

UNCLASSIFIED

AD | 257 144

*Reproduced
by the*

**ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA**

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

ATIC LIBRARY

MCL-580/III

TRANSLATION

STUDY OF THE COMPOSITION OF THE LIGHT FRACTIONS OF SOVIET CRUDES

By A. V. Topchiyev, B. A. Kazanskiy, I. A. Musayev, G. D. Gal'pern,
M. M. Kusakov, and A. F. Plate

October 1960

40 Pages

AD No. 257 144
ASTIA FILE COPY

MASTER

PREPARED BY
LIAISON OFFICE
TECHNICAL INFORMATION CENTER
MCLTD
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

This translation was prepared under the auspices of the Liaison Office, Technical Information Center, Wright-Patterson AFB, Ohio. The fact of translation does not guarantee editorial accuracy, nor does it indicate USAF approval or disapproval of the material translated.

Comments pertaining to this translation should be addressed to:

Liaison Office
Technical Information Center
MCLTD
Wright-Patterson Air Force Base, Ohio

MCL-580/III

STUDY OF THE COMPOSITION OF THE LIGHT FRACTIONS OF SOVIET CRUDES

BY: A. V. Topchiyev, B. A. Kazanskiy, I. A. Musayev,

G. D. Gal'pern, M. M. Kusakov, and A. F. Plate

October 1960

40 Pages

A. V. Topchiyev, B. A. Kazanskiy, I. A. Musayev
G. D. Gal'pern, M. M. Kusakov, and A. F. Plate

ISSLEDOVANIYE SOSTAVA LEGKIKH FRAKTSIY SOVETSKIKH NEFTY

USPEKHI KHIMII

Vol 27, Nr 10, 1958

IZDATEL'STVO AKADEMII NAUK

Pages 1177-1197

MCL-580/III

0
2
4
6
8
10
12 STUDY OF THE COMPOSITION OF THE LIGHT FRACTIONS
14 OF SOVIET CRUDES

16 by

18 A.V.Topchiyev, B.A.Kazanskiy, I.A.Musayev, G.D.Gal'pern
20 M.M.Kusakov, and A.F.Plate (Moscow)

22 The study of the chemical composition of crudes and petroleum products is of
24 great theoretical and practical interest. Studies establishing the relation between
26 the composition and the physical and physicochemical properties of crudes and their
28 cuts are of substantial importance.

30 Further improvement of the technology of the petrochemical industry, improve-
32 ment of fuel and oil quality, increasing the assortment and yields of chemically val-
34 uable products, as well as successful solution of the problem of the extraction of
36 petroleum, all demand continuous deepening and broadening of the information on the
38 composition and properties of petroleum and petroleum products.

40 Petroleum is a highly valuable source of chemical raw materials for the produc-
42 tion of the most diverse hydrocarbons used as intermediates for organic synthesis of
44 substances such as alcohols, aldehydes, ketones, acids, esters, nitro products,
46 amines, high molecular compounds (especially, synthetic rubbers and the like).

48 The heavy organic synthesis industry today is very closely linked with the
50 petrochemical industry.

52 It must also be borne in mind that the continuous development and improvement in
54 the design of modern engines (primarily of aircraft engines) leads to new and ever

6 increasing requirements on fuels and oils. At the same time the petrochemical pro-
2 cesses, as a rule, demand rather clearly differentiated raw materials.

6 It has been established that various hydrocarbon and non-hydrocarbon components
8 of petroleum fractions have widely differing fuel and lubricant properties. All
10 this makes it necessary to develop research to improve the methods of isolating and
12 separating the components of petroleum, and of accumulating exhaustive data on their
14 properties. In this connection, a substantial expansion of research on the composi-
16 tion and properties of petroleum and petroleum fractions is necessary.

16 As far back as the period of formulation of the basic propositions of classical
18 organic chemistry, whose development was based on the theory of chemical structure
20 worked out by A.M.Butlerov, the study of the composition of petroleum attracted the
22 attention of such great scientists as Watten, Pelouse, Kagour, Schorlemmer, Mayberry,
24 and D.I.Mendeleyev.

26 Subsequent research of our countrymen was devoted to elucidating the properties
28 of the distillates of Caucasian crudes and their comparison with Pennsylvania crudes.
30 These studies led V.V.Markovnikov and V.N.Ogloblin to the discovery of the naphthenic
32 hydrocarbons in Caucasian crudes and to the detailed study of the nature of these
34 hydrocarbons.

36 The studies by V.V.Markovnikov, M.I.Konovalov, N.D.Zelinskiy, N.M.Kizhner,
38 S.S.Nametkin and their numerous colleagues and pupils laid the foundations for the
40 science of the chemistry of petroleum hydrocarbons.

42 At the beginning, in studying the composition of petroleum fractions, relatively
44 simple chemical and physical methods were used: nitration, sulfonation, distilla-
46 tion, measurement of density, etc. For example, Mendeleyev (Bibl.1) and later
48 Markovnikov and Ogloblin (Bibl.2), while studying the variation in density of dis-
50 tillates of Caucasian crudes with their boiling point, showed that the periodic char-
52 acter of this functional relationship was closely linked to the distribution of
54 naphthenic and paraffinic hydrocarbons among the fractions of these crudes.

0 N.D.Zelinskiy synthesized several tens of individual cyclic hydrocarbons and
1 studied their physicochemical properties, thus considerably promoting the clarifica-
2 tion of the chemical nature of petroleum.

3 In 1881-1883, Beilstein and Kurbatov (Bibl.3) used the nitration method to
4 demonstrate the presence of hexamethylene hydrocarbons in Caucasian crude, and ob-
5 tained aromatic nitro derivatives. Later, in 1889-1902, appeared the classical
6 study by Konovalov (Bibl.4) on the nitration of paraffins and naphthenes by dilute
7 nitric acid, in which the nitration reaction was utilized to establish the structure
8 of the hydrocarbons. These investigations culminated in the work of Nametkin
9 (Bibl.5). During the Soviet period, the studies on the nitration of hydrocarbons
10 were further advanced by the work of Nametkin, and by P.P.Shorygin, A.I.Titov,
11 A.V.Topchiyev (Bibl.6), and others.

12 The investigation of the hydrocarbon composition of petroleum fractions by clas-
13 sical chemical methods (nitration, sulfonation, oxidation) involves great difficul-
14 ties. The further progress of research on the composition of petroleum was directed
15 toward the development of simpler and, at the same time, more accurate quantitative
16 methods of determining the group and individual hydrocarbon composition of petroleum
17 fractions. These methods combined chemical, physicochemical, and physical procedures
18 for separating and characterizing petroleum products.

19 The nationalization of the petroleum industry, which radically changed its posi-
20 tion in the USSR, permitted a decisive reorganization of the research work on petro-
21 leum.

22 At Baku and Grozny, at Aznefti and Groznefti respectively, central laboratories
23 were established, and at the end of the 1920's these were reorganized into petroleum
24 research institutes (AzNII and GrozNII).

25 In 1924 at Moscow, on the initiative of I.M.Gubkin, the State Petroleum Research
26 Institute (GINI) was organized.

27 In 1934, the Institute of Fossil Fuels was organized in the system of the

0 Academy of Sciences USSR. Its organization included a number of laboratories of the
2 GINI, and in 1948 the Petroleum Institute, AN SSSR, was organizationally separated
4 from it.
6

8 In 1933, the Central Institute of Aviation Fuels and Oils (TsIATIM) was organ-
10 ized at the Central Petroleum Administration, Supreme Council of National Economy.
12 In 1934, this institute was merged with the chemical and technical laboratories of
14 the GINI. In 1955, it was renamed All-Union Research Institute for the Petroleum
16 Industry (VNII NP).
18

20 The study of the composition of petroleum products by chemical and physical re-
22 search methods was successfully developed in these institutes.
24

26 The work by Zelinskiy on selective catalytic dehydrogenation, which opened new
28 paths in the study of the structure of naphthenic hydrocarbons, was of great impor-
30 tance for the study of the composition of petroleum fractions (Bibl.7-11).
32

34 As far back as 1911, Zelinskiy showed that cyclohexane and its homologs, when
36 passed over such catalysts as Pt and Pd on charcoal at 300°C, are quantitatively con-
38 verted into the corresponding aromatic hydrocarbons (Bibl.7). The pentamethylene
40 hydrocarbons were not dehydrogenated, in this case.
42

44 As long ago as 1912, N.D.Zelinskiy used the reaction discovered by him to in-
46 vestigate the petroleum fractions of Baku crudes, and proved the presence of
48 methylcyclohexane in them (Bibl.12).
50

52 Selective catalytic dehydrogenation subsequently became one of the most fruit-
54 ful methods for investigating the structure of naphthenic hydrocarbons of petroleum.
56 In the 1920's - 1940's, using this method, Zelinskiy, together with his colleagues
58 and pupils of Moscow University (B.A.Kazanskiy, Yu.K.Yur'yev, N.I.Shuykin,
60 A.M.Rubinshteyn, G.D.Gal'pern, I.A.Musayev, etc.; Bibl.13) studied the composition
62 of the gasoline fractions of crudes from Baku, Emba, Chusov Hills, Ishimbay, and
64 other USSR oilfields.
66

68 In the 1930's the method of catalytic dehydrogenation, based on Zelinskiy's
70

0 process, was employed at the Grozny Petroleum Research Institute to investigate the
1 group composition of the gasoline-kerosene fractions of Grozny crudes (Bibl.14).
2

3 Kazanskiy and coworkers (Bibl.15-17) investigated the so-called "octanaphthene" and
4 "nonanaphthene" fractions of Suraksan gasoline, and identified a number of cyclo-
5 hexane homologs in it. Rubinshteyn (Bibl.18) investigated the gasoline from Fergana
6 crude, while Yur'yev and coworkers studied gasoline from the heavy Ukhta crude,
7 Changartysh crude, and a number of Central Asian crudes (the Shorsu, Khaudag oil-
8 fields, etc.) (Bibl.19-23).
9

10 Zelinskiy and Kazanskiy (Bibl.24) first demonstrated the presence of decalin in
11 Baku gasoline and showed the applicability of the method of catalytic dehydrogena-
12 tion to the investigation of the composition of petroleum fractions boiling higher
13 than the gasoline.
14

15 Yur'yev and Musayev studied the group chemical composition of the gasoline-
16 kerosene fraction of Kalin crude (Bibl.25).
17

18 Zelinskiy, Musayev, and Gal'pern, using catalytic dehydrogenation, investigated
19 the group chemical composition of a series of five-degree gasoline-ligroin cuts,
20 taken from the Jurassic crude of the Kos-Chagyl fields in the range from 30 to 250°C
21 (Bibl.26, 72). An exceptionally high content of cyclic hydrocarbons (~ 80%) was
22 found in these fractions. In the gasoline fractions up to 215°C, hexahydroaromatic
23 hydrocarbons predominate among the cyclic compounds.
24

25 In 1935, Panyutin and Firsanova (Bibl.28), using rectification and catalytic
26 dehydrogenation, studied the chemical composition of Surakhan gasoline. The authors
27 succeeded in estimating the concentration of the individual hexa- and pentamethylene
28 hydrocarbons and in showing that the gasoline consisted primarily of methylcyclo-
29 hexane, cyclohexane, and 1,4-dimethylcyclohexane. The presence of p-xylene, which
30 could be separated in the pure form, was detected in the catalyzate.
31

32 The group composition of the gasoline-ligroin fractions of 18 individual Soviet
33 crudes was studied by Gal'pern (Bibl.29-31).
34

0 All the above-listed studies showed the content of cyclopentanes and cyclo-
1 hexanes to vary widely in the gasolines produced from the crudes of various deposits
2 in the USSR.

