$Transformaciones\ Can\'onicas$

PART

Т

Subsection 0.1

Problemas resueltos

Como se puede ver, esta sección de problemas contiene una cantidad mínima de problemas y esto es debido a lo avanzado que puede ser este tema para un bachillerato. Por supuesto, se espera mejorar la sección y dar algo de luz respecto al tema.

Transformaciones Canónicas

Pro	blen	na 1																												
[Dete	rmin	e si	la fui	nción	1:																								
									E/	(0)		2	1 4	71	0)															
aona	252 1	+	rand	orma	cián	cand	ónica.		F ((q,Q)	$=q^{\prime}$	+ 4	į =	71 (, (1)															
gene	era u	ıııa tı	alisi	OHIIId	CLOIT	Canc	лиса.																							
. 1	D		,																											
	rime	xa 4	OYM	a:																										
Ω					47			0				1		17	1			0			1.0		- 1		-			197		2
lava	ı	eter	mina	v e	si F	ය	una	, fw	ncson	. ge	nera	YIZ	,	٢.	ebe	ser	wa	. few	avoin	CON	diffe	exen	aal	exa	cto		*	Ý.	=	2g
																												JF Jq		,
=	> ,	F	= 9	Ed	+ 5	F.	aa	=	⇒		F	_ 0		F		=>) = (. No	es c	anón	nca				'		
			9	q	1) Q			,)Q\.	2a/		a \	Q/													*	JF JQ	=	40
											1		1															20		
• 4	3			2	۸.																									
	Sei	und	a T	Orm	a·																									
			_ \	۲.	7			,	10	\1		110	٦3		_	_>	$\Gamma \wedge$	101		. 1										
+	*	P	- d	_ =	= <i>L</i>	9		*	r	- dr	=	_16	<u> </u>		_		LW,	11.	1,19	_ 1										
+		•	d	9						dl	l																			
_																														
+																														
+																														
+																														
_																														
_																														
+																														
_																														

$$\mathcal{H}(q, p) = \frac{p^2}{2m} + mgq$$

$$Q = -p,$$

 $P = q + Ap^2,$

- d. Determine el valor de A, que haga Q una variable cíclica.
- e. Usando el resultado anterior, encuentre las ecuaciones de Hamilton para $\mathcal{H}(O, P)$.

a)
$$\begin{cases} Q = -\rho \\ P = q + A\rho^{2} \end{cases} \Rightarrow \begin{cases} \rho = -Q \\ q = P - AQ^{2} \end{cases}$$

$$\rho dq - P dQ = dF_{1} \Rightarrow \frac{d\rho}{dQ} = -\frac{dP}{dQ} \Rightarrow -1 = -1$$

b) has coordinates $Q_y P_{son}$ canonicas $-[Q,P]_{q,p}=1$

c) Para pasar de $\mathcal{H}(q,p)$ a $\mathcal{H}(Q,P)$ se cumplen las siguentes relaciones

$$\begin{cases} * \mathcal{H}(Q,P) = \mathcal{H}(q,\rho) + \mathcal{F} \\ * Q = Q(q,\rho) \\ * P = P(q,\rho) \end{cases}$$

$$\Rightarrow \begin{cases} * \mathcal{H}(Q,P) = \mathcal{H}(q,\rho) + \mathcal{F} \Rightarrow \mathcal{H}(Q,P) = \mathcal{H}(q,\rho) & \leftarrow \text{Mismo Hambkineano pero existingendo a los nuevos} \\ * Q = Q(q,\rho) & \rightarrow Q = -\rho \Rightarrow \rho = -Q \\ * P = P(q,\rho) & \rightarrow P = q + A\rho^2 \Rightarrow q = P - AQ^2 \end{cases}$$

$$• \mathcal{H}(q,\rho) = \frac{\sigma^2}{2m} + mgq \Rightarrow \mathcal{H}(Q,P) = \frac{Q^2}{2m} + mg(P - AQ^2) \Rightarrow \mathcal{H}(Q,P) = mgP + \frac{Q^2}{2m} - mgAQ^2 \end{cases}$$

d) Pasa que Q sea una variable activa $\frac{dN}{dQ} = 0$ — Que no exista dependencia explícita con Q en N

$$\Rightarrow \frac{\partial^2}{\partial m} - mg \lambda Q^2 = 0 \Rightarrow \lambda = \frac{1}{2m^2g}$$

$$\Rightarrow \mathcal{H} = mg P$$

*
$$\dot{Q} = \frac{2}{\sqrt{P}} = mg \implies Q = mgt + Q_0$$

*
$$\dot{P} = -\frac{M}{M} = 0 \implies P : constante = \frac{E}{mg} = C$$

d) Ahora hay que regresar la transformación canónica

$$\begin{cases} \rho = -Q \\ q = P - AQ^2 \end{cases} \implies \begin{cases} \rho = -mgt - Q_0 \\ q = c - A(-mgt + Q_0)^2 = c - \frac{1}{2m^2g}(-mgt - Q_0)^2 = c - \frac{Q_0^2}{2m^2g} - \frac{Q_0t}{m} - \frac{1}{2}gt^2 \end{cases}$$

