Advanced Machine Learning: from Theory to Practice Lecture 6 Graphs in Machine Learning

F. d'Alché-Buc and E. Le Pennec

Fall 2016

Introduction Graphs and Machine Learning

Introduction Graphs and Machine Learning

- Graphs as data
 - web, social networks, biological networks, wireless network, molecules, sensor network (IOT)...
 - Recommendation system, Link prediction, Activity prediction
- Data as graphs Today's course
 - data defined by a similarity or affinity matrix
 - use elements of graph theory to achieve clustering, semi-supervised learning, transductive learning

Introduction Data viewed as Graphs in Machine Learning

Application to:

- Clustering in unsupervised learning
- Semi-supervised and transductive learning

Clustering Outline

- Introduction
- 2 Clustering
- Spectral clustering
 - Spectral graph theory
 - Relaxation of mincut problems
- Transductive learning
- 5 Semi-supervised learning
- 6 Exercices and references

Unlabeled data

- Available data are unlabeled : documents, webpages, clients database . . .
- Labeling data is expensive and requires some expertise

Learning from unlabeled data

- ullet Modeling probability distribution o graphical models
- \bullet Dimension reduction \to pre-processing for pattern recognition
- Clustering: group data into homogeneous clusters → organize your data, make easier access to them, pre and post processing, application in segmentation, document retrieval, bioinformatics . . .

Clustering Different clusterings

Spectral clustering Outline

- Introduction
- 2 Clustering
- Spectral clustering
 - Spectral graph theory
 - Relaxation of mincut problems
- Transductive learning
- 5 Semi-supervised learning
- 6 Exercices and references

Spectral clustering From data to graphs

Image: U. V. Luxburg.

Credits:

Spectral clustering From data to graphs

- Data x_1, \ldots, x_n with their similarity values $s_{ij} \ge 0$ or with their distance d_{ii} values
- Build a graph G = (V, E)
- \bullet V : set of vertices. A vertex v_i corresponds to data x_i
- E : set of edges. An edge links two nodes if x_i and x_j are close according to the ε -graph method or the k-nn method
- W : adjacency matrix = binary symmetric matrix
- Definition : $w_{ij} = 1$ if there is an edge between node v_i and node v_j , 0 otherwise.

Spectral clustering Graph construction

Several ways to construct it :

- $m{\circ}$ ε -graph : connect all points whose pairwise distance is at most ε (alt. whose pairwise similarity is at least ε
- k-nearest-neighbor-graph : connect v_i and v_j if x_i is among the k-nearest-neighbors of x_j OR x_i is among the k-nearest-neighbours of x_j

Spectral clustering Graph notions

Notations : A and B are two disjoint subsets of the nodes set \ensuremath{V} that form a partition

- $cut(A, B) = \sum_{t \in A, u \in B} w_{t,u}$
- $vol(A) = \sum_{t \in A, u \in V} w_{t,u}$
- |A| = nb of edges

Spectral clustering Clustering as a min cut problem

Mincut problem

- $Cut(A, \bar{A}) = \sum_{i \in A, j \in \bar{A}} w_{ij}$
- Let $f_i \in \{-1,1\}$ be the index class of x_i
- Clustering :=Find $(f_1, \ldots, f_n) \in \{-1, 1\}$ such that $Cut(A, \bar{A})$ is minimized.

Spectral clustering Balanced cuts

For sake of simplicity : $B = \bar{A}$. Ratiocut :

$$Ratiocut(A, B) = \frac{cut(A, B)}{|A|} + \frac{cut(B, A)}{|B|}$$

Normalized cut

$$Ncut(A, B) = \frac{cut(A, B)}{vol(A)} + \frac{cut(B, A)}{vol(B)}$$

Spectral clustering Elements of spectral graph theory

Some references:

- Courses/slides : Dan Spielman (Godel prize in 2015), Yale, Link
- Spectral Graph Theory, Fan R. K. Chung, Published by AMS, 1997,

Spectral clustering Elements of spectral graph theory

Definitions

- W matrix : adjacency matrix
- Degree matrix D : $d_{ii} = \sum_{i} w_{ij}$, if $i \neq j$, $d_{ij} = 0$
- Unnormalized Graph Laplacian : L = D W
- Normalized Graph Laplacians : $L_{sym} = D^{-1/2}(D-W)D^{-1/2}$, $L_{rw} = D^{-1/2}(D-W)$.

