```
In [14]: import os
          import numpy as np
          import pandas as pd
          from ucimlrepo import fetch_ucirepo
          # Dataset Upload
          def fetch_dataset(folder="dataset"):
              if os.path.exists(folder):
                  X = pd.read_csv(os.path.join(folder, "X.csv"))
y = pd.read_csv(os.path.join(folder, "y.csv"))
                   variables = pd.read_csv(os.path.join(folder, "variables.csv"))
                  metadata = None
                   return {"X": X, "y": y, "metadata": metadata, "variables": variables}
              secondary_mushroom = fetch_ucirepo(id=848)
              X = secondary_mushroom.data.features
              y = secondary_mushroom.data.targets
              dataset = {
                   "X": X,
                  "y": y,
                   "metadata": secondary_mushroom.metadata,
                   "variables": secondary_mushroom.variables,
              os.makedirs(folder, exist_ok=True)
              X.to_csv(os.path.join(folder, "X.csv"), index=False)
y.to_csv(os.path.join(folder, "y.csv"), index=False)
              dataset["variables"].to_csv(os.path.join(folder, "variables.csv"), index=False)
              return dataset
          def preprocess_data(df, variables, filepath=None):
              if filepath is not None and not os.path.exists(filepath):
                   variables = variables[variables.type == "Categorical"]
                  variables = variables[variables.role != "Target"]
                   CAT2IDX = \{\}
                   for col in variables.name:
                       uniques = remove_ifnan(df[col].unique())
                       CAT2IDX[col] = {uniques[idx]: idx for idx in range(len(uniques))}
                       if variables [variables.name == col].missing_values.values[0] == "yes":
                           CAT2IDX[col][np.nan] = -1
                   for idx in range(len(df)):
                       for col in df.iloc[idx].index:
                         if col in CAT2IDX.keys():
                               df.loc[idx, col] = CAT2IDX[col].get(df.loc[idx, col], -1)
                   df.to_csv(filepath, index=False)
                   return df
              return pd.read_csv(filepath)
          # Main Funciton
          # -
          from sklearn.preprocessing import LabelEncoder
          def main():
              dataset = fetch_dataset()
              X = pd.get_dummies(dataset["X"])
              y = LabelEncoder().fit_transform(dataset["y"].values.ravel())
              return {
                  "X": X,
                  "y": y,
                  "variables": dataset["variables"],
                   "feature_names": X.columns.tolist()
              }
```

```
In [2]: # -----
         # Main Funciton
         # Load Dataset
         dataset_dict = fetch_dataset()
         dataset_dict["X"].head()
Out[2]:
                                                        does-
                                                         gill- gill- stem- stem-
or- attachment spacing color height " root
pleed
            Unnamed:
                           cap-
                                  cap-
                                          cap- cap- bruise-
                                                                                                             stem- ste
                    0 diameter shape surface color
                                                                                                      root surface co
                                                        bleed
```

```
0
                                                                                        16.95 ...
           0
                  15.26
                                                       f
                              Χ
                                       g
                                              0
                                                                   е
                                                                          NaN
                                                                                                       S
                                                                                                                У
                  16.60
                                                                          NaN
                                                                                        17.99
                                       g
2
           2
                  14.07
                                              0
                                                       f
                                                                   е
                                                                          NaN
                                                                                        17.80 ...
                                                                                                       S
                                                                                                                У
                              Х
                                       g
3
           3
                  14.17
                                                                          NaN
                                                                                        15.77 ...
                                       h
                                              е
                                                                   е
                                                                                                       S
                                                       f
4
           4
                  14.64
                                                                          NaN
                                                                                        16.53 ...
                                                                                                       S
                                                                                                                У
```

5 rows × 21 columns

```
In [3]: # ------
# General information
# ------

print("\nNumber of samples:", len(dataset_dict["X"]))
print("\nInfo variabiles:")
print(dataset_dict["variables"])
```

Number of samples: 61069

Info variabiles:

into variablees.							
	Unnamed:	0	name	role	type	demographic	\
0		0	class	Target	Categorical	NaN	
1		1	cap-diameter	Feature	Continuous	NaN	
2		2	cap-shape	Feature	Categorical	NaN	
3		3	cap-surface	Feature	Categorical	NaN	
4		4	cap-color	Feature	Categorical	NaN	
5		5	does-bruise-or-bleed	Feature	Categorical	NaN	
6		6	gill—attachment	Feature	Categorical	NaN	
7		7	gill-spacing	Feature	Categorical	NaN	
8		8	gill-color	Feature	Categorical	NaN	
9		9	stem-height	Feature	Continuous	NaN	
10	:	10	stem-width	Feature	Continuous	NaN	
11	:	11	stem-root	Feature	Categorical	NaN	
12	:	12	stem-surface	Feature	Categorical	NaN	
13	:	13	stem-color	Feature	Categorical	NaN	
14	:	14	veil-type	Feature	Categorical	NaN	
15	:	15	veil-color	Feature	Categorical	NaN	
16	:	16	has-ring	Feature	Categorical	NaN	
17	:	17	ring-type	Feature	Categorical	NaN	
18	:	18	spore-print-color	Feature	Categorical	NaN	
19		19	habitat	Feature	Categorical	NaN	
20	:	20	season	Feature	Categorical	NaN	

	description	units	missing_values
0	NaN	NaN	no
1	NaN	NaN	no
2	NaN	NaN	no
3	NaN	NaN	yes
4	NaN	NaN	no
5	NaN	NaN	no
6	NaN	NaN	yes
7	NaN	NaN	yes
8	NaN	NaN	no
9	NaN	NaN	no
10	NaN	NaN	no
11	NaN	NaN	yes
12	NaN	NaN	yes
13	NaN	NaN	no
14	NaN	NaN	yes
15	NaN	NaN	yes
16	NaN	NaN	no
17	NaN	NaN	yes
18	NaN	NaN	yes
19	NaN	NaN	no

NaN NaN

no

```
In [4]: # -
        # Analyzing missing value
        import pandas as pd
        import matplotlib.pyplot as plt
        total_missing = dataset_dict["X"].isnull().sum().sum()
        missing_per_column = dataset_dict["X"].isnull().sum()
        missing_percentage = dataset_dict["X"].isnull().mean() * 100
        missing data = pd.DataFrame({
            'Missing Values': missing_per_column,
            'Missing Percentage': missing_percentage
        })
        missing_data = missing_data[missing_data['Missing Values'] > 0]
        print(missing_data)
        plt.figure(figsize=(10, 6))
        missing_data['Missing Percentage'].sort_values().plot(kind='barh', color='skyblue')
        plt.title('Percentage of Missing Values per Column')
        plt.xlabel('Missing Percentage (%)')
        plt.ylabel('Columns')
        plt.show()
        # Handle missing values
        # 1. Remove columns with more than 50% missing values
        threshold = 50
        columns_to_drop = missing_data[missing_data['Missing Percentage'] > threshold].index
        dataset_dict_cleaned = dataset_dict["X"].drop(columns=columns_to_drop)
        print(f"\nColumns removed: {columns to drop.tolist()}")
        # 2. Impute remaining missing values with mode
        for column in dataset_dict_cleaned.columns:
            if dataset_dict_cleaned[column].isnull().sum() > 0:
                mode_value = dataset_dict_cleaned[column].mode()[0]
                dataset_dict_cleaned[column].fillna(mode_value, inplace=True)
                print(f"Imputed missing values in column: {column} with mode value: {mode_value}")
        total_missing_after = dataset_dict_cleaned.isnull().sum().sum()
        print(f"\nNumber of total missing values: {total_missing_after}")
        dataset_dict["X"] = dataset_dict_cleaned
        # Statistical Analysis - numeric columns
        print("Statistical Analysis for numeric columns:\n")
        dataset_dict["X"] = dataset_dict["X"].drop(columns="Unnamed: 0", errors="ignore")
        print(dataset_dict["X"].describe().round(1))
                          Missing Values Missing Percentage
       cap-surface
                                   14120
                                                   23.121387
       gill-attachment
                                    9884
                                                   16.184971
       gill-spacing
                                   25063
                                                   41.040462
                                                   84.393064
       stem-root
                                   51538
                                   38124
                                                   62.427746
       stem-surface
                                   57892
                                                   94.797688
       veil-type
                                                   87.861272
       veil-color
                                   53656
                                    2471
                                                    4.046243
       ring-type
       spore-print-color
                                   54715
                                                    89.595376
```

