5	SI .	R	30	I1	P	20	I2	P	3	I3	P	7	I4	а	2	IS	P	95
		S	120		Q	36		$\boldsymbol{\varrho}$	5		$\boldsymbol{\varrho}$	13		b	1		Q	329
		T	11		R	8		R	6		R	5		c	2		*R see the remark	6
		$oldsymbol{U}$	72		*S	5040		S	$\frac{-95 + 3\sqrt{1505}}{10}$		S	$\sqrt{5}$		*d	2		S	198

Group Events

SG	q	3	G1	а	2	G2	area	40	G3	а	1	G4	P	20	GS	*m see the remark	4
	k	1		b	3		*pairs	2550		<i>a</i> + <i>b</i> + <i>c</i>	1		$\frac{n}{m}$	$\frac{2}{3}$		v	6
	w	25		c	2		x	60		y-x	$\frac{1}{2}$		r	3		α	3
	p	$\frac{3}{2}$		x	3		P	-1		$\frac{P_1}{P_2}$	7		*BGHI see the remark	6	·	F	208

Sample Individual Event (2009 Final Individual Event 1)

S1.1 Let a, b, c and d be the distinct roots of the equation
$$x^4 - 15x^2 + 56 = 0$$
.

If
$$R = a^2 + b^2 + c^2 + d^2$$
, find the value of *R*.

$$x^4 - 15x^2 + 56 = 0 \Rightarrow (x^2 - 7)(x^2 - 8) = 0$$

$$a = \sqrt{7}$$
, $b = -\sqrt{7}$, $c = \sqrt{8}$, $d = -\sqrt{8}$
 $R = a^2 + b^2 + c^2 + d^2 = 7 + 7 + 8 + 8 = 30$

$$R = a^2 + b^2 + c^2 + d^2 = 7 + 7 + 8 + 8 = 30$$

S1.2 In Figure 1, AD and BE are straight lines with AB = AC and AB // ED.

If
$$\angle ABC = R^{\circ}$$
 and $\angle ADE = S^{\circ}$, find the value of *S*.

$$\angle ABC = 30^{\circ} = \angle ACB$$
 (base \angle isos. \triangle)

$$\angle BAC = 120^{\circ}$$
 (\angle s sum of Δ)

$$\angle ADE = 120^{\circ}$$
 (alt. $\angle s AB // ED$)

$$S = 120$$

S1.3 Let
$$F = 1 + 2 + 2^2 + 2^3 + ... + 2^S$$
 and $T = \sqrt{\frac{\log(1+F)}{\log 2}}$, find the value of T .

$$F = 1 + 2 + 2^2 + 2^3 + \dots + 2^{120} = \frac{2^{121} - 1}{2 - 1} = 2^{121} - 1$$

$$T = \sqrt{\frac{\log(1+F)}{\log 2}} = \sqrt{\frac{\log 2^{121}}{\log 2}} = 11$$

S1.4 Let
$$f(x)$$
 be a function such that $f(n) = (n-1)f(n-1)$ and $f(n) \neq 0$ hold for all integers $n \geq 6$.

If
$$U = \frac{f(T)}{(T-1)f(T-3)}$$
, find the value of U .

$$f(n) = (n-1)f(n-1) = (n-1)(n-2)f(n-2) = \cdots$$

$$U = \frac{f(11)}{(11-1)f(11-3)} = \frac{10 \times 9 \times 8 \times f(8)}{10 \times f(8)} = 8 \times 9 = 72$$

I1.1 If the average of a, b and c is 12, and the average of 2a + 1, 2b + 2, 2c + 3 and 2 is P, find the value of P.

$$a+b+c=36.....(1)$$

$$P = \frac{2a+1+2b+2+2c+3+2}{4} = \frac{2(a+b+c)+8}{4} = \frac{2\times36+8}{4} = 20$$

I1.2 Let $20112011 = aP^5 + bP^4 + cP^3 + dP^2 + eP + f$, where a, b, c, d, e and f are integers and $0 \le a$, b, c, d, e, f < P. If Q = a + b + c + d + e + f, find the value of Q.

$$a = 6, b = 5, c = 14, d = 0, e = 0, f = 11; Q = 6 + 5 + 14 + 0 + 0 + 11 = 36$$

I1.3 If *R* is the units digit of the value of
$$8^Q + 7^{10Q} + 6^{100Q} + 5^{1000Q}$$
, find the value of *R*. $8^{36} \equiv 6 \pmod{10}$, $7^{360} \equiv 1 \pmod{10}$, $6^{360} \equiv 6 \pmod{10}$, $5^{36000} \equiv 5 \pmod{10}$ $8^{36} + 7^{360} + 6^{3600} + 5^{36000} \equiv 6 + 1 + 6 + 5 \equiv 8 \pmod{10}$ $R = 8$

I1.4 If S is the number of ways to arrange R persons in a circle, find the value of S.

Reference: 1998 FI5.3, 2000 FG4.4

First arrange the 8 persons in a row. Number of permutations = $P_8^8 = 8!$

Suppose the first and the last in the row are A and H respectively.

Now join the first and the last persons to form a ring.

A can be in any position of the ring. Each pattern is repeated 8 times.

$$\therefore$$
 Number of permutations = $\frac{8!}{8}$ = 5040

Remark: the original version was ... "arrange R people" ...

Note that the word "people" is an uncountable noun, whereas the word "persons" is a countable noun.

