(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

PCT

(10) International Publication Number WO 02/081698 A2

- (51) International Patent Classification⁷: C12N 15/31, C07K 14/245, C12P 13/08 // (C12P 13/08, C12R 1:19)
- (21) International Application Number: PCT/EP02/02420
- (22) International Filing Date: 6 March 2002 (06.03.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 101 16 518.8

3 April 2001 (03.04.2001) DE

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). HERMANN, Thomas; Zirkonstrasse 8, 33739 Bielefeld (DE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS USING STRAINS OF THE FAMILY ENTEROBACTERIACEAE THAT CONTAIN AN ATTENUATED FRUR GENE

(57) Abstract: The invention relates to a process for the production of L-amino acids, in particular L-threonine, in which the following steps are carried out: a) fermentation of the microorganisms of the family Enterobacteriaceae producing the desired L-amino acid, in which the fruR gene or nucleotide sequences coding therefor are attenuated, in particular are switched off, b) enrichment of the L-amino acid in the medium or in the cells of the bacteria, and c) isolation of the L-amino acid.

42

O 02/081698 A2

with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/081698 PCT/EP02/02420

Process for the Production of L-Amino Acids using Strains of the Family Enterobacteriaceae that contain an Attenuated frum Gene

Field of the Invention

5 The present invention relates to a process for the enzymatic production of L-amino acids, in particular L-threonine, using strains of the family Enterobacteriaceae in which the fruR gene is attenuated.

Prior Art

- 10 L-amino acids, in particular L-threonine, are used in human medicine and in the pharmaceutical industry, in the foodstuffs industry, and most especially in animal nutrition.
- It is known to produce L-amino acids by fermentation of strains of Enterobacteriaceae, in particular Escherichia coli (E. coli) and Serratia marcescens. On account of their great importance efforts are constantly being made to improve processes for producing the latter. Process improvements may relate to fermentation technology
- 20 measures, such as for example stirring and provision of oxygen, or the composition of the nutrient media, such as for example the sugar concentration during the fermentation, or the working-up to the product form, for example by ion exchange chromatography, or the intrinsic
- 25 performance properties of the microorganism itself.

Methods comprising mutagenesis, selection and mutant choice are employed in order to improve the performance properties of these microorganisms. In this way strains are obtained that are resistant to antimetabolites, such as for example the threonine analogue α -amino- β -hydroxyvaleric acid (AHV) or are auxotrophic for regulatorily important metabolites, and that produce L-amino acids such as for example L-

PCT/EP02/02420 WO 02/081698 2

Methods of recombinant DNA technology have also been used for some years in order to improve strains of the family Enterobacteriaceae producing L-amino acids, by amplifying individual amino acid biosynthesis genes and investigating 5 their effect on production.

Object of the Invention

The object of the invention is to provide new measures for the improved enzymatic production of L-amino acids, in particular L-threonine.

10 Summary of the Invention

The invention provides a process for the enzymatic production of L-amino acids, in particular L-threonine, using microorganisms of the family Enterobacteriaceae that in particular already produce L-amino acids and in which 15 the nucleotide sequence coding for the fruR gene is attenuated.

Detailed Description of the Invention

Where L-amino acids or amino acids are mentioned hereinafter, this is understood to mean one or more amino 20 acids including their salts, selected from the group comprising L-asparagine, L-threonine, L-serine, Lglutamate, L-glycine, L-alanine, L-cysteine, L-valine, Lmethionine, L-isoleucine, L-leucine, L-tyrosine, Lphenylalanine, L-histidine, L-lysine, L-tryptophan and L-25 arginine. L-threonine is particularly preferred.

The term "attenuation" describes in this connection the reduction or switching off of the intracellular activity of one or more enzymes (proteins) in a microorganism that are coded by the corresponding DNA, by using for example a weak promoter or a gene or allele that codes for a corresponding enzyme with a low activity and/or that inactivates the

corresponding enzyme (protein) or gene, and optionally combining these measures.

By means of these attenuation measures the activity or concentration of the corresponding protein is generally reduced to 0 to 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild type protein, or the activity or concentration of the protein in the initial microorganism.

The process is characterized in that the following steps
10 are carried out:

- a) fermentation of microorganisms of the family Enterobacteriaceae in which the fruR gene is attenuated,
- b) enrichment of the corresponding L-amino acid in the medium or in the cells of the microorganisms of the family Enterobacteriaceae, and
- c) isolation of the desired L-amino acid, in which optionally constituents of the fermentation broth and/or the biomass in its entirety or parts thereof remain in the product.

The microorganisms that are the subject of the present invention can produce L-amino acids from glucose, sucrose, lactose, fructose, maltose, molasses, optionally starch, optionally cellulose or from glycerol and ethanol. The microorganisms are members of the family Enterobacteriaceae selected from the genera Escherichia, Erwinia, Providencia and Serratia. The genera Escherichia and Serratia are preferred. In the case of the genus Escherichia the species Escherichia coli may in particular be mentioned, and in the case of the genus Serratia the species Serratia marcescens may in particular be mentioned.

WO 02/081698 PCT/EP02/02420

Suitable strains of the genus Escherichia, in particular those of the species Escherichia coli, that produce in particular L-threonine, include for example:

Escherichia coli TF427

Escherichia coli H4578

Escherichia coli KY10935

Escherichia coli VNIIgenetika MG442

Escherichia coli VNIIgenetika M1

Escherichia coli VNIIgenetika 472T23

UEscherichia coli BKIIM B-3996

Escherichia coli kat 13

Escherichia coli KCCM-10132

Suitable strains of the genus Serratia, in particular of the species Serratia marcescens, that produce L-threonine include for example:

> Serratia marcescens HNr21 Serratia marcescens TLr156 Serratia marcescens T2000

Strains of the family of Enterobacteriaceae producing L-20 threonine preferably have, inter alia, one or more of the genetic or phenotype features selected from the following group: resistance to α -amino- β -hydroxyvaleric acid, resistance to thialysine, resistance to ethionine, resistance to α-methylserine, resistance to diaminosuccinic 25 acid, resistance to α -aminobutyric acid, resistance to borrelidin, resistance to rifampicin, resistance to valine analogues such as for example valine hydroxamate, resistance to purine analogues such as for example 6dimethylaminopurine, need for L-methionine, optionally 30 partial and compensatable need for L-isoleucine, need for meso-diaminopimelic acid, auxotrophy with regard to threonine-containing dipeptides, resistance to L-threonine, resistance to L-homoserine, resistance to L-lysine, resistance to L-methionine, resistance to L-clutamic acid,

resistance to L-aspartate, resistance to L-leucine, resistance to L-phenylalanine, resistance to L-serine, resistance to L-cysteine, resistance to L-valine, sensitivity to fluoropyruvate, defective threonine 5 dehydrogenase, optionally ability to utilise sucrose, enhancement of the threonine operon, enhancement of homoserine dehydrogenase, I-aspartate kinase I, preferably of the feedback-resistant form, enhancement of homoserine kinase, enhancement of threonine synthase, enhancement of 10 aspartate kinase, optionally of the feedback-resistant form, enhancement of aspartate semialdehyde dehydrogenase, enhancement of phosphoenol pyruvate carboxylase, optionally of the feedback-resistant form, enhancement of phosphoenol pyruvate synthase, enhancement of transhydrogenase, 15 enhancement of the RhtB gene product, enhancement of the RhtC gene product, enhancement of the Yfik gene product, enhancement of a pyruvate carboxylase, and attenuation of

It has now been found that microorganisms of the family
20 Enterobacteriaceae after attenuation, in particular after
switching off the fruR gene, produce L-amino acids, in
particular L-threonine, in an improved way.

