Analysis Preliminary Exam Study Guide NDSU

James (Jimmy) Thorne May 22, 2019

Chapter 1

Measure Theory

1.1 σ -Algebras

Definition 1. Let X be a set. $A \subset \mathcal{P}(X)$ is an algebra if

- i. For $A \in \mathcal{A}, A^c \in \mathcal{A}$
- ii. If $A, B \in \mathcal{A}, A \cup B \in \mathcal{A}$

We say that \mathcal{A} is a σ -algebra if

iii. If A_j is a countable collection of sets in \mathcal{A} , then $\bigcup_{j\in\mathbb{N}} A_j \in \mathcal{A}$.

Exercise 1 (May 19). Let \mathcal{A} be an algebra of sets that is closed under countable increasing unions. Show that \mathcal{A} is a σ -algebra.

Exercise 2 (Jan 18). Let S be the collection of all subsets of [0,1) which can be written as a finite union of intervals of the form $[a,b) \subseteq [0,1)$. Show that S is an algebra of sets, but is not a σ -algebra.

Definition 2. Since the intersection of σ -algebra is itself a σ -algebra, for a given collection of sets \mathcal{E} we can define $M(\mathcal{E})$ as the intersections of all σ -algebras containing \mathcal{E} . We say $M(\mathcal{E})$ is the σ -algebra generated by \mathcal{E} . If \mathcal{E} is all the open sets on X, then $M(\mathcal{E})$ is the Borel σ -algebra.

The Borel σ -algebra on \mathbb{R} can be generated with several different sets. For example, one could use closed sets. Since the complement of every open set is closed (and vice versa) we generate the same σ -algebra.

Fact: If $\mathcal{E} \subseteq M(\mathcal{F})$, then $M(\mathcal{E}) \subseteq M(\mathcal{F})$

Exercise 3. Show that the closed rays $(-\infty, a]$ will generate the Borel σ -algebra.