CS-6210: HW 2

James Brissette

October 4, 2018

1 Chapter 4

- 4.22 a)
 - b) My approximations of 1 were off by 4.50099e-08 in either direction.
 - c)
 - d)
- 4.31 a)
 - b)
 - c)
 - d)

2 Chapter 9

9.2 a) The result of the normalization using $\overline{X}=2.8215,$ $\overline{Y}=2.4224,$ and scaling X by 7.1118 and Y by 2.0859 is:

p	q
-1.0000	0.5963
-0.8151	0.6407
-0.6096	0.2867
-0.3397	0.5540
-0.1761	0.4480
0.2006	-0.1704
0.2508	0.0572
0.4053	-0.0117
0.5854	-0.5213
0.6720	-0.8795
0.8265	-1.0000

b) The α calculated using the normalized table in part a:

$$\alpha = -0.9281$$

c) Since we have $G(X) = V_1 + V_2 X$ where G(X) is a linear function with slope V_2 , it follows that for the analogous function Y,

$$Y = \overline{Y} + m(X - \overline{X})$$

Rearranging Y we group the constants and get:

$$Y = (\overline{Y} - m\overline{X}) + mX$$

Since $V_1 = log(v_1)$, we can solve for v_1 as:

$$V_1 = log(v_1) = \overline{Y} - m\overline{X}$$
$$v_1 = 10^{\overline{Y} - m\overline{X}}$$

- d) Plot Curve
- e) Estimate speed of T-Rex
- 9.3 a) Given $ZZ^T = \frac{1}{n} \sum_{i=1}^n s_i(s_i)^T$ and $s_i^* = Z^{-1}s_i$ we can plug into 9.30 and get back the original ZZ^T as follows:

$$\frac{1}{n} \sum_{i=1}^{n} s_i^* (s_i^*)^T = I \tag{1}$$

$$\frac{1}{n}\sum_{i=1}^{n}Z^{-1}s_i(Z^{-1}s_i)^T = I$$
 (2)

$$\frac{1}{n}\sum_{i=1}^{n}Z^{-1}s_i(s_i)^TZ^{-1T} = I$$
(3)

$$Z^{-1}(\frac{1}{n}\sum_{i=1}^{n}s_{i}(s_{i})^{T})Z^{-1T} = I$$
(4)

$$ZZ^{-1}(\frac{1}{n}\sum_{i=1}^{n}s_{i}(s_{i})^{T})Z^{-1T}Z^{T} = ZIZ^{T}$$
(5)

$$\frac{1}{n}\sum_{i=1}^{n}s_i(s_i)^T = ZZ^T \tag{6}$$

b) For this problem we will show that given $\frac{1}{n}\sum_{i=1}^n s_i(s_i)^T = U\sum U^T$ and $s_i^* = \sum^{-\frac{1}{2}}U^Ts_i$ we can plug s_i^* into 9.30 and get back the identity matrix I:

$$\frac{1}{n}\sum_{i=1}^{n} s_i^*(s_i^*)^T = I \tag{1}$$

$$\frac{1}{n} \sum_{i=1}^{n} (\Sigma^{-\frac{1}{2}} U^{T} s_{i}) (\Sigma^{-\frac{1}{2}} U^{T} s_{i})^{T} = I$$
 (2)

$$\frac{1}{n} \sum_{i=1}^{n} (\Sigma^{-\frac{1}{2}} U^{T} s_{i}) (s_{i}^{T} U^{T^{T}} \Sigma^{-\frac{1}{2}T}) = I$$
(3)

$$\Sigma^{-\frac{1}{2}}U^{T}(\frac{1}{n}\Sigma_{i=1}^{n}s_{i}(s_{i}^{T}))U\Sigma^{-\frac{1}{2}T} = I$$
(4)

$$\Sigma^{-\frac{1}{2}}U^T(U\Sigma U^T)U\Sigma^{-\frac{1}{2}T} = I \tag{5}$$

$$\Sigma^{-\frac{1}{2}}(\Sigma)\Sigma^{-\frac{1}{2}T} = I \tag{6}$$

And since we know Σ is a diagonal matrix:

$$I = I \tag{7}$$

- 9.5 a)
- 9.8 a)