卒業論文

タイトル title

2024年12月26日提出

指導教員 林原 靖男 教授

千葉工業大学 先進工学部 未来ロボティクス学科 21C1011 **石黒 巧**

概要

タイトル

キーワード:

abstract

title

keywords:

目次

第1章	序論	1
1.1	背景	1
1.2	目的	3
1.3	論文構成	3
第2章	要素技術	4
2.1	メトリックマップに基づくナビゲーション	4
第3章	先行研究	5
3.1	視覚と行動の end-to-end 学習により経路追従行動をオンラインで模倣する手法	5
3.2	トポロジカルマップとシナリオ	6
3.3	視覚に基づいて目的地まで自律移動するシステム	6
第4章	機能の改善	9
4.1	ネットワークの変更	9
4.2	オフライン学習....................................	9
第5章	新たなシナリオが走行できるか検証	11
5.1	実験装置	11
5.2	実験方法	11
	5.2.1 実験環境	11
	5.2.2 シナリオの選定	12
	5.2.3 経路追従モジュールの訓練	12

目次		<u>vi</u>
	5.2.4 通路分類モジュールの訓練	12
	5.2.5 シナリオに基づくナビゲーション	12
5.3	実験結果	12
第6章	おわりに	13
6.1	結論	13
参考文献		14
付録		15
謝辞		16

図目次

1.1	Example																		2

表目次

第1章

序論

1.1 背景

移動ロボットにおけるナビゲーションとは,目的地までロボットを誘導する制御技術として広く利用されており,物流や,農業,製造業などで活用されている.一般的には,LiDARやIMU,ホイールエンコーダなどのセンサから得られるデータを用いてオドメトリを計算し,占有格子地図などのメトリックマップに基づいて自己位置推定,経路計画,制御を行うことでロボットを目的地まで誘導する.一方,カメラ画像と深層学習に基づくナビゲーション技術の研究も進んでいる.

本研究室の岡田らは,従来のナビゲーション行動を視覚を入力として模倣することで,視覚に基づいたナビゲーション手法を提案した.この手法では,センサとメトリックマップを入力としたルールベース制御器によって生成されたヨー方向の角速度とロボットに取り付けたカメラから取得した RGB 画像をペアにしてデータセットに加えて学習し,学習後はカメラ画像のみを用いて経路追従行動できることが確認されている.

また、春山らはカメラ画像とシナリオに基づいて、任意の目的地まで自律移動するシステムを提案している。ここでのシナリオとは島田らが提案した、「条件」と「行動」に関する単語を組みわせて構成されている。この手法では、岡田らの視覚に基づいたナビゲーションに加え、カメラ画像から分岐路を認識、シナリオによって目標方向を決定し、経路を選択する機能を追加している。春山らの先行研究では、島田らが提案した50例のシナリオの中から対象としている7例すべてで自律移動が可能であることを確認している。

第1章 序論 2

先行研究では、島田らが作成したシナリオの中で、以下~~~の区域のみで完結するシナリオを対象としている.この部分はホワイエと呼ばれるスペースを一部を含むものの、壁や床の色が類似しており、一貫性のある環境といえる.一方で~~右側を含むシナリオでは先行研究で走行してきたエリアに加えて、ホワイエを通り抜ける必要があることや、地面の色が異なる区域も対象としており、環境が変化するという違いがあり走行が困難な可能性がある.加えて、このエリアは岡田らが提案した手法で経路追従可能か未検証である.また、先行研究では対象としたシナリオすべてで自律移動が可能であることが確認されており、失敗の要因は判明していない.

これらの問題点から,新たなエリアを含むシナリオにおいて,目的地までカメラ画像のみで 自律移動できるか確認することで,システムの有効性を調査する.また失敗する場合は要因を 調査することで,システムの改良点について考察できるようになる.

Fig. 1.1 Example

第1章 序論 3

1.2 目的

本論文では,島田らが作成したシナリオにおいて春山らの実験では検証されていないシナリオでも,目的地までカメラ画像のみを入力として自律移動できるかを,実ロボットを用いた実験により確認する.

