Case Study: Multivariate Time Series

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import yfinance as yf
from statsmodels.tsa.api import VAR
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
plt.style.use('dark background')
plt.rcParams['figure.figsize'] = (16, 4)
cpi = pd.read csv(r'C:\Users\wassim\Documents\Projects\Vector
autoregression\data\CPIAUCSL.csv',parse_dates=['DATE'],
                  index col='DATE')
cpi.plot()
<Axes: xlabel='DATE'>
```



```
m1
    observation date
                          M1SL
0
          1959-01-01
                         138.9
1
          1959-02-01
                         139.4
2
          1959-03-01
                         139.7
3
          1959-04-01
                         139.7
4
          1959-05-01
                         140.7
. .
781
          2024-02-01
                       17930.2
782
          2024-03-01
                       17990.1
783
          2024-04-01
                       17978.9
784
          2024-05-01
                       18022.8
785
          2024-06-01
                       18063.4
[786 rows x 2 columns]
m1 = pd.read csv(r'C:\Users\wassim\Documents\Projects\Vector
autoregression\data\M1SL.csv',parse dates=['observation date'],
```

```
index_col='observation_date')
m1.rename_axis('DATE',inplace=True)
m1.plot()
<Axes: xlabel='DATE'>
```



```
sp500 = yf.download('^GSPC',start='2005-01-01')
# Create a figure and axes
fig, ax1 = plt.subplots(figsize=(12, 6))
# Plot the price data as a line plot on the primary y-axis
ax1.plot(sp500.index, sp500['Close'], color='lime', label='Close
Price')
ax1.set xlabel('Date')
ax1.set_ylabel('Close Price',)
ax1.tick params(axis='y',)
# Create a secondary y-axis for the volume data
ax2 = ax1.twinx()
ax2.bar(sp500.index, sp500['Volume'], color='grey', alpha=0.3,
label='Volume')
ax2.set_ylabel('Volume', color='grey')
ax2.tick params(axis='y', labelcolor='grey')
# Set title and format x-axis labels
plt.title('S&P 500 Close Price and Volume')
fig.autofmt xdate() # Rotate date labels for better readability
# Show plot
plt.show()
[********* 100%********* 1 of 1 completed
```


tb3ms.plot()

<Axes: xlabel='DATE'>

TWEXBMTH.plot()

<Axes: xlabel='DATE'>


```
# Ordinary and Partial Autocorrelations of Reduced Set

merged =
pd.merge(unrate, fed_funds, right_index=True, left_index=True, how='outer')
ymat0 =
pd.merge(merged, cpi, right_index=True, left_index=True, how='outer')
fig, axes = plt.subplots(3,1,sharex=True, figsize=(16,8))
ymat0['UNRATE'].plot(ax=axes[0])
axes[0].set_title('Unemployment Rate')
axes[0].set_ylabel('Unrate')
ymat0['FEDFUNDS'].plot(ax=axes[1],color='lime')
axes[1].set_title('Federal Funds Rate')
ymat0['CPIAUCSL'].plot(ax=axes[2],color='white')
```

```
axes[2].set_title('Consumer Price Index')
axes[2].set_ylabel('CPI')

plt.xlabel('DATE')
plt.legend()
plt.tight_layout()
```



```
fft : bool, default True
        If True, use FFT convolution. This method should be preferred
        for long time series.
    nlags : int, optional
        Number of lags to return cross-correlations for. If not
provided,
        the number of lags equals len(x).
    alpha: float, optional
        If a number is given, the confidence intervals for the given
level are
        returned. For instance if alpha=.05, 95 % confidence intervals
are
        returned where the standard deviation is computed according to
        1/sqrt(len(x)).
    Returns
    _ _ _ _ _ _
    ndarray
        The cross-correlation function of x and y: the element at
index k
        is the correlation between \{x[k], x[k+1], \ldots, x[n]\} and
{y[0], y[1], ..., y[m-k]},
        where n and m are the lengths of x and y, respectively.
    confint : ndarray, optional
        Confidence intervals for the CCF at lags 0, 1, ..., nlags-1
using the level given by
        alpha and the standard deviation calculated as 1/sqrt(len(x))
[1]. Shape (nlags, 2).
        Returned if alpha is not None.
    Notes
    If adjusted is True, the denominator for the cross-correlation is
adjusted.
    References
    .. [1] Brockwell and Davis, 2016. Introduction to Time Series and
       Forecasting, 3rd edition, p. 242.
def plot acf ccf(data, lags=10, confidence interval=1.96):
    Plots ACF and CCF for each pair of columns in the provided
DataFrame.
    Parameters:
    - data: pd.DataFrame containing the time series data.
    - lags: Number of lags to consider for ACF and CCF.
    - confidence interval: The confidence interval for significance
```

