Лекция 8:

8.1) Сведение кратного интеграла к повторнаму

Глеорема 8.1: (Рубини) Густь $X = \mathbb{R}^m$ и $Y \subset \mathbb{R}^n$ – промежутки, функция $f: X \times Y \to \mathbb{R}$ интегрируема на промежутке $X \times Y \subset \mathbb{R}^m$. Погда интеграло $\int_{X:Y} f(x,y) dx, \int_{X} dx \int_{Y} f(x,y) dy, \int_{X} dy \int_{X} f(x,y) dx$ существуют одноврешенно и совпадают метду собой

Внутренний интеграл $F(z):=\int_{\mathbb{T}}f(z,y)dy$ попинается как функция $F:X\to\mathbb{R}$ которай в точне х приписывается мобое значение между J+J, вым в такой точне х интеграл $\int_{\mathbb{T}}f(z,y)dy$ не существует.

Dokazamens cm bo: f_{iy} cm $P_{x} = \{X_{i}\}, P_{y} = \{Y_{i}\}$ - pagivenus nponemynkob X u Y_{i} coombem cm benno. Ux np. suoe nponybegenne $\{X_{i} \times Y_{j}\}$ gaëm pagivenue npoмежутка Р.

Pacchompun $s(f, P) := \sum_{i,j} \inf_{x \in X_i} f(x,y) \mu(X_i \times Y_j) <$

$$\leq \sum_{i} \inf_{x \in X_i} \left(\sum_{j} \inf_{y \in Y_i} f(x,y) \mu(Y_j) \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \inf_{x \in X_i} \left(\int_{Y_i} f(x,y) dy \right) \mu(X_i) \leq \sum_{i} \int_{X_i} f(x,y) dy = \sum_{i} \int_{X_i}$$

$$\leq \sum_{i} \inf_{x \in X_{i}} F(x) \mu(X_{i}) \leq \sum_{i} \sup_{x \in X_{i}} F(x) \mu(X_{i}) \leq \sum_{i} \sup_{x \in X_{i}} \left| \int_{Y} f(x, y) dy \right| \mu(X_{i})$$

$$\leq \sum_{i} \sup_{x \in X_{i}} \left(\sum_{j} \sup_{g \in Y_{i}} f(x_{i}y) p(Y_{j}) \right) p(X_{i}) \leq \sum_{i,j} \sup_{x \in X_{i}} f(x_{i}y) p(X_{i} \times Y_{j}) = S(f,P)$$

To yerobuse $f \in R(X \times Y)$ no smooth number equal $s(f,P) \to \int f(z,y) dz dy$ u begans equal $S(f,P) \to \int f(z,y) dz dy$ now $\chi(P) \to 0$. Up again energy energy $f(z) \in R(x)$ u

$$\int_{X\times Y} f(x,y) dx dy = \int_X F(x) dx$$

Anacouverso gonazabaemas u brishoe pabenembo.

Exegemble 1: Tyomo I = [a'; b'] x ... x [a"; b"] < R" Tronga unmernal $\int f(x) dx = \int dx^n \int dx^{n-1} ... \int f(x^n, ..., x^n) dx^n$

Cuegembre 2: Sycons D - organizentice b \mathbb{R}^{n-1} unomecubo a make unomecubo $E = \{(x,y) \in \mathbb{R}^n: x \in D \text{ in } \mathbb{R}(x) \leq y \leq y_2(x)\},$

emo
$$f \in R(E)$$
. Thorgo $y_{(2)}$

$$\int_E f(x, y) dx dy = \int_E dx \int_E f(x, y) dy.$$

$$D \quad y_{(4)}$$

Доказательство: Обозначим через Ех сегение $\{(x,y) \in \mathbb{R}^n : x \in \mathbb{D} \ u \ \varphi_p(x) \leq y \leq \varphi_p(x)\}$ que $x \in \mathbb{D}$ u Ez = Q gia x & D. Orebuguo, rmo $\chi_{E}(x,y) = \chi_{D}(x)\chi_{E_{F}}(y).$ Inorga $\int_{E} f(x,y) dx dy = \int_{T-x} f(x,y) \chi_{E}(x,y) dx dy = \int_{T-x} f(x,y) \chi_{E}(x,y) dx dy = \int_{T-x} f(x,y) \chi_{E}(x,y) dx dy$

 $=\int\limits_{\mathbb{I}_{x}}dx\int\limits_{\mathbb{I}_{y}}f(x,y)\,\chi_{E}(x,y)dy=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{y}}f(x,y)\,\chi_{E_{x}}(y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}\left(\int\limits_{\mathbb{I}_{x}}f(x,y)dy\right)\chi_{D}(x)dx=\int\limits_{\mathbb{I}_{x}}f(x,y)dx$

