

SCIENCE PASSION

Improved Search for Integral, Impossible Differential and Zero-Correlation Attacks

Hosein Hadipour Simon Gerhalter Sadegh Sadeghi Maria Fichlseder FSE 2024 - Leuven, Belgium

Motivation and Our Contributions

- Motivation
 - **❷** Providing a tool to find **complete** integral, and ID/ZC attacks
- Contributions
 - igotimes Improving the CP-based methods to find ID/ZC, and integral distinguishers
 - Introducing a CP model for the partial-sum technique for the first time
 - Improving distinguishers of Ascon, QARMAv2, and ForkSKINNY (25 Dists.)
 - Improving key recovery attacks of SKINNY, and ForkSKINNY (24 Attacks)

Motivation and Our Contributions

- Motivation
 - **②** Providing a tool to find **complete** integral, and ID/ZC attacks
- Contributions
 - \bigcirc Improving the CP-based methods to find ID/ZC, and integral distinguishers
 - **⊘** Introducing a CP model for the partial-sum technique for the first time
 - ☑ Improving distinguishers of Ascon, QARMAv2, and ForkSKINNY (25 Dists.)
 - ☑ Improving key recovery attacks of SKINNY, and ForkSKINNY (24 Attacks)

Part of Our Results Regarding Distinguishing Attacks

Cipher	#Rounds	Dist.	Data complexity	Ref.
QARMAv2-64 QARMAv2-64 ($\mathscr{T}=1$) QARMAv2-64 ($\mathscr{T}=2$) QARMAv2-128($\mathscr{T}=2$)	5 7 / 8 / 9 8 / 9 / 10 10 / 11 / 12	Integral Integral Integral Integral	28 / 2 ¹⁶ / 2 ⁴⁴ 28 / 2 ¹⁶ / 2 ⁴⁴ 2 ¹⁶ / 2 ⁴⁴ / 2 ⁹⁶	[Ava+23] This work This work This work
ForkSKINNY-64-192	16	Integral	2 ⁷² 260 -	[Niu+21]
ForkSKINNY-64-192	17	Integral		This work
ForkSKINNY-64-192	16	ID		[HSE23]
ForkSKINNY-64-192	21	ID		This work
ForkSKINNY-128-256	14	Integral	2 ⁵⁶ 2⁵⁶	[HSE23]
ForkSKINNY-128-256	15	Integral		This work

Part of Our Results Regarding Key Recovery Attacks

Cipher	#R	Time	Data	Mem.	Attack	Setting / Model	Ref.
SKINNY-64-64	17 18	2 ⁵⁹ 2^{53.58}	2 ^{58.79} 2 ^{53.58}	2 ⁴⁰ 2 ⁴⁸	ID Int	STK / CP 60,SK / CP,CT	[HSE23] This work
SKINNY-128-128	17 18	2 ^{116.51} 2 ^{105.58}	$2^{116.37} \\ 2^{105.58}$	2 ⁸⁰ 2 ⁹⁶	ID Int	STK / CP 120,SK / CP,CT	[HSE23] This work
SKINNY-128-384	26 26	2 ³⁴⁴ 2³³¹	2 ¹²¹ 2 ¹²²	2 ³⁴⁰ 2 ³²⁸	Int Int	360,SK / CP,CT 360,SK / CP,CT	[HSE23] This work
ForkSKINNY-128-256	26 26	2 ^{250.30} 2^{238.50}	$2^{127} \\ 2^{128.60}$	$2^{160} \\ 2^{175.60}$	ID ID	256,RTK / CP 256,RTK / CP	[BDL20] This paper

Outline

- 1 Background and the Research Gap
- 2 Search For Distinguishers
- 3 Our New Word-Wise Method for Finding Distinguishers
- 4 Our New Bit-Wise Method for Finding Distinguishers
- 5 Our Unified CP Model for Key-Recovery
- 6 Contributions and Future Works

Background and the Research Gap

- Integral attack [Lai94; DKR97]
- Impossible-differential attack [BBS99; Knu98]
- Zero-correlation attack [BR14]

- Integral attack [Lai94; DKR97]
- Impossible-differential attack [BBS99; Knu98]
- Zero-correlation attack [BR14]

- Integral attack [Lai94; DKR97]
- Impossible-differential attack [BBS99; Knu98]
- Zero-correlation attack [BR14]

- Integral attack [Lai94; DKR97]
- Impossible-differential attack [BBS99; Knu98]
- Zero-correlation attack [BR14]

Relation Between ZC and Integral Distinguishers

Any ZC distinguisher can be converted to an integral distinguisher [Sun+15].

