6. előadás

VÉGTELEN SOROK 1.

Megjegyzés. Történeti utalások.

A végtelen fogalma és ehhez kapcsolódva a **végtelen összegek** problémaköre nehezen épült be a matematikába. Végtelen összegek már az ókori görögöknél is megjelentek.

• Zénón (i.e. 490-–430) híres paradoxonjai: a fának hajított kő, Akhilleusz és a teknős, stb.

- Arisztotelész (i.e. 384–322)
- Arkhimédész (i.e. 287–212)
- Gottfried Wilhelm Leibniz (1646–1716)
- Brook Taylor (1685–1731)
- Leonhard Euler (1707–1783)

Összességében az mondható, hogy még a XVIII. században is csak "gyerekcipőben járt" a végtelen összegek vizsgálata, aminek oka az volt, hogy nem voltak meg a szükséges eszközök, a pontos definíciók és tételek.

Az analízis alapfogalmainak szükségessé vált precízebb és elvontabb megalkotásában Augustin Louis Cauchy (1789–1857) tette meg az első jelentős lépéseket (1823): neki köszönhető a sorozat konvergenciájának és határértékének ma is elfogadott szigorú definíciója. Ezután a végtelen összegek problémája is elérte a logikai tisztaságnak azt a fokát, amelyet a matematika megkövetel. \blacksquare

A végtelen sor fogalma, konvergenciája és összege

Probléma. Hogyan lehet értelmezni végtelen sok szám, pontosabban valamely $a_0, a_1, a_2, ...$ számok egy végtelen sorozatának az

$$a_0 + a_1 + a_2 + a_3 + \cdots$$

szimbólummal jelölt összegét?

A sorozatokkal kapcsolatban megszerzett ismereteink alapján erre a következő eléggé "természetes" lehetőség kínálkozik: Tekintsük az $a_0, a_1, a_2, a_3, \ldots$ végtelen sorozatot, és képezzük azt az újabb sorozatot, amelynek n-edik tagja

$$s_n = a_0 + a_1 + a_2 + \dots + a_n \quad (n \in \mathbb{N}).$$

Ha ez a sorozat mondjuk az $A \in \mathbb{R}$ számhoz tart, akkor ez azt jelenti, hogy nagy n-ekre az s_n értékek közel vannak A-hoz. Ebben az esetben kézenfekvő a végtelen sok tagú

$$a_0 + a_1 + a_2 + a_3 + \cdots$$

összeget az (s_n) sorozat határértékével értelmezni.

Lássuk ezután a pontos definíciókat!

1. definíció. $Az(a_n): \mathbb{N} \to \mathbb{R}$ sorozatból képzett

$$s_n := a_0 + a_1 + a_2 + \dots + a_n \qquad (n \in \mathbb{N})$$

sorozatot az (a_n) által generált végtelen sornak (röviden sornak) nevezzük, és így jelöljük:

$$\sum a_n$$
, $vagy$ $\sum_{n=0} a_n$, $vagy$ $a_0 + a_1 + a_2 + \cdots$.

Ekkor azt mondjuk, hogy \mathbf{s}_n a $\sum a_n$ sor \mathbf{n} -edik részletösszege, illetve \mathbf{a}_n a $\sum a_n$ sor \mathbf{n} -edik tagja, ahol $n \in \mathbb{N}$.

A végtelen sor is tehát egy speciális képzésű sorozat. Ennek megfelelően beszélhetünk arról, hogy egy sor konvergens vagy divergens, és van-e határértéke.

2. definíció. Azt mondjuk, hogy a $\sum a_n$ sor konvergens, ha részletösszegeinek az (s_n) sorozata konvergens, azaz ha létezik és véges a $\lim (s_n)$ határérték. Ekkor ezt a határértéket a $\sum a_n$ végtelen sor összegének nevezzük, és így jelöljük:

$$\sum_{n=0}^{+\infty} a_n := \lim (s_n).$$

 $A \sum a_n$ sor divergens, ha a részletösszegekből képzett (s_n) sorozat divergens. Ebben az esetben az (s_n) sorozatnak vagy nincs határértéke, vagy

- $\lim (s_n) = +\infty$, és ekkor azt mondjuk, hogy a $\sum a_n$ végtelen sor összege $+\infty$, vagy
 - $\lim (s_n) = -\infty$, és ekkor azt mondjuk, hogy a $\sum a_n$ végtelen sor összege $-\infty$.

Ezeket úgy jelöljük, hogy

$$\sum_{n=0}^{+\infty} a_n := +\infty, \qquad illetve \qquad \sum_{n=0}^{+\infty} a_n := -\infty.$$

Megjegyzések.

- 1º Figyeljük meg a bevezetett jelölések közötti különbséget!
- A $\sum_{n=0}^{\infty} a_n$ szimbólum jelöli a **végtelen sort**, ami egy **sorozat**, mégpedig az (a_n) részletösszegeinek a sorozata. Ha a $\sum_{n=0}^{\infty} a_n$ szimbólumra tekintünk, akkor arra gondolunk, hogy össze akarjuk adni az (a_n) sorozat tagjait. A sor konvergenciája azt jelenti, hogy ez a végtelen sok szám "összeadható" és eredménye egy valós szám.
 - A $\sum_{n=0}^{+\infty} a_n$ szimbólum pedig az (s_n) részletösszeg-sorozat határértékét, azaz a végtelen

sor összegét, vagyis egy \mathbb{R} -beli elemet jelöl abban az esetben, ha a szóban forgó határérték létezik. Ha ez a határérték nem létezik, akkor a sor összegét nem értelmezzük.

