

## 第5讲 (第10-11章)

## 理想流体流动和量纲分析法

### 第5讲 理想流体流动和量纲分析法



- 1. 理想流体流动
- 2. 量纲分析

### 1. 理想流体流动



### 理想流体 (inviscid fluid): 黏度为0



达朗贝尔佯谬 (d'Alembert's Paradox,1752):

在均匀流场里任何形状的物体受力为零!

这个结论导致每个人都反应过度,从而拒绝无黏流理论



法国数学家达朗贝尔 (1717-1783)





建立了边界层理论(boundary layer theory),解释了阻力产生的机制。提出混合长度理论,论述了有限翼展机翼理论。对现代航空工业的发展作出了重要的贡献。



普朗特 (德国) Ludwig Prandtl, 1875—1953

### 流体在一点上的旋转(rotation)





xy平面上流体微元的旋转

$$\omega_z = \frac{d}{dt} \left( \frac{\alpha + \beta}{2} \right)$$

#### 在流体微元上表示,有

$$\omega_{z} = \lim_{\Delta x, \Delta y, \Delta z, \Delta t \to 0} \frac{1}{2} \left( \frac{\arctan \{ [(v_{y}|_{x+\Delta x} - v_{y}|_{x}) \Delta t] / \Delta x \}}{\Delta t} + \frac{\arctan \{ -[(v_{x}|_{y+\Delta y} - v_{x}|_{y}) \Delta t] / \Delta y \}}{\Delta t} \right)$$

#### 求极限,得到

$$\omega_z = \frac{1}{2} \left( \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right)$$



### 所有三个平面都可以写出类似的表达式

$$\omega_z = \frac{1}{2} \left( \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right)$$

$$\omega_{y} = \frac{1}{2} \left( \frac{\partial v_{x}}{\partial z} - \frac{\partial v_{z}}{\partial x} \right)$$

$$\omega_x = \frac{1}{2} \left( \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \right)$$

3个角速度分量构成一点领域内的角速度矢量:

$$\boldsymbol{\omega} = \omega_x \boldsymbol{e}_x + \omega_y \boldsymbol{e}_y + \omega_z \boldsymbol{e}_z = \frac{1}{2} (\nabla \times \mathbf{V})$$



### ∇×V 为流场中速度的旋度 (vorticity)

$$\mathbf{\omega} = \frac{1}{2} (\nabla \times \mathbf{V}) = \frac{1}{2} \begin{vmatrix} \mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_{x} & v_{y} & v_{z} \end{vmatrix}$$

$$\nabla \times \mathbf{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \mathbf{e}_x + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \mathbf{e}_y + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \mathbf{e}_z$$

$$\nabla \times \mathbf{v} = 0$$
 称为流动无旋

### 流场是否有旋的一些特性



### 不可压缩流动的NS方程

# $\rho \frac{D\mathbf{v}}{Dt} = \rho \mathbf{g} - \mathbf{\nabla} P + \mu \mathbf{\nabla}^2 \mathbf{v}$

### 黏性项可以写成旋度形式

$$\rho \frac{D\mathbf{v}}{Dt} = \rho \mathbf{g} - \nabla \mathbf{P} - \boldsymbol{\mu} [\nabla \times (\nabla \times \mathbf{v})]$$

### 有黏流动必然有旋!

$$\rho \frac{Dv_x}{Dt} = \rho g_x - \frac{\partial P}{\partial x} + \mu \left( \frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right)$$

$$\rho \frac{Dv_y}{Dt} = \rho g_y - \frac{\partial P}{\partial y} + \mu \left( \frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right)$$

$$\rho \frac{Dv_z}{Dt} = \rho g_z - \frac{\partial P}{\partial z} + \mu \left( \frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right)$$





流体微元旋转的直观分析

### 例1: 二维速度场的有旋



速度场1: 
$$v = (6y)e_x + (6x)e_y$$

速度场2: 
$$v = (6y)e_x - (6x)e_y$$



速度场3: u=ky, v=0 (k为常数)



### 流函数 (stream function)



二维不可压缩流动: 
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$

设一个函数使得 
$$v_x = F(x, y)$$
 , 那么有:  $\frac{\partial v_y}{\partial y} = -\frac{\partial F}{\partial x}$  or  $v_y = -\int \frac{\partial F}{\partial x} dy$ 

引入一个新函数使得 
$$F(x, y) = (\partial \Psi(x, y)/\partial y)$$
 就得到:  $v_x = \frac{\partial \Psi}{\partial y}$ 

因为 
$$\partial v_x/\partial x = -(\partial v_y/\partial y)$$
,有:  $\frac{\partial v_y}{\partial y} = -\frac{\partial}{\partial x} \left( \frac{\partial \Psi}{\partial y} \right)$  or  $\frac{\partial}{\partial y} \left( v_y + \frac{\partial \Psi}{\partial x} \right) = 0$ 

因此: 
$$v_y = -\frac{\partial \Psi}{\partial x}$$

函数  $\Psi = \Psi(x, y)$  称为流函数



$$d\Psi = \frac{\partial \Psi}{\partial x} dx + \frac{\partial \Psi}{\partial y} dy \quad \text{ if } \quad d\Psi = -v_y dx + v_x dy$$

