IMPLEMENTASI ALGORITMA YOU ONLY LOOK ONCE (YOLOv5) SEBAGAI PENDETEKSI BAHASA ISYARAT INDONESIA (SIBI) BERDASARKAN GESTUR TANGAN SEACARA REAL-TIME

PROPOSAL TUGAS AKHIR

Disusun Oleh: Muhammad Aqsal Sirulah Sodik 1207050068

JURUSAN TEKNIK INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI
BANDUNG
2023 M/1445 H

KATA PENGANTAR

Bismillahirrahmaanirrahiim

Puji dan syukur kiranya penulis panjatkan ke hadirat Allah SWT, Dzat seluruh alam, karena hanya dengan izin-Nya lah penulis bisa mempunyai kehidupan, waktu, dan kesempatan untuk menyelesaikan penelitian ini. Salawat dan salam semoga senantiasa tercurah kepada junjungan umat, Rasulullah Muhammad SAW., pun kepada shahabat-nya, hingga akhirnya kepada kita selaku umat Rasul, dan semoga hingga akhir zaman nanti.

Tidak terasa sudah tiga tahun penulis menjalani perkuliahan di Universitas Islam Negeri (UIN) Sunan Gunung Djati, Bandung. Alhamdulillah penulis sudah menjalaninya tanpa hambatan meskipun ada wabah COVID-19 yang sempat menimpa penulis dalam pengembangan hingga ke tahap Tugas Akhir (TA). Namun sebelum menyelesaikan TA, penulis wajib mengajukan sebuah Proposal untuk kemudian dijadikan TA. Ide dari proposal ini penulis dapatkan dari cobaan yang telah menimpa ayah saya yang terkena *stroke partial* sehingga tidak bisa berkomunikasi dengan baik. Sistem ini akan berguna untuk orang yang sulit berkomunikasi termasuk tuna rungu.

Tak lupa penulis mengucapkan terimakasih untuk pihak-pihak berikut yang membantu penulis dalam penyelesaian proposal ini:

- 1. Allah SWT, yang tentu memberikan saya kesempatan hidup sehingga penulis bisa menyelesaikan proposal ini.
- 2. Kedua orang tua penulis, yang selalu memberikan dukungan, baik materi maupun moral.
- Undang Syaripudin, M.Kom. selaku pembimbing akademik, yang di tengah kesibukan beliau menyempatkan diri untuk membimbing penulis secara profesional. Penulis mengucapkan terimakasih atas kesabaran beliau terhadap penulis.

Bandung, 5 Desember 2023

Penulis

DAFTAR ISI

KATA	PEN	[GANTAR	i
DAFT	'AR IS	SI	ii
DAFT	'AR G	SAMBAR	iii
DAFT	AR T	ABEL	iv
1.	Penda	ahuluan	1
1.	1 L	atar Belakang Penelitian	1
1.	2 L	atar Belakang Penelitian	2
1.	3 T	Tujuan Penelitian	2
1.	4 N	Manfaat Penelitian	2
1.	5 B	Satasan Penelitian	3
1.	6 N	Metode Penelitian	4
	1.6.1	Metode Pengumpulan Data	4
	1.6.2	Metode Perancangan Sistem	4
	1.6.3	Metode Implementasi Sistem	5
	1.6.4	Metode Analisis Hasil Impelementasi Sistem	5
1.	7 S	Sistematika Penulisan	6
2	Kajia	n Literatur	8
2.	1 Tinj	auan Pustaka	8
2.	2 L	andasan Teori	21
	2.2.1	Bahasa Isyarat Indonesia (SIBI)	21
	2.2.2	You Only Look Once (YOLOv5)	22
	2.2.3	Implementasi Real-Time	23
	2.2.4	YOLO Based on Sign Language Detection	24
3.	Meto	dologi Penelitian	26
	3.1	Data Collection and Pre-Processing	26
	3.2	Arsitektur Sistem	26
	3.3	Object Detection	27
	3.4	Implementasi Real-Time	28
DAET	AD D	TICTA IZA	20

DAFTAR GAMBAR

Gambar 3.1 Arsitektur Model	27
Gambar 3.2 Model YOLO Sebagai Object Detection	28

DAFTAR TABEL

Γabel 2.1 State of the Art	8	3
tucor 2.1 State or the rate	•••	•

IMPLEMENTASI ALGORITMA YOLOv 5 SEBAGAI PENDETEKSI BAHASA ISYARAT BERDASARKAN GESTUR TANGAN SEACARA REAL-TIME PADA SLB NEGERI CICENDO

1. Pendahuluan

1.1 Latar Belakang Penelitian

Dalam era teknologi informasi saat ini, kemampuan untuk mengembangkan sistem pendeteksi bahasa isyarat berbasis komputer menjadi semakin krusial. Bahasa isyarat menjadi sarana utama komunikasi bagi individu dengan gangguan pendengaran atau kesulitan berbicara, dengan ekspresi dan gerakan tangan sebagai media komunikasi utama [1]. Untuk memenuhi kebutuhan ini, implementasi sistem pendeteksi bahasa isyarat berdasarkan gestur tangan secara *real-time* menjadi suatu kebutuhan mendesak [2].

Algoritma YOLOv5 (You Only Look Once version 5) muncul sebagai inovasi terkini dalam bidang visi komputer, terkenal karena kemampuannya dalam deteksi objek yang cepat dan akurat [3]. Pemanfaatan algoritma ini dalam pendeteksian bahasa isyarat berbasis gestur tangan dapat memberikan kontribusi signifikan untuk memfasilitasi interaksi antara individu dengan gangguan pendengaran dan lingkungan sekitarnya [4].

Tantangan utama dalam pendeteksian bahasa isyarat melibatkan kompleksitas gerakan tangan dan variasi bentuk isyarat. Oleh karena itu, dibutuhkan pendekatan yang efisien dan responsif dalam deteksi dan pengenalan isyarat bahasa [5].

Tujuan utama penelitian ini adalah menggabungkan keunggulan algoritma YOLOv5 dalam deteksi objek dengan kebutuhan khusus untuk mendeteksi gestur tangan sebagai bahasa isyarat. Implementasi secara *real-time* diharapkan dapat memberikan solusi cepat dan responsif, mendukung komunikasi efektif bagi individu dengan gangguan pendengaran [6].

Selain itu, penelitian ini juga berpotensi memberikan kontribusi pada pengembangan aplikasi atau sistem berbasis komputer *vision* yang dapat diintegrasikan dalam berbagai perangkat, seperti kamera pintar, perangkat bimbingan *virtual*, atau perangkat lainnya yang mendukung komunikasi menggunakan bahasa isyarat [7].

Dengan demikian, implementasi algoritma YOLOv5 sebagai pendeteksi bahasa isyarat berdasarkan gestur tangan diharapkan dapat membuka peluang baru dalam pengembangan teknologi untuk mendukung inklusivitas dan komunikasi efektif bagi individu dengan gangguan pendengaran.

1.2 Perumusan Masalah Penelitian

Dari masalah di atas, dapat diambil masalah sebagai berikut:

- 1. Bagaimana implementasi algoritma YOLOv5 dapat diterapkan sebagai pendeteksi bahasa isyarat berbasis gestur tangan secara *real-time*?
- 2. Apakah implementasi YOLOv5 mampu mengatasi kompleksitas gerakan tangan dan variasi bentuk isyarat dalam pendeteksian bahasa isyarat secara *real-time*?

