Direct N-Body Codes

NBODY1	ITS	ϵ	3 - 100
NBODY1H	ITS	ϵ	$10 - 10^5$
NBODY2	ACS	ϵ	$50 - 10^4$
NBODY2H	HACS	ϵ	$50 - 10^4$
NBODY3	ACS	KS & MREG	3 - 100
NBODY4	HITS	KS & MREG	$10 - 10^5$
NBODY5	ACS	KS & MREG	$50 - 10^4$
NBODY6	HACS	KS & MREG	$50 - 10^4$
NBODY7	HITS	KS & 2 BH	$10 - 10^5$
SPOKE	HITS	KS & 1 BH	$10 - 10^5$
HERMIT4	HITS	KS & SUN	$10 - 10^4$

MREG: Three-body, four-body & chain regularization

http://www.ast.cam.ac.uk/~sverre

Units

(a) Scaling relations

Given length scale $R_{\rm V}$ in pc and total mass $NM_{\rm S}$ in M_{\odot}

Velocity scaling

$$\tilde{V}^* = 1 \times 10^{-5} (GM_{\odot}/L^*)^{1/2} \text{ km/s}, \text{ with } L^* = 3 \times 10^{18} \text{ cm}$$

Velocity unit
$$V^* = 6.557 \times 10^{-2} (NM_S/R_V)^{1/2} \,\text{km/s}$$

Fiducial time
$$\tilde{T}^* = (L^{*3}/GM_{\odot})^{1/2} = 14.94 \text{ Myr}$$

Time unit
$$T^* = 14.94 (R_V^3 / N M_S)^{1/2} \text{ Myr}$$

(b) Conversion from N-body to physical units

$$\tilde{r} = R_{\rm V} r \, {\rm pc}, \quad \tilde{v} = V^* v \, km/s, \quad \tilde{t} = T^* t \, {\rm Myr}, \quad \tilde{m} = M_{\rm S} \, m \, M_{\odot}$$

Crossing time $T_{\rm cr} = 2\sqrt{2} \, T^* \, {\rm Myr}$

Scaling of Initial Conditions

Main input

$$N$$
, $N_{\rm b}$, \bar{m} , $R_{\rm pc}$

Cluster parameters

optional IMF and Plummer or King model

Initial data

$$m_i, \, \tilde{\mathbf{r}}_i, \, \tilde{\mathbf{v}}_i, ..., \, i = 1, \, N$$

Total energy

$$E = T - U$$

$$\mathbf{v}_i = q \, \tilde{\mathbf{v}}_i, \quad q = \left[\frac{Q_{\mathrm{V}} U}{T} \right]^{1/2}, \quad \mathbf{r}_i = \tilde{\mathbf{r}}_i$$

Standard units

$$G = 1$$
, $\Sigma m_i = 1$, $E_0 = -0.25$

Standard scaling

$$\hat{\mathbf{r}}_i = \frac{\mathbf{r}_i}{S^{1/2}}, \ \hat{\mathbf{v}}_i = \mathbf{v}_i S^{1/2}, \ S = \frac{E_0}{q^2 T - U}$$

Astrophysical units

$$V^*, T^*, R^*$$
 from $M_{\text{tot}}, R_{\text{pc}}$

Primordial binaries

split or copy m_i , introduce a, e, Ω

Force polynomials

$$\mathbf{F}_i, \, \dot{\mathbf{F}}_i, \, \Delta t_i, ..., \, i = 1, \, N$$

KS regularization

explicit initialization, $R < R_{\rm cl}$

Data Structure

Single stars
$$2N_{\rm p} < i \leq N, \quad \mathcal{N}_i = i$$

KS pairs
$$1 \le i \le 2 N_{\rm p}, \quad i_p = i_{\rm icm} - N$$

C.m. particles
$$i > N$$
, $\mathcal{N} = N_0 + \mathcal{N}_k$, $k = 2i_p - 1$

Stable triples KS + ghost,
$$\mathcal{N}_{cm} = -\mathcal{N}_k$$

Ghost particles
$$\mathcal{N}_{\text{ghost}} = \mathcal{N}_{2i_{\text{p}}-1}, \quad m_{\text{ghost}} = 0$$

Stable quadruples KS + KS ghost,
$$\mathcal{N}_{\text{cm}} = -\mathcal{N}_k$$

Higher orders
$$T + KS$$
, $\mathcal{N}_{cm} = -(2N_0 + \mathcal{N}_k)$

Chain members
$$2 N_{\rm p} < i_{\rm cm} \leq N, \quad \mathcal{N}_{\rm cm} = 0$$

Single escape
$$2N_{\rm p} < i \le N, \quad r_i > 2r_{\rm tide}, \quad {\rm remove} \ i$$

Binary escape
$$i > N$$
, $r_i > 2r_{\text{tide}}$, $2i_p - 1$, $2i_p$

Hierarchy escape
$$i > N$$
, $r_i > 2r_{\text{tide}}$, $2i_p - 1$, $2i_p$, i_{ghost}

A Dynamical Zoo

(a) Concepts

Single stars S

Binaries B

Long-lived triples T = [B,S]

Quadruples Q = [B,B]

Higher-order systems H = [T,T]

Ghosts G

(b) Treatments

S: Basic integration

B: Relative two-body motion and c.m. integration

T: Outer orbit around inner c.m. and c.m. integration

Q: Two binaries in relative orbit, etc.

G: Skip integration