The nucleotide sequences of the Escherichia coli genes belong to the prior art and may also be obtained from the 25 genome sequence of Escherichia coli published by Blattner et al. (Science 277, 1453 - 1462 (1997)).

The fruR gene is described inter alia by the following data:

Designation: Fructose repressor

30 EC-No.:

Reference: Jahreis et al., Molecular and General

Genetics 226, 332-336 (1991)

Accession No.: AE000118

acetic acid formation.

Comment: The fruR gene is also designated in the prior art as cra gene.

Apart from the described fruR gene, alleles of the gene may be used that result from the degeneracy of the genetic code or from functionally neutral sense mutations, the activity of the protein not being substantially altered.

In order to achieve an attenuation the expression of the gene or the catalytic properties of the enzyme proteins may for example be reduced or switched off. Optionally both measures may be combined.

The gene expression may be reduced by suitable culture conditions, by genetic alteration (mutation) of the signal structures of the gene expression, or also by antisense-RNA techniques. Signal structures of the gene expression are

- for example repressor genes, activator genes, operators, promoters, attenuators, ribosome-binding sites, the start codon and terminators. The person skilled in the art may find relevant information in, inter alia, articles by Jensen and Hammer (Biotechnology and Bioengineering 58:
- 20 191-195 (1998)), by Carrier and Keasling (Biotechnology Progress 15, 58-64 (1999)), Franch and Gerdes (Current Opinion in Microbiology 3, 159-164 (2000)) and in known textbooks of genetics and molecular biology, such as for example the textbook by Knippers ("Molekulare Genetik", 6th
- 25 Edition, Georg Thieme Verlag, Stuttgart, Germany, 1995) or that by Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Germany, 1990).

Mutations that lead to a change or reduction of the catalytic properties of enzyme proteins are known from the prior art. As examples there may be mentioned the works by Qiu and Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Yano et al. (Proceedings of the National Academy of Sciences, USA 95, 5511-5515 (1998)), Wente and Schachmann (Journal of Biological Chemistry 256, 20833-

20839 (1991)). Descriptive overviews may be obtained from known textbooks on genetics and molecular biology, such as for example that by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).

- 5 Suitable mutations include transitions, transversions, insertions and deletions. Depending on the action of the amino acid exchange on the enzyme activity, one speaks of missense mutations or nonsense mutations. Insertions or deletions of at least one base pair in a gene lead to frame 10 shift mutations, which in turn lead to the incorporation of false amino acids or the premature termination of a translation. If as a result of the mutation a stop codon is formed in the coding region, this also leads to a premature termination of the translation. Deletions of several codons typically lead to a complete disruption of the enzyme activity. Details regarding the production of such mutations belong to the prior art and may be obtained from known textbooks on genetics and molecular biology, such as for example the textbook by Knippers ("Molekulare 20 Genetik", 6th Edition, Georg Thieme Verlag, Stuttgart, Germany, 1995), that by Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Germany, 1990) or that by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).
- 25 Suitable mutations in the genes such as for example deletion mutations may be incorporated by gene and/or allele exchange in suitable strains.

A conventional method is the method of gene exchange by means of a conditionally replicating pSC101 derivate

30 pMAK705 described by Hamilton et al. (Journal of Bacteriology 171, 4617 - 4622 (1989)). Other methods described in the prior art, such as for example that of Martinez-Morales et al. (Journal of Bacteriology 181, 7143-7148 (1999)) or that of Boyd et al. (Journal of

35 Bacteriology 182, 842-847 (2000)) may likewise be used.

It is also possible to transfer mutations in the respective genes or mutations relating to the expression of the relevant genes, by conjugation or transduction into various strains.

5 Furthermore for the production of L-amino acids, in particular L-threonine, using strains of the family Enterobacteriaceae it may be advantageous in addition to the attenuation of the fruR gene also to enhance one or more enzymes of the known threonine biosynthesis pathway or enzymes of anaplerotic metabolism or enzymes for the production of reduced nicotinamide-adenine-dinucleotide phosphate.

The term "enhancement" describes in this connection the raising of the intracellular activity of one or more

15 enzymes or proteins in a microorganism that are coded by the corresponding DNA, by for example increasing the number of copies of the gene or genes, using a strong promoter or a gene that codes for a corresponding enzyme or protein having a high activity, and optionally by combining these measures.

By means of the aforementioned enhancement measures, in particular overexpression, the activity or concentration of the corresponding protein is in general raised by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500%, at most up to 1000% or 2000% referred to that of the wild type protein and/or the activity or concentration of the protein in the initial microorganism.

Thus, one or more of the genes selected from the following group may for example by simultaneously enhanced, in particular overexpressed:

 the thrABC operon coding for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase (US-A-4,278,765),

- the pyc gene coding for pyruvate carboxylase (DE-A-19 831 609),
- the pps gene coding for phosphoenol pyruvate synthase (Molecular and General Genetics 231:332 (1992)),
- the ppc gene coding for phosphoenol pyruvate carboxylase
 (Gene 31:279-283 (1984)),
 - the genes pntA and pntB coding for transhydrogenase (European Journal of Biochemistry 158:647-653 (1986)),
- the gene rhtB imparting homoserine resistance (EP-A-0 994 190),
 - the mgo gene coding for malate:quinone oxidoreductase (DE 100 348 33.5),
 - the gene rhtC imparting threonine resistance (EP-A-1 013 765), and
- the thrE gene of Corynebacterium glutamicum coding for threonine export (DE 100 264 94.8).

The use of endogenous genes is in general preferred. The term "endogenous genes" or "endogenous nucleotide sequences" is understood to mean the genes or nucleotide sequences present in the population of a species.

Furthermore for the production of L-amino acids, in particular L-threonine, it may be advantageous in addition to the attenuation of the fruR gene also to attenuate, in particular to switch off or reduce the expression of one or more of the genes selected from the following group:

- - the tdh gene coding for threonine dehydrogenase (Ravnikar and Somerville, Journal of Bacteriology 169, 4716-4721 (1987)),

- the mdh gene coding for malate dehydrogenase (E.C. 1.1.1.37) (Vogel et al., Archives in Microbiology 149, 36-42 (1987)),
- the gene product of the open reading frame (orf) yjfA 5 (Accession Number AAC77180 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA)),
 - the gene product of the open reading frame (orf) ytfP (Accession Number AAC77179 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA)),
- 10 the pckA gene coding for the enzyme phosphoenol pyruvate carboxykinase (Medina et al. (Journal of Bacteriology 172, 7151-7156 (1990)),
 - the poxB gene coding for pyruvate oxidase (Grabau and Cronan (Nucleic Acids Research 14 (13), 5449-5460 (1986)),

15

- the aceA gene coding for isocitrate lyase (EC-No.: 4.1.3.1) (Matsuoko and McFadden; Journal of Bacteriology 170, 4528-4536 (1988) and Accession No.: AE000474), and
- the dgsA gene coding for the regulator of the 20 phosphotransferase system (Hosono et al., Bioscience, Biotechnology and Biochemistry 59, 256-261 (1995) and Accession No.: AE000255)

Furthermore for the production of L-amino acids, in particular L-threonine, it may be advantageous in addition

- 25 to the attenuation of the fruR gene also to switch off undesirable secondary reactions (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
- 30 The microorganisms produced according to the invention may be cultivated in a batch process (batch cultivation), in a

PCT/EP02/02420 WO 02/081698 11

fed batch process (feed process) or in a repeated fed batch process (repetitive feed process). A summary of known cultivation methods is described in the textbook by Chmiel (Bioprozesstechnik 1. Einführung in die

5 Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Brunswick/ Wiesbaden, 1994)).

