Chapitre2:

Commutation et routage

Adresse MAC vs Adresse IP

Ordinateurs de divers constructeurs: un réseau

 Un seul réseau si interconnexion filaire directe (sans usage de l'adresse IP)

Adresse MAC vs Adresse IP

Ordinateurs de divers constructeurs: plusieurs réseaux

Un seul réseau physique et plusieurs réseaux logiques

Répéteur-Concentrateur: couche 1

- Répéteur: n'est plus utilisé
 - Régénération du signal(données, bruits) pour compenser l'affaiblissement
 - Peut lier des supports physique différents(d'un câble coaxial à un câble à paire torsadée)
 - Ne lie pas des segments de vitesses différentes car il n'a pas de mémoire tampon
 - Ne lie pas deux segments qui utilisent un protocole différent car ne peut reconnaitre les trames (gestion des méthodes d'accès au niveau 2)

Concentrateur (hub)

- Répéteur multiport
- Répète l'information d'un port vers tous les autres ports.

Pont-Commutateur: Couche 1 et 2

- Pont
 - Relie deux segments d'un réseau (réduit le domaine de collision)
 - Filtre: détruit les message si la source et la destination sont du même segment, diffuse sur le segment du destinataire s'ils ne le sont pas.
 - Laisse passer le multicast, le broadcast, et les adresses inconnues au départ qui seront par la suite enregistrées dans la table d'adresse (trames stockées en mémoire tampon)
 - Collisions non répétés
- Commutateur (Switch)
 - Pont multiport
 - Interconnecte plusieurs segments ou ordinateurs

- Message de A à B est détruit, n'arrive pas en zone 2
- Message de A à F est diffusé en zone 2

Table d'adresses MAC

 Etablit le lien entre les ports physiques du Switch et les adresses MAC sources qui arrivent sur les ports

Interface	MAC
P1	MACPC1

Interface	MAC		
P2	MACPC1		
•			

Interface	MAC
P1	MACPC1
P2	MACPC3

Interface	MAC
P2	MACPC1
P1	MACPC3

SW1 SW2 SW1

SW2

Routeur: couche 1,2 et 3

- Interconnecte des réseaux logiques, ou physiques de même ou de types différents (Ethernet avec Token ring).
- A partir de l'adresse IP, il choisit le meilleur chemin du paquet en fonction du protocole de routage

Table de routage

- Le routage direct
 - Les réseaux sont directement connectés au routeur
 - Le routeur fait automatique sa table de routage
 - Chaque interface du routeur est une passerelle du réseau qu'elle connecte

Table de routage

- Le routage indirect
 - Les réseaux ne sont pas directement connectés au routeur
 - Une table de routage est manuellement ou dynamique acquise
 - Chaque interface du routeur est une passerelle dur réseau qu'elle connecte

On renseigne les réseaux non directement connectés dans la table de

Table de routage R1		
Réseau destination	Masque de sous réseau	Passerelle
192.168.1.0	255.255.255.0	11.0.0.1

Réseau 3 192.168.1.0/24

Table de routage R2			
Réseau destination	Masque de sous réseau	Passerelle	
10.0.0.0	255.0.0.0	11.0.0.2	
172.16.0.0	255.255.0.0	11.0.0.2	

IP: 11.0.0.1/8

Réseau 11.0.0.0/8

Resaux 1 10.0.0.0/8

IP: 10.0.0.3/8

IP: 11.0.0.2/8

IP:172.16.0.3/8

192.168.1.1/2

Réseau 2 172.16.0.0/16

Point d'accès vs modem routeur sans fil

- Principal composant d'infrastructure d'un réseau wi-fi
- Centralise toutes les communications des stations qui lui sont associées

Point d'accès ou modem Sans fil?

Connexion wifi entre deux points

Wireless Distribution System (WDS)

- Tous les APs doivent utiliser:
 - •le même canal de communication,
 - la même méthode de chiffrement (aucune, WEP, WPA, WPA2) avec les mêmes clés de chiffrement.
 - les SSID peuvent être différents.

