K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATIONS

Numerical 1: Simulate a half wave rectifier circuit with input amplitude = 200V peak, f = 50 Hz and $R_L = 120\Omega$ using LT spice. Select diode as IN4148. Use 10:1 step down transformer. Plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diode
- e) Current flowing through the circuit

Also, calculate the efficiency of the Half wave rectifier circuit.

Figure 1: Circuit 1

Solution:

Finding primary peak voltage (E_1) :-

From the figure we can see that,

$$E_1 = 200V$$

Finding secondary peak voltage (E_2) :-

The turn ratio is given as:

$$\frac{N_1}{N_2} = \frac{10}{1}$$
But
$$\frac{N_1}{N_2} = \frac{E_1}{E_2}$$

$$\frac{E_1}{E_1} = \frac{10}{10}$$

$$\therefore \frac{E_1}{E_2} = \frac{10}{1}$$

$$\therefore E_2 = \frac{E_1 \times 1}{10}$$

$$= \frac{200 \times 1}{10}$$

$$= 20V$$

Finding output voltage across resistor V_m :-

$$V_{\rm m} = E_2 - V_{\rm D}$$

= 20 - 0.7
= 19.3V

Finding output current flowing through the circuit I_m:-

$$\begin{split} \mathrm{I_m} &= \frac{V_{\,\mathrm{m}}}{R_{\mathrm{L}} + R_{\mathrm{f}}} \\ &= \frac{19.3}{120 + 0.01 \times 10^{-3}} \\ &= 160.833 \mathrm{mA} \end{split}$$

Finding output DC Power (P_{dc}) :-

$$\begin{aligned} \mathbf{P}_{\rm dc} &= \frac{(V_{\rm m})^2}{\pi \times R_{\rm L}} \\ &= \frac{(19.3)^2}{\pi \times 120} \\ &= 0.314509 \mathbf{W} \end{aligned}$$

Finding input AC Power (Pac):-

$$P_{ac} = \frac{(V_{m})^{2}}{4 \times (R_{L} + R_{F})}$$

$$= \frac{(19.3)^{2}}{4 \times (120 + 0.01 \times 10^{-3})}$$

$$= 0.776021W$$

Finding Efficiency (η) :

$$\eta = \frac{P_{\rm dc}}{P_{\rm ac}} \times 100$$
$$= \frac{0.314509}{0.776021} \times 100$$
$$= 40.5284 \%$$

PIV rating of diode = $-V_m = -19.3V$

$$\therefore$$
 Primary peak voltage = $E_1 = 200 \text{ V}$

$$\therefore$$
 Secondary peak voltage = $E_2 = 20 \text{ V}$

$$\therefore$$
 Output voltage across resistor = $V_m = 19.3 V$

$$\therefore$$
 Output current through circuit = $I_m = 160.833 \text{ mA}$

$$\therefore$$
 DC Power = $P_{dc} = 0.314509 W$

$$\therefore \ AC \ Power = P_{ac} = 0.776021 \ W$$

$$\therefore$$
 Efficiency = $\eta = 40.4284 \%$

$$\therefore$$
 PIV rating of diode = -19.3 V

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 2: Circuit Schematic for circuit 1

Figure 3: Simulated results for figure 2

Comparison of Theoretical and Simulated values:-

Parameters	Theoretical values	Simulated values
Output Peak Voltage (V _m)	19.3V	19.089531V
Output Peak Current (I _m)	160.833mA	159.08243mA
AC power	0.776021W	0.759216W
DC Power	0.314509W	0.307698W
Efficiency	40.5284%	40.5284%
PIV rating of diode	-19.3V	-19.993356V

Table 1: Numerical 1

Numerical 2: Simulate a Full wave rectifier circuit with input amplitude = 200V peak, f = 50 Hz and $R_L = 120\Omega$ using LT spice. Select diode as IN4148. Use 10:1 step down transformer. Plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diodes
- e) Current flowing through the diodes
- f) Current flowing through the circuit

Also, calculate the efficiency of the Full wave rectifier circuit.

