

(no subject)

1 message

Dalmir da Silva <dalmirdasilva@gmail.com>
To: Dalmir da Silva <dalmirdasilva@gmail.com>

Sun, Aug 16, 2015 at 2:27 AM

The following table and graph illustrate the relationship between altitude and pressure using the default values for pressure and temperature at sea level. Using ISA standards, the defaults for pressure and temperature at sea level are 101,325 Pa and 288 K.

Altitude above Sea Level			Absolute Atmospheric Pressure		
feet	miles	meters	kPa	atm	psia
-5000	-0.95	-1524	121.0	1.19	17.55
-4000	-0.76	-1219	116.9	1.15	16.95
-3000	-0.57	-914	112.8	1.11	16.36
-2000	-0.38	-610	108.9	1.07	15.79
-1000	-0.19	-305	105.0	1.04	15.24
-500	-0.09	-152	103.2	1.02	14.96
0	0.00	0	101.3	1.00	14.70
500	0.09	152	99.5	0.98	14.43
1000	0.19	305	97.7	0.96	14.17
1500	0.28	457	96.0	0.95	13.92
2000	0.38	610	94.2	0.93	13.66
2500	0.47	762	92.5	0.91	13.42
3000	0.57	914	90.8	0.90	13.17
3500	0.66	1067	89.1	0.88	12.93
4000	0.76	1219	87.5	0.86	12.69
4500	0.85	1372	85.9	0.85	12.46
5000	0.95	1524	84.3	0.83	12.23
6000	1.14	1829	81.2	0.80	11.78
7000	1.33	2134	78.2	0.77	11.34
8000	1.52	2438	75.3	0.74	10.92
9000	1.70	2743	72.4	0.71	10.51
10000	1.89	3048	69.7	0.69	10.11

15000	2.84	4572	57.2	0.56	8.29
20000	3.79	6096	46.6	0.46	6.75
25000	4.73	7620	37.6	0.37	5.45
30000	5.68	9144	30.1	0.30	4.36
35000	6.63	10668	23.8	0.24	3.46
40000	7.58	12192	18.8	0.19	2.72
45000	8.52	13716	14.7	0.15	2.14
50000	9.47	15240	11.6	0.11	1.68
55000	10.42	16764	9.1	0.09	1.32
60000	11.36	18288	7.2	0.07	1.04
65000	12.31	19812	5.6	0.06	0.82

Elevation above Sea Level (feet)

Weather Conditions

Due to the fact that weather conditions affect pressure and altitude calculations, the pressure and temperature at sea level must be known. The altitude at a given air pressure can be calculated using *Equation 1* for an altitude up to 11 km (36,090 feet). This equation can be arranged to also calculate the air pressure at a given altitude as shown in *Equation 2*.

$$h = h_b + \frac{T_b}{L_b} \cdot \left[\left(\frac{P}{P_b} \right)^{\frac{-R \cdot L_b}{g_0 \cdot M}} - 1 \right]$$
 (1)

$$P = P_b \cdot \left[1 + \frac{L_b}{T_b} \cdot (h - h_b) \right]^{\frac{-g_0 \cdot M}{R \cdot L_b}}$$
 (2)

where,

 P_b = static pressure (pressure at sea level) [Pa]

 T_b = standard temperature (temperature at sea level) [K]

 L_b = standard temperature lapse rate [K/m] = -0.0065 [K/m]

h = height about sea level [m]

 h_b = height at the bottom of atmospheric layer [m]

 $R = \text{universal gas constant} = 8.31432 \left[\frac{N \cdot m}{mo \cdot K} \right]$

 g_0 = gravitational acceleration constant = 9.80665 $\left[\frac{m}{s^2}\right]$

M = molar mass of Earth's air = 0.0289644 [kg/mol]

Earth's Atmosphere

Due to the fact that Earth's atmosphere experiences different rates of heating and cooling through each of its layers, these equations help to model this through the use of the temperature lapse rate, which is the rate at which temperature changes through altitude change. Some layers, such as the stratosphere (from 11km to 20km), have a constant temperature throughout the layer. This requires different equations to determine the altitude or pressure. *Equations 3* and *4* specify the calculation for altitude and pressure respectfully in this zero temperature lapse rate layer.

$$h = h_b + \frac{R \cdot T_b \cdot \ln(\frac{P}{P_b})}{-g_0 \cdot M}$$
 (3)

$$P = P_b \cdot exp \left[\frac{-g_0 \cdot M \cdot (h - h_b)}{R \cdot T_b} \right] \tag{4}$$

For these equations h_b , P_b , and T_b correspond to the altitude, pressure, and temperature at the bottom of the stratosphere. The pressure at the bottom of the layer is determined from the user provided inputs of the pressure and temperature at sea level knowing that the altitude at the bottom of the layer is 11 km; assuming the default pressure was used at sea level, the pressure at the bottom of the stratosphere is 22,632 Pa. The temperature at the bottom of the stratosphere is determined by subtracting 71.5 K from the temperature at sea level.

More Information

Need more information? Please don't hesitate to Contact us.