Using the across function from dplyr package

Alierwai Reng

Table of contents

1	Getting Started			
	1.1 Load the required libraries	1		
	1.2 Load data	1		
2	Transform the data and select two highest and two lowest grades for each student	2		
1	Getting Started			

1.1 Load the required libraries

```
library(tidyverse)
```

1.2 Load data

```
# Set the seed for reproducibility; create a same student-grade dataset
set.seed(254)
student_grades <-
    tibble(
    name = c(
        "Ayen", "Deng", "Akuien",
        "Atong", "Tut", "Garang",
        "Wichar", "Nyikuoth"
        ),
    english = rnorm(n = 8, mean = 85, sd = 15),
    mathematics = rnorm(n = 8, mean = 82, sd = 12.5),</pre>
```

```
statistics = rnorm(n = 8, mean = 89, sd = 10.5),
    data_science = rnorm(n = 8, mean = 78, sd = 14)
)

# Display output
student_grades |>
    knitr::kable()
```

name	english	mathematics	statistics	data_science
Ayen	81.12773	57.56785	81.18913	46.89237
Deng	108.97947	86.99167	102.00057	63.40586
Akuien	87.02066	76.42730	93.02909	77.34297
Atong	77.77471	88.91984	99.17388	68.38323
Tut	100.30413	102.50166	105.14887	55.17427
Garang	89.45313	78.36310	80.02635	58.06276
Wichar	83.07781	80.40586	114.14167	103.17680
Nyikuoth	109.16066	89.24462	97.66874	71.84307

2 Transform the data and select two highest and two lowest grades for each student

```
# Trim grades above 100 and round to 2 decimal places
final_grades <-
    student_grades |>
    mutate(
        across(where(is.numeric), \(x) if_else(x > 100, 100, round(x, 1)))
    )

final_grades|>
    knitr::kable()
```

name	english	mathematics	statistics	data_science
Ayen	81.1	57.6	81.2	46.9
Deng	100.0	87.0	100.0	63.4
Akuien	87.0	76.4	93.0	77.3
Atong	77.8	88.9	99.2	68.4
Tut	100.0	100.0	100.0	55.2

name	english	mathematics	statistics	data_science
Garang	89.5	78.4	80.0	58.1
Wichar	83.1	80.4	100.0	100.0
Nyikuoth	100.0	89.2	97.7	71.8

```
# Compute the top 2 best grades
top_2_scores <-
    final_grades |>
    pivot_longer(
        where(is.numeric),
        names_to = "subject",
        values_to = "grade"
) |>
    # Select the two highest grades for each student; ties are retained by default
    slice_max(order_by = grade, n = 2, by = name, with_ties = TRUE)

top_2_scores
```

```
# A tibble: 17 x 3
                         grade
  name
            subject
  <chr>
            <chr>
                         <dbl>
                          81.2
1 Ayen
            statistics
2 Ayen
                          81.1
            english
3 Deng
            english
                         100
            statistics
4 Deng
                         100
5 Akuien
            statistics
                          93
6 Akuien
            english
                          87
7 Atong
            statistics
                          99.2
8 Atong
            mathematics
                          88.9
9 Tut
            english
                         100
10 Tut
            mathematics
                         100
11 Tut
                         100
            statistics
12 Garang
            english
                          89.5
13 Garang
            statistics
                          80
14 Wichar
            statistics
                         100
15 Wichar
            data_science 100
16 Nyikuoth english
                         100
17 Nyikuoth statistics
                          97.7
```

```
bottom_2_scores <-
    final_grades |>
   pivot_longer(
       where(is.numeric),
       names_to = "subject",
       values_to = "grade"
    ) |>
    # Select the two lowest grades for each student; ties are retained by default
    slice_min(order_by = grade, n = 2, by = name, with_ties = TRUE)
bottom_2_scores
# A tibble: 18 x 3
  name
          subject
                        grade
           <chr>
   <chr>
                        <dbl>
        data_science 46.9
 1 Ayen
         mathematics 57.6
 2 Ayen
 3 Deng
          data_science 63.4
 4 Deng
          mathematics 87
 5 Akuien mathematics 76.4
 6 Akuien data_science 77.3
 7 Atong data_science 68.4
 8 Atong
           english
                         77.8
9 Tut
           data_science 55.2
10 Tut
           english
                        100
11 Tut
           mathematics 100
12 Tut
           statistics
                        100
13 Garang
           data_science 58.1
14 Garang
           mathematics 78.4
15 Wichar
           mathematics 80.4
16 Wichar
           english
                         83.1
17 Nyikuoth data_science 71.8
18 Nyikuoth mathematics
                         89.2
# Import multiple Excel files into R
library(readxl)
paths <- list.files("../00-data/multiple_excel_files", pattern = "[.]xlsx$", full.names = TR
census <-
   paths |>
```

Compute the bottom 2 worst grades

```
set names(basename) |>
   map(\(path) read_excel(path)) |>
   list rbind(names to = 'state') |>
   # mutate(state = str_remove_all(state, '.xlsx')) |>
   separate wider delim(
       state,
       delim = '.',
       names = c('state', NA)
   ) |>
   mutate(state = str_replace_all(state, '_', ' ') |> str_to_title()) |>
   janitor::clean_names() |>
   select(
       former_region ,
       state,
       state2 = region_name,
       gender = variable_name,
       age_category = age_name,
       population = x2008
       ) |>
   separate_wider_delim(
       gender,
       delim = ' ',
       names = c(NA, 'gender', NA)
   filter(gender != 'Total', age_category != 'Total') |>
   mutate(
       age_category = case_when(
            age_category %in% c("0 to 4", "5 to 9", "10 to 14") ~ "0-14",
            age_category %in% c("15 to 19", "20 to 24")
                                                             ~ "15-24",
            age_category %in% c("25 to 29", "30 to 34")
                                                              ~ "25-34",
           age_category %in% c("35 to 39", "40 to 44")
                                                              ~ "35-44",
            age_category %in% c("45 to 49", "50 to 54")
                                                              ~ "45-54".
           age_category %in% c("55 to 59", "60 to 64")
                                                               ~ "55-64",
           .default = "65+"
       )
   ) |>
   summarize(
       total = sum(population, na.rm = TRUE),
       .by = c(former_region, state2, gender, age_category)
   )
# Inspect output
```

census

# A tibble: 140 x 5							
	former_region	state2		gender	age_category	total	
	<chr></chr>	<chr></chr>		<chr></chr>	<chr></chr>	<dbl></dbl>	
1	<na></na>	Central	Equatoria	Male	0-14	242247	
2	<na></na>	Central	Equatoria	Male	15-24	124513	
3	<na></na>	Central	Equatoria	Male	25-34	95507	
4	<na></na>	Central	Equatoria	Male	35-44	59775	
5	<na></na>	Central	Equatoria	Male	45-54	32567	
6	<na></na>	Central	Equatoria	Male	55-64	15704	
7	<na></na>	Central	Equatoria	Male	65+	11409	
8	<na></na>	Central	Equatoria	Female	0-14	221216	
9	<na></na>	Central	Equatoria	Female	15-24	115726	
10	<na></na>	Central	Equatoria	Female	25-34	86092	
# :	i 130 more row	s					