Lecture 3: Beginning statistical simulations

A new question

In STA 112, you learned about the simple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Question: What assumptions does this model make?

A new question

In STA 112, you learned about the simple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Question: How important is it that $\varepsilon_i \sim N(0, \sigma^2)$? Does it matter if the errors are *not* normal?

Activity

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Activity: With a neighbor, brainstorm how you could use simulation to assess the importance of the normality assumption (you do not need to write code!).

- How would you simulate data?
- What result would you measure for each run of the simulation?

Activity

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

How would you study the importance of the normality

assumption?

95% CI: B, ± E* SE(B)

depends on E. Normal

. do the simulations many times

eg-Poisser distribution, binamical distribution,

compare performance for different distributions of Ei

eg. · SSE

confidence intervals for B,

construct as to CIs for B, and whether they capture the B, and the in practice

Simulating data

To start, simulate data for which the normality assumption holds:

```
1 n \leftarrow 100 # sample size
2 beta0 \leftarrow 0.5 # intercept \nearrow Bo
3 beta1 \leftarrow 1 # slope

4 
5 x \leftarrow \text{runif}(n, \min=0, \max=1)
6 noise \leftarrow \text{rnorm}(n, \max=0, \text{sd}=1)
7 y \leftarrow \text{beta0} + \text{beta1} + x + \text{noise}
```

- runif (n), min=0, max=1) samples X_i uniformly between 0 and 1 of samples
- similar rnorm(n), mean=0, sd=1) samples $\varepsilon_i \sim N(0,1)$

"roman" distribution name

other dists: rexp, ranisq, rais, etc.

Fit a model

```
1 n <- 100 # sample size
                                               generating xs & ts
 2 beta0 <- 0.5 # intercept</pre>
 3 beta1 <- 1 # slope
 5 \times - runif(n, min=0, max=1)
 6 noise <- rnorm(n, mean=0, sd=1)</pre>
 7 y <- beta0 + beta1*x + noise</pre>
                                       at linear regression model
 9 lm \mod <- lm(y \sim x)
           A response
10 lm mod
Call:
lm(formula = y \sim x)
                                          The value for B, = 1
Coefficients:
(Intercept)
                                           compare \hat{\beta}, to \hat{\beta},
     0.2971
                   1.3073
                                          compare a <u>CI</u> for B<sub>1</sub>
to the value of B<sub>1</sub>
```

Calculate confidence interval

• Question: How can we check whether the confidence interval contains the true β_1 ?

$$CI = (0.68, 1.94)$$
 contains $B, = 1$
 $0.68 \ \angle 1 \ & 1.94 \ > 1$
 $CIE1] \ \angle 1 \ & CIE2] \ > 1$

Calculate confidence interval

```
1 lm_mod <- lm(y ~ x)
2
3 ci <- confint(lm_mod, "x", level = 0.95)
4 ci
2.5 % 97.5 %
x 0.6777885 1.936822</pre>
```

• Question: How can we check whether the confidence interval contains the true β_1 ?

```
1 ci[1] < 1 & ci[2] > 1
[1] TRUE
```

Repeat!

```
1 \text{ nsim} < -1000
2 n <- 100 # sample size

3 beta0 <- 0.5 # intercept

4 beta1 <- 1 # slope

5 results <- rep(NA, nsim) _ esults vector to Stere vesults
 7 for(i in 1:nsim){
 x <- runif(n, min=0, max=1)
                                    } Sample Sonta
 9 noise <- rnorm(n, mean=0, sd=1)</pre>
    y <- beta0 + beta1*x + noise
10
11
  12
13
14
15
17 mean(results) L dosered coverage
```

• What fraction of the time should the confidence interval contain β_1 ?

Repeat!

```
1 \text{ nsim} < -1000
 2 n \leftarrow 100 \# sample size
 3 beta0 <- 0.5 # intercept</pre>
 4 beta1 <- 1 # slope
 5 results <- rep(NA, nsim)</pre>
 6
 7 for(i in 1:nsim){
      x \leftarrow runif(n, min=0, max=1)
noise \leftarrow rnorm(n, mean=0, sd=1)
f \in \mathcal{E}
      y <- beta0 + beta1*x + noise
10
11
12
   lm \mod <- lm(y \sim x)
13
      ci \leftarrow confint(lm mod, "x", level = 0.95)
14
15
      results[i] <- ci[1] < 1 \& ci[2] > 1
16
    mean(results)
[1] 0.948
```

What should we do next?

Class activity

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

That is, how important is the assumption that $\epsilon_i \sim N(0,\sigma^2)$? Continue simulation from last time, but experiment with different values of n and different distributions for the noise term.

https://sta279s24.github.io/class_activities/ca_lecture_3.html