Math 751 Notes

Mario L. Gutierrez Abed

Intro to Topological Spaces

<u>Definition:</u> If X is a set, a topology on X is a collection \mathcal{T} of subsets of X satisfying the following properties:

- (i) X and \emptyset are elements of \mathcal{T} .
- (ii) \mathcal{T} is closed under finite intersections: if U_1 , ..., U_n are elements of \mathcal{T} , then their intersection $U_1 \cap ... \cap U_n$ is an element of \mathcal{T} .
- (iii) \mathcal{T} is closed under arbitrary unions: if $(U_{\alpha})_{\alpha \in A}$ is any (finite or infinite) family of elements of \mathcal{T} , then their union $\bigcup_{\alpha \in A} U_{\alpha}$ is an element of \mathcal{T} .

In other words, a topology on X is a collection of all open sets of X. A pair (X, \mathcal{T}) consisting of a set X together with a topology \mathcal{T} on X is called a topological space.

Example (Simple Topologies):

Fig. 2.1: Topologies on $\{1,2,3\}$.

- a) Let X be any set whatsoever and let \mathcal{T} be the collection of all subsets of X. Then T is a topology on X, called the discrete topology on X (see fig. 2.1(a) above), and (X, \mathcal{T}) is called a discrete space.
- b) Let Υ be any set, and let $\mathcal{T} = \{\Upsilon, \emptyset\}$ (fig. 2.1(b)). This is called the trivial topology on Υ .
- c) Let \mathcal{Z} be the set $\{1, 2, 3\}$, and declare the open subsets to be $\{1\}$, $\{1, 2\}$, $\{1, 2, 3\}$, and the empty set. This is the topology isllustrated on fig. 2.1 c) above.

We can easily verify that each of the preceding examples is in fact a topology by checking that they

satisfy all three conditions stated on our definition.

<u>Definition</u>: Let X be a set and let \mathcal{T}_f be the collection of all subsets $U \subset X$ such that $X \setminus U$ either is finite or is all of of X. Then \mathcal{T}_f is a topology on X, called the finite complement topology.

Remark 1: To show that \mathcal{T}_f is indeed a topology, notice that both X and \emptyset are in \mathcal{T}_f , since $X \setminus X$ is finite and $X \setminus \emptyset$ is all of X. Also, if $\{U_{\alpha}\}$ is an indexed family of nonempty elements of \mathcal{T}_f , we have that $\bigcup U_{\alpha} \subset \mathcal{T}_f$. To see why, compute

$$X \setminus \bigcup U_{\alpha} = \bigcap (X \setminus U_{\alpha}).$$

The latter set is finite because each set $X \setminus U_{\alpha}$ is finite.

Finally, if U_1 , ..., U_n are nonempty elements of \mathcal{T}_f , to show that $\bigcap U_i \subset \mathcal{T}_f$, we compute

$$X \setminus \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X \setminus U_i).$$

The latter set is a finite union of finite sets, therefore it is finite.

Remark 2: Let X be a set and let \mathcal{T}_C be the collection of all subsets $U \subset X$ such that $X \setminus U$ either is countable or is all of of X. Then \mathcal{T}_C is also a topology on X, as we may check.

Suppose X is a topological space and A is any subset of X. We define several related subsets as follows:

<u>Definition</u>: The closure of A in X, denoted by \overline{A} , is the set $\overline{A} = \bigcap \{B \subseteq X : A \subseteq B, B \text{ is closed in } X\}$

<u>Definition</u>: The interior of A, denoted by Int(A), is $Int(A) = \bigcup \{C \subseteq X : C \subseteq A, C \text{ is open in } X\}$.

Remark: It follows immediately from the properties of open and closed subsets that \overline{A} is closed and Int(A) is open. To put it succinctly, A is "the smallest closed subset containing A" and Int(A) is "the largest open subset contained in A".

Definition: The exterior of A, denoted by Ext(A), is $Ext(A) = X \setminus \overline{A}$.

<u>Definition</u>: The boundary of A, denoted by ∂A , is $\partial A = X \setminus (\operatorname{Int}(A) \bigcup \operatorname{Ext}(A))$.

