LAST NAME:	FIRST NAME:	CIRCLE:	
		Martynova	Zweck

1	/10	2	/10	3	/10	4	/10	5	/10		
6	/10	7	/10	8	/10	9	/10	10	/10	Т	/100

MATH 2415 Final Exam, Spring 2017

No books or notes! **NO CALCULATORS! Show all work and give complete explanations**. This 2 hours 45 mins exam is worth 100 points.

- (1) [10 pts] Let $\mathbf{u} = \mathbf{i} \mathbf{j} + 2\mathbf{k}$, $\mathbf{v} = \mathbf{i} + 4\mathbf{j}$, and $\mathbf{w} = 2\mathbf{i} + a\mathbf{j} + 3\mathbf{k}$, for some scalar, a.
- (a) Find a unit vector parallel to **u**.

(b) Find a vector perpendicular to both ${\bf u}$ and ${\bf v}$

(c) Find the value of a that makes ${\bf w}$ perpendicular to ${\bf u}.$

(2) [10 pts] Find a parametrization of the line that contains the point (1, 3, -2) and is parallel to both the plane x + 2y + z = 4 and the plane 2x - y + z = 1.

(3) [10 pts] Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where \mathbf{F} is the vector field $\mathbf{F}(x,y) = y\mathbf{i} - x\mathbf{j}$ and where C is the circle $(x-2)^2 + (y+5)^2 = 9$.

(4) [10 pts] Determine whether or not the vector field $\mathbf{F}(x,y) = (y^2 - 2xy)\mathbf{i} + (2xy - x^2)\mathbf{j}$ is conservative. If it is conservative, find a potential function for \mathbf{F} .

(5) [10 pts] Find the absolute maximum and minimum values of the function f(x, y) = xy - x on the triangle with vertices (-1, 0), (-1, 3), and (2, 0).

(6) [10 pts] Use Green's Theorem to evaluate the line integral $\int_C \left(-\frac{1}{3}y^3 + x\right) dx + \left(\frac{1}{3}x^3 - y\right) dy$ where C is the boundary of the annulus, $4 \le x^2 + y^2 \le 9$. You should orient C so that the inner circle is traversed counterclockwise and the outer circle is traversed clockwise.

(7) [10 pts] Use $x^2 + y^2 = 3$ and	cylindrical coordin the sphere $x^2 + y^2$	ates to find the vertex $+z^2=4$.	olume of the solid	that lies both w	thin the cylinder

(8) [10 pts]

Let S be the surface with parametrization

$$(x, y, z) = \mathbf{r}(u, v) = \cos u \sin v \,\mathbf{i} + \sin u \sin v \,\mathbf{j} + 4\cos v \,\mathbf{k}$$
 for $0 \le u \le 2\pi$ and $0 \le v \le \frac{3\pi}{4}$.

(a) Find an equation of the form F(x, y, z) = 0 for this surface.

(b) Sketch the surface, S.

(c) Let w = f(x, y, z) = xz. Use the Chain Rule from Multivariable Calculus to calculate $\frac{\partial w}{\partial v}$.

(9) [10 pts] Use the change of variables u = x + y, v = y - 2x to evaluate

$$\int_0^1 \int_0^{1-x} (y-2x)^2 \sqrt{x+y} \, dy \, dx.$$

(10) [10 pts] Calculate the volume of the the solid region in the first octant that is bounded by the surfaces $x + y = 4$ and $x = 4 - z^2$.
Pledge: I have neither given nor received aid on this exam

Signature: