1) Problem 13.4

a) Do any of the tree factors affect tool life?

To solve this problem we use the equations in the book to calculate the effects, and SS for each factor ordinkenetion. The table with -1, +1 is set up also bused on the notation (e.s. for a, we would have: A BC). For the Effects ord

effect = $\frac{\text{(ontrast}}{n^2 r^4}$ $SS = \frac{\text{(ontrast}}{n^2 r}$

where k= 3 and n=2 for this proplem gard arese = 411.56 (average of All data points)

poolalto

note that interactions are generated by multiplying AXB columns for AB and SU on.

lockficenst are estimated y by taking effets

Reject null & if Fo75.32,

Factors B, C and AC are significent

We reject the null that they are 7000, and conclude the angle of the must be affect tool life) and containing angle) and do affect tool life)

Note: While A on it's own but significant, it does have an inknowled with C. There Ge A should be included in the model

Analysis of Variance

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F-Value	P-Value
Model	7	114888	85.36%	114888	16412.5	6.66	0.008
Linear	3	50317	37.39%	50317	16772.3	6.81	0.014
A	1	1332	0.99%	1332	1332.3	0.54	0.483
В	1	28392	21.10%	28392	28392.3	11.53	0.009
С	1	20592	15.30%	20592	20592.3	8.36	0.020
2-Way Interactions	3	59741	44.39%	59741	19913.6	8.09	0.008
A*B	1	506	0.38%	506	506.3	0.21	0.662
A*C	1	56882	42.26%	56882	56882.2	23.10	0.001
B*C	1	2352	1.75%	2352	2352.3	0.96	0.357
3-Way Interactions	1	4830	3.59%	4830	4830.2	1.96	0.199
A*B*C	1	4830	3.59%	4830	4830.2	1.96	0.199
Error	8	19700	14.64%	19700	2462.5		
Total	15	134588	100.00%				

	n	2	k	3			у	413.125			DOF total	n2^k -	· 1
	Α	В	С	AB	AC	ВС	ABC	Replicate 1	Replicate 2	SUM			15 DOF total
	-1	-1	-1	1	1	1	-1	221	3:	.1 53	2		7 DOF factors
a	1	-1	-1	-1	-1	1	1	325	43	35 76	0		8 DOF error
b	-1	1	-1	-1	1	-1	1	354	34	8 70	2		
ab	1	1	-1	1	-1	-1	-1	552	4	2 102	4	SSE	19700
С	-1	-1	1	1	-1	-1	1	440	4.	3 89	3	MSE	2462.5
ac	1	-1	1	-1	1	-1	-1	406	3	77 78	3		
bc	-1	1	1	-1	-1	1	-1	605	50	00 110	5		
abc	1	1	1	1	1	1	1	392	4:	.9 81	1		
									SST	134587.	8		
	-532	-532	-532	532	532	532	-532		36912.015	3 10429.5	2		
	760	-760	-760	-760	-760	760	760		7766.0156	25 478.515	6		
	-702	702	-702	-702	702	-702	702		3495.7656	25 4241.26	6		
	1024	1024	-1024	1024	-1024	-1024	-1024		19286.265	3 3466.26	6		
	-893	-893	893	893	-893	-893	893		722.2656	5 1590.01	6		
	783	-783	783	-783	783	-783	-783		50.7656	1305.01	6		
	-1105	1105	1105	-1105	-1105	1105	-1105		36816.015	3 7547.26	6		
	811	811	811	811	811	811	811		446.2656	25 34.5156	3		
Contrast	146	674	574	-90	-954	-194	-278						
Effect	18.25	84.25	71.75	-11.25	-119.25	-24.25	-34.75						
SS	1332.25	28392.25	20592.25	506.25	56882.25	2352.25	4830.25						
Coefficent	9.125	42.125	35.875	-5.625	-59.625	-12.125	-17.375						
Fo	0.541015	11.52985	8.362335	0.205584	23.09939	0.955228	1.961523						
Fcrit	F(0.05, 1, 8)	5.32										

combination of factor levers?

Regression Equation in Uncoded Units

C8 = 413.1 + 9.1 A + 42.1 B + 35.9 C - 59.6 A*C

Longest tool life

 ϕ hat = 413.1 + 9.1 A + 42.1B+35.9C+59.6 AC

max y would have low A (-1), high B (+1) and high C(+1)

So low A (cutting speed), high B (metal harness) and nigh c (with a angle)

c) is There a combo of A and C that gives good results regardless of B?

