Linear Quadratic Regulator (LQR) for Discrete-Time System

Baboo J. Cui

June 10, 2019

Contents

1	Pro	olem Formulation	2
2	Exa	mples of Implementations	2
	2.1	_	2
	2.2		3
	2.3		3
	2.4	- ,	4
3	Dire	ect Approach to Solve LQR	4
4	Ext	ra	4
	4.1	Matlab Functions	4
	4.2	Quadratic Expansion	5
	4.3	Direct Approach	5
	4.4	Limitations of Direct Approach	5
	4.5	Movitating Example	6
	4.6		6
	4.7	Direct Solution	6
	4.8	Value Function	7
	4.9		7
	4.10	Value Function Iteration	7
	4.11	Value Function Iteration	7
	4.12	Value Function Iteration	7
	4.13	Recover the Optimal Control	7
	4.14	Advantages of Dynamic Programming	8
	4.15	Back to LQR Problem	8
			8
			8
			9
	4.19	t = N case	9
			o

LQR is related to optimal control problem, many problems can be formulated into it. It's one of the fundamental way to achieve optimal control.

1 Problem Formulation

Given a discrete LTI system:

$$x[k+1] = Ax[k] + Bu[k], x[0] = x_0$$

given a time horizon $k \in \{0, 1, ..., N\}$, where N may be infinity, find the optimal input sequence $U = \{u[0], u[1], ..., u[N-1]\}$ that minimize the **cost function**:

$$J(U) = \sum_{k=0}^{N-1} (x^T[k]Qx[k] + u^T[k]Ru[k]) + x^T[N]Q_fx[N]$$

- state weight matrix: $Q = Q^T \succeq 0$
- control weight matrix: $R = R^T \succ 0$, indicate that there is no free control input
- final state weight matrix: $Q_f = Q_f^T \succeq 0$
- running cost: the value of the first term in J(u)
- **terminal cost**: the value of the second term in J(u)
- infinite case: N is infinity, in this case, $Q_f = 0$

Note that all these case can be generalized into time-varying cases.

2 Examples of Implementations

Many problem can be formulated into LQR form, and here are some examples, though they look differently.

2.1 Energy Efficient Stabilization

Starting from $x[0] = x_0$, find control sequence U that minimize

$$J(U) = \alpha \sum_{k=0}^{n-1} ||u[k]||^2 + \beta \sum_{k=0}^{N} ||x[k]||^2$$

to make it into LQR form, choose:

- $Q = \beta I$
- $R = \alpha I$
- $Q_f = \beta I$

Note that:

- cost function try to make state trajectory stay close to zero and use the least control energy simultaneously
- α and β determine the emphasis

Sometime state cannot be obtained directly, in this case, system output y can be used for evaluating running cost. Suppose output equation (Du part can be eliminate) is

$$y = Cx$$

in this case choose $Q = \beta C^T C$. Here is the proof:

$$\beta \sum_{k=0}^{N} ||y[k]||^2 = \sum_{k=0}^{N} y^T[k] \beta I y[k]$$

$$= \sum_{k=0}^{N} (Cx[k])^T \beta I Cx[k]$$

$$= \sum_{k=0}^{N} x^T[k] C^T \beta I Cx[k] = \sum_{k=0}^{N} x^T[k] (\beta C^T C) x[k]$$

this is a very import conclusion.

2.2 Minimum Energy Steering

Starting from $x[0] = x_0$, find control sequence U to use least energy to steer the final state to x[N] = 0 without lost generosity, the cost is:

$$J(U) = \sum_{k=0}^{N-1} ||u[k]||^2$$

to make it into LQR form, choose:

- Q = 0
- \bullet R = I
- $Q_f = \infty I$

By setting $Q_f \to \infty I$, there is a big penalty if X[N] is far from 0, note that this won't lead to a analytic solution, but the **approximation** is good enough.

2.3 LQR for Tracking(VIP TOPIC)

Find efficient sequence U for the state to track a given **reference trajectory** x_{k}^{*} (may be time-varying):

$$J(U) = \alpha \sum_{k=0}^{N-1} ||u[k]||^2 + \beta \sum_{k=0}^{N} ||x[k] - x_k^*||^2$$

note that $||x[k] - x_k^*||^2$ is not homogeneous quadratic, it should be formulate. It can be expanded(refer math proof in last part):

$$\begin{split} ||x[k] - x_k^*||^2 &= x^T[k]x[k] - 2x^T[k]x_k^* + (x_k^*)^T x_k^* \\ &= \begin{bmatrix} x[k] & 1 \end{bmatrix} \begin{bmatrix} I & x_k^* \\ (x_k^*)^T & (x_k^*)^T x_k^* \end{bmatrix} \begin{bmatrix} x[k] \\ 1 \end{bmatrix} \quad \text{dimension augmentation} \end{split}$$

construct new state variable $\tilde{x}[k] = [x[k] \ 1]^T$, new system dynamic will be:

$$\tilde{x}[k+1] = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix} \tilde{x}[k] + \begin{bmatrix} B \\ 0 \end{bmatrix} u[k]$$

and the origin cost can be reformed as

$$J(U) = \alpha \sum_{k=0}^{N-1} ||u[k]||^2 + \beta \sum_{k=0}^{N} \tilde{x}^T[k] \tilde{Q}_k \tilde{x}[k]$$

where

$$\tilde{Q}_k = \begin{bmatrix} I & x_k^* \\ (x_k^*)^T & (x_k^*)^T x_k^* \end{bmatrix}$$

clearly, the system is LTI and the cost function is LTV.

