Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION

using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Mon May 31 15:26:48 2021 Program finished at Mon May 31 23:54:55 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 946757962

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * *	* * * * * *
	* *	* * *	* * * * * *
12 LaJolla	^ *	^	
Order of param		0	
1	$\Theta_1 =$	Θ_1 [m]	
2	Θ_2 =	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1 [m]	
4	$\Theta_4 =$	Θ_1 [m]	
5	$\Theta_5^{T} =$	Θ_1 [m]	
6	Θ_6 =	Θ_1 [m]	
7	$\Theta_7 =$	Θ_1 [m]	
8	$\Theta_8 =$	Θ_1 [m]	
9	$\Theta_{0} =$	Θ_1 [m]	
10	Θ_{10} =	Θ_1 [m]	
11	Θ_{11}		<displayed></displayed>
12	Θ_{12}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1} =$	$M_{2->1}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1}^{7-1} =$	M $_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5->1} =$	$M_{2->1}^{2->1}$ [m]	
18	$M_{7->1} =$	$M_{2->1}$ [m]	
19	$M_{8->1}^{7->1} =$	$M_{2->1}$ [m]	
20	$M_{9->1}^{6->1} =$	M $_{2->1}^{2->1}$ [m]	
21	M	$M_{2->1}$ [m]	
22	10->1	M $_{2->1}^{2->1}$ [m]	
23	M	M $_{2->1}^{2->1}$ [m]	
24	12->1	$M_{2->1}$ [m]	
25	$M_{1->2} = M_{3->2} = M_{1->2}$	$M_{2->1}$ [m]	
26	$M_{4->2} = M_{4->2}$	$M_{2->1}$ [m]	
27	$M_{5->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
28	$M_{5->2} = M_{6->2} = M_{10}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
29	$M_{6\rightarrow 2} = M_{7\rightarrow 2} =$	M [m]	
30	1-22	$ \begin{array}{ccc} M & [m] \\ M & [m] \end{array} $	
31	M _{8->2} =	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
32	M _{9->2} =	$M_{2\rightarrow 1} [m]$	
33	$M_{10->2} = M_{10->2}$	M = [m] $M = [m]$	
34	$M_{11->2} = M_{11->2}$	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
35	$M_{12->2} =$	$M_{2\rightarrow 1} [m]$	
	$M_{1->3} = M_{1->3}$	$M_{2\rightarrow 1} [m]$	
36	$M_{2->3} =$	$M_{2\rightarrow 1} [m]$	
37	$M_{4->3} =$	$M_{2\rightarrow 1} [m]$	
38	$M_{5->3} =$	$M_{2->1}$ [m]	
39	IVI _{6->3} =	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	

