Dynamic Impact of Trade Liberalization: Evidence from U.S.-Korea FTA

Soo Kyung Woo

University of Rochester

March 2, 2023

• One of the most effective bilateral trade liberalizations

- One of the most effective bilateral trade liberalizations
- Greatly contributed to global integration in the last few decades

- One of the most effective bilateral trade liberalizations
- Greatly contributed to global integration in the last few decades
- Affects an economy through different channels
 - Easier export
 - Higher domestic competition
 - Cheaper inputs

- One of the most effective bilateral trade liberalizations
- Greatly contributed to global integration in the last few decades
- Affects an economy through different channels
 - Easier export
 - Higher domestic competition
 - Cheaper inputs

What are the distributional effects of the FTA?

• Standard average tariff under-evaluates a prohibitive power

- Standard average tariff under-evaluates a prohibitive power
 - eg. High tariff small import value small weight

- Standard average tariff under-evaluates a prohibitive power
 - eg. High tariff small import value small weight
 - Any type of trade-weighted measures (Industry shift-share measures)

- Standard average tariff under-evaluates a prohibitive power
 - eg. High tariff small import value small weight
 - Any type of trade-weighted measures (Industry shift-share measures)
- Different channels may unfold at different timing
 - Literature focuses on the long-run effects

- Standard average tariff under-evaluates a prohibitive power
 - eg. High tariff small import value small weight
 - Any type of trade-weighted measures (Industry shift-share measures)
- Different channels may unfold at different timing
 - Literature focuses on the long-run effects
 - Dynamics have different implication for welfare (Alessandria et al. 2017)

- Standard average tariff under-evaluates a prohibitive power
 - eg. High tariff small import value small weight
 - Any type of trade-weighted measures (Industry shift-share measures)
- Different channels may unfold at different timing
 - Literature focuses on the long-run effects
 - Dynamics have different implication for welfare (Alessandria et al. 2017)

→ Use an improved measure to estimate dynamic effects

This Paper

- Introduces measures of trade barriers
 - Based on demand structure of Armington trade model
 - 3 types: exports, foreign competition, intermediate import

This Paper

- Introduces measures of trade barriers
 - Based on demand structure of Armington trade model
 - 3 types: exports, foreign competition, intermediate import
- Estimates dynamic response in local outcomes
 - State level variation geographic distributional effect
 - Local projection method (Jorda 2005)

This Paper

- Introduces measures of trade barriers
 - Based on demand structure of Armington trade model
 - 3 types: exports, foreign competition, intermediate import
- Estimates dynamic response in local outcomes
 - State level variation geographic distributional effect
 - Local projection method (Jorda 2005)
- US-Korea Free Trade Agreement
 - Largest FTA for the US since NAFTA
 - Signed 2007; Effective 2012; Revised 2018

• Changes in trade barriers were equivalent to tariff rates of 7% (export), 2.6% (imports), and 2% (intermediate imports)

- Changes in trade barriers were equivalent to tariff rates of 7% (export), 2.6% (imports), and 2% (intermediate imports)
- Dynamic effects of FTA on wages and consumption
 - Lower export barrier has no impact
 - Lower protective barrier has persistent negative impact (1%p)
 - Lower input barrier has transitory positive impact (0.5%)

- Changes in trade barriers were equivalent to tariff rates of 7% (export), 2.6% (imports), and 2% (intermediate imports)
- Dynamic effects of FTA on wages and consumption
 - Lower export barrier has no impact
 - Lower protective barrier has persistent negative impact (1%p)
 - Lower input barrier has transitory positive impact (0.5%)
- Using the new measures yields much more precise results

Literature

Measure of trade barriers

Anderson and Neary 1994, 1996; Kee et al. 2008, 2009; Kovak 2013 *Contribution*: More comprehensive measure that captures all channels of tariffs

• Regional impact of trade

Autor et al. 2013; Waugh 2019; Benguria and Saffie 2020 *Contribution*: More precise identification of dynamics along the transition

Impact of trade through global value chain

Amiti and Konings 2007; Kasahara and Rodrigue 2008; Topalova and Khandelwal 2011; Flaaen and Pierce 2019; Handley et al. 2020 *Contribution:* New perspective on welfare of US households

- Consider demand structure of Armington trade model
 - Common to nearly all international models with more than one good

