

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                                                                                                          |                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 5 :<br><b>C12Q 1/68, C07H 21/04</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | A1                                                                                                                                                                                                       | (11) International Publication Number: <b>WO 93/13225</b><br>(43) International Publication Date: <b>8 July 1993 (08.07.93)</b> |
| <p>(21) International Application Number: <b>PCT/US92/11345</b></p> <p>(22) International Filing Date: <b>21 December 1992 (21.12.92)</b></p> <p>(30) Priority data:<br/><b>07/813,585 23 December 1991 (23.12.91) US</b></p> <p>(71) Applicant: <b>CHIRON CORPORATION [US/US]; 4560 Horton Street, Emeryville, CA 94608 (US).</b></p> <p>(72) Inventors: <b>KOLBERG, Janice, A. ; 131 Scotts Valley Road, Hercules, CA 94547 (US). URDEA, Michael, S. ; 100 Bunce Meadow Road, Alamo, CA 94507 (US).</b></p> <p>(74) Agents: <b>KENNEDY, Bill et al.; Morrison &amp; Foerster, 755 Page Mill Road, Palo Alto, CA 94304 (US).</b></p> |  | <p>(81) Designated States: <b>CA, JP, KR, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</b></p> <p><b>Published</b><br/><i>With international search report.</i></p> |                                                                                                                                 |
| <p>(54) Title: <b>HTLV-I PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS</b></p> <p>(57) Abstract</p> <p>Novel DNA probe sequences for detection of HTLV-1 in a sample in a solution phase sandwich hybridization assay are described. Amplified nucleic acid hybridization assays using the probes are exemplified.</p>                                                                                                                                                                                                                                                                                               |  |                                                                                                                                                                                                          |                                                                                                                                 |

BEST AVAILABLE COPY

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                          |    |                          |
|----|--------------------------|----|------------------------------------------|----|--------------------------|
| AT | Austria                  | FR | France                                   | MR | Mauritania               |
| AU | Australia                | GA | Gabon                                    | MW | Malawi                   |
| BB | Barbados                 | GB | United Kingdom                           | NL | Netherlands              |
| BE | Belgium                  | GN | Guinea                                   | NO | Norway                   |
| BF | Burkina Faso             | GR | Greece                                   | NZ | New Zealand              |
| BG | Bulgaria                 | HU | Hungary                                  | PL | Poland                   |
| BJ | Benin                    | IE | Ireland                                  | PT | Portugal                 |
| BR | Brazil                   | IT | Italy                                    | RO | Romania                  |
| CA | Canada                   | JP | Japan                                    | RU | Russian Federation       |
| CF | Central African Republic | KP | Democratic People's Republic<br>of Korea | SD | Sudan                    |
| CG | Congo                    | KR | Republic of Korea                        | SE | Sweden                   |
| CH | Switzerland              | KZ | Kazakhstan                               | SK | Slovak Republic          |
| CI | Côte d'Ivoire            | LJ | Liechtenstein                            | SN | Senegal                  |
| CM | Cameroon                 | LK | Sri Lanka                                | SU | Soviet Union             |
| CS | Czechoslovakia           | LU | Luxembourg                               | TD | Chad                     |
| CZ | Czech Republic           | MC | Munzoco                                  | TG | Togo                     |
| DE | Germany                  | MG | Madagascar                               | UA | Ukraine                  |
| DK | Denmark                  | ML | Mali                                     | US | United States of America |
| ES | Spain                    | MN | Mongolia                                 | VN | Viet Nam                 |
| FI | Finland                  |    |                                          |    |                          |

-1-

5

HTLV-1 PROBES FOR USE IN SOLUTION PHASE  
SANDWICH HYBRIDIZATION ASSAYS

DESCRIPTION

10    Technical Field

This invention is in the field of nucleic acid hybridization assays. More specifically, it relates to novel nucleic acid probes for detecting HTLV-1.

15    Background Art

HTLV-1 is a human lymphotrophic retrovirus which causes adult T-cell leukemia/lymphoma and tropic spastic paraparesis/HTLV-1-associated myelopathy. These HTLV-1 associated diseases are endemic in Japan and the 20 Caribbean, with sporadic occurrences in the U.S. Detection of HTLV-1 is typically done by immunological or polymerase chain reaction assays (see; e.g., Meytes, et al., Lancet 336(8730):1533-1535, 1990).

Commonly owned U.S. 4,868,105 describes a 25 solution phase nucleic acid sandwich hybridization assay in which analyte nucleic acid is first hybridized in solution to a labeling probe set and to a capturing probe set in a first vessel. The probe-analyte complex is then transferred to a second vessel that contains a solid-phase-immobilized probe that is substantially 30 complementary to a segment of the capturing probes. The segments hybridize to the immobilized probe, thus removing the complex from solution. Having the analyte in the form of an immobilized complex facilitates 35 subsequent separation steps in the assay. Ultimately,

-2-

single stranded segments of the labeling probe set are hybridized to labeled probes, thus permitting the analyte-containing complex to be detected via a signal generated directly or indirectly from the label.

5        Commonly owned European Patent Application (EPA) 883096976 discloses a variation in the assay described in U.S. 4,868,105 in which the signal generated by the labeled probes is amplified. The amplification involves the use of nucleic acid multimers. These

10      multimers are branched polynucleotides that are constructed to have a segment that hybridizes specifically to the analyte nucleic acid or to a nucleic acid (branched or linear) that is bound to the analyte and iterations of a second segment that hybridize

15      specifically to the labeled probe. In the assay employing the multimer, the initial steps of hybridizing the analyte to label or amplifier probe sets and capturing probe sets in a first vessel and transferring the complex to another vessel containing immobilized

20      nucleic acid that will hybridize to a segment of the capturing probes are followed. The multimer is then hybridized to the immobilized complex and the labeled probes in turn hybridized to the second segment iterations on the multimer. Since the multimers provide

25      a large number of sites for label probe attachment, the signal is amplified. Amplifier and capture probe sequences are disclosed for Hepatitis B virus, Neisseria gonorrhoeae, penicillin and tetracycline resistance in N. gonorrhoeae, and Chlamydia trachomatis.

30       Commonly owned copending application Serial No. 558,897, filed 27 July 1990, describes the preparation of large comb-type branched polynucleotide multimers for use in the above-described solution phase assay. The combs provide greater signal enhancement in the assays than the

35      smaller multimers.

- 3 -

Disclosure of the Invention

One aspect of the invention is a synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for HTLV-1 nucleic acid

5 comprising a first segment having a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid, and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide acid multimer.

10 Another aspect of the invention is a synthetic oligonucleotide useful as a capture probe in a sandwich hybridization assay for HTLV-1 nucleic acid comprising a first segment having a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid; and a

15 second segment having a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase.

Another aspect of the invention is a solution sandwich hybridization assay for detecting the presence 20 of HTLV-1 nucleic acid in a sample, comprising

(a) contacting the sample under hybridizing conditions with an excess of (i) an amplifier probe oligonucleotide comprising a first segment having a nucleotide sequence substantially complementary to a 25 segment of HTLV-1 nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) a capture probe oligonucleotide comprising a first segment having a nucleotide sequence that is 30 substantially complementary to a segment of HTLV-1 nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

-4-

(b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;

(c) thereafter separating materials not bound to the solid phase;

(d) contacting the product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

(e) removing unbound multimer;

(f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;

(g) removing unbound labeled oligonucleotide; and

(h) detecting the presence of label in the solid phase complex product of step (g).

Another aspect of the invention is a kit for the detection of HTLV-1 nucleic acid in a sample comprising in combination

(i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment having a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;

(ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment having a nucleotide sequence that is substantially complementary to a segment of HTLV-1 nucleic acid and a second segment that is substantially

-5-

complementary to an oligonucleotide bound to a solid phase;

(iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is

5 substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide; and

(iv) a labeled oligonucleotide.

10

Modes for Carrying Out the Invention

Definitions

"Solution phase nucleic acid hybridization assay" intends the assay techniques described and claimed in commonly owned U.S. Patent No. 4,868,105 and EPA 883096976.

A "modified nucleotide" intends a nucleotide monomer that may be stably incorporated into a polynucleotide and which has an additional functional group. Preferably, the modified nucleotide is a 5'-cytidine in which the N<sup>4</sup>-position is modified to provide a functional hydroxy group.

An "amplifier multimer" intends a branched polynucleotide that is capable of hybridizing simultaneously directly or indirectly to analyte nucleic acid and to a multiplicity of polynucleotide iterations (i.e., either iterations of another multimer or iterations of a labeled probe). The branching in the multimers is effected through covalent bonds and the multimers are composed of two types of oligonucleotide units that are capable of hybridizing, respectively, to analyte nucleic acid or nucleic acid hybridized to analyte nucleic acid and to a multiplicity of labeled probes. The composition and preparation of such

-6-

multimers are described in EPA 883096976 and U.S. Serial No. 558,897 filed 27 July 1990, the disclosures of which are incorporated herein by reference.

The term "amplifier probe" is intended as a  
5 branched or linear polynucleotide that is constructed to have a segment that hybridizes specifically to the analyte nucleic acid and iterations of a second segment that hybridize specifically to an amplifier multimer.

The term "capture probe" is intended as an  
10 oligonucleotide having a segment substantially complementary to a nucleotide sequence of the target DNA and a segment that is substantially complementary to a nucleotide sequence of a solid-phase-immobilized probe.

"Large" as used herein to describe the comb-  
15 type branched polynucleotides of the invention intends a molecule having at least about 15 branch sites and at least about 20 iterations of the labeled probe binding sequence.

"Comb-type" as used herein to describe the  
20 structure of the branched polynucleotides of the invention intends a polynucleotide having a linear backbone with a multiplicity of sidechains extending from the backbone.

A "cleavable linker molecule" intends a  
25 molecule that may be stably incorporated into a polynucleotide chain and which includes a covalent bond that may be broken or cleaved by chemical treatment or physical treatment such as by irradiation.

All nucleic acid sequences disclosed herein are  
30 written in a 5' to 3' direction. Nucleotides are designated according to the nucleotide symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. All nucleotide sequences disclosed are intended to include complementary sequences unless  
35 otherwise indicated.

- 7 -

Solution Phase Hybridization Assay

The general protocol for the solution phase sandwich hybridizations is as follows. The analyte nucleic acid is placed in a microtiter well with an

- 5 excess of two single-stranded nucleic acid probe sets:
- (1) a set of capture probes, each having a first binding sequence substantially complementary to the analyte and a second binding sequence that is substantially complementary to nucleic acid bound to a solid support,
- 10 for example, the well surface or a bead, and (2) a set of amplifier probes (branched or linear), each having a first binding sequence that is capable of specific binding to the analyte and a second binding sequence that is capable of specific binding to a segment of the
- 15 multimer. The resulting product is a three component nucleic acid complex of the two probes hybridized to the analyte by their first binding sequences. The second binding sequences of the probes remain as single-stranded segments as they are not complementary to the analyte.
- 20 This complex hybridizes to the immobilized probe on the solid surface via the second binding sequence of the capture probe. The resulting product comprises the complex bound to the solid surface via the duplex formed by the oligonucleotide bound to the solid surface and the
- 25 second binding sequence of the capture probe. Unbound materials are then removed from the surface such as by washing.

The amplification multimer is then added to the bound complex under hybridization conditions to permit the multimer to hybridize to the available second binding sequence(s) of the amplifier probe of the complex. The resulting complex is then separated from any unbound multimer by washing. The labeled oligonucleotide is then added under conditions which permit it to hybridize to the substantially complementary oligonucleotide units of

30

35

-8-

the multimer. The resulting immobilized labeled nucleic acid complex is then washed to remove unbound labeled oligonucleotide, and read.

The analyte nucleic acids may be from a variety 5 of sources, e.g., biological fluids or solids, and may be prepared for the hybridization analysis by a variety of means, e.g., proteinase K/SDS, chaotropic salts, etc. Also, it may be of advantage to decrease the average size 10 of the analyte nucleic acids by enzymatic, physical or chemical means, e.g., restriction enzymes, sonication, chemical degradation (e.g., metal ions), etc. The fragments may be as small as 0.1 kb, usually being at least about 0.5 kb and may be 1 kb or higher. The analyte sequence is provided in single-stranded form for 15 analysis. Where the sequence is naturally present in single-stranded form, denaturation will not be required. However, where the sequence may be present in double-stranded form, the sequence should be denatured. Denaturation can be carried out by various techniques, 20 such as alkali, generally from about 0.05 to 0.2 M hydroxide, formamide, salts, heat, enzymes, or combinations thereof.

The first binding sequences of the capture probe and amplifier probe that are substantially 25 complementary to the analyte sequence will each be of at least 15 nucleotides, usually at least 25 nucleotides, and not more than about 5 kb, usually not more than about 1 kb, preferably not more than about 100 nucleotides. They will typically be approximately 30 nucleotides. 30 They will normally be chosen to bind to different sequences of the analyte. The first binding sequences may be selected based on a variety of considerations. Depending upon the nature of the analyte, one may be interested in a consensus sequence, a sequence associated

-9-

with polymorphisms, a particular phenotype or genotype, a particular strain, or the like.

The number of different amplifier and capture probes used influences the sensitivity of the assay, because the more probe sequences used, the greater the signal provided by the assay system. Furthermore, the use of more probe sequences allows the use of more stringent hybridization conditions, thereby reducing the incidence of false positive results. Thus, the number of probes in a set will be at least one capture probe and at least one amplifier probe, more preferably two capture and two amplifier probes, and most preferably 5-100 capture probes and 5-100 amplifier probes.

