(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

L 1890 BULLION IN BONNE HON BONN BONNE HIN EEN BONN FORD FORD HON BONN BONNE HON BONN FORD

(43) Internationales Veröffentlichungsdatum 23. Oktober 2003 (23.10.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 2003/087935 A3

(51) Internationale Patentklassifikation⁷: 7/075, B81C 1/00

G03F 7/00,

(21) Internationales Aktenzeichen: PCT/EP2003/003666

(22) Internationales Anmeldedatum:

9. April 2003 (09.04.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 102 17 151.3 17. April 2002 (17.04.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CLARIANT GMBH [DE/DE]; Brüningstrasse 50, 65929 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SPIESS, Walter [DE/DE]; Erlenweg 16, 64839 Münster (DE). KITA, Fumio [JP/DE]; Grillparzerstrasse 9, 65187 Wiesbaden (DE). MEIER, Michael [DE/DE]; Im Kornfeld 6, 65835 Liederbach (DE). GIER, Andreas [DE/DE]; Holtendorfer

Strasse 73B, 49326 Melle (DE). MENNIG, Martin [DE/DE]; Mittelstrasse 5, 66287 Quierschied (DE). OLIVEIRA, Peter, W. [BR/DE]; Nauwieser Strasse 40, 66111 Saarbrücken (DE). SCHMIDT, Helmut [DE/DE]; Im Königsfeld 29, 66130 Saarbrücken-Güdingen (DE).

(74) Anwalt: HÜTTER, Klaus; Clariant GmbH, Am Unisys-Park 1, 65843 Sulzbach (DE).

(81) Bestimmungsstaaten (national): CN, JP, KR, SG, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

mit internationalem Recherchenbericht

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 1. April 2004

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: NANOIMPRINT RESIST

(54) Bezeichnung: NANOIMPRINT-RESIST

(57) Abstract: The invention relates to a method for microstructuring electronic components, which yields high resolutions (≤200 nm) at a good aspect ratio while being significantly less expensive than photolithographic methods. The inventive method comprises the following steps: i) a planar unhardened sol film of a nanocomposite composition according to claim 1 is produced; ii) a target substrate consisting of a bottom coat (b) and a support (c) is produced; iii) sol film material obtained in step i) is applied to the bottom coat (b) obtained in step ii) by means of a microstructured transfer embossing stamp; iv) the applied sol film material is hardened; v) the transfer embossing stamp is separated, whereby an embossed microstructure is obtained as a top coat (a). The method for producing a microstructured semiconductor material comprises the following additional steps: vi) the remaining layer of the nanocomposite sol film is plasma etched, preferably with CHF₃/O₂ plasma; v) the bottom coat is plasma etched, preferably with O₂ plasma; vi) the semiconductor material is etched or the semiconductor material is doped in the etched areas.

(57) Zusammenfassung: Die Erfindung betrifft eine Methode zur Mikrostrukturierung elektronischer Bauteile zu entwickeln, die hohe Auflösungen (≤200 nm) bei gutem Aspektverhältnis liefert, aber deutlich kostengünstiger ist als photolithographische Verfahren. Das erfindungsgemässe Verfahren umfasst die Schritte: i) Herstellung eines planaren ungehärteten Solfilms einer Nanokomposit-Zusammensetzung nach Anspruch 1; ii) Herstellung eines Zielsubstrats, bestehend aus einem Bottomcoat (b) und einem Support (c); iii) Übertragung von Solfilm-Material aus (i) mittels eines mikrostrukturierten Transferprägestempels auf den Bottomcoat (b) in (ii); iv) Härtung des übertragenen Solfilm-Materials; v) Abtrennung des Transferprägestempels unter Erhalt einer geprägten Mikrostruktur als Topcoat (a). Die Herstellung eines mikrostrukturierten Halbleitermaterials umfasst zusätzlich die Schritte: vi) Plasmaätzung der Restschicht des Nanokomposit-Solfilms, vorzugsweise mit CHF₃/O₂-Plasma, v) Plasmaätzung des Bottomcoat, vorzugsweise mit O₂-Plasma, vi)Ätzung des Halbleitermaterials oder Dotierung des Halbleitermaterials an den geätzten Stellen.

