CHAPTER - I

1. If $A=(1\ 2\ 3)$, then the rank of AA^T is

(a) 0

(b) 2

(c) 3

(d) 1

2. The rank of m × n matrix whose elements are unity is

(a) 0

(b) 1

(c) m

(d) n

3. If $T = {A \over B} {0.4 \choose 0.2} {0.6 \choose 0.8}$ is a transition probability matrix, then at equilibrium A is equal to

(a) 1/4

(b) 1/5

(c) 1/6

(d) 1/8

4. If $A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$, then $\rho(A)$ is

(a) 0

(b) 1

(c) 2

(d) n

5. The rank of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$ is

(a) 0

b) 1

(c) 2

(d) 3

6. The rank of the unit matrix of order n is

(a) n -1

(b) n

(c) n + 1

(d) n2

7. If ρ (A) = r then which of the following is correct?

(a) all the minors of order r which does not vanish

(b) A has at least one minor of order r which does not vanish

(c) A has at least one (r + 1) order minor which vanishes

(d) all (r+1) and higher order minors should not vanish

8. If A = $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ then the rank of AA^T is

(a) C

(b) 1

(c) 2

(d) 3

9. If the rank of the matrix $\begin{pmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{pmatrix}$ is 2. Then λ is

(a) 1

(b) 2

(c) 3

(d) only real number

10. The rank of the diagonal matrix

(a) 0

(b) 2

(c) 3

(d) 5

11. If $T = A \begin{pmatrix} 0.7 & 0.3 \\ 0.6 & x \end{pmatrix}$ is a transition probability matrix, then the value of x is

(a) 0.2

(b) 0.3

(c) 0.4

(d) 0.7

12. Which of the following is not an elementary transformation?

(a) $Ri \leftrightarrow Rj$

(b) $Ri \rightarrow 2 Ri + 2Ci$

(c) $Ri \rightarrow 2 Ri - 4Rj$

(d) $Ci \rightarrow Ci + 5Ci$

13. If $\rho(A) = \rho(A, B)$ then the system is

(a) Consistent and has infinitely many solutions

(b) Consistent and has a unique solution

(c) Consistent

(d) inconsistent

14. If $\rho(A) = \rho(A, B)$ = the number of unknowns, then the system is

(a) Consistent and has infinitely many solutions

(b) Consistent and has a unique solution

(c) inconsistent

(d) consistent

15.	. If $\rho(A) \neq \rho(A, B)$, then the	e system is				
	(a) Consistent and has infir	nitely many soluti	ions	(b) Consistent and ha	s a unique solution	
	(c) inconsistent			(d) consistent		
16.	In a transition probability n	natrix, all the ent	ries are greate	er than or equal to		
	(a) 2 (b)) 1	(c) 0	(d) 3	3	
17.	. If the number of variables is	n a non- homoge:	neous system	AX = B is n, then the	system possesses a	
	unique solution only when					
	(a) ρ (A) = ρ (A, B) > n	(t	$\rho(A) = \rho(A)$	A, B = n		
	(c) ρ (A) = ρ (A, B) < n	(c	l) none of thes	e		
18.	The system of equations 4x	+ 6 y = 5 , 6x + 9	y = 7 has			
	(a) a unique solution	(b) no solution	(c) in	finitely many solution	s (d) none of these	
19.	. For the system of equations $x + 2y + 3z = 1$, $2x + y + 3z = 2$, $5x + 5y + 9z = 4$					
	(a) there is only one solution	n	(b) there e	xists infinitely many s	olutions	
	(c) there is no solution		(d) None o	f these		
20.	If $ A \neq 0$, then A is					
	(a) non- singular matrix	(b) singular ma	atrix (c) zer	o matrix	(d) none of these	
21.	. The system of linear equation	ons $x + y + z = 2$, 2x + y - z =	3 , 3x + 2 y + k = 4 has	s unique solution, if k	
	is not equal to					
	(a) 4	(b) 0	(c) -4		(d) 1	
22.	Cramer's rule is applicable only to get an unique solution when					
	(a) $\Delta_z \neq 0$	(b) $\Delta_x \neq 0$	(c) ∆ ≠	0	(d) $\Delta_y \neq 0$	
23.	. If $\frac{a_1}{x} + \frac{b_1}{y} = c_1$, $\frac{a_2}{x} + \frac{b_2}{y} = c_2$, $\Delta_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$; $\Delta_2 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$; $\Delta_3 = \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix}$ then (x, y) is					
	(a) $\left(\frac{\Delta_2}{\Delta_1}, \frac{\Delta_3}{\Delta_1}\right)$	(b) $\left(\frac{\Delta_3}{\Delta_1}, \frac{\Delta_2}{\Delta_1}\right)$	(c) $\left(\frac{\Delta_1}{\Delta_2}\right)$	$\frac{\Delta_1}{\Delta_3}$	(d) $\left(\frac{-\Delta_1}{\Delta_2}, \frac{-\Delta_1}{\Delta_3}\right)$	
24.	$ A_{n\times n} = 3$ adjA = 243 then the value n is					
	(a) 4	(b) 5	(c) 6		(d) 7	
25.	Rank of a null matrix is					
	(a) 0	(b) −1	(c) ∞		(d) 1	

