Logistic Regression

Overview

Type of Predictors Type of Response	Categorical	Continuous	Categorical and Continuous
Continuous	ANOVA	OLS Regression	OLS Regression or ANCOVA
Categorical	Contingency Table	Logistic Regression	Logistic Regression

- Y is binary (0/1, pass/fail, having a disease/ not) with continuous or categorical predictors
- Goal: Predict the probability of having an event (e.g., having disease, pass exam etc.) based on given information or to see how predictor are related to an event

Examples of logistic regression:

- Amazon -> whether you will make a purchase
 - ✓ Outcome: Make a purchase vs. do not make a purchase
- Netflix -> whether you will like a movie
 - ✓ Outcome: Watch a movie vs. Not watch a movie
- Insurance Companies -> what is your risk
 - ✓ Outcome: Accident vs. No accident
- UTSA -> who will graduate from their program
 - ✓ Outcome: Graduated vs. did not graduate

Why not linear regression?

• Continuous response y and Predictors x_j ; $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \varepsilon_i$

- Normality assumption on Y does not make sense
 - Need different assumptions on Y
- What happens if we fit linear regression model?

There are no restrictions, the model cannot be fitted with a linear regression line

Logistic Regression

- Bernoulli assumption on Y
 - $-Y_i \sim Bernoulli(P_i)$
 - Examples of Bernoulli include Flipping a coin;
 observing a head ~ Bernoulli (0.5)
- We want to model the probability of having an event P, $(0 \le P \le 1)$

$$- \left[\log \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p \right]$$

where $\frac{p}{1-p}$ is called as **odds**

- Why do we define response variables as log (odds)?
 Because of the restriction on p
- What is difference on right-hand side compared to multiple linear regression? There is no Error Term (epsilon), cannot separate error term from the model

Logistic regression

- No longer Normality assumption on Y
- Can no longer separate the error term from the model
- Estimate $\beta's$ based under Bernoulli assumption on Y
- Interpretation is not straightforward
 - Understand odds and odds ratio
- Diagnostics still needed
- glm(y~x, data = data, family = "binomial") in R

Odds

- Odds = p/(1-p)
- Ratio of probability event happens to probability it doesn't happen
 - Odds of 1 means equally likely to happen or not
 - What if odds(car accident) > 1?
 - What if odds(car accident) < 1?</p>

Odds Ratio

- Compares odds for event under different conditions
- For example,

odds ratio(accident;
$$M, F$$
) = $\frac{odds(accident|M)}{odds(accident|F)}$

- Odds ratio of 1 means odds are the same
 Males and Females both have the same relative probability of having an event (accident).
 No Gender Effect
- What if odds ratio (car accident; M,F) > 1
 There is a higher probability that Males will have an event (accident).
- What if odds ratio (car accident; M,F) < 1
 There is a higher probability that Females will have an event (accident).

Expected Odds and Probabilities

Under logistic regression model:

Expected odds:

$$\frac{\hat{p}}{1-\hat{p}} = \exp(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots)$$

• Expected probability (fitted \hat{p}):

$$\hat{p} = \frac{\exp(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots)}{1 + \exp(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots)}$$

Always fall between 0 and 1

Interpretation: (i) predictor is categorical

 Consider the simple linear regression with one categorical variable x

$$\log\left(\frac{p}{1-p}\mid x\right) = \beta_0 + \beta_1 x$$

Suppose that x=1 (female) or 0 (male), then

$$-\log\left(\frac{p}{1-p}\mid male\right) = \beta_0, \quad \log\left(\frac{p}{1-p}\mid female\right) = \beta_0 + \beta_1$$

It implies

$$-\log\left(\frac{odds|\ female}{odds|\ male}\right) = \beta_1 \ , \ \text{equiv. to} \ \left(\frac{odds|\ female}{odds|\ male} = e^{\beta_1}\right)$$
• The odds of having an event is e^{β_1} times for

- female group compared to that of male group.
 - What does positive and negative β_1 mean?

Interpretation: (i) predictor is categorical

$$H_0: \beta_1 = 0$$
 vs. $H_a: \beta_1 \neq 0$

- If p-value \geq .05, the predictor is not statistically significant in the model (β_1 =0), hence odds ratio $\frac{odds|female}{odds|male} = e^0 = 1$
- If p-value <.05, the predictor is statistically significant in the model ($\beta_1 \neq 0$),
 - If $\beta_1>0$ then odds ratio> 1, group 1 has higher odds than group 0
 - If β_1 <0 then odds ratio< 1, group 1 has lower odds than group 0

Interpretation: (ii) predictor is continuous

Suppose that x is continuous (e.g., age),

$$\log\left(\frac{p}{1-p}\mid x\right) = \beta_0 + \beta_1 x, \qquad \log\left(\frac{p}{1-p}\mid x+1\right) = \beta_0 + \beta_1 (x+1)$$

