GUNADARMA UNIVERSITY

MASTER DEGREE PROGRAM

A/B Testing Mekargo.id Website of Mekar PT Sampoerna Wirausaha

Written by:

Name : Alvian Dwi Kurnianto, S.Kom.

Student Id : 92216007

Supervisor : Dr. Setia Wirawan

Submitted as a Partial FullIment of the Requirements for Magister Degree of Information System Management Concentrating on Information System Software

Depok

2018

PAGE OF APPROVAL

Title	:	"A/B Testing Mekargo.id Website of Mekar
		PT Sampoerna Wirausaha"
Name	:	Alvian Dwi Kurnianto, S.Kom.
NIM	:	92216007
Date of Graduation	:	May, 12 2017
		Approved by
		Approved by:
		Board of Advisors
	•••••	
		Dr. Setia Wirawan
		(Chair Person)
	•••••	
	Pro	f. Dr. Yuhara Sukra., M.Sc.
		(Member)
	•••••	
Dr. T	b. Ma	aulana Kusuma, S.Kom., MEngSc.
		(Director)

ABSTRACT

Alvian Dwi Kurnianto, S.Kom.. 92216007

"A/B TESTING MEKARGO.ID WEBSITE OF MEKAR PT SAMPOERNA WIRAUSAHA".

Master Thesis, Information System Management, Information System Software, Gunadarma University, 2018.

Keyword : A/B Testing, Bayesian Inference, Pymc3, Website, Google Analytics.

(xiii + 54)

References (2013-2018)

ACKNOWLEDGEMENTS

Praise and thanks raised to Allah SWT for all blessing and also utterance and good wishes sent to the prophet of Muhammad SAW so, with all the grants, author have finished this thesis, which is titled "A/B Testing Mekargo.id Website of Mekar PT Sampoerna Wirausaha". This undergraduate thesis is intended to complete the requirement to finish my study in the Informatics Engineering Department, Gunadarma University. This writing would not have been possible without the support and encouragement from people around me. Therefore, I would like to say thank to:

.

Depok, February 2017

Alvian Dwi Kurnianto, S.Kom.

Contents

Αł	ostrac	t	iii
Ac	know	ledgements	iv
Li	st of I	Pigures	vii
Li	st of T	Tables Tables	viii
1	INTE	RODUCTION	1
	1.1	Background	1
	1.2	Formulation of the Problem	3
	1.3	Scope of Problem	3
	1.4	Research Purposes	4
	1.5	Research Benefits	4
2	LITE	RATURE REVIEW	5
	2.1	Python	5
	2.2	Numpy	6
	2.3	Matplotlib	6
	2.4	Scipy	6
	2.5	Ipython	7
	2.6	Jupyter	7
	2.7	Bayesian Inference	8
	2.8	Markov Chain Monte Carlo	9
	2.9	Pymc3	9
	2.10	Theano	10
	2.11	Google Analytics	11
	2.12	A/B Testing	12

T 71	
VΙ	

	2.13	Previo	us Resear	ches	13
3	RES	EARCH	METHO	OOLOGY	16
	3.1	Resear	ch Object		16
	3.2		_	dology	16
		3.2.1	Identifyi	ng Problems	17
		3.2.2	Defining	Website Measurement	17
		3.2.3	Developi	ng a Hypothesis	17
		3.2.4	Developi	ng and Testing Page Variants	18
		3.2.5	Analyzin	g Test Results	18
			3.2.5.1	Bayessian Inference Algorithm	18
			3.2.5.2	Bernoulli Distribution	18
			3.2.5.3	Pymc3 Algorithm	19
			3.2.5.4	Metropolis-Hastings Algorithm	19
4	RES	ULTS A	ND DISC	USSION	20
	4.1	Identif	y Problen	ns	20
	4.2	Define	Website 1	Measurement	20
		4.2.1	Business	Objective	20
		4.2.2	Website	Goal	21
		4.2.3	Key Perfo	ormance Metric	21
		4.2.4	Target M	etric	21
	4.3	Develo	р а Нуро	thesis	21
	4.4	Develo	ping and	Testing Page Variants	21
		4.4.1	Developi	ng Page Variants	21
		4.4.2	Testing F	age Variants	24
	4.5	Analyz	ze Test Res	sults	25
5	CON	CLUSIO	ON AND	SUGGESTIONS	31
	5.1	Conclu	ısion		31
	5.2	Sugges	stions		31
Bibliography 32					
Appendix 36					
Curriculum Vitae 37					37

List of Figures

3.1	Research	17
4.1	Graphic google analytics mekargo.id	24
4.2	Table google analytics mekargo.id	25
4.3	Import python library	25
4.4	Initialize sample	26
4.5	Calculate probability	26
4.6	Bernoulli observation	26
4.7	Sum and mean of bernoulli observation	27
4.8	Pymc probabilistic model	28
4.9	Pymc probabilistic model results	28
4.10	Posteriror distribution P_A	29
4.11	Posteriror distribution P_B	29
4.12	Posteriror distribution P_C	30
4.13	Posteriror distribution delta A-B	30

List of Tables

2.1	Previous research	13
4.1	Data fields changes	22
4.2	Url definition	22

Chapter 1

INTRODUCTION

1.1 Background

Usaha Kecil Menengah (UKM) memiliki peran penting dalam mendorong pertumbuhan perekonomian Indonesia. Dengan adanya sektor UKM, pengangguran akibat angkatan kerja yang tidak terserap dalam dunia kerja menjadi berkurang. Sektor UKM pun telah terbukti menjadi pilar perekonomian yang tangguh. Kontribusi sektor UKM dalam menentukan Produk Domestik Bruto (PDB) dan sektor penghasil devisa negara juga tak perlu diragukan lagi. Saat ini, UKM telah dijadikan agenda utama pembangunan ekonomi Indonesia (Kemenkeu, 2015).

