COMPLEX NUMBER

EXERCISE - 01

CHECK YOUR GRASP

- $S= i + 2i^2 + 3i^3 + + 100 i^{100}$ 2. $iS = i^2 + 2i^3 + + 100 i^{101}$ $S(1-i) = i + i^2 + i^3 + \dots + i^{100} - 100 i^{101}$ $S = \frac{-100i}{1-i} = \frac{-100i(1+i)}{2} = -50(i-1) = 50(1-i)$
- 7. $x^2 + (p + iq) x + 3i = 0$ $\alpha + \beta = -(p + iq)$, $\alpha\beta = 3i$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = [-(p + iq)]^2 - 6i$ $= (p^2 - q^2) + i (2pq - 6) = 8$ \Rightarrow p² - q² = 8 and pq = 3 \Rightarrow p = 3, q = 1 or p = -3, q = -1
- **12.** $|z_1| = 1$, $|z_2| = 2$, $|z_2| = 3$ $|9z_1z_2 + 4z_1z_2 + z_2z_2| = 12$ $\Rightarrow ||z_3|^2 z_1 z_2 + |z_2|^2 z_1 z_3 + |z_1|^2 z_2 z_3| = 12$ $\Rightarrow |z_1z_2z_2\overline{z}_2 + z_1z_2z_2\overline{z}_2 + z_1z_2z_2\overline{z}_1| = 12$ $\Rightarrow |z_1z_2z_3| |\overline{z}_1 + \overline{z}_2 + \overline{z}| = 12$ $\Rightarrow |z_1||z_2||z_3||\overline{z_1+z_2+z_3}| = 12$ $\Rightarrow |z_1 + z_2 + z_3| = 2$
- 13. |z 4 3i| = 2 represents a circle with centre (4, 3) and radius 2.

so minimum and maximum distances from origin will be

OP - r and OP + r respectively.

$$|z|_{min} = 5 - 2 = 3$$

 $|z|_{max} = 5 + 2 = 7$

14. $z^2 + z + 1$ is real so $z^2 + z + 1 = \overline{z}^2 + \overline{z} + 1$ $z^2 - \overline{z}^2 + z - \overline{z} = 0$ $(z - \overline{z}) (z + \overline{z} + 1) = 0$ $z + \overline{z} + 1 = 0$ either $z = \overline{z}$ or

$$\Rightarrow \quad \text{Im(z)} = 0 \qquad \qquad \text{Let } z = \alpha + i\beta$$

$$\Rightarrow \quad z \text{ is purely real} \qquad \text{so} \qquad \alpha + i\beta + \alpha - i\beta + 1 = 0$$

$$\Rightarrow 2\alpha + 1 = 0$$

$$\Rightarrow \alpha = -\frac{1}{2}$$

Also
$$(\alpha + i\beta)^2 + (\alpha + i\beta) + 1 > 0$$

 $\alpha^2 + \alpha + 1 - \beta^2 + i(2 \alpha \beta + \beta) > 0$
if $\alpha = -1/2$ then
$$\frac{1}{4} - \frac{1}{2} + 1 - \beta^2 > 0$$

$$\Rightarrow \beta^2 - \frac{3}{4} < 0 \Rightarrow -\frac{\sqrt{3}}{2} < \beta < \frac{\sqrt{3}}{2}$$

16. If in a complex number a + ib, the ratio a : b is $1:\sqrt{3}$ is then always try to convert that complex number in ω .

Here
$$\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

Therefore,

19. $z^2 + pz + q = 0$

$$4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$$

$$= 4 + 5\omega^{334} + 3\omega^{365}$$

$$= 4 + 5\omega + 3\omega^{2} \qquad (\because \omega^{3} = 1)$$

$$= 1 + 3 + 2\omega + 3\omega + 3\omega^{2}$$

$$= 1 + 2\omega + 3(1 + \omega + \omega^{2}) = 1 + 2\omega + 3 \quad 0$$

$$(\because 1 + \omega + \omega^{2} = 0)$$

$$= 1 + (-1 + \sqrt{3}i) = \sqrt{3}i.$$

- $z_1 + z_2 = -p,$ $z_1 z_2 = q$ If z_1 , z_2 , z_3 are the vertices of an equilateral triangle then $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ If z_2 is origin then $z_1^2 + z_2^2 = z_1 z_2$ \Rightarrow $(z_1 + z_2)^2 = 3z_1z_2 \Rightarrow p^2 = 3q$ **22.** Let $z = r (\cos \theta + i \sin \theta) = r e^{i\theta}$
 - So $\omega = \frac{1}{r} [\cos(\theta \pi/2) + i \sin(\theta \pi/2)] = \frac{1}{r} e^{i(\theta \pi/2)}$ So \overline{z} ω = r $e^{-i\theta}$ $\frac{1}{r}$ $e^{i(\theta - \pi/2)} = e^{-i \pi/2} = -i$
- **26.** $1 \log_2 \frac{|x+1+2i|-2}{\sqrt{2}-1} \ge 0$ $\Rightarrow \frac{|x+1+2i|-2}{\sqrt{2}-1} \le 2 \Rightarrow |x+1+2i| \le 2\sqrt{2}$ $\Rightarrow \sqrt{(x+1)^2+4} \le 2\sqrt{2} \Rightarrow (x+1)^2+4 \le 8$ \Rightarrow $(x + 1)^2 \le 4$ \Rightarrow $-3 \le x \le 1$ But x = -1 not lie in the domain of function.

$$\Delta ABC$$
 is isosceles triangle

So centroid divide median BO in ratio 2:1

centroid
$$G = \frac{z_1 e^{i\pi/2}}{3} = \frac{z_1}{3} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$$

Also centroid G =
$$\frac{z_1 e^{-i\pi/2}}{3} = \frac{z_1}{3} \left(\cos \frac{\pi}{2} - i \sin \frac{\pi}{2} \right)$$

EXERCISE - 02

BRAIN TEASERS

1.
$$\alpha = -2 + 3z$$

$$\alpha + 2 = 3z$$

$$|\alpha + 2| = 3|z|$$

$$(x + 2)^2 + y^2 = 9$$

Similarly
$$\beta = -2 - 3z$$

$$\Rightarrow$$
 $\beta + 2 = -3z$

$$\Rightarrow$$
 $|\beta + 2| = |-3z|$

$$(x + 2)^2 + y^2 = 9$$

Now
$$\alpha - \beta = 6z \implies |\alpha - \beta| = 6|z|$$

so $(\alpha - \beta)$ moves on a circle with centre as origin and radius 6.

