# MATH 3070 Lab Project 7

# Pranav Rajan

# October 21, 2020

# Contents

| Problem 1 (Verzani problem 3.2)                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem 2 (Verzani problem 3.4)                                                                                                                                       |
| Problem 3 (Verzani problem 3.5)                                                                                                                                       |
| Problem 4 (Verzani problem 3.8)                                                                                                                                       |
| Remember: I expect to see commentary either in the text, in the code with comments created using #, or (preferably) both! Failing to do so may result in lost points! |
| Problem 1 (Verzani problem 3.2)                                                                                                                                       |
| For the michelson (MASS) data set, produce a density plot comparing Speed between Experiments 1 and 2.                                                                |
| <pre># Your code here require(UsingR)</pre>                                                                                                                           |
|                                                                                                                                                                       |
| ## Loading required package: UsingR                                                                                                                                   |
| ## Loading required package: MASS                                                                                                                                     |
| ## Loading required package: HistData                                                                                                                                 |
| ## Loading required package: Hmisc                                                                                                                                    |
| ## Loading required package: lattice                                                                                                                                  |
| ## Loading required package: survival                                                                                                                                 |
| ## Loading required package: Formula                                                                                                                                  |
| ## Loading required package: ggplot2                                                                                                                                  |
| <pre>## ## Attaching package: 'Hmisc'</pre>                                                                                                                           |

```
## The following objects are masked from 'package:base':
##
##
       format.pval, units
##
## Attaching package: 'UsingR'
## The following object is masked from 'package:survival':
##
##
       cancer
str(michelson)
                    100 obs. of 3 variables:
## 'data.frame':
    $ Speed: int 850 740 900 1070 930 850 950 980 980 880 ...
## $ Run : Factor w/ 20 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
   $ Expt : Factor w/ 5 levels "1","2","3","4",...: 1 1 1 1 1 1 1 1 1 1 ...
len_split <- with(michelson, split(Speed, Expt))</pre>
expt1 <- len_split$"1"</pre>
expt2 <- len_split$"2"</pre>
plot(density(expt1), lty= 1)
lines(density(expt2), lty=2)
```

### density.default(x = expt1)



### Problem 2 (Verzani problem 3.4)

Three students record the time spent on homework per class. Their data is:

| Student        | 1        | 2       | 3        | 4        | 5 |
|----------------|----------|---------|----------|----------|---|
| Marsha<br>Bill | 25<br>30 | 0<br>30 | 45<br>30 | 90<br>30 | 0 |
| Holly          | 15       | 0       | 90       | 0        |   |

Use a list to store these values. Then create a boxplot to compare. (You must use boxplot()'s formula interface for this problem.)

```
# Your code here
times <- c(25, 0, 45, 90, 0, 30, 30, 30, 30, 15, 0, 90, 0)
students <- rep(c("Marsha", "Bill", "Holly"), times=c(5, 4, 4))
theData <- list(time = times, student = students)
boxplot(time ~ student, data = theData)</pre>
```



### Problem 3 (Verzani problem 3.5)

A group of nursing students take turns measuring some basic assessments. Their data is:

|          | Temp | Pulse | Systolic | Diastolic |
|----------|------|-------|----------|-----------|
| Jackie   | 98.2 | 96    | 134      | 90        |
| Florence | 98.6 | 56    | 120      | 80        |
| Mildred  | 98.2 | 76    | 150      | 95        |

Create a data frame of these values. Will plot() and boxplot() produce the same graphic?

```
# Your code here

Jackie <- c(98.2, 96, 134, 90)

Florence <- c(98.6, 56, 120, 80)

Mildred <- c(98.2, 76, 150, 95)

theData <- data.frame(Jackie, Florence, Mildred)

plot(theData)
```



boxplot(theData)



#### Problem 4 (Verzani problem 3.8)

The second argument to split can be a list of factors. The result is that all interactions (possible combinations) are used for the groups. In the ToothGrowth data set, growth (len) is measured for two types of supplements (supp) and three doses (dose). Split this len value into 6 groups.

```
# Your code here
str(ToothGrowth)
## 'data.frame':
                    60 obs. of 3 variables:
   $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
    $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
    $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
len <- ToothGrowth$len</pre>
supp <- ToothGrowth$supp</pre>
dose <- ToothGrowth$dose</pre>
split(len, list(supp, dose))
## $0J.0.5
  [1] 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7
##
##
## $VC.0.5
   [1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0
```

```
##
## $0J.1
## [1] 19.7 23.3 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3
##
## $VC.1
## [1] 16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5
##
## $0J.2
## [1] 25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23.0
##
## $VC.2
## [1] 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5
```