Вводная лекция Методы оптимизации

Александр Безносиков

Московский физико-технический институт

4 сентября 2025

Команда курса: лектор

- Безносиков Александр Николаевич
- почта: beznosikov.an@phystech.edu, anbeznosikov@gmail.com
- tg: @abeznosikov

Команда курса: семинаристы

- Андреев Артем Викторович tg: @artyomandreyev
- Богданов Александр Иванович tg: @d0dos
- Былинкин Дмитрий Андреевич tg: @lxstsvund
- Кормаков Георгий Владимирович tg: @gkormakov
- Корнилов Никита Максимович tg: @Tugnir

Команда курса: лектор и семинаристы

- Моложавенко Александр Александрович tg: @MetaMelon
- Ребриков Алексей Витальевич tg: @NoblFriend
- Ткаченко Светлана tg: @Aikiseito
- Чежегов Савелий Андреевич tg: @Savochak
- Хафизов Фанис Адикович tg: @faniskhafizov

Команда курса: ассистенты

- Давыденко Григорий
- Иванов Максим
- Левин Леонид
- Максимов Роман
- Парфенова Анна
- Терехова Ольга
- Трифонов Степан
- Чирков Георгий
- Шалыгин Игорь

Правила игры: система оценивания

Вид активности	Баллы
тесты на 10 минут в начале	3
каждого семинара по теме	
прошлой лекции и прошлого	
семинара	
домашнее задание (выдается	3 + 3
каждую неделю)	
контрольная работа в	3
середине семестра по темам	
лекций и семинаров	
коллоквиум в конце семестра	3
по темам лекций и семинаров	
Итого:	15

Правила игры: система оценивания

- Для получения оценки удовлетворительно и выше необходимо, чтобы было выполнено хотя бы одно из следующих условий: оценка за коллоквиум ≥ 1 , оценка за KP ≥ 1 .
- Для получения оценки хорошо и выше необходимо, чтобы было выполнено оба следующих условия: оценка за коллоквиум ≥ 1 , оценка за $\mathsf{KP} \geq 1$.

Правила игры: комментарии

- Ни один из видов активности не является 100% обязательным, но смотри дополнительные правила выше.
- Тесты будут проводиться на каждом семинаре.
- ДЗ будут появляться в четверг. Время на выполнение: 2 недели
- ДЗ состоит из двух частей: основной и дополнительной.
 Основная часть легче и предполагается, что ее достаточно для хорошего погружения в курс, дополнительная часть для более глубого погружения в заинтересовавшие темы.
- При подозрении в списывании ДЗ баллы за конкретное домашнее задание обнуляются у всех авторов, подозреваемых в списывании (в том числе и у тех, кто дал списать).
- КР состоится 8 ноября в 9:00.

Правила игры: комментарии

 Коллоквиум проходит в конце семестра во время последнего семинара и на зачетной неделе (на выбор). Программа коллоквиума соответствует всей программе курса, изученной в рамках лекций и семинаров. Принимают коллоквиум семинарист и несколько приглашенных преподавателей. Процедура коллоквиума соответствует процедуре проведения обычного устного экзамена на Физтехе с билетами, дополнительными вопросами/задачами и беседой в рамках курса.

Немного истории

- 1847: Коши и градиентный спуск для линейных систем
- 1950ые: линейное программирование (быстро перешло в нелинейное программирование), появление стохастических методов
- 1980ые: появление теории для общих задач.
- 2010ые: задачи оптимизации большого размера, теория стохастических методов

Задача оптимизации

$$\min_{\substack{g_i(x)\&0,\\i=1,\ldots,m,\\x\in Q}} f(x)$$

- ullet $Q\subseteq \mathbb{R}^d$ подмножество d-мерного пространства
- ullet $f:Q o\mathbb{R}$ некоторая функция, заданная на множестве Q
- ullet В качестве & берётся \le либо =
- ullet $g_i(x):Q o\mathbb{R}$, $i=1,\ldots,m$ функции, задающие ограничения

Задача оптимизации

$$\min_{\substack{g_i(x)\&0,\\i=1,\ldots,m,\\x\in Q}} f(x)$$

- ullet $Q\subseteq \mathbb{R}^d$ подмножество d-мерного пространства
- ullet $f:Q o\mathbb{R}$ некоторая функция, заданная на множестве Q
- ullet В качестве & берётся \le либо =
- ullet $g_i(x):Q o\mathbb{R},\ i=1,\ldots,m$ функции, задающие ограничения

Вопрос: что можно сказать про эту задач? сложная ли эта задача?