1.3 Tujuan Penelitian

Tujuan yang ingin dicapai dari penelitian ini adalah:

- Menetapkan tujuan untuk meningkatkan tingkat akurasi dalam deteksi bahasa isyarat berbasis gestur tangan dengan mengimplementasikan algoritma YOLOv5 dengan fokus pada pengenalan gerakan tangan dengan tingkat keakuratan yang tinggi untuk memastikan interpretasi yang benar terhadap bahasa isyarat.
- Merancang dan mengimplementasikan YOLOv5 untuk pendeteksi bahasa isyarat serta memberikan kontribusi pada pengembangan teknologi yang mendukung komunikasi inklusif bagi individu dengan gangguan pendengaran.

1.4 Manfaat Penelitian

Manfaat yang ingin dicapai dari penelitian ini adalah:

- 1. Memberikan kontribusi sebagai pendeteksi bahasa isyarat berbasis gestur tangan secara *real-time* yang dapat memberikan manfaat langsung dalam meningkatkan kemampuan komunikasi bagi individu dengan gangguan pendengaran.
- 2. Meningkatkan aksesbilitas teknologi bagi komunikasi dengan gangguan pendengaran
- 3. Memberikan wawasan baru terhadap kemungkinan penggunaan algoritma deteksi objek yang canggih untuk aplikasi khusus seperti bahasa isyarat, membuka pintu untuk pengembangan teknologi serupa di masa depan.
- 4. Membantu dalam pengembangan aplikasi inklusif yang dapat digunakan oleh berbagai kalangan masyarakat
- 5. YOLOv5 sebagai pendeteksi bahasa isyarat dapat menjadi dasar untuk pengembangan sistem serupa yang mendukung berbagai konteks komunikasi melalui gestur tangan secara akurat.
- 6. Berkontribusi pada peningkatan kesadaran masyarakat terhadap kebutuhan individu dengan gangguan pendengaran.

1.5 Batasan Penelitian

Agar pembahasan penelitian ini lebih terarah dan efektif, maka penulis membatasi pokok pembahasannya sebagai berikut:

- 1. Fokus pada implementasi *You Only Look Once* (YOLOv5) untuk deteksi dan interpretasi bahasa isyarat yang disampaikan melalui gestur tangan.
- 2. Variasi bahasa isyarat memfokuskan pada bahasa isyarat umum atau yang telah diidentifikasi sebelumnya.
- Penelitian ini mencakup pertimbangan etika dan privasi, namun tidak akan secara mendalam membahas aspek hukum dan etika tertentu yang berkaitan dengan penggunaan teknologi ini dalam konteks sosial dan masyarakat yang lebih luas.

- 4. Tidak membahas secara mendalam tentang aspek keamanan dan enkripsi data yang terkait dengan YOLOv5 berdasarkan data pendeteksi bahasa isyarat.
- 5. Evaluasi kinerja YOLOv5 akan difokuskan pada pendeteksi gestur tangan secara akurat dan cepat.

Dengan membatasi masalah sesuai dengan batasan di atas, skripsi ini dapat memberikan kontribusi yang relevan dalam implementasi YOLOv5 berdasarkan pendeteksi bahasa isyarat secara *real-time*.

1.6 Metode Penelitian

Metode penelitian yang digunakan dalam penyusunan tugas akhir ini adalah sebagai berikut:

1.6.1 Metode Pengumpulan Data

- 1. Studi Literatur: Melakukan studi literature yang komprehensif untuk mengumpulkan informasi tentang konsep *You Only Look Once* (YOLOv5), bahasa isyarat dan teknologi *computer vision*. Menganalisis penelitian-penelitian terdahulu yang relevan deteksi bahasa isyarat dan implementasi algoritma YOLOv5. Sumber literatur dapat berupa buku, jurnal ilmiah, artikel dan publikasi terkait lainnya.
- 2. Observasi: Melakukan observasi terhadap orang yang tuna rungu untuk memperoleh wawasan tentang bahasa isyarat serta melakukan observasi terkait algoritma yang digunakan terutama mengenai pemrosesan data yang lebih cepat, akurat dan *real-time*.

1.6.2 Metode Perancangan Sistem

- 1. Metode Desain Berorientasi Objek: Menerapkan pendekatan berorientasi objek (OOP) yang fokus pada identifikasi objek-objek yang relevan, serta hubungan dan perilaku di antara objek-objek tersebut [8].
- 2. Metode Prototipe Iteratif: Menggunakan pendekatan prototype yang memungkinkan pengembang untuk menguji dan memodifikasi desain sistem melalui iterasi berulang. Setiap iterasi melibatkan pengembangan, uji coba

dan evaluasi dengan peningkatan berdasarkan umpan balik yang diterima [9].

1.6.3 Metode Implementasi Sistem

- 1. Pemilihan *Dataset*: Memilih *dataset* bahasa isyarat yang sesuai untuk pelatihan model YOLOv5. *Dataset* ini harus mencakup variasi gestur tangan yang mencerminkan bahasa isyarat secara komprehensif.
- 2. Pengujain Fungsional: Menggunakan *dataset* yang telah diproses, melatih model YOLOv5 menggunakan algoritma pelatihan yang disediakan. Penyesuaian parameter-model dan iterasi pelatihan dilakukan untuk meningkatkan akurasi deteksi.
- 3. Pengujian Kinerja: Pengujian kinerja model deteksi bahasa isyarat menggunakan YOLOv5 melibatkan evaluasi akurasi deteksi, presisi, *recall*, waktu respon dan uji coba pada *dataset* independen. Metrik ini digunakan untuk memastikan kemampuan model dalam mengenali dan menempatkan *bounding box* secara akurat, dengan penekanan pada respon *real-time*. Analisis kesalahan dan umpan balik pengguna membantu mengidentifikasi dan memperbaiki potensi kelemahan dalam situasi penggunaan sehari-hari [10].

1.6.4 Metode Analisis Hasil Impelementasi Sistem

Analisis Kuantitatif: Mengumpulkan data kuantitatif yang terkait dengan kinerja sistem, seperti hasil pengukuran akurasi deteksi, presisi, *recall* dan waktu respon. Data ini dapat diperoleh melalui serangkaian uji coba dan evaluasi menggunakan *dataset* khusus dan scenario pengujian yang telah ditetapkan. Metode analisis kuantitatif yang dapat digunakan antara lain:

• Pengukuran Performa: Mengukur sejauh mana model YOLOv5 mampu mengenali dan menempatkan bounding box dengan tepat di sekitar gestur tangan dalam dataset pengujian. Akurasi deteksi dapat dihitung dengan membandingkan jumlah deteksi yang benar dengan jumlah total deteksi.

- Pengukuran Efisiensi: Mengukur efisiensi seperti waktu *interfence*, ukuran model, konsumsi memori, FLOPs (*Floating Point Operations per Seecond*) dan responsive terhadap skala (*Scale Responsiveness*).
- Analisis Statistik: Analisis statistic dalam deteksi Bahasa isyarat menggunakan YOLOv5 melibatkan teknik seperti statistik deskriptif, uji hipotesis, analisis varian, dan korelasi. Metode ini merangkum karakteristik data, memodelkan hubungan variabel dan mengidentifikasi pola kesalahan. Analisis ini memberikan gambaran komprehensif tentang kinerja model dan faktor-faktor yang mempengaruhi hasil deteksi bahasa isyarat secara singkat dan efektif.

