

GW1NZ series of FPGA Products

Datasheet

DS845-1.0E, 03/18/2021

Copyright©2021 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI®, LittleBee®, Arora, and the GOWINSEMI logos are trademarks of GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders, as described at www.gowinsemi.com. GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
03/18/2021	1.0E	Initial version published.

i

Contents

DS845-1.0E

Contents	i
List of Figures	iv
List of Tables	v
1 About This Guide	1
1.1 Purpose	1
1.2 Related Documents	1
1.3 Abbreviations and Terminology	2
1.4 Support and Feedback	2
2 General Description	3
2.1 Features	3
2.2 Product Resources	4
2.3 Package Information	5
3 Architecture	6
3.1 Architecture Overview	6
3.2 Configurable Function Unit	7
3.2.1 CLU	8
3.2.2 CRU	9
3.3 IOB	9
3.3.1 I/O Buffer	10
3.3.2 I/O Logic	13
3.3.3 I/O Logic Modes	15
3.4 I3C Bus (GW1NZ-1)	
3.4.1 Overview	
3.4.2 Port Signal	
3.5 SPMI (GW1NZ-1)	17
3.5.1 Overview	
3.5.2 Port Signal	
3.6 Block SRAM (BSRAM)	
3.6.1 Introduction	
3.6.2 Configuration Mode	
3.6.3 Mixed Data Bus Width Configuration	21

	3.6.4 Byte-enable	. 21
	3.6.5 Parity Bit	. 22
	3.6.6 Synchronous Operation	. 22
	3.6.7 Power up Conditions	. 22
	3.6.8 BSRAM Operation Modes	. 22
	3.6.9 Clock Operations	. 24
	3.7 User Flash (GW1NZ-1)	. 25
	3.7.1 Introduction	. 25
	3.7.2 Port Signal	. 25
	3.7.3 Operation Modes	. 26
	3.8 Clock	. 26
	3.8.1 Global Clock	. 26
	3.8.2 PLL	. 30
	3.8.3 HCLK	. 31
	3.9 Long Wire (LW)	. 31
	3.10 Global Set/Reset (GSR)	. 32
	3.11 Programming Configuration	. 32
	3.11.1 SRAM Configuration	. 32
	3.11.2 Flash Configuration	. 32
	3.12 On Chip Oscillator	. 32
4 /	AC/DC Characteristic	34
	4.1 Operating Conditions	. 34
	4.1.1 Absolute Max. Ratings	. 34
	4.1.2 Recommended Operating Conditions	. 34
	4.1.3 Power Supply Ramp Rates	. 34
	4.1.4 Hot Socket Specifications	. 35
	4.1.5 POR Specification	. 35
	4.2 ESD	. 35
	4.3 DC Characteristic	. 36
	4.3.1 DC Electrical Characteristics over Recommended Operating Conditions	. 36
	4.3.2 Static Current	. 37
	4.3.2 Static Current	
		. 38
	4.3.3 I/O Operating Conditions Recommended	. 38 . 39
	4.3.3 I/O Operating Conditions Recommended	. 38 . 39 . 40
	4.3.3 I/O Operating Conditions Recommended 4.3.4 Single - Ended IO DC Electrical Characteristic 4.4 Switching Characteristic	. 38 . 39 . 40 . 40
	4.3.3 I/O Operating Conditions Recommended 4.3.4 Single - Ended IO DC Electrical Characteristic 4.4 Switching Characteristic 4.4.1 CFU Block Internal Timing Parameters	. 38 . 39 . 40 . 40 . 40
	4.3.3 I/O Operating Conditions Recommended 4.3.4 Single - Ended IO DC Electrical Characteristic 4.4 Switching Characteristic 4.4.1 CFU Block Internal Timing Parameters 4.4.2 Clock and I/O Switching Characteristics	. 38 . 39 . 40 . 40 . 40

	4.5 User Flash Characteristic	. 42
	4.5.1 DC Characteristic	. 42
	4.5.2 Timing Parameters ^{[1],[5],[6]}	
	4.5.3 Operation Timing Diagrams	
	4.6 Configuration Interface Timing Specification	. 45
5 (Ordering Information	46
-	5.1 Part Name	
		46

DS845-1.0E iii

List of Figures

Figure 3-1 GW1NZ-1 Architecture Overview	. 6
Figure 3-2 CFU View	. 8
Figure 3-3 Register in CFU	. 9
Figure 3-4 IOB Structure View	. 10
Figure 3-5 I/O Bank Distribution of GW1NZ-1	. 11
Figure 3-6 I/O Logic Output	. 13
Figure 3-7 I/O Logic Input	. 13
Figure 3-8 IODELAY	. 14
Figure 3-9 Register Structure in I/O Logic	. 14
Figure 3-10 IEM Structure	. 14
Figure 3-11 Pipeline Mode in Single Port, Dual Port and Semi Dual Port	. 22
Figure 3-12 Independent Clock Mode	. 24
Figure 3-13 Read/Write Clock Mode	. 24
Figure 3-14 Single Port Clock Mode	. 25
Figure 3-15 GW1NZ-1 User Flash Ports	. 25
Figure 3-16 GW1NZ-1 Clock Resources	. 27
Figure 3-17 GCLK Quadrant Distribution	. 28
Figure 3-18 DQCE Concepts	. 28
Figure 3-19 DCS Concept	. 29
Figure 3-20 DCS Rising Edge	. 29
Figure 3-21 DCS Falling Edge	. 29
Figure 3-22 PLL Structure	. 30
Figure 3-23 GW1NZ-1 HCLK Distribution	. 31
Figure 4-1 Read Mode	. 44
Figure 4-2 Write Mode	. 45
Figure 4-3 Erasure Mode	. 45
Figure 5-1 Part Naming Example–Production	. 46
Figure 5-2 Package Mark	. 46

List of Tables

Table 1-1 Abbreviations and Terminologies	. 2
Table 2-1 Product Resources	. 4
Table 2-2 Package Information and Max. User I/O, True LVDS Pairs	. 5
Table 3-1 Register Description in CFU	. 9
Table 3-2 Output I/O Types and Configuration Options of GW1NZ-1	. 11
Table 3-3 Input I/O Types and Configuration Options of GW1NZ-1	. 12
Table 3-4 I3C Port Signals	. 16
Table 3-5 SPMI Port Signal	. 18
Table 3-6 BSRAM Signals	. 19
Table 3-7 Memory Size Configuration	. 19
Table 3-8 Dual Port Mixed Read/Write Data Width Configuration	. 21
Table 3-9 Semi Dual Port Mixed Read/Write Data Width Configuration	. 21
Table 3-10 Clock Operations in Different BSRAM Modes	. 24
Table 3-11 Flash Module Signal Description	. 26
Table 3-12 Truth Table in User Mode	. 26
Table 3-13 PLL Ports Definition	. 30
Table 3-14 Oscillator Output Frequency Options	. 33
Table 4-1 Absolute Max. Ratings	. 34
Table 4-2 Recommended Operating Conditions	. 34
Table 4-3 Power Supply Ramp Rates	. 34
Table 4-4 Hot Socket Specifications	. 35
Table 4-5 POR Specification	. 35
Table 4-6 GW1NZ ESD - HBM	
Table 4-7 GW1NZ ESD – CDM	. 35
Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions	. 36
Table 4-9 Static Supply Current (LV Device)	. 37
Table 4-10 I/O Operating Conditions Recommended	. 38
Table 4-11 Single - Ended IO DC Electrical Characteristic	. 39
Table 4-12 CFU Block Internal Timing Parameters	. 40
Table 4-13 Clock and I/O Switching Characteristics	. 40
Table 4-14 BSRAM Internal Timing Parameters	. 40
Table 4-15 On chip Oscillator Output Frequency	. 40

DS845-1.0E

Table 4-16 PLL Switching Characteristics	41
Table 4-17 GW1NZ-1 User Flash DC Characteristics	42
Table 4-18 User Flash Timing Parameters	43

DS845-1.0E vi

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

This data sheet describes the features, product resources and structure, AC/DC characteristics, timing specifications of the configuration interface, and the ordering information of the GW1NZ series of FPGA product (Automotive). It is designed to help you understand the GW1NZ series of FPGA product (Automotive) quickly and select and use devices appropriately.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI Website. You can find the related documents at www.gowinsemi.com:

- UG290, Gowin FPGA Products Programming and Configuration User Guide
- 2. UG843, GW1NZ series of FPGA products Package and Pinout
- 3. UG842, GW1NZ-1 Pinout

DS845-1.0E 1(46)

1.3 Abbreviations and Terminology

The abbreviations and terminology used in this manual are as shown in Table 1-1 below.

