Problem 1: The salmonella data set from the faraway library was collected in a salmonella reverse mutagenicity assay where the numbers of revertant colonies of TA98 Salmonella observed on each of three replicate plates for different doses of quinoline

- (a) Fit a linear model with colonies as the response and log(dose + 1) as a predictor.
- (b) Make residual plots and comment on the results.
- (c) Check this model for lack of fit using an appropriate test.

```
In [22]: library('faraway')
    library('ggplot2')
    options(repr.plot.width=6, repr.plot.height=4)
    data(salmonella)
```

In [193]: head(salmonella, 2)

```
        colonies
        dose
        residuals

        15
        0
        -4.823482

        21
        0
        1.176518
```

(a) Fit a linear model with colonies as the response and log(dose + 1) as a predictor.

```
In [201]: |model = lm(colonies ~ log(dose + 1), data = salmonella)
In [202]: summary(model)
          lm(formula = colonies ~ log(dose + 1), data = salmonella)
          Residuals:
                      1Q Median
              Min
                                      3Q
                                             Max
                                          29.119
          -16.376 -6.882 -1.509
                                   5.400
          Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
          (Intercept)
                         19.823
                                     5.064
                                             3.915 0.00123 **
          log(dose + 1)
                          2.396
                                     1.128
                                             2.125 0.04955 *
          Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
          Residual standard error: 10.84 on 16 degrees of freedom
          Multiple R-squared: 0.2201,
                                       Adjusted R-squared: 0.1713
          F-statistic: 4.514 on 1 and 16 DF, p-value: 0.04955
```


(b) Make residual plots and comment on the results.

```
In [204]: salmonella$residuals = model$res
```

In [205]: head(salmonella)

colonies	dose	residuals
15	0	-4.823482
21	0	1.176518
29	0	9.176518
16	10	-9.568484
18	10	-7.568484
21	10	-4.568484

Doses Vs Residuals

Colonies Vs Residuals

fitted Vs Residuals model

- When we make residuals vs doses plot, we can see that there is no clear relationship that emerges.
- When we make residuals vs colonies plot, linear relationship is seen.
- When we make residuals vs fitted plot, no clear relationship emerges. To confirm, we can perform Durbin-Watson test.

Durbin-Watson test

```
data: model
DW = 1.6279, p-value = 0.1382
alternative hypothesis: true autocorrelation is greater than 0
```

• The p value is greater than 5% significance level, hence we accept null hypothesis. i.e. residuals are not correlated.

(c) Check this model for lack of fit using an appropriate test.

ullet Since we do not know the sigma value of each X_i , hence we need to check lack of fit when sigma unknown

In [46]: head(salmonella, 2)

colonies	dose	residuals	
15	0	-4.823482	
21	0	1.176518	

In [47]: salmonella[order(salmonella\$colonies),]

	colonies	dose	residuals
1	15	0	-4.8234823
4	16	10	-9.5684844
7	16	33	-12.2721201
5	18	10	-7.5684844
16	20	1000	-16.3758360
2	21	0	1.1765177
6	21	10	-4.5684844
8	26	33	-2.2721201
10	27	100	-3.8806279
17	27	1000	-9.3758360
3	29	0	9.1765177
9	33	33	4.7278799
13	33	333	-0.7461159
14	38	333	4.2538841
11	41	100	10.1193721
15	41	333	7.2538841
18	42	1000	5.6241640
12	60	100	29.1193721

```
In [89]: model_a = lm(colonies ~ log(dose + 1), data = salmonella);
plot(colonies ~ log(dose + 1), data=salmonella); abline(coef(model_a));
```


