

Transformers

Transformers

Transformer Encoder

Five key ideas

Self Attention

Query, Key and Value

- As the current focus of attention when being compared to all of the other preceding inputs. We'll refer to this role as a query.
- In its role as *a preceding input* being compared to the current focus of attention. We'll refer to this role as a **key**.
- And finally, as a **value** used to compute the output for the current focus of attention.

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \ \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \ \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

Example Computation

Computation

$$q_i = x_i W^Q; k_i = x_i W^K; v_i = x_i W^V$$
 $score(x_i, x_j) = \frac{q_i \cdot k_j}{P \overline{d_k}}$
 $a_{ij} = softmax(score(x_i, x_j)) \ 8j \le i$
 $a_i = a_{ij} v_j$
 $j \le i$

Parallelization of Computation

$$Q = XW^Q$$
; $K = XW^K$; $V = XW^V$

$$\mathbf{A} = \text{SelfAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}}\right)\mathbf{V}$$

Self Attention: Casual/Masked

Masking out the future

	q1•k1	-∞	-∞	8	-∞
	q2•k1	q2•k2	-∞	-8	-∞
N	q3•k1	q3•k2	q3•k3	-8	-∞
	q4•k1	q4•k2	q4•k3	q4•k4	-∞
	q5•k1	q5•k2	q5•k3	q5•k4	q5•k5
	N				

Unlike RNNs, computation at each step are independent of all other time steps and can be done parallely.

What is the typical value of N? 4096 tokens

Masked Attention

Don't let vectors "look ahead" in the sequence

Inputs:

Input vectors: X (Shape: $N_X \times D_Q$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: $\mathbf{W}_{\mathbf{Q}}$ (Shape: $\mathbf{D}_{\mathbf{Q}} \times D_{\mathbf{Q}}$)

Computation:

Query Vectors $Q = XW_1$

Key vectors: $K = XW_1$ (Shape: $N \times D_1$)

Value Vectors: $V = XW_* (Shape: N_* \times D_*)$

Similarities: $E = \frac{[\cdot \cdot \cdot]}{\sqrt{\$}} (Shape: N_{\cdot \cdot} \times N_{\cdot \cdot}) E_{\%} = (Q_{\%} \cdot K_{\cdot}) / \sqrt{D_{(\cdot)}}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_{\parallel} \times N_{\parallel})$

Output vectors: $Y = AV (Shape: N_{\bullet} \times D_{\star})Y_{\%} = \Sigma A_{\%} V$

Multi Head Attention: Why?

- Why are we limited to one query, key and value?
- Multiple Feature Maps (like Convolution Layers)

Scaled Dot-Product Attention

Masked Multi-Head Attention

- Masked multi-head attention: multi-head where some values are masked (i.e., probabilities of masked values are nullified to prevent them from being selected).
- When decoding, an output value should only depend on previous outputs (not future outputs). Hence we mask future outputs.

$$attention(Q,K,V) = softmax \left(\frac{Q^TK}{\sqrt{d_k}}\right)V$$

$$maskedAttention(Q,K,V) = softmax \left(\frac{Q^TK+M}{\sqrt{d_k}}\right)V$$
 where M is a mask matrix of 0's and $-\infty$'s

Multi-Head Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

Mo

Thinking Machines

 W_0^Q

...

Multi Head Attention

$$\mathbf{Q} = \mathbf{X}\mathbf{W}_{i}^{Q}$$
; $\mathbf{K} = \mathbf{X}\mathbf{W}_{i}^{K}$; $\mathbf{V} = \mathbf{X}\mathbf{W}_{i}^{V}$
head_i = SelfAttention($\mathbf{Q}, \mathbf{K}, \mathbf{V}$)

 $\mathbf{A} = \text{MultiHeadAttention}(\mathbf{X}) = (\mathbf{head}_1 \oplus \mathbf{head}_2... \oplus \mathbf{head}_h)\mathbf{W}^O$

Transformer Block

Both X and H are of N X d

MLP/Feed Forward Layer

$$MLP(x) = W_2 \sigma(W_1 x + b_1) + b_2$$

Layer Norm Enhances the Stability

$$\mu = \frac{1}{d_h} \sum_{i=1}^{d_h} x_i$$

$$\sigma = \sqrt{\frac{1}{d_h} \sum_{i=1}^{d_h} (x_i - \mu)^2}$$

$$\mathbf{\hat{x}} = \frac{(\mathbf{x} - \boldsymbol{\mu})}{\boldsymbol{\sigma}}$$

$$LayerNorm = \gamma \hat{\mathbf{x}} + \beta$$

BatchNorm

LayerNorm

LayerNorm has

- No dependence on batch dim.
- Same procedure at train/test time

Positional Encoding

- Position embedding soon after input enbedding
- "Bag of words" to "ordered words"
- Integer (position) to a vector of say 100s

Positional embedding

Embedding to distinguish each position

```
PE_{position,2i} = \sin(position/10000^{2i/d})
PE_{position,2i+1} = \cos(position/10000^{2i/d})
```


Position Embedding

Absolute Positions

Choose static functions (say sinusoids) that map integer inputs to real valued vectors that captures inherent relationship between vectors

With Positional Encoding

Transformers

Transformer Encoder

Five key ideas

Sentence Completion

Language Modelling Head

$$u = h_N^L E^T$$

y = softmax(u)

Eg. A Complete Decoder Model

Cross Attention

Query from one sequence and key + value from other (in translation)

Thanks!!

Questions?