Dengan menggunakan metode analisis kuantitatif, penelitian akan dapat mengevaluasi secara objektif kinerja dan evektivitas implementasi YOLOv5 (You Only Look Once) berdasarkan kinerja model, mengidentifikasi pola dan mengevaluasi signifikan hasil dalam konteks penelitian deteksi bahasa isyarat.

1.7 Sistematika Penulisan

Sistematika penulisan penelitian ini disusun untuk memberikan gambaran umum tentang penelitian yang dijalankan. Sistematika penulisan tugas akhir ini adalah sebagai berikut:

BAB I PENDAHULUAN

- Latar Belakang: Berisi penjelasan tentang latar belakang penelitian, konteks permasalahan dan alasan pentingnya penelitian ini.
- Rumusan Masalah: Menyajikan rumusan masalah penelitian yang akan dijawab dalam skripsi.
- Tujuan Penelitian: Menjelaskan tujuan umum dan tujuan khusus dari penelitian.
- Manfaat Penelitian: Menggambarkan Manfaat atau kontribusi penelitian ini bagi ilmu pengetahuan, praktik atau masyarakat.

- Batasan Masalah: Menjelaskan batasan dan lingkup penelitian yang akan dilakukan.
- Metode Penelitian: Menjelaskan metode penelitian yang digunakan dalam penelitian ini, termasuk metode pengumpulan data, metode analisis dan teknik implementasi sistem.
- Sistematika Penulisan: Merinci struktur dan urutan bab-bab yang ada dalam skripsi.

BAB II TINJAUAN PUSTAKA

- Landasan Teori: Memberikan pemahaman dasar tentang bahasa isyarat dan relevansinya dalam konteks deteksi gestur tangan.
- Tinjauan Literatur: Menjelaskan konsep, teori dan penelitian terkait tentang *You Only Look Once* (YOLOv5).

BAB III ANALISIS DAN PERANCANGAN

- Analisis Kebutuhan Sistem: Menjelaskan kebutuhan sistem untuk implementasi YOLOv5 berdasarkan pendeteksi bahasa isyarat menggunakan gestur tangan secara *real-time*.
- Perancangan Sistem: Menjelaskan pendekatan eksperimental dengan desain kuasi eksperimen. Pendekatan ini dipilih untuk menguji efektivitas implementasi algoritma YOLOv5 sebagai pendeteksi bahasa isyarat berbasis gestur tangan secara *real-time*. Desain eksperimental memungkinkan evaluasi yang teliti terhadap kinerja model dalam situasi yang mendekati kondisi penggunaan sehari-hari.

BAB IV IMPLEMENTASI DAN PENGUJIAN

- Implementasi Sistem: Menjelaskan langkah-langkah implementasi sistem YOLOv5 pada dataset gestur tangan yang telah diterapkan oleh algoritma tersebut setelah pra-pemrosesan data.
- Pengujian Sistem: Model di evaluasi menggunakan dataset independen untuk mengukur akurasi dan kinerjanya. Analisis kesalahan dilakukan untuk memahami jenis kesalahan dan situasi yang sulit dikenal. Uji coba real-time dilakukan untuk mengukur respon deteksi. Hasil pengujian

- memberikan gambaran terinci tentang kemampuan model deteksi bahasa isyarat berbasis YOLOv5.
- Analisis Hasil Implementasi: Menganalisis hasil implementasi dan pengujian.
- Menyajikan temuan kunci yang dapat memberikan wawasan tentang kinerja deteksi bahasa isyarat berbasis YOLOv5.
- Pembahasan: Mendiskusikan temuan dan hasil analisis secara mendalam, membandingkan dengan penelitian terkait dan menjelaskan signifikan dari temuan tersebut.

BAB V PENUTUP

- Kesimpulan: Merangkum temuan penelitian dan menjawab rumusan masalah yang telah diajukan
- Saran: Memberikan saran untuk penelitian masa depan atau pengembangan lebih lanjut terkait dengan implementasi YOLOv5 dan teknik pendeteksi gestur tangan lain.

2 Kajian Literatur

2.1 Tinjauan Pustaka

Pada beberapa literasi, terdapat beberapa penelitian yang searah dengan penelitian ini, baik yang mengusung tema serupa maupun tidak. Pada tabel 1 di bawah ini merupakan perbandingan dari penelitian yang sedang dilaksanakan saat ini.

Tabel 2.1 State of the Art

No	Peneliti/Tahun	Judul	Deskripsi	Hasil
1	Lusiana	Objek	Penerapan YOLO	Hasil penelitian
	Rahma, Hadi	Deteksi	tersebut fokus pada	yang dilakukan
	Syaputra,	Makanan	pengenalan objek	pengumpulan
	Haidar A et al.	Khas	makanan	dataset citra
	/ 2021 [11]	Palembang	tradisional	makanan khas

 I = -	Γ	Ι
Menggunakan	Palembang	Palembang mampu
YOLO (You	kemudian	menguji
Only Look	membahas	perancangan sistem
Once)	penerapan praktis	yang dilakukan
	dari deteksi	menggunakan
	makanan.	google
		colaboratory yang
		menyediakan GPU
		hingga 12GB
		sehingga sehingga
		saat menjalankan
		sistem
		YOLOv3dapat
		memproses deteksi
		100 kali lebih cepat
		dari CPU, sehingga
		mempermudah dan
		mempercepat
		perancangan sistem
		deteksi 31
		makanan khas
		Palembang.
		Maka eksperimen
		yang dilakukan
		terhadap 31
		variabel penelitian
		menghasilkan rata-
		rata akurasi
		sebesar 96% dan

				rata-rata kecepatan
				deteksi sebesar
				40.486.129 milli-
				seconds.
2	Nathanel	Implementasi	Penelitian ini di	Model YOLO
	Christopher,	Algoritma	fokuskan pada	cocok untuk
	Rostianingsih	YOLO pada	penerapan	dijalankan di
	S, Nathania A /	Aplikasi	teknologi deteksi	perangkat android
	2020 [12]	Pendeteksi	objek senjata tajam	karena waktu
		Senjata	untuk mendapatkan	inferensi yang
		Tajam di	solusi keamanan	pendek. model
		Android	dengan melihat	masih rentan
			kinerja model	melakukan deteksi
			Darknet mAP dan	salah ke objek
			average IoU	yang mirip senjata
				tetapi bukan
				senjata, rentan
				gagal deteksi
				terdapat objek blur,
				dan objek senjata
				yang memiliki
				refleksi cahaya
				yang tinggi
3	Agustina Feri,	Deteksi	Proses labelling	Nilai pada
	Sukron	Kematangan	menggunakan	confusion matrix
	Muhammad /	Buah Pepaya	labelling software	yang menghasilkan
	2022 [13]	Menggunakan	sesuai kelasnya,	nilai <i>accuracy</i>
		Algoritma	objek berupa	sebesar 93%, nilai
		YOLO	pembatas dan	precision sebesar