I2.1 If the solution of the system of equations $\begin{cases} x+y=P \\ 3x+5y=13 \end{cases}$ are positive integers,

find the value of P.

$$5(1) - (2)$$
: $2x = 5P - 13 \Rightarrow x = \frac{5P - 13}{2}$

(2) – 3(1):
$$2y = 13 – 3P \Rightarrow y = \frac{13 – 3P}{2}$$

 \therefore x and y are positive integers $\therefore \frac{5P-13}{2} > 0$ and $\frac{13-3P}{2} > 0$ and P is odd

$$\frac{13}{5} < P < \frac{13}{3}$$
 and P is odd $\Rightarrow P = 3$

12.2 If x + y = P, $x^2 + y^2 = Q$ and $x^3 + y^3 = P^2$, find the value of Q.

Reference: 2002 FG1.2

$$x + y = 3, x^{2} + y^{2} = Q \text{ and } x^{3} + y^{3} = 9$$

$$(x + y)^{2} = 3^{2} \Rightarrow x^{2} + y^{2} + 2xy = 9 \Rightarrow Q + 2xy = 9 \dots (1)$$

$$(x + y)(x^{2} + y^{2} - xy) = 9 \Rightarrow 3(Q - xy) = 9 \Rightarrow Q - xy = 3 \dots (2)$$

$$(1) + 2(2): 3Q = 15 \Rightarrow Q = 5$$

12.3 If a and b are distinct prime numbers and $a^2 - aQ + R = 0$ and $b^2 - bQ + R = 0$, find the value of R.

$$a^2 - 5a + R = 0$$
 and $b^2 - 5b + R = 0$

a, b are the (prime numbers) roots of
$$x^2 - 5x + R = 0$$

$$a + b = 5$$
 (1), $ab = R$ (2)

$$a = 2$$
, $b = 3 \Rightarrow R = 6$

12.4 If S > 0 and $\frac{1}{S(S-1)} + \frac{1}{(S+1)S} + \dots + \frac{1}{(S+20)(S+19)} = 1 - \frac{1}{R}$, find the value of S.

$$\left(\frac{1}{S-1} - \frac{1}{S}\right) + \left(\frac{1}{S} - \frac{1}{S+1}\right) + \dots + \left(\frac{1}{S+19} - \frac{1}{S+20}\right) = \frac{5}{6}$$

$$\frac{1}{S-1} - \frac{1}{S+20} = \frac{5}{6}$$

$$\frac{21}{(S-1)(S+20)} = \frac{5}{6}$$

$$5(S^2 + 19S - 20) = 126$$

$$5S^2 + 95S - 226 = 0$$

$$S = \frac{-95 + \sqrt{13545}}{10}$$

$$=\frac{-95+3\sqrt{1505}}{10}$$

I3.1 If P is a prime number and the roots of the equation $x^2 + 2(P+1)x + P^2 - P - 14 = 0$ are integers, find the least value of P.

Reference: 2000 FI5.2, 2001 FI2.1, 2010 FI2.2, 2013 HG1

$$\Delta = 4(P+1)^2 - 4(P^2 - P - 14) = m^2$$

$$\left(\frac{m}{2}\right)^2 = P^2 + 2P + 1 - P^2 + P + 14 = 3P + 15$$

The possible square numbers are 16, 25, 36, ...

$$3P + 15 = 16$$
 (no solution); $3P + 15 = 25$ (not an integer); $3P + 15 = 36 \Rightarrow P = 7$
The least possible $P = 7$

I3.2 Given that $x^2 + ax + b$ is a common factor of $2x^3 + 5x^2 + 24x + 11$ and $x^3 + Px - 22$. If Q = a + b, find the value of Q.

Reference 1992 HI5, 1993 FI5.2, 2001 FI1.2

Let
$$f(x) = 2x^3 + 5x^2 + 24x + 11$$
; $g(x) = x^3 + 7x - 22$
 $g(2) = 8 + 14 - 22 = 0 \Rightarrow x - 2$ is a factor
By division $g(x) = (x - 2)(x^2 + 2x + 11)$; $f(x) = (2x + 1)(x^2 + 2x + 11)$
 $a = 2, b = 11$; $Q = a + b = 13$

Method 2

Let
$$f(x) = 2x^3 + 5x^2 + 24x + 11 = (x^2 + ax + b)(cx + d)$$

 $g(x) = x^3 + 7x - 22 = (x^2 + ax + b)(px + q)$
 $f(x) - 2g(x) = 2x^3 + 5x^2 + 24x + 11 - 2(x^3 + 7x - 22) \equiv (x^2 + ax + b)[(c - 2p)x + d - 2q]$
 $5x^2 + 10x + 55 \equiv (x^2 + ax + b)[(c - 2p)x + d - 2q]$

By comparing coefficients of x^3 and x^2 on both sides:

$$c = 2p$$
 and $d - 2q = 5$
 $5x^2 + 10x + 55 \equiv 5(x^2 + ax + b)$
 $a = 2, b = 11$
 $Q = a + b = 13$

I3.3 If R is a positive integer and $R^3 + 4R^2 + (Q - 93)R + 14Q + 10$ is a prime number, find the value of R.

