Homework 5

1. Cost-constrained binary channels. Consider a cost-constrained binary input channel with cost function b(x) = x for $x \in \{0, 1\}$. Find the capacity-cost function C(B) (a) for the binary symmetric channel and (b) for the binary erasure channel.

Solution: Recall that the capacity-cost function is given by

$$C(B) = \max_{p(x): \mathbb{E}b(X) \le B} I(X; Y).$$

(a) For the binary symmetric channel with crossover probability p, let $X \sim \text{Bern}(r)$. To satisfy the cost constraint $\mathbb{E}b(X) \leq B$, we need $r \leq B$. Since r = 1/2 is the optimal choice of input distribution without a cost constraint, if $B \geq 1/2$ then r = 1/2 satisfies the cost constraint, so the capacity-cost function is simply the capacity of the channel with no constraint, i.e. C(B) = 1 - H(p).

Now consider the case B < 1/2. Note that $\Pr\{Y = 1\} = r(1-p) + (1-r)p = p + r(1-2p)$. If p < 1/2 and r < 1/2 then this quantity is increasing in r and less than 1/2, meaning H(Y) is increasing in r. If p > 1/2 and r < 1/2, then this quantity is decreasing in r but greater than 1/2, meaning again that H(Y) is increasing in r. Thus

$$C(B) = \max_{r \le B} H(Y) - H(Y|X) = H(B(1-p) + (1-B)p) - H(p)$$

where equality is achieved by r = B.

In summary,

$$C(B) = \begin{cases} H(B(1-p) + (1-B)p) - H(p) & B < 1/2\\ 1 - H(p) & B \ge 1/2. \end{cases}$$

(b) For the binary erasure channel with erasure probability α , again let $X \sim \text{Bern}(r)$. We may write the mutual information as

$$I(X;Y) = H(Y) - H(Y|X)$$

$$= H(r(1-\alpha), (1-r)(1-\alpha), \alpha) - H(\alpha)$$

$$= H(\alpha) + (1-\alpha)H(r) - H(\alpha)$$

$$= (1-\alpha)H(r).$$

This is maximized over $r \leq B$ at $r = \min\{B, 1/2\}$, so

$$C(B) = \begin{cases} (1 - \alpha)H(B) & B < 1/2\\ 1 - \alpha & B \ge 1/2. \end{cases}$$

2. Parallel Gaussian channels. Consider 3 parallel Gaussian channels with noise variances given by

$$N_1 = 1, \qquad N_2 = 4, \qquad N_3 = 10.$$

Find the capacity as a function of total power P. Make sure your answer is in completely closed form (i.e., solve for α^* as a function of P).

Solution: The water filling solution is

$$C = \sum_{i} \frac{1}{2} \log \left(1 + \frac{P_i}{N_i} \right)$$

where $P_i = (\alpha^* - N_i)^+$, and α^* is chosen such that $\sum_i P_i = P$. Let us consider different ranges for α^* . For $1 \le \alpha^* \le 4$, we have

$$P_1 = \alpha^* - 1, \qquad P_2 = P_3 = 0.$$

Thus this range works for $P = \alpha^* - 1$, so we must have $P \in [0,3]$. Thus, in this range we have

$$C = \frac{1}{2}\log\left(1 + \frac{\alpha^* - 1}{1}\right) = \frac{1}{2}\log(1 + P).$$

The next range is $4 \le \alpha^* \le 10$, where

$$P_1 = \alpha^* - 1, \qquad P_2 = \alpha^* - 4, \qquad P_3 = 0.$$

Thus the total power is

$$P=2\alpha^{\star}-5$$

which means $3 \le P \le 15$, and $\alpha^* = \frac{P+5}{2}$, so

$$C = \frac{1}{2}\log\left(1 + \frac{\alpha^{\star} - 1}{1}\right) + \frac{1}{2}\log\left(1 + \frac{\alpha^{\star} - 4}{4}\right) = \frac{1}{2}\log\left(1 + \frac{P + 3}{2}\right) + \frac{1}{2}\left(1 + \frac{P - 3}{8}\right).$$

