Optymalizacja

Magdalena Żarek Mateusz Przyborowski

Projekt nr 1

Poniższa tabela pokazuje liczbę kroków wykonanych przez metodę sympleks z użyciem zaimplementowanych zasad

	lexi_min	lexi_max	max_wsp	min_wsp	los	max_wzrost	min_wzrost	gradient
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	2	6	2	2	1	2	2	2
4	0	0	0	0	0	0	0	0
5	2	2	2	2	2	2	2	2
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	16	14	13	13	10	6	13	6
9	2	2	2	2	2	2	2	2
10	12	2	6	6	9	3	6	7

gdzie numery 1-10 oznaczają kolejne pliki testowe

Zaimplementowane zasady:

- lexi_min wybór zmiennej o najmniejszym leksykograficznie indeksie
- lexi_max wybór zmiennej o największym leksykograficznie indeksie
- max_wsp wybór zmiennej o największym współczynniku funkcji celu
- min_wsp wybór zmiennej o najmniejszym współczynniku funkcji celu
- los wybór losowego wierzchołka (wyniki uśrednione)
- max_wzrost wybór zmiennej, która prowadzi do największego wzrostu funkcji celu
- min_wzrost wybór zmiennej, która prowadzi do najmniejszego wzrostu funkcji celu
- gradient wybór zmiennej, która prowadzi do wierzchołka w kierunku najbliższym gradientowi funkcji celu

Wnioski:

- Niezależnie od wybranej metody poprawność wyniku optymalizacji pozostaje bez zmian
- Najlepszą metodą z wyżej zaprezentowanych pod względem ilości kroków jest gradient
- Wybór metody nie wpływa na istnienie rozwiązania problemu
- W przypadku niektórych złożonych problemów wybór metody przyczynia się do znacznej redukcji liczby kroków

Projekt nr 2

W poniższej tabeli zaprezentowaliśmy optymalne odpowiedzi dla danych ruchów przeciwnika zależnie od liczby oczek na naszej kostce (oznaczonej jako X).

Ruch przeciwnika / Liczba oczek	X = 1	X = 2	X = 3	X= 4
BRAK	(1,1)	(1,2)	(1,3)	(1,4)
(1,1)	(1,2)	(1,2)	(1,3)	(1,4)
(1,2)	(1,3)	(1,3)	(1,3)	(1,4)
(1,3)	(1,4)	(1,4)	(1,4)	(1,4)
(1,4)	(2,2)	(2,2)	(2,3)	(2,4)
(2,1)	(2,2)	(2,2)	(2,3)	(2,4)
(2,2)	(2,3)	Bluff	(2,3)	(2,4)
(2,3)	(2,4)	Bluff	Bluff	(2,4)
(2,4)	Bluff	Bluff	Bluff	Bluff

W poniższej tabeli zaprezentowaliśmy wyniki całych gier przeprowadzonych zgodnie z opracowaną strategią.

	Y = 1	Y = 2	Y = 3	Y =4	
X = 1	W	W	Р	Р	
X = 2	Р	Р	W	W	
X = 3	W	Р	W	W	
X = 4	W	Р	Р	Р	

Wnioski:

- Strategia opracowana na potrzeby rozwiązania problemu liniowego może w rzeczywistości okazać się nieidealną, ale jest to jedyna jaką da się zasymulować komputerowo (z popularnym zasobem sprzętowym i ograniczonym czasem)
- Nie istnieje strategia gwarantująca zwycięstwo

Projekt nr 3

Poniższa tabela prezentuje wyniki redukcji etatów w sieci szpiegowskiej zadanej przez kolejne pliki testowe

Testy	0	1	2	3	4	5	6	7	8	9	10
Dane	5	20	100	200	500	1000	2000	5000	10000	20000	50000
Wynik	2	9	53	115	302	585	1174	2754	5761	11492	26428
%	40%	45%	53%	57,5%	60,4%	58,5%	58,7%	55,1%	57,6%	57,5%	52,9%

gdzie:

- Dane zadana w problemie liczba pracowników,
- Wynik zminimalizowana liczba pracowników przy zachowaniu założeń o zdolności operacyjnej poszczególnych wydziałów,
- % udział procentowy "zbędnych" pracowników w odniesieniu do wszystkich zatrudnionych.

Wnioski:

- Łatwe do sformułowania problemy liniowe mogą być bardzo złożone obliczeniowo
- Problem optymalizacji struktury sieci szpiegowskiej wykazał, że zwolnienie nawet ponad 40% pracowników nie wpłynie na funkcjonalność struktury organizacji