Percentage of Missing Values per Column


```
Columns removed: ['stem-root', 'stem-surface', 'veil-type', 'veil-color', 'spore-print-color'] Imputed missing values in column: cap-surface with mode value: t Imputed missing values in column: gill-attachment with mode value: a Imputed missing values in column: gill-spacing with mode value: c Imputed missing values in column: ring-type with mode value: f
```

Number of total missing values: 0 Statistical Analysis for numeric columns:

	cap-diameter	stem-height	stem-width
count	61069.0	61069.0	61069.0
mean	6.7	6.6	12.1
std	5.3	3.4	10.0
min	0.4	0.0	0.0
25%	3.5	4.6	5.2
50%	5.9	6.0	10.2
75%	8.5	7.7	16.6
max	62.3	33.9	103.9

```
In [5]: # -
        # Distribution of the categorical variables
        import matplotlib.pyplot as plt
        import seaborn as sns
        import math
        categorical_cols = dataset_dict["X"].select_dtypes(include='object').columns
        n_rows = math.ceil(len(categorical_cols) / n_cols)
        fig, axes = plt.subplots(n_rows, n_cols, figsize=(18, 4 * n_rows))
        axes = axes.flatten()
        for i, col in enumerate(categorical_cols):
            sns.countplot(data=dataset_dict["X"], x=col, order=dataset_dict["X"][col].value_counts().index, ax
            axes[i].set_title(f'Distribution: {col}')
            axes[i].tick_params(axis='x')
        for j in range(i + 1, len(axes)):
            fig.delaxes(axes[j])
        plt.tight layout()
        plt.show()
```


