

H2 Mathematics (9758) Chapter 5 Vectors Extra Practice Solutions

Qn 1 2014/IJC Promo/4

(i)
$$A\overline{O} = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix}$$
 and $A\overline{B} = \overline{OB} - \overline{OA} = \begin{pmatrix} -7 \\ 1 \\ -5 \end{pmatrix}$

$$\cos \angle OAB = \frac{\begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -7 \\ 1 \\ -5 \end{pmatrix}}{\sqrt{14}\sqrt{75}} = \frac{7 - 3 - 10}{\sqrt{14}\sqrt{75}} = \frac{-6}{\sqrt{1050}}$$

$$\angle OAB = \cos^{-1}\left(\frac{-6}{\sqrt{1050}}\right) = 100.7^{\circ} \quad \text{(1d,p)}$$
(ii) Vector perpendicular to both OA and OB
$$= \overline{OA} \times \overline{OB}$$

$$= \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \times \begin{pmatrix} -6 \\ 4 \\ -7 \end{pmatrix}$$

$$= \begin{pmatrix} -13 \\ 19 \\ 22 \end{pmatrix}$$

$$\therefore \text{ Required unit vector}$$

$$= \begin{pmatrix} -13 \\ 19 \\ 22 \end{pmatrix}$$

$$\therefore \text{ Required unit vector}$$
(alternatively,
$$= \frac{\overline{OA} \times \overline{BO}}{|\overline{OA} \times \overline{BO}|} = \dots = \frac{1}{\sqrt{1014}} \begin{pmatrix} 13 \\ -19 \\ -22 \end{pmatrix}$$

Qn 3	2017/CJC Prelim/II/Q2
(i)	Length of projection of a on to b (: b is a unit vector)
(ii)	$ \mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin\theta$
	$=(2)(1)\sin\frac{\pi}{4}$
	$=\sqrt{2}$
(iii)	$\mathbf{p} \times \mathbf{q}$
	$= [3\mathbf{a} + (\mu + 2)\mathbf{b}] \times [(\mu + 3)\mathbf{a} + \mu\mathbf{b}]$
	$=3(\mu+3)(\mathbf{a}\times\mathbf{a})+3\mu(\mathbf{a}\times\mathbf{b})+(\mu^2+5\mu+6)(\mathbf{b}\times\mathbf{a})+\mu(\mu+2)(\mathbf{b}\times\mathbf{b})$
	$= (-3\mu + \mu^2 + 5\mu + 6)(\mathbf{b} \times \mathbf{a}) \left[:: \mathbf{a} \times \mathbf{a} = 0 \text{ and } \mathbf{b} \times \mathbf{b} = 0 \right]$
	$= (\mu^2 + 2\mu + 6)(\mathbf{b} \times \mathbf{a})$

(iv) Area
$$OPQ = \frac{1}{2} |(\mu^2 + 2\mu + 6)| |(\mathbf{b} \times \mathbf{a})|$$

$$= \frac{1}{2} |(\mu^2 + 2\mu + 6)| \sqrt{2}$$

$$= \frac{\sqrt{2}}{2} |(\mu + 1)^2 + 5|$$
Smallest Area $OPQ = \frac{5\sqrt{2}}{2}$ unit²
Minimum value of $|(\mu + 1)^2 + 5|$ is 5.

