Université de Sherbrooke Département de mathématiques

MAT115: Logique et mathématiques discrètes

Examen final

Professeur : Marc Frappier

Mercredi 18 décembre 2019, 9 h à 12 h Salles : D3-2033, D3-2035, D3-2037

Notes importantes:

- Documentation permise.
- Tout appareil électronique interdit.
- Ne dégrafez pas ce questionnaire.
- La correction est, entre autres, basée sur le fait que chacune de vos réponses soit :
 - claire, c'est-à-dire lisible et compréhensible pour le lecteur;
 - précise, c'est-à-dire exacte et sans erreur;
 - concise, c'est-à-dire qu'il n'y ait pas d'élément superflu;
 - complète, c'est-à-dire que tous les éléments requis sont présents.
- nombre de pages de l'examen, incluant celle-ci : 8.

Pondération:

Question	Point	Résultat	Question	Point	Résultat
1	10		6	10	
2	15		7	10	
3	15		8	10	
4	10		9	10	
5	10		total	100	

Nom:	Prénom :	
Signature:	CIP :	

$\forall n \cdot n \in \mathbb{N}_1 \Rightarrow \sum_{i=0}^{n-1} 2^i = 2^n - 1$	

 $1.\ ({\bf 10\ pts})$ Prouvez la formule suivante par induction. Justifiez chacune de vos étapes.

Vous pouvez utiliser la loi suivante. Jus	stifiez chacune de vos étapes.	
car	$\operatorname{ard}(\{z\}\cap B)\leq 1$	(1

2. (15 pts) Prouvez la formule suivante par induction sur les ensembles finis. Soit S un ensemble.

 $\forall A \cdot A \in \mathbb{F}(S) \ \Rightarrow \ (\forall B \cdot B \in \mathbb{F}(S) \ \Rightarrow \ \mathsf{card}(A \cap B) \leq \mathsf{card}(A) + \mathsf{card}(B))$

3.	(15)	pts	Soit S	un	ensemble.	Prouvez	la	formule	e sui	vante.
0.	(• •	P 0D	, 5010 5	all	CHECHIOTO.	1 100102	100	TOTTICI	Juli	v correct.

$$(S \times S)$$
; $(S \times S) = S \times S$

Justifiez chacune de vos étapes. Vous pouvez utiliser la loi suivante pour cette preuve.

$$x \in S \land \exists z \cdot z \in S \iff x \in S \tag{2}$$

4. (**10 pts**)

(a) Soit $S = \{c, d\}$. Pour chaque relation sur S ci-dessous, indiquez les propriétés qu'elle satisfait, en indiquant un X dans la case correspondante.

Relation	réflexive	irréflexive	transitive	symétrique	antisymétrique	asymétrique
$\{(c,c),(d,d)\}$						
$\{(c,d),(d,c)\}$						

(b) Soit les relations suivantes sur les nombres naturels (\mathbb{N}) , indiquez les propriétés qu'elle satisfait, en indiquant un X dans la case correspondante.

Relation	réflexive	irréflexive	transitive	symétrique	antisymétrique	asymétrique
<						
<u> </u>						
<i>≠</i>						

5. **(10 pts)**

(a) Est-ce que la relation suivante est bien fondée? Justifiez votre réponse.

$$\{(x,y) \mid x \in \mathbb{N} \land y \in \mathbb{N} \land y = x+1\}$$

(b) Est-ce que la relation fraterie, définie sur les personnes, est acyclique? Justifiez votre réponse.

$$\mathsf{fraterie} = \{(x,y) \mid x \text{ est un frère ou une soeur de } y\}$$

6. (10 pts) Soit les fonctions suivantes. Indiquez à quelle classe elle appartient en cochant la case appropriée.

$$f_1 = \{(x, y) \mid x \in \mathbb{N} \land y \in \mathbb{N} \land y = x + 1\}$$

$$f_2 = \{(x, y) \mid x \in \mathbb{N} \land y \in \mathbb{N} \land y = x - x\}$$

fonction	$\mathbb{N} \to \mathbb{N}$	$\mathbb{N} \to \mathbb{N}$	$\mathbb{N} \rightarrowtail \mathbb{N}$	$\mathbb{N} \rightarrowtail \mathbb{N}$	$\mathbb{N} \twoheadrightarrow \mathbb{N}$	$\mathbb{N} \twoheadrightarrow \mathbb{N}$	$\mathbb{N} \not \mapsto \mathbb{N}$	$\mathbb{N} ightarrow \mathbb{N}$
f_1								
f_2								

	nent les mots qui o	commencent par	. WO CO BO OCTILL	no par cu.	
(1) (2.1. 5		1 1 11			
	$a = \{a, b, c\}$. Donne ots se terminant pa				

8. (10 pts) Déterminisez l'automate suivant, en supposant que $\Sigma = \{a,b\}$.

Dessinez seulement l'automate déterministe ici. Ne donnez pas t et λ -closure. Donnez l'état puits.

9. (10 pts) Minimisez l'automate suivant, en supposant que $\Sigma = \{a, b\}$.

Donnez la valeur du tableau, comme indiqué dans les notes de cours.

Paire	D	r	E
{0,1}			
{0,2}			
{0,3}			
{0,4}			
{0,5}			
{1,2}			
{1,3}			
{1,4}			
{1,5}			
{2,3}			
{2,4}			
{2,5}			
{0,2} {0,3} {0,4} {0,5} {1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}			
{3,5}			
{4,5}			

Dessinez l'automate minimal équivalent ici.