Intro to meta-analysis using R

Tengku Muhd Hanis Mokhtar PhD student, USM August 5, 2021

Download material

https://github.com/tengku-hanis/webinar-basic-MA

Background

- Meta-analysis:
 - Statistical methods used to combine individual results into pooled result
- From Scopus database (20-07-2021): 144, 904 documents

Basic jargons

- Fixed vs random effect model
- Between-study heterogeneity
- Publication bias
- Forest plot
- Funnel plot

1) Fixed effect:

- One true effect size
- Estimate one true effect size

Random effect:

- True effects varies (ie; distribution of true effect sizes)
- Estimates mean of the distribution of true effects

(Borenstein et al., 2010)

- 2) Heterogeneity (almost always refer to between study heterogeneity):
 - Variation in study outcomes between studies (statistical heterogeneity)
 - Measurement: Q-statistics, T², I², H²
 - Other types of heterogeneity refer to Rucker at al., 2008
- 3) Publication bias:
 - Studies being published depends on the its result
 - Consequences:
 - Overestimate the effect size
 - Overlook negative effect size

- Certain publication bias caused by small study effect and p-hacking can be statistically adjusted (most causes usually unknown)
- Publication bias tested using:
 - Visual: Funnel plot
 - Statistical (min k=10):
 - Classical: Begg, Egger (default), Thompson
 - Binary outcome: Peters, Harbord (default for OR), Schwarzer, Deeks, etc.
 - SMD (for Hedges' g): Pustejovsky

4) Forest plot

5) Funnel plot

General framework

Advanced method

- Variation of visualization:
 - Forest plot equivalent: Drapery plot
 - Variant of funnel plot: Contour-enhanced funnel plot
- Meta-regression
- Subgroup analysis
- Outlier and influential diagnostic (rule of thumb; $I^2 > 50\%$)
- Publication bias related method
- etc

Type of meta-analysis

- 1. "General" meta-analysis (Intervention/observational study)
 - Single group design: Pool mean, correlation coefficient, prevalence/proportion
 - >1 group design: Pool mean difference, OR, RR, IRR, HR
- 2. "Multilevel" meta-analysis
 - There is 3rd level
- 3. Network meta-analysis
 - Compare several treatment effect directly and indirectly
- 4. Dose response meta-analysis
 - Quantify level of exposure effect to response

Type of meta-analysis (cont.)

- 5. Diagnostic test accuracy meta-analysis
 - Pool sensitivity, specificity, AUC
- 6. Multivariate/Anova/SEM meta-analysis
- 7. Bayesian approach
- 8. Genome meta-analysis

Packages in R

Package Characteristics													
Package	Version	Title	Effect Size	Power	Missing Data	Dependent Effects		Random Effects	Moderator Analyses	Publication Bias	Sensitivity Analysis	Creates Plots	Primary Function
General meta-ana	llysis												
CAMAN	0.7	Finite mixture models and meta- analysis tools						\checkmark	\checkmark				bivariate
epiR	0.9-62	Tools for the analysis of epidemiological data	\checkmark		\checkmark		\checkmark	\checkmark					epi.dsl
gmeta	2.2-3	Meta-analysis via a unified framework under confidence distribution	\checkmark			\checkmark	\checkmark	\checkmark				\checkmark	gmeta
Mac	1.1	Meta-analysis with correlations	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	mareg
Mad	0.8-2	Meta-analysis with mean differences	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	mareg
Meta	4.2-0	General package for meta- analysis	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	metacont
metacor	1.0-2	Meta-analysis of correlation coefficients	$\sqrt{}$				$\sqrt{}$	\checkmark					metacor.DSL
metafor	1.9-5	Meta-analysis package for R	V		V	√	V		\checkmark	\checkmark		V	rma
metaplus	0.7-1	Robust meta-analysis and meta- regression	V			$\sqrt{}$		\checkmark	\checkmark		\checkmark	\checkmark	metaplus
psychometric	2.2	Applied psychometric theory					\checkmark		\checkmark	\checkmark		\checkmark	MetaTable
rmeta	2.16	Meta-analysis	\checkmark				V	\checkmark	2.4%	V	\checkmark	V	meta.MH

Main functions in meta packages

(Harrer et al., 2021)

References

- Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 1, 97–111 (2010).
- Harrer, M., Cuijpers, P., Furukawa, T.A., & Ebert, D.D. (2021). <u>Doing Meta-Analysis with R: A Hands-On Guide</u>. Boca Raton, FL and London: Chapman & Hall/CRC Press. ISBN 978-0-367-61007-4.
- Polanin, J. R., Hennessy, E. A. & Tanner-Smith, E. E. A Review of Meta-Analysis Packages in R. J. Educ. Behav. Stat. 42, 206–242 (2017).
- Rücker, G., Schwarzer, G., Carpenter, J. R. & Schumacher, M. Undue reliance on I2 in assessing heterogeneity may mislead. BMC Med. Res. Methodol. 8, 1–9 (2008).

Question?

tengkuhanismokhtar@gmail.com https://tengkuhanis.netlify.app/

Hands-on in

