Optimization for Machine Learning (CSL4010)

Dr. Md Abu Talhamainuddin Ansary Department of Mathematics, IIT Jodhpur

PPT 2 Convex Set and Convex Function

Convex optimization problem

Consider the optimization problem

$$(P): \min_{x \in X \subset \mathbb{R}^n} f(x)$$

 (P) is a convex optimization problem if f is a convex function and X is a convex set.

Convex optimization problem

Consider the optimization problem

$$(P): \min_{x \in X \subseteq \mathbb{R}^n} f(x)$$

- (P) is a convex optimization problem if f is a convex function and X is a convex set.
- Consider the problem

min
$$(x_1 - 2)^2 + (x_2 - 2)^2$$

s.t. $x_1^2 + x_2^2 = 1$

Convex optimization problem

Consider the optimization problem

$$(P): \min_{x \in X \subseteq \mathbb{R}^n} f(x)$$

- (P) is a convex optimization problem if f is a convex function and X is a convex set.
- Consider the problem

min
$$(x_1 - 2)^2 + (x_2 - 2)^2$$

s.t. $x_1^2 + x_2^2 = 1$

• Set of feasible points is $X = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 = 1\}$, which is not a convex set. Hence it is not a convex optimization problem.

The problem

min
$$f(x)$$

s.t. $h_j(x) = 0$ $j = 1, 2, ..., p$

is not a convex function if any h_i is nonlinear.

• The above problem will be a convex function if $h_j(x) = a^{j^T}x + b_j$ for all j.

The problem

min
$$f(x)$$

s.t. $h_j(x) = 0$ $j = 1, 2, ..., p$

is not a convex function if any h_j is nonlinear.

- The above problem will be a convex function if $h_j(x) = a^{j^T} x + b_j$ for all j.
- A convex optimization problem with equality constraints can be written as

min
$$f(x)$$

$$s.t. Ax = b$$

where $A \in M_{p \times n}$, $b \in \mathbb{R}^p$.

min
$$(x_1-2)^2 + (x_2-2)^2$$

s.t. $x_1^2 + x_2^2 \le 1$

min
$$(x_1 - 2)^2 + (x_2 - 2)^2$$

s.t. $x_1^2 + x_2^2 \le 1$

• Set of feasible points is $X = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 1\}$ is a convex set. Hence it is a convex optimization problem.

min
$$(x_1 - 2)^2 + (x_2 - 2)^2$$

s.t. $x_1^2 + x_2^2 \le 1$

- Set of feasible points is $X = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 1\}$ is a convex set. Hence it is a convex optimization problem.
- The problem

min
$$f(x)$$

s.t. $g_i(x) \le 0$ $i = 1, 2, ..., m$

will be a convex optimization problem if g_i is convex for all i.

min
$$(x_1 - 2)^2 + (x_2 - 2)^2$$

s.t. $x_1^2 + x_2^2 \le 1$

- Set of feasible points is $X = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 1\}$ is a convex set. Hence it is a convex optimization problem.
- The problem

min
$$f(x)$$

s.t. $g_i(x) \le 0$ $i = 1, 2, ..., m$

will be a convex optimization problem if g_i is convex for all i.

The problem

min
$$f(x)$$

s.t. $g_i(x) \le 0$ $i = 1, 2, ..., m$
 $h_j(x) = 0$ $j = 1, 2, ..., p$

will be a convex optimization problem if

- f is a convex function
- g_i is convex for all i
- h_i is affine $(h_i(x) = a^{j^T}x b_i)$

Global/local minima

Consider the optimization problem

$$(P): \min_{x \in X \subseteq \mathbb{R}^n} f(x)$$

Global/local minima

Consider the optimization problem

$$(P): \min_{x \in X \subseteq \mathbb{R}^n} f(x)$$

- $x^* \in X$ is said to be a:
 - global minima of f on X if $f(x^*) \le f(x)$ for all $x \in X$.
 - strict global minima of f on X if $\overline{f(x^*)} < f(x)$ for all $x \in X \setminus \{x^*\}$.
 - local minima of f if there exists a neighbourhood of x^* ($N(x^*, \epsilon)$, $\epsilon > 0$) such that $f(x^*) \le f(x)$ for all $x \in X \cap N(x^*, \epsilon)$
 - strict local minima of f if there exists a neighbourhood of x^* ($N(x^*, \epsilon), \epsilon > 0$) such that $f(x^*) < f(x)$ for all $x \in X \cap N(x^*, \epsilon) \setminus \{x^*\}$

Every local minima of a convex optimization problem is a global minima.

