Deterministic CFLs, Deterministic PDAs, and Parsing

Monday, March 8, 2021

Announcements

- Reminder: no class next week (Spring Break)
 - 3/15 3/19
- HW5 due Wed 3/10 11:59pm EST
- HW6 released soon
 - Due after break

Previously: CFLs, CFGs, and Parse Trees

Generating strings: start with <u>start variable</u>, Apply rules to get a string (and parse tree)

$$A \rightarrow 0A1$$

 $A \rightarrow B$

 $B \rightarrow \#$

In practice,
opposite is more interesting:
start with a string,
and parse it into parse tree

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$$

Generating vs Parsing

- In practice, parsing a string is more important than generating one
 - E.g., a compiler first parses source code into a (tree) data representation
 - Actually, any program accepting a string input must first parse it
- But a compiler / parser (algorithm) must be deterministic
- The PDAs we've seen are non-deterministic (like NFAs)
- <u>So</u>: to model parsers, we need a **Deterministic** PDA (DPDA)
 - Analogous to DFA vs NFA

Last time: (Nondeterministic) PDA

DPDA: Formal Definition

DEFINITION 2.39

The language of a DPDA is called a *deterministic context-free language*.

A *deterministic pushdown automaton* is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ, Γ , and F are all finite sets, and

- 1. Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow (Q \times \Gamma_{\varepsilon}) \cup \{\emptyset\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

The transition function δ must satisfy the following condition. For every $q \in Q$, $a \in \Sigma$, and $x \in \Gamma$, exactly one of the values

$$\delta(q, a, x), \delta(q, a, \varepsilon), \delta(q, \varepsilon, x), \text{ and } \delta(q, \varepsilon, \varepsilon)$$

is not \emptyset .

Key restriction:

DPDA has only **1 transition** for a given state, input, and stack op (just like DFA vs NFA)

A *pushdown automaton* is a 6-tuple

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

DPDAs are <u>Not</u> Equivalent to PDAs!

A PDA can non-deterministically "try all rules", but a DPDA must choose <u>one</u>

PDAs recognize CFLs, but a DPDA only recognizes DCFLs! (a subset of CFLs)

Subclasses of CFLs

Compiler Stages

A Lexer Implementation

Regular

expressions!

```
/* C Declarations: */
 #include "tokens.h" /* definitions of IF, ID, NUM, ... */
 #include "errormsq.h"
 union {int ival; string sval; double fval;} yylval;
 int charPos=1;
 #define ADJ (EM tokPos=charPos, charPos+=yyleng)
                                                            A "lex" tool translates
 /* Lex Definitions: */
                                                              this to a C program
 digits [0-9]+
                                                           implementation of a lexer
 응응
 /* Regular Expressions and Actions: */
                           {ADJ; return IF;}
\pi[a-z][a-z0-9]*
                           {ADJ; yylval.sval=String(yytext);
                             return ID; }
                        {ADJ; yylval.ival=atoi(yytext);
 {digits}
                             return NUM; }
 ({digits}"."[0-9]*)|([0-9]*"."{digits})
                                               {ADJ;
                             yylval.fval=atof(yytext);
                             return REAL; }
 ("--"[a-z]*"\n")|(""|"\n"|"\t")+
                                      { ADJ; }
                           {ADJ; EM error("illegal character");}
```

Compiler Stages

A Parser Implementation

```
%{
int yylex(void);
void yyerror(char *s) { EM_error(EM_tokPos, "%s", s); }
%}
%token ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN
%start prog
%%

A "yacc" to
this to a G
implementati
```

Just write the CFG!

```
stm : ID ASSIGN ID

| WHILE ID DO stm
| BEGIN stmlist END
| IF ID THEN stm
| IF ID THEN stm ELSE stm

stmlist : stm
| stmlist SEMI stm
```

A "yacc" tool translates this to a C program implementation of a parser

Parsing

$$egin{aligned} R &
ightarrow S \mid T \ S &
ightarrow \mathtt{a} S \mathtt{b} \mid \mathtt{a} \mathtt{b} \ T &
ightarrow \mathtt{a} T \mathtt{b} \mathtt{b} \mid \mathtt{a} \mathtt{b} \end{aligned}$$

$$aa\underline{ab}bb \rightarrow a\underline{aSb}b$$

A parser must be able to choose one correct rule, when reading input left-to-right

$$aa\underline{abb}bbbb \rightarrow a\underline{aTbb}bb$$

- L = left-to-right
- L = leftmost derivation

```
S \rightarrow \text{if } E \text{ then } S \text{ else } S

S \rightarrow \text{begin } S L

S \rightarrow \text{print } E
```

$$L \rightarrow \text{end}$$

 $L \rightarrow ; S L$

$$E \rightarrow \text{num} = \text{num}$$

if 2 = 3 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

```
S 	oup 	ext{if $E$ then $S$ else $S$} \ S 	oup 	ext{begin $S$ $L$} \ S 	oup 	ext{print $E$} \ E 	oup 	ext{num} = 	ext{num} \ 	ext{if $2 = 3$ begin print 1; print 2; end else print 0}
```

- L = left-to-right
- L = leftmost derivation

```
S 	oup 	ext{if $E$ then $S$ else $S$} \ S 	oup 	ext{begin $S$ $L$} \ S 	oup 	ext{print $E$} \ E 	oup 	ext{num} = 	ext{num} if 2 = 3 begin print 1; print 2; end else print 0
```

