Problem-Statement

Let an object have a reflectance given by r. Then the complex-distribution of the object-field is given by $g \sim CN(0, D(r))$ [1]. The problem statement is given

$$y = Aq + w$$

we would like to estimate r.

1 Case I: Linear measurements (A = I)

1.1 Forward-model:

Let the reflectance of the object that is imaged be given by $r \in [0, 1]$. Under the assumed model of the object-filed given by $g \sim CN(0, D(r))$, and the additive white-gaussian noise model we have that the measured complex-signal is given as

$$y = g + w$$
.

A single-realization of this is given in Figure with std. deviations of the noise at $\sigma_w = \{0.001, 0.1\}$.

Figure 1: An example-realization of the forward-model y = g + w. Two realizations of the noisy observations are shown at std. deviations of $\{0.001, 0.1\}$.

1.2 ML-estimate

The likelihood of the measurements y is given as $p(y|r) \sim CN(0, D(r) + \sigma_w^2 I)$. Applying the maximum-likelihood estimator to the above problem we have

$$\hat{r} = \arg \max \log p(y|r)$$

$$= \arg \max \frac{-1}{2} \left(\log \left((2\pi)^N |D(r) + \sigma_w^2 I| \right) + y^H (D(r) + \sigma_w^2 I)^{-1} y \right)$$

$$= \arg \max \frac{-1}{2} \left(\sum_{i=1}^N \log \left(2\pi (r_i + \sigma_w^2) \right) + \frac{|y_i|^2}{r_i + \sigma_w^2} \right)$$

$$\implies \hat{r_i} = \arg \max \frac{-1}{2} \left(\log \left(2\pi (r_i + \sigma_w^2) \right) + \frac{|y_i|^2}{r_i + \sigma_w^2} \right)$$

$$= \arg \min \log \left(2\pi (r_i + \sigma_w^2) \right) + \frac{|y_i|^2}{r_i + \sigma_w^2}.$$

Taking the differential of the above equation and equating to zero we get the ML estimate

$$\hat{r}_i = |y_i|^2 - \sigma_w^2.$$

The reconstructions for varying degrees of noise is shown in Figure 3 (a-d).

Figure 2: An example-realization for different inversion-models. The inversions are shown for different std. deviations of $\{0.01, 0.1, 1, 10\}$.

1.3 Plug and play (PnP) estimate (MAP)

The MAP estiamate for the above problem is given as

$$\hat{r} = \arg \min - \log p(r|y)$$

$$= \arg \min - \log p(y|r) - \log p(r). \tag{1}$$

The PnP algorithm [2] decouples the above problem into one where we can apply the forward and prior models in the form of denoisers. Specifically, the PnP algorithm operates by splitting the unknown variable r into two variables r, v and converts the unconstrained optimization problem in (1) into a constrained optimization problem

$$\hat{r} = \underset{r=v}{\operatorname{arg\,min}} \ \ell(r) + \beta s(v) \tag{2}$$

where $\beta s(v) = p(v)$ is the prior term and $\ell(r)$ enforces the meaning constraints on r. Adopting an ADMM approach to solve the above problem results in an algorithm containing two primary operations:

(1) Inversion operator

$$F(\tilde{r}, \sigma_{\lambda}) = \operatorname*{arg\,min}_{r} \left\{ \ell(r) + \frac{1}{2\sigma_{\lambda}^{2}} \|r - \tilde{r}\|^{2} \right\},\,$$

Figure 3: Multi-image plug and play algorithm for: For the image with $\sigma_w = 1e^{-3}$.

where $\tilde{r} = v - u$. The operator F is the proximal mapping of $\ell(r)$ and is equivalent to a MAP estimate of r with a Gaussian prior having a distribution $p(r) \sim N(\tilde{r}, \sigma_{\lambda}^2 I)$. Specifically when $\ell(r) = -\log p(y|r)$, the inversion operator is given as

$$F(\tilde{r}_{i}, \sigma_{\lambda}) = \arg\min_{r_{i}} \left\{ \log(r_{i} + \sigma_{w}^{2}) + \frac{|y_{i}|^{2}}{r_{i} + \sigma_{w}^{2}} + \frac{1}{2\sigma_{\lambda}^{2}} (r_{i} - \tilde{r}_{i})^{2} \right\},$$

$$\implies \frac{1}{r_{i} + \sigma_{w}^{2}} - \frac{|y_{i}|^{2}}{(r_{i} + \sigma_{w}^{2})^{2}} + \frac{1}{\sigma_{\lambda}^{2}} (r_{i} - \tilde{r}_{i}) = 0,$$

$$\implies \sigma_{\lambda}^{2} (r_{i} + \sigma_{w}^{2}) - |y_{i}|^{2} + (r_{i} - \tilde{r}_{i}) (r_{i} + \sigma_{w}^{2})^{2} = 0,$$

$$\implies r_{i}^{3} + (-\tilde{r}_{i} + 2\sigma_{w}^{2}) r_{i}^{2} + (-2\tilde{r}_{i}\sigma_{w}^{2} + \sigma_{w}^{4} + \sigma_{\lambda}^{2}) r_{i} + (\sigma_{\lambda}^{2}\sigma_{w}^{2} - \tilde{r}_{i}\sigma_{w}^{4}) = 0.$$

Thus the solution of the inversion-operator is simply the root of the cubic-polynomial. We are constrained that the root of the cubic-polynomial is real.

(2) Denoising operator

$$H(\tilde{v}, \sigma_n) = \operatorname*{arg\,min}_{v} \left\{ \frac{1}{2\sigma_n^2} \|v - \tilde{v}\|^2 + s(v) \right\}$$

where $\sigma_n^2 = \beta \sigma_\lambda^2$ and $\tilde{v} = r + u$. The denosing operator H is a proximal mapping of s(v). Mathematically, it is equivalent to a Gaussian denosing operation. Thus, we can replace H with a denoiser which removes noise with a variance σ_n^2 . We use the following denoising-operators to use for Gaussian-denosing: (1) TV, (2) BM3D denoiser. The complete PnP algorithm is given in Algorithm 1.

1.3.1 Parameter-tuning

In the following analysis we assume that we know the true-value of σ_w . The parameters to be tuned for the problem are $\sigma_{\lambda}, \sigma_n$; which are essentially the tuning parameters for each of the proximal-operators (inversion and denoising).

Algorithm 1 Plug and Play $(y, \sigma_w, \overline{\sigma}_\lambda, \sigma_n)$

```
1: v = y, u = 0

2: Repeat

3: {

4: \tilde{r} = v - u

5: r = F(y, \tilde{r}, \sigma_w, \sigma_\lambda) Inversion-Operator

6: \tilde{v} = r + u

7: v = H(\tilde{v}, \sigma_n) Denoising-Operator

8: u = u + (r - v)

9: }
```

References

- [1] Casey J. Pellizzari et al. Optically coherent image formation and denoising using a plug and play inversion framework in OSA.
- [2] S. V. Venkatakrishnan et al. Plug-and-play priors for model based reconstruction in GLOBALSIP.