

第三节 一元线性回归

- 一、一元线性回归
- ·二、a,b的估计
- 三、总体方差的估计
- 四、线性假设的显著性检验
- ·五、系数b的置信区间
- 六、回归预测
- 七、可化为一元线性回归的例子(自学)

2025/3/17 233

- 1/26页 -

•一、一元线性回归

- 1 只涉及一个自变量的回归;
- 因变量y与自变量x之间为线性关系。
 - 被预测或被解释的变量称为因变量(dependent variable),用y表示;
 - 用来预测或用来解释因变量的一个或多个变量称 为自变量(independent variable),用x表示。
- 3. 因变量与自变量之间的关系用一个线性方程来表示。

·一元线性回归模型的基本形式

①描述因变量y如何依赖于自变量x和误差项 ε 的方

程称为理论回归模型

②一元线性回归模型可表示为 $y_i = a + bx_i + \varepsilon_i, \varepsilon_i \square N(0, \sigma^2), A \varepsilon_i$ 相互独立

■ y是x的线性函数(部分)加上随机误差项

- 线性部分反映了由于 x 的变化而引起的 y 的变化; 误差项 ε 是随机变量(未纳入模型但对y有影响的诸多 因素的综合影响), 反映了除 x 和 y 之间的线性关 系之外的随机因素对 y 的影响, 是不能由 x 和 y 之间的线性关系所解释的变异性。
- a和 b称为模型的参数

《概率论与数理统计》 - 4/26页 -

●在抽样中,自变量x的取值是固定的,即x是非随机的;因变量y是随机的。

即当解释变量X取某固定值时,Y的值不确定,Y的不同取值形成一定的分布,这是Y的条件分布。

回归线,描述的是Y的条件期望E(Y/xi)与之对应xi,代表这些Y的条件期望的点的轨迹所形成的直线或曲线。

如

$$E(y_i) = a + bx_i$$

注意:

由于单个数据点是从y的 分布中抽出来的,可能不在 这条回归线上,因此必须包含 随机误差项ε来描述模型数据点.

>

可归模型的基本假设

假设1: 误差项的期望值为0, 即对所有的i有 $E(\varepsilon_i)=0$

假设2:误差项的方差为常数,即对所有的i有 $var(\varepsilon_i) = E(\varepsilon_i^2) = \sigma$

假设3: 误差项之间不存在自相关关系, 其协方差为0,

 $i \neq j \parallel \leq \operatorname{cov}(\varepsilon_i = 0) = 0$

有

假设4: 自变量是给定的变量,与随机误差项线性无关;

假设5:随机误差项服从正态分布。即 $\varepsilon^{\sim}N(0,\sigma^2)$

以上这些基本假设是德国数学家高斯最早提出的,故也称为高斯假定或标准假定。

•回归方程(regression equation)

一描述 y 的平均值或期望值如何依赖于 x 的方程称为回归方程

一元线性回归方程的形式如下:

$$\hat{y} = a + bx$$

- 方程的图示是一条直线, 也称为直线回归方程。
- a是回归直线在y轴上的截距,是当x=0时y的期望值;
- b是直线的斜率,称为回归系数,表示当 x 每变动一个单位时,y的平均变动值。

·估计的回归方程(estimated regression equation)

- 1. 总体回归参数 a 和 b 是未知的,必须利用样本数据去估计;
- 2. 用样本统计量 \hat{a} , \hat{b} 代替回归方程中的未知参数 a 和 b ,就得到了估计的回归方程.
- 3. 一元线性回归中估计的回归方程为

$$\hat{y} = \hat{a} + \hat{b}x$$

•其中:a 是估计的回归直线在y 轴上的截距,b 是直线的斜率,它表示对于一个给定的x 的值,b 是y 的估计值,也表示x 每变动一个单位时,y 的平均变动值。

二、a,b的估计(音迪取小一米

(ordinary least squares estimato

1. 使因变量的观察值与估计值之间的离差平方和 达到最小来求得 \hat{a} 和 \hat{b} 的方法。即

$$\sum_{i=1}^{n} (y_i - \hat{y})^2 = \sum_{i=1}^{n} (y_i - \hat{a} - \hat{b}x_i)^2 = \mathbb{B} \cdot \mathbb{1}$$

2. 用最小平方法拟合的直线来代表x与y之间的 关系与实际数据的误差比其他任何直线的误 差都小。

参数的最小二乘估计

$$\hat{b} = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2} = \frac{\sum (x - x)(y - y)}{\sum (x - x)^2}$$

$$\hat{a} = y - \hat{b}x$$

2025/3/17

一家大型商业银行在多个地区设有分行, 其业务主 要是进行基础设施建设、国家重点项目建设、固定资产投 资等项目的贷款。近年来, 该银行的贷款额平稳增长, 但 不良贷款额也有较大比例的增长,这给银行业务的发展带 来较大压力。为弄清不良贷款形成的原因,管理者希望利 用银行业务的有关数据进行定量分析, 以便找出控制不良 贷款的办法。下面是该银行所属的25家分行2002年的有关 业务数据

