5.1 Измерения коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Александр Романов Б01-110

1 Введение

1.1 О работе

С помощью сцинтилляционного счетчика измеряются линейные коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии. По их величине определяется энергия γ -квантов.

1.2 Экспериментальная установка

Схема установки, используемой в работе, показана на рис. 3. Свинцовый коллиматор выделяет узкий почти параллельный пучок у-квантов,

Рис. 3. Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей: И — источник γ -лучей; Рb — свинцовый контейнер с коллиматорным каналом; П — набор поглотителей; С — сцинтиллятор — кристалл NaI(Tl); Ф — формирователь-выпрямитель

Рис. 4. Схема рассеяния γ-квантов в поглотителе

2 Работа

Включим пересчётный прибор и высоковольтный выпрямитель. Дадим им прогреться.

Измерим число частиц, попадающих в счётчик в отсутствии поглотителя. Получим $N_0=168687$ частиц за 20 сек. Поставим длинный поглотитель и снова измерим. Получим $N_0=2093$ за 60 сек. Последний результат получился во много раз меньше. Т.е. установка исправна.

Будем поочереди ставить на коллиматор таблетки из разных материалов, измерять их суммарную толщину и измерять число частиц.

2.1 Al

plates number	1	2	3	4	5
length, mm	20	40	60	80	100
time, s	25	36	60	60	90
particles number	139143	130440	145021	97203	100231
μ, mm^{-1}	0.0208	0.0211	0.0208	0.0206	0.0202
relative error	0.0027	0.0028	0.0026	0.0032	0.0032

Среднее значение: $\mu_a = 0.0207 \pm 6.6e - 5, \ mm^{-1}$

2.2 Fe

plates number	1	2	3	4	5
length, mm	10	20.1	30.3	40.4	50.6
time, s	20	36	60	110	150
particles number	95194	93169	90875	98769	82301
μ, mm^{-1}	0.0572	0.0588	0.0567	0.0554	0.0540
relative error	0.0032	0.0033	0.0033	0.0032	0.0035

Среднее значение: $\mu_a = 0.0564 \pm 1.9e - 4$, mm^{-1}

2.3 Pb

plates number	1	2	3	4	5
length, mm	5.2	9.9	14.8	19.6	23.9
time, s	29	46	60	81	120
particles number	128147	121544	92433	77973	83105
μ, mm^{-1}	0.1243	0.1172	0.1149	0.1107	0.1046
relative error	0.0028	0.0029	0.0033	0.0036	0.0035

Среднее значение: $\mu_a = 0.1144 \pm 4.1e - 4, \ mm^{-1}$

2.4 Энергия

Определим среднюю энергию γ -лучей при помощи графика:

Рис. 1: Полные коэффициенты ослабления потока γ -лучей в алминии, железе и свинце

Результаты:

$$E_{Al} = 0.7 \; MeV$$

$$E_{Fe} = 0.75 \; MeV$$

$$E_{Pb} = 0.75 \; MeV$$

3 Выводы

В ходе выполнения работы были измерены коэффициенты поглощения γ -лучей в различных веществах:

$$\mu_{Al} = 0.0207 \pm 6.6e - 5, \ mm^{-1}$$

$$\mu_{Fe} = 0.0564 \pm 1.9e - 4, \ mm^{-1}$$

$$\mu_{Pb} = 0.1144 \pm 4.1e - 4, \ mm^{-1}$$

Этим значениям были сопоставленны соответсвующие значения энергии γ -лучей из справочных материалов. Все значения оказались близки друг к другу и составляют в среднем $0.74 \pm 0.4 \; MeV$