Masalah mendasar UKM yang paling menonjol menyangkut menyediakan pembiayaan usaha alias modal usaha. Kebutuhan modal sangat terasa pada saat seseorang ingin memulai usaha baru. Alhasil, biasanya bila motivasinya kuat, seseorang akan tetap memulai usaha dengan modal seadanya. Pada usaha yang sudah berjalan, modal tetap menjadi kendala lanjutan untuk berkembang. Masalah yang menghadang UKM menyangkut kemampuan akses pembiayaan, akses pasar dan pemasaran, tata kelola manajemen usaha kecil serta akses informasi. Kesulitan UKM mengakses sumber-sumber modal karena keterbatasan informasi dan kemampuan menembus sumber modal tersebut. Padahal pilihan sumber modal sangat banyak dan beragam. Lembaga keuangan bank adalah sumber modal terbesar yang dapat dimanfaatkan oleh pelaku usaha kecil. Namun untuk bermitra dengan bank, usaha kecil dituntut menyajikan proposal usaha yang feasible atau layak usaha dan menguntungkan (Wuisan, 2017).

Mekar (PT Sampoerna Wirausaha) didirikan pada 2010 dan dimiliki secara penuh oleh Putera Sampoerna Foundation, Mekar bertujuan untuk mempermudah akses finansial bagi para pelaku UKM Indonesia sehingga memiliki dampak sosial dan ekonomi yang positif di Indonesia (Mekar, 2017). Mekar memberikan solusi dalam membantu Pelaku Usaha Mikro Kecil dan Menengah (UMKM) dan Konsumen lainnya untuk mendapatkan Akses Layanan Keuangan atau Permodalan di Indonesia. Beberapa produk yang dimiliki Mekar diantaranya website utama Mekar.id, chat bot dan website Mekar Go. Website Mekar Go dengan alamat web https://mekargo.id/ merupakan website untuk menghimpun data UKM dan karyawan yang ingin mengajukan pinjaman ke MEKAR. Data yang telah dihimpun pada versi web saat ini menunjukkan konversi peminjam yang melengkapi pengisian data dari awal sampai akhir kurang dari 10%. Presentase konversi ini menurut tim marketing terlalu kecil dan perlu ditingkatkan.

Untuk meningkatkan presentase konversi pelengkapan data, tim marketing mengusulkan perubahan urutan pengisian data. Perubahan urutan pengisian data dibuat menjadi dua versi baru yang selanjutnya disebut sebagai versi B dan versi C, dan versi saat ini disebut sebagai versi A. Ketiga versi tersebut akan dilakukan A/B testing untuk mengetahui versi manakah yang menghasilkan presentasi konversi pelengkapan data terbanyak. A/B testing adalah proses yang digunakan dalam marketing untuk mengisolasi dan menguji faktor-faktor yang mempengaruhi performa versi produk mana yang memenuhi kriteria marketing (Dixon et al., 2015). A/B testing banyak digunakan untuk pengoptimalan situs web: dua versi halaman web, katakanlah A dan B, secara empiris dibandingkan dengan disajikan kepada pengguna. Setiap pengguna hanya melihat salah satu dari dua versi, dan tujuannya adalah untuk menentukan versi mana yang lebih baik. Tujuan yang ingin dicapai pada umumnya adalah untuk menentukan halaman web mana yang memiliki tingkat konversi tertinggi (kemungkinan pengguna benar-benar menjadi pelanggan) dengan menerima umpan balik dari pengguna (Kaufmann et al., 2014). Dalam penelitian ini, pengumpulan data umpan balik dari pengguna dibantu dengan tools Google Analytics. Google Analytics merupakan analytics tool yang dibuat oleh Google, digunakan untuk mengukur performa website dan perilaku pengguna saat mengunjungi website (Yang and Perrin, 2014). Setelah data yang dikumpulkan oleh Google Analytics terpenuhi, dilakukan proses analisis data dengan metode bayessian inference dan tools pymc3. Pymc3 adalah framework probabilistik programming dengan bayessian inference yang ditulis dalam bahasa pemrograman python (Salvatier et al., 2016).

1.2 Formulation of the Problem

Adapun masalah yang dibahas pada penelitian ini adalah bagaimana metode yang dilakukan untuk melakukan A/B testing website mekargo.id pada PT Mekar Sampoerna Wirausaha, bagaimana cara menganalis hasil A/B testing dengan metode bayesian inference dengan tools pymc3, dan varian manakah dari A/B testing yang menjadi varian terbaik.

1.3 Scope of Problem

Adapun batasan masalah dari penelitian ini adalah sebagai berikut:

- 1. Objek penelitian adalah website mekargo.id.
- 2. Penelitian dilakukan di PT Mekar Sampoerna Wirausaha.
- 3. Waktu penelitian antara Agustus 2017 sampai Januari 2018.
- 4. Penelitian menerapkan taknik A/B testing pada website mekargo.id dengan bantuan tools Google Analytics.
- 5. Data yang dihasilkan dari A/B testing dilakukan analisis dengan metode bayesian inference menggunakan tools library pymc3, numpy, figsize, matplotlib, scipy, jupyter dan IPython dengan bahasa pemrograman python.
- 6. Fitur website mekargo.id yang dibahas adalah fitur pengisian data peminjam.
- 7. Fitur website mekargo.id yang tidak dibahas adalah fitur static page yang berisi halaman home, about us, terms and conditions, privacy policy dan contact us.

1.4 Research Purposes

Tujuan dari penelitian ini adalah melakukan A/B testing website mekargo.id pada PT Mekar Sampoerna Wirausaha, melakukan analisis hasil A/B testing dengan metode bayesian inference dengan pymc3, mengetahui variant pada A/B testing yang menjadi varian terbaik.

1.5 Research Benefits

Manfaat yang didapat dari penelitian ini adalah:

- 1. Bagi peneliti, menjadi panduan atau referensi penelitian di bidang sistem informasi pada penelitian selanjutnya.
- 2. Bagi peneliti lain, sebagai sumber literatur untuk penelitian yang sejenis.
- 3. Bagi perusahaan yang diteliti, memberikan saran perbaikan dengan terpilihnya varian A/B testing yang terbaik.

Chapter 2

LITERATURE REVIEW

2.1 Python

Python is a general-purpose, high-level programming language. Pyuthon syntax is designed very readable, which is important for software development. Every computer program is written only once, but read and revised many times, often by many people. Being readable also makes it easier to learn and remember, hence more writeable. Compared with other popular languages, Python has a gentle learning curve that makes developer more productive, yet it has depths that you can explore as you gain expertise(Lubanovic, 2014).

People use python because have these several advantages: software quality, developer productivity, program portability, support libraries, component integration, and enjoyment(Lutz, 2013). Python is a multi-platform, general-purpose programming language that can run on Windows, Linux/Unix, and Mac OS X, and has been ported to Java and .NET virtual machines as well. It has a powerful standard library. In addition, it has many libraries for data analysis such as Numpy, Pandas, Matplotlib, PyMongo, and Scikit (Vo et al., 2015).

