Decisiones En Escenarios Complejos

UNIDAD III

Métodos de Apoyo Multicriterio

(Parte 3: ELECTRE)

1

Temas a Tratar

- Introducción
- Sobreclasificación
- Algoritmo
- Ejemplo
- Conclusiones
- Bibliografía

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

Introducción

- ELECTRE (elimination and (et) choise translating algorithm).
- Específico para problemas de decisión multicriterio discreta.
- Es probablemente el método mas conocido y aplicado.
- Inicialmente sugerido por Benayoun, Roy y Sussman.
- Fue posteriormente mejorado por Roy.

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

.

Introducción

- Consiste en un procedimiento para reducir el tamaño del conjunto de soluciones eficientes.
- Partición del conjunto eficiente:
 - Subconjunto de alternativas mas favorables (NUCLEO).
 - Subconjunto de alternativas menos favorables.
- Se basa en el concepto de sobreclasificación.

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

Sobreclasificación (outranks)

- Es una relación que puede existir o no entre dos alternativas (E_i y E_k).
- Para los atributos dados "la alternativa E_i es al menos tan buena como la alternativa E_k".
- Se establece en base a dos conceptos:
 - Concordancia.
 - Discordancia.

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

,

Sobreclasificación (outranks)

Concordancia:

- "Cuantifica hasta que punto para un elevado número de atributos de E_i es preferida a E_k".
- c_{i,k} = 1 si y solo si E_i es preferible a E_k en todos los atributos.

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

Sobreclasificación (outranks)

Discordancia:

- "Cuantifica hasta que punto no existe ningún atributo para el que E_i es mucho mejor que E_k".
- d_{i,k} = 0 si y solo si E_i es preferible a E_k en todos los atributos.

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

7

Sobreclasificación (outranks)

- Si E_i sobreclasifica a E_k, entonces se incluye a la primera en el núcleo.
- Se establecen dos umbrales:
 - Un umbral mínimo de concordancia.
 - Un umbral máximo de discordancia.
- La relación de sobreclasificación se utiliza para formar un grafo.

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

В

Sobreclasificación (outranks)

- Para que E_i sobreclasifique a E_k es necesario que:
 - La concordancia supere el umbral mínimo establecido.
 - La discordancia no supere el umbral máximo establecido.
- "La alternativa E_i es preferida a la alternativa E_k desde casi cualquier punto de vista, aunque ello no implique E_i domine, desde un punto de vista paretiano, a E_k".

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

9

Caso de Estudio

Enunciado: El gobierno de la ciudad debe seleccionar un proyecto que será financiado por el gobierno nacional.
Existen 4 criterios principales: la utilidad que le genere al municipio en los proximos 10 años, el empleo que genere, el impacto ambiental y la imagen del gobierno.

Se ha determinado una importancia relativa de cada criterio según la tabla "Pesos".

Alternativa	Utilidad	Empleo	Imp. A m b	Imagen
Α	250	300	3	6
В	500	250	5	4
С	400	500	4	8
D	750	200	8	3
E	500	500	6	7
Peso	0.3	0.3	0.25	0.15

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

10

Algoritmo

Paso 1: Determinar matriz y pesos

- Determinar la matriz decisional (Ei, Aj)
- Determinar el vector de pesos W.

Peso	0,3	0,3	0,25	0,15
Alternativa	Utilidad	Empleo	Imp. Amb	lmagen
Α	250	300	3	6
В	500	250	5	4
С	400	500	4	8
D	750	200	8	3
F	500	500	6	7

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

11

Algoritmo

Paso 2: Calcular índices de concordancia

- Dadas dos alternativas E_i y
 E_k, el índice de concordancia
 c(i, k) se obtiene por:
 - Sumar los pesos asociados a los criterios en los que la alternativa i es mejor que la alternativa k.
 - En caso de empate se asigna la mitad del peso a cada una de las alternativas.