- Consider demand structure of Armington trade model
 - Common to nearly all international models with more than one good
- Export from *m* to *n*:

$$X_{mn} = \left[rac{p_m(1+ au_n)}{P_n}
ight]^{-arepsilon_n} Y_n \qquad P_n = \left[\sum_L \left(p_L(1+ au_n)
ight)^{arepsilon_n}
ight]^{1/arepsilon_n}$$

• τ_n : Tariff rate in n, p_m : Price of m products, P_n : Aggregate price index in n, ε_n : Demand elasticity in n, Y_n : Total expenditure in n

- Consider demand structure of Armington trade model
 - Common to nearly all international models with more than one good
- Export from *m* to *n*:

$$X_{mn}(au_n) = \left[rac{p_m(1+ au_n)}{P_n}
ight]^{-arepsilon_n} Y_n \qquad P_n = \left[\sum_L \left(p_L(1+ au_n)
ight)^{arepsilon_n}
ight]^{1/arepsilon_n}$$

• τ_n : Tariff rate in n, p_m : Price of m products, P_n : Aggregate price index in n, ε_n : Demand elasticity in n, Y_n : Total expenditure in n

- Consider demand structure of Armington trade model
 - Common to nearly all international models with more than one good
- Export from *m* to *n*:

$$X_{mn}(\tau_n) = \left[\frac{p_m(1+\tau_n)}{P_n}\right]^{-\varepsilon_n} Y_n \qquad P_n = \left[\sum_L \left(p_L(1+\tau_n)\right)^{\varepsilon_n}\right]^{1/\varepsilon_n}$$

- τ_n : Tariff rate in n, p_m : Price of m products, P_n : Aggregate price index in n, ε_n : Demand elasticity in n, Y_n : Total expenditure in n
- For state S, consider total exports to Korea

$$X_{SK}^{i}(au_{K}^{i}) = \left[rac{p_{S}^{i}(1+ au_{K}^{i})}{P_{K}^{i}}
ight]^{-arepsilon_{K}^{i}}Y_{K}^{i}$$

- Consider demand structure of Armington trade model
 - Common to nearly all international models with more than one good
- Export from *m* to *n*:

$$X_{mn}(\tau_n) = \left[\frac{p_m(1+\tau_n)}{P_n}\right]^{-\varepsilon_n} Y_n \qquad P_n = \left[\sum_L (p_L(1+\tau_n))^{\varepsilon_n}\right]^{1/\varepsilon_n}$$

- τ_n : Tariff rate in n, p_m : Price of m products, P_n : Aggregate price index in n, ε_n : Demand elasticity in n, Y_n : Total expenditure in n
- For state S, consider total exports to Korea

$$\sum_{i} X_{SK}^{i}(\tau_{K}^{i}) = \sum_{i} \left[\frac{p_{S}^{i}(1 + \tau_{K}^{i})}{P_{K}^{i}} \right]^{-\varepsilon_{K}} Y_{K}^{i}$$

- Consider demand structure of Armington trade model
 - Common to nearly all international models with more than one good
- Export from *m* to *n*:

$$X_{mn}(au_n) = \left[rac{p_m(1+ au_n)}{P_n}
ight]^{-arepsilon_n} Y_n \qquad P_n = \left[\sum_L \left(p_L(1+ au_n)
ight)^{arepsilon_n}
ight]^{1/arepsilon_n}$$

- τ_n : Tariff rate in n, p_m : Price of m products, P_n : Aggregate price index in n, ε_n : Demand elasticity in n, Y_n : Total expenditure in n
- For state S, consider total exports to Korea

$$\sum_{i} X_{SK}^{i}(\tau_{K}^{i}) = \sum_{i} \left[\frac{p_{S}^{i}(1 + \tau_{K}^{i})}{P_{K}^{i}} \right]^{-\varepsilon_{K}^{i}} Y_{K}^{i}$$

Measure tariff impact on total exports?

