[PRINT]

Question1: Score 1/1

Let
$$\mathbf{u}=egin{pmatrix}2\\4\\-2\end{pmatrix}$$
 and $\mathbf{v}=egin{pmatrix}2\\-4\\3\end{pmatrix}$. Find

(a) the magnitude of \mathbf{u} , express your answer up to 2 decimal places.

Answer:

	Your response	Correct response
	4.90	4.90

Auto graded Grade: 1/1.0

(b) the dot product of ${f u}$ and ${f v}$.

Answer:

Your response	Correct response
-18	-18

Auto graded Grade: 1/1.0

(c) the angle between ${f u}$ and ${f v}$, give your answer in radians, up to 2 decimal places.

Answer:

Your response	Correct response
2.32	2.32

Auto graded Grade: 1/1.0

Total grade: 1.0×1/3 + 1.0×1/3 + 1.0×1/3 = 33% + 33% + 33%

Question2: Score 1/1

Let ${f a}$, ${f b}$ and ${f c}$ be unit vectors such that ${f a}\cdot{f b}=1/2$, ${f b}\cdot{f c}=1/7$ and ${f a}\cdot{f c}=1/8$. Evaluate (write in the exact form)

• ||8**a**|| =

• Oa -			
	Your response	Correct response	
	8	8	

Auto graded Grade: 1/1.0

Auto graded Grade: 1/1.0

 $\mathbf{a}\cdot(\mathbf{b}-\mathbf{c})=$

Your response	Correct response
$\frac{3}{8}$	3/8

Auto graded Grade: 1/1.0

$$ullet \ \ (\mathbf{a} + \mathbf{b} + \mathbf{c}) \cdot (\mathbf{a} - \mathbf{b}) =$$

$\bullet (\mathbf{a} + \mathbf{b} + \mathbf{c}) \cdot (\mathbf{a} - \mathbf{b}) =$	
Your response	Correct response
$-\frac{1}{56}$	-1/56
56	-1700

Auto graded Grade: 1/1.0

Question3: Score 1/1

If $||\mathbf{u}|| = 3$, $||\mathbf{v}|| = 4$ and $\mathbf{u} \cdot \mathbf{v} = 2$, find $||\mathbf{u} + \mathbf{v}||$, express your answer up to 2 decimal places.

Answer:

Your response	Correct response
5.39	5.39

Auto graded Grade: 1/1.0

Total grade: 1.0×1/1 = 100%

Question4: Score 1/1

Let \mathbf{u} and \mathbf{v} be vectors where $||\mathbf{u} + \mathbf{v}|| = 4$ and $||\mathbf{u} - \mathbf{v}|| = 8$. Find $\mathbf{u} \cdot \mathbf{v}$.

Answer:

Your response	Correct response
-12	-12

Auto graded Grade: 1/1.0

Question5: Score 1/1

Consider two vectors $\mathbf{a}=-2i-j$ and $\mathbf{b}=2i+j+k$. If $\mathbf{c}=xi+yj+kz, x>0$ is the unit vector that is perpendicular to both a and b, find x, y and z.

Answer:

|x| =

Your response	Correct response
$\frac{1}{5}\sqrt{5}$	1/5*5^(1/2)

Auto graded Grade: 1/1.0

y =	
Your response	Correct response
$rac{-2}{5} \sqrt{5}$	-2/5*5^(1/2)

Auto graded Grade: 1/1.0

z =	
Your response	Correct response
0	0

Auto graded Grade: 1/1.0

Total grade: 1.0×1/3 + 1.0×1/3 + 1.0×1/3 = 33% + 33% + 33%

Question6: Score 1/1

Find the distance D from the point S(4,4,1) to the line $\ell: \mathbf{r}=(0,1,2)+t(1,0,1)$, $t\in\mathbb{R}$. Give your answer in 2 decimal places.

Answer : D =

-1.		
	Your response	Correct response
	4.64	4.64

Auto graded Grade: 1/1.0

Total grade: 1.0×1/1 = 100%

Question7: Score 1/1

Consider the line $\ell: \mathbf{r}(t)=(6,5,5)+t(9,3,2),\,t\in\mathbb{R}$. Let P(x,y,z) be the point on the line ℓ that is nearest to the origin. Find x, y and z. Express your solution in **exact** form.