The culture medium to be used must appropriately satisfy 10 the requirements of the respective strains. Descriptions of culture media of various microorganisms are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

- 15 As carbon sources, sugars and carbohydrates such as for example glucose, sucrose, lactose, fructose, maltose, molasses, starch and optionally cellulose, oils and fats such as for example soya bean oil, sunflower oil, groundnut oil and coconut oil, fatty acids such as for example 20 palmitic acid, stearic acid and linoleic acid, alcohols
- such as for example glycerol and ethanol, and organic acids such as for example acetic acid, may be used. These substances may be used individually or as a mixture.

As nitrogen source, organic nitrogen-containing compounds 25 such as peptones, yeast extract, meat extract, malt extract, maize steep liquor, soya bean flour and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate may be used. The nitrogen sources may be 30 used individually or as a mixture.

As phosphorus source, phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts may be used. culture medium must furthermore contain salts of metals,

such as for example magnesium sulfate or iron sulfate, that are necessary for growth. Finally, essential growth promoters such as amino acids and vitamins may be used in addition to the aforementioned substances. Apart from these, suitable precursors may be added to the culture medium. The aforementioned starting substances may be added to the culture in the form of a single batch or may be metered in in an appropriate manner during the cultivation.

- In order to regulate the pH of the culture basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water, or acidic compounds such as phosphoric acid or sulfuric acid are used as appropriate. In order to control foam formation antifoaming agents such as for
- 15 example fatty acid polyglycol esters may be used. In order to maintain the stability of plasmids, suitable selectively acting substances, for example antibiotics, may be added to the medium. In order to maintain aerobic conditions, oxygen or oxygen-containing gas mixtures such as for
- 20 example air are fed into the culture. The temperature of the culture is normally 25°C to 45°C, and preferably 30°C to 40°C. Cultivation is continued until a maximum amount of L-amino acids (or L-threonine) has been formed. This target is normally achieved within 10 hours to 160 hours.
- The L-amino acids may be analyzed by anion exchange chromotography followed by ninhydrin derivation, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190), or by reversed phase HPLC, as described by Lindroth et al. (Analytical Chemistry (1979) 51: 1167-30 1174).

The process according to the invention can be used for the enzymatic production of L-amino acids, such as for example L-threonine, L-isoleucine, L-valine, L-methionine, L-homoserine and L-lysine, in particular L-threonine.

A pure culture of the Escherichia coli K-12 strain
DH5α/pMAK705 was filed as DSM 13720 on 8 September 2000 at
the German Collection for Microorganisms and Cell Cultures
(DSMZ, Brunswick, Germany) according to the Budapest
5 Convention.

The present invention is described in more detail hereinafter with the aid of examples of implementation.

The isolation of plasmid DNA from Escherichia coli as well as all techniques for the restriction, ligation, Klenow treatment and alkaline phosphatase treatment are carried out according to Sambrook et al. (Molecular Cloning - A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press). The transformation of Escherichia coli is, unless otherwise described, carried out according to Chung et al. (Proceedings of the National Academy of Sciences of the

United States of America, USA (1989) 86: 2172-2175).

The incubation temperature in the production of strains and transformants is 37°C. In the gene exchange process according to Hamilton et al, temperatures of 30°C and 44°C are used.

Example 1

Construction of the deletion mutation of the fruR gene

Parts of the gene regions and parts of the 5'- and 3'region of the fruR gene from Escherichia coli K12 lying

25 upstream and downstream of the fruR gene are amplified
using the polymerase chain reaction (PCR) as well as
synthetic oligonucleotides. Starting from the nucleotide
sequence of the fruR gene and sequences in E. coli K12
MG1655 DNA (SEQ ID No. 1, Accession Number AE000118) lying

30 upstream and downstream, the following PCR primers are
synthesized (MWG Biotech, Ebersberg, Germany):

fruR'5'-1: 5' - ATGAATCAGGCGCGTTATCC - 3' (SEQ ID No. 3)

fruR'5'-2: 5' - TTGTCGCTCACACGGTATTG - 3' (SEQ ID No. 4)

fruR'3'-1: 5' - AGCGTGTGCTGGAGATTGTC - 3' (SEQ ID No. 5)

fruR'3'-2: 5' - AGCCAGTCACAAGGCATACC - 3' (SEQ ID No. 6)

The chromosomal E. coli K12 MG1655 DNA used for the PCR is 5 isolated according to the manufacturer's instructions using "Qiagen Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A ca. 750 bp large DNA fragment from the 5' region of the fruR gene region (designated fruR1) and a ca. 650 bp large DNA fragment from the 3' region of the fruR gene region 10 (designated as fruR2) may be amplified with the specific primers under standard PCR conditions (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press) with the taq-DNA-polymerase (Gibco-BRL, Eggenstein, Germany). The PCR products are ligated 15 according to the manufacturer's instructions in each case with the vector pCR2.1TOPO (TOPO TA Cloning Kit, Invitrogen, Groningen, Netherlands) and transformed in the E. coli strain TOP10F'. The selection of plasmid-carrying cells is carried out on LB agar to which 50 $\mu g/ml$ of 20 ampicillin has been added. After the plasmid DNA isolation the vector pCR2.1TOPOfruR2 is cleaved with the restriction enzyme NotI and the supernatant 3'-ends are treated with Klenow enzyme. After the restriction with the enzyme SpeI the fruR2 fragment is separated in 0.8% agarose gel and 25 isolated using the QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany). After the plasmid DNA isolation, the vector pCR2.1TOPOfruR1 is cleaved with the enzymes EcoRV and XbaI and ligated with the isolated fruR2 fragment. E. coli strain DH5 α is transformed with the ligation batch 30 and plasmid-carrying cells are selected on LB agar to which 50 μg/ml of ampicillin has been added. After the plasmid DNA isolation those plasmids in which the mutagenic DNA sequence illustrated in SEQ ID No. 7 is present in cloned

form are detected by control cleavage with the enzymes

PCT/EP02/02420 WO 02/081698 15

HindIII, EcoRV and PvuI. One of the plasmids is designated pCR2.1TOPO∆fruR.

Example 2

Construction of the exchange vector pMAK705∆fruR

- 5 The fruR allele described in Example 1 is isolated from the vector pCR2.1 $TOPO\Delta fruR$ after restriction with the enzyme EcoOlO9I, treatment of the supernatant 3'-ends with Klenow enzyme, restriction with the enzyme BamHI and separation in 0.8% agarose gel, and ligated with the plasmid pMAK705
- 10 (Hamilton et al. (1989) Journal of Bacteriology 171, 4617 -4622) that has been digested with the enzymes HincII and BamHI. The ligation batch is transformed in DH5 α and plasmid-carrying cells are selected on LB agar to which 20 µg/ml chloramphenicol had been added. Successful cloning
- 15 is detected after plasmid DNA isolation and cleavage with the enzymes HindIII, BamHI, EcoRV, Scal and Spel. The resultant exchange vector pMAK705∆fruR (= pMAK705deltafruR) is shown in Fig. 1.

Example 3

20 Site-specific mutagenesis of the fruR gene in the E. coli strain MG442

The E. coli strain MG442 producing L-threonine is described in patent specification US-A- 4,278,765 and is filed as CMIM B-1628 at the Russian National Collection for

25 Industrial Microorganisms (VKPM, Moscow, Russia).

For the exchange of the chromosomal fruR gene by the plasmid-coded deletion construct, MG442 is transformed with the plasmid pMAK705∆fruR. The gene exchange is carried out by the selection process described by Hamilton et al.

