EE2023 Signals & Systems Chapter 7 – Laplace transform Review

TAN Woei Wan

Dept. of Electrical & Computer Engineering National University of Singapore

©2022

What is Laplace transform ?

Laplace transform is an integral transform, that is particularly useful for solving linear ordinary differential equation.

Problem is simplified by converting a differential equation (time-domain) into an algebraic equation in the s-domain (complex frequency domain).

Differentiation

Multiplication

Integration

Division

► Since the input-output mapping of LTI systems is defined by linear differential equations, Laplace transform is the tool for analysising and characterisating LTI systems.

Laplace transform – Definition

 \triangleright The **unilateral** Laplace transform of a time-domain function, f(t), is defined as

$$F(s) = \mathcal{L}\{f(t)\} = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$$

▶ If f(t) are signals associated with a causal system, i.e. f(t) = 0 for t < 0, then the definition of the unilateral Laplace transform is equivalent to

$$F(s) = \mathcal{L}{f(t)} = \int_{-\infty}^{\infty} f(t)e^{-st} dt$$

The above equation is known as the **bilateral** Laplace transform.

In this course, unless otherwise specified, we will assume that all time-domain functions are causal and adopt the unilateral Lapalce transform as "the Laplace transform".

Laplace transform Table

Time-domain functions, $x(t)$		s-domain functions, $X(s)$
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	1/s
Ramp	tu(t)	1/s²
n th order Ramp	$t^n u(t)$	$\frac{n!}{s^{m+1}}$
Damped Ramp	$t \exp(-\alpha t)u(t)$	$1/(s+\alpha)^2$
Exponential	$\exp(-\alpha t)u(t)$	$1/(s+\alpha)$
Cosine	$\cos(\omega_o t)u(t)$	$s/(s^2+\omega_o^2)$
Sine	$\sin(\omega_o t)u(t)$	$\omega_o/(s^2+\omega_o^2)$
Damped Cosine	$\exp(-\alpha t)\cos(\omega_o t)u(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_o^2}$
Damped Sine	$\exp(-\alpha t)\sin(\omega_o t)u(t)$	$\frac{\omega_o}{\left(s+\alpha\right)^2+\omega_o^2}$

	Time-domain	s-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(s) + \beta X_2(s)$
Time shifting	$x(t-t_o)u(t-t_o)$	$\exp(-st_o)X(s)$
Shifting in the s-domain	$\exp(s_o t)x(t)$	$X(s-s_o)$
Time scaling	$x(\alpha t)$	$\frac{1}{ \alpha }X\left(\frac{s}{\alpha}\right)$
Integration in the time-domain	$\int_{0^{-}}^{t} x(\zeta) d\zeta$	$\frac{1}{s}X(s)$
Differentiation in the	$\frac{dx(t)}{dt}$	$sX(s)-x(0^-)$
time-domain	$\frac{d^n x(t)}{dt^n}$	$s^{n}X(s) - \sum_{k=0}^{n-1} s^{n-1-k} \frac{d^{k}x(t)}{dt^{k}}\Big _{t=0}$
Differentiation in the	-tx(t)	$\frac{dX(s)}{ds}$
s-domain	$(-t)^n x(t)$	$\frac{d^n X(s)}{ds^n}$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$	$X_1(s)X_2(s)$
Initial value theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$	
Final value theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$	

$$\mathcal{L}\left\{\frac{\mathrm{d}f(t)}{\mathrm{d}t}\right\} = sF(s) - f(0^{-}) \qquad \qquad \mathcal{L}\left\{\frac{\mathrm{d}^{n}f(t)}{\mathrm{d}t^{n}}\right\} = s^{n}F(s) - \sum_{k=0}^{n-1}s^{n-1-k}f^{k}(0^{-})$$

Example

Differential equation relating the input, v(t), to the output, $v_c(t)$, in a series RC circuit is

$$RC\frac{\mathsf{d}v_c(t)}{\mathsf{d}t} + v_c(t) = v(t)$$

Let $\mathcal{L}\{v_c(t)\} = V_c(s)$ and $\mathcal{L}\{v(t)\} = V(s)$. Applying the differentiation in time-domain property, the s-domain expression is

$$\underbrace{RC[sV_c(s)-v_c(0^-)]+V_c(s)=V(s)}_{RC[sV_c(s)-v_c(0^-)]+V_c(s)=V(s)$$

$$(sRC + 1)V_c(s) = RCv_c(0^-) + V(s)$$

 $V_c(s) = \frac{RCv_c(0^-)}{sRC + 1} + \frac{V(s)}{(sRC + 1)}$

Laplace transform Properties – Shift in s-domain

$$\mathcal{L}\{e^{-\alpha t}f(t)\} = F(s+\alpha)$$

Example

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2 + 2s + 4}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{(s+1)^2 + 3}\right\} = \frac{1}{\sqrt{3}} \mathcal{L}^{-1}\left\{\frac{\sqrt{3}}{(s+1)^2 + (\sqrt{3})^2}\right\}$$
$$= \frac{1}{\sqrt{3}} \mathcal{L}^{-1}\left\{\frac{\sqrt{3}}{s_1^2 + (\sqrt{3})^2}\right\}; \ s_1 = s + 1$$

As
$$\mathcal{L}\{\sin \omega t\} = \frac{\omega}{s^2 + \omega^2}$$
 and $\mathcal{L}\{e^{-\alpha t}f(t)\} = F(s + \alpha)$

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2 + 2s + 4}\right\} = \frac{1}{\sqrt{3}} e^{-t} \sin \sqrt{3}t$$

Laplace transform Properties – Final Value Theorem (FVT)

$$\lim_{t\to\infty}f(t)=\lim_{s\to 0}sF(s)$$

► Let $f(t) = 1 + e^{-2t}$. Then, $F(s) = \mathcal{L}\{1 + e^{-2t}\} = \frac{1}{s} + \frac{1}{s+2}$.

$$\lim_{s=0} sF(s) = \lim_{s=0} s\left[\frac{1}{s} + \frac{1}{s+2}\right] = 1 = \lim_{t \to \infty} f(t)$$

FVT correctly predicts the "final value" of the signal f(t).

▶ Let $f(t) = \sin \omega t$. Then, $F(s) = \mathcal{L}\{\sin \omega t\} = \frac{\omega}{s^2 + \omega^2}$.

$$\lim_{s=0} sF(s) = \lim_{s=0} s \frac{\omega}{s^2 + \omega^2} = 0 \neq \lim_{t \to \infty} f(t)$$

The answer derived via FVT "appears reasonable", but $\lim_{t \to \infty} \sin \omega t$ is not defined. Hence, it is essentially to check that the function tends to a final constant as $t \to \infty$ before applying FVT.

▶ The inverse Laplace transform, \mathcal{L}^{-1} , of F(s) is defined as

 $f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi i} \int_{s-i\infty}^{c+j\infty} F(s)e^{st} ds$

where c = Re[s] is a vertical line that lies inside the Region of Convergence (ROC) of F(s). Evaluation of the integral requires knowledge of complex variable theory.

- ▶ Special Case: If F(s) is a rational function of the form $\frac{C(s)}{D(s)}$, where C(s) and D(s) are polynomials in s, the alternative method is
 - Expand F(s) into a sum of partial fractions, namely $F(s) = \frac{C(s)}{D(s)} = \sum_{p=1}^{N} \frac{C_k(s)}{D_k(s)}$
 - ightharpoonup Due to the linearity property of Laplace transform, the inverse transform of F(s) may be expressed as

$$f(t) = \mathcal{L}^{-1}\{F(s)\} = \mathcal{L}^{-1}\left\{\sum_{n=1}^{N} \frac{C_n(s)}{D_n(s)}\right\} = \sum_{n=1}^{N} \mathcal{L}^{-1}\left\{\frac{C_n(s)}{D_n(s)}\right\}$$

where $\mathcal{L}^{-1}\left\{\frac{C_n(s)}{D_n(s)}\right\}$ is obtained from Laplace transform tables.

Inverse Laplace transform – Partial Fraction Expansion

Let
$$F(s) = \frac{C(s)}{D(s)} = \frac{K'(s^m + a_{m-1}s^{m-1} + \ldots + a_1s + a_0)}{s^n + b_{n-1}s^{n-1} + \ldots + b_1s + b_0}$$
 where $K' = \text{constant}$ and $m < n$.

▶ $D(s) = (s + p_1)(s + p_2) \dots (s + p_n)$ i.e. D(s) can be factorised into distinct first order polynomials. Then, the partial fraction expansion is

$$F(s) = \frac{C(s)}{(s+p_1)(s+p_2)\dots(s+p_N)} = \frac{\alpha_1}{s+p_1} + \frac{\alpha_2}{s+p_2} + \dots + \frac{\alpha_n}{s+p_n}$$

▶ $D(s) = (s + p_1)^r \dots (s + p_{n-r})$ i.e. D(s) has r repeated first order factors and (n - r) distinct first order factors. The partial fraction expansion is

$$F(s) = \frac{C(s)}{(s+p_1)^r \dots (s+p_{n-r})} = \frac{\alpha_1}{s+p_1} + \frac{\alpha_2}{(s+p_1)^2} + \dots + \frac{\alpha_r}{(s+p_2)^r} + \dots + \frac{\alpha_{n-r}}{s+p_{n-r}}$$

▶ $D(s) = (s^2 + bs + c) \dots (s + p_{n-2})$ i.e. D(s) has a quadratic factor and (n-2) distinct first order factors.

$$F(s) = \frac{C(s)}{(s^2 + bs + c) \dots (s + p_{n-2})} = \frac{\beta s + \alpha_1}{(s^2 + bs + c)} + \dots + \frac{\alpha_{n-2}}{s + p_{n-2}}$$

Inverse Laplace transform via Partial Fraction Expansion – Example

Find the inverse LT of
$$F(s) = \frac{2}{(s+1)(s+2)}$$

$$F(s) = \frac{2}{(s+1)(s+2)} = \frac{A_1}{s+1} + \frac{A_2}{s+2}$$
$$= \frac{A_1(s+2) + A_2(s+1)}{(s+1)(s+2)}$$

Comparing coefficients, $2 = A_1(s+2) + A_2(s+1)$

Let
$$s = -2$$
: $2 = A_2(-2+1) \Rightarrow A_2 = -2$
Let $s = -1$: $2 = A_1(-1+2) \Rightarrow A_1 = 2$

$$\mathcal{L}^{-1}\left\{\frac{2}{(s+1)(s+2)}\right\} = \mathcal{L}^{-1}\left\{\frac{2}{s+1} - \frac{2}{s+2}\right\}$$
$$= 2e^{-t} - 2e^{-2t}$$

Laplace transform method for solving DEs – Series RC circuit

Use Laplace Transform to derive the voltage across the capacitor, $v_c(t)$, if $v(t) = v_{in}u(t)$ and the initial condition is $v_c(0^-)$

Differential equation model : $RC \frac{dv_c(t)}{dt} + v_c(t) = v_{in} \cdot u(t)$

Let $\mathcal{L}\{v_c(t)\}=V_c(s)$. Applying the differentiation in time-domain property, the s-domain expression is

$$sRCV_c(s) - RCv_c(0^-) + V_c(s) = \frac{v_{in}}{s}$$
 $(sRC + 1)V_c(s) = RCv_c(0^-) + \frac{v_{in}}{s}$
 $V_c(s) = \frac{RCv_c(0^-)}{sRC + 1} + \frac{v_{in}}{s(sRC + 1)}$

$$V_{c}(s) = \frac{RCv_{c}(0^{-})}{sRC + 1} + \frac{v_{in}}{s(sRC + 1)}$$

$$= \frac{v_{c}(0^{-})}{s + \frac{1}{RC}} + \frac{v_{in}}{s} - \frac{VRC}{sRC + 1}$$

$$= \frac{v_{c}(0^{-})}{s + \frac{1}{RC}} + \frac{v_{in}}{s} - \frac{v_{in}}{s + \frac{1}{RC}}$$

$$v_{c}(t) = \mathcal{L}^{-1}\{V_{c}(s)\}$$

$$= [v_{c}(0^{-}) - v_{in}]e^{-\frac{t}{RC}} + v_{in}$$

- Applying Initial Value Theorem (IVT): $\lim_{t\to 0} v_c(t) = \lim_{s\to \infty} sV_c(s) = v_c(0^-)$
- lacktriangle Applying Final Value Theorem (FVT): $\lim_{t \to \infty} v_c(t) = \lim_{s \to 0} s V_c(s) = v_{in}$

IVT and FVT provide the means to determine $\lim_{t\to 0}v_c(t)$ and $\lim_{t\to \infty}v_c(t)$ without performing inverse Laplace transform.

Laplace transform method for solving DEs - Parallel RL circuit

Derive the differential equation and use Laplace Transform to derive $i_L(t)$, the current flowing through the inductor, given that the initial condition is $i_L(0^-)$.

Since R and L are connected in parallel, the voltage across R is equal to the voltage across L. Using the I-V relationship for an inductor,

$$v(t) = L \frac{di_L(t)}{dt}$$

Applying KCL,

$$\frac{v(t)}{R} + i_L(t) = i_{in}u(t)$$

$$\frac{1}{R} \underbrace{L\frac{di_L(t)}{dt}}_{v(t)} + i_L(t) = i_{in}u(t)$$

$$\frac{L}{R} \left[sI_{L}(s) - i_{L}(0^{-}) \right] + I_{L}(s) = \frac{i_{in}}{s}$$

$$I_{L}(s) = \frac{i_{L}(0^{-})}{s + \frac{R}{L}} + \frac{i_{in}\frac{R}{L}}{s(s + \frac{R}{L})}$$

$$= \frac{i_{L}(0^{-})}{s + \frac{R}{L}} + \frac{i_{in}}{s} - \frac{i_{in}}{s + \frac{R}{L}}$$

$$i_{L}(t) = \mathcal{L}^{-1} \{I_{L}(s)\}$$

$$= [i_{L}(0^{-}) - i_{in}]e^{-\frac{R}{L}t} + i_{in}$$

- Applying Initial Value Theorem (IVT): $\lim_{t\to 0} v_c(t) = \lim_{s\to \infty} sI_L(s) = i_L(0^-)$
- ▶ Applying Final Value Theorem (FVT): $\lim_{t\to\infty} v_c(t) = \lim_{s\to 0} sI_L(s) = i_{in}$

Laplace transform method for solving DEs – Non-zero initial conditions

Determine the voltage across the capacitor, $v_c(t)$, when $t \ge 0$ given that $v_c(0^-) = 2$ and $\dot{v}_c(0^-) = 0$.

- From I-V relationship of the capacitor, current $i_2(t)=C\frac{dv_c(t)}{dt}=7\frac{dv_c(t)}{dt}$.
- Voltage across the resistor is $i_2(t)R = RC\frac{dv_c(t)}{dt} = 21\frac{dv_c(t)}{dt}$. Voltage across the inductor is $L\frac{di_2(t)}{dt} = LC\frac{d^2v_c(t)}{dt^2} = 35\frac{d^2v_c(t)}{dt^2}$.

Applying KVL, the differential equation for determining $v_c(t)$ is

$$35\frac{d^2v_c(t)}{dt^2} + 21\frac{dv_c(t)}{dt} + v_c(t) = 11u(t)$$

Performing Laplace Transform,

$$35 \left[s^{2}V_{c}(s) - sv_{c}(0^{-}) - \dot{v}_{c}(0^{-}) \right] + 21 \left[sV_{c}(s) - v_{c}(0^{-}) \right] + v_{c}(s) = \frac{11}{s}$$

$$\left[35s^{2} + 21s + 1 \right] V_{c}(s) = 70s + 42 + \frac{11}{s}$$

$$V_{c}(s) = \frac{70s + 42}{35s^{2} + 21s + 1} + \frac{11}{s(35s^{2} + 21s + 1)}$$

$$v_{c}(t) = \mathcal{L}^{-1} \left\{ \frac{2s + \frac{6}{5}}{s^{2} + \frac{3}{5}s + \frac{1}{35}} + \frac{\frac{11}{35}}{s(s^{2} + \frac{3}{5}s + \frac{1}{35})} \right\}$$

$$= \frac{2.2104}{s + 0.052} - \frac{0.2104}{s + 0.548} + \frac{11}{s} - \frac{12.1573}{s + 0.052} + \frac{1.1573}{s + 0.548}$$

$$= 11 - 9.94e^{-0.052t} + 0.94e^{-0.548t}, t > 0$$