Cohomology of $\mathrm{SL}_2(\mathbb{Z})$ and modular forms

Let $N \ge 1$ be a fixed positive integer.

$$\Gamma_0(N) := \left\{ egin{bmatrix} a & b \ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \colon c \equiv 0 \, (N)
ight\}$$

$$\Gamma_1(N) := \left\{ egin{bmatrix} a & b \ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon c \equiv a-1 \equiv d-1 \equiv 0 \, (N)
ight\}$$

These are called congruence subgroups of level N.

Proposition

$$\Gamma_1(N) \subset \Gamma_0(N)$$
 is a normal subgroup.

It is convenient to interprete congruence subgroups in terms of lattices. Consider two dimensional free abelian group

$$\Lambda = \mathbb{Z} \oplus \mathbb{Z}$$

viewed as a lattice in \mathbb{R}^2 , and a sublattice

$$\Lambda' \subset \Lambda$$

such that

$$\Lambda/\Lambda' \simeq \mathbb{Z}/N\mathbb{Z}$$
.

Regard elements in \mathbb{R}^2 as column vectors. Let $\mathrm{SL}_2(\mathbb{Z})$ act on \mathbb{R}^2 on the left. Then, $\mathrm{SL}_2(\mathbb{Z})$ acts on the set of all such sublattices as well. Take a standard one $\Lambda_N = \{(x,y) \in \mathbb{Z}^2 \colon y \equiv 0 \, (N)\}.$

Lemma

 $\Gamma_0(N)$ is the stabilizer of Λ_N .

Since $\Gamma_0(N)$ fixes Λ_N , we have an action

$$\Gamma_0(N) \times \Lambda/\Lambda_N \to \Lambda/\Lambda_N$$

or a homomorphism

$$\chi \colon \Gamma_0(N) \to \operatorname{Aut}(\Lambda/\Lambda_N) = (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

Lemma

 $\Gamma_1(N)$ is the kernel of χ .

Lemma

 χ is surjective.

Proof.

Let $k \in \mathbb{Z}$ with (N, k) = 1. Suffices to solve ad - bc = 1 with constraints $d \equiv k$ (N) and $c \equiv 0$ (N). Reduce it to solving xN + bk = 1, which is possible whenever (N, k) = 1.

A digression with $PSL_2(\mathbb{Z})$

Recall that

$$\operatorname{PSL}_2(\mathbb{Z}) = \operatorname{SL}_2(\mathbb{Z})/\{\pm 1\}.$$

Lemma

If $N \geq 3$, $\Gamma_1(N) \to \mathrm{PSL}_2(\mathbb{Z})$ is injective.

fractional linear transformation

Let \mathfrak{H} be the upper half plane:

$$\mathfrak{H} = \{ \tau \in \mathbb{C} \colon \tau = x + iy, y > 0 \}$$

Then, $\mathrm{PSL}_2(\mathbb{R})$ acts on $\mathfrak H$ as

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}.$$

This is also known as Möbius transformation.

The action can be extended to $\mathbb{P}^1(\mathbb{R}) = \mathbb{R} \cup \{\infty\}$.

hyperbolic, parabolic, elliptic elements elements

Nontrivial elements in $\mathrm{PSL}_2(\mathbb{R})$ fall into three types; hyperbolic, parabolic, and elliptic.

Definition

Let $\gamma \in \mathrm{PSL}_2(\mathbb{R})$ and $t = \mathrm{Tr}(\gamma)$. Then γ is

- 1. hyperbolic if t > 2
- 2. parabolic if t = 2
- 3. elliptic if t < 2.

Proposition

An element $\gamma \gamma \in \mathrm{PSL}_2(\mathbb{R})$ is

- 1. hyperbolic iff it has two fixed points in $\mathbb{P}^1(\mathbb{R})$
- 2. parabolic iff it has exactly one fixed point in $\mathbb{P}^1(\mathbb{R})$
- 3. elliptic iff it has exactly one fixed point in \mathfrak{H} .