	colonies	dose	residuals	model_b\$fitted
1	15	0	-4.8234823	21.66667
4	16	10	-9.5684844	18.33333
7	16	33	-12.2721201	25.00000
5	18	10	-7.5684844	18.33333
16	20	1000	-16.3758360	29.66667
2	21	0	1.1765177	21.66667
6	21	10	-4.5684844	18.33333
8	26	33	-2.2721201	25.00000
10	27	100	-3.8806279	42.66667
17	27	1000	-9.3758360	29.66667
3	29	0	9.1765177	21.66667
9	33	33	4.7278799	25.00000
13	33	333	-0.7461159	37.33333
14	38	333	4.2538841	37.33333
11	41	100	10.1193721	42.66667
15	41	333	7.2538841	37.33333
18	42	1000	5.6241640	29.66667
12	60	100	29.1193721	42.66667

```
Call:
lm(formula = colonies ~ factor(log(dose + 1)), data = salmonella)
Residuals:
   Min
            10 Median
                            30
                                   Max
-15.667 -3.917 -0.500
                         3.417 17.333
Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                       21.667
                                                   5.506
                                                          3.935 0.00198 **
factor(log(dose + 1))2.39789527279837
                                       -3.333
                                                   7.787 -0.428 0.67617
factor(log(dose + 1))3.52636052461616
                                       3.333
                                                   7.787
                                                           0.428 0.67617
factor(log(dose + 1))4.61512051684126
                                       21.000
                                                   7.787
                                                           2.697 0.01942 *
factor(log(dose + 1))5.8111409929767
                                       15.667
                                                   7.787
                                                           2.012 0.06722 .
                                                           1.027 0.32449
factor(log(dose + 1))6.90875477931522
                                        8.000
                                                   7.787
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.536 on 12 degrees of freedom
Multiple R-squared: 0.5475,
                               Adjusted R-squared:
F-statistic: 2.904 on 5 and 12 DF, p-value: 0.06047
```

In [92]: anova(model_a, model_b)

In [91]: | summary(model b)

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
16	1881.063	NA	NA	NA	NA
12	1091.333	4	789.7299	2.170913	0.1341968

```
In [93]: 1-pf(2.170913,4,12)
```

0.134196803857386

• Since p value is greater than 5% significance level, we accept null hypothesis. We can say that there is no lack of fit.

Problem 2: The gammaray data set from the faraway library includes X-ray decay light curve of Gamma ray burst 050525a obtained with the X-Ray Telescope (XRT) on board the Swift satellite. The data set has 63 brightness measurements in the 0.4-4.5 keV spectral band at times ranging from 2 minutes to 5 days after the burst. An appropriate model to predict flux as a function of time using appropriate weights is required.

(a) Find an appropriate linearizing transformation for either the response, the predictor or both if necessary.

- (b) Fit a regression model to predict flux as a function of time, using the proposed transformation in part a) and appropriate weights. Note that the measurement error of the flux is available in the data set.
- (c) Inspect the resulting model residuals and comment on your results
- (d) In case the residuals do not have an appropriate behavior propose a new model for this data set.

```
In [95]: data(gammaray)
head(gammaray,2)
```

time	flux	error
133	122.7	5.7
143	109.5	5.4

(a) Find an appropriate linearizing transformation for either the response, the predictor or both if necessary.

Residuals Vs Time

· Since the time is varying with exponentially, lets apply log to time

```
In [129]: mod_b = lm(flux ~ log(time), data = gammaray)
```


log(time)

Residuals Vs log(Time) mod_b

Residuals Vs Fitted mod_b

- The lm model is still not fitting well on the data, there appears to be log linear relationship.
- Lets also apply log transformation to response variable as well.

```
In [214]: mod_c = lm(log(flux) ~ log(time), data = gammaray)
```


 We can see that transorming both response and predictor with log, the lm model is fitting better on the data.

