Banco de Dados I

03 - Modelo Lógico

Arthur Porto - IFNMG Campus Salinas arthur.porto@ifnmg.edu.br arthurporto.com.br

Sumário I

- Introdução
- 2 Domínio
 - Restrições de domínio
- Esquema Relacional
- Relação
 - Características
 - Ordenação das tuplas
 - Ordenação dos valores
 - Valores nas tuplas
 - Interpretação da relação
- Restrições de chave
 - Valor NULL
- Esquema de bancos de dados relacional
- Restrições de Integridade
 - Referencial

Sumário II

Outras

Referências

Introdução

- O modelo relacional representa o BD como uma coleção de relações.[1]
 - Informalmente uma relação é uma tabela de valores.
 - Cada linha é uma coleção de valores de dados relacionados.
 - A linha chamada de tupla e representa um fato!
 - O cabeçalho da coluna é o atributo.
 - Os tipos de valores que podem aparecer é o domínio.

Objeto	Terminologia
Tabela	Relação
Linha	Tupla
Coluna	Atributo

ALUNO

Nome	Numero_aluno	Tipo_aluno	Curso
Silva	17	1	CC
Braga	8	2	CC

Figura 1: Relação ALUNO (fonte: [1])

Domínio

- O domínio D define-se por nome, tipo de dado e/ou formato do qual são retirados os valores de dados que formam o domínio.
- Exemplos

Nome	Tipo dado	Formato
Numeros_telefone_nacional	Núm. Inteiros	(dd) dddd-dddd
Cadastro_pessoa_fisica	Núm. Inteiros	ddd.ddd.ddd-dd
Nomes	Caracteres que representam nomes válidos	-
Nomes_Cursos	Caracteres que representam os nomes dos cursos válidos	-

Domínio Restrições de domínio

- Dentro de cada tupla o valor do atributo A deve ser um valor atômico do dom(A).
- Os tipos de dados podem ser:
 - Numéricos: Inteiros e Reais
 - Caracteres com tamanho fixo ou variável
 - Booleanos
 - Tipos de dados especiais: data, hora, marcador de tempo moeda, etc.
 - Outros domínios específicos onde todos os valores possíveis são identificados.

Esquema Relacional

• Um Esquema Relacional é indicado por [1]

$$R(A_1, A_2, ..., A_n)$$
 (1)

onde:

 ${\cal R}$: nome da relação

A: atributos

 $n\,$: grau da relação (número de atributos)

ullet Cada A_i irá representar um "papel" em um domínio D (dom (A_i)) no R

Esquema Relacional

- Exemplo de um esquema relacional da relação ALUNO
 - Sem definição do tipo de dados
 ALUNO(Nome, Cpf, Telefone_residencial, Endereco, Telefone_comercial, Idade, Media)
 - Com a definição dos tipos de dados

ALUNO(Nome:string, Cpf:string, Telefone_residencial:string, Endereco:string, Telefone_comercial:string, Idade:integer, Media:real)

- Domínios especificados
 - dom(Nome) = Nomes
 - dom(Cpf) = Cadastro_pessoa_fisica
 - dom(Telefone_residencial) = Numeros_telefone_nacional
 - dom(Telefone_comercial) = Numeros_telefone_nacional
 - etc...

• r(R) representa um **estado de relação** (um retrato do domínio) r do R, formada por um conjunto de n **tuplas**

$$r = \{t_1, t_2, ..., t_m\} \tag{2}$$

• Cada n tuplas é uma lista ordenada de n valores

$$t = \langle v_1, v_2, ..., v_n \rangle \tag{3}$$

- Cada valor v_i , $1 \le i \le n$, é um elemento de dom (A_i) , ou o valor *NULL*
- ullet $t[A_i]$ corresponde ao $i^{\acute{e}simo}$ valor em t

- A **relação** apresentada em forma de uma tabela.

Figura 2: Relação ALUNO (fonte: [1])

- A relação pela formulação matemática
 - ullet r(R) é um subconjunto do produto cartesiano dos domínios que definem R

$$r(R) \subseteq (\mathsf{dom}(A_1) \times \mathsf{dom}(A_2) \times \dots \times \mathsf{dom}(A_n)) \tag{4}$$

• Definindo a **cardinalidade** (número total de valores) de um D como |D|, o número total de tuplas é:

$$|\mathsf{dom}(A_1)| \times |\mathsf{dom}(A_2)| \times ... \times |\mathsf{dom}(A_n)|$$
 (5)

- Este produto de cardinalidades representa todas as tuplas possíveis em qualquer estado de relação (r(R)).
- \bullet O r(R) pode variar, porém o R (esquema relacional) varia com pouca frequência.

03 - Modelo Lógico Banco de Dados I 11/27

Características - Ordenação das tuplas

- Matematicamente n\u00e3o existe ordem nos elemento s de um conjunto.
- Uma relação não é sensível à ordenação das tuplas.
 - No arquivo de disco (como na tabela) existe ordem, mas matematicamente n\u00e3o.
- A ordenação não faz parte da definição da relação.
- Se a ordem das tuplas na Fig. 2 for alterada o estado da relação não muda.

Relação Características - Ordenação dos valores

- A ordem dos atributos \acute{e} importante, pois uma tupla n \acute{e} uma lista ordenada
- Porém, desde que a correspondência entre os atributos seja mantida, a ordem não é tão importante.

