PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)									
(51) International Patent Classification ⁶ : C07K	A2	(11) International Publication Number: WO 00/00506 (43) International Publication Date: 6 January 2000 (06.01.00)							
(21) International Application Number: PCT/JP (22) International Filing Date: 18 June 1999 ((81) Designated States: AU, CA, JP, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).								
(30) Priority Data: 10/180008 26 June 1998 (26.06.98)		Published Without international search report and to be republished upon receipt of that report.							
(71) Applicants (for all designated States except US): CHEMICAL RESEARCH CENTER [JP/JF Nishi-Ohnuma 4-chome, Sagamihara-shi, F 229-0012 (JP). PROTEGENE INC. [JP/JP]; Naka-cho,, Meguro-ku, Tokyo 153-0065 (JP).	?]; 4- Kanagav	-1, wa							
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seish 3-46-50, Wakamatsu, Sagamihara-shi, I 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302 Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa (JP).	Kanaga , 4–1–2	wa 28,							
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Cosaka 540-0001 (JP).	Partne Osaka-s	rs, hi,							
(54) Title: HUMAN PROTEINS HAVING HYDROPHO	BIC D	OMAINS AND DNAS ENCODING THESE PROTEINS							
(57) Abstract									
A human protein having a hydrophobic domain and	ector co	ising any of the amino acid sequences represented by Sequence Nos. 1 to omprising the cDNA as well as an eucaryotic cell comprising the cDNA. for such protein.							

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Scnegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	· IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS ·	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
Сн	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Сатегооп		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
1							

DESCRIPTION

HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

5

10

15

20

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as eucaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these cDNAs. Cells, wherein these membrane protein genes are introduced to express secretory proteins and membrane proteins in large amounts, can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

30

25

Cells secrete many proteins outside the cells. These secretory proteins play important roles for the proliferation control, the differentiation induction, the material transportation, the biological protection, etc. in the cells. Different from intracellular proteins, the secretory proteins exert their actions outside the cells, whereby they can be administered in the intracorporeal manner such as the injection or the drip, so that there

10

15

20

25

30

are hidden potentialities as medicines. In fact, a number as interferons, such secretory proteins human interleukins, erythropoietin, thrombolytic agents, etc. have been currently employed as medicines. In addition, secretory proteins other than those described above have trials t.o develop undergoing clinical been pharmaceuticals. Because it has been conceived that the human cells still produce many unknown secretory proteins, availability of these secretory proteins as well as genes coding for them is expected to lead to development of novel pharmaceuticals utilizing these proteins.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. in the material transportation and the information transmission which are mediated by the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes of many of them have been cloned already. It has been clarified that abnormalities of these membrane proteins are associated with a number of hitherto-cryptogenic diseases. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification, these secretory proteins and membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in eucaryotic cells to express cDNAs and then screening of the cells expressing

the target active protein by secretion or on the surface of membrane. However, this method is applicable only to cloning of a gene of a protein with a known function.

In general, secretory proteins and membrane proteins possess at least one hydrophobic domain inside the proteins, wherein, after synthesis thereof in the ribosome, this domain works as a secretory signal or remains in the phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of this cDNA for encoding the secretory proteins and the membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic domains in the amino acid sequence of the protein encoded by this cDNA.

15

20

25

30

10

5

DISCLOSURE OF INVENTION

The object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as transformation eucaryotic cells that are capable of expressing these DNAs.

As the result of intensive studies, the present inventors have been successful in cloning of cDNAs coding for proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. In other words, the present invention provides human proteins having hydrophobic domains, namely proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 10. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs containing any of the base sequences represented by Sequence Nos. 11 to 21, 23, 25, 27, 29, 31,

10

15

25

33, 35, 37 and 39, as well as expression vectors that are capable of expressing any of these DNAs by in vitro translation or in eucaryotic cells and transformation eucaryotic cells that are capable of expressing these DNAs and of producing the above-mentioned proteins.

BRIEF DESCRIPTION OF DRAWINGS

- Fig. 1 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00631.
- Fig. 2 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02403.
- Fig. 3 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02420.
 - Fig. 4 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10349.
- 20 Fig. 5 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10508.
 - Fig. 6 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10524.
 - Fig. 7 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10529.
- Fig. 8 A figure depicting the 30 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10537.
 - Fig. 9 A figure depicting the

10

15

20

25

30

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10549.

Fig. 10 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10551.

BEST MODE FOR CARRYING OUT THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the hydrophobic domains of the present invention, wherein recombinant for obtainment by the the method technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, recombination of the translation region into a suitable expression vector by the method known in the art leads to expression of a large amount of the encoded protein by using prokaryotic cells such as Escherichia coli, Bacillus subtilis, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case in which one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translation region of this cDNA is subjected to recombination to a vector having an RNA polymerase promoter, followed by addition to an in vitro translation system such as a rabbit riticulocyte

10

15

20

25

30

lysate or a wheat germ extract, containing an RNA polymerase corresponding to the promoter. RNA polymerase inhibitors are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase inhibitors are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II, and so on. Furthermore, a membrane protein of the present invention can be expressed as the form incorporated in the microsome membrane, when a canine pancreas microsome or the like is added into the reaction system.

In the case in which a protein of the present invention is produced by expressing the DNA using a microorganism such as Escherichia coli etc., a recombinant expression vector bearing the translation region in the cDNA of the present invention is constructed an origin, а promoter, expression vector having ribosome-binding site, a cDNA-cloning site, a terminator etc., which can be replicated in the microorganism, and, the host cells with transformation of after thus-obtained transformant vector, the expression incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In this case, a protein fragment containing an optional region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind an optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion coding for this cDNA can be obtained by cleavage of this fusion protein with a suitable protease. The expression vector for Escherichia coli is exemplified by the pUC system, pBluescript II, the pET expression system, the pGEX expression system, and so

on.

5

10

15

20

25

30

In the case in which one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be obtained by secretory production or produced as a membrane protein on the cell-membrane surface, when the region of this CDNA is subjected translation recombination to an expression vector for eucaryotic cells a splicing region, that has a promoter, a poly(A) insertion site, etc., followed by introduction into the eucaryotic cells. The expression vector is exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian culture cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, Xenopus laevis egg cells, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the present proteins. The expression vector can be introduced in the eucaryotic cells by methods known in the art such as the electroporation method, the potassium phosphate method, the liposome method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a surface-active agent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-

10

15

20

25

30

exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence in the amino acid sequences represented by Sequence Nos. 1. to 10. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequence are secreted in the form of maturation proteins on the surface of the cells, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides secretory forms shall come within the scope of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences, expression appropriate eucaryotic cells affords proteins wherein sugar chains are added. Accordingly, such proteins or peptides wherein sugar chains are added shall come within the scope of the present invention.

The DNAs of the present invention include all DNAs coding for the above-mentioned proteins. These DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for

10

15

20

25

30

example, from cDNA libraries of the human cell origin. These cDNA are synthesized by using as templates poly(A) RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of an optional portion in the cDNA base sequences of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of an oligonucleotide to be hybridized at both termini of the objective cDNA fragment, followed by the usage of this oligonucleotide as the primer for the RT-PCR method from an mRNA isolated from human cells.

The cDNAs of the present invention are characterized by containing either of the base sequences represented by Sequence Nos. 11 to 20 or the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total base number of the cDNA, and the number of the amino acid residues of the encoded

protein, for each of the cDNAs.

Table 1

Sequence No.	HP number	Cells	Base number	Number of amino acid residues
1, 11, 21	HP00631	Saos-2	1085	238
2, 12, 23	HP02403	Stomach cancer	1168	194
3, 13, 25	HP02420	Stomach cancer	624	139
4, 14, 27	HP10349	Stomach cancer	1121	323
5, 15, 29	HP10508	Stomach cancer	827	231
6, 16, 31	HP10524	Stomach cancer	1189	97
7, 17, 33	HP10529	Saos-2	1500	198
8, 18, 35	HP10537	Saos-2	806	140
9, 19, 37	HP10549	Stomach cancer	1718	201
10, 20, 39	HP10551	Stomach cancer	995	249

5

10

15

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines and human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of Sequence Nos. 11 to 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides in Sequence Nos. 11 to 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39 shall come within the scope of the present invention.

10

15

20

25

30

In a similar manner, any protein that is formed by these modifications comprising insertion or deletion of one or plural amino acids and/or substitution with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by Sequence Nos. 1 to 10.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence in the base sequences represented by Sequence Nos. 11 to 20 or in the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be utilized as the probes for the gene diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a

10

15

20

25

30

particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in identify potential genetic disorders; patients to probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies elicit another immune response. Where the polynucleotide encodes a protein which binds potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the

10

15

20

25

30

WO 00/00506 PCT/JP99/03242

13

corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation,

10

15

20

25

30

such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention evidenced by any one of a number of routine factor dependent cell proliferation assays for cell including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular

10

Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation 15 hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, 20 John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan. R. In Current **Protocols** in 25 Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and 30 Toronto. 1991; Measurement of mouse and human Sons, Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C.

WO 00/00506 PCT/JP99/03242

and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

5

10

15

20

25

30

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include. without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. 11:405-411, 1981; Takai et al., J. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating immune suppressing or activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or

10

15

20

25

30

other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory Other conditions, in which immune suppression problems. is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-

10

15

20

25

30

specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease For example, blockage of T cell function should (GVHD). result reduced in tissue destruction in transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by

immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5

10

15

20

25

30

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate

10

15

20

25

disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte

30 antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from

10

15

20

25

30

the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. example, tumor cells obtained from a patient can transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

10

15

20

25

30

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class $II\alpha$ chain protein and an MHC class IIB chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan,

25

30

A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 5 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. 10 Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. 15 Immunol. 153:3079-3092. 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses affect Th1/Th2 profiles) include, limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994. Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro

10

15

20

25

assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood

10

15

20

25

30

84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. marginal biological activity in support of colony forming factor-dependent of cell lines indicates involvement in regulating hematopoiesis, e.q. the growth and proliferation of supporting erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent suppression; in supporting the growth and proliferation of and consequently of megakaryocytes platelets allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually with treated transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well

10

15

20

25

30

as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc.,

10

15

20

25

30

New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of

bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

5

10

15

20

25

30

Another category of tissue regeneration activity that attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation by composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendonor ligament-forming cells, differentiation of progenitors of tendon- or ligamentforming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue The compositions of the invention may also be repair.

10

15

20

25

30

useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for treatment of central and peripheral nervous diseases and neuropathies, as well as mechanical traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or

10

15

20

25

30

regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described International in: Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

10

15

20

25

30

A protein of the present invention may also exhibit inhibin-related activities. Inhibins characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis Administration of sufficient amounts of in male mammals. other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention. homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

WO 00/00506 PCT/JP99/03242

protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired Chemotactic or chemokinetic proteins site of action. provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction lymphocytes, monocytes or neutrophils to tumors or sites infection may result in improved immune responses against the tumor or infecting agent.

5

10

15

20

25

30

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis)consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those

10

15

20

25

30

described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et 5:71-79 Fibrinolysis (1991);Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or

10

15

inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and ligands (including without their limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide small molecule inhibitors of the receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors may themselves be useful and ligands) inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include 20 without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 25 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. 168:1145-1156, 1988; Rosenstein et al., J. Exp. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 30 1995.

Anti-Inflammatory Activity

10

15

20

25

30

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting promoting cell extravasation, or stimulating by suppressing production of other factors which more directly inhibit or promote an inflammatory response. exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemiareperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis. cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by

inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

5

10

15

20

25

30

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); biorhythms or caricadic cycles or effecting effecting the fertility of male or female subjects: effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example,

psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

10

15

20

25

30

The present invention is embodied in more detail by following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from TAKARA SHUZO. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

cDNA libraries (W097/33993) of osteosarcoma cell line Saos-2 and cDNA libraries (W097/15596) of tissues of stomach cancer delivered by the operation were used for the cDNA libraries. Full-length cDNA clones were selected from respective libraries and the whole base sequences thereof were determined to construct a homo/protein cDNA bank consisting of the full-length cDNA clones. The

WO 00/00506

5

10

15

20

25

30

hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by the full-length cDNA clones registered in the homo/protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)1to examine the presence or absence hydrophobic region. Any clone that has a hydrophobic region being putative as a secretory signal transmembrane domain in the amino acid sequence of an encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In [35S]methionine case, was added label the expression product with a radioisotope. Each of reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was reacted at 30°C for 90 minutes in a total 25 μ l volume of the reaction solution containing 12.5 μ l of T_wT rabbit reticulocyte lysate, 0.5 μ l of a buffer solution (attached to kit), 2 μ l of an amino acid mixture (methionine-free), 2 μ l of [35S]methionine (Amersham) (0.37 MBg/ μ l), 0.5 μ l of T7RNA polymerase, and 20 U of RNasin. Also, an experiment in the presence of a membrane system was carried out by adding to this reaction system 2.5 μ l of a canine pancreas microsome fraction (Promega). To 3 μ l of the resulting reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDSpolyacrylamide gel electrophoresis. The molecular weight

of the translation product was determined by carrying out the autoradiography.

(3) Expression by COS7

5

10

15

20

25

30

Escherichia coli bearing the expression vector of the protein of the present invention was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added, and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The culture cells originating from the simian kidney, COS7, were incubated at 37°C in the presence of 5% CO2 in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 \times 105 COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO2. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μ l of TRANSFECTAMTM (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2. After the culture medium was replaced by a culture medium containing [35] cystine or

WO 00/00506

5

10

15

20

25

30

[35] methionine, the incubation was carried out for one hour. After the culture medium and the cells separated by centrifugation, proteins in the culture fraction and the cell-membrane fraction were subjected to SDS-PAGE.

40

PCT/JP99/03242

(4) Clone Examples <HP00631> (Sequence Nos. 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP00631 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 25-bp 5'-nontranslation region, a 717-bp ORF, and a 343-bp 3'-nontranslation region. The ORF codes for a protein consisting of 238 amino acid residues and there existed five putative transmembrane domains. Figure depicts the hydrophobicity/hydrophilicity obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. expressed in COS7 cells, an expression product of about 25 kDa was observed in the membrane fraction.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the golden hamster androgenregulated protein FAR-17 (PIR Accession No. A54313). Table 2 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the golden hamster androgen-regulated protein FAR-17 (GH). Therein, the marks of -, *, and . represent a gap, amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 38.0% in the entire

region.

25

30

Table 2

HP M----ALVPCQVLRMAILLSYCSILCNYKAIEMPSHQTYGGSWKFIJTFIDLVIQAVFFG 5 GH MTRTTTCVYHFLVWNWYIFLNY-YIPLIGKDDEKLKEFHDGGRSKYLTLLNLLLQAIFFG HP ICVITDLSSILTRGSGNQEQERQLKKLI-SLRDWMLAVLAFPVGVFVVAVFWIIYAYDRE GH VACLDD---VLKRIIG----RKDIKFITSTRDLLFSTLVFPISTFIFLVFWTLFYYDRS 10 HP MIYPKLLDNFIPGWLNHGMHTTVLPFILIEMRTSHHQYPSRSSGLTAICTFSVGYILWVC * **** *** * * * GH LIYPKGLDDYFPAWLNHAMHTYILLFVLVETILRPHHYPSKKLGLALLGACNLAYITRVL HP WVHHVTGMWVYPFLEHIGPGARIIFFGSTTIIMNFLYLLGEVLNNYIW-DTQKSMEEEKE 15 **** GH WRYSQTGNWVYPVFASLNPLGIIIFFLVCYILNASIYLVGEKINHWKWGATVK----PIMK HP KPKLE * * GH KKK---20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. R22829) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02403> (Sequence Nos. 2, 12, and 23)

Determination of the whole base sequence of the cDNA insert of clone HP02403 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 6-bp 5'-nontranslation region, a 585-bp ORF, and a 577-

10

15

20

bp 3'-nontranslation region. The ORF codes for a protein consisting of 194 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was almost identical with the molecular weight of 21,959 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the membrane fraction.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the Japanese quail apoptosis regulator NR-13 (SWISS-PROT Accession No. Q90343). Table 3 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the Japanese quail apoptosis regulator NR-13 (CC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 31.5% in the entire region.

