Установка и конфигурация операционной системы на виртуальную машину

Лабораторная работа №1

Казначеев Сергей Ильич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Домашнее Задание	21
5	Выводы	23
6	Ответы на контрольные вопросы	24

Список иллюстраций

3.1	s1	 																	7
3.2	screen2 .	 																	8
3.3	screen3 .	 																	8
3.4	screen4 .	 																	9
3.5	screen5 .	 																	10
3.6	screen6 .	 																	11
3.7	screen7 .	 																	12
3.8	screen9 .	 																	14
3.9	screen10	 																	15
3.10	screen11	 																	15
3.11	screen12	 																	16
3.12	screen13	 																	16
3.13	screen14	 																	16
3.14	screen15	 																	17
3.15	screen16	 																	17
3.16	screen17	 																	18
3.17	screen19	 																	18
3.18	screen20	 																	19
3.19	screen21	 																	20
3.20	screen22	 																	20
3.21	screen23					•	•					•	•			•			20
4.1	screen24	 																	22
4 2	screen25																		2.2

Список таблиц

1 Цель работы

Здесь приводится формулировка цели лабораторной работы. Формулировки цели для каждой лабораторной работы приведены в методических указаниях.

Цель данного шаблона — максимально упростить подготовку отчётов по лабораторным работам. Модифицируя данный шаблон, студенты смогут без труда подготовить отчёт по лабораторным работам, а также познакомиться с основными возможностями разметки Markdown.

2 Задание

Здесь приводится описание задания в соответствии с рекомендациями методического пособия и выданным вариантом.

3 Выполнение лабораторной работы

Установка Fedora Sway для начала создаем виртуальную машину (рис. 3.1).

Рис. 3.1: s1

Далее выделяем память и количество ядер процессора

Рис. 3.2: screen2

Выделяем виртуальный диск размером 80гб

Рис. 3.3: screen3

После чего включаем 3D ускорение

Рис. 3.4: screen4

После установки запускаем виртуальную машину и запустим liveinst

Рис. 3.5: screen5

Далее выбираем язык

Рис. 3.6: screen6

Указываем диск для установки

Рис. 3.7: screen7

Включаем гоот пользователя и укажем для него пароль

Создаем свою учетную запись

Рис. 3.8: screen9

После чего мы можем изъять загрузочный диск

Рис. 3.9: screen10

Переходим в режим супер пользователя

```
[iskaznacheev@fedoza ~]$ sudo ~i

Мы полагаем, что ваш системный администратор изложил вам основы безопасности. Как правило, всё сводится и трём спедующим правилам:

мi) Уважайте частную жизнь других.
м2) Думайте, прежде чем что-то вводить.
м3) С большой влястью приходит большом ответственность.

По свображеными безопасности пароль, который вы введёте, не будет видем.

[sudo] пароль для [skaznacheev:
[zoot@fedoza ~]# ■
```

Рис. 3.10: screen11

Далее обновим все пакеты

```
[root@fedoza -]# dmf - y update
Herosectnud apryment "-" для команды "dmf5". Add "--help" for more information about
the arguments.
[root@fedoza -]# ■
```

Рис. 3.11: screen12

Далее устанавливаем mc и tmux

Рис. 3.12: screen13

Устанавливаем dnf-automatic

Рис. 3.13: screen14

Отклучим Selinux

```
NOTE: In earlier Fedora kernel builds, SELINUX=disabled would a
SELINUX=permissive
# SELINUXTYPE= can take one of these three values:
SELINUXTYPE=targeted
```

Рис. 3.14: screen15

Устанавливаем tmux

```
iskaznacheev@fedora:-$ sudo -i
[sudo] пароль для iskaznacheev:
root@fedora:~# П
```

Рис. 3.15: screen16

Создаем файл

```
root@fedora:~# mkdir -p ~/.config/sway
root@fedora:~# touch ~/.config/sway/config.d/95-system-keyboard-config.conf
```

