Turing Machines

Announcements

- Problem Set 6 due next Monday, February 25, at 12:50PM.
- Midterm graded, will be returned at end of lecture.

Are some problems inherently harder than others?

Languages recognizable by any feasible computing machine

That same drawing, to scale.

Defining Computability

- To talk about "any feasible computing machine," we'll need a formal model of computation.
- The standard automaton for this job is the Turing machine, named after Alan Turing, the "Father of Computer Science."

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

- A **Turing machine** is a finite automaton equipped with an **infinite tape** as its memory.
- The tape begins with the input to the machine written on it, surrounded by infinitely many blank cells.
- The machine has a **tape head** that can read and write a single memory cell at a time.

The Turing Machine

- A Turing machine consists of three parts:
 - A finite-state control that issues commands,
 - an infinite tape for input and scratch space, and
 - a tape head that can read and write a single tape cell.
- At each step, the Turing machine
 - Writes a symbol to the tape cell under the tape head,
 - changes state, and
 - moves the tape head to the left or to the right.

Input and Tape Alphabets

- A Turing machine has two alphabets:
 - An **input alphabet** Σ . All input strings are written in the input alphabet.
 - A tape alphabet Γ , where $\Sigma \subseteq \Gamma$. The tape alphabet contains all symbols that can be written onto the tape.
- The tape alphabet Γ can contain any number of symbols, but always contains at least one blank symbol, denoted \square . You are guaranteed $\square \notin \Sigma$.

Designing Turing Machines

- Despite their simplicity, Turing machines are very powerful computing devices.
- Today's lecture explores how to design Turing machines for various languages.

Designing Turing Machines

- Let $\Sigma = \{0, 1\}$ and consider the language $L = \{0^n 1^n \mid n \in \mathbb{N} \}$.
- We know that *L* is context-free.
- How might we build a Turing machine for it?

$$L = \{ 0^{n}1^{n} \mid n \in \mathbb{N} \}$$
... $0 \ 0 \ 1 \ 1 \ 1$

... $0 \ 1 \ 0$

A Recursive Approach

- The string ε is in L.
- The string 0w1 is in L iff w is in L.
- Any string starting with 1 is not in L.
- Any string ending with 0 is not in *L*.

. . .

... | 0 0 1 1

... 0 1 1 ...

... 0 1 1 ...

... 0 1

... 0 1 ...

... 0 1 ...

. . .

. . .

0 1 1 1

. . .

1 1

. . .

1 1

$$\square \rightarrow \square$$
, R

$$\square
ightarrow \square$$
, R $0
ightarrow 0$, R

A Second Example

Multiplication

- Let $\Sigma = \{1, \times, =\}$ and consider the language $L = \{1^m \times 1^n = 1^{mn} \mid m, n \in \mathbb{N} \}$
- This language is *not* regular (use the pumping lemma).
- This language is *not* context-free (use the pumping lemma).
- Can we build a TM for it?

Things To Watch For

- The input has to have the right format.
 - Don't allow 11==×11×, etc.
- The input must do the multiplication correctly.
 - Don't allow $11 \times 11 = 11111$, for example.
- How do we handle this?

Key Idea: Subroutines

- A **subroutine** of a Turing machine is a small set of states in the TM such that performs a small computation.
- Usually, a single entry state and a single exit state.
- Many very complicated tasks can be performed by TMs by breaking those tasks into smaller subroutines.

$$L = \{\mathbf{1}^{m} \times \mathbf{1}^{n} = \mathbf{1}^{mn} \mid m, n \in \mathbb{N} \}$$

Validating the Input

- We'll check that the input has the form 1*x1*=1*.
- Just checking relative ordering of symbols, not the quantity of the symbols.
- How might we do this?

Checking for 1*×1*=1*

... 1 1 × 1 1 = 1 1 1 1 ...

... 1 1 × 1 1 = 1 1 1 1 ...

Multiplication Via TMs

- Now that we can check that the input is valid, how do we confirm the math is right?
- **Idea**: Use a recursive formulation of multiplication!
- If m = 0, then $m \times n = 0$.
- If m > 0, then $m \times n = n + (m 1) \times n$.
- Our algorithm: Given $1^m \times 1^n = 1^p$:
 - If m = 0, accept iff p = 0.
 - Otherwise, accept iff $\mathbf{1}^{m-1} \times \mathbf{1}^n = \mathbf{1}^{p-n}$ is accepted.

Schematically

A Sketch of the Algorithm

A Sketch of the Algorithm

A Sketch of the Algorithm

A Sketch of the Algorithm

A Sketch of the Algorithm

A Sketch of the Algorithm

The Final Piece

- If m = 0, we need to check that p = 0.
- Input has form $\times 1^n = 1^p$.
- In other words, accept iff string matches the regular expression *1*=.
- Exercise: Build a TM to check this!

Turing Machines and Math

- Turing machines are capable of performing
 - Addition
 - Subtraction
 - Multiplication
 - Integer division
 - Exponentiation
 - Integer logarithms
 - Plus a whole lot more...

List Processing

 Suppose we have a list of strings represented as

```
W_1 : W_2 : \dots : W_n :
```

 What sorts of transformations can we perform on this list using a Turing machine?

Example: Take Odds

• Given a list of 2n strings

```
W_1 : W_2 : \dots : W_{2n} :
```

filter the list to get back just the odd-numbered entries:

$$W_1 : W_3 : ... : W_{2n-1} :$$

 How might we do this with a Turing machine?

... : 1:0:1:01 ...

... : 1 : 0 : 1 1 : 0 1 ...

Turing Machine Memory

- Turing machines often contain many seemingly replicated states in order to store a finite amount of extra information.
- A Turing machine can remember one of k different constants by copying its states k times, once for each possible value, and wiring those states appropriately.
- We will see this used next time.

Turing Machines and Lists

- Turing machines can perform many operations on lists:
 - Concatenate two lists.
 - Reverse a list.
 - Sort a list.
 - Find the maximum element of a list.
 - And a whole lot more!

Summary for Today

- Turing machines are powerful computing devices, but can be tricky to program.
- Three useful techniques:
 - Recursion: Try solving problems by recursively simplifying them.
 - Subroutines: Have different parts of the machine do different things.
 - Constant storage: Hold a constant amount of information in the finite-state control.

Next Time

The Power of Turing Machines

- Recognition vs. Decision.
- Multitrack Turing machines.
- Instantaneous Descriptions.
- Nondeterministic Turing machines.

This is Slide #588.

Thanks for making it this far!