

Curso: Sistemas de Informação

Disciplina: Gerência de Sistemas Operacionais

Unidade/assunto: Gerência de Processador

SUMÁRIO

- Introdução
- Funções Básicas
- Critérios de Escalonamento
- Escalonamento Não-Preemptivos e Preemptivos
- Escalonamento First-In-First-Out (FIFO)
- Escalonamento Shortest-Job-First (SJF)
- Escalonamento Cooperativo
- Escalonamento Circular
- Escalonamento por Prioridades
- Escalonamento Circular com Prioridades

SUMÁRIO

- Escalonamento por Múltiplas Filas
- Escalonamento por Múltiplas Filas com Realimentação
- Política de Escalonamento em Sistemas de Tempo Compartilhado
- Política de Escalonamento em Sistemas de Tempo Real

INTRODUÇÃO

 A gerência do processador é uma das tarefas mais importantes de um sistema operacional multiprogramável.

 A política de escalonamento é a base da gerência do processador.

INTRODUÇÃO

- Escalonador (Scheduler): rotina do SO que implementa os critérios da política de escalonamento.
- Despachante (Dispatcher): rotina do SO responsável pela troca de contexto dos processos/threads.
- Latência do Dispatcher.

FUNÇÕES BÁSICAS

- Manter o processador ocupado.
- Balancear o uso da CPU.
- Privilegiar aplicações críticas.
- Maximizar o throughput.
- Minimizar tempos de respostas em sistemas interativos.

FUNÇÕES BÁSICAS

CRITÉRIOS DE ESCALONAMENTO

- Utilização do Processador.
- Throughput.
- Tempo de Processador (Tempo de UCP).
- Tempo de Espera.
- Tempo de Turnaround.
- Tempo de Resposta.

CRITÉRIOS DE ESCALONAMENTO

 A política de escalonamento busca otimizar a utilização do processador e o throughput, enquanto tenta diminuir os tempos de turnaround, espera e resposta.

ESCALONAMENTO Não-Preemptivos e Preemptivos

 Preempção: Interrupção de um processo em execução e substituição por um outro processo.

 SOs que implementam preempção são mais complexos e permitem escalonamento mais flexíveis.

ESCALONAMENTO – Não-Preemptivos

 Primeiro tipo de escalonamento dos sistemas multiprogramáveis (predomínio de processamento batch).

Quando um processo é interrompido ?

ESCALONAMENTO – Preemptivos

 Possibilidade do SO interromper um processo em execução e passá-lo para o estado de pronto.

Benefícios da Preempção?

Também conhecido por First-Come-First-Served (FCFS).

 O primeiro processo da fila de prontos é o primeiro a ser escalonado.

Não preemptivo.

Tempo Médio de Espera dos 3 processos =(0 + 10 + 14) / 3 = 8 ut

Tempo Médio de Espera dos 3 processos = $(0 + 4 + 7) / 3 \approx 3.7$ ut

Processo	Temp o de processador (u.t.)
А	10
В	4
С	3

Deficiências:

- Impossibilidade de se prever quando um processo terá sua execução.
- Penaliza processos I/O Bound.
- Promove processos CPU Bound.

- SJF Shortest-Job-First.
- SPN Shortest-Process-Next.

- Seleciona o processo que tiver o menor tempo de processador ainda por executar.
- Não Preemptivo.

Tempo Médio de Espera dos 3 processos = (0+3+7)/3 = 3.3 ut

Problemas:

- Determinação do tempo de CPU.
- O processo informa o tempo de CPU em sistemas Batch.
- Determinação de tempo para processos interativos.
- Starvation.

Escalonamento SJF com Preempção:

SRT – Shortest Remaining Time.

- Um processo pronto, com tempo menor que um em execução, assume a CPU.
- Starvation.

ESCALONAMENTO COOPERATIVO

 Objetiva aumentar o grau de multiprogramação de políticas de escalonamentos não-preemptivos (ex: FIFO e SJF).

Preemptivo.

ESCALONAMENTO COOPERATIVO

- Um processo em execução, voluntariamente libera o processador.
- O processo em execução verifica periodicamente uma fila de mensagens.
- Pode ocorrer Starvation, caso um processo em execução não verifique a fila de mensagens.

- Round Robin Scheduling.
- Preemptivo.
- Projetado especialmente para sistemas de tempo compartilhado.
- Uso de Fatia de Tempo (Time Slice) ou Quantum.

