专业: 电气工程及其自动化

姓名: ____严旭铧____

学号: <u>3220101731</u>

日期: 2023 年 11 月 27 日

地点: 东 三 206 教 室

浙江大学实验报告

课程名称: ______电路与电子技术实验 I ___指导老师: ___姚缨英___成绩: ____

实验 3 频率特性曲线的测量

实验任务

- 1. L=40mH, C=0.1μF, R=100 Ω ,测量 UR、UL、UC、ULC、US 的幅频特性。记录信号源空载时的输出电压值。
- 2. 比较 Q, ω_0 , BW 的测量结果与理论值,并说明原因。
- 3. 谐振频率下,测量线圈等效电阻、信号源内阻

任务一: 测量幅频特性

1. 实验原理

图 1

如图为利用示波器测量 UR 频率特性的电路原理图。该图中,CH1 和 CH2 以及信号源共地,若设 CH1 测量的电位值为 U1,CH2 测量的电位值为 U2,则 $U_R = U1$, $U_{LC} = U2 - U1$ 。在测量时可以用示波器的 Math 功能,将 CH2 的波形减去 CH1 的波形,得到 LC 部分的波形。该方案由于必须共地测量,且涉及 math 计算,不够直观。但在测量电路实际谐振频率时,需要这样连接。当两路信号相位差为 0 时表明发生了串联谐振。

在测量后续的幅频特性时,可以将测量电路改进为,将示波器接入隔离通道,利用隔离通道进行测量。隔离通道可以让示波器两个通道不必共地,要测量哪个器件的特性,直接把两根导线搭载器件两端即可。

在 L=40mH, C=0.1μF, R=100 Ω 的情况下,计算出理论的谐振频率 f = 2516.46Hz。

2. 实验方案

- 1) 测量实际的谐振频率: 按图 1 连接电路,信号发生器输出 Vpp=4V,f=2500Hz 的正弦波。电阻 $R=100\Omega$,电感 $C=0.1\mu F$,电感 L=40mH(用 4 个 10mH 的电感串联得到)。CH1 测量 R 两端的电压,CH2 测量信号源两端的电压。当电路发生谐振时,输入 CH1 和 CH2 的信号应为 同相位。利用 Measure 功能中的相位差,Source A 设为 CH1,Source B 设为 CH2,测量相位差 [1-2]。当其为 0° 时,在示波器上读出此时的频率 f_0 , f_0 为谐振频率。
- 2) 利用隔离通道测量 UR、UL、UC、ULC、US 的幅频特性:
 - i. 将示波器 CH1 接入隔离通道,放大倍数调为×1, CH2 不接,其他部分电路不变。保持频率为 fo 不变。
 - ii. 从隔离通道引出两条导线,分别搭在 R、L、C、LC 和信号源两端,测量在 f_0 时,各元件 两端的电压峰峰值 Vpp 并记录为 V_0 。
 - iii. 导线搭在 R 两端,调小信号发生器频率,同时观察示波器,当此时的峰峰值为 f_0 时的 $1/\sqrt{2}$ 即 $V_1 = V_0/\sqrt{2}$ 时,记录此频率 f_{11} 。在 f_{11} 下重复步骤ii,记录各元件两端峰峰值。再调大信号发生器的频率,同时观察示波器,当此时的峰峰值为 f_0 时的一半即 $V_1 = 0.5V_0$ 时,记录此频率 f_{12} ,在 f_{12} 下重复步骤ii,记录各元件两端峰峰值。此时我们就得到了三个频率点 f_{12} 、 f_0 ,通过公式 $BW = 2\pi I_1 f_{12}$ f_{11} 可以得到通带宽 BW。
 - iv. f_{11} 、 f_{12} 、 f_0 将频带分为 4 个区域。下面对这四个区域划分测量区间,在 f_{11} 和 f_0 之间、 f_{12} 和 f_0 之间各插入 2 个点,在 0 到 f_{11} 和 f_{12} 到 ∞ 之间各插入 3 个点。测量点之间的距离尽可能均匀。划分好后对剩下 10 个测量点依次重复步骤ii。
 - v. 根据上述步骤得到的 13 个测量点共 65 个数据点,进行幅频特性曲线的绘制。

