Geoprocessamento

Prof. Diego Camargo

Aula 03 – Topologia e relacionamentos espaciais

OBJETIVO DA AULA

1. Apresentação dos elementos geométricos existentes;

- 2. Definição de topologia e sua importância;
- 3. Apresentação de conceitos sobre relacionamentos espaciais e a matriz de 4 interseções;

Costuma-se atribuir ao ponto apenas como elemento localizador de dados e informações.

A complexidade, no entanto, do arranjo espacial de pontos é importante para o entendimento das relações espaciais.

PONTOS

O ponto pode significar:

- 1. Posição de objetos no espaço geográfico;
- 2. Origem/Destino (ponto de partida/chegada);
- 3. Interseção entre caminhos ou fluxos (os *nós* das redes);

Em análise geoespacial, os pontos não devem ser considerados apenas posições isoladas, ou seja, existirá relação de vizinhança entre pelo menos três pontos.

Arranjo espacial:

Conjunto espacialmente distribuído – que tem forma e densidade;

Revela o grau de organização espacial;

Dicotomias:

Dispersão-Concentração e Polarização-Espalhamento;

Arranjo espacial:

Podemos quantificar e mapear as diferenças entre padrões de *distribuição espacial* de diversos tipos de objetos, por exemplo: estabelecimentos comerciais, unidades industriais, epidemias, acidentes de trânsito, etc.

Distribuição espacial:

Distância é a causa da Polarização-Dispersão;

Distância entre equipamentos urbanos ou cidades e elementos da natureza (água, minerais, vegetação, etc.);

Os padrões de pontos no espaço geográfico estão diretamente relacionados a *movimentos* e *fluxos* em uma rede.

PONTOS

<u>Padrão:</u> Característica do arranjo espacial, dada pela forma gerada a partir do espaçamento entre os objetos

PONTOS

<u>**Dispersão:**</u> Grau de espaçamento entre os objetos, em relação a uma forma ("moldura") que envolve os objetos.

PONTOS

<u>Densidade:</u> Propriedade da dispersão, que está relacionada a uma medida de área, mas independe da forma dessa área ou da dispersão dos objetos.

Distância média ao vizinho mais próximo:

Índice de referência é: Índice de distância ao ponto vizinho mais próximo;

$$R_n = \frac{L_0}{L_e}$$

Sendo: $L_0 \rightarrow Distância\ média; L_e \rightarrow Distância\ média\ esperada;$ $A \rightarrow Área\ total\ do\ mapa; n \rightarrow Número\ total\ de\ pontos;$

$$L_e = \frac{1}{2 * \sqrt{\frac{n}{A}}}$$

PONTOS - EXEMPLO

$$R_n = \frac{L_0}{L_e} = \frac{436.869,91}{315.398,73} = 1,38$$

PONTOS - EXEMPLO

 $I_a \rightarrow \text{Índice de afastamento}$

entre pontos

LINHAS (REDES)

A comunicação entre as localidades (pontos) ou mesmo a interação é realizada através das redes.

A existência de uma rede densa pode proporcionar às localidades maior ou menor nível de comunicação.

Além da densidade da rede a distância entre os pontos é importante fator para ligação regional.

INTERAÇÃO ESPACIAL (REDES)

Distância relativa entre pontos: Necessário afastamento, que desencadeia relação mais ou menos intensa, a depender, da magnitude do afastamento.

LINHAS (REDES)

Distância euclidiana e distância em rota.

INTERAÇÃO ESPACIAL

$$\left|\Delta_{E,R}\right| = \left|d_E - d_R\right|$$

A impedância pode ter origem por barreiras topográficas ou barreiras urbanas.

REDES GEOGRÁFICAS

O movimento (relação distância e tempo) é um dos processos mais importantes para a organização do espaço. (FERREIRA, 2014)

A rede de transportes pode representar a maioria dos deslocamentos, que é basicamente a relação entre pontos de origens e destinos e a linha é a interação entre esses pares.

REDES GEOGRÁFICAS

REDES GEOGRÁFICAS

Conexão ou link: conexão linear ou segmento de reta que liga dois nós.

Nó ou vértice: pontos onde se cruzam duas ou mais ligações

Região nodal: um polígono, cujos lados são formados por conexões.

<u>Rede:</u> arranjo espacial de conexões, nós e regiões nodais, formando uma estrutura integrada. Representa as possibilidade de movimentação.

