

Dimas Aji Primadiansyah / 22081010306

LATAR BELAKANG

- Kanker paru-paru merupakan salah satu penyebab kematian tertinggi di dunia, dengan angka mortalitas yang terus meningkat setiap tahunnya.
- Analisis citra histopatologi digunakan untuk mengidentifikasi adanya sel abnormal melalui pemeriksaan jaringan paru-paru.
- ViT memanfaatkan mekanisme self-attention yang mampu menangkap hubungan global antar piksel dan terbukti melampaui performa Convolutional Neural Network (CNN) pada berbagai dataset visual (Dosovitskiy et al., 2021).

RUMUSAN MASALAH

- 1. Bagaimana mengimplementasikan model Vision Transformer (ViT) untuk melakukan klasifikasi citra histopatologi kanker paru-paru?
- 2. Bagaimana performa model Vision Transformer dibandingkan dengan pendekatan konvensional berbasis CNN dalam hal akurasi dan efisiensi klasifikasi?
- 3. Sejauh mana model Vision Transformer dapat membantu dalam meningkatkan efektivitas diagnosis kanker paru-paru secara otomatis?

TUJUAN PENILITIAN

- Menerapkan dan membangun model Vision Transformer
 (ViT) untuk mengklasifikasikan citra histopatologi
 jaringan paru-paru.
- Mengevaluasi performa model dalam hal akurasi, presisi, recall, dan F1-score.
- Memberikan analisis perbandingan dengan model berbasis CNN (seperti EfficientNet atau InceptionV3) untuk mengetahui keunggulan ViT dalam konteks klasifikasi citra medis.

MANFAAT PENELITIAN

- Bagi akademisi, penelitian ini dapat menjadi referensi dalam pengembangan dan penerapan model Vision Transformer di bidang medis.
- 2. Bagi tenaga medis, sistem klasifikasi otomatis ini dapat membantu mempercepat proses diagnosis awal kanker paru-paru.
- 3. Bagi pengembang teknologi, penelitian ini dapat menjadi dasar dalam pengembangan sistem deteksi penyakit berbasis citra histopatologi menggunakan model deep learning modern.

PENELITIAN TERDAHULU

MAULANA IDRIS (2024) UPN JATIM	DETEKSI KANKER PARU-PARU DAN USUS BESAR PADA GAMBAR HISTOPATOLOGI MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK
NIA NURAENI (2025)	PENDEKATAN MACHINE LEARNING UNTUK DETEKSI DINI KANKER PARU-PARU: MENGOPTIMALKAN SENSITIVITAS DAN AKURASI
Kimi Axel Wijaya (2024)	KOMPARASI MODEL TRANSFORMER UNTUK DETEKSI METASTASIS KANKER PROSTAT BERDASARKAN CITRA MRI

GAP ANALYSIS

01

FOKUS CNN HANYA PADA FITUR LOKAL

CNN efektif untuk mengenali pola citra, namun belum mampu menangkap hubungan spasial global antarstruktur jaringan histopatologi.

03

KURANGNYA EVALUASI EFISIENSI DAN INTERPRETABILITAS

Sebagian besar penelitian hanya menilai akurasi tanpa menganalisis waktu pelatihan, kompleksitas model, atau visualisasi attention map

02

BELUM ADA PENERAPAN VIT SPESIFIK UNTUK KANKER PARU-PARU

Penelitian sebelumnya masih berfokus pada CNN (Rahman et al., 2020) atau ViT umum tanpa aplikasi spesifik (Ciga et al., 2022).

04PERBANDINGAN LANGSUNG CNN VS VIT MASIH JARANG

Belum banyak studi yang membandingkan performa CNN konvensional dan ViT secara kuantitatif pada dataset histopatologi paru-paru.

JENIS PENELITIAN

- I. Penelitian ini merupakan penelitian eksperimen (experimental research) dengan pendekatan kuantitatif.
- 2. Tujuannya untuk mengimplementasikan dan mengevaluasi Vision Transformer (ViT) dalam klasifikasi citra histopatologi kanker paru-paru.
- 3. Penelitian ini bersifat terapan (applied research) karena fokus pada penerapan deep learning dalam diagnosis medis berbasis citra.

TAHAPAN PENELITIAN

- Studi Literatur : Mengkaji teori terkait kanker paru-paru, citra histopatologi, machine learning, deep learning, dan arsitektur ViT.
- Pengumpulan Data : Menggunakan dataset LC25000 atau dataset histopatologi paru sejenis dari sumber publik (Kaggle). Dataset terdiri dari dua kelas: normal dan kanker paru.
- 3. Preprocessing Data : Meliputi resize citra (224×224 piksel), normalisasi piksel, dan data augmentation (rotasi, flipping, zooming) untuk meningkatkan variasi data.

TAHAPAN PENELITIAN

- 4. Pembangunan Model ViT : Implementasi arsitektur Vision Transformer menggunakan TensorFlow/Keras dengan komponen utama: Patch embedding, multi-head self-attention, dan classification head.
- 5. Pelatihan & Validasi Model : Data dibagi menjadi train set (80%) dan test set (20%). Model dilatih dengan parameter:
- Epoch: 30
- Batch size : 32
- Learning Rate: 0.0001
- Optimizer : Adam
- Early Stoping : Berdasarkan Validation Accuracy

TAHAPAN PENELITIAN

- 6. Evaluasi Model : Menggunakan metrik
- Accuracy
- Precision
- Recall
- F1-Score
- Confusion Matrix
- 7. Analisis Hasil dan Kesimpulan
 - Membandingkan performa ViT dengan CNN
- Menganalisis pengaruh augmentasi terhadap akurasi
- Menginterpretasi hasil menggunakan attention map / heatmap
- Menarik Kesimpulan dan rekomendasi penelitian lanjutan

SEKIAN TERIMAKASIH