Table 1-1 Abbreviations and Terminologies

Abbreviations and Terminology	Full Name	
FPGA	Field Programmable Gate Array	
CFU	Configurable Functional Unit	
CLS	Configurable Logic Section	
CRU	Configurable Routing Unit	
LUT4	Four-input Look-up Table	
LUT5	Five-input Look-up Tables	
LUT6	Six-input Look-up Tables	
LUT7	Seven-input Look-up Tables	
LUT8	Eight-input Look-up Tables	
REG	Register	
ALU	Arithmetic Logic Unit	
IOB	Input/output Bank	
BSRAM	Block Static Random Access Memory	
SP	Single Port 16K BSRAM	
SDP	Semi Dual Port 16K BSRAM	
DP	True Dual Port 16K BSRAM	
DQCE	Dynamic Quadrant Clock Enable	
DCS	Dynamic Clock Selector	
PLL	Phase Locked Loop	
SPMI	System Power Management Interface	
GPIO	Gowin Programmable IO	
QN48	QFN48	

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below.

Website: www.gowinsemi.com
E-mail: support@gowinsemi.com

DS845-1.0E 2(46)

2 General Description 2.1 Features

2General Description

The GW1NZ series of FPGA products (Automotive) are the first generation products in the LittleBee® family. They offer ultra-low power consumption, instant on, low cost, non-volatile, high security, various packages, and flexible usage. They can be widely used in communication, industry control, consumer, video control, etc.

GOWINSEMI provides a new generation of FPGA hardware development environment through market-oriented independent research and development that supports the GW1NZ series of FPGA products (Automotive) and applies to FPGA synthesizing, layout, place and routing, data bitstream generation and download, etc.

2.1 Features

- Zero power consumption
 - 55nm embedded flash technology
 - LV: Supports 1.2V core voltage
 - Clock dynamically turns on and off
 - User Falsh dynamically turns on and off
- Power Management Module (GW1NZ-1)
 - SPMI: System power management interface
 - VCC and VCCM are independent in the device
- User Flash (GW1NZ-1)
 - Dynamically turns on and off
 - 64K bits
 - Data Width: 32
 - 10,000 write cycles
 - Greater than ten years' data retention at +85 $\,^\circ\mathrm{C}$
 - Supports page erasure: 2048 bytes per page
 - Duration: Max. 25ns
 - Electric current
 - a). Read Operation: 2.19 mA/25 ns (V_{CC}) & 0.5 mA/25 ns (V_{CCX}) (MAX):
 - b). Write operation/erase operation: 12/12 mA (MAX)
 - Quick page erasure/Write operation
 - Clock frequency: 40MHz
 - Write operation time: ≤16µs

DS845-1.0E 3(46)

2 General Description 2.2 Product Resources

- Page erasure time: ≤120 ms
- Multiple I/O Standards
 - GW1NZ-1: LVCMOS33/25/18/15/12;LVTTL33; PCI;
 LVDS25E, BLVDSE, MLVDSE, LVPECLE, RSDSE
 - Input hysteresis option
 - Supports 4mA,8mA,16mA,24mA,etc. drive options
 - Slew Rate option
 - Output drive strength option
 - Individual Bus Keeper, Weak Pull-up, Weak Pull-down, and Open Drain option
 - Hot Socket
 - I3C hard core, supports SDR mode
 - Support differential output, rather than differential input
- Abundant Slices
 - Four input LUT (LUT4)
 - Double-edge flip-flops
 - Supports shifter register
 - Supports shadow SRAM
- Block SRAM with multiple modes
 - Supports Dual Port, Single Port, and Semi Dual Port
 - Supports bytes write enable
- Flexible PLLs
 - Frequency adjustment (multiplication and division) and phase adjustment
 - Supports global clock
- Built-in Flash programming
 - Instant-on
 - Supports security bit operation
 - Supports AUTO BOOT and DUAL BOOT
- Configuration
 - JTAG configuration
 - Offers up to six GowinCONFIG configuration modes: AUTOBOOT, SSPI, MSPI, CPU, SERIAL, and DUAL BOOT

2.2 Product Resources

Table 2-1 Product Resources

Device	GW1NZ-1
LUT4	1,152
Register	864
Shadow SRAM (bits)	4K
Block SRAM (bits)	72K
PLLs	1
User Flash (bits)	64K
Max. I/O	48
Core Voltage (LV)	1.2V

DS845-1.0E 4(46)

2 General Description 2.3 Package Information

2.3 Package Information

Table 2-2 Package Information and Max. User I/O, True LVDS Pairs

Package	Pitch (mm)	Size (mm)	GW1NZ-1
QN48	0.4	6 x 6	40

Note!

- In this manual, abbreviations are employed to refer to the package types. See 5.1 Part Name.
- JTAGSEL_N and JTAG pins cannot be used as I/O simultaneously. The Max. I/O noted in this table is referred to when the four JTAG pins (TCK, TDI, TDO, and TMS) are used as I/O. When mode [2:0] = 001, JTAGSEL_N and the four JTAG pins (TCK, TDI, TDO, and TMS) can be used as GPIO simultaneously, and the Max. user I/O is increased by one.

DS845-1.0E 5(46)

3 Architecture 3.1 Architecture Overview

3 Architecture

3.1 Architecture Overview

Figure 3-1 GW1NZ-1 Architecture Overview

Figure 3-1 shows the GW1NZ devices architecture view. The core of the GW1NZ devices is the array of logic unit surrounded by IO blocks. GW1NZ also provides BSRAM, PLL, user Flash, and on chip oscillator and supports Instant-on. SPMI and I3C are also embedded in the GW1NZ devices. See Table 2-1 for more detailed information on internal resources.

Configurable Function Unit (CFU) is the base cell for the array of the GW1NZ series of FPGA products (Automotive). These CFUs arrange in rows and columns. CFU can be configured as LUT4 mode, ALU mode, and memory mode. See <u>3.2 Configurable</u> Function Unit for further detailed information.

The I/O resources in the GW1NZ series of FPGA products (Automotive) are arranged around the periphery of the devices in groups referred to as banks, including Bank0 and Bank1. The I/O resources support multiple level standards, and support basic mode, SRD mode, and generic DDR mode. See 3.3 IOB for further detailed information.

DS845-1.0E 6(46)

The BSRAM is embedded as a row in the GW1NZ series of FPGA products (Automotive). In the FPGA array, each BSRAM occupies three columns of CFU. Each BSRAM has 18,432 bits (18 Kbits) and supports multiple configuration modes and operation modes. See <u>3.6 Block</u> SRAM (BSRAM) for further detailed information.

The User Flash is embedded in the GW1NZ series of FPGA products (Automotive), without loss of data even if power off. See Table 2-1 for further detailed information. See <u>3.7</u> User Flash (GW1NZ-1).

GW1NZ provides one PLL. PLL blocks provide the ability to synthesize clock frequencies. Frequency adjustment (multiplication and division), phase adjustment, and duty cycle can be adjusted using the configuration of parameters. See <u>3.8 Clock</u> for further detailed information.

FPGA provides abundant CRUs, connecting all the resources in FPGA. For example, routing resources distributed in CFU and IOB connect resources in CFU and IOB. Routing resources can automatically be generated by Gowin software. In addition, the GW1NZ series of FPGA products (Automotive) also provide abundant GCLKs, long wires (LW), global set/reset (GSR), and programming options, etc. See 3.9Long Wire (LW), 3.10Global Set/Reset (GSR), 3.11Programming Configuration for further detailed information.

3.2 Configurable Function Unit

The configurable function unit and the configurable logic unit are two basic units for FPGA core of GOWINSEMI. As shown in Figure 3-2, each unit consists of four configurable logic sections and its configurable routing unit. Each of the three configurable logic sections contains two 4-input LUTs and two registers, and the other one only contians two 4-input LUTs.

Configurable logical sections in CLU cannot be configured as SRAM, but as basic logic, ALU, and ROM. The configurable logic sections in the CFU can be configured as basic logic, ALU, SRAM, and ROM depending on the applications. This section takes CFU as an example to introduce CFU and CLU.

DS845-1.0E 7(46)

Figure 3-2 CFU View

Note!

- SREG needs special patch supporting. Please contact Gowin technical support or lo cal Office for this patch.
- In GW1NZ-2, the CLK, CE, and SR of CLS3 and CLS2 are driven by the same source.

3.2.1 CLU

The CLU supports three operation modes: Basic logic mode, ALU mode, and ROM mode.

Basic Logic Mode

Each LUT can be configured as one four-input LUT. Higher input number of LUT can be formed by combining the LUT4 together.

