

深圳市富满电子集团股份有限公司

SHEN ZHEN FINE MAD ELECTRONICS GROUP CO., LTD.

TC2120(文件编号: S&CIC0927)

双节锂电池保护IC

概述

TC2120系列IC,内置高精度电压检测电路和延时电路,是用于2节串联锂离子/锂聚合物可再充电电池的保 护IC。

此系列IC适合于对2节串联可再充电锂离子/锂聚合物电池的过充电、过放电和过电流进行保护。

特点

TC2120全系列IC具备如下特点:

(1) 高精度电压检测电路

	过充电检测电压 V_{CUn} ($n=1, 2$)	4.10V~4.50V	精度 ±25mV
\triangleright	过充电释放电压 V cRn(n=1,2)	3.90V~4.30V	精度 ±50mV
>	过放电检测电压 V DLn(n=1,2)	2.00V~3.00V	精度 ±80mV
\triangleright	过放电释放电压 V DRn(n=1 , 2)	2.30V~3.40V	精度 ±100mV
/	拉电社滨松测电压	(司选权)	

放电过流检测电压 (可选择)

充电过流检测电压 (可选择) 精度±30mV ▶ 负载短路检测电压 1.0V (固定) 精度±0.4V

(2) 各延迟时间由内部电路设置(不需外接电容)

▶ 过充电检测延迟时间 典型值1000ms 过放电检测延迟时间 典型值110ms 放电过流检测延迟时间 典型值10ms 充电过流检测延迟时间 典型值7ms ▶ 负载短路检测延迟时间 典型值250us

(3) 低耗电流

典型值5.0μA , 最大值9.0μA (VDD=7.8V) ▶ 工作模式

休眠模式 最大值0.1µA(VDD=4.0V)

- (4) 连接充电器的端子采用高耐压设计(CS端子和OC端子,绝对最大额定值是33V)
- (5) 允许向0V电池充电功能
- (6) 宽工作温度范围: -40℃~+85℃
- (7) 小型封装: SOT-23-6
- (8) TC2120 系列是无卤素绿色环保产品

产品应用

▶ 2节串联锂离子可再充电电池组。

2节串联锂聚合物可再充电电池组。

产品目录

参数	过充电检测	过充电释放	过放电检测	过放电释	放电过流检	充电过流检	向 0V 电池
型号	电压	电压	电压	放电压	测电压	测电压	充电功能
至与	V _{CUn}	V _{CRn}	V_{DLn}	V_{DRn}	V_{DIP}	V _{CIP}	V _{0CH}
TC2120-BB	4.35±0.025V	4.15±0.05V	2.30±0.08V	3.00±0.1V	200±30mV	-210±30mV	允许
TC2120-CB	4.28±0.025V	4.08±0.05V	2.90±0.08V	3.00±0.1V	200±30mV	-210±30mV	允许
(A档)							

深圳市富满电子集团股份有限公司 SHEN ZHEN FINE MAD ELECTRONICS GROUP CO., LTD.

TC2120(文件编号: S&CIC0927)

双节锂电池保护 IC

TC2120-CB	4.32±0.025V	4.08±0.05V	2.90±0.08V	3.00±0.1V	200±30mV	-210±30mV	允许
(B档)							
TC2120-DB	4.28±0.025V	4.08±0.05V	2.25±0.08V	2.95±0.1V	200±30mV	-210±30mV	允许
(A档)							
TC2120-DB	4.32±0.025V	4.08±0.05V	2.25±0.08V	2.95±0.1V	200±30mV	-210±30mV	允许
(B档)							

封装脚位及功能说明

++>+- 61 117 (67)	序号	符号	说明
封装外形图 6 5 4	1	OD	放电控制用MOSFET门极连接端子
	2	ос	充电控制用MOSFET门极连接端子
	3	cs	过电流检测输入端子, 充电器检测端子
	4	VC	电池1负极、电池2正极连接端子
[1] [2] [3] SOT-26	5	VDD	正电源输入端子,电池1正极连接端子
001-20	6	VSS	接地端,负电源输入端子,电池2负极连接端子

深圳市富满电子集团股份有限公司 SHEN ZHEN FINE MAD ELECT

TC2120(文件编号: S&CIC0927)

