Definition. We set \mathcal{Z}_m the zonotope generated by all $v \in \{0,1\}^m$.

We aim to prove the following theorem.

Theorem. The number of facets F(m) of \mathcal{Z}_m is at least $2^{\frac{1}{2}mlog(m)+\mathcal{O}(mloglog(m))}$.

Lemma. The following equivalences hold.

c is a facet defining vector

$$c \in \mathbb{R}^m, dim(c^{\perp} \cap \{0,1\}^m) = m - 1$$

$$\iff$$

 $\exists \{v_1, \ldots, v_{m-1}\}\$ linearly independent vectors of $\{0,1\}^m$ perpendicular to c.

There further is a bijection between each facet and all positive multiples of some facet-defining vector c.

We may suppose $c \in \mathbb{Z}^m$ since there exist an integer solution to Ac = 0 as soon as A is rational. To get a unique c, we may suppose the coordinates of c are coprime.

Notation. $c^{\perp} := \{x \in \mathbb{R}^m | c^T x = 0\} \cap \{0, 1\}^m, Im(c) := \{c^T v | v \in \{0, 1\}^m\}$

We use "facet" colloquially for a facet-defining vector c.

We note
$$\begin{pmatrix} 0 \\ c^{\perp} \end{pmatrix} := \{ \begin{pmatrix} 0 \\ v \end{pmatrix} | v \in c^{\perp} \}.$$

Proposition. Each facet $c \in \mathbb{Z}^m$ of \mathcal{Z}_m generates |Im(c)| unique facets of \mathcal{Z}_{m+1} in \mathbb{Z}^{m+1} .

Proof. Let $Im(c) = \{\alpha_1, \dots, \alpha_i\}$, with $\alpha_1 = 0$. And define $d_k := \begin{pmatrix} -\alpha_k \\ c \end{pmatrix}$.

Then each d_k is a facet of \mathcal{Z}_{m+1} . Indeed, $d_k \neq 0$ and d_k^{\perp} includes both $\begin{pmatrix} 0 \\ c^{\perp} \end{pmatrix}$ and some vector of the form $\begin{pmatrix} 1 \\ v \end{pmatrix} \in \{0,1\}^{m+1}$. It hence includes m linearly independant vectors and generates a facet.

We must show the facets are unique and that there is no overlap from two different facets of \mathcal{Z}_m . We cannot have $d_k^{\perp} = d_l^{\perp}$ for some $l \neq k$, since the added vector $\begin{pmatrix} 1 \\ v \end{pmatrix} \in \{0,1\}^{m+1}$ is not perpendicular to d_l .

For two different starting facets $c, c' \in \mathbb{Z}^m$, the generated facets of \mathcal{Z}_{m+1} are also different since the vectors perpendicular to them with first coordinate 0 are exactly $\begin{pmatrix} 0 \\ c^{\perp} \end{pmatrix}$ and $\begin{pmatrix} 0 \\ (c')^{\perp} \end{pmatrix}$ respectively.

Definition.
$$F(m) := f_{m-1}(\mathcal{Z}_m) = number \ of \ facets \ of \ \mathcal{Z}_m$$
. $\alpha_l := \{c \ facets \ of \ \mathcal{Z}_m : |Im(c)| = l\}.$

Note that the size of the image is invariant under positive multiplication. Also, $\sum_{l\geq 2} \alpha_l = F(m)$, and the sum is finite. It starts at 2 since $dim(c^{\perp}) = m-1$.

Corollary.

$$F(m+1) \ge \sum_{l>2} l\alpha_l.$$

And hence $F(m+1) \ge 2F(m)$.

Example. Let's compute the first coefficient α_2 .

Take $a \ c \in \mathbb{Z}^m$ such that $Im(c) = \{0, \alpha\}, \ \alpha \in \mathbb{Z}, \ and \ decompose \ it \ as$

$$c = (0, 0, \dots, 0, \tilde{c}),$$

with $\tilde{c}_k \neq 0 \forall k$ and up to a choice of placement of the nonzero coefficients.

