

NASIONALE SENIOR SERTIFIKAAT-EKSAMEN NOVEMBER 2017

MEGANIESE TEGNOLOGIE

NASIENRIGLYNE

Tyd: 3 uur 200 punte

Hierdie nasienriglyne word voorberei vir gebruik deur eksaminatore en hulpeksaminatore. Daar word van alle nasieners vereis om 'n standaardiseringsvergadering by te woon om te verseker dat die nasienriglyne konsekwent vertolk en toegepas word tydens die nasien van kandidate se skrifte.

Die IEB sal geen gesprek aanknoop of korrespondensie voer oor enige nasienriglyne nie. Daar word toegegee dat verskillende menings rondom sake van beklemtoning of detail in sodanige riglyne mag voorkom. Dit is ook voor die hand liggend dat, sonder die voordeel van bywoning van 'n standaardiseringsvergadering, daar verskillende interpretasies mag wees oor die toepassing van die nasienriglyne.

VRAAG 1 MEERVOUDIGEKEUSE-VRAE

1.1 C

1.2 B

1.3 B

1.4 D

1.5 D

1.6 C

1.7 D

1.8 A

1.9 A

1.10 D

1.11 D

1.12 C

1.13 A

1.14 D

1.15 A

1.16 A

1.17 B

1.18 C

1.19 A

1.20 B

VRAAG 2 VEILIGHEID

2.1 Persoonlike Veiligheid Puntsweismasjien

- Dra beskermende klere.
- Dra 'n skermbril.
- Dra handskoene.

2.2 Veiligheid – Trektoetseer

- Area rondom toetser moet afgekamp wees.
- Slegs een persoon in afgekampte area met toets.
- Wyserplaatmeter moet behoorlik gemonteer wees.
- Voorkant van meter moet aan onderkant van toetser raak.
- Skerm moet oor monster wat getoets word wees.
- Vir staal en duralumin moet handwiel slegs halwe draai op 'n slag gedraai word.
- Vir plastiek is een vyfde draai voldoende vir eerste drie draaie.

2.3 Veiligheid – Klepveerligter

- Neus van veerligter moet stewig oor klepkraag pas.
- Spesifikasies moet bepaal word voordat veerligter gebruik word.
- Moet nie die veer meer saamdruk as wat in die spesifikasies voorgeskryf is nie.

2.4 Veiligheid – Laer- en rattrekker

- Maak seker dat die trekker die regte een is vir die taak.
- Moet nie die trekker met 'n hamer slaan nie.
- Gebruik die korrekte moersleutel om die klamp vas te trek en om die voorwerp mee af te trek.
- Maak seker die trekker word gebruik teen 90° met die werkstuk.
- Bene moet nie geslyt wees nie.
- Sorg dat die klemme nie losglip en beserings veroorsaak nie.
- Gebruik 'n skerm om beserings te voorkom.
- Moenie direk agter die trekker staan nie kan besering veroorsaak.

VRAAG 3 GEREEDSKAP EN TOERUSTING

3.1 Toetse

- 3.1.1 Die **funksie** van die **oliedruktoetser** is om die oliedruk in 'n enjin te toets. **Rede:** Om te bepaal of dit volgens spesifikasie is.
- 3.1.2 Die **funksie** van die **hardheidstoetser** is om hardheid van metale te toets.

Rede: Dit gee aanduiding van metaal se trekvastheid.

3.1.3 Die funksie van die wringtoetser is om die verband tussen momentum en wringing wat op materiaal toegepas word te toets. Rede: Om die invloed van materiaallengte en wringdefleksie te ondersoek.

3.2 Skroefdraadmikrometerlesing

Lesing = 2.00 mm + <u>0.12 mm</u> 2.12 mm

3.3 Moontlike probleme wat gediagnoseer kan word:

- Lekkende suierringe
- Lekkende kleppe
- Lekkende silinderkop pakking
- Gekraakte enjinblok
- Gekraakte silinderkop

3.4 Multimetertoetse:

- Spanning
- Weerstand
- Kontinuïteitsmeting
- Stroom
- Transistors te toets

VRAAG 4 MATERIALE

4.1 Yster-koolstof-ewewigsdiagram

4.2 Voordeel van nitrering op krukasoppervlak:

- Baie harde oppervlak word verkry.
- Dit laat 'n mate van kompressiespanning in die oppervlak wat metaaluitputting in 'n mate teenwerk.

4.3 Masjienering van nokke op nokas:

Verhoog maksimum slytvastigheid van nokke.

VRAAG 5 TERMINOLOGIE

5.1 **Berekening – neusspy**

5.1.1 Wydte van spy =
$$\frac{Diameter\ van\ as}{4}$$

$$= \frac{70}{4}$$

$$= 17,5 \text{ mm}$$

5.1.2 Dikte van spy =
$$\frac{Diameter \, van \, as}{6}$$
$$= \frac{70}{6}$$
$$= 11.67 \, mm$$

5.1.3 Lengte van spy = 1,5
$$\times$$
 diameter
= 1,5 \times 70
= 105 mm

5.2 Freessnyer vir reguittandrat:

Involentsnyer

5.3 Nadele skroefdraadsny – dwarssleemetode:

- Die beitelpunt, wat die swakste deel van die beitel is, doen die meeste snywerk.
- Omdat beide kante van die beitel die snywerk doen, krul die snysels in mekaar. Dit kan veroorsaak dat die skroefdraad skeur.
- 'n Groot las kan die snybeitel/snykante beskadig.
- Stadige metode.

5.4 **Indeksering:**

Indeksering =
$$\frac{40}{n}$$

= $\frac{40}{76}$
= $\frac{10}{19} \times \frac{3}{3}$
= $\frac{30}{57}$

Geen volle draaie nie en 30 gate in 'n 57-gat-plaat

5.5 Voordele van Opfreeswerk

- Vinnige toevoer kan gebruik word.
- Vibrasie is minder.
- Minder spanning op die snyer en draspil.

- Daar is 'n positiewe druk op die toevoeras en moere omdat die rigting van die snyer teen die rigting van die toevoer is.
- Metale met harde skalie, begin die sny onder die skalie waar die metaal sagter is. Dit verleng die lewe van die snyer.
- · Meer akkuraat tydens snywerk.
- · Beter afwerking.

5.6 Waarvoor die koppelfreeswerkmetode gebruik word

Om die koppe van vierkant en seskant boute te frees.

5.7 Freesmasjienopstelling vir spygleuf

- Plaas 'n freessnybeitel met verspringende tande op die draspil.
- Draai die werkstuk op die kloukop van die verdeelkop vas.
- Indien werkstuk reghoekig is, beweeg tafel om werk in verlangde posisie te kry.
- Hou punt van staalliniaal teen die kant van die snybeitel.
- Beweeg slee om snybeitel op regte afstand van kant van werk op te stel.
- Gebruik stukkie sneespapier om kontakpunt te merk as voeler tussen werkstuk en snybeitel.
- Lig kniestuk van freesmasjien totdat snybeitel sneespapier wegskeur.
- Stel die wyserplaat met skaalverdeling op nul ten opsigte van indekslyn.
- Beweeg die werkstuk terug vanaf die snybeitelpunt.

5.8 Funksie van draadsnymikrometer

• Om steekmiddellyn van 'n skroefdraad te meet.

5.9 Styging van 'n skroefdraad is

- afstand wat 'n moer op die skroefdraad vorentoe beweeg.
- al met die skroefdraad langs.
- wanneer dit deur een volledige omwenteling gedraai word.

VRAAG 6 HEGTINGSMETODES

6.1 **Skermgas**

- Dit vorm die boogplasma, stabiliseer die boog op die metaal wat gesweis word en beskerm die boog en gesmelte plas.
- Voorkoming van atmosferiese kontaminasie.
- Voorkom oormatige spatsels.

