HNCO Influence of the learning rate on the performance of PBIL

September 30, 2020

Abstract

PBIL is applied many times to the same collection of fitness functions (bit vector size n = 100), each time with a different learning rate taken from a finite set of values. All learning rates are ranked according to their median fitness over 20 independent runs, first for each fitness function, then across the entire collection of fitness functions. The mean and standard deviation of fitness are also plotted as a function of the learning rate.

Contents

1	Rankings	1
2	Function one-max	2
3	Function leading-ones	3
4	Function jmp-5	4
5	Function nk	5
6	Function max-sat	6
7	Function labs	7
8	Function ep	8
9	Function cancel	9
10	Function walsh2	10
A	Plan	11
В	Default parameters	12

1 Rankings

algorithm	learning rate	ra	nk d	listri	ibut	ion		
		1	2	3	4	5	6	7
pbil	1	6	1	0	0	1	1	0
pbil	0.01	5	3	0	0	0	1	0
pbil	0.02	3	1	2	0	1	1	1
pbil	0.05	3	0	0	2	2	2	0
pbil	0.5	2	1	3	0	1	2	0
pbil	0.2	2	0	1	1	1	0	4
pbil	0.1	2	0	0	4	1	1	1

2 Function one-max

$\overline{ m algorithm}$	learning rate	funct	ion va	lue			
		min	Q_1	med .	Q_3	max	rk
pbil	0.01	100	100	100	100	100	1
pbil	0.02	100	100	100	100	100	1
pbil	0.05	100	100	100	100	100	1
pbil	0.1	100	100	100	100	100	1
pbil	0.2	100	100	100	100	100	1
pbil	0.5	100	100	100	100	100	1
pbil	1	100	100	100	100	100	1

one-max: Mean value as a function of learning rate

one-max: Standard deviation of value as a function of learning rate

3 Function leading-ones

algorithm	learning rate	function value							
		min	Q_1	med .	Q_3	max	rk		
pbil	0.01	100	100	100	100	100	1		
pbil	0.02	100	100	100	100	100	1		
pbil	0.05	100	100	100	100	100	1		
pbil	0.1	100	100	100	100	100	1		
pbil	0.2	100	100	100	100	100	1		
pbil	0.5	100	100	100	100	100	1		
pbil	1	100	100	100	100	100	1		

leading-ones: Mean value as a function of learning rate

leading-ones: Standard deviation of value as a function of learning rate

pbil on leading-ones

4 Function jmp-5

$\operatorname{algorithm}$	learning rate	function value							
		min	Q_1	med .	Q_3	max	rk		
pbil	0.01	100	100	100	100	100	1		
pbil	0.02	100	100	100	100	100	1		
pbil	0.05	100	100	100	100	100	1		
pbil	0.1	95	100	100	100	100	4		
pbil	0.2	95	95	95	95	100	5		
pbil	0.5	95	95	95	95	95	6		
pbil	1	95	95	95	95	95	6		

jmp-5: Mean value as a function of learning rate

jmp-5: Standard deviation of value as a function of learning rate

5 Function nk

algorithm	learning rate	funct	ion val	ue			
		min	Q_1	med .	Q_3	max	rk
pbil	0.01	0.85	0.91	0.93	0.95	0.97	2
pbil	0.02	0.82	0.90	0.91	0.92	0.96	3
pbil	0.05	0.76	0.87	0.89	0.93	0.98	6
pbil	0.1	0.78	0.84	0.89	0.92	0.97	4
pbil	0.2	0.77	0.87	0.88	0.90	0.95	7
pbil	0.5	0.79	0.87	0.89	0.90	0.92	5
pbil	1	0.83	0.90	0.94	0.96	1.00	1

nk: Standard deviation of value as a function of learning rate

Depoil on nk

1
0.95
0.95
0.85
0.8
0.75
10-2
10-1
100
learning rate

6 Function max-sat

algorithm	learning rate	funct	ion va	lue			
		min	Q_1	med .	Q_3	max	rk
pbil	0.01	964	966	967	967	967	1
pbil	0.02	963	965	966	967	968	3
pbil	0.05	962	965	966	966	967	5
pbil	0.1	961	964	966	967	967	4
pbil	0.2	960	963	966	967	968	7
pbil	0.5	962	964	966	967	968	6
pbil	1	962	966	967	967	968	2

max-sat: Mean value as a function of learning rate

max-sat: Standard deviation of value as a function of learning rate

pbil on max-sat

968
967
966
965
964
962
961
960
10-2
10-1
100
learning rate

7 Function labs

algorithm	learning rate	function value						
		min	Q_1	med .	Q_3	max	rk	
pbil	0.01	3.52	3.75	3.81	4.13	4.35	6	
pbil	0.02	3.36	3.65	3.80	3.97	4.66	7	
pbil	0.05	3.33	3.60	3.88	4.07	4.30	4	
pbil	0.1	3.58	3.71	3.86	4.03	4.35	5	
pbil	0.2	3.51	3.77	3.92	4.17	4.39	3	
pbil	0.5	3.76	3.97	4.11	4.44	5.24	2	
pbil	1	4.47	4.65	4.77	4.82	4.89	1	

