GCD Domains

Definition 1. Let R be a domain, with $a, b \in R$. We say $d \in R$ is a greatest common divisor of a and b if

- 1. d|a and d|b, and
- 2. If $c \in R$ such that c|a and c|b, then c|d.

We denote the set of all greatest common divisors of a and b by gcd(a,b). We say that a and b are relatively prime if $1 \in gcd(a,b)$.

It is important to note that in a general domain, gcds need not exist, and if they do, they need not be unique.

Proposition 1. Let R be a domain.

- 1. In fact, given $a, b \in R$, either $gcd(a, b) = \emptyset$ or gcd(a, b) is an associate class.
- 2. If a|b then $a \in \gcd(a,b)$.
- 3. $a \in \gcd(a,0)$ for all $a \in R$.
- 4. If u is a unit, then $1 \in \gcd(u, a)$ for all $a \in R$.

For example, in \mathbb{Z} , $gcd(4,6) = \{2, -2\}$.

Proposition 2. Let R be a domain. Provided all the appropriate gcds exist, we have the following.

- gcd(a, b) = gcd(b, a)
- gcd(a, gcd(b, c)) = gcd(gcd(a, b), c)
- gcd(ab, ac) = agcd(b, c)
- (Euclid's Lemma) If a and b are relatively prime and a|bc, then a|c.
- If a and b are relatively prime, then gcd(a, bc) = gcd(a, c).
- If $d \in \gcd(a,b)$ and we write a = da' and b = db', then $1 \in \gcd(a',b')$.
- If $1 \in \gcd(a, b)$ then $\gcd(ab, c) = \gcd(a, c)\gcd(b, c)$.
- If a and b are relatively prime and a and c are relatively prime, then a and bc are relatively prime.

Definition 2. Let R be a domain. We say that R is a GCD domain if any two elements of R have a greatest common divisor.

Proposition 3. If R is a GCD domain, then every irreducible element of R is also prime.

Proof. Let p be irreducible and suppose p|ab. Let $d \in \gcd(a,p)$, and write a = da' and p = dp'. Since p is irreducible, either d or p' is a unit. If d is a unit, then we have p|b by Euclid's lemma. If p' is a unit, then p|a.

A Domain which is not a GCD domain

Here we outline a proof that $\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\}$ is a domain but not a GCD domain.

- 1. Show that the equation $a^2 + ab + b^2 = 2$ has no solutions in \mathbb{Z} .
- 2. Show that $\mathbb{Z}[\sqrt{-3}]$ is a subring of $\mathcal{O}(\sqrt{-3})$ and thus a domain, and that no element of this subring has norm 2 (using the usual norm on $\mathcal{O}(\sqrt{-3})$).
- 3. Show that 2 is irreducible in $\mathbb{Z}[\sqrt{-3}]$.
- 4. Show that 2 divides $(1+\sqrt{-3})(1-\sqrt{-3})$ in $\mathbb{Z}[\sqrt{-3}]$, but that 2 does not divide $1+\sqrt{-3}$ or $1-\sqrt{-3}$. In particular, 2 is not prime in $\mathbb{Z}[\sqrt{-3}]$.
- 5. Because $\mathbb{Z}[\sqrt{-3}]$ contains irreducible elements which are not prime, it cannot be a GCD domain.