```
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import warnings
warnings.filterwarnings('ignore')

df = pd.read_csv('loan1.csv')
df.head()
```

	ID	Loan Amount	Funded Amount	Funded Amount Investor	Term	Batch Enrolled	Interest Rate	Grade	Sut Grade
0	65087372	10000	32236	12329.36286	59	BAT2522922	11.135007	В	C4
1	1450153	3609	11940	12191.99692	59	BAT1586599	12.237563	С	D3
2	1969101	28276	9311	21603.22455	59	BAT2136391	12.545884	F	D4
3	6651430	11170	6954	17877.15585	59	BAT2428731	16.731201	С	C3
4	14354669	16890	13226	13539.92667	59	BAT5341619	15.008300	С	D4

5 rows × 35 columns

29 Last week Pay

30 Accounts Delinguent

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12260 entries, 0 to 12259

Data columns (total 35 columns): # Column Non-Null Count Dtype 0 ID 12260 non-null int64 1 Loan Amount 12260 non-null int64 12260 non-null int64 Funded Amount Funded Amount Investor 12260 non-null float64 Term 12260 non-null int64 12260 non-null object 5 Batch Enrolled 12260 non-null float64 6 Interest Rate 7 Grade 12260 non-null object 12260 non-null object
12260 non-null object
12260 non-null float64
12260 non-null object 8 Sub Grade 9 Employment Duration 10 Home Ownership 11 Verification Status 12 Payment Plan 12260 non-null object 12260 non-null object 13 Loan Title 12260 non-null float64 14 Debit to Income 15 Delinquency - two years 12260 non-null int64
16 Inquires - six months 12260 non-null int64 17 Open Account 12260 non-null int64 18 Public Record 12260 non-null int64 12260 non-null int64 12260 non-null float64 12260 non-null int64 19 Revolving Balance 20 Revolving Utilities 21 Total Accounts 22 Initial List Status 12260 non-null object
23 Total Received Interest 12260 non-null float64
24 Total Received Late Foo. 24 Total Received Late Fee 12260 non-null float64 25 Recoveries 12260 non-null float64 12260 non-null float64 26 Collection Recovery Fee 27 Collection 12 months Medical 12259 non-null float64 28 Application Type 12259 non-null object

12259 non-null float64 12259 non-null float64

31 Total Collection Amount 12259 non-null float64 32 Total Current Balance 12259 non-null float64 32 Total Current Balance 33 Total Revolving Credit Limit 12259 non-null float64 34 Loan Status 12259 non-null float64 dtypes: float64(16), int64(10), object(9)

memory usage: 3.3+ MB

df.describe()

	ID	Loan Amount	Funded Amount	Funded Amount Investor	Term	Int
count	1.226000e+04	12260.000000	12260.000000	12260.000000	12260.000000	12260.0
mean	2.539800e+07	16766.225204	15831.505628	14619.642177	58.170718	11.8
std	2.088998e+07	8379.000447	8191.734681	6805.325460	3.316191	3.7
min	1.299125e+06	1020.000000	1098.000000	1127.754818	36.000000	5.3
25%	6.559144e+06	9929.000000	9213.750000	9868.433307	58.000000	9.3
50%	1.774408e+07	15960.500000	13075.000000	12768.923180	59.000000	11.3
75%	4.220348e+07	21980.000000	21880.000000	18007.143105	59.000000	14.1
max	7.210185e+07	34986.000000	34999.000000	34987.513000	59.000000	27.0

8 rows × 26 columns

df.isnull().sum()

ID	0
Loan Amount	0
Funded Amount	0
Funded Amount Investor	0
Term	0
Batch Enrolled	0
Interest Rate	0
Grade	0
Sub Grade	0
Employment Duration	0
Home Ownership	0
Verification Status	0
Payment Plan	0
Loan Title	0
Debit to Income	0
Delinquency - two years	0
Inquires - six months	0
Open Account	0
Public Record	0
	-
Revolving Balance	0
Revolving Utilities	0
Total Accounts	0
Initial List Status	0
Total Received Interest	0
Total Received Late Fee	0
Recoveries	0
Collection Recovery Fee	0
Collection 12 months Medical	1
Application Type	1
Last week Pay	1
Accounts Delinguent	1
Total Collection Amount	1
Total Current Balance	1
Total Revolving Credit Limit	1
Loan Status	1
dtype: int64	_
acype. Inco-	

df

	ID	Loan Amount	Funded Amount	Funded Amount Investor	Term	Batch Enrolled	Interest Rate	Grade	
0	65087372	10000	32236	12329.362860	59	BAT2522922	11.135007	В	
1	1450153	3609	11940	12191.996920	59	BAT1586599	12.237563	С	
2	1969101	28276	9311	21603.224550	59	BAT2136391	12.545884	F	
3	6651430	11170	6954	17877.155850	59	BAT2428731	16.731201	С	
4	14354669	16890	13226	13539.926670	59	BAT5341619	15.008300	С	
12255	32295742	15455	9314	7522.923594	58	BAT2078974	11.135354	Α	
12256	2320565	21435	24905	8277.966325	36	BAT5525466	13.510502	F	
12257	5029510	31578	12702	26495.936690	58	BAT5525466	8.650557	Е	
12258	8582824	16179	22659	15732.358370	58	BAT1586599	6.686504	F	
12259	41128187	4477	7174	12923.034090	59	BAT4694572	9.954777	D	
12260 rows x 35 columns									

