SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	
Technical Report BRL-TR-2735		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
		Final
A UNIFIED TREATMENT OF ENERGY DER		
NON-ADIABATIC COUPLING MATRIX ELE	MENTS	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(8)
Byron H. Lengsfield, III		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Ballistic Research Labora	torv	CILLO & HOIR BILLY
ATTN: SLCBR-IB		1L161102AH43
Aberdeen Proving Ground, MD 210	05-5066	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
U.S. Army Ballistic Research Labo	ratory	June 1986
ATTN: SLCBR-DD-T		13. NUMBER OF PAGES
Aberdeen Proving Ground, MD 2100	5-5066	22
14. MONITORING AGENCY NAME & AUDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a, DECLASSIFICATION DOWNGRADING
		SCHEOULE N/A
17. DISTRIBUTION STATEMENT (of the abstract entered	in Plack 20. II dillaceri ha	T. Poposti)
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, it dillerent tro	m Report)
		1
·		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)	
Geometrical Derivatives		
Unified Treatment		
Non-Adiabatic Coupling Matrix Elem	nents	
20. ABSTRACT (Continue on reverse side if necessary on	d identify by block number)	meg
A vectorizable second-order MCSCF	method is first	outlined and then shown
to yield a unified framework from	which to develop	MCSCF and multi-reference
CI energy derivatives. Non-adiaba	atic coupling mat	trix elements can be
extracted from this framework by a	using a common or	rbital set to describe both
states. CI non-adiabatic coupling	g matrix elements	are simply obtained by
employing transition density matr	ices in the multi	-reference CI gradient
program.		

LIBRARY
RECEARCH REPORTS DIVISION
WAYAL POSIGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940

AD

TECHNICAL REPORT BRL-TR-2735

A UNIFIED TREATMENT OF ENERGY DERIVATIVES AND NON-ADIABATIC COUPLING MATRIX ELEMENTS

✓ Byron H. Lengsfield, III

June 1986

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY

// ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	5
II.	MCSCF SECOND-DERIVATIVES	9
III.	NON-ADIABATIC COUPLING MATRIX ELEMENTS	10
IV.	CONCLUSION	12
	REFERENCES	13
	DISTRIBUTION LIST	15

I. INTRODUCTION

The calculation of non-adiabatic coupling matrix elements between adiabatic states has traditionally been a very difficult problem. Recent studies have relied on the existence of a compact diabatic or pseudo-diabatic basis, or on finite difference methods. We have recently proposed an analytical method of obtaining first-order non-adiabatic coupling matrix elements (NACMEs). In our approach we employ a state-averaged MCSCF procedure to define a common orbital basis. With a few simple modifications we are then able to make use of the machinery developed to calculate CI gradients and MCSCF second derivatives to obtain the desired quantities. In fact, the methods employed to obtain MCSCF wavefunctions, MCSCF second derivatives, multi-reference CI gradients and NACMEs can be cast into one unified and compact framework.

It is the purpose of this manuscript to outline the methods used to obtain energy derivatives and NACMEs. The first section will be devoted to an outline of the second-order MCSCF procedure employed in the ALCHEMY II program package. In the second section, we show how MCSCF derivatives can be fit neatly into this package and finally, we show that analytical NACMEs can be obtained within this framework if a common orbital set is used to describe both states.

A. Second-Order MCSCF Methodology

In this section, we outline the second-order MCSCF method employed in the ALCHEMY II series of programs. The construction of the orbital hessian is completely vectorizable and requires no formula tape. The CI variations are handled directly in the CSF basis, so that large CI expansions can be addressed. Many of the matrices constructed as precursors to the orbital hessian are retained and used to construct the orbital contribution to the inhomogenious portion of the coupled-perturbed MCSCF (CP-MCSCF) equations. Similiarly; the code employed to directly compute the result of multiplying the CI-orbital coupling portion of the MCSCF hessian times a trial vector is used to construct the CI contribution to the inhomogeneous portion of the CP-MCSCF equations.

In the discussions which follow, I, J, K, L will be used to denote inactive orbitals, A, B, C, D will be used to denote active orbitals, R, S, T, U will be used to denote any orbital in either the inactive, active, or virtual spaces, and a, b, c, d, will be used to denote atomic orbitals. The wavefunction will be represented as follows.

$$\psi = \sum_{p} C_{p} \phi_{p} \tag{1}$$

where ϕ represents our CSF basis and C_i is an element of the CI vector. The energy expression is partitioned into an inactive portion, an inactive-active portion, and a purely active portion.²

$$E = \sum_{I} 2h_{II} + \sum_{I,I} (2 J_{JJ}^{II} - K_{JJ}^{II})$$

$$+ \sum_{I AB} \sum_{AB} D_{AB} \left(2 J_{II}^{AB} - \frac{1}{2} \left\{ K_{II}^{AB} + K_{II}^{BA} \right\} \right)$$

$$+ \sum_{AB} D_{AB}^{h} AB + \sum_{ABCD} D_{ABCD} J_{CD}^{AB}$$

$$= \langle C | H | C \rangle$$
(2)

where

$$h_{TU} = \langle T | \tilde{h} | U \rangle,$$

$$J_{TU}^{RS} = \langle RS | \tilde{g} | TU \rangle,$$

$$K_{TU}^{RS} = \langle RT | \tilde{g} | SU \rangle,$$

$$D_{AB} = \sum_{Pq} C_{p} k_{pq}^{AB} C_{q}$$

and

$$D_{ABCD} = \sum_{pq} C_{p}^{ABCD} C_{q}$$

AB ABCD

k and k are spin-coupling constants. \tilde{h} and \tilde{g} are the usual one and two electron operators appearing in the Born-Oppenheimer hamiltonian. D_{AB} and D_{ABCD} are the elements of the one and two-particle density matrix respectively. Unitary orbital variations are introduced by means of an exponential operator containing only non-redundant terms, 3^{4}

$$U = e^{-\Delta} = 1 - \Delta + \frac{1}{2} \Delta^{2} + \dots$$

$$= U_{0} + U_{1} + U_{2} + \dots$$
(3)

