Research Article

Dorothy Miruka

Table of Contents

1	Res	earch	Questions	2
2	Dat	a		3
	2.1	Data	Reliability	3
	2.2	Explo	oring the Data	4
		2.2.1	Motivation	6
		2.2.2	Job satisfaction	8
		2.2.3	Working from Home	10
		2.2.4	Technology	12
	2.3	Data	Analysis and Discussion of Results	14
		2.3.1	Principal Components Analysis	14
		2.3.2	Remote work and employee motivation?	17
		2.3.3	Remote work and and job satisfaction?	19
		2.3.4	Employee motivation and job satisfaction?	20
		2.3.5	$\label{thm:constraint} Technological\ skills,\ employee\ motivation\ and\ job\ satisfaction\ in\ remote\ work\ \ .\ \ .$	21
3	Ref	erence	S	32
4	App	oendix		33

Chapter 1

Research Questions

The research seeks to answer the following questions:

- 1. Is there a relationship between working from home and employee motivation?
- 2. Is there a relationship between working from home and job satisfaction?
- 3. Is there a relationship between employee motivation and job satisfaction?
- 4. How do technological skills affect the relationship between employee motivation and job satisfaction when working from home?

Chapter 2

Data

We collected the data using an online survey of Wits University staff members. The survey captured data for 41 variables of interest that covered constructs for job satisfaction, employee motivation, technology, and demographic and personal data. The description of the variables is in the appendix.

The sampling frame consisted of all () staff members of the university in 2021. The survey resulted in 201 questionaires for a desired sample size of 354. To make up for the defficiency, we bootstrapped the data to represent 354 observations. The rest of the analysis draws from these 354 observations.

2.1 Data Reliability

As noted in the methodology section, we used a virtual questionaire to collect the data from the administrative staff of University of the Witwatersrand, Johannesburg. In this ection, we examine the reliability of the data using the Cronbach's Alpha. The Cronbach's Alpha is useful for quantifying reliability of the data by measuring the internal consistency of the data.

Missingness Map

Cronbach's alpha for the 'my_data' data-set

Items: 56

Sample units: 201 alpha: 0.198

Bootstrap 95% CI based on 1000 samples 2.5% 97.5%

0.115 0.265

The Cronbach's \$\$ lies between 0.4 and 0.57 which may indicate poor response. For instance, most of the respondents are female and relatively older. However, the data does lie in the acceptable region.

2.2 Exploring the Data

We start this section by exploring the data set through visualizations. Figure 1 contains the profiles of employees in the sample and that responded to the survey. In Panel C, for instance, 84% of the respondents were female and 16% male. This response profile is problematic given that the sampling frame is different as the University has about 50% male employees []. Even more extreme is the profile for permanent versus part time employees at 93% and 7% (see Panel A), respectively, although this closely follows employee job categories at the University. The profiles for other employee categories including age, experience, marital status, and education level do not possess these extreme qualities. In the regression analysis, we control for the gender of the respondents (see section ()).

Figure 2.1: Respondents Profile (% of Total Count)

We also examine each of the categories of questions in the questionaire that covered the following areas.

- Motivation.
- Job Satisfaction.
- Working from home.
- Technology.

2.2.1 Motivation

Table () below shows the summary statistics of the responses capturing motivation of employees. On a scale of 1 (strongly disagree) to 7 (strongly agree), most respondents (102) strongly disagreed that they had no time to work when working from home (see the median od the variable motiv_no_time_to_work in the table). The other variables have a similar interpretation.

Table 2.1: Summary: Variables Capturing Motivation

Variable	Mean	SD	Min	Q1	Median	Q3	Max
motiv_enough_time_to_work	3.22	2.09	1	2	2	5	7
motiv_work_clearly_explained	3.79	2.22	1	2	4	6	7
$motiv_comfortable_working_hours$	5.08	1.88	1	4	6	6	7
motiv_satisfied_career_progress	4.54	1.88	1	3	5	6	7
$motiv_equipment_tools_efficient$	4.74	1.86	1	3	5	6	7
motiv_adequate_working_area	5.15	1.81	1	4	6	6	7
$motiv_interest_what_i_did$	6.13	1.23	1	6	6	7	7
$motiv_lighting_ventilation_workplace$	5.34	1.89	1	4	6	7	7
$motiv_comfortable_work_environment$	5.50	1.77	1	5	6	7	7

Figure 2.2: Correlation Between Motivation Indicators

2.2.2 Job satisfaction

Table () summarises the responses capturing job satisfaction. As an example, when the researcher posed the question "My day never seemed to end", most respondents strongly disagreed, implying a high degree of job satisfaction.