Link Between ZC and Integral Distinguishers [Sun+15]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a vectorial Boolean function. Assume A is a subspace of \mathbb{F}_2^n and $\beta \in \mathbb{F}_2^n \setminus \{0\}$ such that (α, β) is a ZC approximation for any $\alpha \in A$. Then, for any $\lambda \in \mathbb{F}_2^n$, $\langle \beta, F(x + \lambda) \rangle$ is balanced over the set

$$A^{\perp} = \{ x \in \mathbb{F}_2^n \mid \forall \ \alpha \in A : \langle \alpha, x \rangle = 0 \}.$$

Example: Conversion of ZC Distinguisher to Integral Distinguisher

- $X_0[7, 10, 13]$ takes all possible values and the remaining cells take a fixed value
- $X_6[7] \oplus X_6[11] \oplus X_6[15]$ is balanced

- Common technique for ID key recovery:
 - Early abort technique [Lu+08]
- Common technique for ZC/Integral key recovery
 - Partial-sum technique [Fer+00]

- Common technique for ID key recovery:
 - Early abort technique [Lu+08]
- Common technique for ZC/Integral key recovery
 - Partial-sum technique [Fer+00]

- Common technique for ID key recovery:
 - Early abort technique [Lu+08]
- Common technique for ZC/Integral key recovery
 - Partial-sum technique [Fer+00]

- Common technique for ID key recovery:
 - Early abort technique [Lu+08]
- Common technique for ZC/Integral key recovery
 - Partial-sum technique [Fer+00]

- Common technique for ID key recovery:
 - Early abort technique [Lu+08]
- Common technique for ZC/Integral key recovery:
 - Partial-sum technique [Fer+00]

Previous Tools for ID/ZC, and Integral Attacks

- Tools based on dedicated algorithms:
 - CRYPTO 2016 (\mathcal{DC} -MITM, ID) [DF16]
- Tools based on general purpose solvers:
 - Eprint 2016 (ID) [Cui+16]
 - ASIACRYPT 2016 (Integral) [Xia+16]
 - EUROCRYPT 2017 (ID, ZC) [ST17]
 - ToSC 2017 (ID, ZC) [Sun+17]
 - ToSC 2020 (ID, ZC) [Sun+20]

Search for Distinguishers

Our Previous Method to Search Distinguishers [HSE23]

Е

- \bigcirc $\mathit{CSP}_{\mathrm{U}}(\Delta_{\mathrm{U}}, \Delta'_{\mathrm{U}})$
- \bigcirc $\mathit{CSP}_{\mathrm{L}}(\Delta_{\mathrm{L}}, \Delta'_{\mathrm{L}})$
- \bigcirc $\mathit{CSP}_{\mathtt{M}}(\Delta'_{\mathtt{U}}, \Delta'_{\mathtt{L}})$

- \bigcirc $\mathit{CSP}_{\mathrm{U}}(\Delta_{\mathrm{U}}, \Delta'_{\mathrm{U}})$
- \bigcirc $\mathit{CSP}_{\mathrm{L}}(\Delta_{\mathrm{L}}, \Delta'_{\mathrm{L}})$
- \bigcirc $\mathit{CSP}_{\mathtt{M}}(\Delta'_{\mathtt{U}}, \Delta'_{\mathtt{L}})$

- \bigcirc $CSP_{\mathrm{U}}(\Delta_{\mathrm{U}}, \Delta_{\mathrm{U}}')$
- \bigcirc $\mathit{CSP}_{\mathrm{L}}(\Delta_{\mathrm{L}}, \Delta'_{\mathrm{L}})$
- \bigcirc $\mathit{CSP}_{\mathtt{M}}(\Delta'_{\mathtt{U}}, \Delta'_{\mathtt{L}})$

Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, Maria Eichlseder FSE 2024 - Leuven, Belgium

Our New Word-Wise Method for Finding Distinguishers

Relax the Limit of Fixing the Contradiction's Location

ightharpoonup Find ID distinguisher for $r_{
m D} (= r_{
m U} + r_{
m L})$ rounds

Modeling the distinguishers in [HSE23].