在xy平面上,如果沿着某一路径,流函数为常数,即  $d\Psi=0$ ,那么

$$\frac{dy}{dx}|_{\Psi=\text{constant}} = \frac{v_y}{v_x}$$
 流函数代表了流线





### 二维流动,可用流函数表示旋转角速度 $\omega_z = \frac{1}{2} \left[ (\partial v_y / \partial x) - (\partial v_x / \partial y) \right]$

$$-2\omega_z = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2}$$

### 如果流动无旋,流函数满足拉普拉斯方程

$$\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0$$

### 例2: 流函数



### 已知流函数为 $\Psi = 6x^2 - 6y^2$ , 求速度分量, 判断是否有旋

$$v_x = \frac{\partial \Psi}{\partial y} = -12y$$

#### 速度分量

$$v_{y} = -\frac{\partial \Psi}{\partial x} = -12x$$

$$\frac{\partial v_y}{\partial x} = -12$$

$$\frac{\partial v_x}{\partial y} = -12$$

$$\omega_z = \frac{1}{2}(-12 - (-12)) = 0$$
 无旋

### 绕无限长圆柱的理想无旋流动





#### 无旋流动的流函数满足拉普拉斯方程

$$\frac{\partial^2 \Psi}{\partial r^2} + \frac{1}{r} \frac{\partial \Psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \theta^2} = 0$$

速度分量 
$$v_r = \frac{1}{r} \frac{\partial \Psi}{\partial \theta}$$
  $v_\theta = -\frac{\partial \Psi}{\partial r}$ 

#### 解此方程,流函数需要满足以下4个条件

- 1. The circle r = a must be a streamline. As the velocity normal to a streamline is zero,  $|v_r|_{r=a} = 0 \text{ or } \partial \Psi / \partial \theta|_{r=a} = 0.$ 
  - **2.** From symmetry, the line  $\theta = 0$  must also be a streamline. Hence,  $v_{\theta}|_{\theta=0} = 0$  or  $\partial \Psi / \partial r |_{\theta=0} = 0.$
  - **3.** As  $r \to \infty$  the velocity must be finite.
  - **4.** The magnitude of the velocity as  $r \to \infty$  is  $v_{\infty}$ , a constant.

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

见附录A



#### 上述拉普拉斯方程的解为

$$\Psi(r,\theta) = v_{\infty} r \sin\theta \left[ 1 - \frac{a^2}{r^2} \right]$$

速度分量 
$$v_r = \frac{1}{r} \frac{\partial \Psi}{\partial \theta} = v_\infty \cos\theta \left[ 1 - \frac{a^2}{r^2} \right]$$
  $v_\theta = -\frac{\partial \Psi}{\partial r} = -v_\infty \sin\theta \left[ 1 + \frac{a^2}{r^2} \right]$ 

在圆柱表面 
$$(r=a)$$
 上有  $v_r=0$   $v_\theta=-2v_\infty\sin\theta$ 

在圆柱表面  $\theta = 0^{\circ}$ 或者 $\theta = 180^{\circ}$ 处,速度为0,这两点称为

驻点 (stagnation point), 前后驻点

### 无旋流动的速度势(velocity potential)



引入新的函数, 使得  $v_x = \partial \phi(x, y)/\partial x$ , 则无旋流动下, 有

$$\frac{\partial v_x}{\partial y} = \frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial v_y}{\partial x}$$

$$\frac{\partial}{\partial x} \left( \frac{\partial \phi}{\partial y} - v_y \right) = 0$$

$$v_{y} = \frac{\partial \phi}{\partial y}$$

改写一下

必须有

#### 函数φ称为速度势

- > 只有在无旋流动下存在
- > 对可压缩、非稳态流动也适用
- > 对三维流动适用



#### 速度用势函数表示,有

$$\mathbf{v} = v_x \mathbf{e}_x + v_y \mathbf{e}_y + v_z \mathbf{e}_z = \frac{\partial \phi}{\partial x} \mathbf{e}_x + \frac{\partial \phi}{\partial y} \mathbf{e}_y + \frac{\partial \phi}{\partial z} \mathbf{e}_z$$

也就是梯度形式

$$\mathbf{v} = \mathbf{\nabla} \phi$$

对不可压缩流动,连续性方程满足  $\nabla \cdot \mathbf{v} = 0$ 

$$\nabla \cdot \mathbf{v} = 0$$

因此

$$\nabla \cdot \nabla \phi = \nabla^2 \phi = 0$$

势函数满足拉普拉斯方程



拉格朗日(法国) (J. L. Lagrange, 1736 – 1813)

提出新的流体动力学微分方程, 使流体动力学的解析方法有了进 一步发展,并提出了流函数和速 度势的概念。

### 势函数与流函数之间的关系



#### 沿着流函数的等值线(流线),有

$$\frac{dy}{dx}\Big|_{\Psi = \text{constant}} = \frac{v_y}{v_x}$$

#### 对势函数,有

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy$$
  $\frac{dy}{dx}\Big|_{d\phi=0} = -\frac{v_x}{v_y}$ 

因此 
$$dy/dx|_{\phi={
m constant}} = -\frac{1}{dy/dx}|_{\Psi={
m constant}}$$

#### 势函数和流函数相互正交





### 例3: 求二维流动的流函数和速度势



已知二维流动的速度分布,求流函数和速度势

$$v_x = 16y - x \qquad v_y = 16x + y$$

### 例3: 求二维流动的流函数和速度势



已知二维流动的速度分布, 求流函数和速度势

$$u = 16y - x$$

$$u = 16y - x \qquad v = 16x + y$$

可以检查连续性是否满足

引入流函数,有 
$$u = \frac{\partial \Psi}{\partial v} = 16y - x$$
 (1)  $v = -\frac{\partial \Psi}{\partial x} = 16x + y$  (2)

对方程1、2积分均可,选择对1进行积分,有  $\Psi = 8y^2 - xy + f_I(x)$ (3)

方程3对x进行微分,有 
$$v = -\frac{\partial \Psi}{\partial x} = y - f_2(x)$$
 (4) 这里  $f_2(x) = \frac{\partial f_1(x)}{\partial x}$ 

这里 
$$f_2(x) = \frac{\partial f_1(x)}{\partial x}$$

比较方程2和4,得到  $f_2(x) = -16x$ 

$$f_2(x) = -16x$$

对上式积分,得到

$$f_1(x) = -8x^2 + C$$

代回方程3,得到 
$$\Psi = 8y^2 - xy - 8x^2 + C$$

在此式中,常数C无意义,可去除

$$\Psi = 8y^2 - xy - 8x^2$$



### 求解速度速之前, 先确认是无旋流动

$$\omega_z = \frac{1}{2} \left( \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = \frac{1}{2} (16 - 16) = 0$$

