

Statistical Analysis School year 2019/2020 Fall Semester

December of 2019

Project

Analysis of the Automobile Insurance Premium in different countries

Student:

Bruna Ribeiro | student number: m20190226

Professor:

Ana Cristina Costa

Index

1.	. Introduction	2
2.	2. Methodology	2
	3. Results	
	3.1 Exploratory data analysis	6
	3.2 Distribution fitting tests	g
	3.3Tests for equality of variances	
	3.4 ANOVA test	
	3.5 Multiple Comparison tests	14
4.	Conclusion	
5.	5. References	16
6.	5. Appendices	16

1. Introduction

The main objective of this project is to study if the average amount of the three-month premiums for automobile insurance charged by an insurance company in five countries is the same. In order to do this, it's necessary to test the equality of the 5 populations' means and also if there are different means it is essential to evaluate which of the means are different.

2. Methodology

As said before, the main objective of this work is to **test the equality of the 5 populations' means**. In order to achieve this goal, it is necessary to examine several aspects of the different populations and respective samples.

The populations under study are:

- X_1 Amount of three-month premiums charged by the insurance firm for a specific type and amount of coverage in a given risk category in country 1.
- X_2 Amount of three-month premiums charged by the insurance firm for a specific type and amount of coverage in a given risk category in country 2.
- X_3 Amount of three-month premiums charged by the insurance firm for a specific type and amount of coverage in a given risk category in country 3.
- X_4 Amount of three-month premiums charged by the insurance firm for a specific type and amount of coverage in a given risk category in country 4.
- X_5 Amount of three-month premiums charged by the insurance firm for a specific type and amount of coverage in a given risk category in country 5.

It was collected one sample of 50 observations for each of the countries. It is assumed that **the 5 samples are independent of each other**.

For all the following tests it was considered a **significance level of 5%**, this is, $\alpha = 5\%$. In order to see the critical values of the tests, the respective tables will be consulted.

First of all, it will be presented a **descriptive analysis** of the data. In this analysis will be observed several aspects, such as the **sample mean**, **sample variance**, **confidence intervals**, among others.

In order to **test the equality of the 5 populations' means** using the **ANOVA** it is necessary to guarantee 3 assumptions:

- The samples and also the observations used in the study are independent;
- The samples come from normal populations;
- The variance of the 5 populations is the same.

If any of these assumptions are not verified then it will be needed to use another test.

As said before, it is assumed that the **samples are independent** of each other and that the **observations are also independent**.

In order to **test if the samples come from Normal populations**, it will be performed a **distribution fitting test**. In this case, the best test to use is the **Shapiro-Wilk test** because the **parameters of the population are unknown**. This test has the following hypotheses:

 H_0 : The sample comes from a Normal population, with μ and σ unknown.

 H_1 : The sample does not come from a Normal population.

These test will be performed for each of the 5 samples and the decision that will be made will have in consideration that we must **reject H**₀ if $W_{obs} < W_{crit}$.

Where W_{obs} is the observed value of the test statistic and W_{crit} is the critical value of the test.

After checking this, it will be performed a **test for equality of variances of the different populations**. In this case, it was used the **Levene's test** with the **mean** as the center of each group. This because as we will see in the results the normality assumption was verified, if it wasn't it would be better to perform Levene's test using the median, which is less sensitive to variations. This test has the following hypotheses:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2$

$$H_1: \exists_{i,j \ (i \neq j)} \sigma_i^2 \neq \sigma_j^2, i, j = 1,2,3,4,5$$

The decision will take into consideration that we should **reject H**₀ if $F_{obs} > F_{crit}$, because this is a **right-sided test**, as shown below. So, if F_{obs} falls in the rejection area we must reject H₀, o

After checking positively all the assumptions of the **One-way ANOVA with fixed effects**, it will be finally possible to perform this test.

The **factor** of the one-way ANOVA is the country, which has **5 levels** (country 1 to 5) and the **experimental unit** is the three-month premium.

