Resolução da <u>Lista 4</u> da disciplina de Matemática Discreta

Feita por Guilherme de Abreu Barreto¹

Funções

Exercício 1

- a. Esta função está bem definida, embora não acomode mulheres lésbicas.
- **b.** Está bem definida.

Exercício 2

Vamos admitir dois conjuntos quaisquer X, de tamanho n, e Y de tamanho m, sendo $m \geq n$, e $n, m \in \mathbb{N}$. Estes estão relacionados entre si pela função injetora $f: X \to Y$. Então, pela definição de função injetora, para quaisquer elementos $x_i, x_j, 1 \leq i < j \leq n$, em X para os quais $x_i \neq x_j$ correspondem dois valores $f(x_i)$ e $f(x_j)$ em Y os quais $f(x_i) \neq f(x_j)$. Logo, segue que a mesma função no sentido inverso $f^{-1}: Y \to X$ produz um pareamento de um para um tal que para quaisquer valores $f(x_i) \neq f(x_j)$ resultam valores $x_i \neq x_j$.

No mais, a função composta $f^{-1} \circ f$ comporta-se tal qual uma função identidade id_n para X se e somente se $m \geq n$. Por um lado, esta mapeia um valor x_i com ele próprio:

$$f^{-1}\circ f(x_i) = f^{-1}(f(x_i)) = x_i$$

Por outro, isso só é possível para valores de $i \leq n$ pois $(x_{n+1}, f(x_{n+1})) \not\in f$.

Exercício 3

Vamos admitir que os conjuntos X, Y e Z possuam tamanhos r, s e t. Ainda, que os índices i,j,k são tais que $1 \leq k \leq t \leq j \leq s \leq i \leq r$, sendo $i,j,k,r,s,t \in \mathbb{N}$. Assim, $X=\{x_1,\ldots x_r\}$, $Y=\{y_1,\ldots,y_s\}$, $Z=\{z_1,\ldots,z_t\}$. Segue da definição de sobrejeção que

- ullet $\exists x_i \in X$ tal que $f(x_i) = y_j$ sendo $y_j \in Y$. Ainda, $Y = \{f(x_1), \dots, f(x_r)\}$.
- $\exists y_j \in Y$ tal que $g(y_j) = z_k$ sendo $z_k \in Z$. Ainda, $Z = \{g(y_1), \dots, g(y_s)\}$.

Assim, se aplicarmos a função $g\circ f$ sobre X teremos:

$$\{g\circ f(x_1),\ldots,g\circ f(x_r)\}=\{g(f(x_1)),\ldots,g(f(x_r))\}=\{g(y_1),\ldots,g(y_s)\}=\{z_1,\ldots,z_t\}=Z$$

Ou seja $g\circ f$ também é sobrejetora ao mapear $g\circ f:X\to Z.$

Exercício 4

Quando dizemos que $(x+1)^2=x^2+2x+1$ estamos indicando que **para qualquer** número x tais expressões possuem o mesmo valor. Isso também pode ser interpretado dizendo que ambos os lados da igualdade representam **a mesma função**.

Retomando o problema em questão, temos que $g\circ f=h\circ f\implies g(f(x))=h(f(x)), f(x)\in Y$. Como f é sobrejetora não existe elemento em Y, domínio tanto de g e h, o qual não possa ser descrito na forma f(x). Assim sendo, se g(f(x))=h(f(x)) para qualquer valor f(x), por definição estamos falando de funções iguais entre si.

Exercício 5

Em concordância com a definição de função um grafo orientado é adequado a representação de função se e somente se este indica relações entre pares ordenados. Por exemplo:

No primeiro gráfico vemos que para qualquer nó x à uma relação com um único f(x). No segundo gráfico, um **grafo acíclico dirigido**, isso não ocorre: podemos destacar a relação $f(11)=\{2,9,10\}$.

Exercício 6

a. A função $f:\mathbb{Z} o\mathbb{Z}$ pode ser definida como

$$f=\{(x,y): x=2k
ightarrow y=1 \ \underline{ee} \ x=2k+1
ightarrow y=-1, orall k \in \mathbb{Z}\}$$

Onde <u>∨</u> é o sinal para a expressão "ou exclusivo"

- **b.** Procederemos por exaustão.
 - z_1 par e z_2 par implicam $z_1 + z_2$ par.

$$2k + 2k_2 = 2(k + k_2) = 2k_3$$

Logo,

$$f(z_1 + z_2) = 1 = 1 \cdot 1 = f(z_1)f(z_2)$$

• z_1 par e z_2 ímpar, ou vice versa, implica z_1+z_2 ímpar.

$$2k + 2k_2 + 1 = 2(k + k_2) + 1 = 2k_3 + 1$$

Logo,

$$f(z_1+z_2)=-1=-1\cdot 1=f(z_1)f(z_2)$$

• z_1 e z_2 impares implicam, z_1+z_2 par.

