| AeroMLix   | «EdgeTurbineAI для контроля характеристик турбин » |               | HLD_612.4 |
|------------|----------------------------------------------------|---------------|-----------|
| Дата       | Страница                                           | Всего страниц | Версия    |
| 18.06.2025 | 1                                                  | 27            | 2.0       |

# «EdgeTurbineAI для контроля характеристик турбин »

Service High Level Design (HLD)

HLD\_612.4

Версия: 2.0



# СОДЕРЖАНИЕ

| 1 | ВВЕД | <u> </u> ЕНИЕ                                             | .3  |
|---|------|-----------------------------------------------------------|-----|
|   | 1.1  | Административная информация о документе                   | .3  |
|   | 1.2  | История изменений документа                               | .3  |
|   | 1.3  | Термины, определения и сокращения                         | .3  |
|   | 1.4  | Назначение документа                                      | .4  |
|   | 1.5  | Связанные документы                                       | .4  |
|   | 1.6  | Связанные услуги                                          | .5  |
| 2 | TEX  | НИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ                                | .6  |
| 3 | ОПИ  | ІСАНИЕ ТЕХНИЧЕСКОГО РЕШЕНИЯ                               | .7  |
|   | 3.1  | Функциональность                                          | .8  |
|   | 3.2  | Системные требования для установки                        | .9  |
|   | 3.3  | Схема решения и описание схемы                            | .9  |
|   | 3.4  | Описание системы резервного копирования                   | .9  |
| 4 | 3AT  | РАТЫ НА РЕАЛИЗАЦИЮ                                        | 10  |
| 5 | PEA  | ЛИЗАЦИЯ РЕШЕНИЯ                                           | 11  |
|   | 5.1  | Стадии работ над проектом: instance – часть. Трудозатраты | l 1 |
|   | 5.2  | Стадии работ над проектом: SaaS – часть. Трудозатраты     | 13  |
|   | 5.3  | Ответственность заказчика                                 | 14  |
| 6 | MOI  | НИТОРИНГ И SL A                                           | 15  |

| AeroMLix   | U        | I для контроля<br>гик турбин » | HLD_612.4 |
|------------|----------|--------------------------------|-----------|
| Дата       | Страница | Всего страниц                  | Версия    |
| 18.06.2025 | 3        | 27                             | 2.0       |

# 1 ВВЕДЕНИЕ

# 1.1 Административная информация о документе

| Должность                                                                                                                            | Подпись | Дата           | ФИО                 |
|--------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|---------------------|
| Разработано:                                                                                                                         |         |                |                     |
| Разработчик программного обеспечения сектора по разработке инновационных решений (Software Developer, Innovative Solutions Division) |         | 10/06/202<br>5 | Alexei Ivanov       |
| Начальник сектора по разработке инновационных решений (Head of Innovative Solutions Division )                                       |         | 01/06/202<br>5 | Olga Smirnova       |
| Технический архитектор отдела технической разработки продуктов (Technical Architect, Product Engineering Department)                 |         | 25/05/202<br>5 | Dmitry Karpov       |
| Согласовано:                                                                                                                         |         |                |                     |
| Руководитель дирекции сетевой инфраструктуры (Director of Network Infrastructure )                                                   |         | 11/06/202<br>5 | Konstantin Zakharov |
| Руководитель отдела по развитию продуктов (Head of Product Development Department)                                                   |         | 12/06/202<br>5 | Irina Gavrilova     |
| Руководитель отдела технической разработки продуктов (Head of Technical Product Engineering Department)                              |         | 13/06/202<br>5 | Sergey Melnikov     |
| Руководитель сектора по разработке инновационных решений (Head of Innovative Solutions Division )                                    |         | 14/06/202<br>5 | Olga Smirnova       |
| Руководитель сектора развития клиентских отношений (Head of Customer Relations Development Sector)                                   |         | 15/06/202<br>5 | Andrew Tikhonov     |
| Руководитель отдела поддержки корпоративных клиентов (Head of Corporate Customer Support Department )                                |         | 15/06/202<br>5 | Elena Chernova      |
| Руководитель отдела управления интеллектуальными<br>услугами (Head of Intellectual Services Management Department )                  |         | 16/06/202<br>5 | Vitaliy Gromov      |
| Руководитель отдела информационной безопасности (Head of Information Security Department )                                           |         | 17/06/202<br>5 | Natalia Sokolova    |
| Менеджер по продуктам отдела по развитию продуктов (Product Manager, Product Development Department)                                 |         | 18/06/202<br>5 | Alexey Shcherbakov  |
| Гехнический архитектор отдела технической разработки продуктов (Technical Architect, Product Engineering Department)                 |         | 18/06/202<br>5 | Dmitry Karpov       |

| AeroMLix   | «EdgeTurbineAI для контроля характеристик турбин » |               | HLD_612.4 |
|------------|----------------------------------------------------|---------------|-----------|
| Дата       | Страница                                           | Всего страниц | Версия    |
| 18.06.2025 | 4                                                  | 27            | 2.0       |

# 1.2 История изменений документа

| Дата           | Версия | Автор<br>замечания /<br>должность                                    | Текст замечания                                                                                                 | Исправлено (описание исправления, место в документе)                                                                                                                                    |
|----------------|--------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20/05/202      | V1.0   | Alexei Ivanov /<br>Software<br>Developer                             | Первоначальное создание проекта (Initial draft created)                                                         | Создана структура документа и заполнен обзор системы (Created document structure and filled in system overview)                                                                         |
| 25/05/202<br>5 | V1.1   | Dmitry<br>Karpov /<br>Technical<br>Architect                         | Отсутствуют схема архитектуры и описания интерфейсов. (Missing architecture diagram and interface descriptions) | Описания интерфейсов: Добавлены архитектура системы и внешние интерфейсы (Раздел 3.2, 3.4) (interface descriptionsAdded system architecture and external interfaces (Section 3.2, 3.4)) |
| 01/06/202      | V1.2   | Irina Gavrilova / Head of Product Development                        | Слишком общее описание использования модели машинного обучения (Too generic description of ML model usage)      | Заменено конкретным вариантом использования (Раздел 4.1: «Edge ML для AvioTurbine») (Replaced with specific use-case (Section 4.1: "Edge ML for AvioTurbine"))                          |
| 10/06/202      | V1.3   | Natalia Sokolova / Head of Information Security Department           | Нет ссылок на протоколы безопасности для edge-связи (No reference to security protocols for edge communication) | Добавлена аутентификация TLS/SSL, MQTT (Раздел 5.3: Меры безопасности) (Added TLS/SSL, MQTT authentication (Section 5.3: Security Measures))                                            |
| 15/06/202<br>5 | V1.4   | Olga<br>Smirnova /<br>Head of<br>Innovative<br>Solutions<br>Division | Уточнение терминологии в глоссарии (Clarify terminology in the Glossary)                                        | Обновленный глоссарий (Приложение А) с определениями: Edge AI, вывод машинного обучения (Updated Glossary (Appendix A) with definitions: Edge AI, ML inference)                         |
| 18/06/202<br>5 | V2.0   | Alexey<br>Shcherbakov /<br>Product<br>Manager                        | Окончательный обзор — готов к подписанию (Final review — ready for sign-off)                                    | Документ одобрен, версия помечена как 2.0 (Document approved, version marked as 2.0)                                                                                                    |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 5                                                     | 27            | 2.0       |

