

Lecture 13

Estimating survival: Open capture-mark-recapture models

WILD6900 (Spring 2020)

Readings

Kéry & Schaub 171-239

Powell & Gale chp. 10

From closed-population models to open-population models

All CMR studies have a similar basic design:

During each sampling occasion

- individuals are captured
- marked or identified
- released alive

But whats happens next?

- ullet In the M_0 model, we assumed the population was closed to any change in N during our study
 - No births, deaths, emigration, or immigration
 - \circ Any 0 in the capture histories was due to detection error

From closed-population models to open-population models

Open population models relax this assumption

- Individuals can enter (births or immigration) or leave the population (deaths or emigration) between sampling occasions
- 0's in the capture histories could be because individuals are there but not detected or because they are not there

Many different forms of open population models

- Allow estimation of:
 - survival
 - recruitment
 - movement

In this lecture, we will focus on estimating survival/emigration

In this lecture, we will focus on estimating survival/emigration

Condition on first capture

On the occassion after release, 4 possible scenarios:

- 1) Individual survives and is re-captured (capture history = 11)
- 2) Individual survives but is not recaptured (capture history = 10)
- 3) Individual dies and is **not available** for recapture (capture history = 10)
- 4) Individual survives but leaves the study area and is **not available** for recapture (capture history = 10)

On the occassion after release, 4 possible scenarios:

- 1) Individual survives and is re-captured (capture history = 11)
- 2) Individual survives but is not recaptured (capture history = 10)
- 3) Individual dies and is **not available** for recapture (capture history = 10)
- 4) Individual survives but leaves the study area and is **not available** for recapture (capture history = 10)

Not possible to distuingish between scenarios 3 & 4 without additional data

$$oldsymbol{\cdot} \phi_t = s_t imes (1 - \epsilon_t)$$

• ϕ_t : Apparent survival (prob. individual survives *and* remains within study area)

How do we distinguish between scenarios 2 & 3/4?

CJS model

- Parameters
 - $\circ \phi$: Apparent survival probability
 - \circ p: Recapture probability

How do we distinguish between scenarios 2 & 3/4?

Individual	Capture history	Probability
Indv 1	111	$\phi_1 p_2 \phi_2 p_3$
Indv 2	101	
Indv 3	110	
Indv 4	100	

Individual 1

• survived interval 1 (ϕ_1) , recaptured on occasion 2 (p_2) , survived occasion 2 (ϕ_2) , recapture on occasion 3 (p_3)

Individual	Capture history	Probability
Indv 1	111	$\phi_1 p_2 \phi_2 p_3$
Indv 2	101	$\phi_1(1-p_2)\phi_2p_3$
Indv 3	110	
Indv 4	100	

Individual 2

 \bullet survived interval 1 (ϕ_1) , not recaptured on occasion 2 $(1-p_2)$, survived occasion 2 (ϕ_2) , recapture on occasion 3 (p_3)

Individual	Capture history	Probability
Indv 1	111	$\phi_1p_2\phi_2p_3$
Indv 2	101	$\phi_1(1-p_2)\phi_2p_3$
Indv 3	110	$\phi_1 p_2 \phi_2 (1-p_3) + (1-\phi_2)$
Indv 4	100	

Individual 3

- ullet survived interval 1 (ϕ_1) , recaptured on occasion 2 (p_2)
 - $\circ \,\,$ survived occasion 2 (ϕ_2) , not recaptured on occasion 3 $(1-p_3)$; or
 - \circ died during occasion 2 $(1-\phi_2)$

Individual	Capture history	Probability
Indv 1	111	$\phi_1 p_2 \phi_2 p_3$
Indv 2	101	$\phi_1(1-p_2)\phi_2p_3$
Indv 3	110	$\phi_1 p_2 \phi_2 (1-p_3) + (1-\phi_2)$
Indv 4	100	$(1-\phi_1)+\phi_1(1-p_2)(1-\phi_2p_3)$

Individual 4

- ullet died during interval 1 $(1-\phi_1)$; or
- survived occasion 1 (ϕ_1) , not recaptured on occasion 2 $(1-p_2)$, died during occasion 2 $(1-\phi_2)$; or
- ullet survived occasion 1 (ϕ_1) , not recaptured on occasion 2 $(1-p_2)$, survived occasion 2 (ϕ_2) , not recaptured on occasion 3 $(1-p_3)$

CJS model as a state-space model

Using the tools we've learned this semester, it's relativley straightfoward to write the CJS model as a state-space model:

Process model, capture occassion 1

$$z_{i,f_1}=1$$

Process model, capture occasion 2+

$$z_{i,t} \sim Bernoulli(z_{i,t-1}\phi)$$

Observation model

$$y_{i,t} \sim Bernoulli(z_{i,t}p)$$

CJS model with time-variation

As for the other models we've seen this semester, it's possible to add temporal variation to the CJS model

$$egin{aligned} logit(\phi_t) &= \mu + \epsilon_t \ \epsilon_t \sim normal(0, au_\phi) \ logit(p_t) &= \mu + \xi_t \ \xi_t \sim normal(0, au_p) \end{aligned}$$

Identifiability of the CJS model with time-variation

In the fully time-dependent model, ϕ_T and p_T are not identifiable

- the model will return posteriors for both parameters (because each has a prior) but the model will not be able to separately estimate both parameters
 - \circ posteriors will actually be for $\phi_T \times p_T$

Identifiability of the CJS model with time-variation

Why is this?

- In a CMR study with two occassions (note never do this!):
 - 100 individuals captured on first occasion
 - 60 of those individuals recaptured on the second occasion
- Expected number of recaptures = $N \times \phi \times p$

$$60 = 100 \times 0.8 \times 0.75$$

$$\circ 60 = 100 \times 0.9 \times 0.667$$

$$\circ 60 = 100 \times 0.6 \times 1.00$$

- No unique solution
 - \circ Separating p from ϕ requires *internal* zeros

Identifiability of the CJS model with time-variation

What can you do:

- 1) Constant p
- 2) Covariates on ϕ and p
- 3) Informative priors

Assumptions of the CJS model

- 1) Every animal has the same chance of capture, p
- 2) Every animal has same probability of surviving ϕ
- 3) Marks are not lost
- 4) Samples are instantaneous (short periods)
- 5) All emigration is permanent (101 must indicate 1-p)
- 6) Fates of animals are independent of other animals