# Distributed Storage Systems Theory and practice

Pietro Michiardi

Eurecom

## Introduction

#### **Overview**

- The CAP Theorem
- Amazon Dynamo
- Apache HBase
- Apache Cassandra

## The CAP Theorem

#### The CAP Theorem

#### Frequently cited distributed systems theorem

#### Relates the following three properties

- C: Consistency
  - One-copy semantics, linearizability, atomicity, total order
  - ★ Every operation must appear to take effect in a single indivisible point in time between its invocation and response
- A: Availability
  - Every client's request is served (receives a response) unless a client fails (despite a strict subset of server nodes failing)
- P: Partition tolerance
  - A system functions properly even if the network is allowed to lose arbitrarily many messages sent from one node to another

#### **The CAP Theorem**

• In the folklore interpretation, the theorem says:

C, A, P: pick two



#### Precautions: be careful with CA

- Sacrificing P (partition tolerance)
- Negating: A system functions properly even if the network is allowed to lose arbitrarily many messages sent from one node to another
- Yields: A system does not function properly even if the network is allowed to lose arbitrarily many messages sent from one node to another
  - ▶ This implies sacrificing C or A, i.e., the system does not work

#### Precautions: be careful with CA

- Negating P: A system function properly if the network is not allowed to lose arbitrarily many messages
- However, in practice: It is not possible to choose whether the network will lose messages! This either happens or not
- One can argue that not "arbitrarily" many messages will be lost
  - But "a lot" of them might be (before the network repairs)
  - In the meantime, either C or A is sacrificed

#### **CAP** in practice

#### In practical distributed systems:

- Partitions may occur
- ▶ This is not under your control, as a system designer

#### Designer's choice:

You choose whether you want your system in C or A, when/if (temporary) partitions occur

#### In summary:

- CAP is a fundamental theorem stating the tradeoffs among different system properties
- Practical distributed systems are either in CP or AP
- ► The choice (C vs. A) depends on your application logic

## **CAP** in theory

#### • Historical notes:

- First stated by Eric Brewer at the PODC 2000 keynote
- Formally proved by Gilbert and Lynch, 2002

#### GL Theorems:

- Asynchronous / partially synchronous network models
- Read/Write data objects
- Finer definitions of Availability and Consistency

#### Further readings:

- (Fischer, Lynch and Patterson) FLP impossibility result
- t-connected CAP

#### **CAP:** some illustrative choices

#### • CP:

- BigTable (Google), HBase, ...
- Coordination systems: ZooKeeper, etcd, ...

#### AP:

 Amazon Dynamo, CouchDB, Cassandra, SimpleDB, Riak, Voldemort (LinkedIn), ...

## Amazon Dynamo

#### **Amazon Web Services**

#### Amazon's cloud computing services

- ▶ S3, EC2, RedShift, SimpleDB, Elastic MR, and many, many more
- Combined, they allow constructing Internet-scale applications

#### • Infrastructure services requirements:

- Security, scalability, availability, performance, cost-efficiency
- Serve millions of customers worldwide, continuously

#### **Amazon Web Services**

#### Important observations

- No emphasis on consistency
- AWS is in AP, sacrificing consistency

#### AWS follows the BASE philosophy

- BASE vs. ACID
- Basically Available
- Soft state
- Eventually consistent

## Why favoring Availability over Consistency?

 Even the shortest outage has significant financial consequences and impact customer trust

- Clearly, consistency violations may as well have a big impact
  - But not in several Amazon's services
  - Billing is a separate story

## **Amazon Dynamo**

#### Works behind the scenes in the context of AWS

- Used to power client-facing services such as S3, and others
- Used to power internal Amazon services such as: shopping cart, customer session management, product catalog, recommendations, order fulfillment, sales rank, fraud detection, ...

#### What is Dynamo?

- Highly available key-value storage system
- Favors availability over consistency under failures

#### What is a key-value store?

#### Think about Hash tables or dictionaries

- Simple API: get(key), put(key, value)
- Sometimes referred to read/write operations

#### Specifics of Dynamo API

- Uses an additional argument to pass a "context"
- Context holds critical metadata
- Typically stores small objects (< 1 MB)</li>

#### Specifics of services using Dynamo

- Do not need transactions
- Often need only primary-key access to data

#### **Amazon Dynamo: Features**

#### Main characteristics

- Low latency
- Scalable (hundreds of machines)
- Always-on available (especially for writes)
- Partition/Fault tolerance
- Eventually consistent

#### How such features are obtained

- General distributed systems toolbox
- We review some of them here

## **Amazon Dynamo: Key Techniques (1)**

- Consistent hashing [Karger97]
  - For data partitioning, replication and load balancing

- Sloppy Quorums
  - Boosts availability in presence of failures
  - May result in inconsistent versions of keys (data)

## **Amazon Dynamo: Key Techniques (2)**

- Vector clocks [Fidge88/Mantern88]
  - For tracking causal dependencies among different versions of the same key (data)
- Gossip-based group membership
  - For maintaining information about alive nodes
- Anti-entropy protocol based on Merkle trees
  - Background synchronization of divergent replicas

#### **Amazon Dynamo: Design Decisions**

#### Always writable data store

E.g., think shopping cart service

#### • How to handle data changes?

- Replication, required for fault/disaster tolerance
- Allow multiple versions of data
- Reconcile and resolve conflicts during reads

#### How to reconcile data?

- Application-side: depending on business logic
- Dynamo: deterministic, e.g., "last-write" wins

Amazon Dynamo: Architecture

## **Amazon Dynamo Architecture**

#### Scalable and robust components for:

- Load balancing and data partitioning
- Membership, fault detection
- Failure recovery
- Replica synchronization
- Overload Handling
- State transfer
- Concurrency management
- Scheduling
- Request marshalling and routing
- System monitoring
- Configuration management

## **Amazon Dynamo: Data Partitioning**

#### Data partitioning

- Dynamic partitioning of keys over a set of storage nodes
- Technique used for DHTs, e.g., Chord

#### Consistent Hashing

- Hashes of keys give key m-bit identifiers
- ▶ Hashes of nodes give *m*-bit identifiers
- Identifiers are ordered in an identifier circle

#### Key assignment to storage nodes

- A key is assigned to the closest successor node ID
- ▶ Key k is assigned to the first node whose ID  $\geq k$
- If such node does not exist, navigate the circle and find node with the smallest ID

## **Consistent Hashing Example**

• Assume: m = 3 bit, 3 storage nodes (0,2,3), 4 keys (1,3,5,6)



