

Probabilistic Graphical Models

Approximate Inference: Markov Chain Monte Carlo

Eric Xing

Lecture 17, March 20, 2013

- Monte Carlo methods are algorithms that:
 - Generate samples from a given probability distribution p(x)
 - Estimate expectations of functions E[f(x)] under a distribution p(x)
- Why is this useful?
 - Can use samples of p(x) to approximate p(x) itself
 - Allows us to do graphical model inference when we can't compute p(x)
 - Expectations E[f(x)] reveal interesting properties about P(x)
 - e.g. means and variances of p(x)

Limitations of Monte Carlo

- Direct sampling
 - Hard to get rare events in high-dimensional spaces
 - Infeasible for MRFs, unless we know the normalizer Z
- Rejection sampling, Importance sampling
 - Do not work well if the proposal Q(x) is very different from P(x)
 - Yet constructing a Q(x) similar to P(x) can be difficult
 - Making a good proposal usually requires knowledge of the analytic form of P(x) – but if we had that, we wouldn't even need to sample!
- Intuition: instead of a fixed proposal Q(x), what if we could use an adaptive proposal?

Markov Chain Monte Carlo

- MCMC algorithms feature adaptive proposals
 - Instead of Q(x'), they use Q(x'|x) where x' is the new state being sampled, and x is the previous sample
 - As x changes, Q(x'|x) can also change (as a function of x')

Importance sampling with a (bad) proposal Q(x)

Q(x) P(x) P(x) MCMC with adaptive proposal Q(x'|x)

Metropolis-Hastings

- Let's see how MCMC works in practice
 - Later, we'll look at the theoretical aspects
- Metropolis-Hastings algorithm
 - Draws a sample x' from Q(x'|x), where x is the previous sample
 - The new sample x' is accepted or rejected with some probability A(x'|x)
 - This acceptance probability is $A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$
 - A(x'|x) is like a ratio of importance sampling weights
 - P(x')/Q(x'|x) is the importance weight for x', P(x)/Q(x|x') is the importance weight for x
 - We divide the importance weight for x' by that of x
 - Notice that we only need to compute P(x')/P(x) rather than P(x') or P(x) separately
 - A(x'|x) ensures that, after sufficiently many draws, our samples will come from the true distribution P(x) we shall learn why later in this lecture

The MH Algorithm

- Initialize starting state $x^{(0)}$, set t=0
- Burn-in: while samples have "not converged"
 - \bullet $X=X^{(t)}$
 - t = t + 1,
 - sample $x^* \sim Q(x^*|x)$ // draw from proposal

sample
$$u \sim \text{Uniform}(0,1)$$
 // draw acceptance threshold

- if $u < A(x^* \mid x) = \min \left(1, \frac{P(x^*)Q(x \mid x^*)}{P(x)Q(x^* \mid x)} \right)$

- $x^{(t)} = x^*$ // transition
 - else
- $x^{(t)} = x$ // stay in current state
- Take samples from P(x): Reset t=0, for t=1:N
 - x(t+1) ← Draw sample (x(t))

Function Draw sample (x(t))

The MH Algorithm

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)

Initialize x⁽⁰⁾

- - -

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

The MH Algorithm

Example:

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

Initialize x⁽⁰⁾ Draw, accept x¹

The MH Algorithm

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)

Initialize x⁽⁰⁾ Draw, accept x¹ Draw, accept x²

The MH Algorithm

• Example:

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

The MH Algorithm

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

The MH Algorithm

Example:

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

The MH Algorithm

Example:

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

The MH Algorithm

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)

- The MH algorithm has a "burn-in" period
 - Why do we throw away samples from burn-in?
- Why are the MH samples guaranteed to be from P(x)?
 - The proposal Q(x'|x) keeps changing with the value of x; how do we know the samples will eventually come from P(x)?
- What is the connection between Markov Chains and MCMC?

