

RECEIVED
1981

AUG 07 2001

AUG 5
TECH CENTER 1600/2900
S. Karberg, P.

SEQUENCE LISTING

110 > Subramaniam, S.; Slater, S.; Karberg, K.; Chen, R.; Valentin, H.,
pong, Y. used in Tocopherol

~~Chung, Y.~~
~~Chung, Y.~~ Nucleic Acid Sequences to Proteins Involved in Tocopherol Synthesis

<130> 16515.054

<140> US 09/688,069
<141> 2000-10-14

<141> 2000 10 -

<160> 114

<210> 1

<211> 1182

<212> DNA

<213> *Arabidopsis* sp.

<400> 1

atggagtctc	tgcgtctctag	ttcttctctt	gtttccgtg	ctgggtgggtt	ttgtttgggg	120
aaggagaatc	taaagctcca	ctcttttatca	gaaatccgag	ttctgcgttg	tgattcgagt	180
aaagggttcg	caaaaaccgaa	gtttaggaac	aatcttggta	ggctcgatgg	tcaaggatct	240
tcatttgtt	tgtatccaaa	acataagtcg	agatttcggg	ttaatgccac	tgcgggtcag	300
cctgaggctt	tcgactcgaa	tagcaaacag	aagtcttttta	gagactcggt	agatgcgttt	360
tcagggtttt	ctaggcctca	tacagttatt	ggcacagtc	ttagcattt	atctgtatct	420
ttcttagcag	tagagaaggt	ttctgtatata	tctcttttac	ttttcactgg	catcttggag	480
gctgttgttgc	cagctctcat	gatgaacatt	tacatagttg	ggctaaatca	gttgcgtat	540
gttgaatatag	ataaggttaa	caagccctat	ctttcatttgg	catcaggaga	atattctgtt	600
aacaccggca	ttgcaatagt	agcttccttc	tccatcatga	gtttctggct	tgggtggatt	660
gttggttcat	ggccattttt	ctgggcctt	tttgtgagtt	tcatgctcgg	tactgcatac	720
tctatcaatt	tgccactttt	acggtgaaaa	agatttgcatt	tgggtgcagc	aatgtgtatc	780
ctcgctgtcc	gagcttattat	tgttcaaatc	gccttttac	tacatattca	gacacatgtg	840
tttggaaagac	caatcttgg	cactaggcct	cttattttcg	ccactcgctt	tatgagcttt	900
ttctctgtcg	ttattgcatt	gtttaaggat	ataacctgata	tgcggggga	taagatattc	960
ggaattccgt	cattctctgt	aactctgggt	cagaacacggg	tgttttgac	atgtgttaca	1020
ctactctaaa	tggcttacgc	tgttgcattt	ctagtgggg	ccacatctcc	attcatatgg	1080
agcaaagtca	tctcggttgt	gggtcatgtt	atactcgaa	caactttgtg	ggctcgagct	1140
aagtccgttg	atctgagtag	caaaaaccgaa	ataacttcatt	gttataatgtt	catatggaaag	1182
ctcttttatgc	cagagttactt	gctgttacct	tttttgaagt	ga		

<210> 2

<211> 393

<212> PRT

<212> Arabidopsis sp.

<400> 2

1 5
phe Cys Trp Lys Lys Gln Asn Leu Lys Leu His Ser Leu Ser Glu Ile
25 30

Phe Cys Ile Ile Ile
 20 25
 Arg Val Leu Arg Cys Asp Ser Ser Lys Val Val Ala Lys Pro Lys Phe
 35 40 45

35 Arg Asn Asn Leu Val Arg Pro Asp Gly Gln Gly Ser Ser Leu Leu Leu

50 55 60
 Tyr Pro Lys His Lys Ser Arg Phe Arg Val Asn Ala Thr Ala Gly Gln
 70 75 80
 65
 Pro Glu Ala Phe Asp Ser Asn Ser Lys Gln Lys Ser Phe Arg Asp Ser
 85 90 95
 100 105 110
 Leu Asp Ala Phe Tyr Arg Phe Ser Arg Pro His Thr Val Ile Gly Thr
 115
 Val Leu Ser Ile Leu Ser Val Ser Phe Leu Ala Val Glu Lys Val Ser
 120 125
 130 135 140
 Ala Leu Met Met Asn Ile Tyr Ile Val Gly Leu Asn Gln Leu Ser Asp
 145 150 155 160
 Val Glu Ile Asp Lys Val Asn Lys Pro Tyr Leu Pro Leu Ala Ser Gly
 180 185 190 195
 165 170 175
 Glu Tyr Ser Val Asn Thr Gly Ile Ala Ile Val Ala Ser Phe Ser Ile
 200 205
 Met Ser Phe Trp Leu Gly Trp Ile Val Gly Ser Trp Pro Leu Phe Trp
 210 215
 225 230 235 240
 Ala Leu Phe Val Ser Phe Met Leu Gly Thr Ala Tyr Ser Ile Asn Leu
 245 250 255
 260 265 270 275
 Pro Leu Leu Arg Trp Lys Arg Phe Ala Leu Val Ala Ala Met Cys Ile
 280 285
 Gln Thr His Val Phe Gly Arg Pro Ile Leu Phe Thr Arg Pro Leu Ile
 290 295 300 305
 Phe Ala Thr Ala Phe Met Ser Phe Phe Ser Val Val Ile Ala Leu Phe
 310 315 320
 Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys Ile Phe Gly Ile Arg Ser
 325 330 335
 Pro Phe Ile Trp Ser Lys Val Ile Ser Val Val Gly His Val Ile Leu
 340 345 350
 Ala Thr Thr Leu Trp Ala Arg Ala Lys Ser Val Asp Leu Ser Ser Lys
 355 360 365
 Thr Glu Ile Thr Ser Cys Tyr Met Phe Ile Trp Lys Leu Phe Tyr Ala
 370 375 380

Glu Tyr Leu Leu Leu Pro Phe Leu Lys
385 390

<210> 3
<211> 1224
<212> DNA
<213> *Arabidopsis* sp.

<400> 3

atggcgttt	ttgggctc	ccgtgtttca	agacggtgt	tgaatcttc	cgtcccgta	60
actccatctt	cttcctctgc	tctttgcaa	tcacaacata	atccctgtc	caatcctgtg	120
actaccatt	acacaaatcc	tttcaactag	tgttatcctt	catggaatga	taattaccaa	180
gtatggat	aagaagaga	attgcatacg	gagaagttt	ttgggttgg	ttggaaattac	240
agattaattt	gtgaaatgtc	gtcgcttct	tcgggttgg	aggaaaggcc	gaagaaagat	300
gataaggaga	agagtatgg	tgttgttgg	aagaaagctt	cttgataga	tttgattta	360
ccagaagaag	ttagaggtt	tgctaagtt	gctcgatgg	ataaacccat	tggacttgg	420
ttgcttgcgt	ggcctgtat	gtggtcgatt	gctgggctg	ctgatcctgg	aagccttcca	480
agtttaaat	atatggctt	atttggtgtc	ggagcattac	ttcttagagg	tgctgttgt	540
actataaatg	atctgcttga	tcaggacata	gatacaaagg	ttgatcgta	aaaactaaga	600
cctatcgcca	gtggctttt	gacaccatt	caagggattt	gatttctcg	gctgcagtt	660
cttttaggct	tagggattt	tctccaaactt	aacaattaca	gccgtgttt	aggggcttca	720
tctttgttac	ttgtctttc	ctacccactt	atgaagaggt	ttacatttt	gcctcaagcc	780
tttttaggtt	tgaccataaa	ctggggagca	ttgttaggt	ggactgcagt	taaaggaaagc	840
atagcaccaat	ctattgtact	ccctcttat	ctctccggag	tctgctggac	ccttgtttat	900
gatactattt	atgcacatca	ggacaaagaa	gatgtatgaa	aagttggtgt	taagtcaaca	960
gccttagat	tcggtgataa	tacaaagctt	tggtaactg	gatttggcac	agcatccata	1020
ggtttcttg	cactttctgg	attcagtgca	gatctcggt	ggcaatatta	cgcatactg	1080
gcccgtcat	caggacagtt	aggatggcaa	atagggacag	ctgacttattc	atctgggtct	1140
gactgcagta	gaaaattttgt	gtcgaacaag	tggttgggt	ctattatatt	tagtggagtt	1200
gtactggaa	gaagtttca	ataaa				1224

<210> 4
<211> 407
<212> PRT
<213> *Arabidopsis* sp.

<400> 4

Met Ala Phe Phe Gly Leu Ser Arg Val Ser Arg Arg Leu Leu Lys Ser
 1 5 10 15
 Ser Val Ser Val Thr Pro Ser Ser Ser Ala Leu Leu Gln Ser Gln
 20 25 30
 His Lys Ser Leu Ser Asn Pro Val Thr Thr His Tyr Thr Asn Pro Phe
 35 40 45
 Thr Lys Cys Tyr Pro Ser Trp Asn Asp Asn Tyr Gln Val Trp Ser Lys
 50 55 60
 Gly Arg Glu Leu His Gln Glu Lys Phe Phe Gly Val Gly Trp Asn Tyr
 65 70 75 80
 Arg Leu Ile Cys Gly Met Ser Ser Ser Val Leu Glu Gly Lys
 85 90 95
 Pro Lys Lys Asp Asp Lys Glu Lys Ser Asp Gly Val Val Val Lys Lys

100	105	110
Ala Ser Trp Ile Asp Leu Tyr	Leu Pro Glu Glu Val Arg	Gly Tyr Ala
115	120	125
Lys Leu Ala Arg Leu Asp Lys	Pro Ile Gly Thr Trp	Leu Leu Ala Trp
130	135	140
Pro Cys Met Trp Ser Ile Ala Leu Ala	Asp Pro Gly Ser Leu	Pro
145	150	155
Ser Phe Lys Tyr Met Ala Leu Phe Gly	Cys Gly Ala Leu Leu	Leu Arg
165	170	175
Gly Ala Gly Cys Thr Ile Asn Asp	Leu Leu Asp Gln Asp	Ile Asp Thr
180	185	190
Lys Val Asp Arg Thr Lys Leu Arg	Pro Ile Ala Ser	Gly Leu Leu Thr
195	200	205
Pro Phe Gln Gly Ile Gly Phe Leu Gly	Leu Gln Leu Leu	Gly Leu
210	215	220
Gly Ile Leu Leu Gln Leu Asn Asn Tyr	Ser Arg Val Leu	Gly Ala Ser
225	230	235
Ser Leu Leu Leu Val Phe Ser Tyr	Pro Leu Met Lys Arg	Phe Thr Phe
245	250	255
Trp Pro Gln Ala Phe Leu Gly	Leu Thr Ile Asn Trp	Gly Ala Leu Leu
260	265	270
Gly Trp Thr Ala Val Lys Gly	Ser Ile Ala Pro Ser	Ile Val Leu Pro
275	280	285
Leu Tyr Leu Ser Gly Val Cys	Trp Thr Leu Val	Tyr Asp Thr Ile Tyr
290	295	300
Ala His Gln Asp Lys Glu Asp Asp	Val Lys Val Gly Val	Lys Ser Thr
305	310	315
Ala Leu Arg Phe Gly Asp Asn Thr	Lys Leu Trp Leu Thr	Gly Phe Gly
325	330	335
Thr Ala Ser Ile Gly Phe Leu Ala	Leu Ser Gly Phe Ser	Ala Asp Leu
340	345	350
Gly Trp Gln Tyr Tyr Ala Ser	Leu Ala Ala Ala Ser	Gly Gln Leu Gly
355	360	365
Trp Gln Ile Gly Thr Ala Asp Leu Ser	Ser Gly Ala Asp Cys Ser	Arg
370	375	380
Lys Phe Val Ser Asn Lys Trp Phe	Gly Ala Ile Ile Phe Ser	Gly Val
385	390	395
Val Leu Gly Arg Ser Phe Gln		
	405	

<211> 1296

<212> DNA

<213> *Arabidopsis* sp.

<400> 5

atgtggcgaa	gatctgttgt	ttctcggtta	tcttcaagaa	tctctgtttc	tttttcgtta	60
ccaaacctta	gactgattcc	ttggcccccgc	gaattatgtg	ccgttaatacg	tttctcccaag	120
cctccgtct	cgacggaaatc	aactgctaag	ttaggatca	ctgggtttag	atctgatgcc	180
aatcgagtt	ttgccactgc	tactgcccgc	gctacagcta	cagctaccac	cggtgagatt	240
tcgtctagag	ttgcggctt	ggctggattta	gggcataact	acgctcggtt	ttattggag	300
ctttctaaag	ctaaacttag	tatgtttgt	gttgcactt	ctggaaactgg	gtatattctg	360
ggtacggaa	atgctgaat	tagttcccg	gggccttggtt	acacatgtgc	aggaaccatg	420
atgattgtcgt	cattgtctaa	ttccttgaat	cagatttttg	agataagcaa	tgattttaag	480
atgaaaagaa	cgatgtctaa	gccattggct	tcaggacgta	ttagtgttcc	acacgtgtt	540
gcatgggcta	ctattgtctgg	tgcttctgg	gcttgggtt	tggccagcaa	gactaatatg	600
ttggctgtcgt	gactgtcattc	tgccaatctt	gtactttatg	cgtttggttt	tactccgttg	660
aagcaacttc	accctatcaa	tacatgggtt	ggcgctgtt	tttgtctat	cccaccccttg	720
cttgggtggg	cggcagcgtc	tggtcagatt	tcatacaatt	cgatgattt	tccagctgt	780
cttactttt	ggcagatacc	tcattttatg	gcccttgcac	atctctgcgg	caatgattat	840
gcagctggag	gttacaagat	gttgcactc	tttgatccgt	cagggaagag	aatagcagca	900
gtggctctaa	ggaactgctt	ttacatgatc	cctctcggtt	tcatgcctt	tgactggggg	960
ttaacctcaa	gttgggtttt	cctcgaatca	acatcttc	cactagcaat	cgctgcacaa	1020
gcattttcat	tctaccggaga	ccggaccatg	cataaagcaa	ggaaaatgtt	ccatgcctgt	1080
cttcttcc	ttccctgtttt	catgtctgg	cttcttctac	accgtgtctc	taatgataat	1140
cagcaacaac	tcttagaaaga	agccggattta	acaattctg	tatctggtga	agtccaaaact	1200
cagaggcgaa	agaaaacgtgt	ggctcaacct	ccggtggctt	atgcctctgc	tgcaccgtt	1260
cttttctcc	caagtccttc	cttctactct	ccatga			1296

<210> 6

<211> 431

<212> PRT

<213> Arabidopsis sp.

<400> 6

Met Trp Arg Arg Ser Val Val Tyr Arg Phe Ser Ser Arg Ile Ser Val
5 10 15

55
Ala Lys Leu Gly Ile Thr Gly Val Arg Ser Asp Ala Asn Arg Val Phe
50 55 60

50 Ala Thr Ala Thr Ala Ala Thr Ala Thr Ala Thr Thr Gly Glu Ile
65 70 75 80

65 Ser Ser Arg Val Ala Ala Leu Ala Gly Leu Gly His His Tyr Ala Arg
85 90 95
Ser Ser Arg Val Val Val Ala

Cys Tyr Trp Glu Leu Ser Lys Ala Lys Leu Ser Met Leu Val Val Ala
 100 105 110

Phe Pro Gly Leu Cys Tyr Thr Cys Ala Gly Thr Met Met Ile Ala Ala
 130 135 140
 Ser Ala Asn Ser Leu Asn Gln Ile Phe Glu Ile Ser Asn Asp Ser Lys
 145 150 155 160
 Met Lys Arg Thr Met Leu Arg Pro Leu Pro Ser Gly Arg Ile Ser Val
 165 170 175
 Pro His Ala Val Ala Trp Ala Thr Ile Ala Gly Ala Ser Gly Ala Cys
 180 185 190
 Leu Leu Ala Ser Lys Thr Asn Met Leu Ala Ala Gly Leu Ala Ser Ala
 195 200 205
 Asn Leu Val Leu Tyr Ala Phe Val Tyr Thr Pro Leu Lys Gln Leu His
 210 215 220
 Pro Ile Asn Thr Trp Val Gly Ala Val Val Gly Ala Ile Pro Pro Leu
 225 230 235 240
 Leu Gly Trp Ala Ala Ala Ser Gly Gln Ile Ser Tyr Asn Ser Met Ile
 245 250 255
 Leu Pro Ala Ala Leu Tyr Phe Trp Gln Ile Pro His Phe Met Ala Leu
 260 265 270
 Ala His Leu Cys Arg Asn Asp Tyr Ala Ala Gly Gly Tyr Lys Met Leu
 275 280 285
 Ser Leu Phe Asp Pro Ser Gly Lys Arg Ile Ala Ala Val Ala Leu Arg
 290 295 300
 Asn Cys Phe Tyr Met Ile Pro Leu Gly Phe Ile Ala Tyr Asp Trp Gly
 305 310 315 320
 Leu Thr Ser Ser Trp Phe Cys Leu Glu Ser Thr Leu Leu Thr Leu Ala
 325 330 335
 Ile Ala Ala Thr Ala Phe Ser Phe Tyr Arg Asp Arg Thr Met His Lys
 340 345 350
 Ala Arg Lys Met Phe His Ala Ser Leu Leu Phe Leu Pro Val Phe Met
 355 360 365
 Ser Gly Leu Leu Leu His Arg Val Ser Asn Asp Asn Gln Gln Leu
 370 375 380
 Val Glu Glu Ala Gly Leu Thr Asn Ser Val Ser Gly Glu Val Lys Thr
 385 390 395 400
 Gln Arg Arg Lys Lys Arg Val Ala Gln Pro Pro Val Ala Tyr Ala Ser
 405 410 415
 Ala Ala Pro Phe Pro Phe Leu Pro Ala Pro Ser Phe Tyr Ser Pro
 420 425 430

<210> 7
 <211> 479
 <212> DNA

<213> Arabidopsis sp.

