We can already see this may be possible by examining the case k = 1. Consider the dataset generated as in (1) in the noiseless case $\eta = 0$, i.e.:

$$\mathbf{z}_i = \mathbf{A}\mathbf{x}_i, \quad i = 1, \dots, N, \tag{1}$$

with the additional constraint that $\|\mathbf{A}\mathbf{e}_i\|_2 = 1$ for all $i \in [m]$ and $\|\mathbf{A}\|_2 \leq 1$. Consider the following "convexified" version of Prob. ??:

Problem 1. Find a matrix **B** with $\|\mathbf{B}\|_2 \leq 1$ and vectors $\overline{\mathbf{x}}_1, \dots, \overline{\mathbf{x}}_N$ solving:

$$\min \sum_{i=1}^{N} \|\overline{\mathbf{x}}_i\|_1 \quad subject \ to \ \mathbf{z}_i = \mathbf{B}\overline{\mathbf{x}}_i, \ for \ all \ i.$$
 (2)

Proposition 1. Fix c > 1. If $\mathbf{x}_i = c\mathbf{e}_i$ for i = 1, ..., m, then every solution to Prob. 1 satisfies $\mathbf{A} = \mathbf{BP}$ and $\mathbf{x}_i = \mathbf{P}^{\top} \overline{\mathbf{x}}_i$ for some $m \times m$ permutation matrix \mathbf{P} .

Proof. For all $i \in [m]$, since $\mathbf{B}\overline{\mathbf{x}}_i = c\mathbf{A}\mathbf{e}_i$, we have:

$$c = c \|\mathbf{A}\mathbf{e}_i\|_2 = \|\mathbf{B}\mathbf{x}_i\|_2 \le \|\mathbf{B}\|_2 \|\overline{\mathbf{x}}_i\|_2 \le \|\overline{\mathbf{x}}_i\|_2 \le \|\overline{\mathbf{x}}_i\|_1. \tag{3}$$

Since **A** and $c\mathbf{e}_i$ (i = 1, ..., m) solve (2), we must have:

$$\sum_{i=1}^{m} \|\overline{\mathbf{x}}_i\|_1 \le \sum_{i=1}^{m} \|c\mathbf{e}_i\|_1 = mc. \tag{4}$$

thus by (3) it must be the case that $\|\overline{\mathbf{x}}_i\|_2 = \|\overline{\mathbf{x}}_i\|_1 = c$. Now, writing $\overline{\mathbf{x}}_i = \sum_{j=1}^m \overline{c}_j \mathbf{e}_j$, we have:

$$\sum_{j=1}^{m} \overline{c}_{j}^{2} = \left(\sum_{j=1}^{m} |\overline{c}_{j}|\right)^{2} = \sum_{j=1}^{m} \overline{c}_{j}^{2} + \sum_{j=1}^{m} |\overline{c}_{j}| \sum_{\ell \neq j} |\overline{c}_{\ell}|$$
 (5)

We therefore have $\bar{c}_j \sum_{\ell \neq j} |\bar{c}_\ell| = 0$ for all $j \in [m]$. Since $\overline{\mathbf{x}}_i \neq 0$, we must have $\bar{c}_j \neq 0$ for at least some $j \in [m]$, in which case $c_\ell = 0$ for all $\ell \neq j$, and we can be sure $\overline{\mathbf{x}}_i$ is a 1-sparse vector. Since this applies for all $i \in [m]$, we may appeal to Thm. ?? (with k = 1).