Задачи оптимизации. Первые наблюдения.

- **1** В общем случае задачи оптимизации могут не иметь решения. Например, задача $\min_{x \in \mathbb{R}} x$ не имеет решения.
- 2 Задачи оптимизации часто нельзя решить аналитически.
- **3** Их сложность зависит от вида целевой функции f, множества Q и может зависеть от размерности x.

Задачи оптимизации. Первые наблюдения.

- **1** В общем случае задачи оптимизации могут не иметь решения. Например, задача $\min_{x \in \mathbb{R}} x$ не имеет решения.
- 2 Задачи оптимизации часто нельзя решить аналитически.
- ③ Их сложность зависит от вида целевой функции f, множества Q и может зависеть от размерности x.

Если же задача оптимизации имеет решение, то на практике её обычно решают, вообще говоря, приближённо. Для этого применяются специальные алгоритмы, которые и называют методами оптимизации.

Методы оптимизации

- Нет смысла искать лучший метод для решения конкретной задачи. Например, лучший метод для решений задачи $\min_{x \in \mathbb{R}^d} \|x\|^2$ сходится за 1 итерацию: этот метод просто всегда выдаёт ответ $x^*=0$. Очевидно, что для других задач такой метод не пригоден.
- Эффективность метода определяется для класса задач, т.к. обычно численные методы разрабатываются для *приближённого* решения множества однотипных задач.
- Метод разрабатывается для класса задач ⇒ метод не может иметь с самого начала полной информации о задаче. Вместо этого метод использует модель задачи, например, формулировку задачи, описание функциональных компонент, множества, на котором происходит оптимизация и т.д.

Вопрос: Какого рода вопросы хочется задавать оракулу?

Вопрос: Какого рода вопросы хочется задавать оракулу?

Вопрос: Какого рода вопросы хочется задавать оракулу?

Примеры оракулов

- Оракул нулевого порядка в запрашиваемой точке x возвращает значение целевой функции f(x).
- Оракул первого порядка в запрашиваемой точке возвращает значение функции f(x) и её градиент в данной точке $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$.
- Оракул второго порядка в запрашиваемой точке возвращает значение и градиент функции $f(x), \nabla f(x)$, а также её гессиан в данной точке $\left(\nabla f^2(x)\right)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$.

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$. Настройка. Задать k = 0 (счётчик итераций) и $I_{-1} = \emptyset$ (накапливаемая информационная модель решаемой задачи).

Входные данные: начальная точка x^0 (0 — верхний индекс), требуемая точность решения задачи $\varepsilon>0$. Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи). Основной цикл

 $oldsymbol{0}$ Задать вопрос к оракулу \mathcal{O} в точке x^k .

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- **1** Задать вопрос к оракулу \mathcal{O} в точке x^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (x^k, \mathcal{O}(x^k))$.

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- **1** Задать вопрос к оракулу \mathcal{O} в точке x^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (x^k, \mathcal{O}(x^k))$.
- f 3 Применить правило метода ${\cal M}$ для получения новой точки x^{k+1} по модели I_k .

Входные данные: начальная точка x^0 (0 — верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- **1** Задать вопрос к оракулу \mathcal{O} в точке x^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (x^k, \mathcal{O}(x^k))$.
- footnotesize 3 Применить правило метода ${\cal M}$ для получения новой точки x^{k+1} по модели I_k .
- **4** Проверить критерий остановки $\mathcal{T}_{\varepsilon}$. Если критерий выполнен, то выдать ответ \bar{x} , иначе положить k:=k+1 и вернуться на шаг 1.

