Modelling atmospheric chemistry with the CAABA/MECCA box model

Rolf Sander

Max-Planck Institute for Chemistry, Mainz, Germany

CAABA/MECCA workshop Mainz

Agenda

- PART I: THEORY
 - General Introduction to CAABA/MECCA
 - Running CAABA/MECCA: A demonstration
- BREAK
- PART II: PRACTICE
 - The virtual machine
 - Running the model
 - Plotting the results
 - Performing sensitivity studies
 - Adapting the model to your project

Introduction

- Many atmospheric chemistry models have been developed in the past decades.
- Models vary strongly in complexity and efficiency.
- Each aimed at a particular goal, e.g. tropospheric or stratospheric chemistry. . .
- Often no clear separation between meteorological and chemical part of the model.
- When merging different chemistry mechanisms, often incompatibilities between codes occur.
- MESSy contains the comprehensive and flexible atmospheric chemistry module

MECCA

(\underline{M} odule \underline{E} fficiently \underline{C} alculating the \underline{C} hemistry of the \underline{A} tmosphere).

- 699 gas phase species:
 - 1789 reactions
 - 384 photolysis reactions
- 89 aqueous phase species:
 - 145 reactions
 - 47 gas-aqueous mass transfer reactions
 - 34 acid/base and other equilibria
- Basic O_3 , CH_4 , HO_x , and NO_x chemistry
- \bullet Tropospheric halogen (Cl, Br, I) and sulfur (S) chemistry from Sander and Crutzen (1996) and von Glasow et al. (2002)
- Tropospheric non-methane hydrocarbon (NMHC) chemistry and MOM isoprene/terpene mechanism (Taraborrelli et al., 2009)
- Stratospheric chemistry based on the model of Steil et al. (1998) and the Mainz Chemical Box Model (Meilinger, 2000)
- Rate coefficients updated according to recent JPL and IUPAC recommendations

Only one master file (gas.eqn) for all gas-phase reactions, e.g.:
 <G1000> 02 + 01D = 03P + 02 : {%UpStTrG}
 3.3E-11{\{1.1}*EXP(55./temp); {\&3245}}

• Only one master file (gas.eqn) for all gas-phase reactions, e.g.: <G1000> 02 + 01D = 03P + 02 : {%UpStTrG}
3.3E-11{§1.1}*EXP(55./temp); {&3245}

• Reaction number: <G1000>

- Only one master file (gas.eqn) for all gas-phase reactions, e.g.: <G1000> O2 + O1D = O3P + O2 : {%UpStTrG} 3.3E-11{\{1.1}*EXP(55./temp); {\&3245}}
- Reaction number: <G1000>
- Reaction string: $O_2 + O(^1D) \rightarrow O(^3P) + O_2$

- Only one master file (gas.eqn) for all gas-phase reactions, e.g.: <G1000> O2 + O1D = O3P + O2 : {%UpStTrG} 3.3E-11{\{1.1}*EXP(55./temp); {\&3245}}
- Reaction number: <G1000>
- Reaction string: $O_2 + O(^1D) \rightarrow O(^3P) + O_2$
- User-selected subset {%UpStTrG} using reaction labels:
 - Up = upper atmosphere
 - St = stratospheric reaction
 - Tr = tropospheric reaction
 - G = gas-phase reaction

- Only one master file (gas.eqn) for all gas-phase reactions, e.g.: <G1000> O2 + O1D = O3P + O2 : {%UpStTrG} 3.3E-11{\{1.1}*EXP(55./temp); {\&3245}}
- Reaction number: <G1000>
- Reaction string: $O_2 + O(^1D) \rightarrow O(^3P) + O_2$
- User-selected subset {%UpStTrG} using reaction labels:
 - Up = upper atmosphere
 - St = stratospheric reaction
 - Tr = tropospheric reaction
 - G = gas-phase reaction
- Rate coefficient: $3.3 \times 10^{-11} \exp(55 \mathrm{K}/T) \mathrm{~cm^3/s}$

- Only one master file (gas.eqn) for all gas-phase reactions, e.g.: <G1000> O2 + O1D = O3P + O2 : {%UpStTrG} 3.3E-11{\lambda1.1}*EXP(55./temp); {\lambda3245}
- Reaction number: <G1000>
- Reaction string: $O_2 + O(^1D) \rightarrow O(^3P) + O_2$
- User-selected subset {%UpStTrG} using reaction labels:
 - Up = upper atmosphere
 - St = stratospheric reaction
 - Tr = tropospheric reaction
 - G = gas-phase reaction
- Rate coefficient: $3.3 \times 10^{-11} \exp(55 \mathrm{K}/T) \mathrm{~cm^3/s}$
- ullet Uncertainty factor for Monte-Carlo studies: 1.1 (about \pm 10 %)