Distribution of numeric variables cap-diameter stem-height stem-width

Correlation Matrix:

```
cap-diameter stem-height stem-width cap-diameter 1.00000 0.422560 0.695330 stem-height 0.42256 1.000000 0.436117
```



```
In [9]: import os
        import numpy as np
        import pandas as pd
        from ucimlrepo import fetch_ucirepo
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import accuracy_score, confusion_matrix
        from sklearn.preprocessing import LabelEncoder
        import matplotlib.pyplot as plt
        import seaborn as sns
        from graphviz import Digraph
        import time
        # Decision Tree Classes
        class TreeNode:
            def __init__(self, feature=None, threshold=None, left=None, right=None, value=None):
                self.feature = feature
                self.threshold = threshold
                self.left = left
                self.right = right
                self.value = value
            def is_leaf(self):
                return self.value is not None
        class DecisionTree:
            def __init__(self, max_depth=None, min_samples_split=2, entropy_threshold=None,
                         max_leaf_nodes=None, split_function='gini', feature_names=None):
                self.max_depth = max_depth
                self.min_samples_split = min_samples_split
                self.entropy_threshold = entropy_threshold
                self.max_leaf_nodes = max_leaf_nodes
                self.feature_names = feature_names
                self.root = None
                self.leaf_count = 0
                if split_function == 'gini':
                    self.criterion_func = self.gini
                elif split_function == 'entropy':
                    self.criterion_func = self.entropy
                elif split_function == 'scaled_entropy':
                    self.criterion_func = self.scaled_entropy
                    raise ValueError("Unsupported criterion")
            def fit(self, X, y):
                self.root = self.grow_tree(X, y)
            def predict(self, X):
                return np.array([self.predict_one(x, self.root) for x in X])
            def predict one (self v node):
```

```
predict_one(setr, x, node).
    if node.is_leaf():
        return node value
    if x[node.feature] <= node.threshold:</pre>
        return self.predict_one(x, node.left)
    return self.predict_one(x, node.right)
def grow_tree(self, X, y, depth=0):
    if (len(set(y)) == 1 or
        len(y) < self.min_samples_split or</pre>
        (self.max_depth is not None and depth >= self.max_depth) or
        (self.entropy_threshold is not None and self.criterion_func(y) < self.entropy_threshold) o
        (self.max_leaf_nodes is not None and self.leaf_count >= self.max_leaf_nodes)):
        return TreeNode(value=self.most_common(y))
    best_feat, best_thresh = self.best_split(X, y)
    if best_feat is None:
        return TreeNode(value=self.most_common(y))
    self.leaf_count += 1
    left_idx = X[:, best_feat] <= best_thresh</pre>
    right_idx = ~left_idx
    left = self.grow_tree(X[left_idx], y[left_idx], depth + 1)
    right = self.grow_tree(X[right_idx], y[right_idx], depth + 1)
    return TreeNode(feature=best_feat, threshold=best_thresh, left=left, right=right)
def best_split(self, X, y):
    best_gain, best_feat, best_thresh = -1, None, None
    for feature in range(X.shape[1]):
        thresholds = np.unique(X[:, feature])
        for thresh in thresholds:
            left_idx = X[:, feature] <= thresh</pre>
            right_idx = ~left_idx
            if len(y[left_idx]) == 0 or len(y[right_idx]) == 0:
            gain = self.information_gain(y, y[left_idx], y[right_idx])
            if gain > best_gain:
                best_gain, best_feat, best_thresh = gain, feature, thresh
    return best_feat, best_thresh
def information_gain(self, parent, left, right):
    weight_l = len(left) / len(parent)
weight_r = len(right) / len(parent)