The elements of Δ are our variational parameters. The energy expression is expanded to second-order in Δ and then differentiated. First-order variations and second-order terms arising from U_2 are obtained by constructing a Lagrangian matrix, 5 6

$$L_{TA} = 2\left\{\sum_{B} D_{AB}h_{TB} + 2\sum_{BCD} D_{ABCD} J_{TB}^{CD}\right\}$$
 (4)

Second-order terms arising from simultaneous first-order variations are obtained by first constructing a Y matrix. 1 $^{5-8}$

=
$$\tilde{Y}^{AB}$$
, for all T, S

here d_{AB}^h and d_{ABCD}^J are scaled elements of the one and two-particle density matrix. The scaling factor depends only on the symmetry of the indices of the density matrix elements, (whether A=B, C=D, or AB=CD). Similiarly, d_{ABCD}^K is generated by scaling the D_{ACBD} density matrix element. It is important to note that the one-electron and coulomb contributions to the Y matrix, Y^J, can be contracted and used to construct the Lagrangian. The Y matrix and the Lagrangian are constructed by multiplying a scaled density element times a coulomb or exchange matrix, a procedure which is readily vectorizable.

The Y matrix is partitioned into inactive-inactive, inactive-active, and active-active blocks. The inactive-inactive block can be constructed by weighting the coulomb and exchange matrices with a small number of constants. For example, an off-diagonal matrix in the inactive-inactive sub-block of the Y matrix is constructed from only three terms,

$$Y_{TS}^{IJ} = a_{IJ}^{IJ} + b_{IJ}^{IJ} + b_{IJ}^{+} K_{TS}^{JI}$$
 (6)

The inactive-active portion of the Y matrix requires only scaled one-particle density matrix elements.

$$Y_{TS}^{AI} = \sum_{B} (d_{AB}^{J} J_{TS}^{BI} + d_{AB}^{K} K_{TS}^{BI} + d_{AB}^{K^{+}} K_{TS}^{IB})$$
 (7)

The partitioning of the Y matrix is computationally attractive as it reduces the number of matrices which need to be held in core at one time. In addition, it provides the flexibility of computing the inactive-inactive subblock or the inactive-active sub-block directly as discussed by Bacskay and Olsen, et al., 10 respectively. In addition, the occupied-virtual, occupied-virtual portions of the matrix can be combined with Lagrangian contributions to generate an occupied-virtual, occupied-virtual sub-blocks of the orbital hessian, which need not be kept in core.

The construction of the orbital hessian proceeds as follows,

- (1) A reduced integral transformation is used to form the J and K matrices in the ao basis and to calculate the integrals needed to perform the CI,
- (2) In a two step MCSCF procedure the CI calculation is then carried out,
- (3) The CI vector is used to construct the unique elements of the one and two-particle density matrix over the active orbitals,
- (4) The density matrix elements are scaled and reordered in the case of exchange contributions,

- (5) The coulomb and fock operator contributions to the Y matrix are generated,
- (6) The Y matrix is contracted with the molecular orbitals to produce the active portion of the Lagrangian. The inactive portion of the Lagrangian is generated from fock matrices,
 - (7) The exchange contributions are added to the Y matrix, and
- (8) The Lagrangian is folded to produce the MCSCF orbital gradient ($g_{AB} = L_{AB} L_{BA}$) and the Y matrix is transformed to the mo basis, similarly folded and combined with Lagrangian contributions to produce the MCSCF hessian.

The Newton-Raphson linear equations are solved iteratively,

$$\begin{pmatrix} \frac{\partial^2 E}{\partial O^2} & \frac{\partial^2 E}{\partial O \partial C} \\ \frac{\partial^2 E}{\partial C \partial O} & \frac{\partial^2 E}{\partial C^2} \end{pmatrix} \qquad \begin{pmatrix} \delta O \\ \delta C \end{pmatrix} = \begin{pmatrix} -g_O \\ -g_C \end{pmatrix}$$
(8)

where $\delta 0$ and δC represent orbital and CI variations, respectively, and the remaining portions of the MCSCF hessian are treated directly. It is second-order CI terms are handled with a direct-CI program.

Multiplication of the CI-orbital portion of the hessian times a trial vector are re-expressed as a gradient constructed with transition density matrices, 12

$$\left(\frac{\partial^2 E}{\partial O_{\partial} C}\right) \delta C = g_0^{\delta C} \tag{9}$$

or updated integrals, 12

$$\left(\frac{\partial^2 E}{\partial C \partial O}\right) \delta O = g_C^{\delta O} = (H - E)^{\delta O} | C \rangle . \tag{10}$$

The updated integrals used to construct $g_C^{\delta\,0}$ are obtained as follows,

$$\langle ABCD \rangle^{\delta O} = \sum_{T} (\delta O_{TA} \langle TBCD \rangle + \delta O_{TB} \langle ATCD \rangle + \delta O_{TC} \langle ABTD \rangle + \delta O_{TD} \langle ABCT \rangle)$$
(11)

where $\langle TBCD \rangle \equiv \langle TB \mid g \mid CD \rangle$. The integrals with three indices transformed $\langle TBCD \rangle$, etc., have been generated earlier by contracting a coulomb matrix.