# 1.3 Термины, определения и сокращения(Glossary (Appendix A))

| Название       | Расшифровка                                                                 |  |
|----------------|-----------------------------------------------------------------------------|--|
| ІоТ            | Internet of Things — Интернет вещей. Сеть взаимосвязанных устройств,        |  |
| 101            | способных собирать и обмениваться данными.                                  |  |
|                | Edge Computing — Вычисления на границе сети, ближе к источнику данных       |  |
| Edge           | (например, на сенсорах или микроконтроллерах), снижая задержку и            |  |
|                | нагрузку на облако.                                                         |  |
|                | Artificial Intelligence — Искусственный интеллект. Используется для анализа |  |
| Al/ML          | данных, предсказания аномалий и автоматических решений.                     |  |
|                | Machine Learning — Машинное обучение. Раздел AI, основанный на              |  |
|                | обучении моделей на данных.                                                 |  |
| MQTT           | Message Queuing Telemetry Transport — Лёгкий протокол обмена                |  |
|                | сообщениями, часто используемый в ІоТ.                                      |  |
| HLD            | High-Level Design — Высокоуровневое проектирование. Документ                |  |
|                | описывает архитектуру системы, модули и взаимодействие.                     |  |
| Dashboard      | Визуальный интерфейс для отображения состояния и аналитики системы          |  |
| SLA            | Service Level Agreement — Соглашение об уровне обслуживания                 |  |
| MTTR           | Mean Time To Repair — Среднее время восстановления                          |  |
| Zabbix         | Система мониторинга ІТ-инфраструктуры и сервисов                            |  |
| CloudWatch     | Сервис мониторинга и управления логами от AWS                               |  |
| Prometheus     | Система мониторинга и предупреждений с открытым исходным кодом              |  |
| Grafana        | Платформа для визуализации и анализа данных мониторинга                     |  |
| Sensor Node    | Узел (устройство), оснащённый датчиками, собирающий физические              |  |
| Schsol Node    | параметры (например, вибрацию) и передающий данные.                         |  |
| Turbine        | Турбина авиационного двигателя — ключевой объект мониторинга в данной       |  |
| Turonic        | системе.                                                                    |  |
| Alert          | Сигнал тревоги или уведомление, срабатывающее при обнаружении               |  |
| Alcit          | аномалии.                                                                   |  |
| Telemetry      | Автоматическая передача измеренных данных от удалённых объектов в           |  |
| Telemetry      | систему мониторинга.                                                        |  |
| Inference      | Процесс применения обученной МС-модели к новым входным данным для           |  |
| micrence       | получения результата.                                                       |  |
| Gateway        | Сетевое устройство, соединяющее локальные ІоТ-устройства с облаком или      |  |
| Guieway        | центральным сервером.                                                       |  |
| Cloud Platform | Облачная инфраструктура, на которой хранятся и обрабатываются данные с      |  |
|                | устройств.                                                                  |  |
| Data Pipeline  | Последовательность процессов по сбору, обработке, передаче и хранению       |  |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 6                                                     | 27            | 2.0       |

|                         | данных.                                                               |
|-------------------------|-----------------------------------------------------------------------|
| Time-Series Data        | Данные, собранные во времени с регулярными или нерегулярными          |
| Time Series Data        | интервалами (например, вибрация, температура)                         |
| Threshold               | Пороговое значение параметра, при превышении которого генерируется    |
| Timeshold               | событие или тревога.                                                  |
| Firmware                | Программное обеспечение, встроенное в микроконтроллер или IoT-        |
| 1 mmware                | устройство.                                                           |
| OTA                     | Over-the-Air — технология удалённого обновления прошивки устройств.   |
| Uptime                  | Время непрерывной работы системы без сбоев.                           |
| Downtime                | Период, в течение которого система недоступна или не функционирует.   |
| Anomaly Detection       | Методы автоматического выявления отклонений от нормального поведения  |
| Anomary Detection       | системы или устройства.                                               |
| Predictive Maintenance  | Предиктивное (прогнозирующее) техническое обслуживание на основе      |
| Treatetre triamitenance | анализа телеметрии и ИИ.                                              |
| Latency                 | Задержка при передаче данных от устройства до точки обработки.        |
| Reliability             | Надёжность системы — её способность функционировать без сбоев в       |
| Rendomity               | течение заданного времени.                                            |
| Redundancy              | Избыточность, обеспечивающая устойчивость к сбоям (например,          |
| reduitation             | резервный канал передачи).                                            |
| Scalability             | Масштабируемость — способность системы расширяться по количеству      |
|                         | устройств или объёму данных.                                          |
| Security Policy         | Набор правил, регламентирующих безопасный доступ и обработку данных в |
| системе.                |                                                                       |
| Authentication          | Проверка подлинности пользователя или устройства.                     |
| Authorization           | Определение прав доступа после успешной аутентификации.               |

# 1.4 Назначение документа

В HLD описывается высокоуровневое представление системы **EdgeTurbineAI**, предназначенной для интеллектуального мониторинга и анализа характеристик работы авиационных турбин с использованием технологий IoT, машинного обучения и вычислений на периферии (Edge Computing). Документ предназначен для технических архитекторов, разработчиков, специалистов по безопасности, инженеров по сопровождению и всех участников проекта, принимающих участие в проектировании, разработке и эксплуатации системы.