双节锂电池保护 IC

绝对最大额定值

(VSS=0V, Ta=25°C, 除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+10	٧
OC 输出端子电压	V _{oc}	VDD-33~VDD+0.3	V
OD 输出端子电压	V _{OD}	VSS-0.3~VDD+0.3	V
CS 输入端子电压	V _{CS}	VDD-33~VDD+0.3	V
工作温度范围	T _{OP}	-40~+85	$^{\circ}$
储存温度范围	T _{ST}	-40~+125	$^{\circ}$
容许功耗	P _D	250	mW

电气特性

(VSS=0V, Ta=25°C, 除非特别说明)

项目	符号	条件	最小值	典型值	最大值	单 位
输入电压						
VDD-VSS工作电压	V _{DSOP1}	_	1.5	_	10	V
VDD-CS工作电压	V _{DSOP2}	_	1.5	_	33	V
耗电流						
工作电流	I _{DD}	VDD=7.8V	_	5.0	9.0	uA
休眠电流	I _{PD}	VDD=4.0V	_	_	0.1	uA
检测电压						
过充电检测电压n(*1)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4.1~4.5V,可调整	VCUn	VCUn	VCUn	V
以尤电位侧电压II(I) 	V _{CUn}	4.1~4.5V,	-0.025		+0.025	\ \
过充电释放电压n(*1)	V _{CRn}	3.9~4.3V,可调整	VCRn -0.05	VCRn	VCRn +0.05	V
过放电检测电压n(*1)	V _{DLn}	2.0~3.0V,可调整	VDLn -0.08	VDLn	VDLn +0.08	V
过放电释放电压n(*1)	V_{DRn}	2.3~3.4V,可调整	VDRn -0.10	VDRn	VDRn +0.10	V
放电过流检测电压	V _{DIP}		VDIP -30	VDIP	VDIP +30	mV
负载短路检测电压	V _{SIP}	VDD-VSS=7.0V	0.6	1.0	1.4	V
充电过流检测电压	V _{CIP}		VCIP -30	VCIP	VCIP +30	mV
延迟时间						
过充电检测延迟时间	Toc		700	1000	1300	ms
过放电检测延迟时间	T _{OD}		70	110	150	ms
放电过流检测延迟时间	T _{DIP}		6	10	14	ms
充电过流检测延迟时间	T _{CIP}		4	7	10	ms
负载短路检测延迟时间	T _{SIP}		150	250	400	μs
控制端子输出电压						
OD端子输出高电压	V _{DH}		VDD-0.1	VDD-0.02		V

深圳市富满电子集团股份有限公司

TC2120(文件编号: S&CIC0927)

双节锂电池保护IC

OD端子输出低电压	V_{DL}			0.2	0.5	V		
OC端子输出高电压	V _{CH}		VDD-0.1	VDD-0.02		V		
OC端子输出低电压	V _{CL}			0.2	0.5	V		
向 0V 电池充电的功能(允许	向 0V 电池充电的功能(允许或禁止)							
充电器起始电压(允许向 0V	V _{0CH}	允许向0V电池充电功	1.2			V		
电池充电功能)		能	1.2	-	-	V		
电池电压(禁止向0V电池充	V _{0IN}	禁止向0V电池充电功			0.5	V		
电功能)		能	-	-	0.5	V		

应用电路图

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定VDD、加强ESD	100Ω	330Ω	470Ω	*1
R2	电阻	限流、稳定VC、加强ESD	100Ω	330Ω	470Ω	*1
R3	电阻	限流	1 kΩ	2kΩ	4kΩ	*2
C1	电容	滤波,稳定VDD	0.01µF	0.1µF	1.0µF	*3
C2	电容	滤波,稳定VDD	0.01µF	0.1µF	1.0µF	*3
M1	N-MOSFET	放电控制	-	-	-	*4
M2	N-MOSFET	充电控制	-	_	_	*5

^{*1、}R1或R2连接过大电阻,由于芯片消耗的电流会在R1或R2上产生压降,影响检测电压精度。当充电器反接时, 电流从充电器流向IC, 若R1或R2过大有可能导致VDD-VSS端子间电压超过绝对最大额定值的情况发生。

^{*2、}R3连接过大电阻, 当连接高电压充电器时, 有可能导致不能切断充电电流的情况发生。但为控制充电器反接 时的电流,请尽可能选取较大的阻值。

深圳市富满电子集团股份有限公司 SHEN ZHEN FINE MAD ELECTRONICS GROUP CO., LTD.