The residuals look like auto correlated with time. The value of a residual at a particular point depend upon value of preceding residual.

```
In [190]: dwtest(mod_c)
```

Durbin-Watson test

```
data: mod c
DW = 0.2978, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0
```

- The low p value of Durbin-Watson test indicates that residuals are highly correlated and they depend upon value of preceding residual.
- (b) Fit a regression model to predict flux as a function of time, using the proposed transformation in part a) and appropriate weights. Note that the measurement error of the flux is available in the data set.

```
In [140]: mod d = lm(log(flux) ~ log(time), data = gammaray, weights = 1/error^2)
```

(c) Inspect the resulting model residuals and comment on your results

```
In [150]: ggplot(data = gammaray, aes(x = log(time), y = log(flux)))+
              geom point()+
              geom point(color='red')+
              labs(title='Flux Vs Time', x='log(time)', y = 'log(flux)')+
              geom_abline(intercept = mod_d$coef[1], slope= mod_d$coef[2], color='red')+
              geom abline(intercept = mod c$coef[1], slope= mod c$coef[2], color='black')
```


• Red color line is the fitted line after using $weights = \frac{1}{sd^2}$.

• When we use the weights (variance) of X_i , the Im model is fitten with below condition.

The GLS estimate of β minimizes:

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{(y_i - \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta})^2}{\sigma_i^2}$$

- Since we are using $weights = \frac{1}{sd^2}$, More the variance at a particular X_i , lesser weightage will be given to that point while fitting the model.
- We can see that the residuals are still highly correlated. The value of a residual at a particular point depend upon value of preceding residual.

(d) In case the residuals do not have an appropriate behavior propose a new model for this data set.

We can fit a regression model with autocorrelated errors.

```
In [185]: library(nlme)
          mod_e = gls(log(flux) \sim log(time), correlation = corARMA(p=1), data = gammaray)
          summary(mod_e)
          Generalized least squares fit by REML
            Model: log(flux) ~ log(time)
            Data: gammaray
                  AIC
                            BIC
                                  logLik
            -56.17774 -47.73424 32.08887
          Correlation Structure: AR(1)
           Formula: ~1
           Parameter estimate(s):
                Phi
          0.9915039
          Coefficients:
                          Value Std.Error t-value p-value
          (Intercept) 12.735637 1.0804918 11.78689
          log(time) -1.524327 0.0580027 -26.28027
           Correlation:
                    (Intr)
          log(time) - 0.456
          Standardized residuals:
                 Min
                             Q1
                                   Med
                                             Q3
                                                             Max
          -0.4390054 -0.1295899 0.3330974 0.5231954 1.1090041
          Residual standard error: 1.081339
          Degrees of freedom: 63 total; 61 residual
In [186]: intervals(mod_e)
          Approximate 95% confidence intervals
           Coefficients:
                          lower
                                     est.
                                              upper
          (Intercept) 10.575060 12.735637 14.896214
                    -1.640311 -1.524327 -1.408344
          log(time)
          attr(,"label")
          [1] "Coefficients:"
           Correlation structure:
                   lower
                              est.
          Phi -0.9605414 0.9915039 0.9999993
          attr(,"label")
          [1] "Correlation structure:"
           Residual standard error:
                 lower
                               est.
                                           upper
            0.01021064
                         1.08133890 114.51720689
```

Problem 3: The divusa data set from the faraway library reports the divorce rate in the USA

from 1920-1996. Fit a regression model with divorce as the response and unemployed, femlab, marriage, birth and military as predictors.

- (a) Make a residual plot against year. Do you think the residuals are auto-correlated? Why?
- (b) Make a formal test for the autocorrelation of the residuals.
- (c) Assume the residuals behave as an autoregressive model of order 1 (AR(1))1. Use the function gls from the library nlme to fit a regression model to the variable divorce as a response and the unemployed, femlab, marriage, birth and military as predictors. Use the option correlation = corAR1(form = ~ year) and method = "ML". Make sure you do >help(gls) before fitting the model, in order to understand the meaning of the parameters correlation and method in the gls function call.
- (d) What is the estimated autocorrelation coeffcient? Is this coefficient significant? Hint: Use function intervals to get the Cl.
- (e) Discuss whether the GLS model change which variables are found significant when compared to the LM model.
- (f) Comment on why there might be correlation in the errors.

