

ANSYS-Mode APDL and Syntax Highlighting 15cm25cm

ANSYS-Mode Highlighting and APDL Reference

$July\ 25,\ 2014$

Contents

1	AN	SYS-Mode Syntax Highlighting Reference	3
	1.1	Header	3
	1.2	Highlighting APDL specials	5
	1.3	Implied (or colon) looping	7
2	API	DL Reference	8
	2.1	Idiosyncrasies	8
	2.2	File types (the whole zoo is in the operations guide) under	
		Gnu/Linux?	9
	2.3	Defining parameters	11
	2.4	Erasing variables from memory	14
	2.5	Variable substitution with '%'	14
	2.6	Expressions	16
	2.7	Arrays	16
	2.8	debugging	17
	2.9	Multiple runs, probabilistic design	17
	2.10	Undocumented commands	17
3	And	the rest	17

Contents

##+TEXT: This is still a work in progress, good documentation is hard work! ##+TEXT: Please report remaining faults.

1 ANSYS-Mode Syntax Highlighting Reference

```
dkgreenrgb0,0.5,0 \quad dkredrgb0.5,0,0 \quad grayrgb0.5,0.5,0.5 \quad frame=none, \quad basicstyle=, \quad morekeywords=virtualinvoke, \quad keywordstyle=dkgreen, \quad ndkeywordstyle=red, \\ commentstyle=dkred, \quad stringstyle=orange, \quad backgroundcolor=white, \quad tabsize=4, \quad xleftmargin=.23in
```

 $ansys \quad more comment = [l]!, \quad more comment = [l] *, \quad more string = [b]', \quad sensitive = false, \quad more keywords = nsel, et, mp, block, d, vmesh, allsel, save, solve, plnsol, finish, a plot, eplot, igesin, set, lfillt, other keywords = *MSG, *if, *do, *enddo, *dowhile, *create, *end, *endif, /title, /co /units, /prep7, /solu, /post1, /post26, /eof, /image, /sys, *afun, /view, c***, *get, *msg, /xfr, *vwrite, *go, *dim /tlab, /erase, /annot, /pspe, /pwed, /poly, *vscfun, /tlab,$

1.1 Header

```
!! -----
!@ --- header ---
!! -----
!! Time-stamp: <2012-06-22 16:42:24 uidg1626>
!! NOTE: This is APDL pseudo code, checking
   ANSYS-Mode's highlighting capabilities and
   certain aspects of the language
   Please see further below.
/units,mpa !indicate mm-t-s unit system
!@ --- Preprocessing ---
/prep7
!00 -- Elements --
Steel = 1
ID = Steel
real = Steel
et, ID, solid186 !3d, 20 node
!00 -- Material --
mp,nuxy,Steel,0.3 ! Poisson No
mp, ex, Steel, 200000 ! Elastic modulus
!@@ -- Modeling --
```



```
block,0,1,0,1,0,1
!00 -- Meshing --
vmesh, all
!@@ -- BCs, Loads --
nsel,s,loc,x,0
d,all,all
nsel,s,loc,x,1
d, all, uy, -.1
allsel
save
!@ --- Solving ---
/solu
solve
!@ --- Postprocessing --
/post1
/view,,1,1,1
plnsol, u, sum, 2
/image, save, test !save XWindow Dump xwd (or bmp on Windows)
                            !TODO: what is this: file0001.xwd?
/image,capture
/sys,convert test test.png
/upwind
                        !TODO: 2d-graphics library? dated?
                        !TODO: :-)
*fft
!! Please put the the cursor below the next paragraph of emacs lisp
   code and type "C-x C-e" to change the setting of
!! 'ansys-highlighting-level' and 'ansys-dynamic-highlighting-flag'
!! change the level from 0 to 2 and toggle the flag from 't' to
!! 'nil'. Browse the file to check the differences.
(progn
  (when
      (featurep 'ansys-mode)
    (unload-feature 'ansys-mode))
  (setq
   ansys-highlighting-level 2
   ansys-dynamic-highlighting-flag t)
  (load-file "ansys-mode.el")
  (ansys-mode))
   :TODO !! ——
                    ————— /units,mpa !indicate mm-t-s unit sys-
```



```
tem c
!00 -- Ignored characters and condensed input line ($ operator)
finishThisNightmare $ /cle !/clear
f $ fi $ fin $ fini $ finis $ finish $ finisher
    Highlighting APDL specials
1.2.1 Reserved words and RETURN statements
!!
      = _RETURN
                       !return value of certain commands
Alpha2 = +360./(2*N)
      = !empty rhs clears variables
      RETURN values of macros
                        !TODO: what is this?
*return
*status,_RETURN
                        !O normal
                        !1 note
                        !2 warning
                        !3 error
                        !4 fatal
1.2.3 Old style APDL comments
var1 = sinh(cos(3 *5)) ! old style Ansys comment!!!!!
var2 = sinh(cos(3*5))! this is valid code
fini * comment
otto = 3 * 4 comment, the value of otto = 3!
!!
1.2.4 Ignored characters behind commands
f $ fi $ fin $ fini $ finis $ finish $ finisher
!!
1.2.5 The End Of File command
/eof --- WARNING: /eof crashes the Ansys GUI in interactive mode ---
```

