Clustering Algorithms

Agenda

- Evaluating clustering performance
- ◆ Choosing the right algorithm

Warm Up

Consider the following questions:

- Intuitively, what characteristics do well-formed clusters exhibit?
- What are some common considerations that come up when clustering? (Think back to the advantages and disadvantages sections of previous lectures.)

UP NEXT

Evaluating Clustering Performance

Overview

Evaluating the performance of clustering algorithms is very difficult!

- ◆ No universal, unambiguous definition of what a "cluster" is
- Generally speaking, no labels to guide evaluation (*internal evaluation*)
- A few popular internal evaluation techniques include: elbow plots, silhouette scores, and Davies-Bouldin scores
- If labels are available (external evaluation), a wide range of evaluation criteria are available

Elbow Method

A heuristic that examines how an evaluation metric of interest changes as a function of the number of clusters Most common metric is within-cluster SSE, sometimes called *inertia*

- Goal is to find the "elbow", at which point additional clusters do not explain very much additional variance in the data
- "Elbow" is not a precisely defined term, and is consequently very ambiguous and open to interpretation
- Only appropriate for centroid-based clustering algorithms

A synthetic dataset and the corresponding elbow plot for k-means.

Silhouette Score

A heuristic that compares cluster cohesion and cluster separation

- More precisely, it compares the mean intra-cluster distance to the smallest mean extra-cluster distance
- ◆ Ranges from -1 (worst) to +1 (best)
- High silhouette values indicate that the points in each cluster are generally close to each other and far from the points in other clusters
- ◆ Can plot silhouette scores for individual samples; good clustering will show high values for most points within each cluster
- Assumes that "good" = "compact", which is not always applicable or appropriate

A synthetic dataset and the corresponding silhouette score plot for k-means.

Davies Bouldin Score

- An alternative to the silhouette score that also compares cluster cohesion and separation
- Unlike silhouette score, examines distances from points to centroids (instead of to each other) and distances between centroids (instead of to nearest cluster)
- Exact formula:

$$DB = \frac{1}{n} \sum_{i=1}^{n} \max_{i \neq j} \frac{S_i + S_j}{D_{i,j}}$$

- Minimum score is 0 (best)
- ◆ Low scores indicate that the points in each cluster are generally close to their respective centroids and that cluster centroids are relatively far apart
- Like silhouette scores, assumes that "good" = "compact", which is not always applicable or appropriate

A synthetic dataset and the corresponding davies bouldin score plot for k-means.

External Evaluation

- ◆ Although we usually do not have labeled data when clustering, there may be scenarios in which do have labels. Below are some common metrics for labeled data:
- Purity: the extent to which clusters contain a single class
- Rand Index: consider all pairs of samples as having a TP, FP, FN, or TN outcome (i.e. if a pair of observations have the same label and are assigned to the same cluster → TP; if they have different labels and are assigned to different cluster → TN, and so on). The Rand Index is simply the proportion of correct decisions:

$$\frac{TP + TN}{TP + FP + FN + TN}$$

External Evaluation

- Many other similarity measures that should be familiar from classification and/or similarity contexts, such as F- score, Jaccard similarity, etc.
- Information-theoretic measures such as Mutual Information, which quantifies the mutual dependence or information between two random variables

$$\frac{TP + TN}{TP + FP + FN + TN}$$

UP NEXT

Clustering Evaluation from a Business Perspective

Clustering: A Business Perspective

- The objective of clustering is to group similar things together so that we can more easily make decisions about them.
- Clustering allows us to make decisions at the group level instead of having to make decisions about every single entity individually.
- The purer a cluster (i.e. the less overlap there is with other clusters), the easier it is to decide what to do with it.

Clustering: A Business Perspective

- In business, it is often the case that we don't have labels for our clusters to begin with.
- In such cases, it is useful to summarize the data after clustering has been performed and determine appropriate labels for each cluster.

	Count	SeniorCitizen	Partner	Dependents	tenure	Gender_Female	Gender_Male
Non-Senior Females	2915	0.000000	0.565695	0.336535	32.226415	1	0
Senior Females	568	1.000000	0.767606	0.073944	32.621479	1	0
Senior Males	574	1.000000	0.766551	0.085366	33.963415	0	1
High Tenure Males with Dependents	1027	0.000000	0.483934	1.000000	38.440117	0	1
Low Tenure Males with Partners & no Dependents	1948	0.000000	0.588296	0.000000	29.028747	0	1

UP NEXT

Choosing A Clustering Algorithm

Overview

There are several aspects of our problem we must consider when choosing the "best" clustering algorithm

- ◆ **Size of data:** many algorithms are asymptotically O(n²) and do not scale well with large datasets
- ◆ **Similarity measure:** is my data amenable to a proper distance metric (e.g. L-norms), or do I need to use looser similarity measures due to the presence of categorical data (or other considerations)?
- Uncertainty: do I care about how confident the clustering assignments are?
- Prediction: do we need to make predictions on new data?
- ◆ **Cluster shapes**: do my clusters have similar and simple shapes (e.g. all roughly spherical), or could their shapes be highly irregular and variable from cluster to cluster?
- ◆ **Number of clusters**: do I know this upfront or not?

Size & Type Of Data

For increasingly large datasets:

For arbitrary similarity measures (often used with categorical or mixed data):

Uncertainty & Predicting New Points

If you need to quantify confidence in cluster assignment:

If you need to predict cluster assignments of new points:

Cluster Shapes

If you expect your cluster shapes to be irregular and/or variable:

If you don't know how many clusters are present upfront:

Summary

- Evaluating the performance of clustering algorithms without labeled data (internal evaluation) is very difficult, and the commonly used methods for doing so are fairly constrained
- If labels are provided, there are many evaluation metrics, some of which may look familiar from classification settings
- There are many factors to consider when choosing an algorithm, such as data size, feature types, cluster shapes, etc.

EXERCISE

- 1. <u>Jupyter notebook</u>
- 2. Data set: Financial well-being survey results
- 3. Isolate the "score" subset of questions
- 4. Create an elbow plot using K-Means clustering and use it to determine an acceptable range of values for k
- 5. Create a silhouette plot using K-Means and identify the optimal value for k

Thank You