ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" ИНСТИТУТ МАТЕМАТИКИ

Ю.Я. Белов

УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Учебное пособие

Красноярск СФУ 2008

Содержание

Введение	3
1. Классификация уравнений в частных производных	4
2. Постановки краевых задач	8
3. Единственность классического решения краевых задач для урав-	
нения колебания струны	16
4. Метод разделения переменных	18
5. Задача Коши	31
6. Принцип максимума для уравнений параболического и эллип-	
тического типов	40
7. Функциональные пространства	52
8. Обобщенные производные (по Л.С. Соболеву) и их свойства .	54
9. Пространства Соболева $H^l(\Omega)$	61
10. След функций из $H^1(\Omega)$	64
11. Формула интегрирования по частям для функций класса $H^1(\Omega)$	67
12. Первая краевая задача для эллиптического уравнения. Теоре-	
ма существования и единственности	70
13. Метод Галеркина для эллиптического уравнения	72
14. Проблема минимума квадратичного функционала и краевые	
задачи	79
15. Метод Ритца	84
16. Параболическое уравнение	87
17. Краевые задачи для гиперболического уравнения	96
18. Некоторые обобщения	115
Список литературы	117

Введение

Учебное пособие предназначено для студентов математических специальностей и написано на основание курсов лекций по уравнениям математической физике и уравнениям в частных производных, читавшихся автором на математическом факультете, факультете математики и информатики Красноярского государственного университета.

Пособие состоит из двух больших частей. Первая часть посвящена вопросам, связанным с классическими решениями начально-краевых задач и рассчитана на один семестр курса. Вторая часть посвящена обобщенным решениям начально-краевых задач. Здесь изучаются краевые задачи для многомерных уравнений математической физики – эллиптических, параболических, гиперболических. Основным методом доказательства разрешимости краевых задач является метод Галеркина, метод основанный на теореме Рисса о представлении линейного непрерывного функционала в гильбертовом пространстве. Обобщенные решения ищутся в пространствах С.Л. Соболева.

В дополнении сформулированы результаты о существовании, единственности, гладкости решений для более общих краевых задач.

Автор надеется, что данное пособие поможет студентам в первоначальном изучении курсов математической физики, уравнений в частных производных. При написании курса в основном использовались известные учебники и монографии ([5], [7], [11], [14], [17], [19])

1. Классификация уравнений в частных производных

Пусть E_n - n-мерное евклидово пространство, D, G, Ω обозначим области из пространства E_n . Через $x=(x_1,\ldots,x_n), y=(y_1,\ldots,y_n)$ обозначим точки пространства E_n . Пусть $v(x)=v(x_1,\ldots,x_n), u(x)=u(x_1,\ldots,x_n)$ - функции, определённые на некоторых областях пространства E_n

Определение. Уравнением в частных производных называется уравнение, в которое входят независимые переменные $x = (x_1, \ldots, x_n)$, неизвестная функция u(x) и ее частные производные. Порядок наибольшей производной, входящей в уравнение, называется порядком уравнения. (Предполагается, что эта производная нетривиальным образом входит в уравнение).

Примеры.

$$u_{x_1} + u_{x_2} + u_{x_1 x_2} = 0, (1.1)$$

$$u_{x_1 x_2 x_3}^2 + f(u, u_{x_1}) = 0, (1.2)$$

где (1.1) - уравнение второго порядка, (1.2) - уравнение третьего порядка.

Под уравнениями математической физики понимают дифференциальные уравнения, описывающие те или иные физические процессы. В данном курсе мы изучаем уравнения в частных производных второго порядка.

Определение. Уравнение называется сильно нелинейным, если старшие производные уравнения входят в него нелинейно (коэффициенты перед ними зависят от старших производных уравнения).

Уравнение (1.1) не является сильно нелинейным, уравнение (1.2) явялется сильно нелинейным также как и уравнение

$$\sin(u_{x_1x_2x_3}) + f(\nabla u) = 0.$$

Определение. Нелинейное уравнение, не являющееся сильно нелинейным, называется квазилинейным уравнением.

Определение. Нелинейное уравнение, в котором нелинейным образом входит только неизвестная функция, называется полулинейным.

Например, уравнение

$$u_{x_1} + u_{x_2} = f(u) + \varphi(x),$$

где f(u) - нелинейная функция.

Определение. Уравнение в частных производных, в котором неизвестная функция и все ее частные производные входят линейным образом, называется линейным уравнением.

Линейное уравнение второго порядка имеет вид

$$\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u(x)}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x) \frac{\partial u}{\partial x_i} + c(x)u(x) = f(x). \tag{1.3}$$

Здесь $a_{ij}(x)$, $b_i(x)$, c(x), f(x) заданные в Ω функции.

Линейное уравнение второго порядка

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial u(x)}{\partial x_i} \right) + \sum_{i=1}^{n} b_i(x) \frac{\partial u}{\partial x_i} + c(x)u(x) = f(x). \tag{1.3'}$$

называют уравнением, записанным в дивергентном виде.

Рассмотрим матрицу старших коэффициентов

$$A(x) = \begin{pmatrix} a_{11}(x) & \dots & a_{1n}(x) \\ \dots & \dots & \dots \\ a_{n1}(x) & \dots & a_{nn}(x) \end{pmatrix}$$

уравнения (1.3) ((1.3')). Считаем, что матрица A(x) симметрична в каждой точке $x \in \Omega$.

Зафиксируем $x \in \Omega$. Рассмотрим уравнение

$$|A(x) - \lambda E| = \begin{vmatrix} a_{11}(x) - \lambda & a_{12}(x) & \dots & a_{1n}(x) \\ a_{21}(x) & a_{22}(x) - \lambda & \dots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(x) & \dots & a_{nn-1}(x) & a_{nn}(x) - \lambda \end{vmatrix} = 0, \quad (1.4)$$

определяющее собственные значения матрицы A(x). Из алгебры известно, что все собственные числа симметричной матрицы действительные. Мы имеем n действительных решений (учитывая кратность) $\lambda_1, \lambda_2, \ldots, \lambda_n$ уравнения (1.4). Пусть α - число положительных, β - число отрицательных, γ - число нулевых собственных чисел матрицы A(x).

Определение. Тройка чисел (α, β, γ) называется типом уравнения (1.3) (уравнения (1.3)) в точке x.

Умножим уравнение (1.3) (уравнение (1.3')) на -1. Получим уравнение типа (β, α, γ) . Так как все решения полученного уравнения те же, что и у исходного, мы считаем, что (α, β, γ) и (β, α, γ) - один и тот же тип.

Пусть $\alpha + \beta + \gamma = n$. Выделяются следующие типы уравнений: (n,0,0) или (0,n,0) - эллиптический,

 $(n-1,1,0) \ (1,n-1,0)$ - гиперболический,

 $(n-1,0,1) \ (0,n-1,1)$ - параболический,

 $(n-2,2,0) \ (2,n-2,0)$ - ультрагиперболический,

 $(n-2,0,2) \ (0,n-2,2)$ - ультрапараболический.

Примеры.

1. Уравнение, описывающее волновые процессы.

$$u_{tt} = a^2 \Delta u + f(t, x, \nabla u, u), \tag{1.5}$$

 $\Delta u(x) = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}, \, \nabla u(x) = \operatorname{grad} u(x).$ Уравнение (1.5) называется при n=1 - уравнение колебания струны, при n=2 - уравнение колебания мембраны, при n=3 - уравнение колебания трехмерных тел.

Определим тип уравнения колебания. Матрица A(x) уравнения

$$u_{tt} - a^2 \Delta u = f(t, x, \nabla u, u),$$

где $u=u(t,x),\,t\in E^1,\,x\in E^n$, имеет размерность $n+1\times n+1$, не зависит от x и имеет вид.

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & -a^2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & -a^2 \end{pmatrix}.$$

Её собственные числа $\lambda_1=1,\,\lambda_2=\lambda_3=\ldots,=\lambda_n=\lambda_{n+1}=-a^2.$

Тип уравнения - гиперболический: (1, n, 0).

Замечание. В случае уравнения (1.5) размерность независимых переменных (t, x_1, \ldots, x_n) равна n+1 и (n+1,0,0), (n,1,0), (n,0,1) ((0,n+1,0), (1,n,0), (0,n,1)) типы эллиптический, гиперболический, параболический соответственно.

2. Уравнение (уравнение теплопроводности, диффузионное уравнение), описывающее распространение тепла, диффузионные процессы.

$$u_t = a^2 \Delta u + f(t, x, \nabla u, u), \tag{1.6}$$

где $u = u(t, x), t \in E^1, x \in E^n$.

Перепишем (1.6) в виде

$$0 \cdot u_{tt} - a^2 \Delta u = -u_t + f(t, x, \nabla u, u),$$

и запишем матрицу A(x) = A:

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & -a^2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & -a^2 \end{pmatrix}.$$

Её собственные числа $\lambda_1=0,\ \lambda_2=\lambda_3=\ldots,=\lambda_n=\lambda_{n+1}=-a^2.$ Тип уравнения - параболический: (0,n-1,0).

3. Уравнение Пуассона.

$$\Delta u = f(x), \tag{1.7}$$

где $u = u(x), \quad x \in \Omega \in E_n.$

Если f(x) = 0, уравнение (1.7) принимает вид

$$\Delta u = 0. (1.8)$$

Уравнение (1.8) называется уравнением Лапласа.

Запишем матрицу A(x) = A:

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 \end{pmatrix}.$$

Её собственные числа $\lambda_1 = \lambda_2 = \dots, = \lambda_n = 1$. Тип уравнения - эллиптический: (n,0,0).

Отметим, что тип рассмотренных выше уравнений, не зависит от точки x, так как матрицы A в этих уравнениях постоянные.

4. Уравнение Трикоми (уравнение газовой динамики).

$$x_2 \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} = 0.$$

Матрица коэффициентов имеет вид

$$A(x) = \left(\begin{array}{cc} x_2 & 0\\ 0 & 1 \end{array}\right).$$

Собственные числа матрицы $\lambda_1=x_2,\ \lambda_2=1.$ При $x_2>0$ тип уравнения эллиптический (n,0,0); при $x_2=0$ тип уравнения параболический (n-1,0,1); при $x_2<0$ тип уравнения гиперболический $(n-1,1,0),\ n=2.$

2. Постановки краевых задач

Стационарные уравнения

Рассмотрим дифференциальное операторное выражение

$$L(\cdot) = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2}(\cdot)}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial(\cdot)}{\partial x_{i}} + c(\cdot),$$

где a_{ij}, b_i, c - заданные коэффициенты, зависящие от $x, x \in \Omega, \Omega \subset E_n$. Рассмотрим уравнение

$$L(u) = f. (2.1)$$

Первая краевая задача. Найти функцию u(x), определённую в $\overline{\Omega}$, удовлетворяющую в Ω уравнению (2.1) и на границе $\partial\Omega$ области Ω совпадающую с заданной функцией $\varphi(x)$:

$$u|_{\partial\Omega} = \varphi(x), \qquad x \in \Omega.$$
 (2.2)

Условие (2.2) называют граничным условием 1-го рода. Задача (2.1), (2.2) - первая краевая задача для уравнения (2.1), описывающего стационарные процессы.

Определение классического решения задачи (2.1), (2.2): Функция $u(x) \in C^2(\Omega) \cap C(\overline{\Omega})$ называется классическим решением задачи (2.1), (2.2), если в Ω она удовлетворяет уравнению (2.1), а на границе условию (2.2).

Ниже мы будем использовать следующие функциональные пространства.

 $C(\overline{\Omega})=\{$ множество функций f непрерывных на $\overline{\Omega}\},$

 $C(\Omega) = \{$ множество функций f непрерывных на $\Omega\}$,

 $C^k(\Omega) = \{$ множество функций f непрерывных на Ω , имеющих в Ω все непрерывные производные по всем своим аргументам до порядка k включительно $\}, k > 0, k-$ целое, $C^0(\Omega) = C(\Omega)$.

Вторая краевая задача. Найти функцию u(x), определённую в $\overline{\Omega}$, удовлетворяющую в Ω уравнению (2.1) и на границе $\partial\Omega$

$$\frac{\partial u}{\partial N}\Big|_{\partial\Omega} = \psi(x). \qquad x \in \Omega.$$
 (2.3)

Здесь $\frac{\partial u}{\partial N} = \sum_{i,j=1}^n a_{ij} \frac{\partial u}{\partial x_j} cos(n,x_i)$ - производная по конормали, $\psi(x)$ - заданная на $\partial \Omega$ функция, n - внешная нормаль к границе $\partial \Omega$. Условие (2.3) - граничное условие 2-го рода. Задача (2.1), (2.3) - вторая краевая задача.

Определение классического решения задачи (2.1), (2.3): Функция $u(x) \in C^2(\Omega) \cap C^1(\overline{\Omega})$ называется классическим решением задачи (2.1), (2.3), если в Ω она удовлетворяет уравнению (2.1), а на границе $\partial\Omega$ условию (2.3).

Третья краевая задача. Найти функцию u(x), определённую в $\overline{\Omega}$, удовлетворяющую в Ω уравнению (2.1) и на границе $\partial\Omega$ условию

$$\left(\frac{\partial u}{\partial N} + \sigma(x)\right)\Big|_{\partial\Omega} = \mu(x), \qquad x \in \Omega.$$
 (2.4)

Здесь $\sigma(x)$, $\mu(x)$ - заданные на $\partial\Omega$ функции, $\sigma(x)>0$.

Условие (2.4) - граничное условие 3-го рода. Задача (2.1), (2.4) - третья краевая задача.

В случае, когда

$$a_{ij} = \delta_i^j = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases}$$
 $b_i(x) = c(x) = 0,$

уравнение (2.1) является уравнением Пуассона

$$\Delta u = f$$
.

Первая краевая задача для уравнения Пуассона:

$$\Delta u = f$$

$$u|_{\partial\Omega} = \varphi(x), \qquad x \in \partial\Omega.$$

Вторая краевая задача для уравнения Пуассона:

$$\Delta u = f,$$

$$\frac{\partial u}{\partial n}\Big|_{\partial \Omega} = \psi(x), \qquad x \in \partial \Omega.$$

В этом случае
$$\frac{\partial u}{\partial N} = \sum_{i,j=1}^n a_{ij} \frac{\partial u}{\partial x_i} cos(n,x_i) = \sum_{i=1}^n \frac{\partial u}{\partial x_i} cos(n,x_i) = \frac{\partial u}{\partial n}.$$

Замечание. Можно на различных частях границы задавать различные условия. В таком случае говорят, что поставлена смешанная краевая задача.

Нестационарные уравнения

Введем следующие обозначения: $Q_T = \{(t,x)|0 < t < T, x \in \Omega\}$, где $\Omega \subset E_n$ - ограниченная область, $S_T = (0,T] \times \partial \Omega$ - боковая граница множества Q_T , $\Gamma_T = S_T \cap \overline{\Omega}$, и

$$L(u) = \sum_{i,j=1}^{n} a_{ij}(t,x) \frac{\partial^2 u(t,x)}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(t,x) \frac{\partial u(t,x)}{\partial x_i} + c(t,x)u(t,x)$$

- дифференциальный оператор с коэффициентами зависящими от временной переменной t и пространственной переменной $x=(x_1,\ldots,x_n),\,x\in\Omega.$

Рассмотрим уравнение

$$\frac{\partial u(t,x)}{\partial t} = L(u) + f(t,x), \qquad (t,x) \in Q_T$$
 (2.5)

Матрица $\widetilde{A}(t,x)$ старших коэффициентов уравнения (2.5) имеет вид

$$\begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & a_{11}(x) & a_{12}(x) & \dots & a_{1n}(x) \\ 0 & a_{21}(x) & a_{22}(x) & \dots & a_{2n}(x) \\ \dots & \dots & \dots & \dots \\ 0 & a_{n1}(x) & a_{n2}(x) & \dots & a_{nn}(x) \end{pmatrix}$$
 Зададим начальные условия

$$u(0,x) = u_0(x), \qquad x \in \Omega, \tag{2.6}$$

и краевые условия

$$u|_{S_T} = \varphi(t, x), \qquad (t, x) \in S_T. \tag{2.7}$$

Первая краевая задача. Кратко первую краевую задачу можно записать как задачу (2.5), (2.6), (2.7) или задачу (2.5) - (2.7). Найти решение задачи (2.5) - (2.7) значит найти функцию u(t,x), определенную в \overline{Q}_T , удовлетворяющую в $\overline{Q}_T \setminus \Gamma_T$ уравнению (2.5), при t=0 удовлетворяющую начальному условию (2.6), а на границе S_T условию (2.7).

Определание. Функция $u(t,x) \in C^2(Q_T) \cap C(\overline{Q}_T)$ называется классическим решением задачи (2.5) - (2.7), если она удовлетворяет уравнению (2.5) в $\overline{Q}_T \backslash \Gamma_T$, начальному условию (2.6) и граничному условию (2.7).

Вторая краевая задача (задача (2.5), (2.6), (2.8)).

Найти функцию u(t,x), определенную в \overline{Q}_T , удовлетворяющую в $Q_T \backslash \Gamma_T$ уравнению (2.5), при t=0 удовлетворяющую начальному условию (2.6), а на границе S_T условию

$$\frac{\partial u}{\partial N}\Big|_{\partial\Omega} = \psi(t, x), \qquad (t, x) \in S_T.$$
 (2.8)

Здесь $\psi(t,x)$ заданная на S_T функция.

Определание. Функция $u(t,x) \in C^2(Q_T) \cap C^1(\overline{Q}_T)$ называется классическим решением задачи (2.5), (2.6), (2.8), если она удовлетворяет уравнению (2.5) в $\overline{Q}_T \backslash \Gamma_T$, начальному условию (2.6) и граничному условию (2.8).

Третья краевая задача. Найти функцию u(t,x), определенную в $\overline{Q}_T \backslash \Gamma_T$, удовлетворяющую в Q_T уравнению (2.5), начальному условию (2.6)

и условию

$$\left(\frac{\partial u}{\partial N} + \sigma(x)u\right)\Big|_{(t,x)\in S_T} = \mu(t,x), \qquad (t,x)\in S_T.$$
 (2.9)

Здесь $\sigma(x)$, $\mu(t,x)$ - заданные на S_T функции.

Определение. Классическим решением третьей краевой задачи (2.5), (2.6), (2.9) называется функция $u(t,x) \in C^2(Q_T) \cap C^1(\overline{Q}_T)$, если она удовлетворяет уравнению (2.5) в $\overline{Q}_T \backslash \Gamma_T$ и условиям (2.6), (2.9).

Рассмотрим уравнение

$$\frac{\partial^2 u(t,x)}{\partial t^2} = L(u) + f(t,x), \tag{2.10}$$

где

$$L(u) = \sum_{i,j=1}^{n} a_{ij}(t,x) \frac{\partial^2 u(t,x)}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(t,x) \frac{\partial u(t,x)}{\partial x_i} + c(t,x)u(t,x),$$

или в дивергентном виде

$$L(u) = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} (a_{ij}(t,x) \frac{\partial u(t,x)}{\partial x_i}) + \sum_{i=1}^{n} b_i(t,x) \frac{\partial u(t,x)}{\partial x_i} + c(t,x)u(t,x).$$

Матрица $\widetilde{A}(t,x)$ старших коэффициентов размерности $(n+1)\times(n+1)$ уравнения (2.10) имеет вид

$$\widetilde{A}(t,x) = \begin{pmatrix} -1 & 0 & 0 & \dots & 0 \\ 0 & a_{11}(x) & a_{12}(x) & \dots & a_{1n}(x) \\ 0 & a_{21}(x) & a_{22}(x) & \dots & a_{2n}(x) \\ \dots & \dots & \dots & \dots \\ 0 & a_{n1}(x) & a_{n2}(x) & \dots & a_{nn}(x) \end{pmatrix}.$$

Собственные числа матрицы $\widetilde{A}(t,x)$: $\lambda_1 = 1, \lambda_2, \ldots, \lambda_n, \lambda_{n+1}$, где $\lambda_2, \ldots, \lambda_{n+1}$ - собственные числа матрицы A. В случае, когда $\lambda_2, \ldots, \lambda_{n+1}$ не равны нулю и положительные (отрицательные), тип уравнения (2.10) есть гиперболический. Отметим, что в уравнениии (2.10) число независимых переменных равно n+1.

Первая краевая задача. Найти функцию u(t,x), определенню в \overline{Q}_T , удовлетворяющую в $\overline{Q}_T \backslash \Gamma_T$ уравнению (2.10), начальным условиям

$$u(0,x) = u_0(x), \qquad x \in \overline{\Omega}, \tag{2.11}$$

$$u_t(0,x) = u_1(x), \qquad x \in \overline{\Omega},$$
 (2.12)

и граничному условию (2.7).

Определение. Классическим решением первой краевой задачи (2.10), (2.11), (2.12) (2.7) называется функция $u(t,x) \in C^2(Q_T) \cap C^1(\overline{Q}_T)$, удовлетворяющая уравнению (2.10) в $\overline{Q}_T \backslash \Gamma_T$, начальным условиям (2.11), (2.12) и краевому условию (2.7).

Вторая краевая задача. Найти в функцию u(t,x), определенную в \overline{Q}_T , удовлетворяющая в $\overline{Q}_T \backslash \Gamma_t$ уравнению (2.10), начальным условиям (2.11), (2.12) и условию

$$\frac{\partial u}{\partial N}\Big|_{S_T} = \psi(t, x), \qquad (t, x) \in S_T.$$
 (2.13)

Определение. Классическим решением второй краевой задачи (2.10), (2.11), (2.12) (2.13) называется функция $u(t,x) \in C^2(Q_T) \cap C^1(\overline{Q}_T)$, удовлетворяющую уравнению (2.10) в $\overline{Q}_T \setminus \Gamma_T$, начальным условиям (2.11), (2.12) и краевому условию (2.13).

Третья краевая задача. Найти в функцию u(t,x),определенную в \overline{Q}_T , удовлетворяющую в $\overline{Q}_T \backslash \Gamma_T$ уравнению (2.10), начальным условиям (2.11), (2.12) и условию

$$\left(\frac{\partial u}{\partial N} + \alpha u\right)\Big|_{S_T} = \Phi(t, x), \qquad (t, x) \in S_T. \tag{2.14}$$

Определение. Классическим решением третьей краевой задачи (2.10), (2.11), (2.12) (2.14) называется функция $u(t,x) \in C^2(Q_T) \cap C^1(\overline{Q}_T)$, если она удовлетворяет уравнению (2.10) в $\overline{Q}_T \backslash \Gamma_T$, начальным условиям (2.11), (2.12) и краевому условию (2.14).

Одномерные задачи

В механике сплошных сред одномерными задачами называются задачи, в которых пространственные переменные имеют размерность 1. Ниже мы

рассмотрим постановки одномерных задач. При n=1 уравнение Пуассона $-\Delta u=f$ переходит в обыкновенное дифференциальное уравнение $-u_{\xi\xi}=f(\xi)$.

Уравнение теплопроводности (диффузии) переходит в уравнение

$$\frac{\partial u}{\partial t} = a^2(t, x) \frac{\partial^2 u}{\partial x^2} + b(t, x) \frac{\partial u}{\partial x} + c(t, x)u + f(t, x), \tag{2.15}$$

уравнение колебания объёмов - в уравнение колебания струны

$$\frac{\partial^2 u}{\partial t^2} = a^2(t, x) \frac{\partial^2 u}{\partial x^2} + b(t, x) \frac{\partial u}{\partial x} + c(t, x)u + f(t, x). \tag{2.16}$$

Функции a(t,x), b(t,x), c(t,x), f(t,x) определяются внешними условиями и физическими свойствами исследуемого материала. Можно непосредственно вывести указанные уравнения на основании законов сохранения.

Краевые условия для одномерных задач

Пусть n=1.

Рассмотрим интервал $\Omega = (0, l)$. В данном случае $\partial \Omega = (0, 0) \cup (0, l)$, $S_T = \{(t, 0), 0 < t \leq T\} \cup \{(t, l), 0 < t \leq T\}$. Начальные условия

$$u(0,x) = u_0(x), x \in [0,l],$$
 (2.17)

граничные условия первого рода

$$u(t,0) = \varphi_1(t), \qquad u(t,l) = \varphi_2(t), \qquad 0 < t \le T.$$
 (2.18)

Задача (2.15), (2.17), (2.18) - первая краевая задача для одномерного уравнения теплопроводности.

При n=1, имеет место равенство

$$\frac{\partial u}{\partial N} = a^2 u_x \cos(n, e),$$

где n - нормаль к S_T , e - единичный вектор, направленный в положительную сторону оси x. На границе S_T имеет место равенство $cos(n,e)=\pm 1$ (знак зависит от направления n). Имеют место равенства

$$\frac{\partial u}{\partial N}\Big|_{(t,l)} = a^2 \frac{\partial u}{\partial x} cos(n,e)\Big|_{(t,l)} = a^2 \frac{\partial u}{\partial x}\Big|_{(t,l)} = \psi_2(t),$$

$$\frac{\partial u}{\partial N}\Big|_{(t,0)} = a^2 \frac{\partial u}{\partial x} cos(n,e)\Big|_{(t,0)} = -a^2 \frac{\partial u}{\partial x}\Big|_{(t,0)} = \psi_1(t).$$
(2.19)

Из (2.19) следует, что условие второго рода в одномерном случае имеют вид

$$\frac{\partial u(t,l)}{\partial x} = \xi_2(t), \qquad \frac{\partial u(t,0)}{\partial x} = \xi_1(t), \qquad 0 < t \le T. \tag{2.20}$$

Здесь $\xi_1(t)=-\frac{\psi_1}{a^2(t,l)},\,\xi_2(t)=\frac{\psi_1}{a^2(t,0)}.$ Задача (2.15), (2.17), (2.20) - вторая краевая задача для одномерного уравнения теплопроводности.

В одномерном случае третье краевое условие запишется в виде

$$-\frac{\partial u(t,0)}{\partial x} + \alpha u(t,0) = \xi_1(t), \qquad \frac{\partial u(t,l)}{\partial x} + \alpha u(t,l) = \xi_2(t), \qquad 0 < t \le T.$$
(2.21)

Задача (2.15), (2.17), (2.21) - третья краевая задача для одномерного уравнения теплопроводности.

Краевые задачи для уравнения колебания струны (2.16).

Рассмотрим начальное условие

$$u_t(0,x) = u_1(x), \qquad x \in (0,l).$$
 (2.22)

Задачи:

(2.16), (2.17), (2.22), (2.18) - первая краевая задача,

 $(2.16),\,(2.17),\,(2.22),\,(2.20)$ - вторая краевая задача,

(2.16), (2.17), (2.22), (2.21) - третья краевая задача.

Задачу, когда на концах отрезка [0,l] задаются условия разного рода, будем называть смешанной краевой задачей. Например, условие

$$u(t,0) = \varphi(t), \qquad \frac{\partial u(t,l)}{\partial x} = \psi(t), \qquad 0 < t \le T.$$

Корректные задачи по Адамару

Задача называется корректной по Адамару, если выполняются следующие условия:

- 1) решение задачи существует;
- 2) решение задачи единственное;
- 3) решение задачи непрерывно зависит от входных данных.

3. Единственность классического решения краевых задач для уравнения колебания струны

В области $\overline{Q}_T \backslash \Gamma_T = \{(t,x) | 0 < t \le T, 0 < x < l \}$ рассмотрим уравнение

$$u_{tt} = a^2 u_{xx} + f(t, x), (3.1)$$

начальные условия

$$u(0,x) = u_0(x), \qquad x \in (0,l),$$
 (3.2)

$$u_t(0,x) = u_1(x), \qquad x \in (0,l),$$
 (3.3)

и краевые условия

$$u(t,0) = \varphi_1(t), \qquad u(t,l) = \varphi_2(t), \qquad 0 < t < T,$$
 (3.4)

$$u_x(t,0) = \varphi_1(t), \qquad u_x(t,l) = \varphi_2(t), \qquad 0 < t < T.$$
 (3.5)

Выше (3.1) - (3.4) - первая краевая задача, (3.1) - (3.3), (3.5) - вторая краевая задача.

Все функции, рассматриваемые в задачах считаем непрерывными на замыкании своих областей определений.

Определение. Классическим решением задачи (3.1) - (3.4) называется функция $u(t,x) \in C^1(\overline{Q}_T) \cap C^2(Q_T)$, удовлетворяющая в Q_T уравнению и условиям (3.2) - (3.4).

Теорема 1. Классическое решение u(t,x) класса $C^2(\overline{Q}_T)$ задачи (3.1) - (3.4) единственно.

Доказательство. Пусть $u_1(t,x), u_2(t,x)$ - два решения класса $C^2(\overline{Q}_T)$ задачи (3.1) - (3.4). Рассмотрим функцию $u(t,x)=u_1(t,x)-u_2(t,x)$. Ясно, что $u\in C^2(\overline{Q}_T)$ и в силу линейности задачи (3.1) - (3.4) является решением однородной задачи

$$u_{tt} = a^2 u_{xx}, (3.1')$$

$$u(0,x) = 0, (3.2')$$

$$u_t(0, x) = 0, (3.3')$$

$$u(t,0) = 0, \quad u(t,l) = 0.$$
 (3.4')

Умножим (3.1') на u(t,x) и проинтегрируем результат по цилиндру $Q_t = \{(\tau,x)|0<\tau< t,x\in(0,l)\}$. Получим равенство

$$\int_{Q_t} u_{tt} u_t \, dx dt = a^2 \int_{Q_t} u_{xx} u_t \, dx dt. \tag{3.6}$$

Проинтегрируем по частям левую часть равенства (3.6). Получим

$$\int_{Q_t} u_{tt}(\tau, x) u_t(\tau, x) dx d\tau = \frac{1}{2} \int_0^l \int_0^t \frac{\partial}{\partial t} u_t^2(\tau, x) d\tau dx =
\frac{1}{2} \int_0^l u_t^2(t, x) dx - \frac{1}{2} \int_0^l u_t^2(0, x) dx = \frac{1}{2} \int_0^l u_t^2(t, x) dx, \tag{3.7}$$

так как в силу (3.3') второй член в левой части последнего равенства равен нулю. Рассмотрим интеграл в правой части равенства (3.6). Проинтегрируем его по частям.

$$\int_{Q_{t}} u_{xx} u_{t} dx dt = \int_{0}^{t} \int_{0}^{l} u_{xx}(\tau, x) u_{t}(\tau, x) dx d\tau =
= \int_{0}^{t} (u_{x}(\tau, x) u_{t}(\tau, x)|_{0}^{l}) d\tau - \int_{0}^{t} \int_{0}^{l} u_{x}(\tau, x) u_{tx}(\tau, x) dx d\tau =
= -\frac{1}{2} \int_{0}^{t} \frac{\partial}{\partial t} \left(\int_{0}^{l} u_{x}^{2}(\tau, x) dx \right) d\tau = -\frac{1}{2} \int_{0}^{l} u_{x}^{2}(t, x) dx +
+ \frac{1}{2} \int_{0}^{l} u_{x}^{2}(0, x) dx = -\frac{1}{2} \int_{0}^{l} u_{x}^{2}(t, x) dx.$$
(3.8)

Заметим, что второй член левой части последнего равенства равен нулю в силу (3.2'), а первый член правой части второго равенства равен нулю в

силу (3.4). Учитывая (3.7), (3.8), из (3.6) получим равенство

$$\int_{0}^{l} u_{t}^{2}(t,x) dx + a^{2} \int_{0}^{l} u_{x}^{2}(t,x) dx = 0, 0 \le t \le T.$$
 (3.9)

Так как оба интеграла в левой части не отрицательны, то из (3.9) следует, что каждый их интегралов равен нулю, откуда следует равенство нулю их подынтегральных функций:

$$u_t^2 = 0, u_x^2 = 0 \forall t \in [0, T], x \in [0, l].$$

Из последних соотношений следует, что $u_t=0$, $u_x=0$ и функция u(t,x)=const в Q_t , $0 \le t \le T$. Из (3.2') получаем, что u(t,x)=0 в Q_T , т.е. $u_1(t,x)=u_2(t,x)$ в Q_T .

Замечание. Можно доказать единственность решения задачи (3.1) - (3.4) в классе $C^2(Q_T) \cap C^1\overline{Q}_T$).

Теорема 2. Решение задачи (3.1) - (3.3), (3.5) класса $C^2(\overline{Q}_T)$ единственно.

Доказательство теоремы 2 повторяет доказательство теоремы 1. При доказательстве соотношения (3.8) первый член правой части второго равенства равен нулю в силу условий $u_x(t,0) = u_x(t,l) = 0$ (см. (3.5)).

4. Метод разделения переменных

1. Уравнение теплопроводности. Первая краевая задача

1.1. Однородное уравнение с однородными граничными условиями

Рассмотрим задачу

$$u_t = a^2 u_{xx}, (4.1)$$

$$u(0,x) = u_0(x), (4.2)$$

$$u(t,0) = u(t,l) = 0, (4.3)$$

 $x \in (0, l), \qquad t \in (0, T].$

Здесь $u_0(x)$ - заданная функция, удовлетворяющая некоторым дополнительным условиям, которые мы сформулируем ниже.

Вспогательная задача. Найти все нетривиальные (не равные тождественно нулю) решения задачи (4.1), (4.3) вида T(t)X(x).

