Bayesian Statistics

Markov Chain Monte Carlo (MCMC) Methods

Brani Vidakovic

Professor

School of Industrial and Systems Engineering

Before We Begin...

In this unit:

- Background + History
- Metropolis Algorithm
- Gibbs Sampler

Markov Chain Monte Carlo

 $X_0, X_1, X_2, \dots, X_{n-1}, X_n, X_{n+1}, \dots$ forms a Markov Chain if

•
$$P(X_{n+1} \in A | X_0, X_1, ..., X_n) = P(X_{n+1} \in A | X_n)$$

past future

 $X_{n-2} = X_{n-1} = X_n = X_{n+1} = X_{n+2}$

- Given X_n , future (events defined on $X_{n+1}, X_{n+2}, ...$) is independent of past (events defined on..., X_{n-2}, X_{n-1})
- $P(X_{n+1} \in A | X_n) = Q(A | X_n)$ (transition kernel)
- $Q(A|X_n = x) = \int_A q(x,y)dy = \int_A q(y|x)dy$
- Π is invariant distribution if

$$\Pi(A) = \int Q(A|x)\Pi(dx)$$

• π is density for Π , it is stationary if

$$q(x|y)\pi(y) = q(y|x)\pi(x)$$

(detailed balance equation)

• If
$$Q^n(A|x) = P(X_n \in A|X_0 = x)$$
,

$$\lim_{n \to \infty} Q^n(A|x) = \Pi(A)$$

Π is equilibrium distribution

- Construct Markov Chain so that the equilibrium distribution corresponds to the posterior
- \rightarrow Initial condition $X_0 = x$ is "forgotten" and when n is large, X_n is a random variable sampled from the posterior

Monte Carlo

- Term coined by Metropolis for approximation methodology based on sampling
- $\mu_{\pi}(g) = \int g(\theta)\pi(\theta)d\theta$?
- If we can sample $\theta_1, \theta_2, \dots, \theta_n^{iid} \pi$ then

$$\mu_{\pi}(g) \approx \frac{1}{n} \sum_{i=1}^{n} g(\theta_i)$$
 [SLLN]

• Markovian dependence in $\theta_1, \dots, \theta_n$

$$\mu_{\pi}(g) \approx \frac{1}{n} \sum_{i=1}^{n} g(\theta_i)$$
 [ergodic – type theorems]

Metropolis algorithm – Gibbs Sampling

Some History

- Metropolis, Rosenbluth, Rosenbluth, Teller "Equation of state calculations by fast computing machines", Journal of Chemical Physics, 21, 6, 1953
- Hastings (1970) in Biometrika paper considers continuous case.
- Besag (1974) Hammersley-Clifford theorem, start of Gibbs sampling
- Geman & Geman (1984)
- Tanner and Wong (1987)
- Gelfand and Smith (1990)!
- Casella and George (1992)

Metropolis Algorithm

Detailed balance equation

$$q(y|x)f(x) = q(x|y)f(y)$$

• π is target, q is kernel density of MC

Call q admissible if support $(\pi_x) \subset \bigcup_x$ support $q(\cdot | x)$

In general:
$$q(y|x)\pi(x) \neq q(x|y)\pi(y)$$

(say >, wlog)
 $q(y|x)\rho(x,y)\pi(x) = q(x|y)\pi(y) \times 1$
 $\Rightarrow \rho(x,y) = \frac{q(x|y)\pi(y)}{q(y|x)\pi(x)} \wedge 1$

• Since $\rho(x, y)$ depends on $\frac{\pi(y)}{\pi(x)}$, when target is the posterior, normalizing marginal distributions cancel!

STEP 1. Start with arbitrary x_0 from the support of target π

STEP 2. At stage n, generate proposal y from $q(y|x_n)$

STEP 3. $x_{n+1} = y$, with prob. $\rho(x_n, y)$ $x_{n+1} = x_n$, with prob. $1 - \rho(x_n, y)$ (Generate $U \sim U(0,1)$ and accept proposal y if $U \leq \rho(x_n, y)$)

STEP 4. Increase n and go to STEP 2.

$$\rho(x,y) = \frac{q(x|y)\pi(y)}{q(y|x)\pi(x)} \wedge 1$$

How to select q?

Any admissible choice would do! But...

• If q(x|y) = q(y|x), i.e. if the kernel density is symmetric, then

$$\rho(x,y) = \frac{\pi(y)}{\pi(x)} \wedge 1$$

- If q(x|y) = q(y|x) = q(|x y|), the algorithm is called Metropolis random walk (original proposal by Metropolis)
- $q(y|x) \equiv q(y)$ [Free of x]

Algorithm is called **Independence Metropolis**

Example 1. Metropolis algorithm for

 $X|\theta \sim N(\theta, 1)$ and $\theta \sim Ca(0, 1)$.