## **Consistent Hashing: Key Properties (1)**

#### Dynamic membership management

- Storage nodes can come and go
- Allows incremental scalability

#### Storage node arrival/departures

- n Joins: some (maybe many) keys previously assigned to node n's successor are now assigned to n
- n Leaves: all keys currently assigned to node n are assigned to its successor

## **Consistent Hashing: Key Properties (2)**

- Load balancing [Karger97]
  - ▶ Each node is responsible for at most  $(1 + \epsilon)K/N$  keys
  - ▶ When a new node joins, only O(K/n) keys must be moved (optimal)

#### Virtual Nodes

- Each physical storage node mapped multiple times to the circle
- → Improves load balancing
- → Allows heterogeneous storage nodes

## **Amazon Dynamo: Data Replication**

#### Goal: achieve high availability and durability

- ► Each data item (key) replicated at N nodes
- Virtual nodes: same physical node skipped
- ▶ *N* is a configurable parameter per Dynamo instance

#### Example:

- Assume N = 3
- ► For key *k*, *B* is the "coordinator" node
- ▶ B replicates k to N-1 other successor nodes (C and D)
- $\rightarrow B, C, D$  are a preference list for k

## Amazon Dynamo: Data Versioning (1)

- Data replication performed after an ACK is sent to a client put request
  - Asynchronous replication
  - May result in inconsistencies under partitions
  - → Read does not return the last value

#### Operations should not be lost!

- "Add to cart" should not be rejected but also not forgotten
- ▶ If it is performed when the latest version is not available, then it is performed on a stale version of the data
- → We may have different version of a key/value pair

## Amazon Dynamo: Data Versioning (2)

#### Precautions

- Once a partition heals, versions are merged
- New versions subsume previous ones
- Applications must be designed with data versionin in mind

#### Key technique for versioning

- Vector clocks
- Capture causality between different versions of an object

## Vector Clocks (in Dynamo) (1)

#### In theory:

- ► Each write to a key k associated to a vector clock VC(k)
- VC(k) is an array (map) of integers
- ▶ In theory, one entry VC(k)[i] for each storage node i
- ▶ When node *i* handles a write for key *k* it increments VC(k)[i]

#### In practice:

- VC(k) will not have many entries → only node from the preference list should have entries
- Dynamo truncates entries if more than a threshold

## Vector Clocks (in Dynamo) (2)



NB: one VC per key

#### Anatomy of put and get operations

#### Storage nodes can receive requests for any key

- Generic load balancer may chose a random node, not necessarily the coordinator
- Application may directly contact the coordinator in a preference list

#### Request routing

- Node serves request only if in preference list
- Otherwise, routes the request to the first node in preference list
- 0-hop DHT routing: all nodes know all other nodes
- → Not the most scalable, but excellent for low-latency

#### Extended preference list

Accounts for node failures

## **Amazon Dynamo: Quorums**

#### Two important parameters

- R: number of nodes involved in a get
- W: number of nodes involved in a put
- Quorum system: R + W > N, where N is the number of replicas

## Handling put (by coordinator)

- Generate new VC, write new version locally
- ▶ Send value, VC, to N nodes from preference list
- ▶ Wait for *W* − 1 acknowledgments

#### Handling get (by coordinator)

- Send get to N selected nodes from preference list
- Wait for R responses
- Select highest versions using VC, reconcile/merge different versions
- Writeback reconciled version

## Choosing R, W

- R, W smaller than N
  - To decrease latency
  - Slowest replica dictates query latency
- W = 1
  - Always available for writes
  - ▶ Yields  $R = N \rightarrow$  reads pay the penalty
- Typical values in Dynamo
  - W, R, N = 2, 2, 3

## Handling Failures

#### N selected nodes are the first N healthy nodes

- Might change from request to request
- Hence the term "sloppy" quorums

#### Sloppy vs. strict quorums

- Allow availability under a much wider range of partitions
- Sacrifice consistency

#### Data-center wide failures

- Power outages, cooling failures, network failures, ...
- Preference lists account for this

# **Handling Temporary Failures**

#### Hinted Handoff

- If a replica in the preference list is down, then a new replica is created on a new node
- Coordinator selects a new replica node, but hints that the role is temporary
- When the new replica learns about failure recovery, it handles data to the node in the preference list

# **Amazon Dynamo: Anti-Entropy Synchronization**

#### Uses Merkle Trees

 A tree in which every non-leaf node is labelled with the hash of the labels of its children nodes

### Storage nodes

- Keep a Merkle tree for each of its key ranges (virtual nodes)
- Compare root of the tree with replicas
- If equal, replicas are in sync
- Otherwise, traverse the tree and synchronize keys that differ

# **Amazon Dynamo: Membership Management**

Membership management initiated by administrator

- Gossip protocol to propagate membership changes
  - Nodes contact a random node every second
  - 2 nodes reconcile membership information
  - Gossiping also used to handle metadata

#### **Failure Detection**

#### Unreliable failure detection

- Detection is triggered by read/write requests
- Called "in-band" failure detection
- → No dedicated component

### Example:

- With steady load on node A
- Node A periodically checks the status of nodes in the extended preference list
- Does not make the distinction between faults and partitions

### **Amazon Dynamo: Summary**

- Eventually consistent, highly available key value store
  - In the CAP space, it is in AP
- Focuses on low-latency
  - Writes are super fast
  - Reconciliation in reads
- Built atop of fundamental techniques in distributed systems
  - Consistent hashing
  - Sloppy quorum-based replication
  - Merkle-tree based synchronization
  - Vector clocks, and gossip membership management

# **HBASE**

### Introduction

# Why yet another storage architecture?

# Relational Database Management Systems (RDBMS):

- Around since 1970s
- Countless examples in which they actually do make sense

# The dawn of Big Data:

- Previously: ignore data sources because no cost-effective way to store everything
  - ★ One option was to prune, by retaining only data for the last N days
- Today: store everything!
  - Pruning fails in providing a base to build useful mathematical models

# **Batch processing**

### • Hadoop and MapReduce:

- Excels at storing (semi- and/or un-) structured data
- Data interpretation takes place at analysis-time
- ► Flexibility in data classification

# Batch processing: A complement to RDBMS

- Scalable sink for data, processing launched when time is right
- Optimized for large file storage
- Optimized for "streaming" access

#### Random Access:

- Users need to "interact" with data, especially that "crunched" after a MapReduce job
- This is historically where RDBMS excel: random access for structured data

### **Column-Oriented Databases**

### Data layout:

- Save their data grouped by columns
- Subsequent column values are stored contiguously on disk
- This is substantially different from traditional RDBMS, which save and store data by row