Python in this research is used as probabilistic programming tools for bayesian method to build probabilistic models. Probabilistic programming offers an effective way to build complex models and allows us to focus more on model design, evaluation, and interpretation, and less on mathematical or computational details (Martin, 2016).

2.2 Numpy

Numpy is a fundamental package that is extremely useful for scientific computing, and contains among other things a powerful N-dimensional array object (Strickland et al., 2014). The NumPy package, which comprises the Numpy array as well as a set of accompanying mathematical functions, has found wide-spread adoption in academia, national laboratories, and industry, with applications ranging from gaming to space exploration (Van Der Walt et al., 2016).

2.3 Matplotlib

Matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in python scripts, the python and ipython shell, web application servers, and six graphical user interface toolkits (Hunter et al., 2014). Matplotlib provides both a very quick way to visualize data from Python and publication-quality figures in many formats: line plots, contour plots, scatter plots, and basemap plots. It comes with a set of default settings, but allows customization of all kinds of properties. However, we can easily create our chart with the defaults of almost every property in Matplotlib (Vo et al., 2015).

2.4 Scipy

SciPy (pronounced "Sigh Pie") is a Python-based ecosystem of open-source software for mathematics, science, and engineering. SciPy ecosystem includes general and specialised tools for data management and computation, productive experimentation and high-performance computing. The SciPy library, a collection of numerical algorithms and domain-specific toolboxes, including signal processing, optimization, statistics and much more (Jones et al., 2014).

2.5 Ipython

IPython is an interactive browser-based environment where you can combine code execution, text, mathematics, plots, and rich media into a single document. Originally designed for use as an electronic lab notebook for computational science, it is increasingly being used in teaching as well, and a rich ecosystem of open source plugins and extensions for teaching is growing around it (Wilson et al., 2014). IPython has provided terminal-based tools for interactive computing in Python since 2001. The notebook document format and multi-process architecture introduced in 2011 have expanded the applicable scope of IPython into teaching, presenting, and sharing computational work, in addition to interactive exploration (Ragan-Kelley et al., 2014).

2.6 Jupyter

Jupyter Notebook, provides a tool to create and share web pages with text, charts, and Python code in a special format. Often, the notebooks are used as an educational tool, or to demonstrate Python software. We can import or export notebooks either from plain Python code or from the special notebook format. The notebooks can be run locally, or we can make them available online by running a dedicated notebook server (Fandango and Idris, 2017).

Jupyter Notebook is accessed through a modern web browser. This makes it practical to use the same interface running locally like a desktop application, or running on a remote server. In the latter case, the only software the user needs locally is a web browser; so, for instance, a teacher can set up the software on a server and easily give students access. The notebook files it creates are a simple, documented JSON format, with the extension '.ipynb'. It is simple to write other software tools which access and manipulate these files (Kluyver et al., 2016).

2.7 Bayesian Inference

Bayesian inference is the process of fitting a probability model to a set of data and summarizing the result by a probability distribution on the parameters of the model and on unobserved quantities such as predictions for new observations (Gelman et al., 2014). Bayesian inference differs from more traditional statistical inference by preserving uncertainty. The Bayesian world-view interprets probability as measure of believability in an event, that is, how confident we are in an event occurring. In fact, we will see in a moment that this is the natural interpretation of probability (Davidson-Pilon, 2015).

Bayesian inference departs from the approach to statistical inference described in many textbooks, which is based on a retrospective evaluation of the procedure used to estimate θ (or \tilde{y}) over the distribution of possible y values conditional on the true unknown value of θ . Despite this difference, it will be seen that in many simple analyses, superficially similar conclusions result from the two approaches to statistical inference. However, analyses obtained using Bayesian methods can be easily extended to more complex problems(Gelman et al., 2014).

The Bayesian modeling paradigm involves setting up a probabilistic model describing how data was gen- erated, assigning prior distributions over unknown model parameters, and then calculating a posterior distribution over these parameters. In practice, this posterior distribution is often intractable to compute exactly except for the simplest models. This often requires one to resort to approximate posterior inference algorithms based on Monte-Carlo sampling or Variational Inference (VI). Fortunately, a lot of progress has been made recently in this area including state-of-the-art algorithms such as Hamiltonian Monte Carlo sampling (HMC), the No-U-Turn Sampler (NUTS), Automatic Differentiation VI (ADVI) and Black Box VI. These algorithms are applica- ble to a wide class of models and are readily available in popular Probabilistic Programming languages such as Stan, Edward, and PyMC3 (Pourzanjani et al., 2017). Bayesian inference had been applied in many areas such as automatic machine-learning hyperparameter optimization, A/B testing or recommender systems, among others(Jiménez and Ginebra, 2017).

Some advantages of the Bayesian approach are: that it provides a transparent framework for inference; secondly, it is flexible and often provides

an elegant and practical solution to inference arising from very complex statistical models. Note, in particular, that Bayesian methods make no formal distinction between estimation oand prediction, and in this way naturally incorporate parameter uncertainty into predictive inference. Because, obtaining the sample can itself be a major challenge (Taylor et al., 2015).

2.8 Markov Chain Monte Carlo

Markov chain Monte Carlo methods are used to generate samples from a probability distribution. They are widely used nowadays in many aspects of optimization and numerical integration, and are specially suitable for being used in sampling from posterior distributions in Bayesian inference. A key issue in MCMC is whether the chain has converged and is actually sampling from the target distribution. There is not a single infallible test of convergence, but many formal and informal ways to assess non-convergence (Fernández-i Marín et al., 2016).

Markov chain Monte Carlo (MCMC) is a general method based on drawing values of θ from approximate distributions and then correcting those draws to better approximate the target posterior distribution, $p(\theta|y)$. The sampling is done sequentially, with the distribution of the sampled draws depending on the last value drawn; hence, the draws form a Markov chain. (As defined in probability theory, a Markov chain is a sequence of random variables θ^1 , θ^2 , . . ., for which, for any t, the distribution of θ^t given all previous θ 's depends only on the most recent value, θ^{t-1} .) The key to the method's success, however, is not the Markov property but rather that the approximate distributions are improved at each step in the simulation, in the sense of converging to the target distribution (Gelman et al., 2014).