2° A sor összegét különböző alakban írhatjuk fel:

$$\sum_{n=0}^{+\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(a_0 + a_1 + \ldots + a_n \right) = \lim_{n \to \infty} \left(\sum_{k=0}^{n} a_k \right),$$

de időnként az

$$a_0 + a_1 + a_2 + a_3 + \cdots$$

jelölést is használjuk annak ellenére, hogy ugyanígy jelöltük a $\sum a_n$ sort is. Az adott szövegkörnyezetben azonban világos lesz majd, hogy a végtelen sorról, vagy pedig annak az összegéről van szó.

 $\mathbf{3}^o$ A bemutatott Zénón-féle paradoxonban a kő mozgását végtelen sok szakaszra bontottuk. Az n-edik szakasz hossza $a_n := s/2^{n+1} \ (n \in \mathbb{N})$, ahol s a dobás helye és a fa távolsága. Az (a_n) sorozatból készített végtelen sor tehát

$$\sum a_n = a_0 + a_1 + a_2 + \dots = \frac{s}{2} + \frac{s}{4} + \frac{s}{8} + \dots = \sum_{n=0}^{\infty} \frac{s}{2^{n+1}}.$$

Hamarosan igazolni fogjuk, hogy a fenti sor konvergens, és az összege s.

 $\mathbf{4}^{o}$ A korábbi megállapodásunknak megfelelően az $(a_{n}): \{n \in \mathbb{Z} \mid n \geq M\} \to \mathbb{R}$ függvények is sorozatok minden $M \in \mathbb{Z}$ esetén. Az ilyenekből képzett

$$s_n := a_M + a_{M+1} + a_{M+2} + \dots + a_n \qquad (M \le n \in \mathbb{N})$$

sorozatot is **végtelen sornak tekintjük**, és jelölésükre a

$$\sum_{n=M} a_n$$

szimbólumot fogjuk használni. Ekkor a **sor összege** ugyanúgy legyen a $\lim (s_n)$ határérték. A további definíciók és tételek (az értelemszerű módosításokkal) ezekre a sorokra is érvényesek lesznek, de ezt nem fogjuk külön hangsúlyozni. Ennek alapvető oka, hogy az

$$(a_n)$$
 $(n = M, M + 1, M + 2, ...)$ és az (a_{n+M}) $(n = 0, 1, 2 ...)$

sorozatok megegyeznek, ezért ugyanazt a sort generálják megegyező

$$\sum_{n=M}^{+\infty} a_n = \sum_{n=0}^{+\infty} a_{n+M}$$

3

sorösszegekkel. Az előző átalakítást **átindexelésnek** hívjuk.

Nevezetes sorok

1. A geometriai/mértani sor.

1. tétel. Legyen $q \in \mathbb{R}$. A (q^n) sorozatból képzett $\sum_{n=0}^{\infty} q^n$ geometriai vagy mértani sor akkor és csak akkor konvergens, ha |q| < 1, és ekkor az összege

$$\sum_{n=0}^{+\infty} q^n = 1 + q + q^2 + q^3 + \dots = \frac{1}{1-q} \qquad (|q| < 1).$$

Ha $q \ge 1$, akkor a $\sum_{n=0}^{\infty} q^n$ sornak van összege, és $\sum_{n=0}^{+\infty} q^n = +\infty$.

Bizonyítás. Az

$$a^{n+1} - b^{n+1} = (a-b) \left(a^n + a^{n-1} b + \dots + a b^{n-1} + b^n \right) \quad \left(a, b \in \mathbb{R}, \ n \in \mathbb{N} \right)$$

azonosság alapján (a=1 és b=q) a $\sum\limits_{n=0}q^n$ geometriai sor részletösszegeit $q\neq 1$ esetén az alábbi "zárt alakban" írhatjuk fel:

$$s_n = 1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q} \qquad (n \in \mathbb{N}^+).$$

Ha $q \neq 1$ valós szám, akkor a (q^{n+1}) geometriai sorozat pontosan akkor konvergens, ha |q| < 1, és ekkor 0 a határértéke, ezért a $\sum_{n=0}^{\infty} q^n$ sor konvergens, és az összege

$$\sum_{n=0}^{+\infty} q^n = \lim_{n \to +\infty} s_n = \frac{1}{1 - q} \qquad (|q| < 1).$$

Ha $q\geq 1,$ akkor az állítás következik abból, hogy $\lim_{n\rightarrow +\infty}q^{n+1}=+\infty.$

