EE2023/TEE2023/EE2023E TUTORIAL 8 (PROBLEMS)

Section I: Exercises that are straightforward applications of the concepts covered in class. Please attempt these problems on your own.

1. Consider the first order system $G(s) = \frac{2}{0.2s+1}$.

Figure 1: Open loop system, G(s)

Suppose that the input is a sinusoidal signal $x(t) = \sin(3t)$ (See Figure 1).

- (a) Find the output of the system
- (b) Identify the steady-state response.
- (c) Show that the amplitude ratio and phase shift of the steady-state response are equal to values given by $|G(j\omega)|$ and $\angle G(j\omega)$ where ω is the frequency of the sinusoidal input.

ANSWER:
$$y_{ss}(t) = 1.71\sin(3t - 0.54)$$

2. The steady-state output of a first order system, G(s), is $4.5 \sin(5t - 38^\circ)$. Assuming that |G(5j)| = 0.75 and $\angle G(5j) = -68^\circ$, identify the function(s) that may be the input signal.

ANSWER:
$$6 \sin \left(5t + \frac{\pi}{6} \pm 2n\pi \right) = 6 \cos \left(5t - \frac{\pi}{3} \pm 2n\pi \right)$$

Since $\cos \left(\omega t - \pi / 2 \right) = \sin \left(\omega t \right)$

3. The magnitude response for the system G(s) is shown in Figure 2.

Figure 2: Magnitude plot for G(s)

(a) What is the slope of the high frequency asymptote?

ANSWER: -40 dB/decade

(b) How many pole(s), zeros and integrators does G(s) have?

ANSWER: 3 poles, 1 zero and 1 integrator

(c) The low frequency asymptote of the magnitude response is $\frac{K}{s^N}$. Find the value of K.

ANSWER: K = 4

Section II: Problems that will be discussed in class.

1. A car suspension system and a very simplified version of the system are shown in Figure 3(a) and 3(b) respectively.

The transfer function of the simplified car suspension system is

$$\frac{X_o(s)}{X_i(s)} = \frac{bs + k}{ms^2 + bs + k}$$

Suppose a car (m = 1 kg, k = 1 N/m and $b = \sqrt{2}$ N/ms⁻¹) is travelling on a road that has speed reducing stripes and the input to the simplified car suspension system, x_i , may be modelled by the periodic square wave of frequency $\omega = 1$ rad/s, shown in Figure 4.

Figure 3: (a) Automobile suspension system, (b) Simplified suspension system

Figure 4: Input waveform, $x_i(t)$

Determine the steady-state displacement of the car body, $x_{ass}(t)$.

Hint: The Fourier Series representation of the periodic square wave shown in Figure 4 is

$$x_i(t) = \frac{4}{\pi} \left[\sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \dots \right]$$

ANSWER:

$$x_i(t) = \frac{4}{\pi} \left[1.2247 \sin(t - 0.6155) + 0.1605 \sin(3t - 1.3147) + 0.05708 \sin(5t - 1.4248) + \dots \right]$$

- 2. A high speed recorder monitors the temperature of an air stream as sensed by a thermocouple. The following observations were made:
 - The recorded temperature shows an essentially sinusoidal variation after about 1 second.
 - The maximum recorded temperature is about 52°C and the minimum is 48°C at 2 cycles per minute.

The information indicates that the recorded steady-state temperature may be expressed as $50+2\sin(4\pi t)$. If the system (thermocouple and high speed recorder) has unity steady-state gain and first order dynamics with a time constant of approximately 1 minute under these conditions, estimate the actual maximum and minimum air temperatures.

- 3. Figure 5 shows the magnitude plot of $G(s) = \frac{A(s+\alpha)}{(s+\beta)(S+\gamma)(s+\lambda)}$.
 - (a) Using the approximate (straight line asymptotes) magnitude response, determine A, α , β , γ and λ .

ANSWER:
$$A = 5000$$
, $\alpha = 4$, $\beta = 10$, $\gamma = \lambda = 20$

(b) Write down the transfer function of another system that may have the magnitude response shown in Figure 5.

ANSWER:
$$\frac{5000(s\pm 4)}{(s\pm 10)(s+20)^2}; \frac{5000(s\pm 4)e^{-sL}}{(s\pm 10)(s+20)^2}$$

Figure 5: Magnitude response of $G(s) = \frac{A(s+\alpha)}{(s+\beta)(s+\gamma)(s+\lambda)}$

4. Consider a system modelled by the transfer function,

$$G(s) = \frac{K\left(-\frac{s}{\alpha} + 1\right)}{\left(\frac{s}{\beta} + 1\right)\left(\frac{s}{\gamma} + 1\right)^{2}}$$

Using the pole-zero map and Bode magnitude plot of G(s) shown in Figure 6, answer the following questions.

- (a) Identify the corner frequencies $(\omega_1, \omega_2 \text{ and } \omega_3)$ of the Bode magnitude plot of G(s)
- (b) What is the value of the repeated pole?
- (c) Determine the DC gain, K.
- (d) Is the system stable?

Figure 6

Section III: Practice Problems. These problems will not be discussed in class.

1. Find the steady-state current owing through the capacitor $(\lim_{t\to\infty}i_C(t))$, inductor $(\lim_{t\to\infty}i_L(t))$ and resistor $(\lim_{t\to\infty}i_R(t))$ in the circuit shown in Figure 7.

Figure 7: Parallel RLC Circuit

ANSWER:
$$\lim_{t \to \infty} x_C(t) = \frac{20}{\sqrt{13}} \cos(200t + 33.7^\circ)$$

 $\lim_{t \to \infty} x_L(t) = \frac{5}{\sqrt{13}} \cos(200t - 146.3^\circ)$
 $\lim_{t \to \infty} x_R(t) = \frac{10}{\sqrt{13}} \cos(200t - 56.3^\circ)$

2. Figure 8 shows the Bode diagram of a system whose transfer function is

$$G(s) = \frac{A(s+a)}{(s+b)(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

What are the values of A, a, b, ς and ω_n ?

ANSWER:
$$A = 12$$
, $a = 30$, $b = 9$, $\zeta = 0.25$, $\omega_n = 2$

Figure 8: Bode Diagram