!!


```
!@@ -- function names --
Pi=acos(-1) $ True=1 $ False=0 $ Nn=3.1
Alpha1 = rotx(14.5) - 360./(2*Nn)
1.2.6 Ignored characters behind commands
f $ fi $ fin $ fini $ finis $ finish $ finisher
a $ al $ all $ alls $ allse $ allsel $ allsellllll
rectngaaaaa,var1,_X2,var2,X2 ! 2d rectangle
!!
      The End Of File command
  /eof --- WARNING: /eof crashes the Ansys GUI in interactive mode ---
  /exit, nosave
                          !default is save the model data
1.1
     Current element types and deprecated elements
!! A current element type:
et,10,solid186
!! deprecated element types:
et, Steel, beam3 $ et, Alu, shell91
Let's change the element types to current ones!
!! Complete the following element fragments to current ones!
et, Steel, beam $ et, Alu, shell
For example select the following elements
et, Steel, beam 188 $ et, Alu, shell 28
and you are getting a diffent element highlighting.
!@@ -- default commands
nsel,s,loc,y,0
    ,a,loc,y,1
    ,r,loc,x,0
d,all,all
```


1.3 Implied (or colon) looping

```
!@@ ::: implicit : (colon) looping :::::
!! (n1:n2:dn)
lfillt,(1:2),(3:4),5
!! one subscript per array
bf,(1:10),temp,Tarray(1:10)
b(1:5) = 10,20,30,40,50 !TODO: creates this an array?
!! The *get command and get functions are allowed
*get,Fx(1:10),node,(1:10),f,fz !TODO:
a(1:5) = nx(1:5)
!! TODO:
Fx(1:10) = (1:100:10) !is this working? :-)
!! alternative to *vfill
*vfill,Fx,ramp,1,10
!! looping
*get,Dim
*if,Dim,le,1,then
  *dim, Reaction, array, Ns, 1
*endif
*do, I, 1, Ns
  set, Ls, I
  fsum
  *get,Fx,fsum,,item,fx
  Reaction(I)=Fx
*enddo
!\,@@ -- multiline *msg formatting with the & operator
*MSG,UI,Vcoilrms,THTAv,Icoilrms,THTAi,Papprnt,Pelec,PF,indctnc
Coil RMS voltage, RMS current, apparent pwr, actual pwr, pwr factor: %/ &
Steel = %G A (electrical angle = %G DEG) %/ &
_Power factor: %G %/ &
Inductance = %G %/ &
VALUES ARE FOR ENTIRE COIL (NOT JUST THE MODELED SECTOR)
```