Подставим выражение T(t)X(x) в (4.1). Получим соотношения

$$\frac{T'(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = -\lambda, \quad \lambda > 0 - const. \tag{4.4}$$

Откуда

$$T'(t) + \lambda a^2 T(t) = 0, \tag{4.5}$$

$$X''(x) + \lambda X(x) = 0. \tag{4.6}$$

Так как

$$T(t)X(0) = T(t)X(l) = 0 \qquad \forall t \in [0, T],$$

то необходимо, чтобы X(0)=X(l)=0. В противном случае $T(t)\equiv 0$ в [0,T] и T(t)X(x) - тривиальное решение.

Приходим к задаче

$$X''(x) + \lambda X(x) = 0, (4.7)$$

$$X(0) = X(l) = 0. (4.8)$$

Задача Штурма-Лиувилля. Найти все λ , при которых существуют нетривиальные решения задачи (4.7), (4.8) и найти эти решения (λ - действительные числа).

Рассмотрим отдельно случаи $\lambda=0,\,\lambda<0,\,\lambda>0.$

Cлучай $\lambda = 0$. В этом случае задача (4.7), (4.8) имеет вид

$$X'' = 0,$$
 $X(0) = X(l) = 0.$

Общее решение уравнения дано равенством $X(x) = C_1x + C_2$, откуда $X(0) = C_2 = 0$ и $X(l) = C_1l = 0$, что дает равенство $C_1 = 0$. Решение тривиальное.

Cлучай $\lambda < 0$. Характеристический многочлен уравнения (4.7) имеет вид $p^2 + \lambda = 0$. Отсюда $p_{1,2} = \pm \sqrt{-\lambda}$ и $X(x) = C_1 e^{\sqrt{-\lambda}x} + C_2 e^{-\sqrt{-\lambda}x}$ - общее решение уравнения (4.7). Так как

$$X(0) = C_1 + C_2 = 0,$$
 $X(l) = C_1 e^{\sqrt{-\lambda}l} + C_2 e^{-\sqrt{-\lambda}l} = 0,$

то $C_1=-C_2,\ C_1(e^{\sqrt{-\lambda}l}-e^{-\sqrt{-\lambda}l})=0.$ В силу строгой монотонности функции e^x величина $e^{\sqrt{-\lambda}l}-e^{-\sqrt{-\lambda}l}\neq 0.$ Следовательно, $C_1=0$ и $C_2=0.$ Решение задачи (4.7), (4.8) тривиальное.

Случай $\lambda > 0$. Характеристический многочлен для уравнения (4.7) имеет вид $p^2 + \lambda = 0$. Отсюда $p_{1,2} = \pm \sqrt{-\lambda} = \pm i\sqrt{\lambda}$ и общее решение уравнения (4.7) есть $X(x) = C_1 \cos \sqrt{\lambda} x + C_2 \sin \sqrt{\lambda} x$. В силу условий (4.8) $X(0) = C_1 = 0$, $X(l) = C_2 \sin \sqrt{\lambda} l = 0$. При $C_2 = 0$ получается тривиальное решение. Следовательно, $\sin \sqrt{\lambda} l = 0$. Корни этого уравнения $\sqrt{\lambda} l = \pi k$, $k = 1, 2, \ldots$ Получим, что только при $\lambda = (\frac{\pi k}{l})^2$, $k = 1, 2, \ldots$, существуют нетривиальные решения задачи (4.7), (4.8). Так как каждому $k \geq 1$ соответствует некоторое λ , то обозначать его будем λ_k : $\lambda_k = (\frac{\pi k}{l})^2$, $k \geq 1 \ldots$. Данным λ_k соответствуют решения задачи (4.7), (4.8)

$$X_k(x) = C_k \sin(\frac{\pi k}{l}x), \qquad k = 1, 2, \dots$$
 (4.9)

Других нетривиальных решений задачи Штурма - Лиувилля нет и уравнение (4.5) мы должны рассматривать при $\lambda_k = (\frac{\pi k}{L})^2$:

$$T_k'(t) + \lambda_k a^2 T_k(t) = 0.$$

Общее решение этого уравнения даётся формулой

$$T_k(t) = M_k e^{-\lambda_k a^2 t} = M_k e^{-(\frac{\pi k}{l})^2 a^2 t}, \qquad k \ge 1.$$
 (4.10)

Из (4.9), (4.10) следует, что все нетривиальные решения задачи (4.1), (4.3) даются формулой

$$u_k(t,x) = C_k e^{-(\frac{\pi k}{l})^2 a^2 t} \sin \frac{\pi k}{l} x.$$
 (4.11)

Других нетривиальных решений задачи (4.1), (4.3), представленных в виде T(t)X(x), нет.

Рассмотрим ряд

$$u(t,x) = \sum_{k=1}^{\infty} u_k(t,x) = \sum_{k=1}^{\infty} C_k e^{-(\frac{\pi k}{l})^2 a^2 t} \sin \frac{\pi k}{l} x.$$
 (4.12)

Покажем, что C_k при соответствующих ограничениях на $u_0(x)$ можно выбрать таким образом, что u(t,x) будет классическим решением задачи (4.1) - (4.3).

Предположим, что ряд (4.12) в \overline{Q}_T сходится равномерно. При x=0 $u(t,0)=\sum_{k=1}^{\infty}C_kT_k(t)X_k(0)=\sum_{k=1}^{\infty}C_kT_k(t)\cdot 0=0$. Аналогично u(t,l)=0 Следовательно, u(t,x) удовлетворяет краевым условиям (4.3).

Предполагая, что $u_0(x)$ разлагается в ряд по синусам, получим

$$u(0,x) = \sum_{k=1}^{\infty} C_k \sin \frac{\pi k}{l} x = u_0(x) = \sum_{k=1}^{\infty} \alpha_k \sin \frac{\pi k}{l} x$$

где

$$\alpha_k = \frac{2}{l} \int_0^l u_0(x) \sin \frac{\pi k}{l} x \, dx \tag{4.13}$$

- k - ый коэффициент Фурье по системе $\left\{\sin\frac{\pi k}{l}x\right\}_{k=1}^{\infty}$. Из последних равенств следует, что

$$\sum_{k=1}^{\infty} C_k \sin \frac{\pi k}{l} x = \sum_{k=1}^{\infty} \alpha_k \sin \frac{\pi k}{l} x.$$

В силу единственности разложения функции в ряд Фурье

$$C_k = \alpha_k, \qquad k = 1, 2, \dots (4.14)$$

Таким образом,

$$u(t,x) = \sum_{k=1}^{\infty} \alpha_k e^{-(\frac{\pi k}{l})^2 a^2 t} \sin \frac{\pi k}{l} x, \qquad u_k(t,x) = \alpha_k e^{-(\frac{\pi k}{l})^2 a^2 t} \sin \frac{\pi k}{l} x, \quad (4.15)$$

где α_k определяются формулами (4.13).

Найдем общий вид производных $\frac{\partial^{m+n}u_k}{\partial t^m\partial x^n}$

$$\frac{\partial}{\partial t}u_k(t,x) = -\alpha_k(\frac{\pi k}{l})^2 a^2 e^{-(\frac{\pi k}{l})^2 a^2 t} \sin\frac{\pi k}{l}x,$$

.....

$$\frac{\partial^n}{\partial t^n} u_k(t, x) = (-1)^n \alpha_k (\frac{\pi k}{l})^{2n} a^{2n} e^{-(\frac{\pi k}{l})^2 a^2 t} \sin \frac{\pi k}{l} x.$$
$$\frac{\partial}{\partial x} u_k(t, x) = \alpha_k (\frac{\pi k}{l}) e^{-(\frac{\pi k}{l})^2 a^2 t} \cos \frac{\pi k}{l} x,$$

.....

$$\frac{\partial^m}{\partial x^m} u_k(t,x) = \alpha_k \left(\frac{\pi k}{l}\right)^m e^{-\left(\frac{\pi k}{l}\right)^2 a^2 t} \left(\sin y\right)^{(m)} \Big|_{y=\frac{\pi k}{l} x}.$$

$$\frac{\partial^{n+m}}{\partial t^n \partial x^m} u_k(t, x) = (-1)^n \alpha_k (\frac{\pi k}{l})^{2n+m} a^{2n} e^{-(\frac{\pi k}{l})^2 a^2 t} \left(\sin y \right)^{(m)} \Big|_{y = \frac{\pi k}{l} x}.$$

Из последнеого неравенства следует, что

$$\left| \frac{\partial^{n+m} u_k(t,x)}{\partial t^n \partial x^m} \right| \le |\alpha_k| \left(\frac{\pi k}{l} \right)^{2n+m} a^{2n} e^{-\left(\frac{\pi k}{l}\right)^2 a^2 t} \qquad \forall (t,x) \in [0,T] \times [0,l]. \tag{4.16}$$

Так как функция e-x монотонно убывающая, то при всех $t\in[t_0,T]$, где $t_0>0$, имеет место неравенство $e^{-(\frac{\pi k}{l})^2a^2t}\leq e^{-(\frac{\pi k}{l})^2a^2t_0}$. Из соотношений $|\alpha_k|=\frac{2}{l}\int\limits_0^lu_0(x)\sin\frac{\pi k}{l}x\,dx\bigg|\leq \frac{2}{l}\int\limits_0^l|u_0(x)|\,dx$, предполагая, что $|u_0(x)|\leq M$, получаем неравенство

$$|\alpha_k| \le 2M, \qquad k \ge 1. \tag{4.17}$$

Из (4.16), (4.17) следует неравенство

$$\left| \frac{\partial^{n+m} u_k(t,x)}{\partial t^n \partial x^m} \right| \le N k^{2n+m} e^{-\left(\frac{\pi k}{l}\right)^2 a^2 t_0} = \chi_k,$$

где постоянная N зависит от a, n, m, l, π и не зависит от k.

$$\sum_{k=1}^{\infty} \frac{\partial^{n+m} u_k(t,x)}{\partial t^n \partial x^m}$$
 мажорируется рядом
$$\sum_{k=1}^{\infty} \chi_k.$$
 (4.18)

По признаку Даламбера, если $\lim_{k\to\infty}\frac{\chi_{k+1}}{\chi_k}=q$ и q<1, то ряд $\sum_{k=1}^\infty X_k$ с положительными членами $X_k>0,\ k\geq 1$, сходится. В нашем случае

$$q = \lim_{k \to \infty} \frac{\chi_{k+1}}{\chi_k} = \lim_{k \to \infty} \frac{N(k+1)^{2n+m} e^{-(\frac{\pi(k+1)}{l})^2 a^2 t_0}}{Nk^{2n+m} e^{-(\frac{\pi k}{l})^2 a^2 t_0}} =$$

$$\lim_{k \to \infty} (1 + \frac{1}{k})^{2n+m} e^{-(\frac{\pi}{l})^2 a^2 t_0(2k+1)} = 0.$$

По признаку Даламбера ряд (4.18) сходится, и на основании теоремы Вейерштрасса ряд $\sum_{k=1}^{\infty} \frac{\partial^{n+m} u_k(t,x)}{\partial t^n \partial x^m}$ сходится равномерно в \overline{Q}_T (при любых фиксированных m и n). По теореме о дифференцируемости равномерно сходящихся рядов функция u(t,x) имеет непрерывные производные по t,x любого порядка в $\overline{Q}_{[t_0,T]},\,t_0>0$, и

$$\frac{\partial^{n+m} u(t,x)}{\partial t^n \partial x^m} = \sum_{k=1}^{\infty} \frac{\partial^{n+m} u_k(t,x)}{\partial t^n \partial x^m}.$$
 (4.19)

В силу произвольности t_0 функция u(t,x) имеет непрерывные производные любого порядка в $(0,T] \times [0,l] = Q_{(0,T]}$.

Некоторые сведения из теории рядов Фурье.

Рассмотрим ряд

$$\sum_{k=1}^{\infty} a_k \cos \frac{\pi kx}{l} + b_k \sin \frac{\pi kx}{l}.$$
 (4.20)

Теорема 1. Пусть функция $\varphi(x)$ периодическая с периодом 2l и (4.20) её ряд Фурье. Пусть $\varphi(x)$ m раз непрерывно дифференцируема, а m+1-ая производная кусочно-непрерывна. Тогда ряд $\sum_{k=1}^{\infty} k^m(|a_k| + |b_k|) < +\infty$.

Замечание. Если мы раскладываем в ряд по $\sin \frac{\pi kx}{l}$ функцию $\varphi(x)$, заданную только на интервале (0,l), то следует потребовать выполнения условий теоремы на функцию $\Phi(x)$, получающуюся при нечетном продолжении $\varphi(x)$. Для непрерывности $\Phi(x)$ в точках x=0 и x=l необходимо, чтобы $\varphi(0)=0$, $\varphi(l)=0$. Непрерывность первой производной $\Phi'(x)$ в точках x=0 и x=l при нечетном продолжении получается автоматически.

Легко видеть, что для непрерывности четных производных функции $\Phi(x)$ требуется, чтобы

$$\varphi^{(k)}(0) = \varphi^{(k)}(l) = 0, \qquad k = 0, 2, 4, \dots, 2d \le m.$$

Условие 1. Пусть функция $u_0(x)$ кусочно-дифференцируема на [0,l] и $u_0(0)=u_0(l)=0.$

Рассмотрим нечетное периодическое продолжение U(x) функции $u_0(x)$. При выполнении условия 1 функция U(x) непрерывна и имеет кусочнонепрерывную производную на $(-\infty, +\infty)$.

Разложим U(x) в ряд Фурье: $u(x) \sim \sum_{k=1}^{\infty} \alpha_k \sin \frac{\pi k}{l} x$. В данном случае это ряд (4.20), где $a_k = 0$, $b_k = \alpha_k$, $k \geq 1$. Из теоремы 1 при выполнении условия 1 ряд $\sum_{k=1}^{\infty} (|a_k| + |b_k|) < \infty$, $(n = 0, a_k = 0)$, и ряд

$$\sum_{k=1}^{\infty} |\alpha_k| \tag{4.21}$$

сходится. Ряд

$$\sum_{k=1}^{\infty} u_k \tag{4.22}$$

мажорируется рядом (4.21) и, следовательно, равномерно в \overline{Q}_T сходится к непрерывной в \overline{Q}_T функции u(t,x). При t=0

$$u(0,x) = \sum_{k=1}^{\infty} u_k(0,x) = \sum_{k=1}^{\infty} \alpha_k \sin \frac{k\pi}{l} x = u_0(x).$$

Функция u(t,x) - бесконечно дифференцируема в $Q_{(0,T]}=(0,T]\times [0,l],$ непрерывна в \overline{Q}_T и удовлетворяет начальному условию (4.2).

По построению функция $u_k(t,x)$ - решение уравнения (4.1). В силу равномерной сходимости ряда $\sum_{k=1}^{\infty} \frac{\partial^{n+m} u_k(t,x)}{\partial t^n \partial x^m}$ в $\overline{Q}_{[t_0,T]}, t_0 > 0$,

$$\left(\frac{\partial}{\partial t} - a^2 \frac{\partial^2}{\partial x^2}\right) u(t, x) = \left(\frac{\partial}{\partial t} - a^2 \frac{\partial^2}{\partial x^2}\right) \sum_{k=1}^{\infty} u_k =$$

$$= \sum_{k=1}^{\infty} \left(\frac{\partial}{\partial t} - a^2 \frac{\partial^2}{\partial x^2} \right) u_k = \sum_{k=1}^{\infty} 0 = 0.$$

Таким образом, $u(t,x) \in C(\overline{Q}_T) \cap C^{\infty}(Q_{(t_0,T]})$ - решение задачи (4.1) - (4.3). Доказана

Теорема 2. Пусть $u_0(x)$ удовлетворяет следующим условиям:

- 1) $u_0(0) = u_0(l) = 0$,
- 2) $u_0(x)$ непрерывна и $u_0'(x)$ кусочно-непрерывна на [0,l].

Тогда ряд $\sum_{k=1}^{\infty} u_k(t,x) = \sum_{k=1}^{\infty} \alpha_k e^{-(\frac{k\pi}{l})^2 a^2 t} \sin \frac{k\pi}{l} x$ является классическим решением задачи (4.1) - (4.3), функция $u(t,x) \in C(\overline{Q}_T) \cap C^{\infty}(Q_{(t_0,T]}), t_0 > 0$.

1.2. Неоднородное уравнение с однородными граничными условиями.

Рассмотрим задачу

$$u_t = a^2 u_{xx} + f(t, x), (4.23)$$

$$u(0,x) = u_0(x). (4.24)$$

$$u(t,0) = u(t,l) = 0. (4.25)$$

Предположим, что

$$f(t,x) = \sum_{k=1}^{\infty} f_k(t) \sin \frac{k\pi}{l} x. \tag{4.26}$$

Здесь $f_k(t)$ - k -ый коэффициент разложения функции f(t,x) по системе $\{\sin\frac{k\pi}{l}x\}_{k=1}^{\infty}$. Предположим, что f(t,x) достаточно гладкая функция.

Под достаточностью мы будем подразумевать, что все дальнейшие выкладки будут верны с точки зрения математического анализа, в частности, ряд (4.26) сходится равномерно в \overline{Q}_T .

Решение задачи (4.23) - (4.25) ищем в виде

$$u(t,x) = \sum_{k=1}^{\infty} C_k(t) \sin \frac{k\pi}{l} x. \tag{4.27}$$

Подставим (4.27) в уравнение (4.21). Получим равенство

$$\sum_{k=1}^{\infty} (C'_k(t) + (\frac{k\pi}{l})^2 a^2 C_k(t) - f_k(t)) \sin \frac{k\pi}{l} x.$$

Из данного равенства и условия (4.24) следует, что

$$C'_k(t) + (\frac{k\pi}{l})^2 a^2 C_k(t) - f_k(t) = 0,$$
 (4.28)

$$C_k(0) = 0. (4.29)$$

Из теории обыкновенных дифференциальных уравнений известно, что если $f_k(t) \in C^m([0,T)$, то существует единственное решение $C_k(t) \in C^{m+1}([0,T])$ задачи (4.28) (4.29) [17].

Пусть $C_k(t)$ - решение задачи (4.28) (4.29), тогда ряд (4.27) - решение задачи (4.23) (4.26).

Замечание. При достаточно гладких f(t,x) ряд (4.27) ряд равномерно сходится вместе с производными требуемого порядка от членов ряда.

1.3. Общая задача.

Рассмотрим задачу для неоднородного уравнения с неоднородными начальными и граничными условиями

$$u_t = a^2 u_{xx} + f(t, x), (4.30)$$

$$u(0,x) = u_0(x), (4.31)$$

$$u(t,0) = \varphi_1(t), \qquad u(t,l) = \varphi_2(t).$$
 (4.32)

Рассмотрим разность $\underline{w(t,x)} = u(t,x) - F(t,x)$, где u(t,x) - решение задачи (4.30) - (4.32) и $F(t,x) = \varphi_2(t) \frac{x}{l} + \frac{l-x}{l} \varphi_1(t)$. Функция w(t,x) есть решение

задачи

$$w_t = a^2 w_{xx} + \Phi(t, x), (4.33)$$

$$w(0,x) = w_0(x) = u_0(x) - F(0,x), (4.34)$$

$$w(t,0) = w(t,l) = 0, (4.35)$$

где $\Phi(t,x) = f(t,x) - F_t(t,x) + a^2 F_{xx}(t,x)$.

Пусть $\underline{v(t,x)} = w(t,x) - z(t,x)$, где z(t,x) - решение однородного уравнения с однородными граничными условиями, при $z(0,x) = w_0(x)$ (решение задачи (4.30) - (4.32) с $u_0(x) = w_0(x)$). Функция v(t,x) - решение задачи (4.33), (4.35) при v(0,x) = 0. Эту задачу мы только что решили.

Таким образом, общая задача приведена к решению трех задач:

$$z_t = a^2 z_{xx},$$

 $z(0,x) = w_0,$ $z(t,0) = z(t,l) = 0.$ (α)

$$w_t = a^2 w_{xx} + \Phi(t, x),$$

$$w(0, x) = w_0 \equiv u_0(x) - F(0, x),$$

$$w(t, 0) = w(t, l) = 0.$$
(3)

$$v_t = a^2 v_{xx} + \Phi(t, x),$$

$$v(0, x) = 0, v(t, 0) = v(t, l) = 0.$$
 (\gamma)

Решение u(t,x) задачи (4.30) - (4.32) дается в виде

$$u(t,x) = v(t,x) + z(t,x) + F(t,x). (4.36)$$

2. Уравнение теплопроводности. Вторая краевая задача

2.1. Однородное уравнение. Однородные граничные условия

Рассмотрим задачу

$$u_t = a^2 u_{xx}, \tag{4.37}$$

$$u(0,x) = u_0(x), x \in [0,l],$$
 (4.38)

$$u_x(t,0) = u_x(t,l) = 0, t \in [0,T].$$
 (4.39)

Вспомогательная задача: Найти все нетривиальные решения задачи (4.37), (4.39), представимые в виде произведения T(t)X(x).

Подставляя это произведение в уравнение (4.37), мы приходим к уравнению

$$T'(t) + \lambda a^2 T(t) = 0, (4.40)$$

и задаче Штурма - Лиувилля

$$X''(x) + \lambda X(x) = 0, (4.41)$$

$$X'(0) = X'(l) = 0. (4.42)$$

Задача Штурма-Лиувилля. Найти все λ , при которых имеются нетривиальные решения задачи (4.41), (4.42), и найти эти решения.

Рассматриваем случаи $\lambda = 0$, $\lambda < 0$, $\lambda > 0$.

Cлучай $\lambda = 0$. В этом случае задача (4.41), (4.42) имеет вид

$$X'' = 0,$$
 $X'(0) = X'(l) = 0.$

Её общее решение уравнения даётся формулой (4.41): $X(x) = C_1 x + C_2$, откуда и из (4.42) $X'(0) = C_1 = 0$. Таким образом, решение $X(x) \equiv C$.

Случай $\lambda < 0$. Характеристический многочлен для уравнения (4.41) имеет вид $p^2 + \lambda = 0$. Отсюда $p_{1,2} = \pm \sqrt{-\lambda}$ и $X(x) = C_1 e^{\sqrt{-\lambda}x} + C_2 e^{-\sqrt{-\lambda}x}$ - общее решение уравнения (4.41) и $X'(x) = \sqrt{-\lambda}(C_1 e^{\sqrt{-\lambda}x} - C_2 e^{-\sqrt{-\lambda}x})$. В силу условия X'(0) = 0 имеем $\sqrt{-\lambda}(C_1 - C_2) = 0$, следовательно, $C_1 = C_2$. При x = l, учитывая последнее равенство, $\sqrt{-\lambda}C_1(e^{\sqrt{-\lambda}l} - e^{-\sqrt{-\lambda}l}) = 0$. Отсюда следует, что получаем $C_1 = 0$. Так как $C_2 = C_1$, то и $C_2 = 0$. В случае $\lambda < 0$ существует только тривиальное решение.

Cлучай $\lambda > 0$. В этом случае общее решение уравнения (4.41) есть $X(x) = C_1 \cos \sqrt{\lambda} x + C_2 \sin \sqrt{\lambda} x$ и производная имеет вид $X'(x) = -\sqrt{\lambda} C_1 \cdot \sin \sqrt{\lambda} x + C_2 \sqrt{\lambda} \cos \sqrt{\lambda} x$. При x = 0 $X'(0) = C_2 \sqrt{\lambda} = 0$. Отсюда $C_2 = 0$. При x = l значение $X'(l) = -C_1 \sqrt{\lambda} \sin \sqrt{\lambda} l = 0$. Так как при $C_1 = 0$ решение задачи (4.41), (4.42) тривиальное, то должно выполняться равенство $\sin \sqrt{\lambda} l = 0$. Его корни $\sqrt{\lambda}_k l = \pi k, k = 1, 2, \ldots$ и $\lambda_k = (\frac{\pi k}{l})^2$. Учитывая, что $\lambda = 0$ есть собственное значение, при котором существует нетривиальное решение задачи (4.41), (4.42), находим, что

$$\lambda_k = \left(\frac{\pi k}{l}\right)^2, \qquad k = 0, 1, 2, \dots \tag{4.43}$$

и все решения задачи (4.41), (4.42) даются соотношениями

$$X_k(x) = C_K \cos \frac{k\pi}{l} x, \qquad k = 0, 1, \dots$$
 (4.44)

Решения уравнения (4.40) даются формулой

$$T_k(t) = C_k e^{-\left(\frac{k\pi}{l}\right)^2 a^2 t}.$$

Все нетривиальные решения задачи (4.37), (4.39), записанные как T(t)X(x) даются в виде

$$u_k(t,x) = C_k e^{-(\frac{k\pi}{l})^2 a^2 t} \cos \frac{k\pi}{l} x, \qquad k = 0, 1, \dots$$
 (4.45)

Рассмотрим ряд

$$u(t,x) = \sum_{k=0}^{\infty} u_k(t,x) = \sum_{k=0}^{\infty} C_k e^{-(\frac{k\pi}{l})^2 a^2 t} \cos \frac{k\pi}{l} x,$$
 (4.46)

где
$$C_k = \alpha_k = \frac{2}{l} \int_0^l u_0(x) \cos \frac{k\pi}{l} x \, dx.$$

В данном случае нужно потребовать, чтобы периодическое четное продолжение U(x) функции $u_0(x)$ было непрерывным и кусочно - дифференцируемым. На основании теоремы 1 ряд $\sum\limits_{k=0}^{\infty} |\alpha_k|$ сходится и, следовательно, мажорируемый им ряд (4.46) сходится равномерно в \overline{Q}_T и функция u(t,x) непрерывна в \overline{Q}_T . Аналогично случаю первой краевой задачи доказывается, что производные $\frac{\partial^{n+m}u}{\partial t^n\partial x^m}$ непрерывны в $\overline{Q}_{(0,T]}$ при любых $n, m \geq 0$.

2. Уравнение колебания струны. Первая краевая задача

Рассмотрим задачу для однородного уравнения с однородными граничными условиями

$$u_{tt} = a^2 u_{xx},$$
 (4.47)

$$u(0,x) = u_0(x), u_t(0,x) = u_1(x), (4.48)$$

$$u(t,0) = u(t,l) = 0.$$
 (4.49)

Вспомогательная задача. Найти все нетривиальные решения задачи (4.47), (4.49), представимые в виде произведения T(t)X(x).

Подставляя это произведение в уравнение (4.47), мы приходим к уравнению

$$T''(t) + \lambda a^2 T(t) = 0, (4.50)$$

и задаче Штурма - Лиувилля

$$X''(x) + \lambda X(x) = 0, \tag{4.51}$$

$$X(0) = X(l) = 0. (4.52)$$

Нам известно, что решение задачи Штурма-Лиувилля даётся соотношениями

$$X_k(x) = C_k \sin \frac{\pi k}{l} x, \qquad \lambda k = \left(\frac{\pi k}{l}\right)^2, \quad k = 1, 2, \dots$$

Подставляя λ_k в (4.50), получаем уравнение

$$T^{"}_{k}(t) + \lambda_k a^2 T_k(t) = 0,$$

решение которого дается формулой (см. [17])

$$T_k(t) = C_k^1 \cos \frac{\pi k}{l} at + C_k^2 \sin \frac{\pi k}{l} at.$$

Все решения вспомогательной задачи есть

$$u_k(t,x) = \left(A_k \cos \frac{\pi k}{l} at + B_k \sin \frac{\pi k}{l} at\right) \sin \frac{\pi k}{l} x. \tag{4.53}$$

Рассмотрим ряд

$$u(t,x) = \sum_{k=1}^{\infty} u_k(t,x).$$
 (4.54)

Предполагая равномерную сходимость ряда (4.54) в \overline{Q}_T , получаем, что

$$u(0,x) = \sum_{k=1}^{\infty} A_k \sin \frac{\pi k}{l} x = u_0(x) = \sum_{k=1}^{\infty} \alpha_k \sin \frac{\pi k}{l} x.$$
 (4.55)

Последнее равенство в (4.55) следует из предположения разложения $u_0(x)$ в ряд по системе $\left\{\sin\frac{\pi k}{l}x\right\}_{k=1}^{\infty}$. Здесь $A_k=\alpha_k$, где $\alpha_k=\frac{2}{l}\int\limits_0^lu_0(x)\sin\frac{\pi k}{l}x\,dx$.

Предполагая равномерную сходимость в \overline{Q}_T дифференцируемого по переменной t ряда (4.54), получим соотношения

$$u_t(0,x) = \sum_{k=1}^{\infty} \frac{\pi k}{l} a B_k \sin \frac{\pi k}{l} x = u_1(x) = \sum_{k=1}^{\infty} \beta_k \sin \frac{\pi k}{l} x,$$
 (4.56)

где
$$\beta_k = \frac{2}{l} \int_0^l u_1(x) \sin \frac{\pi k}{l} x \, dx, \quad B_k = \frac{\beta_k}{\pi k a} l.$$

Очевидны следующие неравенства:

$$|u_{k}(t,x)| \leq |A_{k}| + |B_{k}| \leq M(|\alpha_{k}| + \frac{|\beta_{k}|}{k}),$$

$$\left|\frac{\partial}{\partial x}u_{k}(t,x)\right| \leq M(k|\alpha_{k}| + |\beta_{k}|),$$

$$\left|\frac{\partial^{2}}{\partial x^{2}}u_{k}(t,x)\right| \leq M(k^{2}|\alpha_{k}| + k|\beta_{k}|),$$

$$\left|\frac{\partial}{\partial t}u_{k}(t,x)\right| \leq M(k|\alpha_{k}| + |\beta_{k}|),$$

$$\left|\frac{\partial^{2}}{\partial t\partial x}u_{k}(t,x)\right| \leq M(k^{2}|\alpha_{k}| + k|\beta_{k}|)$$

$$\left|\frac{\partial^{2}}{\partial t^{2}}u_{k}(t,x)\right| \leq M(k^{2}|\alpha_{k}| + k|\beta_{k}|).$$

$$\left|\frac{\partial^{2}}{\partial t^{2}}u_{k}(t,x)\right| \leq M(k^{2}|\alpha_{k}| + k|\beta_{k}|).$$

В (4.57) постоянная M не зависит от k.

Рассмотрим ряд

$$\sum_{k=1}^{\infty} (k^2 |\alpha_k| + k|\beta_k|), \tag{4.58}$$

где α_k , β_k - k-ые коэффициенты Фурье разложения в ряд по системе $\left\{\sin\frac{\pi k}{l}x\right\}_{k=1}^{\infty}$ функций $u_0(x)$ и $u_1(0)$ соответственно.

На входные данные наложим условия, которые позволяют нам доказать на основании теоремы 1 сходимость ряда (4.58):

- I) функция $u_0(x)$ дважды непрерывно дифференцируема, а третья производная кусочно гладкая. Выполняются равенства: $u_0(0) = u_0(l)$, $u_0''(0) = u_0''(l)$.
- II) функция $u_0(x)$ непрерывно дифференцируема, а $u_1''(x)$ кусочно непрерывна на [0,l]. Выполняются равенства: $u_1(0)=u_1(l)=0$.

Так как из сходимости ряда (4.58) следует равномерная сходимость рядов $\sum_{k=1}^{\infty} \frac{\partial^{n+m}}{\partial t^n \partial x^m} u_k(t,x), \ n+m \le 2$, то все рассуждения, проведённые нами

для случая уравнения теплопроводности, законны и выполняются соотношения

$$u(0,x) = u_0,$$
 $u_t(0,x) = u_1(x),$ $u(t,0) = u(t,l) = 0.$

Нами доказана

Теорема. При выполнении условий I), II) ряд (4.54) является классическим решение задачи (4.47) - (4.50) класса $C^2(\overline{Q}_T)$.

5. Задача Коши

Уравнение теплопроводности

Рассмотрим в $\Pi_{[0,T]} = \{(t,x)|0 \le t \le T, x \in E_n\}$ уравнение

$$\frac{\partial u}{\partial t} = L(u(t,x)) + f(t,x), \tag{5.1}$$

где

$$L(u) = \sum_{i,j=1}^{n} a_{ij}(t,x)u_{x_ix_j}(t,x) + \sum_{i=1}^{n} b_i(t,x)u_{x_i} + c(t,x)u$$
$$\sum_{i,j=1}^{n} a_{ij}(t,x)\xi_i\xi_j > 0, \qquad (t,x) \in [0,T],$$

функции $f(t,x), a_{ij}(t,x), b_i(t,x), c(t,x)$ заданы в $\Pi_{[0,T]},$ с начальными данными

$$u(0,x) = \varphi(x), \qquad x \in E_n. \tag{5.2}$$

Задача Коши (5.1), (5.2): Найти функцию $u(t,x) \in C^{1,2}(\Pi_{(0,T]}) \cap C(\Pi_{[0,T]})$, удовлетворяющую уравнению (5.1) в $\Pi_{(0,T]}$ и совпадающую с заданной функцией $\varphi(x)$ при t=0 (выполняется условие (5.2).

Выше $\Pi_{(0,T]}=(0,T]\times E_n$, $C^{1,2}(G)$ - линейное пространство функций u(t,x) непрерывных на G вместе с производными $u_t,\ u_{x_i},\ u_{x_ix_j},\ i,j=1,\ldots,n$.

Уравнение колебания

$$\frac{\partial^2 u}{\partial t^2} = L(u(t,x)) + f(t,x), \qquad (t,x) \in \Pi_{[0,T]}, \tag{5.3}$$

$$u(0,x) = u_0(x), x \in E_n,$$
 (5.4)

$$u_t(0,x) = u_1(x), \qquad x \in E_n.$$
 (5.5)

Задача Коши (5.3) - (5.5): Найти функцию $u(t,x) \in C^2(\Pi_{(0,T]}) \cap C^1(\Pi_{[0,T]})$, удовлетворяющую уравнению (5.3) в $\Pi_{[0,T]}$ и условиям (5.4), (5.5).