41	$M_{8->3} = M_{2->1} [m]$
42	$M_{9-3}^{8-3} = M_{2-31}^{2-31} [m]$
43	$M_{10->3} = M_{2->1} [m]$
44	$M_{11->3}^{10->3} = M_{2->1}^{2->1} [m]$
45	$M_{12->3}^{11->3} = M_{2->1}^{2->1} [m]$
46	$M_{1->4}^{12->3} = M_{2->1}^{2->1} [m]$
47	$M_{2\rightarrow 4}^{1\rightarrow 4} = M_{2\rightarrow 1}^{2\rightarrow 1} [m]$
48	$M_{3\to 4}^{2\to 4} = M_{2\to 1}^{2\to 1} [m]$
49	$M_{5->4} = M_{2->1} [m]$
50	$M_{6->4} = M_{2->1} [m]$
51	$M_{7->4}^{0->4} = M_{2->1}^{2->1} [m]$
52	$M_{8->4} = M_{2->1} [m]$
53	$M_{9->4}^{0.54} = M_{2->1}^{2.51} [m]$
54	$M_{10->4} = M_{2->1}$ [m]
55	$M_{11->4} = M_{2->1}$ [m]
56	$M_{12->4} = M_{2->1}$ [m]
57	$M_{1-5} = M_{2-1}$ [m]
58	$M_{2->5} = M_{2->1} [m]$
59	$VV_{3->5} = VV_{2->1} [m]$
60	$M_{4-5} = M_{2-5}$ [m]
61	$M_{6-5} = M_{2-1} [m]$
62	$M_{7->5} = M_{2->1} [m]$
63	$ V _{8\rightarrow 5} = V _{2\rightarrow 1} [m]$
64	$M_{9-5} = M_{2-5}$ [m]
65	$ M _{10-55} = M _{2-51} [m]$
66	$M_{11->5} = M_{2->1} [m]$
67	$M_{12-5} = M_{2-5}$ [m]
68	$M_{1->6} = M_{2->1} [m]$
69	$M_{2->6} = M_{2->1} [m]$
70	$M_{3\rightarrow 6} = M_{2\rightarrow 1} [m]$
71	$ V _{A \to 6} = V _{2 \to 1} [m]$
72	$ V _{5\rightarrow 6} = V _{2\rightarrow 1} [m]$
73	$M_{7->6} = M_{2->1} [m]$
74	$M_{8\to6} = M_{2\to1} [m]$
75 70	$M_{9\rightarrow6}^{6\rightarrow0} = M_{2\rightarrow1}^{2\rightarrow1} [m]$
76 77	$M_{10->6} = M_{2->1} [m]$
78	$M_{11->6}^{10>0} = M_{2->1}^{2>1} [m]$
78 79	$M_{12->6} = M_{2->1} [m]$
80	$M_{1->7}^{12} = M_{2->1}^{2} [m]$ $M_{-}^{2} = M_{-}^{2} [m]$
81	$M_{2\rightarrow7} = M_{2\rightarrow1} [m]$ $M = M_{1} [m]$
82	$M_{3->7} = M_{2->1} [m]$ $M = M_{1} [m]$
83	$M_{4\to7} = M_{2\to1} [m]$ $M_{} = M_{} [m]$
84	$M_{5->7} = M_{2->1} [m]$ $M_{6->7} = M_{2->1} [m]$
85	$M_{6->7} = M_{2->1} [m]$ $M_{8->7} = M_{2->1} [m]$
	··· 8->/ ··· 2->1 ···· 1

```
\overline{\mathsf{M}}_{9->7} =
                                     _{2\rightarrow 1} [m]
86
                 M _{10->7} =
87
                                  M_{2->1} [m]
                                  M_{2->1} [m]
88
                     11->7 =
                                  M _{2->1} [m]
89
                 M
                     12->7 =
                                  M_{2->1} [m]
90
                 M
                     1->8 =
91
                 M
                                  M_{2->1} [m]
                     2->8 =
92
                 M
                                  M _{2->1} [m]
                     3->8 =
                                  M _{2->1} [m]
93
                     4->8 =
94
                 M
                                  M_{2->1} [m]
                     5->8 =
95
                 Μ
                                  M_{2->1} [m]
                     6->8 =
                 M _{7->8} =
96
                                  M _{2->1} [m]
97
                 M_{9->8} =
                                  M_{2->1} [m]
                 M _{10->8} =
98
                                  M _{2->1} [m]
                 M _{11->8} =
99
                                  M_{2->1} [m]
100
                                  M_{2->1} [m]
                     12->8 =
                 M_{1->9} =
101
                                  M_{2->1} [m]
102
                 M
                                  M_{2->1} [m]
                     2->9 =
103
                 M
                     3->9 =
                                  M _{2->1} [m]
104
                                  M_{2->1} [m]
                 Μ
                     4->9 =
105
                 M
                                  M _{2->1} [m]
                     5->9 =
106
                 Μ
                                  M_{2->1} [m]
                     6->9 =
107
                                  M_{2->1} [m]
                     7->9 =
108
                                  M _{2->1} [m]
                 Μ
                     8->9 =
109
                 M
                                  M_{2->1} [m]
                     _{10->9} =
110
                 M
                     <sub>11->9</sub> =
                                  M_{2->1} [m]
111
                 M
                                  M_{2->1} [m]
                     12->9 =
                                  M _{2->1} [m]
112
                     1->10
                 M _{2->10} =
113
                                  M_{2->1} [m]
114
                 M
                                  M _{2->1} [m]
                     _{3->10} =
                                  M _{2->1} [m]
115
                 M
                     4->10
116
                                  M _{2->1} [m]
                     5->10 =
117
                 M
                     6->10
                                  M_{2->1} [m]
                                  M _{2->1} [m]
118
                     7->10
                                  M _{2->1} [m]
119
                     8->10 =
120
                 M
                                  M _{2->1} [m]
                    9->10
                                  M _{2->1} [m]
121
                 M
                     11->10
122
                 M
                     12->10
                                  M _{2->1} [m]
                 M _{1->11}
123
                                                    <displayed>
                 M _{2\rightarrow11}
124
                                                    <displayed>
                 M _{3->11}
125
                                                    <displayed>
                 M _{4->11}
126
                                                    <displayed>
                 M _{5->11}
127
                                                    <displayed>
128
                 Μ
                                                    <displayed>
                     6->11
129
                 Μ
                                                    <displayed>
                     7->11
130
                 M
                                                    <displayed>
                     8->11
```

