

Grelha de respostas certas

Versão A

T 7	~	\mathbf{T}
V/P	rsan	R

Grupo 1			Grupo 2			Grupo 1				Grupo 2									
a)	b)	c)	d)	e)	a)	b)	c)	d)	e)	a)	b)	c)	d)	e)	a)	b)	c)	d)	e)
A	В	F	С	F	V	D	D	A	V	В	A	F	D	F	V	В	D	С	F

Tópicos de resolução da pergunta de desenvolvimento

(a) $H_0: X \sim E(0, 10)$ vs $H_1: X \nsim E(0, 10)$

Estatística de teste:

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \underset{sob \ H_{0}}{\overset{a}{\sim}} \chi_{k-p-1}^{2} \equiv \chi_{6-0-1}^{2} \equiv \chi_{5}^{2}$$

Vamos determinar os valores de O_i , p_i e $E_i = n \times p_i = 60 \times p_i$.

	Classe	O_i	p_i	E_i	
1]0,3]	11	0.2592	15.552	
2]3,6]	10	0.192	11.52	
3]6,9]	10	0.1422	8.532	
4]9,15]	11	0.1835	11.01	
5]15,24]	11	0.1324	7.944	
6]24,36]	6	0.0634	3.804 < 5	
7	$]36,\infty[$	1	0.0273	1.638 < 5	

		Classe	O_i	p_i	E_i
	1]0,3]	11	0.2592	15.552
	2]3,6]	10	0.192	11.52
>	3]6,9]	10	0.1422	8.532
	4]9,15]	11	0.1835	11.01
	5]15,24]	11	0.1324	7.944
	6	$]24,\infty]$	7	0.0907	5.442

$$p_1 = P(X \le 3|H_0) = F(3) = 0.2592$$

$$p_2 = P(3 < X \le 6)|H_0| = P(X \le 6) - P(X \le 3) = F(6) - F(3) = 0.4512 - 0.2592 = 0.192$$

$$p_3 = P(6 < X \le 9)|H_0| = P(X \le 9) - P(X \le 6) = F(9) - F(6) = 0.1422$$

$$p_4 = P(9 < X \le 15)|H_0| = P(X \le 15) - P(X \le 9) = F(15) - F(9) = 0.1835$$

$$p_5 = P(15 < X \le 24)|H_0| = P(X \le 24) - P(X \le 15) = F(24) - F(15) = 0.1324$$

$$p_5 = P(15 < X \le 24)|H_0) = P(X \le 24) - P(X \le 15) = F(24) - F(15) = 0.1324$$

$$p_6 = P(24 < X \le 36)|H_0) = P(X \le 36) - P(X \le 24) = F(36) - F(24) = 0.0634$$

$$p_7 = P(X > 36)|H_0| = 1 - P(X \le 36) = 1 - F(36) = 0.0273$$

Assim, $x_{obs}^2 = 3.41$

Para $\alpha = 10\%$, a região de rejeição do teste é: $R_{0.1} = |\chi_{5:0.1}^2, +\infty| = |9.24, +\infty|$

Decisão: Como x_{obs}^2 não pertence $R_{0.1}$ não rejeitamos, ao nível de significância de 10% a hipótese da população ter distribuição E(0,10).

(b)
$$p - value = P(X^2 > x_{obs}^2 | H_0) = P(X_{(5)}^2 > 3.00) = 0.7$$