COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CSE 2151

Credits: 04

MULTIPLICATION: UNSIGNED V/S SIGNED

(a) Unsigned integers

(b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos Complement Integers

MULTIPLICATION: BOOTH'S ALGORITHM

Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

MULTIPLICATION: BOOTH'S ALGORITHM

A	Q	Q_{-1}	M	
0000	0011	0	0111	Initial values
1001	0011	0	0111	$A \leftarrow A - M$) First
1100	1001	1	0111	Shift \int cycle
) Second
1110	0100	1	0111	Shift \(\) cycle
0101	0100	1	0111	$A \leftarrow A + M$ Third
0010	1010	0	0111	Shift ∫ cycle
) Fourth
0001	0101	0	0111	Shift cycle

Figure 10.13 Example of Booth's Algorithm (7×3)

BOOTH'S ALGORITHM: 13X-6

•	• M=13=01101 Q=-6=11010		_	-M=10011	
	A	Q	Q ₋₁	M	
	00000	11010	0	01101	Initial values
	00000	01101	0	01101	Shift Right-1st cycle
	10011 10011 11001	01101 <i>10110</i>	0 1	01101 01101	A=A-M [Subtract M from A(Adding 2's complement of M)] Shift Right- 2 nd cycle
	01101 00110 00011	10110 <i>01011</i>	1 0	01101	A=A+M Shift Right- 3rd cycle
	10011 10110 11011	01011 <i>00101</i>	0 1	01101 01101	A=A-M [Subtract M from A(Adding 2's complement of M)] Shift Right- 4th cycle
	11101	10010	1	01101	Shift Right 5th cycle
	Taking 2's complement	0001001110→78 Product=-78			

BOOTH'S ALGORITHM: 23X29

• M=23=010111

Q=29=011101

-M=101001

A	Q	Q ₋₁	M	
000000	011101	0	010111	Initial values
101001 101001 110100	011101 101110	0 1	010111	A=A-M Shift Right-1 st cycle
010111 001011 000101	101110 110111	1 0	010111	A=A+M Shift Right- 2 nd cycle
101001 101110 110111	110111 011011	0 1	010111	A=A-M Shift Right- 3rd cycle
111011	101101	1	010111	Shift Right- 4th cycle
111101	110110	1	010111	Shift Right 5th cycle
010111 010100 001010	110110 011011	1 0	010111	A=A+M Shift Right- 6 th cycle
	001010011011→667 Product=667			

MULTIPLICATION: BOOTH'S ALGORITHM

0111		0111	
× 0011	(0)	×1101	(0)
11111001	1-0	11111001	1-0
0000000	1-1	0000111	0-1
000111	0-1	111001	1-0
00010101	(21)	11101011	(-21)

(b) $(7) \times (-3) = (-21)$

 $(d)(-7) \times (-3) = (21)$

Figure 10.14 Examples Using Booth's Algorithm

(a) $(7) \times (3) = (21)$

(c) $(-7) \times (3) = (-21)$

HOW BOOTH'S ALGORITHM WORKS: +VE MULTIPLIER

Consider the case of a positive multiplier consisting of one block of 1s surrounded by 0s

$$M * (00011110) = M * (2^{4} + 2^{3} + 2^{2} + 2^{1}) = M * (16 + 8 + 4 + 2)$$

$$= M * 30$$

$$M * (00011110) = M * (2^{5} - 2^{1}) = M * (32 - 2)$$

$$= M * 30$$
• In general,
$$2^{n} + 2^{n-1} + \cdots + 2^{n-K} = 2^{n+1} - 2^{n-K}$$
(10.3)

- the product can be generated by one addition(Adding the content of 2⁵ place value) and one subtraction (Subtracting the content of 2¹ place value) of the multiplicand.
- Booth's algorithm conforms to this scheme by performing a subtraction when the first 1 of the block is encountered (1-0) and an addition when the end of the block is encountered (0-1).

$$M * (01111010) = M * (26 + 25 + 24 + 23 + 21)$$
$$= M * (27 - 23 + 22 - 21)$$

HOW BOOTH'S ALGORITHM WORKS: -VE MULTIPLIER

- Let X be a negative number in twos complement notation: $X = \{1x_{n-2}x_{n-3}....x_1x_0\}$
- Then the value of X can be expressed as follows:

$$X = -2^{n-1} + (x_{n-2} \times 2^{n-2}) + (x_{n-3} \times 2^{n-3}) + \dots + (x_1 \times 2^1) + (x_0 \times 2^0) \quad (10.4)$$