3.
$$z^3 + (1 + i)z^2 + (1 + i)z + i = 0$$

$$\Rightarrow$$
 $(z + i) (z^2 + z + 1) = 0$

$$\Rightarrow$$
 $(z + i) (z - \omega) (z - \omega^2) = 0$

$$\Rightarrow$$
 z = -i, ω , ω^2

Now ω , and ω^2 satisfies the equation

$$z^{1993} + z^{1994} + 1 = 0$$

So ω and ω^2 are common roots

4.
$$\prod_{r=1}^{n} x_{r} = e^{i\frac{\pi}{2}}. e^{i\frac{\pi}{2^{2}}}.e^{i\frac{\pi}{2^{3}}}.....e^{i\frac{\pi}{2^{n}}}$$

$$\lim_{n\to\infty} \prod_{r=1}^n x_r \ = e^{i\frac{\pi}{2}\left(1+\frac{1}{2}+\frac{1}{2^2}+\ldots \right)}$$

$$\lim_{n\to\infty} \operatorname{Re} \left(\prod_{r=1}^{n} x_r \right) = \operatorname{Re} \left(e^{i\left(\frac{\pi}{2}\right)^2} \right) = -1$$

$$\lim_{n\to\infty} \operatorname{Im} \left(\prod_{r=1}^{n} x_r \right) = \operatorname{Im} \left(e^{i\left(\frac{\pi}{2}\right)^2} \right) = 0$$

5. Since
$$z_1$$
 and z_2 lie on $|z| = 1$ and $|z| = 2$ then $|z_1| = 1$ and $|z_2| = 2$

$$|2z_1 + z_2| \le 2|z_1| + |z_2| \le 4$$

$$\max |2z_1 + z_2| = 4$$

$$|z_1 - z_2| \ge ||z_1| - |z_2|| = |1-2| = 1$$

min
$$|z_1 - z_2| = 1$$

$$\left|z_{2} + \frac{1}{z_{1}}\right| \le \left|z_{2}\right| + \frac{1}{\left|z_{1}\right|} = 2 + 1 = 3$$

$$\left|z_2 + \frac{1}{z_1}\right| \le 3$$

9.
$$z = |z + i\omega| \le |z| + |\omega|$$

$$(: |z_1 + z_2| \le |z_1| + |z_2|)$$

$$|z| + |\omega| \ge 2$$
 ... (i

But given that $|z| \le 1$ and $|\omega| \le 1$

$$\Rightarrow$$
 $|z| + |\omega| \le 2$... (ii

from (i) and (ii) $|z| = |\omega| = 1$

Also
$$|z + i\omega| = |z - i\overline{\omega}|$$

$$\Rightarrow$$
 $|z + i\omega|^2 = |z - i\overline{\omega}|^2$

$$\Rightarrow$$
 $(z + i\omega) (\overline{z + i\omega}) = (z - i\overline{\omega}) (\overline{z - i\overline{\omega}})$

$$\Rightarrow$$
 $(z + i\omega) (\overline{z} - i\overline{\omega}) = (z - i\overline{\omega}) (\overline{z} + i\omega)$

$$\Rightarrow$$
 $z\overline{z} + i\omega\overline{z} - i\overline{\omega}z + \omega\overline{\omega} = z\overline{z} - i\overline{\omega}\overline{z} + i\omega z + \omega\overline{\omega}$

$$\Rightarrow \omega \overline{z} - z \overline{\omega} + \overline{z} \overline{\omega} - \omega z = 0$$

$$\Rightarrow$$
 $(\overline{z} - z)(\omega + \overline{\omega}) = 0$

$$\Rightarrow z = \overline{z}$$

or
$$\omega = -\overline{\omega}$$

$$\Rightarrow$$
 Im(z) = 0

$$Re(\omega) = 0$$

Also
$$|z| = 1$$
,

$$|\omega| = 1$$

$$\Rightarrow$$
 z = 1 or -1

$$\omega = i \text{ or } -i$$

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

and

Match the column:

1. (A)
$$|z| - \frac{1}{|z|} \le |z + \frac{1}{z}|$$

$$-2 \le |z| - \frac{1}{|z|} \le 2$$

$$|z|^2 + 2|z| - 1 \ge 0$$
 and $|z|^2 - 2|z| - 1 \le 0$

$$|z| \geq \sqrt{2} -1, \qquad |z| \leq \sqrt{2} +1$$

$$|z|_{\min} = \sqrt{2} - 1$$

so minimum value of
$$\frac{|z|}{\tan \frac{\pi}{8}} = 1$$

(B)
$$|z| = 1$$

Let $z = \cos\theta + i \sin\theta$

$$\frac{z^n}{z^{2n}+1}-\frac{\overline{z}^n}{\overline{z}^{2n}+1}$$

$$=\frac{\cos n\theta + i \sin n\theta}{1 + \cos 2n\theta + i \sin 2n\theta} - \frac{\cos n\theta - i \sin n\theta}{1 + \cos 2n\theta - i \sin 2n\theta}$$

$$= \frac{\cos n\theta + i \sin n\theta}{2 \cos n\theta (\cos n\theta + i \sin n\theta)}$$

$$-\frac{\cos n\theta - i\sin n\theta}{2\cos n\theta(\cos n\theta - i\sin n\theta)}$$

$$=\frac{1}{2\cos n\theta}-\frac{1}{2\cos n\theta}=0$$

(C)
$$8iz^3 + 12z^2 - 18z + 27i = 0$$

 $\Rightarrow (2iz + 3) (4z^2 + 9i) = 0$
 $\Rightarrow z = \frac{3}{2}i, z^2 = -\frac{9}{4}i \Rightarrow 2|z| = 3$

(D)
$$z^4 + z^3 + z^2 + z + 1$$

= $(z - z_1) (z - z_2) (z - z_3) (z - z_4)$
Put $z = -2$

$$\prod_{i=1}^{4} (z_i + 2) = (-2)^4 + (-2)^3 + (-2)^2 + (-2) + 1 = 11$$

Assertion & Reason:

|z - 4 - 5i| = 4 represents a circle with centre (4, 5) and radius 4 and arg (z - 3 - 4i) = $\frac{\pi}{4}$ represents a ray emanating from point (3, 4). Ray will intersect the circle at only one point. So statement (I) is false and statement (II) is true.

Comprehension # 2

- AD = x, $\angle ADC = 180 (C + \theta)$ Area of $\triangle ABC = 2$ area $\triangle ADC = \frac{1}{2} 2y.x \sin (C + \theta)$ = $xy sin (C + \theta)$
- Let affix of M is z_m and $\angle BOM = \pi 2B$, then

$$\frac{z_{\rm m} - 0}{z_{\rm b} - 0} = \frac{OM}{OB} e^{i(\pi - 2B)}$$

$$z_m = z_b e^{i(\pi - 2B)}$$

Let affix of L is z_1 and $\angle BOL = 2$ (A - θ), then 3.

$$\frac{z_L^{} - 0}{z_b^{} - 0} = \ e^{i(2A - 2\theta)}$$

$$z_I = z_b e^{i(2A-2\theta)}$$

EXERCISE - 04[A]

