In [38]: import sqlite3
 from sqlalchemy import create\_engine
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline

 conn = sqlite3.connect('consumer\_database.sqlite')

#Using sqlite from sqlalchemy, import the tables as dataframes
 disk\_engine = create\_engine('sqlite:///consumer\_database.sqlite')

Out[13]:

|   | request_id | user_id | category_id | location_id | creation_time              |
|---|------------|---------|-------------|-------------|----------------------------|
| 0 | 1          | 1001    | 46          | 35          | 2013-07-01 07:48:54.000000 |
| 1 | 2          | 1002    | 83          | 19          | 2013-07-01 04:55:25.000000 |
| 2 | 3          | 1003    | 63          | 91          | 2013-07-01 09:34:53.000000 |
| 3 | 4          | 1004    | 56          | 2           | 2013-07-01 10:16:40.000000 |
| 4 | 5          | 1005    | 64          | 11          | 2013-07-01 03:45:47.000000 |

In [14]: df\_invites = pd.read\_sql\_query('SELECT \* FROM invites', disk\_engin
e)
df invites.head()

Out[14]:

|   | i   | invite_id | request_id | user_id | sent_time                  |
|---|-----|-----------|------------|---------|----------------------------|
| 0 | ) 1 | 1         | 1          | 312     | 2013-07-01 13:20:05.072029 |
| 1 | 1 2 | 2         | 1          | 850     | 2013-07-01 15:49:33.110849 |
| 2 | 2 3 | 3         | 1          | 555     | 2013-07-01 13:39:18.608330 |
| 3 | 3 4 | 4         | 1          | 917     | 2013-07-01 08:56:11.751781 |
| 4 | 1 5 | 5         | 1          | 215     | 2013-07-01 08:40:24.151670 |

Out[15]:

|   |   | quote_id | invite_id | sent_time                  |
|---|---|----------|-----------|----------------------------|
|   | 0 | 1        | 4         | 2013-07-01 11:04:44.204874 |
| ŀ | 1 | 2        | 5         | 2013-07-01 10:39:30.083032 |
| 4 | 2 | 3        | 6         | 2013-07-01 16:43:37.668191 |
| ( | 3 | 4        | 8         | 2013-07-01 22:10:35.168437 |
| 4 | 4 | 5        | 9         | 2013-07-01 13:02:03.174618 |

Out[16]:

|   | location_id | name                                  |
|---|-------------|---------------------------------------|
| 0 | 1           | New York-Newark-Jersey City, NY-NJ-PA |
| 1 | 2           | Los Angeles-Long Beach-Anaheim, CA    |
| 2 | 3           | Chicago-Naperville-Elgin, IL-IN-WI    |
| 3 | 4           | Dallas-Fort Worth-Arlington, TX       |
| 4 | 5           | Houston-The Woodlands-Sugar Land, TX  |

Out[17]:

|   | category_id | name                     |
|---|-------------|--------------------------|
| 0 | 1           | Photography              |
| 1 | 2           | Window Installation      |
| 2 | 3           | Portrait Photography     |
| 3 | 4           | Wedding Band             |
| 4 | 5           | Home Security and Alarms |

Out[18]:

|   | user_id | email                |
|---|---------|----------------------|
| 0 | 1       | william@idxydp.com   |
| 1 | 2       | william@dhgtae.com   |
| 2 | 3       | liam@aqpvfh.com      |
| 3 | 4       | elizabeth@hpgruv.com |
| 4 | 5       | isabella@omwtoj.com  |

- Out[20]: quote\_id invite\_id sent\_time

  0 1 4 2013-07-01 11:04:44.204874
- In [21]: df\_invites[df\_invites.invite\_id == 4]
  #As we can see, the invite table provides the request\_id and the us
   er\_id and the Invite sent\_time
  #of the Request to Vendor.
- Out[21]: invite\_id request\_id user\_id sent\_time
  3 4 1 917 2013-07-01 08:56:11.751781
- In [22]: df\_requests[df\_requests.request\_id == 1]
  #The Request Table is linked to the category and the location and a
  lso provides a creation time by the customer
- Out[22]:
   request\_id
   user\_id
   category\_id
   location\_id
   creation\_time

