Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Nawigacji

Mateusz Harasymczuk

Proces szkolenia astronautów do długotrwałych lotów i spacerów kosmicznych

Astronaut training process for long duration space flights

Praca magisterska napisana pod kierownictwem

prof. dr hab. inż. Janusz Zieliński

Dęblin 2016

Wstęp

Hisotria załogowych lotów kosmicznych sięga roku 1961 gdy 12 kwietnia rosyjski pilot Yuri Gagarin jako pierwszy przekroczył umowną granice kosmosu, tzw. linię Kármána. Od tego czasu podobnego wyczynu dokonało około 536 osób. W tym gronie znajduje się dwunastu amerykańskich astronatów, którzy postawili stopę na innym ciele niebieskim, tj. Księżycu. W ciągu czterdziestu lat od tego wydarzenia człowiek na stałe zaczął mieszkać na orbicie. Międzynarodowa stacja kosmiczna gości na swoim pokładzie trzech, a w szczytowym momencie sześciu astronautów i kosmonautów, którzy prowadzą badania naukowe w bardzo wielu dziedzinach techniczynch, inżynieryjnych, biologicznych i chemicznych. Średni czas przebywania członka załogi na stacji wynosi sześć miesięcy.

W marcu 2016 Scott Kelly i Mikhail Korniyenko wrócili z 340 dniowego pobytu na stacji zapisując się w historii jako nieliczni ludzie z łącznym "nalotem" kosmicznym powyżej roku. Obecnie agencja kosmiczna NASA planuje lot człowieka na Marsa i misja Scotta Kelly była jednym z pierwszych etapów w tym programie. Głownym obszarem zainteresowania naukowców jest zadanie wpływu mikrograwitacji na ciało ludzkie, układ kostny i mięśniowy, przemieszczenie płynów ustrojowych wewnątrz ciała oraz zmiany zachodzące w psychice ludzkiej przy izolacji od czynników środowiskowych przebywając w niezmiennym towarzystwie. Scott Kelly ma brata bliźniaka, również astronautę, który pozostał na Ziemii i był poddawany identycznym badaniom. Amerykańska agencja kosmiczna będzie w stanie bardzo dokładnie zbadać wpływ powyższych czynników na ciało. Cykl adaptacji do grawitacji oraz badania po powrocie, którym poddani będą obaj bracia potrwają do końca roku 2016.

Aby móc pomyśleć na temat dalszej eksploracji kosmosu agencje kosmiczne muszą rozwiązać bardzo dużo problemów nie tylko medycznych jak tem wspomniane powyżej, ale również technicznych:

- efektywne systemy podtrzymywania życia,
- obiegu i filtracji powietrza,
- usuwania dwutlenku wegla z powietrza,
- obieg wody techniczej i pitnej,
- systemy chłodzenia,
- pozyskiwanie i magazynowanie energii,
- przechowywanie pożywienia,
- zadania operacyjne i utrzymanie misji,
- ochrona przed mikrometeorytami,
- ochrona przed promieniowaniem kosmicznym,
- pozyskiwanie lub posiadanie wystarczającego zapasu paliwa rakietowego.

Obecnie agencje kosmiczne wielu państw coraz częściej wypowiadają się na temat planów długotrwałych misji człowieka w kosmosie. Wspomniana NASA planuje wylot na Marsa z poprzedzającą ją misją "Asteroid Redirect Mission", która ma na celu pozyskanie

głazu z asteroidy i umieszczenie go na orbicie okołoksiężycowej. Następnie na niego zostanie wysłana załoga aby dokonać poboru próbek powierzchni oraz badań geologicznych. Europejka Agencja Kosmiczna (ang. ESA - European Space Agency) wraz z Roscosmos (Rosyjska Agencja Kosmiczna) planują w 2030 roku zbudowanie w okolicach połudiowego bieguna permanentnej osady człowieka na Księżycu. Prace przygotowawcze do tego projektu już trwają. Europejskie Centrum Szkolenia Astronautów (ang. EAC - European Astronaut Centre) ogłosiło projekt "Spaceship EAC", który ma na celu sprawdzenie gotowości (ang. Proof of Concept) obecnych technologii do tego przedsięwzięcia. Ponadto w ostatnich miesiącach chińska agencja kosmiczna zapowiedziała budowę stacji orbitalnej.

Jednym z najważniejszych ogniw całego programu pobytu człowieka poza Ziemią jest selekcja i przygotowanie załogi do trudnych warunków pozaziemskiej aktywności. Sam proces podstawowego przeszkolenia załogi trwa 2 lata i składa się z czterech głównych etapów:

- nauka języka,
- przeszkolenie z systemów międzynarodowej stacji kosmicznej,
- nauka spacerów kosmicznych (ang. EVA Extra Vechicular Activity),
- nauka pilotażu samolotów odrzutowych.

Każda agencja kosmiczna ma prawo nazwania ludzi, którzy lecą w kosmos wedle uznania. Tak przyjęły się trzy najbardziej rozpowszechnione nazwy. Poniższa tabela prezentuje konwencje przyjęte przez poszczególne agencje.

Nazwa w oryginale	Nazwa w języku angielskim	Nazwa w języku polskim	Agencja
astronaut	astronaut	astronauta	NASA, ESA, JAXA
spationaut	spationaut	spationauta	ESA, CNES
космонавт	cosmonaut	kosmonauta	Roscosmos
趙裡昱 (trad.) / 赵里昱 (simpl.)	taikonaut	taikonauta	CNSA

Tabela 1.1. - Konwencje nazewnicze stanowiska osoby lecącej w kosmos w różnych agencjach kosmicznych

W celu uposzczenia w poniższej pracy przyjmuję konwencję stosowania nazewnictwa w języku polskim dla wszystkich profesji. Ponadto słowo astronauta będzie wykorzystane jako zamiennik pozostałych. Znaczenie tytułu pracy: "proces szkolenia astronautów do długotrwałych lotów kosmicznych" należy więc rozpatrywać jako "proces szkolenia astronautów, kosmonautów, taikonautów i spationautów do długotrwałych lotów kosmicznych".

Niniejsza praca jest próbą podumowania procesu szkolenia astronautów, kosmonautów, taikonautów i spationautów do długotrwałych lotów kosmicznych w tym docelowo do permanentnej obecności człowieka na Księżycu i Marsie.

Rys historyczny lotów kosmicznych

Wyścig o wystrzelenie pierwszego sztuncznego satelity Ziemii trwał pomiędzy Związkiem Radzieckim i Stanami Zjednoczonymi od 1930. Jednym z pierwszych pionierów w dziedzinie budowy rakiet był amerykański naukowiec Dr Robert H. Goddard. W roku 1957 Związkowi Radzieckiemu udało się dokonać.

Pierwszym sztucznym satelitą Ziemii był Sputnik, który został wystrzelony 4 października 1957 roku. Dopiero to wydarzenie spodowodało zintensyfikowanie działań. Gdy Amerykanie starali się unieść swoje rakiety z ponad wurzutni, Rosjanie powoli zaczynali dominować na niskiej orbicie dookołaziemskiej. Następnymi krokami Radzieckiego programu kosmicznego było wystrzelenie zwierząt i na samym końcu człowieka. Dokonali tego w 1961 roku, na trzy miesiące przed Amerykanami. Następnie pierwszy spacer kosmiczny, pierwsza kobieta w kosmosie oraz pierwsze dłużesz pozostanie na orbicie również do nich należało.

Aby zażegnać widmo porażki prezydent Stanów Zjednoczonych Ameryki J. F. Kennedy 12 września 1962 roku wygłosił mowę na Rice Uniwersytecie [3], w której zmobilizował nród i postawił cel, aby w do końca dekady "człowiek postawił noge na księzycu i bezpiecznie wrócił na Ziemię". Cel ten udało się zrealizować, ale nie podczas życia prezydenta. Amerykanie w 1969 roku zdobyli Księżyc.