CHAPTER - II

$$1. \int \frac{1}{v^3} dx$$
 is

(a)
$$\frac{-3}{x^2} + c$$

(b)
$$\frac{-1}{2x^2} + c$$

(c)
$$\frac{-1}{3x^2}$$
 + c

(d)
$$\frac{-2}{x^2} + c$$

2.
$$\int 2^x dx$$
 is

(a)
$$2^x \log 2 + c$$

(b)
$$2^x + c$$

(c)
$$\frac{2^{x}}{\log 2} + c$$

(d)
$$\frac{\log 2}{2^x} + c$$

3.
$$\int \frac{\sin 2x}{2\sin x} dx$$
 is

(b)
$$\frac{1}{2}\sin x + c$$

(c)
$$\cos x + c$$

(d)
$$\frac{1}{2}\cos x + c$$

4.
$$\int \frac{\sin 5x - \sin x}{\cos 3x} dx$$
 is

(a)
$$-\cos 2x + c$$

(b)
$$-\cos 2x + c$$

(c)
$$-\frac{1}{4}\cos 2x + c$$

(d)
$$-4\cos 2x + c$$

$$5. \int \frac{\log x}{x} dx , x > 0 is$$

(a)
$$\frac{1}{2}(\log x)^2 + c$$

(b)
$$-\frac{1}{2}(\log x)^2$$

(c)
$$\frac{2}{x^2}$$
 + c

(d)
$$\frac{2}{x^2}$$
 + c

6.
$$\int \frac{e^x}{\sqrt{1+e^x}} dx$$
 is

(a)
$$\frac{e^x}{\sqrt{1+e^x}} + c$$

(b)
$$2\sqrt{1 + e^x} + c$$
 (c) $\sqrt{1 + e^x} + c$

(c)
$$\sqrt{1 + e^x} + c$$

(d)
$$e^{x}\sqrt{1+e^{x}}+c$$

7.
$$\int \sqrt{e^x} dx$$
 is

(a)
$$\sqrt{e^x} + c$$

(b)
$$2\sqrt{e^x} + c$$

(c)
$$\frac{1}{2}\sqrt{e^{x}} + c$$

(d)
$$\frac{1}{2\sqrt{e^x}} + c$$

8.
$$\int e^{2x}[2x^2 + 2x]dx$$

(a)
$$e^{2x}x^2 + c$$

(b)
$$xe^{2x} + c$$

(c)
$$2x^2e^2 + c$$

(d)
$$\frac{x^2 e^x}{2} + c$$

9.
$$\int \frac{e^x}{e^x + 1} dx is$$

(a)
$$\log \left| \frac{e^x}{e^{x+1}} \right| + c$$

(b)
$$\log \left| \frac{e^x + 1}{e^x} \right| + c$$

(c)
$$\log |e^x| + c$$

(d)
$$\log |e^x + 1| + c$$

10.
$$\int \left[\frac{9}{x-3} - \frac{1}{x+1} \right] dx$$
 is

(a)
$$\log |x - 3| - \log |x + 1| + c$$

(b)
$$\log |x - 3| + \log |x + 1| + c$$

(c)
$$9\log |x - 3| - \log |x + 1| + c$$

(d)
$$9\log |x - 3| + \log |x + 1| + c$$

11.
$$\int \frac{2x^3}{4+y^4} dx$$
 is

(a)
$$\log |4 + x^4| + c$$

(b)
$$\frac{1}{2}\log|4 + x^4| + c$$
 (c) $\frac{1}{4}\log|4 + x^4| + c$

(c)
$$\frac{1}{4}\log|4 + x^4| + c$$

(d)
$$\log \left| \frac{2x^3}{4+x^4} \right| + c$$

12.
$$\int \frac{dx}{\sqrt{x^2-36}}$$
 is

(a)
$$\sqrt{x^2 - 36} + c$$

(b)
$$\log |x + \sqrt{x^2 - 36}| + c$$
 (c) $\log |x - \sqrt{x^2 - 36}| + c$