Every local minima of a convex optimization problem is a global minima.

Proof:

- Suppose x^* is a local minima of $\min_{x \in X} f(x)$.
- Then there exists $N(x^*, \epsilon)$ such that $f(x^*) \leq f(x)$ for all $x \in X \cap N(x^*, \epsilon)$.

Every local minima of a convex optimization problem is a global minima.

Proof:

- Suppose x^* is a local minima of $\min_{x \in X} f(x)$.
- Then there exists $N(x^*, \epsilon)$ such that $f(x^*) \le f(x)$ for all $x \in X \cap N(x^*, \epsilon)$.
- If possible suppose x^* is not a global minima. Then there exists x^1 in X such that $f(x^1) < f(x^*)$.

Every local minima of a convex optimization problem is a global minima.

Proof:

- Suppose x^* is a local minima of $\min_{x \in X} f(x)$.
- Then there exists $N(x^*, \epsilon)$ such that $f(x^*) \leq f(x)$ for all $x \in X \cap N(x^*, \epsilon)$.
- If possible suppose x^* is not a global minima. Then there exists x^1 in X such that $f(x^1) < f(x^*)$.

0

• Since X is a convex set, $\lambda x^1 + (1 - \lambda)x^* \in N(x^*, \epsilon)$ for sufficiently small $\lambda > 0$.

- Since X is a convex set, $\lambda x^1 + (1 \lambda)x^* \in N(x^*, \epsilon)$ for sufficiently small $\lambda > 0$.
- Since $\lambda x^1 + (1 \lambda)x^* \in N(x^*, \epsilon)$

$$f(x^*) \le f\left(\lambda x^1 + (1-\lambda)x^*\right) \tag{1}$$

Since f is a convex function

$$f\left(\lambda x^1+(1-\lambda)x^*\right)\leq \lambda f(x^1)+(1-\lambda)f(x^*)$$

- Since X is a convex set, $\lambda x^1 + (1 \lambda)x^* \in N(x^*, \epsilon)$ for sufficiently small $\lambda > 0$.
- Since $\lambda x^1 + (1 \lambda)x^* \in N(x^*, \epsilon)$

$$f(x^*) \le f\left(\lambda x^1 + (1 - \lambda)x^*\right) \tag{1}$$

Since f is a convex function

$$f\left(\lambda x^1 + (1-\lambda)x^*\right) \le \lambda f(x^1) + (1-\lambda)f(x^*)$$

• Then from (1),

$$f(x^*) \le \lambda f(x^1) + (1 - \lambda)f(x^*)$$

This implies $f(x^*) \leq f(x^1)$, a contradiction.

If f is a strictly convex function then $\min_{x \in X} f(x)$ has unique solution.

If f is a strictly convex function then $\min_{x \in X} f(x)$ has unique solution.

Proof:

- If possible, suppose $\min_{x \in X} f(x)$ has two optimal solution $x^{1,*}, x^{2,*}$ such that $f(x^{1,*} = f(x^{2,*}) = f^*$.
- Then

$$f(1/2x^{1,*} + 1/2x^{2,*} <$$

a contradiction.

• Consider the unconstrained optimization problem $\min_{x \in \mathbb{R}^n} f(x)$ where f is a (strictly) convex function.

- Consider the unconstrained optimization problem $\min_{x \in \mathbb{R}^n} f(x)$ where f is a (strictly) convex function.
- Suppose $\nabla f(x^*) = 0$ for some $x^* \in \mathbb{R}^n$.

- Consider the unconstrained optimization problem $\min_{x \in \mathbb{R}^n} f(x)$ where f is a (strictly) convex function.
- Suppose $\nabla f(x^*) = 0$ for some $x^* \in \mathbb{R}^n$.
- Then for any y,

$$f(y)(>) \ge$$

- Consider the unconstrained optimization problem $\min_{x \in \mathbb{R}^n} f(x)$ where f is a (strictly) convex function.
- Suppose $\nabla f(x^*) = 0$ for some $x^* \in \mathbb{R}^n$.
- Then for any y,

$$f(y)(>) \ge$$

• Hence x^* is (unique) global minimizer.

