Cálculo diferencial e integral 2/Seminario 6

Nombre:

P1) Sean $D \subset \mathbb{R}^2$ un abierto $y \ f : D \to \mathbb{R}$ una función de clase $C^{(1)}$ en D tal que $D_2 f(x_0, y_0) \neq 0$ para algún $(x_0, y_0) \in D$.

- a) Probar que la función F(x,y) = (x, f(x,y)) es localmente invertible en (x_0, y_0) .
- b) Si llamamos $v_0 = f(x_0, y_0)$, probar que existe una función $y = \varphi(x)$ de clase $C^{(1)}$ en algún entorno de x_0 tal que $\varphi(x_0) = y_0$.

P2) Sea $f(x,y) = (x-2)^3 y + xe^{y-1}$. ¿En algún entorno de cuáles de estos puntos la ecuación f(x,y) = 0 determina una función $y = \varphi(x)$ de clase $C^{(1)}$?

- a) P = (1, 1).
- b) P = (0,0).
- c) P = (2, 1).

P3) Si la función u = u(x) viene definida por el sistema u = f(x, y, z), g(x, y, z) = 0, h(x, y, z) = 0, hallar u'(x).

P4) Dada la expresión $F(x+y+z, x^2+y^2+z^2) = 0$, probar (bajo las condiciones adecuadas) que

$$(y-x) + (y-z)\frac{\partial z}{\partial x} + (z-x)\frac{\partial z}{\partial y} = 0.$$

P5) a) Demostrar que el sistema

$$xz^3 + y^2u^3 = 1$$
$$2xy^3 + u^2z = 0$$

define a x e y como funciones implícitas de z y u en un entorno del punto P(x, y, z, u) = (0, 1, 0, 1).

- b) Probar que F(z,u) = (x(z,u), y(z,u)) admite una función inversa de clase $C^{(\infty)}$ en un entorno de (0,1).
- c) Calcular $\frac{\partial z}{\partial x}(0,1)$, $\frac{\partial u}{\partial x}(0,1)$.

P6) a) Probar que la función $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$x = \frac{u^2 - v^2}{\sqrt{u^2 + v^2}}, \ y = \frac{2uv}{\sqrt{u^2 + v^2}}$$

es una transformación regular en un entorno del punto (0,1).

b)	$Calcular\ la$	diferencial	de la	inversa	local	(u, v)	=	$F^{-1}(x,y)$	en un	entorno	del	punto
	(-1,0).											

- **P7)** Sea f(x, y, z) = 0. Probar que $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1$, bajo suposiciones adecuadas. ¿Cuáles son dichas hipótesis?
- **P8)** Se considera la superficie de ecuación $xye^z + zx^2 \ln y y = 0$. ¿Qué variables pueden despejarse en función de las demás en un entorno del punto (1,1,0)?
- **P9)** Dada la función $f(x, y, z) = (x^2 2xyz, 3y^2 + xz^3 2x + 6z + 3)$, probar que la ecuación f(x, y, z) = (0, 0) define a (x, y) como función implícita $h = (h_1, h_2)$ de z en un entorno del punto (0, 1, -1). Calcular $h''_1(-1)$ y $h''_2(-1)$.
- P10) a) Demostrar que el sistema

$$xz^3 + y^2u^3 = 1 (1)$$

$$2xy^3 + u^2z = 0 (2)$$

define a x e y como funciones implícitas de z y u en un entorno del punto P(x, y, z, u) = (0, 1, 0, 1).

- b) Probar que F(z,u) = (x(z,u), y(z,u)) admite una función inversa de clase $C^{(\infty)}$ en un entorno de (0,1).
- c) Calcular $\frac{\partial z}{\partial x}(0,1)$, $\frac{\partial u}{\partial x}(0,1)$.
- **P11)** Sea $f(x,y,z) = x^2 + y^2 + \alpha xz + z^3$, con $\alpha \in \mathbb{R}$. Sabiendo que el origen es un punto estacionario de f, ¿para qué valores de α la función f tiene un mínimo local en el origen?

a) Para	a cualquier o	$\alpha \in \mathbb{R}$.		

b) Para ningún
$$\alpha \in \mathbb{R}$$
.

c) Sólo si
$$\alpha \neq 0$$
.

P12) Comprobar que $f(x,y) = (1+e^y)\cos x - ye^y$ tiene infinitos máximos locales y ningún mínimo.