The final range is $\alpha^* \geq 10$, where

$$P_1 = \alpha^* - 1, \qquad P_2 = \alpha^* - 4, \qquad P_3 = \alpha^* - 10.$$

Thus the total power is

$$P = 3\alpha^* - 15$$

which means $P \ge 15$, and $\alpha^* = \frac{P+15}{3}$, so

$$\begin{split} C &= \frac{1}{2} \log \left(1 + \frac{\alpha^{\star} - 1}{1} \right) + \frac{1}{2} \log \left(1 + \frac{\alpha^{\star} - 4}{4} \right) + \frac{1}{2} \log \left(1 + \frac{\alpha^{\star} - 10}{10} \right) \\ &= \frac{1}{2} \log \left(1 + \frac{P + 12}{3} \right) + \frac{1}{2} \log \left(1 + \frac{P + 3}{12} \right) + \frac{1}{2} \log \left(1 + \frac{P - 15}{30} \right). \end{split}$$

To summarize,

$$C = \begin{cases} \frac{1}{2}\log(1+P), & 0 \le P \le 3, \\ \frac{1}{2}\log\left(1+\frac{P+3}{2}\right) + \frac{1}{2}\left(1+\frac{P-3}{8}\right), & 3 \le P \le 15, \\ \frac{1}{2}\log\left(1+\frac{P+12}{3}\right) + \frac{1}{2}\log\left(1+\frac{P+3}{12}\right) + \frac{1}{2}\log\left(1+\frac{P-15}{30}\right), & P \ge 15. \end{cases}$$

3. Parallel binary erasure channels. Consider k parallel binary erasure channels with an overall cost constraint. That is, the input is $X = (X_1, X_2, \ldots, X_k)$ where $X_j \in \{0, 1\}$. The output is $Y = (Y_1, Y_2, \ldots, Y_k)$, where Y_j is the output of a binary erasure channel with X_j as the input and erasure probability p_j . There is a joint cost constraint on the input codeword $x^n = (x_1^n, x_2^n, \ldots, x_k^n)$ given by

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{k}x_{ji} \le B.$$

Find the capacity of this channel. You may give your answer in parametric form (similar to the water filling solution, in which the capacity is written in terms of a Lagrange variable).

Solution: We know that the capacity-cost function will be

$$C(B) = \max_{p(x_1, \dots, x_k) : \mathbb{E}[\sum_{j=1}^k X_j] \le B} I(X_1, \dots, X_k; Y_1, \dots, Y_k).$$

We may upper bound the mutual information by

$$I(X_1, ..., X_k; Y_1, ..., Y_k) = H(Y_1, ..., Y_k) - H(Y_1, ..., Y_k | X_1, ..., X_k)$$

$$\leq \sum_{j=1}^k H(Y_j) - \sum_{j=1}^k H(Y_j | X_j)$$

$$= \sum_{j=1}^k I(X_j; Y_j).$$

This upper bound is achievable by taking X_1, \ldots, X_k to be independent. If we assume that $X_j \sim \text{Bern}(r_j)$, then

$$\begin{split} I(X_j;Y_j) &= H(Y_j) - H(Y_j|X_j) \\ &= H(r_j(1-p_j), (1-r_j)(1-p_j), p_j) - H(p_j) \\ &= H(p_j) + (1-p_j)H(r_j) - H(p_j) = (1-p_j)H(r_j). \end{split}$$

Moreover

$$\mathbb{E}[\sum_{j=1}^{k} X_j] = \sum_{j=1}^{k} r_j.$$

Thus we may write the capacity-cost function as

$$C(B) = \max_{r_1, \dots, r_k : \sum_{j=1}^k r_j \le B} \sum_{j=1}^k (1 - p_j) H(r_j).$$