		Berbasis	tingkat kematangan	94% dan nilai
		Android	buah pepaya	recall sebesar 93%
4	Wahib Pawit,	Systematic	Mengevaluasi	Algoritma YOLO
	Tunggal Arya,	Literature	sistem deteksi	memiliki
	Muhamad N et	Review:	masker	kemampuan untuk
	al. / 2023 [14]	Sistem	menggunakan	memproses
		Deteksi	metode YOLO	berbagai variasi
		Penggunaan	serta Systematic	data yang diberikan
		Masker	Literatur View	untuk sistem
		Menggunakan	untuk efektivitas	pendeteksi
		Algoritma	sistem penggunaan	penggunaan
		YOLO	masker	masker serta
				mendeteksi objek
				secara real-time
5	Azis Abdul,	Systematic	Mendeteksi jenis	makanan cepat saji
	Afiffudin,	Literature	makanan ringan	memiliki akurasi
	Akbar	Review:	berdasarkan objek.	validasi mAP
	Muhamad et al.	Analisis	Penulis	sebesar 100% dan
	/ 2023 [15]	Penerapan	menggunakan	avg loss sebesar
		Algoritma	aplikasi <i>Publish or</i>	4.6%. Oleh karena
		YOLO Dalam	Perish dengan	itu implementasi
		Mendeteksi	memakai <i>database</i>	deep learning
		Objek Jenis	Google Scholar	menggunakan
		Makanan	dan <i>Crossref</i> dalam	YOLO mampu
		Ringan	mencari sumber	melakukan
			informasi.	pengenalan objek
			Kemudian, penulis	pada citra makanan
			melakukan	cepat saji dengan
			pencarian sumber	baik.

			informasi dengan	
			menggunakan kata	
			kunci	
6	Hammam	Implementasi	Mengklasifikasikan	Kemampuan
	Harits, Adhi	dan Analisis	objek kedalam	arsitektur YOLOv3
	Surya,	Performansi	sebuah kelas yang	dalam mengenali
	Budiman Gelar	Metode You	telah ditentukan	dan menyaring
	/ 2020 [16]	Only Look	serta melakukan	objek yang
		Once	bypass pada situs-	termasuk dalam
		(YOLO)	situs terlarang	kategori konten
		Sebagai		pornografi dengan
		Sensor		label 'porn' terbukti
		Pornografi		melalui hasil uji
		Pada Video		terbaik
				menggunakan
				parameter Mean
				Average Precision
				(mAP). Model
				yang telah dilatih
				menunjukkan
				kemampuan
				deteksi pada video
				dengan kecepatan
				frame sebesar 25
				fps.
7	William	Pengenalan	Teknologi ini dapat	Model YOLO yang
	Alexander,	Jenis	mempermudah	di modifikasi
	Gunadi	Masakan	aplikasi informasi	akurasi lebih
	Kartika,	Melalui	gizi masakan	tinggi dan

	Wiliyanto Leo /	Gambar	dalam mendeteksi	kecepatan deteksi
	2021 [17]	Mengunakan	keberadaan dan	yang lebih cepat
		YOLO	jenis masakan	dibandingkan
			melalui gambar	dengan model
			sehingga tidak	YOLOstandar,
			perlu lagi	YOLO yang
			dimasukan secara	dimodifikasi juga
			manual.	memiliki
				sensitivitas
				prediksi lebih
				tinggi sehingga
				banyak prediksi
				false positive
8	Hidayat Taufik,	Analisis	Kinerja deteksi	Deteksi kendaraan
	Fajar Restu,	Kinerja dan	kendaraan dalam	menggunakan
	Ilham M et al. /	Peningkatan	sistem pengawasan	metode YOLO
	2023 [18]	Kecepatan	video	pada sistem
		Deteksi	menggunakan	pengawasan video
		Kendaraan	metode YOLO.	dengan
		dalam Sistem	Fokusnya terletak	menggunakan
		Pengawasan	pada evaluasi	dataset video
		Video dengan	performa sistem	simulasi perkotaan.
		Metode	deteksi dan	Hasil evaluasi
		YOLO	langkah-langkah	menunjukkan
			peningkatan	bahwa model
			kecepatan deteksi	YOLO berhasil
			kendaraan dalam	mendeteksi
			konteks	kendaraan dengan
			pengawasan video.	akurasi tinggi pada

				kecepatan frame 25
				fps, membuktikan
				potensi
				implementasi
				efektif dalam
				pengawasan lalu
				lintas perkotaan.
9	Salamah et al. /	Perancangan	Model teknologi	Hasil pengujian
	2022 [19]	Alat	manajemen absensi	menunjukkan
		Identifikasi	mahasiswa dapat	bahwa metode
		Wajah	dilakukan dengan	yang diusulkan
		dengan	teknologi antara	memiliki rata-rata
		Algoritma	lain face	akurasi sebesar
		You Only	recognition, sidik	0,9793. Penelitian
		Look Once	jari, SMS gateway,	ini memberikan
		(YOLO)	dan RFID (Radio	perhatian khusus
		Untuk	Frequency	pada parameter
		Presensi	Identification) serta	pencahayaan dan
		Mahasiswa.	teknologi GPS	kemampuan
				pengiriman data
				secara <i>real-time</i> ke
				website.
10	Khairunnuas et	Pembuatan	Mobile robot dapat	Hasil yang
	al. / 2021 [20]	Modul	dibuat sebagai	diharapkan dari
		Deteksi	pengikut garis (line	jurnal ini adalah
		Objek	follower) yang	sistem <i>mobile</i> robot
		Manusia	dapat berjalan	yang berhasil
		Menggunakan	dijalur hitam	mendeteksi dan
		Metode	dengan permukaan	mengenali objek

		YOLO	lantai putih. Akan	manusia dengan
		untuk <i>Mobile</i>	tetapi <i>mobile robot</i>	akurat
		Robot	yang dapat	menggunakan
			mengikuti manusia	metode YOLO
			masih jarang	berbasis CNN.
			ditemukan di	
			Indonesia	
11	N Alya,	Implementasi	Quadcopter	Proses training
	Hartono Budi /	Pengolahan	merupakan	dilakukan
	2022 [21]	Citra pada	kendaraan udara	sebanyak tiga kali
		Quadcopter	tanpa awak	dengan
		untuk Deteksi	(unmanned aerial	menggunakan img
		Manusia	vehicle) yang	size (resolusi
		Menggunakan	memiliki empat	gambar yang di-
		Algoritma	rotor yang	train) 480, batch
		YOLO	diletakkan dalam	(jumlah mini batch
			formasi persegi	size) 25, dan epoch
			dengan jarak yang	(banyaknya iterasi
			sama dari pusat ke	atau pelatihan yang
			massa quadcopter	dilakukan) 100.
				Setelah tiga kali
				proses training,
				didapatkan nilai
				mAP terbaik
				sebesar 86.8%.
12	Yusqi	Deteksi	Pada penelitian ini,	Jumlah dataset
	Muhamad, Eka	Wajah	setiap citra pada	citra yang
	K, Agustien I /	Manusia	YOLO akan	digunakan adalah
	2023 [22]	Berbasis One	dibentuk grid	2400 citra dengan

