Functional Analysis Reading Group

Orthogonality (section 4.2)

02/10/2022

Today's menu

Now that we're living in inner-product spaces, we can define what it means for two vectors to be *orthogonal*, which entails

- Orthogonal/Orthonormal bases
- Orthogonalizing a basis

Orthonormal bases are very useful, both mathematically and numerically, so having them on function spaces is good©.

NB. Most of the results in this section hold for inner product spaces.

Orthogonal vectors / Orthonormal set

Let $(X,\langle\cdot,\cdot
angle)$ \$ be an inner product space

- 1. Vectors $x,y\in X$ are orthogonal if $\langle x,y
 angle=0$
- 2. A set $S \subset X$ is orthonormal if
 - $egin{array}{l} \circ \ orall x,y \in S$, s.t. x
 eq y, $\langle x,y
 angle = 0$
 - $|\cdot| orall x \in S$, $\|x\|^2 = \langle x, x
 angle = 1$

Examples of orthnormal sets (1)

$$ullet$$
 $\left\{e_1=egin{bmatrix}1\\0\\\vdots\\0\end{bmatrix},\ldots,e_d=egin{bmatrix}0\\\vdots\\1\end{bmatrix}
ight\}$ (one-hot vectors)

ullet ℓ^2 : $\{e_i \mid i \in \mathbb{N}\}$ where e_i is the i-th "one-hot sequence"

Examples of orthonormal sets (2)

In C[0,1], the Fourier basis $\{F_n|n\in\mathbb{Z}\}$, defined as $F_n(t)=e^{2\pi i n t}$

is an orthonormal set.

Indeed, it is an orthonormal basis of C[0,1], and taking the Fourier series decomposition of a function f is equivalent to expressing f in that basis!

Orthonormal sets and basis expansions

Given an orthonormal set $\{u_k|k\in K\}$, and a vector x in its span, we can write

$$x = \sum_{k \in K} lpha_k u_k$$

where

$$lpha_k = \langle x, u_k
angle$$

Moreover, any orthonormal set is always linearly independent.

Gram-Schmidt orthonormalisation

Given a linearly independent subset $\{x_1, x_2 \ldots\}$, we can construct an orthonormal set $\{u_1, u_2, \ldots\}$ by the following procedure:

1.
$$u_1=rac{x_1}{\|x_1\|}$$
2. $u_n=rac{x_n-\sum_{k=1}^{n-1}\langle x_n,u_k
angle u_k}{\|x_n-\sum_{k=1}^{n-1}\langle x_n,u_k
angle u_k\|}$ for $n\geq 2$

The constructed set $\{u_1,u_2,\ldots\}$ has the same span as the original set, i.e. for all $n\in\mathbb{N}$

$$\mathrm{span}\{u_1,\ldots,u_n\}=\mathrm{span}\{x_1,\ldots,x_n\}$$

Orthonormal sets of polynomials

The set of monomials $\{1,t,t^2,t^3,\ldots\}$ is a linearly independent set in C[-1,1], but it is not orthonormal!

Applying Gram-Schmidt orthogonalization to it yields the Legendre polynomials, which satisfy

$$P_n(t) = rac{1}{n!2^n}igg(rac{d}{dt}igg)^n(t^2-1)^n.$$

and are orthogonal, with norm $\|P_n\|^2=rac{2}{2n+1}$

Other orthonormal bases of polynomials

ullet Hermite polynomials (Ex 4.13) (orthogonal set of polynomials over $L^2(\mathbb{R})$)

$$H_n(x)=(-1)^ne^{x^2}igg(rac{d}{dx}igg)^ne^{-x^2}$$

ullet Chebyshev polynomials $(x\in[-1,1])$

$$T_n(x) = \cos(n\arccos(x))$$

Note: These families of functions (Fourier, Legendre, Hermite, ...) tend to show up as fundamental solutions of classical ODEs from physics

Orthogonal complement

Given a subspace Y of an inner product space X, the orthogonal complement Y^\perp of Y is defined as

$$Y^{\perp} = \{x \in X \mid \langle x,y
angle = 0, orall y \in Y \}$$

This generalizes the notion of "hyperplane"

Properties of the orthogonal complement

- ullet Y^{\perp} is a closed subspace of X
- $Y \cap Y^{\perp} = \{0\}$ (Ex. 4.16)
- ullet $Y\subset Y^{\perp\perp}=(Y^\perp)^\perp$ (4.17)
- ullet $Y\subset Z \ \Rightarrow \ Z^{\perp}\subset Y^{\perp}$
- $ullet Y^\perp = (ar{Y})^\perp$
- ullet Y dense in $X \Rightarrow Y^\perp = \{0\}$

Concluding remarks

Stepping into inner product spaces is already yielding us benefits:

- Basis decomposition into an orthogonal basis is tractable (mathematically and numerically)
- We get "hyperplanes" of vectors in the same space as our vectors
- Connection to famous ODEs from physics

PSA

- From now on, the meetings will be scheduled by default on Sundays at the "usual time" (20:00 GMT)
- Next meeting on the 23/10/2022 (unless someone is willing to do the recap in my stead)
- Feedback wanted! How are you finding these meetings?