Pionierzy kosmonautyki

W Związku Radzieckim Po stronie Stanów Zjednoczonych największym wpływ na program rakietowy tego kraju miał Gottard.

Pierwsze loty kosmiczne

Pierwsze bezzałogowe loty kosmiczne

Pierwsze zwierzęta w kosmosie

Pierwszym zwierzęciem, które przekroczyło linię graniczną kosmosu był pies Łajka wystrzelony za pomocą rakiety *Sputnik 8K71PS* w kapsule *Sputnik 2*. Niestety zwierze po killku godzinach zdechło ze względu na wysoką temperaturę spowodowaną uszkodzeniem i niepełnym rozczepieniem członu rakiety od satelity. Zwierze planowo miało żyć na orbicie 10 dni. Po około 2000 orbit w ciągu 162 dni kapsuła weszła w atmosferę i spłonęła [2].

Program Mercury w stanach zjednoczonych również zakładał wysłanie zwierzęcia przed pierwszym lotem człowieka. Ze względu na bardzo wiele wspólnych cech z

człowiekiem wybrano szympansa (DNA szympansa jest w 98,4% identyczne z człowiekiem co czyni go najbliższym odpowiednikiem z królestwa zwierząt - przyp. autora [4]). Szympans nazywał się HAM co jest skrótem od Holloman Aerospace Medical Center, zlokalizowanego w Holloman Air Force Base w New Mexico w USA [6].

Pierwszy lot człowieka

Pierwszym człowiekiem w kosmosie był pułkownik Yuri Gagarin. Został wystrzelony przez Związek Radziecki 12 kwietnia 1961 w 90 minutowy orbitalny do okoła Ziemii na pokładzie *Vostok 1*. Gagarin był jednym z 20 osób, które zostały zrekrutowane z pilotów wojskowych Związku Radzieckiego w tym celu. Wg. podań świadków pułkownik wyróżniał się wytrzymałością, duchem oraz doświadczeniem. Wśród wszyskich rekrutowanych kosmonautów przeprowadzono ankietę "kogo wytypowałbyś na pierwszy lot". Osiemnaście na dwadzieścia osób z załogi wybrało Gagarina. Pułkownik po okrążeniu Ziemi wszedł ponownie w atmosferę w tzw. krzywej balistycznej cechującej się wysokim poziomem przeciążeń działających na ciało kosmonauty. Ze względu na fakt, iż Radzieccy konstruktorzy nie dysponowali jeszcze techniką aby bezpiecznie posadzić statek kosmiczny na ziemi zdecydowano się na użycie katapulty i spadochronu. Na poziomie 20000 stup Gagarin katapultował się i bezpiecznie wrócił na powierzchnię [5].

Amerykańską odpowiedzią był program *Mercury*. W trakcie programu wybrano siedmiu astronautów. Nazwiska astronautów, znak wywoławczy oraz datę wystrzelenia przedstawia tabela poniżej.

Astronauta	Znak wywowałwczy	Data wystrzelenia	Czas trwania
Alan Shepard	Freedom 7	1961-05-05	15 m 22 s
Gus Grissom	Liberty Bell 7	1961-07-21	15 m 37 s
John Glenn	Friendship 7	1962-02-20	4 h 55 m 23 s
Scott Carpenter	Aurora 7	1962-05-24	4 h 56 m 5 s
Wally Shirra	Sigma 7	1962-10-03	9 h 13 m 15 s
Gordon Cooper	Faith 7	1963-05-15	1 d 10 h 19 m 49 s
Deke Slayton	Apollo-Soyuz	1974-07-15	5 d 22 h 30 m

Tabela 2.1. - Astronauci programu Mercury

Z przyczyn zdrowotnych Deke Slayton został zdyskwalifikowany z udziału w programie i uziemiony. Przez trzynaście lat po locie Sheparda Slayton był szefem *Astronauts Office* i wziął udział w ostatnim locie programu *Apollo - Apollo-Souyz*.

Rys historyczny programów kosmicznych NASA

Program Mercury
Program Gemini
Program Apollo
Program Skylab
Program Space Shuttle
Rys historyczny programów kosmicznych ZSSR i Federacji Rosyjskiej
Program Wostok
Program Soyuz
Program Księżycowy
Program Salyut
Program Intercosmos i lot generała Hermaszewskiego
Stacja kosmiczna Mir
Najdłuższy pobyt w przestrzeni kosmicznej

Selekcja kandydatów do przeszkolenia podstawowego

Przygotowanie astronautów i kosmonautów do długotrwałych misji kosminczych zaczyna się od wyboru najlepszych kandydatów. Na chwilę obecną rekturuje się osoby wśród najbardziej porządanych specjalizacji tj.:

- pilot, a w szczególności pilot testowy,
- lekarz,
- inżynier,
- naukowiec (nauki przyrodnicze).

Osoby biorące udział w rekrutacji poddawane są skrupulatnym badaniom mającym na celu wyłonienia najlepszych z najlepszych. Podczas badań brane są pod uwagę takie czynniki jak:

- kondycja fizyczna i wydolność organizmu,
- zdolność adaptacji do zmiennych warunków,
- stabilność psychiczna,
- odporność na stres,
- umiejętność działania pod presją,
- umiejętność podążania za procedurami,
- aktywność psycho-motoryczna,
- wytrzymałość na przeciążenia,
- umiejętność kojarzenia i przewidywania.

Na wybór kandydata ma ogromny wpływ również doświadczenie, wykształcenie nalot lotniczy oraz przebyte kursy i wyprawy przetrwania. Astronauci to także osoby publiczne często występujące przed dużymi audiencjami dlatego ceniona jest umiejętność posługiwania się mediami społecznościowymi, pisania tekstów oraz przemawiania [7]. Język angielski i rosyjski są obecnie oficjalnymi używanymi na ISS - międzynarodowej stacji kosmicznej dlatego od kandydatów wymaga się również znajomości tych dwóch powyższych. Dodatkowo ze względu na międzynarodowy charakter misji kosmicznych mile widziane jest zainteresowanie kulturą Stanów Zjednoczonych, Japonii i Rosji.

Sam proces podstawowego szkolenia astronautów trwa dwa lata i jego ukończenie pozwala na zmianę tytułu z "kandydat na astronautę" na "astronauta". Jest to długi proces i wymagający wielu poświęceń z życia prywatnego. Ze względu na dużą ilość osób i zasobów zaangażowanych w przygotowanie proces ten jest bardzo kosztowny. Wsparcie jakiego wymaga przygotowanie do i po misji jest orgomne. Z tego powodu agencje kosmiczne wybierają najbardziej odpowiednie osoby na to stanowisko.

Aby przygotować misję kosmiczną wymagane są lata pracy wielu zespołów profesjonalistów. I choć pozycja astronauty jest jedną z najbardziej prestiżowych na świecie to ich sukces zbudowany jest przez tych co pozostali na Ziemii [7]. Ograniczone możliwości w zakresie wysyłania ludzi w przestrzeń kosmiczną i koszt tego

przedsięwzięcia wymaga starannego doboru kandydatów. Z tego powodu proces selekcji astronatów i kosmonautów jest zadaniem trudnym. Wymaga umiejętności multidyscyplinarnych. W poniższym rozdziale przedstawione zostną kryteria oraz proces wyboru najlepszych kandydatów.