In [223]: data(divusa)

head(divusa,2)

year	divorce	unemployed	femlab	marriage	birth	military
1920	8.0	5.2	22.70	92	117.9	3.2247
1921	7.2	11.7	22.79	83	119.8	3.5614

```
In [242]: mod_a = lm(divorce ~ unemployed + femlab + marriage + birth + military, data = di
        summary(mod a)
        Call:
        lm(formula = divorce ~ unemployed + femlab + marriage + birth +
           military, data = divusa)
        Residuals:
           Min
                   1Q Median
                                3Q
                                     Max
        -3.8611 -0.8916 -0.0496 0.8650 3.8300
        Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
        (Intercept) 2.48784 3.39378 0.733
                                          0.4659
        unemployed -0.11125 0.05592 -1.989
                                          0.0505 .
                  femlab
        marriage
                 birth
        military -0.02673 0.01425 -1.876 0.0647.
        _ _ _
        Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
        Residual standard error: 1.65 on 71 degrees of freedom
        Multiple R-squared: 0.9208,
                                 Adjusted R-squared: 0.9152
        F-statistic: 165.1 on 5 and 71 DF, p-value: < 2.2e-16
```

(a) Make a residual plot against year. Do you think the residuals are auto-correlated? Why?

- We can see that the residuals are still highly correlated. They follow a trend. The value of a
 residual at a particular point depends upon value of preceding residual.
- (b) Make a formal test for the autocorrelation of the residuals.

```
In [226]: dwtest(mod_a)
```

Durbin-Watson test

data: mod_a
DW = 0.29988, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0</pre>

- Here, the null hypothesis is that the errors are not correlated, and alternative hypothesis is that the errors are correlated.
- By performing Durbin-Watson test, we got a very low p value. Hence we reject the null hypothesis and accept that the errors are highly correlated.
- (c) Assume the residuals behave as an autoregressive model of order 1 (AR(1))1. Use the function gls from the library nlme to fit a regression model to the variable divorce as a response and the unemployed, femlab, marriage, birth and military as predictors. Use the option correlation = corAR1(form = ~ year) and method = "ML". Make sure you do >help(gls) before fitting the model, in order to understand the meaning of the parameters correlation and method in the gls function call.

```
In [233]: mod_b = gls(divorce ~ unemployed + femlab + marriage + birth + military, correla
                     method = "ML", data = divusa)
          summary(mod_b)
          Generalized least squares fit by maximum likelihood
            Model: divorce ~ unemployed + femlab + marriage + birth + military
            Data: divusa
                 AIC
                         BIC
                                logLik
            179.9523 198.7027 -81.97613
          Correlation Structure: AR(1)
           Formula: ~year
           Parameter estimate(s):
                Phi
          0.9715486
          Coefficients:
                         Value Std.Error t-value p-value
          (Intercept) -7.059682 5.547193 -1.272658 0.2073
          unemployed 0.107643 0.045915 2.344395 0.0219
                      0.312085 0.095151 3.279878 0.0016
          femlab
          marriage 0.164326 0.022897 7.176766 0.0000
          birth
                  -0.049909 0.022012 -2.267345 0.0264
          military
                      0.017946 0.014271 1.257544 0.2127
           Correlation:
                     (Intr) unmply femlab marrig birth
          unemployed -0.420
          femlab
                    -0.802 0.240
          marriage -0.516 0.607 0.307
          birth
                    -0.379 0.041 0.066 -0.094
          military -0.036 0.436 -0.311 0.530 0.128
          Standardized residuals:
                 Min
                                      Med
                                                           Max
                                                  Q3
          -1.4509327 -0.9760939 -0.6164694 1.1375377 2.1593261
          Residual standard error: 2.907664
          Degrees of freedom: 77 total; 71 residual
```

(d) What is the estimated autocorrelation coefficient? Is this coeffcient significant? Hint: Use function intervals to get the Cl.