Our modeling of the distinguishers.

Our New Bit-Wise Method for Finding Distinguishers

x	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

		$\Delta_i \setminus \Delta_o$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
		0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
Δ_i	0 0 0 0	2	0	2	0	2	0	0	0	4	0	2	2	0	0	0	2	2
Δ_{I}	0 0 0 0	3	0	2	0	2	0	0	4	0	0	2	2	0	0	0	2	2
X	$x_1 x_2 x_3 x_4$	4	0	0	0	0	0	0	0	0	0	0	4	4	2	2	2	2
	T	5	0	0	0	0	2	2	2	2	0	0	4	4	0	0	0	0
		6	0	2	0	2	0	4	0	0	0	2	2	0	2	2	0	0
		7	0	2	0	2	4	0	0	0	0	2	2	0	2	2	0	0
	\mathcal{S}	8	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
		9	0	4	4	0	0	0	0	0	0	4	0	4	0	0	0	0
		a	0	0	2	2	2	0	0	2	4	0	0	0	0	2	0	2
S(x)	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃ <i>y</i> ₄	b	0	0	2	2	0	2	2	0	4	0	0	0	2	0	2	0
(//)	7172707.	С	0	4	4	0	2	2	2	2	0	0	0	0	0	0	0	0
Δ_o	0 0 0 0	d	0	0	0	0	2	2	2	2	0	4	0	4	0	0	0	0
		е	0	0	2	2	0	2	2	0	4	0	0	0	0	2	0	2
		f	0	0	2	2	2	0	0	2	4	0	0	0	2	0	2	0
																		_

$$\Delta_i = (0, 0, 0, 0) \xrightarrow{S} \Delta_o = (0, 0, 0, 0)$$

 $\Delta_i \neq (0, 0, 0, 0) \xrightarrow{S} \Delta_o \neq (0, 0, 0, 0)$

x	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

		$\Delta_i \setminus \Delta_o$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
		0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
Δ_i	0 0 0 1	2	0	2	0	2	0	0	0	4	0	2	2	0	0	0	2	2
Δ_{l}	0 0 0 1	3	0	2	0	2	0	0	4	0	0	2	2	0	0	0	2	2
X	$X_1 X_2 X_3 X_4$	4	0	0	0	0	0	0	0	0	0	0	4	4	2	2	2	2
		5	0	0	0	0	2	2	2	2	0	0	4	4	0	0	0	0
		6	0	2	0	2	0	4	0	0	0	2	2	0	2	2	0	0
		7	0	2	0	2	4	0	0	0	0	2	2	0	2	2	0	0
	\mathcal{S}	8	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
		9	0	4	4	0	0	0	0	0	0	4	0	4	0	0	0	0
		a	0	0	2	2	2	0	0	2	4	0	0	0	0	2	0	2
S(x)	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃ <i>y</i> ₄	b	0	0	2	2	0	2	2	0	4	0	0	0	2	0	2	0
	3-3-3-3	С	0	4	4	0	2	2	2	2	0	0	0	0	0	0	0	0
Δ_o	? 1 ? ?	d	0	0	0	0	2	2	2	2	0	4	0	4	0	0	0	0
		е	0	0	2	2	0	2	2	0	4	0	0	0	0	2	0	2
		f	0	0	2	2	2	0	0	2	4	0	0	0	2	0	2	0
																		_

$$\Delta_i = (0,0,0,0) \xrightarrow{S} \Delta_o = (0,0,0,0)$$
 $\Delta_i \neq (0,0,0,0) \xrightarrow{S} \Delta_o \neq (0,0,0,0)$
 $\Delta_i = (0,0,0,1) \xrightarrow{S} \Delta_o = (?,1,?,?)$