Рис. 3.16: screen17

Втавляем код который предложен в лабораторной работе

```
Section "InputClass"

Identifier "system-keyboard"

MatchIsKeyboard "on"

Option "XkbLayout" "us,ru"

Option "XkbModel" "pc105"

Option "XkbVariant" ","

Option "XkbOptions" "grp:alt_shift_toggle"

EndSection
```

Рис. 3.17: screen19

Теперь поменяем название хоста согласно лабораторной работы

```
oot@fedora:~# hostnamectl set-hostname iskaznacheev
coot@fedora:~# hostnamectl
    Static hostname: iskaznacheev
          Icon name: computer-vm
            Chassis: vm ⊟
         Machine ID: 634651063ee343cea75d4c4d21a172b4
            Boot ID: 32df3c7c87d44692b50499f43aed059b
       Product UUID: 60b095e3-a3fb-9f41-9fa2-ca96dcaad774
     Virtualization: oracle
   Operating System: Fedora Linux 41 (Sway)
        CPE OS Name: cpe:/o:fedoraproject:fedora:41
     OS Support End: Mon 2025-12-15
OS Support Remaining: 9month 3w 5d
             Kernel: Linux 6.12.13-200.fc41.x86_64
       Architecture: x86-64
   Hardware Vendor: innotek GmbH
    Hardware Model: VirtualBox
   Firmware Version: VirtualBox
      Firmware Date: Fri 2006-12-01
       Firmware Age: 18y 2month 2w 4d
root@fedora:~#
```

Рис. 3.18: screen20

Устанавливаем pandoc

```
t@fedora:~# dnf -y install pandoc
Обновление и загрузка репозиториев:
Репозитории загружены.
                                                        Репозиторий
                        Арх.
                                                                         Размер
Установка:
                       x86_64 3.1.11.1-32.fc41
                                                        fedora
                                                                     185.0 MiB
Установка зависимостей:
                       noarch 3.1.11.1-31.fc41
                                                       fedora
                                                                        1.9 MiB
Сводка транзакции:
Установка: 2 пакетов
Общий размер входящих пакетов составляет 27 MiB. Необходимо загрузить 27 MiB.
После этой операции будут использоваться дополнительные 187 МіВ (установка 187 МіВ,
удаление 0 В).
```

Рис. 3.19: screen21

Скачиваем pandoc-crossref и распаковываем его

```
[iskaznacheev@iskaznacheev Загрузки]$ ls
pandoc-crossref-Linux.tar.xz
[iskaznacheev@iskaznacheev Загрузки]$ tar -xvf pandoc-crossref-Linux.tar.xz
pandoc-crossref
pandoc-crossref.1
[iskaznacheev@iskaznacheev Загрузки]$ ls
pandoc-crossref pandoc-crossref.1 pandoc-crossref-Linux.tar.xz
[iskaznacheev@iskaznacheev Загрузки]$ sudo mv pandoc-crossref /usr/local/bin
[sudo] пароль для iskaznacheev:
```

Рис. 3.20: screen22

Устанавливаем texlive

```
[iskaznacheev@iskaznacheev Загрузки]$ sudo enf -y install texiive-scheme-full
```

