## Storage of entangled telecomwavelength photons in an Er-doped optical fiber

E. Saglamyurek<sup>1</sup>, J. Jin<sup>1</sup>, V. B. Verma<sup>2</sup>, M. D. Shaw<sup>3</sup>, F. Marsili<sup>3</sup>, S. W. Nam,<sup>2</sup>
D. Oblak<sup>1</sup>, and W. Tittel<sup>1</sup>

<sup>1</sup> Institute for Quantum Science and Technology, University of Calgary AB, Canada
<sup>2</sup> National Institute of Standards and Technology, Boulder CO, USA

<sup>3</sup> Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA



### Storage of entangled telecomwavelength photons in an Er-doped optical fiber



**Problem**: amplification (ERdoped fibres) impossible

Solution: quantum repeater



**Desirable**: fibre-based QM operating at telecom wavelength

#### Rare-earth-ion doped crystals and







Stress and defects

Inhomogeneous broadening

- naturally trapped emitters with free atom like spectra
- transitions at visible and telecom wavelengths
- at <1 K & (large) B:  $\Gamma_{\text{hom}} \approx 50 \text{ Hz} 100 \text{ kHz}$ ,  $T_2 \sim 3 \mu\text{s} 6 \text{ ms}$
- spin coherence >> sec
- $-\Gamma_{inhom} \approx 500 \text{ MHz} \text{THz}$
- possibility to burn persistent spectral holes

# Photon-echo quantum memory (AFC)

1. Preparation of an atomic frequency comb







2. Absorption of a photon -> fast dephasing

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} c_j e^{-i2\pi\Delta_j t} e^{ikz_j} |g_1 \dots e_j \dots g_N\rangle$$

Experiments:
Geneva, Lund, Paris,
Calgary, Barcelona,
Hefei

- 3. Rephasing at  $t_R = 1/v_{comb}$  with  $2\pi\Delta_i t_R = m \ 2\pi$ 
  - Storage and re-emission of light with unity efficiency and fidelity
  - Multi-qubit storage
  - Spin-wave mapping allows on-demand recall of temporally multiplexed qubits
  - Addition of standard optical elements allows feed-forward controlled readout of frequency-multiplexed qubits

Efficient persistent spectral hole burning in Er-doped crystals or fibres not yet shown



#### Er: silicate fibre



- Commercially available
- 1532 nm zero-phonon absorption line,  $\Gamma_{\text{hom}}$  ~100 kHz @ 0.1K
- Small, polarization-independent optical depth ( $\alpha$ ~0.6/m @ 1K &1532 nm)
- Persistent spectral hole burning ( $T_1 = 1.5s 45s$ ) through optical pumping into electronic Zeeman levels @ B~600G & T~1K with 85% efficiency
- Fibre length: 20m
- Simple (and low-loss) splicing to standard telecommunication fibres

# $|\phi^{\dagger}\rangle = \frac{1}{\sqrt{2}}(|e,e\rangle + |l,l\rangle)$ Experimental setup



|            |                            |                          |            |                    | Results                  |
|------------|----------------------------|--------------------------|------------|--------------------|--------------------------|
|            | Entanglemen t of formation | Input-Output<br>Fidelity | Purity     | Fidelity with  φ+> | CHSH-Bell<br>parameter S |
| $ ho_{in}$ | 0.531±0.011                | 0.971±0.049              | 0.694±0.07 | 0.824±0.04         | 2.38±0.05                |

 $0.673 \pm 0.047$ 

- no measurable degradation of (post-selected) entanglement during storage
- experimental violation of CHSH Bell inequality (S<sub>LHV</sub>≤2)
- important step towards fibre-based memories for telecom photons, but more work required to increase efficiency and storage time



0.808±0.048



2.33±0.22

0.499±0.105

 $\rho_{\text{out}}$ 



- Possibility to entangle different QMs



- New tests of quantum/classical transition.

Does the (entangled) Dicke state break down if  $d > \lambda$ ?

$$\left|\psi\right\rangle = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} c_{j} e^{-i2\pi\Delta_{j}t} e^{ikz_{j}} \left|g_{1} \dots e_{j} \dots g_{N}\right\rangle$$



