GENERATING SUBDIRECT PRODUCTS OF LATTICES

WILLIAM DEMEO, PETER MAYR, AND NIK RUŠKUC

1. Fiber products

Theorem 1.1. Let C be a fiber product of finitely generated lattices A and B with respect to homomorphisms $g \colon A \to D, h \colon B \to D$ onto finite D.

Then C is finitely generated if D is upper and lower bounded.

Proof. By definition

$$C = \{(a, b) \in A \times B : g(a) = h(b)\}.$$

Adapt the proof that $\ker h \leq F(X)^2$ is finitely generated if $h \colon F(X) \to D$ is bounded.

Remark. The converse implication in Theorem 1.1 holds for A = B = F(X) and g = h by Lemma 2.2. More generally, the proof can be adapted immediately for A, B satisfying Whitman's condition and being generated by join prime elements and by meet prime elements.

The converse does not hold in general: Nik's example describes a lower but not upper bounded epimorphism $h \colon A \to D$ for A with 14 generators, D the subgroup lattice of \mathbb{Z}_2^3 (cf. projective plane) such that ker h is finitely generated.

2. Bounded Homomorphisms

Let F(X) denote the free lattice over a finite set X. For $k \in \mathbb{N}$ define

$$H_0 := X^{\wedge}, \ H_{k+1} := H_k^{\vee \wedge}$$

the set of meets of elements of X, meets of joins of elements in H_k , respectively. Then

$$H_0 \subseteq H_1 \subseteq \dots$$
 and $F(X) = \bigcup_{k \in \mathbb{N}} H_k$.

Fix an epimorphism $h: F(X) \to L$ onto a finite lattice L for the remainder of the section. For $k \in \mathbb{N}$ and $a \in L$ define

$$\beta_k(a) := \bigwedge \{ w \in H_k : h(w) \geqslant a \}.$$

Note that for k > 0

$$\beta_k(a) := \bigwedge \{ w \in H_{k-1}^{\vee} : h(w) \geqslant a \}.$$

Lemma 2.1. Let $k \in \mathbb{N}$.

(1) If
$$a \leq b$$
 in L, then $\beta_k(a) \leq \beta_k(b)$.

Date: 2018-12-01.

(2)
$$\bigvee \{\beta_k(a) : a \in A\} \geqslant \beta_{k+1}(\bigvee A) \text{ for all } A \subseteq L.$$

Proof. (1) is immediate. For (2) note that by definition $\beta_k(a) \in H_k$ and $h(\beta_k(a)) \geqslant a$ for all $a \in L$. Hence $w := \bigvee \{\beta_k(a) : a \in A\}$ is in H_k^{\vee} and

$$h(w) = \bigvee \{h(\beta_k(a)) : a \in A\} \geqslant \bigvee A$$

yields the claim.

Lemma 2.2. For each finite subset G of ker h there exists $N \in \mathbb{N}$ such that

$$\forall (p,q) \in \langle G \rangle \ \forall k \in \mathbb{N} \ \forall a \in L \colon p \geqslant \beta_k(a) \Rightarrow q \geqslant \beta_{k+N}(a). \tag{2.1}$$

Proof. First note that since G and L are finite, we have $N \in \mathbb{N}$ such that for all $(p,q) \in G, a \in L$ and $k \in \mathbb{N}$, the implication $p \geqslant \beta_k(a) \Rightarrow q \geqslant \beta_{k+N}(a)$ holds. We show (2.1) for this specific N by induction on the complexity of (p,q) over the generating set G. In the following we assume that (p,q) is not a generator.

Case $(p,q) = (p_1,q_1) \land (p_2,q_2)$ for $(p_1,q_1), (p_2,q_2) \in \langle G \rangle$: Immediate from the induction assumption.

Case $(p,q)=(p_1,q_1)\vee(p_2,q_2)$ for $(p_1,q_1),(p_2,q_2)\in\langle G\rangle$: Let $a\in L$. We use induction on $k\in\mathbb{N}$. For the base case k=0, assume $p\geqslant\beta_0(a)$. By definition $\beta_0(a)=\bigwedge W$ for $W:=\{x\in X: h(x)\geqslant a\}$. By Whitman's condition $p_1\vee p_2\geqslant \bigwedge W$ yields $p_1\geqslant\beta_0(a)$ or $p_2\geqslant\beta_0(a)$ or $p\geqslant x$ for some $x\in W$. Since generators in F(X) are join prime, the latter case yields $p_1\geqslant x$ or $p_2\geqslant x$ which implies $p_1\geqslant\beta_0(a)$ or $p_2\geqslant\beta_0(a)$ again. Applying the induction assumption on term complexity, we find $q_1\geqslant\beta_N(a)$ or $q_2\geqslant\beta_N(a)$. Either way $q\geqslant\beta_N(a)$ and the base case is proved.

Assume k > 0 and $p \ge \beta_k(a)$ in the following. By definition $\beta_k(a) = \bigwedge W$ for $W := \{w \in H_{k-1}^{\vee} : h(w) \ge a\}$. By Whitman's condition $p_1 \vee p_2 \ge \bigwedge W$ yields $p_1 \ge \beta_k(a)$ or $p_2 \ge \beta_k(a)$ or $p \ge w$ for some $w \in W$. The first two cases are again straightforward using the induction assumption on term complexity. For the third case note that $w = \bigvee U$ for some $U \subseteq H_{k-1}$. For each $u \in U$, we have $p \ge u$ and $u \ge \beta_{k-1}(h(u))$, which yield $q \ge \beta_{k-1+N}(h(u))$ by the induction assumption on k. Hence

$$q \geqslant \bigvee \{\beta_{k-1+N}(h(u)) : u \in U\}$$

$$\geqslant \beta_{k+N}(\bigvee \{h(u) : u \in U\}) \qquad \text{by Lemma 2.1 (2)}$$

$$= \beta_{k+N}(h(w))$$

$$\geqslant \beta_{k+N}(a) \qquad \text{by } h(w) \geqslant a \text{ and Lemma 2.1 (1)}.$$

Corollary 2.3. Let X be a finite set, L a finite lattice, and $h: F(X) \to L$ an epimorphism.

Then ker h is finitely generated as a sublattice of $F(X)^2$ iff h (equivalently L) is lower and upper bounded.