ODEV 1) f(x) = x 1/3 denkleminin kökünü bulmak idin Newton - Raphson yöntemini kullanınız. Elde edilen bulguları yorumlayınız 1. adim: f(x) = x 1/3 $f'(x) = \frac{1}{7} \cdot x^{-\frac{2}{3}}$ $X_{n+1} = X_n - f(X_n)$ $f'(X_n)$ Basingia degeri Xo=1 olsun $x_3 = x_2 - x_2^{\frac{1}{3}} = 5 - 5 = 5$ $1x_1^{\frac{1}{3}} = 12 - 5 = 5$ $1x_1^{\frac{1}{3}} = 12 - 5 = 5$ $Xu = X_3 - X_3 = 5 - 5 = -5$ $1 \times 3^{\frac{1}{3}} = 36 \cdot 12 \cdot 27$ Yukarıdari işleme devam ettirge x değerleri sonsuza doğru büyüyüp küqülecektir. Bu durumda f(x) = x 1/3 fonksiyonunun kökü yaklasık olarak degisken bir bigimde X = - 00 re x = 00 sekilde yorumlanır. Bu durum, kökûn negatif ve pozitif sonsuz degerlerine yaklastigini gösterir.

ÖDEY1:
$$X^3 - 2x^2 - 5 = 0$$
 denkleminin I 2.47 araiginda kātūrū

 Ikiye bālne metodu ile 4 iterasyonda gerciekles tirinit.

 J. adim: $f(X) = x^3 - 2x^2 - 5 = 0$
 $f(2) = 8 - 8 - 5 = -5$
 $f(2) \cdot f(4) \cdot 40$ oiduğundan

 Clu) = $4^3 - 2 \cdot 4^2 - 5 = -27$
 bu araintta bir kāk vardir

 2. adim: ikiye bālne metodu
 $f(3) = 3^3 - 2 \cdot 3^2 - 5 = 41$

 1. iterasyon: $f(3) = 3 - 2 \cdot 3^2 - 5 = 41$

 2. iterasyon: $f(2) \cdot f(3) \cdot f(3$

ÖDEU 2 : f(x)	= ue -0.5x	dentieminin	Kökünü	Nowton - R	repuson
ile başlangıa	degeri Xo=2	alarak 4 its	erasyon	sonucunda	2 AUNING
$f(x) = ue^{-\alpha x}$					
p'(x) = -2e	-05x-1				
1. iterasyon:	$X_1 = X_0 - \frac{4}{6}$	(Xo)			
	$X_1 = 2 - 4e$				
	X1 = 1.78				
2 iterasyon!	X2 = X, - f(x p'(x	(1)			
	X2 = 1.787 -	4e-0,5.1787 -2e05.1787	1.787		
	X2= 1.715				
3. iterasyon:	x3 = x2 - £	(×1) (×2)			
	×3 = 1.712				
4 iterasyon:	xy = x3 - f(X3)			
	X4=1.712				