Hayk Aprikyan, Hayk Tarkhanyan

- Communication:
 - For questions, memes, announcements, homeworks: Slack
 - For lecture slides and books: Google Drive, GitHub
- Main books (in English):
 - Poole, "Linear Algebra: A Modern Introduction"
 - Johnston, "Introduction to Linear and Matrix Algebra"
 - Stewart, "Calculus"
 - Blitzstein, Hwang, "Introduction to Probability"
 - Grimmett, Welsh, "Probability: An Introduction"
- Supplementary books (in Armenian):
 - Ohanyan, "Probability Theory", Lectures
 - Gevorgyan, Sahakyan, "Algebra and Elements of Mathematical Analysis 11, 12"
 - Musoyan, "Mathematical Analysis", parts 1-2
 - Movsisyan, "Higher Algebra and Number Theory"

• Suppose one has 2×10 dram, 1×20 dram, 2×50 dram, and 1×200 dram coins in his pocket.

- Suppose one has 2×10 dram, 1×20 dram, 2×50 dram, and 1×200 dram coins in his pocket.
- How can we denote that?

- Suppose one has 2 \times 10 dram, 1 \times 20 dram, 2 \times 50 dram, and 1 \times 200 dram coins in his pocket.
- How can we denote that?
- Using a table:

Coins	Quantity	
10	2	
20	1	
50	2	
100	0	
200	1	

- Suppose one has 2×10 dram, 1×20 dram, 2×50 dram, and 1×200 dram coins in his pocket.
- How can we denote that?
- Using a table:

Coins	Quantity	
10	2	
20	1	
50	2	
100	0	
200	1	

• Or by taking the two columns of the table:

T 10 T		[2]
20		1
50	,	2
100		0
200		$\lfloor 1 \rfloor$

Definition

An ordered set of n real numbers is called a **vector** (or **column vector**) in \mathbb{R}^n :

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

where v_1, v_2, \ldots, v_n are the **components** of the vector.

A vector written horizontally is called a **row vector**:

$$\mathbf{v} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

We will denote $\mathbf{v} \in \mathbb{R}^n$ to indicate that \mathbf{v} is a vector in \mathbb{R}^n .

4 D > 4 B > 4 E > E > 9 C C

Definition

An ordered set of n real numbers is called a **vector** (or **column vector**) in \mathbb{R}^n :

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

where v_1, v_2, \ldots, v_n are the **components** of the vector.

A vector written horizontally is called a **row vector**:

$$\mathbf{v} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

We will denote $\mathbf{v} \in \mathbb{R}^n$ to indicate that \mathbf{v} is a vector in \mathbb{R}^n .

Vectors in \mathbb{R}^1

4 □ ▶ 4 현 ▶ 4 현 ▶ 3 현 → 9

Definition

An ordered set of n real numbers is called a **vector** (or **column vector**) in \mathbb{R}^n :

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

where v_1, v_2, \ldots, v_n are the **components** of the vector.

A vector written horizontally is called a **row vector**:

$$\mathbf{v} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

We will denote $\mathbf{v} \in \mathbb{R}^n$ to indicate that \mathbf{v} is a vector in \mathbb{R}^n .

Vectors in \mathbb{R}^1 are real numbers: $[v] \in \mathbb{R}$.

Examples of Vectors in \mathbb{R}^n

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
 (3-dimensional column vector)
$$\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 (4-dimensional column vector)
$$\mathbf{v}_3 = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$
 (2-dimensional column vector)
$$\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (Zero vector in 3-dimensional space)
$$\mathbf{v}_5 = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$$
 (3-dimensional row vector)

Addition of vectors

Let's denote
$$\mathbf{a} = \begin{bmatrix} 10 \\ 20 \\ 50 \\ 100 \\ 200 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$.

Let's denote
$$\mathbf{a}=\begin{bmatrix}10\\20\\50\\100\\200\end{bmatrix}$$
, $\mathbf{b}=\begin{bmatrix}2\\1\\2\\0\\1\end{bmatrix}$. $\mathbf{a},\mathbf{b}\in\mathbb{R}^5$.

Let's denote
$${f a}=\begin{bmatrix}10\\20\\50\\100\\200\end{bmatrix}$$
, ${f b}=\begin{bmatrix}2\\1\\2\\0\\1\end{bmatrix}$. ${f a},{f b}\in\mathbb{R}^5.$ What if someone gave us

 3×100 drams and 1×200 drams?

Let's denote
$${\bf a}=\begin{bmatrix}10\\20\\50\\100\\200\end{bmatrix}$$
 , ${\bf b}=\begin{bmatrix}2\\1\\2\\0\\1\end{bmatrix}$. ${\bf a},{\bf b}\in\mathbb{R}^5.$ What if someone gave us
$$\begin{bmatrix}0\\0\\0\end{bmatrix}$$

$$3 \times 100$$
 drams and 1×200 drams? Denote $\mathbf{c} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \\ 1 \end{bmatrix}$

Let's denote
$$\mathbf{a} = \begin{bmatrix} 10 \\ 20 \\ 50 \\ 100 \\ 200 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$. $\mathbf{a}, \mathbf{b} \in \mathbb{R}^5$. What if someone gave us

$$3 \times 100$$
 drams and 1×200 drams? Denote $\mathbf{c} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \\ 1 \end{bmatrix}$

We would have the following coins:

$$\mathbf{b} + \mathbf{c} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2+0 \\ 1+0 \\ 2+0 \\ 0+3 \\ 1+1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$

Definition

To add two vectors
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$ in \mathbb{R}^n , add their

corresponding components:

$$\mathbf{v} + \mathbf{u} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \vdots \\ v_n + u_n \end{bmatrix}$$

Definition

To add two vectors
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$ in \mathbb{R}^n , add their

corresponding components:

$$\mathbf{v} + \mathbf{u} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \vdots \\ v_n + u_n \end{bmatrix}$$

Note that we can only add two vectors if they are of the same length!

Aprikyan, Tarkhanyan Lecture 1 7/30

Multiplication of vector by scalar

What if the money in our pockets doubled?

Multiplication of vector by scalar

What if the money in our pockets doubled? We would have:

$$2 \cdot \mathbf{b} = 2 \cdot \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 0 \\ 2 \end{bmatrix}$$

from each coin.

Aprikyan, Tarkhanyan

Multiplication of vector by scalar

Definition

To multiply a vector $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ by a scalar c in \mathbb{R}^n , multiply each

component of the vector by the scalar:

$$c \cdot \mathbf{v} = \begin{bmatrix} c \cdot v_1 \\ c \cdot v_2 \\ \vdots \\ c \cdot v_n \end{bmatrix}$$

Properties of Vectors

Associativity and Commutativity of Vector Addition

For any vectors **u** and **v** in \mathbb{R}^n , the vector addition is commutative and associative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

Properties of Vectors

Associativity and Commutativity of Vector Addition

For any vectors **u** and **v** in \mathbb{R}^n , the vector addition is commutative and associative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

Associativity and Commutativity of Scalar Multiplication

For any scalar c and vectors \mathbf{v} and \mathbf{u} in \mathbb{R}^n , scalar multiplication is associative and commutative:

$$c \cdot (\mathbf{v} + \mathbf{u}) = c \cdot \mathbf{v} + c \cdot \mathbf{u}$$

 $(c \cdot d) \cdot \mathbf{v} = c \cdot (d \cdot \mathbf{v})$

What if we buy something and spend 2×50 drams?

11/30

Aprikyan, Tarkhanyan Lecture 1

What if we buy something and spend 2×50 drams?

Definition

For a vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 in \mathbb{R}^n , the **negative** of \mathbf{v} , denoted as $-\mathbf{v}$, is

obtained by negating each component:

$$-\mathbf{v} = \begin{bmatrix} -v_1 \\ -v_2 \\ \vdots \\ -v_n \end{bmatrix}$$

Vector Subtraction

The subtraction of vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined as the sum of \mathbf{u} and the negative of \mathbf{v} :

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ \vdots \\ u_n - v_n \end{bmatrix}$$

Vector Subtraction

The subtraction of vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined as the sum of \mathbf{u} and the negative of \mathbf{v} :

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ \vdots \\ u_n - v_n \end{bmatrix}$$

Example

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 2-1 \\ -1-4 \\ 3-0 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ 3 \end{bmatrix}$$

Aprikyan, Tarkhanyan Lecture 1 12 / 30

Definition

For a column vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 in \mathbb{R}^n , the **transpose**, denoted as \mathbf{v}^T , is a

row vector:

$$\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

Definition

For a column vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 in \mathbb{R}^n , the **transpose**, denoted as \mathbf{v}^T , is a

row vector:

$$\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

For a row vector $\mathbf{u} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ in \mathbb{R}^n , the **transpose**, denoted as \mathbf{u}^T , is a column vector:

$$\mathbf{u}^T = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

Examples:

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}^T = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$$

Examples:

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}^T = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2 \end{bmatrix}^T =$$

Examples:

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}^T = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

Examples:

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}^T = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

Transpose Properties

- For any vector \mathbf{v} in \mathbb{R}^n , $(\mathbf{v}^T)^T = \mathbf{v}$
- For any scalar c, $(c \cdot \mathbf{v})^T = c \cdot \mathbf{v}^T$

In our example we had
$$\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
 coins of $\mathbf{a} = \begin{bmatrix} 10 \\ 20 \\ 50 \\ 100 \\ 200 \end{bmatrix}$ nominations (values)

respectively.

In our example we had
$$\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
 coins of $\mathbf{a} = \begin{bmatrix} 10 \\ 20 \\ 50 \\ 100 \\ 200 \end{bmatrix}$ nominations (values)

respectively.

How much money do we have in total?

In our example we had
$$\mathbf{b} = \begin{bmatrix} 2\\1\\2\\0\\1 \end{bmatrix}$$
 coins of $\mathbf{a} = \begin{bmatrix} 10\\20\\50\\100\\200 \end{bmatrix}$ nominations (values)

respectively.

How much money do we have in total?

Definition

The **dot product** of two vectors $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{R}^n is:

$$\mathbf{u}\cdot\mathbf{v}=u_1\cdot v_1+u_2\cdot v_2+\cdots+u_n\cdot v_n$$

Example

If
$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix}$, then:

$$\mathbf{u} \cdot \mathbf{v} = (2 \cdot 1) + (-1 \cdot 4) + (3 \cdot 0) = 2 - 4 + 0 = -2$$

Dot Product of Vectors

Example

If
$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix}$, then:
$$\mathbf{u} \cdot \mathbf{v} = (2 \cdot 1) + (-1 \cdot 4) + (3 \cdot 0) = 2 - 4 + 0 = -2$$

Going back to our example, we can calculate our money with the dot product of $\bf a$ and $\bf b$:

$$\mathbf{a} \cdot \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 20 \\ 50 \\ 100 \\ 200 \end{bmatrix} = 2 \cdot 10 + 1 \cdot 20 + 2 \cdot 50 + 0 \cdot 100 + 1 \cdot 200 = 340$$

Aprikyan, Tarkhanyan Lecture 1 16/30

Dot Product of Vectors

Remark 1

The dot product of two vectors is defined if and only if the vectors have the same number of components (i.e. are of the same length).

Remark 2

The dot product of two vectors is a *number* (scalar), not a vector.

Dot Product of Vectors

Remark 1

The dot product of two vectors is defined if and only if the vectors have the same number of components (i.e. are of the same length).

Remark 2

The dot product of two vectors is a *number* (scalar), not a vector.

This is why the dot product is often called **scalar product**.