3. 数据记录

谐振频率 f_0 = 2408Hz , f_{11} = 2021Hz , f_{12} = 2890Hz , 谐振电流 I_0 = 6.08mA 信号源空载时,输出电压峰峰值为 4.12V,转化为有效值后为 1.45V 谐振时,信号源输出电压峰峰值为 3.28V,转化为有效值后为 1.16V

表 1 幅频特性数据(表中均为峰峰值)

序号	f/Hz	Us/V	UL/V	UC/V	UR/V	ULC/V
1	700	4.08	0.396	4.40	0.204	4.00
2	1000	4.04	0.848	4.76	0.312	4.04
3	1500	3.96	2.40	6.12	0.588	3.80
4	2021	3.64	6.80	9.60	1.21	3.08
5	2150	3.44	8.24	10.24	1.42	2.52
6	2300	3.24	10.00	10.88	1.64	1.82
7	2408	3.28	10.72	10.72	1.72	1.56
8	2550	3.26	10.88	9.76	1.62	1.86
9	2700	3.44	10.32	8.32	1.42	2.44
10	2890	3.60	9.60	6.80	1.21	2.96
11	3200	3.80	7.92	4.56	0.936	3.44
12	3500	3.88	7.04	3.38	0.768	3.68
13	3800	3.96	6.32	2.62	0.636	3.76

注: 表中均为峰峰值, 转化为有效值需除以2√2。

4. 数据处理与分析

图 2 幅频特性曲线

通带宽 $BW = 2\pi |f_{12} - f_{11}| = 5460.1 \text{ rad/s}$ 品质因数 $Q = U_{L0}/U_R = 6.23$

*补充: 利用示波器内置频响特性(波特仪)测量

CH2接入R两端,打开示波器上自带的波特仪功能,按下图进行操作,绘制出R法幅频特性曲线。

任务二:比较 Q, ω_0 ,BW 的测量结果与理论值,并说明原因。

通带宽 $BW = 2\pi |f_{12} - f_{11}| = 5460.1 \text{ rad/s}$

而理论值 BW_0 = R/L = 2500 rad/s,比实际测量值小得多。考虑到电感线圈可能存在较大内阻,而该计算公式中,R 的部分没有考虑电感线圈的等效阻值 R_L 和信号源的内阻 R_S 。结合任务三算出的数据,该电感(4 个 10mH 串联)的等效阻值约为 90.72 Ω ,进行估计和修正,修正后的理论值为 BW_0 = $(R+R_L+R_S)/L = 5987.7$ rad/s,较为接近。

品质因数测量值为 $Q_1 = U_{L0}/U_R = 6.23$

另一种算法 $Q_2 = \omega_0 L/R = 2.52$

未修正内阻的理论值 $Q_3 = \frac{1}{R} \sqrt{\frac{L}{c}} = 6.32$

修正了电感和信号源内阻的理论值 $Q_4 = \frac{1}{R+RL+RS} \sqrt{\frac{L}{c}} = 2.64$

容易发现,Q1 和 Q3 接近,Q2 和 Q4 接近,但 Q1 和 Q2 相差很大。也就是说,考虑内阻和不考虑内阻两种方式算出来的相差值很大。如果在实际测量中直接用 Q1 的算法, U_{L0} 实际上是加上了电感上的电阻的分压,而 U_R 是漏掉了信号源内阻带来的影响。

任务三: 谐振频率下, 测量线圈等效电阻、信号源内阻

1. 实验原理

如图 3,实际情况下要考虑信号源的内阻 Rs和电感线圈的等效电阻 RL。

 R_L = 谐振时的 U_{LC} 谐振电流, 谐振电流 I_0 = 6.08mA。

信号源的内阻 Rs = (-谐振时的 U+开路时的信号源电压)/谐振电流

图 3 谐振点处的等效电路

根据任务1的测量数据带入计算即可得到所求阻值。

2. 数据处理与分析

$$\begin{split} R_L &= U_{LC}/I_0 = 0.552 V/ ~(6.08 mA) ~= 90.72 \Omega \\ R_S &= (-1.16 + 1.45) ~V/ ~(6.08 mA) ~= 48.79 \Omega \end{split}$$