25

30

43

Table 3

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA098865) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02420> (Sequence Nos. 3, 13, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP02420 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 35-bp 5'-nontranslation region, a 420-bp ORF, and a 169-bp 3'-nontranslation region. The ORF codes for a protein consisting of 139 amino acid residues and there existed three putative transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 17 kDa that was almost identical with the molecular weight of 16,082 predicted from the ORF. When expressed in CO7 cells, an expression product of about 16 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed the presence of sequences that were analogous to a yeast hypothetical protein of 15.9 kDa (SWISS-PROT Accession No. P53173). Table 4 shows the comparison of the amino acid sequence between the human of the present invention (HP) and the hypothetical protein of 15.9 kDa (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 43.2% in the entire region.

20

30

5

10

15

Table 4

HP MEAVVFVFSLLDCCALIFLSVYFIITLSDLECDYINARSCCSKINKWVIPELIGHTIVTV *.* .*... * .* *.*. * *** *** . ***.* SC MGAWLFILAVVVNCINLFGQVHFTILYADLEADYINPIELCSKVNKLITPEAALHGALSL HP LLIMSLHWFIFLLNLPVATWNIYRYIMVPSGNMGVFDPTEIHNRGQLKSHMKEAMIKLGF 25 *. *.*** *. * .*.*..**** *.*. .**.***** SC LFILNGYWFVFLLNLPVLA---YNLNKI-YNKVQLLDATEIF-RT-LGKHKRESFLKLGF HP HILCFFMYLYSMILALIND *** **.***.**. SC HLLMFFFYLYRMIMALIAESGDDF

10

15

20

25

30

PCT/JP99/03242 WO 00/00506

45

Furthermore, the search of the GenBank using the base the present CDNA has revealed registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA044799) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10349> (Sequence Nos. 4, 14, and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10349 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 16-bp 5'-nontranslation region, a 972-bp ORF, and a 133bp 3'-nontranslation region. The ORF codes for a protein consisting of 323 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 36,200 predicted from the ORF.

Furthermore, the search of the GenBank using the base revealed sequences of the present CDNA has registration of sequences that possessed a homology of 90% or more (for example, Accession No. F13066) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10508> (Sequence Nos. 5, 15, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10508 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of

10

15

20

25

30

a 33-bp 5'-nontranslation region, a 696-bp ORF, and a 98-bp 3'-nontranslation region. The ORF codes for a protein consisting of 231 amino acid residues and there existed four transmembrane domains. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. When expressed in CO7 cells, an expression product of about 22 kDa was observed in the supernatant fraction and the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA484181) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10524> (Sequence Nos. 6, 16, and 31)

Determination of the whole base sequence of the cDNA insert of clone HP10524 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 308-bp 5'-nontranslation region, a 294-bp ORF, and a 587-bp 3'-nontranslation region. The ORF codes for a protein consisting of 97 amino acid residues and possessed domain. Figure 6 depicts transmembrane hydrophobicity/hydrophilicity profile, the obtained by Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 21 kDa that was larger than the molecular weight of 10,673 predicted from the ORF. When expressed in COS cells, an expression product of about 26 kDa was observed in the membrane fraction.

10

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the human glycophorin C (SWISS-PROT Accession No. P04921). Table 5 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the human glycophorin C (GP). Therein, the marks of - and * represent a gap and an amino acid residue identical with the protein of the present invention, respectively. The both proteins possessed a homology of 30.5% in the entire region.

Table 5

25 Furthermore, the search of the GenBank using the base sequences of the present CDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. R21992) in EST, but, since they are partial sequences, it can not be judged 30 whether or not any of these sequences codes for the same protein as the protein of the present invention. <HP10529> (Sequence Nos. 7, 17, and 33)

WO 00/00506 PCT/JP99/03242

Determination of the whole base sequence of the cDNA insert of clone HP10529 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 93-bp 5'-nontranslation region, a 597-bp ORF, and an 810-bp 3'-nontranslation region. The ORF codes for a protein consisting of 198 amino acid residues and possessed two transmembrane domains. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the fugu rubripes putative protein 2 (GenBank Accession No. AF026198). Table 6 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the fugu rubripes putative protein 2 (FR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 56.1% in the entire region.

Table 6

15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N33899) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10537> (Sequence Nos. 8, 18, and 35)

25

30

20

Determination of the whole base sequence of the cDNA insert of clone HP10537 obtained from cDNA libraries of the human osteosarcoma cell line Saos-2 revealed the structure consisting of a 94-bp 5'-nontranslation region, a 423-bp ORF, and a 289-bp 3'-nontranslation region. The ORF codes for a protein consisting of 140 amino acid residues and possessed four putative transmembrane domains. Figure 8 depicts the hydrophobicity/hydrophilicity profile,

10

15

20

25

30

obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. When expressed in COS cells, an expression product of about 14 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. R36207) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10549> (Sequence Nos. 9, 19, and 37)

Determination of the whole base sequence of the cDNA insert of clone HP10549 obtained from cDNA libraries of the human stomach cancer revealed the structure consisting of an 11-bp 5'-nontranslation region, a 606-bp ORF, and a 1101-bp 3'-nontranslation region. The ORF codes for a consisting of 201 amino acid residues possessed three putative transmembrane domains. Figure 9 hydrophobicity/hydrophilicity profile, depicts the obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 31 kDa that was larger than the molecular weight of 23,346 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N28687) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10

15

20

<HP10551> (Sequence Nos. 10, 20, and 39)

Determination of the whole base sequence of the cDNA insert of clone HP10551 obtained from cDNA libraries of the human stomach cancer revealed the structure consisting of a 152-bp 5'-nontranslation region, a 750-bp ORF, and a 93-bp 3'-nontranslation region. The ORF codes for a protein consisting of 249 amino acid residues possessed four putative transmembrane domains. Figure 10 hydrophobicity/hydrophilicity depicts the obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the nematode imaginary protein T15B7 (GenBank Accession No. F022985). Table 7 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the nematode imaginary protein T15B7 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 41.3% in the entire region.

25

30

Table 7

HP MASSDEDGTNGGASEAGEDREAPGKRRLGFLATAWLTFYDIAMTAGWLVLAIAMVRFYM 5 SC MSVQTYLVAYNVLQILGWSAILVKTVLGLA HP EKGTHRGLYKSIQKTLKFFQTFALLEIVHCLIGIVPTSVIVTGVQVSSRIFMVWLITHSI SC NGLTWPQLYESVEFELKIFQTAAILEVIHAIVGLVRSPVGTTAMQVTSRVVLVWPILHLC HP KPIQNEESVVLFLVAWIVTEITRYSFYTFSLLDH-LPYFIKWARYNFFIILYPVGVAGEL **************************** 10 SC STARFSIGVPLLLVAWSVTEVIRYSFYALSVLKQPIPYFLLYLRYTLFYVLYPMGVSGEL HP LTIYAALPHVKKTGMFSIRLPNKYNVSFDYYYFILITMASYIPLFPOLYFHMLRORRKVL **..*.* .*... .**. *..... *.*. **** *****.*. **.*. SC LTLFASLNEVDEKKILTLEMPNRLNMGISFWWVLIIAALSYIPGFPQLYFYMIGQRKKIL 15 HP HGEVIVEKDD SC GGGSKKKOLIATNONSTLFINYSPKTKROWKCFSAEFVDILCSPFGIFVIVIREESWKSN

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N67509) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as eucaryotic cells expressing these DNAs. All of the proteins of the present invention are secreted or exist in the cell

WO 00/00506 PCT/JP99/03242

5

. 10

15

20

25

30

membrane, so that they are considered to be proteins controlling the proliferation and the differentiation of cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents relating to the control of the proliferation and the differentiation of the cells or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells, wherein these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

present invention also provides genes corresponding to the polynucleotide sequences disclosed "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is

10

15

20

25

30

a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified corresponding of gene(s) to the expression the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, Transgenic animals that have modified genetic provided. control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, extraneous sequences into the through insertion of corresponding gene(s) or through deletion of all or part Partial or complete gene of the corresponding gene(s). accomplished through insertion, inactivation can be preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal

PCT/JP99/03242

5

10

15

20

25

30

et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 5,616,491; and 5,679,523: 396; all of which incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which The intracellular and transmembrane it is expressed. domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein,

10

15

20

25

30

where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions,

more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

10

5

Table

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ffer [†] 3×SSC SSC 3×SSC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSC 3×SSC SSC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3×SSC SSC
C DNA: RNA ≥ 50 67°C; 1×SSC -or- 45°C; 1×SSC,50% formamide D DNA: RNA < 50 T_D^* ; 1×SSC T_D^* ; 1×SSC E RNA: RNA ≥ 50 70°C; 1×SSC -or- 50°C; 1×SSC,50% formamide	3×SSC SSC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSC
D DNA: RNA <50 T_D^* ; $1\times SSC$ T_D^* ; $1\times$ E RNA: RNA ≥ 50 70° C; $1\times SSC$ -or- 50° C; $1\times SSC$, 50° M formamide	
E RNA: RNA ≥50 70°C; 1×SSC-or- 70°C; 0.	
50°C; 1×SSC,50% formamide	3×SSC
F RNA: RNA <50 T_F^* ; 1×SSC T_F^* ; 1×	
	SSC
G DNA: DNA ≥ 50 65°C; 4×SSC-or- 65°C; 12	SSC
42°C; 4×SSC,50% formamide	
H DNA: DNA <50 T_H^* ; $4\times SSC$ T_H^* ; $4\times$	SSC
I DNA: RNA ≥50 67°C; 4×SSC -or- 67°C; 19	SSC
45°C; 4×SSC,50% formamide	
J DNA: RNA <50 T_J^* ; $4\times SSC$ T_J^* ; $4\times SSC$	SSC
K RNA: RNA ≥50 70°C; 4×SSC -or- 67°C; 13	SSC
50°C; 4×SSC,50% formamide	
L RNA: RNA <50 T_L^* ; $2\times SSC$ T_L^* ; $2\times$	SSC
M DNA: DNA ≥50 50°C; 4×SSC -or- 50°C; 2	SSC
40°C; 6×SSC,50% formamide	
N DNA: DNA <50 T_N^* ; $6\times SSC$ T_N^* ; $6\times$	SSC
O DNA: RNA ≥50 55°C; 4×SSC -or- 55°C; 2:	
42°C; 6×SSC,50% formamide	
P DNA: RNA <50 T_P^* ; $6\times SSC$ T_P^* ; $6\times$	SSC
Q RNA: RNA ≥50 60°C; 4×SSC -or- 60°C; 2:	
45°C; 6×SSC,50% formamide	
R RNA: RNA <50 T_R^* ; $4\times SSC$ T_R^* ; $4\times$	CCC

‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

†: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

* T_B - T_R : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

20

25

30

35

5

10

15

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the

hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

CLAIMS

- 1. A protein comprising any of the amino acid sequences represented by Sequence Nos. 1 to 10.
- 5 2. A DNA coding for the protein according to Claim 1.
 - 3. A cDNA comprising any of the base sequences represented by Sequence Nos. 11 to 20.
- 4. The cDNA according to Claim 3 comprising any of the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39.
 - 5. An expression vector capable of expressing the DNA according to any of Claims 2 to 4 by in vitro translation or in eucaryotic cells.
- 6. A transformation eucaryotic cell capable of expressing the DNA according to any of Claims 2 to 4 to produce the protein according to Claim 1.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

```
Sequence listing
```

<110> Sagami Chemical Research Center et al.

5 <120> Human Proteins Having Hydrophobic Domains And DNAs Encoding These Proteins

<130> 661101

10 <141> 1999-06-18

<150> JP 10-180008

<151> 1998-06-26

15 <160> 40

<170> Windows 95 (Word 98)

<210> 1

20 <211> 238

<212> PRT

<213> Homo sapiens

<400> 1

 $25\,$ Met Ala Leu Val Pro Cys Gln Val Leu Arg Met Ala Ile Leu Leu Ser

5

10

15

Tyr Cys Ser Ile Leu Cys Asn Tyr Lys Ala Ile Glu Met Pro Ser His

20

25

30

Gln Thr Tyr Gly Gly Ser Trp Lys Phe Leu Thr Phe Ile Asp Leu Val

30

35

40

45

Ile Gln Ala Val Phe Phe Gly Ile Cys Val Leu Thr Asp Leu Ser Ser

50

55

60

	Leu	Leu	Thr	Arg	Gly	Ser	Gly	Asn	Gln	Glu	Gln	Glu	Arg	Gln	Leu	ГÀЗ
	65					70					75					80
	Lys	Leu	Ile	Ser	Leu	Arg	qzA	Trp	Met	Leu	Ala	Val	Leu	Ala	Phe	Pro
					85					90					95	•
5	Val	Gly	Val	Phe	Val	Val	Ala	Val	Phe	Trp	Ile	Ile	Tyr	Ala	Tyr	Ąsp
				100					105					110		
	Arg	Glu	Met	Ile	Tyr	Pro	Lys	Leu	Leu	qaA	Asn	Phe	Ile	Pro	Gly	Trp
			115					120					125			
	Leu	Asn	His	Gly	Met	His	Thr	Thr	Val	Leu	Pro	Phe	Ile	Leu	Ile	Glu
10		130					135					140				
		Arg	Thr	Ser	His	His	Gln	Tyr	Pro	Ser	•	Ser	Ser	Gly	Leu	
	145	_				150			_		155			_		160
	Ala	Ile	Суз	Thr		Ser	Val	GIÀ	Tyr		Leu	Trp	Val	Cys	_	Val
15	•	:			165	M -4-		**- 3	m	170	nh -	.	6 3	TT: _	175	~ 1
15	His	Hls	Val		GIĀ	Met	Trp	Vai		PIO	Pne	Leu	GIU	190	TTE	GIÀ
	Dro	Clar	λla	180	מוד	Ile	Phe	Dhe	185	Ser	ጥኮም	ም ኮ≁	Tle		Mot	Agn
	PLO	GIĀ	195	ALG	116	116	FIIG	200	GIŞ	Ser	1111	1111	205	Deu	Mec	non
	Dhe	ررم		T.e.u	T.e.11	Gly	Glu		Leu	Asn	Asn	ጥህጉ-		TTO	Asp	Thr
20	1110	210	-1-	LCu	Deu	O.J	215	•				220				
	Gln		Ser	Met	Glu	Glu		Lvs	Glu	Lvs	Pro		Leu	Glu		
	225	-1-				230		•		•	235	-				
	<21	0> 2														
25	<21	1> 1:	94													
	<21	2> P	RT													
	<21	3> H	omo a	sapi	ens											
	<40	0> 2														
30	Met	Ala	Asp	Pro	Leu	Arg	Glu	Arg	Thr	Glu	Leu	Leu	Leu	Ala	Asp	Tyr
	1				5					10					15	
	Leu	Gly	Tyr	Сув	Ala	Arg	Ġlu	Pro	Gly	Thr	Pro	Glu	Pro	Ala	Pro	Ser

				20					25					30		
	Thr	Pro	Glu	Ala	Ala	Val	Leu	Arg	Ser	Ala	Ala	Ala	Arg	Leu	Arg	Gln
			35					40					45			
	Ile	His	Arg	Ser	Phe	Phe	Ser	Ala	Tyr	Leu	Gly	Tyr	Pro	Gly	Asn	Arg
5		50					55					60				
	Phe	Glu.	Leu	Val	Ala	Leu	Met	Ala	Asp	Ser	Val	Leu	Ser	Asp	Ser	Pro
	65					70					75					80
	Gly	Pro	Thr	Trp	Gly	Arg	Val	Val	Thr	Leu	Val	Thr	Phe	Ala	Gly	Thr
					85					90					95	
10	Leu	Leu	Glu	Arg	Gly	Pro	Leu	Val	Thr	Ala	Arg	Trp	Lys	Lys	Trp	Gly
				100					105					110		
	Phe	Gln		Arg	Leu	Lys	Glu		Glu	Gly	Asp	Val		Arg	Asp	Сув
			115	_			_	120					125			
1.5	Gln	Arg	Leu	Val	Ala	Leu		Ser	Ser	Arg	Leu		_	Gln	His	Arg
15		130		-3		~ 1_	135	a 1		_	~3	140			_,	_,
		Trp	Leu	Gin	Ala		GIÀ	GIĀ	Trp	Asp	_	Phe	Cys	His	Phe	
	145	Wh-w	Dwa	Dho	Dro	150	71 m	Dho		3	155	61 =	T	****	C 1-	160
	wrd	Thr	PIO	Life	165	neu	MIG	Pile	пр	170	тйа	GIII	Leu	Val	175	Ala
20	Phe	Leu	Ser	Cvs		Teu	Thr	Thr	Ala		Tle	ጥህጕ	Len	TTTO.		Ara
		104		180	200				185		110	-7-	псц	190		11.9
	Leu	Leu														
	<210	0> 3														
25	<21	1> 13	39												•	
		2> PI														
	<213	3> Ho	omo s	sapie	ens											
	<400	0> 3														
30	Met	Glu	Ala	Val	Val	Phe	Val	Phe	Ser	Leu	Leu	Asp	Суз	Сув	Ala	Leu
	1				5					10					15	
	Ile	Phe	Leu	Ser	Val	Tyr	Phe	Ile	Ile	Thr	Leu	Ser	Asp	Leu	Glu	Сув