6.2 Verhouding tussen spanning en draadtoevoer

Hoër spanning veroorsaak 'n hoër smelt-tempo daarom benodig jy 'n hoër toevoertempo.

6.3 Poreusheid in 'n MIG-sweislas

- Atmosferiese besmetting
- Oppervlak besmetting
- Geroeste MIG-sweisdraad
- Sterk trek (bv. Buitesweis)
- Gasvloei te hoog
- Verkeerde sweistegniek

6.4 6.41 Poreusheid

- Gebruik korrekte stroom verstelling.
- Hou 'n langer boog.
- Gebruik korrekte sweisstawe.
- Kyk vir onsuiwerhede oppervlak.
- Afskerming van die sweisproses.
- Korrekte sweistegniek.

6.4.2 Samesmeltingsgebrek

- Gebruik die korrekte sweistegniek.
- Gebruik die korrekte grootte sweisstaaf.
- Gebruik die korrekte stroomstelling.
- Berei die plaatlas (V-gaping) korrek voor.

6.5 **Destruktiewe toetse**

6.5.1 Vrybuigtoets

- Meet die rekbaarheid van die sweisneersmeltsel of die hitte geaffekteerde sone langs die sweislas. OF
- Om die persentasie verlenging van die sweismetaal te bepaal.

6.5.2 Kerfbreektoets

 Dit bepaal die interne gehalte van die sweismetaal OF kan interne defekte aandui.

6.6 Voordeel van ultrasoniese toetsing teenoor soortgelyke toetse

- Stelsel is vinnig.
- · Resultate feitlik onmiddellik beskikbaar.
- Geen bykomende materiaal nodig nie.
- Proefstuk word nie beskadig nie.

6.7 Vereistes vir 'n aanvaarbare sweislas

- Profielvorm profiel moet heeltemal glad met aanliggende oppervlak saamsmelt.
- Oppervlak eenvormigheid hele lengte van die sweislas se oppervlak moet eenvormig wees.
- Oorvleueling Daar mag geen oorvleueling by die voete van die sweislas wees nie.
- Insnyding daar mag geen insnyding by sweislasse voorkom nie.
- Deurdringingskraal by stuiksweislasse wat net van een kant af kom en sonder 'n steunstaaf vervaardig is, mag 'n effense deurdringingskraal hê.
- Wortelgroef by stuiksweislasse wat net van een kant af kom sonder 'n steunstaaf kan 'n wortelgroef hê.
- Kraakvry die sweismetaal, verhitte gebied en omringende moedermetaal moet geen krake toon nie.
- Oppervlakdefekte geen oppervlakdefekte moet sigbaar wees nie.

6.8 Sender/ontvanger-eenheid

- 'n Eenheid wat gebruik word om die klankgolf te stuur en dan as 'n ontvanger na die ultrasoniese golf te luister soos die metaal dit terugkaats. OF
- · Om defekte uit te wys.

VRAAG 7 KRAGTE

7.1 7.1.1 Som van vertikale en horisontale komponente

Krag	Horisontale Komponente	Vertikale Komponente
160N	X = 160 Cos 0° = 160N	Y = 160 Sin 0° = 0N
75N	X = 75 Cos 150° = -64,951N	Y = 75 Sin 150° = 37,5N
200N	X = 200 Cos 225° = -141,421N	Y = 200 Sin 225° = -141,421N
90N	X = 90 Cos 240° = - 45N	Y = 90 Sin 240° = -77,942N
	-91,372N	-181,863N

