Computational Microelectronics Lecture 26 Small-Signal Analysis

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Voltage Excitation at 0 Hz

Calculate $\frac{dI_{anode}}{dV_{anode}}$.

- First, prepare the DC solution.
 - Since it is the solution (or very close to the solution), the residue vector is a null vector (or very close to a null vector).

$$A\delta \approx 0$$

- -Then, re-use the Jacobian matrix, A.
- -The boundry condition for the anode potential is given as

$$\phi_{anode} - \phi_{anode,0} - V_{anode} = 0$$

– Now, the response, $\delta\phi_{anode}$, must satisfy

$$\delta \phi_{anode} = 1$$

1 means the unit perturbation.

-Therefore, the RHS vector is modified to include 1 for the adode potential.

An example for PN junction

Once again, consider a PN junction at 0.5 V.

-The response of electrostatic potential is drawn. (line)

- Difference between 0.5 V and 0.501 V (X 1,000) are drawn, too.

(symbol)

-They agree well.

Responses of carrier densities

- At the same bias, δn and δp are drawn.
 - -The depletion region gets narrower.
 - -Symbols are obtained from the finite difference.

Response of terminal current

- In a similar way, we can calculate the terminal current.
 - It is 54.708 nA/V.
 - From the difference between 0.5 V and 0.501 V, we obtain 55.766 nA/V, which is quite close.
 - From the difference between 0.5 V and 0.500001 V, we obtain 54.774 nA/V, which is even closer to the small-signal value.

Voltage Excitation at Nonzero Frequency

Modification from 0 Hz

- Frequency-dependent terms should be added.
 - It is noted that $\frac{\partial \delta n}{\partial t}$ contributes $(j2\pi f)\delta n$.
- Displacement current
 - Just like the transient simulation, we must include the displacement current.

Relatively low frequency, 1 MHz

- ullet Real (blue) and imaginary (red) parts of $\delta\phi$
 - We have a non-vanishing imaginary part.

Relatively high frequency, 100 MHz

- ullet Real (blue) and imaginary (red) parts of $\delta\phi$
 - Its real part looks similar, but the imaginary one is much larger (x100).

Admittance as a function of frequency

- 100 kHz, 1 MHz, 10 MHz, 100 MHz, and 1 GHz
 - Real (blue)
 - Imaginary (red)
- R and C

Thank you!