			20					25					30		
	Asp Ty	r Ile	Asn	Ala	Arg	Ser	CAa	Суз	Ser	Lys	Leu	Asn	Lys	Trp	Val
		35					40					45			
	Ile Pro	o Glu	Leu	Ile	Gly	His	Thr	Ile	Val	Thr	Val	Leu	Leu	Leu	Met
5	50	0				55					60				
	Ser Le	ı His	Trp	Phe	Ile	Phe	Leu	Leu	Asn	Leu	Pro	Val	Ala	Thr	Trp
	65				70					75					80
	Asn Ile	e Tyr	Arg	Tyr	Ile	Met	Val	Pro	Ser	Gly	Asn	Met	Gly	Val	Phe
				85					90					95	
10	Asp Pro	o Thr	Glu	Ile	His	Asn	Arg	Gly	Gln	Leu	Lys	Ser	His	Met	Lys
			100					105					110		
	Glu Ala	a Met	Ile	Lys	Leu	Gly	Phe	His	Leu	Leu	Суз	Phe	Phe	Met	Туг
		115					120					125			
	Leu Ty	r Ser	Met	Ile	Leu	Ala	Leu	Ile	Asn	Asp					
15	130	0				135									
20	<210> 4 <211> 3 <212> 1 <213> 1	323 PRT	sapio	ens											
	<400>	4													
	Met Ala	a Ala	Pro	Lys	Gly	Ser	Leu	Trp	Val	Arg	Thr	Gln	Leu	Gly	Leu
	1			5					10					15	
2 5	Pro Pro	o Leu	Leu	Leu	Leu	Thr	Met	Ala	Leu	Ala	Gly	Gly	Ser	Gly	Thr
			20					25					30		
	Ala Se	r Ala	Glu	Ala	Phe	Asp	Ser	Val	Leu	Gly	Asp	Thr	Ala	Ser	Сув
		35					40					45			
	His Ar	g Ala	Сув	Gln	Leu	Thr	Tyr	Pro	Leu	His	Thr	Tyr	Pro	Lys	Glu
30	5	0				55					60				
	Glu Gl	u Leu	Tyr	Ala	Суз	Gln	Arg	Gly	Сув	Arg	Leu	Phe	Ser	Ile	Суз
	65				70	-				75					80

	Gln	Phe	Val	Asp	Asp	Gly	Ile	Asp	Leu	Asn	Arg	Thr	Lys	Leu	Glu	Су
					85					90					95	
	Glu	Ser	Ala	Cys	Thr	Glu	Ala	Tyr	Ser	Gln	Ser	Asp	Glu	Gln	Tyr	Ala
				100					105					110		
5	Суз	His	Leu	Gly	Суз	Gln	Asn	Gln	Leu	Pro	Phe	Ala	Glu	Leu	Arg	Gli
			115					120					125			
	Glu	Gln	Leu	Met	Ser	Leu	Met	Pro	Lys	Met	His	Leu	Leu	Phe	Pro	Let
		130					135					140				
	Thr	Leu	Val	Arg	Ser	Phe	Trp	Ser	Asp	Met	Met	qzA	Ser	Ala	Gln	Sea
10	145					150					155					160
	Phe	Ile	Thr	Ser	Ser	Trp	Thr	Phe	Tyr	Leu	Gln	Ala	Asp	Asp	Gly	Lys
					165					170					175	
	Ile	Val	Ile	Phe	Gln	Ser	Lys	Pro	Glu	Ile	Gln	Tyr	Ala	Pro	His	Let
				180					185					190		
15	Glu	Gln	Glu	Pro	Thr	Asn	Leu	Arg	Glu	Ser	Ser	Leu	Ser	Lys	Met	Ser
			195					200					205			
	Tyr	Leu	Gln	Met	Arg	Asn	Ser	Gln	Ala	His	Arg	Asn	Phe	Leu	Glu	Ası
		210					215					220				
	Gly	Glu	Ser	qeA	Gly	Phe	Leu	Arg	Суз	Leu	Ser	Leu	Asn	Ser	Gly	Tr
20	225					230					235					240
	Ile	Leu	Thr	Thr	Thr	Leu	Val	Leu	Ser	Val	Met	Val	Leu	Leu	Trp	Ile
					245					250					255	
	Суз	Суз	Ala	Thr	Val	Ala	Thr	Ala	Val	Glu	Gln	Tyr	Val	Pro	Ser	Glu
				260					265					270		
25	Lys	Leu	Ser	Ile	Tyr	Gly	qeA	Leu	Glu	Phe	Met	Asn	Glu	Gln	Lys	Let
			275					280					285			
	Asn	Arg	Tyr	Pro	Ala	Ser	Ser	Leu	Val	Val	Val	Arg	Ser	Lys	Thr	Glu
		290					295					300				
	Asp	His	Glu	Glu	Ala	Gly	Pro	Leu	Pro	Thr	Lys	Val	Asn	Leu	Ala	His
30	305					310					315					320
	Ser	Glu	Ile													

	<210> 5														
	<211> 23	31													
	<212> PF	T													
	<213> Ho	amo s	sapie	ens											
5															
	<400> 5														
	Met Arg	Arg	Cys	Ser	Leu	Сув	Ala	Phe	qaA	Ala	Ala	Arg	Gly	Pro	Arg
	1			5					10					15	
	Arg Leu	Met	Arg	Val	Gly	Leu	Ala	Leu	Ile	Leu	Val	Gly	His	Val	Asn
10			20					25					30		
	Leu Leu	Leu	Gly	Ala	Val	Leu	His	Gly	Thr	Val	Leu	Arg	His	Val	Ala
		35					40					45			
	Asn Pro	Arg	Gly	Ala	Val	Thr	Pro	Glu	Tyr	Thr	Val	Ala	Asn	Val	Ile
	50					55					60				
15	Ser Val	Gly	Ser	Gly	Leu	Leu	Ser	Val	Ser	Val	Gly	Leu	۷al	Ala	Leu
	65				70					75					80
	Leu Ala	Ser	Arg	Asn	Leu	Leu	Arg	Pro	Pro	Leu	His	Trp	Val	Leu	Leu
				85					90					95	
	Ala Leu	Ala	Leu	Val	Asn	Leu	Leu	Leu	Ser	Val	Ala	Cys	Ser	Leu	Gly
20			100					105					110		
	Leu Leu	Leu	Ala	Val	Ser	Leu	Thr	Val	Ala	Asn	Gly	Gly	Arg	Arg	Leu
		115					120					125			
	Ile Ala	Asp	Суз	His	Pro	Gly	Leu	Leu	qeA	Pro	Leu	Val	Pro	Leu	Asp
	130					135					140				
25	Glu Gly	Pro	Gly	His	Thr	Asp	Сув	Pro	Phe	Asp	Pro	Thr	Arg	Ile	Tyr
	145				150					155					160
	Asp Thr	Ala	Leu	Ala	Leu	Trp	Ile	Pro	Ser	Leu	Leu	Met	Ser	Ala	Gly
				165					170					175	
	Glu Ala	Ala	Leu	Ser	Gly	Tyr	Сув	Сув	Val	Ala	Ala	Leu	Thr	Leu	Arg
30			180					185					190		
	Gly Val	Gly	Pro	Сув	Arg	Lys	Asp	Gly	Leu	Gln	Gly	Gln	Val	Val	Ala
		195				•	200					205			

Gly Cys Asp Ala Arg Val Lys Gln Lys Ala Trp Gln Pro Arg Phe Pro 210 215 220 Gly Ile Lys Val Lys Ala Leu 225 230 5 <210> 6 <211> 97 <212> PRT <213> Homo sapiens 10 <400> 6 Met Thr Ser Leu Leu Thr Thr Pro Ser Pro Arg Glu Glu Leu Met Thr 1 10 Thr Pro Ile Leu Gln Pro Thr Glu Ala Leu Ser Pro Glu Asp Gly Ala 15 20 25 30 Ser Thr Ala Leu Ile Ala Val Val Ile Thr Val Val Phe Leu Thr Leu 35 40 45 Leu Ser Val Val Ile Leu Ile Phe Phe Tyr Leu Tyr Lys Asn Lys Gly 55 20 Ser Tyr Val Thr Tyr Glu Pro Thr Glu Gly Glu Pro Ser Ala Ile Val 70 75 Gln Met Glu Ser Asp Leu Ala Lys Gly Ser Glu Lys Glu Glu Tyr Phe 85 90 95 Ile 25 <210> 7 <211> 198 <212> PRT <213> Homo sapiens 30 <400> 7 Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu Ser

<400> 8

	1				5					10					15	
	Leu	Ser	Cys	Leu	Ala	Leu	Ser	Val	Leu	Leu	Leu	Ala	Gln	Leu	Ser	Asp
				20					25					30		
	Ala	Ala	ГÀа	Asn	Phe	Glu	Asp	Val	Arg	Cys	Lys	Сув	Ile	Сув	Pro	Pro
5			35					40					45			
	Tyr	Lys	Glu	Asn	Ser	Gly	His	Ile	Tyr	Asn	Lys	Asn	Ile	Ser	Gln	Lys
		50					55					60				
	Asp	Суз	Asp	Суз	Leu	His	Val	Val	Glu	Pro	Met	Pro	Val	Arg	Gly	Pro
	65					70					75					80
10	yab	Val	Glu	Ala	Tyr	Сув	Leu	Arg	Сув	Glu	Cys	Lys	Tyr	Glu	Glu	Arg
					85					90					95	
	Ser	Ser	Val	Thr	Ile	Lys	Val	Thr	Ile	Ile	Ile	Tyr	Leu	Ser	Ile	Leu
				100					105					110		
	Gly	Leu	Leu	Leu	Leu	Tyr	Met	Val	Tyr	Leu	Thr	Leu	Val	Glu	Pro	Ile
15			115					120					125			
	Leu	Lys	Arg	Arg	Leu	Phe	Gly	His	Ala	Gln	Leu	Ile	Gln	Ser	Asp	Asp
		130					135					140				
	Asp	Ile	Gly	Asp	His	Gln	Pro	Phe	Ala.	Asn	Ala	His	Asp	Val	Leu	Ala
	145					150					155					160
20	Arg	Ser	Arg	Ser	Arg	Ala	Asn	Val	Leu	Asn	Lys	Val	Glu	Tyr	Ala	Gln
					165					170					175	
	Gln	Arg	Trp		Leu	Gln	Val	Gln		Gln	Arg	Lys	Ser	Val	Phe	Asp
				180					185					190		
~=	Arg	His	Val	Val	Leu	Ser										
25			195													
)> 8														
		l> 14														
00		2> PI														
30	<213	3> Ho	omo s	apie	ens											

	Met	Gly	Arg	Val	Ser	Gly	Leu	Val	Pro	Ser	Arg	Phe	Leu	Thr	Leu	Leu
	1	•			5					10					15	
	Ala	His	Leu	Val	Val	Val	Ile	Thr	Leu	Phe	Trp	Ser	Arg	Asp	Ser	Asn
				20					25					30		
5	Ile	Gln	Ala	Суз	Leu	Pro	Leu	Thr	Phe	Thr	Pro	Glu	Glu	туг	Asp	Lys
			35					40					45			
	Gln	Asp	Ile	Gln	Leu	Val	Ala	Ala	Leu	Ser	Val	Thr	Leu	Gly	Leu	Phe
		50					55					60				
	Ala	Val	Glu	Leu	Ala	Gly	Phe	Leu	Ser	Gly	Val	Ser	Met	Phe	Asn	Ser
10	65					70					75					80
	Thr	Gln	Ser	Leu	Ile	Ser	Ile	Gly	Ala	His	Cys	Ser	Ala	Ser	Val	Ala
					85					90					95	
	Leu	Ser	Phe	Phe	Ile	Phe	Glu	Arg	Trp	Glu	Cys	Thr	Thr	Tyr	Trp	Tyr
				100					105					110		
15	Ile	Phe	Val	Phe	Сув	Ser	Ala	Leu	Pro	Ala	Val	Thr	Glu	Met	Ala	Leu
			115					120					125			
	Phe	Val	Thr	Val	Phe	Gly	Leu	Lys	Lys	ГÀа	Pro	Phe				
		130					135					140				
00																
20	<210															
		l> 20														
		>> PF														
	<213	3> Hc	XODO E	sapıe	ens											
25	<400	~ a														
20		Asn	λra	mh~) an	V=1	3 en	Wa 7	Dho	Cor	~1	T			5	•
	1	VƏII	ALG	1111	A511 5	Val	Maii	vai	FIIC	10	GIU	Leu	Ser	VIG		Arg
		Asn	Glu	λερ		Val	T.eu	Leu	T ess		(The wave	77-1	T	DL -	15	>
	14.9	non	GLU	ومم 20	FIIC	Vui	Lieu	Leu	25	1111	TÄT	vai	теп		Leu	met
30	λla	T.e.u	mp.~		LON	Mot	Sor	Cor			Tibe	~	01	30	ml	57 \
30	ALG	Leu	35	E116	TICK	rel	PET	40	eng	TITE	rne	САВ		ser	rue	ınr
	Glv	Trp		Ara	ย่อ	G) w	λl÷		Tla	Тч-	T 612	mr	45 Mat	T	T	C
	-T	-+P	-ya	n.y	UTO	GIY	VΤα	UTS	TTE	TAT	בייע	THE	met	тел	Leu	ser

		50					55					60				
	Ile	Ala	Ile	Trp	Val	Ala	Trp	Ile	Thr	Leu	Leu	Met	Leu	Pro	Asp	Phe
	65					70					75					80
	Asp	Arg	Arg	Trp	Asp	Asp	Thr	Ile	Leu	Ser	Ser	Ala	Leu	Ala	Ala	Asn
5					85					90					95	
	Gly	Trp	Val	Phe	Leu	Leu	Ala	Tyr	Val	Ser	Pro	Glu	Phe	Trp	Leu	Leu
				100					105					110		
	Thr	Lys	Gln	Arg	Asn	Pro	Met	qaA	Туг	Pro	Val	Glu	Asp	Ala	Phe	Суз
			115					120					125			
10	Lys	Pro	Gln	Leu	Val	ГÀЗ	ГÀЗ	Ser	Tyr	Gly	Val	Glu	Asn	Arg	Ala	Tyr
		130					135					140				
-	Ser	Gln	Glu	Glu	Ile	Thr	Gln	Gly	Phe	Glu	Glu	Thr	Gly	Asp	Thr	Leu
	145					150					155					160
	Tyr	Ala	Pro	Tyr		Thr	His	Phe	Gln		Gln	Asn	Gln	Pro	Pro	Gln
15					165					170					175	
	Lys	Glu	Phe		Ile	Pro	Arg	Ala		Ala	Trp	Pro	Ser		Tyr	Lys
				180					185					190		
	qaA	Tyr		Val	Lys	Lys	Glu	_	Ser							
90			195					200								
20	-01	. 10														
		0> 10														
		i> 24														
		₽ PF 3> Hc		.enie	ma											
25	~21.)		apre	1112											
	<400)> 10)													
				Ser	Asp	Glu	Asp	Glv	Thr	Asn	Gly	ឲា៴	Ala	Ser	Glu	λla
	1				5			- 1		10	O ₂ y	CLY	u	Det	15	AIG
		Glu	Asp	Ara		Ala	Pro	Glv	Lvs		Arg	Ara	T.en	Glv		T.e.ii
30			···	20				1	25		- - -			30		
	Ala	Thr	Ala		Leu	Thr	Phe	Tyr		Ile	Ala	Met	Thr		G] v	Tro
		_	35	E		_	-	40	·F				45		1	