Oligonucleotide probes for HTLV-1 were designed by aligning the nucleotide sequences of the pol gene of HTLV-1 Japanese and Caribbean isolates and HTLV-2 available from GenBank. Regions of greatest homology between HTLV-1 isolates were chosen for capture probes, while regions of lesser homology were chosen as amplifier probes. Thus, as additional strains or isolates of HTLV-1 are made available, appropriate probes made be designed by aligning the sequence of the new strain or isolate with the nucleotide sequences used to design the probes of the present invention, and choosing regions of greatest homology for use as capture probes, with regions of lesser homology chosen as amplifier probes. The capture probes of the presently preferred configuration form two clusters, with the amplifier probes clustered between the two capture probe clusters. The nucleotide sequences of the presently preferred probe sets are shown in the examples.

The second binding sequences of the capture probe and amplifier probe are selected to be substantially complementary, respectively, to the oligonucleotide bound to the solid surface and to a

-10-

segment of the multimer and so as to not be encountered by endogenous sequences in the sample/analyte. The second binding sequence may be contiguous to the first binding sequence or be spaced therefrom by an

5 intermediate noncomplementary sequence. The probes may include other noncomplementary sequences if desired. These noncomplementary sequences must not hinder the binding of the binding sequences or cause nonspecific binding to occur.

10 The capture probe and amplifier probe may be prepared by oligonucleotide synthesis procedures or by cloning, preferably the former.

15 It will be appreciated that the binding sequences need not have perfect complementarity to provide homoduplexes. In many situations, heteroduplexes will suffice where fewer than about 10% of the bases are mismatches, ignoring loops of five or more nucleotides. Accordingly, as used herein the term "complementary" intends exact complementarity wherein each base within 20 the binding region corresponds exactly, and "substantially complementary" intends 90% or greater homology.

25 The labeled oligonucleotide will include a sequence substantially complementary to the repeated oligonucleotide units of the multimer. The labeled oligonucleotide will include one or more molecules ("labels"), which directly or indirectly provide a detectable signal. The labels may be bound to individual members of the substantially complementary sequence or 30 may be present as a terminal member or terminal tail having a plurality of labels. Various means for providing labels bound to the oligonucleotide sequences have been reported in the literature. See, for example, Leary et al., Proc. Natl. Acad. Sci. USA (1983) 80:4045; 35 Renz and Kurz, Nucl. Acids Res. (1984) 12:3435;

-11-

Richardson and Gumpert, Nucl. Acids Res. (1983) 11:6167; Smith et al., Nucl. Acids. Res. (1985) 13:2399; Meinkoth and Wahl, Anal. Biochem. (1984) 138:267. The labels may be bound either covalently or non-covalently to the

5 substantially complementary sequence. Labels which may be employed include radionuclides, fluorescers, chemiluminescers, dyes, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, enzyme subunits, metal ions, and the like. Illustrative specific labels  
10 include fluorescein, rhodamine, Texas red, phycoerythrin, umbelliferone, luminol, NADPH,  $\alpha$ - $\beta$ -galactosidase, horse-radish peroxidase, alkaline phosphatase, etc.

The ratio of capture probe and amplifier probe to anticipated moles of analyte will each be at least  
15 stoichiometric and preferably in excess. This ratio is preferably at least about 1.5:1, and more preferably at least 2:1. It will normally be in the range of 2:1 to  $10^6$ :1. Concentrations of each of the probes will generally range from about  $10^{-5}$  to  $10^{-9}$  M, with sample nucleic acid concentrations varying from  $10^{-21}$  to  $10^{-12}$  M. The hybridization steps of the assay will generally take from about 10 minutes to 20 hours, frequently being completed in about 1 hour. Hybridization can be carried out at a mildly elevated temperature, generally in the range from  
20 about 20°C to 80°C, more usually from about 35°C to 70°C, particularly 65°C.  
25

The hybridization reactions are usually done in an aqueous medium, particularly a buffered aqueous medium, which may include various additives. Additives which may be employed include low concentrations of detergent (0.01 to 1%), salts, e.g., sodium citrate (0.017 to 0.17 M), Ficoll, polyvinylpyrrolidone, carrier nucleic acids, carrier proteins, etc. Nonaqueous solvents may be added to the aqueous medium, such as  
30 dimethylformamide, dimethylsulfoxide, alcohols, and  
35

-12-

formamide. These other solvents are generally present in amounts ranging from 2 to 50%.

The stringency of the hybridization medium may be controlled by temperature, salt concentration, solvent system, and the like. Thus, depending upon the length and nature of the sequence of interest, the stringency will be varied.

Depending upon the nature of the label, various techniques can be employed for detecting the presence of the label. For fluorescers, a large number of different fluorometers are available. For chemiluminescers, luminometers or films are available. With enzymes, a fluorescent, chemiluminescent, or colored product can be provided and determined fluorometrically, luminometrically, spectrophotometrically or visually. The various labels which have been employed in immunoassays and the techniques applicable to immunoassays can be employed with the subject assays.

Kits for carrying out amplified nucleic acid hybridization assays according to the invention will comprise in packaged combination the following reagents: the amplifier probe or set of probes; the capture probe or set of probes; the amplifier multimer; and an appropriate labeled oligonucleotide. These reagents will typically be in separate containers in the kit. The kit may also include a denaturation reagent for denaturing the analyte, hybridization buffers, wash solutions, enzyme substrates, negative and positive controls and written instructions for carrying out the assay.

The following examples further illustrate the invention. These examples are not intended to limit the invention in any manner.

-13-

EXAMPLES

Example I

Synthesis of Comb-type Branched Polynucleotide

5 This example illustrates the synthesis of a comb-type branched polynucleotide having 15 branch sites and sidechain extensions having three labeled probe binding sites. This polynucleotide was designed to be used in a solution phase hybridization as described in EPA 883096976.

10 All chemical syntheses of oligonucleotides were performed on an automatic DNA synthesizer (Applied Biosystems, Inc., (ABI) model 380 B). Phosphoramidite chemistry of the beta cyanoethyl type was used including 5'-phosphorylation which employed Phostel™ reagent (ABN).  
15 Standard ABI protocols were used except as indicated. Where it is indicated that a multiple of a cycle was used (e.g., 1.2 cycle), the multiple of the standard amount of amidite recommended by ABI was employed in the specified cycle. Appended hereto are the programs for carrying out  
20 cycles 1.2 and 6.4 as run on the Applied Biosystems Model 380 B DNA Synthesizer.

A comb body of the following structure was first prepared:

25  $3' T_{18} (TTX')_{15} GTTTGTGG-5'$

|  
(RGTCAGTp-5')<sub>15</sub>

wherein X' is a branching monomer, and R is a periodate cleavable linker.

30 The portion of the comb body through the 15 (TTX') repeats is first synthesized using 33.8 mg aminopropyl-derivatized thymidine controlled pore glass (CPG) (2000 Å, 7.4 micromoles thymidine per gram support) with a 1.2 cycle protocol. The branching site  
35 nucleotide was of the formula:

-14-

5

10

15

20

25

where  $R^2$  represents

For synthesis of the comb body (not including sidechains), the concentration of beta cyanoethylphosphoramidite monomers was 0.1 M for A, C, G and T, 0.15 M for the branching site monomer E, and 0.2 M for Phostel™ reagent. Detritylation was done with 3% trichloroacetic acid in methylene chloride using stepped flowthrough for the duration of the deprotection. At the conclusion the 5' DMT was replaced with an acetyl group.

35

-15-

Cleavable linker R and six base sidechain extensions of the formula 3'-RGTCAGTp (SEQ ID NO:1) were synthesized at each branching monomer site as follows.

The base protecting group removal ( $R^2$  in the formula above) was performed manually while retaining the CPG support in the same column used for synthesizing the comb body. In the case of  $R^2$  = levulinyl, a solution of 0.5 M hydrazine hydrate in pyridine/glacial acetic acid (1:1 v/v) was introduced and kept in contact with the CPG support for 90 min with renewal of the liquid every 15 min, followed by extensive washing with pyridine/glacial acetic acid (1:1 v/v) and then by acetonitrile. After the deprotection the cleavable linker R and six base sidechain extensions were added using a 6.4 cycle.

In these syntheses the concentration of phosphoramidites was 0.1 M (except 0.2 M R and Phostel™ reagent; R was 2-(4-(4-(2-Dimethoxytrityloxy)ethyl-)phenoxy 2,3-di(benzyloxy)-butyloxy)phenyl)ethyl-2-cyanoethyl-N,N-diisopropylphosphoramidite).

Detritylation is effected with a solution of 3% trichloroacetic acid in methylene chloride using continuous flowthrough, followed by a rinse solution of toluene/chloromethane (1:1 v/v). Branched polynucleotide chains were removed from the solid supports automatically in the 380B using the cycle "CE NH<sub>3</sub>." The ammonium hydroxide solution was collected in 4 ml screw-capped Wheaton vials and heated at 60°C for 12 hr to remove all base-protecting groups. After cooling to room temperature the solvent was removed in a Speed-Vac evaporator and the residue dissolved in 100 µl water.

3' backbone extensions (segment A), sidechain extensions and ligation template/linkers of the following structures were also made using the automatic synthesizer:

-16-

3' Backbone  
extension 3'-TCCGTATCCTGGGCACAGAGGTGCp-5' (SEQ ID NO:2)

Sidechain  
extension 3'-GATGCG(TTCATGCTGTTGGTAG)<sub>3</sub>-5' (SEQ ID NO:3)

5 Ligation  
template for  
linking 3'  
backbone  
extension 3'-AAAAAAAAGCACCTp-5' (SEQ ID NO:4)

10 Ligation tem-  
plate for link-  
ing sidechain  
extension 3'-CGCATCACTGAC-5' (SEQ ID NO:5)

15 The crude comb body was purified by a standard polyacrylamide gel (7% with 7 M urea and 1X TBE running buffer) method.

The 3' backbone extension and the sidechain extensions were ligated to the comb body as follows. The comb body (4 pmole/ $\mu$ l), 3' backbone extension (6.25 pmole/ $\mu$ l), sidechain extension (93.75 pmole/ $\mu$ l), 20 sidechain linking template (75 pmoles/ $\mu$ l) and backbone linking template (5 pmole/ $\mu$ l) were combined in 1 mM ATP/ 5 mM DTT/ 50 mM Tris-HCl, pH 8.0/ 10 mM MgCl<sub>2</sub>/ 2 mM spermidine, with 0.5 units/ $\mu$ l T4 polynucleotide kinase. The mixture was incubated at 37°C for 2 hr, then heated 25 in a water bath to 95°C, and then slowly cooled to below 35°C over a 1 hr period. 2 mM ATP, 10 mM DTT, 14% polyethylene glycol, and 0.21 units/ $\mu$ l T4 ligase were added, and the mixture incubated for 16-24 hr at 23°C. The DNA was precipitated in NaCl/ethanol, resuspended in 30 water, and subjected to a second ligation as follows. The mixture was adjusted to 1 mM ATP, 5 mM DTT, 14% polyethylene glycol, 50 mM Tris-HCl, pH 7.5, 10 mM MgCl<sub>2</sub>, 2 mM spermidine, 0.5 units/ $\mu$ l T4 polynucleotide kinase, and 0.21 units/ $\mu$ l T4 ligase were added, and the mixture

-17-

incubated at 23°C for 16-24 hr. Ligation products were then purified by polyacrylamide gel electrophoresis.

After ligation and purification, a portion of the product was labeled with  $^{32}\text{P}$  and subjected to

5 cleavage at the site of R achieved by oxidation with aqueous  $\text{NaIO}_4$  for 1 hr. The sample was then analyzed by PAGE to determine the number of sidechain extensions incorporated by quantitating the radioactive label in the bands on the gel. The product was found to have a total  
10 of 45 labeled probe binding sites.

Example II

Procedure for HTLV-1 Assay

A "15 X 3" amplified solution phase

15 nucleic acid sandwich hybridization assay format is used in this assay. The "15 x 3" designation derives from the fact that the format employs two multimers: (1) an amplifier probe having a first segment (A) that binds to HTLV-1 and a second segment (B) that hybridizes to (2) an  
20 amplifier multimer having a first segment (B\*) that hybridizes to the segment (B) and fifteen iterations of a segment (C), wherein segment C hybridizes to three labeled oligonucleotides.

The amplifier and capture probe segments and  
25 their respective names used in this assay are as follows.

