What is a Time Series $2 = 1^2 + 1$ - a sequence of values indexed by time $5 = 2^2 + 1$ r time interval is important. r order is import ant $10 = 3^2 + 1$ $4 \mid 17 = 4^2 + 1$ - differences with Regression/Classification - order cannot be changed - future observations depend on past history - rows are not independent of each other

indesc escogenous

variables

Gif present, then multivariate time series

 $y_t = \int \left(x_t x_2 \right)$

Regression,

Classification

problem.

Else, univariate time series (t, yt)

Time Components residuals (constant) Seasonality trend (short serm)

To Prediction & Evaluation

- Mean Abs %. Error
$$\frac{115-13}{15} + \frac{117-15}{17} + \dots$$

How to find which forecast is better and by how much? Yactual = [15, 17, 14, 13] $y_{p1} = [13, 15, 12, 13]$ $y_{p2} = [14, 15, 16, 17]$

75 Prediction: Smoothing

1. Forecast for tomorrow is the same as today's observation $y_{t+1} = y_t$

4154

2. Forecast for tomorrow depends on today, yesterday and day before yesterday. -- $y_{t+1} = f(y_t, y_{t-1}, y_{t-2} - y_{t-k})$

Weighted Moving Average $= w_0 y_t + w_1 y_{t-1}$ $+ w_2 y_{t-2} + w_3 y_{t-3}$

 $\begin{cases} w_0 > w_1 > w_2 > w_3 \\ w_0 + w_1 + w_2 + w_3 = 1 \end{cases}$

Exponential smoothing.

$$y_{t+1} = \alpha y_t + \alpha (1-\alpha) y_{t-1} + - - -$$

 \forall weights in $GP \Rightarrow Simple Exp. Smoothing$

 $\propto 1 \Rightarrow higher responsiveness of forecasts <math>\propto \in [0,1]$

Double Exp 5 moothing

$$\Delta y_{t} = y_{t} - y_{t-1}$$

$$Lag 1$$

$$\Delta s y_{t} = y_{t} - y_{t-24}$$

$$Lag 24$$

$$Lag 24$$

$$Lag 24$$

$$Lag 24$$

$$Lag 24$$

$$Lag 26$$

$$Lag 27$$

$$Lag 28$$

help make
T5 stationary cove (yt, yt-k) $y_{t} = \alpha_{1} y_{t-1} + \epsilon_{t}$ $y_{t} = \beta_{1} y_{t-1} + \alpha_{2} y_{t-2} + \epsilon_{t}$

~ univariate time series 40 -- Yk yk+1 y_{n-1} y_n -- · y_{k-1} y_k -- $ACF_1 = cov((y_t, y_{t-1}))$ y_{n-2} y_{n-1} y_n yo y, ... yk-2 yk-1 k yk yk-1 K+1 YK+1 YK ACF2 = corr (yt, yt-2) not that useful in predicting There is a strong trelation b/ w

$$t, y_t$$

TS - Regression We assume that the future — lagged *features* is ONLY affected by the past y 12 y 11 days. $y_t = f(y_{t-1}, y_{t-2})$ after de-seasonalizing ACF $y_t = \alpha_1 y_{t-1} +$ bors are above CI for lags l α2 yt-2 -> Linear R+1 YR+1 Regression yk 9 R-1 $y_2 = \alpha_1 y_1 + \alpha_2 y_0$ α_1, α_2 yn-1 yn-2 $y_3 = \alpha_1 y_2 + \alpha_2 y_1$ a, y3 + 2 y2 dataset for vegression

75 -> Regression Coontol ...) rlagged statistic features t feature time Ymin Ymean Ysta yman y23 y12 y_{L1} feature 90 yo y_2 y2 y, YR-1 YR-2 YR-3 YR-4 yk yk-1 yk-2 yk-3 y = Xw + 6 Regression Linear

TS Cross Validation

Regularization

 $\frac{1}{n}\sum_{i}|y_{i}-X_{i}\omega|^{2}+\lambda\sum_{i}|\omega_{j}|+\lambda\sum_{i}|\omega_{j}|+\lambda\sum_{i}|\omega_{j}|$ $=\sum_{i}|\omega_{i}|$ $=\sum_{i}|\omega_{i}|$ =

.

.