CLINCH: Supplementary Test Plan and Study Matrix

Devin Lavrisha devklav@gmail.com No affiliation

August 16, 2025

Purpose

This supplement enumerates validation studies and bench tests required to establish safety, performance, and repeatability of the Laminar-Shear Biogel Closure System (CLINCH). Each study defines objectives, methods, variables, instruments, endpoints, and pass/fail criteria. Targets align with known skin mechanics, hydration/temperature effects, tissue orientation, and hydrogel adhesion [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ?, 11, 12, 13].

1 Global Test Matrix

2 Study Protocols

S1. Impulse-Depth Calibration (bench, then ex vivo)

Objective: Map tangential impulse (0.01 --0.06 N s) and normal pressure (10 --70 kPa) to realized

shear depth $(50 - -150 \,\mu\mathrm{m})$ across hydration/temperature.

Substrates: Layered skin analog then porcine skin.

Controls: IPA-prepped vs. no-prep; ambient setpoints 22 °C, RH 40%.

Instruments: High-speed motion/force logging; OCT or confocal microscopy for depth.

Endpoints: Depth (median, IQR); visible bleeding (rate).

Pass: $\geq 95\%$ of taps within $50--150 \,\mu\text{m}$; 0% visible bleeding at spec settings.

Rationale: Depth safety relative to microvasculature [10, ?]; hydration/temperature effects [1, 2, 3].

S2. Adhesion & Flexion Durability

Objective: Verify lap-shear and cyclic durability with lattice seal.

Gels: Low-modulus (1 kPa to 10 kPa) and high-modulus (up to 50 kPa) formulations (e.g., chitosan, PEG-alginate).

Methods: Lap-shear to skin analog; flexion rig with $\pm 10\%$ strain, 1000 cycles.

Endpoints: Lap-shear >20 kPa; edge gapping <0.3 mm.

Rationale: Adhesive mechanics and modulus matching [8, 9].

Table 1: Study overview and primary endpoints

ID	Study	Primary endpoints
S1	Impulse–Depth Calibration	Shear depth (µm) vs. impulse/pressure; epidermal- only confirmation (no bleeding)
S2	Adhesion & Flex Durability	Lap-shear (kPa); edge gapping (mm) after 1000 flex cycles at $\pm 10\%$ strain
S3	Timing Sensitivity	Seal integrity vs. gel deposition delay (0.5–5 s)
S4	Orientation (Langer Lines)	Dehiscence/gapping vs. parallel vs. perpendicular orientation
S5	Hair/Surface Condition	Failure rate and adhesion vs. clipped/unclipped; IPA vs. no prep; moisturized vs. clean
S6	Thermal/Hydration Envelope	Performance across 18 °C to 30 °C, RH 20 % to 70%
S7	Microvascular Safety	OCT/dermoscopy confirmation of epidermal-only shear; no capillary disruption
S8	Biogel Biocompatibility	Irritation/sensitization screens; ISO 10993-relevant cutaneous endpoints
S9	High-Tension Sites	Performance with high-modulus gel and denser lat- tice at high-tension locations
S10	Sterility/Bioburden	Pad cover sterility, process bioburden checks; post- use contamination
S11	Usability/Timing	Time-to-gel and adherence to SOP windows (sub- $3s$)
S12	Failure Modes & Margins	Worst-case testing for overshoot, delayed gel, misalignment

S3. Timing Sensitivity (gel deposition delay)

Objective: Quantify seal degradation vs. delay: 0.5, 1, 2, 3, 5 s post-shear.

Endpoints: Gap (mm), leak/burst pressure change.

Pass: No significant degradation ≤ 3 s; performance drop documented beyond 3 s.

Rationale: Skin elastic recovery timescale [4, 3].

S4. Orientation vs. Langer Lines

Objective: Compare closure aligned with vs. across tension lines.

Endpoints: Dehiscence rate, gap after flex cycles. **Rationale:** Orientation reduces opening stress [5].

S5. Hair & Surface Condition

Objective: Evaluate hair and skin film effects. Groups: clipped $(<0.3\,\mathrm{mm})$ vs. unclipped; IPA vs.

no-prep; moisturizer applied 1 h prior vs. none.

Endpoints: Failure rate (missed shear, poor adhesion), lap-shear, gap. **Rationale:** Hair/contact mechanics and lipid films alter friction [14, 6, 7].

S6. Thermal/Hydration Envelope

Objective: Validate performance across 18 °C to 30 °C and RH 20 % to 70 %.

Endpoints: Depth control, lap-shear, gap.

Pass: Maintain S1/S2 criteria within 2024, RH 30% to 50%; characterize drift at edges.

Rationale: SC mechanics vs. hydration/temp [1, 2, 3].

S7. Microvascular Safety (imaging)

Objective: Confirm epidermal-only shear; no capillary disruption. Methods: OCT/dermoscopy; optional laser Doppler or capillaroscopy. Endpoints: No intradermal bleeding; depth within 50 --150 µm. Rationale: Papillary plexus depth; epidermal target [10, ?].