CONCEPTUAL SUBJECTIVE EXERCISE

 $|z_1 - 2z_2| = |2 - z_1\overline{z}_2|$

$$|z_1 - 2z_2|^2 = |2 - z_1\overline{z}_2|^2$$

$$(z_1 - 2z_2) (\overline{z}_1 - 2\overline{z}_2) = (2 - z_1\overline{z}_2) (2 - \overline{z}_1z_2)$$

$$z_1 \overline{z} - 2 \overline{z}_1 z_2 - 2 z_1 \overline{z}_2 + 4 z_2 \overline{z}_2$$

$$= 4 - 2z_1 \overline{z}_2 - 2 \overline{z}_1 z_2 + z_1 \overline{z}_1 z_2 \overline{z}_2$$

$$|z_1|^2 + 4|z_2|^2 - 4 - |z_1|^2|z_2|^2 = 0$$

$$\Rightarrow (|z_1|^2 - 4) (1 - |z_2|^2) = 0$$

$$\Rightarrow |z_1| = 2 \quad \text{(as } |z_2| \neq 1)$$

$$iz^3 + z^2 - z + i = 0$$

$$\Rightarrow$$
 $z^3 - iz^2 + iz + 1 = 0$ \Rightarrow $(z - i) (z^2 + i) = 0$

$$\Rightarrow$$
 $z^2 = -i$ or $z = i$ \Rightarrow $|z| = 1$

$$\textbf{5.} \qquad D = \begin{vmatrix} e^{-2iA} & e^{iC} & e^{iB} \\ e^{iC} & e^{-2iB} & e^{iA} \\ e^{iB} & e^{iA} & e^{-2iC} \end{vmatrix}$$

$$= \, e^{-iA} \, \, e^{-iB} \, \, e^{-iC} \begin{vmatrix} e^{-iA} & e^{i(A+C)} & e^{i(A+B)} \\ e^{i(B+C)} & e^{-iB} & e^{i(A+B)} \\ e^{i(B+C)} & e^{i(A+C)} & e^{-iC} \end{vmatrix}$$

As
$$A + B + C = \pi$$

So A + C =
$$\pi$$
 - B, B + C = π - A, A + B = π - C

$$D \, = \, e^{-i\pi} \, \left| \begin{matrix} e^{-iA} & e^{i(\pi - B)} & e^{i(\pi - C)} \\ e^{i(\pi - A)} & e^{-iB} & e^{i(\pi - C)} \\ e^{i(\pi - A)} & e^{i(\pi - B)} & e^{-iC} \end{matrix} \right|$$

$$D = - \begin{vmatrix} e^{-iA} & -e^{iB} & -e^{-iC} \\ -e^{iA} & e^{-iB} & -e^{iC} \\ -e^{-iA} & -e^{-iB} & e^{-iC} \end{vmatrix}$$

$$= -e^{-iA} e^{-iB} e^{-iC} \begin{vmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{vmatrix} = -e^{-i\pi} (-4) = -4$$

6.
$$|z|^2 \omega - |\omega|^2 z = z - \omega$$
(i)

Put
$$z = \omega \& z = \frac{1}{\omega}$$

we get L.H.S = R.H.S

Now, equation (i) be written as

$$\omega(1 + |z|^2) = z(1 + |\omega|^2)$$

$$\Rightarrow \frac{\omega}{z} = \frac{(1+|\omega|^2)}{1+|z|^2} = \lambda \Rightarrow \omega = \lambda z$$

But this is equation (i)

$$|z|^2 \lambda z - \lambda^2 |z|^2 z = z - \lambda z$$

$$\Rightarrow$$
 $z\lambda |z|^2 (1 - \lambda) = z(1 - \lambda)$

$$\Rightarrow (1 - \lambda) (\lambda |z|^2 - 1) = 0$$

$$\Rightarrow \lambda = 1 ; \qquad \lambda = \frac{1}{|z|^2}$$

from $\lambda = 1$ we get $z = \omega$

$$\lambda = \frac{1}{|z|^2}$$
 we get $\omega = \frac{1}{\overline{z}}$

From the fig.

we have

$$\mathbf{Z}_{p} = \mathbf{z}_{1} (\cos\theta \ e^{i\theta})$$

and
$$z_3 = z_1 (\cos 2\theta e^{i2\theta})$$

$$\Rightarrow \frac{z_2^2}{z_3} = \frac{(z_1 \cos \theta)^2}{(z_1 \cos 2\theta)}$$

$$\Rightarrow z_2^2 \cos 2\theta = z_1 z_3 \cos^2 \theta$$

4.
$$\frac{z_1}{z_2} = e^{i\theta}$$

$$\frac{z_1 + z_2}{z_1 - z_2} = \frac{e^{i\theta} + 1}{e^{i\theta} - 1} = \frac{\cos \theta + 1 + i \sin \theta}{\cos \theta - 1 + i \sin \theta}$$

$$=\frac{2\cos\frac{\theta}{2}e^{i\frac{\theta}{2}}}{-2\sin^2\frac{\theta}{2}+i2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$$

$$\frac{z_1 + z_2}{z_1 - z_2} = \frac{\cot(\theta/2)}{i}$$

$$i \tan \frac{\theta}{2} = \left(\frac{z_1 - z_2}{z_1 + z_2}\right)$$

$$-\tan^2 \frac{\theta}{2} = \left(\frac{z_1 - z_2}{z_1 + z_2}\right)^2 \implies 1 - \sec^2 \frac{\theta}{2} = \frac{\frac{b^2}{a^2} - \frac{4c}{a}}{\frac{b^2}{a^2}}$$

$$\Rightarrow 1 - \sec^2 \frac{\theta}{2} = 1 - \frac{4ac}{b^2} \implies \cos^2 \frac{\theta}{2} = \frac{b^2}{4ac}$$

$$\Rightarrow \cos \frac{\theta}{2} = \sqrt{\frac{b^2}{4ac}} \Rightarrow \theta = 2\cos^{-1} \sqrt{\frac{b^2}{4ac}}$$

$$\bf 5$$
 . Let z^{2m} + z^{2m-1} -1...+z +1 = (z - z_1) (z- z_2)....(z- z_{2m}) Taking log on both the sides & differentiating w.r.t.z

$$\frac{2mz^{2m-1} + (2m-1)z^{2m-2} + \dots + 2z + 1}{z^{2m} + z^{2m-1} + \dots + z^2 + z + 1}$$

$$= \frac{1}{z - z_1} + \frac{1}{z - z_2} + \dots + \frac{1}{z - z_{2m}}$$

$$\Rightarrow \frac{1+2+3+\ldots+2m}{(2m+1)}$$
 (put z = 1)

$$\ = \ \frac{1}{1-z_1} + \frac{1}{1-z_2} + \ldots + \frac{1}{1-z_{2m}}$$

$$\Rightarrow \sum_{r=1}^{2m} \frac{1}{z_r - 1} = - \left\lceil \frac{2m(2m+1)}{2(2m+1)} \right\rceil = -m$$

6. (a)
$$(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n \dots (1)$$

Put $x = i$

$$(1 + i)^n = C_0^+ C_1^i - C_2^- C_3^i + C_4^+ + ... + C_n^i^n$$

$$\Rightarrow 2^{n/2} \left[\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right]$$