labs: Mean value as a function of learning rate

labs: Standard deviation of value as a function of learning rate

8 Function ep

algorithm	learning rate	function valu	ıe				
		min	Q_1	med.	Q_3	max	rk
pbil	0.01	2.4×10^{-28}	2.5×10^{-27}	7.0×10^{-27}	1.3×10^{-26}	2.9×10^{-26}	2
pbil	0.02	1.3×10^{-27}	6.4×10^{-27}	2.1×10^{-26}	2.9×10^{-26}	6.5×10^{-26}	6
pbil	0.05	2.1×10^{-28}	9.3×10^{-27}	1.7×10^{-26}	3.3×10^{-26}	7.4×10^{-26}	5
pbil	0.1	7.0×10^{-28}	4.8×10^{-27}	1.4×10^{-26}	2.5×10^{-26}	8.3×10^{-26}	4
pbil	0.2	2.7×10^{-28}	1.4×10^{-26}	2.8×10^{-26}	5.9×10^{-26}	1.1×10^{-25}	7
pbil	0.5	3.1×10^{-27}	8.3×10^{-27}	1.1×10^{-26}	2.4×10^{-26}	5.4×10^{-26}	3
pbil	1	6.2×10^{-28}	3.0×10^{-27}	5.0×10^{-27}	1.8×10^{-26}	3.9×10^{-26}	1

9 Function cancel

algorithm	learning rate	funct	ion val	ue			
		min	Q_1	med .	Q_3	max	rk
pbil	0.01	0.04	0.08	0.21	0.32	1.39	1
pbil	0.02	0.07	0.24	0.38	0.57	1.32	2
pbil	0.05	0.55	0.85	1.07	1.52	1.78	4
pbil	0.1	0.29	1.03	1.45	1.79	2.62	6
pbil	0.2	0.08	0.92	1.66	2.17	2.74	7
pbil	0.5	0.12	0.71	1.01	1.34	2.75	3
pbil	1	0.06	0.50	1.11	1.50	2.91	5

cancel: Standard deviation of value as a function of learning rate

pbil on cancel

3
2.5
1
0.5
1
0.5
0
learning rate

10 Function walsh2

algorithm	learning rate	function	ı value				
		min	Q_1	med .	Q_3	max	rk
pbil	0.01	654.47	667.82	697.14	715.02	726.23	
pbil	0.02	639.08	665.57	678.92	691.71	726.29	5
pbil	0.05	641.21	662.65	673.83	683.24	717.26	6
pbil	0.1	617.83	656.83	672.39	705.50	728.83	7
pbil	0.2	633.62	665.62	680.33	698.63	731.88	4
pbil	0.5	636.03	662.00	683.02	703.33	729.08	3
pbil	1	682.81	698.91	709.93	723.70	740.55	1

walsh2: Mean value as a function of learning rate

walsh2: Standard deviation of value as a function of learning rate

A Plan

```
"exec": "hnco",
"opt": "--print-results --map 1 --map-random -s 100",
"budget": 200000,
"num_runs": 20,
"parallel": true,
"parameter": {
   "id": "learning-rate",
   "name": "learning rate",
   "values": [ 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 5e-1, 1 ]
"graphics": {
   "logscale": true,
   "candlesticks": {
        "title": true,
        "boxwidth": "$1 * 0.3"
   }
},
"functions": [
   {
        "id": "one-max",
        "opt": "-F 0 --stop-on-maximum",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "leading-ones",
        "opt": "-F 10 --stop-on-maximum",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
    {
        "id": "jmp-5",
        "opt": "-F 30 --stop-on-maximum -t 5",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "nk",
        "opt": "-F 60 -p instances/nk.100.4",
        "rounding": {
            "value": { "before": 1, "after": 2 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "max-sat",
        "opt": "-F 70 -p instances/ms.100.3.1000",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "labs",
        "opt": "-F 81",
        "rounding": {
            "value": { "before": 1, "after": 2 },
            "time": { "before": 1, "after": 2 } }
   },
```

```
{
        "id": "ep",
        "opt": "-F 90 -p instances/ep.100",
        "reverse": true,
        "logscale": true,
        "rounding": {
            "value": { "before": 1, "after": 1 },
            "time": { "before": 1, "after": 2 } }
    },
        "id": "cancel",
        "opt": "-F 100 -s 99",
        "reverse": true,
        "rounding": {
            "value": { "before": 1, "after": 2 },
            "time": { "before": 1, "after": 2 } }
    },
{
        "id": "walsh2",
        "opt": "-F 162 -p instances/walsh2.100",
        "rounding": {
            "value": { "before": 3, "after": 2 },
            "time": { "before": 1, "after": 2 } }
    }
],
"algorithms": [
    {
        "id": "pbil",
        "opt": "-A 500 -x 10 -y 1"
]
```

B Default parameters

}

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
# description_path = description.txt
\# ea_lambda = 100
\# ea_mu = 10
# expression = x
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# fp_{expression} = (1-x)^2+100*(y-x^2)^2
# fp_lower_bound = -2
# fp_num_bits = 8
# fp_upper_bound = 2
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_bit_herding = 0
# hea_num_seq_updates = 100
# hea_reset_period = 0
# hea_sampling_method = 0
```

```
# hea_weight = 1
# learning_rate = 0.001
\# map = 0
# map_input_size = 100
# map_path = map.txt
# map_ts_length = 10
# map_ts_sampling_mode = 0
# mutation_rate = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = function.txt
# pn_mutation_rate = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# results_path = results.json
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
\# seed = 0
# selection_size = 1
# solution_path = solution.txt
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
\# version = 0.15
# Generated from hnco.json
```