	Leu	Val	Leu	Ala	Ile	Ala	Met	Val	Arg	Phe	Tyr	Met	Glu	Lys	Gly	Thr
		50					55					60				
	His	Arg	Gly	Leu	Tyr	Lys	Ser	Ile	Gln	Lys	Thr	Leu	Lys	Phe	Phe	Gln
	65					70					75					80
5	Thr	Phe	Ala	Leu	Leu	Glu	Ile	Val	His	Суз	Leu	Ile	Gly	Ile	Val	Pro
					85					90					95	
	Thr	Ser	Val	Ile	Val	Thr	Gly	Val	Gln	Val	Ser	Ser	Arg	Ile	Phe	Met
				100					105					110		
	Val	Trp	Leu	Ile	Thr	His	Ser	Ile	Lys	Pro	Ile	Gln	Asn	Glu	Glu	Ser
10			115					120					125			
	Val	Val	Leu	Phe	Leu	Val	Ala	Trp	Thr	Val	Thr	Glu	Ile	Thr	Arg	Tyr
		130					135					140				
	Ser	Phe	Tyr	Thr	Phe	Ser	Leu	Leu	Asp	His	Leu	Pro	Tyr	Phe	Ile	Lys
	145					150					155					160
15	Trp	Ala	Arg	Tyr	Asn	Phe	Phe	Ile	Ile	Leu	Tyr	Pro	Val	Gly	Val	Ala
					165					170					175	
	Gly	Glu	Leu	Leu	Thr	Ile	Tyr	Ala	Ala	Leu	Pro	His	Val	Lys	Lys	Thr
				180					185					190		
	Gly	Met	Phe	Ser	Ile	Arg	Leu	Pro	Asn	Lys	Tyr	Asn	Val	Ser	Phe	Asp
20			195					200					205			
	Tyr	Tyr	Tyr	Phe	Leu	Leu	Ile	Thr	Met	Ala	Ser	Tyr	Ile	Pro	Leu	Phe
		210					215					220				
	Pro	Gln	Leu	Tyr	Phe	His	Met	Leu	Arg	Gln	Arg	Arg	Lys	Val	Leu	His
	225					230					235					240
25	Gly	Glu	Val	Ile	Val	Glu	Lys	Asp	Asp							
					245											
	<210)> 11														
	<211	> 71	.4													
30	<212	> DN	IA.													
	<213	> Hc	mo s	apie	ns											

5 10 15 20	atggegettg teecetgeea ggtgetgegg atggeaatee tgetgtetta etgetetat etgtgtaact acaaggeeat egaaatgeee teacaccaga cetaeggagg gagetggaa tteetgacgt teattgatet ggttateeag getgtettt ttggeatetg tgtgetgae gatettteea gtettetgae tegaggaagt gggaaccagg ageaagagag geageteaa aageteatet eteteeggga etggatgtta getgtgttgg eettteetgt tggggtttt gttgtageag tgttetggat eatttatgee tatgacagag agatgatata eeegaaget etggataatt ttateecagg gtggetgaat eaeggaatge acaeggaeggt tetgeeett atattaateg agatgaggae ategeaceat eagtateeca geaggageag eggaettaee geeatatgta eettetetgt tggetatata ttatgggtgt getgggtgea teatgtaace ggeatgtggg tgtaeeettt eetggaacae attggeeeag gagecagaat eatettett gggtetacaa eeatettaat gaactteetg taeetgetgg gagaaagttet gaacaactag atetgggata eaeagaaaag tatggaagaa gagaaagaaa ageetaaatt ggaa	a 120 t 180 g 240 t 300 g 360 t 420 c 480 t 540 t 600
10	tteetgaegt teattgatet ggttateeag getgtetttt ttggeatetg tgtgetgaegatettteea gtettetgae tegaggaagt gggaaceagg ageaagaaga geageteaa aageteatet eteteeggga etggatgtta getgtgttgg eettteetgt tggggtttt gttgtageag tgttetggat eatttatgee tatgaeagag agatgatata eeegaagetteetggataatt ttateeeagg gtggetgaat eaeggaatge aeaegaeggt tetgeeett atattaateg agatgaggae ategeaceat eagtateeea geaggageag eggaettaeggeeatatgta eettetetgt tggetatata ttatgggtgt getgggtgea teatgtaaeggeatggggtgggg	t 180 g 240 t 300 g 360 t 420 c 480 t 540 t 660
10	gatettteea gtettetgae tegaggaagt gggaaceagg ageaagagag geageteaa aageteatet eteteeggga etggatgtta getgtgttgg eettteetgt tggggtttt gttgtageag tgttetggat eatttatgee tatgacagag agatgatata eeegaaget etggataatt ttateecagg gtggetgaat eaeggaatge acaegaeggt tetgeeett atattaateg agatgaggae ategeaceat eagtateeca geaggageag eggaettaeg geeatatgta eettetetgt tggetatata ttatgggtgt getgggtgea teatgtaace ggeatgtggg tgtaceettt eetggaacae attggeecag gagecagaat eatettett gggtetacaa eeatettaat gaactteetg taeetgetgg gagaagttet gaacaactag atetgggata eaeagaaaag tatggaagaa gagaaagaaa ageetaaatt ggaa	g 240 t 300 g 360 t 420 c 480 t 540 t 600
10	aageteatet eteteegga etggatgtta getgtgttgg eettteetgt tggggtttt gttgtageag tgttetggat eatttatgee tatgacagag agatgatata eeegaagete etggataatt ttateecagg gtggetgaat eaeggaatge acaegaeggt tetgeeett atattaateg agatgaggae ategeaceat eagtateeca geaggageag eggacttace geeatatgta eettetetgt tggetatata ttatgggtgt getgggtgea teatgtaace ggeatgtggg tgtaeeettt eetggaacae attggeecag gagecagaat eatettette gggtetacaa eeatettaat gaactteetg taeetgetgg gagaagttet gaacaactae atetgggata eaeagaaaag tatggaagaa gagaaagaaa ageetaaatt ggaa	300 g 360 t 420 c 480 t 540 t 660
15	gttgtageag tgttetggat eatttatgee tatgacagag agatgatata eeegaagete etggataatt ttateeeagg gtggetgaat eaeggaatge acaegaeggt tetgeeett atattaateg agatgaggae ategeaceat eagtateeea geaggageag eggacttaee geeatatgta eettetetgt tggetatata ttatgggtgt getgggtgea teatgtaace ggeatgtggg tgtaceettt eetggaacae attggeeeag gageeagaat eatettett gggtetacaa eeatettaat gaactteetg taeetgetgg gagaagttet gaacaactag atetgggata eacagaaaag tatggaagaa gagaaagaaa ageetaaatt ggaa	g 360 t 420 c 480 t 540 t 600 t 660
15	ctggataatt ttateceagg gtggetgaat caeggaatge acaegaeggt tetgeeett atattaateg agatgaggae ategeaceat cagtateeea geaggageag eggacttace gecatatgta cettetetgt tggetatata ttatgggtgt getgggtgea teatgtaace ggeatgtggg tgtaceettt cetggaacae attggeeeag gageeagaat catettette gggtetacaa ceatettaat gaactteetg tacetgetgg gagaagttet gaacaactae atetgggata caeagaaaag tatggaagaa gagaaagaaa ageetaaatt ggaa	t 420 d 480 t 540 t 600 t 660
15	atattaateg agatgaggae ategeaecat cagtatecea geaggageag eggaettae geeatatgta eettetetgt tggetatata ttatgggtgt getgggtgea teatgtaace ggeatgtggg tgtaceettt eetggaaeae attggeecag gageeagaat eatettette gggtetacaa eeatettaat gaaetteetg taeetgetgg gagaagttet gaacaactas atetgggata eacagaaaag tatggaagaa gagaaagaaa ageetaaatt ggaa	2 480 t 540 t 600 t 660
15	gecatatgta eettetetgt tggetatata ttatgggtgt getgggtgea teatgtaace ggeatgtggg tgtaeeettt eetggaaeae attggeeeag gageeagaat eatettett gggtetacaa eeatettaat gaaetteetg taeetgetgg gagaagttet gaacaacta atetgggata cacagaaaag tatggaagaa gagaaagaaa ageetaaatt ggaa <210> 12	t 540 t 600 t 660
15	ggcatgtggg tgtaccettt cetggaacae attggeecag gagecagaat catettett gggtetacaa ceatettaat gaactteetg tacetgetgg gagaagttet gaacaacta atetgggata cacagaaaag tatggaagaa gagaaagaaa agectaaatt ggaa <210> 12	t 600 t 660
	gggtctacaa ccatcttaat gaactteetg tacetgetgg gagaagttet gaacaacta atetgggata cacagaaaag tatggaagaa gagaaagaaa ageetaaatt ggaa <210> 12	t 660
	atctgggata cacagaaaag tatggaagaa gagaaagaaa agcctaaatt ggaa <210> 12	
	<210> 12	714
20	<211> 582	
20		
20	<212> DNA	
20	<213> Homo sapiens	
20		
	<400> 12	
	atggeegaee egetgeggga gegeaeegag etgttgetgg eegaetaeet ggggtaetge	60
	gecegggaae eeggeaeeee egageeggeg eeateeaege eegaggeege egtgetgege	120
	teegeggeeg eeaggttaeg geagatteae eggteetttt teteegeeta eeteggetae	180
	ecegggaace gettegaget ggtggegetg atggeggatt eegtgetete egaeageeed	240
25	ggeceeaeet ggggeagagt ggtgaegete gtgaeetteg eagggaeget getggagaga	300
	gggeegetgg tgaeegeeeg gtggaagaag tggggettee ageegegget aaaggageag	g 360
	gagggegaeg tegeceggga etgecagege etggtggeet tgetgagete geggeteate	g 420
		480
	gggcagcacc gcgcctggct gcaggctcag ggcggctggg atggcttttg tcacttcttc	
30	gggcagcacc gcgcctggct gcaggctcag ggcggctggg atggcttttg tcacttcttc	540

	<211> 417						
	<212> DNA						
	<213> Homo	sapiens					
5	<400> 13						
	atggaggegg	tggtgttcgt	cttctctctc	ctcgattgtt	gegegeteat	cttcctctcg	60
	gtctacttca	taattacatt	gtctgattta	gaatgtgatt	acattaatgc	tagatcatgt	120
	tgctcaaaat	taaacaagtg	ggtaattcca	gaattgattg	gecataccat	tgtcactgta	180
	ttactgctca	tgtcattgca	ctggttcatc	ttccttctca	acttacctgt	tgccacttgg	240
10	aatatatatc	gatacattat	ggtgccgagt	ggtaacatgg	gagtgtttga	tecaacagaa	300
	atacacaatc	gagggcagct	gaagtcacac	atgaaagaag	ccatgatcaa	gettggttte	360
	cacttgctct	gcttcttcat	gtatctttat	agtatgatct	tagctttgat	aaatgac	417
	<210> 14						
15	<211> 969						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 14						
20	atggcggcgc	cgaaggggag	cctctgggtg	aggacccaac	tggggctccc	gccgctgctg	60
	ctgctgacca	tggeettgge	cggaggttcg	gggaccgctt	cggctgaagc	atttgactcg	120
	gtcttgggtg	atacggcgtc	ttgccaccgg	geetgteagt	tgacctaccc	cttgcacacc	180
	taccctaagg	aagaggagtt	gtacgcatgt	cagagaggtt	gcaggctgtt	ttcaatttgt	240
	cagtttgtgg	atgatggaat	tgacttaaat	cgaactaaat	tggaatgtga	atctgcatgt	300
25	acagaagcat	atteceaate	tgatgagcaa	tatgcttgcc	atcttggttg	ccagaatcag	360
	ctgccattcg	ctgaactgag	acaagaacaa	cttatgtccc	tgatgccaaa	aatgcaccta	420
	ctctttcctc	taactctggt	gaggtcattc	tggagtgaca	tgatggactc	cgcacagagc	480
	ttcataacet	cttcatggac	tttttatctt	caagccgatg	acggaaaaat	agttatattc	540
	cagtctaagc	cagaaatcca	gtacgcacca	catttggage	aggagectae	aaatttgaga	600
30	gaatcatctc	taagcaaaat	gtcctatctg	caaatgagaa	attcacaagc	gcacaggaat	660
	tttcttgaag	atggagaaag	tgatggcttt	ttaagatgee	tctctcttaa	ctctagatag	720

attttaacta caactettgt eeteteggtg atggtattge tttggatttg ttgtgcaact 780

	gttgctacag	ctgtggagca	gtatgttccc	tetgagaage	tgagtatcta	tggtgacttg	840
	gagtttatga	atgaacaaaa	gctaaacaga	tatccagctt	cttctcttgt	ggttgttaga	900
	tctaaaactg	aagatcatga	agaagcaggg	cctctaccta	caaaagtgaa	tcttgctcat	960
	tctgaaatt			٠			969
5							
	<210> 15						
	<211> 693						
	<212> DNA						
	<213> Homo	sapiens					
10							
	<400> 15						
	atgaggcgct	gcagtctctg	cgctttcgac	gccgcccggg	ggcccaggcg	gctgatgcgt	60
	gtgggcctcg	cgctgatctt	ggtgggccac	gtgaacctgc	tgctgggggc	cgtgctgcat	120
	ggcaccgtcc	tgcggcacgt	ggccaatccc	cgcggcgctg	tcacgccgga	gtacaccgta	180
15	gccaatgtca	tetetgtegg	ctcggggctg	ctgagcgttt	ccgtgggact	tgtggccctc	240
	ctggcgtcca	ggaacettet	tegeceteca	ctgcactggg	teetgetgge	actagetetg	300
	gtgaacctgc	tettgteegt	tgeetgetee	ctgggcctcc	ttettgetgt	gtcactcact	360
	gtggccaacg	gtggeegeeg	ccttattgct	gactgccacc	caggactgct	ggatectetg	420
	gtaccactgg	atgaggggcc	gggacatact	gactgcccct	ttgaccccac	aagaatctat	480
20	gatacageet	tggctctctg	gatcccttct	ttgctcatgt	ctgcagggga	ggctgctcta	540
	tctggttact	gctgtgtggc	tgcactcact	ctacgtggag	ttgggeeetg	caggaaggac	600
	ggacttcagg	ggcaggtagt	agctgggtgt	gacgcaagag	tgaaacagaa	agcctggcag	660
	ccacggtttc	ctgggattaa	agtcaaagca	tta			693
25	<210> 16						
	<211> 291						
	<212> DNA						
	<213> Homo	sapiens					
30	<400> 16						
	atgaccagcc	tectgactac	tccttctcca	agagaagaac	tgatgaccac	cccaatttta	60
	cageceactg	aggeeetgte	cccagaagat	ggagccagca	caccactcat	tgcagttgtt	120

	atcaccgttg	tetteeteae	cctgctctcg	gtcgtgatct	tgatettett	ttacctgtac	180
	aagaacaaag	gcagctacgt	cacctatgaa	cctacagaag	gtgagcccag	tgccatcgtc	240
	cagatggaga	gtgacttggc	caagggcagc	gagaaagagg	aatatttcat	c	291
5	<210> 17						
	<211> 594						
	<212> DNA						
	<213> Homo	sapiens					
10	<400> 17						
	atggcgaccc	tgtggggagg	ccttcttcgg	cttggctcct	tgctcagcct	gtcgtgcctg	60
	gegettteeg	tgetgetget	ggcgcagctg	tcagacgccg	ccaagaattt	cgaggatgtc	120
	agatgtaaat	gtatctgccc	tccctataaa	gaaaattctg	ggcatattta	taataagaac	180
	atatctcaga	aagattgtga	ttgccttcat	gttgtggagc	ccatgcctgt	gegggggeet	240
15	gatgtagaag	catactgtct	acgctgtgaa	tgcaaatatg	aagaaagaag	ctctgtcaca	300
	atcaaggtta	ccattataat	ttatctctcc	attttgggcc	ttctacttct	gtacatggta	360
	tatettaete	tggttgagee	catactgaag	aggegeetet	ttggacatgc	acagttgata	420
	cagagtgatg	atgatattgg	ggatcaccag	ccttttgcaa	atgcacacga	tgtgctagcc	480
	cgctcccgca	gtcgagccaa	cgtgctgaac	aaggtagaat	atgcacagca	gcgctggaag	540
20	cttcaagtcc	aagagcagcg	aaagtetgte	tttgaccggc	atgttgtcct	cagc	594
	<210> 18						
	<211> 420						
	<212> DNA						
25	<213> Homo	sapiens					
		•					
	<400> 18						
	atgggccggg	tctcagggct	tgtgeeetet	egetteetga	egeteetgge	gcatctggtg	60
	gtcgtcatca	ccttattctg	gtcccgggac	agcaacatac	aggeetgeet	geeteteaeg	120
30	ttcacccccg	aggagtatga	caagcaggac	attcagctgg	tggccgcgct	ctctgtcacc	180
	ctgggcctct	ttgcagtgga	gctggccggt	ttecteteag	gagtctccat	gttcaacagc	240
	acccagagee	tcatctccat	tggggctcac	tgtagtgcat	ccgtggccct	gtecttette	300