Spectral clustering Graph Laplacian Properties 1/3

Eigenvalue/eigenvectors

- $oldsymbol{0}$ L is a symmetric and positive semi-definite matrix
- **2** Vector 1_n is a eigenvector of L with eigenvalue 0.

Proof:

1.

$$f^{T}Lf = f^{T}(D - W)f$$

$$= f^{T}Df - f^{T}Wf$$

$$= \sum_{i} d_{i}f_{i}^{2} - \sum_{ij} w_{ij}f_{i}f_{j}$$

$$= \frac{1}{2}(\sum_{i} d_{i}f_{i}^{2} - 2\sum_{ij} w_{ij}f_{i}f_{j} + \sum_{j} d_{j}f_{j}^{2})$$

$$= \frac{1}{2}\sum_{i,j} w_{i}j(f_{i} - f_{j})^{2}$$

2. We notice that : $(D - W)1_n = 0$.

Connected components

• The multiplicity of the smallest eigenvalue (0) of L is the number of connected components in the graph

$$L = \begin{pmatrix} L_1 & & & \\ & L_2 & & \\ & & \ddots & \\ & & & L_k \end{pmatrix}$$

The normalized Laplacians satisfy:

- For every $f \in \mathbb{R}^n$, $f^T L_{sym} f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (\frac{f_i}{\sqrt{d_i}} \frac{f_j}{\sqrt{d_j}})^2 . \lambda$ is an eigenvalue of L_{rw} with eigenvector u iff λ is an eigenvalue of L_{sym} with eigenvector : $v = D^{1/2} u$.
- 3 λ is an eigenvalue of L_{rw} with eigenvector u iff λ and u solve the generalized eigen problem : $Lu = \lambda Du$.
- **4** 0 is an eigenvalue of L_{rw} with the constant vector 1_n . 0 is an eigenvalue of L_{sym} with eigenvector $D^{1/2}1$.

Spectral clustering Graph function and smoothness

A function $f: V \to \mathbb{R}$. Smoothness of the graph function :

$$||f||_L^2 = f^T L f = \sum_{i,j} w_{ij} (f_i - f_j)^2$$

Spectral clustering Manifold regularization

Manifold $\ensuremath{\mathcal{M}}$: topological space that locally resembles Euclidean space near each point.

More generally, measure of the smoothness of a function on a manifold :

$$||f||_{\mathcal{M}}^2 = \int_{\mathcal{M}} ||\nabla_{\mathcal{M}} f(x)||^2 p(x) dx$$

- f_i , i = 1, ..., n: membership of data i to cluster 1
- $f_i = 1$ if $x_i \in A$, -1 otherwise Cluster 2 (B)

Balanced Mincut problem

Find $f \in \{-1,1\}^n$ that minimizes $J(f) = \sum_{i \in A, j \in B} w_{ij}$ such that |A| = |B|

Notice that $|A| = |B| \iff \sum_{i=1}^n f_i = 0$ (as many 1's than -1's). $\sum_{i=1}^n f_i = 0 \iff f \perp 1_n$.

Now $f \in \mathbb{R}^n$

$$J(f) = \sum_{i,j=1}^{n} w_{ij} = \frac{1}{4} \sum_{i,j} w_{ij} (f_i - f_j)^2$$
$$= \frac{1}{4} \sum_{i,j} w_{ij} (f_i^2 + f_j^2 - 2f_i f_j)$$
$$= \frac{1}{2} f^T (D - W) f$$

Constraints:

- Avoiding trivial solution : $f \perp 1_n$
- Controlling the complexity of $f(\ell_2 \text{ regularization})$: $\sum_i f_i^2 = n$

$$\min_{f \in \mathbb{R}^n} f^T L f$$

subject to : $f \perp 1$, $||f|| = \sqrt{n}$

Spectral clustering Two-ways spectral clustering

- Solve the previous relaxed problem → the vector corresponding to the second smallest eigenvalue is solution
- To be convinced: write the First Order Conditions to solve the optimization problem
- Threshold the values of f to get discrete values1 and -1 OR use 2-means (better).