1 2 3 4 5 6 7 28 28 19 45 14 43 24

Table 2.2: Summary: Variables Capturing Motivation

Variable	Mean	SD	Min	Q1	Median	Q3	Max
js_day_seemed_to_never_end	4.07	1.98	1	2	4	6	7
js_work_disturbed_family_life	4.26	2.13	1	2	5	6	7
js_work_affected_family_respo	4.48	1.99	1	3	5	6	7
js_private_life_positive_effect_work	5.80	1.29	1	5	6	7	7
js_institution_impt_to_me	5.60	1.38	1	5	6	6	7
js_adequate_opp_to_develop_skills	5.18	1.57	1	4	6	6	7
js_could_communicate_all_levels	4.74	1.78	1	3	5	6	7
js_work_affected_private_tasks	3.64	1.85	1	2	4	6	7
js_postpone_job_tasks_due_to_family_respo	2.10	1.28	1	1	2	2	7

Figure 2.3: Correlation Between Job Satisfaction Indicators

2.2.3 Working from Home

Again, Table () below summarises the responses for employees regarding remote work. Most respondents, for instance, strongly agreed that daily and weekly job objectives were clearly stated.

1 2 3 4 5 6 7 3 15 14 19 17 81 52

Table 2.3: Summary: Variables Capturing Work from Home

Variable	Mean	SD	Min	Q1	Median	Q3	Max
wfh_job_objectives_clear_daily_weekly	5.40	1.60	1	4	6	7	7
$wfh_adequate_equipment$	4.82	1.89	1	3	6	6	7
wfh_remote_productivity_office_productivity_equal	5.38	1.91	1	4	6	7	7
$wfh_work_from_home_cannot_be_improved$	3.22	1.79	1	2	3	4	7
$wfh_remote_work_support_growth$	5.40	1.56	1	4	6	7	7
$wfh_online_physical_meetings_equivalent$	5.59	1.59	1	5	6	7	7
$wfh_remote_work_tech_reliable$	5.32	1.80	1	5	6	7	7
$wfh_good_focus_remote_work$	5.44	1.69	1	4	6	7	7
$wfh_not_miss_social_interactions$	4.47	1.95	1	3	5	6	7
$wfh_prefer_remote_work$	5.13	1.83	1	4	6	7	7

Figure 2.4: Correlation Between Working from Home Indicators

2.2.4 Technology

In this section, I visualize the variables that capture the use of technology by employees while working from home. As an example, most employees disagreed that they had problems communicating with colleagues virtually.

Table 2.4: Summary: Variables Capturing Technology

Variable	Mean	SD	Min	Q1	Median	Q3	Max
tech_communication_employees_easy	4.79	1.68	1	4	5	6	7
$tech_acess_work_related_info_hard$	5.16	1.67	1	4	6	7	7
$tech_not_miss_impt_info$	2.84	1.76	0	1	2	4	7
$tech_not_hinder_work$	4.98	1.99	1	4	6	6	7
$tech_remote_help_available_incase_digital_hitches$	5.53	1.30	1	5	6	6	7

Figure 2.5: Correlation Between Working from Home Indicators

2.3 Data Analysis and Discussion of Results

In this section, we will examine the research questions in greater detail.

2.3.1 Principal Components Analysis

To start with, we create aggregate metrics to capture the four variables;

- Motivation.
- Job Satisfaction.
- Working from Home.
- Technology.

To construct these variables from the responses in the questionaires, we apply Principal Components Analysis (PCA). We label these variables motiv for motivation, js for job satisfaction, wfh for working from home, and tech for technology. In each PCA analysis, we extract the first principal component. This first principal component proxies the corresponding metric in answering the research questions.

