pouvoir accepter un nombre quelconque de joueurs?

4 Mots croisés

Un tableau grille à 10 lignes et 10 colonnes contient les données relatives à un jeu de mots croisés simulé sur ordinateur. Chaque élément de ce tableau est une structure Case, contenant les deux champs :

- noir : variable booléenne affectée à vrai si la case correspondant de la grille est une case noire;
- ▷ lettre : contient soit le caractère inscrit par le joueur dans une case, soit le caractère « espace » (' ') si la case est encore blanche; lorsque noir est vrai, le contenu de lettre est indéterminé et ne peut donc être utilisé.

Écrire une classe Grille offrant les méthodes suivantes :

- ▷ placer une lettre à un endroit de la grille (une case non noire bien sûr)
- ▷ donner le nombre de cases noires sur la grille
- ▷ donner le nombre total de mots de la grille (donc y compris ceux que le joueur n'a pas encore complétés). Attention, les mots d'une seule lettre ne sont pas pris en compte.
- ⊳ donner le nombre de mots déjà complétés par le joueur

		A							
		L							
L	О	G	I	Q	U	Е			
		О							
		R							
E	S	I		О		Н			
		Т	A	В	L	Е	Α	U	
		Н		J		В			
		M		E					
		E		Т					

Exemple : dans la grille ci-contre, le nombre de cases noires est 14, le nombre total de mots de la grille est 37 (19 horizontaux et 18 verticaux) et le nombre de mots déjà complétés par le joueur est 6.

5 Mastermind

Revenons sur le jeu Mastermind déjà vu en DEV_1 . Dans ce jeu, un joueur A doit trouver une combinaison de k pions de couleur, choisie et tenue secrète par un autre joueur B. Cette combinaison peut contenir éventuellement des pions de même couleur. À chaque proposition

4.3. EXERCICES 33

du joueur A, le joueur B indique le nombre de pions de la proposition qui sont corrects et bien placés et le nombre de pions corrects mais mal placés.

Exemple

Utilisons des lettres pour représenter les couleurs.

Co	Combinaison secrète					\Pr	posit	ion d	u jou	eur
R	R	V	В	J		R	V	В	В	V

Il sera indiqué au joueur qu'il a :

- ▷ 2 pions bien placés : le R en 1^{re} position et le second B en 4^e position ;
- ▷ 1 pion mal placé : un des deux V (ils ne peuvent compter tous les deux).

Supposons une énumération Couleur avec toutes les couleurs possibles de pion.

- a) Écrire une classe « Combinaison » pour représenter une combinaison de k pions. Elle possède une méthode pour générer une combinaison aléatoire (que vous ne devez pas écrire) et une méthode pour comparer une combinaison à la combinaison secrète (que vous devez écrire)
- b) Écrire ensuite une classe « MasterMind » qui représente le jeu et permet d'y jouer. La taille de la combinaison et le nombre d'essais permis seront des paramètres du constructeur.

6 Le Jeu du Millionnaire

Un questionnaire de quinze questions à choix multiples de difficulté croissante est soumis à un candidat. Quatre possibilités de réponses (dont une seule est correcte) sont proposées à chaque fois. Au plus le candidat avance dans les bonnes réponses, au plus son gain est grand. S'il répond correctement aux quinze questions, il empoche la somme rondelette de $500.000 \in$.

Par contre, si le candidat donne une mauvaise réponse, il risque de perdre une partie du gain déjà acquis. Cependant, certains montants intermédiaires constituent des paliers, c'est-à-dire une somme acquise que le candidat est sûr d'empocher, quoiqu'il arrive dans la suite du jeu.

À chaque question, le candidat a donc trois possibilités :

- \triangleright il donne la réponse correcte : dans ce cas il augmente son gain, et peut passer à la question suivante
- ▷ il ne connait pas la réponse, et choisit de s'abstenir : dans ce cas, le jeu s'arrête et le candidat empoche le gain acquis à la question précédente
- ▷ il donne une réponse incorrecte : le jeu s'arrête également, mais le candidat ne recevra que le montant du dernier palier qu'il a atteint et réussi lors de son parcours. En particulier, si le candidat se trompe avant d'avoir atteint le premier palier, il ne gagne pas un seul euro!

