

Vishay Semiconductors

Optocoupler, Phototriac Output, Non-Zero Crossing, 400 VDRM

DESCRIPTION

The K3020P, K3020PG series consists of a phototriac optically coupled to a gallium arsenide infrared-emitting diode in a 6-lead plastic dual inline package.

The non-zero crossing functionality enables full wave control. Featuring galvanic and electrical noise isolation, the output is able to directly switch AC loads or drive medium to high power TRIACs.

FEATURES

- 400 V blocking voltage
- · Wide range of trigger current
- 100 mA_{RMS} on-state current
- Wide temperature range -55 °C to +100 °C
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS COMPLIANT

APPLICATIONS

- Power TRIAC driver
- Isolated AC load switch
- Air condition
- Heaters
- White goods
- Industrial controls
- Office equipment

AGENCY APPROVALS

- UI
- cUL
- DIN EN 60747-5-5 (VDE 0884-5)
- BSI
- CQC
- FIMKO

ORDERING INFORMATION					
K 3 0 PART NUMBER		X P GGER PACKA ENT BIN OPTIC	GE TO	P-6 G leadform	
AGENCY CERTIFIED/PACKAGE	TRIGGER CURRENT, I _{FT}				
VDE, cUL, BSI	5 mA	10 mA	15 mA	30 mA	
DIP-6	K3023P	K3022P	K3021P	K3020P	
DIP-6, 400 mil	K3023PG	K3022PG	K3021PG	K3020PG	

Note

· Additional options may be possible, please contact sales office.

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
INPUT					
Reverse voltage		V_R	5	V	
Forward current		I _F	80	mA	
Surge current	P.W. < 10 μs	I _{FSM}	3	А	
Power dissipation		P _{diss}	100	mW	
Junction temperature		Tj	100	°C	
ОИТРИТ		<u>. </u>			
Peak off-state voltage		V_{DRM}	400	V	
On-state RMS current		I _{D(RMS)}	100	mA	
Peak surge current	t _p ≤ 10 ms	I _{FSM}	1.5	A	
Power dissipation		P _{diss}	300	mW	
Junction temperature		Tj	100	°C	
COUPLER		<u>. </u>			
Total power dissipation		P _{tot}	350	mW	
Storage temperature range		T _{stg}	-55 to +150	°C	
Ambient temperature		T _{amb}	-55 to +100	°C	
Junction temperature		Tj	100	°C	
Lead soldering temperature	2 mm from case, t < 10 s	T _{sld}	260	°C	

Note

• Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT							
Forward voltage	I _F = 50 mA		V _F	-	1.3	1.6	V
Reverse voltage	I _R = 10 μA		V_{R}	5	-	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		C _j	-	50	-	pF
OUTPUT							
Forward peak off-state voltage (repetitive)	I _{DRM} = 100 nA		V _{DRM} ⁽¹⁾	400	-	-	V
Peak on-state voltage	I _{TM} = 100 mA		V _{TM}	-	1.5	3	V
Critical rate of rise of off-state voltage	$I_F = 0 \text{ A}, V_D = 0.67 V_{DRM}$		dV/dt _{cr}	-	10	-	V/µs
Critical rate of rise of on-state current commutation	$V_D = 30 V_{RMS}, I_D = 15 mA_{RMS}$		dV/dt _{crq}	0.1	0.15	-	V/µs
COUPLER (2)							
Emitting diode trigger current	V_S = 3 V, R_L = 150 Ω	K3020P	I _{FT}	-	15	30	mA
		K3020PG	I _{FT}	-	15	30	mA
		K3021P	I _{FT}	-	8	15	mA
		K3021PG	I _{FT}	-	8	15	mA
		K3022P	I _{FT}	-	5	10	mA
		K3022PG	I _{FT}	-	5	10	mA
		K3023P	I _{FT}	-	3	5	mA
		K3023PG	I _{FT}	-	3	5	mA
Holding current	$I_F = 10 \text{ mA}, V_S \ge 3 \text{ V}$		I _H	-	200	-	μΑ

Notes

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
 evaluation. Typical values are for information only and are not part of the testing requirements.
- (1) Test voltage must be applied within dV/dt ratings.
- (2) IFT is defined as a minimum trigger current.

Vishay Semiconductors

SAFETY AND INSULATION RATINGS						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Climatic classification	According to IEC 68 part 1		55 / 100 / 21			
Pollution degree	According to DIN VDE 0109		2			
Comparative tracking index	Insulation group IIIa	CTI	175			
Maximum rated withstanding isolation voltage	According to UL1577, t = 1 min	V _{ISO}	4420	V _{RMS}		
Tested withstanding isolation voltage	According to UL1577, t = 1 s	V _{ISO}	5300	V _{RMS}		
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V _{IOTM}	8000	V _{peak}		
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V _{IORM}	890	V _{peak}		
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω		
	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω		
Output safety power		P _{SO}	265	mW		
Input safety current		I _{SI}	130	mA		
Input safety temperature		T _S	150	°C		
Creepage distance	DIP-6		≥ 7	mm		
Clearance distance	DIF-6		≥ 7	mm		
Creepage distance	DID 6 400 mil		≥ 8	mm		
Clearance distance	DIP-6, 400 mil		≥ 8	mm		
Insulation thickness		DTI	≥ 0.4	mm		
Input to output test voltage, method A	V_{IORM} x 1.6 = V_{PR} , 100 % sample test with t_M = 10 s, partial discharge < 5 pC	V _{PR}	1424	V _{peak}		

Note

PACKAGE DIMENSIONS (in millimeters)

DIP-6

[•] As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

Vishay Semiconductors

DIP-6, 400 mil

PACKAGE MARKING

Fig. 1 - Example of K3020P

Notes

- The "G" of the G leadform type is not marked on the body.
- The VDE logo is only marked on ption1 parts.

Vishay Semiconductors

PACKAGING INFORMATION (in millimeters)

DIP-6

DIP-6, 400 mil

Vishay Semiconductors

SHIPPING INFORMATION

DEVICES PER TUBS					
TYPE	UNITS/TUBE	TUBES/BOX	UNITS/BOX		
DIP-6	50	40	2000		

SOLDER PROFILES

Fig. 2 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.