Automated identification of chemical series with RDKit

https://iwatobipen.wordpress.com/

https://github.com/iwatobipen

Chemical series are very important basis for SAR. How do you define them?

Fragmentation of molecules is the common strategy in Cemoinformatics area

- 1) Bermis Murcko, the RECAP and BRICS
- 2) Scaffold trees / Scaffold networks
- 3) etc..

All of them are implemented in RDKit!!;)

Recent publication about new approach from Nikolaus et. al.

The authors shared their code in SI!

RETURN TO ISSUE < PREV CHEMIC	AL INFORMAT	TION NE	(T >	
Automated Identification of	Chemica	al Series	: Classifying like	a Medicinal Chemist
Franziska Kruger, Nikolas Fechner, and Nikolaus	Stiefl*			
Cite this: J. Chem. Inf. Model. 2020, 60, 6, 2888-	Article Views	Altmetric	Citations	Share Add to Expo
2902 Publication Date: May 6, 2020 ~	965	9	1	(RIS
https://doi.org/10.1021/acs.jcim.0c00204	LEARN ABOUT THESE METRICS			
Copyright © 2020 American Chemical Society RIGHTS & PERMISSIONS				

https://pubs.acs.org/doi/abs/10.1021/acs.jcim.0c00204

Key point is MCS saearch and Fast SSS in ChEMBL!!!

Searching the frequency of query MCS in ChEMBL is required. The original implementation used **arthor** which is developed by NextMove. **Arthor** is High-Performance Chemical Database Searching tool.

```
UPGMA/ Butina clustering
and MCS calculation
  series definition
  (MCS or fragments)
 assigning molecules
 (substructure matching)
 automatically-identified
 series
```

```
utilsStructureEval.py ×
    from rdkit import Chem
    from rdkit.Chem import rdFMCS
   import arthor
    def MCSFromMollist(mollist,chembldb,Nchembl):
        MCSSmarts2=rdFMCS.FindMCS(mollist,atomCompare=rdFMCS.AtomCompare.CompareAny,bondCompare=rdFMCS.BondCompare.CompareOrderExact,ringMatchesRingO
                          FindMCS(mollist,atomCompare=rdFMCS.AtomCompare.CompareElements,bondCompare=rdFMCS.BondCompare.CompareOrder,ringMatchesRingOn.
        else: fChembl2=getFChembl(MCSSmarts2,chembldb,Nchembl)
        if MCSSmarts=='': fChembl=1
        else:fChembl=getFChembl(MCSSmarts,chembldb,Nchembl)
        if fChembl2<fChembl
             fChembl=fChembl2
            MCSSmarts=MCSSmarts2
        return fChembl,MCSSmarts
    def getFChembl(qry,chembldb,Ntot,qryformat='Smarts'):
         if qryformat == 'Smarts':
            results=chembldb.search(grv)
        elif qryformat=='MDL':
            with open(gry) as f:
                qryarthor=arthor.Query(f.read(), "Mdl")
            results=chembldb.search(str(qryarthor))
         fChembl=(len(results)+1)/(Ntot+2)
```

I would like implement the code with open source package...

- I tried to replace MCS search code from arthor to RDKit postgresql cartridge at first but it is not enough.
- But Greg shared cool code to search chemical series, I would like to share the code in the UGM;)
- RDKit has ultra fast substructure search module named 'rdSubstructLibrary'.

rdSubstructLibrary can search compounds in a short time!

In [5]: a = chembldb.querv(Mols.m)

res = q.filter(Mols.m.hassubstruct(mol_from_smarts('alaaaaa1'))).limit
(10000)
%time a=res.all()

CPU times: user 615 ms, sys: 8.61 ms, total: 624 ms
Wall time: 3.41 s

In [6]: # subsearch molecule with SMARTS and rdSubstructLibrary.

In [7]: %time a=library.GetMatches(Chem.MolFromSmarts('alaaaaa1'), maxResults=1
0000)

CPU times: user 910 ms, sys: 0 ns, total: 910 ms
Wall time: 342 ms

The implementation worked as same as the original code

Data set came from

https://pubs.acs.org/doi/suppl/10.1021/jm020472j/suppl_file/jm020472j_s2.xls ChEMBL27 was used in this work but original work used ChEMBL25 so, there are some differences between the article and the implementation.

Code Availability

I'll add short documentation about how to run the code in a few days

Acknowledgements

- Greg Landrum
- RDKit community