II. MCSCF SECOND-DERIVATIVES

The formalism needed to generate a MCSCF force constant matrix has been discussed by a number of authors. The method presented by Page, et al., has been incorporated in the MCSCF framework discussed above as it seems to offer a number of computational advantages. In particular, the construction of the inhomogeneity in the CP-MCSCF equations,

$$\begin{pmatrix} \frac{\partial^{2} E}{\partial O^{2}} & \frac{\partial^{2} E}{\partial O \partial C} \\ \frac{\partial^{2} E}{\partial C \partial O} & \frac{\partial^{2} E}{\partial C^{2}} \end{pmatrix} \begin{pmatrix} \delta O^{\alpha} \\ \delta C^{\alpha} \end{pmatrix} = \begin{pmatrix} -g_{O}^{\alpha} - g_{O}^{T\alpha} \\ -g_{C}^{\alpha} - g_{C}^{T\alpha} \end{pmatrix}$$
(12)

involves the same code employed in the construction of the MCSCF Lagrangian and in the handling of the CI-orbital coupling terms in the direct solution to the Newton-Raphson equations. In this formalism, g_0^α and g_0^α are the orbital and CI gradients constructed with derivative ao integrals. Similiarly, g_0^α and g_0^α are gradients constructed with updated integrals where one index has been transformed with the T^α matrix. T^α is an upper triangular matrix constructed from transforming the derivative ao overlap integrals into the mobasis,

$$T_{RS}^{\alpha} = -S_{RS}^{\alpha}, S > R$$

$$T_{RR}^{\alpha} = -\frac{1}{2}S_{RR}^{\alpha}$$
(13)

and

$$T_{SR} = 0, S>R$$

 $g_0^{T_\alpha}$ is generated by contracting the Y matrix with T^α and transforming the MCSCF Lagrangian with T^α , to first produce the T^α Lagrangian, L^{T_α} .

$$L_{RA}^{T\alpha} = \sum_{MS} Y_{RS}^{AM} T_{SM}^{\alpha} + \sum_{S} T_{SR}^{\alpha} L_{SA}$$
 (14)

where the summation over M runs over all occupied orbitals. The code employed in the MCSCF program to produce the Lagrangian from $Y^{\tilde{J}}$ is also used at this point to contract the Y matrix.

 $g_C^{T\alpha}$ is obtained from the code employed in the direct solution of the Newton-Raphson equations to construct g_C^{00} . In this case the updated integrals are obtained by contracting the partially transformed integrals, <TBCD>, etc., with the T^{α} matrix.

The final expression for the first and second derivatives of the MCSCF energy expressions are, 15

$$E^{\alpha} = \sum_{ab} D_{ab}h^{\alpha}_{ab} + \sum_{abcd} D_{abcd} g^{\alpha}_{abcd} + \sum_{TA} L_{TA}T^{\alpha}_{TA}$$
 (15)

and

$$E^{\alpha\beta} = 2 \langle C^{\beta} | H^{\alpha} + H^{T\alpha} | C \rangle +$$

$$\sum_{ab} D_{ab} h^{\alpha\beta}_{ab} + \sum_{abcd} D_{abcd} g^{\alpha\beta}_{abcd} + \sum_{TA} L^{\beta}_{TA} T^{\alpha}_{TA} +$$

$$\sum_{TA} (L^{\alpha} + L^{T\alpha})_{TA} U^{\beta}_{TA} + \sum_{AB} L_{AB} [T^{\alpha\beta}_{AB} + \sum_{S} (T^{\alpha}_{SA} T^{\beta}_{SB} + T^{\alpha}_{SA} T^{\beta}_{BS})]$$
(16)

where \textbf{U}^β is the derivative of the mo coefficient matrix obtained by combining the solution of the CP-MCSCF equations and \textbf{T}^β . These equations only employ quantities (\textbf{L}^α and $\textbf{L}^{T\alpha}$) used to construct the inhomogeneity in the CP-MCSCF equations, the solution to the CP-MCSCF equations themselves or terms generated from a SCF derivative package after the MCSCF density matrix has been transformed to the ao basis. The actual assemblage of the MCSCF force-constant matrix, after the solution the CP-MCSCF equations and the contraction of the derivative ao integrals with ao density matrix, is extremely simple.

