CELL LIBRARY MANUAL

CMOS VLSI – MAGIC LAYOUT - NGSPICE SIMULATOR

Gebze Technical University, Faculty of Engineering, Department of Computer Engineering CSE 436/536 – Integrated Circuit Design (Fall 2020, Covid-19 Pandemic)

Assignment 3 – Cell Library (v1)

Lecturer : Alp Arslan Bayrakçi Student : Şeyda Nur DEMİR

ID: 12 10 44 042

"This report studies the design of INV, NAND2, NAND3, NOR2, NOR3, XOR2, XOR3, AOI22, OAI22, MUX2x1 cells. It shows the gate level design, De'morgan analysis Boolean Expression, the truth table, the transistor level schematic design, the stick diagram, drawn layout using Magic Layout and the output signals simulated by NGSpice."

INVERTER DESIGN

Introduction

This report studies the design of INV function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = (A)'

The Truth Table

Transistor Level Schematic Design

NAND2 DESIGN

Introduction

This report studies the design of NAND2 (2-INPUT NAND) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = (A.B)'

The Truth Table

A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

Transistor Level Schematic Design

NAND3 DESIGN

Introduction

This report studies the design of NAND3 (3-INPUT NAND) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = (A.B.C)'

The Truth Table

Transistor Level Schematic Design

NOR2 DESIGN

Introduction

This report studies the design of NOR2 (2-INPUT NOR) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = (A+B)'

The Truth Table

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

Transistor Level Schematic Design

NOR3 DESIGN

Introduction

This report studies the design of NOR3 (3-INPUT NOR) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = (A+B+C)'

The Truth Table

Transistor Level Schematic Design

XOR2 DESIGN

Introduction

This report studies the design of XOR2 (2-INPUT XOR) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = ((A.B')+(A'.B))

The Truth Table

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

Transistor Level Schematic Design

Follow this link, https://www.cs.upc.edu/~jpetit/CellRouting/fig/XOR2_X1_1h.svg

XNOR2 DESIGN

Introduction

This report studies the design of XNOR2 (2-INPUT XNOR) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = ((A.B)+(A'.B'))

The Truth Table

Transistor Level Schematic Design

Follow this link, https://www.cs.upc.edu/~jpetit/CellRouting/fig/XNOR2_X1_1h.svg

AOI22 DESIGN

Introduction

This report studies the design of AOI22 (4-INPUT AOI22 CELL) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = ((A.B)+(C.D))'

The Truth Table

Transistor Level Schematic Design

Follow this link; https://www.cs.upc.edu/~jpetit/CellRouting/fig/AOI22_X1_1h.svg

OAI22 DESIGN

Introduction

This report studies the design of OAI22 (4-INPUT OAI22 CELL) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = ((A+B).(C+D))'

The Truth Table

Transistor Level Schematic Design

Follow this link, https://www.cs.upc.edu/~jpetit/CellRouting/fig/OAI22_X1_1h.svg

MUX2x1 DESIGN

Introduction

This report studies the design of MUX2x1 (2-INPUT 1-SELECT BIT MUX) function.

Gate Level Design

De'Morgan Analysis Boolean Expression

Z = ((A.S')+(B.S))

The Truth Table

Transistor Level Schematic Design

Follow this link, https://www.cs.upc.edu/~jpetit/CellRouting/fig/MUX2_X1_1h.svg

END of the MANUAL.

Any question, email: sncakar@gtu.edu.tr

(Last Update : 27/11/2020 10:50)