=
$$(C_0 - C_2 + C_4 - C_6 + ...) + i(C_1 - C_3 + C_5 ...)$$

$$\Rightarrow C_0 - C_2 + C_4 + \dots = 2^{n/2} \cos \frac{n\pi}{4} \dots (2)$$

$$\Rightarrow C_1 - C_3 + C_5 + \dots = 2^{n/2} \sin \frac{n\pi}{4} \dots (3)$$

Again put x = 1 and -1 in the equation (1)

$$\begin{array}{l} 2^{n} = C_{0} + C_{1} + C_{2} + C_{3} + + C_{n} \\ 0 = C_{0} - C_{1} + C_{2} - C_{3} + + (-1)^{n} C_{n} \end{array}$$

Adding

$$2^{n} = 2(C_{0} + C_{2} + C_{4} +)$$

 $C_{0} + C_{2} + C_{4} + C_{6} + = 2^{n-1}$... (4)
Adding (2) and (4)

$$C_0^+ C_4^+ C_8^+ \dots + = \frac{1}{2} [2^{n-1} + 2^{n/2} \cos \frac{n\pi}{4}]$$

(e)
$$(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
Put $x = 1$, ω , ω^2

$$2^n = C_0 + C_1 + C_2 + \dots + C_n$$

$$(1 + \omega)^n = C_0 + C_1 \omega + C_2 \omega^2 + \dots + C_n \omega^n$$

$$(1 + \omega^2)^n = C_0 + C_1 \omega^2 + C_2 \omega^4 + \dots + C_n \omega^{2n}$$
Adding
$$3(C_0 + C_3 + C_6 + \dots +) = 2^n + (-\omega^2)^n + (-\omega)^n$$

$$C_0 + C_3 + C_6 + \dots = \frac{1}{3} [2^n + 2 \cos \frac{n\pi}{3}]$$

8. $\frac{z_3 - z_1}{z_2 - z_1} = e^{i\alpha}$

$$\Rightarrow \frac{z_3 - z_1}{z_2 - z_1} = \cos \alpha + i \sin \alpha$$

$$\Rightarrow \frac{z_3 - z_1}{z_2 - z_1} - 1 = \cos \alpha - 1 + i \sin \alpha$$

$$\Rightarrow \frac{z_3 - z_2}{z_2 - z_1} = -2\sin^2\frac{\alpha}{2} + 2i\sin\frac{\alpha}{2} \cdot \cos\frac{\alpha}{2}$$

$$\Rightarrow \frac{z_3 - z_2}{z_2 - z_1} = 2i\sin\frac{\alpha}{2}\left(\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}\right)$$

squaring both sides

$$\frac{(z_3 - z_2)^2}{(z_2 - z_1)^2} = -4\sin^2\frac{\alpha}{2}(\cos\alpha + i\sin\alpha)$$

$$\frac{(z_3 - z_2)^2}{(z_2 - z_1)^2} = -4\sin^2\frac{\alpha}{2}\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$$

$$\Rightarrow$$
 $(z_3 - z_2)^2 = 4\sin^2(\alpha/2)(z_3 - z_1)(z_1 - z_2)$

$$\sin\frac{2q\pi}{11} - i\cos\frac{2q\pi}{11} = -i\left[\cos\frac{2q\pi}{11} + i\sin\frac{2q\pi}{11}\right]$$

$$=-\mathrm{i}\,e^{\mathrm{i}\frac{2\mathrm{q}\pi}{11}}$$

$$\therefore \sum_{q=1}^{10} \left(\sin \frac{2q\pi}{11} - i \cos \frac{2q\pi}{11} \right) = -i \sum_{k=1}^{10} e^{i \frac{2q\pi}{11}}$$

$$= -i \left[e^{\frac{2\pi i}{11}} + e^{\frac{4\pi i}{11}} + ... + e^{\frac{20\pi i}{11}} \right] = -i \ (-1) = i$$

Given expression

$$\sum_{p=1}^{32} (3p+2) \left\{ \sum_{q=1}^{10} \left(\sin \frac{2q\pi}{11} - i \cos \frac{2q\pi}{11} \right) \right\}^{p}$$

$$\begin{split} &= \sum_{p=1}^{32} (3p+2)i^p = 3 \sum_{p=1}^{32} pi^p + 2 \sum_{p=1}^{32} i^p = 3S_1 + 2S_2 \\ &\text{where } S_1 = \sum_{p=1}^{32} pi^p \\ &S_1 = i + 2i^2 + 3i^3 + \dots + 32i^{32} \\ &iS_1 = i^2 + 2i^3 + \dots + 32i^{33} \\ &S_1(1-i) = i + i^2 + i^3 + \dots + i^{32} - 32i^{33} \end{split}$$

$$S_1 = \frac{-32i}{(1-i)} = 16(1-i)$$

$$S_2 = 0$$

$$\therefore \sum_{p=1}^{32} (3p+2) \left\{ \sum_{q=1}^{10} \left(\sin \frac{2q\pi}{11} - i \cos \frac{2q\pi}{11} \right) \right\}^p$$

$$= 3S_1 + 2S_2 = 48(1-i) + 0 = 48(1-i)$$

EXERCISE - 05 [A]

JEE-[MAIN]: PREVIOUS YEAR QUESTIONS

- 6. Given that $\arg z\omega = \pi$... (i) $\overline{z} + i\overline{\omega} = 0 \implies \overline{z} = -i\overline{\omega} \implies z = i\omega \implies \omega = -iz$ From (i) $\arg (-iz)^2 = \pi$ $\arg (-i) + 2 \arg (z) = \pi; \quad \frac{-\pi}{2} + 2 \arg (z) = \pi$ $2 \arg (z) = \frac{3\pi}{2} ; \arg (z) = \frac{3\pi}{4}$
- 10. Given that $\omega = \frac{z}{z \frac{i}{3}}$ and $|\omega| = 1$

$$\therefore |\omega| = \left| \frac{z}{z - \frac{i}{3}} \right| \Rightarrow \frac{|z|}{|z - \frac{i}{3}|} = 1$$

$$\Rightarrow |z| = \left| z - \frac{i}{3} \right| \Rightarrow -\frac{2}{3}y + \frac{1}{9} = 0$$

Which is a straight line.

13.
$$\left| Z - \frac{4}{Z} \right| \ge \left| Z \right| - \left| \frac{4}{Z} \right|$$

$$2 \ge \left| Z \right| - \frac{4}{\left| Z \right|}$$

$$2 \left| Z \right| \ge \left| Z \right|^2 - 4$$

$$\left| Z \right|^2 - 2 \left| Z \right| - 4 \le 0$$

$$\left| Z \right| \le \sqrt{5} + 1$$
14. z is the circumcentre (0, 0) of triangle ABO

14. z is the circumcentre (0, 0) of triangle ABC so their exist only one complex number.