x	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

																		_
		$\Delta_i \setminus \Delta_o$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
		0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
Δ_i	0 1 0 0	2	0	2	0	2	0	0	0	4	0	2	2	0	0	0	2	2
Δ,	0 1 0 0	3	0	2	0	2	0	0	4	0	0	2	2	0	0	0	2	2
X	$X_1 X_2 X_3 X_4$	4	0	0	0	0	0	0	0	0	0	0	4	4	2	2	2	2
		5	0	0	0	0	2	2	2	2	0	0	4	4	0	0	0	0
		6	0	2	0	2	0	4	0	0	0	2	2	0	2	2	0	0
		7	0	2	0	2	4	0	0	0	0	2	2	0	2	2	0	0
	\mathcal{S}	8	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
		9	0	4	4	0	0	0	0	0	0	4	0	4	0	0	0	0
		a	0	0	2	2	2	0	0	2	4	0	0	0	0	2	0	2
S(x)	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃ <i>y</i> ₄	b	0	0	2	2	0	2	2	0	4	0	0	0	2	0	2	0
. ,		С	0	4	4	0	2	2	2	2	0	0	0	0	0	0	0	0
Δ_o	1 ? ? ?	d	0	0	0	0	2	2	2	2	0	4	0	4	0	0	0	0
		е	0	0	2	2	0	2	2	0	4	0	0	0	0	2	0	2
		f	0	0	2	2	2	0	0	2	4	0	0	0	2	0	2	0
																		_

$$\Delta_{i} = (0,0,0,0) \xrightarrow{S} \Delta_{o} = (0,0,0,0)$$

$$\Delta_{i} \neq (0,0,0,0) \xrightarrow{S} \Delta_{o} \neq (0,0,0,0)$$

$$\Delta_{i} = (0,0,0,1) \xrightarrow{S} \Delta_{o} = (?,1,?,?)$$

$$\Delta_{i} = (0,1,0,0) \xrightarrow{S} \Delta_{o} = (1,?,?,?)$$

x	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

		$\Delta_i \setminus \Delta_o$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
		0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
Δ_i	1 0 0 0	2	0	2	0	2	0	0	0	4	0	2	2	0	0	0	2	2
Δ_{i}	1000	3	0	2	0	2	0	0	4	0	0	2	2	0	0	0	2	2
X	$X_1 X_2 X_3 X_4$	4	0	0	0	0	0	0	0	0	0	0	4	4	2	2	2	2
		5	0	0	0	0	2	2	2	2	0	0	4	4	0	0	0	0
		6	0	2	0	2	0	4	0	0	0	2	2	0	2	2	0	0
		7	0	2	0	2	4	0	0	0	0	2	2	0	2	2	0	0
	\mathcal{S}	8	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
		9	0	4	4	0	0	0	0	0	0	4	0	4	0	0	0	0
		a	0	0	2	2	2	0	0	2	4	0	0	0	0	2	0	2
S(x)	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃ <i>y</i> ₄	b	0	0	2	2	0	2	2	0	4	0	0	0	2	0	2	0
` '		С	0	4	4	0	2	2	2	2	0	0	0	0	0	0	0	0
Δ_o	11??	d	0	0	0	0	2	2	2	2	0	4	0	4	0	0	0	0
		е	0	0	2	2	0	2	2	0	4	0	0	0	0	2	0	2
		f	0	0	2	2	2	0	0	2	4	0	0	0	2	0	2	0
																		_

$$\Delta_{i} = (0,0,0,0) \xrightarrow{S} \Delta_{o} = (0,0,0,0)$$

$$\Delta_{i} \neq (0,0,0,0) \xrightarrow{S} \Delta_{o} \neq (0,0,0,0)$$

$$\Delta_{i} = (0,0,0,1) \xrightarrow{S} \Delta_{o} = (?,1,?,?)$$

$$\Delta_i = (0, 1, 0, 0) \xrightarrow{S} \Delta_o = (1, ?, ?, ?)$$

$$\Delta_i = (1,0,0,0) \xrightarrow{S} \Delta_o = (1,1,?,?)$$

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

$$\Delta_{i} = (0,0,0,0) \xrightarrow{S} \Delta_{o} = (0,0,0,0)$$
 $\Delta_{i} \neq (0,0,0,0) \xrightarrow{S} \Delta_{o} \neq (0,0,0,0)$
 $\Delta_{i} = (0,0,0,1) \xrightarrow{S} \Delta_{o} = (?,1,?,?)$
 $\Delta_{i} = (0,1,0,0) \xrightarrow{S} \Delta_{o} = (1,?,?,?)$
 $\Delta_{i} = (1,0,0,0) \xrightarrow{S} \Delta_{o} = (1,1,?,?)$
 $\Delta_{i} = (1,0,0,1) \xrightarrow{S} \Delta_{o} = (?,0,?,?)$