The output below shows the contributions of each of the components for motivation. The first principal component constitutes 39% of total variance.

Importance of components:

```
PC1
                               PC2
                                     PC3
                                           PC4
                                                  PC5
                                                          PC6
                                                                 PC7
                                                                       PC8
                       1.762 1.170 0.984 0.952 0.8862 0.8234 0.7479 0.622
Standard deviation
Proportion of Variance 0.345 0.152 0.108 0.101 0.0873 0.0753 0.0621 0.043
Cumulative Proportion 0.345 0.497 0.605 0.705 0.7926 0.8679 0.9301 0.973
                          PC9
Standard deviation
                       0.4921
Proportion of Variance 0.0269
Cumulative Proportion 1.0000
```

For job satisfaction, the first principal component constitutes 40% of total variance.

Importance of components:

```
PC6
                               PC2
                                     PC3
                                             PC4
                                                    PC5
                                                                  PC7
                                                                        PC8
                         PC1
Standard deviation
                       1.807 1.213 1.171 0.9432 0.7731 0.7299 0.6606 0.553
Proportion of Variance 0.363 0.163 0.152 0.0988 0.0664 0.0592 0.0485 0.034
Cumulative Proportion 0.363 0.526 0.678 0.7773 0.8437 0.9029 0.9514 0.985
                          PC9
Standard deviation
                       0.3629
Proportion of Variance 0.0146
Cumulative Proportion 1.0000
```

For the wfh variable the first principal component contributes 29% of the total variability.