Algorithm

- Solve the previous relaxed problem → take the k eigenvectors (v₂,..., v_{k+1}) corresponding to the k smallest positive eigenvalues except 0
- Represent your data in the new space spanned by these k vectors : form the matrix V with the v_k 's as column vectors
- each row of V represents an individual
- Apply k-means in the k-dimensional space

Spectral clustering Variants of Spectral Clustering

- Relaxation of Ratiocut
- Relaxation of Mincut

Spectral clustering Relaxation of Ratiocut

Ratiocut(A, B) =
$$\frac{cut(A, B)}{|A|} + \frac{cut(B, A)}{|B|}$$
$$= cut(A, B)(\frac{1}{|A|} + \frac{1}{|B|})$$

Define (1):
if
$$v_i \in A$$
, $f_i = \sqrt{\frac{|B|}{|A|}}$.
if $v_i \in B$, $f_i = -\frac{\sqrt{|A|}}{\sqrt{|B|}}$

Spectral clustering Relaxation of Ratiocut

$$f^{T}Lf = \frac{1}{2} \sum_{i,j} w_{ij} (f_{i} - f_{j})^{2}$$

$$= \frac{1}{2} \sum_{i \in A, j \in B} w_{ij} (\sqrt{\frac{|B|}{|A|}} + \sqrt{\frac{|A|}{|B|}})^{2} + \frac{1}{2} \sum_{i \in B, j \in A} (-\sqrt{\frac{|A|}{|B|}} - \sqrt{\frac{|B|}{|A|}})^{2}$$

$$= cut(A, B) (\frac{|B|}{|A|} + \frac{|A|}{|B|} + 2)$$

$$= cut(A, B) (\frac{|A| + |B|}{|A|} + \frac{|A| + |B|}{|B|})$$

= |V| ratiocut(A, B)

Spectral clustering Relaxation of Ratiocut

We have also:

- f as defined for Ratiocut satisfies : $\sum_i f_i = 0$
- If $I^2 = n$

Altogether:

Approximating Ratiocut

$$\min_f f^T L f$$
, s.t. $f \perp 1, ||f| = n$

Spectral clustering Normalized Spectral Clustering

• Normalized cut (avoid isolated subset) :

$$Ncut(A, B) = \frac{cut(A, B)}{vol(A)} + \frac{cut(B, A)}{vol(B)}$$

•
$$f_i = \sqrt{\frac{vol(B)}{vol(A)}}$$
, $ifv_i \in A$, $\sqrt{\frac{vol(A)}{vol(B)}}$, $ifv_i \in B$.

- Notice that :
 - $vol(V) = f^T Df$.
 - $(Df)^T 1 = 0$
 - $f^T L f = vol(V) N cut(A, B)$

Spectral clustering Normalized Spectral Clustering

```
\begin{aligned} & \min_{f \in \mathbb{R}^n} \frac{f^T L f}{f^T D f} \\ & \text{subject to} : f^T D \mathbf{1}_n = \mathbf{0} \end{aligned}
```

Spectral clustering Normalized Spectral Clustering

$$\min_{f \in \mathbb{R}^n} \frac{f^T L f}{f^T D f}$$
subject to: $f^T D \mathbf{1}_n = 0$

Solve the generalized eigenvalue problem :
$$(D-W)f = \lambda Df$$
 which can be re-written as $D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}}z = \lambda z$ with $z = D^{-\frac{1}{2}}f$.

The problem boils down to find second eigenvector of L_{sym} .

Spectral clustering Properties of spectral clustering

- Importance of the initial graph : several ways to construct it (k-neighbors)
- Able to extract clusters on a manifold
- Consistency (U. Von Luxburg)
- Stability
- Model selection : eigengap

Spectral clustering Eigengap heuristic

Figure 4: Three data sets, and the smallest 10 eigenvalues of $L_{\rm rw}$.

• Source Tutorial U. Von Luxburg

Spectral clustering Difficult clustering tasks

• Figure from scikitkearn :

Transductive learning Transductive learning

Goal

- Labeled data : $S_{\ell} = \{(x_1, y_1), \dots, (x_{\ell}, y_{\ell})\}$
- Unlabeled data : $\mathcal{X}_u = \{x_{\ell+1}, \dots, x_{\ell+u}\}$, $n = \ell + u$: available during training!
- Usually $\ell << u$
- Goal : find $\hat{y}_{\ell+1}, \ldots, \hat{y}_{\ell+u}$
- No function $f: \mathcal{X} \to \mathcal{Y}$ to be learned!!

