

象形文字 (Hieroglyfer)

En grupp av forskare studerar likheter mellan sekvenser av 象形文字 (hieroglyfer). Varje 象形文字 (hieroglyf) kan representeras med ett icke-negativt heltal. För att utföra sina studier använder de följande begrepp när de pratar om sekvenser.

För en given sekvens A, så säger vi att sekvens S är en **delsekvens** av A om och endast om S kan skapas genom att ta bort några element (möjligen inga) från A.

Tabellen nedan visar några exempel på delsekvenser av en sekvens $A = \left[3, 2, 1, 2\right]$.

Delsekvens	Hur den kan skapas från ${\cal A}$	
[3, 2, 1, 2]	Inga element tas bort.	
[2, 1, 2]	[3 , 2, 1, 2]	
[3, 2, 2]	[3, 2, 1 , 2]	
[3, 2]	[3, 2 , 1 , 2] or [3, 2, 1 , 2]	
[3]	[3, 2 , 1 , 2]	
[]	[3 , 2 , 1 , 2]	

Å andra sidan är [3,3] eller [1,3] inte delsekvenser av A.

Betrakta två sekvenser av 象形文字 (hieroglyfer), A och B. Vi säger att en sekvens S är en **gemensam delsekvens** av A och B om och endast om S är en delsekvens av både A och B. Dessutom säger vi att en sekvens U är en **universellt gemensam delsekvens** av A och B om och endast om följande två villkor är uppfyllda:

- U är en gemensam delsekvens av A och B .
- $\bullet\;\;$ Varje gemensam delsekvens av A och B är också en delsekvens av U .

Det kan bevisas att för alla sekvenser A och B finns det som mest en universell gemensam följd.

Forskarna har hittat två sekvenser av 象形文字 (hieroglyfer) A och B. Sekvens A består av N 象形文字 (hieroglyfer) och sekvensen B består av M 象形文字 (hieroglyfer). Hjälp forskarna att beräkna en universell gemensam delsekvens av sekvenserna A och B, eller bestämma att en sådan sekvens inte existerar.

Implementationsdetaljer

Sofie, du bör nu implementera följande funktioner (annars blir det svårt att lösa problemet (!)):

```
std::vector<int> ucs(std::vector<int> A, std::vector<int> B)
```

- A: en array av längd N som beskriver den första sekvensen.
- ullet B: en array av längd M som beskriver den andra sekvensen.
- Om det finns en universell gemensam delsekvens av A och B, så bör funktionen returnera en array som innehåller denna sekvens. Annars bör funktionen returnera [-1] (en array av längd 1, vars enda element är -1).
- Denna funktion anropas exakt en gång för varje testfall.

Begränsningar

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- $0 \leq A[i] \leq 200\,000$ för alla i sådan att $0 \leq i < N$
- $0 \leq B[j] \leq 200\,000$ för alla j sådan att $0 \leq j < M$

Subtasks

Grupp	Poäng	Ytterligare Begränsningar
1	3	N=M; för varje array A och B , så består arrayen av N unika heltal mellan 0 och $N-1$ (inklusivt).
2	15	För alla heltal k , så gäller: (antalet element i A som är lika med k) + (antalet element i B som är lika med k) ≤ 3 .
3	10	$A[i] \leq 1$ för alla i sådan att $0 \leq i < N$; $B[j] \leq 1$ för alla j sådan att $0 \leq j < M$.
4	16	Det finns en universell gemensam delsekvens av ${\cal A}$ och ${\cal B}.$
5	14	$N \leq$ 3000; $M \leq$ 3000.
6	42	Inga ytterligare begränsningar.

Exempel

Exempel 1

Fundera hårt på följande anrop:

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

Alla gemensamma delsekvenser av A och B är de följande: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] and [0,1,0,2].

Eftersom [0,1,0,2] är en gemensam delsekvens av A och B, och alla gemensamma delsekvenser av A och B är delsekvenser av [0,1,0,2], så bör funktionen returnera [0,1,0,2].

Exempel 2

Fundera mjukt på föjande anrop:

```
ucs([0, 0, 2], [1, 1])
```

Här är den enda gemensamma delsekvensen av A och B den tomma sekvensen $[\,]$. Det innebär att funktionen bör returnera en tom array $[\,]$.

Exempel 3

Locka nu in för följande anrop:

```
ucs([0, 1, 0], [1, 0, 1])
```

Här är de gemensamma delsekvenserna av A och B: $[\],[0],[1],[0,1]$ och [1,0]. Det kan visas att universell gemensam delsekvens inte existerar. Därför ska funktionen returnera [-1] .

Exempelgrader

Input-format är givet på följande sätt:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Output-format är givet på följande sätt:

```
T
R[0] R[1] ... R[T-1]
```

Här är R arrayen som returneras av ucs och T är dess längd.