Its hypotheses are the following:

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

$$H_1: \exists_{i,j} (i \neq j) \mu_i \neq \mu_j, i, j = 1,2,3,4,5$$

The decision will take into consideration that we should **reject** H_0 if $F_{obs} > F_{crit}$, because as the Levenes' Test, this one is also a **right-sided test**, as shown below. So, if F_{obs} falls in the rejection area we must reject H_0 , otherwise, we should not reject H_0 .

As it will be shown afterward, after exploring the previous test it was concluded that not all the populations have the same mean, however, we weren't able to conclude which means have different means. Given that, it will also be needed to perform a **multiple comparison test.** In this case, the sample size is the same for the 5 countries $(n_1 = n_2 = n_3 = n_4 = n_5 = 50)$ so the best test to use is **Tukey's HSD test**, which helps us to understand which pair or pairs of populations have different means. The hypotheses of this test are the following:

$$H_0$$
: $\mu_i = \mu_j$, $i, j = 1,2,3,4,5$
 H_1 : $\mu_i \neq \mu_j$, $i, j = 1,2,3,4,5$

The decision will take into consideration that we should reject H_0 if $W_{obs} \ge q(k; n - k)$.

All the tests presented will be performed using the SAS Enterprise Guide, bellow is the code used. Additionally, it was also used some other tools from SAS Enterprise Guide and SPSS.

```
LIBNAME stat 'C:\Users\Utilizador\Desktop\Statistics Project';
PROC UNIVARIATE DATA=stat.automobile 10;
      CLASS Country;
      VAR Premium;
RUN;
PROC UNIVARIATE DATA=stat.automobile 10 NORMAL;
      CLASS Country;
      VAR Premium;
      HISTOGRAM Premium;
      INSET MIN MEDIAN MAX MEAN STD N / POSITION=NE;
RUN;
PROC glm DATA=stat.automobile 10;
Class Country;
Model Premium=Country;
MEANS Country/HOVTEST=LEVENE(type=abs);
RUN;
PROC ANOVA DATA=stat.automobile 10;
      CLASS Country;
      MODEL Premium=Country;
RUN;
QUIT;
proc anova data=stat.automobile 10;
     class Country;
     model Premium=Country;
     means Country/tukey;
run:
```

3. Results

3.1 Exploratory data analysis

In the dataset used for the analysis, there are **5 samples** of 5 different populations. Below follows the **histograms** from each of the samples, where it is possible to get a first look at the data. It is possible to check that all the samples have the **same size** (n=50) and the **mean is slightly different** in all of them, there is none with exactly the same value. The **standard deviation appears to be the same** for all of the samples (Std Deviation = 49.48264). The sample from country 4 is the one with the higher values of the three-month premiums, followed by the country 1. In opposition to country 5, which is the one with the smallest values. Finally, it is also possible to conclude that the **data doesn't seem to be far from a Normal Distribution**.

Graph 1 - Histograms from each of the samples for country 1 to 5

According to the **boxplots** that are below, it is possible to confirm that the **means** from each of the samples appear to be different, and also that all of the samples have 1 individual that has a three-month premium lower than the usual (point outside the boxplot), which means that all of the samples have one possible outlier. This fact will not have an impact on the analysis of this project, however, in the future analysis developed by the insurance company they may be taken into consideration. The scatter **plots** that follow confirm the previous facts and allows another view of the values.

Graph 2 - Boxplot from each of the samples from country 1 to 5

7

The last analysis made in this topic was the **confidence interval for the mean,** standard deviation, and variance of the populations. This analysis was made after performing the Shapiro-Wilk test. So, it was used the test statistic for normal populations and σ^2 unknown.

Basic Confidence Limits Assuming Normality for country 1					
Parameter	Estimate	95% Confide	ence Limits		
Mean	595.01711	580.95430	609.07992		
Std Deviation	49.48264	41.33453	61.66197		
Variance	2449	1709	3802		

Table 1 - Confidence intervals for the parameters of the first population

For country 1, we can say with 95% confidence that the population mean is between 580.95430 and 609.07992. The standard deviation is with 95% confidence between 41.33453 and 61.66197. At last, we have evidence to believe that the variance is between 1709 and 3802 with 95% confidence.

