Projection of analytic surfaces in higher dimension

Sény Diatta, Guillaume Moroz and Marc Pouget

INRIA / Loria Nancy

Team: GAMBLE

Description

- $F, G: \mathbb{R}^4 \to \mathbb{R}$ two real analytic functions
- $S = \{(x, y, z, t) \in \mathbb{R}^4 \mid F(x, y, z, t) = G(x, y, z, t) = 0\}$ smooth surface
- $\mathfrak{p}: \mathbb{R}^4 \to \mathbb{R}^3$ $(x,y,z,t) \mapsto (x,y,z)$ projection along the direction (0,0,0,1)
- $\Omega = \mathfrak{p}(\mathcal{S})$ is a singular surface

Problem: Compute a triangulation isotopic to Ω .

Motivation

Previous works: Curve in 3D

Projection on \mathbb{R}^3 of surfaces in \mathbb{R}^4 Generic singularities Contributions Algorithm

- 2RPR RR: parallel mechanism
- ρ_1 fixed
- Articular variables: ρ_2, ρ_3
- Pose variables: θ_1, α

 E_W is a smooth variety of dimension 2 contained in a 4-dimensional space.

For a fix value of ρ_2 (for example) compute E_W

Projection on \mathbb{R}^2 of curves in \mathbb{R}^3

- Input: $C = \{(x, y, z) \in \mathbb{R}^3 \mid F(x, y, z) = G(x, y, z) = 0\}$ curve defined as the intersection of two surfaces
- $\mathfrak{p}:\mathbb{R}^3 \to \mathbb{R}^2$
- Output: piecewise linear curve isotopic to p(C)

[IMP,16] Imbach R, Moroz G and Pouget M: Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve

Algorithm for curve in 3D

- 1. Isolate in boxes the special points
 - boundary points
 - x-critical points
 - singularities
- 2. Connect boxes

Algorithm for curve in 3D

- 1. Isolate in boxes the special points
 - boundary points
 - x-critical points
 - singularities
- 2. Connect boxes

- 1. Isolate in boxes the special points
 - boundary points
 - x-critical points
 - singularities
- 2. Connect boxes

Characterizing singularities

• $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t } (x, y, z) \in \mathcal{C}\}$

• $(x, y) \in \mathcal{B}$ is a node $\Leftrightarrow (x, y, z_1, z_2)$ satisfies: $F(x, y, z_1) = G(x, y, z_1) = F(x, y, z_2) = G(x, y, z_2) = 0$

Interval Newton operator

Newton operator

B an interval (resp. box) containing p $N(x) = x - F'(p)^{-1}F(x)$

$$N(B) \subset B \Rightarrow F$$
 has a solution in B

Regular system: A system is regular iff the Jacobian matrix has maximum rank.

Boxes are obtained by combined interval Newton and subdivision algorithm.

Certified path-tracker

- $F, G: \mathbb{R}^3 \to \mathbb{R}$ **B** a box of \mathbb{R}^3
- $C = \{P \in \mathbf{B} \mid F(P) = G(P) = 0\}$ a smooth curve in \mathbb{R}^3

Certified path-tracker:

Input: $F, G : \mathbb{R}^3 \to \mathbb{R}, \mathbf{B}$

Output: a sequence of boxes $\{B_k\}_{\leq \ell}$ enclosing

each component

[MGGJ,13] Martin B, Goldsztejn A, Granvilliers L and Jermann C: *Certified parallelotope continuation for one-manifolds*. SIAM Journal on Numerical Analysis, 51(6): 3373–3401, 2013.

Generic singularities

- Input: $S = \{(x, y, z, t) \in \mathbb{R}^4 \mid F(x, y, z, t) = G(x, y, z, t) = 0\}$
- $\mathfrak{p}:(x,y,z,t)\mapsto(x,y,z)$ projection along the direction (0,0,0,1)
- Output: Triangulation isotopic to $\Omega=\mathfrak{p}(\mathcal{S})\subset\mathbb{R}^3$
- In mathematics, generic singularities are well known

[Gor,96] Goryunov V: Local invariants of mappings of surfaces into three-space.

Contributions

- 1. Encode with systems all the singularities of the projected surface
- 2. The systems are regular under certain hypotheses
- curve of double-points

$$\begin{cases}
F(x, y, z, t_i) = G(x, y, z, t_i) = 0 \\
i = 1, 2
\end{cases}$$

triple-point

$$\begin{cases}
F(x, y, z, t_i) = G(x, y, z, t_i) = 0 \\
i = 1, 2, 3
\end{cases}$$

cross-cap

$$\begin{cases} F(x, y, z, t) = 0 \\ G(x, y, z, t) = 0 \\ \partial_t F(x, y, z, t) = 0 \\ \partial_t G(x, y, z, t) = 0 \end{cases}$$

Algorithm

- 1. Isolate the triple-points and cross-caps
 - enclose each triple-point and cross-cap in a special box
- 2. Draw the curve of double-points
 - Using the track paths in 3D
- 3. Reconstruct the smooth part of Ω
- [GoGr,08] Goldsztejn A and Granvilliers L: A new Framework for sharp and Efficient Resolution of CNCSP with manifolds of Solutions

THANK YOU!