x	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	a	7	b	е	1	d	9	f	6	8	5	2	С	3

$$\lambda_i = (0,0,0,0) \xrightarrow{S} \lambda_o = (0,0,0,0)$$

 $\lambda_i \neq (0,0,0,0) \xrightarrow{S} \lambda_o \neq (0,0,0,0)$

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	a	7	b	е	1	d	9	f	6	8	5	2	С	3

$$\lambda_{i} = (0, 0, 0, 0) \xrightarrow{S} \lambda_{o} = (0, 0, 0, 0)$$
$$\lambda_{i} \neq (0, 0, 0, 0) \xrightarrow{S} \lambda_{o} \neq (0, 0, 0, 0)$$
$$\lambda_{i} = (0, 0, 1, 0) \xrightarrow{S} \lambda_{o} = (1, ?, ?, ?)$$

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	a	7	b	е	1	d	9	f	6	8	5	2	С	3

$$\lambda_{i} = (0,0,0,0) \xrightarrow{S} \lambda_{o} = (0,0,0,0)$$

$$\lambda_{i} \neq (0,0,0,0) \xrightarrow{S} \lambda_{o} \neq (0,0,0,0)$$

$$\lambda_{i} = (0,0,1,0) \xrightarrow{S} \lambda_{o} = (1,?,?,?)$$

$$\lambda_{i} = (1,0,0,0) \xrightarrow{S} \lambda_{o} = (1,?,1,?)$$

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

$$\lambda_{i} = (0, 0, 0, 0) \xrightarrow{S} \lambda_{o} = (0, 0, 0, 0)$$

$$\lambda_{i} \neq (0, 0, 0, 0) \xrightarrow{S} \lambda_{o} \neq (0, 0, 0, 0)$$

$$\lambda_{i} = (0, 0, 1, 0) \xrightarrow{S} \lambda_{o} = (1, ?, ?, ?)$$

$$\lambda_{i} = (1, 0, 0, 0) \xrightarrow{S} \lambda_{o} = (1, ?, 1, ?)$$

$$\lambda_{i} = (1, 0, 1, 0) \xrightarrow{S} \lambda_{o} = (0, ?, ?, 1)$$

CP Model for Deterministic Bit-Wise Trails - I

- For each bit position, we define an integer variable with domain $\{0, 1, -1\}$.
- Define CP constraints to model the propagation of deterministic bit-wise trails.

S-box

Assume that x[i], y[i] are integer variables with domain $\{-1,0,1\}$ to encode the input and output differences at the i-th bit position, respectively. The valid deterministic differential transitions satisfy the following:

```
\begin{cases} if(x[0]=0 \wedge x[1]=0 \wedge x[2]=0 \wedge x[3]=0) \ then \ (y[0]=0 \wedge y[1]=0 \wedge y[2]=0 \wedge y[3]=0) \\ elseif(x[0]=0 \wedge x[1]=0 \wedge x[2]=0 \wedge x[3]=1) \ then \ (y[0]=-1 \wedge y[1]=1 \wedge y[2]=-1 \wedge y[3]=-1) \\ elseif(x[0]=0 \wedge x[1]=1 \wedge x[2]=0 \wedge x[3]=0) \ then \ (y[0]=1 \wedge y[1]=-1 \wedge y[2]=-1 \wedge y[3]=-1) \\ elseif(x[0]=1 \wedge x[1]=0 \wedge x[2]=0 \wedge x[3]=0) \ then \ (y[0]=1 \wedge y[1]=1 \wedge y[2]=-1 \wedge y[3]=-1) \\ elseif(x[0]=1 \wedge x[1]=0 \wedge x[2]=0 \wedge x[3]=1) \ then \ (y[0]=-1 \wedge y[1]=0 \wedge y[2]=-1 \wedge y[3]=-1) \\ elseif(x[0]=1 \wedge x[1]=1 \wedge x[2]=0 \wedge x[3]=0) \ then \ (y[0]=0 \wedge y[1]=-1 \wedge y[2]=-1 \wedge y[3]=-1) \\ else(y[0]=-1 \wedge y[1]=-1 \wedge y[2]=-1 \wedge y[3]=-1) \ else(y[0]=-1 \wedge y[1]=-1 \wedge y[2]=-1 \wedge y[3]=-1) \end{cases}
```

