Raycast Against Polar Stereographic Heightfield

Lukas R. Hertrich

October 12, 2017

1 Data Format

Antarctic elevation and ice sheet data are provided by BEDMAP 2 in Antarctic polar stereographic projection. The projection plane is located at 71° south latitude and rays are cast down from the north pole to intersect the projection plane and ellipsoid. The angle is in ellipsoidal coordinates determined by WGS84.

2 Raycast

The 3D raycast is parameterized with an initial position $\vec{r_0}$, a direction \vec{d} , and a parameter τ , yielding

$$\vec{r}(\tau) = \vec{r_0} + \tau \hat{d} \tag{1}$$

This ray traverses flat, unmodified 3D cartesian space, meaning that distance traversed by the ray is equal to τ .

The same ray may be parameterized in terms of normalized cartesian coordinates, meaning that the $\vec{r_0}$ terms r_x and r_y are divided by the equatorial radius R_{eq} of the WGS84 ellipsoid, and the r_z term is divided by the polar radius R_{po} . This yields a magnitude of radius relative to the radius of the ellipsoid in the given direction, and a ray that intersects the ellipsoid's surface where $r_{ellipsoidal}(\tau) = 1$. The magnitude of $r_{ellipsoidal}$ may be determined as follows:

$$r_{ellipsoidal} = \sqrt{\frac{r_x^2 + r_y^2}{R_{eq}^2} + \frac{r_z^2}{R_{po}^2} + 2t\left(\frac{r_x d_x + r_y d_y}{R_{eq}^2} + \frac{r_z d_z}{R_{po}^2}\right) + t^2\left(\frac{d_x^2 + d_y^2}{R_{eq}^2} + \frac{d_z^2}{R_{po}^2}\right)}$$
(2)

3 Intersection With Heightfield

The ray intersects the heightfield when the normalized height radius $r_{height}(\tau)$ is equal to the normalized ellipsoidal radius $r_{ellipsoidal}(\tau)$. Their difference is then zero. Likewise the difference of their squares is zero.

$$0 = r_{height}(\tau) - r_{ellipsoidal}(\tau) \tag{3}$$

 $r_{ellipsoidal}(\tau)$ may be determined by [2]. $r_{height}(\tau)$ is the quotient of the interpolated height $h(\tau)$ and the unnormalized magnitude of the ellipsoid's radius $R(\tau)$ in the given direction.

$$r_{height}(\tau) = \frac{h(\tau)}{R(\tau)} \tag{4}$$

The interpolated height $h(\tau)$ is determined by generating the vector \vec{v}_{proj} from the north pole of the ellipsoid $(0,0,R_{po})$ to the point of ray traversal $\vec{r}(\tau)$ (given by [1]), then using the point of intersection of this vector with the projection plane to calculate (\mathbf{u},\mathbf{v}) coordinates with which to poll the heightfield data. The point of intersection with the projection plane is found by determining how far \vec{v}_{proj} must be traversed, in terms of its \hat{z} component, in order to hit the constant \hat{z} position of the plane.