Hydrocarbures Aromatiques

Furane, pyrrole, Thiophène

1

杂环化合物的命名

- □ 母核的名称是英文名称的音译,并在同音汉字左 边+口字。
- 母体杂环的编号:杂原子的编号为"1"。杂原子 邻位的碳原子也可依次用α、β、γ...编号。
- □ 当环上有不同杂原子时,按O→S→N的次序编号。 五元杂环

呋喃 (furan) 噻吩 (thiophene) 吡咯 (pyrrole)

含有两个杂原子的五元杂环,若至少有一个 杂原子是氦,则该杂环化合物称为唑。

 $\begin{array}{c|c}
5 & & \\
6 & & \\
7 & & \\
1
\end{array}$

Système hétérocyclobenzo à cinq chaînons

5 4 3 6 7 N 2

苯并呋喃 (hanzafurar 苯并噻吩

苯并吡咯 吲哚 (indole)

1,3-唑 5 () 2

- 亲电取代反应定位规律(了解)
- 1. 杂原子的定位效应: 第一取代基进入到杂原子的α-位。
- 取代基的定位效应: 3-位上有取代基时, 呋喃、吡咯、 噻吩的定位效应一致。

19

和呋喃也遵循上述規律, 但当α-位上有间位定位基 (如: CHO、COOH)时, 新引入基团进入的位置与 反应试剂有关。如:

三种化合物的相互转化(有氧化钼存在的情况下)。 $\frac{H_2O}{NH_3}$ H_2S H_2S H_2S

课后思考

• 试解释噻吩比呋喃的芳香性强的原因。
• 五元杂芳环的付克反应要用什么催化剂,普通的AICI₃可行么?

有机化学—第七章 芳烃及非苯芳烃 吡啶(六元杂芳环)

如在α,γ位有好的离去基团,如Cl、-NO₂、Br,可以与氨(或胺)、烷氧化物、水等亲核试剂发生亲核取代反应(在亲核取代反应中,吡啶N对邻、对位活化)(了解)。

CH₃ON₃ICH₃OH
Δ
NO₂
O-H
NO₂
NO₂
O-H
NO₂
NO₂
O-H

$$\begin{array}{c|c} & & & \\ &$$

课后思考

- 试分析吡啶的碱性和亲核性。
- 吡啶的亲电取代反应发生在那个位置? 氧化吡啶呢?