## **CLAIMS**

What is claimed is:

(b)

- A method for transparency rendering in a graphics pipeline, comprising: collecting colored-transparency information from a plurality of depth layers in a scene to be rendered;
- storing the collected colored-transparency information in memory; and
- 5 (c) blending the colored transparency information from the depth layers in a predetermined order.
- 1 2. The method as recited in claim 1, wherein the colored-transparency 2 information is collected from at least two depth layers.
- 1 3. The method as recited in claim 1 wherein the colored-transparency information is stored in a plurality of texture maps.
- 1 4. The method as recited in claim 3, wherein each of the texture maps corresponds with one of the depth layers.
- 1 5. The method as recited in claim 4, wherein the texture maps are stored in memory.
- 1 6. The method as recited in claim 1, and further comprising rendering opaque objects in the scene.
- 7. The method as recited in claim 6, the opaque objects in the scene are rendered prior to blending the colored-transparency information therewith.
- 1 8. The method as recited in claim 1, wherein the memory includes a frame buffer.

| 10. | The method as recited in claim 1, wherein the colored-transparency              |
|-----|---------------------------------------------------------------------------------|
| 10. | The method as recited in claim 1, wherein the colored transportance             |
|     | The method as recited in claim 1, wherein the colored-transparency              |
|     | information is collected utilizing depth peeling.                               |
| 11. | The method as recited in claim 10, wherein the depth peeling includes           |
|     | executing a first rendering pass for collecting colored-transparency            |
|     | information relating to a first depth layer, and executing additional rendering |
|     | passes for collecting additional colored-transparency information relating to   |
|     | additional depth layers.                                                        |
| 12. | The method as recited in claim 11, wherein the first rendering pass produces    |
|     | a shadow map relating to the first depth layer.                                 |
| 13  | The method as recited in claim 11, wherein a shadow-mapping feature is          |
| 13. | enabled during the additional rendering passes for defining a previous depth    |
|     | layer.                                                                          |
|     |                                                                                 |
| 14. | The method as recited in claim 11, wherein the additional rendering passes      |
|     | are taken from the same eye position from which the first rendering pass is     |
|     | taken.                                                                          |
| 15. | The method as recited in claim 1, wherein the colored-transparency              |
|     | information is collected utilizing depth peeling including executing a first    |
|     | \ .                                                                             |
|     | rendering pass for generating a shadow map from which first colored-            |
|     |                                                                                 |

executing additional rendering passes with a shadow-mapping feature

enabled and from the same eye position from which the first rendering pass is

5

6

taken for collecting additional colored-transparency information relating to

7

| 8 |     | additional depth layers.                                                        |
|---|-----|---------------------------------------------------------------------------------|
|   |     |                                                                                 |
| 1 | 16. | The method as recited in claim 15, wherein the additional colored-              |
| 2 |     | transparency information relating to the additional depth layers is collected   |
| 3 |     | by removing a portion of the scene associated with a previous depth layer.      |
|   |     |                                                                                 |
| 1 | 17. | The method as recited in claim 16, wherein the additional colored-              |
| 2 |     | transparency information relating to the additional depth layers is collected   |
| 3 |     | by performing a test to determine which portion of the scene to remove.         |
|   |     |                                                                                 |
| 1 | 18. | The method as recited in claim 17 wherein the test determines whether the       |
| 2 |     | portion of the scene is behind the previous depth layer.                        |
|   |     |                                                                                 |
| 1 | 19. | The method as recited in claim 18, wherein the portion of the scene is          |
| 2 |     | removed upon the test determining that the portion of the scene is behind the   |
| 3 |     | previous depth layer.                                                           |
|   |     |                                                                                 |
| 1 | 20. | The method as recited in claim 19, wherein the test calculates a difference     |
| 2 |     | between a previous z-value relating to the previous depth layer and a present   |
| 3 |     | z-value relating to one of the additional depth layers.                         |
|   |     |                                                                                 |
| 1 | 21. | The method as recited in claim 20, wherein the portion of the scene is          |
| 2 |     | removed upon no difference being calculated between the previous z-value        |
| 3 |     | relating to the previous depth layer and the present z-value relating to one of |
| 4 |     | the additional depth layers.                                                    |
| 1 | 22  | The mosthed on resisted in claim 21 subspice the part has relative to 11 to 1   |
| 1 | 22. | The method as recited in claim 21, wherein the z-values relating to all depth   |
| 2 |     | layers are produced with the same interpolation-related method for              |

improving an accuracy of the test.

3

A computer program product for transparency rendering in a graphics

23.

1

| 2 |     | pipeline, comprising:                                                         |
|---|-----|-------------------------------------------------------------------------------|
| 3 | (a) | computer code for collecting colored-transparency information from a          |
| 4 |     | plurality of depth laxers in a scene to be rendered;                          |
| 5 | (b) | computer code for storing the collected colored-transparency information in   |
| 6 |     | memory; and                                                                   |
| 7 | (c) | computer code for blending the colored-transparency information from the      |
| 8 |     | depth layers in a predetermined order.                                        |
| 1 | 24. | A system for transparency rendering in a graphics pipeline, comprising:       |
| 2 | (a) | logic for collecting colored-transparency information from a plurality of     |
| 3 |     | depth layers in a scene to be rendered;                                       |
| 4 | (b) | memory for storing the collected colored-transparency information; and        |
| 5 | (c) | a renderer coupled to the memory for blending the colored-transparency        |
| 6 |     | information from the depth layers in a predetermined order.                   |
| 1 | 25. | A system for transparency rendering in a graphics pipeline, comprising:       |
| 2 | (a) | logic for collecting colored-transparency information from a plurality of     |
| 3 |     | depth layers in a scene to be rendered;                                       |
| 4 | (b) | memory for storing the collected colored-transparency information; and        |
| 5 | (c) | register combiners coupled to the memory for blending the colored-            |
| 6 |     | transparency information from the depth layers in a predetermined order.      |
| 1 | 26. | A method for transparency rendering in a graphics pipeline, comprising:       |
| 2 | (a) | collecting colored-transparency information from at least two depth layers in |
| 3 |     | a scene;                                                                      |
| 4 | (b) | storing the collected colored-transparency information in the form of a       |
| 5 |     | plurality of texture maps;                                                    |
| 6 | (c) | rendering the opaque objects in the scene;                                    |
| 7 | (d) | storing the rendering of the opaque objects in memory;                        |
| 8 | (e) | identifying one of the depth layers to be blended.                            |



| 11 | (b) | storing the collected colored-transparency information in memory; and         |
|----|-----|-------------------------------------------------------------------------------|
| 12 | (c) | blending the colored-transparency information from the depth layers.          |
| 1  | 29. | A computer program product for transparency rendering in a graphics           |
| 2  |     | pipeline, comprising:                                                         |
| 3  | (a) | computer code for collecting colored-transparency information from a          |
| 4  |     | plurality of depth layers in a scene to be rendered by:                       |
| 5  |     | (i) executing a first rendering pass for generating a shadow map and for      |
| 6  |     | collecting first colored-transparency information relating to a first depth   |
| 7  |     | layer, and                                                                    |
| 8  |     | (ii) executing additional rendering passes with a shadow mapping feature      |
| 9  |     | enabled and from the same eye position from which the first rendering pass is |
| 10 |     | taken for generating additional shadow maps and for collecting additional     |
| 11 |     | colored-transparency information elating to additional depth layers;          |
| 12 | (b) | computer code for storing the collected colored-transparency information in   |
| 13 |     | memory; and                                                                   |
| 14 | (c) | computer code for blending the colored-transparency information from the      |
| 15 |     | depth layers.                                                                 |