Definition

Let $\Gamma \subset \mathrm{PSL}_2(\mathbb{R})$ be a discrete subgroup. $x \in \mathbb{P}^1(\mathbb{R})$ is a cusp if x is fixed by a parabolic element of Γ .

Proposition

Cusps of $\operatorname{PSL}_2(\mathbb{Z})$ are $\mathbb{P}^1(\mathbb{Q})$.

Proposition

A parabolic element in $PSL_2(\mathbb{R})$ is conjugate to a unipotent matrix.

Proposition

Let $\Gamma' \subset \Gamma$ be a subgroup of finite index. Then, Γ and Γ' have the same set of cusps.

Corollary

For all $N \ge 1$ and i = 0, 1, the cusps of $\Gamma_i(N)$ is $\mathbb{P}^1(\mathbb{Q})$.

Let $f(\tau) \colon \mathfrak{H} \to \mathbb{C}$ be a holomorphic function. Turn in into a holomorphic function g(q) on the punctured unit disc

$$\{q \in \mathbb{C} \colon 0 < |q| < 1\}$$

by putting $q = e^{2\pi i \tau}$.

Definition

 $f(\tau)$ is holomorphic at infinity if g(q) can be extended to the whole unit disc. One can similarly define holomorphicity at any given point in $\mathbb{P}^1(\mathbb{R})$.

Definition

Let $\Gamma = \Gamma_1(N)$. Let $k \in Z$. A holomorphic function $f(\tau) \colon \mathfrak{H} \to \mathbb{C}$ is a modular form of weight k if

- 1. $f(\tau)$ is holomorphic at all cusps
- 2. $f(\gamma \tau)(c\tau + d)^{-k} = f(\tau)$ for all $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$.

If, in addition, $f(\tau)$ vanishes at all cusps, then $f(\tau)$ is called cuspidal, or a cusp form.

k is called the weight of $f(\tau)$.

Proposition

If the weight is even, say 2k, then $f(\tau)(d\tau)^{\otimes k}$ is invariant.

Proof.

Use
$$d\gamma \tau$$
) = $d\tau (c\tau + d)^{-2}$.

modular forms and cohomology of $\mathrm{SL}_2(\mathbb{Z})$

We would like to connect modular forms and cohomology of $\mathrm{SL}_2(\mathbb{Z})$. Recall the Shapiro lemma:

$$H^{\bullet}(\mathrm{SL}_2(\mathbb{Z}), \mathrm{Ind}_{\Gamma_1 N}^{\mathrm{SL}_2(\mathbb{Z})} M) = H^{\bullet}(\Gamma_1(N), M).$$

In other words, cohomology groups of $\mathrm{SL}_2(\mathbb{Z})$ subsumes those of $\Gamma_1(N)$ for all N.

Let $S_k(\Gamma_1(N))$ be the space of all holomorphic cusp forms for the group $\Gamma_1(N)$. It is a vector space over \mathbb{C} .

Consider the special case by taking k = 2. Define the period map

$$S_2(\Gamma_1(N)) \to H^1(\Gamma_1(N), \mathbb{C})$$

by the formula

$$f(\tau) \mapsto \left(P_f \colon \gamma \mapsto \int_{\infty}^{\gamma \infty} f(\tau) d\tau\right)$$

Proposition

 P_f is a homomorphism.

Define

$$H^1_{\mathrm{cusp}}(\Gamma_1(N),\mathbb{C}) = \ker \left(H^1(\Gamma_1(N),\mathbb{C}) o igoplus_{P \in \mathbb{P}^1(\mathbb{Q})} H^1(\Gamma_P,\mathbb{C})
ight)$$

where the sum is taken over all cusps P with stabilizer Γ_P .

Proposition

The period map takes values in $H^1_{\text{cusp}}(\Gamma_1(N), \mathbb{C})$.

In fact, we have

$$H^1_{\mathrm{cusp}}(\Gamma_1(N),\mathbb{C}) = \bigoplus_{P \in \Gamma \setminus \mathbb{P}^1(\mathbb{O})} H^1(\Gamma_P,\mathbb{C}).$$