Algoritmos genéticos

Introducción	2
 Esquema básico 	3
 El problema de la mochila 	7
 Asignación de recursos 	10
 El problema del viajante 	13
 Variantes del esquema básico 	15
♦ ¿Por qué funciona?	19
 Observaciones finales 	20

Algoritmos genéticos: Introducción

- Inventados por John Holland a mitades de los 70.
- Inspirados en el modelo de evolución biológica.
- Utilizan el principio de selección natural para resolver problemas de optimización "complicados".

* Idea:

- Partiendo de una población inicial (soluciones factibles)
- Seleccionar individuos (favorecer a los de mayor calidad)
- Recombinarlos
- Introducir mutaciones en sus descendientes
- Insertarlos en la siguiente generación

```
algoritmo genético
principio
  t:=0;
  inicializa P(t);
  evalúa P(t);
  mq not termina hacer
    t:=t+1;
    P(t):=selecciona P(t-1);
    recombina P(t);
    muta P(t);
    evalúa P(t)
  fmq;
fin
```

- * Maximizar $f(x) = x^2 \cos x$ entero entre 0 y 31
 - Representación en binario

0	1	1	0	1

 Población inicial generada aleatoriamente, tamaño 4

01101
11000
01000
10011

- Función de calidad $f(x) = x^2$
- Selección:

 Generar una población intermedia. Para ello asignar a cada individuo una probabilidad de ser seleccionado directamente proporcional a su función de calidad.

Cromosoma	X	f(x)	prob.	copias
01101	13	169	0.14	1
11000	24	576	0.49	2
01000	8	64	0.06	0
10011	19	361	0.31	1

De la población intermedia se seleccionan parejas de forma aleatoria.

 Cruce: elegir un punto intermedio e intercambiar los genes de los padres a partir de ese punto.

 Mutación: cambio de un bit elegido aleatoriamente (probabilidad pequeña).

Cromosoma	X	f(x)
11011	27	729
10000	16	256
01100	12	144
11001	25	625

Codificación:

- Utilizar cadenas de bits para representar las soluciones
- Los bits pueden codificar números enteros, reales, conjuntos, ...
- Ventaja: los operadores de cruce y mutación son simples.
- Inconveniente: no siempre resulta "natural".

Selección:

- Asignar una probabilidad de supervivencia proporcional a la calidad
- Generar una población intermedia
- Elegir parejas de forma aleatoria
- No se pueden cruzar elementos de dos generaciones distintas.

Operador de cruce de un punto

Mutación:

 Hay una pequeña probabilidad de cambio de un bit.

El problema de la mochila

* Recordar...

- Se tienen n objetos y una mochila
- El objeto i tiene peso p_i y la inclusión del objeto i en la mochila produce un beneficio b_i
- El objetivo es llenar la mochila, de capacidad C, de manera que se maximice el beneficio.

$$\begin{array}{ll} \text{maximizar} & \sum\limits_{1\leq i\leq n}b_ix_i\\ \\ \text{sujeto a} & \sum\limits_{1\leq i\leq n}p_ix_i\leq C\\ \\ \text{con} & x_i\in\{0,1\},\ b_i>0,\ p_i>0,\ 1\leq i\leq n \end{array}$$

* Problemas:

- Codificación genética: cómo representar las soluciones
- Calidad de las soluciones: cómo se mide

El problema de la mochila

* Representación:

$$x = (x_1, \dots, x_n), \quad x_i \in \{0, 1\}$$

Observar que no se garantiza factibilidad

Función de calidad:

$$f(x) = \begin{cases} C - \sum_{1 \le i \le n} b_i x_i & \text{si } \sum_{1 \le i \le n} b_i x_i > C \\ \sum_{1 \le i \le n} b_i x_i & \text{en otro caso} \end{cases}$$

Penalizar la no factibilidad. Obliga al algoritmo a elegir soluciones factibles porque son mejores.

Inicialización:

Generar secuencias de ceros y unos

Operador de cruce de un punto

* Otra posible representación:

Una lista con los elementos que metemos en la mochila.

Problema: qué operador de cruce utilizamos?

Observar que el operador de un punto no sirve, es necesario adaptarlo.

$$(2,3,4) \longrightarrow (2,3,5) (1,4,4)$$

Por ejemplo, eliminar los elementos repetidos

Asignación de recursos

- ❖ Hay m recursos de capacidades $c_1, c_2, ..., c_m$ y n tareas a ejecutar que consumen parte de los recursos. La tarea i-ésima consume w_{ij} partes del recurso j.
- \clubsuit La ejecución de la tarea *i*-ésima produce un beneficio b_i .
- ❖Se trata de decidir qué tareas se ejecutan de manera que se maximice el beneficio total.

Asignación de recursos

❖ Representación de un individuo:

- $\mathbf{x} = (x_1, x_2, ..., x_n)$, con $x_i \in \{0, 1\}$ ($x_i = 1$ significa ejecutar la tarea *i*-ésima)
- para ser factible debe verificar: $\sum_{i=1} w_{ij} x_i \le c_j$, para j=1,2,...,n
- y para ser óptima debe maximizar: $B(\mathbf{x}) = \sum_{i=1}^{n} x_i b_i$

❖La función de calidad:

$$\begin{split} f(\mathbf{x}) &= \Sigma_{i=1} b_i x_i - s \max\{b_i\} \\ \text{donde } s &= \left| \left\{ j \mid \Sigma_{i=1} w_{ij} x_i > c_j \right\} \right|, \text{ es decir, } \\ \text{el número de recursos agotados.} \end{split}$$

❖El tamaño de la población elegido es μ =50, la tasa de mutación p_m =1/n, y la tasa de recombinación p_c =0'6.

Resultados obtenidos tras 100 ejecuciones de 6 casos distintos:

n=15, m=1	=10	n=20, m=	=10	n=28, m=	=10	n=50,	m=5	n=60, m	=30	n=105, n	n=2
$f_{5\cdot 10}3(x)$	N	$f_{10}4(x)$	N	$f_{5\cdot 10}4(x)$	N	$f_{10}5(x)$	N	$f_{10}5(x)$	N	$f_{2\cdot 10}5(x)$	N
4015	83	6120	33	12400	33	16537	1	7772	5	1095445	-
4005	16	6110	20	12390	30	16524	1	7761	4	1095382	10
3955	1	6100	29	12380	10	16519	2	7758	11	1095357	3
		6090	11	12370	1	16518	5	7741	7	1095266	1
		6060	3	12360	19	16499	1	7739	1	1095264	9
		6050	1	12330	5	16497	1	7738	3	1095206	3
		6040	3	11960	1	16494	1	7725	1	1095157	2
				11950	1	16473	1	7719	1	1095081	1
						16472	1	7715	1	1095035	2
						16467	1	7711	2	1095035	8
						16463	1	7706	1	1094965	1
<i>f</i> =401	12'7	f=6102	'3	f=12374	1'7	f=163	78	f=7626	3	f=10938	97

* Recordar

¡Si otra vez yo, y qué!

Encontrar un recorrido de longitud mínima para un viajante que tiene que visitar varias ciudades y volver al punto de partida, conocida la distancia existente entre cada dos ciudades.

 Codificación: en forma de vector siguiendo el orden del recorrido

Ejemplo:

$$[3, 2, 5, 4, 1] \longrightarrow 3 \longrightarrow 2 \longrightarrow 5 \longrightarrow 4 \longrightarrow 1$$

- Cruce:
 - De un punto:

- Pueden aparecer ciudades repetidas
- No siempre visitamos todas.

El problema del viajante

- Heurística:

- Elegir una ciudad, i, aleatoriamente
- ◆ Suponer que en el padre 1 de la ciudad i vamos a la j y en el padre 2 de i vamos a k
 - Si *j,k* ya están incluidos, elegir una nueva ciudad.
 - Si no, añadir la ciudad que no esté incluida más próxima a i.
- Repetir mientras queden ciudades sin recorrer

* Otra codificación:

Asignar a cada ciudad un valor entre 0 y 1 aleatoriamente. El recorrido se obtiene al ordenar estos números de mayor a menor.

Ejemplo:

$$[0.2, 0.8, 0.4, 0.7, 0.9] \longrightarrow 5 \longrightarrow 2 \longrightarrow 4 \longrightarrow 3 \longrightarrow 1$$

Cruce:

Cualquiera de los habituales, de un punto por ejemplo.

Variantes del esquema básico

- Codificación: ¿cómo se representan las soluciones en forma de "cromosomas"?
 - Cadenas de 0's y 1's (algoritmos clásicos)
 - Números enteros y reales
 - Otros
- Cuestiones a tener en cuenta:
 - Factibilidad: los cromosomas pueden codificar soluciones no factibles del problema.
 - ◆ Solución: penalizar en la función de calidad descartar

reparar

 Legalidad: los cromosomas pueden no ser decodificables a una solución.

Ejemplo: problema de la mochila

$$(2,3,4) \longrightarrow (2,3,5) (1,4,4)$$

- Unicidad de la codificación:
 - Uno a uno
 - ◆ Uno a N
 - ♦ Na uno

Variantes del esquema básico

* Cambio de generación:

- Manteniendo el tamaño de la población
 - Reemplazar padres por hijos
 - Reemplazar un par de individuos elegidos aleatoriamente por los hijos
 - Otros
- Aumentando el tamaño de la población
 - Crear una población temporal formada por los padres y los hijos y seleccionar de ahí los mejores para formar la nueva generación
 - ◆ Dados n padres generar m hijos (m>n) y de ahí seleccionar los n mejores.

Selección:

 Asignar a cada individuo una probabilidad de ser elegido definida como

$$f(x_i) / \sum_{\text{población}} f(x_j)$$

donde f puede ser

- la función de calidad (quizás escalada o centrada)
- la posición de la solución si se ordenan según su calidad

Variantes del esquema básico

Cruce

 De un punto: seleccionar aleatoriamente un punto en el cromosoma e intercambiar el final de cada cromosoma a partir de dicho punto.

- De dos puntos:

Variantes del algoritmo básico

 Uniforme: cada gen se hereda de un padre elegido aleatoriamente.

Mutación

Evita que solo se considere un subconjunto de las posibles soluciones

 Un esquema es el conjunto de cromosomas que siguen un patrón.

Ejemplo: $00*1*0=\{000100, 000110, 001100, 001110\}$

Teorema del esquema:

Relaciona la calidad de los miembros de un esquema en una generación con el número esperado de miembros en la siguiente generación.

$$=Ns(g)^* ms(g)/m(g)$$

- Ns(g) es el número de elementos del esquema s en la generación g
- -m(g) la calidad media de los cromosomas en la generación g
- ms(g) una estimación de la calidad media de los cromosomas de la generación s que pertenecen al esquema s
- <x> es el valor esperado

Observaciones:

- La evolución está dirigida por la calidad relativa
- Existe un paralelismo implícito, las operaciones se hacen implícitamente sobre todo un esquema.
- Encontrar un equilibrio entre explotación/exploración

Los algoritmos genéticos funcionan mejor cuando:

- Las soluciones potenciales pueden representarse de forma que quede explícita la composición
- Existen operadores para mutar y recombinar estas representaciones

Los algoritmos genéticos funcionan peor_cuando:

- La representación no recoge las características de las soluciones
- Los operadores no generan candidatos "interesantes"