III. NON-ADIABATIC COUPLING MATRIX ELEMENTS

The first-order non-adiabatic coupling matrix element, 17-19 (NACME),

$$D_{(M,N,\alpha)} = \langle \Psi_{M} | \frac{d}{d\alpha} \Psi_{N} \rangle = \langle \Psi_{M} | \Psi_{N}^{(\alpha)} \rangle$$
 (17)

can be calculated in a straightforward manner if the same orbital basis is used to represent the two states. 20 21 In this case, the required wavefunction derivatives are obtained from a state-averaged CP-MCSCF equation. The NACME is broken down into two terms,

$$D_{(M,N,\alpha)} = D_{C} + D_{O}$$

$$= \langle C_{M} | C_{N}^{\alpha} \rangle + \sum_{ST} D_{ST}^{M,N} (U_{ST}^{\alpha} + V_{ST}^{\alpha}).$$
(18)

The first term is simply the overlap of a CI vector and a derivative CI vector. For a MCSCF wavefunction, C_N^{α} is obtained from the solution to the CP-MCSCF equations, so this term poses no new problems. For a CI wavefunction, the direct evaluation of this term would require the solution of at least one CP-CI type of equation,

$$(H-E_{M}) C_{M}^{\alpha} = - (H-E_{M})^{(\alpha)} C_{M}.$$
 (19)

Multiplying Eq. 19 on the left by $C_{\rm N}$, we find the usual perturbation expression, $2^{\rm l}$

$$\langle c_{N} | c_{M}^{\alpha} \rangle = (E_{M} - E_{N})^{-1} \langle c_{N} | H^{(\alpha)} | c_{M} \rangle . \tag{20}$$

The term on the right-hand-side of this equation is a familiar one. It is similar to the expression for a CI gradient. The only difference is that we need to employ transition density matrices in place of normal density matrices in our equations. The formal expression for a CI gradient is 22

$$E_{M}^{(\alpha)} = \sum_{ab} D_{ab}^{M,M} h_{ab}^{\alpha} + \sum_{abcd} D_{abcd}^{M,M} g_{abcd}^{\alpha} + \sum_{TS} L_{TS}^{M,M} U_{TS}^{\alpha}$$

$$= \langle c_{M} | H^{(\alpha)} | c_{M} \rangle .$$
(21)

The first term is the trace of the density matrix with derivative ao integrals, while the second term is the contraction of the CI Lagrangian with the derivative of the mo coefficients. Thus, 21

$$D_{C} = (E_{M} - E_{N})^{-1} \{ \sum_{ab} D_{ab}^{M,N} h_{ab}^{\alpha} + \sum_{abcd} D_{abcd}^{M,N} g_{abcd}^{\alpha} + \sum_{TS} L_{TS}^{M,N} U_{TS}^{\alpha} \}. \quad (22)$$

Therefore, we able to make use of the same code used to compute CI gradients.

In the expression for the orbital contribution to the first-order NACME we are dealing with a one-electron operator so the resulting expression involves the trace of an one-particle density matrix and an overlap term, 20

$$D_{O} = \sum_{ST} D_{S,T}^{M,N} (U_{S,T}^{\alpha} + V_{S,T}^{\alpha})$$
 (23)

 $D_{S,T}^{M,N}$ is an element of a non-symmetric, one-particle transition density matrix. $U_{S,T}^{\alpha}$ is the derivative of the mo coefficients obtained from the solution to the state-average CP-MCSCF equations, and $v_{S,T}^{\alpha}$ is obtained by transforming half-derivative ao overlap integrals into the mo basis. Two overlap terms are needed as the derivative of the molecular orbitals are expressed as, 20

$$\frac{d0}{d\alpha} = \frac{d}{d\alpha} (xt) = x^{\alpha}t + xt^{\alpha}$$

$$= x^{\alpha}t + 0U^{\alpha}$$
(24)

where 0 are the molecular orbitals, x is a vector of atomic orbitals, and t is the mo coefficient matrix. 20

$$V_{ST}^{\alpha} = \sum_{ab} t_{aS} \langle x_a | x_b^{\alpha} \rangle t_{bT}$$
 (25)

and $\langle x_a | x_b^{\alpha} \rangle$ is a half-derivative overlap integral.

The new terms required to compute a NACME are a square one-particle transition matrix and half-derivative as overlap integrals. The CI gradient package must also be modified to produce the required one and two-particle transition density matrices, while the MCSCF package need only be modified to compute a square one-particle transition density matrix.

This formalism can be extended to analytically compute second-order NACMEs. This requires the set-up of the second-order state-averaged CP-MCSCF equations and the code to compute a square two-particle transition density matrix. A second-order CI NACME would require the solution of the first-order CP-CI equations.

IV. CONCLUSION

A unified treatment of energy derivatives and non-adiabatic coupling matrix elements has been outlined. We showed that in the case of both energy derivatives and NACMEs the final equations could be rewritten in a form that resulted in the efficient use of existing MCSCF or derivative methods.