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Standard deviation 1.917 1.242 1.008 0.9153 0.849 0.800 0.7303 0.6501
Proportion of Variance 0.367 0.154 0.102 0.0838 0.072 0.064 0.0533 0.0423
Cumulative Proportion 0.367 0.522 0.623 0.7069 0.779 0.843 0.8962 0.9385
```

PC9 PC10

Standard deviation 0.6189 0.4819 Proportion of Variance 0.0383 0.0232 Cumulative Proportion 0.9768 1.0000

Lastly, first principal component for technology contributes 52% of the total variability.

Importance of components:

The graphs below shows the contributions of each principal component to the total variability.

Principal Component Analysis, Satisfaction

Principal Component Analysis, Remote Work

16

Principal Component Analysis, Technology

Figure 2.6: Contribution of the Principal Components

2.3.1.1 Visualizing the First Principal Components

In this section, we examine the correlation between the proxies for motivation, job satisfaction, technology, and working from home. Again, these proxies are the first principal components of the measures for motivation, job satisfaction, working from home and technology computed in the previous section.

Figure () shows a significant correlation between the variables. For instance, there is very high positive correlation between the motivation and job satisfaction on the one hand and technology and job satisfaction on the other. However, there appears to be a non-linear relationship between the variables making the correlations less useful.

2.3.2 Remote work and employee motivation?

Figure () below shows the relationship between employee motivation and working from home. The relationship is negative at the initial levels but turns positive at higher levels. In the regression analysis in section () below, we examine the significance of the relationship between employee motivation and working from home in the presence of other related variables.

Correlation Matrix for the First PCA of the Variables

Work from Home and Employee Motivation

2.3.3 Remote work and and job satisfaction?

Figure () below shows the relationship between job satisfaction and working from home. The relationship is negative at the initial levels but flattens at higher levels. This observation goes against the theory. In the regression analysis in section () below, we examine the significance of this relationship in the presence of other related variables.

Work from Home and Job Satisfaction

2.3.4 Employee motivation and job satisfaction?

As expected, Figure () below shows the positive relationship between employee motivation and job satisfaction. In line with the theory, higher employee motivation corresponds to higher job satisfaction. Again , we examine the significance of this relationship in the regression analysis section below.

Motivation and Job Satisfaction

2.3.5 Technological skills, employee motivation and job satisfaction in remote work

Overall, there is a positive relationship between the employee motivation and job satisfaction (see Figure () below). The figure also indicates that employees with better technology skills have higher motivation. However, job satisfaction does not appear to have a significant relationship with the technology. The implication here is that the positive relationship between the employee motivation and job satisfaction arises from other factors beyond profficiency in technology. We discuss some of these other factors in the regression analysis in the next section.

Figure 2.7: Respondents Profile (% of Total Count)

We run a regression analysis of the following form;

 $motivation = 0 + 1 job_s atis faction + n controls + error_t erm$

Where motivation and job satisfaction are variables that captures employee motivation and job satisfaction, respectively. The controls include gender, age group, marital status, education level, employment category, experience, and whether or not the employee worked from home. We also include an interaction of technology and job satisfaction. The interaction is the outcome of interest in this section. The summary of the regression analysis is in the table below.

The regression confirms the outcome of Figure () above. While the relationship between job satisfaction and motivation is positive and significant, the relationship between motivation and the interaction of job satisfaction and technology is not. What are the additional variables that affect the levels of motivation among employees?