Without considering the cost constraint, the optimal choice of r_j is $r_j = 1/2$ for all j; thus if $B \ge k/2$, then $C(B) \ge \sum_{j=1}^k (1-p_j)$. Otherwise, we have the constrained optimization problem

maximize
$$\sum_{j=1}^{k} (1 - p_j) \left(-r_j \log r_j - (1 - r_j) \log(1 - r_j) \right)$$
subject to
$$\sum_{j=1}^{k} r_j \leq B,$$
$$r_j \geq 0.$$

The Lagrangian for this optimization problem is

$$\sum_{j=1}^{k} (1 - p_j) (r_j \ln r_j + (1 - r_j) \ln(1 - r_j)) + \nu \left(\sum_{j=1}^{k} r_j - B \right) - \sum_{j=1}^{k} \lambda_j r_j.$$

Differentiating with respect to r_i , the optimal point satisfies the condition

$$0 = (1 - p_i) (\ln r_i - \ln(1 - r_i)) + \nu - \lambda_i$$

Solving for r_j , we find

$$r_{j} = \frac{e^{\frac{\lambda_{j} - \nu}{1 - p_{j}}}}{1 + e^{\frac{\lambda_{j} - \nu}{1 - p_{j}}}}.$$

Note that for any finite λ_j , ν , this is always positive. That is, $r_j > 0$, so by complementary slackness, we actually have $\lambda_j = 0$, so

$$r_j = \frac{e^{\frac{-\nu}{1-p_j}}}{1 + e^{\frac{-\nu}{1-p_j}}}. (1)$$

Therefore, for $B \leq k/2$, we have

$$C(B) = \sum_{j=1}^{k} (1 - p_j)H(r_j)$$

where r_j is given by (1), and ν is chosen so that $\sum_{j=1}^k r_j = B$.

4. Problem 10.5 from Cover-Thomas: Rate distortion for uniform source with Hamming distortion. Consider a source X uniformly distributed on the set $\{1, 2, ..., m\}$. Find the rate distortion function for this source with Hamming distortion; that is,

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x}, \\ 1 & \text{if } x \neq \hat{x}. \end{cases}$$

Solution: Consider any $p(\hat{x}|x)$ such that $\mathbb{E}d(X,\hat{X}) \leq D$. Let $D' = \mathbb{E}d(X,\hat{X})$. Note that $d(X,\hat{X})$ is a binary random variable with entropy H(D'). We may write

$$\begin{split} I(X;\hat{X}) &= H(X) - H(X|\hat{X}) \\ &\stackrel{\text{(a)}}{=} \log m - H(X,d(X,\hat{X})|\hat{X}) \\ &= \log m - H(d(X,\hat{X})|\hat{X}) - H(X|\hat{X},d(X,\hat{X})) \\ &\stackrel{\text{(b)}}{\geq} \log m - H(d(X,\hat{X})) - \Pr\{d(X,\hat{X}) = 1\} H(X|\hat{X},d(X,\hat{X}) = 1) \\ &- \Pr\{d(X,\hat{X}) = 0\} H(X|\hat{X},d(X,\hat{X}) = 0) \\ &\stackrel{\text{(c)}}{=} \log m - H(D') - D'H(X|\hat{X},d(X,\hat{X}) = 1) \\ &\stackrel{\text{(d)}}{\geq} \log m - H(D') - D'\log(m - 1) \end{split}$$

where:

- in (a) we have used the fact that $d(X, \hat{X})$ is a function of X and \hat{X} ,
- in (b) we have used the fact that conditioning reduces entropy, and expanded the third term around $d(X, \hat{X})$
- in (c) we have used the fact that if $d(X,\hat{X})=0$, then $X=\hat{X}$ so X is determined by \hat{X}
- in (d) we have used the fact that if $d(X, \hat{X}) = 1$, then $X \neq \hat{X}$ so it may only take on m-1 possible values, so its entropy is at most $\log(m-1)$.