REFERENCES

- 1. Lengsfield, III, B.H., Liu, B., and Yoshimine, M., "A Matrix Formulation of Second-Order MCSCF Theory," NASA Ames Research Report, March 1985.
- 2. Siegbahn, P.E.M., Heiberg, A., Roos, B.O., and Levy, B., "A Comparison of the Super-CI and the Newton-Raphson Scheme in the Complete Active Space SCF Method," Phys. Scr., Vol. 21, p. 323, 1980.
- 3. Yaffe, L., and Goddard, III, W.A., "Orbital Optimization in Electronic Wavefunctions, Equations for Quadratic and Cubic Convergence of General Multiconfiguration Wavefunctions," Phys. Rev. A., Vol. 13, p. 1682, 1976.
- Daalgard, E., and Jorgensen, P., "Optimization of Orbitals for Multiconfiguration Reference States," <u>J. Chem. Phys.</u>, Vol. 69, p. 3833, 1978.
- 5. Osamura, Y., Yamaguchi, Y., and Schaefer, H.F., "Generalization Analytic Configuration Interaction (CI) Gradient Methods for Potential Energy Hypersurfaces, Including a Solution to the Coupled-Perturbed Hartree-Fock Equations for Multiconfiguration SCF Molecular Wavefunctions," J. Chem. Phys., Vol. 77, p. 383, 1982.
- 6. Hoffman, M., Fox, D., Gaw, J., Osamura, Y., Yamaguchi, Y., Grev, R., Fitzgerald, G., and Schaefer, H.F., "Analytic Energy Second Derivatives for General MCSCF Wavefunctions," J. Chem. Phys., Vol. 80, p. 2660, 1984.
- 7. Werner, H.J., and Meyer, W., "A Quadratically Convergent Multiconfiguration Self-Consistent Field Method with Simultaneous Optimization of Orbitals and CI Coefficients," J. Chem. Phys., Vol. 73, p. 2342, 1980.
- 8. Roothaan, C.C.J., Detrich, J., and Hopper, D., "An Improved MCSCF Method," Int. J. Quantum Chem. Symp., Vol. 13, p. 93, 1979.
- 9. Bacskay, G.B., "A Quadratically Convergent Hartree-Fock (QC-SCF) Method. Application to Open Shell Orbital Optimization and Coupled Perturbed Hartree-Fock Calculations," Chem. Phys., Vol. 61, p. 385, 1981.
- 10. Olsen, J., Yeager, D.L., and Jorgensen, P., "Optimization and Characterization of a Multiconfigurational Self-Consistent Field (MCSCF) State," Advan, Chem. Phys., Vol. 54, p. 1, 1983.
- 11. Lengsfield, III, B.H., and Liu, B., "A Second Order MCSCF Method for Large CI Expansions," J. Chem. Phys., Vol. 75, p. 478, 1981.
- 12. Lengsfield, III, B.H., "General Second-Order MCSCF Theory for Large CI Expansions," J. Chem. Phys., Vol. 77, p. 4073, 1982.
- 13. Camp, R.N., King, H.F., McIver, J.W., and Mullally, D., "Stable Methods for Achieving MCSCF Convergence," J. Chem. Phys., Vol. 79, p. 1089, 1983.
- 14. Simons, J., and Jorgensen, P., "First and Second Anharmonicities of the MCSCF Energy," J. Chem. Phys., Vol. 79, p. 3599, 1983.

- Page, M., Saxe, P., Adams, G.F., and Lengsfield, III, B.H., "Multireference CI Gradients and MCSCF Second Derivatives," J. Chem. Phys., Vol. 81, p. 434, 1984.
- Banerjee, A., Jensen, J., Simons, J., and Shepard, R., "MCSCF Molecular Gradients and Hessians: Computational Aspects," Chem. Phys., Vol. 87, p. 203, 1984.
- 17. Desouter-Lecomte, M., Galloy, C., Lorquet, J.C., and Vaz Pires, M., "Nonadiabatic Interactions in Unimolecular Decay. V. Conical and Jahn-Teller Intersections," J. Chem. Phys., Vol. 71, p. 3661, 1979.
- 18. Buenker, R.J., Hirsch, G., Peyerimhoff, S.D., Bruna, P., Romelt, J., Bettendorff, M., and Petrongolo, C., "Calculation of First and Second Derivative Nonadiabatic Matrix Elements for Large Scale CI Wavefunctions," Studies in Physical and Theoretical Chemistry, Vol. 21, p. 81, 1982.
- 19. Herzberg, G., and Longuet-Higgins, H.C., "Intersection of Potential Energy Surfaces in Polyatomic Molecules," <u>Disc. Faraday. Soc.</u>, Vol. 35, p. 77, 1963.
- 20. Lengsfield, III, B.H., Saxe, P., and Yarkony, D., "On the Evaluation of Nonadiabatic Coupling Matrix Elements Using SA-MCSCF/CI Wavefunctions and Analytic Gradient Methods. I.," J. Chem. Phys., Vol. 81, p. 4549, 1984.
- 21. Saxe, P., Lengsfield, III, B.H., and Yarkony, D., "On the Evaluation of Mon-Adiabatic Coupling Matrix Elements for Large Scale CI Wavefunctions,"

 Chem. Phys. Letters, Vol. 113, p. 159, 1985.
- 22. Brooks, B.R., Laidig, W.D., Saxe, P., Goddard, J., Yamaguchi, Y., and Schaefer, H.F., "Analytic Gradients from Correlated Wavefunctions Via the Two-Particle Density Matrix and the Unitary Group Approach," J. Chem. Phys., Vol. 72, p. 4652, 1980.

No. Of		No. Of	
Copies	Organization	Copies	Organization
12	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander US Army Aviation Research and Development Command ATTN: AMSAV-E 4300 Goodfellow Blvd.
1	HQ DA		St. Louis, MO 63120
, P	DAMA-ART-M Washington, DC 20310	1	Director US Army Air Mobility Research and Development Laboratory
1	Commander US Army Materiel Command ATTN: AMCDRA-ST		Ames Research Center Moffett Field, CA 94035
	5001 Eisenhower Avenue Alexandria, VA 22333-0001	4	Commander US Army Research Office ATTN: R. Ghirardelli
10	Central Intelligence Agency Office of Central Reference Dissemination Branch		D. Mann R. Singleton R. Shaw
	Room GE-47 HQS Washington, DC 20505		P.O. Box 12211 Research Triangle Park, NC 27709-2211
1	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-TSS Dover, NJ 07801	1	Commander US Army Communications - Electronics Command ATTN: AMSEL-ED Fort Monmouth, NJ 07703
1	Commander Armament R&D Center	1	Commander
	US Army AMCCOM ATTN: SMCAR-TDC Dover, NJ 07801		ERADCOM Technical Library ATTN: DELSD-L, Reports Section Fort Monmouth, NJ 07703-5301
1	Director Benet Weapons Laboratory Armament R&D Center US Army AMCCOM ATTN: SMCAR-LCB-TL Watervliet, NY 12189	2	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-LCA-G, D.S. Downs J.A. Lannon Dover, NJ 07801
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299	1	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-LC-G, L. Harris
			Dover, NJ 07801