- 15. Let $z^2 + \alpha z + \beta = 0$ has $(1 + iy_1)$ and $(1 + iy_2)$ so $z_1 z_2 = \beta$ $(1 + iy_1)(1 + iy_2) = \beta$ $\beta = 1 y_1 y_2 + i(y_1 + y_2)$ (: β is purely real) here $y_1 + y_2 = 0$ $y_1 = -y_2$ $\beta = 1 y_1 y_2$ $\beta = 1 + y_1^2$ $\beta > 1$ $\Rightarrow \beta \in (1, \infty)$
- 16. $(1 + \omega)^7 = A + B\omega$ $(-\omega^2)^7 = A + B\omega$ $-\omega^2 = A + B\omega$ $1 + \omega = A + B\omega$ A = 1B = 1 (1, 1)
- 17 $\frac{z^2}{z-1}$ is purely real where $(Z \neq 1)$

so
$$\frac{\overline{z}^2}{\overline{z} - 1} = \frac{z^2}{z - 1}$$

$$z\overline{z}^2 - \overline{z}^2 = \overline{z}z^2 - z^2$$

$$z\overline{z}(z - \overline{z}) = z^2 - \overline{z}^2$$

$$z\overline{z}(z - \overline{z}) = (z + \overline{z})(z - \overline{z})$$

$$\Rightarrow \overline{z} - z = 0 \text{ or } z + \overline{z} = z\overline{z}$$

$$\Rightarrow \overline{z} = z \text{ or } x^2 + y^2 - 2x = 0$$

$$(x - 1)^2 + y^2 = 1$$

so either lie on z real axis or on a circle passing through the origin.

18
$$\overline{z} = \frac{1}{z}$$

$$\arg\left(\frac{1+z}{1+\frac{1}{z}}\right) \implies \arg z \implies \theta$$

EXERCISE - 05 [B]

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

2. (a)
$$\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2} = \frac{(1 - i\sqrt{3})(1 + i\sqrt{3})}{2(1 + i\sqrt{3})}$$

$$= \frac{1 - i^2 \cdot 3}{2(1 + i\sqrt{3})}$$

$$= \frac{4}{2(1 + i\sqrt{3})} = \frac{2}{(1 + i\sqrt{3})}$$

$$\Rightarrow \frac{z_2 - z_3}{z_1 - z_3} = \frac{1 + i\sqrt{3}}{2} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$$

$$\Rightarrow \left| \frac{z_2 - z_3}{z_1 - z_2} \right| = 1 \text{ and } \arg\left(\frac{z_2 - z_3}{z_1 - z_2}\right) = \frac{\pi}{3}$$

Hence the Δ is equilateral,

(b) arg
$$\frac{z_1}{z_2} = \frac{\pi}{2} \Rightarrow \frac{z_1}{z_2} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$$

$$(\because |z_2| = |z_1| = 1)$$

$$\therefore \frac{z_1^n}{z_0^n} = (i)^n$$

Hence $i^n = 1 \implies n = 4k$

3. (c)
$$z^{p+q}-z^p-z^q+1=0$$

$$\Rightarrow (z^p-1)\ (z^q-1)=0$$
 as α is root of (1), either $\alpha^p-1=0$ or $\alpha^q-1=0$

$$\Rightarrow \text{ either } \frac{\alpha^{p} - 1}{\alpha - 1} = 0 \text{ or } \frac{\alpha^{q} - 1}{\alpha - 1} = 0 \text{ (as } \alpha \neq 1)$$

$$\Rightarrow$$
 either 1 + α + α^2 + ... + α^{p-1} = 0

or
$$1 + \alpha + ... + \alpha^{q-1} = 0$$

But
$$\alpha^p - 1 = 0$$
 and $\alpha^q - 1 = 0$

cannot occur simultaneously as p and q are distinct primes, so neither p divides q nor q divides p, which is the requirement for $1 = \alpha^p = \alpha^q$.

5. Given
$$|z_1| \le 1$$
 and $|z_2| > 1$

Then to prove
$$\left| \frac{1 - z_1 \overline{z}_2}{z_1 - z_2} \right| < 1 \left| \left\{ u \sin g \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \right\} \right|$$

$$\Rightarrow |1 - z_1 \overline{z}_2| \langle z_1 - z_2|$$

Squaring both sides, we get

$$(1 - z_1 \overline{z}_2)(1 - \overline{z}_1 z_2) < (z_1 - z_2)(\overline{z}_1 - \overline{z}_2)$$

$$\{using |z|^2 = z \overline{z} \}$$

$$\begin{split} \Rightarrow & 1 - z_1 \overline{z}_2 - \overline{z}_1 z_2 + z_1 \overline{z}_1 z_2 \overline{z}_2 < z_1 \overline{z}_1 - z_1 \overline{z}_2 - z_2 \overline{z}_1 + z_2 \overline{z}_2 \\ \Rightarrow & 1 + |z_1|^2 |z_2|^2 < |z_1|^2 + |z_2|^2 \\ \Rightarrow & 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2 < 0 \\ \Rightarrow & (1 - |z_1|^2) (1 - |z_2|^2) < 0 \qquad \dots (2) \\ \text{which is true by (1) as } |z_1| < 1 \text{ and } |z_2| > 1 \end{split}$$

$$\therefore$$
 $(1 - |z_1|^2) > 0$ and $(1 - |z_2|^2) < 0$

: (2) is true whenever (1) is true.

$$\Rightarrow \quad \left|\frac{1-z_1\overline{z}_2}{z_1-z_2}\right| \, \leq \, 1$$

6. Given:
$$a_1z + a_2z^2 + ... + a_nz^n = 1$$

and $|z| < 1/3$... (1)
 $\{\text{using } |z_1 + z_2| \le |z_1| + |z_2| \}$
 $\Rightarrow |a_1z| + |a_2z^2| + |a_3z^3| + + |a_nz^n| \ge 1$
 $\Rightarrow 2\{(|z| + |z|^2 + |z|^3 + + |z|^n)\} > 1$
 $\{\text{using } |a_1| < 2\}$

$$\Rightarrow \frac{2|z|(1-|z|^n)}{1-|z|} > 1$$

{using sum of n terms of G.P.}

$$\Rightarrow$$
 $2|z| - 2|z|^{n+1} > 1 - |z|$

$$\Rightarrow 3|z| > 1 + 2|z|^{n+1} \Rightarrow |z| > \frac{1}{3} + \frac{2}{3}|z|^{n+1}$$

$$\Rightarrow |z| > \frac{1}{3}$$
, which contradicts ... (1)