We may achieve equality in the above analysis with the following test channel. (Recall that a test channel is a channel from \hat{X} back to X.) Given $\hat{X} = \hat{x}$, $X = \hat{x}$ with probability 1 - D', and X = x with probability $\frac{D'}{m-1}$ for all $x \neq \hat{x}$. This test channel is valid because a uniform \hat{X} leads to a uniform X. Moreover, $\mathbb{E}d(X,\hat{X}) = \Pr(X \neq \hat{X}) = D'$, and $H(X|\hat{X}) = H(D) + (1-D)\log(m-1)$, so equality is achieved in the above analysis. Therefore we may write the rate-distortion function as

$$R(D) = \min_{D' \le D} \log m - H(D') - D' \log(m-1).$$

Note that $H(D') + D' \log(m-1)$ is a concave function of D'. We may find the value of D' that maximizes $H(D') + D' \log(m-1)$ as follows:

$$\frac{d}{dD'}[-D'\log D' - (1-D')\log(1-D') + D'\log(m-1)] = \log\frac{1-D'}{D'} + \log(m-1).$$

The above equals 0 (i.e. is a critical point) if $D' = \frac{m-1}{m}$. Thus $H(D') + D' \log(m-1)$ is increasing for $D' \leq \frac{m-1}{m}$ and decreasing for larger values. Hence if $D \leq \frac{m-1}{m}$, the best choice is D' = D, and if $D > \frac{m-1}{m}$, the best choice is $D' = \frac{m-1}{m}$. Therefore the rate distortion function is

$$R(D) = \begin{cases} \log m - H(D) - D\log(m-1) & D \le \frac{m-1}{m} \\ \log m - H\left(\frac{m-1}{m}\right) - \frac{m-1}{m}\log(m-1) & D > \frac{m-1}{m}. \end{cases}$$

5. Problem 10.7 from Cover-Thomas: Erasure distortion. Consider $X \sim \text{Bernoulli}(\frac{1}{2})$, and let the distortion measure be given by a matrix (each row is a letter of \mathcal{X} , each columns is a letter of $\hat{\mathcal{X}}$)

$$d(x,\hat{x}) = \left[\begin{array}{ccc} 0 & 1 & \infty \\ \infty & 1 & 0 \end{array} \right].$$

Calculate the rate distortion function for this source. Can you suggest a simple scheme to achieve any value of the rate distortion function for this source?

Solution: Denote the reconstruction alphabet by $\{0, e, 1\}$. To give a finite distortion, we cannot have $(X, \hat{X}) = (0, 1)$ or $(X, \hat{X}) = (1, 0)$ occur with positive probability. Assuming these do not occur, $\mathbb{E}d(X, \hat{X}) = \Pr{\{\hat{X} = e\}}$. If $D \geq 1$, then we may simply set $\hat{X} = e$ and automatically satisfy the distortion constraint, giving R(D) = 0.

Now consider the case D < 1. For a distribution that satisfies the distortion constraint $\Pr{\{\hat{X} = e\} \leq D,}$ we may write

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= 1 - \Pr{\{\hat{X} = 0\}} H(X|\hat{X} = 0) - \Pr{\{\hat{X} = 1\}} H(X|\hat{X} = 1) - \Pr{\{\hat{X} = e\}} H(X|\hat{X} = e)$$

$$\stackrel{\text{(a)}}{=} 1 - \Pr{\{\hat{X} = e\}} H(X|\hat{X} = e)$$

$$\stackrel{\text{(b)}}{\geq} 1 - \Pr{\{\hat{X} = e\}}$$

$$\stackrel{\text{(c)}}{\geq} 1 - D$$

where (a) follows because when $\hat{X} = 0$ or $\hat{X} = 1$, we must have $X = \hat{X}$, (b) follows by the uniform bound, and (c) follows since by the distortion constraint.

