Optimal Orbits for Inter-Calibration

Dave Mac Donnell
Bruce Wielicki
Don Garber
Dave Doelling

NASA Langley Research Center CLARREO Workshop October 21-23, 2008

Radiation and Calibration are 8-dimensional Sampling Problems

- Latitude
- Longitude
- Altitude
- Time
- Solar Zenith Angle
- Viewing Zenith Angle
- Viewing Azimuth Angle
- Wavelength
- Radiance signals vary a factor of 2 to 10 with all of these dimensions. Yet key climate change is a few tenths of a percent/decade.
- Climate Change adds a stealth "9th dimension": accuracy

Time to Achieve Viewing Angle Matches: 40 seconds per 100km orbit altitude Difference: 140 seconds above

Top View: CLARREO under-flight of Aqua

Angle Pointing (zenith, azimuth) is required to obtain any calibration matches beyond those at nadir. Options: pointable instrument, pointing table, or S/C reaction wheels

D. Garber LaRC, 7/07

Precession Rate Trade Space

Sun-Synchronous with respect to CLARREO 600km/74.2°

Sun-Synchronous with respect to CLARREO 600km/90°

74 degree Inclination/600 km Orbit 6 months of Equator Crossing Times

Solar zenith angle in color (blue high sun to red low sun)

This orbit samples the equator at local noon 6 times per yr.

Nominal CLARREO 90 degree inclination orbit does this twice per year.

Inclination is max latitude seen at nadir, add 10 deg lat off nadir

How often and Where will Orbits Cross? June - Dec CLARREO calibrating Terra/Aqua/NPOESS

90 degree Incl. 1 24-hr cycle/yr

74 degree Incl. 3 24-hr cycles/yr

Conclusion: intercalibration in polar regions is common for leo satellites, tropics less common: precession cycle limits.

How often and Where will Orbits Cross? June - Dec CLARREO calibrating Terra/Aqua/NPOESS

90 degree Incl. 1 24-hr cycle/yr

74 degree Incl. 3 24-hr cycles/yr

Conclusion: in 6 months can cross-calibrate across the entire Range of climate regimes: equator to pole, ocean to land. But is the sampling enough?

Maximum Slew Rate versus Altitude Difference

Minimum Calibration Duration versus Altitude Difference

3 CLARREO IR Satellites, 1 CLARREO Solar Sat, Nadir Only 90 Deg Orbits: Number of Calibration Matches for LEO (100km fov, matches within 5 minutes, and within 1 degree viewing angle)

Conclusion: Solar Sampling Much Less: 1 satellite, day only

CLARREO Calibration of Geostationary Instruments: Samples Per Season CLARREO 100km fov, geo match within 10 minutes and 4 degree viewing angle

Conclusion: Pointing capability is critical to calibrate geostationary sensors at any position other than the sub-satellite equatorial point.

Orbit Plane Convergence Example

Geostationary Orbit Intercalibration