3 A group of scientific workers at the Grozny Petroleum Research Institute
4 (M.D.Tilicheyev, R.D.Virabyants, L.G.Zherdeva, A.N.Doladugin, M.G.Yegorova et al,
5 under the supervision of A.N.Sakhanov), in the early 1930's, developed the analysis
6 methods for the group composition of petroleum fractions. The method of "aniline
7 point" found very wide use (Bibl.14). The method of determining the group chemical
8 composition of crudes and petroleum products proposed by GrozNII is still being used
9 at research and plant laboratories.

10 The basic trend of the research by the GINI and IGI was, at first, the refine-
11 ment and further differentiation of the method of group analysis of straight-run
12 petroleum products.

13 A considerably more complex problem arises in the analysis of the group chemical
14 composition of cracked gasolines, which in some cases contain over 30% of unsaturated
15 compounds.

16 The first difficulty encountered by the investigator studying the group composi-
17 tion of cracked gasolines is that most of the reagents ordinarily used to determine
18 the content of unsaturated hydrocarbons also affect the aromatic hydrocarbons more
19 or less, and lead to a partial polymerization of the unsaturated hydrocarbons.

20 Tilicheyev and Masina (Bibl.14), at the GrozNII, proposed a standard method based on
21 the use of "aniline factors", to determine the content of unsaturated and aromatic
22 hydrocarbons in standard wide cuts. In another version of the technique, the per-
23 centage of unsaturated hydrocarbons is calculated from the iodine number and the
24 molecular weight of the fraction. The two versions of the methods include the total
25 removal of the aromatic and unsaturated hydrocarbons by sulfonation.

26 Nametkin and Robinzon (Bibl.32-34) have proposed an improved method of step
27 analysis of the group chemical composition of cracked gasolines. It consists in first

0 determining the total olefins (by means of sulfur monochloride), and then of the
1 aromatic and naphthenic hydrocarbons (by the aniline method).

2 Gal'pern and Vinogradova (Bibl.35-38) gave a critical analysis of the Max-
3 Illiney bromometric method, and first applied the Kaufman bromometric method to the
4 analysis of petroleum products. This method was subsequently carefully developed
5 and found wide use in laboratory practice. These methods determine only the total
6 unsaturated hydrocarbons, but do not determine the types of unsaturated compounds
7 present.

8 Zelinskiy and Levina (Bibl.39, 40) have catalytic applied hydrogenation-
9 dehydrogenation, in conjunction with the sulfuric acid method, to establish the rel-
10 ative concentration of cyclic and aliphatic unsaturated hydrocarbons in cracked gas-
11 olines.

12 Terent'yev, Gal'pern, and Vinogradova (Bibl.41) have proposed a diazometric
13 method of determining the conjugated dienes in cracked gasolines, in conjunction with
14 bromometry, to differentiate the unsaturated hydrocarbons in secondary gasolines.

15 An indirect indication of the structure of unsaturated hydrocarbons is given by
16 the amount of hydrogen bromide liberated on running a bromometric determination, as
17 stated by Gal'pern (Bibl.38) and also by A.A.Petrov (Bibl.42). Petrov establishes
18 the possibility of explaining this phenomenon on the basis of Tishchenko's views on
19 the halogenation of unsaturated hydrocarbons, which he developed in the 1940's
20 (Bibl.43).

21 Musayev and Gal'pern, from a number of individual unsaturated and aromatic hy-
22 drocarbons and their mixtures, have shown that copperized asbestos, under certain
23 conditions, under hydrogen pressure, will selectively hydrogenate only the unsatu-
24 rated hydrocarbons (Bibl.44-46).

25 On the basis of this work in the Petroleum-Chemistry Laboratory imeni
26 S.S.Nametkin, the researchers Topchiyev, Musayev, and Gal'pern have proposed a com-
27 bined method of investigating the detailed group chemical composition of cracked

0 gasolines (Bibl.47). This method includes the total removal of unsaturated and
1 aromatic compounds by sulfuric acid, selective hydrogenation of the unsaturated hy-
2 drocarbons, and analytical dehydrogenation of the hexahydroaromatic hydrocarbons.
3

4 The method permits determination, in standard cuts of cracked gasoline (free of sul-
5 fur compounds), of the following groups of hydrocarbons: aromatics, alkenyl-aromatic
6 alkenes, alkanes, cyclenes, and cyclanes (the six- and five-membered compounds sepa-
7 rately).

8 With the proposed method, the authors investigated thermally cracked and catal-
9 ytically cracked gasolines produced from Grozny paraffinic crude. They found that
10 the 60 - 200°C cut of the thermally cracked gasoline was characterized by a high con-
11 tent of unsaturated hydrocarbons, mainly alicyclic, and by the presence of an appre-
12 ciable concentration of unsaturated hydrocarbons with a six-member ring. The 60 -
13 - 200°C cut of catalytic-cracked gasoline shows a low content of unsaturated hydro-
14 carbon, consisting in almost equal amounts of aliphatic compounds and compounds with
15 a five-member ring, at almost complete absence of six-membered unsaturated hydro-
16 carbons.

17 By means of the same method, Glushnev and Nepryakhina (Bibl.48, 49) investi-
18 gated the composition of gasolines from oxidative cracking and from reforming.

19 Mamedaliyev and Rzayeva have shown the possibility of selective hydrogenation
20 of the unsaturated hydrocarbons in various fractions of thermally cracked gasoline
21 and of pyrolysis over a kieselguhr-supported nickel catalyst at various temperatures
22 in a stream of hydrogen (Bibl.50).

23 In investigating the group composition of the gasoline fractions of petroleum,
24 since the 1940's, workers have used the refractometric and dispersion methods, based
25 on the assumption of additivity of the specific refraction and dispersion of the
26 components of hydrocarbon mixtures (Bibl.51-54). In particular, methods of determin-
27 ing the aromatic hydrocarbons in gasolines, based on this principle, are widely used.

28 Tilicheyev and Okinshevich (Bibl.55, 56) have developed a cryoscopic method of

0 quantitative determination of aromatic hydrocarbons, and of the total quantity of
1 aromatic and unsaturated hydrocarbons in gasolines, kerosenes, and diesel fuels,
2 using cyclohexane as the solvent.

3 The rapid growth of petroleum extraction in the deposits of the Second Baku
4 have confronted our research organizations with the problem of finding more rational
5 methods of refining sulfur-bearing crudes. In this connection, studies of sulfur
6 compounds in crudes and petroleum products have become particularly important, as
7 has the development of desulfurization methods for crudes. The results of research
8 in this field should be discussed separately.

9 Nametkin paid great attention to the possibility of analytical use of the re-
10 action of nitration of aliphatic and paraffinic hydrocarbons. Thus Nametkin,
11 Nifontova, and Amirkhanova (Bibl.57, 58), by the nitration of brown-coal paraffin,
12 petroleum paraffin and petroleum ceresin, obtained interesting conclusions on the
13 chemical structure of the hydrocarbons composing the paraffins and ceresins.

14 A comparative study of the composition and properties of gasolines, kerosenes,
15 and lubricating oil produced from Soviet crudes has been initiated at the Petroleum-
16 Chemistry Laboratory of the GINI, and later at the Institute of Fossil Fuels, Academy
17 of Sciences USSR, under the supervision of S.S.Nametkin.

18 In collaboration with Putsillo, Nifontova, Shakhnazarova and Abakumovskaya,
19 Nametkin (Bibl.59) has given a general chemical characterization of a number of
20 Sakhalin crudes (Okha, Nutovo, Katangli, Ekhabi, Chakry, Lyangri deposits), of
21 Kamchatka crude (Bogachevsk deposit), and of Ural crude (Perm deposit), etc.

22 The group chemical composition of the bright fractions of a number of Caucasian
23 crudes had already been investigated in detail in the 1920's - 1930's by the members
24 of the GrozNII already mentioned (Bibl.14).

25 A group of workers at the Azerbaydzhan Petroleum Research Institute imeni
26 V.V.Kuybyshev (AzNII), under the supervision of A.M.Plotko, has systematically in-
27 vestigated the crudes of Azerbaydzhan, Georgia, and Trans-Caspia, which were later

0 studied by V.S.Gutyri as well. The results of these studies have been collected in
1 a monograph authored by Gutyri, Masumyan, Bukh, and Lisovskaya (Bibl.60).

2 S.N.Pavlova, A.S.Velikovskiy, E.V.Driatskaya, L.A.Potolovskiy and others at the
3 Petroleum Industry Research Institute have developed a single method for the typical
4 analysis of USSR crudes and on the basis of the materials obtained, have given data
5 for their assay certificates.

6 The results of many years of work under the supervision of Velikovskiy and
7 Pavlova, first at the GINI and then at the VNII NP, have been collected in a manual
8 (Bibl.61) and in a monograph (Bibl.62).

9 Under the direction of Ye.A.Robinson, at the Chemical Institute imeni
10 A.Ye.Arbuzov, Kazan Branch Academy of Sciences USSR, at the Petroleum-Chemistry
11 Laboratory, a systematic study has been going on since 1946 of the Tatar crudes,
12 which are of great industrial importance. These studies have been collected in a
13 monograph (Bibl.63) giving the physical properties and the results of group and ring
14 chemical analysis of the hydrocarbons of these crudes. In 1957, these data were sub-
15 stantially supplemented (Bibl.64).

16 All the above materials refer to the characterization of the group chemical
17 composition of petroleum distillates and play an important part in evaluating the
18 quality of crudes and petroleum products from their group criteria, especially with
19 respect to the low-boiling, gasoline and kerosene fractions.

20 Together with studies of the group chemical composition of crudes and petroleum
21 products, performed for the most part at the laboratories of the petroleum industry,
22 at the Academy of Sciences USSR (Petroleum Institute and Institute of Organic Chemis-
23 try), and at Moscow University, work has also been done on the individual composition
24 of straight-run gasoline (N.D.Zelinskiy, B.A.Kazanskiy, G.S.Landsberg, and
25 A.V.Topchiyev).

26 The first attempts to use the Raman-spectrum method for the analysis of light
27 petroleum products were made in the USSR in 1938 at the Institute of Physical Chemis-

try imeni Karpov by Vol'kenshteyn and Shorygin, who investigated the individual composition of a number of fractions of several natural gasolines, cracked gasolines (without unsaturated hydrocarbons), and synthene (Bibl.65-68).

Kazanskiy and Gasan-Zade (Bibl.69) have studied the composition of the fractions of Kala crude, in one of the first examples of the successful combination of the method of catalytic dehydrogenation with the Raman-spectrum method, applied to a mixture of cyclopentane hydrocarbons and paraffinic hydrocarbons.

These studies began to achieve particular success after the development of a Raman-spectrum method of quantitative analysis of the individual composition of straight-run gasoline fractions with an end point of 150°C (Bibl.70), under the supervision of B.A.Kazanskiy and G.S.Landsberg, by a group of workers at the Institute of Organic Chemistry imeni N.D.Zelinskiy, Academy of Sciences USSR (A.F.Plate, Ye.A.Mikhaylova, A.L.Liberman, et al) and the Physical Institute imeni P.N.Lebedev, Academy of Sciences USSR (P.A.Bazhylin, M.M.Suskiy, et al).

This method is based on the chromatographic separation of aromatic hydrocarbons from the naphthenic and paraffinic hydrocarbons, followed by an analytical dehydrogenation of the dearomatized portion, and repeated chromatography of the catalyzate.