It implies

$$-\log\left(\frac{odds|x+1}{odds|x}\right) = \beta_1$$
, equiv. to $\frac{odds|x+1}{odds|x} = e^{\beta_1}$

- The odds of having an event change by a factor of e^{β_1} with one unit increase in x.
 - (multiplicative change in the odds for a one unit change in the predictor variable)
- Additive change <-> Multiplicative change

Interpretation: (ii) predictor is continuous

$$H_0: \beta_1 = 0$$
 vs. $H_a: \beta_1 \neq 0$

- If p-value \geq .05, the predictor is not statistically significant in the model (β_1 =0), hence odds ratio $\frac{odds|x+1}{odds|x} = e^0 = 1$
- If p-value <.05, the predictor is statistically significant in the model ($\beta_1 \neq 0$),
 - If $\beta_1>0$ then the odds of having an event increases by a multiple of e^{β_1} with one unit increase in predictor x.
 - If β_1 <0 then the odds of having an event decreases by a multiple of e^{β_1} with one unit increase in predictor x.

Interpretation: (iii) multiple regression

• The interpretation is the same as the previous single continuous or categorical predictor under the condition, "when all other predictors are same".

Goodness-of-fit

- Goodness-of-fit of a statistical model describes how well it fits a set of observations
- 1. Hosmer and Lemeshow goodness-of-fit test
 - H0: Model is adequate. H1: Model is not adequate
 - hoslem.test() in R package "ResourceSelection"
- 2. Pseudo R-Squares (modified R-squares)
 - PseudoR2() in R

Exercise 1: ESR and Plasma Data

- Response: esr 0|1 indicator for healthy or unhealthy erythrocyte sedimentation rate(ESR)
- 0 is healthy and 1 is unhealthy
- Predictors: fibrinogen and gamma globulin plasma levels
- Want to model unhealthy ESR as a function of plasma levels
 - make sure 1 is coded for the even of interest!
- Hosmer and Lemeshow goodness-of-fit test

Exercise 1: ESR and Plasma Data

- Model unhealthy esr as a function of gamma and fibrinogen levels
- Which terms seem significant?
- What does the model tell us about odds ratios for changes in plasma levels?
- Significance check of individual predictor;
 - P-value from parameter estimates
- Interpretation of estimated coefficients
 - Odds Ration estimates
- Remove insignificant terms, refit and interpret
- Which person is more likely to be in unhealthy esr status?
- Diagnostics residual plots and cook's distance

Exercise 1: ESR and Plasma Data

```
glm.plasma0 = glm(esr \sim fibrinogen+gamma, data = plasma, family = "binomial")
summary(glm.plasma0)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -12.7921 5.7963 -2.207 0.0273 *

## fibrinogen 1.9104 0.9710 1.967 0.0491 *

## gamma 0.1558 0.1195 1.303 0.1925
```

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = -12.79 + 1.91 * fib + 0.156 * gamma$$

```
glm.plasma = glm(esr ~ fibrinogen, data = plasma, family
= "binomial")
summary(glm.plasma)
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -6.8451 2.7703 -2.471 0.0135 *
## fibrinogen 1.8271 0.9009 2.028 0.0425 *
##
OR2=exp(glm.plasma$coefficients)
round(OR2, 3)
                             Calculate odds ratio for
## (Intercept) fibrinogen
                             the interpretation
## 0.001 6.216
```

The odds of being unhealthy status change by a factor of exp(1.827)=6.216 with one unit increase in fibrinogen. <u>Thus, a person with higher fibrinogen level is more likely to be unhealthy esr</u>

```
HosmerLemeshowTest(fitted(glm.plasma), plasma$esr)$C
##
    Hosmer-Lemeshow C statistic
##
##
## data: fitted(glm.plasma) and plasma$esr
## X-squared = 8.9002, df = 8, p-value = 0.3508
H0: model is adequate vs. Ha: model is inadequate
## psuedo R^2
pseudo.r2<-PseudoR2(glm.plasma, which = c("McFadden</pre>
", "Nagel", "CoxSnell"))
round(pseudo.r2, 3)
## McFadden Nagelkerke CoxSnell
        0.196 0.278
##
                               0.172
```


Check if any patterns found. If not, assumption is valid

Cook's distance – observation with large cook's d is an influential point

- Response: amputation 0|1 indicator (0=not amputated, 1=amputated)
- Predictors:
 - illness_severity (three categories: low, moderate, and high)
 - diabetes (two categories: uncontrolled and controlled)
 - ulcers: (two categories: no ulcer as 0, at least on ulcers as 1
- Want to model if a patient gets an amputation or not
- Model selection with other predictors