2 APDL Reference

2.1 Idiosyncrasies

- You can only store strings of 32 characters, for only!! 128 characters you need to create a string array!
- No function definitions <- write 'command' files (suffix: .mac), or call a macro (arbitrary suffix) with '*use', something close is to fill a "table" arry, interpolating values and possible real indexing A(0.3).
- you can get table array values with real index values but must use integers for assigning them the values, the same goes for *vplot: it needs the arry indices in integers.
- *vplot does only plot the columns of arrys, it is not possible to specify rows
- No direct array values to file export in GUI mode <- write command file for *vwrite, or use a (lookup) table for this purpose
- *vwread does not work with C format specifiers in contrast to *vwrite
- Still (v15) no round function in sight, but someting like nint(max*1e3)/1e3 might do
- One cannot easily get the variable value, either one must assign the variable to another one, or use the '*stat' command
- Operators > and <: 1 < 2 = 1; 2 < 1 = 1; 2 > 1 = 2 : TODO check
- Inconsistent naming: $/\{x,y\}$ range but $/\{x,y\}$,
- The /contour command does not work on device /show,PNG
- DELETION OF ARRY parameters without warning only possible with an undocumented option: *del,Array,nopr
- *cfwrite does parameter substitution without %%: *cfwrite, X_points = NoN,*cfwrite, the same as X_points = %NoN%????
- No direct operation on arrays like A=A*3, take a detour with *voper or *toper
- Load symbol vectors /pbc,all,1 in /prep7 are uniform in contrast to the more ralistic ones in /solu

2.2 File types (the whole zoo is in the operations guide) under ${\rm Gnu/Linux?}$

No	Type	Name	$_{ m temp.}$	Ren
1	abort	.abt		
2	graphics annotation commands	.ano	yes	
3	neutral file format	.anf	no	
4	animation	.anim		
5		ans_log		
6	input data copied from batch input file /batch	.bat	yes	
7	sparce solver	.bcs	no	run
8	interpolated body forces (bfint)	.bfin	no	
9		.cdb		
10	sparce solver	$.\mathrm{dsp}$		run
11	interpolated DOF data (cbdof)	$.\mathrm{cbdo}$	no	
12	color map	.cmap	no	
13	default command file suffix (*cfopen, *cfwrite)	$.\mathrm{cmd}$	no	
14	component mode synthesis	.cms	no	
15	nonlinear diagnostics file (nldiag)	$.\mathrm{cnd}$	no	
16	pcg solver	.pcs		run
17	workbench solver input	$\cdot \mathrm{dat}$		
18	database	.db		
19	db backup	.dbb		
20	databas from vmseh failure in batch mode	. dbe	no	
21	fortran solution information	.dbg	no	
22	Do-loop nesting	.do#	yes	
23	scratch file modal analysis	dscr	yes	
24	V	.D#	v	
25	performance information sparse solver distributed	$.\mathrm{dsp}$	no	
26	scratch file distributed sparse solver	$.\mathrm{dsp} \#$		
27	Superelement DOF solution from use pass	.dsub	no	
28	Element definitions (EWRITE)	$. { m elem}$	no	
29	element matrices	$.\mathrm{emat}$		
30	element saved data	.esav		
31	errors and warnings	.err		
32	distributed memory	$\#.\mathrm{err}$		
33	rotated element matrices	.erot	yes	
34	Element saved data ESAV files created by nonlinear analyses	.esav	yes	
35	scratch file PCG Lanczos eigensolver	.evc	yes	
36	scratch file PCG Lanczos eigensolver	.evl	yes	
37		.ext	<i>J</i> ~	
38		.exti		
39	local results file distributed memory	#.ext		
40	stiffness-mass matrices	.full		
41	Fatigue data [FTWRITE]	.fatg	no	
42	neutral graphics file	.grph	no	
43	Graphical solution tracking file	.gst	no	
44	IGES file from ANSYS solid model data [IGESOUT]	iges.	no	
45	initial state	.ist	110	
46	Loading and bc of load steps (used for multiframe restart)	.ldhi		
47	Database command log file [LGWRITE]	.lgw	no	
48	scratch file for sparse solver	???.ln#	yes	

- .mac
- .db
- .dbb

2.3 Defining parameters

up to 5000

2.3.1 Double, char38, char8?, logical? TODO:

in table only 8 chars?

2.3.2 Variable names (called 'parameter' in the ANSYS manual)

All numeric values are stored as double precision values. Not defined variables are assigned a tiny value near zero. The interpreter is not case sensitive :TODO except in strings?