Задача Коши для уравнения колебания струны. Формула Даламбера

$$u_{tt} = a^2 u_{xx}, (t, x) \in (0, T] \times E_1,$$
 (5.6)

$$u(0,x) = u_0(x), x \in E_1,$$
 (5.7)

$$u_t(0,x) = u_0(x), \qquad x \in E_1.$$
 (5.8)

Заменой переменных

$$\xi = x + at, \quad \eta = x - at, \quad u(t, x) = v(\xi, \eta) = v(x + at, x - at)$$
 (5.9)

уравнение (5.7) приводится к уравнению $v_{\xi\eta} = 0$, общее решение которого $v(\xi,\eta) = f(\xi) + g(\eta)$ и функция u(t,x) = v(x+at,x-at) = f(x+at) + g(x-at) есть общие решение уравнения (5.6).

Найдем функции f(x+at) и g(x-at), пользуясь условиями (5.7), (5.8), при которых функция u(t,x) есть решение задачи (5.6)-(5.8).

Начальные условия дают равенства

$$f(x) + g(x) = u_0(x), (5.10)$$

$$af'(x) - ag'(x) = u_1(x).$$
 (5.11)

Интегрируя (5.11), получим равенство

$$f(x) - g(x) = \frac{1}{a} \int_{0}^{x} u_1(\xi) d\xi + C,$$
 (5.12)

где C - произвольная постоянная. Складывая соотношения (5.10) и (5.12) и вычитая (5.12) из (5.10), получим соответственно выражения для f(x) и g(x):

$$f(x) = \frac{u_0(x)}{2} + \frac{1}{2a} \int_0^x u_1(\xi) d\xi + \frac{C}{2},$$
 (5.13)

$$g(x) = \frac{u_0(x)}{2} - \frac{1}{2a} \int_0^x u_1(\xi) d\xi - \frac{C}{2}.$$
 (5.14)

Из (5.13) и (5.14) находим

$$u(t,x) = f(x+at) + g(x-at) = \frac{u_0(x+at)}{2} +$$

$$\frac{1}{2a} \int_{0}^{x+at} u_1(\xi) d\xi + \frac{C}{2} + \frac{u_0(x-at)}{2} - \frac{1}{2a} \int_{0}^{x-at} u_1(\xi) d\xi - \frac{C}{2}.$$

Так как $\frac{1}{2a} \int_{0}^{x+at} u_1(\xi) d\xi - \frac{1}{2a} \int_{0}^{x-at} u_1(\xi) d\xi = \frac{1}{2a} \int_{x-at}^{x+at} u_1(\xi) d\xi$, то решение задачи (5.6)-(5.8) представимо в виде.

$$u(t,x) = \frac{u_0(x+at) + u_0(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} u_1(\xi) d\xi.$$
 (5.15)

Формула (5.15) - формула Даламбера. Она даёт решение задачи Коши (5.6) - (5.8).

Первая краевая задача на полупрямой

Требуется найти решение уравнения

$$u_{tt} = a^2 u_{xx}, t > 0, x \in (0, +\infty),$$
 (5.16)

удовлетворяющее начальным условиям

$$u(0,x) = u_0(x), \qquad 0 < x < \infty,$$
 (5.17)

$$u_t(0, x) = u_1(x), \qquad 0 < x < \infty,$$
 (5.18)

и граничному условию

$$u(t,0) = 0, t > 0. (5.19)$$

Найдем решение задачи (5.16) - (5.19).

Лемма 1. Пусть функции $v_0(x), v_1(x)$ нечетные функции класса $C^2(E_1)$. Тогда для решения v(t,x) задачи Коши

$$v_{tt} = a^2 v_{xx},$$

$$v(0,x) = v_0(x), v_t(0,x) = v_1(x),$$

выполняется равенство v(t,0) = 0, t > 0.

Доказательство. Рассмотрим формулу Даламбера при x=0:

$$u(t,0) = \frac{u_0(at) + u_0(-at)}{2} + \frac{1}{2a} \int_{-at}^{at} u_1(\xi) d\xi.$$

Откуда с учетом нечетности функций $u_0(x), u_1(x)$ получаем, что u(t,0) = 0.

Лемма 2. Пусть функции $u_0(x)$, $u_1(x)$ - четные, тогда

$$u_x(t,0) = 0 \quad \forall t \ge 0.$$

Доказательство. Продифференцируем по x равенство (5.15). Рассмотрев результат дифференцирования при x = 0 и учитывая четность функции $u_1(x)$ и нечетность производной от $u_0(x)$, получаем, что $u_x(t,0) = 0$.

Пусть

$$U_0(x) = \begin{cases} u_0(x), & x \ge 0, \\ -u_0(x), & x < 0, \end{cases} \qquad U_1(x) = \begin{cases} u_1(x), & x \ge 0, \\ -u_1(x), & x < 0. \end{cases}$$

Рассмотрим функцию $U(t,x) = \frac{U_0(x+at) - U_0(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} U_1(\xi) d\xi.$

На основании леммы 1 функция u(t,x)=U(t,x) при $t\geq 0, x>0$, есть решение задачи (5.16) - (5.19).

Задача Коши для уравнения теплопроводности. Формула Пуассона

Рассмотрим в $\Pi_{[0,T]}$ задачу

$$u_t = u_{xx}, \qquad (t, x) \in \Pi_{(0,T]}, \tag{5.20}$$

$$u(0,x) = \varphi(x), \qquad x \in E_1. \tag{5.21}$$

Всюду ниже предполагается, что выполняется условие

$$|\varphi(x)| \le Me^{\alpha|x|}, \qquad x \in E_1, \qquad M, a - const > 0.$$
 (5.22)

Условие (5.22) - условие на рост функции $\varphi(x)$ при $x \to \infty$. Функция $\varphi(x)$ растет не быстрее, чем $e^{\alpha|x|}$. Ниже мы докажем, что решение задачи (5.20), (5.21) дается формулой Пуассона [4]

$$u(t,x) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} \varphi(\xi) d\xi.$$
 (5.23)

Лемма 3. При выполнении условия (5.22) интеграл (5.23) сходится при $(t,x)\in\Pi_{(0,+\infty)}$ и

$$|u(t,x)| \le 2Me^{a^2t}e^{a|x|}. (5.24)$$

Сходимость равномерная по $t, x \in G$, где G - произвольная ограниченная область из $\Pi_{(0,T]}$.

Доказательство леммы 3 следует из соотношений

$$|u(t,x)| = \left| \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi - x)^2}{4t}} \varphi(\xi) d\xi \right| \le$$

$$\frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi - x)^2}{4t}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{\sqrt{\pi}} e^{a|x|} \int_{-\infty}^{+\infty} e^{-\eta^2 + a|\eta| 2\sqrt{t}} \, d\eta = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{4t}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{\sqrt{t}} e^{a|x|} \int_{-\infty}^{+\infty} e^{-\eta^2 + a|\eta| 2\sqrt{t}} \, d\eta = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{4t}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{a|x|} \int_{-\infty}^{+\infty} e^{-\eta^2 + a|\eta| 2\sqrt{t}} \, d\eta = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{4t}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{4t}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \{ \frac{\xi - x}{2\sqrt{t}} = \eta \} = \frac{M}{2\sqrt{t}} e^{-\frac{(\xi - x)^2}{2\sqrt{t}}} |\varphi(\xi)| \, d\xi \le \frac{(\xi - x)^2}{2\sqrt{t}} |\varphi(\xi)| \, d\xi \le \frac{(\xi - x)^2}{2\sqrt{t}$$

(в силу четности подынтегральной функции) =

$$\frac{2M}{\sqrt{\pi}} e^{a|x|} \int_{-\infty}^{+\infty} e^{-\eta^2 + a|\eta| 2\sqrt{t} - a^2 t} e^{a^2 t} d\eta = \frac{2M}{\sqrt{\pi}} e^{a|x|} e^{a^2 t} \int_{-\infty}^{+\infty} e^{-(\eta - a\sqrt{t})^2} d\eta < \frac{2M}{\sqrt{t}} e^{a|x|} e^{a|x$$

$$<\{\eta - a\sqrt{t} = z, -a\sqrt{t} < z < +\infty\} < \frac{2Me^{a|x|}e^{a^2t}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} dz = 0$$

(из анализа известно, что интеграл Пуассона
$$\int\limits_{-\infty}^{+\infty}e^{-z^2}\,dz=\sqrt{\pi})=$$

$$=2Me^{a|x|}e^{a^2t}.$$

Сходимость равномерная в любой ограниченной области G переменных t,x, принадлежащей $\Pi_{(0,T]}.$

Лемма 3 доказана.

Лемма 4. При выполнении условия (5.22) функция u(t,x) имеет производные по t,x любого порядка при t>0 и

$$\frac{\partial^{n+m} u(t,x)}{\partial t^m \partial x^n} = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{\partial^{n+m}}{\partial t^m \partial x^n} \left[e^{-\frac{(\xi-x)^2}{4t}} \frac{1}{\sqrt{t}} \right] \varphi(\xi) d\xi.$$
 (5.25)

При этом интеграл в правой части (5.25) сходится равномерно в любом прямоугольнике $R_{[t_0,T,r]}=\{(t,x)|0< t_0\leq t\leq T, |x|< r\}.$

Доказательство. Рассмотрим подынтегральное выражение при $(t,x) \in R_{[t_0,T,r]}$.

$$\frac{\partial^{n+m}}{\partial t^m \partial x^n} \left[e^{-\frac{(\xi-x)^2}{4t}} \frac{1}{\sqrt{t}} \right] = \left[\sum_{\text{KOHeYHAS}} \frac{(\xi-x)^{\text{СТЕПЕНЬ}}}{t^{\text{СТЕПЕНЬ}}} \right] e^{-\frac{(\xi-x)^2}{4t}} =$$

(выражение $\sum_{\text{конечная}} \frac{(\xi-x)^{\text{степень}}}{t^{\text{степень}}}$ можно записать как некоторый полином $P(t,x,\xi)$ от неизвестной переменной ξ при фиксированных $t,\,x$)= $P(t,x,\xi)e^{-\frac{(\xi-x)^2}{4t}}$. Здесь $P(t,x,\xi)$ - многочлен степени k, где k зависит от $m,\,n$.

Имеет место неравенство

$$|P(t, x, \xi)| \le C(t_0, T, r)(1 + |\xi|^k).$$

Здесь постоянная c зависит лишь от t_0, T, r и не зависит от ξ . Так как $e^{|\xi|} = 1 + |\xi| + \frac{|\xi|^2}{2!} + \dots + \frac{|\xi|^k}{k!} + \dots$ и $(1 + |\xi|^k) \le e^{|\xi|} k!$, то $|P(t, x, \xi)| \le N e^{|\xi|}$, где $N = k! C(t_0, T, r)$, и $|\varphi(\xi)P(t, x, \xi)| \le \widetilde{M} < e^{(a+1)|\xi|}$, $\widetilde{M} = NM$.

В силу леммы 3 интеграл (5.25) сходится. Здесь вместо φ , M, a берутся φP , \widetilde{M} , a+1. Сходимость равномерная по $(t,x) \in R(t_0,T,r)$. По теореме о дифференцируемости несобственных интегралов [16] функция u(t,x) имеет непрерывные производные $\frac{\partial^{n+m}}{\partial t^m \partial x^n}$ и выполняется равенство (5.25).

Лемма 5. Функция u(t,x), заданная соотношением (5.23), является решением уравнения (5.20) при $t>0, x\in (-\infty,+\infty)$.

Доказательство. Из (5.25) следует, что

$$u_t(t,x) - u_{xx}(t,x) = \int_{-\infty}^{+\infty} \left\{ \frac{\partial}{\partial t} \frac{1}{2\sqrt{\pi t}} e^{-\frac{(\xi - x)^2}{4t}} - \frac{\partial^2}{\partial x^2} \frac{1}{2\sqrt{\pi t}} e^{-\frac{(\xi - x)^2}{4t}} \right\} \varphi(\xi) d\xi.$$

Прямым вычислением легко проверить, что $\frac{\partial}{\partial t} \frac{1}{2\sqrt{\pi t}} e^{-\frac{(\xi-x)^2}{4t}} - \frac{\partial^2}{\partial x^2} \frac{1}{2\sqrt{\pi t}} e^{-\frac{(\xi-x)^2}{4t}} = 0$ при $(t,x) \in \Pi_{(0,T]}$. Таким образом, в $\Pi_{(0,T]}$ выполняется $u_t - u_{xx} = 0$ и лемма 5 доказана.

Лемма 6. Пусть x^0 - точка непрерывности функции $\varphi(x)$. Тогда $\lim_{t\to +0} u(t,x)=\varphi(x^0)$. $x\to x^0$

Доказательство. Так как
$$\frac{1}{2\sqrt{\pi t}}\int\limits_{-\infty}^{+\infty}e^{-\frac{(\xi-x)^2}{4t}}\varphi(x^0)\,d\xi =$$
 (замена $\eta=$

$$\frac{\xi - x}{2\sqrt{t}}) = \frac{\varphi(x^0)}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\eta^2} d\eta = \varphi(x^0), \text{ To}$$

$$|u(t, x) - \varphi(x^0)| = \left| \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi - x)^2}{4t}} (\varphi(\xi) - \varphi(x^0)) d\xi \right| \le \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi - x)^2}{4t}} |\varphi(\xi) - \varphi(x^0)| d\xi = \left(\text{замена} \, \zeta = \frac{\xi - x}{2\sqrt{t}} \right) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\zeta^2} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| d\zeta = \frac{1}{\sqrt{\pi}} \left\{ \int_{-\infty}^{-N} e^{-\zeta^2} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| d\zeta + \int_{N}^{+\infty} e^{-\zeta^2} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| d\zeta + \int_{N}^{+\infty} e^{-\zeta^2} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| d\zeta \right\} = I_1 + I_2 + I_3.$$

Подынтегральная функция в I_1 (и в I_2) удовлетворяет тому же условию роста, что и функция $\varphi(x)$. Пусть G - ограниченная область в $\Pi_{(0,T]}$ и $(t,x^0)\in G$. По лемме 3 интеграл $\int\limits_{-\infty}^{+\infty}e^{-\zeta^2}|\varphi(x+2\sqrt{t}\zeta)-\varphi(x^0)|\,d\zeta$ сходится равномерно по t и x в G, в силу чего при выборе достаточно большого N: $I_1<\frac{\varepsilon}{3},\ I_2<\frac{\varepsilon}{3}$ при любых $(t,x)\in G$. Зафиксируем это N. Рассмотрим I_3 . Пусть задано $\varepsilon>0$. Выберем $\delta=\delta(\varepsilon)$ такое, что при всех y таких, что $|x^0-y|<\delta$, выполняется неравенство

$$|\varphi(y) - \varphi(x^0)| < \frac{\varepsilon}{6N}. \tag{5.26}$$

Последнее имеет место в силу непрерывности функции $\varphi(x)$ в точке x^0 .

Пусть
$$(t,x) \in G = \{(t,x) | 0 < t < t_0, |x-x^0| < \delta\}$$
 и

$$2\sqrt{t}N + |x - x^0| < \delta. \tag{5.27}$$

Тогда

$$I_3 \le \int_{-N}^{N} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| \, d\zeta \le \int_{-N}^{N} \frac{\varepsilon}{6N} \, d\xi = \frac{\varepsilon}{3}.$$

Доказано, что при всех (t,x), удовлетворяющих (5.27), выполняется $|u(t,x)-\varphi(x^0)|<\varepsilon$. Лемма 6 доказана.

Из лемм 3-6 следует

Теорема. При условии (5.22) функция u(t,x), заданная равенством (5.23) (интеграл Пуассона) есть решение задачи Коши (5.20), (5.21), $u \in C_{(0,T]}^{\infty}$.

Свойства решения.

Свойство 1. Если $|\varphi(x)| < N, x \in E_1$, то $|u(t,x)| < N, (t,x) \in \Pi_{(0,+\infty)}$. Доказательство.

$$|u(t,x)| \le \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} |\varphi(\xi)| \, d\xi \le \frac{N}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} \, d\xi =$$

$$= \left(\frac{\xi - x}{2\sqrt{t}} = z\right) = \frac{N}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} \, dz = N.$$

Свойство 2. Если $\varphi(x)$ - нечетная функция, то u(t,0)=0.

Доказательство. Действительно,

$$u(t,0) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{\xi^2}{4t}} \varphi(\xi) d\xi = 0,$$

что следует из нечетности подынтегрального выражения.

Рассмотрим задачу о распространении тепла в полуограниченном стержне, боковая поверхность которого теплоизолирована:

$$u_t = u_{xx}, t > 0, x > 0,$$
 (5.28)

$$u(0,x) = u_0(x), x > 0,$$
 (5.29)

$$u(t,0) = 0, t \ge 0. (5.30)$$

Продолжим функцию $u_0(x)$ нечетно на всю действительную ось, обозначив продолжение $U_0(x)$:

$$U_0(x) = \begin{cases} u_0(x), & x \ge 0 \\ -u_0(x), & x < 0. \end{cases}$$

Функция

$$U(t,x) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} U_0(\xi) d\xi$$
 (5.31)

есть решение задачи (5.20), (5.21) при $u_o(x) = U_0(x)$. Обозначим через u(t,x) сужение U(t,x) на множество $\Pi_1 = \{(t,x)|t \geq 0, x \geq 0\}$. Так как U(t,0) = 0 в силу свойства 2, то u(t,x) есть решение задачи (5.28) - (5.30).

Замечание. Считаем, что функция $U_0(x)$ удовлетворяет условию (5.22).

6. Принцип максимума для уравнений параболического и эллиптического типов

Принцип максимума для уравнения параболического типа

Пусть T>0 — const, $S_T=[0,T]\times\partial\Omega,\ \Gamma_T=S_T\cup\Omega,\ Q_T=(0,T)\times\Omega.$ Отметим, что определенную таким образом область Q_T называют *цилин-дрической*.

Рассмотрим в Q_T линейное уравнение

$$\mathcal{L}(u) = f, \tag{6.1}$$

где

$$\mathcal{L}(u) = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}} + cu - \frac{\partial u}{\partial t} ,$$

причем коэффициенты a_{ij} , b_i , c и правая часть f уравнения (6.1) — вещественные, конечнозначные функции переменных t, x.

Считаем, что всюду ниже $a_{ij}(t,x) = a_{ji}(t,x)$ и выполняется соотношение

$$\sum_{i,j=1}^{n} a_{ij}(t,x)\xi_i\xi_j > 0 \quad \forall (t,x) \in \overline{Q}_T \backslash \Gamma_T$$
(6.2)

и любых отличных от нуля $\xi \in R^n$.

Отметим, что по определению вследствие условия (6.2) уравнение (6.1) является параболическим в $\overline{Q}_T \backslash \Gamma_T$.

Определение. Функция u называется классическим решением уравнения (6.1) в \overline{Q}_T , если ее производные $\partial u/\partial x_i$, $\partial^2 u/(\partial x_i \partial x_j)$, $\partial u/\partial t$, i,j=

 $\overline{1,n}$, непрерывны в $\overline{Q}_T \setminus \Gamma_T$, сама функция u непрерывна в \overline{Q}_T и в $\overline{Q}_T \setminus \Gamma_T$ выполняется тождество L(u(t,x)) = f(t,x).

Ниже будем рассматривать только классические решения уравнения (6.1).

Замечание 1. Легко видеть, что замена $u = ve^{\alpha t}$, где $\alpha = \text{const} > 0$, приводит к уравнению для v вида (6.1) с коэффициентом при v, равным $c - \alpha$. Следовательно, если c - ограниченная сверху функция (c < m, m = const > 0), то указанной заменой (если взять $\alpha > m$) можно добиться того, что коэффициент при v в уравнении (6.1) станет строго отрицательным.

Теорема 1. Пусть функция u непрерывна в \overline{Q}_T , все ее производные, входящие в оператор \mathcal{L} , непрерывны в $\overline{Q}_T \setminus \Gamma_T$ и выполняются неравенства

$$L(u(t,x)) \le 0$$
 в $\overline{Q}_T \setminus \Gamma_T$, (6.3)

$$u(t,x) \ge 0$$
 на Γ_T . (6.4)

Пусть коэффициент c оператора L ограничен сверху некоторой постоянной m $(c(t,x) < m \ \forall (t,x) \in \overline{Q}_T)$. Тогда

$$u(t,x) \ge 0$$
 в \overline{Q}_T .

Доказательство. Вначале рассмотрим случай, когда m < 0 и c(t,x) < m < 0 в \overline{Q}_T . Предположим, что условия теоремы 1 выполнены, но функция u принимает в \overline{Q}_T отрицательные значения (ниже вследствие этого предположения получим противоречие). Так как u непрерывна в \overline{Q}_T , то она достигает в \overline{Q}_T своего минимума, причем отрицательного, в некоторой точке (t^0, x^0) . Ясно, что вследствие условия (6.4) точка (t^0, x^0) может лежать либо внутри области Q_T , либо внутри ее верхнего основания $\{(t, x)|_{t=T, x \in \Omega}\}$. Следовательно, в точке (t^0, x^0) выполняются соотношения

$$\frac{\partial u}{\partial x_i} = 0, \quad i = \overline{1, n}, \quad \frac{\partial u}{\partial t} \le 0, \quad cu > 0.$$
 (6.5)

Покажем, что в этой точке выполняется неравенство

$$\sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} \ge 0. \tag{6.6}$$

Действительно, линейная замена переменных y = Kx $(y_i = \sum_{j=1}^n k_{ij}x_j, i = \overline{1,n})$ приводит к равенству

$$\sum_{i,j=1}^{n} a_{ij}(t,x) \frac{\partial^2 u(t,x)}{\partial x_i \partial x_j} = \sum_{i,j=1}^{n} d_{ij}(t,y) \frac{\partial^2 v(t,y)}{\partial y_i \partial y_j} , \qquad (6.7)$$

где матрицы $A = \|a_{ij}\|$, $K = \|k_{ij}\|$, $D = \|d_{ij}\|$ связаны соотношением $D = KAK^*$, $v(t,y) = u(t,K^{-1}y)$, K^* — матрица, сопряженная к матрице K. Легко видеть, что минимум функции v совпадает с минимумом функции u и достигается в точке (t^0,y^0) , где $y^0 = Kx^0$. Из линейной алгебры известно, что невырожденное преобразование можно подобрать таким образом, чтобы матрица D была диагональной в точке (t^0,x^0) . Кроме того, матрица D — положительно определенная вследствие положительной определенности матрицы A (см. соотношение (6.2)). Значит,

$$\sum_{i,j=1}^{n} d_{ij}(t^0, y^0) \frac{\partial^2 v(t^0, y^0)}{\partial y_i \partial y_j} = \sum_{i=1}^{n} d_{ii}(t^0, y^0) \frac{\partial^2 v(t^0, y^0)}{\partial y_i^2} \ge 0, \tag{6.8}$$

так как $d_{ii}>0$, а $\partial^2 v/\partial y_i^2\geq 0$ в точке (t^0,x^0) . Из соотношений (6.7), (6.8) следует неравенство (6.6). Из определения оператора L и соотношений (6.5), (6.6) в точке (t^0,x^0) получаем неравенство $L(u(t^0,x^0))>0$, что противоречит условию (6.3) и доказывает теорему 1 в случае c(t,x)<0. В случае c(t,x)< m, m>0 сделаем замену $u(t,x)=v(t,x)e^{mt}$. Функция v неотрицательна на Γ_T , удовлетворяет уравнению (6.1) с отрицательным коэффициентом при v (см. замечание 1) и неположительной правой частью. По доказанному выше $v(t,x)\geq 0$ в $\overline{Q}_T\setminus\Gamma_T$. Следовательно, и $u(t,x)=v(t,x)e^{mt}\geq 0$ в $\overline{Q}_T\setminus\Gamma_T$. Теорема 1 доказана.

Далее p,q — неотрицательные постоянные, а c_0 — строго положительная постоянная.

Теорема 2. Пусть функция u(t,x) непрерывна в \overline{Q}_T , удовлетворяет в $\overline{Q}_T \backslash \Gamma_T$ уравнению (6.1) и $|u(t,x)|_{\Gamma_T} \leq q$. Пусть f — ограниченная функция, а коэффициент c не положителен:

$$|f(t,x)| \le p, \quad c(t,x) \le 0 \quad \forall (t,x) \in \overline{Q}_T.$$

Тогда всюду в \overline{Q}_T выполняется неравенство

$$|u(t,x)| \le pt + q. \tag{6.9}$$

Доказательство. Функции $w_{\pm}(t,x)=pt+q\pm u(t,x)$ не отрицательны на Γ_T , а в $\overline{Q}_T\setminus \Gamma_T$ вследствие условия $c\leq 0$ удовлетворяют соотношению

$$L(w_{\pm}) = -p + pct + cq \pm L(u) \le p \pm |f| \le 0.$$

По теореме 1 функции w_+ и w_- не отрицательны в \overline{Q}_T : $(w_{\pm}(t,x)=pt+q\pm u(t,x)\geq 0)$, откуда и следует неравенство (6.9). Теорема 2 доказана.

Теорема 3. Пусть u(t,x) — классическое решение в \overline{Q}_T уравнения (6.1) и выполняются соотношения

$$|f(t,x)| \leq p$$
, $c(t,x) \leq -c_0$ b $\overline{Q}_T \setminus \Gamma_T$, $|u(t,x)| \leq q$ ha Γ_T .

Тогда всюду в \overline{Q}_T

$$|u(t,x)| \le \max\left\{\frac{p}{c_0}, q\right\}. \tag{6.10}$$

Доказательство. Рассмотрим в \overline{Q}_T функции

$$w_{\pm} = \max\{p/c_0, q\} \pm u(t, x).$$

Легко проверить, что $w_{\pm} \geq 0$ на Γ_T , а в $\overline{Q}_T \setminus \Gamma_T$ выполняется неравенство $L(w_{\pm}) \leq 0$. Последнее следует из соотношений

$$L(w_{\pm}) = c \max \left\{ \frac{p}{c_0}, q \right\} \pm f \leq -c_0 \max \left\{ \frac{p}{c_0}, q \right\} + p$$
$$\leq -c_0 \frac{p}{c_0} + p = 0.$$

По теореме 1 функции $w_{\pm}(t,x) \geq 0$ в \overline{Q}_T , откуда следует (6.10). Теорема 3 доказана.

Теорема 4. Пусть u(t,x) — классическое решение уравнения L(u)=0, все коэффициенты оператора L ограничены в $\overline{Q}_T,\,c(t,x)\leq 0$ и

$$\sum_{i,j=1}^{n} a_{ij} \xi_i \xi_j \ge \mu \sum_{i=1}^{n} |\xi_i|^2, \quad \mu = \text{const} > 0$$

для всех $\xi \in \mathbb{R}^n$. Пусть в некоторой точке $(t^0, x^0) \in \overline{Q}_T \setminus \Gamma_T$ функция u(t, x) достигает положительного максимума

$$u(t^{0}, x^{0}) = \max_{\overline{Q}_{T}} u(t, x) = M > 0.$$

Тогда u(t,x) = M в каждой точке $(t,x) \in Q_T$, для которой $t < t^0$.

Доказательство теоремы 4, а также теорем 1–3 в случае произвольных областей (не обязательно цилиндрических) см. в [5].

Принцип максимума в неограниченной области и задача Коши

Рассмотрим для уравнения (6.1) задачу Коши: найти непрерывную в полосе $\Pi_{[0,T]} = \{(t,x) | 0 \le t \le T, \ x \in R^n \}$ функцию и, удовлетворяющую в $\Pi_{(0,T]}$ уравнению (6.1) и при t=0 совпадающую с заданной на R^n функцией φ :

$$u(0,x) = \varphi(x), \quad x \in \mathbb{R}^n. \tag{1*}$$

Ниже докажем некоторые результаты (теоремы принципа максимума), позволяющие получить оценку решения задачи Коши вида (6.10). Как и в случае ограниченных областей, методом доказательства является метод вспомогательных функций (функции w, w_{\pm}). При этом накладываются ограничения на рост коэффициентов и допустимый рост решения u при

$$|x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} \to \infty.$$

Теорема 5. Пусть функция u(t,x) в $\Pi_{[0,T]}$ непрерывна и ограничена снизу:

$$u(t,x) \ge -d, \quad d = \text{const} > 0, \tag{6.2}$$

а в $\Pi_{(0,T]}$ имеет все непрерывные производные, входящие в оператор L, и удовлетворяет неравенству $L \leq 0$. Пусть коэффициенты a_{ij}, b_i, c удовлетворяют соотношениям

$$|a_{ij}| < m(|x|^2 + 1), \quad |b_i(t,x)| < m(|x|^2 + 1)^{1/2}, \quad c(t,x) < m,$$

 $m=\mathrm{const}>0$. Тогда $u(t,x)\geq 0$ всюду в $\Pi_{[0,T]},$ если $u\geq 0$ при t=0.

Доказательство. Рассмотрим вспомогательную функцию

$$w(t,x) = \frac{d}{r_0^2}(|x|^2 + kt)e^{\alpha t} + u(t,x).$$

Покажем, что при надлежащем выборе постоянных k, α величина L(w) будет отрицательной при любых $(t,x) \in \Pi_{[0,T]}$ и любых $r_0 > 0$ $(r_0 = \text{const})$. Запишем выражение для L(w):

$$L(w) = L(u) + \frac{d}{r_0^2} e^{\alpha t} \left(2 \sum_{i=1}^n a_{ii} + 2 \sum_{i=1}^n b_i x_i + c|x|^2 + kct - k - \alpha |x|^2 - k\alpha t \right).$$

Здесь первое слагаемое в правой части есть $L((d/r_0^2)(|x|^2+kt)e^{\alpha t})$. Рассмотрим произвольную точку (t,x) полосы $\Pi_{(0,T]}$. Если $|x| \geq 1$, то неравенство

$$L(w) \le \frac{d}{r_0^2} e^{\alpha t} \{ m(4n+1)(|x|^2+1) - \alpha |x|^2 + (m-\alpha)kt \} < 0$$

выполняется при $\alpha > 2m(4n+1)$. Если |x| < 1, то (при $\alpha > 2m(4n+1))$

$$L(w) \le (d/r_0^2)e^{\alpha t} \{m(8n+1) - k\} < 0$$

при k>m(8n+1). Здесь учитывается, что при |x|<1 имеют место неравенства $|\alpha_{ii}|<2m,\,|b_i|<2m.$ Таким образом, выбрав $\alpha>2m(4n+1)$ и k>m(8n+1), получим неравенство

$$L(w(t,x)) < 0,$$

верное при любых r_0 и любых $(t,x) \in \Pi_{(0,T]}$.

Рассмотрим теперь функцию w(t,x) в цилиндре $\Pi^{r_0}_{[0,T]}=\{(t,x)|\ 0\leq t\leq T,\ |x|\leq r_0\}$. Нетрудно проверить, что $w(0,x)\geq u(0,x)\geq 0$ и при $|x|=r_0$ (т.е. на боковой поверхности цилиндра $\Pi^{r_0}_{[0,T]}$) функция $w(t,x)\geq d+u(t,x)\geq 0$. Следовательно, по теореме 1 всюду в $\Pi^{r_0}_{[0,T]}$ имеет место неравенство $w(t,x)\geq 0$.

Любая фиксированная точка (t,x) полосы $\Pi^{r_0}_{[0,T]}$ при всех достаточно больших значениях r_0 (r_0 больше некоторого числа R=R(t,x)>0) принадлежит всем цилиндрам $\Pi^{r_0}_{[0,T]}$. В этой точке по доказанному выше при любых значениях $r_0 \geq R$

$$w(t,x) = \frac{d}{r_0^2} (|x|^2 + kt)e^{\alpha t} + u(t,x) \ge 0.$$

Переходя в последнем неравенстве к пределу при $r_0 \to \infty$, получим неравенство $u(t,x) \ge 0$. Теорема 5 доказана.

Теорема 6. Пусть u(t,x) — классическое ограниченное решение задачи Коши (6.1), (1*), коэффициенты a_{ij} , b_i оператора L подчинены условиям теоремы 5 и выполняются соотношения

$$|\varphi(x)| \le q$$
, $x \in \mathbb{R}^n$, $|f(t,x)| \le p$, $c(t,x) \le m$, $(t,x) \in \Pi_{[0,T]}$.

Тогда всюду в $\Pi_{[0,T]}$

$$|u(t,x)| \le e^{mt}(pt+q). \tag{6.3}$$

Доказательство. Рассмотрим вспомогательные функции

$$w_{\pm}(t,x) = e^{mt}(pt+q) \pm u(t,x).$$

По условию теоремы $w_{\pm}(0,x) \geq 0$. Вычисляя $L(w_{\pm})$, получим

$$L(w_{\pm}(t,x)) = e^{mt}[(c-m)(pt+q) - p] \pm f \le$$

$$\leq -pe^{mt} \pm f \leq -pe^{mt} + p \leq 0 \quad \forall (t, x) \in \Pi_{[0, T]}.$$

По теореме 5 всюду в $\Pi_{[0,T]}$ $w_{\pm} \geq 0$ и, следовательно, имеет место оценка (6.3). Теорема 6 доказана.