Megjegyzés. A kilőtt nyílt mozgásából kapott végtelen sor összege:

$$\sum_{n=0}^{+\infty} \frac{s}{2^{n+1}} = \lim_{n \to +\infty} \left(\frac{s}{2} + \frac{s}{4} + \dots + \frac{s}{2^{n+1}} \right) = \frac{s}{2} \cdot \lim_{n \to +\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^n} \right) =$$

$$= \frac{s}{2} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{2} \right)^n = \frac{s}{2} \cdot \frac{1}{1 - \frac{1}{2}} = s. \blacksquare$$

4

2. A teleszkopikus sor.

2. tétel.
$$A \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 ún. teleszkopikus sor konvergens, és összege 1, azaz

$$\sum_{n=1}^{+\infty} \frac{1}{n \cdot (n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots = 1.$$

Bizonyítás. A sor *n*-edik részletösszege:

$$s_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \underbrace{\frac{1}{k \cdot (k+1)}}_{1} + \dots + \underbrace{\frac{1}{n \cdot (n+1)}}_{n \cdot (n+1)} =$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) =$$

$$= 1 - \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 1.$$

Megjegyzés. Egy sornak, vagyis a részletösszeg-sorozatának a konvergenciavizsgálatához nem használhatjuk a műveletek és a határátmenet felcserélhetőségéről szóló tételt, ui. ez csak **rögzített számú** sorozatok összegére érvényes. Az n index növekedésével azonban s_n -t egyre nagyobb számú sorozat összegeként foghatjuk fel.

A teleszkopikus sornál ezt a problémát egy ügyes átalakítással meg tudtuk oldani. Az s_n részletösszeget olyan zárt alakra hoztuk, ahol csak véges sok tag maradt az összeg elejéből és a végéből, de a közepe "kiesett". Vannak még olyan sorok, ahol ezt meg lehet tenni, és ezeket **teleszkopikus típusú soroknak** nevezzük. Elnevezésüket a régi hordozható egyszemes távcsövek (teleszkópok) után kapta, amelyek egymásba csúsztatható csövekből áll a könnyebb tárolásuk érdekében. Ebben az állapotban csak az első és az utolsó cső látható. \blacksquare

3. Hiperharmonikus sorok.

Tekintsük az alábbi sorokat:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \qquad \text{és} \qquad \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

Az első sort harmonikus sornak, míg a másodikat szuperharmonikus sornak nevezzük.

Számítógépes kísérleteket végezhetünk a részletösszeg-sorozat tulajdonságainak a vizsgálatára (pl. https://www.wolframalpha.com/).

A harmonikus sor esetén azt kapjuk, hogy

								10^{40}	
$s_n = \sum_{k=1}^n \frac{1}{k}$	2,9	5, 1	12, 0	23, 6	35, 1	46, 6	69, 6	92, 6	115, 7

Azt a **sejtést** alakíthatjuk ki, hogy a harmonikus sor divergens, de $+\infty$ az összege.

A szuperharmonikus sor esetén pedig azt kapjuk, hogy

n	5	10	10^{2}	10^{5}	10^{10}	10^{20}
$s_n = \sum_{k=1}^n \frac{1}{k^2}$	1,4	1,5	1,634	1,644 924	1,644934	1,644 934

Most azt a **sejtést** alakíthatjuk ki, hogy a szuperharmonikus sor konvergens.

3. tétel. Legyen α rögzített valós szám. Ekkor a

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}} + \cdots$$

ún. hiperharmonikus sor

- divergens, ha $\alpha \leq 1$, de ekkor van összege: $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} = +\infty$.
- konvergens, ha $\alpha > 1$.

Bizonyítás. A hiperharmonikus sor pozitív tagokból áll. Ez jelentősen leegyszerűsíti a sor konvergenciájának vizsgálatát, hiszen ekkor az s_n részletösszegei monoton növekvő sorozatot alkotnak, és így elegendő (s_n) korlátosságát megvizsgálni.

 $\alpha \leq 1$ Először az $\alpha = 1$ esetet, azaz a harmonikus sor divergenciáját bizonyítjuk be. Az s_n összegnek egy **ötletes** csoportosításával egyszerűen igazolhatjuk, hogy az (s_n) sorozat felülről nem korlátos. Legyen P>0 tetszőleges, és válasszunk egy k>2P egész számot. Ekkor $\forall\,n\geq 2^k$ index esetén

$$s_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ge$$

$$\ge 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{k-1} + 1} + \dots + \frac{1}{2^{k}}\right) >$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{k}} + \dots + \frac{1}{2^{k}}\right) =$$

$$= 1 + \frac{1}{2} + \underbrace{2 \cdot \frac{1}{4}}_{=1/2} + \underbrace{4 \cdot \frac{1}{8}}_{=1/2} + \dots + \underbrace{2^{k-1} \cdot \frac{1}{2^{k}}}_{=1/2} = 1 + k \cdot \frac{1}{2} > \frac{k}{2} > P.$$

Ezért (s_n) nem korlátos, tehát $\lim (s_n) = +\infty$, és így a harmonikus sor divergens.

