

29. What is the correct unit of work expressed in SI	
A) kg m/s ² B) kg m ² /s So, W units Other m ² /s ²	ulse, s units of m
B) kg m ² /s	at Kg. m2/52
C) $\log m^2/s^2$	
D) kg^2 m/s ²	1// 0
30. If you walk 5.0 m horizontally forward at a con-	stant velocity carrying a 10-N object, the amount
of work you do is	
A) more than 50 J	
B) equal to 50 J	A force can be exerted on an object and yet do no work. If you hold a heavy
C) less than 50 J, but more than 0 J	bag of groceries in your hands at rest, you do no work on it. You do exert a force on the bag, but the displacement of the bag is zero, so the work done by you on
(D)zero.	the bag is $W = 0$. You need both a force and a displacement to do work. You
omswer	also do no work on the bag of groceries if you carry it as you walk horizontally
000	across the floor at constant velocity, as shown in Fig. 6–2. No horizontal force is required to move the bag at a constant velocity. The person shown in Fig. 6–2
	exerts an upward force $\vec{\mathbf{F}}_{P}$ on the bag equal to its weight. But this upward
	force is perpendicular to the horizontal displacement of the bag and thus is doing
	no work. This conclusion comes from our definition of work, Eq. 6–1: $W = 0$,
31. A child's swing is pulled back to a height of 1.	28 m above the lowest position. If the swing is
released and mechanical energy is conserved the	
A 5 ms^{-1}	
B) 9.8 ms ⁻¹	
C) 19.6 ms ⁻¹	
D) 25 ms ⁻¹	
E) none of these	
1 Conservation	at energy: $1/2$ myz + mgh = 0 1/2 myz = mgh
	1/2mm2=mgn
* (m(42v2) = m(-gh)
	$y^2 = -2gh$, $g = -9.8$
	N= 1(-2)(-98)h , N=1.78
	$v = \sqrt{(-2)(-98)h}, n = 1.78$ = $Sm(s)$
33. A skier, of mass 40 kg, pushes off the top of a h	
friction, how fast will she be moving after drop	ping 10 m in elevation?
7.3 m/s B)15 m/s	
C) 49 m/s	
D) 196 m/s	
1 \$ 100	400a > Fa = ma ~ -41001
10,00	1000
(0m >)	To = -400 (10)400 T
() WI	75 - 7400 (10) = 74000 3
	(, , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , ,	2 mv = 755 4005 = 19 mv =
	40kg) Fg = mg $\approx -400V$ -5 = -400 (10) = -4000 J -2 mv ² (-100) = -4000 J 2 (4000) = -2
	m
	= 14.14
	v = J= = 14.19

