Introduction to Machine Learning

How Traditional Computing Works

Traditional computing or programs are very:

Every time you run the deterministic algorithm for a particular input, you'll get the same output

Traditional Computing Example 1

Ascending

Descending

Traditional Computing Example 2

Raghav is getting ready for a weekend party

He does not like going out usually

But his friends are forcing

Raghav went to engineering

His high school friend Ramesh

Ramesh found Mathematics interesting

COPYRIGHT 2019: JIGSAW ACADEMY
DO NOT COPY OR REDISTRIBUTE WITHOUT PERMISSION

Traditional Computing Example 2

Algorithm to count the number of times Raghav appears in the text

- Initialize a variable called count to 0;
- Split the paragraph into words
- Check if each word is same as Raghav*
- If yes, increment count by 1
- Same result, regardless of programming language
- Result = 3

How do you identify a marketing message?

Mails with words like buy or purchase cannot be classified as marketing emails

Even if it were a marketing mail, it's difficult to classify either wanted or unwanted

Hand-writing recognition

Everyone has their own way of writing

To anticipate all the writing styles and write strict rules for identifying different alphabets

Hence an algorithm is required:

- ☐ To accommodate different styles of writing
- ☐ That is precise enough to identify alphabets or numbers like a human

Let's see if we can expect a machine to do a particular task

Write a program to extract a information When and where Sachin hit his first century in one day international?

This involves a technology called Natural Language Processing*

Natural Language Processing makes heavy use of Machine Learning to deal with complexity and uncertainty of human language

COPYRIGHT 2019: JIGSAW ACADEMY
DO NOT COPY OR REDISTRIBUTE WITHOUT PERMISSION

Requirements for New Approach

Acknowledge inability to write precise rules to solve a particular problem or to do a particular task

Accommodate possible variations or noise in the input data

Able to handle fairly complex problems

Okay to get approximately good results on an average

Able to learn on its own

Tasks that can't be done by precise rules

We humans can do some amazingly complex tasks by fearning things without being programmed

COPYRIGHT 2019: JIGSAW ACADEMY
DO NOT COPY OR REDISTRIBUTE WITHOUT PERMISSION

Learning by Humans

- ☐ This learning is different from computer programming
- ☐ We also undergo a formal training or education like in school or college

Example: Learning Cycling

We will see how learning cycling is related to Machine Learning*

- ☐ We observed how others were doing, and we started with the help of a family member or a friend
- ☐ We gradually learned how to control handle, how much pressure to apply, how fast to peddle, etc by trial and error

Example: Learning Cycling

If we had learned our lessons properly, we would ride safely, otherwise we would stop or fall down, which meant we needed some more practice

Example: Learning Cycling

Machine Learning is also quite similar

We don't have to know the rules that produce these outputs

Create a program that can approximate a function and can produce outputs given some inputs

Core idea of Machine Learning

Learning by Machines

- Machine Learning is:
 - ✓ Not a hypothetical technology
 - ✓ It is a reality today

- Examples of Machine Learning are:
 - ✓ Separating spam emails from non-spam
 - ✓ Online-banking security systems
 - ✓ Recommendation systems that suggest products to buy in
 - online ecommerce/isites æto: Jigsaw Academy
 DO NOT COPY OR REDISTRIBUTE WITHOUT PERMISSION

Learning by Machines

Machine Learning algorithms are usually not 100% accurate because they are statistical in nature.

The output of such Statistical Learning or Machine Learning is a model that approximates a phenomenon or a function

This model is used for prediction or to perform some task and there will always be a parameter that represents accuracy of the model

Accuracy level of the model and where it works well should be known

Never blindly trust a model without proper testing

Data in Machine Learning

Data is central to Machine Learning algorithms

Machine Learning is a process of learning from examples and examples are fed to the algorithm through data

Data is usually in table

format COPYRIGHT 2019: JIGSAW ACADEMY

© Jigsaw Academy

Machine Learning Tasks

Regression: Predicting the value of continuous variable based on how a variable is related to some other variables

Example –

a. An e-retailer like Amazon or Flipkart can predict how much money a customer will spend in next 1 month based on his/her purchase history and user interaction on their mobile apps

Classification: Predicting the class of a given data point, given certain attributes

Example -

- a. Based on the credit history, a bank can predict if a given person will pay his full due
- b. An expert system controlling a self-driving car while determining the speed limit by following traffic signs

Unsupervised Learning: Finding similar data points in a dataset

Example –

- a. Grouping segments of customers who are similar on certain sets of attributes like demography, buying behaviour etc.
- b. Building recommendation engines, which are also based on the notion of similarity