<400> 7

ggaaactccc ggagcacctg tttgcaggta ccgctaacct taatcgataa tttatttctc	60
ttgtcaggaa ttatgttaat ctggtggaaag gctcgatac cattttgca ttgccttcg	120
ctatgtatcg gtttactttg ggtgtatga gaccaggcggt ggctttatgg tatggcgaaa	180
acccattttt atccaatgtc gcatttcctc ccgatgatc gtttttcat tcctatacag	240
gtatcatgtc gataaaaactg ttactgtac tgggttgtat ggtatcagca agaagcgcgg	300
cgtatgcgtt taaccggtat ctcgacaggc attttgacgc gaagaacccg cgtactgcca	360
tccgtgaaat acctgcgggc gtcataatctg ccaacagtgc gctgggttt acgataggct	420
gctgcgttgtt attctgggtt gcctgttatt tcattaaacac gatctgttt tacctggcg	479

<210> 8

<211> 551

<212> DNA

<213> Arabidopsis sp.

<220>

<221> misc_feature

<222> (1)...(551)

<223> n = A,T,C or G

<400> 8

ttgtggctta caccttaatg agcatacgcc agnccattac ggctcgtaa tcggcgccat	60
ngccggngct gntgcacccg tagtgggcta ctgcgcgtg accaatcagc ttgatctagc	120
ggcttattt ctgttttaa ttttactgtt ctggcaaatg ccgcattttt acgcgatttc	180
catttcagg ctaaaagact tttagccgc ctgtattccg gtgtgcctca tcattaaaga	240
cctgcgtat accaaaatca gcatgctggt ttacgtggc ttattiacac tggtgtctat	300
catgcccccc ctcttagggt atgcgggtt gatttatggg atagccgcct taattttagg	360
cttgatgg ctttatattt ccataacaagg attcaagacc gccgatgatc aaaaatggtc	420
tcgttaagatg ttggatctt cgatttat cattaccctc ttgtcgtaa tgatgttgt	480
ttaaacttac tgcctcctga agtttatata tcgataattt cagcttaagg aggcttagtg	540
gttaattcaa t	551

<210> 9

<211> 297

<212> PRT

<213> Arabidopsis sp.

<400> 9

Met Val Leu Ala Glu Val Pro Lys Leu Ala Ser Ala Ala Glu Tyr Phe	
1	15
5	

10	
----	--

1	
---	--

Phe Lys Arg Gly Val Gln Gly Lys Gln Phe Arg Ser Thr Ile Leu Leu	
20	30

25	
----	--

20	30
----	----

35	
----	--

40	45
----	----

35	
----	--

50	55
----	----

50	60
----	----

55	
----	--

55	60
----	----

60	
----	--

65	70
----	----

65	75
----	----

70	80
----	----

70	
----	--

65	75
----	----

70	80
----	----

70	
----	--

70	80
----	----

70	
----	--

70	80
----	----

85	90	95
Val Val Met Gly Asn Lys Val Val Ala Leu Leu Ala Thr Ala Val Glu		
100	105	110
His Leu Val Thr Gly Glu Thr Met Glu Ile Thr Ser Ser Thr Glu Gln		
115	120	125
Arg Tyr Ser Met Asp Tyr Tyr Met Gln Lys Thr Tyr Tyr Lys Thr Ala		
130	135	140
Ser Leu Ile Ser Asn Ser Cys Lys Ala Val Ala Val Leu Thr Gly Gln		
145	150	155
Thr Ala Glu Val Ala Val Leu Ala Phe Glu Tyr Gly Arg Asn Leu Gly		
165	170	175
Leu Ala Phe Gln Leu Ile Asp Asp Ile Leu Asp Phe Thr Gly Thr Ser		
180	185	190
Ala Ser Leu Gly Lys Gly Ser Leu Ser Asp Ile Arg His Gly Val Ile		
195	200	205
Thr Ala Pro Ile Leu Phe Ala Met Glu Glu Phe Pro Gln Leu Arg Glu		
210	215	220
Val Val Asp Gln Val Glu Lys Asp Pro Arg Asn Val Asp Ile Ala Leu		
225	230	235
Glu Tyr Leu Gly Lys Ser Lys Gly Ile Gln Arg Ala Arg Glu Leu Ala		
245	250	255
Met Glu His Ala Asn Leu Ala Ala Ala Ala Ile Gly Ser Leu Pro Glu		
260	265	270
Thr Asp Asn Glu Asp Val Lys Arg Ser Arg Arg Ala Leu Ile Asp Leu		
275	280	285
Thr His Arg Val Ile Thr Arg Asn Lys		
290	295	

<210> 10
 <211> 561
 <212> DNA
 <213> Arabidopsis sp.

<400> 10

```

aagcgcatcc gtccttttct acgattgccg ccagccgcat gtatggctgc ataaccgacc 60
gcccstatcc gctcgccgccc gcggtcgaat tcattcacac cgcgacgctg ctgcacgacg 120
acgtcgatca tgaaagcgat ttgcgcgcgcg gccgcgaaag cgccataag gttttcgcca 180
atcaggcgag cgtgctcgat ggcgatttcc ttttctcccg cgccttccag ctgatggtg 240
aagacggctc gctcgacgcg ctgcgcattc tctcgatgc ctccgcgtg atcgcgcagg 300
gcaagtgtat gcagctcgcc accgcgcgcgca atcttggaaac caatatgagc cagtatctcg 360
atgtgatcag cgcgaagacc gccgcgcgtt ttgcccgcgc ctgcgaaatc ggccccgtga 420
tggcgaaacgc gaaggccgaa gatgtgcgcg cgatgtgcga atacggcatg aatctcgta 480
tcgccttcca gatcatcgac gaccttctcg attacggcac cgccggccac gccgagctt 540
gcaagaacac gggcgacgat t 561

```

<210> 11
<211> 966
<212> DNA
<213> *Arabidopsis* sp.

<400> 11

atggtaacttgc	ccgaggttcc	aaagcttgcc	tctgctgctg	agtacttctt	caaaagggggt	60
gtgcaaggaa	aacagtttcg	ttcaactatt	ttgctgctga	tggcgacacg	tctgaatgt	120
cgcgttccag	aagcattgtat	tggggaatca	acagatatacg	tcacatcaga	attacgcgt	180
aggcaacggg	gtattgctga	aatcactgaa	atgatacacg	tcgcaagtct	actgcacgt	240
gatgtcttgg	atgatgccga	tacaaggcgt	ggtgttggtt	ccttaaatgt	tgtaatgggt	300
aacaagatgt	cggtagttagc	aggagacttc	ttgctctccc	gggcttgg	ggctctcgct	360
gctttaaaa	acacagaggt	tgttagcatta	cttgcactg	ctgtagaaca	tcttgttacc	420
ggtgaaccca	tggaaataaac	tagtcaacc	gagcagcgtt	atagtatgga	ctactacatg	480
cagaagacat	attataaagac	agcatcgcta	atctctaaca	gctgcaaagc	tgttggcggt	540
ctcactggac	aaacagcaga	agttggcggt	ttagcttttg	agtatgggag	gaatctgggt	600
ttagcattcc	aattaataga	cgacattctt	gattcacgg	gcacatctgc	ctctctcgga	660
aaggatcgt	tgtcagat	tcgccccatgg	gtcataacag	ccccaaatct	ctttggccatg	720
gaagagttc	ctcaactacg	cgaagttgtt	gatcaagttt	aaaaagatcc	taggaatgtt	780
gacattgttt	tagagtatct	tgggaagagc	aaggaaatac	agagggcaag	agaattagcc	840
atggAACATG	cgaatctacg	agcagctgca	atccgggtctc	tacctgaaac	agacaatgaa	900
gatgtcaaaa	gatcgaggcg	ggcacttatt	gacttgaccc	atagagtcat	caccagaaac	960
aaqtga						966

<210> 12

<211> 321

<212> PRT

<213> Arabidopsis sp.

<400> 12

Met Val Leu Ala Glu Val Pro Lys Leu Ala Ser Ala Ala Glu Tyr Phe
 1 5 10 15

Phe Lys Arg Gly Val Gln Gly Lys Gln Phe Arg Ser Thr Ile Leu Leu
 20 25 30

20 Leu Met Ala Thr Ala Leu Asn Val Arg Val Pro Glu Ala Leu Ile Gly
35 40 45

Asp Val Leu Asp Asp Ala Asp Thr Arg Arg Gly Val Gly Ser Leu Asn
 85 90 95

Val Val Met Gly Asn Lys Met Ser Val Leu Ala Gly Asp Phe Leu Leu
110

Val Val Met Cys Asn Ile 100 105 110
 Ala Cys Gly Ala Leu Ala Ala Leu Lys Asn Thr Glu Val Val

Ser Arg Ala Cys Gly Ala Val 120 125
 115
 Ala Leu Leu Ala Thr Ala Val Glu His Leu Val Thr Gly Glu Thr Met
 125 140

130 135 140
 Glu Ile Thr Ser Ser Thr Glu Gln Arg Tyr Ser Met Asp Tyr Tyr Met

Giá trị TAN =

145	150	155	160
Gln Lys Thr Tyr Tyr Lys Thr Ala Ser Leu Ile Ser Asn Ser Cys Lys			
165		170	175
Ala Val Ala Val Leu Thr Gly Gln Thr Ala Glu Val Ala Val Leu Ala			
180	185		190
Phe Glu Tyr Gly Arg Asn Leu Gly Leu Ala Phe Gln Leu Ile Asp Asp			
195	200	205	
Ile Leu Asp Phe Thr Gly Thr Ser Ala Ser Leu Gly Lys Gly Ser Leu			
210	215	220	
Ser Asp Ile Arg His Gly Val Ile Thr Ala Pro Ile Leu Phe Ala Met			
225	230	235	240
Glu Glu Phe Pro Gln Leu Arg Glu Val Val Asp Gln Val Glu Lys Asp			
245	250	255	
Pro Arg Asn Val Asp Ile Ala Leu Glu Tyr Leu Gly Lys Ser Lys Gly			
260	265	270	
Ile Gln Arg Ala Arg Glu Leu Ala Met Glu His Ala Asn Leu Ala Ala			
275	280	285	
Ala Ala Ile Gly Ser Leu Pro Glu Thr Asp Asn Glu Asp Val Lys Arg			
290	295	300	
Ser Arg Arg Ala Leu Ile Asp Leu Thr His Arg Val Ile Thr Arg Asn			
305	310	315	320

Lys

<210> 13
<211> 621
<212> DNA
<213> Arabidopsis sp.

<400> 13

gcttttcctt ttgctaattc tttagctttc ttgatccac cgcgatttct aactatttca	60
atcgcttcctt caagcgatcc aggctcacaa aactcagact caatgatctc tcttagcctt	120
ggctcattctt ctagcgcaa gatcactggc gccgttatgt tacctttggc taagtcatta	180
gctgcaggct tacctaactg ctctgtggac tgagtgaagt ccagaatgtc atcaactact	240
tgaaaagata aaccgagatt cttcccgAACAC tgatacatttt gctctgcgac cttgctttcg	300
actttactga aaattgtc tcctttggtg ctgcageta ctaatgaagc tgtcttgtag	360
taactcttta gcatgtagtc atcaagctt acatcacaaat cgaataaact cgatgcttgc	420
tttatctcac cgcttgaaaa atcttgcattt acctgcaaaa agataaatca agattcagac	480
caaatgttct ttgttattgag tagcttcatc taatctcaga aaggaatattt acctgactt	540
taagcttaat gacttcaagg ttttcgagat ttgtaaatgc catgtatgc ttgcaacatg	600
aaatccccag ctaatacagc t	621

<210> 14
<211> 741
<212> DNA
<213> Arabidopsis sp.

<400> 14

ggtgagttt	gttaatagtt	atgagattca	tctatTTT	tcataaaatt	gtttggTTT	60
gtttaaactc	tgtgtataat	tgcaggaaag	gaaacagtcc	atgagCTTT	cggcacaaga	120
gttagCGGTGc	tagCTGGAGA	tttcatGTT	gctcaAGCGT	catggTactt	agcaaATCTC	180
gagaatCTTG	aagtattaa	gctcatAGT	caggtactta	gttactCTTA	cattGTTTT	240
ctatgaggTT	gagctatgaa	tctcatTTG	ttgaaaataatG	ctgtGCCtCA	aactTTTT	300
catgtttca	ggtgatcaa	gacttGCAA	gcggagagat	aaagcaggcg	tccagCTTat	360
ttgactgCGA	cacaagCTC	gacgaggACT	tactcaAAAG	tttctacaAG	acagCCTCTT	420
tagtgCTGc	gaggcacAAA	ggagCTGCA	tttCAGCAG	agttgaggCT	gatgtgacAG	480
aacaatGTA	cgagtTTGGG	aagaatCTG	gtctCTCTT	ccagatAGT	gatgatATT	540
tggattcac	tcagTCGACA	gaggCAGCTG	ggaaggCCAGC	agggagtGAT	ttggctAAAG	600
gtaacttaAC	agcacCTGT	atTTCTGCTC	tggagggGGA	gccaaggCTA	agagagatCA	660
ttgagtcAA	gttCTGTGAG	gcgggTTCTC	tggaaaAGC	gattgaaAGC	gtgacAAAG	720
gtggggggat	taagagAGCA	C				741

<210> 15
<211> 1087
<212> DNA
<213> Arabidopsis sp.

<400> 15

cctcttcAGC	caatccAGAG	gaagaAGAGA	caactTTTA	tcttcGTC	agagtCTCCG	60
aaaACGcAcG	gttttatGCT	ctctttCTG	ccctCACCTC	acaAGACG	gggcACATGA	120
ttcaaccAGA	gggaaaaAGC	aacgataACA	actCTGCTT	tgatttCAAG	ctgtATATGA	180
tccgcaAAcG	cgagtCTGTA	aatgcggCTC	tcgacGTTT	cgtaccGCTT	ctgAAACCCC	240
ttacgatCCA	agaAGCGGT	aggtactTT	tgctAGCCG	cggAAAACGT	gtgaggCCtC	300
tgctCTGcat	tgccGTTGt	gagTTGTTG	ggggcGacGA	ggctactGCC	atgtcAGCCG	360
cttgcGCGGT	cgagatGATC	cacacaAGCT	ctctcATTCA	tgacgatTT	ccgtGCATGG	420
acaatGCCG	cctccGTA	ggcaAGCCCA	ccaatCACAA	gtatGTTGt	ttattatATA	480
gaaggGCTAG	agataatGCT	gaactAGTGT	tgaaccaATT	tttGCTCAA	caaggTATA	540
ggagaAGACA	tggcGGTTT	ggcaggGTAT	gcactCCTT	cattGCGCTT	tgacCACATG	600
acggTTGT	cgagtGGGTT	ggtcGCTCCC	gagaAGATGA	ttcGCGCCGT	gttGAGCTG	660
gccaggGCCA	tagggACTAC	aggGCTAGT	gctggacAAA	tgatAGACCT	agccAGCGAA	720
agactGAATC	cagacaAGGT	tggattGGAG	catCTAGAT	tcatCCATCT	ccacAAAACG	780
gcggcATTG	tggaggcAGC	ggcagTTTA	ggggTTATAA	tggaggTGG	aacAGAGGAA	840
gaaatCGAA	agcttagAAA	gtatGCTAGG	tgtattGGAC	tactGTTCA	gttGTTGAT	900
gacattCTCG	acgtaACAAA	atctactGAG	gaattGGGA	agacAGCCG	aaaAGACGTA	960
atggCCGGA	agctGAGCTA	tccaAGGCTG	ataggTTTG	agggatCCAG	ggaAGTTGCA	1020
gaggacCTGA	ggagAGAGC	agaggAAAAG	cttAAAGGGT	ttgatCCAAG	tcaggcGGCG	1080
cctctTGG						1087

<210> 16
<211> 1164
<212> DNA
<213> Arabidopsis sp.

<400> 16

atgacttcGA	ttctcaACAC	tgtCTCCACC	atccactTT	ccagAGTTAC	ctccGTCGAT	60
cgaGTCGGAG	tcctCTCTCT	tcgGAATTG	gattCCGTTG	agttcaCTG	ccggCGTTCT	120
ggttTCTCGA	cgttgatcta	cgaatCACCC	gggcGGAGAT	ttgttGTCG	tgcggcGGAG	180
actgataCTG	ataaaAGTTAA	atctcAGACA	cctgacaAGG	caccAGCCG	tggTTCAAGC	240
attaaccAGC	tttCTGTTAT	caaaggAGCA	tctcaAGAAA	ctaataAAATG	gaagATTCTG	300
cttcAGCTTA	caaaaACCGT	cactTGGCCT	ccactGGTT	ggggAGTCGT	ctgtGGGTGCT	360
gctgCTTCAG	ggaACTTCA	ttggACCCCA	gaggatGTTG	ctaAGTCGAT	tctttGATG	420
atgatGTCG	gtcCTTGTCT	tactGGCTAT	acacAGACAA	tcaACGACTG	gtatGATAGA	480
gatatCAGC	caattaATGA	gcCATATCGT	ccaattCCAT	ctggAGCAAT	atcaGAGCCA	540
gaggTTATTA	cacaAGTCTG	ggtgCTATTA	ttgggAGGTC	ttggTATTG	tggAAATATTA	600

gatgtgtggg	cagggcatac	caactccact	gtcttctatc	ttgcctttggg	aggatcattg	660
ctatcttata	tatactctgc	tccacccctt	aagctaaaac	aaaatggatg	ggttggaaat	720
tttgcaactg	gagcaagcta	tattagtttgc	ccatgggtggg	ctggccaagc	attgtttggc	780
actcttacgc	cagatgttg	tgttctaca	ctctgtaca	gcatacgctgg	gttaggaata	840
gccatgtta	acgacttcaa	aagtgtgaa	ggagatagag	cattaggact	tcagtcctc	900
ccagtagctt	ttggcaccga	aactgcaaaa	tggatatgcg	ttggtgctat	agacattact	960
cagcttctg	ttggccggata	tctattagca	tctgggaaac	cttattatgc	gttggcggtg	1020
gttgcgttga	tcattcctca	gattgttttc	cagtttaaat	actttctcaa	ggaccctgtc	1080
aaatacgacg	tcaagtacca	ggcaagcgcg	cagccattct	tggtgctcg	aatatttgt	1140
acggcattag	catcgcaaca	ctga				1164

<210> 17

<211> 387

<212> PRT

<213> Arabidopsis sp.