The following test channel achieves equality in the above analysis. If $\hat{X} = 0$ or $\hat{X} = 1$, then $X = \hat{X}$, and if $\hat{X} = e$, then X is uniformly distributed between 0 and 1. This gives the proper distribution on X as long as $\hat{X} = 0$ and $\hat{X} = 1$ are equally likely. Moreover, by choosing $\Pr{\{\hat{X} = e\} = D\}$, we satisfy the distortion constraint and achieve equality in the above. Therefore

$$R(D) = \begin{cases} 1 - D & D < 1 \\ 0 & D \ge 1. \end{cases}$$

The following simple schemes achieves the above rate-distortion function. Assuming D < 1, let $k = \lfloor n(1-D) \rfloor$. Given x^n , we encode the first k bits. This requires at most n(1-D) bits, so we achieve rate R = 1 - D. At the decoder, we are able to determine x_1, \ldots, x_k with no error, so we decode to $\hat{x}^n = (x_1, \ldots, x_k, e, e, \ldots, e)$. Thus $d(x^n, \hat{x}^n) = n - k \le n - n(1-D) + 1 = nD + 1$, so

$$\lim_{n \to \infty} \frac{1}{n} d(x^n, \hat{x}^n) \le \lim_{n \to \infty} \frac{1}{n} (nD + 1) = D.$$

6. Rate-distortion for exponential random variable. Let X be an exponential random variable with expectation μ ; i.e., $f_X(x) = \frac{1}{\mu}e^{-x/\mu}$ for $x \ge 0$. Define a distortion function for $x, \hat{x} \in \mathbb{R}$ as

$$d(x, \hat{x}) = \begin{cases} x - \hat{x}, & \hat{x} \le x \\ \infty, & \hat{x} > x. \end{cases}$$

Find the rate-distortion function. *Hint:* Remember the results from problems 7 and 8 from Homework 4.

Solution: Recall from Homework 4 that for an exponential random variable with mean μ , the differential entropy is $\log(e\mu)$. Moreover, for any non-negative variable Z, if $\mathbb{E}[Z] \leq \mu$, then $h(Z) \leq \log(e\mu)$. Consider first $D \geq \mu$. We can choose $\hat{X} = 0$, so

$$\mathbb{E}[d(X, \hat{X})] = \mathbb{E}[X - \hat{X}] = \mathbb{E}[X] = \mu \le D$$

where we have used the fact that since $\hat{X} = 0$, then X is always greater than \hat{X} . Moreover, $I(X; \hat{X}) = 0$, so R(D) = 0.

Now consider any $D < \mu$. Consider any $f(\hat{x}|x)$ such that $\mathbb{E}d(X,\hat{X}) \leq D$. Since $d(x,\hat{x}) = \infty$ when $\hat{x} > x$, we may assume that $\hat{X} \leq X$, so $\mathbb{E}d(X,\hat{X}) = \mathbb{E}[X - \hat{X}] \leq D$. Thus we may lower bound the mutual information by

$$\begin{split} I(X; \hat{X}) &= h(X) - h(X|\hat{X}) \\ &= \log(e\mu) - h(X - \hat{X}|\hat{X}) \\ &\geq \log(e\mu) - h(X - \hat{X}) \\ &\stackrel{\text{(a)}}{\geq} \log(e\mu) - \log(eD) \\ &= \log\left(\frac{\mu}{D}\right). \end{split}$$

where in (a) we have used the fact that $X - \hat{X}$ is non-negative with expectation less than D, so by the earlier result $h(X - \hat{X}) \leq \log(eD)$. To achieve equality in the above bound, we must have $Z = X - \hat{X}$ be independent of \hat{X} , and Z be an exponential random variable with $\mathbb{E}[Z] = D$. That is, $X = \hat{X} + Z$, where \hat{X} and Z are independent, and both X and Z are exponential random variables. In order to show that this is achievable, we need to show that there exists a distribution for \hat{X} that gives the correct distribution for X. We use moment generation functions. In particular,

$$\mathbb{E}[e^{tX}] = \frac{1}{1 - \mu t},$$
$$\mathbb{E}[e^{tZ}] = \frac{1}{1 - Dt}.$$

