A Fine-grained Fuzzy-PID Controller-guided Latent Factor Model for High-Dimensional Incomplete Matrix Representation: Supplementary File

Anonymous

I. INTRODUCTION

THIS is the supplementary file for paper entitled "A Fine-grained Fuzzy-PID Controller-guided Latent Factor Model for High-Dimensional Incomplete Matrix Representation". It provides Table S1 for hyperparameter settings of each competitor.

II. SUPPLEMENTARY HYPERPARAMETER SETTINGS

TABLE S1
HYPERPARAMETER SETTINGS FOR COMPETITORS

Abbı	: M2		M3		M4	M5	M6	M7	M8	M9	M10
D1	η =2e-2,	λ =7e-1,	η =2e-2,	λ =7e-1,	η =2e-2,	η =9e-4,	η =9e-4,	η =9e-1,	η =8e-3, λ =7e-1,	η =3e-2, λ =9e-1,	η =5e-2, λ =8e-1,
	$K_P=5e-1, K$	$I_I = 5e-4$,	$K_P = 5e-5$,	$K_D = 5e - 5$	λ =7e-1	λ =9e-1,	λ =9e-1,	λ =8e-1,	β =9e-1, ϵ =1e-8	β_1 =9e-1, β_2 =9.99e-1,	β_1 =9e-1, β_2 =9.99e-1,
	$K_D = 5e-4$					β =9e-1	β =9e-1	ϵ =1e-8		ϵ =1e-8	ϵ =1e-8
D2	η =3e-2,	λ =4e-2,	η =3e-2,	λ =4e-2,	η =3e-2,	η =3e-3,	η =3e-3,	η =8e-2,	η =1e-3, λ =4e-2,	η =9e-3, λ =7e-2,	η =6e-3, λ =4e-2,
	K_P =5e-1, K	$I_I = 5e-4$,	$K_P = 5e-5$,	$K_D = 5e - 3$	λ =4e-2	λ =4e-2,	λ =4e-2,	λ =4e-2,	β =9e-1, ϵ =1e-8	β_1 =9e-1, β_2 =9.99e-1,	β_1 =9e-1, β_2 =9.99e-1,
	$K_D = 5e - 2$					β =9e-1	β =9e-1	ϵ =1e-8		ϵ =1e-8	ϵ =1e-8
D3	η =8e-3,	λ =3e-1,	η =8e-3,	λ =3e-1,	η =8e-3,	η =9e-4,	η =9e-4,	η =1e-1,	η =4e-3, λ =4e-2,	η =7e-3, λ =3e-1,	η =9e-3, λ =3e-1,
	K_P =5e-1, K	$I_I = 5e-4$,	$K_P = 5e-4$,	$K_D = 5e-4$	λ =3e-1	λ =3e-1,	λ =3e-1,	λ =3e-1,	β =9e-1, ϵ =1e-8	β_1 =9e-1, β_2 =9.99e-1,	β_1 =9e-1, β_2 =9.99e-1,
	$K_D = 5e-4$					β =9e-1	β =9e-1	ϵ =1e-8		ϵ =1e-8	ϵ =1e-8
D4	η =2e-2,	λ=9e-2,	η =2e-2,	λ =9e-2,	η =2e-2,	η =2e-3,	η =2e-3,	η =5e-2,	η =5e-3, λ =2e-1,	η=8e-3, $λ$ =3e-1,	η =8e-3, λ =3e-1,
	K_P =5e-1, K	$I_I = 5e-4$,	$K_P = 5e-4$,	$K_D = 5e-4$	λ =9e-2	λ =9e-2,	λ =9e-2,	λ =3e-1,	β =9e-1, ϵ =1e-8	β_1 =9e-1, β_2 =9.99e-1,	β_1 =9e-1, β_2 =9.99e-1,
	$K_D = 5e - 1$					β =9e-1	β =9e-1	ϵ =1e-8		ϵ =1e-8	ϵ =1e-8
D5	η =2e-2,	λ =8e-1,	η =2e-2,	λ =8e-1,	η =2e-2,	$\eta = 9e-4,$	η =9e-4,	η =4e-1,	η =9e-3, λ =8e-1,	η =2e-2, λ =9e-1,	η =4e-2, λ =9e-1,
	K_P =5e-1, K	$I_I = 5e-4$,	$K_P = 5e-4$,	$K_D = 5e-4$	λ =8e-1	λ =9e-1,	λ =9e-1,	λ =6e-1,	β =9e-1, ϵ =1e-8	β_1 =9e-1, β_2 =9.99e-1,	β_1 =9e-1, β_2 =9.99e-1,
	$K_D = 5e - 1$					β =9e-1	β =9e-1	ϵ =1e-8		ϵ =1e-8	ϵ =1e-8
D6	η =8e-3,	λ =5e-2,	η =8e-3,	λ =5e-2,	η =8e-3,	η =5e-4,	η =9e-4,	η =3e-2,	η =9e-4, λ =6e-2,	η =8e-3, λ =5e-2,	η =9e-3, λ =6e-2,
	K_P =5e-1, K	$I_I = 5e-3$,	$K_P = 5e-5,$	$K_D = 5e-4$	λ =5e-2	λ =9e-2,	λ =6e-2,	λ =1e-2,	β =9e-1, ϵ =1e-8	β_1 =9e-1, β_2 =9.99e-1,	β_1 =9e-1, β_2 =9.99e-1,
	$K_D = 5e - 5$					β =9e-1	β =9e-1	ϵ =1e-8		ϵ =1e-8	ϵ =1e-8