$$\sum_{i} X_{SK}^{i}(\tau_{K}^{i})$$

$$\sum_{i} X_{SK}^{i}(B_{S}^{Export}) = \sum_{i} X_{SK}^{i}(\tau_{K}^{i})$$

$$\sum_{i} X_{SK}^{i} (B_{S}^{Export}) = \sum_{i} X_{SK}^{i} (\tau_{K}^{i})$$
$$\sum_{i} dX_{SK}^{i} \cdot B_{S}^{Export} = \sum_{i} dX_{SK}^{i} \cdot \tau_{K}^{i}$$

$$\begin{split} \sum_{i} X_{SK}^{i}(B_{S}^{Export}) &= \sum_{i} X_{SK}^{i}(\tau_{K}^{i}) \\ \sum_{i} dX_{SK}^{i} \cdot B_{S}^{Export} &= \sum_{i} dX_{SK}^{i} \cdot \tau_{K}^{i} \\ \text{where} \quad X_{SK}^{i}(\tau_{K}^{i}) &= \left[\frac{p_{S}^{i}(1 + \tau_{K}^{i})}{P_{K}^{i}}\right]^{-\varepsilon_{K}^{i}} Y_{K}^{i} \end{split}$$

$$\begin{split} \sum_{i} X_{SK}^{i}(B_{S}^{Export}) &= \sum_{i} X_{SK}^{i}(\tau_{K}^{i}) \\ \sum_{i} dX_{SK}^{i} \cdot B_{S}^{Export} &= \sum_{i} dX_{SK}^{i} \cdot \tau_{K}^{i} \\ \text{where} \quad X_{SK}^{i}(\tau_{K}^{i}) &= \left[\frac{p_{S}^{i}(1 + \tau_{K}^{i})}{P_{K}^{i}}\right]^{-\varepsilon_{K}^{i}} Y_{K}^{i} \end{split}$$

$$B_{S}^{Export} = \frac{\sum_{i} X_{SK}^{i} \left(1 - X_{SK}^{i} / Y_{K}^{i}\right) \varepsilon_{K}^{i} \tau_{K}^{i}}{\sum_{i} X_{SK}^{i} \left(1 - X_{SK}^{i} / Y_{K}^{i}\right) \varepsilon_{K}^{i}}$$

1. Export Barrier: Korean tariff impact on **total exports** from state *S* to Korea

2. Protective Barrier: US tariff impact on **domestic sales** from state *S* to US

3. Input Barrier: US tariff impact on intermediate imports from Korea to state S

1. Export Barrier: Korean tariff impact on **total exports** from state *S* to Korea

$$\sum_{i} X_{SK}^{i}(B_{S}^{Export}) = \sum_{i} X_{SK}^{i}(\tau_{K}^{i})$$

2. Protective Barrier: US tariff impact on **domestic sales** from state S to US

3. Input Barrier: US tariff impact on intermediate imports from Korea to state S

1. Export Barrier: Korean tariff impact on **total exports** from state *S* to Korea

$$\sum_{i} X_{SK}^{i}(B_{S}^{Export}) = \sum_{i} X_{SK}^{i}(\tau_{K}^{i})$$

2. Protective Barrier: US tariff impact on **domestic sales** from state *S* to US

$$\sum_{i} X_{S,US}^{i}(B_{S}^{Prot}) = \sum_{i} X_{S,US}^{i}(\tau_{US}^{i})$$

3. Input Barrier: US tariff impact on **intermediate imports** from Korea to state S

Measure of Trade Barriers

1. Export Barrier: Korean tariff impact on **total exports** from state *S* to Korea

$$\sum_{i} X_{SK}^{i}(B_{S}^{Export}) = \sum_{i} X_{SK}^{i}(\tau_{K}^{i})$$

2. Protective Barrier: US tariff impact on **domestic sales** from state *S* to US

$$\sum_{i} X_{S,US}^{i}(B_{S}^{Prot}) = \sum_{i} X_{S,US}^{i}(\tau_{US}^{i})$$

3. Input Barrier: US tariff impact on **intermediate imports** from Korea to state S

$$\sum_{i \in Intmd} X_{KS}^{i}(B_{S}^{Input}) = \sum_{i \in Intmd} X_{KS}^{i}(\tau_{US}^{i})$$

Measures of Trade Barriers

1. Export Barrier

$$B_{S}^{Export} = \frac{\sum_{i} X_{SK}^{i} \left(1 - X_{SK}^{i} / Y_{K}^{i}\right) \ \varepsilon_{K}^{i} \ \tau_{K}^{i}}{\sum_{i} X_{SK}^{i} \left(1 - X_{SK}^{i} / Y_{K}^{i}\right) \ \varepsilon_{K}^{i}}$$

2. Protective Barrier

$$B_{S}^{Prot} = \frac{\sum_{i} (X_{K,US}^{i} X_{S,US}^{i} / Y_{US}^{i}) \varepsilon_{US}^{i} \tau_{US}^{i}}{\sum_{i} (X_{K,US}^{i} X_{S,US}^{i} / Y_{US}^{i}) \varepsilon_{US}^{i}}$$