```
level lines.
    num vars = len(data.columns)
    fig, axes = plt.subplots(nrows=num vars, ncols=num vars,
figsize=(15, 15), sharey=True)
    for i, coll in enumerate(data.columns):
        for j, col2 in enumerate(data.columns):
            ax = axes[i, j]
            if i != j:
                ccf values = ccf(data[col1], data[col2],
adjusted=False)[:lags+1]
                ax.stem(range(lags+1), ccf values, linefmt='lime',
markerfmt='o', basefmt=' ')
                ax.set_title(f'CCF {col1} vs {col2}')
                ax.set xlabel('Lag')
                ax.set ylabel('CCF')
                ax.grid(True)
                threshold = confidence interval /
(len(data[col1])**0.5)
                ax.axhline(y=threshold, color='red', linestyle='--',
label='Significance Level')
                ax.axhline(y=-threshold, color='red', linestyle='--')
                ax.legend()
            else:
                acf values = acf(data[col1], nlags=lags)
                ax.stem(range(lags+1), acf_values[:lags+1],
linefmt='lime', markerfmt='o', basefmt=' ')
                ax.set title(f'ACF {col1}')
                ax.set xlabel('Lag')
                ax.set ylabel('ACF')
                ax.grid(True)
                threshold = confidence interval /
(len(data[col1])**0.5)
                ax.axhline(y=threshold, color='red', linestyle='--',
label='Significance Level')
                ax.axhline(y=-threshold, color='red', linestyle='--')
                ax.legend()
    plt.tight layout()
    plt.show()
```

plot acf ccf(ymat00, lags=10, confidence interval=1.96)

def plot_pacf_ccf(data, lags=10, confidence_interval=1.96):

Plots PACF and CCF for each pair of columns in the provided DataFrame.

Parameters:

- data: pd.DataFrame containing the time series data.
- lags: Number of lags to consider for PACF and CCF.
- confidence_interval: The confidence interval for significance

```
level lines.
    num vars = len(data.columns)
    fig, axes = plt.subplots(nrows=num vars, ncols=num vars,
figsize=(15, 15), sharey=True)
    for i, coll in enumerate(data.columns):
        for j, col2 in enumerate(data.columns):
            ax = axes[i, i]
            if i == j:
                pacf values = pacf(data[col1], nlags=lags)
                ax.stem(range(lags+1), pacf values[:lags+1],
linefmt='lime', markerfmt='o', basefmt=' ')
                ax.set title(f'PACF {col1}')
                ax.set xlabel('Lag')
                ax.set ylabel('PACF')
                ax.grid(True)
                threshold = confidence interval /
(len(data[col1])**0.5)
                ax.axhline(y=threshold, color='red', linestyle='--',
label='Significance Level')
                ax.axhline(y=-threshold, color='red', linestyle='--')
                ax.legend()
            else:
                ccf values = ccf(data[col1], data[col2],
adjusted=False)[:lags+1]
                ax.stem(range(lags+1), ccf values, linefmt='lime',
markerfmt='o', basefmt=' ')
                ax.set title(f'CCF {col1} vs {col2}')
                ax.set xlabel('Lag')
                ax.set ylabel('CCF')
                ax.grid(True)
                threshold = confidence interval /
(len(data[col1])**0.5)
                ax.axhline(y=threshold, color='red', linestyle='--',
label='Significance Level')
                ax.axhline(y=-threshold, color='red', linestyle='--')
                ax.legend()
    plt.tight_layout()
    plt.show()
```

plot_pacf_ccf(ymat00, lags=10, confidence_interval=1.96)


