

Lab3 7-Seg_Display x Switch

指導教授:范志鵬

主講人:方藝橋

Outline

- ❖ 實驗介紹
- ❖ 七段顯示器介紹
- ❖ Lab3 作業

Lab3

- ❖ 此次實驗使用到的 I/O
 - ◆ 以八個switch作為輸入
 - ◆ 以四顆七段顯示器作為輸出
- ❖ 功能
 - ◆ 學會同時顯示多個「七段顯示器_」
 - ◆ 將八個switch表示的二進位數字,轉為十進位數字,並顯示在七段顯示 器上。
 - Ex: $8'b0001_0011 \rightarrow 19$

Verilog

National Chung Hsing University

設定單一cycle長度

```
*define CYCLE 100000 // 單一cycle 長度
//模組名稱
module seg7_switch(
    input clk.
    input rst_n,
    input [7:0] switch,
   output [7:0] seg7.
    output [3:0] seg7 sel
    );
    //暫存器宣告
   reg [7:0] seg7;
   reg [3:0] seg7_sel;
   reg [3:0] seg7_temp [0:3];
    reg [1:0] seg7_count;
    reg [29:0] count;
    wire d_clk;
```

除頻

```
always @(posedge clk or negedge rst_n)begin
if(!rst_n)
count <= 0;
else if (count >= `CYCLE)
count <= 0;
else
count <= count + 1;
end
assign d_clk = count > (`CYCLE/2) ? 0 : 1;
```

```
//switch 二進位轉十進位
always @(posedge clk or negedge rst n)begin
    if(!rst_n)begin
                                 Binary
        seg7\_temp[0] \leftarrow 0;
        seg7\_temp[1] \leftarrow 0;
        seg7\_temp[2] \ll 0;
                               Decimal
        seg7 temp[3] \leftarrow 0;
    end
    else begin
        seg7\_temp[3] \leftarrow 0;
        seg7_temp[2] <= (switch % 1000) / 100;
        seg7 temp[1] <= (switch % 100) / 10;
        seg7\_temp[0] \leftarrow switch % 10;
    end
```

```
//七段顯示器顯示
   always @(posedge d_clk or negedge rst_n)begin
       if(!rst_n)begin
           seg7_count <= 0;
       end
       else begin
           seg7_count <= seg7_count + 1;
   end
             七段顯示器顯示
   always @(posedge d_clk or negedge rst_n)begin
       if(!rst_n)begin
           seg7\_sel <= 0;
           seg7 <= 0:
       end
       else begin
           case(seg7_count)
              0: seg7_sel <= 4'b0001;
              1: seg7 sel <= 4'b0010;
              2: seg7 sel <= 4'b0100;
              3: seg7 sel <= 4'b1000;
           endcase
           case(seg7_temp[seg7_count])
              0:seg7 <= 8'b0011 1111;
              1:seg7 <= 8'b0000 0110;
              2:seg7 <= 8'b0101_1011;
              3:seg7 <= 8'b0100_1111;
              4:seg7 <= 8'b0110_0110;
               5:seg7 <= 8'b0110_1101;
              6:seg7 <= 8'b0111_1101;
               7:seg7 <= 8'b0000_0111;
              8:seg7 <= 8'b0111 1111;
              9:seg7 <= 8'b0110 1111;
           endcase
       end
   end
endmodule
```

除頻 ver.2

❖ 設定一計數器,並觀察計數器是否超過 CYCLE一半,若超過,則除頻訊號為(1),反之則為(0)

• EX:

- `define CYCLE 100
- assign d_clk = count > (`CYCLE/2) ? 0 : 1;

```
<NOTE>「三元運算子 ?:」使用方法
assign 輸出 = (條件)?符合條件的值:不符合條件的值;
```

```
always @(posedge clk or negedge rst_n)begin
if(!rst_n)
        count <= 0;
else if (count >= `CYCLE)
        count <= 0;
else
        count <= count + 1;
end
assign d_clk = count > (`CYCLE/2) ? 0 : 1;
```

Cycle	0	1	2	 49	50	51	52	 99	100	101
count	0	1	2	 49	50	51	52	 99	100	0
d_clk										

Binary to Decimal

- ❖ 將二進位數字轉為十進位數字
 - ◆ seg7_temp[3]: 千位
 - ◆ seg7_temp[2]:百位
 - ◆ seg7_temp[1]: 十位
 - ◆ seg7_temp[0]:個位
- ❖ 藉由switch輸入一個8bits二進位 數字,並經過取餘數及除法,取 得每一位數

```
switch[7] (P5) switch[0] (R1)
```

```
reg [3:0] seg7_temp [0:3];

//switch 二進位轉十進位
always @(posedge clk or negedge rst_n)begin
    if(!rst_n)begin
    seg7_temp[0] <= 0;
    seg7_temp[1] <= 0;
    seg7_temp[2] <= 0;
    seg7_temp[3] <= 0;
    end
    else begin
        seg7_temp[3] <= 0;
    seg7_temp[2] <= (switch % 1000) / 100;
    seg7_temp[1] <= (switch % 100) / 10;
    seg7_temp[0] <= switch % 10;
    end
end
```