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 7                                                     | 27            | 2.0       |

В текущей версии документа описывается сервис **EdgeTurbineAI Monitoring Core Service**, обеспечивающий сбор, предобработку, анализ и передачу телеметрических данных (вибрации, температура, обороты и пр.) с пограничных устройств (edge nodes) в централизованную облачную систему для дальнейшей аналитики и визуализации.

**Назначение сервиса** — обеспечить устойчивую, масштабируемую и безопасную инфраструктуру для контроля состояния авиационных турбин в режиме, близком к реальному времени, с возможностью раннего выявления отклонений и потенциальных неисправностей.

### Сервис предлагает функционал, позволяющий:

- Получать и обрабатывать телеметрические данные с периферийных устройств;
- Выполнять локальную ML-инференцию (на edge-устройствах) для предварительной фильтрации и оценки рисков;
- Передавать данные в облако с использованием защищённых протоколов (MQTT/TLS);
- Формировать алерты при обнаружении аномалий в рабочих характеристиках турбины;
- Поддерживать обновление прошивки устройств по воздуху (ОТА);
- Визуализировать данные и алерты через центральную панель мониторинга.

# 1.5 Связанные документы

| <b>Номер</b> документа                                 | Название документа                                                                                                | Примечание / Ссылка                                                                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| EEE P2413I                                             | "Standard for an Architectural Framework for the Internet of Things (IoT)"                                        | Фундаментальная архитектура IoT<br>https://www.raypcb.com/ieee-iot-pcb/?<br>utm_source=chatgpt.com |
| ISO/IEC 30141                                          | "Internet of Things — Reference<br>Architecture"                                                                  | Международный референс ІоТ                                                                         |
| ISO/IEC 27040<br>(или часть<br>ISO/IEC<br>27400-27404) | "IoT security and privacy — Guidelines"                                                                           | Набор рекомендаций по безопасности                                                                 |
| IEC 62443                                              | "Security for industrial automation and control systems                                                           | Промышленный стандарт безопасного IoT                                                              |
| IEEE P1451.0 /<br>P1451.1.6                            | "Sensor network standards and security framework"                                                                 | Безопасность сенсорных сетей ІоТ                                                                   |
| NASA Technical<br>Paper                                | An Analysis of Barriers Preventing the Widespread Adoption of Predictive and Prescriptive Maintenance in Aviation | Анализ регуляторных и технических барьеров                                                         |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 8                                                     | 27            | 2.0       |

| (IPTC 2020, Patrick Bangert) | Predictive Maintenance for Gas Turbines                                                        | Практика предиктивного обслуживания газовых турбин |
|------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                              | Design of a Predictive Maintenance System for Navy Jet Engines (George Mason University, 2022) | Концепт PdM для авиационных двигателей             |
| S4000P                       | "International specification for developing and continuously improving preventive maintenance" | Стандарт по оптимизации обслуживания в авиации     |

# 1.6 Связанные услуги

| Nº | Код услуги       | Наименование услуги                                                                   |
|----|------------------|---------------------------------------------------------------------------------------|
| 1  | SVC-IOT-001      | Услуга сбора и агрегации телеметрических данных с edge-устройств                      |
| 2  | SVC-AI-002       | Услуга анализа и предиктивного моделирования (AI/ML) для диагностики состояния турбин |
| 3  | SVC-NET-003      | Услуга управления IoT-сетью и шлюзами (Edge Gateway Management)                       |
| 4  | SVC-OTA-<br>004  | Услуга удалённого обновления прошивок (Firmware OTA Update)                           |
| 5  | SVC-MON-<br>005  | Услуга визуализации данных и алертов через мониторинговую платформу                   |
| 6  | SVC-SEC-006      | Услуга обеспечения безопасности IoT-инфраструктуры (шифрование, VPN, авторизация)     |
| 7  | SVC-DATA-<br>007 | Услуга долговременного хранения и репликации телеметрических данных                   |
| 8  | SVC-CUST-<br>008 | Услуга технической поддержки для корпоративных клиентов                               |
| 9  | SVC-API-009      | Услуга предоставления АРІ-интерфейсов к аналитике и алертам                           |
| 10 | SVC-QA-010       | Услуга тестирования и сертификации периферийных устройств                             |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 9                                                     | 27            | 2.0       |

# 2 ТЕХНИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Для реализации клиентских проектов в рамках системы **EdgeTurbineAI** необходимо разработать документ, описывающий типовые варианты проектирования, развёртывания и обслуживания решений по мониторингу авиационных турбин с использованием IoT-устройств, edge-аналитики и облачных платформ.

Данный документ формирует высокоуровневое представление системы, а также описывает ключевые компоненты реализации, схемы взаимодействия, ответственность подразделений и условия предоставления поддержки.

## 2.1 Реализуемые функции – подробнее смотрите раздел 3.1

- Сбор телеметрии (вибрации, температура, давление, обороты) с edge-устройств вблизи турбин;
- Предобработка и локальная ML-инференция для предварительной фильтрации данных;
- Передача данных в защищённом виде (MQTT over TLS) в центральную облачную платформу;
- Обнаружение аномалий в рабочем режиме турбин (AI/ML);
- Генерация и передача алертов;
- Обновление прошивок edge-устройств (OTA);
- Визуализация данных, журналов и уведомлений;
- Экспорт данных через REST API и отчётность.