REDES GEOGRÁFICAS

Matriz de conectividade binária (C_{m.n})

Matriz de trajetos mais curtos (T_{m,n})

Matriz de conectividade binária ponderada (P_{m.n})

REDES GEOGRÁFICAS - EXEMPLOS

Análise de rede:

QGIS

REDES GEOGRÁFICAS - EXEMPLOS

POLÍGONOS

A comunicação de dados são muito utilizados através de polígonos.

Análises considerando área também podem fornecer importantes índices de densidade, por exemplo.

POLÍGONOS

São frequentemente utilizados para espacializar dados censitários ou inventários estatísticos relacionados a regiões, municípios, setores censitários e bairros. (Dados agregados)

POLÍGONOS

Mapas construídos com base em estruturas poligonais, são instrumentos importantes de comunicação, principalmente quando se trata de dados socioeconômicos, por exemplo.

POLÍGONOS

Exemplo: COVID-19

POLÍGONOS

Polígonos:

QGIS

Mapa de densidade de infraestrutura rodoviária, 2010 Mapa de densidade de infraestrutura rodoviária, 2017

TOPOLOGIA

• Importante área de pesquisa na fronteira entre matemática, geometria computacional e SIG;

 O desafio é trazer para a realidade prática conceitos matemáticos bastante abstratos.

TOPOLOGIA

- O termo é definido como a matemática da conectividade e adjacência para características espaciais.
- Mas também ser vista como a programação que fornece relações espaciais entre locais de conexão e junção de dados, entre redes e características geográficas.

TOPOLOGIA

 Em um SIG, isto significa que a topologia é uma estrutura especial que estabelece ligações entre os nós e as redes a fim de reconhecer as relações espaciais entre as características geográficas.

FERREIRA E PAZ (2018) – https://www.redalyc.org/journal/5769/57696099901 3/html/>

TOPOLOGIA

- Transformações "topológicas":
 - Translação;
 - Rotação;
 - Mudança de escala.
- Transformações "não-topológicas":
 - Recorte (divisão da geometria);
 - Fusão geométrica;
 - Inserção, remoção ou fusão de buracos.

PROPRIEDADES TOPOLÓGICAS

Sempre preservadas por transformações topológicas:

- Conectividade;
- Separação / adjacência;
- Interseção;
- Dimensão;
- Ordem

PROPRIEDADES NÃO TOPOLÓGICAS

Nem sempre preservadas por transformações topológicas:

- Comprimento;
- Área;
- Direção;
- Forma;

TOPOLOGIA E RELACIONAMENTOS ESPACIAIS

- A topologia é uma "geometria qualitativa";
- Raciocínio Espacial Qualitativo:
 - Área de pesquisa em GIScience interessada em compreender como as pessoas pensam e se expressam com relação a noções de posicionamento e orientação;
 - Correspondência entre noções inexatas, ambíguas, e conceitos matematicamente formalizáveis

Volvimento

TOPOLOGIA E RELACIONAMENTOS ESPACIAIS

- EXEMPLO:
 - A é vizinho de B
 - B envolve C
 - Portanto, C está fora de A.

RACIOCÍNIO ESPACIAL QUALITATIVO

- Envolve analogias, que nos permitem raciocinar simbolicamente;
- Essas analogias são frequentemente traduzidas em linguagem natural;
- A linguagem natural apresenta diversos problemas importantes.

RACIOCÍNIO ESPACIAL QUALITATIVO

- A linguagem natural
 - É limitada em "expressividade", porém possui muitas opções (vocabulário);
 - Múltiplos significados para os mesmos termos e expressões, dependendo do contexto;
 - Ambiguidade;
 - Descrições incompletas, pois o contexto geralmente está implícito.

- Posicionamento relativo entre objetos;
- Todos têm conhecimento intuitivo sobre esses relacionamentos;
- Nos SIG's, são usados na seleção de objetos e para garantir a integridade do banco de dados;
- Terminologia varia muito.

 Ex. Em qual (ou quais) das situações abaixo pode-se dizer que a linha cruza o polígono?

É necessário formular mais precisamente cada relacionamento

- Teoria de conjuntos de pontos (point-set)
 - Aberto: nenhum dos pontos da fronteira pertence ao objeto;
 - Fechado: todos os pontos da fronteira pertencem ao objeto;
 - Semi-aberto: alguns pontos da fronteira pertencem ao objeto, outros não.

