Oxydorécution

Nathan Maillet

1 Oxydoréduction

Nombre d'oxydation

Pour tous les édifices comprenant de l'hydrogène, de l'oxygène et un unique autre atome, le nombre d'oxydation est donné par la formule :

Somme des nombres d'oxydations = Charge totale de l'édifice considéré

Exemple:

— Dans $\mathrm{MnO_4}^-$, l'oxygène étant au degré d'oxydation -II, il en découle que l'on a $\mathrm{Mn^{+VIII}}$

Très utile dans les calculs de E^0 pour trouver facilement les potentiels standard de couples inconnus à partir de couples connus. En effet, il faut dans ce cas appliquer la loi de Hess et ne surtout pas écrire bêtement que $E^0_3 = E^0_1 + E^0_2$

L'électrode standard à hydrogène -

Par convention, la référence pour les potentiels est :

$$E^0(H^+/H_2(g)) = 0 V$$

Formule de Nernst

Pour un couple avec la demi-équation :

$$\alpha ox + ne^- = \beta red$$

on a:

$$\begin{split} E &= E^0(T) + \frac{RT}{n\mathscr{F}} \ln \left(\frac{a_{ox}^{\alpha}}{a_{red}^{\beta}} \right) \\ E &= E^0(T) + \frac{0,06}{n} \ln \left(\frac{a_{ox}^{\alpha}}{a_{red}^{\beta}} \right) \end{split}$$

2 Cinétique et corrosion

Convention -

On compte positivement le courant dans le sens : électrode \rightarrow solution, donc si I>0 il ya oxydation, sinon il y a réduction.

Intensité et vitesse de réaction -

Soit $\mathcal V$ la vitesse de réaction. On a : I = $\frac{\mathrm{d} q}{\mathrm{d} t}$ = $\mathfrak n \mathscr F \mathcal V$

Thermodynamique de l'oxydoréduction

Avec la même demi-équation que ci-dessus, on a :

$$\Delta_r G^0 = -n\mathscr{F}(E_1^0 - E_2^0)$$

 et

$$\Delta_r G^0 = -\mathrm{n}_i \mathscr{F} \mathrm{E}_i$$

Types d'électrodes -

Il y a 3 types d'électrodes :

- l'électrode de travail, qui mesure l'intensité
- l'électrode auxilliaire (ou contre-électrode), qui sert a fermer le circuit
- l'électrode de référence, sans circulation de courant

Intensité-potentiel

- Lorsque I=0 le potentiel est égal au potentiel rédox donné par la formule de Nersnt à l'équilibre
- Lorsque $I \neq 0$ il n'y a plus équilibre thermodynamique
- La différence entre le potentiel de l'électrode et redox est appelée surtension
- On parle de surtension anodique lorsque cette différence est positive, cathodique si elle est négative
- Les surtensions à vide (ou de seuil) sont telles que l'intensité commence à ne plus être négligeable
- Lorsque la tension devient importante, il arrive que I cesse d'augmenter, à cause d'un palier de diffusion
- Il n'y a pas de palier de diffusion pour les ions ou molécules du solvant ni pour l'oxydation du métal de l'électrode

Potentiel mixte

Quand la réaction est thermodynamiquement et cinétiquement possible, l'intensité commune à chaque couple est proportionnelle à la vitesse de réaction rédox. Le potentiel $E_{\rm m}$ associé est appelé potentiel mixte.

- E_m est différent de la moyenne
- Le point de fonctionnement est le potentiel mixte correspondant à l'intensité de corrosion, appelé potentiel de corrosion.

Murs de solvant -

En solution aquese, les réactions électrochimiques autres que celles de l'eau ne peuvent avoir lieu que dans un domaine de potentiel limité par les deux murs du solvant (asymptotes verticales).

Domaines et diagramme -

Sur un diagrame potentiel-pH, le domaine de prédominance du métal est appelé le domaine d'immunité du métal. Pour les ions ont parle de corrosion et de passivité pour les autres solides.

Vagues successives

Lorsque plusieurs couples peuvent réagir au niveau d'une électrode, l'intensité totale correspond à la somme des intensités associées à chaque couple. Ces augmentations successives (parfois simultanées quand elles coexistes) de l'intensée lorsqu'une nouvelle réaction commence sont qualifiées de vagues successives.

Passivation

Il y a passivation si un solide adhère au métal et y forme une couche imperméable qui protège le métal d'une oxydation.

3 Piles et électrolyse

Tension d'une pile -

La tension U_{CA} aux bornes d'une pile dépend d'un terme thermodynamique, un cinétique et un ohmique et vérifie :

$$\mathrm{U_{CA}} = \mathrm{E_1} - \mathrm{E_2} - (\eta_{\mathfrak{a}} - \eta_{c}) - R_{int} I$$

- Dans le sens direct : $U_{CA} \le E_2 E_2$
- Les *surtensions* sont liées à la diffusion des ions dans les électrolytes, aux transfets d'électrons au niveau des électrodes . . .
- La *chute ohmique* est due aux électrodes, mais surtout au milieu électrolytiques (notamment le pont salin).

Tension d'une électrolyse

La tension pour une électrolyse vérifie :

$$\mathrm{U_{CA}} = \mathrm{E_1} - \mathrm{E_2} + (\eta_\alpha - \eta_c) + R_{int} I$$

$$U_{\rm CA} > E_1 - E_2$$

Pile idéale -

Une bonne pile doit vérifier :

- grande différence entre les potentiels de Nernst
- faibles surtensions
- intensité de court-circuit grande
- résistance interne faible

Électrolyse

Le schéma d'une électrolyse est différent de celui d'une pile :

- Le pont salin est enlever
- La charge de la pile est remplacée par un générateur pour forcer la réaction
- Il n'y a qu'un bac pour les 2 réactifs

Pour une électrolyse on utilise la règle du gamma "inversée" car l'électrolyse réalise la réaction qui ne devrait pas avoir lieu.