Data Mining Association Rules: Advanced Concepts and Algorithms

Lecture Notes for Chapter 7

Introduction to Data Mining by Tan, Steinbach, Kumar

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Frequent pattern mining

- It all started with frequent itemsets in supermarket transactions.
- Suppose people have a *bonuscard*, now we can track transactions of a customer through time.
- The pattern becomes more complex: from *itemset* to *sequence* of *itemsets*.
- More complex patterns: trees (e.g. XML data) and graphs (browsing patterns, chemical structures, etc).

Tan,Steinbach, Kumar Introduction to Data Mining

4/18/2004

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$S = \langle e_1 e_2 e_3 ... \rangle$$

- Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k (not necessarily distinct) events (items)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004 5

Examples of Sequence

- Web sequence:
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
 </Fellowship of the Ring} {The Two Towers} {Return of the King}>

Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Formal Definition of a Subsequence

• A sequence $<a_1 a_2 \dots a_n>$ is contained in another sequence $<bb_1 b_2 \dots b_m>$ $(m \ge n)$ if there exist integers $i_1 < i_2 < \dots < i_n$ such that $a_1 \subseteq b_{i_1}$, $a_2 \subseteq b_{i_2}, \dots, a_n \subseteq b_{i_n}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 7

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- Task:
 - Find all subsequences with support ≥ minsup

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 8

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

 $\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$

 How many k-subsequences can be extracted from a given n-sequence?

Apriori property for sequences

Let D be a database that contains a collection of data sequences d. The support of a sequence t is the fraction of all data sequences that contain t:

$$\mathbf{s}(t) = \frac{|\{d \in D: t \text{ is a subsequence of } d\}|}{|D|}$$

Apriori property:

If a data sequence d contains a sequence t, then it will also contain any subsequence of t.

Therefore:

If w is a subsequence of t, then $s(w) \ge s(t)$.

Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 10

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4 1, 2
С	1	1, 2
С	2	2,3,4 2,4,5
С	3	
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3

Minsup = 50%

Examples of Frequent Subsequences:

< (1.2) > s=60% < (2.3) > s=60% < (2.4) > s=80% < (3) (5) > s=80% < (1) (2) > s=60% < (2) (2) > s=60% < (1) (2.3) > s=60% < (1.2) {2.3} > s=60% < (1.2) {2.3} > s=60%

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 11

Generalized Sequential Pattern (GSP)

- Step 1:
 - Make the first pass over the sequence database D to yield all the 1element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - ◆ Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate k-sequences whose actual support is less than minsup

Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 12

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences $<\{i_1\}>$ and $<\{i_2\}>$ will produce three candidate 2-sequences: $<\{i_1\}$ $\{i_2\}>$, $<\{i_2\}$ $\{i_1\}>$ and $<\{i_1$ $i_2\}>$
 - Each frequent 1-sequence <\(i_m\)> produces the candidate 2-sequence <\(i_m\) \(i_m\)>.

For example, if <{A}> and <{B}> are frequent, this produces the candidate 2-sequences: <{A} {B}>, <{B} {A}>, <{A,B}>, <{A} {A}> and <{B} {B}>.

Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Candidate Generation

- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first (using the lexicographic order of events within each element) event in w₁ is the same as the subsequence obtained by removing the last event in w₂.
 - \bullet The resulting candidate after merging is given by the sequence w_1 extended with the last event of $w_2.$
 - If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1
 - Otherwise, the last event in w₂ becomes a separate element appended to the end of w₁

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 14

Candidate Generation Examples

- Merging the sequences $w_1=<\{1\} \{2\ 3\} \ \{4\}> \text{ and } w_2=<\{2\ 3\} \ \{4\ 5\}> \text{ will produce the candidate sequence} < \{1\} \ \{2\ 3\} \ \{4\ 5\}> \text{ because the last two events in } w_2 \ (4\ \text{ and } 5) \text{ belong to the same element}$
- Merging the sequences $w_1 \! = \! <\! \{1\} \{2\ 3\} \ \{4\}\!> \text{ and } w_2 \! = \! <\! \{2\ 3\} \ \{4\} \ \{5\}\!>$ will produce the candidate sequence < \{1} \{2\ 3\} \{4\} \{5}\!> because the last two events in w_2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences $w_1 = <\{1\} \{2 \ 6\} \{4\} > \text{ and } w_2 = <\{1\} \{2 \ \{4 \ 5\} > \text{ to produce the candidate} < \{1\} \{2 \ 6\} \{4 \ 5\} > \text{ because if the latter is a viable candidate, then it can be obtained by merging } w_1 \text{ with} < \{2 \ 6\} \{4 \ 5\} >$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