Basic Confidence Limits Assuming Normality for country 2					
Parameter	Estimate	95% Confide	ence Limits		
Mean	546.01711	531.95430	560.07992		
Std Deviation	49.48264	41.33453	61.66197		
Variance	2449	1709	3802		

Table 2 - Confidence intervals for the parameters of the second population

For country 2, we can say with					
95% confidence that the population					
mean is between 531.95430 and					
560.07992. The standard deviation is					
with 95% confidence between					
41.33453 and 61.66197. At last, we					
have evidence to believe that the					
variance is between 1709 and 3802					
with 95% confidence.					

Basic Confidence Limits Assuming Normality for country 3				
Parameter	Estimate	95% Confide	ence Limits	
Mean	561.01711	546.95430	575.07992	
Std Deviation	49.48264	41.33453	61.66197	
Variance	2449	1709	3802	

For country 3, we can say with 95% confidence that the population mean is between 546.95430 and 575.07992. The standard deviation is with 95% confidence between 41.33453 and 61.66197. At last, we have evidence to believe that the variance is between 1709 and 3802 with 95% confidence.

Table 3 - Confidence intervals for the parameters of the third population

Basic Confidence Limits Assuming Normality for country 4				
Parameter	Estimate	95% Confide	ence Limits	
Mean	604.01711	589.95430	618.07992	
Std Deviation	49.48264	41.33453	61.66197	
Variance	2449	1709	3802	

Table 4 - Confidence intervals for the parameters of the fourth population

For country 4, we can say with 95% confidence that the population mean is between 580.95430 and 609.07992. The standard deviation is with 95% confidence between 41.33453 and 61.66197. At last, we have evidence to believe that the variance is between 1709 and 3802 with 95% confidence.

Basic Confidence	Basic Confidence Limits Assuming Normality for country 5				
Parameter	Estimate	95% Confide	ence Limits		
Mean	455.01711	440.95430	469.07992		
Std Deviation	49.48264	41.33453	61.66197		
Variance	2449	1709	3802		

 ${\it Table 5-Confidence\ intervals\ for\ the\ parameters\ of\ the\ fifth\ population}$

At last, for country 5 we can say with 95% confidence that the population mean is between 440.95430 and 469.07992. The standard deviation is with 95% confidence between 41.33453 and 61.66197. At last, we have evidence to believe that the variance is between 1709 and 3802 with 95% confidence.

3.2 Distribution fitting tests

To check if the samples come from Normal populations it was performed a Shapiro-Wilk test. The results given by the SAS Enterprise guide follows below.

Table 2 – Shapiro-Wilk test in SAS

In the table of this test, we can see that the critic value of W_{crit} is 0.947.

 $W_{obs} = 0.993984$

$$W_{\text{crit}} = 0.947 (W_{(n=50,\alpha=0.05)})$$

Hence,
$$W_{obs} > W_{crit}$$

Additionally, the value of the p-value is 0.9965. Which is bigger than the value of $\alpha = 5\%$.

So, we should not reject H_0 , for $\alpha = 5\%$. There is evidence that the sample data of the country 1 comes from a Normal distribution.

Table 3 - Shapiro-Wilk test in SAS

$$W_{obs} = 0.993984$$

$$W_{\text{crit}} = 0.947 (W_{(n=50,\alpha=0.05)})$$

Hence,
$$W_{obs} > W_{crit}$$

Additionally, the value of the p-value is 0.9965. Which is bigger than the value of $\alpha = 5\%$.

So we should not reject H_0 , for $\alpha = 5\%$. There is evidence that the sample data of the country 2 comes from a Normal distribution.

Tests for Normality for country 3				
Test	Statistic	p Value		
Shapiro-Wilk	W 0.993984	4 Pr < W 0.9965		

Table 4 - Shapiro-Wilk test in SAS

$$W_{obs} = 0.993984$$

$$W_{\text{crit}} = 0.947 (W_{(n=50,\alpha=0.05)})$$

Hence,
$$W_{obs} > W_{crit}$$

Additionally, the value of the p-value is 0.9965. Which is bigger than the value of $\alpha = 5\%$.

So we should not reject H_0 , for $\alpha = 5\%$. There is evidence that the sample data of the country 3 comes from a Normal distribution.