The regression table shows that the level of motivation among employees is a function of other variables. These variables include working from home (wfh), age group, marital status, education level, experience. Notably, both technology and job satisfaction are not a significant driver of the level of motivation among employees. However, the flexibility to work from home does positively affect the level of motivation.

Divorced employees had a greater motivation than married or single employees in the sample. Employees with certificate level education had less motivation compared to employees with higher levels of education. Part-time employees have a greater motivation motivation than parmanent employees which is a suprising outcome from the analysis.

Compared to employees with 1-5 years of experience, employees with experience between 6 and 20 years have a greater motivation. On the other hand, employees with experience of 21-25 years have significantly less motivation. Critically, working from home has a significant relationship with employee motivation. Hence, management could explore mechanisms to allow employees to choose remote work where possible.

Note that we do not include age in the regression as it is highly correlated with experience. The regression disagnostics plot in Figure () indicates a mild level of multicollinearity. However, the model is significant with the independent variables explaining 77% of the variation in the dependent variable with a significant F-statistic.

Call: lm(formula = motiv ~ wfh + tech + wfh:tech + age_group + gender + marital + education + employment_category, data = final_data) Residuals: Min 1Q Median 3Q Max -3.552 -0.952 -0.080 0.819 4.207 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.000935 1.482805 0.00 0.9995 wfh 0.418882 0.070240 5.96 1.2e-08 *** tech -0.079085 0.079262 -1.00 0.3197 age group26-35 -0.210003 1.449179 -0.140.8849 age_group36-45 -0.25 0.8044 -0.360835 1.454906 age group46-55 0.299721 1.463210 0.20 0.8379 age_groupOver 55 -0.171695 1.464010 -0.12 0.9068 genderMale 0.403278 0.229911 1.75 0.0811 . maritalmarried -0.370610 0.278494 -1.330.1849 maritalsingle -0.103865 0.335418 -0.31 0.7572 -0.497062 1.060098 -0.470.6397 marital with parents educationGraduate -0.442886 0.269890 -1.640.1025 educationHigh School -0.006066 0.403029 -0.02 0.9880 educationPostgrad 0.757241 0.271056 2.79 0.0058 ** 0.377519 0.16 0.8767 employment categorytemporary 0.058653 wfh:tech -0.079755 0.029572 -2.700.0076 ** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.39 on 185 degrees of freedom Multiple R-squared: 0.421, Adjusted R-squared: 0.374 F-statistic: 8.98 on 15 and 185 DF, p-value: 1.79e-15 Call: lm(formula = js ~ wfh + motiv + motiv:wfh + tech + age_group +

gender + marital + education + employment_category, data = final_data)

Residuals:

Min 1Q Median 3Q Max -4.055 -1.193 -0.196 1.125 3.876

Coefficients:

OUCTITUTE.					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-0.0604	1.6610	-0.04	0.97102	
wfh	0.1831	0.0865	2.12	0.03566	*
motiv	0.3223	0.0855	3.77	0.00022	***
tech	-0.1038	0.0904	-1.15	0.25200	
age_group26-35	-0.0526	1.6249	-0.03	0.97421	
age_group36-45	-0.1128	1.6306	-0.07	0.94493	
age_group46-55	-0.7928	1.6403	-0.48	0.62944	
age_groupOver 55	-0.2984	1.6411	-0.18	0.85591	
genderMale	0.8781	0.2611	3.36	0.00094	***
maritalmarried	0.5691	0.3015	1.89	0.06068	
maritalsingle	0.4465	0.3745	1.19	0.23470	
marital with parents	1.2552	1.1907	1.05	0.29319	
educationGraduate	-0.4290	0.3049	-1.41	0.16109	
educationHigh School	-0.3729	0.4519	-0.83	0.41032	
educationPostgrad	0.0697	0.3106	0.22	0.82270	
${\tt employment_categorytemporary}$	-0.5291	0.4226	-1.25	0.21216	
wfh:motiv	-0.0974	0.0330	-2.95	0.00360	**

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.56 on 184 degrees of freedom Multiple R-squared: 0.313, Adjusted R-squared: 0.253 F-statistic: 5.23 on 16 and 184 DF, p-value: 5.36e-09

Call:

lm(formula = motiv ~ wfh + wfh:tech, data = final_data)

Residuals:

Min 1Q Median 3Q Max -2.960 -1.065 -0.338 1.019 3.978

Estimate Std. Error t value Pr(>|t|) (Intercept) -0.1079 0.1155 -0.93 0.352 0.4668 0.0565 8.27 1.9e-14 *** wfh 0.036 * wfh:tech -0.0601 0.0284 -2.11

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.47 on 198 degrees of freedom Multiple R-squared: 0.311, Adjusted R-squared: 0.304 F-statistic: 44.7 on 2 and 198 DF, p-value: <2e-16

