Полные дифференциалы

23.04.2017

Приращением функции f(t) называют величину $\Delta f = f(t+dt) - f(t)$. Если f = f(t), то полным дифференциалом называют величину df = f'(t)dt, по сравнению с приращением по формуле Тейлора

$$\Delta f = f(t+dt) - f(t) = f'(t)dt + \frac{1}{2}f''(t)dt^2 + \frac{1}{6}f^{(3)}(t)dt^3 + \dots$$

В большинстве задач нужны только дифференциалы первого порядка, поэтому приращение величины Δf за время dt равно df=f'(t)dt. Дифференциалы можно и нужно понимать как бесконечно малые приращения. Для функции нескольких переменных f(x, y, z, ...)

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz + \dots$$

Величина $(\partial f/\partial x)dx$ есть приращение функции f при изменении только аргумента x. Соответственно, полное приращение есть сумма таких величин для разных аргументов.

1. Запишите полные дифференциалы следующих величин:

1)
$$\cos x$$
, 2) $\tan x$, 3) $\frac{1}{x^3}$, 5) $i^{225} - i^{224} - i^{-224} + i^{-225}$, 6) $(i^{253} + i^{250})i^{-343}$, 7) $(-3i)^{-20}$

1)
$$\cos x$$
, 2) $\tan x$, 3) $\frac{1}{x^3}$, 4) $x + y$,
5) $i^{225} - i^{224} - i^{-224} + i^{-225}$, 6) $(i^{253} + i^{250})i^{-343}$, 7) $(-3i)^{-20}$ 8) $(i^{-20} + (-i)^{-21})i^3$,
9) $(1 - i)^{51}$, 10) $(i\sqrt{3} - 1)^{20}$, 11) $(3 + 4i)^{5\pi/\arctan(4/3)}$ 12) $\left(\frac{i+1}{\sqrt{2}}\right)^{-12}$,
13) Re $(29e^{i(7\pi/2-\arctan(20/21))})$, 14) Im $|9 - 7i|$, 15) Re $(5e^{\pi-\arctan(4/3)})$ 16) Im $(i^{228} + (1+i)^{14})$,

13) Re
$$(29e^{-(i-3)})^{-1}$$
, 14) III $|9-7i|$, 15) Re $(3e^{-(i-3)})^{-1}$ 10) III $(i-i-\sqrt{3})^{2}$, 18) $|3i+4|^{16}$, 19) $|1+i|^{-13}$ 20) $|i^{3204}|$.