Electronics and Telecommunication Department Course Code: ETU601 Date: 28/01/2016 Time: 10.30-11.30 a.n Course: Electromagnetic Fields Duration: 1Hr Max Marks: 15 CT-I Attempt the following Given the vectors $M = -10a_x + 4a_y - 8a_z$ and $N = 8a_x + 7a_y - 2a_z$. Find a unit vector 1. (03)in the direction of -M + 2N; the magnitude of $5a_x + N - 3M$; |M||2N|(M + N)2. Consider the vector field $G = ya_x + 2.5xa_y + 3a_z$ and the point Q(4,5,2). Find the scalar (03)component of G at Q in the direction of $a_N = \frac{1}{3}(2a_x + a_y - 2a_z)$; the vector component of G at Q in the direction of a_N and the angle between $G(r_Q)$ and a_N 3. Express $D = (x^2 + y^2)^{-1}(xa_x + ya_y)$ in cylindrical coordinate system. (03)Point charges of 50nC each are located at A(1,0,0), B(-1,0,0), C(0,1,0) and D(0,-1,0) in 4. (03)free space. Find the total force on the charge at A. 5. A $2\mu C$ point charge is located at A(4,3,5) in free space. Find E_{ρ} , E_{ϕ} and E_z at P(8,12,2)(03)

Course Code: ETU601

ELECTRONICS AND TELECOMMUNICATION DEPARTMENT Date: 23/01/2017

Course: Electromagnetic Fields

Duration: 1Hr

Time: 10.30-11.30 a.m.

Max. marks: 15

Attempt the following (any FIVE)

<u>CT-1</u>

	경우의 공기를 가려면 하는 경우를 가려면 하는 것이 있다.	2.52 36
∤ 1.	The vector from the origin to point A is given as $(6, -2, -4)$, and the unit vector directed from the origin towards point B is $(2, -2, 1)$ is	02
	from the origin towards point R is $(2, 2, 3)$ and the unit vector directed	03
12		
7 2.	$A = \rho \cos \theta a + \rho \sin \theta a + \rho a$ and $A = \rho \cos \theta a + \rho \cos \theta a$	03
	$psinva_0 - pa_z$ are everywhere perpendicular to each other.	
3.	A 2 μ C point charge is located at $A(4,3,5)$ in free space. Find E_{ρ} , E_{\emptyset} and E_{z} at $P(8,12,2)$.	03
4.		03
	extending from $r=3$ cm to $r=5$ cm . If $\rho_v=0$ elsewhere. Find the total charge	
	present throughout the shell. 6 4 6 7 6	
5.	The cylindrical surface $\rho = 8 cm$ contains the surface charge density,	03
	= -201zl = C (m ²) What is the total amount of charge present?	
-	$\rho_s = 5e^{-2\sigma/2} nC/m^2$. What is the total and σ in free space. Find E at $P(r=2,\theta=0.3r^2a_r nC/m^2)$ in free space.	03
6.		
	$25^{\circ}, \emptyset = 90^{\circ}$	ليني

GOVERNMENT COLLEGE OF ENGINEERING, AMRAVATI

(An Autonomous Institute of Govt. of Maharashtra)

Electronics and Telecommunication department

Class test I

Sub: ETU 601 Electromagnetic fields

Marks: 15

Date: 2 Feb, 2015 Solve any three

Q1. Transform the vector field $\mathbf{F}=2r\cos\varphi\mathbf{a}r+\mathbf{a}\varphi$ into Cartesian co-ordinates & evaluate it at P (4,-2, 3). Also find \mathbf{a}_F at P. (5M)

Q2.Calculate D in rectangular co-ordinates at P (2,-3, 6) m produced by (5M)

- a) A point charge Q_a =5.4mC at Q(-200,300,-600)cm
- b) A uniform line charge ρ_l =22mC/m on the y-axis.
- c) A uniform surface charge density $\rho_s=126\mu C/m^2$ on the plane z=-8m

Q3. a) Write short note on i) Scalar field ii) Vector field (2+3M)

- Derive the expression for E due to infinite uniform line charge along zaxis
- Q4. a) Find the **E** at $(0,\varphi,h)$ in cylindrical co-ordinates due to the uniformly charged disc $r \le a$, z=0 (disc of radius a in xy plane).
 - b) Give the statement of Gauss's law and obtain relation between D and E.

(3+2M)