#### 2.2 Спецификации и лицензирование

| Компонент             | Спецификация                                                                | Лицензирование                        |
|-----------------------|-----------------------------------------------------------------------------|---------------------------------------|
| Edge-устройство       | ARM64 CPU, 2–4 ядра, 2–8 ГБ RAM, накопитель от 16 ГБ, Linux (Yocto, Ubuntu) | GPL / проприетарное ПО                |
| OC и Runtime          | AWS IoT Greengrass v2, Docker runtime                                       | AWS Free Tier / AWS<br>Greengrass SLA |
| Протоколы             | MQTT (TLS 1.2+), HTTPS REST API, ОТА обновления через HTTPS                 | Open Source / AWS SDK                 |
| Облачное<br>хранилище | Amazon S3, Amazon Timestream                                                | По тарифу AWS                         |
| Обработка данных      | Apache Flink, Amazon Kinesis                                                | Apache 2.0 / AWS                      |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |    | HLD_612.4 |
|------------|-------------------------------------------------------|----|-----------|
| Дата       | Страница Всего страниц                                |    | Версия    |
| 18.06.2025 | 10                                                    | 27 | 2.0       |

| Компонент      | Спецификация                        | Лицензирование   |
|----------------|-------------------------------------|------------------|
| ML-инференс    | AWS SageMaker Edge, TensorFlow Lite | AWS / Apache 2.0 |
| Аналитика и BI | Amazon Athena, QuickSight           | AWS              |
| Интерфейсы     | API Gateway, Lambda                 | AWS              |
|                |                                     |                  |

# 2.3 Техническая схема реализации- подробнее смотрите раздел 3.3

(Вставляется адаптированная схема, на основе AWS Connected Aircraft — ранее согласованная)

 **Протоколы:** MQTT over TLS, HTTPS (REST), OTA Updates

**№** Каналы связи: Wi-Fi, Ethernet, LTE/5G

**1** Точки интеграции:

- Edge → Cloud (S3, Flink)
- Cloud → Analytics (Athena, QuickSight)
- Cloud → External APIs
- OTA: Cloud → Edge (SageMaker Edge)

### 2.4 Трудозатраты участвующих подразделений - подробнее смотрите раздел 5.1

### Приблизительно:

| Подразделение                      | Роль                                                       |    | Трудозатраты<br>(чел./дней) |
|------------------------------------|------------------------------------------------------------|----|-----------------------------|
| Разработка Embedded ПО             | Поддержка датчиков, интеграция с Greengrass                | 25 |                             |
| DevOps / AWS-инфраструктура        | Настройка S3, Kinesis, Flink, OTA, IAM                     | 15 |                             |
| Data Science / ML                  | Подготовка моделей, тестирование, загрузка в<br>Greengrass | 20 |                             |
| Разработка АРІ / интерфейсов       | REST API, Dashboard (QuickSight), документация             | 10 |                             |
| Отдел поддержки /<br>сопровождения | Мониторинг, диагностика, управление обновлениями           | 10 |                             |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 11                                                    | 27            | 2.0       |

### 2.5 Условия оказания технической поддержки / Support Terms - подробнее смотрите раздел 7

- **Время реакции**: 8×5 (в рабочие дни) или 24×7 по SLA
- Каналы связи: Email, Ticketing System, Emergency Hotline
- Поддерживаемые версии компонентов:
  - AWS Greengrass v2.6+
  - MQTT SDKs  $\geq$  v1.2
  - TensorFlow Lite v2.5+
- Сроки поддержки моделей ML: Обновление моделей не реже 1 раза в 3 месяца.
- Обслуживание и обновления:
  - ОТА-обновления через защищённый канал
  - Журналирование и аудит событий (CloudWatch)

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 12                                                    | 27            | 2.0       |

# 3 💸 ОПИСАНИЕ ТЕХНИЧЕСКОГО РЕШЕНИЯ

#### Общее описание

EdgeTurbineAI представляет собой высокотехнологичную IoT-платформу, ориентированную на контроль и прогнозирование технического состояния авиационных турбин в составе решений «подключённый самолёт» (Connected Aircraft). Архитектура решения базируется на референсной модели AWS Connected Aircraft Solution и использует передовые облачные и пограничные (edge) технологии.

Датчики, установленные на авиационных двигателях (вибрация, температура, давление, газоанализ), собирают телеметрию во время полёта. Эти данные обрабатываются в реальном времени на edge-устройстве с использованием AWS IoT Greengrass и предварительно обученных

моделей машинного обучения (МL-инференс). Обработка на борту позволяет выявлять аномалии и отклонения в режиме реального времени, минимизируя задержки.

После завершения полёта полные данные выгружаются в облачное хранилище Amazon S3, где они индексируются и анализируются с помощью Amazon Athena и Apache Flink. Инженерные и аналитические команды получают доступ к отчётам и визуализациям через панели Amazon QuickSight. Система также поддерживает загрузку новых ML-моделей и обновлений ПО через OTA (Over-The-Air), а также экспорт обезличенных данных для партнёров через AWS Data Exchange.

EdgeTurbineAI обеспечивает надёжный мониторинг состояния флота турбин, автоматизированную аналитику, снижение затрат на техническое обслуживание и повышение безопасности полётов за счёт предиктивного подхода к диагностике.

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 13 27                                                 |               | 2.0       |

# 3.1 Функциональность / Functionality

#### Функциональные возможности системы EdgeTurbineAI:

- Сбор телеметрии с авиационных турбин получение данных с вибрационных, температурных, давленческих и акустических сенсоров в режиме реального времени.
- Предобработка и локальный анализ на Edge-устройстве фильтрация, агрегация, нормализация и ML-инференс на борту с использованием AWS IoT Greengrass и TensorFlow Lite.
- Защищённая передача данных в облако использование протоколов MQTT over TLS и HTTPS REST API для безопасной доставки данных.
- Облачная аналитика и хранение автоматическая передача в Amazon S3 и обработка потоков с помощью Amazon Kinesis и Apache Flink.
- Предиктивная диагностика и выявление аномалий применение обученных моделей для анализа данных и определения отклонений в работе турбин.
- Визуализация и отчётность доступ к дашбордам (Amazon QuickSight), отчётам и APIинтерфейсам для внешних систем.
- Управление и обновление моделей и ПО (ОТА) централизованное обновление компонентов системы, включая прошивки и модели машинного обучения.
- Интеграция с внешними сервисами подключение к АРІ корпоративных решений, шлюзам авиакомпаний, провайдерам технического обслуживания.
- Журналирование и аудит хранение логов, мониторинг активности, контроль доступа и оповещения.
- Поддержка нескольких профилей эксплуатации адаптация функционала в зависимости от типа турбины, режима полёта и модели обслуживания.

