CISC 372 Advanced Data Analytics L2- Review

https://l1nna.com/course/cisc372/

House Price Prediction (a prediction problem)

Linear Regression for Classification

Linear Regression for Classification

Linear Regression for Classification

Logistic Regression

Logistic Regression for Classification

Logistic Regression

- Logistic Regression for Classification
 - The logistic function rescales its input to between 0 and 1.
 - The logistic function transforms a straight curve into a 'S'-shape curve.
 - By default, it only handles binary classification task.
 - The prediction can be interpreted as probability
 - For multinominal class attribute, we use generalized linear regression with multinominal family (skip, but available in RapidMiner).

Iris Dataset – Binary Classification

Feature:

■ Petal.Length

■ Petal.With

Species:

Versicolor: 1

Virginica: 0

Iris versicolor

Iris virginica

^	Petal.Width	Petal.Length	Species [‡]
99	1.1	3.0	1
100	1.3	4.1	1
101	2.5	6.0	0
102	1.9	5.1	0

Feature:

■ Petal.Length

■ Petal.With

Species:

Versicolor: 1

Virginica: 0

 $prob(species) = logistic(a_0 * Petal.Width + a_1 * Petal.Length + b)$

Feature:

- Petal.Length
- Petal.With

Species:

Versicolor: 1

Virginica: 0

 $prob(species) = logistic(a_0 * Petal.Width + a_1 * Petal.Length + b)$

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -45.272 13.610 -3.327 0.000879 ***

Petal.Width 10.447 3.755 2.782 0.005405 **

Petal.Length 5.755 2.306 2.496 0.012565 *
```

- Logistic Regression for Classification
 - Coefficient indicates how much the probability will increase/decrease if you increase/decrease the corresponding feature.
 - P-value (Pr) indicates if the correlation is significant between a feature and the class attribute.

 We can add more feature combinations by introducing polynomial terms.

```
M1: prob(species) = logistic(a_0 * Petal.Width + a_1 * Petal.Length + b)

M2: prob(species) = logistic(a_0 * Petal.Width + a_1 * Petal.Length + a_2 * (Petal.Width)^2 + a_3 * (Petal.Length)^2 + b)

M3: prob(species) = logistic(a_0 * Petal.Width + a_1 * Petal.Length + a_2 * (Petal.Width)^2 + a_3 * (Petal.Length)^2 + a_4 * (Petal.Width)^3 + a_5 * (Petal.Length)^3 + a_6 * (Petal.Width)^4 + a_7 * (Petal.Length)^4 + a_8 * (Petal.Width)^5 + a_9 * (Petal.Length)^5 + a_{10} * (Petal.Width)^6 + a_{11} * (Petal.Length)^6 + a_{10} * (Petal.Width)^6 + a_{11} * (Petal.Length)^6 + a_{11} * (P
```

M1:

Logistic Regression

- Logistic Regression for Classification
 - As the complexity of the model increases, the chance of over-fitting the training data increases.
- Solution Regularization:
 - Penalize the norm of the parameters. (i.e. scale)

```
price = logistic(a_0 * Petal.Width + a_1 * Petal.Length + a_2 * (Petal.Width)^2 + a_3 * (Petal.Length)^2
a_4 * (Petal.Width)^3 + a_5 * (Petal.Length)^3
a_6 * (Petal.Width)^4 + a_7 * (Petal.Length)^4
a_8 * (Petal.Width)^5 + a_9 * (Petal.Length)^5
a_{10} * (Petal.Width)^6 + a_{11} * (Petal.Length)^6
... + b)
```

Regularization

- L-1 Regularization (Lasso)
 - Panelize the absolute norm of parameters.
 - $\bullet \sum_{i=1}^k |a_k|$
 - Encourage model sparsity (turn on/off some features)
- L-2 regularization (Ridge)
 - Panelize the squares of parameters.
 - $\sum_{i=1}^{k} (a_k)^2$
 - Make the parameters small in scale.
 - Make the decision boundary less curved.

Notebook Intro

Partitioning Algorithms: Basic Concept

• Partitioning method: Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (dist(p, c_i))^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

Partitioning Algorithms: Basic Concept

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - 1. Partition objects into *k* nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - 4. Go back to Step 2, stop when the assignment does not change

An Example of K-Means Clustering

Until no change

Comments on the *K-Means* Method

- <u>Strength:</u> <u>Efficient:</u> O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
- Comment: Often terminates at a local optimal

Weakness

- Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
- Need to specify *k*, the *number* of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
- Sensitive to outliers
- Not suitable to discover clusters with non-convex shapes

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster

PAM (Partitioning Around Medoids) (1987)

- Find representative objects, called medoids, in clusters
- Use real object to represent the cluster
 - arbitrarily select k representative objects
 - repeat
 - assign each remaining object to nearest representative object o_i
 - randomly select a non-representative object o_{random}
 - compute the total cost, TC, of swapping o_j with o_{random}
 - if TC < 0, **i** is replaced o_j by o_{random}
 - until there is no change

PAM: A Typical K-Medoids Algorithm