2.9 Pymc3

PyMC3 is a new, open-source probabilistic programming framework with an intuitive and readable, yet powerful, syntax that is close to the natural syntax statisticians use to describe models. It features next-generation Markov chain Monte Carlo (MCMC) sampling algorithms (Salvatier et al., 2016). Running PyMC3 requires a working Python interpreter (Python Soft-

ware Foundation, 2010), either version 2.7 (or more recent) or 3.4 (or more recent). PyMC3 can be installed using 'pip': pip install pymc3. PyMC3 depends on several third-party Python packages which will be automatically installed when installing via pip(Salvatier et al., 2016).

The majority of the heavy lifting done by PyMC3 is taken care of with the theano package. The notation in theano is remarkably similar to NumPy. It also supports many of the familiar computational elements of NumPy. However, while NumPy directly executes computations, e.g. when you run a + b, theano instead builds up a "compute graph" that tracks that you want to perform the + operation on the elements a and b. Only when you eval() a theano expression does the computation take place (i.e. theano is lazy evaluated). Once the compute graph is built, we can perform all kinds of mathematical optimizations (e.g. simplifications), compute gradients via autodiff, compile the entire graph to C to run at machine speed, and also compile it to run on the GPU. PyMC3 is basically a collection of theano symbolic expressions for various probability distributions that are combined to one big compute graph making up the whole model log probability, and a collection of inference algorithms that use that graph to compute probabilities and gradients (Davidson-Pilon, 2015).

2.10 Theano

Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction in it has been one of the most used CPU and GPU mathematical compilers – especially in the machine learning community and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. Theano allows a user to symbolically define mathematical expressions and have them compiled in a highly optimized fashion either on CPUs or GPUs (the latter using CUDA) 1, just by modifying a configuration flag. Furthermore, Theano can automatically compute symbolic differentiation of complex expressions, ignore the variables that are not required to compute the final output, reuse partial results to avoid redundant computations, apply mathematical simplifications, compute operations in place when possible to

minimize the memory usage, and apply numerical stability optimization to overcome or minimize the error due to hardware approximations. To achieve this, the mathematical expressions defined by the user are stored as a graph of variables and operations, that is pruned and optimized at compilation time.

The interface to Theano is Python, a powerful and flexible language that allows for rapid prototyping and provides a fast and easy way to interact with the data. The downside of Python is its interpreter, that is in many cases a poor engine for executing mathematical calculations both in terms of memory usage and speed. Theano overcomes this limitation, by exploiting the compactness and ductility of the Python language and combining them with a fast and optimized computation engine. Theano's API mimics NumPy, a widely adopted Python library that provides an n-dimensional array data type and many functions for indexing, reshaping, and performing elementary computations (exp, log, sin, etc.) on entire arrays at once. This allows Python users to rapidly switch to Theano using a familiar syntax and set of instructions – extended with advanced features, such as automatic gradient computation, numerical stability improvements and optimization - and generate a high-performance code for CPU as well as for GPU, without requiring changes to the user code. Theano has also been designed for easy and fast extensibility through the definition of custom graph expressions written in Python, C++, or CUDA (Al-Rfou et al., 2016).

2.11 Google Analytics

Google Analytics (GA) is an easy-to-use tool to measure activity on a website. A basic setup might take as little as a few minutes, and many of the standard reports are quite accessible and understandable without any special training or prior knowledge of web analytics. Because of this, many users jump into GA without knowing much about its underpinnings—how the data is structured and gathered—and that's fine for the basics. But eventually, users can outgrow this intuitive understanding of GA and its data, and need deeper insight into how it works and what it can do (Weber, 2015).

Google Analytics is free, and it is always increasing in power, to rival and in some cases exceed the performance of the "paid" tools (Kelsey, 2017). Google Analytics has another advantages such as has tremendous features,

and ease of use. Unlike other Web analytics tools that use server log files, Google collects information by inserting simple Javascript codes into Web pages. The advantage of this method is that Google Analytics can capture technical and demographic information that log files do not normally provide, such as the user's browser, operating system, screen size, resolution, and so on (Yang and Perrin, 2014).

2.12 A/B Testing

A/B testing has widely become the standard controlled experimentation framework for network driven companies like Facebook, LinkedIn, Twitter, Google, and Yahoo (Wilson and Uminsky, 2017). A/B testing is ubiquitous within the machine learning and data science operations of internet companies. Generically, the idea is to perform a statistical test of the hypothesis that a new feature is better than the existing platform. For example, it results in higher revenue (Goldberg and Johndrow, 2017).

A/B testing started to be used in the late 1990s with the growth of the Internet. Many large companies run thousands to tens of thousands of A/B testing each year testing user interface (UI) changes, enhancements to algorithms (search, ads, personalization, recommendation, etc.), changes to apps, content management system, etc. In an A/B testing, users are randomly split between the variants (e.g., the two different ads layouts) in a persistent manner (a user receives the same experience in multiple visits). Their interactions with the site are instrumented and key metrics computed (Kohavi and Longbotham, 2017).

In A/B testing, one has a proposed new version of a software platform and wants to decide whether or not to ship the new version. The classical way of conceiving of this problem is the following. We divide users into two groups: treatment and control. We then roll out the proposed update to the treatment group while leaving the control group with the current version. Using data gathered from this randomized trial, we then ask whether the new version performed "better" with respect to some metric (Goldberg and Johndrow, 2017).

2.13 Previous Researches

Table 2.1 contains previous researches on A/B testing.