15

GSP Exercise

Number	Frequent 3-sequences	Generate the candidate
1	<{1,2,3}>	4-sequences.
2	<{1,2} {3}>	Which ones are pruned?
3	<{1} {2,3}>	which ones are pruneu?
4	<{1,2} {4}>	
5	<{1,3} {4}>	
6	<{1,2,4}>	
7 <{2,3} {3}>		
8	<{2,3} {4}>	
9	<{2} {3} {3}>	
10	<{2} {3} {4}>	
Tan,Steinbach, K	umar Introduction to Data Mining	4/18/2004 17

GSP Exercise

Number	Frequent 3-sequences	
1	<{ 1 ,2,3}>	
2	<{1,2} {3}>	1 + 7: < {1,2,3} {3}>
3	<{1} {2,3}>	
4	<{1,2} {4}>	
5	<{1,3} {4}>	
6	<{1,2,4}>	
7	<{2,3} { <mark>3</mark> }>	
8	<{2,3} {4}>	
9	<{2} {3} {3}>	
10	<{2} {3} {4}>	
Tan,Steinbach, K	umar Introduction to Data Mining	4/18/2004 18

GSP Exercise Number Frequent 3-sequences <{1,2,3}> 1 + 7: <{1,2,3} {3}> <{1,2} {3}> 1 + 8: <{1,2,3} {4}> 3 <{1} {2,3}> 2 + 9: <{1,2} {3} {3}> <{1,2} {4}> 2+10: <{1,2} {3} {4}> 5 <{1,3} {4}> 6 <{1,2,4}> <{2,3} {3}> 8 <{2,3} {4}> 9 <{2} {3} {3}> 10 <{2} {3} {<mark>4</mark>}> 4/18/2004 21

GSP Exercise Number Frequent 3-sequences <{1,2,3}> 1 + 7: <{1,2,3} {3}> <{1,2} {3}> 1 + 8: <{1,2,3} {4}> 3 <{1} {2,3}> 2 + 9: <{1,2} {3} {3}> <{1,2} {4}> 2+10: <{1,2} {3} {4}> 3 + 7: <{1} {2,3} {3}> <{1,3} {4}> 3 + 8: <{1} {2,3} {4}> 6 <{1,2,4}> <{2,3} {3}> 8 <{2,3} {<mark>4</mark>}> 9 <{2} {3} {3}> 10 <{2} {3} {4}> 4/18/2004 23

GSP Exercise: candidate pruning

Number	Frequent 3-sequences	
1	<{1,2,3}>	
2	<{1,2} {3}>	1 + 7: <{1,2,3} {3}> 1 + 8: <{1,2,3} {4}>
3	<{1} {2,3}>	2 + 9: <{1,2} {3} {3}>
4	<{1,2} {4}>	2+10: <{1,2} {3} {4}>
5	<{1,3} {4}>	3 + 7: <{1} {2,3} {3}>
6	<{1,2,4}>	3 + 8: <{1} {2,3} {4}>
7	<{2,3} {3}>	<{1,2,3}{4}> is not pruned
8	<{2,3} {4}>	because <{1,2,3}>,
9	<{2} {3} {3}>	<{1,2}{4}> <{1,3}{4}> and <{2,3}{4}> are all frequent.
10	<{2} {3} {4}>	- \(\frac{1}{2}\text{O}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\2\)\(\frac{1}\2\)\(\frac{1}
Tan,Steinbach, K	umar Introduction to Data Mining	4/18/2004 25

Timing Constraints (I)

x_g: max-gap n_g: min-gap m_s: maximum span

 $x_a = 2$, $n_a = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No
Tan Steinhach Kumar Introduction to I	Data Mining	4/19/2004 26

Timing Constraints: Formal Definition

A data sequence $d = \langle d_1 \dots d_m \rangle$ contains a sequence $w = \langle w_1 \dots w_n \rangle$ if there exist integers $i_1 < \dots < i_n$ such that $W_i \subseteq d_i$ and

- 1. maxgap: $time(d_{i_i}) time(d_{i_{i-1}}) \le maxgap$
- 2. mingap: $time(d_{i_i}) time(d_{i_{i-1}}) > mingap$
- 3. maxspan: $time(d_{i_n}) time(d_{i_1}) \le maxspan$

Note: this definition applies if the window size = 0, otherwise things get more complicated (see timing constraints II for definition of window size).