- Each CLS can form one five-input LUT5.
- Two CLSs can form one six-input LUT6.
- Four CLSs can form one seven-input LUT7.
- Eight CLSs (two CLUs) can form one eight-input LUT8.

ALU Mode

When combined with carry chain logic, the LUT can be configured as the ALU mode to implement the following functions.

- Adder and subtractor
- Up/down counter
- Comparator, including greater-than, less-than, and not-equal-to
- MULT
- Memory mode

In this mode, a 16 x 4 S-SRAM or ROM can be constructed by using

DS845-1.0E 8(46)

CLSs.

This SRAM can be initialized during the device configuration stage.
 The initialization data can be generated in the bit stream file from Gowin Yunyuan software.

Register

Each Configurable Logic Section (CLS) has two registers (REG), as shown in Figure 3-3 below.

Figure 3-3 Register in CFU

Table 3-1 Register Description in CFU

Signal	I/O	Description	
D	I	Data input ¹	
CE	I	CLK enable, can be high or low effective ²	
CLK	I	Clock, can be rising edge or falling edge trigging ²	
SR	1	Set/Reset, can be configured as ² : Synchronized reset Synchronized set Asynchronous reset Non	
GSE ^{3,4}	I	Global Set/Reset, can be configured as ⁴ : Asynchronous reset Asynchronous set Non	
Q	0	Register	

Note!

- [1] The source of the signal D can be the output of a LUT, or the input of the CRU; as such, the register can be used alone when LUTs are in use.
- [2] CE/CLK/SR in CFU is independent.
- [3] In the GW1NZ series of FPGA products (Automotive), GSR has its own dedicated network.
- [4] When both SR and GSR are effective, GSR has higher priority.

3.2.2 CRU

The main functions of the CRU are as follows:

- Input selection: Select input signals for the CFU.
- Configurable routing: Connect the input and output of the CFUs, including inside the CFU, CFU to CFU, and CFU to other functional blocks in FPGA.

3.3 **IOB**

The IOB in the GW1NZ series of FPGA products (Automotive)

DS845-1.0E 9(46)

includes IO buffer, IO logic, and its routing unit. As shown in Figure 3-4, each IOB connects to two Pins (Marked as A and B). As input, they can be used as a single-end signal; as output, they can be used as an output differential pair or as a single end input/output.

Note!

GW1NZ-1 I/Os support differential output, rather than differential input.

Figure 3-4 IOB Structure View

IOB Features:

- VCCO supplied with each bank
- Supports multiple levels: LVCMOS, PCI, LVTTL, etc.
- Input hysteresis option
- Output drive strength option
- Slew Rate option
- Individual Bus Keeper, Weak Pull-up, Weak Pull-down, and Open Drain option
- Hot Socket
- IO Logic supports basic mode, SRD mode, and generic DDR mode
- I3C hard core embedded, supports SDR mode
- Supports differential output, rather than differential input

3.3.1 I/O Buffer

GW1NZ-1 includes Bank0 and Bank1, as shown in Figure 3-5. Each Bank has independent $V_{\rm CCO.}$ It can be 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V.

DS845-1.0E 10(46)

Figure 3-5 I/O Bank Distribution of GW1NZ-1

LV devices support 1.2V core voltage to meet users' low power needs. VCCO supplied with I/O Bank can be set as 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V according to requirements. V_{CCX} supports 1.8V, 2.5 V, and 3.3 V power supply.

Note!

By default, the Gowin Programmable IO is tri-stated weak pull-up.

For the V_{CCO} requirements of different I/O standards, see Table 3-2 and Table 3-3.

Table 3-2 Output I/O Types and Configuration Options of GW1NZ-1

I/O Type (Output)	Single/Differ	Bank V _{CCO} (V)	Driver Strength (mA)
LVCMOS33/LVTTL 33	Single	3.3	8/24/16/12/4
LVCMOS25	Single	2.5	8/16/12/4
LVCMOS18	Single	1.8	8/12/4
LVCMOS15	Single	1.5	8/4
LVCMOS12	Single	1.2	8/4
PCI33	Single	3.3	8/4
LVCMOS33D	Differential	3.3	8/24/16/12/4
LVCMOS25D	Differential	2.5	8/16/12/4
LVCMOS18D	Differential	1.8	8/12/4
LVCMOS15D	Differential	1.5	8/4
LVCMOS12D	Differential	1.2	8/4

DS845-1.0E 11(46)

Table 3-3 Input I/O Types and Configuration Options of GW1NZ-1 $\,$

I/O Type (Input)	Single/Differ	Bank V _{CCO} (V)	HYSTERESIS	Need V _{REF}
LVCMOS33/LVTTL 33	Single	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS25	Single	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS18	Single	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS15	Single	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS12	Single	1.2/1.5/1.8/2.5/3.3	Yes	No
PCI33	Single	3.3	Yes	No
LVCMOS33OD25	Single	2.5	Yes	No
LVCMOS33OD18	Single	1.8	Yes	No
LVCMOS33OD15	Single	1.5	Yes	No
LVCMOS250D18	Single	1.8	Yes	No
LVCMOS250D15	Single	1.5	Yes	No
LVCMOS18OD15	Single	1.5	Yes	No
LVCMOS150D12	Single	1.2	Yes	No
LVCMOS25UD33	Single	3.3	Yes	No
LVCMOS18UD25	Single	2.5	Yes	No
LVCMOS18UD33	Single	3.3	Yes	No
LVCMOS15UD18	Single	1.8	Yes	No
LVCMOS15UD25	Single	2.5	Yes	No
LVCMOS15UD33	Single	3.3	Yes	No
LVCMOS12UD15	Single	1.5	Yes	No
LVCMOS12UD18	Single	1.8	Yes	No
LVCMOS12UD25	Single	2.5	Yes	No
LVCMOS12UD33	Single	3.3	Yes	No

DS845-1.0E 12(46)

3.3.2 I/O Logic

Figure 3-6 shows the I/O logic output of the GW1NZ series of FPGA products (Automotive).

Figure 3-6 I/O Logic Output

Figure 3-7 shows the I/O logic input of the GW1NZ series of FPGA products (Automotive).

Figure 3-7 I/O Logic Input

A description of the I/O logic modules of the GW1NZ series of FPGA products (Automotive) is presented below:

IODELAY

See Figure 3-8 for an overview of the IODELAY. Each I/O of the GW1NZ series of FPGA products (Automotive) has an IODELAY cell. A total of 128(0~127) step delay is provided, with one-step delay time of about 30ps.

DS845-1.0E 13(46)

Figure 3-8 IODELAY

There are two ways to control the delay cell:

- Static control
- Dynamic control: usually used to sample delay window together with IEM. The IODELAY cannot be used for both input and output at the same time

I/O Register

See Figure 3-9 for the I/O register in the GW1NZ series of FPGA products (Automotive). Each I/O provides one input register, INFF, one output register, OUTFF, and a tristate Register, TCFF.

Figure 3-9 Register Structure in I/O Logic

Note!

- CE can be either active ow (0: enable)or active high (1: enable).
- CLK can be either rising edge trigger or falling edge trigger.
- SR can be either synchronous/asynchronous SET or RESET or disable.
- The register can be programmed as register or latch.

IEM

IEM is for sampling clock edge and is used in the generic DDR mode, as shown in Figure 3-10.

Figure 3-10 IEM Structure

De-serializer DES and Clock Domain Transfer

The GW1NZ series of FPGA products (Automotive) provide a simple

DS845-1.0E 14(46)

3 Architecture 3.4 I3C Bus (GW1NZ-1)

DES for each input I/O to support advanced I/O protocols.

Serializer SER

The GW1NZ series of FPGA products (Automotive) provide a simple Serializer SER for each output I/O to support advanced I/O protocols.

3.3.3 I/O Logic Modes

The I/O Logic in the GW1NZ series of FPGA products (Automotive) supports several modes. In each operation, the I/O can be configured as output, input, and INOUT or tristate output (output signal with tristate control).

The GW1NZ-1 pins IOR6 (A,B,C....J) do not support IO logic.

For further information about I/O logic modes, please refer to <u>UG289</u>, <u>Gowin Programmable IO (GPIO) User Guide</u>.

3.4 I3C Bus (GW1NZ-1)

3.4.1 Overview

GW1NZ series of FPGA products (Automotive) includes a hard core of I3C bus controller, which supports SDR mode. The I3C controller is backwards compatible with I2C features low power, and is high speed and extensible. The I3C bus is compliant with MIPI I3C protocol, adopts register interfaces, and supports operation modes of I3C SDR Master and I3C SDR Slave.