提高任务一:输入方波使 UR 得到较理想正弦波。

1. 实验方案

- 1) 按照任务一的电路连接,CH1 输入频率为 f_0 = 2408Hz,峰峰值为 4V 的方波,CH2 接在电阻 R 两端。电阻 R 先用 100Ω
- 2) 打开示波器 Math 中的 FFT 功能,信源通道的"通道耦合"设为"交流"方式,"获取方式"设为"平均",在工具菜单"类型"选"峰值",打开显示表格和频率,以频率排序,调整好水平和垂直档位,使屏幕下方出现 10 个左右的峰。

2. 数据处理与分析

此时方波形变不是特别大,电阻两端的电压波形接近正弦波。

图 4 输出频谱

图 5 输入频谱

对比可以发现,输出频谱只有在 2.29 KHz 处有一个很明显的峰,而输出频谱的峰分布比较均匀。 猜想波形与方波的频率和 R 的值有关。利用 Multisim 仿真发现,当 f 与理论谐振频率 $f_0=2516 Hz$ 相差越近,波形越像正弦波,并且在 f 均为 f_0 的情况下,R 越小,波形越像正弦波。

图 61Ω f₀

图 710Ω f₀

图 8 500Ω f₀

图 9100Ω 700Hz

图 10 100Ω 2900Hz

图 11 100Ω 2000Hz

图 12 100Ω fo

查阅相关资料后得到如下结论:

使 RLC 电路谐振频率等于方波的基波频率,若 RLC 谐振电路的 Q 值足够高,可得到频率与方波基波频率相同的正弦波。 $Q = \frac{1}{R} \sqrt{\frac{L}{c}}$,故**在不改变 LC 的情况下,R 越小,波形越接近正弦波**。

提高任务二: 用谐振法测量 100Ω与 47uF 并联电路的参数值。

1. 实验原理

图 13 谐振法原理图

由于电感内阻较大,如果采用并联谐振(LCR 均并联),因为电感线圈阻值的存在且较大,会导致该电路无法发生谐振。只能采用串联谐振。图中 R1 为采样电阻,用于测量电路中的电流。经计算得,该电路的谐振频率 f_0 = 232.15Hz。在实际测量中,需要调节信号源频率 f_0 CH1 测量电源电压,CH2 测量电阻两端电压,共地连接。当 U1 和 U2 的相位差为 0 时,则恰好为该电路的谐振频率 f_0 测量出 RC 并联的阻抗模,与谐振频率 f_0 联立即可求出 R 和 C 的实际值。

RC 并联阻抗模的计算:

2. 实验方案

如图 13 所示,连接电路。调节信号源频率 f, 当 U1 和 U2 的相位差为 0 时,则恰好为该电路的谐振 频率 f。

3. 数据记录

用 LCR 测量仪测得 $C = 45.092 \mu F$, $R = 93.21 \Omega$

4. 数据处理与分析

拓展一: 利用频率特性设计信号处理电路

要求: 输入信号为 1V、10kHz 与 1V、20kHz 正弦波信号的合成,请设计 RLC 电路使得一路输出为 10kHz 信号,另一路为 20kHz。

思路: 由谐振频率计算公式,分别求出 f1 = 10kHz 和 f2 = 20kHz 时的 LC 的值。再将其分配成 L 和 C 的乘积。经计算得,f1 时谐振的分配可以是 L1 = 1.6mH, $C1 = 0.16\mu$ F;f2 时谐振的分配可以是 L2 = 79mH,C2 = 790pF。两信号源串联,连接两并联支路,支路上分别放上两组 LC,则支路上会发生对应的串联谐振。

仿真验证:

f1 发生串联谐振的那路输出的是 f1 的信号,f2 发生串联谐振的那路输出的是 f2 的信号,可以实现功能。

实验思考和拓展

- 1. 只有信号源和示波器,则它们共地连接, U_s 测量很简单,其他参数测量时,将要测的元件放在离接地(0 势能点)最近的地方,CH1 接到该元件两端,测一个改一次电路中元件顺序就行。如果支持Math 并且 Math 波形可以显示测量值,则一次可以测两个离地最近的元件,减一减波形就能测出来。
- 2. 可以用二维折线图加上数据标签, 横坐标轴用对数刻度。