(Minimum point of quadratic equation)

2014/TPJC Promo/4
By Ratio Theorem: $\overrightarrow{OC} = \frac{1}{4} (3\mathbf{a} + \mathbf{b})$
$ \mathbf{b} = \sqrt{5} \mathbf{a} = \sqrt{5}\sqrt{10} = \sqrt{50}$
$\therefore \left \mathbf{b} \right = \sqrt{3^2 + 5^2 + k^2} = \sqrt{50}$
$\Rightarrow \sqrt{34 + k^2} = \sqrt{50}$
$\Rightarrow 34 + k^2 = 50$
$\Rightarrow k^2 = 16$
$\Rightarrow k = 4 \ (\because k \text{ is a positive constant})$
$\overrightarrow{OC} = \frac{1}{4} \begin{bmatrix} 3 \\ 9 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{7}{2} \\ 1 \end{bmatrix}$ Area of triangle OAC $\begin{bmatrix} 1 \\ \overrightarrow{OA} \times \overrightarrow{OC} \end{bmatrix}$
Area of triangle $OAC = \frac{1}{2} \left \overrightarrow{OA} \times \overrightarrow{OC} \right $
$=\frac{1}{2} \begin{pmatrix} 1\\3\\0 \end{pmatrix} \times \begin{pmatrix} \frac{3}{2}\\\frac{7}{2}\\1 \end{pmatrix}$
$= \frac{1}{2} \begin{vmatrix} 3 \\ -1 \\ -1 \end{vmatrix}$ $= \frac{\sqrt{11}}{2}$

(iv) Length of projection of
$$\overrightarrow{OC}$$
 onto the line \overrightarrow{OB}

$$= |\overrightarrow{OC} \cdot \overrightarrow{OB}| |$$

$$= \frac{1}{5\sqrt{2}} \begin{vmatrix} \frac{3}{2} \\ \frac{7}{2} \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 3 \\ 5 \\ 4 \end{vmatrix}$$

$$= \frac{1}{5\sqrt{2}} \begin{vmatrix} 9 \\ 2 + \frac{35}{2} + 4 \end{vmatrix} = \frac{26}{5\sqrt{2}} = \frac{13\sqrt{2}}{5}$$

(i)
$$\overrightarrow{AP} = \lambda \overrightarrow{AB}$$

 $\overrightarrow{OP} - \overrightarrow{OA} = \lambda \left(\overrightarrow{OB} - \overrightarrow{OA} \right)$
 $\overrightarrow{OP} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ 6 \\ 0 \end{pmatrix}$
(ii) $\overrightarrow{OP} \perp \overrightarrow{AB} \Rightarrow \overrightarrow{OP} \cdot \overrightarrow{AB} = 0$
 $\begin{pmatrix} 2 - 4\lambda \\ -1 + 6\lambda \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 6 \\ 0 \end{pmatrix} = 0$
 $-8 + 16\lambda - 6 + 36\lambda = 0$
 $52\lambda = 14$
 $\lambda = \frac{7}{26}$
(iii) Area of triangle $OPA = \frac{1}{2} \left| \overrightarrow{OP} \times \overrightarrow{OA} \right|$
 $= \frac{1}{2} \begin{pmatrix} \frac{2}{3} \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$
 $= \frac{1}{2} \begin{pmatrix} 2 \\ \frac{4}{3} \\ -\frac{8}{3} \end{pmatrix} = \frac{\sqrt{29}}{3} \text{ units}^2 \text{ or } 1.80 \text{ units}^2$

(iv)

Since the two triangles share the same height, Area of triangle OPB: Area of triangle OPA

= PB : PA = 2:1

Qn 6	2015/NYJC Promo/4
(i)	$\mathbf{a} \cdot (2\mathbf{a} + 5\mathbf{b}) = 0$
	$2 \mathbf{a} ^2 + 5\mathbf{a} \cdot \mathbf{b} = 0$
	$2 + 5\mathbf{a} \cdot \mathbf{b} = 0$ since \mathbf{a} is a unit vector
	$\mathbf{a} \cdot \mathbf{b} = -\frac{2}{5}$
	Since angle between a and b is $\frac{2\pi}{3}$,
	$\cos\left(\frac{2\pi}{3}\right) = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$
	$-\frac{1}{2} = \frac{-\frac{2}{5}}{(1) \mathbf{b} }$
	$ \mathbf{b} = \frac{4}{5} (\text{shown})$
(ii)	By Ratio theorem,
	$OM = \lambda \mathbf{b} + (1 - \lambda)\mathbf{a}$
	$\overrightarrow{ON} = \overrightarrow{MB}$
	$= \mathbf{b} - \left[\lambda \mathbf{b} + (1 - \lambda) \mathbf{a} \right]$
	$= (1 - \lambda)\mathbf{b} - (1 - \lambda)\mathbf{a}$
	Area of triangle <i>OAN</i>
	$=\frac{1}{2}\left \overrightarrow{OA}\times\overrightarrow{ON}\right $
	$= \frac{1}{2} \mathbf{a} \times [(1 - \lambda)\mathbf{b} - (1 - \lambda)\mathbf{a}] $