Figure 4: Circuit 2

Solution:

Finding primary peak voltage (E_1) :-

From the figure we can see that,

$$E_1=200V$$

Finding secondary peak voltage (E_2) :-

The turn ratio is given as:

$$\frac{N_1}{N_2} = \frac{10}{1}$$

$$\text{But } \frac{N_1}{N_2} = \frac{E_1}{E_2}$$

$$\therefore \frac{E_1}{E_2} = \frac{10}{1}$$

$$\therefore E_2 = \frac{E_1 \times 1}{10}$$

$$= 200 \times 1$$

=20V

Finding output voltage across resistor V_m :-

$$V_{\rm m} = E_2 - V_{\rm D}$$

= 20 - 0.7
= 19.3V

Finding output current flowing through the circuit I_m:-

$$\begin{split} \mathrm{I_m} &= \frac{V_\mathrm{m}}{R_\mathrm{L} + R_\mathrm{f}} \\ &= \frac{19.3}{120 + 0.01 \times 10^{-3}} \\ &= 160.833 \mathrm{mA} \end{split}$$

Finding current through diodes:-

Current through diode 1 = Current through diode $2 = I_m$

Current through diode 1 = 160.833 mA

Current through diode 2 = 160.833 mA

Finding output DC Power (P_{dc}):-

$$\begin{aligned} P_{dc} &= \frac{4 \times (I_{m})^{2}}{\pi^{2}} \times R_{L} \\ &= \frac{4 \times (0.160833)^{2}}{\pi^{2}} \times 120 \\ &= 1.258032W \end{aligned}$$

Finding input AC Power (Pac):-

$$\begin{split} \mathrm{P_{ac}} &= \frac{(I_{\mathrm{m}})^2}{2} (\mathrm{R_L} + \mathrm{R_F}) \\ &= \frac{(0.160833)^2}{2} (120 + 0.01 \times 10^{-3}) \\ &= 1.552035 \mathrm{W} \end{split}$$

Finding Efficiency (η) :-

$$\eta = \frac{P_{\rm dc}}{P_{\rm ac}} \times 100$$

$$= \frac{1.258032}{1.552035} \times 100$$

$$= 81.0569 \%$$

When the diodes are not conducting, the voltage across the diodes is $-2V_m$. This is because the applied reverse voltage (V_m) and voltage across R_L (V_m) get developed across the resistor. So net voltage is $-2V_m$.

PIV rating of Diode 1 =
$$-2V_m = -2 \times 19.3V = -38.6V$$

PIV rating of Diode 2 = $-2V_m = -2 \times 19.3V = -38.6V$

- \therefore Primary peak voltage = $E_1 = 200 \text{ V}$
- \therefore Secondary peak voltage = $E_2 = 20 \text{ V}$
- \therefore Output voltage across resistor = $V_m = 19.3 V$

- \therefore Output current through circuit = $I_m = 160.833 \text{ mA}$
- \therefore Current through diode $1 = I_m = 160.833 \text{ mA}$
- \therefore Current through diode 2 = $I_m = 160.833 \text{ mA}$
- \therefore DC Power = $P_{dc} = 1.258032 W$
- \therefore AC Power = $P_{ac} = 1.552035 \text{ W}$
- \therefore Efficiency = $\eta = 81.0569 \%$
- \therefore PIV rating of diode 1 = -38.6 V
- \therefore PIV rating of diode 2 = -38.6 V

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 5: Circuit Schematic for circuit 2

Figure 6: Simulated results for figure 5

Comparison of Theoretical and Simulated values:-

Parameters	Theoretical values	Simulated values
Output Peak Voltage (V _m)	19.3V	19.089531V
Output Peak Current (I _m)	160.833mA	159.07535 mA
AC power	1.552035W	1.518298W
DC Power	1.258032W	1.230686W
Efficiency	81.0569%	81.0569%
PIV rating of diode 1	-38.6V	-39.082372V
PIV rating of diode 2	-38.6V	-39.08354V

Table 2: Numerical 2