Homework Q2-50 points)

This question is a little bit different from generic linear programing model.

Find maximum and minimum value of $(2x_1+3x_2)$

Constraints
$$x_2 \le -(x_1)^2 + 2x_1 + 15$$

 $x_2 \ge (x_1)^2 - 4x_1$

(HINT: You can use geometric illustration.)

Maximize:

Slope of $(2x_1+3x_2)$ is -2/3. Maximum value looks like top of the green line. Find tangent line that is parallel to -2/3.

Derivative of green line is $-2x_1+2=-2/3$ ----> $x_1=4/3$, x_2 is easily found using green curve equation. When both are plugged into $(2x_1+3x_2)$, 151/3 is obtained.

Minimize:

Slope of $(2x_1+3x_2)$ is -2/3. Minimum value looks like bottom of the blue line. Find tangent line that is parallel to -2/3.

Derivative of green line is $2x_1-4=-2/3$ ----> $x_1=5/3$, x_2 is easily found using green curve equation. When both are plugged into $(2x_1+3x_2)$, -25/3 is obtained.