The initial aromatic hydrocarbons, as well as the aromatic hydrocarbons newly formed as a result of the analytical dehydrogenation, and the residue of undehydrogenated paraffins and naphthenes (pentamethylene and unsubstituted hexamethylene hydrocarbons) are separately distilled into narrow cuts in an efficient column. The composition of the resultant narrow cuts is investigated by means of the Raman-spectrum. The successful application of the Raman-spectrum method necessitates a careful and systematic study of the Raman spectra of the individual hydrocarbons that might be present in the fractions under investigation.

A large number of high-purity individual hydrocarbons of various classes have been prepared at the Institute of Organic Chemistry Academy of Sciences USSR by B.A.Kazanskiy and associates. The Raman spectra of these hydrocarbons have been

studied at the Physical Institute imeni P.N.Lebedev, Academy of Sciences USSR.
The Raman spectra of several hundred individual hydrocarbons, carefully measured, have now been obtained by P.A.Bazhulin, Kh.Ye.Stern et al (Physical Institute imeni P.N.Lebedev, Academy of Sciences USSR and Spectroscopic Commission, Department of Physical and Mathematical Sciences Academy of Sciences USSR), by V.M.Tatevskiy and associates (Moscow State University), and by a number of other Soviet investigators. Sushchinskiy (Bibl.71) has solved the question of rationally measuring the intensity of the spectral lines, and has worked out a method of conversion of the intensities of lines measured in different systems. An atlas has been compiled as a result of this work (Bibl.73). It contains the Raman spectra of 278 hydrocarbons, with the line intensities reduced to a single system, permitting a reliable quantitative analysis.

Based on this Raman-spectrum method, and to provide grounds and verification for it, a systematic study of the individual composition of straight-run gasolines from various USSR crudes was commenced in 1948 at various laboratories.

This work was performed at the Institute of Organic Chemistry imeni N.D.Zelinskiy under the direction of B.A.Kazanskiy by A.F.Plate, Ye.A.Mikhaylova, A.L.Liberman et all in collaboration with the Physical Institute imeni P.N.Lebedev Academy of Sciences USSR, under the direction of G.S.Landsberg, by P.A.Bazhulin, M.M.Sushchinskiy and others (Bibl.74-80); and at the Petroleum Institute, Academy of Sciences USSR, under the direction of A.V.Topchiyev, by I.A.Musayev, G.D.Gal'pern and A.I.Kislinskiy (Bibl.81-91).

A total of 11 gasolines from crudes of various deposits were investigated. These deposits were as follows: Azerbaydzhan (three samples of Surakhan, two samples of Kazanbulak and Karachukhur), Turkmenia (Nebit-Dag of the central region, red strata and western region, Akchagyl' stage), Kazakhstan (Emba, Koschagyl), Bashkir (Tuymazy), and Tatar (Romashkin, Mininbayev structure).

The method used at the petroleum institutes for examining gasolines from the

Surakhan ordinary crude and from the crude of the Central Nebit-Dag, differs somewhat from the Raman-spectrum method (Bibl. 83, 84, 85). Here the naphthalene-paraffin portion of the gasolines, prior to the hydrogenation but after chromatographic separation of the aromatic hydrocarbons by silica gel, was distilled in a column equivalent to 100 theoretical plates into narrow cuts boiling from 60 to 150°C (about 40 fractions), after which the Raman spectra of these fractions were recorded and examined. The fractions were then dehydrogenated, and the Raman spectra of the resultant catalyzates were recorded. The subsequent operations were dearomatization of the catalyzates, and spectral analysis of the pentamethylene-paraffin residue. This analytical procedure permitted an elucidation of the degree of the side processes (cyclization, hydrogenolysis, etc.) accompanying the analytical dehydrogenation; in this way, the ratio of the individual stereoisomeric forms of the disubstituted and polysubstituted cyclohexane and cyclopentane hydrocarbons in the gasoline fraction could be estimated.

The gasoline of the Nebit-Dag crude (from the central region) which had not been subjected to catalytic dehydrogenation showed several stereoisomeric forms of cyclohexane and cyclopentane hydrocarbons.

The predominance of the cis-1,3-disubstituted hydrocarbons over the trans-forms was shown, as well as the predominance of the trans-1,2 and the trans-1,4-disubstituted hydrocarbons over the corresponding cis-forms. In other words, the thermodynamically more stable forms were predominant.

In this work, it was experimentally demonstrated that the fundamental reaction during an analytical dehydrogenation was a conversion of the hexahydroaromatic hydrocarbons into the corresponding aromatics. Neither cyclization nor aromatization of the paraffinic hydrocarbons was observed. The hydrogenolysis of the pentamethylene ring, under the conditions adopted for analytical dehydrogenation, was not entirely excluded. Its role, however, was apparently insignificant. In the corresponding gasoline fraction, the 1,1-dimethylcyclohexane is partially converted into

0 toluene, with a simultaneous liberation of methane (Kazanskiy and Liberman reaction).

1
2 The interconversion of the cis- and trans-forms of certain cyclopentane hydrocarbons
3 is possible (Bibl.85, 89, 90, 91).

4 By comparing the spectra of the 136 - 150°C fractions before and after dehydro-
5 genation, the probable frequency of several analytical lines was established for the
6 spectra of certain hexamethylene hydrocarbons for which the literature has either no
7 data at all, or gives data only for the spectra of mixtures of stereoisomers.

8 Topchiyev, Musayev, and Gal'pern have recently shown that, on dehydrogenation
9 of the naphthene-paraffin portion of gasoline, certain amounts of unsaturated com-
10 pounds are formed. It was chromatographically possible to separate from the cataly-
11 zate a mixture of unsaturated hydrocarbons with a boiling range of 78 - 140°C and
12 with a mean iodine number of 290. It was established from the Raman spectra (by
13 I.A.Kislinskiy) that the unsaturated hydrocarbons consist of olefins and cyclo-
14 olefins.

15 An investigation of the individual composition of straight-run gasolines showed
16 them to contain as many as 120 - 130 hydrocarbons. This is no less than 70% of the
17 total number of possible hydrocarbons in the same boiling range. With such an abun-
18 dance in the general composition of the gasoline, the concentration of the individual
19 hydrocarbons is extremely varied. Thus the five most abundant hydrocarbons in each
20 gasoline made up from 18 to 36% of the entire sample. Other USSR gasolines exhibit
21 the same characteristic feature in their composition (Bibl.74-78).

22 Similarity of the chemical composition and physical properties of the hydrocar-
23 bons was established for the gasolines from the Nebit-Dag crudes and the Kazanbulak
24 and Karachukhur crudes as well as for the gasolines produced from the Devonian crudes
25 of the Romashkin and Tuymazy oilfields.

26 The most characteristic features of the composition of the straight-run gaso-
27 lines examined were as follows: The hydrocarbon composition of the gasolines from
28 the Central Nebit-Dag crude (from the red stratum) differs strongly from that of the

0 gasolines from the Western Nebit-dag crude (from the Akchagyl' stage). The former
1 is higher in naphthenes and isoparaffins. In chemical composition and physical
2 properties, the gasolines from the Nebit-dag crudes approach those from the crudes
3 of the Azerbaydzhan oilfields (Karachukhur and Kazanbulak). The gasoline from the
4 Devonian crudes of the Mininbay structure of the Romashkin oilfield in Tatarsky has a
5 hydrocarbon composition and physical properties resembling those of the gasoline
6 from the Devonian crudes of the Tuymazy oilfield in Bashkiria, and is distinguished
7 by its elevated content of normal paraffins. The Romashkin gasoline differs from
8 the Tuymazy product in its elevated content of 2-methylpentane and 2-methylhexane.
9 The gasoline from the Jurassic Koschagyl crude is high in cyclohexane hydrocarbons
10 and resembles the composition of the gasoline from Surakhan selected crude and from
11 Nebit-dag crude from younger strata. The gasoline from the Surakhan oily crude dif-
12 fers sharply from the gasolines from the Surakhan ordinary crude in that it has a
13 higher content of normal paraffins. The same difference is observed for the two
14 Kazanbulak crudes. In both cases, the difference in the gasoline composition is
15 apparently connected with the difference in the depth of the oil deposits. The gas-
16 olines from Karachukhur crude are distinguished by high contents of toluene,
17 n-paraffins, and ethylcyclohexane. The First Kazanbulak crude is characterized by
18 gasoline with elevated isoparaffins.

19 Kazanskiy, Landsberg and Plate, with their associates (Bibl.72, 80), have ap-
20 plied the Raman-spectrum method of examining gasolines to the aromatic and hexahydro-
21 aromatic hydrocarbons of the ligroin from the Emba crude of the Koschagyl field.
22

23 Shuykin, Novikov, and Naryshkina (Bibl.92), using the Raman-spectrum method and
24 oxidation with a potassium permanganate solution, investigated the content of in-
25 dividual aromatic and hexamethylene hydrocarbons in the 136 - 144°C, 144 - 150°C,
26 and 150 - 156°C fractions of Maykop gasoline. They found these fractions to contain
27 mono-, di-, and tri-substituted homologs of cyclohexane and benzene.
28

29 Zizin, Yasnopolskiy, and Ashumov, at the Azerbaydzhan Petroleum Industry Re-
30

0 search Institute imeni Kuybyshev (Bibl.93), investigated the gasolines from 15 Baku
1 crudes by a simplified Raman-spectrum method (Surakhan selective, Surakhan ordinary,
2 Upper Kalinin, Lower Kalinin, Kalinin suite, Upper Permian, Lower Permian, Gyurgyav,
3 Balakhan oily, Binagad, Upper Karachukhur, Lower Karachukhur, Umbak, Neftyanyye
4 Kamni, Bibi Eybat waxy). They found that all the gasolines examined, (except the
5 gasolines from the Gyurgyav crude) contained more naphthenes than paraffins. Among
6 the naphthenes, the cyclohexane hydrocarbons predominated over the cyclopentanes;
7 among the paraffins, the isohydrocarbons predominated. In all these gasolines, the
8 content of aromatics was exceedingly low, except for the gasoline from the Lower
9 Karachukhur crude, which did contain 5.8% of toluene. The crudes with high cyclo-
10 hexane and methylcyclohexane were of the greatest interest.
11
12 The cyclohexane content of the gasolines from some crudes ran as high as 8.5%,
13 and the methylcyclohexane as high as 23.6%.
14

15 Pishnamazzade and coworkers, at the Petroleum Institute, Academy of Sciences
16 AZSSR (Bibl.94, 95), used the Raman-spectrum method to investigate the individual
17 hydrocarbon composition of straight-run gasolines from the marine deposits of the
18 PK and KS suites of the Neftyanyye Kamni. They found the naphthenes to predominate
19 in the gasoline from the PK suite, and the paraffins in that from the KS suite.
20 Among the paraffins in the gasoline from the PK and KS suites, paraffins with one
21 and two tertiary carbon atoms predominate. The gasoline from the PK suite contains
22 more cyclohexanes, cyclopentanes, and normal paraffins than the gasoline from the
23 KS suite.
24

25 These authors detected methylcyclopentane by the Raman-spectrum method, in the
26 127 - 133°C and 133 - 138°C fractions of the KS suite and in the 127.5 - 132°C and
27 132 - 136°C fractions of the gasoline from the PK suite. This observation requires
28 further physicochemical justification.
29

