Fun with Menger's Game AU DMS 1st-Year Graduate Student Seminar

Steven Clontz http://stevenclontz.com

Department of Mathematics and Statistics
Auburn University

April 15, 2015

The Menger game

Game

Let $Men_{C,F}(X)$ denote the $Menger\ game\ with\ players\ \mathscr{C},\ \mathscr{F}.$

Then \mathscr{F} wins if her sets union to the space.

Who wins the Menger game for the following spaces?

- ullet The reals ${\mathbb R}$
- The rationals Q
- The irrationals $\mathbb{R} \setminus \mathbb{Q}$

Who wins the Menger game for the following spaces?

- ullet The reals ${\mathbb R}$
- The rationals Q
- ullet The irrationals $\mathbb{R}\setminus\mathbb{Q}$

Who wins the Menger game for the following spaces?

- ullet The reals ${\mathbb R}$
- The rationals Q
- ullet The irrationals $\mathbb{R}\setminus\mathbb{Q}$

It's no coincidence that we didn't need to know the covers chosen by $\mathscr C$ when constructing winning strategies for $\mathscr F$.

Theorem (C)

Let X be regular. X is σ -compact if and only if $\mathscr{F} \uparrow Men_{C,F}(X)$.

It's no coincidence that we didn't need to know the covers chosen by $\mathscr C$ when constructing winning strategies for $\mathscr F$.

Theorem (C)

Let X be regular. X is σ -compact if and only if

$$\mathscr{F} \uparrow_{pre} Men_{C,F}(X).$$

If
$$X = \bigcup_{n < \omega} X_n$$
, then $\tau(n) = X_n$ is a winning predetermined strategy.

Suppose X is not σ -compact. Let $\tau(n)$ be a predetermined strategy. Note $\tau(n)$ must be finitely coverable by every open cover of the *entire* space X. So let \mathcal{U} be an open cover of just $\tau(n)$. By regularity, let $V(x,U)\subseteq \overline{V(x,U)}\subseteq U$ for each open set U and point $x\in X$.

Let $\mathcal{V} = \{X \setminus \tau(n)\} \cup \{V(x,U) : x \in \tau(n) \cap U, U \in \mathcal{U}\}$, an open cover of the entire space. Choose a finite subcover, including $V(x_i, U_i)$ for some $x_i \in \tau(n)$ and $U_i \in \mathcal{U}$ for i < n. Note $\{V(x_i, U_i) : i < n\}$ must be a cover of $\tau(n)$, so $\{\overline{V(x_i, U_i)} : i < n\}$ is a cover of $\overline{\tau(n)}$ (by finiteness). So there is a finite subcover $\{U_i : i < n\}$ for $\overline{\tau(n)}$, showing $\overline{\tau(n)}$ is compact.

If $X = \bigcup_{n < \omega} X_n$, then $\tau(n) = X_n$ is a winning predetermined strategy.

Suppose X is not σ -compact. Let $\tau(n)$ be a predetermined strategy. Note $\tau(n)$ must be finitely coverable by every open cover of the *entire* space X. So let \mathcal{U} be an open cover of just $\tau(n)$. By regularity, let $V(x,U)\subseteq \overline{V(x,U)}\subseteq U$ for each open set U and point $x\in X$.

Let $\mathcal{V} = \{X \setminus \tau(n)\} \cup \{V(x,U) : x \in \tau(n) \cap U, U \in \mathcal{U}\}$, an open cover of the entire space. Choose a finite subcover, including $V(x_i,U_i)$ for some $x_i \in \tau(n)$ and $\underline{U_i} \in \mathcal{U}$ for i < n. Note $\{V(x_i,\underline{U_i}) : i < n\}$ must be a cover of $\tau(n)$, so $\{\overline{V(x_i,U_i)} : i < n\}$ is a cover of $\overline{\tau(n)}$ (by finiteness). So there is a finite subcover $\{U_i : i < n\}$ for $\overline{\tau(n)}$, showing $\overline{\tau(n)}$ is compact.

If $X = \bigcup_{n < \omega} X_n$, then $\tau(n) = X_n$ is a winning predetermined strategy.

Suppose X is not σ -compact. Let $\tau(n)$ be a predetermined strategy. Note $\tau(n)$ must be finitely coverable by every open cover of the *entire* space X. So let \mathcal{U} be an open cover of just $\tau(n)$. By regularity, let $V(x,U)\subseteq \overline{V(x,U)}\subseteq U$ for each open set U and point $x\in X$.

Let $\mathcal{V} = \{X \setminus \tau(n)\} \cup \{V(x,U) : x \in \tau(n) \cap U, U \in \mathcal{U}\}$, an open cover of the entire space. Choose a finite subcover, including $V(x_i,U_i)$ for some $x_i \in \tau(n)$ and $U_i \in \mathcal{U}$ for i < n. Note $\{V(x_i,U_i) : i < n\}$ must be a cover of $\tau(n)$, so $\{\overline{V(x_i,U_i)} : i < n\}$ is a cover of $\overline{\tau(n)}$ (by finiteness). So there is a finite subcover $\{U_i : i < n\}$ for $\overline{\tau(n)}$, showing $\overline{\tau(n)}$ is compact.