3. Input Barrier

$$B_{S}^{lnput} = \frac{\sum_{i \in Intmd} X_{KS}^{i} \left(1 - X_{KS}^{i} / M_{S}^{i}\right) \varepsilon_{US}^{i} \tau_{US}^{i}}{\sum_{i \in Intmd} X_{KS}^{i} \left(1 - X_{KS}^{i} / M_{S}^{i}\right) \varepsilon_{US}^{i}}$$

Data

- Unit of analysis: state in the US
- Annual tariff schedule (USITC, Korea Ministry of Trade)
- Product classification: HS6 (5,087 Korean and 4,316 US tariff lines)
- Trade elasticity: Kee (2008)
- UN Comtrade, BEA, Census, Korea Statistics

Barriers before and after the FTA

	B (%)	ΔB since FTA (%p)						
	2011	2012	2013	2014	2015	2016		
Export Barrier B ^{Export}								
25th percentile	4.73	-2.27	0.18	0.02	0.43	0.22		
50th percentile	6.98	-3.76	-0.65	-0.58	0.17	-0.08		
75th percentile	10.06	-5.58	-1.30	-1.35	-0.43	-0.55		
Protective Barrier B ^{Prot}								
25th percentile	1.74	0.04	-0.02	0.31	0.24	0.04		
50th percentile	2.64	-0.72	-0.43	-0.09	-0.17	-0.18		
75th percentile	4.11	-1.24	-0.80	-0.40	-0.51	-0.46		
Input Barrier B ^{Input}								
25th percentile	0.87	-0.05	0.19	0.17	0.07	0.15		
50th percentile	2.03	-0.62	-0.03	-0.11	-0.01	-0.06		
75th percentile	3.30	-1.89	-0.42	-0.45	-0.53	-0.41		

$$\Delta_{h} y_{s,t+h} = \mu_{s}^{h} + \mu_{t+h}^{h} + \beta_{X}^{h} \Delta_{1} B_{st}^{Export} + \beta_{P}^{h} \Delta_{1} B_{st}^{Prot} + \beta_{I}^{h} \Delta_{1} B_{st}^{Input} + \sum_{k=1}^{2} \gamma_{k}^{h} \Delta_{1} y_{s,t-k} + \varepsilon_{t+h}$$

Local projection (Direct multi-step sequential regressions)

$$\Delta_{h} y_{s,t+h} = \mu_{s}^{h} + \mu_{t+h}^{h} + \beta_{X}^{h} \Delta_{1} B_{st}^{Export} + \beta_{P}^{h} \Delta_{1} B_{st}^{Prot} + \beta_{I}^{h} \Delta_{1} B_{st}^{Input} + \sum_{k=1}^{2} \gamma_{k}^{h} \Delta_{1} y_{s,t-k} + \varepsilon_{t+h}$$

- Local projection (Direct multi-step sequential regressions)
- $\bullet \ \Delta_h \ y_{s,t+h} = y_{s,t+h} y_{s,t-1}$

$$\Delta_{h} y_{s,t+h} = \mu_{s}^{h} + \mu_{t+h}^{h} + \beta_{X}^{h} \Delta_{1} B_{st}^{Export} + \beta_{P}^{h} \Delta_{1} B_{st}^{Prot} + \beta_{I}^{h} \Delta_{1} B_{st}^{Input} + \sum_{k=1}^{2} \gamma_{k}^{h} \Delta_{1} y_{s,t-k} + \varepsilon_{t+h}$$

- Local projection (Direct multi-step sequential regressions)
- $\bullet \ \Delta_h \ y_{s,t+h} = y_{s,t+h} y_{s,t-1}$
- $\beta^h = \mathbb{E}(\Delta_h \ y_{s,t+h}|\Delta B_t = 1\%p, \mathcal{X}) \mathbb{E}(\Delta_h \ y_{s,t+h}|\Delta B_t = 0, \mathcal{X})$

$$\Delta_{h} y_{s,t+h} = \mu_{s}^{h} + \mu_{t+h}^{h} + \beta_{X}^{h} \Delta_{1} B_{st}^{Export} + \beta_{P}^{h} \Delta_{1} B_{st}^{Prot} + \beta_{I}^{h} \Delta_{1} B_{st}^{Input} + \sum_{k=1}^{2} \gamma_{k}^{h} \Delta_{1} y_{s,t-k} + \varepsilon_{t+h}$$