.. There exists no complex number z such that

$$|z| < \frac{1}{3}$$
 and $\sum_{r=1}^{n} a_r z^r = 1$

As we know;
$$|z|^2 = z. \overline{z} \implies \frac{|z-\alpha|^2}{|z-\beta|^2} = k^2$$

$$\Rightarrow (z-a)(\overline{z}-\overline{\alpha}) = k^2(z-\beta)(\overline{z}-\overline{\beta})$$

$$|z|^2 - \alpha \overline{z} - \overline{\alpha} z + |\alpha|^2 = k^2 (|z|^2 - \beta \overline{z} - \overline{\beta} z + |\beta|^2)$$

or
$$|z|^2(1-k^2)-(\alpha-k^2\beta)\overline{z}-(\overline{\alpha}-\overline{\beta}k^2)z$$

 $+(|\alpha|^2-k^2|\beta|^2)=0$

$$\Rightarrow |z|^2 - \frac{(\alpha - k^2 \beta)}{(1 - k^2)} \overline{z} - \frac{(\overline{\alpha} - \overline{\beta} k^2)}{(1 - k^2)} z + \frac{|\alpha|^2 - k^2 |\beta|^2}{(1 - k^2)} = 0$$

On comparing with equation of circle.

$$|z|^2 + a\overline{z} + \overline{a}z + b = 0$$

whose centre is (-a) and radius = $\sqrt{|a|^2 - b}$

: centre for (i)

$$= \frac{\alpha - k^2 \beta}{1 - k^2} \text{ and radius}$$

$$=\sqrt{\left(\frac{\alpha-k^2\beta}{1-k^2}\right)\!\left(\frac{\overline{\alpha}-k^2\overline{\beta}}{1-k^2}\right)\!-\!\frac{\alpha\overline{\alpha}-k^2\beta\overline{\beta}}{1-k^2}}$$

radius =
$$\left| \frac{k(\alpha - \beta)}{1 - k^2} \right|$$

13. Here, centre of circle is (1, 0) is also the mid-point of diagonals of square

$$\Rightarrow \quad \frac{z_1 + z_2}{2} = z_0$$

$$\Rightarrow$$
 $z_2 = -\sqrt{3} i$,

(where $z_0 = 1 + 0$ i)

and
$$\frac{z_3 - 1}{z_1 - 1} = e^{\pm i\pi/2}$$

$$\Rightarrow z_3 = 1 + (1 + \sqrt{3}i) \cdot \left(\cos\frac{\pi}{2} \pm i\sin\frac{\pi}{2}\right), \text{ as } z_1 = 2 + \sqrt{3}i$$

$$= 1 \pm i(1 + \sqrt{3}i) = (1 \mp \sqrt{3}) \pm i$$

$$z_3 = (1 - \sqrt{3}) + i \text{ and } z_4 = (1 + \sqrt{3}) - i$$

12. Let, $z_1 = \frac{w - \overline{w}z}{1 - z}$, be purely real

$$\Rightarrow$$
 $z_1 = \overline{z}_1$

$$\therefore \frac{W - \overline{W}Z}{1 - z} = \frac{\overline{W} - W\overline{Z}}{1 - \overline{z}}$$

$$\Rightarrow$$
 $w - w\overline{z} - \overline{w}z + \overline{w}z.\overline{z} = \overline{w} - z\overline{w} - w\overline{z} + wz.\overline{z}$

$$\Rightarrow$$
 $(w - \overline{w}) - (\overline{w} - w) |z|^2 = 0$

$$\Rightarrow$$
 $(w - \overline{w})(1 - |z|^2) = 0$

$$\Rightarrow$$
 $|z|^2 = 1$ {as, $w - \overline{w} \neq 0$, since $\beta \neq 0$ }

$$\Rightarrow$$
 $|z| = 1$ and $z \neq 1$.

15. $A = \{z : Im \ z \ge 1\}$ $y \ge 1$

$$B = \{z : |z-2-i| = 3\} \qquad (x-2)^2 + (y-1)^2 = 9$$

$$C = \{z : Re((1 - i)z) = \sqrt{2} \}$$
 $x + y = \sqrt{2}$

As we can see 3 curves intersects at only one point So $A \cap B \cap C$ contains exactly one element

16. $|z + 1 - i|^2 + |z - 5 - i|^2 = (-1 - 5)^2 + (1 - 1)^2 = 36$ so exactly 36

17. As
$$3 - \sqrt{5} \le |z| \le 3 + \sqrt{5}$$

As $-3 + \sqrt{5} \le |\omega| \le 3 + \sqrt{5}$
 $-3 - \sqrt{5} \le -|\omega| \le 3 - \sqrt{5}$
 $-\sqrt{5} \le -|\omega| + 3 \le 6 - \sqrt{5}$
 $-3 \le |z| - |\omega| + 3 \le 9$

22.
$$z = z_1 + t(z_2 - z_1)$$

$$\frac{z - z_1}{z_2 - z_1} = t, t \in (0,1) \implies z = \frac{z_1(1 - t) + tz_2}{(1 - t) + t}$$

point P(z) divides point A(z $_1$) & B(z $_2$) internally in ratio (1 - t) : t

Hence locus is a line segment such that P(z) lies between $A(z_1)$ & $B(z_2)$ as shown in figure.

Hence options A,C & D are correct.

- 24. (A) $|z i|z||^2 = |z + i|z||^2$ $\Rightarrow (z - i|z|) (\overline{z} + i|z|) = (z + i|z|)(\overline{z} - i|z|)$ $\Rightarrow 2i|z|z = 2i|z|\overline{z}$ $\Rightarrow z = \overline{z} \therefore z \text{ is purely real.}$
 - \therefore z lies on real axis.
 - (B) Locus is ellipse having focii (-4, 0) & (4, 0) 2ae = 8 & 2a = 10 $\Rightarrow a = 5$ & e = 4/5 It is ellipse having eccentricity 4/5.
 - (C) $w = 2 (\cos\theta + i\sin\theta)$

$$z = 2(\cos\theta + i\sin\theta) - \frac{1}{2(\cos\theta + i\sin\theta)}$$

$$x + iy = \frac{3}{2}\cos\theta + \frac{i5}{2}\sin\theta$$

$$\Rightarrow x = \frac{3}{2}\cos\theta \& y = \frac{5}{2}\sin\theta$$

It is a locus
$$\frac{x^2}{9/4} + \frac{y^2}{25/4} = 1$$

$$\frac{9}{4} = \frac{25}{4}(1 - e^2) \implies e = \frac{4}{5}$$

since
$$x = \frac{3}{2}\cos\theta$$
 \Rightarrow $|Re(z)| \le \frac{3}{2}$

$$\left| \operatorname{Re}(z) \right| \leq \frac{3}{2} \qquad \Rightarrow \quad \left| \operatorname{Re}(z) \right| \leq 2$$