• Consider the least square problem

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||Ax - y||^2$$
 (2)

• Consider the least square problem

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||Ax - y||^2$$
 (2)

• Clearly $\nabla f(x) = A^T A x - A^T y$ and $\nabla^2 f(x) = A^T A$.

Consider the least square problem

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||Ax - y||^2$$
 (2)

- Clearly $\nabla f(x) = A^T A x A^T y$ and $\nabla^2 f(x) = A^T A$.
- For any $x \in \mathbb{R}^n$, $x^T(A^TA)x = (Ax)^T(Ax) = ||Ax||^2 \ge 0$. This implies f is a convex function.

Consider the least square problem

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||Ax - y||^2$$
 (2)

- Clearly $\nabla f(x) = A^T A x A^T y$ and $\nabla^2 f(x) = A^T A$.
- For any $x \in \mathbb{R}^n$, $x^T(A^TA)x = (Ax)^T(Ax) = ||Ax||^2 \ge 0$. This implies f is a convex function.
- **Lemma:** *f* will be strictly convex if column vectors of *A* are linearly independent.

Consider the least square problem

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||Ax - y||^2$$
 (2)

- Clearly $\nabla f(x) = A^T A x A^T y$ and $\nabla^2 f(x) = A^T A$.
- For any $x \in \mathbb{R}^n$, $x^T(A^TA)x = (Ax)^T(Ax) = ||Ax||^2 \ge 0$. This implies f is a convex function.
- Lemma: f will be strictly convex if column vectors of A are linearly independent.
- **Proof:** Suppose $A = [a^1, a^2, \dots, a^n]$, then $Ax = a^1x_1 + a^2x_2 + \dots + a^nx_n$. Now if $\{a^1, a^2, \dots, a^n\}$ is linearly independent then Ax = 0 if and only if x = 0. Then for any nonzero x, $x^T(A^TA)x = \|Ax\|^2 > 0$. Hence $\nabla^2 f$ is positive definite. So f is strictly convex.

• Since f is convex x^* will be a minima iff $\nabla f(x^*) = 0$. This implies

$$x^* = (A^T A)^{-1} (A^T y).$$

Since $A^T A$ is positive definite $det(A^T A) > 0$, so $(A^T A)^{-1}$ exists.

• For any $x \in \mathbb{R}^n$,

$$||Ax - y||^{2} = ||Ax - Ax^{*} + Ax^{*} - y||^{2}$$

$$= ||Ax - Ax^{*}||^{2} + ||Ax^{*} - y||^{2} + 2(Ax - Ax^{*})^{T}(Ax^{*} - y)$$

$$= ||Ax - Ax^{*}||^{2} + ||Ax^{*} - y||^{2} + (x - x^{*})^{T}(A^{T}Ax^{*} - A^{T}y)$$

$$\geq ||Ax^{*} - y||^{2}.$$

The last inequality follows since $x^* = (A^T A)^{-1} A^T y$ implies $(A^T A x^* - A^T y) = 0$.

• For any $x \in \mathbb{R}^n$,

$$||Ax - y||^{2} = ||Ax - Ax^{*} + Ax^{*} - y||^{2}$$

$$= ||Ax - Ax^{*}||^{2} + ||Ax^{*} - y||^{2} + 2(Ax - Ax^{*})^{T}(Ax^{*} - y)$$

$$= ||Ax - Ax^{*}||^{2} + ||Ax^{*} - y||^{2} + (x - x^{*})^{T}(A^{T}Ax^{*} - A^{T}y)$$

$$\geq ||Ax^{*} - y||^{2}.$$

The last inequality follows since $x^* = (A^T A)^{-1} A^T y$ implies $(A^T A x^* - A^T y) = 0$.

• This shows x^* is the minima (arg min) of the optimization problem (2).