30 (1989) Journal of Bacteriology 171, 4617 - 4622) and is verified by standard PCR methods (Innis et al. (1990) PCR WO 02/081698 16

Protocols. A guide to methods and applications, Academic Press) with the following oligonucleotide primers:

fruR'5'-1: 5' - ATGAATCAGGCGCGTTATCC - 3' (SEQ ID No. 3)

fruR'3'-2: 5' - AGCCAGTCACAAGGCATACC - 3' (SEQ ID No. 6)

5 After exchange has been carried out the form of the ΔfruR allele illustrated in SEQ ID No. 8 is present in MG442. The resultant strain is designated MG442∆fruR.

Example 4

Production of L-threonine using the strain MG442∆fruR

- 10 $MG442\Delta$ fruR is cultivated on minimal medium having the following composition: 3.5 g/l Na₂HPO₄·2H₂O, 1.5 g/l KH₂PO₄, 1 g/l NH₄Cl, 0.1 g/l MgSO₄·7H₂O, 2 g/l glucose and 20 g/l agar. The formation of L-threonine is checked in batch cultures of 10 ml that are contained in 100 ml Erlenmeyer
- 15 flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast extract, 10 g/l $(NH_4)_2SO_4$, 1 g/l KH_2PO_4 , 0.5 g/l $MgSO_4 \cdot 7H_2O$, 15 g/l $CaCO_3$, 20 g/l glucose are inoculated and incubated for 16 hours at 37°C and 180 rpm in an ESR incubator from Kühner AG
- 20 (Birsfelden, Switzerland). 250 µl of this preculture are reinoculated in 10 ml of production medium (25 g/l $(NH_4)_2SO_4$, 2 g/l KH_2PO_4 , 1 g/l $MgSO_4 \cdot 7H_2O$, 0.03 g/l $FeSO_4 \cdot 7H_2O$, $0.018 \text{ g/1 MnSO}_4 \cdot 1H_2O$, 30 g/l CaCO₃ and 20 g/l glucose) and incubated for 48 hours at 37°C. After incubation the
- 25 optical density (OD) of the culture suspension is measured with an LP2W photometer from the Dr. Lange company (Dusseldorf, Germany) at a measurement wavelength of 660 nm.

The concentration of formed L-threonine is then determined 30 in the sterile-filtered culture supernatant using an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany)

	•	BglII:	restriction globigii	endonuclease	from	Bacillus
	•	ClaI:	restriction	endonuclease	from	Caryphanon latu
	•	EcoRI:	restriction	endonuclease	from	Escherichia col
5	•	EcoRV:	restriction	endonuclease	from	Escherichia col
	•	HindIII:	restriction influenzae	endonuclease	from	Haemophilus
	•	KpnI:	restriction pneumoniae	endonuclease	from	Klebsiella
10	•	PstI:	restriction stuartii	endonuclease	from	Providencia
	•	PvuI:	restriction	endonuclease	from	Proteus vulgari
	•	SacI:	restriction achromogenes	endonuclease	from	Streptomyces
15	•	SalI:	restriction albus	endonuclease	from	Streptomyces
	•	SmaI:	restriction marcescens	endonuclease	from	Serratia
20	•	SphI:	restriction phaeochromog	endonuclease genes	from	Streptomyces
	•	SspI:	restriction species	endonuclease	from	Sphaerotilus
	•	XbaI:	restriction badrii	endonuclease	from	Xanthomonas
25	•	XhoI:	restriction holcicola	endonuclease	from	Xanthomonas

What is Claimed is:

15

30

- Process for the production of L-amino acids, in particular L-threonine, wherein the following steps are carried out:
- fermentation of the microorganisms of the family Enterobacteriaceae producing the desired L-amino acid, in which the fruR gene or nucleotide sequences coding therefor are attenuated, in particular are switched off,
- 10 b) enrichment of the L-amino acid in the medium or in the cells of the microorganisms, and
 - c) isolation of the L-amino acid, in which optionally constituents of the fermentation broth and/or the biomass in its entirety or portions thereof remain in the product.
 - 2. Process according to claim 1, wherein microorganisms are used in which in addition further genes of the biosynethesis pathway of the desired L-amino acid are enhanced.
- 20 3. Process according to claim 1, wherein microorganisms are used in which the metabolic pathways that reduce the formation of the desired L-amino acid are at least partially switched off.
- 4. Process according to claim 1, wherein the expression
 25 of the polynucleotide(s) that codes/code for the fruR
 gene is attenuated, in particular is switched off.
 - 5. Process according to claim 1, wherein the regulatory and/or catalytic properties of the polypeptide (enzyme protein) for which the polynucleotide fruR codes are reduced.

5

25

- 6. Process according to claim 1, wherein for the production of L-amino acids microorganisms of the family Enterobacteriaceae are fermented in which at the same time one or more of the genes selected from the following group is enhanced, in particular overexpressed:
 - 6.1 the thrABC operon coding for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase,
- 10 6.2 the pyc gene coding for pyruvate carboxylase,
 - 6.3 the pps gene coding for phosphoenol pyruvate synthase,
 - 6.4 the ppc gene coding for phosphoenol pyruvate carboxylase,
- 15 6.5 the genes pntA and pntB coding for transhydrogenase,
 - 6.6 the gene rhtB imparting homoserine resistance,
 - 6.7 the mgo gene coding for malate:quinone oxidoreductase.
- 20 6.8 the gene rhtC imparting threonine resistance, and
 - 6.9 the thrE gene coding for threonine export.
 - 7. Process according to claim 1, wherein for the production of L-amino acids microorganisms of the family Enterobacteriaceae are fermented in which at the same time one or more of the genes selected from the following group is attenuated, in particular switched off, or the expression is reduced:
 - 7.1 the tdh gene coding for threonine dehydrogenase,
 - 7.2 the mdh gene coding for malate dehydrogenase,

PCT/EP02/02420

- 7.3 the gene product of the open reading frame (orf) yjfA,
- 7.4 the gene product of the open reading frame (orf) ytfP,
- 5 7.5 the pckA gene coding for phosphoenol pyruvate carboxykinase,
 - 7.6 the poxB gene coding for pyruvate oxidase,
 - 7.7 the aceA gene coding for isocitrate lyase,
- 7.8 the dgsA gene coding for the regulator of the phosphotransferase system.

Fig. 1:

WO 02/081698

SEQUENCE LISTING

5	<110>	> D	egus)	sa A	.G												
J	<120>	> P	roce amil	ess f ly Er	or t	he pobact	rodu	ictio aceae	on of	E L-a	mino	an a	ids :	usin nuat	g st: ed f	rains of ruR gene	the
10	<130	> 0	2000)5 BI	!												
	<160	> _. 8	3					•									
15	<170	> P	ater	tIn	vers	ion	3.1										
20	<2103 <2113 <2123 <2133	> 2 > I	166 NA	erich	uia d	oli											
25	<2203 <2213 <2223 <2233	> C > ((1 gene													
4.5	<400 atgaa	_	igg c	 egegt	tato	c cg	rcgto	gatto	g gc	ettt	ttc	ccag	gcgt	ggc	tacaa	acattg	60
30	aaago	cctg	ac c	gttg	cgcc	a ac	cgad	gato	c cga	acatt	atc	gcgt	tatga	acc	atcca	agaccg	120
30	tggg	cgat	ga a	aaaag	tact	t ga	ıgcaç	gatc	g aaa	aagca	aatt	acad	caaa	ctg	gtcga	atgtct	180
	tgcg	cgtg	rag t	gagt	tggg	ig ca	gggd	gege	ato	gttga	agcg	ggaa	aatca	atg	ctggt	gaaaa	240
35	ttcag	ggco	ag c	ggtt	acgo	ig c	gtgad	egaag	g tga	aaac	gtaa	tac	ggaa	ata	ttcc	gtgggc	300
	aaati	tato	ga t	gtca	caco	ec to	gctt	tata	a cc	gttca	att	agca	aggca	acc	agcg	gtaagc	360
40	ttgat	tgca	itt t	ttag	cato	g at	tcg	gate	g tgg	gegaa	aat	tgtg	ggagg	jtt ·	gctc	gctctg	420
	gtgt	ggto	gg a	cttt	cgc	gc gg	gegat	taaaa	ı taa	atgcg	ttg	agaa	atgat	ct	caato	gegeaa	480
	tttad	cago	CC a	acat	gtca	ac gt	tggg	gctti	ttt	tgc	yaaa	tcag	gtggg	jaa ·	cctgg	gaataa	540
45	aagca	agtt	gc -c	gcag	,ttaa	at tt	tctg	geget	tag	gatgt	taa	tgaa	attta	ac	ccata	eccagt	600
50	acaat	tggc	ta t	ggtt	ttta	ic at	ttta	acgc:	a agg	ggca	att				gat Asp		655
50	atc o																703
55	aac (751
60	gtc a Val 1																799
63	gct g																847