Рассмотрим задачу оптимизации

$$\min_{x\in\mathbb{R}^d}f(x),$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Рассмотрим задачу оптимизации

$$\min_{x\in\mathbb{R}^d}f(x),$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Алгоритм 1 Градиентный спуск с постоянным размером шага

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma \nabla f(x^k)$
- 4: end for

Выход: x^K

Рассмотрим задачу оптимизации

$$\min_{x\in\mathbb{R}^d} f(x),$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Алгоритм 1 Градиентный спуск с постоянным размером шага

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma \nabla f(x^k)$
- 4: end for

Выход: x^K

Вопрос: в чем Алгоритм 1 отличается от определения общей итеративной схемы?

Рассмотрим задачу оптимизации

$$\min_{x\in\mathbb{R}^d}f(x),$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Алгоритм 1 Градиентный спуск с постоянным размером шага

Вход: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma \nabla f(x^k)$
- 4: end for

Выход: x^K

Вопрос: в чем Алгоритм 1 отличается от определения общей итеративной схемы? В итеративной схеме использовался $\mathcal{T}_{\varepsilon}$.

• По аргументу: $||x^k - x^*|| \le \varepsilon$.

Вопрос: какие проблемы тут видим?

• По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• x^* – неизвестно, но можно так:

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*||.$$

Тогда если $\|x^{k+1}-x^*\|\leq \|x^k-x^*\|\leq \varepsilon$, следует $\|x^{k+1}-x^k\|\leq 2\varepsilon$ (в обратную сторону, очевидно, неверно). $\|x^{k+1}-x^k\|\leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|x^k-x^*\|\to 0$.

• По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• x^* – неизвестно, но можно так:

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*||.$$

Тогда если $\|x^{k+1}-x^*\|\leq \|x^k-x^*\|\leq \varepsilon$, следует $\|x^{k+1}-x^k\|\leq 2\varepsilon$ (в обратную сторону, очевидно, неверно). $\|x^{k+1}-x^k\|\leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|x^k-x^*\|\to 0$.

• x^* – не уникально. Тогда можно поменять следующий критерий

По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• x^* – неизвестно, но можно так:

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*||.$$

Тогда если $\|x^{k+1}-x^*\|\leq \|x^k-x^*\|\leq \varepsilon$, следует $\|x^{k+1}-x^k\|\leq 2\varepsilon$ (в обратную сторону, очевидно, неверно). $\|x^{k+1}-x^k\|\leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|x^k-x^*\|\to 0$.

- x^* не уникально. Тогда можно поменять следующий критерий
- По функции: $f(x^k) f^* \le \varepsilon$.

Часто f^* известно, например, для $f(x) = \|Ax - b\|^2$. На практике можно использовать $|f(x^k) - f(x^{k+1})|$.

• По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• x^* – неизвестно, но можно так:

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*||.$$

Тогда если $\|x^{k+1}-x^*\|\leq \|x^k-x^*\|\leq \varepsilon$, следует $\|x^{k+1}-x^k\|\leq 2\varepsilon$ (в обратную сторону, очевидно, неверно). $\|x^{k+1}-x^k\|\leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|x^k-x^*\|\to 0$.

- x^* не уникально. Тогда можно поменять следующий критерий
- По функции: $f(x^k) f^* \le \varepsilon$.

Часто f^* известно, например, для $f(x) = \|Ax - b\|^2$. На практике можно использовать $|f(x^k) - f(x^{k+1})|$.

• По норме градиента: $\|\nabla f(\mathbf{x}^k)\| \leq \varepsilon$.

Вопрос: когда такой критерий можно использовать?

20 / 36

Критерии останова

• По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• x^* – неизвестно, но можно так:

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*||.$$

Тогда если $\|x^{k+1}-x^*\|\leq \|x^k-x^*\|\leq \varepsilon$, следует $\|x^{k+1}-x^k\|\leq 2\varepsilon$ (в обратную сторону, очевидно, неверно). $\|x^{k+1}-x^k\|\leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|x^k-x^*\|\to 0$.

- x^* не уникально. Тогда можно поменять следующий критерий
- По функции: $f(x^k) f^* \le \varepsilon$.

Часто f^* известно, например, для $f(x) = \|Ax - b\|^2$. На практике можно использовать $|f(x^k) - f(x^{k+1})|$.

• По норме градиента: $\|\nabla f(x^k)\| \le \varepsilon$.