<400> 17

Met	Thr	Ser	Ile	Leu	Asn	Thr	Val	Ser	Thr	Ile	His	Ser	Ser	Arg	Val
1															15
															10

Thr	Ser	Val	Asp	Arg	Val	Gly	Val	Leu	Ser	Leu	Arg	Asn	Ser	Asp	Ser
															30
															25

Val	Glu	Phe	Thr	Arg	Arg	Arg	Ser	Gly	Phe	Ser	Thr	Leu	Ile	Tyr	Glu
															45
															35

Ser	Pro	Gly	Arg	Arg	Phe	Val	Val	Arg	Ala	Ala	Glu	Thr	Asp	Thr	Asp
															50
															55

Lys	Val	Lys	Ser	Gln	Thr	Pro	Asp	Lys	Ala	Pro	Ala	Gly	Gly	Ser	Ser
															60
															70

65	Ile	Asn	Gln	Leu	Leu	Gly	Ile	Lys	Gly	Ala	Ser	Gln	Glu	Thr	Asn	Lys
															95	
															85	

Trp	Lys	Ile	Arg	Leu	Gln	Leu	Thr	Lys	Pro	Val	Thr	Trp	Pro	Pro	Leu
															100
															105

Val	Trp	Gly	Val	Val	Cys	Gly	Ala	Ala	Ala	Ser	Gly	Asn	Phe	His	Trp
															115
															120

125	Thr	Pro	Glu	Asp	Val	Ala	Lys	Ser	Ile	Leu	Cys	Met	Met	Met	Ser	Gly
															130	
															135	

140	Pro	Cys	Leu	Thr	Gly	Tyr	Thr	Gln	Thr	Ile	Asn	Asp	Trp	Tyr	Asp	Arg
															145	
															150	

145	Asp	Ile	Asp	Ala	Ile	Asn	Glu	Pro	Tyr	Arg	Pro	Ile	Pro	Ser	Gly	Ala
															160	
															165	

165	Ile	Ser	Glu	Pro	Glu	Val	Ile	Thr	Gln	Val	Trp	Val	Leu	Leu	Leu	Gly
															180	
															185	

185	Gly	Leu	Gly	Ile	Ala	Gly	Ile	Leu	Asp	Val	Trp	Ala	Gly	His	Thr	Thr
															195	
															200	

200	Pro	Thr	Val	Phe	Tyr	Leu	Ala	Leu	Gly	Gly	Ser	Leu	Leu	Ser	Tyr	Ile
															210	
															215	

220

Tyr Ser Ala Pro Pro Leu Lys Leu Lys Gln Asn Gly Trp Val Gly Asn
 225 230 235 240
 Phe Ala Leu Gly Ala Ser Tyr Ile Ser Leu Pro Trp Trp Ala Gly Gln
 245 250 255
 Ala Leu Phe Gly Thr Leu Thr Pro Asp Val Val Val Leu Thr Leu Leu
 260 265 270
 Tyr Ser Ile Ala Gly Leu Gly Ile Ala Ile Val Asn Asp Phe Lys Ser
 275 280 285
 Val Glu Gly Asp Arg Ala Leu Gly Leu Gln Ser Leu Pro Val Ala Phe
 290 295 300
 Gly Thr Glu Thr Ala Lys Trp Ile Cys Val Gly Ala Ile Asp Ile Thr
 305 310 315 320
 Gln Leu Ser Val Ala Gly Tyr Leu Leu Ala Ser Gly Lys Pro Tyr Tyr
 325 330 335
 Ala Leu Ala Leu Val Ala Leu Ile Ile Pro Gln Ile Val Phe Gln Phe
 340 345 350
 Lys Tyr Phe Leu Lys Asp Pro Val Lys Tyr Asp Val Lys Tyr Gln Ala
 355 360 365
 Ser Ala Gln Pro Phe Leu Val Leu Gly Ile Phe Val Thr Ala Leu Ala
 370 375 380
 Ser Gln His
 385

<210> 18
 <211> 981
 <212> DNA
 <213> Arabidopsis sp.

<400> 18

atgttgttta	gtggttcagc	gatccattta	agcagcttct	gctctttcc	ggagaaaacc	60
cacactcttc	ctatgaact	ctctcccgct	gcaatccgat	cttcatacctc	atctgccccg	120
gggtcggtga	acttcgatct	gaggacgtat	tggacgactc	tgatcacccga	gatcaaccag	180
aagctggatg	aggccatacc	ggtaaaggcac	cctgcggggga	tctacgaggc	tatgagatac	240
tctgtactcg	cacaaggcgc	caagcgtgcc	cctcctgtga	tgtgtgtggc	ggcctgccc	300
ctttcggtg	gcatcgcc	cggcccttcc	cccacccgcct	gtgccttaga	aatggcgcac	360
gcgcgttctgt	tgatacacga	cgacccccc	tgtatggacg	acgatcctgt	gcccggaggaa	420
aaggccatcta	accacactgt	ctacggctct	ggcatggcca	ttctcgccgg	tgacgcccc	480
ttcccactcg	ccttccagca	cattgtctcc	cacacgcctc	ctgacccctgt	tccccggagcc	540
accatccatca	gactcatcac	ttagattgcc	cgcactgtcg	gctccactgg	tatggctgca	600
ggccagtacg	tcgaccttga	aggagggtccc	tttcctttt	ccttgttca	ggagaagaaa	660
ttcggagcca	tgggtgaatg	ctctgcccgt	tgccgtggcc	tattggccgg	tgccactgag	720
gatgagctcc	agagtctcc	aaggtacggg	agagccgtcg	ggatgctgt	tcaggtggtc	780
gatgacatca	ccgaggacaa	gaagaagagc	tatgtatgtg	gagcagagaa	ggaaatgtatg	840
gaaatggccg	aagagctcaa	ggagaaggcg	aagaaggagc	ttcaagtgtt	tgacaacaag	900
tatggaggag	gagacacact	tgttcccttc	tacacccctcg	ttgactacgc	tgctcatcg	960
cattttcttc	ttccccctctg	a				981

<210> 19

<211> 245
 <212> DNA
 <213> Glycine sp.

<400> 19

gcaacatctg ggactgggtt	tgtcttgggg agtggtagtg	ctgttgcatt ttcggcactt	60
tcttcactt gcttgggtac	catgatggtt gctgcattctg	ctaactctt gaatcagggtg	120
tttggatca ataatgatgc	taaaatgaag agaacaagtgc	gcaggccact accctcagga	180
cgccatcacaa tacctcatgc	agttggctgg gcattccttg	ttggattagc tggtacggct	240
ctact			245

<210> 20
 <211> 253
 <212> DNA
 <213> Glycine sp.

<400> 20

attggcttcc caagatcatt	gggtttctt gttgcattca	tgaccttcta ctcccttgggt	60
ttggcattgt ccaaggatat	acctgacgtt	gaaggagata aagagcacgg	120
tttgcagttac gtcttaggtca	gaaacgggca	ttttggattt gcttttcctt	180
gcttcggag ttggatcct	ggccggagca	tcatgctcac acttttggac	240
acgggtatgg gaa			253

<210> 21
 <211> 275
 <212> DNA
 <213> Glycine sp.

<400> 21

tgatcttcta ctctctgggt	atggcattgt	ccaaggatat atctgacgtt	60
aaggatatacg	atcgataact	aaaggagata ttgttggattt	120
gcattatcct	ttttgaaatg	ttttggag ttgccttgc	180
accttggat	aaaattgtc	ggcaggagca acatcttctt	240
accaagccaa	atctatatac	tcttgcattca attctcttgt	275

<210> 22
 <211> 299
 <212> DNA
 <213> Glycine sp.

<220>
 <221> misc_feature
 <222> (1)...(299)
 <223> n = A,T,C or G

<400> 22

ccanaatang tncatcttng	aaagacaatt ggccttca	acacacaagt ctgcattgtg	60
agaagaggcc aattgtctt	ccaagatcac ttatngtgc	tattgtaatc atgaacttct	120
tcttgggg tatggcattg	gcaaggata tacctanctg	ttgaaggaga taaaatatat	180
ggcattgata ctttgcatt	acgtataggc caaaaacaag	tattttggat ttgtattttc	240
cattttgaaa ggcttcgga	gtttccctag tggcaggagc	aacatcttct agccttgg	299

<210> 23
 <211> 767

<212> DNA

<213> Glycine sp.

<400> 23

gtggaggctg tgggtgctgc cctgtttatg aatatttata ttgttggttt gaatcaattg 60
tctgatgttg aaatagacaa gataaacaag ccgttatcttc cattagcata tgggaatat 120
tccttgaaa ctgggtgtcac tattgttgca tcttttcaa ttctgagttt ttggcttggc 180
tgggtttag gtcatggcc attattttgg gcctttttg taagctttgt gctaggaact 240
gcttattcaa tcaatgtgccc tctgttgaga tggaaagaggt ttgcagtgtc tgcaagcgatg 300
tgcatcttag ctgttcgggc agtaatagtt caacttgcat ttttccttca catcagact 360
catgtgtaca agaggccacc tgtctttca agaccattga ttttgctac tgcatctatg 420
agcttcttct ctgttagttt agcactttt aaggatatac ctgacattga aggagataaa 480
gtatttggca tccaatctttt ttcagttgtt ttaggtcaga agccgggtgtt ctggacttgt 540
gttacccttc ttgaaatagc ttatggagtc gccttcctgg tggagctgc atctcccttgt 600
ctttggagca aaattttcac gggctggga cacgctgtgc tggcttcaat tctctggttt 660
catgc当地 ctgttagattt gaaaagcaaa gttcgataa catcctcta tatgtttatt 720
tggaaagctat ttatgcaga atacttactc attcctttt ttagatg 767

<210> 24

<211> 255

<212> PRT

<213> Glycine sp.

<400> 24

Val Glu Ala Val Val Ala Ala Leu Phe Met Asn Ile Tyr Ile Val Gly
1 5 10 15
Leu Asn Gln Leu Ser Asp Val Glu Ile Asp Lys Ile Asn Lys Pro Tyr
20 25 30
Leu Pro Leu Ala Ser Gly Glu Tyr Ser Phe Glu Thr Gly Val Thr Ile
35 40 45
Val Ala Ser Phe Ser Ile Leu Ser Phe Trp Leu Gly Trp Val Val Gly
50 55 60
Ser Trp Pro Leu Phe Trp Ala Leu Phe Val Ser Phe Val Leu Gly Thr
65 70 75 80
Ala Tyr Ser Ile Asn Val Pro Leu Leu Arg Trp Lys Arg Phe Ala Val
85 90 95
Leu Ala Ala Met Cys Ile Leu Ala Val Arg Ala Val Ile Val Gln Leu
100 105 110
Ala Phe Phe Leu His Met Gln Thr His Val Tyr Lys Arg Pro Pro Val
115 120 125
Phe Ser Arg Pro Leu Ile Phe Ala Thr Ala Phe Met Ser Phe Phe Ser
130 135 140
Val Val Ile Ala Leu Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys
145 150 155 160
Val Phe Gly Ile Gln Ser Phe Ser Val Cys Leu Gly Gln Lys Pro Val
165 170 175
Phe Trp Thr Cys Val Thr Leu Leu Glu Ile Ala Tyr Gly Val Ala Leu

180	185	190
Leu Val Gly Ala Ala Ser Pro Cys Leu Trp Ser Lys Ile Phe Thr Gly		
195	200	205
Leu Gly His Ala Val Leu Ala Ser Ile Leu Trp Phe His Ala Lys Ser		
210	215	220
Val Asp Leu Lys Ser Lys Ala Ser Ile Thr Ser Phe Tyr Met Phe Ile		
225	230	235
Trp Lys Leu Phe Tyr Ala Glu Tyr Leu Leu Ile Pro Phe Val Arg		
245	250	255

<210> 25
<211> 360
<212> DNA
<213> Zea sp.

<220>
<221> misc_feature
<222> (1)...(360)
<223> n = A,T,C or G

<400> 25

ggcgtttca cttgttctgg tcttctcgta tcccctgatg aagaggttca cattttggcc	60
tcaggcttat cttggcctga cattcaactg gggagcttta ctagggggg ctgcattaa	120
ggaaggata gaccctgcaa atcatccttc cattgtatac agctgttatt tggtggacgc	180
tggtgtatga tactatatat ggcgcattagg ttgttcgcta tccctacttt catattaatc	240
cttgatgaag tggccatttc atgttgcgc ggtggctta tacttgcata tctccatgca	300
tctcaggaca aagangatga cctgaaaatgaa ggagtccaaag tccacagttt aagatttggg	360

<210> 26
<211> 299
<212> DNA
<213> Zea sp.

<220>
<221> misc_feature
<222> (1)...(299)
<223> n = A,T,C or G

<400> 26

gatgggttgc gcatctgcaa ataccctcaa ccaggtgttt gngataaaaa atgatgtcaa	60
aatggaaaagg acaatgcgtg cccctgccta tctggtcgca tttagtcctgc acatgctgc	120
atgtgggcta caagtgttgg agttgcagga acagctttgt tggctggaa ggctaatggc	180
ttggcagctg ggcttgccgc ttctaatctt gttctgtatg catttgcata tacgccgttg	240
aagcaatac accctgttaa tacatgggtt gggcagtcg ttggccat cccaccact	299

<210> 27
<211> 255
<212> DNA
<213> Zea sp.

<220>
<221> misc_feature
<222> (1)...(255)

<223> n = A, T, C or G

<400> 27

anacttgcat atctccatgc ntctcaggac aaagangatg acctgaaagt aggtgtcaag	60
tccacagcat taagatttg agatttgacc nnatactgna tcagtggctt tggcgccgca	120
tgcttcggca gcttagcact cagtggttac aatgctgacc ttggtttgtt tttagtgtga	180
tgcttggcg aagaatggta tngttttac ttgatattga ctccagacct gaaatcatgt	240
tggacagggt ggccc	255

<210> 28

<211> 257

<212> DNA

<213> Zea sp.

<400> 28

attgaagggg ataggactct ggggcttcag tcacttcctg ttgctttgg gatggaaact	60
gaaaaatgga ttgtgttgg agcaattgtt attcaat tatctgttg agttaccta	120
ttgagcaccc gtaagctgta ttatgccctg gtgttgcttg ggctaacaat tcctcagggt	180
ttcttcagt tccagttactt cctgaaggac cctgtgaagt atgatgtcaa atatcaggca	240
agcgacacaac cattctt	257

<210> 29

<211> 368

<212> DNA

<213> Zea sp.

<400> 29

atccagttgc aaataataat ggcgttcttc tctgttgtaa tagcactatt caaggatata	60
cctgacatcg aaggggaccc catattcggg atccgatcct tcagcgtccg gttagggcaa	120
aagaaggctt tttggatctg cgttggcttg cttgagatgg cctacagcg tgcgatactg	180
atgggagcta cctcttcctg tttgtggagc aaaacagcaa ccattcgctgg ccattccata	240
cttggcgcga tcctatggag ctgcgcgcga tcgggtggact tgacgagcaa agccgcaata	300
acgtccttcat acatgttcat ctggaaagctg ttctacgcgg agtacctgct catccctctg	360
gtgcgggtg	368

<210> 30

<211> 122

<212> PRT

<213> Zea sp.

<400> 30

Ile Gln Leu Gln Ile Ile Met Ala Phe Phe Ser Val Val Ile Ala Leu	
1	5
10	15

Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Arg Ile Phe Gly Ile Arg	
20	25
30	

Ser Phe Ser Val Arg Leu Gly Gln Lys Lys Val Phe Trp Ile Cys Val	
35	40
45	

Gly Leu Leu Glu Met Ala Tyr Ser Val Ala Ile Leu Met Gly Ala Thr	
50	55
60	

Ser Ser Cys Leu Trp Ser Lys Thr Ala Thr Ile Ala Gly His Ser Ile	

65	70	75	80
			Ser Val Asp Leu Thr Ser
Leu Ala Ala Ile Leu Trp Ser Cys Ala Arg			
	85	90	95
Lys Ala Ala Ile Thr Ser Phe Tyr Met Phe Ile Trp Lys Leu Phe Tyr			
	100	105	110
Ala Glu Tyr Leu Leu Ile Pro Leu Val Arg			
	115	120	

<210> 31
<211> 278
<212> DNA
<213> Zea sp.

<400> 31

tattcagcac caccctctcaa gctcaagcag aatggatgga ttgggaactt cgctctgggt	60
gcgagttaca tcagcttgcc ctgggtggct ggccaggcgt tatttggAAC tcttacacca	120
gatatatcattg ttttgactac tttgtacacg atagctggc tagggattgc tattgtaaat	180
gatttcaaga gtattgaagg ggataggact ctggggcttc agtcacttcc tggtgctttt	240
ggqatqgaaa ctgaaaaatg gatttgtgtt ggagcaat	278

<210> 32
<211> 292
<212> PRT
<213> *Synechocystis* sp.

<400> 32

Tyr Leu Leu Arg Trp His Lys Pro Ala Gly Arg Leu Ile Leu Met Ile
20 25 30

Pro Ala Leu Trp Ala Val Cys Leu Ala Ala Gln Gly Leu Pro Pro Leu
35 40 45

Pro Leu Leu Gly Thr Ile Ala Leu Gly Thr Leu Ala Thr Ser Gly Leu
50 55 60

Gly Cys Val Val Asn Asp Leu Trp Asp Arg Asp Ile Asp Pro Gln Val
 65 70 75 80

Glu Arg Thr Lys Gln Arg Pro Leu Ala Ala Arg Ala Leu Ser Val Gln
 85 90 95

Val Gly Ile Gly Val Ala Leu Val Ala Leu Leu Cys Ala Ala Gly Leu

100 105 110
Ala Phe Tyr Leu Thr Pro Leu Ser Phe Trp Leu Cys Val Ala Ala Val

Ala Pro Ile Val Ala Tyr Pro Gly Ala Lys Arg Val Phe Pro Val Pro
 115 120 125
 Pro Val Ile Val Ala Tyr Pro Gly Ala Lys Arg Val Phe Pro Val Pro
 120 135 140

130 131
Gln Leu Val Leu Ser Ile Ala Trp Gly Phe Ala Val Leu Ile Ser Trp

145	150	155	160
Ser Ala Val Thr Gly Asp Leu Thr Asp Ala Thr Trp Val Leu Trp Gly			
	165	170	175
Ala Thr Val Phe Trp Thr Leu Gly Phe Asp Thr Val Tyr Ala Met Ala			
	180	185	190
Asp Arg Glu Asp Asp Arg Arg Ile Gly Val Asn Ser Ser Ala Leu Phe			
	195	200	205
Phe Gly Gln Tyr Val Gly Glu Ala Val Gly Ile Phe Phe Ala Leu Thr			
	210	215	220
Ile Gly Cys Leu Phe Tyr Leu Gly Met Ile Leu Met Leu Asn Pro Leu			
	225	230	240
Tyr Trp Leu Ser Leu Ala Ile Ala Ile Val Gly Trp Val Ile Gln Tyr			
	245	250	255
Ile Gln Leu Ser Ala Pro Thr Pro Glu Pro Lys Leu Tyr Gly Gln Ile			
	260	265	270
Phe Gly Gln Asn Val Ile Ile Gly Phe Val Leu Leu Ala Gly Met Leu			
	275	280	285
Leu Gly Trp Leu			
	290		

<210> 33
 <211> 316
 <212> PRT
 <213> Synechocystis sp.

