Page 1

Problem 1. Determine the convergence or divergence in (a)-(c).

(a)

$$\sum_{k=1}^{\infty} (-1)^k \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}}$$

(b)

$$\sum_{k=1}^{\infty} \frac{k!}{(k+2)!}$$

(c)

$$\sum_{k=1}^{\infty} \frac{2^k}{k^k}$$

Proof. We do each separately:

- (a) TODO
- (b) **TODO**
- (c) **TODO**

Problem 2. Consider the power series $\sum a_n z^n$ and assume that the coefficients a_n are integers, infinitely many of which are not zero. Prove that the radius of convergence $R \leq 1$.

Proof. **TODO:** radius of convergence

Problem 3. Consider a function $f: M \to \mathbb{R}$. It's graph is the set,

$$G(f) = \{(x, y) \in M \times \mathbb{R} \mid y = f(x)\}.$$

- (a) Prove that if f is continuous then G(f) is closed as a subset of $M \times \mathbb{R}$.
- (b) Prove that if f is continuous and M is compact then G(f) is compact.
- (c) Prove that if G(f) is compact then f is continuous.

 ${\it Proof.}$ We do each part separately:

- (a) **TODO:** ⇒
- (b) **TODO**: \Rightarrow

(c) **TODO:** \Rightarrow

Problem 4. Let I = [0, 1] and let $F : I \to I$ be continuous. Prove that F has at least one fixed point. Quoting a fixed points theorem is not acceptable.

Proof. **TODO:** fixed point, no thm

Problem 5. Let X and Y be metric spaces and $F: X \to Y$ be a continuous mapping onto Y. If D is a dense subset of X, prove that F(D) is a dense subset of Y.

Proof. **TODO:** dense \Rightarrow dense

EXTRA CREDIT (10 POINTS):

Problem 6. Prove the convergence or divergence of

$$\sum_{n=1}^{\infty} \frac{\sin n}{n}.$$

Proof. TODO

Page 2