Yes, as long as Cis high and Aislow, tre respond ou remains high (100+) see contain

Man effects: take avere of god points of high(t) or law (-) well factors

2) posto intradas: take overges of all points at loss factor

(+1), (-), (+-), Et for all thee factors

Main Effect Plot A

Low A High A 1 1 404 422.25

High B Low B
High A 458.75 385.75
Low A 451.75 356.25

We get these numbers by averaging all of the data points at: 1) low A, low B, 2) low A high B, 3) high A low b, 4) high a high b

1) le duals: data point - 9

For all data points

Predicted	Residuals:	
266.4	-45.4	44.6
403.8	-78.8	31.2
350.6	3.4	-2.6
488	64	-16
457.4	-17.4	-4.4
356.4	49.6	20.6
541.6	63.4	-41.6
440.6	-48.6	-21.6

The effects A and C are active

6)

For the model, only put the A and C terms in the model and run the analysis again. These are your results below. Note that they are pooling the non-significant effects to estimate error (this is how they are able to conduct ANOVA)

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	2	9225	4612.5	10.21	0.002
Linear	2	9225	4612.5	10.21	0.002
Α	1	5625	5625.0	12.45	0.004
C	1	3600	3600.0	7.97	0.014
Error	13	5875	451.9		
Total	15	15100			

Regression Equation in Uncoded Units

Response = 838 - 19 A - 15 C

NOTE: this is one form of model trimming - we just take out insignificant terms from the regression and run again. If you did the backward elimination in Minitab, you will get different answers - that is ok! At the end of the day, you just want to arrive at a model that will predict your response (and different methods might give you slightly different results)

With this re-run model we get the following residuals:

$$13.15$$
 $-30 -20 -10 0 10 20 30 40$

Residual

(a) $1 = 4$
 $1 = 890$
 $1 = 16$
 $1 = 837.5$

S) pure quadradic =
$$N_F \ln (9_F - 9_c)^2 = \frac{(16)(4)(837.5-890)^2}{16+4}$$

$$=\frac{(16)(4)(2756)}{20}=8820$$

$$\hat{G}^2 = \frac{39}{1000} \left(\frac{90}{1000} \right)^2 = \frac{3000}{3}$$
Due and

(tran table 1) 13-14) = 1250 (3 Way + 4 way inkraclors 55 First we test if the 3 or 4 way terms are $F_0 = \frac{-5}{1000} = 0.25$ First = Foos, 5, 3 = 000 9.01 Fo (Fait Do not rejed null thus, we can rump Those terms into SS/esidual = 1250 + 3000 = 4758 MS residual = 4250 Fo = 1 = 16.6

First = 0 Foiss, 1,8 = 5.35

Fo>Font Reject Null and conclude There is quadradic curvature

Analysis of Variance

Source	DF	A -11			
Model		Adj SS	Adj MS	F-Value	P-Value
Linear	10	13850.0	1385.00	0.95	0.533
A	4	9850.0	2462.50	1.70	0.234
В	1	5625.0	5625.00	3.87	0.081
	1	400.0	400.00	0.28	0.612
C	1	3600.0	3600.00	2.48	0.150
D	1	225.0	225.00	0.15	0.703
2-Way Interactions	6	4000.0	666.67	0.46	0.822
A*B	1	2025.0	2025.00	1.39	0.268
A*C	1	25.0	25.00	0.02	0.898
A*D	1	100.0	100.00	0.07	0.799
B*C	1	1600.0	1600.00	1.10	0.321
B*D	1	25.0	25.00	0.02	0.898
C*D	1	225.0	225.00	0.15	0.703
Error	9	13070.0	1452.22		
Curvature	1	8820.0	8820.00	16.60	0.004
Lack-of-Fit	5	1250.0	250.00	0.25	0.915
Pure Error	3	3000.0	1000.00		
Total	19	26920.0			

The curvature is significant, and lack of fit (which is the terms we have excluded from the model) is not. This means that there is curvature, and the terms we have chosen to exclude are appropriate.

b) Since curvative is significant, you would have to Read the next chapter and add some points to your design to obtain a quadradic model. One example is a central composite experiment.

example is a central composite experiment.

rdesigned
In Summary -> more experiments are needed!

Tractional factorials are useful as the number of offactors goes up. In fractional factorials, main effects and interactions can be aliased with lower order (likely not signifigent) effects.