

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Tesis de Magister

Design and Sizing of an Energy Storage System for a Hybrid Tugboat

Tesis para optar al título de Magister en Ciencias de la Ingeniería Electrónico

> Alumno Leonardo Solis Zamora

Profesor Guía **Dr. Marcelo Pérez Leiva**

Comisión evaluadora Nombre del primer correferente, Correferente, UTFSM Nombre del segundo correferente, Correferente, CODELCO

Enero 2025, Valparaíso, Chile

This is the dedicatory page.

Agradecimientos

This is the abstract

Resumen

This is the abstract

Abstract

This is the abstract

Índice general

Agradecimientos		
Resumen		iii
Al	bstract	iv
	Introduction 1.1. Motivation and Background	3
Bi	ibliografía	4

Índice de figuras

1.1.	Global sources of greenhouse gas emissions. Source: theroundup.org	1
1.2.	Breakdown of CO ₂ emissions from the energy sector and the transport subsector.	
	Source: theroundup.org	2
1.3.	IMO greenhouse gas emissions strategy. Source: Lloyd Register, NOV, Assestment	
	of IMO Mandated Energy Efficiency Measures for International Shipping	2

Índice de tablas

Capítulo 1

Introduction

1.1. Motivation and Background

The growing global concern over climate change has significantly pressured industries to adopt sustainable practices. The maritime sector, responsible for approximately 30% of global CO_2 emmisions, has continuously increased int emissions, as shown in Fig. 1.

https://theroundup.org/co2-greenhouse-gas-emission-statistics/ https://www.container-xchange.com/blog/shipping-emissions/

Figura 1.1: Global sources of greenhouse gas emissions. Source: theroundup.org

Addressing emission reduction is critical, as strict regulations on emissions and fuel efficiency aimed at mitigating the environmental impact of maritime activities are being implemented worldwide [2].

One promising approach is adopting electro-mobility technologies in maritime operations. In this context, electromobility can be implemented through various strategies [3], from hybrid

- (a) CO₂ emissions from the energy sector.
- (b) CO₂ emissions from the transport subsector.

Figura 1.2: Breakdown of CO₂ emissions from the energy sector and the transport subsector. Source: theroundup.org

Figura 1.3: IMO greenhouse gas emissions strategy. Source: Lloyd Register, NOV, Assestment of IMO Mandated Energy Efficiency Measures for International Shipping

propulsion systems to fully electric vessels [4]. Hybrid propulsion, in particular, combines the advantages of diesel engines with electric power systems, offering a flexible and efficient solution

for reducing emissions without compromising performance [5]. The hybridization of propulsion systems relies on the separate or simultaneous use of different energy sources [1].

Several studies have examined hybrid propulsion systems. A marine hybrid propulsion system, focusing on vector control of the electric motor during different modes and verifying the control feasibility [6]. The optimization of hybrid propulsion system design for a tugboat has been explored, presenting a methodology that streamlines powertrain component sizing and control, minimizing costs for a specific operating profile [7]. A coordinated control strategy for a variable-speed hybrid tugboat have been presented to improve fuel economy. The proposed strategy, validated through simulations and a smallscale experimental testbed, showed reduced costs and lower CO2 emissions [8].

Among vessel types, tugboats—used for towing and maneuvering large ships—are among the highest emitters per unit of energy due to their highly variable load profiles [3]. Tugboats and ferries are ideal candidates for hybridization due to their operational profiles, which involve prolonged idling, low-speed maneuvering, and frequent speed changes that lead to inefficient fuel consumption [9].

This paper focuses on designing and sizing an energy storage system for a hybrid tugboat as a specific electro-mobility solution. Despite advancements in marine hybrid technologies, a standardized methodology for tugboat hybridization remains undefined [10]. The study presents a design methodology addressing parameters such as load profiles, power and energy demands, battery technology selection, and propulsion system optimization. Theoretical analysis is presented and simulation shows a emissions reduction while maintaining the robustness needed for towing and transit activities.