Transductive learning When does transductive learning is relevant?

Example: information retrieval

- A user enters a query
- Search engine provides sample documents
- The user labels a subset of returned documents
- Now how to label all the document in the database?

Transductive learning When does transductive learning is relevant?

Example: proteome

- A target organism :
- the set of its proteins (supposedly known)
- Some proteins have a known functional class
- Predict the functional classes for the remaining set of proteins

Transductive learning Label Propagation for transduction

- c : the number of possible labels (classes)
- a graph on data with adjacency matrix W
- matrix F of size n × c holds the labeling scores all the datapoints
- matrix Y of same size, is binary such that : $Y_{ij} = 1$ if x_i is initially labeled with label j, 0 otherwise.
- 0 < α < 1
- $D_{ii} = \sum_{j} w_{ij}$

The first term is a smoothness constraint. The other term is the data-fitting term.

Reference: Zhou et al. NIPS 2003

$$\mathcal{J}_1(F) = (1/\alpha - 1) \sum_{i=1}^n ||F_i - Y_i||^2 + \sum_{i,j=1}^n w_{ij} ||\frac{F_i}{\sqrt{D_{ii}}} - \frac{F_j}{\sqrt{D_{jj}}}||^2$$

Minimizing the cost function ${\mathcal J}$ yields the optimal F :

$$F = (I - \alpha L_{sym})^{-1} Y$$

- I: identity matrix of size $n \times n$
- $L_{sym} = D^{-1/2}(D-W)D^{-1/2}$

Too expensive : $\mathcal{O}(n^3)$

Transductive learning Label Propagation for transduction

Iterative algorithm:

- $F_0 = Y$
- Repeat until convergence :
 - $F_{t+1} = \alpha (I L_{sym}) F_t + (1 \alpha) Y$

Transductive learning Example in 2D

Semi-supervised learning Outline

- Introduction
- 2 Clustering
- Spectral clustering
 - Spectral graph theory
 - Relaxation of mincut problems
- Transductive learning
- 5 Semi-supervised learning
- 6 Exercices and references

Semi-supervised learning

- Benefit from the availability of huge sets of unlabeled data
- Unlabeled data inform us about the probability distribution of the data p(x)
- Can we use it? does it improve the performance of the resulting regressors/classifiers?

Goal

- Labeled data : $S_{\ell} = \{(x_1, y_1), \dots, (x_{\ell}, y_{\ell})\}$
- Unlabeled data : $\mathcal{X}_u = \{x_{\ell+1}, \dots, x_{\ell+u}\}$, $n = \ell + u$: available during training!
- Usually $\ell << u$
- Test data : $\mathcal{X}_{test} = \{x_{n+1}, \dots, x_{n+m}\}$: not available during training
- Learn a function $f: \mathcal{X} \to \mathcal{Y}$ (regression/classification) that behaves well on test data

Semi-supervised learning Semi-supervised methods

- Learn f from \mathcal{X} to \mathcal{Y} using $\mathcal{S}_{\ell} = \{(x_1, y_1), \dots, (x_{\ell}, y_{\ell})\}$ and $\mathcal{X}_u = \{x_{\ell+1}, \dots, x_{\ell+u}\}$
- Methods
 - Self-training (including generative approaches)
 - Loss-based methods
 - Margin for unlabeled data
 - Smoothness penalty (graph-based semi-supervised learning)

Semi-supervised learning Self-training

Any classifier : f

Principle

- k=0
- 2 Learn f_k by training on $S_k = S$
- **3** Use f to label \mathcal{X}_u and keep the most confident u_k labeled data and build \mathcal{S}_{k+1} new set of $\ell + u_k$ labeled data
- **4** Learn f_{k+1} by training on S_{k+1}
- **6** If $D(f_{k+1}, f_k)$ is small then STOP else GOTO 3

Semi-supervised learning Self-training: example with k-NN (1)

• Two nice clusters without outliers [example Piyush Ray]

Base learner: KNN classifier

Semi-supervised learning Self-training: example with k-NN (2)

Two clusters with outliers

- Margin : $\rho(x, y, h) = y.h(x)$
- Which margin for unlabeled data?
- Reinforce the confidence of the classifier
 - $\rho_2(x,h) = h(x)^2$
 - $\rho_1(x,h) = |h(x)|$
 - Implicit assumption : cluster assumption : data in the same cluster share the same label
- Worked for SVM, MarginBoost, ...

