CSE168 Computer Graphics II, Rendering

Spring 2006 Matthias Zwicker

Render an awe-inspiring image

- Soft shadows
- Path tracing
- Photon mapping
- Illumination from an environment map
- Subsurface scattering
- Motion blur, depth of field
- Procedural modeling, smoke, water

Previous years

See web pages
 http://graphics.ucsd.edu/courses/renderi
 ng/2003/, /2004, /2005

Organization

- Work out project description, due next Wednesday May 24
- Groups up to 3 students possible, but need to define individual contributions explicitly for individual grading
- Project presentation Monday June 12,
 7pm

Prizes

- First prize: \$1000 contribution to a trip to SIGGRAPH
- Grand prize: \$100 gift certificate for books
- Honorable mention: \$50 gift certificate for books

Last time

- Explanation of cosine terms in photon transport
- Photon mapping rendering algorithms

Cosine terms

Path tracing

Photon tracing

Photon mapping algorithm

Recap

- Emit and transport photons
- Build data structure for fast access
- Use stored photons to estimate reflected radiance

Global illumination

100000 photons, 50 photons in radiance estimate

Visualization of the photons

Global illumination

500000 photons, 500 photons in radiance estimate

Photons for indirect illumination

10000 photons, 500 photons in radiance estimate

Splitting up the reflection equation

Reflection equation

$$L_o(\mathbf{x}, \omega_o) = \int_{\mathcal{H}^2} f(\mathbf{x}, \omega_o, \omega_i) L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$

Split up BRDF

$$f(\mathbf{x}, \omega_o, \omega_i) = f_s(\mathbf{x}, \omega_o, \omega_i) + f_d(\mathbf{x}, \omega_o, \omega_i)$$

Split up incoming radiance

$$L_i(\mathbf{x}, \omega_i) = L_{i,l}(\mathbf{x}, \omega_i) + L_{i,c}(\mathbf{x}, \omega_i) + L_{i,d}(\mathbf{x}, \omega_i)$$

Photon maps

- Three photon maps, one for each illumination term
 - Direct
 - Indirect diffuse
 - Caustic (indirect specular)
- Finite state machine to keep track of photon type

Direct illumination

• Sample light sources

Specular reflection

Path tracing

Caustics

Radiance estimation using caustic photon map

Reflections inside a ring

50000 photons, 50 photons for radiance estimation

Diffuse indirect illumination

 Path tracing, final gathering using all three photon maps, radiance estimation using indirect photons

Today

- Irradiance caching
- Radiosity

Diffuse indirect illumination

- Path tracing: slow
- Final gathering using all three photon maps: slow
- Radiance estimation using indirect photons: inaccurate for reasonable number of photons
- Other ideas?

Global illumination

Indirect irradiance

Indirect irradiance

[Humphreys, Pharr]

Indirect irradiance

 Changes very smoothly on diffuse surfaces, except for caustics

Irradiance caching

- "A ray tracing solution for diffuse interreflection", Ward, Rubinstein, Clear, SIGGRAPH 88
- Assume diffuse surfaces
- Cache irradiance samples instead of incident radiance as in photon mapping
- Interpolate cached samples
- Compute new samples only if interpolation fails

Irradiance caching algorithm

Three components

- Irradiance sampling
- Irradiance caching
- Irradiance interpolation

 Similar to photon mapping, but all steps are performed in main rendering pass

$$E(\mathbf{x}) = \int_{\mathcal{H}^2} L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$

$$E(\mathbf{x}) = \int_{\mathcal{H}^2} L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$
$$= \int_0^{2\pi} \int_0^{\pi/2} L_i(\mathbf{x}, \theta_i, \phi) \cos \theta_i \sin \theta d\theta d\phi$$

$$E(\mathbf{x}) = \int_{\mathcal{H}^2} L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$

$$= \int_0^{2\pi} \int_0^{\pi/2} L_i(\mathbf{x}, \theta_i, \phi) \cos \theta_i \sin \theta d\theta d\phi$$

$$\approx \frac{\pi}{TP} \sum_{t=1}^T \sum_{p=1}^P L_i(\theta_t, \phi_p)$$

- Stratified sampling of the hemisphere
- Subdivision $T_{r}P_{r}$ uniform random variables ξ, ψ

$$\theta_t = \sin^{-1}\left(\sqrt{\frac{t-\xi}{T}}\right)$$
, and $\phi_p = 2\pi \frac{p-\psi}{P}$