• Must begin with a letter or an underscore

The following text is the respective ANSYS solver/interpreter output.

```
BEGIN:
```

```
!is not a valid variable name
 1ansys = 3
PARAMETER 1ANSYS =
                       3.000000000
*** ERROR ***
                                        CP =
                                                   0.259
                                                           TIME= 18:06:41
Invalid character in parameter name.
 The setting of parameter= 1ANSYS is ignored.
BEGIN:
 a1nsys = 3
                               !a1nsys is a valid variable name
PARAMETER A1NSYS =
                       3.000000000
BEGIN:
A1NSys = 4
                               !this is the same variable
PARAMETER A1NSYS =
                       4.00000000
```



```
A1NSys = Temp
                                 !'Temp' is not defined
 *** WARNING ***
                                          CP =
                                                     0.260
                                                             TIME= 18:06:56
 Unknown parameter name= TEMP. A value of 7.888609052E-31 will be used.
 PARAMETER A1NSYS = 0.7888609052E-30
 BEGIN:
• Should not begin with an underscore
  This convention is used in nameing variables in ANSYS supplied
 macros and the GUI.
               !'_ansys' represents a reserved variable in ANSYS supplied macros
 _{ansys} = 3
 = 3
               ! a single underscore definition is valid
 X = _
  _ = 3 !the single underscore represents also a 'variable' in APDL
• Variable names with a trailing underscore
  These are hidden from the '*status' command output and can be
 deleted as a group with '*del'.
                          !this is a 'hidden' variable from *status
  ansys_{-} = 3
                          !does not show 'ansys_'
  *status
        ,PRM_
                        !show variables with trailing underscore
  *del,,PRM_
                         !delete all variables with trailing underscore
  BEGIN:
  ansys_{-} = 3
  PARAMETER ANSYS_ = 3.000000000
  BEGIN:
  *status
  ABBREVIATION STATUS-
   ABBREV STRING
   SAVE_DB SAVE
   RESUM_DB RESUME
            Fnc_/EXIT
   QUIT
   POWRGRPH Fnc_/GRAPHICS
  PARAMETER STATUS-
                               (
                                    5 PARAMETERS DEFINED)
                    (INCLUDING
                                   4 INTERNAL PARAMETERS)
```

BEGIN:


```
NAME
                                     VALUE
                                                                   TYPE DIMENSIONS
                                     3.00000000
  Х
                                                                     SCALAR
  BEGIN:
  ,PRM_
  PARAMETER STATUS- PRM_
                                     5 PARAMETERS DEFINED)
                                      4 INTERNAL PARAMETERS)
                    (INCLUDING
  NAME
                                     VALUE
                                                                   TYPE DIMENSIONS
  ANSYS_
                                     3.00000000
                                                                    SCALAR
  BEGIN:
• Must contain only letters, numbers and underscores
  !! only letters, numbers and underscores are allowed
                           !this is not a valid variable name
  a1n§sys = 3
 aln_sys = 3
                           !this is a valid variable name
  the ANSYS interpreter output looks like this:
 BEGIN:
  a1n\S sys = 3
                            !this is not a valid variable name
                                           CP =
 *** ERROR ***
                                                      0.256
                                                              TIME= 17:35:07
 Invalid character in parameter name.
   The setting of parameter= A1N§SYS is ignored.
 BEGIN:
  a1n_sys = 3
                            !this is a valid variable name
 PARAMETER A1N_SYS =
                          3.000000000
 BEGIN:
• Must contain no more than 32 characters
  !! The following is not a valid variable name
 v23456789_123456789_123456789_123 = 3
  !! The following is a valid variable name
 v23456789_123456789_123456789_12 = 3
```

• Local Variables


```
Depth = ARG1 !ARG{1-9}, AR{10-19} = "*use" variables
AR18 = AR19
*stat,argx
```

2.3.3 Character strings

Must not contain more than 32 characters

```
! character string variables are enclosed with ''',
Yc = '012345678901234567901234567890123' !not a character variable any more
Symetry = 'yes'
```

2.4 Erasing variables from memory

```
!! defining
                          !the '=' assignment is a shorthand for '*set'
Scalar = 3
*set,Scalar,4
                          !reassignment
*set, Vector, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Vector = 0,1,2,3,4,5,6,7,8,9,10,11,12 !TODO:
Vector = 4
                          !TODO:
!! deleting
Scalar =
             !this is not a variable any more
                           !alternative to 'Scalar ='
*set,Scalar
*del,all
                          !delete all variables!
*del, Vector
              !TODO:
```

