PW2

October 8, 2025

0.1 Geometrische Optik

1 Bestimmung von Brennweite

Die Brennweite f einer Linse wir durch die Abbildunggleichung mittels gegenstandsweite g und bildweite b gegeben:

$$\frac{1}{f} = \frac{1}{b} + \frac{1}{g} \tag{1}$$

Dafür wird im ersten Teil 10-mal die Bild und gegenstandsweite einer Konkavlinse gemessen und daraus mittels Gl.1 die Brennweite ermittelt. Damit wird der Mittelwert und dessen Abweichung bestimmt.

2 Bessel-verfahren

Mittels Besselverfahren kann ebenfalls die Brennweite einer Linse ermittelt werden, wobei hier die distanz zwischen dem Schirm und Objekt e als auch die verschiebung der Linse benötigt werden. Dabei ist Wichtig das $e \ge 4f$ ist. Die Gleichung für dei Brennweite lautet in diesem fall:

$$f = \frac{1}{4}(e - \frac{d^2}{e})\tag{2}$$

hiebrei werde 5 messungen zu verschiedenen Distanzen e gemacht und davon der Mittelwert gebildet.

3 Konkavlinse Brennweite

Die Brennweite der Konkavlinse wird erneut durch Abbildungsgleichung bestimmt, wobei diese jedoch kein Reelles bild erzeugt. Deswegen wird eine Konvexlinse davor gegeben und mittles

$$g_2 = -(b_1 - d) (3)$$

Die Gegenstandsweite g_2 der Konkavlinse bestimmt. Zusätzlich wird die Bildweite b_2 direkt gemessen. b_1 ist die Bildweite der Konvexlinse und d ist der Abstand der beiden linsen. Diese messung wurde zweimal durchgeführt um einen vergleichwert zu machen.

4 Ergebnisse

Konvexlinse:

$$D = (6.6 \pm 0.5) \frac{1}{m}$$

Konvexlinse Besselverfahren:

$$D = (6.5 \pm 0.5) \frac{1}{m}$$

Konkavlinse:

$$D = (-2.3 \pm 0.5) \frac{1}{m}$$

Die unsicherheiten wurden aufgrund subjekitver wahrnehmung auf

$$\pm 0.5 \frac{1}{m}$$

angehoben. Die Werte stimmen jedoch mit angepasster unsicherheit mit dem angeschriebenen Wert überein.

	Brennweite f [mm?]
0	(151.24 ± 0.43)
1	(154.13 ± 0.43)
2	(151.97 ± 0.43)
3	(153.18 ± 0.43)
4	(152.46 ± 0.43)
5	(152.46 ± 0.43)
6	(152.22 ± 0.43)
7	(150.50 ± 0.43)
8	(150.25 ± 0.43)
9	(152.22 ± 0.43)
mittel	(152.06 ± 0.37)
$\frac{1}{2} - D = 0$	$-(6.58 \pm / -0.02)\frac{1}{}$

$$\frac{1}{f} = D = (6.58 + / -0.02) \frac{1}{m}$$

$$D = (6.58 \pm 0.5~)\frac{1}{m}$$

Besselverfahren

	Brennweite f [mm?]			
0	(153.39 ± 0.47)			
1	(153.58 ± 0.51)			
2	(154.40 ± 0.55)			
3	(154.26 ± 0.58)			
4	(153.60 ± 0.61)			
mittel	(153.84 ± 0.20)			
$\frac{1}{f} = D = (6.50 + / -0.01 \) \frac{1}{m}$				
$D = (6.50 \pm 0.5 \) \frac{1}{m}$				
Brennweite f [mm?]				
0	(-411.72 ± 3.83)			
1	(-481.08 ± 4.64)			
mittel	(-446.40 ± 34.68)			
$\frac{1}{f} = D = (-2.24 + / -0.17 \) \frac{1}{m}$				
$D = (-2.24 \pm 0.5 \) \frac{1}{m}$				

4.0.1 Diskussion

Konkavlinse Schirm im Bereich $600\mathrm{mm}$ - $735\mathrm{mm}$ immernoch subjekitv "Scharf"

5 Aberration

Kurze Erklärung zu aberration und was gemessen wird.

5.0.1 Ergebnisse

Ferne Bildweite b_f [mm]	Nahe Bildweite b_n [mm]	
(276.00 ± 1.41)	(318.00 ± 1.41)	
(270.00 ± 1.41)	(316.00 ± 1.41)	
(276.00 ± 1.41)	(319.00 ± 1.41)	
(283.00 ± 1.41)	(316.00 ± 1.41)	
(279.00 ± 1.41)	(317.00 ± 1.41)	
	,	
_	_	
$b_f = (276.80 \pm 2.13)$	$b_f = (317.20 \pm 0.58)$	
$b_f = (277 \pm 5)$	$b_n = (317 \pm 5)$	

Rote Bildweite $b_r \ [\mathrm{mm}]$ Grüne Bildweite $b_g \ [\mathrm{mm}]$ Blaue Bildweite $b_b \ [\mathrm{mm}]$

(188.00 ± 1.41)	(190.00 ± 1.41)	(188.00 ± 1.41)
(188.00 ± 1.41)	(190.00 ± 1.41)	(187.00 ± 1.41)
(188.00 ± 1.41)	(191.00 ± 1.41)	(187.00 ± 1.41)
(187.00 ± 1.41)	(189.00 ± 1.41)	(188.00 ± 1.41)
(188.00 ± 1.41)	(189.00 ± 1.41)	(189.00 ± 1.41)
(187.00 ± 1.41)	(188.00 ± 1.41)	(186.00 ± 1.41)
(187.67 ± 0.21)	(189.50 ± 0.43)	(187.50 ± 0.43)
$b_r = (188 \pm 5)$	$b_g = (190 \pm 5)$	

5.1 Diskussion

Für Sphärische aberration ist ein deutlicher unterschied zu erkennen.

Chromatische Aberration zeigt kaum einen unterschied besonders bei annahme höhere Unsicherheiten