<400> 33			
Met Val Thr Ser Thr Lys Ile His Arg Gln His Asp Ser Met Gly Ala			
	1	5	10
Val Cys Lys Ser Tyr Tyr Gln Leu Thr Lys Pro Arg Ile Ile Pro Leu			
	20	25	30
Leu Leu Ile Thr Thr Ala Ala Ser Met Trp Ile Ala Ser Glu Gly Arg			
	35	40	45
Val Asp Leu Pro Lys Leu Leu Ile Thr Leu Leu Gly Gly Thr Leu Ala			
	50	55	60
Ala Ala Ser Ala Gln Thr Leu Asn Cys Ile Tyr Asp Gln Asp Ile Asp			
	65	70	75
Tyr Glu Met Leu Arg Thr Arg Ala Arg Pro Ile Pro Ala Gly Lys Val			
	85	90	95
Gln Pro Arg His Ala Leu Ile Phe Ala Leu Ala Leu Gly Val Leu Ser			
	100	105	110
Phe Ala Leu Leu Ala Thr Phe Val Asn Val Leu Ser Gly Cys Leu Ala			
	115	120	125

Leu Ser Gly Ile Val Phe Tyr Met Leu Val Tyr Thr His Trp Leu Lys
 130 135 140
 Arg His Thr Ala Gln Asn Ile Val Ile Gly Gly Ala Ala Gly Ser Ile
 145 150 155 160
 Pro Pro Leu Val Gly Trp Ala Ala Val Thr Gly Asp Leu Ser Trp Thr
 165 170 175
 Pro Trp Val Leu Phe Ala Leu Ile Phe Leu Trp Thr Pro Pro His Phe
 180 185 190
 Trp Ala Leu Ala Leu Met Ile Lys Asp Asp Tyr Ala Gln Val Asn Val
 195 200 205
 Pro Met Leu Pro Val Ile Ala Gly Glu Glu Lys Thr Val Ser Gln Ile
 210 215 220
 Trp Tyr Tyr Ser Leu Leu Val Val Pro Phe Ser Leu Leu Leu Val Tyr
 225 230 235 240
 Pro Leu His Gln Leu Gly Ile Leu Tyr Leu Ala Ile Ala Ile Ile Leu
 245 250 255
 Gly Gly Gln Phe Leu Val Lys Ala Trp Gln Leu Lys Gln Ala Pro Gly
 260 265 270
 Asp Arg Asp Leu Ala Arg Gly Leu Phe Lys Phe Ser Ile Phe Tyr Leu
 275 280 285
 Met Leu Leu Cys Leu Ala Met Val Ile Asp Ser Leu Pro Val Thr His
 290 295 300
 Gln Leu Val Ala Gln Met Gly Thr Leu Leu Leu Gly
 305 310 315

<210> 34
 <211> 324
 <212> PRT
 <213> Synechocystis sp.

<400> 34
 Met Ser Asp Thr Gln Asn Thr Gly Gln Asn Gln Ala Lys Ala Arg Gln
 1 5 10 15
 Leu Leu Gly Met Lys Gly Ala Ala Pro Gly Glu Ser Ser Ile Trp Lys
 20 25 30
 Ile Arg Leu Gln Leu Met Lys Pro Ile Thr Trp Ile Pro Leu Ile Trp
 35 40 45
 Gly Val Val Cys Gly Ala Ala Ser Ser Gly Gly Tyr Ile Trp Ser Val
 50 55 60
 Glu Asp Phe Leu Lys Ala Leu Thr Cys Met Leu Leu Ser Gly Pro Leu
 65 70 75 80
 Met Thr Gly Tyr Thr Gln Thr Leu Asn Asp Phe Tyr Asp Arg Asp Ile
 85 90 95

Asp Ala Ile Asn Glu Pro Tyr Arg Pro Ile Pro Ser Gly Ala Ile Ser
 100 105 110
 Val Pro Gln Val Val Thr Gln Ile Leu Ile Leu Leu Val Ala Gly Ile
 115 120 125
 Gly Val Ala Tyr Gly Leu Asp Val Trp Ala Gln His Asp Phe Pro Ile
 130 135 140
 Met Met Val Leu Thr Leu Gly Gly Ala Phe Val Ala Tyr Ile Tyr Ser
 145 150 155 160
 Ala Pro Pro Leu Lys Leu Lys Gln Asn Gly Trp Leu Gly Asn Tyr Ala
 165 170 175
 Leu Gly Ala Ser Tyr Ile Ala Leu Pro Trp Trp Ala Gly His Ala Leu
 180 185 190
 Phe Gly Thr Leu Asn Pro Thr Ile Met Val Leu Thr Leu Ile Tyr Ser
 195 200 205
 Leu Ala Gly Leu Gly Ile Ala Val Val Asn Asp Phe Lys Ser Val Glu
 210 215 220
 Gly Asp Arg Gln Leu Gly Leu Lys Ser Leu Pro Val Met Phe Gly Ile
 225 230 235 240
 Gly Thr Ala Ala Trp Ile Cys Val Ile Met Ile Asp Val Phe Gln Ala
 245 250 255
 Gly Ile Ala Gly Tyr Leu Ile Tyr Val His Gln Gln Leu Tyr Ala Thr
 260 265 270
 Ile Val Leu Leu Leu Ile Pro Gln Ile Thr Phe Gln Asp Met Tyr
 275 280 285
 Phe Leu Arg Asn Pro Leu Glu Asn Asp Val Lys Tyr Gln Ala Ser Ala
 290 295 300
 Gln Pro Phe Leu Val Phe Gly Met Leu Ala Thr Gly Leu Ala Leu Gly
 305 310 315 320
 His Ala Gly Ile

<210> 35
 <211> 307
 <212> PRT
 <213> Synechocystis sp.

<400> 35

Met Thr Glu Ser Ser Pro Leu Ala Pro Ser Thr Ala Pro Ala Thr Arg	15
1 5 10	
Lys Leu Trp Leu Ala Ala Ile Lys Pro Pro Met Tyr Thr Val Ala Val	30
20 25	
Val Pro Ile Thr Val Gly Ser Ala Val Ala Tyr Gly Leu Thr Gly Gln	45
35 40	

Trp His Gly Asp Val Phe Thr Ile Phe Leu Leu Ser Ala Ile Ala Ile
 50 55 60
 Ile Ala Trp Ile Asn Leu Ser Asn Asp Val Phe Asp Ser Asp Thr Gly
 65 70 75 80
 Ile Asp Val Arg Lys Ala His Ser Val Val Asn Leu Thr Gly Asn Arg
 85 90 95
 Asn Leu Val Phe Leu Ile Ser Asn Phe Phe Leu Leu Ala Gly Val Leu
 100 105 110
 Gly Leu Met Ser Met Ser Trp Arg Ala Gln Asp Trp Thr Val Leu Glu
 115 120 125
 Leu Ile Gly Val Ala Ile Phe Leu Gly Tyr Thr Tyr Gln Gly Pro Pro
 130 135 140
 Phe Arg Leu Gly Tyr Leu Gly Leu Gly Glu Leu Ile Cys Leu Ile Thr
 145 150 155 160
 Phe Gly Pro Leu Ala Ile Ala Ala Ala Tyr Tyr Ser Gln Ser Gln Ser
 165 170 175
 Phe Ser Trp Asn Leu Leu Thr Pro Ser Val Phe Val Gly Ile Ser Thr
 180 185 190
 Ala Ile Ile Leu Phe Cys Ser His Phe His Gln Val Glu Asp Asp Leu
 195 200
 Ala Ala Gly Lys Lys Ser Pro Ile Val Arg Leu Gly Thr Lys Leu Gly
 210 215 220
 Ser Gln Val Leu Thr Leu Ser Val Val Ser Leu Tyr Leu Ile Thr Ala
 225 230 235 240
 Ile Gly Val Leu Cys His Gln Ala Pro Trp Gln Thr Leu Leu Ile Ile
 245 250 255
 Ala Ser Leu Pro Trp Ala Val Gln Leu Ile Arg His Val Gly Gln Tyr
 260 265 270
 His Asp Gln Pro Glu Gln Val Ser Asn Cys Lys Phe Ile Ala Val Asn
 275 280 285
 Leu His Phe Phe Ser Gly Met Leu Met Ala Ala Gly Tyr Gly Trp Ala
 290 295 300
 Gly Leu Gly
 305

<210> 36
 <211> 927
 <212> DNA
 <213> Synechocystis sp.

<400> 36
 atggcaacta tccaagcttt ttggcgcttc tcccgcccccc ataccatcat tggtacaact 60

ctgagcgtct	gggctgtgta	tctgttaact	attctcgaaa	atggaaactc	agtaaactcc	120
cctgcgttccc	tggatttagt	gttcggcgct	tggctggcct	gcctgttggg	taatgtgtac	180
attgtcggcc	tcaaccattt	gtgggatgtg	gacattgacc	gcatcaataa	gccgaatttg	240
ccccatgtca	acggagattt	ttctatcgcc	cagggccgtt	ggattgtggg	actttgtggc	300
gttgcgttcc	tggcgtatcg	ctggggattt	ggctatggc	tggggctaac	gggtgggcatt	360
agttttagtt	ttggcacggc	ctattcggt	ccgcccagtga	ggttaaagcg	ctttccctg	420
ctggccggcc	tgtgtattct	gacgggtcg	ggaattgtgg	ttaacttggg	cttattttta	480
tttttagaa	ttgggtttag	ttatcccccc	actttaataa	cccccatctg	ggttttgact	540
ttatttatct	tagtttcac	cgtggcgtac	gcattttta	aagatgtgcc	agatatggaa	600
ggcgatcgcc	aatttaagat	tcaaactta	actttgcaaa	tcggcaaaaca	aaacgtttt	660
cggggAACCT	taattttact	cactgggtt	tathtagcca	tggcaatctg	gggcttatgg	720
gcggctatgc	ctttaataac	tgctttctt	attgttccc	attgtgtctt	attagccta	780
ctctgtggc	ggagtcgaga	tgtacactta	gaaagcaaaa	ccgaaattgc	tagttttat	840
cagtttattt	ggaagctattt	tttcttagag	tacttgctgt	atcccttggc	tctgtggta	900
cctaattttt	ctaatactat	tttttag				927

<210> 37

<211> 308

<212> PRT

<213> Synechocystis sp.

<400> 37

Met	Ala	Thr	Ile	Gln	Ala	Phe	Trp	Arg	Phe	Ser	Arg	Pro	His	Thr	Ile
1				5					10					15	

Ile	Gly	Thr	Thr	Leu	Ser	Val	Trp	Ala	Val	Tyr	Leu	Leu	Thr	Ile	Leu
							25						30		

Gly	Asp	Gly	Asn	Ser	Val	Asn	Ser	Pro	Ala	Ser	Leu	Asp	Leu	Val	Phe
							40					45			

Gly	Ala	Trp	Leu	Ala	Cys	Leu	Leu	Gly	Asn	Val	Tyr	Ile	Val	Gly	Leu
						55					60				

Asn	Gln	Leu	Trp	Asp	Val	Asp	Ile	Asp	Arg	Ile	Asn	Lys	Pro	Asn	Leu
65					70				75				80		

Pro	Leu	Ala	Asn	Gly	Asp	Phe	Ser	Ile	Ala	Gln	Gly	Arg	Trp	Ile	Val
								85				90		95	

Gly	Leu	Cys	Gly	Val	Ala	Ser	Leu	Ala	Ile	Ala	Trp	Gly	Leu	Gly	Leu
							100					105		110	

Trp	Leu	Gly	Leu	Thr	Val	Gly	Ile	Ser	Leu	Ile	Ile	Gly	Thr	Ala	Tyr
							115					120		125	

Ser	Val	Pro	Pro	Val	Arg	Leu	Lys	Arg	Phe	Ser	Leu	Leu	Ala	Ala	Leu
						130		135				140			

Cys	Ile	Leu	Thr	Val	Arg	Gly	Ile	Val	Val	Asn	Leu	Gly	Leu	Phe	Leu
							145		150			155		160	

Phe	Phe	Arg	Ile	Gly	Leu	Gly	Tyr	Pro	Pro	Thr	Leu	Ile	Thr	Pro	Ile
							165		170			175			

Trp	Val	Leu	Thr	Leu	Phe	Ile	Leu	Val	Phe	Thr	Val	Ala	Ile	Ala	Ile
							180		185			190			

Phe	Lys	Asp	Val	Pro	Asp	Met	Glu	Gly	Asp	Arg	Gln	Phe	Lys	Ile	Gln
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

195	200	205
Thr Leu Thr Leu Gln Ile Gly Lys Gln Asn Val Phe Arg Gly Thr Leu		
	210	215
Ile Leu Leu Thr Gly Cys Tyr Leu Ala Met Ala Ile Trp Gly Leu Trp		
	225	230
Ala Ala Met Pro Leu Asn Thr Ala Phe Leu Ile Val Ser His Leu Cys		
	245	250
Leu Leu Ala Leu Leu Trp Trp Arg Ser Arg Asp Val His Leu Glu Ser		
	260	265
Lys Thr Glu Ile Ala Ser Phe Tyr Gln Phe Ile Trp Lys Leu Phe Phe		
	275	280
Leu Glu Tyr Leu Leu Tyr Pro Leu Ala Leu Trp Leu Pro Asn Phe Ser		
	290	295
Asn Thr Ile Phe		
	305	

<210> 38
 <211> 1092
 <212> DNA
 <213> Synechocystis sp.

<400> 38

atgaaatttc cgccccacag tggtaaccat tggcaaggct aatcaccttt ctttgaaggt	60
tggtaacgtgc gcctgctttt gccccaatcc ggggaaagtt ttgcttttat gtactccatc	120
gaaaatctgt cttagcgatca tcattacggc ggccgtgtct tgcaaatttt agggccggct	180
acgaaaaaac aagaaaatca ggaagaccaa cttgtttggc ggacatttcc ctcggtaaaa	240
aaattttggg ccagtccctcg ccaggttgcc cttagggcatt ggggaaaatg tagggataac	300
aggcaggcga aaccctact ctccgaagaa tttttgcga cggtaagga aggttatcaa	360
atccatcaaa atcagcacca aggacaaatc attcatggcg atccgcatttgc tcgttggca	420
ttcaccgttag aaccggaagt aactggggg agtcctaacc gatttctcg ggctacagcg	480
ggttggcttt cctttttacc cttgtttgat cccggttggc aaattttttt agcccaaggt	540
agagcgcacg gctggctgaa atggcagagg gaacagtatg aatttgcacca cggccctagtt	600
tatgccgaaa aaaattgggg tcactccctt ccctcccgct gttttggct ccaagcaaat	660
tatttccctg accatccagg actgagcgctc actgccgtg gcggggaaacg gattgttctt	720
ggtcgccccg aagaggtagc tttaattggc ttacatcacc aaggttaattt ttacgaattt	780
ggcccggggcc atggcacagt cacttggcaa gtagctccctt gggggccgtt gcaattaaaa	840
gccaagcaatg ataggatttgc ggtcaagttt tccggaaaaa cagataaaaaa aggcaatttt	900
gtccacactc ccaccgcccc gggcttacaa ctcaactgcc gagataccac tagggcttat	960
ttgtatattgc aattgggatc tgtgggtcac ggcctgatag tgcaaggggaa acggacacc	1020
gcggggcttag aagttggagg tgattgggt ttaacagagg aaaattttag caaaaaaaaca	1080
gtgccattct ga	1092

<210> 39
 <211> 363
 <212> PRT
 <213> Synechocystis sp.

