Algorithm

The algorithm behind this implementation of *WaitNoMore* sorts the jobs by their ratio of duration (t_i) to weight (w_i) . The intuition behind this is that lower ratio values will allow corresponding W_i values to be

lowered in relation to w_i , thereby minimizing the summation $\sum_{i=1}^{n} w_i \times W_i$.

Proof

- 1. Let O be an optimal schedule and G be the schedule produced by the greedy algorithm.
 - a. Counter Example to Sorting by highest w_i alone (t_i, w_i) :

i.
$$\{\{1,1\},\{3,2\}\} = (2 \times 0) + (1 \times 3) = 3$$
, while $(1 \times 0) + (2 \times 1) = 1$

b. Counter Example to Sorting by lowest t_i alone (t_i, w_i) :

i.
$$\{\{1,2\},\{2,5\}\} = (2 \times 0) + (5 \times 1) = 5$$
, while $(5 \times 0) + (2 \times 2) = 4$

- 2. Theorem: G = 0.
 - a. Lemma: Let j_1 be the first job picked by G. There exists an O which also starts with j_1 .
 - i. Let O be some arbitrary optimum solution. If it starts with j_1 then this is confirmed.
 - ii. If O does not start with j_1 then j_1 must not be the job with the lowest weight to duration ratio.
 - 1. Axiom: The solution must minimize the summation $\sum_{i=1}^{n} w_i \times W_i$.
 - 2. W_i increases as i increases, by definition of waiting time.
 - 3. Lower ratio jobs must be multiplied with lower values of W_i , otherwise the summation would not be minimized due to the definition of multiplication.
 - 4. By contradiction, j_1 must not be the job with the lowest weight to duration ratio.
 - iii. By contradiction, j_1 could not have been used to start G, by definition of the greedy algorithm as explained in *Algorithm*.
 - b. By the lemma, any O can be turned into O' by swapping j_i and j_k , the i^{th} and k^{th} jobs in O, with the corresponding the i^{th} and k^{th} jobs in G. (In other words:

$$0 = \{j_1, j_2, j_2\}, G = \{j_1, j_2, j_3\} \text{ then } 0' = \{j_1, j_2, j_3\}.$$

- i. Base Case: n, the number of jobs, is 1, in which case both O and G must select it.
- ii. Inductive Step: Assuming O and G have parallel schedules for the first i jobs, then the (i + 1)th job will be treated as the base case anew such that it is subject to the lemma.
- iii. Implication: Every job i in O, can be shifted to become O' which is equal to G.
- c. QED