Markov Chains

• A Markov Chain is a sequence of random variables $x^{(1)}, x^{(2)}, ..., x^{(n)}$ with the Markov Property

$$P(x^{(n)} = x \mid x^{(1)}, \dots, x^{(n-1)}) = P(x^{(n)} = x \mid x^{(n-1)})$$

- $P(x^{(n)} = x \mid x^{(n-1)})$ is known as the <u>transition kernel</u>
- The next state depends only on the preceding state recall HMMs!
- Note: the r.v.s x⁽ⁱ⁾ can be <u>vectors</u>
 - We define x^(t) to be the t-th sample of <u>all</u> variables in a graphical model
 - X^(t) represents the entire state of the graphical model at time t
- We study homogeneous Markov Chains, in which the transition kernel $P(x^{(t)} = x \mid x^{(t-1)})$ is fixed with time
 - To emphasize this, we will call the kernel $T(x' \mid x)$, where x is the previous state and x' is the next state

MC Concepts

- To understand MCs, we need to define a few concepts:
 - Probability distributions over states: $\pi^{(t)}(x)$ is a distribution over the state of the system x, at time t
 - When dealing with MCs, we don't think of the system as being in one state, but as having a distribution over states
 - For graphical models, remember that x represents <u>all</u> variables
 - Transitions: recall that states transition from $x^{(t)}$ to $x^{(t+1)}$ according to the transition kernel T(x'|x). We can also transition entire distributions:

$$\pi^{(t+1)}(x') = \sum_{x} \pi^{(t)}(x) T(x' \mid x)$$

- At time t, state x has probability mass $\pi^{(t)}(x)$. The transition probability redistributes this mass to other states x'.
- Stationary distributions: $\pi(x)$ is stationary if it does not change under the transition kernel:

$$\pi(x') = \sum_{x} \pi(x) T(x' \mid x) \quad \text{for all } x'$$

MC Concepts

- Stationary distributions are of great importance in MCMC. To understand them, we need to define some notions:
 - Irreducible: an MC is irreducible if you can get from any state x to any other state x' with probability > 0 in a finite number of steps
 - i.e. there are no unreachable parts of the state space
 - Aperiodic: an MC is aperiodic if you can return to any state x at any time
 - Periodic MCs have states that need ≥2 time steps to return to (cycles)
 - Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic
- Ergodicity is important: it implies you can reach the stationary distribution $\pi_{st}(x)$, no matter the initial distribution $\pi^{(0)}(x)$
 - All good MCMC algorithms must satisfy ergodicity, so that you can't initialize in a way that will never converge

MC Concepts

• Reversible (detailed balance): an MC is reversible if there exists a distribution $\pi(x)$ such that the detailed balance condition is satisfied:

$$\pi(x')T(x \mid x') = \pi(x)T(x' \mid x)$$

- Probability of $x' \rightarrow x$ is the same as $x \rightarrow x'$
- Reversible MCs <u>always</u> have a stationary distribution! Proof:

$$\pi(x')T(x \mid x') = \pi(x)T(x' \mid x)$$

$$\sum_{x} \pi(x')T(x \mid x') = \sum_{x} \pi(x)T(x' \mid x)$$

$$\pi(x')\sum_{x} T(x \mid x') = \sum_{x} \pi(x)T(x' \mid x)$$

$$\pi(x') = \sum_{x} \pi(x)T(x' \mid x)$$

The last line is the definition of a stationary distribution!

Why does Metropolis-Hastings work?

- Recall that we draw a sample x' according to Q(x'|x), and then accept/reject according to A(x'|x).
 - In other words, the transition kernel is

$$T(x'|x) = Q(x'|x)A(x'|x)$$

- We can prove that MH satisfies detailed balance
 - Recall that

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

Notice this implies the following:

if
$$A(x'|x) < 1$$
 then $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} > 1$ and thus $A(x|x') = 1$

Why does Metropolis-Hastings work?

if
$$A(x'|x) < 1$$
 then $\frac{\pi(x)Q(x'|x)}{\pi(x')Q(x|x')} > 1$ and thus $A(x|x') = 1$

• Now suppose A(x'|x) < 1 and A(x|x') = 1. We have

$$A(x'|x) = \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}$$

$$P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')$$

$$P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')A(x|x')$$

$$P(x)T(x'|x) = P(x')T(x|x')$$

- The last line is exactly the detailed balance condition
 - In other words, the MH algorithm leads to a stationary distribution P(x)
 - Recall we defined P(x) to be the true distribution of x
 - Thus, the MH algorithm eventually converges to the true distribution!