(Reference: 2004 FI4.2)

Let
$$f(R) = R^3 + 4R^2 - 80R + 192$$

 $f(4) = 64 + 64 - 320 + 192 = 0 \Rightarrow x - 4$ is a factor
By division, $f(R) = (R - 4)(R^2 + 8R - 48) = (R - 4)^2(R + 12)$
 $\therefore f(R)$ is a prime number

$$\therefore R - 4 = 1$$

$$\Rightarrow R = 5 \text{ and } R + 12 = 17, \text{ which is a prime.}$$

13.4 In Figure 1, AP, AB, PB, PD, AC and BC are line segments and D is a point on AB. If the length of AB is R times that of AD,

$$\angle ADP = \angle ACB$$
 and $S = \frac{PB}{PD}$, find the value of S.

Consider $\triangle ADP$ and $\triangle ABP$.

$$\angle ADP = \angle ACB = \angle APB$$
 (given, \angle s in the same segment AB)

$$\angle DAP = \angle PAB$$
 (Common)

$$\angle APD = \angle ABP$$
 (\angle s sum of \Delta)

$$\therefore \Delta ADP \sim \Delta APB \qquad \text{(equiangular)}$$

Let
$$AD = k$$
, $AB = 5k$, $AP = y$

$$\frac{PB}{PD} = \frac{AB}{AP} = \frac{AP}{AD}$$
 (Ratio of sides, $\sim \Delta$'s)

$$\frac{PB}{PD} = \frac{5k}{y} = \frac{y}{k}$$

$$\therefore \left(\frac{y}{k}\right)^2 = 5 \Rightarrow \frac{y}{k} = \sqrt{5}$$

$$\frac{PB}{PD} = \sqrt{5}$$

I4.1 Consider the function $y = \sin x + \sqrt{3} \cos x$. Let a be the maximum value of y. Find the value of a.

$$y = \sin x + \sqrt{3} \cos x$$

$$= 2 \left(\sin x \cdot \frac{1}{2} + \cos x \cdot \frac{\sqrt{3}}{2} \right)$$

$$= 2 \left(\sin x \cdot \cos 60^\circ + \cos x \cdot \sin 60^\circ \right)$$

$$= 2 \sin(x + 60^\circ)$$

$$a = \text{maximum value of } y = 2$$

I4.2 Find the value of b if b and y satisfy |b-y| = b + y - a and |b+y| = b + a.

From the first equation:

$$(b-y=b+y-2 \text{ or } y-b=b+y-2) \text{ and } b+y-2 \ge 0$$

 $(y=1 \text{ or } b=1) \text{ and } b+y-2 \ge 0$
When $y=1 \Rightarrow b \ge 1 \cdots (3)$

When
$$b = 1 \Rightarrow y \ge 1 \cdot \cdots \cdot (4)$$

From the second equation:

$$(b+y=b+2 \text{ or } b+y=-b-2) \text{ and } b+2 \ge 0$$

 $(y=2 \text{ or } 2b+y=-2) \text{ and } b \ge -2$
When $y=2$ and $b \ge -2$ (5)

When
$$2b + y = -2$$
 and $b \ge -2 \Rightarrow (y \le 2 \text{ and } b \ge -2 \text{ and } 2b + y = -2) \cdots (6)$

(3) and (5):
$$y = 1$$
, $b \ge 1$ and $y = 2$ and $b \ge -2 \Rightarrow$ contradiction

(3) and (6):
$$y = 1$$
, $b \ge 1$ and $(y \le 2, b \ge -2, 2b + y = -2) \Rightarrow y = 1$ and $b = -1.5$ and $b \ge 1$!!!

(4) and (6):
$$(y \ge 1, b = 1)$$
 and $(y \le 2, b \ge -2, 2b + y = -2) \Rightarrow y = -4, b = 1 \text{ and } y \ge 1 !!!$

(4) and (5):
$$(b = 1, y \ge 1)$$
 and $(y = 2, b \ge -2) \Rightarrow b = 1$ and $y = 2$
 $\therefore b = 1$

14.3 Let x, y and z be positive integers. If $|x - y|^{2010} + |z - x|^{2011} = b$ and c = |x - y| + |y - z| + |z - x|, find the value of c.

Reference: 1996 FI2.3, 2005FI4.1, 2006 FI4.2, 2013 FI1.4, 2015 HG4, 2015 FI1.1

Clearly
$$|x - y|$$
 and $|z - x|$ are non-negative integers $|x - y|^{2010} + |z - x|^{2011} = 1$
 $\Rightarrow (|x - y| = 0 \text{ and } |z - x| = 1) \text{ or } (|x - y| = 1 \text{ and } |z - x| = 0)$
When $x = y$ and $|z - x| = 1$,
 $c = 0 + |y - z| + |z - x| = 2|z - x| = 2$
When $|x - y| = 1$ and $|z - x| = 0$,
 $c = 1 + |y - z| + 0 = 1 + |y - x| = 1 + 1 = 2$

I4.4 In Figure 1, let ODC be a triangle. Given that FH, AB, AC and BD are line segments such that AB intersects FH at G, AC, BD and FH intersect at E, GE = 1, EH = c and FH // OC. If d = EF, find the value of d.

