Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1.	(Currently Amended) A light emitting device comprising:
	_a substrate;
	_a transparent electrode formed on said substrate;
	_a layer of light emitting material provided over the transparent electrode and
having at leas	et one corrugated surface;, and
	_a further electrode formed over the light emitting material; and
	a conductive polymer layer formed over the transparent electrode, the
conductive po	olymer layer having a corrugated surface opposite to a surface facing the
transparent el	ectrode, and the light emitting material being in contact with said corrugated
surface of the	conductive polymer layer.

- 2. (Original) A light emitting device as claimed in claim 1, wherein the light emitting material is an organic material.
- 3. (Previously Presented) A light emitting device as claimed in claim 1, wherein the substrate has a corrugated surface.
 - 4. (Canceled)
- 5. (Previously Presented) A light emitting device as claimed in claim 1, wherein the light emitting material has an absorption coefficient of less than 1000cm⁻¹.
- 6. (Previously Presented) A light emitting device as claimed in claim 1, wherein the light emitting material comprises a conjugated polymer.
- 7. (Currently Amended) A light emitting device as claimed in any of claims

 1-claim 1, wherein the light emitting material comprises a polyflourine derivative.

8. (Previously Presented) A light emitting device as claimed in claim 1, wherein the corrugated surface has a pitch Λ according to the equation:

$$\Lambda = v\lambda_0/n\sin\theta_m$$

in which angle θ_m is the angle of reflection from the upper and lower surfaces of the layer of light emitting material of light propagating in a waveguide mode m in the light emitting material, λ_0 is the output wavelength, and n and v are integers.

- 9. (Previously Presented) A light emitting device as claimed in claim 1, wherein the pitch of the corrugated surface is in the range 300 to 450nm.
- 10. (Currently Amended) A light emitting device as claimed in claim 1, wherein the corrugated surface has a one-dimensional periodic structure pitch only in a first dimension.
- 11. (Currently Amended) A light emitting device as claimed in claim 1, wherein the corrugated surface has a two-dimensional periodic structure pitch in a first and a second dimension.
- 12. (Previously Presented) A light emitting device as claimed in claim 1, wherein the corrugated surface has a three-dimensional periodic structure.
- 13. (Previously Presented) A light emitting device as claimed in claim 1, wherein the corrugated surface has the structure of a chirping grating.
- 14. (Previously Presented) A light emitting device as claimed in claim 1, wherein the layer of light emitting material has a plurality of regions each of which has a corrugated surface with a respectively different pitch.
- 15. (Currently Amended) A method of manufacturing a light emitting device comprising the steps of:

 _______providing a substrate;

 ______forming a transparent electrode on said substrate;

	_providing a layer of light emitting material over the transparent electrode;
	_arranging for the light emitting surface to have at least one corrugated surface;
and	
	forming a further electrode over the light emitting material; and
	forming a conductive polymer layer over the transparent electrode, wherein the
step of arrangi	ng for the light emitting surface to have at least one corrugated surface includes
providing a co	rrugated surface on the conductive polymer layer on a surface of the conductive
polymer layer	opposite to a surface facing the transparent electrode, and wherein the light
emitting mater	rial is provided in contact with the corrugated surface of the conductive polymer
layer.	
16.	(Original) A method of manufacturing a light emitting device as claimed in
claim 15, when	rein the step or arranging for the light emitting surface to have at least one
corrugated sur	face includes providing a corrugated surface on the substrate.
17.	(Currently Amended) A method of manufacturing a light emitting device as
claimed in clai	m 16, comprising the steps of:
	providing the substrate with a photo-setting resin;
	forming the corrugated surface on the substrate by shaping the resin using a
mold; and	
	setting the resin by illuminating it with radiation.
18.	(Canceled)
19.	(Currently Amended) A method of manufacturing a light emitting device as
claimed in clai	m 18claim 15, comprising the steps of:
	forming the corrugated surface on the conductive polymer layer by shaping the
layer with a po	lymer mold; and
	setting the layer by applying heat.