Table 5 - Shapiro-Wilk test in SAS

 $W_{obs} = 0.993984$

$$W_{\text{crit}} = 0.947 (W_{(n=50,\alpha=0.05)})$$

Hence, $W_{obs} > W_{crit}$

Additionally, the value of the p-value is 0.9965. Which is bigger than the value of $\alpha = 5\%$

So we should not reject H_0 , for $\alpha = 5\%$. There is evidence that the sample data of the country 4 comes from a Normal distribution.

Table 6 - Shapiro-Wilk test in SAS

 $W_{obs} = 0.993984$

$$W_{\text{crit}} = 0.947 (W_{(n=50,\alpha=0.05)})$$

Hence, $W_{obs} > W_{crit}$

Additionally, the value of the p-value is 0.9965. Which is bigger than the value of $\alpha = 5\%$.

So we should not reject H_0 , for $\alpha = 5\%$. There is evidence that the population of the country 5 has a Normal distribution.

Hence, we can conclude that there is evidence to believe that all the samples come from a Normal distribution.

It is possible to confirm these results with the observation of the Q-Q Plot. This shows that all the sample values have almost a perfect fit with the expected values of the Normal distribution.

Note: The Q-Q Normal graphs are in Portuguese because they were built with SPSS, which was in Portuguese.

Graph 2 - Normal Q-Q plots for countries 1 to 5

3.3 Tests for equality of variances

After checking the normality assumption it was performed the Levens' Test. Which presented the following results.

Levene Test for Homogeneity of Premium Variance ANOVA of Absolute Deviations from Group Means							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Country	4	1.24E-25	3.09E-26	0.00	1.0000		
Error	245	232090	947.3				

Table 7 - Levene Test for Homogeneity of variance

 $F_{obs}\!=0.00$

 $F_{crit} = 2,4085$ (calculate using Excel)

 $F_{obs} < F_{crit} \\$

P-value = 1.00

 $\alpha = 5\%$

P-value $> \alpha$

Hence, the F_{obs} falls in the acceptance region, so we should not reject H_0 for the 5% significance level. There is evidence to believe that all the populations have the same variance.

3.4 ANOVA F-test

After checking positively all the assumptions of the ANOVA, it is time to perform this test. Its output follows below.

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	703940.000	175985.000	71.87	<.0001
Error	245	599890.294	2448.532		
Corrected Total	249	1303830.294			

Table 8 – ANOVA F-test

 $F_{obs} = 71.87$

 $F_{crit} = 2,4085$ (calculate using Excel)

 $F_{obs} > F_{crit} \\$

P-value = 0.0001

$$\alpha = 5\%$$

P-value $< \alpha$

Hence, F_{obs} falls in the rejection region, so we should reject H_0 for $\alpha = 5\%$. There is evidence to believe that at least one of the population means is different from the others.

3.5 Multiple Comparison tests

In order to check which populations means are different, it was performed a Tukey's HSD test, with the following results. With the first table, it is possible to conclude that countries with significantly different means are the ones with a difference of more than 27.198. Countries with a difference of less than 27.198 have means that are not significantly different.

Alpha	0.05
Error Degrees of Freedom	245
Error Mean Square	2448.532
Critical Value of Studentized Range	3.88654
Minimum Significant Difference	27.198

Table 9 - Tukeys' HSD test

At last, the table below shows that the population means of countries 1 and 4 are not significantly different. The same statement is valid for countries 2 and 3. In opposition to country 5 that doesn't have any similar population mean.

This means that we have evidence not to reject the null hypothesis for the pairs of means of countries 1 and 4 and also of countries 2 and 3. For all the remaining pairs of means, we should reject the null hypothesis for the 5% significance level.

