XJTLU Entrepreneur College (Taicang) Cover Sheet

Module code and Title	DTS201TC Pattern Recognition				
School Title	School of AI and Advanced Computing				
Assignment Title	Final project				
Submission Deadline	23:59, 31 st Dec.				
Final Word Count					
If you agree to let the university use your work anonymously for teaching and learning purposes, please type "yes" here.					

I certify that I have read and understood the University's Policy for dealing with Plagiarism, Collusion and the Fabrication of Data (available on Learning Mall Online). With reference to this policy I certify that:

My work does not contain any instances of plagiarism and/or collusion.
 My work does not contain any fabricated data.

By uploading my assignment onto Learning Mall Online, I formally declare that all of the above information is true to the best of my knowledge and belief.

Scoring – For Tutor Use							
Student ID							

Stage of Marking		Marker Code	Learning Outcomes Achieved (F/P/M/D) (please modify as appropriate)		Final Score	
			A	В	С	
1 st Marker – red						
pen						
Moderation		The original mark has been accepted by the moderator			Y / N	
IM		IM	(please circle as appropriate):			
green pen Initials						
		Data entry and score calculation have been checked by		Y		
		another tutor (please circle):				
2 nd Marker i	2 nd Marker if					
needed – green						
pen						
For Academic Office Use		Possible Academic Infringement (please tick as a		propriate)		
Date	Days	Late	☐ Category A			
Received	late	Penalty			Total Academic Infringement Penalty	
			- category B		(A,B, C, D, E, Please modify where	
			☐ Category C ☐ Category D		necessary)	
			☐ Catego	ory E		

DTS201TC Classification Demonstration

Project (Individual)

1 Mathematical problems [40 marks]

Derive the Maximum Likelihood Estimate.

1.1 [20 marks]

Let $x_1, x_2, ..., x_N$ be vectors stemmed from a normal distribution with known covariance matrix and unknown mean, that is

$$p(x_k; \mu) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} exp(-\frac{1}{2} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))$$
 (1)

where D is the dimension of vector x_k (k = 1, ..., N).

TASK 1: Derive the ML estimate of the mean μ . Solution:

1.2 [20 marks]

Let $x_1, x_2, ..., x_N$ be vectors stemmed from a normal distribution with unknown mean μ and unknown convariance matrix Σ , that is

$$p(x_k; \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} exp(-\frac{1}{2} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))$$
 (2)

where D is the dimension of vector x_k (k = 1, ..., N).

TASK 2: Derive the ML Estimate of μ and Σ . Solution:

2 Practical problems [60 marks]

This assignment is designed to deal with MSRC-12 Kinect gesture data set of Microsoft Research Cambridge. The dataset contains lots of sequences of skeletal body movements recorded from a kinect device. However, this assignment only consider a small fraction of it, which consists of static body positions.

Assignment: classify the body positions with Bayes model.

 ${\it Data:}$ MSRC-12 Kinect gesture dataset of Microsoft Research Cambridge (provided on LMO together with this sheet)

- The dataset consists of 2045 instances of body positions with 4 categories of positions. "arms lifted", "right arm extended to one side", "crouched" and "right arm extended to the front". These classes are represented with distinctive numbers.
- The body positions are encoded with a 20×3 matrix, in which the row is the position in space (x,y,z) of each of the 20 joints. Each variable is modeled with a Gaussian distribution.
- Assume the 60 variables that define the body position are considered independent given the class.

Formulation: To be specific, you are expected to use Naive Bayes model. In Naive Bayes model, each of the 60 variables is considered independent given the class. Each variable is modeled with a Gaussian distribution. The training process for the model is to estimate the values for the mean and variance for each variable and class with MLE.

$$p(x_i|C) = Normal(\mu_{x_i}; \sigma_{x_i}^2)$$

$$p(y_i|C) = Normal(\mu_{y_i}; \sigma_{y_i}^2)$$

$$p(z_i|C) = Normal(\mu_{z_i}; \sigma_{z_i}^2)$$

Where p(i) is the probability density function of *i*-th joint,

$$P(C=k|sample) \propto P(C=k) \prod_{i=1}^{N} p(x_i,y_i,z_i|C=k)$$

$$p(x_i,y_i,z_i|C=k) = p(x_i|C=k) \times p(y_i|C=k) \times p(z_i|C=k)$$

Where, N is the number of samples, k indicates k-th label.

2.1 TASK 3:[20 marks]

Implement the function to estimate the parameters of the Gaussian distributions using MLE.

 $function: fit_model$

- Input: a vector which is the observation for a given variable
- Output: the mean and the standard deviation for these observations.

2.2 TASK 4: [20 marks]

Implement a function to build a model composed of priors, and model parameters.

function: learn_model

• Input: the dataset and the labels

• Output: compute the parameters from the dataset to build the model

2.3 TASK 5: [20 marks]

Implement the classification function

 $function: classify_samples$

- Input: a set of instances that have the same format as the dataset given in learn_model
- Output: posterior probability for each instance belonging to each class

Marking Scheme for Task 3-5:

- You can choose to write Pseudocode in stead of implementing functions by coding.
- Write Pseudocode will get 2-10 marks for each function.
- Codes of each function can run properly, and can output accuracy on the test data, the accuracy is incorrect: incorrectly implemented function will get 5-15 marks accordingly.
- Codes of each function can run properly, and can output accuracy on the test data, the accuracy is correct : 60 marks in total.