Note that c is a facet of \mathcal{Z}_m if and only if $\tilde{c} \in \mathbb{Z}^d$ is a facet of \mathcal{Z}_d . Furthermore, note that $Im(c) = Im(\tilde{c}) = \{0, \alpha\}$. However, since \tilde{c}_k is in the image for each k, and it is nonzero, we must have $\tilde{c} = (\alpha, \dots, \alpha)$. In this case, $Im(\tilde{c}) = \{0, \alpha, 2\alpha, \dots d\alpha\}$, which implies directly that d = 1. Up to normalization, the only two possible \tilde{c} are in fact 1 and -1.

This implies in turn that only 2m vectors c exist with the supposed properties, and $\alpha_2 = 2m$.

Lemma.

$$\alpha_l \le lm^{l^2} F(l^2).$$

Proof. We split $c \in \mathbb{Z}^m$ as

$$c = (0, 0, \dots, 0, \tilde{c}),$$

with $\tilde{c}_k \neq 0 \forall k$ and up to a choice of placement of the nonzero coefficients. We aim now to bound the dimension d that $\tilde{c} \in \mathbb{Z}^d$ defines a facet in.

Since |Im(c)| = l, each $\alpha \in Im(c)$ may appear in \tilde{c} at most l times. This gives directly that $d \leq l^2$.

Hence

$$\alpha_l \le \sum_{i=1}^{l^2} {m \choose i} F(i) \le l^2 m^{l^2} F(l^2).$$

Proposition.

$$F(m+1) \ge \frac{1}{4} \sqrt{\frac{m}{\log(m)}} F(m),$$

for all m sufficiently large.

Proof. Set the threshold $T:=\frac{1}{2}\sqrt{\frac{m}{\log(m)}}$. The corollary above gives

$$F(m+1) \ge \sum_{l \ge 2} l\alpha_l \ge \sum_{l=2}^{T-1} l\alpha_l + T \sum_{l \ge T} \alpha_l,$$

$$\ge \sum_{l=2}^{T-1} l\alpha_l + T \left[F(m) - \sum_{l=2}^{T-1} \alpha_l \right],$$

$$= TF(m) + \sum_{l=2}^{T-1} (l-T)\alpha_l.$$

By the proposition, $\alpha_l \leq lm^{l^2} F(l^2)$, and therefore

$$(l-T)\alpha_l \ge -Tl^2 m^{l^2} F(l^2).$$

Furthermore, since $F(m+1) \ge 2F(m)$, we get

$$(l-T)\alpha_l \ge -Tl^2 m^{l^2} 2^{l^2-m} F(m).$$

Since $l \leq T = \frac{1}{2} \sqrt{\frac{m}{\log(m)}}$, we evaluate the expression to

$$(l-T)\alpha_l \ge -m^{\frac{3}{2}}2^{\frac{1}{4}m}2^{\frac{1}{4}m-m}F(m) \ge -2^{-\frac{1}{4}m}F(m),$$

for m sufficiently large.

In conclusion,

$$F(m+1) \ge \sum_{l \ge 2} l\alpha_l \ge TF(m) + \sum_{l=2}^{T-1} (l-T)\alpha_l,$$

$$\ge TF(m) - 2^{-\frac{1}{4}m}F(m),$$

$$\ge \frac{1}{2}TF(m) = \frac{1}{4}\sqrt{\frac{m}{\log(m)}}F(m),$$

for m again sufficiently large.

Corollary. The number of facets of \mathcal{Z}_m is at least $2^{\frac{1}{2}mlog(m) + \mathcal{O}(mloglog(m))}$.

Proof. Since $F(m+1) \ge \frac{1}{4} \sqrt{\frac{m}{\log(m)}} F(m)$ for all m > N for some constant N,

$$F(m) \ge 4^{-m} \sqrt{\frac{m!}{\prod_{k=2}^{m} log(k)}} \sqrt{\frac{\prod_{k=2}^{N} log(k)}{N!}} F(N),$$
$$= 2^{\frac{1}{2}mlog(m) + \mathcal{O}(mloglog(m))},$$

because $\prod_{k=2}^{m} log(k) \leq 2^{mloglog(m)}$ (tight).