Isomorphism between general objects

Generalization of category theory

Shigeo Hattori

February 14, 2020

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Introduction

Prerequisites are only some first chapters of graduate level texts on general topology and graph theory; (1),(2). As you know, two objects are regarded as equivalent if they are isomorphic. This article introduces: how to find two general objects are isomorphic or not; given two non-isomorphic general objects, how to non-trivially abstract them so that they can be regarded as isomorphic.

5

6

8

Before we go ahead, let us glance at some trivial examples.

If $\{p_i\}_{i\in\{1,2,3\}}$ is a set of 3 objects pairwise isomorphic then $(p_1,p_2)\cong(p_1,p_3)$. Though $(p_1,p_2)\not\cong(p_1,p_1)$.

In general, two homeomorphic topological spaces are not isomorphic. For example, two Euclidean spaces (R_a^1, R_b^1) of the dimension 1 are homeomorphic but are not necessarily isomorphic, e.g., $(X, T)_i := R_i^1$ and $X_b \subset 2^{X_a}$.

$$(R_a^1 \cong_h R_b^1) \wedge (R_a^1 \ncong R_b^1)$$

It is somehow easy to non-trivially abstract (R_a^1, R_b^1) so that (R_a^1, R_b^1) can be regarded as isomorphic. Though the same is not always trivial for pairs of general objects. Especially when the pair are not topological spaces.

A topological space X is a set of points defined the topology T. (X, T) also may be said a topological space.

Warning: Inside expressions of isomorphism, no convention implicitly 20 relates X to T; X is just a set of points, no topology is implicitly accompanied. 21

$\mathbf{2}$ Isomorphism **Definition 2.1** (Deep member). Take $\forall (c, x, y, n)$ such that: c is a chain of set membership $\stackrel{\text{and}}{\wedge} |c| = n$. x is the maximum member of c. y is the minimum member of c. Then c is said a deep chain of x; y is said a (n-1)th deep member of x and you write as $y \in ^{deep} x$ or $y \in ^{n-1} x$; (x,y) are also written as 26 $(\max(c), \min(c))$ respectively. 27 28 For example: $m \in \ldots \in y \in \ldots \in x$ For example: $\{y1, y2\} \in ^{deep} \{y1, y2\}$ $y \in ^{deep} \{1, \{2, y\}\}$ **Definition 2.2** (Deep graph and tree). Take $\forall (x, V, E_v, E_h)$ such that: V is the set of all deep chains of x; E_v is a set of directed edges on V such that $E_v := \{(c_1 > c_2) \in V^2 \mid c_1 \supset c_2) \land min(c_1) \in min(c_2) \}; E_h \text{ is a set of edges on }$ V such that $E_h := \{\{c_1, c_2\} \subset V \mid min(c_1) = min(c_2)\}.$ $G := (V, E_v, E_h)$ is said the deep graph of x; (V, E_v) is said the deep tree of x. All vertex of a deep tree is said an end node if it is not a sub chain of some 38 vertex of the deep tree. (E_v, E_h) are described as (vertical, horizontal) respectively. 41 **Definition 2.3** (Isomorphism). Take $\forall (x,y)$. Then $x \cong y \equiv (*1 \overset{\text{and}}{\wedge} \dots \overset{\text{and}}{\wedge} *3)$. 42 1. Deep graphs of (x, y) are graph isomorphic by a graph isomorphism f. **2.** $\exists F$ as a bijection on a set of indentities. 44 **3.** Take all end vertex v of the deep tree of x, then (*3a $\overset{\text{or}}{\vee}$ *3b). 45

47

48

3a. $F(\min(v)) = F(\min(f(v))).$

3b. $v \notin \text{domain}(F) \stackrel{\text{and}}{\wedge} \min(v) = \min(f(v)).$