Вопрос: когда такой критерий можно использовать? В безусловной оптимизации

Сложность методов оптимизации

- Аналитическая/Оракульная сложность число обращений к оракулу, необходимое для решения задачи с точностью ε .
- Арифметическая/Временна'я сложность общее число вычислений (включая работу оракула), необходимых для решения задачи с точностью ε .

$$\min_{x \in B_d} f(x)$$

- $B_d = \{x \in \mathbb{R}^d \mid 0 \le x_i \le 1, \quad i = 1, ..., d\}$
- ullet Функция f(x) является M-липшицевой на B_d относительно ℓ_∞ -нормы:

$$\forall x, y | f(x) - f(y) | \le M ||x - y||_{\infty} = M \max_{i=1,...,d} |x_i - y_i|.$$

Наблюдение

Множество B_d является ограниченным и замкнутым, т.е. компактом, а из липшицевости функции f следует и её непрерывность, поэтому задача (22) имеет решение, ибо непрерывная на компакте функция достигает своих минимального и максимального значений. Пусть $f^* = \min_{x \in B_d} f(x)$.

- Класс методов. Для данной задачи рассмотрим методы нулевого порядка.
- Цель: найти $\bar{x} \in B_d$: $f(\bar{x}) f^* \le \varepsilon$.

Рассмотрим один из самых простых способов решения этой задачи — метод равномерного перебора.

Алгоритм 2 Метод равномерного перебора

Вход: целочисленный параметр перебора $p \geq 1$

- 1: Сформировать $(p+1)^d$ точек вида $x_{(i_1,\ldots,i_d)}=\left(\frac{i_1}{p},\frac{i_2}{p},\ldots,\frac{i_d}{p}\right)^{\top}$, где $(i_1,\ldots,i_d)\in\{0,1,\ldots,p\}^d$
- 2: Среди точек $x_{(i_1,\dots,i_d)}$ найти точку \bar{x} с наименьшим значением целевой функции f .

Выход: $\bar{x}, f(\bar{x})$

Теорема 1

Алгоритм 2 с параметром p возвращает такую точку \bar{x} , что

$$f(\bar{x})-f^*\leq \frac{M}{2p},$$

откуда следует, что методу равномерного перебора нужно в худшем случае

$$\left(\left\lfloor \frac{M}{2\varepsilon}\right\rfloor + 2\right)^d$$

обращений к оракулу, чтобы гарантировать $f(\bar{x}) - f^* \leq \varepsilon$.

Доказательство Теоремы 1

Пусть x^* — решение задачи (точка минимума функции f). Тогда в построенной «сетке» из точек найдётся такая точка $x_{(i_1,\dots,i_d)}$, что $x:=x_{(i_1,\dots,i_d)}\leq x^*\leq x_{(i_1+1,\dots,i_d+1)}=:y$, где знак « \leq » применяется покомпонентно.

Доказательство Теоремы 1

Пусть x^* — решение задачи (точка минимума функции f). Тогда в построенной «сетке» из точек найдётся такая точка $x_{(i_1,\dots,i_d)}$, что $x:=x_{(i_1,\dots,i_d)}\leq x^*\leq x_{(i_1+1,\dots,i_d+1)}=:y$, где знак « \leq » применяется покомпонентно. Во-первых, $y_i-x_i=\frac{1}{p}$ и $x_i^*\in[x_i,y_i]$ для всех $i=1,\dots,d$.

Доказательство Теоремы 1

Пусть x^* — решение задачи (точка минимума функции f). Тогда в построенной «сетке» из точек найдётся такая точка $x_{(i_1,\dots,i_d)}$, что $x:=x_{(i_1,\dots,i_d)}\leq x^*\leq x_{(i_1+1,\dots,i_d+1)}=:y$, где знак « \leq » применяется покомпонентно. Во-первых, $y_i-x_i=\frac{1}{p}$ и $x_i^*\in[x_i,y_i]$ для всех $i=1,\dots,d$. Кроме того, рассмотрим точки \hat{x} и \tilde{x} такие, что $\hat{x}=\frac{x+y}{2}$ и

$$ilde{x}_i = egin{cases} y_i, & ext{если } x_i^* \geq \hat{x}_i, \ x_i, & ext{иначе.} \end{cases}$$

Доказательство Теоремы 1 (продолжение)

Заметим, что \tilde{x} принадлежит «сетке» и $|\tilde{x}_i - x_i^*| \leq \frac{1}{2p}$, а значит, $\|\tilde{x} - x^*\|_{\infty} \leq \frac{1}{2p}$.