引入速度势,有 
$$\frac{\partial \phi}{\partial x} = u = 16y - x$$

对x进行积分,有 
$$\phi = 16xy - \frac{x^2}{2} + f(y)$$

速度势对y进行微分,并等于y方向的速度分量,有

对比各项,可得到 
$$\frac{d}{dy}f(y) = y$$
 也就是  $f(y) = \frac{y^2}{2}$ 

$$\phi = 16xy - \frac{x^2}{2} + \frac{y^2}{2}$$

$$\frac{\partial \phi}{\partial y} = 16x + \frac{d}{dy}f(y) = 16x + y$$

### 无旋流动的总压头(total head)



理想流体,有欧拉方程  $\frac{D\mathbf{v}}{Dt} = \mathbf{g} - \frac{\nabla P}{\rho}$ 

$$\frac{D\mathbf{v}}{Dt} = \mathbf{g} - \frac{\nabla P}{\rho}$$

$$\frac{D\mathbf{v}}{Dt} = \frac{\partial \mathbf{v}}{\partial t} + \mathbf{\nabla} \left( \frac{v^2}{2} \right) - \mathbf{v} \times (\mathbf{\nabla} \times \mathbf{v})$$

不可压缩流动的欧拉方程变为

$$\nabla \left\{ \frac{P}{\rho} + \frac{v^2}{2} + gy \right\} = \mathbf{v} \times (\nabla \times \mathbf{v}) - \frac{\partial \mathbf{v}}{\partial t}$$

对不可压缩、无旋的理想流体流动,沿着流线,存在

$$\frac{P}{\rho} + \frac{v^2}{2} + gy = \text{constant}$$

再一次得到伯努利方程,在无旋、稳态、不可压缩流动中,总压头为常数。

### 势流的应用



### 根据伯努利方程,不考虑位能项

$$\frac{P}{\rho} + \frac{v^2}{2} = \text{constant}$$

将无穷远处的流速与压力与流场相联系,有

$$P + \frac{\rho v^2}{2} = P_{\infty} + \frac{\rho v_{\infty}^2}{2} = P_0$$
 (驻点压力,对应速度为0的压力)



→ 求圆柱表面的压力分布

### 在圆柱表面上,速度为 $v_{\theta} = -2v_{\infty}\sin\theta$

因此圆柱表面的压力可表达为

$$P = P_0 - 2\rho v_{\infty}^2 \sin^2\theta$$

注意无量纲压力系数的表达

$$(P-P_{\infty})/\frac{1}{2}\rho v_{\infty}^2$$

积分后,x方向合力为零 $_{-3}$ 

达朗贝尔佯谬



圆柱表面的压力分布曲线

### 势流分析-简单平面



#### 1. 平行于x方向的均匀流动

$$v_x = v_\infty = \frac{\partial \Psi}{\partial y} = \frac{\partial \phi}{\partial x}$$

$$v_y = 0 = \frac{\partial \Psi}{\partial x} = \frac{\partial \phi}{\partial y}$$

#### 积分可以得到流函数和速度势

$$\Psi = v_{\infty} y$$
$$\phi = v_{\infty} x$$





#### 2. 源(source)与汇(sink)

源:流体从一点沿径向流出

汇:流体沿径向向一点流入

设单位厚度上的体积流量为  $Q=2\pi rv_r$ ,则径向速度表达为

$$v_r = \frac{Q}{2\pi r} \qquad v_\theta = 0$$



#### 极坐标下的流函数、速度势有

积分得到有关源的流函数、速度势

$$v_r = \frac{Q}{2\pi r} = \frac{1}{r} \frac{\partial \Psi}{\partial \theta} = \frac{\partial \phi}{\partial r}$$
 $v_\theta = 0 = -\frac{\partial \Psi}{\partial r} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$ 

$$\Psi = \frac{Q}{2\pi}\theta$$

汇的流函数、速度势正好方向相反

$$\phi = \frac{Q}{2\pi} \ln r$$

注意 r=0 处的奇性!



#### 3. 涡流 (环流)

#### 流体围绕一点旋转,有

$$v_r = 0 = \frac{1}{r} \frac{\partial \Psi}{\partial \theta} = \frac{\partial \phi}{\partial r}$$
$$v_{\theta} = \frac{K}{2\pi r} = -\frac{\partial \Psi}{\partial r} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$$

#### 积分得到流函数、速度势





### 势流分析-叠加原理



### 叠加原理

拉普拉斯方程是线性方程,因此,如果  $\Psi_1$  和  $\Psi_2$  都是  $\nabla^2 \Psi = 0$  的解,那么

$$\Psi_3 = \Psi_1 + \Psi_2$$
 也是  $\nabla^2 \Psi = 0$  的一个解

#### 4. 偶极流 (doublet)

偶极子有一个相距为2a的一对源和汇组成,a无限接近于0时,其强度设为 $\lambda=2aQ$ ,,有

$$\Psi = -\frac{\lambda \sin \theta}{r}$$
$$\phi = \frac{\lambda \cos \theta}{r}$$





#### 5. 半体绕流

### 平行于x方向的均匀流加上一个源,有

$$\Psi = \Psi_{\text{uniform flow}} + \Psi_{\text{source}} = v_{\infty}y + \frac{Q}{2\pi}\theta = v_{\infty}r \sin\theta + \frac{Q}{2\pi}\theta$$

$$\phi = \phi_{\text{uniform flow}} + \phi_{\text{source}} = v_{\infty}x + \frac{Q}{2\pi} \ln r = v_{\infty}r \cos\theta + \frac{Q}{2\pi} \ln r$$