Legyen most $\alpha < 1$. Ekkor

$$\frac{1}{n^{\alpha}} > \frac{1}{n} \qquad (n \in \mathbb{N}^+),$$

és így a hiperharmonikus sor részletösszegeire $\lim (s_n) = +\infty$ teljesül, hiszen a harmonikus sor divergenciája miatt

$$s_n = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}} > 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \xrightarrow[n \to +\infty]{} + \infty.$$

Összefoglalva: minden $\alpha \leq 1$ esetén a hiperharmonikus sor divergens, és az összege $+\infty$.

 $\boxed{\alpha>1}$ Megmutatjuk, hogy a $\sum\limits_{n=1}^{1}\frac{1}{n^{\alpha}}$ sor részletösszegeinek a sorozata felülről korlátos. Ennek igazolásához az $\alpha=1$ esetben mutatott **ötletet** használjuk, ti. kettőhatványok közötti csoportokat képezünk. Legyen $k\in\mathbb{N}$ tetszőleges. Ekkor $\forall\,n<2^{k+1}$ index esetén

$$s_{n} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}} \le$$

$$\le 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \dots + \frac{1}{7^{\alpha}}\right) + \dots + \left(\frac{1}{(2^{k})^{\alpha}} + \dots + \frac{1}{(2^{k+1} - 1)^{\alpha}}\right) <$$

$$< 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{2^{\alpha}}\right) + \left(\underbrace{\frac{1}{4^{\alpha}} + \dots + \frac{1}{4^{\alpha}}}_{4\text{-szer}}\right) + \dots + \left(\underbrace{\frac{1}{(2^{k})^{\alpha}} + \dots + \frac{1}{(2^{k})^{\alpha}}}_{2^{k}\text{-szor}}\right) =$$

$$= 1 + 2 \cdot \frac{1}{2^{\alpha}} + 4 \cdot \frac{1}{4^{\alpha}} + \dots + 2^{k} \cdot \frac{1}{(2^{k})^{\alpha}} = 1 + \frac{1}{2^{\alpha-1}} + \frac{1}{4^{\alpha-1}} + \dots + \frac{1}{(2^{k})^{\alpha-1}} =$$

$$= 1 + \frac{1}{2^{\alpha-1}} + \left(\frac{1}{2^{\alpha-1}}\right)^{2} + \dots + \left(\frac{1}{2^{\alpha-1}}\right)^{k} = 1 + q + q^{2} + \dots + q^{k} =: s_{k}^{(q)},$$

ahol $q=1/2^{\alpha-1}$. Mivel $\alpha>1$, így 0< q<1, amiből következik, hogy a $\sum q^n$ mértani sor konvergens. Ezért a részletösszegeinek a sorozata, vagyis az $s_k^{(q)}$ $(k\in\mathbb{N})$ sorozat felülről korlátos, és így az igazolt

$$s_n < s_k^{(q)}$$
 $(n < 2^{k+1}, k \in \mathbb{N})$

becslés miatt az (s_n) sorozat is felülről korlátos. Mivel monoton növekedő is, ezért konvergens, és így a hiperharmonikus sor konvergens, ha $\alpha > 1$.

Megjegyzés. Az előző tétel $\alpha > 1$ esetén a hiperharmonikus sornak **csak** a konvergenciáját állítja. A bizonyításból a sor összegére **csak** egy felső becslést kapunk. Nevezetesen:

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} = \lim_{n \to +\infty} s_n \le \lim_{k \to +\infty} s_k^{(q)} = \sum_{n=0}^{+\infty} q^n = \frac{1}{1-q} = \frac{1}{1-\frac{1}{2^{\alpha-1}}}.$$

A XVII. században és a XVIII. század elején sokan próbálták az $\alpha=2$ esetben adódó szuperharmonikus sor összegét meghatározni. Végül Leonhard Euler (1707–1783) svájci matematikus 1735-ben fedezte fel azt, hogy

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \approx 1,644\,934\,066\,848\,\dots$$

A hiperharmonikus sor összegére csak néhány további speciális α esetén ismerünk formulát. A nehézségeket jól mutatja az a tény, hogy pl. $\alpha=3$ esetén a sor összegére eddig nem sikerült semmilyen zárt alakot találni és lehet, hogy ilyen alak nem is létezik. Csak az 1970-es években bizonyították be, hogy a szóban forgó összeg irracionális. Sőt, továbbra is megoldatlan azonban az, hogy pl. a $\sum_{n=1}^{+\infty} \frac{1}{n^5}$ szám racionális-e vagy sem.

4. Az e szám sorösszeg előállítása.

4. tétel. A $\sum_{n=0}^{\infty} \frac{1}{n!}$ végtelen sor konvergens, és az összege az $e := \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ számmal egyenlő:

$$\sum_{n=0}^{+\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots = e.$$

Bizonyítás. Először a sor konvergenciáját igazoljuk. Mivel a sor pozitív tagokból áll, ezért az s_n részletösszegei monoton növekvő sorozatot alkotnak. Elegendő tehát igazolni, hogy az (s_n) sorozat felülről korlátos. Minden $2 \le n \in \mathbb{N}$ esetén

$$s_n := 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} = 2 + s_{n-1}^*,$$

ahol s_n^* a $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ teleszkopikus sor n-edik részletösszege. Már igazoltuk, hogy ez a sor konvergens, és összege 1. Ezért (s_n^*) felülről korlátos, és így a fenti becslés miatt (s_n) is felülről korlátos, és

$$s := \sum_{n=0}^{+\infty} \frac{1}{n!} = \lim_{n \to +\infty} s_n \le 2 + \lim_{n \to +\infty} s_{n-1}^* = 2 + \sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 2 + 1 = 3.$$

