OPTIMERING PÅ ICKE-KOMPAKTA OMRÅDEN.

Låt $f(x_1,...,x_n)$ vara en reell funktion med en **icke-kompakt** definitionsmängd D.

Existensen av största och minsta värde är inte garanterad i det här fallet.

För att bestämma om funktionen har största och minsta värde (dvs globalt maximum och globalt minimum) måste vi undersöka funktionen i **hela definitionsområde** och speciellt beteende i närheten av de randpunkter som inte tillhör D. Dessutom, om D är obegränsad mängd måste vi undersöka funktionen $|\vec{x}|$ går mot ∞ .

Alltså vi måste undersöka

- 1. stationera och singulära punkter i det inre av D
- 2. randpunkter som tillhör D

men också

3. funktionens beteende i närheten av den delen av randen som inte tillhör D och (i fallet att D är obegränsad mängd)

beteende av $f(x_1,...,x_n)$ då $r=|\vec{x}|=\sqrt{{x_1}^2+\cdots+{x_n}^2}$ går mot ∞ .

Uppgift 1. Bestäm största och minsta värde för funktionen $f(x, y) = \frac{1}{x^2 + y^2}$ i området

a)
$$0 < x^2 + y^2 \le 4$$

b)
$$0 < x^2 + y^2 < 4$$
.

Lösning.

Ytan som definieras av funktionen $f(x, y) = \frac{1}{x^2 + y^2}$ är en rotationsyta (Nivåkurvor

$$\frac{1}{x^2 + y^2} = k \Rightarrow x^2 + y^2 = \frac{1}{k} \text{ "ar cirklar"}) \text{ som uppstår då } z = \frac{1}{x^2} \text{ , } 0 < x \le 2 \text{ (eller } z = \frac{1}{y^2})$$

roterar kring z axeln.

a) Stationära punkter saknas eftersom $f'_x = \frac{-2x}{(x^2 + y^2)^2} = 0$ och $f'_y = \frac{-2y}{(x^2 + y^2)^2} = 0$ saknar lösning [Lägg märke till att funktionen inte är definierad i punkten (0,0)].

Om
$$(x, y) \to (0,0)$$
 har vi $f(x, y) = \frac{1}{x^2 + y^2} = \frac{1}{r^2} \to \infty$.

Alltså saknar funktionen största värde.

I alla punkter på cirkeln $x^2 + y^2 = a$, där $0 < a \le 4$ har funktionen värdet $\frac{1}{a}$.

På själva randen $x^2 + y^2 = 4$ har funktionen värdet $\frac{1}{x^2 + y^2} = \frac{1}{4}$, som är funktionens minsta värde.

Alltså $\frac{1}{4} \le f(x, y) < \infty$ för punkter (x, y) i området $0 < x^2 + y^2 \le 4$.

[Funktionens värdemängd är intervallet $\left[\frac{1}{4}, \infty\right)$.]

Svar a: Funktionens minsta värdet är $\frac{1}{4}$. Största värdet saknas.

Svar b: Minsta värdet saknas. Största värdet saknas.

Uppgift 2. Bestäm största och minsta värde för funktionen $f(x, y) = e^{-x^2 - y^2}$ i det obegränsade området D som definieras av

a)
$$-\infty < x < \infty$$
, $-\infty < y < \infty$, **b**) $x \ge 0$, $y \ge 0$ **c**) $x > 0$, $y > 0$ **d**) $x \ge 0$, $y \ge 0$, $x \ge 0$, $y \ge 0$

Lösning

a)

Ytan som definieras av funktionen $f(x,y)=e^{-x^2-y^2}$ är en rotationsyta eftersom nivåkurvor $k=e^{-x^2-y^2}$ är faktiskt cirklar $x^2+y^2=-\ln k$, om $-\ln k>0$ (och en punkt om $\ln k=0$).

[Lägg märke till att $-\ln k \ge 0$ för $\ln k \le 0$ dvs om $0 < k \le 1$]

Ytan uppstår om kurvan $z = e^{-x^2}$ roterar kring z axeln.

Stationera punkter:

$$f'_x = -2xe^{-x^2-y^2}, \ f'_y = -2ye^{-x^2-y^2},$$

$$\begin{cases} f_x' = 0 \\ f_y' = 0 \end{cases} \Rightarrow x = 0, y = 0.$$

Origo (0,0) är en stationär punkt (0,0) där f(0,0) = 1.

Om $r = |\vec{x}| = \sqrt{x^2 + y^2}$ går mot ∞ har vi (i polära koordinater)

$$f(x, y) = e^{-x^2 - y^2} = e^{-r^2} \to 0$$
.

Vi ser att funktionen $f(x, y) = e^{-x^2 - y^2} = e^{-r^2}$ antar alla värden i intervallet (0,1]

Funktionens värdemängd är $V_f = (0,1]$ och därmed gäller funktionens största värde i området är 1 medan minsta värdet saknas.

Svar a) Funktionens största värde i området är 1, minsta värde saknas.

- **b)** Området definieras av $x \ge 0$, $y \ge 0$ (punkter i första kvadranten)
- 1. Stationera punkter:

$$f'_{x} = -2xe^{-x^2-y^2}, \ f'_{y} = -2ye^{-x^2-y^2},$$

$$\begin{cases} f_x' = 0 \\ f_y' = 0 \end{cases} \Rightarrow x = 0, y = 0.$$

Ingen stationär punkt i det inre eftersom (0,0) ligger på områdets rand.