		Stage	dengan ukuran S x	pembagian 1920
		Detector	S, dimana setiap	citra training dan
		Menggunakan	grid pada citra	480 citra
		Metode You	akan memprediksi	testing.Terdapat
		Only Look	bounding box B	tiga skenario
		Once	dan Nilai	percobaan pada
		(YOLO)	probabilitas kelas	penelitian ini
			C. Terdapat lima	diantaranya
			prediksi dalam	perbandingan
			bounding box B	ukuran grid,
			yaitu <i>confidence</i>	perbandingan
			score(p), x, y,	ukuran citra, dan
			w,dan h.	perbandingan
				jumlah <i>epoch</i> .
13	Cuong Hung,	YOLO Series	Penelitian ini untuk	Seri YOLO
	Hao Thi et al. /	for Human	mendeteksi dan	digunakan untuk
	2023 [23]	Hand Action	mengklasifikasikan	melakukan deteksi
		Detection and	tindakan tangan	dan klasifikasi
		Classification	manusia dari video	tindakan tangan,
		from	egosentris.	dengan tingkat
		Egocentric	Penelitian ini	akurasi mencapai
		Videos	berfokus pada	rata-rata 90%.
			pengembangan	Dataset mencakup
			sistem yang dapat	situasi sehari-hari
			secara efisien	seperti memasak,
			mendeteksi dan	berbelanja, dan
			mengidentifikasi	berbicara, yang
			berbagai gerakan	memungkinkan
			tangan dalam	model kami untuk

			konteks video yang	mengenali tindakan
			diambil dari sudut	tangan dengan
			pandang pengguna.	keberagaman
				konteks yang
				tinggi.
14	Tang Fei, Lei	Underwater	Melalui	Dengan
	Fei, Li Shuhan	Target	serangkaian	mengimplementasi
	/ 2022 [24]	Detection	eksperimen dengan	kan perbaikan pada
		Algorithm	dataset yang	model, akurasi
		Based on	mencakup berbagai	deteksi target
		Improved	kondisi lingkungan	meningkat sebesar
		YOLOv5	bawah air, hasilnya	18% berdasarkan
			menunjukkan	uji coba pada
			peningkatan	dataset bawah air
			akurasi deteksi	yang mencakup
			target sebesar 15%	berbagai kondisi,
			dibandingkan versi	termasuk
			sebelumnya.	perubahan cahaya
			Peningkatan ini	dan variasi bentuk
			dapat berpotensi	target.
			meningkatkan	
			kinerja sistem	
			pengawasan di	
			bawah air, seperti	
			dalam konteks	
			keamanan maritim	
			atau penelitian	
			lingkungan laut.	

15	Susanti Lusi,	Sistem	Penelitian ini	Penguji
	Khairani Nelly,	Absensi	berfokus pada	mendapatkan hasil
	Intan Bunga /	Mahasiswa	pengenalan wajah,	yang dapat
	2023 [25]	Berbasis	mulai dari	mendeteksi wajah
		Pengenalan	pembuatan sistem	mahasiswa/I
		Wajah	hingga mengujinya	dengan benar dan
		Menggunakan	dengan sistem yang	memiliki akurasi
		Algoritma	akan membuat	yang bervariasi
		YOLOv5	sistem ini dapat	sesuai dengan
			mengenali wajah	kondisi
			yang terdeteksi	pencahayaan dan
			oleh sistem	atribut yang
				dikenakan serta
				didapatkan
				pembacaan akurasi
				dalam menebak
				orang lebih dari
				80% bila posisi
				tepat ditengah dan
				wajah memiliki
				cahaya yang baik.
16	Dio Muhamad,	Deteksi	Pada penelitian ini	YOLOv5
	Priyatna Bayu,	Objek	membagi dua	digunakan pada
	Shofiah Shofa	Kecelakaan	gambar data input	penelitian ini
	et al. / 2022	pada	kedalam SxS grid	berhasil dijalankan
	[26]	Kendaraan	cell. Setiap	untuk mendeteksi
		Roda Empat	kecelakaan	kecelakaan
		Menggunakan	memprediksikan	kendaraan roda
			nilai <i>confidencedan</i>	empat. Dalam

		Algoritma	juga memprediksi	proses training
		YOLOv5	banyak <i>bounding</i>	model, hyper
			box. Jika tidak ada	parameter yang
			objek didalam cell	digunakan adalah
			tersebut, maka nilai	learning rate 0.01
			confidence akan	dan momentum 0.9
			menjadi nol.	serta iterasi
				maksimal 500
				dengan call back
				apabila <i>mean</i>
				average precission
				(mAP) sudah tidak
				bisa naik
				selama 5 iterasi.
17	Fransisca	Penerapan	Penelitian ini untuk	Peningkatan
	Viviana,	Gamma	membantu projek	koreksi cahaya
	Santoso H /	Correction	smart lighting yang	menggunakan
	2023 [27]	Dalam	sedang	Gamma Correction
		Peningkatan	dikembangkan	untuk dapat
		Pendeteksian	digunakan untuk	mengidentifikasi
		Objek Malam	mengatur smart	dan memisahkan
		Pada	lighting	isolator normal dari
		Algoritma	berdasarkan sistem	isolator yang
		YOLOv5	deteksi objek yang	mengalami cacat
			terlebih dahulu di	pada jaringan
			improvisasikan	listrik di tempat
			terlebih dahulu	yang gelap agar
			agar dapat secara	lebih akurat, hasil
			akurat mendeteksi	akurasi (map) yang

			objek di malam	didapatkan ketika
			hari.	dilakukan tes pada
				YOLOv5 adalah
				sebesar 91.32%.
18	Setiana L,	Deteksi	Penelitian ini	Hasil evaluasi
	Jayanta / 2023	Penyakit	mengevaluasi	menunjukkan
	[28]	Tanaman	penggunaan	bahwa dengan
		Cabai	algoritma YOLOv5	mengoptimalkan
		Menggunakan	untuk deteksi	pembagian data,
		Algoritma	penyakit pada	terjadi peningkatan
		YOLOv5	tanaman cabai	akurasi deteksi
		dengan	dengan	sebesar 15%.
		Variasi	mengintegrasikan	Sebagai contoh,
		Pembagian	variasi pembagian	penyakit cacar
		Data	data.	pada cabai dapat
				terdeteksi dengan
				akurasi lebih
				tinggi, mencapai
				92% dibandingkan
				dengan model
				sebelumnya.
19	Iskandar	Implementasi	Penelitian ini	Training pada
	Dadang, Ainur	Deteksi Real	menggunakan	penelitian
	M / 2022 [29]	Time	pendeteksian objek	pendeteksian jenis
		Klasifikasi	metode YOLO	kendaraan dijalan
		Jenis	pada suatu sistem	raya mendapatkan
		Kendaraan Di	dapat membantu	nilai yang cukup
		Indonesia	mengklasifikasi	tinggi nilainya,
		Menggunakan	setiap jenis	nilai <i>precision</i>

		Metode	kendaraan yang	mendapatkan rata-
		YOLOV5	melintas pada jalan	rata niali 0.995
			raya secara <i>real</i> -	terhadap nilai
			time pada rekaman	recall. Nilai
			video	puncak rata-rata
				recall
				mendapatkan nilai
				1,00 pada nilai
				confidence 0,00
20	A Andi,	Klasifikasi	Penelitian ini	Sistem yang dibuat
	Kurniawan	Emosi	mengimplementasi	bekerja sesuai
	Rudi, Oktafia	Melalui	kan algoritma deep	dengan yang
	H / 2023 [30]	Ekspresi	learning untuk	diharapkan hal ini
		Wajah	melakukan	dapat dibuktikan
		Menggunakan	klasifikasi emosi	dengan hasil mAP
		Algoritma	melalui ekspresi	sebesar
		Deep	wajah,	0.96.2.Hasil
		Learning	menggunakan	training dataset
			dataset berisi	menggunakan
			berbagai gambar	algoritma YOLOv5
			ekspresi wajah	mendapatkan nilai
			manusia.	akurasi yang tinggi
				yaitu 87%.