• For any $x \in \mathbb{R}^n$,

$$||Ax - y||^{2} = ||Ax - Ax^{*} + Ax^{*} - y||^{2}$$

$$= ||Ax - Ax^{*}||^{2} + ||Ax^{*} - y||^{2} + 2(Ax - Ax^{*})^{T}(Ax^{*} - y)$$

$$= ||Ax - Ax^{*}||^{2} + ||Ax^{*} - y||^{2} + (x - x^{*})^{T}(A^{T}Ax^{*} - A^{T}y)$$

$$\geq ||Ax^{*} - y||^{2}.$$

The last inequality follows since $x^* = (A^T A)^{-1} A^T y$ implies $(A^T A x^* - A^T y) = 0$.

- This shows x^* is the minima (arg min) of the optimization problem (2).
- Suppose A = QR be the QR-factorization, then we can show that least square solution can be written as $x^* = R^{-1}Q^Ty$ (prove it).

Application of least square problem

Consider the data set

Memory (GB)	Ram (Ram)	Price (thousand rs)
32	2	7
32	3	8
64	4	10
128	8	19.5
256	8	25

Table 1: Data set based on mobile quality and price

Least square problem contd...

• From Table 1, we can construct least square problem with

• From Table 1, we can construct least square p
$$A = \begin{bmatrix} 32 & 2 \\ 32 & 3 \\ 64 & 4 \\ 128 & 8 \\ 256 & 8 \end{bmatrix} \text{ and } y = (7, 8, 10, 19.5, 25)^T.$$

From Table 1, we can construct least square problem with

• From Table 1, we can construct least square
$$y$$

$$A = \begin{bmatrix} 32 & 2 \\ 32 & 3 \\ 64 & 4 \\ 128 & 8 \\ 256 & 8 \end{bmatrix} \text{ and } y = (7, 8, 10, 19.5, 25)^T.$$

Hence the solution of the least square problem is

$$x^* = (A^T A)^{-1} A^T y = (0.0354, 1.9784)^{T}.$$

From Table 1, we can construct least square problem with

From Table 1, we can construct least square
$$y$$

$$A = \begin{bmatrix} 32 & 2 \\ 32 & 3 \\ 64 & 4 \\ 128 & 8 \\ 256 & 8 \end{bmatrix} \text{ and } y = (7, 8, 10, 19.5, 25)^T.$$

- Hence the solution of the least square problem is $x^* = (A^T A)^{-1} A^T y = (0.0354, 1.9784)^T$.
- For a new mobile with memory 512 GB and Ram 12 GB, the price will be $\hat{\mathbf{v}} = \hat{\mathbf{a}}^T \mathbf{x}^* = 41.85$, where $\hat{\mathbf{a}} = (512, 12)^T$.

• Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a straight line y = mx + c, such that $y_i \approx x_i$ for all i.

- Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a straight line y = mx + c, such that $y_i \approx x_i$ for all i.
- We have to find a vector $\bar{m}^T = (m, c)^T$ such that

$$\frac{1}{2N}\sum_{i=1}^{N}|mx_i+c-y_i|^2=\frac{1}{2N}\sum_{i=1}^{N}|(x_i,1)\bar{m}-y_i|^2$$

is minimum.

- Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a straight line y = mx + c, such that $y_i \approx x_i$ for all i.
- We have to find a vector $\bar{m}^T = (m, c)^T$ such that

$$\frac{1}{2N}\sum_{i=1}^{N}|mx_i+c-y_i|^2=\frac{1}{2N}\sum_{i=1}^{N}|(x_i,1)\bar{m}-y_i|^2$$

is minimum.

• Define $A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & x_N & 1 \end{bmatrix}$ and $y = (y_1, y_2, \dots, y_N)^T$. Then the least square problem become

$$\min_{\bar{m}} \ \frac{1}{2N} ||A\bar{m} - y||^2.$$

• Using least square technique we can find the solution of the above optimization problem as $\bar{m}^* = (m^*, c^*)^T = (A^T A)^{-1} A^T y$.

17/26

- Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a straight line y = mx + c, such that $y_i \approx x_i$ for all i.
- We have to find a vector $\bar{m}^T = (m, c)^T$ such that

$$\frac{1}{2N}\sum_{i=1}^{N}|mx_i+c-y_i|^2=\frac{1}{2N}\sum_{i=1}^{N}|(x_i,1)\bar{m}-y_i|^2$$

is minimum.