		Prelin	ninary migrate ana	llysis of M. califorr	nianus CO1 h	naplotypes for l	Evolution 2 5
131	M _o	->11	<(displayed>			
132	Ν./)->11	<(displayed>			
133	NΛ	2->11	<(displayed>			
134	NΛ	->12	<(displayed>			
135	N/I	->12	<(displayed>			
136	N A	->12	<(displayed>			
137	N/I	->12	<(displayed>			
138	N A	->12	<(displayed>			
139	N/I	->12	<(displayed>			
140	N/I	->12	<(displayed>			
141	N A	->12	<(displayed>			
142	R A	->12	<(displayed>			
143	N/I)->12	<(displayed>			
144	N/I	l->12	<(displayed>			
Mutation	rate among loc	i:				Mutation rat	te is constant
Analysis	strategy:					Bayes	sian inference
Proposal	distributions fo	r parameter					
Paramete	er		Proposal				
Theta		Me	tropolis sampling				
M			Slice sampling				
	ibution for para						
Paramete		Minimum	Mean*	Maximum		Delta	Bins
Theta	Exp window	0.000010	0.010000	10.000000	1.000		500
M	Exp window	0.000100	100000.000000	1000000.000000	100000.000	0000	500
	hain settings:						Long chain
Number of							1
	ed steps [a]						1000
	ent (record eve						100
	r of concurrent	, ,	,				3
	(sampled) para						300000
Numbe	r of discard tree	es per chain	(burn-in)				1000
	Markov chains:						
Static h	neating scheme)				4 chains with	-
				1000	00.00	3.00 1.5	
						Swapping	g interval is 1
I							

Print options:

	outfile bayesf
Print data:	
Print genealogies [only some for some data type]:	
	No

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193
l .		

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_3^-	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00071
1	Θ_{11}^{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00970
1	Θ_{12}^{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00639
1	M _{2->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{3->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{4->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{7->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{8->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{9->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{10->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{12->1}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{3->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	$M_{4->2}$	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{7->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{8->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	$M_{9->2}$	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{10->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{12->2}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{2->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{4->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{7->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{8->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{9->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{10->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{12->3}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{2->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{3->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{7->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{8->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{9->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{10->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{12->4}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{2->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{3->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{4->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{7->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{8->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	8->5 M _{9->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	9->5 M _{10->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	10->5 M _{11->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	11->5 M _{12->5}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{2->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{3->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{4->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	5->6 M _{7->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{8->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{9->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{9->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{2->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{3->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{4->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{8->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{9->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{10->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{12->7}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{2->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{3->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{4->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{7->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{9->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{10->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{12->8}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{2->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{3->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{4->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{7->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{8->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{10->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{12->9}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	12->9 M _{1->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	1->10 M _{2->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	2->10 M _{3->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{4->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{5->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{6->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{7->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{9->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{11->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{12->10}	24000.0	30000.0	43000.0	56000.0	92000.0	53000.0	55042.8
1	M _{1->11}	34000.0	44000.0	71000.0	108000.0	226000.0	101000.0	116827.2
1	M _{2->11}	20000.0	32000.0	49000.0	0.00008	138000.0	71000.0	74576.5
1	M _{3->11}	42000.0	70000.0	87000.0	112000.0	152000.0	97000.0	96002.9
1	M _{4->11}	34000.0	56000.0	71000.0	84000.0	106000.0	73000.0	70610.0
1	M _{5->11}	22000.0	34000.0	49000.0	64000.0	200000.0	117000.0	111783.7
1	M _{6->11}	62000.0	74000.0	89000.0	108000.0	228000.0	141000.0	143125.0
1	M _{7->11}	14000.0	26000.0	43000.0	58000.0	72000.0	155000.0	136275.7
1	M _{8->11}	40000.0	54000.0	67000.0	78000.0	156000.0	103000.0	98929.3
1	M _{9->11}	50000.0	72000.0	87000.0	104000.0	148000.0	95000.0	100145.4
1	M _{10->11}	0.0	0.0	7000.0	24000.0	76000.0	55000.0	77113.5
1	M _{12->11}	48000.0	120000.0	143000.0	156000.0	212000.0	135000.0	131811.9
1	M _{1->12}	68000.0	90000.0	105000.0	128000.0	166000.0	99000.0	87651.4
1	M _{2->12}	138000.0	172000.0	223000.0	250000.0	330000.0	229000.0	231479.8
1	M _{3->12}	68000.0	98000.0	115000.0	132000.0	148000.0	101000.0	88194.9
1	M _{4->12}	0.0	16000.0	31000.0	50000.0	208000.0	83000.0	90975.5
1	M _{5->12}	0.0	0.0008	25000.0	42000.0	104000.0	77000.0	111399.4
1	M _{6->12}	0.0	6000.0	27000.0	44000.0	52000.0	127000.0	123635.9
1	M _{7->12}	18000.0	32000.0	71000.0	92000.0	174000.0	83000.0	90512.6
1	M _{8->12}	24000.0	48000.0	73000.0	96000.0	114000.0	87000.0	195275.6
1	M _{9->12}	40000.0	86000.0	117000.0	136000.0	158000.0	105000.0	101366.5
1	M _{10->12}	36000.0	64000.0	83000.0	100000.0	134000.0	87000.0	86701.8
1	M _{11->12}	18000.0	28000.0	43000.0	54000.0	184000.0	97000.0	95155.3

