[Week 7] Quiz 2

Started: Mar 1 at 1:11pm

Quiz Instructions

This Quiz is in a multiple-choice or fill-in-the-blank format.

You only have one attempt for this guiz.

Please, take your time to answer the questions.

iii

Question 14 pts

Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and the vector $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

The size of \boldsymbol{A} is

Χ

, and the size of \boldsymbol{b} is

Χ

1

The determinant of the matrix $m{A}$ is

Consequently, A is called

invertible or non-sir

We can multiply A and b, because their

A's column and b's

dimensions coincide.

The resulting product is a

of size

We can also compute $b^T A$, and the result will be a matrix

of size

Х

2

Question 2 2 pts

Consider the system of algebraic equations A x=b, where $A=\begin{bmatrix}1&1\\0&1\end{bmatrix}$ and $b=\begin{bmatrix}1\\1\end{bmatrix}$.

Check all that apply.

The system has infinitely many solutions

The system has a unique solution, i.e., the null vector

ightharpoonup The system has a unique solution, i.e., $A^{-1}b$

_

The system has no solution

Since the matrix is non-singular, the system has a unique solution

Since the matrix is singular, the system has no solution

Since the matrix is singular, the system has a unique solution

Since the matrix is non-singular, the system has infinitely many solutions

Since the matrix is non-singular, the system has no solution

Question 3 5 pts

Consider the system of algebraic equations $A\,x=b$, where $A=egin{bmatrix}1&2\\rac14&rac12\end{bmatrix}$ and the vectors

$$b_1 = egin{bmatrix} 1 \ 1 \end{bmatrix}$$
 and $b_2 = egin{bmatrix} 4 \ 1 \end{bmatrix}$.

Check all that apply.

A is non-singular

✓

A is singular

V

The determination of A is zero

The determinant of A is nonzero

 ${\it Ax}={\it b}_1$ has a unique solution

~

 $Ax=b_1$ has no solution

 $Ax=b_1$ has infinitely many solutions

 $\overset{-}{A}x=b_2$ has a unique solution

 $\overset{-}{A}x=b_2$ has no solution

~

 $Ax=b_2$ has infinitely many solutions

✓

Ax=0 has a unique solution

4

Ax=0 has no solution

Ш

Ax=0 has infinitely many solutions

::

Question 4 5 pts

Consider the matrix $oldsymbol{A} = egin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{3} & \mathbf{2} \end{bmatrix}$.

~

The eigenvalues of A are the main diagonal entries for this particular matrix

The eigenvalues of A are the main diagonal entries for any matrix

✓

The eigenvalues of A are 1 and 2

The eigenvalues of A are 1 and 3

The eigenvectors of A are (-1,3) and (0,-1)

The eigenvectors of A are (1,3) and (0,1)

The eigenvectors of A are (-1,3) and (1,0)

The eigenvectors of A are (-1,3) and (0,1)

The eigenvectors of A are (-1/3,1) and (0,15)

i

The eigenvectors of A are (0,0) and (0,1)

The eigenvectors of A are vectors on the lines 3x+y=0 and x=0

Th

The eigenvectors of A are vectors on the lines 3x+2y=0 and x=0

No answer text provided.

::

Question 5 9 pts

Given the matrix
$$oldsymbol{A} = egin{bmatrix} oldsymbol{3} & oldsymbol{1} \ oldsymbol{1} & oldsymbol{3} \end{bmatrix}$$
 ,

the eigenvalues are

eig1: 2, eig2: 4

(smaller eigenvalue first and use notation: eig1,eig2)

The eigenvectors are respectively

(keep the order and use following notation:

(v1,v2); (w1,w2))

Quiz saved at 1:36pm

Submit Quiz