3 Abstraction	49
Axiom 3.1. Take $\forall (x,y)$, then x has its identity written $\mathrm{ID}(x)$ such that (*1 and and	50
	51
1. $(x = y \overset{\text{or}}{\vee} x = ID(y) \overset{\text{or}}{\vee} ID(x) = y.) \equiv ID(x) = ID(y).$	52
2. $ID(x)=ID(ID(x))$.	53
3. The mathematics on $\mathrm{ID}(x)$ and the mathematics on $\mathrm{ID}(y)$ are equivalent.	54
1	55
We call y as the ID holder of $\mathrm{ID}(x)$ if $\exists n \ \wedge \ y = \mathrm{ID}^{-n}(x) \neq x$.	56
	57
If no such n exists then we call $ID(x)$ as the ID holder of $ID(x)$.	58
· ·	59
	60
Take $\forall ((X_1, T_1), (X_2, T_2))$ as homeomorphic topological spaces where $\forall T_i$ is a	61
topology. In the rest we prefer that $((X_1,T_1),(X_2,T_2))$ are also isomorphic. In	62
other words we prefer all points of $((X_1, T_1), (X_2, T_2))$ to be identities.	63
In the rest, we transform all topological space into the point abstraction.	64

Definition 3.1 (Point abstraction). Take $\forall (x,G)_{i\in\{1,2\}}$ such that (*0 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *11).	65 66
0. $G_{i \in \{1,2\}}$ denotes the deep graph of x_i .	67
1. $\neg(\exists y \text{ such that *1a}).$	68
1a. $\{y, \text{ID}(y)\} \subset \{d \mid d \in ^{deep} x_2 \} \stackrel{\text{and}}{\wedge} \text{ID}(y) \neq y.$	69
2. $\exists (f, G_3).$	70
3. G_3 is a sub graph of G_2 .	71
4. f is a graph isomorphism from G_1 to G_3 .	72
5. let $G_{i\in\{1,2,3\}}$ be decomposed as $(V, E^v, E^h)_i := G_i$.	73
6. take $\forall v \in V_1$, then f preserves the length of v as the deep chain.	74
7. take $\forall v_2$ such that: $v_2 \in V_2 - V_3 \overset{\text{or}}{\vee} v_2$ is an end vertex of V_3 .	7 5
8. then $\exists v_3 \in V_3$.	7 6
9. v_3 is a sub chain of $v_2 \stackrel{\text{and}}{\wedge} v_3$ is an end vertex of V_3 .	77
10. $\min(f^{-1}(v_3)) = \mathrm{ID}(\min(v_3)).$	78
11. All point of V_2 is an instance of v_2 .	7 9
	80
x_1 is said the point abstraction of x_2 .	81
•	82
4 Applications in geometrical topology	83
4.1 Natural automorphism	84
Definition 4.1 (Natural automorphism).	85
Let $I:=[0,1]$, i.e., I is a unit interval.	86
As you know I is more than a topological space. It is defined a metric table, and decided	87
which end point is said as 0.	88
Let (Y, T_Y) denote the topological space of I where Y is the set of points and T_Y is the topology on Y . We use I as a bijective index set for Y	89
T_Y is the topology on Y. We use I as a bijective index set for Y.	90