HTLV-1 Amplifier Probes

HTLV.7 (SEQ ID NO:6)

GGTCTGGGTGTCAAYCTGGGCTTTAATTACGGG

30 HTLV.8 (SEQ ID NO:7)

ATCTAGTARAGCTTCGATAGTCTTGGGTGGCT

HTLV.9 (SEQ ID NO:8)

GGCTATCGGAAGGACTGTCATGTCTGCTCCTGT

HTLV.10 (SEQ ID NO:9)

35 TGTRTTTGAGGGAGTATTACTTGAGAACAA

-18-

HTLV.11 (SEQ ID NO:10)  
ATCTGGGTTGGCCCCCTGCCCTAAYACGGA  
HTLV.12 (SEQ ID NO:11)  
TATTAGCACAGGAAGGGAGGTGAGCTTAAAGTG  
5 HTLV.13 (SEQ ID NO:12)  
TAAAACAATAGGCCTYGTCCGGAAAGGGAGGCG  
HTLV.14 (SEQ ID NO:13)  
CYAGTTGTTTGGTATCAACTAGGCAAGATGT  
HTLV.15 (SEQ ID NO:14)  
10 GCATTGTTGTAAGGCATCRCGACCTATGATGGC  
HTLV.16 (SEQ ID NO:15)  
CCYTTTGCCTCAGGGAGGTACAGGACGCCYTG  
HTLV.17 (SEQ ID NO:16)  
RGCTGGCGCCTGTATTGGCAAGATTACAGGCGG  
15 HTLV.18 (SEQ ID NO:17)  
GGGGGGCCTGGGAGGTGTTCTAGYCCAAGGAC  
HTLV.19 (SEQ ID NO:18)  
GGCGTTCTGGTTAAAGGAACTGGCTGATTT  
HTLV.20 (SEQ ID NO:19)  
20 GGGCCTCCGGACCAAGTGTGCAAGGCCTGGA  
HTLV.21 (SEQ ID NO:20)  
GCCCGGTGTAGGRTTCGATATGGCCTGCCTCCA  
HTLV.22 (SEQ ID NO:21)  
CYTTTTAACGGAAATACTGGGTTATTYCCTG  
25 HTLV.23 (SEQ ID NO:22)  
GCAGGTCGTGGATGAATGCCAGGTTCCATTGG  
HTLV.24 (SEQ ID NO:23)  
ATGAGAGRTCTATGGTAGAGAGTTAGTGGCCC  
HTLV.25 (SEQ ID NO:24)  
30 GGCTGGACAAGTCAGGGGCCGGGGAAAGATG  
HTLV.26 (SEQ ID NO:25)  
CTATAGTTGYAAGTGGCTAGTGTGTRGTTGGCA  
HTLV.27 (SEQ ID NO:26)  
GTARGGGATTTGGAAAAAGCGTCTYTAAGGT  
35 HTLV.28 (SEQ ID NO:27)

-19-

CAGTGAAAGCAAAGTAGGGCTGGAACGTGTTAG  
HTLV.29 (SEQ ID NO:28)  
TAGTGCCGGGCCGTAGTTACACTGCTGTGGGA  
HTLV.30 (SEQ ID NO:29)

5 TAAACCCTTGGGTAGTACTYTCCAGGCGTATC  
HTLV.31 (SEQ ID NO:30)  
CCAGCTGCATTTCGAACAGGGTGGGACTATTT  
HTLV.32 (SEQ ID NO:31)  
GGAARGCTTGCCGAATGGGCTGCAGGATATGGG

10 HTLV.33 (SEQ ID NO:32)  
TGTCAATCCATGTACTGAAGAATAGTGCATTGGG  
HTLV.34 (SEQ ID NO:33)  
GYAGGTCCCKCATGGGAGGGGCTTGCYAGGAGAA  
HTLV.35 (SEQ ID NO:34)

15 TTAGGGAAGCCATTGTGGCCTCTGAGAGTAGTW  
HTLV.36 (SEQ ID NO:35)  
TTTGTTTTCGGACACAGGCAACCCATGGGAGA  
HTLV.37 (SEQ ID NO:36)  
CTAGGAACCTTAATTGTTCCAGGGGTTGCTGGG

20 HTLV.38 (SEQ ID NO:37)  
CATAAGTGAGGTGATTRGGTGAAATTATYTGCC  
HTLV.39 (SEQ ID NO:38)  
AGCGGGACCGTATAGGTACCKTGGGACTGCAT  
HTLV.40 (SEQ ID NO:39)

25 CGCCAAGTAGGGCTTGAAGTCAGGTAGCGCCC  
HTLV.41 (SEQ ID NO:40)  
AGGTAGGAGTTCCCTTGGAGACCCACTGAATCT  
HTLV.42 (SEQ ID NO:41)  
AGGCACAGTAGAGACTGTGAAGGGCTGGCGTA

30

HTLV-1 Capture Probes

HTLV.1 (SEQ ID NO:42)  
TCTGGTTCTGGGATAGTGGGCTTAGGCGGGGG  
HTLV.2 (SEQ ID NO:43)

35 GGGAGRTCTAATAGGAGGGCATCYTCCTCTGGC

- 20 -

HTLV.3 (SEQ ID NO:44)  
CCTATGRAGTTTGGGTGTGGRATGTCRGCG  
HTLV.4 (SEQ ID NO:45)  
CTGTAATGTGGGGGGGGAGGTTAACACCTCCCCC  
5 HTLV.5 (SEQ ID NO:46)  
AATAGATGYTGGGTCTTGGTTARGAARGACTTG  
HTLV.6 (SEQ ID NO:47)  
CCGACGGGCAGGATCTAACGGTATAACTGGCAG  
HTLV.43 (SEQ ID NO:48)  
10 ATATTTGGTCTCGGGGATCAGTATGCCTTGTA  
HTLV.44 (SEQ ID NO:49)  
GCACTAATGATTGAACCTTGAGAAGGATTAAAT  
HTLV.45 (SEQ ID NO:50)  
TGCAGGCTCTGTGACAGGGCCTGCCGCAGCT  
15 HTLV.46 (SEQ ID NO:51)  
CCCCTAGGAGGGCAGGGTTGGACTAGTCTAC  
HTLV.47 (SEQ ID NO:52)  
CAGTRGTGGTGCCAGTGAGGGTCAGCATAATAG  
HTLV.48 (SEQ ID NO:53)  
20 CAAAGTGGCCACTGCTSCTGGACTGGAACACYA

Each amplifier probe contains, in addition to the sequences substantially complementary to the HTLV-1 sequences, the following 5' extension complementary to a segment of the amplifier multimer,  
25 AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).

Each capture probe contains, in addition to the sequences substantially complementary to HTLV-1 DNA, the following downstream sequence complementary to DNA bound to the solid phase (XT1\*),  
30 CTTCTTGGAGAAAGTGGTG (SEQ ID NO:55).

-21-

Microtiter plates were prepared as follows. White Microlite 1 Removawell strips (polystyrene microtiter plates, 96 wells/plate) were purchased from Dynatech Inc. Each well was filled with 200  $\mu$ l 1 N HCl and incubated at room temperature for 15-20 min. The plates were then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The wells were then filled with 200  $\mu$ l 1 N NaOH and incubated at room temperature for 15-20 min. The plates were again washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Poly(phe-lys) was purchased from Sigma Chemicals, Inc. This polypeptide has a 1:1 molar ratio of phe:lys and an average m.w. of 47,900 gm/mole. It has an average length of 309 amino acids and contains 155 amines/mole. A 1 mg/ml solution of the polypeptide was mixed with 2M NaCl/1X PBS to a final concentration of 0.1 mg/ml (pH 6.0). 100  $\mu$ L of this solution was added to each well. The plate was wrapped in plastic to prevent drying and incubated at 30°C overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

The following procedure was used to couple the oligonucleotide XT1\* to the plates. Synthesis of XT1\* was described in EPA 883096976. 20 mg disuccinimidyl 25 suberate was dissolved in 300  $\mu$ l dimethyl formamide (DMF). 26 OD<sub>260</sub> units of XT1\* was added to 100  $\mu$ l coupling buffer (50 mM sodium phosphate, pH 7.8). The coupling mixture was then added to the DSS-DMF solution and stirred with a magnetic stirrer for 30 min. An 30 NAP-25 column was equilibrated with 10 mM sodium phosphate, pH 6.5. The coupling mixture DSS-DMF solution was added to 2 ml 10 mM sodium phosphate, pH 6.5, at 4°C. The mixture was vortexed to mix and loaded onto the equilibrated NAP-25 column. DSS-activated XT1\* DNA was 35 eluted from the column with 3.5 ml 10 mM sodium

-22-

phosphate, pH 6.5. 5.6 OD<sub>260</sub> units of eluted DSS-activated XT1\* DNA was added to 1500 ml 50 mM sodium phosphate, pH 7.8. 50 µl of this solution was added to each well and the plates were incubated overnight. The 5 plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Final stripping of plates was accomplished as follows. 200 µL of 0.2N NaOH containing 0.5% (w/v) SDS was added to each well. The plate was wrapped in plastic 10 and incubated at 65°C for 60 min. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The stripped plate was stored with desiccant beads at 2-8°C.

Test samples were prepared as follows. 1 X 10<sup>6</sup> 15 HTLV-1-infected MT-2 cells or uninfected HuT cells (Human T cell lymphoma cells) were used directly in the assay below or were extracted with a standard phenol:chloroform extraction procedure (See, for example, Sambrook, et al., Molecular Cloning: A Laboratory Manual, 1989, Cold Spring 20 Harbor Press, Cold Spring Harbor, NY). Negative controls were Dulbecco's Modified Eagle's Medium (DMEM), negative human serum (neg. HS), buffer (10 mM Tris-HCl, pH 8.0), and distilled H<sub>2</sub>O. 60 µl P-K Buffer (2 mg/ml proteinase K in 10 mM Tris-HCl, pH 8.0/0.15 M NaCl/10 mM EDTA, pH 25 8.0/1% SDS/40µg/ml sonicated salmon sperm DNA) was added to a microfuge tube for each sample to be assayed. 50 µl of test sample was added to each tube.

A cocktail of the HTLV-1-specific amplifier and capture probes listed above was added to each well (10 30 fmole of each probe/tube in 25 µl, diluted in 1 N NaOH). The tubes were incubated at 65°C for 30 min.

65 µl neutralization buffer was then added to each tube (0.77 M 3-(N-morpholino)propane sulfonic acid/1.845 M NaCl/0.185 M sodium citrate). After mixing, 35 the tubes were incubated at 65°C overnight. Condensation

-23-

was centrifuged off the walls of each tube and the contents of the tubes transferred to microtiter wells prepared as above. The microtiter plates were incubated at 65°C for 4 hr.

5 After an additional 10 min at room temperature, the contents of each well are aspirated to remove all fluid, and the wells washed 2X with washing buffer (0.1% SDS/0.015 M NaCl/ 0.0015 M sodium citrate).

10 The amplifier multimer is then added to each well (20 fmoles in 50 µl in 50% horse serum/(0.06 M NaCl/0.06 M sodium citrate/0.1% SDS mixed 1:1 with 4X SSC/0.1% SDS/.5% "blocking reagent" (Boehringer Mannheim, catalog No. 1096 176). After covering plates and agitating to mix the contents in the wells, the plates  
15 are incubated for 30 min at 55°C. After a further 5 min period at room temperature, the wells are washed as described above.

Alkaline phosphatase label probe, disclosed in EP 883096976, is then added to each well (20 fmoles in 50 µl/well). After incubation at 55°C for 15 min, and 5 min at room temperature, the wells are washed twice as above and then 3X with 0.015 M NaCl/0.0015 M sodium citrate.

An enzyme-triggered dioxetane (Schaap et al., Tet. Lett. (1987) 28:1159-1162 and EPA Pub. No. 0254051), obtained from Lumigen, Inc., was employed. 50 µl Lumiphos 530 (Lumigen) was added to each well. The wells were tapped lightly so that the reagent would fall to the bottom and gently swirled to distribute the reagent evenly over the bottom. The wells were covered and  
30 incubated at 37°C for 40 min.

Plates are then read on a Dynatech ML 1000 luminometer. Output is given as the full integral of the light produced during the reaction.

Results are shown in the Table below. These  
35 results indicate the ability to detect HTLV-1 DNA in both

-24-

extracted and unextracted infected cells, and no cross-hybridization with components of the uninfected controls.

Table

|  | Sample | # Cells | Sample Prep | Luminometer Reading |
|--|--------|---------|-------------|---------------------|
|--|--------|---------|-------------|---------------------|

|    |                  |        |             |       |
|----|------------------|--------|-------------|-------|
| 5  | MT-2             | $10^6$ | extracted   | 48.68 |
|    | HuT 78           | $10^6$ | extracted   | 1.91  |
|    | MT-2             | $10^6$ | unextracted | 27.39 |
| 10 | Hut-78           | $10^6$ | unextracted | 2.37  |
|    | DMEM             | 0      | unextracted | 1.75  |
|    | Neg. HS          | 0      | unextracted | 1.07  |
|    | Tris             | 0      | unextracted | 1.39  |
|    | H <sub>2</sub> O | 0      | unextracted | 1.02  |

15

Example 3

Detection of HTLV-1 RNA

HTLV-1 RNA is detected using essentially the same procedure as above with the following modifications.

20 A standard curve of HTLV-1 RNA is prepared by serially diluting HTLV-1 virus stock in normal human serum to a range between 125 to 5000 TCID50/ml. A proteinase K solution is prepared by adding 10 mg proteinase K to 5 ml HTLV-1 capture diluent (53 mM Tris-HCl, pH 8/ 10.6 mM EDTA/ 1.3% SDS/ 16 µg/ml sonicated salmon sperm DNA/ 5.3X SSC/ 1 mg/ml proteinase K) made 7% in formamide stored at -20°C. Equimolar mixtures of capture probes and label probes are added to the proteinase K solution such that the final concentration 25 of each probe was 1670 fmoles/ml. After addition of 30 µl of the probe/proteinase K solution to each well of microtiter plates prepared as above, 10 µl of appropriate virus dilutions are added to each well. Plates are covered, shaken to mix and then incubated at 65°C for 16 hr.

