

Rescuing impact measurements

Differential treatment timing and duration in d-i-d estimation

2024-08-30

Outline of presentation

- Background
- Problem
- Solutions
- Case study MISTI
- Final thoughts

Bottom line up front

- In certain settings, beware the Two-Way Fixed Effects
 Estimator!
- Don't conflate your modeling approach (TWFE) with your estimation strategy
- Examine the different groups created by differential timing
- Use event study designs
- Specify a fully flexible model (Two-way Mundlak)

- Background
- Problem
- Solutions
- Case study MISTI
- Final thoughts

What is the canonical d-i-d setup?

where...

is the comparison group at baseline

is the secular change from baseline to endline, unrelated to $\mathfrak{L}_{eatment}$

is the difference between the treatment and comparison groups baseline, and

is the treatment effect, the interaction of treatment and time δ_1

Algebraically, can be expressed as the difference between the pre/post difference in each of the treatment and comparison groups

$$\delta_1 = \left(ar{y}_{POST,TREAT} - ar{y}_{PRE,TREAT}
ight)$$

 $(\bar{y}_{POSTGOMPARISON} - \bar{y}_{PRF}, COMPARISON)$ hence, difference-in-differences, (d-1-d or DiD) or DD)

Canonical d-i-d, 2x2

 $y_{it} = eta_0 + \delta_{0,t} Post_t + eta_{1,i} Treat_i + \delta_{1,it} Post_t * Treat_i + \epsilon_{it}$ Canonical d-i-d 2x2 setup

	Pre	Post	Post - Pre
Comparison	0		C
Treatment	β_0	$eta_0 + \delta_0$	00
Treatment -	$\beta_0 + \beta_1$	$\beta_0 + \delta_0 + \beta_1 + \delta_1$	$\delta_0 + \delta_1$
	β_1	$eta_1+\delta_1$	δ_1
Comparison	ρ_1	ρ_1 σ_1	οŢ

How does the canonical d-i-d generalize to multiple time periods and/or groups?

When we generalize the two-period setup to multiple time periods and/or groups, we have the two-way fixed effect (TWFE) estimator

$$y_{it} = \alpha_i + \alpha_t + \beta^{DD}it + \epsilon_{it}$$
 where...

are group fixed effects

 $lpha_i$ are time fixed effects

indicates whether group i in period t is treated B_{it}^{DD}

TWFE is a workhorse in program evaluation

- 744 d-i-d studies across ten journals in finance and accounting,
 2000-2019 [Baker 2022]
- 19 percent of all empirical articles published by the American Economic Review (AER) between 2010 and 2012 used TWFE [de Chaisemartin and D'Haultfoeuille 2020]

- Background
- Problem
- Solutions
- Case study MISTI
- Final thoughts

But what is actually telling us?

- For the canonical $^{i}2$ x2, we know exactly what we are estimating
- For *i* groups and *t* time periods, we are getting some average of multiple 2x2s
- But how does this work, exactly?
- Goodman-Bacon (2021) decided to work it out

Let's take a single step from two time periods to three, where treatment can be adopted at either t = 2 or t = 3

Any design with multiple treatment timings will have groups, where k is the number of timings.

Error in include_graphics("Baker panel a.png"): Cannot find the file(s):
"Baker panel a.png"

Where does this leave us?

- TWFE treats some data that is under treatment status as comparison!
- Not an issue under constant treatment effect
 - stable unit treatment value (SUTVA)
 - no variation in treatment effect for any reason

But TWFE fails under following conditions:

- different treatment groups have different treatment effects
- treatment effects are dynamic over post-treatment periods
- heterogeneous treatment effects across sub-groups within a treated group

An example of failure

Figure 5. Event-Study and Difference-in-Differences Estimates of the Effect of No-Fault Divorce on Female Suicide: Replication of Stevenson and Wolfers (2006)

Figure 6. Difference-in-Differences Decomposition for Unilateral Divorce and Female Suicide 30 Later Group Treatment vs. Earlier Group Control Weight = 0.26; DD = 3.51 20 Treatment vs. Non-Reform States Weight = 0.24; DD = -5.332x2 DD Estimate DD Estimate = -3.080 Treatment vs. Pre-1964 Reform States Weight = 0.38; DD = -7.04-20 × Earlier Group Treatment vs. Later Group Control Weight = 0.11; DD = -0.19 0 -30 .02 .08 .1 .04 .06 Weight