I3C SDR Master

- Compliance with MIPI I3C protocol;
- Supports I3C address arbitration detection;
- Supports Single Data Rate (SDR) mode;
- The max. data transmission rate can up to 12.5Mbps;
- Start / Stop / Repeated Start / Acknowledge generation;
- Start / Stop / Repeated Start detection;
- Support dynamically allocating address via SETDASA or ENTDAA;
- Supports Receive/Send data;
- Supports In-band Interrupts;
- Supports Hot-Join:
- Supports dynamically allocating address when hot-join;
- Supports CCC's command;
- Supports dynamic adjusting SCL frequency;
- Compatible with I2C Slave;
- Adopts register interfaces.

I3C SDR Slave

- Compliance with MIPI I3C protocol;
- Start / Acknowledge generation;
- Start / Stop / Repeated Start detection;
- Support dynamically allocating address via SETDASA or ENTDAA;
- Receive/Send data:
- Send an IBI or hot-join request. If more than one slaves send the IBI or

DS845-1.0E 15(46)

3 Architecture 3.4 I3C Bus (GW1NZ-1)

hot-join requests, the min. address obtains the arbitration;

- Static address of Slave configuration;
- Adopts register interfaces.

3.4.2 Port Signal

For the detailed information about I3C port signals, working principle, timing, and examples, please refer to <u>IPUG508-1.2 Gowin I3C SDR IP</u> <u>User Guide</u>.

Table 3-4 I3C Port Signals

Port Name	I/O	Description
AAC	Input	The setting to clear ACK response, single pulse signal
AAO	output	Output ACK signal
AAS	Input	Set ACK response, single pulse signal
ACC	Input	The setting to clear continuous operation mode, single pulse signal
ACKHS	Input	Set ACK high-level time
ACKLS	Input	Set ACK low-level time
ACO	output	Continuous operation mode output
ACS	Input	Set continuous operation mode, single pulse signal
ADDRS	Input	Set slave address
CE	Input	Clock enable signal
CLK	Input	Clock input
CMC	Input	Clear the current Master role, single pulse signal
СМО	output	Output the flag of current master role
CMS	Input	Set the current Master role, single pulse signal
DI[7:0]	Input	Data input
DO[7:0]	output	Data output
DOBUF[7:0]	output	Buffer data output
LGYC	Input	Clear the setting of I2C as the current communication object, single pulse signal
LGYO	output	Output of I2C as the current communication object
LGYS	Input	Set I2C as the current communication object, single pulse signal
PARITYERROR	output	Parity error signal
RECVDHS	Input	Set high-level time of receiving data
RECVDLS	Input	Set low-level time of receiving data
RESET	Input	Asynchronous reset, active high
SCLI	Input	I3C serial clock input
SCLO	output	I3C serial clock line
SCLOEN	output	I3C serial clock output enable
SCLPULLO	output	I3C serial clock pullup output

DS845-1.0E 16(46)

3 Architecture 3.5 SPMI (GW1NZ-1)

Port Name	I/O	Description
SCLPULLOEN	output	I3C serial clock pullup output enable
SDAI	Input	I3C serial data input
SDAO	output	I3C serial data output
SDAOEN	output	I3C serial data output enable
SDAPULLO	output	I3C serial data pullup output
SDAPULLOEN	output	I3C serial data pullup output enable
SENDAHS	Input	Set high-level time of sending address
SENDALS	Input	Set low-level time of sending address
SENDDHS	Input	Set high-level time of sending data
SENDDLS	Input	Set low-level time of sending data
SIC	Input	Signal of clearing interrupt flag
SIO	output	Signal of output signal interrupt
STRTC	Input	Setting of clearing the START command, single pulse signal
STRTO	output	Output START command
STRTS	Input	Set START command, single pulse signal
STATE	output	Output internal state
STRTHDS	Input	Set the holding time of the START command
STOPC	Input	Clear the STOP command setting, single pulse signal
STOPO	output	Output the STOP command
STOPS	Input	Set the STOP command, single pulse signal
STOPSUS	Input	Set the setting time of the STOP command
STOPHDS	Input	Set the holding time of the STOP command

3.5 SPMI (GW1NZ-1)

3.5.1 Overview

The GW1NZ series of FPGA products (Automotive) provides SPMI and the SPMI controller IP. As a Master, the GW1NZ device supports for the power management of the external Slave devices via the SPMI interface. As a Slave, it also supports for the FPGA power management.

The GW1NZ series of FPGA products (Automotive) supports two ways to control the main power:

- Using hardware I/O VCCEN: The main power is turned off when VCCEN is 0. The main power is on when VCCEN is 1;
- Sending the command of shut down by Master: Master sends reset / sleep / wakeup to recover FPGA main power. The main power can also be recovered at low pulse of SPMI_EN.

Note!

For the detailed information of operation modes, communication modes, commands, and timing, etc, please refer to <u>IPUG529</u>, <u>Gowin SPMI User Guide</u>.

DS845-1.0E 17(46)

3.5.2 Port Signal

Table 3-5 SPMI Port Signal

Name	I/O	Description
SPMI_EN	input	SPMI enable signal
SPMI_CLK	intput	System clock signal
SPMI_SCLK	inout	SPMI serial clock signal
SPMI_SDATA	inout	SPMI serial data signal

3.6 Block SRAM (BSRAM)

3.6.1 Introduction

GW1NZ series FPGA products provide abundant SRAM. The Block SRAM (BSRAM) is embedded as a row in the FPGA array and is different from S-SRAM (Shadow SRAM). Each BSRAM occupies three columns of CFU in the FPGA array. Each BSRAM has 18,432 bits (18Kbits). There are five operation modes: Single Port, Dual Port, Semi-dual Port, ROM, and FIFO. Table 3-6 lists the signals and functional descriptions of BSRAM.

An abundance of BSRAM resources provide a guarantee for the user's high-performance design. BSRAM features:

- Max.18,432 bits per BSRAM
- BSRAM itself can run at 170MHz at max (typical, Read-before-write is 100MHz)
- Single Port
- Dual Port
- Semi-dual Port
- Parity bits
- ROM
- Data width from 1 to 36 bits
- Mixed clock mode
- Mixed data width mode
- Enable Byte operation for double byte or above
- Normal read and write mode
- Read-before-write mode
- Write-through Mode

DS845-1.0E 18(46)

Table 3-6 BSRAM Signals

Port Name	I/O	Description
DIA	Input	Port A data input
DIB	Input	Port B data input
ADA	Input	Port A address
ADB	Input	Port B address
CEA	Input	Clock enable, Port A
CEB	Input	Clock enable, Port B
RESETA	Input	Register reset, Port A
RESETB	Input	Register reset, Port B
WREA	Input	Read/write enable, Port A
WREB	Input	Read/write enable, Port B
BLKSELA, BLKSELB	Input	Block select
CLKA	Input	Read/write cycle clock for Port A input registers
CLKB	Input	Read/write cycle clock for Port B input registers
OCEA	Input	Output enable for Port A registers
OCEB	Input	Output enable for Port B registers
DOA	Output	Port A data output
DOB	Output	Port B data output

3.6.2 Configuration Mode

The BSRAM mode in the GW1NZ series of FPGA products (Automotive) supports different data bus widths. See Table 3-7.

Table 3-7 Memory Size Configuration

Single Port Mode	Dual Port Mode ^[1]	Semi-Dual Port Mode
16K x 1	16K x 1	16K x 1
8K x 2	8K x 2	8K x 2
4K x 4	4K x 4	4K x 4
2K x 8	2K x 8	2K x 8
1K x 16	1K x 16	1K x 16
512 x 32	-	512 x 32
2K x 9	2K x 9	2K x 9
1K x 18	1K x 18	1K x 18
512 x 36	-	512 x 36

Note!

[1]The GW1NZ-1 device does not support Dual Port Mode.

Single Port Mode

In the single port mode, BSRAM can write to or read from one port at one clock edge. During the write operation, the data can show up at the

DS845-1.0E 19(46)

output of BSRAM. Normal-Write Mode and Write—through Mode can be supported. When the output register is bypassed, the new data will show at the same write clock rising edge.

For further information about Single Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User Guide</u>.

Dual Port Mode

BSRAM support dual port mode. The applicable operations are as follows:

- Two independent read
- Two independent write
- An independent read and an independent write at different clock frequencies

For further information about Dual Port Block Memory ports and the related description, please refer to <u>UG285, Gowin BSRAM & SSRAM User</u> Guide..

Semi-Dual Port Mode

Semi-Dual Port supports read and write at the same time on different ports, but it is not possible to write and read to the same port at the same time. The system only supports write on Port A, read on Port B.

For further information about Semi-Dual Port Block Memory ports and the related description, please refer to <u>UG285, Gowin BSRAM & SSRAM</u> User Guide..