Tan,Steinbach, Kumar Introduction to Data Mining

4/18/2004

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2:
 - Modify GSP to directly prune candidates that violate timing constraints

4/18/2004

28

- Question:
 - ◆ Does Apriori principle still hold?

© Tan,Steinbach, Kumar Introduction to Data Mining

Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2 2,3,4 2,4,5
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

 $x_g = 1 \text{ (max-gap)}$ $n_g = 0$ (min-gap) m_s = 5 (maximum span) minsup = 60%

<{2} {5}> support = 40% but <{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint No such problem if max-gap is infinite

C Tan, Steinbach, Kumar

Maxgap and the apriori property

- Due to the maxgap constraint, the support of a sequence can be increased by inserting an element between two elements.
- Not by inserting an element at the beginning or the end of the sequence.
- This spoils the apriori property that the support of a sequence is never bigger than the support of any of its subsequences.
- No pruning possible anymore?

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

Contiguous Subsequences

s is a contiguous subsequence of
 w = <e₁>< e₂>...< e_k>

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either $\mathbf{e_1}$ or $\mathbf{e_k}$
- 2. s is obtained from w by deleting an item from any element \mathbf{e}_{i} that contains more than 2 items
- s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of
 - < {1} {2 3}>, < {1 2} {3}>, and < {3 4} {1 2} {2 3} {4}>
 - is not a contiguous subsequence of < {1} {3} {2}> and < {2} {1} {3} {2}>

Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Apriori principle with maxgap constraint

Apriori property:

If a data sequence d contains a sequence t, then it will also contain any *contiguous* subsequence of t.

Therefore:

If w is a *contiguous* subsequence of t, then $s(w) \ge s(t)$.

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Apriori principle with maxgap constraint

Example:

Suppose $t = \{A\}, \{A,B\}, \{C\}, \{B,C\} > is contained in a data sequence d (meaning it also satisfies the maxgap constraint), then any contiguous subsequence of t also satisfies the maxgap constraint with respect to d.$

We can only violate the maxgap constraint by removing {A,B} or {C} but that would result in a non-contiguous subsequence.

Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent
- So with a maxgap constraint we can do less pruning.

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

34

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size m_s: maximum span

4/18/2004

$x_a = 2$, $n_a = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

Tan,Steinbach, Kumar Introduction to Data Mining

Modified Support Counting Step

- Given a candidate pattern: <{a, c}>
 - Any data sequences that contain

< {ac} >

 $\langle \dots \{a\} \dots \{c\} \dots \rangle$ (where time($\{c\}$) – time($\{a\}$) $\leq ws$)

 $<...\{c\}\ ... \ \{a\}\ ...> \ \ (\text{where time}(\{a\})-\text{time}(\{c\})\leq ws)$

will contribute to the support count of candidate pattern

Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Exercise: timing constraints

Data sequence: $d=<\{1,2,3\}\ \{2,4\}\ \{2,4,5\}\ \{3,5\}\ \{6\}>$ where elements occur on consecutive time points 1...5.

Given are the following sequences $w = \langle e_1 e_2 \dots e_i e_{i+1} \dots e_n \rangle$

- 1. <{1} {2} {3}> 2. <{1,2,3,4} {5,6}>
- 3. <{2,4} {2,4} {6}> 4. <{1} {2,4} {6}>
- <{1,2} {3,4} {5,6}>

Are they subsequences of d, subject to the following timing constraints? mingap=0 (interval between last event in e, and first event in e_{i+1} >0)

maxgap=3 (interval between first event in e_i , and last event in $e_{i+1} \le 3$)

maxspan=5 (interval between first event in e_1 , and last event in $e_n \le 5$)

ws=1 (time between first and last events in $e_i \le 1$)

Introduction to Data Mining

Exercise: timing constraints

d=<{1,2,3} {2,4} {2,4,5} {3,5} {6}>

Given are the following sequences $w = \langle e_1 e_2 \dots e_i e_{i+1} \dots e_n \rangle$

