☀ H.264参考软件JM12.2RC代码详细流程

2013年09月24日 16:14:28 阅读数:7647

代码: JM12.2. 编码结构: IPP。GOP: 3.

跟踪代码:(注 : 表示编码主流程, 表示RC流程)

进入 main(),首先调用 init_global_buffers(). 进入init_global_buffers(),调用两个函数 generic_ alloc(&generic_RC) //Dynamically allocate memory needed for generi c rate control 和 rc_alloc(&quadratic_RC) //Dynamically allocate memory needed for rate control。然后进入 rc_init_seq (rc_quadratic *prc) //Initialize rate control parameters。这三个函数在整个流程中只调用一次。

编码循环开始。调用 rc_init_GOP (rc_quadratic *prc, int np, int nb) //Initialize one GOP。

开始编码第一帧。1帧。

讲入 encode one frame () 週用 rc init pict (rc quadratic *prc. int fieldpic.int topfield.int targetcomputation, float mult) //initialize one picture。接着週用 updateOP (quadratic_RC, 0) //compute a quantization parameter for each frame.调用 frame_picture() //Encodes a frame picture。 进入frame_picture(), 调用 code_a_picture() //Encodes a picture. 进入code_a_picture(),调用 encode_one_slice () //Encodes one slice。进入encode_one_slice(),调用 encode_one_macroblock () //Mode Decisi on for a macroblock, 进入encode_one_macroblock(),调用 update_rc() //Update Rate Control Parameters,接着调用 handle_qp (Macroblock *currMB, short best_ mode) //Update QP Parameters (critical in case of SKIP MBs or MBAFF).

编码完一帧以后调用 rc_update_pict_frame (rc_quadratic *prc, int nbits) //update after frame encoding。 最后调用 rc_update_pict (rc_quadratic *prc, int nbits) //upd ate one picture after frame/field encoding.

第一帧I帧编码完成。

开始编码第二帧。第一个P帧。

循环再次调用 encode_one_frame()。现在编码的是P帧。 调用 rc_init_pict(),接着调用 updateQP(),进入updateQP(),调用 updateFirstP (rc_quadratic *prc, int top field) //计算第一个P帧的 量化 参数。调用 frame_picture()。进入frame_picture(),调用 code_a_picture ()。进入code_a_picture(),调用 encode_one_slice ()。进入 encode_one_slice(),对宏块进行编码循环。先调用 start_macroblock() ,如果已编码宏块数大于0并且是基本单元宏块数的整数倍,则调用 updateRCModel (rc_quad ratic *prc) //update the parameters of quadratic R-D model。进入updateRCModel(),调用 QP2QStep() ,接着调用两次 RCModelEstimator() 。之后调用 updateMAD Model ,然后调用 updateQP()。 进入updateQP(),调用 updateFirstP() . 然后调用 encode_one_macroblock (), 进入encode_one_macroblock(),调用 update_rc() 接着调用 handle qp()。

**** 需要注意的一点:对于第一个基本单元,进入updateRCModel之后,在调用完两次RCModelEstimator之后,没有调用updateMADModel。从第二个基本单元开始 ,才进入updateMADModel。进入updateMADModel以后,会调用MADModelEstimator。并且,编码第一个P帧时调用updateMADModel没有任何作用。只有在编码 第二个P帧开始,updateMADModel才会起作用。 ***

编码完一帧以后调用 rc_update_pict_frame。接着调用 rc_update_pict() . 调用 updateRCModel() ,进入 updateRCModel() ,调用两次 RCModelEstimator() 。之后调 用 updateMADModel。进入 updateMADModel,这个时候updateMADModel函数会起作用了。它调用 MADModelEstimator,更新参数之后并 再次调用 MADMode

第一个P帧编码完成。

开始编码第三帧,即第二个P帧。

调用 encode_one_frame() 。 调用 rc_init_pict() ,接着调用 updateQP(),进入updateQP(),由于是第一个基本单元,调用 updateFirstBU (rc_quadratic *prc, int topfie ld)。之后调用 frame_picture()。进入frame_picture(),调用 code_a_picture ()。进入code_a_picture(),调用 encode_one_slice ()。进入encode_one_slice(),对宏 块进行编码循环。调用 encode_one_macroblock (), 进入encode_one_macroblock(),调用 update_rc() 接着调用 handle_qp() 。编码的宏块数超过一个且是基本单 元宏块数的整数倍时,调用在 start macroblock 里面的 updateRCModel 。进入updateRCModel(),调用 OP2OStep(),接着调用两次 RCModelEstimator()。之后调用 updateMADModel,,进入updateMADModel,调用两次 MADModelEstimator。 然后调用 updateQP()。进入updateQP,如果Target<0,调用 updateNegativeTarget (rc_quadratic *prc, int topfield, int m_Qp),否则会:调用 predictCurrPicMAD ,接着调用 updateModelQPBU (rc_quadratic *prc, int topfield, int m_Qp),如果是 最后一个基本单元,则调用 updateLastBU().

编码完一帧以后调用 rc_update_pict_frame。接着调用 rc_update_pict() . 调用 updateRCModel() ,进入 updateRCModel() ,调用两次 RCModelEstimator() 。之后调 用 updateMADModel 。进入 updateMADModel ,这个时候updateMADModel函数会起作用了。它调用 MADModelEstimator ,更新参数之后并 再次调用 MADMode IEstimator 。

以上是我跟踪代码所得。比较简单,但是仍希望对大家有 帮助 。

文章标签: JM (代码) (流程) (H.264

个人分类: JM 视频编码

此PDF由spygg生成,请尊重原作者版权!!!

我的邮箱:liushidc@163.com