PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé

Sis Carrefour des Carreaux, Immeuble 3ème étage

Tél.: 696 16 46 86

E-mail. : <u>prepas.internationales@yahoo.com</u>
Site : <u>www.prepas-internationales.org</u>

CONTROLE ELECTROCINETIQUE DU 19/06/ 2021 Niveau : 1 Durée : 03H00

EXERCICE1: FILTRES ELECTRIQUES /6 points

On considère les circuits électriques représentés sur les figures ci-dessus.

- 1. Déterminer la fonction de transfert $\underline{H}(j\omega)$ de chacun de ces circuits et préciser la nature (type et ordre) du filtre correspondant. (4×1pts)
- 2. On s'intéresse maintenant au filtre de la figure 4. Déterminer :
 - **2.1.** Sa pulsation de résonance ω_0 et son facteur de qualité Q.

 $(1\times1pt)$

2.2. La pulsation de coupure ω_c ainsi que sa bande passante $\Delta\omega$ pour un gain en tension de -3~dB.

EXERCICE2: 5 points

Un circuit RLC série est soumis à une tension alternative sinusoïdale $e=E(2)^{1/2}\sin(\omega t)$ et parcouru par un courant $i=I(2)^{1/2}\sin(\omega t-\phi)$.

- 1) Que représentent E, I, ω et φ .
- 2) Calculer I et ϕ en fonction de E, R, L, C et ω .
- 3) On fait varier la pulsation ω du circuit.
- a) Montrer qu'il existe une pulsation ω_0 et une fréquence f_0 (que l'on calculera) pour lesquelles I est maximum
- b) Donner les expressions de I_0 et de l'impédance Z_0 du circuit lorsque $\omega = \omega_0$
- c) Calculer les fréquences de coupure f_1 et f_2 ($f_1 < f_2$) de ce circuit et en déduire la bande passante.
- d) Etablir la relation entre f_0 , f_1 et f_2 .
- e) Calculer le coefficient de surtension et l'exprimer en fonction de f₀, f₁ et f₂.

Exercice3:4pts

On modélise une installation électrique par un dipôle inductif D d'impédance \underline{Z} = R+jL ω . On considère le montage suivant avec :

i(t)=I $\sqrt{2}$ cos(ω t- φ); I= 30A u(t) = U $\sqrt{2}$ cos(ω t); U= 220V, f= 50Hz. Le dipole consommé une puissance moyenne P= 4,6kw.

PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé

Sis Carrefour des Carreaux, Immeuble 3ème étage

Tél.: 696 16 46 86

E-mail.: <u>prepas.internationales@yahoo.com</u>
Site: <u>www.prepas-internationales.org</u>

1) Calculer R et L.

2) Calculer l'admittance équivalente de l'ensemble. En déduire la capacité C à placer en parallèle sur l'installation pour relever le facteur de puissance à 0,9.

3) Que vaut alors le courant appelé par 'installation ?

Exercice 4: 5pts

Le circuit représenté est alimenté par une source de courant sinusoïdal d'intensité $i(t) = I_0 cos(\omega t)$.

- 1) Exprimer l'amplitude complexe <u>U</u> de la tension u(t) aux bornes du circuit en fonction des données du problème.
- 2) Montrer que l'amplitude U_m de u(t) passe par un maximum pour une valeur ω_0 de la pulsation à déterminer.
- 3) Tracer la courbe donnant les variations de U_m en fonction de ω . Préciser la largeur ω_2 de la courbe de réponse où ω_1 et ω_2 sont les pulsations telles que $U_m = \frac{U_m(\max)}{\sqrt{2}}$

4) Exprimer en fonction de R, L et C le facteur de qualité Q du circuit.

- 5) Exprimer la puissance électrique moyenne P fournie par la source du courant.
- 6) Montrer que la puissance P passe par un maximum pour une pulsation à déterminer.

7) On pose x= $\frac{\omega}{\omega_0}$ Exprimer la puissance P sous la forme : P = $\frac{P_{\text{max}}}{1+A(x-\frac{1}{x})^2}$ en donnant les expressions de

 P_{max} et de A.

