Floating Point

Chapter 2.4

Eunji Lee (ejlee@ssu.ac.kr)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 101.112

2 7/8 10.1112

1 7/16 1 . **0111**₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.01010101[01]...₂
 - 1/5 0.00110011[0011]...2
 - **1/10** 0.000110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)

"Normalized" Values

$$v = (-1)^s M 2^E$$

- When: $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
- Get extra leading bit for "free"

 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Normalized Encoding Example

 $v = (-1)^s M 2^E$ E = Exp - Bias

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$

Significand

$$M = 1.101101101_2$$

frac= $101101101101_000000000_2$

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

0 10001100 110110110110100000000000 s exp frac

Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Special Values

- Condition: exp = 111...1
- Case: **exp** = **111**...**1**, **frac** = **000**...**0**
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

(Practice: Figure 2.35)

- 8-bit floating-point format
- Sign bit: 1 bit
- Exp: 4 bit
- Frac: 3 bit
- **1.125**:_____
- **0.875**:_____
- **1.5**:_____

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half wav—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value Value	Binary	Rounded	Action	Rounded
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

FP Multiplication

- $-(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
- Bryant and O'Hallar Biggest schore is multiplying significands

Floating Point Addition

- $-(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Get binary points lined up

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - ■if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - \bullet (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 - 0 is additive identity?
 - Every element has additive inverse?
 - Yes, except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost

Mathematical Properties of FP Mult

Compare to Commutative Ring

Yes

- Closed under multiplication?
 - But may generate infinity or NaN

Yes

Multiplication Commutative?

No

- Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20)*1e-20=inf, 1e20*(1e20*1e-20)=1e20
- 1 is multiplicative identity?

No

- Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
- Monotonicity

(Back-ups) Abelian Group

Closure

For all a, b in A, the result of the operation a ● b is also in A.

Associativity

For all a, b, and c in A, the equation (a • b) • c = a • (b • c) holds.

Identity element

There exists an element e in A, such that for all elements a in A, the equation e • a = a • e = a holds.

Inverse element

For each a in A, there exists an element b in A such that a • b = b • a = e, where e is the identity element.

Commutativity

• For all a, b in A, $a \cdot b = b \cdot a$.

(Back to Ch1) Great Reality #1: Ints are not Integers, Floats are not Reals

- **■** Example 1: Is $x^2 \ge 0$?
 - Float's: Yes!

- Int's:
 - **40000 * 40000 = 1600000000**
 - 50000 * 50000 = ??
- **Example 2:** Is (x + y) + z = x + (y + z)?
 - Unsigned & Signed Int's: Yes!
 - Float's:
 - (1e20 + -1e20) + 3.14 --> 3.14
 - 1e20 + (-1e20 + 3.14) --> ??

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
• x == (int)(float) x
• x == (int) (double) x
• f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
\cdot 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

(Back-ups) Dynamic Range (Positive=Qnly) 2^E

•	•	•		•	` ' " "
	s exp	frac	E	Value	n: E = Exp — Bias
	0 0000	000	-6	0	d: E = 1 - Bias
	0 0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	
numbers					
	0 0000	110	-6	6/8*1/64 = 6/512	2
	0 0000	111	-6	7/8*1/64 = 7/512	largest denorm
	0 0001	000	-6	8/8*1/64 = 8/512	
	0 0001	001	-6	9/8*1/64 = 9/512	smallest norm
	0 0110	110	-1	14/8*1/2 = 14/16	5
	0 0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1	
numbers	0 0111	001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	010	0	10/8*1 = 10/8	Closest to 1 above
	0 1110	110	7	14/8*128 = 224	
	0 1110	111	7	15/8*128 = 240	largest norm
	0 1111	000	n/a	inf	