# Dynamic Programming I

Week 9: In-Class

Yong-Hyuk Moon @ SAIL

The Department of Computer Engineering Sungshin Women's University

# **Smart Attendance:**

\*\*\*\*



### **Administrative**

#### Midterm Exam

- Score Distribution
  - → We appreciate your efforts on the midterm exam.
  - The score distribution and overall statistics will be posted soon on LMS to help you gauge your standing in the course.

### **Quick Recap & Warm-Up Questions**

### Pre-Class Recap

- Explaining the strategic difference between D&C and DP
- Understanding the DP framework using the Fibonacci sequence problem
- Applying memoization and tabulation to save solutions for subproblems

Can you explain the most fundamental difference in the problem-solving approach between Divide and Conquer (D&C) and Dynamic Programming (DP)?

Storing the solutions to subproblems can reduce time complexity — so why do we need both memoization and tabulation as separate techniques?

Can you distinguish between top-down and bottom-up strategies, and explain how they relate to recursive and iterative implementations?

## **Today's Topics**

### What's Coming Up in Class?

- Examining the role of the <u>call stack in space complexity</u>
- Identifying the <u>characteristics of problems</u> where dynamic programming can be applied
- Understanding and applying <u>memoization and tabulation</u> techniques
- Developing the skill to derive <u>recurrence relations</u> for given problems
  - --- Computing Binomial Coefficients

# Call Stack and Space Complexity

| Aspect                             | D&C                    | DP DP                                |                                            | D&C                                        | D&C                                            |
|------------------------------------|------------------------|--------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------|
| Strategy                           | Top-Down,<br>Recursive | Top-Down, Recursive with Memoization | Bottom-Up,<br>Iterative with<br>Tabulation | Top-Down, Recursive, Matrix Exponentiation | Bottom-Up, Iterative,<br>Matrix Exponentiation |
| Time Complexity                    | $O(2^n)$               | O(n)                                 | O(n)                                       | $O(\log n)$                                | $O(\log n)$                                    |
| Space Complexity $O(n)$ call stack |                        | O(n) call stack + mem list           | O(n) no call stack + table                 | O(logn) call stack                         | O(1) no call stack + constant storage          |

### Space Complexity: Call Stack

#### Call Stack: Precise Space Analysis

- A system stack structure that stores information about function calls during program execution.
  - 1) When a function is called, information is saved in a stack frame.
  - 2 When the function finishes, the corresponding stack frame is popped and removed from the stack.
  - 3 The system manages this process using the "Call Stack."

```
1 def fib(n):
2     if n < 2:
3         return n
4     return fib(n - 1) + fib(n - 2)</pre>
```

#### • Example: Calling fib(5)

- In this process, fib(5) waits for fib(4) to complete, fib(4) waits for fib(3), and so on.
- Function calls accumulate on the stack as they are called but not yet completed.
- At its maximum depth, the stack grows like this:  $fib(n) \rightarrow fib(n-1) \rightarrow ... \rightarrow fib(1)$ 
  - --- This shows the stack depth.

### **Space Complexity:** Recursive Approach

- Why is the space complexity of a D&C recursive algorithm O(n)?
  - The depth of nested function calls determines the amount of call stack space used.
  - Refer to the table below.

| Component              | Description                                                    |  |  |
|------------------------|----------------------------------------------------------------|--|--|
| Number of Stack Frames | Up to <i>n</i> functions may exist simultaneously on the stack |  |  |
| Space per Frame        | Each frame occupies a constant amount of space                 |  |  |
| Total Space Usage      | $O(n)$ stack frames $\rightarrow O(n)$ space complexity        |  |  |



- Information stored in the stack frame:
  - --- return value, return address, previous frame pointer, parameters, and local variables

### **Space Complexity: Iterative Approach**

#### Why is the space complexity of iterative loops O(1)?

- Only a single function is executed, and only looping occurs.
- No additional stack frames are accumulated.
- Therefore, the space complexity is O(1).

#### Comparison

Additional topic: memoization vs. tabulation (covered today)

| Aspect              | D&C                    | DP                                   | DP                                         | DP                                        |
|---------------------|------------------------|--------------------------------------|--------------------------------------------|-------------------------------------------|
| Strategy            | Top-Down,<br>Recursive | Top-Down, Recursive with Memoization | Bottom-Up,<br>Iterative with<br>Tabulation | Bottom-Up, Iterative using Constant Space |
| Time<br>Complexity  | $O(2^n)$               | O(n)                                 | O(n)                                       | O(n)                                      |
| Space<br>Complexity | O(n) call stack        | O(n) call stack + mem list           | O(n) no call stack + table                 | 0(1) no call stack constant space         |

```
1 def fib(n):
2    a, b = 0, 1
3    for _ in range(2, n + 1):
4    a, b = b, a + b
5    return b
```

# **Applying DP in Practice**

### **Dynamic Programming Paradigm**

#### What Types of Problems Are Suitable for DP?

To apply dynamic programming, a problem must satisfy both of the following properties:

#### 1 Overlapping Subproblem

: The same subproblems appear multiple times.