Caveats

- Although MH eventually converges to the true distribution P(x), we have no guarantees as to when this will occur
 - The burn-in period represents the un-converged part of the Markov Chain – that's why we throw those samples away!
 - Knowing when to halt burn-in is an art. We will look at some techniques later in this lecture.

- Gibbs Sampling is an MCMC algorithm that samples each random variable of a graphical model, one at a time
 - GS is a special case of the MH algorithm
- GS algorithms...
 - Are fairly easy to derive for many graphical models (e.g. mixture models, Latent Dirichlet allocation)
 - Have reasonable computation and memory requirements, because they sample one r.v. at a time
 - Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the sampling variance

Gibbs Sampling

- The GS algorithm:
 - Suppose the graphical model contains variables $x_1, ..., x_n$
 - 2. Initialize starting values for $x_1,...,x_n$
 - 3. Do until convergence:
 - 1. Pick an ordering of the n variables (can be fixed or random)
 - 2. For each variable x_i in order:
 - 1. Sample x from $P(x_i | x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$, i.e. the conditional distribution of x_i given the current values of all other variables
 - 2. Update $x_i \leftarrow x$
- When we update x_i, we <u>immediately</u> use its new value for sampling other variables x_j

Markov Blankets

- The conditional P(x_i | x₁, ..., x_{i-1}, x_{i+1}, ..., x_n) looks intimidating, but recall Markov Blankets:
 - Let MB(x_i) be the Markov Blanket of x_i, then

$$P(x_i \mid x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = P(x_i \mid MB(x_i))$$

• For a BN, the Markov Blanket of x is the set containing its parents, children, and co-parents

 For an MRF, the Markov Blanket of x is its immediate neighbors

t	В	E	Α	J	M
0	F	F	F	F	F
1					
2					
3					
4					

- Consider the alarm network
 - Assume we sample variables in the order B,E,A,J,M
 - Initialize all variables at t = 0 to False

t	В	Ε	Α	J	M
0	F	F	F	F	F
1	F				
2					
3					
4					

- Sampling P(B|A,E) at t = 1: Using Bayes Rule, $P(B \mid A, E) \propto P(A \mid B, E) P(B)$
- (A,E) = (F,F), so we compute the following, and sample B = F $P(B=T \mid A=F, E=F) \propto (0.06)(0.01) = 0.0006$ $P(B=F \mid A=F, E=F) \propto (0.999)(0.999) = 0.9980$

t	В	Ε	Α	J	M
0	F	F	F	F	F
1	F	Т			
2					
3					
4					

- Sampling P(E|A,B): Using Bayes Rule, $P(E \mid A,B) \propto P(A \mid B,E)P(E)$
- (A,B) = (F,F), so we compute the following, and sample E = T $P(E = T \mid A = F, B = F) \propto (0.71)(0.02) = 0.0142$ $P(E = F \mid A = F, B = F) \propto (0.999)(0.998) = 0.9970$

t	В	Ε	Α	J	M
0	F	F	F	F	F
1	F	Т	F		
2					
3					
4					

- Sampling P(A|B,E,J,M): Using Bayes Rule, $P(A \mid B, E, J, M) \propto P(J \mid A) P(M \mid A) P(A \mid B, E)$
- (B,E,J,M) = (F,T,F,F), so we compute the following, and sample A = F $P(A = T \mid B = F, E = T, J = F, M = F) \propto (0.1)(0.3)(0.29) = 0.0087$ $P(A = F \mid B = F, E = T, J = F, M = F) \propto (0.95)(0.99)(0.71) = 0.6678$

t	В	Ε	Α	J	M
0	F	F	F	F	F
1	F	Т	F	Т	
2					
3					
4					

- Sampling P(J|A): No need to apply Bayes Rule
- A = F, so we compute the following, and sample J = T

$$P(J = T \mid A = F) \propto 0.05$$

$$P(J = F \mid A = F) \propto 0.95$$

t	В	Ε	Α	J	M
0	F	F	F	F	F
1	F	Т	F	Т	F
2					
3					
4					

- Sampling P(M|A): No need to apply Bayes Rule
- A = F, so we compute the following, and sample M = F

$$P(M = T \mid A = F) \propto 0.01$$

$$P(M = F \mid A = F) \propto 0.99$$

t	В	Ε	Α	J	M
0	F	F	F	F	F
1	F	Т	F	Т	F
2	F	Т	Т	Т	Т
3					
4					

 Now t = 2, and we repeat the procedure to sample new values of B,E,A,J,M ...

t	В	Ε	Α	J	M
0	F	F	F	F	F
1	F	Т	F	Т	F
2	F	Т	Т	Т	Т
3	Т	F	Т	F	Т
4	Т	F	Т	F	F

- Now t = 2, and we repeat the procedure to sample new values of B,E,A,J,M ...
- And similarly for t = 3, 4, etc.