    return self.criterion_func(parent) - (weight_l * self.criterion_func(left) + weight_r * self.c
def most_common(self, y):
    return np.bincount(y).argmax()
def gini(self, y):
    probs = np.bincount(y) / len(y)
    return 1 - np.sum(probs ** 2)
def entropy(self, y):
    probs = np.bincount(y) / len(y)
    return -sum(p * np.log2(p + 1e-9)  for p in probs if p > 0)
def scaled_entropy(self, y):
    probs = np.bincount(y) / len(y)
    return -sum((p / 2) * np.log2(p + 1e-9) for p in probs if p > 0)
def visualize(self):
    dot = Digraph()
    self.visualize_tree(self.root, dot)
    return dot
def visualize_tree(self, node, dot, parent_id=None, edge_label=""):
    current_id = str(id(node))
    if node.is_leaf():
        label = f"Predict: {node.value}"
        dot.node(current_id, label, shape="ellipse", style="filled", fillcolor="lightgreen")
    else:
        name = self.feature_names[node.feature] if self.feature_names else f"X[{node.feature}]"
        label = f"{name} <= {node.threshold}"</pre>
        dot.node(current_id, label, shape="box", style="filled", fillcolor="lightblue")
    if parent_id is not None:
        dot.edge(parent_id, current_id, label=edge_label)
        self.visualize_tree(node.left, dot, current_id, "True")
    if node.right:
```

```
self.visualize_tree(node.right, dot, current_id, "False")
In [10]: import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import LabelEncoder
         def main():
             dataset = fetch_dataset()
             if "Unnamed: 0" in dataset["X"].columns:
                 dataset["X"] = dataset["X"].drop(columns=["Unnamed: 0"])
             if "Unnamed: 0" in dataset["y"].columns:
                 dataset["y"] = dataset["y"].drop(columns=["Unnamed: 0"])
             # Feature and Target
             X_raw = dataset["X"]
             y_raw = dataset["y"]
             # One-hot encoding - feature
             X = pd.get_dummies(X_raw)
             # Label encoding
             y = LabelEncoder().fit_transform(y_raw.values.ravel().astype(str))
             # Training and test set
             X_train_raw, X_test_raw, y_train, y_test = train_test_split(
                 X, y, test_size=0.2, stratify=y, random_state=42
             X_train = X_train_raw.copy()
             X_test = X_test_raw.reindex(columns=X_train.columns, fill_value=0)
             return {
                 "X_train": X_train,
                 "X_test": X_test,
                 "y_train": y_train,
                 "y_test": y_test,
                 "feature_names": X_train.columns.tolist()
             }
In [11]: import numpy as np
         from sklearn.metrics import accuracy_score, confusion_matrix
         import matplotlib.pyplot as plt
         import seaborn as sns
         import time
         if __name__ == "__main__":
             data = main()
             X train = data["X train"].values
             X_test = data["X_test"].values
             y_train = data["y_train"]
             y_test = data["y_test"]
             feature_names = data["feature_names"]
             for criterion in ['gini', 'entropy', 'scaled_entropy']:
                 print(f"\nUsing split function: {criterion}")
                 tree_model = DecisionTree(
                     max_depth=5,
                     min_samples_split=5,
                     entropy_threshold=0.01,
                     split_function=criterion,
                     feature_names=feature_names
                 # Training
                 start_time = time.time()
                 tree_model.fit(X_train, y_train)
                 end_time = time.time()
                 print(f"Training time: {end_time - start_time:.2f} sec")
                 # Assessment
                 y_pred = tree_model.predict(X_test)
                 acc = accuracy_score(y_test, y_pred)
                 print(f"Test Accuracy: {acc:.4f}")
                 print(f"Zero-One Loss: {np.mean(y_pred != y_test):.4f}")
                 # Confusion matrix
```

