Diseño de Base de Datos Relacional

Temas:

- Pautas informales para diseño de esquemas
- Dependencias Funcionales
- Formas Normales
- Algoritmos de diseño
- Dependencias multivaluadas y cuarta forma normal
- Panorama del proceso de diseño de Base de Datos

Diseño de Base de Datos Relacional

Referencia:

- Capítulos 12, 13 y 14 del [EN 2E].
- Capítulos 14, 15, 16. 1 y 16.2 del [EN 3E].

Pautas informales para el diseño

4 medidas informales de la calidad

- Semántica de los atributos
- Reducción de los valores redundantes en las tuplas
- Reducción de los valores nulos en las tuplas
- No generación de tuplas erróneas

Semántica de los atributos

Ejemplo

Semántica de los atributos

Ejemplo

Semántica de los atributos

Pauta 1

» Diseñe un esquema de relación de modo que sea fácil explicar su significado. No combine atributos de varios tipos de entidades y tipos de vínculos en una sola relación.

Reducción de los valores redundantes

Información redundante en las tuplas

EMP_DEPTO

NOMBREE	NSS	FECHAN	DIRECCIÓN	NÚMEROD	NOMBRED	NSSGTED
Silva, José B.	123456789	09-ENE-55	Fresnos 731, Higueras, MX	5	Investigación	333445555
Vizcarra, Federico T.	333445555	08-DIC-45	Valle 638, Higueras, MX	5	Investigación	333445555
Zapata, Alicia J.	999887777	19-JUL-58	Castilio 3321, Sucre, MX	4	Administración	987654321
Valdés, Jazmín S.	987654321	20-JUN-31	Bravo 291, Belén, MX	4	Administración	987654321
Nieto, Ramón K.	666884444	15-SEP-52	Espiga 957, Heras, MX	5	Investigación	333445555
Esparza, Josefa A.	453453453	31-JUL-62	Rosas 5631, Higueras, MX	5	Investigación	333445555
Jabbar, Ahmed V.	987987987	29-MAR-59	Dalias 980, Higueras, MX	4	Administración	987654321
Botello, Jaime E.	888665555	10-NOV-27	Sorgo 450, Higueras, MX	1	Dirección	888665555

EMPLEADO

NOMBREE	NSS	FECHAN	DIRECCIÓN	NÚMEROD
Silva, José B.	123456789	09-ENE-55	Fresnos 731, Higueras, MX	5
Vizcarra, Federico T.	333445555	08-DIC-45	Valle 638, Higueras, MX	5
Zapata, Alicia J.	999887777	19-JUL-58	Castillo 3321, Sucre, MX	4
Valdés, Jazmín S.	987654321	20-JUN-31	Bravo 291, Belén, MX	4
Nieto, Ramón K.	666884444	15-SEP-52	Espiga 957, Heras, MX	5
Esparza, Josefa A.	453453453	31-JUL-62	Rosas 5631, Higueras, MX	5
Jabbar, Ahmed V.	987987987	29-MAR-59	Dalias 980, Higueras, MX	4
Botello, Jaime E.	888665555	10-NOV-27	Sorgo 450, Higueras, MX	1

DEPARTAMENTO

	NOMBRED	<u>NÚMERO</u>	D NSSGTED)
Γ	Investigación	5	333445555	5
_	Administración	4	987654321	
	Dirección	1	888665555	j

Reducción de los valores redundantes

Anomalías de actualización

- Anomalías de inserción
- Anomalías de eliminación
- Anomalías de modificación

Pauta 2

» Diseñe los esquemas de las relaciones de modo que no haya anomalías de inserción, eliminación o modificación en las relaciones. Si hay anomalías señálelas con claridad a fin de que los programas que actualicen la BD operen correctamente.