### Specialized databases for specific workloads:

- Reduced I/O
- ▶ Better suited for compression → Efficient use of bandwidth
  - Indeed, column values are often very similar and differ little row-by-row
- Real-time access to data

### Important NOTE:

- HBase is not a column-oriented DB in the typical term
- HBase uses an on-disk column storage format
- Provides key-based access to specific cell of data, or a sequential range of cells

# **Column-Oriented and Row-Oriented storage layouts**



Figure: Example of Storage Layouts

#### RDBMS are still relevant

- Persistence layer for frontend application
- Store relational data
- Works well for a limited number of records

# Example: Hush

- Used throughout this course
- URL shortener service

# Let's see the "scalability story" of such a service

Assumption: service must run with a reasonable budget

### Few thousands users: use a LAMP stack

- Normalize data
- Use foreign keys
- Use Indexes



Figure: The Hush Schema expressed as an ERD

### Find all short URLs for a given user

- JOIN user and shorturl tables
- Use the WHERE clause to select the given user

#### Stored Procedures

- Consistently update data from multiple clients
- Underlying DB system guarantees coherency

#### Transactions

- Make sure you can update tables in an atomic fashion
- ▶ RDBMS → Strong Consistency (ACID properties)
- Referential Integrity

# Scaling up to tens of thousands of users

- Increasing pressure on the database server
- Adding more application servers is easy: they share their state on the same central DB
- CPU and I/O start to be a problem on the DB

#### Master-Slave architecture

- Add DB server so that READS can be served in parallel
- Master DB takes all the writes (which are fewer in the Hush application)
- Slaves DB replicate Master DB and serve all reads (but you need a load balancer)

### Scaling up to hundreds of thousands

- READS are still the bottlenecks
- Slave servers begin to fall short in serving clients requests

# Caching

- Add a caching layer, e.g. Memcached or Redis
- ▶ Offload READS to a fast in-memory system
- → You lose consistency guarantees
- Cache invalidation is critical for having DB and Caching layer consistent

### Scaling up more

- WRITES are the bottleneck
- ► The master DB is hit too hard by WRITE load
- Vertical scalability: beef up your master server
- → This becomes costly, as you may also have to replace your RDBMS

#### SQL JOINs becomes a bottleneck

- Schema de-normalization
- Cease using stored procedures, as they become slow and eat up a lot of server CPU
- Materialized views (they speed up READS)
- Drop secondary indexes as they slow down WRITES

- What if your application needs to further scale up?
  - Vertical scalability vs. Horizontal scalability

### Sharding

- Partition your data across multiple databases
  - Essentially you break horizontally your tables and ship them to different servers
  - ★ This is done using fixed boundaries
  - → Re-sharding to achieve load-balancing
- → This is an operational nightmare
- Re-sharding takes a huge toll on I/O resources

#### **Non-Relational DataBases**

# They originally do not support SQL

- ▶ In practice, this is becoming a thin line to make the distinction
- One difference is in the data model
- Another difference is in the consistency model (ACID and transactions are generally sacrificed)

# Consistency models and the CAP Theorem

- Strong: real-time global ordering of operations
- Sequential: global ordering of operations that respects client session ordering
- Causal: causally related changes are seen in the same order
- Eventual: eventual, steady state replicas convergence
- Weak: no guarantee

#### Data model

- How the data is stored: key/value, semi-structured, column-oriented, ...
- How to access data?
- Can the schema evolve over time?

### Storage model

- In-memory or persistent?
- How does this affect your access pattern?

# Consistency model

- Strong or eventual?
- ► This translates in how fast the system handles READS and WRITES [2]

# Physical Model

- Distributed or single machine?
- How does the system scale?

### Read/Write performance

- Top-down approach: understands well the workload!
- Some systems are better for READS, other for WRITES

# Secondary indexes

- Does your workload require them?
- Can your system emulate them?

# Failure Handling

- How does each data store handle server failures?
- Is it able to continue operating in case of failures?
  - ★ This is related to Consistency models and the CAP theorem
- Does the system support "hot-swap"?

# Compression

- Is the compression method pluggable?
- What type of compression?

### Load Balancing

Can the storage system seamlessly balance load?

### Atomic read-modify-write

- Easy in a centralized system, difficult in a distributed one
- Prevent race conditions in multi-threaded or shared-nothing designs
- ▶ Can reduce client-side complexity

### Locking, waits and deadlocks

- Support for multiple client accessing data simultaneously
- Is locking available?
- Is it wait-free, hence deadlock free?

# Impedance Match

"One-size-fits-all" has been long dismissed: need to find the perfect match for your problem.

### **Database (De-)Normalization**

### Schema design at scale

- A good methodology is to apply the DDI principle [8]
  - ★ Denormalization
  - ★ Duplication
  - Intelligent Key design

#### Denormalization

 Duplicate data in more than one table such that at READ time no further aggregation is required

# Next: an example based on Hush

 How to convert a classic relational data model to one that fits HBase



Figure: The Hush Schema expressed as an ERD

- shorturl table: contains the short URL
- click table: contains click tracking, and other statistics, aggregated on a daily basis (essentially, a counter)
- user table: contains user information
- URL table: contains a replica of the page linked to a short URL, including META data and content (this is done for batch analysis purposes)



Figure: The Hush Schema expressed as an ERD

- user table is indexed on the username field, for fast user lookup
- shorturl table is indexed on the short URL (shortId) field, for fast short URL lookup



Figure: The Hush Schema expressed as an ERD

- shorturl and user tables are related through a foreign key relation on the userId
- URL table is related to shorturl table with a foreign key on the URL id
- click table is related to shortur1 table with a foreign key on the short URL id
- NOTE: a web page is stored only once (even if multiple users link to it) but each users maintain separate statistics

| Table: shorturl |                                   |                                                               |
|-----------------|-----------------------------------|---------------------------------------------------------------|
| Row Key:        | shortId                           |                                                               |
| Family:         | data:                             | Columns: url, refShortId, userId, clicks                      |
|                 | stats-daily:<br>[ttl: 7days]      | Columns: YYYYMMDD, YYYYMMDD\x00 <country-code></country-code> |
|                 | stats-weekly:<br>[ttl: 4weeks]    | Columns: YYYYWW, YYYYWW\x00 <country-code></country-code>     |
|                 | stats-monthly:<br>[ttl: 12months] | Columns: YYYYMM, YYYYMM\x00 <country-code></country-code>     |

| Table: url |                          |                                         |
|------------|--------------------------|-----------------------------------------|
| Row Key:   | MD5(url)                 |                                         |
| Family:    | data:<br>[compressed]    | Columns: refShortId, title, description |
|            | content:<br>[compressed] | Columns: raw                            |

| Table: user-shorturl |                     |                    |
|----------------------|---------------------|--------------------|
| Row Key:             | username\x00shortld |                    |
| Family:              | data:               | Columns: timestamp |

| Table: user |          |                                                         |
|-------------|----------|---------------------------------------------------------|
| Row Key:    | username |                                                         |
| Family:     | data:    | Columns: credentials, roles, firstname, lastname, email |