Ex: 8'b0001 0011 \rightarrow 19

Multiple 7-Seg Display

- ❖ 透過「掃描」實現多七段顯示器顯示
- ❖ 設定 2bits seg7_count計數器,0~3不停 計數
- ◆ 一方面,輪流顯示每一個七段顯示器
- ❖ 另一方面,將對應的段選訊號輸出至 [seg7]

seg7_sel[3] (G1) seg7_sel[0] (G6)


```
//七段顧示器顧示
always @(posedge d_clk or negedge rst_n)begin
    if(!rst_n)begin
        seg7_count <= 0;
    else begin
        seg7_count <= seg7_count + 1;</pre>
end
always @(posedge d_clk or negedge rst_n)begin
    if(!rst_n)begin
        seg7\_sel \leftarrow 0;
        seg7 \ll 0:
    else begin
       case(seg7_count)
            0: seg7 sel <= 4'b0001;
            1: seg7_sel <= 4'b0010;
            2: seg7_sel <= 4'b0100;
            3: seg7_sel <= 4'b1000;</p>
        case(seg7 temp[seg7 count])
            0:seg7 <= 8'b0011 1111;
            1:seg7 <= 8'b0000_0110;
            2:seg7 <= 8'b0101_1011;
            3:seg7 <= 8'b0100_1111;
            4:seg7 <= 8'b0110 0110;
            5:seg7 <= 8'b0110 1101;
            6:seg7 <= 8'b0111_1101;
            7:seg7 <= 8'b0000_0111;
            8:seg7 <= 8'b0111_1111;
            9:seg7 <= 8'b0110 1111;
end
```

Lab3 constraint file

名稱	電路圖訊號	FPGA IO PIN
時鐘接腳	SYS_CLK	P17
 名稱	電路圖訊號	FPGA IO PIN

片選信號

段選信號

名稱	電路圖訊號	FPGA IO PIN
A0	LED0_CA	B4
B0	LED0_CB	A4
C0	LED0_CC	A3
D0	LED0_CD	B1
E0	LED0_CE	A1
F0	LED0_CF	B3
G0	LED0_CG	B2
DP0	LED0_DP	D5
A1	LED1_CA	D4
B1	LED1_CB	E3
C1	LED1_CC	D3
D1	LED1_CD	F4
E1	LED1_CE	F3
F1	LED1_CF	E2
G1	LED1_CG	D2
DP1	LED1_DP	H2

1		ı · · —
DN0_K1	LED_BIT1	G2
DN0_K2	LED_BIT2	C2
DN0_K3	LED_BIT3	C1
DN0_K4	LED_BIT4	H1
DN1_K1	LED_BIT5	G1
DN1_K2	LED_BIT6	F1
DN1_K3	LED_BIT7	E1
DN1_K4	LED_BIT8	G6

Switch

· · · · · · · · · · · · · · · · · · ·	· ·
U3	SW_DIP0
U2	SW_DIP1
V2	SW_DIP2
V5	SW_DIP3
V4	SW_DIP4
R3	SW_DIP5
Т3	SW_DIP6
T5	SW_DIP7
V5 V4 R3 T3	SW_DIP3 SW_DIP4 SW_DIP5 SW_DIP6

98

Lab3 作業(下午班)

- ❖ 將Lab3稍作修改,設計功能如下:
 - ◆ 將前4bit作為2's補數的輸入,輸出為有 號十進制數字
 - ◆ 將後4bit作為2進制無號數,顯示十進制 數字

→ Ex: 0011_1001,顯示	0	3	0	9	
1000_1111, 顯示	-	8	1	5	
1111_0001,顯示	-	1	0	1	

- ◆ 負號以片段"g"表示
- ◆ 未用到的七段顯示器,不亮

2's complement	Signed Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Lab3 作業(晚上班)

- ❖ 將Lab3稍作修改,設計功能如下:
 - ◆ 輸入為8bit二進制無號數,輸出為十進 制科學記號。

• Ex:

1111_1111, 十進制為255=2.55*10^2, 顯示 0000_1111, 十進制為15=1.5*10^1, 顯示 0000_0001, 十進制為1=1.00*10^0, 顯示

2.	5	5	2
1.	5	0	1
1.	0	0	0

- ◆ 小數點以片段"dp"表示
- ◆ 未用到的七段顯示器,不亮

Thank you for your attention!

