Optimal DNN Primitive Selection with Partitioned Boolean Quadratic Programming

Andrew Anderson, David Gregg
ACM Code generation and Optimization (CGO) Conference

Presenter: Constant (Sang-Soo) Park

http://esoc.hanyang.ac.kr/people/sangsoo_park/index.html February 02, 2020

Contents of presentation

- Introduction and Background
 - Fast acceleration, Acceleration HW, Convolutional neural network (CNN)
 - Convolution shapes, Primitives (DNN convolution algorithm)
- Key contribution: Primitive selection
 - Partitioned Boolean quadratic assignment problem (PBQP) based selection
- Performance
- Conclusion and Discussion

Introduction: Fast Acceleration

Fast inference or training

- Inference: Image classification, Acoustic speech recognition
- Training: ImageNet, TIMIT learning, Etc.
- The goal of fast acceleration is to classify or learn data quickly
- Target: Convolution or Fully-connected layer

Neural network models in deep learning framework^[1]

Introduction: Acceleration HW

From processor to dedicated accelerator

- Processor: CPU (x86, ARM, RISC-V), GPU (NVIDIA, AMD), DSP (CEVA, Qualcomm)
- Dedicated accelerator: ASIC/FPGA based accelerator

CPU: Ryzen Threadripper

GPU: VOTLA, TURING, PASCAL

FPGA: ALVEO

Introduction: Convolutional NN (CNN)

Convolution: Key operation in CNN

- Multiply and Accumulate (MAC) operation between feature map (inFmap) and kernel (cKernel)
- Total number of MAC operation is <u>O(Z×Z×D×K²×T)</u>

Graph of convolution layer^[2]

```
for (t=0; t<T; t++) \{ \\ for (r=0; r<Z; r=r+S) \{ \\ for (c=0; c<Z; c=c+S) \{ \\ for (d=0; c<D; d++) \{ \\ for (i=0; i\le K; i++) \{ \\ for (j=0; j<K; j++) \{ \\ for (j=0; j+-) \{ for (j=0;
```

Pseudo code of convolution layer^[2]

Neural Acceleration Study

- Definition: Belonging to a very early period (원시적인)
 - In CNN, method to implement one of each of the types of layer in DNN
 - Ex) Convolution layer in CNN, Recurrent layer in GRU/LSTM

Hierarchy of DNN Primitives

Background: Convolution shapes

- Layer used in convolutional neural network
 - H×W convolution (Height×Width×Depth), 1×1 convolution (1×1×Depth)
 - Different optimal primitives in each layer

1×1 convolution layer

Multi Channel Multi Kernel (MCMK)

- The most intuitive way to implement a convolutional layer
- Implemented using multiple For loop statement (6~7 levels)
- Most inefficient primitive in data locality

Graph of convolution layer^[2]

```
for (r=0; r< Z; r=r+S) {
                                     // row index of feature map
 for (c=0; c< Z; c=c+S) {
                                     // col index of feature map
  for (d=0; c< D; d++) {
                                     // depth index of feature map
   for (i=0; i < K; i++) {
                                     // row index of kernel
    for (j=0; j < K; j++) {
                                     // col index of kernel
     outFmap[t]/r]/c]+=inFmap[d]/r+i]/c+j]*cKernel[t]/d][i][j]
   }}}
  outFmap[t][r][c] = activation(outFmap[t][r][c])}}
```

// type index of kernel

for (t=0; t< T; t++) {

General matrix multiplication (GEMM)

- Transforming convolution operation to matrix multiplication
- Transformation processor for matrix multiplication, results obtained through matrix multiplication
- Advantages of data locality over MCMK

Image to column/row (Im2col/row)

- Converting feature map into patches to math the kernel size
- Ex) Kernel width × height × depth × N (N is # of patches)
- Appropriate for H×W convolution layer (data locality for horizonal/vertical orientations)
- Im2col's transposed image to row (Im2row) is mainly used

Kernel to column/row (Kn2col/row)^[3]

- Converting convolution kernel into patches to math 1×1 convolution
- Ex) Kernel width (5) \times height (5) \times depth (3) -> width (1) \times height (1) \times depth (3) \times patches (25)
- Appropriate for 1×1 convolution layer (data locality for channel orientations)
- Kn2col's transposed image to row (Kn2row) is mainly used

Computation process of Kn2col (Left), GEMM in Kn2col (Right)

Strassen, Winograd matrix multiplication^[4]

- Multiplication requires more overhead than adder (Latency, Power consumption)
- To compute 2×3, 3×1 matrix multiplication
- Naïve (Mul: 6, Add: 4), Winograd (Mul: 4, Add: 8, Shift: 2)

$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$

$$m_1 = (d_0 - d_2)g_0 \quad m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}$$

$$m_4 = (d_1 - d_3)g_2 \quad m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$$

Equation of Winograd matrix multiplication

Key contribution: Why selection?