- shorturl table: stores each short URL, usage statistics (various time-ranges in separate column-families with distinct TTL settings)
  - Note the dimensional postfix appended to the time information
- url table: stores the downloaded page, and the extracted details
  - This table uses compression

| Table: shorturl |                                   |                                                               |
|-----------------|-----------------------------------|---------------------------------------------------------------|
| Row Key:        | shortld                           |                                                               |
| Family:         | data:                             | Columns: url, refShortId, userId, clicks                      |
|                 | stats-daily:<br>[ttl: 7days]      | Columns: YYYYMMDD, YYYYMMDD\x00 <country-code></country-code> |
|                 | stats-weekly:<br>[ttl: 4weeks]    | Columns: YYYYWW, YYYYWW\x00 <country-code></country-code>     |
|                 | stats-monthly:<br>[ttl: 12months] | Columns: YYYYMM, YYYYMM\x00 <country-code></country-code>     |

| Table: url |                          |                                         |
|------------|--------------------------|-----------------------------------------|
| Row Key:   | MD5(url)                 |                                         |
| Family:    | data:<br>[compressed]    | Columns: refShortId, title, description |
|            | content:<br>[compressed] | Columns: raw                            |

| Table: user-shorturl |                     |                    |
|----------------------|---------------------|--------------------|
| Row Key:             | username\x00shortId |                    |
| Family:              | data:               | Columns: timestamp |

| Table: user |          |                                                        |
|-------------|----------|--------------------------------------------------------|
| Row Key:    | username |                                                        |
| Family:     | data:    | Columns: σedentials, roles, firstname, lastname, email |

- user-shorturl table: this is a lookup table (basically an index) to find all shortIDs for a given user
  - Note that this table is filled at insert time, it's not automatically generated by HBase

user table: stores user details

### **Example: Hush - RDBMS vs HBase**

#### Same number of tables

- Their meaning is different
- click table has been absorbed by the shorturl table
- statistics are stored with the date as the key, so that they can be accessed sequentially
- ► The user-shorturl table is replacing the foreign key relationship, making user-related lookups faster

#### Normalized vs. De-normalized data

- Wide tables and column-oriented design eliminates JOINs
- Compound keys are essential
- Data partitioning is based on keys, so a proper understanding thereof is essential

# The backdrop: BigTable

- GFS, The Google FileSystem [6]
- Google MapReduce [4]
- ▶ BigTable [3]

### What is BigTable?

- BigTable is a distributed storage system for managing structured data designed to scale to a very large size
- BigTable is a sparse, distributed, persistent multi-dimensional sorted map

#### What is HBase?

- Essentially it's an open-source version of BigTable
- Differences listed in [5]

## Tables, Rows, Columns, and Cells

#### The most basic unit in HBase is a column

- Each column may have multiple versions, with each distinct value contained in a separate cell
- One or more columns form a row, that is addressed uniquely by a row key

#### A table is a collection of rows

All rows are always sorted lexicographically by their row key

```
hbase(main):001:0> scan 'table1'
ROW
                             COLUMN+CELL
row-1
                              column=cf1:, timestamp=1297073325971 ...
row-10
                              column=cf1:, timestamp=1297073337383 ...
                              column=cf1:, timestamp=1297073340493 ...
row-11
row-2
                              column=cf1:, timestamp=1297073329851 ...
                              column=cf1:, timestamp=1297073344482 ...
row-22
                              column=cf1:, timestamp=1297073333504 ...
row-3
                              column=cf1:, timestamp=1297073349875 ...
row-abc
7 row(s) in 0.1100 seconds
```

### Tables, Rows, Columns, and Cells

### Lexicographical ordering of row keys

- Keys are compared on a binary level, byte by byte, from left to right
- This can be thought of as a primary index on the row key!
- Row keys are always unique
- Row keys can be any arbitrary array of bytes

#### Columns

- Rows are composed of columns
- Can have millions of columns
- Can be compressed or tagged to stay in memory

### Tables, Rows, Columns, and Cells

#### Column Families

- Columns are grouped into column families
- → Semantical boundaries between data
- ► Column families and columns stored together in the same low-level storage file, called an *HFile*
- Defined when table is created
- Should not be changed too often
- The number of column families should be reasonable [WHY?]
- Column family name composed by printable characters

#### References to columns

- Column "name" is called qualifier, and can be any arbitrary number of bytes
- ► Reference: family:qualifier (also called the column key)

### Tables, Rows, Columns, and Cells

#### A note on the NULL value

- In RDBMS NULL cells need to be set and occupy space
- ▶ In HBase, NULL cells or columns are simply not stored

#### A cell

- Every column value, or cell, is timestamped (implicitly or explicitly)
  - This can be used to save multiple versions of a value that changes over time
  - ★ Versions are stored in decreasing timestamp, most recent first
- Cell versions can be constrained by predicate deletions
  - ★ Keep only values from the last week

### Tables, Rows, Columns, and Cells

#### Access to data

- ► (Table, RowKey, Family, Column, Timestamp) → Value
- SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>>
- The first SortedMap is the table, containing a List of column families
- ► The families contain another SortedMap, representing columns and a List of value, timestamp tuples

### A note on consistency:

- ► Row data access is **atomic** and includes any number of columns
- There is no further guarantee or transactional feature spanning multiple rows
- → HBase is strongly consistent

## **Automatic Sharding**

## Region

- This is the basic unit of scalability and load balancing
- Regions are contiguous ranges of rows "stored together" → they are the equivalent of range partitions in sharded RDBMS
- Regions are dynamically split by the system when they become too large
- Regions can also be merged to reduce the number of storage files

## Regions in practice

- Initially, there is one region
- System monitors region size: if a threshold is attained, SPLIT
  - ★ Regions are split in two at the middle key
  - ★ This creates roughly two equivalent (in size) regions

# **Automatic Sharding**

### Region Servers

- Each region is served by exactly one Region Server
- Region servers can serve multiple regions
- The number of region servers and their sizes depend on the capability of a single region server

