Comparación de Zenoh y MQTT

 ¿Qué vamos a comparar? ¿Cómo vamos a comparar? Ancho de Banda Latencia o Licencia y Coste Seguridad Alcance o Calidad del canal Zenoh o Teoría Ancho de Banda Latencia Licencia Seguridad Alcance Calidad del canal MQTT o Teoría Ancho de Banda Latencia Licencia Coste Seguridad Alcance Calidad del canal Conclusión o Ancho de Banda o Latencia Licencia y Coste Seguridad Alcance o Calidad del Canal

¿Qué vamos a comparar?

- Comparar el ancho de banda de los protocolos (tasa de transferencia efectiva).
- Comparar la latencia de los protocolos.
- Comprobar si el protocolo tiene o no licencia.
- Comprar el coste de los protocolos.
- Comprobar la seguridad de los protocolos:
 - Confidencialidad
 - Autenticidad
 - Integridad
- Comparar el alcance de los protocolos.
- Comparar la calidad del canal de los protocolos.

¿Cómo vamos a comparar?

Ancho de Banda

```
comparación de Ancho de Banda

import psutil
before = psutil.net_io_counters()
# Enviar datos usando Zenoh o MQTT
after = psutil.net_io_counters()

sent_bytes = after.bytes_sent - before.bytes_sent
received_bytes = after.bytes_recv - before.bytes_recv
print(f"Sent: {sent_bytes} bytes, Received: {received_bytes} bytes")
```

Latencia

Comparación de Latencia

```
import psutilimport time

start_time = time.time()
# Enviar un mensaje con Zenoh o MQTT
# Esperar la respuesta
end_time = time.time()

latency = end_time - start_time
print(f"Latency: {latency} seconds")
```

Licencia y Coste

Revisar si los protocolos de comunicación son de código abierto o no.

Seguridad

Revisar las opciones de seguridad configurases para los Protocolos MQTT y Zenoh.

Alcance

No se puede comprobar cual es mejor debido a que el protocolo funciona en el interior de la raspberry.

Calidad del canal

Para medir la calidad del canal, puedes usar las opciones de calidad de servicio (QoS) de MQTT o la capacidad de recuperación de Zenoh en redes intermitentes. Envía mensaje con diferentes niveles de QoS y verificar la confiabilidad y el tiempo de reintento.

(PERIDAS DE PAQUETES DEL CANAL)

Comparación de Calidad de Servicio

```
# MQTT QoS example
mqtt_client.publish(topic, payload, qos=2) # QoS 2 garantiza la entrega
```

Zenoh

Teoría

Ancho de Banda

Latencia

Licencia

Zenoh es un protocolo de **código abierto** y está disponible bajo la licencia Apache 2.0, lo que permite su uso tanto en proyectos comerciales como en proyectos open-source sin restricciones significativas.

Coste

Al ser un protocolo de código abierto se trata de una solución de coste cero.

Seguridad

Zenoh no impone una capa de seguridad específica de forma nativa.

- Confidencialidad: Permite la implementación de cifrado TLS/SSL.
- Autenticidad: Permite la implementación de certificados, claves o credenciales, mediante TLS/SSL.
- Integridad: Permite la utilización de detección de modificación de datos mediante el cifrado TLS/SSL.

Alcance

Diseñado para trabajar tanto en **redes locales** como en **redes distribuidas** de mayor escala. Su enfoque está en la convergencia de comunicación, almacenamiento y computación, lo que le permite operar eficientemente tanto en el edge como en la nube.

Calidad del canal

MQTT

Teoría

Ancho de Banda

Latencia

Licencia

MQTT es un protocolo de **código abierto**, el broker Mosquitto, está bajo la licencia Eclipse Public License (EPL). Esto permite que cualquier persona pueda usar, modificar y distribuir el software, siempre que se cumplan las términos de la licencia.

Coste

Al ser un protocolo de código abierto se trata de una solución de coste cero.

Seguridad

MQTT no incluye una capa de seguridad de forma nativa.

- Confidencialidad: Permite la implementación de cifrado TLS/SSL.
- Autenticidad: De forma nativa, permite la implementación de Usuario y Contraseña. Además, Permite la implementación de certificados, claves o credenciales, mediante a TLS/SSL.
- Integridad: Permite la utilización de detección de modificación de datos mediante el cifrado TLS/SSL.

Alcance

Basado en una arquitectura de un broker centralizado. Funciona bien en redes locales o de baja latencia, pero puede enfrentar limitaciones en entornos más distribuidos.

Calidad del canal

Conclusión

Ancho de Banda

Latencia

Licencia y Coste

· Ambas tecnologías son de código abierto.

Ambas son soluciones de código abierto. Por tanto, ambas son de coste cero.

Seguridad

- Ninguna de las tecnologías incluye una capa de seguridad de forma nativa.
- · Ambas permiten el uso de TLS/SSL.
- MQTT permite la implementación de Usuario y Contraseña.

MQTT es más seguro de forma nativa.

Alcance

- Zenoh: redes locales y distribuidas.
- MQTT: redes locales (baja latencia) y distribuidas (con limitaciones).

Zenoh tiene un mejor alcance.

Calidad del Canal