- Interior de A
 - União de todos os conjuntos abertos contidos em
 - Notação: A^o

- Fechamento de A
 - A interseção de todos os conjuntos fechados que contém A
 - Notação: \bar{A}

- Complemento de A
 - Diferença entre o espaço e A
 - Notação: A⁻

- Fronteira de A
 - Interseção entre \bar{A} e A^-
 - Notação: ∂A

Observar que:

$$A^{o} \cap \partial A = \emptyset$$
$$A^{o} \cup \partial A = \bar{A}$$

- Considerando duas regiões (sem buracos), e suas respectivas fronteiras e interiores, poderemos ter 16 tipos diferentes de interseções (cada combinação pode ser vazio ou não vazio)
- Matriz de 4 interseções

	B^{o}	∂B
A^o	$A^o \cap B^o$	$A^{o} \cap \partial B$
∂A	$\partial A \cap B^o$	$\partial A \cap \partial B$

- Considerando duas regiões (sem buracos), e suas respectivas fronteiras e interiores, poderemos ter
 16 tipos diferentes de interseções (cada combinação pode ser vazio ou não vazio)
- Matriz de 4 interseções

	B^{o}	∂B
A^o	$A^o \cap B^o$	$A^{o} \cap \partial B$
∂A	$\partial A \cap B^o$	$\partial A \cap \partial B$

Exemplo

	B^{o}	∂B
A^o	Ø	Ø
∂A	Ø	Ø

	B^{o}	∂B
A^o	¯	¯
∂A	¯	¯

Se

RELACIONAMENTOS **ESPACIAIS**

Combinações impossíveis

Se o interior intercepta a fronteira da outra região, então deve interceptar sua fronteira também

Combinações

impossíveis

Ø

Combinações impossíveis

Se as fronteiras não se interceptam, então o interior de região uma está totalmente contido no interior da outra região, ou no seu complemento, porém não em ambos.

¯	¯	
Ø	Ø	

Q	
Ø	Q

 $\neg \emptyset$

	¯	$\neg Q$
	Ø	¯
,		

•	×	
		1

ГØ	¯	
Ø	Ø	

Disjoint (disjunto)

Contains (contém)

Overlap (sobreposição)

Meet (ponto de tangencia)

Inside (interior)

Covers (cobre)

Equal (igual)

Covered by (coberto por)

Propriedades:

- Se duas configurações têm matrizes de 4 interseções distintas, então elas são diferentes topologicamente;
- Se duas configurações têm a mesma matriz de 4 interseções, então essas configurações são topologicamente semelhantes, embora possam ser geometricamente distintas;
- Existe sempre uma matriz para qualquer configuração possível de dois polígonos;
- Entre duas regiões, sempre existe uma e apenas uma matriz que se aplica.

- Algumas relações são redundantes (reflexivas)
 - A inside B = B contains A
 - A covers B = B covered by A
 - A disjoint B = NOT ((A inside B) OR (B inside A) OR (A covers
 B) OR (B covers A) OR (A equal B) OR (A overlap B) OR (A meet B))
- Restariam 5 relações (inside, covers, equal, overlap, meet)

- Observar que os nomes desses relacionamentos são apenas indicativos
 - Vale a matriz;
 - Existem diversos outros termos em linguagem natural para expressar os mesmos conceitos.

- O mesmo raciocínio pode ser estendido para linhas e pontos;
- A matriz de 4 interseções não considera complemento (exterior) dos objetos;
- Para considerar o complemento são utilizadas as matrizes de 9 interseções 9-Intersection

	B°	∂В	B*
Aº	A°∩B°	A°∩∂B	A°∩B⁻
∂A	∂A∩B°	∂A∩∂B	∂A∩B⁻
A ⁻	A⁻∩B°	A⁻∩∂B	A⁻∩B⁻

PostGIS

Funções topológicas:

ST Equals(geom, geom)

ST Disjoint(geom, geom)

ST Intersects(geom, geom)

ST Touches(geom, geom)

ST Crosses(geom, geom)

ST Within(geom, geom)

ST Overlaps(geom, geom)

ST_Contains(geom, geom)

ST Covers(geom, geom)

ST CoveredBy(geom, geom)

EXEMPLOS QGIS