- Compute $L_i(\mathbf{x}, \omega_i)$ using path tracing or photon gathering at the first hit point
- For good quality expect tracing 200-5000 paths
- Costly, but we will do this only at few locations in the image

- Assign a range for each sample, within which it can be used for interpolation
- Where irradiance changes quickly, range should be small
- Where irradiance changes slowly, range should be large
- Rate of change of irradiance depends on distance to visible surfaces

[Wojciech Jarosz]

Harmonic mean heuristics

The range is given by a radius

$$r_j = \frac{N}{\sum_{i=1}^{N} 1/d_i}$$

where N is the number of paths, d_i is the distance to the first intersection along the path

 Average would weight infinite distances too heavily

Irradiance caching

Irradiance sample

Irradiance caching

- Store samples in octree
- Add sample to each cell that it overlaps
- Adaptively subdivide octree such that each cell has limited number of samples

Irradiance caching

Octree example

 Adaptive subdivision such that each cell contains <3 samples

Irradiance interpolation

 Need to determine which samples should be used for interpolation

Error estimate

• Given a point on the surface x with normal n(x), estimate the difference to the irradiance cached at x_j

Irradiance interpolation

Error estimate

Ad-hoc estimate for error of sample j

difference difference in in position orientation

$$\epsilon_j(\mathbf{x}) \leq E_j \left(\frac{4 \|\mathbf{x} - \mathbf{x}_j\|}{\pi r_j} + \sqrt{2 - 2\mathbf{n}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}_j)} \right)$$

Irradiance interpolation

Interpolation weights

$$w_j(\mathbf{x}) = \frac{1}{\frac{\|\mathbf{x} - \mathbf{x}_j\|}{r_j} + \sqrt{1 - \mathbf{n}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}_j)}} \approx \epsilon_j(\mathbf{x})$$

Interpolated irradiance

$$E(\mathbf{x}) = \frac{\sum_{i} w_{i}(\mathbf{x}) E(\mathbf{x}_{i})}{\sum_{i} w_{i}(\mathbf{x})}$$

Irradiance caching algorithm

```
W = 0
for( all irradiance samples j in octree cell
     overlapping with x ) {
  compute weight w_j
  if( <sample is valid> ) {
    W += w j; wE += w j*E[j]
if(W > 0)
  return wE/W
} else {
  return( compute new irradiance sample )
```

Irradiance caching algorithm

Sample at x_j is invalid

Non-diffuse surfaces

Approximation

$$L_o(\mathbf{x}, \omega_o) = \int_{\mathcal{H}^2} f(\mathbf{x}, \omega_o, \omega_i) L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$

$$\approx \left(\int_{\mathcal{H}^2} f(\mathbf{x}, \omega_o, \omega_i) d\omega_i \right) \left(\int_{\mathcal{H}^2} L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i \right)$$

Non-diffuse surfaces

Approximation

$$L_{o}(\mathbf{x}, \omega_{o}) = \int_{\mathcal{H}^{2}} f(\mathbf{x}, \omega_{o}, \omega_{i}) L_{i}(\mathbf{x}, \omega_{i}) \cos \theta_{i} d\omega_{i}$$

$$\approx \left(\int_{\mathcal{H}^{2}} f(\mathbf{x}, \omega_{o}, \omega_{i}) d\omega_{i} \right) \left(\int_{\mathcal{H}^{2}} L_{i}(\mathbf{x}, \omega_{i}) \cos \theta_{i} d\omega_{i} \right)$$

$$= \frac{1}{2} \rho_{hd}(\omega_{o}) E(\mathbf{x})$$

Hemispherical directional reflectance $\rho_{hd}(\omega_o)$

Photon mapping and irradiance caching

- Caustics break assumptions of irradiance caching
- Exclude caustic paths from irradiance sampling

Advanced technique

 Use photon map for importance sampling during path tracing

1000 sample rays, w>10

1000 sample rays, w>10

1000 sample rays, w>20

[Wann Jensen]

1000 sample rays, w>20

5000 sample rays, w>10

[Wann Jensen]

5000 sample rays, w>10

[Wann Jensen]

Irradiance caching

[Humphreys, Pharr]

[Humphreys, Pharr]

Path tracing

[Humphreys, Pharr]

Approx. same amount of computation

Next time

• Midterm