- Background
- Problem
- Solutions
- Case study MISTI
- Final thoughts

Diagnostic: the Bacon decomposition

- The Bacon decomposition will take a TWFE model and decompose it into the full array of 2x2 d-i-d cells used to construct the overall estimate
- The decomposition will also calculate the variance-weights used in regression to see which 2x2 cells are powering the overall estimate

```
type weight avg_est
1 Earlier vs Later Treated 0.0598 -0.00554
2 Later vs Earlier Treated 0.0319 0.07032
3 Treated vs Untreated 0.9083 0.08796
```

treated	untreated	estimate	weight	type
2005	2006	-0.08313	0.003405	Earlier vs Later Treated
2005	2007	-0.11672	0.002095	Earlier vs Later Treated
2005	2008	-0.14123	0.001571	Earlier vs Later Treated
2005	2009	0.09714	0.001048	Earlier vs Later Treated
2005	99999	0.08017	0.045569	Treated vs Untreated
2006	2005	-0.14607	0.003405	Later vs Earlier Treated
2006	2007	0.08302	0.016342	Earlier vs Later Treated
2006	2008	-0.00848	0.016342	Earlier vs Later Treated
2006	2009	-0.08226	0.012256	Earlier vs Later Treated
2006	99999	0.06824	0.592395	Treated vs Untreated
2007	2005	-0.10806	0.001676	Later vs Earlier Treated
2007	2006	0.12596	0.010895	Later vs Earlier Treated
2007	2008	0.10372	0.002933	Earlier vs Later Treated
2007	2009	-0.01598	0.002933	Earlier vs Later Treated
2007	99999	0.11406	0.170124	Treated vs Untreated
2008	2005	-0.04898	0.000943	Later vs Earlier Treated
2008	2006	0.11069	0.008171	Later vs Earlier Treated
2008	USALBOM	E0.14479	0.009257	Flater vs Earlier Treated

treated	untreated	estimate	weight	type
2008	2009	-0.17989	0.000838	Earlier vs Later Treated
2008	99999	0.14605	0.072910	Treated vs Untreated
2009	2005	0.17952	0.000419	Later vs Earlier Treated
2009	2006	0.11210	0.004085	Later vs Earlier Treated
2009	2007	0.00373	0.000838	Later vs Earlier Treated
2009	2008	-0.13078	0.000210	Later vs Earlier Treated
2009	99999	0.21108	0.027341	Treated vs Untreated

```
1 ggplot(castle_bacon) +
2 aes(x = weight, y = estimate, shape = factor(type)
3 labs(x = "Weight", y = "Estimate", shape = "Type",
4 geom_point() +
5 scale_color_viridis_d()
```


Adjustment: new estimators

R packages for new d-i-d estimators

Reference	R package	Description
Callaway Sant'Anna (2020)	did	Compare treatment only to never treated, or never-treated + not-yet-treated. Also propensity score weights with covariates.
Sun Abraham (2020)	fixest	Fully saturate relative time indicators with treatment initiation; equivalent to Callaway Sant'Anna
Chaisemartin D'Haultfoeuille (2020)	DIDmultiplegt	Applies time-unit adjustments for a more general range of settings than just staggered adoption
Wooldridge (2021)	fixest	Dummies for all group, time, time-to-treat, time-since-treatment units

- Background
- Problem
- Solutions
- Case study MISTI
- Final thoughts

Measuring Impact of Stabilization Initiatives (MISTI)

Can small scale, community-driven development activities build local government legitimacy in a kinetic conflict-affected environment?

MISTI

- Village panel survey in five waves, Sep 2012 Nov 2014
- ~5,000 villages surveyed across 130 districts and 23 provinces
- ~ 30,000 household interviews per wave
- 860 treated villages at any wave (17%)
- 355 villages surveyed in all five waves
- 85 villages treated (24%)

MISTI treatment timings

Wave | Comparison villages | Treated villages | Treated villages (cumulative) |

Single-wave analysis

Final reporting of MISTI relied on a series of single-wave estimations

```
Error: `path` does not exist: 'MISTI tables.xlsx'
Error in eval(expr, envir, enclos): object 'wav' not found
```

MISTITWFE

term	estimate	std.error	statistic	p.value
(Intercept)	-0.0581	0.359	-0.162	0.871
treat_event	-0.0389 USAID MEN	0.0947 A Advanced MEL Worl	-0.411	0.681

MISTI bacondecomp

```
type weight avg_est
1 Earlier vs Later Treated 0.0578 0.3911
2 Later vs Earlier Treated 0.0466 -0.3465
3 Treated vs Untreated 0.8956 -0.0506
```

```
1 mistibacon_coef <- sum(mistibacon$estimate * mistiba
USAID MENA Advanced MEL Workshop</pre>
```