Пусть S — фазовое пространство переменных v_1,\dots,v_d и $\overline{B}(0,R)=\{v\big|\ |v|\leq R\}$ - замкнутый шар в S радиуса R с центром в точке $\theta=(0,\dots,0).$

Рассмотрим задачу Коши в $\Pi_{[t_0,T]}=\{(t,x)|\ t_0\leq t\leq T,\ x\in R^n\}$ для распадающейся системы параболических уравнений

$$L(v) = 0,$$

$$v\big|_{t=t_0} = v^{t_0}, \quad 0 \le t_0 < T.$$
 (6.4)

Здесь $v=v(t,x)=(v_1(t,x),\dots,v_d(t,x)),\ v^{t_0}=v^{t_0}(x)=(v_1^{t_0}(x),\dots,v_d^{t_0}(x)),\ L(v)=(L(v_1),\dots,\ L(v_d))$ — вектор функции размерности d и $d\geq 1$ — целое.

Отметим, что покомпонентная запись задачи (6.4) имеет вид

$$L(v_j) = 0, \quad v_j|_{t=t_0} = v_j^{t_0}, \quad j = 1, \dots, d.$$

Имеет место

Теорема 7. Пусть коэффициент c(t,x) оператора $L(\cdot)$ равен тождественно нулю, остальные коэффициенты ограничены в $\Pi_{[t_0,T]}$ и $v(t,x) = (v_1(t,x),\ldots,v_d(t,x))$ есть классическое ограниченное решение задачи (6.4) в $\Pi_{[t_0,T]}$. Тогда $v(t,x) \in \overline{B}(0,R)$ для всех $(t,x) \in \Pi_{[t_0,T]}$, если $v^{t_0}(x) \in \overline{B}(0,R)$ для всех $x \in R^n$.

Доказательство. Предположим, что утверждение теоремы 7 неверно. Тогда существует точка $(t^{(1)}, x^{(1)}) \in \Pi_{[t_0,T]}$ такая, что $v(t^{(1)}, x^{(1)})$ не принадлежит $\overline{B}(0,R)$, следовательно, $|v(t^{(1)}, x^{(1)})| > R$. Касательная плоскость к границе шара $\overline{B}(0,R)$ в точке $\overline{v} = Rv(t^{(1)}, x^{(1)})/|v(t^{(1)}, x^{(1)})|$ задается уравнением $(N,w) = \alpha_1 w_1 + \ldots + \alpha_d w_d = R$, где α_i , $i = 1,\ldots,d$ — направляющие косинусы единичного вектора $N = v(t^{(1)}, x^{(1)})/|v(t^{(1)}, x^{(1)})|$. Очевидно, что в точке $v(t^{(1)}, x^{(1)})$ фазового пространства S

$$\left(N, v(t^{(1)}, x^{(1)})\right) = \sum_{j=1}^{d} \alpha_j v_j\left(t^{(1)}, x^{(1)}\right) > R.$$
(6.5)

Так как $v^{t_0}(x) \in \overline{B}(0,R)$ для всех $x \in R^n$, то $(N,v^{t_0}(x)) \leq R$ и функция $g^0(x) = \alpha_1 v_1^{t_0}(x) + \ldots + \alpha_d v_d^{t_0}(x) - R \leq 0$ для всех $x \in R^n$. Функция $g(t,x) = \sum_{j=1}^d \alpha_j v_j(t,x) - R$ является решением в $\Pi_{[t_0,T]}$ уравнения L(g) = 0 с начальными данными $g(t_0,x) = g_0(x) \leq 0$. Согласно теореме 5 функция $g(t,x) \leq 0$ для всех $(t,x) \in \Pi_{[t_0,T]}$ и, в частности, в точке $(t^{(1)},x^{(1)})$, что противоречит неравенству (6.5). Теорема 7 доказана.

Замечание 2. Теорема 7 остается верной в случае, когда вместо шара $\overline{B}(0,R)$ рассматривается произвольное ограниченное выпуклое множество (см., например, [14], лемма 4.5.1). Данный результат можно трактовать как некоторый геометрический вариант принципа максимума для распадающихся систем уравнений: если решение системы в начальный момент времени находилось в некотором выпуклом множестве фазового пространства при всех значениях пространственных переменных, то оно находится в этом множестве в любой последующий момент времени.

Далее сформулируем и докажем ряд утверждений, которые иллюстрируют приложения принципа максимума.

Утверждение 1. Пусть выполнены условия теоремы 1 и $f \equiv 0$. Тогда

$$|u(t,x)| \le \max_{\Gamma_T} |u(t,x)| \qquad \forall (t,x) \in \overline{Q}_T$$

Доказательство. Пусть $M = \max_{\Gamma_T} |u(t,x)|$. Рассмотрим функции $w_{\pm} = M \pm u(t,x)$, удовлетворяющие соотношениям $w_{\pm}|_{\Gamma_T} \geq 0$ и $L(w_{\pm}) = L(M) \pm L(u) = cM \pm 0 \leq 0$. Согласно теореме 1 $w_{\pm} \geq 0$ при всех $(t,x) \in Q_T$. Отсюда следует, что $-M \leq u(t,x) \leq M \quad \forall (t,x) \in \overline{Q}_T$. Утверждение 1 доказано.

Утверждение 2. Пусть выполнены условия теоремы 1 и $f\equiv c\equiv 0.$ Тогда всюду в \overline{Q}_T имеет место равенство

$$\min_{\Gamma_T} u \le u(t, x) \le \max_{\Gamma_T} u.$$

Доказательство. Введем обозначения $M = \max_{\Gamma_T} u, \ m = \min_{\Gamma_T} u$. Легко показать, что для функций $w_+ = u(t,x) - m, \ w_- = M - u(t,x)$ верны условия теоремы 1, согласно которой будет выполняться $w_\pm(t,x) \geq 0 \ \forall (t,x) \ \overline{Q}_T$. Откуда и следует справедливость утверждения 2.

Утверждение 3. Пусть в теореме 2 условие $c(t,x) \leq 0$ заменено условием c(t,x) < m, где $m = {\rm const} > 0$. Тогда в \overline{Q}_T справедливо неравенство

$$|u(t,x)| \le e^{mt}(pt+q).$$

Доказательство. Сделаем замену $u(t,x)=e^{mt}v(t,x)$. По замечанию 1 выражение $\widetilde{L}(v)$ имеет коэффициент $\widetilde{c}<0$ и верно $\widetilde{L}(v)\leq 0$. Согласно теореме 2 справедлива оценка $|v(t,x)|\leq q+pt$, так как $|v(t,x)|_{\Gamma_T}\leq q$, $|\widetilde{f}(t,x)|_{\overline{Q}_T}\leq p$. Тогда для u(t,x) имеет место оценка

$$|u(t,x)| \le e^{mt}|v(t,x)| \le e^{mt}(q+pt).$$

Утверждение 3 доказано.

Утверждение 4. (теорема единственности) Первая краевая задача для уравнения (6.1) не может иметь более одного классического решения.

Доказательство. Пусть $u_1(t,x)$, $u_2(t,x)$ - два решения первой краевой задачи для уравнения (6.1). Рассмотрим функцию $u(t,x)=u_1(t,x)-u_2(t,x)$, которая является решением задачи

$$L(u) = 0, \qquad u|_{\Gamma_T} = 0.$$

Согласно утверждению 3 в \overline{Q}_T справедлива оценка $|u(t,x)| \leq 0$. Следовательно, $u_1(t,x) = u_2(t,x)$ в \overline{Q}_T . Утверждение доказано.

Утверждение 5. Решение первой краевой задачи для уравнения (6.1) непрерывно зависит от входных данных.

Доказательство. Пусть функция $u_1(t,x)$ является решением задачи

$$L(u_1) = f_1(t, x),$$
 $u_1(0, x) = u_0^1(x),$ $u_1(t, x)|_{S_T} = \varphi_1(t, x),$

а функция $u_2(t,x)$ - решение задачи

$$L(u_2) = f_2(t, x),$$
 $u_2(0, x) = u_0^2(x),$ $u(t, x)|_{S_T} = \varphi_2(t, x).$

Тогда функция $u(t,x) = u_1(t,x) = u_2(t,x)$ удовлетворяет задаче

$$L(u) = f(t, x),$$
 $u(0, x) = u_0(x),$ $u(t, x)|_{S_T} = \varphi(t, x),$

где $f(t,x)=f_1(t,x)-f_2(t,x),\ u_0(x)=u_0^1(x)-u_0^2(x),\ \varphi(t,x)=\varphi_1(t,x)-\varphi_2(t,x).$ Считаем, что

$$|f(t,x)| + |u_0(x)| + |\varphi(t,x)| \le \varepsilon.$$

Следовательно, $|u(t,x)|_{\Gamma_T} \leq \varepsilon$ и $|f(t,x)|_{\overline{Q}_T} \leq \varepsilon$. Согласно утверждению 3 в \overline{Q}_T имеем $|u(t,x)| \leq e^{mt}(\varepsilon + t\varepsilon) \leq e^{mt}\varepsilon(1+T)$. Последнее неравенство гарантирует непрерывную зависимость от входных данных (правой части уравнения, начальной функции и функции, заданной на боковой поверхности) решения первой краевой задачи для уравнения (6.1).

Утверждение 6. Первая краевая задача для уравнения Бюргерса

$$u_t + uu_x = \mu u_{xx} + f$$

может имееть не более одного классического решения.

Доказательство. Пусть $u_1(t,x)$, $u_2(t,x)$ - два классических решения решения первой краевой задачи для уравнения Бюргерса. Рассмотрим функцию $u(t,x) = u_1(t,x) - u_2(t,x)$, которая является решением задачи

$$u_t + u_1 u_x + u_{2x} u = \mu u_{xx} = 0, \qquad u|_{\Gamma_T} = 0.$$

Так как $u_2(t,x)$ - классическое решение задачи, то $|u_{2x}(t,x)| \leq M$ в \overline{Q}_T . Согласно утверждению 3 в \overline{Q}_T справедлива оценка $|u(t,x)| \leq 0$. Следовательно, $u_1(t,x) = u_2(t,x)$ в \overline{Q}_T . Утверждение доказано.

Принцип максимума для эллиптического уравнения

Рассмотрим линейный оператор

$$M(u) = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x) \frac{\partial u}{\partial x_i} + c(x)u$$
 (6.6)

с коэффициентами a_{ij}, b_i, c , заданными в области $\Omega \subset E_n$.

По определению оператор M называется эллиптическим (эллиптического типа) в точке $x^0 \in \Omega$, если матрица старших коэффициентов

$$A(x^{0}) = \begin{pmatrix} a_{11}(x^{0}) & a_{12}(x^{0}) & \dots & a_{1n}(x^{0}) \\ a_{21}(x^{0}) & a_{22}(x^{0}) & \dots & a_{2n}(x^{0}) \\ \dots & \dots & \dots & \dots \\ a_{n1}(x^{0}) & a_{n2}(x^{0}) & \dots & a_{nn}(x^{0}) \end{pmatrix}$$

положительно определенная, т.е.

$$0 < \sum_{i,j=1}^{n} a_{ij}(x^{0})\xi_{i}\xi_{j}, \quad \forall \xi = (\xi_{1}, \dots, \xi_{n}) \in E_{n}, \quad |\xi| \neq 0.$$

Теорема 8. Пусть M — эллиптический оператор с коэффициентами, непрерывными в области Ω ,

$$c(x) < 0 \tag{6.7}$$

и функция $u \in C^2(\Omega) \cap C(\overline{\Omega})$.

Тогда

- а) если $M(u) \leqslant 0$ в Ω и $u|_{\partial\Omega} \geqslant 0$, то $u \geqslant 0$ в $\overline{\Omega}$;
- b) если $M(u) \geqslant 0$ в Ω и $u|_{\partial\Omega} \leqslant 0$, то $u \leqslant 0$ в $\overline{\Omega}$.

Доказательство.

Случай (a). Пусть функция u(x) не удовлетворяет условию $u(x) \geqslant 0$ в $\overline{\Omega}$. Тогда в силу непрерывности u на $\overline{\Omega}$ и условия $u|_{\partial\Omega}\geqslant 0$ она достигает своего отрицательного минимума m<0 в некоторой точке $x^0\in\Omega$:

$$u(x^0) = m < 0.$$

Рассмотрим цилиндрическую область $Q_T=(0,T)\times\Omega,\, T>0,$ и пусть $S_T=[0,T]\times\partial\Omega$ и $\Gamma_T=S_T\cup\Omega.$

Рассмотрим функцию

$$v(t,x) = u(x), \quad x \in \overline{\Omega}, \quad 0 \leqslant t \leqslant T,$$

определенную в \bar{Q}_T . В силу определения функции v(t,x)

$$v(t, x^0) = u(x^0) = m < 0, \quad t \in (0, T),$$

и, следовательно, v(t,x) достигает своего отрицательного минимума в точке $(t,x^0)\in \bar{Q}_T\backslash \Gamma_T$.

Рассмотрим параболический оператор

$$L(v) = M(v) - \frac{\partial v}{\partial t}.$$

В Q_T имеет место неравенство

$$L(v) = M(v) - \frac{\partial v}{\partial t} = M(u) \leqslant 0. \tag{6.8}$$

В точке $(t^0, x^0) \in Q_T$

$$L(v(t^{0}, x^{0})) = M(u(x^{0})) = \sum_{i,j=1}^{n} a_{ij}(x^{0}) \frac{\partial^{2} u(x^{0})}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x^{0}) \frac{\partial u(x^{0})}{\partial x_{i}} + c(x^{0})u(x^{0}) \geqslant c(x^{0})u(x^{0}) = c(x^{0})m > 0,$$
(6.9)

что противоречит (6.8). Отметим, что так как в (6.9) точка x^0 является точкой локального минимума, то $\frac{\partial u(x^0)}{\partial x_i} = 0, i = 1, \dots, n,$

$$\sum_{i,j=1}^{n} a_{ij}(x^0) \frac{\partial^2 u(x^0)}{\partial x_i \partial x_j} \geqslant 0 \quad \text{(см. доказательство теоремы 1)}$$

и $c(x^0)m > 0$ в силу (6.7). Случай (a) доказан.

Случай (b). Предположим, что неравенство $u(x) \leq 0$ в $\overline{\Omega}$ не выполняется. Тогда существует точка $x^0 \in \Omega$, в которой функция u(x) достигает своего положительного максимума:

$$u(x^0) = \max_{x \in \overline{\Omega}} u(x) = M > 0.$$

В точке x^0 $M(u(x^0)) \leqslant c(x^0)M < 0$, что противоречит предположению $M(u) \geqslant 0$ в Ω . Теорема 8 доказана.

Следствием теоремы 8 является

Теорема 9. Пусть M – эллиптический оператор с непрерывными коэффициентами в области Ω и c(x) < 0 в Ω . Тогда, если функция $u(x) \in C^2(\Omega) \cap C(\overline{\Omega})$ есть решение уравнения M(u) = 0 и u(x) = 0 при $x \in \partial \Omega$, то u(x) = 0 при $x \in \Omega$.

Замечание 4. Из теоремы 9 следует, что классическое решение первой краевой задачи для уравнения M(u)=f (при условии c(x)<0 в Ω) единственно.

Имеет место [21]

Теорема 10. Пусть M — эллиптический оператор с коэффициентами, непрерывными в области Ω , f непрерывна в $\overline{\Omega}$ и $c(x) \leqslant 0$. Тогда имеет место неравенство

$$\max_{\overline{\Omega}} |u| \leqslant \max_{\partial \Omega} |\varphi| + (e^{\lambda d} - 1) \max_{\overline{\Omega}} |f|, \tag{6.10}$$

где d – диаметр области Ω в направлении x_1 , постоянная λ удовлетворяет условиям

$$\lambda > 0$$
, $a_{11}\lambda^2 + b_1\lambda \geqslant 1 \operatorname{B}\Omega$.

Замечание 5. Очевидно, что в (6.10) в качестве постоянной d можно брать диаметр области Ω . Из теоремы 10 следует, что классическое решение первой краевой задачи для уравнения M(u) = f единственно при $c(x) \leq 0$.

7. Функциональные пространства

Введем обозначения

$$D^{\alpha}f(x) = \frac{\partial^{|\alpha|}f(x_1, x_2, ..., x_n)}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}...\partial x_n^{\alpha_n}}.$$

Здесь $\alpha=(\alpha_1,\alpha_2,...,\alpha_n)$ – мультииндекс, $\alpha_i\geq 0$ -целые, $i=\overline{1,n},\ |\alpha|=\alpha_1+\alpha_2+...+\alpha_n.$

Пусть Ω - область в E_n .

Определение. Линейное пространство функций, непрерывных на $\Omega \subset E^n$, обозначают $C(\Omega)$.

Определение. Линейное пространство функций, непрерывных на $\overline{\Omega} \subset E^n$, обозначают $C(\overline{\Omega})$.

В пространстве $C(\overline{\Omega})$ вводится норма

$$||u||_{C(\overline{\Omega})} = \max_{\overline{\Omega}} |u(x)|.$$

Пространство $C(\overline{\Omega})$ является банаховым пространством.

Определение. Линейное пространство функций, непрерывно дифференцируемых до порядка k включительно на $\Omega \subset E^n$, обозначают $C^k(\Omega)$:

$$C^k(\Omega) = \{ f(x) | D^{\alpha} f(x) \in C(\Omega) \quad \forall |\alpha| \le k \}.$$

Определение. Пространство функций, непрерывно дифференцируемых до порядка k включительно на $\overline{\Omega} \subset E^n$, обозначают $C^k(\overline{\Omega})$:

$$C^{k}(\overline{\Omega}) = \{ f(x) | D^{\alpha} f(x) \in C(\overline{\Omega}) \quad \forall |\alpha| \leq k \}.$$

В пространстве $C^k(\overline{\Omega})$ вводится норма

$$||u||_{C^k(\overline{\Omega})} = \sum_{|\alpha| \le k} ||D^{\alpha} f(x)||_{C(\overline{\Omega})}.$$

Пространство $C^k(\overline{\Omega})$ является банаховым пространством.

Определение. Функция g(x) называется финитной, если она обращается в ноль в некоторой невырожденной окрестности границы области Ω . Пространство непрерывных финитных в Ω функций обозначается $\overset{\circ}{C}$ (Ω) . Пространство k раз непрерывно дифференцируемых финитных в Ω функций обозначается $\overset{\circ}{C}$ (Ω) .

 $\overset{\circ}{C}^{\infty}(\Omega)$ - пространство финитных бесконечно дифференцируемых в Ω функций.

Определение. Пространство функций, измеримых по Лебегу на множестве $\Omega \subset E^n$ и интегрируемых по Лебегу со степенью p, p > 1, обозначают $L_p(\Omega)$:

$$L_p(\Omega) = \{f(x)| \quad f(x)$$
измеримы по Лебегу и $\int_{\Omega} |f(x)|^p dx < \infty\}.$

В пространстве $L_p(\Omega)$ вводится норма

$$||u||_{L_p(\Omega)} = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p}.$$

Пространство $L_p(\Omega)$ является банаховым пространством.

Имеет место следующая теорема [14], [18].

Теорема. Пространство $\overset{\circ}{C}$ (Ω) всюду плотно в $L_2(\Omega)$.

Определение. Пространство функций, измеримых по Лебегу на множестве $\Omega \subset E^n$ и интегрируемых по Лебегу со степенью p на любом Ω' строго вложенном в Ω , обозначают $L_{n,\mathrm{loc}}(\Omega)$.

Заметим, что $L_p(\Omega) \subset L_{p,\mathrm{loc}}(\Omega)$.

Из анализа известна следующая теорема

Теорема. Пусть функции $f(x), g(x) \in C^1(\overline{\Omega}), \Omega$ - ограниченная область в E_n с границей $\partial\Omega$ класса C^1 . Тогда имеет место формула интегрирования по частям

$$\int_{\Omega} f(x) \frac{\partial g(x)}{\partial x_i} dx = \int_{\partial \Omega} f(s)g(s) \cos(n, x_i) ds - \int_{\Omega} g(x) \frac{\partial f(x)}{\partial x_i} dx, \quad (7.1)$$

где n=n(s) - внешняя нормаль к $\partial\Omega$ в точке s.

В случае, когда f (или g) $\in \overset{\circ}{C}{}^1$ $(\Omega),$ то $f|_{\partial\Omega}\equiv 0$ и формула (7.1) принимает вид

$$\int_{\Omega} f(x) \frac{\partial g(x)}{\partial x_i} dx = -\int_{\Omega} g(x) \frac{\partial f(x)}{\partial x_i} dx.$$
 (7.2)

Рассмотрим функцию $f(x) \in C^k(\Omega)$ и функцию $g(x) \in C^k(\Omega)$. Применяя формулу (7.2) интегрирования по частям, получим равенство

$$\int_{\Omega} f(x) \frac{\partial^m g(x)}{\partial x_i^m} dx = (-1)^m \int_{\Omega} g(x) \frac{\partial^m f(x)}{\partial x_i^m} dx, \quad m \le k_0.$$
 (7.3)

8. Обобщенные производные (по С.Л. Соболеву) и их свойства

Пусть
$$\alpha = (\alpha_1, \dots \alpha_n)$$
 - мультииндекс, $|\alpha| = \sum_{i=1}^n \alpha_i$, $D^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$.

Определение. Функция $f^{\alpha} \in L_{2,loc}(\Omega)$ называется α - обобщенной производной в области Ω функции $f \in L_{2,loc}(\Omega)$, если равенство

$$\int_{\Omega} f(x)D^{\alpha}g(x) dx = (-1)^{|\alpha|} \int_{\Omega} f^{\alpha}(x)g(x) dx$$

выполняется при любом $g(x) \in \overset{\circ}{C^{|\alpha|}}$.

Свойства обобщенных производных.

Свойство 1. Если α - обобщенная производная функции $f \in L_{2,loc}(\Omega)$ существует, то она единственна.

Замечание 1. Считаем, что если $f(x) \in \overset{\circ}{C^k}(\widetilde{\Omega}), \ \widetilde{\Omega} \subseteq \Omega, \ \text{то} \ f \in \overset{\circ}{C^k}(\overline{\Omega})$ и на $\overline{\Omega} \backslash \widetilde{\Omega}$ функция f = 0.

Замечание 2. Если
$$f\in \overset{\circ}{C}{}^1$$
 $(\widetilde{\Omega}),\ \widetilde{\Omega}\ \Subset\ \Omega,\ g\in\ L_2(\Omega),\ {
m To}\ \int\limits_{\Omega}fg\,dx=\int\limits_{\widetilde{\Omega}}fg\,dx.$

Действительно, продолжая нулем функцию f на $\overline{\Omega} \backslash \widetilde{\Omega}$ получаем функцию равную нулю на $\Omega \backslash \widetilde{\Omega}$ и определенную на Ω . Отсюда функция fg определена на Ω и равна нулю на $\Omega \backslash \widetilde{\Omega}$. Следовательно, по свойствам интеграла Лебега

$$\int_{\Omega} fg \, dx = \int_{\widetilde{\Omega}} fg \, dx + \int_{\Omega \setminus \widetilde{\Omega}} fg \, dx = \int_{\widetilde{\Omega}} fg \, dx,$$

так как $\int\limits_{\Omega\setminus\widetilde{\Omega}}fg\,dx=0.$

Замечание 3. Пусть H - гильбертово пространство и элемент $h \in H$ ортогонален всюду плотному в H множеству M. Тогда h=0.

Этот факт - хорошо известная теорема функционального анализа.

Доказательство свойства 1 (единственность).

Рассмотрим $f \in L_{2,loc}(\Omega)$. Пусть существуют $f_1^{\alpha}(x)$, $f_2^{\alpha}(x)$ - две α - обобщенные производные функции f(x). Имееют место тождества

$$\int\limits_{\Omega} f D^{\alpha} g \, dx = (-1)^{|\alpha|} \int\limits_{\Omega} f_1^{\alpha} g \, dx \qquad \forall g \in \stackrel{\circ}{C^{|\alpha|}} (\Omega),$$

$$\int\limits_{\Omega} f D^{\alpha} g \, dx = (-1)^{|\alpha|} \int\limits_{\Omega} f_2^{\alpha} g \, dx \qquad \forall g \in \overset{\circ}{C^{|\alpha|}} (\Omega).$$

Вычтем второе тождество из первого. Получим, что

$$\int_{\Omega} (f_1^{\alpha} - f_2^{\alpha}) g \, dx = 0 \qquad \forall g \in \stackrel{\circ}{C^{|\alpha|}} (\Omega). \tag{8.1}$$

Так как $f_1^{\alpha}, f_2^{\alpha} \in L_{2,loc}(\Omega)$, то $f_1^{\alpha} - f_2^{\alpha} \in L_{2,loc}(\Omega)$. Рассмотрим произвольное $\widetilde{\Omega} \in \Omega$ и $g \in C^{|\alpha|}(\widetilde{\Omega})$. В силу замечаний 1,3 из (8.1) следует равенство

$$0 = (f_1^{\alpha} - f_2^{\alpha}, g)_{L_2(\widetilde{\Omega})} = \int_{\widetilde{\Omega}} (f_1^{\alpha} - f_2^{\alpha}) g \, dx \quad \forall g \in C^{|\alpha|}(\widetilde{\Omega}).$$

Так как $C^{|\alpha|}$ ($\widetilde{\Omega}$) всюду плотно в $L_2(\widetilde{\Omega})$, то по замечанию 3 почти всюду в $\widetilde{\Omega}$ выполнено $f_1^{\alpha}-f_2^{\alpha}=0$. В силу произвольного выбора множества $\widetilde{\Omega}$ разность $f_1^{\alpha}-f_2^{\alpha}=0$ почти всюду в Ω : $f_1^{\alpha}=f_2^{\alpha}$ почти всюду в Ω .

Свойство 2. Если функция f(x) имеет непрерывную классическую производную $D^{\alpha}f$ в Ω , то f(x) имеет α - обобщенную производную f^{α} и $f^{\alpha} = D^{\alpha}f$.

Доказательство. Рассмотрим произвольную функцию $g \in C^{|\alpha|}$ (Ω). Пусть $\alpha = (\alpha_1, \dots, \alpha_k)$. Интеграл

$$\int_{\Omega} f(x)D^{|\alpha|}g(x) dx = \int_{\Omega} f(x) \frac{\partial^{|\alpha|}g(x)}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}} dx$$

существует в силу замечания 2. Интегрируя по частям α_1 раз по переменной

 x_1 , получим равенство

$$\int_{\Omega} f(x)D^{|\alpha|}g(x) dx = (-1)^{\alpha_1} \int_{\Omega} \frac{\partial^{\alpha_1} f}{\partial x_1^{\alpha_1}} \frac{\partial^{\alpha_2 + \dots + \alpha_n} g}{\partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}} dx =$$

(интегрируем по частям по переменной x_2)

$$= (-1)^{\alpha_1 + \alpha_2} \int_{\Omega} \frac{\partial^{\alpha_1 + \alpha_2} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2}} \frac{\partial^{\alpha_3 + \dots + \alpha_n} g}{\partial x_3^{\alpha_3} \dots \partial x_n^{\alpha_n}} dx =$$

(интегрируем по частям по x_3 по x_4 и, наконец, по x_n)

$$(-1)^{\alpha_1+\alpha_2+\cdots+\alpha_n} \int_{\Omega} \frac{\partial^{\alpha_1+\alpha_2+\cdots+\alpha_n} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}} g \, dx.$$

Получаем равенство

$$\int_{\Omega} f(x)D^{|\alpha|}g(x) dx = (-1)^{|\alpha|} \int_{\Omega} D^{\alpha}fg dx,$$

верное при любом фиксированном $g \in C^{|\alpha|}(\Omega)$. По определению α - обобщенной производной функция $D^{\alpha}f$ есть α - обобщенная производная.

Замечание 4. Мы показали, что множество функций, имеющих α - обобщенные производные, не пусто. Например, функции класса $C^k(\Omega)$ имеют α - обобщенные производные для всех α таких, что $|\alpha| \leq k$. Функции класса $C^{\infty}(\Omega)$ имеют обобщенные производные при любом мультеиндексе α равные $D^{\alpha}f$.

Зафиксируем мультеиндекс $\alpha = (\alpha_1, \dots, \alpha_k)$. $D^{\alpha}f$ означает, что производная по x_1 берется α_1 раз, по x_2 - α_2 раз и т.д. Из анализа известно, что если соответствующие классические смешанные производные некоторого порядка m непрерывны, то эти производные не зависят от порядка дифференцирования.

Аналогичная ситуация имеет место и в случае обобщенных производных.

Свойство 3. α - обобщенная производная зависит от мультеиндекса α и не зависит от порядка дифференцирования по пространственным переменным.

Доказательство. Пусть

$$f_1^{\alpha} = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}, \qquad f_2^{\alpha} = \frac{\partial^{|\alpha|} f}{\partial x_2^{\alpha_2} \partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} -$$

две производные соответствующие одному α и вычисленные разными способами. Это значит, что

$$\int_{\Omega} f \frac{\partial^{|\alpha|} g}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}} dx = (-1)^{|\alpha|} \int_{\Omega} f_1^{\alpha} g dx \qquad \forall g \in \stackrel{\circ}{C^{|\alpha|}} (\Omega),$$

$$\int_{\Omega} f \frac{\partial^{|\alpha|} g}{\partial x_2^{\alpha_2} \partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} dx = (-1)^{|\alpha|} \int_{\Omega} f_2^{\alpha} g \, dx \qquad \forall g \in C^{|\alpha|} (\Omega),$$

и, так как левые части этих равенств равны, то

$$\int_{\Omega} (f_1^{\alpha} - f_2^{\alpha}) g \, dx = 0 \qquad \forall g \in \overset{\circ}{C^{|\alpha|}} (\Omega).$$

Повторяя далее рассуждения, приведенные при доказательстве свойства 1, получим, что $f_1^{\alpha}=f_2^{\alpha}$ почти всюду в $\Omega.$

Свойство 4. Пусть даны функции $f_i(x)$ класса $L_{2,loc}(\Omega)$, f_i^{α} - их соответственно α - обобщенные производные, C_i - постоянные, $i=1,\ldots k$. Тогда функция $f=\sum_{i=1}^k C_i f_i$ имеет α - обобщенную производную f^{α} и $f^{\alpha}=\sum_{i=1}^k C_i f_i^{\alpha}$.

Свойство 4 -линейность операции обобщенного дифференцирования.

Свойство 5. Пусть функция f(x) имеет $\alpha =$ обобщенную производную $D^{\alpha} = \varphi$, а функция $\varphi(x)$ имеет β - обобщенную производную $D^{\beta}\varphi = \psi$. Тогда функция f(x) имеет $\alpha + \beta$ - обобщенную производную $D^{\alpha+\beta}f = \psi$.

Тогда функция
$$f(x)$$
 имеет $\alpha+\beta$ - обобщенную производную $D^{\alpha+\beta}f=\psi$. Доказательство. Пусть $g\in \overset{\circ}{C}^{|\alpha|+|\beta|}(\Omega)$. Тогда $\int\limits_{\Omega}fD^{\alpha+\beta}g\,dx=$

$$=\int\limits_{\Omega}fD^{\alpha}(D^{\beta}g)\,dx=(\text{так как }D^{\beta}g\in \overset{\circ}{C}^{|\alpha|}(\Omega)\text{ и }f\text{ имеет обобщенную про-}$$

изводную
$$D^{\alpha}f=\varphi)=(-1)^{|\alpha|}\int\limits_{\Omega}\varphi D^{\beta}g\,dx=$$
 (так как φ имеет обобщенную

производную
$$D^{\beta}\varphi=\psi)=(-1)^{|\alpha|+|\beta|}\int\limits_{\Omega}\psi g\,dx=(-1)^{|\alpha+\beta|}\int\limits_{\Omega}\psi g\,dx.$$

Пример 1. Пусть f(x) = |x| и $\Omega = (-1; 2) \subset E_1$. Найти обобщенную производную функции f(x) по x.

Решение. Для любой функции $g\in \overset{\circ}{C}^1$ ((-1;2)) выполняются соотношения $\int\limits_{-1}^2|x|g'\,dx=-\int\limits_{-1}^0xg'\,dx+\int\limits_0^2xg'\,dx=-xg(x)|_{-1}^0+\int\limits_{-1}^0g\,dx+xg(x)|_0^2$ $-\int\limits_0^2g\,dx=$ (первый и третий члены равны нулю) $=-\left(-\int\limits_{-1}^0g\,dx+\int\limits_0^2g\,dx\right)$ $=-\int\limits_{-1}^2signxg\,dx.$

Таким образом, обобщенная производная

$$f' = signx = \begin{cases} -1, & -1 < x < 0, \\ 1, & 0 \le x < 2. \end{cases}$$

Для обобщенных производных применяются те же обозначения, что и для классических производных.