Valores nulos en las tuplas

Posibles problemas

- Desperdicio de espacio
- Dificultad para entender el significado
- Aplicación de funciones agregadas (count,sum)
- Múltiples interpretaciones

Pauta 3

» Hasta donde sea posible, evite incluir en una relación atributos cuyos valores pueden ser nulos. Si no es posible, asegúrese de que se apliquen solo en casos excepcionales y no a la mayoría de las tuplas de una relación.

Tuplas erróneas

◆ **Ejemplo** - Se aplica proyección a EMP-PROY

EMP_PROY

NSS	NÚMEROP	HORAS	NOMBREE	NOMBREPR	LUGARP
123456789	1	32.5	Silva, José B.	ProductoX	Belén
123456789	2	7.5	Silva, José B.	ProductoY	Sacramento
666884444	3	40.0	Nieto, Ramón K.	ProductoZ	Higueras
453453453	1	20.0	Esparza, Josefa A.	ProductoX	Belén
453453453	2	20.0	Esparza, Josefa A.	ProductoY	Sacramento
333445555	2 ·	10.0	Vizcarra, Federico T.	ProductoY	Sacramento
333445555	3	10.0	Vizcarra, Federico T.	ProductoZ	Higueras
333445555	10	10.0	Vizcarra, Federico T.	Automatización	Santiago
333445555	20	10.0	Vizcarra, Federico T.	Reorganización	Higueras

LUGARES_EMP

EMP_PROY1

NOMBREE	LUGARP	NSS	NÚMEROP	HORAS	NOMBREPR	LUGARP
Silva, José B.	Belén	123456789	1	32.5	ProductoX	Belén
Silva, José B.	Sacramento	123456789	2	7.5	ProductoY	Sacramento
Nieto, Ramón K.	Higueras	666884444	3	40.0	ProductoZ	Higueras
Esparza, Josefa A.	Belén	453453453	1	20.0	ProductoX	Belén
Esparza, Josefa A.	Sacramento	453453453	2	20.0	ProductoY	Sacramento
Vizcarra, Federico T.	Sacramento	333445555	2	10.0	ProductoY	Sacramento
Vizcarra, Federico T.	Higueras	333445555	3	10.0	ProductoZ	Higueras
Vizcarra, Federico T.	Santiago	333445555	10	10.0	Automatización	Santiago
VIZUALIA, FOURILO I.		333445555	20	10.0	Reorganización	Higueras

Tuplas erróneas

→ - Se aplica join natural a EMP-PROY1 y LUGARES-EMP

	NSS	NÚMEROP	HORAS	NOMBREPR	LUGARP	NOMBREE
	123456789	1	32.5	ProductoX	Belén	Silva, José B.
*	123456789	1	32.5	ProductoX	Belén	Esparza, Josefa A.
	123456789	2	7.5	ProductoY	Sacramento	Silva, José B.
*	123456789	2	7.5	ProductoY	Sacramento	Esparza, Josefa A.
*	123456789	2	7.5	ProductoY	Sacramento	Vizcarra, Federico T.
	666884444	3	40.0	ProductoZ	Higueras	Nieto, Ramón K.
•	666884444	3	40.0	ProductoZ	Higueras	Vizcarra, Federico T.
*	453453453	1	20.0	ProductoX	Belén	Silva, José B.
	453453453	1	20.0	ProductoX	Belén	Esparza, Josefa A.
				•		
				•		
	333445555	10	10.0	Automatización	Santiago	Vizcarra, Federico T.
•	333445555	20	10.0	Reorganización	Higueras	Nieto, Ramón K.
	333445555	20	10.0	Reorganización	Higueras	Vizcarra, Federico T.

Tuplas erróneas

◆Pauta 4

»Diseñe los esquemas de modo que puedan reunirse por condición de igualdad sobre atributos claves, para garantizar que no se formen tuplas erróneas.

Resumen

Problemas a evitar

- Anomalías en insercion, modificacion y eliminacion de tuplas por redundancia
- Desperdicio de espacio y dificultad para operaciones por valores nulos
- Generación de datos erróneos por joins hechos relacionando mal las relaciones.