Спедствие 3: Густь D — изперимое в \mathbb{R}^{n-1} инотество и инотество E (определённое как в следствии 1), другкули $\varphi_{1,2}:D \to \mathbb{R}$ непрерываю Tuorga E uznepuno & R" u

 $M(E) = \int (\varphi_2(z) - \varphi_1(z)) dx.$ Energember 4. From $I = I_x \times I_y - n_ponemymon b R^n$, age $I_x - (n-1) - n_p p_y = 0$ прометуток, а Іу — отрезок; ЕСІ — измеримог мнотество. Thorga gue n.b. $y_0 \in I_y$ circule $E_{y_0} = \{(x,y) \in E: y = y_0\}$ unomecomba Eявляется измеримым, при этом

$$M(E) = \int_{E_g} M(E_g) dy,$$

где $\mu(E_y) = (n-1)^2$ мерная мера множества E_y , вси оно изперимо, и любое число метду $\int 1\cdot dz$ и $\int 1\cdot dz$ в ином слугае.

(8.1) Замена перешеннах в кратном интеграле

 $\mathcal{I}_{accusompusu}$ диффериорфизи у проистутка I_{i} с \mathbb{R}^{n} на некоторое инотесто \mathcal{D}_{x} . unoncemba $\varphi(I_i)$, i=1,...,k. Com be $\varphi(I_i)$ uzuepuno u nonapuo nepeсекаются по множеством мера нум, то

$$\int_{\mathbb{D}_{x}} f(x) dx = \sum_{i=1}^{K} \int_{\varphi(I_{i})} f(x) dx.$$

Гредположив непрерывность другкум 1 на Да, по теореле о среднем поmun, mo

$$\int_{\varphi(I_i)} f(z) dz = f(\xi_i) \mu(\varphi(I_i)), \quad \text{ige } \xi_i \in \varphi(I_i).$$

Janemun $f(\xi_i) = f(\varphi(\tau_i))$, age $\tau_i = \varphi^{\tau}(\xi_i)$.

Chemen $\mu(\varphi(I_i))$ c $\mu(I_i)$ com φ on o or unemore preopresobarmen, no $\varphi(I_i)$ for son napameninegal, u $\mu(\varphi(I_i)) = |\operatorname{old} \varphi'| \mu(I_i)$.

Однако диффеоморфизм мехамно экиемае погти минейном отображением, поэтому можно сгитать, тто $M(\psi(I_i)) \approx |\det \psi'(\tau_i)| p(I_i)$, если параметр разбиения достаточно мах блем самым, мы приходим к соотношению $\sum_{i=1}^{K} \int f(x) dx \approx \sum_{i=1}^{K} f(\psi(\tau_i)) \left| \det \psi'(\tau_i) \right| p(I_i),$

b котором справа стоит импетрациах одина орушкуми $f(y(t))/\det \varphi'(t)/$ по промежути I_t дак разбиения P и набора отмечениях точек t. f(x) $dx = \int f(y(t))/\det \varphi'(t)/dt$.

Hanourum, pourmeren opyrazion $f: D \to \mathbb{R}$ nazobaemar zanokanne b obsacom D superecuba ben reject opyrazion f obsacom D: $supp f = \{x \in D: f(x) = 0\}$.

Theopena 8.1: Signa D_t , D_x — organizewine employment unemecable \mathbb{R}^n , goyingus $f \in R(D_x)$, supple — nowarm $b D_x$. Though approximate $f(D_x)$ and $f(D_x)$ is $f(D_x) = \int_{\mathbb{R}^n} (f \circ \psi)(t) \, dt$.

Ineopena 8.3: Injems $D_t \subset \mathbb{R}_t$, $D_x \subset \mathbb{R}_x$ — изиеримоге мнотества, некоторые мнотества $S_t \subset D_t$ и $S_x \subset D_x$ имеют меру нум (в смысле Лебега), отобратение $\varphi \colon D_t \to D_x$, которое дифферацирурно и с ограничениям янобианом отобратает $D_t \setminus S_t$ в $D_x \setminus S_x$. Глогда, осм $f \in R(D_x)$, то $f \circ \varphi \mid \det \varphi' \mid \in R(D_t \setminus S_t)$, и имеет место равенство $\int f/x \, dx = \int (f \circ \varphi)(t) \, |\det \varphi'(t)| \, dt$