Alternativa A B C D E
A 0,7 0,25 0,7 0,25
B 0,3 0,3 0,7 0,4
C 0,75 0,7 0,7 0,5
D 0,3 0,3 0,3 0,3 0,3
E 0,75 0,6 0,45 0,7

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

Algoritmo

Paso 3: Normalizar

- Normalizar los elementos de la matriz decisional inicial.
- Utilizamos el método de normalización [0, 1]:

n_{ii}=Abs(mej. valor-A_{ii}) / rango

- Según este método:
 0 corresponde al mejor valor
 1 corresponde al peor valor
- Existen otros métodos (SECCION 1.5)

 Peso
 0,3
 0,3
 0,25
 0,16

 Alternativa
 Utilidad
 Empleo Imp. Amb
 Imagen

 A
 250
 300
 3
 6

 B
 500
 250
 5
 4

 C
 400
 500
 4
 8

 D
 750
 200
 8
 3

					~
Mejor ∀alor	750	500	3	8	Ra
Rango	500	300	5	5	en
					(M
Alternativa	Utilidad	Empleo	Imp. Amb	lmagen	
Α	1	0,666667	0	0,4	1: pec
В	0,5	0,833333	0,4	0,8	
С	0,7	0	0,2	0	•
D	0	1	1	1	0: Me
E	0,5	0	0,6	0,2	

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

13

Algoritmo

Paso 4: Ponderar la matriz

- Obtener la matriz decisional normalizada y ponderada, a partir de la matriz decisional normalizada.
- Multiplicar cada columna de la matriz decisional normalizada por el peso preferencial correspondiente.

		lmagen	Imp. Amb	Empleo	Utilidad	Alternativa
r(i,j) * wj	of it = r	0,06	0	0,2	0,3	A
licar el valor	Multiplic	0,12	0,1	0,25	0,15	В
lizado por el		0	0,05	0	0,21	C
el atributo.	peso del	0,15	0,25	0,3	0	D
		0.03	0.15	0	0.15	E

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

Algoritmo

Paso 9: Calcular la matriz de dominancia agregada

- Por cada elemento de la matriz:
 - Se multiplican los términos homólogos de las matrices de dominancia concordante (paso 7) y discordante (paso 8)

		Matriz de	Dominancia	Agregada				
Alternativa	A B C D E							
A	-	0	0	0	0			
В	0	-	0	0	0			
С	1	1	-	1	1			
D	0	0	0	-	0			
E	1	1	0	1				
€ Nucleo	0	\ 0	1	0	0			
0 = es superada al menos por 1 alternativa. 1 = no es superada por ninguna alternativa.								

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

19

Algoritmo

Paso 10: Determinar grafo ELECTRE

- Cada alternativa es un nodo del grafo.
- Si el elemento (i,k) de la matriz de dominancia agregada es uno, se traza un arco desde el nodo i al k.
- El núcleo se forma por las alternativas que no se dominan entre si (no existen arcos de llegada)
- Las demas alternativas están dominadas.
- En el ejemplo, N = {C} ya que todas las demás alternativas son superadas por alguna otra.

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

Ejemplo

Ver planilla EXCEL

UTN_DEC_2009_ELECTRE_EJEMPLOS.xls

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

21

Conclusiones

- ELECTRE reduce el tamaño del conjunto de soluciones eficientes.
- Divide al conjunto de soluciones en dos subconjuntos.
- Las relaciones de sobreclasificación se basan en la concordancia y la discordancia.
- El resultado final se expresa como un grafo que presenta las relaciones de dominación.

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

Bibliografía

- Apunte de cátedra DEC: "METODO ELECTRE". Autora: Carignano Claudia Etna
- "TOMA DE DECISIÓN EN ESCENARIOS COMPLEJOS. INTRODUCCIÓN A LOS MÉTODOS DISCRETOS DEL APOYO MULTICRITERIO A LA DECISIÓN". Editorial: Pioneira Thomson Learning Ltda. Brasil, 2003. Autores: Luiz Flavio Autran Monteiro Gomes, Marcela Cecilia González Araya, Carignano Claudia Etna. Capítulo 3 pág. 41-51. Capítulo 4 pág. 93 a 111 y 124 a 134.
- "Análisis de las decisiones multicriterio". Autor: Carlos Romero. Editorial Isdefe. ISBN: 84-89338-14-0

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009

23

Versiones del Documento

Versión	Descripción	Realizado por	Fecha	Revisión
0.1	Creación del documento. Problemática. Conceptos	M. Gualpa		
1.0	Release	M. Gualpa		
1.1	Se modifica imagen d-19. Se agrega resultado en paso 10. Se modifica el nombre del apunte en bibliografía.	M. Gualpa		

UTN - FRC Decisiones En Escenarios Complejos - Gualpa, 2009