$$\begin{aligned}
&= \frac{1}{2} | (1 - \lambda) \mathbf{a} \times \mathbf{b} - (1 - \lambda) \mathbf{a} \times \mathbf{a} | \\
&= \frac{1}{2} (1 - \lambda) |\mathbf{a} \times \mathbf{b}| \\
&= \frac{1}{2} (1 - \lambda) |\mathbf{a}| |\mathbf{b}| \sin\left(\frac{2\pi}{3}\right) = \frac{(1 - \lambda)}{2} \left(\frac{4}{5}\right) \left(\frac{\sqrt{3}}{2}\right) \\
&= \frac{(1 - \lambda)\sqrt{3}}{5} \\
&\text{Note that } |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin\left(\frac{2\pi}{3}\right) = \left(\frac{4}{5}\right) \left(\frac{\sqrt{3}}{2}\right) = \frac{2\sqrt{3}}{5}
\end{aligned}$$

Qn 7	2012/DHS/I/7
(i)	$\overrightarrow{OD} = \frac{3\mathbf{a} + 2p\mathbf{b}}{5}$
	5
	$\overrightarrow{OE} = \frac{3\mathbf{a} + \mathbf{b}}{4}$
(ii)	$\overrightarrow{OD} = q\overrightarrow{OE}$, where q is a constant
	$\frac{3\mathbf{a} + 2p\mathbf{b}}{5} = q\left(\frac{3\mathbf{a} + \mathbf{b}}{4}\right)$
	$\Rightarrow \frac{3}{5} = \frac{3}{4}q \Rightarrow q = \frac{4}{5}$
	$\Rightarrow \frac{2}{5} p = \frac{1}{4} q \Rightarrow p = \frac{1}{2}$
(iii)	Shortest distance from the point E to OB
	$= \left \overrightarrow{OE} \times \frac{\overrightarrow{OB}}{OB} \right $
	$= \left \left(\frac{3\mathbf{a} + \mathbf{b}}{4} \right) \times \frac{\mathbf{b}}{5} \right $
	$=\frac{1}{20}\left \left(3\mathbf{a}\times\mathbf{b}\right)+\left(\mathbf{b}\times\mathbf{b}\right)\right $
	$= \frac{3}{20} \mathbf{a} \times \mathbf{b} (: \mathbf{b} \times \mathbf{b} = 0)$
	$k = \frac{3}{20}$
(iv)	It is the length of projection of a onto b .
	a
	$ \mathbf{a} \cdot \hat{\mathbf{b}} $