Read Only

BSRAM can be configured as ROM. The ROM can be initialized during the device configuration stage, and the ROM data needs to be provided in the initialization file. Initialization completes during the device power-on process.

Each BSRAM can be configured as one 16 Kbits ROM. For further information about Read Only Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User Guide</u>...

DS845-1.0E 20(46)

3.6.3 Mixed Data Bus Width Configuration

BSRAM in the GW1NZ series of FPGA products (Automotive) supports mixed data bus width operation. In the dual port and semi-dual port modes, the data bus width for read and write can be different. For the configuration options that are available, please see Table 3-8 and Table 3-9 below.

Table 3-8 Dual Port Mixed Read/Write Data Width Configuration

Read Port	Write Port								
	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	2K x 9	1K x 18		
16K x 1	*	*	*	*	*				
8K x 2	*	*	*	*	*				
4K x 4	*	*	*	*	*				
2K x 8	*	*	*	*	*				
1K x 16	*	*	*	*	*				
2K x 9						*	*		
1K x 18						*	*		

Note!

Table 3-9 Semi Dual Port Mixed Read/Write Data Width Configuration

Read	Write Port								
	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	512 x 32	2K x 9	1K x 18	512 x 36
16K x 1	*	*	*	*	*	*			
8K x 2	*	*	*	*	*	*			
4K x 4	*	*	*	*	*	*			
2K x 8	*	*	*	*	*	*			
1K x 16	*	*	*	*	*	*			
512 x 32	*	*	*	*	*	*			
2K x 9							*	*	*
1K x 18							*	*	*

Note!

3.6.4 Byte-enable

The BSRAM in the GW1NZ series of FPGA products (Automotive) supports byte-enable. For data longer than a byte, the additional bits can be blocked, and only the selected portion can be written into. The blocked bits will be retained for future operation. Read/write enable ports (WREA, WREB), and byte-enable parameter options can be used to control the BSRAM write operation.

DS845-1.0E 21(46)

[&]quot;*"denotes the modes supported.

[&]quot;*" denotes the modes supported.

3.6.5 Parity Bit

There are parity bits in BSRAMs. The 9th bit in each byte can be used as a parity bit to check the correctness of data transmission. It can also be used for data storage.

3.6.6 Synchronous Operation

- All the input registers of BSRAM support synchronous write;
- The output registers can be used as pipeline register to improve design performance;
- The output registers are bypass-able.

3.6.7 Power up Conditions

BSRAM initialization is supported when powering up. During the power-up process, BSRAM is in standby mode, and all the data outputs are "0". This also applies in ROM mode.

3.6.8 BSRAM Operation Modes

BSRAM supports five different operations, including two read operations (Bypass Mode and Pipeline Read Mode) and three write operations (Normal Write Mode, Write-through Mode, and Read-before-write Mode).

Read Mode

Read data from the BSRAM via output registers or without using the registers.

Pipeline Mode

While writing in the BSRAM, the output register and pipeline register are also being written. The data bus can be up to 36 bits in this mode.

Bypass Mode

The output register is not used. The data is kept in the output of memory array.

Figure 3-11 Pipeline Mode in Single Port, Dual Port and Semi Dual Port

DS845-1.0E 22(46)

Write Mode

NORMAL WRITE MODE

In this mode, when the user writes data to one port, and the output data of this port does not change. The data written in will not appear at the read port.

WRITE-THROUGH MODE

In this mode, when the user writes data to one port, and the data written in will also appear at the output of this port.

READ-BEFORE-WRITE MODE

In this mode, when the user writes data to one port, and the data written in will be stored in the memory according to the address. The original data in this address will appear at the output of this port.

DS845-1.0E 23(46)

3.6.9 Clock Operations

Table 3-10 lists the clock operations in different BSRAM modes:

Table 3-10 Clock Operations in Different BSRAM Modes

Clock Operations	Dual Port Mode	Semi-Dual Port Mode	Single Port Mode
Independent	Yes	No	No
Clock Mode	162	INO	INU
Read/Write	Voo	Voc	No
Clock Mode	Yes	Yes	INO
Single Port Clock	No	No	Yes
Mode			

Independent Clock Mode

Figure 3-12 shows the independent clocks in dual port mode with each port with one clock. CLKA controls all the registers at Port A; CLKB controls all the registers at Port B.

Figure 3-12 Independent Clock Mode

Read/Write Clock Operation

Figure 3-13 shows the read/write clock operations in the semi-dual port mode with one clock at each port. The write clock (CLKA) controls Port A data inputs, write address and write enable signals. The read clock (CLKB) controls Port B data output, read address, and read enable signals.

Figure 3-13 Read/Write Clock Mode

DS845-1.0E 24(46)

Single Port Clock Mode

Figure 3-14shows the clock operation in single port mode.

Figure 3-14 Single Port Clock Mode

3.7 User Flash (GW1NZ-1)

3.7.1 Introduction

GW1NZ-1 offers User Flash, the features are shown below:

- 10,000 write cycles
- Capacity: 64K bits
- Greater than ten years' data retention at +85 °C
- Supports page erasure: 2,048 bytes per page
- Quick page erasure/Write operation
- Clock frequency: 40MHz
- Write operation time: ≤16µs
- Page erasure time: ≤120 ms
- Electric current
- Read Operation: 2.19 mA/25 ns (V_{CC}) & 0.5 mA/25 ns (V_{CCX}) (MAX).
- Write operation/erase operation: 12/12 mA(MAX)

3.7.2 Port Signal

See Figure 3-15 for the User Flash signal diagram of GW1NZ-1.

Figure 3-15 GW1NZ-1 User Flash Ports

DS845-1.0E 25(46)

3 Architecture 3.8 Clock

Table 3-11 Flash Module Signal Description

Pin name ^[1]	I/O	Description
XADR[5:0] [2]	I	X address bus, used to select one row within a page of main memory block.
YADR[5:0] [2]	I	Y address bus, used to select one column within a row of memory block.
DIN[31:0]	I	Data input bus.
DOUT[31:0]	0	Data output bus.
XE ^[2]	I	X address enable signal, if XE is 0, all of row addresses are not enabled.
YE ^[2]	I	Y address enable signal, if YE is 0, all of column addresses are not enabled.
SE ^[2]	I	Detect amplifier enable signal, active high.
ERASE	I	Erase port, active-high.
PROG	I	Programming port, active-high.
NVSTR	I	Flash data storage port, active-high.
SLEEP**	I ^[4]	Used to turn on/turn off user falsh. High level: On; Low level: Off.

Note!

- [1] Port names of Control, address, and data signals.
- [2] The read operation is valid only if XE = YE = V_{CC} and SE meets the pulse timing requirements (T_{pws}, _{Tnws}). The address of read data is determined by XADR [5: 0] and YADR [5: 0].
- [3] The power pin and the ground pin connect in FPGA.
- [4] Only supported in user flash in sleep mode.

3.7.3 Operation Modes

Table 3-12 Truth Table in User Mode

Mode	XE	YE	SE	PROG	ERASE	NVSTR
Read mode	Н	Н	Н	L	L	L
Programming mode	Н	Н	L	Н	L	Н
Page Erasure Mode	Н	L	L	L	Н	Н

Note:

3.8 Clock

3.8.1 Global Clock

The GCLK is distributed in GW1NZ-1 as two quadrants, L and R. Each quadrant provides eight GCLKs. Each GCLK has 12 optional clock sources. The optional clock resources of GCLK can be pins or CRU. Users can employ dedicated pins as clock resources to achieve better timing.

DS845-1.0E 26(46)

[&]quot;H" and "L" means high level and low level of VCC.

3 Architecture 3.8 Clock

Figure 3-16 GW1NZ-1 Clock Resources

DS845-1.0E 27(46)

3 Architecture 3.8 Clock

Figure 3-17 GCLK Quadrant Distribution

GCLK0~GCLK5 can be turned on or off by Dynamic Quadrant Clock Enable (DQCE). When GCLK0~GCLK5 in the quadrant is off, all the logic driven by it will not toggle; therefore, lower power can be achieved.

Figure 3-18 DQCE Concepts

DS845-1.0E 28(46)

3 Architecture 3.8 Clock

GCLK6~GCLK7 of each quadrant is controlled by the DCS, as shown in Figure 3-19. Select dynamically between CLK0~CLK3 by CRU, and output a glitch-free clock.

Figure 3-19 DCS Concept

DCS can be configured in the following modes:

DCS Rising Edge

Stay as 1 after current selected clock rising edge, and the new select clock will be effective after its first rising edge, as shown in Figure 3-20.

Figure 3-20 DCS Rising Edge

2. DCS Falling Edge

Stay as 0 after current selected clock falling edge, and the new select clock will be effective after its first falling edge, as shown in Figure 3-21.

