MI 2014

-LDU, PDU skicirati i opisati, primjeri LDU 330/667

- -s računanjem
- -IPB slike
- -ADPCM dekoder
- -kodiranje valićima ^{147/667}
- cuporaba PCMa: fiksna telefonska mreža, uporaba ADPCMa: bežićni telefoni, USDN, telekonferencijske aplikacije
- -RGB, coduzorkovanje boje

Pod-uzorkovanje boje

- Dokazano je da je ljudsko oko manje osjetljivo na boju nego na svjetlinu
- Shodno tome, boja se može pod-uzorkovati da bi se smanjila količina podataka

VMK zavrsni stari

- 1. Objasnite razliku između entropijskog i izvornog kodiranja Entropijsko kodiranje je kodiranje bez gubitaka i uzima u obzir samo vjerojatnosti pojavljivanja pojedinog znaka dok je izvorno kodiranje kodiranje s gubitcima i uzima u obzir svojstva izvora i ljudsku percepciju.
 - 2. Zašto dolazi do gubitka kod izvornog kodiranja

Zato jer izbacujemo sve one informacije koje ljudi ne percipiraju.

3. Objasnite efekt maskiranja

Anomalija koja se dešava kada jedan zvuk u ovisnosti o relativnoj glasnoći i frekvenciji prekriva drugi.

https://www.youtube.com/watch?v=ggYyEzvghnk

4. Što znači efekt maskiranja

Valjda je ovo pitanje zasto je koristan. Ako je to pitanje onda je jedan od odgovora koj je vazan u kontekstu kompresije to da mozemo izbaciti ili kodirat s manje bitova signal koj je maskiran jer ga i ovako i onako necemo cuti dobro ili uopce.

- 5. Kako veličina bloika utječe na kompenzaciju gibanja i bla?
- Neki IGMP
- 7. Skicirajte i objasnite protokole RTP, RTCP, RTSP u IP sloju i objasnite:
- Real-time Transport Protocol (RTP): pruža uslugu prijenosa podataka sa stvarno-vremenskim svojstvima (npr. audio i video) s kraja na kraj, koristeći pojedinačno (unicast) ili višeodredišno (multicast) razašiljanje na mrežnom sloju
- RTP Control Protocol (RTCP): kontrolni protokol koji nadzire kvalitetu usluge i prenosi podatke o sudionicima u tekućoj sjednici
- Real-Time Streaming Protocol (RTSP):aplikacijski protokol za upravljanje dostavom podataka sa stvarno-vremenskim svojstvima

a. Objasnite ulogu RTCP-a i RTSP-a

RTCP omogućuje:

- nadzor kvalitete usluge i dijagnostiku
- primatelji šalju izvješća o kvaliteti prijema natrag pošiljatelju
- svaki sudionik u sjednici periodički šalje RTCP kontrolne pakete svim ostalim sudionicima u sjednici
 - b. Kako i gdje se vrši sinkronizacija paketa u RTP-u
- uz pomoć numeracije paketa i vremenske oznake
- na odredištu?
 - c. Što je RTP mixer i koja su njegova ograničenja
 - promatramo slučaj kada je glavnina sudionika je mreži velike brzine, a neki sudionici su u dijelu mreže sa sporijom vezom
 - loše rješenje: svi sudionici koriste audio smanjene pojasne širine, tj. lošije kvalitete
 - bolje rješenje: prema sporijem dijelu mreže stavlja se RTP mixer (RTP prijenosnik), koji rekonstruira struje pojedinih audio izvora, resinkronizira ih i kombinira u jednu struju pogodniju za sporiju vezu
 - izlazna struja iz RTP mixera kodira se kao da je sinkronizirajući izvor mixer, a u zaglavlju su navedene doprinoseće struje
 - RTP mixer je pogodan samo za audio!
- 8. Skicirajte razmjenu SIP poruka tokom sjednice:
 - a. Vrste SIP poruka
 - zahtjevi: INVITE, ACK, CANCEL, BYE, OPTIONS, REGISTER
 - odgovori: 1xx, 2xx itd.
 - b. Generičke SIP poruke
 - c. Rekonfiguracija SIP sjednice
- 9. Slika sa zadnjeg predavanja token bucket
 - a. Što ako nema oznaka u kanti