• Define $A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & x_N & 1 \end{bmatrix}$ and $y = (y_1, y_2, \dots, y_N)^T$. Then the least square problem become

$$\min_{\bar{m}} \frac{1}{2N} ||A\bar{m} - y||^2.$$

- Using least square technique we can find the solution of the above optimization problem as $\bar{m}^* = (m^*, c^*)^T = (A^T A)^{-1} A^T y$.
- So the best fitting straight line is $y = m^*x + c^*$.

Polynomial fitting (nonlinear model) using least square problem

• Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a p degree polynomial line

$$y = \beta_b x^p + \beta_{p-1} x^{p-1} + \dots + \beta_1 x + \beta_0$$

such that $y_i \approx x_i$ for all i.

Polynomial fitting (nonlinear model) using least square problem

• Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a p degree polynomial line

$$y = \beta_b x^p + \beta_{p-1} x^{p-1} + \dots + \beta_1 x + \beta_0$$

such that $y_i \approx x_i$ for all i.

• We have to find a vector $\beta = (\beta_p, \beta_{p-1}, \dots, \beta_1, \beta_0)^T$ such that

$$\frac{1}{2N} \sum_{i=1}^{N} |\beta_b x^p + \beta_{p-1} x^{p-1} + \dots + \beta_1 x + \beta_0 - y_i|^2
= \sum_{i=1}^{N} |(x_i^p, x_i^{p-1}, \dots, x_i, 1)\beta - y_i|^2$$

is minimum.

Polynomial fitting (nonlinear model) using least square problem contd...

• Define
$$A = \begin{bmatrix} x_1^p & x_1^{p-1} & \dots & x_1 & 1 \\ x_2^2 & x_2^{p-1} & \dots & x_2 & 1 \\ \dots & & & & & 1 \end{bmatrix}$$
 and $y = (y_1, y_2, \dots, y_N)^T$. Then the least square problem become

the least square problem become

$$\min_{\beta} \ \frac{1}{2N} \|A\beta - y\|^2.$$

Polynomial fitting (nonlinear model) using least square problem contd...

• Define
$$A = \begin{bmatrix} x_1^p & x_1^{p-1} & \dots & x_1 & 1 \\ x_2^2 & x_2^{p-1} & \dots & x_2 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ x_N^p & x_N^{p-1} & \dots & x_N & 1 \end{bmatrix}$$
 and $y = (y_1, y_2, \dots, y_N)^T$. Then the least square problem become

$$\min_{\beta} \ \frac{1}{2N} ||A\beta - y||^2.$$

• Using least square technique we can find the solution of the above optimization problem as $\beta^* = (A^T A)^{-1} A^T y$.

Polynomial fitting (nonlinear model) using least square problem contd...

• Define
$$A = \begin{bmatrix} x_1^p & x_1^{p-1} & \dots & x_1 & 1 \\ x_2^2 & x_2^{p-1} & \dots & x_2 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ x_N^p & x_N^{p-1} & \dots & x_N & 1 \end{bmatrix}$$
 and $y = (y_1, y_2, \dots, y_N)^T$. Then

the least square problem become

$$\min_{\beta} \ \frac{1}{2N} ||A\beta - y||^2.$$

- Using least square technique we can find the solution of the above optimization problem as $\beta^* = (A^T A)^{-1} A^T y$.
- So the best fitting curve is

$$y = \beta^*_{p} x^{p} + \beta^*_{p-1} x^{p-1} + \dots + \beta^*_{1} x + \beta^*_{0}.$$

• Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a curve

$$y = \beta_0 e^{\beta_1 x}$$

, such that $y_i \approx x_i$ for all i

• Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a curve

$$y = \beta_0 e^{\beta_1 x}$$

- , such that $y_i \approx x_i$ for all i.
- Taking log of both sides of $y = \beta_0 e^{\beta_1 x}$, we have $\log(y) = \log(\beta_0) + \beta_1 x$.

• Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a curve

$$y = \beta_0 e^{\beta_1 x}$$

- , such that $y_i \approx x_i$ for all i.
- Taking log of both sides of $y = \beta_0 e^{\beta_1 x}$, we have $\log(y) = \log(\beta_0) + \beta_1 x$.
- Define $\log(y) = z$ and $\log(\beta_0) = \bar{\beta}_0$. So the above equation becomes $z = \beta_1 x + \bar{\beta}_0$.