- In the Fibonacci sequence, recursive calls form a tree where many subproblems repeat.
- In contrast, binary search does not have overlapping subproblems.

#### **2** Optimal Substructure

: An optimal solution to the whole problem can be derived from optimal solutions to its subproblems.

- If we know the optimal results for fib(4) and fib(5), we can compute the optimal result for fib(6).
- ---> Many problems exhibit this property including the shortest path problem, the knapsack problem, etc.
- What about the factorial problem?  $\rightarrow$  1, 2

## **Dynamic Programming Paradigm**

- Divide-and-Conquer and Dynamic Programming Are Closely Related
  - If a problem suitable for divide-and-conquer also satisfies the two DP properties above,
  - Then dynamic programming can be applied (using one of two methods)
    - --- i.e., memoization or tabulation



## **DP Strategies**

#### DP: Memoization vs. Tabulation

- Tabulation is generally faster because it avoids the <u>overhead of recursive calls</u>.
- It also allows the table to be built outside of the function, making it easier to modularize the code.
- However, if it's <u>hard to predict which subproblems will be solved</u> in advance, memoization is a better choice.

#### Implementation Differences

| Aspect         | Top-down (Recursive)                              | Bottom-up (Iterative)                                        |  |
|----------------|---------------------------------------------------|--------------------------------------------------------------|--|
| Approach       | Start from the original problem and break it down | Start from the smallest subproblems and build up             |  |
| Implementation | Recursive calls (used call stack)                 | Iterative loops (e.g., for, while to fill table)             |  |
| Storage Method | Memoization (store results when needed)           | Tabulation (fill the table incrementally from the base case) |  |
| Example        | Computing Binomial Coefficients                   | Fibonacci Sequence, Longest Common Sequence                  |  |

### **DP Strategies**

#### Selection Criteria

- ✓ When performance or memory is critical, prefer a Bottom-Up approach.
- ✓ When <u>rapid prototyping or intuitive structure</u> matters more, go with <u>Top-Down</u>.
- ✓ If both are viable, the choice depends on the <u>problem's nature and constraints</u>.

#### Detailed Comparison

• I'll leave the details to you – it's a good opportunity to reinforce your understanding.

| Aspect                 | To—Down (Momoization)                                       | Bottom-Up (Tabulation)                           |  |
|------------------------|-------------------------------------------------------------|--------------------------------------------------|--|
| Code Structure         | Based on recursion → simpler and more intuitive             | Based on loops → iterative logic of more verbose |  |
| Number of Computations | May skip some subproblems → efficient if not all are needed | All subproblems must be computed                 |  |
| Function Call Cost     | Higher (recursive calls + memo lookups)                     | Lower (no recursion, sequential access to table) |  |
| Storage Usage          | Call stack + memo table → harder to manage                  | Only a table (easier to control and analyze)     |  |
| Design/Debugging       | Easier to write but harder to debug stack behavior          | Requires planning, but often more stable         |  |
| Language Constraints   | Not all languages optimize tail recursion (e.g., python)    | Works uniformly across languages                 |  |
| Runtime Performance    | May be slower due to recursive call overhead                | Often faster (no function calls)                 |  |

### **DP Strategies:** *Tabulation*

Design Process: How to Apply DP with Tabulation?

- Break down the given problem into subproblems:
   Derive a <u>recurrence relation</u> that defines how the original problem relates to its subproblems.
- 2 Prepare <u>a table</u> to store the solutions to the subproblems.
- 3 Based on the problem definition, identify and store the <u>base cases</u> in the table.
  (Base cases are the smallest subproblems with known answers.)
- 4 Use the stored base cases to <u>iteratively compute the solutions to larger subproblems</u>.

Next, let's solve the following problems using the tabulation approach.

#### Binomial Theorem:

A formula that expands the power of a binomial (an algebraic sum of two terms).

