AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound of formula (I-A)

$$R^{1}$$
 A
 R^{4}
 A
 R^{6A}
 R^{5}
 N
 S
 Y_{1}^{1}
 Y_{2}^{4}
 Y_{3}^{2}
 Y_{4}^{7}
 Y_{7}^{3}
 Y_{7}^{7}
 Y_{1}^{4}
 Y_{2}^{4}
 Y_{3}^{2}
 Y_{4}^{7}
 Y_{5}^{7}
 Y_{1}^{7}
 Y_{1}^{4}
 Y_{2}^{4}
 Y_{3}^{7}
 Y_{4}^{7}
 Y_{5}^{7}
 Y_{1}^{7}
 Y_{2}^{7}
 Y_{3}^{7}
 Y_{4}^{7}
 Y_{5}^{7}
 Y_{1}^{7}
 Y_{2}^{7}
 Y_{3}^{7}
 Y_{4}^{7}
 Y_{5}^{7}
 Y_{5}^{7}

wherein

A represents a phenyl ring,

 R^1 represents hydrogen, halogen, nitro, eyano, or C_1 - C_6 -alkyl, hydroxy or C_1 - C_6 -alkoxy, wherein C_1 - C_6 -alkyl-and C_1 - C_6 -alkoxy-can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C_1 - C_4 -alkoxy,

 R^4

R² represents cyano,

R³ represents hydrogen,

represents C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₆-C₁₀-arylaminocarbonyl, heteroarylcarbonyl, heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonyl-amino, amino, mono- and di-C₁-C₄-alkylamino, heteroaryl, heterocyclyl, tri-(C₁-C₆-alkyl)-silyl and cyano,

represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₂-C₆-alkenoxy, C₁-C₆-alkylthio, amino, mono- and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and the radical -O-C₁-C₄-alkyl-O-C₁-C₄-alkyl,

R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl, C₃-C₈-cycloalkylcarbonyl, C₄-C₆-alkylcarbonyl, mono- or di-C₄-C₄-alkylaminocarbonyl, wherein C₁-C₆-alkylcarbonyl,

carbonyl, C_1 - C_6 -alkoxycarbonyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C_3 - C_8 -cycloalkyl, hydroxy, C_1 - C_4 -alkoxy, amino, mono- and di- C_1 - C_4 -alkylamino,

R^{6B}—represents C₁-C₆-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino, C₁-C₄-alkoxyearbonyl, hydroxyearbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, wherein heteroaryl and heterocyclyl can be further substituted with one to two identical or different radicals selected from the group consisting of C₁-C₄-alkyl, hydroxy and oxo,

 R^7 represents halogen, nitro, eyano, or C_1 - C_6 -alkyl, hydroxy-or C_4 - C_6 -alkoxy, wherein C_1 - C_6 -alkyl and C_4 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C_1 - C_4 -alkoxy,

and

Y¹, Y², Y³ and Y⁴ each represent CH.

- 2. (Currently Amended) The compound of formula (I-A) according to Claim 1, wherein
 - A represents a phenyl, ring,
 - R^1 represents hydrogen, halogen, nitro, eyano, C_1 - C_6 -alkyl, hydroxy or C_1 - C_6 -alkoxy, wherein C_1 - C_6 -alkyl and C_4 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C_1 - C_4 -alkoxy,
 - R² represents cyano,
 - R³ represents hydrogen,
 - represents C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di- C_1 - C_4 -alkylaminocarbonyl, C_6 - C_{10} -arylaminocarbonyl, heteroarylcarbonyl, heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C_3 - C_8 -cycloalkyl, hydroxy, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl, C_1 - C_4 -alkylcarbonylamino, amino, mono- and di- C_1 - C_4 -alkylamino, heteroaryl, heterocyclyl and tri- $(C_1$ - C_6 -alkyl)-silyl,

- represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₂-C₆-alkenoxy, C₄-C₆-alkylthio, amino, mono and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₄-C₆-alkoxycarbonyl and the radical O-C₄-C₄-alkyl-O-C₄-C₄-alkyl,
- R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl, C₃-C₈-cycloalkylcarbonyl, C₄-C₆-alkoxycarbonyl, mono- or di-C₄-C₄-alkylaminocarbonyl, wherein C₁-C₆-alkylcarbonyl, C₄-C₆-alkoxycarbonyl, mono- and di-C₄-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino,
- R^{6B}—represents C₁-C₆-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino, aryl, heteroaryl and heterocyclyl,
- R^7 represents halogen, nitro, eyano, or C_1 - C_6 -alkyl, hydroxy or C_4 - C_6 -alkoxy, wherein C_1 - C_6 -alkyl and C_4 - C_6 -alkoxy can be further substituted with one to three

identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

Y¹, Y², Y³ and Y⁴ independently from each other-represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.

