Internet and Networking Notes #2

Table of contents

Types of Networks
LAN (Local Area Network)
WAN (Wide Area Network)
Tracing packets
Traceroute
The Internet
Internet Protocol (IP)
Types of Protocols in Packets
IP Packets
UDP Packets (User Datagram Protocol)
TCP Packets (Transmission Control Protocol)
Domains
Domain Name System (DNS)
Domain Structure
The OSI (Open System Interconnection) Model

Anish Goyal Schepens Period 1 01/10/2023

Types of Networks

LAN (Local Area Network)

- Small scale network topology typically only containing one router
- Used for small businesses, homes, and schools

WAN (Wide Area Network)

- Composed of LANs connected together wirelessly via routers
- Used for wide-scale networks, such as towns or school systems

Tracing packets

Traceroute

- You can see all of the "hops" that a packet takes to get to its destination using traceroute
- This includes the IP address of each router that the packet passes through and the time it takes for the packet to get to each router

The Internet

Internet Protocol (IP)

- IP is the protocol that allows computers to communicate with each other
- All packets must meet the IP protocol in order to be sent over the internet
 - For example, there is a limit to the size and number of packages you can send at once

Types of Protocols in Packets

IP Packets

- IP packets consist of an IP header that contains metadata about the packet and the data that the packet is carrying
- They also have a data payload containing the data that the packet is carrying
- Because IP packets are barebones by themselves, we made TCP and UDP to add more functionality to them

UDP Packets (User Datagram Protocol)

- UDP packets are typically used for applications that require low latency and high bandwidth
- They consist of a UDP header containing metadata and the data payload
 - The UDP header contains the source and destination ports, the length of the packet,
 and the checksum

- The checksum is used to verify that the packet has not been corrupted
- There is no guarantee that UDP packets will arrive at their destination, and they are not guaranteed to arrive in order
- UDP packets are typically used for streaming which does not require a constant connection

TCP Packets (Transmission Control Protocol)

- TCP packets are typically used for applications that require a constant connection
- They consist of a TCP header containing metadata and the data payload
 - The TCP header contains the source and destination ports, the sequence number, the acknowledgement number, the length of the packet, and the checksum
 - The checksum is used to verify that the packet has not been corrupted
 - The sequence number is used to keep track of the order of the packets
 - The acknowledgement number is used to acknowledge the receipt of a packet
 - This is known as the "three way handshake"
- TCP packets are guaranteed to arrive at their destination and they are guaranteed to arrive in order

Domains

Domain Name System (DNS)

• The Internet has a special way to map IP addresses to domain names, which are easier for people to remember

Domain Structure

- Top Level Domains are the highest level of domains
 - For example, .com, .org, .edu, .gov, .net,
- Second Level Domains are the second highest level of domains, containing the name of the organization
 - For example, google.com, microsoft.com, apple.com, amazon.com, facebook.com
- Third Level Domains are the third highest level of domains, containing the name of the website and a subdomain of the parent
 - For example, drive.google.com, docs.microsoft.com, support.apple.com

The OSI (Open System Interconnection) Model

- A conceptual framework for compartmentalizing all of the different network processes and protocols
- The physical layer is all the physical components that make up the network and the data that is sent over cables (bits)
- The data link layer is the layer that is responsible for sending data over the physical layer
- The network layer is the layer that is responsible for sending data over the data link layer and routing data to the correct destination
- The transport layer consists of protocols that are responsible for sending data over the network layer such as TCP and UDP
- The session layer is responsible for establishing and maintaining connections between applications known as a "session"
- The presentation layer is responsible for converting data from one format to another
- The application layer is the layer that is responsible for sending data over the presentation layer and is the layer that applications interact with