Točan odgovor na ovo pitanje je da ovisi o implementaciji odnosno paket se označava da nije u skladu sa zahtjevima za slanje a kasnije se odlucuje sta ce se s njim. Moze se odbacit, moze se poslat s oznakom da nije u skladi sa zahtjevima A NA

SLAJDOVIMA PISE DA SE CEKA DA SE SKUPE OZNAKE PA VI TAKO ODGOVORITE.

Što se dešava ako je brzina slanja veća od dopuštene
 Nestat će tokena i mreža se neće preopteretit.

10. Iskustvena kvaliteta

- Iskustvena kvaliteta je sveukupna prihvatljivost aplikacije ili usluge, subjektivno percipirana od strane krajnjeg korisnika
- Iskustvena kvaliteta je vezana uz subjektivnu percepciju kvalitete

11. Pitanja uz DZ:

- a. PM-SM kako se određuje RP, prolazi li promet uvijek kroz RP
- imbagom se određuje
- ne mora prolazit, npr. neki DR šalje poruke preko najkraćeg puta i preko RP-a pa kad primi istu poruku dvaput, slat će poruku Prune (S, G) prema RP-u kojom odbacuje nove primljene poruke od RP-a
 - b. SIP protokol

Osnovne SIP funkcionalnosti

- Određivanje lokacije krajnjeg korisnika
- Određivanje dostupnosti krajnjeg korisnika
- Određivanje parametara medija koji će se koristiti tijekom sjednice
- Uspostava sjednice
- Upravljanje sjednicom (promjene parametara, raskid)

SIP usluge

- Uspostava VoIP poziva
- Uspostava višemedisjkih konferencija
- Obavijesti o događajima usluga prisutnosti
- Tekstualne poruke i trenutno poručivanje

SIP poslužitelji:

- Posrednički poslužitelj (engl. Proxy server) usmjerava zahtjeve (i odgovore) do trenutnog položaja korisnika (korisničkih agenata) koristeći podatke iz Registra
- Poslužitelj preusmjeravanja (engl. Redirect server) prima odgovarajuće zahtjeve; odgovara s popisom svih mogućih adresa korisnika (na temelju podataka iz Registra ili Lokacijskog poslužitelja)
- Registar (engl. *Registrar*) entitet kojem korisnički agenti prijavljuju trenutni položaj (trenutnu IP adresu) s ciljem ispravnog usmjeravanja zahtjeva
- Lokacijski poslužitelj (engl. Location Server): čuva podatke o trenutnoj lokaciji korisničkog agenta

Preusmjeravanje kod zauzeća

Preusmjeravanje kad nema odziva

SIP transakcije i dialozi (1/2)

Prekid sjednice

F avod za te

 Prekid sjednice: iniciran od korisničkih agenata ili posredničkog poslužitelja; šalje se zahtjev CANCEL tijekom uspostave sjednice; zahtjev od točke do točke

1. 2 tipa entropijskog kodiranja

24/667

huffmanovo, aritmetičko, metode rječnika

2. 2 algoritma kodiranja s gubicima 141/667

- Diferencijalno kodiranje
- Transformacijsko kodiranje: JPEG
- Kodiranje valićima: JPEG 2000
- Fraktalno kodiranje

3. ADPCM

Princip diferencijalnog kodera (ADPCM)

$$p_n = a_1 x'_{n-1} + a_2 x'_{n-2} + ... + a_k x'_{n-k}$$

U koderu je sadržan dekoder, te se računa razlika izmedju signala kojeg bi dekoder predvidio i stvarnog signala; ova razlika se kvantizira i šalje dekoderu.