Kryteria doboru kandydatów

Selekcja psychologiczna

Jednym z kluczowych elementów branych pod uwage jest odporność na stres i umiejętność działania pod presją. Astronauta jako operator musi umieć realizować zadane czynności bez względu na okoliczności. Podążanie za procedurami w przypadku różnego rodzaju awarii i zdarzeń wyjątkowych jest absolutnie niezbędne. Prodcedury te zostały przygotowane przez lata praktyki i wszelkie odstępstwa mogą narazić członków załogi na niebezpieczeństwo lub śmierć.

Ponadto cechą pracy w warunkach kosmicznych jest przebywanie w małych pomieszczeniach pozbawionych okien (z wyjątkiem miejsc widokowych) w rzadko zmieniającym się towarzystwie. Kandydacji muszą umieć współistnieć w międzynarodowym środowisku, prowadzić badania i interakcje oraz komunikować się. Od kandydatów wymaga się stabilności psychicznej, braku uprzedzeń i dojrzałości emocjonalnej.

Jednym z kluczowych elementów szkolenia astronautów jest pobyt w różnych centrach szkolenia na świecie. Jest to związane z długim przebywaniem poza miejscem zamieszkania i zdala od rodziny. Sam pobyt na międzynarodowej stacji kosmicznej na chwilę obecną trwa zwykle do sześciu miesięcy, ale te czasy zdecydowanie się wydłużą ze względu na konieczność przygotowania do długotwałych misji kosmicznych na Księżyc i Marsa.

Ponadto dużą uwagę zwraca się na [20]:

- zdolność rozumowania,
- dobra pamięć,
- koncentracja,
- zreczność manualna,
- umiejętność przystosowania się do zmiennych warunków przestrzennych. Idealny kandydat posiada [20]:
- wysoką motywację,
- elastyczność,
- towarzyskość,
- empatia,
- niski poziom agresji,
- stabilność emocjonalna,
- umiejętność długotrwałej współpracy w międzykulturowym środowisku.

Proces badań wstępnych jest prowadzony przez zespół wykwalifikowanych specjalistów z zakresu psychologii.

Selekcja kondycyjna

Charakter pracy jako astronauta wymaga wysokiej aktywności kondycyjnej i dużej sprawności fizycznej. Podczas wielomiesięcznych a docelowo wieloletnich misji kosmicznych astronauci aby przeciwdziałać niebezpiecznemu wpływowi braku grawitacji na układ szkieletowy i mięśniowy. Aby zapobiec atrofi mięśni astronauci muszą ćwiczyć przynajmniej dwie do trzech godzin dziennie.

Sam proces treningu do spacerów kosmicznych (w basenie z doskonałą pływalnością) trwa sześć godzin, w trakcie którego astronauta wykonuje zadania pod wodą będąc umieszczonym w skafandrze. Każdy jednorazowy EVA (ang. Extra Cechicular Activity - spacer kosmiczny) w przestrzeni kosmicznej jest poprzedzony przynajmniej dwudziestokrotnym treningiem w środowisku symulującym stan nieważkości w basenie przy użyciu ciężarów i wyporników nadających skafandrowi kosmicznemu cechę neutralnego unoszenia się.

Kandydacji którzy biorą udział w rekrutacji muszą być zdolni do wytrzymywania zadanych obciążeń i dużego wysiłku fizycznego. Umiejętności te wymagają wieloletniego przygotowania kondycyjno-wytrzymałościowego i są oceniane przez komisję rekrutacyjną.

Selekcja medyczna

Zdrowie kandydata jest jednym z najważniejszych kryteriów doboru. Osoby rekrutowane muszą się wykazać niezwykłą adaptacją do warunków panujących w stanie nieważkości. Jest to podyktowane głównie ogromnym kosztem wyszkolenia astronautów i chęcią zmniejszenia możliwości zaistnienia problemów podczas misji ze względu na stan zdrowia pracującego operatora. Sprawność układu ruchu, krążenia oraz równowagi ma ogromne znaczenie dla późniejszej pracy kandydata.

Ponadto jednym z kluczowych wskaźników jest także wzrost. Osoby niższe są bardziej predystynowane do wytrzymywania większych przeciążeń ze względu na niższą odległość pomiędzy sercem a mózgiem. Poza samą predyspozycją ze względów medycznych wzrost ma znaczenie ze względów konstrukcyjnych statków kosmicznych. Na chwilę obecną (maj 2016) jedynym sposobem dostarczania astronautów na Międzynarodową Stację Kosmiczną jest rosyjski statek Soyuz, który jest przewidziany dla osób ze wzrostem z zakresu 150 do 190 cm [21] (wersje TM przed czerwcem 1999 miały ograniczenie od 164 do 182 cm). Z tego samego powodu do amerykańskiego korpusu astronautów przyjmowani są kandydaci o wzroście pomiędzy 62 i 75 cali [16] co odpowiada 157,5 i 190,5 cm. Wymaganiem Europejskiej Agencji Kosmicznej w tej dziedzinie jest wzrost pomiędzy 153 a 190 cm [20].

Parametr	Zakres	Jednostka
Wzrost w pozycji stojącej	150 - 190	cm
Wzrost w pozycji siedzącej	80 - 99	cm
Masa ciała	50 - 95	kg
Długość stopy	29,5	cm
Szerokość ramion	do 52	cm
Głębokość ramion	do 45	cm
Głębokość bioder w pozycji siedzącej	do 41	cm
Szerokość ud	do 41	cm
Obwód klatki piersiowej	brak wymagań	cm

Tabela 3.1. - wybrane parametry członków załogi statku kosmicznego Soyuz TM (zmodyfikowany po czerwcu 1999)[22]

Parametr	NASA	Roscosmos	ESA
Wzrost [cm]	157,48 - 190,5 (62 - 75 cali)	150 - 190	153 - 190
Ciśnienie	140/90		
Wiek			27 - 37
Doświadczenie			min. 3 lata pracy zawodowej
Wykształcenie			min. poziom licencjat lub inżynier (nauki przyrodnicze, inżynieria lub medycyna)
Wzrok (widzenie bliskie)	20/20 w każdym oku (dopuszczalna korekcja)		
Wzrok (widzenie dalekie)	20/200 w każdym oku (dopuszczalna korekcja)		

Tabela 3.2. - parametry medycznye kandydatów na astronautów [16][20]

Powyższe parametry są weryfikowane podczas badań medycznych w procesie selekcji astronautów wykorzystując [20]:

- koło reńskie MAT (Multi-Axis Tool),
- krzesła obrotowe,
- komory ciśnień,
- wirówka (centrifuge),
- lot samolotem.

Selekcja umiejętności technicznych i naukowych

Jednym z najbardziej kluczowych elementów selekcji kandydatów na astronautów i kosmonautów jest dobór ze względu na umiejętności i doświadczenie. Obecnie Europejska Agencja Kosmiczna (podobny profil poszukiwany jest również w innych agencjach kosmicznych) poszukuje kandydatów wśród specjalizacji:

- naukowiec,
- inżynier,
- pilot,
- lekarz.

Każda z tych profesji ma swoje zalety przy prowadzeniu badań w środowisku kosmicznym. Obecnie agencje odchodzą od specjalizacji astronautów i każdy z członków załogi musi poznać wszystkie aspekty pracy na orbicie, tj. pilotowanie statków kosmicznych, prowadzenie badań naukowych, udzielanie pomocy medycznej i przeprowadzanie operacji, kwestie związane z manipulowaniem ramion robotycznych i dokonywanie spacerów kosmicznych, czyli tzw. EVA (ang. Extra Vechicular Activity). Astronauta czy kosmonauta staje się operatorem czyli wysoce wykawlifikowanym specjalistą w wykonywaniu starannie zaplanowanych czynności. To wymaga dużej wszechstronności od kandydata i umiejętności adaptowania się do zmieniających się warunków.