 $\triangle AGE \sim \triangle ABC$ (equiangular)

Let
$$\frac{CE}{AE} = k$$
, $AE = x$, $AG = t$.

$$BC = k + 1$$
, $EC = kx$, $GB = kt$ (corr. sides, $\sim \Delta s$)

 $\Delta DEH \sim \Delta DBC$ (equiangular)

$$\frac{BC}{EH} = \frac{k+1}{2} = \frac{DB}{DE}$$
 (corr. sides, ~\Deltas)

Let
$$DE = 2y \Rightarrow DB = (k+1)y$$

$$EB = DB - DE = (k-1)y$$

 $\triangle AFG \sim \triangle AOB$ (equiangular)

$$FG = d - 1$$
, $\frac{OB}{FG} = \frac{AB}{AG}$ (corr. sides, $\sim \Delta s$)

$$OB = (d-1) \cdot \frac{(k+1)t}{t} = (d-1)(k+1)$$

 $\Delta DFE \sim \Delta DOB$ (equiangular)

$$\frac{FE}{OB} = \frac{DE}{DB}$$
 (corr. sides, $\sim \Delta s$)

$$\Rightarrow d = (d-1)(k+1) \cdot \frac{2y}{(k+1)y}$$

$$\Rightarrow d = 2$$

Equating the two equations

$$\frac{d-1}{1} = \frac{d}{2}$$
$$d = 2$$

Remark: There are some typing mistakes in the Chinese old version:

Individual Spare

IS.1 Let *P* be the number of triangles whose side lengths are integers less than or equal to 9. Find the value of *P*.

The sides must satisfy triangle inequality. i.e. a + b > c.

Possible order triples are $(1, 1, 1), (2, 2, 2), \dots, (9, 9, 9),$

$$(2, 2, 1), (2, 2, 3), (3, 3, 1), (3, 3, 2), (3, 3, 4), (3, 3, 5),$$

$$(4, 4, 1), (4, 4, 2), (4, 4, 3), (4, 4, 5), (4, 4, 6), (4, 4, 7),$$

$$(5, 5, 1), \ldots, (5, 5, 4), (5, 5, 6), (5, 5, 7), (5, 5, 8), (5, 5, 9),$$

$$(6, 6, 1), \dots, (6, 6, 9)$$
 (except $(6, 6, 6)$)

$$(7, 7, 1), \dots, (7, 7, 9)$$
 (except $(7, 7, 7)$)

$$(8, 8, 1), \dots, (8, 8, 9)$$
 (except $(8, 8, 8)$)

$$(9, 9, 1), \dots, (9, 9, 8)$$

$$(2, 3, 4), (2, 4, 5), (2, 5, 6), (2, 6, 7), (2, 7, 8), (2, 8, 9),$$

$$(3, 4, 5), (3, 4, 6), (3, 5, 6), (3, 5, 7), (3, 6, 7), (3, 6, 8), (3, 7, 8), (3, 7, 9), (3, 8, 9),$$

$$(4, 5, 6), (4, 5, 7), (4, 5, 8), (4, 6, 7), (4, 6, 8), (4, 6, 9), (4, 7, 8), (4, 7, 9), (4, 8, 9),$$

$$(5, 6, 7), (5, 6, 8), (5, 6, 9), (5, 7, 8), (5, 7, 9), (5, 8, 9), (6, 7, 8), (6, 7, 9), (6, 8, 9), (7, 8, 9).$$

Total number of triangles = $9 + 6 + 6 + 8 \times 5 + 6 + 9 + 9 + 6 + 4 = 95$

Method 2 First we find the number of order triples.

Case 1 All numbers are the same: $(1, 1, 1), \dots, (9, 9, 9)$.

Case 2 Two of them are the same, the third is different: $(1, 1, 2), \ldots, (9, 9, 1)$

There are
$$C_1^9 \times C_1^8 = 72$$
 possible triples.

Case 3 All numbers are different. There are $C_3^9 = 84$ possible triples.

$$\therefore$$
 Total 9 + 72 + 84 = **165** possible triples.

Next we find the number of triples which cannot form a triangle, i.e. $a + b \le c$.

Possible triples are $(1, 1, 2), \dots (1, 1, 9)$ (8 triples)

$$(1, 2, 3), \dots, (1, 2, 9)$$
 (7 triples)

$$(1, 3, 4), \dots, (1, 3, 9)$$
 (6 triples)

$$(1, 4, 5), \dots, (1, 4, 9)$$
 (5 triples)

$$(1, 5, 6), \dots, (1, 5, 9)$$
 (4 triples)

$$(1, 6, 7), (1, 6, 8), (1, 6, 9), (1, 7, 8), (1, 7, 9), (1, 8, 9),$$

$$(2, 2, 4), \ldots, (2, 2, 9)$$
 (6 triples)

$$(2, 3, 5), \ldots, (2, 3, 9)$$
 (5 triples)

$$(2, 4, 6), \ldots, (2, 4, 9)$$
 (4 triples)

$$(2, 5, 7), (2, 5, 8), (2, 5, 9), (2, 6, 8), (2, 6, 9), (2, 7, 9),$$

$$(3, 3, 6), \dots, (3, 3, 9)$$
 (4 triples)

$$(3, 4, 7), (3, 4, 8), (3, 4, 9), (3, 5, 8), (3, 5, 9), (3, 6, 9), (4, 4, 8), (4, 4, 9), (4, 5, 9).$$