Call:

lm(formula = js ~ wfh + explained + age_group + tech + gender + marital + education + employment_category, data = final_data)

Residuals:

Min 1Q Median Max -3.393 -1.175 -0.203 1.342 4.278

Coefficients:

0001110101101.					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-0.2445	1.7162	-0.14	0.88688	
wfh	0.8871	0.2903	3.06	0.00258	**
explained	-1.1432	0.5687	-2.01	0.04588	*
age_group26-35	-0.3094	1.6759	-0.18	0.85373	
age_group36-45	-0.3151	1.6825	-0.19	0.85167	
age_group46-55	-0.8256	1.6921	-0.49	0.62620	
age_groupOver 55	-0.5182	1.6930	-0.31	0.75989	
tech	-0.0933	0.0917	-1.02	0.30999	
genderMale	1.0427	0.2659	3.92	0.00012	***
maritalmarried	0.6661	0.3221	2.07	0.04001	*
maritalsingle	0.5824	0.3879	1.50	0.13497	
maritalwith parents	1.3145	1.2259	1.07	0.28498	
${\tt educationGraduate}$	-0.5738	0.3121	-1.84	0.06758	
educationHigh School	-0.3497	0.4661	-0.75	0.45405	
${\tt educationPostgrad}$	0.3420	0.3135	1.09	0.27671	

27

 $\verb|employment_categorytemporary| -0.4975 & 0.4366 & -1.14 & 0.25598|$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.61 on 185 degrees of freedom Multiple R-squared: 0.264, Adjusted R-squared: 0.204 F-statistic: 4.41 on 15 and 185 DF, p-value: 4.51e-07

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Fri, Feb 03, 2023 - 21:01:25

Table 2.6: Regression output

	Dependent vari- able:			
	motiv (1)	js (2)	motiv (3)	js (4)
wfh	0.419*** (0.070)	0.183** (0.087)	0.467*** (0.056)	0.887*** (0.290)
motiv		0.322*** (0.086)		
explained				-1.140** (0.569)
tech	-0.079 (0.079)	-0.104 (0.090)		-0.093 (0.092)
$age_group26-35$	-0.210 (1.450)	-0.053 (1.620)		-0.309 (1.680)
age_group36-45	-0.361	-0.113		-0.315

	(1.460)	(1.630)		(1.680)
age_group46-55	0.300 (1.460)	-0.793 (1.640)		-0.826 (1.690)
age_groupOver 55	-0.172 (1.460)	-0.298 (1.640)		-0.518 (1.690)
genderMale	0.403* (0.230)	0.878*** (0.261)		1.040*** (0.266)
maritalmarried	-0.371 (0.278)	0.569* (0.302)		0.666** (0.322)
maritalsingle	-0.104 (0.335)	0.447 (0.375)		0.582 (0.388)
marital with parents	-0.497 (1.060)	1.250 (1.190)		1.310 (1.230)
${\bf education Graduate}$	-0.443 (0.270)	-0.429 (0.305)		-0.574* (0.312)
educationHigh School	-0.006 (0.403)	-0.373 (0.452)		-0.350 (0.466)
${\it educationPostgrad}$	0.757*** (0.271)	0.070 (0.311)		0.342 (0.313)
${ m employment_categorytemporary}$	0.059 (0.378)	-0.529 (0.423)		-0.497 (0.437)
wfh:tech	-0.080*** (0.030)		-0.060** (0.028)	

Table 2.6: Regression output

wfh:motiv		-0.097*** (0.033)		
Constant	-0.001	-0.060	-0.108	-0.244
	(1.480)	(1.660)	(0.116)	(1.720)
Observations R^2 Adjusted R^2 Residual Std. Error F Statistic	201	201	201	201
	0.421	0.313	0.311	0.264
	0.374	0.253	0.304	0.204
	1.390 (df = 185)	1.560 (df = 184)	1.470 (df = 198)	1.610 (df = 185)
	8.980^{***} (df = 15; 185)	5.230**** (df = 16; 184)	44.700^{***} (df = 2; 198)	4.420^{***} (df = 15; 185)
Note:	*p<0.1; **p<0.05; ***p<0.01			

Table 2.5: Regression output

		Dependent variable:	t variable:	
	motiv	js	motiv	js
wfh	0.419 (0.070)	0.183 (0.087)	0.467 (0.056)	0.887 (0.290)
motiv		0.322 (0.086)		
explained				1.140 (0.569)
tech	0.079 (0.079)	0.104 (0.090)		0.093 (0.092)
age_group26-35	0.210 (1.450)	0.053 (1.620)		0.309 (1.680)
age_group36-45	0.361 (1.460)	0.113 (1.630)		0.315 (1.680)
age_group46-55	0.300 (1.460)	0.793 (1.640)		0.826 (1.690)
age_groupOver 55	0.172 (1.460)	0.298 (1.640)		0.518 (1.690)
genderMale	0.403 (0.230)	0.878 (0.261)		1.040 (0.266)
maritalmarried	0.371 (0.278)	0.569 (0.302)		0.666 (0.322)
maritalsingle	0.104 (0.335)	0.447 (0.375)		0.582 (0.388)
maritalwith parents	0.497 (1.060)	1.250 (1.190)		1.310 (1.230)
education Graduate	0.443 (0.270)	0.429 (0.305)		0.574 (0.312)
educationHigh School	0.006 (0.403)	0.373 (0.452)		0.350 (0.466)
education Postgrad	$\begin{array}{c} 0.757 \ 30 \\ (0.271) \end{array}$	0.070 (0.311)		0.342 (0.313)
$employment_category temporary$	0.059 (0.378)	0.529 (0.423)		0.497 (0.437)
wfh:tech	0.080 (0.030)		0.060 (0.028)	
wfh:motiv		0.097 (0.033)		
Constant	0.001 (1.480)	0.060 (1.660)	0.108 (0.116)	0.244 (1.720)
Observations R ² Adjusted R ² Residual Std. Error F Statistic	201 0.421 0.374 1.390 (df = 185) 8.980 (df = 15; 185)	201 0.313 0.253 1.560 (df = 184) 5.230 (df = 16; 184)	201 0.311 0.304 1.470 (df = 198) 44.700 (df = 2; 198)	201 0.264 0.204 1.610 (df = 185) 4.420 (df = 15; 185)
))))

Note:

Figure 2.8: Regression Diagnosis

Chapter 3

References

Chapter 4

Appendix