### Server failures

- Regions allow for fast recovery upon failure
- ► Fine-grained Load Balancing is also achieved using regions as they can be easily moved across servers

## Storage API

## No support for SQL

- CRUD operations using a standard API, available for many "clients"
- Data access is not declarative but imperative

### Scan API

- Allows for fast iteration over ranges of rows
- Allows to limit the number and which column are returned
- Allows to control the version number of each cell

# Read-modify-write API

- HBase supports single-row transactions
- Atomic read-modify-write on data stored in a single row key

## Storage API

#### Counters

- Values can be interpreted as counters and updated atomically
- Can be read and modified in one operation
- → Implement global, strongly consistent, sequential counters

### Coprocessors

- These are equivalent to stored-procedures in RDBMS
- Allow to push user code in the address space of the server
- Access to server local data
- Implement lightweight batch jobs, data pre-processing, data summarization

## HBase implementation

### Data Storage

- Store files are called HFiles
- Persistent and ordered immutable maps from key to value
- Internally implemented as sequences of blocks with an index at the end
- ▶ Index is loaded when the HFile is opened and kept in memory

### Data lookups

- Since HFiles have a block index, lookup can be done with a single disk seek
- First, the block possibly containing a given lookup key is determined with a binary search in the in-memory index
- Then a block read is performed to find the actual key

## Underlying file system

Many are supported, usually HBase deployed on top of HDFS

# HBase implementation

# WRITE operation

- First, data is written to a commit log, called WAL (write-ahead-log)
- Then data is moved into memory, in a structure called memstore
- ► When the size of the memstore exceeds a given threshold it is flushed to an HFile to disk

## • How can HBase write, while serving READS and WRITES?

- Rolling mechanism
  - new/empty slots in the memstore take the updates
  - ★ old/full slots are flushed to disk
- Note that data in memstore is sorted by keys, matching what happens in the HFiles

## Data Locality

- Achieved by the system looking up for server hostnames
- Achieved through intelligent key design

## HBase implementation

## Deleting data

- Since HFiles are immutable, how can we delete data?
- ► A delete marker (also known as *tombstone marker*) is written to indicate that a given key is deleted
- During the read process, data marked as deleted is skipped
- Compactions (see next slides) finalize the deletion process

## READ operation

- Merge of what is stored in the memstores (data that is not on disk) and in the HFiles
- The WAL is never used in the READ operation
- Several API calls to read, scan data

## HBase implementation

### Compactions

- Flushing data from memstores to disk implies the creation of new HFiles each time
- → We end up with many (possibly small) files
- → We need to do housekeeping [WHY?]

### Minor Compaction

- Rewrites small HFiles into fewer, larger HFiles
- This is done using an n-way merge<sup>1</sup>

### Major Compaction

- Rewrites all files within a column family or a region in a new one
- Drop deleted data
- Perform predicated deletion (e.g. delete old data)

<sup>&</sup>lt;sup>1</sup>What is MergeSort?

## HBase: a glance at the architecture



### Master node: HMaster

- Assigns regions to region servers using ZooKeeper
- Handles load balancing
- Not part of the data path
- Holds metadata and schema

### Region Servers

- ► Handle READS and WRITES
- Handle region splitting

### Architecture

#### Seek vs. Transfer

### Fundamental difference between RDBMS and alternatives

- B+Trees
- Log-Structured Merge Trees

#### Seek vs. Transfer

- Random access to individual cells
- Sequential access to data

#### **B+ Trees**

### Dynamic, multi-level indexes

- Efficient insertion, lookup and deletion
- Q: What's the difference between a B+ Tree and a Hash Table?
- ► Frequent updates may imbalance the trees → Tree optimization and re-organization is required (which is a costly operation)

### Bounds on page size

- Number of keys in each branch
- Larger fanout compared to binary trees
- Lower number of I/O operations to find a specific key

### Support for range scans

- Leaves are linked and represent an in-order list of all keys
- No costly tree-traversal algorithms required

#### LSM-Trees

#### Data flow

- Incoming data is first stored in a logfile, sequentially
- Once the log has the modification saved, data is pushed in memory
  - ★ In-memory store holds most recent updates for fast lookup
- When memory is "full", data is flushed in a store file to disk, as a sorted list of key → record pair
- At this point, the log file can be thrown away

### How store files are arranged

- Similar idea of a B+ Tree, but optimized for sequential disk access
- All nodes of the tree try to be filled up completely
- Updates are done in a rolling merge fashion
  - The system packs existing on-disk multi-page blocks with in-memory data until the block reaches full capacity

### LSM-Trees

### Clean-up process

- As flushes take place over time, a lot of store files are created
- Background process aggregates files into larger ones to limit disk seeks
- $\blacktriangleright$  All store files are always sorted by key  $\rightarrow$  no re-ordering required to fit new keys in

## Data Lookup

- Lookups are done in a merging fashion
  - ★ First lookup in the in-memory store
  - ★ If miss, the lookup in the on-disk store

## Deleting data

- Use a delete marker
- When pages are re-written, deleted markers and keys are eventually dropped
- Predicate deletion happens here

### B+ Tree vs. LSM-Trees

## B+ Tree [1]

- Work well when there are not so many updates
- The more and the faster you insert data at random locations the faster pages get fragmented
- Updates and deletes are done at disk seek rates, rather than transfer rates

# LSM-Tree [7]

- Work at disk transfer rate and scale better to huge amounts of data
- Guarantee a consistent insert rate
  - They transform random into sequential writes
- Reads are independent from writes
- Optimized data layout which offers predictable boundaries on disk seeks

#### Overview



Figure: Overview of how HBase handles files in the filesystem

### Overview

## HBase handles two kinds of file types

- One is used for the WAL
- One is used for the actual data storage

#### Who does what

- ▶ HMaster
  - ★ Low-level operations
  - \* Assigns region servers to key space
  - \* Keeps metadata
  - Talks to ZooKeeper
- ► HRegionServer
  - ★ Handles the WAL and HFiles
  - ★ These files are divided in to blocks and stored into HDFS
  - ★ Block size is a parameter

### Overview

#### General communication flow

- A client contacts ZooKeeper when trying to access a particular row
- Recovers from ZooKeeper the server name that host the -ROOTregion
- Using the -ROOT- information the client retrieves the server name that host the .META. table region
  - ★ The .META. table region contains the row key in question
- ► Contact the reported .META. server and retrieve the server name that has the region containing the row key in question

# Caching

 Generally, lookup procedures involve caching row key locations for faster subsequent lookups

#### Overview

### Important Java Classes

- HRegionServer handles one or more regions and create the corresponding HRegion object
- When an HRegion object is opened it creates a Store instance for each HColumnFamily
- Each Store instance can have:
  - ★ One or more StoreFile instances
  - ★ A MemStore instance
- HRegionServer has a shared HLog instance

### Write Path

### External client insert data in HBase

- ▶ Issues an HTable.put (Put) request to HRegionServer
- ► HRegionServer hands the request to the HRegion instance that matches the request [Q: What is the matching criteria?]