- Local projection (Direct multi-step sequential regressions)
- $\bullet \ \Delta_h \ y_{s,t+h} = y_{s,t+h} y_{s,t-1}$
- $\beta^h = \mathbb{E}(\Delta_h \ y_{s,t+h}|\Delta B_t = 1\%p, \mathcal{X}) \mathbb{E}(\Delta_h \ y_{s,t+h}|\Delta B_t = 0, \mathcal{X})$
- $h = 0, 1, 2, \dots, 12$ and $h = -1, -2, \dots, -12$

$$\Delta_{h} y_{s,t+h} = \mu_{s}^{h} + \mu_{t+h}^{h} + \beta_{X}^{h} \Delta_{1} B_{st}^{Export} + \beta_{P}^{h} \Delta_{1} B_{st}^{Prot} + \beta_{I}^{h} \Delta_{1} B_{st}^{Input} + \sum_{k=1}^{2} \gamma_{k}^{h} \Delta_{1} y_{s,t-k} + \varepsilon_{t+h}$$

- Local projection (Direct multi-step sequential regressions)
- $\bullet \ \Delta_h \ y_{s,t+h} = y_{s,t+h} y_{s,t-1}$
- $\beta^h = \mathbb{E}(\Delta_h \ y_{s,t+h}|\Delta B_t = 1\%p, \mathcal{X}) \mathbb{E}(\Delta_h \ y_{s,t+h}|\Delta B_t = 0, \mathcal{X})$
- $h = 0, 1, 2, \dots, 12$ and $h = -1, -2, \dots, -12$
- All three barriers in one regression identify each channel controlling for others

$$\Delta_{h} y_{s,t+h} = \mu_{s}^{h} + \mu_{t+h}^{h} + \beta_{X}^{h} \Delta_{1} B_{st}^{Export} + \beta_{P}^{h} \Delta_{1} B_{st}^{Prot} + \beta_{I}^{h} \Delta_{1} B_{st}^{Input} + \sum_{k=1}^{2} \gamma_{k}^{h} \Delta_{1} y_{s,t-k} + \varepsilon_{t+h}$$

- Local projection (Direct multi-step sequential regressions)
- $\bullet \ \Delta_h \ y_{s,t+h} = y_{s,t+h} y_{s,t-1}$
- $\beta^h = \mathbb{E}(\Delta_h \ y_{s,t+h}|\Delta B_t = 1\%p, \mathcal{X}) \mathbb{E}(\Delta_h \ y_{s,t+h}|\Delta B_t = 0, \mathcal{X})$
- $h = 0, 1, 2, \dots, 12$ and $h = -1, -2, \dots, -12$
- All three barriers in one regression identify each channel controlling for others
- ΔB_t not correlated, although at the product level tariff changes may be correlated

Cumulative Response to Lower Barriers: GDP

Labor Market Response: Employment

Employment Driven by Changes in Labor Force

Similar Responses in Wages

Implications for Welfare: Consumption

Export Barrier vs. Average Export Tariff

Export Barrier vs. Average Export Tariff

• Enables much more precise estimation with smaller standard errors

Protective/Input Barrier vs. Average Import Tariff

Protective/Input Barrier vs. Average Import Tariff

• Separate out positive/negative impact of import tariff

Protective/Input Barrier vs. Average Import Tariff

- Separate out positive/negative impact of import tariff
- Smaller standard errors

Robustness checks

- Number of lags
- Control future/past shocks
- Quarterly frequency
- Sample period
- Wage/earnings from other data sources (QCEW, BEA SAGDP)

Conclusion

- FTA reduced trade barriers on exports (7%), domestic protection (2.6%), intermediate imports (2%)
- FTA effect takes time to realize
 - Lower protective barrier has largest persistent negative impact
 - Lower input barrier has transitory positive impact
- Identification requires theoretically sound quantification of trade barriers

Comparison of the Methods

Long-Run Diff-in-Diff

$$\Delta_h y_{st} = \gamma_X^h \Delta_h B_{st}^X + \gamma_P^h \Delta_h B_{st}^P + \gamma_I^h \Delta_h B_{st}^I + \epsilon_{st}$$

