Part VI

Storage Structures for Data Warehouses

Storage Structures for Data Warehouses

- Multidimensional Storage
- Storage Variants
- Column-Oriented Storage

Relational storage - ROLAP

- Implementation of star or snowflake schema to relations
- Common form of storing DW tables (Details: see Lecture "database implementation techniques")
- Features
 - Very large fact tables! → Acceleration of access by partitioning
 - ► Multidimensional Access → specific cluster and index structures
 - Update characteristic (appending data)

Partitioning

- Independent of and in addition to indexing methods:
 Separating large relations into smaller subrelations (so-called partitions or fragments)
- Size and content of the partitions depends on request and update characteristics
- Originally intended for distributed databases for supporting load distribution on multiple nodes
- Partitioning includes the **logical** structure of relations, the physical distribution is the responsibility of the allocation

Horizontal Partitioning

 Master relation R is split in multiple pairwise disjoing subrelations R₁,...,R_n:

$$R = R_1 \cup ... \cup R_n; \ R_i \cap R_j = \emptyset \text{ f}\tilde{A} \frac{1}{4} \text{r } i \neq j$$

- Various forms of splitting:
 - Range partitioning:
 - * Each partition is defined by a selection criterion $R_i := \sigma_{\varphi}(R)$ with φ selection condition (range restriction)
 - Hash partitioning:
 - Hash (applied to the whole or individual tuple attributes) determines to which partition a tuple belongs
 - Tuples with the same hash value (or hash values in a given area) are located in a partition

Horizontal Partitioning (2)

Vertical Partitioning

- Distribution of individual attributes (columns) on partitions
- Partition corresponds to a projection on the master relationship:

$$R_i := \pi_{attrlist}(R)$$

- For reconstructing the master relation, there must be a common attribute in two partitions
 - Normally, the primary key is included in all partitions enthalten

Vertical Partitioning (2)

Partitioning in Oracle

Range Partitioning

```
CREATE TABLE Sales (
   Date DATE NOT NULL,
   . . . )
PARTITION BY RANGE (Date) (
PARTITION Sales2009
   VALUES LESS THAN (to date('2010-01-01')),
PARTITION Sales2010
   VALUES LESS THAN (to date('2011-01-01')),
PARTITION Sales2011
   VALUES LESS THAN (to date('2012-01-01'));
```

Partitioning in Oracle (2)

Hash Partitioning

```
CREATE TABLE Sales (
    ProductID INT NOT NULL,
    BranchID INT NOT NULL,
    ...)
PARTITION BY HASH(ProductID, BranchID)
PARTITIONS 5;
```

Partitioning in Data Warehouses

- Horizontal Partitioning (esp. Range Partitioning) allows for example to split large fact tables in more manageable parts
 - Selection criteria for individual partitions should consider the frequently occuring range restrictions in queries
- Vertikal partitioning requires normally expensive join operations to reassemble tuples;
 - Can be used for splitting off rarely queried attributes
 - Reduction of fact or dimension tables that are frequently accessed

Partitioning in Data Warehouses (2)

- Special case of vertical partitioning: mini dimensions
- Occasionally dimension tables become huge in size: e.g. customer table with several million records
 - Many attributes are never or only rarely requested, because they are are uninteresting for evaluations

Or

- There are disjoint attribute groups which are only ever used for different applications or different types of evaluations. are needed
- Separation of attributes by vertical partitioning allows then a clear reduction of the individual dimension tables

Mini Dimensions

Special Table Types in DB2

- Append mode tables
 - Optimized for insert operations.
 - Tuples are appended at the end, without free space on pages on pages
- Range-clustered tables (RCT)
 - For sequence data
- Multidimensional clustered tables (multidimensional clustering tables – MDC)
 - Storage in multiple dimensions cluster-wise

Append-Mode Tables

- Optimized mode for tables to add data.
- Adding is done at the end → INSERT optimization
- Leads to multiple page loads at query time
- In DB2 via ALTER TABLE no clustered index may be associated
- In Oracle on load, e.g. bulk loader option

```
ALTER TABLE Order (
OrderNo int primary key, ...
) APPEND ON
```