30 Khodzhayev, at the Institute of Chemistry, Academy of Sciences Uzbek SSR,
31 studied the individual hydrocarbon composition of Fergana gasolines by the Raman-
32

0 spectrum method, and also worked out a chemical method of analysis of mixtures of
2 mono-, di-, tri-, and tetra-substituted aromatic hydrocarbons, and the aromatic hy-
4 drocarbons formed on dehydrogenation of hexamethylene hydrocarbons, by oxidizing
6 them to the corresponding aromatic acids. This method is based on the differential
8 solubility of the acids themselves, and of their derivatives, in different solvents.
10 By using this technique for separating a mixture of aromatic acids, he quantitative-
12 ly determined 14 aromatic hydrocarbons in the 56 - 175°C cut (Bibl.96).
14

He also studied the content of individual aromatic and cyclohexane hydrocarbons
16 (after dehydrogenation) in two samples of gasoline from the crudes of the Southern
18 Alamyskik and Andizhan deposits. He found that tri-substituted aromatic hydrocar-
20 bons, with short side chains, predominated in the 150 - 175°C cut, and also found
22 mono- and di-substituted hydrocarbons with long side chains in insignificant amounts.
24

Agafonov, Nikolayeva, Zimina and Abayev, at the All-Union Petroleum Industry
26 Research Institute (Bibl.97), studied the individual hydrocarbon composition of
28 fractions from paraffin-base crudes (Romashkin and Tuymazy), gasolines from
30 naphthene-base crudes (Ekhab, Baku, and gasoline from Zhirnov crude), of catalytic-
32 cracked gasoline and high-octane components, alkylates, and technical iso-octane.
34 He obtained very interesting results on the gasoline fractions of the Zhirnov crude,
36 with a high octane number containing only 3% of aromatic hydrocarbons, and free from
38 cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane. The high con-
40 tent of isoparaffins and the complete absence of normal paraffins is characteristic
42 for this gasoline.
44

Urmanceyev and Robinzon and associates (Bibl.98) used the Raman-spectrum method
45 to investigate the individual hydrocarbon composition of two samples of straight-run
48 gasoline with an end point of 150°C, from crudes of the Bavly and Romashkin fields
50 of Tatarstan.
52

They proved that the chemical composition of the gasolines studied, from the
54 crudes of the same age and from one and the same horizon, were the same.
56

Niyazov and coworkers, at the Institute of Chemistry, Academy of Sciences Turkmenian SSR, is systematically studying the group and structural-group composition of fractions of crudes from the Nebit-dag, Kum-dag, and Cheleken fields (Bibl.99-101).

Amosov (Bibl.102) applied the Raman-spectrum method to a study of the composition of gasolines from two Turkmenian crudes, to elucidate the relation between the compositions of the light and heavy portions of each crude and the conditions of thermodynamic equilibrium between the individual gasoline components.

Areshidze, at the Institute of Chemistry, Academy of Sciences Georgian SSR, has systematically studied the group composition and types of hydrocarbons of the gasoline-ligroin fractions of the crudes of the Georgian oilfields (Mirza and Supsa) using the method of catalytic dehydrogenation (Bibl.103-106).

Razumov and Podkletnov, at the Institute of Chemistry, Sakhalin Branch, Academy of Sciences USSR, have recently been studying the individual composition of the aromatic, hexamethylene, and condensed aromatic hydrocarbons of the gasoline-kerosene fractions of Sakhalin crudes (Bibl.107).

Studies of the individual composition of a large number of the gasoline fractions of USSR crudes disclose the presence of over 100 hydrocarbons, which constitutes about 80% of the total number of all possible saturated and aromatic hydrocarbons in the boiling range of these fractions. The Raman-spectrum method, which is widely used in petroleum laboratory practice, may thus be considered a useful tool in solving the problems connected with the study of the individual composition of straight-run gasoline fractions.

The discovered irregularities in the concentration distribution of individual hydrocarbons and the existence of specific differences between the composition of crudes even from a single oilfield make it particularly important to accumulate systematic data on the content of individual hydrocarbons in USSR crudes. Unfortunately, it seems that during the last few years investigations of the exact composition of

0 straight-run gasolines have not reached the level specified by the resolutions of
2 the All-Union conference on the study of the composition and properties of crudes
4 and petroleum products, held at Moscow in January 1956.

6 The detailed analysis of cracked gasolines which contain unsaturated hydrocar-
8 bons is considerably more complicated than the analysis of straight-run gasolines.
10 Several attempts have been made to utilize Raman spectra for studying the individual
12 composition of cracked gasolines.

14 At the Petroleum Institute Academy of Sciences USSR, in the petroleum chemistry
16 laboratory (with the participation of the Laboratory of Petroleum Physics and Physi-
18 cal Chemistry) a Raman-spectrum method is being developed since 1955, under the di-
20 rective of A.V.Topchiyev, I.A.Musayev, E.G.Iskhakova, A.N.Kislinskiy, and
22 G.D.Gal'pern, for investigating the individual hydrocarbon concentration of cracked
24 gasolines, using separation by chromatographic absorption, analytical catalytic hy-
26 drogenation and dehydrogenation, and Raman-spectrum analysis.

28 One of the objects of study was the refinery pressure distillate of thermally
30 cracked gasoline, produced from the residuum of Grozny waxy crude. Two fractions,
32 boiling up to 60°C and in the range of 60 - 150°C, were separated from the gasoline
34 in a microfractionator.

36 Investigations of the individual hydrocarbon composition of the narrow cuts
38 boiling up to 60°C were conducted by the Raman-spectrum method. It was found that,
40 in both the straight-run and cracked gasolines, there was a marked predominance of
42 some hydrocarbons over others. Thus, the three hydrocarbons n-pentane, 2-methylbu-
44 tan and 2-methyl-2-butene, taken together, composed about 50% of the total amount
46 of the fractions up to 60°C (Bibl.108).

48 The conditions of a chromatographic method for separating the unsaturated hy-
50 drocarbons into hydrocarbon classes was worked out on natural and artificial mix-
52 tures.

54 By means of the proposed method, the 60 - 150°C cut of a cracked gasoline was

0 separated into naphthalene-paraffin, unsaturated, and aromatic classes of hydrocarbons
2 (Bibl.109).

6 The individual composition of aromatic and hexamethylene hydrocarbons (after
8 dehydrogenation of the naphthalene-paraffin portion, followed by separation of the
10 freed aromatic hydrocarbons on silica gel) was studied by the Raman-spectrum method.

12 Toluene and m-xylene predominated in the aromatic portion and, together, com-
14 posed 53%. In the hexamethylene portion, methylcyclohexane and ethylcyclohexane
16 together made up 46% (Bibl.110).

18 The composition of the olefins and cycloolefins was studied from the spectra
20 of the narrow original fractions before and after hydrogenation, and also by the
22 aniline method. To define the degree and order of the substitutions at the double
24 bond of the olefin molecules, narrow olefin cuts were subjected to group analysis
26 from the characteristic Raman frequencies. In the fractions boiling above 100°C,
28 the hydrogenation products were dehydrogenated to establish their content of hex-
30 amethylene compounds (Bibl.111).

32 The composition of narrow cuts of the pentamethylene-paraffin portion was
34 studied by the Raman-spectrum method.

36 Other investigators have also attempted a partial analysis of the composition
38 of cracked gasolines by the Raman-spectrum method. Thus, Mamedaliyev and associates
40 (Bibl.112) used this method, parallel with the chemical method, to investigate the
42 pentane-pentene fraction of a cracked gasoline. Tilicheyev and associates (Bibl.113)
44 (TsIATIM and Moscow State University) applied this method, with a methodological ob-
46 ject, to a quantitative analysis of the composition of aromatic hydrocarbons in frac-
48 tions of cracked gasolines, to which these hydrocarbons had artificially been added.

50 Recently, in connection with the vigorous growth of jet aviation and diesel en-
52 gine use, the medium-boiling ligroin-kerosene fractions of crude have become particu-
54 larly important.

56 The investigation of the chemical composition of the straight-run ligroin-

0 kerosene fractions of crude involves great difficulties, since their composition is
1 more complex than that of the gasolines. In this connection, the task of studying
2 the composition of the kerosene fractions of crudes does not consist in characteriz-
3 ing the individual hydrocarbon composition (which is possible for the straight-run
4 gasoline fractions) but only in a more or less detailed characterization of the hy-
5 drocarbon types and groups: of the aromatic, naphthene, and paraffin series.
6

7 Research originally started both in the USSR and abroad toward working out a
8 group analysis method for the composition of relatively wide kerosene fractions of
9 crude. The study of high-boiling fractions by the classical methods of organic
10 chemistry showed that the unusual complexity of their composition would make it nec-
11 essary to use a group of more modern physicochemical and physical methods of analy-
12 sis. V.V. Markovnikov already understood the inadequacy of the classical methods and
13 turned to I.I. Kanonnikov to confirm his conclusions on the cyclic nature of the
14 naphthenes by physicochemical methods. At the chemical laboratory of Kazan Universi-
15 ty, Kanonnikov (Bibl.114) first demonstrated the ring structure of the naphthenes
16 studied by Markovnikov and of certain terpenes investigated by Wagner, using the re-
17 fractometric method. This method, in conjunction with others, was the basis of the
18 so-called "ring analysis" proposed by Fluegter and Waterman. This method was later
19 considerably improved by the authors themselves and by other investigators.
20

21 Under the direction of N.D. Zelinskiy, Gal'pern and Musayev (Bibl.115-118) ap-
22 plied the refractometric method to the analysis of narrow cuts of saturated hydro-
23 carbons from the kerosene, oil and higher boiling fractions of Koschagyl crude.
24 These authors worked out a version of the apparatus setup for analytical pressure
25 hydrogenation and showed that aromatic hydrocarbons of various structure could be
26 hydrogenated without changing their structure.
27

28 The picrate method has been widely used in recent years to investigate the con-
29 densed aromatic hydrocarbons in the kerosene fractions of petroleum.
30

31 Nametkin and Pokrovskaya successfully applied the picrate method to the qualita-
32

0 tive analysis and, in isolated instances, to the semiquantitative analysis of the
1 naphthalene homologs in the kerosene fractions of a number of USSR crudes.
2

6 Systematic studies of the kerosene fractions of crudes from various regions of
8 the USSR showed the presence of naphthalene, methylnaphthalenes, di- and trimethyl-
10 naphthalenes, and tetramethylnaphthalenes. Romashkin kerosene is an exception. Here
12 a mixture of isomers of dimethylisopropylnaphthalene was noted.

14 In investigating the kerosene fractions of Emba crudes it was found that the
16 kerosene produced from Makat crude did not contain naphthalene or its homologs,
18 while the kerosenes from Dossor crude contains condensed aromatic hydrocarbon
(Bibl.119, 124).

20 Robinzon and Grishina investigated the kerosene fractions of Bavly crude by the
22 picrate method (Bibl.125).

24 Applying catalytic dehydrogenation to the kerosene fractions separated after
26 removal of the aromatics over silica gel, Rozenberg and Nifontova (Bibl.126, 127)
28 ascertained the content of decalin-series hydrocarbons in the kerosenes produced
30 from Surakhan and Dossor crudes, and established their structure. They showed, at
32 the same time, that decalin and its homologs are present together with the corre-
34 sponding homologs of naphthalene.

36 Rozenberg, in connection with the study of the composition of the kerosene frac-
38 tions of petroleum, refined a technique of separating the normal paraffins from their
40 mixtures with isoparaffins and naphthenes by the carbamide method (Bibl.128, 129).