   0
   1
   1001
   46
   35
   2013-07-01 07:48:54.000000
- In [23]: df\_locations[df\_locations.location\_id == 35]
  #As we can see this location was made in Austin, Texas
- Out[23]: location\_id name

  34 35 Austin-Round Rock, TX

In [24]: df\_categories[df\_categories.category\_id == 46]
#for the request of a DJ

Out[24]:

|    | category_id | name |
|----|-------------|------|
| 45 | 46          | DJ   |

In [25]: #Now lets explore the data, as we can see the tables are related by keys, so now we will combine the tables #to create a larger dataframe that we can apply our analysis. #Now lets Combine the tables using the Merge function in Pandas #Merge dataframes using inner join on the Location dataframe and th e request dataframe frame = pd.DataFrame.merge(df requests, df locations, left on='loca tion id', right\_on='location\_id') #Merge Categories and Location Dataframe into one dataframe using c ategory id as the key frame1 = pd.DataFrame.merge(frame, df categories, left on='categor y\_id', right\_on='category\_id') #Merge Invite Dataframe with the Request Dataframe using the reques t id as the key do an inner join frame2 = pd.DataFrame.merge(frame1, df invites, left on='request i d', right on='request id') #Merge users Dataframe with the Invite Dataframe using the user id as the key do an inner join frame3 = pd.DataFrame.merge(frame2, df users, left on='user id y', right on='user id') #Merge Quotes dataframe to the Final Dataframe including Requests, Invites and time

#using the invite id as the Key for the inner join.

final df = pd.DataFrame.merge(frame3, df quotes, left on='invite i d', right on='invite id')

final df.head()

Out[25]:

|   | request_id | user_id_x | category_id | location_id | creation_time                 | name_x                                             | nan         |
|---|------------|-----------|-------------|-------------|-------------------------------|----------------------------------------------------|-------------|
| ( | 3630       | 4630      | 46          | 4           | 2013-08-14<br>18:32:50.000000 | Dallas-Fort<br>Worth-<br>Arlington,<br>TX          | DJ          |
| 1 | 2038       | 3038      | 87          | 15          | 2013-07-25<br>01:44:30.000000 | Seattle-<br>Tacoma-<br>Bellevue,<br>WA             | Con<br>Serv |
| 2 | 802        | 1802      | 87          | 56          | 2013-07-10<br>08:38:02.000000 | Fresno, CA                                         | Con<br>Sen  |
| 3 | 61         | 1061      | 48          | 5           | 2013-07-01<br>16:46:37.000000 | Houston-<br>The<br>Woodlands-<br>Sugar Land,<br>TX | Hou<br>Clea |
| 4 | 1783       | 2783      | 48          | 5           | 2013-07-22<br>05:57:40.000000 | Houston-<br>The<br>Woodlands-<br>Sugar Land,<br>TX | Hou<br>Clea |

In [32]: #Sort the data by creation\_time
final\_df.sort\_index(axis=0, by='creation\_time').head()

## Out[32]:

|       | request_id | customer_id | category_id | location_id | creation_time                 | location_                                        |
|-------|------------|-------------|-------------|-------------|-------------------------------|--------------------------------------------------|
| 5389  | 90         | 1090        | 87          | 36          | 2013-07-01<br>00:02:41.000000 | Nashville-<br>Davidson<br>Murfreesk<br>Franklin, |
| 11734 | 90         | 1090        | 87          | 36          | 2013-07-01<br>00:02:41.000000 | Nashville-<br>Davidson<br>Murfreesk<br>Franklin, |
| 3154  | 14         | 1014        | 53          | 52          | 2013-07-01<br>00:19:39.000000 | Grand Ra<br>Wyoming                              |
| 11765 | 14         | 1014        | 53          | 52          | 2013-07-01<br>00:19:39.000000 | Grand Ra<br>Wyoming                              |
| 9391  | 14         | 1014        | 53          | 52          | 2013-07-01<br>00:19:39.000000 | Grand Ra<br>Wyoming                              |

```
In [34]: #Define a function get_minutes to convert the hours and minutes int
    o total minutes
    #All plot are determined in minutes
    def get_minutes(row):
        return (row['sent_time_quote'] - row['sent_time_invite']).tota
    l_seconds()/60
```

```
In [35]: #Apply the get minutes function to all the rows of the dataframe wh
        ich we will use to plot the data
        final df['time taken'] = final_df.apply(get_minutes, axis=1)
        final df['time taken'].head(10)
Out[35]: 0
             582.703773
        1
             151.333102
        2
             203.248777
        3
             139.626905
        4
             229.123087
        5
             76.358164
        6
             49.772543
        7
             226.651886
        8
             23.220268
             161.601691
        Name: time taken, dtype: float64
In [36]: | #-----
        # Now we can start visualizing and start making some sense of the d
        # Let us interpret the dataset
        #Lets plot some basic statistics of the data
        final_df.time_taken.describe()
                 12819.000000
Out[36]: count
        mean
                   269.018999
        std
                  334.432133
        min
                     3.683707
        25%
                   83.725640
        50%
                   163.494942
        75%
                   321.977402
                  5911.546642
        max
        Name: time_taken, dtype: float64
```

