3. Formules de trigonométrie : sinus, cosinus, tangente

3.1. Le cercle trigonométrique

Voici le cercle trigonométrique (de rayon 1), le sens de lecture est l'inverse du sens des aiguilles d'une montre. Les angles remarquables sont marqués de 0 à 2π (en radian) et de 0° à 360°. Les coordonnées des points correspondant à ces angles sont aussi indiquées.

Le point M a pour coordonnées $(\cos x, \sin x)$. La droite (OM) coupe la droite d'équation (x = 1) en T, l'ordonnée du point T est tan x.

Les formules de base :

$$\cos^2 x + \sin^2 x = 1$$
$$\cos(x + 2\pi) = \cos x$$
$$\sin(x + 2\pi) = \sin x$$

Nous avons les formules suivantes :

$$\cos(-x) = \cos x$$
$$\sin(-x) = -\sin x$$

On retrouve graphiquement ces formules à l'aide du dessin des angles x et -x.

Il en est de même pour les formules suivantes :

$$\cos(\pi + x) = -\cos x \qquad \cos(\pi - x) = -\cos x \qquad \cos(\frac{\pi}{2} - x) = \sin x$$

$$\sin(\pi + x) = -\sin x \qquad \sin(\pi - x) = \sin x \qquad \sin(\frac{\pi}{2} - x) = \cos x$$

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan x	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

Valeurs que l'on retrouve bien sur le cercle trigonométrique.

3.2. Les fonctions sinus, cosinus, tangente

La fonction cosinus est périodique de période 2π et elle paire (donc symétrique par rapport à l'axe des ordonnées). La fonction sinus est aussi périodique de période de 2π mais elle impaire (donc symétrique par rapport à l'origine).

Voici un zoom sur l'intervalle $[-\pi, \pi]$.

Pour tout x n'appartenant pas à $\{\ldots, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots\}$ la tangente est définie par

$$\tan x = \frac{\sin x}{\cos x}$$

La fonction $x \mapsto \tan x$ est périodique de période π ; c'est une fonction impaire.

Voici les dérivées :

$$\cos' x = -\sin x$$
$$\sin' x = \cos x$$
$$\tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

3.3. Les formules d'additions

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$
$$\sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a$$
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$$

On en déduit immédiatement :

$$\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$

$$\sin(a-b) = \sin a \cdot \cos b - \sin b \cdot \cos a$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

Il est bon de connaître par cœur les formules suivantes (faire a = b dans les formules d'additions) :

$$\cos 2a = 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$= \cos^2 a - \sin^2 a$$

$$\sin 2a = 2\sin a \cdot \cos a$$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

3.4. Les autres formules

Voici d'autres formules qui se déduisent des formules d'additions. Il n'est pas nécessaire de les connaître mais il faut savoir les retrouver en cas de besoin.

$$\cos a \cdot \cos b = \frac{1}{2} \Big[\cos(a+b) + \cos(a-b) \Big]$$

$$\sin a \cdot \sin b = \frac{1}{2} \Big[\cos(a-b) - \cos(a+b) \Big]$$

$$\sin a \cdot \cos b = \frac{1}{2} \Big[\sin(a+b) + \sin(a-b) \Big]$$

Les formules précédentes se reformulent aussi en

$$\cos p + \cos q = 2\cos\frac{p+q}{2} \cdot \cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2} \cdot \sin\frac{p-q}{2}$$

$$\sin p + \sin q = 2\sin\frac{p+q}{2} \cdot \cos\frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin\frac{p-q}{2} \cdot \cos\frac{p+q}{2}$$

Enfin les formules de la « tangente de l'arc moitié » permettent d'exprimer sinus, cosinus et tangente en fonction de tan $\frac{x}{2}$.

Avec
$$t = \tan \frac{x}{2}$$
 on a
$$\begin{cases} \cos x &= \frac{1 - t^2}{1 + t^2} \\ \sin x &= \frac{2t}{1 + t^2} \\ \tan x &= \frac{2t}{1 + t^2} \end{cases}$$

Ces formules sont utiles pour le calcul de certaines intégrales par changement de variable, en utilisant en plus la relation $dx = \frac{2dt}{1+t^2}$

Mini-exercices.

