Die Gravitationskonstante g auf einer schiefen Bahn

Sascha Huber, Aaron Stampa, Joanne Gautschi, Damien Flury

1. Dezember 2019

Inhaltsverzeichnis

L	\mathbf{Exp}	eriment										2
	1.1	Ball auf der schiefen Ebene							 			2

Abbildung 1: Schiefe Bahn

Number	Height	$\sin \theta$	Trial 1	Trial 2	Trial 3	Average
of	\mathbf{of}		(m/s^2)	(m/s^2)	(m/s^2)	accele-
books	\mathbf{books}					ration
	(m)					(m/s^2)
3	0.115	0.0479	0.26	0.31	0.36	0.310
4	0.144	0.0600	0.49	0.38	0.41	0.426
5	0.174	0.726	0.60	0.45	0.38	0.476
6	0.200	0.834	0.61	0.59	0.56	0.586
7	0.275	0.115	0.97	1.22	1.22	1.137

1 Experiment

Wir haben unser Experiment eingerichtet, wie auf Abbildung 1 dargestellt. Dann haben wir verschiedene Objekte herunterrollen lassen mit verschieden Höhen h. Die Länge x ist die Distanz, in welcher wir die Objekte messen. Der Winkel θ bezeichnet den Winkel der schiefen Ebene in Bogenmass.

1.1 Ball auf der schiefen Ebene

Zunächst haben wir einen Ball herunterrollen lassen. Sein Radius r beträgt etwa 4 cm, seine Masse m 242 g.

Wir haben die Strecke s in Abhängigkeit der Zeit t gemessen, um die Beschleunigung a zu bestimmen. Dazu haben wir folgende Formel angewandt:

$$s = \frac{1}{2} \cdot a \cdot t^2 \tag{1}$$

$$s = \frac{1}{2} \cdot a \cdot t^{2}$$

$$a = \frac{2 \cdot s}{t^{2}}$$
(Termumformung) (2)