Entonces se presentarán...

 Conceptos y teorías formales para detectar y evitar estos problemas.

Dependencias Funcionales

- Dependencias Funcionales Definición
- Clausura de F
- Reglas de inferencia para las dfs
- Clausura de X
- Equivalencia de conjuntos de dfs
- Conjunto minimal de dfs

Dependencias Funcionales

Definición

- Una df X→Y, entre 2 conjuntos de atributos X e Y que son subconjuntos de R especifica una restricción sobre las posibles tuplas que formarían una instancia r de R. La restricción dice que, para 2 tuplas cualesquiera t₁ y t₂ de r tales que t1[X]=t2[X], debemos tener también t₁[Y]=t₂[Y].
- Observar:
 - » Si X es una clave candidata de R, entonces X→Y para cualquier subconjunto de atributos Y de R.
 - » Si $X \rightarrow Y$ en R, esto no nos dice si $Y \rightarrow X$ en R o no.
- Las dfs son propiedades de la semántica de los atributos.
- En el ejemplo de EMP_PROY, se cumplen:
 - » NSS \rightarrow NOMBREE, NUMEROP \rightarrow {NOMBREPR,LUGARP}, {NSS,NUMEROP} \rightarrow HORAS

Ejercicio 1 – Deducir atributos y dfs.

Una empresa de alquiler de vehículos desea implementar una base de datos con la información de su negocio. Se tienen vehículos identificados por su numero de matrícula v de los que se conoce su marca, color modelo y año. También se tienen clientes identificados por su número de cédula de identidad y de los que se conoce su nombre dirección y teléfono. Un contrato de alquiler de vehículo está identificado por un número de contrato y se realiza en una fecha dada entre un cliente y un vehículo, registrándose el periodo de alquiler en días y el precio del servicio. Se considera que en una misma fecha no se puede alquilar más de una vez el mismo vehículo al mismo cliente.

Clausura de F - F+

Definición

- F conjunto de dfs que se especifican sobre el esquema relación R.
- F+ conjunto de todas las dfs que se cumplen en todas las instancias que satisfacen a F.

Inferencia de dfs

- Ejemplo

```
F = \{ NSS \rightarrow \{NOMBREE, FECHAN, DIRECCION, NUMEROD\}, \\ NUMEROD \rightarrow \{NOMBRED, NSSGTED\} \}
```

Podemos inferir:

NSS → { NOMBRED, NSSGTED}, NUMEROD→NOMBRED

Reglas de inferencia para las dfs

- Reglas: (siendo X,Y,W,Z conjuntos de atributos)
 - (RI1) reflexiva Si $X \supseteq Y$, entonces $X \rightarrow Y$
 - (RI2) de aumento $\{X \rightarrow Y\}$ |= XZ $\rightarrow YZ$
 - (RI3) transitiva {X \rightarrow Y, Y \rightarrow Z} |= X \rightarrow Z
 - -(RI4) descomposición $-\{X\rightarrow YZ\} \mid = X\rightarrow Y$
 - -(RI5) unión $-\{X\rightarrow Y, X\rightarrow Z\} = X\rightarrow YZ$
 - (RI6) pseudotransitiva $\{X \rightarrow Y, WY \rightarrow Z\} \mid = WX \rightarrow Z$
- Reglas de Armstrong: RI1 a RI3
 - Minimales: Las demás se pueden derivar a partir de estas tres.

Definición

 X+ es el conjunto de atributos determinados funcionalmente por X

Algoritmo - Determinar X+ bajo F

```
X+ := X
repetir
viejoX+ := X+;
para cada df Y \rightarrow Z en F hacer
si Y \subseteq X+ entonces X+ := X+ \cup Z;
hasta que (viejoX+ = X+);
```

Ejemplo

```
Dado EMP_PROY(NSS, NUMEROP, HORAS, NOMBREE,
  NOMBREPR, LÙGARP)
F = \{ NSS \rightarrow NOMBREE \}
   NUMEROP → NOMBREPR, LUGARP
   NSS,NUMEROP → HORAS }
podemos calcular:
 { NSS } + = {
  NSS,
  NOMBREE
 { NUMEROP }+ = {
  NUMEROP,
  NOMBREPR.
  LUGARP
```


 Observar que no es simplemente la union de las clausuras de los elementos del conjunto.

