Esame di Ricerca Operativa del 15/09/17

T:-:-	(0	Cognome)		(Nome)		(Nume	ero di Matrico	ola)
Esercizio	1. Con	npletare la	seguente tabel	lla considerando il problema	a di progra	mmazione line	eare:	
				$\begin{cases} \max & 3 \ x_1 + x_2 \\ x_1 + 3 \ x_2 \le -10 \\ -2 \ x_1 + x_2 \le -8 \\ 2 \ x_1 - 3 \ x_2 \le 31 \\ -3 \ x_1 - x_2 \le 3 \\ x_1 \le 5 \\ -2 \ x_1 - x_2 \le 8 \end{cases}$				
	Base	Soluzion	ne di base			Ammissibile (si/no)	Degenere (si/no)	
	{1, 2}	x =				(/ /	, , ,	
	{1, 5}	y =						
Esercizio	2. Effe	ettuare due	e iterazioni dell	'algoritmo del simplesso pri	male per il	problema del	l'esercizio 1.	
		Base	x	y	Indice		pporti	Indice
10 :		(0.4)			dscent	<u>'</u>		Churan
1° iteraz		{2,4}						
2° iteraz	ione							
Esercizio		a ditta dev	e prendere in a GEN-MA 9	ffitto il seguente numero di R APR-GIU LUG-SET 5 7			tre dell'anno	
	tre trin	nestri al co		per un trimestre al costo de la costo de l	li 4000 eur			
euro o per variabili o	tre trin	nestri al co			li 4000 eur			
euro o per variabili o modello:	tre trin	nestri al co		o. Si vuole minimizzare il co	li 4000 eur			
euro o per variabili o modello:	tre trin	nestri al co		comandi di Matlai	li 4000 eur esto comple			
euro o per variabili o modello:	tre trin	nestri al co		o. Si vuole minimizzare il co	li 4000 eur			

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,5) (4,3)				
(4,6) (5,7) (6,7)	(3,7)	x =		
(1,2) $(1,3)$ $(1,4)$				
(3,5) (5,7) (6,7)	(3,7)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (2,5) (3,7) (4,6) (6,7)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$ $N_t =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 12 \ x_1 + 6 \ x_2 \\ 13 \ x_1 + 8 \ x_2 \le 49 \\ 7 \ x_1 + 16 \ x_2 \le 66 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	16	21	64	46
2		16	91	58
3			8	11
4				7

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

L	
	b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.
ĺ	ciclo: $v_S(P) =$

 $v_I(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{45} , x_{34} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 + 6x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 4 \le 0, x_2 \le 0}.$$

Soluzioni del sistema LKT				Massimo		Minimo	
x	λ	μ	globale	locale	globale	locale	
(0, -2)							
$(0, \ 0)$							
$(2, \ 0)$							
(-2, 0)							

Esercizio 10. Si consideri il seguente problema:

3–albero:

$$\begin{cases} \min -4 \ x_1^2 - 6 \ x_1 x_2 + 4 \ x_2^2 + 3 \ x_1 + 10 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (2,5) , (-4,-3) , (0,-1) e (-3,-4). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo problema linearizzato	Sol. ottima problema linearizzato	Direzione	Passo	Nuovo punto
$\left(-2, -\frac{1}{3}\right)$					

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max & 3 \ x_1 + x_2 \\ x_1 + 3 \ x_2 \le -10 \\ -2 \ x_1 + x_2 \le -8 \\ 2 \ x_1 - 3 \ x_2 \le 31 \\ -3 \ x_1 - x_2 \le 3 \\ x_1 \le 5 \\ -2 \ x_1 - x_2 \le 8 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (2, -4)	SI	NO
{1, 5}	$y = \left(\frac{1}{3}, \ 0, \ 0, \ 0, \ \frac{8}{3}, \ 0\right)$	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{2, 4\}$	(1, -6)	(0, 0, 0, -1, 0, 0)	4	5, 20	1
2° iterazione	{1, 2}	(2, -4)	$\left(\frac{5}{7}, -\frac{8}{7}, 0, 0, 0, 0\right)$	2	$\frac{35}{3}$, 7	5

Esercizio 3.

variabili decisionali: x1=numero di macchine a gennaio per un trimestre, x2=numero di macchine a gennaio per due trimestri, x3=numero di macchine a gennaio per tre trimestri, x4=numero di macchine ad aprile per un trimestre, x5=numero di macchine ad aprile per due trimestri, x6=numero di macchine ad aprile per tre trimestri, x7=numero di macchine a luglio per un trimestre, x8=numero di macchine a luglio per due trimestri, x9=numero di macchine ad ottobre per un trimestre,