Total number of triples which cannot form a triangle

$$= (8+7+...+1)+(6+5+...+1)+(4+3+2+1)+(2+1)=36+21+10+3=70$$

 \therefore Number of triangles = 165 - 70 = 95

- IS.2 Let $Q = \log_{128} 2^3 + \log_{128} 2^5 + \log_{128} 2^7 + ... + \log_{128} 2^P$. Find the value of Q. $Q = 3 \log_{128} 2 + 5 \log_{128} 2 + 7 \log_{128} 2 + ... + 95 \log_{128} 2$ $= (3 + 5 + ... + 95) \log_{128} 2 = \frac{3 + 95}{2} \times 47 \times \log_{128} 2 = \log_{128} 2^{2303} = \log_{128} (2^7)^{329} = 329$
- **IS.3** Consider the line 12x 4y + (Q 305) = 0. If the area of the triangle formed by the x-axis, the y-axis and this line is R square units, what is the value of R?

$$12x - 4y + 24 = 0 \implies \text{Height} = 6, \text{ base} = 2; \text{ area } R = \frac{1}{2} \cdot 6 \cdot 2 = 6$$

Remark: the original question is ... 12x - 4y + Q = 0....

The answer is very difficult to carry forward to next question.

IS.4 If
$$x + \frac{1}{x} = R$$
 and $x^3 + \frac{1}{x^3} = S$, find the value of S.

$$S = \left(x + \frac{1}{x}\right)\left(x^2 - 1 + \frac{1}{x^2}\right)$$

$$= R \left[\left(x + \frac{1}{x} \right)^2 - 3 \right]$$

$$= R^3 - 3R$$

$$=216-3(6)$$

$$= 198$$

Sample Group Event (2009 Final Group Event 1)

SG.1 Given some triangles with side lengths a cm, 2 cm and b cm, where a and b are integers and $a \le 2 \le b$. If there are q non-congruent classes of triangles satisfying the above conditions, find the value of q.

When a = 1, possible b = 2

When a = 2, possible b = 2 or 3

$$\therefore q = 3$$

SG.2 Given that the equation $|x| - \frac{4}{x} = \frac{3|x|}{x}$ has k distinct real root(s), find the value of k.

When
$$x > 0 : x^2 - 4 = 3x$$

$$\Rightarrow x^2 - 3x - 4 = 0$$

$$\Rightarrow$$
 $(x+1)(x-4)=0$

$$\Rightarrow x = 4$$

When
$$x < 0 : -x^2 - 4 = -3x$$

$$\Rightarrow x^2 - 3x + 4 = 0$$

$$\Delta = 9 - 16 < 0$$

 \Rightarrow no real roots.

k = 1 (There is only one real root.)

SG.3 Given that x and y are non-zero real numbers satisfying the equations $\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}} = \frac{7}{12}$ and $x - \frac{1}{2}$

y = 7. If w = x + y, find the value of w.

The first equation is equivalent to $\frac{x-y}{\sqrt{xy}} = \frac{7}{12} \Rightarrow \sqrt{xy} = 12 \Rightarrow xy = 144$

Sub.
$$y = \frac{144}{x}$$
 into $x - y = 7$: $x - \frac{144}{x} = 7 \Rightarrow x^2 - 7x - 144 = 0 \Rightarrow (x + 9)(x - 16) = 0$

x = -9 or 16; when x = -9, y = -16 (rejected : \sqrt{x} is undefined); when x = 16; y = 9w = 16 + 9 = 25

Method 2 The first equation is equivalent to $\frac{x-y}{\sqrt{xy}} = \frac{7}{12} \Rightarrow \sqrt{xy} = 12 \Rightarrow xy = 144 \dots$ (1)

$$\therefore x - y = 7 \text{ and } x + y = w$$

$$\therefore x = \frac{w+7}{2}, y = \frac{w-7}{2}$$

Sub. these equations into (1): $\left(\frac{w+7}{2}\right)\left(\frac{w-7}{2}\right) = 144$

$$w^2 - 49 = 576 \Rightarrow w = \pm 25$$

: From the given equation $\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}} = \frac{7}{12}$, we know that both x > 0 and y > 0

$$\therefore w = x + y = 25$$
 only

SG.4 Given that x and y are real numbers and $\left|x - \frac{1}{2}\right| + \sqrt{y^2 - 1} = 0$.

Let
$$p = |x| + |y|$$
, find the value of p .

Reference: 2006 FI4.2 ...
$$y^2 + 4y + 4 + \sqrt{x + y + k} = 0$$
. If $r = |xy|$, ...

Both
$$\left| x - \frac{1}{2} \right|$$
 and $\sqrt{y^2 - 1}$ are non-negative numbers.

The sum of two non-negative numbers = 0 means each of them is zero

$$x = \frac{1}{2}, y = \pm 1$$

$$p = \frac{1}{2} + 1 = \frac{3}{2}$$

G1.1 In Figure 1, BC is the diameter of the circle. A is a point on the circle, AB and AC are line segments and AD is a line segment perpendicular to BC. If BD = 1, DC = 4 and AD = a, find the value of a.

$$\Delta ABD \sim \Delta CAD$$
 (equiangular)
 $\frac{a}{1} = \frac{4}{a}$ (ratio of sides $\sim \Delta$'s)
 $a^2 = 1 \times 4$
 $a = 2$

- **G1.2** If $b = 1 \frac{1}{1 \frac$ $1 - \frac{1}{-\frac{1}{2}} = 3; \ 1 - \frac{1}{1 - \frac{1}{-\frac{1}{2}}} = \frac{2}{3}; \ 1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{-1}}} = -\frac{1}{2}; \ b = 1 + 2 = 3$
- **G1.3** If x, y and z are real numbers, $xyz \ne 0$, 2xy = 3yz = 5xz and $c = \frac{x + 3y 3z}{x + 3y 6z}$, find the value of c.