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 14                                                    | 27            | 2.0       |

### 3.2 Системные требования для развертывания системы

#### Системные требования к виртуальной машине (ВМ):

- Процессор: четырёхъядерный, тактовая частота не ниже 2.2 ГГц
- Оперативная память: не менее 16 ГБ
- Дисковое пространство: **100 ГБ SSD**, с возможностью расширения (для логов, моделей и буферов)
- Сетевая подсистема: поддержка Ethernet 1 Гбит/с или LTE/5G-модем (опционально)
- Операционная система: **Ubuntu Server 22.04 LTS** или совместимая (поддержка Docker и AWS CLI)
- Поддержка виртуализации: KVM, VMware, VirtualBox, AWS EC2 (x86 64 / ARM64)

#### Требования к программному обеспечению:

- **Docker** v24.0+
- AWS CLI v2.14+
- AWS IoT Greengrass v2.10+
- Python 3.11+ (для скриптов мониторинга и ML-инференса)
- **Node.js** (опционально для интерфейсов и ОТА-хендлеров)
- **OpenJDK 17**+ (если планируется обработка через Flink локально)
- Поддержка протоколов MQTT (TLS), HTTPS, OTA
- SSH-доступ с настройкой ключей доступа и брандмауэра

### Требования к оборудованию:

- Edge-устройство класса Jetson Nano / Raspberry Pi 4 / AWS Snowcone / Intel NUC c:
  - Поддержкой AI-инференса (GPU или NPU)
  - Подключением до 6 датчиков (через I2C, SPI, UART)
  - Местом хранения: SD-карта или eMMC от 32 ГБ
  - Рабочим диапазоном температур: от -40 до +85°C (если для эксплуатации на борту)
    - Датчики:
  - Вибрационные (ріего или MEMS)
  - Температурные (термопары, RTD)
  - Давления (барометрические / воздушные)

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |    | HLD_612.4 |
|------------|-------------------------------------------------------|----|-----------|
| Дата       | Страница Всего страниц                                |    | Версия    |
| 18.06.2025 | 15                                                    | 27 | 2.0       |

- Дополнительно: акселерометры, микрофоны, датчики газа
  - Модули связи:
- Ethernet / Wi-Fi / LTE / 5G
- Поддержка SIM-карт для ОТА через сотовые сети
  - Источник питания: стабилизированный 5V/12V, резервное питание (UPS или батарея)

### 3.3 Схема решения и описание схемы

Схема предусматривает работу с **многокомпонентной IoT-архитектурой**, охватывающей как бортовую часть (на уровне турбины), так и облачные вычисления. Архитектура построена по принципу **Edge-to-Cloud**, обеспечивая локальную обработку, надёжную передачу данных и централизованную аналитику.

# **Л** Составные компоненты:

#### 1. Сенсорный узел (Sensor Node)

Сбор данных с вибрационных, температурных, акустических и давленческих датчиков, установленных на турбинах.

#### 2. Edge-устройство (Edge Gateway)

Предобработка, агрегация, локальная ML-инференция. Запуск AWS Greengrass, MQTT-брокера, шифрование и буферизация.

#### 3. MQTT Gateway / Cloud Broker

Передача сообщений с edge-устройств в облако через MQTT over TLS. Возможна работа через прокси или спутниковые каналы.

### 4. Облачная инфраструктура (AWS Cloud Services)

- Amazon S3 долговременное хранение "сырых" и агрегированных данных
- Amazon Kinesis / Flink потоковая аналитика
- AWS SageMaker обучение и деплой моделей
- Amazon Timestream временные ряды
- AWS Lambda / API Gateway бизнес-логика и интеграции

### 5. AI Engine

Обнаружение аномалий, тренды, предиктивное обслуживание турбин. Построение прогностических моделей.

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |        | HLD_612.4 |
|------------|-------------------------------------------------------|--------|-----------|
| Дата       | Страница                                              | Версия |           |
| 18.06.2025 | 16                                                    | 27     | 2.0       |

### 6. Визуализация и доступ (Dashboard / API)

- Amazon QuickSight ВІ-интерфейс
- REST API доступ для внешних платформ
- IoT Device Shadow синхронизация состояния устройств

# 🕰 Каналы связи:

- Wi-Fi / Ethernet внутри борта или ангара
- LTE / 5G / Satellite внешняя отправка при нахождении в сети
- OTA (Over-the-Air) обновление моделей и ПО через защищённые HTTPS-каналы

# 



[Sensor Node]  $\rightarrow$  [Edge Gateway]  $\rightarrow$  [MQTT Broker]  $\rightarrow$  [AWS Cloud Services]  $\rightarrow$  [ML Engine / BI Dashboard]

Протоколы: MQTT (TLS 1.2+), HTTPS REST, OTA via HTTPS

Безопасность: TLS, IAM, Device Certificates, Role-based Access Control

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |    | HLD_612.4 |
|------------|-------------------------------------------------------|----|-----------|
| Дата       | Страница Всего страниц                                |    | Версия    |
| 18.06.2025 | 17                                                    | 27 | 2.0       |

# Упрощенная схема:



| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |  | HLD_612.4 |
|------------|-------------------------------------------------------|--|-----------|
| Дата       | Страница Всего страниц                                |  | Версия    |
| 18.06.2025 | 18 27                                                 |  | 2.0       |

# 3.4 Описание системы резервного копирования/ Backup Strategy Description

Отказоустойчивость виртуальной машины и полное копирование, включая установленный сервер, конфигурацию и пользовательские данные, обеспечиваются согласно регламенту AWS Backup и политике Disaster Recovery корпоративной инфраструктуры AeroMLix.

# **С**оздание резервных копий для виртуальной машины:

- Резервное копирование производится по расписанию: ежедневно в 03:00 UTC, с недельной ротацией и ежемесячным архивом.
- Используется AWS Backup, привязанный к политике Lifecycle Management:
  - Ежедневные инкрементальные копии хранятся 7 дней
  - Полные еженедельные копии хранятся 4 недели
  - Ежемесячные архивные копии хранятся 12 месяцев

### Прерывание сервиса во время бекапирования:

- Сервис не прерывается: применяется горячее резервное копирование (snapshot) средствами гипервизора или облачного провайдера (например, Amazon EC2 с поддержкой EBS snapshots).
- Обновления конфигурации и критические операции (например, ОТА или миграция моделей) приостанавливаются во время резервного копирования для обеспечения консистентности.

