An Analytical Approach for the Creative Design of New Visualizations

1

Design-Feature Space

Motivation

- Support creation of new visualizations with analytical "design by example" [3].
- Better understand the limits of current visualization techniques.

Internal Nodes as Novel Visualizations

- Leaf nodes in the phylogenetic tree shown in the center of the poster are existing examples (blue).
- Tree structure implies that internal nodes (red) correspond to a point in the design-feature space [1], and thus internal nodes represent potential new visualizations.

2

Quantitatively
Describe New
Visualizations

Dimensions Represent Design Attributes

• Every point in the design-feature space represents a unique combination of design attributes.

COMBINE		1 UC3	ıyıı atılı
Attributes	Value A	Value B	StepTree
Number of visual dimensions in visualization * How edges are shown in visualization * Overall layout/orientation of visualization * Shape delineated by outline of visualization	two implicitly through structure radial irregular	three explicitly as lines axis-parallel regular polygon	three implicitly through structure axis-parallel regular polygon
Visualization is space-filling Shape of nodes Nodes have evenly-distributed children	yes rectangular yes	no circular no	yes rectangular no
Visualization is fractal Tree depth is linearly encoded Visualization is a fisheye	yes yes yes	no no no	yes yes no
Visualization encodes weight of edges Are leaves collapsed?	yes all leaves always shown	no some leaves obscured	no all leaves always shown

Compute Visual Attributes of New Designs

- Use tree structure and existing examples to compute design features of potential new visualizations.
- Brute force (left) and heuristic (right)

Phylogenetic Tree of Visualizations Based on Design-Feature Distance

 Matrices M and N define points in the designfeature space (each row describes one feature for that point).

 $D_3(M,N) = \sum_{i=1}^d \left(\frac{1}{2} \sum_{j=1}^k |M_{ij} - N_{ij}| \right)$

• Phylogenetic tree constructed using NJ [4].

Design Tool

 Interactive exploration of existing examples and potential new designs.

3 Support Creative Design Process

Sample Use-Case with Domain Expert

- Task: design tree visualization to handle data with high branch factor near leaves.
- Artist used our tool to find examples with desirable attributes.
- Artist sketched novel visualization based on our computed designfeatures.

- [1] Diaz-Banez et al. El compas flamenco: a phylogenetic analysis. BRIDGES: Mathematical
- Connections in Art, Music and Science, pages 61–70. Citeseer, 2004.

 [2] Jurgensmann et al. Poster: A Visual Survey of Tree Visualization. IEEE Information
- Visualization, volume 5, 2010.
- [3] Lee et. al. Designing with interactive example galleries. CHI 2010. ACM.
 [4] Saitou et. al. The neighbor-joining method: a new method for reconstructing phylogenetic
- trees. Mol Biol Evol, 4(4):406–425, 1987.

Garth Griffin Shaomeng Li Connor Gramazio Remco Chang

gwg@cs.tufts.edu samuelli@cs.tufts.edu connor.gramazio@tufts.edu remco@cs.tufts.edu

Tufts University, Medford MA

- Improved evaluation metrics
- Refined design features
- Algorithmic visualization generation