2018年8月10日 0:52

求解: T(n)=rT(n-1)+g(n)

求解方式: Iteration top down/ Induction bottom up

公式1 T(n)=rT(n-1)+a, T(0) =b

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

必须化简到几何级数这一步

公式2 T(n)=rT(n-1)+g(n)

$$T(n) = r^n a + \sum_{i=1}^n r^{n-i} g(i).$$

公式3 T(n)=aT(n-1)+n

Theorem. For any real number $x \neq 1$,

$$\sum_{i=1}^{n} ix^{i} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(1-x)^{2}}.$$

Divide and conquer: 分治

T(n)=aT(n/m)+g(n)

Ex1 mergesort : T(n)=2T(n/2)+n O(nlogn) Ex2 binaryserach: T(n)=T(n/2)+1 O(logn) Ex3 T(n)=T(n/2)+n O(n) Ex4 T(n)=3T(n/3)+n O(nlogn) Ex5 T(n)=4T(n/2)+n O(n^2)

主定理:

弱:

■ **Theorem** Suppose that we have a recurrence of the form

$$T(n) = aT(n/2) + n,$$

where a is a positive integer and T(1) is nonnegative. Then we have the following big Θ bounds on the solution:

- 1. If a < 2, then $T(n) = \Theta(n)$.
- 2. If a = 2, then $T(n) = \Theta(n \log n)$.
- 3. If a > 2, then $T(n) = \Theta(n^{\log_2 a})$

Case3 的证明需要注意一下

强:

 $T(n) = aT(n/b) + cn^d$ If $a < b^d$, then $T(n) = \theta$ (n^d)
If $a = b^d$, then $T(n) = \theta$ (n^d*logn)
If $a > b^d$, then $T(n) = \theta$ (n^logba)

证明:

数学归纳法