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci Freq Freq 600.00 600.00 400.00 400.00 -200.00 -200.00 0.00 -0.00 - Θ_1 8 2 2 8 6 6 Θ_{11} Freq Freq 600.00 100.0 400.00 50.0 200.00 0.00 -0.0 Θ_{12} 8 200000 400000 600000 800000 M _{2->1} Freq Freq 0.08 60.0 60.0 40.0 40.0 20.0 20.0 0.0 0.0 200000 400000 600000 800000 200000 400000 600000 800000 M _{2->11} M $_{1->11}$

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 15:26:48]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2363.036054	(1a)
	-2252.483344	(1b)
Harmonic mean	-1973.284764	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Accepted changes	Ratio
$\begin{array}{c} \Theta_2 \\ \Theta_3 \\ \Theta_4 \\ \Theta_4 \\ \Theta_5 \\ \Theta_5 \\ \Theta_6 \\ \Theta_8 \\ \Theta_8 \\ \Theta_8 \\ \Theta_8 \\ \Theta_9 \\ \Theta_9 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_3 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_3 \\ \Theta_2 \\ \Theta_2 \\ \Theta_3 \\ \Theta_2 \\ \Theta_3 \\ \Theta_4 \\ \Theta_2 \\ \Theta_2 \\ \Theta_2 \\ \Theta_2 \\ \Theta_2 \\ \Theta_3 \\ \Theta_2 \\ \Theta_3 \\ \Theta_4 \\ \Theta_2 \\ \Theta_2 \\ \Theta_3 \\ \Theta_2 \\ \Theta_3 \\ \Theta_4 \\ \Theta_2 \\ \Theta_3 \\ \Theta_4 \\ \Theta_2 \\ \Theta_3 \\ \Theta_4 \\ \Theta_2 \\ \Theta_4 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_2 \\ \Theta_1 \\ \Theta_2 \\$	Θ_1	26/1036	0.02510
$\begin{array}{c} \Theta_4 \\ \Theta_5 \\ \Theta_6 \\ \Theta_7 \\ \Theta_8 \\ \Theta_6 \\ \Theta_8 \\ \Theta_6 \\ \Theta_8 \\ \Theta_6 \\ \Theta_10 \\ \Theta_9 \\ \Theta_6 \\ \Theta_6 \\ \Theta_10 \\ \Theta_6 \\ \Theta_10 \\ \Theta_{11} \\ \Theta_{657/1073} \\ \Theta_{11} \\ \Theta_{657/1073} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{657/1073} \\ \Theta_{11} \\ \Theta_$		26/1036	0.02510
$ \begin{array}{c} \Theta_4 \\ \Theta_5 \\ \Theta_6 \\ \Theta_6 \\ \end{array} \qquad \begin{array}{c} 26/1036 \\ 0.02510 \\ \Theta_6 \\ \end{array} \qquad \begin{array}{c} 26/1036 \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_7 \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_8 \\ \end{array} \qquad \begin{array}{c} 26/1036 \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_8 \\ \end{array} \qquad \begin{array}{c} 26/1036 \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_9 \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_9 \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{10} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ \Theta_{11} \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ 0.02510 \\ 0.02510 \\ \end{array} \qquad \begin{array}{c} 0.02510 \\ 0.02510$	Θ_3	26/1036	0.02510
$\begin{array}{c} \Theta_6 \\ \Theta_7 \\ \Theta_8 \\ \Theta_8 \\ \Theta_9 \\ \Theta_9 \\ \Theta_{10} \\ \Theta_{10} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{13} \\ \Theta_{14} \\ \Theta_{15} \\ \Theta_{10} \\ \Theta_{15} \\ \Theta_{10} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{11} \\ \Theta_{11$		26/1036	0.02510
$\begin{array}{c} \Theta_6 \\ \Theta_7 \\ \Theta_8 \\ \Theta_8 \\ \Theta_9 \\ \Theta_9 \\ \Theta_{10} \\ \Theta_{10} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{13} \\ \Theta_{14} \\ \Theta_{15} \\ \Theta_{10} \\ \Theta_{15} \\ \Theta_{10} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{11} \\ \Theta_{11$	Θ_5	26/1036	0.02510
$\begin{array}{c} \Theta_7\\ \Theta_8\\ \Theta_8\\ \Theta_9\\ \Theta_9\\ \Theta_{10}\\ \Theta_{10}\\ \Theta_{10}\\ \Theta_{11}\\ \Theta_{11}$	Θ_6	26/1036	0.02510
$\begin{array}{c} \Theta_8 \\ \Theta_9 \\ \Theta_9 \\ \Theta_{10} \\ \Theta_{10} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{13} \\ \Theta_{14} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{14} \\ \Theta_{12} \\ \Theta_{14} \\ \Theta_{15} \\ \Theta_{16} \\ \Theta_{11} \\ \Theta_{17} \\ \Theta_{1073} \\ \Theta_{1073}$	Θ_7	26/1036	0.02510
$\begin{array}{c} \Theta_9 \\ \Theta_{10} \\ \Theta_{10} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{13} \\ \Theta_{12} \\ \Theta_{14} \\ \Theta_{15} \\ \Theta_{16} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{12} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{11} \\ \Theta_{11} \\ \Theta_{12} \\ \Theta_{11} \\$		26/1036	0.02510
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Θ_{0}	26/1036	0.02510
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Θ_{10}	26/1036	0.02510
Θ12 524/1045 0.50144 M 2−21 1073/1073 1.00000 M 3−31 1073/1073 1.00000 M 4−31 1073/1073 1.00000 M 5−21 1073/1073 1.00000 M 6−31 1073/1073 1.00000 M 8−31 1073/1073 1.00000 M 9−31 1073/1073 1.00000 M 10−21 1073/1073 1.00000 M 12−31 1073/1073 1.00000 M 12−31 1073/1073 1.00000 M 1−2 1073/1073 1.00000 M 1−2 1073/1073 1.00000 M 4−2 1073/1073 1.00000 M 5−2 1073/1073 1.00000 M 6−2 1073/1073 1.00000 M 7−2 1073/1073 1.00000 M 8−2 1073/1073 1.00000 M 9−2 1073/1073 1.00000 M 10−2 1073/1073 1.00000 M 10−2 1073/1073 1.00000 M 11−2 1073/1073 1.00000 M 12−2 1073/1073 1.00000 <	Θ_{11}^{10}	657/1073	0.61230