$$\frac{2xy}{xyz} = \frac{3yz}{xyz} = \frac{5xz}{xyz} \Rightarrow \frac{2}{z} = \frac{3}{x} = \frac{5}{y} \Rightarrow x : y : z = 3 : 5 : 2$$
Let $x = 3k$, $y = 5k$, $z = 2k$

$$c = \frac{x + 3y - 3z}{x + 3y - 6z} = \frac{3k + 15k - 6k}{3k + 15k - 12k} = 2$$

G1.4 If x is an integer satisfying $\log_{\frac{1}{2}}(2x+1) < \log_{\frac{1}{2}}(x-1)$, find the maximum value of x.

$$\frac{\log(2x+1)}{\log\frac{1}{4}} < \frac{\log(x-1)}{\log\frac{1}{2}}$$

$$\frac{\log(2x+1)}{-2\log 2} < \frac{\log(x-1)}{-\log 2}$$

$$\log(2x+1) > 2\log(x-1)$$

$$2x+1 > (x-1)^2$$

$$x^2 - 4x < 0$$

$$0 < x < 4$$

The maximum integral value of x is 3.

G2.1 In Figure 1, two rectangles with widths 4 and 5 units cross each other at 30°. Find the area of the overlapped region.

overlapped region.
Let
$$AB = x$$
, $BC = y$, $\angle ABC = 30^{\circ}$
 $x \sin 30^{\circ} = 5 \Rightarrow x = 10$
 $y \sin 30^{\circ} = 4 \Rightarrow y = 8$
Area = $xy \sin 30^{\circ} = 10 \times 8 \times 0.5 = 40$

G2.2 From 1 to 100, take a pair of integers (repetitions allowed) so that their sum is greater than 100. How many ways are there to pick such pairs?

Reference: 2002 FG3.3

Total number of pairs =
$$2 + 4 + ... + 100 = \frac{2 + 100}{2} \times 50 = 2550$$

Remark: the original version was ..."take a pair of numbers"...從1到100選取兩數... There are infinitely many ways if the numbers are not confined to be integers.

G2.3 In Figure 2, there is a circle with centre O and radius r. Triangle ACD intersects the circle at B, C, D and E. Line segment AE has the same length as the radius. If $\angle DAC = 20^{\circ}$ and $\angle DOC$ = x° , find the value of x.

$$\angle AOE = 20^{\circ}$$
 (Given $AE = OE$, base \angle s isos. \triangle)

$$\angle OED = 20^{\circ} + 20^{\circ} = 40^{\circ} \text{ (ext. } \angle \text{ of } \triangle AOE)$$

$$\angle ODE = \angle OED = 40^{\circ}$$
 (base \angle s isos. Δ)

$$x = 20 + 40 = 60$$
 (ext. \angle of $\triangle AOD$)

G2.4 Given that $\frac{1}{x} + \frac{2}{y} + \frac{3}{z} = 0$ and $\frac{1}{x} - \frac{6}{y} - \frac{5}{z} = 0$. If $P = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, find the value of P.

(1) - (2):
$$\frac{8}{v} + \frac{8}{z} = 0 \Rightarrow y = -z$$

$$3(1) + (2)$$
: $\frac{4}{x} + \frac{4}{z} = 0 \Rightarrow x = -z$

$$P = \frac{x}{y} + \frac{y}{z} + \frac{z}{x} = \frac{-z}{-z} + \frac{-z}{z} + \frac{z}{-z} = -1$$

- **G3.1** If a is a positive integer and $a^2 + 100a$ is a prime number, find the maximum value of a. a(a + 100) is a prime number. a = 1, $a^2 + 100a = 101$ which is a prime number
- **G3.2** Let a, b and c be real numbers. If 1 is a root of $x^2 + ax + 2 = 0$ and a and b be roots of $x^2 + 5x + c = 0$, find the value of a + b + c. $1 + a + 2 = 0 \implies a = -3$ $-3 + b = -5 \Rightarrow b = -2$ c = -3b = 6a + b + c = 1
- **G3.3** Let x and y be positive real numbers with x < y. If $\sqrt{x} + \sqrt{y} = 1$, $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{10}{3}$

and x < y, find the value of y - x.

$$(1)^2: x + y + 2\sqrt{xy} = 1$$

$$\sqrt{xy} = \frac{1 - \left(x + y\right)}{2} \dots (3)$$

(2):
$$\frac{x+y}{\sqrt{xy}} = \frac{10}{3} \dots (4)$$

Sub. (3) into (4):
$$\frac{x+y}{\frac{1-(x+y)}{2}} = \frac{10}{3}$$

$$6(x+y) = 10(1-x-y)$$

$$16(x+y) = 10$$

$$x + y = \frac{5}{8}$$

$$\sqrt{xy} = \frac{1 - (x + y)}{2} = \frac{1}{2} \left(1 - \frac{5}{8} \right) = \frac{3}{16}$$