Example: ID/ZC Distinguishers for 5 Rounds of Ascon

2¹⁵⁵ ZC Distinguishers (upper/lower nonzero: **v**/**v**)

2¹⁵⁵ ID Distinguishers (upper/lower unknown: **z**/**z**)

The Advantages of Our Method to Search for Distinguishers

- Based on satisfiability of the CP model
- Any feasible solutions of our CP model is a distinguisher
- We do not fix the input/output of distinguisher
- ♥ Extendable to a unified model for key-recovery
 - Enables us to find a distinguisher optimized for key-recovery
 - **♥** Enables us to consider key-recovery techniques:
 - MitM
 - Key bridging
 - **⊘** Partial-sum technique

Our Unified CP Model for Partial-Sum Key-Recovery

Naive Approach v.s. Partial-Sum Technique

- $x_0 = c, N_0 = N, N_i < N$
- $\nabla T = \sum_{i=1}^{n} \frac{N_{i-1}}{n} \cdot 2^{|k_1| + \dots + |k_i|} < \sum_{i=1}^{n} \frac{N}{n} \cdot 2^{|k|}$
- \bigcirc $T < N \cdot 2^{|k|}$

Naive Approach v.s. Partial-Sum Technique

$$\Theta x = F(k, c)$$

$$\Theta$$
 $T = N \cdot 2^{|k|}$

$$x_1 = f_1(\mathbf{k}_1, \mathbf{x}_0), x_2 = f_2(\mathbf{k}_2, \mathbf{x}_1), \dots, x = f_n(\mathbf{k}_n, \mathbf{x}_{n-1})$$

$$x_0 = c, N_0 = N, N_i < N$$

$$\bullet$$
 $T = \sum_{i=1}^{n} \frac{N_{i-1}}{n} \cdot 2^{|\mathbf{k}_1| + \dots + |\mathbf{k}_i|} < \sum_{i=1}^{n} \frac{N}{n} \cdot 2^{|\mathbf{k}|}$

$$\mathbf{O} T < N \cdot 2^{|\mathbf{k}|}$$

Example: Partial-Sum Integral Key Recovery for AES [Fer+00]

$$C_{4}[0] = S^{-1} \left(\bar{K}_{5}[0] \oplus 0E \cdot S^{-1} \left(C_{6}[0] \oplus K_{6}[0] \right) \oplus 09 \cdot S^{-1} \left(C_{6}[7] \oplus K_{6}[7] \right) \right.$$

$$\left. \oplus 0D \cdot S^{-1} \left(C_{6}[10] \oplus K_{6}[10] \right) \oplus 0B \cdot S^{-1} \left(C_{6}[13] \oplus K_{6}[13] \right) \right)$$

■ Time complexity of naive key recovery: $6 \times 2^{32} \times 2^{40} \approx 2^{74.58}$

Partial-sum Technique for Integral Key Recovery [Fer+00]

- Guess $K_6[0,7]$ and derive $S_0(C_6[0] \oplus K_6[0]) \oplus S_1(C_6[7] \oplus K_6[7])$
- Guess $K_6[10]$ and derive $\mathcal{S}_2\left(C_6[10] \oplus K_6[10]\right)$
- Guess $K_6[13]$ and derive $S_3(C_6[13] \oplus K_6[13])$
- Guess $\bar{K}_5[0]$ and derive $C_4[0]$
- Time complexity: $6 \times 4 \times 2^{48} \approx 2^{52}$ S-box lookups

Our CP Model for Partial-Sum Technique - I

Step	Guessed	$K \times D = \!\!Mem$	Time	Stored Texts
0	-	$2^0 \times 2^{40} = 2^{40}$	$2^{40-5.2}$	$Z_{17}[1,3,4,7]; X_{17}[8,11,12,13,15]; X_{16}[15]$
1	$STK_{17}[1]$	$2^4 \times 2^{36} = 2^{40}$	$2^{44-7.2}$	$Z_{17}[3,4,7]; X_{17}[8,11,12,15]; X_{16}[14,15]$
2	$STK_{17}[7]$	$2^8 \times 2^{32} = 2^{40}$	$2^{44-8.2}$	$Z_{17}[3,4]; X_{17}[8,12,15]; Z_{16}[6]; X_{16}[14,15]$
3	$STK_{17}[3]$	$2^{12} \times 2^{28} = 2^{40}$	$2^{44-7.2}$	$Z_{17}[4]; X_{17}[8,12]; Z_{16}[6]; X_{16}[12,14,15]$
4	$STK_{17}[4]$	$2^{16} \times 2^{28} = 2^{44}$	$2^{44-7.2}$	$Z_{16}[0,6,7]; X_{16}[10,12,14,15]$
5	$STK_{16}[6]$	$2^{20} \times 2^{20} = 2^{40}$	$2^{48-7.2}$	$Z_{16}[0,7]; X_{16}[12,15]; X_{15}[5]$
6	$STK_{16}[7]$	$2^{24} \times 2^{16} = 2^{40}$	$2^{44-7.2}$	$Z_{16}[0]; X_{16}[12]; X_{15}[5,9]$
7	$STK_{16}[0]$	$2^{28} \times 2^4 = 2^{32}$	$2^{44-6.2}$	X ₁₃ [0]
Σ		2 ⁴⁴	$2^{41.32}$	

Our CP Model for Partial-Sum Technique - II

- Assume that in each step we guess at least one cell of the involved keys.
- We define the number of steps *s* which is less than the number of involved key cells.
- For each cell we define an integer variable with domain $\{0, \dots, s\}$.
- We define some constraints to compute the step number of deriving each cell.

Our Unified Model for Finding Integral Attack

- Our CP model for finding complete integral attack includes the following modules:
 - Model the distinguisher part
 - Model the meet-in-the-middle technique
 - Model the involved cells in key recovery
 - Model the step assignment
 - Model the tweakey schedule (key-bridging)
 - Model the time/memory complexity evaluation
- Objective function: minimize the total time complexity

Usage of Our Tool

python3 attack.py -RB 1 -RD 12 -RF 5

- ♥ We use MiniZinc [Net+07] to create our CP models
- ♥ We use Gurobi [Gur22] and OrTools [PF] as the CP solvers
- Our tool can find the results in a few seconds running on a regular laptop

Example: 18-round Integral Attack on SKINNY-n-n

Contributions and Future Works

Contributions and Future Works

- Contributions
 - **♦** Improving unified models for finding complete ID/ZC/integral attacks
 - Introducing a CP model for the partial-sum technique for the first time
 - Found improved attacks for SKINNY, and ForskSKINNY, and QARMAv2
- Future works
 - A Extending our distinguisher models for ID/ZC to find indirect contradictions
 - A Extending our tools to AndRX and ARX ciphers, e.g., Simeck, and SPECK.
 - A Extending our approach to division property or monomial prediction techniques
 - ▲ Improving the key-recovery part of our CP models for ZC attacks
 - O: https://github.com/hadipourh/zeroplus
 - T: https://ia.cr/2023/1701

Bibliography I

- [Ava+23] Roberto Avanzi et al. **The QARMAv2 Family of Tweakable Block Ciphers**. *IACR Trans. Symmetric Cryptol.* 2023.3 (2023), pp. 25–73. DOI: 10.46586/TOSC.V2023.I3.25–73.
- [BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. **Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials**. EUROCRYPT 1999. Vol. 1592. LNCS. Springer, 1999, pp. 12–23. DOI: 10.1007/3-540-48910-X_2.
- [BDL20] Augustin Bariant, Nicolas David, and Gaëtan Leurent. **Cryptanalysis of Forkciphers**. *IACR Trans. Symmetric Cryptol.* 2020.1 (2020), pp. 233–265. DOI: 10.13154/tosc.v2020.i1.233-265.
- [BR14] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Des. Codes Cryptogr. 70.3 (2014), pp. 369–383. DOI: 10.1007/s10623-012-9697-z.