In [41]: final df['time taken'].hist()

Out[41]: <matplotlib.axes.\_subplots.AxesSubplot at 0x10c8b2f10>



In [40]: #lets see the distribution of the data
final\_df['time\_taken'].hist(bins=50)

Out[40]: <matplotlib.axes.\_subplots.AxesSubplot at 0x10c4e18d0>



In [43]: #Group by category\_id and plot the mean
final\_df.groupby('category\_id').time\_taken.mean().head()

Out[43]: category\_id

| 1 | 241.476854 |
|---|------------|
| 2 | 189.189453 |
| 3 | 247.140482 |
| 4 | 237.160914 |
| 5 | 259.125132 |

Name: time taken, dtype: float64

In [44]: final\_df.groupby('category\_id').time\_taken.mean().plot()

Out[44]: <matplotlib.axes. subplots.AxesSubplot at 0x10cb6dd50>



Out[45]: <matplotlib.axes. subplots.AxesSubplot at 0x10cbdb110>



In [46]: final\_df.groupby(['location\_name']).time\_taken.mean().order(ascendi
ng=True)[:10].plot(kind='barh')

#The Bar Graph below, shows the cities, states that take the least time to respond to an Invite.

Out[46]: <matplotlib.axes. subplots.AxesSubplot at 0x10cd045d0>



In [47]: final\_df.groupby(['category\_name']).time\_taken.mean().order(ascendi
ng=False)[:10].plot(kind='barh')

#Categories not dependent on state, show that Math Tutoring, Pest C ontrol Services take more than 6 hours to respond # to a Invite.

Out[47]: <matplotlib.axes.\_subplots.AxesSubplot at 0x10cf0a350>



In [48]: final\_df.groupby(['category\_name']).time\_taken.mean().order(ascendi
ng=True)[:10].plot(kind='barh')

#In contrast Guitar Teaching, independent of the state, takes less than 2.5 hours to respond to an invite.

Out[48]: <matplotlib.axes.\_subplots.AxesSubplot at 0x10d12d210>



```
In [49]: #Box plots are useful in seeing the mean and seeing how far we are
    from the mean
    #In this case we plot box plots for Guitar Teaching (34), Math Tuto
    ring

df_categories[df_categories.name == 'Guitar Teaching']
    final_df[final_df['category_id'] == 34]
    final_df[final_df['category_id'] == 34].boxplot('time_taken')
```

/Users/karunsiddana/anaconda/lib/python2.7/site-packages/pandas/tools/plotting.py:2625: FutureWarning:

The default value for 'return\_type' will change to 'axes' in a futu re release.

To use the future behavior now, set return type='axes'.

To keep the previous behavior and silence this warning, set return type='dict'.

warnings.warn(msg, FutureWarning)