- Only one master file (gas.eqn) for all gas-phase reactions, e.g.: <G1000> O2 + O1D = O3P + O2 : {%UpStTrG} 3.3E-11{\{1.1}*EXP(55./temp); {\&3245}}
- Reaction number: <G1000>
- Reaction string: $O_2 + O(^1D) \rightarrow O(^3P) + O_2$
- User-selected subset {%UpStTrG} using reaction labels:
 - Up = upper atmosphere
 - St = stratospheric reaction
 - Tr = tropospheric reaction
 - G = gas-phase reaction
- Rate coefficient: $3.3 \times 10^{-11} \exp(55 \mathrm{K}/T) \mathrm{~cm^3/s}$
- ullet Uncertainty factor for Monte-Carlo studies: 1.1 (about \pm 10 %)
- Reference information: 3245 = JPL recommendation (2015)

CAABA/MECCA Modularity

- Very modular structure (MESSy standard by Jöckel et al. (2005))
- Link to different meteorological base models

- CAABA = Chemistry As A Boxmodel Application
- Extensive testing in a box model
- Develop parameterization
- Run parameterization in global model runs

The CAABA Box Model

Box Model Modes

Box mode:

- static: constant T, p, rh
- dynamic: Lagrangian along trajectory, variable T, p, rh

Steady-state mode:

- initialize with measured long-lived species
- let short-lived species (e.g., OH, HO₂) run into steady state conditions
- multirun: one run for each measured data point

Trajectory mode:

- initialize with data from global model
- model runs along trajectory
- multirun: one run for each measured data point

Monte-Carlo mode:

variation of rate coefficients

Namelists

- Control the behaviour of a CAABA/MECCA model run:
 - temperature, pressure, humidity
 - model start and duration
 - output interval
 - select submodels (MECCA, JVAL, SEMIDEP, TRAJECT, ...)
 - scenarios
 - steady-state stop?
 - trajectory file?
- Default: use the same namelist as last time
- For testing: caaba_simple.nml

Scenarios

- describe boundary conditions:
 - photolysis
 - initialization
 - emission
 - dry deposition
- available scenarios:
 - MBL, OOMPH: MBL chemistry
 - FF_ANTARCTIC, FF_ARCTIC: frost flowers and polar ODEs
 - FREE_TROP, HOOVER: free troposphere
 - STRATO, MTCHEM: stratosphere and above
 - LAB, LAB_C15: laboratory conditions (reaction chamber)
 - MIM2: for isoprene chemistry (Taraborrelli et al., 2009)
 - ???: add your own...
- select your scenario in namelist file

Further Information

- Web page: http://www.mecca.messy-interface.org
- CAABA/MECCA model description paper: Sander et al. (2011), GMD, 4, 373-380 http://www.geosci-model-dev.net/4/373
- User manual: manual/caaba_mecca_manual.pdf
- GPL License

NEXT:

On-screen demo of model run

- Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth Submodel System (MESSy) – a new approach towards Earth System Modeling, Atmos. Chem. Phys., 5, 433–444, http://www.atmos-chem-phys.net/5/433, 2005.
- Meilinger, S. K.: Heterogeneous Chemistry in the Tropopause Region: Impact of Aircraft Emissions, Ph.D. thesis, ETH Zürich, Switzerland, 2000.
- Sander, R. and Crutzen, P. J.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res., 101D, 9121–9138, doi:10.1029/95JD03793, 1996.
- Sandu, A. and Sander, R.: Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1, Atmos. Chem. Phys., 6, 187–195, http://www.atmos-chem-phys.net/6/187, 2006.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: World wide web site of a master chemical mechanism (MCM) for use in tropospheric chemistry models, Atmos. Environ., 31, 1249, http://mcm.leeds.ac.uk/MCM. 1997.
- Steil, B., Dameris, M., Brühl, C., Crutzen, P. J., Grewe, V., Ponater, M., and Sausen, R.: Development of a chemistry module for GCMs: First results of a multiannual integration, Ann. Geophys., 16, 205–228, 1998.
- Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling, Atmos. Chem. Phys., 9, 2751–2777, http://www.atmos-chem-phys.net/9/2751, 2009.
- von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer, 1. Cloud-free MBL, J. Geophys. Res., 107D, 4341, doi:10.1029/2001JD000942, 2002.