Code No.: 11042 (A)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (CBCS) I-Semester Main and Backlog Examinations, July-2021.

Basic Engineering Mechanics

(Civil, EEE, ECE & Mech. Engg.)

Time: 2 hours

Max. Marks: 60 Note: Answer any NINE questions from Part-A and any THREE from Part-B

Part-A $(9 \times 2 = 18 \text{ Marks})$

	$Part-A (9 \times 2 = 18 Marks)$	M	L	со	PO
Q. No.	Stem of the question	2	1	1	1
1.	Define the concurrent co-planner force system?	2	2	1	2
2.	Two forces 13 N and 16 N are acting at a point. The angle between the forces is 90°. Find the magnitude and direction of the resultant. So. 90°, $2 = 2.061$	2	2	2	2
3.	A force $F = (10i + 8j - 5k)$ N acts at point A (2, 3, 0) in. The force about the point B (3, 1, 4) m $-36\tilde{i} + 15$) $-48k$	2	1	2	1
	Define the term free body diagram and state its importance.	2	1	2	1
4.	State the assumptions in the analysis of a perfect truss	2	1.0	2	1
5.	How can you check the stability of a truss?	2	1	3	1
6. 7.	Define angle of friction and angle of repose. Define angle of friction and angle of repose. Determine the force required to just	2	3	3	2
8.	A rope is wrapped a cylinder as shown in fig. Determine support a weight of 1 kN. $\mu = 0.3$ between the rope and the cylinder. $72 = 71e^{49} = 71e^{0.317} = 2.571$				
	IkN F=? Fig.1	2	1	4	1
9.	What is meant by Moment of Inertia? Determine the moment of inertia of an area of rectangle of base 2 cm and height	2	3	4	2
10.	to a shout the centroldal x and y and	2	1	2	1
11.	s amilibrium and resultant.	2	3	2	2
12.	The line action of a 100 N force F passes through the points 1 (1), -48.4 b, -32	2-44			
	Part-B (3 × 14 - 42 Indiana) the direction for the concurrent co-planner force system	7	3	1	2
(a) I	hown in fig 2. Angle made by 100N with the horizontal is 60° $R = 153 \cdot 60$ $6 = 153 \cdot 60$	38			
	150N				
	x x				
	100N * 80N				
	fig 2				

b) Determine the magnitude and direction of the smallest force P required to start the wheel over the block as shown in Fig.3. The self-weight of the wheel is 10 kN and radius is 0.6m.

Fig. 3

Determine the reactions at A and D of the beam as shown in Fig.4. Neglect the self-weight of the beam.

size I = 110 + 20 se about the | 40 fine the terms | 50 2

b) Find the axial forces in the members of the tripod loaded in the Fig. 5, W = 25 kN

7 3 2 2

15. a) Find the axial forces in all the member of the truss loaded and supported as shown 7 4 3 in Fig. 6.

Contd... 3

Find the axial forces in all the members of the truss loaded and supported as shown b) in Fig. 7.

Fig. 7

A ladder 5 m long rests on a horizontal ground and leans against a smooth vertical wall at an angle of 70° with the horizontal. The weight of the ladder is 300 N. The 16. a) ladder is on the verge of sliding when a man weighing 750 N stands on a rung 1.5 m along the ladder. Calculate the coefficient of friction between the ladder and the

is 0.3.

DE = 0.13 What should be the value of θ in Fig. 8 which will make the motion of 900 N block down the plane to impend? The coefficient of friction for all contact surfaces

Fig. 8

A semicircular area is removed from the trapezoid shown in Fig. 9. Determine the X and Y coordinate of the centroid for the shaded area. 17. a)

7=98.59

3

3

3

3

b) For the shaded area as shown in Fig.10, determine the Moment of Inertia of an area of plane figure about its centroidal axes. All units are in millimeters.

7 3 5

2 = 16 m / 2

Fig.10

18. a) Three cylinders are placed in a rectangular ditch as shown in Fig.11. Neglecting the friction, determine the reactions at 1 to 6. The radii of the three cylinders A, B and C are 100 mm, 150 mm and 125 mm respectively.

7 3 2

Fig.11

A triangular plate is subjected to the force system shown in Fig. 12. Let $P_1 = 7 \text{ kN}$, action on X and Y axis. Find the resultant force and its point of

7 4 2

1/2=0.92m

9. Answer any two of the following:

c)

a) Determine the forces in the members CD, CG and GF of the truss loaded and 7 4 3 2 supported as shown in Fig.13.

Fig.13

Consider the system as shown in Fig. 14. If $\theta = 70^{\circ}$ and $\mu = 0.25$ at all surfaces of contact. What is the force (W) required to slide the wedge (A) in the downward direction.

7 3 4 2

3

PO

1

Fig.14

W=120516N

A semi-circular cut is made in rectangular wooden beam as shown in Fig.15. 7

Determine the moment of inertia of the section about the centroidal axes.

- 100 min -----

Fig.15

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

M: Marks; Percentage

: Bloor	Bloom's Taxonomy		
S. No.	Criteria for questions	14	
	Fundamental knowledge (Level-1 & 2)	86	
2	Fundamental knowledge (Level-1944) Knowledge on application and analysis (Level-1944) *Critical thinking and ability to design (Level-1944)	-	
3	*Critical thinking and ability to design (*wherever applicable)		