 $\pi(\theta|x) \propto \frac{e^{-\frac{(x-\theta)^2}{2}}}{1+\theta^2}$; θ' is the proposal, θ is the current status

$$q(\theta'|\theta)$$
 density of N(x, τ^2): $q \propto e^{\frac{1}{2\tau^2}(\theta'-x)^2}$

Take $\tau^2 = 1$.

$$\gamma = \frac{\pi(\theta')q(\theta|\theta')}{\pi(\theta)q(\theta'|\theta)} = \frac{\frac{e^{-\frac{(x-\theta')^2}{2}}}{1+\theta'^2}e^{-\frac{(\theta-x)^2}{2}}}{\frac{e^{-\frac{(x-\theta)^2}{2}}}{1+\theta^2}e^{-\frac{(\theta'-x)^2}{2}}} = \frac{1+\theta^2}{1+(\theta')^2}.$$

$$\rho = 1 \wedge \frac{1 + \theta_n^2}{1 + (\theta')^2}; \qquad \theta_{n+1} = \begin{cases} \theta' \text{ w. p. } \rho \\ \theta_n \text{ w. p. } 1 - \rho \end{cases}$$

$$X = 2$$

 $\theta_0 = 1 \Rightarrow norcaumet.m$

Result: $\delta(2) = 1.2825$

for a fixed random number-generator seed.

Example 2.

Weibull Distribution

$$T_1, T_2, \dots, T_n \sim Wei(\alpha, \eta)$$

$$f(t|\alpha,\eta) = \alpha \eta t^{\alpha-1} e^{-\eta t^{\alpha}}$$

(for $\alpha = 1$, Weibull=Exponential)

$$\pi(\alpha, \eta) \propto e^{-\alpha} \eta^{\beta - 1} e^{-\xi \eta}$$

Proposal, product of two exponentials

$$q(\alpha', \eta' | \alpha, \eta) = \frac{1}{\alpha \eta} \exp \left\{ -\frac{\alpha'}{\alpha} - \frac{\eta'}{\eta} \right\}$$

$$\alpha$$
, η old, current

$$\alpha, \eta$$
 old, current α', η' proposed

accept proposal

with probability
$$ho$$

$$\rho = 1 \Lambda \frac{\left[\prod_{i=1}^{n} \alpha' \eta' t_{i}^{\alpha'-1} e^{-\eta' t_{i}^{\alpha'}}\right] e^{-\alpha'} (\eta')^{\beta-1} e^{-\xi \eta'} \frac{1}{\alpha' \eta'} e^{-\frac{\alpha}{\alpha'} - \frac{\eta}{\eta'}}}{\left[\prod_{i=1}^{n} \alpha \eta t_{i}^{\alpha -1} e^{-\eta t_{i}^{\alpha}}\right] e^{-\alpha} \eta^{\beta-1} e^{-\xi \eta} \frac{1}{\alpha \eta} e^{-\frac{\alpha'}{\alpha} - \frac{\eta'}{\eta}}}$$

metro2.m $\beta = 2$, $\xi = 2$ hyperparameters

 $T = [0.2 \ 0.1 \ 0.25]; \ n = 3$

Initial values: $\alpha = 2$, $\eta = 2$

Result: $\hat{\alpha} \cong 0.9$, $\hat{\eta} \cong 1.85$

Gibbs Sampler

Gibbs Sampler

- Special case of Metropolis algorithm
- Component-wise update with "proposals" being full conditional distributions of components
- It can be shown that $\rho = 1$, i.e. Gibbs "proposal" is accepted at each step.

Let $f\left(X \mid \theta\right)\pi\left(\theta\right)$ be the numerator of the posterior. Suppose that we can find all full conditionals for components of $\theta = (\theta_1, \dots, \theta_p)$:

$$\begin{split} \pi\left(\theta_{1}|\theta_{2},\theta_{3},\ldots,\theta_{n},\overset{X}{\overset{\sim}{\underset{\sim}{\times}}}\right) \\ \pi\left(\theta_{2}|\theta_{1},\theta_{3},\ldots,\theta_{n},\overset{X}{\overset{\sim}{\underset{\sim}{\times}}}\right) \\ & \vdots \\ \pi\left(\theta_{n}|\theta_{1},\theta_{2},\ldots,\theta_{n-1},\overset{X}{\overset{\sim}{\underset{\sim}{\times}}}\right) \end{split}$$

The Gibbs sampler proceeds as follows:

Start
$$\theta^0 = (\theta^0_1, \theta^0_2, ..., \theta^0_p)$$
 [initials]