2.2 Landasan Teori

2.2.1 Bahasa Isyarat Indonesia (SIBI)

Bahasa Isyarat Indonesia (SIBI) adalah bentuk bahasa isyarat yang digunakan oleh komunitas tuli di Indonesia sebagai alat komunikasi utama. Dalam SIBI, komunikasi dilakukan melalui gerakan tangan, ekspresi wajah, dan postur tubuh. Gestur tangan dalam SIBI

bukan hanya sekadar simbol atau abjad, melainkan menyampaikan makna yang kaya dan kompleks. Setiap gerakan memiliki signifikansi tertentu, dan kombinasi gestur membentuk kalimat atau frasa dengan makna yang jelas.

Pemahaman mendalam tentang SIBI melibatkan aspek linguistik, di mana penutur SIBI menggunakan berbagai gerakan tangan untuk menyampaikan makna kata atau kalimat. Selain itu, konteks budaya dan sosial juga memainkan peran penting dalam interpretasi pesan, karena SIBI bukan hanya sarana komunikasi tetapi juga mencerminkan identitas dan keberagaman budaya masyarakat tuli di Indonesia.

Dalam konteks implementasi algoritma YOLOv5 untuk deteksi gestur tangan SIBI, pemahaman yang komprehensif terhadap makna dan variasi gerakan tangan menjadi esensial. Sistem deteksi harus dapat membedakan antara berbagai gestur tangan yang seringkali memiliki perbedaan subtan dalam makna, memastikan interpretasi yang akurat dan responsif terhadap pesan yang disampaikan oleh pengguna SIBI. Oleh karena itu, landasan teori tentang SIBI perlu mendalam untuk menghasilkan sistem yang efektif dan kontekstual dalam mendukung komunikasi orang-orang tuli menggunakan Bahasa Isyarat Indonesia.

2.2.2 You Only Look Once (YOLOv5)

You Only Look Once versi 5 (YOLOv5) merupakan suatu inovasi terbaru dari keluarga algoritma YOLO, yang dikenal sebagai algoritma pendeteksi objek one-stage (deteksi dalam satu tahap). Dalam konteks implementasi ini, YOLOv5 memegang peranan penting sebagai mesin deteksi untuk mengekstraksi dan mengidentifikasi gestur tangan dalam Bahasa Isyarat Indonesia (SIBI). Algoritma ini menonjol karena kemampuannya dalam memberikan deteksi objek secara cepat dan akurat, terutama dalam situasi real-time. Beberapa poin penting terkait YOLOv5 yang memberikan landasan teori yang kokoh untuk

implementasi deteksi gestur tangan SIBI secara real-time adalah sebagai berikut:

1. Deteksi One-Stage yang Efisien:

YOLOv5 diusung oleh pendekatan deteksi *one-stage*, memungkinkan sistem untuk secara simultan mengidentifikasi dan lokalisasi objek dalam satu iterasi.

2. Partisi Grid Cell dan Perhitungan Multi-Skala:

Model YOLOv5 membagi gambar menjadi grid cell dan setiap cell bertanggung jawab untuk mendeteksi objek dalam ruang geografisnya.

3. Prediksi Probabilitas dan Koordinat Bounding Box:

YOLOv5 memberikan prediksi probabilitas untuk setiap objek dan menghasilkan koordinat bounding box yang menunjukkan lokasi tepat objek tersebut pada gambar.

4. Efisiensi dan Akurasi Tinggi:

Keunggulan utama YOLOv5 terletak pada keseimbangan antara efisiensi dan akurasi. Model ini mampu memberikan deteksi objek dengan tingkat akurasi yang tinggi tanpa mengorbankan kecepatan.

Dengan demikian, pemahaman yang mendalam tentang prinsipprinsip dasar dan keunggulan YOLOv5 membentuk fondasi yang solid untuk implementasi sistem deteksi gestur tangan SIBI secara real-time. Keseluruhan, model ini menghadirkan kombinasi kecepatan dan akurasi yang esensial untuk mendukung pemahaman gestur tangan dalam konteks Bahasa Isyarat Indonesia, menjadikannya pilihan yang sangat relevan untuk pendekatan aplikatif ini.

2.2.3 Implementasi *Real-Time*

Poin implementasi real-time menjadi kritis dalam konteks deteksi gestur tangan SIBI menggunakan algoritma YOLOv5. Beberapa aspek

yang perlu diperhatikan dalam pemahaman landasan teori mengenai implementasi *real-time* adalah sebagai berikut:

1. Responsibilitas Waktu Nyata:

Implementasi harus memberikan respons cepat dan instan terhadap input gambar atau video untuk mendukung pengalaman pengguna yang lancar.

2. Kebutuhan Perangkat Keras dan Perangkat Lunak:

Pemahaman tentang spesifikasi perangkat keras dan perangkat lunak yang dibutuhkan untuk mendukung kecepatan deteksi dan responsibilitas sistem.

3. Strategi Peningkatan Kecepatan Deteksi:

Pembahasan mengenai strategi atau teknik yang digunakan untuk meningkatkan kecepatan deteksi objek, termasuk optimisasi model dan penggunaan teknik pemrosesan paralel.

2.2.4 YOLO Based on Sign Language Detection

Penulis mengusulkan penggunaan algoritma YOLO (*You Only Look Once*) sebagai dasar untuk deteksi Bahasa Isyarat (BI). Pilihan ini didasarkan pada beberapa pertimbangan yang mendasar, termasuk:

1. Real-Time Detection Capability:

YOLO dikenal dengan kemampuannya dalam mendeteksi objek secara waktu nyata. Dalam konteks Bahasa Isyarat, responsibilitas waktu nyata menjadi kritis untuk memungkinkan komunikasi yang efektif melalui gestur tangan. YOLO, sebagai algoritma *one-stage*, menawarkan kecepatan deteksi yang tinggi tanpa mengorbankan akurasi.

2. *One-Stage Object Detection*:

Pendekatan *one-stage* yang digunakan oleh YOLO memungkinkan sistem untuk langsung mendeteksi dan mengklasifikasikan objek dalam satu iterasi. Hal ini sangat sesuai untuk Bahasa Isyarat, di mana setiap gerakan tangan

memiliki makna komunikatif. YOLO dapat secara efisien menangani variasi gestur tangan tanpa memerlukan tahap iteratif yang kompleks.

3. *Multiclass Object Detection*:

YOLO mampu mendeteksi objek dari berbagai kelas sekaligus. Dalam konteks Bahasa Isyarat, di mana gestur tangan mengandung sejumlah besar variasi makna, kemampuan ini memungkinkan sistem untuk mendeteksi dan mengklasifikasikan berbagai gestur tangan yang mungkin digunakan dalam komunikasi Bahasa Isyarat.

4. High Accuracy and Versatility:

YOLOv5, sebagai iterasi terbaru, memiliki keseimbangan yang baik antara akurasi dan kecepatan deteksi. Keandalan YOLOv5 dalam berbagai domain aplikasi membuatnya cocok untuk diterapkan dalam konteks deteksi Bahasa Isyarat yang melibatkan interpretasi kompleks dari gestur tangan.

5. Availability of Pre-trained Models:

YOLOv5 menyediakan *pre-trained* models yang dapat digunakan sebagai titik awal untuk deteksi objek. Hal ini dapat mempercepat pengembangan sistem deteksi Bahasa Isyarat tanpa memerlukan latihan model dari awal.

6. Community Support and Continuous Development:

Komunitas pengembang yang besar dan berkelanjutan yang mendukung YOLO memastikan adanya pembaruan terusmenerus dan dukungan teknis yang dapat membantu penulis dalam mengimplementasikan dan memelihara sistem deteksi Bahasa Isyarat berbasis YOLO.