### How the system reacts to a write request

- Write data to the WAL, represented by the HLog class
  - ★ The WAL stores HLogKey instances in a HDFS SequenceFile
  - ★ These keys contain a sequence number and the actual data
  - In case of failure, this data can be used to replay not-yet-persisted data
- Copy data in the MemStore
  - ★ Check if MemStore size has reached a threshold
  - ★ If yes, launch a flush request
  - ★ Launch a thread in the HRegionServer and flush MemStore data to an HFile

### **HBase Files**

- What and where are HBase files (including WAL, HFile,...) stored?
  - HBase has a root directory set to "/hbase" in HDFS
  - Files can be divided into:
    - ★ Those that reside under the HBase root directory
    - ★ Those that are in the per-table directories
- /hbase
  - ▶ .logs
  - ▶ .oldlogs
  - ▶ .hbase.id
  - .hbase.version
  - ▶ /example-table

### **HBase Files**

- colfam1/
  - ▶ "....column-key1..."

### HBase: Root-level files

- logs directory
  - WAL files handled by HLog instances
  - Contains a subdir for each HRegionServer
  - ▶ Each subdir contains many HLog files
  - All regions from that HRegionServer share the same HLog files
- .oldlogs directory
  - When data is persisted to disk (from Memstores) log files are decommissioned to the .oldlogs dir
- hbase.id and hbase.version
  - Represent the unique ID of the cluster and the file format version

### HBase: Table-level files

- Every table has its own directory
  - tableinfo: stores the serialized HTableDescriptor
    - ★ This include the table and column family schema
  - .tmp directory
    - Contains temporary data

## HBase: Region-level files

- Inside each table dir, there is a separate dir for every region in the table
  - The name of each of these dirs is the MD5 hash of a region name
    - ★ Inside each region there is a directory for each column family
    - ★ Each column family directory holds the actual data files, namely **HFiles**
    - Their name is just an arbitrary random number
  - Each region directory also has a .regioninfo file
    - ★ Contains the serialized information of the HRegionInfo instance

### Split Files

- Once the region needs to be split, a splits directory is created
  - This is used to stage two daughter regions
  - If split is successful, daughter regions are moved up to the table directory

### HBase: A note on region splits

- Splits triggered by store file (region) size
  - Region is split in two
  - Region is closed to new requests
  - .META. is updated
- Daughter regions initially reside on the same server
  - Both daughters are compacted
  - Parent is cleaned up
  - .META. is updated
- Master schedules new regions to be moved off to other servers

### **HBase: Compaction**

- Process that takes care of re-organizing store files
  - Essentially to conform to underlying filesystem requirements
  - Compaction check when memstore is flushed
- Minor and Major compactions
  - Always from the oldest to the newest files
  - Avoid all servers to perform compaction concurrently



Figure: A set of store files showing the minimum compaction threshold

#### HFile format

- Store files are implemented by the HFile class
  - Efficient data storage is the goal
- HFiles consist of a variable number of blocks
  - Two fixed blocks: info and trailer
  - index block: records the offsets of the data and meta blocks
  - ▶ Block size: large → sequential access; small → random access



Figure: The HFile structure

### HFile size and HDFS block size

- HBase uses any underlying filesystem
- In case HDFS is used
  - HDFS block size is generally 64MB
  - ► This is 1,024 times the default HFile block size (64 KB)
  - → There is no correlation between HDFS block and HFile sizes

### The KeyValue Format

- Each KeyValue in the HFile is a low-level byte array
  - It allows for zero-copy access to the data

#### Format

- Fixed-length preambule indicates the length of the key and value
  - This is useful to offset into the array to get direct access to the value, ignoring the key
- Key format
  - Contains row key, column family name, column qualifier...
  - [TIP]: consider small keys to avoid overhead when storing small data



WAI

## The Write-Ahead Log

## Main tool to ensure resiliency to failures

- Region servers keep data in-memory until enough is collected to warrant a flush
- What if the server crashes or power is lost?

### WAL is a common approach to address fault-tolerance

- Every data update is first written to a log
- Log is persisted (and replicated, since it resides on HDFS)
- Only when log is written, client is notified a successful operation on data

WAL

## The Write-Ahead Log



Figure: The write path of HBase

### WAL records all changes to data

- Can be replayed in case of server failure
- If write to WAL fails, the whole operations has to fail

WAI

## The Write-Ahead Log



#### Write Path

- Client modifies data (put (), delete (), increment ())
- Modifications are wrapped into a KeyValue object
- Objects are batched to the corresponding HRegionServer
- Objects are routed to the corresponding HRegion
- ▶ Objects are written to WAL and in the MemStore

#### **Read Path**

## HBase uses multiple store files per column family

- ► These can be either in-memory and/or materialized on disk
- Compactions and clean-up background processes take care of store files maintenance
- Store files are immutable, so deletion is handled in a special way

### The anatomy of a get command

- HBase uses a QueryMatcher in combination with a ColumnTracker
- First, an exclusion check is performed to filter skip files (and eventually tombstone labelled data)
- Scanning data is implemented by a RegionScanner class which retrieves a StoreScanner
- StoreScanner includes both the MemStore and HFiles
- Read/Scans happen in the same order as data is saved

# **Region Lookups**

- How does a client find the region server hosting a specific row key range?
  - ► HBase uses two special catalog tables, -ROOT- and .META.
  - ► The -ROOT- table is used to refer to all regions in the .META. table
- Three-level B+ Tree -like operation
  - Level 1: a node stored in ZooKeeper, containing the location (region server) of the -ROOT- table
  - Level 2: Lookup in the -ROOT- table to find a matching meta region
  - ▶ Level 3: Retrieve the table region from the .META. table

## **Region Lookups**

# • Where to send requests when looking for a specific row key?

This information is cached, but the first time or when the cache is stale or when there is a miss due to compaction, the following procedure applies

### Recursive discovery process

- ► Ask the region server hosting the matching .META. table to retrieve the row key address
- ▶ If the information is invalid, it backs out: asks the ¬ROOT table where the relevant .META. region is
- ▶ If this fails, ask ZooKeeper where the -ROOT- table is