Since \hat{X} and Z should be independent, we have

$$\mathbb{E}[e^{tX}] = \mathbb{E}[e^{t(\hat{X}+Z)}] = \mathbb{E}[e^{t\hat{X}}]\,\mathbb{E}[e^{tZ}].$$

Thus we should have

$$\mathbb{E}[e^{t\hat{X}}] = \frac{\mathbb{E}[e^{tX}]}{\mathbb{E}[e^{tZ}]} = \frac{1 - Dt}{1 - \mu t} = \frac{\frac{D}{\mu}(1 - \mu t) + 1 - \frac{D}{\mu}}{1 - \mu t} = \frac{D}{\mu} + \frac{1 - \frac{D}{\mu}}{1 - \mu t}.$$

The last expression is the moment generation function of the following distribution. Letting \hat{X}' be an exponential distribution with mean μ ,

$$\hat{X} = \begin{cases} 0 & \text{w.p. } \frac{D}{\mu} \\ \hat{X}' & \text{w.p. } 1 - \frac{D}{\mu}. \end{cases}$$

This distribution exists because $D < \mu$. Therefore, the lower bound is achievable, so

$$R(D) = \begin{cases} \log\left(\frac{\mu}{D}\right), & D < \mu, \\ 0, & D \ge \mu. \end{cases}$$

7. Problem 10.17 from Cover-Thomas: Source-channel separation theorem with distortion. Let V_1, V_2, \ldots, V_n be a finite alphabet i.i.d. source with is encoded as a sequence of n input symbols X^n of a discrete memoryless channel. The output of the channel Y^n is mapped onto the reconstruction alphabet $\hat{V} = g(Y^n)$. Let $D = \mathbb{E}d(V^n, \hat{V}^n) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}d(V_i, \hat{V}_i)$ be the average distortion achieved by this combined source and channel coding scheme.

$$V^n \longrightarrow X^n(V^n) \longrightarrow$$
 Channel Capacity $C \longrightarrow \hat{V}^n \longrightarrow \hat{V}^n$

- (a) Show that if C > R(D), where R(D) is the rate distortion function for V, it is possible to find encoders and decoders that achieve an average distortion arbitrarily close to D.
- (b) (Converse) Show that if the average distortion is equal to D, the capacity of the channel C must be greater than R(D).

Solution:

- (a) Choose rate R where C > R > R(D). Thus, since R < C, there exists a channel code over the noisy channel with rate R and arbitrarily small probability of error. Moreover, since R > R(D), there exists a rate-distortion code for source V and distortion function d that achieves expected distortion arbitrarily close to D. Plugging these two codes together (i.e. the output of the rate-distortion encoder is used as the message for the channel code), the overall distortion is arbitrarily close to D.
- (b) Using the data processing inequality, we have

$$I(V^n; \hat{V}^n) \le I(X^n; Y^n).$$

Reproducing part of the converse argument for rate-distortion, we have (assuming the expected distortion is D)

$$I(V^n; \hat{V}^n) \ge \sum_{i=1}^n I(V_i; \hat{V}_i)$$

$$\ge \sum_{i=1}^n R(\mathbb{E}d(V_i, \hat{V}_i))$$

$$\ge nR(\mathbb{E}d(V^n, \hat{V}^n))$$

$$= nR(D).$$

Now reproducing part of the converse argument for channel coding, we have

$$I(X^n; Y^n) \le \sum_{i=1}^n I(X_i; Y_i)$$

$$\le nC.$$

Chaining together all of the above inequalities and dividing by n gives $R(D) \geq C$.