35

-25-

Plates are removed from the incubator and cooled on the bench top for 10 min. The wells are washed 2X as described in Example 2 above. The 15 X 3 multimer is diluted to 1 fmole/ $\mu$ l in Amp/Label diluent (prepared by mixing 2.22 ml DEPC-treated H<sub>2</sub>O (DEPC is diethylpyrocarbonate), 1.35 ml 10% SDS, 240  $\mu$ l 1 M Tris pH 8.0, 20  $\mu$ l horse serum, adjusted to 2 mg/ml in proteinase K and heated to 65°C for 2 hr, then added to 240  $\mu$ l of 0.1 M PMSF and heated at 37°C for 1 hr, after which is added 4 ml DEPC-H<sub>2</sub>O, 4 ml 10 % SDS and 8 ml 20X SSC). The diluted 15 X 3 multimer is added at 40  $\mu$ l/well, the plates sealed, shaken, and incubated at 55°C for 30 min.

The plates are then cooled at room temperature for 10 minutes, and washed as described above. Alkaline phosphatase label probe is diluted to 2.5 fmoles/ $\mu$ l in Amp/Label diluent and 40  $\mu$ l added to each well. Plates are covered, shaken, and incubated at 55°C for 15 min.

Plates are cooled 10 min at room temperature, washed 2X as above and then 3X with 0.15 M NaCl/0.015 M sodium citrate. Substrate is added and luminescence measured as above.

Modifications of the above-described modes for carrying out the invention that are obvious to those of skill in biochemistry, nucleic acid hybridization, and related fields are intended to be within the scope of the following claims.

-26-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANT: Kolberg, Janice A.  
Urdea, Michael S.

(ii) TITLE OF INVENTION: HTLV-1 PROBES FOR USE IN SOLUTION  
PHASE SANDWICH HYBRIDIZATION ASSAYS

(iii) NUMBER OF SEQUENCES: 55

10 (iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Morrison & Foerster  
(B) STREET: 755 Page Mill Road  
(C) CITY: Palo Alto  
(D) STATE: California  
(E) COUNTRY: USA  
(F) ZIP: 94304-1018

15 (v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk  
(B) COMPUTER: IBM PC compatible  
(C) OPERATING SYSTEM: PC-DOS/MS-DOS  
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

20 (vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: 07/813,585  
(B) FILING DATE: 18-DEC-1991  
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Thomas E. Ciotti  
(B) REGISTRATION NUMBER: 21,013  
(C) REFERENCE/DOCKET NUMBER: 22300-20238.00

25 (ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 415-813-5600  
(B) TELEFAX: 415-494-0792  
(C) TELEX: 706141

30 (2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

-27-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGACTGR

7

(2) INFORMATION FOR SEQ ID NO:2:

5       (i) SEQUENCE CHARACTERISTICS:  
          (A) LENGTH: 24 base pairs  
          (B) TYPE: nucleic acid  
          (C) STRANDEDNESS: single  
          (D) TOPOLOGY: linear

10      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CGTGGAGACA CGGGTCCTAT GCCT

24

(2) INFORMATION FOR SEQ ID NO:3:

15     (i) SEQUENCE CHARACTERISTICS:  
          (A) LENGTH: 60 base pairs  
          (B) TYPE: nucleic acid  
          (C) STRANDEDNESS: single  
          (D) TOPOLOGY: linear

20      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GATGTGGTTG TCGTACTTGA TGTTGGTTGTC GTACTTGATG TGGTTGTCGT ACTTGCGTAG

60

(2) INFORMATION FOR SEQ ID NO:4:

25     (i) SEQUENCE CHARACTERISTICS:  
          (A) LENGTH: 16 base pairs  
          (B) TYPE: nucleic acid  
          (C) STRANDEDNESS: single  
          (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

30      TCCACGAAAAA AAAAAAA

16

(2) INFORMATION FOR SEQ ID NO:5:

35     (i) SEQUENCE CHARACTERISTICS:  
          (A) LENGTH: 12 base pairs  
          (B) TYPE: nucleic acid  
          (C) STRANDEDNESS: single  
          (D) TOPOLOGY: linear

-28-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CAGTCAC TAC GC

5 (2) INFORMATION FOR SEQ ID NO:6:

12

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGTCTGGGTG TCAAYCTGGG CTTTAATTAC GGG

33

(2) INFORMATION FOR SEQ ID NO:7:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATCTAGTARA GCTTCGATAG TCTTTGGTG GCT

33

(2) INFORMATION FOR SEQ ID NO:8:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGCTATCGGA AGGACTGTCA TGTCTGCTCC TGT

33

(2) INFORMATION FOR SEQ ID NO:9:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid

-29-

(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

5

TGTRTTTTTG AGGGGAGTAT TACTTGAGAA CAA

33

(2) INFORMATION FOR SEQ ID NO:10:

10

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

15

ATCTTGGGTT TGGCCCCCTG CCCCTAACAC GGA

33

(2) INFORMATION FOR SEQ ID NO:11:

20

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TATTAGCACCA GGAAGGGAGG TGAGCTTAAA GTG

33

25

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

TAAAACAATA GGCCTYGTCC GGAAAGGGAG GCG

33

(2) INFORMATION FOR SEQ ID NO:13:

35

-30-

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CYAGTTGTTT TTGGTATCAA CTAGGCAAGA TGT

33

(2) INFORMATION FOR SEQ ID NO:14:

10

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GCATTGTTGT AAGGCATCRC GACCTATGAT GGC

33

(2) INFORMATION FOR SEQ ID NO:15:

20

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CCYTTTGCC TCAGGGAGGT ACAGGACGCC YTG

33

(2) INFORMATION FOR SEQ ID NO:16:

30

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

35 RGCTGGCGCC TGTATTGGCA AGATTACAGG CGG

33

-31-

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GGGGGGGCCTT GGGAGGTGTT CTAGYCCAAG GAC

33

10 (2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GGCGTTCTGG TTTAAAGGGA ACTGGCTGAT TTS

33

(2) INFORMATION FOR SEQ ID NO:19:

20

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GGGCCTTCGG GACCAAGTGT TGCAAGGCCT GGA

33

(2) INFORMATION FOR SEQ ID NO:20:

30

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

-32-

GCCCCGGTGTAA GGRTTCGATA TGGCCTGCCT CCA

33

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:  
5 (A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

10 CYTTTTTAAC TGGGAATACT GGGTTATTYC CTG

33

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:  
15 (A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GCAGGGTCGTG GATGAATCGC CAGGTTCCAT TGG

33

20 (2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:  
25 (A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATGAGAGRTC TATGGTTAGA GAGTTAGTGG CCC

33

30 (2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:  
35 (A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

- 33 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GGCTGGACAA GTCAGGGGGC CCGGGGGAAG ATG

33

(2) INFORMATION FOR SEQ ID NO:25:

5 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CTATAGTTTG YAAGTGGGCT AGTGTRGTTG GCA

33

(2) INFORMATION FOR SEQ ID NO:26:

15 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GTARGGGGAT TTGGAAAAAG GCCTCTTAA GGT

33

(2) INFORMATION FOR SEQ ID NO:27:

25 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

CAGTGAAAGC AAAGTAGGGC TGGAACTGTT TAG

33

(2) INFORMATION FOR SEQ ID NO:28:

30 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

35

-34-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TAGTGCCCCGGG GCCGTAGTTA CACTGCTGTC GGA

33

5 (2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

TAAACCCTTG GGGTAGTACT YTCCAGGC GT ATC

33

(2) INFORMATION FOR SEQ ID NO:30:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CCAGCTGGCAT TTTCGAACAGG GTGGGACTAT TTT

33

(2) INFORMATION FOR SEQ ID NO:31:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GGAAARGCTTG CGCAATGGGC TGCAAGGATAT GGG

33

(2) INFORMATION FOR SEQ ID NO:32:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid

-35-

(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TGTCATCCAT GTACTGAAGA ATAGTGCATT GGG

33

(2) INFORMATION FOR SEQ ID NO:33:

10 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

15 GYAGGTCCCKC ATGGGAGGGG CTTGCYAGGA GAA

33

(2) INFORMATION FOR SEQ ID NO:34:

20 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

25 TTAGGGAAGC CATTGTGCC TCTGAGAGTA GTW

33

(2) INFORMATION FOR SEQ ID NO:35:

30 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

35 TTTTGTTTC GGACACAGGC AACCCATGGG AGA

33

(2) INFORMATION FOR SEQ ID NO:36:

-36-

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CTAGGAACCTT AATTGTTCCA GGGGTTTGCT GGG

33

(2) INFORMATION FOR SEQ ID NO:37:

10

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

CATAAGTGAG GTGATTRGGT GAAATTATYT GCC

33

(2) INFORMATION FOR SEQ ID NO:38:

20

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

AGCGGGACCG TATAGGTACC KTGGGGACTG CAT

33

(2) INFORMATION FOR SEQ ID NO:39:

30

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CGCCAAGTAG GGCTTGAAGT TCAGGTAGCG CCC

33

-37-

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

AGGTAGGAGT TCCTTTGGAG ACCCACTGAA TCT

10

(2) INFORMATION FOR SEQ ID NO:41:

33

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

AGGCACAGTA GAGACTGTGA AGGGGCTGGC GTA

33

20

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

TCTGGTTCTG GGATAGTGCG CTTTAGGCCG GGG

33

(2) INFORMATION FOR SEQ ID NO:43:

30

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 33 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

-38-

GGGAGRTCTA ATAGGAGGGC ATCYTCCTCT GGC

33

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

10 CCTATGRAGT TTTTGGGTG TGGRATGTCT GCG

33

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 15 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

20 CTGTAATGTG GGGGGGGAGG TTAAACCTCC CCC

33

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 25 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

AATAGATGYT GGGTCTTGGT TARGAARGAC TTG

33

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 30 (D) TOPOLOGY: linear

- 39 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CCGACGGGCG GGATCTAACG GTATAACTGG CAG

33

(2) INFORMATION FOR SEQ ID NO:48:

5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

ATATTTGGTC TCGGGGATCA GTATGCCATT GTA

33

(2) INFORMATION FOR SEQ ID NO:49:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

GCACTAATGA TTGAACCTGA GAAGGATTAA AAT

33

(2) INFORMATION FOR SEQ ID NO:50:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

TGCGGCAGTT CTGTGACAGG GCCTGCCGCA GCT

33

(2) INFORMATION FOR SEQ ID NO:51:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

-40-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CCCTTAGGAG GGGCAGGGTT TGGACTAGTC TAC

33

5 (2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CAGTRGTGGT GCCAGTGAGG GTCAGCATAA TAG

33

(2) INFORMATION FOR SEQ ID NO:53:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

CAAGTGGCCA CTGCTSCCTG GACTGGAACA CYA

33

(2) INFORMATION FOR SEQ ID NO:54:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

AGGCATAGGA CCCGTGTCTT

20

(2) INFORMATION FOR SEQ ID NO:55:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid

-41-

(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:  
CTTCTTTGGA GAAAGTGGTG

20

10

15

20

25

30

35

=

**Listings of All  
Cycles, Procedures, and Sequences  
Used to Synthesize the 15X Comb**

**Contained on the 3½" floppy disk  
for the 380B DNA Synthesizer**

-43-

COMPLETE FILE DIRECT 'Y'  
VERSION 2.00

DISK NAME: 1SX CCOMB  
DATE: Aug 27, 1991  
TIME: 13:50

| <u>FILE NAME</u> | <u>LAST ACCESS</u> | <u>DATE CREATED</u> | <u>FILE NAME</u> | <u>LAST ACCESS</u> | <u>DATE CREATED</u> |
|------------------|--------------------|---------------------|------------------|--------------------|---------------------|
|------------------|--------------------|---------------------|------------------|--------------------|---------------------|

**FILE TYPE: SYNTHESIS CYCLE**

|          |    |          |    |          |          |    |          |    |          |
|----------|----|----------|----|----------|----------|----|----------|----|----------|
| 6.4XSC-5 | 08 | 27, 1991 | 08 | 27, 1991 | 6.4XS-5  | 08 | 27, 1991 | 08 | 27, 1991 |
| 1.2XD-6  | 08 | 27, 1991 | 08 | 27, 1991 | 1.2X-6   | 08 | 27, 1991 | 08 | 27, 1991 |
| sscaf3   | 01 | 07, 1990 | 01 | 07, 1990 | caf3     | 01 | 07, 1990 | 01 | 07, 1990 |
| 10caf3   | 01 | 07, 1990 | 01 | 07, 1990 | hoaf3    | 01 | 07, 1990 | 01 | 07, 1990 |
| 10hoaf3  | 01 | 07, 1990 | 01 | 07, 1990 | rnaaf3   | 01 | 07, 1990 | 01 | 07, 1990 |
| 10rnaaf3 | 01 | 07, 1990 | 01 | 07, 1990 | sscaf3   | 01 | 07, 1990 | 01 | 07, 1990 |
| caf3     | 01 | 07, 1990 | 01 | 07, 1990 | 10caf3   | 01 | 07, 1990 | 01 | 07, 1990 |
| 10hoaf3  | 01 | 07, 1990 | 01 | 07, 1990 | rnaaf3   | 01 | 07, 1990 | 01 | 07, 1990 |
| 10rnaaf3 | 01 | 07, 1990 | 01 | 07, 1990 | sscaf1   | 01 | 07, 1990 | 01 | 07, 1990 |
| caf1     | 01 | 07, 1990 | 01 | 07, 1990 | 10caf1   | 01 | 07, 1990 | 01 | 07, 1990 |
| hoaf1    | 01 | 07, 1990 | 01 | 07, 1990 | 10hoaf1  | 01 | 07, 1990 | 01 | 07, 1990 |
| rnaaf1   | 01 | 07, 1990 | 01 | 07, 1990 | 10rnaaf1 | 01 | 07, 1990 | 01 | 07, 1990 |
| sscaf1   | 01 | 07, 1990 | 01 | 07, 1990 | caf1     | 01 | 07, 1990 | 01 | 07, 1990 |
| 10caf1   | 01 | 07, 1990 | 01 | 07, 1990 | 10hoaf1  | 01 | 07, 1990 | 01 | 07, 1990 |
| rnaaf1   | 01 | 07, 1990 | 01 | 07, 1990 | 10rnaaf1 | 01 | 07, 1990 | 01 | 07, 1990 |