Means with the same letter are not significantly different.					
Tukey Grouping	Mean	N	Country		
A	604.017	50	4		

Means with the same letter are not significantly different.							
Tukey Grouping	Mean	N	Country				
A							
A	595.017	50	1				
В	561.017	50	3				
В							
В	546.017	50	2				
С	455.017	50	5				

Table 3 - Tukey Grouping of the countries

4. Conclusion

Now that all the tests are performed it is possible to conclude that there is clear evidence that the insurance company charges different premiums according to the country of the clients. One can say that there is also evidence for the equality of the charged premiums in countries 1 and 4 and also in countries 2 and 3. Given that, this fact may be due to the similarity risk that the residents of these countries are exposed to. This means that clients from countries 1 and 4 might have the same risk which is also verified for clients in countries 2 and 3. In contrast, country 5 is not charged the same premiums as in any other country and additionally this country is the one with the lowest mean values. This may indicate that clients from country 5 have a lower exposition to risk.

Given that we are studying an automobile insurance, probably country 5 is a smaller country than the others, where there are fewer cars and less traffic and consequently, less exposition to risk of having an accident. In opposition to countries, 1 and 4 that have the highest amount of three-month premiums, so probably these are big

countries, with a lot of traffic and it is possible that the vehicle drivers have bad driving habits, which is a synonym for higher exposition to risk.

5. References

Kent State University (2019). SPSS TUTORIALS: DESCRIPTIVE STATS FOR ONE NUMERIC VARIABLE (EXPLORE) [online] Available at:

https://libguides.library.kent.edu/SPSS/Explore

[Accessed 18 Dec. 2019].

Support.sas.com (2019). SAS/STAT(R) 13.1 User's Guide, The ANOVA Procedure. [online] Available at:

https://support.sas.com/documentation/onlinedoc/stat/131/anova.pdf

[Accessed 16 Dec. 2019].

Support.sas.com (2019). SAS/STAT(R) 14.3 User's Guide, The GLM Procedure. [online] Available at:

https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_glm_syntax15.ht m&docsetVersion=14.3&locale=en#statug.glm.means_opt_hov

[Accessed 16 Dec. 2019].

6. Appendices

Outputs from the code used in SAS

The UNIVARIATE Procedure

Variable: Premium

Moments							
N	50	Sum Weights	50				

		Mome	ents				
Mean	595.03	17106	Sum Observations		29750.8553		
Std Deviation	49.4826415		Varian	ce	2448.	53181	
Skewness	-0.154	43126	Kurtos	sis	0.276	74129	
Uncorrected SS	17822	17822245.9 C c		Corrected SS		119978.059	
Coeff Variation	8.316	8.31617125 Std Er Mean		ror	6.997	90227	
	Basic Statis	tical M	easures		'		
Locati	on		Varia	bility			
Mean	595.0171	Std 49.4			48264		
Median	592.8621	Variance			2449		
Mode		Range		244.	46229		
		Interquartile Range		58.	05489		

Tests for Location: Mu0=0

Test	9	Statistic		p Value
Student's	t	85.02792	Pr > t	<.0001
Sign	M	25	Pr >= M	<.0001
Signed Rank	S	637.5	Pr >= S	<.0001

Tests for Normality

Test	St	atistic	p Value	
Shapiro-Wilk	W	0.993984	Pr < W	0.9965
Kolmogorov- Smirnov	D	0.054417	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.015822	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.121938	Pr > A-Sq	>0.2500

Quantiles (Definition 5)

•	•
Level	Quantile
100% Max	707.958
99%	707.958
95%	679.834
90%	660.691
75% Q3	626.325
50% Median	592.862

Quantiles (Definition 5)					
Level	Quantile				
25% Q1	568.270				
10%	535.103				
5%	508.602				
1%	463.496				
0% Min	463.496				

Extreme Observations Lowest Highest Value Obs Value Obs 463.496 42 661.720 13 502.521 25 662.162 44 508.602 32 679.834 39 512.000 20 688.973 30 530.037 28 707.958 46

The UNIVARIATE Procedure

Variable: Premium

Moments								
N	50	Sum Weights	50					

Moments								
Mean	546.017106	Sum Observations	27300.8553					
Std Deviation	49.4826415	Variance	2448.53181					
Skewness	-0.1543126	Kurtosis	0.27674129					
Uncorrected SS	15026712.1	Corrected SS	119978.059					
Coeff Variation	9.06247093	Std Error Mean	6.99790227					

