# Personal At-Home **ADA** Door Opener

Chris Dycus, Johnirv Hollingshead, Joshua Tsang, Kenji Tella, Min Seo Kim, Jaeho Sung

# The Problem

Opening doors can be a challenging endeavor for individuals with limited mobility, requiring physical strength and balance that can be difficult for those using crutches or wheelchairs.

Existing solutions exist, but are:

- Expensive
- Not suitable for home use
- Not user-friendly for DIY installations





# **Current Market Products**



There is a need for an automated, cost-effective door opener that supports handicapped individuals, enabling easier, safer, and independent access to everyday spaces.

# **Solution Ideation**





## **Durability**

How many cycles do we expect & design for?



# **Materials**

What materials should we use to meet our durability and cost goals?



## **Key Forces**

How much friction do we need to generate and how?



# **Constraints**

# **Durability**

>10,000 open/close cycles on original hardware



### **Forces**

10lb to open door 11.1lb friction force @ wheel

### **Materials**

Mass produced off-the-shelf electronics for balance of cost/reliability



#### Power

110V power required













# **Design Overview**

01

## **Electronic Control Housing**

Contains control system for motor and power distribution systems

02

# **Motor Assembly**

Connects motor and wheel mechanically to mounting system

03

## **Mounting Plate**

Connects all components to central plate that mounts to door

04

## Hinge

Provides spring force to facilitate sufficient normal force to wheel

# Hand Calculation - Motor/Hinge/Material Selection





#### **Motor Sizing:**

- Using given torque and friction values, motor torque range could be established
- Given available options, we chose the 144kgcm motor
  - FOS of 3, which covers wide range of possible door resistances at hinge

#### **Hinge Sizing:**

- Chose spring loaded hinge as normal force applicator
- Determined preload of spring by calculating required normal force using given friction coefficient
  - Sized for 5Nm for optimal grip



# Electronic Control Housing

- Contains all control and power electronics
- Consists of some key components:
  - Arduino Remote control/motor driver signals
  - Motor Driver Sends signal/power to motor
  - IR Sensor Receives/transmits signals to arduino
  - Power supply 110V input to 24V output for powering Arduino/Motor driver





# **Motor Assembly**

- Motor direct drives wheel for operation
- 144kg-cm 260RPM Drive Motor
- High traction rubber wheel for various surfaces
- Wheel/motor combination selected for optimal balance between torque and speed



# FEA/Optimization





#### **Bracket Sizing:**

- Used FEA to determine the minimum thickness of sheet metal while sustaining a 5 FOS (for shock loads)
  - Used calculated loads as applied loads
  - Fixed supports at hinge for worst case
- FEA results showed that we could support all loads at 1 face, removing need for rear motor support
  - Reduced mass of part while maintaining required strength
- Landed on 2.5mm 5052-H32 Al
  - Great bendability & low cost

|                            | Yield<br>Strength(Mp<br>a) | Density(kg/m<br>^3) | cost(\$/kg) | Cost per<br>volume(\$/m^<br>3) | Cost per<br>strength<br>(cost/yield<br>strength) |
|----------------------------|----------------------------|---------------------|-------------|--------------------------------|--------------------------------------------------|
| 6061<br>Aluminium<br>Alloy | 275                        | 2700                | 1.80        | 4860                           | 17.67                                            |
| 5052<br>Aluminum<br>Alloy  | 193                        | 2680                | 1.80        | 4824                           | 24.99                                            |
| 4140 Steel<br>Alloy        | 655                        | 7850                | .30         | 2355                           | 1.77                                             |
| polycarbonate              | .97                        | 1200                | 4.90        | 245                            | 252.57                                           |



# **Mounting Plate**

- Laser-cut Acrylic
- Electronics box and hinge bolted to plate
- 4 screw installation to door





# Hinge

- Aluminum hinge with spring
- Provides normal force required for traction
- Accommodates uneven flooring



# Final Design & Demo







# Mass Production



# **Injection Molding**

(electronic box & mounting plate)

-Production efficiency-Cost effective



# Stamping

(motor mount)

-Cost effective -High production volume -Consistency

# **Pricing**



Cost of Manufacture

- Components sourced at retail pricing
- Expected increase in profit w/ scaled production and bulk sourcing









# Thank You! Questions?