Selekacja ze względu na doświadczenie lotnicze

Pilot-astronauta podczas misji specjalizuje się w prowadzeniu statków kosmicznych. W zakres jego obowiązków wchodzi pilotaż, odpowiedzialność za załogę i powodzenie misji, oraz dbanie o bezpieczeństwo na pokładzie. Pilot wspiera dowódcę w kontrolowaniu statku. Ponadto rola pilota może rozszerzyć się o zakres obowiązków związanych z przechwytywaniem i rozstawianiem stelit, korzystaniem z robotycznego ramienia - manipulatora, EVA oraz operacje związane z ładunkiem [16].

Doświadczenie lotniczne nie jest wymagane, ale wysoko porządane [20].

Przy specjalizacji jako pilot-astronauta amerykańska agencja NASA wymaga 1000 godzin nalotu jako dowódca statku powietrznego (PIC - Pilot-in-Command) na samolotach odrzutowych [16]. W tym przypadku preferowane są osoby z doświadczeniem pilota testowego.

Wymagania dotyczące wzoku dla pilotów są zwiększone:

- 20/100 w widzeniu dalekim preferowa bez korekcji (okulary, soczewki),
- 20/20 w widzeniu z korekcją.
 - Zwiększone kryteria wzrostu:
- Minimalnie 58,5 cala (148,59 cm)
- Maksymalnie 76 cali (193,04 cm)

Selekcja astronautów w agencjach i organizacjach rządowych

Program poszukiwania kandydatów jest prowadzony przez rządy państw najbardziej zaawansowanych technicznie. Obecnie wiodącą rolę w tej dziedzinie pełnią następujące państwa:

- Stany Zjednoczone,
- Rosja,
- państwa zjednoczone w Europejskiej Agencji Kosmicznej,
- Chiny,
- Kanada.

Poniżej zaprezenrowano proces rekrutacji

NASA - Narodowa Agencja Aeronautyki i Astronautyki (USA)

Amerykańska agencja kosmiczna NASA organizuje rekrutację na kandydata na astronautę (ang. Astronaut Candidate) regularnie co dwa lata. Ostania tego typu rekrutacja miała miejsce na przełomie 2015/2016 roku i zakończyła się 15 lutego 2016. Dzięki zaangażowaniu mediów społecznościowych oraz innych środków masowego przekazu swoje aplikacje złożyło rekrodowo dużo osób. Komisja rekrutacyjna będzie musiała rozpatrzyć 18000 podań i z tego grona wybrać 8-10 najlepszych kandydatów, którzy rozpoczną przygotowanie wstępne.

Rok	Grupa	Nazwa
1959	1	"The Mercury Seven"
1962	2	"The New Nine"
1963	3	"The Fourteen"
1965	4	"The Scientists"
1966	5	"The Original 19"
1967	6	"The Excess Eleven (XS-11)"
1969	7	"USAF MOL Transfer" (Astronauts selected from the Manned Orbiting Laboratory program)
1978	8	"Thirty-Five New Guys (TFNG)" (class included first female candidates)
1980	9	"19+80"
1984	10	"The Maggots"
1985	11	
1987	12	"The GAFFers"
1990	13	"The Hairballs"
1992	14	"The Hogs"
1994	15	"The Flying Escargot"
1996	16	"The Sardines" (largest class to date, 35 NASA candidates and nine international astronauts)
1998	17	"The Penguins"
2000	18	"The Bugs"
2004	19	"The Peacocks"
2009	20	"The Chumps"
2013	21	"The 8-Balls"

Tabela 3.3. - Dotychczasowe selekcje astronautów NASA [12][13]

Astronauto	Rok naboru	Crune
Astronauta		Grupa
Acaba, Joseph M.	2004	19
Arnold, Richard R.	2004	19
Aunon, Serena M.	2009	20
Barratt, Michael R.	2000	18
Behnken, Robert L.	2000	18
Boe, Eric A.	2000	18
Bowen, Stephen G.	2000	18
Bresnik, Randolph J.	2004	19
Burbank, Daniel C.	1996	16
Cassada, Josh A.	2013	21
Cassidy, Christopher J.	2004	19
Dyson, Tracy Caldwell	1998	17
Epps, Jeanette J.	2009	20
Feustel, Andrew J.	2000	18
Fincke, E. Michael	1996	16
Fischer, Jack D.	2009	20
Fossum, Michael E.	1998	17
Glover, Victor J.	2013	21
Hague, Tyler N.	2013	21
Hopkins, Michael S.	2009	20
Hurley, Douglas G.	2000	18
Kelly, Scott J.	1996	16
Kimbrough, Robert Shane	2004	19
Koch, Christina H.	2013	21
Kopra, Timothy L.	2000	18
Lindgren, Kjell N.	2009	20
Mann, Nicole Aunapu	2013	21
Marshburn, Thomas H.	2004	19
McArthur, K. Megan	2000	18
McClain, Anne C.	2013	21
Meir, Jessica U.	2013	21
Morgan, Andrew R.	2013	21
Nyberg, Karen L.	2000	18
Pettit, Donald R.	1996	16

Astronauta	Rok naboru	Grupa
Rubins, Kathleen (Kate)	2009	20
Tingle, Scott D.	2009	20
Vande Hei, Mark T.	2009	20
Virts, Terry W., Jr.	2000	18
Walheim, Rex J.	1996	16
Walker, Shannon	2004	19
Wheelock, Douglas H.	1998	17
Wilson, Stephanie D.	1996	16
Whitson, Peggy A.	1996	16
Williams, Jeffrey N.	1996	16
Williams, Sunita L.	1998	17
Wilmore, Barry E.	2000	18
Wiseman, G. Reid	2009	20

Tabela 3.4. - Lista aktywnych astronautów NASA [12]

Roscosmos (Federacja Rosyjska)

Do końca roku 2015 agencja kosmiczna Roscosmos podlegała strukturom wojskowym Federacji Rosyjskiej i wcześniej Związkowi Radzieckiemu. Z tego powodu kandydaci na kosmonautów byli wybierani wśród oficerów sił powietrznych. Wraz ze zmianami organizacyjnymi z 31 grudnia 2015 Roscosmos przekształcił się w cywilną agencję zarządzaną na wzór amerykańskiej NASA. Z tego powodu proces rekrutacj kosmonautów może ulec zmianie i w najbliższych latach wśród rosyjskich kosmonautów znajdzie się więcej cywili, naukowców i inżynierów.

ESA - Europejska Agencja Kosmiczna

Jednym z warunków bycia astronautą ESA jest aby państwo narodowości kandydata było oficjalnym członkiem tej agencji. Ostatni proces rekrutacji Europejskiej Agencji Kosmicznej odbył się w maju 2008 oraz maju 2009 roku. Przedsięwzięcie prowadziła jednostka EAC (ang. European Astronaut Centre) w Kolonii w Niemczech. Wzięło w nim udział 8413 kandydatów . 20 maja 2009 sześciu nowych kandydatów na astronautów zostało przedstawionych na konferencji prasowej w siedzibie ESA w Paryżu. Kandydaci rozpoczęli swoje wstępne przeszkolenie 1 września 2009 roku. W tej selekcji wybrano następujących kandydatów [7]:

Astronauta	Narodowość	Rok naboru	Czas w kosmosie	Misje
Jean-François Clervoy	Francja	1992	28d 03h 05m	STS-66, STS-84, STS-103
Samantha Cristoforetti	Włochy	2009	199d 16h 43m	Soyuz TMA-15M, Expedition 42, Expedition 43
Léopold Eyharts	Francja	1998	68d 21h 31m	Soyuz TM-27, Soyuz TM-26, STS-122, Expedition 16, STS-123
Christer Fuglesang	Szwecja	1992	26d 17h 38m	STS-116, STS-128
Alexander Gerst	Niemcy	2009	165d 08h 01m	Soyuz TMA-13M Expedition 40, Expedition 41
André Kuipers	Holandia	1998	203d 15h 51m	Soyuz TMA-4, Soyuz TMA-3, Soyuz TMA-03M, Expedition 30, Expedition 31
Andreas Mogensen	Dania	2009	9d 20h 14m	Soyuz TMA-18M/Soyuz TMA-16M
Paolo A. Nespoli	Włochy	1998	174d 09h 40m	STS-120, Soyuz TMA-20, Expedition 26
Luca Parmitano	Włochy	2009	166d 6h 19m	Soyuz TMA-09M, Expedition 36, Expedition 37
Timothy Peake	Wielka Brytania	2009	104 days (trwa)	Soyuz TMA-19M (Expedition 46/47)
Thomas Pesquet	Francja	2009		Planned: Soyuz MS-03 (Expedition 50/51)
Hans Schlegel	Niemcy	1998	22d 18h 02m	STS-55, STS-122
Roberto Vittori	Włochy	1998	35d 12h 26m	Soyuz TM-34, Soyuz TM-33, Soyuz TMA-6, Soyuz TMA-5, STS-134

Tabela 3.5. - Lista aktywnych astronautów ESA [15]

JAXA - Japońska Agencja Eksploracji Kosmicznej

CNSA - Agencja Kosmiczna Chińskiej Republiki Ludowej

CSA - Kanadyjska Agencja Kosmiczna

Przygotowanie podstawowe
Nauka języków obcych i przygotowanie kulturowe
Nauka języka rosyjskiego
Przygotowanie do pracy w wielokulturowym środowisku
Przygotowanie teoretyczne z nauk przyrodniczych i technicznych
Kurs nawigacji kosmicznej i mechaniki orbitalnej
Wynoszenie na orbitę
Manewry na orbicie
Transfer pomiędzy orbitami i zmiany inklinacji
Operacje Rendezvous i dokowania
Operacja opuszczania orbity i wejścia w atmosferę
Nawigacja kosmiczna za pomocą gwiazd
Proces przygotowania do operacji nietechnicznych i komunikacji
Wykorzystanie mediów społecznościowych do popularyzacji nauki i misji
Przemówienia publiczne i "Space Advocacy"
Fotografia

Przygotowanie teoretyczne

Amatorskie radio krótkofalowe

Treningi i symulacje
Przygotowanie psychologiczne, kondycyjne i medyczne
Przygotowanie medyczne

Przygotowanie dentystyczne

Ćwiczenia kondycyjne i badania wydolności organizmu

Przygotowanie psychologiczne do pracy w odosobnieniu

Obozy przywództwa i pracy zespołowej

Przygotowanie do pracy w ekstremalnych warunkach

Przetrwanie w warunkach zimowych

Przetrwanie w warunkach pustynnych

Przetrwanie w warunkach dżungli

Przetrwanie w warunkach wodnych

Misje CAVES

Misje NEEMO

Symulacja pracy w środowisku mikrograwitacji

Urządzenia symulujące obiżoną grawitację

Test w wirówce na odporność organizmu na przeciążenia

Loty paraboliczne symulujące stan nieważkości

Sytuacje awaryjne

Przygotowanie do wyławiania z oceanu

Awaryjne opuszczanie platformy startowej

Systemy przerywania startu

Życie na Międzynarodowej Stacji Kosmicznej
Rozmieszczenie modułów i poruszanie się po stacji
Wykorzystywanie, utrzymanie i naprawa systemów pokładowych
System katalogowania i przechowywania obiektów i narzędzi
Elementy radiokomunikacyjne
Podnoszenie orbity stacji kosmicznej
Urządzenia do utrzymania kondycji i sprawnośi fizycznej
Korzystanie z toalety
Utrzymywanie higieny osobistej
Ubrania
Przygotowywanie i spożywanie posiłków
Odpadki i śmieci
Przykładowy rozkład dnia astronautów na Międzynarodowej Stacji Kosmicznej
Spędzanie wolnego czasu
Sytuacje awaryjne na międzynarodowej stacji kosmicznej
Pożar

Problemy medyczne członków załogi

Śmierć członka załogi

Rozszczelnienie stacji

Awaryjne opuszczanie stacji

Wycieki amoniaku

Awaria systemu uzdatniania wody

Awaria toalety

Awaria systemu generowania i cyrkulacji powietrza

Awaria zasilania i systemów elektrycznych

Systemy robotyki kosmicznej

Korzystanie z manipulatora Canada Arm 2

Dokowanie statków kosmicznych

Asystowanie przy spacerach kosmicznych

Symulacja przechwytywania pojazdów kosmicznych na orbicie

Sterowanie robotami na Ziemii z orbity

Urządzenia wirtualnej rzeczywistości

Charakterystyka skafandrów kosmicznych

Do podstawowych zadań skafandra należą:

- ochrona przed ektremalnym środowiskiem kosmosu,
- ochrona przed brakiem ciśnienia (próżnią),
- ochrona przed mikrometeorytami,
- ochrona termiczna przed fluktuacją temperatury od -156C do +121C,
- ochrona przed radiacją,
- ochrona przed promieniowaniem ultrafioletowym,

Generalna charakterystyka skafandrów kosmicznyc

Strój wewnątrz skafandra

Systemy biomedyczne skafandra

Hełm

Tors

Ramiona i Rękawice

Nogi i Buty

Plecak z systemem podtrzymywania życia

Zaczepy na narzędzia

Insygnia oraz naszywki

Lista skafandrów kosmicznych

Skafandry kosmiczne wykorzystywane podczas startu i lądowania

Nazwa	Przeznaczenie	Produkcja	Lata użycia	Program	Uwagi
SK	IVA	ZSSR	1961 - 1963	Wostok	Yuri Gagarin, pierwszy skafander
Mark IV	IVA	USA	1961 - 1963	Mercury	
Gemini G3C	IVA	USA	1965 - 1966	Gemini	
Gemini G4C	IVA i EVA	USA	1965 - 1966	Gemini	użyty zarówno do IVA i EVA
Gemini G5C	IVA	USA	1965 - 1966	Gemini	używany przez 14 dni podczas Gemini 7
Sokol	IVA	ZSSR	1973 - obecnie	Soyuz	
Ejection Escape Suit	IVA	USA	1981 - 1982	Space Shuttle	używany przy pierwszych lotach
Launch Entry Suit	IVA	USA	1988 - 1998	Space Shuttle	
Strizh	IVA	ZSSR	1988	Buran	
Advanced Crew Escape Suit	IVA	USA	1994 - 2014	Space Shuttle	
Shenzhou IVA	IVA	Chiny	2005	Shenzhou	użyty podczas Shenzhou 5
MACES	USA			Orion	użyty zarówno do IVA i EVA

Tabela 8.1 - zestawienie skafandrów do czynności podczas startu i lądowania IVA (ang. Intravehicular Activity)