- The leftmost bit of X is 1, because X is negative. Assume that the leftmost 0 is in the k^{th} position. Then, $X = \{111 \dots 10x_{k-1}x_{k-2} \dots x_1x_0\}$ (10.5)
- And the value of X is: $X = -2^{n-1} + 2^{n-2} + \cdots + 2^{k+1} + (x_{k-1} \times 2^{k-1}) + \cdots + (x_0 \times 2^0)$ (10.6)
- From Equation $2^n + 2^{n-1} + \cdots + 2^{n-K} = 2^{n+1} 2^{n-K}$ (10.3)
- we can say that: $2^{n-2} + 2^{n-3} + \dots + 2^{k+1} = 2^{n-1} 2^{k+1}$
- Rearranging: $-2^{n-1} + 2^{n-2} + 2^{n-3} + ... + 2^{k+1} = -2^{k+1}$ (10.7)
- Substituting Equation (10.7) into Equation (10.6), we have

$$X = -2^{k+1} + (x_{k-1} * 2^{k-1}) + ... + (x_0 * 2^0)$$
 (10.8)

HOW BOOTH'S ALGORITHM WORKS: -VE MULTIPLIER

- Consider the multiplication of some multiplicand by (-6). In two complement representation, using an 8-bit word, (-6) is represented as 11111010.
- $-6 = -2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^1$
- M * (11111010) = M * $(-2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^1)$
- $M * (11111010) = M * (-2^3 + 2^1)$ which is equivalent to
 - M * (11111010) = M * (-2³ + 2² 2¹) [right to left:0-1 \rightarrow 2¹, 1-0 \rightarrow +2², 0-1 \rightarrow -2³]

Figure 10.15 Example of Division of Unsigned Binary Integers

Figure 10.16 Flowchart for Unsigned Binary Division

A 0000	Q 0111	Initial value
0000 1101 1101 0000	1110	Shift Use twos complement of 0011 for subtraction Subtract Restore, set $Q_0 = 0$
0001 1101 1110 0001	1100	Shift Subtract Restore, set $Q_0 = 0$
0011 1101 0000	1000 1001	Shift Subtract, set $Q_0 = 1$
0001 1101 1110 0001	0010	Shift Subtract Restore, set $Q_0 = 0$

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

DIVISION: ALGORITHM

- Assumption: divisor V and the dividend D are positive and that |V| < |D|.
- If |V| = |D|, then the quotient = 1 and the remainder = 0.
- If |V| > |D|, then Q=0 and R=D. The algorithm can be summarized as follows:
 - 1. Load the twos complement of the divisor into the M register; that is, the M register contains the negative of the divisor. Load the dividend into the A, Q registers. The dividend must be expressed as a 2n-bit positive number. Thus, for example, the 4-bit 0111 becomes 00000111.
 - 2. Shift A, Q left 1 bit position.
 - 3. Perform A=A-M. This operation subtracts the divisor from the contents of A.

4.

- a. If the result is nonnegative (most significant bit of A=0), then set Q0=1
- b. If the result is negative (most significant bit of A=1), then set Q0=0, and restore the previous value of A.
- 5. Repeat steps 2 through 4 as many times as there are bit positions in Q.
- 6. The remainder is in A and the quotient is in Q.

DIVISION: EXAMPLE

• Divide 8 by 3; M=-3=11101; Q=01000

A	Q	
00000	01000	Initial values
00000 11101 11101 + 00011 00000	10000 10000 10000	Shift Left Subtract Divisor(Add 2's complement of divisor) Set Q0=0 Restore 1st Cycle
00001 11101 11110 + 00011 00001	00000 00000 00000	Shift Left Subtract Divisor(Add 2's complement of divisor) Set Q0=0 Restore 2nd Cycle
00010 11101 11111+ 00011 00010	00000 00000 00000	Shift Left Subtract Divisor(Add 2's complement of divisor) Set Q0=0 Restore 3 rd Cycle
00100 11101 00001	00000	Shift Left Subtract Set Q0=1 4th cycle
00010 11101 11111 + <u>00011</u> 00010	00010 00010 00010	Shift left Subtract Divisor(Add 2's complement of divisor) Set Q0=0 Restore 5th Cycle

 Consider the following examples of integer division with all possible combinations of signs of D and V:

$$D = 7$$
 $V = 3$ \Rightarrow $Q = 2$ $R = 1$
 $D = 7$ $V = -3$ \Rightarrow $Q = -2$ $R = 1$
 $D = -7$ $V = 3$ \Rightarrow $Q = -2$ $R = -1$
 $D = -7$ $V = -3$ \Rightarrow $Q = 2$ $R = -1$

- (-7)/(3) and (7)/(-3) produce different remainders.
- The magnitudes of Q and R are unaffected by the input signs
- The signs of Q and R are easily derivable from the signs of D and V.
 - sign(R) = sign(D)
 - sign(Q) = sign(D) * sign(V).
- One way to do twos complement division is to convert the operands into unsigned values and, at the end, to account for the signs by complementation where needed.
- This is the method of choice for the restoring division algorithm.

EXERCISE

- 1. Given x and y in twos complement notation i.e., x=0101 and y=1010, compute the product p=x*y with Booth's algorithm
- 2. Use the Booth algorithm to multiply 23 (multiplicand) by 29 (multiplier), where each number is represented using 6 bits
- 3. Divide 145 by 13 in binary twos complement notation, using 12-bit words. Use the restoring division algorithm

TOPICS COVERED FROM

- Textbook 2:
 - Chapter 10: 10.3