Например,

=

$$\frac{\partial^{|\alpha|} f(x)}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}, \quad D^{\alpha} f(x) \qquad \text{при } \alpha = (\alpha_1, \dots, \alpha_n),$$

$$D_x^{\alpha} f = \frac{\partial^2 f}{\partial x_1 \partial x_2}, \qquad f_{x_1 x_2}, \qquad \text{при } \alpha = (1, 1, 0, \dots, 0),$$

$$f_{x_i x_j} \qquad \text{при } \alpha = (0, \dots, 0, \ \stackrel{i}{1}, \ 0, \ \dots, \ 0, \ \stackrel{j}{1}, \ 0, \dots, 0)$$

Пример 2. Пусть $f(x)=|x_1|,\ x\in\Omega=\{x||x|<1\},\ \Omega_+=\{x||x|<1,x_1>0\},\ \Omega_-=\{x||x|<1,x_1<0\}$. Доказать, что $\frac{\partial f}{\partial x_1}=sign x_1,\ \frac{\partial f}{\partial x_i}=0,$ $i=2,3,\ldots,n.$

Доказательство.
$$\int_{\Omega} f g'_{x_1} dx = \int_{\Omega} |x_1| g'_{x_1} dx = \int_{\Omega_+} x_1 g'_{x_1} dx - \int_{\Omega_-} x_1 g'_{x_1} dx$$

$$=\int\limits_{\partial\Omega_+}x_1g(x)\cos nx_1\,ds-\int\limits_{\Omega_+}g\,dx-\int\limits_{\partial\Omega_-}x_1g(x)\cos nx_1\,ds+\int\limits_{\Omega_-}g\,dx=\text{(интерралы по поверхностям }\partial\Omega_-,\ \partial\Omega_+\text{ равны нулю})=-\int\limits_{\Omega}signx_1g(x)\,dx\ \forall g$$
 грады по поверхностям $\partial\Omega_-,\ \partial\Omega_+$ равны нулю)=-\int_\signalphasign signx_1g(x)\ dx\ \forall g \left.\ \forall \left. \left.\ \forall \left.\ \left.\

Пример 3. Пусть $f(x) = sign x_1, x \in \Omega$. Доказать, что производная f'_{x_1} не существует, а производные $f'_{x_i} = 0, j = 2, 3, \ldots, n$.

Доказательство. Пусть j>1. $\int\limits_{\Omega} signx_1g_{x_j}\,dx=\int\limits_{\Omega} \frac{\partial}{\partial x_j}(signx_1g(x))\,dx$ $=\int\limits_{\Omega} \frac{\partial}{\partial x_j}signx_1g(x)\cos(nx_j)\,ds=0=\int\limits_{\Omega} 0\cdot g(x)\,dx$. Следовательно,

$$\frac{\partial}{\partial x_j}(signx_1) = 0, \qquad j = 2, \dots, n.$$

Докажем, что производная $\frac{\partial f}{\partial x_1}$ не существует. Через D обозначим сечение шара Ω плоскостью $x_1=0$. Предположим, что существует обобщенная производная $\frac{\partial f}{\partial x_1}=\varphi(x),\, \varphi(x)\in L_{2,loc}(\Omega)$. Из этого предположения следует, что

$$\int_{\Omega} sign x_1 \frac{\partial g}{\partial x_1} dx = (-1) \int_{\Omega} \varphi(x) g(x) dx \qquad \forall g \in \overset{\circ}{C}^1(\Omega).$$
 (8.2)

Замечание 5. Вспомним, что имеет место вложение $\overset{\circ}{C}^1$ (Ω_{\pm}) $\subset \overset{\circ}{C}^1$ (Ω). Пусть $g(x) \in \overset{\circ}{C}^1$ (Ω_+). Из (8.2) имеем

$$\int_{\Omega} signx_1 \frac{\partial g}{\partial x_1} dx = \int_{\Omega_+} signx_1 \frac{\partial g}{\partial x_1} dx = \int_{\partial \Omega_+} g(s) \cos(n, x_1) ds = 0.$$

Следовательно,

$$\int_{\Omega_{+}} \varphi(x)g(x) dx = 0 \qquad \forall g \in \overset{\circ}{C}^{1}(\Omega_{+}). \tag{8.3}$$

Аналогично доказывается, что

$$\int_{\Omega_{-}} \varphi(x)g(x) dx = 0 \qquad \forall g \in \overset{\circ}{C}^{1}(\Omega_{-}). \tag{8.4}$$

Из (8.3), (8.4) следует, что

$$(\varphi, g)_{L_2(\Omega_+)} = 0 \quad \forall g \in \overset{\circ}{C}^1(\Omega_+),$$

$$(\varphi, g)_{L_2(\Omega_-)} = 0 \qquad \forall g \in \overset{\circ}{C}^1(\Omega_-).$$

Так как пространства $\overset{\circ}{C}^1$ (Ω_+) , $\overset{\circ}{C}^1$ (Ω_-) плотны соответсвенно в $L_2(\Omega_+)$, $L_2(\Omega_-)$ то (см. замечание 3) $\varphi=0$ почти всюду в Ω_+ и в Ω_- и, следовательно, в Ω (лебегова мера D равна нулю). Из (8.2) и равенства нулю функции $\varphi(x)$ почти всюду в Ω

$$\int_{\Omega} sign x_1 \frac{\partial g}{\partial x_1} dx = 0 \qquad \forall g \in \overset{\circ}{C}^1(\Omega).$$

Отсюда

$$0 = \int_{\Omega} sign x_1 \frac{\partial g}{\partial x_1} dx = \int_{\Omega_+} \frac{\partial g}{\partial x_1} dx - \int_{\Omega_-} \frac{\partial g}{\partial x_1} dx = \int_{\partial\Omega_+} g(s) \cos(n, x_1) ds - \int_{\Omega_+} \frac{\partial g}{\partial x_1} dx = \int_{\Omega_+} g(s) \cos(n, x_1) ds$$

$$-\int\limits_{\partial\Omega_{-}}g(s)\cos(n,x_{1})\,ds=-\int\limits_{D}g(s)\,ds-\int\limits_{D}g(s)\,ds=-2\int\limits_{D}g(s)\,ds\quad\forall g\in\overset{\circ}{C}^{1}\left(\Omega\right).$$

В силу произвольного выбора функции $g\in \overset{\circ}{C}^1$ (Ω) мы получили противоречие.

9. Пространства Соболева $H^l(\Omega)$

Пусть $l \ge 1$ - целое.

Определение. $H^l(\Omega)$ - линейное пространство функций, имеющих все обобщенные производные до порядка l включительно, суммируемые с квадратом.

Данное определение кратко можно записать так:

$$H^{l}(\Omega) = \{ u | D^{\alpha}u \in L_{2}(\Omega) \ \forall \alpha, |\alpha| \le l \}. \tag{9.1}$$

Скалярное произведение в $H^l(\Omega)$ задаётся соотношением

$$(f,g)_{H^{l}(\Omega)} = \int_{\Omega} \sum_{|\alpha| \le l} D^{\alpha} f D^{\alpha} g \, dx. \tag{9.2}$$

В частности скалярное произведение в $H^1(\Omega)$ есть

$$(f,g)_{H^{1}(\Omega)} = \int_{\Omega} \sum_{|\alpha|=0}^{1} D^{\alpha} f D^{\alpha} g \, dx =$$

$$= \int_{\Omega} \left(fg + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{i}} \right) \, dx = \int_{\Omega} (fg + \nabla f \nabla g) \, dx.$$

$$(9.3)$$

Норма в $H^l(\Omega)$ есть

$$||f||_{H^{l}(\Omega)} = \left(\int_{\Omega} \sum_{|\alpha| \le l} (D^{\alpha} f)^{2} dx \right)^{1/2}.$$
 (9.4)

Теорема 1. $H^l(\Omega)$ - гильбертово пространство.

Доказательство. Нетрудно доказать, что (9.2) есть скалярное произведение. Докажем, что пространство $H^l(\Omega)$ полное по норме (9.4), порожденной скалярным произведением (9.2). Последнее означает, что всякая фундаментальная по норме (9.4) последовательность $\{u_m\}_{m=1}^{\infty} \in H^l(\Omega)$ сходится по этой норме к некоторому элементу $u \in H^l(\Omega)$.

Пусть $\{u_m\}_{m=1}^{\infty} \in H^l(\Omega)$ и $\forall \varepsilon > 0$ существует N такое, что

 $||u_k - u_s||_{H^l(\Omega)} < \varepsilon \ \forall k, s > N.$

$$||u_k - u_s||_{H^l(\Omega)}^2 = \int_{\Omega} \sum_{|\alpha| \le l} (D^{\alpha} (u_k - u_s))^2 dx = \sum_{|\alpha| \le l} \int_{\Omega} (D^{\alpha} (u_k - u_s))^2 dx =$$

$$\sum_{|\alpha| \le l} \int_{\Omega} (D^{\alpha} u_k - D^{\alpha} u_s)^2 dx = \sum_{|\alpha| \le l} \|D^{\alpha} u_k - D^{\alpha} u_s\|_{L_2(\Omega)}^2.$$
(9.5)

Вспомним, что

$$(f,g)_{L_2(\Omega)} = \int_{\Omega} fg \, dx, \qquad ||f||_{L_2(\Omega)} = (f^2 \, dx)^{1/2}$$

Из (9.5) следует, что $\|D^{\alpha}u_{k}-D^{\alpha}u_{s}\|_{L_{2}(\Omega)}^{2}<\varepsilon \ \forall k,s>N,$ при всех α таких, что $|\alpha|\leq l$. Следовательно, последовательность

$$\{D^{\alpha}u_{m}\}_{m=1}^{\infty}$$
 является фундаментальной в $L_{2}(\Omega) \, \forall \, \alpha \, |\alpha| \leq l.$ (9.6)

В частности, последовательность $\{u_m\}_{m=1}^{\infty}$ также фундаментальна в $L_2(\Omega)$. Из (9.6) следует, что в силу полноты пространства $L_2(\Omega)$ существует элемент $u^{\alpha} \in L_2(\Omega)$ такой, что

$$||D^{\alpha}u_m - u^{\alpha}||_{L_2(\Omega)} \to 0$$
 при $m \to \infty$. (9.7)

В частности, существует элемент $u \in L_2(\Omega)$ такой, что

$$||u_m - u||_{L_2(\Omega)} \to 0 \quad \text{при} \quad m \to \infty. \tag{9.8}$$

Так как из сильной сходимости следует слабая сходимость, то $(\varphi, u_m)_{L_2(\Omega)} \to (\varphi, u)_{L_2(\Omega)}$, $m \to \infty \ \forall \varphi \in L_2(\Omega)$. Аналогично для любого $\alpha, \alpha \leq l$, $(\varphi, D^{\alpha}u_m)_{L_2(\Omega)} \to (\varphi, u^{\alpha})_{L_2(\Omega)}$, $m \to \infty \ \forall \varphi \in L_2(\Omega)$.

Покажем, что u^{α} есть α - обобщенная производная функции u. Пусть $\varphi\in C^{|\alpha|}$ $(\Omega)\subset L_2(\Omega)$. По определению

$$\int_{\Omega} u_m D^{\alpha} g \, dx = (-1)^{|\alpha|} \int_{\Omega} g D^{\alpha} u_m \, dx \qquad \forall \, \alpha \, : \, |\alpha| \le l. \tag{9.9}$$

Перейдем в (9.9) к пределу при $m \to \infty$. Получим

$$\int_{\Omega} u D^{\alpha} g \, dx = (-1)^{|\alpha|} \int_{\Omega} g u^{\alpha} \, dx \qquad \forall g \in C^{|\alpha|} (\Omega) \, |\alpha| \le l. \tag{9.10}$$

Из (9.10) следует, что функция u имеет все обобщенные производные $D^{\alpha}u$ до порядка l включительно и $D^{\alpha}u=u^{\alpha}, \ |\alpha|\leq l.$

Мы доказали, что $u \in H^l(\Omega)$.

10. След функций из $H^1(\Omega)$

Пусть Ω - область в пространстве $E_n,\ l\subset\Omega$ - фиксированная гладкая гиперповерхность размерности n-1 и f(x) - функция, заданная в каждой точке $x\in\Omega$. Мы можем рассматривать функцию f(x) только в точках $x\in l$ и, таким образом, можем получить функцию F(x), заданную только на $l\colon D(F)=l,\ F(x)=f(x),\ x\in l$. Будем называтьF(x) сужением f(x) на l.

Если функция f(x) определена почти всюду на Ω , то она определяется неоднозначно на l (или вообще неопределена), так как l имеет n-мерную меру Лебега равную нулю.

При постановке краевых задач требуется задавать значения неизвестных функций, их производных на некоторых (n-1)-мерных фиксированных гиперповерхностях, в частности, на границе области, в которой требуется найти решение (граничные условия, начальные данные). Если мы ищем решение в классах Соболева, то функции принадлежащие этим классам, вообще говоря, определены почти всюду на $\overline{\Omega}$ и так как $\partial\Omega$ имеет n-мерную меру Лебега равную нулю, то на $\partial\Omega$ они могут определяться неоднозначно.

Встаёт задача, что понимать под значением функций класса $H^k(\Omega)$, $k \ge 1$, на l. Эта задача решается введением понятия следа функции u класса $H^1(\Omega)$ на $l \in \overline{\Omega}$. В частности, в качестве l можно рассматривать границу $\partial \Omega$ (или её некоторые части) области Ω .

Определение. Следом $f|_l$ функции $f \in C(\overline{Q})$ на (n-1)-мерной поверхности l назовём функцию, определённую на l и почти всюду на l совпадающую с f в смысле (n-1) - мерной меры, в частности, сужение F функции $f \in C(\overline{\Omega})$ на l и любая п.в. (в смысле (n-1)-мерной меры Лебега) на l совпадающая с F функция является следом функции f на l.

Введем понятие следа функции класса $H^k(\Omega)$ на l. Так как $H^k(\Omega) \subset H^1(\Omega)$ при $k \geq 1$, то понятие следа достаточно ввести при k = 1.

Пусть l - гиперповерхность класса C^1 , лежащая в $\overline{\Omega}$. Можно доказать [14] (гл.III, §5), что для произвольной функции $u(x) \in C^1(\overline{\Omega})$ имеет место неравенство

$$||u|_l|_{L_2(l)} \le C||u||_{H^1(\Omega)}. \tag{10.1}$$

В (10.1) $||u||_{l}||_{L_2(l)}$ есть норма в $L_2(l)$ следа функции $u \in C^1(\overline{\Omega})$ на l, постоянная C не зависит от u, а зависит лишь от области Ω и гиперповерхности l.

Рассмотрим $u\in H^1(\Omega)$. Из теоремы 1 следует существование последовательности $\{u_k\}_{k=1}^\infty,\,u_k\in C^1(\overline{\Omega}),\,$ такой что,

$$||u - u_k||_{H^1(\Omega)} \to 0, \qquad k \to \infty.$$
 (10.2)

Так как $u_m - u_p \in C^1(\overline{\Omega})$, то в силу (10.1)

$$||u_m|_l - u_p|_l||_{L_2(l)} \le C||u_m - u_p||_{H^1(\Omega)}.$$
(10.3)

Из (10.2), (10.3) следует, что

$$||u_m|_l - u_p|_l||_{L_2(l)} \to 0, \qquad m, p \to \infty.$$
 (10.4)

Из (10.4) следует, что последовательность следов $\{u_k|_l\}_{k=1}^{\infty}$ функций u_k на гиперповерхности l фундаментальна в $L_2(l)$, и в силу полноты пространства $L_2(l)$ существует функция $u_l \in L_2(l)$, такая что

$$u_k|_l \to u_l$$
 сильно в $L_2(l)$ при $m \to \infty$. (10.5)

Переходя в (10.3) к пределу при $p \to \infty$, получим неравенство

$$||u_m - u_l||_{L_2(l)} \le C||u_m - u||_{H^1(\Omega)}. \tag{10.6}$$

Определение. Функцию $u_l \in L_2(l)$ будем называть следом функции $u \in H^1(\Omega)$ на поверхности l и обозначается через $u|_l$.

Замечание. Обозначение $u|_l$ подчеркивает, что мы имеем дело не с сужением функции u на l, а именно со следом функции $u \in H^1(\Omega)$ на гиперплоскости l.

Покажем, что след $u|_l$ функции $u \in H^1(\Omega)$ определяется однозначно: его определение не зависит от выбора сходящейся к u в $H^1(\Omega)$ последовательности $\{u_m\}_{m=1}^{\infty}$, $u_m \in C^1(\overline{\Omega})$. Действительно, пусть $\{\widetilde{u}_m\}_{m=1}^{\infty}$ - другая последовательность в $C^1(\overline{\Omega})$, сходящаяся сильно в $H^1(\Omega)$ к u:

$$\|\widetilde{u}_m - u\|_{H^1(\Omega)} \to 0, \qquad m \to \infty, \tag{10.7}$$

и \widetilde{u}_l - след функции u, определяемый по последовательности $\{\widetilde{u}_m\}_{m=1}^\infty$. Тогда в силу $(10.3),\,(10.6)$

$$||u_l - \widetilde{u}_l||_{L_2(l)} \le ||u_l - u_m||_{L_2(l)} + ||u_m - \widetilde{u}_m||_{L_2(l)} + ||\widetilde{u}_m - \widetilde{u}_l||_{L_2(l)} \le$$

$$\leq C(\|u-u_m\|_{H^1(\Omega)} + \|u_m-\widetilde{u}_m\|_{H^1(\Omega)} + \|\widetilde{u}_m-u\|_{H^1(\Omega)}).$$

Так как в силу (10.2), (10.7) правая часть последнего неравенства при $m \to \infty$ стремится к нулю, то $||u_l - \widetilde{u}_l||_{L_2(l)} = 0$. Отсюда следует, что $u_l = \widetilde{u}_l$.

Так как в силу (10.1)

$$||u_k|_l||_{L_2(l)} \le C||u_k||_{H^1(\Omega)},$$

то переходя в последнем неравенстве к пределу при $m \to \infty$, получим в силу (10.2), (10.5) неравенство

$$||u|_l||_{L_2(l)} \le C||u||_{H^1(\Omega)}, \qquad u \in H^1(\Omega).$$
 (10.8)

Доказана следующая

Теорема 1. Пусть (n-1) -мерная поверхность l класса C^1 принадлежит $\overline{\Omega}$ и $\partial\Omega \in C^1$. Тогда любая функция $u \in H^1(\Omega)$ имеет след $u|_l \in L_2(l)$ и выполняется неравенство (10.8).

Замечание. Выше при доказательстве теоремы 1 мы предполагали, что $\partial \Omega \in C^1$, что связано с доказательством неравенства (10.1) для функций класса $C^1(\overline{\Omega})$. Если $l \in \Omega$, условие принадлежности $\partial \Omega$ классу C^1 можно опустить в этом случае имеет место

Теорема 2. Пусть (n-1) -мерная поверхность l класса C^1 принадлежит $\widetilde{\Omega}$, $\widetilde{\Omega} \in \Omega$. Тогда любая функция $u \in H^1(\Omega)$ имеет след $u|_l \in L_2(l)$ и выполняется неравенство (10.8).

11. Формула интегрирования по частям для функций класса $H^1(\Omega)$

Пусть Ω - ограниченная область с границей $\partial\Omega\in C^1$ и f(x),g(x) - функции класса $C^1(\overline{\Omega})$. Из Анализа известна формула интегрирования по частям:

$$\int_{\Omega} \frac{\partial f}{\partial x_i} g \, dx = \int_{\partial \Omega} f g \cos(nx_i) d\gamma - \int_{\Omega} f \frac{\partial g}{\partial x_i} \, dx. \tag{11.1}$$

Рассмотрим функции $f(x), g(x) \in H^1(\Omega)$. Тогда (по теореме 1) существуют Последовательности $\{f_m\}_{m=1}^{\infty}$ и $\{g_m\}_{m=1}^{\infty} \in C^1(\overline{\Omega})$ такие, что при $m \to \infty$

$$f_m \to f, \qquad g_m \to g \qquad$$
 сильно в $H^1(\Omega)$. (11.2)

Из (11.2) следует (см. неравенство (10.8))

$$f_m|_S \to f|_S, \qquad g_m|_S \to g|_S \qquad \text{B} \ L_2(\partial\Omega).$$
 (11.3)

Функции $f_m(x), g_m(x)$ как функции класса $C^1(\overline{\Omega})$ удовлетворяют соотношениям

$$\int_{\Omega} \frac{\partial f_m}{\partial x_i} g_m \, dx = \int_{\partial \Omega} f_m g_m \cos(nx_i) d\gamma - \int_{\Omega} f_m \frac{\partial g_m}{\partial x_i} \, dx. \tag{11.4}$$

Докажем, что

$$\int_{\Omega} \frac{\partial f_m}{\partial x_i} g_m \, dx \to \int_{\Omega} \frac{\partial f}{\partial x_i} g \, dx \tag{11.5}$$

при $m \to \infty$. Запишем соотношния

$$\left| \int_{\Omega} \frac{\partial f}{\partial x_{i}} g \, dx - \int_{\Omega} g_{m} \frac{\partial f_{m}}{\partial x_{i}} \, dx \right| \leq \int_{\Omega} \left| \frac{\partial f}{\partial x_{i}} \right| |g - g_{m}| dx$$

$$+\int\limits_{\Omega}\left|\frac{\partial f_m}{\partial x_i}-\frac{\partial f}{\partial x_i}\right||g_m|dx\leq ($$
 по неравенству Коши-Буняковского $)\leq$

$$\left(\int_{\Omega} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} dx\right)^{1/2} \left(\int_{\Omega} (g - g_{m})^{2} dx\right)^{1/2} + \left(\int_{\Omega} \left(\partial f - \partial f_{m}\right)^{2}\right)^{1/2} \left(\int_{\Omega} (g - g_{m})^{2} dx\right)^{1/2} + \left(\int_{\Omega} \left(\partial f - \partial f_{m}\right)^{2}\right)^{1/2} \left(\int_{\Omega} (g - g_{m})^{2} dx\right)^{1/2} + \left(\int_{\Omega} \left(\partial f - \partial f_{m}\right)^{2}\right)^{1/2} \left(\int_{\Omega} (g - g_{m})^{2} dx\right)^{1/2} + \left(\int_{\Omega} \left(\partial f - \partial f_{m}\right)^{2}\right)^{1/2} \left(\int_{\Omega} (g - g_{m})^{2} dx\right)^{1/2} + \left(\int_{\Omega} (g - g_{m})^{2} dx\right)^{1/2} +$$

$$+ \left(\int_{\Omega} \left(\frac{\partial f}{\partial x_i} - \frac{\partial f_m}{\partial x_i} \right)^2 dx \right)^{1/2} \left(\int_{\Omega} (g_m)^2 dx \right)^{1/2} \le$$

$$||f||_{H^1(\Omega)} \cdot ||g - g_m||_{H^1(\Omega)} + ||g_m||_{H^1(\Omega)} ||f - f_m||_{H^1(\Omega)}.$$

Так как множество $\{\|g_m\|_{H^1(\Omega)}\}$ ограничено, то правая часть последнего неравенства стремится к нулю при $m \to 0$ и, следовательно, выполняется соотношение (11.5).

Покажем, что при $m \to 0$

$$\int_{\partial\Omega} f_m g_m \cos(\overline{n}, x_i) \, d\gamma \to \int_{\partial\Omega} f|_{\partial\Omega} g|_{\partial\Omega} \cos(\overline{n}, x_i) \, d\gamma. \tag{11.6}$$

Это следует из соотношений

$$\left| \int_{\partial\Omega} f|_{\partial\Omega} g|_{\partial\Omega} \cos(\overline{n}, x_i) \, d\gamma - \int_{\partial\Omega} f_m g_m \cos(\overline{n}, x_i) \, d\gamma \right| \le$$

$$\int\limits_{\partial\Omega}|f|_{\partial\Omega}g|_{\partial\Omega}-f_m|_{\partial\Omega}g_m|_{\partial\Omega}|\ d\gamma\leq\int\limits_{\partial\Omega}|f_{\partial\Omega}|\ |g|_{\partial\Omega}-g_m|_{\partial\Omega}|\ d\gamma+$$

$$+ \int_{\partial\Omega} |g_m|_{\partial\Omega} ||f|_{\partial\Omega} - f_m|_{\partial\Omega} |d\gamma \le$$

 \leq (неравенство Коши-Буняковского) \leq

$$\leq \left(\int_{\partial\Omega} (f|_{\partial\Omega})^2 d\gamma\right)^{1/2} \left(\int_{\partial\Omega} (g|_{\partial\Omega} - g_m)^2 d\gamma\right)^{1/2} +$$

$$\left(\int_{\partial\Omega} (f|_{\partial\Omega} - f_m|_{\partial\Omega})^2 d\gamma\right)^{1/2} \left(\int_{\partial\Omega} (g_m)^2 d\gamma\right)^{1/2} =$$

 $= \|f|_{\partial\Omega}\|_{L_2(\partial\Omega)}\|g|_{\partial\Omega} - g_m|_{\partial\Omega}\|_{L_2(\partial\Omega)} + \|g_m|_{\partial\Omega}\|_{L_2(\partial\Omega)}\|f_m|_{\partial\Omega} - f|_{\partial\Omega}\|_{L_2(\partial\Omega)} \le$

$$\leq C\{\|f\|_{H^1(\Omega)}\|g - g_m\|_{H^1(\Omega)} + \|g_m\|_{H^1(\Omega)}|f_m - f\|_{H^1(\Omega)}\} \leq$$

$$C_1(\|g - g_m\|_{H^1(\Omega)} + |f_m - f\|_{H^1(\Omega)}).$$
 (11.7)

В силу (11.2) правая часть (11.7) стремится к нулю при $m \to \infty$. Следовательно, имеет место соотношение (11.6).

Доказательство того факта, что

$$\int_{\Omega} \frac{\partial g_m}{\partial x_i} f_m \, dx \to \int_{\Omega} \frac{\partial g}{\partial x_i} f \, dx \tag{11.8}$$

при $m \to \infty$. аналогично доказательству соотношения (11.5).

Из (11.5), (11.6), (11.8) следует, что формула (11.1) верна для функций $f,g\in H^1(\Omega)$. В этом случае ее можно записать в виде

$$\int_{\Omega} \frac{\partial f}{\partial x_i} g \, dx = \int_{\partial \Omega} f|_{\partial \Omega} \cdot g|_{\partial \Omega} \cos(nx_i) d\gamma - \int_{\Omega} f \frac{\partial g}{\partial x_i} \, dx. \tag{11.9}$$

Замечание. В случае, когда $f \in H^1(\Omega), g \in \overset{\circ}{H^1}(\Omega)$ (или $f \in \overset{\circ}{H^1}(\Omega), g \in H^1(\Omega)$) из (11.1) следует равенство

$$\int_{\Omega} \frac{\partial f}{\partial x_i} g \, dx = -\int_{\Omega} f \frac{\partial g}{\partial x_i} \, dx. \tag{11.10}$$

12. Первая краевая задача для эллиптического уравнения. Теорема существования и единственности

Пусть $\Omega \subset E_n$ - ограниченная область с границей $\partial \Omega \in C^1$.

Первая краевая задача

Рассмотрим уравнение

$$-\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(k(x) \frac{\partial u}{\partial x_i} \right) + a(x)u = f(x)$$
 (12.1)

и краевые условия

$$u|_{\partial\Omega} = 0. (12.2)$$

Относительно коэффициентов уравнения (12.1) предположим, что

$$0 < k_0 \le k(x) \le K, (12.3)$$

$$0 \le a(x) \le A,\tag{12.4}$$

функции k(x), a(x) измеримы по Лебегу в Ω , k_0 , K, A - постоянные,

$$f(x) \in L_2(\Omega). \tag{12.5}$$

Определение. Функция $u(x) \in \overset{\circ}{H^1}(\Omega)$ называется обобщенным решением класса $H^1(\Omega)$ задачи (12.1), (12.2), если

$$(u,v) \equiv \int_{\Omega} k(x) \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} dx + \int_{\Omega} auv dx = \int_{\Omega} fv dx \quad \forall v \in \overset{\circ}{H^{1}} (\Omega). (12.6)$$

Теорема 1. Пусть выполнены условия (12.3) - (12.5). Тогда задача (12.1), (12.2) имеет единственное решение в классе $H^1(\Omega)$.

Доказательство. В силу (12.3), (12.4) билинейная форма ((u,v)) есть скалярное произведение в H^1 (Ω), порождающее норму $\|u\|_1 = ((u,u))^{1/2}$ эквивалентную исходной в $H^1(\Omega)$ норме $\|u\|_{H^1(\Omega)} = \left(\int\limits_{\Omega} (u^2 + |\nabla u|^2) \, dx\right)^{1/2}$. Наше доказательство основано на теореме Рисса о представлении линейного непрерывного функционала в гильбертовом пространстве.

Теорема (Рисс). Линейный непрерывный функционал F в гильбертовом пространстве H представим в виде $F(w) = (w, z) \, \forall w \in H$, где $z \in H$. При этом элемент z определяется единственным образом и ||F|| = ||z||.

Рассмотрим функционал

$$F(v) = \int_{\Omega} fv \, dx. \tag{12.7}$$

Здесь $f(x) \in L_2(\Omega), u(x) \in \overset{\circ}{H^1}(\Omega)$. Ясно, что F(v) определен при любых $v \in \overset{\circ}{H^1}(\Omega)$. Очевидна линейность функционала F. Докажем его непрерывность. Справедливы соотношения

$$|F(u)| = \left| \int\limits_{\Omega} fu \, dx \right| \le ($$
неравенство Шварца $) \le 1$

$$||f|| \cdot ||u|| \le ||f|| \cdot ||u||_{H^1(\Omega)} \le$$

 \leq (в силу эквивалентности норм $\|\cdot\|_{H^1(\Omega)}$ и $\|\cdot\|_1$) $\leq C\|f\|\cdot\|u\|_1$.

Отметим, что мы рассматриваем $\overset{\circ}{H^1}(\Omega)$ с нормой $\|\cdot\|_1$ и скалярным произведением $((\cdot,\cdot))_1$. Доказано неравенство

$$|F(u)| \le C||f|| \cdot ||u||_1.$$

Откуда $||F|| \leq C||f||$. Функционал F ограничен, следовательно, он непрерывен, и по теореме Рисса существует единственный элемент $u(x) \in \overset{\circ}{H^1}(\Omega)$ такой, что $F(v) = ((u,v)) \ \forall v \in \overset{\circ}{H^1}(\Omega)$ или

$$\int_{\Omega} k(x) \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} dx + \int_{\Omega} auv dx = \int_{\Omega} fv dx \quad \forall v \in \overset{\circ}{H^{1}} (\Omega).$$

Теорема 1 доказана.

Вторая краевая задача

Пусть на $\partial\Omega$ задано второе краевое условие

$$\left. \frac{\partial u}{\partial n} \right|_{\partial \Omega} = 0. \tag{12.8}$$

Рассмотрим в области Ω вторую краевую задачу (12.1), (12.8). Считаем, что коэффициент k(x) удовлетворяет условию (12.3), функция f(x) - условию (12.5). Относительно a(x) предположим, что

$$0 < a_0 \le a(x) \le A, \qquad a_0 - const.$$
 (12.9)

Рассмотрим краевую задачу (12.1), (12.8) при условиях (12.3), (12.5), (12.9).

Определение. Элемент класса $H^1(\Omega)$ называется обобщенным решением задачи (12.1), (12.8) в классе $H^1(\Omega)$, если соотношения (12.6) выполняются при всех $v(x) \in H^1(\Omega)$.

Теорема 2. Пусть выполнены условия (12.3), (12.5), (12.9), тогда задача (12.1), (12.8) имеет единственное решение в классе $H^1(\Omega)$.

Доказательство. В силу (12.3), (12.9) билинейная форма ((u,v)) в (12.6) порождает на $H^1(\Omega)$ скалярное произведение ((u,v)) эквивалентное исходному скалярному произведению $(u,v)_{H^1(\Omega)}$ в $H^1(\Omega)$. Функционал $F(v) = \int\limits_{\Omega} fv\,dx$ - линейный и ограниченный на $H^1(\Omega)$ (ограниченность следует из соотношений $|F(v)| \leq \|f\| \cdot \|v\| \leq C\|f\| \cdot \|v\|_1$, $\|v\|_1 = ((v,v))^{1/2}$. Далее применяем теорему Рисса.

13. Метод Галеркина для эллиптического уравнения

Рассмотрим в пространстве $H^1(\Omega)$ счетную систему элементов

$$w_1(x), w_2(x), \dots, w_m(x), \dots$$
 (13.1)

Определение. Система (13.1) называется базисом в $H^1(\Omega)$, если выполняются следующие условия:

- 1) любая конечная система элементов этой системы линейно независима;
- 2) каждый элемент $u(x) \in H^1(\Omega)$ с любой наперед заданной точностью может быть приближен в норме $H^1(\Omega)$ линейной комбинацией элементов из (13.1).

Замечание. Второе условие означает, что $\forall \varepsilon > 0 \ \exists N = N(\varepsilon, u)$ и

постоянные C_1, C_2, \dots, C_N такие, что

$$||u - \sum_{i=1}^{N} C_i w_i||_{H^1(\Omega)} < \varepsilon.$$

Первая краевая задача

Рассмотрим задачу (12.1), (12.2) при выполнении условий (12.3) - (12.5).

13.1. Построение галеркинских приближений

Элемент

$$u^{m}(x) = \sum_{i=1}^{m} c_{i} w_{i}(x)$$
 (13.2)

называется n-ым галеркинским приближением решения задачи (12.1), (12.2) в классе $H^1(\Omega)$, если постоянные $c_i, i = 1, \ldots, m$, удовлетворяют соотношениям

$$((u^m, w_j)) = (f, w_j), j = 1, \dots, m.$$
 (13.3)

Напомним, что $(f, w_j) = \int\limits_{\Omega} f w_j \, dx$ - скалярное произведение в $L_2(\Omega)$,

$$((u,v)) = \int\limits_{\Omega} \left(k \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} + auv\right) dx$$
 - скалярное произведение в $\overset{\circ}{H^{1}}(\Omega)$

эквивалентное исходному скалярному произведению

$$((u,v))_{H^1(\Omega)} = \int\limits_{\Omega} \left(uv + \sum_{i=1}^n u_{x_i} v_{x_j} \right) dx \ \mathrm{B} \ H^1(\Omega) \ (\mathrm{H} \ \mathrm{B} \ \overset{\circ}{H^1} \ (\Omega)).$$

Покажем, что (13.3) есть система линейных алгебраических уравнений размерности n. Действительно, в случае когда базис (13.1) ортонормирован по норме $\|\cdot\|_1 = ((\cdot, \cdot))$

$$((u^m, w_j)) = \sum_{i=1}^m ((c_i w_i, w_j)) = \sum_{i=1}^m c_i((w_i, w_j)) = c_j.$$

В случае неортонормированной системы (13.1)

$$((u^m, w_j)) = ((\sum_{i=1}^m c_i w_i, w_j)) = \sum_{i=1}^m \alpha_{ij} c_i, \quad \alpha_{ij} = (w_i, w_j),$$

и мы имеем систему линейных алгебраических уравнений

$$\sum_{i=1}^{m} \alpha_{ij} c_i = f_j, \qquad j = 1, \dots, m,$$
(13.4)

где $f_j = (f_i, w_j)$.