2.5 Variable substitution with '%'

2.5.1 Substitution of Numeric Variables

In "string commands" like '/com', where a string follows the command name one can force the substitution of a parameter name to its value. Other examples are

```
Steel = 1
/com,Material %Steel% is steel
!! ATTENTION: in the following situation!
/com,%Steel% does NOT substitute variable Steel
/com, %Steel% does substitute variable Steel
/com,Stuff like %Steel+1% returns 2
```


2.5.2 Substitution of Character Variables

It is possible to substitute a command name

```
R='RESUME'
%R%,MODEL,DB

!! string, message commands and comment behaviour && %$$% %% :bla: &&&

/com, bla = %bla%
igesin,'test','%iges%'
/title,Nothing in %particular%
!! in "string commands" are no code comments possible
/com,beam3 %YES% ! this is *really not commented out!!!! &

c*** *beam3 !otto *otto %neither% here !!!!!!! &
/com, bearm laskf %otto% !%otto% we are here
```

• In certain 'string commands'

/title and /com are string commands similar to c***

```
right = 'wrong'
/title, the value of right is %right%
/com, this is %right%: /com does expand parameters as well
```

• Unfortunately here is no expansion possible neither with c*** nor with /sys

```
right = 9
c***,this is %right%: c*** allows no parameter expansion
/sys,ls "*.mac" %otto% &
/syp,ls, %otto% !this is not working, no substitution!
I = 1
otto = 'file00%I%.eps'
/syp,ls, otto !this is working as intended
```

2.5.3 Dynamic Substitution of Numeric or Character Variables

or forced substitution (deferred)


```
Case = 'case 1'
/title, This is %Case%
                         !/stitle
                         !*ask
                         !/tlabel
                         !/an3d
                         !in tables TODO:
aplot
Case = 'case 2'
!! not necessary to reissue /title, "This is case 2"
!! will appear on subsequent plots
aplot
2.6 Expressions
2.6.1 Exponentiation Operator is '**'
2.6.2 Multiplication Expression
Beware of the oldstyle ANSYS comment!
var1 = sinh(cos(3 *5)) ! old style Ansys comment!!!!!
var2 = sinh(cos(3*5))! this is valid code
fini * comment
otto = 3 * 4 comment, the value of otto = 3!
2.6.3 Operators: '<' and '>' :TODO
otto = 1.82
karl = 1.97
margret = otto < karl !margret = otto
maria = karl < otto</pre>
                      !maria = otto
*status,karl > otto
```

2.7 Arrays

4 types: array, char of 8 characters, table and string 128 chars

2.7.1 Specifiying array element values

2.7.2 APDL Math

APDL Math works in its own workspace independent of the APDL environment!

```
No = 100
Pi = acos(-1)
Dat = cos(0:2*Pi:(2*Pi/No))+ cos(0:2*Pi*10:(2*Pi/No))
Dat = 0:2*Pi:2*Pi/No
*vfun
*vec,import,apdl,Dat
*fft,Forw,Dat,OutDat,,,Full !what's the difference?
*fft, ,Dat,OutDat,,,Part !what's the difference?
*export,OutDat,apdl,APDLOutDat
```

2.8 debugging

debug !TODO: undocumented?

2.9 Multiple runs, probabilistic design

```
PDEXE, Slab, MRUN, NFAIL, FOPT, Fname in V11: *mrun !TODO:
```

2.10 Undocumented commands

```
!undocumented commands are highlighted differently
/xml !undocumented command /xml
/xfrm !documented command /xfrm
```

