MMC HW4

Hw3 Using MatLab,

- 1. Program Forward Kinematics for Puma 560 robot with your assumed values for a_2, a_3, d_3, d_4 and ${}^6_TT \Rightarrow {}^6_TP = [112]^T$ then, when $\overline{\theta}$ =[30deg 90 90 30 30 30], Find 0_TT
- 2. Program Inverse Kinematics for Puma 560 robot. Find the 8 solution sets corresponding to the 0_TT of prob. 1. and make sure that one among your solution sets must be [30deg 90 90 30 30 30].

continued from HW3

At that instance, all joint velocities are 0.1 rad / sec with the robot configuration of prob. 1

If possible, Write the Matlab Program to do next problems as

- 3. Find the linear and angular velocities of the tool.
- 4. Find the Jacobian at that instant.
- 5. With the inverse of Jacobian and the obtained results, do velocity inverse kinematics to find the joint velocities.