5	gat Asp 70	ctg Leu	gag Glu	aac Asn	acc Thr	agc Ser 75	tat Tyr	acc Thr	cgc Arg	atc Ile	gct Ala 80	aac Asn	tat Tyr	ctt Leu	gaa Glu	cgc Arg 85	895
	cag Gln	gcg Ala	cgg Arg	caa Gln	cgg Arg 90	ggt Gly	tat Tyr	caa Gln	ctg Leu	ctg Leu 95	att Ile	gcc Ala	tgc Cys	tca Ser	gaa Glu 100	gat Asp	943
10	cag Gln	cca Pro	gac Asp	aac Asn 105	gaa Glu	atg Met	cgg Arg	tgc Cys	att Ile 110	gag Glu	cac His	ctt Leu	tta Leu	cag Gln 115	cgt Arg	cag Gln	991
15	gtt Val	gat Asp	gcc Ala 120	att Ile	att Ile	gtt Val	tcg Ser	acg Thr 125	tcg Ser	ttg Leu	cct Pro	cct Pro	gag Glu 130	cat His	cct Pro	ttt Phe	1039
20	tat Tyr	caa Gln 135	cgc Arg	tgg Trp	gct Ala	aac Asn	gac Asp 140	ccg Pro	ttc Phe	ccg Pro	att Ile	gtc Val 145	gcg Ala	ctg Leu	gac Asp	cgc Arg	1087
25	gcc Ala 150	ctc Leu	gat Asp	cgt Arg	gaa Glu	cac His 155	ttc Phe	acc Thr	agc Ser	gtg Val	gtt Val 160	ggt Gly	gcc Ala	gat Asp	cag Gln	gat Asp 165	1135
	gat Asp	gcc Ala	gaa Glu	atg Met	ctg Leu 170	gcg Ala	gaa Glu	gag Glu	tta Leu	cgt Arg 175	aag Lys	ttt Phe	ccc Pro	gcc Ala	gag Glu 180	acg Thr	1183
30	gtg Val	ctt Leu	tat Tyr	ctt Leu 185	ggt Gly	gcg Ala	cta Leu	ccg Pro	gag Glu 190	ctt Leu	tct Ser	gtc Val	agc Ser	ttc Phe 195	ctg Leu	cgt Arg	1231
35	gaa Glu	caa Gln	ggt Gly 200	ttc Phe	cgt Arg	act Thr	gcc Ala	tgg Trp 205	aaa Lys	gat Asp	gat Asp	ccg Pro	cgc Arg 210	gaa Glu	gtg Val	cat His	1279
40	ttc Phe	ctg Leu 215	tat Tyr	gcc Ala	aac Asn	agc Ser	tat Tyr 220	gag Glu	cgg Arg	gag Glu	gcg Ala	gct Ala 225	gcc Ala	cag Gln	tta Leu	ttc Phe	1327
45	gaa Glu 230	aaa Lys	tgg Trp	ctg Leu	gaa Glu	acg Thr 235	cat His	ccg Pro	atg Met	ccg Pro	cag Gln 240	gcg Ala	ctg Leu	ttc Phe	aca Thr	acg Thr 245	1375
	tcg Ser	ttt Phe	gcg Ala	ttg Leu	ttg Leu 250	caa Gln	gga Gly	gtg Val	atg Met	gat Asp 255	gtc Val	acg Thr	ctg Leu	cgt Arg	cgc Arg 260	gac Asp	1423
50	Gly ggc	aaa Lys	ctg Leu	cct Pro 265	tct Ser	gac Asp	ctg Leu	gca Ala	att Ile 270	gcc Ala	acc Thr	ttt Phe	ggc Gly	gat Asp 275	aac Asn	gaa Glu	1471
55	ctg Leu	ctc Leu	gac Asp 280	ttc Phe	tta Leu	cag Gln	tgt Cys	ccg Pro 285	gtg Val	ctg Leu	gca Ala	gtg Val	gct Ala 290	caa Gln	cgt Arg	cac His	1519
60	cgc Arg	gat Asp 295	gtc Val	gca Ala	gag Glu	cgt Arg	gtg Val 300	ctg Leu	gag Glu	att Ile	gtc Val	ctg Leu 305	gca Ala	agc Ser	ctg Leu	gac Asp	1567
33	gaa Glu 310	ccg Pro	cgt Arg	aag Lys	cca Pro	aaa Lys 315	cct Pro	ggt Gly	tta Leu	acg Thr	ege Arg 320	att Ile	aaa Lys	cgt Arg	Asn	ctc Leu 325	1615