1	25 €	faux
2	50 €	faux
3	125 €	faux
4	250 €	faux
5	500 €	vrai
6	1000 €	faux
7	2000 €	faux
8	3750 €	faux
9	7500 €	faux
10	12500 €	vrai
11	25000 €	faux
12	50000 €	faux
13	100000 €	vrai
14	250000 €	faux
15	500000 €	vrai

Exemple : Le tableau ci-contre contient les gains associés à chaque question et une indication booléenne mise à vrai lorsque la question constitue un palier. Un concurrent qui se trompe à la question 3 ne gagnera rien; un concurrent qui se trompe à la question 6 gagnera $500 \in \text{(palier de la question 5)}$ et de même s'il se trompe à la question 10; un concurrent qui se trompe à la question 13 gagnera $12500 \in \text{(palier de la question 10)}$; s'il décide de ne pas répondre à la question 13, il garde le montant acquis à la question 12, soit $50000 \in \text{(palier de la question 15)}$

Il y aurait de nombreuses façons de coder ce problème; en voici une :

La structure Question

Une question est composée du libellé de la question, des 4 libellés pour les réponses et d'une indication de la bonne réponse (un entier de 1 à 4). Par simplicité on en fait une structure mais on pourrait en faire une classe si on voulait par exemple vérifier que la « bonne réponse » possède une valeur correcte.

La structure Gain

Représente un niveau de gain. Elle contient les champs : montant (entier) et palier (un booléen à vrai si cette somme est assurée, faux sinon)

La classe Millionnaire

Cette classe code le moteur du jeu. On y retrouve

- > questionnaire : un tableau de Question
- ⊳ gains : un tableau de Gain
- ▷ autres attributs à déterminer (cf. méthodes)

ainsi que les méthodes pour

- ▷ initialiser le jeu à partir d'un questionnaire et du tableau de gains
- ▷ connaitre la question en cours
- ▷ donner la réponse du candidat à la question en cours
- ▷ savoir si le jeu est fini ou pas
- ▷ arrêter le jeu en repartant avec les gains
- ▷ les accesseurs nécessaires pour connaitre l'état du jeu.

Le jeu proprement dit

L'algorithme jeuMillionaireConsole() reçoit le questionnaire et les gains et simule le jeu :

- ▶ Il propose les questions au candidat
- ▷ Il lit ses réponses (chiffre 1 à 4 ou 0 pour arrêter) et fait évoluer le jeu en fonction.
- ▷ lorsque le jeu est terminé, il indique au candidat le montant de ses gains.
- ▶ Attention! Cet algorithme devrait être le plus petit possible. Imaginez que vous devez également coder une version graphique. Tout code commun doit se trouver dans la classe Millionnaire!

7 Chambre avec vue

Un grand hôtel a décidé d'informatiser sa gestion administrative. Il a confié ce travail à la société ESI_INFO dans laquelle vous êtes un informaticien chevronné. On vous a confié la tâche particulière de la gestion des réservations pour ses 100 chambres. Pour ce faire, on vous demande d'écrire une classe Hôtel qui offre notamment une méthode qui permet d'enregistrer une réservation.

Pour représenter l'occupation des chambres un jour donné, nous allons utiliser un tableau de 100 entiers. Un 0 indique que la chambre est libre, une autre valeur (positive) indique le numéro du client qui occupe cette chambre ce jour-là.

Nous utiliserons une Liste de tels tableaux pour représenter l'occupation des chambres sur une longue période; les éléments se suivant correspondant à des jours successifs.

Nous vous imposons les attributs de la classe, à savoir :

4.3. EXERCICES 35

- > occupations : une Liste de tableaux de 100 entiers comme expliqué ci-dessus.
- \triangleright premier Jour : donne le jour concerné par le premier élément de la liste. Ainsi s'il vaut 10/9/2015 cela signifie que le premier élément de la liste « occupations » renseigne sur l'occupation des chambres ce 10/9/2015; que le deuxième élément de la liste concerne le 11/9/2015 et ainsi de suite...

Écrire la méthode suivante

 $\textbf{algorithme} \ \textit{effectuerR\'eservation}(\texttt{demande} \downarrow : \mathsf{DemandeR\'eservation}, \ \mathsf{chambre} \uparrow : \ \mathsf{entier}) \rightarrow \mathsf{bool\'een}$

où la structure de demande de réservation est définie ainsi

structure DemandeRéservation numéroClient : entier débutRéservation : Date nbNuitées : entier

fin structure

- ▶ Le booléen retourné indique si la réservation a pu se faire ou pas
- ⊳ Si elle a pu se faire, le paramètre de sortie chambre indique la chambre qui a été choisie
- ▷ Si plusieurs chambres sont libres, on choisit celle avec le plus petit numéro
- ▶ La demande de réservation peut couvrir une période qui n'est pas encore reprise dans la liste; il faudra alors l'agrandir

8 Puissance 4

Le jeu de puissance 4 se déroule dans un tableau vertical comportant 6 rangées et 7 colonnes dans lequel deux joueurs introduisent tour à tour des jetons (rouges pour l'un, jaunes pour l'autre). Avec l'aide de la gravité, les jetons tombent toujours le plus bas possible dans les colonnes où on les place. Le jeu s'achève lorsqu'un des joueurs a réussi à aligner 4 de ses jetons horizontalement, verticalement ou en oblique, ou lorsque les deux joueurs ont disposé chacun leur 21 jetons sans réaliser d'alignement (match nul).

N.B. : sur ce dessin noir et blanc, les jetons rouges apparaissent en noir, les jetons jaunes en gris et les cases blanches désignent l'absence de jetons. Cet exemple montre une situation du jeu où le joueur « jaune » est gagnant. En introduisant un jeton dans la $4^{\rm e}$ colonne, il a réalisé un alignement de 4 jetons en oblique.

On demande d'implémenter une classe Puissance4 qui permette de contrôler l'état des différentes phases du jeu. Déterminez les attributs de cette classe et décrivez-les brièvement de manière à justifier votre choix. Dotez ensuite la classe des méthodes permettant de :

- ▷ savoir si la grille est pleine
- > mettre la grille à jour lorsque le joueur n (1 ou 2) joue dans la colonne j (entre 1 et 7). Cette méthode renverra la valeur booléenne faux si la colonne en question est déjà pleine
- ▷ vérifier si le joueur qui vient de jouer dans la colonne j a gagné la partie

N.B.: pour la structure qui contiendra le contenu du tableau de jetons, on adoptera la convention suivante : 0 pour l'absence de jeton, 1 représentera un jeton du 1^{er} joueur, et 2 un jeton du 2^e joueur (on peut donc faire abstraction de la couleur du jeton dans ce problème).

9 Les congés

Les périodes de congés des différents employés d'une firme sont reprises dans un tableau booléen $\mathbf{Congés}$ bidimensionnel à n lignes et 366 colonnes. Chaque ligne du tableau correspond à un employé et chaque colonne à un jour de l'année. Une case de ce tableau est mise à \mathbf{vrai} si l'employé correspondant est en congé le jour correspondant. La firme en question est opérationnelle 7 jours sur 7, on n'y fait donc pas de distinction entre jours ouvrables, week-end et jours fériés.

Ce tableau permet de visualiser l'ensemble des congés des travailleurs, et d'accorder ou non une demande de congé, suivant les règles suivantes :

- 1. une période de congé ne peut excéder 15 jours;
- 2. un employé a droit à maximum 40 jours de congé par an;
- 3. à tout moment, 50% des employés doivent être présents dans la firme.

Écrire un algorithme qui détermine si cette demande peut être accordée ou non à un employé dont on connait le nom, ainsi que les dates de début et de fin d'une demande de congé (objets de la classe Date). Dans l'affirmative, le tableau **Congés** sera mis à jour.

Pour établir la correspondance entre ce tableau et les noms des employés, vous avez à votre disposition un tableau **Personnel** de chaines. L'emplacement du nom d'un employé dans ce tableau correspond à l'indice ligne du tableau **Congés**.

Il est permis d'utiliser pour résoudre cet exercice la méthode suivante de la classe Date, sans devoir détailler son code :

 $\textbf{algorithme } \textit{num\'eroJour()} \rightarrow \text{entier} \qquad // \text{ la position du jour dans l'année (entre 1 et 366)}$

10 L'ensemble

La notion d'ensemble fini est une notion qui vous est déjà familière pour l'avoir rencontrée dans plusieurs cours. Nous rappelons certaines de ses propriétés et opérations.

Étant donnés deux ensembles finis ${\bf S}$ et ${\bf T}$ ainsi qu'un élément ${\bf x}$:

- ightharpoonup $\mathbf{x} \in \mathbf{S}$ signifie que l'élément \mathbf{x} est un élément de l'ensemble \mathbf{S} .
- \triangleright L'ensemble vide, noté \emptyset est l'ensemble qui n'a pas d'élément ($\mathbf{x}\in\emptyset$ est faux quel que soit \mathbf{x}).
- \triangleright L'ordre des éléments dans un ensemble n'a aucune signification, l'ensemble $\{1,2\}$ est identique à $\{2,1\}$.
- \triangleright Un élément ${\bf x}$ ne peut pas être plus d'une fois élément d'un même ensemble (pas de répétition).
- ightharpoonup L'union $\mathbf{S} \cup \mathbf{T}$ est l'ensemble contenant les éléments qui sont dans \mathbf{S} ou (non exclusif) dans \mathbf{T} .
- ightharpoonup L'intersection $\mathbf{S} \cap \mathbf{T}$ est l'ensemble des éléments qui sont à la fois dans \mathbf{S} et dans \mathbf{T} .
- \triangleright La différence $S \setminus T$ est l'ensemble des éléments qui sont dans S mais pas dans T.