Consider the circle $x^2 + y^2 - 9 = 0$

By putting
$$x = \frac{3}{2}\cos\theta$$

&
$$y = \frac{5}{2}\sin\theta$$
 into $x^2 + y^2 - 9$

$$\frac{9\cos^2\theta}{4} + \frac{25}{4}\sin^2\theta - 9 < 0$$

(D)
$$z = (\cos \theta + i \sin \theta) + \frac{1}{(\cos \theta + i \sin \theta)}$$

$$z = 2\cos\theta$$

where z is real value & $z \in [-2, 2]$

25. Comprehension (3 questions together)

$$a + 8b + 7c = 0$$

$$9a + 2b + 3c = 0$$

$$7a + 7b + 7c = 0$$

$$\Rightarrow$$
 a = K, b = 6K, c = -7K

(i)
$$(K, 6K, -7K)$$

$$2x + y + z = 1$$

$$2K + 6K - 7K = 1$$

(: point lies on the plane)

$$\Rightarrow$$
 K = 1

$$\Rightarrow$$
 7a + b + c = 7K + 6K - 7K = 6

(ii)
$$x^3 - 1 = 0$$

 $\Rightarrow x = 1, \omega, \omega^2$
 $\omega = -\frac{1}{2} + \frac{i\sqrt{3}}{2}$ since $Im(\omega) > 0$
If $a = 2 = K \Rightarrow b = 12 \& c = -14$
Hence $\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{3}{\omega^c} = \frac{3}{\omega^2} + \frac{1}{\omega^{12}} + \frac{3}{\omega^{-14}}$
 $= 3\omega + 1 + 3\omega^2 = -3 + 1 = -2$
(iii) $\therefore b = 6 \Rightarrow 6K = 6 \Rightarrow K = 1$
 $\Rightarrow a = 1, b = 6 \& c = -7$
 $x^2 + 6x - 7 = 0$
 $\Rightarrow \alpha + \beta = -6, \alpha\beta = -7$

$$\Rightarrow \sum_{n=0}^{\infty} \left(\frac{\alpha + \beta}{\alpha \beta} \right)^n = \sum_{n=0}^{\infty} \left(\frac{6}{7} \right)^n = \frac{1}{1 - \frac{6}{7}} = 7$$
26.

(3,-5/2) We have to find minimum value of

$$2\left|z-\left(3-\frac{5}{2}i\right)\right|$$

(minimum distance between z and point $\left(3,-\frac{5}{2}\right)$

= 2 (distance between (3,0) and
$$\left(3, -\frac{5}{2}\right)$$
)
= $2 \frac{5}{2}$ = 5 units.

27. Ans. 3 (Bonus) (Comment : If $\omega = e^{i\pi/3}$

then
$$\frac{|x|^2 + |y|^2 + |z|^2}{|a|^2 + |b|^2 + |c|^2}$$
 is not always an

For example if a = b = c = 1 then the value

of
$$\frac{|x|^2 + |y|^2 + |z|^2}{|a|^2 + |b|^2 + |c|^2}$$
 is $\frac{17}{3}$. Now if we consider $\omega = e^{\int 2\pi/3}$ then the solution is)
 $|x|^2 = (a + b + c)(\overline{a} + \overline{b} + \overline{c})$
 $= |a|^2 + |b|^2 + |c|^2 + a\overline{b} + a\overline{c} + b\overline{a} + b\overline{c} + c\overline{a} + c\overline{b}$

$$\begin{aligned} |y|^2 &= (a + b\omega + c\omega^2) \left(\overline{a} + \overline{b}\omega^2 + \overline{c}\omega \right) \\ &= |a|^2 + |b|^2 + |c|^2 + a\overline{b}\omega^2 + a\overline{c}\omega + b\overline{a}\omega + b\overline{c}\omega^2 + c\overline{a}\omega^2 + c\overline{b}\omega \\ |z|^2 &= (a + b\omega^2 + c\omega)(\overline{a} + \overline{b}\omega + \overline{c}\omega^2) \\ &= |a|^2 + |b|^2 + |c^2| \\ &+ a\overline{b}\omega + a\overline{c}\omega^2 + b\overline{a}\omega^2 + b\overline{c}\omega + c\overline{a}\omega + c\overline{b}\omega^2 \\ &\therefore |x|^2 + |y|^2 + |z|^2 = 3 (|a|^2 + |b|^2 + |c|^2) \\ &\Rightarrow \frac{|x|^2 + |y|^2 + |z|^2}{|a|^2 + |b|^2 + |c|^2} = 3 \end{aligned}$$

(B)
$$\int_{a}^{b} (f(x) - 3x) dx = a^{2} - b^{2} = \int_{a}^{b} (-2x) dx$$

$$\Rightarrow \int_{a}^{b} (f(x) - x) dx = 0$$

$$\Rightarrow \text{ one of the possible solution of this adjusting is }$$

equation is
$$c(\pi) = \pi$$

$$f(x) = x \qquad \Rightarrow \qquad f\left(\frac{\pi}{6}\right) = \frac{\pi}{6}$$
(C)
$$\frac{\pi^2}{\ln 3} \int_{\pi/6}^{5/6} (\sec \pi x) dx$$

$$= \frac{\pi^2}{\ell \, \text{n} \, 3} \, \frac{1}{\pi} \left[\, \ell \, \text{n} \, | \, \sec \pi x + \tan \pi x \, | \, \right]_{7/6}^{5/6}$$

$$= \frac{\pi}{\ell \, \text{n} \, 3} \, \ell \, \text{n} \, \left| \frac{\sec \frac{5\pi}{6} + \tan \frac{5\pi}{6}}{\sec \frac{7\pi}{6} + \tan \frac{7\pi}{6}} \right| = \frac{\pi}{\ell \, \text{n} \, 3} \, \ell \, \text{n} \, 3 = \pi$$

(D) Let
$$\theta = Arg\left(\frac{1}{1-z}\right)$$

$$\Rightarrow \theta = Arg\left(\frac{0-1}{z-1}\right)$$

which is shown in adjacent diagram.

 \Rightarrow Maximum value of θ is

approaching to $\frac{\pi}{2}$ but θ will never

obtained the value equal to $\frac{\pi}{2}$. Hence there is an error in aksing the problem.

29. (A) Let
$$z = \cos\theta + i\sin\theta$$

$$Re\Bigg(\frac{2\mathrm{i}(\cos\theta+\mathrm{i}\sin\theta)}{1-(\cos\theta+\mathrm{i}\sin\theta)^2}\Bigg) = Re\Bigg(\frac{\cos\theta\mathrm{i}-\sin\theta}{\sin^2\theta-\mathrm{i}\cos\theta\sin\theta}\Bigg)$$

$$= Re\left(-\frac{1}{\sin\theta}\right) = \frac{-1}{\sin\theta}$$

 \therefore Set will be $(-\infty, -1] \cup [1, \infty)$

(B)
$$-1 \le \frac{8 \cdot 3^{(x-2)}}{1 - 3^{2(x-1)}} \le 1$$

$$\Rightarrow -1 \le \frac{8.3^{\times}}{(3-3^{\times})(3+3^{\times})} \le 1$$

$$3^x = t$$
 \therefore $t > 0$

$$\frac{8t}{(3-t)(t+3)} \ge -1$$

$$\Rightarrow$$
 $t \in (0,3) \cup [9,\infty)$

$$\Rightarrow$$
 $x \in (-\infty, 1) \cup [2, \infty)$

$$\frac{8t}{(3-t)(t+3)} \le 1$$

$$\Rightarrow$$
 $t \in (0, 1] \cup (3, \infty)$

$$\Rightarrow$$
 $x \in (-\infty, 0] \cup (1, \infty)$

Taking intersection,

$$x\in (-\infty,\,0]\cup[2,\,\infty)$$

(C)
$$f(\theta) = \begin{vmatrix} 1 & \tan & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1 \end{vmatrix}$$
$$C_1 \rightarrow C_1 + C_3$$