12260 rows × 35 columns

cat_df

df2

```
cat_df = df.select_dtypes(['object'])
num_df = df.select_dtypes(['int64','float64'])
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder
for i in cat_df:
    le = LabelEncoder()
    cat_df[i]=le.fit_transform(cat_df[i])
```

	Batch Enrolled	Grade	Sub Grade	Employment Duration	Verification Status	Payment Plan	Loan Title	Initial List Status
0	16	1	13	0	0	0	41	1
1	4	2	17	2	1	0	48	0
2	11	5	18	0	1	0	41	1
3	15	2	12	0	1	0	48	1
4	32	2	18	0	1	0	37	1
12255	10	0	14	2	0	0	48	0
12256	34	5	6	2	1	0	37	0
12257	34	4	11	0	1	0	37	0
12258	4	5	5	1	0	0	48	0
12259	29	3	7	0	1	0	37	1
12260 rows × 9 columns								

df2 = pd.concat([num_df,cat_df],axis=1)

5	Delinquency - two years	Inquires - six months	• • •	Loan Status	Batch Enrolled	Grade	Sub Grade	Employment Duration	Verificat: Sta
3	1	0		0.0	16	1	13	0	
9	0	0		0.0	4	2	17	2	
9	0	0		0.0	11	5	18	0	
)	1	0		0.0	15	2	12	0	
3	1	3		0.0	32	2	18	0	
3	0	0		0.0	10	0	14	2	
5	0	0		0.0	34	5	6	2	
7	0	0		0.0	34	4	11	0	
2	0	0		0.0	4	5	5	1	
)	0	0		NaN	29	3	7	0	

```
x = df2.drop(['Loan Status'],axis=1).values
Х
     array([[6.5087372e+07, 1.0000000e+04, 3.2236000e+04, ..., 4.1000000e+01,
             1.0000000e+00, 0.0000000e+00],
            [1.4501530e+06,\ 3.6090000e+03,\ 1.1940000e+04,\ \dots,\ 4.80000000e+01,
             0.0000000e+00, 0.0000000e+00],
            [1.9691010e+06, 2.8276000e+04, 9.3110000e+03, ..., 4.1000000e+01,
            1.0000000e+00, 0.0000000e+00],
            [5.0295100e+06, 3.1578000e+04, 1.2702000e+04, ..., 3.7000000e+01,
             0.0000000e+00, 0.0000000e+00],
            [8.5828240e+06, 1.6179000e+04, 2.2659000e+04, ..., 4.8000000e+01,
             0.0000000e+00, 0.0000000e+00],
            [4.1128187e+07, 4.4770000e+03, 7.1740000e+03, ..., 3.7000000e+01,
             1.0000000e+00, 2.0000000e+00]])
y = df2['Loan Status'].values
У
     array([ 0., 0., 0., ..., 0., nan])
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x = sc.fit_transform(x)
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.3,random_state=1)
from scipy.stats.morestats import optimize
ann =Sequential()
ann.add(Dense(units=5,activation="relu"))
ann.add(Dense(units=1,activation='sigmoid'))
ann.compile(optimizer="adam",loss='binary_crossentropy',metrics=['accuracy'])
```

ann =Sequential()

ann.fit(xtrain,ytrain,batch_size=30,epochs=100)

```
ypred = ann.predict(xtest)
   Epoch 73/100
   287/287 [========== ] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 74/100
   287/287 [==========] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 75/100
   287/287 [============ ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 76/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 77/100
   Epoch 78/100
   287/287 [==========] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 79/100
   Epoch 80/100
   287/287 [===========] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 81/100
   287/287 [============] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 82/100
   287/287 [==========] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 83/100
   Epoch 84/100
   287/287 [==========] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 85/100
   287/287 [============] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 86/100
   287/287 [===========] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 87/100
   287/287 [=========== ] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 88/100
   287/287 [==========] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 89/100
   Epoch 90/100
   287/287 [===========] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 91/100
   287/287 [=========== ] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 92/100
   Epoch 93/100
   287/287 [============ ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 94/100
   287/287 [==========] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 95/100
   287/287 [===========] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 96/100
   Epoch 97/100
   287/287 [============] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 98/100
   Epoch 99/100
   287/287 [============ ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 100/100
   287/287 [===========] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
xtrain = sc.fit_transform(xtrain)
xtest = sc.fit_transform(xtest)
```

```
ann.add(Dense(units=5,activation="relu"))
ann.add(Dense(units=1,activation='sigmoid'))
ann.compile(optimizer="adam",loss='binary_crossentropy',metrics=['accuracy'])
ann.fit(xtrain,ytrain,batch_size=30,epochs=100)
ypred = ann.predict(xtest)
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 73/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 74/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 75/100
   Epoch 76/100
   287/287 [=========== ] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 77/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 78/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 79/100
   Epoch 80/100
   287/287 [=========== ] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 81/100
   287/287 [========= ] - 1s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 82/100
   287/287 [========== ] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 83/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 84/100
   Epoch 85/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 86/100
   287/287 [========== ] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 87/100
   287/287 [========== ] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 88/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 89/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 90/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 91/100
   Epoch 92/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 93/100
   287/287 [==========] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 94/100
   287/287 [==========] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 95/100
   Epoch 96/100
   287/287 [========= ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 97/100
   287/287 [=========== ] - 0s 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 98/100
   287/287 [===========] - Os 2ms/step - loss: nan - accuracy: 0.9041
   Epoch 99/100
   Epoch 100/100
   115/115 [========== ] - Os 1ms/step
```

✓ 51s completed at 12:01 AM