Probeklausur: Lösungsvorschläge

Hinweise zur Klausur:

- Die Klausur findet am Dienstag, 23.02. 2010 um 9 Uhr in RUD26, 0'115 statt.
- Voraussetzung zur Teilnahme ist der Übungsschein.
- Die Bearbeitungszeit der Aufgaben wird 120 Minuten betragen.
- Hilfsmittel sind nicht zugelassen.
- Bitte bringen Sie zur Klausur Ihren Studenten- und einen Lichtbildausweis (Personalausweis, Reisepass oder Führerschein) mit.

Hinweis zur Probeklausur:

• Für die Probeklausur sollten Sie von einer Bearbeitungszeit von 180 Minuten ausgehen (d. h. 1 Punkt entspricht 1 Minute).

Aufgabe 1 Betrachten Sie den nebenstehenden NFA N.

30 Punkte

(a) Welche der Wörter ε , aa, abb und bbb gehören zu L(N)?

Lösung:

 $\varepsilon, bbb \in L(N)$ und $aa, abb \notin L(N)$.

(b) Wandeln Sie N mit der Potenzmengenkonstruktion in einen DFA M um.

Lösung:

(c) Minimieren Sie M mit dem Verfahren aus der Vorlesung.

Lösung:

In der folgenden Tabelle sind für trennbare Zustände p,q jeweils Wörter aus $L_p\Delta L_q$ angegeben. Die Länge entspricht der Runde des Algorithmus, in der die Inäquivalenz festgestellt wird.

$\{2,5\}$	a						
$\{1, 3\}$	abb	a					
$\{6\}$		a	abb				
$\{5\}$	\overline{a}		a	a			
$\{4\}$	b	b	b	b	b		
{2}	a	bb	a	a	bb	a	
Ø	ε	ε	ε	ε	ε	ε	ε
	$\{4,\!6\}$	$\{2,5\}$	$\{1,3\}$	{6 }	{5}	{4}	{2}

Wir verschmelzen die Zustände $\{4,6\}$ und $\{6\}$ zu $\{\overline{6}\}$ und $\{2,5\}$ und $\{5\}$ zu $\{\overline{5}\}$:

(d) Geben Sie einen möglichst kurzen regulären Ausdruck für L(N) an.

Lösung:

$$L(N) = L(\varepsilon \mid a(ba)^*(b \mid \varepsilon) \mid b(b \mid ab)^*(a \mid \varepsilon))$$

= $L(((ab)^* \mid b(b \mid ab)^*) (a \mid \varepsilon))$

Aufgabe 2

 $25\ Punkte$

Gegeben ist die Grammatik $G=(\{S\},\{1,+,\cdot,(,)\},P,S)$ mit den Produktionen

$$P: S \to (S+S), S \to S \cdot S, S \to 1.$$

(a) Geben Sie einen PDA für die Sprache L = L(G) an.

Lösung:

PDA $M = (\{q\}, \{1, +, \cdot, (,)\}, \{1, +, \cdot, (,), S\}, \delta, q, S)$, wobei δ definiert ist mit:

$$q\epsilon S \to q(S+S)$$
 $q\epsilon S \to qS \cdot S$ $q\epsilon S \to q1$ $q((\to q\epsilon \qquad q)) \to q\epsilon \qquad q \cdot \cdot \to q\epsilon$ $q++\to q\epsilon \qquad q11 \to q\epsilon$

(b) Zeigen Sie mit dem Pumpinglemma, dass L nicht regulär ist.

Lösung:

Betrachten wir unter der Annahme, dass eine Pumpingzahl l existiert, das Wort

$$\underbrace{(\cdots (1+1)\cdots +1)}_{l\text{-mal}},$$

dann lassen sich aufgrund der Bedingungen $|uv| \leq l$ und $v \neq \epsilon$ nur Zerlegungen finden, in denen $v = (^k \text{ mit } 1 \leq k \leq l \text{ ist. Somit gilt für kein } i \neq 1, \text{ dass } uv^i w \in L$ ist, da bei jedem Wort der Sprache L (neben weiteren Bedingungen) die Anzahl der öffnenden und schließenden Klammern gleich ist. Also ist L nicht pumpbar.

(c) Überführen Sie G in Chomsky-Normalform und prüfen Sie mit dem CYK-Algorithmus, ob das Wort $(1+1)\cdot 1$ zu L gehört.