```
# Vector Autoregressive (VAR) Model for Reduced Set
model = VAR(ymat00)
lag_order = model.select_order(maxlags=12)
print(lag_order.summary())
print('Best orders :',lag_order.selected_orders)
```

```
VAR Order Selection (* highlights the minimums)
_____
      AIC
                 BIC
                            FPE
                                       HQIC
       10.85 10.87 5.130e+04
      -7.763 -7.659 0.0004252
-8.090 -7.908* 0.0003065
-8.162 -7.901 0.0002854
-8.234 -7.895 0.0002655
1
                                       -7.722
2
                                       -8.018
3
                                       -8.059
4
                                        -8.101
5
      -8.265
                 -7.848 0.0002573
                                       -8.101*
6
                -7.764 0.0002587
                                       -8.065
      -8.260
               -7.693 0.0002570
-7.657 0.0002464
-7.586 0.0002445
7
      -8.266
                                       -8.041
8
      -8.309
                                       -8.052
9
      -8.317
                                       -8.030
10
      -8.334
                  -7.525 0.0002403
                                        -8.016
       -8.323
                  -7.436
                                        -7.974
11
                          0.0002432
      -8.345* -7.380 0.0002378* -7.966
12
Best orders : {'aic': 12, 'bic': 2, 'hqic': 5, 'fpe': 12}
#Fit the VAR model based on Bayes Information criterion (BIC)
var model = model.fit(2)
print(var model.summary())
 Summary of Regression Results
_____
Model:
                             VAR
Method:
                            0LS
              Sun, 18, Aug, 2024
Date:
Time:
No. of Equations: 3.00000
                                  BIC:
                                                       -7.87807
                      490.000 HQIC:
                                                      -7.98724
Nobs:
                               HQIC:
FPE:
                   -90.6701
-8.05783
Log likelihood:
                                                     0.000316613
AIC:
                                  Det(Omega_mle): 0.000303423
Results for equation UNRATE
              coefficient std. error t-stat
prob
const
                  0.023873
                                  0.035582
                                                     0.671
0.502
L1.UNRATE
                0.972402
                                  0.045932
                                                    21.170
0.000
L1.FEDFUNDS
                 -0.029274
                                  0.013634
                                                    -2.147
```

0.032			
L1.CPIAUCSL	0.017452	0.041142	0.424
0.671	3.32.332	******	• · · <u>-</u> ·
L2.UNRATE	0.011561	0.045568	0.254
0.800			
L2.FEDFUNDS	0.043466	0.013726	3.167
0.002			
L2.CPIAUCSL	-0.017783	0.041210	-0.432
0.666			
Results for e	quation FEDFUNDS		
	· ====================================		
======			
	coefficient	std. error	t-stat
prob			
const	0.207075	0.110980	1.866
0.062	0.207075	0.110900	1.000
L1.UNRATE	-0.653295	0.143260	-4.560
0.000	2100000		11222
L1.FEDFUNDS	1.310460	0.042525	30.816
0.000			
L1.CPIAUCSL	0.202530	0.128320	1.578
0.114		0.1.0100	
L2.UNRATE	0.645737	0.142126	4.543
0.000 L2.FEDFUNDS	-0.336354	0.042812	-7.856
0.000	-0.330334	0.042012	-7.650
L2.CPIAUCSL	-0.203102	0.128532	-1.580
0.114	31233132	01120332	11300
Results for e	quation CPIAUCSL		
======	coefficient	std. error	t-stat
prob	coefficient	sta. error	l-Stat
P1 00			
const	-0.065469	0.036647	-1.786
0.074			
L1.UNRATE	0.000410	0.047307	0.009
0.993			
L1.FEDFUNDS	0.064809	0.014042	4.615
0.000			

L1.CPIAUCSL 0.000	1.372401	0.042373	32.388		
L2.UNRATE	-0.001120	0.046932	-0.024		
0.981 L2.FEDFUNDS	-0.039541	0.014137	-2.797		
0.005 L2.CPIAUCSL 0.000	-0.371371	0.042443	-8.750		
=======================================					
Correlation matrix of residuals					
# Impulse Responde Function for a Fitted VAR(p) Model					
<pre>irf = var_model.irf(10)</pre>					
<pre>fig = irf.plot(impulse='UNRATE') fig.suptitle('Impulse Response Functions for UNRATE Shock', fontsize=16)</pre>					
plt.show()					

- When unemployment rises:
 - the Federal Funds rate is projected to decline (consistent with Federal Reserve Policy)
 - the CPI decreases (lower employment results in lesspressure to increase consumer prices)