4. uklanjanje vremenske i prostorne redundancije kod kodiranja videa

Video sadrži prostornu i vremensku redundanciju. Uklanjanje prostorne redundancije je na razini svake slike/okvira i najčešće se koristi transformacijsko kodiranje. Uklanjanje vremenske redundancije je na razini više uzastopnih okvira te se koristi sličnost slika u nizu, a koristi se diferencijalno kodiranje. Pomaci u slici od jednog do drugog okvira čine dif. kodiranje neefikasnim pa se koristi kompenzacija gibanja.

5. Primjer logičke i protokolne podatkovne jedinice

300/667

-vremenski odnos (sinkronizacija) između medija veže se uz pojam LDU LDU – logička, opisuje medij, može se promatrati na razini pixela, bloka, okvira...

PDU – protokolna, jedinica za transport; tijekom komunikacije, LDU se cijele ili po dijelovima smještaju u PDU

- digitalni video i audio, animacija: zatvorena LDU, predvidivo trajanje
- prikaz korisnikovih radnji u GUI-u, korisnička interakcija: otvorena LDU, nepredvidivo trajanje

6. protokol PIM-SM: slijed poruka, tipovi, prelazak na optimalni put, podpitanja (koji se još putovi mogu "skratiti", kakvo stablo gradi PIM-SM, što ako još neko računalo postane pošiljatelj)

- protocol independent multicast sparse mode
- slide 114

slijed poruka:

- primatelj šalje IGMP poruku najbližem usmjeritelju (DRu)
- usmjeritelj šalje PIM Join (*, G) poruku RPu (* znači da se pridružuje svim izvorištima te skupine, a G označava skupinu kojoj se želi pridružiti)
- pošiljatelj šalje podatke na najbliži usmjeritelj (DR)
- DR ih prosljeđuje RPu, a RP pomoću višeodredišne adrese svima koji su se prijavili za određenu skupinu

7. RTP u protokolarnom složaju + objasniti

- Real-time Transport Protocol (RTP), koji pruža uslugu prijenosa podataka sa stvarno-vremenskim svojstvima (npr. audio i video) s kraja na kraj, koristeći pojedinačno (unicast) ili višeodredišno (multicast) razašiljanje na mrežnom sloju
- RTP je po smještaju u protokolnom složaju protokol aplikacijskog sloja
- RTP u nazivu ima "transportni protokol" s obzirom na svoju ulogu transporta s kraja na kraj može se promatrati kao nadopuna transportnog sloja

8. RTP svojstva

- RTP se oslanja na UDP (ili neki drugi transportni protokol) za multipleksiranje i zaštitnu sumu
- RTP nije pouzdan i ne može garantirati isporuku u stvarnom vremenu (to je uloga nižih slojeva!)

9. uloga RTCP i RTSP

RTCP: kontrolni protokol koji nadzire kvalitetu usluge i prenosi podatke o sudionicima u tekućoj sjednici 378/667
RTSP:

424/667

- aplikacijski protokol za upravljanje dostavom podataka sa stvarno-vremenskim svojstvima
- izvori podataka: prijenos uživo ili već snimljeni podaci
- referenciranje podataka putem URL-a (rtsp:// ...)
- neovisan o transportnom protokolu

🚺0. arhitekutura VoIP-a u skypeu

11. prednosti i mane VoIP-a

Prednosti korištenja VoIP-a

- Iz perspektive krajnjeg korisnika
 - smanjenje troškova
 - dodatne usluge u govornoj komunikaciji dostupne besplatno (npr., skraćeno biranje ili preusmjeravanje poziva)
 - olakšano prenošenje pozivnog broja
 - jednostavnije korištenje drugih vidova komunikacije (npr., video) / drugih aplikacija (konferencijski poziv, dijeljenje podataka)
 - gotovo neograničena dostupnost usluge (uvjetno jednaka širokoj rasprostranjenosti pristupa Internetu)
- Iz perspektive VoIP operatora/pružatelja usluge
 - smanjenje ukupnih troškova (ali, nakon "određenog" razdoblja)
 - jednostavniji instalacija i održavanje opreme/infrastrukture
 - jednostavnije dodavanje/uvođenje novih usluga

