Tree

Mohammad Ghoddosi

Tree

- Undirected graph
- Any two vertices are connected with exactly one path
- O No cycles
- Connected

Terminology

- O Root
- Children
- O Parent
- Sibling
- Uncle
- O Leaf
- O Height
- O Level

Minimum Spanning Tree (MST)

- For a weighted, connected, undirected graph
- Spanning tree
- Minimum total edge weight
- Network design
- Clustering
- Image segmentation
- Handwriting recognition
- O ...

Kruskal

Kruskal's Algorithm

Prime

Prim's Algorithm

Binary tree

- O Each nodes has max of 2 children
- Full binary tree
 - O Every node has 0 or 2 children
- Used for:
 - Searching
 - Sorting
 - Compression algorithm
 - O Decision tree
- Array implementation

Traversal

- O Pre-order
 - O ABC
- O Post-order
 - O BCA
- In-order
 - O BAC

Traversal

Binary search tree

- Fast insertion and removal of elements
- Fast search
- O Binary search
- O Binary tree
 - O Each node has 2 children
- Left subtree: only values less than the node
- O Right subtree: only values grater than the node

Binary search tree

Binary search tree

- Insertion
- Search
 - O Binary search
- O Deletion
 - O In-order successor

Self balancing Binary Search Tree

- Search, Insert, Delete, ... is O(h)
- Sort in O(n) (without insertion cost)
- Height problem in BST
- Self balancing BSTs
 - O AVL
 - Red and black trees
 - $OH = O(\log n)$
- O Simple to find all numbers greater than ... or smaller than ...

Heap

- Complete binary tree
- O Max heap
 - O Root is always greater than its children
- Min heap
 - O Root is always smaller than its children
- Operations:
 - O Heapify
 - O Insertion
 - O Deletion
 - o peak

Heap

- Fast access to maximum/minimum in (O(1))
- Efficient insertion and deletion (O(log n))
- Efficient implementation with arrays
- Priority queue
- Not good at searching for a value (O(n))