19 novembre 2021.

Corso di Scientific Computing

• Scrivere una function in Matlab che determini i coefficienti del polinomio approssimante ai minimi quadrati risolvendo il sistema di equazioni normali (si usi backslash). La function deve avere la seguente intestazione:

function coeff = myls(xdata,ydata,m)

xdata ed ydata sono, rispettivamente, le ascisse e le ordinate dei punti dati; m è il grado del polinomio. In output, coeff è il vettore dei coefficienti. Salvare lo script con il nome myls.m.

Corredare i codici di documentazione interna, verificarne la correttezza e la robustezza su semplici problemi test.

Utilizzare il codice per risolvere i seguenti problemi. Rappresentare graficamente i dati ed i modelli matematici risultanti.

1. La tabella mostra i valori annuali di concentrazione di CO_2 nell'atmosfera (in parti per milioni (ppm)) nella penisola Antartica. Determinare la retta che approssima tali dati nel senso dei minimi quadrati ed il valore della concentrazione di CO_2 nell'anno 2010.

	1994							
ppm	356.8	358.2	360.3	361.8	364.0	365.7	366.7	368.2
	2000	2000	2004	200=		200-	2000	
anno	2002	2003	2004	2005	2006	2007	2008	2009

2. La tabella mostra i valori della densità relativa dell'aria ρ misurata a varie altitudini h:

ſ	h(km)	0	1.525	3.050	4.575	6.10	7.625	9.150
ſ	ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

Usare l'approssimazione quadratica dei minimi quadrati per determinare la densità relativa dell'aria per $h=10.5\ km$.

3. La viscosità cinematica dell'aria μ_k varia con la temperatura T come mostrato

in tabella. Determinare il polinomio cubico che meglio approssima i dati nel senso dei minimi quadrati ed usarlo per calcolare μ_k per $T=10^o$, 30^o , 60^o e 90^o .

$T(^{o}C)$	0	21.1	37.8	54.4	71.1	87.8	100
$\mu_k (10^{-3} m^2/s)$	1.79	1.13	0.696	0.519	0.338	0.321	0.296

4. I dati seguenti rappresentano la crescita di batteri in un liquido di coltura in un certo numero di giorni. Determinare la funzione che meglio approssima i dati nel senso dei minimi quadrati. Provare diverse possibilità: lineare, quadratica ed esponenziale. Determinare la migliore equazione per la predizione del numero di batteri dopo 35 giorni.

#giorni	0	4	8	12	16	20
$\#batteri \times 10^6$	67.38	74.67	82.74	91.69	101.60	112.58

5. Si considerino i seguenti dati:

\boldsymbol{x}	1	2	3	4	5
y	0.5	2	2.9	3.5	4

che possono essere rappresentati dalla seguente equazione $x=e^{(y-b)/a}$, dove a e b sono parametri. Determinare a e b e disegnare il grafico della funzione.

- 6. Risolvere gli esercizi 9, 11 e 13 pag. 508-509 del libro *Numerical Analysis* di Burden-Faires.
- 7. Esaminare il Case Study riportato nel Cap. 15 del testo Applied Numerical Methods with Matlab di S.C. Chapra e ripetere l'esperimento.
- 8. Calcolare l'errore medio in ognuno dei casi precedenti.
- 9. Esaminare le funzioni polyfit, polyval, spline di Matlab ed usarle per risolvere gli esercizi di questo e delle esercitazioni precedenti.