M 2->1 1073/1073 1.00000 M 3->1 1073/1073 1.00000 M 4->1 1073/1073 1.00000 M 5->1 1073/1073 1.00000 M 6->1 1073/1073 1.00000 M 7->1 1073/1073 1.00000 M 8->1 1073/1073 1.00000 M 9->1 1073/1073 1.00000 M 10->1 1073/1073 1.00000 M 11->1 1073/1073 1.00000 M 12->1 1073/1073 1.00000 M 1->2 1073/1073 1.00000 M 3->2 1073/1073 1.00000 M 5->2 1073/1073 1.00000 M 5->2 1073/1073 1.00000 M 7->2 1073/1073 1.00000 M 9->2 1073/1073 1.00000 M 10->2 1073/1073 1.00000 M 10->2 1073/1073 1.00000 M 12->2	Θ_{12}	524/1045	0.50144
M 3->1 1073/1073 1.00000 M 4->1 1073/1073 1.00000 M 5->1 1073/1073 1.00000 M 6->1 1073/1073 1.00000 M 7->1 1073/1073 1.00000 M 8->1 1073/1073 1.00000 M 9->1 1073/1073 1.00000 M 10->1 1073/1073 1.00000 M 12->1 1073/1073 1.00000 M 12->1 1073/1073 1.00000 M 3->2 1073/1073 1.00000 M 4->2 1073/1073 1.00000 M 5->2 1073/1073 1.00000 M 6->2 1073/1073 1.00000 M 7->2 1073/1073 1.00000 M 8->2 1073/1073 1.00000 M 9->2 1073/1073 1.00000 M 10->2 1073/1073		1073/1073	1.00000
M 4->1 1073/1073 1.00000 M 5->1 1073/1073 1.00000 M 6->1 1073/1073 1.00000 M 7->1 1073/1073 1.00000 M 8->1 1073/1073 1.00000 M 9->1 1073/1073 1.00000 M 10->1 1073/1073 1.00000 M 11->1 1073/1073 1.00000 M 12->1 1073/1073 1.00000 M 1->2 1073/1073 1.00000 M 3->2 1073/1073 1.00000 M 4->2 1073/1073 1.00000 M 5->2 1073/1073 1.00000 M 5->2 1073/1073 1.00000 M 8->2 1073/1073 1.00000 M 9->2 1073/1073 1.00000 M 10->2 1073/1073 1.00000 M 12->2 1073/1073 1.00000 M 1->3 1073/1073 1.00000 M 2->3	N A	1073/1073	1.00000
M 5->1 1073/1073 1.00000 M 6->1 1073/1073 1.00000 M 7->1 1073/1073 1.00000 M 8->1 1073/1073 1.00000 M 9->1 1073/1073 1.00000 M 10->1 1073/1073 1.00000 M 12->1 1073/1073 1.00000 M 12->1 1073/1073 1.00000 M 1->2 1073/1073 1.00000 M 3->2 1073/1073 1.00000 M 4->2 1073/1073 1.00000 M 5->2 1073/1073 1.00000 M 6->2 1073/1073 1.00000 M 7->2 1073/1073 1.00000 M 8->2 1073/1073 1.00000 M 9->2 1073/1073 1.00000 M 10->2 1073/1073 1.00000 M 11->2 1073/1073 1.00000 M 12->2 1073/1073 1.00000 M 12->2 1073/1073 1.00000 M 1->3 1073/1073 1.00000 M 1->3 1073/1073 1.00000	N/I	1073/1073	1.00000
M 6->1 1073/1073 1.00000 M 7->1 1073/1073 1.00000 M 8->1 1073/1073 1.00000 M 9->1 1073/1073 1.00000 M 10->1 1073/1073 1.00000 M 11->1 1073/1073 1.00000 M 1->2 1073/1073 1.00000 M 3->2 1073/1073 1.00000 M 4->2 1073/1073 1.00000 M 5->2 1073/1073 1.00000 M 6->2 1073/1073 1.00000 M 7->2 1073/1073 1.00000 M 8->2 1073/1073 1.00000 M 9->2 1073/1073 1.00000 M 10->2 1073/1073 1.00000 M 11->2 1073/1073 1.00000 M 11->2 1073/1073 1.00000 M 11->2 1073/1073 1.00000 M 12->2 1073/1073 1.00000 M 12->3 1073/1073 1.00000 M 2->3 1073/1073 1.00000	N /	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N/I	1073/1073	1.00000
$\begin{array}{c} M \\ M \\ S > 1 \\ M \\ M$	N A	1073/1073	1.00000
$\begin{array}{c} M \\ M \\ 10->1 \\ 10 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 $	N A	1073/1073	1.00000
M 10→1 1073/1073 1.00000 M 11→1 1073/1073 1.00000 M 12→1 1073/1073 1.00000 M 1→2 1073/1073 1.00000 M 3→2 1073/1073 1.00000 M 4→2 1073/1073 1.00000 M 5→2 1073/1073 1.00000 M 6→2 1073/1073 1.00000 M 8→2 1073/1073 1.00000 M 9→2 1073/1073 1.00000 M 10→2 1073/1073 1.00000 M 11→2 1073/1073 1.00000 M 12→2 1073/1073 1.00000 M 2→3 1073/1073 1.00000	N A	1073/1073	1.00000
M 11→1 1073/1073 1.00000 M 12→1 1073/1073 1.00000 M 1→2 1073/1073 1.00000 M 3→2 1073/1073 1.00000 M 4→2 1073/1073 1.00000 M 5→2 1073/1073 1.00000 M 6→2 1073/1073 1.00000 M 8→2 1073/1073 1.00000 M 9→2 1073/1073 1.00000 M 10→2 1073/1073 1.00000 M 11→2 1073/1073 1.00000 M 1→3 1.073/1073 1.00000 M 2→3 1073/1073 1.00000	N A	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N/I	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N/I	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N/I	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N A	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N/I	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N A	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N A	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N/I	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N A	1073/1073	1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N A	1073/1073	1.00000
$M_{12\rightarrow 2}$ 1073/1073 1.00000 $M_{1\rightarrow 3}$ 1073/1073 1.00000 $M_{2\rightarrow 3}$ 1073/1073 1.00000 1.00000	N/I	1073/1073	1.00000
M _{1->3} 1.00000 M _{2->3} 1.00000 M 1073/1073 1.00000	N/I	1073/1073	1.00000
M _{2->3} 1.00000	M	1073/1073	1.00000
1072/1072	N /I	1073/1073	1.00000
10/3/10/3	N/I	1073/1073	1.00000