Most kiszámítjuk a sor összegét. A binomiális tétel alapján

$$a_n := \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^n \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!} \cdot \frac{1}{n^k} = 1 + \frac{1}{1!} + \sum_{k=2}^n \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \cdot \frac{1}{k!} \le \sum_{k=0}^n \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} = s_n,$$

így

$$e = \lim_{n \to +\infty} a_n \le \lim_{n \to +\infty} s_n = s$$
 azaz $\underline{e} \le \underline{s}$.

Rögzítsük most egy $m \ge 2$ természetes számot, és legyen n > m. Ekkor az előbbiekből

$$a_n \ge 1 + \frac{1}{1!} + \sum_{k=2}^m \left(\underbrace{1 - \frac{1}{n}}_{\rightarrow 1} \right) \left(\underbrace{1 - \frac{2}{n}}_{\rightarrow 1} \right) \cdot \dots \cdot \left(\underbrace{1 - \frac{k-1}{n}}_{\rightarrow 1} \right) \cdot \frac{1}{k!} \cdot \xrightarrow[n \to +\infty]{} \sum_{k=0}^m \frac{1}{k!} = s_m.$$

Vegyük észre, hogy a fenti egyenlőtlenségben véges számú alapművelet szerepel (m rögzített), ezért tudtuk a műveletek és a határérték kapcsolatáról szóló tételt alkalmazni.

A fentiek szerint $\lim (a_n) \ge s_m$ minden $m \ge 2$ esetén, amiből $m \to +\infty$ határátmenetet véve kapjuk, hogy

$$e = \lim_{n \to +\infty} a_n \ge \lim_{m \to +\infty} s_m = s$$
 azaz $e \ge s$.

Ezt a korábbi egyenlőtlenséggel összevetve kapjuk, hogy s = e.

5. A Leibniz-sor.

5. tétel. A

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Leibniz-sor konvergens.

Az állítást később fogjuk igazolni.

Néhány alapvető tétel végtelen sorok konvergenciájára

A definíció szerint egy **végtelen sor** a részletösszegeinek a **sorozata**. Sorok konvergenciájának a vizsgálatához tehát alkalmazhatók a sorozatokra eddig megismert állítások.

Ebben a pontban felsoroljuk a szóban forgó állítások néhány következményét. Fontos megjegyezni azonban azt, hogy ezek a tételek a gyakorlatban sokszor jól használható feltételeket adnak végtelen sorok konvergenciájának, illetve divergenciájának az eldöntésére. Végtelen sorok összegének a meghatározása azonban általában nehéz feladat.

Cauchy-féle konvergenciakritérium sorokra

A valós sorozatokra vonatkozó Cauchy-tulajdonság ekvivalens a konvergenciával, de a véges határérték definíciójával ellentétben annak eldöntésére, hogy egy adott sorozat Cauchy-sorozate vagy sem, nem szükséges ismerni a sorozat határértékét, hiszen ez utóbbi nem szerepel a Cauchy-tulajdonságban. A sorösszeg elég összetett fogalom, de lényegében egy határérték, a sor részletösszegeinek a határértéke. Ezért, ha a Cauchy-tulajdonságot felírjuk a sor részletösszegeinek sorozatára, akkor olyan tulajdonságot kapunk, ami ekvivalens a sor konvergenciájával, de nem tartalmazza a sor összegét.

6. tétel (Cauchy-féle konvergenciakritérium sorokra). $A \sum a_n$ sor akkor és csak akkor konvergens, ha

$$\forall \, \varepsilon > 0 \text{-}hoz \, \exists \, n_0 \in \mathbb{N}, \, \forall \, m > n > n_0 \colon |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon.$$

Bizonyítás. Tudjuk, hogy

$$\sum a_n$$
 konvergens \iff (s_n) konvergens \iff (s_n) Cauchy-sorozat,

azaz

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n, m > n_0 \colon |s_m - s_n| < \varepsilon$

teljesül. Állításunk abból következik, hogy ha m > n, akkor

$$s_m - s_n = a_{n+1} + a_{n+2} + \dots + a_m.$$

Megjegyzések.

1º A sorokra vonatkozó Cauchy-féle konvergenciakritériumot így is felírhatjuk:

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n > n_0, \forall k \in \mathbb{N}^+ : |a_{n+1} + a_{n+2} + \cdots + a_{n+k}| < \varepsilon.$

Valóban: legyen az előző tételben szereplő m index m := n + k.