1.3 論文構成

第1章では,先行研究や背景,本論文の目的について述べた.第2章では,本研究に関連する技術について述べる.第3章では,先行研究について述べる.第4章では,先行研究からの変更点について述べる.第5章では,実ロボットを用いた実験について述べる.第6章では,本論文について結論を述べる.

第2章

要素技術

2.1 メトリックマップに基づくナビゲーション

メトリックマップに基づくナビゲーションについて説明する.ナビゲーションを実現するためには,LiDAR やオドメトリなどのセンサとメトリックマップを活用し,自己位置推定や経路計画を行うことで,ロボットが目的地まで自律的に移動する仕組みが必要となる.まず,自己位置推定では,ロボットが地図上のどこに位置しているかを特定する.これには,LiDAR やオドメトリデータなどのセンサ情報を利用し,AMCL(Adaptive Monte Carlo Localization)などのアルゴリズムを活用する.自己位置推定が成功することで,ロボットの現在位置が正確に把握される.次に,自己位置から目的地までの最適な経路を計画する.計画された経路に基づき,ロボットの動作をリアルタイムで制御し,障害物や環境の変化にも対応する必要がある.このようにして,メトリックマップに基づくプランニングと動的環境への対応を統合し,ロボットの自律移動を実現する.メトリックマップに基づくナビゲーションの利点として,事前に取得した環境情報を有効活用できる点が挙げられる.しかし,事前に取得した環境情報と現在の環境情報が大きく異なる場合,自律移動が失敗する可能性がある点が課題となる.本論文ではメトリックマップに基づくナビゲーションを教師として模倣学習を行う.

第3章

先行研究

本論文の議論のベースとなる、岡田らの従来手法と島田らが提案したトポロジカルマップの 形式、単語の組み合わせによる経路の表現であるシナリオについて述べたのち、春山らの視覚 に基づいて目的地まで自律移動するシステムについて述べる。

3.1 視覚と行動の end-to-end 学習により経路追従行動をオンラインで模倣する手法

岡田らの手法では、メトリックマップに基づく経路追従行動を視覚を入力とした行動へ模倣するために、end-to-end 学習を用いた手法を提案している。ロボットは経路を自律移動するのと同時に学習を行う。

訓練時には、ROS の navigation パッケージを使用して、設定した経路を追従する.その際、ロボットに取り付けたカメラから取得した RGB 画像とルールベース制御器が出力するヨー方向の角速度をペアにして、0.2 秒の周期でデータセットに追加する.次に、このデータセットからバッチサイズ 8 で教師データを抽出し、end-to-end 学習を行う.このデータ収集から学習までの一連の流れを 1 ステップと定義している.収集には 3 台のカメラを使用することで、データの多様性を高めるとともに過学習を防ぐ効果を狙っている.左右のカメラ画像に対するヨー方向の角速度には経路復帰を補助するためのオフセット(± 0.2rad/s)を加える.

学習器の訓練後は,中央のカメラから得た RGB 画像を入力とし,出力されるヨー方向の角速度を用いて経路を追従する.学習時,学習後ともに並進速度は $0.2\mathrm{m/s}$ に固定し,カメラ画

第 3 章 先行研究 6

像は 64 × 48 にリサイズする.この手法により,学習した経路を,画像のみを入力とした学習器の出力で自律移動できることが確認されている.

3.2 トポロジカルマップとシナリオ

トポロジカルマップ

トポロジカルマップとは、環境をランドマークや特徴的な箇所をノードとし、その繋がりをエッジで表現した地図である。島田らが提案したトポロジカルマップでは、ノードは通路の特徴的な箇所に配置され、エッジはノード間を接続する。ノードには ID、通路の特徴(Type)、エッジ ID と相対角度(Edge)のデータが含まれ、エッジには ID のみが含まれる。この形式は道案内に関するアンケート結果に基づいており、人が道案内で「通路の特徴」や「向いている方向」を重視することが明らかになったことから設計された。