Topic Models: Collapsed Gibbs

(Tom Griffiths & Mark Steyvers)

- Collapsed Gibbs sampling
 - Popular inference algorithm for topic models
 - Integrate out topic vectors π and topics B
 - Only need to sample word-topic assignments z

Algorithm:

For all variables $\mathbf{z} = z_1, z_2, ..., z_n$

Draw $z_i^{(t+1)}$ from $P(z_i|\mathbf{z}_{-i}, \mathbf{w})$

where $\mathbf{z}_{-i} = z_1^{(t+1)}, z_2^{(t+1)}, ..., z_{i-1}^{(t+1)}, z_{i+1}^{(t)}, ..., z_n^{(t)}$

- What is $P(z_i|\mathbf{z}_{-i}, \mathbf{w})$?
 - It is a product of two Dirichlet-Multinomial conditional distributions:

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta}rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,\cdot}^{(d_i)}+Tlpha}$$
 "doc-topic" term

Collapsed Gibbs sampling

- What is $P(z_i|\mathbf{z}_{-i}, \mathbf{w})$?
 - It is a product of two Dirichlet-Multinomial conditional distributions:

-		

i	${\it W}_i$	d_i	Z_i
1	MATHEMATICS	1	2
2	KNOWLEDGE	1	2
3	RESEARCH	1	1
4	WORK	1	2
5	MATHEMATICS	1	1
6	RESEARCH	1	2
7	WORK	1	2
8	SCIENTIFIC	1	1
9	MATHEMATICS	1	2
10	WORK	1	1
11	SCIENTIFIC	2	1
12	KNOWLEDGE	2	1
•		•	
•	•	•	•
•	•	•	•
50	JOY	5	2

•				4 •		
I	t	\mathbf{e}	ra	Ħ	O	n

			nera	uon
			1	2
i	${\mathcal W}_i$	d_i	\mathcal{Z}_{i}	Z_i
1	MATHEMATICS	1	2	?
2	KNOWLEDGE	1	2	
3	RESEARCH	1	1	
4	WORK	1	2	
5	MATHEMATICS	1	1	
6	RESEARCH	1	2	
7	WORK	1	2	
8	SCIENTIFIC	1	1	
9	MATHEMATICS	1	2	
10	WORK	1	1	
11	SCIENTIFIC	2	1	
12	KNOWLEDGE	2	1	
•		•	•	
•		•	•	
•		•	•	
50	JOY	5	2	

•	4			4 •		
1	t	e:	ra	Ħ	O	n

			1	2
i	${\mathcal W}_i$	d_i	z_i	Z_i
1	MATHEMATICS	1	2	?
2	KNOWLEDGE	1	2	
3	RESEARCH	1	1	
4	WORK	1	2	
5	MATHEMATICS	1	1	
6	RESEARCH	1	2	
7	WORK	1	2	
8	SCIENTIFIC	1	1	
9	MATHEMATICS	1	2	
10	WORK	1	1	
11	SCIENTIFIC	2	1	
12	KNOWLEDGE	2	1	
•		•	•	
•		•	•	
•	•	•	•	
50	JOY	5	2	

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,\cdot}^{(d_i)}+Tlpha}$$

iteration

 z_i

			1
i	${\mathcal W}_i$	d_i	z_i
1	MATHEMATICS	1	2
2	KNOWLEDGE	1	2
3	RESEARCH	1	1
4	WORK	1	2
5	MATHEMATICS	1	1
6	RESEARCH	1	2
7	WORK	1	2
8	SCIENTIFIC	1	1
9	MATHEMATICS	1	2
10	WORK	1	1
11	SCIENTIFIC	2	1
12	KNOWLEDGE	2	1
	•	•	•
•	•	•	•
	·	•	•
50	JOY	5	2