- 2º A kritérium azt jelenti, hogy konvergens sorok esetén, ha elég nagy indextől adunk össze akármennyi véges sok tagot, akkor az összeg abszolút értéke kisebb, mint bármely előre meghatározott kicsi szám.
 - 3º Ha a kritérium nem teljesül, akkor a sor divergens. Ez azt jelenti, hogy

$$\exists \varepsilon > 0, \ \forall n_0 \in \mathbb{N}\text{-hez } \exists n > n_0, \ \exists k \in \mathbb{N}^+ \colon |a_{n+1} + a_{n+2} + \dots + a_{n+k}| \ge \varepsilon.$$

A harmonikus sor divergenciája ennek alkalmazásával is igazolható. Valóban legyen $\varepsilon=1/2$ és $n\in\mathbb{N}^+$ tetszőleges index. A harmonikus sor általános tagja $a_n=1/n$. Így minden $k\in\mathbb{N}^+$ szám esetén

$$|a_{n+1} + a_{n+2} + \dots + a_{n+k}| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+k} \ge$$

$$\ge \underbrace{\frac{1}{n+k} + \frac{1}{n+k} + \dots + \frac{1}{n+k}}_{k-\text{syor}} = \frac{k}{n+k}.$$

Ekkor k = n esetén

$$|a_{n+1} + a_{n+2} + \dots + a_{n+k}| \ge \frac{k}{k+k} = \frac{1}{2} = \varepsilon.$$

Nézzük meg a kritérium három fontos következményét!

7. tétel. Tekintsük a $\sum a_n$ és $\sum b_n$ végtelen sorokat, és tegyük fel, hogy

$$\exists N \in \mathbb{N}, \ \forall n > N : a_n = b_n.$$

Ekkor a két sor **ekvikonvergens**, azaz a $\sum a_n$ végtelen sor akkor és csak akkor konvergens, ha a $\sum b_n$ végtelen sor is konvergens.

Bizonyítás. Tegyük fel, hogy a $\sum a_n$ sor konvergens. Ekkor a sorokra vonatkozó Cauchyféle konvergenciakritérium szerint

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall m > n > n_0 \colon |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon.$

Ha $n_1 := \max\{n_0, N\}$, akkor $\forall m > n > n_1$ indexre

$$|b_{n+1} + b_{n+2} + \dots + b_m| = |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon$$

teljesül, így a $\sum b_n$ sor is kielégíti a sorokra vonatkozó Cauchy-féle konvergenciakritériumot, tehát konvergens.

Hasonlóan igazolható, hogy ha a $\sum b_n$ sor konvergens, akkor a $\sum a_n$ sor is konvergens.

Megjegyzés. A tétel azt állítja, hogy ha két sor legfeljebb véges sok tagban különbözik egymástól, akkor a két sor egyszerre konvergens vagy divergens. Ennek következménye, hogy egy sor véges sok tagjának a megváltoztatásával nem változik a sor konvergenciája.

Vigyázat! Itt csak a konvergencia/divergencia tényéről van szó, és ez nem jelenti azt, hogy a sorösszegek is megegyeznek. Ekvikonvergens sorok összege különböző is lehet. ■

8. tétel (Sorok konvergenciájának egy szükséges feltétele). Ha a $\sum a_n$ végtelen sor konvergens, akkor az (a_n) generáló sorozat nullasorozat, azaz $\lim (a_n) = 0$.

Bizonyítás. A sorokra vonatkozó Cauchy-féle konvergencia kritériumban legyen m:=n+1. Ekkor azt kapjuk, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon |a_{n+1}| < \varepsilon.$

Ez azt jelenti, hogy $\lim (a_{n+1}) = 0$, és így $\lim (a_n) = 0$.

Ebből az állításból rögtön kapunk egyszerű **elégséges** feltételeket sorok divergenciájára:

Ha az (a_n) sorozat nem nullasorozat, vagy divergens, akkor a $\sum a_n$ végtelen sor divergens.

Például: A $\sum \frac{3n}{n+1}$ sor divergens, mert

$$\lim_{n \to +\infty} \frac{3n}{n+1} = 3 \neq 0.$$

A $\sum (-1)^n$ sor is divergens, mert a $(-1)^n$ $(n \in \mathbb{N})$ sorozat divergens.

Megjegyzések.

1º Az előző szükséges feltétel így is igazolható: ha a sor összege s, akkor

$$a_n = (a_0 + a_1 + \dots + a_n) - (a_0 + a_1 + \dots + a_{n-1}) = s_n - s_{n-1} \xrightarrow[n \to +\infty]{} s - s = 0.$$

 2^o A $\lim (a_n) = 0$ csak szükséges, de nem elégséges feltétele a $\sum a_n$ sor konvergenciájának, hiszen tudjuk, hogy a harmonikus sor divergens, de a tagjai nullához tartanak.

