$B_{p,\chi}$ のp進付値

石井 竣

2025年3月5日作成,同年10月1日修正

1 導入

本文を通じて K を類数 1 の虚二次体, その判別式の絶対値を d, 付随する二次 Dirichlet 指標を χ と書く. これらに付随して**一般化** Bernoulli 数 $B_{n,\chi}$ が

$$\sum_{a=1}^{d} \frac{\chi(a)te^{at}}{e^{dt} - 1} = \sum_{n=0}^{\infty} \frac{B_{n,\chi}}{n!} t^n$$

で定義される [5, Chapter 4, p.31]. 例えば $K = \mathbb{Q}(\sqrt{-1})$ の時, 左辺は

$$\sum_{a=1,3} \frac{\chi(a)te^{at}}{e^{4t} - 1} = \frac{t(e^t - e^{3t})}{e^{4t} - 1} = \frac{-te^t}{e^{2t} + 1} = \frac{-t}{2} \sum_{n=0}^{\infty} \frac{E_n}{n!} t^n$$

と計算される. ここに E_n は **Euler 数**と呼ばれる整数で、(hyperbolic) secant 関数の Taylor 展開の係数により定義される (と https://mathworld.wolfram.com/EulerNumber.html にあった). よって $K = \mathbb{Q}(\sqrt{-1})$ の時には

$$B_{n,\chi} = -\frac{E_{n-1}}{2}$$

であるから $2B_{n,\chi}$ も整数である.実際, Sagemath を用いて小さい n に対して組 $(2n-1, 2B_{2n-1,\chi} = -E_{2n})$ を計算してみた結果が下記の表である:

```
[5]: G = DirichletGroup(4)
     for n in range(1,20):
         print(2*n-1, (2*x.bernoulli(2*n-1)).factor())
     5 (-1) * 5^2
     7 7 * 61
     9 (-1) * 3^2 * 5 * 277
     11 11 * 19 * 2659
     13 (-1) * 5 * 13^2 * 43 * 967
     15 3 * 5 * 47 * 4241723
     17 (-1) * 5 * 17^2 * 228135437
     19 19 * 79 * 349 * 87224971
     21 (-1) * 3 * 5^2 * 7 * 41737 * 354957173
     23 23 * 31 * 1567103 * 1427513357
     25 (-1) * 5^3 * 13 * 2137 * 111691689741601
     27 3^3 * 67 * 61001082228255580483
     29 (-1) * 5 * 19 * 29^2 * 71 * 30211 * 2717447 * 77980901
     31 31 * 15669721 * 28178159218598921101
     33 (-1) * 3 * 5 * 11 * 17 * 930157 * 42737921 * 52536026741617
     35 5 * 7 * 4153 * 8429689 * 2305820097576334676593
     37 (-1) * 5 * 13 * 37<sup>2</sup> * 9257 * 73026287 * 25355088490684770871
```

この表を眺めると、素数 p が 4 を法として 1 に等しいならば $B_{p,\chi}$ が p^2 で割れることが推測できる. 実際, この推測は Carlitz によって証明されている:

Theorem 1.1 ([1, Theorem 1]).

虚二次体 K で分裂する素数 p について $B_{p,\chi} = 0 \mod p^2$ が成立する.

ここで $B_{p,\chi}=0 \bmod p^3$ となるような (K で分裂する) 素数を探索してみる. 同様に Sagemath を用いて計算してみたところ, $K=\mathbb{Q}(\sqrt{-1})$ の時には p=29789 が, また $K=\mathbb{Q}(\sqrt{-3})$ の時には p=13,181,2521 が見つかった. (なお $2B_{29789,\chi}$ はとても大きく計算機での取り扱いには注意を要する).

ところで, 素数 29789 は次のような性質を持っていることも観察できる: p=29789 は 4n+1 型の素数であるから, ある $\mathbb{Z}[\sqrt{-1}]$ の素元 π とその複素共役を用いて $p=\pi\bar{\pi}$ と書ける. 例えば $\pi=110+133\sqrt{-1}$ とする. この時, $\mathbb{Z}[\sqrt{-1}]/(\pi)\cong\mathbb{F}_p$ と Fermat の小定理から, いわゆる Fermat 商 $\frac{a^{p-1}-1}{p}$ に類似した形の数

$$\frac{\bar{\pi}^{p-1} - 1}{\pi} \in \mathbb{Z}[\sqrt{-1}]$$

の整性が従う. そして素数 p=29789 は $\frac{\pi^{p-1}-1}{\pi}=0 \mod \pi$ を満たしている¹. なお, この性質を満たす 4n+1 型の素数は $p<10^7$ の範囲でこれのみである.