Sample θ^{n+1}_1 from $\pi \left(\theta_1 | \theta^n_2, \theta^n_3, ..., \theta^n_p, X\right)$

Sample θ^{n+1}_2 from $\pi \left(\theta_2 | \theta^{n+1}_1, \theta^n_3, ..., \theta^n_p, X\right)$

Sample θ^{n+1}_3 from $\pi \left(\theta_3 | \theta^{n+1}_1, \theta^{n+1}_2, \theta^n_4, ..., \theta^n_p, X\right)$
 \vdots

Sample θ^{n+1}_p from $\pi \left(\theta_p | \theta^{n+1}_1, ..., \theta^{n+1}_{p-1}, X\right)$

Increase n

- How to find full conditionals?
- Form a kernel of joint distribution of all parameters and data
- To find the full conditional for component θ_i , select only the parts of the kernel that contain θ_i , all other θ^{is} and data are considered constant
- Normalize the selected part as a distribution. Often, you can recognize what distribution it is from the form of kernel
- Important: You should be able to sample from all conditionals

For example:

$$\begin{split} X_1, \dots, X_n \sim & \mathrm{N}\left(\theta, \frac{1}{\tau}\right); \quad \tau \text{ precision, } \quad \frac{1}{\tau} = \sigma^2 \\ \mu \sim & \mathrm{N}(0,1) \quad \tau \sim & \mathrm{Ga}(2,1) \\ & \mathrm{joint} \propto (2\pi)^{-\frac{n+1}{2}} \tau^{\frac{n}{2}} e^{-\frac{\tau}{2}} \sum_{i=1}^n (x_i - \mu)^2 e^{-\frac{1}{2}\mu^2} \tau e^{-\tau} \\ \pi \left(\mu | \tau, X\right) \propto e^{-\frac{\tau}{2}} \sum_{i=1}^n (x_i - \mu)^2 e^{-\frac{1}{2}\mu^2} \propto e^{-\frac{1}{2}(1 + n\tau) \left(\mu - \frac{\tau \sum x_i}{1 + n\tau}\right)^2} \\ \mu | \tau, X \sim & \mathrm{N}\left(\frac{\tau \sum x_i}{1 + n\tau}, \frac{1}{1 + n\tau}\right) \\ \pi \left(\tau | \mu, X\right) \propto \tau^{\frac{n}{2}} e^{-\frac{\tau}{2}} \sum_{i=1}^n (x_i - \mu)^2 \tau e^{-\tau} \propto \tau^{\frac{n}{2} + 1} e^{-\tau \left[1 + \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2\right]} \\ \tau | \mu, X \sim & \mathrm{Ga}\left(\frac{n}{2} + 2, 1 + \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2\right) \end{split}$$

Example 1.

$$X|\theta \sim N(\theta, 1)$$

$$\theta \sim Ca(0,1)$$

Find $\delta(2)$ by Gibbs sampling

$$\pi(\theta) \propto \frac{1}{\tau^2 + (\theta - \mu)^2} \propto \int_0^{+\infty} \sqrt{\frac{\lambda}{2\pi\tau^2}} \exp\left\{-\frac{\lambda}{2\tau^2} (\theta - \mu)^2\right\} \lambda^{\frac{1}{2} - 1} e^{-\frac{\lambda}{2}} d\lambda$$

$$\Rightarrow \theta \sim \text{Ca}(\mu, \tau) \iff \theta | \lambda \sim \text{N}\left(\mu, \frac{\tau^2}{\lambda}\right), \qquad \lambda \sim \text{Ga}\left(\frac{1}{2}, \frac{1}{2}\right)$$
If $X | \theta \sim \text{N}(\theta, \sigma^2)$

$$\begin{cases} \theta | \lambda, x \sim \text{N}\left(\frac{\tau^2}{\tau^2 + \lambda \sigma^2} x + \frac{\lambda \sigma^2}{\tau^2 + \lambda \sigma^2} \mu, \frac{\tau^2 \sigma^2}{\tau^2 + \lambda \sigma^2}\right) \\ \lambda | \theta, x \sim \text{Exp}\left(\frac{\tau^2 + (\theta - \mu)^2}{2\tau^2}\right) \end{cases}$$

norcaugibbs.m

Example 2.