Lösung:

 $G'=(\{S,S_1,S_2,S_3,S_4,X_(,X_),X_+,X_{[\cdot]}\},\{1,+,\cdot,(,)\},P',S)$ ist eine zu G äquivalente Grammatik in Chomsky-Normalform mit den Regeln P':

$$\begin{array}{lll} X_(\rightarrow (& X_) \rightarrow) & X_{[\cdot]} \rightarrow \cdot & X_+ \rightarrow + \\ S \rightarrow X_(S_1 & S_1 \rightarrow SS_2 & S_2 \rightarrow X_+S_3 & S_3 \rightarrow SX_) \\ S \rightarrow SS_4 & S_4 \rightarrow X_{[\cdot]}S & S \rightarrow 1 \end{array}$$

(1	+	1)	•	1
$\overline{\{X_{(}\}}$	$\{S\}$	$\{X_+\}$	$\{S\}$	$\{X_{j}\}$	$\{X_{[\cdot]}\}$	$\{S\}$
Ø	Ø	Ø	$\{S_3\}$	Ø	$\{S_4\}$	
Ø	Ø	$\{S_2\}$	Ø	Ø		
Ø	$\{S_1\}$	Ø	Ø			
$\{S\}$	Ø	Ø				
Ø	Ø					
$\{S\}$						

Da die Menge in der untersten Zeile das Startsymbol S von G' enthält, folgt $[(1+1)\cdot 1]\in L.$

Aufgabe 3 15 Punkte

Geben Sie eine kontextsensitive Grammatik für $L = \{x \# x^R \# x \mid x \in \{a,b\}^*\}$ an.

Lösung

 $G=(V,\Sigma,P,S)$ mit $V=\{S,T_1,T_2,A,B\},\,\Sigma=\{a,b\#\}$ und P gegeben durch:

$$S \rightarrow T_1 T_2$$
 $Aa \rightarrow aA$ $Ba \rightarrow aB$ $T_1 \rightarrow aAT_1a$ $Ab \rightarrow bA$ $Bb \rightarrow bB$ $T_1 \rightarrow bBT_1b$ $A\# \rightarrow \#A$ $B\# \rightarrow \#B$ $T_1 \rightarrow \#$ $AT_2 \rightarrow T_2a$ $BT_2 \rightarrow T_2b$ $T_2 \rightarrow \#$

Aufgabe 4 35 Punkte

Sind folgende Aussagen wahr oder falsch? Begründen Sie.

(a) Wenn A kontextfrei ist, dann ist A^* regulär.

Lösung:

Nein. Sei $A = \{a^n b^n | n \ge 1\} \in \mathsf{CFL} \setminus \mathsf{REG}$.

Angenommen, A^* ist regulär, dann ist mit $B = \{a^n b^m | n, m \ge 1\}$ auch

$$A^* \cap B = A$$

regulär. Aber A ist bekanntermaßen nicht regulär. Widerspruch.

(b) Wenn A regulär ist, dann ist $A^* - A$ kontextfrei.

Lösung:

Ja. Da A regulär ist, ist auch A^* regulär und damit ist $A^* \setminus A = A^* \cap \overline{A}$ sogar regulär. Reguläre Sprachen sind unter Durchschnitt und Komplement abgeschlossen.

(c) Aus $A \leq B$ und $B \in \mathsf{CSL}$ folgt $A \in \mathsf{CSL}$.

Lösung:

Nein. Sei $A \in \mathsf{REC} \setminus \mathsf{CSL}$, d.h. $A \notin \mathsf{CSL}$ und sei $B = \{1\} \in \mathsf{CSL}$. Dann gilt

 $A \leq B$ mittels $x \mapsto \chi_A(x)$.

(d) Aus $A \leq^p \text{SAT}$ und $A \in \mathsf{NP}$ folgt A ist NP -vollständig.

Lösung:

Nein. Sei $A = \emptyset$. Dann ist $A \leq^p \text{SAT}$ mittels $w \mapsto x \wedge \overline{x}$. Aber $A \notin \text{NPC}$ da SAT $\nleq^p A$ ($x \vee \overline{x} \in \text{SAT}$ kann nicht auf ein Wort in A abgebildet werden).

(e) Aus $A \leq^p \mathrm{SAT}$ und $\mathrm{SAT} \leq^p A$ folgt A ist NP-vollständig.