S8. Biogel Biocompatibility (ISO-relevant)

Objective: Screen irritation/sensitization and local tissue response for selected gels. **Methods:** In vitro cytotoxicity; ex vivo skin; small-animal cutaneous patch (if required).

Endpoints: Irritation scores, histology; accept vs. ISO cutoffs.

Rationale: Established safety of chitosan and alginate/PEG-based blends [11, 12, 13].

S9. High-Tension Sites

Objective: Validate performance at high-tension locations (e.g., joints). **Methods:** Use high-modulus gel and increased lattice crosslink density.

Endpoints: Dehiscence rate, gap under dynamic strain.

Rationale: Modulus matching and architecture improve durability [8, 9].

S10. Sterility & Bioburden

Objective: Verify pad cover sterility and post-use bioburden.

Methods: Standard plate counts/swabs; accelerated aging (if applicable). Endpoints: CFU thresholds met; no detectable cross-contamination.

S11. Usability & Timing (human factors)

Objective: Measure time-to-gel and adherence to sub-3s window across operators.

Methods: Simulated closures with task analysis; log timestamps. Endpoints: % closures meeting timing SOP; learning curve.

S12. Failure Modes & Margins

Objective: Stress test worst cases: over-impulse, under-pressure, delayed gel (5 s), misalignment to Langer lines.

Endpoints: Failure signatures; margin-to-failure quantified for each factor.

Metric	Minimum Acceptance
Shear depth control	$\geq 95\%$ within $50150 \mu\text{m}$ (no bleeding)
Lap-shear strength	\geq 20 kPa (analog) at 22 °C, RH 30–50% [8, 9]
Edge gapping	$<\!0.3\mathrm{mm}$ after 1000 flex cycles at $\pm10\%$ strain
Timing robustness	No significant degradation ≤ 3 s; documented drop > 3 s [4, 3]
Orientation benefit	Reduced dehiscence/gap when aligned with Langer lines [5]

3 Acceptance Criteria Summary

4 Statistics & Sample Size Notes

For S1/S2, plan $n \ge 10$ samples per condition; repeated-measures ANOVA (or mixed models) across impulse/pressure and environment factors. Power analysis to detect a 20 µm shift in depth and 5 kPa in lap-shear at $\alpha = 0.05$, power 0.8. For usability (S11), aim $n \ge 12$ operators and report learning curves.

Acknowledgments

Prepared with research assistance from *GPT-5 Thinking* (OpenAI).

References

- [1] J. A. Bouwstra, G. S. Gooris, J. A. van der Spek, S. Lavrijsen, and W. Bras. Water distribution and related morphology in human stratum corneum at different hydration levels. *Journal of Investigative Dermatology*, 120(5):750–758, 2003.
- [2] J. Bush, C. Harding, and A. Rawlings. Effects of hydration on the mechanical properties of skin. *Scientific Reports*, 7:14112, 2017.
- [3] S. Diridollou, D. Black, J. M. Lagarde, Y. Gall, M. Berson, V. Vabre, F. Patat, and L. Vaillant. Skin ageing: changes of physical properties of human skin in vivo. *International Journal of Cosmetic Science*, 22(6):385–394, 2000.
- [4] C. Pailler-Mattei, S. Bec, and H. Zahouani. In vivo measurement of the elastic properties of human skin using indentation tests. *Medical Engineering & Physics*, 30(5):599–606, 2008.
- [5] C. Pailler-Mattei, S. Bec, and H. Zahouani. Orientation and anisotropy of skin tension lines. Skin Research and Technology, 14(2):142–148, 2008.
- [6] M. J. Adams, B. J. Briscoe, and S. A. Johnson. Influence of skin surface lipids on friction and tactile perception. *Tribology International*, 40(3):407–414, 2007.
- [7] S. Derler and L. C. Gerhardt. Tribology of skin: Review and analysis of experimental results for the friction coefficient of human skin. *Tribology Letters*, 45:1–27, 2012.
- [8] M. Mehdizadeh and J. Yang. Design strategies and applications of tissue bioadhesives. *Macro-molecular Bioscience*, 13(3):271–288, 2013.

- [9] H. Yuk, T. Zhang, S. Lin, G. Parada, and X. Zhao. Tough bonding of hydrogels to diverse non-porous surfaces. *Nature Materials*, 15(2):190–196, 2016.
- [10] I. M. Braverman. The cutaneous microcirculation. Journal of Investigative Dermatology Symposium Proceedings, 5(1):3–9, 2000.
- [11] R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura. Biomedical applications of chitosan for tissue engineering. *International Journal of Molecular Sciences*, 12(1):117–129, 2011.
- [12] B. Balakrishnan, M. Mohanty, P. R. Umashankar, and A. Jayakrishnan. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. *Biomaterials*, 26(32):6335–6342, 2005.
- [13] N. Annabi, A. Tamayol, S. R. Shin, A. M. Ghaemmaghami, N. A. Peppas, and A. Khademhosseini. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound closure. *Biomaterials*, 35(25):6871–6881, 2014.
- [14] R. K. Sivamani, J. Goodman, N. V. Gitis, and H. I. Maibach. Influence of hair on skin friction and contact mechanics. *Skin Research and Technology*, 15(4):417–423, 2009.