

Function with more than one minimum

Gradient decent algorithm

Linear regression model Cost function $f_{w,b}(x) = wx + b$ $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$ Gradient descent algorithm repeat until convergence { $w = w - \alpha \frac{\partial}{\partial w} J(w, b)$ $b = b - \alpha \frac{\partial}{\partial b} J(w, b)$

Derivative terms

$$\frac{\partial}{\partial w}J(w,b)=\frac{1}{m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})x^{(i)}$$

$$\frac{\partial}{\partial b}J(w,b) = \frac{1}{m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})$$

Gradient decent algorithm

```
repeat until convergence {
w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) \quad x^{(i)}b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})
```


Gradient descent

Batch

Mini-batch

X	У
1.0	2.0
2.0	4.1
3.0	6.0
4.0	8.1
5.0	10.0

Example

Dataset: Single Variable (x, y)

The relationship is approximately y=2x, but with slight noise to simulate realworld data.