Optimization and Computational Linear Algebra – Brett Bernstein

Recitation 2

- 1. Which of the following functions are linear? If the function is linear, what is the kernel?
 - (a) $f_1: \mathbb{R}^2 \to \mathbb{R}^2$ such that $f_1(a,b) = (2a, a+b)$
 - (b) $f_2: \mathbb{R}^2 \to \mathbb{R}^3$ such that $f_2(a, b) = (a + b, 2a + 2b, 0)$
 - (c) $f_3: \mathbb{R}^2 \to \mathbb{R}^3$ such that $f_3(a,b) = (2a, a+b, 1)$
 - (d) $f_4: \mathbb{R}^2 \to \mathbb{R}$ such that $f_4(a,b) = \sqrt{a^2 + b^2}$
 - (e) $f_5: \mathbb{R} \to \mathbb{R}$ such that $f_5(x) = 5x + 3$

Solution.

(a) Linear:

$$f_1(ca, cb) = (2ca, ca + cb) = c(2a, a + b) = cf_1(a, b)$$

for all $c \in \mathbb{R}$ and

$$f_1(a_1 + a_2, b_1 + b_2) = (2(a_1 + a_2), (a_1 + a_2) + (b_1 + b_2))$$

= $(2a_1, a_1 + b_1) + (2a_2, a_2 + b_2)$
= $f_1(a_1, b_1) + f_1(a_2, b_2).$

Kernel is $\{0\}$.

- (b) Linear, similar proof. Kernel is $\{(c, -c) : c \in \mathbb{R}\}$.
- (c) Not linear, $f_3(0,0) = (0,0,1)$.
- (d) Not linear, $f_4(1,0) + f_4(0,1) = 2$ and $f_4(1,1) = \sqrt{2}$.
- (e) Not linear, $f_5(0) = 3$.
- 2. If v, w are linearly independent, must v, v + w also be linearly independent? Must it have the same span?

Solution. Proven more generally in next question.

- 3. Let v_1, \ldots, v_m be linearly independent vectors in \mathbb{R}^n . Prove that each of the following are linearly independent and have the same span as v_1, \ldots, v_m .
 - (a) $T = \{v_1, \dots, v_{i-1}, av_i, v_{i+1}, \dots, v_m\}$ where $a \neq 0$ and $1 \leq i \leq m$ is any index.
 - (b) $U = \{v_1, \dots, v_{i-1}, v_i + bv_j, v_{i+1}, \dots, v_m\}$ where $j \neq i$ are indices, and $b \in \mathbb{R}$.

Solution.

(a) *Proof.* First we prove linear independence. Suppose

$$\sum_{k \neq i} \alpha_k v_k + \alpha_i(av_i) = 0$$

for some $\alpha \in \mathbb{R}^m$. Regrouping we have

$$\sum_{k \neq i} \alpha_k v_k + (\alpha_i a) v_i = 0$$

showing $\alpha = 0$ by the linear independence of v_1, \ldots, v_m and using the fact that $a \neq 0$.

Next we prove it has the same span. Suppose $x \in \text{Span}(v_1, \dots, v_m)$ so that

$$x = \sum_{k=1}^{m} \alpha_k v_k = \sum_{k \neq i} \alpha_k v_k + (\alpha_i/a) a v_k$$

for some $\alpha \in \mathbb{R}^m$. This shows that $x \in \operatorname{Span}(T)$. Thus we have proven $\operatorname{Span}(v_1, \ldots, v_m) \subseteq \operatorname{Span}(T)$. To get the other direction, same argument can be applied in reverse using 1/a in place of a.

(b) *Proof.* First we prove linear independence. Suppose

$$\sum_{k \neq i} \alpha_k v_k + \alpha_i (v_i + bv_j) = 0$$

for some $\alpha \in \mathbb{R}^m$. Regrouping we have

$$0 = \sum_{k \neq i,j} \alpha_k v_k + \alpha_i v_i + (\alpha_j + \alpha_i b) v_j.$$

By the linear independence of B we have $\alpha_k = 0$ for $k \neq j$ and $\alpha_j + \alpha_i b = 0$. But $\alpha_i = 0$ so $\alpha_j = 0$ as well.

Next we prove it has the same span. Suppose $x \in \text{Span}(v_1, \dots, v_m)$ so that

$$x = \sum_{k=1}^{m} \alpha_k v_k = \sum_{k \neq i, j} \alpha_k v_k + \alpha_i (v_i + bv_j) + (\alpha_j - b\alpha_i) v_j$$

for some $\alpha \in \mathbb{R}^m$. This shows that $x \in \text{Span}(U)$. The same argument can be applied again by replacing b with -b to obtain the other direction.

4. Let v_1, \ldots, v_m be linearly independent vectors in a subspace V of \mathbb{R}^n . Show that if they do not span V then there is a vector $w \in V$ such that v_1, \ldots, v_m, w are linearly independent.