Skafandry kosmiczne wykorzystywane podczas wyjść w przestrzeń kosmiczną

Nazwa	Produkcja	Lata użycia	Program	Uwagi
Berkut	ZSSR	1965	Wostok	Alexey Leovov, pierwszy EVA
Krechet-94	ZSSR	1965 - 1970	N1/L3 (księżycowy)	
Gemini G4C	USA	1965 - 1966	Gemini	użyty zarówno do IVA i EVA
Apollo Block 1 A1C	USA	1966 - 1967	Apollo	zaprzestano użycia po pożarze Apollo 1
MH-7	USA	-	Manned Orbital Laboratory	nigdy nie użyty
Shuguang	Chiny	1967	Project 714	nigdy nie użyty
Project 863	Chiny	-	-	nigdy nie użyty
Apollo / Skylab A7L	USA	1968 - 1975	Apollo, Skylab	
Yasterb	ZSSR	1969	Soyuz 4 i 5	
Orlan	ZSSR	1977 - obecnie	Soyuz, Mir, ISS	
Extravehicular Mobility Unit	USA	1982 - obecnie	Space Shuttle, ISS	
Haiying	Chiny	2008	Shenzhou	Orlan M, użyty podczas Shenzhou 7
Feitian	Chiny	2008 - obecnie	Shenzhou	używany od Shenzhou 7
MACES	USA		Orion	użyty zarówno do IVA i EVA

Tabela 8.2 - zestawienie skafandrów do spacerów kosmicznych EVA (ang. Extravehicular Activity)

Charakterystyka wybranych skafandrów kosminczych

Charakterystyka skafandra Sokol

Charakterystyka skafandra Orlan MKS

Charakterystyka skafandra ACES i MACES

Charakterystyka skafandra EMU

Utrzymywanie sprawnośni skafandra

Systemy awaryjne skafandrów EVA

SAFER

Augumentacja

Wyjścia astronautów w przestrzeń kosmiczną

Jednym z najtrudniejszych elementów pracy astronauty jest wyjście w przestrzeń kosmiczną na tzw. EVA (ang. Extravehicular Activity, pol. spacer kosmiczny). Do przeprowadzenia takiego wyjścia astronauci przytotowują się przez dwa lata przed misją przeprowadzając około 20 ćwiczeń w pełnym skafandrze pod wodą w basenie neutralnej pływalności (ang. Neurtal Buoyancy Facility). Każdy trening jest oceniany przez zespół wykwalifikowanych i certyfikowanych instruktorów.

Ze względu na bardzo szeroki zakres obowiązków podczas spacerów kosmiczych astronauci specjalizują sie w swojej dziedzinie i charakterze przeprowadzanej operacji. Każdy z nich także otrzymuje szkolenie umożliwiające mu zastąpienie dowolnego innego astronauty w jego obowiązkach gdyby zaszła taka potrzeba. Z tego względu szkolenie astronautów podzielone jest na dwa typy:

- generic training (pol. szkolenie generalne),
- cross training (pol. szkolenie przerojowe).

Astronauci podczas szkolenia podstawowego, a później dla utrzymania sprawności w trakcie swojej kariery ćwiczą wyjścia EVA w basenie neutralnej pływalności. Podczas tych zajęć szkolą się z rozwiązywania sytuacji awaryjnych, m.in. ewakuacja astronauty, który ma niesprawny kombinezon lub nie może się poruszać.

Na chwilę obecną wyjścia w przestrzeń kosmiczną skupiają się głównie na pracach na orbicie przy konstrukcji i naprawy międzynarodowej stacji kosmicznej. Przed erą ISS astronauci wychodzili aby naprawiać MIR czy Skylab, podczas programu Apollo w celu demontażu kamery oraz w programie STS, Gemini i Wostok. Dotychczas EVA na obcych planetach lub satelitach doświadczyło tylko i wyłącznie dwanaście osób. Jednym z najbardziej podstawowych podiałów spacerów kosmicznych są wyjścia:

- zaplanowane,
- awaryjne,
- na obcych ciałach niebieskich.

Spacery kosmiczne wymagają wysokiej sprawności oraz dużej siły fizycznej. Z tego względu nie wszyscy astronauci mają możliwość wykorzystania w kosmosie wyuczonych uprzednio umiejętności. Ay astronauta mógł wyjść w przestrzeń kosmiczną musi udowodnić znajomość stroju przechodząc stosowny egzamin jak również musi mieć odpowiednią kondycję i formę.

Zaznajomienie się ze skafandrem

Szkolenie przygotowujące do spacerów kosmicznych zaczyna się od zapoznania ze skafandrem. Astronauci są następnie przygotowywani do egzaminów z wykorzystania strojów EMU oraz Orlan. Ze względu na różnice w budowie, zakładaniu i zdejmowaniu skafandra, ciśnieniu operacyjnym oraz systemach awaryjnych astronauci muszą

przejść ścieżkę certyfikacyjną z każdego stroju na międzynarodowej stacji kosmicznej. Po takiej certyfikacji astronauta powinien wykazać się dużą wiedzą na temat nie tylko posługiwiania się wysoko wyspecjalizowanym ubiorem ale również w jego systemach awaryjnych. Każde ze szkoleń jest oceniane przez instruktorów z centrum kontroli misji.

Po pozytywnym zaliczeniu egzaminów teoretycznych astronauta jest dopuszczany do możliwości wykorzystania stroju w symulacjach w basenie neutralnej pływalności.

Sprawdzenie szczelności skafandra

Przed wykonywaniem zadań w basenie astronauci wykonują tzw. sprawdzenie szczelności skafandra. Podczas tego testu astronauta ubrany w strój do wyjść EVA jest zamykany w pomieszczeniu, w którym odpompowywane jest powietrze do uzyskania ciśnienia zbliżonego do próźni. W trakcie trwania testu astronauci zapoznają się z zachowaniem skafandra i materiału, który sztywnieje i się napręża dając uczucie nadmuchania. Z tego względu praca w warunkach braku ciśnienia panujących poza statkiem kosmicznym jest znacznie trudniejsza od symulacji prowadzonych w basenie doskonałej pływalności.

Systemy biomedyczne stosowane podczas EVA

Każdy skafander kosmiczny posiada inny zestaw sensorów i urządzeń kontrolujących organizm i pracę astronautów. Szczegółowe informacje na temat systemów biomedycznych skafandrów zostały przedstawione w osobnym rozdziale. Podczas podstawowego zapoznania się ze skafandrem astronauta poznaje systemy wspierające i monitorujące:

- promieniowanie,
- działanie układu krwionośnego,
- działanie układu oddechowego,
- systemy biometryczne,
- systemy podtrzymania życia.

Układ krwionośny monitorowany jest za pomocą trzypunktowych elektrod EKG (Elektro Kardio-Gramu). Informacje na temat układu oddechowego stanowią dane odnośnie ilości wdychania tlenu i wydychania dwutlenku węgla, dzięki czemu lekarze i biomedycy mogą wyliczyć metabolizm oraz przemianę anarobową w trakcie wykonywania prac.

Każdy z systemów pobiera informacje i przekazuje je do centrum kontroli misji gdzie inżynierowie skafandra, inżynierowie biomedyczni oraz lekarze lotu (ang. flight surgeons) asystują astronautom podczas wyjścia w przestrzeń kosmiczną.

Ze względu na niedoskonałość materiału każdy strój posiada tzw. przecieki, które są również monitorowane. W przypadku zbyt dużego tempa wycieku powietrza uruchamiane są systemy awaryjne a astronauta natychmiast musi przerwać pracę na zewnątrz i udać się

do śluzy pojazdu. Więcej na temat procedur oraz systemów awaryjnych w osobnym podrozdziale.

Wykorzystywanie specjalistycznych narzędzi do pracy

Prace w przestrzeni kosmicznej wymagają znajomości wysokowyspecjalizowanych narzędzi. Ich rolą jest nie tylko pomoc astronaucie w dokonaniu naprawy czy montażu sprzętu ale również zachowanie pozycji czy bezpiecznego poruszania się w obrębie stacji kosmicznej.

Urządzenia wykorzystywane w pracy w przestrzeni kosmicznej możemy podzielić na:

- śrubokręty,
- klucze dynamometryczne,
- wiertarki,
- wkrętarki,
- urządzenia do spawania.

