1 Review of Probability

1.1 Probability

- Sample space Ω is the collection of all possible outcomes.
- An event is a subset of Ω .
- σ -field \mathcal{F} is a collection of events such that: (i) $\emptyset \in \mathcal{F}$; (ii) if an event $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$; (iii) if $\{A_i \in \mathcal{F} : i \in \mathbb{N}\}$, then $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}$.
- Measure space (Ω, \mathcal{F}) .
- Probability $P: \mathcal{F} \mapsto [0,1]$ is a function such that: (i) $P(A) \geq 0$ for all $A \in \mathcal{F}$; (ii) $P(\Omega) = 1$; (iii) if $A_i \in \mathcal{F}$, $i \in \mathbb{N}$, are mutually disjoint, then $P\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \sum_{i \in \mathbb{N}} P\left(A_i\right)$.
- Probability space (Ω, \mathcal{F}, P) .
- Measurable function: a function X is called $(\Omega, \mathcal{F}) / (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ measurable if $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$ for any $B \in \mathcal{B}_{\mathbb{R}}$.
- Random variable: $X : \Omega \to \mathbb{R}$ is a measurable function from (Ω, \mathcal{F}) and $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.
- Cumulative distribution function (CDF)
- Probability density function (PDF)
 - Univariate random variable
 - Bivariate random variable
 - Multivariate random variable
- Conditional distribution

1.2 Expectation

- Expectation is an average of a random variable. Expectation is nothing but an integration, where the integrand is the random variable, and the measure is the probability measure. We write E[X], instead of $\int X dP_X$, just for a concise notation when the underlying probability measure is clear.
- Conditional expectation
- Law of iterated expectation: E[E[Y|X]] = E[Y].
- Properties of conditional expectations
 - 1. $E[E[Y|X_1, X_2]|X_1] = E[Y|X_1]$
 - 2. $E[E[Y|X_1]|X_1, X_2] = E[Y|X_1]$
 - 3. E[h(X)Y|X] = h(X)E[Y|X]