Prof. Alessandro L. Koerich

Filtro Passa-Baixa e Filtro Passa-Alta

Obietivo

Verificar o funcionamento de um circuito RC atuando como filtro passa-baixa e como filtro passa-alta.

Componentes e Instrumentação

- Capacitor de poliéster ou cerâmico 100nF (104)
- Resistor 2.2kΩ.
- Osciloscópio Digital de Dois Canais e Ponteiras 1x e 10x
- Gerador de Funções

Introdução

O filtro passa-baixa é constituído por um circuito RC-Série em que a tensão de saída é a do capacitor.

Para ondas senoidais de frequências baixas, a reatância capacitiva assume valores altos em comparação com o valor da resistência, dessa maneira a tensão de saída será praticamente igual à tensão de entrada.

Para frequências altas, a reatância capacitiva assume valores baixos em comparação com o valor da resistência, atenuando a tensão de saída para um valor praticamente nulo. Dessa maneira, o filtro permite a passagem de

sinais de frequências baixas, sendo por isso denominado filtro passa-baixa.

Para uma determinada frequência, quando a reatância capacitiva for igual à resistência, teremos a tensão de saída igual à tensão no resistor, que somadas vetorialmente resultam na tensão de entrada. Dessa maneira, podemos escrever:

 $V_e = \sqrt{V_R^2 + V_C^2}$

onde

$$V_R = V_C = V_s$$
 \therefore $V_e = \sqrt{V_s^2 + V_s^2}$ $V_e = \sqrt{2V_s^2}$ $V_e = V_s\sqrt{2}$ ou $V_s = \frac{V_e}{\sqrt{2}}$

Essa frequência, em que temos a situação anterior descrita, é denominada frequência de corte (f_c) e pode ser determinada igualando o valor da reatância com o valor da resistência.

$$X_C = R$$
 ou $\frac{1}{2\pi f_c C} = R$ \therefore $f_c = \frac{1}{2\pi RC}$

A característica da tensão de saída em função da frequência de um filtro passa-baixa é vista na figura abaixo.

Com o diagrama vetorial construído do circuito da figura anterior, podemos determinar a defasagem entre a tensão de saída e a tensão de entrada, utilizando a relação trigonométrica $\cos\theta = V_s/V_e$. Esse diagrama é visto abaixo.

Como em baixas frequências $V_s = V_e$ temos o caso $\cos\theta = 1$, portanto $\theta = 0^{\circ}$. Para altas frequências $V_s = 0$ e $\cos\theta=0$, portanto $\theta=90^{\circ}$. Na frequência de corte $V_s=V_e/\sqrt{2}$ e $\cos\theta=1/\sqrt{2}$ portanto $\theta=45^{\circ}$. A curva da defasagem em função da frequência é vista na figura abaixo.

O filtro passa-alta é constituído pelo mesmo circuito RC-Série, somente que, neste caso, a tensão de saída é a obtida sobre o resistor. Este circuito é visto na figura abaixo.

Para ondas senoidais de frequências altas, a reatância capacitiva assume valores baixos em comparação com o valor da resistência, dessa maneira a tensão de saída será praticamente igual a tensão de entrada.

Para frequências baixas, a reatância capacitiva assume valores altos em comparação com o valor de resistência, atenuando a tensão de saída para um valor praticamente nulo. Dessa maneira, o filtro permite a passagem de sinais

de frequências altas, sendo por isso denominado filtro passa-alta.

Da mesma forma que no filtro passa-baixa, na frequência de corte, em que a reatância capacitiva é igual a resistência, a tensão de saída será dada por:

$$V_s = \frac{V_e}{\sqrt{2}}$$

A característica da tensão de saída, em função da frequência de um filtro passa-alta, é vista abaixo.

Construindo o diagrama vetorial, por intermédio dele podemos determinar a defasagem entre a tensão de saída e a tensão de entrada, utilizando a relação trigonométrica $\cos \theta = V_s/V_e$. Este diagrama é visto na figura abaixo.

Em baixas frequências: $V_s = 0$, $\cos \theta = 0$ e $\theta = 90^{\circ}$. Para altas frequências: $V_s = V_e$, $\cos\theta = 1$, e $\theta = 0^\circ$. Na frequência de corte $V_s = V_e/\sqrt{2}$ e $\cos\theta = 1/\sqrt{2}$ e $\theta = 45^\circ$

A curva da defasagem, em função da frequência é vista na figura abaixo.

Prática

- 1) Monte o circuito da figura ao lado. Ajuste a tensão do gerador de sinais para uma onda senoidal de **5V pico a pico**.
- 2) Varie a frequência do gerador de sinais, conforme o quadro abaixo. Para cada valor ajustado, meça e anote a tensão de entrada, pico a pico e eficaz, a tensão de saída pico a pico e eficaz. Meça também 2a e 2b e calcule a defasagem.

f (Hz)	V _{e p-p} (V)	V _{e ef} (V)	V _{s p-p} (V)	V _{s ef} (V)	2a	2b	Δθ
200							
600							
1000							
1400							
1800							
2200							
2600							
3000							

- 3) Monte o circuito da figura ao lado. Ajuste a tensão do gerador de sinais para uma onda senoidal de **5V pico a pico**.
- 4) Varie a frequência do gerador de sinais, conforme o quadro abaixo. Para cada valor ajustado, meça e anote a tensão de entrada, pico a pico e eficaz, a tensão de saída pico a pico e eficaz. Meça também 2a e 2b e calcule a defasagem

f (Hz)	V _{e p-p} (V)	V _{e ef} (V)	V _{s p-p} (V)	V _{s ef} (V)	2a	2b	Δθ
200							
600							
1000							
1400							
1800							
2200							
2600							
3000							

5) Construa os gráficos de $V_{sef} = f(f)$ e $\Delta\theta = f(f)$ para os dois circuitos. Calcule as frequências de corte e indique-as nos gráficos.