#### 6. 圆柱绕流:均匀流和偶极流的叠加

$$\Psi = \Psi_{\text{uniform flow}} + \Psi_{\text{doublet}} = v_{\infty}y - \frac{\lambda \sin\theta}{r} = v_{\infty}r \sin\theta - \frac{\lambda \sin\theta}{r} = \left[v_{\infty}r - \frac{\lambda}{r}\right]\sin\theta$$

$$\phi = \phi_{\text{uniform flow}} + \phi_{\text{doublet}} = v_{\infty}x + \frac{\lambda \cos \theta}{r} = v_{\infty}r \cos \theta + \frac{\lambda \cos \theta}{r} = \left[v_{\infty}r + \frac{\lambda}{r}\right] \cos \theta$$

$$\Psi = v_{\infty} r \left[ 1 - \frac{\lambda / v_{\infty}}{r^2} \right] \sin \theta$$

如果选取偶极流的强度  $\frac{\lambda}{v_{\infty}}=a^2$  ,就有  $\Psi(r,\,\theta)=v_{\infty}r\,\sin\!\theta\left[1-\frac{a^2}{r^2}\right]$ 



### 2. 量纲分析



1. 工程性的模型实验:

预测即将建造的大型机械的流动情况

2. 探索性的观察实验:

寻找未知的流动规律







### 量纲分析的作用



假设:流场中的某一物体受力为F,依赖于物体长度L、流速V、流体密度 $\rho$ 、流体黏度 $\mu$ 

表达为 
$$F = f(L, V, \rho, \mu)$$

通过试验,寻找F随这些参数的变化趋势,如果每个参数选取10个不同值,那么总试验次数为10000次,费时费钱

而通过量纲分析,可以得出受力F的新表达式

$$\frac{F}{\rho V^2 L^2} = g\left(\frac{\rho V L}{\mu}\right)$$
$$C_F = g(\text{Re})$$

这里  $F/(\rho V^2 L^2)$  称为力系数,比如升力系数或者阻力系数,只是无量纲参数雷诺数的函数

10次不同雷诺数就可以得到趋势

 $ho VL/\mu$  雷诺数 Reynolds number

注意: 在其他情况下,受力也可能依赖于其他组合参数包括Mach数Ma = V/a、Froude数 $Fr = V^2/(gL)$ 、表面粗糙度  $\epsilon/L$  等

### 量纲分析的特点与要求



- □ 降低成本
- □ 帮助思考和计划实验或者理论: 哪些参数可以忽略、方程如何反映物理本质
- □ 通过标度律(scaling law)将实验模型获得的数据推广到实际原型上

#### 量纲分析是一门需要练习的学术能力,也是一门艺术和技巧

Do you understand these introductory explanations? Be careful; learning dimensional analysis is like learning to play tennis: There are levels of the game. We can establish some ground rules and do some fairly good work in this brief chapter, but dimensional analysis in the broad view has many subtleties and nuances that only time, practice, and maturity enable you to master. Although dimensional analysis has a firm physical and mathematical foundation, considerable art and skill are needed to use it effectively.

Euler (1765) Fourier (1822) Rayleigh (1877) Buckingham (1914) Pi theorem /Vaschy (1892) /Riabouchinsky (1911) Bridgman (1922)

### 量纲和谐原理(Principle of Dimensional Homogeneity)



#### 凡是正确反映物理规律的方程,各项的量纲必然一致,称为量纲和谐原理

流体力学中的基本量纲

mass M, length L, time T, and temperature  $\Theta$ 

例子 
$$S = S_0 + V_0 t + \frac{1}{2} g t^2$$
 {L} 
$$\int S dt = S_0 t + \frac{1}{2} V_0 t^2 + \frac{1}{6} g t^3$$
 
$$\frac{dS}{dt} = V_0 + g t$$
 
$$\frac{p}{\rho} + \frac{1}{2} V^2 + g z = \text{const}$$
 {L<sup>2</sup>T<sup>-2</sup>}

表达式的组成: 有量纲的变量、有量纲的常数、无量纲的常数 角度/转速

### 常用物理量的量纲



| Quantity                      |                     | Dimensions                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------|---------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | Symbol              | $MLT\Theta$               | <b>FLT</b> \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\text{\tint{\text{\tint{\text{\tint{\tint{\tint{\tint{\tint{\text{\text{\tint{\tint{\text{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tinit{\tinit{\tinit{\tint{\tint{\tint{\tint{\tint{\tint{\tinit{\tinit{\ti}\tint{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tiin}}\tinit{\tinit{\tinit{\tinit{\tiin}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| Length                        | L                   | L                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Area                          | A                   | $L_{\perp}^{2}$           | $L^2$ $L^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Volume                        | °V                  | $L^3$                     | $L^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Velocity                      | V                   | $LT^{-1}$                 | $LT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Acceleration                  | dV/dt               | $LT^{-2}$                 | $LT^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Speed of sound                | a                   | $LT^{-1}$                 | $LT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Volume flow                   | Q                   | $L^3T^{-1}$               | $L^3T^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mass flow                     | m                   | $MT^{-1}$                 | $FTL^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pressure, stress              | $p, \sigma, \tau$   | $ML^{-1}T^{-2}$           | $FL^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Strain rate                   | $\dot{arepsilon}$   | $T^{-1}$                  | $T^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Angle                         | heta                | None                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Angular velocity              | $\omega$ , $\Omega$ | $T^{-1}$                  | $T^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Viscosity                     | $\mu$               | $ML^{-1}T^{-1}$           | $FTL^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Kinematic viscosity           | $\nu$               | $L^2T^{-1}$               | $L^2T^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Surface tension               | Υ                   | $MT^{-2}$                 | $FL^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Force                         | F                   | $MLT^{-2}$                | $\boldsymbol{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Moment, torque                | M                   | $ML^2T^{-2} \ ML^2T^{-3}$ | FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Power                         | P                   | $ML^2T^{-3}$              | $FLT^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Work, energy                  | W, E                | $ML^2T^{-2}$              | FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Density                       | ho                  | $ML^{-3}$                 | $FT^2L^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Temperature                   | T                   | $\Theta$                  | Θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Specific heat                 | $c_p, c_v$          | $L^2T^{-2}\Theta^{-1}$    | $L^2T^{-2}\Theta^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Specific weight               | γ                   | $ML^{-2}T^{-2}$           | $FL^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Thermal conductivity          | k                   | $MLT^{-3}\Theta^{-1}$     | $FT^{-1}\Theta^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Thermal expansion coefficient | $\boldsymbol{eta}$  | $\mathbf{\Theta}^{-1}$    | $\Theta^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# 常用物理量的量纲