Qn 8	2008/HCI/I/12a
(i)	$(-\mu - 1) \mathbf{a} + \mu \mathbf{b} + \mathbf{c} = 0 \qquad \qquad \therefore \qquad \lambda = -\mu - 1$
	$\mu (\mathbf{b} - \mathbf{a}) + (\mathbf{c} - \mathbf{a}) = 0$
	$\mu \overrightarrow{AB} + \overrightarrow{AC} = 0$
	$\overrightarrow{AB} = k \ \overrightarrow{AC}$ where $k = -\frac{1}{\mu}$
	\Rightarrow A, B, C are collinear
(ii)	$\mathbf{p} = 4\mathbf{a} - 3\mathbf{b}$
	$\Rightarrow 4\mathbf{a} = \mathbf{p} + 3\mathbf{b}$
	\Rightarrow a = (p + 3 b) / 4
	A divides PB in the ratio 3:1
	\therefore P lies on BA produced with ratio $PA: PB = 3:4$
	Alternatively
	$\overrightarrow{PA} = \mathbf{a} - \mathbf{p} = \mathbf{a} - 4\mathbf{a} + 3\mathbf{b} = -3\mathbf{a} + 3\mathbf{b}$
	$\overrightarrow{PB} = \mathbf{b} - \mathbf{p} = \mathbf{b} - 4\mathbf{a} + 3\mathbf{b} = -4\mathbf{a} + 4\mathbf{b}$
	\therefore P lies on BA produced with ratio PA: PB = 3:4

Qn 9	2019/TJC/Prelim 9758/01/Q9
(a)	Since $\mathbf{u} \times \mathbf{v} + \mathbf{u}$ is perpendicular to $\mathbf{u} \times \mathbf{v} + \mathbf{v}$, we have
	$((\mathbf{u} \times \mathbf{v}) + \mathbf{u}).((\mathbf{u} \times \mathbf{v}) + \mathbf{v}) = 0$
	$\Rightarrow (\mathbf{u} \times \mathbf{v}).(\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{v}).\mathbf{v} + (\mathbf{u} \times \mathbf{v}).\mathbf{u} + \mathbf{u}.\mathbf{v} = 0$
	$\Rightarrow \mathbf{u} \times \mathbf{v} ^2 + 0 + 0 - 1 = 0$
	since $(\mathbf{u} \times \mathbf{v}) \perp \mathbf{v}$ and $(\mathbf{u} \times \mathbf{v}) \perp \mathbf{u}$
	$\Rightarrow \mathbf{u} \times \mathbf{v} = 1 \text{ (shown)}$
	Let θ be the angle between u and v .
	$ \mathbf{u} \cdot \mathbf{v} = -1 \implies \mathbf{u} \mathbf{v} \cos \theta = -1$ (1)
	$ \mathbf{u} \times \mathbf{v} = 1 \implies \mathbf{u} \mathbf{v} \sin\theta = 1$ (2)
	$\frac{(2)}{(1)}: \tan \theta = -1 \qquad \Rightarrow \theta = 135^{\circ}$
(b)	$\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF} = \mathbf{a} - \mathbf{b}$
	$\overrightarrow{OX} = \overrightarrow{OB} + \overrightarrow{BX} = \mathbf{b} - \frac{1}{2}\mathbf{a}$
	$\frac{\textbf{Method 1}}{\text{Let } AY: YC = \lambda: 1 - \lambda \text{ and } FY: YX = \mu: 1 - \mu$
	$\therefore \overrightarrow{OY} = \lambda \overrightarrow{OC} + (1 - \lambda)\overrightarrow{OA} = \mu \overrightarrow{OX} + (1 - \mu)\overrightarrow{OF}$
	$\Rightarrow \lambda(\mathbf{b} - \mathbf{a}) + (1 - \lambda)\mathbf{a} = \mu \left(\mathbf{b} - \frac{1}{2}\mathbf{a}\right) + (1 - \mu)(\mathbf{a} - \mathbf{b})$
	$\Rightarrow (\lambda - \mu + 1 - \mu)\mathbf{b} = \left(\lambda - 1 + \lambda - \frac{1}{2}\mu + 1 - \mu\right)\mathbf{a}$
	Since a and b are non-zero and non-parallel,

$$\begin{cases}
\lambda - 2\mu + 1 = 0 \\
2\lambda - \frac{3}{2}\mu = 0
\end{cases} \text{ solving gives } \lambda = \frac{3}{5}, \quad \mu = \frac{4}{5}$$

$$\therefore AY : YC = \frac{3}{5} : 1 - \frac{3}{5} = 3 : 2$$

 $\frac{\textbf{Method 2}}{\text{Line } AC: \ \mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - 2\mathbf{a}), \ \lambda \in \mathbb{R}}$