<400> 39

Met Lys Phe Pro Pro His Ser Gly Tyr His Trp Gln Gly Gln Ser Pro	
5	10
	15

Phe Phe Glu Gly Trp Tyr Val Arg Leu Leu Leu Pro Gln Ser Gly Glu
20 25 30

Ser Phe Ala Phe Met Tyr Ser Ile Glu Asn Pro Ala Ser Asp His His
35 40 45

Tyr Gly Gly Gly Ala Val Gln Ile Leu Gly Pro Ala Thr Lys Lys Gln
50 55 60

Glu Asn Gln Glu Asp Gln Leu Val Trp Arg Thr Phe Pro Ser Val Lys
65 70 75 80

Lys Phe Trp Ala Ser Pro Arg Gln Phe Ala Leu Gly His Trp Gly Lys
85 90 95

Cys Arg Asp Asn Arg Gln Ala Lys Pro Leu Leu Ser Glu Glu Phe Phe
100 105 110

Ala Thr Val Lys Glu Gly Tyr Gln Ile His Gln Asn Gln His Gln Gly
115 120 125

Gln Ile Ile His Gly Asp Arg His Cys Arg Trp Gln Phe Thr Val Glu
130 135 140

Pro Glu Val Thr Trp Gly Ser Pro Asn Arg Phe Pro Arg Ala Thr Ala
145 150 155 160

Gly Trp Leu Ser Phe Leu Pro Leu Phe Asp Pro Gly Trp Gln Ile Leu
165 170 175

Leu Ala Gln Gly Arg Ala His Gly Trp Leu Lys Trp Gln Arg Glu Gln
180 185 190

Tyr Glu Phe Asp His Ala Leu Val Tyr Ala Glu Lys Asn Trp Gly His
195 200 205

Ser Phe Pro Ser Arg Trp Phe Trp Leu Gln Ala Asn Tyr Phe Pro Asp
210 215 220

His Pro Gly Leu Ser Val Thr Ala Ala Gly Gly Glu Arg Ile Val Leu
225 230 235 240

Gly Arg Pro Glu Glu Val Ala Leu Ile Gly Leu His His Gln Gly Asn
245 250 255

Phe Tyr Glu Phe Gly Pro Gly His Gly Thr Val Thr Trp Gln Val Ala
260 265 270

Pro Trp Gly Arg Trp Gln Leu Lys Ala Ser Asn Asp Arg Tyr Trp Val
275 280 285

Lys Leu Ser Gly Lys Thr Asp Lys Lys Gly Ser Leu Val His Thr Pro
290 295 300

Thr Ala Gln Gly Leu Gln Leu Asn Cys Arg Asp Thr Thr Arg Gly Tyr
305 310 315 320

Leu Tyr Leu Gln Leu Gly Ser Val Gly His Gly Leu Ile Val Gln Gly
325 330 335

Glu Thr Asp Thr Ala Gly Leu Glu Val Gly Gly Asp Trp Gly Leu Thr
340 345 350

Glu Glu Asn Leu Ser Lys Lys Thr Val Pro Phe
355 360

<210> 40
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide adapter

<400> 40 56
cgcgatttaa atggcgcgcc ctgcaggcgg ccgcctgcag ggcgcgccat ttaaat

<210> 41
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 41 32
tcgaggatcc gcggccgcaa gtttcttgca gg

<210> 42
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 42 32
tcgacctgca ggaagcttgc ggccgcggat cc

<210> 43
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 43 32
tcgacctgca ggaagcttgc ggccgcggat cc

<210> 44
<211> 32

<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 44

tcgaggatcc gcggccgcaa gcttcctgca gg 32

<210> 45
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 45

tcgaggatcc gcggccgcaa gcttcctgca ggagct 36

<210> 46
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 46

cctgcaggaa gcttgcgccc gcggatcc 28

<210> 47
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 47

tcgacctgca ggaagcttgc ggccgcggat ccagct 36

<210> 48
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 48

ggatccgcgg cccgaagctt cctgcagg 28

<210> 49
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 49
gatcacctgc aggaagcttg cggccgcgga tccaatgca 39

<210> 50
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 50
ttggatccgc ggccgcaagg ttcctgcagg t 31

<210> 51
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotides

<400> 51
ggatccgcgg ccgcacaatg gagtctctgc tctcttagttc t 41

<210> 52
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotides

<400> 52
ggatcctgca ggtcacttca aaaaaggtaa cagcaagt 38

<210> 53
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotides

<400> 53
ggatccgcgg ccgcacaatg gcgtttttg ggctctcccg tttt 45

<210> 54
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotides

<400> 54
ggatcctgca gtttattgaa aacttcttcc aagtacaact 40

<210> 55
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotides

<400> 55
ggatccgcgg ccgcacaatg tggcgaagat ctgttg 38

<210> 56
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotides

<400> 56
ggatcctgca ggtcatggag agtagaagga aggagct 37

<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotides

<400> 57
ggatccgcgg ccgcacaatg gtacttgccg aggttccaaa gcttgctct 50

<210> 58
<211> 38
<212> DNA

<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotides
<400> 58 38
ggatcctgca ggtcacttgt ttctggtgat gactctat

<210> 59
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotides
<400> 59 38
ggatccgcgg ccgcacaatg acttcgattc tcaacact

<210> 60
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotides
<400> 60 36
ggatcctgca ggtcagtgtt gcgatgctaa tgccgt

<210> 61
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Region of slr1736 open reading frame
<400> 61 22
taatgtgtac attgtcgccc tc

<210> 62
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Region of slr1736 open reading frame
<400> 62 60
gcaatgttaac atcagagatt ttgagacaca acgtggctt ccacaattcc ccgcaccgtc

<210> 63
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Region of slr1736 open reading frame

<400> 63 22

aggctaataa gcacaaatgg ga

<210> 64
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Region of slr1736 open reading frame

<400> 64 60
ggtatgagtc agcaacacct tcttcacgag gcagacctca gcggaattgg ttttagttat 63
ccc

<210> 65
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 65 26

ggatccatgg ttgcccaaac cccatc

<210> 66
<211> 61
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 66 60
gcaatgtaac atcagagatt ttgagacaca acgtggctt gggtaagcaa caatgaccgg 61
c

<210> 67
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligonucleotide primer
<400> 67
gaattctcaa agccagccca gtaac 25

<210> 68
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer
<400> 68
ggtatgagtc agcaacacct tcttcacgag gcagacacta gcgggtgcga aaagggtttt 60
ccc 63

<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> End of open reading frame fragment
<400> 69
ccagtgggtt aggctgtgtg gtc 23

<210> 70
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> End of open reading frame fragment
<400> 70
ctgagttgga tgtattggat c 21

<210> 71
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<400> 71
ggatccatgg ttacttcgac aaaaatcc 28

<210> 72

<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 72

gcaatgtAAC atcAGAGATT ttGAGACACA acGTGGCTT GCTAGGCAAC CGCTTAGTAC 60

<210> 73
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 73

gaattcttaa cccAACAGTA aAGTTCCC 28

<210> 74
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 74

ggTATGAGTC AGCAACACCT TCTTCACGAG GCAGACCTCA GCGCCGGCAT TGTCTTTAC 60
atg 63

<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Open reading frame fragment

<400> 75

ggaacccttg cagccgcTTc 20

<210> 76
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Open reading frame fragment

<400> 76

gtatgcccaa ctggcaga gg

<210> 77

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 77

ggatccatgt ctgacacaca aaataccg

28

<210> 78

<211> 62

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 78

gcaatgtaac atcagagatt ttgagacaca acgtggctt cgccaatacc agccaccaac 60
62
ag

<210> 79

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 79

gaattctcaa atccccgcatt ggcctag

27

<210> 80

<211> 65

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 80

ggatggatc agcaacacct tttcacgag gcagaccta gcggcctacg gcttggacgt 60
65
gtggg

<210> 81

<211> 21

<212> DNA

<213> Artificial Sequence

<220>
<223> Open reading frame fragment

<400> 81
21
cacttggatt cccctgatct g

<210> 82
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Open reading frame fragment

<400> 82
21
gcaatacccg cttggaaaac g

<210> 83
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 83
29
ggatccatga ccgaatcttc gcccttagc

<210> 84
<211> 61
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 84
60
gcaatgtAAC atcagAGATT ttgAGACACA acgtggCTT caatCCTagg tagCCGAGGC
61
g

<210> 85
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 85
27
gaattcttag cccaggccag cccagcc

<210> 86
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 86

ggtatgagtc agcaacacct tcttcacgag gcagacacctca gcggggaaattt gatttgttta 60
attacc 66

<210> 87
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Open reading frame fragment

<400> 87

gcgatcgcca ttatcgcttg g 21

<210> 88
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Open reading frame fragment

<400> 88

gcagactggc aattatcagt aacg 24

<210> 89
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 89

ccatggattc gagtaaagtt gtcgc 25

<210> 90
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 90

gaattcactt caaaaaaggt aacag

<210> 91

<211> 4550

<212> DNA

<213> Arabidopsis sp.

<400> 91

attttacacc aatttgatca cttaactaa ttaattaaat tagatgatta tcccaccata	60
tttttgagca ttaaaccata aaaccatagt tataagtaac tgtttaatc gaatatgact	120
cgattaaatg taggaaaaat ttataaccgg taattaagaa aacattaacc gtagtaaccg	180
taaatgccga ttccatccctt gtctaaaaga cagaaaaacat atattttt ttgccccata	240
tgtttcaacttattt caggcacaat acttttggtt ggtacaaaaa cttaaaaggaa	300
caacacgtga tactttcct cgccgtcag tcagatttt tttaaactag aaacaagtgg	360
caaatctaca ccacatttt tgcttaatct attaacttgt aagttttaaa ttccctaaaaa	420
agtctaacta attcttctaa tataagtaca ttccctaaat ttccctaaaaa gtc当地at	480
taatttcaa aatctaactt aaatatctaa taatttcaa tccataaaaa gacacgcaac	540
aatgacacca attaatcatc ctcgacccac acaattctac agttctcatg ctaaaccata	600
tttttgctc tctgttcctt caaaatcatt tctttctt ctttgattcc caaagatcac	660
ttctttgtct ttgatttttt atttttttt tctctggcgt gaaggaaagaa gctttatttc	720
atggagtctc tgctctctag ttctctctt gtttccgcgt gtaaatctcg tcctttctg	780
gtttcagggtt ttatgtgtt ttaggtttc gttttgtga ttcagaacca tacaaaaaagt	840
ttgaactttt ctgaatataa aataaggaaa aagtttcgtat ttttataatg aattgtttac	900
tagatcgaag taggtgacaa aggttattgt gtggagaagc ataatttctg ggcttgactt	960
tgaattttgt ttctcatgc tgcaacttat caatcagctg gtgggtttt ttggaaagaa	1020
cagaatctaa agctccactc tttatcagggt tcgttaggtt ttatgggtt ttgaaat	1080
aataactaa catcttagtc tcattattctt attgggttgc tcacatttc taatttggaa	1140
tttatgagac aatgtatgtt ggacttagttt gaagttcttc tctttgtt tagttgaat	1200
gttactgtat ttgttagt cttaacacca atatatacac ccaatttgc agaaatccga	1260
gttctgcgtt gtgattcgag taaagttgtc gcaaaaacca agtttaggaa caatcttgc	1320
aggcctgatg gtcaaggatc ttcatgttgc ttgtatccaa aacataatgc gagatttcgg	1380
gttaatgcca ctgcgggtca gcctgagggtt ttcgactcga atagcaaaca gaagtcttt	1440
agagactcgt tagatgcgtt ttacagggtt ttcgactcga atagcaaaca gaagtcttt	1500
aagtttctct ttaaaaatgt aactttttaa aacgcatac ttccagggtt tcaaggaga	1560
taacatttagc tctgtgattt gatttgagg tgcttagcat ttatctgtt tctttcttag	1620
cagtagagaa gtttctgtat atatctcatt tactttcac tggcatctt gaggtaatga	1680
atataataaca cataatgacc gatgaaagaa atacattttt ttcgtctctc tttttaaaca	1740
atggggtttt gtttccaggc ttttgcgtt gctctcatga tgaacatcca catatgtgg	1800
ctaaatcaatgt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	1860
ttcgagagac ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	1920
gcaggtaac aaggccatc ttccattggc atcaggagaa tattttgttca acaccggcat	1980
tgcaatagta gtttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2040
tagaattctttaa ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2100
gtggattgtt gtttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2160
tgcataactctt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2220
tgcataactctt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2280
ccacttttac gtttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2340
gctattatttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2400
gttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2460
cagacacatgt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2520
tttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2580
ttaaatctat ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2640
tttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2700
tttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2760
tttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2820
tttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2880
tttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	2940
tttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt	3000

aaaactcgct aattcatcgat ttgagttgtt ctgggttcat ttgttccgt tctgttgcattt

ttttttcagg	ttgtgggtca	tgttatactc	gcaacaactt	tgtgggctcg	agctaagtcc	3060
gttgatctga	gtagcaaaac	cgaaaataact	tcatgttata	tgttcatatg	gaaggtaga	3120
ttcgtttata	aatagagtct	ttatgcctt	tttatgcgct	ccaatttggaa	attaaaatag	3180
ccttcagtt	tcatcgaatc	accattatac	tgataaaattc	tcatttctgc	atcagcttctt	3240
ttatgcagag	tacttgtgt	tacccctttt	gaagtgactg	acattagaag	agaagaagat	3300
ggagataaaa	gaataagtca	tcactatgtct	tctgtttta	ttacaagttc	atgaauattag	3360
gtatgttaact	agtgaaattag	agttttattc	tgaaacatgg	cagactgcaa	aaatatgtca	3420
aagatatacaa	tttctgttgg	gtaaaagaagt	ctctgttgg	gcaaaatctt	aagggtcgg	3480
gtgttgcata	aatgctaagc	gaagaaaatcg	attctatgt	gaaatttccg	aaactatgtg	3540
taaacatgtc	agaacatatctc	cattctatat	cttcttctgc	aagaaaagctc	tgtttttac	3600
acctaaactc	tttatctctg	tgttagttaag	atatgttat	gtacgtgact	acatttttt	3660
gttgatgtaa	tttgcagaac	gtatggattt	ttgttagaaa	gcatgagttc	gaaagtataat	3720
gtttatataat	atggataatt	cagacctaac	gtcgaagctc	caacagcataa	attcaactact	3780
atagtttgct	ctgtaataga	tagttccatt	gatgtcttga	aactgtacgt	aactgcctgg	3840
gcgttttgc	gttgatactg	actactgagt	gttctttgtg	agtgttgtaa	gtataacaaga	3900
agaagaataat	aggctcacgg	gaacgactgt	ggttggaaat	gaaatggaga	tcatcacgt	3960
gcggctttgc	caaagaccga	gtcacgatcg	agttatgtaa	gtctttacag	ctgctgatta	4020
tgatttgacca	ttgtttagag	acgcatttgg	atcttactag	ggacttgcct	gggagttct	4080
tcaagtacgt	gtcagatcat	acgatgttgg	agatttcacg	gttttgatgt	gtttttttgg	4140
agtccacaatg	cttaatgggc	ttatttggccc	aataatagct	agctctttt	ctttagccgt	4200
ttcggttgc	ccctgggtgg	gagtattatt	agggtatgg	gtgaccaaaag	tcaccagacc	4260
tagagtgaaat	ctagtagagt	cctagaccat	ggttccatggc	tttttatttgt	aatttggaaaa	4320
atgaacaattt	ctttttgtaa	ggaaaacttt	tatataatgt	acgtttaacta	tatagaaaact	4380
agttgaacta	acttcgtgca	attgcataat	aatgggtgtga	aatagaggg	gcaaaactca	4440
ataaacattt	cgacgtacca	agagttcgaa	acaataagca	aaatagattt	tttgcttca	4500
gactaaatttgc	tacaatgtaa	ggttaataaa	ccatttgaagc	tttttatttaat		4550

<210> 92
<211> 4450
<212> DNA
<213> *Arabidopsis* sp.

<400> 92

tttaggttac	aaaatcaatg	atattgcgt	tgtcaactat	aaaagccaaa	agtaaagcct	60
cttgtttgac	cagaaggctca	tgtatcatgt	atacatacag	ccaaactacc	tccttggaga	120
aaagacatgg	atccaaaca	acaacaatag	cttctttac	aagaaccagt	agtaactagt	180
cactaattct	aaagagttaa	gtttagctt	ttctggcaat	ggctccttga	tcatttcaat	240
cctgaaggag	accacttgc	tagcaagacc	atgtcctcg	tttcacttac	agtgtgtctc	300
aaaagtctac	ttcaattctt	catatatatgg	ttccacac	tacagcttca	tcctcattcg	360
ttgacagaga	gagagtctt	attgaaaact	tcttccaagt	acaactccac	taaatataat	420
agcacccaaac	cacttgttcg	acacaaatct	gtacagatat	aaaaacacta	tttagtttc	480
caaggccaaat	cacataattg	gattgtgaaa	gagtagaaaa	gataaaaccca	aattttcata	540
ctttctactg	cagttagcac	cagatgataa	gtcagctgtc	cctatttgc	atccataactg	600
tcctgtatgc	gccccccatg	atgcgtataa	ttgccaccct	taatcattag	agcgagaaaac	660
aaaaagaatc	aaaagacagt	aatggaaatt	aggaatcaca	aatgagtct	tgtaaagttt	720
attgagttacc	gagatctgca	ctgaatccag	aaatgtcaag	aaaacctatg	gatgtgtgc	780
caaattccatg	taaccaaagc	tttgatttat	caccgaatct	aagggctgtt	gacttaaacac	840
caacttttac	atcatcttct	ttgtccctgg	gacacaaat	attagacatt	agtccatgg	900
aaaaaaaaatga	tttaacctag	aatatctaa	aattacttgc	ataaaaaactg	aacttgagct	960
gaaattttgg	gttctgtact	tgtggcatat	actatttcat	tttcaatggg	ccacaaaaggt	1020
aactttcttt	tctcacttct	gttgc当地	ggaagacttt	tatggggcta	actcttcaact	1080
taaagtatag	aaatcagatg	gaaaaggctgg	gagatcagg	taattttctt	ctttatgatt	1140
gacaaaagtc	gaacatcgaa	atggatgtcat	ttgcatgaga	catgaaaacaa	aagctgaaaa	1200
agaaatctgt	gggtggtaag	ctagaaaaag	aaaacaaaagc	aagcaatatg	cacacatgt	1260
gattaactac	tttgc当地	gtcataatca	aatagatttt	gaagctaaaa	aataaaaaagt	1320
gaatatacct	gtatgtgcata	aatagtatca	taaacaagg	tccagcagac	tccggagaga	1380
tagagaggg	gtacaataga	ttgtgtctatg	cttctttaa	ctgcagttca	tccttacaat	1440
gctccccagt	ttatgttca	acctaaaaag	gcttgaggct	gcaatttataa	aaacgaatca	1500
atcataagaa	aatcagaaaa	tatataatgt	ctaactttga	gaagccagaa	tagattttaa	1560

<210> 93
<211> 2850
<212> DNA
<213> *Arabidopsis* sp.

