MATH 4000/6000 - Homework #5

posted March 21, 2025; due March 28, 2025

You can observe a lot by just looking. - Yogi Berra

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

In this assignment, "ring" always means "commutative ring."

- 1. (UNDERSTANDING CHECKS; NOT TO TURN IN!)
 - (a) Let $\phi: R \to S$ be a ring homomorphism. Show that ϕ is one-to-one if and only if $\ker(\phi) = \{0_R\}$. (This should remind you of linear algebra!)
 - (b) Let $\phi: R \to S$ be a homomorphism. Show that $\phi(R) = \{\phi(r) : r \in R\}$ is a subring of S, by using the criterion of Problem 1 from the last assignment.
- 2. Decide whether each of the following polynomials is irreducible in F[x] for the given field F. Justify your answers.
 - (a) $f(x) = x^2 + \bar{1}, F = \mathbb{Z}_5,$
 - (b) $f(x) = x^2 + \bar{1}$, $F = \mathbb{Z}_{19}$,
 - (c) $f(x) = x^3 + x + \overline{1}$, $F = \mathbb{Z}_2$,
- 3. Decide whether each of the following polynomials is irreducible in $\mathbb{Q}[x]$. Justify your answers.
 - (a) $f(x) = 3x^3 210x + 1$,
 - (b) $f(x) = 6x^3 2x^2 + 21x 7$,
 - (c) $f(x) = x^5 3x + 6$,
- 4. (Proving irreducibility by reduction mod p)
 - (a) Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ is a polynomial with integer coefficients and degree $n \ge 1$. Suppose p is a prime not dividing a_n and that the polynomial

$$g(x) = \overline{a_n}x^n + \overline{a_{n-1}}x^{n-1} + \dots + \overline{a_0} \in \mathbb{Z}_p[x],$$

obtained by reducing all coefficients mod p, is irreducible in $\mathbb{Z}_p[x]$. Prove that f(x) is irreducible in $\mathbb{Q}[x]$.

Hint. By Gauss's lemma, it is enough to show that f(x) does not factor as a product of nonconstant polynomials with *integer* coefficients.

- (b) Using the result of (a), prove that $5001x^3 3001x + 10000001$ is irreducible in $\mathbb{Q}[x]$.
- 5. (a) Show that the "squaring map" $f: R \to R$ given by $f(r) = r^2$ is **not** a homomorphism for the ring $R = \mathbb{Q}$ but is a homomorphism for $R = \mathbb{Z}_2[x]$.
 - (b) (generalizing the second part of a) Let p be a prime number, and R be a ring in which $\underbrace{1+1+1+\cdots+1}_{p \text{ times}} = 0.$

Show that the "pth power map" $g: R \to R$ defined by $g(r) = r^p$ is a homomorphism.

6. Let R be a ring. Recall that if x_1, \ldots, x_n are elements of R, then (by definition)

$$\langle x_1, \dots, x_n \rangle = \{r_1 x_1 + \dots + r_n x_n : \text{all } r_i \in R\}.$$

In other words, $\langle x_1, \ldots, x_n \rangle$ is the set of all R-linear combinations of x_1, \ldots, x_n . Prove that for any given $x_1, \ldots, x_n \in R$, the set $\langle x_1, \ldots, x_n \rangle$ is an ideal of R by directly verifying the three defining properties of an ideal.

- 7. Let R be an integral domain. Show that if $a, b \in R$, then $\langle a \rangle = \langle b \rangle$ if and only if $a = u \cdot b$ for some unit $u \in R$. (Make sure your argument also handles the case when one of a or b is zero.)
- 8. (gcds as generators of ideals) Let R be a ring in which every ideal is principal. That is, every ideal of R has the form $\langle r \rangle$ for some $r \in R$.

Let $x_1, \ldots, x_n \in R$. Since $\langle x_1, \ldots, x_n \rangle$ is an ideal of R, there is some $d \in R$ with $\langle x_1, \ldots, x_n \rangle = \langle d \rangle$. Prove that d divides all of x_1, \ldots, x_n and that if e is any element of R dividing all of x_1, \ldots, x_n , then $e \mid d$.

- 9. Let F be a field. Prove that if I is any ideal of F[x], then $I = \langle f(x) \rangle$ for some $f(x) \in F[x]$. Imitate the proof from class for the analogous claim in \mathbb{Z} .
- 10. Let R be a ring, not the zero ring.
 - (a) Prove that if $I \subseteq R$ is an ideal and $1 \in I$, then I = R.
 - (b) Prove that $a \in R$ is a unit if and only if $\langle a \rangle = R$.
 - (c) Prove that R is a field if and only if the only ideals in R are $\langle 0 \rangle$ and R.
- 11. (*; **MATH 6000 problem**) By a Gaussian prime, we mean a nonzero element $\pi \in \mathbb{Z}[i]$ that is (a) not a unit and (b) has the property that whenever $\pi = \alpha \beta$ with $\alpha, \beta \in \mathbb{Z}[i]$, either α or β is a unit. (You should be able to check, using what you know about $\mathbb{Z}[i]$ from the last assignment, that this agrees with the definition of primes in $\mathbb{Z}[i]$ given in class.)
 - (a) Let p be a prime number (a prime in the ordinary integers!). Show that if $p = a^2 + b^2$ for some integers a, b, then p is **not** a prime in $\mathbb{Z}[i]$.
 - (b) Conversely, show that if p is a prime number that cannot be written in the form $a^2 + b^2$ for any integers a and b, then p is prime in $\mathbb{Z}[i]$.

Hint. If $p = \alpha \beta$, what can you say about the norms of α, β ?

- (c) Show that every prime number p dividing $2^{10000} + 1$ is **not** prime in $\mathbb{Z}[i]$. Hint 1. In the last homework set, you proved the Gaussian division algorithm. A now familiar reasoning process leads to the Gaussian prime analogue of Euclid's lemma, which may be assumed for this problem: If π is a Gaussian prime and $\pi \mid \alpha\beta$, then π divides α or $\pi \mid \beta$. Hint 2. $2^{10000} + 1$ factors in $\mathbb{Z}[i]$ as a difference of squares.
- 12. (*; **MATH 6000 problem**) Let $R = \mathbb{Z}[x]$, and let I be the set of elements of R with even constant term. Show that I is an ideal of R but that I is not principal: there is no $f(x) \in \mathbb{Z}[x]$ with $I = f(x)\mathbb{Z}[x]$.