42 Topchiyev, Rozenberg, Nechitaylo, and Terent'yeva studied the properties of crystal-
44 line complexes of n-paraffins with carbonate and investigated systems of individual
46 paraffins by the thermographic method (Bibl.130-134).

48 The compilation of absorption spectra of individual hydrocarbons is of great
50 importance for the examination of petroleum fractions by ultraviolet absorption spec-
52 troscopy (as it is also the case for other spectral methods).

54 Entirely insufficient attention has been paid up to now to the synthesis of

0 high-purity individual hydrocarbons, and to their spectral examination by means of
1 USSR instruments. Only two papers have been published giving the results of a study
2 of ultraviolet absorption spectra of individual aromatic hydrocarbons (in solution).
3
4 On analysis of gasolines by the photographic method, Shtandel' and Shostenko
5 (Bibl.135) found the near-ultraviolet absorption spectra of benzene, toluene, o-, m-,
6 and p-xlenes, ethylbenzene, psuedocumene, m-diethylbenzene and propylbenzene. Thus,
7 in investigating the individual composition of gasolines by ultraviolet absorption
8 spectrophotometry, Zimina and Siryuk (Bibl.136, 137) obtained the absorption spectra
9 of benzene, toluene, o-, m-, and p-xlenes, and ethylbenzene.
10
11

12 About 12 years ago, on the suggestion of S.S.Nametkin, at the Petroleum Chemis-
13 try Laboratory, Petroleum Institute, Academy of Sciences USSR, Pokrovskaya and asso-
14 ciates commenced the synthesis and systematic study of the properties of naphthene-
15 aromatic hydrocarbons, combined with cyclopentyl and cyclohexyl radicals (Bibl.138-
16 -148), and subsequently prepared a large number of individual compounds.
17
18

19 The synthesized hydrocarbons were characterized by their physical constants,
20 and the purity of most of them was determined by the thermographic method developed
21 by N.I.Lyashkevich at the Petroleum-Chemistry Laboratory.
22
23

24 The following hydrocarbons were synthesized:
25
26

- 27 1. Alkylaromatic;
- 28 2. Mono-, di- and trimethylbenzene with cyclohexyl and cyclopentyl rings
29 attached to the aromatic nucleus;
- 30 3. Naphthalene and ethynaphthalene with cyclohexyl and cyclopentyl rings
31 as substituents;
- 32 4. Tetralin and diphenyl with a hexyl chain attached to the aromatic ring;
- 33 5. Hydrocarbons of the indane series with alkyl radicals in the aromatic
34 nucleus, and indane with cyclohexyl rings in the aromatic nucleus;
- 35 6. 1,4-dicyclohexylcyclohexane, 1,3,5-tricyclohexylcyclohexane,
36 1,4-dimethylcyclopentylcyclohexane, 1,3,5-trimethylcyclopentylcyclohexane,

0 dicyclopentylcyclohexane, methylcyclopentylcyclohexane, cyclohexyl- and
2 methylcyclohexyl decalin, cyclopentyl- and methylcyclopentyl decalin.

6 The near-ultraviolet absorption spectra of the above hydrocarbons were studied
8 at the Laboratory of Petroleum Physics and Physical Chemistry, Petroleum Institute,
10 Academy of Sciences USSR, using the photoelectric method (Gal'pern, Kusakov,
12 Shimanko), and the photographic method (Kusakov, Shishkina). These included twelve
14 cyclohexylbenzenes, ten cyclopentylbenzenes, four naphthalenes, and eleven indane
16 derivatives (Bibl.149, 150). The study showed these compounds to possess rather
18 characteristic near-ultraviolet absorption spectra. This made these spectra useful
20 in establishing the positions of the substituents in the above compounds.
22

24 The absorption spectra in the near-ultraviolet were obtained for the first time
26 for almost all the naphthene-aromatic hydrocarbons under study.
28

30 Up to now there have been almost no investigations on the effect of cycloalkyl
32 substituents on the absorption spectrum of benzene in the near-ultraviolet.
34

36 It was found that the absorption spectrum in the near-ultraviolet is very simi-
38 lar in appearance for both cyclohexyl- and cyclopentylbenzenes.
40

42 It was found that, depending on the character of the substituent in the benzene
44 ring (methyl, other alkyl, cyclopentyl, or cyclohexyl groups), there is a slight
46 shift in the wavelength of the maxima of the absorption bands and a change in their
48 relative intensity. These changes depend primarily on the nature, number, and mutual
50 position of the substituents in the benzene ring. If the absorption spectra of these
52 compounds are examined under the same instrument and under the same experimental con-
54 ditions, the data may be used to identify individual compounds.
56

58 The absorption spectra of indane and its homologs were obtained by Shishkina
60 with a spectrograph and were also recorded with the recording spectrophotometer at
62 the Optical Laboratory of the INEOS, Academy of Sciences USSR, under the direction
64 of I.V.Obreimov. These spectra are of considerable interest, in view of the very
66 inaccurate existing data on certain of these compounds.
68

0 The accumulation of information about the absorption spectra of individual com-
1 pounds will make it possible to use the method of near-ultraviolet absorption spec-
2 tral analysis to investigate the structural and group composition of the kerosenes
3 and, in some cases, also of the higher boiling petroleum fractions.
4

5 To elucidate the group features relative to the character of the mutual posi-
6 tion, structure, and number of the naphthalene and aromatic rings and the influence
7 of alkyl substituents on these features, Gal'pern, Kusakov, and Smirnov studied the
8 infrared absorption spectra of nine individual naphthene-aromatic compounds: cyclo-
9 hexylbenzene, cyclohexyl o-, m-, and p-xlenes, cyclohexylmesitylene and cyclopentyl
10 o-, m-, and p-xlenes as well as cyclopentylmesitylene. Except for cyclohexylben-
11 zene, this was the first time that the infrared spectra of these substances, synthe-
12 sized at the Pokrovskaya Petroleum Chemistry Laboratory, were found (Bibl.149).
13

14 An analysis of these spectra showed that the absorption bands characterizing
15 the type of substitution of the benzene ring in alkylbenzenes are, in the main, pre-
16 served in these compounds as well. Certain differences were also found in the spec-
17 tra of cyclohexyl- and cyclopentyl- substituted benzenes of similar structure, giving
18 reason to expect that it will be possible to determine the type of the naphthene
19 constituent from the infrared absorption spectra.
20

21 Zimina, Iogansen, and Siryuk (VNII NP) (Bibl.151), using an IKS-11 spectro-
22 meter*, have worked out a method of quantitative determination of the CH₂-group con-
23 tent in mixtures of naphthene-paraffin hydrocarbons. A check of this method on arti-
24 ficial mixtures containing C₁₂ saturated hydrocarbons showed its accuracy to be $\pm 1\%$.
25 The same authors also investigated, from the infrared absorption spectra, the types
26 of unsaturated structures of the monoolefins in thermally cracked kerosenes, and
27 for a number of catalytic-cracked motor and aviation gasolines.
28

29 Shumulyakovskiy, Aleksandrov, Kurtsinovskaya, and Savost'yanova (Bibl.152) have
30

31 *The literature data were used to calibrate the instruments for individual sub-
32 stances.
33

described a rapid method of determining the total aromatic hydrocarbons in gasolines using the SF-4 spectrophotometer in the region of the harmonics of the C-H vibrations, based on the assumption that the ratio between the individual components (benzene, toluene, xylenes) varies only insignificantly.

The character of the ultraviolet absorption spectra from 2000 to 4000 Å permits them to be used mainly for the analysis of aromatic compounds: benzenes, naphthalenes, tetralins, indanes, diphenyls, and other more complex polycyclic compounds. In conjunction with the catalytic dehydrogenation method, the ultraviolet absorption spectra permit a study of the structure and composition of cyclohexane and decalin hydrocarbons, and of certain others.

When kerosene fractions contain a large number of isomers, and also as a result of the relatively low selectivity of the ultraviolet absorption spectra, it is impossible to investigate the individual composition of the C₉-C₁₂ aromatic fractions.

The study of the ultraviolet absorption spectra is the most effective method, and sometimes even the only possible method, of qualitative analysis of naphthalenes and higher polycyclic aromatic hydrocarbons, which have characteristic and intense absorption bands in the long-wave region of the spectrum (3000 - 4000 Å). At the Petroleum Institute, Academy of Sciences USSR, A.V.Topchiyev, L.M.Rozenberg, Ye.S.Pokrovskaya, S.S.Nifontova, M.M.Kusakov, M.V.Shishkina, and others have commenced to work out a method for investigating the hydrocarbon composition of straight-run kerosenes. This study is being conducted as follows: The straight-run kerosene is distilled into wide cuts which are then separated chromatographically into naphthene-paraffin and aromatic components. The condensed aromatic hydrocarbons are studied by the picrate method, and by the near-ultraviolet absorption spectra. The fractions of mono- and bicyclic aromatic hydrocarbons freed from the condensed aromatic hydrocarbons, are next distilled into more narrow cuts. The composition of the narrow cuts of aromatic hydrocarbons so separated is then investigated by the ultraviolet absorption spectral method. To separate the normal paraffins, the naphthene-

0 paraffin portion is treated with carbamide. The normal paraffins separated are then
1 microfractionated.

6 The naphthene-isoparaffin portion of the cuts is subjected to an analytical de-
7 hydrogenation according to N.D.Zelinskiy. The catalyzate obtained is then chromato-
8 graphed to separate the aromatic hydrocarbons liberated from the pentamethylene-
9 isoparaffins. The aromatic hydrocarbons separated are freed from the condensed hy-
10 drocarbons and are then fractionated into narrow cuts and studied chemically and
11 spectroscopically. The structural-group composition of the mono- and bicyclic
12 aromatic hydrocarbons is determined from the ultraviolet absorption spectra; the
13 bicyclic condensed hydrocarbons are also investigated by the picrate method.
14

15 The kerosene fractions of Surakhan, Tuymazy and Romashin crudes were studied.
16 A number of aromatic and naphthenic hydrocarbons were also separated from the kero-
17 sene fractions and identified.
18

19 On the basis of the experimental data obtained at the Petroleum Institute
20 Academy of Sciences USSR, and as a result of an analysis of the literature data on
21 the absorption spectra of individual alkynaphthalenes, it was found that, for one and
22 the same type of substitution in the aromatic ring, the absorption maxima vary in
23 wavelength and relative intensity only slightly with the structure of the substituent
24 saturated groups. This peculiarity of the ultraviolet absorption spectra was the
25 basis for the structural-group analysis of the mono- and bicyclic aromatic ligroin-
26 kerosene fractions with a boiling range of 160 - 300°C (Bibl.153 - 160).
27

28 Kusakov and Shishkina successfully applied the near-ultraviolet absorption spec-
29 tra to the study of narrow cuts of monocyclic aromatic hydrocarbons separated from
30 Romashkin and Tuymazy kerosenes before and after analytical dehydrogenation, and
31 from Surakhan kerosenes after dehydrogenation (Bibl.149 - 160).
32

33 It was found that the maxima and the points of inflection in the absorption
34 bands of various fractions (in the boiling range of 160-300°C) correspond to the
35 characteristic absorption maxima of alkylbenzenes of certain substitution types.
36

0 A comparison of the absorption spectra of narrow monocyclic aromatic fractions
2 with the absorption maxima in the near-ultraviolet that are characteristic for
4 alkylbenzenes and, in individual cases, with the spectra of individual methylben-
6 zenes, showed that Romashkin kerosene contains alkylbenzenes with a definite number
8 and position of the substituent groups, as well as pseudocumene, durene, and iso-
10 durene.
12

14 In all, in the fractions of monocyclic aromatic hydrocarbons from Romashkin and
16 Tuymazy kerosenes, the presence of monoalkylbenzenes, p- and m-dialkylbenzenes, tri-
18 and tetraalkylbenzenes was established. Tetralin was detected in one of these
20 fractions.

