5.4.6 Event modifiers

As mentioned previously, a single rearrangement event can be described as a set of novel adjacencies. For example, a reciprocal rearrangement such as in Figure 7:

Figure 7: Rearrangements

would be described as:

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO
2	321681	$\mathrm{bnd}_{ extsf{-}}\mathrm{W}$	G	G[13:123457]	6	PASS	SVTYPE=BND;MATEID=bnd_X;EVENT=RR0
2	321682	$bnd_{-}V$	${ m T}$]13:123456]T	6	PASS	SVTYPE=BND;MATEID=bnd_U;EVENT=RR0
13	123456	$bnd_{-}U$	$^{\mathrm{C}}$	C[2:321682[6	PASS	SVTYPE=BND;MATEID=bnd_V;EVENT=RR0
13	123457	bnd_X	A	2 : 321681]A	6	PASS	SVTYPE=BND:MATEID=bnd_W:EVENT=RR0

5.4.7 Inversions

2

Similarly an inversion such as in Figure 8:

Figure 8: Inversion

can be described equivalently in two ways. Either one uses the short hand notation described previously (recommended for simple cases):

#CHROM 2	321682	-321681	ID INV0	REF T-G		•	UAL		-	INFO SVTYPE=INV;END=421681			
or one describes the breakends:													
#CHROM	POS	ID	REF	ALT		QUAL	FILT	ER	INFO				
2	321681	$\mathrm{bnd}_{ extsf{-}}\mathrm{W}$	G	G[2:4216]	[881]	6	PASS	3	SVTY	PE=BND;MATEID=bnd_U;EVENT=INV			
9	321682	bnd V	т	[2 42168	2[T	6	PASS	2	SVTV	PE-BND·MATEID-bnd X·EVENT-INV			

PASS

PASS

SVTYPE=BND;MATEID=bnd_W;EVENT=INV0

SVTYPE=BND;MATEID=bnd_V;EVENT=INV0

6

A]2:321681]

[2:321682[C

5.4.8 Uncertainty around breakend location

 $bnd_{-}U$

 bnd_X

Α

421681

421682

It sometimes is difficult to determine the exact position of a break, generally because of homologies between the sequences being modified, such as in Figure 9. The breakend is then placed arbitrarily at the left most position, and the uncertainty is represented with the CIPOS tag. The ALT string is then constructed assuming this arbitrary breakend choice.

The figure above represents a nonreciprocal translocation with microhomology. Even if we know that breakend U is rearranged with breakend V, actually placing these breaks can be extremely difficult. The red and green dashed