Algoritmos e Programação de Computadores

Prova Final (Exame)

Nome:	
RGA:	

Instruções: Não é permitida consulta a qualquer material. *Somente serão consideradas respostas nos espaços marcados.* Use os versos das folhas como rascunho.

Valor	Nota
2,0	
1,5	
2,5	
2,0	
2,0	
10,0	
	2,0 1,5 2,5 2,0 2,0

1. (2.0 pontos) O programa a seguir faz a leitura de seu RGA e armazena os quatro últimos dígitos em um vetor de inteiros. Este vetor é utilizado para preencher uma matriz de inteiros. Responda os itens a seguir.

```
1 #include <stdio.h>
3 int main() {
4
      int vetor[4], matriz[4][4], i, j, soma;
5
      long rga;
6
7
      scanf("%ld", &rga);
8
      /* Leitura dos quatros últimos dígitos do seu RGA */
9
      for(i = 4; i > 0; i--) {
           vetor[i-1] = rga % 10;
10
           rga = rga / 10;
11
12
      }
13
      /* Início da etapa de preenchimento */
14
      for(i = 0; i < 4; i++)
15
16
           for(j = 0; j < 4; j++)
                matriz[i][j] = i + j;
17
18
19
      for(i = 0; i < 4; i++)
           matriz[i][4-i-1] = vetor[i];
20
21
      /* Fim da etapa de preenchimento */
22
      for(j = 0; j \le 3; j++) {
23
24
           soma = 0;
           for(i = 0; i <= 3; i++) {
25
26
                soma += matriz[i][j];
27
28
           printf("%d ", soma);
       }
29
30
31
       return 0;
32 }
```

a) (1.0 ponto) Mostre a matriz obtida por este programa após a etapa de preenchimento.
b) (1.0 ponto) Mostre a saída deste programa.
2. (1.5 pontos) A seguinte função recursiva recebe um número inteiro positivo n estritamente positivo $n \ge 1$. Preencha os espaços deixados em branco para que a função calcule o piso do logaritmo na base $n \ge 1$.
Note que o piso do logaritmo binário de n equivale ao número de divisões inteiras de n por 2 , que devem ser realizadas sucessivamente até que o quociente desta divisão seja igual à 1 . Tais divisões sucessivas são realizadas tomando n como dividendo inicial. A partir da segunda divisão, o dividendo corresponde ao quociente obtido na divisão anterior. Desta maneira, por exemplo, piso_log2(5) é igual 2 , pois são necessárias duas divisões sucessivas por 2 para que 5 seja igual à 1 .
<pre>1 int piso_log2(int n) {</pre>
2 if() //Base da recursão
3 return 0.

return

45}

3. (2.5 pontos) Considere o problema de calcular, utilizando somente subtrações, o resto da divisão inteira entre dois números a e b e responda os itens a seguir. Por exemplo, para $a=13$ e $b=5$, o resto da divisão é 3 .
a) $(1.0\ ponto)$ Escreva uma função iterativa que recebe dois números inteiros a e b e devolve o resto da divisão inteira de a por b .
b) (1.5 pontos) Escreva uma versão recursiva da função criada no item anterior.

or	exe	es e emp	lo,	par	a A	=	0	,		q	u	е		s	е	r	a	q		u	е	s	e	,	r	a	\() e	B =
,	е	r									dev								L										
		ļ <u>-</u>	`	_		_ , ·			ş		<u> </u>																		
_																													

5. (2.0 pontos) Em álgebra linear, uma matriz M de tamanho $n \times n$ é dita simétrica se coincide com a sua transposta. Ou, em notação matemática, M é simétrica quando $M = M^T$. A matriz transposta, M^T , de uma matriz M é obtida transformando as colunas de M nas linhas de M^T .

As matrizes A e B a seguir, por exemplo, são simétricas:

$$A = \begin{bmatrix} 5 & 8 \\ 8 & 1 \end{bmatrix} e B = \begin{bmatrix} 3 & 8 & 1 \\ 8 & 4 & 3 \\ 1 & 3 & 9 \end{bmatrix}.$$

A matriz C abaixo, por outro lado, não é simétrica.

$$C = \begin{bmatrix} 5 & 8 \\ 9 & 1 \end{bmatrix}$$
. Observe que $C^T = \begin{bmatrix} 5 & 9 \\ 8 & 1 \end{bmatrix}$.

Escreva uma função que recebe uma matriz quadrada M de tamanho $n \times n$ e o tamanho de suas dimensões, n ($n \le 100$), e verifica se M é simétrica ou não. Sua função deve devolver o valor 1 ou 0 para indicar este fato.

para indicar este fato.	