Aprendizaje por Refuerzo en Robótica

Departamento de Ingeniería Informática Instituto Tecnológico de Buenos Aires

Trabajo Práctico 3

Objetivo

Implementar comportamientos de seguimiento de paredes en un robot e-puck (simulado y real) siguiendo los criterios de Braitenberg y mediante aprendizaje (Q-Learning).

1. Síntesis de un comportamiento siguiendo el esquema de Braitenberg

- 1. Crear un nuevo proyecto de Webots llamado arrtp3. Copiar el ambiente adjunto (arrtp3a.wbt) en el subdirectorio worlds y crear un archivo para el controlador llamado arrtp3a.c en el subdirectorio controllers/arrtp3a.
- 2. Programar el controlador para que el e-puck siga paredes de acuerdo a los criterios de Braitenberg. Considere el uso de conexiones entre sensores y actuadores (pueden ser inhibitorias, exitatorias o que sigan una función) y el uso de unidades del tipo umbral u otras similares que tengan una función alternativa a la umbral.
- 3. Dibuje el esquema de conexionado de Braitenberg indicando el peso y/o función de las conexiones. Si usa nodos indique la función que siguen.
- 4. Repetir el experimento en un ambiente real. Copiar Makefile.e-puck al subdirectorio del controlador. Ejecutar la cross-compilation y cargar el programa a un e-puck real.
- 5. Documente su trabajo explicando qué hizo, porqué lo hizo y cómo lo hizo. Explicar los criterios utilizados para determinar el valor de los pesos. Exponga los resultados de los experimentos realizados (tanto en el ambiente simulado como el real).

2. Síntesis de un comportamiento usando una técnica de Aprendizaje por refuerzo

1. Crear un ambiente arrtp3b.wbt (a partir de arrtp3a.wbt) en el subdirectorio worlds de arrtp3 y crear un archivo para el controlador llamado arrtp3b.c en el subdirectorio controllers/arrtp3b.

2. Programar el controlador para que el e-puck aprenda a seguir paredes. Use el método de Q-Learning. Defina previamente cuál será el estado del robot, las acciones posibles en cada estado y la función de refuerzo. Codifique el método de modo que la política obtenida al final del aprendizaje quede guardada en un archivo. Valide la política obtenida en al menos 3 escenarios alternativos (paredes con un cambio de dirección a 90 grados, de 180 grados y paredes circulares).

Programe un controlador que ejecute la política obtenida y cargue el controlador en el e-puck físico. Testee el comportamiento del robot en un escenario real.

3. Documente su trabajo explicando qué hizo, porqué lo hizo y cómo lo hizo. Exponga los resultados de los experimentos realizados (tanto en el ambiente simulado como el real).