**FILE TYPE: BOTTLE CHANGE PROCEDURE**

|       |    |          |    |          |       |    |          |    |          |
|-------|----|----------|----|----------|-------|----|----------|----|----------|
| bc 18 | 07 | 01, 1986 | 07 | 01, 1986 | bc 17 | 07 | 01, 1986 | 07 | 01, 1986 |
| bc 16 | 07 | 01, 1986 | 07 | 01, 1986 | bc 15 | 07 | 01, 1986 | 07 | 01, 1986 |
| bc 14 | 07 | 01, 1986 | 07 | 01, 1986 | bc 13 | 07 | 01, 1986 | 07 | 01, 1986 |
| bc 12 | 07 | 01, 1986 | 07 | 01, 1986 | bc 11 | 07 | 01, 1986 | 07 | 01, 1986 |
| bc 10 | 07 | 01, 1986 | 07 | 01, 1986 | bc 9  | 07 | 01, 1986 | 07 | 01, 1986 |
| bc 8a | 07 | 01, 1986 | 07 | 01, 1986 | bc 7  | 07 | 01, 1986 | 07 | 01, 1986 |
| bc 6  | 07 | 01, 1986 | 07 | 01, 1986 | bc 5  | 07 | 01, 1986 | 07 | 01, 1986 |
| bc 4  | 07 | 01, 1986 | 07 | 01, 1986 | bc 3  | 07 | 01, 1986 | 07 | 01, 1986 |
| bc 2  | 07 | 01, 1986 | 07 | 01, 1986 | bc 1  | 07 | 01, 1986 | 07 | 01, 1986 |

**FILE TYPE: END PROCEDURE**

|          |    |          |    |          |          |    |          |    |          |
|----------|----|----------|----|----------|----------|----|----------|----|----------|
| CAP-PRIM | 08 | 27, 1991 | 08 | 27, 1991 | CE NH3   | 08 | 27, 1991 | 08 | 27, 1991 |
| dearce   | 10 | 08, 1990 | 10 | 08, 1990 | dearcel0 | 10 | 08, 1990 | 10 | 08, 1990 |
| dearho   | 10 | 08, 1990 | 10 | 08, 1990 | dearhol0 | 10 | 08, 1990 | 10 | 08, 1990 |
| dearna   | 10 | 08, 1990 | 10 | 08, 1990 | dearnal0 | 10 | 08, 1990 | 10 | 08, 1990 |

**FILE TYPE: BEGIN PROCEDURE**

|          |    |          |    |          |         |    |          |    |          |
|----------|----|----------|----|----------|---------|----|----------|----|----------|
| STD PREP | 08 | 27, 1991 | 08 | 27, 1991 | phos003 | 07 | 01, 1986 | 07 | 01, 1986 |
|----------|----|----------|----|----------|---------|----|----------|----|----------|

**FILE TYPE: SHUT-DOWN PROCEDURE**

|          |    |          |    |          |
|----------|----|----------|----|----------|
| clean003 | 07 | 01, 1986 | 07 | 01, 1986 |
|----------|----|----------|----|----------|

**FILE TYPE: DNA SEQUENCES**

|       |    |          |    |          |           |    |          |    |          |
|-------|----|----------|----|----------|-----------|----|----------|----|----------|
| 1SX-2 | 08 | 27, 1991 | 08 | 27, 1991 | - 1SX-1 - | 08 | 27, 1991 | 08 | 27, 1991 |
|-------|----|----------|----|----------|-----------|----|----------|----|----------|

SYNTHESIS CYCLE  
VERSION 2.00

CYCLE NAME: 3.4XSC-5  
NUMBER OF STEPS: 176  
DATE: Aug 27, 1992  
TIME: 13:53

| STEP<br>NUMBER | FUNCTION<br># NAME | STEP<br>NAME | STEP ACTIVE FOR BASES |     |     |     |     |     | SAFE<br>STEP |
|----------------|--------------------|--------------|-----------------------|-----|-----|-----|-----|-----|--------------|
|                |                    |              | A                     | S   | C   | T   | S   | S   |              |
| 1              | 10 \$18 To Waste   | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 2              | 9 \$18 To Column   | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 3              | 2 Reverse Flush    | 5            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 4              | 1 Block Flush      | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 5              | 5 Advance FC       | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 6              | 29 Phos Prep       | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 7              | +45 Group 1 On     | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 8              | 90 TET To Column   | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 9              | 19 B+TET To Col 1  | 8            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 10             | 90 TET To Column   | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 11             | -46 Group 1 Off    | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 12             | +47 Group 2 On     | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 13             | 90 TET To Column   | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 14             | 20 B+TET To Col 2  | 8            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 15             | 90 TET To Column   | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 16             | -48 Group 2 Off    | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 17             | +49 Group 3 On     | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 18             | 90 TET To Column   | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 19             | 21 B+TET To Col 3  | 8            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 20             | 90 TET To Column   | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 21             | -50 Group 3 Off    | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 22             | 4 Wait             | 15           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 23             | +45 Group 1 On     | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 24             | 90 TET To Column   | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 25             | 19 B+TET To Col 1  | 8            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 26             | 90 TET To Column   | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 27             | -46 Group 1 Off    | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 28             | +47 Group 2 On     | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 29             | 90 TET To Column   | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 30             | 20 B+TET To Col 2  | 8            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 31             | 90 TET To Column   | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 32             | -48 Group 2 Off    | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 33             | +49 Group 3 On     | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 34             | 90 TET To Column   | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 35             | 21 B+TET To Col 3  | 8            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 36             | 90 TET To Column   | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 37             | -50 Group 3 Off    | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 38             | 4 Wait             | 30           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 39             | +45 Group 1 On     | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 40             | 90 TET To Column   | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 41             | 19 B+TET To Col 1  | 8            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 42             | 90 TET To Column   | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 43             | -46 Group 1 Off    | 1            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |

(Continued next page.)

**SYNTHESIS CYCLE**  
**VERSION 2.00**

CYCLE NAME: 6.4XSC-5  
 NUMBER OF STEPS: 175

| <u>STEP<br/>NUMBER</u> | <u>FUNCTION<br/>NAME</u> | <u>TIME</u> | STEP ACTIVE FOR BASES |     |     |     |     |     |     | <u>SAFE<br/>STEP</u> |
|------------------------|--------------------------|-------------|-----------------------|-----|-----|-----|-----|-----|-----|----------------------|
|                        |                          |             | A                     | G   | C   | T   | S   | S   | 7   |                      |
| 44                     | +47 Group 2 On           | - 1         | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 45                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 46                     | 20 B+TET To Col 2        | 8           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 47                     | 90 TET To Column         | 4           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 48                     | -48 Group 2 Off          | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 49                     | +49 Group 3 On           | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 50                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 51                     | 21 B+TET To Col 3        | 8           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 52                     | 90 TET To Column         | 4           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 53                     | -50 Group 3 Off          | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 54                     | 4 Wait                   | 30          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 55                     | +45 Group 1 On           | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 56                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 57                     | 19 B+TET To Col 1        | 8           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 58                     | 90 TET To Column         | 4           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 59                     | -46 Group 1 Off          | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 60                     | +47 Group 2 On           | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 61                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 62                     | 20 B+TET To Col 2        | 8           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 63                     | 90 TET To Column         | 4           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 64                     | -48 Group 2 Off          | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 65                     | +49 Group 3 On           | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 66                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 67                     | 21 B+TET To Col 3        | 8           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 68                     | 90 TET To Column         | 4           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 69                     | -50 Group 3 Off          | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 70                     | 4 Wait                   | 30          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 71                     | +45 Group 1 On           | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 72                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 73                     | 19 B+TET To Col 1        | 8           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 74                     | 90 TET To Column         | 4           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 75                     | -46 Group 1 Off          | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 76                     | +47 Group 2 On           | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 77                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 78                     | 20 B+TET To Col 2        | 8           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 79                     | 90 TET To Column         | 4           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 80                     | -48 Group 2 Off          | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 81                     | +49 Group 3 On           | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 82                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 83                     | 21 B+TET To Col 3        | 8           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 84                     | 90 TET To Column         | 4           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 85                     | -50 Group 3 Off          | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 86                     | 4 Wait                   | 30          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 87                     | +45 Group 1 On           | 1           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 88                     | 98 TET To Column         | 10          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |

(Continued next page.)

SYNTHESIS CYCLE  
VERSION 2.00

CYCLE NAME: S.4XSC-5  
NUMBER OF STEPS: 175

| STEP<br>NUMBER | FUNCTION<br># NAME | TIME | STEP ACTIVE FOR BASES |     |     |     |     |     |     | SAFE<br>STEP |
|----------------|--------------------|------|-----------------------|-----|-----|-----|-----|-----|-----|--------------|
|                |                    |      | A                     | S   | C   | T   | S   | S   | 7   |              |
| 99             | 19 B+TET To Col 1  | - 8  | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 90             | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 91             | -46 Group 1 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 92             | +47 Group 2 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 93             | 90 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 94             | 20 B+TET To Col 2  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 95             | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 96             | -48 Group 2 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 97             | +49 Group 3 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 98             | 90 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 99             | 21 B+TET To Col 3  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 100            | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 101            | -50 Group 3 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 102            | 4 Wait             | 30   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 103            | +45 Group 1 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 104            | 90 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 105            | 19 B+TET To Col 1  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 106            | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 107            | -46 Group 1 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 108            | +47 Group 2 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 109            | 90 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 110            | 20 B+TET To Col 2  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 111            | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 112            | -48 Group 2 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 113            | +49 Group 3 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 114            | 90 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 115            | 21 B+TET To Col 3  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 116            | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 117            | -50 Group 3 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 118            | 4 Wait             | 30   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 119            | +45 Group 1 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 120            | 90 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 121            | 19 B+TET To Col 1  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 122            | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 123            | -46 Group 1 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 124            | +47 Group 2 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 125            | 90 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 126            | 20 B+TET To Col 2  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 127            | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 128            | -48 Group 2 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 129            | +49 Group 3 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 130            | 90 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 131            | 21 B+TET To Col 3  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 132            | 90 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 133            | -50 Group 3 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |

(Continued next page.)

SYNTHESIS CYCLE  
VERSION 2.20

CYCLE NAME: S.4XSC-5  
NUMBER OF STEPS: 175

-48-

**SYNTHESIS CYCLE**  
**VERSION 2.00**

CYCLE NAME: S.4XS-5  
 NUMBER OF STEPS: 132  
 DATE: Aug 27, 199  
 TIME: 13:56

| <u>STEP<br/>NUMBER</u> | <u>FUNCTION<br/># NAME</u> | <u>STEP<br/>TIME</u> | <u>STEP ACTIVE FOR BASES</u> |     |     |     |     |     |     | <u>SAFE<br/>STEP</u> |
|------------------------|----------------------------|----------------------|------------------------------|-----|-----|-----|-----|-----|-----|----------------------|
|                        |                            |                      | A                            | S   | C   | T   | S   | S   | 7   |                      |
| 1                      | 10 \$18 To Waste           | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 2                      | 9 \$18 To Column           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 3                      | 2 Reverse Flush            | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 4                      | 1 Block Flush              | 3                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 5                      | 5 Advance FC               | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 6                      | 28 Phos Prep               | 3                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 7                      | +45 Group 1 On             | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 8                      | 90 TET To Column           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 9                      | 19 B+TET To Col 1          | 8                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 10                     | 90 TET To Column           | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 11                     | -46 Group 1 Off            | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 12                     | +47 Group 2 On             | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 13                     | 90 TET To Column           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 14                     | 28 B+TET To Col 2          | 8                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 15                     | 90 TET To Column           | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 16                     | -48 Group 2 Off            | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 17                     | +49 Group 3 On             | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 18                     | 90 TET To Column           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 19                     | 21 B+TET To Col 3          | 8                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 20                     | 90 TET To Column           | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 21                     | -50 Group 3 Off            | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 22                     | 4 Wait                     | 15                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 23                     | +45 Group 1 On             | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 24                     | 90 TET To Column           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 25                     | 19 B+TET To Col 1          | 8                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 26                     | 90 TET To Column           | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 27                     | -46 Group 1 Off            | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 28                     | +47 Group 2 On             | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 29                     | 90 TET To Column           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 30                     | 28 B+TET To Col 2          | 8                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 31                     | 90 TET To Column           | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 32                     | -48 Group 2 Off            | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 33                     | +49 Group 3 On             | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 34                     | 90 TET To Column           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 35                     | 21 B+TET To Col 3          | 8                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 36                     | 90 TET To Column           | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 37                     | -50 Group 3 Off            | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 38                     | 4 Wait                     | 30                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 39                     | +45 Group 1 On             | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 40                     | 90 TET To Column           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 41                     | 19 B+TET To Col 1          | 8                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 42                     | 90 TET To Column           | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 43                     | -46 Group 1 Off            | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |

(Continued next page.)