Nedostaci korištenja VoIP-a

- Kvaliteta usluge
 - prijenos IP mrežom može dovesti do kašnjenja/gubitaka paketa koji nose govor
 - dolazi do izražaja u slučajevima velikog broja korisnika i izostanka kontrole pristupa mreži
 - stalnim razvojem tehnologije razlike u odnosu na "klasičnu" telefoniju ipak su sve manje
- Raspoloživost usluge
 - ovisi o pouzdanosti mreže (ispadom internetske mreže usluga postaje neraspoloživa)
- Nekompatibilnost VoIP sustava (uređaja)
 - nepostojanje jedinstvenog standarda
- Potreba stalnog napajanja uređaja
 - za razliku od "klasičnog" telefon. uređaja, u slučaju nestanka napajanja, VoIP neće raditi
- Sigurnost
 - prisluškivanje komunikacije

12. 3 razine kvalitete usluge

- 1. kvaliteta na razini aplikacije
- 2. kvaliteta na razini sustava
- 3. kvaliteta na razini mreže

13. skica i objašnjenje token bucketa

Redarstveni mehanizmi: Token bucket

telekom

30

Kanta s oznakama (Token Bucket): ograničava ulaz na specificiranu veličinu snopa i srednju vrijednost

- "kanta" drži b oznaka
- oznake se generiraju brzinom r oznaka/s, osim ako je kanta puna
- u vremenskom intervalu duljine t, broj prihvaćenih paketa
 N <= (r t + b).

14. token bucket u kombinaciji s kojim raspoređivanjem daje garantiranu kvalitetu u kombinaciji s WFQ raspoređivanjem - težinski pravedno raspoređivanje

15. opisati 2 tipa raspoređivanja

rasporedivanje: odredivanje sljedeceg paketa kojeg ce se poslati na izlazno sucelje

- FIFO (first in first out) rasporedvanje: slanje u redosljedu dolazaka, odn. ulaska u rep cekanja
- Prioritetno rasporedivanje: salje se onaj paket iz repa cekanja koji ima najvisi prioritet
- 16. skica različitih arhitekturalnih rješenja kod MMORPG-a
- 17. zašto TCP nije dobar za MMORPG
- 18. što se gleda da bude bolje kod MMORPG-a, veća propusnost ili manje kašnjenje?

je li moguće da JPEG kodirana slika bude manja od PNG, primjer slike je li bolje koristiti PNG; BMP ili JPEG

pa JPEG je sama po sebi manje veličine od PNG. PNG se koristi u web dizajnu, JPEG za fotografije

2. zašto DVMRP povremeno preplavljuje mrežu?

DVMRP se temelji na dinamičkoj izgradnji stabla usmjeravanja sa svojstvom najkraćeg puta.

Stablo usmjeravanja je jednosmjerno i izgrađuje se počevši od pošiljatelja, tehnikama preplavljivanja (flooding) i podrezivanja (pruning).

- Preplavljivanje je postupak prosljeđivanja paketa po svim odlaznim tunelima osim po onome po kojem je paket stigao.
- Podrezivanje je postupak kojim se "režu" nepotrebne grane stabla usmjeravanja tako da se paket ne šalje po granama koje nisu na najkraćem putu, niti tamo gdje nema članova skupine.

3. kod CBTa je li moguće da promet ne ide preko središnje točke

Kad je stablo dvosmjerno, sav promet ne mora prolaziti kroz jezgru (npr. promet od pošiljatelja B do primatelja A). Jezgra služi samo za priključivanje stablu, dok se za potrebe usmjeravanja višeodredišnog prometa ponaša kao i svaki drugi usmjeritelj unutar stabla.

4. kod PIM-SMa je li moguće da pošiljatelj šalje isti promet duplo

mislim da ne