## **Region Lookups**



## Key Design

- HBase has two fundamental key structures
  - Row key
  - Column key
- Both can be used to convey meaning
  - Because they store particularly meaningful data
  - Because their sorting order is important

#### Logical vs. on-disk layout of a table

- Main unit of separation within a table is the column family
- The actual columns (as opposed to other column-oriented DBs) are not used to separate data
- Although cells are stored logically in a table format, rows are stored as linear sets of the cells
- Cells contain all the vital information inside them





#### Logical Layout (Top-Left)

- Table consists of rows and columns
- Columns are the combination of a column family name and a column qualifier
- $\rightarrow$  <cf name: qualifier> is the column key
- Rows have a row key to address all columns of a single logical row



#### Folding the Logical Layout (Top-Right)

- The cells of each row are stored one after the other
- Each column family are stored separately
- → On disk all cells of one family reside on an individual StoreFile
- HBase does not store unset cells
- → Row and column key is required to address every cell

#### Versioning

- Multiple versions of the same cell stored consecutively, together with the timestamp
- Cells are sorted in descending order of timestamp
- → Newest value first

#### KeyValue object

- The entire cell, with all the structural information, is a KeyValue object
- ► Contains: row key, <column family: qualifier> → column key, timestamp and value
- Sorted by row key first, then by column key



## Physical Layout (Lower-Right)

- Select data by row key
  - ★ This reduces the amount of data to scan for a row or a range of rows
- Select data by row key and column key
  - This focuses the system on an individual storage file
- Select data by column qualifier
  - Exact lookups, including filters to omit useless data

#### Summary of key lookup properties



#### Tall-Narrow vs. Flat-Wide Tables

#### Tall-Narrow Tables

- Few columns
- Many rows

#### Flat-Wide Tables

- Many columns
- Few rows

#### Given the query granularity explained before

- → Store parts of the cell data in the row key
- Furthermore, HBase splits at row boundaries
- → It is recommended to go for Tall-Narrow Tables

#### Tall-Narrow vs. Flat-Wide Tables

#### Example: email data - version 1

- You have all emails of a user in a single row (e.g. userID is the row key)
- There will be some outliers with orders of magnitude more emails than others
- → A single row could outgrow the maximum file/region size and work against split facility

#### Example: email data - version 2

- Each email of a user is stored in a separate row (e.g. userID:messageID is the row key)
- On disk this makes no difference (see the disk layout figure)
  - If the messageID is in the column qualifier or the row key, each cell still contains a single email message
- → The table can be split easily and the query granularity is more fine-grained

## **Partial Key Scans**

## Partial Key Scans reinforce the concept of Tall-Narrow Tables

- From the email example: assume you have a separate row per message, across all users
- ▶ If you don't have an exact combination of user and message ID you cannot access a particular message

#### Partial Key Scan solves the problems

- Specify a start and end key
- The start key is set to the exact userID only, with the end key set at userID+1
- → This triggers the internal lexicographic comparison mechanism
  - Since the table does not have an exact match, it positions the scan at: <userID>:<lowest-messageID>
  - ► The scan will then iterate over all the messages of an exact user, parse the row key and get the messageID

## **Partial Key Scans**

- Composite keys and atomicity
  - Following the email example: a single user inbox now spans many rows
  - It is no longer possible to modify a single user inbox in one atomic operation

 If this is acceptable or not, depends on the application at hand

#### Stream processing of events

- E.g. data coming from a sensor, stock exchange, monitoring system ...
- $\blacktriangleright$  Such data is a time series  $\to$  The row key represents the event time
- → HBase will store all rows sorted in a distinct range, namely regions with specific start and stop keys

# Sequential monotonously increasing nature of time series data

- All incoming data is written to the same region (and hence the same server)
- → Regions become HOT!
- Performance of the whole cluster is bound to that of a single machine

## Solution to achieve load balancing: Salting

- We want data to be spread over all region servers
- This can be done, e.g., by prefixing the row key with a non-sequential number

## Salting example

```
byte prefix = (byte) (Long.hashCode(timestamp) % <number of
region servers>);
byte[] rowkey = Bytes.add(Bytes.toBytes(prefix),
Bytes.toBytes(timestamp));
```

- Data access needs to be fanned out across many servers
- Use multiple threads to read for I/O performance: e.g. use the Map phase of MapReduce

## Solution to achieve load balancing: Field swap/promotion

- Move the timestamp field of the row key or prefix it with another field
  - ★ If you already have a composite row key, simply swap elements
  - ★ Otherwise if you only have the timestamp, you need to promote another field
- The sequential, monotonously increasing timestamp is moved to a secondary position in the row key

- You can only access data (especially time ranges) for a given swapped or promoted field (but this could be a feature)
- + You achieve load balancing

- Solution to achieve load balancing: Randomization
  - byte[] rowkey = MD5(timestamp)
  - This gives you a random distribution of the row key across all available region servers

- Less than ideal for range scans
- Since you can re-hash the timestamp, this solution is good for random access

## Summary



## Cassandra

#### Cassandra: Overview (1)

#### Distributed key value store

- Stores large amounts of data
- Linear scalability, high availability, no SPOF

#### Tunable consistency

- Often eventually consistent, hence in AP
- Can guarantee strong consistency, shifting it to CP

#### Column-oriented data model

One key per row

#### Cassandra: Overview (2)

#### Combines techniques from Amazon Dynamo and HBase

- HBase data model
  - One key per row
  - ★ Columns, column families
- Dynamo-like architecture
  - ★ Partitioning, placement (using consistent hashing)
  - \* Replication, gossip-based membership, anti-entropy

#### Some key differences

Many of them recently added

## **Data Partitioning**

- Uses consistent hashing
  - Random Partitioner
  - ByteOrdered Partitioner

- Partitioning strategy can be changed on-the-fly
  - All data needs to be reshuffled
  - Needs to be chosen carefully

#### **Random Partitioner**

- Hash-based identifiers for keys (data) and storage nodes
  - Supports virtual nodes
- Consistent hashing + load monitoring per ring
  - Lightly loaded nodes move on the ring to alleviate heavily loaded ones
  - Make deterministic choices about load balancing, e.g., divides the hash-ring evenly w.r.t. to number of nodes
- Node addition / suppression
  - Requires re-balancing the cluster if no virtual nodes

## **ByteOrdered Partitioner**

#### Supports range queries

- Ensures row keys to be stored in sorted order
- Very different from consistent hashing

#### Key partitioning

- There is still a ring
- Keys are ordered lexicographically along the ring by their value<sup>2</sup>

