TIRA: Configuring, Executing, and Disseminating Information Retrieval Experiments

Tim Gollub Benno Stein Steven Burrows Dennis Hoppe

Webis Group www.webis.de Bauhaus-Universität Weimar

TIRA: Configuring, Executing, and Disseminating Information Retrieval Experiments

Outline

- Introduction
- Architecture
- Case Studies
- Demonstration
- Summary

Quotes

 A longitudinal study has shown consistent selection of weak baselines in ad-hoc retrieval tasks leading to "improvements that don't add up".

[Armstrong et al., 2009]

□ A polarizing article describes how biases in research approaches lead to the consideration of "why most published research findings are false".

[loannidis, 2005]

□ The SWIRL 2002 meeting of 45 information retrieval researchers considered evaluation as a "perennial issue in information retrieval" and that there is a clear need for a "community evaluation service".

[Allan et al., 2012]

"We have to explore systematically the independent parameters of experiments." [Fuhr, Salton Award Speech, SIGIR 2012]

Quotes

 A longitudinal study has shown consistent selection of weak baselines in ad-hoc retrieval tasks leading to "improvements that don't add up".

[Armstrong et al., 2009]

□ A polarizing article describes how biases in research approaches lead to the consideration of "why most published research findings are false".

[loannidis, 2005]

□ The SWIRL 2002 meeting of 45 information retrieval researchers considered evaluation as a "perennial issue in information retrieval" and that there is a clear need for a "community evaluation service".

[Allan et al., 2012]

"We have to explore systematically the independent parameters of experiments." [Fuhr, Salton Award Speech, SIGIR 2012]

Quotes

□ A longitudinal study has shown consistent selection of weak baselines in ad-hoc retrieval tasks leading to "improvements that don't add up".

[Armstrong et al., 2009]

□ A polarizing article describes how biases in research approaches lead to the consideration of "why most published research findings are false".

[loannidis, 2005]

□ The SWIRL 2002 meeting of 45 information retrieval researchers considered evaluation as a "perennial issue in information retrieval" and that there is a clear need for a "community evaluation service".

[Allan et al., 2012]

"We have to explore systematically the independent parameters of experiments."
[Fuhr, Salton Award Speech, SIGIR 2012]

Quotes

□ A longitudinal study has shown consistent selection of weak baselines in ad-hoc retrieval tasks leading to "improvements that don't add up".

[Armstrong et al., 2009]

□ A polarizing article describes how biases in research approaches lead to the consideration of "why most published research findings are false".

[loannidis, 2005]

□ The SWIRL 2002 meeting of 45 information retrieval researchers considered evaluation as a "perennial issue in information retrieval" and that there is a clear need for a "community evaluation service".

[Allan et al., 2012]

"We have to explore systematically the independent parameters of experiments."
[Fuhr, Salton Award Speech, SIGIR 2012]

Survey of 108 Full Papers at SIGIR 2011

Users I	Query Analysis I	Learning To Rank	Personalization	Retrieval Models I	Social Media	Content Analysis	Web IR	Collaborative Filtering	Users II	Query Analysis II	Communities	Classification	Retrieval Models II	Image Search	Indexing	Web Queries	Collaborative Filtering	Latent Semantic Analysis	Multimedia IR	Summarization	Vertical Search	Query Suggestions	Linguistic Analysis	Clustering	Effectiveness	Multilingual IR	Efficiency	Recommender Systems	Test Collections
						1			T	T		T .		T .	T								I			ı	I		

Survey of 108 Full Papers at SIGIR 2011

Provision of experiment data

Survey of 108 Full Papers at SIGIR 2011

Provision of experiment software

Survey of 108 Full Papers at SIGIR 2011

Provision of experiment service

Incentives for Reproducible Research

- □ Increase acknowledgment for publishing experiments, data, and software.
 - Encourage a paradigm shift towards open science.
- □ Decrease the overhead of publishing experiments.
 - The concept of TIRA is to provide "experiments as a service".

Design Goals

1. Local Instantiation

- □ Enables public research on private data.
- Enables comparisons with private software.

2. Unique Resource Identifiers

- □ Enables linkage of experimental results in papers with the respective experiment service.
- □ Enables reproduction of results on the basis of the resource identifier (digital preservation).

3. Multivalued Configuration

 Enables the specification of whole experiment series.

