Universidad de Concepción

Facultad de Ciencias Físicas y Matemáticas

Departamento de Ingeniería Matemática

21 - Noviembre - 1997

Problema 1: Considere la ecuación del calor en un dominio definido entre dos esferas concentricas de radio $R_1=1$ y $R_2=2$:

- 1.- Deduzca a partir de las condiciones de simetría del problema que el operador laplaciano aplicado a u en coordenadas esféricas es igual a $\Delta u = \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right)u$.
- 2.- Utilizando el método de separación de variables, descomponga u(r,t) = G(t)W(r). Luego, haciendo los cambios de variable $s = \lambda r$ y $W = s^{-1/2}U$ deduzca que W(r) se puede escribir en términos de las soluciones de la ecuación de Bessel de orden 1/2.
- 3.- Admitiendo que las soluciones de la ecuación de Bessel de orden 1/2 son $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}}\sin x)$, y $J_{\frac{-1}{2}}(x)=\sqrt{\frac{2}{\pi x}}\cos x)$ (no lo demuestre!), pruebe a partir de las condiciones de borde que W(r) se escribe solo en términos de $J_{\frac{1}{2}}$, y que los valores propios de la ecuación son $n=n\pi$, con $n=1,2\ldots$
- 4.- Calcule u(x,t) en término de una serie de funciones propias y detemine los coeficientes de la serie utilizando un desarrollo en series de Fourier de $u_0(r)$.

50 puntos

Problema 2: Una membrana circular de radio unitario descansa sobre el plano XY con su centro en el origen y su borde se encuentra fijo en el plano. La membrana comienza a vibrar con una elongación f(r) y después se queda vibrando libremente. Se pide :

1.- Demostrar que su elongación está dada por

$$u(r,t) = \sum_{n=1}^{\infty} rac{2J_0(\lambda_n r)cos(\lambda ct)}{J_1 62(\lambda_n) \int_0^1 r f(r) J_0(\lambda_n r) dr}$$

2.- Si f(r)=1 y c=1, determinar (aproximadamente) la magnitud del desplazamiento de la membrana en el punto de coordenadas $x=y=\frac{1}{2}$, en el instante t=2 minutos.

Indicación: ver tabla de valores al dorso.

50 puntos

Duración del certamen : 2 horas

HAW/MB/MSC/MC

Raices de J_0	Valor de α_n	Valor de $J_0(\alpha_n/\sqrt{2})$	Valor de $J_1(\alpha_n)$	$\cos(2\alpha_n)$
1	2.404825558	0.3977141938	0.5191474972	0.09710885941
2	5.520078110	-0.4017343982	-0.3402648066	0.04456716578
3	8.653727913	0.1821406416	0.2714522999	0.02869229698
4	11.79153444	0.08589805012	-0.2324598313	0.02112240711
5	14.93091771	-0.2317155277	0.2065464331	0.01670443394
6	18.07106397	0.1862221504	-0.1877288030	0.01381198453
7	21.21163663	-0.01399722099	0.1732658942	0.01177216462
8	24.35247153	-0.1446268604	-0.1617015507	0.01025674951
	<u> </u>	·		1