Рис. 3.21: screen23

4 Домашнее Задание

Теперь с помощью команды dmesg получим следующую информацию

1)Версия ядра Linux 6.12.13 2)Частота процессора 3686 3)Модель процессора

(СРU0) Core i5-12600KF 4)Объём доступной оперативной памяти 16 5)Тип обнаруженного гипервизора KVM

```
[root@iskaznacheev ~]# dmesg | less
[root@iskaznacheev ~]# dmesg | grep -i "Linux version"
    0.000000] Linux version 6.12.13-200.fc41.x86_64 (mockbuild02a654
4cfe43faad2558abff29549b) (gcc (GCC) 14.2.1 20250110 (Red Hat 14.2.1-
GNU 1d version 2.43.1-5.fc41) #1 SMP PREEMPT_DYNAMIC Sat Feb 8 20:0
6 UTC 2025
[root@iskaznacheev ~]# dmesg | grep -i "Detected Mhz processor"
[root@iskaznacheev ~]# dmesg | grep -i " Mhz processor"
    0.000004] tsc: Detected 3686.398 MHz pr
[root@iskaznacheev ~]# dmesg | grep -i "CPU0"
    0.166998] smpboot: CPUN: 12th Gen Intel(R) Core(TM) 15-12600KF
ily: 0x6, model: 0x97, stepping: 0x2)
[root@iskaznacheev ~]# dmesg | grep -i "Memory available"
[root@iskaznacheev ~]# dmesg | grep -i "available"
    0.001962] On node 0, zone DMA: 1 pages in unavailable ranges
    0.001973] On node 0, zone DMA: 97 pages in unavailable
   0.009720] On node 0, zone Normal: 16 pages in unavailable ranges
0.0110311 [mem 0.0222222
    0.011031] [mem 0xe00000000-0xfebfffff] ava
                                               ilable for PCI devices
    0.016446] Booted with the nomodeset parameter. Only the system f
ebuffer will be avail
    0.176895] Memory: 8076772K/8388152K available (22528K kernel cod
4429K rwdata, 16756K rodata, 4884K init, 4724K bss, 302824K reserved,
cma-reserved)
[root@iskaznacheev ~]# dmesg | grep -i "Hypervisor detected"
    0.000000] Hys
                                   : KVM
[root@iskaznacheev ~]# dmesg | grep -i "f
```

Рис. 4.1: screen24

Тип файловой системы корневого раздела-BTRFS Последовательность монтирования файловых систем BTRFS(sda3) и EXT4-fs

```
[root@iskaznacheev ~]# dmesg | grep -1 "filesystem"
[ 2.434003] BTRFS info (device sda3): first mount of filesystem 25
Pfa-58a1-40ca-813d-6b428ff33bd2
[ 4.650387] EXT4-fs (sda2): mounted filesystem 4951e7e4-443e-4978-
1-02cd738545a9 r/w with ordered data mode. Quota mode: none.
[root@iskaznacheev =1# []
```

Рис. 4.2: screen25

5 Выводы

Я приобрел практические навыки установив операционную систему на виртуальную машину и натроил ее для дальнейшей работы

6 Ответы на контрольные вопросы

1)Какую информацию содержит учётная запись пользователя? - Логин пользователя, пароль пользователя, его ID, ID его группы его дополнительная информация домашний каталог пользователя 2)Укажите команды терминала и приведите примеры: для получения справки по команде - Использование команды man Например: man cd - узнать что делает команда cd для перемещения по файловой системе; - Использование команды cd Например: cd ~ переместиться в домашний каталог для просмотра содержимого каталога; - Использование команды ls Haпример: ls/ посмотерть содежрание каталога для определения объёма каталога; -Использование команды du Например: du - выводит размер всех файлов каталогов и подкаталогов для создания / удаления каталогов / файлов; - для создания файлов touch Haпример touch /text.txt - для удаления каталогов rm Haпример rm / text.txt - для создания каталогов mkdir Haпример mkdir /text - для удаления каталогов rmdir Haпример rmdir /text для задания определённых прав на файл / каталог; - используется команда chmod Haпример chmod +x/text для просмотра истории команд. - используется команда history Haпример history 3) Что такое файловая система? Приведите примеры с краткой характеристикой. - файловая система- это система организации файлов в операционной системе Например FAT - одна из старых файловых систем представленных Microsoft не поддерживала шифрование права пользователей к файлам и не имела возможности журналирования

EXT4 - Более современная файловая система которая активно используется в linux поддерживает журналирование,шифрование и права пользователей к

файлам

- 4) Как посмотреть, какие файловые системы подмонтированы в ОС? можно посмотреть с помощью команды утилита df
- 5) Как удалить зависший процесс? По PID с помощью команды kill