• Suppose $\mathcal{D} = \{(x_i, y_i); 1 = 1, 2, ..., N\}$ is a given we set of points. We need to find a curve

$$y = \beta_0 e^{\beta_1 x}$$

- , such that $y_i \approx x_i$ for all i.
- Taking log of both sides of $y = \beta_0 e^{\beta_1 x}$, we have $\log(y) = \log(\beta_0) + \beta_1 x$.
- Define $\log(y) = z$ and $\log(\beta_0) = \bar{\beta}_0$. So the above equation becomes $z = \beta_1 x + \bar{\beta}_0$.
- We have to find a vector $b\bar{e}ta^T = (\beta_1, \bar{\beta_0})^T$ such that

$$\frac{1}{2N}\sum_{i=1}^{N}|\beta_1x_i+\bar{\beta}_0-z_i|^2=\sum_{i=1}^{N}\left|(x_i,1)\bar{beta}-z_i\right|^2$$

is minimum.

• Define
$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & \\ x_N & 1 \end{bmatrix}$$
 and $z = (z_1, z_2, \dots, z_N)^T$. Then the least square problem become

$$\min_{\bar{\beta}} \ \frac{1}{2N} \|A\bar{\beta} - z\|^2.$$

• Define $A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & \\ x_N & 1 \end{bmatrix}$ and $z = (z_1, z_2, \dots, z_N)^T$. Then the least square problem become

$$\min_{\bar{\beta}} \ \frac{1}{2N} \|A\bar{\beta} - z\|^2.$$

• Using least square technique we can find the solution of the above optimization problem as $\bar{\beta}^* = (A^T A)^{-1} A^T z$.

• Define $A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & x_N & 1 \end{bmatrix}$ and $z = (z_1, z_2, \dots, z_N)^T$. Then the least square problem become

$$\min_{\bar{\beta}} \ \frac{1}{2N} \|A\bar{\beta} - z\|^2.$$

- Using least square technique we can find the solution of the above optimization problem as $\bar{\beta}^* = (A^T A)^{-1} A^T z$.
- So the equation of best fitting exponential curve is

$$y=e^{\bar{\beta}_1^*x+\bar{\beta^*}_0}$$

• Define $A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & x_N & 1 \end{bmatrix}$ and $z = (z_1, z_2, \dots, z_N)^T$. Then the least square problem become

$$\min_{\bar{\beta}} \ \frac{1}{2N} \|A\bar{\beta} - z\|^2.$$

- Using least square technique we can find the solution of the above optimization problem as $\bar{\beta}^* = (A^T A)^{-1} A^T z$.
- So the equation of best fitting exponential curve is

$$y=e^{\bar{\beta}_1^*x+\bar{\beta^*}_0}$$

Python code for cubic curve fitting

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dt=pd.read_excel(r'C:\Teaching & Research\Courses\2022-23'\
    r'\Optimization for ML\Lab assignments\excell sheets\xy.xl
B=dt.values
x, y=B[:, 0], B[:, 1]
A=np.empty((0,4),dtype=float)
n=len(x)
A=np.column_stack((np.column_stack((np.column_stack((pow(x.T,3
      pow(x.T,2)), x.T), np.ones((len(x),1), dtype=float)))
#print(A)
beta=np.dot(np.linalq.inv(np.dot(A.T,A)),np.dot(A.T,y.T))
print(beta)
plt.figure(figsize = (10, 12))
plt.plot(x, y, 'b.')
x1=np.linspace(0,5.2,num=201)
plt.plot(x1, np.polyval(beta,x1), 'r')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```


Figure 1: Fitting the data set by a straight line (linear curve)

Figure 1: Fitting the data set by a straight line (linear curve)

Figure 2: Fitting the data set by a quadratic polynomial curve

Figure 3: Fitting the data set by a cubic polynomial

Figure 3: Fitting the data set by a cubic polynomial

Figure 4: Fitting the data set by a bi-quadratic (4 degree) polynomial curve

Figure 5: Fitting the data set by a cubic polynomial

Figure 5: Fitting the data set by a cubic polynomial

Figure 6: Fitting the data set by an exponential curve

References

Boyd, S. and Vandenberghe, L.: Convex optimization. Cambridge university press, 2004.

Boyd, S. and Vandenberghe L.: Introduction to applied linear algebra: vectors, matrices, and least squares. Cambridge university press, 2018.