Лабораторная работа №7.

Изучение движения тела, брошенного горизонтально.

Цель: исследовать зависимость дальности полёта тела, брошенного горизонтально, от высоты, с которой оно начало движение.

Оборудование: штатив, желоб дугообразный, линейка инструментальная, шарик стальной, листы белой и копировальной бумаги.

Указания к выполнению работы.

Если бросить тело горизонтально с некоторой высоты, то его движение можно рассматривать, как движение по инерции по горизонтали и равноускоренное движение по вертикали.

По горизонтали тело движется по инерции в соответствии с первым законом Ньютона (если сопротивлением воздуха пренебречь).

По вертикали на тело действует сила тяжести, которая сообщает ему ускорение g (ускорение свободного падения).

Рассматривая перемещение тела в таких условиях как результат двух независимых движений по горизонтали и вертикали, можно установить зависимость дальности полёта S тела от высоты h, с которой его бросают. Если учесть, что скорость тела v_0 момент броска направлена горизонтально, и вертикальная составляющая начальной скорости отсутствует, то время падения t можно найти, используя основное уравнение равноускоренного движения:

$$h = \frac{gt^2}{2}$$
, откуда $t = \sqrt{\frac{2h}{g}}$.

За это же время тело успевает пролететь по горизонтали, двигаясь равномерно, расстояние $S=v_0t$. Подставив в эту формулу уже найденное время полёта, получаем искомую зависимость дальности полёта тела от высоты и скорости: $S=\sqrt{\frac{2\,h}{g}}\,(1)$.

Из полученной формулы видно, что дальность броска находится в квадратичной зависимости от высоты, с которой бросают тело.

Этот вывод можно подтвердить более строго. Пусть при броске с высоты h_1 дальность полёта составит S_1 , при броске с высоты h_2 = $4h_1$ дальность полёта составит S_2

По формуле (1):
$$S_I = \sqrt{\frac{2 h_1}{g}}$$
, а $S_2 = \sqrt{\frac{2 h_2}{g}}$

Поделив второе равенство на первое, получим:

$$rac{S2}{S1} = \sqrt{rac{h_2}{h_1}} = \sqrt{rac{4h_1}{h_1}} = 2$$
 или $S_2 = 2S_1$ (2).

Порядок выполнения работы.

- 1. Укрепите желоб на штативе так, чтобы его изогнутая часть располагалась горизонтально на высоте 10 см от поверхности стола. В месте предполагаемого падения шарика на стол поместите лист с копировальной бумагой.
- 2. Сделайте 5 запусков шарика, на листе бумаги останутся отпечатки на местах падения. Измерьте эти расстояния и найдите среднее.
- 3. Увеличьте высоту горизонтальной части желоба в четыре раза, добившись выполнения условия h_2 =4 h_1 .
- 4. Повторите серию пусков шарика от верхнего края желоба, измеряя расстояние S_2 . Вычислите среднее значение $S_{2\,cp}$.

No	<i>h</i> 1, <i>с</i> м	S ₁ , c _M	$S_{1 cp}$,	<i>h</i> 2, <i>с</i> м	S ₂ , см	$S_{2 cp}$,
опыта			см			СМ
1						
2						
3						
4						
5						

5. Проверьте, выполняется ли равенство $S_2 = 2S_I$? Укажите возможные причины расхождения результатов.