#### Precautions

- Might be bad for load balancing
- Range scan can be obtained by using column family indexes

<sup>&</sup>lt;sup>2</sup>The key value is different from the value associated to a key

#### **Data Replication**

#### Asynchronous replication

- ▶ Walk down the ring and choose N-1 successor nodes as replicas
- Builds a preference list

#### Replication strategies

- Simple Strategy:
  - ★ Main replica = node responsible for a key
  - ★ Additional N 1 replicas placed on successor nodes, clockwise in the ring, w/o rack or datacenter information
- NetworkTopology Strategy
  - Allows better performance when knowledge of the datacenter layout is available
  - Reads served locally
  - ★ Replica placement is independent in each datacenter
  - \* Rack-aware placement like in HDFS

#### **Data Replication Strategies: Implications**

#### Focus on the NetworkTopology strategy

- Requires Snitches<sup>3</sup> and optionally Zookeeper
- Mechanism to discover the underlying cluster configuration

#### Potential problems

- Unbalanced load across datacenter
- Consider datacenter-specific key rings

<sup>&</sup>lt;sup>3</sup>We don't cover the details here: refer to the official documentation or the additional slides provided in the lecture notes.

#### **Data Model**





## **Data Model: Special Columns**

#### Counter columns

- Store counters
- Timestamp information automatically generated (use NTP!)

#### Expiring columns

- Specify a TTL value after which, data is removed
- Tombstone marker, as for HBase

#### Super columns

- Additional nesting levels
- Group multiple columns on a common lookup value
  - E.g.: "home address" super column, grouping "street", "city", "ZIP" columns
- No timestamps

## **Anatomy of Read/Write Operations**

#### Request routing

- Proxy-based mechanism (coordinator, in Cassandra terms)
- Proxy route request to any replica

#### Proxy nodes

- Handle interaction between a client and Cassandra
- First, determine replicas for a given key
- ZooKeeper may be useful here

## Write Requests (1)

#### Proxy nodes forward write requests

- Request routed to all N replicas
- ▶ This is true, regardless of consistency configuration



#### Write Requests (2)

- Write request: similar mechanism to HBase
  - Write to the commit log
  - Write to in-memory data structure (memtable)
  - → Write is considered successful now
    - Writes are batched and periodically flushed to a persistent data structure called a sorted string table (SSTable)



## Write Requests (3)

#### Memtables

- Organized in sorted order by row key
- Flushed to SSTables sequentially, no random seeks

#### SSTables

- Immutable (no rewrite after flushing)
- A single row can be stored in many SSTables
- → At read time, rows must be combined from all SSTables (on disk or from memtables) to produce the requested data
  - Use Bloom Filters to optimize the process

#### **Bloom Filters (1)**

#### Bloom Filters in a nutshell

- Used to check for set membership
- ▶ *k* hash functions hashing into the same *m*-bit space



#### **Bloom Filters (2)**

#### One bloom filter per SSTable

- Used in combining from row data from multiple "sources"
- Check if a requested row key exists in the SSTables, before doing any disk seeks



## Read Requests (1)

#### Similar mechanism to Dynamo

- Proxy initiates a read repair (a.k.a. writeback) if it detects inconsistent replicas
- This is done in the background, after the read has been served to the client

#### The number of replicas contacted upon a read request depend on the consistency level

- Proxy routes the requests to the closest replica
- Proxy routes requests to all replicas and wait for a quorum

#### Read Requests (2)

## When a node receives a read request

- Row must be combined from all SSTables on that node
- Data not yet flushed to SSTables, i.e. stored in memtables, must be considered as well
- → This produces the requested data

#### Key techniques to achieve high performance

- Row-level column index
- Bloom filters

## Cutting read latency

- Combining data before serving it can be slow
- Read cache (in memory)
- Advanced topics: cache invalidation, consistency...

## Consistency

## Consistency in Cassandra is tunable

- Hence is availability, as per CAP
- Read and Write consistency levels can be independent

#### Given N replicas in the preference list

- Write request: all N replicas are contacted
  - ★ Ends when W respond (i.e. acknowledgment)
- Read request: only R replicas are contacted
  - ★ This is optimistic, may need to contact all N replicas

## Choices of W and R define consistency level

- Dynamo: W + R > N (recall extended preference list + sloppy quorum)
- ▶ Cassandra: W + R > N not mandatory

## **Consistency Levels: ONE**

- $\bullet$  W = 1
  - One replica must write to commit log and memtable
- - Returns a response from the closest replica (as determined by the snitch)
  - By default, a read repair runs in the background to make the other replicas consistent
- This is true regardless of the replication factor N

## Consistency Levels: QUORUM

#### QUORUM

- W = floor(N/2 + 1): a majority
  - ★ A write is written to the commit log and memtable on a quorum of W replicas
- ► R = floor(N/2 + 1): a majority
  - Read returns the record with the most recent timestamp, once a quorum of size R has responded
  - ★ Timestamp = application timestamp

#### LOCAL\_QUORUM

Restricted to a local datacenter

#### EACH QUORUM

QUORUM invariant must be satisfied across datacenters

#### **Consistency Levels: ALL, ANY**

#### ALL

- W = N: all replica nodes must acknowledge
- ► *R* = *N*: returns the record with the most recent timestamp across all replicas

#### ANY

- Additional consistency for writes
- Allow writes to complete even if all N replicas are down
- Hinted handoff mechanism

## **Lightweight Transactions**

#### Simple mechanism at the single key level

- Single object transactions
- No support for multi-key transactions
- "Consistency" level: SERIAL

#### Compare and Swap (CAS) mechanism

- Enhancements available in Cassandra 2.0
- Paxos based mechanism
- Address the problem of solving the agreement for 2 processes, that requires using locks

#### References I

- [1] B+ tree.
  http://en.wikipedia.org/wiki/B%2B\_tree.
- [2] Eric Brewer. Lessons from giant-scale services. In In IEEE Internet Computing, 2001.
- [3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for structured data.

In Proc. od USENIX OSDI, 2006.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In Proc. of ACM OSDI, 2004.

#### References II

- [5] Lars George.HBase, The Definitive Guide.O'Reilly, 2011.
- [6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In Proc. of ACM OSDI, 2003.
- [7] Patrick O'Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O'Neil.
  - The log-structured merge-tree (lsm-tree). 1996.

#### References III

## [8] D. Salmen.

Cloud data structure diagramming techniques and design patterns.

```
https://www.data-tactics-corp.com/index.php/component/jdownloads/finish/22-white-papers/68-cloud-data-structure-diagramming, 2009.
```