Common Laplace Transform Pairs

Tir	Laplace Domain	
Name	Definition*	Function
Unit Impulse	$\delta(t)$	1
Unit Step	$\gamma(t)$ †	$\frac{1}{s}$
Unit Ramp	t	$\frac{1}{s^2}$
Parabola	t ²	$\frac{2}{s^3}$
Exponential	e^{-at}	$\frac{1}{s+a}$
Asymptotic Exponential	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
Dual Exponential	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$	$\frac{1}{(s+a)(s+b)}$
Asymptotic Dual Exponential	$\frac{1}{ab} \left[1 + \frac{1}{a-b} \left(be^{-at} - ae^{-bt} \right) \right]$	$\frac{1}{s(s+a)(s+b)}$
Time multiplied Exponential	te^{-at}	$\frac{1}{(s+a)^2}$
Si <mark>ne</mark>	$\sin(\omega_0 t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$
Cosine	$\cos(\omega_0 t)$	$\frac{s}{s^2 + \omega_0^2}$
Decaying Sine	$e^{-at}\sin(\omega_d t)$	$\frac{\omega_{\rm d}}{(s+a)^2+\omega_{\rm d}^2}$
Decaying Cosine	$e^{-at}\cos(\omega_{d}t)$	$\frac{s+a}{(s+a)^2+\omega_d^2}$
Generic Oscillatory Decay	$e^{-at} \left[B\cos(\omega_{d}t) + \frac{C - aB}{\omega_{d}} \sin(\omega_{d}t) \right]$	$\frac{Bs + C}{\left(s + a\right)^2 + \omega_d^2}$
Prototype Second Order Lowpass, underdamped	$\frac{\omega_0}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_0t}\sin\left(\omega_0\sqrt{1-\zeta^2}t\right)$	$\frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$
Prototype Second Order Lowpass, underdamped - Step Response	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_0 t} \sin\left(\omega_0 \sqrt{1 - \zeta^2} t + \phi\right)$ $\phi = \tan^{-1} \left(\frac{\sqrt{1 - \zeta^2}}{\zeta}\right)$	$\frac{\omega_0^2}{s(s^2 + 2\zeta\omega_0 s + \omega_0^2)}$

^{*}All time domain functions are implicitly=0 for t<0 (i.e. they are multiplied by unit step, $\gamma(t)$). †u(t) is more commonly used for the step, but is also used for other things. $\gamma(t)$ is chosen to avoid confusion (and because in the Laplace domain it looks a little like a step function, $\Gamma(s)$).

Common Laplace Transform Properties

Name	Illustration	
	$f(t) \stackrel{L}{\longleftrightarrow} F(s)$	
Definition of Transform	$F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$	
Linearity	$Af_1(t) + Bf_2(t) \stackrel{L}{\longleftarrow} AF_1(s) + BF_2(s)$	
First Derivative	$\frac{df(t)}{dt} \stackrel{L}{\longleftrightarrow} sF(s) - f(0^{-})$	
Second Derivative	$\frac{d^2 f(t)}{dt^2} \stackrel{L}{\longleftrightarrow} s^2 F(s) - sf(0^-) - \dot{f}(0^-)$	
n th Derivative	$\frac{d^n f(t)}{dt^n} \stackrel{L}{\longleftrightarrow} s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(i-1)}(0^-)$	
Integral	$\int_{0}^{t} f(\lambda) d\lambda \xleftarrow{L} \frac{1}{s} F(s)$ $tf(t) \xleftarrow{L} -\frac{dF(s)}{t}$	
Time Multiplication		
Time Delay	$f(t-a)\gamma(t-a) \stackrel{L}{\longleftrightarrow} e^{-as}F(s)$ $\gamma(t) \text{ is unit step}$	
Complex Shift	$f(t)e^{-at} \stackrel{L}{\longleftrightarrow} F(s+a)$	
Scaling	$f\left(\frac{t}{a}\right) \longleftrightarrow aF(as)$	
Convolution Property	$f_1(t) * f_2(t) \stackrel{L}{\longleftrightarrow} F_1(s) F_2(s)$	
Initial Value (Only if F(s) is strictly proper; order of numerator < order of denominator).	$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$	
Final Value (if final value exists; e.g., decaying exponentials or constants)	$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$	