**SYNTHESIS CYCLE**  
**VERSION 2.00**

CYCLE NAME: S.IXS-S  
NUMBER OF STEPS: 132

| <u>STEP<br/>NUMBER</u> | <u>FUNCTION<br/># NAME</u> | <u>TIME</u> | <u>STEP ACTIVE FOR BASES</u> |     |     |     |     |     |     | <u>SAFE<br/>STEP</u> |
|------------------------|----------------------------|-------------|------------------------------|-----|-----|-----|-----|-----|-----|----------------------|
|                        |                            |             | A                            | G   | C   | T   | S   | S   | 7   |                      |
| 44                     | +47 Group 2 On             |             |                              |     |     |     |     |     |     |                      |
| 45                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 46                     | 20 B+TET To Col 2          | 8           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 47                     | 90 TET To Column           | 4           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 48                     | -48 Group 2 Off            | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 49                     | +49 Group 3 On             | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 50                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 51                     | 21 B+TET To Col 3          | 8           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 52                     | 90 TET To Column           | 4           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 53                     | -50 Group 3 Off            | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 54                     | 4 Wait                     | 30          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 55                     | +45 Group 1 On             | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 56                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 57                     | 19 B+TET To Col 1          | 8           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 58                     | 90 TET To Column           | 4           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 59                     | -46 Group 1 Off            | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 60                     | +47 Group 2 On             | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 61                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 62                     | 20 B+TET To Col 2          | 8           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 63                     | 90 TET To Column           | 4           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 64                     | -48 Group 2 Off            | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 65                     | +49 Group 3 On             | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 66                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 67                     | 21 B+TET To Col 3          | 8           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 68                     | 90 TET To Column           | 4           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 69                     | -50 Group 3 Off            | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 70                     | 4 Wait                     | 30          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 71                     | +45 Group 1 On             | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 72                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 73                     | 19 B+TET To Col 1          | 8           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 74                     | 90 TET To Column           | 4           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 75                     | -46 Group 1 Off            | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 76                     | +47 Group 2 On             | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 77                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 78                     | 20 B+TET To Col 2          | 8           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 79                     | 90 TET To Column           | 4           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 80                     | -48 Group 2 Off            | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 81                     | +49 Group 3 On             | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 82                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 83                     | 21 B+TET To Col 3          | 8           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 84                     | 90 TET To Column           | 4           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 85                     | -50 Group 3 Off            | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 86                     | 4 Wait                     | 30          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 87                     | +45 Group 1 On             | 1           | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 88                     | 90 TET To Column           | 10          | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |

(Continued next page.)

-50-

SYNTHESIS CYCLE  
VERSION 2.00

CYCLE NAME: 5.4XS-5  
NUMBER OF STEPS: 132

| STEP<br>NUMBER | FUNCTION<br># NAME | TIME | STEP ACTIVE FOR BASES |     |     |     |     |     |     | SAFE<br>STEP |
|----------------|--------------------|------|-----------------------|-----|-----|-----|-----|-----|-----|--------------|
|                |                    |      | A                     | S   | C   | T   | S   | E   | 7   |              |
| 99             | 19 B+TET To Col 1  | - 8  | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 90             | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 91             | -46 Group 1 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 92             | +47 Group 2 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 93             | 98 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 94             | 20 B+TET To Col 2  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 95             | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 96             | -48 Group 2 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 97             | +49 Group 3 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 98             | 98 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 99             | 21 B+TET To Col 3  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 100            | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 101            | -50 Group 3 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 102            | 4 Wait             | 30   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 103            | +45 Group 1 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 104            | 98 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 105            | 19 B+TET To Col 1  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 106            | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 107            | -46 Group 1 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 108            | +47 Group 2 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 109            | 98 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 110            | 20 B+TET To Col 2  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 111            | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 112            | -48 Group 2 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 113            | +49 Group 3 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 114            | 98 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 115            | 21 B+TET To Col 3  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 116            | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 117            | -50 Group 3 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 118            | 4 Wait             | 30   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 119            | +45 Group 1 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 120            | 98 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 121            | 19 B+TET To Col 1  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 122            | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 123            | -46 Group 1 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 124            | +47 Group 2 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 125            | 98 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 126            | 20 B+TET To Col 2  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 127            | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 128            | -48 Group 2 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 129            | +49 Group 3 On     | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 130            | 98 TET To Column   | 10   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 131            | 21 B+TET To Col 3  | 8    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 132            | 98 TET To Column   | 4    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 133            | -50 Group 3 Off    | 1    | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |

(Continued next page.)

**SYNTHESIS CYCLE**  
**VERSION 2.00**

CYCLE NAME: S.4XS-5  
 NUMBER OF STEPS: 132

| <b>STEP<br/>NUMBER</b> | <b>FUNCTION<br/>S. NAME</b> | <b>STEP<br/>TIME</b> | <b>STEP ACTIVE FOR BASES</b> |     |     |     |     |     |     | <b>SAFE<br/>STEP</b> |
|------------------------|-----------------------------|----------------------|------------------------------|-----|-----|-----|-----|-----|-----|----------------------|
|                        |                             |                      | A                            | S   | C   | T   | S   | S   | 7   |                      |
| 134                    | 4 Wait                      | 50                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 135                    | 16 Cao Pres                 | 3                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 136                    | 10 \$18 To Waste            | 3                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 137                    | 2 Reverse Flush             | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 138                    | 1 Block Flush               | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 139                    | 91 Cao To Column            | 22                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 140                    | 10 \$18 To Waste            | 3                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 141                    | 4 Wait                      | 30                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 142                    | 2 Reverse Flush             | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 143                    | 1 Block Flush               | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 144                    | 81 \$15 To Waste            | 3                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 145                    | 13 \$15 To Column           | 22                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 146                    | 10 \$18 To Waste            | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 147                    | 4 Wait                      | 30                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 148                    | 2 Reverse Flush             | 6                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 149                    | 1 Block Flush               | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 150                    | 9 \$18 To Column            | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 151                    | 34 Flush to Waste           | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 152                    | 9 \$18 To Column            | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 153                    | 2 Reverse Flush             | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 154                    | 9 \$18 To Column            | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 155                    | 2 Reverse Flush             | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 156                    | 9 \$18 To Column            | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 157                    | 2 Reverse Flush             | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 158                    | 1 Block Flush               | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 159                    | 33 Cycle Entry              | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 160                    | 6 Waste-Port                | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 161                    | 37 Relay 3 Pulse            | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 162                    | 82 \$14 To Waste            | 3                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 163                    | 58 \$17 To Waste            | 3                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 164                    | 10 \$18 To Waste            | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 165                    | 9 \$18 To Column            | 20                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 166                    | 11 \$17 To Column           | 60                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 167                    | 14 \$14 To Column           | 20                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 168                    | 2 Reverse Flush             | 7                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 169                    | 11 \$17 To Column           | 15                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 170                    | 34 Flush to Waste           | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 171                    | 11 \$17 To Column           | 15                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 172                    | 2 Reverse Flush             | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 173                    | 14 \$14 To Column           | 20                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 174                    | 34 Flush to Waste           | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 175                    | 7 Waste-Bottle              | 1                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | No                   |
| 176                    | 9 \$18 To Column            | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 177                    | 2 Reverse Flush             | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 178                    | 9 \$18 To Column            | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes | Yes -                |

(Continued next page.)

SYNTHESIS CYCLE  
VERSION 2.00

Page 5

CYCLE NAME: S.4XS-S  
NUMBER OF STEPS: 182

| STEP<br><u>NUMBER</u> | FUNCTION<br><u># NAME</u> | STEP<br><u>TIME</u> | STEP ACTIVE FOR BASES |     |     |     |     |     | SAFE<br><u>STEP</u> |
|-----------------------|---------------------------|---------------------|-----------------------|-----|-----|-----|-----|-----|---------------------|
|                       |                           |                     | A                     | G   | C   | T   | S   | S   |                     |
| 179                   | 2 Reverse Flush           | -5                  | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes                 |
| 180                   | 3 \$18 To Column          | 10                  | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes                 |
| 181                   | 2 Reverse Flush           | 5                   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes                 |
| 182                   | 1 Block Flush             | 3                   | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes                 |

SYNTHESIS CYCLE  
VERSION 2.00

Page 1

CYCLE NAME: 1. EXO-6  
 NUMBER OF STEPS: 120  
 DATE: Aug 27, 1992  
 TIME: 14:00

| STEP<br>NUMBER | FUNCTION<br># NAME | TIME | STEP ACTIVE FOR BASES |     |     |     |     |     |     | SAFE<br>STEP |
|----------------|--------------------|------|-----------------------|-----|-----|-----|-----|-----|-----|--------------|
|                |                    |      | A                     | S   | C   | T   | S   | S   | ?   |              |
| 1              | 10 \$18 To Waste   |      | 2                     | Yes          |
| 2              | 9 \$18 To Column   |      | 9                     | Yes          |
| 3              | 2 Reverse Flush    |      | 5                     | Yes          |
| 4              | 1 Block Flush      |      | 3                     | Yes          |
| 5              | 5 Advance FC       |      | 1                     | Yes          |
| 6              | 28 Phos Prep       |      | 3                     | Yes          |
| 7              | +45 Group 1 On     |      | 1                     | Yes          |
| 8              | 90 TET To Column   |      | 6                     | Yes          |
| 9              | 19 B+TET To Col 1  |      | 6                     | Yes          |
| 10             | 90 TET To Column   |      | 3                     | Yes          |
| 11             | 19 B+TET To Col 1  |      | 3                     | Yes          |
| 12             | 90 TET To Column   |      | 3                     | Yes          |
| 13             | 19 B+TET To Col 1  |      | 3                     | Yes          |
| 14             | 9 \$18 To Column   |      | 1                     | Yes          |
| 15             | -46 Group 1 Off    |      | 1                     | Yes          |
| 16             | +47 Group 2 On     |      | 1                     | Yes          |
| 17             | 10 \$18 To Waste   |      | 4                     | Yes          |
| 18             | 1 Block Flush      |      | 3                     | Yes          |
| 19             | 90 TET To Column   |      | 6                     | Yes          |
| 20             | 20 B+TET To Col 2  |      | 6                     | Yes          |
| 21             | 90 TET To Column   |      | 3                     | Yes          |
| 22             | 20 B+TET To Col 2  |      | 3                     | Yes          |
| 23             | 90 TET To Column   |      | 3                     | Yes          |
| 24             | 20 B+TET To Col 2  |      | 3                     | Yes          |
| 25             | 9 \$18 To Column   |      | 1                     | Yes          |
| 26             | -48 Group 2 Off    |      | 1                     | Yes          |
| 27             | +49 Group 3 On     |      | 1                     | Yes          |
| 28             | 10 \$18 To Waste   |      | 4                     | Yes          |
| 29             | 1 Block Flush      |      | 3                     | Yes          |
| 30             | 90 TET To Column   |      | 6                     | Yes          |
| 31             | 21 B+TET To Col 3  |      | 6                     | Yes          |
| 32             | 90 TET To Column   |      | 3                     | Yes          |
| 33             | 21 B+TET To Col 3  |      | 3                     | Yes          |
| 34             | 90 TET To Column   |      | 3                     | Yes          |
| 35             | 21 B+TET To Col 3  |      | 3                     | Yes          |
| 36             | 9 \$18 To Column   |      | 1                     | Yes          |
| 37             | -50 Group 3 Off    |      | 1                     | Yes          |
| 38             | 4 Wait             |      | 29                    |     |     |     |     |     |     |              |
| 39             | 2 Reverse Flush    |      | 5                     |     |     |     |     |     |     |              |
| 40             | 10 \$18 To Waste   |      | 2                     |     |     |     |     |     |     |              |
| 41             | 9 \$18 To Column   |      | 9                     |     |     |     |     |     |     |              |
| 42             | 2 Reverse Flush    |      | 5                     |     |     |     |     |     |     |              |
| 43             | 10 \$18 To Waste   |      | 3                     |     |     |     |     |     |     |              |

(Continued next page.)

