Liczby p-adyczne

R. S

 $22~{\rm lutego}~2016$

Spis treści

1 Lemat Hensela 2

Rozdział 1

Lemat Hensela

Twierdzenie 1.0.1 (lemat Hensela). Niech \mathfrak{K} będzie ciałem zupelnym względem wartości bezwzględnej $|\cdot|$ i niech $f(X) \in \mathfrak{O}[X]$. Załóżmy, że $a_0 \in \mathfrak{O}$ spełnia nierówność $|f(a_0)| < |f'(a_0)|^2$, gdzie f'(X) jest (formalną) pochodną. Wtedy istnieje $a \in \mathfrak{O}$, taki że f(a) = 0.

Dowód. Niech wielomiany $f_i(X)$ (dla $j=1,2,\ldots$) będą zdefiniowane przez tożsamość

$$f(X+Y) = f(X) + \sum_{j \ge 1} f_j(X)Y^j$$

dla niezależnych niewiadomych X, Y. Wtedy $f_1(X) = f'(X)$. Ponieważ $|f(a_0)| < |f'(a_0)|^2$, istnieje $b_0 \in \mathfrak{O}$, takie że $f(a_0) + b_0 f_1(a_0) = 0$. Istotnie,

$$|b_0| = \left| \frac{-f(a_0)}{f_1(a_0)} \right| = \frac{|f(a_0)|}{|f_1(a_0)|} < \frac{|f'(a_0)|^2}{|f'(a_0)|} = |f'(a_0)| \le 1.$$

Zgodnie z definicją wielomianów f_j zachodzi relacja

$$|f(a_0 + b_0)| \le \max_{j \ge 2} |f_j(a_0)b_0^j|.$$

Jako że $f_j(X) \in \mathfrak{O}[X]$ i $a_0 \in \mathfrak{O}$, mamy $|f_j(a_0)| \leq 1$. Oznacza to, że

$$|f(a_0 + b_0)| \le |b_0^2| = \frac{|f(a_0)|^2}{|f'(a_0)|^2} < |f(a_0)|,$$

skorzystaliśmy tu ponownie z nierówności $|f(a_0)| < |f'(a_0)|^2$. Podobnie pokazuje się, że

$$|f_1(a_0 + b_0) - f_1(a_0)| \le |b_0| < |f_1(a_0)|,$$

a przez to

$$|f_1(a_0 + b_0)| = |f_1(a_0)|.$$

Kładziemy teraz $a_1 = a_0 + b_0$ i powtarzamy proces. Otrzymujemy w ten sposób ciąg $a_n = a_{n-1} + b_{n-1}$. Dla każdego n prawdziwa jest równość $|f_1(a_n)| = |f_1(a_0)|$, jednocześnie

$$|f(a_{n+1})| \le \frac{|f(a_n)|^2}{|f_1(a_n)|^2} = \frac{|f(a_n)|^2}{|f_1(a_0)|^2}$$

To uzasadnia zbieżność $f(\boldsymbol{a}_n)$ do zera. Co więcej,

$$|a_{n+1} - a_n| = |b_n| = \frac{|f(a_n)|}{|f_1(a_n)|} = \frac{|f(a_n)|}{|f_1(a_0)|} \to 0.$$

Ciąg $\{a_n\}$ jest fundamentalny, z zupełności ciała $\mathfrak K$ wynika istnienie jego granicy oraz f(a)=0. \square