- Equipements LANs: Switch, hub, pont, concentrateur
 - L'adresse MAC est utilisée par les switch pour la commutation.
 - Comment vu que l'utilisateur utilise des adresse de niveau supérieur (URL, email, Adresse IP etc..)
 - Le protocole ARP est utilisé pour trouver l'adresse MAC

ARP Request

- PC1 envoie un ARP request pour trouver MAC de 10.1.1.3
- Paquet ARP: ARP est encapsulé directement dans IP (il n'est pas placé dans UDP ou TCP). Il propose deux paquets :
- La requête pour initier la recherche : ARP_Request
- La réponse à la requête : ARP_Reply
 - Type de réseau: indique le réseau supporté (code 0001₁6 pour Ethernet)
 - Type de protocol: indique quel est le type de protocole couche 3 qui utilise Arp.La valeur propre à IP est 0x0800
 - Longueur d'adresse MAC :nombre d'octets des champs d'adresse MAC des paquets ARP (6 octet code 0006₁₆).
 - Longueur d'adresse protocolaire: longueur en octets des champs d'adresse de niveau 3. Pour IP la valeur est (0004)h..
 - Code d'opération : indique le type de paquet ARP. 0001₁₆= ARP_Request et 0002₁₆= ARP_Resply.
 - adresse MAC source et adresse protocolaire source : adresses MAC et IP de l'émetteur du paquet
 - adresse MAC destination et adresse protocolaire destination: adresse MAC 00000016 et IP de destination de destination du paquet ARP-Request

ARP Request/ARP Reply

ARP Request

Frame Ethernet

Src: AA:AA:AA:AA:AA

Dst: FF:FF:FF:FF

Address Resolution Protocol

MAC Src: AA:AA:AA:AA:AA

IP Src: 10.1.1.1

MAC Dst: 00:00:00:00:00:00

IP Dit: 10.1.1.3

ARP Reply

Frame Ethernet

Src:CC:CC:CC:CC:CC

Dst: AA:AA:AA:AA:AA

Address Resolution Protocol

MAC Src: CC:CC:CC:CC:CC

IP Src: 10.1.1.3

MAC Dst: AA:AA:AA:AA:AA

IP Dst: 10.1.1.1

- Equipements LANs: Switch, hub, pont, concentrateur
 - L'adresse MAC est utilisée par les switch pour la commutation.
 - Comment vu que l'utilisateur utilise des adresse de niveau supérieur (URL, email, Adresse IP etc..)
 - Le protocole ARP est utilisé pour trouver l'adresse MAC

- Equipements LANs: Switch, hub, pont, concentrateur
 - Un message Intra-LAN utilise les adresses MACs source et destination

Transmission entre PCs du même LAN: PC1 vers PC2

- 1- PC1:ARP Request (Broadcast)
- 2- PC2: ARP-Reply (Unicast)
- 3-Autres: suppriment l'ARP

- Routage directe: automatique vers les réseaux directement connecté
- Le routage indirect: vers les réseaux nont directement connectés au routeur
 - Routage statique: une table de routage est manuellement établie
 - On déclare les réseaux non directement connectés
 - Routage dynamique: une table de routage est dynamique acquise via un protocole de routage (RIP à vecteur distance et OSPF à état de lien)
 - On déclare les réseaux directement connectés
 - Chaque interface du routeur peut être passerelle dur réseau qu'elle connecte

Transmission entre PCs de LANs différents: PC1 vers PC4

- O-Mettre les tables de routage (statique, dynamique ou hybride)
- 1- PC1:ARP Request (Broadcast)
- 2- PC2: ARP-Reply (Unicast)
- 3-Autres: suppriment l'ARP
- 4-PC1: envoie vers la passerelle (GW)
- 5-La GW transmets au prochain saut
- 6-Le dernier routeur fait l'ARP Request dans le réseau de destination pour enfin remettre le paquet

Network Address Translation

- Le Routeur fait de la translation d'adresse privée en adresse publique et inversement
- Le routeur maintien une table de translation