Personal Income		Wages and Salaries		
LR DD	Local projection	LR DD	Local projection	
0.20	0.20**	0.28**	0.26***	
(0.15)	(0.09)	(0.11)	(0.06)	
-0.13	-0.17***	-0.03	-0.34***	
(0.16)	(0.06)	(0.22)	(80.0)	
-0.04	-0.29*	0.21	-0.25	
(0.36)	(0.15)	(0.38)	(0.24)	
	0.20 (0.15) -0.13 (0.16) -0.04	LR DD Local projection 0.20 0.20** (0.15) (0.09) -0.13 -0.17*** (0.16) (0.06) -0.04 -0.29*	LR DD Local projection LR DD 0.20 0.20** 0.28** (0.15) (0.09) (0.11) -0.13 -0.17*** -0.03 (0.16) (0.06) (0.22) -0.04 -0.29* 0.21	

Comparison of the Results

- Autor et al, (2013)
 - With Chinese import penetration, -4.5% fall in manufacturing employees, 0.8% larger decline in mean log weekly earnings
- Waugh (2020)
 - 1%p higher Chinese retaliatory tariff: -1%p consumption growth
- Amiti and Konings (2007)
 - 1%p lower input tariff leads to 1.2% productivity gain
- Trefler (2003)
 - smaller export tariff impact than import tariff impact with U.S.-Canada FTA

Measure of Trade Barriers

• Export Barrier

$$B_{S}^{Export} = \frac{\sum_{i} w_{S}^{i} \varepsilon_{K}^{i} \tau_{K}^{i}}{\sum_{i} w_{S}^{i} \varepsilon_{K}^{i}} \qquad w_{S}^{i} = X_{SK}^{i} \left(1 - X_{SK}^{i} / Y_{K}^{i}\right)$$

Protective Barrier

$$\mathcal{B}_{S}^{Prot} = \frac{\sum_{i} w_{S}^{i} \varepsilon_{US}^{i} \tau_{US}^{i}}{\sum_{i} w_{S}^{i} \varepsilon_{US}^{i}} \qquad w_{S}^{i} = (X_{K,US}^{i} X_{S,US}^{i} / Y_{US}^{i})$$

Input Barrier

$$B_{S}^{Input} = \frac{\sum_{i \in Intmd} w_{S}^{i} \varepsilon_{US}^{i} \tau_{US}^{i}}{\sum_{i \in Intmd} w_{S}^{i} \varepsilon_{US}^{i}} \qquad w_{S}^{i} = X_{KS}^{i} \left(1 - X_{KS}^{i} / M_{S}^{i}\right)$$

Decomposition of Trade Barriers

$$B_{S} = \frac{\sum_{i} w_{S}^{i} \varepsilon^{i} \tau^{i}}{\sum_{i} w_{S}^{i} \varepsilon^{i}}$$

$$= \sum_{i} w_{S}^{i} \widehat{\varepsilon}_{S}^{i} \tau^{i}$$

$$= \sum_{i} w_{S}^{i} \tau^{i} + \sum_{i} w_{S}^{i} (\tau^{i} - \overline{\tau}_{S})(\widehat{\varepsilon}^{i} - \overline{\varepsilon}_{S})$$

$$\overline{\tau}_{S} = \sum_{i} w_{S}^{i} \tau^{i}, \quad \overline{\varepsilon}_{S} = \sum_{i} w_{S}^{i} \varepsilon^{i}, \quad \widehat{\varepsilon}_{S}^{i} = \varepsilon_{S}^{i} / \overline{\varepsilon}_{S}$$

- Different weights w^i reflect three different channels of tariff impact
- Covariance term reflects prohibitive power of tariffs

 ΛR^{Export}

 ΔR^{Prot}

 ΔR^{Input}

Time FE

State FE R^2

Observations

Wage and Salary

Quarter 4

-0.12**

(0.05)

-0.71***

(0.27)

0.55***

(0.20)

YES

YES

0.654

969

Table: Point estimates of cumulative response

Quarter 12

0.13

(80.0)

-1.03***

(0.40)

0.40*

(0.21)

YES

YES

0.870

918

Quarter 8

0.00

(0.07)

-1.22***

(0.39)

0.88***

(0.24)

YES

YES

0.717

969

Consumption

0.09

(0.08)

-0.81**

(0.39)

0.79**

(0.35)

YES

YES

0.795

254

Year 2

Year 1

0.04

(0.07)

-0.57**

(0.29)

0.56*

(0.30)

YES

YES

0.747

254

Year 3

0.09

(0.09)

-0.68*

(0.39)

0.86*

(0.46)

YES

YES

0.861

204

27/22