

Project Report Template

B<u>v:</u>

Akkaldevi Rakshith Aytha Bhoomika Kanumuri Ajith Varma Varad Wankhade

1 Introduction:

1.1 Project Overview:

Anemiasense leverages machine learning algorithms to provide precise recognition and management of anemia, a condition characterized by a deficiency of red blood cells or hemoglobin. Here are three general scenarios illustrating its use case:

Scenario 1:Early Detection and Diagnosis:

Anemiasense utilizes machine learning models trained on vast datasets of blood parameters and patient profiles to detect early signs of anemia. By analyzing key indicators such as hemoglobin levels, red blood cell counts, and other relevant biomarkers, the system can flag potential cases for further investigation by healthcare professionals. Early detection enables timely interventions and treatment plans, improving patient outcomes.

Scenario 2: Personalized Treatment Plans

Machine learning algorithms in Anemiasense can analyze diverse patient data, including genetic factors, lifestyle habits, and medical history, to generate personalized treatment plans. By considering individual variations and responses to different treatments, the system helps healthcare providers tailor interventions for optimal results. This personalized approach enhances the effectiveness of anemia management and reduces the risk of complications.

Scenario 3: Remote Monitoring and Follow-Up

Anemiasense supports remote monitoring of patients with anemia through wearable devices or digital health platforms. Machine learning algorithms continuously analyze real-time data such as hemoglobin levels, activity levels, and medication adherence to provide insights to both patients and healthcare providers. This remote monitoring capability facilitates proactive management, enables timely adjustments to treatment regimens, and reduces the need for frequent in-person visits, particularly beneficial for patients in rural or underserved areas.

1.2 Objectives:

Analyse the data and Find the best suitable model. Build an website using flask for the customer to upload their test results to recognise anemia.

2.1 Project Initialization and Planning Phase

Date	11 July 2024
Team ID	SWTID1720099206
Project Name	Anemia Sense: Leveraging Machine Learning For Precise Anemia Recognitions
Maximum Marks	3 Marks

Define Problem Statements (Customer Problem Statement Template): Anemiasense leverages machine learning algorithms to provide precise recognition and management of anemia, a condition characterized by a deficiency of red blood cells or hemoglobin. Here are three general scenarios illustrating its use case:

Scenario 1: Early Detection and Diagnosis

Scenario 2: Personalized Treatment Plans

Scenario 3: Remote Monitoring and Follow-Up

2.2 Project Initialization and Planning Phase

Date	10 July 2024
Team ID	SWTID1720099206
Project Title	Anemia Sense: Leveraging Machine Learning For Precise Anemia Recognitions
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview					
Objective	Leveraging Machine Learning for Precise Anemia Recognitions				
Scope	 Data Analysis Pattern Recognition Personalized Medicine 				
Problem Statement					
Description	Scenario 1: Early Detection and Diagnosis Scenario 2: Personalized Treatment Plans Scenario 3: Remote Monitoring and Follow-Up				
Impact	Helps in precise recognition of Anemia				
Proposed Solution					
Approach	Train and test the data using different types of models and obtain the most efficient model and use it for Anemia Recognition.				
Key Features	Use of Random forest model, Logistic Regression Model, Decision Tree Model, etc.				

Resource Requirements

Resource Type	Description	Specification/Allocation			
Hardware					
Computing Resources	Intel i3, 2 Cores	Minimum Intel Iris Xe			
Memory	RAM specifications	minimum 8 GB			
Storage	40 mb	Minimum 256 GB SSD			
Software					
Frameworks	Python frameworks	e.g., Flask			
Libraries	Additional libraries	e.g., scikit-learn, pandas, NumPy, matplotlib, seaborn			
Development Environment	IDE, version control	e.g., Jupyter Notebook, Git			
Data					
Data	Source, size, format	e.g., Kaggle dataset, 10,000 images			

2.3 Initial Project Planning Template

Date	11 July 2024
Team ID	SWTID1720099206
Project Name	Anemia Sense: Leveraging Machine Learning For Precise Anemia Recognitions
Maximum Marks	4 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement	User Story	User Story / Task	Story Points	Priority	Team Members	Sprint Start Date	Sprint End Date
	(Epic)	Number		Tomes			Start Date	(Planned)
Sprint-1	Data Collection & Preparation	USN-1	Collected Data and check for errors.	2	Medium	Aytha Bhoomika	10 th July	10 th July
Sprint-1	Exploratory Data Analysis	USN-2	Did Univariate,Bivariate and Multivariate Analysis.	1	Medium	Akkaldevi Rakshith	10 th July	10 th July
Sprint-2	Model Building	USN-3	Tested the data using many models.	3	Medium	Akkaldevi Rakshith, Ajith Varma, Varad Wankadhe, Aytha Bhoomika	10 th July	10 th July
Sprint-2	Performance Testing & Hyperparameter Tuning	USN-4	Checking the performance and choosing the best model.	2	Medium	Kanumuri Ajith Varma	11 th July	11 th July
Sprint-3	Model Deployment	USN-5	Build the Web-Pages and deploy.	2	Medium	Varad Wankadhe	11th July	11th July