2.4 LQR for System with Perturbation

Suppose system is:

$$x[k+1] = Ax[k] + Bu[k] + w[k]$$

To achieve LQR formulation, new state vector is constructed as:

$$\tilde{x}[k] = [x[k] \quad z[k]]$$
 dimension augmentation

recall that $x \in \mathbb{R}^n$, and $z[k] \in \mathbb{R}$, set z[k] = z[k+1] = 1, new system dynamic will be:

$$\tilde{x}[k+1] = \begin{bmatrix} A & w[k] \\ 0 & 1 \end{bmatrix} \tilde{x}[k] + \begin{bmatrix} B \\ 0 \end{bmatrix} u[k]$$

and system initial condition is $\tilde{x}[0] = [x[0] \quad 1]$. R will be the original one and \tilde{Q} is:

$$\tilde{Q}_k = \begin{bmatrix} Q & 0 \\ 0 & 0 \end{bmatrix}$$

clearly, the system is LTV and the cost function is LTI. In this case, u is not changed, x is augmented.

3 Direct Approach to Solve LQR

LQR problem can be directly formulated as a least square problem

4 Extra

4.1 Matlab Functions

• lqrd(): for discrete-time system

• lqr(): for continuous-time system

4.2 Quadratic Expansion

The general length of a vector $x \in \mathbb{R}^n$ is also called the L_2 norm. It is defined as:

$$||x||^2 = x^T x = \sum_{i=1}^n x_i^2$$
, where $x_i \in \mathbb{R}$

if another vector $y \in \mathbb{R}^n$, the norm of the difference is:

$$||x - y||^2 = ||y - x||^2$$
 identity property

$$= (x - y)^T (x - y)$$
 definition

$$= x^T x - x^T y - y^T x + y^T y$$
 distributive property

$$= ||x||^2 - 2x^T y + ||y||^2$$

recall that:

$$x^T y = y^T x$$
 property of inner product

4.3 Direct Approach

Formulate the LQR problem as a least square problem: Under the constraint:

$$\underbrace{\begin{bmatrix} x[1] \\ x[2] \\ \vdots \\ x[N] \end{bmatrix}}_{\widetilde{X}} = \underbrace{\begin{bmatrix} B & 0 & \cdots \\ AB & B & 0 & \cdots \\ \vdots & \vdots & \ddots \\ A^{N-1}B & A^{N-2}B & \cdots & B \end{bmatrix}}_{\widetilde{G}} \underbrace{\begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[N-1] \end{bmatrix}}_{\widetilde{U}} + \underbrace{\begin{bmatrix} A \\ A^2 \\ \vdots \\ A^N \end{bmatrix}}_{\widetilde{H}} x_0$$

Minimize the function:

$$X^{T} \left[\begin{array}{ccc} Q & & & \\ & Q & & \\ & & \ddots & \\ & & & Q_{f} \end{array} \right] X + U^{T} \left[\begin{array}{ccc} R & & & \\ & R & & \\ & & \ddots & \\ & & & R \end{array} \right] U$$

4.4 Limitations of Direct Approach

- Matrix inversion needed to find optimal control
- \bullet Problem(matrices) dimension increases with time horizon N
- \bullet Imprarical for large N let alone infinite horizon case
- Sensitivity of solutions to numerical errors

Observations:

- ullet Problem easier to solve for shorter time horizon N
- (N+1)-horizon solution related to N-horizon solution
- Explpoit this relation to design an iterative solution procedure

Dynamic programming approach

- ullet Reuse results for smaller N to solve for large N case
- In each iteration only need to deal with a problem of fixed size

4.5 Movitating Example

- Start from point A
- Try to reach point B
- Each step only move right
- Cost labeled on each edge

Problem: The least costly path from A to B?

4.6 Formulated as an Optimal Control Problem

- A = (0,0), B = (3,3)
- State x[k] with

$$x[0] = A, \ x[6] = B$$

- Control $u[k] = \pm 1$
- Dynamics:

$$x[k+1] = \left\{ \begin{array}{ll} x[k] + (0,1) & u[k] = 1 \\ x[k] + (1,0) & u[k] = -1 \end{array} \right.$$

• Cost to be minimized:

$$\sum_{k=0}^{5} \underbrace{w(x[k], u[k])}_{\text{edge weight}}$$

4.7 Direct Solution

Enumerate all possible legal from A to B and compare their costs to find the one with the least cost.

