[14장] 유투브 설계

가상 면접 사례로 배우는 대규모 시스템 설계 기초

이민석 / unchaptered

요구사항 파악 및 정리

파악

- 비디오 업로드 및 시청 가능
- 모바일 앱(iOS, Android), 웹 브라우저, 스마트 TV 지원
- 일간 능동 사용자(DAU)는 5,000,000명(5백만명)
- 사용자별 평균 이용 시간은 30분/명
- 다국어 지원 필요함
- 현존하는 비디오 종류와 해상도를 모두 지원할 것
- 비디오 파일의 크기는 최대 1GB로 지원 (비디오 길이가 너무 길지 않게끔)
- 클라우드 서비스(AWS, GCP 등)활용 가능함

정리

- 비디오 업로드 빨라야 함
- 비디오 재생에 제한이 없어야 함
- 재생 품질은 다양하게 선택이 가능해야 함 (SD, HD, FHD 등)
- 현실적인 비용 모델, 고가용성, 고확장성 아키텍쳐 요구

개략적 규모 추정

- 1. 일간 능동 사용자(DAU)는 5,000,000명(천만명)
- 2. 사용자 별 평균 영상 시청수 5개/명
- 3. 사용자 별 평균 영상 업로드 수 0.1개/명 (10%의 사용자가 동영상 1회 업로드)
- 4. 비디오의 평균 크기는 300MB
- 5. 비디오 저장을 위한 일별 저장 용량은 150TB = 5,000,000명(천만명) * 10% * 300MB
- 6. CDN 일당 비용 150,000\$ = 5,000,000명(천만명) * 5개/명 * 0.3GB * 0.02\$?

비디오 업로드 프로세스

2단계 | 초기 설계 | 개랴적인 설계안 제시 및 동의 구하기

비디오 스트리밍 프로세스

- 다양한 스트리밍 프로토콜(HLS, Chunked HLS, WebRTC)
- CDN에서 바로 스트리밍

비디오 트랜스코딩 프로세스

다양한 디바이스와 호환되는 비트레이트와 포맷(H264, H265 etc on)으로 저장

상당수의 단말과 브라우저는 특정 종류의 비디오 포맷(Android 및 Windows에서는 H265 미지원)

사용자에게 고화질 비디오 재생을 보장하려면, 비디오를 여러 포맷으로 인코딩하는 것이 바람직

네트워크 대역폭에 따라서 적응형 비르테이트(SD, HD, FHD 등)를 제공해주는 기술 도입

유형 비순환 그래프(DAG) 모델

작업을 단계별로 배열하여 작업들이 순차적 또는 병렬적으로 실행되도록 함

원본 비디오는 비디오, 오디오, 메타데이터로 나누어 처리 됨

비디오 부분에서 적용되는 작업

- 검사:좋은 품질의 비디오인지, 손상이 없는 지 확인하는 작업
- 비디오 인코딩 : 비디오를 다양한 해상도, 코덱, 비트레이트 조합으로 인코딩 함
- 썸네일: 사용자가 업로드한 이미지나 비디오에서 자동추출
- 워터마크 : 비디오에 대한 식별정보를 이미지 위에 오버레이 형태로 표시

비디오 트랜스코딩 아키텍처

시스템 최적화

- 속도 최적화
 - GOP 단위로 업로드 (멀티파트 폼)
 - 엣지 로케ㅣㅇ션 기반의 업로드
 - 병렬적으로 진행되는 워크로드

- 안정성 최적화
 - PreSigend URL

- 비용 최적화
 - CDN을 통한 캐싱
 - 인기도 넢은 비디오 특별 관리 등

3단계 | 상세 설계

마무리

- API 계층의 규모 확장성 확보 방안으로는 수평적 규모 확장
- 데이터 계층의 규모 확작성 확보 방안 : 데이터 다중화/샤딩
- 라이브 스트리밍
 - 스트리밍 프로토콜(HLS, ChunkedHLS, RTMP/S, WebRTC 등의 프로토콜 결정이 중요)
 - 스티리밍의 오류 처리 방식이 다른 방식이어야함
- 비디오 삭제 : 저작권 위반, 선정성, 불법 관련 비디오는 삭제가 필요

감사합니다.