Exos Bac: Suites

Exercice 1

On considère la suite (u_n) définie par : $u_0=0$ et pour tout entier naturel n

$$u_{n+1} = u_n + 2n + 1$$

- 1. Étudier les variations de la suite (u_n) .
- 2. Montrer que pour tout entier naturel $n, u_n \ge n$.
- 3. En déduire la limite de la suite (u_n) .
- 4. a) Calculer les premiers termes de la suite (u_n) puis conjecturer l'expression u_n en fonction de n.
 - b) Démontrer cette conjecture.

Exercice 2

Soient deux suites (u_n) et (v_n) définies par $u_0 = 2$ et $v_0 = 10$ et pour tout entier naturel n,

$$u_{n+1} = \frac{2u_n + v_n}{3}$$
 et $v_{n+1} = \frac{u_n + 3v_n}{4}$.

1. (a) Montrer que pour tout entier naturel n

$$v_{n+1} - u_{n+1} = \frac{5}{12} (v_n - u_n)$$

(b) Pour tout entier naturel n on pose $w_n = v_n - u_n$.

Montrer que pour tout entier naturel n, $w_n = 8\left(\frac{5}{12}\right)^n$.

- 2. (a) Montrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.
 - (b) Montrer que, pour tout entier naturel n on a

$$u_n \leqslant 10$$
 et $v_n \geqslant 2$

- (c) En déduire que tes suites (u_n) et (v_n) sont convergentes.
- 3. Montrer que les suites (u_n) et (v_n) ont la même limite.
- 4. Montrer que la suite (t_n) définie par $t_n = 3u_n + 4v_n$ est constante.

En déduire que la limite commune des suites (u_n) et (v_n) est $\frac{46}{7}$.

Une personne décide d'ouvrir un compte épargne le premier janvier 2014 et d'y placer 2000 euros. Le placement à intérêts composés est au taux annuel de 3 %. Elle verse 150 euros sur ce compte tous les 1^{er} janvier suivants.

Pour tout entier naturel n, on note u_n le montant présent sur ce compte au premier janvier de l'année 2014 + n après le versement de 150 euros. On a $u_0 = 2\,000$.

Dans tout l'exercice, les résultats seront arrondis à 10^{-2} près.

- 1. Combien d'argent cette personne aura-t-elle sur son compte épargne en 2015 puis 2016?
- 2. Justifier que pour tout entier naturel n on a :

$$u_{n+1} = 1,03u_n + 150$$

3. Pour tout entier n, on pose $v_n = u_n + 5000$.

Démontrer que la suite (v_n) est une suite géométrique de raison 1,03.

4. Exprimer v_n en fonction de n et en déduire que pour tout nombre entier n on a :

$$u_n = 7000 \times 1,03^n - 5000.$$

- 5. Déterminer la limite de (u_n) .
- 6. On considère le programme ci-contre.
 - a) Quelle est la valeur renvoyée lors de l'appel programme(4000)?
 - b) Interpréter cette valeur dans le contexte de l'énoncé.

Soit (u_n) la suite définie par $u_0 = 3$, $u_1 = 6$ et, pour tout entier naturel n:

$$u_{n+2} = \frac{5}{4}u_{n+1} - \frac{1}{4}u_n.$$

Le but de cet exercice est d'étudier la limite éventuelle de la suite (u_n) .

Partie A:

On souhaite calculer les valeurs des premiers termes de la suite (u_n) à l'aide d'un tableur. On a reproduit ci-dessous une partie d'une feuille de calcul, où figurent les valeurs de u_0 et de u_1 .

	A	В
1	n	u_n
2	0	3
3	1	6
4	2	
5	3	
6	4	
7	5	

- 1. Donner une formule qui, saisie dans la cellule B4, puis recopiée vers le bas, permet d'obtenir des valeurs de la suite (u_n) dans la colonne B.
- 2. Recopier et compléter le tableau ci-dessus. On donnera des valeurs approchées à 10^{-3} près de u_n pour n allant de 2 à 5.
- 3. Que peut-on conjecturer à propos de la convergence de la suite (u_n) ?

Partie B : Étude de la suite

On considère les suites (v_n) et (w_n) définies pour tout entier naturel n par :

$$v_n = u_{n+1} - \frac{1}{4}u_n$$
 et $w_n = u_n - 7$.

- 1. (a) Démontrer que (v_n) est une suite constante.
 - (b) En déduire que, pour tout entier naturel n, $u_{n+1} = \frac{1}{4}u_n + \frac{21}{4}$.
- 2. (a) En utilisant le résultat de la question 1. b., montrer par récurrence que, pour tout entier naturel $n, u_n < u_{n+1} < 15$.
 - (b) En déduire que la suite (u_n) est convergente.
- 3. (a) Démontrer que (w_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - (b) En déduire que, pour tout entier naturel n, $u_n = 7 \left(\frac{1}{4}\right)^{n-1}$.
 - (c) Calculer la limite de la suite (u_n) .