Ejercicio: Clausuras de Atributos

- Hallar la clausura de los siguientes conjuntos de atributos
 - {nro_mat}, {nro_mat, ci_cli}, {nro_contrato}, {marca}, {fecha, ci_cli, nro_mat}

 Dar alguna dependencia funcional que pertenezca a F+ y no a F.

Equivalencia de conjuntos de dfs

Definición

Dos conjuntos de dfs E y F son equivalentes siiE+ = F+.

Podemos decir...

- Todas las dfs en E se pueden inferir de F y todas las dfs en F se pueden inferir de E.
- E cubre a F y F cubre a E.

Como determinamos si F cubre a E

Para cada df X→Y ∈ E, calculamos X+(F) y
 verificamos que X+ incluya los atributos en Y.

Equivalencia de conjuntos de dfs

Ejemplo:

- $F={AB \rightarrow C, B\rightarrow D, D\rightarrow GC, CG\rightarrow H}$
- $-F_1=\{D\rightarrow H, B\rightarrow C, AD\rightarrow GH\}$
 - » F₁ cubre a F?
 - » F cubre a F₁?
 - » F es equivalente a F₁?
- $-F_2=\{B\rightarrow D,D\rightarrow G,D\rightarrow C,CG\rightarrow H\}$
 - » Que pasa entre F₂ y F?
 - » Qué pasa entre F₁ y F₂?
- Observar que F2 es más "simple" que F. Dado F, siempre se puede encontrar un conjunto con estas características?.

Conjunto minimal de dfs

F es minimal sii

- Toda df en F tiene un solo atributo a la derecha
- No podemos reemplazar ninguna df X→A ∈ F por una df Y→A, donde Y ⊂ X , y seguir teniendo un conjunto de dfs equivalente a F
- No podemos quitar ninguna df de F y seguir teniendo un conjunto de dfs equivalente a F

Conjunto minimal de dfs

Definición

– Un **cubrimiento minimal** de F es un conjunto minimal F_{min} que es equivalente a F.

Encontrar un cubrimiento minimal

Algoritmo

```
1. Hacer G := F;
2. Reemplazar cada df X \rightarrow A_1, A_2, ..., A_n en G por las
   n dfs X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n:
3. Para cada df restante X \rightarrow A en G
            para cada atributo B que sea un elemento de X
                      { calcular (X - B)+ respecto a G;
                         si (X - B)+ contiene a A,
                                 reemplazar X \rightarrow A por (X - B) \rightarrow A en G };
4. Para cada df X \rightarrow A en G
            { calcular X+ respecto a (G - (X\rightarrow A));
              si X+ contiene a A, eliminar X \rightarrow A de G };
```

Encontrar un cubrimiento minimal

Ejemplo:

- $F={AB \rightarrow C, B\rightarrow D, D\rightarrow GC, CG\rightarrow H}$
- Paso 1: Cada dependencia que tiene varios atributos a la derecha, es sustituida por las dependencias a los atributos individuales.
 - $F_1 = \{AB \rightarrow C, B \rightarrow D, D \rightarrow G, D \rightarrow C, CG \rightarrow H\}$
- Paso 2: Estudiamos atributos redundantes.
 - » B+={B,D,G,C,H} entonces F_2 ={B \rightarrow C, B \rightarrow D,D \rightarrow G,D \rightarrow C,CG \rightarrow H}
- Paso 3: Estudiamos dependencias redundantes.
 - » Con respecto a F_2 -{B→C}, B+={B,D,G,C,H} entonces F_3 ={B→D,D→G,D→C,CG→H} Minimal.