3. zápočtová úloha z 01RAD

Jiří Franc

2020-12-15

3. zápočtová úloha z 01RAD

Popis úlohy

Datový soubor vychází z datasetu House Sales in King County, USA, který je k nalezení například na kaggle.com, nebo v knihovně library(moderndive) data house_prices. Původní dataset obsahuje prodejní ceny domů v oblasti King County, která obsahuje i město Seattle, a data byla nasbírána mezi květnem 2014 a květnem 2015. Pro naše potřeby bylo z datasetu vypuštěno jak několik proměnných, také byl dataset výrazně osekán a lehce modifikován.

Dále byl dataset již dopředu rozdělen na tři části, které všechny postupně v rámci 3. zápočtové úlohy využijete.

X	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
1	1	2395000	4	3.25	3800	19798	2.0	0
2	2	679000	3	2.50	2770	9350	2.0	0
3	3	664000	2	1.75	1720	5785	1.0	0
4	4	915000	5	2.50	2750	5589	1.5	0
5	5	450000	5	2.50	2850	209523	1.0	0
6	6	305000	4	2.50	2320	4683	2.0	0

view	condition	grade	$sqft_above sqft_$	_basemen y r_	_built	yr_renovated sqft_	_living15	sqft_lot15	split
0	3	10	3800	0	1969	2009	3940	18975	train
3	3	8	2770	0	1957	2000	2660	9695	train
0	3	6	860	860	1948	2002	1680	5184	train
0	5	9	1840	910	1910	0	1460	4250	train
0	4	7	1930	920	1925	1968	2220	209523	train
0	3	7	2320	0	2007	0	2230	5750	train

Data celkem obsahují následujících 18 proměnných, přičemž naším cílem je prozkoumat vliv 12 z nich na cenu nemovitostí price. Přičemž anglický popis jednotlivých proměnných (sloupců) je následující:

Feature	Description		
id	Our notation for a house		
price	Price is prediction target		
bedrooms	Number of Bedrooms/House		
bathrooms	Number of Bathrooms/Bedrooms		
sqft_living	Square footage of the home		
sqft_lot	Square footage of the lot		
floors	Total floors (levels) in house		
waterfront	House which has a view to a waterfront		
view	Has been viewed		
condition	How good the condition is Overall		
grade	Overall grade given to the housing unit		
sqft_above	Square footage of house apart from basement		
sqft_basement	Square footage of the basement		
yr_built	Built Year		
yr_renovated	Year when house was renovated		
sqft_living15	Living room area in 2015 (implies—some renovations)		
sqft_lot15	lotSize area in 2015 (implies– some renovations)		
split	Splitting variable with train, test and validation sample		

Podmínky a body

Úkol i protokol vypracujte samostatně. Pokud na řešení nějaké úlohy budete přesto s někým spolupracovat, radit se, nezapomeňte to u odpovědi na danou otázku uvést. Tato zápočtová úloha obsahuje 10 otázek po 1 bodu. Celkem za 3 zápočtové úlohy bude možné získat 30 bodů, přičemž pro získání zápočtu je potřeba 20. Další dodatečné body mohu případně individuálně udělit za řešení mini domácích úkolů z jednotlivých hodin.

Odevzdání

Protokol ve formátu pdf (včetně příslušného Rmd souboru) odevzdejte prostřednictvím MS Teams, nejpozději do 12:00 dne 5. 1. 2021.

Průzkumová a grafická část:

• Otázka 01

Ověřte rozměry datového souboru, typy jednotlivých proměnných, a shrňte základní popisné charakteristiky všech proměnných. Vykreslete histogram a odhad hustoty pro odezvu price, dá se z toho již něco odvozovat pro budoucí analýzu?

• Otázka 02

Jsou všechny proměnné použitelné pro analýzu a predikci ceny nemovitostí? Pokud data obsahují chybějící hodnoty, (případně nesmyslné hodnoty), lze je nějak nahradit (upravit), nebo musíme data odstranit?

• Otázka 03

Zkontrolujte pro 4 vybranné proměnné (price, sqft_living, grade, yr_built) bylo-li rozdělení datasetu pomocí proměnné split náhodné. Tj mají zmíněné proměnné ve skupinách train, test a validation přibližně stejné rozdělení?

Lineární model (použijte pouze trénovací data, tj. split == "train"):

• Otázka 04

Spočtěte korelace mezi jednotlivými regressory a graficky je znázorněte. Dále spočtěte číso podmmíněnosti matice regresorů Kappa a VIF. Pokud se v datech vyskytuje znatelná multicollinearita, rozhodněte jaké proměnné a proč použijete v následném linárním modelu.

• Otázka 05

Pouze pomocí trénovacích dat (tj., split == "train") a všech vybranných proměnných najděte vhodný lineární regresní model, který má za úkol predikovat co nejlépe cenu, tj. minimalizovat střední kvadratickou chybu (MSE). U výsledného modelu porovnejte VIF a Kappa s původní celkovou maticí regresorů.

• Otázka 06

Pro Vámi vybraný model z předešlé otázky spočtěte příslušné infulenční míry. Uveďtě id pro 20 pozorování s největší hodnotou DIFF, největší hodnotou leverage (hatvalues) a největší hodnotou Cookovy vzdálenosti. (tj. 3 krát 20 hednot). Jaká pozorování považujete za vlivná a odlehlá pozorování.

Otázka 07

Validujte model pomocí grafického znázornění reziduí (Residual vs Fitted, QQ-plot, Cookova vzdálenost, Leverages, ...). Identifikovali jste na základě této a předchozí otázky v datech nějaká podezřelá pozorování, která mohla vzniknout při úpravě datasetu? Doporučili byste tyto pozorování z dat odstranit?

Train, test, validation . . . :

• Otázka 08

Pokud jste se rozhodli z dat odstranit nějaká pozorování, tak dále pracujtes s vyfiltrovaným datasetem a přetrénujte model z otázky 5. A spočtěte pro tento model R^2 statistiku a MSE jak na trénovacích tak testovacích datech (split == "test").

• Otázka 09

Pomocí hřebenové regrese (případně pomocí LASSO a Elastic Net) zkuste najít nejlepší hyperparametr(y) tak, aby výsledný model měl co nejmenší MSE na testovacích datech.

• Otázka 10

Vyberte výsledný model a porovnejte MSE a R^2 na trénovacích, testovacích a validačních datech. Co z těchto hodnot usuzujete o kvalitě modelu a případném přetrénování? Je váš model vhodný pro predikci cen nemovitostí v okolí King County? Pokud ano, má tato predikce nějaká omezeni?