# CSC263 Tutorial #8 Graphs!

March 10, 2023

## Things covered in this tutorial

- \* What is a graph?
- \* How can I perform BFS on a graph?
- \* How can I find the shortest distance between two vertices in a graph?
- \* How can I convert a real-life problem into a problem about graphs?
- \* What's the tallest elevator in the world?

A graph is a funny-looking network of bubbles that are connected to each other.



Left: An undirected graph. Right: A directed graph.

The bubbles are called the vertices (also called nodes). The connections between vertices are called edges. The edges may be directed or undirected.

3/9



Formally, a graph G = (V, E) consists of:



Formally, a graph G = (V, E) consists of:

 $\star$  A set of vertices V. V can be any set, perhaps infinite.



Formally, a graph G = (V, E) consists of:

- $\star$  A set of vertices V. V can be any set, perhaps infinite.
- \* A set of edges  $E \subseteq V^2$ . Given two vertices  $u, v \in V$ , we use  $(u, v) \in E$  to denote that u and v are connected.





Formally, a graph G = (V, E) consists of:

- $\star$  A set of vertices V. V can be any set, perhaps infinite.
- \* A set of edges  $E \subseteq V^2$ . Given two vertices  $u, v \in V$ , we use  $(u, v) \in E$  to denote that u and v are connected.

For undirected graphs, *E* must be *symmetric*:

$$(u, v) \in E \Leftrightarrow (v, u) \in E$$
.

## **Shortest Path**

**Task:** Find the shortest path from u to v.



#### **Shortest Path**

**Task:** Find the shortest path from u to v.



The shortest path from u to v has length 4.

BFS stands for

BFS stands for Breadth-First Search. BFS traverses every vertex in a graph, starting from a vertex  $s \in V$ .

```
BFS(G, s):
  for each vertex v in V - {s}: # Initialize vertices
  v.colour = White
 v.d = 00
 v.p = Nil
  Q = \{\}
  s.colour = Gray
  s.d = 0
  Enqueue(Q, s)
  While Q not empty:
   u = Dequeue(Q)
    for each v in G.adj[u]:
      if v.colour == White # only visit unvisited vertices
        v.colour[v] = Gray
        v.d = u.d + 1
        v.p = u
        Enqueue(Q, v)
    colour[u] = Black
```

**Task:** Perform BFS starting from *s*, labelling the distances.



**Task:** Perform BFS starting from s, labelling the distances.

Upon finishing, every node's d value is equal to the shortest path's distance from s to d.

## **Elevator problem**

Tutorial Activity: Open Tutorial 8, and read the instructions.

## **Elevator problem**

Tutorial Activity: Open Tutorial 8, and read the instructions.

Here's an illustration of the sample test case 10 1 10 2 1:

Y → 10

9

8

7

6

5

4

(3)

You start at X, and want to reach Y. You may only go up by 2 or down by 1 each move.

 $X \rightarrow 2$ 

(1)

## Fun facts about elevators

#### Fun facts about elevators

\* The tallest elevator in the world is found in the Mponeng Gold Mine in South Africa, owned by AngloGold Ashanti. The elevator is 2283 metres in height.



#### Fun facts about elevators

\* The tallest elevator in the world is found in the Mponeng Gold Mine in South Africa, owned by AngloGold Ashanti. The elevator is 2283 metres in height.



\* The deadliest elevator disaster in history happened in Vaal Reefs in South Africa, also owned by AngloGold Ashanti. A locomotive fell into the elevator shaft and caused the cage to detach and plunge 460 metres, killing 104 miners.