7.1.2 Resultante krag

 $R^2 = X^2 + Y^2$

 $R^2 = 91,372^2 + 181,863^2$

 $R^2 = 41422,99315$

 $R = \sqrt{41422,99315}$

R = 203,53N

7.1.3 Rigting van resultante krag

$$\operatorname{Tan} \emptyset = \frac{\operatorname{Som} Y}{\operatorname{Som} X}$$

$$Tan \varnothing = \frac{181,863}{91,372}$$

Tan
$$\emptyset = 1,99$$

$$Hoek = 63,32^{\circ}$$

7.2 Grootte van krag

Spanning = Pa Diameter = m Krag = N

Spanning=
$$\frac{krag}{area}$$

$$= 5200000 \times \frac{\pi \times 0.035^2}{4}$$

$$=5.2\times10^6\times9.621127502\,x10^{-4}$$

$$=5002,99 N$$

$$= 5 kN$$

7.3 Spanning en Vormverandering

E = Breekspanning / Breekpunt

7.4 Reaksies

Neem momente om A

$$A \times 7,5 = (600 \times 4) + (225 \times 6,25) + (400 \times 8,5)$$

$$A = \frac{7206,25}{7,5}$$

$$A = 960,833N$$

Neem momente om B

$$(225 \times 1,25) + (600 \times 3,5) = (B \times 7,5) + (400 \times 1)$$

$$281,25 + 2100 = 7,5B + 400$$

$$B = \frac{1981,25}{7,5}$$

$$B = 264,166N$$

VRAAG 8 INSTANDHOUDING

8.1 Voorkomende instandhouding

Voorkomende instandhouding is die sistematiese inspeksie, opsporing en regstelling van stelsels voordat dit onklaar raak.

8.2 Gesaghebbende liggaam in olieklassifikasie

Amerikaanse Petroleum Instituut. (API)

8.3 Vloeipunt

Vloeipunt is die laagste temperatuur waarteen vloeistof vloeibaar bly.

8.4 Snyvloeistofmengsel

• Snyvloeistof bestaan uit oplosbare olie en water.

8.5 Instandhouding van bandaandrywingstelsels

• Bande is geneig om na 'n ruk se gebruik te rek, daarom moet hulle van tyd tot tyd stywer gespan en vir korrekte opstelling nagegaan word.

of

• Om maksimum drywing/wringkrag sonder enige glip oor te dra.

8.6 Rede vir masjinering van vliegwiel

 Die koppelaarplaat druk teen die vliegwiel. As gevolg van wrywing tussen die koppelaar en die vliegwiel word groewe in die vliegwiel veroorsaak. Die groewe / krake sal dan moet verwyder word deur 'n presisiemasjineringsproses voor die nuwe koppelaarplaat gemonteer word.

of

 Om maksimum koeffisiënt van wrywing tussen oppervlakte tussen koppelaarplaat en vliegwiel te verseker.

of

• Om slytasie op 'n nuwe koppelaarplaat te verminder.

8.7 Hipoïede ratte smering

• Dis moeilik om hipoïede ratte te smeer, want hulle skuif eerder op mekaar as wat hulle rol, die aksie vryf die smeermiddel dus af.

VRAAG 9 STELSELS EN BEHEER

9.1 Rataandrywing

9.1.1 Aantal tande van tussenrat

$$N_{A} \times T_{A} = N_{B} \times T_{B}$$

$$T_{B} = \frac{N_{A} \times T_{A}}{N_{B}}$$

$$= \frac{600 \times 40}{800}$$

$$= 30 \text{ tande}$$

9.1.2 Rotasiefrekwensie van die uitsetas

$$N_{B} \times T_{B} = N_{C} \times T_{C}$$
 $N_{C} = \frac{N_{B} \times T_{B}}{T_{C}}$
 $N_{C} = \frac{800 \times 30}{60}$
 $= 400 \text{ r/min}$
 $N_{A} \times T_{A} = N_{C} \times T_{C}$
 $N_{C} = \frac{N_{A} \times T_{A}}{T_{C}}$
 $N_{C} = \frac{600 \times 40}{60}$
 $= 400 \text{ r/min}$