Características - Ordenação dos valores

- Difinição alternativa
 - Um esquema de relação

$$R = R(A_1, A_2, ..., A_n)$$
(6)

- Representada por um conjunto e atributos (não mais uma lista ordenada).
- O estado da realação r(R) é definido por um conjunto finito de **mapeamentos** (tuplas) de R para D

$$r = \{t_1, t_2, ..., t_m\} \tag{7}$$

D é a união dos domínios (não mais o produto cartesiano)

$$D = \operatorname{dom}(A_1) \cup \operatorname{dom}(A_2) \cup \dots \cup \operatorname{dom}(A_n)$$
(8)

• $t[A_i]$ deve estar em dom (A_i) para $1 \le i \le n$ para cada mapeamento t em r.

03 - Modelo Lógico Banco de Dados I 14/27

Características - Ordenação dos valores

- Exemplo

```
t = < (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road), (Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>
```

```
t = < (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25), (Office_phone, (817)749-1253),(Gpa, 3.53),(Home_phone, NULL)>
```

Figura 3: Tuplas idênticas com ordem e valor dos atributos (fonte [1])

- A tupla é o um conjunto de pares (atributo, valor).
 - Mantendo assim a correspondência
 - O atributo A_i se mantém ligado ao valor v_i do dom (A_i) .
- Essa definição (alternativa) é a mais geral.

Características - Valores nas tuplas

- Os valores são atômicos
 - Valores compostos ou multivalorados não são aceitos.
 - Eles precisam estar em relações separadas.
- NULL
 - Valores desconhecidos ou não aplicáveis as tuplas.
 - Diferentes significados: desconhecido, não disponível, não se aplica, indefinido,...
 - Ambiguidade
 - Dois endereços NULL significa que é o mesmo endereço?

Características - Interpretação da relação

- Algumas reações representam entidades outras relacionamentos
- Entidade
 - ALUNO(Nome, Cpf, Telefone_residencial, Endereco, Telefone_comercial, Idade, Media)
- Relacionamento
 - CURSAR(Cpf_aluno, Codigo_disciplina)

Restrições de chave

- Relembrando... "... uma relação é um conjuto de tuplas".
 - Em um conjunto, todos os elementos são distintos, ou seja, todas as tuplas em uma relação precisam ser distintas.
 - Duas tuplas em qualquer estado de relação r de R não devem term a mesma combinação de valores para os atributos [1].

$$t_1[SCh] \neq t_2[SCh] \tag{9}$$

onde:

t: tupla

SCh: subconjunto de atributos

- SCh é uma superchave de R se este é exclusivo em qualquer r de R.
- Toda relação tem pelo menos uma superchave.

Restrições de chave

- Devido a possível redundância de alguns atributos na superchave, a definção de uma chave se torna mais útil.
 - Uma chave Ch de R é uma SCh de R, mas a remoção de qualquer A de Ch resulta em um conjunto Ch' que não é mais Sch de R.
- Propriedades
 - Duas tuplas distintas em qualquer estado da relação não podem ter valores idênticos para os atributos chave.
 - Uma chave é uma superchave mínima
- Características
 - Toda chave é uma superchave.
 - Uma chave deve ser invariável no tempo.
 - As superchaves mínimas são as chaves candidatas.
 - Uma entre as chaves candidatas é eleita chave primária, ou chave que será a identificação das tuplas na relação.

Restrições de chave Valor NULL

- O valor NULL é permitido ou não?
 - Os atributos que precisam ser válidos, devem ter a restrição NOT NULL

Esquema de bancos de dados relacional

Um esquema de BD relacional é o conjunto de esquemas de relação.

$$S = R_1, R_2, ..., R_m \tag{10}$$

- S possui um conjunto de restrições de integridade RI.
- Um estado de BD relacional é um conjunto de estados de relação.

$$DB = r_1, r_2, ..., r_m (11)$$

Cada uma das ri satisfazem RI.

Esquema de bancos de dados relacional

Restrições de Integridade

- Nenhum valor de chave primária pode ser NULL.
- Uma tupla em uma relação que referencia uma outra relação precisa se referir a uma tupla existente.
- Exemplo
 - Dnr de FUNCIONARIO com Dnumero de DEPARTAMENTO

Restrições de Integridade Referencial

- Chave estrangeira

- Expressa a integridade referencial entre dois esquemas de relação R_1 e R_2 .
- Um conjunto de atributos ChE em R_1 referencia R_2 se:
 - Atributos de mesmo domínio da ChP de R_2 .
 - O valor de ChE em t_1 do $r_1(R_1)$ ocorre como um valor de ChP em t_2 do $r_2(R_2)$ $(t_1[ChE]=t_2[ChP])$ ou é NULL.
- As restrições de integridade referencial surgem com os relacionamentos entre as entidades.

Restrições de Integridade

Referencial

- Dnr em FUNCIONARIO.
- Cpf_supervisor em FUNCIONARIO.

Restrições de Integridade Outras

- Integridade semântica
 - Exemplos
 - O salário do funcionário não deve ser superior ao seu supervisor.
 - O número máximo de horas trabalhadas por um funcionário é de 56 horas por semana.
- Dependência funcional: Valores de atributos dependentes de outros.
- Restrição de transição: O salário só pode mudar se...

Referências

R. Elmasri and S.B. Navathe. Sistemas de banco de dados. PEARSON BRASIL, 2011.