MA2C03 - DISCRETE MATHEMATICS - TUTORIAL NOTES Brian Tyrrell

24 & 25/10/2016

1 Set theory

Example 1.1. Prove $A \setminus (A \setminus B) \subseteq B$.

Proof.

This is done by examining where the elements lie in the set to the left of \subseteq and proving they also lie in B. To this end, take $x \in A \setminus (A \setminus B)$. By the definition of $X \setminus Y = X \cap Y^c$, we have

$$x \in A \setminus (A \setminus B) \Rightarrow x \in A \cap (A \setminus B)^c \Rightarrow x \in A \text{ AND } x \in (A \setminus B)^c$$

Applying the definition of \ again we conclude $x \in A$ AND $x \in (A \cap B^c)^c$. Using De Morgan's laws for the later, we get $x \in A$ AND $x \in A^c \cup (B^c)^c$. Let's focus more on the later, with the knowledge that $x \in A$.

$$x \in A^c \cup (B^c)^c \Rightarrow x \in A^c \text{ OR } x \in (B^c)^c \Rightarrow x \in A^c \text{ OR } x \in B$$

Since x cannot be in both A and A^c at the same time, we conclude $x \in B$ (now ignoring A). What we have shown:

$$\forall x (x \in A \setminus (A \setminus B) \Rightarrow x \in B)$$

So $A \setminus (A \setminus B) \subseteq B$ as required. \blacksquare

Example 1.2. $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

Proof.

I want to emphasise that this is how two sets should be proved equivalent - show A is a subset of B, and vice versa. As Prof. Nicoara writes in the online notes, this comes from the tautology $(P \leftrightarrow Q) \leftrightarrow (P \to Q \land Q \to P)$. The contrapositive of this statement can also be used to show two sets are not equal - the contrapositive can be deduced from the above tautology. \blacksquare

2 Logic

Example 2.1. Show via a truth table $P \to Q \equiv \neg Q \to \neg P$ (" $P \to Q$ is equivalent to $\neg Q \to \neg P$ ").

Proof.

We want to show the two statements are equivalent; if one is true, so must the other be. The truth table will show this, as the columns for $P \to Q$ and $\neg Q \to \neg P$ will be identical.

Р	Q	$\neg P$	$\neg Q$	$P \to Q$	$\neg Q \rightarrow \neg P$
		F	F	Т	T
Т	F	F	Τ	F	F
F	Τ	Τ	F	T	Γ
F	F	Τ	Τ	T	${ m T}$

Example 2.2. Explain why induction works.

Proof.

When we prove a proposition P(n) by induction, we are proving $\forall n(P(n))$ - we do this by proving two statements;

- (1) P(1)
- (2) $\forall n(P(n) \to P(n+1))$

Suppose we were unsuccessful in our proof; it's not true that $\forall n(P(n))$ - namely $\exists m \neg P(m)$. Note that we only use induction on finite numbers, meaning $m < \infty$.

- By (1), we know P(1).
- By (2), with n = 1 we know $P(1) \to P(2)$.
- By Modus Ponens (MP), we know P(2). Modus Ponens means "from $X, X \to Y$, infer Y".

- Continuing this pattern, we eventually know P(m-1) and $P(m-1) \to P(m)$.
- By MP we know P(m); a contradiction as m was a finite number such that $\neg P(m)$ was true.

Thus, by a proof by contradiction, we conclude induction 'works'. ■

Example 2.3. For an example of a proof by induction, e.g. $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$, see the class/online blackboard notes.

3 Relations

Example 3.1. The binary relation \leq is *not* an equivalence relation - why is this? What is \leq ?

Proof.

For the why, we'll leave that as an exercise for the reader (HINT: to prove this, run through the definition of an equivalence relation and see if \leq satisfies the three properties).

What is \leq ? \leq is a relation between real numbers and is a *total order*. That is, a partial order that is *total*, i.e. every two elements of \mathbb{R} can be compared under \leq . Logically, this is written $\forall x, y (x \leq y \lor y \leq x)$.

Orders come in two flavours; total and partial - the difference being if all the elements can be compared or not.

- On \mathbb{R} , \leq is a *total* order it satisfies the definition of a *partial order* and every two elements can be compared. To clear a point of possible confusion; yes, it's a type of partial order, but there's more to it than that. \leq is a total order on any subset of \mathbb{R} as well; like \mathbb{Q} or \mathbb{Z} .
- Consider set inclusion; \subseteq . This is a partial order on sets. However this order is not total; consider the sets $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$. Then $A \not\subseteq B$ and $B \not\subseteq A$ these sets can't be compared using \subseteq .
- I gave another example during the tutorial binary trees. When we discuss binary trees later in the course, you'll see the relation

 $A \leq B \Leftrightarrow A \text{ is an ancestor of } B$

forms a partial order.

Example 3.2. Prove \equiv_3 is an equivalence relation.

Proof.

This is covered in the online notes. We also spoke briefly about how there wasn't anything special about the "3", i.e. equivalence modulo n is also an equivalence relation, for all n.