Rings And Modules

Assignment-0

Q 1. If R is a ring in which $x^2 - x$ belongs to the center Z(R) for each $x \in R$. Prove that R must be commutative.

$$(x+y)^{n}-(x+y) \in Z(R)$$
 $(x^{n}-x)+(y^{n}-y)+(xy+yx) \in Z(R)$
 $(x^{n}-x)+(y^{n}-y)+(xy+yx) \in Z(R)$.

 $(x^{n}-x)+(y^{n}-y)+(xy+yx) \in Z(R)$.

 $(x^{n}-x)+(y^{n}-y)+(xy+yx) \in Z(R)$.

 $(x^{n}-x)+(y^{n}-y)+(xy+yx) \in Z(R)$
 $(x^{n}-x)+(xy+yx) \in Z(R)$

Q 2. Let R be a ring in which $x^2 = 0$ implies x = 0. Show that any idempotent e of R must be in the center Z(R). In particular, in a ring R in which the only nilpotent element is 0, each idempotent element is contained in Z(R).

Q 3. Let R be a commutative ring with unity. If u is unit, and a is nilpotent, prove that u + a is a unit.

a is nipotent element \(\neq \) a Enitrad (R). \(\leq \)J.

50, Ita is unit.

if Ita is not unit then Ita \(\) [Jacobson Radical.

Let, a \(\) m (a maximum ideal)

\(\text{\$\frac{1}{2}\$ Ita is unit.} \)

U's a unit. Let, u'. u = I = u.u-1

Itu'a is a unit.

product of two unit is unit.

\(\text{\$\frac{1}{2}\$ u unit.} \)

Q 4. Give an example of a ring and nilpotent elements a, b in it such that a+b is not nilpotent. Can this happen in a commutative ring? Why or why not?

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Q 5. Let d be a square-free positive integer. Consider the rings $\mathbb{Z}[\sqrt{d}] := \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$ and $\mathbb{Z}[\sqrt{-d}] := \{a + b\sqrt{-d} : a, b \in \mathbb{Z}\}$ under the usual addition and multiplication of complex numbers. Show that the first ring has infinitely many units. Further, find all the units in the second ring.

Let, $a, b \in \mathbb{Z}$. If we can get solution to the diophentine equation $a^2 - db^2 = 1$. So, there are infinitely many units of $\mathbb{Z}(\sqrt{d})$

- **Q 6.** Let R be any ring in which the equation ax = b has solutions for any $a \neq 0$ and $b \in R$. Prove:
- $_{\Omega}$ (i) R has no (left or right) zero-divisors other than 0,
 - (ii) R has a unity,
 - (iii) R is a division ring or a field.
 - (i) $a \neq 0$; z = 0 for some $z \neq 0$. 1 zt = b $(b \neq 0)$ (exist Such t) ax = t (has Solution) $(a \neq 0)$ $(4 \neq 0)$ $\Rightarrow zax = zt$ $\Rightarrow b = 0 \rightarrow \leftarrow$ (No Right inverse)

$$a = 0$$
 for Some $z \neq 0$,
 $at = b \neq 0$ has solution $t \neq 0$
 $z = t$ has Solution
 $0 = az = at = b \neq 0$
 $z = az = at = b \neq 0$

(ii)
$$ae = a$$

$$ae x = a^{2}$$

$$\Rightarrow ax = a^{2}$$

$$\Rightarrow a(x-a) = 0$$

$$\Rightarrow x-a = 0$$

$$x = a$$

$$\Rightarrow ae = ea = a \Rightarrow e = unity of R.$$

(111) follows from 2.

Q 7. Let R be a commutative ring and $f \in R[X]$ be a polynomial such that fg=0 in R[X] for some polynomial $g\neq 0$. Show that there exists $r\neq 0$ in R such that rf = 0.

$$f(x) = a_n x^n + \dots + a_0$$

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = a_n x^n + \dots + a_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$f(x) = a_n b_m = 0$$

If,
$$f=q_0$$
 (deg $f=o$) \Rightarrow $bma_0=bmf=0$.

Assume for deg $\leqslant n-1$ we have shown $f'g=o \Rightarrow bmf'=o$

(Induction) Consider $g(f-a_nx^n)=0$ (we can see it clearly).

 $\Rightarrow g(f-a_nx^n)=gf'=0$
 $\Rightarrow bmf'=0 \Rightarrow bmf=0$

Q 8. Prove that for a commutative ring R, a polynomial $f = c_0 + c_1 X + \cdots + c_n X + \cdots$ c_nX^n in R[X] is nilpotent (as an element of R[X]) if, and only if, each $c_i \in R$ is nilpotent. Further, show that a polynomial $g = a_0 + a_1 X + \cdots + a_d X^d \in$ R[X] is a unit in R[X] if and only if, $a_0 \in R$ is a unit and $a_1, \dots, a_d \in R$ are nilpotent.

