Data Structures: Height-Balanced Search Trees: 2-3 Tree

YoungWoon Cha
(Slide credits to Won Kim)
Spring 2022

2-3-Tree

2-3 Tree

- A "Perfectly Balanced Tree"
 - All leaf nodes are on the same level
- Invented by J.E. Hopcroft in 1970.
- Not used much
- But, a special case of B Tree/B+ Tree, and base of T Tree
 - B Tree/B+ Tree is very important
 - T Tree is important

2-3 Tree

- Has Only 2-Nodes and 3-Nodes.
- smaller key to the left subtree, and larger key to the right subtree
- 2-node
 - with one key, and two child nodes (left, right)
 - root key of the left subtree < key</p>
 - root key of the right subtree > key
- 3-node
 - with two keys (left, right), and three child nodes (left, middle, right)
 - root key of the left subtree < left key</p>
 - root key of the middle subtree > left key AND right key
 - root key of the right subtree > right key

2 Node (Implementation)

3 Node (Implementation)

Searching a 2-3 Tree

- 占 Search key X
- In a 2-Node
 - If X = the key of the node, search ends.
 - If X < the key of the node, search the left subtree.
 - If X > the key of the node, search the right subtree.
- In a 3-Node
 - If X = the left data or right data, search ends.
 - If X < the left data, search the left subtree.</p>
 - If X > the left data and < the right data, search the middle subtree
 - If X > the right data, search the right subtree.
- If X is not found, search fails.

Searching a 2-3 Tree

Search for 80, 10, 25, 60

- Node Promotion and Node Demotion
 - node promotion: a 2-node becomes a 3-node
 - node demotion: a 3-node becomes a 2-node
- Data Re-Distribution
 - node split and node merge

Insight on a 2-3 Tree

- A node has a minimum 1 data, and maximum 2 data.
 - maximum # of data = 2 x minimum # of data
 - overflow: 3rd data
 - underflow: 0 data
- Overflow and underflow require tree restructuring.
- Tree height increases by 1, only when all nodes are 3-nodes.

Inserting Data Into a 2-Node

- A 2-node becomes a 3-node.
- The smaller data becomes the "left" data.
- The larger data becomes the "right" data.
- Pointers (to the child nodes) in the node are adjusted.

Inserting Data Into a 3-Node

- The 3-node splits into 2 separate 2-nodes (to reserve space for future inserts)
 - The "smallest" data goes to the left 2-node.
 - The "largest" data goes to the right 2-node.
 - The "middle" data goes to the parent node.
- The "middle" pointer in the parent node points to one of the two new 2-nodes.
- If the parent node is a 3-node, it is split, too, recursively.

Example 2: (3/3)

Example 3: (1/2)

insert 30

20 40 30?

Example 3: (2/2)

Example 4: (1/2)

Example 4: (2/2)

Example 5: (1/2)

Example 5: (2/2)

Example 6: (1/3)

Example 6: (2/3)

Example 6: (3/3)

Exercise: Insert "60" Into the Following 2-3 Tree.

simplified notation

Exercise: Insert "60" Into the Following 2-3 Tree.

Exercise: Insert "40" Into the Following 2-3 Tree.

Exercise: Insert "40" Into the Following 2-3 Tree.

Exercise: Insert "32" into the Following 2-3 Tree.

Exercise: Insert "32" into the Following 2-3 Tree.

Node merge as the reverse of node split

Deleting Data from a 3-Node (1/2)

- If the 3-node is a leaf node
 - Just delete the data.
 - The node is now a 2-Node.

Deleting Data from a 3-Node (2/2)

- If the 3-node is a non-leaf node
- (with respect to the key to be deleted)
 - ** If both the left and right child nodes are 2-nodes
 - Merge the child nodes, and delete the key in the 3-node
 - *** If one of the left and right child nodes is a 3-node
 - If left data is to be deleted, swap the left data with the greatest key on the left subtree, or the smallest key on the middle subtree.
 - If right data is to be deleted, swap the right data with the greatest key on the middle subtree, or the smallest key on the right subtree.
 - Delete the data after the swap.
 - If the node underflows, solve the problem recursively.

Deleting Data from a 2-Node (1/2)

- If there is a sibling 3-node, delete the data in the 2-node (let's call it 2N), and
 - If 2N is the leftmost sibling, and
 - if the middle sibling node is a 3-Node (3N), move the smaller of the parent's data into 2N, and move the smaller of 3N's data into the parent node.
 - if the middle sibling node is a 2-Node, move the smaller of the parent's data into the middle sibling node, and delete 2N.
 - If 2N is the rightmost sibling, and
 - if the middle sibling node is a 3-Node (3N), move the larger of the parent's data into 2N, and move the larger of 3N's data into the parent node.
 - if the middle sibling node is a 2-Node, move the larger of the parent's data into the middle sibling node, and delete 2N.
 - ** If 2N is the middle sibling,
 - ** If the leftmost node is the sibling 3-Node (3N), move the smaller of the parent's data into 2N, and move the larger of 3N's data into the parent node.
 - If the rightmost node is the sibling 3-Node (3N), move the larger of the parent's data into 2N, and move the smaller of 3N's data into the parent node.
 - Adjust the pointers in the sibling node and/or the parent node.

Deleting Data from a 2-Node (2/2)

- If there is no sibling 3-node,
 - Move parent's data to the left or right sibling node of the 2-Node (2N), and delete 2N. (The parent node and the sibling node are merged.)
 - If the parent node underflows as a result, take care of the parent node deletion.
 - Adjust the pointers in the sibling node and/or the parent node.

Example 6

Try delete 90 first

simplified notation

delete 90

Try delete 50 next

delete 50

Try delete 20 next

delete 20

Try delete 95 next

delete 95

Exercise: Delete "30" From the Following 2-3 Tree.

Exercise: Delete "30" From the Following 2-3 Tree.

Performance of a 2-3 Tree

- Average Case and Worst-Case
 - Between O(log₃ n) and O(log₂ n)
 - O(log₂ n): if all nodes are 2-Nodes
 - O(log₃ n): if all nodes are 3-Nodes

End of Lecture