	atattegage	gttgggagtg	cactacgtat	tggtacattt	ttgtcttctg	cagtgccctt	360
	ccagctgtca	ctgaaatggc	tttattcgtc	accgtctttg	ggctgaaaaa	gaaacccttc	420
	<210> 19						
5	<211> 603						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 19						
10	atgaatagga	ccaacgtcaa	tgtcttttct	gagettteeg	ctcctcgtcg	caatgaagac	60
	tttgtcctcc	tgctcaccta	egtectette	ttgatggcgc	tgaccttcct	catgtcctcc	120
	ttcaccttct	gtggtteett	cacgggctgg	aagagacatg	gggcccacat	ctacctcacg	180
		ccattgccat					240
		gggatgacac					300
15		atgttagtcc					360
		aggatgcttt					420
		actctcaaga					480
		attecacaca					540
00		cccacgcttg	geegageeet	tacaaagact	atgaagtaaa	gaaagagggc	600
20	age						603
	1010-00						
	<210> 20						
	<211> 747						
25	<212> DNA						
40	<213> Homo	saprens					
	<400> 20						
		acascasaas	CUUCACCARA	anagagaat	addadaaaa	5555555	60
		gcgacgagga					
30		gcaagcggag tgaccgcggg					120 180
50						•	
		cacacagagg tgcttgagat					240
	acacetycct	cycligagat	agewacige	ccaactggaa	LLYCACCTAC	LCCCGCGACC	300

	greating recataging creating the first great action of the second	360
	aaaccaatec agaatgaaga gagtgtggtg ctttttetgg tegegtggae tgtgacagag	420
	atcacteget attectteta cacatteage ettettgace acttgecata etteattaaa	480
	tgggccagat ataatttttt tatcatctta tatcctgttg gagttgctgg tgaacttctt	540
5	acaatatacg ctgccttgcc gcatgtgaag aaaacaggaa tgttttcaat aagacttcct	600
	aacaaataca atgtotottt tgactactat tattttotto ttataaccat ggcatcatat	660
	atacetttgt ttecacaact ctatttteat atgttacgte aaagaagaaa ggtgetteat	720
	ggagaggtga ttgtagaaaa ggatgat	747
10	<210> 21	
	<211> 1085	
	<212> DNA	
	<213> Homo sapiens	
1.5		
15	<400> 21	
	cageeggtee aggeetetgg egaac atg geg ett gte eee tge eag gtg etg	52
	Met Ala Leu Val Pro Cys Gln Val Leu	
	1 5	
20	egg atg gea ate etg etg tet tae tge tet ate etg tgt aac tae aag	100
20	Arg Met Ala Ile Leu Leu Ser Tyr Cys Ser Ile Leu Cys Asn Tyr Lys	
	10 15 20 25	
	gcc ate gaa atg ccc tea cac cag ace tae gga ggg age tgg aaa tte	148
	Ala Ile Glu Met Pro Ser His Gln Thr Tyr Gly Gly Ser Trp Lys Phe 30 35 40	
25	40	106
20	Leu Thr Phe Ile Asp Leu Val Ile Gln Ala Val Phe Phe Gly Ile Cys	196
	46	
	gtg etg act gat ett tee agt ett etg act ega gga agt ggg aac eag	244
	Val Leu Thr Asp Leu Ser Ser Leu Leu Thr Arg Gly Ser Gly Asn Gln	244
30	60 65 70	
	gag caa gag agg cag ctc aag aag ctc atc tct ctc cgg gac tgg atg	202
	Glu Gln Glu Arg Gln Leu Lys Lys Leu Ile Ser Leu Arg Asp Trp Met	292

		75	5				80					85					
	tta	gct	gtg	ttg	gee	ttt	cct	gtt	ggg	gtt	ttt	gtt	gta	gca	gtg	ttc	340
	Leu	Ala	Val	Leu	Ala	Phe	Pro	Val	Gly	Val	Phe	Val	Val	Ala	Val	Phe	
	90	•				95					100		÷			105	
5	tgg	ato	att	tat	gcc	tat	gac	aga	gag	atg	ata	tac	ccg	aag	ctg	ctg	388
	Trp	Ile	Ile	Tyr	Ala	Tyr	Asp	Arg	Glu	Met	Ile	Tyr	Pro	Lys	Leu	Leu	
					110					115					120		
	gat	aat	ttt	atc	cca	ggg	tgg	ctg	aat	cac	gga	atg	cac	acg	acg	gtt	436
	Asp	Asn	Phe	Ile	Pro	Gly	Trp	Leu	Asn	His	Gly	Met	His	Thr	Thr	Val	
10				125					130					135			
	ctg	ccc	ttt	ata	tta	atc	gag	atg	agg	aca	tcg	cac	cat	cag	tat	ccc	484
	Leu	Pro	Phe	Ile	Leu	Ile	Glu	Met	Arg	Thr	Ser	His	His	Gln	Tyr	Pro	
			140					145					150				
	agc	agg	agc	agç	gga	ctt	acc	gcc	ata	tgt	acc	ttc	tct	gtt	ggc	tat	532
15	Ser	Arg	Ser	Ser	Gly	Leu	Thr	Ala	Ile	Суз	Thr	Phe	Ser	Val	Gly	Tyr	
		155					160					165					
	ata	tta	tgg	gtg	tgc	tgg	gtg	cat	cat	gta	act	ggc	atg	tgg	gtg	tac	580
	Ile	Leu	Trp	Val	Суз	Trp	Val	His	His	Val	Thr	Gly	Met	Trp	Val	Tyr	
	170					175					180					185	
20	cct	ttc	ctg	gaa	cac	att	ggc	cca	gga	gcc	aga	atc	atc	ttc	ttt	g gg	628
	Pro	Phe	Leu	Glu	His	Ile	Gly	Pro	Gly	Ala	Arg	Ile	Ile	Phe	Phe	Gly	
					190					195					200		
	tct	aca	acc	atc	tta	atg	aac	ttc	ctg	tac	ctg	ctg	gga	gaa	gtt	ctg	676
	Ser	Thr	Thr	Ile	Leu	Met	Asn	Phe	Leu	Tyr	Leu	Leu	Gly	Glu	Val	Leu	
25				205					210					215			
	aac	aac	tat	atc	tgg	gat	aca	cag	aaa	agt	atg	gaa	gaa	gag	aaa	gaa	724
	Asn	Asn	Tyr	Ile	Trp	Asp	Thr	Gln	Lys	Ser	Met	Glu	Glu	Glu	Lys	Glu	
			220					225					230				
	aag	cct	aaa	ttg	gaa	tgag	atco	aa c	jtcta	aacg	rc aa	gago	taga	ttg	agec	gcc a	780
30	Lys	Pro	Lys	Leu	Glu												
		235															
	ttga	agad	ete d	ttcc	ecto	:g gg	catt	ggca	gtg	gggq	aga	aaaq	qctt	ca a	agga	acttq	840

	gtggcatcag	caccccctc	ccccaatga	g gacacett	tt atatataaat	atgtataaac	900
	atagaataca	gttgtttcca	aaagaactc	a coctcact	gt gtgttaaaga	attettecca	960
	aagtcattac	tgataataac	attttttc	c ttttctag	tt ttaaaaccag	aattggacct	1020
	tggattttta	ttttggcaat	tgtaactcc	a totaatca	ag aaagaataaa	agtttattgc	1080
5	acttc						1085
	<210> 22						
	<211> 238						
	<212> PRT						
10	<213> Homo	sapiens					
	<400> 22						
			Met	Ala Leu Va	al Pro Cys Gli	val Leu	
			1		5		
15	Arg Met Ala	lle Leu L	eu Ser Tyr	Cys Ser I	le Leu Cys Ası	Tyr Lys	
	10	:	15 ·	2	20	25	
	Ala Ile Glu	Met Pro S	er His Gln	Thr Tyr G	ly Gly Ser Tr	Lys Phe	
		30		35		40	
	Leu Thr Phe	lle Asp L	eu Val Ile	Gln Ala Va	al Phe Phe Gly	lle Cys	
20		45		50	55	i	
	Val Leu Thr	Asp Leu Se	er Ser Leu	Leu Thr Ar	g Gly Ser Gly	Asn Gln	
	60)	65		70		
	Glu Gln Glu	Arg Gln Le	eu Lys Lys	Leu Ile Se	er Leu Arg Asp	Trp Met	
	75		80		85		
25	Leu Ala Val	Leu Ala Pl	ne Pro Val	Gly Val Ph	ne Val Val Ala	Val Phe	
	90	9	95	10	00	105	
	Trp Ile Ile	Tyr Ala Ty	yr Asp Arg	Glu Met Il	e Tyr Pro Lys	Leu Leu	
		110		115		120	
	Asp Asn Phe	lle Pro G	ly Trp Leu	Asn His Gl	y Met His Thr	Thr Val	
30		125		130	135	i	
	Leu Pro Phe	Ile Leu Il	le Glu Met	Arg Thr Se	er His His Gln	Tyr Pro	
	140		145		150	- -	

•	Ser Arg Ser Ser Gly Leu Thr Ala Ile Cys Thr Phe Ser Val Gly Tyr	
	155 160 165	
	Ile Leu Trp Val Cys Trp Val His His Val Thr Gly Met Trp Val Tyr	
	170 175 180 185.	
5	Pro Phe Leu Glu His Ile Gly Pro Gly Ala Arg Ile Ile Phe Phe Gly	
	190 195 200	
	Ser Thr Thr Ile Leu Met Asn Phe Leu Tyr Leu Leu Gly Glu Val Leu	
	205 210 215	
	Asn Asn Tyr Ile Trp Asp Thr Gln Lys Ser Met Glu Glu Glu Lys Glu	
10	220 225 230	
	Lys Pro Lys Leu Glu	
	235	
	<210> 23	
15	<211> 1168	
	<212> DNA	
	<213> Homo sapiens	
	<400> 23	
20	accace atg gee gae eeg etg egg gag ege ace gag etg ttg etg gee	48
	Met Ala Asp Pro Leu Arg Glu Arg Thr Glu Leu Leu Ala	
	1 5 10	
	gac tac ctg ggg tac tgc gcc cgg gaa ccc ggc acc ccc gag ccg gcg	96
	Asp Tyr Leu Gly Tyr Cys Ala Arg Glu Pro Gly Thr Pro Glu Pro Ala	
25	15 20 25 30	
	cea tee acg eee gag gee gee gtg etg ege tee geg gee gee agg tta	144
	Pro Ser Thr Pro Glu Ala Ala Val Leu Arg Ser Ala Ala Ala Arg Leu	
	35 40 45	
	egg cag att cac egg tee ttt tte tee gee tac ete gge tac eee ggg	192
30	Arg Gln Ile His Arg Ser Phe Phe Ser Ala Tyr Leu Gly Tyr Pro Gly	
	50 55 60	
	aac ege tte gag etg gtg geg etg atg geg gat tee gtg ete tee gae	240

	Ash Arg Phe Glu Leu Val	Ala Leu Met	: Ala Asp Ser Val Leu Ser Asp	
	65	70	75	
	age eee gge eee aee tgg	gge aga gtg	gtg acg ctc gtg acc ttc gca	288
	Ser Pro Gly Pro Thr Trp	Gly Arg Val	. Val Thr Leu Val Thr Phe Ala	
5	80	85	90	
	ggg acg ctg ctg gag aga	ggg ccg ctg	gtg acc gcc cgg tgg aag aag	336
	Gly Thr Leu Leu Glu Arg	Gly Pro Leu	Val Thr Ala Arg Trp Lys Lys	
	95 100		105 110	•
	tgg ggc ttc cag ccg cgg	cta aag gag	cag gag ggc gac gtc gcc cgg	384
10	Trp Gly Phe Gln Pro Arg	Leu Lys Glu	Gln Glu Gly Asp Val Ala Arg	
	115		120 125	
	gae tge eag ege etg gtg	gcc ttg ctg	age teg egg ete atg ggg eag	432
	Asp Cys Gln Arg Leu Val	Ala Leu Leu	Ser Ser Arg Leu Met Gly Gln	
	130	135	140	
15	cac cgc gcc tgg ctg cag	gct cag ggc	ggc tgg gat ggc ttt tgt cac	480
	His Arg Ala Trp Leu Gln	Ala Gln Gly	Gly Trp Asp Gly Phe Cys His	
	145	150	155	
	ttc ttc agg acc ccc ttt	cca ctg gct	ttt tgg aga aaa cag ctg gtc	528
	Phe Phe Arg Thr Pro Phe	Pro Leu Ala	Phe Trp Arg Lys Gln Leu Val	
20	160	165	170	
	cag get ttt etg tea tge	ttg tta aca	aca gcc ttc att tat ctc tgg	576
	Gln Ala Phe Leu Ser Cys	Leu Leu Thr	Thr Ala Phe Ile Tyr Leu Trp	
	175 180		185 190	
	aca cga tta tta tgagtttt	aa aacttttaa	ac cegettetae etgeceaact gt	630
25	Thr Arg Leu Leu			
	gaccaactaa atgacagatg tg	tgagaaca aga	actgagg gaaagcacct tececcacce	690
			etgaggt ggtgatttgg ecagtgtttt	750
	aacttgtgac aagtactcag gt	gtgaggac aag	maatgcaa atggctcttc cttgagtgaa	810
30			agaaceg cagaagaaac tgcattccat	870
			tggataa gagtgegaae eteteatete	930
			acatgge cacagetggg geaaaataat	990

1050

1110

1168

	cccaa	agta	gaaa	aaagt	cc c	eagtt	taac	ca as	igaat	gtaa	ı tgt	taaa	atc	actt	tataagg
	aattoti	tga	aacc	caaat	cc t	ttga	aato	et as	ittee	tggg	act	teta	iggt	tttt	atagtt
	aacatad	taa	tttc	ettca	at a	atto	ttas	ac to	jcaaa	gttt	tas	taas	ttt	gtac	ettt
5	<210> 2	24													
	<211> 1	94													
	<212> F	RT													
	<213> F	lomo	sapi	ens											
10	<400> 2	4													
		Met	Ala	Asp	Pro	Leu	Arg	Glu	Arg	Thr	Glu	Leu	Leu	Leu	Ala
		1				5					10				
	Asp Tyr	Leu	Gly	Tyr	Сув	Ala	Arg	Glu	Pro	Gly	Thr	Pro	Glu	Pro	Ala
	15				20					25					30
15	Pro Ser	Thr	Pro	Glu	Ala	Ala	Val	Leu	Arg	Ser	Ala	Ala	Ala	Arg	Leu
				35					40					45	
	Arg Gln	Ile	His	Arg	Ser	Phe	Phe	Ser	Ala	Tyr	Leu	Gly	Tyr	Pro	Gly
			50					55					60		
	Asn Arg	Phe	Glu	Leu	Val	Ala	Leu	Met	Ala	Asp	Ser	Val	Leu	Ser	Asp
20		65					70					75			
	Ser Pro	Gly	Pro	Thr	Trp	Gly	Arg	Val	Val	Thr	Leu	Val	Thr	Phe	Ala
	80					85					90				
	Gly Thr	Leu	Leu	Glu	Arg	Gly	Pro	Leu	Val	Thr	Ala	Arg	Trp	Lys	Lys
	95				100					105					110
25	Trp Gly	Phe	Gln	Pro	Arg	Leu	Lys	Glu	Gln	Glu	Gly	Asp	Val	Ala	Arg
				115					120					125	
	Asp Cys	Gln	Arg	Leu	Val	Ala	Leu	Leu	Ser	Ser	Arg	Leu	Met	Gly	Gln
			130					135					140		
	His Arg	Ala	Trp	Leu	Gln	Ala	Gln	Gly	Gly	Trp	qeA	Gly	Phe	Суз	His
30		145					150					155			
	Phe Phe	Arg	Thr	Pro	Phe	Pro	Leu	Ala	Phe	Trp	Arg	Lys	Gln	Leu	Val
	160					165					170				