Basic Statistical Measures							
Location Variability							
Mean	546.0171	Std Deviation	49.48264				
Median	543.8621	Variance	2449				
Mode		Range	244.46229				
		Interquartile Range	58.05489				

Tests for Location: Mu0=0								
Test	est Statistic p Value							
Student's t	t	78.02583	Pr > t	<.0001				
Sign	M	25	Pr >= M	<.0001				
Signed Rank	S	637.5	Pr >= S	<.0001				
Tests for Normality								
Test Statistic p Value								
Shapiro-Wilk	V	N 0.993984 Pr < W			0.9965			

Tests fo				
Test				
Kolmogorov-Smirnov	D	0.054417	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.015822	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.121938	Pr > A-Sq	>0.2500

Quantiles (Definition 5)					
Level	Quantile				
100% Max	658.958				
99%	658.958				
95%	630.834				
90%	611.691				
75% Q3	577.325				
50% Median	543.862				
25% Q1	519.270				
10%	486.103				
5%	459.602				
1%	414.496				
0% Min	414.496				
Extreme Observations					
Lowest Highest					

Quantiles (Definition 5)						
Level			Quantile			
	Value	Obs	Value	Obs		
	414.496	92	612.720	63		
	453.521	75	613.162	94		
	459.602	82	630.834	89		
	463.000	70	639.973	80		
	481.037	78	658.958	96		

The UNIVARIATE Procedure

Variable: Premium

Moments						
N	50	Sum Weights	50			
Mean	561.017106	Sum Observations	28050.8553			
Std Deviation	49.4826415	Variance	2448.53181			
Skewness	-0.1543126	Kurtosis	0.27674129			
Uncorrected SS	15856987.7	Corrected SS	119978.059			
Coeff Variation	8.82016626	Std Error Mean	6.99790227			
Basic Statistical Measures						
Location Variability						

Moments						
Mean	561.0171	Std Deviation	49.48264			
Median	558.8621	Variance	2449			
Mode		Range	244.46229			
		Interquartile Range	58.05489			

Tests for Location: Mu0=0						
Test	Statistic p Value					
Student's t	t	80.16933	Pr > t	<.0001		
Sign	M	25	Pr >= M	<.0001		
Signed Rank	S	637.5	Pr >= S	<.0001		

Tests for Normality					
Test	St	p Valu	ie		
Shapiro-Wilk	W	0.993984	Pr < W	0.9965	
Kolmogorov-Smirnov	D	0.054417	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.015822	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.121938	Pr > A-Sq	>0.2500	

Quantiles (Definition 5)				
Level	Quantile			
100% Max	673.958			
99%	673.958			

Quantiles (Definition 5)					
Level	Quantile				
95%	645.834				
90%	626.691				
75% Q3	592.325				
50% Median	558.862				
25% Q1	534.270				
10%	501.103				
5%	474.602				
1%	429.496				
0% Min	429.496				

Extreme Observations Lowest Highest Value Obs Value Obs 429.496 142 627.720 113 468.521 125 628.162 144 474.602 132 645.834 139 478.000 120 654.973 130 496.037 128 673.958 146

The UNIVARIATE Procedure

Variable: Premium

Moments						
N	50	Sum Weights	50			
Mean	604.017106	Sum Observations	30200.8553			
Std Deviation	49.4826415	Variance	2448.53181			
Skewness	-0.1543126	Kurtosis	0.27674129			
Uncorrected SS	18361811.3	Corrected SS	119978.059			
Coeff Variation	8.1922583	Std Error Mean	6.99790227			
	Basic Statistical I	Measures				

Location	n	Variabi	lity
Mean	604.0171	Std Deviation	49.48264
Median	601.8621	Variance	2449
Mode	•	Range	244.46229
		Interquartile Range	58.05489

Tests for Location: Mu0=0						
Test	Statistic p Value					
Student's t	t	86.31402	Pr > t	<.0001		
Sign	М	25	Pr >= M	<.0001		
Signed Rank	S	637.5	Pr >= S	<.0001		
Tests for Normality						

Tests fo					
Test	Statistic p Value				
Test	Statistic p Val			ie	
Shapiro-Wilk	W	0.993984	Pr < W	0.9965	
Kolmogorov-Smirnov	D	0.054417	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.015822	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.121938	Pr > A-Sq	>0.2500	