# 🖸 Для обеспечения непрерывности работы сервиса будет использоваться стратегия:

- Active-Passive Failover: отказоустойчивая архитектура, при которой вторичная резервная инстанция развёрнута в смежном регионе (или зоне доступности) и активируется в случае сбоя основной.
- Поддержка автоматического восстановления (Auto Recovery) ЕС2-инстансов при критическом сбое.
- Использование **Device Shadow** и **Buffering on Edge** на стороне оборудования для предотвращения потери данных при потере связи с облаком.

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |    | HLD_612.4 |
|------------|-------------------------------------------------------|----|-----------|
| Дата       | Страница Всего страниц                                |    | Версия    |
| 18.06.2025 | 19                                                    | 27 | 2.0       |

# 🗱 Параметры восстановления

| Показатель                             | Значение                                                     | Комментарий                                                                              |
|----------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|
| RPO (Recovery Point<br>Objective)      | ≤ 15 минут                                                   | Используется инкрементальное резервное копирование с буферизацией на Edge-<br>устройстве |
| RTO (Recovery Time<br>Objective)       | ≤ 1 ча <b>с</b>                                              | Перезапуск из snapshot в соседней зоне доступности (AZ)                                  |
| Backup Frequency                       | <b>Каждые 24 часа</b> (инкрементально), еженедельно – полное | Автоматическая ротация и проверка консистентности                                        |
| Storage Class                          | Amazon S3 Standard-Infrequent<br>Access / Glacier            | Архивные копии для долгосрочного хранения                                                |
| Метод копирования<br>данных Edge→Cloud | MQTT буфер + HTTPS fallback                                  | Надёжная передача и повторная отправка при обрыве связи                                  |
| Поддержка ОТА-<br>откатов              | Да, версии конфигураций и моделей хранятся                   | Возможен возврат к предыдущей версии по команде                                          |

# ● Карта зон восстановления (пример на AWS):

| Компонент      | Основной регион          | Резервный регион     | Механизм синхронизации     |
|----------------|--------------------------|----------------------|----------------------------|
| VM-инстансы    | eu-central-1 (Франкфурт) | eu-west-1 (Ирландия) | Snapshots через AWS Backup |
| S3-хранилище   | eu-central-1             | eu-west-1            | Cross-Region Replication   |
| Device Shadows | eu-central-1             | _                    | Централизованно в AWS IoT  |
| Edge-данные    | Локально на устройстве   | _                    | Буфер + повторная доставка |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |    | HLD_612.4 |
|------------|-------------------------------------------------------|----|-----------|
| Дата       | Страница Всего страниц                                |    | Версия    |
| 18.06.2025 | 20                                                    | 27 | 2.0       |

# 4 ЗАТРАТЫ НА РЕАЛИЗАЦИЮ

#### Описание

Затраты на реализацию системы **EdgeTurbineAI** включают расходы на оборудование, облачные и локальные ресурсы, лицензирование программного обеспечения, трудозатраты персонала и затраты на техническую поддержку.

### Таблица предварительных затрат (в EUR)

| Категория затрат                      | Кол-во /<br>объем | Ед. цена<br>(EUR) | Сумма<br>(EUR) | Комментарий                                  |
|---------------------------------------|-------------------|-------------------|----------------|----------------------------------------------|
| Edge-устройства (NVIDIA<br>Jetson)    | 5 шт.             | 360               | 1,800          | Предобработка и локальная ML-<br>инференция  |
| Сенсоры (вибро, температура<br>и пр.) | 30 шт.            | 40                | 1,200          | Датчики на 5 двигателях                      |
| LTE-модемы + антенны                  | 5 комплектов      | 110               | 550            | OTA-обновление и связь в<br>удалённых точках |
| BM / EC2 (4vCPU, 16GB RAM, 100GB)     | 12 мес.           | 85 / мес          | 1,020          | Облачный хостинг (24/7)                      |
| Хранилище (S3 + Glacier)              | 1 ТБ              | 0.023 / мес       | 276            | Годовой расчёт хранения с резервированием    |
| AWS IoT Core / Lambda /<br>Kinesis    |                   | _                 | 960            | Годовая оценка стоимости облачных функций    |
| Разработка ПО (в т.ч. ML-<br>модели)  | 2 чел. × 3 мес.   | 4,500 / мес       | 27,000         | Включает РоС, АРІ, ОТА,<br>визуализацию      |
| Документация, обучение                | 1 проект          | 2,000             | 2,000          | Admin/User Manual + поддержка внедрения      |
| Техническая поддержка (12<br>мес.)    | 1 проект          | 3,600             | 3,600          | L2/L3 + мониторинг состояния системы         |

### Итого:

EUR 38,406 (≈ USD 41,750 no κypcy 1 EUR = 1.087 USD)

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |    | HLD_612.4 |
|------------|-------------------------------------------------------|----|-----------|
| Дата       | Страница Всего страниц                                |    | Версия    |
| 18.06.2025 | 21                                                    | 27 | 2.0       |

# 5 РЕАЛИЗАЦИЯ РЕШЕНИЯ

Данная система разворачивается в гибридной инфраструктуре, включающей:

- бортовое оборудование (Edge-устройства) на авиационных двигателях, и
- облачную платформу Amazon Web Services (AWS), используемую для сбора, хранения, анализа и визуализации данных.

Исходя из этого, ниже описаны две ключевые категории работ:

# 1) Разовое разворачивание инстанса в конкретной среде эксплуатации (аэродром, ангар, испытательный стенд, авиасимулятор)

#### Включает:

- подготовку оборудования (датчики, шлюзы, питание);
- установку программного обеспечения;
- начальную конфигурацию (сертификация устройств, параметры MQTT, подключение к облаку);
- проверку связи и сквозной диагностики;
- регистрацию устройства в облачной системе и системе мониторинга.

Подробнее см. в разделе П5.1: Стадии и шаги развёртывания.

### 2) Текущая эксплуатация и сопровождение (по модели SaaS / IoTaaS)

#### Включает:

- регулярные обновления ПО через ОТА;
- техническую и аналитическую поддержку;
- ретроспективный анализ инцидентов;
- масштабирование (добавление новых устройств и точек сбора данных);
- управление конфигурациями и интеграцией с внешними API.