22 The spectra of the alkylbenzenes in Romashkin, Tuymazy, and Surakhan kerosenes
24 showed the presence of alkylcyclohexanes with a definite number of substituent
26 groups, in definite positions. The absorption spectra and, consequently, the
28 structural-group composition of the hexamethylene hydrocarbons from the Devonian
30 crudes of Romashkin and Tuymazy are very similar in the boiling range of 200 - 300°C.

32 The tetra-substituted benzenes are only weakly represented in the spectra of a
34 number of aromatic fractions separated from dehydrogenated Surakhan kerosene, which
36 indicate that the concentration of tetraalkylcyclohexanes is lower in the Surakhan
38 kerosene than in the Tuymazy and Romashkin products.
40

42 A study of the structural-group composition of the monocyclic aromatic fractions
44 on the basis of the ultraviolet absorption spectra is possible only when the naphtha-
46 lene hydrocarbons are present in amounts not exceeding thousandths of a percent.
48

50 Ultraviolet spectroscopy may be recommended as a reliable method of checking
52 the degree of separation of the monocyclic aromatic hydrocarbons from the condensed
54 bicyclic hydrocarbons.
56

58 In examining the spectra of fractions consisting of bicyclic condensed aromatic
60 hydrocarbons, the presence of monocyclic hydrocarbons causes no trouble, and it is
only rather large amounts of polycyclic condensed hydrocarbons (10 - 12%) that pre-

0 vent a spectral determination of the narrow-group composition of the naphthalenes.

2 From the absorption spectra of fractions of naphthalene hydrocarbons of

4 Romashkin kerosene (200 - 300°C), a number of methylnaphthalenes and dimethylisopropylnaphthalenes were identified, together with 1,4,5,7- and 2,3,6,7-tetramethyl-naphthalenes (Bibl.157).

6 Traces of naphthalene, and of its mono-, di-, and tri-substituted homologs,
8 were detected by the ultraviolet absorption spectra, in the dehydrogenation product
10 of Tuymazy kerosene, in concentrations impermissible for the picrate method
12 (Bibl.155).

14 The methodological development of the Raman-spectrum method of investigating
16 the hydrocarbon composition of the kerosene fractions of petroleum is now being con-
18 tinued at the Petroleum Institute, AN SSSR.

20 In addition to the work at the Petroleum Institute AN SSSR on the composition
22 of kerosene fractions by means of the ultraviolet absorption spectra, Zimina and
24 Suryuk (Bibl.136), at the VNII NP, have determined the total naphthalene hydrocarbons
26 in the aromatic fractions of Romashkin and Tuymazy kerosenes. The content of in-
28 dividual hydrocarbons, naphthalene, 1- and 2-methylnaphthalenes was also determined
30 from the absorption spectra in the low-boiling fractions of these kerosenes.

32 * *
34 *

36 We have attempted in this sketch to give a short survey only of the principal
38 work on the study of the composition of the light fractions of USSR crudes. We have
40 paid particular attention to the work connected with the N.D.Zelinskiy school.

42 As will be clear from this survey, the work on the composition of the petroleum
44 fractions, until the late 1930's, referred primarily to the group chemical character-
46 ization of the light gasoline and gasoline-ligroin fractions of petroleum. In the
48 1940's, methods of studying the individual composition were developed for the light
50 fractions and were successfully applied to the examination of USSR crudes.

In connection with USSR development of the construction of aircraft and automobile engines and expansion of the chemical industry, the requirements for the quality of engine fuels and of raw materials for industrial organic synthesis were modified. It now became necessary to make detailed studies of the hydrocarbon composition of the benzene-kerosene fractions of petroleum.

On passing to the study of the ligroin-kerosene fractions, efforts were again directed toward developing methods of group analysis, but now on a higher basis, with further differentiation of the subgroups of hydrocarbons.

It is obvious today that the study of the structure and properties of the hydrocarbons contained in petroleum fractions and petroleum products is not only necessary for a rational selection of fuels for various engines, but also to reveal the resources of hydrocarbons, saturated and unsaturated alike, which are used in petrochemical synthesis.

On the other hand, it is also obvious that, to establish an experimentally based theory of the origin of petroleum and its changes under the conditions of migration, the field must not be confined to purely geological and geochemical factors. To solve the problem of the extraction of petroleum, it is essential considerably to deepen and broaden the experimental data on the nature, concentration, and structure of the hydrocarbon and non-hydrocarbon components, and of the organosulfur, nitrogenous, and oxygenous compounds entering into the composition of petroleum.

BIBLIOGRAPHY

1. Mendeleev,D.I. - Zhur.Russ.Fiz.Khim.Obshch., Vol.15 (1883), p.3
2. Markovnikov,V.V. and Ogloblin,V.N. - Zhur.Russ.Fiz.Khim.Obshch., Vol.15 (1883), p.237
3. Beyl'shteyn,F.F. and Kurbatov,A.A. - Zhur.Russ.Fiz.Khim.Obshch., Vol.15 (1883), p.5
4. Konovalov,M.I. - Naphthenes, Hexahydrobenzenes and Their Derivatives (1889);

- Nitrating Action of Nitric Acid on Saturated Hydrocarbons, Moscow (1893)
5. Nametkin,S.S. - Contribution to the Question of the Action of Nitric Acid on
Saturated Hydrocarbons, Moscow (1911). See: Selected Works, AN SSSR
(1949), p.55
6. Topchiyev,A.V. - Nitration of Hydrocarbons and Other Organic Compounds. Moscow,
AN SSSR (1955)
7. Zelinskiy,N.D. - Zhur.Russ.Khim.Obshch., Vol.43 (1911), p.1220; Collected Works,
Moscow, Vol.3,(1955), p.51
8. Zelinskiy,N.D. - Zhur.Russ.Khim.Obshch., Vol.44 (1912), p.275; Collected Works,
Moscow, Vol.3 (1955), p.53
9. Zelinskiy,N.D. - Ber., Vol.45 (1912), p.3678; Collected Works, Moscow, Vol.3
(1955), p.54
10. Zelinskiy,N.D. and Balandin,A.A. - Izv. AN SSSR, Otd.Fiz. i Med.Nauk, Series 7,
No.1 (1929), p.29; Collected Works, Moscow, Vol.3 (1955), p.96
11. Zelinskiy,N.D. - Collected Works, Moscow (1955), pp.51-158
12. Zelinskiy,N.D. - Collected Works, Moscow, Vol.3 (1955), p.54
13. Zelinskiy,N.D. - Collected Works, Moscow, Vol.2 (1955), pp.462-572
14. - Trans.Groznny Research Inst. Chemical Composition of Petroleum and Petroleum
Products. ONTI, Moscow and Leningrad (1935) (First Edition 1931)
15. Kazanskiy,B.A. and Yeliseyeva,M.P. - Zhur.Org.Khim., Vol.6 (1936), p.888
16. Kazanskiy,B.A. and Markosova,M.I. - Zhur.Org.Khim., Vol.6 (1936), p.884
17. Kazanskiy,B.A., Gasan-Zade,G., and Margolis,Ye.I. - Zhur.Prom.Khim., Vol.11
(1938), p.1581
18. Rubinshteyn,A.M. - Uch.Zap.Mosk.Gos.Univ., Vol.3 (1934), p.255
19. Yur'yev,Yu.K. and Temnikova,L.I. - Uch.Zap.Mosk.Gos.Univ., Vol.71 (1941), p.173
20. Yur'yev,Yu.K. and Akimova,A.A. - Uch.Zap.Mosk.Gos.Univ., Vol.71 (1941), p.177
21. Yur'yev,Yu.K. and Kotel'nikova,V.M. - Neft.Khoz., No.8 (1937), p.47
22. Yur'yev,Yu.K. - Uch.Zap.Mosk.Gos.Univ., Vol.3 (1934), p.251

- 0 23. Yur'yev,Yu.K. and Shishkova,Z.M. - Uch.Zap.Mosk.Gos.Univ., Vol.71 (1941), p.180
 2 24. Zelinskiy,N.D. and Kazanskiy,B.A. - Ber., Vol.64 (1931), p.2265 [Zelinskiy,N.D. -
 Collected Works, Moscow, Vol.3 (1955), p.486]
 6 25. Yur'yev,Yu.K. and Musayev,I.A. - Uch.Zap.Mosk.Gos.Univ., No.6, Chemistry
 8 (1936), p.273
 10 26. Zelinskiy,N.D., Musayev,I.A., and Gal'pern,G.D. - Izv. AN SSSR, Otd.Khim.Nauk,
 12 No.2 (1937), p.467
 14 27. Zelinskiy,N.D. and Gal'pern,G.D. - Izv. AN SSSR, Otd.Khim.Nuak, No.5 (1941), p.9
 16 28. Panyutin,P.S. and Firsanova,Ye.N. - Khim.Tverd.Topliva, Vol.7 (1935), p.801
 18 29. Gal'pern,G.D. - Izv. AN SSSR, Otd.Khim.Nauk, No.4 (1941), p.45
 20 30. Gal'pern,G.D. - Izv. AN SSSR, Otd.Khim.Nauk, No.7-8 (1941), p.41
 22 31. Gal'pern,G.D. - Izv. AN SSSR, Otd.Khim.Nauk, No.9 (1942), p.46
 24 32. Nametkin,S.S. and Robinzon,Ye.A. - Neft.Khoz., No.6 (1928), p.775
 26 33. Nametkin,S.S. and Robinzon,Ye.A. - Neft.Khoz., No.3 (1933), p.184; No.4, p.230;
 28 No.5, p.292
 30 34. Nametkin,S.S., Robinzon,Ye.A., and Martynova,V.P. - Khim.Tverd.Topliva, Vol.9
 32 (1938), p.76
 34 35. Gal'pern,G.D. and Vinogradova,Ye.V. - Neft.Khoz., No.1 (1936), p.59
 36 36. Gal'pern,G.D. and Vinogradova,Ye.V. - Khim.Tverd.Topliva, Vol.8 (1937), p.384
 38 37. Gal'pern,G.D. - Khim.Tverd.Topliva, Vol.9 (1938), p.175
 40 38. Gal'pern,G.D. - Trudy Inst. Nefti AN SSSR, Vol.4 (1954), p.116
 42 39. Zelinskiy,N.D. and Levina,R.Ya. - Zhur.Prom.Khim., Vol.6 (1932), p.20
 44 40. Zelinskiy,N.D. and Levina,R.Ya. - Neft.Khoz., No.9 (1934), p.47. Collected
 46 Works, Moscow, Vol.2 (1955), p.518
 48 41. Terent'yeva,A.P., Vinogradova,Ye.V., and Gal'pern,G.D. - Dok. AN SSSR, Vol.4
 50 (1935), p.267
 52 42. Petrov,A.A. - Khim. i Tekh.Topl. i Masel, Vol.7 (1956), p.24
 54 43. Tishchenko,D.V. - Zhur.Org.Khim., Vol.8 (1938), p.12

