GUÍA PRÁCTICA TEMA 2: INTEGRALES MÚLTIPLES

- 1. Escriba la expresión que permite calcular por integrales dobles:
 - a) El área de una región plana, R.
 - b) El volumen de un sólido V, de altura z = f(x, y).
 - c) La masa total de una lámina R, con densidad $\sigma(x, y)$.
- 2. En los siguientes apartados, grafique la región de integración R y plantee mediante integración iterada, de dos formas distintas, $\iint_R dxdy$ y $\iint_R dydx$.

a)
$$R: \begin{cases} y \geq x \\ y \leq \sqrt{x} \end{cases}$$

$$\begin{cases} y \leq x + 2 \\ x \geq -1 \\ x \leq 3 \\ y \geq 0 \end{cases}$$

$$c) R: \begin{cases} y \leq \sin x \\ y \geq 0 \\ 0 \leq x \leq \pi \end{cases}$$
Considere la función $arcsen(y) = -i \ln(iy \pm \sqrt{1-y^2})$

3. Dada la siguiente pileta, calcule los litros de pintura necesarios para pintar el área sombreada, suponiendo que 1 litro de pintura rinde $0.5\ m^2$. (Rta.: 160 litros)

4. Calcule el área de las siguientes regiones. (Rta.: a) 8.65, b) 17.99, c) 2.82, d) 7.5, e) 1.27, f) 0.39, g) 2, h) 1.33)

- 5. a) Indique analítica y gráficamente los cambios de coordenadas que puede realizar en el cálculo de áreas de regiones en \mathbb{R}^2 por integrales dobles.
 - b) Proporcione un ejemplo de una región plana en el que utilice los cambios de coordenadas mencionados en el apartado a.

6. Determine el área a parquizar del jardín mostrado en la figura: (Rta.: 23.56)

7. Calcule el área de las regiones dadas a continuación. (Rta.: a) 24π , b) 7.5π , c) 9π , d) 1.67π , e) 13.5π , f) 2.45)

- 8. Calcule $\iint_R \frac{dxdy}{\sqrt{4-x^2-y^2}}$, donde R es el recinto dado por $x^2+y^2-2x\leq 0$. (Rta.: 2π)
- 9. Calcule la masa del sólido dado por la ecuación $\iint_R \sqrt{x+y} dx dy$, considerando a R como la región acotada por las respectivas rectas $y \le x, y \ge -x$ y $x \le 1$. (Rta.: 0.75)
- 10. Una lámina de densidad $\delta(x,y)=xy$ está limitada por el eje x, la recta x=8 y la curva $y=x^{2/3}$. Encuentre su masa total. (Rta.: 153.6)
- 11. Encuentre el centro de gravedad de la lámina del ejercicio anterior. (Rta.: (6.15,2.22))
- 12. Encuentre los momentos de inercia, con respecto a los ejes x y y, de la lámina del ejercicio 10. (Rta.: $I_x=877,71,\ I_y=6144$)
- 13. Encuentre la masa y el centro de gravedad de la lámina con densidad $\delta(x,y)=y$, limitada por las curvas $y=0,\ y=\sin x,\ 0\leq x\leq \pi.$ (Rta.: $m=\pi/4,\ (0.45,0.98)$)

- 14. Escriba la expresión que permite calcular, por integrales triples, la masa de un sólido con densidad $\sigma(x,y,z)$.
- 15. Considerando la pileta del ejercicio 3.3., determine el volumen de agua que puede albergar. (Rta.: $753,4m^3$)
- 16. Determine el volumen de los siguientes sólidos: (Rta.: a)40, b)4/5, c)5,33, d)0,08)

- 17. a) Indique analítica y gráficamente los cambios de coordenadas que puede realizar en el cálculo de volúmenes de regiones en \mathbb{R}^3 , por integrales triples.
 - b) Deduzca la expresión del Jacobiano e indique su significado geométrico.
- 18. Determine el precio de un barril de cerveza cilíndrico, de altura h=53,2~cm y diámetro $\phi=40,8~cm$, sabiendo que el precio por litro cuesta 200 pesos. (Rta.: \$4427,94)

19. Calcule el volumen de los sólidos definidos a continuación. (Rta: a) 4,5 π , b) 1/3 π , c)

- 20. Calcule el volumen del sólido que es interior a la semiesfera $z = \sqrt{16 x^2 y^2}$ y al cilindro $x^2 + y^2 4y = 0$.
- 21. Calcule el volumen del sólido acotado por $z=4-x^2$ e $y=4-x^2$, en el primer octante.
- 22. Calcule el volumen del sólido interior a la esfera $x^2+y^2+z^2=4$ y por encima del cono $x^2+y^2-z^2=0$.
- 23. Determine la masa de la lámina triangular con vértices (0,0), (1,0) y (0,2) si la función densidad está dada por $\sigma(x,y) = 1 + 8x + y$.
- 24. Determine la masa del sólido con densidad constante $\sigma(x, y, z) = \sigma$, limitado por la superficie del ejercicio 12.b.
- 25. Halle la masa del elipsoide dado por la ecuación $4x^2 + 4y^2 + z^2 = 16$, con $z \ge 0$. La densidad en cada punto del elipsoide, coincide con la distancia entre el punto y el plano xy.