

4 subspaces - Column space (CA) in RM - Null>pace N(A) in 1R - how space: all combinatus of = all combs of the columns of A' => G(AT) in R - Null space of AT: N(AT)= R [Left null space of A]

spall Spall dim rankez hullspace din NCA) CCA) speid solut. basis? Prof col deven sion

(eg)

MA.

[y]][A]e[o]

To find a basis for the left nullspace we reduce an augmented version of *A*:

$$\left[\begin{array}{cc}A_{m\times n} & I_{m\times n}\end{array}\right] \longrightarrow \left[\begin{array}{cc}R_{m\times n} & E_{m\times n}\end{array}\right].$$

From this we get the matrix E for which EA = R. (If A is a square, invertible matrix then $E = A^{-1}$.) In our example,

$$EA = \left[\begin{array}{ccc} -1 & 2 & 0 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{array} \right] \left[\begin{array}{cccc} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{array} \right] = \left[\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] = R.$$

New rechr space (M)
7 Atb CA
New rector space (M) A+b, cA A11 3+3 matrices! (not intersted is AB
(not interested in AB
Subspaces of M:
Subspaces of M: - all apper manguler nathies
-all symmetric natrices
-all symmetrie natrices - D, all dragonal natries.
<i>D</i> is the intersection of the first two spaces. Its dimension is 3; one basis for <i>D</i>
is: $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \end{bmatrix}. $