$\begin{array}{c} {\bf Examples~of~problems~for~the~oral}\\ {\bf examination~EV2} \end{array}$

(1) Let $u_0 > 0$ be a real number and let (a_n) be a sequence of strictly positive real numbers. Define the sequence (u_n) by:

$$u_{n+1} = u_n + \frac{a_n}{u_n}.$$

Show that (u_n) is convergent if and only if $\sum a_n < \infty$.

- (2) Let E be a real vector space of dimension n. Find all endomorphisms f of E which satisfy $f \circ f = Id_E$.
- (3) Let $f:[0,1] \to \mathbb{R}$ be a function of class C^1 such that f(0)=0 and there exists $a \in]0,1[$ with f(a)f'(a)<0. Show that there exists $b \in]0,1[$ with f'(b)=0.
- (4) a) Find all functions of class C^2 , $f: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\frac{\partial^2 f}{\partial x \partial y} = 0.$$

b) Find all functions of class C^2 , $f: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2}.$$