Numerické řešení diferenciálních rovnic

Mirko Navara

http://cmp.felk.cvut.cz/~navara/

Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a

http://math.feld.cvut.cz/nemecek/nummet.html

15. prosince 2010

Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu

Úloha: Na intervalu $\langle x_0, x_n \rangle$ máme řešit diferenciální rovnici

$$y'(x) = f(x, y(x))$$

s počáteční podmínkou

$$y(x_0) = y_0,$$

kde f je funkce dvou reálných proměnných a $y_0 \in \mathbb{R}$.

Poznámka: Pokud f nezávisí na y, tj. f(x,y) = g(x), dostáváme numerickou integraci jako speciální případ řešení diferenciální rovnice

$$y'(x) = g(x)$$

Existence a jednoznačnost řešení

Není obecně zaručena:

Příklad: Uvažujme diferenciální rovnici s počáteční podmínkou:

$$y'(x) = \sqrt[3]{y(x)}, y(0) = 0,$$

kde třetí odmocninu považujeme za reálnou funkci definovanou i pro záporný argument. Má řešení např. y(x) = 0 a $y(x) = \pm \left(\frac{2}{3}x\right)^{\frac{3}{2}}$.

Věta: Nechť funkce f je definovaná a spojitá na $\langle x_0, x_n \rangle \times \mathbb{R}$ (tj. pro všechna $x \in \langle x_0, x_n \rangle, y \in \mathbb{R}$). Nechť je splněna Lipschitzova podmínka

$$\exists L \in \mathbb{R} \ \forall x \in \langle x_0, x_n \rangle \ \forall y_1, y_2 \in \mathbb{R} : |f(x, y_1) - f(x, y_2)| \le L |y_1 - y_2|.$$

Pak řešení naší úlohy na intervalu $\langle x_0, x_n \rangle$ existuje a je jednoznačné. Postačující podmínka: $\frac{\partial f}{\partial y}$ spojitá a omezená na $\langle x_0, x_n \rangle \times \mathbb{R}$.

Interpretace úlohy a princip řešení

Poznámka: Ekvivalentní formulace úlohy: řešení

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$$

lze chápat jako integrál (neznámé) funkce g(t) = f(t, y(t)) jedné proměnné nebo křivkový integrál známé funkce f přes (neznámou) křivku s parametrizací $(t, y(t)), t \in \langle x_0, x_n \rangle$.

Interval $\langle x_0, x_n \rangle$ rozdělíme na n dílčích intervalů délky $h = (x_n - x_0)/n$. Získáme **uzlové body** $x_i = x_0 + i h$, $i = 0, \dots, n$.

Správné hodnoty řešení v uzlových bodech, $y(x_i)$, nahradíme odhady y_i .

Hodnoty derivace: $f_i = f(x_i, y_i)$.

Obecný postup řešení

Generujeme posloupnost y_i , $i=0,\ldots,n$. V kroku i+1 počítáme z odhadů y_0,\ldots,y_i odhad y_{i+1} . Přesné řešení:

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f(t, y(t)) dt$$

odhadujeme pomocí

$$\Delta y_i = y_{i+1} - y_i \approx \int_{x_i}^{x_{i+1}} f(t, y(t)) dt.$$
$$y_{i+1} = y_i + \Delta y_i.$$

Jednotlivé metody se liší pouze odhadem Δy_i .

Rungovy-Kuttovy metody 1: Eulerova metoda

Je zobecněním metody levého odhadu; funkci f(t, y(t)) nahrazujeme její hodnotou $f(x_i, y_i)$ v bodě x_i

$$\Delta y_i = \int_{x_i}^{x_{i+1}} f(x_i, y_i) dt = h f(x_i, y_i),$$

$$y_{i+1} = y_i + h f(x_i, y_i) = y_i + h f_i$$
.

Geometrický význam: $f_i = f(x_i, y_i)$ je směrnice úsečky vedené body (x_i, y_i) , (x_{i+1}, y_{i+1}) .

Odhad chyby

Taylorův rozvoj funkce y se středem v x_0 vyhodnotíme v bodě x_1 :

$$y(x_1) = y(x_0) + h y'(x_0) + \frac{h^2}{2} y''(\xi),$$

kde $\xi \in \langle x_0, x_1 \rangle$.

$$y(x_1) = \underbrace{y(x_0) + h f(x_0, y_0)}_{y_1} + \frac{h^2}{2} y''(\xi),$$

$$y(x_1) - y_1 = \frac{h^2}{2} y''(\xi).$$

Chyba na konci prvního kroku je úměrná h^2 .

V dalších krocích vycházíme z počáteční podmínky, která není přesná. Přesto lze za jistých podmínek odvodit, že chyba je zhruba úměrná h^2 a počtu kroků $n=\frac{x_n-x_0}{h}$. Chyba na konci daného intervalu je úměrná $\frac{1}{h}\,h^2=h^{}\Rightarrow$ metoda 1. řádu.

