Gene Expression Analysis

With MATLAB

Data Sources

- Colorectal Cancer Subtyping Consortium (Synapse)
 - https://www.synapse.org/#!Synapse:syn2634724
 - geneExpression/TCGA/TCGACRC_expression.tsv
 - TCGA dataset (click here for link)
 - Consist of normalised gene expression data by patients
 - Referenced in (Guinney, Justin, et al. "The consensus molecular subtypes of colorectal cancer." *Nature medicine* (2015).) (shown by Lum) "Tumor purity analysis. We obtained the tumor purity estimation of (in the TCGA data set as defined ..."

Matlab functions

- Using read and find function to import desired gene dataset for comparison
 - Can be fully automated if done on a laptop with enough memory
- Creating Histogram based on expression data
- Using histogram <u>normal distribution fit</u> to estimate overall expression derived from the gene
 - Compare the shift in the distribution
 - o Available in different modes of fitting
- Calculate correlation coefficient of expression across patient samples
- Scatter plot with <u>linear fit</u> to compare expression
 - Calculate linear regression

Directions

 Input gene name desired to compare with target gene CDH17

2. Import Data

- Use Step 1. to find and input range
 - CDH17(give name 'cdh17_exp')
 - Targetname (give name 'gene_exp')
 - Import both

3. Run the program

Enter to terminate after run

Results

Runtime: >10 seconds

Normalised to 0 to 1

- Correlation coefficient between 2 data set
- Coefficient of Determination R²

Other Analysis - Matlab Hierarchical Clustering

- Example results regarding yeast <u>expression</u>
- Datasource:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

(Required: Expression over time)

- Matlab Example:
- Click Here for link
- Source:
 (Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278 (5338), 680–686. PMID: 9381177.)

Function - D'haeseleer, Patrik. "How does gene expression clustering work?."

 'The goal of clustering is to <u>subdivide</u> a set of items (in our case, genes) in such a way that <u>similar items</u> fall into the same cluster, whereas <u>dissimilar</u> <u>items</u> fall in different clusters' (D'haeseleer, Patrik. "How does gene expression clustering work?." *Nature*

biotechnology 23.12 (2005): 1499.)

Employs different <u>algorithms</u> to subdivide datasets using different <u>similarity</u>

measures

Manhattan distance (city-block distance, L1 norm)	$d_{gg} = \sum_c \left e_{gc} ight $
Euclidean distance (L2 norm)	$d_{tg} = \sqrt{\sum_{c} (e_{tc} - e_{gc})^2}$
Mahalanobis distance	$d_{\rm fg} = ({\bf e}_{\rm f} - {\bf e}_{\rm g})^{\rm t} \Sigma^{-1}({\bf e}_{\rm f} - {\bf e}_{\rm g}), \text{ where } \Sigma \text{ is the (full or within-cluster) covariance matrix of the data}$
Pearson correlation (centered correlation)	$d_{fg} = 1 - r_{fgr} \text{ with } r_{fg} = \frac{\sum_{c} (e_{fc} - \overline{e}_{f})(e_{gc} - \overline{e}_{g})}{\sqrt{\sum_{c} (e_{fc} - \overline{e}_{f})^{2} \sum_{c} (e_{gc} - \overline{e}_{g})^{2}}}$
Uncentered correlation (angular separation, cosine angle)	$d_{fg} = 1 - r_{fgr}$ with $r_{fg} = \frac{\sum_{c} e_{fc} e_{gc}}{\sqrt{\sum_{c} e_{fc}^2 \sum_{c} e_{gc}^2}}$
Spellman rank correlation	As Pearson correlation, but replace e_{gc} with the rank of e_{gc} within the expression values of gene g across all conditions $c=1C$
Absolute or squared correlation	$d_{t_0} = 1 - r_{t_0} \text{ or } d_{t_0} = 1 - r_{t_0}^2$