

Volume contents

Volume 98 (1997)

Evaluating forest growth models

J.K. Vanclay (Jakarta, Indonesia) and J.P. Skovsgaard (Hørsholm, Denmark)	1
Biased predictions for tree height increment models developed from smoothed 'data'	
H. Hasenauer (Vienna, Austria) and R.A. Monserud (Moscow, ID, USA)	13
Applicability of the forest stand growth simulator PROGNAUS for the Austrian part of the Bohemian Massif	
H. Sterba (Vienna, Austria) and R. A. Monserud (ID, USA)	23
Testing models of unthinned red pine plantation dynamics using a modified Bakuzis matrix of stand properties	
R.A. Leary (St. Paul, Minnesota, USA)	35
A framework for uncertainty assessment of mechanistic forest growth models: a neural network example	
B.T. Guan (Taipei, Taiwan, ROC), G.Z. Gertner and P. Parysow (Urbana, IL, USA)	47
Virtual experimentation: conceptual models and hypothesis testing of ecological scenarios	
P. Parysow and G. Gertner (Urbana, IL, USA)	59
Propagating uncertainty through spatial estimation processes for old-growth subalpine forests using sequential Gaussian simulation in GIS	
H.T. Mowrer (Fort Collins, Colorado, USA)	73
Modelling effects of curtain method on algal blooming in reservoirs	
D.G. Nimal Priyantha, T. Asaeda (Saitama, Japan), S. Saitoh and K. Gotoh (Fukuoka, Japan)	89
Calculating temperature dependence over long time periods: derivation of methods	
H. Lischke, T.J. Löffler and A. Fischlin (Schlieren, Switzerland)	105
The significance of optical properties in competition among visual and tactile planktivores: a theoretical study	
K. Eiane, D.L. Aksnes and J. Giske (Bergen, Norway)	123
A mathematical model of an estuarine seagrass	
J. Wortmann, J.W. Hearne (Pietermaritzburg, South Africa) and J.B. Adams (Elizabeth, South Africa)	137
Modelling contaminant effects on deposit feeding nematodes near Gulf of Mexico production platforms	
P.A. Montagna and J. Li (Port Aransas, TX, USA)	151
A modelling analysis on dynamics of hilly sandy grassland landscapes using spatial simulation	
Q. Gao, N. Liang and X. Dong (Beijing, People's Republic of China)	163
Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models	
J.M. Paruelo (Buenos Aires, Argentina) and F. Tomasel (Fort Collins, CO, USA)	173
A simulation model of the infection cycle of <i>Leishmania mexicana</i> in <i>Neotoma micropus</i>	
S.F. Kerr (San Antonio, Texas, USA), W.E. Grant and N.O. Dronen, Jr (Texas, USA)	187
A model for the simulation of macroalgal population dynamics and productivity	
P. Duarte and J.G. Ferreira (Monte de Caparica, Portugal)	199
POLMOD.PEST—the model of pesticides dynamics in the elementary ecosystems	
Y.A. Pykh (St. Petersburg, Russia) and I.G. Malkina-Pyh (Moscow, Russia)	215
Logistic regression and continuation ratio models to estimate insect development under variable temperatures	
S. Manel and D. Debouzie (Villeurbanne, France)	237
Book review	245
Author index	249
Subject index	253
Volume contents	255