- L = left-to-right
- L = leftmost derivation

```
S 	oup 	ext{if } E 	ext{ then } S 	ext{ else } S
S 	oup 	ext{ begin } S 	ext{ } L
S 	oup 	ext{ print } E
E 	oup 	ext{ num } = 	ext{ num}
```

if 2 = 3 begin print 1; print 2; end else print 0

"Prefix" languages (like Scheme/Lisp) are easily parsed with LL parsers

• R = rightmost derivation $S \rightarrow \text{print}(L)$ $E \rightarrow E + E$

$$S \rightarrow S$$
; S

$$S \rightarrow S$$
; S $E \rightarrow id$
 $S \rightarrow id := E$ $E \rightarrow num$

$$S \rightarrow \text{print} (L)$$

$$E \rightarrow id$$

$$E \rightarrow \text{num}$$

$$E \rightarrow E + E$$

$$a := 7;$$
 $c := c + (d := 5 + 6, d)$

When parse is here, can't determine whether it's an assign or a plus

Stack	Input	Action
1	a := 7 ; b := c + (d := 5 + 6 , d) \$	shift
1 id ₄	:= 7; b := c + (d := 5 + 6, d) \$	shift
$_1 id_4 :=_6$	7 ; b := c + (d := 5 + 6 , d) \$	shift
$_{1} id_{4} :=_{6} num_{10}$; b := c + (d := 5 + 6 , d) \$	$reduce E \rightarrow num$
$_{1} id_{4} :=_{6} E_{11}$; b := c + (d := 5 + 6 , d) \$	$reduce S \rightarrow id := E$
$_1$ S_2	; b := c + (d := 5 + 6 , d) \$	shift

$$S \to S$$
; $S \to id$

- L = left-to-right

$$S \rightarrow id := E \qquad E \rightarrow num$$

• R = rightmost derivation S o print(L) E o E + E

$$a := 7;$$
 $b := c + (d := 5 + 6, d)$

When parse is here, can't determine whether it's an assign or a plus

Stack		Action	
1	a := 7	; $b := c + (d := 5 + 6, d)$ \$	shift
1 id ₄	:= 7	; $b := c + (d := 5 + 6, d)$ \$	shift
$_{1} id_{4} :=_{6}$	7	; $b := c + (d := 5 + 6, d)$ \$	shift
$_{1} id_{4} :=_{6} num_{10}$; b := c + (d := 5 + 6 , d) \$	$reduce E \rightarrow num$
$_{1} id_{4} :=_{6} E_{11}$; $b := c + (d := 5 + 6, d)$	reduce $S \rightarrow id := E$
$_1$ S_2		; b := c + (d := 5 + 6 , d) \$	shift

$$S \rightarrow S$$
; S $E \rightarrow id$
 $S \rightarrow id := E$ $E \rightarrow num$

- L = left-to-right

• R = rightmost derivation
$$S o ext{print (L)} \quad E o E + E$$

$$a := 7;$$
 $b := c + (d := 5 + 6, d)$

When parse is here, can't determine whether it's an assign or a plus

Stack	Input															Action			
1	a	:=	7	;	b	:=	C	+	(d	:=	5	+	6	,	d)	\$	shift
1 id4		:=	7	;	b	:=	C	+	(d	:=	5	+	6	,	d)	\$	shift
$_{1} id_{4} :=_{6}$			7	;	b	:=	C	+	(d	:=	5	+	6	,	d)	\$	shift
$_{1} id_{4} :=_{6} num_{10}$;	b	:=	C	+	(d	:=	5	+	6	,	d)	\$	$reduce\ E \rightarrow num$
$_{1} id_{4} :=_{6} E_{11}$:=								$reduce S \rightarrow id := E$
$_1$ S_2				;	b	:=	С	+	(d	:=	5	+	6	,	d)	\$	shift

$$S \rightarrow S$$
; S $E \rightarrow id$
 $S \rightarrow id := E$ $E \rightarrow num$

- L = left-to-right

• R = rightmost derivation
$$S o ext{print} (L)$$
 $E o E + E$

$$a := 7;$$
 $b := c + (d := 5 + 6, d)$

When parse is here, can't determine whether it's an assign or a plus

Stack	Input														Action				
1	a	:=	7	;	b	:=	C	+	(d	:=	5	+	6	,	d)	\$	shift
1 id4		:=	7	;	b	:=	С	+	(d	:=	5	+	6	,	d)	\$	shift
$_{1} id_{4} :=_{6}$			7	;	b	:=	C	+	(d	:=	5	+	6	,	d)	\$	shift
$_{1} id_{4} :=_{6} num_{10}$;	b	:=	C	+	(d	:=	5	+	6	,	d)	\$	$reduce E \rightarrow num$
$_{1} id_{4} :=_{6} E_{11}$			4	1	b	:=	С	+	(d	:=	5	+	6	,	d)	\$	$reduce S \rightarrow id := E$
$_1$ S_2				;	b	:=	C	+	(d	:=	5	+	6	,	d)	\$	shift

To learn more, take a Compilers Class!

Next time: Pumping Lemma for CFLs

• Pumping Lemma for reg langs identifiers non-regular langs

How do we know when a language is not a CFL?

The Pumping Lemma for CFLs!

Check-in Quiz 3/8

On Gradescope