Доказательство Теоремы 1 (продолжение)

Заметим, что \tilde{x} принадлежит «сетке» и $|\tilde{x}_i - x_i^*| \leq \frac{1}{2p}$, а значит, $\|\tilde{x} - x^*\|_{\infty} \leq \frac{1}{2p}$. Поскольку $f(\bar{x}) \leq f(\tilde{x})$ (по определению), получаем

Доказательство Теоремы 1 (продолжение)

Заметим, что \tilde{x} принадлежит «сетке» и $|\tilde{x}_i-x_i^*|\leq \frac{1}{2p}$, а значит, $\|\tilde{x}-x^*\|_{\infty}\leq \frac{1}{2p}$. Поскольку $f(\bar{x})\leq f(\tilde{x})$ (по определению), получаем

$$f(\bar{x}) - f^* \le f(\tilde{x}) - f^* \le M \|\tilde{x} - x^*\|_{\infty} \le \frac{M}{2n}.$$

Доказательство Теоремы 1 (продолжение)

Заметим, что \tilde{x} принадлежит «сетке» и $|\tilde{x}_i-x_i^*|\leq \frac{1}{2p}$, а значит, $\|\tilde{x}-x^*\|_{\infty}\leq \frac{1}{2p}$. Поскольку $f(\bar{x})\leq f(\tilde{x})$ (по определению), получаем

$$|f(\bar{x}) - f^* \le f(\tilde{x}) - f^* \le M ||\tilde{x} - x^*||_{\infty} \le \frac{M}{2p}.$$

Выписанная выше оценка достигается методом равномерного перебора за $(p+1)^d$ обращений к оракулу. Следовательно, чтобы гарантировать $f(\bar{x})-f^*\leq \varepsilon$, необходимо взять $p=\left\lfloor \frac{M}{2\varepsilon}\right\rfloor+1$, т.е. метод сделает $\left(\left\lfloor \frac{M}{2\varepsilon}\right\rfloor+2\right)^d$ обращений к оракулу.

Вопрос: хороший результат получили или нет?

• Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.

- Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2\varepsilon}\right|+2\right)^d=102^{13}>10^{26}.$

- Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2\varepsilon}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее *d* операции.

- Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2\varepsilon}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее *d* операции.
- Производительность компьютера: 10¹¹ арифметических операций в секунду.

- Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2\varepsilon}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее *d* операции.
- Производительность компьютера: 10¹¹ арифметических операций в секунду.
- Общее время: хотя бы 10^{15} секунд, что больше 30 миллионов лет.

• **Bonpoc**: что мы сейчас получили? верхнюю или нижнюю оценку? что такое верхняя оценка?

- **Bonpoc**: что мы сейчас получили? верхнюю или нижнюю оценку? что такое верхняя оценка?
- Верхняя оценка гарантии нахождения решения <u>определенным</u> методом из рассматриваемого класса методов (например, методы с оракулом нулевого порядка) для <u>любой</u> задачи из класса (липшецева целевая функция).
- Нижняя оценка гарантия, что <u>существует</u> «плохая» задача из класса, что <u>любой</u> метод из класса методов будет сходиться не лучше утверждает нижняя оценка.
- Возникает вопрос: может мы плохо вывели верхнюю оценку (неидеальный анализ), может ли предложить другой метод из рассматриваемого класса, который будет находить приближённое решение существенно быстрее? На этот вопрос и даст ответ нижняя оценка.

Теорема 2

Пусть $\varepsilon < \frac{M}{2}$. Тогда аналитическая сложность описанного класса задач, т.е. аналитическая сложность метода на «худшей» для него задаче из данного класса, составляет по крайней мере

$$\left(\left| \frac{M}{2\varepsilon} \right| \right)^d$$
 вызовов оракула.

Пусть $p=\lfloor \frac{M}{2\varepsilon} \rfloor$. Доказываем от противного: предположим, что существует такой метод, который решает задачу за $N<(p^d-1)$ обращений к оракулу, чтобы решить задачу с точностью ε (по функции).