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,\cdot}^{(d_i)}+Tlpha}$$

			1	2
i	${\it W_i}$	d_i	z_i	Z_i
1	MATHEMATICS	1	2	2
2	KNOWLEDGE	1	2	?
3	RESEARCH	1	1	
4	WORK	1	2	
5	MATHEMATICS	1	1	
6	RESEARCH	1	2	
7	WORK	1	2	
8	SCIENTIFIC	1	1	
9	MATHEMATICS	1	2	
10	WORK	1	1	
11	SCIENTIFIC	2	1	
12	KNOWLEDGE	2	1	
•	•	•	•	
•	•	•	•	
•	•	•	•	
50	JOY	5	2	

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,\cdot}^{(d_i)}+Tlpha}$$

			1	2
i	${\it W_i}$	d_i	\mathcal{Z}_i	z_i
1	MATHEMATICS	1	2	2
2	KNOWLEDGE	1	2	1
3	RESEARCH	1	1	?
4	WORK	1	2	
5	MATHEMATICS	1	1	
6	RESEARCH	1	2	
7	WORK	1	2	
8	SCIENTIFIC	1	1	
9	MATHEMATICS	1	2	
10	WORK	1	1	
11	SCIENTIFIC	2	1	
12	KNOWLEDGE	2	1	
		•	•	
•	•	•	•	
			•	
50	JOY	5	2	

$$P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto rac{n_{-i,j}^{(w_i)} + eta}{n_{-i,j}^{(\cdot)} + Weta} rac{n_{-i,j}^{(d_i)} + lpha}{n_{-i,\cdot}^{(d_i)} + Tlpha}$$

			1	2
i	${\it w_i}$	d_i	\mathcal{Z}_i	z_i
1	MATHEMATICS	1	2	2
2	KNOWLEDGE	1	2	1
3	RESEARCH	1	1	1
4	WORK	1	2	?
5	MATHEMATICS	1	1	
6	RESEARCH	1	2	
7	WORK	1	2	
8	SCIENTIFIC	1	1	
9	MATHEMATICS	1	2	
10	WORK	1	1	
11	SCIENTIFIC	2	1	
12	KNOWLEDGE	2	1	
•		•	•	
•	•	•	•	
	•	•	•	
50	JOY	5	2	

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,\cdot}^{(d_i)}+Tlpha}$$

			1	2
i	${\it W_i}$	d_i	Z_i	Z_i
1	MATHEMATICS	1	2	2
2	KNOWLEDGE	1	2	1
3	RESEARCH	1	1	1
4	WORK	1	2	2
5	MATHEMATICS	1	1	?
6	RESEARCH	1	2	
7	WORK	1	2	
8	SCIENTIFIC	1	1	
9	MATHEMATICS	1	2	
10	WORK	1	1	
11	SCIENTIFIC	2	1	
12	KNOWLEDGE	2	1	
	•	•	•	
•		•	•	
•		•	•	
50	JOY	5	2	

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,\cdot}^{(d_i)}+Tlpha}$$

•	4			4 •		
1	t	er	a	tı	0	n

			1	2	•••	1000
i	${\mathcal W}_i$	d_i	\mathcal{Z}_{i}	Z_i		z_i
1	MATHEMATICS	1	2	2		2
2	KNOWLEDGE	1	2	1		2
3	RESEARCH	1	1	1		2
4	WORK	1	2	2		1
5	MATHEMATICS	1	1	2		2
6	RESEARCH	1	2	2		2
7	WORK	1	2	2		2
8	SCIENTIFIC	1	1	1	•••	1
9	MATHEMATICS	1	2	2		2
10	WORK	1	1	2		2
11	SCIENTIFIC	2	1	1		2
12	KNOWLEDGE	2	1	2		2
•	•	•	•	•		•
•	•	•	•	•		•
	·	•				
50	JOY	5	2	1		1

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,\cdot}^{(d_i)}+Tlpha}$$

Gibbs Sampling is a special case of MH

The GS proposal distribution is

$$Q(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}) = P(x'_{i} \mid \mathbf{x}_{-i})$$