Answer:

x =

Your response	Correct response
$-\frac{147}{94}$	-147/94

Auto graded Grade: 1/1.0

y =	
Your response	Correct response
$\frac{233}{94}$	233/94

Auto graded Grade: 1/1.0

z =	
Your response	Correct response
$\frac{156}{47}$	156/47

Auto graded Grade: 1/1.0

Total grade: 1.0×1/3 + 1.0×1/3 + 1.0×1/3 = 33% + 33% + 33%

Question8: Score 1/1

Find the shortest distance d from the origin to the plane x + 3y + 3z = 1. Give your answer in 2 decimal places.

Answer : d =

Your response	Correct response
0.23	.23

Auto graded Grade: 1/1.0

Question9: Score 1/1

Find the **acute** angle θ (in radian) between the two planes 4x + 2y + 5z = 1 and 3x + 5y - 2z = 2. Give your answer in 2 decimal places.

Answer : $\theta =$

1		
	Your response	Correct response
	1.28	1.28

Auto graded Grade: 1/1.0

Total grade: 1.0×1/1 = 100%

Question10: Score 0.66/1

Suppose the plane x+ay+bz=c contains the point (1,2,3) and the line $\ell:\mathbf{r}(t)=(4,6,5)+t(1,1,1)$, $t\in\mathbb{R}$. Find a,b and c.

Answer:

a =

a =	
Your response	Correct response

Correct response -3/2

c =

$-\frac{1}{2}$	-1/2
Auto graded Grade: 1/1.0 🛇	
=	
Your response	Correct response
$-\frac{1}{2}$	-1/2
2	

Auto graded Grade: 0/1.0

Total grade: $1.0 \times 1/3 + 1.0 \times 1/3 + 0.0 \times 1/3 = 33\% + 33\% + 0\%$

Your response

Question11: Score 1/1

Consider two planes $\pi_1: x+y+z=11$ and $\pi_2: 3x+8y+10z=10$. Suppose the plane x+ay+bz=cis perpendicular to both π_1 and π_2 and contains the point (2,4,6). Find a,b and c.

Answer:

a =

Your response	Correct response
$-\frac{7}{2}$	-7/2

Auto graded Grade: 1/1.0

0 —	
Your response	Correct response
$\frac{5}{2}$	5/2

Auto graded Grade: 1/1.0

c =	
Your response	Correct response
3	3

Auto graded Grade: 1/1.0

Total grade: 1.0×1/3 + 1.0×1/3 + 1.0×1/3 = 33% + 33% + 33%

Question12: Score 1/1

Consider two planes

$$4x + 8y + 5z = 0,$$

$$4x + 8y + 5z = d.$$

Suppose the distance in between the two planes is 12 and d>0.

Find d. Express your answer up to 2 decimal points.

Answer : d =

Your response	Correct response
122.96	122.96

Auto graded Grade: 1/1.0

Total grade: 1.0×1/1 = 100%

Question13: Score 1/1

Four points A, B, C and D forms a parallelogram with adjacent sides AB and AC and vertices A(2,0,0), B(0,1,0) and C(0,0,3). Find the coordinates of D.

Answer : D = (

· ·	
Your response	Correct response
-2	-2

Auto graded Grade: 1/1.0

,	
Your response	Correct response
1	1

Auto graded Grade: 1/1.0

,	
Your response	Correct response
3	3

Auto graded Grade: 1/1.0

Total grade: 1.0×1/3 + 1.0×1/3 + 1.0×1/3 = 33% + 33% + 33%

Question14: Score 1/1

Four points A, B, C and D forms a parallelogram with adjacent sides AB and AC and vertices A(7,0,0), B(0,8,0) and C(0,0,4). Find the area of the parallelogram, express your answer up to 2 decimal places.

Answer: The area of the parallelogram =

Your response	Correct response
70.31	70.31

Auto graded Grade: 1/1.0

Question15: Score 1/1

Find the reflection of the point (1,2,3) in the plane 2x + 9y + 8z = 12.

