

Cluster Software Tools: Beauty is in Simplicity

Putchong Uthayopas

Parallel Research Group

Department of Computer Engineering

Kasetsart University, Bangkok Thailand
email: pu@ku.ac.th

Outline

- Introduction and Problems
- Solutions
- Example: SCE project
- Conclusion

Introduction

- Beowulf cluster is now a very popular platform
 - Excellent price/performance
 - Scalable performance: to teraflops on hundreds of nodes
 - large selection of open source software
- What is wrong with this picture?

Problems

- Building and operating large cluster is painful
- Cluster is still difficult to use with very primitive environment
- Why?
 - Large number of tools focus on exploring complex new algorithms rather than simple but work methods
 - Smart design can hurt ©
 - Can be configured in a zillion unused ways and solving so many problems that hardly occurred
 - Results:
 - Complex to use, maintain, configure
 - Too difficult for users to learn

Beowulf: Power to the people

- Large Traditional Environment
 - Large and complex computing systems.
 - Professional administration, many internal experts
 - Solving large scientific problems
 - Big funding

- New Environment
 - Small to medium size (8-64 nodes) systems
 - Manage by users
 - Solving small,
 medium problem.
 Development,
 education.
 Industrial use
 - Small funding

- Fact: only 500 systems in the world have performance more than 68 Gflops (from Top 500 Lists)
- Who we should work for?

Why this is a problem?

- Assumption used to design tools is totally different for small/medium and large system
- Tools design for large system when used with small system will
 - Based on wrong design assumption
 - Having use algorithm that is unnecessarily complex to solve problems that never exist for small system
 - NFS mount

Beauty is in Simplicity

- Simplicity Usage
 - Focus on building only robust set of necessary functionalities
 - Focus on the ease of use and completeness of the implementation
- Benefit
 - Help users goes right to work quickly although system is not absolutely optimal
 - User can improve the system later once they learn more

Beauty is in Simplicity

- Simplicity in Design
 - Integration of many simple components
 - Well defined, simple architecture
 - Start simple, extensible by well define API
 - Focus on interoperable and information sharing among components

Benefit

 Reduced redundant components. System lighter, faster, and more robust

Our experience

- An integrated cluster software tools
 - Quick starting point for cluster builder
 - Automated cluster builder process up to the point that users can run MPI task with simple batch scheduler
 - Portability: no kernel modification, fully compatible with all software
- SCE components
 - Cluster builder tool (Beowulf Builder/CIMT)
 - Cluster middleware (KSIX)
 - Cluster management tool (SCMS/KCAP)
 - Batch scheduler (SQMS)
 - SCE bundled with fully configured MPICH

SCE Architectural Concept

- SCE focus on having simple but extensible architecture
- Offers API and services to ease tool development under SCE
- Single unify configuration service that can be access cluster wide. Shared by all tools

SCE Installer

- Automate the installation process up to the point that user can run MPI applications
 - Install package (RPM)
 - Invoke wizard of each package
- Framework that make it easy to integrate more tool into SCE

CimT: Cluster Infrastructure Management Tools

- Our next generation tool to build and manage cluster
 - Add,delete,change nodes configuration
- Support both command line and GUI mode
- Support both diskless/diskfull node
 - Support RedHat Linux

KSIX Cluster Middleware

- Provides many services (about 30 APIs) include
 - Global process management, signal delivery
 - Cluster membership management
 - Distributed event service
 - Naming service
- KSIX must be booted first, follows by the other tools

KSIX Usage

- Speed up parallel unix command with fast process creation
- Process Management for SQMS Batch Scheduler
- Dynamic process creation for MPI (MPICH) (in the future)
- Simple debugging support for MPI

System instrumentation Services

- Scalable and extensible Instrumentation Infrastructure in SCE
 - Get system information such as CPU,I/O, Memory, network
- System consists of
 - SMA System Management Agent
 - Response information via RMI
 - CMA Control and Monitoring Agent
 - Collect information on each node to SMA