	Parameter 1	Parameter 2	Output Directory	Performance
6	42	Method1	output-directory	0.89
	42	Method2	output-directory	0.71

Design Goals

1. Local Instantiation

- □ Enables public research on private data.
- Enables comparisons with private software.

2. Unique Resource Identifiers

- □ Enables linkage of experimental results in papers with the respective experiment service.
- □ Enables reproduction of results on the basis of the resource identifier (digital preservation).

3. Multivalued Configuration

□ Enables the specification of whole experiment series.

Method1

Method2

output-directory

output-directory

0.89

0.71

<i>13</i> [∧]	©www.webis.de 2012

6

42

42

Design Goals

1. Local Instantiation

- □ Enables public research on private data.
- Enables comparisons with private software.

2. Unique Resource Identifiers

- □ Enables linkage of experimental results in papers with the respective experiment service.
- □ Enables reproduction of results on the basis of the resource identifier (digital preservation).

3. Multival

□ Ena experiment series.

		Parameter 1	Parameter 2	Output Directory	Performance
llued Configuration	+ [42	Method1	output-directory	0.89
•		42	Method2	output-directory	0.71
ables the specification of whole					

14 [\(\)] ©www.webis.de 2012

Design Goals (continued)

4. System Independence

- □ Enables a widespread usage of the platform.
- Enables the deployment of any experiment software without internal modifications.

5. Distributed Execution

 Enables efficient computation of pending experiments.

6. Result Storage

 Enables retrieval and maintenance of raw experiment results.

... and Peer to Peer Collaboration

 Conduct shared work on the same platform.

	Parameter 1	Parameter 2	Output Directory	Performance
6	42	Method1	output-directory	0.89
	42	Method2	output-directory	0.71

Design Goals (continued)

4. System Independence

- □ Enables a widespread usage of the platform.
- Enables the deployment of any experiment software without internal modifications.

5. Distributed Execution

 Enables efficient computation of pending experiments.

6. Result Storage

□ Enables retrieval and maintenance of raw experiment results.

... and Peer to Peer Collaboration

 Conduct shared work on the same platform.

	Parameter 1	Parameter 2	Output Directory	Performance
6	42	Method1	output-directory	0.89
	42	Method2	output-directory	0.71

Design Goals (continued)

4. System Independence

- □ Enables a widespread usage of the platform.
- Enables the deployment of any experiment software without internal modifications.

5. Distributed Execution

 Enables efficient computation of pending experiments.

6. Result Storage

 Enables retrieval and maintenance of raw experiment results.

... and Peer to Peer Collaboration

 Conduct shared work on the same platform.

	Parameter 1	Parameter 2	Output Directory	Performance
6	42	Method1	output-directory	0.89
	42	Method2	output-directory	0.71

Design Goals (continued)

4. System Independence

- □ Enables a widespread usage of the platform.
- Enables the deployment of any experiment software without internal modifications.

5. Distributed Execution

 Enables efficient computation of pending experiments.

6. Result Storage

 Enables retrieval and maintenance of raw experiment results.

... and Peer to Peer Collaboration

 Conduct shared work on the same platform.

	Parameter 1	Parameter 2	Output Directory	Performance
6	42	Method1	output-directory	0.89
	42	Method2	output-directory	0.71

Design Goals: Existing Experimentation Frameworks

Tool	URL	Domain	1	2	3	4	5
evaluatIR	www.evaluatir.org	IR	×	√	√	√	X
expDB	expdb.cs.kuleuven.be	ML	×	×	X	✓	X
MLComp	www.mlcomp.org	ML	×	✓	×	✓	×
myExperiment	www.myexperiment.org	any	×	✓	✓	✓	×
NEMA	www.music-ir.org	IR	×	✓	×	✓	×
TunedIT	www.tunedit.org	ML, DM	✓	✓	\times	✓	X
Yahoo Pipes	pipes.yahoo.com	Web	×	✓	\times	\times	X

- (1) Local instantiation
- (2) Web dissemination
- (3) Platform independence
- (4) Result retrieval
- (5) Peer-to-peer collaboration

"Experiments as a Service"

"Experiments as a Service"

Front-end process

Back-end process

ProgramRecord

□ A JSON-based program deployment descriptor. Example:

```
"MAIN": "java -jar websearch.jar '$Query' $Results $Engine",
"Results":[1,10,100],
"Query":".+",
"Engine":["CHATNOIR","WIKIPEDIA","BING","GOOGLE"]
}
```

"Experiments as a Service"

Front-end process

Back-end process

ProgramRecord

□ A JSON-based program deployment descriptor. Example:

"Experiments as a Service"

Front-end process

Back-end process

ProgramRecord

□ A JSON-based program deployment descriptor. Example:

ExperimentDatabase

- □ Stores completed as well as pending experiments.
- Indexes the input parameters and provides basic retrieval functionality.

