Homework 7 Numerical Matrix Analysis Math 543 Stephen Giang

Problem 24.3:

Results I am able to see is that the two functions, $||e^{tA}||_2$, $e^{t\alpha(A)}$, are almost identical on a log scale. However, we see that $||e^{tA}||_2$ either looks like an exponential or an oscillating solution. I am also able to see that for matrices, A, with lesser real eigenvalues, the more likely it was to be oscillating as $t \to \infty$. For matrices with all complex eigenvalues, it would look more and more like the straight line $e^{t\alpha A}$. On page (4-5), you can see an example of an oscillating function with only 2/10 real eigenvalues.

```
clear
figure(101)
clf
hold off
grid on
hold on
I = eye(10);
t = linspace(0, 20, 100);
for i = 0 : 0
   A = randn(10) - 2*I;
   yvals = zeros(length(t), 1);
   yvals1 = zeros(length(t), 1);
    specAbsc = max(real(eig(A)));
    for j = 0: length(t) - 1
        yvals(j + 1) = norm(expm(t(j + 1)*A));
        yvals1(j + 1) = exp(t(j + 1)*specAbsc);
    end
   t = transpose(linspace(0,20,100));
   logYvals = log10(yvals);
   logYvals1 = log10(yvals1);
   plot(t, logYvals,'r');
   plot(t,logYvals1,'b');
end
xticks(0:20);
yticks(-5:1:20);
legend('$||e^{tA}|| 2$','$e^{t\alpha (A)}$','interpreter','latex','fontsize', ✓
14, 'location', 'best');
```


_	\	7\
/	/	Α

Δ =	=
-----	---

-1.7457 0.3221	-0.5516	0.8821	0.1418	-1.1420	-1.7996	-0.8844 🗹
-0.5175 -0.6954 0.1248 -1.4255	1.8738	-0.8611	-1.4499	-0.7530	-0.6561	-0.6560 ∠
0.5465 0.6876 0.0876 -0.5027	_1 5018	0 1804	-0.3922	0 0300	2.2252	-1.1895 ∠
0.2932 0.9751	-1.5016	0.1004	-0.3922	0.0300	2.2232	
1.1375 1.8070 0.9902 0.1322	0.8347	-2.2442	-0.9302	-0.4893	0.3171	0.0063 ≰
0.0766 1.0365	-0.7648	2.0082	-2.9916	3.3458	1.2406	0.9877 🗹
0.7224 0.2420 1.1205 -1.5516	0.8572	0.1928	-0.2409	-2.0673	0.5891	0.7215 🗸
-0.9788 1.4233 -0.3232 -1.1251	1.1612	0.6067	0 0416	0.4274	-3 3676	-1.9677 ∠
-0.0691 1.2617						
-0.3675 -1.9000 0.1643 -0.8619	-0.6747	-1.3227	1.5213	-0.5738	1.1454	-2.4807 ∠
0.0028 -0.4320 -3.8106 -0.9471	-0.4463	1.0808	-1.3086	0.4574	0.7140	-1.8885 ∠
0.5219 -1.1422	-0.4722	-0.7845	-1.7596	-0.1840	-1.4193	1.8427 🗹
1.5516 0.6217						

>> eig(A)

ans =

-0.1977 + 2.6983i -0.1977 - 2.6983i 0.0937 + 0.8954i 0.0937 - 0.8954i -2.5320 + 0.0000i -4.3455 + 0.0000i -3.4773 + 2.2164i -3.4866 + 1.7456i -3.4866 - 1.7456i

>>


```
function A = HouseToHessen (A)

m = size(A);
for k = 1 : (m - 2)
    x = A((k + 1): m, k);
    e1 = zeros(size(x));
    e1(1) = 1;
    vk = sign(x(1)) * norm(x)*e1 + x;
    vk = vk / norm(vk);
    A((k + 1): m, k : m) = A((k + 1): m, k : m) - 2*vk*(transpose(vk) *A((k + 1): m, k : \nlimeta m));
    A(1 : m, (k + 1) : m) = A(1 : m, (k + 1) : m) - 2*(A(1 : m, (k + 1) : m) * vk) *\nlimeta transpose(vk);
end
```

```
\gg A = rand(5)
```

A =

0.9725	0.7272	0.1193	0.1973	0.9633
0.2860	0.4008	0.9785	0.8629	0.2696
0.5990	0.3106	0.5183	0.2679	0.2657
0.8522	0.6538	0.5078	0.5387	0.3100
0.2448	0.3918	0.3250	0.5515	0.5573

>> HouseToHessen(A)

ans =

0.9725	-0.6170	0.9446	-0.4602	0.1583
-1.1076	1.5834	-0.5296	-0.0991	-0.2880
0	-1.1230	0.0181	-0.0271	0.1702
0	-0.0000	-0.2786	0.2760	0.1631
-0.0000	0.0000	0.0000	-0.1321	0.1376

>> hess(A)

ans =

0.9725	-0.6170	0.9446	-0.4602	0.1583
-1.1076	1.5834	-0.5296	-0.0991	-0.2880
0	-1.1230	0.0181	-0.0271	0.1702
0	0	-0.2786	0.2760	0.1631
0	0	0	-0.1321	0.1376

```
function [lambdam, vm] = RayleighIteration (A)
m = size(A, 1);
v = zeros(m, m);
v(:,1) = rand(m,1);
v(:,1) = v(:,1) / norm(v(:,1));
lambda = zeros(m,1);
lambda(1) = transpose(v(:,1)) * A * v(:,1);
k = 1;
I = eye(m);
while k < m
    k = k + 1;
    w = linsolve(A - lambda(k-1)*I, v(:,(k-1)));
    v(:,k) = w / norm(w);
    lambda(k) = transpose(v(:,k)) * A * v(:,k);
end
vm = v(:,m);
lambdam = lambda(m);
```

```
May 4, 2020
```

```
\gg A = rand(5)
A =
  0.3782 0.4976 0.8808 0.3787 0.6171

      0.2458
      0.4278
      0.1600
      0.9255
      0.1479

      0.6762
      0.5678
      0.0892
      0.0570
      0.0290

   0.9615 0.8070 0.6074 0.6670 0.0300
>> [a,b] = RayleighIteration (A)
a =
   2.3788
b =
  0.4711
   0.3741
   0.2520
   0.5339
   0.5381
>> [c,d] = eig (A)
C =
   0.4711 0.6450 -0.6730 -0.5855 -0.0155
    0.3741 -0.5022 0.2064 0.7094 0.4111
```

d =

2.3788 0 0 0 0.5431 0 0 0 0 0 0 0 -0.6860 0 0 0 0 0.0129 0 0 0 0 0 -0.3297 0

0.2520 0.3116 0.4333 0.1387 -0.5307 0.5339 -0.3424 -0.2269 -0.1318 -0.3454 0.5381 0.3426 0.5149 -0.3425 0.6556

>>