■ README.md

FrozenLake 4x4 Reinforcement learning

Frozen Lake description

state space

```
SFFF (S: starting point, safe)
FHFH (F: frozen surface, safe)
FFFH (H: hole, fall to your doom)
HFFG (G: goal, where the frisbee is located)
```

action space

```
West(0), South(1), East(2), North(3)
```

reward function Game is finish when you reach goal or fall in a hole.

```
if you reach goal reward == 1
if you fall in hole reward == 0
if you step on frozen surface reward == 0
if you step on starting point reward == 0
```

Algorithm pseudocodes

Value iteration

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

```
Loop:
```

```
 \begin{array}{l} | \quad \Delta \leftarrow 0 \\ | \quad \text{Loop for each } s \in \mathbb{S} \text{:} \\ | \quad v \leftarrow V(s) \\ | \quad V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r \,|\, s,a) \big[ r + \gamma V(s') \big] \\ | \quad \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ \text{until } \Delta < \theta \end{array}
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Experiments

Experiment No	Theta	Gamma	Win/Episodes
1	0.1	0.8	0.251
2	0.05	0.8	0.274

Experiment No	Theta	Gamma	Win/Episodes
3	0.01	0.8	0.486
4	0.005	0.8	0.467
5	0.001	0.8	0.478
6	0.01	0.7	0.471
7	0.01	0.75	0.485
8	0.01	0.85	0.472
9	0.01	0.9	0.474
10	0.001	0.9	0.754

As we can see, decreasing theta parameter and increasing gamma gives best results.

(Each experiment is repeated 10 times and the best one is chosen) All agents from the experiment are in the experiments folder

Monte carlo

Initialize, for all
$$s \in \mathcal{S}$$
, $a \in \mathcal{A}(s)$:
$$Q(s, a) \leftarrow \text{arbitrary}$$

$$\pi(s) \leftarrow \text{arbitrary}$$

$$Returns(s, a) \leftarrow \text{empty list}$$
Fixed point is optimal policy π^*

Repeat forever:

- (a) Generate an episode using exploring starts and π
- (b) For each pair s, a appearing in the episode: $R \leftarrow$ return following the first occurrence of s, aAppend R to Returns(s, a) $Q(s, a) \leftarrow average(Returns(s, a))$
- (c) For each s in the episode: $\pi(s) \leftarrow \arg \max_a Q(s, a)$

Statistic after 10000 episodes:

Statistic after 30000 episodes:

Experiments

Experiment No	Gamma	Epsilon	Explore episodes	Episode count	Best result	Average
1	0.9	0.1	1000	10000	0.72	0.244
2	0.9	0.2	1000	10000	0.731	0.418
3	0.9	0.3	1000	10000	0.69	0.463
4	0.9	0.25	1000	10000	0.66	0.444
5	0.9	0.2	2000	10000	0.7	0.293
6	0.9	0.2	500	10000	0.73	0.543
7	0.8	0.2	500	10000	0.59	0.269
8	0.95	0.2	500	10000	0.745	0.504

Experiment No	Gamma	Epsilon	Explore episodes	Episode count	Best result	Average
9	0.97	0.2	500	10000	0.727	0.583
10	0.97	0.2	500	30000	0.745	0.660

(best result = win / count of episode) count of episode = 1000

Increasing the gamma gives better results. Epsilon also, but not more than 0.2, because otherwise there will be too many random actions Too many episodes will decrease the optimality of the policy and increase the number of steps. Explore episode. They need a good balance so they don't have too many random actions (about 500-1000)

(Each experiment is repeated 10 times and the best one is chosen) All agents from the experiment are in the experiments folder

Q-learning

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
Loop for each step of episode:
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_a Q(S',a) - Q(S,A)]
S \leftarrow S'
until S is terminal
```

My implementation of algorithm use q-learning decay extension, so we initialize additional

```
epsilon_decay (multiplying factor by which we decrease epsilon)
epsilon_min (minimum value of epsilon)

and after every train_episode

if epsilon >= epsilon_min {
   epsilon *= epsilon decay
}
```

Statistic after 10000 episodes:

localhost:6419 4/6

Statistic after 30000 episodes:

Experiments

Experiment No	Gamma	Epsilon	Learning rate	E-min	E-decay	Episode count	Best result	Average
1	0.8	0.2	0.1	0.01	0.99995	10000	0.531	0.270
2	0.9	0.2	0.1	0.01	0.99995	10000	0.709	0.426
3	0.95	0.2	0.1	0.01	0.99995	10000	0.746	0.555
4	0.98	0.2	0.1	0.01	0.99995	10000	0.763	0.683
5	0.98	1	0.1	0.01	0.99995	10000	0.771	0.721
6	0.98	1	0.1	0.01	0.99999	10000	0.765	0.652
7	0.98	1	0.1	0.01	0.9995	10000	0.762	0.746
8	0.98	1	0.2	0.01	0.9995	10000	0.756	0.741

localhost:6419 5/6

11/04/2021 README.md - Grip

Experiment No	Gamma	Epsilon	Learning rate	E-min	E-decay	Episode count	Best result	Average
9	0.98	1	0.3	0.01	0.9995	10000	0.754	0.712
10	0.98	1	0.05	0.01	0.9995	10000	0.755	0.740
11	0.98	1	0.1	0.01	0.99995	30000	0.763	0.740

(best result = win / count of episode) count of episode = 1000

The most important part is to find the right epsilon/e-min/e-decay so that there are not too many, and not too little, random actions Maximizing Gamma -> gives best results Best learning rate is ~0.1 Too many episodes will decrease the optimality of the policy and increase the number of steps.

(Each experiment is repeated 10 times and the best one is chosen) All agents from the experiment are in the experiments folder

Comparison of algorithms

Test	Value Iteration	Monte-Carlo	Q-Learning
Best Results	0.754	0.745	0.771
Time with best params (10k episodes for QL and MC)	0.409 (0.732 wr)	8.4367s (0.712 wr)	2.5709s (0.722 wr)

wr = winrate

Info

using Utils you can load agent (utils.read()).