Prowadzenie prac w środowisku mikrograwitacji przy wykorzystaniu urządzeń tj. śrubokręty, wiertarki i wkrętarki nie jest tak proste jak na Ziemii. Brak oporu i bardzo zmniejszone przyciąganie ziemskie powoduje wytworzenie niezbilansowanego momentu skręcającego działającego na astronautę a to w konsekwencji prowadzi do zmiany jego pozycji względem stacji. Astronauta używając klucza czy wkrętarki musi być przymocowany aby móc przyłożyć odpowiednią siłę.

Wykorzystanie urządzeń wspierających pracę w przestrzeni kosmicznej

Urządzenia wspierające pozwalają na zachowanie pozycji względem stacji kosmicznej oraz na łatwiejsze posługiwanie się narzędziami. Do głównych urządzeń wspierających czynności podczas spacerów kosmicznych można zaliczyć:

- przedłużki zmieniające ramię narzędzi,
- liny stalowe (ang. theather),
- przymocowania stóp (ang. foot restraints).

Do zadania przedłużek należy zwiększenie długości ramienia klucza. Urządzenia te usadza się na końcu klucza przedłużając jego rączkę. Dzięki ich zastosowaniu astronauta może zwiększyć moment obrotowy działający na śrubę i dzięki temu przykręcić lub odkręcić śruby z większą siłą i precyzją.

Urządzenia przymocowywania stóp były głownie wykorzystywane podczas misji amerykańskich promów kosmicznych, gdzie astronauta przymocowany nogami do specjalnego panelu zamontowanego na ramieniu robotycznym mógł być bezpiecznie i stabilnie być wspierany przy wykonywaniu prac w stanie nieważkości.

Obecnie podstawowym elementem wyposażenia każdego stroju astronauty są tzw. uprzęże z bloczkami stalowych lin. Każdy strój do wyjść w przestrzeń kosmiczną posiada

dwie takie uprzęże. Podczas spaceru kosmicznego astronauci muszą być przymocowani za pomocą przynajmniej jednej liny z klamrą do stacji kosmicznej aby nie odlecieć w przestrzeń. W celu przemieszczenia się astronauta zaczepia drugą klamrę do następnego punktu przymocowania i po upewnieniu się pewności zaczepu odczepia pierwszą przechodząc w dalsze miejsce.

Symulacje wykorzystujące komputery i wirtualną rzeczywistość

Z uwagi na koszt, stopień skomplikowania i czasochłonność operacji w basenie neutralnej pływalności astronauci najpierw przechodzą szkolenie zapoznawcze wykorzystując symulacje komputerowe oraz urządzenia wirtualnej rzeczywistości tj. Oculus Rift czy Hololense firmy Microsoft. W specjalnie napisanych w tym celu aplikacjach mają możliwość przećwiczenia manerwów, zapoznania się z segmentem stacji, której dotyczy praca czy praktykowaniem umiejętności poruszania sie i odnajdywania na zewnątrz międzynarodowej stacji kosmicznej.

Symulacja prac w basenie doskonałej pływalności

Neutral Buoyancy Laboratory - NASA

Neutral Buoyancy Facility - ESA

Rosyjski basen trenowania

Komunikacja i podział ról podczas symulacji oraz wyjścia w przestrzeń kosmiczną

Role i obowiązki astrinautów

Role i obowiązki kontrolerów misji

Charakterystyka komunikacji

Procedura przeprowadzenia spaceru kosmicznego

Przygotowanie do wyjścia w przestrzeń kosmiczną

Wyjście i przykładowe zadania

Procedury po powrocie
EVA na powierzchni innych ciał niebieskich
EVA na powierzchni Księżyca
EVA na powierzchni planet
EVA na powierzchni asteroid
Wykorzystywanie pojazdów
Sytuacje awaryjne
Systemy awaryjne skafandra
Procedury bezpieczeństwa
Przykładowe zadania wykonywane podczas spacerów kosmicznych
Dekonstrukcja kamer i aparatu fotograficznego poczas misji Apollo
Demonstracja poruszania się w przestrzeni kosmicznej w programach Wostok, Gemini
Instalacja systemów ISS
Konserwacja i naprawa systemów na ISS

Pilotaż

Samolotów odrzutowych

Statku kosmicznego Soyuz

Sytuacje awaryjne statku kosmicznego

Rozszczelnienie

Pożar

Podczas treningu w statku kosmicznym Sojuz gdy astronauta zauważy dym lub ogień powinien natychmiast zamknąć szybę w skafandrze by uniknąć inhalacji potencjalnie szkodliwym dla zdrowia dymem [11]. Po wykonaniu tej czynności przystępuje do gaszenia ognia. Ze względu na brak gaśnic oraz urządzeń do walki z ogniem na pokładzie statku kosmicznego astronauci mają następujące możliwości powstrzymania rozprzestrzeniania się ognia:

- wyłączenie wentylatorów i urządzeń cyrkulacji powietrza,
- wyłączenie wszystkich elektrycznych urządzeń łącznie z komputerem pokładowym,
- rozszczelnienie statku powietrznego.

W środowisku mikrograwitacji nie występuje wymuszona konwekcja ciepła i ruchu powietrza. Wyłączenie wentylatorów i urządzeń cyrkulacji ma na celu zdławienie ognia poprzez wykorzystanie powietrza w procesie spalania w pobliżu miejsca, w którym doszło do zapłonu.

Wyłączenie urządzeń elektrycznych ma na celu wyeliminowanie źródeł powstania ognia. W przerwy w zasilaniu ogień powinien sam zgasnąć. Po odczekaniu określonego czasu następuje ponowne włączenie urządzeń pokładowych.

Najbardziej drastycznym sposobem na wyeliminowanie pożaru jest depresuryzacja statku powietrznego. Wraz z pozbawieniem atmosfery tlenu ogień zgaśnie. Jest to najbardziej niebezpieczny sposób gaszenia i to rozwiązanie pozostaje do użycia tylko w ostateczności. Przed procesem rozszczelniania kapsuły astronauci muszą sprawdzić szczelność swoich skafandrów aby upenić się czy sami nie będą narażeni na niebezpieczeństwo wystawienia na działanie próżni. Przy wykorzystaniu tego sposobu misja jest przerywana i kapsuła musi skierować się do awaryjnego wejścia w atmosferę w ciągu 125 minut. Czas ten odpowiada 1.5 okrążeniu Ziemi i powinien być wystarczający aby powrócić do jednego z wyznaczonych uprzednio miejsc awaryjnego lądowania. Podczas tego czasu temperatura ciała astronautów powoli zacznie wzrastać ze względu na tempo pompowania powietrza do skafandra - 22 litry na minutę. Tempo to jest

wystarczające aby pozwolić astronautom bezpiecznie oddychać, ale nie pozwala na chłodzenie ciała. Z tego względu czas 125 minut jest krytyczny aby zapobiec śmierci astronautów ze względu na przegrzanie organizmu.

System przerwania startu (Launch Escape System)

Awaryjne opuszczanie orbity

Wejście w atmosferę po krzywej balistycznej

Pilotaż samolotów odrzutowych

Unikanie śmieci kosmicznych

Kolizje na orbicie

Sytuacje awaryjne przy dokowaniu

Przygotowanie astronautów pod kątem przydzielonej misji

Nasa didn't hire us to be Program Managers or Engineers - we are operators - Astronaut Victor Glover

Nauka, badania i eksperymenty w środowisku mikrograwitacji
Nauki kognitywistyczne i poznawcze
Badania biologiczne
Badania chemiczne
Badania techniczne i inżynieryjne
Eksperymenty fizyczne
Eksperymenty medyczne
Badania dotyczące eksploracji Niskiej Orbity Okołoziemskiej (LEO)
Specjalizacje astronautów
Commander
Pilot
Payload Specialist
Mission Specialist
Flight Engineer
Science Officer

Spaceflight Participants

Flight Surgeon

Educator Mission Specialist

Tradycje przed wylotem

W celu upamiętnienia wydarzeń historycznych astronauci przed wylotem w kosmos uczestniczą w wielu tradycjach. Każde z wydarzeń jest monitorowane przez media z całego świata. Poniżej przedstawiono listę czynności wykonywanych przez przyszłych uczestników lotów kosmicznych.

