Kapitel 14 - Statische elektrische Felder

Johannes Bilk me@talachem.de

May 7, 2016

Contents

14	Statische Elektrische Felder	
	14.1	Elektrische Ladungen
		14.1.1 Reibungselektrizizät
		14.1.2 Ladung ist eine skalare Gre
		14.1.3 Quarks
		14.1.4 Entdeckung und Bestimmung der Elementarladung
	14.2	Kräfte zwischen Ladungen und das Coulomb-Gesetz
	14.3	Potenzielle Energie einer Ladungsverteilung
	14.4	Erzeugung el. Felder durch Ladungen
		14.4.1 Feld einer Punktladung:

14 Statische Elektrische Felder

14.1 Elektrische Ladungen

→ Ab dem 17. Jahrhundert: Ursache fr "elektrische Phänomene"; "neuartiger Stoff", elektrische Ladung

14.1.1 Reibungselektrizizät

- Zwei Arten von "elektrischen Zuständen" sind erzeugbar:
 - − Gleichartige Zustände ⇒ Abstoung
 - Ungleichartige Zustände ⇒ Anziehung
- Carles Du Fay (1730): positiv/negativ elektrische Ladung
- Benjamin Franklin (1750): ber-/Unterschuss an "elektrischen Fluiden"
- Lichtenberg (1778): Zuordnung der Polariät

```
Hargummi stab: reiben mit Pelz, Wolle: -
Glas, Plexiglas: reiben mit Seide: +
```

Reibezeug: entgegengesetzte Polarität \implies Ladungstrennung, nicht etwa Ladungserzeugung.

Grundsätzliches Messprinzip: Elektroskop:

- → Elektrometer → quantitative Messung
- "Löffeln"; d.h. portionsweise bertragung von Ladungen ist mglich
- Elektropendel: \implies periodisches Umladen eines "Kugelpendel"

14.1.2 Ladung ist eine skalare Gre

Einheit 1C = 1 Coulomb, SI

- Zu jedem geladenen Elementarteilchen gibt es ein Elementarteilchen mit entgegengesetzter Ladung (→ Ladungssymmetrie)
- Die Gesamtladung eines abgeschlossenen Systems bleibt erhalten (→ Ladungserhaltung)
- Beispiel: Produktion eines e^+e^- -Paares; $E_{\gamma} \geqslant 1{,}02~{\rm MeV}$

Nachweis: Blasenkammer im Magnetfeld: Umkehrung: "Zerstrahlung" von Positronen; $E = m \cdot c^2$

- Ladungträger haben stets eine Masse
- Ladung kann nicht (im Gegensatz zur Masse) in Energie umgewandelt werden, bleibt auch bei Zerfallsprozessen erhalten.
- Quantisierung der Ladung: Alle in der Natur vorkommenden Ladungen sind ganzzahlige Vielfache der Elementarladung: $e_0 := 1,602 \cdot 10^{-19}C; 1C = 1AS$

Beispiele von Ladungen

• Neutral: γ , ν , n

• einfach geladen: e^-, e^+, p, \bar{p}

• zweifach geladen:: $He_2(2^+, Z:2)$

14.1.3 Quarks

Seit 60er Jahre Nukleonen bestehen aus Quarks, diese haben "drittelzahlige Ladungen"

Up-Quarks: $u: +\frac{2}{3}e_0$ Down-Quarks: $d: -\frac{1}{3}e_0$ Proton: $2u + d : 1 \cdot e_0$ Neutron: $u + 2d : 0 \cdot e_0$

Quarks treten immer in 2er- oder 3er- Kombinationen auf.

14.1.4 Entdeckung und Bestimmung der Elementarladung

Robert Andrews Millikan(1868-1953): ltrpfchenversuch (→ Anfängerpraktikum)

Kräfte zwischen Ladungen und das Coulomb-Gesetz

Charles-Augustin de Coulomb (1736-1806)

1785: Messung der Kraft zwischen zwei Ladungen als Funktion des Abstands mit Hilfe einer Torsionswaage

$$\vec{F_{12}} = f \cdot \frac{Q_1 \cdot Q_2}{r_{12}^2} \cdot \frac{\vec{r_{12}}}{|\vec{r_{12}}|} = f \cdot \frac{Q_1 \cdot Q_2}{r_{12}^2} \cdot \hat{r}_{12}$$

F ist definiert durch die Definition der Ladungseinheit:

Internationales Messsystem (SI): $f = \frac{1}{4\pi\epsilon_0}$

$$\epsilon_0 = 8,854 \cdot 10^{-12} \frac{(As)^2}{Nm^2}$$

 $\epsilon_0=8,854\cdot 10^{-12}\frac{(As)^2}{Nm^2}$ ist Dielektrizitätskonste des Vakuums oder elektrische Feldkonstante

 $Q_1 \cdot Q_2 > 0$: Abstoung $Q_1 \cdot Q_2 < 0$: Anziehung

14.3 Potenzielle Energie einer Ladungsverteilung

14.4 Erzeugung el. Felder durch Ladungen

14.4.1 Feld einer Punktladung:

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{|\vec{r}_{12}|^2} \cdot \hat{r}_{12}$$

$$= q_1 \cdot \underbrace{\frac{1}{4\pi\epsilon_0} \cdot \frac{q_2}{|\vec{r}_{12}|^2} \cdot \hat{r}_{12}}_{\text{Feld von } q_2}$$

$$= q_1 \vec{E}(\vec{r})$$