Lösung:

Ja. Aus $A \leq^p \text{SAT}$ folgt $A \in \text{NP}$ (da SAT $\in \text{NP}$). Da SAT NP-hart, und SAT $\leq^p A$ folgt A ist NP-hart. Also ist A NP-vollständig. (f) Wenn A^* regulär ist, dann kann $A \cap \{1\}^*$ unentscheidbar sein.

Lösung:

Ja. Sei H' das unär kodierte Halteproblem für DTMs. Dabei wird im ersten Schritt 0 zu 00, 1 zu 11, und das Trennzeichen zu 01. Anschließend wird die resultierende Bitfolge x als natürliche Zahl n_x mit Binärdarstellung 1x interpretiert und durch 1^{n_x} unär kodiert.

Sei $A = H' \cup \{1\}$. Dann ist $A \cap \{1\}^* = A$ wegen $H \leq H' \leq A$ unentscheidbar, aber $A^* = \{1\}^*$ ist regulär.

(g) A^* ist für jede Sprache $A \subseteq \{0,1\}^*$ semi-entscheidbar.

Lösung:

Nein. Sei $A = \{1^n0 \mid 1^n \notin H'\} \subseteq \{0,1\}^*$ (wobei H' wieder das unär kodierte Halteproblem ist). Wegen $\overline{H} \leq A$ ist dann A nicht semi-entscheidbar. Wäre nun aber A^* semi-entscheidbar, so auch $A^* \cap \{1\}^*0 = A$, da $\{1\}^*0$ semi-entscheidbar (sogar regulär) ist und RE unter Schnitt abgeschlossen ist. Widerspruch.

Aufgabe 5 30 Punkte

Bestimmen Sie, welche der folgenden Sprachen entscheidbar, semi-entscheidbar, oder nicht semi-entscheidbar sind. Begründen Sie.

(a)
$$L_1 = \{ w \in \{0,1\}^* \mid \exists x \in \{0,1\}^* : M_w(x) = x \},$$

Lösung:

Die Sprache ist nach dem Satz von Rice nicht entscheidbar, da $L_1 = L_{\mathcal{F}}$ für die Eigenschaft $\mathcal{F} = \{f \in \mathsf{FREC}_p \mid \exists x \in \{0,1\}^* : f(x) = x\}$ ist und \mathcal{F} nicht trivial ist: Einerseits ist $w_0 \notin L_1$, wobei w_0 die Kodierung einer DTM ist, die die Funktion $x \mapsto 1x$ berechnet. Andererseits ist $w_1 \in L_1$, wobei w_1 die Kodierung einer DTM ist, die die Identität berechnet.

Die Sprache ist semi-entscheidbar, da sie von der NTM N akzeptiert wird, die bei Eingabe w zunächst ein $x \in \{0,1\}^*$ rät, dann $M_w(x)$ simuliert und genau dann akzeptiert, falls diese x ausgibt.

(b) $L_2 = \{ w \in \{0,1\}^* \mid \exists x \in \{0,1\}^* : M_w(x) \neq x \},$

Lösung:

Ebenfalls nicht entscheidbar nach Satz von Rice – $w_0 \in L_2$ und $w_1 \notin L_2$ mit w_0, w_1 wie in (a).

Die Sprache ist co-RE-hart (und damit weder entscheidbar noch semientscheidbar), da sich das Komplement \overline{K} des speziellen Halteproblems darauf reduzieren lässt. Verwende die Reduktionsfunktion f(w) = w', wobei $M_{w'}(x)$ unabhängig von der Eingabe $M_w(w)$ simuliert. Wenn die Simulation hält, wird die Eingabe x ausgegeben. Damit gilt $w \in \overline{K} \Leftrightarrow w' \in L_2$.

Bemerkung: $\overline{L_2}$ ist ebenfalls nicht semi-entscheidbar, woraus $L_2 \notin \text{co-RE}$ folgt.

(c) $L_3 = \{w \in \{0,1\}^* \mid M_w(w) \text{ besucht kein Bandfeld mehrmals}\}.$

Lösung:

Die Sprache ist entscheidbar, da sich $M_w(w)$ nach höchstens ||w|| + ||Z|| Schritten in einer Endlosschleife von Links- bzw. Rechtsbewegungen befindet, falls sie kein Bandfeld mehrfach besucht.