Line
$$FX$$
: $\mathbf{r} = \mathbf{a} - \mathbf{b} + \mu \left(2\mathbf{b} - \frac{3}{2}\mathbf{a} \right), \ \mu \in \mathbb{R}$

When the lines intersect at Y,

$$\mathbf{a} + \lambda(\mathbf{b} - 2\mathbf{a}) = \mathbf{a} - \mathbf{b} + \mu \left(2\mathbf{b} - \frac{3}{2}\mathbf{a} \right)$$

Since **a** and **b** are non-zero and non-parallel,

$$\begin{array}{c} \lambda - 2\mu + 1 = 0 \\ 2\lambda - \frac{3}{2}\mu = 0 \end{array}$$
 solving gives $\lambda = \frac{3}{5}$, $\mu = \frac{4}{5}$

$$\overrightarrow{OY} = \mathbf{a} + \frac{3}{5}(\mathbf{b} - 2\mathbf{a}) = -\frac{1}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$$

$$\overrightarrow{AY} = -\frac{6}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$$
 and $\overrightarrow{YC} = -\frac{4}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$

$$\therefore AY:YC=3:2$$

On 10 2012/HCI/II/Q4 **(i)** $AB \perp OP \Rightarrow AB \cdot OP = 0$ $\therefore (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{a} + 5\mathbf{b}) = 0$ $\mathbf{b} \cdot \mathbf{a} + 5\mathbf{b} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{a} - 5\mathbf{a} \cdot \mathbf{b} = 0$ $5|\mathbf{b}|^2 - |\mathbf{a}|^2 - 4\mathbf{a} \cdot \mathbf{b} = 0$ $5 - |\mathbf{a}|^2 - 4|\mathbf{a}||\mathbf{b}|\cos 60^\circ = 0$ $|\mathbf{a}|^2 + 2|\mathbf{a}| - 5 = 0$ $|\mathbf{a}| = \frac{-2 \pm \sqrt{24}}{2} = \sqrt{6} - 1 \text{ or } -\sqrt{6} - 1 \text{ (rejected as } |\mathbf{a}| > 0)$ $\therefore |\mathbf{a}| = \sqrt{6} - 1$ $\overrightarrow{OC} = \frac{1}{2}\mathbf{a}$ (ii) By Ratio Theorem, $\overrightarrow{OE} = \frac{3\overrightarrow{OB} + 4\overrightarrow{OC}}{7} = \frac{3\mathbf{b} + 2\mathbf{a}}{7}$ Let $AD: AB = \lambda:1$ By Ratio Theorem, $\therefore \overrightarrow{OD} = \lambda \overrightarrow{OB} + (1 - \lambda) \overrightarrow{OA} = \lambda \mathbf{b} + (1 - \lambda) \mathbf{a}$ Since O, E, D are collinear, $\overrightarrow{OE} = \mu \overrightarrow{OD}$ for some $\mu \in \mathbb{R} \setminus \{0\}$. $\therefore \mu \left(\frac{3\mathbf{b} + 2\mathbf{a}}{7} \right) = \lambda \mathbf{b} + (1 - \lambda) \mathbf{a}$ $\left(\frac{3}{7}\mu - \lambda\right)\mathbf{b} = \left(1 - \lambda - \frac{2}{7}\mu\right)\mathbf{a}$ Since **a** and **b** are non-zero and non-parallel, $\frac{3}{7}\mu - \lambda = 0 \quad --- (1)$ $1 - \lambda - \frac{2}{7}\mu = 0$ --- (2) Using GC to solve (1) and (2), $\lambda = \frac{3}{5}$ $\therefore AD: AB = 3:5$