

Public key encryption from Diffie-Hellman

A Unifying Theme

One-way functions (informal)

A function $f: X \longrightarrow Y$ is one-way if

- There is an efficient algorithm to evaluate f(·), but
- Inverting f is hard:
 for all efficient A and x ← X :
 Pr[A(f(x))] < negligible

Functions that are not one-way: f(x) = x, f(x) = 0

Ex. 1: generic one-way functions

Let $f: X \longrightarrow Y$ be a secure PRG (where $|Y| \gg |X|$)

(e.g. f built using det. counter mode)

Lemma: f a secure PRG ⇒ f is one-way

Proof sketch:

A inverts $f \Rightarrow B(y) =$ is a distinguisher

Generic: no special properties. Difficult to use for key exchange.

Ex 2: The DLOG one-way function

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n g: a random generator in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Define:
$$f: Z_n \to G$$
 as $f(x) = g^X \in G$

Lemma: Dlog hard in $G \Rightarrow f$ is one-way

Properties:
$$f(x)$$
, $f(y) \Rightarrow f(x+y) =$

⇒ key-exchange and public-key encryption

Ex. 3: The RSA one-way function

- choose random primes p,q ≈1024 bits. Set N=pq.
- choose integers e, d s.t. $e \cdot d = 1 \pmod{\varphi(N)}$

Define:
$$f: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
 as $f(x) = x^e$ in \mathbb{Z}_N

Lemma: f is one-way under the RSA assumption

Properties: $f(x \cdot y) = f(x) \cdot f(y)$ and **f has a trapdoor**

Summary

Public key encryption:

made possible by one-way functions with special properties

homomorphic properties and trapdoors

End of Segment