- 1. <{1} {2} {3}> 2. <{1,2,3,4} {5,6}>
- 3. <{2,4} {2,4} {6}>
- 4. <{1} {2,4} {6}> <{1,2} {3,4} {5,6}>
- Are they subsequences of d, subject to the following timing constraints? mingap=0 (interval between last event in e_i , and first event in $e_{i+1} > 0$)

maxgap=3 (interval between first event in $\mathbf{e}_{_{i}},$ and last event in $\mathbf{e}_{_{i+1}} \leq 3)$

maxspan=5 (interval between first event in e_1 , and last event in $e_n \le 5$)

ws=1 (time between first and last events in $e_i \le 1$)

Tan,Steinbach, Kumar Introduction to Data Mining

Exercise: timing constraints

 $d=<\{1,2,3\}$ {2,4} {2,4,5} {3,5} {6}>

Given are the following sequences $w = \langle e_1 e_2 \dots e_i e_{i+1} \dots e_n \rangle$

- 1. <{1} {2} {3}>
- 2. <{1,2,3,4} {5,6}> No (maxgap constraint violated)
- 3. <{2,4} {2,4} {6}> 4. <{1} {2,4} {6}>
- <{1,2} {3,4} {5,6}>

Are they subsequences of d, subject to the following timing constraints? mingap=0 (interval between last event in e_i , and first event in $e_{i+1} > 0$)

maxgap=3 (interval between first event in e_i , and last event in $e_{i+1} \le 3$)

maxspan=5 (interval between first event in e_1 , and last event in $e_n \le 5$)

ws=1 (time between first and last events in $e_i \le 1$)

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 39

Exercise: timing constraints

d=<{1,2,3} {2,4} {2,4,5} {3,5} {6}>

Given are the following sequences $w = \langle e_1 e_2 \dots e_i e_{i+1} \dots e_n \rangle$

- <{1} {2} {3}> Yes
- <{1,2,3,4} {5,6}> No
- <{2,4} {2,4} {6}> <{1} {2,4} {6}>
- <{1,2} {3,4} {5,6}>

Are they subsequences of d, subject to the following timing constraints? mingap=0 (interval between last event in e_i , and first event in $e_{i+1} > 0$)

maxgap=3 (interval between first event in e_i , and last event in $e_{i+1} \le 3$)

maxspan=5 (interval between first event in e_1 , and last event in $e_n \le 5$)

ws=1 (time between first and last events in $e_i \le 1$)

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 40

Exercise: timing constraints

d=<{1,2,3} {2,4} {2,4,5} {3,5} {6}>

Given are the following sequences $w = \langle e_1 e_2 \dots e_l e_{l+1} \dots e_n \rangle$

- 1. <{1} {2} {3}>
- 2. <{1,2,3,4} {5,6}> 3. <{2,4} {2,4} {6}> Nο
- Yes Yes
- <{1} {2,4} {6}> <{1,2} {3,4} {5,6}>

Are they subsequences of d, subject to the following timing constraints? mingap=0 (interval between last event in e_i , and first event in $e_{i+1} > 0$)

maxgap=3 (interval between first event in e_i , and last event in $e_{i+1} \le 3$)

maxspan=5 (interval between first event in $\boldsymbol{e}_{1},$ and last event in $\boldsymbol{e}_{n} \leq 5)$

ws=1 (time between first and last events in $e_i \le 1$)

Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004 41

Exercise: timing constraints

 $d=<\{1,2,3\} \{2,4\} \{2,4,5\} \{3,5\} \{6\}>$

Given are the following sequences $w = \langle e_1 e_2 \dots e_i e_{i+1} \dots e_n \rangle$

- <{1} {2} {3}> <{1,2,3,4} {5,6}> <{2,4} {2,4} {6}> Nο
- No
- <{1} {2,4} {6}> Yes
- <{1.2} {3.4} {5.6}> No (violates mingap and maxgap constraint)

Are they subsequences of d, subject to the following timing constraints? mingap=0 (interval between last event in e_i , and first event in $e_{i+1} > 0$)

maxgap=3 (interval between first event in e_i , and last event in $e_{i+1} \le 3$)

maxspan=5 (interval between first event in e_1 , and last event in $e_n \le 5$)

ws=1 (time between first and last events in $e_i \le 1$)

Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004