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,5) (4,3)				
(4,6) $(5,7)$ $(6,7)$	(3,7)	x = (0, 0, 7, 3, 0, 0, 11, 5, 0, -4, -4)	NO	SI
(1,2) (1,3) (1,4)				
(3,5) (5,7) (6,7)	(3,7)	$\pi = (0, 3, 10, 4, 20, 17, 27)$	NO	SI

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione				
Archi di T	(1,2) $(1,4)$ $(2,5)$ $(3,7)$ $(4,6)$ $(6,7)$	(1,2) (1,3) (1,4) (2,5) (3,7) (4,6)				
Archi di U	(3,5)	(3,5)				
x	(0, 0, 7, 3, 0, 4, 2, 0, 5, 0, 1)	(0, 1, 6, 3, 0, 4, 3, 0, 4, 0, 0)				
π	(0, 3, 13, 4, 7, 8, 18)	(0, 3, 10, 4, 7, 8, 15)				
Arco entrante	(1,3)	(3,5)				
ϑ^+,ϑ^-	9,1	6,1				
Arco uscente	(6,7)	(1,3)				

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		ter 1 iter 2 iter 3 iter 4		r 4	iter 5		iter 6		iter 7				
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3	3 4		2		6		5		7		
nodo 2	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 3	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 4	7	1	7	1	7	1	7	1	7	1	7	1	7	1
nodo 5	$+\infty$	-1	16	3	16	3	14	2	14	2	14	2	14	2
nodo 6	$+\infty$	-1	$+\infty$	-1	12	4	12	4	12	4	12	4	12	4
nodo 7	$+\infty$	-1	22	3	22	3	22	3	22	3	21	5	21	5
$\stackrel{\text{insieme}}{Q}$	2, 3	, 4	2, 4,	5, 7	2, 5,	6, 7	5, 6	5, 7	5,	7	7	7	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	9	(0, 9, 0, 0, 0, 0, 9, 0, 0, 0, 0)	9
1 - 2 - 5 - 7	7	(7, 9, 0, 0, 7, 0, 9, 0, 0, 7, 0)	16
1 - 3 - 5 - 7	3	(7, 12, 0, 0, 7, 3, 9, 0, 0, 10, 0)	19
1 - 4 - 6 - 7	6	(7, 12, 6, 0, 7, 3, 9, 0, 6, 10, 6)	25

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 12 x_1 + 6 x_2 \\ 13 x_1 + 8 x_2 \le 49 \\ 7 x_1 + 16 x_2 \le 66 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{49}{13}, 0\right)$$
 $v_S(P) = 45$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(3,0)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	16	21	64	46
2		16	91	58
3			8	11
4				7

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

3–albero:
$$(1,2)(1,5)(3,4)(3,5)(4,5)$$
 $v_I(P)=88$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo:
$$2 - 1 - 3 - 4 - 5$$
 $v_S(P) = 110$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{45} , x_{34} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 + 6x_2$ sull'insieme

$$\{x \in \mathbb{R}^2: x_1^2 + x_2^2 - 4 \le 0, x_2 \le 0\}.$$

Soluzioni del si	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(0, -2)	$\left(\frac{1}{2},0\right)$		NO	NO	SI	SI	NO
$(0, \ 0)$	(0, -6)		NO	NO	NO	NO	SI
(2, 0)	(-1, -6)		SI	SI	NO	NO	NO
$(-2, \ 0)$	(-1, -6)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min & -4 \ x_1^2 - 6 \ x_1 x_2 + 4 \ x_2^2 + 3 \ x_1 + 10 \ x_2 \\ x \in P \end{cases}$$

 $\mathrm{dove}\;P\;\grave{\mathrm{e}}\;\mathrm{il}\;\mathrm{poliedro}\;\mathrm{di}\;\mathrm{vertici}\;(2,5)\;,\,(-4,-3)\;,\,(0,-1)\;\mathrm{e}\;(-3,-4).\;\mathrm{Fare}\;\mathrm{una}\;\mathrm{iterazione}\;\mathrm{del}\;\mathrm{metodo}\;\mathrm{di}\;\mathrm{Frank-Wolfe}.$

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$(-2,-\frac{1}{3})$	$21 x_1 + \frac{58}{3} x_2$	(-4,-3)	$\left(-2, -\frac{8}{3}\right)$	1	(-4, -3)