Problema K – Kátia e os fatoriais

Kátia estava resolvendo exercícios envolvendo fatoriais e observou que é bastante comum que a representação decimal do fatorial de um número positivo N tenha vários zeros à direita. De fato, para $N \geq 5$, há pelo menos um zero à direita na representação decimal de N!.

Mais curioso, porém, é que existem inteiros positivos M para os quais nenhum fatorial tem exatamente M zeros à direita! Por exemplo, não há inteiros positivos N tais que N! tenha exatamente 5 zeros à direita em sua representação decimal.

Para continuar investigando estas questões, Kátia quer sua ajuda, e pediu que você escrevesse um programa que recebe um número inteiro M e que retorne, se existir, um inteiro positivo N tal que N! tenha exatamente M zeros à direita em sua representação decimal.

Entrada

A entrada é composta por uma única linha, contendo o valor do inteiro positivo M ($1 \le M \le 10^9$).

Saída

Imprima, em uma linha, um inteiro positivo N tal que N! tenha exatamente M zeros à direita em sua representação decimal. Caso não exista tal número, imprima o valor -1.

Exemplo

Entrada	Saída
2	13
5	-1
314159268	1256637102

Notas

No primeiro caso, 13! = 6227020800. Observe que 12 seria uma resposta igualmente válida, pois 12! = 479001600.

No segundo caso, não existe um inteiro positivo N tal que N! tenha exatamente 5 zeros à direita em sua representação decimal.