M 5->3 1073/1073 1.00000 M 6->3 1073/1073 1.00000 M 7->3 1073/1073 1.00000 M 8->3 1073/1073 1.00000 M 9->3 1073/1073 1.00000 M 10->3 1073/1073 1.00000 M 11->3 1073/1073 1.00000 M 12->3 1073/1073 1.00000 M 2->4 1073/1073 1.00000 M 2->4 1073/1073 1.00000 M 5->4 1073/1073 1.00000 M 6->4 1073/1073 1.00000 M 7->4 1073/1073 1.00000 M 9->4 1073/1073 1.00000 M 10-4 1073/1073 1.00000
M 7->3 1073/1073 1.00000 M 8->3 1073/1073 1.00000 M 9->3 1073/1073 1.00000 M 10->3 1073/1073 1.00000 M 11->3 1073/1073 1.00000 M 12->3 1073/1073 1.00000 M 2->4 1073/1073 1.00000 M 3->4 1073/1073 1.00000 M 5->4 1073/1073 1.00000 M 6->4 1073/1073 1.00000 M 7->4 1073/1073 1.00000 M 8->4 1073/1073 1.00000 M 9->4 1073/1073 1.00000 M 10->4 1073/1073 1.00000 M 10->4 1073/1073 1.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$M_{9\rightarrow4}$ 1073/1073 1.00000 $M_{10\rightarrow4}$ 1073/1073 1.00000 $M_{11\rightarrow4}$ 1073/1073 1.00000
$M_{10\rightarrow 4}$ 1073/1073 1.00000 $M_{11\rightarrow 4}$ 1073/1073 1.00000
M _{11->4} 1073/1073 1.00000
M _{12->4} 1073/1073 1.00000
$M_{1->5}$ 1073/1073 1.00000
$M_{2->5}$ 1073/1073 1.00000
M _{3->5} 1073/1073 1.00000
$M_{4->5}$ 1073/1073 1.00000
M _{6->5} 1073/1073 1.00000
M _{7->5} 1073/1073 1.00000
M _{8->5} 1073/1073 1.00000
M _{9->5} 1073/1073 1.00000
M _{10->5} 1073/1073 1.00000
M _{11->5} 1073/1073 1.00000
M _{12->5} 1073/1073 1.00000
M _{1->6} 1073/1073 1.00000
M _{2->6} 1073/1073 1.00000
M _{3->6} 1073/1073 1.00000
M _{4->6} 1073/1073 1.00000
M _{5->6} 1073/1073 1.00000
M _{7->6} 1073/1073 1.00000
M _{8->6} 1073/1073 1.00000
M _{9->6} 1073/1073 1.00000
M _{10->6} 1073/1073 1.00000
M 11->6 1073/1073 1.00000
M _{12->6} 1073/1073 1.00000
M _{1->7} 1073/1073 1.00000 M _{2 > 7} 1073/1073 1.00000
M 1072/1072 1 00000
3->/ M
1073/1073