Figure 3-21 DCS Falling Edge

Clock Buffer Mode

In this mode, the DCS acts as a clock buffer.

DS845-1.0E 29(46)

3 Architecture 3.8 Clock

3.8.2 PLL

GW1NZ-1

PLL (Phase-locked Loop) is one kind of a feedback control circuit. The frequency and phase of the internal oscillator signal is controlled by the external input reference clock.

PLL blocks provide the ability to synthesize clock frequencies. Frequency adjustment (multiplication and division), phase adjustment, and duty cycle can be adjusted by configuring the parameters.

See Figure 3-22 for the PLL structure.

Figure 3-22 PLL Structure

Table 3-13 PLL Ports Definition

Port Name	Signal	Description
CLKIN[5:0]	I	Reference clock input
CLKFB	1	Feedback clock input
RESET	1	PLL reset
RESET_P	1	PLL Power Down
IDSEL [5:0]	1	Dynamic IDIV control: 1~64
FBDSEL [5:0]	1	Dynamic FBDIV control:1~64
PSDA [3:0]	1	Dynamic phase control (rising edge effective)
DUTYDA [3:0]	1	Dynamic duty cycle control (falling edge
DOTTDA [3.0]	'	effective)
FDLY[3:0]	1	CLKOUTP dynamic delay control
CLKOUT	Output	Clock output with no phase and duty cycle
OLIKOOT	Output	adjustment
CLKOUTP	Output	Clock output with phase and duty cycle
OLICOTT	Output	adjustment
CLKOUTD	Output	Clock divider from CLKOUT and CLKOUTP
OLICOTO	Output	(controlled by SDIV)
		clock divider from CLKOUT and CLKOUTP
CLKOUTD3	Output	(controlled by DIV3 with the constant division
		value 3)
LOCK	Output	PLL lock status: 1 locked, 0 unlocked

The PLL reference clock source can come from an external PLL pin or

DS845-1.0E 30(46)

3 Architecture 3.9 Long Wire (LW)

from internal routing GCLK, HCLK, or general data signal. PLL feedback signal can come from the external PLL feedback input or from internal routing GCLK, HCLK, or general data signal.

For PLL features of GW1NZ series of FPGA products (Automotive), please refer to <u>4.4.5 PLL Switching Characteristics</u>.

PLL can adjust the frequency of the input clock CLKIN (multiplication and division). The formulas for doing so are as follows:

- 1. $f_{CLKOUT} = (f_{CLKIN}*FBDIV)/IDIV;$
- 2. $f_{VCO} = f_{CLKOUT}^*ODIV$;
- 3. $f_{CLKOUTD} = f_{CLKOUT}/SDIV$;
- 4. $f_{PFD} = f_{CLKIN}/IDIV = f_{CLKOUT}/FBDIV$.

Note!

- f_{CLKIN}: The frequency of input clock CLKIN;
- f_{CLKOUT}: The clock frequency of CLKOUT and CLKOUTP
- f_{CLKOUTD}: The clock frequency of CLKOUTD, and CLKOUTD is the clock CLKOUT after division
- f_{PFD}: PFD Frequency, and the minimum value of f_{PFD} should be no less than 3MHz.

Adjust IDIV, FBDIV, ODIV, and SDIV to achieve the required clock frequency.

3.8.3 HCLK

HCLK is the high-speed clock in the GW1NZ series of FPGA products (Automotive). It can support high-performance data transfer and is mainly suitable for source synchronous data transfer protocols. See Figure Figure 3-23. HCLK can be used for the whole I/O Bank.

Figure 3-23 GW1NZ-1 HCLK Distribution

3.9 Long Wire (LW)

As a supplement to the CRU, the GW1NZ series of FPGA products (Automotive) provides another routing resource, Long wire, which can be used as clock, clock enable, set/reset,or other high fan out signals.

DS845-1.0E 31(46)

3.10 Global Set/Reset (GSR)

A global set/reset (GSR) network is built in the GW1NZ series of FPGA product (Automotive). There is a direct connection to core logic. It can be used as asynchronous/synchronous set. The registers in CFU and I/O can be individually configured to use GSR.

3.11 Programming Configuration

The GW1NZ series of FPGA products (Automotive) support SRAM and Flash. The Flash programming mode supports on-chip Flash and off-chip Flash. The GW1NZ series of FPGA products (Automotive) support DUAL BOOT, providing a selection for users to backup data to off chip Flash according to requirements.

Besides JTAG, the GW1NZ series of FPGA products (Automotive) also supports GOWINSEMI's own configuration mode: GowinCONFIG (AUTO BOOT, SSPI, MSPI, DUAL BOOT, SERIAL, CPU, and I²C Slave). All the devices support JTAG and AUTO BOOT. For the detailed information, please refer to <u>UG290</u>, <u>Gowin FPGA Products Programming and Configureation User Guide</u>.

3.11.1 SRAM Configuration

When you adopt SRAM to configure the device, every time the device is powered on, the bit stream file needs to be downloaded to configure the device.

3.11.2 Flash Configuration

The Flash configuration data is stored in the on-chip flash. Each time the device is powered on, the configuration data is transferred from the Flash to the SRAM, which controls the working of the device. This mode can complete configuration within a few ms, and is referred to as "Quick Start". The GW1NZ series of FPGA products (Automotive) also support off-chip Flash configuration and dual-boot. Please refer to UG290, Gowin FPGA Products Programming and Configuration User Guide for more detailed information.

3.12 On Chip Oscillator

There is an on chip oscillator in each of the GW1NZ series of FPGA product (Automotive). The on chip oscillator provides a programmable user clock with precision of $\pm 5\%$. During the configuration process, it can provide a clock for the MSPI mode. See Table 3-14 for the output frequency.

DS845-1.0E 32(46)

3 Architecture 3.12 On Chip Oscillator

Table 3-14 Oscillator Output Frequency Options

Mode	Frequency	Mode	Frequency	Mode	Frequency
0	2.5MHz ^[1]	8	7.8MHz	16	15.6MHz
1	5.4MHz	9	8.3MHz	17	17.9MHz
2	5.7MHz	10	8.9MHz	18	21MHz
3	6.0MHz	11	9.6MHz	19	25MHz
4	6.3MHz	12	10.4MHz	20	31.3MHz
5	6.6MHz	13	11.4MHz	21	41.7MHz
6	6.9MHz	14	12.5MHz	22	62.5MHz
7	7.4MHz	15	13.9MHz	23	125MHz ^[2]

Note!

- [1] The default frequency is 2.5MHz.
- [2] 125 MHz is not suitable for MSPI.

The on-chip oscillator also provides a clock resource for user designs. Up to 64 clock frequencies can be obtained by setting the parameters. The following formula is employed to get the output clock frequency:

fout=250MHz/Param.

"Param" is the configuration parameter with a range of 2~128. It supports even number only.

DS845-1.0E 33(46)

4 AC/DC Characteristic

4.1 Operating Conditions

4.1.1 Absolute Max. Ratings

Table 4-1 Absolute Max. Ratings

Name	Description		Max.
V _{CC}	Core voltage	-0.5V	1.32V
V _{cco}	I/O Bank Power	-0.5V	3.75V
V _{CCX}	Auxiliary Power	-0.5V	3.75V
Storage Temperature	Storage Temperature	-65℃	+150°C
Junction Temperature	Junction Temperature	-40℃	+125℃

4.1.2 Recommended Operating Conditions

Table 4-2 Recommended Operating Conditions

Name	Description	Min.	Max.
V_{CC}	LV: Core Power	1.14V	1.26V
V _{cco}	I/O Bank Power	1.14V	3.465V
V _{CCX}	Auxiliary voltage	1.71V	3.465V
T _{JAUT}	Junction temperature Automotive operation	-40℃	+105℃

4.1.3 Power Supply Ramp Rates

Table 4-3 Power Supply Ramp Rates

Name	Description	Min.	Тур.	Max.
T_{RAMP}	Power supply ramp rates for all power supplies	0.6mV/µs	-	6mV/µs

DS845-1.0E 34(46)

4 AC/DC Characteristic 4.2 ESD

4.1.4 Hot Socket Specifications

Table 4-4 Hot Socket Specifications

Name	Description	Condition	I/O Type	Max.
I _{HS}	Input or I/O leakage current	0 <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub>	I/O	150uA
I _{HS}	Input or I/O leakage current	0 <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub>	TDI,TDO, TMS,TCK	120uA

4.1.5 POR Specification

Table 4-5 POR Specification

Name	Description	Min.
2021/1	Power on reset voltage of Vcc	V8.0
POR Voltage Value	V _{CCX}	1.5V
	V _{cco}	0.95V