Regression Task

Historical data

Gender	Gender Income Age		Amount Spent
Male	40000	30	1000
Female	35000	26	500
Female	50000	32	2500
Male	50000	40	5000
Female	65000	35	5000

Algorithm will learn to predict Amount Spent of a new customer with the available information about their gender, age and income

Regression Example 2

Temperature	Average Rainfall	Crop Yield	
34°C	135 inches	80 Units	
33°C	140 inches	65 Units	Data
38°C	137 inches	60 Units	regre
31°C	152 inches	82 Units	
42°C	120 inches	55 Units	

Data used for regression

Regression is basically about predicting a number from given inputs

The Machine Learning problem for this data set would be:

Given: Temperature and Rainfall

Predict: Crop Yield

Classification Task

Historical data

Gender	Income	Age	Good
Male	40000	30	Yes
Female	35000	26	No
Female	50000	32	Yes
Male	50000	40	No
Female	65000	35	No

Help the bank in future to predict if a customer will be a good or not given his demographic data such as gender, income and age

Labelled Data: Crop Yield

When predicting the crop yield, High or Low are considered as labels that we attach to each observation or each row

		. NI-1 II
Average Rainfall	Crop Yield	Naturally This data is
135 inches	High	called
140 inches	Low	labelled data
137 inches	Low	
152 inches	High	
120 inches	Low	
	Rainfall 135 inches 140 inches 137 inches 152 inches	Rainfall 135 inches High 140 inches Low 137 inches Low 152 inches High 120 inches

Given: Temperature and Rainfall

Predict: Crop yield either High or Low

Classification Task

Image labels and corresponding signs

Image	Sign
Image 1	Stop
Image 2	U Turn
•••	
•••	•••
Image N	Parking

Recognize the sign corresponding to the image label

Labelled Data: Crop Yield

Labeled data:

- ✓ Input variables*
- ✓ Output variables*

We can predict output variables given input variables

Labeled data is used in supervised learning

Supervised Machine Learning

Classification Task

Gender	Income	Age	Good
Male	40000	30	Yes
Female	35000	26	No
Female	50000	32	Yes
Male	50000	40	No
Female	65000	35	No

Image	Sign
Image 1	Stop
Image 2	U Turn
	•••
	•••
Image N	Parking

Regression Task

Gender	Income	come Age Spent	
Male	40000	30	1000
Female	35000	26	500
Female	50000	32	2500
Male	50000	40	5000
Female	65000	35	5000

Contained a column that was needed to be predicted

Supervised Machine Learning

Whenever an algorithm is trained in a manner where the variable required by the algorithm to predict is present in the training data

Unlabeled Data

It is the data that records some specific observations and here it is not necessary to identify înput and output variables

Age	Gender	Income	Location
45	Male	5.78 lakh	Bangalore
32	Female	8.81 lakh	Chennai
33	Male	11 lakh	Mumbai
71	Male	20 lakh	Mumbai
28	Female	8 lakh	Delhi

- ☐ You cannot possibly use one or more variables to predict another variable
- ☐ Unsupervised learning algorithms uses this type of data, which can be further used for clustering, etc

Unsupervised Machine Learning

Recommendation engine

Customer	Item 1	Item 2	Item 3	Item 4
C1	Yes	Yes	No	No
C2	No	No	Yes	Yes
C 3	Yes	?	No	No
C4	No	No	?	Yes

User behaviour with respect to product offerings

C3 and C4 - not bought some items and their preferences are not known

C1 and **C3** – similar in terms of product preferences

Recommend Item 2 to C3

C3 will like Item 2

C1 - liked Item 2

Unsupervised Machine Learning

Recommendation engine

Customer	Item 1	Item 2	Item 3	Item 4
C1	Yes	Yes	No	No
C2	No	No	Yes	Yes
C 3	Yes	?	No	No
C4	No	No	?	Yes

C3 and C4 - not bought some items and their preferences are not known

C2 and **C4** – similar in terms of product preferences

Recommend Item 3 to C4

C4 will like Item 3

C2 - liked Item 3

User behaviour with respect to our product offerings

When no target variable is present in the dataset of the algorithm

COPYRIGHT 2019: JIGSAW ACADEMY
DO NOT COPY OR REDISTRIBUTE WITHOUT PERMISSION

Supervised Learning

10,000 observations/rows of data

Note that we had not used 30% of the data or test data, for training

Training Data

A good predictive model predicts proper output for rest 30% of test data Randomly pick some 7000 rows or 70% of this data (training data)

Build a predictive model using this training data

Very popular and useful Supervised Learning algorithms are Linear Regression, Bayesian Classifier, K-nearest Neighbour, etc

Recap