```
irf = var_model.irf(10)
fig = irf.plot(impulse='FEDFUNDS')
fig.suptitle('Impulse Response Functions for FEDFUNDS Shock',
fontsize=16)
```

plt.show()

- When the Fed Funds rate increases:
 - The Unemployment rate tends to increase; so reducing the Fed Funds rate would tend to reduce unemployment
 - The CPI increases; increases in the Fed Funds rate are associated with increase in CPI over future quarters

```
irf = var_model.irf(10)
```

```
fig = irf.plot(impulse='CPIAUCSL')
fig.suptitle('Impulse Response Functions for CPIAUCSL Shock',
fontsize=16)
plt.show()
```


- When the CPI increases:
 - The Federal Funds rate tends to increase over subsequent quarters.
 - This is consistent with Federal Reserve policy of raising interest rates to control for inflation.

Ordinary and Partial Autocorrelations of Differenced Series

diff_ymat00 = ymat00.diff().dropna()

diff ymat00

	UNRATE	FEDFUNDS	CPIAUCSL
DATE			
1960-02-01	-0.4	-0.02	0.04
1960-03-01	0.6	-0.13	0.00
1960-04-01	-0.2	0.08	0.13
1960-05-01	-0.1	-0.07	0.03
1960-06-01	0.3	-0.53	0.04
2000-08-01	0.1	-0.04	0.00
2000-09-01	-0.2	0.02	0.90
2000-10-01	0.0	-0.01	0.30
2000-11-01	0.0	0.00	0.30
2000-12-01	0.0	-0.11	0.40

[491 rows x 3 columns]

help(plot_acf_ccf)

Help on function plot_acf_ccf in module __main__:

plot_acf_ccf(data, lags=10, confidence_interval=1.96)

Plots ACF and CCF for each pair of columns in the provided DataFrame.

Parameters:

- data: pd.DataFrame containing the time series data.
- lags: Number of lags to consider for ACF and CCF.
- confidence_interval: The confidence interval for significance level lines.

plot acf ccf(diff ymat00, 10, 1.96)

plot_pacf_ccf(diff_ymat00, 10, 1.96)