No. Of		No. Of	
Copies	Organization	Copies	Organization
1	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-SCA-T, L. Stiefel Dover, NJ 07801	1	Commander US Army Development and Employment Agency ATTN: MODE-TED-SAB Fort Lewis, WA 98433
1	Commander US Army Missile Command Research, Development and Engineering Center ATTN: AMSMI-RD Redstone Arsenal, AL 35898	1	Office of Naval Research Department of the Navy ATTN: R.S. Miller, Code 432 800 N. Quincy Street Arlington, VA 22217 Commander
1	Commander US Army Missile and Space Intelligence Center ATTN: AMSMI-YDL Redstone Arsenal, AL 35898-5000	2	Naval Air Systems Command ATTN: J. Ramnarace, AIR-54111C Washington, DC 20360 Commander
2	Commander US Army Missile Command ATTN: AMSMI-RK, D.J. Ifshin W. Wharton Redstone Arsenal, AL 35898	= = 1	Naval Ordnance Station ATTN: C. Irish P.L. Stang, Code 515 Indian Head, MD 20640 Commander
1	Commander US Army Missile Command ATTN: AMSMI-RKA, A.R. Maykut Redstone Arsenal, AL 35898-5249	2	Naval Surface Weapons Center ATTN: J.L. East, Jr., G-23 Dahlgren, VA 22448-5000 Commander
1	Commander US Army Tank Automotive Command ATTN: AMSTA-TSL Warren, MI 48397-5000	1	Naval Surface Weapons Center ATTN: R. Bernecker, R-13 G.B. Wilmot, R-16 Silver Spring, MD 20902-5000 Commander
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL	2	Naval Weapons Center ATTN: R.L. Derr, Code 389 China Lake, CA 93555
	White Sands Missile Range, NM 88002	2	Commander Naval Weapons Center ATTN: Code 3891, T. Boggs
1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905		K.J. Graham China Lake, CA 93555

No. Of		No. Of	
Copies	Organization	Copies	Organization
5	Commander Naval Research Laboratory ATTN: L. Harvey J. McDonald E. Oran J. Shnur	1	NASA Langley Research Center Langley Station ATTN: G.B. Northam/MS 168 Hampton, VA 23365
	R.J. Doyle, Code 6110 Washington, DC 20375	4	National Bureau of Standards ATTN: J. Hastie M. Jacox
1	Commanding Officer Naval Underwater Systems Center Weapons Dept. ATTN: R.S. Lazar/Code 36301 Newport, RI 02840		T. Kashiwagi H. Semerjian US Department of Commerce Washington, DC 20234
1	Superintendent Naval Postgraduate School Dept. of Aeronautics	1	Aerojet Solid Propulsion Co. ATTN: P. Micheli Sacramento, CA 95813
4	ATTN: D.W. Netzer Monterey, CA 93940 AFRPL/DY, Stop 24	1	Applied Combustion Technology, Inc. ATTN: A.M. Varney
7	ATTN: R. Corley R. Geisler J. Levine	2	P.O. Box 17885 Orlando, FL 32860 Applied Mechanics Reviews
	D. Weaver Edwards AFB, CA 93523-5000		The American Society of Mechanical Engineers ATTN: R.E. White
1	AFRPL/MKPB, Stop 24 ATTN: B. Goshgarian Edwards AFB, CA 93523-5000		A.B. Wenzel 345 E. 47th Street New York, NY 10017
2	AFOSR ATTN: L.H. Caveny J.M. Tishkoff Bolling Air Force Base	1	Atlantic Research Corp. ATTN: M.K. King 5390 Cherokee Avenue Alexandria, VA 22314
	Washington, DC 20332	1	
1	AFWL/SUL Kirtland AFB, NM 87117	1	Atlantic Research Corp. ATTN: R.H.W. Waesche 7511 Wellington Road Gainesville, VA 22065
1	Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000	1	AVCO Everett Rsch. Lab. Div. ATTN: D. Stickler 2385 Revere Beach Parkway Everett, MA 02149

