Computabilità e Algoritmi - 24 Gennaio 2019

Soluzioni Formali

Esercizio 1

Problema: Dati due insiemi A, B $\subseteq \mathbb{N}$ definire la nozione di riduzione A \leq _m B e dimostrare che se A \leq _m B e A non è ricorsivo, allora B non è ricorsivo. Può esistere un insieme A $\subseteq \mathbb{N}$ tale che A \leq _m A? Fornire un esempio o dimostrare la non esistenza di un tale insieme.

Soluzione:

Definizione di riduzione: Dati A, B $\subseteq \mathbb{N}$, diciamo che A è many-one riducibile a B (A \leq _m B) se esiste una funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile tale che: $\forall x \in \mathbb{N}$: $x \in A \iff f(x) \in B$

Dimostrazione della proprietà: Se A ≤_m B e A non è ricorsivo, allora B non è ricorsivo.

Dimostrazione per contraposizione: Supponiamo che B sia ricorsivo. Allora χ_B è calcolabile. Poiché A \leq_m B, esiste $f: \mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\forall x: x \in A \iff f(x) \in B$.

Definiamo la funzione caratteristica di A:

$$\chi_A(x) = \chi_B(f(x))$$

Poiché f è calcolabile e χ_B è calcolabile, per composizione χ_A è calcolabile.

Quindi A è ricorsivo, contraddicendo l'ipotesi che A non è ricorsivo.

Pertanto, se A non è ricorsivo, allora B non può essere ricorsivo. ■

Esistenza di A tale che A ≤_m A:

Risposta: Sì, esistono tali insiemi.

Esempio 1: A = \mathbb{N} La funzione identità f(x) = x è totale calcolabile e: $\forall x \in \mathbb{N}$: $x \in \mathbb{N} \iff f(x) = x \in \mathbb{N}$ Quindi $\mathbb{N} \leq_m \mathbb{N}$.

Esempio 2: A = \emptyset La funzione costante f(x) = 0 (o qualsiasi valore) è totale calcolabile e: $\forall x \in \mathbb{N}$: $x \in \emptyset$ \iff falso \iff f(x) $\in \emptyset$ Quindi $\emptyset \leq_m \emptyset$.

Esempio 3: A = $\{x \in \mathbb{N} : x \text{ è pari}\}\$ La funzione f(x) = 2x è totale calcolabile e:

- Se x è pari, allora f(x) = 2x è pari
- Se x è dispari, allora f(x) = 2x è pari, ma x ∉ A

Questo non funziona. Consideriamo invece f(x) = x:

 $\forall x: x \in A \iff x \in A$, quindi $A \leq_m A$.

Conclusione: Esistono insiemi A tali che A ≤_m A. ■

Esercizio 2

Problema: Si dimostri che l'insieme $F = \{\theta \mid \theta : \mathbb{N} \to \mathbb{N} \land dom(\theta) \text{ finito}\}\ delle funzioni unarie a dominio finito è numerabile.$

Soluzione:

Strategia: Mostriamo che F è numerabile costruendo una biiezione con un sottoinsieme numerabile di \mathbb{N} .

Codifica delle funzioni finite: Ogni funzione finita θ con dom $(\theta) = \{x_1, x_2, ..., x_k\}$ e $\theta(x_i) = y_i$ può essere rappresentata come insieme finito di coppie: $\theta = \{(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)\}$

Passo 1: Codifica di coppie Utilizziamo la funzione di accoppiamento di Cantor π : $\mathbb{N}^2 \to \mathbb{N}$: $\pi(x,y) = ((x+y)(x+y+1))/2 + y$

Questa funzione è biettiva e calcolabile.

Passo 2: Codifica di insiemi finiti di numeri Per un insieme finito $S = \{n_1, n_2, ..., n_k\}$ con $n_1 < n_2 < ... < n_k$ definiamo: code(S) = $2^n_1 + 2^n_2 + ... + 2^n_k$

Passo 3: Codifica completa Per una funzione finita $\theta = \{(x_1, y_1), ..., (x_k, y_k)\}$:

- 1. Calcoliamo $c_i = \pi(x_i, y_i)$ per ogni coppia
- 2. Ordiniamo: $c_1 < c_2 < ... < c_k$
- 3. Definiamo encode(θ) = $2^c_1 + 2^c_2 + ... + 2^c_k$

Verifica che è bijezione:

Iniettività: Se $\theta_1 \neq \theta_2$, allora esistono coppie diverse, quindi codifiche diverse in virtù dell'iniettività di π e della rappresentazione binaria univoca.

Suriettività su immagine: Ogni numero naturale della forma $2^c_1 + ... + 2^c_k$ corrisponde a una funzione finita ottenibile decodificando.

Alternativa più diretta: Ogni funzione finita θ può essere vista come lista finita di coppie (x_i, y_i) . Il numero di funzioni finite con dominio di cardinalità esattamente k è numerabile per ogni k fissato. Poiché $F = \bigcup_{k \geq 0} F_k$ dove F_k sono le funzioni con $|dom(\theta)| = k$, e l'unione numerabile di insiemi numerabili è numerabile, F è numerabile.

Conclusione: L'insieme F delle funzioni unarie a dominio finito è numerabile. ■

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid W_x \subseteq E_x\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che il dominio di φ_x è contenuto nel codominio di φ_x .