Rungovy-Kuttovy metody 2: První modifikace Eulerovy metody

Je zobecněním obdélníkové metody; funkci f(t, y(t)) v ní nahradíme opět hodnotou v bodě $\frac{x_i + x_{i+1}}{2} = x_i + \frac{h}{2}$ Jako druhý argument funkce f použijeme výsledek pomocného kroku poloviční délky (Eulerovou metodou):

$$\begin{split} \eta_i &= y_i + \frac{h}{2} \, f_i \,. \\ f(t,y(t)) &\approx f(x_i + \frac{h}{2}, \eta_i) \\ \Delta y_i &= \int_{x_i}^{x_{i+1}} f\left(x_i + \frac{h}{2}, \eta_i\right) \, dt = h \, f\left(x_i + \frac{h}{2}, \eta_i\right) \,. \end{split}$$

Metoda 2. řádu.

Druhá modifikace Eulerovy metody (Heunova metoda)

Je zobecněním lichoběžníkové metody integrace; funkci f(t,y(t)) nahradíme lineární funkcí, proloženou hodnotami v krajních bodech intervalu:

v x_i : $f_i = f(x_i, y_i)$, v x_{i+1} : neznalost y-ové souřadnice řešíme pomocným krokem (délky h Eulerovou metodou):

$$\theta_i = y_i + h f_i$$
.

Funkci f(t, y(t)) nahradíme lineární funkcí, jejíž graf prochází body $(x_i, f(x_i, y_i)), (x_{i+1}, f(x_{i+1}, \theta_i)).$

$$\Delta y_i = \frac{h}{2} \left(f(x_i, y_i) + f(x_{i+1}, \theta_i) \right).$$

Metoda 2. řádu.

Rungovy-Kuttovy metody 4: Rungova-Kuttova metoda 4. řádu

Je zobecněním Simpsonovy metody; nejprve vypočteme pomocné body a hodnoty derivace v nich,

$$\begin{array}{rcl} k_{i,1} & = & f(x_i, y_i) \,, \\ k_{i,2} & = & f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2} \, k_{i,1}\right) \,, \\ k_{i,3} & = & f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2} \, k_{i,2}\right) \,, \\ k_{i,4} & = & f(x_i + h, y_i + h \, k_{i,3}) \,. \end{array}$$

Integrál nahradíme lineární kombinací těchto hodnot:

$$\Delta y_i = \frac{h}{6} \left(k_{i,1} + 2k_{i,2} + 2k_{i,3} + k_{i,4} \right).$$

Rungovy-Kuttovy metody 5: Obecné Rungovy-Kuttovy metody

Odhadují integrál $\int_{x_i}^{x_{i+1}} f(t, y(t)) dt$ z několika hodnot funkce f v bodech, získaných z výchozích hodnot x_i, y_i a pomocných kroků. Tyto hodnoty jsou zkombinovány tak, aby se vykompenzovaly chyby nejnižších řádů.

Vícekrokové metody

Metody

- jednokrokové: využívají x_i, y_i a $f_i = f(x_i, y_i)$ (např. Rungeovy-Kuttovy),
- vícekrokové: využívají i výsledky předcházejících kroků, tj. x_i, y_i a $f_i = f(x_i, y_i), j = i, i 1, \dots, i s + 1$ (pro s-krokovou metodu).

Vícekrokové metody dovolují zvýšit řád metody bez pomocných kroků.

Nicméně k nastartování s-krokové metody potřebujeme s hodnot y_0, y_1, \dots, y_{s-1} . Ty získáváme startovací metodou (některou z jednokrokových metod).

Adamsovy-Bashforthovy metody (explicitní)

s hodnotami derivace $f_i, f_{i-1}, \ldots, f_{i-s+1}$

v uzlových bodech $x_i, x_{i-1}, \dots, x_{i-s+1}$

proložíme interpolační polynom φ_i a ten integrujeme místo f(t, y(t)):

$$\Delta y_i = \int_{x_i}^{x_{i+1}} \varphi_i(t) \, dt \, .$$

Není potřeba počítat φ_i , neboť

$$\Delta y_i = h \sum_{j=0}^{s-1} w_j f_{i-j},$$

kde w_i jsou předem známé koeficienty.

Polynomem aproximujeme derivaci y'(t) = f(t, y(t)), nikoli řešení, y(t)!

Pro s = 1:

 $\varphi_i = f_i$ je konstantní \Rightarrow Eulerova metoda.

Pro s = 2:

 φ_i je lineární polynom proložený body $(x_i, f_i), (x_{i-1}, f_{i-1}),$

$$\varphi_i(t) = f_i + \frac{f_i - f_{i-1}}{h} (t - x_i)$$

$$\Delta y_i = \int_{x_i}^{x_{i+1}} \varphi_i(t) dt = h f_i + \frac{h}{2} (f_i - f_{i-1}) = \frac{h}{2} (3f_i - f_{i-1}).$$

Pro s = 3:

$$\Delta y_i = \frac{h}{12} \left(23f_i - 16f_{i-1} + 5f_{i-2} \right),\,$$

Pro s = 4:

$$\Delta y_i = \frac{h}{24} \left(55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3} \right).$$

Řád metody je s=počet bodů použitých v aproximaci. Výhoda:

• jednoduchost

Nevýhody:

- různá znaménka koeficientů (\Rightarrow zaokrouhlovací chyby)
- chyba metody způsobená extrapolací polynomem

 \Rightarrow snaha vyhnout se extrapolaci

Adamsovy-Moultonovy metody (implicitní)

Pravou stranu f(t, y(t)) aproximujeme interpolačním polynomem φ_i proloženým hodnotami $f_i, f_{i-1}, \ldots, f_{i-s+1}$ a hodnotou v bodě x_{i+1} , tj. $f_{i+1} = f(x_{i+1}, y_{i+1})$.