シナリオ

シナリオは、トポロジカルマップ上の目的地までの経路を「条件」と「行動」の組み合わせで表現する手法である。「条件」は「次の角」や「突き当たりまで」などを指し、「行動」は「直進」や「右折」などを指す。この形式はトポロジカルマップ同様に道案内に関するアンケート結果に基づいており、人が「条件」と「行動」を組み合わせて道案内をすることが明らかになったことから設計された。例として、特定の経路はと表現される。

3.3 視覚に基づいて目的地まで自律移動するシステム

春山らは,カメラ画像とトポロジカルマップから作成されるシナリオに基づいて,目的地まで自律移動するシステムを構築している.提案されたシステムは,

- 1) カメラ画像と目標方向を与えることで、経路を追従するモジュール (以後、経路追従モジュールと呼ぶ)
- 2) シナリオを分解し、「条件」と「行動」を抽出するモジュール (以後, シナリオモジュール と呼ぶ)
 - 3) カメラ画像から通路の特徴を分類するモジュール (以後, 通路分類モジュールと呼ぶ) の3つのモジュールで構成されており, それぞれについて述べる.

第3章 先行研究 7

経路追従モジュール

このモジュールは、岡田らの手法から目標方向のデータを加えることで、分岐路で経路を選択し、移動する機能を追加したものである.ここで目標方向とは、目標とする進行方向(「直進」や「右折」)を表す.学習時は、カメラ画像とルールベース制御器が出力するヨー方向の角速度、目標方向を 0.2 秒周期でデータセットに加える.データセットから抽出するバッチサイズや、カメラ画像の解像度は岡田ら手法と同様である.データセットの収集には藤原らが提案した、データセットに加えるデータの不均衡を改善する手法、学習時に積極的な蛇行する手法を採用する.

シナリオモジュール

シナリオモジュールは,トポロジカルマップを基に作成されたシナリオから「条件」や「行動」を解釈し,それを分岐路での目標方向に変換して出力する機能を持つ.トポロジカルマップは,特徴的な通路のノード(青)とそれを繋ぐエッジ(緑)で構成され,ノードには ID や通路の特徴,接続エッジと方向のデータが含まれている.シナリオは目的地までの経路を「条件」と「行動」で表現し,例として「三叉路まで直進.右折.突き当たりまで直進.停止」となる.

シナリオの目標方向への変換では,句点ごとに分解し,「条件」と「行動」を抽出して以下 の項目に分類する:

通路の特徴(例:「三叉路」「角」)

順番(例:「3つ目の」「2番目の」)

方向(例:「左手に」「右手に」)

行動(例:「右折」「停止」)

例では、「三叉路まで直進」は通路の特徴「三叉路」と行動「直進」に分解される.この処理 を経路全体に対して行い、得られた「行動」を分岐路での目標方向として変換し、経路追従モ ジュールに渡す.また、条件の判定には通路分類モジュールを使用する. 第 3 章 先行研究 8

通路分類モジュール

このモジュールでは、ニューラルネットワークを用いることで、カメラ画像を入力として、通路の特徴を分類する。データセットの収集をするために、ロボットをルールベース制御器に基づいて走行させる。その際に、フレーム数 16 、画像サイズ 64 × 48 の連続したカメラ画像と通路の分類ラベルを 1 組として、0.125 秒周期でデータセットに加える。通路の分類ラベルのアノテーションはルールベース制御器から出力されるラベルによって自動的に行う。データセット内の不均衡を改善するために、クラス間のデータ数によって重み付けを行うコストアプローチを導入している。

実ロボットを用いた実験

実口ボットを用いた実験により,ロボットを目的地まで到達可能か検証されている.実験では島田ら用いた 50 例のシナリオの中から,7 例が用いられており,そのすべてでロボットが目的地へ到達できることが確認されている.

第4章

機能の改善

経路追従モジュールに関して,経路追従の可能性を向上させるために2点変更を加えた.変更点,理由について以下に述べる.

4.1 ネットワークの変更

春山らの先行研究では,~~に示すネットワークを使用していた.一方で felipe らの先行研究によると,~~に示す,モデルがコマンドによって分岐する形式のネットワークがより経路追従の成功率が向上すると報告している.そのため,今回の研究では felipe らによって提案されたネットワークを参考に新たなネットワークを構築した.