Przed udaniem się na kosmodrom w Bajkonurze:

- wizyta na placu czerwonym,
- złożenie kwiatów pod murem Kremla na grobach poległych kosmonautów. Bezpośrednio po przybyciu do Bajkonuru:
- podniesienie flag narodowych astronautów,
- zasadzenie drzewa w alei kosmonautów.

Na kilka dni przed wylotem:

- poświecenie rakiety przez popa,
- astronauci nie mogą zobaczyć rakiety ani po drugim ani po trzecim przeglądzie przedstartowym (tradycja),
- kwarantanna i ochrona przed mikrobami,
- spanie na łóżku z głową w dół.
 Bezpośrednio przed wylotem
- ostatnie strzyżenie włosów przez fryzjera,
- ostatni posiłek załogi,
- podpis na drzwiach pokoju w którym się mieszkało,
- wpis do pamiątkowej księgi w biurze Gagarina,
- oglądanie filmu "Białe słońce pustyni",
- astronauci są obracani przed startem góra dół kilka razy w celu przyzwyczajenia do kosmicznej choroby lokomocyjnej,
- pożegnanie z rodzinami,
- przejazd autobusem do budynku 254 w celu ubrania skafandra Sokol,
- oddanie moczu na koło autobusu upamiętnienie czynu Gagarina,
- ostatni salut stojąc na wyznaczonych miejscach,
- pozowanie do zdjęć i machanie do obserwatorów ze schodów do rakiety Soyuz,
- sprawdzanie systemów,
- każdy astronauta może wybrać trzy piosenki, które są odtwarzane podczas oczekiwania na start.

Badania medyczne przed wylotem

Szkolenie turystów kosmicznych Definicja turystyki kosmicznej Loty stratosferyczne Loty suborbitalne Loty orbitalne Firmy oferujące turystykę kosmiczną **Space Adventures Virgin Gallactic Blue Origin Bigelow Aerospace** Dotychczasowi turyści kosmiczni Lista dotychczasowych turystów kosmicznych Proces zgłoszenia i kryteria doboru astronautów Proces przygotowania turystów kosmicznych Zajęcia turystów na orbicie Selekcja w organizacjach i programach prywatnych

HE Space Operations

Program Commercial Crew Transport

Boeing

SpaceX

Orbital ATK

Sierra Nevada Corporation

Powrót na Ziemię Przygotowanie do powrotu na Ziemię Undocking Obniżanie orbity De-orbit burn Wejście w atmosferę i lądowanie statkiem Soyuz Normalne wejście w atmosferę Wejście w atmosferę po krzywej balistycznej "Miękkie" Lądowanie Czynności astronautów bezpośrednio po wylądowaniu Badania medyczne - wzrok, układ ruchu i krążenia Badanie sprawności fizycznej

Badanie zręczności - konstrukcja elementów bazy

Praca astronautów na Ziemii

Testowanie sprzętu

Pomoc w przygotowaniu innych astronautów

Praca w symulatorach w przypadku problemów na orbicie

Praca jako CapCom

Popularyzacja nauki i obszaru S.T.E.M.

Czynności astronautów programu Mercury, Gemini, Apollo i Apollo Applications

Zakończenie

Communication, Teamwork, Commitment to excelence – Victor Glover

Statystyki i wykresy

Słownik Pojęć

Bibliografia

- [1] National Aeronautics and Space Administration, *Dr. Robert H. Goddard, American Rocketry Pioneer*, http://www.nasa.gov/centers/goddard/about/history/dr goddard.html, 2016
- [2] James J. Harford, *Korolev How One Man Masterminded the Soviet Drive to Beat America to the Moon*, http://history.nasa.gov/sputnik/harford.html, 1997
- [3] John F. Kennedy, *John F. Kennedy Moon Speech Rice Stadium*, http://er.jsc.nasa.gov/seh/ricetalk.htm, 1962-09-12
- [4] Smithsonian Institution, *Human Origins Genetic Evidence*, http://humanorigins.si.edu/evidence/genetics, 2016-03-05
- [5] Smithsonian National Air and Space Museum, *Why Yuri Gagarin Remains the First Man in Space, Even Though He Did Not Land Inside His Spacecraft*, http://blog.nasm.si.edu/space/why-yuri-gagarin-remains-the-first-man-in-space-even-though-he-did-not-land-inside-his-spacecraft/, 2010-04-12
- [6] Swenson Jr., Loyd S., James M. Grimwood, Charles C. Alexander, *NASA History Series. This New Ocean A History of Project Mercury*, http://history.nasa.gov/SP-4201/toc.htm, 2008-05-11
- [7] European Space Agency, *How to Become an ESA Astronaut*, http://www.esa.int/Our_Activities/Human_Spaceflight/Astronauts/How_to_become_an_astronaut, 2012-11-15
- [8] National Aeronautics and Space Administration, *NASA Astronaut Candidate Program*, http://astronauts.nasa.gov/content/broch00.htm, 2015
- [9] National Aeronautics and Space Administration, *NASA Astronaut Selection Process*, http://astronauts.nasa.gov/default.htm, 2015
- [10] National Aeronautics and Space Administration, *NASA Astronaut Selection*, http://nasa.gov/astronauts, 2015
- [11] European Space Agency, Andreas Mogensen, *Fire in the Soyuz!*, https://www.youtube.com/watch? v=oE5Z3Uxbezc, 2015-05-18
- [12] National Aeronautics and Space Administration, *Active NASA Astronauts*, http://www.jsc.nasa.gov/Bios/astrobio.html, 2015-10-29
- [13] NASA, Inactive NASA Astronauts, http://www.jsc.nasa.gov/Bios/astrobio former.html, 2016-03-02
- [14] NASA, *International Astronauts*, http://www.jsc.nasa.gov/Bios/astrobio_international.html, 2015-04-23
- [15] European Space Agency, *European Astronaut Corps*, http://www.esa.int/Our_Activities/Human_Spaceflight/Astronauts/The_European_astronaut_corps, 2012-11-15
- [16] NASA, NASA Astronaut Requirements, http://www.nasa.gov/audience/forstudents/postsecondary/features/F_Astronaut_Requirements.html, 2004-01-29
- [17] NASA, Cosmonauts Biographical Data, http://www.jsc.nasa.gov/Bios/cosmo.html, 2015-02-09
- [18] Chris Hadfield, An Astronaut's Guide to Life on Earth, Macmillan, 2013
- [19] Mirosław Hermaszewski, *Ciężar Nieważkości opowieść pilota-kosmonauty*, Universitas, Kraków, 2013
- [20] European Space Agency, *ESA Astronaut Training Requirements*, http://www.esa.int/Our_Activities/Human_Spaceflight/Astronauts/Astronaut_training_requirements, 2016-05-24
- [21] Spaceref.com, *ISS Spacecraft Soyuz TM*, http://www.spaceref.com/iss/spacecraft/soyuz.tm.html, 2016-05-24
- [22] Rex D. Hall, David J. Shayler, Soyuz A Universal Spacecraft, Springer Praxis, 2003-07-15