- 0 44. Musayev,I.A. and Gal'pern,G.D. - Zhur.Prom.Khim., Vol.7, No.4 (1939), p.572
 2 45. Musayev,I.A. - Dok. AN SSSR, Vol.96 (1949), p.1097
 4 46. Musayev,I.A. - Dok. AN SSSR, Vol.80 (1951), p.759
 6 47. Topchiyev,A.V., Musayev,I.A., and Gal'pern,G.D. - Dok. AN SSSR, Vol.115
 8 (1957), p.740
 10 48. Glushnev,V.Ye. and Nepryakhina,A.V. - Trudy Inst. Nefti AN SSSR, Vol.1
 12 (1950), p.244
 14 49. Glushnev,V.Ye., Nepryakhina,A.V., and Andreyeva,T.P. - Trudy Inst. Nefti AN SSSR,
 16 Vol.4 (1954), p.38
 18 50. Mamedaliyev,G.M. and Rzayeva,Kh.D. - Izv. AN AzerbSSR, No.7 (1952), p.3
 20 51. Gal'pern,G.D. - Transact. and Abstr.Sci.Conf. on Anal.Chem., Gorkiy (1941)
 22 52. Gal'pern,G.D. - Byull.Vses.Khim.Obshch.im.Mendeleyev (1942), p.4
 24 53. Gal'pern,G.D. - Izv. AN SSSR, Otd.Khim.Nauk, No.6 (1944), p.351
 26 54. Ioffe,V.V. - Zhur.Org.Khim., Vol.16 (1946), p.1121
 28 55. Tilicheyev,M.D. and Okinshevich,N.A. - Zhur.Anal.Khim., Vol.7 (1952), p.259
 30 56. Tilicheyev,M.D. and Okinshevich,N.A. - Zhur.Anal.Khim., Vol.9 (1954), p.3
 32 57. Nametkin,S.S. and Nifontova,S.S. - Izv. AN SSSR, Otd.Khim.Nauk, No.1 (1936), p.3
 34 58. Nametkin,S.S., Amirkhanova,N.G., and Nifontova,S.S. - Trudy Inst.Nefti AN SSSR,
 36 Vol.1 (1949), p.130
 38 59. Nametkin,S.S. - Collected Works, AN SSSR, Moscow, Vol.2 (1955), pp.189-204
 40 60. Gutryya,V.Ya., Masumyan,V.Ya., Bukh,D.N., and Lisovakaya,S.N. - The Crudes of
 42 Azerbaydzhan. Azerb.Pub.House, Baku (1954)
 44 61. - Soviet Crudes. Moscow and Leningrad (1947) (A.S.Velikovskiy and S.N.Pavlova,
 46 Editors)
 48 62. - Methods of Examining Petroleum and Petroleum Products. GNTI (NII NP),
 50 Moscow (1955)
 52 63. Robinzon,Ye.A. - The Crudes of the Tatar ASSR, AN SSSR, Moscow (1956)
 54 64. Robinzon,Ye.A., Grishina,O.N., Mukhamedova,L.A., Urmanceyev,F.A., Izmaylov,R.I.,
 56

0	Leboncher,S.Kh., Kashayev,G., Amirkhanova,N.G., Gonik,V.K., Bayburova,M.Kh.,
2	and Nechayeva,M.A. - Izv.Kazan.Fil. AN SSSR, Ser.Khim.Nauk, No.4 (1957),
4	p.93
6	65. Vol'kenshteyn,M.V. and Shorygin,P.P. - Zhur.Fiz.Khim., Vol.13 (1939), p.1512
8	66. Vol'kenshteyn,M.V. - Usp.Khim., Vol.8 (1939), p.970
10	67. Vol'skiy,M.V. and Shorygin,P.P. - Neft.Khoz., Vol.12 (1939), p.45
12	68. Vol'kenshteyn,M.V. and Shorygin,P.P. - Izv. AN SSSR, Otd.Fiz.Nauk, Vol.5
14	(1941), p.174
16	69. Kazanskiy,B.A. and Gasan-Zade,G. - Uch.Zap.Mosk.Gos.Univ., Vol.71 (1941), p.183
18	70. Landsberg,G.S. and Kazanskiy,B.A. - Izv. AN SSSR, Otd.Khim.Nauk (1951), p.100; Vestn. AN SSSR, No.12 (1948), p.61
20	71. Sushchinskiy,M.M. - Trudy.Fiz.Inst. AN SSSR, Vol.5 (1950), p.185
22	72. Kazanskiy,B.A., Landsberg,G.S., Aleksanyan,V.T., Bulanova,T.F., Liberman,A.L., Mikhaylova,Ye.A., Plate,A.F., Sterin,Kh.E., and Ukholin,S.A. - Izv. AN SSSR, Ser.Fiz., Vol.18 (1954), p.704
24	73. Landsberg,G.S., Bazhulin,P.A., and Sushchinskiy,M.M. - Principal Values of Raman Spectra of Hydrocarbons. AN SSSR (1956)
26	74. Kazanskiy,B.A., Plate,A.F., Mikhaylova,Ye.A., Liberman,A.L., Batuyev,M.I., Bulanova,T.F., and Tarasova,G.A. - Izv. AN SSSR, Otd.Khim.Nauk (1954), p.266
28	75. Kazanskiy,B.A., Landsberg,G.S., Plate,A.F., Liberman,A.L., Mikhaylova,Ye.A., Bazhulin,P.A., Batuyev,M.I., Ukholin,S.A., Bulanova,T.F., and Tarasova,G.A. - Izv. AN SSSR, Otd.Khim.Nauk (1954), p.273
30	76. Kazanskiy,B.A., Landsberg,G.S., Plate,A.F., Bazhulin,P.A., Liberman,A.L., Mikhaylova,Ye.A., Sushchinskiy,M.M., Tarasova,G.A., Ukholin,S.A., and Voron'ko,S.F. - Izv. AN SSSR, Otd.Khim.Nauk (1954), p.456
32	77. Kazanskiy,B.A., Landsberg,G.S., Plate,A.F., Bazhulin,P.A., Liberman,A.L., Mikhaylova,Ye.A., Sushchinskiy,M.M., Tarasova,G.A., Ukholin,S.A., and Voron'ko,S.F. - Izv. AN SSSR, Otd.Khim.Nauk (1954), p.865
34	
36	
38	
40	
42	
44	
46	
48	
50	
52	
54	
56	
58	
60	MCL-580/III

- 0
 1 78. Kazanskiy,B.A., Landsberg,G.S., Plate,A.F., Liberman,A.L., Mikhaylova,Ye.A.,
 2 Sterin,Kh.Ye., Bulanova,T.F., Taranova,G.A., and Aleksanyan,V.T. - Izv.
 3 AN SSSR, Otd.Khim.Nauk (1954), p.10053
 4
 5 79. Kazanskiy,B.A., and Plate,A.F. - Trans.All-Union Conf. on Petrol.Chem. and Refin-
 6 ing. Aznefteizdat, Baku (1953), p.221
 7
 8 80. Plate,A.F. - Composition and Properties of Crudes and Gasoline-Kerosene Frac-
 9 tions. Collected Papers on the Composition and Properties of Crudes and
 10 Petroleum Products. AN SSSR, Moscow (1957), p.217
 11
 12 81. Gal'pern,G.D., Shishkina,M.V., and Shchitko,M.I. - Trans.All-Union Conf. on
 13 Petrol.Chem. and Refining. Aznefteizdat, Baku (1953), p.23
 14
 15 82. Topchiyev,A.V., Musayev,I.A., Shishkina,M.V., and Gal'pern,G.D. - Dok. AN SSSR,
 16 Vol.91 (1953), p.769
 17
 18 83. Topchiyev,A.V., Musayev,I.A., and Gal'pern,G.D. - Trudy Inst.Nefti AN SSSR,
 19 Vol.4, No.3 (1954)
 20
 21 84. Topchiyev,A.V., Musayev,I.A., Gal'pern,G.D., and Shishkina,M.V. - Trudy Inst.
 22 Nefti AN SSSR, Vol.6, No.3 (1955)
 23
 24 85. Topchiyev,A.V., Gal'pern,G.D., Musayev,I.A., Kislynskiy,A.N., and Shishkina,M.V.
 25 - Dok. AN SSSR, Vol.103 (1955), p.1035
 26
 27 86. Topchiyev,A.V., Musayev,I.A., Kislynskiy,V.N., and Gal'pern,G.D. - Khim.i Tekhn.
 28 Topl., No.2 (1956), p.9
 29
 30 87. Topchiyev,A.V., Musayev,I.A., Kislynskiy,A.N., and Gal'pern,G.D. - Dok. AN SSSR,
 31 Vol.104 (1955), p.93
 32
 33 88. Topchiyev,A.V., Musayev,A.Ye., Kislynskiy,A.N., and Gal'pern,G.D. - Khim.i Tekhn.
 34 Topl., No.3 (1956), p.8
 35
 36 89. Topchiyev,A.V. - Trans. IV Internat. Oil Congress at Rome. Russian Translation
 37 of English, Vol.6 "Examination and Quality of Crudes and Petroleum Products".
 38 State Sci. and Techn.Pub.House, Moscow (1956), pp.5-11
 39
 40 90. Topchiyev,A.V., Musayev,I.A., Kislynskiy,A.N., and Gal'pern,G.D. - Composition
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000

0
and Properties of Crudes and Gasoline-Kerosene Fractions. Collected Papers
2
on the Composition and Properties of Crudes and Petroleum Products.

6
AN SSSR, Moscow (1957), pp.236-262

- 8
91. Gal'pern,G.D., Kislinskiy,A.N., Musayev,I.A., Topchiyev,A.V., and Shishkina,M.V.
10 - Fiz.Sborn., No.3(8): Materials of Tenth All-Union Conf. on Spectroscopy,
12 Vol.1. Molecular Spectroscopy. Publishing Dept., L'vov University, L'vov
14 (1957), p.239
- 16 92. Shuykin,N.I., Novikov,S.S., and Naryshkina,T.I. - Izv. AN SSSR, Otd. Khim. Nauk
18 (1951), p.115
- 20 93. Zizin,V.G., Yasnopol'skiy,V.D., and Ashumov,G.G. - Dok. AN AzerbSSR, Vol.12
22 (1956), p.889
- 24 94. Kosheleva,L.M., Mamedov,A.R., Pishnamaz,B.F., Rzayeva,S.Z., Sultanova,B.A.,
26 Khalilov,A.Kh., and Eybatova,Sh.E. - Dok. AN AzerbSSR, No.6 (1954), p.421
- 28 95. Pishnamaz,B.F. - Trans. All-Union Conf. on Exam.of Compos.and Prop.of Petr.and
30 Petr.Prods. AN SSSR, Moscow (1957), p.294
- 32 96. Khodzhayev,G.Kh. and Ibragimov,A.V. - Dok. AN UzbSSR, No.10 (1952); Izv. AN
34 UzbSSR, No.8 (1955), p.43
- 36 97. Agafonov,A.V., Nikolayeva,V.G., Zimina,K.I., and Abayeva,B.G. - Composition and
38 Properties of Crudes and Gasoline-Kerosene Fractions. Collected Papers on
40 the Composition and Properties of Crudes and Petroleum Products. AN SSSR,
42 Moscow (1957), p.263
- 44 98. Urmanceyev,F.A., Robinzon,Ye.A., Odintsov,M.G., Kataev,S.Kh., and Le,B. - Izv.
46 AN SSSR, Otd.Khim. Nauk (1957), p.711
- 48 99. Niyazov,A. and Bakhabova,Kh. - Izv. AN TurkSSR, No.3 (1955), p.61
- 50 100. Niyazov,A. and Bakhabova,Kh. - Izv. AN TurkSSR, No.3 (1955), p.73
- 52 101. Niyazov,A. - Composition and Properties of Crudes and Gasoline-Kerosene Frac-
54 tions. Collected Papers on the Composition and Properties of Crudes and
56 Petroleum Products. AN SSSR, Moscow (1957), p.190