2 mistibacon_coef

[1] -0.0389

MISTI bacondecomp 2x2 cells

Plot of 2x2 cells

treated	untreated	estimate	weight	type
2	3	0.7473	0.00211	Earlier vs Later Treated
2	4	0.7093	0.00444	Earlier vs Later Treated
2	5	0.6868	0.01066	Earlier vs Later Treated
2	99999	0.8232	0.11998	Treated vs Untreated
3	2	-0.1216	0.00633	Later vs Earlier Treated
3	4	0.4973	0.00603	Earlier vs Later Treated
3	5	0.2976	0.01930	Earlier vs Later Treated
3	99999	0.1964	0.24425	Treated vs Untreated
4	2	-0.2707	0.00889	Later vs Earlier Treated
4	3	0.2135	0.00603	Later vs Earlier Treated
4	5	0.1182	0.01524	Earlier vs Later Treated
4	99999	-0.0291	0.25710	Treated vs Untreated
5	2	-0.5680	0.01066	Later vs Earlier Treated
5	3	-0.5686	0.00965	Later vs Earlier Treated
5	JSAID ME	0.5375	0.0e5b8	Eater of Earliep Treated

treated	untreated	estimate	weight	type
5	99999	-0.6729	0.27424	Treated vs Untreated

Callaway and Sant'Anna (2020)

This estimation gives you multiple outcomes

- Treatment by treatment group
- An overall treatment effect
- Overall dynamic effects / event study
- Treatment effects by calendar time

Callaway and Sant'Anna replication

Group-Time Average Treatment Effects:

Group	Time	ATT(g,t)	Std.	Error	[95%	Simult.	Conf. Band]	
2	2	0.4105		0.369		-0.5857	1.4066	
2	3	0.9595		0.388		-0.0886	2.0077	
2	4	1.2952		0.404		0.2056	2.3847	*


```
1 cal_simple <- aggte(cal, type="simple")
2 cal_simple</pre>
```

```
Call:
aggte(MP = cal, type = "simple")

Reference: Callaway, Brantly and Pedro H.C. Sant'Anna. "Difference-in-
Differences with Multiple Time Periods." Journal of Econometrics, Vol. 225,
No. 2, pp. 200-230, 2021. <a href="https://doi.org/10.1016/j.jeconom.2020.12.001">https://doi.org/10.1016/j.jeconom.2020.12.001</a>,
```

<https://arxiv.org/abs/1803.09015>

```
1 cal_dyn <- aggte(cal, type="dynamic")
2 cal_dyn</pre>
```

Daniel Decara


```
1 cal_grp <- aggte(cal, type="group")
2 cal_grp</pre>
```

```
Call:
aggte(MP = cal, type = "group")

Reference: Callaway, Brantly and Pedro H.C. Sant'Anna. "Difference-in-
Differences with Multiple Time Periods." Journal of Econometrics, Vol. 225,
No. 2, pp. 200-230, 2021. <a href="https://doi.org/10.1016/j.jeconom.2020.12.001">https://doi.org/10.1016/j.jeconom.2020.12.001</a>,
<a href="https://arxiv.org/abs/1803.09015">https://arxiv.org/abs/1803.09015</a>>

Overall summary of ATT's based on group/cohort aggregation:

ATT Std. Error [ 95% Conf. Int.]
0.0037 0.112 -0.215 0.223
```

O------


```
1 cal_cal <- aggte(cal, type="calendar")
2 cal_cal</pre>
```

```
Call:
aggte(MP = cal, type = "calendar")

Reference: Callaway, Brantly and Pedro H.C. Sant'Anna. "Difference-in-
Differences with Multiple Time Periods." Journal of Econometrics, Vol. 225,
No. 2, pp. 200-230, 2021. <a href="https://doi.org/10.1016/j.jeconom.2020.12.001">https://doi.org/10.1016/j.jeconom.2020.12.001</a>,
<a href="https://arxiv.org/abs/1803.09015">https://arxiv.org/abs/1803.09015</a>>

Overall summary of ATT's based on calendar time aggregation:
ATT Std. Error [ 95% Conf. Int.]
0.371 0.187 0.0048 0.737 *
```

mima neeaara.

- Background
- Problem
- Solutions
- Case study MISTI
- Final thoughts

What have we learned?

- In certain settings, two-way fixed effects estimation is biased in ways that we only recently came to realize
- We have to carefully think through the data generating process (logic modeling) for each individual setting
- As we get more granular data and ask deeper questions, econometric tools are starting to provide better insight into treatment dynamics

What should we do?

- For any two-way fixed effects setting, use the Bacon decomposition to diagnose any problems
- Use stacked d-i-d to remove problematic 2x2 cells, or apply any of the new estimators
- Go back to your old evaluations!!

Thank you!