Semi-supervised learning Semi-supervised MarginBoost

- ullet $h_t \in \mathcal{H}$: base classifier
- Boosting model : $H_T(x) = \sum_t \alpha_t h_t(x)$
- Loss function : $J(H_t) = \sum_{i=1}^{\ell} \exp(-\rho(x_i, y_i, H_t)) + \lambda \sum_{j=\ell+1}^{n} \exp(-\rho_u(x_j, H_t))$

Semi-supervised learning Semi-supervised MarginBoost

 Toys problems with different level of difficulty (we control Bayes error by mixing more or less the generative models)

[figure: NIPS 2001]

Semi-supervised learning Data used in the previous sample

Semi-supervised learning Transductive Support Vector Machine (Joachims)

Use $y_{\ell+1}, \ldots, y_{\ell+u}$ during learning. Let us call $\mathbf{y}^* = [y_1^*, \ldots, y_u^*]$ the prediction vector.

Joachims proposed a Transductive SVM with a soft margin :

TSVM

$$\underset{\mathbf{w}, y^*, b}{\text{minimize}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{\ell} \xi_i + C^* \sum_{j=1}^{u} \xi_i^*$$

under the constraints

$$y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + \mathbf{b}) \geq 1 - \xi_{i}, i = 1, ..., n$$

 $y_{j}^{*}(\mathbf{w}^{T}\mathbf{x}_{\ell+j} + \mathbf{b}) \geq 1 - \xi_{j}^{*}, i = 1, ..., n$
 $y_{j}^{*} \in \{-1, +1\}, j = 1, ..., u$
 $\xi_{i} \geq 0$
 $\xi_{j}^{*} \geq 0$

Ref: Joachims, 1999.

Semi-supervised learning Semi-supervised Support Vector Machine (S3VM)

- Bennet and Demiriz 1999, 2001
- Bennet and Demiriz proposed $\rho_1(x,h) = |h(x)|$ and an implementation of S3VM based on Mangasarian's work.
- Robust Linear Programming

SVM formulation:

$$\min_{\substack{w,b,\eta\\ s.t. \ y_i[wx_i-b]+\eta_i \ge 1\\ \eta_i \ge 0, i=1,...,l}} C \sum_{i=1}^t \eta_i + \frac{1}{2} ||w||^2$$

S3VM formulation (Bennet and Demiriz) :

$$\begin{aligned} \min_{\mathbf{w},b,\eta,\xi,z} \quad & C\left[\sum_{i=1}^{\ell} \eta_i + \sum_{j=\ell+1}^{\ell+k} \min(\xi_j,z_j)\right] + \parallel \mathbf{w} \parallel \\ subject \ to \quad & y_i(\mathbf{w} \cdot x_i + b) + \eta_i \geq 1 \quad \eta_i \geq 0 \quad i = 1,\dots,\ell \\ & \mathbf{w} \cdot x_j - b + \xi_j \geq 1 \quad \xi_j \geq 0 \quad j = \ell+1,\dots,\ell+k \\ & -(\mathbf{w} \cdot x_j - b) + z_j \geq 1 \quad z_j \geq 0 \end{aligned}$$

With integer variables $d_i = 0 \text{ or } 1$ according it belongs to class 1 or class -1 (d has to be learned as well) :

Mixed integer programming.

Let k be a positive definite kernel and \mathcal{H}_k the unique RKHS induced by k.

Smoothness constraint / Manifold regularization 1/2

- Training data : $S_{\ell} = \{(x_i, y_i, i =, \dots \ell)\}$ and $S_u = \{x_{\ell+1}, \dots, x_{\ell+u}\}$
- For $f \in \mathcal{H}_k$ and W a similarity matrix between data
- Impose an additional penalty that ensures smoothness of function f: for two close inputs, f takes close values
- Ref : Belkin, Nyogi and Sindwani (2006)

The key ideas:

- We assume that a better knowledge of the marginal distribution $P_x(x)$ will give us bette knowledge of P(Y|x).
- If two points x_1 and x_2 are close in the intrinsic geometry of P_x then the conditional distribution $P(y|x_1)$ and $P(y|x_2)$ will be close.