Végtelen sorok lineáris kombinációi

9. tétel (Sorok lineáris kombinációi). Tegyük fel, hogy a $\sum a_n$ és a $\sum b_n$ soroknak van összege. Legyen

$$\sum_{n=0}^{+\infty} a_n =: A \in \overline{\mathbb{R}} \quad \textit{\'es} \quad \sum_{n=0}^{+\infty} b_n =: B \in \overline{\mathbb{R}}.$$

Ha a $\lambda, \mu \in \mathbb{R}$ olyan számok, amelyekre $(\lambda \cdot A + \mu \cdot B) \in \overline{\mathbb{R}}$ értelmezve van, akkor a sorok $\sum (\lambda a_n + \mu b_n)$ lineáris kombinációjának is van összege, és

$$\sum_{n=0}^{+\infty} (\lambda a_n + \mu b_n) = \lambda \cdot A + \mu \cdot B.$$

Bizonyítás. Jelölje s_n , illetve t_n a $\sum a_k$, illetve a $\sum b_k$ sor n-edik részletösszegét. Ekkor a sorok lineáris kombinációjának n-edik részletösszege:

$$\sum_{k=0}^{n} (\lambda a_k + \mu b_k) = \lambda \sum_{k=0}^{n} a_k + \mu \sum_{k=0}^{n} b_k = \lambda s_n + \mu t_n.$$

Így az állítás abból következik, hogy

$$\lim_{n \to +\infty} \left(\lambda \, s_n + \mu \, t_n \right) = \lambda \cdot \lim_{n \to +\infty} s_n + \mu \cdot \lim_{n \to +\infty} t_n = \lambda \cdot \sum_{n=0}^{+\infty} a_n + \mu \cdot \sum_{n=0}^{+\infty} b_n = \lambda \cdot A + \mu \cdot B.$$

Megjegyzések.

 $\mathbf{1}^o$ Ha a $\sum a_n$ és a $\sum b_n$ sorok konvergensek, akkor $A, B \in \mathbb{R}$, és így a $\sum (\lambda a_n + \mu b_n)$ sor konvergens, és

$$\sum_{n=0}^{+\infty} \left(\lambda \, a_n + \mu \, b_n \right) = \lambda \cdot A + \mu \cdot B \in \mathbb{R}.$$

 ${\bf 2}^o$ Teljes indukcióval igazolható, hogy az állítás véges sok sor lineáris kombinációjára is. kiterjeszthető. \blacksquare

Nemnegatív tagú sorok

A nevezetes soroknál látunk, hogy a pozitív tagokkal rendelkező sorok konvergenciának vizsgálata leegyszerűsödik. Ugyanez érvényes azokra a sorokra is, amelyeknek minden tagja nagyobb vagy egyenlő mint nulla. Ezeket **nemnegatív tagú soroknak** nevezzük.

10. tétel. Egy nemnegatív tagú sor akkor és csak akkor konvergens, ha a részletösszegeiből álló sorozat korlátos.

Bizonyítás. A $\sum a_n$ nemnegatív tagú sor (s_n) részletösszegeinek a sorozata monoton növekvő, hiszen $s_{n+1}-s_n=a_{n+1}\geq 0$ minden $n\in\mathbb{N}$ esetén. Ekkor csak két eset lehetséges:

- (s_n) korlátos, és így a monotonitás miatt konvergens. Ekkor a $\sum a_n$ sor is konvergens.
- (s_n) nem korlátos, és így a monotonitás miatt $(+\infty)$ -hez tart. Ekkor a sor divergens.

Megjegyzések.

 $\mathbf{1}^o$ A tétel bizonyításából látható, hogy ha a $\sum a_n$ nemnegatív tagú sor divergens, akkor az összege $+\infty$, azaz $\sum_{n=1}^{+\infty} a_n = +\infty$.

 2^{o} Az előző tétel állítása érvényben marad, ha a sor csak véges sok negatív tagot tartalmaz, mert ekkor (s_n) egy index után már monoton növekvő sorozat lesz. Hasonló állítás fogalmazható meg nempozitív tagú végtelen sorokra. Más a helyzet akkor, ha a sor végtelen sok pozitív és negatív tagot is tartalmaz.

11. tétel (Összehasonlító kritériumok). Legyenek $\sum a_n$ és $\sum b_n$ nemnegatív tagú sorok. Tegyük fel, hogy

$$\exists N \in \mathbb{N}, \ \forall n \geq N : 0 \leq a_n \leq b_n.$$

Ekkor

- **1º** Majoráns kritérium: ha a $\sum b_n$ sor konvergens, akkor $\sum a_n$ sor is konvergens.
- **2º** Minoráns kritérium: ha a $\sum a_n$ sor divergens, akkor a $\sum b_n$ sor is divergens.

Bizonyítás. Az általánosság megszorítása nélkül feltehetjük, hogy $a_n \leq b_n$ minden $n \in \mathbb{N}$ esetén, hiszen véges sok tag megváltozásával egy sor konvergenciája nem változik. Jelölje (s_n) , illetve (t_n) a $\sum a_k$, illetve a $\sum b_k$ sorok részletösszegeiből álló sorozatokat. A feltevésünk miatt $s_n \leq t_n$ $(n \in \mathbb{N})$. Ekkor a nemnegatív tagú sorok konvergenciáról szóló tétel szerint

- 1^o ha a $\sum b_n$ sor konvergens, akkor (t_n) korlátos, így (s_n) is az. Ezért a $\sum a_n$ sor is konvergens.
- 2^o ha $\sum a_n$ sor divergens, akkor (s_n) nem korlátos, így (t_n) sem az. Ezért a $\sum b_n$ sor is divergens.

