Lycée Jules-Ferry PTSI 1 : mathématiques année 2019-2020

Nom et prénom:

QCM n°1 30 mars 2020 Note:

/20

Vrai/Faux

- Soient F et G deux sous-espaces vectoriels de E tels que $F+G=F\cap G$. On a alors F=G. Réponse : Vrai.
- Vect $(\emptyset) = \emptyset$. **Réponse :** L'ensemble vide n'est pas un esapec vectoriel.
- Soient A et B deux parties de E. Alors $\text{Vect}(A \cup B) = \text{Vect}(A) + \text{Vect}(B)$. Réponse : Vrai.
- Tout élément du sous-espace vectoriel engendré par des vecteurs x_1, \dots, x_n est une combinaison linéaire de ces vecteurs. **Réponse :** Vrai.
- Tout élément du sous-espace vectoriel engendré par des vecteurs x_1, \dots, x_n est une combinaison linéaire de deux de ces vecteurs. **Réponse :** Faux.
- Si G et H sont supplémentaires dans E et F est un sous-espace vectoriel de E, alors $G \cap F$ et $H \cap F$ sont supplémentaires dans F. **Réponse**: Faux. Dans \mathbb{R}^2 . Si l'on considère la base canonique $e_1 = (1,0)$ et $e_2 = (0,1)$, on a $\text{Vect}(e_1) \oplus \text{Vect}(e_2) = \mathbb{R}^2$. Pour autant, si $F = \text{Vect}(e_1 + e_2)$ alors $G \cap F = H \cap F\{0\}$ et donc $G \cap F + H \cap F \neq G$.
- Soit N > 0. L'ensemble des suites N-périodiques est de dimension finie. **Réponse :** Vrai. La dimension est N. Pour définir une suite N-périodique, il suffit de connaître N termes consécutifs (par exemple les termes en $0, 1, \dots, N-1$).
- L'espace des fonctions de classe \mathcal{C}^0 périodiques et nulles en 0 est de dimension finie. **Réponse :** Faux.
- De toute famille génératrice d'un espace de dimension finie, on peut extraire une base. Réponse : Vrai.
- Tout vecteur d'un esapce vectoriel de dimension finie peut-être complété en une base. Réponse : Vrai.
- Si (f_1, \dots, f_n) est une base de F et (g_1, \dots, g_q) est une base de G alors $\{f_1, \dots, f_n\} \cap \{g_1, \dots, g_q\}$ est une base de $F \cap G$. **Réponse :** Faux. Autant, $\{f_1, \dots, f_n\} \cup \{g_1, \dots, g_q\}$ contient une base de $F \cap G$, autant il est tout à fait possible que $F \cap G = \text{Vect}(f_1)$ et $\{f_1, \dots, f_n\} \cap \{g_1, \dots, g_q\} = \emptyset$. Prenons $f_1 = (1, 0)$ et $g_1 = (2, 0)$. Alors $F = \text{Vect}(f_1) = \text{Vect}(g_1) = G = F \cap G$ et $\{f_1\} \cap \{g_1\} = \emptyset$.
- Soit F un sous-espace vectoriel d'un esapce vectoriel de dimension finie E. Alors E = F si et seulement si $\dim(E) = \dim(F)$. **Réponse :** Vrai.

QCM

- Soit \mathcal{P} l'espace vectoriel des polynômes dont la fonction polynômiale associée est paire. Parmi les ensembles suivants, lesquels sont des supplémentaires de \mathcal{P} dans $\mathbb{R}[X]$?
 - 1. L'espace des polynômes impaires \mathcal{I} . Réponse : vrai.
 - 2. $\{P(X) + X^2 \mid P \in \mathcal{I}\}$. **Réponse :** Faux. On peut écrire par exemple $2X^2 + 2X = 2(X + X^2) + 0 = (2X + X^2) + X^2$. Il n'y a donc pas unicité dans l'écriture d'un polynôme sous la forme d'une somme de $\{P(X) + X^2 \mid P \in \mathcal{I}\}$ avec \mathcal{P} .
 - 3. $\{P \in \mathbb{R}[X], P(1) = 0\}$. **Réponse :** Faux. De même, on peut écrire, $X^2 1 = (X 1)(X + 1) + 0 = 0 + X^2 1$.
 - 4. Vect (X^3) . **Réponse :** Faux. De même, $X^4 = X^3 \times X + 0 = 0 + X^4$.
- Les sous-espaces vectoriels $\{f \in \mathcal{C}^0(\mathbb{R}), f(1) = 0\}$ et $\{f \in \mathcal{C}^1(\mathbb{R}), f' = f\}$ sont
 - 1. complémentaires dans $\mathcal{C}^0(\mathbb{R})$. **Réponse :** Faux. Attention, les ensembles ont un point en commun il ne peuvent donc pas être complémentaires.
 - 2. supplémentaires dans $C^0(\mathbb{R})$ Réponse : Vrai.
 - 3. en somme directe. Réponse : Vrai.
 - 4. de somme égale à $\mathcal{C}^0(\mathbb{R})$. Réponse : Vrai.
- Déterminer parmi les ensembles suivants ceux qui sont des sous-espaces vetoriels de $\mathbb{R}^{\mathbb{N}}$.
 - 1. l'ensemble des suites positives à partir d'un certain rang. **Réponse :** Faux. Stabilité par combinaison linéaire pose problème.
 - 2. l'ensemble des suites bornées. **Réponse :** Vrai.
 - 3. l'ensemble des suites monotones. Réponse : Faux. La multiplication par un scalaire pose problème.
 - 4. l'ensemble des suites somme d'une suite croissante et d'une suite décroissante. Réponse : Vrai.
 - 5. l'ensemble des suites convergentes. **Réponse :** Vrai.
 - 6. l'ensemble des suites périodiques. **Réponse :** Vrai. Si (u_n) est p-périodique et (v_n) est q périodique alors $(u_n + v_n)$ est pq-périodique.

- La dimension de l'espace vectoriel $\{(x,y,z)\in\mathbb{R}^3\ /\ x^2+y^2+2z^2+2xz+2yz=0\}$ est

 - 2. 2
 - 3. 3

Réponse : 1. On peut montrer que $\{(x, y, z) \in \mathbb{R}^3 \ / \ x^2 + y^2 + 2z^2 + 2xz + 2yz = 0\} = \text{Vect}((-1, -1, 1)).$

- La dimension de $\mathcal{D}_n(\mathbb{K})$ est
 - 1. n^2
 - 2. $\frac{n(n+1)}{2}$
 - 3. n
 - 4. $\frac{n(n-1)}{2}$

$\tilde{\mathbf{Réponse}}$: n.

- La dimension de $\mathcal{T}_n^+(\mathbb{K})$ est
 - 1. n^2
 - 1. n^{-1} 2. $\frac{n(n+1)}{2}$ 3. n4. $\frac{n(n-1)}{2}$

Réponse : $\frac{n(n+1)}{2}$.

- La dimension de $\mathcal{A}_n(\mathbb{K})$ est

 - 1. n^2 2. $\frac{n(n+1)}{2}$

 - 3. n4. $\frac{n(n-1)}{2}$

Réponse : $\frac{n(n-1)}{2}$.

- La dimension de $S_n(\mathbb{K})$ est

 - 1. n^2 2. $\frac{n(n+1)}{2}$

 - 3. n4. $\frac{n(n-1)}{2}$

Réponse : $\frac{n(n+1)}{2}$.

- La dimension de $\mathbb{R}_n[X]$ est
 - 1. n-1
 - 2. n
 - 3. n+1
 - 4. n^2

Réponse : n+1.