4.2 ESD

Table 4-6 GW1NZ ESD - HBM

Device	GW1NZ-1
QN48	HBM>1,000V

Table 4-7 GW1NZ ESD - CDM

Device	GW1NZ-1
QN48	CDM>500V

DS845-1.0E 35(46)

4.3 DC Characteristic

4.3.1 DC Electrical Characteristics over Recommended Operating Conditions

Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions

Name	Description	Condition	Min.	Тур.	Max.
1 1	Input or I/O	V _{CCO} <v<sub>IN<v<sub>IH (MAX)</v<sub></v<sub>	-	-	210 μΑ
I_{IL},I_{IH}	leakage	0V <v<sub>IN<v<sub>CCO</v<sub></v<sub>	-	-	10µA
I _{PU}	I/O Active Pull-up Current (I/O Active Pull-up Current)	0 <v<sub>IN<0.7V_{CCO}</v<sub>	-30 μΑ	-	-150 μΑ
I _{PD}	I/O Active Pull-down Current	V _{IL} (MAX) <v<sub>IN<v<sub>CCO</v<sub></v<sub>	30 μΑ	-	150 µA
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} =V _{IL} (MAX)	30 μΑ	-	-
I _{BHHO}	Bus Hold High Sustaining Current	V _{IN} =0.7V _{CCO}	-30 µA	-	-
I _{BHLO}	Bus HoldLow Overdrive Current	0≤V _{IN} ≤V _{CCO}	-	-	150 μΑ
I _{BHHO}	Bus HoldHigh Overdrive Current	0≤V _{IN} ≤V _{CCO}	-	-	-150 μA
V_{BHT}	Bus hold trigger points		V _{IL} (MAX)	-	V _{IH} (MIN)
C1	I/O Capacitance (I/O Capacitance)			5 pF	8 pF
		V _{CCO} =3.3V, Hysteresis= Large	-	482mV	-
		V _{CCO} =2.5V, Hysteresis= Large	-	302mV	-
	Hysteresis for Schmitt Trigge	V _{CCO} =1.8V, Hysteresis= Large	-	152mV	-
\/	inputs	V _{CCO} =1.5V, Hysteresis= Large	-	94mV	-
V_{HYST}	(Hysteresis for	V _{CCO} =3.3V, Hysteresis= Small	-	240mV	-
	Schmitt Trigger inputs)	V _{CCO} =2.5V, Hysteresis= Small	-	150mV	-
	, ,	V _{CCO} =1.8V, Hysteresis= Small	-	75mV	-
		V _{CCO} =1.5V, Hysteresis= Small	-	47mV	-

DS845-1.0E 36(46)

4.3.2 Static Current

Table 4-9 Static Supply Current (LV Device)

Name	Description	Device	Тур.
I _{CC}	Core current (Vcc=1.2V)	GW1NZ-1	3mA
I _{ccx}	V _{CCX} current (VCCX=3.3V)	GW1NZ-1	-
	V _{CCX} current (VCCX=2.5V)	GW1NZ-1	-
I _{CCO}	I/O Bank current (V _{CCO} =2.5V)	GW1NZ-1	-

Note!

- After device wake up, user can turn off external Vccx when they do not use user flash and chip still functional.
- The typical values in the table above are tested at room temperature.
- In zero power cirucumstance, if users use MODE pin, the PULL_MODE of this pin must be configured as KEEPER.

DS845-1.0E 37(46)

4.3.3 I/O Operating Conditions Recommended

Table 4-10 I/O Operating Conditions Recommended

Name	Output V _C	co (V)		Input V _{REF} (V)		
ivairie	Min.	Тур.	Max.	Min.	Тур.	Max.
LVTTL33	3.135	3.3	3.465	-	-	-
LVCMOS33	3.135	3.3	3.465	-	-	-
LVCMOS25	2.375	2.5	2.625	-	-	-
LVCMOS18	1.71	1.8	1.89	-	-	-
LVCMOS15	1.425	1.5	1.575	-	-	-
LVCMOS12	1.14	1.2	1.26	-	-	-
SSTL15	1.425	1.5	1.575	0.68	0.75	0.9
SSTL18_I	1.71	1.8	1.89	0.833	0.9	0.969
SSTL18_II	1.71	1.8	1.89	0.833	0.9	0.969
SSTL25_I	2.375	2.5	2.645	1.15	1.25	1.35
SSTL25_II	2.375	2.5	2.645	1.15	1.25	1.35
SSTL33_I	3.135	3.3	3.465	1.3	1.5	1.7
SSTL33_II	3.135	3.3	3.465	1.3	1.5	1
HSTL18_I	1.71	1.8	1.89	0.816	0.9	1.08
HSTL18_II	1.71	1.8	1.89	0.816	0.9	1.08
HSTL15	1.425	1.5	1.575	0.68	0.75	0.9
PCI33	3.135	3.3	3.465	-	-	-
LVPECL33E	3.135	3.3	3.465	-	-	-
MLVDS25E	2.375	2.5	2.625	-	-	-
BLVDS25E	2.375	2.5	2.625	-	-	-
RSDS25E	2.375	2.5	2.625	-	-	-
LVDS25E	2.375	2.5	2.625	-	-	-
SSTL15D	1.425	1.5	1.575	-	-	-
SSTL18D_I	1.71	1.8	1.89	-	-	-
SSTL18D_II	1.71	1.8	1.89	-	-	-
SSTL25D_I	2.375	2.5	2.625	-	-	-
SSTL25D_II	2.375	2.5	2.625	-	-	-
SSTL33D_I	3.135	3.3	3.465	-	-	-
SSTL33D_II	3.135	3.3	3.465	-	-	-
HSTL15D	1.425	1.575	1.89	-	-	-
HSTL18D_I	1.71	1.8	1.89	-	-	-
HSTL18D_II	1.71	1.8	1.89	-	-	-

DS845-1.0E 38(46)

4.3.4 Single - Ended IO DC Electrical Characteristic

Table 4-11 Single - Ended IO DC Electrical Characteristic

Name	V _{IL}		V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}
INAITIC	Min	Max	Min	Max	(Max)	(Min)	(mA)	(mA)
			2.0V			V _{CCO} -0.4V	4	-4
		0.8V					8	-8
LVCMOS33	-0.3V			3.6V	0.4V		12	-12
LVTTL33	-0.5 v	0.6 V		3.0 v			16	-16
							24	-24
					0.2V	V _{CCO} -0.2V	0.1	-0.1
							4	-4
					0.4V	V _{CCO} -0.4V	8	-8
LVCMOS25	-0.3V	0.7V	1.7V	3.6V	0.4 V	v CCO-0.4 v	12	-12
							16	-16
					0.2V	V _{CCO} -0.2V	0.1	-0.1
			0.65 x V _{CCO}	3.6V	0.4V		4	-4
11/01/02/0	-0.3V	0.35 x V _{CCO}				V _{CCO} 0.4V	8	-8
LVCMOS18							12	-12
					0.2V	V _{CCO} -0.2V	0.1	-0.1
		0.35 x V _{cco}	0.65 x V _{cco}	3.6V	0.4V	V _{CCO} -0.4V	4	-4
LVCMOS15	-0.3V				0.40		8	-8
					0.2V	V _{CCO} -0.2V	0.1	-0.1
	-0.3V	0.35 x V _{CCO}	0.65 x V _{CCO}	3.6V	0.4V	V _{CCO} -0.4V	2	-2
LVCMOS12					0.40		6	-6
					0.2V	V _{CCO} -0.2V	0.1	-0.1
PCI33	-0.3V	$0.3 \times V_{CCO}$	0.5 x V _{CCO}	3.6V	$V_{\rm CCO}$	0.9 x V _{CCO}	1.5	-0.5
SSTL33_I	-0.3V	V_{REF} -0.2 V	V _{REF} +0.2V	3.6V	0.7	V _{CCO} -1.1V	8	-8
SSTL25_I	-0.3V	V _{REF} -0.18V	V _{REF} +0.18V	3.6V	0.54V	V _{CCO} -0.62V	8	-8
SSTL25_II	-0.3V	V _{REF} -0.18V	V _{REF} +0.18V	3.6V	N/A	N/A	N/A	N/A
SSTL18_II	-0.3V	V _{REF} -0.125V	V _{REF} +0.125V 3.6		N/A	N/A	N/A	N/A
SSTL18_I	-0.3V	V _{REF} -0.125V	V _{REF} +0.125V	3.6V	0.40V	V _{CCO} -0.40V	8	-8
SSTL15	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	V _{CCO} -0.40V	8	-8
HSTL18_I	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	V _{CCO} -0.40V	8	-8
HSTL18_II	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	N/A	N/A	N/A	N/A
HSTL15_I	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	V _{CCO} -0.40V	8	-8
HSTL15_II	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	N/A	N/A	N/A	N/A

