Journal Club — Optics

02/06/2020

RETURN TO ARTICLES ASAP < PREV

PERSPECTIVE

Self-Healing Dyes—Keeping the Promise?

Michael Isselstein, Lei Zhang, Viktorija Glembockyte, Oliver Brix, Gonzalo Cosa, Philip Tinnefeld, and Thorben Cordes*

Cite this: J. Phys. Chem. Lett. 2020, 11, XXX,

4462-4480

Publication Date: May 13, 2020 V

https://doi.org/10.1021/acs.jpclett.9b03833

Copyright © 2020 American Chemical Society

What made me pick this paper

- Getting a summary of current state of selfhealing dyes
 - "Perspective": not exactly a review, but also not much new data
- Getting some (probably biased) opinion on the potential

Scope/Claim of the paper

- Latest applications
- Remaining limitations
 - lower photostabilization of most self-healing dyes when compared to solution additives
 - limited mechanistic understanding on the influence of the biochemical environment and molecular oxygen
 - the lack of cheap and facile bioconjugation strategies
- Future advances
 - new data on redox blinking caused by double-stranded DNA
 - forthcoming work on intramolecular photostabilization of fluorescent proteins

Self-healing dyes

- No need for complex buffer systems
- Works when dyes are inaccessible to solutionbased stabilizers
- Triplet-state quenching in the early 1980s for dye lasers
- Blanchard in 2012, Cordes in 2013, and others

Intro

- Photophysical triplet-state quenching
 - energy transfer between the fluorescent dye (donor) and the quencher (acceptor)
 - cyclooctatetraene (COT), diphenylhexatriene, or Ni²⁺
 ions
- Photochemical triplet-state quenching
 - combination of redox-active agents
 - Trolox (TX), ascorbic acid (AA), ferrocene, nitrobenzylalcohol (NBA), methylviologen (MV), Troloxquinone, ...

Performance of dye-stabilization

- Works with a variety of dyes
- Cy5-COT "is rather the exception than what is commonly seen with most self-healing dyes"

Conjugation approaches

"direct" or "proximal-linkage" (panel b)

Mechanisms

Energy levels have to match

Mechanisms

- resulting sensitized photostabilizer triplet state should be short-lived for efficient self-healing
 - should be available as a triplet-acceptor as soon as possible after energy transfer
 - COT, the triplet-state lifetime is on the order of \sim 100 μ s
- high (local) concentrations of photostabilizers can cause singlet quenching decreasing the fluorescence quantum yield
 - linker design to optimize the collision rate and geometrical orientation

Optimization strategies

- "In many cases, the photostability of selfhealing dyes was found to be lower than that of the pristine dye in photostabilizing buffer."
- linker length and linking chemistry
 - Not one general rule: cases where "the closer the better", but also optimal linker length at short distances
 - "at very short bond lengths of less than three carbon atoms, a through-bond energy transfer was detected"
- Additional photostabilizers in solution seem to have little to no effect

Photostabilization vs. Photoswitching

 Competition with reductive agents (again dyespecific)

Molecular oxygen

- "So far the self-healing dyes were shown to be rather ineffective in the presence of molecular oxygen with quite moderate photophysical properties"
- diffusion-limited rate constant of quenching by molecular oxygen $\sim 10^{10}$ M⁻¹ s⁻¹, concentration in solution 0.5 mM, quenching rates of $\sim 10^6$ s⁻¹
- Quenching rates for 1 mM intermolecular COT: between 10⁴ - 10⁶ s⁻¹
- "we are still missing key pieces in our understanding"

Impact of biological structures

DNA

- Guanine is electron donor
- Stacking of dye with bases at end of duplex as well as binding to major and minor grooves

Recent applications

- Cellular imaging and high-resolution microscopy
 - potential for STED-type microscopy
 - to be shown for Minflux and others
 - SMLM → "complicated" (thiol derivatives for photoswtiching)

SmFRET

- only a few examples so far
- "increase in photostability compared to the parent fluorophore in absence of stabilizer", but "the photostability for this dye pair did not meet the level of solution-based stabilization conditions"
- potential for multi-color FRET where solution-based would not meet the requirements of all dyes

Toward a next generation

- Alternative fluorophores
 - fluorescent proteins → in which experimental situation would this be useful?

Toward a next generation

- New stabilizers
 - Potentially very hydrophobic
- Alternative conjugation strategies
 - Not much commercially available

Conclusion

- Paper is clear and understandable
- Self-Healing Dyes Keeping The Promise?
 - A lot of mechanistic unknowns
 - Tool to understand photostability of dyes in general
 - Might be helpful in specific situations but rather not as a general replacement of more traditional dyes