|                               |                     | Dimensi                   | Dimensions             |  |  |
|-------------------------------|---------------------|---------------------------|------------------------|--|--|
| Quantity                      | Symbol              | $MLT\Theta$               | $FLT\Theta$            |  |  |
| Length                        | L                   | L                         | L                      |  |  |
| Area                          | A                   | $L_{\perp}^{2}$           | $L^2 L^3$              |  |  |
| Volume                        | V                   | $L^3$                     | $L^3$                  |  |  |
| Velocity                      | V                   | $LT^{-1}$                 | $LT^{-1}$              |  |  |
| Acceleration                  | dV/dt               | $LT^{-2}$                 | $LT^{-2}$              |  |  |
| Speed of sound                | a                   | $LT^{-1}$                 | $LT^{-1}$              |  |  |
| Volume flow                   | Q                   | $L^3T^{-1}$               | $L^3T^{-1}$            |  |  |
| Mass flow                     | m                   | $MT^{-1}$                 | $FTL^{-1}$             |  |  |
| Pressure, stress              | $p, \sigma, \tau$   | $ML^{-1}T^{-2}$           | $FL^{-2}$              |  |  |
| Strain rate                   | $\dot{arepsilon}$   | $T^{-1}$                  | $T^{-1}$               |  |  |
| Angle                         | heta                | None                      | None                   |  |  |
| Angular velocity              | $\omega$ , $\Omega$ | $T^{-1}$                  | $T^{-1}$               |  |  |
| Viscosity                     | $\mu$               | $ML^{-1}T^{-1}$           | $FTL^{-2}$             |  |  |
| Kinematic viscosity           | $\nu$               | $L^2T^{-1}$               | $L^2T^{-1}$            |  |  |
| Surface tension               | Υ                   | $MT^{-2}$                 | $FL^{-1}$              |  |  |
| Force                         | F                   | $MLT^{-2}$                | F                      |  |  |
| Moment, torque                | M                   | $ML^2T^{-2} \ ML^2T^{-3}$ | FL                     |  |  |
| Power                         | P                   |                           | $FLT^{-1}$             |  |  |
| Work, energy                  | W, E                | $ML^2T^{-2}$              | FL                     |  |  |
| Density                       | ho                  | $ML^{-3}$                 | $FT^2L^{-4}$           |  |  |
| Temperature                   | T                   | $\Theta$                  | Θ                      |  |  |
| Specific heat                 | $c_p, c_v$          | $L^2T^{-2}\Theta^{-1}$    | $L^2T^{-2}\Theta^{-1}$ |  |  |
| Specific weight               | γ                   | $ML^{-2}T^{-2}$           | $FL^{-3}$              |  |  |
| Thermal conductivity          | k                   | $MLT^{-3}\Theta^{-1}$     | $FT^{-1}\Theta^{-1}$   |  |  |
| Thermal expansion coefficient | $oldsymbol{eta}$    | $\Theta^{-1}$             | $\mathbf{\Theta}^{-1}$ |  |  |

### 如何选取作为标度的变量



$$\frac{F}{\rho V^2 L^2} = g\left(\frac{\rho V L}{\mu}\right)$$
$$C_F = g(\text{Re})$$

□ 标度量本身不能组合成无量纲量,但加上一个变量后能组成无量纲参数

$$\rho^a V^b L^c = (ML^{-3})^a (L/T)^b (L)^c = M^0 L^0 T^0 \longrightarrow a = 0, b = 0, c = 0$$

- □ 不要选择要输出的量
- □ 选择常见变量而不是抽象变量 密度/表面张力 物体长度/表面粗糙度

### 量纲分析法: 瑞利法



#### 1. 确定影响某一物理过程的影响因素

$$f(x_1, x_2, x_3, ..., x_n) = 0$$

2. 假设其中一个物理量 $x_i$ ,可以表达为其他物理量的指数乘积形式

$$x_i = kx_1^{a_1}x_2^{a_2}x_3^{a_3} \dots x_n^{a_n}$$
 dim  $x_i = k \text{dim } (x_1^{a_1}x_2^{a_2}x_3^{a_3} \dots x_n^{a_n})$ 

3. 根据量纲和谐原理,求出各物理量的指数

4. 根据实验或分析求出系数k

瑞利法适合比较简单问题,一般影响因素不超过4个



例:已知作用在做圆周运动物体上的离心惯性力F与物体质量m,速度V和圆周半径R有关,试用瑞利法给出离心力F的表达式

$$F = f(m, v, R)$$

$$F = km^{a_1}V^{a_2}R^{a_3}$$

$$\dim F = k\dim (m^{a_1}V^{a_2}R^{a_3})$$

$$MLT^{-2} = M^{a_1}(LT^{-1})^{a_2}(L)^{a_3}$$

#### 根据量纲和谐原理,得到方程组

L: 
$$1=a_2+a_3$$
  
T:  $-2=-a_2$   
M:  $1=a_1$  解得  $\begin{cases} a_1=1\\ a_2=2\\ a_3=-1 \end{cases}$ 

$$F = kmV^2/R$$

# 白金汉Pi (π) 定理 (Buckingham Pi Theorem)



为了处理更复杂情况, Buckingham发展了一套理论来进行量纲分析, 称为 pi (π) 定理:

 $\pi$  定理的基本内容概括为:任何一个物理过程,如果包含有n 个有关物理量,其中有m 个(一般取m=3)为具有独立量纲的基本物理量,则这个物理过程可由n 个物理量组成的(n-m)个无量纲量表达的关系式所描述。因这些无量纲量用 $\pi$  表示,故称该定理为 $\pi$  定理。

选取的基本物理量不能组合成无量纲量,但加上一个变量后能成为无量纲参数

例如

$$v_1 = f(v_2, v_3, v_4, v_5)$$

MLT

如果选取  $v_2$ ,  $v_3$ ,  $v_4$  为无量纲化的独立物理量,就有

$$\Pi_1 = (\upsilon_2)^a (\upsilon_3)^b (\upsilon_4)^c \upsilon_1 = M^0 L^0 T^0 \quad \Pi_2 = (\upsilon_2)^a (\upsilon_3)^b (\upsilon_4)^c \upsilon_5 = M^0 L^0 T^0$$

### 例1: Pi定理应用-流场中物体受力的量纲分析



$$F = f(L, V, \rho, \mu)$$
 5个变量

$$\frac{F}{\rho V^2 L^2} = g\left(\frac{\rho V L}{\mu}\right)$$

$$C_F = g(\text{Re})$$

| F              | $\overline{L}$ | $\overline{U}$ | $\overline{ ho}$ | $\mu$               |
|----------------|----------------|----------------|------------------|---------------------|
| $\{MLT^{-2}\}$ | $\{L\}$        | $\{LT^{-1}\}$  | $\{ML^{-3}\}$    | $\{ML^{-1}T^{-1}\}$ |

#### 这三个物理量不能组成无量纲参数

$$\Pi_1 = L^a U^b \rho^c F = (L)^a (LT^{-1})^b (ML^{-3})^c (MLT^{-2}) = M^0 L^0 T^0$$

$$a + b - 3c + 1 = 0$$

$$c + 1 = 0$$

$$-b$$

$$a = -2$$

$$b = -2$$

$$c = -1$$

$$\Pi_1 = L^{-2}U^{-2}\rho^{-1}F = \frac{F}{\rho U^2 L^2} = C_F$$

$$\Pi_2 = L^a U^b \rho^c \mu^{-1} = L^a (L T^{-1})^b (M L^{-3})^c (M L^{-1} T^{-1})^{-1} = M^0 L^0 T^0$$

$$a + b - 3c + 1 = 0$$

$$c - 1 = 0$$

$$-b + 1 = 0$$

$$a = b = c = 1$$

$$\Pi_2 = L^1 U^1 \rho^1 \mu^{-1} = \frac{\rho UL}{\mu} = \text{Re}$$

$$\frac{F}{\rho U^2 L^2} = g \left( \frac{\rho U L}{\mu} \right)$$

# 拓展内容



| Variable  | Symbol | Dimensions |
|-----------|--------|------------|
| Force     | F      | $ML/t^2$   |
| Velocity  | v      | L/t        |
| Density   | ho     | $M/L^3$    |
| Viscosity | $\mu$  | M/Lt       |
| Length    | L      | L          |

#### 先列出量纲表格

# 

### 得到量纲矩阵

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & -3 & -1 & 1 \\ -2 & -1 & 0 & -1 & 0 \end{pmatrix}$$

此矩阵的秩为3,因此独立的无量纲数有5-3=2个。

# 偏微分方程的量纲分析



$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$

$$\rho \left( \frac{\partial \mathbf{v}}{\partial t} + v_x \frac{\partial \mathbf{v}}{\partial x} + v_y \frac{\partial \mathbf{v}}{\partial y} \right) = \rho \mathbf{g} - \nabla \rho + \mu \left( \frac{\partial^2 \mathbf{v}}{\partial x^2} + \frac{\partial^2 \mathbf{v}}{\partial y^2} \right)$$

#### 采用长度L、速度 $v_{\infty}$ 作为参考量纲,有

$$x^* = x/L$$
  $v_x^* = v_x/v_\infty$   
 $y^* = y/L$   $v_y^* = v_y/v_\infty$   
 $t^* = \frac{tv_\infty}{L}$   $\mathbf{v}^* = \mathbf{v}/v_\infty$   
 $\mathbf{v}^* = L\mathbf{\nabla}$ 



$$\frac{\partial v_x}{\partial x} = \frac{\partial v_x^*}{\partial x^*} \frac{\partial v_x}{\partial v_x^*} \frac{\partial x^*}{\partial x} = \frac{\partial v_x^*}{\partial x^*} (v_\infty)(1/L) = \frac{v_\infty}{L} \frac{\partial v_x^*}{\partial x^*} \qquad \qquad \frac{\partial v_y}{\partial y} = \frac{\partial v_y^*}{\partial y^*} \frac{\partial v_y}{\partial v_y^*} \frac{\partial y^*}{\partial y} = \frac{v_\infty}{L} \frac{v_x^*}{\partial x^*}$$

$$\frac{\partial v_y}{\partial y} = \frac{\partial v_y^*}{\partial y^*} \frac{\partial v_y}{\partial v_y^*} \frac{\partial y^*}{\partial y} = \frac{v_\infty}{L} \frac{v_x^*}{\partial x^*}$$

### 无量纲连续性方程

$$\frac{\partial v_x^*}{\partial x^*} + \frac{\partial v_y^*}{\partial y^*} = 0$$

### 无量纲动量方程

$$\frac{\rho v_{\infty}^{2}}{L} \left( \frac{\partial \mathbf{v}^{*}}{\partial t^{*}} + v_{x}^{*} \frac{\partial \mathbf{v}^{*}}{\partial x^{*}} + v_{y}^{*} \frac{\partial \mathbf{v}^{*}}{\partial y^{*}} \right) = \rho \mathbf{g} + \frac{1}{L} \nabla^{*} P + \frac{\mu v_{\infty}}{L^{2}} \left( \frac{\partial^{2} \mathbf{v}^{*}}{\partial x^{*2}} + \frac{\partial^{2} \mathbf{v}^{*}}{\partial y^{*2}} \right)$$