(d)
$$\log |x^2 + \sqrt{x^2 - 36}| + c$$

13.
$$\int \frac{2x+3}{\sqrt{x^2+3x+2}} dx$$
 is

(a)
$$\sqrt{x^2 + 3x + 2} + c$$

(b)
$$2\sqrt{x^2 + 3x + 2} + 6$$

(b)
$$2\sqrt{x^2 + 3x + 2} + c$$
 (c) $\log(x^2 + 3x + 2) + c$

(d)
$$\frac{2}{3}$$
 (x² + 3x + 2) $\frac{3}{2}$ + c

14.
$$\int_0^1 (2x+1) dx$$
 is

15.
$$\int_{2}^{4} \frac{dx}{x}$$
 is

16.
$$\int_0^\infty e^{-2x} dx$$
 is

(b) 1

(c) 2

(d) ½

17. $\int_{-1}^{1} x^3 e^{x^4} dx$ is

(a) 1

(b) $2\int_0^1 x^3 e^{x^4} dx$

(d) e^{x^4}

18. If f(x) is a continuous function and a < c < b, then $\int_a^c f(x) dx + \int_c^b f(x) dx$ is

(a) $\int_{a}^{b} f(x) dx - \int_{a}^{c} f(x) dx$ (b) $\int_{a}^{c} f(x) dx - \int_{a}^{b} f(x) dx$ (c) $\int_{a}^{b} f(x) dx$

(d) 0

19. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx$ is

(a) 0

(b) 2

(c) 1

(d) 4

20. $\int_0^1 \sqrt{x^4(1-x)^2} dx$ is

(a) 1 / 12

(b) -7/12

(d) -1 /12

21. If $\int_0^1 f(x) \, dx = 1$, $\int_0^1 x \, f(x) = a$ and $\int_0^1 x^2 \, f(x) dx = a^2$, $\int_0^1 (a-x)^2 \, f(x) dx$ is

(d) 1

22. The value of $\int_{2}^{3} f(5-x) dx - \int_{2}^{3} f(x) dx$ is

(c) -1

(d) 5

23. $\int_0^4 \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$ is

(a) 20/3

(b) 21/3

(c) 28/3

(d) 1/3

24. $\int_{0}^{\frac{\pi}{3}} \tan x \, dx$ is

(a) log 2

(b) 0

(c) $\log \sqrt{2}$

(d) 2 log 2

25. Using the factorial representation of the gamma function, which of the following is the solution for the gamma function $\Gamma(n)$ when n = 8

(a) 5040

(b) 5400

(c) 4500

(d) 5540

26. $\Gamma(n)$ is

(a) (n-1)!

(b) n!

(c) $n\Gamma(n)$

(d) $(n-1)\Gamma(n)$

27. $\Gamma(1)$ is

(a) 0

(b) 1

(c) n

(d) n!

28. If n > 0, then $\Gamma(n)$ is

(a) $\int_0^1 e^{-x} x^{n-1} dx$ (b) $\int_0^1 e^{-x} x^n dx$

(c) $\int_0^\infty e^x x^{-n} dx$

(d) $\int_{0}^{\infty} e^{-x} x^{n-1} dx$

29. $\Gamma(\frac{3}{2})$

(a) $\sqrt{\pi}$

(b) $\frac{\sqrt{\pi}}{2}$

(c) $2\sqrt{\pi}$

(d) $\frac{3}{2}$

30. $\int_{0}^{\infty} x^{4} e^{-x} dx$ is

(a) 12

(b) 4

(c) 4!