TC2120(文件编号: S&CIC0927)

双节锂电池保护IC

- *3、C1和C2有稳定VDD电压的作用,请不要连接0.01µF以下的电容。
- *4、使用MOSFET的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
- *5、门极和源极之间耐压在充电器电压以下时,N-MOSFET 有可能被损坏。

工作说明

▶ 正常工作状态

此IC持续检测连接在VDD与VC端子之间电池1的电压、连接在VC与VSS端子之间电池2的电压,以及CS与 VSS端子之间的电压差,来控制充电和放电。当电池1和电池2的电压都在过放电检测电压(Voln)以上并在过充 电检测电压(Vcun)以下,且CS端子电压在充电过流检测电压(Vcip)以上并在放电过流检测电压(Vpip)以下 时,IC的OC和OD端子都输出高电平,使充电控制用MOSFET和放电控制用MOSFET同时导通,这个状态称为"正 常工作状态"。此状态下, 充电和放电都可以自由进行。

注意:初次连接电芯时,会有不能放电的可能性,此时,短接CS端子和VSS端子,或者连接充电器,就能 恢复到正常工作状态。

过充电状态

正常工作状态下的电池,在充电过程中,连接在VDD与VC端子之间电池1的电压或连接在VC与VSS端子之 间电池2的电压,超过过充电检测电压(Vcun),并且这种状态持续的时间超过过充电检测延迟时间(Toc)时, IC的OC端子输出电压由高电平变为低电平,关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称 为"过充电状态"。

过充电状态在如下两种情况下可以释放,OC端子输出电压由低电平变为高电平,使充电控制用MOSFET 导通。

- (1) 断开充电器,由于自放电使电池1和电池2的电压都降低到过充电释放电压(VcRn)以下时,过充电状 态释放,恢复到正常工作状态。
- (2) 断开充电器,连接负载,当电池1和电池2的电压都降低到过充电检测电压(Vcun)以下时,过充电状 态释放,恢复到正常工作状态。

注意:

- ①进入过充电状态的电池,如果仍然连接着充电器,即使电池1和电池2的电压都低于过充电释放电压(VcRn), 过充电状态也不能释放。断开充电器,CS端子电压上升到充电过流检测电压(VcIP)以上时,过充电状态才能释 放。
- ②当电池1或电池2的电压超过过充电检测电压(Vcun),断开充电器并连接负载,如果电池1或电池2的电压 仍不能降低到过充电检测电压(Vcun)以下,此时放电电流通过充电控制用MOSFET的寄生二极管流过,当电池 1和电池2的电压都降低到过充电检测电压(Vcun)以下时,OC端子输出电压由低电平变为高电平,使充电控制 用MOSFET导通。
- ③当电池1或电池2的电压超过过充电检测电压(Vcun),但在过充电检测延迟时间(Toc)之内,电池1和电 池2的电压又降低到过充电检测电压(Vcun)以下,则此时不进入过充电保护状态。
 - ④OC端子高电平是上拉到VDD端子, OC端子低电平是下拉到CS端子。

▶ 过放电状态及休眠状态

正常工作状态下的电池,在放电过程中,连接在VDD与VC端子之间电池1的电压或连接在VC与VSS端子之 间电池2的电压,降低到过放电检测电压(Voln)以下,并且这种状态持续的时间超过过放电检测延迟时间(Top)

深圳市富满电子集团股份有限公司 SHEN ZHEN FINE MAD ELECTRONICS GROUP CO., LTD.