Opět se redukuje na tvar

$$y_{i+1} - y_i = \Delta y_i = h \sum_{i=-1}^{s-1} w_j f_{i-j},$$

kde w_j jsou předem vypočtené koeficienty (zde jiné).

Dostáváme rovnici

$$y_{i+1} = y_i + h w_{-1} f(x_{i+1}, y_{i+1}) + h \sum_{i=0}^{s-1} w_j f_{i-j}$$

pro neznámou hodnotu y_{i+1} , která je tímto určena **implicitně**.

Pro s = 1: φ_i je lineární polynom proložený body (x_i, f_i) , (x_{i+1}, f_{i+1}) , tj.

$$\varphi_i(t) = f_i + \frac{f_{i+1} - f_i}{h} (t - x_i).$$

$$\Delta y_i = \int_{x_i}^{x_{i+1}} \varphi_i(t) dt = \frac{h}{2} \left(f_{i+1} + f_i \right),$$

po dosazení $f_{i+1} = f(x_{i+1}, y_{i+1})$

$$y_{i+1} - y_i = \frac{h}{2} (f(x_{i+1}, y_{i+1}) + f_i).$$

Pro s = 2:

$$\Delta y_i = \frac{h}{12} \left(5f(x_{i+1}, y_{i+1}) + 8f_i - f_{i-1} \right),\,$$

Pro s = 3:

$$\Delta y_i = \frac{h}{24} \left(9f(x_{i+1}, y_{i+1}) + 19f_i - 5f_{i-1} + f_{i-2} \right).$$

Řád metody je s+1=počet bodů použitých v aproximaci. Výhoda:

vyšší přesnost

Nevýhody:

- obtížné řešení implicitní rovnice (zřídka možné exaktně, numerické řešení zvyšuje složitost)
- i chyba metody způsobená interpolací polynomem může být značná

Metody prediktor-korektor

Základem je **korektor**, což je některá z implicitních metod, v níž se příslušná rovnice řeší numericky. V j-té iteraci z ní vypočítáme odhad $y_{i+1,j}$ hodnoty y_{i+1} , přičemž na pravé straně použijeme odhad $y_{i+1,j-1}$ získaný v předchozí iteraci:

$$y_{i+1,j} = y_i + h \sum_{i=0}^{s-1} w_j f_{i-j} + h w_{-1} f(x_{i+1}, y_{i+1,j-1}).$$

Počáteční odhad $y_{i+1,0}$ najdeme z výsledků předchozích kroků (event. z počátečních podmínek) jinou metodou, zvanou **prediktor**, např. některou z explicitních metod.

Řídicí mechanismus

P = prediktor (Predictor)

C = korektor (Corrector)

E = vyhodnocení derivace (Evaluation)

Nejčastější možnosti:

- cyklus korektoru provádět tak dlouho, dokud není rozdíl $y_{i+1,j} y_{i+1,j-1}$ dostatečně malý,
- konstantní počet k opakování korektoru, $P(EC)^kE$,
- jediný průchod korektorem, PECE.

Adamsovy metody

Prediktor: Adamsova-Bashforthova metoda Korektor: Adamsova-Moultonova metoda

Příklad: Nejjednodušší varianta Adamsovy metody, s = 1:

Prediktor: Eulerova metoda (1. řádu)

$$y_{i+1,0} = y_i + h f_i$$
.

Korektor: Adamsova-Moultonova metoda 2. řádu

$$y_{i+1,j+1} = y_i + \frac{h}{2} (f_i + f(x_{i+1}, y_{i+1,j})).$$

Volba startovací metody (jejího řádu) Volba kroku

Richardsonova extrapolace při řešení diferenciálních rovnic

 $\tilde{y}(x,h)$... numerické řešení v bodě x, získané s krokem h $\tilde{y}(x,2h)$... numerické řešení v bodě x, získané s krokem 2h (zde q=2)

Chyba odhadu $\tilde{y}(x,h)$ bude zhruba $2^p \times$ menší než chyba odhadu $\tilde{y}(x,2h)$ \Rightarrow odhad chyby výsledku $\tilde{y}(x,h)$ metodou polovičního kroku:

$$\tilde{y}(x,h) - y(x) \approx \frac{1}{2^p - 1} (\tilde{y}(x,2h) - \tilde{y}(x,h)).$$

Odhad výsledku zpřesněný Richardsonovou extrapolací:

$$y(x) \approx \tilde{y}(x,h) + \frac{1}{2^p - 1} (\tilde{y}(x,h) - \tilde{y}(x,2h)).$$

Richardsonova extrapolace

- pasivní
- \bullet aktivní