$$2k + 1 + 2k_2 + 1 = 2(k + k_2 + 1) = 2k_3$$

Logo,

$$f(z_1 + z_2) = 1 = -1 \cdot -1 = f(z_1)f(z_2)$$

- c. Procederemos por exaustão.
 - z_1 par e z_2 par implicam z_1z_2 par.

$$2k \cdot 2k_2 = 2(2kk_2) = 2k_3$$

Logo,

$$f(z_1z_2)=1=1\cdot 1=f(z_1)f(z_2)$$

• z_1 par e z_2 ímpar, ou vice versa, implica z_1z_2 par.

$$2k(2k_2+1) = 2[k(2k_2+1)] = 2k_3$$

Logo,

$$f(z_1z_2) = 1 \neq -1 \cdot 1 = f(z_1)f(z_2)$$

• z_1 e z_2 impares implicam, z_1z_2 impar.

$$(2k+1)(2k_2+1)=4kk_2+2k+2k_2+1=2(2kk_2+k+k_2)+1=2k_3+1$$
 Logo,

$$f(z_1z_2) = -1 \neq -1 \cdot -1 = f(z_1)f(z_2)$$

d. f(x) = 1.

Exercício 7

a.
$$f_{c,d}\circ f_{a,b}(x)=f_{c,d}(f_{a,b}(x))=c(ax+b)+d=\underbrace{(ca)}_{=p}x+\underbrace{(cb+d)}_{=q}=f_{p,q}(x)$$

b.
$$\{f_{a,b} \circ f_{c,d}(x) = a(cx+d) + b = (ca)x + (ad+b)$$

 $\therefore f_{a,b} \circ f_{c,d}(x) = f_{c,d} \circ f_{a,b}(x) \implies (ca)x + (cb+d) = (ca)x + (ad+b)$
 $\implies b(c-1) = d(a-1)$

c.
$$f_{a,b} \circ f_{1,1} = f_{1,1} \circ f_{a,b} \implies a(x+1) + b = 1(ax+b) + 1 \implies ax + b + 1 = ax + a + b \implies a = 1$$

Assim sendo, desde que a=1 esta expressão é verdadeira $orall b \in \mathbb{R}.$

d. Sendo $y=f_{a,b}(x)=ax+b$, a função inversa pode ser expressa por:

$$x=ay+b \implies f_{a,b}^{-1}(x)=rac{b-x}{a}$$

Exercício 8

Para a função

```
long long unsigned int ackermann (unsigned int m, unsigned int n) {
   if (m == 0)
      return n + 1;
   if (n == 0)
      return ackermann (m - 1, 1);
   return ackermann (m - 1, ackermann(m, n - 1));
}
```

Os resultados foram, respectivamente:

```
A(1,1) = 3

A(1,2) = 4

A(2,2) = 7

A(3,2) = 29
```

Para o valor A(4,2) o algoritmo foi executado até que a memória a este alocada fosse esgotada (segmentation fault). Não obstante, conforme constata o artigo referente ao algoritmo na Wikipédia, computadores otimizados para esta tarefa calcularam o resultado de 19,729 dígitos decimais: $2^{65536} - 3$.

Exercício 9 (Divertissement)

Consideremos uma lista exaustiva dos infinitos números entre 0.0 e 1.0:

0.	1	1	1	1	1	1	1	•••
0.	1	0	0	0	0	0	0	
0.	3	3	3	3	3	3	3	
0.	1	4	2	5	9	2	6	•••
0.	9	9	9	9	8	9	7	•••
0.	2	8	5	1	2	8	3	•••
0.	4	2	8	5	1	5	2	•••
0.	5	7	2	1	4	2	1	• • •
•	•	•	•	•	•	•	•	•••

Em seguida aplicamos sobre esta lista uma função em uma diagonal que altera o valor da entrada em uma unidade, digamos, $f=\{(x,y):x<9 \to y=x+1\ \underline{\lor}\ x=9 \to y=0\}.$

0.	1	1	1	1	1	1	1	• • •
0.	2	0	0	0	0	0	0	•••
0.	3	4	3	3	3	3	3	• • •
0.	1	4	3	5	9	2	6	• • •
0.	9	9	9	0	8	9	7	
0.	2	8	5	1	3	8	3	• • •
0.	4	2	8	5	1	6	2	• • •
0.	5	7	2	1	4	2	2	• • •
:	•	:	:	:	•	•	• •	•••

O número resultante é de forma tal que encontra-se contido nos reais, mas é diferente de todos os infinitos números aqueles com que cruza na tabela, pois difere destes em pelo menos um dígito. Por isso, os números reais são de grandeza superior a uma infinidade contável: estes são incontáveis.

1. nUSP: 12543033; Turma 04 ←