If $X = \bigcup_{n < \omega} X_n$, then $\tau(n) = X_n$ is a winning predetermined strategy.

Suppose X is not σ -compact. Let $\tau(n)$ be a predetermined strategy. Note $\tau(n)$ must be finitely coverable by every open cover of the *entire* space X. So let \mathcal{U} be an open cover of just $\tau(n)$. By regularity, let $V(x,U)\subseteq \overline{V(x,U)}\subseteq U$ for each open set U and point $x\in X$.

Let $\mathcal{V} = \{X \setminus \tau(n)\} \cup \{V(x,U) : x \in \tau(n) \cap U, U \in \mathcal{U}\}$, an open cover of the entire space. Choose a finite subcover, including $V(x_i,U_i)$ for some $x_i \in \tau(n)$ and $U_i \in \mathcal{U}$ for i < n. Note $\{V(x_i,U_i) : i < n\}$ must be a cover of $\tau(n)$, so $\{\overline{V(x_i,U_i)} : i < n\}$ is a cover of $\overline{\tau(n)}$ (by finiteness). So there is a finite subcover $\{U_i : i < n\}$ for $\overline{\tau(n)}$, showing $\overline{\tau(n)}$ is compact.

Another fun fact:

Theorem (C)

For second countable spaces X, $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if

 $\mathscr{F} \underset{pre}{\uparrow} Men_{C,F}(X).$

Assume τ is a winning strategy for \mathscr{F} .

Since there are only countably many unions of finite collections of basic open sets in a secound countable space, let $\{C_n, n < \omega\}$ enumerate them all. It's okay to assume τ always yields some C_n .

Suppose the open covers \mathcal{U}_s are defined for $t \leq s \in \omega^{<\omega}$. Then since there are only countably many C_n to equal $\tau(\mathcal{U}_{\langle s(0)\rangle}, \dots, \mathcal{U}_s, \mathcal{U})$, enumerate $\mathcal{U}_{s \cap \langle n \rangle}$ to cover those cases.

$$\tau(n) = \bigcap_{\mathcal{U} \in \sigma} \tau(\mathcal{U}_{\langle f(n)(0)\rangle}, \dots, \mathcal{U}_{f(n)}, \mathcal{U})$$

Assume τ is a winning strategy for \mathscr{F} .

Since there are only countably many unions of finite collections of basic open sets in a secound countable space, let $\{C_n, n < \omega\}$ enumerate them all. It's okay to assume τ always yields some C_n .

Suppose the open covers \mathcal{U}_s are defined for $t \leq s \in \omega^{<\omega}$. Then since there are only countably many C_n to equal $\tau(\mathcal{U}_{\langle s(0)\rangle}, \dots, \mathcal{U}_s, \mathcal{U})$, enumerate $\mathcal{U}_{s \cap \langle n \rangle}$ to cover those cases.

$$\tau(n) = \bigcap_{\mathcal{U} \in \sigma} \tau(\mathcal{U}_{\langle f(n)(0)\rangle}, \dots, \mathcal{U}_{f(n)}, \mathcal{U})$$

Assume τ is a winning strategy for \mathscr{F} .

Since there are only countably many unions of finite collections of basic open sets in a secound countable space, let $\{C_n, n < \omega\}$ enumerate them all. It's okay to assume τ always yields some C_n .

Suppose the open covers \mathcal{U}_s are defined for $t \leq s \in \omega^{<\omega}$. Then since there are only countably many C_n to equal $\tau(\mathcal{U}_{\langle s(0)\rangle},\ldots,\mathcal{U}_s,\mathcal{U})$, enumerate $\mathcal{U}_{s^\frown\langle n\rangle}$ to cover those cases.

$$\tau(n) = \bigcap_{\mathcal{U} \in \mathfrak{G}} \tau(\mathcal{U}_{\langle f(n)(0)\rangle}, \dots, \mathcal{U}_{f(n)}, \mathcal{U})$$

Assume τ is a winning strategy for \mathscr{F} .

Since there are only countably many unions of finite collections of basic open sets in a secound countable space, let $\{C_n, n < \omega\}$ enumerate them all. It's okay to assume τ always yields some C_n .

Suppose the open covers \mathcal{U}_s are defined for $t \leq s \in \omega^{<\omega}$. Then since there are only countably many C_n to equal $\tau(\mathcal{U}_{\langle s(0)\rangle},\ldots,\mathcal{U}_s,\mathcal{U})$, enumerate $\mathcal{U}_{s^\frown\langle n\rangle}$ to cover those cases.

$$au(n) = \bigcap_{\mathcal{U} \in \sigma} au(\mathcal{U}_{\langle f(n)(0) \rangle}, \dots, \mathcal{U}_{f(n)}, \mathcal{U})$$

Since metrizable Lindelöf spaces are exactly the regular second-countable spaces:

Corollary (Telgarsky 1984, Scheepers 1995, C)

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Fun with Menger's Game

Questions from any of you? Thanks!