- 3. (Currently Amended) The compound of formula (I-A) according to Claim 1 , wherein
 - A represents a phenyl ring,
 - R¹ represents hydrogen, fluoro, chloro, bromo, nitro, cyano, methyl, ethyl, trifluoromethyl or trifluoromethoxy,
 - R² represents cyano,
 - R³ represents hydrogen,
 - R^4 represents C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di- C_1 - C_4 -alkylaminocarbonyl or cyano, wherein C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl and mono- C_1 - C_4 -alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group

consisting of C_3 - C_6 -cycloalkyl, hydroxy, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, amino, mono- or di- C_1 - C_4 -alkylamino, heteroaryl and heterocyclyl,

- R⁵ represents methyl or ethyl,
- R^{6A} represents hydrogen, C_1 - C_6 -alkylcarbonyl or C_3 - C_6 -cycloalkylcarbonyl, wherein C_1 - C_6 -alkylcarbonyl can be substituted with a radical selected from the group consisting of C_3 - C_6 -cycloalkyl, hydroxy, C_1 - C_4 -alkoxy, amino, mono- and di- C_1 - C_4 -alkylamino,
- R^{6B}—represents C₁-C₆-alkyl, which can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono and di-C₁-C₄-alkylamino, phenyl, heteroaryl and heterocyclyl,
- R⁷ represents halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, methyl or ethyl,

and

 Y^1 , Y^2 , Y^3 and Y^4 each represent CH.

4. (Currently Amended) The compound of formula (I-A) according to Claim 1, wherein

A represents a phenyl ring,

R¹ and R³ each represent hydrogen,

R² represents cyano,

 R^4 represents C_1 - C_4 -alkylcarbonyl or C_1 - C_4 -alkoxycarbonyl, wherein C_1 - C_4 -alkoxycarbonyl can be substituted with a radical selected from the group consisting of hydroxy, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, mono- and di- C_1 - C_4 -alkylamino, heteroaryl and heterocyclyl,

R⁵ represents methyl,

 R^{6A} represents hydrogen, C_1 - C_6 -alkylcarbonyl or C_3 - C_6 -cycloalkylcarbonyl,

R^{6B}—represents C₁-C₄-alkyl, which can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, di-C₁-C₄-alkylamino, phenyl, pyridyl, imidazolyl, pyrrolidino and morpholino,

R⁷ represents trifluoromethyl or nitro,

and

 Y^1 , Y^2 , Y^3 and Y^4 each represent CH.

- 5. (Canceled)
- 6. (Previously Presented) The compound of general formula (I-A) according to claim 1, wherein R^1 is hydrogen.
- 7. (Canceled)
- 8. (Canceled)
- 9. (Previously Presented) The compound of formula (I-A) according to claim 1, wherein R^4 is C_1 - C_4 -alkoxycarbonyl, which can be substituted with dimethylamino, diethylamino, Nethylamino, pyrrolidino or piperidino, or wherein R^4 is C_1 - C_4 -alkylcarbonyl.
- 10. (Previously Presented) The compound of formula (I-A) according to claim 1, wherein R⁵ is methyl.
- 11. (Previously Presented) The compound of formula (I-A) according to claim 1, wherein R⁷ is trifluoromethyl or nitro.

- 12. (Previously Presented) The compound of formula (I-A) according to claim 1, wherein R^{6A} is hydrogen.
- 13. (Canceled)
- 14. (Currently Amended) A compound of formula (I-C)

$$R^{1}$$
 Z
 R^{4}
 NH
 $H_{3}C$
 N
 S
 CF_{3}
 $(I-C),$

wherein

- Z represents CH or N, and R^1 , R^3 and R^4 have the meaning indicated in claim 1.
- 15. (Canceled)
- 16. (Canceled)

17. (Previously Presented) A composition containing at least one compound of formula (I-A) or (I-C), as defined in Claims 1 or 14, and a pharmacologically acceptable diluent.

Claims 18-29. (Canceled)