Integer Multiplication

and Division

COE 301
Computer Organization
Prof. Muhamed Mudawar

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Presentation Outline

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Unsigned Integer Multiplication

Paper and Pencil Example:

- * n-bit multiplicand × n-bit multiplier = (2n)-bit product
- Accomplished via shifting and addition
- Consumes more time and more chip area than addition

Unsigned Sequential Multiplication

- ❖ Initialize Product = 0
- Check each bit of the Multiplier
- **❖** If Multiplier bit = 1 then **Product = Product + Multiplicand**
- * Rather than shifting the multiplicand to the left,

Shift the Product to the Right

Has the same net effect and produces the same result

Minimizes the hardware resources

- One cycle per iteration (for each bit of the Multiplier)
 - ♦ Addition and shifting can be done simultaneously

Unsigned Sequential Multiplier

❖ Initialize: HI = 0 Start Initialize: LO = Multiplier HI = 0, LO=Multiplier Final Product in HI and LO registers * Repeat for each bit of Multiplier LO[0]? Multiplicand Carry, Sum = HI + Multiplicand 32 bits 32 bits HI, LO = Shift Right (Carry, Sum, LO) add 32-bit ALU Sum 32 bits No Carry 32nd Repetition? shift right Yes HI LO Control Done write 64 bits LO[0]

Sequential Multiplier Example

- Consider: $1100_2 \times 1101_2$, Product = 10011100_2
- 4-bit multiplicand and multiplier are used in this example
- 4-bit adder produces a 4-bit Sum + Carry bit

Iteration		Multiplicand	Carry	Product = HI, LO
0	Initialize (HI = 0, LO = Multiplier)	1100		- 0000 110 1
	LO[0] = 1 => ADD	+-	→ 0	1100 1101
1	Shift Right (Carry, Sum, LO) by 1 bit	1100		0110 0110
2	LO[0] = 0 => NO addition			
	Shift Right (HI, LO) by 1 bit	1100		- 0011 0011
	LO[0] = 1 => ADD	+-	→ 0	1111 0011
3	Shift Right (Carry, Sum, LO) by 1 bit	1100		- 0111 100 1
	LO[0] = 1 => ADD	+-	→ [1	0011 1001
4	Shift Right (Carry, Sum, LO) by 1 bit	1100		1001 1100

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Signed Integer Multiplication

First attempt:

- ♦ Convert multiplier and multiplicand into positive numbers
 - If negative then obtain the 2's complement and remember the sign
- Perform unsigned multiplication
- ♦ Compute the sign of the product
- ♦ If product sign < 0 then obtain the 2's complement of the product
- Drawback: additional steps to compute the 2's complement

* Better version:

- Use the unsigned multiplication hardware
- When shifting right, extend the sign of the product
- ♦ If multiplier is negative, the **last step** should be a **subtract**

Signed Multiplication (Paper & Pencil)

Case 1: Positive Multiplier

```
Multiplicand 1100_2 = -4

Multiplier \times 0101_2 = +5

Sign-extension 11100

Product 11101100_2 = -20
```

Case 2: Negative Multiplier

```
Multiplicand 1100_2 = -4

Multiplier \times 1101_2 = -3

Sign-extensibility 1100

00100 (2's complement of 1100)

Product 00001100_2 = +12
```

Signed Sequential Multiplier

Signed Multiplication Example

- Consider: 1100_2 (-4) × 1101_2 (-3), Product = 00001100_2
- Check for overflow: No overflow Extend sign bit
- Last iteration: add 2's complement of Multiplicand

Iteration		Multiplicand	Sign	Product = HI, LO
0	Initialize (HI = 0, LO = Multiplier)	1100		- 0000 110 1
	LO[0] = 1 => ADD	+-	→ [1	1100 1101
1	Shift Right (Sign, Sum, LO) by 1 bit	1100		1110 0110
	LO[0] = 0 => NO addition			
2	Shift Right (Sign, HI, LO) by 1 bit	1100		- 1111 0011
	LO[0] = 1 => ADD	+-	→ [1	1011 0011
3	Shift Right (Sign, Sum, LO) by 1 bit	1100		- 1101 100 1
	LO[0] = 1 => SUB (ADD 2's compl)	0100 +-	→0	0001 1001
4	Shift Right (Sign, Sum, LO) by 1 bit			0000 1100

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Faster Multiplier

- Suppose we want to multiply two numbers A and B
 - \Rightarrow Example on 4-bit numbers: $A = a_3 a_2 a_1 a_0$ and $B = b_3 b_2 b_1 b_0$
- Step 1: AND (multiply) each bit of A with each bit of B
 - Requires n² AND gates and produces n² product bits
 - \diamond Position of $a_ib_i = (i+j)$. For example, Position of $a_2b_3 = 2+3 = 5$

