

IN THE CLAIMS:

Cancel claim 12, amend claims 1, 3, 4, 7, 8, 9, 11, 13 and 16 and add claims 17-20 as follows:

- 1 1. (Amended) A radio controllable clock, comprising:
 - 2 an analog display having a plurality of clock hands each fastened to a uniquely associated
 - 3 one of a plurality of clock hand shafts that each rotate about a common axis;
 - 4 a plurality of rotary gears each uniquely associated with one of said clock hand shafts, for
 - 5 rotating said clock hand shafts, each rotary gear having a face perpendicular to the common axis,
 - 6 wherein each of said rotary gears includes a protrusion extending substantially perpendicular
 - 7 from said face;
 - 8 a microcontroller that provides a plurality of drive command signals;
 - 9 means responsive to said drive command signals, for driving said rotary gears; and
 - 10 a reset claw operably positioned to engage said at least one of said protrusions ~~at a~~
 - 11 ~~selected rotary position of said rotary gear to stop the rotation of said associated rotary gear~~ clock
 - 12 hand shaft associated with said protrusion to position said associated clock hand associated with
 - 13 said protrusion at a datum position.
- 1 2. (Original) The radio controllable clock of claim 1, wherein said means for driving said
- 2 rotary gears comprises a stepper motor.
- 1 3. (Amended) The radio controllable clock of claim 1 wherein said reset claw comprises a
- 2 plurality of arms, wherein each of said arms engages an associated one of said

3 protrusions to stop the rotation of said ~~associated~~ rotary gear associated therewith to position said
4 clock hands at said datum position.

1 4. (Amended) The radio controllable clock of claim 3, wherein said plurality of clock hands
2 comprises a second hand, a minute hand and an hour hand and said plurality of arms comprises:
3 a first arm that engages a first protrusion on a first of said plurality of rotary ~~wheels~~ gears
4 that is associated with said second hand;
5 a second arm that engages a second protrusion on a second of said plurality of rotary
6 ~~wheels~~ gears that is associated with said minute hand; and
7 an third arm that engages a third protrusion on a third of said plurality of rotary ~~wheels~~
8 gears that is associated with said hour hand.

1 5. (Original) The radio controllable clock of claim 2, comprising an alarm hand shaft, an alarm
2 hand stepper motor and an alarm hand rotary wheel, wherein said alarm hand stepper motor
3 drives said alarm hand rotary wheel to rotate said alarm hand shaft.

1 6. (Amended) The radio controllable clock of claim 1, wherein said microcontroller generates
2 pulses sufficient to drive each of said plurality of ~~rotary gears~~ clock hand shafts to rotate said
3 ~~associated~~ each of said plurality of clock hands associated therewith at least one complete
4 revolution.

1 7. (Amended) The radio controllable clock of claim 4, wherein said microcontroller generates
2 pulses to rotate said minute hand at least one and a quarter rotation, wherein said minute hand is

3 driven by said stepper motor through a plurality of cooperating rotary gears comprising (i) said
4 second of said plurality of rotary wheels gears, (ii) a minute hand centre wheel-idler, (iii) a
5 minute hand intermediate wheel, (iv) a minute hand transmission wheel, and (v) a rotor.

1 8. (Amended) The radio controllable clock of claim 4, wherein said microcontroller generates
2 pulses to rotate said second hand at least one and a quarter rotation, wherein said second hand is
3 driven through a plurality of cooperating rotary gears comprising (i) said first of said plurality of
4 rotary wheels gears, (ii) a second hand centre wheel-idler, (iii) a second hand intermediate wheel,
5 (iv) a second hand transmission wheel, and (v) a rotor.

1 9. (Amended) The radio controllable clock of claim 4, wherein said microcontroller generates
2 pulses to rotate said hour hand at least one and a quarter rotation, wherein said hour hand is
3 driven through a plurality of cooperating rotary gears comprising (i) said third of said plurality of
4 rotary wheels gears, (ii) an hour hand centre wheel-idler, (iii) an hour hand intermediate wheel,
5 (iv) an hour hand transmission wheel, and (v) a rotor.

1 10. (Original) The radio controllable clock of claim 1, comprising a flat panel display for
2 displaying time and date information.

1 11. (Amended) The radio controllable clock of claim 1, comprising a reset knob (12) for
2 manually activating said means for mechanically stopping said hand shafts (1, 2, 3, 4) or said
3 reset claw (13), respectively.

1 12. (Cancelled) The radio controllable clock of claim 1, wherein said clock is adapted to be
2 remote controllable.

1 13. (Amended) A radio controllable clock, comprising:
2 a plurality of clock hands each fastened to a uniquely associated one of a plurality of
3 clock hand shafts;
4 a plurality of rotary gears each uniquely associated with one of said clock hand shafts, for
5 rotating said clock hand shafts, each rotary gear having a face, wherein each of said rotary gears
6 includes a protrusion extending substantially perpendicular to said face;
7 a controller that provides a plurality of drive command signals;
8 motors responsive to said drive command signals, for driving said rotary gears to rotate a
9 selected one of said clock hands; and
10 means, operably positionable to engage said protrusion at a selected rotary position of
11 said rotary gear, for stopping the clockwise or counter clockwise rotation of said associated
12 rotary gear to position said associated clock hand at a datum position.

1 14. (Original) The radio controllable clock of claim 13, wherein said motors comprise a stepper
2 motor.

1 15. (Original) The radio controllable clock of claim 13, wherein said motors comprise torque
2 motors.

1 16. (Amended) The radio controllable clock of claim 13, wherein said means for stopping
2 comprises a reset claw including a plurality of arms, wherein each of said arms engages a
3 uniquely associated one of said protrusions to stop the rotation of said associated rotary gear and
4 thus position said associated clock hand at the datum position wherein each of said arms is
5 configured and arranged to be positioned in a first position and a second position, wherein while
6 in said first position said arm is in the path of rotation of said protrusion, and in said second
7 position said arm is outside the path of rotation of said protrusion.

8 .

1 17. (New) The radio controllable clock of claim 3, wherein each of arms is movable.

1 18.(New) The radio controllable clock of claim 17, wherein each of said arms pivots about a
2 common axis.

1 19.(New) The radio controllable clock of claim 3, wherein each of said arms is configured
2 and arranged to be positioned in a first position and a second position, wherein while in said first
3 position said arm is in the path of rotation of said protrusion, and in said second position said
4 arm is outside the path of rotation of said protrusion.

1 20.(New) A radio controllable clock, comprising:

2 a plurality of clock hands each fastened to a uniquely associated one of a plurality of
3 clock hand shafts;

4 a plurality of rotary gears each uniquely associated with one of said clock hand shafts, for
5 rotating said clock hand shafts, each rotary gear having a face, wherein each of said rotary gears
6 includes a protrusion extending substantially perpendicular to said face;
7 a controller that provides a plurality of drive command signals;
8 a least one motor responsive to said drive command signals, for driving said rotary gears
9 to rotate a selected one of said clock hands; and
10 a pivotal arm, operably positionable to engage said protrusion at a selected rotary position
11 of said rotary gear, for stopping clockwise or counter clockwise rotation of said associated rotary
12 gear to position said associated clock hand at a datum position.