	Gln Ala Phe Leu Ser Cys Leu Leu Thr Thr Ala Phe Ile Tyr Leu Trp	
	175 180 185 190	
	Thr Arg Leu Leu	
5	<210> 25	
	<211> 624	
	<212> DNA	
	<213> Homo sapiens	
10	<400> 25	
	tttgacggaa ggagcggcgg cgacggagga ggagg atg gag gcg gtg gtg ttc	53
	Met Glu Ala Val Val Phe	
	1 5	
	gte tte tet ete ete gat tgt tge geg ete ate tte ete teg gte tae	101
15	Val Phe Ser Leu Leu Asp Cys Cys Ala Leu Ile Phe Leu Ser Val Tyr	
	10 15 20	
	tto ata att aca ttg tot gat tta gaa tgt gat tac att aat got aga	149
	Phe Ile Ile Thr Leu Ser Asp Leu Glu Cys Asp Tyr Ile Asn Ala Arg	
	25 30 35	
20	tea tgt tge tea aaa tta aac aag tgg gta att eea gaa ttg att gge	197
	Ser Cys Cys Ser Lys Leu Asn Lys Trp Val Ile Pro Glu Leu Ile Gly	
	40 45 50	
	cat acc att gte act gta tta ctg ctc atg tea ttg cac tgg ttc atc	245
25	His Thr Ile Val Thr Val Leu Leu Met Ser Leu His Trp Phe Ile	
20	55 60 65 70	
	tte ett ete aac tta eet gtt gee act tgg aat ata tat ega tac att	293
	Phe Leu Leu Asn Leu Pro Val Ala Thr Trp Asn Ile Tyr Arg Tyr Ile	
	75 80 85	
30	atg gtg ccg agt ggt aac atg gga gtg ttt gat cca aca gaa ata cac	341
,,	Met Val Pro Ser Gly Asn Met Gly Val Phe Asp Pro Thr Glu Ile His 90 95 100	
	aat cga ggg cag ctg aag tca cac atg aaa gaa gcc atg atc aag ctt	389

	Asn Arg Gly Gln Leu Lys Ser His Met Lys Glu Ala Met Ile Lys Leu	
	. 105 110 115	
	ggt tte cae ttg etc tge tte tte atg tat ett tat agt atg ate tta	437
	Gly Phe His Leu Leu Cys Phe Phe Met Tyr Leu Tyr Ser Met Ile Leu	
5	120 125 130	
	get ttg ata aat gac tgaagetgga gaageegtgg ttgaagteag cetacact	490
	Ala Leu Ile Asn Asp	
	135	
	acagtgcaca gttgaggagc cagagacttc ttaaatcatc cttagaaccg tgaccatagc	550
10	agtatatatt ttcctcttgg aacaaaaaac tatttttgct gtatttttac catataaagt	610
	atttaaaaaa catg	624
	<210> 26	
	<211> 139	
15	<212> PRT	
	<213> Homo sapiens	
	<400> 26	
00	Met Glu Ala Val Val Phe	
20	1 5	
	Val Phe Ser Leu Leu Asp Cys Cys Ala Leu Ile Phe Leu Ser Val Tyr	
	10 15 20	
	Phe Ile Ile Thr Leu Ser Asp Leu Glu Cys Asp Tyr Ile Asn Ala Arg	
25	25 30 35	
20	Ser Cys Cys Ser Lys Leu Asn Lys Trp Val Ile Pro Glu Leu Ile Gly	
	40 45 50	
	His Thr Ile Val Thr Val Leu Leu Met Ser Leu His Trp Phe Ile	
	55 60 65 70	
20	Phe Leu Leu Asn Leu Pro Val Ala Thr Trp Asn Ile Tyr Arg Tyr Ile	
30	75 80 85	
	Met Val Pro Ser Gly Asn Met Gly Val Phe Asp Pro Thr Glu Ile His	
	90 95 100	

	Asn Arg Gly Gln Leu Lys Ser His Met Lys Glu Ala Met Ile Lys Leu	
	105 110 115	
	Gly Phe His Leu Leu Cys Phe Phe Met Tyr Leu Tyr Ser Met Ile Leu	
	120 125 130	
5	Ala Leu Ile Asn Asp	
	135	
	<210> 27	
	<211> 1121	
10	<212> DNA	
	<213> Homo sapiens	
	<400> 24	
	gacagagggg aacaag atg gcg gcg ccg aag ggg agc ctc tgg gtg agg acc	52
15	Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr	
	1 5 10	
	caa ctg ggg cte ccg ccg ctg ctg ctg acc atg gcc ttg gcc gga	100
	Gln Leu Gly Leu Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly	
	15 20 25	
20	ggt teg ggg ace get teg get gaa gea ttt gae teg gte ttg ggt gat	148
	Gly Ser Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp	
	30 35 40	
	acg geg tet tge cae egg gee tgt cag ttg acc tac ecc ttg cac acc	196
	Thr Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr	
25	45 50 55 60	
	tac cet aag gaa gag gag ttg tac gea tgt cag aga ggt tgc agg etg	244
	Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg Leu	
	65 70 75	
	ttt tea att tgt eag ttt gtg gat gat gga att gae tta aat ega act	292
30	Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn Arg Thr	
	80 85 90	
	aaa ttg gaa tgt gaa tet gea tgt aca gaa gea tat tee caa tet gat	340

	Lys	Le	ı Glu	ı Cys	Gl:	ı Ser	: Ala	a Cys	Thi	Glu	ı Ala	а Тул	: Sei	r Gli	n Sei	Asp	
			95	;				100)				105	5			
	gag	g caa	a tat	gct	. tg	cat	ctt	: ggt	tgo	Cag	, aat	cag	g cto	g cca	tto	gct	388
	Glu	Glr	ı Tyr	Ala	су:	His	Leu	Gly	Cys	Glr	a Asr	Glr	Let	ı Pro	Phe	Ala	
5		110)				115	,				120)				
	gaa	cto	g aga	caa	gaa	a caa	ctt	atg	tec	ctg	atg	r cca	aaa	atg	cac	cta	436
	Glu	Leu	Arg	Gln	Glu	ı Gln	Leu	Met	Ser	Leu	Met	Pro	Lys	Met	His	Leu	
	125					130					135	i				140	
	ctc	ttt	cct	cta	act	ctg	gtg	agg	tca	tto	tgg	agt	gac	atg	atg	gac	484
10	Leu	Phe	Pro	Leu	Thr	Leu	Val	Arg	Ser	Phe	Trp	Ser	Asp	Met	Met	Asp	
					145	i				150					155		
	tee	gca	cag	agc	tto	ata	acc	tct	tca	tgg	act	ttt	tat	ctt	caa	gee	532
	Ser	Ala	Gln	Ser	Phe	Ile	Thr	Ser	Ser	Trp	Thr	Phe	Tyr	Leu	Gln	Ala	
				160					165					170			
15						gtt											580
	Asp	Asp	Gly	Lys	Ile	Val	Ile	Phe	Gln	Ser	Lys	Pro	Glu	Ile	Gln	Tyr	
			175					180					185				
						cag											628
22	Ala			Leu	Glu	Gln	Glu	Pro	Thr	Asn	Leu	Arg	Glu	Ser	Ser	Leu	
20		190					195		•			200					
						ctg											676
		Lys	Met	Ser	Tyr	Leu	Gln	Met	Arg	Asn	Ser	Gln	Ala	His	Arg	Asn	
	205					210					215					220	
0.5						gaa											724
25	Phe	Leu	Glu	Asp	Gly	Glu	Ser	Asp	Gly	Phe	Leu	Arg	Cys	Leu	Ser	Leu	
					225					230					235		
						tta									_	-	772
	Asn	Ser	Gly	Trp	Ile	Leu	Thr	Thr	Thr	Leu	Val	Leu	Ser	Val	Met	Val	
22				240					245					250			-
30						tgt											820
	Leu	Leu	Trp	Ile	Cys	Сув	Ala	Thr	Val	Ala	Thr	Ala	Val	Glu	Gln	Tyr	
			255					260					265				

	gtt eee tet gag aag etg agt ate tat ggt gae ttg gag ttt atg aat	868
	Val Pro Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn	
	270 275 280	
	gaa caa aag cta aac aga tat cca gct tct tct ctt gtg gtt gtt aga	916
5	Glu Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Val Arg	
	285 290 295 300	
	tet aaa act gaa gat cat gaa gaa gca ggg eet eta eet aca aaa gtg	964
	Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys Val	
	305 310 315	
10	aat ett get eat tet gaa att taageatttt tettttaaaa gacaa	1010
	Asn Leu Ala His Ser Glu Ile	
	320	
	gtgtaataga catctaaaat teeacteete atagagettt taaaatggtt teattggata	1070
	taggeettaa gaaateaeta taaaatgeaa ataaagttae teaaatetgt g	1121
15		
	<210> 28	
	<211> 323	
	<212> PRT	
	<213> Homo sapiens	
20		
	<400> 28	
	Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr	
	1 5 10	
	Gln Leu Gly Leu Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly	
25	15 20 25	
	Gly Ser Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp	
	30 35 40	
	Thr Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr	
	45 50 55 60	
30	Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg Leu	
	65 70 75	
	Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn Arg Thr	

				80					85					90		
	Lya	Leu	Glu	Суз	Glu	Ser	Ala	Сув	Thr	Glu	Ala	Tyr	Ser	Gln	Ser	Asp
			95					100					105			
	Glu	Gln	Tyr	Ala	Суз	His	Leu	Gly	Суз	Gln	Asn	Gln	Leu	Pro	Phe	Ala
5		110					115					120				
	Glu	Leu	Arg	Gln	Glu	Gln	Leu	Met	Ser	Leu	Met	Pro	Lys	Met	His	Leu
	125					130					135					140
	Leu	Phe	Pro	Leu	Thr	Leu	Val	Arg	Ser	Phe	Trp	Ser	Asp	Met	Met	Asp
					145					150					155	
10	Ser	Ala	Gln	Ser	Phe	Ile	Thr	Ser	Ser	Trp	Thr	Phe	Tyr	Leu	Gln	Ala
				160					165					170		
	Asp	qeA	Gly	Lys	Ile	Val	Ile	Phe	Gln	Ser	Lys	Pro	Glu	Ile	Gln	Tyr
			175					180					185			
	Ala		His	Leu	Glu	Gln		Pro	Thr	Asn	Leu	Arg	Glu	Ser	Ser	Leu
15		190					195					200				
		Lys	Met	Ser	Tyr		Gln	Met	Arg	Asn	Ser	Gln	Ala	His	Arg	Asn
	205	_				210	_	_			215					220
	Phe	Leu	GIU	Asp		Glu	Ser	Asp	Gly	Phe	Leu	Arg	Сув	Leu		Leu
20	>	C - 14	01		225	τ	m 1	50%		230		_	_		235	
20	ASII	Ser	GIÀ		116	Leu	Thr	Thr		Leu	Val	Leu	Ser		Met	Val
	Lon	Ton	П	240	C***	٠	N 7	mb	245	31	m\		3	250	-3	_
	Deu	Leu	255	110	Сув	cys	ALG	260	vaı	Ala	TUL	ALa		GIU	GIN	Tyr
	Val	Pro		Glu	T.vs	Ten	Ser		ጥህን	Gly	N a ro	LON	265	Dho	Wat-	N an
25		270		O_Lu			275	110	-7-	GLY	nap	280	GIU	PIIG	Mec	ASII
	Glu		Lvs	Leu	Asn	Ara		Pro	Ala	Ser	Ser		Val	Val	Val	Δ <i>r</i> α
	285		- _			290	-1-				295		V44.	vai	vai	300
		Lys	Thr	Glu	Asp		Glu	Glu	Ala	Gly		Leu	Pro	Thr	Lvs	
		-			305					310	- 				315	
30	Asn	Leu	Ala			Glu	Ile								~ ~	
				320												

	<21	0> 2	9 .														
	<21	1> 8	27														
	<21	2> D	NA														
5	<21	3> н	omo	sapi	ens												
	<40	0> 2	9														
	aac	agcg	gcc	ctgc	ggct	gg c	gegg	cgga	c gg	g at	g ag	g cg	c tg	c ag	t ct	c tge	5
										Me	t Ar	g Ar	д Су	s Se	r Le	u Cys	
10											1				5		
	gct	ttc	gac	gcc	gcc	cgg	ggg	ccc	agg	cgg	ctg	atg	cgt	gtg	ggc	ctc	102
	Ala	Phe	Asp	Ala	Ala	Arg	Gly	Pro	Arg	Arg	Leu	Met	Arg	Val	Gly	Leu	
			10					15					20				
	geg	ctg	atc	ttg	gtg	ggc	cac	gtg	aac	ctg	ctg	ctg	999	gcc	gtg	ctg	150
15	Ala	Leu	Ile	Leu	Val	Gly	His	Val	Asn	Leu	Leu	Leu	Gly	Ala	Val	Leu	
		25					30					35					
	cat	ggc	acc	gtc	ctg	cgg	cac	gtg	gcc	aat	ccc	cgc	ggc	gct	gtc	acg	198
	His	Gly	Thr	Val	Leu	Arg	His	Val	Ala	Asn	Pro	Arg	Gly	Ala	Val	Thr	
	40					45					50					55	
20	ccg	gag	tac	acc	gta	gcc	aat	gtc	atc	tct	gtc	ggc	tcg	ggg	ctg	ctg	246
	Pro	Glu	Tyr	Thr	Val	Ala	Asn	Val	Ile	Ser	Val	Gly	Ser	Gly	Leu	Leu	
					60					65					70		
	agc	gtt	tcc	gtg	gga	ctt	gtg	gcc	ctc	ctg	gcg	tcc	agg	aac	ctt	ctt	294
	Ser	Val	Ser	Val	Gly	Leu	Val	Ala	Leu	Leu	Ala	Ser	Arg	Asn	Leu	Leu	
25				75					80					85			
	cgc	cct	cca	ctg	cac	tgg	gtc	ctg	ctg	gca	cta	gct	ctg	gtg	aac	ctg	342
	Arg	Pro	Pro	Leu	His	Trp	Val	Leu	Leu	Ala	Leu	Ala	Leu	Val	Asn	Leu	
			90					95					100				
	ctc	ttg	tee	gtt	gcc	tgc	tcc	ctg	ggc	ctc	ctt	ctt	gct	gtg	tca	ctc	390
30	Leu	Leu	Ser	Val	Ala	Суз	Ser	Leu	Gly	Leu	Leu	Leu	Ala	Val	Ser	Leu	
		105					110					115					
	act	gtg	gee	aac	ggt	ggc	cqc	cgc	ctt	att	act	gac	tac	cac	cca	gga	438

	Thr	. Va	l A	la	Asn	Gly	Gly	Arg	Arg	Leu	Ile	Ala	Asp	Сув	His	Pro	Gly	
	120)					125					130					135	
	cto	ct	g ga	at	cct	ctg	gta	cca	ctg	gat	gag	999	ccg	gga	cat	act	gac	486
	Leu	Le	u As	зp	Pro	Leu	Val	Pro	Leu	Asp	Glu	Gly	Pro	Gly	His	Thr	Asp	
5						140	•				145					150	_	
	tgo	cc	e tt	t	gac	ccc	aca	aga	atc	tat	gat	aca	gcc	ttg	gct	ctc	tgg	534
	Сув	Pro	o Ph	10	Asp	Pro	Thr	Arg	Ile	Tyr	Asp	Thr	Ala	Leu	Ala	Leu	Trp	
					155					160					165			
	ato	cct	t to	:t	ttg	ctc	atg	tct	gca	ggg	gag	gct	gct	cta	tct	ggt	tac	582
10	Ile	Pro	Se	r	Leu	Leu	Met	Ser	Ala	Gly	Glu	Ala	Ala	Leu	Ser	Gly	Tyr	
			17	0					175					180				
	tgc	tgt	gt	g	gct	gca	ctc	act	cta	cgt	gga	gtt	9 99	ccc	tgc	agg	aag	630
	Суз	Cys	va	1	Ala	Ala	Leu	Thr	Leu	Arg	Gly	Val	Gly	Pro	Суз	Arg	Lys	
•		185	j					190					195					
15	gac	gga	ı ct	t	cag	ggg	cag	gta	gta	gct	ggg	tgt	gac	gca	aga	gtg	aaa	678
	Asp	Gly	Le	u	Gln	Gly	Gln	Val	Val	Ala	Gly	Суз	Asp	Ala	Arg	Val	Lys	
	200						205					210					215	•
	cag	aaa	ge	C	tgg	cag	cca	cgg	ttt	cct	ggg	att	aaa	gtc	aaa	gca	tta	726
	Gln	Lys	Al	a	Trp	Gln	Pro	Arg	Phe	Pro	Gly	Ile	Lys	Val	Lys	Ala	Leu	
20						220					225					230		
	tga	a ta	itgg	ca	cta	aagt	gact	ga g	ctac	caga	ic ca	atga	tect	gta	aggo	agc		780
	Cac	agaa	cta	a	aaaa	caac	a at	tatt	atta	aac	tgct	ctg	gatt	ctc				827
	<21	0> 3	0															
25	<21	1> 2	31															
	<212	2> P	RT															
	<21	3> H	omo	S	apie	ns												
	<400)> 3	0															
30											Met .	Arg	Arg	Cys	Ser	Leu	Сув	
											_				_			