WO 02/081698 PCT/EP02/02420

	tat Tyr	cgc Arg	cgc Arg	Gly ggc	gtg Val 330	ctc Leu	agc Ser	cgt Arg	agc Ser	taa	gcc	gcga	aca	aaaa	tacg	cg	1665
5	ccag	ggtga	aat 1	ttcc	ctcto	gg c	gcgta	agagi	t ac	ggga	ctgg	aca	tcaa	tat	gctta	aaagta	1725
	aata	aaga	cta 1	ttect	gact	ta ti	att	gata	a at	gett	ttaa	acc	cgcc	cgt	taati	taactc	1785
10	acca	agct	gaa a	attca	acaat	ca at	taaq	gtgai	ato	cgac	agcg	cgt	tttt	gca	ttati	tttgtt	1845
	acat	geg	gcg a	atgaa	attgo	cc ga	attta	aacaa	a ac	actt	ttct	ttg	cttt	tgc	gcaaa	acccgc	1905
	tgg	catca	aag o	gcc	acaca	ag ad	gta	acaa	g gad	ctgt	taac	cgg	ggaa	gat	atgto	cctaaa	1965
15	atgo	cgc	tcg (egte	gcaaa	ac to	gacad	cttt	a ta	tttg	etgt	gga	aaat	agt (gagto	catttt	2025
	aaaa	acgg	tga 1	tgac	gatga	ag gg	gatti	tttt	c tta	acag	ctat	tca	taac	gtt	aatti	tgcttc	2085
20	gcad	gtt	gga (egta	aaata	aa a	caac	gctga	a tai	ttag	ccgt	aaa	cato	ggg '	tttt	ttacct	2145
20	cggt	atg	cct 1	tgtga	actg	gc t											2166
25	<210 <211 <212 <213	L> : 2> :	2 334 PRT Esche	eric	nia (coli											
30	<400 Met 1		2 Leu	Asp	Glu 5	Ile	Ala	Arg	Leu	Ala 10	Gly	Val	Ser	Arg	Thr 15	Thr	
	Ala	Ser	Tyr	Val 20	Ile	Asn	Gly	Lys	Ala 25	Lys	Gln	Tyr	Arg	Val 30	Ser	Asp	
35	Lys	Thr	Val 35	Glu	Lys	Val	Met	Ala 40	Val	Val	Arg	Glu	His 45	Asn	Tyr	His	
40	Pro	Asn 50	Ala	Val	Ala	Ala	Gly 55	Leu	Arg	Ala	Gly	Arg 60	Thr.	Arg	Ser	Ile	
40	Gly 65	Leu	Val	Ile	Pro	Asp 70	Leu	Glu	Asn	Thr	Ser 75	Tyr	Thr	Arg	Ile	Ala 80	
45	Asn	Tyr	Leu	Glu	Arg 85	Gln	Ala	Arg	Gln	Arg 90	Gly	Tyr	Gln	Leu	Leu 95	Ile	
	Ala	Cys	Ser	Glu 100	Asp	Gln	Pro	Asp	Asn 105	Glu	Met	Arg	Cys	Ile 110	Glu	His	
50	Leu	Leu	Gln 115	Arg	Gln	Val	Asp	Ala 120	Ile	Ile	Val	Ser	Thr 125	Ser	Leu	Pro	
55	Pro	Glu 130	His	Pro	Phe	Tyr	Gln 135	Arg	Trp	Ala	Asn	Asp 140	Pro	Phe	Pro	Ile	
	Val 145	Ala	Leu	Asp	Arg	Ala 150	Leu	Asp	Arg	Glu	His 155	Phe	Thr	Ser	Val	Val 160	
60	Gly	Ala	Asp	Gln	Asp 165	Asp	Ala	Glu	Met	Leu 170	Ala	Glu	Glu	Leu	Arg 175	Lys	
	Phe	Pro	Ala	Glu 180	Thr	Val	Leu	Tyr	Leu 185	Gly	Ala	Leu	Pro	Glu 190	Leu	Ser	
85	Val	Ser	Phe	Leu	Arg	Glu	Gln	Gly	Phe	Arg	Thr	Ala	Txp	Lys	qaA	Asp	

PCT/EP02/02420

195 200 205 . Pro Arg Glu Val His Phe Leu Tyr Ala Asn Ser Tyr Glu Arg Glu Ala 210 215 5 Ala Ala Gln Leu Phe Glu Lys Trp Leu Glu Thr His Pro Met Pro Gln 230 Ala Leu Phe Thr Thr Ser Phe Ala Leu Leu Gln Gly Val Met Asp Val 10 250 Thr Leu Arg Arg Asp Gly Lys Leu Pro Ser Asp Leu Ala Ile Ala Thr Phe Gly Asp Asn Glu Leu Leu Asp Phe Leu Gln Cys Pro Val Leu Ala Val Ala Gln Arg His Arg Asp Val Ala Glu Arg Val Leu Glu Ile Val 20 Leu Ala Ser Leu Asp Glu Pro Arg Lys Pro Lys Pro Gly Leu Thr Arg Ile Lys Arg Asn Leu Tyr Arg Arg Gly Val Leu Ser Arg Ser 25 325 330 <210> 3 <211> 20 <212> DNA 30 <213> Artificial sequence <220> <221> Primer <222> (1)..(20) 35 <223> fruR'5'-1 <400> '3 atgaatcagg cgcgttatcc 20 <210> 4 <211> 20 <212> DNA <213> Artificial sequence 45 <220> <221> Primer <222> (1)..(20) <223> fruR'5'-2 50 <400> 4 20 ttgtcgctca cacggtattg <210> 5 <211> 20 <212> DNA <213> Artificial sequence <220> <221> Primer <222> (1)..(20) <223> fruR'3'-1 <400> 5 20 agcgtgtgct ggagattgtc 65

WO 02/081698

```
<210> 6
     <211> 20
     <212> DNA
     <213> Artificial sequence
 5
     <220>
     <221> Primer
     <222> (1)..(20)
     <223> fruR'3'-2
10
     <400> 6
     agccagtcac aaggcatacc
                                                                           20
     <210> 7
    <211> 1512
<212> DNA
15
     <213> Escherichia coli
     <220>
20 <221> misc_feature
     <222> (1)..(1512)
     <223> Mutagenic DNA
     <220>
25 <221> misc_feature
     <222> (1)..(42)
     <223> Technical DNA/ remainder polylinker sequence
     <220>
30
    <221> misc_feature
     <222> (43)..(780)
     <223> Part of the upstream-lying region and part of the 5'-region of the
            fruR gene
35 <220>
     <221> misc_feature
<222> (781)..(837)
     <223> Technical DNA/ remainder polylinker sequence
40 <220>
     <221> misc_feature
     <222> (838)..(1471)
     <223> Part of the 3'-region of the fruR gene and part of the downstream-
            lying region
45
     <220>
     <221> misc_feature
     <222> (1472)..(1512)
     <223> Technical DNA/ remainder polylinker sequence
50
     <400> 7
     gatccactag taacggccgc cagtgtgctg gaattcgccc ttatgaatca ggcgcgttat
     cccgcgtgat tggccttttt tcccagcgtg gctacaacat tgaaagcctg accgttgcgc
                                                                          120
55
     caaccgacga tecgacatta tegegtatga ceatecagae egtgggegat gaaaaagtae
                                                                          180
     ttgagcagat cgaaaagcaa ttacacaaac tggtcgatgt cttgcgcgtg agtgagttgg
                                                                          240
60
                                                                          300
    ggcagggcgc gcatgttgag cgggaaatca tgctggtgaa aattcaggcc agcggttacg
                                                                          360
     ggcgtgacga agtgaaacgt aatacggaaa tattccgtgg gcaaattatc gatgtcacac
                                                                          420
     cotogottta tacogttcaa ttagcaggca ccagoggtaa gottgatgca tttttagcat
65
```

WO 02/081698 PCT/EP02/02420

	cgattcgcga tgtggcgaaa attgtggagg ttgctcgctc tggtgtggtc ggactttcgc	480
	gcggcgataa aataatgcgt tgagaatgat ctcaatgcgc aatttacagc ccaacatgtc	540
5	acgttgggct ttttttgcga aatcagtggg aacctggaat aaaagcagtt gccgcagtta	600
	attttctgcg cttagatgtt aatgaattta acccatacca gtacaatggc tatggttttt	660
10	acattttacg caaggggcaa ttgtgaaact ggatgaaatc gctcggctgg cgggagtgtc	720
10	gcggaccact gcaagctatg ttattaacgg caaagcgaag caataccgtg tgagcgacaa	780
	aagggcgaat tctgcagatg gccgccagtg tgatggatat ctgcagaatt cgcccttagc	840
15	gtgtgctgga gattgtcctg gcaagcctgg acgaaccgcg taagccaaaa cctggtttaa	. 900
	cgcgcattaa acgtaatete tategeegeg gegtgeteag eegtagetaa geegegaaca	960
20	aaaatacgcg ccaggtgaat ttccctctgg cgcgtagagt acgggactgg acatcaatat	1020
20	gcttaaagta aataagacta ttcctgacta ttattgataa atgcttttaa acccgcccgt	1080
	taattaactc accagctgaa attcacaata attaagtgat atcgacagcg cgtttttgca	1140
25	ttattttgtt acatgcggcg atgaattgcc gatttaacaa acacttttct ttgcttttgc	1200
	gcaaacccgc tggcatcaag cgccacacag acgtaacaag gactgttaac cggggaagat	1260
30	atgtcctaaa atgccgctcg cgtcgcaaac tgacacttta tatttgctgt ggaaaatagt	1320
30	gagtcatttt aaaacggtga tgacgatgag ggattttttc ttacagctat tcataacgtt	1380
	aatttgcttc gcacgttgga cgtaaaataa acaacgctga tattagccgt aaacatcggg	1440
35	ttttttacct cggtatgcct tgtgactggc taagggcgaa ttccagcaca ctggcggccg	1500
	ttactagagg gc	1512
40	<210> 8 <211> 268 <212> DNA <213> Escherichia coli	
	<220>	
45	<pre><221> misc_feature <222> (1)(268)</pre>	
	<223> Mutagenic DNA	
50	<220> <221> misc_feature <222> (1)(3) <223> Start codon of the delta fruR allele	
55	<pre><220> <221> misc_feature <222> (1)(98)</pre>	
	<223> 5'-region of the delta fruR allele	
60	<220> <221> misc_feature <222> (99)(155) <223> Technical DNA/ remainder polylinker sequence	
65	<220> <221> misc_feature	