Remark: It follows from the above definitions that for any subset $A \subseteq X$, the whole space X is equal to the disjoint union of Int(A), Ext(A), and ∂A . Also note that Int(A) and Ext(A) are open in X, while \overline{A} and ∂A are closed in X.

Fig. 2.2: Interior, exterior, and boundary points.

It is also sometimes useful to compare different topologies on the same set:

<u>Definition</u>: Given two topologies \mathcal{T}_1 and \mathcal{T}_2 on a set X, we say that \mathcal{T}_1 is finer than \mathcal{T}_2 if $\mathcal{T}_2 \subseteq \mathcal{T}_1$, and coarser than \mathcal{T}_2 if $\mathcal{T}_1 \subseteq \mathcal{T}_2$. We say that \mathcal{T}_1 is comparable to \mathcal{T}_2 if either $\mathcal{T}_1 \subseteq \mathcal{T}_2$ or $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

Remark: The terminology in this definition is meant to suggest the picture of a subset that is open in a coarser topology being further subdivided into smaller open subsets in a finer topology. It can be shown that the identity map of X is continuous as a map from (X, \mathcal{T}_1) to (X, \mathcal{T}_2) iff \mathcal{T}_1 is finer than \mathcal{T}_2 , and furthermore it is a homeomorphism iff $\mathcal{T}_1 = \mathcal{T}_2$.

Here are a few explicit examples of homeomorphisms that we should keep in mind:

Example:

Any open ball in \mathbb{R}^n is homeomorphic to any other open ball: The homeomorphism can easily be constructed as a composition of translations $x \mapsto x + x_0$ and dilations $x \mapsto c x$. Similarly, all spheres in \mathbb{R}^n are homeomorphic to each other. These examples illustrate that "size" is not a topological property.

Example:

Let $\mathbb{B}^n \subseteq \mathbb{R}^n$ be the unit ball, and define a map $F : \mathbb{B}^n \longrightarrow \mathbb{R}^n$ by

$$F(x) = \frac{x}{1 - |x|}.$$

Direct computation shows that the map $G: \mathbb{R}^n \longrightarrow \mathbb{B}^n$ defined by

$$G(x) = \frac{y}{1+|y|}$$

is an inverse for F. Thus F is bijective, and since F and $F^{-1} = G$ are both continuous, F is a homeomorphism. It follows that \mathbb{R}^n is homeomorphic to \mathbb{B}^n , and thus "boundedness" is not a topological property.

Example:

Another illustrative example is the homeomorphism between the surface of a sphere and the surface of a cube:

Let \mathbb{S}^2 be the unit sphere in \mathbb{R}^3 , and set

$$C = \{(x, y, z) : \max\{|x|, |y|, |z|\} = 1\},$$

which is the cubical surface of side 2 centered at the origin.

Let $\varphi: C \longrightarrow \mathbb{S}^2$ be the map that projects each point of C radially inward to the sphere as shown in the following figure.

Fig. 2.4: Deforming a cube into a sphere.

More precisely, given a point $p \in C$, the image $\varphi(p)$ is the unit vector in the direction of p. Thus φ is given by the formula

$$\varphi(x, y, z) = \frac{(x, y, z)}{\sqrt{x^2 + y^2 + z^2}}$$
,

which is continuous on C by the usual arguments of elementary analysis (notice that the denominator is always nonzero on C).

With a little extra effort, it can be shown that φ is a homeomorphism, with

$$\varphi^{-1}(x,\ y,\ z) = \frac{(x,y,z)}{\max{\{|x|,|y|,|z|\}}}\ .$$

This demonstrates that "corners" are not topological properties.

Hausdorff Spaces

<u>Definition</u>: A topological space X is said to be a <u>Hausdorff space</u> if given any pair of distinct points $p_1, p_2 \in X$, there exist neighborhoods U_1 of p_1 and U_2 of p_2 with $U_1 \cap U_2 = \emptyset$. This property is often summarized by saying that "points can be separated by open subsets."

