32. a. Explain about global data flow analysis.

(OR)

- b.i. Explain loop optimization techniques.
- ii. Write short notes on parameter passing.

* * * * *

Reg. No.				
			1 1	

B.Tech. DEGREE EXAMINATION, NOVEMBER 2019

Third to Seventh Semester

15CS314J - COMPILER DESIGN

(For the candidates admitted during the academic year 2015 - 2016 to 2017 - 2018)

Note:

- (i) Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- (ii) Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

- 1. Give a NFA, with N states, the maximum number of states in a equivalent minimized DFA is atleast
 - (A) N^2

(B) 2^N

(C) $2^{N}-1$

- (D) N1
- 2. The output of lexical analyzer is
 - (A) Set of regular expression
- (B) Syntax tree

(C) Set of tokens

- (D) String character
- 3. Which concept of finite state automata is used in compiler?
 - (A) Lexical analyzer

(B) Parser

(C) Code generator

- (D) Code optimization
- 4. _____ in the source program is done in translation process.
- (A) Classes

(B) Objects

(C) Errors

- (D) Text
- 5. A grammar that produces more than one parse tree is called
 - (A) Ambiguous grammar
- (B) Unambiguous grammar

(C) Regular grammar

- (D) Context free grammar
- 6. Parsing is also known as
 - (A) Lexical analysis

(B) Syntax analysis

(C) Semantic analysis

- (D) Code generation
- 7. The grammar $A \rightarrow AA \mid (A) \mid e$ is not suitable for predictive because the grammar is
 - (A) Ambiguous

(B) Left recursive

(C) Right recursive

- (D) Operator grammar
- 8. A top down parser generates
 - (A) Left most derivation
- (B) Left most derivation in reverse
- (C) Right most derivation
- (D) Right most derivation in reverse

Page 4 of 4

19NF3-7/15CS314J

Page 1 of 4

19NF3-7/15CS314J

9.	The	postfix notation of the expression $A * E$	3+C	/D is					
	(A)	* <i>AB CD</i> +	(B)	AB*CD/+					
	(C)	A*BC+/D	(D)	ABCD + / *					
10.	Inherited attribute of a node in parse tree is computed from								
		Left sibling and child	` '	Sibling					
	(C)	Sibling and child	(D)	Child					
11.	•	entax directed definition 'S' attribute if							
		Every attribute is inherited		Every attribute is synthesized					
	(C)	Synthesized and inherited	(D)	Null					
4.0									
12.		k patching is done for	(D)	G =					
		Assembly statement	` '	Case statement					
	(C)	Flow of control statement	(D)	Syntax tree generation					
10	Oct .								
13.		specific task storage manager performs		D					
	(A)		(B)	Protection of storage area allocated to a					
		programs		program illegal access by other programs in					
	(0)	G	(D)	the sly					
	(C)	Status of each program	(D)	Allocation, deallocation and protection of					
				storage area allocated to the program					
1.4	Com	sides the assumes E > E + s / E + s /	fo	with a contanger to the transfer in wight					
14.		ential form of the reduction are	n 10	r the sentence $n + n * n$ the handles in right					
		$n, E + n$ and $E + n \times n$	(D)	$n, E + n$ and $E + E \times n$					
	` /		` '						
	(C)	$n, n+n$ and $n+n \times n$	(D)	$n, E + n$ and $E \times n$					
1.5	A +	which phage the appoints register is pielze	d +0	aggagg the verichle					
15.		which phase the specific register is picked							
		Register assignment Procedure calls	` '	Register allocation Register evaluation					
	(C)	Flocedure cans	(D)	Register evaluation					
16	Cala	ction of set of values that will reside on	the	register at each point in the program is					
10.		Register allocation .		Register assignment					
		Procedure calls		Register evaluation					
	(0)	Troccutic caris	(D)	register evaluation					
17	The	optimization which avoids test at every	itera	tion is					
17.		Loop unrolling		Loop jamming					
		Constant folding		Sub expression elimination					
	(0)	Company Toronag	(2)	Sac Supression Cimination					
18.	A co	ompiler for a high level language that	t run	s on one machine and produces code for a					
		erent machine is called							
		Optimizing compiler	(B)	One pass compiler					
- 4		Cross compiler	` '	Multipass compiler					
	(-)	1	(-)	1					
19.	19. The identification of common sub expression and replacement of runtime computations by								
		pile time computation is		1					
1		Local optimization	(B)	Loop optimization					
		Constant folding	. ,	Dataflow analysis					
2 - 6 4				108122 5/15/0021 / 1					
2 of 4				19NF3-7/15CS314J					

- 20. Fragment of code that resides in the loop and computes the same value at each iteration is called
 - (A) Invariant code

(B) Induction analysis

(C) Strength reduction

(D) Loop reduction

$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Write short notes on LEX.
- 22. Check whether the given grammar is ambiguous.
- 23. Construct the leading and trailing for the following grammar, $E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow id$
- 24. Construct the three address code for a(a < b + c) a = a c; c = b * c.
- 25. Give the applications of Directed Acyclic Graph (DAG).
- 26. Write the SDT (Syntax Directed Translation) for type declaration statement.
- 27. Write short notes on dead code elimination.

$$PART - C (5 \times 12 = 60 Marks)$$

Answer ALL Questions

28. a. Explain how input buffering helps lexical analyzer in compilation process with example.

- b. Explain the process of constructing an NFA from the regular expression. Find the NFA for the expression $(a \mid b)^*abb$.
- 29. a. Check whether the given grammar is LL(1) or not $S \rightarrow iEtS \mid iEtSeS \mid a, E \rightarrow b$.

- b. Design a LALR parser for the following grammar $S \to L = R \mid R, L \to *R \mid id, R \to L$ and parse the string "id = id".
- 30. a. Write down the SDD (Syntax Directed Definition) to produce three address code for assignment statement.

(OR)

- b. Explain back patching which example and SDD (Syntax Directed Definition).
- 31. a. Design a simple code generator.

(OR)

b. Construct DAG (Directed Acyclic Graph) and target code for the expression. x = ((a+b)/(b-c)) - (a+b)*(b-c) + fand explain the same.