• A total of 20 possible paths

For ℓ -by- ℓ grid, the total number of legal paths is

$$\frac{(2\ell)!}{(\ell!)^2}$$

- Grows extremely fast as problem size ℓ increases
- Solution impractical for large ℓ

4.8 Value Function

Definition: At any point z, the value function(optimal cast-to-go) V(z) is the least possible cost to reach B from z.

• Obtained by solve shorter time horizon problems

Original problem is to find V(A)

4.9 Value Function Property

Principle of Optimality: If a least-cost path from A to B is

$$x_0^* = A \to x_1^* \to x_2^* \to \dots \to x_6^* = B,$$

Then any truncation of it at the end:

$$x_t^* \to x_{t+1}^* \to \cdots \to x_6^* = B$$

is also a least-cost path from x_t^* to B.

As a result, value function at any point z satisfies

$$V(z) = \min \{ w_u + V(z'_u), w_d + V(z'_d) \}$$

= $\min_{u \in \pm 1} [w(z, u) + V(z')]$

• V(z): Cost-to-go from current position

• w(z, u): Running cost of current step

• V(z'): Cost-to-go from next state position

4.10 Value Function Iteration

Idea: Use above to iteratively evaluate V(z) from right to left

4.11 Value Function Iteration

Idea: Use above to iteratively evaluate V(z) from right to left

4.12 Value Function Iteration

Conclusion: The least cost from A to B is 40

4.13 Recover the Optimal Control

Optimal control u[0] is recovered from $V(A) = \min\{5 + 35, 7 + 36\}$

4.14 Advantages of Dynamic Programming

Reduced computational complexity: for ℓ -by- ℓ grid

- Only need to compute ℓ^2 value functions
- No need to enumerate $\frac{(2\ell)!}{(\ell!)^2}$ paths
- Solve an optimization problem of fixed size in each iteration

Provide solutions to a family of optimal control problems

• Even if starting from a different initial position (e.g. due to perturbation), there is no need for re-computation

4.15 Back to LQR Problem

A discrete-time LTI system

$$x[k+1] = Ax[k] + Bu[k], \quad x[0] = x_0$$

Problem: Given a time horizon $k \in \{0, 1, ..., N\}$, find the optimal input sequence $U = \{u[0], ..., u[N-1]\}$ that minimizes the cost function

$$J(U) = \sum_{k=0}^{N-1} \underbrace{(x[k]^T Q x[k] + u[k]^T R u[k])}_{\text{running cost}} + \underbrace{x[N]^T Q_f x[N]}_{\text{terminal cost}}$$

Quenstions: Can we apply dynamic programming method to LQR problem?

4.16 Value Function of LQR Problem

The value function at time $t \in \{0, 1, ..., N\}$ and state $x \in \mathbb{R}^n$ is

$$V_t(x) = \min_{u[t],\dots,u[N-1]} \sum_{k=t}^{N-1} (x[k]^T Q x[k] + u[k]^T R u[k]) + x[N]^T Q_f x[N]$$

with the initial condtion x[t] = x

• Cost-to-go, namely, optimal cost of the LQR problem over the time horizon $\{t, t+1, ..., N\}$, starting from x[t] = x.

4.17 Solution of LQR Problem via Value Functions

Preview of results:

- The value function at the final time is quadratic: $V_N(x) = x^T Q_f x$
- We will see that the value function at any time t is also quadratic: $V_t(x) = x^T P_t x$ for some $P_t \ge 0$
- P_t can be obtained from P_{t+1}

Solution algorithm:

- (1) Start from $P_N = Q_f$ at time t = N
- (2) For t = N 1 : 0 do
 - Compute P_t from P_{t+1} by the above recursion
- (3) Recover optimal control sequence from value functions

4.18 How are Value Functions Related?

(Hamilton-Jacobi-)Bellman equation:

$$V_t(x) = \min_{u[t]=v} [x^T Q x + v^T R v + V_{t+1} (Ax + Bv)]$$

= $x^T Q x + \min_{u[t]=v} [v^T R v + V_{t+1} (Ax + Bv)]$

Optimality principle: For optimal case, cost-to-go form next state x[t+1] should also be optimal, i.e., $V_{t+1}(x[t+1])$.

4.19 t = N case

Value function at time N is quadratic:

$$V_N(x) = x^T P_N x, \ \forall x \in \mathbb{R}^n, \ \text{where } P_N = Q_f$$

4.20 t = N - 1 case

Value function at time N-1 is:

$$V_{N-1}(x) = x^{T}Qx + \min_{v}[v^{T}Rv + V_{N}(Ax + Bv)]$$

= $x^{T}Qx + \min_{v}[v^{T}Rv + (Ax + Bv)^{T}P_{N}(Ax + Bv)]$