Range Clustered Tables

- Use a sequence number (arbitrary attribute) as a logical Rowid to determine the physical memory address
- Pre-allocation of the whole memory space of the table
- Sorting of the tuple via sequence number
- ullet Access via sequence number o no additional index necessary

```
CREATE TABLE Purchase_order (
    OrderNo int primary key, ...
) ORGANIZE BY KEY SEQUENCE
    (OrderNo starting from 1 ending at 10000)
```

MDC Tables

- Tables usually clustered max. by one index
- Scan over other index in worst case: 1 page access per tuple
- MDC:
 - ► Tuples with same values concerning several attributes (dimensions) store on the same page or in the same extent
 - Indexing via block indexes (sparse indexes)

MDC Tables and Block Indexes

Creation of an MDC Table

```
CREATE TABLE Sales (
   Turnover number,
   Year int,
   City varchar(20),
   ...
) ORGANIZE BY DIMENSIONS (City, Year)
```

Multidimensional Storage

Multidimensional Storage – MOLAP

- Use different data structures for data cube and dimension
- Storage of the cube as array
- Ordering of the dimension for addressing the cube cells necessary
- Often proprietary structures (and systems)

Data Structures for Dimensions

- Finite, ordered list of dimension values.
- Dimension values: simple unstructured data types (String, integer, date)
- Order of dimension values (internal integer 2 or 4 bytes)
 - → Finiteness of the value list

Data Structure for Cube

- For *n* dimensions: *n*-dimensional space.
- *m_i* dimension values of dimension *i*: Division of the cube into *m* parallel planes
 By finiteness of the list of dimension values: finite, list of planes of
- the same size per dimension
- Cell of an n-dimensional cube is uniquely defined over n-tuples of dimension values.
- cell can hold one or more metrics of a previously defined data type defined before
- In case of multiple key figures: Alternative → multiple data cubes

Classification Hierarchies

- Dimension values include all expressions of the dimension:
 Elements (leaves) and nodes of higher classification levels.
- Nodes of higher levels form further levels

Calculation of Aggregations

- Real time:
 - ➤ On request of cells representing values of a higher aggregated classification level → Calculation from Detailed data
 - High timeliness, but high overhead
 - Possibly caching
- Pre-calculation:
 - ▶ After taking over the detail data → calculation and entering the aggregation values into corresponding cells
 - Recalculation necessary after each data transfer
 - High query speed, but increase of cube size and runtime overhead
- Solution: incremental precalculation

Other Data Structures

- Attributes
 - Classifying features of a dimension.
 - Identification of subsets of dimension values. (e.g. "product color")
 - Not intended for precalculation
- Virtual cube
 - Includes derived data ("'profit"', "'percentage turnover")
 - ▶ Derived from other cubes by applying calculation functions ≈ Views in relational model
- Partial cube
 - Combination of multiple planes of a cube → virtual

Array Storage

- Storing the cube as an *n*-dimensionales Array
 → Linearizing to a one-dimensional list
- Indexes if the arrays
 - \rightarrow Coordinates of the cube cells (Dimensions D_i)
- Index calculation for cell z with coordinates x₁...x_n

$$Index(z) = x_1 + (x_2 - 1)|D_1| + (x_3 - 1)|D_1||D_2| + \dots + (x_n - 1)|D_1| + \dots + |D_{n-1}|$$

Linearization Order

Array Storage: Problems

- Number of disc accesses in case of unadvantageous linearization orders
 - Order of the dimensions needs to be considered while defining the cube
- Caching required for reduction
- Storage of sparse cubes

Storage Consumption

	Array	Relational
		(Star-Schema)
Storage	Implicit	Explicit
Coordinates	(Linearization)	(redundant)
Empty Cells	Take space	Take no space
New classif.	complete	new row
nodes	reorganization	in dimension table
	Strong growth in	Almost no growth in
	storage consumption	storage consumption
Storage	$b \cdot \prod_{i=1}^{n} d_i$	$b \cdot M \cdot (n+1)$
consumption		

M: Number of facts, i.e., $M = \delta \cdot \prod_{i=1}^{n} d_i$ (fill degree δ)

Comparison Storage Consumption

- Factors
 - Fill degree
 - k: Number of nodes
 - n: Number of dimensions
- Already at small fill degrees array storage is more efficient
- Performance depends on many factors
 - Indexing
 - Sequential reads
 - ...