- Which predictors are significant?
- Interpretation of Odds Ratio for categorical variable with more than two levels
- What kind of patient has the highest probability to gets an amputation?

```
glm.amputation <- glm(AMPUTATION ~ factor(ILLNESS SEVERITY)+factor(diabet
es)+factor(Ulcers), data = amputation, family = "binomial")
summary(glm.amputation)
## Coefficients:
                                   Estimate Std. Error z value Pr(>|z|)
##
##
  (Intercept)
                                    -4.3049
                                           0.4219 -10.203 < 2e-16
  factor(ILLNESS SEVERITY)Low
                                    -2.1956 0.6106 -3.596 0.000323
## factor(ILLNESS_SEVERITY)Moderate
                                    -0.6745 0.4087 -1.651 0.098831
## factor(diabetes)uncontrolled
                                               0.3763 2.763 0.005730
                                     1.0397
## factor(Ulcers)1
                                     2.1879
                                               0.3757 5.823 5.77e-09
```

```
# Odds Ratio
round(exp(glm.amputation$coefficients),3)
                                           factor(ILLNESS_SEVERITY)Low
##
                         (Intercept)
##
                               0.014
                                                                  0.111
   factor(ILLNESS SEVERITY)Moderate
                                          factor(diabetes)uncontrolled
                               0.509
                                                                  2.828
##
                     factor(Ulcers)1
##
                               8.917
##
```

A person with high illness_severity, uncontrolled diabetes and at least one Ulcers has the highest chance to have the amputation

- Model selection (stepwise selection via AIC)
- Consider more predictors
 - ILLNESS_SEVERITY: High/ Moderate/ Low
 - SEX_CODE: F/ M
 - AGEGROUP: 0-17/ 18-44/ 45-64/ 65-74/ 75+
 - Diabetes: controlled/ Uncontrolled
 - Hypertension: 1/0
 - Ulcers: 1/0

```
model.null = glm(AMPUTATION \sim 1, data=amputation, family = binomial) # null
model : no predictor
model.full = glm(AMPUTATION ~ ., data=amputation, family = binomial) # full
model: all predictors
step.models<-step(model.null, scope = list(upper=model.full),</pre>
                 direction="both",test="Chisq", trace = F)
summary(step.models) # summary of stepwise selection
##
## Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
##
                                       0.4739 -9.688 < 2e-16 ***
## (Intercept)
                           -4.5915
                            2.1628
                                       0.3765 5.744 9.23e-09 ***
## Ulcers
## ILLNESS SEVERITYLOW
                                       0.6268 -3.182 0.00146 **
                        -1.9942
## ILLNESS SEVERITYModerate -0.6195
                                       0.4116 -1.505 0.13231
## diabetesuncontrolled
                                       0.3770 2.740 0.00614 **
                         1.0332
## hypertension
                         0.5706
                                       0.3781 1.509 0.13129
```

- Logistic regression: model a probability of having an event (e.g., having a heart attack)
- Can be related to classification. what if you get estimated probability as 0.8? or if 0.2?
 - ✓ if we observed their status, we can evaluate classification performance (plasma example)
- Can be used as a prediction tool for new input

- 0.5 cut-off is reasonable
- Sample proportion can also be a cut-off
 - ✓ What about for classification on rare disease?
 - ✓ If sample data have only a few 1's (disease) and majority 0's (no disease), probabilities tends to be underestimated and 0.5 threshold can be too high

- Revisit plasma data: (esr ~ fibrinogen)
- We will obtain those results for the plasma model to see:
 - Predicted probabilities of unhealthy ESR
 - Frequencies for correctly and incorrectly classified observations
- How good is the classification?

				I I
##	fibrinogen	esr	fit.prob	red.class.1
## 12	2.35	0	0.07233014	0
## 13	5.06	1	0.91682381	1
## 14	3.34	1	0.32243042	0
## 15	2.38	1	0.07609529	0
## 16	3.15	0	0.25166154	0
## 17	3.53	1	0.40239891	0
## 18	2.68	0	0.12471720	0
## 19	2.60	0	0.10961646	0
## 20	2.23	0	0.05892903	0

Given data and true "esr" class

$$\hat{p} = \frac{\exp(-6.85 + 1.83 * fib)}{1 + \exp(-6.85 + 1.83 * fib)}$$

Estimated class of "esr" with 0.5 threshold

- Misclassification rate:
 - # of misclassified obs / total # of obs

```
# misclassification rate from 0.5 threshold
mean(plasma$esr != pred.class.1)
## [1] 0.125

# misclassification rate from sample proportion thre shold
mean(plasma$esr != pred.class.2)
## [1] 0.28125
```

- Choose the optimal threshold is important topic in classification/ data mining
 - Goal: accurate prediction for future observation
 - Split the data into train and test set
 - Train set as a given information and test set as a future set
 - Find the threshold which minimizes the "test error"