cm = confusion_matrix(y_test, y_pred)

plt.figure(figsize=(6, 4))

```
sns.heatmap(cm, annot=True, cmap='Blues', fmt='d')
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title(f"Confusion Matrix - {criterion}")
plt.tight_layout()
plt.show()
# Tree visualization
tree_graph = tree_model.visualize()
tree_graph.render(f"tree_visual_{criterion}", format="png", view=True)
```

Using split function: gini Training time: 59.35 sec Test Accuracy: 0.7337 Zero-One Loss: 0.2663

Confusion Matrix - gini

Using split function: entropy Training time: 62.05 sec Test Accuracy: 0.7256 Zero-One Loss: 0.2744

Confusion Matrix - entropy

Using split function: scaled_entropy

Training time: 56.78 sec Test Accuracy: 0.7256 Zero-One Loss: 0.2744


```
- 2500
- 2000
- 1500
- 1000
Predicted
```

```
In [12]: # -
         # Hyperparameter Tuning
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.metrics import accuracy_score
         split_criteria = ['gini', 'entropy', 'scaled_entropy']
         depth\_range = [2, 3, 4, 5, 6, 7, 8, 9]
         results = []
         for criterion in split_criteria:
             for depth in depth_range:
                 #Model Preparation
                 tree = DecisionTree(
                     max_depth=depth,
                     min_samples_split=5,
                      entropy_threshold=0.01,
                      split_function=criterion,
                      feature_names=feature_names
                 )
                 #Training
                 tree.fit(X_train, y_train)
                 #Assessment
                 y_train_pred = tree.predict(X_train)
                 y_test_pred = tree.predict(X_test)
                 train_acc = accuracy_score(y_train, y_train_pred)
                 test_acc = accuracy_score(y_test, y_test_pred)
                 results.append({
                      "Criterion": criterion,
                      "Max Depth": depth,
                      "Train Accuracy": train_acc,
                      "Test Accuracy": test_acc,
                      "Overfitting Gap": train_acc - test_acc
                 })
         results_df = pd.DataFrame(results)
         results_df = results_df.sort_values(by=["Criterion", "Max Depth"])
         print(results_df.to_string(index=False))
         #Visualization
         pivot = results_df.pivot(index="Criterion", columns="Max Depth", values="Test Accuracy")
         plt.figure(figsize=(8, 5))
         sns.heatmap(pivot, annot=True, fmt=".3f", cmap="YlGnBu")
         plt.title("Test Accuracy - Depth vs Criterion")
         plt.xlabel("Max Depth")
         plt.ylabel("Split Criterion")
         plt.tight_layout()
         plt.show()
             Criterion Max Depth Train Accuracy Test Accuracy Overfitting Gap
```

```
entropy
                2
                         0.652973
                                        0.650565
                                                         0.002408
                3
                         0.681957
                                        0.677092
                                                         0.004865
entropy
                                                        -0.001029
entropy
                4
                         0.709631
                                        0.710660
entropy
                5
                         0.723836
                                        0.725561
                                                        -0.001725
                6
                         0.740477
                                        0.742836
                                                        -0.002359
entropy
                7
                         0.773432
                                        0.775831
                                                        -0.002399
entropy
                8
                         0.781783
                                        0.783363
                                                        -0.001581
entropy
                9
                                                        -0.001990
entropy
                         0.797012
                                        0.799001
                2
                         0.652973
                                        0.650565
                                                         0.002408
   gini
   gini
                3
                                        0.677092
                                                         0.004865
                         0.681957
                         n 712172
                                        0 71/500
                                                         0 001226
```

```
gilli
                          4
                                   0./131/2
                                                    U . / 14300
                                                                     -0. OCCION DO
          gini
                         5
                                   0.731471
                                                   0.733748
                                                                     -0.002277
                         6
          gini
                                   0.748787
                                                   0.750287
                                                                     -0.001499
                         7
                                   0.784689
                                                   0.786393
                                                                     -0.001703
          gini
                                                                      0.000569
          gini
                                   0.817173
                                                    0.816604
          gini
                         9
                                   0.839280
                                                   0.839201
                                                                      0.000079
scaled_entropy
                         2
                                                                      0.002408
                                   0.652973
                                                   0.650565
scaled_entropy
                         3
                                                                      0.004865
                                   0.681957
                                                   0.677092
scaled_entropy
                          4
                                   0.709631
                                                   0.710660
                                                                     -0.001029
scaled_entropy
                          5
                                                                     -0.001725
                                   0.723836
                                                   0.725561
scaled_entropy
                                                   0.742836
                          6
                                   0.740477
                                                                     -0.002359
scaled_entropy
                          7
                                   0.773370
                                                    0.775831
                                                                     -0.002461
scaled_entropy
                          8
                                   0.781701
                                                    0.783363
                                                                     -0.001662
                          9
                                   0.796930
                                                   0.799001
                                                                     -0.002071
scaled_entropy
```

Test Accuracy - Depth vs Criterion


```
In [13]: import pandas as pd

results_df["Overfitting Gap"] = results_df["Train Accuracy"] - results_df["Test Accuracy"]

#Best - test accuracy
best_test_model = results_df.loc[results_df["Test Accuracy"].idxmax()]

#Best - overfitting gap
best_balanced_model = results_df.loc[results_df["Overfitting Gap"].abs().idxmin()]

print("Best model - Test Accuracy max:")
print(best_test_model)
print("\nBalanced model - min overfitting gap:")
print(best_balanced_model)
```

Best model - Test Accuracy max: Criterion Max Depth Train Accuracy 0.83928 Test Accuracy 0.839201 0.000079 Overfitting Gap Name: 7, dtype: object Balanced model - min overfitting gap: Criterion gini Max Depth Train Accuracy 0.83928 0.839201 Test Accuracy Overfitting Gap 0.000079

Name: 7, dtype: object