Different optimal primitives in each layer^[5]

- Optimal primitives depending on device, layer type
- Heuristic primitive selection running neural network in cuDNN

Optimal primitives in AlexNet

Key contribution: Primitive selection

Select the primitive with the lowest cost (Latency)

- Set the target device and choose the lowest cost primitive
- Pre-computed cost affected by C, H, W, δ, K, M
- Cost incurred between primitives using Partitioned Boolean Quadratic Programming (PBQP)
- Ex) data format conversion between primitives

Performance: Intel Haswell

PBQP-solver on x86 device

- Primitive selection on Caffe v1.0
- BLAS: OpenBLAS, MKL-DNN
- Single thread (MKL-DNN is Slightly better in AlexNet, GoogLeNet, not in VGG)
- Multi thread (PBQP is always best)

SUM2D

711.75

1401

712.25

1400.25

L.OPT

231.75

465.25

186

261.5

PBQP

100

249

44.25

123.5

CAFFE

419.565

1267.07

286.518

919.196

Network

(S) AlexNet

(S) GoogleNet

(M) GoogleNet

(M) AlexNet

Figure 6. Multi-Threaded: Comparison of approaches with PBQP selection on Intel Haswell

Performance: ARM Cortex-A57

PBQP-solver on ARM device

- Primitive selection on Caffe v1.0
- BLAS: OpenBLAS, ARM's ComputeLibrary

Network	SUM2D	L.OPT	PBQP	CAFFE
(S) AlexNet	2369.5	744.25	461	2341.09
(S) GoogleNet	4544.75	1695.25	1025	5782.4
(M) AlexNet	2432.5	639.25	294	1342.62
(M) GoogleNet	4509.75	919.25	547.5	3707.91

(a) Single-Threaded Comparison of approaches with PBQP selection on **ARM Cortex-A57**

(b) Multi-Threaded Comparison of approaches with PBQP selection on **ARM Cortex-A57**

Conclusion and Discussion

- Extremely effective to select the optimal primitives
 - However, it is effective only pre-computed device
 - Similar concept (cuDNN, Tensorflow XLA)

Conclusion and Discussion: cuDNN

Don't trust the primitive selection in cuDNN

- cuDNN finds the most optimal primitive while the convolution is calculated
- If the latency is odd, check the primitive!

4.78. cudnnGetConvolutionBackwardDataAlgorithm

```
cudnnStatus t cudnnGetConvolutionBackwardDataAlgorithm(
   cudnnHandle t
                                           handle,
   const cudnnFilterDescriptor t
                                           wDesc,
   const cudnnTensorDescriptor t
                                           dyDesc,
   const cudnnConvolutionDescriptor t
                                           convDesc,
   const cudnnTensorDescriptor t
                                           dxDesc.
   cudnnConvolutionBwdDataPreference t
                                           preference,
                                           memoryLimitInByte
   cudnnConvolutionBwdDataAlgo t
                                           *algo)⊔
```

This function serves as a heuristic for obtaining the best suited algorithm of given layer specifications. Based on the input preference, this function with fastest algorithm within a given memory limit. For an exhaustive search of cudnnFindConvolutionBackwardDataAlgorithm.

For the following terms, the short-form versions shown in the paranthesis are used in the table below, for brevity:

- CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM (_IMPLICIT_GEMM)
- CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM (_IMPLICIT_PRECOMP_GEMM)
- CUDNN_CONVOLUTION_FWD_ALGO_GEMM (_GEMM)
- CUDNN_CONVOLUTION_FWD_ALGO_DIRECT (_DIRECT)
- CUDNN_CONVOLUTION_FWD_ALGO_FFT (_FFT)
- CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING (_FFT_TILING)
- CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD (_WINOGRAD)
- CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED (_WINOGRAD_NONFUSED)
- CUDNN_TENSOR_NCHW (_NCHW)
- CUDNN_TENSOR_NHWC (_NHWC)
- CUDNN_TENSOR_NCHW_VECT_C (_NCHW_VECT_C)

Thank you