APPENDIX I:

THE LISTING OF CLAIMS:

1. (currently amended) A tricyclic benzoylpyrazole compound of formula

where:

- X is oxygen, sulfur, S=0, S(=0)2, CR6R7, NR8 or a bond;
- Y together with the two carbons to which it is attached forms a 1,2-isoxazole-ring-which-is saturated, partially saturated or unsaturated 5— or 6—membered heterocycle which contains one to three identical or different heteroatoms selected from the following group: oxygen, sulfur and nitrogen;
- R^1 , R^2 , R^6 , R^7 are hydrogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy or C_1 — C_6 —haloalkoxy;
- R^3 is halogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy or C_1 — C_6 —haloalkoxy;
- is hydrogen, nitro, halogen, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —alkylsulfonyl, C_1 — C_6 —haloalkylsulfonyl, aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkylsulfonyl) amino, C_1 — C_6 —haloalkylsulfonyl) amino, C_1 — C_6 —alkyl)— C_1 — C_6 —alkylsulfonyl) amino or C_1 — C_6 —alkyl)— C_1 — C_6 —alkylsulfonyl) amino;
- R^5 is hydrogen, C_1-C_6 -alkyl or halogen;
- R8 is hydrogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkylcarbonyl, formyl, C_1 — C_6 —alkoxycarbonyl, C_1 — C_6 —haloalkoxycarbonyl, C_1 — C_6 —alkylsulfonyl or C_1 — C_6 —haloalkylsulfonyl;
- 1 is 0, 1 or 2;
- R⁹ is a radical IIa or IIb

where

 R^{10} is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} , $NR^{15}R^{16}$ or N-bonded heterocyclyl, where the heterocyclyl radical may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy or C_1 — C_4 —haloalkoxy;

 R^{11} is hydrogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 — C_6 -alkoxy or C_1 — C_6 -haloalkoxy;

 R^{12} is hydrogen, halogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, hydroxyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio or C_1 — C_6 —haloalkylthio;

Is C_1 — C_6 —alkyl, C_3 — C_6 —alkenyl, C_3 — C_6 —haloalkenyl, C_3 — C_6 —alkynyl, C_3 — C_6 —haloalkynyl, C_3 — C_6 —cycloalkyl, C_1 — C_2 0—alkylcarbonyl, C_2 — C_2 0—alkenylcarbonyl, C_2 — C_6 —alkynylcarbonyl, C_3 — C_6 —alkenyloxycarbonyl, C_3 — C_6 —alkenyloxycarbonyl, C_3 — C_6 —alkynyloxycarbonyl, C_1 — C_6 —alkylthiocarbonyl, C_1 — C_6 —alkylaminocarbonyl, C_3 — C_6 —alkynylaminocarbonyl, C_3 — C_6 —alkynylaminocarbonyl, C_3 — C_6 —alkyllaminocarbonyl, C_3 — C_6 —alkyllaminocarbonyl,

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkyl)amino— C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —al-

kyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

is phenyl, heterocyclyl, phenyl-C1-C6-alkyl, heterocyclyl- $C_1-C_6-alkyl$, phenylcarbonyl- $C_1-C_6-alkyl$, heterocyclylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, phenyloxythiocarbonyl, heterocyclyloxycarbonyl, heterocyclyloxythiocarbonyl, phenylaminocarbonyl, $N-(C_1-C_6-alkyl)-N-(phenyl)$ aminocarbonyl, heterocyclylaminocarbonyl, $N-(C_1-C_6-alkyl)-N-(heterocyclyl)$ aminocarbonyl, phe $nyl-C_2-C_6-alkenylcarbonyl$ or $heterocyclyl-C_2-C_6-alkenylcarbo-a$ nyl, where the phenyl and the heterocyclyl radical of the 18 lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, heterocyclyl or N-bonded heterocyclyl, where the two lastmentioned substituents for their part may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy or C_1 — C_4 —haloalkoxy;

 R^{14} is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkoxy, $di(C_1$ - C_6 -alkyl)amino or $di(C_1$ - C_6 -haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkyl)amino— C_1 — C_4 —alkoxycarbonyl, hydroxycarbonyl, C_1 — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;

is phenyl, heterocyclyl, phenyl— C_1 — C_6 —alkyl, heterocyclyl— C_1 — C_6 —alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R¹⁵ is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, di(C_1 - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals of the following group:

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkyl)amino— C_1 — C_4 —alkoxycarbonyl, hydroxycarbonyl, C_1 — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;

is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 - C_6 -alkyl, where the phenyl or heterocyclyl radical of the four lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{16} is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

or an agriculturally useful salt thereof.