Докажем, что при любом фиксированном $n \ge 1$ система (13.4) имеет единственное решение.

Из алгебры известна [9]

Теорема 1. Неоднородная система Ac = b линейных алгебраических уравнений однозначно разрешима при любом b тогда и только тогда, когда однородная система Ac = 0 имеет лишь нулевое решение.

В теореме, сформулированной выше, мы рассматриваем систему n линейных уравнений с n неизвестными. A - числовая матрица размерности $n \times n, b$ - заданный, c - искомый векторы размерности n.

Рассмотрим систему (13.4) при $f_i=0,\ i=1,\ldots,n,$ и пусть $c=(c_1,\ldots,c_n)$ - её решение:

$$\sum_{i=1}^{m} \alpha_{ij} c_i = 0, \qquad j = 1, \dots, m.$$
 (13.5)

Из (13.5) имеем соотношения

$$\sum_{i=1}^{m} c_i((w_i, w_j)) = ((\sum_{i=1}^{m} c_i w_i, w_j)) = ((v^m, w_j)), j = 1, \dots m.$$

Умножая последние соотношения на c_j и суммируя результат умножения по j от 1 до m, получим равенство $((v^m, v^m)) = 0$. Отсюда $||v^m||_1 = 0$ и $v^m = 0$, то есть $\sum_{i=1}^m c_i w_i = 0$. Так как элементы базиса w_1, \ldots, w_m линейно независимы, то $c_i = 0, i = 1, \ldots, m$. На основании теоремы 1 заключаем, что система (13.4) имеет единственное решение при любых m и любых f_1, \ldots, f_m .

Ниже через $c^m = (c_1^m, \dots, c_m^m)$ будем обозначать решение системы (13.4).

13.2. Априорная оценка

Ниже мы оценим всю совокупность галеркинских приближений. Пусть u^m - m-е галеркинское приближение. Умножая (13.3) на c_j^m и суммируя результаты по $j=1,\ldots,m$, получим соотношение

$$((u^m, u^m)) = (f, u^m).$$

Так как

$$|(f, u^m)| \le ||f|| \cdot ||u^m|| \le ||f|| \cdot ||u^m||_{H^1(\Omega)} \le$$

 \leq (в силу эквивалентности норм $\|\cdot\|_1$ и $\|\cdot\|_{H^1(\Omega)}$) \leq

$$\leq C||f|| \cdot ||u^m||_1.$$

Отсюда

$$||u^m||_1^2 \le C||f|| \cdot ||u^m||_1. \tag{13.6}$$

Если $||u^m||_1 \neq 0$, то после деления (13.6) на $||u^m||_1$, получим

$$||u^m||_1 \le C||f||. \tag{13.7}$$

Если u=0, то, очевидно, (13.7) имеет место. Из (13.7) следует, что множество галеркинских прилижений $\{u^m\}_{m=1}^\infty$ ограничено в $H^1(\Omega)$.

Определение. Множество $M \subset H$ называется слабо компактным в H, если существует последовательность $\{x_k\}_{k=1}^{\infty} \subset M$ такая, что $x_k \to x \in H$ при $k \to \infty$ слабо в H.

Определение. Последовательность $\{x_k\}_{k=1}^\infty \to x \in H$ слабо, если

$$\lim_{k \to \infty} T(x_k) = T(x) \qquad \forall T \in H^*.$$

Здесь H^* - пространство линейных непрерывных функционалов над H (H^* - сопряженное к H пространство).

Имеет место [14]

Теорема 2(о слабой компактности). Всякое ограниченное бесконечное множество M в гильбертовом пространстве H слабо компактно.

Так как H^1 (Ω) - гильбертово пространство, то по теореме о слабой компактности существует подпоследовательность $\{u^{m_k}\}$ последовательности $\{u^m\}_{m=1}^{\infty}$, которая слабо сходится к $u\in H^1$ (Ω): $u^{m_k}\stackrel{\text{слабо}}{\longrightarrow} u\in H^1$ (Ω). По теореме Рисса ((u,w))=T(u) есть линейный непрерывный функционал по u и любом фиксированном w. Следовательно, при $m_k\to\infty$

$$((u^{m_k}, w)) \to ((u, w)) \qquad \forall w \in \overset{\circ}{H^1}(\Omega). \tag{13.8}$$

Покажем, что u(x) - обобщенное решение задачи (12.1), (12.2).

Ясно, что u(x) удовлетворяет условию (12.2), так как $u(x) \in H^1$ (Ω) и, следовательно, $u|_{\partial\Omega}=0$. Здесь $u|_{\partial\Omega}$ - след $u(x)\in H^1$ (Ω) на $\partial\Omega$.

Из (13.3) следует, что при фиксированном k

$$((u^{m_j}, w_k)) = (f, w_k) \qquad \forall m_j \ge k.$$

Переходя к пределу при $j \to \infty$ получим, что

$$((u, w_k)) = (f, w_k) \qquad \forall k \ge 1. \tag{13.9}$$

Пусть $v\in \overset{\circ}{H^1}(\Omega)$ - произвольный элемент. Так как $\{w_k\}_{k=1}^\infty$ - базис, то существует последовательность $\{v^m\}_{m=1}^\infty$ такая, что $v^m=\sum_{j=1}^\infty c_j^m w_j$ и

$$v^m \to v$$
 сильно в $\overset{\circ}{H^1}(\Omega)$. (13.10)

Умножим (13.9) на c_k^m и просуммируем результат по k от 1 до m. Получим соотношение

$$((u, v^m)) = (f, v^m),$$

переходя в котором к пределу при $m \to \infty$, получим соотношение

$$((u,v)) = (f,v) \qquad \forall v \in \overset{\circ}{H^1}(\Omega). \tag{13.11}$$

Следовательно, u(x) - решение задачи (12.1), (12.2) класса $\overset{\circ}{H^1}$ (Ω).

Докажем единственность решения задачи (12.1), (12.2) класса $\overset{\circ}{H^1}(\Omega)$.

Пусть $u_1(x), u_2(x)$ - два решения задачи (12.1), (12.2) класса $\overset{\circ}{H^1}$ (Ω). Функция $u(x)=u_1(x)-u_2(x)$ удовлетворяет соотношениям

$$((u,v)) = 0 \quad \forall v \in \overset{\circ}{H^1}(\Omega).$$

При u=v получим, что $((u,u))=\|u\|_1^2=0$. Отсюда следует, что u=0 и $u_1=u_2$ почти всюду в Ω .

Докажем, что $u^m \to u$ сильно в $\overset{\circ}{H^1}(\Omega)$, то есть $\lim_{n \to \infty} \|u - u^n\|_1 = 0$.

Пусть S_k - подпространство, натянутое на первые $k\ (k\geq 1)$ элементов базиса (13.1). Имеют место соотношения

$$((u^m, w)) = (f, w) \qquad \forall w \in S_k, \quad k \le m, \tag{13.12}$$

$$((u,w))_1 = (f,w) \qquad \forall w \in \overset{\circ}{H}^1(\Omega). \tag{13.13}$$

Пусть $\{v_m\}_{m=1}^\infty$ - последовательность элементов из $\overset{\circ}{H^1}(\Omega)$ такая, что $v_m\in S_m$ и

$$\lim_{m \to \infty} ||u - v_m||_1 = 0. (13.14)$$

Отметим, что существование такой последовательности $\{v_m\}_{m=1}^{\infty}$ следует из второго свойства базиса (13.1).

Вычитая из соотношения (13.13) соотношение (13.12) и взяв в полученном соотношении $w = v_m - u^m$, получим равенство

$$((u - u^m, v_n - u^m)) = 0. (13.15)$$

Преобразуем равенство (13.15):

$$0 = ((u - u^m, v_m - u^m)) = ((u - u^m, u - u^m)) + ((u - u^m, v_m - u)).$$

Отсюда

$$||u - u^m||_1^2 = ((u - u^m, u - u^m)) \le ||u - u^m||_1 \cdot ||u - v_m||_1.$$
 (13.16)

Так как $||u-u^m||_1 \le ||u||_1 + ||u^m||_1 \le C \ \forall m \ge 1$ и выполняется соотношение (13.14), то из (13.16) следует, что

$$\lim_{m \to \infty} \|u - u^m\|_1 = 0.$$

Нами доказана

Теорема 2. Пусть выполняются условия (12.3) - (12.5). Тогда последовательность галеркинских приближений $\{u^m\}_{m=1}^{\infty}$ сходится к элементу $u \in H^1(\Omega)$ сильно в $H^1(\Omega)$, элемент u есть решение задачи (12.1), (12.2) класса $H^1(\Omega)$. Решение задачи (12.1), (12.2) в классе $H^1(\Omega)$ единственно.

Вторая краевая задача

Рассмотрим уравнение (12.1) с краевыми условиями

$$\left. \frac{\partial u}{\partial n} \right|_{\partial \Omega} = 0. \tag{13.17}$$

В (13.17) $\frac{\partial u}{\partial n} = \sum_{i=1}^n \frac{\partial u(\xi)}{\partial x_i} \cos(n, x_i)$ - производная по нормали n (внешняя) к $\partial \Omega$ в точке $\xi \in \partial \Omega$.

Считаем, что выполняются условия (12.3), (12.5), (12.9) и $\partial\Omega\in C^1$.

Определение. Элемент $u \in H^1(\Omega)$ называется обобщенным решением задачи (12.1), (13.17) класса $H^1(\Omega)$, если соотношения

$$\int_{\Omega} (k\nabla u\nabla v + auv) \, dx = \int_{\Omega} fv \, dx \tag{13.18}$$

выполняются для любого $v \in H^1(\Omega)$.

Обозначим через ((u,v)) левую часть в (13.18). Тогда тождество (13.18) примет вид

$$((u,v)) = (f,v) \qquad \forall v \in H^1(\Omega). \tag{13.19}$$

В силу (12.3), (12.9) норма $\|u\|_1=((u,u))^{1/2}$ эквивалентна исходной норме $\|u\|_{H^1(\Omega)}=\left(\int\limits_{\Omega}(u^2+|\nabla u|^2)\,dx\right)^{1/2}$ в $H^1(\Omega).$

Теорема 3. Пусть выполняются условия (12.3), (12.5), (12.9). Тогда последовательность галеркинских приближений $\{u^m\}_{m=1}^{\infty}$ сходится к элементу $u \in H^1(\Omega)$ сильно в $H^1(\Omega)$, элемент u есть решение задачи 12.1), (13.17) класса $H^1(\Omega)$. Решение задачи (12.1), (13.17) в классе $H^1(\Omega)$ единственно.

Доказательство теоремы 3 в основном повторяет доказательство теоремы 2 и состоит из слудующих этапов:

1. Построение галеркинских приближений. Пусть w_1,\dots,w_m,\dots - базис в $H^1(\Omega)$ и $u^m(x)=\sum_{j=1}^m c_j^m w_j$ - n-ое галеркинское приближение, если постоянные $c_j^m,\,j=1,\dots m,$ являются решением системы

$$((u^m, w_j)) = (f, w_j), j = 1, \dots, m.$$
 (13.20)

Доказывается, что система (13.20) имеет решение при любых $f \in L_2(\Omega)$.

2. Ограниченность $\{u^m\}_{m=1}^{\infty}$ в $H^1(\Omega)$. Аналогично первой краевой задачи доказвается, что

$$||u^m||_1 \le C.$$

- **3.** Доказательство существования решения задачи (12.1), (13.17) класса $H^1(\Omega)$.
 - **4.** Единственность решения задачи (12.1), (13.17) класса $H^1(\Omega)$.
 - **5.** Сильная сходимость u^m к u в норме $H^1(\Omega)$.

Замечание. Третью краевую задачу можно решать методом Галеркина аналогично решению первой (второй) краевой задаче. Здесь соответственным образом выбирается скалярное произведение эквивалентное исходному скалярному произведению в $H^1(\Omega)$.

14. Проблема минимума квадратичного функционала и краевые задачи

Рассмотрим пространство $H^1(\Omega)$ и подпространство $\hat{H}(\Omega)$ пространства $H^1(\Omega)$. Пусть $((\cdot, \cdot))$, $\|\cdot\|_1$ - скалярное произведение и норма в $\hat{H}(\Omega)$. Предположим, что норма $\|\cdot\|_1$ эквивалентна исходной норме в пространстве $H^1(\Omega)$: $\|u\|_1 \sim \|u\|_{H^1(\Omega)}$. Рассмотрим функционал на \hat{H}

$$\Phi(u) = ||u||_1^2 + 2(f, u). \tag{14.1}$$

В (14.1) функция $f(x) \in L_2(\Omega)$, $u(x) \in \hat{H}$, $(f,u) = (f,u)_{L_2(\Omega)}$ - скалярное произведение в $L_2(\Omega)$, $\Phi(u)$ - квадратичный функционал, определенный на \hat{H} .

Докажем, что множество значений этого функционала ограничено снизу. Из соотношений

$$\Phi(u) > ||u||_1^2 - 2||f|||u|| \ge ||u||_1^2 - 2C||f|||u||_1 =$$

$$(\|u\|_1^2 - c\|f\|)^2 - C^2\|f\|^2 \ge -C^2\|f\|^2$$

следует, что

$$\Phi(u) \ge -C^2 ||f||^2 \qquad \forall u \in \hat{H}. \tag{14.2}$$

Из (14.2) следует существование точной нижней грани множества значений функционала $\Phi(u)$ на \hat{H} .

$$d = \inf_{u \in \hat{H}} \Phi(u). \tag{14.3}$$

Определение. Элемент $u \in \hat{H}$ называется элементом, реализующим минимум функционала $\Phi(u)$ на \hat{H} , если $\Phi(u) = d$.

Определение. Последовательность $\{u_k\}_{k=1}^{\infty}$ называется последовательностью минимизирующей функционал $\Phi(u)$ на \hat{H} , если $\lim_{k\to\infty}\Phi(u_k)=d$.

Замечание 1. Из определения минимизирующей последовательности, вообще говоря, не следует, что сама последовательность $\{u_k\}_{k=1}^{\infty}$ является сходящейся к d при $k \to \infty$.

Теорема 1. Для любого $\hat{H} \subset H^1(\Omega)$ существует в \hat{H} единственный элемент $u \in \hat{H}$ реализующий минимум функционала Φ в \hat{H} . Любая минимизирующая последовательность $\{u_k\}_{k=1}^{\infty}$ сходится к u сильно в \hat{H} .

Доказательство. Из определения точной нижней грани числового множества следует существование минимизирующей последовательности. Пусть $\{u_k\}_{k=1}^\infty$ - произвольная минимизирующая последовательность. Докажем, что существует $\lim_{k\to\infty}u_k=u$ и u - элемент, реализующий минимум функционала Φ : $\Phi(u)=d$.

Так как $\{u_k\}_{k=1}^{\infty}$ - минимизирующая в \hat{H} последовательность и, следовательно, $\lim_{k\to\infty}\Phi(u_k)=d$, то для любого $\varepsilon>0$ существует число $\widetilde{n}=\widetilde{n}(\varepsilon)$ такое, что

$$d \le \Phi(u_k) < d + \varepsilon \qquad \forall k > \widetilde{n}.$$
 (14.4)

Имеют место соотношения

$$\left\| \frac{u_k \pm u_m}{2} \right\|_1^2 = \left(\left(\frac{u_k \pm u_m}{2}, \frac{u_k \pm u_m}{2} \right) \right) = \frac{1}{4} (\|u_k\|_1^2 + \|u_m\|_1^2) \pm \frac{1}{2} ((u_k, u_m)),$$

$$\left\| \frac{u_k + u_m}{2} \right\|_1^2 + \left\| \frac{u_k - u_m}{2} \right\|_1^2 = \frac{1}{2} (\|u_k\|_1^2 + \|u_m\|_1^2).$$

Используя представление (14.1) функционала $\Phi(u)$ и соотношение (14.4),

получим $\forall k, m > \widetilde{n}$

$$\left\| \frac{u_k - u_m}{2} \right\|_1^2 = \frac{1}{2} (\|u_k\|_1^2 + \|u_m\|_1^2) - \left\| \frac{u_k + u_m}{2} \right\|_1^2 =$$

$$\frac{1}{2} (\Phi(u_k) - 2(f, u_k) + \Phi(u_m) - 2(f, u_m)) - \Phi(\frac{u_k + u_m}{2}) + 2(f, \frac{u_k + u_m}{2}) =$$

$$= \frac{1}{2} (\Phi(u_k) + \Phi(u_m)) - \Phi(\frac{u_k + u_m}{2}) \le \frac{1}{2} \cdot 2(d + \varepsilon) - d = \varepsilon.$$

Доказали, что последовательность $\left\{\frac{u_k}{2}\right\}_{k=1}^{\infty}$ фундаментальна и, следовательно, последовательность $\{u_k\}_{k=1}^{\infty}$ также фундаментальна. Так как \hat{H} полное пространство, то существует элемент $u\in\hat{H}$ такой, что $\lim_{k\to\infty}u_k=u$ в \hat{H} .

Покажем, что u есть элемент, реализующий минимум функционала Φ на $\hat{H}.$

Замечание 2. Из анализа известно, что если $\lim_{m\to\infty}v_m=v$ в B (B -банахово пространство), то $\lim_{m\to\infty}\|v_m\|_B=\|v\|_B$. Из сильной сходимости v_m к v в H следует слабая сходимость v_m к v.

В силу замечания 2

$$||u_m||_1^2 \to ||u||_1^2 \qquad \text{при } m \to \infty.$$
 (14.5)

Ясно, что $u_m \to u$ в $L_2(\Omega)$ слабо:

$$(f, u_m) \to (f, u), \qquad m \to \infty.$$
 (14.6)

В силу (14.5), (14.6)

$$\Phi(u_m) = ||u_m||_1^2 + 2(f, u_m) \quad \to \quad \Phi(u) = ||u||_1^2 + 2(f, u), \quad m \to \infty.$$

С другой стороны $\Phi(u_m) \to d, m \to \infty$. В силу единственности предела числовой последовательности имеет место равенство $\Phi(u) = d$.

Докажем, что элемент, реализующий минимум функционала $\Phi(u)$ единственный.

Пусть v, w - два элемента, реализующие минимум функционала $\Phi(u)$: $\Phi(v) = \Phi(w) = d$ и $v \neq w$. Рассмотрим последовательность v, w, v, w, \ldots

Данная последовательность минимизирует функционал Φ на \hat{H} . По доказанному выше она должна сходится к элементу, реализующему минимум функционала, а по построению она расходится. Следовательно, v=w=u. Теорема 1 доказана.

Далее мы получим необходимое условие минимума функционала. Пусть $\hat{H} \subset H^1(\Omega)$ и w - произвольный элемент из \hat{H} , u - элемент, реализующий минимум функционала Φ на \hat{H} . Рассмотрим элемент u+tw, где t -действительная переменная, и рассмотрим функцию

$$F(t) = \Phi(u + tw) = ((u + tw, u + tw)) + 2(f, u + tw) =$$

$$||u||_1^2 + t^2||w||_1^2 + 2t((u,w)) + 2(f,u) + 2t(f,w) =$$

$$\Phi(u) + 2t[((u, w)) + (f, w)] + t^2 ||w||_1^2].$$

Функция F(t) принимает минимальное значение при t=0, так как

$$F(0) = \Phi(u) \le F(t) \quad \forall t \in E_1.$$

Следовательно, $F'(t)|_{t=0}=0$. Отсюда 0=2[((u,w))+(f,w)] и

$$((u,w)) + (f,w) = 0 \qquad \forall w \in \hat{H}. \tag{14.7}$$

Соотношение (14.7) - **необходимое условие**, которому удовлетворяет элемент, реализующий минимум функционала Φ на \hat{H} .

Связь элемента, реализующего минимум функционала Φ на \hat{H} , с решением краевой задачи для эллиптического уравнения.

Рассмотрим краевую задачу

$$-\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(k(x) \frac{\partial u}{\partial x_i} \right) + a(x)u = -f(x), \tag{14.8}$$

$$u|_{\partial\Omega} = 0. (14.9)$$

Относительно коэффициентов уравнения (14.8) предположим, что

$$0 < k_0 \le k(x) \le K, \qquad \le a(x) \le A,$$
 (14.10)

$$f(x) \in L_2(\Omega). \tag{14.11}$$

Положим $\hat{H} = \overset{\circ}{H^1}(\Omega)$ со скалярным произведением

$$((u,v)) = \int_{\Omega} (k(x)\nabla u\nabla v + auv) dx, \qquad (14.12)$$

порождающим в силу (14.10) норму, эквивалентную исходной норме в H^1 (Ω). Рассмотрим функционал

$$\Phi(u) = ||u||_1^2 + 2(f, u) = \int_{\Omega} (k(x)|\nabla u|^2 + au^2) \, dx + 2 \int_{\Omega} fu \, dx.$$

Пусть u - элемент, реализующий минимум функционала Φ на $\hat{H} = H^1(\Omega)$. Необходимое условие, которому удовлетворяет u:

$$\int_{\Omega} (k(x)\nabla u\nabla w + auw) dx + \int_{\Omega} fw dx = 0 \quad \forall w \stackrel{\circ}{H^{1}}(\Omega),$$
 (14.13)

то есть u - обобщенное решение класса $\overset{\circ}{H^1}$ (Ω) задачи (14.8), (14.9) (см. определение обобщенного решения первой краевой задачи (12.6)).

Рассмотрим краевое условие

$$\left. \frac{\partial u}{\partial n} \right|_{\partial \Omega} = 0 \tag{14.14}$$

и задачу 14.8), (14.14). Предположим выполнение условий (14.10) и

$$0 < a_0 \le a(x) \le A. \tag{14.15}$$

Рассмотрим $\hat{H}=H^1(\Omega)$ и скалярное произведение

$$((u,v)) = \int_{\Omega} (k(x)\nabla u\nabla v + auv) dx,$$

эквивалентное в силу (14.10), (14.15) исходному скалярному произведению в $H^1(\Omega)$.

Элемент u, реализующий минимум функционала $\Phi(u)$ на $H^1(\Omega)$, есть обощенное решение задачи (14.8), (14.14) в классе $H^1(\Omega)$ (в силу (14.7)).

Доказаны:

Теорема 2. Пусть $\hat{H} = \overset{\circ}{H^1}(\Omega)$ и выполняются условия (14.10), (14.11). Тогда элемент u, реализующий минимум функционала $\Phi(u)$ на \hat{H} со скалярным произведением (14.12) есть обобщенное решение задачи (14.8), (14.9).

Теорема 3. Пусть $\hat{H} = H^1(\Omega)$ и выполняются условия (14.10), (14.15). Тогда элемент u, реализующий минимум функционала $\Phi(u)$ на \hat{H} есть обобщенное решение задачи (14.8), (14.14) в классе $H^1(\Omega)$.

15. Метод Ритца

Мы рассмотрим метод Ритца - конструктивный метод нахождения элементов, реализующих минимум функционала

$$\Phi(u) = ||u||_1^2 + 2(f, u) \tag{15.1}$$

на подпространстве \hat{H} пространства $H^1(\Omega)$. В (15.1)функция $f \in L_2(\Omega)$, (f,u) - скалярное произведение в $L_2(\Omega)$, $||u||_1 = ((u,u))^{1/2}$ - норма в \hat{H} , порожденная скалярным произведением $((\cdot,\cdot))$ и эквивалентная исходной норме в $H^1(\Omega)$.

Пусть $\{w_j\}_{j=1}^{\infty}$ - базис в \hat{H} и $X_k = \{u | u = \sum_{i=1}^k c_i w_i\}$, k - мерное пространство, натянутое на первые k элементов базиса $\{w_j\}_{j=1}^{\infty}$. Ясно, что $X_k \subset X_{k+1}$. Так как $\{w_j\}_{j=1}^{\infty}$ - базис в \hat{H} , то $X_k \subset H'$ и функционал Φ определен на X_k . По теореме 1 п.14. существует элемент $v_k \in X_k$, реализующий минимум функционала $\Phi(u)$ на X_k . Ясно, что

$$\Phi(v_k) \le \Phi(u) \qquad \forall u \in X_k.$$

Запишем необходимое условие, которому удовлетворяет элемент, реализующий минимум функционала на X_k : $((v_k, v)) + (f, v) = 0 \ \forall v \in X_k$, в частности,

$$((v_k, w_j)) + (f, w_j) = 0, j = 1, \dots, k.$$
 (15.2)

Так как $v_k \in X_k$, то $v_k = \sum_{i=1}^k c_i w_i$, тогда (15.2) можно записать в виде

$$\sum_{i=1}^{k} c_i((w_i, w_j)) + (f, w_j) = 0, \qquad j = 1, \dots, k.$$
(15.3)

Однозначная разрешимость системы (15.3) доказана нами в п.13, см. уравнение (13.4). Следовательно, $v_k = \sum_{i=1}^k c_i w_i$ определяется единственным образом.

Определение. Последовательность

$$v_1, v_2, \dots, v_k, \dots \tag{15.4}$$

называют последовательностью Ритца.

Покажем, что последовательность Ритца - минимизирующая последовательность функционала Φ на \hat{H} . Так как v_k - элемент, реализующий минимум функционала Φ на X_k , и имеет место следующая схема

$$X_1 \subset X_2 \subset \ldots \subset X_k \subset \ldots \subset \hat{H}$$

$$\downarrow \qquad \downarrow \qquad \ldots \qquad \downarrow$$

$$v_1 \qquad v_2 \qquad \ldots \qquad v_k \qquad \ldots \qquad u,$$

то имеют место соотношения

$$\Phi(v_1) \ge \Phi(v_2) \ge \dots \ge \Phi(v_k) \ge \dots \ge d = \Phi(u). \tag{15.5}$$

Соотношения (15.5) имеют место в силу свойства точной нижней грани числового множества: если E и G - два ограниченных снизу числовых множества и $E \subseteq G$, то inf $E \ge \inf G$.

Зафиксируем $\varepsilon>0$ и найдем число $N=N(\varepsilon)$ и элемент $v^{\varepsilon}\in X_N$ $(v^{\varepsilon}=\sum_{i=1}^{N(\varepsilon)}c_i^{(\varepsilon)}w_i)$ такой, что

$$||u - v^{\varepsilon}||_1 < \varepsilon. \tag{15.6}$$

Имеют место следующие соотношения

$$\Phi(v^{\varepsilon}) = \Phi(u + v^{\varepsilon} - u) = ((u + (v^{\varepsilon} - u), u + (v^{\varepsilon} - u))) + 2(f, u + (v^{\varepsilon} - u)) = 0$$

$$||u||_1^2 + ||v^{\varepsilon} - u||_1^2 + 2((u, v^{\varepsilon} - u)) + 2(f, u) + 2(f, v^{\varepsilon} - u) =$$

$$=\Phi(u)+\Phi(v^{\varepsilon}-u)+2((u,v^{\varepsilon}-u))\leq$$

$$d + \Phi(v^{\varepsilon} - u) + 2((u, v^{\varepsilon} - u)) \le$$

$$||u||^2 + ||v||^2 + 2||f|| \cdot ||v||^2 - u|| + 2||u||_1 \cdot ||v||^2 - u||_1 \le 1$$

$$\leq d + \|v^{\varepsilon} - u\|_{1}^{2} + 2\|f\| \cdot \|v^{\varepsilon} - u\| + 2\|u\|_{1} \cdot \|v^{\varepsilon} - u\|_{1} \leq d$$

 \leq (в силу (15.6) и эквивалентности норм в \hat{H} и $H^1(\Omega)$) \leq

$$\leq d + \varepsilon^2 + \varepsilon (2C||f|| + 2||u||_1) \leq d + C_1 \varepsilon.$$
 (15.7)

Здесь $C_1 = 1 + 2C||f|| + 2||u||_1$.

Через $v_{N(\varepsilon)}$ обозначим элемент, реализующий минимум функционала на $X_{N_{\varepsilon}}$. В силу (15.7)

$$\Phi(v_{N(\varepsilon)}) \le \Phi(v^{\varepsilon}) \le d + C_1 \varepsilon. \tag{15.8}$$

Из (15.5), (15.8) следует оценка

$$d \le \Phi(v_k) \le \Phi(v_{N(\varepsilon)}) \le d + C_1 \varepsilon \quad \forall k \ge N(\varepsilon).$$

Отсюда

$$|d - \Phi(v_k)| < C_1 \varepsilon \quad \forall k \ge N(\varepsilon).$$

Доказано, что

$$\lim_{k \to \infty} \Phi(v_k) = d$$

и, следовательно, последовательность Ритца $\{v_k\}_{k=1}^{\infty}$ минимизирующая.

Доказанное выше сформулируем в виде теоремы.

Теорема 1. Пусть \hat{H} - подпространство пространства $H^1(\Omega)$. Пусть в \hat{H} введено скалярное произведение $((\cdot,\cdot))$, порождающее норму $\|u\|_1 =$

$$((u,u))^{1/2}$$
 эквивалентную норме $\|u\| = \left(\int\limits_{\Omega} (u^2 + |\nabla u|^2) \, dx\right)^{1/2}$ и $\{w_i\}_{i=1}^{\infty}$

- базис в \hat{H} . Тогда существует (единственная) последовательность Ритца функционала $\Phi(u)$ на \hat{H} по базису $\{w_i\}_{i=1}^{\infty}$. Эта последовательность является минимизирующей для функционала $\Phi(u)$ на \hat{H} .

Из теоремы 1 п.14 и теоремы 1 следует

Теорема 2. При выполнении условий теоремы 1 последовательность Ритца для функционала $\Phi(u)$, построенная по базису $\{w_i\}_{i=1}^{\infty}$, сходится к элементу $u\in \hat{H}$, реализующему минимум на \hat{H} функционала $\Phi(u)$, сильно в $H^1(\Omega)$.

16. Параболическое уравнение

Пусть Ω - ограниченная область в E_n , $\partial\Omega\in C^1$, $S_T=(0,T]\times\partial\Omega$, $\Gamma_T = S_T \cup \Omega \cup \partial \Omega, \ Q_T = (0, T) \times \Omega.$

Первая начально-краевая задача

Рассмотрим задачу

$$\frac{\partial u}{\partial t} = \sum_{j=1}^{n} \frac{\partial}{\partial x_j} \left(k(x) \frac{\partial u}{\partial x_j} \right) + f(x), \tag{16.1}$$

$$u|_{S_T} = 0,$$
 (16.2)

$$u|_{t=0} = 0. (16.3)$$

Предположим, что выполняются следующие условия:

функция
$$k(x)$$
 измерима по Лебегу на Ω и $0 < k_0 \le k(x) \le K, \qquad x \in \Omega,$ (16.4)

$$f \in L_2(\Omega). \tag{16.5}$$

Определим пространства $H^1(Q_T)$, $\overset{\circ}{H^1}_{S_T}(Q_T)$.

$$H^1(Q_T) \stackrel{def}{\equiv} \{ u | u, u_t, u_{x_i} \in L_2(Q_T), i = 1, \dots, n \}.$$

 $H^1(Q_T) \stackrel{def}{\equiv} \{u|u, u_t, u_{x_i} \in L_2(Q_T), i = 1, \dots, n\}.$ $H^1_{S_T}(Q_T) \stackrel{def}{\equiv} \{$ замыкание в норме $H^1(Q_T)$ функций класса $C^\infty(Q_T)$ равных нулю вблизи гиперповерхности S_T }.

Определение. Функция $u \in H^1_{S_T}(Q_T)$ называется обобщенным решением задачи (16.1) - (16.3) класса $H^1(Q_T)$, если выполняются условие (16.3) и

$$\int_{Q_T} u_t v \, dx dt + \sum_{i=1}^n \int_{Q_T} k \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} \, dx dt = \int_{Q_T} f v \, dx dt \quad \forall v \in \overset{\circ}{H^1}_{S_T} (Q_T). \quad (16.6)$$

Для доказательства однозначной разрешимости задачи (16.1) - (16.3) воспользуемся методом Галеркина. Так же как и в случае эллиптических уравнений мы должны построить галеркинские приближения, получить априорные оценки, перейти к пределу, доказать, что предел есть решение задачи, доказать единственность этого решения.