Analisi della struttura:

A è un insieme saturo, poiché può essere espresso come A = $\{x \in \mathbb{N} : \phi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \in \mathcal{C} : dom(f) \subseteq cod(f)\}$.

Ricorsività:

Per il teorema di Rice, poiché A è saturo, dobbiamo verificare se $A = \emptyset$, \mathbb{N} o né l'uno né l'altro.

- A $\neq \emptyset$: La funzione identità id(x) = x ha dom(id) = cod(id) = \mathbb{N} , quindi un suo indice appartiene ad A
- A ≠ N: La funzione costante f(x) = 0 ha dom(f) = N e cod(f) = {0}, quindi dom(f) ⊄ cod(f), dunque un suo indice non appartiene ad A

Per il teorema di Rice, A non è ricorsivo.

Enumerabilità ricorsiva di A:

A è r.e. Possiamo scrivere la funzione semicaratteristica:

```
sc_A(x) = 1(\mu t. \forall u \le t. [H(x,u,t) \rightarrow \exists v \le t. \exists w \le t. (S(x,v,u,w) \land w \le t)])
```

Questa verifica che per ogni u nel dominio di φ_x (entro tempo t), esiste v tale che $\varphi_x(v) = u$.

Enumerabilità ricorsiva di Ā:

À non è r.e. Utilizziamo il teorema di Rice-Shapiro.

Consideriamo la funzione costante f(x) = 0. Abbiamo $f \notin \mathcal{A}$ perché dom $(f) = \mathbb{N} \not\subset \{0\} = \operatorname{cod}(f)$.

Consideriamo la funzione finita $\theta(0) = 0$, ↑ altrimenti. Allora:

- $\theta \subseteq f$ (ogni coppia in θ è anche in f quando estesa)
- $dom(\theta) = \{0\} \subseteq \{0\} = cod(\theta)$, quindi $\theta \in \mathcal{A}$

Per Rice-Shapiro, esiste $f \notin A$ tale che $\exists \theta \subseteq f$ finita con $\theta \in A$, quindi \bar{A} non \hat{e} r.e.

Conclusione: A non è ricorsivo, A è r.e., Ā non è r.e. ■

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \mid \phi_-x(x) \downarrow \land \phi_-x(x) \text{ dispari}\}$, ovvero dire se $B \in \bar{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B contiene gli indici x tali che $\varphi_x(x)$ converge e restituisce un numero dispari.

Ricorsività:

B non è ricorsivo. Dimostriamo K ≤_m B.

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(y,z) = \{
1 se y \in K \land z = y
1 altrimenti
}
```

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(y)}(z) = g(y,z)$.

Verifica della riduzione:

• Se $y \in K$, allora $\phi_{s(y)}(s(y)) \uparrow (perché g(y,s(y)) richiede <math>z = y$, ma s(y) potrebbe essere $\neq y$

Modifichiamo l'approccio. Definiamo invece h: $\mathbb{N}^2 \to \mathbb{N}$:

```
h(y,z) = \{
1 se y \in K

† altrimenti
}
```

Per il teorema smn, esiste t: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{t}(y)(z) = h(y,z)$.

- Se $y \in K$, allora $\phi_{t}(y)(t(y)) = 1$ (dispari), quindi $t(y) \in B$
- Se y ∉ K, allora φ_{t(y)}(t(y)) ↑, quindi t(y) ∉ B

Pertanto K ≤_m B, e poiché K non è ricorsivo. B non è ricorsivo.

Enumerabilità ricorsiva di B:

B è r.e. Possiamo scrivere la funzione semicaratteristica:

```
sc_B(x) = 1(\mu t. H(x,x,t) \land rm(2,U(\mu z \le t. S(x,x,Output(x,x,t),z))) = 1)
```

dove Output(x,x,t) rappresenta l'output di $\varphi_x(x)$ se converge entro t passi.

Enumerabilità ricorsiva di B:

```
\bar{B} = \{x \mid \phi_x(x) \uparrow \lor (\phi_x(x) \downarrow \land \phi_x(x) \text{ pari})\}
```

B non è r.e. Se lo fosse, insieme a B essendo r.e., avremmo che B sarebbe ricorsivo, contraddicendo quanto dimostrato.

Conclusione: B non è ricorsivo, B è r.e., B non è r.e. ■

Esercizio 5

Problema: Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $x \in \mathbb{N}$ tale che $|W_x| = x$.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e $\in \mathbb{N}$ tale che $\phi_e = \phi_f(e)$.

Dimostrazione dell'esistenza di x tale che $|W_x| = x$:

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

La funzione g è calcolabile:

```
g(n,y) = (y + 1) \cdot sg(n - y)
```

dove sg è la funzione sign (sg(0) = 0, sg(x) = 1 per x > 0).

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(n)}(y) = g(n,y)$.

Osserviamo che:

- $W_{s(n)} = \{0, 1, 2, ..., n-1\}$
- $|W_{s(n)}| = n$

Per il Secondo Teorema di Ricorsione applicato alla funzione s, esiste $e \in \mathbb{N}$ tale che:

$$\varphi_e = \varphi_{s(e)}$$

Da questa uguaglianza:

- $W_e = W_{s(e)} = \{0, 1, 2, ..., e-1\}$
- |W_e| = e

Quindi abbiamo trovato x = e tale che $|W_x| = x$.

Conclusione: Esiste $x \in \mathbb{N}$ tale che $|W_x| = x$.