**SYNTHESIS CYCLE**  
**VERSION 2.00**

CYCLE NAME: 1.2X0-6  
NUMBER OF STEPS: 100

| STEP<br>NUMBER | FUNCTION<br>NAME  | STEP<br>TIME | STEP ACTIVE FOR BASES |     |     |     |     |     | SAFE<br>STEP |
|----------------|-------------------|--------------|-----------------------|-----|-----|-----|-----|-----|--------------|
|                |                   |              | A                     | S   | C   | T   | S   | S   |              |
| 44             | 1 Block Flush     | - 3          |                       |     |     |     |     |     | Yes          |
| 45             | +45 Group 1 On    | 1            |                       |     |     |     |     |     | Yes          |
| 46             | 90 TET To Column  | 6            |                       |     |     |     |     |     | Yes          |
| 47             | 19 B+TET To Col 1 | 6            |                       |     |     |     |     |     | Yes          |
| 48             | 90 TET To Column  | 3            |                       |     |     |     |     |     | Yes          |
| 49             | 19 B+TET To Col 1 | 3            |                       |     |     |     |     |     | Yes          |
| 50             | 90 TET To Column  | 3            |                       |     |     |     |     |     | Yes          |
| 51             | 19 B+TET To Col 1 | 3            |                       |     |     |     |     |     | Yes          |
| 52             | 9 \$18 To Column  | 1            |                       |     |     |     |     |     | Yes          |
| 53             | -46 Group 1 Off   | 1            |                       |     |     |     |     |     | Yes          |
| 54             | +47 Group 2 On    | 1            |                       |     |     |     |     |     | Yes          |
| 55             | 10 \$18 To Waste  | 4            |                       |     |     |     |     |     | Yes          |
| 56             | 1 Block Flush     | 3            |                       |     |     |     |     |     | Yes          |
| 57             | 90 TET To Column  | 6            |                       |     |     |     |     |     | Yes          |
| 58             | 20 B+TET To Col 2 | 6            |                       |     |     |     |     |     | Yes          |
| 59             | 90 TET To Column  | 3            |                       |     |     |     |     |     | Yes          |
| 60             | 20 B+TET To Col 2 | 3            |                       |     |     |     |     |     | Yes          |
| 61             | 90 TET To Column  | 3            |                       |     |     |     |     |     | Yes          |
| 62             | 20 B+TET To Col 2 | 3            |                       |     |     |     |     |     | Yes          |
| 63             | 9 \$18 To Column  | 1            |                       |     |     |     |     |     | Yes          |
| 64             | -48 Group 2 Off   | 1            |                       |     |     |     |     |     | Yes          |
| 65             | +49 Group 3 On    | 1            |                       |     |     |     |     |     | Yes          |
| 66             | 10 \$18 To Waste  | 4            |                       |     |     |     |     |     | Yes          |
| 67             | 1 Block Flush     | 3            |                       |     |     |     |     |     | Yes          |
| 68             | 90 TET To Column  | 6            |                       |     |     |     |     |     | Yes          |
| 69             | 21 B+TET To Col 3 | 6            |                       |     |     |     |     |     | Yes          |
| 70             | 90 TET To Column  | 3            |                       |     |     |     |     |     | Yes          |
| 71             | 21 B+TET To Col 3 | 3            |                       |     |     |     |     |     | Yes          |
| 72             | 90 TET To Column  | 3            |                       |     |     |     |     |     | Yes          |
| 73             | 21 B+TET To Col 3 | 3            |                       |     |     |     |     |     | Yes          |
| 74             | 9 \$18 To Column  | 1            |                       |     |     |     |     |     | Yes          |
| 75             | -59 Group 3 Off   | 1            |                       |     |     |     |     |     | Yes          |
| 76             | 4 Wait            | 20           |                       |     |     |     |     |     | Yes          |
| 77             | 18 Gas Free       | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 78             | 2 Reverse Flush   | 5            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 79             | 1 Block Flush     | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 80             | 91 Gas To Column  | 12           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 81             | 10 \$18 To Waste  | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 82             | 4 Wait            | 8            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 83             | 2 Reverse Flush   | 5            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 84             | 81 \$15 To Waste  | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 85             | 13 \$15 To Column | 18           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 86             | 10 \$18 To Waste  | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 87             | 4 Wait            | 15           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 88             | 2 Reverse Flush   | 5            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |

(Continued next page.)

-55-

SYNTHESIS CYCLE  
VERSION 2.00

ପ୍ରକାଶ ଜ

CYCLE NAME: 1.2X0-S  
NUMBER OF STEPS: 122

-56-

Page J

**SYNTHESIS CYCLE**  
**VERSION 2.20**

CYCLE NAME: 1.2X-5  
 NUMBER OF STEPS: 93  
 DATE: Aug 27, 1998  
 TIME: 14:02

| STEP<br>NUMBER | FUNCTION<br># NAME | TIME | STEP | ACTIVE FOR BASES |     |     |     |     |     |     | SAFE<br>STEP |
|----------------|--------------------|------|------|------------------|-----|-----|-----|-----|-----|-----|--------------|
|                |                    |      |      | A                | S   | C   | T   | S   | S   | 7   |              |
| 1              | 10 \$18 To Waste   |      | 2    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 2              | 9 \$18 To Column   |      | 9    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 3              | 2 Reverse Flush    |      | 5    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 4              | 1 Block Flush      |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 5              | 5 Advance FC       |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 6              | 28 Phos Pres       |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 7              | +45 Group 1 On     |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 8              | 90 TET To Column   |      | 6    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 9              | 19 B+TET To Col 1  |      | 6    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 10             | 90 TET To Column   |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 11             | 19 B+TET To Col 1  |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 12             | 90 TET To Column   |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 13             | 19 B+TET To Col 1  |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 14             | 9 \$18 To Column   |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 15             | -46 Group 1 Off    |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 16             | +47 Group 2 On     |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 17             | 10 \$18 To Waste   |      | 4    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 18             | 1 Block Flush      |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 19             | 90 TET To Column   |      | 6    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 20             | 28 B+TET To Col 2  |      | 6    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 21             | 90 TET To Column   |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 22             | 28 B+TET To Col 2  |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 23             | 90 TET To Column   |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 24             | 28 B+TET To Col 2  |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 25             | 9 \$18 To Column   |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 26             | -48 Group 2 Off    |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 27             | +49 Group 3 On     |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 28             | 10 \$18 To Waste   |      | 4    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 29             | 1 Block Flush      |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 30             | 90 TET To Column   |      | 6    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 31             | 21 B+TET To Col 3  |      | 6    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 32             | 90 TET To Column   |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 33             | 21 B+TET To Col 3  |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 34             | 90 TET To Column   |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 35             | 21 B+TET To Col 3  |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 36             | 9 \$18 To Column   |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 37             | -50 Group 3 Off    |      | 1    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 38             | 4 Wait             |      | 20   | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 39             | 16 Cap Pres        |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 40             | 2 Reverse Flush    |      | 5    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 41             | 1 Block Flush      |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 42             | 91 Cap To Column   |      | 12   | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |
| 43             | 10 \$18 To Waste   |      | 3    | Yes              | Yes | Yes | Yes | Yes | Yes | Yes | Yes          |

(Continued next page.)

SYNTHESIS CYCLE  
VERSION 2.30

25

CYCLE NAME: 1.2X-5  
NUMBER OF STEPS: 32

-58-

END PROCEDURE  
VERSION 2.00

Page 1

PROCEDURE NAME: CAP-PRIM  
NUMBER OF STEPS: 27  
DATE: Aug 27, 199  
TIME: 14:03

| STEP<br>NUMBER | FUNCTION<br>3 NAME | STEP<br>TIME | STEP ACTIVE FOR BASES |     |     |     |     |     | SAFE<br>STEP |
|----------------|--------------------|--------------|-----------------------|-----|-----|-----|-----|-----|--------------|
|                |                    |              | A                     | S   | C   | T   | S   | S   |              |
| 1              | 10 \$18 To Waste   | 2            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 2              | 9 \$18 To Column   | 15           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 3              | 2 Reverse Flush    | 20           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 4              | 1 Block Flush      | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 5              | 16 Gas Prep        | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 6              | 91 Gas To Column   | 30           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 7              | 10 \$18 To Waste   | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 8              | 1 Block Flush      | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 9              | 4 Wait             | 300          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 10             | 16 Gas Prep        | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 11             | 91 Gas To Column   | 30           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 12             | 10 \$18 To Waste   | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 13             | 1 Block Flush      | 4            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 14             | 4 Wait             | 300          | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 15             | 2 Reverse Flush    | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 16             | 10 \$18 To Waste   | 3            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 17             | 9 \$18 To Column   | 15           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 18             | 2 Reverse Flush    | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 19             | 9 \$18 To Column   | 15           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 20             | 2 Reverse Flush    | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 21             | 9 \$18 To Column   | 15           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 22             | 2 Reverse Flush    | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 23             | 9 \$18 To Column   | 15           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 24             | 2 Reverse Flush    | 10           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 25             | 9 \$18 To Column   | 15           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 26             | 2 Reverse Flush    | 60           | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |
| 27             | 1 Block Flush      | 5            | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes          |

END PROCEDURE  
VERSION 2.00

PROCEDURE NAME: JE NHS  
NUMBER OF STEPS: 27  
DATE: Aug 27, 199  
TIME: 14:04

2500

| <u>STEP<br/>NUMBER</u> | <u>FUNCTION<br/># NAME</u> | <u>STEP<br/>TIME</u> | <u>STEP ACTIVE FOR BASES</u> |     |     |     |     |     | <u>SAFE<br/>STEP</u> |
|------------------------|----------------------------|----------------------|------------------------------|-----|-----|-----|-----|-----|----------------------|
|                        |                            |                      | A                            | S   | C   | T   | S   | S   |                      |
| 1                      | 2 Reverse Flush            | 60                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 2                      | 27 \$10 To Collect         | 17                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 3                      | 10 \$18 To Waste           | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 4                      | 1 Block Flush              | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 5                      | 4 Wait                     | 660                  | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 6                      | 27 \$10 To Collect         | 18                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 7                      | 10 \$18 To Waste           | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 8                      | 1 Block Flush              | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 9                      | 4 Wait                     | 660                  | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 10                     | 27 \$10 To Collect         | 18                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 11                     | 10 \$18 To Waste           | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 12                     | 1 Block Flush              | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 13                     | 4 Wait                     | 660                  | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 14                     | 27 \$10 To Collect         | 17                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 15                     | 10 \$18 To Waste           | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 16                     | 1 Block Flush              | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 17                     | 4 Wait                     | 660                  | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 18                     | 8 Flush To CLCT            | 9                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 19                     | 27 \$10 To Collect         | 14                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 20                     | 8 Flush To CLCT            | 9                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 21                     | 2 Reverse Flush            | 60                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 22                     | 1 Block Flush              | 4                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 23                     | 10 \$18 To Waste           | 5                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 24                     | 9 \$18 To Column           | 30                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 25                     | 2 Reverse Flush            | 60                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 26                     | 1 Block Flush              | 10                   | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |
| 27                     | 42 \$10 Vent               | 2                    | Yes                          | Yes | Yes | Yes | Yes | Yes | Yes                  |

deposition  
Shuttle and connected to ARI

-60-

**BEGIN PROCEDURE**  
**VERSION 2.30**

Page. 1

PROCEDURE NAME: ETO PREP  
NUMBER OF STEPS: 13  
DATE: Aug 27, 1998  
TIME: : 14:05

ONA SE EN  
VERSIG. 2.30

SEQUENCE NAME: 15X-1  
SEQUENCE LENGTH: 71  
DATE: Aug 27, 199  
TIME: 14:07  
COMMENT:

5' - GGT GTT TGG TTG TTG TTS TTG TTG TTG TTG TTG TTG TTG

TTG TTG TTG TTG TTG TTT TTT TTT TTT TTT TTT TTT TTT -3'

DNA SEQUENCE  
VERSION 2.00

SEQUENCE NAME: 1SX-2  
SEQUENCE LENGTH: 10  
DATE: Aug 27, 1993  
TIME: 14:06  
COMMENT:

5° - 777 6AC T65 T -3°

Claims

1. A synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for  
5 HTLV-1, wherein said oligonucleotide comprises:  
a first segment comprising a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid; and  
a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer,  
10 wherein said HTLV-1 nucleic acid segment is selected from the group consisting of

15 GGTCTGGGTGTCAAYCTGGGCTTTAATTACGGG (SEQ ID NO:6),  
ATCTAGTARAGCTTCGATAGTCTTTGGGTGGCT (SEQ ID NO:7),  
GGCTATCGGAAGGACTGTCATGTCCTGCTCCTGT (SEQ ID NO:8),  
TGTRTTTTGAGGGAGTATTACTTGAGAACAA (SEQ ID NO:9),  
ATCTTGGGTTTGGCCCCCTGCCCTAAAYACGGA (SEQ ID NO:10),  
20 TATTAGCACAGGAAGGGAGGTGAGCTTAAAGTG (SEQ ID NO:11),  
TAAAACAATAGGCGTYGTCCGGAAAGGGAGGCG (SEQ ID NO:12),  
CYAGTTGTTTGGTATCAACTAGGCAAGATGT (SEQ ID NO:13),  
GCATTGTTGTAAGGCATCRGACCTATGATGGC (SEQ ID NO:14),  
CCYTTTGCCTCAGGGAGGTACAGGACGCCYTG (SEQ ID NO:15),  
25 RGCTGGCGCCTGTATTGCAAGATTACAGGCCG (SEQ ID NO:16),  
GGGGGGCCTTGGGAGGTGTTCTAGYCCAAGGAC (SEQ ID NO:17),  
GGCGTTCTGGTTAAAGGGAACTGGCTGATTTS (SEQ ID NO:18),  
GGGCCTTCCGGACCAAGTGTGCAAGGCCCTGGA (SEQ ID NO:19),  
GCCCGGTGTAGGRRTCGATATGGCCTGCCCTCCA (SEQ ID NO:20),  
30 CYTTTTAACTGGGAATACTGGTTATTYCCTG (SEQ ID NO:21),  
GCAGGGTCGTGGATGAATGCCAGGTTCCATTGG (SEQ ID NO:22),  
ATGAGAGRTCTATGGTAGAGAGTTAGTGGCCC (SEQ ID NO:23),  
GGCTGGACAAGTCAGGGGGCCCGGGGAAGATG (SEQ ID NO:24),  
CTATAGTTGYAAGTGGCTAGTGTRGTTGGCA (SEQ ID NO:25),  
35 GTARGGGATTGGAAAAAGGCGTCTYTAAGGT (SEQ ID NO:26),

CAGTGAAAGCAAAGTAGGGCTGGAACGTGTTAG (SEQ ID NO:27),  
TAGTGCCGGGGCCGTAGTTACACTGCTGTGGGA (SEQ ID NO:28),  
TAAACCCTGGGGTAGTACTYTCCAGGCATTC (SEQ ID NO:29),  
CCAGCTGCATTCGAACAGGGTGGGACTATTTT (SEQ ID NO:30),  
5 GGAARGCTTGCGAATGGGCTGCAGGATATGGG (SEQ ID NO:31),  
TGTCAATCCATGTACTGAAGAATAGTGCATTGGG (SEQ ID NO:32),  
GYAGGTCCCKCATGGGAGGGGCTTGCYAGGAGAA (SEQ ID NO:33),  
TTAGGGAAAGCCATTGTGGCCTCTGAGAGTAGTW (SEQ ID NO:34),  
10 TTTTGTTCGGACACAGGCAACCCATGGGAGAA (SEQ ID NO:35),  
CTAGGAACCTTAATTGTTCCAGGGGTTGCTGGG (SEQ ID NO:36),  
CATAAGTGAGGTGATTRGGTGAAATTATYTGCC (SEQ ID NO:37),  
AGCGGGACCGTATAGGTACCKTGGGACTGCAT (SEQ ID NO:38),  
CGCCAAGTAGGGCTTGAAGTTCAAGTAGCGCCC (SEQ ID NO:39),  
AGGTAGGAGTTCTTGGAGACCCACTGAATCT (SEQ ID NO:40),  
15 AGGCACAGTAGAGACTGTGAAGGGCTGGCGTA (SEQ ID NO:41).