Solution.

Proof. Choose $w \in V \setminus \text{Span}(v_1, \ldots, v_m)$. Suppose

$$\alpha_1 v_1 + \dots + \alpha_m v_m + bw = 0$$

for some $\alpha \in \mathbb{R}^m$ and $b \in \mathbb{R}$. Rearranging we have

$$\alpha_1 v_1 + \cdots + \alpha_m v_m = -bw.$$

If b=0 then we must have $\alpha=0$ by the linear independence of v_1,\ldots,v_m . If $b\neq 0$ then we divide to obtain

$$(-\alpha_1/b)v_1 + \dots + (-\alpha_m/b)v_m = w$$

showing $w \in \text{Span}(v_1, \dots, v_m)$, a contradiction.

5. Let v_1, \ldots, v_m span \mathbb{R}^n and suppose w_1, \ldots, w_p is a subset of \mathbb{R}^n with p > m. Then w_1, \ldots, w_p are linearly dependent.

Solution.

Proof. Assume, for contradiction, that w_1, \ldots, w_p are linearly independent. Since v_1, \ldots, v_m spans \mathbb{R}^n , we can represent each w_i as a linear combination of the v_i :

$$\begin{aligned}
 w_1 &= \alpha_{1,1} v_1 + \dots + \alpha_{1,m} v_m \\
 w_2 &= \alpha_{2,1} v_1 + \dots + \alpha_{2,m} v_m \\
 &\vdots &\vdots \\
 w_p &= \alpha_{p,1} v_1 + \dots + \alpha_{p,m} v_m.
 \end{aligned}$$

The earlier exercise shows we can perform row-reduction (also called Gaussian elimination) on the $p \times m$ matrix with entries $\alpha_{i,j}$ and preserve linear independence. Since p > m row reduction will yield at least one row that is entirely zero. But a linearly independent set cannot have a zero vector giving us a contradiction. (See slides for more details on row reduction.)

Note, the proof only requires that $w_1, \ldots, w_p \in \text{Span}(v_1, \ldots, v_m)$, so we actually obtain a more general result for arbitrary vector spaces.

6. Prove that any basis for \mathbb{R}^n has length n.

Solution.

Proof. The standard basis has length n. If another basis B has a different length, then applying the previous exercise shows whichever of B or the standard basis is larger must be linearly dependent, a contradiction.

7. Let V be a subspace of \mathbb{R}^n . Prove that V has a basis. [Recall that a basis for V is a linearly independent set of vectors that spans V.]

Solution.

Proof. Our plan is to begin with $S_0 = \emptyset$ and grow a basis for V one vector at a time. By exercise 4, if $V \neq \{0\}$ we can add a non-zero vector $v_1 \in V$ to obtain $S_1 = \{v_1\}$. Then we choose a vector $v_2 \in V \setminus \text{Span}(v_1)$ and obtain $S_2 = \{v_1, v_2\}$. By exercise 4, we can always add a vector to S_k and maintain linear independence as long as $\text{Span}(S_k) \neq V$. Thus, we are done if we can show this process of adding vectors must terminate in a finite number of steps. But we cannot add more than n vectors, since the earlier result shows the resulting set would be linearly dependent.

8. Let $B = \{v_1, \ldots, v_m\}$ and $C = \{w_1, \ldots, w_p\}$ be disjoint linearly independent subsets of \mathbb{R}^n (with m and p elements, respectively). Show that $B \cup C$ is linearly independent if $\mathrm{Span}(B) \cap \mathrm{Span}(C) = \{0\}$. [Disjointness is not necessary, but we include it to avoid confusion.]

Solution.

Proof. Suppose we have

$$\sum_{i=1}^{m} \alpha_i v_i + \sum_{j=1}^{p} \beta_j w_j = 0$$

for some $\alpha \in \mathbb{R}^m$ and $\beta \in \mathbb{R}^p$. Then we can write

$$\sum_{i=1}^{m} \alpha_i v_i = \sum_{j=1}^{p} -\beta_j w_j.$$

If $\alpha \neq 0$ then we must have $\sum_{i=1}^{m} \alpha_i v_i \neq 0$ since B is linearly independent. But then $\sum_{i=1}^{m} \alpha_i v_i \in \operatorname{Span}(B)$ and $\sum_{i=1}^{m} \alpha_i v_i \in \operatorname{Span}(C)$ contradicting our assumption that $\operatorname{Span}(B) \cap \operatorname{Span}(C) = \{0\}$. If $\alpha = 0$ then we have

$$0 = \sum_{j=1}^{p} -\beta_j w_j$$

which forces $\beta = 0$ by the linear independence of C. Thus we have shown $\alpha = \beta = 0$ completing the proof of linear independence.