Scalable Structure

Heirachical organization of partitions, highly scalable

Extensibility

- Separate between / Monitor Anything
 - Information transport mechanism (SCMS/RMS)
 - Interpretation (Client, Agent)
- Loadable Shared Plug-in Module in CMA
 - Define list of plug-in functions for each module
 - Allow initialization and finalization

Comparison with Performance Co-Pilot

Performance Comparison SCMS/RMS and PCP

SCMS Cluster Management Tool

- Parallel Unix command
- Complex graphical management console
 - More than 30 operations are supported
 - Configurable look and feel
 - Support large cluster
- Web and VRML Interface for remote monitoring and management

Kasetsart University

mmx ostxsr bogomips : 349.80 SQMS: Simple Queuing Management System

- Features
 - Sequential task
 - parallel MPI, PVM task
 - Simple load balancing
 - Reconfigurable scheduling policy, resource allocation policy
 - Globus support
 - Web portal support
- Planned for MAUI scheduler support, end of this year

CIB: Cluster Information Base

- XML based shared data store that can be access by any node store information about
 - current state of cluster operation (dynamic)
 - CPU, Memory used, network traffic
 - System configuration (static)
 - Hardware/ Software configuration

AMATA: Automatic Fault Detection and Recover subsystem

- Subsystem that detect system malfunction
- Send notification
- Allows smart fault discovery and recovery logic to be inserted

SCE and GRID

- SCE has built in Globus support now
 - KSIX is used to start Globus job with our custom GRAM script
 - Grid monitoring is now done using CIB
 - SCE is now used in our THAIGRID project <u>http://prg.cpe.ku.ac.th/thaigrid/</u>

Grid Application

Grid Application

Grid Application

Globus								
SCE			SCE			SCE		
Linux Linux	Linux	Linux	Linux	Linux		Linux	Linux	Linux
Nodes Nodes	Nodes	Nodes	Nodes	Nodes		Nodes	Nodes	Nodes

SCE Project Partnership

- AMD
 - SCE is developed on AMD sponsored Athlon/myrinet cluster (AMATA)
 - Partner with us to make and distribute SCE
 CD to cluster community

- Contribute small alpha cluster for 64 bit port to alpha
- Terra Soft Solutions
 - PowerPC port on terasoft platform
- SUT, KMITNB, KU (Thailand)

Current Status

SCE main site is now at

WWW.OPENSCE.ORG

- SCE 1.0 support RedHat 7.1 and 6.2
- SCE 1.2 (released October)
 - Bugs fixed and many new features
- Download
 - http://www.opensce.org
 - http://sourceforge.net/projects/sce

SCE Road Map

- SCE 1.5 (November 2001)
 - Simple CIB
 - More tools and features (such as PAPI/Rabbit support)
- SCE 2.0 (Q1 2002) major change
 - Cluster Information Base (CIB)
 - XML support
 - Working better with MPICH, Globus Grid
 - Smarter Batch Scheduler (SQMS 2.0)
 - Simple debugging and runtime visualization support for MPI applications

Conclusion

- Proposed design principle for cluster software tools and environment
 - Simplicity
 - Portability
 - Interoperability
 - Extensibility

- Directly address more realistic requirement
 - More work on user environment

MPVIEW Structure

Result

Performance Collector using CIB

Collector result example

{'psi': {'memory': [{'free': 5951488,
 'plugin_id': 2, 'shared': 58597376,
 'cached': 62603264, 'hid': 0, 'used':
 124915712, 'buffers': 17977344}]},
 'psi2': {'memory': [{'free': 25395200,
 'plugin_id': 2, 'shared': 66617344,
 'cached': 76500992, 'hid': 1, 'used':
 105467904, 'buffers': 5656576}]},
 'psi3': {'memory': [{'free': 4124672,
 'plugin_id': 2, 'shared': 27926528,
 'cached': 95178752, 'hid': 2, 'used':
 126611456, 'buffers': 4153344}]}}

XML Component & CIB

Result example

GRID Extension