Table 2.1: Previous research

No	Article	Authors	Strength	Weakness
1	A Decision	David	Great on	Lack of
	Theoretic	Goldberg	Mathemati-	application
	Approach to A/B	(eBay) and	cal concept	example
	Testing(Goldberg	James E.	explanation	
	and Johndrow,	Johndrow		
	2017)	(Stanford		
		University)		
2	Always Valid	Ramesh	Great on real	There is no
	Inference:	Johari, Leo	world	proof of
	Bringing	Pekelis and	example and	theorem
	Sequential	David J. Walsh	Mathemati-	explanation
	Analysis to A/B		cal concept	
	Testing(Johari		explanation.	
	et al., 2015)		Also contains	
			Supplemen-	
			tary	
			Material	
3	Online Controlled	Ron Kohavi	Great on real	Lack of
	Experiments and	(Microsoft)	world	Mathemati-
	A/B	and Roger	example	cal concept
	Testing(Kohavi	Longbotham		explanation
	and Longbotham,	(Microsoft)		
	2017)			

No	Article	Authors	Strength	Weakness
4	Online Controlled	Ron Kohavi	Great on real	Lack of
	Experiments at	(Microsoft),	world	Mathemati-
	Large Scale	Alex Deng	example	cal concept
	(Kohavi et al.,	(Microsoft),		explanation
	2013)	Brian Frasca		
		(Microsoft),		
		Toby Walker		
		(Microsoft),		
		Ya Xu		
		(Microsoft),		
		and Nils		
		Pohlmann		
		(Microsoft)		
5	On the Complexity	Emilie	Great on	Lack of
	of A/B Testing	Kaufmann	Mathemati-	application
	(Kaufmann et al.,	(LTCI,	cal concept	example
	2014)	Télécom	explanation	
		ParisTech &		
		CNRS),		
		Olivier Cappé		
		(LTCI,		
		Télécom		
		ParisTech &		
		CNRS), and		
		Aurélien		
		Garivier		
		(Institut de		
		Mathéma-		
		tiques de		
		Toulouse,		
		Université		
		Paul Sabatier)		

No	Article	Authors	Strength	Weakness
6	The Power of A/B	James D.	Great on real	There is no
	Testing under	Wilson	world	Supplemen-
	Interference	(Department	example and	tary
	(Wilson and	of	Mathemati-	Material
	Uminsky, 2017)	Mathematics	cal concept	
		and Statistics	explanation.	
		University of	Also,	
		San	completed	
		Francisco)	with proof of	
		and David T.	theorem	
		Uminsky	explanation	
		(Department		
		of		
		Mathematics		
		and Statistics		
		University of		
		San		
		Francisco)		

Chapter 3

RESEARCH METHODOLOGY

Menjelaskan cara pelaksanaan kegiatan penelitian yang meliputi obyek penelitian, tempat dan waktu penelitian dilakukan, dan metode penelitian yang terdiri dari tahap-tahap penelitian dari awal sampai akhir berikut konsep / metodologi / algoritma yang dipakai dan bahasa pemrograman atau software tool yang digunakan.

3.1 Research Object

Waktu penelitian dilakukan antara bulan Agustus 2017 sampai Januari 2018. Objek pada peneltian ini adalah website mekargo.id PT Mekar Investama Sampoerna. (jabarin mekargo dan mekar investama). Fitur yang diteliti adalah fitur pendaftaran bagi peminjam. Data yang digunakan adalah alamat url yang dikunjungi pendaftar untuk masing-masing versi A/B testing. Pengumpulan data dilakukan dengan tools google analytics. Data yang didapatkan selanjutnya akan dianalisis dengan metode bayesian inference dan tools pymc3.

3.2 Research Methodology

diagram 4 langkah besar, tulis 4.1.1-4.1.4.

Metode penelitian yang dilakukan meliputi: identifying problems, develop a hypothesis, developing and testing page variants, dan analyze test results. Gambaran langkah metode penelitian yang dilakukan dapat diilustrasikan oleh figure 3.1.

Figure 3.1: Research

3.2.1 Identifying Problems

Masalah yang diidentifikasi adalah yang berhubungan dengan website yang akan dilakukan A/B testing. Masalah yang diangkat biasanya berhubungan dengan bisnis, marketing, atau convertion rate. Tergantung pada tujuan apa yang ingin dicapai pada pembuatan A/B testing pada website tersebut.

3.2.2 Defining Website Measurement

Website measurement terdiri dari penjelasan poin indikator bisnis yang terdiri dari business objective, website goal, key performance metric, dan target metric.

Business objective adalah bla bal bla. Website goal adalah bla bla. Key performance metric adalah bla bla. Target metric adalah bla bla bla.

3.2.3 Developing a Hypothesis

lihat kata2 dari website

Asumsi awal yang menjadi penyebab masalah pada point 3.3.1 disertai dengan pengajuan solusi yang akan diterapkan. Menyebutkan hasil akhir dari solusi yang diajukan disertai alasannya.

3.2.4 Developing and Testing Page Variants

develop, menjelasin tool analytic, penjelasan proses percobaan.

3.2.5 Analyzing Test Results

menjelasin konsep, metode, algoritma, dan tools program di pymc jupyter

3.2.5.1 Bayessian Inference Algorithm

Let $X_1, ..., X_n$ be n observations sampled from a probability density $p(x|\theta)$. Write $p(x|\theta)$ if θ as a random variable and $p(x|\theta)$ represents the conditional probability density of X conditioned on θ . In contrast, write $p_{\theta}(x)$ if θ as a deterministic value.

Bayesian inference algorithm can be described in the following way.

- 1. Choose a probability density $\pi(\theta)$ called the prior distribution that expresses beliefs about a parameter θ .
- 2. Choose a statistical model $p(x|\theta)$ that reflects beliefs about x given θ .
- 3. After observing data $D_n = \{X_1, ..., X_n\}$, update beliefs and calculate the posterior distribution $p(\theta|D_n)$. The posterior distribution can be written as:

$$p(\theta|X_1,...,X_n) = \frac{p(X_1,...,X_n|\theta)\pi(\theta)}{p(X_1,...,X_n)} = \frac{\mathcal{L}_n(\theta)\pi(\theta)}{c_n} \alpha \mathcal{L}_n(\theta)\pi(\theta)$$

where $\mathcal{L}_{n}\left(\theta\right)=\prod_{i=1}^{n}p\left(X_{i}|\theta\right)$ is the likelihood function and

$$c_n = p(X_1, ..., X_n) = \int p(X_1, ..., X_n | \theta) \pi(\theta) d\theta = \int \mathcal{L}_n(\theta) \pi(\theta) d\theta$$

is the normalizing constant, which is also called the evidedence (Liu and Wasserman, 2014).

3.2.5.2 Bernoulli Distribution

Bernoulli distribution pada penelitian digunakan untuk ..., dibuat dengan library scipy dengan pada modul scipy.stats.bernoulli

The Bernoulli distribution is a discrete distribution having two possible outcomes labelled by n=0 and n=1 in which n=1 ("success") occurs with

probability p and n = 0 ("failure") occurs with probability q = 1 - p, where 0 . It therefore has probability density function

$$p(n) = p^{n}(1-p)^{1-n}.$$

The distribution of heads and tails in coin tossing is an example of a Bernoulli distribution with p=q=1/2. The Bernoulli distribution is the simplest discrete distribution, and it the building block for other more complicated discrete distributions (Weisstein, 2018).