Properties of Dot Product

Properties

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. The dot product has the following properties:

Commutativity:

$$\mathbf{u}\cdot\mathbf{v}=\mathbf{v}\cdot\mathbf{u}$$

② Distributivity over Vector Addition:

$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

Scalar Multiplication:

$$(c \cdot \mathbf{u}) \cdot \mathbf{v} = c \cdot (\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c \cdot \mathbf{v})$$

Non-negativity:

$$\mathbf{u} \cdot \mathbf{u} \ge 0$$
 and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

Consider vectors
$$\mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 4 \\ -1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$. Let's calculate $(5\mathbf{u} - \mathbf{v}) \cdot \mathbf{w}$:

Aprikyan, Tarkhanyan

Consider vectors
$$\mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 4 \\ -1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$.
Let's calculate $(5\mathbf{u} - \mathbf{v}) \cdot \mathbf{w}$:

$$(5\mathbf{u} - \mathbf{v}) \cdot \mathbf{w} = \begin{pmatrix} 5 \cdot \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} - \begin{bmatrix} 0 \\ 4 \\ -1 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} 5 \\ -10 \\ 15 \end{bmatrix} - \begin{bmatrix} 0 \\ 4 \\ -1 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ -14 \\ 16 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} = 5 \cdot (-2) + (-14) \cdot 1 + 16 \cdot 2 = 8$$

• So far, we were treating vectors in \mathbb{R}^n as lists of numbers only.

20/30

- So far, we were treating vectors in \mathbb{R}^n as lists of numbers only.
- For example: $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, a 2-dimensional column vector.

Aprikyan, Tarkhanyan

- So far, we were treating vectors in \mathbb{R}^n as lists of numbers only.
- For example: $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, a 2-dimensional column vector.

Aprikyan, Tarkhanyan

- So far, we were treating vectors in \mathbb{R}^n as lists of numbers only.
- For example: $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, a 2-dimensional column vector.

Geometric Interpretation

- In addition to their algebraic representation, vectors have a geometric interpretation.
- We can think of a vector v as a point in the 2d space,
- Or we can imagine it as an arrow in space, starting from the origin (O(0,0)) and pointing to the mentioned point.
- ullet The components of ullet are the **coordinates** of the point in the plane.

20 / 30

Aprikyan, Tarkhanyan Lecture 1

Example

- Consider the vector $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- This vector points to the point (2, 3) in the plane.

In general, the vector with coordinates $\begin{bmatrix} x \\ y \end{bmatrix}$ is represented by the point with coordinates (x, y).

Aprikyan, Tarkhanyan

Example

- Consider the vector $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- This vector points to the point (2, 3) in the plane.

In general, the vector with coordinates $\begin{bmatrix} x \\ y \end{bmatrix}$ is represented by the point with coordinates (x, y).

What do you think happens in the 3d space?

21/30

Aprikyan, Tarkhanyan Lecture 1

Addition of vectors

Let's interpret some of our vector operations geometrically.

Addition: To add vectors u and v, place the tail of v at the head of u. The sum u + v is the vector pointing from the tail of u to the head of v.

Negative of vectors

• **Negation:** The negative of a vector \mathbf{v} , denoted $-\mathbf{v}$, is a vector with the same magnitude but opposite direction.

Subtraction of vectors

Subtraction: To subtract v from u, place the tail of v at the head of u. The result u - v is the vector pointing from the head of v to the head of u.

Multiplication by scalar

 Scalar Multiplication: Scaling a vector v by a scalar c stretches or compresses the vector. The result c · v has the same direction as v but a different magnitude.

Example

Let $\mathbf{a} = [3, 2]$ and $\mathbf{b} = [2, 0]$. We want to find $3\mathbf{a} + \mathbf{b}$.

Example

Let $\mathbf{a} = [3, 2]$ and $\mathbf{b} = [2, 0]$. We want to find $3\mathbf{a} + \mathbf{b}$.

Vector Operations

- $3\mathbf{a} + \mathbf{b} = 3 \cdot [3, 2] + [2, 0]$
- $3\mathbf{a} + \mathbf{b} = [9, 6] + [2, 0]$
- $3\mathbf{a} + \mathbf{b} = [11, 6]$

Example

Let $\mathbf{a} = [3, 2]$ and $\mathbf{b} = [2, 0]$. We want to find $3\mathbf{a} + \mathbf{b}$.

Vector Operations

- $3\mathbf{a} + \mathbf{b} = 3 \cdot [3, 2] + [2, 0]$
 - $3\mathbf{a} + \mathbf{b} = [9, 6] + [2, 0]$
 - $3\mathbf{a} + \mathbf{b} = [11, 6]$

How can we interpret it geometrically?