Пусть $p = \left\lfloor \frac{M}{2\varepsilon} \right\rfloor$. Доказываем от противного: предположим, что существует такой метод, который решает задачу за $N < (p^d-1)$ обращений к оракулу, чтобы решить задачу с точностью ε (по функции). Построим такую функцию, на которой метод не сможет найти ε -решение, при помощи сопротивляющегося оракула: пусть изначально наша целевая функция f(x) всюду равна 0.

Пусть $p = \left\lfloor \frac{M}{2\varepsilon} \right\rfloor$. Доказываем от противного: предположим, что существует такой метод, который решает задачу за $N < (p^d-1)$ обращений к оракулу, чтобы решить задачу с точностью ε (по функции). Построим такую функцию, на которой метод не сможет найти ε -решение, при помощи сопротивляющегося оракула: пусть изначально наша целевая функция f(x) всюду равна 0. Запустим метод, он запросит значение f в N точках, везде получит 0 и выдаст какую-то точку (возможно, отличную от всех предыдущих N, как ответ). В итоге мы в ходе работы алгоритма заглянули в $N+1 < p^d$ точку.

Пусть $p = \left| \frac{M}{2\varepsilon} \right|$. Доказываем от противного: предположим, что существует такой метод, который решает задачу за $N < (p^d-1)$ обращений к оракулу, чтобы решить задачу с точностью ε (по функции). Построим такую функцию, на которой метод не сможет найти ε -решение, при помощи сопротивляющегося оракула: пусть изначально наша целевая функция f(x) всюду равна 0. Запустим метод, он запросит значение f в N точках, везде получит 0 и выдаст какую-то точку (возможно, отличную от всех предыдущих N, как ответ). В итоге мы в ходе работы алгоритма заглянули в $N+1 < p^d$ точку. Тогда по принципу Дирихле найдётся такой «кубик» $B = \{x \mid \hat{x} \leq x \leq \hat{x} + \frac{1}{p}e\}$ (где \hat{x} и $\hat{x} + \frac{1}{p}e$ — точки из «сетки» с шагом $p,\ e$ — вектор из единиц), который не содержит ни одной из N+1точки (в том числе и выхода метода).

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$.

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$.

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$. Функция $\bar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* .

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$. Функция $\bar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* . Более того, функция $\bar{f}(x)$ отлична от нуля только внутри куба $B' = \{x \mid \|x - x^*\| \leq \frac{\varepsilon}{M}\}$, который лежит внутри куба B, т.к. $2p \leq \frac{M}{\varepsilon}$.

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$. Функция $\bar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* . Более того, функция $\bar{f}(x)$ отлична от нуля только внутри куба $B' = \{x \mid \|x - x^*\| \leq \frac{\varepsilon}{M}\}$, который лежит внутри куба B, т.к. $2p \leq \frac{M}{\varepsilon}$. Следовательно, рассмотренный метод на данной функции не может найти ε -решение. Противоречие.

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$. Функция $\bar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* . Более того, функция $\bar{f}(x)$ отлична от нуля только внутри куба $B' = \{x \mid \|x - x^*\| \leq \frac{\varepsilon}{M}\}$, который лежит внутри куба B, т.к. $2p \leq \frac{M}{\varepsilon}$. Следовательно, рассмотренный метод на данной функции не может найти ε -решение. Противоречие.

Итак, в указанном классе у любого метода оценки на скорость сходимости весьма пессимистичные. Возникает вопрос: какие свойства нужно потребовать от класса оптимизируемых функций, чтобы оценки стали более оптимистичными?

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$. Функция $\bar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* . Более того, функция $\bar{f}(x)$ отлична от нуля только внутри куба $B' = \{x \mid \|x - x^*\| \leq \frac{\varepsilon}{M}\}$, который лежит внутри куба B, т.к. $2p \leq \frac{M}{\varepsilon}$. Следовательно, рассмотренный метод на данной функции не может найти ε -решение. Противоречие.

Итак, в указанном классе у любого метода оценки на скорость сходимости весьма пессимистичные. Возникает вопрос: какие свойства нужно потребовать от класса оптимизируемых функций, чтобы оценки стали более оптимистичными? Вернемся к этим вопросам на следующей лекции.