### 或者

$$\frac{\partial \mathbf{v}^*}{\partial t^*} + v_x^* \frac{\partial \mathbf{v}^*}{\partial x^*} + v_y^* \frac{\partial \mathbf{v}^*}{\partial y^*} = \mathbf{g} \frac{L}{v_\infty^2} - \frac{\mathbf{\nabla}^* P}{\rho v_\infty^2} + \frac{\mu}{L v_\infty \rho} \left( \frac{\partial^2 \mathbf{v}^*}{\partial x^{*2}} + \frac{\partial^2 \mathbf{v}^*}{\partial y^{*2}} \right)$$

#### 几个无量纲数

$$Fr \equiv v_{\infty}^2/gL$$

$$\mathrm{Eu} \equiv P/\rho v_{\infty}^2$$

$$\text{Re} \equiv L v_{\infty} \rho / \mu$$

Froude number,弗劳德数 惯性力/重力

Euler number,欧拉数 压力/惯性力

Reynolds number, 雷诺数 惯性力/黏性力

# 无量纲参数



Reynolds number Re = 
$$\frac{\rho UL}{\mu}$$

雷诺数

欧拉数

Euler number (pressure coefficient) Eu =  $\frac{p_a}{\rho U^2}$ 

Froude number  $Fr = \frac{U^2}{gL}$ 

弗罗德数

Weber number We =  $\frac{\rho U^2 L}{\Upsilon}$ 

韦伯数

Mach number Ma =  $\frac{U}{a}$ 

马赫数,可压缩流动

Strouhal number  $St = \frac{\omega L}{U}$ 

斯托哈尔数,振荡流动

# 无量纲参数列表



| Parameter                        | Definition                                          | Qualitative ratio<br>of effects | Importance             | Parameter                 | Definition                                            | Qualitative ratio of effects        | Importance                 |
|----------------------------------|-----------------------------------------------------|---------------------------------|------------------------|---------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|
| Reynolds number                  | $Re = \frac{\rho UL}{\mu}$                          | Inertia Viscosity               | Almost always          | Grashof number            | $Gr = \frac{\beta \Delta T g L^3 \rho^2}{\mu^2}$      | Buoyancy<br>Viscosity               | Natural convection         |
| Mach number                      | $Ma = \frac{U}{a}$                                  | Flow speed Sound speed          | Compressible flow      | Rayleigh number           | $Ra = \frac{\beta \Delta T g L^3 \rho^2 c_p}{\mu  k}$ | Buoyancy<br>Viscosity               | Natural convection         |
| Froude number                    | $Fr = \frac{U^2}{gL}$                               | Inertia<br>Gravity              | Free-surface flow      | Temperature ratio         | $\frac{T_w}{T_0}$                                     | Wall temperature Stream temperature | Heat transfer              |
| Weber number                     | We = $\frac{\rho U^2 L}{\Upsilon}$                  | Inertia Surface tension         | Free-surface flow      | Pressure coefficient      | $C_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2}$    | Static pressure  Dynamic pressure   | Aerodynamics, hydrodynamic |
| Rossby number                    | $\mathrm{Ro} = \frac{U}{\Omega_{\mathrm{earth}} L}$ | Flow velocity Coriolis effect   | Geophysical flows      | Lift coefficient          | $C_L = \frac{L}{\frac{1}{2}\rho U^2 A}$               | Lift force  Dynamic force           | Aerodynamics, hydrodynamic |
| Cavitation number (Euler number) | $Ca = \frac{p - p_v}{\frac{1}{2}\rho U^2}$          | Pressure<br>Inertia             | Cavitation             | Drag coefficient          | $C_D = \frac{D}{\frac{1}{2}\rho U^2 A}$               | Drag force  Dynamic force           | Aerodynamics, hydrodynami  |
| Prandtl number                   | $\Pr = \frac{\mu c_p}{k}$                           | Dissipation Conduction          | Heat convection        | Friction factor           | $f = \frac{h_f}{(V^2/2g)(L/d)}$                       | Friction head loss Velocity head    | Pipe flow                  |
| Eckert number                    | $Ec = \frac{U^2}{c_p T_0}$                          | Kinetic energy Enthalpy         | Dissipation            | Skin friction coefficient | $c_f = rac{	au_{ m wall}}{ ho V^2/2}$                | Wall shear stress  Dynamic pressure | Boundary layer flow        |
| Specific-heat ratio              | $k = \frac{c_p}{c_v}$                               | Enthalpy Internal energy        | Compressible flow      |                           |                                                       |                                     |                            |
| Strouhal number                  | $St = \frac{\omega L}{U}$                           | Oscillation<br>Mean speed       | Oscillating flow       |                           |                                                       |                                     |                            |
| Roughness ratio                  | $rac{arepsilon}{L}$                                | Wall roughness Body length      | Turbulent, rough walls |                           |                                                       |                                     |                            |
|                                  |                                                     |                                 |                        |                           |                                                       |                                     |                            |