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |  | HLD_612.4 |
|------------|-------------------------------------------------------|--|-----------|
| Дата       | Страница Всего страниц                                |  | Версия    |
| 18.06.2025 | 22 27                                                 |  | 2.0       |

# 5.1 Стадии работ над проектом: instance – часть. Трудозатраты

| №   | Выполняемая работа                                                  | Ответственное<br>подразделение | Трудозатраты (чел<br>часы) |
|-----|---------------------------------------------------------------------|--------------------------------|----------------------------|
| 1   | Проектно-изыскательская работа                                      |                                |                            |
| 1.1 | Формирование требований к ресурсам ВМ                               | Архитектурный отдел            | 4                          |
| 1.2 | Формирование требований к сетевой инфраструктуре                    | Сетевой инженерный сектор      | 3                          |
| 1.3 | Выделение ресурсов под размещаемую систему                          | Отдел DevOps и виртуализации   | 2                          |
| 2   | Инсталляционные работы                                              |                                |                            |
| 2.1 | Организация удалённого доступа к вычислительным ресурсам            | Отдел поддержки инфраструктуры | 2                          |
| 2.3 | Установка ОС                                                        | Системные<br>администраторы    | 2                          |
| 2.4 | Установка Docker-окружения                                          | DevOps                         | 2                          |
| 2.5 | Развёртывание компонентов системы (внутри Docker)                   | DevOps + Разработчики          | 5                          |
| 3   | Пусконаладочные работы                                              |                                |                            |
| 3.1 | Организация доступа к системе мониторинга Zabbix                    | Инженеры мониторинга           | 2                          |
| 3.2 | Настройка генерации Zabbix                                          | Инженеры мониторинга           | 2                          |
| 3.3 | Настройка шаблонов, триггеров, узлов связи                          | Инженеры мониторинга           | 3                          |
| 3.4 | Настройка карточки объекта в ИС                                     | Тех. архитектор /<br>Аналитики | 1                          |
| 3.5 | Настройка схемы БД                                                  | Разработчики                   | 2                          |
| 3.6 | Первоначальная настройка компонентов (загрузка справочников и т.д.) | Разработчики                   | 3                          |
| 3.7 | Создание учётной записи мастер-администратора                       | Администраторы системы         | 1                          |

| AeroMLix   |          | «EdgeTurbineAI для контроля<br>характеристик турбин » |        |
|------------|----------|-------------------------------------------------------|--------|
| Дата       | Страница | Всего страниц                                         | Версия |
| 18.06.2025 | 23       | 27                                                    | 2.0    |

| №    | Выполняемая работа                                    | Ответственное<br>подразделение  | Трудозатраты (чел<br>часы) |
|------|-------------------------------------------------------|---------------------------------|----------------------------|
| 3.8  | Реализация интеграций (по запросу клиента)            | Разработчики + API-<br>инженеры | 5                          |
| 3.9  | Проверка работы инсталлированной системы              | QA-инженеры                     | 3                          |
| 3.10 | Настройка правил на FW                                | Сетевые администраторы          | 2                          |
| 4    | Приемосдаточные испытания                             |                                 |                            |
| 4.1  | Проверка доступа и функциональности<br>администратора | QА-инженеры                     | 2                          |
| 4.2  | Проверка прохождения тест-сценариев                   | QA-инженеры                     | 3                          |
| 4.3  | Проверка успешности интеграций                        | QA + Dev                        | 2                          |
| 5    | Завершение построения системы                         |                                 |                            |
| 5.1  | Подписание акта приёмки услуги                        | Менеджер проекта +<br>Клиент    | 1                          |
| 6    | Эксплуатация системы (ежемесячно / ежегодно)          |                                 |                            |
| 6.1  | Обновление ОС                                         | Системные администраторы        | 1                          |
| 6.2  | Обновление компонентов системы                        | DevOps                          | 2                          |
| 6.3  | Мониторинг работоспособности ОС                       | Служба мониторинга              | 2                          |
| 6.4  | Мониторинг компонентов системы                        | Служба мониторинга              | 2                          |
| 6.5  | Продление лицензии на поддержку RHEL Server           | IT Procurement                  | 1                          |
| 6.6  | Продление SSL сертификатов                            | Сетевой администратор / DevOps  | 1                          |
| 6.7  | Поддержка виртуализации и бэкапирования               | Отдел виртуализации             | 2                          |
| 6.8  | Решение проблем с FW                                  | Сетевой инженер                 | 1                          |
| 6.9  | Реагирование на события от сервера (use cases)        | DCO / NOC                       | 3                          |
| 6.10 | Выделение / обновление виртуальных ресурсов           | DevOps / Admin                  | 2                          |
| 6.11 | Обработка событий безопасности                        | Инфобез / SOC                   | 3                          |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 24                                                    | 27            | 2.0       |

Общая оценка трудозатрат на развёртывание одного инстанса (без учёта эксплуатации): **~60 человеко-часов** 

# 5.2 Ответственность сторон

| Сторона                                           | Область<br>ответственности                            | Описание                                                                                                                                                                                                                                         |
|---------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Разработчик решения<br>(AeroMLix R&D)             | Разработка, развёртывание и сопровождение IoT-системы | — Проектирование архитектуры решения (Edge + Cloud) — Разработка компонентов (датчики, прошивки, шлюзы, облачные модули, АІ-аналитика) — Проведение инсталляционных и пусконаладочных работ — Обновление и сопровождение программных компонентов |
| Технический интегратор / подрядчик                | Подключение к инфраструктуре заказчика                | — Организация доступа к вычислительным ресурсам — Настройка сетевых параметров, VLAN, VPN — Внедрение мониторинга и резервного копирования                                                                                                       |
| Клиент / оператор<br>авиапарка                    | Эксплуатация и предоставление доступа                 | — Предоставление доступа к объектам установки (двигатели, лаборатории) — Назначение ответственного администратора системы — Участие в приёмке и подписании актов — Обеспечение соблюдения условий SLA                                            |
| Облачный провайдер<br>(AWS / Azure)               | Инфраструктура и<br>хостинг                           | — Предоставление облачных ресурсов для хранения и обработки данных — Обеспечение отказоустойчивости, масштабируемости — Гарантированное выполнение SLA по доступности                                                                            |
| Отдел<br>информационной<br>безопасности (InfoSec) | Безопасность системы и данных                         | — Проведение аудита архитектуры — Настройка безопасных каналов передачи данных (TLS, VPN) — Мониторинг инцидентов безопасности и реагирование                                                                                                    |
| Служба поддержки /<br>NOC                         | Мониторинг и<br>реагирование                          | — Непрерывный мониторинг работоспособности компонентов — Реагирование на события и инциденты — Предоставление отчётности и отчётов по SLA                                                                                                        |

Примечание: Ответственности фиксируются в техническом соглашении и могут уточняться в рамках Service Level Agreement (SLA) и Operational Level Agreement (OLA).