Semi-supervised learning Manifold regularization

• If \mathcal{M} , the support of P_x is a submanifold $\subset \mathbb{R}^p$, then we can try to minimize the penalty :

$$||f||_I^2 = \int_{\mathcal{M}} ||\nabla_{\mathcal{M}} f||^2 p(x) dx$$

- ullet $\nabla_{\mathcal{M}} f$ is the gradient of f along the manifold \mathcal{M}
- Approximation of $||f||_{I}^{2}$:

$$||f||_{I}^{2} \approx \sum_{ii} w_{ij} (f(x_{i}) - f(x_{j}))^{2},$$

where W is the adjacency matrix of the data graph.

Let k be a positive definite kernel and \mathcal{H}_k the unique RKHS induced by k.

Smoothness constraint / Manifold regularization

Minimize J(f) in \mathcal{H}_k :

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} V(x_i, y_i, f) + \lambda ||f||_k^2 + \lambda_u \sum_{ij} w_{ij} (f(x_i) - f(x_j))^2$$

Let k be a positive definite kernel and \mathcal{H}_k the unique RKHS induced by k.

Smoothness constraint / Manifold regularization

Minimize J(f) in \mathcal{H}_k :

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} V(x_i, y_i, f) + \lambda ||f||_k^2 + \lambda_u \sum_{ij} w_{ij} (f(x_i) - f(x_j))^2$$
$$= \frac{1}{\ell} \sum_{i=1}^{\ell} V(x_i, y_i, f) + \lambda ||f||_k^2 + \lambda_u f^T L f$$

Semi-supervised learning Representer theorem

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} V(x_i, y_i, f) + \lambda ||f||_k^2 + \lambda_u \sum_{ij=1}^{\ell+u} w_{ij} (f(x_i) - f(x_j))^2$$
$$= \frac{1}{\ell} \sum_{i=1}^{\ell} V(x_i, y_i, f) + \lambda ||f||_k^2 + \lambda_u f^T L f$$

Any minimizer of J(f) admits a representation $\hat{f}(\cdot) = \sum_{i=1}^{\ell+u} \alpha_i k(x_i, \cdot)$

• Closed-from solution : extension of ridge regression

$$V(x_i, y_i, f) = (y_i - f(x_i))^2$$

$$\lambda_L = \frac{\lambda_u}{u + \ell}$$

$$\hat{\alpha} = (JK + \lambda \ell Id + \frac{\lambda_u \ell}{(u + \ell)^2} LK)^{-1} Y$$

K : Gram matrix for all data $J: (\ell+u) \times (\ell+u)$ diagonal matrix with the first ℓ values equal to 1 and the remaining ones to 0.

Semi-supervised learning Laplacian SVM

We choose the hinge loss functions:

$$\min_{f \in \mathcal{H}_k} \frac{1}{\ell} \sum_{i=1}^{\ell} (1 - y_i f(x_i))_+ + \lambda ||f||_k^2 + \frac{\lambda_u}{u + \ell} f^T L f$$

We benefit from the representer theorem.

Semi-supervised learning Laplacian SVM

In practise, we solve:

$$\begin{split} \min_{\alpha \in \mathbb{R}^{l+u}, \xi \in \mathbb{R}^l} \frac{1}{l} \sum_{i=1}^l \xi_i + \gamma_A \alpha^T K \alpha + \frac{\gamma_l}{(u+l)^2} \alpha^T K L K \alpha \\ \text{subject to: } y_i (\sum_{j=1}^{l+u} \alpha_j K(x_i, x_j) + b) \geq 1 - \xi_i, \quad i = 1, \dots, l \\ \xi_i \geq 0 \quad i = 1, \dots, l. \end{split}$$

Semi-supervised learning Laplacian SVM :results

Results: Belkin et al. 2006, JMLR.

Exercices and references Outline

- Introduction
- 2 Clustering
- Spectral clustering
 - Spectral graph theory
 - Relaxation of mincut problems
- Transductive learning
- 5 Semi-supervised learning
- 6 Exercices and references

Exercises and references Exercises and references

- Code the Laplacian SVM or the Laplacian Kernel Ridge regressor in scikitlearn
- Elaborate ideas to scale up Spectral clustering
- Ng, Jordan, Spectral Clustering, 2001.
- Belkin et al. 2006, JMLR
- Book : Semi-supervised learning, Chapelle, Scholpkoft, Zien,MIT