DS845-1.0E 39(46)

4.4 Switching Characteristic

4.4.1 CFU Block Internal Timing Parameters

Table 4-12 CFU Block Internal Timing Parameters

Name	Description	Speed	Unit		
Ivaille	Description	Min	Max	Offic	
t _{LUT4_CFU}	LUT4 delay	-	0.674	ns	
t _{LUT5_CFU}	LUT5 delay	-	1.388	ns	
t _{LUT6_CFU}	LUT6 delay	-	2.01	ns	
t _{LUT7_CFU}	LUT7 delay	-	2.632	ns	
t _{LUT8_CFU}	LUT8 delay	-	3.254	ns	
t _{SR_CFU}	Set/Reset to Register output	-	1.86	ns	
t _{CO_CFU}	Clock to Register output	-	0.76	ns	

4.4.2 Clock and I/O Switching Characteristics

Table 4-13 Clock and I/O Switching Characteristics

Name	Descri	Device	-5		-6		Unit
ivairie	ption		Min	Max	Min	Max	Offit
Clocks	TBD	TBD	TBD	TBD	TBD	TBD	
Pin-LUT-Pin Delay	TBD	TBD	TBD	TBD	TBD	TBD	
General I/O Pin Parameters	TBD	TBD	TBD	TBD	TBD	TBD	

4.4.3 BSRAM Switching Characteristics

Table 4-14 BSRAM Internal Timing Parameters

Nama	Description	Speed	Speed Grade		
Name	Description	Min	Max	Unit	
t _{COAD_BSRAM}	Clock to output from read address/data	-	5.10	ns	
t _{COOR} BSRAM	Clock to output from output register	-	0.56	ns	

4.4.4 On chip Oscillator Output Frequency

Table 4-15 On chip Oscillator Output Frequency

Name	Description	Min.	Тур.	Max.
	Output Frequency (0 to 85℃)	106.25MHz	125MHz	143.75MHz
f _{MAX}	Output Frequency (-40 to +100°C)	100MHz	125MHz	150MHz
t _{DT}	Output Clock Duty Cycle	43%	50%	57%
t _{OPJIT}	Output Clock Period Jitter	0.01UIPP	0.012UIPP	0.02UIPP

DS845-1.0E 40(46)

4.4.5 PLL Switching Characteristics

Table 4-16 PLL Switching Characteristics

Device		Speed Grade	Name	Min.	Max.
GW1NZ-1	LV	A3	CLKIN	3MHZ	320MHZ
			PFD	3MHZ	320MHZ
			VCO	320MHZ	640MHZ
			CLKOUT	2.5MHZ	360MHZ

DS845-1.0E 41(46)

4.5 User Flash Characteristic

4.5.1 DC Characteristic

Table 4-17 GW1NZ-1 User Flash DC Characteristics

Nome	Parame	Max.		Unit	Wake-up	Condition	
Name	ter	V _{CC} ^[3]	V _{CCX}	Unit	Time	Condition	
Read mode (w/l 25ns) ^[1]		2.19	0.5	mA	N/A	Min. Clcok period, duty cycle 100%, VIN = "1/0"	
Write mode	I _{CC1} ^[2]	0.1	12	mA	N/A		
Erase mode	ICC1	0.1	12	mA	N/A		
Page Erasure Mode		0.1	12	mA	N/A		
Read mode static current (25-50ns)	I _{CC2}	980	25	μА	N/A	XE=YE=SE="1", between T=Tacc and T=50ns, I/O=0mA; later than T=50ns, read mode is turned off, and I/O current is the current of standby mode.	
Standby mode	I _{SB}	5.2	20	μA	0	V_{SS} , V_{CCX} , and V_{CC}	
Floating mode ^[3]	I _{PD}	0	0	μA	7us	V _{CCX} =0	
Typical Value (Room temperature: 25℃)							
Standby mode	I _{SB}	0.4	7.5	μA	0	V_{SS} , V_{CCX} , and V_{CC}	
Floating mode ^[3]	I _{PD}	0	0	μA	3.5us	V _{CCX} =0	

Note!

- [1] Means the average current, and the peak value is higher than the average one.
- [2] Calculated in different T_{new} clock periods.
 - T_{new}< T_{acc} is not allowed
 - $T_{new} = T_{acc}$
 - $T_{acc} < T_{new} 50ns: I_{CC1} (new) = (I_{CC1} I_{CC2})(T_{acc}/T_{new}) + I_{CC2}$
 - T_{new} >50ns: I_{CC1} (new) = (I_{CC1} I_{CC2})(T_{aco} / T_{new}) + 50ns x I_{CC2} / T_{new} + I_{SB}
 - t > 50ns, $I_{CC2} = I_{SB}$
- [3] Only supported in user flash in sleep mode.

DS845-1.0E 42(46)

4.5.2 Timing Parameters[1],[5],[6]

Table 4-18 User Flash Timing Parameters

User Modes	Parameter	Name	Min.	Max.	Unit
	WC1		-	25	ns
	TC		-	22	ns
Access time ^[2]	ВС	T _{acc} ^[3]	-	21	ns
	LT		-	21	ns
	WC		-	25	ns
Program/Erase	e to data storage	T _{nvs}	5	-	μs
Data storage h	nold time	T _{nvh}	5	-	μs
Data storage h	nold time (Overall erase) T _{nvh1}	100	-	μs
Time from data setup	a storage to program	T _{pgs}	10	-	μs
Program hold t	time	T_{pgh}	20	-	ns
Write time		T_{prog}	8	16	μs
Write ready tim	ne	T _{wpr}	>0	-	ns
Erase hold time		T_{whd}	>0	-	ns
Time from cont setup	trol signal to write/Eras	T _{cps}	-10	-	ns
Time from SE t	to read setup	T _{as}	0.1	-	ns
E pulse high le	evel time	T _{pws}	5	-	ns
Adress/data se	etup time	T _{ads}	20	-	ns
Adress/data ho	old time	T _{adh}	20	-	ns
Data hold-up ti	ime	T _{dh}	0.5	-	ns
	WC1	T _{ah}	25	-	ns
Read mode	TC		22	-	ns
address hold	ВС		21	-	ns
time ^[3]	LT		21	-	ns
	WC		25	-	ns
SE pulse low le	evel time	T _{nws}	2	-	ns
Recovery time		T _{rcv}	10	-	μs
Data storage ti	Data storage time			6	ms
Erasure time	T _{erase}	100	120	ms	
Overall erase t	T _{me}	100	120	ms	
Wake-up time standby mode	T_{wk_pd}	7	-	μs	
Standby hold to	ime	T _{sbh}	100	-	ns
V _{CC} setup time)	T _{ps}	0	-	ns
V _{CCX} hold time		T_{ph}	0	-	ns

Note!

- [1] The parameter values may change;
- [2] The values are simulation data only.

DS845-1.0E 43(46)

- [3]After XADR, YADR, XE, and YE are valid, T_{acc} start time is SE rising edge. DOUT is kept until the next valid read operation;
- [4]T_{hv} is the time between write and the next erasure. The same address can not be written twice before erasure, so does the same register. This limitation is for safety;
- [5]Both the rising edge time and falling edge time for all waveform is 1ns;
- [6] TX, YADR, XE, and YE hold time need to be T_{acc} at leaset, and T_{acc} start from SE rising edge.

4.5.3 Operation Timing Diagrams

Figure 4-1 Read Mode

DS845-1.0E 44(46)

SE
ERASE

XADR

XADR

XADR

XADR

XADR

YADR1

YADR2

YADR2

YADR3

YADR

Figure 4-2 Write Mode

4.6 Configuration Interface Timing Specification

The GW1NZ series of FPGA products (Automotive) GowinCONFIG support six configuration modes: AUTO BOOT, DUAL BOOT, MSPI, SSPI, SERIAL, and CPU. For more detailed information, please refer to <u>UG290</u>, <u>Gowin FPGA Products Programming and Configuration</u> User Guide.

DS845-1.0E 45(46)

5 Ordering Information 5.1 Part Name

5 Ordering Information

5.1 Part Name

Figure 5-1 Part Naming Example-Production

Note

For the further detailed information about the package type and pin number, please refer to 2.2 Product Resources and 2.3 Package Information.

5.2 Package Mark

The device information of GOWINSEMI is marked on the chip surface, as shown in Figure 5-2.

Figure 5-2 Package Mark

Note!

[1] The first two lines in the right figure above are the "Part Number".

DS845-1.0E 46(46)

