	Page No ;
	Assignment - Parameter Estimation
	Name: Agryan Gupta
	Group: 3 COE 2
	Roll No .: 102103053
)	X1, X2,, Xn is a random sample from a Normal Population
	with mean = 9, and variance = 92
	pdf of normal distribution $f(x_i) = \frac{(x_i - \mu)^2}{2 e^2}$ $\frac{\sqrt{2\pi e^2}}{\sqrt{(x_i - \theta_i)^2}}$
	$\sqrt{2\pi \sigma^2}$
	$\mu = \theta_1, \sigma^2 = \theta_2$: $f(x_i) = \frac{-(x_i - \theta_1)^2}{2\pi \theta_2}$
	$\sqrt{2\pi\Theta_2}$
	Likelihood function, L(9, 92) = T f(xi)
	$L(9_1, 9_2) = \prod_{i=1}^{h} \frac{-(x_i - 9_i)^2}{2.62} = (2\pi)^2 \frac{-\sqrt{2}}{9_2} = \frac{12}{2.92} (x_i - 0_i)^2$
	$\log L(\theta_{1}, \theta_{2}) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log \theta_{2} - \sum_{i=1}^{n} (x_{i} - \theta_{i})^{2}$
	2.02
	Differentiating by wrt of
	$\frac{\partial \log L(\theta_1, \theta_2)}{\partial \theta_1} = \frac{-2}{2} \sum (x_i - \theta_1)(-1)$
	Setting to 0 and multiplying by 92
	Σ x; - n θ, = 0
	$0_i = \hat{\mu} = \sum_i x_i$
	0,
	OIMLE = Zxi = x
	n
	$\partial \log_{\mathbf{L}}(\theta_{1}, \theta_{2}) = -\underline{n} + 1 \sum_{i=1}^{n} (x_{i} - \theta_{i})^{2}$
	$\frac{\partial \log_{L}(\theta_{1}, \theta_{2})}{\partial \theta_{2}} = -\frac{n}{2} + \frac{1}{2} \frac{\sum_{i=0}^{\infty} (x_{i} - \theta_{i})^{2}}{2\theta_{2}^{2}}$
	Multiplying by 202 after setting to 0
	$-n\theta_2 + \sum_{i} (x_i - \theta_i)^2 = 0$
	$9_{2MLE} = \hat{G}^2 = \sum_{i} (x_i - \overline{x})^2$
	h

Page No	1	_
Date :	1	

Pdf of binomial distribution,
$$B(\mathbf{m}, p) = nc \times p^{\times} (1-p)^{n-x}$$
 $n = m, p = 0$
 $\therefore f(xi) = mcx_i g^{xi} (1-g)^{m-xi}$

Likelihood function, $L(m,g) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} mcx_i g^{x_i} (1-g)^{m-x_i}$
 $L(m,g) = \left(\prod_{i=1}^{n} mcx_i\right) g^{\sum_{i=1}^{n} x_i} (1-g)^{mn-\sum_{i=1}^{n} x_i}$
 $L(m,g) = \left(\prod_{i=1}^{n} mcx_i\right) g^{\sum_{i=1}^{n} x_i} (1-g)^{mn-\sum_{i=1}^{n} x_i}$
 $d(m,g) = \left(\prod_{i=1}^{n} mcx_i\right) g^{\sum_{i=1}^{n} x_i} (1-g)^{mn-\sum_{i=1}^{n} x_i}$
 $d(m,g) = \left(\prod_{i=1}^{n} mcx_i\right) g^{\sum_{i=1}^{n} x_i} (1-g)^{mn-\sum_{i=1}^{n} x_i} \log g (mn-\sum_{i=1}^{n} x_i) \log g ($

mn = 1 $\Sigma x_i = 9$

__ r