Achtung: Der Satz von Rice ist hier nicht anwendbar, da die Zugehörigkeit von w zu L_3 nicht nur von der von M_w berechneten Funktion, sondern auch von der Maschine selbst (genauer: von der Folge ihrer Kopfbewegungen) abhängt.

(d) $L_4 = \{ w \in \{0,1\}^* \mid M_w(w) \neq w \},$

Lösung:

Die Sprache ist nicht semi-entscheidbar (und damit auch nicht entscheidbar), da sich \overline{K} genau wie in Teilaufgabe (b) darauf reduzieren lässt.

Achtung: Der Satz von Rice ist hier nicht anwendbar, da die Zugehörigkeit von w zu L_4 nicht nur von der von M_w berechneten Funktion, sondern auch von der Maschine selbst (genauer: von ihrer Kodierung w) abhängt.

(e) $L_5 = \{ w \in \{0,1\}^* \mid \forall x \in \{0,1\}^* : M_w(w) = x \},$

Lösung:

Es gilt $L_5 = \emptyset$, da die Ausgabe einer DTM bei fester Eingabe eindeutig bestimmt ist. Damit ist L_5 entscheidbar (und damit auch semi-entscheidbar).

(f) $L_6 = \{ w \in \{0, 1\}^* \mid \exists v \in \{0, 1\}^* : L(M_v) \subsetneq L(M_w) \}.$

Lösung:

 L_6 enthält genau die Kodierungen von den Turingmaschinen, die eine nichtleere Sprache akzeptieren. Diese (semantische) Eigenschaft ist nichttrivial, sodass L_6 nach dem Satz von Rice nicht entscheidbar ist.

Andererseits ist L_6 semi-entscheidbar, da sie von der NTM N akzeptiert wird, die bei Eingabe w ein $x \in \{0,1\}^*$ rät, $M_w(x)$ simuliert und akzeptiert, wenn $M_w(x)$ eine akzeptierende Konfiguration erreicht.

Aufgabe 6 Zeigen Sie:

 $20\ Punkte$

(a) HamPath \leq^p HamCycle,

Lösung:

Verwende die Reduktionsfunktion $\langle G, s, t \rangle \mapsto G'$, die einen Graphen G = (V, E) zusammen mit Startknoten s und Zielknoten t auf den Graphen G' = (V', E') mit $V' = V \cup \{v_0\}$ und $E' = E \cup \{\{s, v_0\}, \{v_0, t\}\}$ abbildet.

Es ist offensichtlich, dass sich diese Funktion in Polynomialzeit berechnen lässt. Nun zur Korrektheit der Reduktionsfunktion:

- $\langle G, s, t \rangle \in \text{HamPath} \Rightarrow G' \in \text{HamCycle:}$ Aus einem Hamiltonpfad von s nach t in G kann ein Hamiltonkreis in G' konstruiert werden, indem die Enden über den neuen Knoten v_0 verbunden werden.
- $\langle G, s, t \rangle \in \text{HamPath} \Leftarrow G' \in \text{HamCycle}$:

Betrachte einen beliebigen Hamiltonkreis in G'. Dieser muss durch den Knoten v_0 gehen. Da s und t die einzigen Nachbarn von v_0 sind, müssen diese Knoten vor und nach v_0 auf dem Kreis liegen. Der Rest des Kreises bildet damit einen Hamiltonpfad von s nach t in G.

(b) DIHAMPATH \leq^p HAMPATH.

Lösung:

Gehe ähnlich wie bei der Reduktion DIHAMCYCLE \leq^p HAMCYCLE im Skript vor und ersetze jeden Knoten v im ursprünglichen Graphen G durch drei Knoten $\{v,v',v''\}$ im neu konstruierten Graphen G', die einen Pfad (v',v,v'') bilden. Eingehende Kanten in v werden auf v' umgeleitet, ausgehende auf v''. Abweichend von der Konstruktion für Hamiltonkreise müssen außerdem die in s eingehenden und aus t ausgehenden Kanten gelöscht werden. Verwende s' als Startknoten und t'' als Zielknoten.

Es ist wieder offensichtlich, dass die Reduktionsfunktion in Polynomialzeit berechnet werden kann.