|          |                                 |      | . , |
|----------|---------------------------------|------|-----|
| Out[51]: | Balloon Artistry                |      | 603 |
|          | Personal Training               |      | 433 |
|          | Tennis Instruction              |      | 385 |
|          | Tree and Shrub Service          |      | 369 |
|          | Bartending                      |      | 364 |
|          | Window Repair                   |      | 362 |
|          | Carpet Installation or Replacen | nent | 349 |
|          | Wedding Videography             |      | 332 |
|          | TV Mounting                     |      | 312 |
|          | Wiring                          |      | 304 |
|          | Landscaping                     |      | 303 |
|          | Wedding Planning                |      | 296 |
|          | Power Washing                   |      | 289 |
|          | Algebra Tutoring                |      | 286 |
|          | Personal Chef Services          |      | 251 |
|          | •••                             |      |     |
|          | Carpentry                       | 19   |     |
|          | Door Installation               | 19   |     |
|          | Event Decorator and Designing   | 16   |     |
|          | Wedding Decorating              | 16   |     |
|          | Spanish Lessons                 | 15   |     |
|          | Commercial Photography          | 13   |     |
|          | Window Installation             | 12   |     |
|          | Band Entertainment              | 10   |     |
|          | Guitar Teaching                 | 10   |     |
|          | Moon Bounce Rental Services     | 9    |     |
|          | Lawn Mowing                     | 8    |     |
|          | Pest Control Services           | 8    |     |
|          | Handyman                        | 7    |     |
|          | Mold Remediation                | 5    |     |
|          | Math Tutoring                   | 2    |     |
|          | Length: 113, dtype: int64       |      |     |
|          |                                 |      |     |

In [53]: final\_df.groupby(['category\_name', 'location\_name']).time\_taken.mea
n()

| Out[53]: | category_name ACT Tutoring 82.653711 |                      | location_name<br>Chicago-Naperville-Elgin, IL-IN- | WI    |  |
|----------|--------------------------------------|----------------------|---------------------------------------------------|-------|--|
|          |                                      |                      | Cleveland-Elyria, OH                              |       |  |
|          | 298.456209                           |                      | Lakeland-Winter Haven, FL                         |       |  |
|          | 290.790624                           |                      | Los Angeles-Long Beach-Anaheim,                   | CA    |  |
|          | 237.090981                           | 14.163497            | Miami-Fort Lauderdale-West Palm                   | Beac  |  |
|          | ·                                    |                      | New York-Newark-Jersey City, NY-                  | NJ-PA |  |
|          | 197.572272                           |                      | Philadelphia-Camden-Wilmington,                   | PA-N  |  |
|          | J-DE-MD 17                           | 71.545887            | Virginia Beach-Norfolk-Newport N                  |       |  |
|          | VA-NC 1259                           | 2.270699             | VIIGINIA BEACH-NOITOIK-NEWPOIC N                  | CW5,  |  |
|          | Air Conditioni<br>82.918300          | ing and Cooling      | Albany-Schenectady-Troy, NY                       |       |  |
|          | 492.189298                           |                      | Albuquerque, NM                                   |       |  |
|          | 25.959638                            |                      | Atlanta-Sandy Springs-Roswell, GA                 |       |  |
|          | 23.939036                            |                      | Augusta-Richmond County, GA-SC                    |       |  |
|          | 190.505172                           |                      | Boston-Cambridge-Newton, MA-NH                    |       |  |
|          | 144.528911                           |                      | Buffalo-Cheektowaga-Niagara Fall                  | c NV  |  |
|          | 403.059220                           |                      | Chicago-Naperville-Elgin, IL-IN-WI                |       |  |
|          | 239.418051                           |                      |                                                   |       |  |
|          | Yoga Lessons                         | Los Angeles-Lo       | ng Beach-Anaheim, CA                              | 35    |  |
|          | 2.100411                             | Memphis, TN-MS-AR 39 |                                                   | 39    |  |
|          | 8.145703                             | Miomi Book Too       | udandala Wast Palm Pasah ET 1                     |       |  |
|          | 5.443689                             | Miami-Fort Lau       | derdale-West Palm Beach, FL                       | 17    |  |
|          | 3.881966                             | Minneapolis-St       | . Paul-Bloomington, MN-WI                         | 64    |  |
|          | 8.956417                             | Nashville-Davi       | dson-Murfreesboro-Franklin, TN                    | 5     |  |
|          |                                      |                      | amden-Wilmington, PA-NJ-DE-MD                     | 9     |  |
|          |                                      |                      | wick, RI-MA                                       | 21    |  |
|          |                                      |                      |                                                   | 32    |  |
|          | 0.942188                             |                      |                                                   |       |  |
|          | Rochester, NY 3.219847               |                      |                                                   | 24    |  |
|          | 9.901620                             | Salt Lake City       | , UT                                              | 51    |  |
|          |                                      | San Diego-Carl       | sbad, CA                                          | 20    |  |

