Microprogrammed Control

- Hardwired control units have the advantage of great compactness and low propagation delay on account of the shorter loop path.
- However as the number of states and control signals increases they become increasingly
 - costly to:
 - Design
 - Debug
 - Upgrade
- A more flexible approach is used.

The Flexible Approach

- We store the control words, together with next-state information, in a control memory which is usually:
 - **▶**ROM
 - **▶**EPROM
- ► Then use the control inputs and status signals to select the appropriate address
 - of the next state.
 - ► See figure on the next slide.

Control Input

 One difference which emerges is that since control words are now stored, they cannot be made to depend dynamically on the on the value of the control input

STATE Control Input	RT	Control Word
IDLE • G=0 50 XTALL 14.745566	none	COUNTER SV CW1
IDEL • G=1	C, A ← 0	CW ₂
MUL0 • Q ₀ =0	none	CW ₃
00	A←A+B, C←	Cout SV CW4 CPU
7 PC	more control	1

CSU22022, 13th Lecture, Dr. M. Manzke, Page: 4

- Finally we add two next-address fields:
 - ►NXTADD0
 - ►NXTADD1
- ► This design makes no assumption about the sequence control word accesses.
- ► The functional design of the sequence is as follows on the next slide:

Control Signals for Multiplier control

The control word must supply four

control signals:

Control Signal	Register Transfers	States in Which Signal is Active	Micro- instruction Bit Position	Symbolic Notation
Initialize	$A \leftarrow 0, P \leftarrow n-1$	INIT	0	ΙΤ
Load	$A \leftarrow A + B, C \leftarrow C_{\text{out}}$	ADD	1	LD
Clear_C	$C \leftarrow 0$	INIT, MUL1	2	CC
Shift_dec	$C \ A\ Q \leftarrow \operatorname{sr} C \ A\ Q, P \leftarrow P - 1$	MUL1	3	SD

CSU22022, 13th Lecture, Dr. M. Manzke, Page: 11

Register Transfer Description

► Next we design the microprogram in

symbolic RT form:

Δ	d	d	ress
$\overline{}$	•	м	

Symbolic transfer statement

IDLE $G: CAR \leftarrow INIT, \overline{G}: CAR \leftarrow IDLE$

INIT $C \leftarrow 0, A \leftarrow 0, P \leftarrow n-1, CAR \leftarrow MUL0$

MUL0 $Q_0: CAR \leftarrow ADD, \overline{Q_0}: CAR \leftarrow MUL1$

ADD $A \leftarrow A + B, C \leftarrow C_{out}, CAR \leftarrow MUL1$

MUL1 $C \leftarrow 0, C \|A\| Q \leftarrow \text{sr } C \|A\| Q, Z: CAR \leftarrow \text{IDLE}, Z: CAR \leftarrow \text{MUL0}, =$

 $P \leftarrow P - 1$

Address	NXTADD1	NXTADD0	SEL	DATAPATH	Address	NXTADD1	NXTADD0	SEL	DATAPATH
IDLE	INIT	IDLE	DG	None	000	001	000	01	0000
INIT	- 8	MUL0	NXT	IT, CC	001	000	010	00	0101
MUL0	ADD	MUL1	DQ	None	010	011	100	10	0000
ADD	_	MUL1	NXT	LD	011	000	100	00	0010
MUL1	IDLE	MUL0	DΖ	CC, SD	100	000	010	11	1100