Dengan memilih YOLO sebagai landasan untuk deteksi Bahasa Isyarat, penulis percaya bahwa kombinasi kecepatan, akurasi, dan fleksibilitas algoritma ini akan membuka potensi besar dalam meningkatkan efektivitas komunikasi melalui Bahasa Isyarat menggunakan teknologi pengenalan gestur tangan.

3. Metodologi Penelitian

Metodologi penelitian yang diajukan untuk mengimplementasikan algoritma YOLO sebagai pendeteksi bahasa isyarat secara *real-time* dapat dibagi menjadi empat tahap utama: Berikut adalah rincian tentang keempat tahap ini:

3.1 Data Collection and Pre-Processing

 Dataset: Menggunakan kumpulan data patokan untuk melatih dan mengevaluasi model. Data tersebut berupa perkata beserta gesturnya

2. Pra-Pemrosesan Data:

- Pelabelan Data: Kumpulan data berisi gambar sikap. Untuk melatih data di YOLOv5, kumpulan data harus dimiliki label dan kotak pembatas anotasi. Nilai dari koordinat kotak anotasi harus dinormalisasi antara 0-1. Untuk membuat kotak pembatas setiap gambar
- Augmentasi Data: Data yang kami gunakan untuk melatih model kami cukup kecil. Untuk membuat modelnya lebih umum dan menghindari over-fitting, augmentasi data adalah teknik yang sudah terbukti dan umum. Kami menerapkan data augmentasi pada gambar yang digunakan untuk pelatihan.

3.2 Arsitektur Sistem

Arsitektur sistem, menjelaskan proses awal dari pengguna mengakses aplikasi kemudian mengarahkan kamera ke objek tangan teman tuli yang melakukan gerakan bahasa isyarat. Proses klasifikasi objek akan dilakukan oleh algoritma YOLOv5, jika sistem dapat mengenali maka akan menampilkan *bounding box* dan output berupa teks huruf abjad. Proses ini akan terjadi iterasi sesuai apa yang dideteksi

Gambar tangan Labelling per-Distribusi data Start Preprocessing kata BISINDO kelas training test File dataset Konfigurasi Memuat Penghasilan Hasi dengan YOLOv5 training dataset preprocessing gambar label File weight Convert file Training Unduh file ke pytorch hasil eight pytorch Finish model platform training ke title

oleh kamera *handphone*. Gambaran arsitektur sistem ditunjukkan pada gambar di bawah ini:

Gambar 3.1 Arsitektur Model

3.3 Object Detection

Deteksi objek adalah teknologi komputer yang terkait dengan penglihatan komputer dan pengolahan citra yang berkaitan dengan mendeteksi objek dalam gambar digital berdasarkan warna dan bentuk objek. Deteksi objek menggunakan metode YOLOv5 memungkinkan identifikasi objek dalam gambar digital atau objek didalam video. Object detection dapat dibagi menjadi soft detection yang hanya mendeteksi keberadaan dari objek dan hard detectionyang mendeteksi keberadaan serta lokasi dari objek. Dalam penelitian ini model object detection yang dilatih yaitu untuk mendeteksi sistem isyarat bahasa Indonesia (SIBI).

BackBone **PANet** Output BottleNeckCSP BottleNeckCSP Conv1x1 Concat ٨ Conv3x3 52 UpSample ٨ Convlx1 Concat BottleNeckCSP BottleNeckCSP BottleNeckCSP Concat Conv1x1 UpSample Conv3x3 52 ٨ Conv1x1 Concat ٨ BottleNeckCSP BottleNeckCSP Conv1x1

Overview of YOLOv5

Gambar 3.2 Model YOLO Sebagai Object Detection

3.4 Implementasi *Real-Time*

Pada tahap ini, model YOLOv5 yang telah dilatih akan diintegrasikan ke dalam sistem untuk mendeteksi gestur tangan Bahasa Isyarat Indonesia (SIBI) secara *real-time*. Proses *implementasi real-time* akan mencakup langkah-langkah berikut:

1. Integrasi Model ke dalam Sistem:

Model YOLOv5 akan diintegrasikan ke dalam infrastruktur sistem. Ini melibatkan penyesuaian antarmuka model dengan komponen sistem yang telah dirancang sebelumnya.

2. Optimisasi Algoritma dan Kode:

Algoritma deteksi dan kode program akan dioptimalkan untuk memastikan deteksi gestur tangan SIBI berlangsung dengan respons yang cepat. Upaya optimisasi akan difokuskan pada efisiensi algoritma untuk memaksimalkan kecepatan deteksi.

3. Pengujian Responsibilitas dan Kecepatan Deteksi:

Sistem akan diuji secara intensif untuk mengukur responsibilitas dan kecepatan deteksi dalam situasi waktu nyata. Pengujian ini akan membantu menilai kinerja sistem saat menghadapi variasi gestur tangan dalam lingkungan yang dinamis.

4. Validasi Responsibilitas Tinggi:

Validasi akan dilakukan untuk memastikan bahwa sistem memberikan responsibilitas tinggi terhadap gestur tangan, sehingga memungkinkan interaksi yang alami dan tanpa hambatan.

Proses implementasi *real-time* ini akan memastikan bahwa sistem deteksi gestur tangan SIBI menggunakan YOLOv5 dapat memberikan responsibilitas dan kecepatan deteksi yang diperlukan untuk mendukung komunikasi real-time melalui Bahasa Isyarat Indonesia.

DAFTAR PUSTAKA

- [1] "MENELITI BAHASA ISYARAT DALAM PERSPEKTIF VARIASI BAHASA Silva Tenrisara Isma Abstrak".
- [2] "View of RESPON TUNARUNGU TERHADAP PENGGUNAAN SISTEM BAHASA ISYARAT INDONESA (SIBI) DAN BAHASA ISYARAT INDONESIA (BISINDO) DALAM KOMUNIKASI." https://ejournal.uinsuka.ac.id/pusat/inklusi/article/view/2202/1002 (accessed Dec. 08, 2023).
- [3] D. Permana and J. Sutopo, "APLIKASI PENGENALAN ABJAD SISTEM ISYARAT BAHASA INDONESIA (SIBI) DENGAN ALGORITMA YOLOV5 MOBILE APPLICATION ALPHABET RECOGNITION OF INDONESIAN LANGUAGE SIGN SYSTEM (SIBI) USING YOLOV5 ALGORITHM," vol. 11, no. 2, pp. 231–240, 2023.
- [4] T. F. Dima and M. E. Ahmed, "Using YOLOv5 Algorithm to Detect and Recognize American Sign Language," 2021 Int. Conf. Inf. Technol. ICIT 2021 Proc., no. December, pp. 603–607, 2021, doi: 10.1109/ICIT52682.2021.9491672.
- [5] M. Rivera-Acosta, J. M. Ruiz-Varela, S. Ortega-Cisneros, J. Rivera, R. Parra-Michel, and P. Mejia-Alvarez, "Spelling correction real-time american sign language alphabet translation system based on yolo network and LSTM," *Electron.*, vol. 10, no. 9, 2021, doi: 10.3390/electronics10091035.
- [6] Z. Ahmad, "A Real Time Malaysian Sign Language Detection Algorithm Based on YOLOv3," *Artic. Int. J. Recent Technol. Eng.*, no. 8, pp. 2277–3878, 2021, doi: 10.35940/ijrte.B1102.0982S1119.
- [7] U. Fadlilah, A. K. Mahamad, B. Handaga, S. Daniels, N. Suciati, and C. Fathichah, "Indonesian Sign Language Recognition using YOLO Method You may also like A deep convolutional neural network model for hand gesture recognition in 2D near-infrared images Celal Can, Yasin Kaya and Fatih Klç-The Development of Android for Indonesian Sign Language Using Tensorflow Lite and CNN: An Initial Study Indonesian Sign Language Recognition using