WO 02/081698 PCT/EP02/02420 7/7

	<222> <223>	,,,,		
5	<220> <221> <222> <223>	(266)(268)		
10		8.		۲۵.
TO	grgada	ctgg atgaaatcgc tcggctggcg ggagtgtcgc ggaccactge	aagctatgtt	60
	attaac	ggca aagcgaagca ataccgtgtg agcgacaaaa gggcgaattc	tgcagatggc	120
15	cgccag	rtgtg atggatatot gcagaattog coottagogt gtgotggaga	ttgtcctggc	180
10	aagcct	ggac gaaccgcgta agccaaaacc tggtttaacg cgcattaaac	gtaatctcta :	240
	tegeeg	regge gtgeteagee gtagetaa	:	268
20			•	

020005 BT

Original (for SUBMISSION) - printed on 05.03.2002 09:02:18 AM

)-1	Form - PCT/RO/134 (EASY)	
	Indications Relating to Deposited	
	Microorganism(s) or Other Biological Material (PCT Rule 13bis)	
0-1-1	Prepared using	PCT-EASY Version 2.92
J-1-1	Tripping same	(updated 01.01.2002)
0-2	International Application No.	(updated 01:02:2002)
U-Z	International Approaction No.	
0-3	Applicant's or agent's file reference	020005 BT
1	The indications made below relate to	
	the deposited microorganism(s) or	
	other biological material referred to in the description on:	
1-1	page	13
1-2	line	1-5
1-3	Identification of Deposit	1-5
1-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
1-0-1	Walle of depository mondition	Mikroorganismen und Zellkulturen GmbH
	A day of described institution	
1-3-2	Address of depositary institution	Mascheroder Weg 1b, D-38124
		Braunschweig, Germany
1-3-3	Date of deposit	08 September 2000 (08.09.2000)
1-3-4	Accession Number	DSMZ 13720
1-4	Additional Indications	NONE
1-5	Designated States for Which Indications are Made	all designated States
1-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to	
	the International Bureau later	
	EOP	RECEIVING OFFICE USE ONLY
	TOR	RECEIVING OF FIGE OCC ONE.
0-4	This form was received with the	
	international application:	\ \tag{es}
	(yes or no)	/
0-4-1	Authorized officer	C.A.J.A. PASCHE
		U.A.U.A. I ADDITE
	EOD INT	ERNATIONAL BUREAU USE ONLY
	FUR IN I	ENIA HOMAL BUNLAU GOL ONLI
0-5	This form was received by the	
0.5.4	international Bureau on: Authorized officer	
0-5-1	Authorized officer	

BUDAFEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa-Hüls AG Kantstr. 2 33790 Halle

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

L IDENTIF	ICATION OF THE MICROORGANISM	·						
	on reference given by the DEPOSITOR:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 13720						
II. SCIENT	I. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION							
The microon	rganism identified under L above was accompanied by:							
(Mark with	(X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).							
III. RECEIF	T AND ACCEPTANCE							
This Interna (Date of the	ational Depositary Authority accepts the microorganism identified to cariginal deposit)1.	under I. above, which was received by it on 2000-09-08						
IV. RECEIP	PT OF REQUEST FOR CONVERSION							
The microon and a reque for conversi	rganism identified under I above was received by this Internationa st to convert the original deposit to a deposit under the Budapest ion).	I Depositary Authority on (date of original deposit) Treaty was received by it on (date of receipt of request						
V. INTERN	ATIONAL DEPOSITARY AUTHORITY	·						
Name:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):						
Awaren,	D-38124 Braunschweig	Daguar Fran Date: 2000-09-12						

There Take 5.4 fd (3) is a lost ram is the state on which is proved a Commenced topic of a mority was any weed.

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa-Hüls AG Kantstr. 2 33790 Halle

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITOR	II. IDENTIFICATION OF THE MICROORGANISM					
Name: Degussa-Hüls AG Kantstr. 2 Address: 33790 Halle	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 13720 Date of the deposit or the transfer!: 2000-09-08					
III. VIABILITY STATEMENT						
The viability of the microorganism identified under II above was tested on 2000-09-08. On that date, the said microorganism was (X) ³ viable () ³ no longer viable						
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BE	EEN PERFORMED'					
V. INTERNATIONAL DEPOSITARY AUTHORITY						
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2000-09-12					

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Form 100.402-37.9 (sol: pagrà 9196

Fill in if the information has been requested and if the results of the test were negative.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

PCT

(10) International Publication Number WO 02/081698 A3

(51) International Patent Classification7: 13/04 // (C12P 13/08, C12R 1:19)

C12P 13/08,

(21) International Application Number: PCT/EP02/02420

(22) International Filing Date: 6 March 2002 (06.03.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

101 16 518.8

3 April 2001 (03.04.2001) DE

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). HERMANN, Thomas; Zirkonstrasse 8, 33739 Bielefeld (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description
- (88) Date of publication of the international search report: 30 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS USING STRAINS OF THE FAMILY ENTEROBACTE-RIACEAE THAT CONTAIN AN ATTENUATED FRUR GENE

(57) Abstract: The invention relates to a process for the production of L-amino acids, in particular L-threonine, in which the following steps are carried out: a) fermentation of the microorganisms of the family Enterobacteriaceae producing the desired L-amino acid, in which the fruR gene or nucleotide sequences coding therefor are attenuated, in particular are switched off, b) enrichment of the L-amino acid in the medium or in the cells of the bacteria, and c) isolation of the L-amino acid.