Storage Consumption Comparison (2)

Storage Consumption by Filling Degree, b=8, k=100, n=5

Storage Consumption by Filling Degree, b=8, k=20, n=3

Limits of Multidimensional Storage

- Scalability issues due to sparse data spaces.
- Partial one-sided optimization with respect to read operations
- Ordering of dimension values necessary (due to array storage)
 - Complicates changes to dimensions
- No standard for multidimensional DBMSs
- Special knowledge required

Hybrid Storage – HOLAP

- Combining the advantages of both worlds
 - Relational (scalability, standard)
 - Multidimensional (analytical power, direct OLAP support)
- Storage:
 - Relational database: detailed data
 - Multidimensional database: aggregated data
 - Multidimensional storage structures as an "'intelligent'" Cache for frequently requested data cubes
- Transparent access via multidimensional query system

Storage Variants

Storage Variants

- Goal:
 - Optimization for read operations, spec. OLAP queries (aggregations)
 - Fast loading of actually needed data into main memory for calculation
- Aspects:
 - Partitioning: remove empty areas
 - Compression: avoid storing null values and redundant data redundant data
 - indexing (next chapter):
 - ★ Of data blocks (grid files, R+ trees, two-levels).
 - ★ In a data block (array/relational storage of the cells, RLE, bitmap)
- Overall: preserving the spatial neighborhood relationship of the cells in secondary storage (multidimensional clustering).

Partitioning of Data Cubes

- Goal:
 - Removal of empty areas from cube
 - Optimized storage for access patterns: frequently accessed areas in a few blocks
- Criteria:
 - Type of partitioning
 - Control: optimization of partitioning for application
 - Tool support: for control of partitioning

Partition Type

- Divisionpartition of a cube into non-overlapping areas. (multidimensional intervals)
- General form: multidimensional tiling
 - Given: n-dimensional array with dimension values

$$D = [1:d_1,...,1:d_n]$$

► Tiling: set of sub-arrays corresponding to ranges b₁, ..., b_m of dimension values

$$b_1 = [l_{1,1}: u_{1,1}, ..., l_{1,n}: u_{1,n}], ..., b_m = [l_{m,1}: u_{m,1}, ..., l_{m,n}: u_{m,n}],$$

such that $b_i \cap b_j = \emptyset$ for $i \neq j$ and $b_i \subseteq D$, i, j = 1, ..., m and each occupied cell belongs to a sub-array

Multidimensional Tiling

Tiling Orientation

Space Occupation of Tiling

Control of Partitioning

- Automatic partitioning:
 - Automatically find the partitioning for optimal execution of operations
 - Use of the fill level of the areas
 - Use of access statistics
- Importance of certain dimensions/dimension combinations
 - Special treatment of the time dimension
 - Partitioning by time series (special formats for series of values, e.g. daily, weekly, etc.)
- Two-level storage
 - Only storage of used combinations of sparse Dimensions
- Partition specification of the user
 - Direct specification of each range
 - dimension partitions

Cell Storage

- Use a specific storage format for each data block
- Support of different storage formats (depending on fill level)
- From certain fill level: array storage more efficient than relational storage
 - Reason: storage of coordinates as key necessary with relational storage necessary

Minimum Fill Level for Optimal Storage

- Above a computable minimum fill level is array storage is better than relational storage
- Minimum fill level δ is maximum δ such that holds:

$$Ix_{rel} + \delta \prod_{i=1}^{n} L_i \cdot \left(s_c + \sum_{j=1}^{n} s_j \right) < Ix_{arr} + \prod_{i=1}^{n} L_i \cdot s_c$$

- L_i: Length of the sub-array in dimension i
- s_c: Memory size of the cells (space consumption of all parameters of a cell)
- s_i: Memory size of dimension attributes j
- *Ix*_{rel}: Storage size of the indexing (relational storage)
- *Ixarr*: Memory size of indexing (array storage).