3.2.5.3 Pymc3 Algorithm

uniform

3.2.5.4 Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm (MH) is one of special forms of the Hastings algorithm. The Hastings algorithm (HA) is a stochastic sampling technique widely used throughout computational science. As a Markov Chain Monte Carlo method, HA does not attempt to generate a sequence of independent samples from a "target distribution" $\pi(\cdot)$, defined on the state space (E,ε) , but rather a Markov chain $\{Xn,n=1,2,3,...\}$ having $\pi(\cdot)$ as its invariant distribution. Although variates in the chain are not independent, they may nonetheless be used to estimate statistical expectations with respect to $\pi(\cdot)$ (Minh and Minh, 2015).

Let U(0, 1) represent the uniform distribution on (0, 1). In order to use all subsequently described algorithms, given $X_n = x$, we require a "proposal density" $\gamma(\cdot|x)$ which may (or may not) depend on x, and whose variates can be generated by other means.

Given $X_n = x \sim \pi(\cdot)$, we can generate $X_{n+1} \sim \pi(\cdot)$ by

HA1. generate $y \sim \gamma(\cdot|x)$ and $r \sim U(0, 1)$

HA2. if $r \le \alpha_{HA}(x, y)$, output $X_{n+1} = y$

HA3. else, output $X_{n+1} = x$

where densities are assumed to be symmetric (that is, $\gamma(x|y) = \gamma(y|x)$) and the acceptance probability in Step HA2 is,

$$\alpha_{HA}(x,y) = min\left\{\frac{p(y)}{p(x)}, 1\right\}.$$

Chapter 4

RESULTS AND DISCUSSION

Bab ini menjelaskan kegiatan hasil penelitian yang diperoleh seperti variabel yang diteliti, hasil analisis dan pengujian hipotesis dan pemrogramannya.

Penyajian dapat dibantu dengan menggunakan tabel, gambar, diagram atau grafik yang diuraikan secara jelas dengan memasukkan hasil penafsiran, analisis deskripsi dan kesimpulan pengujian hipotesis (Bila ada). Di dalam pembahasan juga dapat mengemukakan argumentasi dengan mengacu ke sumber pustaka yang relevan.

Adapun hasil dan pembahasan dari penelitian ini adalah sebagai berikut:

4.1 Identify Problems

jelaskan versi sebelum ab testing seperti apa, kondisinya bagaimana, yang dihasilkan, dan masalahnya apa, yang timbul dan penyebab kira kira

presentase pendaftar yang menyelesaikan pengisian data masih belum mencapai presentase minimal yang ditetapkan.

4.2 Define Website Measurement

4.2.1 Business Objective

Menambah jumlah peminjam yang akan diberikan pinjaman peer-to-peer lending.

To test which site is the highest successfully completed Loan Access and Survey submitted?

4.2.2 Website Goal

Meningkatkan jumlah peminjam yang mendaftar, meningkatkan presentase penyelesaian pengisian form pendaftaran oleh peminjam. Macro Goal: visitors completed submitting on loan access; Micro Goal: visitors completed submitting survey;

4.2.3 Key Performance Metric

jumlah pendaftar per bulan, presentase penyelesaian pengisian form oleh peminjam saat pengisian form pendaftaran.

Traffic Level, High and Low Traffic during the test period. conversion level

4.2.4 Target Metric

500 pendaftar selama sebulan, presentase penyelesaian data di atas 10%.

4.3 Develop a Hypothesis

Presentase penyelesaian pengisian form pendaftaran dipengaruhi oleh urutan pengisian form. Apabila diubah akan meningkatkan presentasenya. Solusi yang diajukan adalah melakukan pengujian A/B testing terhadap dua versi baru disertai dengan penyederhanaan dan penyingkatan pengisian data. Asumsi awal, salah satu dari dua versi baru ini akan lebih baik daripada versi yang sebelumnya.

4.4 Developing and Testing Page Variants

4.4.1 Developing Page Variants

menjelaskan 3 versi, satu control 2 varian, dilihatin bentuk formnya. perubahan yang dilakukan: Remove unnecessary data fields and some data fields are changed to optional

Table 4.1: Data fields changes

Part	Fields Name	Remove	Optional	New
	Alamat Usaha /	V		
	Tempat Bekerja			
	(Provinsi, Kota,			
Personal Detail	Kecamatan,			
Information	Kelurahan)			
IIIIOIIIIatioii	Bidang Jenis Usaha /	V		
	Jenis Pekerjaan			
	Lama Usaha / Lama	V		
	Bekerja			
	Jumlah Karyawan	V		
	Foto Tempat Usaha	V		
	Status Karyawan	V		
	Email		V	
	Foto KTP		V	
	Tanggal Lahir			v
Jaminan	Foto Tanah +		V	
Jaiiiiiaii	Bangunan			
	Foto Kendaraan		V	
	Bermotor			

Untuk membedakan versi A/B testing, digunakan suffik satu huruf alfabet (a atau b atau c) sesuai dengan jenis varian.

Table 4.2: Url definition

Step	Site A	Site B	Site C
	(/ukm/a/)	(/ukm/b/)	(/ukm/c/)
Survey Page	/ukm/a/survei	/ukm/b/survei	/ukm/c/survei
Detail Needs	/ukm/a/detil-	/ukm/b/detil-	/ukm/c/detil-
Page	survei	survei	survei
Personal	/ukm/a/data-	/ukm/b/data-	/ukm/c/data-
Information	diri	diri	diri
Page			

Step	Site A	Site B	Site C
	(/ukm/a/)	(/ukm/b/)	(/ukm/c/)
Thanks Page	/ukm/a/terima-	/ukm/b/terima-	/ukm/c/terima-
	kasih	kasih	kasih
Detail Loan	/ukm/a/	/ukm/b/	/ukm/c/
Access Page	pinjaman	pinjaman	pinjaman
Ekstra Pesonal	/ukm/a/	-	-
Detail	tambahan-data-		
Information	diri		
Page			
Congrats Page	/ukm/a/selamat	/ukm/b/selamat	/ukm/c/selamat

jelaskan dan sebutkan setiap alur url A/B/c (bisa dalam bentuk chart) a Survey Page,

b Survey Page, Personal Information Page

c Survey Page,

kasih reference ke lampiran gambar pembagian traffic round robbin

```
class RoundRobin(models.Model):
       flow_type = models.CharField(max_length=1, null=True)
       partner_slug = models.SlugField(null=True)
       def next(self):
           latest = self.flow_type
           if latest == 'a':
               return 'b'
           elif latest == 'b':
               return 'c'
           elif latest == 'c':
10
               return 'a'
11
12
13
  if RoundRobin.objects.count() == 0:
       next_flow = 'a'
14
15
  else:
       latest = RoundRobin.objects.last()
16
       next_flow = latest.next()
17
```