Answer : The reflection of the point (1,2,3) is the point (a,b,c), where

a =

Your response	Correct response
$\frac{21}{149}$	21/149

Auto graded Grade: 1/1.0

0 —	
Your response	Correct response
$-\frac{278}{149}$	-278/149

Auto graded Grade: 1/1.0

C —	
Your response	Correct response
$-rac{65}{149}$	-65/149

Auto graded Grade: 1/1.0

Total grade: $1.0 \times 1/3 + 1.0 \times 1/3 + 1.0 \times 1/3 = 33\% + 33\% + 33\%$

C 1	o	O 1:		
Solution	Guide	Online	Assignm	ent Vector

$Q_1: \mathcal{N} = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}, \mathcal{N} = \begin{pmatrix} -2 \\ -4 \\ 3 \end{pmatrix}$	05: (7) ga = 8 a = 8 (c) = (p-E) = g.p-y.E	B: 11 1 1 2 1 2 1 2 1 2 1 = 4
(a) M1 = 14+16+4 (b) N. V. = (4) + (-16) + (-6)	(b) $33.66 = 18(3.8)$ $= \frac{1}{2} - \frac{1}{8}$ $= \frac{3}{8}$	W·V = 2
= 124 = -18	$= \frac{3}{8}$	(MA) · (M+X) = (M·X) + 2 (M·X) + (X·X)
= 4.90	(d) (&+b+6) · (a-b) = (a.a) - (a.b) + (e.a) - (e.b)	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
(c) -18= \(\sum_{24}\sum_{4+16+9}\) cos \(\theta\)	- (b.b) + (b.d)	11 6+61 = 19+16+2(2)
$\theta = \cos^{-1}\left(-\frac{18}{\sqrt{24}\sqrt{29}}\right)$	$=\frac{1}{8}-\frac{1}{7}$	= 5.39 (2dp)
\ \frac{129}{29} = 2.32	= -1	
		s
Q4: 14+x1 =4 14-x1 = 8	$\begin{pmatrix} -2 \\ 1 \end{pmatrix}$	$0, \qquad \overrightarrow{PS} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} - \begin{pmatrix} 6 \\ 1 \end{pmatrix}$
	05:	P(3) 7. (1)
11 N + XII, = 11 NIJ, + 11 XIJ, + 5 (X·X)	1-(2) (5) (5)	b (;)
$ N - X ^2 = N ^2 + X ^2 - 2 (N \cdot X)$	C= (3) (Flip the vector, x >0)	D = 11 kg × × × 1
-4(x·x) = (4-16	x= \(\frac{1}{5} \) \(\frac{2\frac{15}{5}}{5} \) \(\frac{2-0}{5} \)	$= \frac{1}{\sqrt{2}} \left\ \left(\frac{a}{2} \right) \times \left(\frac{b}{1} \right) \right\ $ $\cdot \frac{1}{\sqrt{2}} \left\ \left(\frac{a}{2} \right) \times \left(\frac{b}{1} \right) \right\ $
	X 7 9 E	= \frac{1}{17} \Big \big(\frac{3}{-5} \Big) \Big
~·~ = -12//		= 1 <u>15</u>
		= 4.64 (1.49)
62 12. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Q8: 71: X+34+32 =1	ag Angle between 2 planes = Angle between their 14.
$\emptyset \mathcal{T} \colon \xrightarrow{\begin{pmatrix} \mathfrak{g} \\ \mathfrak{g} \end{pmatrix}} \qquad \qquad \swarrow_{\mathfrak{g}} = \begin{pmatrix} \mathfrak{g} \\ \mathfrak{g} \\ \mathfrak{g} \end{pmatrix} \qquad \qquad \downarrow$	0	T ₁ : $r_{x} \cdot \binom{2}{5} = 1$ T ₁ : $r_{x} \cdot \binom{3}{5} = 2$
Let $P = \begin{pmatrix} 6+9t \\ 5+3t \end{pmatrix}$: x · (3) - 1	
Since P is closes to origin, $\overrightarrow{OP} \perp \chi$, $\overrightarrow{OP} \cdot \chi = 0$	Let P be (o) on n.	$ \frac{\begin{pmatrix} \frac{1}{2} \\ \frac{2}{5} \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{2} \\ \frac{2}{2} \end{pmatrix} = \left \begin{pmatrix} \frac{1}{2} \\ \frac{2}{5} \end{pmatrix} \right \left \begin{pmatrix} \frac{3}{2} \\ \frac{2}{2} \end{pmatrix} \right \cos \theta }{ \cos \theta } $
$\begin{pmatrix} 6191 \\ 5432 \\ 8232 \end{pmatrix} = 0$		12 = J45 J8 cas 8
	$\overrightarrow{P0} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$	$\theta = \omega s^{-1} \left(\frac{12}{\omega r_{\perp} r_{\perp} s} \right)$
(E4 +81+) + (15+94) + (10+41+) = 0	J = Jin (0) · (3)	10.400
94t=-79 t=- 79	$=\frac{1}{\sqrt{19}}=0.23_{4}(2dp)$	= 1.28(2dp)