	91
Take $\forall X$ such that: X is a topological space defined the topology T_X . Let	92
(P_{XY}, T_{XY}) denote the product space for $X * Y$. Take $\forall p :\in P_{XY}$, Write p as	93
$[x, y]$. That is, $(x, y) = ID^{-1}(p)$.	94
	95
Take $\forall F$ as an injection from X^*Y to P_{XY} such that $(*0 \ \stackrel{\text{and}}{\wedge} \dots \ \stackrel{\text{and}}{\wedge} *2)$. Hence	96
${\cal F}$ takes a pair of points as the input. Then ${\cal F}$ outputs a point which is the	97
identity of a pair of points.	98
$0. \ \mathrm{Take} \ \forall (x_1, y) :\in X^*Y.$	99
1. $\exists x_2 :\in X \ \wedge \ F(x_1, y) = [x_2, y].$	100
2. $F(\forall x, 0) := [x, 0].$	101
	100
I at E has solution of E with (V I) food such that E (Va Va). [a.d.]	102
Let F_0 be a solution of F with (X, I) fixed such that: $F_0(\forall x, \forall y) := [x, y]$.	103
Take $\forall F_i$ as a solution of F with (X, I) fixed such that: *1.	104105
1. $(F_i, T_X, T_Y, T_{XY}) \cong (F_0, T_X, T_Y, T_{XY}).$	106
	107
Let A denote the set of all solutions of F_i with (X, I) fixed. Take $\forall F_i :\in A, \forall g$	
such that g is a function on X as $g(\forall x) := ID^{-1} \circ F_i(x,1)$. Then g is said a	
natural automorphism on X .	110
Definition 4.2 (Natural automorphia)	111
Definition 4.2 (Natural-automorphic).	111
Take $\forall X$ such that: X is a topological space. Take $\forall (s1, s2)$. Then $(s1, s2)$ are said X -natural-automorphic if: $\exists F$ as a super set of some natural automorphic	
phism on $X \stackrel{\text{and}}{\wedge} s1 \cong^F s2$.	
phism on $X / SI = SZ$.	114
4.2 Ideal set of sub spaces	115
•	110
Definition 4.3 (Ideal set of sub spaces).	116
Take $\forall (X, S)$ such that: X is a topological space. S is a set of sub spaces of X.	117
S is said ideal if: $(*1 \stackrel{\text{and}}{\wedge} \dots \stackrel{\text{and}}{\wedge} *7)$.	118
1. Let S_P be the set to collect $\forall (s,p)$ such that $s \in S \stackrel{\text{and}}{\wedge} p \in s$.	119
2. $\exists B$ as an open basis to generate X .	120
Regard B as a subset of the power set of X .	121

5. Let $S_B := \{S_b 1 \mid \exists S_b 2 \in S_B \ \wedge \ S_b 1 = \{ \mathrm{ID}((s,p)) \mid (s,p) \in S_b 2 \} \}.$	124
6. S_B is an open basis on S_P .	125
7. Members of S_P are pairwise S_P -natural-automorphic.	126
· ·	127
Take $\forall (X,T,S,F,A)$ such that: S is an ideal set of sub spaces of (X,T) where T is the topology. F is the set to collect: $\forall f\colon X^*[0,1]\to X$ such that f is an ambient isotopy. A is the set to collect $\forall (g,S_1,S_2)$ such that: g is a natural automorphism on $X \ \wedge \ (S1,S2)$ are subsets of $S \ \wedge \ (S_1,T) \cong^g (S_2,T)$. Then $(*1 \ \wedge \ \dots \ \wedge \ *4)$ holds.	130 131 132 133
	134
•	135
() () ()	136
4. $(f_t, S, S) \in A \stackrel{\text{and}}{\wedge} \text{if } t = 1 \text{ then } f_t = g.$	137
-	138
Definition 4.4 (Prime topological space). Take $\forall X$ as a topological space. Then X is said prime if *1.	139 140
	141 142 143
Conjecture 4.2 (Ideal set of sub spaces). Take $\forall (X, S)$ such that: X is a prime topological space. S is a set of sub spaces of X . Then S is ideal if (*1 $\stackrel{\text{and}}{\wedge}$ *2).	144
1. Members of $\{S\}^*X$ are pairwise X-natural-automorphic.	146
2. Let $S_p := \{(s, p) \mid s \in S \stackrel{\text{and}}{\wedge} p \in s \}.$	147
Members of $\{S\}^*S_p$ are pairwise X-natural-automorphic.	148
· ·	149

3. Let $S_B := \{S_b \mid \exists b \in B \ \stackrel{\text{and}}{\wedge} S_b = \{(s, p) \in S_P \mid s \subset b \} \}.$