Пусть $\{w_j(x)\}_{j=1}^{\infty}$ - базис в $H^1(\Omega)$ ортонормированный в $L_2(\Omega)$. Галеркинские приближения

Определение. Функция $u^m(t,x) = \sum_{k=1} c_k^{(m)}(t) w_k(x)$ называется m-ым галеркинским приближением решения задачи (16.1) - (16.3), если $c_k^{(m)}(t)$ - непрерывно дифференцируемые функции на [0,T] ($c_k^{(m)}(t) \in C^1[0,T]$) и являются решением следующей задачи:

$$\int_{\Omega} \frac{\partial u^m(t,x)}{\partial t} w_j(x) dx + \int_{\Omega} k \nabla u^m(t,x) \nabla w_j(x) dx = \int_{\Omega} f(x) w_j(x) dx, \quad (16.7)$$
$$c_j^{(m)}(0) = 0, \qquad j = 1, \dots, n.$$
(16.8)

Задача (16.7), (16.8) есть задача Коши для системы обыкновенных дифференциальных уравнений с постоянными коэффициентами. Действительно,

$$\int_{\Omega} \sum_{i=1}^{m} \frac{\partial c_{i}^{(m)}(t)}{\partial t} w_{i}(x) w_{j}(x) dx =$$

$$= \sum_{i=1}^{m} \frac{\partial c_{i}^{(m)}(t)}{\partial t} \int_{\Omega} w_{i}(x) w_{j}(x) dx = \sum_{i=1}^{m} \frac{\partial c_{i}^{(m)}(t)}{\partial t} \delta_{ij} = \frac{\partial c_{j}^{(m)}(t)}{\partial t},$$

$$\int_{\Omega} f(x) w_{j}(x) dx = f_{j},$$

$$\int_{\Omega} k \nabla u^{m}(t, x) \nabla w_{j}(x) dx =$$

$$= \sum_{i=1}^{m} c_{i}^{(m)}(t) \int_{\Omega} k \sum_{i=1}^{n} \frac{\partial w_{i}(x)}{\partial x_{i}} \cdot \frac{\partial w_{j}(x)}{\partial x_{i}} dx = \sum_{i=1}^{m} \alpha_{ij} c_{i}^{(m)}(t).$$
(здесь $\alpha_{ji} = \int_{\Omega} k \sum_{m=1}^{n} \frac{\partial w_{i}(x)}{\partial x_{m}} \cdot \frac{\partial w_{j}(x)}{\partial x_{m}} dx$), и мы имеем
$$\frac{c_{j}^{(m)}(t)}{dt} = \sum_{i=1}^{m} \alpha_{ij} c_{i}^{(m)}(t) = f_{j}, \qquad j = 1, \dots, m. \tag{16.9}$$

Из теории обыкновенных дифференциальных [17] уравнений следует, что задача (16.9), (16.8) имеет единственное решение класса $C^1[0,T]$ ($c_j^{(m)}(t) \in C^1[0,T], j=1,\ldots m$).

Априорные оценки

$$\int_{\Omega} u_t^m u^m \, dx + \int_{\Omega} k \nabla u^m \nabla u^m \, dx = \int_{\Omega} f u^m \, dx.$$

Пусть $((w,v)) = \int\limits_{\Omega} k \nabla u^m \nabla u^m \, dx$ скалярное произведение в $\overset{\circ}{H^1}$ (Ω) (в

силу (16.4)) с нормой $\|u\|_1=((u,u))^{1/2}$ эквивалентной норме $\|u\|_{\overset{\circ}{H^1(\Omega)}}=$

$$\left(\int\limits_{\Omega} |\nabla u|^2\,dx\right)^{1/2}$$
 . Имеют место соотношения

$$(u_t^{(m)}(t), u^{(m)}(t)) = \frac{1}{2} \frac{\partial}{\partial t} (u^{(m)}(t), u^{(m)}(t)) = \frac{1}{2} \frac{\partial}{\partial t} ||u^{(m)}(t)||^2 = \frac{1}{2} \frac{\partial}{\partial t} \sum_{k=1}^m \left(c_k^{(m)}(t) \right)^2;$$

$$\frac{1}{2}\frac{\partial}{\partial t}\|u^{(m)}(t)\|^2 + \|u^{(m)}(t)\|_1^2 = (f, u^{(m)}(t)).$$

Проинтегрируем последнее соотношение по интервалу (0, t):

$$\frac{1}{2}\|u^{(m)}(t)\|^2 - \frac{1}{2}\|u^{(m)}(0)\|^2 + \int_0^t \|u^{(m)}(\tau)\|_1^2 d\tau = \int_0^t (f, u^{(m)}(\tau)) d\tau.$$

Вследствие равенства $u^{(m)}(0)$ нулю

$$||u^{(m)}(t)||^2 + 2\int_0^t ||u^{(m)}(\tau)||_1^2 d\tau = 2\int_0^t (f, u^{(m)}(\tau)) d\tau \le$$

≤ (неравенство Шварца) ≤

$$2\int_{0}^{t} \|f\| \|u^{(m)}(\tau)\| d\tau \leq 2C \int_{0}^{t} \|f\| \|u^{(m)}(\tau)\|_{1} d\tau \leq$$

$$\leq \text{ (неравенство Коши с } \varepsilon : \forall a, b \ |ab| \leq \frac{1}{2} (\varepsilon a^{2} + \frac{1}{\varepsilon} b^{2}) \, \forall \varepsilon > 0) \leq$$

$$\leq \frac{C}{\varepsilon} \int_{0}^{t} \|f\|^{2} d\tau + C\varepsilon \int_{0}^{t} \|u^{(m)}(\tau)\|_{1}^{2} d\tau.$$

Положив $\varepsilon = \frac{1}{C}$, получим неравенство

$$||u^{(m)}(t)||^2 + \int_0^t ||u^{(m)}(\tau)||_1^2 d\tau \le C^2 \int_0^t ||f||^2 d\tau.$$
 (16.10)

Положив в (16.10) t=T и отбросив первый неотрицательный член в левой части последнего неравенства, приходим к неравенству

$$\int_{0}^{T} \|u^{(m)}(\tau)\|_{1}^{2} d\tau = \int_{0}^{T} \int_{\Omega} k(x) |\nabla u^{(m)}(t,x)|^{2} dx dt =
= \int_{Q_{T}} k \sum_{i=1}^{n} \left(\frac{\partial u^{(m)}}{\partial x_{i}}\right)^{2} dx dt \leq C_{1},$$
(16.11)

где $C_1 = C^2 ||f||^2 T$.

Отбрасывая второй член в левой части неравенства (16.10) и интегрируя полученное неравенство по t от 0 до T, получим, что

$$\int_{0}^{T} \int_{Q} \left(u^{(m)}(t,x) \right)^{2} dx dt = \|u^{(m)}\|_{L_{2}(Q_{T})}^{2} \le C_{1} T.$$
 (16.12)

Неравенства (16.11), (16.12) дают равномерную по m оценку в $L_2(Q_T)$ функций $u^{(m)},\,u_{x_i}^{(m)},\,i=1,\ldots,n.$

Оценим совокупность $\left\{u_t^{(m)}\right\}_{m=1}^{\infty}$. Умножим (16.7) на $(c_j^{(m)}(t))'$ и результат просуммируем по j от 1 до m. Получим равенство

$$||u_t^{(m)}(t)||^2 + ((u^{(m)}(t), u_t^{(m)}(t))) = (f, u_t^{(m)}(t)),$$

интегрируя которое по отрезку [0,t], получим равенство

$$\int_{0}^{t} \|u_{t}^{(m)}(\tau)\|^{2} d\tau + \int_{0}^{t} ((u^{(m)}(\tau), u_{t}^{(m)}(\tau))) d\tau = \int_{0}^{t} (f, u_{t}^{(m)}(\tau)) d\tau,$$

Так как $((u^{(m)}(\tau), u_t^{(m)}(\tau))) = \frac{1}{2} \frac{\partial}{\partial t} ((u^{(m)}(\tau), u^{(m)}(\tau)))$, то интегируя второй член левой части последнего неравенства и учитывая, что $u^{(m)}(0) = 0$, получим неравенство

$$\int_{0}^{t} \|u_{t}^{(m)}(\tau)\|^{2} d\tau + \frac{1}{2} \|u^{(m)}(t)\|_{1}^{2} \le (\text{ неравенство})$$

Коши с
$$\varepsilon$$
) $\leq \frac{1}{2} \int_{0}^{t} \|f\|^{2} dt + \frac{1}{2} \int_{0}^{t} \|u^{(m)}(\tau)\|^{2} d\tau.$

Отсюда, выбрасывая второй член (неотрицательный) в левой части неравенства, получим, что

$$\int_{0}^{t} \|u_{t}^{(m)}(\tau)\|^{2} d\tau \leq \int_{0}^{T} \|f(t)\|^{2} dt = \|f\|_{L_{2}(Q_{T})}^{2}, \qquad t \in [0, T],$$

и при t = T

$$||u_t^{(m)}||_{L_2(Q_T)}^2 = \int_0^T \int_\Omega (u_t^{(m)})^2 dx dt \le ||f||_{L_2(Q_T)}^2.$$
 (16.13)

Замечание. Так как f = f(x), то $||f||_{L_2(Q_T)}^2 = T ||f||_{L_2(\Omega)}^2$. Из (16.11) - (16.13) следует оценка

$$||u^{(m)}||_{H^1(Q_T)} \le C, \quad m \ge 1,$$
 (16.14)

где постоянная C не зависит от $m \ge 1$.

Предельный переход.

Пространство $H^1(Q_T)$ - сепарабельное рефлексивное пространство [14]. По теореме о слабой компактности ограниченного в гильбертовом пространстве множества существует подпоследовательность $\{u^{(m_k)}(t,x)\}$ последовательности $\{u^{(m)}(t,x)\}$ такая, что при $m_k \to \infty$

$$u^{(m_k)} \to u \in \overset{\circ}{H^1}_{S_T}(Q_T)$$
 слабо в $\overset{\circ}{H^1}_{S_T}(Q_T)$. (16.15)

Рассмотрим в $\overset{\circ}{H^1}_{S_T}(Q_T)$ скалярное произведение

$$((u,v))_1 = \int_{Q_T} (uv + k\nabla u\nabla v + u_t v_t) dxdt.$$

По теореме Рисса при $m_k \to \infty$

$$((u^{m_k)}, v))_1 \to ((u, v))_1 \qquad \forall v \in \overset{\circ}{H^1}_{S_T}(Q_T)).$$
 (16.16)

Покажем, что u есть решение задачи (16.1), (16.2).

Замечание 1. Множество линейных комбинаций $\sum_{k=1}^{\infty} \alpha_k^{(m)}(t) w_k(x)$ плот-

но в
$$\overset{\circ}{H^1}_{S_T}(Q_T)$$
, где $\alpha_k^{(m)}(t) \in C^1[0,T]$.

Замечание 2. Пусть $u^{(m)}$ - m-ое галеркинское приближение. Тогда соотношение

$$(u_t^{(m)}(t), v^k(t)) + ((u^{(m)}(t), v^k(t)))_1 = (f, v^k(t))$$

выполняется при любых $v^k(t,x)=\sum_j^k\alpha_j^{(k)}(t)w_j(x),\ k\leq m,$ где $\alpha_j^{(k)}(t)\in C^1[0,T].$

Пусть $v^p(t,x) = \sum_j^p \alpha_j^{(p)}(t) w_j(x)$. Положим в (16.7) вместо $u^{(m)}$ функцию $u^{(m_k)}$, считая при этом, что $j \leq m_k$. Пусть $p \leq m_k$. Умножим полученное соотношение на $\alpha_j^{(p)}(t)$, просуммируем результат умножения по j от 1 до p и проинтегрируем результат по отрезку [0,T]. Получим равенство

$$\int_{0}^{T} \left\{ \left(u_{t}^{(m_{k})}(t), v^{p}(t) \right) + \left(\left(u^{(m_{k})}(t), v^{p}(t) \right) \right) \right\} dt = \int_{0}^{T} \left(f, v^{p}(t) \right) dt.$$

Переходя к пределу при $m_k \to \infty$ в последнем равенстве, получим

$$\int_{0}^{T} \{(u_{t}(t), v^{p}(t)) + ((u(t), v^{p}(t)))\} dt = \int_{0}^{T} (f, v^{p}(t)) dt.$$
 (16.17)

Отметим, что (16.17) имеет место при любом $p \ge 1$. Пусть $v \in H^1_{S_T}(Q_T)$ и последовательность $\{v^p\}$ такая, что

$$v^p \to v$$
 сильно в $\overset{\circ}{H^1}_{S_T}(Q_T)$. (16.18)

Нетрудно показать, что переходя к пределу при $p \to \infty$ в (16.17), получим, что

$$\int_{Q_T} u_t v \, dx dt + \int_{Q_T} k \nabla u \nabla v \, dx dt = \int_{Q_T} f v \, dx dt \quad \forall v \in \overset{\circ}{H^1}_{S_T} (Q_T).$$
 (16.19)

Действительно,

$$I_1^p = \left| \int_0^T (u_t(t), v(t)) dt - \int_0^T \int_\Omega u_t v^p dx dt \right| = \left| \int_0^T (\int_\Omega u_t(t, x) v(t, x) dx \right) dt - \int_0^T \int_\Omega u_t v^p dx dt \right|$$

$$-\int_{0}^{T} \int_{\Omega} u_{t}(t,x) v^{p}(t,x) dx dt = \left| \int_{0}^{T} (u_{t}(t), v(t)) dt - \int_{0}^{T} (u_{t}(t), v^{p}(t)) dt \right| =$$

$$= \left| \int_{0}^{T} (u_t(t), v(t) - v^p(t)) dt \right| \le (\text{неравенство Шварца}) \le$$

$$\leq \int_{0}^{T} \|u_{t}(t)\| \cdot \|v(t) - v^{p}(t)\| dt \leq \\
\leq \left(\int_{0}^{T} \|u_{t}(t)\|^{2} dt\right)^{1/2} \cdot \left(\int_{0}^{T} \|v(t) - v^{p}(t)\|^{2} dt\right)^{1/2} =$$

$$= \|u_t\|_{L_2(Q_T)} \cdot \|v - v^p\|_{L_2(Q_T)} \le C \|u_t\|_{L_2(Q_T)} \cdot \|v - v^p\|_{\mathring{H}^1_{S_T}(Q_T)}.$$

$$I_{1}^{p} \to 0, \quad p \to \infty.$$

$$I_{2}^{p} = \left| \int_{0}^{T} ((u(t), v^{p}(t))) dt - \int_{Q_{T}} k \nabla u \cdot \nabla v \, dx dt \right|$$

$$= \left| \int_{0}^{T} ((u(t), v^{p}(t))) dt - \int_{0}^{T} ((u(t), v(t))) \, dt \right| \le$$
(16.20)

$$\leq \left| \int_{0}^{T} ((u(t), v^{p}(t) - v(t))) dt \right| \leq C \|u\|_{\mathring{H}^{1}S_{T}(Q_{T})} \|v^{p} - v\|_{\mathring{H}^{1}S_{T}(Q_{T})}.$$

В силу (16.17)

$$I_2^p \to 0, \qquad p \to \infty.$$
 (16.21)

$$= \left| (f, v^p - v)_{L_2(Q_T)} \right| \le ||f||_{L_2(Q_T)} \cdot ||v^p - v||_{L_2(Q_T)}.$$

В силу (16.17)

$$I_3^p \to 0, \qquad p \to \infty.$$
 (16.22)

Из (16.20) - (16.22) следует выполнение соотношений (16.19). Докажем выполнение условия $u|_{t=0}=0$ (равенство (16.3)).

Пусть $\varphi(x)\in H^1(\Omega)$ - произвольный фиксированный элемент, функция $\alpha(t)\in C^1[0,T]$ и удовлетворяет условиям: $\alpha(t)=0$ при $t\in [T-\delta,T]$ и $\alpha(0)=1$.

Положим $\psi(t,x) = \alpha(t)\varphi(x)$ и рассмотрим интеграл

$$I^{m_k} \equiv \int_{Q_T} \frac{\partial u^{(m_k)}}{\partial t}(t, x) \psi(t, x) \, dx dt = \int_{0}^{T} \int_{\Omega} \frac{\partial u^{(m_k)}}{\partial t}(t, x) \alpha(t) \varphi(x) \, dx dt =$$

$$= \int_{\Omega} \left\{ \int_{0}^{T} \frac{\partial u^{(m_k)}}{\partial t}(t, x) \alpha(t) \, dt \right\} \varphi(x) \, dx = \int_{\Omega} \varphi(x) \left[u^{(m_k)}(t, x) \alpha(t) \right] \Big|_{0}^{T} \, dx -$$

$$- \int_{Q_T} u^{(m_k)}(t, x) \alpha'(t) \varphi(x) \, dx dt = - \int_{Q_T} u^{(m_k)}(t, x) \alpha'(t) \varphi(x) \, dx dt.$$

$$(16.23)$$

По формуле интегрирования по частям (см.(11.9))

$$\int_{Q} \frac{\partial u}{\partial t} \psi \, dx dt = -\int_{\Omega} u(0, x) \varphi(x) \, dx - \int_{Q_{T}} u(t, x) \varphi(x) \alpha'(t) \, dx dt. \tag{16.24}$$

Перейдём в (16.23) к пределу при $k \to \infty$. Получим равенство

$$\int_{Q} \frac{\partial u}{\partial t} \psi \, dx dt = -\int_{Q_{T}} u \alpha' \varphi \, dx dt. \tag{16.25}$$

Из (16.24), (16.25) следует, что

$$\int_{\Omega} u(0,x)\varphi(x) dx = 0.$$
 (16.26)

Так как $\varphi(x)$ - произвольный элемент из $\overset{\circ}{H^1}(\Omega)$ и $\overset{\circ}{H^1}(\Omega)$ всюду плотно в $L_2(\Omega)$, то из (16.26) следует, что u(0,x) как элемент $L_2(\Omega)$ отогонален всюду плотному множеству в $L_2(\Omega)$, и

$$u(0,x) = 0$$
 п.в. в Ω . (16.27)

Из соотношений (16.19), (16.27) следует, что u(t,x)- обобщенное решение задачи (16.1)-(16.3).

Единственность решения.

Пусть $u_1(t,x), u_2(t,x)$ - два решения задачи (16.1)-(16.3) в классе $H^1(Q_T)$. Тогда функция $u(t,x)=u_1(t,x)-u_2(t,x)$ - решение однородного уравнения

(16.1) с однородными начальными и краевыми условиями, удовлетворяющее неравенству (см. вывод неравенства (16.10))

$$||u(t)||^2 + \int\limits_0^t \int\limits_\Omega k|\nabla u|\,dxd au \le 0$$
 для почти всех $t\in [0,T].$

Отсюда следует, что $||u(t)||^2 = 0$ почти всюду в [0,T] и u(t,x) = 0 почти всюду в Q_T .

Доказана

Теорема 1. Пусть выполняются условия (16.4), (16.5). Тогда существует единственное решение $u(t,x)\in \overset{\circ}{H^1}_{S_T}(Q_T)$ задачи (16.1)-(16.3) класса $H^1(Q_T)$.

17. Краевые задачи для гиперболического уравнения

Пусть Ω - некоторая ограниченная область n-мерного пространства E_n . $Q_T = \{0 < t < T, x \in \Omega\}$, S_T - боковая поверхность цилиндра Q_T , Ω_τ - сечение $\{t = \tau, x \in \Omega\}$ цилиндра Q_T плоскостью $t = \tau$; $\Omega_T = \{t = T, x \in \Omega\}$ - верхнее основание цилиндра Q_T , $\Omega_0 = \{t = 0, x \in \Omega\}$ - его нижнее основание.

В цилиндре Q_T рассмотрим гиперболическое уравнение

$$u_{tt} - div(k(x)\nabla u) + a(x)u = f(t,x). \tag{17.1}$$

Полагаем

$$k(x) \in C(\overline{\Omega}), a(x) \in C(\overline{\Omega}), k \ge k_0 > 0, k_0 - const, a(x) \ge 0.$$
 (17.1')

Зададим начальные

$$u|_{t=0} = \varphi, \tag{17.2}$$

$$u_t|_{t=0} = \psi,$$
 (17.3)

и граничные условия

$$u|_{\Gamma_T} = \chi. \tag{17.4}$$

Задача (17.1) - (17.4) - первая краевая задача.

В случае краевых условий

$$\left(\frac{\partial u}{\partial n} + \sigma u\right)\Big|_{S_T} = \chi,$$
(17.5)

где σ - некоторая заданная на S_T функция, задача (17.1) - (17.3), (17.5) называется третьей смешанной задачей (начально-краевой задачей) для гиперболического уравнения (17.1).

Если $\sigma \equiv 0$ на S_T , то третья смешанная задача называется второй смешанной задачей.

Определение. Функция $u \in H^1(Q_T)$ называется обобщенным решением в Q_T первой смешанной задачи (17.1) - (17.4) класса $H^1(Q_T)$, если она удовлетворяет начальному условию (17.2), граничному условию (17.4) (в смысле следов) и тождеству

$$\int_{Q_T} (k\nabla u \nabla v + auv - u_t v_t) \, dx dt = \int_{\Omega_0} \psi v \, dx + \int_{Q_T} fv \, dx dt$$
 (17.6)

при всех $v \in H^1(Q_T)$, для которых выполнены условия (17.4) и условие

$$v|_{t=T}=0.$$

Утверждение. Пусть функция $u \in H^1(Q_T)$. Тогда функция

$$w(t,x) = \begin{cases} \int_{t}^{\tau} u(\theta, x) d\theta, & 0 < t < \tau, \\ 0, & \tau \le t \le T \end{cases}$$
 (17.7)

принадлежит классу $H^1(Q_T)$ и функции

$$w_t = \begin{cases} -u, & 0 < t < \tau, \\ 0, & \tau < t < T \end{cases}$$
 (17.8)

И

$$w_{x_i} = \begin{cases} \int_{t}^{\tau} u_{x_i}(\theta, x) d\theta, & 0 < t < \tau, \\ 0, & \tau < t < T \end{cases}$$
 (17.9)

являются обобщенными производными функции w по t и x_i соответственно.

Доказательство. Ясно, что функции w, w_t , w_{x_i} , заданные соответственно соотношениями (17.7) - (17.9) принадлежат пространству $L_2(Q_T)$.

Пусть $\{u^k\}_{k=1}^\infty$ - последовательность функций класса $C^\infty(Q_T)$ такая, что

$$\lim_{k \to \infty} ||u^k - u||_{H^1(Q_T)} = 0, \tag{17.10}$$

И

$$w^{k}(t,x) = \begin{cases} \int_{t}^{\tau} u^{k}(\theta, x) d\theta, & 0 < t < \tau, \\ 0, & \tau < t < T. \end{cases}$$

Для любой функции $g\in \overset{\circ}{C}{}^{1}\left(Q_{T}\right)$

$$\int_{Q_{T}} w^{k}(t,x)g_{t}(t,x) dxdt = \int_{Q_{\tau}} w^{k}(t,x)g_{t}(t,x) dxdt = \int_{\Omega} (w^{k}(t,x)g(t,x))|_{t=0}^{t=\tau} dx - \int_{Q_{\tau}} w^{k}_{t}(t,x)g(t,x) dxdt = \int_{\Omega} w^{k}(\tau,x)g(\tau,x) dx - \int_{\Omega} w^{k}(0,x)g(0,x) dx - \int_{Q_{\tau}} w^{k}_{t}(t,x)g(t,x) dxdt = -\int_{Q_{\tau}} -u^{k}(t,x)g(t,x) dxdt = -\int_{Q_{\tau}} w^{k}_{t}(t,x)g(t,x) dxdt = -\int_{Q_{\tau}} w^{k}_{t}(t,x)g(t,x) dxdt,$$

где
$$w_t^k = \begin{cases} -u^k, & 0 < t < \tau, \\ 0, & \tau < t < T \end{cases}$$
.

Выше мы использовали соотношения g(0,x) = 0 и $w^k(\tau,x) = 0$.

Получили равенства

$$\int_{Q_T} w^k(t, x) g_t(t, x) dx dt = -\int_{Q_T} w_t^k(t, x) g(t, x) dx dt,$$
 (17.11)

верные для всех $g \in \overset{\circ}{C}^1(Q_T)$. По определению обобщенной производной функция $w_t^k = \begin{cases} -u^k, & 0 < t < \tau, \\ 0, & \tau < t < T \end{cases}$ является обобщенной производной функции w^k .

Имеют место соотношения

$$w^{k} - w = \int_{t}^{\tau} \{u^{k}(\theta, x) - u(0, x)\} d\tau, \qquad 0 < t < \tau,$$

$$\int\limits_{Q_T} (w^k - w)^2 \, dx dt = \int\limits_{Q_T} \left(\int\limits_t^\tau \left| u^k(\theta, x) - u(\theta, x) \right| \, d\tau \right)^2 \, dx dt \le$$

$$\leq \int_{Q_T} T \int_0^T |u^k(\theta, x) - u(\theta, x)|^2 d\theta dx dt = T^2 \int_{Q_T} |u^k(\theta, x) - u(\theta, x)|^2 dx dt =$$

$$= T^2 \|u^k - u\|_{L_2(Q_T)}^2.$$

Из последних соотношений следует, что

$$||w^k - w||_{L_2(Q_T)} \le T||u^k - u||_{L_2(Q_T)} \le T||u^k - u||_{H^1(Q_T)}.$$
 (17.12)

Из (17.12) и (17.10) следует, что

$$\lim_{k \to \infty} \|w^k - w\|_{L_2(Q_T)} = 0. \tag{17.13}$$

Из равенства $w_t^k - w_t = \begin{cases} -u^k + u, & 0 < t < \tau, \\ 0, & \tau < t < T \end{cases}$

получаем, что

$$\int_{Q_T} (w_t^k - w_t)^2 dx dt \le \int_{Q_T} (u - u^k)^2 dx dt,$$

$$||w_t^k - w_t||_{L_2(Q_T)} \le ||u^k - u||_{L_2(Q_T)} \le ||u^k - u||_{H^1(Q_T)}.$$
(17.14)

Переходя в (17.11) к пределу при $k \to \infty$ в силу (17.10) (17.13) (17.14) получим равенство

$$\int_{Q_T} wg_t \, dxdt = -\int_{Q_T} w_t g \, dxdt \qquad \forall g \in \overset{\circ}{C}^1(Q_T),$$

то есть функция $w_t = \begin{cases} -u, & 0 < t < \tau, \\ 0, & \tau < t < T \end{cases}$ есть обобщенная производная

функции w(t,x) по переменной t в Q_T .

Имеют место соотношения (w^k имеет обобщенную производную $w^k_{x_i}$ по x_i класса $L_2(Q_T)$)

$$\int_{Q_T} w^k g_{x_i} dx dt = -\int_{Q_T} w_{x_i}^k g dx dt \qquad \forall g \in \overset{\circ}{C}^1(Q_T).$$
 (17.15)

Действительно,

$$\int_{Q_T} w^k g_{x_i} dx dt = \int_{Q_T} w^k g_{x_i} dx dt = \int_0^\tau \left(\int_{\Omega} \int_t^\tau u^k(\theta, x) d\theta g_{x_i}(t, x) dx \right) dt =$$

$$\int_0^\tau \left(\int_{\partial \Omega} \int_t^\tau u^k(\theta, x) d\theta g(t, x) ds \right) dt - \int_0^\tau \left(\int_{\Omega} \int_t^\tau u^k_{x_i}(\theta, x) d\theta g(t, x) dx \right) dt =$$

$$- \int_{Q_T} \int_t^\tau u^k_{x_i}(\theta, x) d\theta g(t, x) dx = - \int_{Q_T} w^k_{x_i}(t, x) g(t, x) dx dt.$$

Имеют место соотношения

$$||w_{x_i}^k - w_{x_i}||_{L_2(Q_T)} = \left(\int\limits_{Q_T} \left\{ \int\limits_t^\tau w_{x_i}^k(\theta, x) \, d\theta - \int\limits_t^\tau w_{x_i}(\theta, x) \, d\theta \right\}^2 dt dx \right)^{1/2} =$$

$$\left(\int_{Q_T} \left\{ \int_t^\tau (u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)) d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_{Q_T} \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_{Q_T} \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_{Q_T} \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_{Q_T} \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_{Q_T} \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_{Q_T} \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_{Q_T} \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_Q \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_Q \left\{ \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)| d\theta \right\}^2 dt dx \right)^{1/2} \leq \left(\int_Q \left\{ \int_Q \left$$

$$\leq \left(\int_{Q_T} T \int_0^T |u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x)|^2 d\theta \right)^{1/2} =$$

$$= T \int_{Q_T} (u_{x_i}^k(\theta, x) - u_{x_i}(\theta, x))^2 d\theta dx = T ||u_{x_i}^k - u_{x_i}||_{L_2(Q_T)}$$
(17.16)

и в силу (17.10) из (17.16) следует, что

$$\lim_{k \to \infty} \|w_{x_i}^k - w_{x_i}\|_{L_2(Q_T)} = 0. \tag{17.17}$$

В силу (17.13), (17.17) получим, переходя к пределу при $k \to \infty$ в (17.15), соотношение

$$\int_{Q_T} w g_{x_i} dx dt = -\int_{Q_T} w_{x_i} g dx dt \qquad \forall g \in \overset{\circ}{C}^1(Q_T), \tag{17.18}$$

то есть функция $w_{x_i} \in L_2(Q_T)$ есть обобщенная производная функции w по x_i . Утверждение доказано.

Ясно, что если $u|_{S_T} = 0$, то и

$$w|_{S_T} = 0. (17.19)$$

Теорема 1(единственности). При выполнении условий (17.1') задача (17.1) - (17.4) не может иметь более одного обобщенного решения класса $H^1(Q_T)$.

Доказательство. Пусть u - обобщенное решение класса $H^1(Q_T)$ задачи (17.1) - (17.4) при f=0 в $Q_T,~\chi=0$ на $S_T,~\varphi=0,~\psi=0$ на Ω . Покажем, что u=0 п.в. в Q_T .

Возьмем произвольное $\tau \in (0,T)$ и рассмотрим функцию

$$v(t,x) = \begin{cases} \int_{t}^{\tau} u(\theta, x) d\theta, & 0 < t < \tau, \\ 0, & \tau < t < T. \end{cases}$$

Функция v имеет в Q_T обобщенные производные

$$v_t(t, x) = \begin{cases} -u, & 0 < t < \tau, \\ 0, & \tau < t < T, \end{cases}$$

И

$$v_{x_i}(t, x) = \begin{cases} \int_t^{\tau} u_{x_i}(x, \theta) d\theta, & 0 < t < \tau, \\ 0, & \tau < t < T. \end{cases}$$

Следовательно, $v(t,x) \in H^1(Q_T)$. При этом $v|_{S_T} = 0$ и в случае, когда u - обобщенное решение первой смешанной задачи $v|_{\Gamma_T} = 0$.

Подставим функцию v в тождество (17.6). Так как $v_t = -u$, то получим равенство

$$\int_{Q_T} (k\nabla u \int_T^\tau \nabla u \, d\theta - avv_t + u_t u) \, dx dt = 0.$$

Имеют место следующие соотношения:

$$\int_{Q_{\tau}} k(x) \nabla u(t, x) \int_{t}^{\tau} \nabla u(\theta, x) d\theta dt dx =$$

$$= \int_{\Omega} k(x) \int_{0}^{\tau} \nabla u(t, x) \left(\int_{t}^{\tau} \nabla u(\theta, x) d\theta \right) dt dx =$$

$$= \int_{\Omega} k(x) \int_{0}^{\tau} \frac{\partial}{\partial t} \int_{\tau}^{t} \nabla u(\theta, x) d\theta \left(-\int_{\tau}^{t} \nabla u(\theta, x) d\theta \right) dt dx =$$

$$= -\frac{1}{2} \int_{\Omega} k(x) \int_{0}^{\tau} \frac{\partial}{\partial t} \left(\int_{\tau}^{t} \nabla u(\theta, x) d\theta \right)^{2} dt dx =$$

$$= -\frac{1}{2} \int_{\Omega} k(x) \left(\int_{\tau}^{t} \nabla u(\theta, x) d\theta \right)^{2} dt dx =$$

$$= \frac{1}{2} \int_{\Omega} k(x) \left(\int_{\tau}^{\tau} \nabla u(\theta, x) d\theta \right)^{2} dx. \qquad (17.20)$$

$$- \int avv_{t} dx dt = \frac{1}{2} \int_{\Omega} av^{2}(0, x) dx$$

Так как

$$-\int_{Q_{\tau}} avv_t \, dx dt = \frac{1}{2} \int_{\Omega} av^2(0, x) \, dx$$
 (17.21)

И

$$\int_{Q_{\tau}} u u_t \, dx dt = \frac{1}{2} \int_{\Omega} u^2(\tau, x) \, dx, \tag{17.22}$$

то в силу (17.20) - (17.22) из (17.20) получим равенство

$$\int_{\Omega} k(x) \left(\int_{0}^{\tau} \nabla u(\theta, x) \, d\theta \right)^{2} dx + \int_{\Omega} av^{2}(0, x) \, dx + \int_{\Omega} u^{2}(\tau, x) \, dx = 0.$$
 (17.23)

Так как все члены левой части равенства (17.23) неотрицательны в силу условий $k(x)>0,\, a\geq 0$ и их сумма равна нулю, то нулю равен и каждый член этой суммы, в частности

$$\int_{\Omega} u^2(\tau, x) \, dx = 0.$$

В силу последнего равенства, верного при любом $\tau \in (0,T)$

$$||u||_{L_2(Q_T)}^2 = \int_0^T \int_\Omega u^2(\tau, x) \, dx dt = 0.$$

Отсюда u(t,x)=0 почти всюду в Q_T .

Нами доказана теорема единственности обобщенного решения задачи (17.1) - (17.4) в классе $H^1(Q_T)$.

Существование обобщенного решения класса $H^{1}(Q_{T})$.