- 1. Montrer que $1 + \tan^2 x = \frac{1}{\cos^2 x}$.
- 2. Montrer la formule d'addition de tan(a + b).
- 3. Prouver la formule pour $\cos a \cdot \cos b$.
- 4. Prouver la formule pour $\cos p + \cos q$
- 5. Prouver la formule : $\sin x = \frac{2 \tan \frac{x}{2}}{1 + (\tan \frac{x}{2})^2}$
- 6. Montrer que $\cos \frac{\pi}{8} = \frac{1}{2} \sqrt{\sqrt{2} + 2}$. Calculer $\cos \frac{\pi}{16}$, $\cos \frac{\pi}{32}$,...
- 7. Exprimer $\cos(3x)$ en fonction $\cos x$; $\sin(3x)$ en fonction $\sin x$; $\tan(3x)$ en fonction $\tan x$.

4. Formulaire : trigonométrie circulaire et hyperbolique

Propriétés trigonométriques : remplacer cos par ch et sin par i · sh.

$$\cos^2 x + \sin^2 x = 1$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$
$$\sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a$$
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$$

$$\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$

$$\sin(a-b) = \sin a \cdot \cos b - \sin b \cdot \cos a$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

$$\cos 2a = 2 \cos^2 a - 1$$

$$= 1 - 2 \sin^2 a$$

$$= \cos^2 a - \sin^2 a$$

$$\sin 2a = 2 \sin a \cdot \cos a$$

$$\tan 2a = \frac{2 \tan a}{1 - \tan^2 a}$$

$$\cos a \cdot \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$
$$\sin a \cdot \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$
$$\sin a \cdot \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

$$\begin{aligned} \cos p + \cos q &= 2 \cos \frac{p+q}{2} \cdot \cos \frac{p-q}{2} \\ \cos p - \cos q &= -2 \sin \frac{p+q}{2} \cdot \sin \frac{p-q}{2} \\ \sin p + \sin q &= 2 \sin \frac{p+q}{2} \cdot \cos \frac{p-q}{2} \\ \sin p - \sin q &= 2 \sin \frac{p-q}{2} \cdot \cos \frac{p+q}{2} \end{aligned}$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$ch(a+b) = ch a \cdot ch b + sh a \cdot sh b$$

$$sh(a+b) = sh a \cdot ch b + sh b \cdot ch a$$

$$th(a+b) = \frac{th a + th b}{1 + th a \cdot th b}$$

$$ch(a - b) = ch a \cdot ch b - sh a \cdot sh b$$

$$sh(a - b) = sh a \cdot ch b - sh b \cdot ch a$$

$$th(a - b) = \frac{th a - th b}{1 - th a \cdot th b}$$

$$ch 2a = 2 ch^{2} a - 1$$

$$= 1 + 2 sh^{2} a$$

$$= ch^{2} a + sh^{2} a$$

$$sh 2a = 2 sh a \cdot ch a$$

$$th 2a = \frac{2 th a}{1 + th^{2} a}$$

$$\operatorname{ch} a \cdot \operatorname{ch} b = \frac{1}{2} \left[\operatorname{ch}(a+b) + \operatorname{ch}(a-b) \right]$$

$$\operatorname{sh} a \cdot \operatorname{sh} b = \frac{1}{2} \left[\operatorname{ch}(a+b) - \operatorname{ch}(a-b) \right]$$

$$\operatorname{sh} a \cdot \operatorname{ch} b = \frac{1}{2} \left[\operatorname{sh}(a+b) + \operatorname{sh}(a-b) \right]$$

$$\operatorname{ch} p + \operatorname{ch} q = 2 \operatorname{ch} \frac{p+q}{2} \cdot \operatorname{ch} \frac{p-q}{2}$$

$$\operatorname{ch} p - \operatorname{ch} q = 2 \operatorname{sh} \frac{p+q}{2} \cdot \operatorname{sh} \frac{p-q}{2}$$

$$\operatorname{sh} p + \operatorname{sh} q = 2 \operatorname{sh} \frac{p+q}{2} \cdot \operatorname{ch} \frac{p-q}{2}$$

$$\operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \cdot \operatorname{ch} \frac{p+q}{2}$$

Avec
$$t = \tan \frac{x}{2}$$
 on a
$$\begin{cases} \cos x &= \frac{1-t^2}{1+t^2} \\ \sin x &= \frac{2t}{1+t^2} \\ \tan x &= \frac{2t}{1-t^2} \end{cases}$$

Avec
$$t = \operatorname{th} \frac{x}{2}$$
 on a
$$\begin{cases} \operatorname{ch} x &= \frac{1+t^2}{1-t^2} \\ \operatorname{sh} x &= \frac{2t}{1-t^2} \\ \operatorname{th} x &= \frac{2t}{1+t^2} \end{cases}$$