		1 31
M _{5->7}	1073/1073	1.00000
M _{6->7}	1073/1073	1.00000
M _{8->7}	1073/1073	1.00000
M _{9->7}	1073/1073	1.00000
M 10->7	1073/1073	1.00000
M 11->7	1073/1073	1.00000
$M_{12->7}$	1073/1073	1.00000
M _{1->8}	1073/1073	1.00000
$M_{2\rightarrow 8}$	1073/1073	1.00000
$M_{3->8}$	1073/1073	1.00000
$M_{4->8}$	1073/1073	1.00000
$M_{5->8}$	1073/1073	1.00000
M _{6->8}	1073/1073	1.00000
M _{7->8}	1073/1073	1.00000
$M_{9->8}$	1073/1073	1.00000
$M_{10->8}$	1073/1073	1.00000
$M_{11->8}^{10->8}$	1073/1073	1.00000
$M_{12->8}^{11->6}$	1073/1073	1.00000
$M_{1->9}$	1073/1073	1.00000
$M_{2->9}$	1073/1073	1.00000
$M_{3->9}$	1073/1073	1.00000
M _{4->9}	1073/1073	1.00000
M _{5->9}	1073/1073	1.00000
M _{6->9}	1073/1073	1.00000
M _{7->9}	1073/1073	1.00000
M _{8->9}	1073/1073	1.00000
M _{10->9}	1073/1073	1.00000
M _{11->9}	1073/1073	1.00000
M _{12->9}	1073/1073	1.00000
M _{1->10}	1073/1073	1.00000
M _{2->10}	1073/1073	1.00000
M _{3->10}	1073/1073	1.00000
M 4->10	1073/1073	1.00000
M 5->10	1073/1073	1.00000
M 6->10	1073/1073	1.00000
M 7->10	1073/1073	1.00000
M 8->10	1073/1073	1.00000
M _{9->10}	1073/1073	1.00000
M 11->10	1073/1073	1.00000
M 12->10	1073/1073	1.00000
M 1->11	1009/1009	1.00000
M 2->11	1057/1057	1.00000
M 3->11	1060/1060	1.00000
M 4->11	1001/1001	1.00000
M _{5->11}	1042/1042	1.00000

M _{6->11}	1054/1054	1.00000
M _{7->11}	1056/1056	1.00000
M _{8->11}	1085/1085	1.00000
M 9->11	1087/1087	1.00000
$M_{10->11}$	1026/1026	1.00000
$M_{12->11}$	1058/1058	1.00000
$M_{1->12}$	1084/1084	1.00000
$M_{2->12}$	1043/1043	1.00000
$M_{3->12}$	1008/1008	1.00000
$M_{4->12}$	1063/1063	1.00000
M _{5->12}	1074/1074	1.00000
M _{6->12}	1038/1038	1.00000
$M_{7->12}$	1000/1000	1.00000
M _{8->12}	1049/1049	1.00000
$M_{9->12}$	1083/1083	1.00000
$M_{10->12}$	1055/1055	1.00000
$M_{11->12}$	1060/1060	1.00000
Genealogies	21551/150128	0.14355

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.99205	11.97
$\Theta_2^{^1}$	0.99205	11.97
Θ_3	0.99205	11.97
Θ_4°	0.99205	11.97
Θ_{5}	0.99205	11.97
96	0.99205	11.97
\mathbf{p}_{7}°	0.99205	11.97
98	0.99205	11.97
$\mathbf{p}_{\mathbf{q}}$	0.99205	11.97
) ₁₀	0.99205	11.97
) ₁₁	0.81268	309.78
12	0.83340	272.51
M ¹² _{2->1}	0.98927	16.16
1 3->1	0.98927	16.16
A 4->1	0.98927	16.16
1 5->1	0.98927	16.16
6->1	0.98927	16.16
1 7->1	0.98927	16.16
1 _{8->1}	0.98927	16.16
1 9->1	0.98927	16.16
10->1	0.98927	16.16
11->1	0.98927	16.16
11->1	0.98927	16.16
1 1->2	0.98927	16.16
1 3->2	0.98927	16.16
1 4->2	0.98927	16.16
5->2	0.98927	16.16
1 _{6->2}	0.98927	16.16
1 7->2	0.98927	16.16
1 _{8->2}	0.98927	16.16
1 9->2	0.98927	16.16
1 10->2	0.98927	16.16
11->2	0.98927	16.16
1 12->2	0.98927	16.16
1 1->3	0.98927	16.16
$1 = \frac{1-3}{2-3}$	0.98927	16.16
$A = \begin{cases} 2->3 \\ 4->3 \end{cases}$	0.98927	16.16

