Smart Vehicle Parking System with Arduino and Ultrasonic Sensor

1. Aim

To design and implement an automated parking system using an ultrasonic sensor and an Arduino Uno board to detect vehicles and indicate the availability of parking spaces.

2. Components Required

- Arduino Uno (Microcontroller)
- Ultrasonic Sensor (HC-SR04) (For distance measurement)
- LEDs (Red & Green) (For parking status indication)
- Buzzer (For alerting when space is occupied)
- Resistors & Jumper Wires (For connections)
- Breadboard (For prototyping)

3. Circuit Diagram & Working Principle

3.1 Circuit Connections

- VCC of HC-SR04
- GND of HC-SR04
- Trigger Pin of HC-SR04
- Echo Pin of HC-SR04
- Red LED
- Green LED
- Blue LED
- Buzzer

- → 5V on Power Extension Module
- → GND on Arduino
- → Digital Pin 9 on Arduino
- → Digital Pin 10 on Arduino
- → Digital Pin 3 (Indicates parking occupied)
- → Digital Pin 4 (Indicates parking available)
- → Digital Pin 5 (Indicates parking available)
- \rightarrow Digital Pin 6

3.2 Working

The ultrasonic sensor continuously measures the distance between the sensor and any approaching vehicle. If a vehicle is detected (distance <10 cm), the red LED turns ON, and the buzzer sounds

an alert, indicating the parking space is occupied. If no vehicle is detected (distance > 10 cm), the green LED turns ON, indicating the parking space is available.

4. Arduino Code

```
#define TRIG PIN 9
#define ECHO PIN 10
#define BUZZER PIN 6
#define GREEN LED 4
#define BLUE LED 5
#define RED LED 3
void setup() {
  Serial.begin(9600);
pinMode (TRIG PIN, OUTPUT);
pinMode(ECHO PIN, INPUT);
pinMode(BUZZER PIN, OUTPUT);
pinMode(GREEN_LED, OUTPUT);
pinMode(BLUE LED, OUTPUT);
pinMode (RED LED, OUTPUT);
void loop() {
  long duration;
  float distance;
  // Trigger the ultrasonic pulse
digitalWrite(TRIG PIN, LOW);
delayMicroseconds(2);
digitalWrite(TRIG PIN, HIGH);
delayMicroseconds (10);
digitalWrite(TRIG PIN, LOW);
  // Read the Echo pin
  duration = pulseIn(ECHO PIN, HIGH);
  distance = duration * 0.034 / 2; // Convert time to distance (cm)
  Serial.print("Distance: ");
  Serial.print(distance);
  Serial.println(" cm");
  // Distance-based alert system
  if (distance > 10) { // Safe Distance (No alert)
digitalWrite(GREEN LED, HIGH);
digitalWrite(BLUE LED, LOW);
digitalWrite(RED LED, LOW);
noTone(BUZZER PIN); // Stop the buzzer completely
  else if (distance <= 10 && distance > 5) { // Caution
digitalWrite(GREEN LED, LOW);
digitalWrite(BLUE LED, HIGH);
digitalWrite(RED LED, LOW);
```

```
tone(BUZZER_PIN, 1000, 200); // Short beep
delay(500);
noTone(BUZZER_PIN); // Ensure buzzer turns off after the beep
} else if (distance <= 10) { // Danger - Stop
digitalWrite(GREEN_LED, LOW);
digitalWrite(BLUE_LED, LOW);
digitalWrite(RED_LED, HIGH);
tone(BUZZER_PIN, 1000); // Continuous beep
}
delay(200);
}</pre>
```

5. Observations

Test Condition	Ultrasonic Sensor Reading	LED Status	Buzzer Status
Safe Distance	Distance > 10 cm	Green LED ON	OFF
Caution	Distance<=10 && >5	Blue LED ON	BEEP
Danger-Stop	Distance < 10 cm	Red LED ON	ON

- The ultrasonic sensor accurately detects the presence of a vehicle in the parking space.
- The red LED and buzzer activate when a vehicle is present, and the green LED turns ON when the space is available.
- The system effectively updates in real-time based on sensor readings.

9. Conclusion

The Arduino-based parking system using an ultrasonic sensor successfully detects vehicles and indicates parking space availability through LEDs and a buzzer. This project can be expanded for multiple parking slots and integrated with IoT-based cloud monitoring for smart city applications.