Table 1. Performance Comparison Across CLIP Architectures and Post-processing Methods. Comparative evaluation of our approach against state-of-the-art methods (Trident and CLIPer) across different CLIP architectures (CLIP-ViT-B/16, CLIP-ViT-L/14, OpenCLIP-ViT-H/14) with and without post-processing. Best results are shown in bold, second-best results are underlined. Note: CorrCLIP is not included in the comparison as its implementation is not publicly available.

Method	Post-processing	With background			Without background				A		
		VOC21	Context60	COCO-Obj	VOC20	City	Context59	ADE	Stuff	- Avg.	
Without Post-processing											
CLIP-ViT-B/16											
CLIPer(Sun et al., 2024a)	NO	60.1	34.8	36.0	84.0	-	38.5	19.8	25.3	-	
Trident(Shi et al., 2024)	NO	<u>64.5</u>	<u>37.2</u>	39.5	83.7	<u>40.4</u>	<u>40.9</u>	20.9	27.6	<u>44.5</u>	
Ours	NO	66.1	37.7	<u>39.4</u>	85.4	42.8	41.2	21.0	<u>27.3</u>	44.8	
CLIP-ViT-L/14											
CLIPer(Sun et al., 2024a)	NO	61.2	34.3	39.6	88.2	-	39.8	21.8	25.8	-	
Trident(Shi et al., 2024)	NO	<u>61.4</u>	<u>36.4</u>	<u>40.2</u>	84.8	<u>40.4</u>	<u>39.8</u>	23.2	<u>26.4</u>	<u>42.5</u>	
Ours	NO	67.0	37.3	40.2	<u>85.5</u>	42.7	41.0	22.9	27.1	45.5	
OpenCLIP-ViT-H/14											
CLIPer(Sun et al., 2024a)	NO	58.0	34.1	39.2	85.8	-	36.9	22.1	25.2	-	
Trident(Shi et al., 2024)	NO	<u>68.6</u>	38.2	40.8	87.7	43.6	<u>42.6</u>	25.4	28.0	<u>46.6</u>	
Ours	NO	69.1	39.0	<u>40.0</u>	86.9	<u>43.0</u>	42.8	<u>24.5</u>	28.1	46.7	
			With Post-p	rocessing							
CLIP-ViT-B/16											
CLIPer(Sun et al., 2024a)	YES	65.9	37.6	39.0	85.2	-	41.7	21.2	27.5	-	
Trident(Shi et al., 2024)	YES	<u>67.1</u>	<u>38.6</u>	41.1	84.5	<u>42.9</u>	<u>42.2</u>	<u>21.9</u>	<u>28.3</u>	<u>45.8</u>	
Ours	YES	70.4	39.8	<u>40.8</u>	86.2	46.4	43.6	22.2	28.7	47.3	
CLIP-ViT-L/14											
CLIPer(Sun et al., 2024a)	YES	69.8	38.0	43.3	90.0	-	43.6	24.4	28.7	-	
Trident(Shi et al., 2024)	YES	62.6	37.3	<u>40.5</u>	<u>85.5</u>	<u>43.0</u>	40.9	<u>24.0</u>	27.1	<u>44.3</u>	
Ours	YES	71.3	39.6	40.7	86.5	46.4	<u>43.3</u>	23.8	<u>28.5</u>	47.5	
OpenCLIP-ViT-H/14											
CLIPer(Sun et al., 2024a)	YES	88.9	<u>39.3</u>	42.8	88.8	-	<u>43.2</u>	<u>24.4</u>	28.3	-	
Trident(Shi et al., 2024)	YES	<u>70.8</u>	40.1	<u>42.2</u>	<u>88.7</u>	47.6	44.3	26.7	<u>28.6</u>	48.6	
Ours	YES	71.7	40.5	41.4	87.6	<u>47.0</u>	44.8	<u>25.6</u>	28.8	<u>48.4</u>	

Table 2. Ablation Study on Different VFM Feature Extractors. We compare four DINO variants: ViT-Base with patch sizes of 8 (B8) and 16 (B16), and ViT-Small with patch sizes of 8 (S8) and 16 (S16); two DINOV2 variants: ViT-B/14 and ViT-S/14; and the ViT-B/16 architecture from SAM. Results demonstrate that DINOV2 ViT-S/14 achieves the best performance on the VOC20 dataset, while DINO ViT-B/8 outperforms all other architectures across the remaining datasets.

Model	Dataset										
	VOC21	Context-60	COCO	VOC20	Cityscapes	Context-59	ADE20K	COCO-Stuff			
DINO											
ViT-B/8	70.41	39.82	40.80	86.18	46.41	43.56	22.24	28.72			
ViT-B/16	69.26	39.67	40.46	85.99	45.56	42.47	22.11	27.88			
ViT-S/8	69.96	39.49	40.63	86.02	45.94	42.79	22.17	28.24			
ViT-S/16	68.91	39.12	40.27	85.88	45.23	42.01	21.96	27.42			
DINOV2											
ViT-S/14	68.26	39.13	40.66	86.61	44.33	43.09	21.78	28.41			
ViT-B/14	68.17	39.03	40.57	86.50	44.59	43.07	21.87	28.48			
SAM											
ViT-B/16	68.36	38.0	38.84	84.33	43.64	40.68	21.16	27.37			