(Ingen singulär punkt eftersom f'_x och f'_y är definierade i det inre av D)

2. Randpunkter som tillhör D

D består av alla punkter i första kvadranten där randpunkter på halvaxlarna tillhör D.

För randpunkter på x halvaxeln, y=0, $x \ge 0$, har vi $f(x,0) = e^{-x^2}$. Största värde på den delen av randen är uppenbart =1 om x=0. Dessutom $f(x,0) = e^{-x^2}$ är avtagande och går mot 0 om x går mot + ∞ .

Liknande gäller för randpunkten på y-halvaxeln.

Alltså antar funktionen på randen alla värden i intervallet (0,1] där f(0,0) = 1.

3. I det här exempel alla randpunkter tillhör D dvs D är sluten (men inte begränsad).

Kvarstår att undersöka funktionen f(x, y) då $r = |\vec{x}| = \sqrt{x^2 + y^2}$ går mot ∞ som vi han enklast göra i polära koordinater

$$f(x, y) = e^{-x^2 - y^2} = e^{-r^2} \to 0 \text{ då } r \to \infty.$$

Vi ser att funktionen $f(x, y) = e^{-x^2 - y^2} = e^{-r^2}$ antar alla värden i intervallet (0,1]

Slutsats: Funktionens värdemängd är $V_f = (0,1]$ och därmed gäller:

funktionens största värde i området är 1, minsta värdet saknas.

Svar b) Funktionens största värde i området är 1, minsta värde saknas.

c)
$$f(x, y) = e^{-x^2 - y^2}$$
 där D definieras av $x > 0$, $y > 0$.

Skillnaden från a-delen är att punkter på halvaxlarna inte tillhör D.

Det är viktigt att (0,0) är randpunkt till D och att $f(x,y) = e^{-x^2-y^2}$ går mot 1 om (x,y) går mot (0,0).

Alltså värdemängden är $V_f = (0,1)$. Funktionen har varken största eller minsta värde på D.

Svar c) Största värde saknas, minsta värde saknas.

Svar d) Största värde är e^{-4} , minsta värde saknas.

Uppgift 3. Bestäm största och minsta värde för funktionen $f(x, y) = x^2 - 2x + y^2 - 2y$ i området $x \ge 0$, $y \ge 0$, y < -x + 3

Lösning.

Området D är triangeln med hörn i A(0,0), B(3,0) och C(0,3) där sträckan BC inte tillhör D.

Utrycket $x^2 - 2x + y^2 - 2y$ kan kontinuerligt utvidgas till det slutna området D2 $x \ge 0$, $y \ge 0$, $y \le -x + 3$.

Först undersöker vi största och minsta värde för funktionen $f(x, y) = x^2 - 2x + y^2 - 2y$ på det kompakta mängden D2.

Stationära punkter:

$$\begin{cases} f'_x = 2x - 2 = 0 \\ f'_y = 2y - 2 = 0 \end{cases} \Rightarrow x = 1, y = 1 \text{ och } f(1,1) = -2$$

Randen:

Funktionens värden i de tre hörnpunkter är

$$f(A) = f(0,0) = 0$$
, $f(B) = f(3,0) = 3$ $f(C) = f(0,3) = 3$.

Längs AB gäller y = 0, $0 \le x \le 3$ och $g_1(x) = f(x,0) = x^2 - 2x$.

$$g_1'(x) = 2x - 2 = 0 \Rightarrow x = 1;$$
 $g_1(0) = f(1,0) = -1$

Längs AC gäller x = 0, $0 \le y \le 3$ och $g_2(y) = f(0, y) = y^2 - 2y$.

$$g_2'(y) = 2y - 2 = 0 \Rightarrow y = 1;$$
 $g_2(0) = f(0,1) = -1$

Längs BC gäller y = -x + 3, $0 \le x \le 3$ och

$$g_2(x) = f(x,(3-x)) = x^2 - 2x + (3-x)^2 - 2(3-x) = 2x^2 - 6x + 3$$

$$g_3'(x) = 4x - 6 = 0 \Rightarrow x = \frac{3}{2}; \quad g_3(\frac{3}{2}) = \frac{-3}{2}$$

Nu bildar vi en tabell med alla möjliga extrempunkter på D2:

punkt P	(1,1)	(3,0)	(0,3)	(0,0)	(1,0)	(0,1)	(3/2,3/2)	
f(P)	-2	3	3	0	-1	-1	-3/2	

Härav har vi att, **på området D2** funktionen har största värdet 3 som antas i randpunkterna B och C.

Minsta värdet **på D2** är -2 som antas i inre punkten (1,1).

Vi återgår nu till det **icke-kompakta området D** (som är en delmängd av D2) och använder ovanstående resultat.

Eftersom punkten (1,1) ligger i D har vi att funktionens minsta värde **på D** är också -2.

Punkterna B och C ligger inte i området D (på grund av villkoret y < -x + 3).

Funktionen antar alla värden i intervallet [-2,3) men inte värdet 3.

Anmärkning: Ett annat sätt visa att funktionens värden för punkter i D ligger i intervallet [-2,3) är att analysera funktionens värden på sträckan x + y = k, $x \ge 0$, $y \ge 0$, för $0 \le k < 3$

I alla fall har vi $-2 \le f(x, y) < 3$ om $(x, y) \in D$. Funktionen har alltså inte största värde på D.

Svar: Minsta värde på **D** är också -2, största värde på D saknas.