<400> 93

aattaaaat'

<400> 93
aattaaaatt tgagcggct aaaccattag accgtttaga gatccctcca acccaaata 60
gtcgatttc acgtcttgaa catatatgg gccttaatct gtgtggttag taaagacttt 120
tatttgtcaa aqaaaaacaa ccatggccca acatgttgat acttttattt aattatacaa 180

gtaccctga attctctgaa atatatttga ttgacccaga tattaatttt aattatcatt 240
 tcctgtaaaa gtgaaggagt caccgtact cgctgtaato tgaaacaat ctgtcataat 300
 gatgaagaag ttctctcgat ttcctccaa cgcttagaaa attctgacgg cttaacgatg 360
 tggcgaagat ctgttgat tgcgttctct tcaagaatct ctgttcttc ttgttacca 420
 aaccctagac tgattcccttg gtcccgcaa ttatgtccg ttaatagctt ctcccagect 480
 ccggctcgaa cggaaatcaac tgctaagttt gggatcactg gtgttagatc tgatgccaat 540
 cgagttttg ccactgctac tgccggcgt acagctacag ctaccaccgg tgagatttcg 600
 tctagagttt cggcttggc tggatttaggg catcaactacg ctgcgttta ttggagctt 660
 tctaaagcta aacttaggtt tgcgtttact ttctttctt catgaaaat ctgaaaattt 720
 ccaattgtt gattcttaaa ttctcattt ttttatgtt gtatgtct tgcgttgc 780
 acttctggaa ctgggtatata tctgggtacg gggaaatgtct caattagctt cccggggctt 840
 tgttacacat gtgcaggaac catgtatgtt gtcgtatctt ctaattccctt gaatcaggc 900
 attgaaatgt tgagaagttt ataaatttc aatcttgc ttgttatgtt agttgatctt 960
 gcttgcttat gtttatgtt tttttttttt ttcttagattt ttgagataag caatgattt aagatgaaaa 1020
 cgcttggttt tttttttttt ttcttagattt ttgagataag caatgattt aagatgaaaa 1080
 gaacgatgtt aaggccattt ctttcaggac gtattatgtt tccacacgctt gttgcattttt 1140
 ctactatgtc tggcttctt ggtgttgc ttgtggccag caaggtgaat gttgtttttt 1200
 ttatatgtt tttttttttt ttatgtatgg gtgattgaga gattatggat cttaaactttt 1260
 gettccacga caaggattttt gcagactaat atgttgcgtt ctggacttgc atctgccaat 1320
 cttgtactttt atgcgtttt tttttttttt ttatactccg ttgaagcaac ttcacccat tttttttttt 1380
 gttggcgtt tttttttttt tttttttttt tttttttttt aaattttttt tttttttttt 1440
 cttttattttt tttttttttt tttttttttt tttttttttt aatccaaaat gtgtcatgg 1500
 ttttccaccaattt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1560
 gatttcataac aatttcgtat tttttttttt tttttttttt tttttttttt tttttttttt 1620
 tatggccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1680
 gtcatatgat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1740
 gtggaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1800
 atgagttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1860
 acttctgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1920
 ccgttccatcg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1980
 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2040
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100
 caagttgggtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2160
 catttttaccg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2220
 tccttcctgt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2280
 aactctgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2340
 gaaagaaaacg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2400
 tcccttccttc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2460
 aacagaaaattt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2520
 gtggagaacg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2580
 ctaagtatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2640
 aattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2700
 gaaatgaaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2760
 aggtctcgat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2820
 cacgaagat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2850

<210> 94
 <211> 3660
 <212> DNA
 <213> Arabidopsis sp.

<400> 94

tttttttttt tttttttttt aattttatgtt ttttcacccgg tttttttttt tttttttttt 60
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 120
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 180
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 240
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 300
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 360
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 420

gattctcaac actgtctcca ccatccactc ttccagagtt acctccgtcg atcgagtccg 480
 agtcctctt cttcggaaatt cgattccgt tgagttcaact cgccggcggt ctgggttctc 540
 gacgtgatc tacgaatcac ccggtagtta gcattctgtt ggatagattt atgaatgttt 600
 tcttcgatt ttttttact gatctgttg tggatctctc gttagggcgga gatttgggtt 660
 gcgtgcggcg gagactgata ctgataaagg tatgatttt tagttgtttt tattttctct 720
 ctcttcaaa ttctcttttca aAACACTGTG gcgtttgaat ttccgacggc agttaaatct 780
 cagacacctg acaaggcacc agccgtgtt tcAACGCTTCA accagttct cgttatcaaa 840
 ggagcatctc aagaaactgt aattttgttca atctcctca aatctttaa attatcatat 900
 ttgtggataa tgatgtgtt gtttaggaat ttcttacta aaggtaatct cttttgagga 960
 caagtctgt ttttagctt gaaatgtgtt gaaaatgtt gtttagtcaaaaagagtt 1020
 tgggttata ttctgttattt aagataatgtt gaagattcgat cttcagctt caaaaccagt 1080
 cacttggctt ccactgggtt ggggagtcgt ctgtgggtct gctgcttcgat gtaatcatac 1140
 gaacctctt tggatcatgc aatactgtac agaaagttt ttcattttcc ttccaattgt 1200
 ttcttcggc agggaaacttt cattggaccc cagaggatgt tgcttaagtgc attctttgc 1260
 tgatgtgtc tgggttctgtt cttaactggctt atacacaggt ctggttttac acaacaaaaa 1320
 gctgacttgt tcttattctt gtcatttgc ttgggtctac aataaccttag acttgcgt 1380
 ttccagacaa tcaacgactg gtatgataga gatatcgacg caattaatga gccatatcg 1440
 ccaattccat ctggagcaat atcagagcca gaggtaactg agacagaaca ttgtgagctt 1500
 ttatctctt tggattctg atttctcattt actccttaaa atgcaggta ttacacaagt 1560
 ctgggtgcta ttattggggat gtcttggat tgctggaaata ttagatgtt gggtaagttt 1620
 gcccctctga cattaacttag tacagttaa gggcacatc gatgttctt aatcttcctt 1680
 tatcaggcag ggcataccac tcccactgtc ttctatctt ctttggagg atcattgcta 1740
 tcttatatat actctgtcc acctttaag gtaagtttta ttccctactt ccactctcta 1800
 gtgataagac actccatccaa agttttggag tttgaatattt cgatatctga actgatctca 1860
 ttgcagctaa aacaaaatgtt atgggttggaa attttgcac ttggagcaag ctatattgt 1920
 ttgcatggt aagatatctc gtgtatcaat aatatatggc gttgttctca ttcatttgc 1980
 ttgtttctt ctcacttgc ttagatgtgg gctggccaaat catttttgg cacttcttac 2040
 ccagatgtt tgggttcttactt ctttgcgtt aactatctt tgcttcatgt tgacccctt 2100
 ttttatgtt ctttttctgtt ttagatgtt aatatgtctt tgcttcatgt tgacccctt 2160
 tgataatgca gtttaggaata gccattgtt aacgttccaa aagtgttggaa ggagatagag 2220
 cattaggact tcagtctctc ccagtagctt ttggcaccga aactgaaaaa tggatatgc 2280
 ttgggtctat agacattact cagcttctg ttggcggat tgactatcca ctgtttttgt 2340
 gcaagctgtgg ctcttatttcc tttttcttgc ttttgcatttca aatgttccaaatgtaa 2400
 agcacaaattt aatgaagctg aatcaacaaa ggcacaaatc aatgttccaaatgtaa 2460
 tgagctaattt aagaggaggc atcttactt atgttttattt aatgttccaaatgtaa 2520
 atttcatgtc tctaaaacaa gtatttcaat cagttcatgt aaataacaga acttataatct 2580
 tcatttgc ttttacttgc gtagatgtt cacaatcattt gttatagaaac caaatcaaag 2640
 gtagagatca tcatttgc ttttacttgc gtagatgtt cacaatcattt gcatctggaa 2700
 aacatttata tcgttggcg ttgggttgc ttttgcatttca aatgttccaaatgtaa 2760
 agacgttaac agtctcacat tataatttgc ttttgcatttca aatgttccaaatgtaa 2820
 ctcgttctca taaactgcag ttttgcatttca aatgttccaaatgtaa 2880
 agtaccaggta aagtcaactt agtacacatg ttttgcatttca aatgttccaaatgtaa 2940
 tctcttaatc agaagttgtc taaaacactc atcttgcatttca aatgttccaaatgtaa 3000
 cttgggtctc ggaatatttgc taaaacactc atcttgcatttca aatgttccaaatgtaa 3060
 gatgggttt tggatggatc agaggttttgc ttttgcatttca aatgttccaaatgtaa 3120
 aactagtttta aagatgttgc ttttgcatttca aatgttccaaatgtaa 3180
 gtatcaattt aaccaaaatgtt gtagatgtt ctttgcatttca aatgttccaaatgtaa 3240
 ttttgcattt ctttgcatttca aatgttccaaatgtaa 3300
 tttcagaatgtt ttttgcatttca aatgttccaaatgtaa 3360
 attctaaaca tggatccaca taaaacactt aatataacaa aatgtatgtt cctcaaaactt 3420
 tttataatct aatcttacaa acttagtgc ttttgcatttca aatgttccaaatgtaa 3480
 gaaactacaa agactagact atacatgtt ttttgcatttca aatgttccaaatgtaa 3540
 acctgatttt ttttgcatttca aatgttccaaatgtaa 3600
 cacgttgc gacacaacat actatcaca aatgttccaaatgtaa 3660

<210> 95
 <211> 1236
 <212> DNA
 <213> Glycine sp.

<400> 95

atggattcac tgcttcttcg atctttcct aatattaata acgccttc ttcaccacc	60
actggtgcaa atttctccag gactaaatct ttgcacaaca ttaccatgc aagtcttat	120
gtgccaatg cttcatggca caataggaaa atccaaaaag aatataattt ttggaggtt	180
cggtgccaa gttgaacca tcattacaaa ggattgagg gagcgtgtac atgtaaaaaa	240
tgtatataa aatttgttgc gaaagcgacc tcgtaaaaat ctcttgatgc tgaacctaa	300
gctttgatc caaaaagcat tttggactct gtcagaattt cttggatgc tttctacagg	360
tttccaggc ctcacacagt tattggcaca gcattaaagca taatttctgt gtctcttctt	420
gctgtgaga aaatatcaga tatatctca ttatttta ctgggtgtt ggaggctgtg	480
gttgctgccc tgtttatgaa tatttatgtt gttgggttga atcaatgtc tgatgtgaa	540
atagacaaga taaacaagcc gtatctca tttagcatctg gggatattc cttgaaact	600
ggtgtcaact ttgttgatc ttttcaatt ctgagttttt ggcttggctg gttgttaggt	660
tcattggccat tattttggc ctttttgc agctttgtgc taggaactgc ttattcaatc	720
aatgtgcctc tggtgagatg gaagagggtt gcagtgtttt cagcgatgtg cattctagct	780
gttcggcag taatagttca acttgattt ttccottcaca tgcagactca tggatacaag	840
aggccacccgt tctttcaag accattgatt ttgtctactg cattcatgatc ttcttctct	900
gtatgtatag cactgtttaa ggatataacct gacattgaag gagataaaagt attggcata	960
caatctttt cagtgcggtt aggtcagaag ccgggtttctt ggacttgggtt tacccttctt	1020
gaaatagctt atggagtcgc cttccctggc ggagctgcat ctccttgc ttggagcaaa	1080
atttcacgg gtctgggaca cgctgtgtc gctcaattt tctgggttca tgccaaatct	1140
gtagatttga aaagcaaagc ttcgataaca tccttctata tggatatttgaagctattt	1200
tatgcagaat acttactcat tcctttgtt agatga	1236

<210> 96

<211> 1188

<212> DNA

<213> Glycine sp.

<400> 96

atggattcga tgcttcttcg atctttcct aatattaaca acgcttc ttcgcacc	60
actggttctt atttgc当地 tgcttc当地 cacaataggaa aatccaaaaa agaatataat	120
ttttgaggt ttccggcc aagtggac caccattaca aaagcattga aggagggtgt	180
acatgtaaaa aatgtatataaatttggt gttaaagcga cctctgaaaa atctttgag	240
tctgaaccccc aagcttttgc tccaaaaagc aattttggact ctgtcaagaa ttccctggat	300
gcttctaca ggtttccag acctcacaca gttattggca cagcattaa cataatttct	360
gtgtccctcc ttgctgttg aaaaatataca gatatactc cattatttt tactgggtgt	420
ttggaggctg ttgtgtctc cctgtttatg aatatttata ttgtgggtt gaatcaattt	480
tctgtatgtt aatagacaa gataaacaag ccgtatctc cattagcatc tgggaaata	540
tcctttgaaa ctgggtcac tattttgc tcttttcaat ttctgagttt ttggcttggc	600
tgggttggtag gttcatggcc attattttgg gcccctttttaaagcttttgc taggttgc	660
gcttattcaa tcaatgtgcc tctgttgaga tggaaagaggt ttgcagtgtc tgcagcgat	720
tgcattctag ctgttcggcc agtaatagtt caacttgcatttccctca catccagact	780
catgtatataa agaggccacc tgc当地tca agatcattga ttttgc当地 tgcattcat	840
agcttctct ctgtatgtt agcactgttt aaggatatac ctgcattga aggagataaa	900
gtatgtggca tccaatctt ttcaatgtcgtt taggtcaga agccgttatttgcactgt	960
gttatcttc ttgaaatagc ttatggatc gccccttgg tggagctgc atctccttgc	1020
cttggagca aaattgtcac gggcttggca cacgtgtc tggcttcaat tctctgggtt	1080
catgccaat ctgtatgtt gaaaagcaaa gcttcataa catccttcta tatgtttattt	1140
tggaaagctat ttatgtcaga atacttactc attcctttttagatga	1188

<210> 97

<211> 395

<212> PRT

<213> Glycine sp.

<400> 97

Met Asp Ser Met Leu Leu Arg Ser Phe Pro Asn Ile Asn Asn Ala Ser
1 5 10 15

Ser Leu Ala Thr Thr Gly Ser Tyr Leu Pro Asn Ala Ser Trp His Asn
20 25 30

Arg Lys Ile Gln Lys Glu Tyr Asn Phe Leu Arg Phe Arg Trp Pro Ser
35 40 45

Leu Asn His His Tyr Lys Ser Ile Glu Gly Gly Cys Thr Cys Lys Lys
50 55 60

Cys Asn Ile Lys Phe Val Val Lys Ala Thr Ser Glu Lys Ser Phe Glu
65 70 75 80

Ser Glu Pro Gln Ala Phe Asp Pro Lys Ser Ile Leu Asp Ser Val Lys
85 90 95

Asn Ser Leu Asp Ala Phe Tyr Arg Phe Ser Arg Pro His Thr Val Ile
100 105 110

Gly Thr Ala Leu Ser Ile Ile Ser Val Ser Leu Leu Ala Val Glu Lys
115 120 125

Ile Ser Asp Ile Ser Pro Leu Phe Phe Thr Gly Val Leu Glu Ala Val
130 135 140

Val Ala Ala Leu Phe Met Asn Ile Tyr Ile Val Gly Leu Asn Gln Leu
145 150 155 160

Ser Asp Val Glu Ile Asp Lys Ile Asn Lys Pro Tyr Leu Pro Leu Ala
165 170 175

Ser Gly Glu Tyr Ser Phe Glu Thr Gly Val Thr Ile Val Ala Ser Phe
180 185 190

Ser Ile Leu Ser Phe Trp Leu Gly Trp Val Val Gly Ser Trp Pro Leu
195 200 205

Phe Trp Ala Leu Phe Val Ser Phe Val Leu Gly Thr Ala Tyr Ser Ile
210 215 220

Asn Val Pro Leu Leu Arg Trp Lys Arg Phe Ala Val Leu Ala Ala Met
225 230 235 240

Cys Ile Leu Ala Val Arg Ala Val Ile Val Gln Leu Ala Phe Phe Leu
245 250 255

His Ile Gln Thr His Val Tyr Lys Arg Pro Pro Val Phe Ser Arg Ser
260 265 270

Leu Ile Phe Ala Thr Ala Phe Met Ser Phe Phe Ser Val Val Ile Ala
275 280 285

Leu Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys Val Phe Gly Ile
290 295 300

Gln Ser Phe Ser Val Arg Leu Gly Gln Lys Pro Val Phe Trp Thr Cys
305 310 315 320

Val Ile Leu Leu Glu Ile Ala Tyr Gly Val Ala Leu Leu Val Gly Ala

325	330	335
Ala Ser Pro Cys Leu Trp Ser Lys Ile Val Thr Gly Leu Gly His Ala		
340	345	350
Val Leu Ala Ser Ile Leu Trp Phe His Ala Lys Ser Val Asp Leu Lys		
355	360	365
Ser Lys Ala Ser Ile Thr Ser Phe Tyr Met Phe Ile Trp Lys Leu Phe		
370	375	380
Tyr Ala Glu Tyr Leu Leu Ile Pro Phe Val Arg		
385	390	395
<210>	98	
<211>	411	
<212>	PRT	
<213>	Glycine sp.	
<400>	98	
Met Asp Ser Leu Leu Leu Arg Ser Phe Pro Asn Ile Asn Asn Ala Ser		
1	5	10
		15
Ser Leu Thr Thr Thr Gly Ala Asn Phe Ser Arg Thr Lys Ser Phe Ala		
20	25	30
Asn Ile Tyr His Ala Ser Ser Tyr Val Pro Asn Ala Ser Trp His Asn		
35	40	45
Arg Lys Ile Gln Lys Glu Tyr Asn Phe Leu Arg Phe Arg Trp Pro Ser		
50	55	60
Leu Asn His His Tyr Lys Gly Ile Glu Gly Ala Cys Thr Cys Lys Lys		
65	70	75
Cys Asn Ile Lys Phe Val Val Lys Ala Thr Ser Glu Lys Ser Leu Glu		
85	90	95
Ser Glu Pro Gln Ala Phe Asp Pro Lys Ser Ile Leu Asp Ser Val Lys		
100	105	110
Asn Ser Leu Asp Ala Phe Tyr Arg Phe Ser Arg Pro His Thr Val Ile		
115	120	125
Gly Thr Ala Leu Ser Ile Ile Ser Val Ser Leu Leu Ala Val Glu Lys		
130	135	140
Ile Ser Asp Ile Ser Pro Leu Phe Phe Thr Gly Val Leu Glu Ala Val		
145	150	155
160		
Val Ala Ala Leu Phe Met Asn Ile Tyr Ile Val Gly Leu Asn Gln Leu		
165	170	175
Ser Gly Glu Tyr Ser Phe Glu Thr Gly Val Thr Ile Val Ala Ser Phe		
195	200	205

Ser Ile Leu Ser Phe Trp Leu Gly Trp Val Val Gly Ser Trp Pro Leu
 210 215 220
 Phe Trp Ala Leu Phe Val Ser Phe Val Leu Gly Thr Ala Tyr Ser Ile
 225 230 235 240
 Asn Val Pro Leu Leu Arg Trp Lys Arg Phe Ala Val Leu Ala Ala Met
 245 250 255
 Cys Ile Leu Ala Val Arg Ala Val Ile Val Gln Leu Ala Phe Phe Leu
 260 265 270
 His Met Gln Thr His Val Tyr Lys Arg Pro Pro Val Phe Ser Arg Pro
 275 280 285
 Leu Ile Phe Ala Thr Ala Phe Met Ser Phe Phe Ser Val Val Ile Ala
 290 295 300
 Leu Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys Val Phe Gly Ile
 305 310 315 320
 Gln Ser Phe Ser Val Arg Leu Gly Gln Lys Pro Val Phe Trp Thr Cys
 325 330 335
 Val Thr Leu Leu Glu Ile Ala Tyr Gly Val Ala Leu Leu Val Gly Ala
 340 345 350
 Ala Ser Pro Cys Leu Trp Ser Lys Ile Phe Thr Gly Leu Gly His Ala
 355 360 365
 Val Leu Ala Ser Ile Leu Trp Phe His Ala Lys Ser Val Asp Leu Lys
 370 375 380
 Ser Lys Ala Ser Ile Thr Ser Phe Tyr Met Phe Ile Trp Lys Leu Phe
 385 390 395 400
 Tyr Ala Glu Tyr Leu Leu Ile Pro Phe Val Arg
 405 410

<210> 99
 <211> 964
 <212> DNA
 <213> Oryza sp.

