Übungsblatt 5 zur Algebraischen Zahlentheorie

Aufgabe 1. Dedekindringe mit nur endlich vielen Primidealen

Sei A ein Dedekindring, der nur endlich viele Primideale $\mathfrak{p}_1,\ldots,\mathfrak{p}_n\neq (0)$ hat. Begründe kurz:

- a) Es gibt ein Element $\pi \in \mathfrak{p}_1 \setminus \mathfrak{p}_1^2$.
- b) Es gibt ein Element $x \in A$ mit $x \equiv \pi \mod \mathfrak{p}_1$ und $x \equiv 1 \mod \mathfrak{p}_k$ für $k \geq 2$.
- c) Für dieses Element gilt $\mathfrak{p}_1 = (x)$.
- d) Alle Ideale von A sind Hauptideale.

Aufgabe 2. Ideale und Faktorringe von Dedekindringen

Sei A ein Dedekindring.

- a) Sei $\mathfrak{p} \subseteq A$ ein Primideal mit $\mathfrak{p} \neq (0)$. Sei $m \geq 0$. Zeige: A/\mathfrak{p}^m ist ein Hauptidealring.
- b) Sei $\mathfrak{a} \subseteq A$ ein Ideal mit $\mathfrak{a} \neq (0)$. Zeige, dass A/\mathfrak{a} ein Hauptidealring ist.
- c) Sei $\mathfrak{a} \subseteq A$ ein Ideal. Sei $x \in \mathfrak{a}$ mit $x \neq 0$. Zeige, dass \mathfrak{a} von zwei Elementen erzeugt werden kann, von denen eines x ist.

Hinweis. In einem Faktorring A/\mathfrak{b} gibt es genau so viele Primideale, wie es Primideale in A gibt, welche \mathfrak{b} umfassen. Erinnere dich an den chinesischen Restsatz.

Aufgabe 3. Beispiel für eine Volumenberechnung

Sei $K:=\mathbb{Q}[\sqrt{-5}]$. Sei $\mathfrak{p}:=(3,1+2\sqrt{-5})\subseteq\mathcal{O}_K$. Bestimme das Volumen des vollständigen Gitters $j[\mathfrak{p}]\subseteq K_{\mathbb{R}}$, wobei $j:K\hookrightarrow K_{\mathbb{R}}$ die Einbettung in den Minkowskiraum ist.

Bemerkung. Es gibt eine Formel für das Volumen, die sofort den Wert $6\sqrt{5}$ liefert. Aber es ist spannender, das Volumen per Hand zu berechnen.

Aufgabe 4. Charakterisierung von Gittern

- a) Zeige, dass eine Untergruppe $\Gamma \subseteq \mathbb{R}^n$ genau dann ein Gitter ist, wenn sie diskret ist (wenn jeder Punkt $\gamma \in \Gamma$ eine offene Umgebung $U \subseteq \mathbb{R}^n$ mit $U \cap \Gamma = \{\gamma\}$ besitzt).
 - Hinweis. Wähle für die Rückrichtung eine maximale über $\mathbb R$ linear unabhängige Familie $(\gamma_1,\ldots,\gamma_m)$ von Vektoren aus Γ ; setze $\Gamma_0:=\operatorname{span}_{\mathbb Z}(\gamma_1,\ldots,\gamma_m)$; zeige, dass $q:=|\Gamma/\Gamma_0|$ endlich ist (überlege dir dazu, wie die Äquivalenzklassen in Γ/Γ_0 aussehen); folgere, dass $q\Gamma\subseteq\Gamma_0$; und zeige damit die Behauptung.
- b) Sei $K\subseteq\mathbb{C}$ ein Zahlkörper vom Grad ≥ 3 . Folgere, dass es zu jeder Zahl $\varepsilon>0$ ein Element $a\in\mathcal{O}_K\setminus\{0\}$ gibt, dessen komplexer Betrag kleiner als ε ist.
- \heartsuit **Aufgabe 5.** Dedekindringe mit Klassenzahl 1

Zeige, dass ein Dedekindring genau dann faktoriell ist, wenn er ein Hauptidealbereich ist.

Hinweis. Zeige für die Hinrichtung, dass jedes von Null verschiedene Primideal $\mathfrak p$ ein Hauptideal ist. Fixiere dazu ein Element $\pi \in \mathfrak p \setminus \{0\}$ und zerlege zum einen das Ideal (π) in Primideale (welches Ideal kommt dabei sicher vor?) und zum anderen das Element π in Primfaktoren.

O Aufgabe 6. Geradenbündel über dem Spektrum von Ganzheitsringen

Sei K ein Zahlkörper. Zeige: Die gebrochenen Ideale von K sind als \mathcal{O}_K -Moduln projektiv.