# **Experiments with Learning Rates in Gradient Descent**

This report presents the results of testing different learning rates in a Batch Gradient Descent model for linear regression. The experiments explore the effects of using fixed and dynamic learning rates on the model's performance, measured by Mean Squared Error (MSE).

# 1. Objective

The objective of this experiment is to evaluate the impact of different learning rates on the convergence and accuracy of Batch Gradient Descent in linear regression. Specifically, it examines:

- The behavior of the training loss (MSE) with different fixed learning rates.
- The effectiveness of a dynamic learning rate strategy in achieving faster and smoother convergence.

## 2. Experimental Setup

- Model: Linear Regression using Batch Gradient Descent.
- Loss Function: Mean Squared Error (MSE).
- Learning Rates Tested:
  - $\circ$  Fixed:  $\alpha = 0.001, 0.01, 0.1$
  - Operation Dynamic:  $\alpha = 0.02$ ,  $\alpha = 0.01$  with decay = 0.001, decay step = 10
- Iterations: 100

The dynamic learning rate is updated as:

 $\alpha = \alpha / (1 + decay \times iterations)$ 

# 3. Results with Fixed Learning Rates

a. Learning Rate:  $\alpha = 0.001$ 

- Behavior: The gradient descent curve is smooth and steadily decreases.
- Performance:
  - MSE starts high at 750.188.

- Gradually decreases to mse of 10 after 38 iterations.
- o The regression line fits the data well.





## b. Learning Rate: $\alpha = 0.01$

- **Behavior:** Convergence is faster compared to  $\alpha = 0.001$ .
- Performance:
  - MSE starts at 62 (much lower than  $\alpha$  = 0.001).
  - o Sharply decreases to approximately 7 in three iterations.
  - Ends at the lowest MSE of 5.8561.

o The line fits the data well with rapid convergence.



#### c. Learning Rate: $\alpha = 0.1$

- Behavior: The model diverges and fails to converge.
- Performance:
  - MSE starts at 36710.5698 and increases at each iteration.
  - o The regression line fails to fit the data.
  - The training loss graph is unusual because of rapidly increasing MSE, indicating the learning rate is too high for stable gradient descent.



# 4. Results with Dynamic Learning Rates

### a. $\alpha = 0.02$ , Decay = 0.001, Decay Step = 10

- Behavior: Smooth and efficient convergence.
- Performance:
  - o MSE starts at 225.5152.
  - o Rapidly decreases to 7 within 6 iterations.
  - Ends at the lowest MSE of roughly 4.7.
  - The regression line fits the data well.



## b. $\alpha$ = 0.01, Decay = 0.001, Decay Step = 10

- Behavior: relatively slower convergence than the previous dynamic rate but efficient.
- Performance:
  - MSE starts at 61.9519.
  - Decreases to 7.85 in 4 iterations.
  - Ends at 6.1.
  - o The regression line fits the data well with a balanced convergence rate.





# 5. Conclusion

- Lower learning rates ( $\alpha$  = 0.001) result in slower but steady convergence.
- Moderate rates ( $\alpha$  = 0.01) achieve faster convergence with good stability.
- High learning rates ( $\alpha$  = 0.1) cause divergence due to overly large updates.
- Dynamic learning rates provide smoother and faster convergence by adjusting the step size over iterations.
- Observation: When the optimal fixed learning rate is chosen, the performance is comparable to dynamic learning rate strategies. However, dynamic learning rates offer more stability and adaptability.

**Limitations:** These conclusions are based on finite testing with a specific dataset and model configuration. Results may vary with different datasets or model architectures.

# 6. Visualizations

- MSE vs. Iterations for each learning rate.
- Fitted regression lines compared with data points.