- YOLO Method", doi: 10.1088/1757-899X/1077/1/012029.
- [8] H. Minh and H. Minh Bui, "HAND SIGN LANGUAGE RECOGNITION WITH ARTIFICIAL INTELLIGENCE Using 'You Only Look Once' (Yolo) model as a case".
- [9] D. Talukder and F. Jahara, "Real-Time Bangla Sign Language Detection with Sentence and Speech Generation," *ICCIT 2020 23rd Int. Conf. Comput. Inf. Technol. Proc.*, Dec. 2020, doi: 10.1109/ICCIT51783.2020.9392693.
- [10] D. Luthfy, C. Setianingshi, and M. W. Paryasto, "Indonesian Sign Language Classification Using You Only Look Once," *eProceedings Eng.*, vol. 10, no. 1, pp. 454–459, 2023.
- [11] "View of Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once)." https://journal.jis-institute.org/index.php/jnik/article/view/534/318 (accessed Dec. 18, 2023).
- [12] C. N. Liunanda, S. Rostianingsih, and A. N. Purbowo, "Implementasi Algoritma YOLO pada Aplikasi Pendeteksi Senjata Tajam di Android.," *J. Infra*, vol. 8, no. 2, pp. 235–241, Oct. 2020, Accessed: Dec. 18, 2023. [Online]. Available: https://publication.petra.ac.id/index.php/teknik-informatika/article/view/10527
- [13] F. Agustina and M. Sukron, "Deteksi Kematangan Buah Pepaya Menggunakan Algoritma YOLO Berbasis Android," *J. Ilm. Infokam*, vol. 18, no. 2, pp. 70–78, Dec. 2022, Accessed: Dec. 18, 2023. [Online]. Available: https://amikjtc.com/jurnal/index.php/jurnal/article/view/320
- [14] "View of Systematic Literature Review: Sistem Deteksi Penggunaan Masker Menggunakan Algoritma YOLO." https://jurnalmahasiswa.com/index.php/aidanspk/article/view/163/118 (accessed Dec. 18, 2023).
- [15] "View of Systematic Literature Review: Analisis Penerapan Algoritma YOLO Dalam Mendeteksi Objek Jenis Makanan Ringan." https://jurnalmahasiswa.com/index.php/jriin/article/view/200/248 (accessed Dec. 18, 2023).

- [16] H. Hammam, A. Asyhar1, S. A. Wibowo2, and G. Budiman3, "Implementasi Dan Analisis Performansi Metode You Only Look Once (YOLO) Sebagai Sensor Pornografi Pada Video," *eProceedings Eng.*, vol. 7, no. 2, Aug. 2020, Accessed: Dec. 18, 2023. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/12892
- [17] A. W. Sutjiadi, K. Gunadi, and L. W. Santoso, "Pengenalan Jenis Masakan Melalui Gambar Mengunakan YOLO," *J. Infra*, vol. 9, no. 2, pp. 124–130, Oct. 2021, Accessed: Dec. 18, 2023. [Online]. Available: https://publication.petra.ac.id/index.php/teknik-informatika/article/view/11436
- [18] "View of Analisis Kinerja Dan Peningkatan Kecepatan Deteksi Kendaraan Dalam Sistem Pengawasan Video Dengan Metode YOLO." https://jurnalmahasiswa.com/index.php/jriin/article/view/206/249 (accessed Dec. 19, 2023).
- [19] I. Salamah, M. Redho, A. Said, and S. Soim, "Perancangan Alat Identifikasi Wajah Dengan Algoritma You Only Look Once (YOLO) Untuk Presensi Mahasiswa," *J. MEDIA Inform. BUDIDARMA*, vol. 6, no. 3, pp. 1492–1500, Jul. 2022, doi: 10.30865/mib.v6i3.4399.
- [20] K. Khairunnas, E. M. Yuniarno, and A. Zaini, "Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot," *J. Tek. ITS*, vol. 10, no. 1, pp. A50–A55, Aug. 2021, doi: 10.12962/j23373539.v10i1.61622.
- [21] A. N. Sugandi, B. Hartono, and K. Kunci, "Implementasi Pengolahan Citra pada Quadcopter untuk Deteksi Manusia Menggunakan Algoritma YOLO," *Pros. 13th Ind. Res. Work. Natl. Semin.*, pp. 13–14, 2022.
- [22] M. Yusqi Alfan Thoriq, K. Eka Permana, I. Agustien Siradjuddin, T. Informatika, U. Trunojoyo Madura, and J. Raya Telang Kamal, "DETEKSI WAJAH MANUSIA BERBASIS ONE STAGE DETECTOR MENGGUNAKAN METODE YOU ONLY LOOK ONCE (YOLO)," *J. Teknoinfo*, vol. 17, no. 1, pp. 66–73, Jan. 2023, Accessed: Dec. 19, 2023.

- [Online]. Available:
- https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/article/view/1884
- [23] H. C. Nguyen, T. H. Nguyen, R. Scherer, and V. H. Le, "YOLO Series for Human Hand Action Detection and Classification from Egocentric Videos," Sensors 2023, Vol. 23, Page 3255, vol. 23, no. 6, p. 3255, Mar. 2023, doi: 10.3390/S23063255.
- [24] F. Lei, F. Tang, and S. Li, "Underwater Target Detection Algorithm Based on Improved YOLOv5," J. Mar. Sci. Eng. 2022, Vol. 10, Page 310, vol. 10, no. 3, p. 310, Feb. 2022, doi: 10.3390/JMSE10030310.
- [25] L. Susanti, N. K. Daulay, and B. Intan, "Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5," *JURIKOM (Jurnal Ris. Komputer)*, vol. 10, no. 2, pp. 640–647, Apr. 2023, doi: 10.30865/jurikom.v10i2.6032.
- [26] "View of Deteksi Objek Kecelakaan Pada Kendaraan Roda Empat Menggunakan Algoritma YOLOv5." https://journal.unipdu.ac.id/index.php/teknologi/article/view/3260/1523 (accessed Dec. 19, 2023).
- [27] "View of Penerapan Gamma Correction Dalam Peningkatan Pendeteksian Objek Malam Pada Algoritma YOLOv5." https://ejurnal.seminar-id.com/index.php/bits/article/view/3553/2038 (accessed Dec. 19, 2023).
- [28] L. S. Riva and J. Jayanta, "Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data," *J. Inform. J. Pengemb. IT*, vol. 8, no. 3, pp. 248–254, Sep. 2023, Accessed: Dec. 19, 2023. [Online]. Available:
 - https://ejournal.poltekharber.ac.id/index.php/informatika/article/view/5679
- [29] D. Iskandar Mulyana and M. A. Rofik, "Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5," *J. Pendidik. Tambusai*, vol. 6, no. 3, pp. 13971–13982, 2022, doi: 10.31004/jptam.v6i3.4825.
- [30] "View of KLASIFIKASI EMOSI MELALUI EKSPRESI WAJAH

MENGGUNAKAN ALGORITMA DEEP LEARNING."

https://semnas.univbinainsan.ac.id/index.php/escaf/article/view/470/304 (accessed Dec. 19, 2023).