$$xy = \frac{9}{256}$$

$$(y-x)^2 = (x+y)^2 - 4xy = \frac{25}{64} - \frac{9}{64} = \frac{1}{4}$$

$$y - x = \frac{1}{2}$$

Method 2

Let
$$z = \sqrt{\frac{x}{y}}$$
, then $\frac{1}{z} = \sqrt{\frac{y}{x}}$

(2) becomes
$$z + \frac{1}{z} = \frac{10}{3}$$

 $3z^2 - 10z + 3 = 0$
 $(3z - 1)(z - 3) = 0$

$$3z^2 - 10z + 3 = 0$$

$$(3z-1)(z-3)=0$$

$$z = \frac{1}{3}$$
 or 3

$$\therefore x < y$$

$$\therefore z = \sqrt{\frac{x}{y}} < 1 \Rightarrow z = \frac{1}{3} \text{ only}$$

$$\frac{\sqrt{y} - \sqrt{x}}{\sqrt{y} + \sqrt{x}} = \frac{1 - \sqrt{\frac{x}{y}}}{1 + \sqrt{\frac{x}{y}}} = \frac{1 - \frac{1}{3}}{1 + \frac{1}{3}} = \frac{1}{2}$$

$$\therefore \sqrt{x} + \sqrt{y} = 1 \therefore \sqrt{y} - \sqrt{x} = \frac{1}{2}$$
$$y - x = (\sqrt{y} - \sqrt{x})(\sqrt{y} + \sqrt{x}) = \frac{1}{2}$$

$$y-x = (\sqrt{y} - \sqrt{x})(\sqrt{y} + \sqrt{x}) = \frac{1}{2}$$

G3.4 Spilt the numbers 1, 2, ..., 10 into two groups and let P_1 be the product of the first group and

 P_2 the product of the second group. If P_1 is a multiple of P_2 , find the minimum value of $\frac{P_1}{P_2}$.

 $P_1 = kP_2$, where k is a positive integer.

 \therefore All prime factors of P_2 can divide P_1 .

 $\frac{10}{5}$ = 2, 10 must be a factor of the numerator and 5 must a factor of the denominator

7 is a prime which must be a factor of the numerator.

Among the even numbers 2, 4, 6, 8, 10, there are 8 factors of 2.

4 factors of 2 should be put in the numerator and 4 factors should be put in the denominator.

Among the number 3, 6, 9, there are 4 factors of 3.

2 factors of 3 should be put in the numerator and 2 factors should be put in the denominator.

Minimum value of
$$\frac{P_1}{P_2} = \frac{8 \times 7 \times 9 \times 10}{1 \times 2 \times 3 \times 4 \times 5 \times 6} = 7$$

G4.1 If
$$P = 2\sqrt[4]{2007 \cdot 2009 \cdot 2011 \cdot 2013 + 10 \cdot 2010 \cdot 2010 - 9} - 4000$$
, find the value of P .
Let $x = 2010, 2007 = x - 3, 2009 = x - 1, 2011 = x + 1, 2013 = x + 3$

$$P = 2\sqrt[4]{(x - 3) \cdot (x - 1) \cdot (x + 1) \cdot (x + 3) + 10x^2 - 9} - 4000 = 2\sqrt[4]{(x^2 - 9) \cdot (x^2 - 1) + 10x^2 - 9} - 4000$$

$$= 2\sqrt[4]{x^4 - 10x^2 + 9 + 10x^2 - 9} - 4000 = 2x - 4000 = 20$$

G4.2 If
$$9x^2 + nx + 1$$
 and $4y^2 + 12y + m$ are squares with $n > 0$, find the value of $\frac{n}{m}$.
 $9x^2 + nx + 1 = (3x + 1)^2 \Rightarrow n = 6$
 $4y^2 + 12y + m = (2y + 3)^2 \Rightarrow m = 9$
 $\frac{n}{m} = \frac{2}{3}$

G4.3 Let
$$n$$
 and $\frac{47}{5} \left(\frac{4}{47} + \frac{n}{141} \right)$ be positive integers. If r is the remainder of n divided by 15, find the value of r .

$$\frac{47}{5} \left(\frac{4}{47} + \frac{n}{141} \right) = \frac{4}{5} + \frac{n}{15} = \frac{n+12}{15}, \text{ which is an integer}$$

$$n+12=15k, \text{ where } k \text{ is a positive integer}$$

$$r=3$$

G4.4 In figure 1, ABCD is a rectangle, and E and F are points on D AD and DC, respectively. Also, G is the intersection of AF and BE, H is the intersection of AF and CE, and I is the intersection of BF and CE. If the areas of AGE, DEHF and CIF are 2, 3 and 1, respectively, find the area of the grey region BGHI. (Reference: 2014 FI1.1, 2019 FG3.2) Let the area of EGH = x, area of BCI = z, area of BGHI = w

Area of
$$BCE = \frac{1}{2}$$
 (area of $ABCD$) = area ADF + area BCF
 $x + w + z = 3 + x + 2 + 1 + z$
 $\Rightarrow w = 6$
 \therefore Area of the grey region $BGHI = 6$

Remark: there is a spelling mistake in the English version. old version: ... gray region ...

Group Spare

GS.1 Let α and β be the real roots of $y^2 - 6y + 5 = 0$. Let m be the minimum value of $|x - \alpha| + |x - \beta|$ over all real values of x. Find the value of m.