相似理论: 模型流场再现实物流场-指导模型实验

实验结果推广到原型以及应用到相似的流动

实验设备:水池、水槽、风洞、水洞等









# 力学相似的基本概念

模型流动与实物流动在空间各对应点上和时刻各对应点上,表征流动过程的所有物理量各自互成一定比例



# 各类相似



### 几何相似

### 模型与原型的全部对应线长度的比例相等



如:圆柱的直径d,管道的长度I,翼型的翼弦长b,管壁的绝对粗糙度 $\varepsilon$ 





# 模型与原型的全部对应线长度的比例相等

面积比例尺

$$\lambda_{A} = \frac{A_{p}}{A_{m}} = \frac{l_{p}^{2}}{l_{m}^{2}} = \lambda_{l}^{2}$$

$$V_{p} = l_{p}^{3} = \lambda_{l}^{3}$$



### 运动学相似

### 在几何相似的两个系统具有相同的时间比例







 $V_{1m}=\beta V_{1p}$ Model



### 动力学相似

### 在运动学相似的两个系统中,对应点的受力比例相等

- □ 可压缩流动中,Re数、Mach数、比热比相等
- □ 不可压缩流动中, 1. Re数相等(无自由面)
  - 2. Re数相等、Froude数相等(有自由面)





$$\mathbf{F}_p + \mathbf{F}_g + \mathbf{F}_f = \mathbf{F}_i$$

### 水和空气实验中的差异



#### 以水作为流体进行实验,如果存在自由面

满足Re数,有 
$$\frac{V_m L_m}{\nu_m} = \frac{V_p L_p}{\nu_p}$$

同时满足Froude数,有

$$Fr = \frac{U^2}{gL}$$

$$\frac{\nu_m}{\nu_p} = \frac{L_m}{L_p} \frac{V_m}{V_p} = \alpha \sqrt{\alpha} = \alpha^{3/2}$$

如果模型缩小到原型的1/10,则

$$\alpha = 0.1$$
  $\alpha^{3/2} = 0.032$ 

因此,为了满足Re数和Fr数相等,模型实验所用流体的运动学黏性系数为水的3.2%,自然界中没有这样的液体存在!

水银运动学黏性系数是水的1/9,但昂贵而有毒



只能在实验中采用较低Re数,通过外推预测高Re数结果



#### 以空气作为流体进行实验, 通常为可压缩流动

满足Re数,有 
$$\frac{V_m L_m}{\nu_m} = \frac{V_p L_p}{\nu_p}$$

同时满足Mach数,有

$$\frac{V_m}{a_m} = \frac{V_p}{a_p}$$

$$\frac{\nu_m}{\nu_p} = \frac{L_m}{L_p} \frac{a_m}{a_p}$$

因此,为了满足Re数和Fr数相等,模型实验所用气体的运动学黏性系数应变小,或者其声速变大,否则等式不成立

尽量采用低温高压的气体 氢气是能够接近最优的气体,但昂贵而危险 只能在实验中采用相 等的Ma数,而用较低 Re数,通过外推预测 高Re数结果

### 模型理论



例子3:应用以低温高压氮气为工作流体的低温风洞可以得到动力相似。如果用 5atm、183K 的氮气来实验原型的空气动力特性。原型的翼展为 24.38m,在标准海平面上的飞行速度为 60m/s,试求:

- ① 实验模型的比例:
- ② 作用在模型和原型上的力的比值。

模型与原型之间满足动力相似,且在183K 氮气中的声速为275m/s。

动力学相似条件:几何相似、雷诺数相等、马赫数相等

|                       | Model   | Prototype                                       |
|-----------------------|---------|-------------------------------------------------|
| Characteristic length | L       | 24.38 m                                         |
| Velocity              | v       | 60 m/s                                          |
| Viscosity             | $\mu$   | $1.789 \cdot 10^{-5}  \text{Pa} \cdot \text{s}$ |
| Density               | ho      | $1.225 \mathrm{kg/m^3}$                         |
| Speed of sound        | 275 m/s | 340 m/s                                         |

$$M_m = M_p$$



### 首先, 马赫数相等 $Ma_m = Ma_p$ 得到 v = 48.5 m/s

其次,雷诺数相等 
$$Re_m = Re_p$$
 得到关系式  $\frac{\rho 48.5L}{\mu} = \frac{1.225 \cdot 60 \cdot 24.38}{1.789 \cdot 10^{-5}} = 1.002 \times 10^8$ 

氮气的物理性质有 
$$\mu = 2.6693 \cdot 10^{-6} \frac{\sqrt{28 \cdot 183}}{(3.681)^2 (1.175)} = 1.200 \cdot 10^{-5} \text{ Pa·s}$$

$$\rho = 5\left(\frac{28}{28.96}\right) \left(\frac{288}{183}\right) 1.225 = 7.608 \,\text{kg/m}^3$$

得到模型的翼展  $L=3.26\,\mathrm{m}$ 

考虑欧拉数相等  $\left(\frac{F}{\rho V^2 A_R}\right)_{\text{model}} = \left(\frac{F}{\rho V^2 A_R}\right)_{\text{prototype}}$ 

得到受力之比  $\frac{F_m}{F_p} = \frac{\rho_m}{\rho_p} \frac{V_m^2}{V_p^2} \frac{A_{R,m}}{A_{R,p}} = \frac{(\rho V^2)_m}{(\rho V^2)_p} \left(\frac{l_m}{l_p}\right)^2 = 0.0726$ 

# 总结



#### 流函数

- 1. 二维稳态不可压缩流动,有黏无黏都存在流函数
- 2. 流函数为常数对应的各条线是流线
- 3. 流函数满足连续性方程
- 4. 对无旋稳态不可压缩流动,流函数满足拉普拉斯方程  $\nabla^2 \Psi = 0$

#### 速度势

- 1. 只要流动无旋,就存在速度势
- 2. 速度势的梯度是速度
- 3. 对稳态不可压缩流动,速度势满足拉普拉斯方程  ${f 
  abla}^2 \phi = 0$
- 4. 对稳态不可压缩流动,速度势和流函数正交

#### 量纲分析

- 1. 能把独立变量组合成少量的无量纲数,使关联实验数据的时间和花费减少
- 2. 量纲分析不能给出哪些变量重要,也不能给出传递机理,但对工程应用还是非常有用
- 3. 对没有方程的问题,可采用瑞利法、白金汉方法确定无量纲数
- 4. 通过几何、运动学、动力学相似,可以确定实验模型参数

# 课后作业



10.20、11.19