- 2. (canceled)
- 3. (canceled)
- 4. (canceled)
- 5. (currently amended) The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where
 - R¹, R² are hydrogen;
 - R^3 is C_1-C_6 -alkyl;
 - R^4 is nitro, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl;
 - R⁵ is hydrogen;
 - l is 0 oder or 1.
- 6. (previously presented) The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where

R¹⁰ is hydroxyl;

 R^{11} is C_1-C_6 -alkyl or C_3-C_6 -cycloalkyl;

 R^{12} is hydrogen or C_1-C_6 -alkyl.

7. (previously presented) A process for preparing the compound of formula I where R^{10} = halogen as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole compound of formula I α (= I where R^{10} = hydroxyl),

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a halogenating agent.

8. (previously presented) A process for preparing the compound of formula I where $R^{10} = OR^{13}$ as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole compound of formula I α (= I where $R^{10} = \text{hydroxyl}$),

$$R^{12}$$
 O X P^{3} $I\alpha$ $I\alpha$

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a compound of formula III

where the variable R^{13} is as defined in claim 1 and L^1 is a nucleophilically replaceable leaving group.

9. (previously presented) A process for preparing the compound of formula I where $R^{10} = OR^{13}$, SR^{13} , $NR^{15}R^{16}$ or N-bonded heterocyclyl as claimed in claim 1, which comprises reacting a compound of formula I β (\equiv I where R^{10} = halogen),

$$R^{12}$$
 Q R^{1} R^{2} R^{3} R^{10} R^{10}

where the variables R^1 to $R^5,~R^{11}$ and $R^{12},~X,~Y$ and 1 are as defined in claim 1, with a compound of formula $IV\alpha,~IV\beta,~IV\gamma$ or $IV\delta$

HOR 13 HSR 13 NHR 15 R 16 H(N-bonded heterocyclyl) IV α IV β IV γ IV δ

where the variables R^{13} to R^{16} are as defined in claim 1, optionally in the presence of a base.

10. (previously presented) A process for preparing the compound of formula I where $R^{10} = SO_2R^{14}$ as claimed in claim 1, which comprises reacting a compound of formula Iy (\equiv I where $R^{10} = SR^{14}$),

$$R^{12}$$
 Q R^{1} R^{2} R^{3} R^{12} R^{10} R^{10}

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with an oxidizing agent.

11. (currently amended) A process for preparing the compound of formula I where \mathbb{R}^9 = IIa as claimed in claim 1, which comprises reacting a metalated pyrazole compound of formula V where M is a metal and \mathbb{R}^{10} to \mathbb{R}^{12} are as defined in claim 1, except for \mathbb{R}^{10} = hydroxyl and mercapto, with a tricyclic benzoic acid compound of formula VI α where \mathbb{R}^1 to \mathbb{R}^5 , X, Y and 1 are as defined in claim 1 and \mathbb{L}^2 is a nucleophilically replaceable leaving group.

12. (previously presented) A process for preparing the compound of formula $I\alpha$ (= I where R^{10} = hydroxyl) as claimed in claim 1, which comprises acylating a pyrazole of formula VII in which the variables R^{11} and R^{12} are as defined in claim 1

with an activated tricyclic benzoic acid of formula VI β or with a tricyclic benzoic acid of formula VI γ ,

where the variables R^1 to R^5 , X, Y and 1 are as defined in claim 1 and L^3 is a nucleophilically replaceable leaving group, and rearranging the acylation product, optionally in the presence of a catalyst.