		1 /1
M _{5->3}	0.98927	16.16
M _{6->3}	0.98927	16.16
M _{7->3}	0.98927	16.16
M _{8->3}	0.98927	16.16
$M_{9->3}$	0.98927	16.16
M 10->3	0.98927	16.16
M 11->3	0.98927	16.16
$M_{12->3}$	0.98927	16.16
M 1->4	0.98927	16.16
$M_{2\rightarrow 4}$	0.98927	16.16
$M_{3->4}$	0.98927	16.16
M _{5->4}	0.98927	16.16
M _{6->4}	0.98927	16.16
M 7->4	0.98927	16.16
M _{8->4}	0.98927	16.16
M _{9->4}	0.98927	16.16
M 10->4	0.98927	16.16
M 11->4	0.98927	16.16
M _{12->4}	0.98927	16.16
M 1->5	0.98927	16.16
$M_{2\rightarrow 5}$	0.98927	16.16
$M_{3\rightarrow 5}$	0.98927	16.16
$M_{4\rightarrow 5}$	0.98927	16.16
M _{6->5}	0.98927	16.16
M _{7->5}	0.98927	16.16
M _{8->5}	0.98927	16.16
M _{9->5}	0.98927	16.16
M _{10->5}	0.98927	16.16
M _{11->5}	0.98927	16.16
M _{12->5}	0.98927	16.16
M _{1->6}	0.98927	16.16
M _{2->6}	0.98927	16.16
M _{3->6}	0.98927	16.16
M 4->6	0.98927	16.16
M 5->6	0.98927	16.16
M 7->6	0.98927	16.16
M 8->6	0.98927	16.16
M 9->6	0.98927	16.16
M 10->6	0.98927	16.16
M 11->6	0.98927	16.16
M 12->6	0.98927	16.16
M 1->7	0.98927	16.16
M 2->7	0.98927	16.16
M 3->7	0.98927	16.16
M _{4->7}	0.98927	16.16

		1 31
M _{5->7}	0.98927	16.16
M _{6->7}	0.98927	16.16
M _{8->7}	0.98927	16.16
M _{9->7}	0.98927	16.16
M 10->7	0.98927	16.16
M 11->7	0.98927	16.16
M _{12->7}	0.98927	16.16
$M_{1->8}$	0.98927	16.16
M _{2->8}	0.98927	16.16
$M_{3->8}$	0.98927	16.16
M _{4->8}	0.98927	16.16
M _{5->8}	0.98927	16.16
M _{6->8}	0.98927	16.16
M 7->8	0.98927	16.16
M _{9->8}	0.98927	16.16
M 10->8	0.98927	16.16
M 11->8	0.98927	16.16
M _{12->8}	0.98927	16.16
M _{1->9}	0.98927	16.16
M _{2->9}	0.98927	16.16
M _{3->9}	0.98927	16.16
M _{4->9}	0.98927	16.16
M _{5->9}	0.98927	16.16
M _{6->9}	0.98927	16.16
M _{7->9}	0.98927	16.16
M _{8->9}	0.98927	16.16
M _{10->9}	0.98927	16.16
M _{11->9}	0.98927	16.16
M _{12->9}	0.98927	16.16
M _{1->10}	0.98927	16.16
M 2->10	0.98927	16.16
M 3->10	0.98927	16.16
M 4->10	0.98927	16.16
M 5->10	0.98927	16.16
M 6->10	0.98927	16.16
M 7->10	0.98927	16.16
M 8->10	0.98927	16.16
M 9->10	0.98927	16.16
M 11->10	0.98927	16.16
M 12->10	0.98927	16.16
M 1->11	0.91868	127.06
M 2->11	0.87361	204.41
M 3->11	0.83884	265.03
M 4->11	0.87868	193.74
M _{5->11}	0.89565	165.19

6->11 7->11 8->11 9->11	0.88870 0.84392	176.92
8->11 9->11	0.84392	
9->11		260.22
	0.88586	184.91
10->11	0.88967	177.03
12->11	0.92266	121.03
1->12	0.89154	172.07
2->12	0.91322	136.13
3->12	0.84655	250.60
4->12	0.91043	141.29
5->12	0.89380	168.56
6->12	0.88617	183.22
7->12	0.86353	219.65
8->12	0.88997	174.75
9->12	0.88258	188.51
10->12	0.92976	109.76
11->12	0.87324	204.16
Prob(D G)]	0.98094	28.84

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
·	