CS 480 – Introduction to Artificial Intelligence

TOPIC: NAÏVE BAYES

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

TASK

- Classify emails as spam (s) / not-spam (~s) based on the words they contain
- You look at 100 random emails; 40 of them are spam, 60 of them are not-spam
- What is P(s) for a new email?

FEATURES

• Assume you'll look into the emails' contents; you've decided that the word Nigeria¹ seems to correlate well with spam. You group the 100 emails as follows

Nigeria	Spam	Count
t	S	30
f	S	10
t	~s	10
f	~s	50

If the word Nigeria appears in the new email, then what is $P(s \mid Nigeria=t)$?

1. Why "Nigeria?" https://www.google.com/search?q=nigeria+scam+emails

NIGERIA=T

Nigeria	Spam	Count	
t	S	30	
f	S	10	
t	~s	10	
f	~s	50	

If the word Nigeria appears in the new email, then what is $P(s \mid Nigeria=t)$?

$$P(s \mid N=t) = \frac{P(s, N=t)}{P(N=t)} = \frac{30/100}{(30+10)/100} = \frac{30}{40}$$

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count	
t	t	S	10	
t	f	S	20	
f	t	S	3	
f	f	S	7	
t	t	~s	8	
t	f	~s	2	
f	t	~s	40	
f	f	~s	10	

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

$$P(s \mid N = t, A = f) = \frac{P(s, N = t, A = f)}{P(N = t, A = f)} = \frac{\frac{20}{100}}{\frac{20 + 2}{100}} = \frac{20}{22}$$

 $P(s \mid N=t)$ was 0.75. $P(s \mid N=t, A=f)$ is 0.91

6

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count	
t	t	S	10	
t	f	S	20	
f	t	S	3	
f	f	S	7	
t	t	~s	8	
t	f	~\$	2	
f	t	~s	40	
f	f	~s	10	

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

$$P(s \mid N = t, A = t) = \frac{P(s, N = t, A = f)}{P(N = t, A = f)} = \frac{10/100}{(10+8)/100} = \frac{10}{18}$$

 $P(s \mid N=t)$ was 0.75. $P(s \mid N=t, A=f)$ is 0.91. $P(s \mid N=t, A=t) = 0.56$.

7

Now assume we add 998 more words

W_1	W_2	 W ₁₀₀₀	Spam	Count
t	t	 t	S	
t	t	 f	S	
f	f	 f	~s	

Q: How many entries are there in this table?

 $A: 2^{1001} \approx 2 \times 10^{301}$

We have 100 emails. If all emails are distinct, 100 entries will be 1; The rest will be 0.

Q: What is $P(s \mid W_1=t, W_2=f, ..., W_{1000}=t)$?

A: Either 1 or 0 if it is in D, otherwise, it is NaN

Q: How big of a training data do we need?

Naïve Bayes

- o Given $X_1, X_2, ..., X_n$, and class Y
- \circ Assume $X_i \perp X_j \mid Y$

$$P(Y|X_1, X_2, ..., X_n) = \frac{P(X_1, X_2, ..., X_n | Y)P(Y)}{P(X_1, X_2, ..., X_n)} = \frac{P(Y) \prod_{i=1}^n P(X_i | Y)}{P(X_1, X_2, ..., X_n)}$$

We need to estimate P(Y) and $P(X_i | Y)$

Naïve Bayes

Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is P(S)?

What is P(N|S)?

What is P(A|S)?

Naïve Bayes

Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is P(5)?

Spam	P(S)	
S	40/100	
~s	60/100	

What is P(N|S)?

Nigeria	Spam	P(N,S)	P(N S)
t	S	30/100	30/40
f	S	10/100	10/40
t	~s	10/100	10/60
f	~s	50/100	50/60

What is P(A|S)?

				_
Adm.	Spam	P(A,S)	P(A S)	
t	S	13/100	13/40	
f	S	27/100	27/40	
t	~s	48/100	48/60	
f	~s	12/100	12/60	

INFERENCE IN NAÏVE BAYES

• What is P(s | N=t, A=f)?

ZERO PROBABILITIES

- We have *n* features, X_1 through X_n
- If $P(X_i|C)$ is zero for any feature and class combination, we would be in trouble
- Example
 - o Assume that X_{592} is a weird feature that is rarely *true* in the world. Assume that X_{592} is always *false* in our training data, no matter what the class is
 - $P(X_{592} = f \mid C = t) = 1; P(X_{592} = t \mid C = t) = 0$
 - $P(X_{592} = f \mid C = f) = 1; P(X_{592} = t \mid C = f) = 0$
 - In one of the objects in our test data, X_{592} is *true*.
 - What is $P(C \mid X_1, X_2, ..., X_{592} = t, ..., X_n)$?
- o One solution: Laplace smoothing

Multiplying Several Probability Numbers

- Assume we have 10,000 features
- What is $0.9^{10,000}$ using a computer?
- Try math.pow(0.9, 10000) in Python
- o In Naïve Bayes,
 - $a = P(Y = T) \prod P(X_i | Y = T)$
 - $b = P(Y = F) \prod P(X_i | Y = F)$
 - $P(Y = T|X) = \frac{a}{a+b}$
 - If a = b = 0, then what?