<400> 99

gagcagca	gggtcttaca	ttccaaatgg	gctcgctgt	tgctttcatt	acatgcttc	60
tgacttttt	tgctttggtc	attgtataa	ccaaagatct	cccagatgtt	gaaggggatc	120
ggaagtatca	aatatcaact	ttggcgacaa	agctcggtt	cagaaacatt	gcatttcttg	180
gctctggttt	attgtatgca	aattatgttg	ctgctattgc	tgtagctttt	ctcatgcctc	240
aggcttcag	gcgactgta	atggtgctg	tgcatgctgc	ccttgcgtt	ggtataattt	300
tccagacatg	ggttctggag	caagcaaaat	atactaagga	tgctatttca	cagtactacc	360
ggttcattt	aatcttcttc	tatgtgaat	acatcttctt	cccgttgata	tagagaccaa	420
gcaatctgat	atggtctgca	tgttgagtgc	ggcaaaaact	agaagccat	atgaacagtg	480
ggagttaggg	aacgaacatg	ccatccatgg	gaagactctg	ataactctt	ctcgccccgg	540
ctgtaaagg	taagcactgt	tgggcatata	tatgaaagga	aggtgataaa	gcaggatgc	600
taaattgcta	ctgggatcct	caaaggctt	tagtggtcac	cagtggaaatg	tgccttaata	660
atttggttac	ccagcagagc	aagttttgc	aggttattag	gtaatatctt	tgagggaatg	720
aaccttagatt	tcattgtttt	aagtctgtt	cacacaacgg	gtagtagtgc	tggagcggca	780
			aggttaactc	tagtttcat	tgaccactt	840
aaaaacgacc	ttgttttaca	ctaccaagg				

accttggagat ttgagaccat ggaatcaactt gtcgactcct cggcttgat atttctagt 900
tcagcatttgc cattctccctc cccacttgta ctgtaaaatg tgaagacaac tttttgttt 960
gtgt 964

<210> 100
<211> 421
<212> DNA
<213> Triticum sp.

<400> 100

cgtcccgccga cgctgggtt cttattcgt caatctgccg cactttctat ggaagagatc 60
tgctgttgcg cagcactct gcatttgcg agtgcgtcg gtgatagtt aactggcatt 120
tttttccac attcagacat ttgtttcg aaggccggca gactttcaa accattgtat 180
atttgact gccttcatga cattttctc agttgtataa gcatttca aggatataacc 240
cgatattgaa ggggaccgca tctttgaat ccaatctttt agtggtagac taggtcaaag 300
caggggtttc tggacttgcg ttggctact tgaggttgc tacgggtttc cgatactgag 360
gggggttaact tcttcagtt tgtggagcaa atctataact gttgtggcc atgcaatcct 420
c 421

<210> 101
<211> 705
<212> DNA
<213> Allium porrum

<400> 101

gtttcccccc ctcgaatttt tttttttttt ttttacttca tttttctgtg aataaattct 60
taaaaaagac aaagaaaacc actggatatc ctaaattcaa cataggctat tgcattcaa 120
tgataatctt taacacaaca tacaacatga atataattaa ggagaaaatga tctgaatttgc 180
ttgaaagaac tctccgttt taagatgaca attaaaggctgt tgtaattcc agccattttct 240
gcctccattt tctactcatc ttctcttgcg attcttttcc atgttagtca taaaccctca 300
tcttacaaaa ggaatgagca agtactcage atagaagagc ttcccacacga acatataaaaa 360
agatgtataa gtgggtttgg tcattggtcc atagatcta gcacgattcc aaagtaacga 420
cccaagaattt gcatgaccta tcactgttaa gcatttgc cataggcatg aggaagtagc 480
tccaaacaacc atgacaacag tggtaggcattt ctcaggaga tatatacata tccaaaacac 540
cctctctgg ccaaggcgca cgctgaaaaga atggatgcca aatattttgtt ctccgtctat 600
atcaggata tccttaataa gagaataaac aactgagaag aagctcatga aggcaatgtc 660
aaatatcaat ggccttgtga aacttgctgg tctttgaaa acaaa 705

<210> 102
<211> 637
<212> DNA
<213> Allium porrum

<220>
<221> misc_feature
<222> (1)...(637)
<223> n = A, T, C, or G

<400> 102

nattcggcac gagtttgaa gaagttaagc atggactccc tccttacca gccagttgt 60
atacctctgc cttctccagt ttgttcaactt ccaatctgc gaggcagttc tgcaccagg 120
cagtattcat gtagaaacta caatccaata agaattcaaa ggtgcctcgtaaattatgaa 180
catgtgaaac caaggtttac aacatgttagt aggtctcaaa aacttggtca tgaaaagcc 240
acatccgagc attctttaga atctggatcc gaaggataca ctcctagaag catatggaa 300
gccgtacttag cttcaactgaa tggttctatac aaattttcac gacccacac aataatagga 360

acagcaatgg	gcataatgtc	agtttcttg	cttgttgcg	agagccatc	cgtatattct	420
cctctgtttt	tttgtggatt	attagaggct	gtgggtgctg	cattgttat	gaatgtttac	480
atttaggttc	tgaatcaatt	atttgacata	gaaatagaca	aggtaataa	acctgatctt	540
cctctgcat	ctggagaata	ctcaccaaga	gctggtaactg	ctattgtcat	tgcttcagcc	600
atcatgagct	ttggcattgg	atggtagtt	ggctctt			637

<210> 103
<211> 677
<212> DNA
<213> Brassica napus

<400> 103

ttttttttt	tttttttcaa	aaagaccaat	ccttagtat	gtacatgaac	aaagtgattt	60
tgtctccaag	ctacaaagaa	gaagaagaga	ggtatacataa	gaaaactaca	aatgttcacc	120
atgaatgcta	gaagaagggg	aataacat	actctgcgt	gaagagattc	catataaacc	180
ggtatatcc	tgctatagct	tccttgcgt	agtttgctt	ttctagcacc	catgtctgga	240
aaaccaagca	tgaaggcaag	atcatatgt	caggaatcat	caagctacct	ctaaaaaccc	300
gaggcatgt	gaaagcttagt	gatatggcag	aatatagtt	cactagcaga	agtccagaac	360
cgaggatgc	aatgttcctc	actccaagct	ttgttgcgt	tgttgatatt	tggaacttgc	420
gatctccctc	aacatcaga	agatctttt	taatagcaat	gactagtgc	aacagtgtca	480
caaagacgt	gatgaaagcc	acaggtgcac	tccactgaaa	cgaaagtcca	agagcagctc	540
tagtagcatg	gtacacacca	aaattaagaa	gaaaacctg	taccgtggca	ataataagaa	600
acgctgcaac	tggaaatctc	ttcattctaa	atggtggaa	agaatagatg	gtccccagat	660
cggacgcgt	ggtcgac					677

<210> 104
<211> 1431
<212> DNA
<213> Zea sp.

<400> 104

ccacgcgtcc	gcccgccaa	gggatggacg	cgcttcgcct	acggccgtcc	ctcctcccc	60
tgcggcccg	cgcgccccgc	ccgcgagatc	attttctacc	accatgttgc	tccatataac	120
gaaatggta	aggacgaatt	tgctttcta	gccaaaggac	ccaaggctt	accttgcac	180
accatcagaa	attcttcgaa	tggaaatcct	cctattgt	gatatcacat	cggtcattaa	240
atacttctgt	taatgcttcg	gggcaacagc	tgcagtctg	acctgaaaca	catgattct	300
caaccatctg	gagggcaata	tcatcttc	tagatgcatt	ttacagattt	tcccggccac	360
atactgtcat	aggaacagca	ttaagcatag	tctcagttc	cctttagct	gtccagact	420
tgtctgat	atcaccttgc	ttccctactg	gtttgcgt	ggcagtgta	gctgccctt	480
tcatgaat	ctatattgt	ggactgaacc	atttattgc	cattgagata	gacaaggta	540
acaagccaa	tcttccat	gcacatgggg	aatacacct	tgcaactggg	gttgcataat	600
tttgcgtt	tgccgctat	agcttggcc	ttggatgggc	tgttggatca	caacctctgt	660
tttggctct	tttcaataac	tttgcgtt	ggactgcata	ttcaatcaat	ctgcccatt	720
ttcgtatggaa	gagatttgc	gttgcgt	cactgtgc	attagcagtt	ctgtcagtg	780
ttgttcagct	ggcctttt	ctccacattc	agactttgt	tttcaggaga	ccggcagtg	840
tttctaggcc	attattattt	gcaactggat	ttatgacgtt	tttctctgtt	gtaatagcac	900
tattcaagga	tatacctgac	atcgaagggg	accgcata	cggtatccg	tccttcagcg	960
tccggtagg	gcaaaagaag	gtctttgg	tctgcgttgg	cttgcttg	atggcctaca	1020
gcgttgcgt	actgatggg	gctacctt	cctgtttgt	gagcaaaaca	gcaaccatcg	1080
ctggccattc	catacttgcc	gcatcctat	ggagctgcgc	gcgtcggt	gacttgacga	1140
gcaaagccgc	aataacgtcc	ttctacatgt	tcatctggaa	gctgttctac	gcggagtacc	1200
tgctcatccc	tctggtgccg	tgagcgcg	gcgagggtgg	ggcagacgga	tcggcgtcgg	1260
cggggcggca	aacaactcca	cgggagaact	tgagtgcctgg	aagtaaaactc	ccgttggaaa	1320
gttgaagcgt	gcaccacccg	caccggcag	agagagacac	ggtggctg	tggatacgg	1380
tggccccc	aataattcc	cccgatc	gtaaaaaaaaa	aaaaaaa	a	1431

<210> 105
<211> 1870
<212> DNA
<213> Zea sp.

<400> 105

gccgcgcagc ggcgacgagcg ccacctgctt gtcggcggt gcctgcgtgc gtgtgcgtcc 60
accacctgacc cccgcgcggc cccgcgcggc tgcccccca ctccacttgc tcactcgctcg 120
cgcccccgctt cccccccggc caaggatgg acgcgcgtcg cctacggccg tccctccctcc 180
ccgtgcggcc cggcgcggcc cgccgcggc atcattttct accaccatgt tttccatac 240
aacgaaatgg tgaaggacga atttgcttt cttagccaaag gacccaagg ctacccgtc 300
atcaccatca gaaattctt gaatggaaat ctccttattt taggatatca catcggtcat 360
taaatacttc tggtaatgt tcggggcaac agctgcagtc tgaacctgaa acacatgatt 420
ctacaaccat ctggagggca atatcatctt ctctagatgc attttacaga tttccggc 480
cacatactgt cataggaaca gcattaagca tagtctcagt ttccctcta gctgtccaga 540
gcttgtctga tatatcacct ttgttctca ctggtttgc ggaggcagtgt gtagctgccc 600
ttttcatgaa tatctatatt gttggactga accagttt cggacttgc atagacaagg 660
ttaacaagcc aactcttcca ttggcatctg gggaaatacac ctttgcactt ggggttgcaa 720
tagttcgggt ctggccgt atgagtttgc ttcccttgc ttcccttgc tcacaaccc 780
tggttggc tcttttata agcttgcgt ttggactgc atattcaatc aatctggcgt 840
accttcgtg gaagagatg gctgttgc cggactgtg catattagca gttcgtgcag 900
tgatgttca gctggcctt tttctccaca ttcagactt tttttcagg agaccggcag 960
tgttttctat gccattat ttttgcactt gatttatgc gtttctctt gtttataatg 1020
cacttcaa ggtatataactt gacatcgaa gggaccgcatttgcggatc cgatccttca 1080
gctgtccgggtt agggaaaag aaggctttt ggttgcgt tggctgttgc gagatggcct 1140
acagcgttgc gatactgtt gggacttgc ttccctgtt gttggaccaaa acagcaacca 1200
tcgctggcca ttccataactt gccgcgttgc tatggagctg cggcgcgttgc gtggacttgc 1260
cgagcaaaagc cgcaataacg tccttctaca ttttgcactt gaaatgttgc tacggggagt 1320
acctgtcat ccctctggc cggtgagcgc gaggcggatgttgc ggtggcagac gatcggcgt 1380
cgggggggcg gcaaaacaact ccacgggaga acttggatgc cggaaataaa ctcccggttgc 1440
aaaggtaag cgtgcaccac cggcaccggg cagagagaga cacggggctt gatggatacc 1500
ggatggccccc cccaataat tcccccgttgc atggatcccc acgctgttgc atgatatccc 1560
atgtgtccgg gtgaccggac ctgatgttgc atgatgttgc tggatgttgc acgttccaaaca 1620
tagcccgtag gtattgttgc cactgttagt atgatacttcc ttccctgttgc ttggccagcac 1680
cagtgaccca aacttggtgc gctgagctca gcgctcagca gcttacgttgc catctgcgc 1740
ttgacttgc tggatgttgc cgttgcgttgc aatgtatgttgc ggttgcgttgc ggcctgacgg 1800
ttcgctcgttgc tggatgttgc ttttgcgttgc aggaagatgc tctgtcagatgc atctggattt 1860
cctcgctgttgc 1870

<210> 106
<211> 642
<212> DNA
<213> Zea sp.

<400> 106

cggccggact ttctgtactt ggcaaccggcc ggcgcggcgttgc acgagcgcac cctgttgc 60
ggccgtgcc tgcgtcggt tgcgtccacc actgaccccg cggccggcc cggccctgc 120
ccctccactc cacttgcata ctcgtcggt cgtcgccgc cgttccccc cggcccaagg 180
gatggacgcgttgc ctggccatc ggcgtccct cttcccggttgc cggccggcc cggccggcc 240
gcgaggcagt ggttgcgttgc cttttcatga atatctat ttttgcgttgc aaccaggat 300
tcgacattga gatagacaag gtttgcgttgc caacttgcatttgc ttttgcgttgc gggaaataca 360
cccttgcac tggatgttgc atagtttgc ttttgcgttgc ttttgcgttgc ggccttggat 420
gggctgttgg atcacaaccc ctgttttggg ctcttttgc ttttgcgttgc aagcttgc ttttgcgttgc 480
catattcaat caatctggcc tacatgttgc ggaagagatgttgc ttttgcgttgc gcaatgttgc 540
gcatatttgc agttcgatgc gtttgcgttgc agctggcctt ttttgcgttgc attcagactt 600
ttgttttgc gggccgttgc gggccatttttgc gggccatttttgc 642

<210> 107
<211> 362
<212> DNA
<213> *Gossypium* sp.

<400> 107

ccccacgcgtc	cgaacattgt	ttgcacttgt	tattgccata	accaaggatc	ttccagatgt	60
agaaggagat	cgcaaatttc	aaatatcaac	attagcaaca	aagctggag	ttagaaatat	120
tgcattttctt	ggttccggac	ttctactgggt	gaattatgtt	gctgctgtgt	tggctgcaat	180
atacatgcct	caggcttca	ggcgtagttt	aatgataacct	gctcatatatct	ttttggcggt	240
ctgcttgatt	tttcagacat	gggtgttggaa	acaagcaaat	tacaaaaagg	aagcaatctc	300
ggggttctat	cgttcatat	ggaatctctt	ctatgcagag	tatgcgattt	tccccttcgt	360
gt						362

<210> 108

<211> 575

<212> DNA

<213> Lycopersicon sp.

<400> 108

cagatcaatt	ccagttcctg	ctgagtttc	tccactcaa	accagttcac	atgcaatagt	60
acgggtttt	aaatgtaaa	catggaaag	acaaaaaaag	cactattct	cttcaatgaa	120
gttgcagcgg	cagtataatc	cgcaagagca	tgttgagga	agtatctaa	gcactattgc	180
tgctgataaa	aaacttaaaag	ggagatttt	ggtgacgca	tcatctgaac	accctcttga	240
atctcaacct	tctaaaagt	cttgggactc	agttaatgat	gccgttagatg	ctttctacag	300
gttctcgcc	ccccatcca	taatagaac	agcattgagc	ataatttcag	tttctctcct	360
tgcagtgtag	aagttctctg	atttttctcc	attattttc	actgggtgt	tagaggccat	420
tgttgcgtcc	ctattcatga	acatttacat	agttggttt	aaccaggtgt	ctgacatcga	480
aatagacaag	gttacacaagc	catatcttcc	atggcatca	gggaaatact	ctgtacaaac	540
tggagtgtatt	gttgtgtcgt	cttttgcatt	tttga			575

<210> 109

<211> 1663

<212> DNA

<213> *Arabidopsis* sp.