4. Let $S_P := \{ \mathrm{ID}((s,p)) \mid (s,p) \in S_P \}.$

122

123

5 Abstract conjectures	150
5.1 Main abstract conjecture	151
$ \begin{tabular}{ll} \textbf{Conjecture 5.1} & (Abstract conjecture of ideal set and metric). \\ Take $\forall (M,X,S1,f)$ such that *A. \\ & Consider (*B \to *C). It is independent from the topological class of members of $S1$ if f is enough general for topological classes of members of solutions of $S1$ with (M,X) fixed. \\ & The claim converges to true if generality approaches to the perfect. \\ \end{tabular} $	
A. *1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *3.	158
 M is a metric table to define X as a topological space ^{and} X is prime. S1 is an ideal set of sub spaces of X. f is a function on S1. *1 ^{and} / ^{and} *3. Take ∀k1 :∈ S1 Let S2 := {k2 ∈ S1 f(k2) = f(k1) }. S2 is unique for (M, X). Unique?: For example, take ∀x :∈ Deep(X). If S2 is the set to collect ∀k :∈ S1 such that x ∈ Deep(k) then S2 is not unique for (M, X) in general because x is not unique for (M, X) in general. Instead S2 is unique for (M, X, x). S2 is ideal. 	160 161 162 163 164 165
5.2 Application on knots	17 1
Let Conj be an alias for Conjecture 5.1. Let Def be an alias for the following Definition 5.1. The antecedent of Conj apparently holds for (M, X, K, K_f, f) of Def in place of $(M, X, S1, S2, f)$. And f is apparently enough general as required in Conj.	173
Definition 5.1 (A set of knots). Take $\forall (M, X, K, K_f)$ such that: M is a metric table to define X as a Euclidean space of 3-dimension. Take $\forall k_0$ as a knot and a subspace of X . K is the set to collect $\forall k$ such that: (k, k_0) are X -natural-automorphic.	176 177 178 179

$K_f := \{ k \in K \mid f(k) = f(k_0) \}.$	180
Definition of f :	181 182
• $j1(\forall k :\in K) := \{j \mid j \text{ is an orthogonal }^1 \text{projection of } k \text{ onto some infinite plane } \}.$	183 184
• $j2(\forall k :\in K) := \{j \in j1(k) \mid \neg (\exists p \land p \in \text{image}(j) \land j^{-1}(p) \mid > 2) \}.$	185 186
• $j3(\forall k:\in K):=\{n\mid\exists j\overset{\mathrm{and}}{\wedge} j\in j2(k)\overset{\mathrm{and}}{\wedge} n \text{ is the number of 2 double points on j}\}.$	187 188
• $f(\forall k :\in K) := \{m \mid m \text{ is the maximal member from } j3(k) \}.$	189 190
•	191
6 Notation	192
• take $\forall x \equiv \text{for } \forall x \equiv \forall x$.	193
In other words, "take" means nothing.	194
• $\forall x \text{ as a set} \equiv \forall x \text{ such that } x \text{ is a set.}$	195
• Assume y is dependent on z then:	196
$\forall x \text{ as a solution of } y \text{ with } z \text{ fixed} \equiv \forall x \text{ as a solution of } y.$	197
• $\{x \mid p(x)\} \equiv$ the set to collect $\forall x$ such that $p(x)$.	198
In definitions, I rarely write "if and only if". In stead I write "if" even if I know that "if and only if" can replace the "if".	199 200 201
References	202
[1] Glen E. Bredon, Topology and Geometry, Springer, ISBN 978-1-4419-3103-0	203
[2] Reinhard Diestel, Graph Theory, Springer-Verlag, ISBN 0-387-98976-5	204

 $^{^1{\}rm Hence},\,j$ is a function from k to an infinite plane. $^2{\rm Double}$ point?: That is, the inverse image of a double point has exactly 2 distinct points