Рассмотрим однородное граничное условие

$$u|_{\Gamma_T} = 0. (17.24)$$

Ниже нами будет доказана теорема

Теорема 2. Пусть выполняются условия (17.1') и $f(t,x) \in C(\overline{Q}_T)$. Тогда задача (17.1) - (17.3), (17.24) имеет обобщенное решение u в классе $H^1(Q_T)$.

Доказательство. Доказательство проведем методом Галеркина. Пусть $\{w_j\}_{j=1}^{\infty}$ - базис в пространстве $\overset{\circ}{H^1}(\Omega)$, ортонормированный в пространстве $L_2(\Omega)$:

$$(w_i, w_j) = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j \end{cases}$$
 (17.25)

Здесь, как обычно, (\cdot, \cdot) - скалярное произведение в $L_2(\Omega)$. Через $u^m(t, x)$ обозначим m - ое галеркинское приближение

$$u^{m}(t,x) = \sum_{j=1}^{m} c_{j}^{m}(t)w_{j}(x)$$
(17.26)

решения u задачи (17.1) - (17.3), (17.24) по базису $\{w_j\}_{j=1}^{\infty}$, где коэффици-

енты $c_j^m(t)$ находятся как решения задачи

$$\left(\frac{\partial^2 u^m(t)}{\partial t^2}, w_j\right) + \int_{\Omega} \left\{k\nabla u^m(t)\nabla w_j + au^m(t)w_j\right\} dx = (f(t), w), \quad (17.27)$$

$$c_j^m(0) - \alpha_j^n, \qquad \frac{d}{dt}c_j^m(0) = (\psi, w_j), \qquad j = 1, \dots, m.$$
 (17.28)

Постоянные α_{j}^{m} в (17.28) берутся такие, что

$$\varphi^{m}(x) = \sum_{j=1}^{m} \alpha_{j}^{m}(t) w_{j}(x) \longrightarrow \varphi(x), \quad m \to \infty,$$
 (17.29)

в норме пространства $H^1(\Omega)$.

Система (17.27) есть система m обыкновенных дифференциальных уравнений второго порядка с m независимыми переменными. Покажем это.

В силу (17.25)

$$\left(\frac{\partial^{2} u^{m}(t)}{\partial t^{2}}, w_{j}\right) = \left(\sum_{i=1}^{m} \frac{d^{2} c_{i}^{m}(t) w_{i}(x)}{dt^{2}}, w_{j}\right) =
= \sum_{i=1}^{m} \frac{d^{2}}{dt^{2}} c_{i}^{m}(t) (w_{i}, w_{j}) = \frac{d^{2} c_{j}^{m}(t)}{dt^{2}}.$$
(17.30)

Пусть $d_{ij} = \int\limits_{\Omega} \{k \nabla w_i \nabla w_j + a w_i w_j\} \, dx$. Имеют место следующие соотношения

$$\int_{\Omega} \left\{ k \sum_{i=1}^{m} c_i^m(t) \nabla w_i \nabla w_j + a \sum_{i=1}^{m} c_i^m(t) w_i w_j \right\} dx = \sum_{i=1}^{m} d_{ij} c_i^m(t), \quad (17.31)$$

$$f_j(t) = (f(t), w_j), \qquad j = 1, \dots, m.$$
 (17.32)

Из (17.30) - (17.32) следует, что соотношения (17.27) есть система уравнений

$$\frac{d^2c_j^m(t)}{dt^2} + \sum_{i=1}^m d_{ij}c_i^n(t) = f_j(t), \qquad j = 1, \dots, m.$$
 (17.33)

с постоянными коэффициентами d_{ij} и непрерывными на [0,T] правыми частями $f_j(t)$.

Из теории обыкновенных дифференциальных уравнений [17] следует, что решение $c^m(t)=(c_1^m(t),\ldots c_m^m(t))$ задачи (17.33), (17.28) существует и единственно в классе $C^2([0,T])$ ($c_j^m(t)\in C^2[0,T],\,j=1,\ldots m$) при любом $m\geq 1$.

Докажем ограниченность множества $\{u^m\}_{m=1}^{\infty}$ в норме пространства $H^1(Q_T)$. Пусть $c^m(t)$ - решение задачи (17.33), (17.29). Умножим (17.28) на функцию $e^{-\theta t} \frac{d}{dt} c_j^m(t)$, где $\theta = const > 0$ будет выбрана нами ниже, и просуммируем результат умножения по j от 1 до m.

Получим равенство

$$\left(\frac{\partial^{2}}{\partial t^{2}}u^{m}(t), \frac{\partial}{\partial t}u^{m}(t)\right)e^{-\theta t} + \int_{\Omega} k\nabla u^{m}(t)e^{-\theta t} \frac{\partial}{\partial t}\nabla u^{m}(t) dx$$

$$\int_{\Omega} au^{m}(t)e^{-\theta t} \frac{\partial}{\partial t}u^{m}(t) dx = e^{-\theta t} \left(f(t), \frac{\partial}{\partial t}u^{m}(t)\right).$$
(17.34)

Имеют место следующие соотношения:

$$\int\limits_0^\tau (u^m_{tt}(t),e^{-\theta t}u^m_t(t))\,dt = \frac{1}{2}\int\limits_\Omega\int\limits_0^\tau \frac{\partial}{\partial t}((u^m_t(t,x))^2e^{-\theta t})\,dxdt +$$

$$\frac{\theta}{2} \int_{\Omega} \int_{0}^{\tau} (u_{t}^{m}(t,x))^{2} e^{-\theta t} dt dx = \frac{1}{2} \int_{\Omega} (u_{t}^{m}(t,x))^{2} e^{-\theta t} \Big|_{t=0}^{\tau} dx + \frac{\theta}{2} \int_{Q_{\tau}} (u_{t}^{m}(t,x))^{2} e^{-\theta t} dx dt, \qquad (17.35)$$

$$\int_{0}^{\tau} \int_{\Omega} k(x) \left(\nabla u^{m}(t,x), \frac{\partial}{\partial t} \nabla u^{m}(t,x) \right) e^{-\theta t} dx dt =$$

$$= \frac{1}{2} \int_{\Omega} k(x) \int_{0}^{\tau} \frac{\partial}{\partial t} \left(|\nabla u^{m}(t, x)|^{2} e^{-\theta t} \right) dt dx +$$

$$+ \frac{\theta}{2} \int_{\Omega} k(x) \int_{0}^{\tau} |\nabla u^{m}(t, x)|^{2} e^{-\theta t} dt dx, \qquad (17.36)$$

$$\left| \int_{0}^{\tau} \int_{\Omega} a(x) u^{m}(t,x) e^{-\theta t} u_{t}^{m}(t,x) dx dt \right| \leq$$

 \leq (неравенство Коши с $\varepsilon = \frac{1}{A}$) \leq

$$\leq \frac{1}{2} \int_{\Omega} \int_{0}^{\tau} (u_{t}^{m}(t,x))^{2} e^{-\theta t} dt dx + \frac{A^{2}}{2} \int_{Q_{\tau}} (u^{m}(t,x))^{2} e^{-\theta t} dx dt, \qquad (17.37)$$

$$\left| \int_{0}^{\tau} \int_{\Omega} e^{-\theta t} f(t, x) u_t^m(t, x) dx dt \right| \leq$$

$$\leq \frac{1}{2} \int_{\Omega} e^{-\theta t} f^2(t, x) dx dt + \frac{1}{2} \int_{\Omega} e^{-\theta t} (u_t^m(t, x))^2 dx dt.$$

$$(17.38)$$

Проинтегрируем (17.34) по t на интервале $[0,\tau]$. Из полученного при интегрировании равенства в силу соотношений (17.35) - (17.38) получим неравенство

$$\int_{\Omega} e^{-\theta \tau} (u_t^m(t,x)^2 dx + \theta \int_{Q_{\tau}} (u_t^m(t,x))^2 e^{-\theta t} dx dt +$$

$$\int_{\Omega} k(x) |\nabla u^{m}(\tau, x)|^{2} e^{-\theta \tau} dx + \theta \int_{Q_{\tau}} k(x) |\nabla u^{m}(t, x)|^{2} e^{-\theta t} dx dt \leq
\int_{Q_{\tau}} (u^{m}(t, x))^{2} e^{-\theta t} dx dt + 2 \int_{Q_{\tau}} (u^{m}_{t}(t, x))^{2} e^{-\theta t} dx dt + (17.39)$$

$$\int_{Q_{\tau}} f^{2}(t,x)e^{-\theta t} dxdt + \int_{\Omega} (u_{t}^{m}(0,x))^{2} dx + \int_{\Omega} k(x)|\nabla u^{m}(0,x)|^{2} dx.$$

В силу (17.24)

$$\int_{Q_{\tau}} k(x) |\nabla u^m(t,x)|^2 e^{-\theta t} dx dt \ge k_0 \int_{Q_{\tau}} |\nabla u^m(t,x)|^2 e^{-\theta t} dx dt =$$

$$= k_0 \int_{0}^{\tau} e^{-\theta t} \int_{\Omega} |\nabla u^m(t, x)|^2 dx dt \ge k_0 C_1 \int_{0}^{\tau} e^{-\theta t} ||u^m(t)||_{H^1(\Omega)}^2 dt =$$
(17.40)

$$= k_0 C_1 \int_{0}^{\eta} e^{-\theta t} \int_{\Omega} \{ (u^m(t,x))^2 + |\nabla u^m(t,x)|^2 \} dx dt =$$

$$= k_0 C_1 \int_{Q_{\tau}} e^{-\theta t} (u^m(t,x))^2 dx dt + k_0 C_1 \int_{Q_{\tau}} e^{-\theta t} |\nabla u^m(t,x)|^2 dx dt.$$

Выше C_1 - константа эквивалентности норм $\|u\|_{\mathring{H^1}(\Omega)}^{\circ} = \left(\int\limits_{\Omega} |\nabla u|^2 \, dx\right)^{1/2}$

$$\|u\|_{H^1(\Omega)} = \left(\int_{\Omega} (u^2 + |\nabla u|^2) \, dx \right)^{1/2}.$$

Из соотношений (17.25), (17.28), (17.29) следует, что

$$\int_{\Omega} (u_t^m(t,x))^2 dx = \sum_{j=1}^n \left(\frac{d}{dt}c_j^m(0)\right)^2 = \sum_{j=1}^n (\psi, w_j)^2 \le \|\psi\|_{L_2(\Omega)}^2, \quad (17.41)$$

$$\int_{\Omega} k(x) |\nabla u^{m}(0,x)|^{2} dx \leq K \int_{\Omega} |\nabla \varphi^{m}|^{2} dx = K \|\varphi^{m}\|_{\dot{H}^{1}(\Omega)}^{2} \leq$$
(17.42)

$$\leq KC_2^2 \|\varphi^m\|_{H^1(\Omega)}^2 \leq K_1.$$

В (17.42) C_2 - константа эквивалентности норм $\|u\|_{\dot{H}^1(\Omega)}$ и $\|u\|_{H^1(\Omega)}$, $K = \max_{\overline{\Omega}} k(x)$. Последовательность $\|\varphi^n\|_{H^1(\Omega)}$ ограничена вследствие сходимости φ^n к φ в норме $H^1(\Omega)$.

Напомним, что констант эквивалентности две: C_1 и C_2 (0 < C_1 < C_2), такие постоянные, что выполняются неравенства

$$C_1 \|u\|_{H^1(\Omega)} \le \|u\|_{\dot{H}^1(\Omega)} \le C_2 \|u\|_{H^1(\Omega)} \quad \forall u \in \overset{\circ}{H}^1(\Omega).$$

Вследствие (17.40) - (17.42) из (17.39) получим неравенство

$$\int_{\Omega} e^{-\theta \tau} (u_t^m(\tau, x))^2 dx + (\theta - 2) \int_{Q_{\tau}} e^{-\theta t} (u_t^m(t, x))^2 dx dt +$$

$$+k_0 \int_{\Omega} |\nabla u^m(\tau, x)|^2 e^{-\theta \tau} dx + (\theta k_0 C_1^2 - A^2) \int_{Q_{\tau}} e^{-\theta t} (u^m(t, x))^2 dx dt +$$

$$+\theta k_0 C_1^2 \int_{Q_{\tau}} e^{-\theta t} |\nabla u^m(t, x)|^2 dx dt \le ||f||_{L_2(Q_T)}^2 + ||\psi||_{L_2(\Omega)}^2 + K_1 = K_2(17.43)$$

Возьмем в (17.40) θ такое, что

$$\min\{\theta - 2, \theta k_0 C_1^2 - A^2\} \ge 1. \tag{17.44}$$

При таком θ выполняется неравенство

$$e^{-\theta T} \int_{Q_T} \{ u^m(t,x) \}^2 + (u_t^m(t,x))^2 + |\nabla u^m(\tau,x)| \} dxdt \le K_2,$$

откуда

$$||u^m||_{H^1(Q_T)} \le K_3, \qquad m \ge 1,$$
 (17.45)

где $K_3 = (K_2 e^{\theta T})^{1/2}$.

Мы доказали ограниченность множества галеркинских приближений в $H^1(Q_T)$.

В силу 17.45) и теоремы о слабой компактности ограниченного множества в рефлексивном банаховом пространстве существует подпоследовательность $\{u^m\}$ (обозначение не меняем) последовательности галеркинских приближений слабо сходящаяся в $H^1(Q_T)$ к некоторому элементу $u \in H^1(Q_T)$:

$$u^m \longrightarrow u$$
 слабо в $H^1(Q_T), m \to \infty.$ (17.46)

Докажем, что u(t,x) является обобщенным решением задачи (17.1) - (17.3), (17.24).

Рассмотрим произвольную функцию $g(x) \in L_2(\Omega)$ и функцию $\sigma(t)$ класса $C^1[0,T]$, удовлетворяющую условиям: $\sigma(0)=1, \, \sigma(T)=0$.

Имеют место следующие соотношения

$$\int_{Q_{\tau}} u_t^m \sigma g \, dx dt = \int_{0}^{T} \int_{\Omega} u_t^m(t, x) \sigma(t) g(x) \, dx dt = -(u^m(0), g) -
- \int_{0}^{T} \int_{\Omega} u^m(t, x) \sigma'(t) g(x) \, dx dt,$$
(17.47)

$$\int_{Q_{\tau}} u_t \sigma g \, dx dt = \int_{0}^{T} \int_{\Omega} u_t(t, x) \sigma(t) g(x) \, dx dt = -(u(0), g) -
- \int_{0}^{T} \int_{\Omega} u(t, x) \sigma'(t) g(x) \, dx dt.$$
(17.48)

При $n \to \infty$ из (17.47)(17.29)(17.46) получим равенство

$$\int_{Q_T} u_t(t, x)g(x)\sigma(t) dxdt = -(\varphi, g) - \int_{Q_T} u(t, x)g(x)\sigma(t) dxdt.$$
 (17.49)

Из (17.48), (17.49)

$$(\varphi, g) = (u(0), g) \quad \forall g \in L_2(\Omega).$$

Следовательно, $u(0) = \varphi$ п.в. в Ω .

Докажем, что u удовлетворяет соотношениям (17.6). Умножим (17.19) на $\alpha'_j(t)$, ($\alpha^n_j \in C^1[0,T]$, $\alpha^n_j = 0$ при t = T), просуммируем результат умножения по j от 1 до m и проинтегрируем по t на отрезке [0,T]. После интегрирования по частям в первом члене (переносим производную по t на функцию

$$\chi(t,x) = \sum_{j=1}^{m} \alpha_j^m(t)w_j$$
(17.50)

получим тождество

$$\int_{Q_T} (-u_t^m \chi_t + k \nabla u^m \cdot \nabla \chi + a u^m \chi) dx dt -
- \int_{\Omega} u_t^m \chi|_{t=0} dx = \int_{Q_T} f \chi dx dt.$$
(17.51)

Нетрудно показать, что последнее тождество выполняется для всех функций из множества M^m , состоящего из всех элементов вида (17.50).

Переходя в (17.51) к пределу при $m \to infty$ и фиксированном m, получим в силу (17.20) соотношение

$$\int_{Q_T} (-u_t \chi_t + k \nabla u \cdot \nabla \chi + a u \chi) dx dt -
- \int_{\Omega} \psi \chi|_{t=0} dx = \int_{Q_T} f \chi dx dt,$$
(17.52)

верное для любого $\chi \in M^k$ и, следовательно, для любого $\chi \in \bigcup_{k=1}^{\infty} M^k = M$. Так как множество M всюду плотно в $\hat{H}^1_0(Q_T)$, то соотношение (17.52) имеет место для любых $\chi \in \hat{H}^1_0(Q_T)$ (см. (17.6)).

Таким образом, мы доказали, что функция u является обобщенным решеним класса $H^1(Q_T)$ задачи (17.1) - (17.3), (17.24).

Выше мы доказали, что существует подпоследовательность последовательности галеркинских приближений слабо в $H^1(Q_T)$ сходящаяся к решению u задачи (17.1) - (17.3), (17.24). Докажем, что и последовательность галеркинских приближений $\{u^m\}_{m=1}^{\infty}$ сходится к u слабо в $H^1(Q_T)$. Предположим, что последовательность $\{u^m\}_{m=1}^{\infty}$ не сходится к u слабо. Тогда существует некоторая подпоследовательность $\{u^\gamma\}$ последовательности $\{u^m\}_{m=1}^{\infty}$ слабо сходящаяся к некоторой функции $\tilde{u} \in \hat{H}^1_0(Q_T)$ и не равная u:

$$\widetilde{u} \neq u$$
 в норме пространства $L_2(Q_T)$. (17.53)

Так же, как и в случае функции u, доказывается, что \widetilde{u} - решение задачи

(17.1) - (17.3), (17.24) класса $H^1(Q_T)$. В силу теоремы единственности $\widetilde{u}=u$ почти всюду в Q_T , что противоречит (17.53). Доказана

Теорема 1. Пусть выполняются условия (17.1'). Тогда существует единственное решение $u\in \hat{H}^{1}_{0}(Q_{T})$ задачи (17.1) - (17.3), (17.24). Последовательность галеркинских приближений $\{u^m\}_{m=1}^\infty$ сходится к u слабо в $H^1(Q_T)$.

Обобщенное решение класса $H^2(Q_T)$

Выше мы доказали однозначную разрешимость задачи (17.1) - (17.4) в классе $H^1(Q_T)$. Докажем, что при более гладких входных данных полученное обобщенное решение имеет производные $u_{tt},\ u_{tx_i},\$ принадлежащие классу $L_2(Q_T)$.

Предположим, что входные данные удовлетворяют следующим условиям:

$$k \in C^1(\overline{\Omega}), \quad k \ge k_0 > 0, \quad a \in C(\overline{\Omega}),$$
 (17.54)

$$f, f_t \in C(\overline{\Omega}), \tag{17.55}$$

$$f, f_t \in C(\overline{\Omega}), \tag{17.55}$$

$$\varphi \in H^2(\Omega) \cap \overset{\circ}{H^1}(\Omega), \qquad \psi \in \overset{\circ}{H^1}(\Omega). \tag{17.56}$$

Имеет место теорема

Теорема 2. пусть выполняются условия (17.54) - (17.56). Тогда обобщенное решение u класса $H^1(Q_T)$ задачи (17.1) - (17.3), (17.24) имеет производные $u_{tt}, u_{tx_i}, i=1,\ldots,n,$ из $L_2(Q_T)$. Последовательность галеркинских приближений $\{u^m\}_{m=1}^\infty \longrightarrow u$ слабо в $H^1(Q_T),\, u_{tt}^m \longrightarrow u_{tt},\, u_{tx_i}^m \longrightarrow u_{tx_i}$ слабо в $L_2(Q_T)$.

Доказательство. Возьмём базис $\{w_j\}_{j=1}^\infty$ из элементов $w_i \in H^2(\Omega) \cap \overset{\circ}{H^1}(\Omega)$, ортонормированный в $L_2(\Omega)$. Разложим функции φ ,

 ψ по этому базису:

$$\varphi(x) = \sum_{j=1}^{\infty} \alpha_j w_j(x), \qquad \psi(x) = \sum_{j=1}^{\infty} \beta_j w_j(x).$$
 (17.57)

В силу (17.56) при $m \to 0$

$$\sum_{j=1}^{m} \alpha_j w_j \to \varphi \,\mathsf{B} \, H^2(\Omega), \qquad \sum_{j=1}^{m} \beta_j w_j \to \psi \,\mathsf{B} \, H^1(\Omega). \tag{17.58}$$

Функции $c_j^m(t)$ галеркинских приближений $u^m(t,x)$ по базису $\{w_j\}_{j=1}^\infty$ находим как решение системы уравнений (17.19) с начальными данными

$$c_j^m(0) = \alpha_j, \qquad \frac{c_j^m(0)}{dt} = \beta_j, \qquad j = 1, \dots, m.$$
 (17.59)

Так как (см. (17.58), (17.59))

$$\sum_{j=1}^{m} \alpha_j w_j = \sum_{j=1}^{m} c_j^m(0) w_j(x) = u^m(0),$$

$$\sum_{j=1}^{m} \beta_j w_j = \sum_{j=1}^{m} \frac{c_j^m(0)}{dt} w_j(x) = u_t^m(0)$$

и $u^m(0) \to \varphi$ сильно в $H^2(\Omega), u_t^m(0) \to \psi$ сильно в $H^1(\Omega)$ при $m \to \infty$, то существует постоянная B такая, что при всех m

$$\|\Delta u^m(0)\| + \|\nabla u^m(0)\| + \|\nabla u_t^m(0)\| + \|u_t^m(0)\| \le B. \tag{17.60}$$

B (17.58)
$$\|\nabla u^m(0)\| = \left(\int_{\Omega} \sum_{i=1}^n \left(\frac{\partial u^m(0,x)}{\partial x_i}\right)^2 dx\right)^{1/2}$$

Так как выполняются условия (17.55), то $f_j \in C^1[0,T]$ и $c_j^m(t) \in C^3[0,T], j=1,\ldots,m$.

Продифференцируем (17.19) по t, умножим результат дифференцирования на $\frac{d^2c_j^m(t)}{dt^2}$ и просуммируем полученные равенства по j от 1 до m. Получим равенство

$$(u_{ttt}^{m}(t), u_{tt}^{m}(t)) + \int_{\Omega} [k\nabla u_{t}^{m}(t, x) \cdot \nabla u_{tt}^{m}(t, x) + au_{t}^{m}(t, x)u_{tt}^{m}(t, x)]dx = (f_{t}(t), u_{tt}^{m}(t)).$$
(17.61)

Имеют место следующие соотношения:

$$(u_{ttt}^{m}(t), u_{tt}^{m}(t)) = \frac{1}{2} \frac{\partial}{\partial t} \|u_{tt}^{m}(t)\|^{2},$$

$$\int_{\Omega} k(x) \nabla u_{t}^{m}(t, x) \cdot \nabla u_{tt}^{m}(t, x) dx = \frac{1}{2} \frac{\partial}{\partial t} \int_{\Omega} k(x) |\nabla u_{t}(t, x)|^{2} dx,$$

$$\int_{\Omega} a u_{t}^{m}(t, x) u_{tt}^{m}(t, x) = \frac{1}{2} \frac{\partial}{\partial t} \int_{\Omega} a(x) (u_{t}^{m}(t, x))^{2} dx. \quad (17.62)$$

Интегрируя (17.61) на отрезке [0,t] и учитывая соотношения (17.62), (17.54), (17.55) получим неравенства

$$||u_{tt}^{m}(t)||^{2}, +k_{0} \int_{\Omega} k(x)|\nabla u_{t}(t,x)|^{2} dx \leq ||u_{tt}^{m}(0)||^{2} +$$

$$+ \int_{\Omega} k(x)|\nabla u_{t}(0,x)|^{2} dx + \int_{\Omega} |a(x)|(u_{t}^{m}(t,x))^{2} dx +$$

$$+ \int_{\Omega} |a(x)|(u_{t}^{m}(0,x))^{2} dx + 2 \int_{Q_{t}} f_{t}(\theta,x)u_{tt}^{m}(\theta,x) dx d\theta \leq$$

$$\leq ||u_{tt}^{m}(0)||^{2} + K||\nabla u_{t}^{m}(0)||^{2} + A||u_{t}^{m}(t)||^{2} + A||u_{t}^{m}(0)||^{2} +$$

$$+2||f_{t}||_{L_{2}(Q_{T})} \cdot ||u_{tt}^{m}||_{L_{2}(Q_{T})} \leq ||u_{tt}^{m}(0)||^{2} + K||\nabla u_{t}^{m}(0)||^{2} +$$

$$+A||u_{t}^{m}(t)||^{2} + A||u_{t}^{m}(0)||^{2} + \varepsilon||u_{tt}^{m}||_{L_{2}(Q_{T})} + \frac{1}{\varepsilon}||f_{t}||_{L_{2}(Q_{T})}^{2}.$$

$$(17.63)$$

В (17.63) постоянные K, A, определяются равенствами

$$K = \max_{\overline{\Omega}} k(x);$$
 $A = \max_{\overline{\Omega}} |a(x)|.$

Докажем ограниченность множества $\{\|u_{tt}^m(0)\|\}_{m=1}^\infty$. Для этого умножим (17.19) на $\frac{d^2}{dt^2}c_j^m(t)$, просуммируем полученные равенства по j от 1 до m и полученное соотношение рассмотрим при t=0. Получим равенство

$$||u_{tt}^{m}(0)||^{2} + \int_{\Omega} k(x)\nabla u^{m}(0,x) \cdot \nabla u_{tt}^{m}(0,x)dx +$$

$$+ \int_{\Omega} a(x)u^{m}(0,x)u_{tt}^{m}(0,x) dx = (f(0), u_{tt}^{m}(0)).$$

Проинтегрируем по частям второй член левой части равенства. Получим

соотношения

$$||u_{tt}^{m}(0)||^{2} = \int_{\Omega} \sum_{i=1}^{n} k_{x_{i}}(x) \frac{\partial u^{m}}{\partial x_{i}}(0, x) u_{tt}^{m}(0, x) dx +$$

$$+ \int_{\Omega} k(x) \Delta u^{m}(0, x) u_{tt}^{m}(0, x) dx +$$

$$(f(0), u_{tt}^{m}(0)) \leq C_{1} \{ ||\nabla u^{m}(0)|| \cdot ||u_{tt}^{m}(0)|| + ||\Delta u^{m}(0)|| \cdot ||u_{tt}^{m}(0)|| \} +$$

$$+ ||f(0)|| \cdot ||u_{tt}^{m}(0)|| \leq \frac{\varepsilon}{2} ||u_{tt}^{m}(0)||^{2} + \frac{C_{1}}{2\varepsilon} (||\nabla u^{m}(0)|| + ||\Delta u^{m}(0)||)^{2} +$$

$$\frac{\varepsilon}{2} ||u_{tt}^{m}(0)||^{2} + \frac{1}{2\varepsilon} ||f(0)||^{2} \leq \varepsilon ||u_{tt}^{m}(0)||^{2} + C(\varepsilon).(17.64)$$

В (17.64) постоянная $C(\varepsilon)$ не зависит от m.

Из (17.64) при фиксированном ε , $0 < \varepsilon < 1$, получаем оценку

$$||u_{tt}^m(0)||^2 \le \frac{C(\varepsilon)}{1-\varepsilon} = C_1(\varepsilon). \tag{17.65}$$

Проинтегрируем (17.63) по t от 0 до T.

Учитывая (17.60), (17.65) получим неравенство

$$\int_{0}^{T} ||u_{tt}^{m}(t)||^{2} dt + \iint |\nabla u_{t}^{m}(t,x)| dx \leq C_{2}(\varepsilon).$$

Откуда следует, что

$$||u_{tt}^m||_{L_2(Q_T)} + ||u_{tx_i}^m||_{L_2(Q_T)} \le C_3, \qquad i = 1, \dots, n,$$
 (17.66)

где постоянная C_3 не зависит от m.

Оценка (17.66) наряду с оценкой ограниченности последовательности галеркинских приближений $\{u^m\}_{m=1}^{\infty}$ в $H^1(Q_T)$ гарантирует существование подпоследовательности $\{u^{\gamma}\}$ последовательности $\{u^m\}_{m=1}^{\infty}$ такой, что

$$u^\gamma o u$$
 слабо в $H^1(Q_T),$ $u^\gamma_{tt} o u_{tt}, \quad u^\gamma_{tx_i} o u_{tx_i}$ слабо в $L_2(Q_T), \quad i=1,\dots,n.$

Таким образом, u(t,x) - обобщенное решение задачи (17.1) - (17.4), удовлетворяющее условиям

$$u \in \hat{H}_0^1(Q_T), \quad u_{tt} \in L_2(Q_T), \quad u_{tx_i} \in L_2(Q_T), \quad i = 1, \dots, n.$$

В силу единственности обобщенного решения задачи (17.1) - (17.4) в классе $H^1(Q_T)$ и вся последовательность $\{u^m\}_{m=1}^{\infty}$ сходится к u при $m \to \infty$:

$$u^m o u$$
 слабо в $H^1(Q_T),$ $u^m_{tt} o u_{tt},\quad u^m_{tx_i} o u_{tx_i}$ слабо в $L_2(Q_T),\quad i=1,\dots,n.$

Теорема 2 доказана.

18. Некоторые обобщения

Рассмотрим гиперболическое уравнение

$$u_{tt} - \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(t,x) \frac{\partial u(t,x)}{\partial x_j} \right) + \sum_{i=1}^{n} b_i(t,x) u_{x_i}(t,x) + c(t,x) u(t,x) = f(t,x),$$

$$(18.1)$$

частным случаем которого является рассмотренное ранее уравнение (17.1). Предположим выполнение следующих условий:

$$a_{ij}(t,x) = a_{ji}(t,x), \qquad \nu|\xi|^2 \le \sum_{i,j=1}^n a_{ij}(t,x)\xi_i\xi_j \le \mu|\xi|^2,$$
(18.2)

$$\nu > 0, \quad \forall \xi = (\xi_1, \dots, \xi_n) \in E_n, \qquad (t, x) \in Q_T;$$

$$\max_{\overline{Q}_T} \left| \frac{\partial}{\partial t} a_{ij} \right| + \max_{\overline{Q}_T} \left| \frac{\partial b}{\partial x_i} \right| + \max_{\overline{Q}_T} |b_i| + \max_{\overline{Q}_T} |c| \le d.$$
 (18.3)

Определение. Обобщенным решением класса $H^1(Q_T)$ задачи (18.1), (17.2) - (17.4) называется функция $u \in H^1_0(Q_T)$ равная $\varphi(x)$ при t=0 и удовлетворяющая тождеству

$$\iint_{Q_T} \left[-u_t v_t + \sum_{i,j=1}^m a_{ij} u_{x_i} v_{x_j} + \sum_i b_i u_{x_i} v + cvu \right] dx dt -$$

$$- \int_{\Omega} \psi(x) v(0,x) dx = \iint_{Q_T} fv dx dt,$$
(18.4)

верному при любых $v \in \hat{H}^1_0(Q_T)$.

Имеет место следующая теорема [10]

Теорема 1. Пусть выполняются соотношения (18.2), (18.3). Тогда задача (18.1), (17.2), (17.3), (17.22) имеет единственное обобщенное решение в классе $H^1(Q_T)$.

О повышении гладкости обобщенных решений краевых задач для гиперболических уравнений см. в [10], [14].

Список литературы

- [1] Андреев В.К., Белов Ю.Я., Лазарева В.Н., Шипина Т.Н. *Уравнения* математической физики (Учебное пособие).- Красноярск: Краснояр. гос.ун-т. 2005.
- [2] Бари Н.К. Тригонометрические ряды. М.: Государственное издательство физико-математической литературы. 1961.
- [3] Белов Ю.Я., Кантор С.А. *Метод слабой аппроксимации* -Красноярск: КГУ.- 1999.
- [4] Годунов С.К. Уравнения математической физики М.: Наука.1979.
- [5] Ильин А.М., Калашников А.С., Олейник О.А. Линейные уравнения второго порядка параболического типа// Успехи. мат.наук. 1962. Т.17. N 3. C.3-146.
- [6] Канторович Л.В., Акилов Г.П. *Функциональный анализ* Спб.: Невский диалект, БХВ-Петербург. 2004.
- [7] Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Основные дифференциальные уравнения математической физики, Физматгиз, 1962.
- [8] Кудрявцев Л.Д.*Курс математического анализа: В 3т.* -М.: Дрофа. 2003-2004.
- [9] Курош А.Г. Курс высшей математики. М.:Лань. Физматкнига. 2008.
- [10] Ладыженская О.А. Краевые задачи математической физики М.: Наука. 1988.
- [11] Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа.- М.: Наука. 1967.
- [12] Лионс Ж.-Л.*Некоторые методы решения нелинейных краевых задач.* Едиториал УРРС, 2002.
- [13] Люстерник Л.А. Соболев В.И. Краткий курс функционального анализа. – М.: Высшая школа, 1982.

- [14] Михайлов В.П. Лекции по уравнениям математической физики М.: Физматлит. 2001.
- [15] Михлин С.Г. *Курс математической физики.* Санкт-Петербург: Лань. 2002.
- [16] Никольский С.М. *Курс математического анализа. Т.2.* М.:Наука. 1991.
- [17] Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука. 1982.
- [18] Соболев С.Л. Некоторые применения функционального анализа в математической физике. Новосибирск: СО АН СССР. 1962.
- [19] Тихонов А.Н., Самарский А.А. *Уравнения математической физики*. М.: МГУ. 2004.
- [20] Треногин В.А. Функциональный анализ. М.: ФИЗМАТЛИТ 2007.
- [21] Фридман А. Уравнения с частными производными параболического muna. М.: Мир. 1968.