<400> 109

aacacccaaac	acacaatttc	acattctttt	gcataattct	tcttcttctt	ccattatgga	60
gatacgaggc	ttgattgtt	ctatgaaccc	taatttatct	tcctttaggc	tctctcgccc	120
tgtatctct	ctcaactcgct	cactagtcc	gttccgatcg	actaaactag	ttccccgctc	180
catttctagg	gggatcccg	cgatctccac	cccgaaatagt	gaaactgaca	agatctccgt	240
taaaccttgtt	tacgtccccga	cgtctccaa	tcgcgaactc	cggactcctc	acagtggata	300
ccatttcgtat	ggAACACCTC	ggaagtctt	cgagggatgg	tggatccggg	tttccatccc	360
agagaagagg	gagagttttt	gttttatgt	ttctgtggag	aatcctgcat	ttcggcagag	420
tttgtcacca	ttggaagtgg	ctctatatgg	acctagattc	actggtgttt	gagctcagat	480
tcttggcgct	aatgataaat	atttatgcca	atacgaacaa	gactctcaca	attctgggg	540
agatcgacat	gagctagttt	tggggaaatac	ttttagtgc	gtgccaggcg	caaaggctcc	600
aaacaaggag	gttccaccag	aggaatttaa	cagaagagt	tccgaagggt	tccaagctac	660
tccattttgg	catcaaggtc	acatttgcga	tgatggcg	actgactatg	cggaaactgt	720
gaaatctgct	cgttgggagt	atagactcg	tcccgttac	ggttgggtg	atgttggggc	780
caaacagaag	tcaactgcag	gctggctgc	agctttcct	gtatggagc	ctcattggca	840
gatatgcgt	gcaggaggcc	tttccacagg	gtggatagaa	tggggcggtg	aaaggttga	900
gtttcgggt	gcaccttctt	attcagagaa	gaattggggt	ggaggctcc	caagaaaatq	960
gttttgggtc	cagtgtatq	tctttaagg	ggcaactgg	gaagttgtt	taaccgcagg	1020
tggcgggtt	aggcaattgc	ctggattgac	tgagacctat	aaaaatgt	cactggttt	1080
tgtacactat	gatggaaaaa	tgtacgagtt	tgttccttgg	aatggtgttt	ttagatggga	1140
aatqtctccc	tggggttatt	ggtatataac	tgcagagaac	aaaaaccatg	tggtggaaact	1200

agaggcaaga acaaatgaag cgggtacacc tctgcgtgct cctaccacag aagttggct 1260
agctacggct tgcaagata gttgttacgg tgaattgaag ttgcagatat ggaaacggct 1320
atatgatgga agtaaaggca aggtgatatt agagacaaag agctcaatgg cagcagtgg 1380
gataggagga ggaccgtgg tttggacatg gaaaggagat acgagcaaca cggccgagct 1440
actaaaacag gctttcagg tcccattgga tcttggaaagc gccttaggtt ttgtccctt 1500
cttcaagcca cgggtctgt aacattgtat agtgtttgt ttgttgatag agacccatgt 1560
gatgaatgaa gccttagtca tgtcattgtct agtccacta ttatgtatgt atgatttttag 1620
ttcgtcggc ccttggtaa aatgatacgg gcagatgtaa agt 1663

<210> 110
<211> 488
<212> PRT
<213> Arabidopsis sp.

<400> 110

Met Glu Ile Arg Ser Leu Ile Val Ser Met Asn Pro Asn Leu Ser Ser
1 5 10 15
Phe Glu Leu Ser Arg Pro Val Ser Pro Leu Thr Arg Ser Leu Val Pro
20 25 30
Phe Arg Ser Thr Lys Leu Val Pro Arg Ser Ile Ser Arg Val Ser Ala
35 40 45
Ser Ile Ser Thr Pro Asn Ser Glu Thr Asp Lys Ile Ser Val Lys Pro
50 55 60
Val Tyr Val Pro Thr Ser Pro Asn Arg Glu Leu Arg Thr Pro His Ser
65 70 75 80
Gly Tyr His Phe Asp Gly Thr Pro Arg Lys Phe Phe Glu Gly Trp Tyr
85 90 95
Phe Arg Val Ser Ile Pro Glu Lys Arg Glu Ser Phe Cys Phe Met Tyr
100 105 110
Ser Val Glu Asn Pro Ala Phe Arg Gln Ser Leu Ser Pro Leu Glu Val
115 120 125
Ala Leu Tyr Gly Pro Arg Phe Thr Gly Val Gly Ala Gln Ile Leu Gly
130 135 140
Ala Asn Asp Lys Tyr Leu Cys Gln Tyr Glu Gln Asp Ser His Asn Phe
145 150 155 160
Trp Gly Asp Arg His Glu Leu Val Leu Gly Asn Thr Phe Ser Ala Val
165 170 175
Pro Gly Ala Lys Ala Pro Asn Lys Glu Val Pro Pro Glu Glu Phe Asn
180 185 190
Arg Arg Val Ser Glu Gly Phe Gln Ala Thr Pro Phe Trp His Gln Gly
195 200 205
His Ile Cys Asp Asp Gly Arg Thr Asp Tyr Ala Glu Thr Val Lys Ser
210 215 220
Ala Arg Trp Glu Tyr Ser Thr Arg Pro Val Tyr Gly Trp Gly Asp Val
225 230 235 240

Gly Ala Lys Gln Lys Ser Thr Ala Gly Trp Pro Ala Ala Phe Pro Val
 245 250 255
 Phe Glu Pro His Trp Gln Ile Cys Met Ala Gly Gly Leu Ser Thr Gly
 260 265 270
 Trp Ile Glu Trp Gly Gly Glu Arg Phe Glu Phe Arg Asp Ala Pro Ser
 275 280 285
 Tyr Ser Glu Lys Asn Trp Gly Gly Phe Pro Arg Lys Trp Phe Trp
 290 295 300
 Val Gln Cys Asn Val Phe Glu Gly Ala Thr Gly Glu Val Ala Leu Thr
 305 310 315 320
 Ala Gly Gly Leu Arg Gln Leu Pro Gly Leu Thr Glu Thr Tyr Glu
 325 330 335
 Asn Ala Ala Leu Val Cys Val His Tyr Asp Gly Lys Met Tyr Glu Phe
 340 345 350
 Val Pro Trp Asn Gly Val Val Arg Trp Glu Met Ser Pro Trp Gly Tyr
 355 360 365
 Trp Tyr Ile Thr Ala Glu Asn Glu Asn His Val Val Glu Leu Glu Ala
 370 375 380
 Arg Thr Asn Glu Ala Gly Thr Pro Leu Arg Ala Pro Thr Thr Glu Val
 385 390 395 400
 Gly Leu Ala Thr Ala Cys Arg Asp Ser Cys Tyr Gly Glu Leu Lys Leu
 405 410 415
 Gln Ile Trp Glu Arg Leu Tyr Asp Gly Ser Lys Gly Lys Val Ile Leu
 420 425 430
 Glu Thr Lys Ser Ser Met Ala Ala Val Glu Ile Gly Gly Pro Trp
 435 440 445
 Phe Gly Thr Trp Lys Gly Asp Thr Ser Asn Thr Pro Glu Leu Leu Lys
 450 455 460
 Gln Ala Leu Gln Val Pro Leu Asp Leu Glu Ser Ala Leu Gly Leu Val
 465 470 475 480
 Pro Phe Phe Lys Pro Pro Gly Leu
 485

<210> 111
 <211> 246
 <212> PRT
 <213> Arabidopsis sp.

<400> 111
 Met Ser Ser Ser Asn Ala Cys Ala Ser Pro Ser Pro Phe Pro Ala Val
 1 5 10 15
 Thr Lys Leu His Val Asp Ser Val Thr Phe Val Pro Ser Val Lys Ser

20	25	30
Pro Ala Ser Ser Asn Pro Leu Phe Leu Gly Gly Ala Gly Val Arg Gly		
35	40	45
Leu Asp Ile Gln Gly Lys Phe Val Ile Phe Thr Val Ile Gly Val Tyr		
50	55	60
Leu Glu Gly Asn Ala Val Pro Ser Leu Ser Val Lys Trp Lys Gly Lys		
65	70	80
Thr Thr Glu Glu Leu Thr Glu Ser Ile Pro Phe Phe Arg Glu Ile Val		
85	90	95
Thr Gly Ala Phe Glu Lys Phe Ile Lys Val Thr Met Lys Leu Pro Leu		
100	105	110
Thr Gly Gln Gln Tyr Ser Glu Lys Val Thr Glu Asn Cys Val Ala Ile		
115	120	125
Trp Lys Gln Leu Gly Leu Tyr Thr Asp Cys Glu Ala Lys Ala Val Glu		
130	135	140
Lys Phe Leu Glu Ile Phe Lys Glu Glu Thr Phe Pro Pro Gly Ser Ser		
145	150	155
Ile Leu Phe Ala Leu Ser Pro Thr Gly Ser Leu Thr Val Ala Phe Ser		
165	170	175
Lys Asp Asp Ser Ile Pro Glu Thr Gly Ile Ala Val Ile Glu Asn Lys		
180	185	190
Leu Leu Ala Glu Ala Val Leu Glu Ser Ile Ile Gly Lys Asn Gly Val		
195	200	205
Ser Pro Gly Thr Arg Leu Ser Val Ala Glu Arg Leu Ser Gln Leu Met		
210	215	220
Met Lys Asn Lys Asp Glu Lys Glu Val Ser Asp His Ser Leu Glu Glu		
225	230	235
Lys Leu Ala Lys Glu Asn		
245		

<210> 112
 <211> 3115
 <212> DNA
 <213> Arabidopsis sp.

<400> 112
 cacacgttct cgtccttttc ttcttcctct ctgcattctt cacagagttt gtcaccacca 60
 acaccaaaca cacaatttca cattcttttg catatttctt cttcttccttc cattatggag 120
 atacggagct tgattgttcc tatgaaccct aatttatctt cctttgagct ctctcgccct 180
 gtatctcctc tcactcgctc actagttccg ttccgatcga ctaaaactagt tccccgctcc 240
 atttcttaggg tttcggcgtc gatctccacc ccgaataagt aaactgacaa gatctccgtt 300

aaacctgttt acgtcccgac gtctcccaat cgcgactcc ggactcctca cagtggtaa 360
attgatccat tccattccat ttctcttctc ttgtttgtt tattaagctc caatttcagt 420
ttcgtctttt aatttatatg ttcttcttac gatcagtggg actaaaaaaa ttgctcctt 480
aatgcttca gtatgtttt agtattacaa agttgtaaaga ttttattttt attcatttg 540
tggctcacca ttgcacgact actttgaat tttagttttt gaaaaatgca attaacatc 600
agagagttt ttttttatg gttgataact tattgttaa ctttgaaaa atgcagatac 660
catttcgatg gaacacctcg gaagttctc gagggatggt atttcagggt ttccatccca 720
gagaagaggg agagttttt ttttatgtat tctgtggaga atcctgcatt tcggcagagt 780
ttgtaccat tgaaagtggc tctatatgga cctagattca ctgggtttgg agctcagatt 840
cttggcgcta atgataaata tttatgccaa tacgaacaag actctcacaa tttctggga 900
ggtaactcct tgacccttaa aatgctgtgt catgacaata agaaatcata tctgagtctt 960
ttctctactt ctagtactaa tgttcggtt tttttttttt gatctaagtc ttatctgaat 1020
tttggtacat tttggttctg gtgcttctc aacatgaatt tttttttttt actttaaaga 1080
ttgcttacact aaagtttttta ctcatgcata gatcgacatg agctagttt gggaaact 1140
tttagtgctg tgccaggcgc aaaggctcca aacaaggagg ttccaccaga gtttctca 1200
cctcccttgt tggttacttt gttatctgtt aaatagttt ccaattgtat ccggatagtg 1260
ttctacttct cttttagaa aatctcaagt tttttttttt cttgttattc tcttggatgt 1320
tgattttagaa agcatgtcgt tttttttttt gatctaaca gaagagtgtc cgaagggttc 1380
caagctactc cattttggca tcaaggtcac atttgcgtatg atggccggta attatatgtat 1440
tctatgcaca acaagaattc actatattat aaatattggat attgagttt tttttttttt 1500
aatttctgtg tttttttttt acttgcattt tttttttttt actgactatg cggaaactgt 1560
gaaatctgct cgttggagt atagactcg tcccgtttac gttttttttt atgttgggc 1620
caaacagaag tcaactgcag gctggcctgc agctttcct gtatttgcgt ctcattggca 1680
gatatgcattt gcaggaggcc tttccacagg tttttttttt gttttttttt cttttttttt 1740
ataaaatagac gttttttttt acttgccttag tactaacaga aaatataagaa agaaaccacc 1800
ctctttctat cagcagaaac tttttttttt tttttttttt tttttttttt atttgcagg 1860
tggatagaat ggggcgggtga aaggtttgag tttttttttt caccccttta ttcagagaag 1920
aattttttttt gaggcttccc aagaaaatgg tttttttttt aacatttcat cttttttttt 1980
catttctgt tgcagacttt agttttttt tttttttttt tttttttttt tttttttttt 2040
acttgcattt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100

ggggcaactg gagaagttgc tttaaccgca ggtggcgggt tgaggcaatt gcctggattg 2160
actgagacct atgaaaatgc tgcactggta tgcacttata agatcttctt aagcaatgac 2220
agttagtatt agaaggcaga tagtttacaa aagctctggg cccttgtaaa tctgcagggtt 2280
tgtgtacact atgatggaaa aatgtacgag tttgttcctt ggaatgggtgt tgttagatgg 2340
gaaatgtctc cctggggta ttggtatata actgcagaga acgaaaaacca tgtggtaaat 2400
ttgtttact agtttcattc agtttactt ttgacatcat atcattccct tatggctaga 2460
ttccaacacc ccatgaatgt ctgtgacag gtggactag aggcaagaac aaatgaagcg 2520
ggtacaccc tcgtgctcc taccacagaa gttggctag ctacggctt cagagatgt 2580
tgttacggtg aattgaagtt gcagatatgg gaacggctat atgatggaa taaaggcaag 2640
gtatgtatgc taatgtgatc caatccctgt agttaaaagt cttacaat cctaaggcag 2700
tcaaagaaga ttatgaacgt ttgttatggt taacaatgat gcaggtgata ttagagacaa 2760
agagctcaat ggcagcagtg gagataggag gaggaccgtg gtttggaca tggaaaggag 2820
atacgagcaa cacccccgag ctactaaaac aggctttca ggtccattt gatcttgaaa 2880
gcgccttagg tttggccct ttcttcaagc caccgggtct gtaacattga tgagtgttt 2940
gtttgttcat agagacccat gtgatgaatg aagccttagt catgtcattt ctagcttcac 3000
tattatgtat gtatgattt agttcggtcg gtcctgtgg taaatgatac gggccagtgt 3060
aaagtctagt tcaataaaaag cttgagtcg cataatttca atttcaaatt gcac 3115

<210> 113
<211> 536
<212> DNA
<213> Arabidopsis sp.

<400> 113

caccccaaac atcacaattt cacattcttt tgcatttttc ttcttcttcc tccattatgg 60
agataacggag ctgttattttt tctatgaacc ctaattttac ttccctttagt ctctctcgcc 120
ctgtatctcc tctcaacttcg tcacttagttc cggtccgatc gactaaacta gttccccgt 180
ccatcttag ggtttcggcg tcgatctcca ccccgaaatag tgaaactgac aagatctccg 240
ttaaattctgt ttacgtcccg acgtctccca atcgcgaact ccggactcct cacagtggat 300
accatttcga tggAACACCT cggaagttct tcgagggatg gtatttcagg gtttccatcc 360
cagagaagag ggagagttt tggttatgt attctgtgaa gaatcctgca ttccggcaga 420
gtttgttacc atttggaaatgt gctctatatg gaccttagatt cactgggtt ggagctcaga 480
ttcttggcgcc taatgataaa tatttgc aatacgaaca agactctcac aatttc 536

<210> 114
<211> 411
<212> PRT
<213> Arabidopsis sp.

<220>
<223> Peptide PIR: T04448 shown in Figure 31

<400> 114

Pro Glu Lys Arg Glu Ser Phe Cys Phe Met Tyr Ser Val Glu Asn Pro
1 5 10 15

Ala Phe Arg Gln Ser Leu Ser Pro Leu Glu Val Ala Leu Tyr Gly Pro
20 25 30

Arg Phe Thr Gly Val Gly Ala Gln Ile Leu Gly Ala Asn Asp Lys Tyr
35 40 45

Leu Cys Gln Tyr Glu Gln Asp Ser His Asn Phe Trp Gly Asp Arg His
50 55 60

Glu Leu Val Leu Gly Asn Thr Phe Ser Ala Val Pro Gly Ala Lys Ala
65 70 75 80

Pro Asn Lys Glu Val Pro Pro Glu Glu Phe Asn Arg Arg Val Ser Glu
85 90 95

Gly Phe Gln Ala Thr Pro Phe Trp His Gln Gly His Ile Cys Asp Asp
100 105 110

Gly Arg Thr Asp Tyr Ala Glu Thr Val Lys Ser Ala Arg Trp Glu Tyr
115 120 125

Ser Thr Arg Pro Val Tyr Gly Trp Gly Asp Val Gly Ala Lys Gln Lys
130 135 140

Ser Thr Ala Gly Trp Pro Ala Ala Phe Pro Val Phe Glu Pro His Trp
145 150 155 160

Gln Ile Cys Met Ala Gly Gly Leu Ser Thr Gly Trp Ile Glu Trp Gly
165 170 175

Gly Glu Arg Phe Glu Phe Arg Asp Ala Pro Ser Tyr Ser Glu Lys Asn
180 185 190

Trp Gly Gly Phe Pro Arg Lys Trp Phe Trp Val Gln Cys Asn Val
195 200 205

Phe Glu Gly Ala Thr Gly Glu Val Ala Leu Thr Ala Gly Gly Gly Leu
210 215 220

Arg Gln Leu Pro Gly Leu Thr Glu Thr Tyr Glu Asn Ala Ala Leu Val
225 230 235 240

Cys Val His Tyr Asp Gly Lys Met Tyr Glu Phe Val Pro Trp Asn Gly
245 250 255

Val Val Arg Trp Glu Met Ser Pro Trp Gly Tyr Trp Tyr Ile Thr Ala
260 265 270

Glu Asn Glu Asn His Val Val Glu Leu Glu Ala Arg Thr Asn Glu Ala
275 280 285

Gly Thr Pro Leu Arg Ala Pro Thr Thr Glu Val Gly Leu Ala Thr Ala
290 295 300

Cys Arg Asp Ser Cys Tyr Gly Glu Leu Lys Leu Gln Ile Trp Glu Arg
305 310 315 320

Leu Tyr Asp Gly Ser Lys Gly Lys Leu Lys Val Leu Thr Asn Pro Lys
325 330 335
Ala Val Lys Glu Asp Tyr Glu Arg Leu Leu Trp Leu Thr Met Met Gln
340 345 350
Val Ile Leu Glu Thr Lys Ser Ser Met Ala Ala Val Glu Ile Gly Gly
355 360 365
Gly Pro Trp Phe Gly Thr Trp Lys Gly Asp Thr Ser Asn Thr Pro Glu
370 375 380
Leu Leu Lys Gln Ala Leu Gln Val Pro Leu Asp Leu Glu Ser Ala Leu
385 390 395 400
Gly Leu Val Pro Phe Phe Lys Pro Pro Gly Leu
405 410