$\chi = -\frac{147}{93} - \frac{1233}{93} - 2 = \frac{156}{47}$	119 -0.27	
<u>~ व्यः जिल्लं किया</u>		
(10: r, (2) = ($(3) : \pi_1 : r \cdot (1) = 11 \pi_2 : r \cdot (3) = 10$	Qh T,: r. (8)=0 Tz:r. (8)=d
M+ P be (1,2,3), Q be (4,6,5)	A vector perpendicular to the normal of \$71, and \$12 is	
Pa = (34), lies on the plane. (P = [3]	parallel to n, and no. Since no is perpendicular to n, and i	Let $O(0,0,0)$ be on π , Let $P(\sqrt[4]{4},0,0)$ be
2)	this vector is parallel to the normal of T3.	0P = (d/4)
$n = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	n. of n = (1) x(3)	12 = [(A/4) + (\frac{4}{5})]
= (2	$= \begin{bmatrix} -\frac{3}{4} \\ \frac{7}{4} \end{bmatrix} = 2 \begin{pmatrix} -\frac{7}{4}/2 \\ \frac{7}{4}/2 \end{pmatrix}$	15 = 102[0 1 (2)]
= 2(-1/2)	73: 51.(-3/2)	12 = <u>d</u> Jio5
-1/2	्रापा -	
$\begin{pmatrix} 1 \\ 2 \\ \zeta \end{pmatrix} \cdot \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \end{pmatrix} = -\frac{3}{2}$	$C = \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \begin{pmatrix} -3/2 \\ 8/2 \end{pmatrix} = 3$	d = 12/105
a=-5, b=-5, c=-3	7, : X - 34 + 53 = 3	= 122.96 (2dp)
	2-7 1b= E. C=3	
D	2 7 2 -	
(A13: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GJU: 8 P	RIS 7:2x+9y+82=12
		K. (2) = 12
$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\overrightarrow{AC} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$	$\overrightarrow{AB} = \begin{pmatrix} \overrightarrow{b} \\ \overrightarrow{b} \end{pmatrix}$ $\overrightarrow{AC} = \begin{pmatrix} \overrightarrow{-1} \\ \overrightarrow{0} \end{pmatrix}$	Reflection of (1,2,3) in plane is
$\overrightarrow{AD} = \begin{pmatrix} -2 \\ -2 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix}$	Area = 1 AB × AEI	$P(1,2,3)$ and reflection lies on $l: x\#) = \left(\frac{1}{2}\right) + \left(\frac{2}{3}\right)$, tell.
$\overrightarrow{A0} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$		$\begin{pmatrix} 1+2t \\ 2+3t \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = 12$
- × 3)	= \(\left(\frac{32}{32} \right) \)	(2+4t) + (B+8tt) + (24+64t)=12
$\overrightarrow{OB} = \begin{pmatrix} -4 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix}$	V = V = V = V = V = V = V = V = V = V =	(PLANTING TO STORY OF THE STORY
$ \begin{array}{c} 68 - \left(\begin{array}{c} -4 \\ -4 \end{array} \right) + \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \end{array} $	30	149t= -32
$ \begin{array}{ccc} \widehat{OB} & = \begin{pmatrix} -\frac{4}{9} \\ \frac{1}{9} \end{pmatrix} + \begin{pmatrix} \frac{1}{9} \\ \frac{1}{9} \end{pmatrix} \\ & = \begin{pmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{pmatrix} \end{array} $	≈ 70.3 1	149t = -32 t _o -32
· · · · · · · · · · · · · · · · · · ·	30	$t_p = -\frac{32}{144}$
· · · · · · · · · · · · · · · · · · ·	30	$t_p = -\frac{32}{144}$
· · · · · · · · · · · · · · · · · · ·	30	$t_{p} - \frac{32}{14!}$ Let R be reflection $t_{q} = 2t_{p}$ $= -6!$ $= -6!$
· · · · · · · · · · · · · · · · · · ·	30	$t_p^* = \frac{32}{147}$ Let R be reflected $t_q = 2 t_p$ $= -69$ $R = \left(\frac{1}{2}\right) \cdot \frac{141}{141} \cdot \frac{3}{4}$
· · · · · · · · · · · · · · · · · · ·	30	$t_{p}^{2} - \frac{32}{147}$ [44] Let R be reflection $t_{p} = 2t_{p}$ $= -69$ $= -19$