4.4.2 Testing Page Variants

pengujian A/B testing dilakukan dari tanggal 24 September 2017 sampai 23 Oktober 2017. Traffic tinggi terjadi pada tanggal ..., ..., dan ... Yang tertinggi pada tanggal ... dan yang terendah pada tanggal ...

cleaning data membuang dari bot

penerapan data collection dengan google analytic.

Figure 4.1: Graphic google analytics mekargo.id

menjelaskan gambar.

Figure 4.2: Table google analytics mekargo.id

4.5 Analyze Test Results

Data yang didapat dari google analytic dilakukan pemrosesan dan analisa dengan metode bayesian inference dengan pymc. Mengimport seluruh library python yang dibutuhkan yaitu pymc3, numpy, figsize, matplotlib, scipy, dan IPython.

```
In [1]: import pymc3 as pm
   import numpy as np
%matplotlib inline
   from IPython.core.pylabtools import figsize
   import matplotlib.pyplot as plt
   import scipy.stats as stats
   figsize(12.5, 4)
```

Figure 4.3: Import python library

Inisialisasi nilai pada versi A, B, dan C serta banyaknya sample yang digunakan.

```
In [2]: true_A = 120
    true_B = 129
    true_C = 84

N_sample = 1156
```

Figure 4.4: Initialize sample

Menghitung nilai peluang A, B, dan C. Hasilnya adalah:

```
true_p_A = 0.10380622837370242
true_p_B = 0.1115916955017301
true_p_C = 0.0726643598615917
```

```
In [3]: true_p_A = true_A/float(N_sample)
    true_p_B = true_B/float(N_sample)
    true_p_C = true_C/float(N_sample)

    print("true p_A:", true_p_A)
    print("true p_B:", true_p_B)
    print("true p_C:", true_p_C)

true p_A: 0.10380622837370242
    true p_B: 0.1115916955017301
    true p_C: 0.0726643598615917
```

Figure 4.5: Calculate probability

Melakukan observasi bernoulli terhadap nilai peluang A, B, dan C menggunakan method stats pada library scipy

Figure 4.6: Bernoulli observation

Mencetak nilai jumlah dari nilai true yang dihasilkan oleh observasi bernoulli,

dengan hasil sebagai berikut

```
sum_true_p_A = 114
sum_true_p_B = 138
sum_true_p_C = 86
```

Mencetak hasil nilai rata-rata observasi bernoulli dengan bantuan method mean pada library numpy. Nilai yang dihasilkan adalah:

```
mean_p_A = 0.098615916955
mean_p_B = 0.11937716263
mean_p_C = 0.0743944636678
Nilai rata rata ini sekaligus menjadi nilai true frequency
```

```
In [5]: print(np.mean(observations_A))
    print(np.mean(observations_B))
    print(np.mean(observations_C))

print(np.sum(observations_A))
    print(np.sum(observations_B))
    print(np.sum(observations_C))

0.0951557093426
    0.117647058824
    0.0726643598616
    110
    136
    84
```

Figure 4.7: Sum and mean of bernoulli observation

Pymc probability models, jelasin dari model uniform sampling, deterministik nilai posterior a-b, a-c, bc. deterministik bernouli ke model, metropolis dan sampling total data 20000 diambil 1000 awal

Figure 4.8: Pymc probabilistic model

menyimpan hasil processing pymc probabilistik model ke variable - variable sebagai bentuk visualisasi dan hasil analisis data

```
In [7]: p_A_samples = burned_trace["p_A"]
    p_B_samples = burned_trace["p_B"]
    p_C_samples = burned_trace["p_C"]
    delta_A_B_samples = burned_trace["delta_A_B"]
    delta_A_C_samples = burned_trace["delta_A_C"]
    delta_B_C_samples = burned_trace["delta_B_C"]
```

Figure 4.9: Pymc probabilistic model results

posterior distribution probabilistik A, deskripsiin isi codingan

```
In [8]: figsize(12.5, 10)
       #histogram of posteriors
       ax = plt.subplot(311)
       plt.legend(loc="upper right")
       plt.title("Posterior distributions of $p_A$, $p_B$, and delta unknowns")
Out[8]: Text(0.5,1,'Posterior distributions of $p A$, $p B$, and delta unknowns')
                                 Posterior distributions of p_A, p_B, and delta unknowns
                                                                             --- true p<sub>A</sub> (unknown)
        60
        40
        20
         0.06
                                                       0.14
                                                                   0.16
                                                                               0.18
```

Figure 4.10: Posteriror distribution P_A

posterior distribution probabilistik B, deskripsiin isi codingan

Figure 4.11: Posteriror distribution P B

posterior distribution probabilistik C, deskripsiin isi codingan

Figure 4.12: Posteriror distribution P_C

posterior distribution delta A-B, deskripsiin isi codingan

Figure 4.13: Posteriror distribution delta A-B

Chapter 5

CONCLUSION AND SUGGESTIONS

5.1 Conclusion

Kesimpulan merupakan jawaban menyeluruh terhadap persoalan yang dipertanyakan di dalam pendahuluan yang merupakan sintesis hasil penelitian & pembahasan. Angka-angka yang dihasilkan dari analisis data (jika penelitian merupakan analisis data) tidak perlu diulang lagi pada bab terakhir ini. Yang diperlukan adalah analisis sebab dihasilkannya angka-angka tersebut.

5.2 Suggestions

Saran dapat berupa saran yang diajukan terhadap persoalan yang diamati dan diteliti, yaitu usul pengembangan atau penyempurnaan penelitian. Saran dapat juga berupa alternatif yang diusulkan pada pihak-pihak terkait.