Pumps. (George, Makov, and Smith, 1993)

	Pump	1	2	3	4	5	6	7	8	9	10
t_i	Time	94.32	15.72	62.88	125.76	5.24	31.44	1.048	1.048	2.096	10.48
x_i	# of failures	5	1	5	14	3	19	1	1	4	22

$$\begin{array}{c|c} x_i | \theta_i \sim \operatorname{Poi}(\theta_i t_i) & \theta_i \sim \operatorname{Ga}(\alpha, \beta) & \beta \sim \operatorname{Ga}(c, d) \\ f(x_i | \theta_i) \propto \theta_i^{x_i} e^{-\theta_i t_i} & \alpha \equiv 1 & \pi(\beta) \propto \beta^{c-1} e^{-d\beta} \\ \pi(\theta_i) \propto \beta e^{-\beta \theta_i} & \pi(\beta) \propto \beta^{c-1} e^{-d\beta} \end{array}$$

joint distr
$$\propto \left(\prod_{i=1}^n \theta_i^{x_i} e^{-\theta_i t_i} e^{-\beta \theta_i}\right) \beta^n \beta^{c-1} e^{-d\beta}$$

$$\begin{cases} \pi\left(\theta_{i} | \theta_{\neq i}, \beta, \underline{x}\right) \propto \theta_{i}^{x_{i}} e^{-\theta_{i} t_{i}} e^{-\beta \theta_{i}} \equiv \operatorname{Ga}(x_{i} + 1, \beta + t_{i}) \\ \pi\left(\beta | \underline{\theta}, \underline{x}\right) \propto e^{-\beta \sum \theta_{i}} \beta^{n+c-1} e^{-d\beta} \equiv \operatorname{Ga}(n + c, \sum \theta_{i} + d) \end{cases}$$

Implemented in: <u>pumpsmc.m</u>

Example 3.

- Coal Mining Disasters in UK (Carlin, Gelfand, and Smith, 1992)
- Change point problem

Model:

$$x_i | \lambda \sim \operatorname{Poi}(\lambda), \quad i = 1, 2, ..., m$$

$$x_i | \mu \sim \operatorname{Poi}(\mu), \quad i = m + 1, ..., n$$

$$m \sim \operatorname{DU}(n): \quad P(m = k) = \frac{1}{n}, \quad k = 1, ..., n \quad (n = 112)$$

$$\lambda \sim \operatorname{Ga}(\alpha, \beta)$$

$$\mu \sim \operatorname{Ga}(\gamma, \delta)$$

posterior
$$\propto L(\lambda, \mu, m|X)\pi(\lambda)\pi(\mu)\pi(m)$$

$$= \prod_{i=1}^{m} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \prod_{i=m+1}^{m} \frac{\mu^{x_i}}{x_i!} e^{-\mu} \frac{\beta^{\alpha} \lambda^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta \lambda} \frac{\delta^{\gamma} \mu^{\gamma-1}}{\Gamma(\gamma)} e^{-\delta \mu} \frac{1}{n}$$

$$\propto e^{-m\lambda} \lambda^{\sum_{i=1}^{m} x_i} e^{-(n-m)\mu} \mu^{\sum_{i=m+1}^{n} x_i} \lambda^{\alpha-1} e^{-\beta\lambda} \mu^{\gamma-1} e^{-\delta\mu}$$

$$= \lambda^{\alpha+\sum_{i=1}^{m} x_i - 1} e^{-(m+\beta)\lambda} \mu^{\gamma+\sum_{i=m+1}^{n} x_i - 1} e^{-(\delta+n-m)\mu}$$

 \Longrightarrow

$$\lambda | \mu, m, X \sim Ga \left(\alpha + \sum_{i=1}^{m} x_i, \beta + m \right)$$

$$\mu | \lambda, m, X \sim Ga \left(\gamma + \sum_{i=m+1}^{n} x_i, \delta + (n-m) \right)$$

Full conditional for m?

$$\pi\left(m|\lambda,\mu,X\right) \propto \prod_{i=1}^{m} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \prod_{i=m+1}^{n} \frac{\mu^{x_i}}{x_i!} e^{-\mu} =$$

$$= \left[\prod_{i=1}^{n} \frac{\mu^{x_i}}{x_i!} e^{-\mu}\right] e^{m(\mu-\lambda)} \left(\frac{\lambda}{\mu}\right)^{\sum_{i=1}^{m} x_i} = f(x|\mu)g(x|m)$$

$$\pi(m) \propto e^{m(\mu-\lambda)} \left(\frac{\lambda}{\mu}\right)^{\sum_{i=1}^{m} x_i}$$

$$P(m=k) = \frac{\pi(k)}{\sum_{i=1}^{n} \pi(i)}$$

disastersmc.m

Set hyperparameters:

$$\alpha = 4, \ \beta = 1$$
 $\frac{\alpha}{\beta} = 4 \approx \lambda$ $\gamma = 1/2, \ \delta = 1$ $\frac{\gamma}{\delta} = \frac{1}{2} \approx \mu$

Summary