3 And the rest

```
*taxis only for 3 dimension? table (0,1) = 3 is working as well
```

```
!@@ --! multiline message format command this is tricky: use M-o M-o
*MSG,UI,Vcoilrms,THTAv,Icoilrms,THTAi,Papprnt,Pelec,PF,indctnc
Coil RMS voltage, RMS current, apparent pwr, actual pwr, pwr factor: %/ &
Steel = %G A (electrical angle = %G DEG) %/ &
_Power factor: %G %/ &
Inductance = %G %/ &
```



```
VALUES ARE FOR ENTIRE COIL (NOT JUST THE MODELED SECTOR)
aldk this is not any longer in the *msg format construct
/com this is not any longer in the *msg format construct
*vwrite,B(1,1),B(2,1),%yes%
alkd %D &
%E%/%E
!! commands which do not allow arguments
/prep7 $ FINISH !$ means nothing behind
/prep7 !still nothing behind
/prep7 * old style comment, this is allowed
/prep7 this is an error
nsel,s,loc,x,1
nsel = 3 !you CAN have variable names clashing with commands
!@@ -- Goto branching --
*go,:branch
aselsalsdkfjaölsdkfjaölskdjf,all
:branch
!-----
! mdlbl.mac
! Puts Modal Info on Plot
/post1
set,last
*get,nmd,active,,set,sbst
pfct= $ ffrq= $ adir=
nsel,s,l
*dim,pfct,,nmd,6
    ,ffrq,,nmd
    ,adir,char,nmd
adir(1) = 'X', 'Y', 'Z', 'ROTX', 'ROTY', 'ROTZ'
*stat,adir
*do,i,1,nmd
```



```
*get,ffrq(i),mode,i,freq
  *do,j,1,6
    *get,pfct(i,j),mode,i,pfact,,direc,adir(j)
*enddo
/annot, delete
/plopt,info,0
/plopt,minm,off
/triad,off
/erase
iadd = arg1
*if,iadd,eq,0,then
  iadd = 1
*endif
/tspe,15,1,1,0,0
/TSPE, 15, 1.000, 1, 0, 0
xx = 1.05
yy = .9
! Change the window settings if you need different
! aspect ratios for your geometry
/win,1,-1,1,.5,1
    ,2,-1,1,0,.5
    ,3,-1,1,-.5,0
    ,4,-1,1,-1,-.5
/win,2,off
/win,3,off
/win,4,off
*get, vx, graph, 1, view, x
*get, vy, graph, 1, view, y
*get,vz,graph,1,view,z
*get, va, graph, 1, angle
*get,vd,graph,1,dist
*do,i,2,4
  /view,i,vx,vy,vz
  /dist,i,vd
  /angle,i,va
*enddo
```



```
*do,i,1,4
  ii = i - 1 + iadd
  set,1,ii
  plnsol,u,sum
  *if,i,eq,1,then
    /noerase
  *endif
  /win,i,off
  *if,i,ne,4,then
    /win,i+1,on
  *endif
*enddo
*do,i,1,4
  ii = i - 1 + iadd
  /TLAB, xx, yy ,Mode: %ii%
  yy = yy - .05
  /TLAB, xx, yy, Freq: %ffrq(ii)%
  yy = yy - .05
  *do,j,1,6
    /TLAB, xx, yy ,PF %adir(j)%: %pfct(ii,j)%
    yy = yy - .05
  *enddo
   yy = yy - .11
*enddo
/erase
/annot,delete
sz = .8
xloc = 0
yloc = 0
*dim,data,,5
data(1) = 12,15,28,10,32
hsz = sz/2
/pspec,0,1,1
/poly,4,xloc-hsz,yloc-hsz,1.8*(xloc+hsz),yloc-hsz,
         1.8*(xloc+hsz),yloc+hsz,xloc-hsz,yloc+hsz
x0 = xloc + hsz
y0 = yloc + .7*hsz
```



```
lof = .05
*vscfun,dsum,sum,data(1)
/LSPE, 15, 0, 1.000
/TSPEC, 15, 0.700, 1, 0, 0
ang1 = 0
*do,i,1,5
  ang2 = ang1 + (360*data(i)/dsum)
  /PSPE, 2*i, 1, 1
  /PWED, xloc,yloc,sz*.4, ang1,ang2
  /poly,4,x0,y0,x0+lof,y0,x0+lof,y0+lof,x0,y0+lof
  pvl = 100*data(i)/dsum
  /tlab, x0+1.5*lof,y0, %pvl% %
  y0 = y0 - 1.5*lof
  ang1 = ang2
*enddo
/eof
```