20.	(Currently Amended) A method of manufacturing a light emitting device as	
claimed in ele	aim 18claim 15, comprising the step of providing a corrugated surface on the	
conductive polymer layer comprises; comprising:		
	_spin coating a conductive polymer material on to the transparent electrode;	
	_spin coating a conductive polymer material on to the corrugated surface of a	
mold ₅ ;		
	_positioning the spin coated mold on the conductive polymer layer provided on	
the transparer	nt electrode so as to sandwich the two conductive polymer layers together; and	
	_subsequently removing the mold.	
21.	(New) A light emitting device comprising:	
	a substrate;	
	a transparent electrode formed on said substrate;	
	a layer of light emitting material provided over the transparent electrode and	
having at least one corrugated surface; and		
	a further electrode formed over the light emitting material wherein the light	
emitting mate	rial comprises a polyflourine derivative.	
22.	(New) A light emitting device as claimed in claim 21, wherein the substrate	
has a corrugat	ed surface.	

- 23. (New) A light emitting device as claimed in claim 21, wherein the light emitting material has an absorption coefficient of less than 1000cm⁻¹.
- 24. (New) A light emitting device as claimed in claim 21, wherein the corrugated surface has a pitch Λ according to the equation: -

 $\Lambda = v\lambda_0/n\sin\theta_m$

in which angle θ_m is the angle of reflection from the upper and lower surfaces of the layer of light emitting material of light propagating in a waveguide mode m in the light emitting material, λ_0 is the output wavelength, and n and v are integers.

- 25. (New) A light emitting device as claimed in claim 21, wherein the pitch of the corrugated surface is in the range 300 to 450nm.
- 26. (New) A light emitting device as claimed in claim 21, wherein the corrugated surface has a pitch only in a first dimension.
- 27. (New) A light emitting device as claimed in claim 21, wherein the corrugated surface has a pitch in a first and a second dimension.
- 28. (New) A light emitting device as claimed in claim 21, wherein the corrugated surface has a three-dimensional periodic structure.
- 29. (New) A light emitting device as claimed in claim 21, wherein the corrugated surface has the structure of a chirping grating.
- 30. (New) A light emitting device as claimed in claim 21, wherein the layer of light emitting material has a plurality of regions each of which has a corrugated surface with a respectively different pitch.
 - 31. (New) A light emitting device comprising:

a substrate;

a transparent electrode formed on said substrate;

a layer of light emitting material provided over the transparent electrode and having at least one corrugated surface;

a further electrode formed over the light emitting material; and wherein the corrugated surface has a pitch Λ according to the equation: -

 $\Lambda = v\lambda_0/n\sin\theta_m$

in which angle θ_m is the angle of reflection from the upper and lower surfaces of the layer of light emitting material of light propagating in a waveguide mode m in the light emitting material, λ_0 is the output wavelength, and n and v are integers.

- 32. (New) A light emitting device as claimed in claim 31, wherein the light emitting material is an organic material.
- 33. (New) A light emitting device as claimed in claim 31, wherein the substrate has a corrugated surface.
- 34. (New) A light emitting device as claimed in claim 31, wherein the light emitting material has an absorption coefficient of less than 1000cm⁻¹.
- 35. (New) A light emitting device as claimed in claim 31, wherein the light emitting material comprises a conjugated polymer.
- 36. (New) A light emitting device as claimed in claim 31, wherein the pitch of the corrugated surface is in the range 300 to 450nm.
- 37. (New) A light emitting device as claimed in claim 31, wherein the corrugated surface has a pitch only in a first dimension.
- 38. (New) A light emitting device as claimed in claim 31, wherein the corrugated surface has a pitch in a first and a second dimension.
- 39. (New) A light emitting device as claimed in claim 31, wherein the corrugated surface has a three-dimensional periodic structure.
- 40. (New) A light emitting device as claimed in claim 31, wherein the corrugated surface has the structure of a chirping grating.
- 41. (New) A light emitting device as claimed in claim 31, wherein the layer of light emitting material has a plurality of regions each of which has a corrugated surface with a respectively different pitch.

- 42. (New) A light emitting device comprising:
 - a substrate;
 - a transparent electrode formed on said substrate;
- a layer of light emitting material provided over the transparent electrode and having at least one corrugated surface; and
- a further electrode formed over the light emitting material wherein the corrugated surface has the structure or a chirping grating.
- 43. (New) A light emitting device as claimed in claim 42, wherein the light emitting material is an organic material.
- 44. (New) A light emitting device as claimed in claim 42, wherein the substrate has a corrugated surface.
- 45. (New) A light emitting device as claimed in claim 42, wherein the light emitting material has an absorption coefficient of less than 1000cm⁻¹.
- 46. (New) A light emitting device as claimed in claim 42, wherein the light emitting material comprises a conjugated polymer.