| 1.770593       |                                            |    |
|----------------|--------------------------------------------|----|
|                | San Francisco-Oakland-Fremont, CA          | 27 |
| 8.838941       |                                            |    |
|                | Seattle-Tacoma-Bellevue, WA                | 13 |
| 0.042730       |                                            |    |
|                | St. Louis, MO-IL                           | 13 |
| 0.617393       |                                            |    |
|                | Virginia Beach-Norfolk-Newport News, VA-NC | 26 |
| 5.144510       |                                            |    |
| Name: time tak | gen, Length: 2255, dtype: float64          |    |

In [54]: final\_df.groupby('category\_name').time\_taken.mean()[:10].plot(kin
d='bar')

Out[54]: <matplotlib.axes.\_subplots.AxesSubplot at 0x10d4adfd0>



In [55]: final\_df.groupby('category\_name').time\_taken.mean().plot(kind='his
t')

Out[55]: <matplotlib.axes. subplots.AxesSubplot at 0x10e00af10>



In [56]: final\_df.groupby(['category\_name', 'location\_name']).agg({'time\_tak'
en': 'mean'})

Out[56]:

| <u></u>                      |                                                  |             |
|------------------------------|--------------------------------------------------|-------------|
|                              |                                                  | time_taken  |
| category_name                | location_name                                    |             |
|                              | Chicago-Naperville-Elgin, IL-IN-WI               | 82.653711   |
|                              | Cleveland-Elyria, OH                             | 298.456209  |
|                              | Lakeland-Winter Haven, FL                        | 290.790624  |
|                              | Los Angeles-Long Beach-Anaheim, CA               | 237.090981  |
| ACT Tutoring                 | Miami-Fort Lauderdale-West Palm<br>Beach, FL     | 114.163497  |
|                              | New York-Newark-Jersey City, NY-NJ-PA            | 197.572272  |
|                              | Philadelphia-Camden-Wilmington, PA-NJ-DE-MD      | 171.545887  |
|                              | Virginia Beach-Norfolk-Newport News, VA-NC       | 1259.270699 |
|                              | Albany-Schenectady-Troy, NY                      | 82.918300   |
|                              | Albuquerque, NM                                  | 492.189298  |
|                              | Atlanta-Sandy Springs-Roswell, GA                | 25.959638   |
|                              | Augusta-Richmond County, GA-SC                   | 190.505172  |
|                              | Boston-Cambridge-Newton, MA-NH                   | 144.528911  |
|                              | Buffalo-Cheektowaga-Niagara Falls, NY            | 403.059220  |
|                              | Chicago-Naperville-Elgin, IL-IN-WI               | 239.418051  |
|                              | Colorado Springs, CO                             | 343.791524  |
|                              | Dallas-Fort Worth-Arlington, TX                  | 370.936954  |
|                              | Denver-Aurora-Lakewood, CO                       | 263.998112  |
|                              | Detroit-Warren-Dearborn, MI                      | 574.658408  |
| Air Conditioning and Cooling | Houston-The Woodlands-Sugar Land, TX             | 363.866179  |
| Cooming                      | Las Vegas-Henderson-Paradise, NV                 | 192.748420  |
|                              | Los Angeles-Long Beach-Anaheim, CA               | 68.624431   |
|                              | Memphis, TN-MS-AR                                | 367.961726  |
|                              | Nashville-Davidson-Murfreesboro-<br>Franklin, TN | 276.653748  |
|                              | New Haven-Milford, CT                            | 364.262052  |
|                              | New York-Newark-Jersey City, NY-NJ-PA            | 207.625105  |
|                              | Philadelphia-Camden-Wilmington, PA-              | 040 044005  |

| NJ-DE-MD               | 213.314805 |
|------------------------|------------|
| Pittsburgh, PA         | 202.742702 |
| San Diego-Carlsbad, CA | 612.568571 |

In [62]: final\_df.groupby(['category\_name', 'location\_name']).time\_taken.mea
n()[:20].plot(kind='bar', figsize=(12,12))

Out[62]: <matplotlib.axes.\_subplots.AxesSubplot at 0x121c5fd90>



In [ ]: