第10章 期末复习

感谢清华大学自动化系 瑞教授提供PPT

Basics of Statistics

统计学方法及其应用

统计学基础

随机抽样

Population

- 概念上,总体指研究对象的全体 K
- 统计上,总体指与全体相联系的某一数值特征的概率分布 f(x)
- 例如
 - 研究全中国儿童的身高
 - 总体为全体中国儿童
 - 因为关心的是身高这一数值特征,总体又指儿童身高的分布
 - 研究降压药物的降压作用
 - 总体为全体高血压病人
 - 因为关心的是血压这一数值特征,总体又指病人血压的分布

Random sample

The random variables $X_1, ..., X_n$ are called a **random sample** of size n from the population f(x) if $X_1, ..., X_n$ are mutually independent random variables and the marginal pdf or pmf of each X_i is the same function f(x). Alternatively, $X_1, ..., X_n$ are called independent and identically distributed (iid) random variables with pdf or pmf f(x). A realization of these random variables, $x_1, ..., x_n$, is called an observation of the sample $X_1, ..., X_n$.

Statistic

Let $X_1, ..., X_n$ be a random sample of size n from a population and let $T(x_1, ..., x_n)$ be a real-valued or vector-valued function whose domain includes the sample space of $(X_1, ..., X_n)$. Then the random variable or random vector $T = (X_1, ..., X_n)$ is called a **statistic**. The probability distribution of a statistic Y is called the **sampling distribution of Y**.

统计量就是样本的函数, 应不依赖于总体的参数。统计量的分布称为抽样分布。

Expectation of a random sample

Let X_1, \ldots, X_n be a random sample from a population and let g(x) be a function such that $\mathrm{E} g(X_1)$ and $\mathrm{Var} g(X_1)$ exist. Then

$$\mathrm{E}\!\left(\sum_{i=1}^n g(X_i)\right) = n \mathrm{E}\, g(X_1),$$

and

$$\operatorname{Var}\!\left(\sum_{i=1}^n g(X_i)\right) = n\operatorname{Var}\!g(X_1).$$

Sample mean

The **sample mean** is the arithmetic average of the values in a random sample. It is usually denoted by

$$\overline{X} = \overline{X}(X_1, \dots, X_n) = \frac{X_1 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i.$$

Sample variance and standard deviation

The sample variance is the statistic defined by

$$S^{2} = S^{2}(X_{1},...,X_{n}) = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

Since

$$\sum_{i=1}^{n} (X_i^2 - 2X_i \overline{X} + \overline{X}^2) = \sum_{i=1}^{n} X_i^2 - 2\overline{X} \sum_{i=1}^{n} X_i + \sum_{i=1}^{n} \overline{X}^2 = \sum_{i=1}^{n} X_i^2 - n\overline{X}^2.$$

We have

$$S^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n \bar{X}^2 \right).$$

The sample standard derivation is the statistic defined by

$$S = \sqrt{S^2}.$$

One normal sample

Let $X_1, ..., X_n$ be a random sample from a normal (μ, σ^2) population, then

- (1) X and S^2 are independent random variables.
- (2) $\frac{X-\mu}{\sigma/\sqrt{n}}$ has a standard normal distribution.
- (3) $\frac{X-\mu}{S/\sqrt{n}}$ has a T_{n-1} distribution.
- (4) $\sum_{i=1}^{n} \left(\frac{X_i \mu}{\sigma} \right)^2$ has a χ_n^2 distribution.
- (5) $\sum_{i=1}^{n} \left(\frac{X_i \overline{X}}{\sigma} \right)^2 = \frac{(n-1)S^2}{\sigma^2} \text{ has a } \chi_{n-1}^2 \text{ distribution.}$

Two normal samples

Let $X_1, ..., X_m$ and $Y_1, ..., Y_n$ be two random samples from two normal populations $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$, respectively.

Assume that $\sigma_{\chi}^2 = \sigma_{\chi}^2 = \sigma^2$, then

- (1) $\frac{(\overline{X} \overline{Y}) (\mu_X \mu_Y)}{\sigma \sqrt{1/m + 1/n}}$ has a standard normal distribution.
- (2) $\frac{\left(\overline{X} \overline{Y}\right) \left(\mu_X \mu_Y\right)}{S_p \sqrt{1/m + 1/n}} \text{ has a } T_{m+n-2} \text{ distribution,}$ where $S_p^2 = \frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}.$
- (3) $\frac{S_X^2 / S_Y^2}{\sigma_X^2 / \sigma_Y^2} = \frac{S_X^2 / \sigma_X^2}{S_Y^2 / \sigma_Y^2}$ has a $F_{m-1,n-1}$ distribution.

Paired normal sample

Let $(X_1, Y_1), ..., (X_n, Y_n)$ be a random sample from a bivariate normal population with parameters $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho$, then

$$\frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_X - \mu_Y\right)}{\sigma_{X-Y} / \sqrt{n}}$$

has a standard normal distribution, and

$$\frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{S_{X-Y} / \sqrt{n}}$$

has a student's t distribution with n-1 degrees of freedom,

where
$$\sigma_{X-Y}^2 = \sigma_X^2 - 2\rho\sigma_X\sigma_Y + \sigma_Y^2$$
, and

$$S_{X-Y}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left[(X_{i} - Y_{i}) - (\overline{X} - \overline{Y}) \right]^{2}.$$

The sufficiency principle

If $T(\mathbf{X})$ is a **sufficient statistic** for θ , then any inference about θ should depend on the sample \mathbf{X} only through the value $T(\mathbf{X})$. That is, if \mathbf{x} and \mathbf{y} are two sample points such that $T(\mathbf{x}) = T(\mathbf{y})$, then the inference about θ should be the same whether $\mathbf{X} = \mathbf{x}$ or $\mathbf{X} = \mathbf{y}$ is observed.

A sufficient statistic captures **ALL** the information about the parameter contained in the sample. Any additional information in the sample, besides the value of the sufficient statistic, does **not** contain any more information about the parameter.

Sufficient statistics

A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if the conditional distribution of the sample \mathbf{X} given the value of $T(\mathbf{X})$ does not depend on θ .

$$P_{\theta}(\mathbf{X} = \mathbf{x} \mid T(\mathbf{X}) = T(\mathbf{x})) = \frac{P_{\theta}(\mathbf{X} = \mathbf{x} \text{ and } T(\mathbf{X}) = T(\mathbf{x}))}{P_{\theta}(T(\mathbf{X}) = T(\mathbf{x}))}$$

$$= \frac{P_{\theta}(\mathbf{X} = \mathbf{x})}{P_{\theta}(T(\mathbf{X}) = T(\mathbf{x}))}$$

$$P(\mathbf{X} = \mathbf{x} \mid T(\mathbf{X}) = T(\mathbf{x})) = \frac{p(\mathbf{x} \mid \theta)}{q(T(\mathbf{x}) \mid \theta)}$$

Sufficient statistics

Sufficient condition

If $p(\mathbf{x} \mid \theta)$ is the joint pdf or pmf of \mathbf{X} and $q(t \mid \theta)$ is the pdf or pmf of $T(\mathbf{X})$, then $T(\mathbf{X})$ is a sufficient statistic for θ if, for every \mathbf{x} in the sample space, the ratio

$$\frac{p(\mathbf{x} \mid \theta)}{q(T(\mathbf{x}) \mid \theta)}$$

is constant as a function of θ .

Factorization theorem

Sufficient and necessary condition

Let $f(\mathbf{x} \mid \theta)$ denote the joint pdf or pmf of a sample \mathbf{X} . A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if and only if there exist functions $g(t \mid \theta)$ and $h(\mathbf{x})$ such that, for all sample points \mathbf{x} and all parameter points θ ,

$$f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x}).$$

For exponential family

Sufficient statistic for the exponential family

Let X_1, \ldots, X_n be iid random variables from a pdf or pmf that belongs to an exponential family given by

$$f(x \mid \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right],$$

where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d), d \leq k$. Then,

$$T(X) = \left(\sum_{i=1}^{n} t_1(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is a sufficient statistic for θ .

The likelihood function

Let $f(\mathbf{x} \mid \theta)$ denote the joint pmf or pdf of the sample $\mathbf{X} = (X_1, \dots X_n)$. Then, given that $\mathbf{X} = \mathbf{x}$ is observed, the function of θ defined by

$$L(\theta \mid \mathbf{x}) = f(\mathbf{x} \mid \theta)$$

is called the **likelihood function**.

The likelihood function measures the plausibility that the sample is observed under a certain parameter. Larger likelihood means the sample that we observed is more likely to have occurred due to the given parameter.

The likelihood principle

If \mathbf{x} and \mathbf{y} are two sample points such that $L(\theta \mid \mathbf{x})$ is proportional to $L(\theta \mid \mathbf{y})$, that is, there exists a constant $C(\mathbf{x}, \mathbf{y})$ such that

$$L(\theta \mid \mathbf{x}) = C(\mathbf{x}, \mathbf{y})L(\theta \mid \mathbf{y})$$
 for all θ ,

then the conclusions drawn from \mathbf{x} and \mathbf{y} should be identical.

$$\frac{L(\boldsymbol{\theta}^{(1)} \mid \mathbf{x})}{L(\boldsymbol{\theta}^{(2)} \mid \mathbf{x})} = \frac{C(\mathbf{x}, \mathbf{y})L(\boldsymbol{\theta}^{(1)} \mid \mathbf{y})}{C(\mathbf{x}, \mathbf{y})L(\boldsymbol{\theta}^{(2)} \mid \mathbf{y})} = \frac{L(\boldsymbol{\theta}^{(1)} \mid \mathbf{y})}{L(\boldsymbol{\theta}^{(2)} \mid \mathbf{y})}$$

Point Estimation

统计学方法及其应用

统计学基础

点估计

Introduction

For a parametric model

$$f(x \mid \theta)$$

- The mathematical structure is already know
- The knowledge of the parameter yield the knowledge of the entire population
- We are interested in obtaining a good estimation of θ , Sometimes an estimation of a function of θ

Point estimator

A **point estimator** is any function $W(X_1,...,X_n)$ of a sample; that is, any statistic is a point estimator.

Estimator: a function of the sample, a random variable.

$$W(X_1,\ldots,X_n)$$

Estimate: the realized value of an estimator, a number.

$$W(x_1,\ldots,x_n)$$

Method of moments

Let $X_1,...,X_n$ be a sample from a population with k parameters $f(x\mid\theta_1,...,\theta_k)$. Define

$$m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i^1,$$
 $\mu'_1 = EX^1;$ $m_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2,$ $\mu'_2 = EX^2;$

$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k, \qquad \mu'_k = \mathbf{E} X^k.$$

Solve the following system of equations for $(\theta_1, ..., \theta_k)$, in terms of $(m_1, ..., m_k)$

$$m_{1} = \mu'_{1}(\theta_{1}, \dots, \theta_{k});$$

$$m_{2} = \mu'_{2}(\theta_{1}, \dots, \theta_{k});$$

$$\dots$$

$$m_{k} = \mu'_{k}(\theta_{1}, \dots, \theta_{k}).$$

Maximum likelihood estimate

Because a larger likelihood implies a bigger plausibility that a parameter is the true one. It is reasonable to choose the parameter θ^* that can maximize the likelihood function $L(\theta \mid \mathbf{x})$ as our best guess of θ . In other words,

$$\theta^* = \arg\max_{\theta \in \Theta} L(\theta \mid \mathbf{x}).$$

Equivalently,

$$\theta^* = \arg\max_{\theta \in \Theta} \log L(\theta \mid \mathbf{x}).$$

Obviously,

$$L(\theta^* \mid \mathbf{x}) \ge L(\theta \mid \mathbf{x}), \text{ for any } \theta \in \Theta.$$

 θ^* is called the maximum likelihood estimate (MLE) of θ .

Maximum likelihood estimators

For each sample point \mathbf{x} , let $\hat{\theta}(\mathbf{x})$ be a parameter value at which $L(\theta \mid \mathbf{x})$ attains its maximum as a function of θ , with \mathbf{x} held fixed. A **maximum likelihood estimator** (MLE) of the parameter θ based on a sample \mathbf{X} is $\hat{\theta}(\mathbf{X})$.

We need to find a **global** maximum! Need to check boundary conditions! Sometimes yielding optimization problems with constraints.

Refer to optimization books!

Missing data

- From the viewpoint of maximum likelihood estimation
 - Algorithm: EM algorithm
 - Application: Motif finding
 - Application: Gaussian mixture
- From the viewpoint of Bayesian estimation
 - Algorithm: Gibbs sampling
 - Application: Motif finding

The Basic Setting in EM

- $\bullet \quad Y = (X, Z)$
 - Y: complete data ("augmented data")
 - X: observed data ("incomplete" data)
 - Z: hidden data ("missing" data)
- Given a fixed x, there could be many possible z's.
 - Ex: given a sentence x, there could be many state sequences in an HMM that generates x.

The Iterative Approach for MLE

 When missing data is available, it's hard to find the MLE directly

$$\theta_{ML} = \underset{\theta}{\operatorname{Argmax}} \log \left(\sum_{Z} P(X, Z | \theta) \right)$$

An alternative is to find a sequence

$$\theta^{(0)}, \theta^{(1)}, \dots, \theta^{(t)}, \dots,$$

s.t. $l(\theta^{(0)}) < l(\theta^{(1)}) < \dots < l(\theta^{(t)}) < \dots$

Maximizing the Lower Bound

 The Jensen's inequality gives a lower bound to maximize,

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{Argmax}} E_{P(Z|X,\theta^{(t)})} [\log P(X,Z|\theta)]$$

Q-function

$$Q(\theta|\theta^{(t)}) = E_{P(Z|X,\theta^{(t)})} \left[\log P(X,Z|\theta) \right]$$

Increasing the Likelihood

 Increasing the likelihood by maximizing the lower bound

$$l(\theta) - l(\theta^{(t)}) \ge Q(\theta|\theta^{(t)}) - Q(\theta^{(t)}|\theta^{(t)})$$
$$Q(\theta^{(t+1)}|\theta^{(t)}) > Q(\theta^{(t)}|\theta^{(t)}) \Rightarrow l(\theta^{(t+1)}) > l(\theta^{(t)})$$

Which means that a better estimation of the parameter.

Bayes estimators

$$p(\theta \mid \mathbf{x}) = \frac{p(\theta)p(\mathbf{x} \mid \theta)}{p(\mathbf{x})}$$
$$= \frac{\text{prior} \times \text{likelihood}}{\text{marginal likelihood}}$$

 $p(\theta)$: prior

 $p(\mathbf{x} \mid \theta)$: likelihood

 $p(\mathbf{x})$: marginal likelihood (evidence)

 $p(\theta \mid \mathbf{x})$: posterior

Conjugate prior

Let \mathcal{F} denote the class of pdfs or pmfs $f(x \mid \theta)$ (indexed by θ). A class Π of prior distribution is a **conjugate family** of \mathcal{F} if the posterior distribution is in the class Π for all $f \in \mathcal{F}$, all priors in Π , and all $x \in \mathcal{X}$.

Binomial vs Beta

Likelihood

• Prior

Multinomial vs Dirichelet

Likelihood

$$p(\mathbf{n} \mid heta) \propto \prod_{k=1}^m heta_k^{n_k}$$

Prior

$$p(heta) = rac{\Gamma(\sum_{k=1}^m lpha_k)}{\prod_{k=1}^m \Gamma(lpha_k)} \prod_{k=1}^m heta_k^{lpha_k-1}$$

$$p(\theta \mid \mathbf{x}) = \frac{\Gamma(\sum_{k=1}^{m} (\alpha_k + n_k))}{\prod_{k=1}^{m} \Gamma(\alpha_k + n_k)} \prod_{k=1}^{m} \theta_k^{\alpha_k + n_k}$$

Normal vs normal (mean)

Likelihood

$$p(\mathbf{x} \mid \mu) \propto \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right]$$

Normal prior

$$p(\mu \mid \xi, au^2) \propto \exp \left[-rac{1}{2 au^2} (\mu - \xi)^2
ight]$$

$$\mu \mid \mathbf{x} \sim N \left(\frac{\sigma^2 \xi + \tau^2 n \overline{x}}{\sigma^2 + \tau^2 n}, \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2 n} \right)$$

Normal vs Gamma (Precision)

Likelihood

$$p(\mathbf{x} \mid \lambda) \propto \lambda^{\frac{n}{2}} \exp \left[-\frac{\lambda}{2} \sum_{i=1}^{n} (x_i - \mu)^2 \right]$$

• Prior: Gamma($shape = \alpha, rate = \beta$)

$$p(\lambda \mid \alpha, rate = \beta) \propto \lambda^{\alpha - 1} \exp(-\beta \lambda)$$

$$p(\lambda \mid \mathbf{x}; \alpha, \beta) \propto \lambda^{\tilde{\alpha}-1} \exp(-\lambda \tilde{\beta})$$

$$\tilde{\alpha} = \alpha + \frac{n}{2}, \ \tilde{\beta} = \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Normal vs Inverse-Gamma (Variance)

Likelihood

$$p(\mathbf{x} \mid \sigma^2) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2\right]$$

• Prior:

$$p(\sigma^2 \mid \alpha, \beta) \propto (1 / \sigma^2)^{\alpha+1} \exp(-\beta / \sigma^2)$$

$$p(\sigma^2 \mid \mathbf{x}; \alpha, \beta) \propto (1/\sigma^2)^{\tilde{\alpha}+1} \exp(-\tilde{\beta}/\sigma^2)$$

$$\tilde{\alpha} = \alpha + \frac{n}{2}, \ \tilde{\beta} = \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Normal vs Scaled-inverse-chi-square (Variance)

Likelihood

$$p(\mathbf{x} \mid \sigma^2) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2\right]$$

Prior

$$p(\sigma^2 \mid \eta, \tau^2) \propto (1 / \sigma^2)^{\eta/2+1} \exp[-\eta \tau^2 / (2\sigma^2)]$$

Posterior

$$p(\sigma^2 \mid \mathbf{x}; \eta, \tau^2) \propto (1 / \sigma^2)^{\tilde{\eta}/2+1} \exp[-\tilde{\eta}\tilde{\tau}^2 / (2\sigma^2)]$$
$$\tilde{\eta} = \eta + n, \ \tilde{\tau}^2 = \frac{\eta \tau^2 + n s_n^2}{\eta + n}$$

Normal vs Normal-gamma (mean and precision)

Likelihood

$$p(\mathbf{x} \mid \mu, \lambda) \propto \lambda^{rac{n}{2}} \exp \left[-rac{\lambda}{2} \sum_{i=1}^n (x_i - \mu)^2
ight]$$

Prior

$$p(\mu, \lambda \mid \xi, \kappa, \alpha, \beta) \propto \lambda^{\frac{1}{2}} \exp \left[-\frac{\kappa \lambda}{2} (\mu - \xi)^2 \right] \lambda^{\alpha - 1} \exp \left(-\beta \lambda \right)$$

Posterior

$$p(\mu, \lambda \mid \mathbf{x}; \xi, \kappa, \alpha, \beta) \propto \lambda^{\frac{1}{2}} \exp \left[-\frac{\tilde{\kappa}\lambda}{2} (\mu - \tilde{\xi})^2 \right] \lambda^{\tilde{\alpha} - 1} \exp(-\lambda \tilde{\beta})$$

$$\tilde{\xi} = \frac{\kappa \xi + n\overline{x}}{\kappa + n}, \tilde{\kappa} = \kappa + n, \tilde{\alpha} = \alpha + \frac{n}{2}, \tilde{\beta} = \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \overline{x})^2 + \frac{1}{2} \frac{n\kappa}{\kappa + n} (\overline{x} - \xi)^2$$

Normal vs normal-inverse-gamma (mean and variance)

Likelihood

$$p(\mathbf{x} \mid \mu, \sigma^2) \propto (1 / \sigma^2)^{\frac{n}{2}} \exp \left[-\frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2 \right]$$

Prior

$$p(\mu, \lambda \mid \xi, \kappa, \alpha, \beta) \propto (1 / \sigma^2)^{\frac{1}{2}} \exp\left[-\frac{\kappa}{\sigma^2} \frac{(\mu - \xi)^2}{2}\right] (1 / \sigma^2)^{\alpha - 1} \exp(-\beta / \sigma^2)$$

Posterior

$$p(\mu, \sigma^2 \mid \mathbf{x}; \xi, \kappa, \alpha, \beta) \propto (1 / \sigma^2)^{\frac{1}{2}} \exp \left[-\frac{\tilde{\kappa}}{2\sigma^2} (\mu - \tilde{\xi})^2 \right] (1 / \sigma^2)^{\tilde{\alpha}+1} \exp(-\tilde{\beta} / \sigma^2)$$

$$\tilde{\xi} = \frac{\kappa \xi + n\overline{x}}{\kappa + n}, \tilde{\kappa} = \kappa + n, \tilde{\alpha} = \alpha + \frac{n}{2}, \tilde{\beta} = \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \overline{x})^2 + \frac{1}{2} \frac{n\kappa}{\kappa + n} (\overline{x} - \xi)^2$$

Normal vs Scaled-inverse-chi-square (mean and variance)

- Likelihood $p(\mathbf{x} \mid \mu, \sigma^2) \propto (1 / \sigma^2)^{\frac{n}{2}} \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i \mu)^2 \right]$
- **Prior** $p(\mu, \sigma^2 \mid \xi, \kappa, \eta, \tau^2) \propto (1/\sigma^2)^{\frac{1}{2}} \exp \left[-\frac{\kappa}{\sigma^2} \frac{(\mu \xi)^2}{2} \right] (1/\sigma^2)^{\eta/2+1} \exp \left[-\frac{\eta \tau^2}{2\sigma^2} \right]$
- Posterior

$$p(\mu, \sigma^2 \mid \mathbf{x}) \propto (1/\sigma^2)^{\frac{1}{2}} \exp\left[-\frac{\tilde{\kappa}}{\sigma^2} \frac{(\mu - \tilde{\xi})^2}{2}\right] (1/\sigma^2)^{\tilde{\alpha}+1} \exp(-\tilde{\eta}\tilde{\tau}^2/\sigma^2)$$

 $\mu, \sigma^2 \mid \mathbf{x} \sim \text{Normal-Scaled-inverse-chi-square}(\tilde{\xi}, \tilde{\kappa}, \tilde{\eta}, \tilde{\tau}^2)$

$$\tilde{\xi} = \frac{\kappa \xi + n \overline{x}}{\kappa + n}, \quad \tilde{\kappa} = \kappa + n, \ \tilde{\eta} = \eta + n,$$

$$\tilde{\eta}\tilde{\tau}^2 = \eta \tau^2 + \sum_{i=1}^n (x_i - \overline{x})^2 + \frac{n\kappa}{\kappa + n} (\overline{x} - \xi)^2$$

Mean squared error

The **mean squared error** (MSE) of a point estimator W of a parameter θ is the function of θ defined by

$$E_{\theta}(W - \theta)^2 = Var_{\theta}W + (Bias_{\theta}W)^2.$$

The bias of W is defined by

$$\operatorname{Bias}_{\theta} W = \operatorname{E}_{\theta} W - \theta.$$

An estimator is called unbiased if

$$E_{\theta}W = \theta$$

for all θ .

Best unbiased estimator

An estimator W^* is a **best unbiased estimator** (BUE) of $\tau(\theta)$ if

- (1) It satisfies $E_{\theta}W^{\star} = \tau(\theta)$ for all θ and,
- (2) for any other estimator W with $E_{\theta}W = \tau(\theta)$,

$$\operatorname{Var}_{\theta} W^{\star} \leq \operatorname{Var}_{\theta} W$$

for all θ .

 W^* is also called a **uniform minimum variance unbiased** estimator (UMVUE) of $\tau(\theta)$.

If a best unbiased estimator exists, it is unique.

The Cramér-Rao Inequality

Let $X_1, ..., X_n$ be a sample with pdf $f(\mathbf{x} \mid \theta)$, and let

 $W(\mathbf{X}) = W(X_1, \dots, X_n)$ be any estimator satisfying

$$\frac{d}{d\theta} E_{\theta} W(\mathbf{X}) = \int_{\mathbf{x} \in \mathcal{X}} \frac{\partial}{\partial \theta} [W(\mathbf{x}) f(\mathbf{x} \mid \theta)] d\mathbf{x}$$

and

$$\operatorname{Var}_{\theta}W(\mathbf{X}) < \infty$$

Then

$$\mathrm{Var}_{\boldsymbol{\theta}} W(\mathbf{X}) \geq \frac{\left(\frac{d}{d\boldsymbol{\theta}} \operatorname{E}_{\boldsymbol{\theta}} W(\mathbf{X})\right)^2}{\operatorname{E}_{\boldsymbol{\theta}} \left(\left(\frac{\partial}{\partial \boldsymbol{\theta}} \log f(\mathbf{X} \mid \boldsymbol{\theta})\right)^2\right)}. \longrightarrow \begin{array}{c} \text{Information} \\ \text{number} \end{array}$$

Attainment of the Cramér-Rao bound

Let $X_1, ..., X_n$ be iid random variables with pdf $f(x \mid \theta)$, where $f(x \mid \theta)$ satisfies the conditions of the Cramer-Rao theorem. Let $L(\theta \mid \mathbf{x}) = \prod_{i=1}^n f(x_i \mid \theta)$ be the likelihood function of θ . If $W(\mathbf{X}) = (\mathbf{X}_1, ..., \mathbf{X}_n)$ is any unbiased estimator of $\tau(\theta)$, then $W(\mathbf{X})$ attains the Cramer-Rao lower bound if and only if

$$a(\theta)[W(\mathbf{x}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \log L(\theta \mid \mathbf{x})$$

for some function $a(\theta)$.

Rao-Balckwell定理

• 设W是 $\tau(\theta)$ 的任一无偏统计量。T是 θ 的一个充分统计量,定义

$$\phi(T) = E(W|T)$$

则

$$E_{\theta}(\phi(T)) = \tau(\theta) \text{ and } Var\phi(T) \leq Var(W) \quad \forall \theta$$

即 $\phi(T)$ 是 $\tau(\theta)$ 的一致最优无偏估计

最优无偏估计量的唯一性

- 定理: 如果W是τ(θ)的一个最优无偏估计量, 则W唯一。
- 证明: 令W'是另一个最优无偏估计量,考虑 $W^* = \frac{1}{2}(W + W'), E_{\theta}(W^*) = \tau(\theta).$

$$Var(W^*) = \frac{1}{4}Var_{\theta}W + \frac{1}{4}Var_{\theta}W + \frac{1}{2}Cov_{\theta}(W, W')$$

$$\leq \frac{1}{4}Var_{\theta}W + \frac{1}{4}Var_{\theta}W + \frac{1}{2}Var_{\theta}(W)][Var_{\theta}W')]$$

$$= Var_{\theta}(W)$$

最佳无偏估计的判断

- 定理: 如果 $E_{\theta}(W) = \tau(\theta)$, W是 $\tau(\theta)$ 的最佳无偏估计量的充分必要条件是W与0的所有无偏估计量不相关。
- 定理:设T是参数 θ 的完全充分统计量。 $\phi(T)$ 是任意一个仅基于T的统计量.则 $\phi(T)$ 是其期望的唯一最佳无偏统计量。
- 完全性表明:不存在0的非零无偏统计量

Hypothesis Testing

统计学方法及其应用

统计学基础

假设检验

Introduction

A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing problem are called the **null hypothesis** and the **alternative hypothesis**. They are denoted by H_0 and H_1 , respectively.

```
H_{_{0}}:\theta\in\Theta_{_{0}} \quad \text{ versus } \quad H_{_{1}}:\theta\in\Theta_{_{0}}^{^{c}}
```

$$H_{_{0}}: \theta = \theta_{_{0}} \quad \text{versus} \quad H_{_{1}}: \theta \neq \theta_{_{0}}$$

$$H_{_{\boldsymbol{0}}}: \boldsymbol{\theta} \leq \boldsymbol{\theta}_{_{\boldsymbol{0}}} \qquad \text{versus} \qquad H_{_{\boldsymbol{1}}}: \boldsymbol{\theta} > \boldsymbol{\theta}_{_{\boldsymbol{0}}}$$

$$H_{_{\boldsymbol{0}}}: \boldsymbol{\theta} \geq \boldsymbol{\theta}_{_{\boldsymbol{0}}} \qquad \text{versus} \qquad H_{_{\boldsymbol{1}}}: \boldsymbol{\theta} < \boldsymbol{\theta}_{_{\boldsymbol{0}}}$$

Rejection Region and Acceptance Region

A hypothesis testing procedure or hypothesis test is a rule that specifies:

- (1) For which smple values the decision is made to accept H_0 as true.
- (2) For which smple values the decision is made to reject H_0 and accept H_1 as true.

The subset of the sample space for which H_0 will be rejected is called the **rejection region** (R) or **critical region**.

The complement of the rejection region is called the acceptance region $(A = R^c)$.

Test statistic

Certainly, the inference about the parameter θ is drawn by making use of the sample $\mathbf{X} = (X_1, \dots, X_n)$, particularly, via a function of the sample, a **test statistic** $W = W(X_1, \dots, X_n)$.

A hypothesis is a statement about the parameter, a subset of the parameter space.

A rejection region is a set of the sample observations, a subset of the sample space.

Neyman-Pearson tests (NPT)

Consider testing the simple hypotheses

$$H_0: \theta = \theta_0 \text{ versus } H_1: \theta = \theta_1,$$

where the joint pdf or pmf of the sample, corresponding to θ_i is $f(\mathbf{x} \mid \theta_i)$ (i=0,1). A Neyman-Pearson Test is any test with rejection region

$$R = \{\mathbf{x} : f(\mathbf{x} \mid \theta_1) > kf(\mathbf{x} \mid \theta_0)\}$$

and acceptence region

$$R^{c} = \{ \mathbf{x} : f(\mathbf{x} \mid \theta_{1}) < kf(\mathbf{x} \mid \theta_{0}) \},$$

where $k \geq 0$.

Likelihood ratio tests (LRT)

The likelihood ratio test statistic for a hypothesis testing

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_0^c$

is

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta \mid \mathbf{x})}{\sup_{\Theta} L(\theta \mid \mathbf{x})}$$

A likelihood ratio test (LRT) is any test that has a rejection region of the form

$$R = \{ \mathbf{x} : \lambda(\mathbf{x}) < c \},$$

where c is any number satisfying $0 \le c \le 1$.

Two hypotheses, Two actions

Error probabilities

Confusion matrix

Hypothesis testing procedure		Truth		
		$H_1 (\theta \in \Theta_0^c)$	$H_0 (\theta \in \Theta_0)$	
Decision	Reject H_0 ($X \in R$)	Correct rejection	Type I error	
	Accept H_0 ($X \in \mathbb{R}^c$)	Type II error	Correct acceptance	

- Type I error
 - − When $\theta \in \Theta_0$ (H₀ is true), P(Type I error) = P_θ($\mathbf{X} \in R$)
- Type II error
 - − When $\theta \in \Theta_0^c$ (H₁ is true), P(Type II error) = P($X \in R^c$)=1− P_θ ($X \in R$)

The power function

• Since $P_{\boldsymbol{\theta}}(\mathbf{X} \in R) = \begin{cases} P(\text{Type I error}) & \text{if } \boldsymbol{\theta} \in \Theta_0 \\ 1 - P(\text{Type II error}) & \text{if } \boldsymbol{\theta} \in \Theta_0^c \end{cases},$

we define

The **power function** of a hypothesis test with rejection region R is the function of θ defined by $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$.

and expect $\beta(\theta)$ to be near 0 for most $\theta \in \Theta_0$ and near 1 for most $\theta \in \Theta_0^c$.

Probability of Errors

Statistical significance

Size

For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a size α test if

$$\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha.$$

Level

For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a **level** α **test** if

$$\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha.$$

p-value

A p-value $p(\mathbf{X})$ is a test statistic that satisfies $0 \leq p(\mathbf{x}) \leq 1$ for every sample point \mathbf{x} . Small values of $p(\mathbf{x})$ give evidence that H_1 is true. A p-value is valid if, for every $\theta \in \Theta_0$ and every $0 \leq \alpha \leq 1$,

$$P_{\theta}(p(\mathbf{X}) \le \alpha) \le \alpha.$$

p-value

Let $W(\mathbf{X})$ be a test statistic such that **large** values of W give evidence that H_1 is true. For each sample point \mathbf{x} , define

$$p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P_{\theta}(W(\mathbf{X}) \ge W(\mathbf{x})).$$

Then, $p(\mathbf{X})$ is a valid p-value.

Let $W(\mathbf{X})$ be a test statistic such that **small** values of W give evidence that H_1 is true. For each sample point \mathbf{x} , define

$$p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P_{\theta}(W(\mathbf{X}) \le W(\mathbf{x})).$$

Then, $p(\mathbf{X})$ is a valid p-value.

p-value

Let $W(\mathbf{X})$ be a test statistic such that **large** values of W give evidence that H_1 is true. Let $S(\mathbf{X})$ be a sufficient statistic for the parameter θ under the null model. For each sample point \mathbf{x} , define

$$p(\mathbf{x}) = P(W(\mathbf{X}) \ge W(\mathbf{x}) \mid S = S(\mathbf{x})).$$

Then, $p(\mathbf{X})$ is a valid p-value.

	H_0	H_1	σ^2 known	σ^2 unknown
		$\mu \neq \mu_0$	$egin{array}{c} ext{One-sample} \ z ext{ test} \end{array}$	$egin{array}{c} ext{One-sample} \ t ext{ test} \end{array}$
	$\mu = \mu_0$	$\mu>\mu_0$		
One-sample		$\mu < \mu_0$		
	$\mu \leq \mu_0$	$\mu>\mu_0$		
	$\mu \ge \mu_0$	$\mu < \mu_0$		
		$\mu_X - \mu_Y \neq \delta_0$	$egin{array}{c} \mathbf{Two\text{-sample}} \ z \ \mathrm{test} \end{array}$	$egin{array}{c} \mathbf{Two\text{-sample}} \ t \ \mathbf{test} \end{array}$
	$\mu_X - \mu_Y = \delta_0$	$\mu_X - \mu_Y > \delta_0$		
Two-sample		$\mu_X - \mu_Y < \delta_0$		
	$\mu_X - \mu_Y \le \delta_0$	$\mu_X - \mu_Y > \delta_0$		
	$\mu_X - \mu_Y \ge \delta_0$	$\mu_X - \mu_Y < \delta_0$		
		$\mu_X - \mu_Y \neq \delta_0$	$\begin{array}{c} \textbf{Paired-sample} \\ \textbf{\textit{z} test} \end{array}$	$egin{array}{c} ext{Paired-sample} \ t ext{ test} \end{array}$
	$\mu_X - \mu_Y = \delta_0$	$\mu_X - \mu_Y > \delta_0$		
Paired-sample		$\mu_X - \mu_Y < \delta_0$		
	$\mu_X - \mu_Y \le \delta_0$	$\mu_{X}-\mu_{Y}>\delta_{\!0}$		
	$\mu_X - \mu_Y \ge \delta_0$	$\mu_X - \mu_Y < \delta_0$		

	H_0	H_1	μ known	μ unknown
		$\sigma^2 \neq \sigma_0^2$	$\chi^2 ext{ test}$	$\chi^2~{ m test}$
	$\sigma^2 = \sigma_0^2$	$\sigma^{\!2}>\sigma_{\!0}^2$		
One-sample		$\sigma^{\!2}<\sigma_{\!0}^{2}$		
	$\sigma^2 \leq \sigma_0^2$	$\sigma^{\!2}>\sigma_{\!0}^{2}$		
	$\sigma^2 \geq \sigma_0^2$	$\sigma^{\!2}<\sigma_{\!0}^{2}$		
		$\sigma_X^2 / \sigma_Y^2 \neq \lambda_0$	$oldsymbol{F}$ $ ext{test}$	$oldsymbol{F}$ test
	ample	$\sigma_{\!X}^{\;\;2} \;/\; \sigma_{\!Y}^{\;\;2} > \lambda_0$		
Two-sample		$\sigma_{\!X}^{\;\;2} \;/\; \sigma_{\!Y}^{\;\;2} < \lambda_0$		
		$\sigma_{\!X}^{\;\;2} \;/\; \sigma_{\!Y}^{\;\;2} > \lambda_0$		
	$\sigma_X^2 / \sigma_Y^2 \ge \lambda_0$	$\sigma_{\!X}^{\;\;2} \;/\; \sigma_{\!Y}^{\;\;2} < \lambda_0$		

	H_0	H_1	Median	Symmetry
		$m \neq m_0$	Sign test	Wilcoxon Signed rank test
	$m=m_0$	$m > m_0$		
One-sample		$m < m_0$		
	$m \leq m_0$	$m>m_0$		
	$m \geq m_0$	$m < m_0$		
		$m_X \neq m_Y$		Wilcoxon rank sum test (Mann- Whitney test)
	$m_X = m_Y$	$m_X > m_Y$		
Two-sample		$m_X < m_Y$		
	$m_X \leq m_Y$	$m_X > m_Y$		
	$m_X \geq m_Y$	$m_X < m_Y$		
		$m_X \neq m_Y$	Sign test	Paired-sample Wilcoxon signed rank test
	$m_X = m_Y$	$m_X > m_Y$		
Paired-sample		$m_X < m_Y$		
	$m_X \leq m_Y$	$m_X > m_Y$		
	$m_X \geq m_Y$	$m_X < m_Y$		

	H_0	H_1	Exact test	Approximation
		$p \neq p_0$	Binomial exact test	Normal
	$p = p_0$	$p>p_0$		approximation
One-sample		$p < p_0$		9
	$p \leq p_0$	$p>p_0$		χ^2 approximation
	$p \ge p_0$	$p < p_0$		
		$p_X \neq p_Y$	Fisher exact test	Normal
	$p_X = p_Y$	$p_X>p_{Y}$		approximation
${\bf Two\text{-}sample}$		$p_X < p_Y$		
	$p_X \leq p_Y$	$p_X>p_Y$		χ^2 approximation
	$p_X \geq p_Y$	$p_X < p_{Y}$		approximation
	Identical			
	$\operatorname{distributions}$			2
Multi-sample			an	χ^2 approximation
	Independence			approximation

Interval Estimation

统计学方法及其应用

统计学基础

区间估计

Interval estimation

- Our knowledge about the parameter before observing the data $\theta \in (-\infty, \infty)$
- After seeing the data, we made a decision

$$L(\mathbf{x}) \le \theta \le U(\mathbf{x})$$

Shrank the parameter space from $(-\infty, \infty)$ to an interval

• The moderate precision

$$L(W(\mathbf{x}) \mid \mathbf{x}) \ge L(\theta \mid \mathbf{x}) \text{ for any } \theta \in [L(\mathbf{x}), U(\mathbf{x})]$$

• The gained confidence

$$P(L(\mathbf{X}) \le \theta \le U(\mathbf{X})) = P(L(\mathbf{X}) \ge \theta \text{ and } \theta \le U(\mathbf{X})) = 1 - \alpha$$

Interval estimator

An **interval estimate** of a real-valued parameter θ is any pair of functions, $L(x_1, ..., x_n)$ and $U(x_1, ..., x_n)$, of a sample that satisfy $L(\mathbf{x}) \leq U(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$. If $\mathbf{X} = \mathbf{x}$ is observed, the inference $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$ is made. The **random interval** $[L(\mathbf{X}), U(\mathbf{X})]$ is called an **interval estimator** for θ .

An interval estimator is typically composed of TWO statistics.

An interval estimate is a pair of real numbers.

An interval estimator is a pair of statistics.

Compare them with point estimate and point estimator

Various forms of interval estimator

Two-sided:

$$[L(\mathbf{X}), U(\mathbf{X})]$$

One-sided:

$$[L(\mathbf{X}), \infty), (-\infty, U(\mathbf{X})]$$

Closed interval:

$$[L(\mathbf{X}), U(\mathbf{X})]$$

Open interval:

$$(L(\mathbf{X}), U(\mathbf{X})), (L(\mathbf{X}), \infty), (-\infty, U(\mathbf{X}))$$

Half open interval:

$$[L(\mathbf{X}), U(\mathbf{X})), (L(\mathbf{X}), U(\mathbf{X})], [L(\mathbf{X}), \infty), (-\infty, U(\mathbf{X})]$$

Coverage probability

For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the **coverage probability** of $[L(\mathbf{X}), U(\mathbf{X})]$ is the probability that the random interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the true parameter. The coverage probability is denoted by $P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$. The **confidence coefficient** of $[L(\mathbf{X}), U(\mathbf{X})]$ is the infinum of the coverage probability, say,

$$\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} P_{\boldsymbol{\theta}}(\boldsymbol{\theta} \in [L(\mathbf{X}), U(\mathbf{X})])$$

An interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$, together with its confidence coefficient, is called a **confidence interval**. A confidence interval with the confidence coefficient $1-\alpha$ is called a $1-\alpha$ confidence interval.

Inverting a test statistic

For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$. For each $\mathbf{x} \in \mathcal{X}$, define a set $C(\mathbf{x})$ in the parameter space by

$$C(\mathbf{x}) = \{\theta_0 : \mathbf{x} \in A(\theta_0)\}\$$

Then the random set $C(\mathbf{X})$ is a $1-\alpha$ confidence set.

Conversely, let $C(\mathbf{x})$ be a $1-\alpha$ confidence set. For each $\theta_0 \in \Theta$, define a set in the sample space by

$$A(\theta_0) = \{\mathbf{x} : \theta_0 \in C(\mathbf{x})\}$$

Then $A(\theta_0)$ is the acceptance region of a level α test of $H_0: \theta = \theta_0$.

Parameter free distributions

We have seen that for a random sample $X_1, ..., X_n$ from a normal population $N(\mu, \sigma^2)$.

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1), \ \sigma^2 \text{ known.}$$

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim T_{n-1}.$$

$$K = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2, \ \mu \text{ known.}$$

$$K = \frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2.$$

What's the common characteristics of these random variables?

Parameter free!

Pivotal quantities

A random variable $Q(\mathbf{X}, \theta) = Q(X_1, ..., X_n, \theta)$ is a **pivotal quantity** (**pivot**) if the distribution of $Q(\mathbf{X}, \theta)$ is independent of all parameters. That is, if $\mathbf{X} \sim F(\mathbf{x} \mid \theta)$, then $Q(\mathbf{X}, \theta)$ has the same distribution for all values of θ .

One-way Analysis of Variance

统计学方法及其应用

统计学基础

方差分析

ANOVA data

	Treatment						
Index	1	2	3	•••	k -1	k	
1	Y_{11}	Y_{21}	Y_{31}		$Y_{(k-1)1}$	Y_{k1}	
2	Y_{12}	Y_{22}	Y_{32}		$Y_{(k-1)2}$	Y_{k2}	
	Y_{13}	Y_{23}	Y_{33}		$Y_{(k-1)3}$	Y_{k3}	
						•••	
	Y_{1n_1}				$Y_{(k-1)n_{(k-1)}}$		
			Y_{3n_3}				
		Y_{2n_2}					
						Y_{kn_k}	
θ	$ heta_1$	$ heta_2$	$ heta_{\!3}$		$ heta_{k-1}$	$ heta_{\!k}$	
N	n_1	n_2	n_3		n_{k-1}	n_k	
$\overline{\overline{Y}}$	\overline{Y}_{1ullet}	\overline{Y}_{2ullet}	\overline{Y}_3 .		$\overline{Y}_{(k-1)ullet}$	\overline{Y}_{kullet}	

$$N = \sum_{i=1}^k n_i, Y_{i \bullet} = \sum_{j=1}^{n_i} Y_{ij}, \overline{Y}_{i \bullet} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}, \overline{\overline{Y}} = \frac{1}{N} \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}$$

ANOVA model

Random variables Y_{ij} are observed according to the model

$$Y_{ij} = \theta_i + \varepsilon_{ij}, i = 1, \dots, k, j = 1, \dots, n_i,$$

where

- (i) $\mathrm{E}\varepsilon_{ij} = 0$, $\mathrm{Var}\varepsilon_{ij} = \sigma_i^2 < \infty$, for all i and j. $\mathrm{Cov}(\varepsilon_{ij}, \varepsilon_{st}) = 0$ for all i, j, s, and t unless i = s and j = t.
- (ii) The ε_{ij} are independent and normally distributed (normal errors).
- (iii) $\sigma_i^2 = \sigma^2$ for all i (equality of variance, homoscedasticity).

ANOVA normal families

(i) and (ii) and (iii)
$$\varepsilon_{ij} \sim N(0,\sigma^2), \qquad \qquad \text{iid}, \ i=1,\dots,k, j=1,\dots,n_i.$$

$$Y_{ij} = \theta_i + \varepsilon_{ij} \text{ and } \varepsilon_{ij} \sim N(0, \sigma^2), \text{ iid} \Rightarrow$$

$$Y_{ij} \sim N(\theta_i, \sigma^2), \qquad i = 1, \dots, k, j = 1, \dots, n_i.$$

$$\begin{split} \overline{Y}_{i \bullet} &= \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} Y_{ij} \text{ and } Y_{ij} \sim N(\theta_{i}, \sigma^{2}) \implies \\ & \overline{Y}_{i \bullet} \sim N(\theta_{i}, \sigma^{2} \ / \ n_{i}), \qquad i = 1, \dots, k \end{split}$$

ANOVA hypothesis

Pair-wise two-sample t test over all possible combinations of:

$$H_0: \theta_i = \theta_j$$
 versus $H_1: \theta_i \neq \theta_j$

Is equal to

$$H_0: \theta_1 = \theta_2 = \dots = \theta_k$$
 versus $H_1: \theta_i \neq \theta_j$ for some i, j

This is the classical ANOVA hypothesis

ANOVA t test

Two sample case.

$$H_0: \mu_X = \mu_Y \quad \text{versus} \quad H_1: \mu_X \neq \mu_Y$$

The test is to reject H_0 if

$$\frac{\mid \overline{X} - \overline{Y} \mid}{\sqrt{\sigma^2(1 \mid m+1 \mid n)}} > t_{m+n-2,\alpha/2}.$$

ANOVA (k-sample) case.

$$H_0: \sum_{i=1}^k a_i \theta_i = 0$$
 versus $H_1: \sum_{i=1}^k a_i \theta_i \neq 0$

The test is to reject H_0 if

$$\frac{\left|\sum_{i=1}^k a_i \overline{Y}_{i \bullet}\right|}{\sqrt{S_p^2 \sum_{i=1}^k \left(a_i^2 \ / \ n_i\right)}} > t_{N-k,\alpha/2}.$$

ANOVA F test

For the ANOVA hypothesis testing problem

$$H_{_{0}}:\theta_{_{1}}=\theta_{_{2}}=\cdots=\theta_{_{k}} \quad \text{ versus } \quad H_{_{1}}:\theta_{_{i}}\neq\theta_{_{j}} \text{ for some } i,j$$

We reject H_{o} if

$$m{F} = rac{\sum_{i=1}^k m{n}_i (ar{Y}_{iullet} - ar{ar{Y}})^2 ig/(k-1)}{m{S}_p^2} > m{F}_{k-1,N-k,lpha}$$

The p - value is

$$m{p} = m{P} \Bigg(m{F}_{k-1,N-k} \geq rac{\sum_{i=1}^k m{n}_i (\overline{y}_i. - \overline{\overline{y}})^2 ig/(k-1)}{m{s}_p^2} \Bigg)$$

Partitioning sums of squares

$$SST = SSB + SSW$$

$$\sum_{j=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \overline{\bar{Y}})^2 \ = \sum_{i=1}^k n_i (\overline{Y}_{i \bullet} - \overline{\bar{Y}})^2 + \sum_{j=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i \bullet})^2$$

Dividing them by σ^2

$$\chi_{N-1}^2 = \chi_{k-1}^2 + \chi_{N-k}^2$$

$$\overline{Y}_{i \cdot} = \frac{1}{n_i} \sum_{i=1}^k Y_{ij}, \overline{\overline{Y}} = \frac{1}{N} \sum_{i=1}^k n_i \overline{Y}_{i \cdot} = \frac{1}{N} \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}$$

ANOVA table

Source of variation	Degrees of freedom			<i>F</i> statistic	<i>p</i> value
Between treatment groups	k-1	$\frac{\mathbf{SSB}}{\sum_{i=1}^k n_i (\overline{y}_{i \bullet} - \overline{\overline{y}})^2}$	$\frac{\text{MSB}}{\text{SSB}}$ $\frac{k-1}{k-1}$	$F = rac{ ext{MSB}}{ ext{MSW}}$	$1 - F_{k-1,N-k}(F)$
Within treatment groups	N-k	$\sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{i \boldsymbol{.}})^2$	$\frac{\text{MSW}}{\text{SSW}}$		
Total	N-1	$\mathbf{SST} \\ \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \overline{\overline{y}})^2$			

Linear Regression

统计学方法及其应用

统计学基础

回归分析

The data

	0	1	2	•••	k -1	k
Y_1						
Y_2	1					
Y_3						
•••	*		ı			
Y_n						
$oldsymbol{eta}$	eta_0	$eta_{\!2}$	eta_3		eta_{k-1}	eta_k

Conditional normal model

$$Y_i = \alpha + \beta x_i + \varepsilon_i, i = 1, ..., n$$

Assume that

- (i) $\mathrm{E}\varepsilon_i = 0$, $\mathrm{Var}\varepsilon_i = \sigma_i^2 < \infty$, for all. $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ for all i and j unless i = j.
- (ii) The ε_i are independent and normally distributed (normal errors).
- (iii) $\sigma_i^2 = \sigma^2$ for all *i* (equality of variance, homoscedasticity).
- (iv) Y_i independent (but not identically distributed), i = 1,...,n.
- (iv) x_i known and fixed (not random variables), i = 1,...,n.

It then follows that
$$Y_i \mid x_i \ \sim N(\alpha + \beta x_i, \sigma^2)$$

$$E\,Y_i \ = \alpha + \beta x_i$$

$${\rm Var}\,Y_i = \sigma^2$$

Least squares estimates (LSE)

$$RSS = \sum_{i=1}^{n} [y_i - (\alpha + \beta x_i)]^2$$

Solve
$$\min_{a,b} \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

$$\sum_{i=1}^{n} [y_i - (a + bx_i)]^2 = \sum_{i=1}^{n} [(y_i - bx_i) - a]^2 \Rightarrow a = \frac{1}{n} \sum_{i=1}^{n} (y_i - bx_i) = \overline{y} - b\overline{x}$$

$$\begin{split} \sum_{i=1}^{n} [(y_i - bx_i) - (\overline{y} - b\overline{x})]^2 &= \sum_{i=1}^{n} [(y_i - \overline{y}) - b(x_i - \overline{x})]^2 = b^2 S_{xx} - 2bS_{xy} + S_{yy} \\ &= S_{xx} \left(b - \frac{S_{xy}}{S_{xx}} \right)^2 + \frac{S_{xx} S_{yy} - S_{xy} S_{xy}}{S_{xx}} \end{split}$$

$$\Rightarrow b = \frac{S_{xy}}{S_{xx}}, a = \overline{y} - b\overline{x}$$

RSS: Residual Sum of Squares

Best linear unbiased estimators (BLUE)

$$Y_i = \alpha + \beta x_i + \varepsilon_i, i = 1, ..., n$$
 $E Y_i = \alpha + \beta x_i \quad (E \varepsilon_i = 0)$
 $Var Y_i = \sigma^2 \quad (Var \varepsilon_i = \sigma^2)$

We attempt to find estimators (functions of Y) of α and β

Now, restrict our attention to the class of linear estimators, say,

$$\hat{\alpha} = \sum_{i=1}^{n} \xi_i Y_i \text{ and } \hat{\beta} = \sum_{i=1}^{n} \delta_i Y_i,$$

where ξ_i and δ_i are known, fixed constants.

We are interested in unbiased and minumum variance estimators.

Unbiased estimator of the slope

$$\hat{oldsymbol{eta}} = rac{oldsymbol{S}_{xY}}{oldsymbol{S}_{xx}}$$

$$\hat{\boldsymbol{\beta}} = \frac{\boldsymbol{S}_{xY}}{\boldsymbol{S}_{xx}} \qquad \hat{\boldsymbol{\beta}} = \sum_{i=1}^{n} \delta_{i} Y_{i}$$

$$\mathbf{E}\hat{\boldsymbol{\beta}} = \mathbf{E}\bigg[\sum_{i=1}^n \delta_i Y_i\bigg] = \sum_{i=1}^n \delta_i \mathbf{E}\, Y_i = \sum_{i=1}^n \delta_i (\alpha + \beta x_i) = \alpha \sum_{i=1}^n \delta_i + \beta \sum_{i=1}^n \delta_i x_i$$

 $\hat{\beta}$ is unbiased if and only if $\sum_{i=1}^{n} \delta_{i} = 0$ and $\sum_{i=1}^{n} \delta_{i} x_{i} = 1$.

Now, consider
$$\frac{\delta_i}{S_{xx}} = \frac{x_i - \overline{x}}{S_{xx}}$$

$$\sum_{i=1}^{n} \delta_{i} = \sum_{i=1}^{n} \frac{x_{i} - \overline{x}}{S_{xx}} = \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \overline{x}) = 0$$

$$\sum_{i=1}^{n} \delta_{i} x_{i} = \sum_{i=1}^{n} \frac{x_{i} - \overline{x}}{S_{xx}} x_{i} = \frac{1}{S_{xx}} \left[\sum_{i=1}^{n} (x_{i} - \overline{x}) x_{i} + \sum_{i=1}^{n} (x_{i} - \overline{x}) \overline{x} \right] = \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = 1$$

Therefore,
$$\hat{\beta} = \sum_{i=1}^n \delta_i Y_i = \sum_{i=1}^n \frac{x_i - \overline{x}}{S_{xx}} Y_i = \frac{1}{S_{xx}} \sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y}) = \frac{S_{xY}}{S_{xx}}$$
 is unbiased.

Unbiased estimator of the intercept

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{x} \qquad \qquad \hat{\alpha} = \sum_{i=1}^{n} \xi_i Y_i$$

$$\mathbf{E}\hat{\alpha} = \mathbf{E}\bigg[\sum_{i=1}^n \xi_i Y_i\bigg] = \sum_{i=1}^n \xi_i \mathbf{E}\, Y_i = \sum_{i=1}^n \xi_i (\alpha + \beta x_i) = \alpha \sum_{i=1}^n \xi_i + \beta \sum_{i=1}^n \xi_i x_i$$

 $\hat{\alpha}$ is unbiased if and only if $\sum_{i=1}^{n} \xi_i = 1$ and $\sum_{i=1}^{n} \xi_i x_i = 0$

Now, consider
$$\xi_i = \frac{1}{n} - \frac{(x_i - \overline{x})\overline{x}}{S_{xx}}$$

$$\sum_{i=1}^{n} \xi_{i} = \sum_{i=1}^{n} \left[\frac{1}{n} - \frac{(x_{i} - \overline{x})\overline{x}}{S_{xx}} \right] = 1 - \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \overline{x})\overline{x} = 1$$

$$\sum_{i=1}^{n} \xi_{i} x_{i} = \sum_{i=1}^{n} \left[\frac{1}{n} x_{i} - \frac{(x_{i} - \overline{x})\overline{x}}{S_{xx}} x_{i} \right] = \overline{x} - \frac{\overline{x}}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \overline{x}) x_{i} = 0$$

Therefore, $\hat{\alpha} = \sum_{i=1}^{n} \xi_i Y_i = \overline{Y} - \hat{\beta} \overline{x}$ is unbiased.

Best linear unbiased estimator (BLUE)

$$\hat{oldsymbol{eta}} = rac{S_{xY}}{S_{xx}}$$

$$\hat{\beta} = \sum_{i=1}^{n} \delta_{i} Y_{i}, \ \delta_{i} = \frac{x_{i} - \overline{x}}{S_{xx}}$$

$$\operatorname{Var} \hat{\beta} = \operatorname{Var} \left(\sum_{i=1}^n \delta_i Y_i \right) = \sum_{i=1}^n \delta_i^2 \operatorname{Var} Y_i = \sum_{i=1}^n \delta_i^2 \sigma^2 = \sigma^2 \sum_{i=1}^n \delta_i^2 = \frac{\sigma^2}{S_{xx}}$$

because
$$\sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{S_{xx}} \right)^2 = \frac{S_{xx}}{S_{xx}} = \frac{1}{S_{xx}}$$

It can be proved that $Var\hat{\beta}$ is the minimum.

Therefore, $\hat{\beta}$ is the best linear unbiased estimator (BLUE) of β .

Best linear unbiased estimator (BLUE)

$$\hat{m{lpha}} = m{ar{Y}} - \hat{m{eta}}m{ar{x}}$$

$$\hat{\alpha} = \sum_{i=1}^{n} \xi_i Y_i, \ \xi_i = \frac{1}{n} - \frac{(x_i - \overline{x})\overline{x}}{S_{xx}}$$

$$\begin{split} \hat{\alpha} &= \sum_{i=1}^n \xi_i Y_i, \ \xi_i = \frac{1}{n} - \frac{(x_i - \overline{x})\overline{x}}{S_{xx}} \\ \operatorname{Var} \hat{\alpha} &= \operatorname{Var} \left(\sum_{i=1}^n \xi_i Y_i \right) = \sum_{i=1}^n \xi_i^2 \operatorname{Var} Y_i = \sum_{i=1}^n \xi_i^2 \sigma^2 = \sigma^2 \sum_{i=1}^n \xi_i^2 = \sigma^2 \left(\frac{1}{n S_{xx}} \sum_{i=1}^n x_i^2 \right) \end{split}$$

$$\sum_{i=1}^{n} \xi_{i}^{2} = \sum_{i=1}^{n} \left(\frac{1}{n} - \frac{(x_{i} - \overline{x})\overline{x}}{S_{xx}} \right)^{2} = \sum_{i=1}^{n} \frac{1}{n^{2}} + \sum_{i=1}^{n} \left(\frac{(x_{i} - \overline{x})\overline{x}}{S_{xx}} \right)^{2} = \frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}} = \frac{1}{nS_{xx}} \sum_{i=1}^{n} x_{i}^{2}$$

It can be proved that $Var\hat{\alpha}$ is the minimum.

Therefore, $\hat{\alpha}$ is the best linear unbiased estimator (BLUE) of α .

Unbiased estimator of the variance

$$S^{2} = \frac{n}{n-2}\hat{\sigma}^{2} = \frac{1}{n-2}\sum_{i=1}^{n} [y_{i} - (\alpha + \hat{\beta}x_{i})]^{2} = \frac{1}{n-2}\sum_{i=1}^{n} \epsilon_{i}^{2}$$

Because

$$\mathrm{E}[\hat{\sigma}^2] = \frac{n}{n-2}\sigma^2$$

We have

$$E[S^2] = \sigma^2$$

Recall biased and unbiased estimators for the normal variance

Sampling distribution of the slope

$$\hat{oldsymbol{eta}} = rac{oldsymbol{S}_{xY}}{oldsymbol{S}_{xx}} \sim \mathbf{N} iggl(oldsymbol{eta}, rac{oldsymbol{\sigma}^2}{oldsymbol{S}_{xx}}iggr)$$

$$\hat{\beta} = \sum_{i=1}^{n} \delta_i Y_i, \delta_i = \frac{x_i - \overline{x}}{S_{xx}}, E(\hat{\beta}) = \beta, Var(\hat{\beta}) = \frac{\sigma^2}{S_{xx}}$$

 Y_i is normally distributed, therefore the linear combination $\hat{\beta} = \sum_{i=1}^n \delta_i Y_i$ is also normally distributed. In other words, $\hat{\beta}$ has a normal distribution

$$\Rightarrow$$
 $\hat{eta} \sim \mathrm{N}(eta, \sigma^2 \ / \ S_{xx}) \ \mathrm{or} \ \frac{\hat{eta} - eta}{\sqrt{\sigma^2 \ / \ S_{xx}}} \sim \mathrm{N}(0, 1)$

Sampling distribution of the intercept

$$\hat{oldsymbol{lpha}} = oldsymbol{ar{Y}} - \hat{oldsymbol{eta}} oldsymbol{ar{x}} \sim \mathbf{N} \Bigg[oldsymbol{lpha}, rac{oldsymbol{\sigma}^2}{oldsymbol{n} oldsymbol{S}_{xx}} \sum_{i=1}^{oldsymbol{n}} oldsymbol{x}_i^2 \Bigg]$$

$$\hat{\alpha} = \sum_{i=1}^{n} \xi_i Y_i, \xi_i = \frac{1}{n} - \frac{(x_i - \overline{x})\overline{x}}{S_{xx}}, E(\hat{\alpha}) = \alpha, Var(\hat{\alpha}) = \frac{\sigma^2}{nS_{xx}} \sum_{i=1}^{n} x_i^2$$

 Y_i is normally distributed, therefore the linear combination $\hat{\alpha} = \sum_{i=1}^n \xi_i Y_i$ is also normally distributed. In other words, $\hat{\alpha}$ has a normal distribution

$$\Rightarrow \qquad \hat{\alpha} \sim N\left(\alpha, \frac{\sigma^2}{nS_{xx}} \sum_{i=1}^n x_i^2\right) \text{ or } \frac{\hat{\alpha} - \alpha}{\sqrt{\sigma^2(\sum_{i=1}^n x_i^2) / (nS_{xx})}} \sim N(0, 1)$$

Covariance of the intercept and slope

$$\widehat{lpha} = \overline{Y} - \widehat{eta}\overline{x}, \ \ \widehat{eta} = rac{S_{xY}}{S_{xx}}$$

$$\operatorname{cov}(\hat{\alpha}, \hat{\beta}) = \operatorname{cov}\left(\sum_{i=1}^n \xi_i Y_i, \sum_{i=1}^n \delta_i Y_i\right) = \sum_{i=1}^n \xi_i \delta_i \operatorname{Var} Y_i = \sigma^2 \sum_{i=1}^n \xi_i \delta_i$$

$$\begin{split} \sum_{i=1}^{n} \xi_{i} \delta_{i} &= \sum_{i=1}^{n} \left(\frac{1}{n} - \frac{(x_{i} - \overline{x})\overline{x}}{S_{xx}} \right) \left(\frac{x_{i} - \overline{x}}{S_{xx}} \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_{i} - \overline{x}}{S_{xx}} \right) - \frac{\overline{x}}{S_{xx}} \sum_{i=1}^{n} \left(\frac{(x_{i} - \overline{x})(x_{i} - \overline{x})}{S_{xx}} \right) \\ &= -\frac{\overline{x}}{S_{xx}} \end{split}$$

$$\Rightarrow \qquad \qquad \operatorname{cov}(\hat{\alpha}, \hat{\beta}) = -\frac{\sigma^2 \overline{x}}{S_{xx}}$$