"Experiments as a Service"

TiraServer

- Retrieves experiments based on (partial) experiment query.
- Requests execution of experiment series based on query.
- □ Realizes web abstraction and creation of TIRA *networks*.

HttpClient

- □ Either a Web browser, a client program using the TIRA API, or a remote TiraServer.
- → Can access program-specific information.

"Experiments as a Service"

ProgramWrapper

- Continuously queries the ExperimentDatabase for pending experiments.
- □ Registers matching experiments with the ProgramScheduler execution queue.
- □ Updates the ExperimentDatabase with notifications and results.

ProgramScheduler

- Maintains a pool of system threads.
- □ Requests execution of the next experiments in the queue.

"Experiments as a Service"

A TIRA network:

PAN 2012

PAN is a competition on plagiarism detection hosted at CLEF. [pan@clef]

- Detailed comparison subtask:
 - "Given a pair of suspicious and source document, record all passages in the suspicious document that are plagiarized from the source document."
- □ Evaluation metric is the *plagdet* score:

$$plagdet(Det, Truth) = \frac{F_1(Det, Truth)}{\log_2(1 + granularity(Det, Truth))}$$

□ TIRA has been used for the training and evaluation phases.

PAN 2012 – Training Phase

- Participants upload detection results for a specific training set.
- From the user inputs the program execution command is generated through substitution.
- Detection results are unzipped and evaluated with an implementation of plagdet.
- □ Participants receive performance results in a result table.
- ☐ The training service served as a leaderboard during the competition.

PAN 2012 – Evaluation Phase

- TIRA servers are provided for two operating systems, Windows and Ubuntu.
- Participants submit their plagiarism detection software for deployment on the appropriate TIRA server.
- A third TIRA server controls the overall evaluation of all deployed submissions on the private test set and provides the overall results.

[tira@localhost] [tira@buw]

Others

Search Result Clustering

- □ **Task.** Group the ranked lists from search results into coherent clusters to reduce human effort. [Stein et al., 2012]
- □ **Benefit.** Fetch search results from multiple search engines for storage as static resources and reusable assets.

Simulation Data Mining

- □ **Task.** Pre-compute structural design behavior through learning from large volumes of existing simulation results. [Burrows et al., 2011]
- □ Benefit. Easily walk through large parameter spaces and avoid duplication of system simulations.

30 [∧]

Summary

Lessons Learned — Old and New

Initial versions of TIRA:

- □ Keep it simple.
- System independence is a key requirement.

TIRA at PAN 2012:

- □ Create more incentives to use TIRA as a leaderboard.
- □ The powerful parameter-substitution mechanism made it easy to get valid PAN software submissions running.

For the future:

- Automated program deployment, e.g. Google App Engine.
- □ Move from open source to open development.

Summary

- 1. A clear need exists for a community evaluation service.
- 2. An ideal solution should consider local instantiation, platform independence, result retrieval, web dissemination, and peer-to-peer collaboration.
- 3. None of the existing solutions meet all of these goals.
- 4. The TIRA solution is "Experiments as a Service", which takes a locally executable program and transforms it into a web service.
- 5. TIRA was applied at PAN 2012 with success on the detailed comparison plagiarism detection task.
- 6. TIRA will be further developed in the future for evaluation initiatives and fostering other collaborations.

Summary

- 1. A clear need exists for a community evaluation service.
- 2. An ideal solution should consider local instantiation, platform independence, result retrieval, web dissemination, and peer-to-peer collaboration.
- 3. None of the existing solutions meet all of these goals.
- 4. The TIRA solution is "Experiments as a Service", which takes a locally executable program and transforms it into a web service.
- 5. TIRA was applied at PAN 2012 with success on the detailed comparison plagiarism detection task.
- 6. TIRA will be further developed in the future for evaluation initiatives and fostering other collaborations.

Thank you!