- Where x_{-i} denotes all variables except x_i
- Applying MH to this proposal, we find that samples are always accepted (which is exactly what GS does):

$$\begin{split} A(x_{i}', \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}) &= \min \left(1, \frac{P(x_{i}', \mathbf{x}_{-i})Q(x_{i}, \mathbf{x}_{-i} \mid x_{i}', \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})Q(x_{i}', \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i})} \right) \\ &= \min \left(1, \frac{P(x_{i}', \mathbf{x}_{-i})P(x_{i} \mid \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})P(x_{i}' \mid \mathbf{x}_{-i})} \right) = \min \left(1, \frac{P(x_{i}' \mid \mathbf{x}_{-i})P(\mathbf{x}_{-i})P(\mathbf{x}_{-i})P(x_{i} \mid \mathbf{x}_{-i})}{P(x_{i} \mid \mathbf{x}_{-i})P(x_{i}' \mid \mathbf{x}_{-i})} \right) \\ &= \min \left(1, 1 \right) = 1 \end{split}$$

GS is simply MH with a proposal that is always accepted!

- How do we know if our proposal Q(x'|x) is any good?
 - Monitor the acceptance rate
 - Plot the autocorrelation function
- How do we know when to stop burn-in?
 - Plot the sample values vs time
 - Plot the log-likelihood vs time

Acceptance Rate

- Choosing the proposal Q(x'|x) is a tradeoff:
 - "Narrow", low-variance proposals have high acceptance, but take many iterations to explore P(x) fully because the proposed x are too close
 - "Wide", high-variance proposals have the potential to explore much of P(x), but many proposals are rejected which slows down the sampler
- A good Q(x'|x) proposes distant samples x' with a sufficiently high acceptance rate

Acceptance Rate

- Acceptance rate is the fraction of samples that MH accepts.
 - General guideline: proposals should have ~0.5 acceptance rate [1]
- Gaussian special case:
 - If both P(x) and Q(x'|x) are Gaussian, the optimal acceptance rate is ~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]

^[1] Muller, P. (1993). "A Generic Approach to Posterior Integration and Gibbs Sampling"

^[2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). "Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms"

- High autocorrelation

 Output

 Output
- MCMC chains always show autocorrelation (AC)
 - AC means that adjacent samples in time are highly correlated
- We quantify AC with the autocorrelation function of an r.v. x:

$$R_{x}(k) = \frac{\sum_{t=1}^{n-k} (x_{t} - \overline{x})(x_{t+k} - \overline{x})}{\sum_{t=1}^{n-k} (x_{t} - \overline{x})^{2}}$$

$R_{x}(k) = \frac{\sum_{t=1}^{n-k} (x_{t} - \overline{x})}{\sum_{t=1}^{n-k} (x_{t})}$

Autocorrelation function

• The first-order AC $R_x(1)$ can be used to estimate the Sample Size Inflation Factor (SSIF):

$$s_{x} = \frac{1 + R_{x}(1)}{1 - R_{x}(1)}$$

- If we took n samples with SSIF s_x, then the effective sample size is n/s_x
- High autocorrelation leads to smaller effective sample size!
- We want proposals Q(x'|x) with low autocorrelation

- Monitor convergence by plotting samples (of r.v.s) from multiple MH runs (chains)
 - If the chains are well-mixed (left), they are probably converged
 - If the chains are poorly-mixed (right), we should continue burn-in

- Many graphical models are high-dimensional
 - Hard to visualize all r.v. chains at once
- Instead, plot the complete log-likelihood vs. time
 - The complete log-likelihood is an r.v. that depends on all model r.v.s
 - Generally, the log-likelihood will climb, then eventually plateau

Summary

- Markov Chain Monte Carlo methods use adaptive proposals Q(x'|x) to sample from the true distribution P(x)
- Metropolis-Hastings allows you to specify any proposal Q(x'|x)
 - But choosing a good Q(x'|x) requires care
- Gibbs sampling sets the proposal Q(x'|x) to the conditional distribution P(x'|x)
 - Acceptance rate always 1!
 - But remember that high acceptance usually entails slow exploration
 - In fact, there are better MCMC algorithms for certain models
- Knowing when to halt burn-in is an art