Nun zur Korrektheit:

- $\langle G, s, t \rangle \in \text{DiHamPath} \Rightarrow \langle G', s', t'' \rangle \in \text{HamPath}$: Ersetze im gerichteten Hamiltonpfad von s nach t in G jeden Knoten v durch die Folge v', v, v''. Das Ergebnis ist ein Pfad von s' nach t'' in G', der alle Knoten besucht.
- $\langle G, s, t \rangle \in \text{DiHamPath} \Leftarrow \langle G', s', t'' \rangle \in \text{HamPath}$: Betrachte einen beliebigen Hamiltonpfad von s' nach t'' in G'. Vor und nach einem Knoten v müssen die beiden Knoten v' und v'' kommen, da dies die einzigen Nachbarn von v sind. Außerdem muss nach einem Knoten v'' ein Knoten u' kommen, da alle zu v'' inzidenten Kanten außer $\{v, v''\}$ in G einer aus v ausgehenden Kante entsprechen. Damit hat der Pfad die Form $(s', s, s'', v'_1, v_1, v''_1, \ldots, t', t, t'')$. Nach Ersetzen eines Tripels v'_i, v_i, v''_i durch v ergibt sich ein gerichteter Pfad von s nach t in G.

Hinweis: Schlagen Sie die Definition der Probleme im Skript nach.

Aufgabe 7 25 Punkte

Bestimmen Sie für untenstehenden Graphen G die folgenden Parameter. Begründen Sie Ihre Antwort.

- (a) $\mu(G) = \max\{\|M\| \mid M \text{ ist ein Matching in } G\},$
- (b) $\omega(G) = \max\{\|C\| \mid C \text{ ist eine Clique in } G\},\$
- (c) $\chi(G) = \min\{k \geq 1 \mid G \text{ ist } k\text{-f\"arbbar}\},$
- (d) $\alpha(G) = \max\{||S|| \mid S \text{ ist stabil in } G\},\$
- (e) $\beta(G) = \min\{||K|| \mid K \text{ ist eine Kantenüberdeckung in } G\}.$

Lösung:

- (a) $\mu(G) = 5$: $M = \{\{a, b\}, \{d, g\}, \{h, i\}, \{f, j\}, \{c, e\}\}$ ist ein Matching der Größe 5. Ein größeres Matching kann es nicht geben, da M bereits perfekt ist.
- (b) $\omega(G)=3$: G enthält genau zwei 3-Cliquen: $\{f,h,i\}$ und $\{f,i,j\}$. Dies zeigt bereits $\omega(G)\geq 3$. G enthält keine 4-Clique, da G dann mindestens vier 3-Cliquen enthalten müsste.
- (c) $\chi(G)=3$: Da G Dreiecke enthält, muss $\chi(G)\geq 3$ sein. Eine 3-Färbung c ist

\overline{u}	a	b	c	d	e	f	g	h	i	\overline{j}
$u \\ c(u)$	1	2	2	1	3	3	3	1	2	1

- (d) $\alpha(G)=4$: Die Menge $S=\{b,c,h,j\}$ ist stabil. Auf dem Kreis $K_1=(a,b,d,g,h,e,c,a)$ der Länge 7 können maximal 3 Knoten und auf dem Kreis $K_2=(f,i,j)$ der Länge 3 kann maximal 1 Knoten einer beliebigen stabilen Menge S liegen. Da die beiden Kreise alle Knoten von G überdecken, kann S maximal 3+1=4 Knoten enthalten.
- (e) $\beta(G) = 6$: Klar, da $\beta(G) = n(G) \alpha(G)$.

Geben Sie zudem an, ob G eine Eulerlinie, eine Eulertour, einen Hamiltonpfad oder einen Hamiltonkreis besitzt. Begründen Sie.

Lösung:

- Eulerlinie: (g, c, a, b, d, g, h, i, j, f, c, e, h, i, f, h, i).
- \bullet Genthält keine Eulertour, da nicht alle Knoten geraden Grad haben.
- Hamiltonpfad: (a, b, d, g, c, e, h, f, i, j).
- G enthält keinen Hamiltonkreis, da dieser die Sequenz S = (c, e, h) enthalten müsste (anders ist e nicht erreichbar). Besuchen wir nun nach h den Knoten g, so sind die Knoten f, i, j nicht mehr erreichbar. Falls wir dagegen nach h den Knoten f oder i besuchen, so sind die Knoten a, b, d, g nicht mehr erreichbar.