

ECG Classification Midterm Report

Course: Introduction to Artificial Intelligence (EARIN)

Semester: Summer 2025

University: Warsaw University of Technology

Student: Maye Maye Aahmed Saleck, Carlos Rueda

Project:

Classification of 12-lead ECG Signals using Random Forest, CNN and LSTM

1. Introduction

Electrocardiograms (ECGs) are recordings of the heart's electrical activity across 12 leads. These signals are essential for diagnosing heart conditions, but manual analysis is time-consuming.

This project classifies ECGs into four diagnostic categories (Normal, AFib, MI, Other) using Random Forest (RF), CNN and LSTM. We use the CPSC-2018 dataset and simulate labels for now. This document is meant to be understandable even by non-experts in AI or medicine.

2. Dataset and Preprocessing

• Dataset: CPSC-2018 ECG Dataset

• Files: .mat format with 12-lead signals

• Steps:

- Standardize to (5000, 12) shape
- Labels simulated (to be replaced with real)

3. Feature Extraction

• RF: mean, std, max, min, power (5 \times 12 leads = 60 features)

• CNN: Spectrograms (128×128) of the average signal

• LSTM: Raw signal input (5000×12)

4. Models

a) Random Forest

Scikit-learn RandomForestClassifier using feature vectors.

b) CNN

Architecture: $Conv2D \rightarrow MaxPool \rightarrow Conv2D \rightarrow MaxPool \rightarrow Flatten \rightarrow Dense \rightarrow Output$

c) LSTM

Architecture: Masking \rightarrow LSTM \rightarrow Dense \rightarrow Output

5. Training Setup

 \bullet Split: 80% training / 20% testing

• Epochs: 5

• Batch size: 8

• Optimizer: Adam

6. Results

Random Forest

Accuracy: 27%

Figure 1: Random Forest Confusion Matrix

CNN

Accuracy: 26%

Figure 2: CNN Confusion Matrix

LSTM

Accuracy: 27%

Figure 3: LSTM Confusion Matrix

7. Discussion and Future Work

Observations:

- $\bullet~{\rm RF}$ performs evenly but lacks precision
- CNN is biased toward one class

• LSTM has best recall on "Normal"

Pending Questions:

- Can CNN + LSTM hybrid improve performance?
- Which features best capture arrhythmias?
- What input size is ideal for LSTM?

Next Steps:

- Replace simulated labels with real annotations
- Add signal augmentation (noise, shifting)
- Try BiLSTM, deeper CNN