• e.g., 
$$(a+b)^3 = aaa + aab + aba + baa + abb + bab + bba + bbb$$
$$= a^3 + 3a^2b + 3ab^2 + b^3$$

• When expanded in its generalized form:

$$(a+b)^n = a^n + {}_{n}C_1a^{n-1}b + {}_{n}C_2a^{n-2}b^2 + \dots + {}_{n}C_ka^{n-k}b^k + \dots + b^n$$

Binomial Coefficients:

$$_{n}C_{0}(=1), _{n}C_{1}, _{n}C_{2}, ..., _{n}C_{k}, ..., _{n}C_{n}(=1)$$

$$\rightarrow {}_{n}C_{k} \Leftrightarrow C(n,k) \text{ or } \binom{n}{k}$$

 $\rightarrow$  These coefficients represent the number of unordered combinations of selecting k elemetrs from a set of n.

#### Binomial Theorem:

• Rewriting the binomial expression:

• Binomial coefficients can be computed using a closed-form formula:

- But let's try computing them using dynamic programming instead.
  - --> Can we break down the computation of binomial coefficients?
  - They can be computed step-by-step using Pascal's Triangle:
  - a) Start with a root value of 1.
  - b) Each value is the sum of the number above to the left and the number above to the right.
  - c) The outermost numbers (far left and right) are always 1.
  - d) The k-th element in the n-th level of the triangle is denoted as C(n,k).
  - $\longrightarrow$  What about  $(a+b)^3$ ?

✓ At level n = 3, 
$$C(3,0) = 1$$
,  $C(3,1) = 3$ ,  $C(3,2) = 3$ ,  $C(3,3) = 1$ 

$$(a+b)^n = \sum_{k=0}^n C(n,k)a^{n-k}b^k$$

$$C(n,k) = \frac{n!}{k!(n-k)!}$$



#### Recurrence Relation

- Base Case (k = 0, k = n)
  - These are the simplest cases where the answer is already known.
  - What kind of cases are these? Cases where there is only one way to choose!
  - Specifically, there are two such cases: C(n,0) = C(n,n) = 1
- In other words, choosing none of the items or choosing all of them both have exactly one possible combination.
- General Case  $(k \neq 0 \neq n)$ 
  - → Break the problem into two independent cases:
  - ① When the n-th item is excluded: Choose k items from the remaining n-1 items  $\rightarrow C(n-1,k)$
  - 2 When the n-th item is included: Choose the remaining k-1 items from the remaining  $n-1 \rightarrow C(n-1,k-1)$

$$c(n,k) = \begin{cases} 1 & k = 0, k = n \\ C(n-1,k-1) + C(n-1,k) & otherwise \end{cases}$$

• Applying D&C to solve C(n, k)

```
1 def bino_coef_dc(n, k):
2    if k == 0 or k == n:
3        return 1
4    return bino_coef_dc(n-1, k-1) + bino_coef_dc(n-1, k)
```

Heavy overlap in computations



#### • Applying DP to Solve C(n, k)

- This problem satisfies the optimal substructure property.
- In addition, from the D&C tree, we also observe overlapping subproblems.

#### • Table Design: C

- We need to store values from C(0,0) up to  $C(n,k) \rightarrow$  Table size:  $(n+1) \times (k+1)$ 
  - $\rightarrow$  For k = 0 = n, all values are 1.
  - $\rightarrow$  For k > n, the value is undefined.  $\rightarrow$  Skip or mark as invalid
- The following table shows an example of C(5,3).

|     | k=0 | k=1 | k=2        | k=3       |
|-----|-----|-----|------------|-----------|
| n=0 | 1   | > < | $\searrow$ | ><        |
| n=1 | 1   | 1   | ><         | ><        |
| n=2 | 1   | 2   | 1          |           |
| n=3 | 1   | 3   | 3          | 1         |
| n=4 | 1   | 4   | 6          | 4         |
| n=5 | 1   | 5   | 10         | <u>10</u> |

• Implementing DP with Tabulation to Solve C(n, k)

- Line 2: C = [[-1,-1,-1,-1], [-1,-1,-1], [-1,-1,-1], [-1,-1,-1], [-1,-1,-1], [-1,-1,-1]] → 2D List
   Time Complexity: ( )
- Further considerations: memoization or any potential improvements?

## Weekly Breakdown

### Week 9: Key Takeaways

- Dynamic Programming I
  - ① Explaining the strategic difference between D&C and DP
  - 2 Understanding the DP framework using the Fibonacci sequence problem
  - 3 Examining the role of the call stack in space complexity
  - 4 Identifying the characteristics of problems where dynamic programming can be applied
  - (5) Exploring when to choose memoization vs. tabulation, based on their characteristics
  - 6 Developing the skill to derive recurrence relations for computing binomial coefficients

### Next Week's Topics

Dynamic Programming II

# Any Final Thoughts?

yhmoon@sungshin.ac.kr

The Department of Computer Engineering Sungshin Women's University