Megjegyzés. A szuperharmonikus sor konvergenciája a majoráns kritériummal is igazolható. Valóban: a szóban forgó pozitív tagú sor tagjaira az

$$\frac{1}{n^2} \le \frac{1}{(n-1)n} \qquad (n \ge 2)$$

egyenlőtlenségek teljesülnek, ezért a $\sum_{n=1}^{\infty} \frac{1}{n^2}$ sor majorálható a $\sum_{n=2}^{\infty} \frac{1}{(n-1)n} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ konvergens teleszkopikus sorral.

Abszolút és feltételesen konvergens sorok

Említettük azt, hogy ha egy sor végtelen sok pozitív és negatív tagot is tartalmaz, akkor a konvergenciája már nem csak az (s_n) sorozat korlátosságán fog múlni, mint a nemnegatív tagú sorok esetében. Ilyen sorok konvergenciájának a vizsgálatánál segítségünkre lehet a $\sum |a_n|$ nemnegatív tagú sor, amelyet a $\sum a_n$ sor **abszolút sorának** nevezünk.

3. definíció. Azt mondjuk, hogy a $\sum a_n$ sor **abszolút konvergens**, ha a $\sum |a_n|$ abszolút sora konvergens.

12. tétel. Ha a $\sum a_n$ sor abszolút konvergens, akkor konvergens is.

Bizonyítás. Ha a $\sum |a_n|$ sor konvergens, akkor a sorokra vonatkozó Cauchy-féle konvergenciakritérium szerint

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall m > n > n_0 \colon \left| |a_{n+1}| + |a_{n+2}| + \dots + |a_m| \right| < \varepsilon.$

Mivel

$$|a_{n+1} + a_{n+2} + \dots + a_m| \le |a_{n+1}| + |a_{n+2}| + \dots + |a_m| < \varepsilon,$$

ezért a Cauchy-féle konvergenciakritérium teljesül a $\sum a_n$ sorra is.

Megjegyzések.

1º Az előző tételből következik, hogy ha egy konvergens pozitív tagú sor tetszőleges számú tagjainak előjelét negatívra cseréljük, akkor abszolút konvergens sort kapunk. Így például az

$$1 - \frac{1}{2^2} - \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} - \frac{1}{7^2} + \cdots$$

sor abszolút konvergens, hiszen abszolút sora az

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \cdots$$

konvergens szuperharmonikus sor.

 ${\bf 2}^o$ Vezessük be a következő jelöléseket. Adott a $\sum a_n$ sor legyen

$$a_n^+ := \begin{cases} a_n & (a_n > 0) \\ 0 & (a_n \le 0), \end{cases} \qquad a_n^- := \begin{cases} 0 & (a_n > 0) \\ -a_n & (a_n \le 0) \end{cases} \qquad (n \in \mathbb{N}).$$

Képezzük a $\sum a_n^+$ és $\sum a_n^-$ nemnegatív tagú sorokat! Vegyük észre, hogy

(1)
$$a_n = a_n^+ - a_n^-$$
 és $|a_n| = a_n^+ + a_n^ (n \in \mathbb{N}).$

A $\sum a_n$ sor abszolút konvergenciája ekvivalens azzal, hogy a $\sum a_n^+$ és a $\sum a_n^-$ sorok mindegyike konvergens. Valóban ha $\sum |a_n|$ konvergens, akkor a

$$a_n^+ \le |a_n|$$
 és $a_n^- \le |a_n|$ $(n \in \mathbb{N})$

relációkból a majoráns kritérium alapján $\sum a_n^+$ és $\sum a_n^-$ is konvergens. Fordítva, az előző két sor konvergenciájából következik a $\sum |a_n|$ és $\sum a_n$ sor konvergenciája az (1) egyenlőségek miatt, hiszen már igazoltuk, hogy két konvergens sor tagonkénti összegéből képzett sor is konvergens.

A tétel állításának a megfordítása nem igaz: egy konvergens sor nem feltétlenül abszolút konvergens. Meg fogjuk majd mutatni azt, hogy a

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Leibniz-sor konvergens. Azt viszont mátudjuk, hogy az abszolút értékeiből képzett

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

harmonikus sor divergens.

4. definíció. Azt mondjuk, hogy a $\sum a_n$ sor feltételesen konvergens, ha $\sum a_n$ konvergens, de nem abszolút konvergens.

A Leibniz-sor tehát egy feltételesen konvergens sor.

Megjegyzés. Ha egy sor feltételesen konvergens, akkor legalább a $\sum a_n^+$ és a $\sum a_n^-$ sorok egyike divergens. Mivel $\sum a_n$ konvergens, ezért az (1) első egyenlősége miatt a $\sum a_n^+$ és a $\sum a_n^-$ mindegyike divergens. Másrészt, a konvergencia szükséges feltétele szerint $\lim (a_n) = 0$, ezért $\lim (a_n^+) = 0$ és $\lim (a_n^-) = 0$ is igaz.

A $\sum a_n^+$ és $\sum a_n^-$ sorok divergenciája, és a $\lim(a_n^+) = 0$, $\lim(a_n^-) = 0$ feltételek szükségesek, de együttes teljesülésük sem elegendő a $\sum a_n$ sor feltételes konvergenciájához.