Bibliography

- Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., et al. (2016). Theano: A python framework for fast computation of mathematical expressions. *arXiv preprint*.
- Davidson-Pilon, C. (2015). *Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference*. Addison-Wesley Data & Analytics Series. Pearson Education.
- Dixon, E., Enos, E., and Brodmerkle, S. (2015). A/b testing. US Patent 9,077,780.
- Fandango, A. and Idris, I. (2017). *Python Data Analysis Second Edition*. Packt Publishing.
- Fernández-i Marín, X. et al. (2016). ggmcmc: Analysis of mcmc samples and bayesian inference. *Journal of Statistical Software*, 70(9).
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). *Bayesian data analysis*, volume 2. CRC press Boca Raton, FL.
- Goldberg, D. and Johndrow, J. E. (2017). A decision theoretic approach to a/b testing. *arXiv* preprint *arXiv*:1710.03410.
- Hunter, J., Dale, D., Firing, E., and Droettboom, M. (2014). The matplotlib development team. matplotlib: Python plotting documentation. 2013.
- Jiménez, J. and Ginebra, J. (2017). pygpgo: Bayesian optimization for python. *The Journal of Open Source Software*.
- Johari, R., Pekelis, L., and Walsh, D. J. (2015). Always valid inference: Bringing sequential analysis to a/b testing. arXiv preprint arXiv:1512.04922.

- Jones, E., Oliphant, T., and Peterson, P. (2014). {SciPy}: open source scientific tools for {Python}.
- Kaufmann, E., Cappé, O., and Garivier, A. (2014). On the complexity of a/b testing. In *Conference on Learning Theory*, pages 461–481.
- Kelsey, T. (2017). Introduction to Google Analytics: A Guide for Absolute Beginners. Apress.
- Kemenkeu (2015). *Peran Penting UKM Dorong Perekonomian Indonesia*. [Online]. Available at: https://www.kemenkeu.go.id/Berita/peran-penting-ukm-dorong-perekonomian-indonesia [Accessed 17 January 2018].
- Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J. B., Grout, J., Corlay, S., et al. (2016). Jupyter notebooks-a publishing format for reproducible computational workflows. In *ELPUB*, pages 87–90.
- Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., and Pohlmann, N. (2013).
 Online controlled experiments at large scale. In *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 1168–1176. ACM.
- Kohavi, R. and Longbotham, R. (2017). Online controlled experiments and a/b testing. In *Encyclopedia of Machine Learning and Data Mining*, pages 922–929. Springer.
- Liu, H. and Wasserman, L. (2014). *Statistical Machine Learning Chapter 12 Bayesian Inference*. [Online]. Available at: http://www.stat.cmu.edu/larry/=sml/Bayes.pdf [Accessed 17 January 2018].
- Lubanovic, B. (2014). *Introducing Python: Modern Computing in Simple Packages*. O'Reilly Media.
- Lutz, M. (2013). *Learning Python: Powerful Object-Oriented Programming*. Safari Books Online. O'Reilly Media.
- Martin, O. (2016). Bayesian Analysis with Python. Packt Publishing.
- Mekar (2017). *Mekar FAQ*. [Online]. Available at: https://mekar.id/faq/ [Accessed 17 January 2018].

- Minh, D. D. and Minh, D. L. (2015). Understanding the hastings algorithm. *Communications in Statistics-Simulation and Computation*, 44(2):332–349.
- Pourzanjani, A. A., Jiang, R. M., Atzberger, P. J., and Petzold, L. R. (2017). General bayesian inference over the stiefel manifold via the givens transform. *arXiv* preprint *arXiv*:1710.09443.
- Ragan-Kelley, M., Perez, F., Granger, B., Kluyver, T., Ivanov, P., Frederic, J., and Bussonnier, M. (2014). The jupyter/ipython architecture: a unified view of computational research, from interactive exploration to communication and publication. In *AGU Fall Meeting Abstracts*.
- Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming in python using pymc3. *PeerJ Computer Science*, 2:e55.
- Strickland, C. M., Burdett, R. L., Denham, R., and Mengersen, K. L. (2014). Pyssm: a python module for bayesian inference of linear gaussian state space models. *Journal of Statistical Software*, 57(6).
- Taylor, B., Davies, T., Rowlingson, B., and Diggle, P. (2015). Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log-gaussian cox processes in r. *Journal of Statistical Software*, 63:1–48.
- Van Der Walt, S., Colbert, S., and Varoquaux, G. (2016). The numpy array: a structure for efficient numerical computation (2011).
- Vo, T., Czygan, M., et al. (2015). *Getting started with Python data analysis: learn to use powerful Python libraries for effective data processing and analysis.* Packt Publ.
- Weber, J. (2015). Practical Google Analytics and Google Tag Manager for Developers. Apress.
- Weisstein, E. W. (2018). *Bernoulli Distribution*. [Online]. Available at: http://mathworld.wolfram.com/BernoulliDistribution.html [Accessed 23 February 2018].
- Wilson, G., Perez, F., and Norvig, P. (2014). Teaching computing with the ipython notebook. In *Proceedings of the 45th ACM technical symposium on Computer science education*, pages 740–740. ACM.

- Wilson, J. D. and Uminsky, D. T. (2017). The power of a/b testing under interference. *arXiv preprint arXiv:1710.03855*.
- Wuisan, N. Y. (2017). Pengaruh kredit bank terhadap pendapatan pelakupelaku umkm (khususnya meubel) di desa leilem, kec. sonder, kab. minahasa. *JURNAL BERKALA ILMIAH EFISIENSI*, 17(01).
- Yang, L. and Perrin, J. M. (2014). Tutorials on google analytics: How to craft a web analytics report for a library web site. *Journal of Web Librarianship*, 8(4):404–417.

APPENDIX

CURRICULUM VITAE

PERSONAL INFORMATION-Name: Alvian Dwi Kurnianto Birth Place and Date: Pekalongan, 4 September 1994 Sex: Male NIM: 92216007 Address: Depok, West Java Phone Number: 085840002746 Email: alviandk@gmail.com FORMAL EDUCATION (tahun) - (tahun): ___-: **WORK EXPERIENCE** 2016 - now : Mekar, Sampoerna Wirausaha - Remote Django Developer 2015 - 2017 : Coassets - Remote Django Developer 2014 - 2015 : Macroad - Django Developer Internship 2014 - 2015 : Coding Indonesia - Programming Tutor **SCIENCE PUBLICATION (2016)** ____:

Alvian Dwi Kurnianto, S.Kom.