Quantiles (Definition 5)					
Level	Quantile				
100% Max	716.958				
99%	716.958				
95%	688.834				
90%	669.691				
75% Q3	635.325				
50% Median	601.862				
25% Q1	577.270				
10%	544.103				
5%	517.602				
1%	472.496				
0% Min	472.496				

Quantiles (Definition 5)							
Level	vel Quantile						
	Extreme Ob	servati	ions				
	Lowest		Highe	st			
	Value	Obs	Value	Obs			
	472.496	192	670.720	163			
	511.521	175	671.162	194			
	517.602	182	688.834	189			
	521.000	170	697.973	180			
	539.037	178	716.958	196			

The UNIVARIATE Procedure

Variable: Premium

Moments							
N	50	Sum Weights	50				
Mean	455.017106	Sum Observations	22750.8553				
Std Deviation	49.4826415	Variance	2448.53181				
Skewness	-0.1543126	Kurtosis	0.27674129				
Uncorrected SS	10472006.4	Corrected SS	119978.059				
Coeff Variation	10.874897	Std Error Mean	6.99790227				

Moments					
Basic Statistical Measures					
Location Variability					
Mean	455.0171	Std Deviation	49.48264		
Median	452.8621	Variance	2449		
Mode		Range	244.46229		
		Interquartile Range	58.05489		

Tests for Location: Mu0=0							
Test Statistic p Value							
Student's t	t t 65.02193 Pr > t <						
Sign	M	25	Pr >= M	<.0001			
Signed Rank	S	637.5	Pr >= S	<.0001			

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.993984	Pr < W	0.9965		
Kolmogorov-Smirnov	D	0.054417	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.015822	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.121938	Pr > A-Sq	>0.2500		

Quantiles (Definition 5)					
Level	Quantile				
100% Max	567.958				
99%	567.958				
95%	539.834				
90%	520.691				
75% Q3	486.325				
50% Median	452.862				
25% Q1	428.270				
10%	395.103				
5%	368.602				
1%	323.496				
0% Min	323.496				

Extreme Observations								
Lowest		Highe	st					
Value	Obs	Value	Obs					
323.496	242	521.720	213					
362.521	225	522.162	244					
368.602	232	539.834	239					
372.000	220	548.973	230					
390.037	228	567.958	246					

The GLM Procedure

Class L			
Class	Levels	Values	
Country	5	12345	
Number of	250		
Number of	250		

Levene Test for Homogeneity of Premium Variance ANOVA of Absolute Deviations from Group Means							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Country	4	1.24E-25	3.09E-26	0.00	1.0000		
Error 245 232090 947.3							

	N	Premium			
Level of Country		Mean	Std Dev		
1	50	595.017106	49.4826415		
2	50	546.017106	49.4826415		
3	50	561.017106	49.4826415		
4	50	604.017106	49.4826415		
5	50	455.017106	49.4826415		

The ANOVA Procedure

Class L			
Class	Levels	Values	
Country	5	12345	
Number of	250		
Number of	250		

Dependent Variable: Premium

Source	DF	Sum of Squares	Mean Square	F Value	Pr >
Model	4	703940.000	175985.000	71.87	<.000
Error	245	599890.294	2448.532		
Corrected Total	249	1303830.294			
R-Square	Coeff Var Ro	oot MSE Premiu	ım Mea n		
0.539902	8.960722 4	9.48264 5.	52.2171		
Source	DF A	nova SS Mean So	uare F Value	Pr > F	
Counti	y 4 70394	40.0000 175985.	0000 71.87	<.0001	

The ANOVA Procedure

Tukey Studentized Range (HSD) Test for Premium

Alpha	0.05
Error Degrees of Freedom	245
Error Mean Square	2448.532
Critical Value of Studentized Range	3.88654
Minimum Significant Difference	27.198

	Means with the same letter are not significantly different.						
	Tukey Grouping	Mean	N	Country			
A		604.017	50	4			
А							
Α		595.017	50	1			
В		561.017	50	3			
В							
В		546.017	50	2			
С		455.017	50	5			