- 0 102. Amosov,G.A. - Geolog.Sbornik, VNIGRI. Vol.II(V). Moscow and Leningrad
 2 (1953), p.60
- 4 103. Areshidze,Kh.I. - Dok.AN SSSR, Vol.38 (1943), p.25
- 6 104. Areshidze,Kh.I. - Dok.AN SSSR, Vol.50 (1945), p.193
- 8 105. Areshidze,Kh.I. and Gakhokidze,A.M. - Zhur.Prom.Khim., Vol.17 (1944), p.528;
 10 Soobshch.AN GruzSSR, Vol.4 (1943), p.147
- 12 106. Areshidze,Kh.I., Kikvidze,A.V., Benashvili,Ye.M., Kvirkashvili,V.L., and
 14 Charkviani,T.N. - Composition and Properties of Crudes and Gasoline-Kerosene
 16 Fractions. Collected Papers on the Composition and Properties of Crudes and
 18 Petroleum Products. AN SSSR, Moscow (1957), p.327
- 20 107. Podkletnov,N.Ye. - Dok.AN SSSR, Vol.116 (1957), p.973
- 22 108. Topchiyev,A.V., Musayev,I.A., Iskhakova,E.Kh., Kislinskiy,A.N., and
 24 Gal'pern,G.D. - Khim.i Tekhn.Topl.i Masel, No.12 (1956), p.1
- 26 109. Topchiyev,A.V., Iskhakova,E.Kh., Musayev,I.A., and Gal'pern,G.D. - Khim.i Tekhn.
 28 Topl.i Masel, No.11 (1957), p.26
- 30 110. Topchiyev,A.V., Musayev,I.A., Iskhakova,E.Kh., Kislinskiy,A.N., and
 32 Gal'pern,G.D. - Dok.An AzerbSSR, Vol.14, No.4 (1958), p.291
- 34 111. Topchiyev,A.V., Musayev,I.A., Iskhakova,E.Kh., Kislinskiy,A.N., and
 36 Gal'pern,G.D. - Dok.AN SSSR, Vol.120 (1958), p.1056
- 38 112. Mamedaluyev,Yu.G., Dalin,M.A., Shikhmamedbekov,A.Z., Mamedov,T.I., and
 40 Sadilov,D.I. - Dok.AN AzerbSSR, Vol.12 (1956), p.623
- 42 113. Tilicheyev,M.D., Akishin,P.A., Treshchova,Ye.G., and Tatevskiy,V.M. - Zavodsk.
 44 Lab., Vol.9 (1948), p.1080
- 46 114. Kanonikov,I.I. - The Refractive Power of Chemical Compounds. Kazan (1884)
- 48 115. Gal'pern,G.D. and Musayev,I.A. - Izv.AN SSSR, Otd.Tekhn.Nauk, No.4 (1948), p.542
- 50 116. Musayev,I.A. and Gal'pern,G.D. - Izv.AN SSSR, Otd.Tekhn.Nauk, No.7
 52 (1949), p.1106
- 54 117. Musayev,I.A. and Gal'pern,G.D. - Trudy Inst.Nefti AN SSSR, Vol.1

(1950), pp.244-255

118. Musayev,I.A. and Gal'pern,G.D. - Neft.Khoz., Vol.4 (1949), pp.42-52

119. Nametkin,S.S., Pokrovskaya,Ye.S., and Stepantsova,T.G. - Dok.AN SSSR, Vol.67
(1950), p.847

120. Nametkin,S.S., Pokrovskaya,Ye.S., and Stepantsova,T.G. - Dok.AN SSSR, Vol.73
(1950), p.715

121. Nametkin,S.S., Pokrovskaya,Ye.S., and Stepantsova,T.G. - Dok.AN SSSR, Vol.74
(1950), p.69

122. Pokrovskaya,Ye.S. - Dok.AN SSSR, Vol.81 (1951), p.203

123. Pokrovskaya,Ye.S. and Stepantsova,T.G. - Azerb.Neft.Khoz., No.2 (1954), p.20

124. Pokrovskaya,Ye.S. - Trudy Inst.Nefti AN SSSR, No.4 (1954), p.47

125. Robinzon,Ye.A. and Grishina,O.N.-Dok. AN SSSR, Vol.106 (1956), p.678

126. Rozenberg,L.M. - Dok.AN SSSR, Vol.80 (1951), p.769

127. Rozenberg,L.M. and Nifontova,S.S. - Trans.All-Union Conf.on Petrol.Chem. and Refining. AN AzerbSSR, Baku (1953), p.136

128. Rozenberg,L.M. and Genekh,I.S. - Dok.AN SSSR, Vol.84 (1952), p.523

129. Rozenberg,L.M., Genekh,I.S., and Nikitina,P.A. - Azerb.Neft.Khoz., No.12 (1953), p.18

130. Topchiyev,A.V., Rozenberg,L.M., Nechitaylo,N.A., and Terent'yeva,Ye.M. - Dok. AN SSSR, Vol.117 (1957), p.629

131. Rozenberg,L.M., Terent'yeva,Ye.M., Nechitaylo,N.A., and Topchiyev,A.V. - Dok. AN SSSR, Vol.109 (1956), p.1114

132. Topchiyev,A.V., Rozenberg,L.M., Terent'yeva,Ye.M., and Nechitaylo,N.A. - Trans. All-Union Conf.on Comp. and Prop.of High Molec.Petrol.Compounds. AN SSSR, Moscow (1958), p.208

133. Nechitaylo,N.A., Rozenberg,L.M., Terent'yeva,Ye.M., and Topchiyev,A.V. - Dok. AN SSSR, Vol.116 (1957), p.613

134. Topchiyev,A.V., Nechitaylo,N.A., Rozenberg,L.M., and Terent'yeva,Ye.M. - Dok.

- 0 AN SSSR, Vol.117 (1957), p.629
 2
 135. Shtandel', A.Ye. and Shostenko, Yu.V. - Zhur.Prom.Khim., Vol.21 (1948), p.173
 4
 136. Zimina, K.I. and Siryuk, A.G. - Fiz.Sbornik, No.3(8): Materials of Tenth All-
 6 Union Conf. on Spectroscopy, Vol.1. Molecular Spectroscopy. Pub.Dept.,
 8 L'vov University, L'vov (1957), p.272
 10
 137. Zimina, K.I. and Siryuk, A.G. - Composition and Properties of Crudes and Gasoline-
 12 Kerosene Fractions. Collected Papers on the Composition and Properties of
 14 Crudes and Petroleum Products. AN SSSR, Moscow (1957), p.340
 16
 138. Nametkin, S.S. and Pokrovskaya, Ye.S. - Zhur.Org.Khim., Vol.7 (1937), p.962
 18
 139. Nametkin, S.S. and Pokrovskaya, Ye.S. - Shur.Org.Khim., Vol.8 (1938), p.699
 20
 140. Pokrovskaya, Ye.S. and Stepansova, T.G. - Zhur.Org.Khim., Vol.9 (1939), p.1953
 22
 141. Pokrovskaya, Ye.S. and Sushchik, R.Ya. - Zhur.Org.Khim., Vol.9 (1938), p.2991
 24
 142. Pokrovskaya, Ye.S. and Sushchik, R.Ya. - Zhur.Org.Khim., Vol.9 (1941), p.170
 26
 143. Pokrovskaya, Ye.S. - Dok.AN SSSR, Vol.39 (1943), p.26
 28
 144. Pokrovskaya, Ye.S. - Zhur.Org.Khim., Vol.16 (1946), p.435
 30
 145. Pokrovskaya, Ye.S. and Stepansova, T.G. - Dok.AN SSSR, Vol.55 (1947), p.841
 32
 146. Nametkin, S.S. and Pokrovskaya, Ye.S. - Dok.AN SSSR, Vol.61 (1948), p.1043
 34
 147. Pokrovskaya, Ye.S. - Trudy Inst.Nefti AN SSSR, Vol.1 (1950), p.264
 36
 148. Pokrovskaya, Ye.S. - Uch.Zap.Mosk.Gos.Univ., Khimiya, No.71 (1941), p.119
 38
 149. Gal'pern, G.D., Kusakov, M.M., Pokrovskaya, Ye.S., Smirnov, B.A., Shimanko, N.A.,
 40 and Shishkina, M.V. - Fiz.Sbornik, No.3(8): Materials of Tenth All-Union
 42 Conf. on Spectroscopy. Vol.1. Molecular Spectroscopy. Pub.Dept., L'vov Uni-
 44 versity, L'vov (1957), p.334
 46
 150. Gal'pern, G.D., Kusakov, M.M., Pokrovskaya, Ye.S., and Shimanko, N.A. - Trudy Inst.
 48 Nefti AN SSSR, Vol.12 (1958), p.20
 50
 151. Zimina, K.I., Logansen, A.V., and Siryuk, A.G. - Izv.AN SSSR, Ser.Fiz., Vol.18
 52 (1954), p.707
 54
 152. Shmulyakovskiy, Ya.E., Aleksandrov, S.N., Kurtsinovskaya, F.I., and
 56
 58
 60 MCL-580/III

	Savost'yanova,M.V.. - Composition and Properties of Crudes and Gasoline-Kerosene Fractions. Collected Papers on the Composition and Properties of Crudes and Petroleum Products. AN SSSR, Moscow (1957), p.335
153.	Nifontova,S.S., Sushchik,R.Ya., and Suchkova,A.A. - Dok.AN SSSR, Vol.85 (1952), p.115
154.	Topchiyev,A.V., Nifontova,S.S., Sushchik,R.Ya., and Suchkova,A.A. - Dok. AN SSSR, Vol.111 (1956), p.1045
155.	Topchiyev,A.V., Rozenberg,L.M., Kusakov,M.M., and Shishkina,M.V. - Izv.AN SSSR, Otd.Khim.Nauk (1956), p.1109
156.	Topchiyev,A.V., Nifontova,S.S., Suchkova,A.A., and Sushchik,R.Ya. - Trudy Inst. Nefti AN SSSR, Vol.8 (1957), p.21
157.	Topchiyev,A.V., Kusakov,M.M., Nifontova,S.S., Shishkina,M.V., and Suchkova,A.A. - Khim.i Tekhn.Topl.i Masel, No.9 (1957), p.1
158.	Topchiyev,A.V. - Trans.IV Internat.Oil Congress at Rome. Russian Translation of English, Vol.6 "Examination and Quality of Crudes and Petroleum Products". Moscow (1956), pp.12-21
159.	Topchiyev,A.V., Nifontova,S.S., Pokrovskaya,Ye.S., Rozenberg,L.M., Kusakov,M.M., Shishkina,M.V., Stepantsova,T.G., Suchkova,A.A. - Composition and Properties of Crudes and Gasoline-Kerosene Fractions. Collected Papers on the Composition and Properties of Crudes and Petroleum Products. AN SSSR, Moscow (1957), p.441
160.	Kusakov,M.M., Nifontova,S.S., Pokrovskaya,Ye.S., Rozenberg,L.M., Topchiyev,A.V., and Shishkina,M.V. - Fiz.Sbornik, No.3(8): Materials of Tenth All-Union Conf. on Spectroscopy. Vol.1. Molecular Spectroscopy. Pub.Dept., L'vov University, L'vov (1957), p.321