Bibliography II

- [Cui+16] Tingting Cui et al. New Automatic Search Tool for Impossible Differentials and Zero-Correlation Linear Approximations. IACR Cryptology ePrint Archive, Report 2016/689. 2016. URL: https://eprint.iacr.org/2016/689.
- [DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks. CRYPTO 2016. Vol. 9815. LNCS. Springer, 2016, pp. 157–184.
- [DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. **The Block Cipher Square**. FSE 1997. Vol. 1267. LNCS. Springer, 1997, pp. 149–165. DOI: 10.1007/BFb0052343.
- [Fer+00] Niels Ferguson et al. Improved Cryptanalysis of Rijndael. FSE 2000. Vol. 1978. LNCS. Springer, 2000, pp. 213–230. DOI: 10.1007/3-540-44706-7_15.

Bibliography III

- [Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2022. URL: https://www.gurobi.com.
- [HSE23] Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the Impossible: Automated Search for Full Impossible Differential, Zero-Correlation, and Integral Attacks. EUROCRYPT 2023. Vol. 14007. LNCS. Springer, 2023, pp. 128–157. DOI: 10.1007/978-3-031-30634-1_5.
- [Knu98] Lars Knudsen. **DEAL-a 128-bit block cipher**. complexity 258.2 (1998), p. 216.
- [Lai94] Xuejia Lai. **Higher order derivatives and differential cryptanalysis**. *Communications and cryptography*. Springer, 1994, pp. 227–233.

Bibliography IV

- [Lu+08] Jiqiang Lu et al. Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1. CT-RSA 2008. Vol. 4964. LNCS. Springer, 2008, pp. 370–386. DOI: 10.1007/978-3-540-79263-5_24.
- [Net+07] Nicholas Nethercote et al. MiniZinc: Towards a Standard CP Modelling Language. CP 2007. Vol. 4741. LNCS. Springer, 2007, pp. 529–543.
- [Niu+21] Chao Niu et al. **Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts and Tweakeys**. CT-RSA 2021. Vol. 12704. LNCS. Springer, 2021, pp. 126–147. DOI: 10.1007/978-3-030-75539-3_6.
- [PF] Laurent Perron and Vincent Furnon. **OR-Tools**. Version 9.3. Google. URL: https://developers.google.com/optimization/.

Bibliography V

- Yu Sasaki and Yosuke Todo. New Impossible Differential Search Tool from Design and Cryptanalysis Aspects. EUROCRYPT 2017. Cham: Springer International Publishing, 2017, pp. 185–215. DOI: 10.1007/978-3-319-56617-7_7.
- [Sun+15] Bing Sun et al. Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis. CRYPTO 2015. Vol. 9215. LNCS. Springer, 2015, pp. 95–115. DOI: 10.1007/978-3-662-47989-6_5.
- [Sun+17] Siwei Sun et al. Analysis of AES, SKINNY, and Others with Constraint Programming. *IACR Transactions on Symmetric Cryptology* 2017.1 (Mar. 2017), pp. 281–306. DOI: 10.13154/tosc.v2017.i1.281-306.

Bibliography VI

- [Sun+20] Ling Sun et al. On the Usage of Deterministic (Related-Key) Truncated Differentials and Multidimensional Linear Approximations for SPN Ciphers. IACR Transactions on Symmetric Cryptology 2020.3 (Sept. 2020), pp. 262–287. DOI: 10.13154/tosc.v2020.i3.262-287.
- [Tez14] Cihangir Tezcan. Improbable differential attacks on Present using undisturbed bits. J. Comput. Appl. Math. 259 (2014), pp. 503–511. DOI: 10.1016/j.cam.2013.06.023.
- [Xia+16] Zejun Xiang et al. Applying MILP Method to Searching Integral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers. ASIACRYPT 2016. Vol. 10031. LNCS. 2016, pp. 648–678. DOI: 10.1007/978-3-662-53887-6_24.