Department of Mathematics

Indian Institute of Technology Delhi

MTL 101 Linear Algebra and Differential Equations: Minor-I Time: 1 hour

Total marks: 20

1. Every question is compulsory

2. No marks will be provided for answers without proper justification

 \sim 1. Determine (with justification) whether the following statements are true or false. [2 \times 4 = 8]

(a) Let $V = \text{Maps}(\mathbb{N}, \mathbb{R})$, the space of all real sequences. Let e_n be the sequence $(a_m^{(n)})$, where $a_m^{(n)} = \int_0^\infty 0$ if $m \neq n$ $a_m^{(n)} = \begin{cases} 0 & \text{if } m \neq n \\ 1 & \text{if } m = n \end{cases}, \text{ i.e., } e_n \text{ is the sequence whose } n^{\text{th}} \text{ term is 1 and all other terms are} \end{cases}$ 0. Then $\{e_n|n\in\mathbb{N}\}$ forms a basis for V.

(b) Suppose $X_1, X_2 \in M_{n \times 1}(\mathbb{F})$ are solutions of the system AX = B, where $A \in M_{m \times n}(\mathbb{F})$ and $B \in M_{m \times 1}(\mathbb{F})$. Then, for $a, b \in \mathbb{F}$, $aX_1 + bX_2$ is a solution of AX = B if a + b = 1.

(c) For $1 \le i \le 2n - 1$, let $W_i = \{(x_1, x_2, \dots, x_{2n}) | x_i + x_{i+1} = 0\} \subset \mathbb{R}^{2n}$ and let $W = \bigcap_{i=1}^{2n-1} W_i$. Then $\dim(W) = 0$ Then $\dim(W) = 0$.

(d) For any $n \in \mathbb{N}$ and $A, B \in M_{n \times n}(\mathbb{R})$, row space $(AB) \subseteq \text{row space}(A)$.

2. Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and let $V = \text{Maps}(X, \mathbb{R})$. Let $f_1, f_2, f_3, f_4 \in V$. The following table shows some of the values attained by the functions f_1, f_2, f_3 and f_4 . (For e.g., $f_1(3) = -50$)

	1	2	3	4	5	6	7
f_1	100	1	-50	0	99	1	2
f_2	120	2	-21	2	-	1	3
f_3	-	2	71	1	30	1	2
f_4	0	1	-	0	50	1	3

Here - denotes unknown data. Is the set $\{f_1, f_2, f_3, f_4\}$ a linearly independent subset of V? [4]

3. Let B_1, B_2 and B_3 be any three distinct ordered bases of a three dimensional vector space VLet B_1, B_2 and B_3 be any three distinct order and let $B_3 = \{v_1, v_2, v_3\}$. Suppose that $[v_1]_{B_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $[v_2]_{B_1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $[v_3]_{B_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $[v_1]_{B_2} = \begin{pmatrix} 2\\1\\0 \end{pmatrix}, [v_2]_{B_2} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \text{ and } [v_3]_{B_2} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}. \text{ Find a } 3 \times 3 \text{ matrix } R \text{ such that for } R \text{ such that for } R \text{ such that for } R \text{ such that } R \text{ such that$ any $v \in V$, $[v]_{B_2} = R[v]_{B_1}$

4. Find the inverse of the matrix

 $\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)$

by reducing it to the identity matrix using elementary row operations.

[4]