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 25                                                    | 27            | 2.0       |

# 6 МОНИТОРИНГ

### Мониторинг производится с помощью:

Zabbix Enterprise Monitoring Platform, развернутой в облачном и edge-сегменте. Дополнительно используются встроенные средства AWS (CloudWatch), а также Prometheus + Grafana для аналитики ИИ-модуля.

# Шаблон мониторинга: 1 – Edge-устройства и сенсорные узлы:

| Тест                                   | Тип теста                | Условие fail                    | Период<br>проверки  |
|----------------------------------------|--------------------------|---------------------------------|---------------------|
| Ping до Edge-устройства                | Network                  | Потеря 3 из 3 пакетов           | Каждые 30<br>секунд |
| Температура контроллера                | SNMP/Agent               | > 85°C                          | Каждые 60<br>секунд |
| Доступность МОТТ-порта                 | TCP Port Check           | Нет подключения к порту<br>1883 | Каждые 60<br>секунд |
| Проверка частоты публикации телеметрии | Zabbix Custom<br>Trigger | Нет сообщений > 5 минут         | Каждые 60<br>секунд |
| Связь с датчиком вибрации              | Serial/Bluetooth check   | Нет ответа от датчика > 2 минут | Каждые 60<br>секунд |

# Шаблон мониторинга: 2 – Облачные компоненты (Cloud Broker, AI Engine) :

| Тест                                 | Тип теста               | Условие fail                      | Период<br>проверки  |
|--------------------------------------|-------------------------|-----------------------------------|---------------------|
| Доступность REST API                 | HTTP 200 Check          | Код ответа не 200                 | Каждые 60<br>секунд |
| Утилизация CPU облачного<br>сервера  | CloudWatch Alarm        | > 80% в течение 5 минут           | Каждые 60<br>секунд |
| Задержка входящих MQTT-<br>сообщений | AI Engine Metric        | > 3 секунд                        | Каждые 30<br>секунд |
| Обновление AI-моделей                | Cron/Log Monitor        | Модель не обновлялась > 7 дней    | Ежедневно           |
| Сбой интеграции с Dashboard          | Prometheus<br>AlertRule | Нет данных на дашборде > 2 минуты | Каждые 15<br>секунд |

| AeroMLix   | «EdgeTurbineAI для контроля<br>характеристик турбин » |               | HLD_612.4 |
|------------|-------------------------------------------------------|---------------|-----------|
| Дата       | Страница                                              | Всего страниц | Версия    |
| 18.06.2025 | 26                                                    | 27            | 2.0       |

# 7. СОГЛАШЕНИЕ ОБ УРОВНЕ ОБСЛУЖИВАНИЯ (SLA)

### 7.1 Цель SLA

Данное соглашение определяет уровни качества и доступности сервиса **EdgeTurbineAI**, обязательства сторон по обеспечению непрерывной работы, а также порядок взаимодействия в случае инцидентов.

#### 7.2 Область применения

SLA охватывает все компоненты системы: edge-устройства, сеть передачи данных, облачные сервисы, аналитические и визуализационные модули.

# 7.3 Уровни сервиса и показатели

| Показатель                                | Цель (целевой<br>уровень) | Метод измерения                                  | Период<br>мониторинга    |
|-------------------------------------------|---------------------------|--------------------------------------------------|--------------------------|
| Доступность облачного АРІ                 | ≥ 99.9%                   | Мониторинг НТТР-запросов                         | Месячный отчет           |
| Доступность MQTT-брокера                  | ≥ 99.95%                  | Мониторинг подключения по MQTT                   | Месячный отчет           |
| Время реакции на<br>критические инциденты | ≤ 30 минут                | Время от регистрации инцидента до начала реакции | Время события            |
| Время восстановления после<br>сбоя        | ≤ 2 часа                  | Время до полной<br>работоспособности             | Время события            |
| Время обновления данных на<br>дашборде    | ≤ 60 секунд               | Латентность обновления данных                    | Постоянный<br>мониторинг |

### 7.4 Обязанности сторон

#### • Поставщик услуги (AeroMLix):

- Обеспечить бесперебойную работу и поддержку системы согласно указанным уровням SLA.
- Оперативно уведомлять клиента о плановых работах и внеплановых инцидентах.
- Выполнять регулярное обновление и обслуживание программного обеспечения и оборудования.
- Предоставлять отчеты о состоянии системы и выполнении SLA.



#### • Клиент:

- Обеспечить надлежащие условия эксплуатации оборудования и доступ к объектам.
- Своевременно информировать поставщика о выявленных проблемах и инцидентах.
- Соблюдать рекомендации и требования безопасности.
- Обеспечивать доступ к сетевой инфраструктуре, необходимой для работы системы.

### 7.5 Процедура эскалации инцидентов

- 1. Регистрация инцидента службой поддержки клиента.
- 2. Квалификация и приоритизация инцидента службой поддержки AeroMLix.
- 3. Начало работ по устранению в течение оговоренного времени реакции.
- 4. Эскалация в вышестоящие уровни поддержки при необходимости.
- 5. Информирование клиента о ходе работ и итогах устранения.

#### 7.6 Исключения

- Время простоя, вызванное форс-мажорными обстоятельствами (стихийные бедствия, действия третьих лиц).
- Плановые работы, заранее согласованные с клиентом.
- Нарушения, вызванные действиями клиента или оборудования, не предоставленного поставщиком.

#### 7.7 Дополнительно

- SLA может быть пересмотрено по согласованию сторон.
- Все споры разрешаются путем переговоров, при необходимости в судебном порядке.