Связанные понятия:

- 1. Образом подмножества $M \subset L_k$ относительно линейного отображения A называется множество $AM = \{A_x : x \in M\}$
- 2. Ядром линейного отображения $\{f\colon A\to B\}$ называется подмножество A , которое отображается в нуль:

$$Kerf = \{x \in A \mid f(x) = 0\}$$

Ядро линейного отображения образует подпространство в линейном пространстве A.

3. *Образом* линейного отображения называется следующее подмножество B:

$$Im f = \{ f(x) \in B \mid x \in A \}$$

Образ линейного отображения образует подпространство в линейном пространстве B.

- 4. Отображение $f: A \times B \to C$ прямого произведения линейных пространств A и B в линейное пространство C называется билинейным, если оно линейно по обоим своим аргументам. Отображение прямого произведения большего числа линейных пространств $f: A_1 \times \cdots \times A_n \to B$ называется полилинейным, если оно линейно по всем своим аргументам.
- 5. Оператор \widetilde{L} называется линейным неоднородным (или аффинным), если он имеет вид

$$\widetilde{L} = L + u$$

где L — линейный оператор, а u — вектор.

6. Пусть $A \colon L_k \to L_k$. Подпространство $M \subset L_k$ называется *инвариантиным* относительно линейного отображения, если $\forall x \in M, Ax \in M$.

Критерий инвариантности. Пусть $M\subset X$ — подпространство, такое что X разлагается в прямую сумму: $X=M\otimes N$. Тогда M инвариантно относительно линейного отображения A тогда и только тогда, когда $P_MAP_M=AP_M$, где P_M - проектор на подпространство M.

7. **Фактор-операторы**. Пусть $A\colon L_k\to L_k$ — линейный оператор и пусть M — некоторое инвариантное относительно этого оператора подпространство. Образуем фактор-пространство $L_k\big/^M\sim$ по подпространству M Тогда фактор-оператором называется оператор A^+ действующий на $L_k\big/^M\sim$ по правилу: $\forall x^+\in L_k\big/^M\sim$, $A^+x^+=[Ax]$, где [Ax] — класс из фактор-пространства, содержащий Ax.

Примеры линейных однородных операторов:

- оператор дифференцирования: $L\{x(\cdot)\}=y(t)=\frac{dx(t)}{dt}$;
- оператор интегрирования: $y(t) = \int\limits_0^t x(\tau)d\tau;$
- оператор умножения на определённую функцию $\varphi(t)$: $y(t) = \varphi(t)$: x(t);
- оператор интегрирования с заданным «весом» $\varphi(t)$: $y(t) = \int\limits_0^t x(\tau) \varphi(\tau) d\tau$;
- оператор взятия значения функции f в конкретной точке $x_0: L\{f\} = f(x_0);$
- оператор умножения вектора на матрицу: b = Ax;
- оператор поворота вектора.

Примеры линейных неоднородных операторов:

- Любое аффинное проеобразование;
- $y(t) = \frac{dx(t)}{dt} + \varphi(t);$
- $y(t) = \int_{0}^{t} x(\tau)d\tau + \varphi(t);$
- $y(t) = \varphi_1(t)x(t) + \varphi_2(t);$

где $\varphi(t), \varphi_1(t), \varphi_2(t)$ — вполне определённые функции, а $\mathbf{x}(t)$ — преобразуемая оператором функция.