この奇妙な一致は $K=\mathbb{Q}(\sqrt{-3})$ の場合にも確かめることができる. 即ち素数 p=13,181,2521 も同様に, 上記の "Fermat 商型" の数が素元 π で割り切れる. このことから次の仮説を立てる:

素数
$$p \ge 5$$
 が K で分裂するならば, $B_{p,\chi} = 0 \bmod p^3 \Leftrightarrow \frac{\bar{\pi}^{p-1}-1}{\pi} = 0 \bmod \pi$.

次節においてこの同値を証明する2.

2 証明

証明には Kubota-Leopoldt の p 進 L 関数 $L_p(s,\chi\omega)$ の性質を用いる (ここに ω は Teichmüller 指標). 素数 p が K で split している (i.e. $\chi(p)=1$) こと, 及び $L_p(s,\chi\omega)$ の補完性質 [5, Theorem 5.11] によって等式

$$L_p(0,\chi\omega)=0$$
 及び $L_p(1-p,\chi\omega)=-(1-p^{p-1})\frac{B_{p,\chi}}{n}$

が成立する. p 進 L 関数 $L_n(s, \chi \omega)$ を s=1 の周りで展開した

$$L_p(s, \chi \omega) = a_0 + a_1(s-1) + a_2(s-1)^2 + \cdots$$

は任意の整数について収束する [5, Theorem 5.12] ほか, $a_i \in \mathbb{Z}_p$ 及び $p \mid a_i \ (i \geq 1)$ が成立する. 素数 p が少なくとも 5 以上ならば、上記定理の証明をそのまま辿ることで次が従う:

Lemma 2.1. 上記の係数 a_i について, $i \ge 2$ ならば $p^2 \mid a_i$.

いまs=0はp進L関数の零点であるから

$$a_0 = a_1 \bmod p^2$$

が従う. 一方で、合同式 $B_{p,\chi} = 0 \mod p^3$ は

$$L_p(1-p,\chi\omega) = a_0 + a_1(-p) + a_2(-p)^2 = a_0 = 0 \mod p^2$$

と同値である. 従って, あとは

 $^{^{1}}$ この条件は \mathfrak{p} 進対数関数を用いることで $\log_{\mathfrak{p}}(\bar{\pi})=0 \bmod p^{2}$ とも言い換えできる.

 $^{^2}$ 私はこの事実を明記した文献を知らないものの、昔からよく知られている結果のようである。 1978 年の Ferrero-Washington の論文の末尾で既に同様の観察が行われている。

$$a_1 = 0 \bmod p^2 \Leftrightarrow \log_{\mathfrak{p}}(\bar{\pi}) = 0 \bmod p^2$$

を示せばよい. この同値性については, Gross-Koblitz の公式と Ferrero-Greenberg の公式を組み合わせることで p 進 L 関数の s=0 での微分値が

$$L'_p(0, \chi \omega) = a_1 - 2a_2 + 3a_3 - \dots = \frac{4}{w} \log_{\mathfrak{p}}(\bar{\pi})$$

と表せることを用いる [2, Proposition 1 及び p.100 最下段]. ここで w は虚二次体 K に含まれる 1 の冪根の数を表す. 補題 2.1 より. 両辺を p^2 を法として考えることで

$$a_1 = \frac{4}{m} \log_{\mathfrak{p}}(\bar{\pi}) \bmod p^2$$

が成立する. よって望みの主張が示された.

3 余談

引き続き、素数 p は K で分裂すると仮定する.記号 Ω で K の p 外不分岐最大副 p 拡大体を表すと,Galois 群 $\mathrm{Gal}(\Omega/K)$ は階数 2 の副 p 自由群である [4, (10.7.13) Theorem].一方,素数 p の上にある K の素点 $\mathfrak p$ を Ω に延長したものを固定すると,付随して p 進数体 $\mathbb Q_p$ の絶対 Galois 群 $G_{\mathbb Q_p}$ の最大副 p 商 $G_{\mathbb Q_p}^{(p)}$ からの準同型写像

$$G_{\mathbb{Q}_p}^{(p)} \to \operatorname{Gal}(\Omega/K)$$

が生じる. ところで副 p 群 $G_{\mathbb{Q}_p}^{(p)}$ も階数 2 の副 p 自由群である [4, (7.5.11) Theorem (i)]. 自然な問題として、この副有限群としては同型な二者間に生じた準同型が同型写像か 3 を考える. 実は、この写像が同型写像であることと、

$$\frac{\bar{\pi}^{p-1} - 1}{\pi} \neq 0 \bmod \pi$$

は同値である. 前節で証明したことから、後者は

$$B_{p,\chi} \neq 0 \bmod p^3$$

とも同値. こうして Bernoulli 数 B_{p,χ_K} の p-非可除性は Galois 理論的な言い換えを持つ.

