## Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 По дисциплине: «ОМО» Тема:" Знакомство с анализом данных: предварительная обработка и визуализация."

Выполнил: Студент 3-го курса Группы АС-66 Осовец А.О. Проверил: Крощенко А.А. Цель: Получить практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.

## Вариант 7

Выборка Auto MPG. Содержит технические характеристики различных автомобилей и данные о расходе топлива (миль на галлон). Задачи:

- 1. Загрузите данные. Обратите внимание, что пропуски в столбце horsepower могут быть обозначены знаком?
- 2. Преобразуйте столбец horsepower в числовой формат и заполните пропуски средним значением.
- 3. Постройте диаграмму рассеяния, чтобы изучить зависимость расхода топлива (mpg) от веса автомобиля (weight).
- 4. Преобразуйте категориальный признак origin (страна производства) в числовой.
- 5. Создайте новый признак age, рассчитав возраст автомобиля относительно года, когда были собраны данные (например, 1983 model year).
- 6. Визуализируйте распределение количества цилиндров (cylinders) с помощью столбчатой диаграммы.

```
import os
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
current dir = os.path.dirname(os.path.abspath( file ))
project root = os.path.abspath(os.path.join(current dir, '..', '..', '..', '..', '..'))
file path = os.path.join(project root, 'auto-mpg.csv')
print("Читаем файл из:", file path)
columns = [
  'mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
  'acceleration', 'model year', 'origin', 'car name'
1
df = pd.read csv(
  file path,
  sep=",",
  names=columns,
  na values='?',
  header=None
```

```
)
numeric_cols = [
  'mpg', 'cylinders', 'displacement', 'horsepower',
  'weight', 'acceleration', 'model year', 'origin'
]
for col in numeric cols:
  df[col] = pd.to numeric(df[col], errors='coerce')
df['model year'] = 1900 + df['model year']
df['car name'] = df['car name'].astype(str)
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].mean())
current year = datetime.now().year
df['age'] = current_year - df['model_year']
pd.set option('display.max columns', None)
print("\nТипы данных:")
print(df.dtypes)
print("\nКоличество пропусков:")
print(df.isnull().sum())
print("\nОсновные статистические показатели:")
print(df.describe())
print("\nПример новых данных (model year и age):")
print(df[['model_year', 'age']].head())
# Зависимость расхода топлива от веса
fig1, ax1 = plt.subplots(figsize=(8,6))
ax1.scatter(df['weight'], df['mpg'], alpha=0.7)
ax1.set xlabel("Bec")
ax1.set ylabel("MPG (миль на галлон)")
ax1.set title("Зависимость расхода топлива от веса автомобиля")
ax1.grid(True)
plt.show()
plt.close(fig1)
# 2. Распределения мощности
fig2, ax2 = plt.subplots(figsize=(8,6))
ax2.hist(df['horsepower'], bins=30, color='skyblue', edgecolor='black')
ax2.set xlabel("Horsepower")
ax2.set ylabel("Количество автомобилей")
```

```
ax2.set title("Распределение мощности автомобилей")
ax2.grid(True)
plt.show()
plt.close(fig2)
# Boxplot для сравнения MPG по количеству цилиндров
fig3, ax3 = plt.subplots(figsize=(8,6))
df.boxplot(column='mpg', by='cylinders', ax=ax3)
ax3.set xlabel("Цилиндры")
ax3.set ylabel("MPG")
ax3.set title("MPG по количеству цилиндров")
plt.suptitle("")
ax3.grid(True)
plt.show()
plt.close(fig3)
# Распределения возраста автомобилей
fig4, ax4 = plt.subplots(figsize=(8,6))
ax4.hist(df['age'], bins=20, color='lightgreen', edgecolor='black')
ax4.set xlabel("Возраст автомобиля (лет)")
ax4.set ylabel("Количество автомобилей")
ax4.set title("Распределение возраста автомобилей")
ax4.grid(True)
plt.show()
plt.close(fig4)
# Зависимость MPG от возраста
fig5, ax5 = plt.subplots(figsize=(8,6))
ax5.scatter(df['age'], df['mpg'], alpha=0.7, color='orange')
ax5.set_xlabel("Возраст автомобиля (лет)")
ax5.set ylabel("MPG (миль на галлон)")
ax5.set title("Зависимость расхода топлива от возраста автомобиля")
ax5.grid(True)
plt.show()
plt.close(fig5)
```

| Типы данных:  |         | Количество про | Количество пропусков: |  |  |
|---------------|---------|----------------|-----------------------|--|--|
| mpg           | float64 | mpg            | 0                     |  |  |
| cylinders     | int64   | cylinders      | 0                     |  |  |
| displacement  | float64 | displacement   | 0                     |  |  |
| horsepower    | float64 | horsepower     | Θ                     |  |  |
| weight        | float64 | weight         | 0                     |  |  |
| acceleration  | float64 | acceleration   | 0                     |  |  |
| model_year    | int64   | model_year     | Θ                     |  |  |
| origin        | int64   | origin         | 0                     |  |  |
| car_name      | object  | car_name       | 0                     |  |  |
| dtype: object |         | dtype: int64   |                       |  |  |

| Основные статистические показатели: |              |             |              |            |             |   |  |  |
|-------------------------------------|--------------|-------------|--------------|------------|-------------|---|--|--|
|                                     | mpg          | cylinders o | displacement | horsepower | weight      | \ |  |  |
| count                               | 399.000000   | 399.000000  | 399.000000   | 399.000000 | 399.000000  |   |  |  |
| mean                                | 23.514573    | 5.454774    | 193.425879   | 104.469388 | 2970.424623 |   |  |  |
| std                                 | 7.806159     | 1.698866    | 104.138764   | 38.151168  | 845.777234  |   |  |  |
| min                                 | 9.000000     | 3.000000    | 68.000000    | 46.000000  | 1613.000000 |   |  |  |
| 25%                                 | 17.500000    | 4.000000    | 104.500000   | 76.000000  | 2224.500000 |   |  |  |
| 50%                                 | 23.000000    | 4.000000    | 151.000000   | 95.000000  | 2807.000000 |   |  |  |
| 75%                                 | 29.000000    | 8.000000    | 262.000000   | 125.000000 | 3607.000000 |   |  |  |
| max                                 | 46.600000    | 8.000000    | 455.000000   | 230.000000 | 5140.000000 |   |  |  |
|                                     |              |             |              |            |             |   |  |  |
|                                     | acceleration | model_year  | origin       | age        |             |   |  |  |
| count                               | 399.000000   | 399.000000  | 399.000000   | 399.000000 |             |   |  |  |
| mean                                | 15.568090    | 1976.01005  | 1.572864     | 48.989950  |             |   |  |  |
| std                                 | 2.754222     | 3.692978    | 0.801047     | 3.692978   |             |   |  |  |
| min                                 | 8.000000     | 1970.000000 | 1.000000     | 43.000000  |             |   |  |  |
| 25%                                 | 13.850000    | 1973.000000 | 1.000000     | 46.000000  |             |   |  |  |
| 50%                                 | 15.500000    | 1976.000000 | 1.000000     | 49.000000  |             |   |  |  |
| 75%                                 | 17.150000    | 1979.000000 | 2.000000     | 52.000000  |             |   |  |  |
| max                                 | 24.800000    | 1982.000000 | 3.000000     | 55.000000  |             |   |  |  |

Графики:









**Вывод:** в результате выполнения данной лабораторной работы получили практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научились выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.