TC2120(文件编号: S&CIC0927)

双节锂电池保护IC

时,IC的OD端子输出电压由高电平变为低电平,关闭放电控制用的MOSFET(OD端子),停止放电,这个状态 称为"过放电状态"。

当关闭放电控制用MOSFET后,CS由IC内部电阻上拉到VDD,使IC耗电流减小到休眠时的耗电流值 (<0.1uA),这个状态称为"休眠状态"。

过放电状态在以下两种情况下可以释放,OD端子输出电压由低电平变为高电平,使放电控制用MOSFET导 通。

- (1)连接充电器,若CS端子电压低于充电过流检测电压(VcIP),当电池1和电池2的电压都高于过放电检测 电压(VDLn)时,过放电状态释放,恢复到正常工作状态。
- (2) 连接充电器, 若CS端子电压高于充电过流检测电压(Vcip), 当电池1和电池2的电压都高于过放电释放 电压(VDRn)时,过放电状态释放,恢复到正常工作状态。

- ①当电池1或电池2的电压低于过放电检测电压(VDLn),但在过放电检测延迟时间(ToD)之内,电池1和电 池2的电压又回升到过放电检测电压(Voln)以上,则此时不进入过放电保护状态。
 - ②OD端子高电平是上拉到VDD端子, OD端子低电平是下拉到VSS端子。

▶ 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池,IC通过检测CS端子电压持续侦测放电电流。一旦CS端子电压超过放电过流检测电 压(VDIP),并且这种状态持续的时间超过放电过流检测延迟时间(TDIP),则OD端子输出电压由高电平变为低电 平,关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"放电过流状态"。

而一旦CS端子电压超过负载短路检测电压(VsiP),并且这种状态持续的时间超过负载短路检测延迟时间 (TSIP),则OD端子输出电压也由高电平变为低电平,关闭放电控制用的MOSFET(OD端子),停止放电,这 个状态称为"负载短路状态"。

连接在电池正极(PB+)和电池负极(PB-)之间的阻抗大于450kΩ(typ.)时。放电过流状态和负载短路状 态的将被释放。

另外,即使连接在电池正极(PB+)和电池负极(PB-)之间的阻抗小于450k Ω (typ.)时,当连接上充电器, CS端子电压降低到放电过流保护电压(VDIP)以下,也会释放放电过流状态或负载短路状态,回到正常工作状态。

▶ 充电过流状态

正常工作状态下的电池,在充电过程中,如果CS端子电压低于充电过流检测电压(VcIP),并且这种状态持 续的时间超过充电过流检测延迟时间(TcIP),则OC端子输出电压由高电平变为低电平,关闭充电控制用的 MOSFET(OC端子),停止充电,这个状态称为"充电过流状态"。

进入充电过流检测状态后,如果断开充电器使CS端子电压高于充电过流检测电压(Vcip)时,充电过流状态 被解除,恢复到正常工作状态。

▶ 0V电池充电允许

对于0V电池充电允许的电路,如果使用充电器对电池充电,使TC2120电路的VDD端相对CS端的电压大于0V 充电允许阈值时,其充电控制端OC将被连接到VDD端。若该电压能够使外接充电控制N-MOS管M2导通,则通过 放电控制N-MOS管M1的体内二极管可以形成一个充电回路,使电池电压升高; 当电池电压升高至使VDD端电压 超过过电压放电保护阈值VOD时,TC2120将回到正常状态,同时放电控制端OD输出高电平,使外接放电控制 N-MOS管处于导通状态。

深圳市富满电子集团股份有限公司 SHEN ZHEN FINE MAD EX DOZ

SHEN ZHEN FINE MAD ELECTRONICS GROUP CO., LTD.

TC2120(文件编号: S&CIC0927)

双节锂电池保护 IC

封装信息

SYM BOL	ALL DIMENSIONS IN MILLIMETERS					
BOL	MINIMUM	NOMINAL	MAXIMUM			
Α	-	1.30	1.40			
A1	0.05	-	0.15			
A2	0.90	1.20	1.30			
b	0.40	-	0.55			
b1	0.40	0.45	0.50			
b2	0.25	-	0.40			
С	0.08	-	0.20			
c1	0.08	0.11	0.15			
D	2.70	2.90	3.00			
E	2.60	2.80	3.00			
E1	1.50	1.60	1.70			
е		0.95 BSC				
e1		1.90 BSC		ı		
L	0.35	0.45	0.55			
L1	0.60 REF					
θ	0°	5°	10°			
θ1	3°	5°	7°			
θ2	6°	8°	10°			