Minimum Fill Level: Example

- Assumption: Ix_{rel} and Ix_{arr} equal, $s_j = s_c = 8$
- 2 dimensions:

$$\delta \prod_{j=1}^{2} L_{i} \cdot 24 < \prod_{j=1}^{2} L_{i} \cdot 8$$

- Array storage more efficient from fill level 0.33
- For three dimensions: 0.25
- ⇒ Filling degree decreases with increasing number of dimensions

Two-Level Data Structure

- Upper level indexes data blocks that are stored on lower level stored on lower level
- Lower level array containing all possible combinations of dimension values
- Cells of the array:
 - Pointer to data block containing data values for corresponding dimension value of the densely populated dimensions
 - NULL for empty range

Two-Level Data Structure

Dwarf – Shrink petacube

- Highly compressed data structure.
- Prefix and suffix redundancies are unified
 - Prefix suitable for dense areas
 - Suffix suitable for sparse areas
- 1 petabyte cube with 25 dimensions → 2.3 GB dwarf
- Suitable for distribution in mobile networks

Example

region	customer	product	price
R1	C2	P2	70
R1	C3	P1	40
R2	C1	P1	90
R2	C1	P2	50

Dwarf: Example

Further Multidimensional Storage Structures

- Cube Forests und Hierarchically Cube Forests [Johnson & Shasha 1996, 1997]
- CubeTree [Roussopoulos & Kotidis & Roussopoulos 1997]
- CubiST [Fu & Hammer 2000]
- Condensed Cube [Wang & Lu & Feng & Yu 2002]
- Quotient Cube [Lakshmanan & Pei & Han 2002]
- m-Dwarf [Michalarias & Omelchenko & Lenz 2009]

Further Multidimensional Storage Structures (2)

Based on Iceberg Cubes

- Bottom-Up Cube [Beyer & Ramakrishnan 1999]
- H-Cubing [Han & Pei & Dong & Wang 2001]
- Star Cubing [Xin & Han & Li & Wah 2003]

Summary

- Relational vs. multidimensional storage
- Relational extensions
 - Partitioning
 - Special table types
- Special types of multidimensional storage
 - Array storage
 - Tiling
 - Handling of thinly populated cubes
- Hybrid shapes

Column-Oriented Storage

Motivation for Column-Oriented Data Management

- requests serve analysis of data (long transactions).
- dataset stable, i.e. few/no updates
- import of data (often) via ETL process
- Single values often uninteresting (cf. application fields DWH)
- Frequently create and process aggregated values
 - AVG(), SUM(), COUNT()
 - GROUP BY (CUBE)
 - CUBE operations
- For aggregate functions (e.g. AVG()) single columns are interesting.
- Also groupings (and CUBE) intuitive column-by-column processing

Data Explosion

- Historization of data increases data volume additionally
- For aggregations (OLAP) vertical partitioning/fragmentation is useful
 → exploit already existing partitioning of column stores
- Current systems use compression techniques for data volume reduction

OLAP: Row Store

- Historically: used in On-line Transactional Processing (OLTP) with short transactions, e.g. posting transactions.
- Mapping of tuples in DBMS, i.e. tuples stored sequentially.
- total: Tuple-oriented physical storage unfavorable for OLAP.

