Sample Final for MATH 104

Problem 1

[Review all important definition and results of the relevant material.]

Problem 2

If the followings statements are true, answer "TRUE". If not, give a brief explanation why.

(1) If F is a field and $x, y \in F$, then $x \cdot y = 0$ implies x = 0 or y = 0.

Solution. TRUE (Theorem 3.1 (vi) in Ross)

(2) If $S, T \subseteq \mathbb{R}$ are bounded and $\sup S = \inf T$, then $S \cap T \neq \emptyset$.

Solution. FALSE - Consider S = (-1,0) and T = (0,1).

(3) If (s_n) is a sequence of real numbers, and for some $k \ge 1$, $\lim_n (s_{n+k} - s_n) \to 0$, then (s_n) is a Cauchy sequence.

Solution. FALSE - Consider $s_n = (-1)^n$, k = 2.

(4) The series $\sum \frac{n!}{n^n}$ converges absolutely.

Solution. TRUE (Homework 4.1 (b))

(5) If a set contains no interior points, it is closed.

Solution. FALSE – Consider \mathbb{Q} , the set of all rationals.

(6) The set of nondecreasing functions from \mathbb{Q} into $\{0,1\}$ is countable.

Solution. TRUE (\mathbb{Q} is countable, use Problem 5 of first midterm.)

(7) If f is differentiable and f(-x) = f(x), then f'(-x) = -f'(x).

Solution. TRUE (use the chain rule)

(8) If $f:[0,1] \to [0,1]$ is bijective, and f(0)=0 and f(1)=1, then f is continuous on [0,1].

Solution. FALSE – consider for example

$$f(x) = \begin{cases} 0 & x = 0, \\ -x + 1 & 0 < x < 1, \\ 1 & x = 1. \end{cases}$$

(9) If $0 \le f(x) \le g(x)$ for all $x \in [a, b]$, and g is Riemann integrable on [a, b], then f is Riemann integrable on [a, b].

Solution. FALSE – consider g(x) = 1 for all $x \in [0, 1]$, and

$$f(x) = egin{cases} 1 & x \in [0,1] \cap \mathbb{Q}, \\ 0 & \text{otherwise}. \end{cases}$$

(10) If f and g are not differentiable at x = 0, then $f \cdot g$ is not differentiable at 0.

Solution. FALSE – consider f(x) = g(x) = |x|. Then $fg(x) = x^2$.

Problem 3

Show that if E is a compact subset of \mathbb{R} , then sup E and inf E belong to E.

Solution. Ross, solution to problem 13.13

Problem 4

Show that if f is differentiable on (a, b) and f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing on (a, b).

Solution. Ross, Corollary 29.7

Problem 5

Show that there does not exist a sequence (p_n) of polynomials that converges uniformly to e^x on \mathbb{R} .

Solution. Ross, solution to problem 27.3 (b)

Problem 6

Suppose 0 < t < 1. Let $s_1 = 1$ and $s_{n+1} = t(s_n + 1)$. Show that (s_n) converges (hint: bounded and monotone) and calculate $\lim_n s_n$.

Solution. The usual argument for recursively defined sequences shows that if the limit s of (s_n) exists, it must satisfy the equation s=t(s+1), hence s=t/(1-t). If $t\leqslant 1/2$, then an easy induction shows that s_n is nonincreasing. Furthermore, s_n is obviously >0 for all n, so (s_n) converges. If t>1/2, one can use induction to show that s_n is nondecreasing, and that $s_n\leqslant t/(1-t)$ for all n (use inequality $[t/(1-t)+1]t\leqslant t/(1-t)$).

Problem 7

Let $f:(a,b)\to\mathbb{R}$ be differentiable. Suppose $\lim_{x\to b}f(x)=\infty$. Show that $\lim_{x\to b}f'(x)=\infty$, provided that the limit exists.

Solution. Since $\lim_{x\to b} f(x) = \infty$, we can choose a sequence $x_n \nearrow b$ such that $f(x_{n+1}) - f(x_n) = 1$. By the mean value theorem, we can find z_n between x_n and x_{n+1} such that

$$f'(z_n) = \frac{f(x_{n+1}) - f(x_n)}{x_{n+1} - x_n} = \frac{1}{x_{n+1} - x_n}.$$

Obviously, $z_n \nearrow b$, so if $\lim_{x\to b} f'(x)$ exists, it follows that $f'(z_n) \to \lim_{x\to b} f'(x)$. But (x_n) is a Cauchy sequence, so $\lim_n f'(z_n) = \lim_n 1/(x_{n+1}-x_n) \to \infty$.

Problem 8

Suppose that f is a continuous function on [a,b] and that $f(x) \ge 0$ for all $x \in [a,b]$. Show that if $\int_a^b f = 0$, then f(x) = 0 for all $x \in [a,b]$.

Solution. See Ross, solution to problem 34.11