Adding the Partial Products

- Step 2: Add the partial products
 - The partial products are shifted and added to compute the product P
 - The partial products can be added in parallel
 - ♦ Different implementations are possible

4-bit Multiplicand
$$A_3$$
 A_2 A_1 A_0
4-bit Multiplier \times B_3 B_2 B_1 B_0

Partial Products are shifted and added

8-bit Product

 P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0

4-bit × 4-bit Binary Multiplier

16 AND gates, Three 4-bit adders, a half-adder, and an OR gate

Carry Save Adders

- A n-bit carry-save adder produces two n-bit outputs
 - n-bit partial sum bits and n-bit carry bits
- All the n bits of a carry-save adder work in parallel
 - ♦ The carry does not propagate as in a carry-propagate adder
 - This is why a carry-save is faster than a carry-propagate adder
- Useful when adding multiple numbers (as in multipliers)

Carry-Propagate Adder

Carry-Save Adder

Carry-Save Adders in a Multiplier

- * ADD the product bits vertically using Carry-Save adders
 - Full Adder adds three vertical bits
 - Half Adder adds two vertical bits
 - Each adder produces a partial sum and a carry
- Use Carry-propagate adder for final addition

Carry-Save Adders in a Multiplier

- Step 1: Use carry save adders to add the partial products
 - ♦ Reduce the partial products to just two numbers
- Step 2: Use carry-propagate adder to add last two numbers

Summary of a Fast Multiplier

- ❖ A fast n-bit × n-bit multiplier requires:
 - n² AND gates to produce n² product bits in parallel
 - Many adders to perform additions in parallel
- Uses carry-save adders to reduce delays
- Higher cost (more chip area) than sequential multiplier
- Higher performance (faster) than sequential multiplier

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Unsigned Division (Paper & Pencil)

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM

Sequential Division

- Uses two registers: HI and LO
- ❖ Initialize: HI = Remainder = 0 and LO = Dividend
- Shift (HI, LO) LEFT by 1 bit (also Shift Quotient LEFT)
 - Shift the remainder and dividend registers together LEFT
 - Has the same net effect of shifting the divisor RIGHT
- Compute: Difference = Remainder Divisor
- If (Difference ≥ 0) then
 - Remainder = Difference
 - ♦ Set Least significant Bit of Quotient
- Observation to Reduce Hardware:
 - ♦ LO register can be also used to store the computed Quotient

Sequential Division Hardware

 \Rightarrow HI = 0, LO = Dividend

* Results:

- ♦ HI = Remainder
- ♦ LO = Quotient

1.

Start

Shift (HI, LO) Left

Difference = HI – Divisor

Unsigned Integer Division Example

- ***** Example: **1110**₂ / **0100**₂ (4-bit dividend & divisor)
- * Result Quotient = 0011_2 and Remainder = 0010_2
- 4-bit registers for Remainder and Divisor (4-bit ALU)

Itera	ition	HI	LO	Divisor	Difference	
0	Initialize	0000	1110	0100		
	Shift Left, Diff = HI - Divisor	0001 ←	- 110 <mark>0</mark>	0100	< 0	
1	Diff < 0 => Do Nothing					
	Shift Left, Diff = HI - Divisor	0011	1000	0100	< 0	
2	Diff < 0 => Do Nothing					
	Shift Left, Diff = HI - Divisor	0111 ←	0000	0100	0011	
3	HI = Diff, set Isb of LO	0011	0001			
4	Shift Left, Diff = HI - Divisor	0110 ←	0010	0100	0010	
	HI = Diff, set Isb of LO	0010	0011			

Signed Integer Division

- Simplest way is to remember the signs
- Convert the dividend and divisor to positive
 - Obtain the 2's complement if they are negative
- Do the unsigned division
- Compute the signs of the quotient and remainder
 - Quotient sign = Dividend sign XOR Divisor sign
 - ♦ Remainder sign = Dividend sign
- Negate the quotient and remainder if their sign is negative
 - Obtain the 2's complement to convert them to negative

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

♦ Example: +17 / +3 Quotient = +5 Remainder = +2

2. Positive Dividend and Negative Divisor

 \diamond Example: +17 / -3 Quotient = -5 Remainder = +2

3. Negative Dividend and Positive Divisor

 \diamondsuit Example: -17 / +3 Quotient = -5 Remainder = -2

4. Negative Dividend and Negative Divisor

 \diamondsuit Example: -17 / -3 Quotient = +5 Remainder = -2

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Integer Multiplication in MIPS

- Multiply instructions
 - ♦ mult Rs, Rt

Signed multiplication

♦ multu Rs, Rt

Unsigned multiplication

- ❖ 32-bit multiplication produces a 64-bit Product
- Separate pair of 32-bit registers
 - **♦ HI = high-order 32-bit of product**
 - **♦ LO = low-order 32-bit of product**
- MIPS also has a special mul instruction
 - ♦ mul Rd, Rs, Rt Rd = Rs × Rt
 - Copy LO into destination register Rd
 - Useful when the product is small (32 bits) and **HI** is not needed