Ala Phe Asp Ala Ala Arg Gly Pro Arg Arg Leu Met Arg Val Gly Leu

			10					15					20)		
	Ala	Leu	Ile	Leu	Val	Gly	His	Val	Asn	Leu	Leu	Leu	Gly	Ala	Val	Leu
		25					30					35				
	His	Gly	Thr	Val	Leu	Arg	His	Val	Ala	Asn	Pro	Arg	Gly	Ala	Val	Thr
5	40)				45					50					55
	Pro	Glu	Tyr	Thr	Val	Ala	Asn	Val	Ile	Ser	Val	Gly	Ser	Gly	Leu	Leu
					60					65					70	
	Ser	Val	Ser		Gly	Leu	Val	Ala	Leu	Leu	Ala	Ser	Arg	Asn	Leu	Leu
10	_			75					80					85		
10	Arg	Pro		Leu	His	Trp	Val		Leu	Ala	Leu	Ala		Val	Asn	Leu
	T	T	90	••- 7	••-		_	95					100			
	Leu	Leu 105	ser	Val	ALA	Сув		Leu	GTÀ	Leu	Leu		Ala	Val	Ser	Leu
	ጥኮሎ		A l'a	Nan	Clu	Cl.	110	7 mar	T	7 1.		115	_	•	_	
15	120	Val	ALG	ASII	GIY	125	ALG	ALG	reu	116	130	Asp	Суз	HIS	Pro	_
		Leu	asa	Pro	Leu		Pro	Leu	Asp	Glu		Dro	Gl ₁₇	บ่อ		135
			F		140					145	СТУ	710	GLY	nis	150	ASP
	Cys	Pro	Phe	Asp		Thr	Arg	Ile	Tyr		Thr	Ala	Leu	Ala		TTD.
				155					160	•				165		
20	Ile	Pro	Ser	Leu	Leu	Met	Ser	Ala	Gly	Glu	Ala	Ala	Leu	Ser	Gly	Tyr
			170					175					180		_	_
	Сув	Суз	Val	Ala	Ala	Leu	Thr	Leu	Arg	Gly	Val	Gly	Pro	Сув	Arg	Lys
		185					190					195				
	Asp	Gly	Leu	Gln	Gly	Gln	Val	Val	Ala	Gly	Суз	Asp	Ala	Arg	Val	Lys
25	200					205					210					215
	Gln	Lys	Ala	Trp	Gln	Pro	Arg	Phe	Pro	Gly	Ile	Lys	Val	Lys	Ala	Leu
					220					225					230	
	<210)> 31	L													
30		l> 11														
	<212	> DN	IA.													
	<213) HC	mo e	anie	me											

	<400> 31	
	gtegeeteee ggteeeggee eggetaetge getgegeeea eteegetetg gageetggge	60
	gegggteetg acetteeegg eceteteetg acacetggtg gatggegtea ecagaactee	120
5	tagetgtgga accetagggt acctgttace gegetttgge gaaactgggt tegetgetga	180
	tttgegaace tttgeetgae ttteteagge ettgagagat etaagtaaat ttggtggeee	240
	attgaaagga cetggagaga gegtatgaag atetgeetet tetecaagaa aeteaaceae	300
	tagtgaca atg acc agc ctc ctg act act cct tct cca aga gaa gaa ctg	350
	Met Thr Ser Leu Leu Thr Thr Pro Ser Pro Arg Glu Glu Leu	
10	1 5 10	
	atg acc acc cca att tta cag ccc act gag gcc ctg tcc cca gaa gat	398
	Met Thr Thr Pro Ile Leu Gln Pro Thr Glu Ala Leu Ser Pro Glu Asp	
	15 20 25 30	
	gga gee age aca gea ete att gea gtt gtt ate ace gtt gte tte ete	446
15	Gly Ala Ser Thr Ala Leu Ile Ala Val Val Ile Thr Val Val Phe Leu	
	35 40 45	
	ace ctg ctc teg gtc gtg atc ttg atc ttc ttt tac ctg tac aag aac	494
	Thr Leu Leu Ser Val Val Ile Leu Ile Phe Phe Tyr Leu Tyr Lys Asn	
00	50 55 60	
20	aaa ggc agc tac gtc acc tat gaa cct aca gaa ggt gag ccc agt gcc	542
	Lys Gly Ser Tyr Val Thr Tyr Glu Pro Thr Glu Gly Glu Pro Ser Ala	
	65 70 75	
	ate gte cag atg gag agt gae ttg gee aag gge age gag aaa gag gaa	590
25	Ile Val Gln Met Glu Ser Asp Leu Ala Lys Gly Ser Glu Lys Glu Glu	
20	80 85 90	
	tat ttc atc taatgactcc caggccccaa ggagcttatt cctggctcca t	640
	Tyr Phe Ile 95	
30	egetaacacg ttgactgett attatgggaa agttttetet gaagecaggg agaagcattg	700
	attgatgtgg gcaaatccaa gctccagcca ggtcgcagtc ccaaatgccg acatcactga	760
	ctccagggac cagggacatg gagaaagctg tttatgatat ctttaaccag gccctcttac	820
		441

	gtgcccagtc atctttttc acaggttgaa gggagagaaa agattttgag ttaaggtcat
	tggctgctct actctgtccc ctacctggtc acctagtgat agecccagtg gagatactgt
	ccatacaagg totteecaga ggetggatac cacagtaaaa ggecaggeca ggaggggtag
	gagactatgg agatettace teetgataaa tgtgetacae eeeetaatet gageeettee
5	tttccgtgtt ccccaacaac ctcatgctta cgtgattttt attcaaatta aaaattttca
	ttgctacag
	<210> 32
	<211> 97
10	<212> PRT
	<213> Homo sapiens
	<400> 32
	Met Thr Ser Leu Leu Thr Thr Pro Ser Pro Arg Glu Glu Leu
15	1 5 10
	Met Thr Thr Pro Ile Leu Gln Pro Thr Glu Ala Leu Ser Pro Glu Asp
	15 20 25 30
	Gly Ala Ser Thr Ala Leu Ile Ala Val Val Ile Thr Val Val Phe Leu
	35 40 45
20	Thr Leu Leu Ser Val Val Ile Leu Ile Phe Phe Tyr Leu Tyr Lys Asn
	50 55 60
	Lys Gly Ser Tyr Val Thr Tyr Glu Pro Thr Glu Gly Glu Pro Ser Ala
	65 70 75
25	Ile Val Gln Met Glu Ser Asp Leu Ala Lys Gly Ser Glu Lys Glu Glu
20	80 85 90
	Tyr Phe Ile
	95
	<210> 33
30	<210> 33 <211> 1500
00	
	<212> DNA
	<213> Homo sapiens

	<40	0> 3	13															
	ctg	rtgcc	tga	geet	gago	ect g	ageo	tgag	jc ct	gago	eccge	geo	ggge	agee	ggto	egeggg	g	61
	gct	eegg	gct	gtgg	gaco	gc t	gggc	cccc	a go	g at	g go	g ac	e et	g to	gg gg	ja ggc		114
5										Me	t Al	a Th	r Le	eu Ti	.p G	ly Gly		
											1				5			
	ctt	ctt	egg	ctt	ggc	tcc	ttg	ctc	age	ctg	tcg	tgo	cto	geg	ctt	tee		162
																Ser		
			10					15					20					
10	gtg	ctg	ctg	ctg	gcg	cag	ctg	tca	gac	gcc	gcc	aag	aat	tto	gag	gat		210
																Asp		
		25					30					35				-		
	gtc	aga	tgt	aaa	tgt	atc	tgc	cct	ccc	tat	aaa	gaa	aat	tet	ggg	cat		258
																His		
15	40					45					50				-	55		
	att	tat	aat	aag	aac	ata	tct	cag	aaa	gat	tgt	gat	tgc	ctt	cat	gtt		306
			Asn													_		
					60					65		-			70			
	gtg	gag	ccc	atg	cct	gtg	cgg	9 99	cct	gat	gta	gaa	gca	tac	tqt	cta		354
20																Leu		
				75					80					- 85	-			
	cgc	tgt	gaa	tgc	aaa	tat	gaa	gaa	aga	agc	tet	gtc	aca	atc	aaq	qtt		402
			Glu													-		
			90					95					100		•			
25	acc	att	ata	att	tat	ctc	tcc	att	ttg	gge	ctt	cta	ctt	ctq	tac	ato		450
			Ile													-		
		105					110			-		115						
	gta	tat	ctt	act	ctg	gtt	gag	ccc	ata	cta	aag		cac	ctc	ttt	ggs		498
			Leu															
30	120	_				125					130	3	7			135		
		gca	cag	tta	ata		agt	gat	gat:	gat		מממ	net	Cac	027			:15
			Gln														2	546
		~	~	_~~				ىإسم	vaħ	ush	TTG	стА	Asp	uïs	GTD	PIO		

	140 145	150	
•••	ttt gea aat gea eac gat gtg eta gee ege	tee ege agt ega gee aac	594
	Phe Ala Asn Ala His Asp Val Leu Ala Arg	Ser Arg Ser Arg Ala Asn	
	155 160	165	
5	gtg ctg aac aag gta gaa tat gca cag cag	cgc tgg aag ctt caa gtc	642
	Val Leu Asn Lys Val Glu Tyr Ala Gln Gln	Arg Trp Lys Leu Gln Val	
	170 175	180	
	caa gag cag cga aag tot gto ttt gac cgg	cat gtt gtc ctc agc	687
	Gln Glu Gln Arg Lys Ser Val Phe Asp Arg	His Val Val Leu Ser	
10	185 190	195	
	taattgggaa ttgaattcaa ggtgactaga aagaaac	agg cagacaactg gaa	740
	agaactgact gggttttgct gggtttcatt ttaatac	ett gttgatttca ccaactgttg	800
	ctggaagatt caaaactgga agcaaaaact tgcttga	ttt ttttttcttg ttaacgtaat	860
	aatagagaca tttttaaaag cacacagctc aaagtca	gcc aataagtett ttectatttg	920
15	tgacttttac taataaaaat aaatctgcct gtaaatt	atc ttgaagtcct ttacctggaa	980
	caagcactct ctttttcacc acatagtttt aacttgad	ett teaagataat ttteagggtt	1040
	tttgttgttg ttgtttttg tttgtttgtt ttggtgg	gag aggggaggga tgcctgggaa	1100
	gtggttaaca actttttca agtcacttta ctaaacaa	aac ttttgtaaat agaccttacc	1160
	ttetatttte gagttteatt tatattttge agtgtage	cca gcctcatcaa agagctgact	1220
20	tactcatttg acttttgcac tgactgtatt atctggg	tat ctgctgtgtc tgcacttcat	1280
	ggtaaacggg atctaaaatg cctggtggct tttcacaa	aaa agcagatttt cttcatgtac	1340
	tgtgatgtet gatgeaatge atectagaac aaactgg	cca tttgctagtt tactctaaag	1400
	actaaacata gtcttggtgt gtgtggtctt actcatet	ttc tagtaccttt aaggacaaat	1460
	cctaaggact tggacacttg caataaagaa attttatt	ttt	1500
25			
	<210> 34		
	<211> 198		
	<212> prt		
	<213> Homo sapiens		
30			

<400> 34

										Met	Ala	Thr	Lev	Tr	Gly	Gly
										1				5		
	Leu	Leu	Arg	Leu	Gly	Ser	Leu	Leu	Ser	Leu	Ser	Суз	Leu	Ala	Leu	Sea
			10					15					20			
5	Val	Leu	Leu	Leu	Ala	Gln	Leu	Ser	Asp	Ala	Ala	Lys	Asn	Phe	Glu	Asp
		25					30					35				
	Val	Arg	Суз	Lys	Сув	Ile	Сув	Pro	Pro	Tyr	Lys	Glu	Asn	Ser	Gly	His
	40					45					50					55
	Ile	Tyr	Asn	Lys	Asn	Ile	Ser	Gln	Lys	Asp	Сув	qaA	Cys	Leu	His	Val
10					60					65					70	
	Val	Glu	Pro	Met	Pro	Val	Arg	Gly	Pro	A sp	Val	Glu	Ala	Tyr	Суз	Leu
				75					80					85		
	Arg	Cys		Сув	Lys	Tyr	Glu	Glu	Arg	Ser	Ser	Val	Thr	Ile	Lys	Val
4.0			90					95					100			
15	Thr	Ile	Ile	Ile	Tyr	Leu	Ser	Ile	Leu	Gly	Leu	Leu	Leu	Leu	Tyr	Met
	_	105					110					115				
		Tyr	Leu	Thr	Leu		Glu	Pro	Ile	Leu	Lys	Arg	Arg	Leu	Phe	Gly
	120					125					130					135
90	Hls	Ala	Gln	Leu		Gln	Ser	qeA	Asp	qzA	Ile	Gly	Asp	His	Gln	Pro
20	_,		_	_	140					145					150	
	Phe	Ala	Asn		His	Asp	Val	Leu	Ala	Arg	Ser	Arg	Ser	Arg	Ala	Asn
	**-1	•	_	155			_		160					165		
	vaı	Leu		гля	Val	GIU	тут		Gln	Gln	Arg	Trp	Lys	Leu	Gln	Val
25	61 -	G3	170	•		_		175					180			
20	GIII	Glu	GIN	Arg	гĀв	ser		Phe	Asp	Arg	His		Val	Leu	Ser	
		185					190					195				
	-21 0)> 35														
30		> 80 - 80														
UU		> DN		··												
	~213	> Ha	mo s	apıe	ns											

	<400>	35														
	gttegt	ctag	attt	gte	ggc t	tgcc	1 9998	ag ac	ttc	aggag	j teg	jctg	tctc	tga	actteca	60
	gcctca	gaga	ccgc	egge	ect t	gtco	ccg	ag gg	jee a	atg g	ge c	egg (gte t	ca (gg ctt	115
									M	et (ly A	urg '	Val S	er (Sly Leu	l.
5										1				5		
	gtg cc	e tet	cgc	tto	ctg	acg	cto	ctg	geg	cat	ctg	gte	ggto	gto	atc	163
	Val Pro	o Ser	Arg	Phe	Leu	Thr	Lev	Leu	Ala	His	Leu	Va]	l Val	. Val	. Ile	
		10					15	i				20)			
	acc tta	a tto	tgg	tec	: cgg	gac	ago	aac	ata	cag	gcc	tgo	ctg	cct	ctc	211
10	Thr Let	ı Phe	Trp	Ser	Arg	Asp	Ser	Asn	Ile	Gln	Ala	Сув	Leu	Pro	Leu	
	25	5				30					35					
	acg tto															259
	Thr Phe	Thr	Pro	Glu	Glu	Tyr	Asp	Lys	Gln	Asp	Ile	Glr	Leu	Val	Ala	
	40				45					50					55	
15	geg etc															307
	Ala Leu	Ser	Val	Thr	Leu	Gly	Leu	Phe	Ala	Val	Glu	Leu	Ala	Gly	Phe	
				60					65					70		
	ctc tca															355
	Leu Ser	Gly	Val	Ser	Met	Phe	Asn	Ser	Thr	Gln	Ser	Leu	Ile	Ser	Ile	
20			75					80					85			
	ggg gct															403
	Gly Ala	His	Суз	Ser	Ala	Ser	Val	Ala	Leu	Ser	Phe	Phe	Ile	Phe	Glu	
		90					95					100				
^=	cgt tgg															451
25	Arg Trp		Суз	Thr	Thr	Tyr	Trp	Tyr	Ile	Phe	Val	Phe	Сув	Ser	Ala	
	105					110					115					
	ctt cca															499
	Leu Pro	Ala	Val	Thr	Glu	Met	Ala	Leu	Phe	Val	Thr	Val	Phe	Gly	Leu	
	120				125					130					135	
30	aaa aag	aaa	ccc	ttc	tgat	tacc	tt c	atga	cggg	a ac	ctaa	ggad	gaa	gec		550
	Lys Lys	Lys	Pro	Phe												

	tacag	1999	gca	aggg	ccgc	tt c	gtat	tcct	g ga	agaa	ggaa	ggc	atag	gct	tegg	ttttc	:c	610
	cctcc	ggaa	aac	tgct	tctg	ct g	gagg	atat	g tg	ttgg	aata	att	acgt	ctt	gagt	ctggg	ja	670
	ttato	cego	cat	tgta	ttta	gt g	cttt	gtaa	t aa	aata	tgtt	ttg	tagt	aac	atta	agact	it.	730
	atata	caç	jtt '	ttag	ggga	ca a	ttga	gatg	g ct	gaac	tact	gaa	taaa	aaa	aaaa	caacg	ic	790
5	tgttt	tct	ag	tect	gc													806
	<210>	• 36	5															
	<211>	• 14	10			•												
	<212>	PR	T															
10	<213>	Ho		sapi	ens													
	<400>	36	i															
										Met	Gly	Arg	Val	Ser	Gly	Leu		
										1				5				
15	Val P	ro	Ser	Arg	Phe	Leu	Thr	Leu	Leu	Ala	His	Leu	Val	Val	Val	Ile		
			10					15					20				-	
	Thr L	eu	Phe	Trp	Ser	Arg	Asp	Ser	Asn	Ile	Gln	Ala	Суз	Leu	Pro	Leu		
		25					30					35						
	Thr P	he	Thr	Pro	Glu	Glu	Tyr	Asp	ГÀа	Gln	qeA	Ile	Gln	Leu	Val	Ala		
20	40					45					50					55		
	Ala L	eu	Ser	Val		Leu	Gly	Leu	Phe	Ala	Val	Glu	Leu	Ala	Gly	Phe		
					60					65					70			
	Leu S	er	Gly	Val	Ser	Met	Phe	Asn	Ser	Thr	Gln	Ser	Leu	Ile	Ser	Ile		
				75					80					85				
25	Gly A	la		Сув	Ser	Ala	Ser	Val	Ala	Leu	Ser	Phe	Phe	Ile	Phe	Glu		
			90					95					100					
	Arg T		Glu	Сув	Thr	Thr		Trp	Tyr	Ile	Phe	Val	Phe	Сув	Ser	Ala		
		05					110					115						
	Leu P	ro.	Ala	Val	Thr		Met	Ala	Leu	Phe	Val	Thr	Val	Phe	Gly	Leu		
30	120					125					130					135		
	Lys L	ys :	ГÀз	Pro														
					140													