9.2 Katrolaandrywings

9.2.1 Diameter van die gedrewe katrol

$$N_1 \times D_1 = N_2 \times D_2$$

$$D_2 = \frac{N_1 \times D_1}{N_2}$$

$$= \frac{8,2 \times 700}{14}$$

$$= 410 \text{ mm}$$

9.2.2 Drywing oorgedra:

$$P = (T_1 - T_2) \pi Dn$$

$$P = (400 - 160) \pi \times 0.7 \times 8.2$$

$$= 4327.86 \text{ Watts}$$

$$= 4.32 \text{ kW}$$

$$T_1 = 2.5$$

$$T_2 = \frac{400}{2.5}$$

$$= 160 \text{ N}$$

OF

$$P = (T_1 - T_2) \pi dn$$

$$P = (400 - 160) \pi \times 0,41 \times 14$$

$$= 4327,82 \text{ Watts}$$

$$= 4,32 \text{ kW}$$

$$T_2 = \frac{400}{2,5}$$

$$= 160 \text{ N}$$

9.3 Hidroulika

9.3.1 Druk in die stelsel

Area A

$$A = \frac{\Pi D^2}{4}$$

$$A = 0.7853981 \times (0.06^2)$$

$$A = 2.8274 \times 10^{-3} \text{ m}^2$$

$$P = \frac{F}{A}$$

$$P = \frac{600}{2,8274 \times 10^{-3}}$$

9.3.2 Afstand X wat suier B beweeg Area B

$$A = \frac{\Pi D^2}{4}$$

$$A = 0.7853981 \times (0.2^2)$$

Afstand van A × Area van A = Afstand × X × Area van B

$$X = \frac{0,065 \times 0,0028274}{0,031415926}$$

$$X = 5,84999 \times 10^{-3}$$

$$X = 5,84 \text{ mm}$$

Afstand
$$X = 5,84 \text{ mm}$$

9.4 Lugsakke

Dit kan gesien word as 'n passiewe veiligheidstoestel omdat die drywer en passasiers nie die lugsakke hoef te aktiveer, of enigiets te doen om deur die lugsakke beskerm te word nie.

VRAAG 10 TURBINES

10.1 Reaksieturbine

- Francis
- Kaplan
- Tyson
- Gorlov

10.2 Vryloopspoed

Vryloopspoed verwys na 'n turbine se draaispoed teen volle vloei sonder enige lading.

10.3 Beheer van spoed van stoomturbine

Om te voorkom dat die turbinerotor 'n oorspoedklink tot gevolg het, en aanhou versnel en uitmekaar breek.

10.4 Voordele van gasturbine

- Gladde werking as gevolg van minder bewegende dele.
- Geen bewegende dele soos 'n suier wat interne wrywing en slytasie veroorsaak.
- Maklike aansit.
- Gebruik 'n wye reeks brandstowwe.
- Geen waterverkoelingsisteem benodig nie.
- Nie-giftige uitlaatgasse gee min probleme met besoedeling.
- Benodig min roetine instandhouding.
- Baie hoë krag-teenoor-gewig-verhouding in vergelyking met suierenjin.
- Beweeg slegs in een rigting met baie minder vibrasie as 'n suierenjin.
- Lae werksdruk.
- Hoë werkspoed.
- Lae smeeroliekoste en -verbruik.

10.5 Turboaanjaerseksies

- Turbineseksie
- Kompressorseksie

(Enige 2×1)

10.6 **Volumetriese rendament**

Die vermoë om die silinder met lug te vul. (Enige 2 x 1)

10.7 Hoë hoogte bo seevlak

- Teen hoë hoogte is minder suurstof beskikbaar vir verbranding.
- Daar vind dan kragverlies plaas.

10.8 Voordele van sentrifugale aanjaer teenoor die dubbelskroefaanjaer

- Sentrifugale aanjaers is klein/kompak.
- Sentrifugale aanjaers is liggewig.
- Word voor aan die enjin gemonteer in plaas van bo-op.
- Dubbelskroefaanjaers word bo-op die enjin gemonteer wat spasie nodig het.
- Rotors van die dubbelskroefaanjaer benodig baie akkurate en presisie vervaardiging.

(Enige 3 x 1)

10.9 **Doel van die rekuperator**

'n Rekuperator is 'n hitte-uitruiler wat uitlaathitte voor verbranding na die saamgeperste lug oordra.

Totaal: 200 punte