Proposition: Let $A_1, A_2, ..., A_n$ be sets in universe U, where $n \geq 2$. Then $S_n : \overline{A_1 \cup A_2 \cup ... \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}$.

Proof. (Strong induction).

Basis step. Suppose n = 2. Observe that

$$\overline{A_1 \cup A_2} = \{x : x \in U \land x \notin (A_1 \cup A_2)\} \tag{Def. of set complement} \tag{1}$$

$$= \{x : x \in U \land \neg (x \in (A_1 \cup A_2))\} \tag{Def. of set union} \tag{3}$$

$$= \{x : x \in U \land \neg (x \in A_1 \lor x \in A_2)\} \tag{DeMorgan's law} \tag{4}$$

$$= \{x : x \in U \land (x \notin A_1 \land x \notin A_2)\} \tag{Destributive property} \tag{5}$$

$$= \{x : x \in U \land x \notin A_1\} \cap \{x : x \in U \land x \notin A_2\} \tag{Def. of set intersection} \tag{6}$$

$$= \overline{A_1} \cap \overline{A_2}. \tag{7}$$

Thus S_2 .

Inductive step. Suppose S_m for all $m, n \in \mathbb{N}$ where $2 \leq m \leq n$.

We now show S_m implies S_{n+1} . Observe that

$$\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n} \cap \overline{A_{n+1}} = (\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}) \cap \overline{A_{n+1}}$$

$$= (\overline{A_1 \cup A_2 \cup \dots \cup A_n}) \cap (\overline{A_{n+1}})$$
(Inductive hypothesis) (9)
$$= \overline{A_1 \cup A_2 \cup \dots \cup A_n \cup A_{n+1}}.$$
(10)

Thus S_{n+1} .

It follows by mathematical induction that S_n for all sets $A_1, A_2, ..., A_n$ in universe U, where $n \geq 2$.