London Business School

Cluster Analysis II

Data Science MAM 2021-22

Dr Kanishka Bhattacharya

Data Science

Clustering

Welcome back to Data Science

Thanks for joining in person!

Zoom classroom etiquette

- Please turn on your cameras and mute your microphone.
- · I will make warm calls.
- Use chat when instructed, otherwise please raise your virtual hand if you have questions.

Session plan

- Part 1: K-medoids and hierarchical clustering methods
- Part 2: Workshop: Clustering iPlayer users

Lectures and assignments

Zoom Etiquette

Turn your came

If your camera is

If you don't have

If you have othe

If you don't turn

ase to the facilitator

g decent for £10 on eBay.

n your situation

plaining your situation, *I will call on*

Learning objectives

Last week

What is the difference between supervised and unsupervised learning?

What is the main objective of clustering?

How does K-Means algorithm work?

- Objective
- Inputs
- Outputs

How do we determine how many clusters we have in the data?

- Elbow chart
- PCA visualization
- · Comparing clustering results with different clusters
- Silhouette analysis

Learning objectives

This week

k-medoids or partitioning around medoids (PAM) algorithm

- Objective
- Inputs
- Outputs

Hierarchical clustering

- Objective
- Inputs
- Outputs

Applying clustering methods in a large data set (workshop)

- Using different clustering methods
- Visualization of the results
- Choosing the best clustering results
- Presenting your findings

K-Means Clustering Algorithm

K-means Algorithm: Issues

Results are sensitive to outliers (why?)

- How to resolve this?
 - Use different distance measures such as absolute error
 - Use the median of observations instead of average.
 - Use K-Medoids (next)

K is fixed in advance

 Use elbow charts and see when there is no improvement

The algorithm may end up in a local optimal

 Re-start with different initial clusters and see if there is a big difference

The clusters have similar area (not cardinality)

 Use other methods to verify the results (next)

Example of k-means' tendency to end-up with similar size clusters

{1,2,3,8,9,10,25}

Data

{1,2,3,8} {9,10,25}

Result of k-means with k=2

{1,2,3} {8,9,10,25}

More sensible result

k-medoids

- It is very similar to K-means method
- The main idea is to use a point in the data as the center of each cluster instead of the mean values of all
 observations in the same cluster
 - This makes it more robust to outliers because it does not rely on the mean values. (Why?)
- Partitioning Around Medoids (PAM) Algorithm (for fixed k)
- 1. Arbitrarily choose *k* objects as the medoids

2. Repeat

- 3. Assign each remaining object to the cluster with the nearest medoid
- 4. Randomly select a point p that is currently not a medoid
- 5. Compute the total cost S of swapping each current medoid o_i with p
- 6. If S<0 swap o_j with p to form the new set of k medoids

7. Until no change

$$S = \sum_{i=1..k} \sum_{p} dist(p, o_i)$$

Distance between each point and its closest medoid

PAM on Whisky Data

PAM on Whisky Data

Hierarchical Clustering

Unfortunately

- We don't know how many clusters we need before we do the analysis, hence it is in general difficult to determine k in k-means
- And sometimes the clusters have significantly different sizes

Hierarchical clustering

• creates a visualization to see the impact of changing the number of clusters

The algorithm

- Start with each point in its own cluster.
- Identify the closest two clusters and merge them.
- Repeat.
- Ends when all points are in a single cluster.

How do we measure distance?

Between two points

• Euclidean, Manhattan or etc.

Between two sets of points

- Complete linkage: The distance between two clusters is defined as the maximum value of all pairwise distances between the elements in cluster 1 and the elements in cluster 2. It tends to produce more compact clusters.
- Single linkage: The distance between two clusters is defined as the minimum value of all pairwise distances between the elements in cluster 1 and the elements in cluster 2. It tends to produce long, "loose" clusters.
- Average linkage: The distance between two clusters is defined as the average distance between the elements in cluster 1 and the elements in cluster 2.
- Ward's minimum variance method: It minimizes the total within-cluster variance. At each step the pair of clusters with minimum between-cluster distance are merged.

There are many more

Illustration of Hierarchical Clustering

Random Data

res.dist <- (round(dist(data[,2:3], method = "euclidean"),2))</pre>

1 2 3 4 2 0.41 3 0.82 0.43 4 0.15 0.32 0.71 5 0.88 0.64 0.46 0.74

Iondon.edu 17

London Business School

Complete Linkage

1 2 3 4 2 0.41 3 0.82 0.43 4 0.15 0.32 0.71 5 0.88 0.64 0.46 0.74

$$d(A,B) \equiv \max_{\vec{x} \in A, \vec{y} \in B} \|\vec{x} - \vec{y}\|$$

Complete Linkage

London Business School

Single Linkage

1 2 3 4 2 0.41 3 0.82 0.43 4 0.15 0.32 0.71 5 0.88 0.64 0.46 0.74

$$d(A,B) \equiv \min_{\vec{x} \in A, \vec{y} \in B} \|\vec{x} - \vec{y}\|$$

Single Linkage

Complete vs Single Linkage

Ward's distance (linkage)

- Somewhere between k-means and hierarchical clustering
- It joins cluster pairs whose merger minimizes the increase in the total sum of squares within-group error.

$$\Delta(A,B) = \sum_{i \in A \cup B} \|\vec{x}_i - \vec{m}_{A \cup B}\|^2 - \sum_{i \in A} \|\vec{x}_i - \vec{m}_A\|^2 - \sum_{i \in B} \|\vec{x}_i - \vec{m}_B\|^2$$

$$= \frac{n_A n_B}{n_A + n_B} \|\vec{m}_A - \vec{m}_B\|^2$$

Distance measures

Iondon.edu 27

Compare the results of clustering methods

Summary

Cluster analysis is an exploratory tool. Useful only when it produces **meaningful** clusters

We usually use a few methods to verify the accuracy of our conclusions.

Be wary of chance results; data may not have definitive "real" clusters-Texas sharpshooter fallacy

Learning objectives

This week

- 1. k-medoids or partitioning around medoids (PAM) algorithm
 - Objective
 - Inputs
 - Outputs
- 2. Hierarchical clustering
 - Objective
 - Inputs
 - Outputs
- 3. Applying clustering methods in a large data set (workshop)
 - Using different clustering methods
 - Visualization of the results
 - Choosing the best clustering results
 - Presenting your findings

Checklist

- Use different methods and identify the best results using visualization tools we covered last week
 - Elbow chart
 - PCA
 - Cluster centers
 - Silhouette
- Compare the clusters you found under different methods
- Those that are prevalent in multiple methods are likely to be true clusters

Next: Workshop

Clustering BBC iPlayer users

Learning outcomes

- How to carry out a clustering project on a new data set
- Using three different clustering methods
 - K-Means
 - PAM
 - Hierarchical clustering
- Determining the (optimal) number of clusters in each method
- Comparing the results of different clustering methods
- Making business recommendations based on clustering results
- Sharing your results