- We know that residuals follow a model of the form: $e_{t+1} = \phi e_t + \gamma_t$. Here, ϕ is the autocorrelation coefficient.
- By fitting generalized least squares model with correlation, we got ϕ value as 0.9715486.
- To check its significance, we can check confidence interval of ϕ .

```
In [234]: intervals(mod_b)
         Approximate 95% confidence intervals
          Coefficients:
                           lower
                                       est.
                                                  upper
          (Intercept) -18.12047043 -7.05968166 4.001107109
         unemployed
                     0.01609101 0.10764313 0.199195251
         femlab
                      marriage
                      0.11867101 0.16432630 0.209981587
         birth
                     -0.09380023 -0.04990919 -0.006018159
         military
                     -0.01050915 0.01794640 0.046401944
         attr(,"label")
         [1] "Coefficients:"
          Correlation structure:
                 lower
                           est.
                                   upper
         Phi 0.6529393 0.9715486 0.9980183
         attr(,"label")
```

[1] "Correlation structure:"

est.

0.7976096 2.9076645 10.5998135

Residual standard error:

lower

• We can see that the 95% CI of ϕ is greater than 0. Hence this coefficient is significant.

upper

(e) Discuss whether the GLS model change which variables are found significant when compared to the LM model.

```
Call:
lm(formula = divorce ~ unemployed + femlab + marriage + birth +
   military, data = divusa)
Residuals:
   Min
          1Q Median
                              Max
                        3Q
-3.8611 -0.8916 -0.0496 0.8650 3.8300
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                   3.39378
                            0.733
(Intercept) 2.48784
                                   0.4659
unemployed -0.11125
                    0.05592 -1.989
                                   0.0505 .
          femlab
marriage
birth
        military -0.02673 0.01425 -1.876
                                   0.0647 .
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.65 on 71 degrees of freedom
Multiple R-squared: 0.9208, Adjusted R-squared: 0.9152
F-statistic: 165.1 on 5 and 71 DF, p-value: < 2.2e-16
```

In [240]: summary(mod a)

• In Im model, femlab, marriage, and birth are found to be significant at 5% significance level.

```
In [243]: summary(mod b)
          Generalized least squares fit by maximum likelihood
            Model: divorce ~ unemployed + femlab + marriage + birth + military
            Data: divusa
                 AIC
                          BIC
                                 logLik
            179.9523 198.7027 -81.97613
          Correlation Structure: AR(1)
           Formula: ~year
           Parameter estimate(s):
                Phi
          0.9715486
          Coefficients:
                          Value Std.Error t-value p-value
          (Intercept) -7.059682 5.547193 -1.272658 0.2073
          unemployed 0.107643 0.045915 2.344395 0.0219
          femlab
                       0.312085 0.095151 3.279878 0.0016
          marriage
                       0.164326 0.022897 7.176766 0.0000
                      -0.049909 0.022012 -2.267345 0.0264
          birth
                       0.017946 0.014271 1.257544 0.2127
          military
           Correlation:
                     (Intr) unmply femlab marrig birth
          unemployed -0.420
          femlab
                     -0.802 0.240
          marriage
                     -0.516 0.607 0.307
          birth
                     -0.379 0.041 0.066 -0.094
          military -0.036 0.436 -0.311 0.530 0.128
          Standardized residuals:
                 Min
                             01
                                      Med
                                                  03
                                                            Max
          -1.4509327 -0.9760939 -0.6164694 1.1375377 2.1593261
          Residual standard error: 2.907664
          Degrees of freedom: 77 total; 71 residual
```

- With GLS model, unemployed, femlab, marriage and birth are found to be significant at 5% significance level.
- Compared to linear model, unemployed is also found to be significant in generalized linear squares model.

(f) Comment on why there might be correlation in the errors.

- There might be correlation in the errors due to following reason:
 - 1. The correlation between errors occurs mostly in time series data. The observation at a particular time t is affected by observation taken at time t-1 or t-2. This observations affects the residuals and hence they become correlated.