2025/3/17 243

《概率论与数理统计》 - 11/26页 -

A	В		C	D	E	F
分行号	不良贷款	(亿元)	各项贷款余额(亿元)	本年累计应收贷款(亿元)	贷款项目个数(个)	本年固定资产投资额(亿元)
1		0.9	67.3	6.8	8	51.9
2	?	10.1	111.3	19.8	16	90.9
3	3	4.8	173	7.7	17	73.7
4		3.2	80.8	7.2	10	14.5
5	i	17.8	199.7	16.5	19	63. 2
6	5	2.7	16.2	2. 2	1	2. 2
7		1.6	107.4	10.7	17	20. 2
8	}	12.5	185. 4	27.1	18	43.8
ć)	7	96.1	1.7	10	55.9
10)	2.6	72.8	9. 1	14	64.3
11	e e	0.3	64.2	2.1	11	42. 7
12	?	14	132. 2	11.2	23	76. 7
13	3	0.8	58. 6	6	14	22. 8
14		13.5	174.6	12.7	26	117.1
15	i	30.2	263.5	15. 6	34	146.7
16	5	8	79.3	8. 9	15	29. 9
17		5.2	14.8	0.3	2	42.1
18	3	8.4	73.5	5.9	11	25. 3
19)	10	24. 7	5	4	13. 4
20)	6.8	139. 4	7. 2	28	64.3
21		31.6	368. 2	16.8	32	163.9
22	?	1.6	95. 7	3.8	10	44. 5
23	3	9.2	109.6	10.3	14	67.9
24		17.2	196. 2	15. 8	16	39. 7
25	i	8.2	102. 2	12	10	97.1
	2025/3/1.	/				Z 44

不良贷款对其他变量的散点图

>	· 具用Exc	el计算相	关系数			
		列 1	列 2	列 3	列 4	列 5
	列 1	1				
	列 2	0.849736	1			
	列 3	0.613003	0.679407	1		
	列 4	0.713496	0.851427	0.589245	1	
	列 5	0.738537	0.779702	0.471902	0.755278	1
	2025/3/17					246

	/							
SUMMARY OUTPU	JT							
回归	l统计							
Multiple R	0.849736							
R Square	0. 722051							
Adjusted R Square	0. 709966							
标准误差	4. 45116							
观测值	25							
方差分析	df	SS	MS	F	Significance F			
回归分析	1	1183. 795	1183, 795	59. 74896				
残差	23	455. 6949	19. 81282	30111300	,, ,,,,			
总计	24	1639. 49						
	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%	下限 95.0%	上限 95.0%
Intercept	-1. 38473	1. 625488	-0. 85189	0. 40306	-4. 74731	1. 977845	-4. 74731	1. 977845
X Variable 1	0. 087411	0. 011308	7. 729745	7. 69E-08	0. 064018	0. 110804	0. 064018	0. 110804
2025/3	/17							247

经验回归方程的求法

•回归方程为:

$$\hat{y} = -1.38473 + 0.087411 x$$

·回归系数**b** =0.087411 表示,贷款余额每增加1亿元,不良贷款平均增加0.087411亿元

2025/3/17

估计回归方程的求法

不良贷款对贷款余额回归方程的图示

- 17/26页 -

的估计

$$Q_e = \sum (y - \hat{y})^2 = \sum (y - \hat{a} - \hat{b}x)^2$$

为残差平方和,则

$$\overline{G} = \sqrt{\frac{Q_e}{n-2}}$$

2025/3/17

四、线性假设的显著性检验

$$H_0$$
: $b = 0, H_1$: $b \neq 0$

$$\hat{b} \square N(b,\sigma^2/S_{xx}), \frac{(n-2)\sigma^2}{\sigma^2} \square \chi^2(n-2),$$

$$\frac{\hat{b}-b}{\sqrt{S_{xx}}}$$
 $\Box t(n-2)$ 。 当 H_0 为真时,

$$t = \frac{\hat{b}}{\sqrt{S_{xx}}} | t(n-2), 拒绝域为 | t | \ge t_{\alpha/2}(n-2).$$

2025/3/17

五、系数b的置信区间P252

b的置信水平为1-α的置信区间为:

$$(\hat{b} \pm t_{\alpha/2}(n-2)\frac{\sigma}{\sqrt{S_{xx}}})$$

2025/3/17

$\sqrt{\text{回归函数}\mu(x)} = a + bx$ 数值的点估计和置信区间

回归函数的点估计值为

$$\widehat{y}_0 = \mu(x_0) = \widehat{a} + \widehat{b}x$$

 $\bullet \ \mu (x_0) = a + bx$ 的置信水平为

$$1 - \alpha$$

a的單信区间为
$$(n-2)$$
 $\sqrt{\frac{1}{n}} + \frac{(x_0 - \overline{x})^2}{S_{xx}}$

2025/3/17

 $Y_0 = a + bx_0 + \varepsilon_0$ 的点预测值: $Y_0 = \hat{a} + \hat{b}x_0$ Y_0 的置信水平为1- α 的预测区间为

$$\left(\hat{a} + \hat{b}x_0 \pm t_{\alpha/2}(n-2)\sigma_{\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}}\right)$$

2025/3/17 254

第四节 多元线性回归

P257

因为客观现象非常复杂,现象之间的联 系方式和性质各不相同,影响因变量变 化的自变量往往是多个而不只是一个, 其中既有主要因素也有次要因素。如果 仅仅进行一元回归分析, 不一定能得到 满意的结果。因此,有必要将一个因变 量与多个自变量联系起来进行分析。

2025/3/17 255

多元线性回归

在线性相关条件下,研究两个和两个以上 自变量对一个因变量的数量变化关系,称为多 元线性回归分析,表现这一数量关系的数学表 达式则称为多元线性回归方程或多元线性回归 模型。

- 24/26页 -

2025/3/17

多元线性回归

多元线性回归模型:

$$Y = b_0 + b_1 x_1 + \dots + b_p x_p + \varepsilon, \varepsilon \square N(0, \sigma^2)$$

多元线性回归方程:

$$\hat{y} = \hat{b}_0 + \hat{b}_1 x_1 + \dots + \hat{b}_p x_p$$

2025/3/17