No. Of Copies	Organization	No. Of Copies	Organization
1	Battelle Memorial Institute Tactical Technology Center ATTN: J. Huggins 505 King Avenue Columbus, OH 43201	1	General Motors Rsch Labs Physics Department ATTN: R. Teets Warren, MI 48090
1	Cohen Professional Services ATTN: N.S. Cohen 141 Channing Street Redlands, CA 92373	2	Hercules, Inc. Allegany Ballistics Lab. ATTN: R.R. Miller E.A. Yount P.O. Box 210 Cumberland, MD 21501
2	Exxon Research & Eng. Co. Government Research Lab ATTN: A. Dean M. Chou P.O. Box 48 Linden, NJ 07036	1	Hercules, Inc. Bacchus Works ATTN: K.P. McCarty P.O. Box 98 Magna, UT 84044
1	Ford Aerospace and Communications Corp. DIVAD Division Div. Hq., Irvine ATTN: D. Williams Main Street & Ford Road Newport Beach, CA 92663	1	Honeywell, Inc. Government and Aerospace Products ATTN: D.E. Broden/ MS MN50-2000 600 2nd Street NE Hopkins, MN 55343
1	General Applied Science Laboratories, Inc. ATTN: J.I. Erdos 425 Merrick Avenue Westbury, NY 11590	1	IBM Corporation ATTN: A.C. Tam Research Division 5600 Cottle Road San Jose, CA 95193
1	General Electric Armament & Electrical Systems ATTN: M.J. Bulman Lakeside Avenue Burlington, VT 05401	1	IIT Research Institute ATTN: R.F. Remaly 10 West 35th Street Chicago, IL 60616
1	General Electric Company 2352 Jade Lane Schenectady, NY 12309	2	Director Lawrence Livermore National Laboratory ATTN: C. Westbrook M. Costantino
1	General Electric Ordnance Systems ATTN: J. Mandzy 100 Plastics Avenue Pittsfield, MA 01203		P.O. Box 808 Livermore, CA 94550

No. Of		No. Of	
Copies	Organization	Copies	Organization
1	Lockheed Missiles & Space Co.	1	Science Applications, Inc.
	ATTN: George Lo	•	ATTN: R.B. Edelman
	3251 Hanover Street		23146 Cumorah Crest
	Dept. 52-35/B204/2		Woodland Hills, CA 91364
	Palo Alto, CA 94304		
		1	Science Applications, Inc.
1	Los Alamos National Lab		ATTN: H.S. Pergament
	ATTN: B. Nichols		1100 State Road, Bldg. N
	T7, MS-B284		Princeton, NJ 08540
	P.O. Box 1663		
	Los Alamos, NM 87545	3	SRI International
_			ATTN: G. Smith
1	Olin Corporation		D. Crosley
	Smokeless Powder Operations		D. Golden
	ATTN: V. McDonald		333 Ravenswood Avenue
	P.O. Box 222		Menlo Park, CA 94025
	St. Marks, FL 32355		
		1	Stevens Institute of Tech.
1	Paul Gough Associates, Inc.		Davidson Laboratory
	ATTN: P.S. Gough		ATTN: R. McAlevy, III
	1048 South Street		Hoboken, NJ 07030
	Portsmouth, NH 03801		
		1	Teledyne McCormack-Selph
2	Princeton Combustion		ATTN: C. Leveritt
	Research Laboratories, Inc.		3601 Union Road
	ATTN: M. Summerfield		Hollister, CA 95023
	N.A. Messina		
	475 US Highway One	1	Textron, Inc.
	Monmouth Junction, NJ 08852	2	Bell Aerospace Co. Division
			ATTN: T.M. Ferger
1	Hughes Aircraft Company		P.O. Box 1
	ATTN: T.E. Ward		Buffalo, NY 14240
	8433 Fallbrook Avenue		, <u> </u>
	Canoga Park, CA 91303	1	Thiokol Corporation
			Elkton Division
1	Rockwell International Corp.		ATTN: W.N. Brundige
	Rocketdyne Division		P.O. Box 241
	ATTN: J.E. Flanagan/HB02		Elkton, MD 21921
	6633 Canoga Avenue		
	Canoga Park, CA 91304	1	Thiokol Corporation
	,	•	Huntsville Division
4	Sandia National Laboratories		ATTN: R. Glick
	Combustion Sciences Dept.		Huntsville, AL 35807
	ATTN: R. Cattolica		
	S. Johnston	3	Thiokol Corporation
	P. Mattern	5	Wasatch Division
	D. Stephenson		ATTN: S.J. Bennett
	Livermore, CA 94550		P.O. Box 524
	Elicimole, on 94330		
			Brigham City, UT 84302

No. Of		No. Of	
Copies	Organization	Copies	Organization
OOPICO	organization .	COPIES	Organization
1	United Technologies		
1	ATTN: A.C. Eckbreth	1	University of California,
			Berkeley
	East Hartford, CT 06108		Mechanical Engineering Dept.
			ATTN: J. Daily
3	United Technologies Corp.		Berkeley, CA 94720
	Chemical Systems Division		,,
	ATTN: R.S. Brown	1	University of California
	T.D. Myers (2 copies)	-	Los Alamos Scientific Lab.
	P.O. Box 50015		
			ATTN: T.D. Butler
	San Jose, CA 95150-0015		P.O. Box 1663, Mail Stop B216
•			Los Alamos, NM 87545
2	United Technologies Corp.		
	ATTN: R.S. Brown	2	University of California,
	R.O. McLaren		Santa Barbara
	P.O. Box 358		Quantum Institute
	Sunnyvale, CA 94086		ATTN: K. Schofield
	, , , , , , , , , , , , , , , , , , , ,		M. Steinberg
1	Universal Propulsion Company		9
	ATTN: H.J. McSpadden		Santa Barbara, CA 93106
	•	_	
	Black Canyon Stage 1	1	University of Southern
	Box 1140		California
	Phoenix, AZ 85029		Dept. of Chemistry
			ATTN: S. Benson
1	Veritay Technology, Inc.		Los Angeles, CA 90007
	ATTN: E.B. Fisher		
	4845 Millersport Highway	1	Case Western Reserve Univ.
	P.O. Box 305	•	Div. of Aerospace Sciences
	East Amherst, NY 14051-0305		ATTN: J. Tien
	nase minerse, NI 14031 0303		
1	Painham Vanna Universita		Cleveland, OH 44135
1	Brigham Young University		
	Dept. of Chemical Engineering	1	Cornell University
	ATTN: M.W. Beckstead		Department of Chemistry
	Provo, UT 84601		ATTN: E. Grant
			Baker Laboratory
1	California Institute of Tech.		Ithaca, NY 14853
	Jet Propulsion Laboratory		
	ATTN: MS 125/159	1	Univ. of Dayton Rsch Inst.
	4800 Oak Grove Drive	•	-
	Pasadena, CA 91103		AFRPL/PAP Stop 24
1	0.1/5		Edwards AFB, CA 93523
1	California Institute of		
	Technology	1	University of Florida
	ATTN: F.E.C. Culick/		Dept. of Chemistry
	MC 301-46		ATTN: J. Winefordner
	204 Karman Lab.		Gainesville, FL 32611
	Pasadena, CA 91125		

