Отчёт по лабораторной работе

Арифметические операции в NASM.

Югай Александр Витальевич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Выполнение арифметических операций в NASM	12
	3.2 Ответы на вопросы по программе	16
	3.3 Задание для самостоятельной работы	17
4	Выводы	20

Список иллюстраций

5.1	Создаем каталог и фаил	1
3.2	Заходим в Midnight Commander	7
3.3	Заполняем файл по листингу 6.1	8
3.4	Запускаем файл и смотрим на его работу	8
3.5	Изменяем файл	9
3.6	Запускаем файл и смотрим на изменения	9
3.7	Создаем файл	9
3.8	Заполняем файл	10
3.9	Смотрим на работу программы	10
3.10	Изменяем файл	11
3.11	Смотрим на работу программы	11
3.12	Изменяем файл	12
3.13	Смотрим на работу программы	12
3.14	Создаем файл	12
	Заполняем файл	13
3.16	Смотрим на результат работы программы	14
3.17	Редактируем файл	14
3.18	Смотрим на результат работы программы	14
3.19	Создаем файл	14
	Заполняем файл	15
3.21	Проверяем результат работы программы	16
	Создаем файл	17
3.23	Заполняем файл	18
3.24	Проверяем работу программы	19
	Проверяем работу программы	19

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM

2 Задание

Написать программы для решения выражений

3 Выполнение лабораторной работы

Создаем каталог для программ Лабб, и в нем создаем файл

```
avyugayj@ubuntu:~$ mkdir ~/work/arch-pc/lab06
avyugayj@ubuntu:~$ cd ~/work/arch-pc/lab06
avyugayj@ubuntu:~/work/arch-pc/lab06$ touch lab6-1.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.1: Создаем каталог и файл

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 6.1

```
~/work/arch-pc/lab06
.и Имя
/..
-BE
```

Рис. 3.2: Заходим в Midnight Commander

```
GNU nano 6.2
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.3: Заполняем файл по листингу 6.1

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-1
j
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.4: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и убиравем кавычки с числовых значений

```
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, 6
mov ebx, 4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.5: Изменяем файл

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-1
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.6: Запускаем файл и смотрим на изменения

Создаем новый файл в каталоге

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ touch lab6-2.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.7: Создаем файл

Заполняем файл в соответствии с листингом 6.2

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

Рис. 3.8: Заполняем файл

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-2
106
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.9: Смотрим на работу программы

Снова открываем файл для редактирования и убиравем кавычки с числовых значений

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax, 6
mov ebx, 4
add eax,ebx
call iprintLF
call quit
```

Рис. 3.10: Изменяем файл

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-2
10
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.11: Смотрим на работу программы

Снова открываем файл для редактирования и меняем iprintLF на iprint

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax, 6
mov ebx, 4
add eax,ebx
call iprint
call quit
```

Рис. 3.12: Изменяем файл

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-2
10avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.13: Смотрим на работу программы

Вывод функций iprintLF и iprint отличаются только тем, что LF переносит на новую строку.

3.1 Выполнение арифметических операций в NASM

Создаем новый файл в каталоге

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ touch lab6-3.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.14: Создаем файл

```
-----
 Программа вычисления выражения
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
liv: DB 'Результат: ',0
em: DB 'Остаток от деления: ',0
ECTION .text
GLOBAL start
; ---- Вычисление выражения
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,3 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax, rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 3.15: Заполняем файл

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-3
Результат: 4
Остаток от деления: 1
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.16: Смотрим на результат работы программы

Открываем файл и редактируем его для вычисления выражения $f(x) = (5 \boxtimes 2 + 3)/3$

```
mov eax,4; EAX=5
mov ebx,6; EBX=2
mul ebx; EAX=EAX*EBX
add eax,2; EAX=EAX+3
xor edx,edx; обнуляем EDX для корректной работы div
mov ebx,5; EBX=3
div ebx; EAX=EAX/3, EDX=остаток от деления
mov edi,eax; запись результата вычисления в 'edi'
```

Рис. 3.17: Редактируем файл

Компилируем файл и запускаем программу

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.18: Смотрим на результат работы программы

Создаем новый файл в каталоге

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ touch variant.asm
```

Рис. 3.19: Создаем файл

```
%include 'in_out.asm'
 ECTION .data
   ן: DB 'Введите № студенческого билета: ',0
н: DB 'Ваш вариант: ',0
 ECTION .bss
  RESB 80
 ECTION .text
GLOBAL _start
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax,rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 3.20: Заполняем файл

Компилируем файл и запускаем его

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf variant.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o variant variant.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./variant
Введите № студенческого билета:
1132230302
Ваш вариант: 3
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.21: Проверяем результат работы программы

3.2 Ответы на вопросы по программе

- 1. Строка "moveax.rem" и строка "call sprint" отвечают за вывод на экран сообщения 'Ваш вариант:'.
- 2. Эти инструкции используются для чтения строки с вводом данных от пользователя. Начальный адрес строки сохраняется в регистре есх, а количество символов в строке (максимальное количество символов, которое может быть считано) сохраняется в регистре edx. Затем вызывается процедура sread, которая выполняет чтение строки.
- 3. Инструкция "call atoi" используется для преобразования строки в целое число. Она принимает адрес строки в регистре еах и возвращает полученное число в регистре еах.
- 4. Строка "xoredx.edx" обнуляет регистр. edx перед выполнением деления. Строка "movebx,20" загружает значение 20 в регистр ebx. Строка "divebx" выполняет деление регистра eax на значение регистра ebx с сохранением частного в регистре eax и остатка в регистре edx,
- 5. Остаток от деления записывается в регистр edx.
- 6. Инструкция "inc edx" используется для увеличения значения в регистре edx на 1. В данном случае, она увеличивает остаток от деления на 1.
- 7. Строка "moy eax.edx" передает значение остатка от деления в регистр eax. 36 Строка "call iprintLF" вызывает процедуруіргіntLF для вывода значения

на экран вместе с переводом строки.

3.3 Задание для самостоятельной работы

Создаем новый файл в каталоге

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ touch lab6-4.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$
```

Рис. 3.22: Создаем файл

Открываем его и заполняем, чтобы решалось выражение $f(x) = (2+x)^2$

```
\%include 'in_out.asm' ; подключение внешнего файла
 ECTION .data
   : DB 'Введите x: ',0
  v: DB 'Результат: ',0
ECTION .bss
   : RESB 80
   RESB 80
SECTION .text
GLOBAL _start
start:
mov eax,msg
call sprintLF
mov ecx,x
mov edx,80
call sread
mov eax,x
call atoi
add eax,2
mul eax
mov [rez],eax
mov eax, div
call sprint
mov eax,[rez]
call iprintLF
call quit
```

Рис. 3.23: Заполняем файл

Компилируем программу и проверяем для х=2

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm
avyugayj@ubuntu:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-4 lab6-4.o
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-4
Введите х:
2
Результат: 16
```

Рис. 3.24: Проверяем работу программы

Проверяем для х=8

```
avyugayj@ubuntu:~/work/arch-pc/lab06$ ./lab6-4
Введите х:
8
Результат: 100
```

Рис. 3.25: Проверяем работу программы

4 Выводы

Мы приобрели навыки создания исполнительных файлов для решения выражений и освоили арифметические инструкции в NASM.