

COMP8118-A5

UNIVERSITY OF MEMPHIS

S. Parisa Daj. U00743495 Data Mining Assignment 10/3/2022

ID	x1	x2	у	
0	1	3	1	1
1	2	3	-1	1
2	3	6	1	1
3	4	6	-1	1
4	5	1	0	-1
5	6	0	1	-1
6	7	0	-1	-1
7	8	-1	0	-1

From < https://9z83mig9uzk-496ff2e9c6d22116-0colab.googleusercontent.com/outputframe.html?vrz=colab-20220930-060045-RC01_478073889>

Q1.

- a. Linearly Seperable? Yesb. Support Vectors: [1, 0.], [3, 1.], [3, -1.]
- c. Decision Boundaries:

Decision surface of linear SVC

d. Predict(0, 0) = negative Predict(3, 3) = Positive

Decision surface of linear SVC

Timestamps	x_1	x_2	y
t_1	0.3	0.6	0.2
t_2	0.1	1.0	0.4

a.
$$s0 = y0 = 0$$

Step 1: Input Forward Propagation

1. Forget gate variable:
$$f_t = \sigma(W_f, [x_t \ y_{t-1}] + b_f)$$

$$f_1 = \sigma(W_f. [x_1, y_0] + b_f) = \sigma\left(\begin{pmatrix} 0.7 \\ 0.4 \\ 0.1 \end{pmatrix}. \begin{pmatrix} 0.3 \\ 0.6 \\ 0 \end{pmatrix} + 0.1\right)$$
$$= \sigma(0.55) = 0.6341$$

$$f_2 = \sigma(W_f. [x_2, y_1] + b_f) = \sigma\left(\begin{pmatrix} 0.7 \\ 0.4 \\ 0.1 \end{pmatrix}. \begin{pmatrix} 0.1 \\ 1.0 \\ 0.2 \end{pmatrix} + 0.1\right)$$
$$= \sigma(0.59) = 0.6434$$

2. Input gate variable: $i_t = \sigma(W_i, [x_t \ y_{t-1}] + b_i)$

$$i_1 = \sigma(W_i. [x_1, y_0] + b_i) = \sigma\left(\begin{pmatrix} 0.2 \\ 0.6 \\ 0.7 \end{pmatrix}. \begin{pmatrix} 0.3 \\ 0.6 \\ 0 \end{pmatrix} + 0.4 \right)$$

= $\sigma(0.82) = 0.6942$

$$i_2 = \sigma(W_i. [x_2, y_1] + b_i) = \sigma\left(\begin{pmatrix} 0.2 \\ 0.6 \\ 0.7 \end{pmatrix}. \begin{pmatrix} 0.1 \\ 1.0 \\ 0.2 \end{pmatrix} + 0.4\right)$$

= $\sigma(1.16) = 0.7613$

3. Input activation variable: $a_t = \tanh(W_a.[x_t, y_{t-1}] + b_a)$

$$a_1 = \tanh(W_a. [x_1, y_0] + b_a) = \tanh\begin{pmatrix} \begin{pmatrix} 0.3 \\ 0.2 \\ 0.1 \end{pmatrix}. \begin{pmatrix} 0.3 \\ 0.6 \\ 0 \end{pmatrix} + 0.3$$
$$= \tanh(0.51) = 0.4699$$

$$a_2 = \tanh(W_a. [x_2, y_1] + b_a) = \tanh\left(\begin{pmatrix} 0.3 \\ 0.2 \\ 0.1 \end{pmatrix}. \begin{pmatrix} 0.1 \\ 1.0 \\ 0.2 \end{pmatrix} + 0.3\right)$$
$$= \tanh(0.55) = 0.5005$$

4. Internal state variable:
$$s_t = f_t$$
. $s_{t-1} + i_t$. a_t

$$s_1 = f_1. s_0 + i_1. a_1 = 0.6341 * 0 + 0.6942 * 0.4699 = 0.3262$$

$$s_2 = f_2. s_1 + i_2. a_2 = 0.6434 * 0.3262 + 0.7613 * 0.5005 = 0.5909$$

5. Output gate variable: $o_t = \sigma(W_0 \cdot [x_t, y_(t-1)] + b_0)$

$$\begin{aligned} o_1 &= \sigma(W_o. [x_1, y_0] + b_o) = \sigma\left(\begin{pmatrix} 0.6 \\ 0.3 \\ 0.1 \end{pmatrix}. \begin{pmatrix} 0.3 \\ 0.6 \\ 0 \end{pmatrix} + 0.2 \right) \\ &= \sigma(0.56) = 0.6364 \\ o_2 &= \sigma(W_o. [x_2, y_1] + b_o) = \sigma\left(\begin{pmatrix} 0.6 \\ 0.3 \\ 0.1 \end{pmatrix}. \begin{pmatrix} 0.1 \\ 1.0 \\ 0.2 \end{pmatrix} + 0.2 \right) \\ &= \sigma(0.58) = 0.6411 \end{aligned}$$

6. Final output variable: $y_t = o_t \cdot \tanh(s_t)$

$$y_1 = o_1$$
, $\tanh(s_1) = 0.6364 * \tanh(0.3262) = 0.2005$
 $y_2 = o_2$, $\tanh(s_2) = 0.6411 * \tanh(0.5909) = 0.3401$

b. Errors

$$e_1 = y_1 - y_{1_old} = 0.2005 - 0.2 = 0.0005$$

 $e_2 = y_2 - y_{2_old} = 0.3401 - 0.4 = -0.0599$