$$= q_0 + \dot{q}_0t - \frac{1}{2}gt^2$$

Corchetes de Poisson

Probler	ma 2.																												
Un F	Hamilto	niano ti	ene la					. 2	. 2																				
donde a	ı y b sor	n consta	intes:	$\mathcal{H}(q_1,$	q_2, p_1, p	$q_{12}) = q_{11}$	$p_1 - q_2 p$	$a_2 + aq_1^2$	- oq ₂ ,																				
a. Us	sando e	l métod	o de C	orchete	s de Po	isson, m	iuestre (que:																					
						$F_1 =$	q_1q_2																						
						$F_2 =$	$\frac{1}{q_1}(p_2$	$+ bq_2)$																					
		antes d																											
								novimien rando q_1		ų p ₂ so	on funcio	nes explí	citas																
de	el tiemp	10.																											
Si	se	SON	001	ıstaı	des	bl	MOUI	wei	do																				
JF.	_ 1	E.	w7	+ 3	F	=0	=>	ΓW.	E. T	=	DF.		om	01	o	hay	Lepen	Lena	a e	aplia	, ta	can	t ei	r F	1 4	F2			
dt	- 1	U 10/		ò	t			200	1.07		ðŧ					0	1								0				
		Ε		7			Г	7	w7																				
=	⇒ ,	LH,	F.]=	\mathcal{O}	=>	~	Fo,	الماه	-0																			
4 4	7	٠,	P																									-	
*	180	1	۲۲ :	- 91	92																							+	
	TY	· u	רע				2F1	340		0F/	Jy.		DE.	24	И.	25	ر کار	4—											
	W.	1, 0	اليا	(زم ربه	, [92,0	_]=	291	3	, /	δρ,	da.	+	94	2 3	02	35	2 20	12											
								1 1		11						1													
						=	921	91)	+	9, (-q2)	=	\mathcal{O}																
												0																	
*	2	2 1	7	1	(02	+ bq:	ı) =	- 9	F ₂	37/	1 01	2		- 9	F2	29/2	- 9	F2 -	PM.										
				q ₁	•	Ċ		٥	41	991	700	. 00	('	1	0/2	992	·	92 0	92										
									(Qz	+69:	,).	10)	+	<u>b</u>	. (-	92)		-/-	92 -2	bgz)									
										913		(11)		11	Ť		-	ı											
											-1	. 4 .		1_			1 ./		1 .										
									=	-	2	72	-	91	92	+ -	#1 91	927	C692)								-	
									=	1	-	-\0:	, –	00/2	_	292	+ \	\	+ 21	a. 7	_	0							
										9	1 6	1		1		1		14		1,7									
			_									Ε.		_			10	_											
	LF,	, F2		ca	150	mte		-L	F., 1	2	=	0	<u> </u>	Fz	+	[F,	dF2	-											
							d	T											_	Ĺ,				2 9-					
											=		F. 1	W]	+ 3		FZ	+	F.	, ()	Fz ;	W.]	t 🎉	<u> </u>					
																							•	- 126					
											=		F., 4	K],	¥z] +	[4,	[Fe	,41.										
												,	11						110										
											=	Ĺ	,0,	F2]	+ [Fil	0] =	0											
												Гт	P	1	4.0	tant												_	
												Lty	T2.	1-0	e NC	o www.												_	
		_																										_	
																												_	
																												_	

$y = q_1 \rho_1 - q_2 \rho_2 + a q_1^2 - b a$	7 7	
$\dot{q}_L = \frac{\partial W}{\partial \rho_i} = q_i$	92 = 34C = -92	
96,	10 3bs ,	
0 = - 34 - 0 24 6	$\dot{\rho}_{z} = -\frac{\partial \mathcal{U}}{\partial \dot{q}_{z}} = +\rho_{z} + 2\rho_{qz}$	
$\dot{\rho}_{i} = -\frac{\partial \mathcal{U}}{\partial q_{i}} = -\rho_{i} - 2\alpha q_{i}$	TE dip	
q,=q1 => dq = q1 => 1 dq = 1 dt => q	= Ae^{t} $q_{z} = -q_{z} \Rightarrow q_{z} = Be^{t}$	
$\dot{\rho}_i = -\rho_i - 2aq_i$	Pz = Pz + 2bqz	
	$\Rightarrow \dot{\rho}_2 = \rho_2 + 2bBe^{\dagger}$	
j = -ρι-2ahet		
(D+1)p, = -2aAet 1 = Cet	=> (D-1)pz = 2LBEt	
D(D+1)p, = -2alet	=> D(D-1)pz = -26Be-t	
	$\mathcal{D}(D-1)\rho_z+(D-1)\rho_z=0$	
$\mathcal{D}(\mathcal{D}+1)\rho_1-(\mathcal{D}+1)\rho_1=\mathcal{O}$		
$(D+1)(D-1)\rho_1=0$	$\Rightarrow (D-1)(D+1)\rho_2 = 0$	
5=[1, -1]	$\rho_2 = c_3 e^{-t} + c_4 e^{-t}$	
s=(1, -13 p, = c, e ^t	=> pz=Cset	
in = Get	=> -cze-t = czet + 21Bet	
En la EDO:		
Get =-Get - 2alet	=> - xcsex = x68cex	
Xciet = - Zahet	=> C3=-bB	
C1 =-AA	$\Rightarrow \rho_2 = De^{tt} - LBe^{-t}$	
$\Rightarrow \rho_1 = Ce^{+} - ake^{t}$		
(q ₁ = Le ^t		
$q_2 = Be^{t}$ $q_1 = Ce^{t} - ahe^{t}$ $\sqrt{\rho_2} = De^{t} - bBe^{-t}$		
o pi = Cet - ale	$y_{1} = q_{1}p_{1} - q_{2}p_{2} + aq_{1}^{2} - bq_{2}^{2}$	
1 P2 = De+ - 6Bet	10 - 9,71 9272 291 292	
	at (a t 1 a -t) (12 24 1 -2 24	
	bet (Det-6Bet) + a let - 6Be24	
= Ac - Ate - BD +	682 = 2t + atet - 602-2t	
= AC-BD -> W no	tepende explicatamente & t - 4 constante	
34 = 34 9 + 34 6 +	34 = 34 34 34 34 + 34 => 94 34 34 34 = 344	
Jt 09 09		

_	<u></u> -	-														
LY	, L] =	0													