4.2 オフライン学習

春山らの先行研究では学習機の訓練の手法はオンライン学習を用いていた.オンライン学習の欠点として,学習するデータに偏りが発生してしまう.具体的には,学習の初期に取得したデータは学習される回数が多くなり,学習の後半に取得したデータは学習のされる回数は減少する.このため,学習が不十分な場合,経路追従できない箇所が存在する可能性がある.今回の実験では,この欠点を補うために,オフライン学習を併用して行う.オフライン学習とは一般的に用いられる学習方法で,予め収集したデータを使用して学習する手法を指す.データを予め収集することにより,すべてのデータを同じ回数で学習することが可能である.また,オンライン学習では学習するための走行する必要があったが,オフライン学習を併用することで

第4章 機能の改善

追加の学習を走行せずに行うことができる.

第5章

新たなシナリオが走行できるか検証

実ロボットを用いて、構築したシステムにより、ロボットが目的地へ到達可能であるか検証 する.

5.1 実験装置

実験には に示す icart-mini[] をベースに開発したロボットを用いる. センサとして、単眼のウェブカメラ (サンワサプライ株式会社 CMS-V43BK) を 3 つ,2D-LiDAR(北陽電機 UTM-30LX) を 1 つ,左右のモータにそれぞれパルス付きエンコーダを搭載している. 制御用の PC には GALLERIA GCR2070RGF-QC-G を使用している. メトリックマップに基づくルールベース制御器には、本学で ROS Navigation stack をもとに開発した orne navigation[25] を使用する

5.2 実験方法

5.2.1 実験環境

実験環境として~~~に示す千葉工業大学2号館3階を用いる.

図を追加する

また,経路追従モジュールと通路分類モジュールの学習データを収集するために,~~~に 示すルートを走行する.

5.2.2 シナリオの選定

実験では島田ら用いた50例の中から,22例を選定した.選定するにあたって,以下の条件を設定した.

- 1)ロボットが移動困難な~~~に示すルートが含まれないこと.
- 2)経路追従モジュールができない、その場での旋回が含まれていないこと、
- 3)通路の分類が困難な~~~に示すルートが含まれないこと.

5.2.3 経路追従モジュールの訓練

実験環境で明示したルートをオンライン学習させながら 1 週走行する. オンライン学習で作成したモデルに追加でオフライン学習を行う. バッチサイズはオンライン学習と同様の 8 , epoch 数は 20 とした.

5.2.4 通路分類モジュールの訓練

実験環境で明示したルートを ROS の navigation パッケージを使用して,経路を1周する. その際,3つのカメラからそれぞれ画像データを収集しながら走行する.学習時のパラメータ として,バッチサイズ32,epoch数30とし,コストアプローチに用いた重みは~~~に 示す.

5.2.5 シナリオに基づくナビゲーション

2 つのモジュールを訓練後、ロボットが目的地まで到達できるか確認する. 実験では、ロボットをシナリオのスタート地点、向きに配置し、シナリオを1例ずつ投入する. 途中で壁に衝突や、経路の選択を誤ることなく自律移動し、目的地で停止した際に成功とする.

5.3 実験結果

選定したシナリオ 28 例中,24 例の自律移動を確認した.

第6章

おわりに

6.1 結論

本論文では、春山らが提案したシステムを改良し、先行研究では走行が未確認であったシナリオに対しても目的地までカメラ画像のみを入力として自律移動可能か調査した。経路追従の成功率を向上させることを目的として、先行研究からは、行動ごとにモデルを分けるネットワークに変更、オフライン学習による追学習する仕組みを追加した。実口ボットを用いた実験では、先行研究では走行が確認されていない大教室前の通路や、ホワイエを通過するシナリオを含む 28 例中、24 例は自律移動が可能であること確認した。失敗した 4 例に関して、通路の特徴の分類が遅れることによって、経路追従に失敗することを確認した。

参考文献

[1] The robocup japanese regional committee — ロボカップとは. https://www.robocup.or.jp/robocup/. (Accessed on 12/29/2022).

付録

謝辞

本研究を進めるにあたり、1年に渡り、熱心にご指導を頂いた林原靖男教授に深く感謝いた します.