	<210> 3	7													
	<211> 1	718													
	<212> D	NA													
5	<213> He	omo sa	piens												
	<400> 3	7													
	ttgtcct								_			_	_		50
		1	Met Ası	n Arg	Thi	r Ası	n Vai	l Ası	ı Va	l Ph	e Se	r Gl	u Le	u Ser	
10			1				5	٠			1				
	gat cat								_				-		98
	Ala Pro	Arg A	rg Asn	Glu	qeA	Phe	Val	Leu	Leu	Leu	Thr	Tyr	Val	Leu	
	15				20					25					
_	ttc ttg												_		146
15	Phe Leu	Met A	la Leu	Thr	Phe	Leu	Met	Ser	Ser	Phe	Thr	Phe	Суз	Gly	
	30			35					40					45	
	tcc ttc														194
	Ser Phe	Thr G		Lys	Arg	His	Gly		His	Ile	Tyr	Leu		Met	
20			50					55					60		
20	ctc ctc														242
	Leu Leu			Ile	Trp	Val		Trp	Ile	Thr	Leu		Met	Leu	
			65				70					75			
	cct gac										_				290
25	Pro Asp		ab wrd	Arg	цр	_	Asp	Thr	Ile	Leu		Ser	Ala	Leu	
4 U	aat aan	80				85					90				220
	get gee					_	_	_		-	-				338
	Ala Ala 95	ASN G.	ry rrp	Val	100	ren	Leu	ATA	туг		ser	Pro	GIU	Pne	
		ata s	~~ ~~							105					206
30	tgg ctg													_	386
.0	Trp Leu 110	bed T	irr rÅa		arg	ASN	LLO	Jem	_	JĀĻ	LLO	val	GIU	-	
		.		115	<u></u> _			:	120					125	44 -
	get tte	cgc a	aa CCT	caa	CLC	gcg	aag	aag	agc	tat	ggt	gtg	gag	aac	434

	Ala Phe Cys Lys Pro Gln Leu Val Lys Lys Ser Tyr Gly Val Glu Asn	
	130 135 140	
	aga gee tae tet caa gag gaa ate aet caa ggt ttt gaa gag aca ggg	482
	Arg Ala Tyr Ser Gln Glu Glu Ile Thr Gln Gly Phe Glu Glu Thr Gly	
5	145 150 155	
	gac acg ctc tat gcc ccc tat tcc aca cat ttt cag ctg cag aac cag	530
	Asp Thr Leu Tyr Ala Pro Tyr Ser Thr His Phe Gln Leu Gln Asn Gln	
	160 165 170	
	ect ece caa aag gaa tte tee ate eea egg gee eae get tgg eeg age	578
10	Pro Pro Gln Lys Glu Phe Ser Ile Pro Arg Ala His Ala Trp Pro Ser	
	175 180 185	
	cet tae aaa gae tat gaa gta aag aaa gag gge age taactetgte etgaag	630
	Pro Tyr Lys Asp Tyr Glu Val Lys Lys Glu Gly Ser	
	190 195 200	
15	agtgggacaa atgcagccgg gcggcagatc tagcgggagc tcaaagggat gtgggcgaaa	690
	tettgagtet tetgagaaaa etgtacaaga cactaeggga acagtttgee teeeteecag	750
	cctcaaccac aattotteea tgctgggget gatgtggget agtaagactc cagttottag	810
	aggegetgta gtatttttt tttttttgte teateettag gataettett ttaagtggga	870
90	gteteaggea acteaagttt agaceettae tetttttgtt tgttttttga aacaggatet	930
20	tgetetgtea eeeaggettg agtgeagtgg tgegateaea geeeagtgea geetegaeea	990
	cctgtgctca agcaatcctc ccatctccat ctcccaaagt gctgggatga caggcgtgag	1050
	ccacagetee cageetagge cettaatett getgttattt teeatggaet aaaggtetgg	1110
	teatetgage teaegetgge teaeacaget etaggggeet geteetetaa eteaeagtgg	1170
25	gttttgtgag getetgtgge eeagageaga eetgeatate tgageaaaaa tageaaaage	1230
20	ctctctcage ccactggect gaatctacac tggaagecaa ettgetggea eeeeegetee	1290
	ccaaccette ttgeetgggt aggagagget aaagateace etaaatttac teatetetet	1350
	agtgetgeet cacactggge etcagcaget ecccagcace aattcacagg teaccectet	1410
	cttcttgcac tgtccccaaa cttgctgtca attccgagat ctaatctccc cctacgctct	1470
30	gccaggaatt ctttcagacc tcactagcac aagcccggtt gctccttgtc aggagaattt	1530
30	gtacatcatt ctcacttcaa attcctgggg ctgatacttc tctcatcttg caccccaacc	1590
	tetgtaaata gatttaeege atttaegget geattetgta agtgggeatg gteteetaat	1650
	ggaggagtgt teattgtata ataagttatt cacetgagta tgcaataaag atgtggtgge	1710

	cactettt				1718	i
	<210> 38					
	<211> 201					
5	<212> PRT					
	<213> Homo	sapiens				
	<400> 38	,				
		Met Asn Arg	g Thr Asn Val	l Asn Val Phe S	Ser Glu Leu Ser	
10		1	5		10	
	Ala Pro Arg	Arg Asn Glu	Asp Phe Val	Leu Leu Leu 1	Thr Tyr Val Leu	
	15		20	25		
	Phe Leu Met			Ser Ser Phe 1	Thr Phe Cys Gly	
	30	35		40	45	
15	Ser Phe Thr		Arg His Gly	/ Ala His Ile 1	Tyr Leu Thr Met	
		50		55	60	
	Leu Leu Ser				eu Leu Met Leu	
	_	65	7(75	
90	_	_		Thr Ile Leu S	Ser Ser Ala Leu	
20	80		85		90	
		Gly Trp var		-	Ser Pro Glu Phe	
	95 Yan Yan	When I was Cla	100	105	Val alu a	
	_	115 Lys G11			Pro Val Glu Asp	
25	110		•	120	125 Sly Val Glu Asn	
20	And the Cys	130	i bed vai by:	135	140	
	Arm Ala Tur		ı Glu Tle Thi		Slu Glu Thr Gly	
	my mu 1/1	145	150		155	
	Asp Thr Leu				eu Gln Asn Gln	
30	160		165		170	
					Ala Trp Pro Ser	
	175	<u>.</u>	180	185		

	Pro Tyr Lys A	ısp Tyr Glu Val Ly	ya Lya Glu Gly Ser	
	190	195	200	
	<210> 39			
5	<211> 995			
	<212> DINA			
	<213> Homo sa	piens		
	<400> 39			
10	agagetgget ge	geegagee eeetgege	ege tgeacatggg geg	eetgaeg gaageggegg 60
	cagegggeag eg	getetegg getgeagg	get gggeagggte eec	teccaeg etectgeege 120
	tgtctcccac gt	ecccagg tgegegge	ca cc atg gcg tcc	age gae gag gae 173
			Met Ala Ser	Ser Asp Glu Asp
			1	5
15	ggc acc aac g	ge gge gee teg ga	ng gee gge gag gae	egg gag get ece 221
	Gly Thr Asn G	ly Gly Ala Ser Gl	u Ala Gly Glu Asp	Arg Glu Ala Pro
	10	1	.5	20
	ggc aag cgg a	gg cgc ctg ggg tt	e ttg gee acc gee	tgg ctc acc ttc 269
	Gly Lys Arg A	rg Arg Leu Gly Ph	e Leu Ala Thr Ala	Trp Leu Thr Phe
20	25	30	35	
	tac gac atc g	cc atg acc gcg gg	g tgg ttg gtt cta	gct att gcc atg 317
	Tyr Asp Ile A	la Met Thr Ala Gl	y Trp Leu Val Leu	Ala Ile Ala Met
	40	45	50	55
	gta cgt ttt ta	at atg gaa aaa gg	a aca cac aga ggt	tta tat aaa agt 365
25	Val Arg Phe T	yr Met Glu Lys Gl	y Thr His Arg Gly	Leu Tyr Lys Ser
		60	65	70
	att cag aag a	ca ctt aaa ttt tt	c cag aca ttt gcc	ttg ctt gag ata 413
,	Ile Gln Lys T	hr Leu Lys Phe Ph	e Gln Thr Phe Ala	Leu Leu Glu Ile
	•	75	80	85
30	gtt cac tgt t	ta att gga att gt	a cct act tct gtg	att gtg act ggg 461
	Val His Cys L	eu Ile Gly Ile Va	l Pro Thr Ser Val	Ile Val Thr Gly
	90	9	5	100

	gtc	caa	gtg	agt	tca	aga	atc	ttt	atg	gtg	tgg	ctc	att	act	cac	agt	509
	Val	Gln	Val	Ser	Ser	Arg	Ile	Phe	Met	Val	Trp	Leu	Ile	Thr	His	Ser	
		105					110					115					
	ata	aaa	cca	atc	cag	aat	gaa	gag	agt	gtg	gtg	ctt	ttt	ctg	gtc	gcg	557
5	Ile	Lys	Pro	Ile	Gln	Asn	Glu	Glu	Ser	Val	Val	Leu	Phe	Leu	Val	Ala	
	120					125					130					135	
	tgg	act	gtg	aca	gag	atc	act	cgc	tat	tee	ttc	tac	aca	ttc	age	ctt	605
	Trp	Thr	Val	Thr	Glu	Ile	Thr	Arg	Tyr	Ser	Phe	Tyr	Thr	Phe	Ser	Leu	
					140					145					150		
10	ctt	gac	Cac	ttg	cca	tac	ttc	att	aaa	tgg	gee	aga	tat	aat	ttt	ttt	653
	Leu	Asp	His	Leu	Pro	Tyr	Phe	Ile	Lys	Trp	Ala	Arg	Tyr	Asn	Phe	Phe	
				155					160					165			
	atc	atc	tta	tat	cct	gtt	gga	gtt	gct	ggt	gaa	ctt	ctt	aca	ata	tac	701
	Ile	Ile	Leu	Tyr	Pro	Val	Gly	Val	Ala	Gly	Glu	Leu	Leu	Thr	Ile	Tyr	
15			170					175					180				•
	gct	gcc	ttg	ccg	cat	gtg	aag	aaa	aca	gga	atg	ttt	tca	ata	aga	ctt	749
	Ala	Ala	Leu	Pro	His	Val	Lys	Lys	Thr	Gly	Met	Phe	Ser	Ile	Arg	Leu	
		185					190					195					•
			aaa														797
20	Pro	Asn	Lys	Tyr	Asn	Val	Ser	Phe	qeA	Tyr	Tyr	Tyr	Phe	Leu	Leu	Ile	
	200					205					210					215	
	acc	atg	gca	tca	tat	ata	cct	ttg	ttt	cca	caa	ctc	tat	ttt	cat	atg	845
	Thr	Met	Ala	Ser	Tyr	Ile	Pro	Leu	Phe	Pro	Gln	Leu	Tyr	Phe	His	Met	
					220					225					230		
25			caa														893
	Leu	Arg	Gln	Arg	Arg	Lys	Val	Leu	His	Gly	Glu	Val	Ile	Val	Glu	ГÀа	
				235					240					245			
	gat	gat	taaa	atgai	ct o	etgea	aaca	aa gg	rtgct	tttt	CCE	agaat	aac	caag	gatta	acc t	950
	qeA	Asp															
30																	
	gagt	tecas	agt t	tta	ataac	a ac	gaata	aaca	a act	ttgt	gaa	atat	c				995

	<21	.0> 4	10													
	<21	1> 2	49													
	<21	2> F	RT													
	<21	.3> E		sapi	ens											
5																•
	<40	0> 4	0													
										Met	Ala	Ser	Ser	Asp	Glu	Asp
										1				5		_
	Gly	Thr	Asn	Gly	Gly	Ala	Ser	Glu	Ala	Gly	Glu	Asp	Arg	Glu	Ala	Pro
10			10					15					20			
	Gly	Lys	Arg	Arg	Arg	Leu	Gly	Phe	Leu	Ala	Thr	Ala	Trp	Leu	Thr	Phe
		25					30					35				
	Тут	Asp	Ile	Ala	Met	Thr	Ala	Gly	Trp	Leu	Val	Leu	Ala	Ile	Ala	Met
	40					45					50					55
15	Val	Arg	Phe	Tyr	Met	Glu	Lys	Gly	Thr	His	Arg	Gly	Leu	Tyr	Lys	Ser
					60					65					70	
	Ile	Gln	Lys	Thr	Leu	Lys	Phe	Phe	Gln	Thr	Phe	Ala	Leu	Leu	Glu	Ile
				75					80					85		
	Val	His	Суз	Leu	Ile	Gly	Ile	Val	Pro	Thr	Ser	Val	Ile	Val	Thr	Gly
20			90					95					100			
	Val	Gln	Val	Ser	Ser	Arg	Ile	Phe	Met	Val	Trp	Leu	Ile	Thr	His	Ser
		105					110					115				
	Ile	ГÄЗ	Pro	Ile	Gln	Asn	Glu	Glu	Ser	Val	Val	Leu	Phe	Leu	Val	Ala
	120					125					130					135
25	Trp	Thr	Val	Thr	Glu	Ile	Thr	Arg	Tyr	Ser	Phe	Tyr	Thr	Phe	Ser	Leu
					140					145					150	
	Leu	Asp	His	Leu	Pro	Tyr	Phe	Ile	Lys	Trp	Ala	Arg	Tyr	Asn	Phe	Phe
				155					160					165		
	Ile	Ile	Leu	Tyr	Pro	Val	Gly	Val	Ala	Gly	Glu	Leu	Leu	Thr	Ile	Tyr
30			170					175					180			
	Ala	Ala	Leu	Pro	His	Val	Lys	Lys	Thr	Gly	Met	Phe	Ser	Ile	Arg	Leu
		185					190					195				

WO 00/00506 PCT/JP99/03242

45/45

Pro Asn Lys Tyr Asn Val Ser Phe Asp Tyr Tyr Tyr Phe Leu Leu Ile
200 205 205 210 210 215

Thr Met Ala Ser Tyr Ile Pro Leu Phe Pro Gln Leu Tyr Phe His Met
220 220 230 230

Leu Arg Gln Arg Arg Lys Val Leu His Gly Glu Val Ile Val Glu Lys
235 240 245

Asp Asp