Integer Division in MIPS

- Divide instructions
 - ♦ div Rs, Rt Signed division
 - ♦ divu Rs, Rt Unsigned division
- Division produces quotient and remainder
- Separate pair of 32-bit registers
 - ♦ HI = 32-bit remainder
 - **♦ LO = 32-bit quotient**
 - ♦ If divisor is 0 then result is **unpredictable**
- Moving data from **HI, LO** to MIPS registers
 - ♦ mfhi Rd (Rd = HI)
 - ♠ mflo Rd (Rd = LO)

Integer Multiply and Divide Instructions

Instruction		Meaning	Format					
mult	Rs, Rt	HI, L0 = Rs \times_s Rt	0p = 0	Rs	Rt	0	0	0x18
multu	Rs, Rt	HI, LO = Rs \times_{u} Rt	0p = 0	Rs	Rt	0	0	0x19
mul Rt	Rd, Rs,	$Rd = Rs \times_s Rt$	0x1c	Rs	Rt	Rd	0	2
div	Rs, Rt	HI, LO = Rs $/_s$ Rt	0p = 0	Rs	Rt	0	0	0x1a
divu	Rs, Rt	$HI, LO = Rs /_u Rt$	0p = 0	Rs	Rt	0	0	0x1b
mfhi	Rd	Rd = HI	0p = 0	0	0	Rd	0	0×10
mflo	Rd	Rd = LO	0p = 0	0	0	Rd	0	0x12
mthi	Rs	HI = Rs	0p = 0	Rs	0	0	0	0×11
mtlo	Rs	LO = Rs	0p = 0	Rs	0	0	0	0x13

 x_s = Signed multiplication, x_u = Unsigned multiplication

 $I_s = Signed division, \qquad I_u = Unsigned division$

NO arithmetic exception can occur

String to Integer Conversion

Consider the conversion of string "91052" into an integer

- * How to convert the string into an integer?
- ❖ Initialize: sum = 0
- Load each character of the string into a register
 - Check if the character is in the range: '0' to '9'
 - Convert the character into a digit in the range: 0 to 9
 - ♦ Compute: sum = sum * 10 + digit
 - Property Pro
- To convert "91052", initialize sum to 0 then ...
 - \$\diams\ \text{sum} = 9, \text{ then 91, then 910, then 9105, then 91052}

String to Integer Conversion Function

```
# str2int: Convert a string of digits into unsigned integer
# Input: $a0 = address of null terminated string
# Output: $v0 = unsigned integer value
str2int:
     li $v0, 0 # Initialize: $v0 = sum = 0
          $t0, 10  # Initialize: $t0 = 10
     li
L1: lb
          t_{0} $t1, t_{0} $t1 = str[i]
          $t1, '0', done # exit loop if ($t1 < '0')
     blt
     bgt $t1, '9', done # exit loop if ($t1 > '9')
     addiu $t1, $t1, -48  # Convert character to digit
     mul $v0, $v0, $t0 # $v0 = sum * 10
     addu $v0, $v0, $t1 # $v0 = sum * 10 + digit
     addiu $a0, $a0, 1 # $a0 = address of next char
          L1 # loop back
```

Integer to String Conversion

- Convert an unsigned 32-bit integer into a string
- How to obtain the decimal digits of the number?
 - ♦ Divide the number by 10, Remainder = decimal digit (0 to 9)
 - ♦ Convert decimal digit into its ASCII representation ('0' to '9')
 - ♦ Repeat the division until the quotient becomes zero
 - Digits are computed **backwards** from least to most significant
- * Example: convert 2037 to a string
 - ◆ Divide 2037/10 quotient = 203 remainder = 7 char = '7'
 - \diamond Divide 203/10 quotient = 20 remainder = 3 char = '3'
 - ♦ Divide 20/10 quotient = 2 remainder = 0 char = '0'
 - \diamond Divide 2/10 quotient = 0 remainder = 2 char = '2'

Integer to String Conversion Function

```
# int2str: Converts an unsigned integer into a string
# Input: $a0 = value, $a1 = buffer address (12 bytes)
# Output: $v0 = address of converted string in buffer
int2str:
     li $t0, 10 # $t0 = divisor = 10
     addiu $v0, $a1, 11 # start at end of buffer
     sb $zero, 0($v0) # store a NULL character
L2: divu $a0, $t0  # L0 = value/10, HI = value%10
     mflo $a0 # $a0 = value/10
     mfhi $t1  # $t1 = value%10
     addiu $t1, $t1, 48 # convert digit into ASCII
     addiu $v0, $v0, -1 # point to previous byte
     sb $t1, 0($v0) # store character in memory
     bnez $a0, L2 # loop if value is not 0
     jr $ra # return to caller
```