Exemplo de Escalonamento:

- Fatia de Tempo (Time Slice): 2 u.t.
- Não está sendo levado em consideração o tempo de latência do dispatcher.

- Impede o monopólio da CPU.
- Voltado para sistemas interativos.
- Privilegia processos CPU Bound (problema).

O que ocorre se a fatia de tempo for muito alta ?

O que acorre se fatia de tempo for muito baixa ?

ESCALONAMENTO CIRCULAR VIRTUAL

- Refinamento do escalonamento circular.
- Objetiva balancear o uso da CPU entre os processos (processos CPU Bound e I/O Bound).
- Fila auxiliar para os processos em espera.
- Processos da fila auxiliar têm preferência de execução.
- Processos da fila auxiliar:

quantum = quantum - tempo de execução quando estava pronto.

ESCALONAMENTO CIRCULAR VIRTUAL

- Preempção: prioridade de execução do processo.
- Preempção por prioridade.
- Prioridades mais altas rodam primeiro.
- Prioridades iguais rodam sob a forma FIFO.

Mudança de Processo:

- No término da execução.
- Na solicitação de E/S.
- Quando surge um processo com maior prioridade (preempção por prioridade).

Filas dos processos no estado de Pronto

Proœsso	Tempo de processador (u.t.)	Prioridade
A	10	2
В	4	1
C	3	3

- Os valores de prioridade podem variar de acordo com o SO:
 - OpenVMS \rightarrow 0 a 31.
 - $-AIX \rightarrow 0$ a 127.
 - Linux \rightarrow ???
 - Windows \rightarrow ???

Também pode ser do tipo não preemptivo.

 O surgimento de um processo com maior prioridade não causa preempção.

Tipo de Prioridade:

- Estática (não muda).

- Dinâmica (sofre mudança por iniciativa do SO.

Ocorrência de Starvation.

Esse problema pode ser contornado pela alteração de prioridade, motivada pelo **aging** (envelhecimento).

ESCALONAMENTO CIRCULAR POR PRIORIDADES

Mudança de Processo:

- No término da execução.
- Na solicitação de E/S.
- Preempção por tempo.
- Preempção por prioridade.

ESCALONAMENTO CIRCULAR POR PRIORIDADES

Fila dos processos no estado de Pronto

ESCALONAMENTO POR MÚLTIPLAS FILAS

- Diversas filas de prontos.
- Cada fila tem uma prioridade.
- As características definem onde os processos serão alocados.
- Pode ocorrer preempção, caso um processo seja inserido em uma fila mais prioritária.

ESCALONAMENTO POR MÚLTIPLAS FILAS

- Vantagem desse método de escalonamento:
 - Cada fila pode utilizar uma política de escalonamento diferente (FIFO ou circular).

 A fila que um processo irá pertencer é definida no momento de sua criação e permanece até a sua finalização (desvantagem).

ESCALONAMENTO POR MÚLTIPLAS FILAS

- Um processo pode mudar de fila durante sua execução.
- As filas utilizam escalonamento FIFO modificada, exceto a fila de menor prioridade que utiliza escalonamento circular.
- A fatia de tempo de cada fila varia de acordo com sua prioridade.
- Maior prioridade

 Menor fatia.
- Menor prioridade → Maior fatia.
- Um processo desce de fila, quando é preemptado por tempo.

 Processos CPU-Bound vão sendo transferidos para filas menos prioritárias.

Porque ???

 O SO verifica dinamicamente o comportamento de um processo. (principal vantagem)

 Complexidade de implementação, podendo provocar overhead do SO. (principal desvantagem)

 Caracterizam-se pelo processamento interativo, onde usuários interagem com as aplicações exigindo tempos de respostas baixos.

FIFO

Processo	Tempo de processador (u.t.)	Característica CPU-bound	
A	21		
В	6	I/O-bound	

CIRCULAR

Processo	Tempo de processador (u.t.)	Característica CPU-bound	
A	1.5		
В	10	I/O-bound	

CIRCULAR COM PRIORIDADE

Processo	Tempo de processa dor (u.t.)	Característica	Prioridade
A	12	CPU-bound	Paixa
В	13	I/O-bound	Alta

POLÍTICA DE ESCALONAMENTO EM SISTEMAS DE TEMPO REAL

Não utiliza o conceito de fatias de tempo.

 Os processos devem ser escalonados de acordo com a sua prioridade.

O escalonamento por prioridades é o mais indicado.