1.2. Challenges and Research Opportunities

1.3. Thesis Objectives and Outline

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],

Bibliografía

- [1] A. Carreno, M. Malinowski, M. A. Perez, and J. Ding, "Effects of grid voltage and load unbalances on the efficiency of a hybrid distribution transformer," *IEEE Open Journal of the Industrial Electronics Society*, vol. 5, pp. 1206–1220, 2024.
- [2] J. Yin, N. Dai, S. Vazquez, M. A. Perez, B. Zhang, J. I. Leon, and L. G. Franquelo, "Direct pulsewidth modulation technique for modular multilevel converters based on full-bridge submodules," *IEEE Transactions on Power Electronics*, pp. 1–14, 2024.
- [3] J. Yin, N. Dai, J. I. Leon, M. A. Perez, S. Vazquez, and L. G. Franquelo, "Common-mode-voltage regulation of modular multilevel converters through model predictive control," *IEEE Transactions on Power Electronics*, vol. 39, no. 6, pp. 7167–7180, 2024.
- [4] A. Carreno, M. Malinowski, M. A. Perez, and C. R. Baier, "Circulating active power flow analysis in a hybrid transformer with the series converter connected to the primary side," *IEEE Transactions on Industrial Electronics*, vol. 71, no. 10, pp. 11775–11784, 2024.
- [5] J. Yin, N. Dai, S. Vazquez, A. Marquez, J. I. Leon, M. A. Perez, and L. G. Franquelo, "An improved indirect pulsewidth modulation technique for modular multilevel converters," *IEEE Transactions on Power Electronics*, vol. 39, no. 1, pp. 733–743, 2024.
- [6] A. Carreno, M. A. Perez, and M. Malinowski, "State-feedback control of a hybrid distribution transformer for power quality improvement of a distribution grid," *IEEE Transactions on Industrial Electronics*, vol. 71, no. 2, pp. 1147–1157, 2024.
- [7] D. S. D'antonio, O. López-Santos, A. Navas-Fonseca, F. Flores-Bahamonde, and M. A. Pérez, "Multi-mode master-slave control approach for more modular and reconfigurable hybrid microgrids," *IEEE Access*, vol. 11, pp. 55 334–55 348, 2023.
- [8] C. R. Baier, F. A. Villarroel, M. A. Torres, M. A. Pérez, J. C. Hernández, and E. E. Espinosa, "A predictive control scheme for a single-phase grid-supporting quasi-z-source inverter and its integration with a frequency support strategy," *IEEE Access*, vol. 11, pp. 5337–5351, 2023.
- [9] J. Samanes, L. Rosado, E. Gubia, J. Lopez, and M. A. Perez, "Deadbeat voltage control for a grid-forming power converter with lcl filter," *IEEE Transactions on Industry Applications*, vol. 59, no. 2, pp. 2473–2482, 2023.
- [10] M. Liserre, M. A. Perez, M. Langwasser, C. A. Rojas, and Z. Zhou, "Unlocking the hidden capacity of the electrical grid through smart transformer and smart transmission," *Proceedings of the IEEE*, vol. 111, no. 4, pp. 421–437, 2023.

- [11] F. A. Villarroel, J. R. Espinoza, M. A. Pérez, C. R. Baier, J. A. Rohten, R. O. Ramírez, E. S. Pulido, and J. J. Silva, "A predictive shortest-horizon voltage control algorithm for non-minimum phase three-phase rectifiers," *IEEE Access*, vol. 10, pp. 107598–107615, 2022.
- [12] M. A. Perez, S. Ceballos, G. Konstantinou, J. Pou, and R. P. Aguilera, "Modular multilevel converters: Recent achievements and challenges," *IEEE Open Journal of the Industrial Electronics Society*, vol. 2, pp. 224–239, 2021.
- [13] F. A. Villarroel, J. R. Espinoza, M. A. Pérez, R. O. Ramírez, C. R. Baier, D. Sbárbaro, J. J. Silva, and M. A. Reyes, "Stable shortest horizon fcs-mpc output voltage control in non-minimum phase boost-type converters based on input-state linearization," *IEEE Transactions on Energy Conversion*, vol. 36, no. 2, pp. 1378–1391, 2021.
- [14] J. Yin, J. I. Leon, M. A. Perez, L. G. Franquelo, A. Marquez, and S. Vazquez, "Model predictive control of modular multilevel converters using quadratic programming," *IEEE Transactions on Power Electronics*, vol. 36, no. 6, pp. 7012–7025, 2021.
- [15] J. Yin, J. I. Leon, M. A. Perez, L. G. Franquelo, A. Marquez, B. Li, and S. Vazquez, "Variable rounding level control method for modular multilevel converters," *IEEE Transactions on Power Electronics*, vol. 36, no. 4, pp. 4791–4801, 2021.
- [16] C. A. Reusser, H. A. Young, J. R. Perez Osses, M. A. Perez, and O. J. Simmonds, "Power electronics and drives: Applications to modern ship propulsion systems," *IEEE Industrial Electronics Magazine*, vol. 14, no. 4, pp. 106–122, 2020.
- [17] F. Ruiz, M. A. Perez, J. R. Espinosa, T. Gajowik, S. Stynski, and M. Malinowski, "Surveying solid-state transformer structures and controls: Providing highly efficient and controllable power flow in distribution grids," *IEEE Industrial Electronics Magazine*, vol. 14, no. 1, pp. 56–70, 2020.
- [18] Q. Yang, M. Saeedifard, and M. A. Perez, "Sliding mode control of the modular multilevel converter," *IEEE Transactions on Industrial Electronics*, vol. 66, no. 2, pp. 887–897, 2019.
- [19] C. A. Rojas, S. Kouro, M. A. Perez, and J. Echeverria, "Dc–dc mmc for hvdc grid interface of utility-scale photovoltaic conversion systems," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 1, pp. 352–362, 2018.
- [20] A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, "Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 5, no. 4, pp. 1631–1656, 2017.
- [21] O. Menendez, F. A. Auat Cheein, M. Perez, and S. Kouro, "Robotics in power systems: Enabling a more reliable and safe grid," *IEEE Industrial Electronics Magazine*, vol. 11, no. 2, pp. 22–34, 2017.
- [22] A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, "Voltage-balancing approach with improved harmonic performance for modular multilevel converters," *IEEE Transactions on Power Electronics*, vol. 32, no. 8, pp. 5878–5884, 2017.
- [23] C. D. Fuentes, C. A. Rojas, H. Renaudineau, S. Kouro, M. A. Perez, and T. Meynard, "Experimental validation of a single dc bus cascaded h-bridge multilevel inverter for multistring photovoltaic systems," *IEEE Transactions on Industrial Electronics*, vol. 64, no. 2, pp. 930–934, 2017.