(d) 64

CHAPTER - III

1.	Area bounded by the o	curve $y = x (4 - x) be$	etween the limits 0 and 4 wit	h x - axis is			
	(a) 30/3 sq.units	(b) 31/2 sq.units	(c) 32/3 sq.units	(d) 15/2 sq.units			
2.	Area bounded by the curve $y = e^{-2x}$ between the limits $0 \le x \le \infty$ is						
	(a) 1 sq.units	(b) ½ sq.unit	(c) 5 sq.units	(d) 2 sq.units			
3.	Area bounded by the curve $y = \frac{1}{x}$ between the limits 1 and 2 is						
	(a) log2 sq.units	(b) log5 sq.units	(c) log3 sq.units	(d) log 4 sq.units			
4.	If the marginal revenue function of a firm is MR= $e^{\frac{-x}{10}}$, then revenue is						
			(c) $10 \left(1 - e^{\frac{-x}{10}}\right)$	(d) $e^{\frac{-x}{10}} + 10$			
5.	If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is						
	(a) $P = \int (MR - MC) dx + k$ (b) $P = \int (MR + MC) dx + k$						
	(c) $P = \int (MR)(MC) dx + k$ (d) $P = \int (R - C) dx + k$						
6.	The demand and supply functions are given by D (x)= $16 - x^2$ and S (x) = $2x^2 + 4$ are under perfect						
	competition, then the	equilibrium price x i	is				
	(a) 2	(b) 3	(c) 4	(d) 5			
7.	The marginal revenue and marginal cost functions of a company are MR = $30 - 6x$ and MC = $-24 + 3x$						
	where x is the product, then the profit function is						
	(a) $9x^2 + 54x$	(b) $9x^2 - 54x$	(c) $54x - \frac{9x^2}{2}$	(d) $54x - \frac{9x^2}{2} + k$			
8.	The given demand and supply function are given by D (x) = $20 - 5x$ and S (x) = $4x + 8$ if they are under						
	perfect competition then the equilibrium demand is						
	(a) 40	(b) 41/2	(c) 40/3	(d) 41/5			
9.	If the marginal revenu	MR = 35 + 7x - 3x	$ ho^2$, then the average revenue	AR is			
	(a) $35x + \frac{7x^2}{2} - x^3$	(b) $35 + \frac{7x}{2} - x^2$	(c) $35 + \frac{7x}{2} + x^2$	(d) $35 + 7x + x^2$			
10	. The profit of a function	on p(x) is maximum	when				
	(a) $MC - MR = 0$	(b) MC=0	(c) MR=0	(d) $MC+MR=0$			
11	For the demand function $p(x)$, the elasticity of demand with respect to price is unity then						
	(a) revenue is consta	nt (b) o	cost function is constant				
	(c) profit is constant (d) none of these						
12	. The demand function for the marginal function MR = $100 - 9x^2$ is						
	(a) $100 - 3x^2$	$(b)100x - 3x^2$	$(c)100x - 9x^2$	$(d)100 + 9x^2$			
13	8. When $x_0 = 5$ and p_0	= 3 the consumer's	surplus for the demand func	tion $p_d = 28 - x^2$ is			
	(a) 250 units	(b) 250/3 units	(c) 251/2 units	(d) 251/3 units			
14	When $x_0 = 2$ and p_0	= 12 the producer's	surplus for the supply functi	$ion p_s = 2x^2 + 4 is$			
	(a) 31/5 units	(b) 31/2 units	(c) 32/3 units	(d) 30/7 units			
15	. Area bounded by y =	x between the lines	y = 1, $y = 2$ with $y = axis$ is				
	(a) 1/2 sq.units	(b) 5/2 sq.units	(c) 3/2 sq.units	(d) 1 sq.unit			
16	. The producer's surpl	us when the supply	function for a commodity is I	$P = 3 + x \text{ and } x_0 = 3 \text{ is}$			
	(a) 5/2	(b) 9/2	(c) 3/2	(d) 7/2			
17	. The marginal cost fu	nction is MC = 100	x. find AC given that TC =0 w	hen the out put is zero is			

(b) $\frac{200}{3}$ $x^{\frac{3}{2}}$

(c) $\frac{200}{3}$

(d) $\frac{200}{3x^2}$

18. The demand and supply function of a commodity are $P(x) = (x - 5)^2$ and $S(x) = x^2 + x + 3$ then the equilibrium quantity x_0 is

(a) 5

(b) 2

(c) 3

(d) 19

19. The demand and supply function of a commodity are D(x)=25-2x and $S(x)=\frac{10+x}{4}$ then the equilibrium price P0 is

(a) 5

(b) 2

(c) 3

(d) 10

20. If MR and MC denote the marginal revenue and marginal cost and MR – MC = $36x - 3x^2 - 81$, then the maximum profit at x is equal to

(a) 3

(b) 6

(c) 9

(d) 5

21. If the marginal revenue of a firm is constant, then the demand function is

(a) MR

(b) MC

(c) C (x)

(d) AC

22. For a demand function p, if $\int \frac{dp}{p} = k \int \frac{dx}{x}$ then k is equal to

(a) η_d

(b) $-\eta_d$

(c) $\frac{-1}{1}$

(d) $\frac{1}{n_d}$

23. Area bounded by $y = e^x$ between the limits 0 to 1 is

(a) (e -1) sq.units

(b) (e + 1) sq.units

(c) $(1 - \frac{1}{2})$ sq.units

(d) $(1 + \frac{1}{e})$ sq.units

24. The area bounded by the parabola $y^2 = 4x$ bounded by its latus rectum is

(a) 16/3 sq.units

(b) 8/3 sq.units

(c) 72/3 sq.units

(d) 1/3 sq.units

25. Area bounded by y = |x| between the limits 0 and 2 is

(a) 1sq.units

(b) 3 sq.units

(c) 2 sq.units

(d) 4 sq.units