```
0
       -7.198
                                           -7.187
                   -7.171
                            0.0007484
1
       -7.884
                   -7.779
                            0.0003768
                                           -7.843
2
       -8.004
                   -7.821
                            0.0003342
                                           -7.932
3
                  -7.847*
       -8.108
                            0.0003011
                                          -8.005*
4
                   -7.798
       -8.138
                            0.0002922
                                           -8.005
5
       -8.139
                   -7.721
                            0.0002920
                                           -7.975
6
                   -7.644
                                           -7.945
       -8.140
                            0.0002917
7
       -8.161
                   -7.586
                            0.0002856
                                           -7.935
8
                   -7.546
                                           -7.943
       -8.199
                            0.0002749
9
       -8.244
                   -7.513
                            0.0002629
                                           -7.957
10
       -8.232
                   -7.422
                            0.0002662
                                           -7.913
11
       -8.242
                   -7.354
                            0.0002635
                                           -7.893
                   -7.299
12
       -8.265*
                           0.0002575*
                                           -7.885
Best orders: {'aic': 12, 'bic': 3, 'hqic': 3, 'fpe': 12}
# We will chose again the bayesian information criterion
var model2 = model2.fit(2)
print(var model2.summary())
  Summary of Regression Results
Model:
                              VAR
Method:
                              0LS
               Mon, 19, Aug, 2024
Date:
Time:
                         00:01:33
No. of Equations:
                        3.00000
                                    BIC:
                                                           -7.82286
                        489.000
Nobs:
                                    HOIC:
                                                           -7.93218
Log likelihood:
                        -103.874
                                    FPE:
                                                       0.000334494
AIC:
                        -8.00290
                                    Det(Omega mle): 0.000320531
Results for equation UNRATE
                coefficient std. error
                                                     t-stat
                  -0.032066
                                    0.012989
                                                       -2.469
const
0.014
L1.UNRATE
                   0.041119
                                    0.044488
                                                        0.924
0.355
L1.FEDFUNDS
                  -0.003781
                                    0.014573
                                                       -0.259
0.795
L1.CPIAUCSL
                   0.033265
                                    0.040306
                                                        0.825
0.409
L2.UNRATE
                   0.227982
                                    0.045285
                                                        5.034
```

0.000 L2.FEDFUNDS	-0.010052	0.014180	-0.709
0.478 L2.CPIAUCSL 0.093	0.067336	0.040050	1.681
Results for eq	uation FEDFUNDS		===========
======	coefficient	std. error	t-stat
prob	COCTITUTENT	314. 61101	t Stat
const 0.747	0.013074	0.040563	0.322
L1.UNRATE	-0.712756	0.138930	-5.130
0.000 L1.FEDFUNDS	0.383472	0.045509	8.426
0.000 L1.CPIAUCSL	0.146516	0.125870	1.164
0.244			
L2.UNRATE 0.327	-0.138538	0.141419	-0.980
L2.FEDFUNDS 0.000	-0.191170	0.044281	-4.317
L2.CPIAUCSL 0.145	-0.182392	0.125071	-1.458
=======================================			
Results for eq	uation CPIAUCSL		
=======			
prob	coefficient	std. error	t-stat
const	0.093276	0.014291	6.527
0.000 L1.UNRATE	0.023367	0.048947	0.477
0.633			-
L1.FEDFUNDS 0.013	0.039709	0.016033	2.477
L1.CPIAUCSL 0.000	0.477476	0.044345	10.767
L2.UNRATE 0.577	0.027755	0.049823	0.557

```
L2.FEDFUNDS
                    0.033114
                                     0.015601
                                                         2.123
0.034
L2.CPIAUCSL
                    0.209762
                                     0.044064
                                                         4.760
0.000
Correlation matrix of residuals
              UNRATE FEDFUNDS CPIAUCSL
UNRATE
            1.000000 -0.203665 -0.014787
FEDFUNDS
           -0.203665 1.000000 0.060508
CPIAUCSL -0.014787 0.060508 1.000000
# Impulse Responde Function for a VAR(p) fitted of Differenced Series
irf = var_model2.irf(10)
fig = irf.plot(impulse='UNRATE')
fig.suptitle('Impulse Response Functions for UNRATE Shock',
fontsize=16)
plt.show()
```



```
irf = var_model2.irf(10)
fig = irf.plot(impulse='FEDFUNDS')
fig.suptitle('Impulse Response Functions for FEDFUNDS Shock',
fontsize=16)
plt.show()
```



```
irf = var_model2.irf(10)
fig = irf.plot(impulse='CPIAUCSL')
fig.suptitle('Impulse Response Functions for CPIAUCSL Shock',
fontsize=16)
plt.show()
```


- Interpreting the impulse response functions for the VAR model of the differenced series, we note:
 - When unemployment increases, the Fed Funds rate tends to decrease over subsequent quarters, consistent with Federal Reserve policies (i.e., stimulating economic growth and employment with lower interest rates).
 - When the Fed Funds rate increases, there is a modest increase in inflation(CPIA).
 This is consistent with the Fed raising rates to control inflation which tends to persist for several quarters (note the high 3-rd quarter lag partial autocorrelation in CPIAUCSL).
 - When in ation (CPIAUCSL) increases, unemployment tends to rise modestly, and the Fed Funds rate tends to increase.