Dérivées : la multiplication par i n'est plus valable

$$\cos' x = -\sin x$$

$$\sin' x = \cos x$$

$$\tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

$$ch' x = sh x$$

$$sh' x = ch x$$

$$th' x = 1 - th^{2} x = \frac{1}{ch^{2} x}$$

$$\arccos' x = \frac{-1}{\sqrt{1 - x^2}} \quad (|x| < 1)$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}} \quad (|x| < 1)$$

$$\arctan' x = \frac{1}{1 + x^2}$$

$$Argch'x = \frac{1}{\sqrt{x^2 - 1}} \quad (x > 1)$$

$$Argsh'x = \frac{1}{\sqrt{x^2 + 1}}$$

$$Argth'x = \frac{1}{1 - x^2} \quad (|x| < 1)$$

5. Formules de développements limités

Développements limités usuels (au voisinage de 0)

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \cdot \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \cdot \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2})$$

$$\tan x = x + \frac{x^{3}}{3!} + \frac{2}{15}x^{5} + \frac{17}{315}x^{7} + o(x^{8})$$

$$\operatorname{ch} x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$$

$$\operatorname{sh} x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2})$$

$$\operatorname{th} x = x - \frac{x^{3}}{3} + \frac{2}{15}x^{5} - \frac{17}{315}x^{7} + o(x^{8})$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \cdot \frac{x^n}{n} + o(x^n) = \sum_{k=1}^n (-1)^{k+1} \frac{x^k}{k} + o(x^n)$$

$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2!} x^2 + \dots + \frac{a(a-1) \cdots (a-n+1)}{n!} x^n + o(x^n)$$

$$= \sum_{k=0}^n {a \choose k} x^k + o(x^n)$$

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + o(x^n) = \sum_{k=0}^n (-1)^k x^k + o(x^n)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n) = \sum_{k=0}^n x^k + o(x^n)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{1}{8} x^2 - \dots + (-1)^{n-1} \cdot \frac{1 \cdot 1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n n!} x^n + o(x^n)$$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3}{8} x^2 - \dots + (-1)^n \cdot \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!} x^n + o(x^n)$$

$$\arccos x = \frac{\pi}{2} - x - \frac{1}{2} \frac{x^3}{3} - \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} - \dots - \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\arcsin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \dots + \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \cdot \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

6. Formulaire: primitives

C désigne une constante arbitraire. Les intervalles sont à préciser.

$$\int e^{\alpha t} dt = \frac{e^{\alpha t}}{\alpha} + C \quad (\alpha \in \mathbb{C}^*)$$

$$\int t^{\alpha} dt = \frac{t^{\alpha+1}}{\alpha+1} + C \quad (\alpha \neq -1)$$

$$\int \frac{dt}{1+t^2} = \operatorname{Arctan} t + C$$

$$\int \cot t dt = \sin t + C$$

$$\int \sin t dt = -\cos t + C$$

$$\int \frac{dt}{\cos^2 t} = \tan t + C$$

$$\int \frac{dt}{\sin^2 t} = -\cot t + C$$

$$\int \frac{dt}{\sin t} = \ln \left| \tan \left(\frac{t}{2} + \frac{\pi}{4} \right) \right| + C$$

$$\int \tan t dt = -\ln |\cos t| + C$$

$$\int \cot t dt = \ln |\sin t| + C$$

$$\int \frac{dt}{t} = \ln|t| + C$$

$$\int \frac{dt}{1 - t^2} = \frac{1}{2} \ln \left| \frac{1 + t}{1 - t} \right| + C$$

$$\int \frac{dt}{\sqrt{t^2 + \alpha}} = \ln \left| t + \sqrt{t^2 + \alpha} \right| + C$$

$$\int \cosh t \, dt = \sinh t + C$$

$$\int \sinh t \, dt = \cosh t + C$$

$$\int \frac{dt}{\cosh^2 t} = \coth t + C$$

$$\int \frac{dt}{\sinh^2 t} = -\coth t + C$$

$$\int \frac{dt}{\cosh^2 t} = 2\operatorname{Arctan} e^t + C$$

$$\int \frac{dt}{\sinh t} = \ln \left| \sinh \frac{t}{2} \right| + C$$

$$\int \coth t \, dt = \ln |\sinh t| + C$$