Reference: 1994 HG1, 2001 HG9, 2004 FG4.2, 2008 HI8, 2008 FI1.3, 2010 HG6, 2012 FG2.3

$$\alpha = 1$$
, $\beta = 5$

If
$$x < 1$$
, $|x - \alpha| + |x - \beta| = 1 - x + 5 - x = 6 - 2x > 4$

If
$$1 \le x \le 5$$
, $|x - \alpha| + |x - \beta| = x - 1 + 5 - x = 4$

If
$$x > 5$$
, $|x - \alpha| + |x - \beta| = x - 1 + x - 5 = 2x - 6 > 4$

$$m = \min$$
 of $|x - \alpha| + |x - \beta| = 4$

Method 2 Using the triangle inequality: $|a| + |b| \ge |a + b|$

$$|x - \alpha| + |x - \beta| \ge |x - 1 + 5 - x| = 4 \Longrightarrow m = 4$$

Remark: there is a typing mistake in the English version. ... minimum value a of ...

GS.2 Let α , β , γ be real numbers satisfying $\alpha + \beta + \gamma = 2$ and $\alpha\beta\gamma = 4$. Let ν be the minimum value of $|\alpha| + |\beta| + |\gamma|$. Find the value of v.

If at least one of α , β , $\gamma = 0$, then $\alpha\beta\gamma \neq 4 \Rightarrow \alpha$, β , $\gamma \neq 0$

If α , β , $\gamma > 0$, then

$$\frac{\alpha+\beta+\gamma}{3} \ge \sqrt[3]{\alpha\beta\gamma} \quad (A.M. \ge G.M.)$$

$$\frac{2}{3} \ge \sqrt[3]{4}$$

 $2^3 \ge 27 \times 4 = 108$, which is a contradiction

If $\beta < 0$, in order that $\alpha\beta\gamma = 4 > 0$, WLOG let $\gamma < 0$, $\alpha > 0$

$$\alpha = 2 - \beta - \gamma > 2$$

$$|\alpha| + |\beta| + |\gamma| = \alpha - (\beta + \gamma) = 2 + 2(-\beta - \gamma) \ge 2 + 4\sqrt{(-\beta)(-\gamma)}$$
, equality holds when $\beta = \gamma$

$$4 = (2 - 2\beta)\beta^2$$

$$\beta^3 - \beta^2 + 2 = 0$$

$$(\beta + 1)(\beta^2 - 2\beta + 2) = 0$$

 $\beta = -1$ (For the 2nd equation, $\Delta = -4 < 0$, no real solution)

$$\gamma = -1$$
, $\alpha = 4$

$$|\alpha| + |\beta| + |\gamma| = 1 + 1 + 4 = 6$$

$$v = \min$$
 of $|\alpha| + |\beta| + |\gamma| = 6$

GS.3 Let y = |x + 1| - 2|x| + |x - 2| and $-1 \le x \le 2$. Let α be the maximum value of y. Find the value of α.

$$y = x + 1 - 2|x| + 2 - x = 3 - 2|x|$$

$$0 \le |x| \le 2 \implies 3 \ge 3 - 2|x| \ge -1$$

$$\alpha = 3$$

GS.4 Let F be the number of integral solutions of $x^2 + y^2 + z^2 + w^2 = 3(x + y + z + w)$.

Find the value of *F*.

(x, y, z, w) = (0, 0, 0, 0) is a trivial solution.

$$x^{2} + y^{2} + z^{2} + w^{2} - 3(x + y + z + w) = 0$$

$$\left(x^2 - 3x + \frac{9}{4}\right) + \left(y^2 - 3y + \frac{9}{4}\right) + \left(z^2 - 3z + \frac{9}{4}\right) + \left(w^2 - 3w + \frac{9}{4}\right) = 9$$

$$\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{3}{2}\right)^2 + \left(z - \frac{3}{2}\right)^2 + \left(w - \frac{3}{2}\right)^2 = 9$$

$$(2x-3)^2 + (2y-3)^2 + (2z-3)^2 + (2w-3)^2 = 36$$

Let a = 2x - 3, b = 2y - 3, c = 2z - 3, d = 2w - 3, the equation becomes $a^2 + b^2 + c^2 + d^2 = 36$

For integral solutions of (x, y, z, w), (a, d, c, d) must be odd integers.

In addition, the permutation of (a, b, c, d) is also a solution. (e.g. (b, d, c, a) is a solution)

$$\therefore$$
 a, b, c, d are odd integers and $a^2 + b^2 + c^2 + d^2 \ge 0$

If one of the four unknowns, say, a > 6, then L.H.S. > 36, so L.H.S. \neq R.H.S.

$$\therefore a, b, c, d = \pm 1, \pm 3, \pm 5$$

When
$$a = \pm 5$$
, then $25 + b^2 + c^2 + d^2 = 36 \Rightarrow b^2 + c^2 + d^2 = 11$

The only integral solution to this equation is $b = \pm 3$, $c = \pm 1 = d$ or its permutations.

When the largest (in magnitude) of the 4 unknowns, say, a is ± 3 , then $9 + b^2 + c^2 + d^2 = 36$ \Rightarrow $b^2 + c^2 + d^2 = 27$, the only solution is $b = \pm 3$, $c = \pm 3$, $d = \pm 3$ or its permutations.

 \therefore The integral solutions are (a, b, c, d) = (5, 3, 1, 1) and its permutations ... $(1) \times P_2^4 = 12$ $(3, 3, 3, 3) \dots (2) \times 1$

If (a, b, c, d) is a solution, then $(\pm a, \pm b, \pm c, \pm d)$ are also solutions.

There are 16 solutions with different signs for $(\pm a, \pm b, \pm c, \pm d)$.

$$F = (12 + 1) \times 16$$

= 208