また、Hao-Parry は通常の正則素数の判定法の類似として次の定理を証明した:

Theorem 3.1 ([3, Theorem 1]). K の p 次円分拡大体 $K(\zeta_p)$ の類数が p で割れないことと, p が正則であり, かつ $B_{1,\chi}, B_{3,\chi}, \ldots, B_{p-2,\chi}$ がいずれも p で割れないことは同値である.

実は次の定理も示すことができる:

Theorem 3.2. $K(\zeta_p)$ の p 外不分岐最大副 p 拡大を $\Omega_K^{\rm cyc}$ で表す.素点 $\mathfrak p$ の $\Omega_K^{\rm cyc}$ への延長に付随する準同型写像

$$G_{\mathbb{Q}_p(\zeta_p)}^{(p)} \to \operatorname{Gal}(\Omega_K^{\operatorname{cyc}}/K(\zeta_p))$$

が同型写像であることと, B_2 , B_4 ,..., B_{p-3} , $B_{1,\chi}$, $B_{3,\chi}$,..., $B_{p-2,\chi}$ がいずれも p で割れず, しかも $B_{p,\chi}$ が p^3 で割れないことは同値である.

 $^{^3}$ 全射なら同型であることも比較的簡単に分かる.

Remark~3.3. 通常の正則性についても上記定理に類似した言い換えがある: 体 Ω^{cyc} で $\mathbb{Q}(\zeta_p)$ の p 外不分岐最大副 p 拡大体を表すことにする. この時, 素数 p>2 が正則であることと, 素数 p の Ω^{cyc} への延長に付随して定まる準同型写像

$$G_{\mathbb{Q}_p(\zeta_p)}^{(p)} \to \operatorname{Gal}(\Omega^{\operatorname{cyc}}/\mathbb{Q}(\zeta_p))$$

が全射であることは同値である.この状況下で両辺の \mathbb{F}_p 係数 1 次コホモロジーの次元を比べる と,右辺は左辺のちょうど半分 (= $\frac{p+1}{2}$) になっている.定理 3.2 が満たされる状況下においては,この "半分" にする写像は

$$G_{\mathbb{Q}_p(\zeta_p)}^{(p)} \xrightarrow{\sim} \operatorname{Gal}(\Omega_K^{\operatorname{cyc}}/K(\zeta_p))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gal}(\Omega^{\operatorname{cyc}}/\mathbb{Q}(\zeta_p))$$

のように持ち上がっていることが分かる.

最後に無責任な予想と注釈を述べて本文を終わりにする.

Conjecture 3.4. K で分裂する素数 p で, $B_{p,\chi}$ が p^3 で割れないものは無限個存在する.

Silverman は abc 予想を仮定して非 Wieferich 素数, 即ち

$$\frac{2^{p-1}-1}{p} \not\equiv 0 \bmod p$$

を満たす素数の無限性を証明している. 上記予想 3.4 で考える素数 p は Wieferich 素数とは少し異なり,素数 p に応じて π とその共役 π が定まり, この間の合同式を満たすかどうかを考えている. 現時点で筆者は abc 予想の成立が予想 3.4 を導くかも知らない.

References

- [1] Leonard Carlitz. Arithmetic properties of generalized Bernoulli numbers. J. Reine Angew. Math., 202:174–182, 1959.
- [2] Bruce Ferrero and Ralph Greenberg. On the behavior of p-adic L-functions at s=0. Invent. Math., 50(1):91-102, 1978/79.
- [3] Fred H. Hao and Charles J. Parry. Generalized Bernoulli numbers and m-regular primes. Math. Comp., 43(167):273–288, 1984.
- [4] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields, volume 323 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.
- [5] Lawrence C. Washington. *Introduction to cyclotomic fields*, volume 83 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1982.