13. (previously presented) A process for preparing the compound of formula I α (\equiv I where R^{10} = hydroxyl) as claimed in claim 1, which comprises reacting a pyrazole of formula VII in which the variables R^{11} and R^{12} are as defined in claim 1, or an alkali metal salt thereof,

with a tricyclic benzene compound of formula IX where L^4 is a leaving group and the variables X, Y, R^1 to R^5 and 1 are as defined in claim 1

$$\begin{array}{c|c}
R^1 & R^2 \\
X & Y \\
Y & Y
\end{array}$$
iX

in the presence of carbon monoxide, a catalyst and a base.

- 14. (previously presented) A composition, comprising a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt thereof as claimed in claim 1 and auxiliaries which are customary for formulating crop protection agents.
- 15. (previously presented) A process for preparing the composition defined in claim 14, which comprises mixing a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt thereof and auxiliaries which are customary for formulating crop protection agents.
- 16. (previously presented) A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt thereof as claimed in claim 1 to act on plants, their habitat or on seed.
- 17. (canceled)
- 18. (withdrawn) A tricyclic benzoic acid compound of formula VI

$$R^{1}$$
 R^{2} R^{3} R^{1} R^{2} R^{3} R^{4} R^{4}

in which the variables X, Y, R^1 to R^3 and R^5 and 1 are as defined in claim 1 and

R⁴ is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, aminosulfonyl, N- $(C_1$ - C_6 -alkyl)aminosulfonyl, N- $(C_1$ - C_6 -alkyl)aminosulfonyl, N- $(C_1$ - C_6 -haloalkylsulfonyl)amino, N- $(C_1$ - C_6 -haloalkylsulfo-

nyl)amino, $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino or $N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)$ amino;

R¹⁷ is hydroxyl or a radical which can be removed by hydrolysis.

19. (withdrawn) A tricyclic benzene compound of formula IX

$$\begin{array}{c|c}
R^1 & R^2 \\
X & Y \\
R^4 & \\
R^5 & \\
\end{array}$$

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and \mathbb{R}^5 and 1 are as defined in claim 1 and

R⁴ is nitro, halogen, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkylthio, C_1 — C_6 —haloalkylthio, C_1 — C_6 —alkylsulfinyl, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —haloalkylsulfonyl, C_1 — C_6 —haloalkylsulfonyl, C_1 — C_6 —alkylsulfonyl, aminosulfonyl, C_1 — C_6 —alkylsulfonyl) amino, C_1 — C_6 —alkylsulfonyl) amino or C_1 — C_6 —alkylsulfonyl) amino; C_1 — C_6 —alkylsulfonyl) amino;

 R^5 is hydrogen or C_1 - C_6 -alkyl;

L⁴ is halogen, C_1 — C_6 —alkylsulfonyloxy, C_1 — C_6 —haloalkylsulfonyloxy or phenylsulfonyloxy, where the phenyl ring of the lastmentioned radical may be unsubstituted or partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy or C_1 — C_4 —haloalkoxy.

20. (withdrawn) An aniline compound of formula XV

$$R^1$$
 R^2 R^3 Y R^4 R^5

in which the variables X, Y, R^1 to R^3 and R^5 and 1 are in each case as defined in claim 1 and

 R^4 is nitro, halogen, cyano, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylthio,

21. (withdrawn) A nitrile compound of formula XVI

NC
$$\mathbb{R}^1$$
 \mathbb{R}^2 \mathbb{R}^3 XVI

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and 1 are in each case as defined in claim 1 and

- Is nitro, halogen, cyano, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkylsulfonyl)amino, C_1 - C_6 -alkylsulfonyl)amino, C_1 - C_6 -alkylsulfonyl)amino, C_1 - C_6 -alkylsulfonyl)amino or C_1 - C_6 -alkyl)- C_1 - C_6 -alkylsulfonyl)amino; C_1 - C_6 -alkylsulfonyl)amino; C_1 - C_6 -alkylsulfonyl)amino; C_1 - C_6 -alkylsulfonyl)amino;
- 22. (canceled)
- 23. (currently amended) The compound of formula I defined in claim $\frac{22}{1}$, wherein R^{10} is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} or $NR^{15}R^{16}$.