Product	City	Turnover	Year
Merlot	Magdeburg	4325	2010
Guinness	Magdeburg	2341	2010
Merlot	Ilmenau	5543	2010
Pinot Noir	Ilmenau	4944	2010

OLAP: Column Store

- Tuples partitioned by columns, i.e. values of a column stored sequentially (and sorted)
- aggregate functions work directly on columns

 → only needed data read in
- total: Column stores can handle aggregations much more effectively

Product	
Merlot	ı
Guinness	ı
Merlot	
Pinot Noir	

Location Magdeburg
Magdeburg
Ilmenau
Ilmenau

over	Year
25	2019
41	2019
43	2019
44	2019

23 55

Compression

- row stores
 - Compression relation- or partition-wise
 - ▶ Different data types → Trade off necessary for compression technique selection
 - Common compression ratios 2:1 to 5:1
- Column Stores
 - Compression per column possible
 - use of different techniques, e.g. Run Length Encoding (RLE), dictionary encoding (Lempel-Ziv)
 - Selection of best compression technique per column, i.e. for each data type
 - Common compression ratios 10:1 to 40:1
- Column stores reduce I/O overhead and reduce data volume sometimes significantly

 better utilization of main memory

Query Processing

- Column stores are also based on relational data model → Using relational algebra and its operations
- Logical query plan as for row stores.
- architecture specific execution transparent
- Bit operations inherently supported (cf. bitmap join index).
- Column-wise compression allows processing without decompression
 - Lossless compression techniques (best known: Lempel-Ziv and derivatives) → same (uncompressed) values have same compressed representation
 - ► I.e. comparison value is converted to compressed representation if necessary before query execution

 well suited for non-vector based joins

 - ► I.e. aggregate functions like MIN/MAX or SUM can process compressed data

Anfrageplanausführung Column vs. Row Store

Tuple Reconstruction

- Operator is called SPC (Scan, Predicate, Construct) vor full tuple reconstruction
- **Merge** is a k-tuple reconstruction (with columns $VAL_1...VAL_k$)

Materialization Time Point

- Early Materialization (EM)
 - Request processing very close to row stores
 - Aggregate functions on single columns
 - Tuple reconstruction as soon as tuple used
 - Mostly used for tuple oriented query processing
- Late materialization (LM)
 - Work on columns as long as possible
 - Multiple access to base tables and/or intermediate results
 - Consequence: Query plan no longer a tree
 - But: Simultaneous processing on compressed and uncompressed data possible
 - Necessary for (effective) column-oriented query processing

Early Materialization (EM)

EM-pipelined

EM-parallel

Taken from "Query execution in column-oriented database systems", PhD thesis by D. Abadi

Late Materialization (LM)

LM-parallel

LM-pipelined

Taken from "Query execution in column-oriented database systems", PhD thesis by D. Abadi

Disadvantages

- Tuple reconstruction incurs costs
- costs for insert operation due to tuple partitioning
- Updates need tuple reconstruction
- Consequence: insert- and update-in-place not possible
- But: Updates and inserts in OLAP/DWH application rarely or only by ETL

Solutions

- Tuple-oriented query processing and early materialization.
- C-Store/Vertica
 - Read-optimized (RS) and write-optimized storage (WS).
 - Different overlapping projections in RS
 - Inserts and updates only in WS
 - Tuple mover transfers data from WS to RS at low load (offline)
- SybaseIQ (first commercial column store)
 - Similar to C-Store approach
 - System divided into read and write or read/write nodes
 - Adjustment in the background at times of low load
- redundancy
 - data column- and row-oriented in main memory
 - Database redundant as column and row store
 - virtualization of the data cube
- ...

Systems

- Commercial
 - SybaseIQ
 - Vertica
 - Infobright ICE
 - Tenbase (web-based)
 - BigTable (Google, not relational)
- Free
 - Infobright ICE Community Edition
 - LucidDB
 - MonetDBX100 (Ingres/Vectorwise)
 - C-Store (requires old gcc)
 - Hbase (Apache), Hypertable, Cassandra (Facebook) all BigTable derivatives
 - **...**
- In contrast to row stores, column store implementations differ greatly among themselves

Summary

- Row Stores not optimal for OLAP and DWH applications.
- Column Stores better suited for aggregate functions
- Column Stores reduce data volume partly drastically
 → less I/O, better utilization of main memory
- Representation of tuples generates costs in column stores (tuple reconstruction)
- Column stores show weaknesses in inserts and updates
- Many and very different implementations for column stores