Nulpotency
$$(\Leftarrow)$$
 $C_i \in n^i \operatorname{trad}(R) \rightarrow C_i z^i \in \operatorname{nitrad}(R)$
 $\Rightarrow \sum_{C_i} z^i \in \operatorname{nitrad}(R).$

(=)
$$f$$
 is nilpotent $\Rightarrow f^n = 0$; $f = a_m x^m + \cdots + a_n \Rightarrow a_m^n = 0$
 $\Rightarrow (f - a_m x^m) \in nilrad(R) \Rightarrow a_{m-1} \in nilrad(R)$
:

Iduc+!!

Unit:
$$g(x) = a_0 + a_1 x + \cdots + a_n x^n$$

If g is unit in $R[x]$ then, $fg = 1 \Rightarrow a_0 b_0 = 1$ for some $b_0 \in R$

So, a_0 is unit in $R[x]$ or f .

Compare terms of fg .

$$Cm + n = a_n b_m = 0$$

Claim: $a_n^f b_{m+1} = 0$

$$0 = c_{mm-x} = b_{m-x} a_n + b_{m-x+1} a_{n-1} + \cdots + b_m a_{n-x}$$

$$\Rightarrow 0 = b_{m-k} a_n^{k+1} + (b_{m-k+1} a_n^{k+1}) + \cdots + (b_m a_n^{k+1}) + \cdots +$$

Q 9. Let D be a division ring. Suppose the center Z(D) is an infinite field. Then, show that each element $a \in D^*$ which has only finitely many conjugates under D^* , must lie in Z(D).

Consider, grapaction
$$D^*D \cdot by$$
 Conjugation

$$C(a) = \{z \in D^* \mid za = az \}$$

$$D^*(c(a)) = \text{orbit}(a) = \text{finite} = [\text{conjugacy class of a}]$$

$$If, D^*(c(a)) \neq L \cdot$$

$$Let, x \in D^* \setminus C(a)$$

$$C_x = \{(c+x)a(c+x)^{-1}\} \mid c \in C(a)$$

$$If, (c_1+x)a(c_1+x)^{-1} = (c_2+x)a(c_2+x)^{-1} \Rightarrow (c_2+x)^{-1}(c_1+x) \in C(a)$$

$$\Rightarrow c_1+x \in x \cdot c(a)$$

 $\Rightarrow |C_x| \neq \infty$ but $C_x \subseteq \operatorname{Orbit}(a) \rightarrow \leftarrow$.

- (a) If R is a ring in which $x^3 = x$ for all $x \in R$, then prove that R must be commutative.
- (b) If R is a ring in which $x^4 = x$ for all $x \in R$, then prove that R must be commutative.
- (c) Let R be a ring with unity 1. If $(xy)^r = xy$ is satisfied for three consecutive natural numbers r, and for all $x, y \in R$, prove that R must be commutative.
- (a) (1) $ab = 0 \Rightarrow ba = 0 \text{ via } ba = (ba)^3 = b ab ab a = 0$
 - (2) $c^2 = c \Rightarrow c$ is central [which means that xc = cx for all x]

Proof:
$$c(x - cx) = 0 \Rightarrow (x - cx)c = 0$$
 by (1), so $xc = cxc$
 $(x - xc)c = 0 \Rightarrow c(x - xc) = 0$ by (1), so $cx = cxc$

- (3) x^2 central via $c = x^2$ in (2)
- (4) $c^2 = 2c \Rightarrow c$ central. Proof: $c = c^3 = 2c^2$ central by (3)
- (5) $x + x^2$ central via $c = x + x^2$ in (4)
- (6) $\mathbf{x} = (\mathbf{x} + \mathbf{x}^2) \mathbf{x}^2$ central via (3), (5) by centrals closed under subtraction. **QED**
- (b) First, note $-x = (-x)^4 = x^4 = x$, so x + x = 0 for any x in R. Then $(x^2 + x)^2 = x^2 + x + x^3 + x^3 = x^2 + x$. Thus $x^2 + x$ is idempotent, and it is easy to see idempotent elements are central in this ring. [I give a proof of this at the end.]

Now let x=a+b, where a and b are arbitrary. From above, for any c in R, $c(x^2+x)=(x^2+x)c$, and expanding this out and cancelling terms we get c(ab+ba)=(ab+ba)c. Setting c=a, we get, after cancelling again, $a^2b=ba^2$. Thus, for any x in R, x^2 is central. Then of course $x=(x^2+x)-x^2$ is central.

To prove that idempotents are central, first note that if xy = 0, then $yx = (yx)^4 = y(xy)(xy)(xy)x = 0$. So now if $z^2 = z$, then z(y - zy) = 0, so (y - zy)z = 0, or yz = zyz. Similarly, (yz - y)z = 0, so z(yz - y) = 0, or zy = zyz. Thus yz = zy.