No. Of		No. Of	
Copies	Organization	Copies	Organization
3	Georgia Institute of	2	Princeton University
	Technology		Forrestal Campus Library
	School of Aerospace		ATTN: K. Brezinsky
	Engineering		I. Glassman
	ATTN: E. Price		P.O. Box 710
	W.C. Strahle B.T. Zinn		Princeton, NJ 08540
	Atlanta, GA 30332	1	Princeton University MAE Dept.
1	University of Illinois		ATTN: F.A. Williams
	Dept. of Mech. Eng.		Princeton, NJ 08544
	ATTN: H. Krier		11111ceton, No 00544
	144MEB, 1206 W. Green St.	1	Purdue University
	Urbana, IL 61801	-	School of Aeronautics
	,		and Astronautics
1	Johns Hopkins University/APL		ATTN: J.R. Osborn
	Chemical Propulsion		Grissom Hall
	Information Agency		
	ATTN: T.W. Christian		West Lafayette, IN 47906
	Johns Hopkins Road	2	Burduo University
	Laurel, MD 20707	۷.	Purdue University School of Mechanical
	2010.		Engineering
1	University of Michigan		_
	Gas Dynamics Lab		ATTN: N.M. Laurendeau S.N.B. Murthy
	Aerospace Engineering Bldg.		TSPC Chaffee Hall
	ATTN: G.M. Faeth		
	Ann Harbor, MI 48109-2140		West Lafayette, IN 47906
		1	Panagalaam Palutashais Turt
1	University of Minnesota	1	Rensselaer Polytechnic Inst.
	Dept. of Mechanical		Dept. of Chemical Engineering ATTN: A. Fontijn
	Engineering		Troy, NY 12181
	ATTN: E. Fletcher		110y, NI 12101
	Minneapolis, MN 55455	1	Stanford University
		+	Dept. of Mechanical
3	Pennsylvania State University		Engineering
	Applied Research Laboratory		ATTN: R. Hanson
	ATTN: K.K. Kuo		Stanford, CA 94305
	H. Palmer		Staniord, CA 94505
	M. Micci	1	University of Texas
	University Park, PA 16802	*	Dept. of Chemistry
			ATTN: W. Gardiner
1	Polytechnic Institute of NY		Austin, TX 78712
	Graduate Center		100 CIII, 1A /0/12
	ATTN: S. Lederman	1	University of Wesh
	Route 110	1	University of Utah
	Farmingdale, NY 11735		Dept. of Chemical Engineering ATTN: G. Flandro
	11,00		
			Salt Lake City, UT 84112

No. Of Copies

Organization

1

Virginia Polytechnic Institute and State University ATTN: J.A. Schetz Blacksburg, VA 24061

Aberdeen Proving Ground

Dir, USAMSAA

ATTN: AMXSY-D

AMXSY-MP, H, Cohen

Cdr, USATECOM

ATTN: AMSTE-TO-F

Cdr, CRDC, AMCCOM

ATTN: SMCCR-RSP-A

SMCCR-MU SMCCR-SPS-IL

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Rep	port Number Date of Report
2. Date Re	eport Received
	of interest for which the report will be used.)
	ecifically, is the report being used? (Information source, design edure, source of ideas, etc.)
-21	
as man-hour	e information in this report led to any quantitative savings as far rs or dollars saved, operating costs avoided or efficiencies achieved o, please elaborate.
	l Comments. What do you think should be changed to improve future (Indicate changes to organization, technical content, format, etc.)
	Name
CURRENT	Organization
ADDRESS	Address
	City, State, Zip
	cating a Change of Address or Address Correction, please provide the ect Address in Block 6 above and the Old or Incorrect address below.
	Name
OLD ADDRESS	Organization
	Address
	City, State, Zip

(Remove this sheet along the perforation, fold as indicated, staple or tape closed, and mail.)

- FOLD HERE --- -

Director

U.S. Army Ballistic Research Laboratory

ATTN: SLCBR-DD-T

Aberdeen Proving Ground, MD 21005-5066

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

FIRST CLASS PERMIT NO 12062 WASHINGTON, DC

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director

U.S. Army Ballistic Research Laboratory

ATTN: SLCBR-DD-T

Aberdeen Proving Ground, MD 21005-9989

FOLD HERE -

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

U225552