Regression-LRM1

December 21, 2024

0.0.1 Choosing independant variables

- 1. 'Charge Amount' might actually be part of how Customer Value is calculated, thus it'll be excluded from the independent variables.
- 2. 'Freq. of use' This is most likely directly used to calculate Customer Value, the more the customer uses the service, the more he value he has.
- 3. 'Status' (active/non-active), this actually would've been much more helpful if I had the duration of being active, as Status might help define a Customer's value, for example: "Active for 2 years, high value", "Active for 2 weeks, low value", hence, it'll be removed, along with those two reasons as well:
 - It might create noise in our model since all high-value customers must be active, but not all active customers have high value
 - The relationship might be too deterministic being non-active almost automatically means lower Customer Value.
- 4. 'Age' is clearly independent of Cutomer value.
- 5. 'Plan_pre-paid' is an independent predictor with Charge Amount.
- 6. 'Call Failure' isn't related to how to define a Customer value, so independent.
- 7. 'Complains' is an independent predictor compared with Charge Amount
- 8. 'Distinct Called Numbers' this cannot define a Customer Value so it's independent.

0.0.2 Final chosen independent variables

- 1. **Age**
- 2. Plan pre-paid
- 3. Call Failure
- 4. Complains
- 5. Distinct Called Numbers

```
[2]: import numpy as np
  import pandas as pd
  from models.LinearRegressionModel import LinearRegressionModel

def main():
    """
```

```
Implementation of LRM1: predicting Customer Value using all independent _{\sqcup}
 \hookrightarrow attributes
    11 11 11
    # Load the prepared data
    print("Loading data...")
    train df = pd.read csv('../data/train.csv')
    test_df = pd.read_csv('../data/test.csv')
    independent_features = ['Age', 'Plan_pre-paid', 'Call Failure',
                           'Complains', 'Distinct Called Numbers']
    X_train = train_df[independent_features]
    y_train = train_df['Customer Value']
    X_test = test_df[independent_features]
    y_test = test_df['Customer Value']
    # Create and train LRM1
    print("\nTraining LRM1 model...")
    lrm1 = LinearRegressionModel(model_name="LRM1")
    lrm1.fit(X_train, y_train)
    # Evaluate the model
    print("\nEvaluating LRM1 performance...")
    metrics, predictions = lrm1.evaluate(X_test, y_test)
    # Print results
    print("\nLRM1 Performance Metrics:")
    print(f"R2 Score: {metrics['r2_score']:.4f}")
    print(f"Mean Squared Error: {metrics['mse']:.4f}")
    print(f"Root Mean Squared Error: {metrics['rmse']:.4f}")
    print(f"Mean Absolute Error: {metrics['mae']:.4f}")
    # Plot predictions
    lrm1.plot_predictions(y_test, predictions)
if __name__ == "__main__":
    main()
```

```
/usr/lib/python3/dist-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.4
```

 $\label{lem:warnings.warn} $$ \operatorname{NumPy version} >= \{ \operatorname{np_minversion} \} $$ and $$ (np_maxversion) = \{ \operatorname{np_minversion} \} $$ and $$ (np_maxversion) = \{ \operatorname{np_minversion} \} $$ (np_maxversion) = \{ \operatorname{np_$

Loading data...

Training LRM1 model...

Evaluating LRM1 performance...

LRM1 Performance Metrics:

R² Score: 0.1830

Mean Squared Error: 214216.4046 Root Mean Squared Error: 462.8352 Mean Absolute Error: 341.0139

0.0.3 Analysing the output

The performance metrics are really bad. 1. The R^2 Score of 0.1830 (or about 18.3%) is quite low. This indicates that only about 18.3% of the variance in Customer Value is explained.

- 2. Customer Value ranges from 0 to about 2165.28, with a mean of 470.97. This means RMSE (462.83) is almost equal to the mean value, which suggests substantial prediction errors.
- 3. It can be analysed from the plot the model's prediction becomes worse as the Customer Value increases.

0.0.4 Conclusion

Given this outcome, I've decided to include all the variables I've excluded before, Churn, Charge amount, freq. of use and Status.

```
[3]: def main():
```

```
Implementation of LRM1: predicting Customer Value using all independent \sqcup
\hookrightarrow attributes
  11 11 11
  # Load the prepared data
  print("Loading data...")
  train df = pd.read csv('../data/train.csv')
  test_df = pd.read_csv('../data/test.csv')
  independent_features = ['Age', 'Plan_pre-paid', 'Call Failure',
                         'Complains', 'Distinct Called Numbers', 'Charge

→Amount',
                         'Freq. of use', 'Status']
  X_train = train_df[independent_features]
  y_train = train_df['Customer Value']
  X_test = test_df[independent_features]
  y_test = test_df['Customer Value']
  # Create and train LRM1
  print("\nTraining LRM1 model...")
  lrm1 = LinearRegressionModel(model_name="LRM1")
  lrm1.fit(X_train, y_train)
  # Evaluate the model
  print("\nEvaluating LRM1 performance...")
  metrics, predictions = lrm1.evaluate(X_test, y_test)
  # Print results
  print("\nLRM1 Performance Metrics:")
  print(f"R2 Score: {metrics['r2_score']:.4f}")
  print(f"Mean Squared Error: {metrics['mse']:.4f}")
  print(f"Root Mean Squared Error: {metrics['rmse']:.4f}")
  print(f"Mean Absolute Error: {metrics['mae']:.4f}")
  # Plot predictions
  lrm1.plot_predictions(y_test, predictions)
```