$$\Rightarrow f(\theta) = \begin{vmatrix} 2 & \tan \theta & 1 \\ 0 & 1 & \tan \theta \\ 0 & -\tan \theta & 1 \end{vmatrix}$$

$$\Rightarrow f(\theta) = 2\sec^2\theta$$

$$\Rightarrow f(\theta) \in [2, \infty)$$

(D)
$$f(x) = 3x^{5/2} - 10x^{3/2}$$

$$f'(x) = \frac{15}{2}x^{3/2} - \frac{30}{2}x^{1/2} > 0$$

$$\Rightarrow \quad \frac{15}{2}\sqrt{x}(x-2) \ge 0 \qquad \Rightarrow \quad x \ge 2$$

30.
$$z^2 + z + 1 - a = 0$$

 \therefore z is imaginary \Rightarrow D < 0

$$1 - 4(1 - a) \le 0$$

$$a < \frac{3}{4}$$

Aliter: $a = z^2 + z + 1$

 \therefore a = \overline{a} (given a is real)

$$\therefore z^2 + z = \overline{z}^2 + \overline{z}$$

$$\Rightarrow$$
 $z^2 - \overline{z}^2 = \overline{z} - z$

$$\Rightarrow$$
 $z + \overline{z} = -1$ (: Im(z) is non zero)

$$\Rightarrow$$
 Re(z) = $-\frac{1}{2}$

$$\therefore$$
 z can be taken as $-\frac{1}{2}$ + iy

where y ∈ R

$$\therefore \quad a = \left(-\frac{1}{2} + iy\right)^2 + \left(\frac{-1}{2} + iy\right) + 1$$

$$\Rightarrow$$
 a = $\frac{1}{4} - \frac{1}{2} + 1$ - iy + iy - y²

$$\Rightarrow$$
 a = $\frac{3}{4}$ - y² \Rightarrow a $< \frac{3}{4}$

$$\therefore a \neq \frac{3}{4}$$

31. Given :
$$\alpha$$
 satisfies $|z - z_0| = r$
 $\Rightarrow |\alpha - z_0| = r$...(1)

&
$$\frac{1}{\overline{\alpha}}$$
 satisfies $|z - z_0| = 2r$

$$\Rightarrow \left| \frac{1}{\overline{\alpha}} - z_0 \right| = 2r \qquad \dots (2$$

squaring (1) and (2) we get $(\alpha - z_0)(\overline{\alpha} - \overline{z}_0) = r^2$

$$\Rightarrow \alpha \overline{\alpha} - z_0 \overline{\alpha} - \alpha \overline{z_0} + z_0 \overline{z_0} = r^2 = 2 |z_0|^2 - 2 \dots (3)$$

&
$$\left(\frac{1}{\overline{\alpha}} - z_0\right) \left(\frac{1}{\alpha} - \overline{z}_0\right) = 4r^2$$

$$\Rightarrow \frac{1}{\alpha \overline{\alpha}} - \frac{z_0}{\alpha} - \frac{\overline{z}_0}{\overline{\alpha}} + z_0 \overline{z}_0 = 4r^2$$

$$\Rightarrow 1 - z_0 \overline{\alpha} - \overline{z}_0 \alpha + |z_0|^2 |\alpha|^2 = 4(2|z_0|^2 - 2)|\alpha|^2$$

$$\Rightarrow \ 1 + \ 2 \ |z_0|^2 \ - \ 2 - \ |\alpha|^2 - \ |z_0|^2 + \ |z_0|^2 \ |\alpha|^2$$

$$= 8 |z_0|^2 |\alpha|^2 - 8 |\alpha|^2$$

$$\Rightarrow -1 + |z_0|^2 - 7|z_0|^2 |\alpha|^2 + 7|\alpha|^2 = 0$$

$$\Rightarrow$$
 $(|z_0|^2 - 1) (7|\alpha^2| - 1) = 0$

$$\Rightarrow$$
 $|z_0| = 1$ (rejected as $r = 0$) & $|\alpha| = \frac{1}{\sqrt{7}}$

32.
$$P^2 = [\alpha_{ij}]_{n=1}^n$$

$$\alpha_{ij} = \sum_{k=1}^{n} p_{ik}.p_{kj}$$

$$=\sum_{k=1}^n\omega^{i+k}.\omega^{k+j}\ =\omega^{i+j}\sum_{k=1}^n\omega^{2k}$$

$$= \omega^{i+j} (\omega^2 + \omega^4 + \omega^6 + \dots + \omega^{2n})$$

If n is a multiple of 3 then $P^2 = 0$

$$\Rightarrow$$
 n is not a multiple of 3

$$\Rightarrow$$
 n can be 55, 58, 56

33.
$$(e^{i5\pi/6})$$
 W_5 W_4 W_3 W_2 $(e^{i\pi/3})$ W_1 W_1 W_1 W_1 W_2 W_3 W_4 W_4

$$z_1 = \{w_1, w_{11}, w_{12}\}\$$

 $z_2 = \{w_5, w_6, w_7\}$

$$\angle w_1 O w_5 = \frac{2\pi}{3} \& \angle w_1 O w_6 = \frac{5\pi}{6}$$

Paragraph for Question 34 and 35

34. S_1 is interior of circle centred at (0,1) & radius = 4.

 $\label{eq:Rezero} Re(z) \, \geq \, 0 \ \ \text{is in} \ \ I^{\text{st}} \, \, \& \, \, IV^{\text{th}} quadrant.$

$$\frac{\left(z-\left(1-i\sqrt{3}\right)\right)}{\left(1-i\sqrt{3}\right)}=\frac{\left(\left(x-1\right)+i\left(y-\sqrt{3}\right)\right)}{\left(1-i\sqrt{3}\right)}$$

$$=\frac{\left(\left(x-1\right)+i\left(y-\sqrt{3}\right)\right)\left(1+i\sqrt{3}\right)}{2}$$

$$I_{m}(S_{2}) = \sqrt{3}x + y > 0$$

erpendicular distance from (1,-3) to the line is

$$P = \left| \frac{\sqrt{3} - 3}{2} \right| = \left(\frac{3 - \sqrt{3}}{2} \right)$$

35. Ans. (B)

Area of
$$S = \frac{\pi(4)^2}{4} + \frac{1}{2}(4)^2 \frac{\pi}{3}$$

$$\frac{8\pi}{3} + 4\pi = \frac{20\pi}{3}$$