Example (Hausdorff Spaces):

- Every metric space is Hausdorff: if p_1 and p_2 are distinct, let $r = d(p_1, p_2)$; then the open balls of radius r/2 around p_1 and p_2 are disjoint by the triangle inequality.
- Every discrete space is Hausdorff, because $\{p_1\}$ and $\{p_2\}$ are disjoint open subsets when $p_1 \neq p_2$.
- Every open subset of a Hausdorff space is Hausdorff: if $V \subseteq X$ is open in the Hausdorff space X, and p_1 , p_2 are distinct points in V, then in X there are open subsets U_1 , U_2 separating p_1 and p_2 , and the sets $U_1 \cap V$ and $U_2 \cap V$ are open in V, disjoint, and contain p_1 and p_2 , respectively.
- ▶ Suppose X is a topological space, and for every $p \in X$ there exists a continuous function $f: X \longrightarrow \mathbb{R}$ such that $f^{-1}(\{0\}) = \{p\}$. It can be shown that X is Hausdorff.

Example (Non-Hausdorff Spaces):

The trivial topology on any set containing more than one element is not Hausdorff, nor is the topology on {1, 2, 3} described in example 2.1(c) on page 1. Because every metric space is Hausdorff, it follows that these spaces are not metrizable. ₩

Hausdorff spaces have many of the properties that we expect of metric spaces, such as those expressed in the following proposition:

• Proposition:

Let *X* be a Hausdorff space. Then,

- a) Every finite subset of X is closed.
- b) If a sequence (p_i) in X converges to a limit $p \in X$, the limit is unique.

Proof:

For part a), consider first a set $\{p_0\}$ containing only one point. Given $p \neq p_0$, the Hausdorff

property says that there exist disjoint neighborhoods U of ρ and V of ρ_0 . In particular, U is a neighborhood of p contained in $X \setminus \{p_0\}$, so $\{p_0\}$ is closed. It follows that finite subsets are closed, because they are finite unions of one-point sets.

To prove that limits are unique, suppose on the contrary that a sequence (p_i) has two distinct limits ρ and ρ' . By the Hausdorff property, there exist disjoint neighborhoods U of ρ and U' of p'. By definition of convergence, there exist $\mathcal{N}, \mathcal{N}' \in \mathbb{N}$ such that $i \geq \mathcal{N}$ implies $p_i \in U$ and $i \geq \mathcal{N}'$ implies $p_i \in U'$. But since U and U' are disjoint, this is a contradiction when $i \ge \max \{\mathcal{N}, \mathcal{N}'\}.(\Rightarrow \Leftarrow)$

Remark: It can be shown that the only Hausdorff topology on a finite set is the discrete topology.

Another important property of Hausdorff spaces is expressed in the following proposition:

• <u>Proposition:</u>

Suppose X is a Hausdorff space and $A \subseteq X$. If $p \in X$ is a limit point of A, then every neighborhood of p contains infinitely many points of A.

<u>Definition</u>: Let X be a topological space. A collection \mathcal{B} of subsets of X is called a basis for the topology of X if the following two conditions hold:

- i) Every element of \mathcal{B} is an open subset of X.
- ii) Every open subset of X is the union of some collection of elements of \mathcal{B} .

• Proposition:

Let X and Y be topological spaces and let \mathcal{B} be a basis for Y. A map $f: X \longrightarrow Y$ is continuous iff for every basis subset $B \in \mathcal{B}$, the subset $f^{-1}(B)$ is open in X.

Remark: Not every collection of sets can be a basis for a topology. The next proposition gives necessary and sufficient conditions for a collection of subsets of a set X to be a basis for some topology on X:

• Proposition:

Let X be a set, and suppose \mathcal{B} is a collection of subsets of X. Then \mathcal{B} is a basis for some topology on X iff it satisfies the following two conditions:

- i) $||_{B \in \mathcal{B}} B = X$
- ii) If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists an element $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

If so, there is a unique topology on X for which $\mathcal B$ is a basis, called the topology generated by \mathcal{B} .