(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)物許出類公表哲号

特表平7-509136

第1部門第1区分

(43)公表日 平成7年(1995)10月12日

		100 MACD THAT F (1000) 10 M 12 (
(\$1) Int,Cl.*	歲別記号 庁内臺理器	→ FI
C12Q 1/68	ZNA A 9453-4B	
C12N 15/09		
C12Q 1/70	9453-4B	
G01N 33/53	Y 7055-2J	
	9281 - 4 B	C12N 15/00 A
	審查 證	戌 未請求 予備審査請求 有 (全40頁) 最終質に続く
(21) 出願册号	特颇平6-504652	(71)出願人 アプロジェネックス インク
(86) (22)出版日	平成5年(1993)7月19日	アメリカ合衆国 77054 テキサス州 ヒ
(85)翻訳文提出日	平成7年(1995)1月17日	ューストン エル リオ 8000
(86)国際出眾爭号	PCT/US93/06828	(72)発明を アスガリ, モルテッツァ
(87)国際公開番号	WO94/02646	アメリカ合衆図 77459 テキサス州 ミ
(87) 国際公開日	平成6年(1994)2月3日	ズーリ シティー ミードークリークドラ
(31) 優先權主張番号	915.966	イプ 2842
(32) 優先日	1992年7月17日	(72)発明者 プラシャド、ナギンドラ
(33) 優先權主張回	米国 (US)	アメリカ合衆国 77025 テキサス州 ヒ
		ューストン ティンパーサイド 9703
		(74)代基人 弁理士 大管 義之
		最終質に続く

(54) 【発明の名称】 インサイチュ (IN SITU)・ハイブリダイゼーションのための母体直液中の胎児細胞の富化と同定

(57)【契約】

胎児の性別、遺伝的終後あるいは異常、感染体あるい は他の化学的、生化学的あるいは遺伝子的特徴が、胎児 細胞の核酸ハイブリダイゼーションにより検出される。 in Situハイブリダイゼーション検定法を提供するため : 母体血液中を循環する胎児細胞を強化 (富化)、検出を して特をする。この技術は一つの細胞中の一つの遺伝的 異常(約75塩基対を含む)を、目視顕微鏡試験で検出 することが可能である。遺伝的異常とは欠失、付加、増 加、転座あるいは再配列を含む。多くの異常性を同時に 検出し、そしてそれらを色による目視で識別できる。細 欧は辛水契頼、減毛サンプリング、あるいは胚準の試験 管培養、あるいは妊娠の産物から得ることが自来るが、 しかし好ましくは母体末梢血液から得ることである。リ ンパ球、赤血球あるいは栄養茅屑のような船児細胞は、 母体血液から強化(富化)できる。赤血球は細胞表面抗 原、列えばCD45に対する固定化気体で母体自血球を除 き、宮化出来る。胎児細胞は密度勾配遊心分離性で富化 できる。耐児細胞は、例えばサイトケラチンあるいは胎 児性ヘモグロビンに対する標識抗体による染色により、

あるいは蛤児性ヘモグロビンに対してはヘマトキシリン /ニネシン法で、また例えば蛤児性ヘモグロビンあるい はフェト蛋白質のような一乃至それ以上の舶児性のRAS を検出するin situ・ハイブリダイゼーション法で母体 銀閥から識別可能である。関示した方法に用いるキット も提供されている。