Sampling distribution of the variance

$$S^2 = \frac{n}{n-2} \widehat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \left[Y_i - (\widehat{\alpha} + \widehat{\beta} x_i) \right]^2 = \frac{1}{n-2} \sum_{i=1}^n \varepsilon_i^2$$

(1) $(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})$ and \boldsymbol{S}^2 are independent

(2)
$$\frac{(\boldsymbol{n}-2)\boldsymbol{S}^2}{\boldsymbol{\sigma}^2} \sim \boldsymbol{\chi}_{\boldsymbol{n}-2}^2$$

$$(n-2)S^2 = \sum_{i=1}^n \varepsilon_i^2$$
, Residual sum of squares

Hypothesis testing of the intercept

$$H_0: \alpha = \alpha_0 \quad \text{versus} \quad H_1: \alpha \neq \alpha_0$$

Since

$$\frac{\hat{\alpha} - \alpha}{\sqrt{S^2(\sum_{i=1}^n x_i^2) / (nS_{xx})}} \sim T_{n-2}$$

We could reject H_0 at level ρ if and only if

$$\frac{|\hat{\alpha} - \alpha_0|}{\sqrt{S^2(\sum_{i=1}^n x_i^2) / (nS_{xx})}} > t_{n-2,\rho/2}$$

$$p = 2P \left(T_{n-2} \ge \frac{|\hat{\alpha} - \alpha_0|}{\sqrt{S^2(\sum_{i=1}^n x_i^2) / (nS_{xx})}} \right)$$

Hypothesis testing of the intercept

$$H_{\scriptscriptstyle 0}: \alpha = \alpha_{\scriptscriptstyle 0} \quad \text{versus} \quad H_{\scriptscriptstyle 1}: \alpha \neq \alpha_{\scriptscriptstyle 0}$$

Since

$$\frac{(\hat{\alpha} - \alpha)^2}{S^2(\sum_{i=1}^n x_i^2) / (nS_{xx})} \sim F_{1,n-2}$$

We could reject H_0 at level ρ if and only if

$$\frac{(\hat{\alpha} - \alpha_0)^2}{S^2(\sum_{i=1}^n x_i^2) / (nS_{xx})} > F_{1,n-2,\rho}$$

$$p = P \left(F_{1,n-2} \ge \frac{(\hat{\alpha} - \alpha_0)^2}{S^2(\sum_{i=1}^n x_i^2) / (nS_{xx})} \right)$$

Hypothesis testing of the slope

$$H_0: \beta = \beta_0 \quad \text{versus} \quad H_1: \beta \neq \beta_0$$

Since

$$\frac{\hat{eta} - eta}{\sqrt{S^2 / S_{xx}}} \sim T_{n-2}$$

We could reject H_0 at level ρ if and only if

$$\frac{\mid \hat{\beta} - \beta_0 \mid}{\sqrt{S^2 \mid S_{xx}}} > t_{n-2,\rho/2}$$

$$p = 2P \left(T_{n-2} \ge \frac{\mid \hat{\beta} - \beta_0 \mid}{\sqrt{S^2 / S_{xx}}} \right)$$

Hypothesis testing of the slope

$$H_0: \beta = \beta_0$$
 versus $H_1: \beta \neq \beta_0$

Since

$$\frac{(\hat{\beta} - \beta)^2}{S^2 / S_{xx}} \sim F_{1,n-2}$$

We could reject H_0 at level ρ if and only if

$$\frac{(\hat{\beta} - \beta_0)^2}{S^2 / S_{rr}} > F_{1,n-2,\rho}$$

$$p = P\left(F_{1,n-2} \ge \frac{(\hat{\beta} - \beta_0)^2}{S^2 / S_{xx}}\right)$$

Estimation at a single point

Obviously, $\hat{\mu}_{Y_0} = \hat{\alpha} + \hat{\beta}x_0$ has a normal distribution

$$E\hat{\mu}_{Y_0} = E(\hat{\alpha} + \hat{\beta}x_0) = E(\hat{\alpha}) + x_0E(\hat{\beta}) = a + \beta x_0$$

$$Var\hat{\mu}_{Y_0} = Var(\hat{\alpha} + \hat{\beta}x_0) = Var(\hat{\alpha}) + x_0^2Var(\hat{\beta}) + 2x_0Cov(\hat{\alpha}, \hat{\beta})$$

$$= \frac{\sigma^2}{nS} \sum_{i=1}^n x_i^2 + \frac{\sigma^2 x_0^2}{S} - \frac{2\sigma^2 x_0 \overline{x}}{S} = \frac{\sigma^2}{S} \left(\frac{1}{n} \sum_{i=1}^n x_i^2 + x_0^2 - 2x_0 \overline{x} \right)$$

$$=\frac{\sigma^2}{S_{xx}}\bigg(\frac{1}{n}\sum_{i=1}^n x_i^2-\overline{x}^2+x_0^2-2x_0\overline{x}+\overline{x}^2\bigg)$$

$$= \frac{\sigma^2}{S_{xx}} \left\{ \frac{1}{n} \left[\sum_{i=1}^n x_i^2 - n\overline{x}^2 \right] + (x_0 - \overline{x})^2 \right\}$$

$$= \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]$$

Sampling distribution

$$\hat{m{\mu}}_{m{Y}_0} = \hat{m{lpha}} + \hat{m{eta}}m{x}_0 \sim \mathbf{N} \Bigg[m{lpha} + m{eta}m{x}_0, m{\sigma}^2 \Bigg[rac{1}{m{n}} + rac{(m{x}_0 - ar{m{x}})^2}{m{S}_{m{x}m{x}}} \Bigg] \Bigg]$$

$$\frac{(\widehat{\alpha} + \widehat{\beta}x_0) - (\alpha + \beta x_0)}{\sqrt{\sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right]}} \sim \mathcal{N}(0, 1)$$

$$\frac{(n-2)S^2}{\sigma^2} \sim \chi_{n-2}^2 \Rightarrow$$

$$\frac{(\widehat{\alpha} + \widehat{\beta}x_0) - (\alpha + \beta x_0)}{\sqrt{S^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right]}} = \frac{(\widehat{\alpha} + \widehat{\beta}x_0) - (\alpha + \beta x_0)}{\sqrt{\sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right]}} \frac{1}{\sqrt{\frac{(n-2)S^2}{(n-2)\sigma^2}}} \sim T_{n-2}$$

Prediction at a single point

Assume that

$$Y_0 = \alpha + \beta x_0 + \varepsilon_0 \sim N(\alpha + \beta x_0, \sigma^2)$$

Then,

$$Y_{0} - \hat{\mu}_{Y_{0}}$$
 has a normal distribution

$$E(Y_0 - \hat{\mu}_{Y_0}) = EY_0 - E\hat{\mu}_{Y_0} = (\alpha + \beta x_0) - (\alpha + \beta x_0) = 0$$
$$Var(Y_0 - \hat{\mu}_{Y_0}) = VarY_0 + Var\hat{\mu}_{Y_0} + 2Cov(Y_0, \hat{\mu}_{Y_0})$$

$$= \sigma^2 + \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]$$

$$= \sigma^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]$$

Sampling distribution

$$m{Y}_0 - (\hat{m{lpha}} + \hat{m{eta}} m{x}_0) \sim m{N} \Bigg[0, m{\sigma}^2 \Bigg[1 + rac{1}{m{n}} + rac{(m{x}_0 - m{ar{x}})^2}{m{S}_{m{x}m{x}}} \Bigg] \Bigg]$$

$$\frac{Y_0 - (\widehat{\alpha} + \widehat{\beta}x_0)}{\sqrt{\sigma^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right]}} \sim \mathcal{N}(0, 1)$$

$$\frac{(n-2)S^2}{\sigma^2} \sim \chi_{n-2}^2 \Rightarrow$$

$$\frac{Y_0 - (\widehat{\alpha} + \widehat{\beta}x_0)}{\sqrt{S^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right]}} = \frac{Y_0 - (\widehat{\alpha} + \widehat{\beta}x_0)}{\sqrt{\sigma^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right]}} \frac{1}{\sqrt{\frac{(n-2)S^2}{(n-2)\sigma^2}}} \sim T_{n-2}$$

Prediction interval estimation

$$\frac{Y_0 - (\widehat{\alpha} + \widehat{\beta}x_0)}{\sqrt{S^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right]}} \sim T_{n-2}$$

It is a pivotal quantity.

Therefore, a $1-\rho$ prediction interval for Y_0 is

$$\widehat{\alpha} + \widehat{\beta} x_0 - t_{n-2,\rho/2} S \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}} \le Y_0 \le \widehat{\alpha} + \widehat{\beta} x_0 + t_{n-2,\rho/2} S \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$$

$$\hat{\alpha} + \hat{\beta}x_0 - t_{n-2,\rho/2}S\sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}} \le \alpha + \beta x_0 \le \hat{\alpha} + \hat{\beta}x_0 + t_{n-2,\rho/2}S\sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$$

Illustration of confidence bands