Créer la classe Ensemble décrite ci-dessous.

4.3. EXERCICES 37

```
classe Ensemble de T
                                                             // T est le type des éléments de l'ensemble
public:
    constructeur Ensemble de T()
                                                                            // construit un ensemble vide
                                                                          // ajoute l'élément à l'ensemble
   méthode ajouter(élt : T)
                                                                      // enlève un élément de l'ensemble
    méthode enlever(élt : T))
    \textbf{m\'ethode} \ \textit{contient}(\'elt:T) \rightarrow bool\'een
                                                                            // dit si l'élément est présent
    méthode \textit{estVide}() \rightarrow \mathsf{bool\acute{e}en}
                                                                               // dit si l'ensemble est vide
    méthode taille() \rightarrow entier
                                                                           // donne la taille de l'ensemble
    méthode union(autreEnsemble : Ensemble de T) <math>\rightarrow Ensemble de T
    méthode intersection(autreEnsemble : Ensemble de T) <math>\rightarrow Ensemble de T
    méthode moins(autreEnsemble : Ensemble de T) <math>\rightarrow Ensemble de T
    méthode listeÉléments() → Liste de T
                                                                                      // conversion en liste
fin classe
```

Quelques remarques:

- ▶ La méthode d'ajout (resp. de suppression) n'a pas d'effet si l'élément est déjà (resp. n'est pas) dans l'ensemble.
- ▶ Les méthodes union(), intersection() et moins() retournent un troisième ensemble, résultat des 2 premiers sans toucher à ces 2 ensembles. On aurait pu envisager des méthodes modifiant l'ensemble sur lequel on les appelle.
- ▶ La méthode listeÉlément() est nécessaire si on veut parcourir les éléments de l'ensemble (par exemple pour les afficher).

Autres opérations ensemblistes:

Nous avons défini des opérations ensemblistes ne touchant pas aux ensembles de départ. Que deviennent-elles si on considère qu'elles **modifient** l'ensemble sur lequel elles sont appliquées?

11) Casino

Pour cet exercice, on vous demande un petit programme qui simule un jeu de roulette très simplifié dans un casino.

Dans ce jeu simplifié, vous pourrez miser une certaine somme et gagner ou perdre de l'argent (telle est la fortune, au casino!). Quand vous n'avez plus d'argent, vous avez perdu.

Notre règle du jeu

Bon, la roulette, c'est très sympathique comme jeu, mais un peu trop compliqué pour un exercice de première année. Alors, on va simplifier les règles et je vous présente tout de suite ce que l'on obtient :

- ▶ Le joueur mise sur un numéro compris entre 0 et 49 (50 numéros en tout). En choisissant son numéro, il y dépose la somme qu'il souhaite miser.
- ▶ La roulette est constituée de 50 cases allant naturellement de 0 à 49. Les numéros pairs sont de couleur noire, les numéros impairs sont de couleur rouge. Le croupier lance la roulette, lâche la bille et quand la roulette s'arrête, relève le numéro de la case dans laquelle la bille s'est arrêtée. Dans notre programme, nous ne reprendrons pas tous ces détails « matériels » mais ces explications sont aussi à l'intention de ceux qui ont eu la chance d'éviter les salles de casino jusqu'ici. Le numéro sur lequel s'est arrêtée la bille est, naturellement, le numéro gagnant.
- ⊳ Si le numéro gagnant est celui sur lequel le joueur a misé (probabilité de 1/50, plutôt faible), le croupier lui remet 3 fois la somme misée.
- Sinon, le croupier regarde si le numéro misé par le joueur est de la même couleur que le numéro gagnant (s'ils sont tous les deux pairs ou tous les deux impairs). Si c'est le cas, le croupier lui remet 50% de la somme misée. Si ce n'est pas le cas, le joueur perd sa mise.

Dans les deux scénarios gagnants vus ci-dessus (le numéro misé et le numéro gagnant sont identiques ou ont la même couleur), le croupier remet au joueur la somme initialement misée avant d'y ajouter ses gains. Cela veut dire que, dans ces deux scénarios, le joueur récupère de l'argent. Il n'y a que dans le troisième cas qu'il perd la somme misée.