2. The synthetic oligonucleotide of claim 1,  
wherein said second segment comprises the sequence  
AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).

20 3. A synthetic oligonucleotide useful as a  
capture probe in a sandwich hybridization assay for HTLV-  
1, wherein the synthetic oligonucleotide comprises:  
25 a first segment comprising a nucleotide  
sequence substantially complementary to a segment of  
HTLV-1 nucleic acid; and  
a second segment comprising a nucleotide  
sequence substantially complementary to an  
oligonucleotide bound to a solid phase,  
30 wherein said HTLV-1 nucleic acid segment is  
selected from the group consisting of  
TCTGGTTCTGGGATAGTGGGCTTCTGGCGGGGG (SEQ ID NO:42),  
GGGAGRTCTAATAGGAGGGCATCYCCTCTGGC (SEQ ID NO:43),  
CCTATGRAGTTTTGGGTGTGGRATGTCRGCG (SEQ ID NO:44),  
35 CTGTAATGTGGGGGGGGAGGTTAACCTCCCCC (SEQ ID NO:45),

AATAGATGYGGTCTGGTTARGAARGACTTG (SEQ ID NO:46),  
CCGACGGCGGGATCTAACGGTATAACTGGCAG (SEQ ID NO:47),  
ATATTTGGTCTCGGGATCAGTATGCCTTGTA (SEQ ID NO:48),  
5 GCACTAATGATTGAACCTTGAGAAGGATTTAAAT (SEQ ID NO:49),  
TGCGGCAGTTCTGTGACAGGGCTGCCGCAGCT (SEQ ID NO:50),  
CCCCTAGGAGGGCAGGGTTGGACTAGTCTAC (SEQ ID NO:51),  
CAGTRGTGGTGCCAGTGGACTAGCATAATAG (SEQ ID NO:52),  
CAAGTGGCCACTGCTCTGGACTGGAACACYA (SEQ ID NO:53).

10 4. The synthetic oligonucleotide of claim 3,  
wherein said second segment comprises

CTTCTTGGAGAAAGTGGTG (SEQ ID NO:55).

15 5. A set of synthetic oligonucleotides useful  
as amplifier probes in a sandwich hybridization assay for  
HTLV-1, comprising two oligonucleotides,  
wherein each oligonucleotide comprises:  
a first segment comprising a nucleotide  
20 sequence substantially complementary to a segment of  
HTLV-1 nucleic acid; and  
a second segment comprising a nucleotide  
sequence substantially complementary to an  
oligonucleotide unit of a nucleic acid multimer,  
25 wherein said HTLV-1 nucleic acid segments are

GGTCTGGGTGTCAAYCTGGCTTAATTACGGG (SEQ ID NO:6),  
ATCTAGTARAGCTTCGATAGTCTTGGGTGGCT (SEQ ID NO:7),  
GGCTATCGGAAGGACTGTCATGTCTGCTCCTGT (SEQ ID NO:8),  
30 TGTRTTTGAGGGGAGTATTACTTGAGAACAA (SEQ ID NO:9),  
ATCTTGGGTTGGCCCCCTGCCCTAAAYACGGA (SEQ ID NO:10),  
TATTAGCACAGGAAGGGAGGTGAGCTAAAGTG (SEQ ID NO:11),  
TAAAACAATAGGCGTYGTCCGAAAGGGAGGCG (SEQ ID NO:12),  
CYAGTTGTTTGGTATCAACTAGGCAAGATGT (SEQ ID NO:13),  
35 GCATTGTTGTAAGGCATCRCGACCTATGATGGC (SEQ ID NO:14),

CCYTTTTGCCTCAGGGAGGTACAGGACGCCYTG (SEQ ID NO:15),  
RGCTGGCGCCTGTATTGGCAAGATTACAGGC GG (SEQ ID NO:16),  
GGGGGGCCTTGGGAGGTGTTCTAGYCCAAGGAC (SEQ ID NO:17),  
GGCGTTCTGGTTAAAGGGAACTGGCTGATTIS (SEQ ID NO:18),  
5 GGGCCTTCGGACCAAGTGTGCAAGGCCTGGA (SEQ ID NO:19),  
GCCCGGTGTAGGRTTCGATATGGCCTGCCTCCA (SEQ ID NO:20),  
CYTTTTAACTGGGAATACTGGTTATTYCCTG (SEQ ID NO:21),  
GCAGGTCGTGGATGAATGCCAGGTTCCATTGG (SEQ ID NO:22),  
ATGAGAGRTCTATGGTTAGAGAGTTAGTGGCCC (SEQ ID NO:23),  
10 GGCTGGACAAGTCAGGGGCCGGGGAAAGATG (SEQ ID NO:24),  
CTATAGTTGYAAGTGGCTAGTGTRGTTGGCA (SEQ ID NO:25),  
GTARGGGATTGGAAAAAGGCGTCTYTAAGGT (SEQ ID NO:26),  
CAGTGAAAGCAAAGTAGGGCTGGAACTGTTAG (SEQ ID NO:27),  
TAGTGCCGGGCCGTAGTTACACTGCTGTGGGA (SEQ ID NO:28),  
15 TAAACCCTGGGTAGTACTYTCCAGGCGTATC (SEQ ID NO:29),  
CCAGCTGCATTCGAACAGGGTGGACTATTTT (SEQ ID NO:30),  
GGAARGCTTGCCGAATGGGCTGCAGGATATGGG (SEQ ID NO:31),  
TGT CATCCATGTACTGAAGAATAGTGCATTGGG (SEQ ID NO:32),  
GYAGGTCCCKCATGGGAGGGGCTTGCYAGGAGAA (SEQ ID NO:33),  
20 TTAGGGAAAGCCATTGTGGCCTCTGAGAGTAGTW (SEQ ID NO:34),  
TTTTGTTTCGGACACAGGCAACCCATGGGAGA (SEQ ID NO:35),  
CTAGGAACCTAACATTGTTCCAGGGTTTGCTGGG (SEQ ID NO:36),  
CATAAAGTGAGGTGATTRGGTCAAATTATYTGCC (SEQ ID NO:37),  
AGCGGGACCGTATAGGTACCKTGGGACTGCAT (SEQ ID NO:38),  
25 CGCCAAGTAGGGCTTGAAGTTCAGGTAGCGCCC (SEQ ID NO:39),  
AGGTAGGAGTTCTTGGAGACCCACTGAATCT (SEQ ID NO:40),  
AGGCACAGTAGAGACTGTGAAGGGGCTGGCGTA (SEQ ID NO:41).

6. The synthetic oligonucleotide of claim 5,  
30 wherein said second segment comprises  
AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).

7. A set of synthetic oligonucleotides useful  
as capture probes in a sandwich hybridization assay for  
35 HTLV-1, comprising two oligonucleotides,

wherein each oligonucleotide comprises:  
a first segment comprising a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid; and  
5 a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase,  
wherein said HTLV-1 nucleic acid segments are

10 TCTGGTTCTGGGATAGTGGGCTTAGGCAGGGG (SEQ ID NO:42),  
GGGAGRTCTAATAGGAGGGCATCYTCCTCTGGC (SEQ ID NO:43),  
CCTATGRAGTTTTGGGTGTGGRATGTCRGCG (SEQ ID NO:44),  
CTGTAATGTGGGGGGGGAGGTTAACCTCCCC (SEQ ID NO:45),  
AATAGATGYTGGGTCTGGTTARGAARGACTTG (SEQ ID NO:46),  
15 CCGACGGGCCGGATCTAACGGTATAACTGGCAG (SEQ ID NO:47),  
ATATTGGTCTCGGGGATCAGTATGCCTTGTA (SEQ ID NO:48),  
GCACTAATGATTGAACCTTGAGAAGGATTAAAT (SEQ ID NO:49),  
TGGGGCAGTTCTGTGACAGGGCCTGCCGCAGCT (SEQ ID NO:50),  
CCCCTAGGAGGGGCAGGGTTGGACTAGTCTAC (SEQ ID NO:51),  
20 CAGTRGTGGTGCCAGTGAGGGTCAGCATAATAG (SEQ ID NO:52),  
CAAGTGGCCACTGCTSCTGGACTGGAACACYA (SEQ ID NO:53).

8. The synthetic oligonucleotide of claim 7,  
wherein said second segment comprises

25 CTTCTTGGAGAAAGTGGTG (SEQ ID NO:55).

9. A solution sandwich hybridization assay  
for detecting the presence of HTLV-1 in a sample,

30 comprising

(a) contacting the sample under hybridizing conditions with an excess of (i) amplifier probes comprising the set of synthetic oligonucleotides of claim 5 and (ii) a set of capture probe oligonucleotides  
35 wherein the capture probe oligonucleotide comprises a

first segment comprising a nucleotide sequence that is substantially complementary to a segment of HTLV-1 nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

5 (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;

10 (c) thereafter separating materials not bound to the solid phase;

(d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary 15 to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

20 (e) removing unbound multimer;  
(f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;

(g) removing unbound labeled oligonucleotide; and

25 (h) detecting the presence of label in the solid phase complex product of step (g).

10. A solution sandwich hybridization assay for detecting the presence of HTLV-1 in a sample, 30 comprising

(a) contacting the sample under hybridizing conditions with an excess of (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment comprising a 35 nucleotide sequence substantially complementary to a

segment of HTLV-1 nucleic acid and a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) capture probes comprising the set of synthetic oligonucleotides of claim 7;

5 (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;

10 (c) thereafter separating materials not bound to the solid phase;

(d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary

15 to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

(e) removing unbound multimer;

20 (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;

(g) removing unbound labeled oligonucleotide; and

25 (h) detecting the presence of label in the solid phase complex product of step (g).

11. A kit for the detection of HTLV-1 in a sample comprising in combination

30 (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment comprising a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid and a second segment comprising a nucleotide

sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;

(ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment comprising a nucleotide sequence that is substantially complementary to a segment of HTLV-1 nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

(iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide; and

(iv) a labeled oligonucleotide.

12. The kit of claim 11, further comprising instructions for the use thereof.

20 13. The kit of claim 11, wherein said set of amplifier probe oligonucleotides is the set of synthetic oligonucleotides of claim 5.

25 14. The kit of claim 11, wherein said set of capture probe oligonucleotides is the set of synthetic oligonucleotides of claim 7.

## INTERNATIONAL SEARCH REPORT

|                                                 |
|-------------------------------------------------|
| International application No.<br>PCT/US92/11345 |
|-------------------------------------------------|

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC(S) :C12Q 1/68; C07H 21/04  
US CL :435/6; 536/24.3

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6; 536/24.3

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Medline, APS, DIALOG

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                 | Relevant to claim No.    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| X         | Proc. Natl. Acad. Sci., Vo. 80, issued 1983, Seiki et al., "Human adult T-cell leukemia virus: Complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA," pages 3618-3622. See sequence search results. | 1,3,5,7,<br>2,4,6,8,9-14 |
| Y         | WO, A, 8903891 (Urdea et al.) 05 May 1989, see abstract.                                                                                                                                                                           | 2,4,6,8,9-14             |
| Y         | EP, A, 0139489 (Peter) 02 May 1985, see entire document.                                                                                                                                                                           | 2,4,6,8,9-14             |

Further documents are listed in the continuation of Box C.

See patent family annex.

|                                                                                                                                                                         |     |                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents:                                                                                                                                | "T" | later documents published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                             |
| "A" document defining the general state of the art which is not considered to be part of particular relevance                                                           | "X" | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "E" earlier document published on or after the international filing date                                                                                                | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified) | "A" | document member of the same patent family                                                                                                                                                                                                    |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            |     |                                                                                                                                                                                                                                              |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search

08 February 1993

Date of mailing of the international search report

09 MAR 1993

Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231

Authorized officer  
SCOTT HOUTTEMAN

Facsimile No. NOT APPLICABLE

Telephone No. (703) 308-0196

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**