Classificação e Pesquisa de Dados

Aulas 18-19

Organização de Arquivos: Arquivos Invertidos, Árvores TRIE e Patricias

UFRGS

INF01124

Resumo da aula

- Estudar as estruturas de Arquivo Invertido, Patricias e TRIE
- Conhecer suas aplicações mais comuns (índices textuais, Search Engines, Recuperação de Informação) e o processo geral de indexação de documentos

2

Instituto de Informática - UFRGS

Arquivo Invertido

- Caracterização:
 - Em vez de serem coletados os valores dos atributos para cada registro, são identificados os registros que possuem um dado valor do atributo considerado
 - À cada valor de chave corresponde uma lista de endereços de registros
 - O conjunto de listas invertidas associado a uma chave de acesso é chamado *inversão*
 - Um arquivo invertido pode possuir uma ou mais inversões
- Aplicação: índices textuais, motores de busca na web, índices secundários em BD

Arquivo Invertido

Arquivo principal (BD):

			1 \	,	
#	ID	Nome	ldade	Salário	
1	1000	Ademar	25	500	
2	1050	Afonso	27	700	
3	2400	lara	23	600	
4	1850	Edmundo	25	550	
5	1440	Cristiano	20	650	
6	3150	Tatiana	20	650	
7	2000	Gerson	22	750	
8	1900	Ênio	23	750	
9	2430	Ivan	28	550	
10	2600	Miguel	26	700	
11	1075	Ângela	22	600	
12	1400	Cláudia	26	500	
13	2200	Helena	25	750	
14	2700	Ramon	28	750	
15	2950	Flávio	25	600	
16	3100	Sônia	28	750	
:	:	:	:	:	
				· ·	ī

Arquivo Invertido

- Decisões importantes:
 - 1. Como estruturar o acesso às listas?
 - 2. Como estruturar as listas?

5

Instituto de Informática - UFRGS

2. Como estruturar as listas?

- Qualquer solução estudada para representação de listas lineares:
 - Contigüidade física (registros de tamanho variável, normalmente);
 - Encadeamento;
 - Mapa de bits (quando a gama de valores possíveis é pequena).
- Considerar que, via de regra, tais listas são armazenadas em disco, não sendo recomendável o simples encadeamento item a item

1. Como estruturar o acesso às listas? Lista Guerra de Informática - UFRGS

2. Como estruturar as listas?

- Importante lembrar/considerar:
 - fazer com que cada lista seja composta por uma lista encadeada de zero ou mais blocos, cada um contendo vários endereços de registros
 - Fazer com que as listas estejam ordenadas com o mesmo critério
 - Fazer com que os registros sejam identificados da mesma maneira

Aplicação-exemplo:

Information Retrieval

- Information Retrieval cobre atualmente qualquer forma de documento (informações semi-estruturadas, textos, vídeos, imagens, sons, seqüências de DNA, etc.)
- Vamos nos focar em:
 - Indexação de textos
 - · Coleções estáticas
 - Recuperação ad-hoc (recuperação de informações em resposta à consultas do usuário)

Pré-processamento

- Objetivo: extrair palavras candidatas ao índice
- Envolve:
 - Identificar termos (tokenização)
 - Normalizar termos (eliminar erros e variações morfológicas)
 - Calcular/identificar frequências e pesos dos termos
 - Identificar termos discriminantes

Visão geral do processo de indexação Préprocessamento

Instituto de Informática - UFRGS

Exemplo simples de tokenização

O Brasil derrotou a campeã européia República Tcheca por 75 a 51 e avançou no Mundial de basquete feminino de São Paulo...

Fonte: MSN Brasil, 20/09/06

Brasil derrotou а 75

campeã

е

feminino

51

а

basquete

européia

avançou

de

República

Tcheca

Mundial no

São Paulo

Cada token é um candidato para o índice!

О

Instituto de Informática - UFRGS

por

Constituição do índice

- a) Dicionário de Termos: índice de termos indexados
- b) Lista de postings: lista de documentos por termo
- c) Lista de documentos: informações sobre documentos

17

Instituto de Informática - UFRGS

Visão geral do arquivo de índice

Dicionário

Palavra	Apontador	
Aluno	0100	
Barraca	0010	
Carro	0012	
:	:	
Zoo	0002	

Lista de Postings

0001	001, 003, 100
0002	-
:	:
0010	002
•	÷
nnnn	002 004 00
	002, 004, 98,

Lista de Docs

Id	Nome	Path
001	A	
002	B.txt	C:\
003	С	
:	D	:
nnn	Е	

18

Instituto de Informática - UFRGS

Arquivo (lista) invertido Índice ou dicionário Lista de postings (b)

Aponta para o arquivo de postings que contém a lista de documentos onde cada termo aparece!

Palavra	Freq. (total)	df	Apontador (postings list file entry)
Aluno	20	10	0100
Barraca	5	2	0010
Carro	506	23	0012
:	:	:	:
Zoo	3	1	0002

2 bytes

4 bytes

20

Instituto de Informática - UFRGS

Dicionário de Termos: observações

- O número de entradas é relativamente pequeno e tende a estabilizar, devido ao número de palavras
- Uma vez pronto, tende a não variar (principalmente em coleções estáticas)
- Normalmente armazenado como uma lista ordenada de palavras (vetor), NA MEMÓRIA PRINCIPAL!
 - Uma estimativa de Grossman e Frieder (2004), 2 milhões de termos ocupam menos de 32MB (sem compressão)
 - Busca binária, com complexidade relativamente baixa: $O(\log n)$; ou
 - Funções hash com lista de colisão; ou
 - Em coleções dinâmicas, usar outras estruturas (TRIE, PATRICIA, B-TREES)

21

Instituto de Informática - UFRGS

Exemplo

Resolução:

- **Brutus AND Calpurnia**
- Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de postings;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de postings;
- 5. Calcular a intersecção entre as duas listas de postings.

...

Instituto de Informática - UFRGS

Exemplo

22

Instituto de Informática - UFRGS

Exemplo

• Resolução:

- **Brutus AND Calpurnia**
- 1. Localizar Brutus no Dicionário:
- 2. Recuperar sua lista de postings;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de postings;
- 5. Calcular a intersecção entre as duas listas de postings.

Instituto de Informática - UFRGS

Exemplo

Resolução:

Brutus AND Calpurnia

- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de postings;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de postings;
- 5. Calcular a intersecção entre as duas listas de postings.

25

Instituto de Informática - UFRGS

Exemplo

• Resolução:

- **Brutus AND Calpurnia**
- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de postings;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de postings;
- 5. Calcular a intersecção entre as duas listas de postings.

...

Instituto de Informática - UFRGS

Exemplo

Resolução:

Brutus AND Calpurnia

- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de postings;
- 3. Localizar Calpurnia no Dicionário;
- Recuperar sua lista de postings;
- 5. Calcular a intersecção entre as duas listas de postings.

26

Instituto de Informática - UFRGS

Exemplo

Resolução:

Brutus AND Calpurnia

- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de postings;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de postings;
- 5. Calcular a intersecção entre as duas listas de postings.

28

Instituto de Informática - UFRGS