W© 02/081698 A3

Intern al Application No PCT/EP 02/02420

A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER C12P13/08 C12P13/04 //(C12P1:	3/08,C12R1:19)					
According to	International Patent Classification (IPC) or to both national classificat	ion and IPC					
	SEARCHED						
Minimum do IPC 7	cumentation searched (classification system followed by classification $C12P C12N C07K$	n symbots)					
	ion searched other than minimum documentation to the extent that su	•					
Electronic da	ata base consulted during the International search (name of data bas	e and, where practical, search terms used)					
EPO-In	ternal, WPI Data, PAJ, BIOSIS, MEDLI	NE, EMBASE					
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.				
Y	WO 99 53035 A (ALTMAN ELLIOT ; GOK R (US); EITEMAN MARK A (US); UNIV 21 October 1999 (1999-10-21) page 5, line 20-24 examples 4,7,9,10 claims 41,49 figures 1,4		1-7				
Y	RAMSEIER T M: "Cra and the contr carbon flux via metabolic pathway RESEARCH IN MICROBIOLOGY, vol. 147, no. 6-7, July 1996 (199 pages 489-493, XP002241023 ISSN: 0923-2508 the whole document figure 1	S."	1-7				
X Furt	her documents are listed in the continuation of box C.	χ Patent family members are listed	in annex.				
"A" docume consider filling of the citation of the course of the citation of t	*Special categories of cited documents: *A' document defining the general state of the art which is not considered to be of particular relevance *E' earlier document but published on or after the international filling date *L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O' document referring to an oral disclosure, use, exhibition or other means *T' later document published after the International filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person skilled in the art						
Date of the	Date of the actual completion of the international search Date of malling of the international search report						
2	0 May 2003	02/06/2003					
Name and	malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 cpo nl, Fay: (241-70) 340-3016						

Interr al Application No
PC1/EP 02/02420

0.00		P 02/02420
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Taurana akiran
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JAHREIS K ET AL.: "Nucleotide sequence of the ilvH-fruR gene region of Escherichia coli K12 and Salmonella typhimurium LT2" MOLECULAR AND GENERAL GENETICS, vol. 226, no. 1/2, April 1991 (1991-04), pages 332-336, XP002937889 ISSN: 0026-8925 cited in the application the whole document	1-7
Α	MICHAL G: "Biochemical pathways: an atlas of biochemistry and molecular biology" 1999 , JOHN WILEY & SONS INC. AND SPEKTRUM AKADEMISCHER VERLAG , NEW YORK - HEIDELBERG XP002240819 ISBN: 0-471-33130-9 figures 3.8-1 and 3.8-2 figures 4.2-1, 4.5-1 and 4.5-2 paragraph *4.5.3!	1-7
A	KRAEMER R: "Genetic and physiological approaches for the production of amino acids" JOURNAL OF BIOTECHNOLOGY, vol. 45, no. 1, 1996, pages 1-21, XP002178648 ISSN: 0168-1656 the whole document	1-7
A	US.4 278 765 A (DEBABOV VLADIMIR G ET AL) 14 July 1981 (1981-07-14) cited in the application the whole document	1-7
A	EP 0 643 135 A (AJINOMOTO KK) 15 March 1995 (1995-03-15) the whole document	1-7
A	EP 0 237 819 A (KYOWA HAKKO KOGYO KK) 23 September 1987 (1987-09-23) the whole document	1-7
A	DATABASE WPI Section Ch, Week 199148 Derwent Publications Ltd., London, GB; Class B05, AN 1991-351136 XP002241222 & JP 03 236786 A (KYOWA HAKKO KOGYO KK), 22 October 1991 (1991-10-22) abstract	1-7

Intern al Application No PCT/LY 02/02420

	·	PC1/EP 02/02420
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 952 221 A (AJINOMOTO KK) 27 October 1999 (1999-10-27) page 2, line 24 -page 3, line 2 page 6, line 42 -page 7, line 6 claim 1	1-7
А	EP 0 955 368 A (AJINOMOTO KK) 10 November 1999 (1999-11-10) page 2, line 22-56 page 6, line 9-31 claim 6	1-7
A	JETTEN M S M ET AL.: "Recent advances in the physiology and genetics of amino acid-producing bacteria." CRC CRITICAL REVIEWS IN BIOTECHNOLOGY, vol. 15, no. 1, 1995, pages 73-103, XP000613291 ISSN: 0738-8551 figure 1 page 90, left-hand column, line 1 -page 92, left-hand column, line 17	1-7
Α	SAWERS G: "The anaerobic degradation of L-serine and L-threonine in enterobacteria: networks of pathways and regulatory signals" ARCHIVES OF MICROBIOLOGY, vol. 171, no. 1, 1998, pages 1-5, XP002953871 ISSN: 0302-8933 the whole document	1-7
E	WO 02 081721 A (DEGUSSA) 17 October 2002 (2002-10-17) the whole document page 9, line 24 -page 10, line 25 claim 7	1-7
Ε .	WO 02 081722 A (DEGUSSA) 17 October 2002 (2002-10-17) the whole document page 9, line 21 -page 10, line 22 claim 7	1-7

lation on patent family members

Intern: il Application No PCT/EY 02/02420

				101/	EF 02/02420
Patent docume cited in search re		Publication date	<u></u>	Patent family member(s)	Publication date
WO 9953035	A	21-10-1999	AU	3555999 A	01-11-1999
			BR	9909615 A	12-12-2000
			CA	2325598 A1	21-10-1999
			EP	1073722 A1	07-02-2001
			ĴΡ	2002511250 T	16-04-2002
			WO	9953035 A1	21-10-1999
					08-05-2003
			US	2003087381 A1	
			US 	6455284 B1	24-09-2002
US 4278765	Α	14-07-1981	SU	875663 A1	15-09-1982
			HU	190999 B	28-12-1986
EP 0643135	Α	15-03-1995	ΑT	203769 T	15-08-2001
			CZ	9401658 A3	15-12-1994
			DE	69330518 D1	06-09-2001
			DE	69330518 T2	08-05-2002
			DK	643135 T3	15-10-2001
			EP	0643135 A1	15-03-1995
			JP	3331472 B2	07-10-2002
	•			81994 A3	10-05-1995
			SK		
			US	5661012 A	26-08-1997
			EP	1020526 A2	19-07-2000
			ES	2158867 T3	16-09-2001
			WO	9411517 A1	26-05-1994
			RU	2113484 C1	20-06-1998
EP 0237819	Α	23-09-1987	DE	3788583 D1	10-02-1994
	•••	20 00 2007	DE	3788583 T2	19-05-1994
			EP	0237819 A2	23-09-1987
			JΡ	2574786 B2	22-01-1997
			JP	63273487 A	10-11-1988
				9108634 B1	19-10-1991
			KR		21-05-1991
			US 	5017483 A	21-05-1991
JP 3236786	Α	22-10-1991	JP	2877414 B2	31-03-1999
EP 095222	А	27-10-1999	AU	75 6507 B2	16-01-2003
			ΑU	2122399 A	30-09-1999
			BR	9901173 A	28-03-2000
			CN	1233660 A	03-11-1999
			EP	0952221 A2	27-10-1999
			JΡ	2000189169 A	11-07-2000
			PL	332072 A1	27-09-1999
			US	6331419 B1	18-12-2001
			US	2001019836 A1	06-09-2001
		10 11 1000			02 0E 2002
EP 0955368	S A	10-11-1999	AU	746542 B2	02-05-2002
		•	AU	2122499 A	30-09-1999
			BR	9901174 A	28-03-2000
			CN	1233661 A	03-11-1999
			ΕP	0955368 A2	10-11-1999
	-		F1		
	-			2000106869 A	18-04-2000
			JP	2000106869 A 332071 A1	18-04-2000 27 - 09-1999
			JP PL	332071 A1	27-09-1999
			JP PL RU	332071 A1 2188236 C2	27 - 09-1999 27 - 08-2002
			JP PL	332071 A1	27-09-1999
wo 020817	- - 21 A.	17-10-2002	JP PL RU US	332071 A1 2188236 C2 6197559 B1	27-09-1999 27-08-2002 06-03-2001 10-01-2002

nation on patent family members

Interr. al Application No PCT/LY 02/02420

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 02081721	A		WO WO WS US	02081721 A2 02081698 A2 02081722 A2 2003054503 A1 2003059903 A1	17-10-2002 17-10-2002 17-10-2002 20-03-2003 27-03-2003
WO 02081722	Α	17~10~2002	DE WO WO US US	10116518 A1 02081721 A2 02081698 A2 02081722 A2 2003054503 A1 2003059903 A1	17-10-2002 17-10-2002 17-10-2002 17-10-2002 20-03-2003 27-03-2003