- 8. Source-channel separation for a Gaussian source with a Gaussian channel. Consider a special case of the setup from problem 7 where $V \sim \mathcal{N}(0, \sigma^2)$, the channel is a Gaussian noise channel with power constraint P and noise variance N, and the distortion function is the squared error distortion; i.e., $d(v, \hat{v}) = (v \hat{v})^2$.
 - (a) Using the result from problem 7, find the smallest possible expected distortion D given the other parameters.
 - (b) Now consider the following simple approach without coding. For each i = 1, ..., n, the encoder sends $X_i = \alpha V_i$, and the decoder estimates the source using $\hat{V}_i = \beta Y_i$. Here, α and β are constants that must be determined. What is the minimum expected distortion D achievable using this scheme? Be sure to choose α to satisfy the power constraint of the channel, and β to minimize the expected distortion. Compare your to answer to that from part (a).

Solution:

(a) From problem 7, we need C > R(D). The capacity is $C = \frac{1}{2} \log \left(1 + \frac{P}{N}\right)$, and the rate-distortion function is $R(D) = \frac{1}{2} \log \left(\frac{\sigma^2}{D}\right)$. Thus we can achieve any distortion D where

$$\frac{1}{2}\log\left(1+\frac{P}{N}\right) > \frac{1}{2}\log\left(\frac{\sigma^2}{D}\right).$$

We can rewrite this condition as

$$1 + \frac{P}{N} < \frac{\sigma^2}{D}$$
.

Rearranging this, we need

$$D > \frac{\sigma^2}{1 + \frac{P}{N}} = \frac{N\sigma^2}{N + P}.$$

Thus, the smallest achievable distortion is $\frac{N\sigma^2}{N+P}$.

(b) In order to satisfy the power constraint, we need $\mathbb{E}[X_i^2] \leq P$. Since $X_i = \alpha V_i$, we have

$$\mathbb{E}[X_i^2] = \alpha^2 \, \mathbb{E}[V_i^2] = \alpha^2 \sigma^2.$$

Thus we need $\alpha^2 \leq \frac{P}{\sigma^2}$. We now calculate the expected distortion (in the following $Z_i \sim \mathcal{N}(0, N)$ is the channel noise):

$$D = \mathbb{E}(V_i - \hat{V}_i)^2$$

$$= \mathbb{E}(V_i - \beta Y_i)^2$$

$$= \mathbb{E}(V_i - \beta (X_i + Z_i))^2$$

$$= \mathbb{E}(V_i - \beta (\alpha V_i + Z_i))^2$$

$$= \mathbb{E}((1 - \alpha \beta)V_i - \beta Z_i)^2$$

$$= (1 - \alpha \beta)^2 \mathbb{E}[V_i^2] + \beta^2 \mathbb{E}[Z_i^2]$$

$$= (1 - \alpha \beta)^2 \sigma^2 + \beta^2 N.$$

We can minimize this distortion over β by setting with respect to β to 0:

$$0 = \frac{\partial D}{\partial \beta} = -2\alpha(1 - \alpha\beta)\sigma^2 + 2\beta N = 2(\alpha^2\sigma^2 + N)\beta - 2\alpha\sigma^2$$

so the best choice of beta is

$$\beta = \frac{\alpha \sigma^2}{\alpha^2 \sigma^2 + N}$$

and the minimal distortion is

$$\begin{split} D &= \left(1 - \alpha \frac{\alpha \sigma^2}{\alpha^2 \sigma^2 + N}\right)^2 \sigma^2 + \left(\frac{\alpha \sigma^2}{\alpha^2 \sigma^2 + N}\right)^2 N \\ &= \frac{N^2 \sigma^2}{(\alpha^2 \sigma^2 + N)^2} + \frac{\alpha^2 \sigma^4 N}{(\alpha^2 \sigma^2 + N)^2} \\ &= \frac{\sigma^2 N (N + \alpha^2 \sigma^2)}{(\alpha^2 \sigma^2 + N)^2} \\ &= \frac{\sigma^2 N}{\alpha^2 \sigma^2 + N}. \end{split}$$

Recalling the power constraint that $\alpha^2 \leq \frac{P}{\sigma^2}$, the smallest we can make the distortion is

$$D = \frac{\sigma^2 N}{P + N}.$$

This is exactly the same as we found in part (a)!