Shaft Design [MEMS1029 HW1-3]

author: Ziang Cao

ID: ZIC25

I wrote this in Markdown file and convert it to PDF by safari. It might not looking good locally, but pealse open the following link for a better reading experence. I believe it's a convenient and nice way for your reading (and grading).

Refer to: https://github.com/ice-bear-git/_MEMS1029_DesignII_onGithub/blob/main/CAD/HW1-3-ShaftDesign-Jan27.md

Problem Statement

In this exercise, I walked through the conponent selecting, demension designing, assemblying, and drawing creating. What's more, I used this time to become familiar of onShape -- the recomended online CAD tools.

What's more, as the description of this assignment said:

"You may find an easier time locating commercially-available components if you scale back to a smaller size and loads than the text typically uses."

• I simplified this by requiring the smallest diameter on whole shaft body should be larger than 20mm. And then, I put more efforts on the component selection and geometry designing, including the key slot.

The wedsite for downloading the components' Free CAD: https://b2b.partcommunity.com/3d-cad-models/sso?cwid=5594

All of my commerical components are downloaded from here.

To better simulate the real-world shaft, I combined both of the modeul gear and sprocket. For instance, gears will
recieve the power from another/external power source, while the power will be transmit onto a belt by sprockets for
robots motion.

The difference was clearly being stated on (by the following link): In general, a gear is a toothed wheel designed to mesh with other gears and transmit movement to them, which in turn can cause movement elsewhere. A sprocket, conversely, is a toothed wheel designed to engage and directly move a flexible indented or perforated item, like a chain or belt.

refer to: https://www.google.com/url?

sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjioaK2itL1AhV9kmoFHV8xBY8QFnoECBE QAw&url=https%3A%2F%2Fwww.infobloom.com%2Fwhat-is-the-difference-between-a-sprocket-and-a-gear.htm&usg=AOvVaw25Xay5WHKXrOqzwEnDe7cD

- What's more, I found the module gear do not have the key slot for locating. Hence, I use collar+key for the sprocket feasten, and only collar for the gear. I do not know wether it is allowable. But as there are so many commercial gears without key-design, it must have its reason.
- In terms of the shaft body length, I mainly follow my intuition. My rule is adding at least 30 mm to each section and round them to the upper nearest tens' multiple.

Here is my Output in 3D view

To show the Sprocket that fastened by key and collar.

To show the Gear mounted by collar only.

The Drawings for My designed components

The Whole Shaft

The Shaft Body

The Key

The Details for the imported components

The 25D Gear

The 25D Collar

The 30D Sprocket

Refer to:

The 30D Collar

Refer to: https://b2b.partcommunity.com/3d-cad-models/sso/shaft-collar-abr-stainless-steel-shaft-collars-one-split-stainless-steel-bea-ingranaggi?

 $info=bea\%2F clamp_element\%2F shaft_collars\%2F shaft_collar_stainless_steel\%2F shaft_collar_abr_s_s_asmtab.prj\&cwid=9880$

Ball Bearing

Product Line Industrialine HVAC Mounted Ball Bearing

Part Number: Description: 1001-06201 PB281WAHX3/4 HVAC

1001 00201	1 520 1 777 (1170) 1 1
PN (Part No.)	1001-06201
MN (Model Number)	PB281WAH
SS (Shaft Size)	3/4 HVAC
DESCRIPTION (Description)	PB281WAHX3/4 HVAC
IT (Insert Type)	Concentric Lock - Wide Inner Race
BL (Bearing Lubrication)	Relube
HM (Housing Material)	Cast Iron
HS (Housing Style)	2-Hole
PT (Product Type)	Pillow Block
PL (Product Line)	Industrialine HVAC Mounted Ball Bearing
A (A / INCH)	1.312
B (B / INCH)	2.5625
C (C / INCH)	1.756
D (D / INCH)	2.25
EMIN (E Min. / INCH)	3.25
EMAX (E Max. / INCH)	4.125
F (F / INCH)	5.125
G (G / INCH)	1.375
H (H / INCH)	0.5625
J (J / INCH)	0.4375
L (L / INCH)	1.5575
M (M / INCH)	0.87
S (S / INCH)	1.37
T (T Zerk)	1/4-28TPR
WTL (WT. / Lbs.)	2.0

TECHNICAL DETAILS - DIMENSIONS

