monthly occupancy = average length of stay(4.6 nights) * (No. of reviews per month / review rate of 50%) df['monthly_occupancy'] = df.monthly_estimated_booking * 4.6
<pre>df['yearly_occupancy'] = df.monthly_occupancy * 12 # yearly income = monthly occupancy rate * price * 12 df['yearly_income'] = df.monthly_occupancy * df.price * 12 # change the data type of last_review column to actual datetime object.</pre>
<pre>df['last_review'] = pd.to_datetime(df['last_review']) df['room_type'] = df['room_type'].astype(str) # last review posted within 6 months & room types are 'Entire home/apt' or 'Private room' only. # availablity above 90 days per year or yearly estimated booking is over 90 days or an individual host has multiple listings. df_illegal = df[((df.last_review > '2021-06-01') & ((df.room_type == 'Entire home/apt') (df.room_type == 'Private room'))) &</pre>
((df.availability_365 > 90) (df.yearly_occupancy > 90) (df.calculated_host_listings_count > 1))] df_illegal.sample(6, random_state=1) # we now have illegal listings but what let us group the listings by each boroughs in London. df_illegal_boroughs = df_illegal.groupby(['neighbourhood'])
Data frame is 67903 x 11 (48875, 11) In [2]: # draw a histogram of yearly income(mean) of each boroughs in London. sns.set_style('darkgrid') ax = sns.displot(df_illegal_boroughs.yearly_income.mean()) ax = sot(x)loyol=[Mean_Yearly_Income_(f)], yylohol=[Mean_Yearly_Income_(f)],
ax.set(xlabel='Mean Yearly Income (£)', ylabel='No. of Boroughs') plt.gcf().subplots_adjust(top=0.9) plt.gcf().suptitle('No. of Boroughs vs. Mean Yearly Income', fontsize=15, fontweight='bold') Dut[2]: Text(0.5, 0.98, 'No. of Boroughs vs. Mean Yearly Income') No. of Boroughs vs. Mean Yearly Income
No. of Boroughs 8
1000 20000 30000 40000 50000 Mean Yearly Income (£) In [3]: # loading census shape. The main one is the London borough and the following two census are water and vegetations. boros = gpd.read_file('https://github.com/jreades/i2p/blob/master/data/src/Boroughs.gpkg?raw=true')
Since there are longitude and latitude columns in illegal listings dataset, we are converting it into geo-dataframe. gdf = gpd.GeoDataFrame(df_illegal, geometry=gpd.points_from_xy(df_illegal.longitude, df_illegal.latitude, crs = 'epsg:4326')) gdf = gdf.to_crs(27700) # plotting borough census shape as well as geo-dataframe(illegal listings) ax = boros.plot(figsize=(10, 7), edgecolor='red', facecolor='none', linewidth=0.5, alpha=0.5)
<pre>gdf.plot(markersize=3, column='yearly_income', cmap='viridis', scheme='Fisher_Jenks_Sampled', ax = ax) ax.set_title('Illegal Airbnb Listings in London', fontdict={'fontsize':'20', 'fontweight':'3'}) a = ax.annotate('Source: InsideAirbnb (2020)',</pre>
ax.axis('off') #ax.set_xlim([510000, 550000]) #ax.set_ylim([165000, 195000]) /opt/conda/envs/sds2021/lib/python3.9/site-packages/geopandas/geodataframe.py:577: RuntimeWarning: Sequential read of iterator was interrupted. Resetting iterator. This can negatively impact the performance. for feature in features_lst:
Dut[3]: (500648.735, 564876.965, 153596.645, 203188.055) Illegal Airbnb Listings in London
Source: InsideAirbnb (2020)
In [4]: # boxplot x being room_type while y being yearly income.
<pre># let us see the general distribution of yearly income of different room types. sns.set_style('whitegrid') sns.set_theme(style="ticks", palette="pastel") f, ax = plt.subplots(figsize=(8, 5)) ax = sns.boxplot(y=gdf.yearly_income, x=gdf.room_type, showfliers=False) ax.set_title('Yearly Income vs. Room Type') ax.set_ylabel('Yearly Income (£)')</pre>
ax.set_ylabel('Yearly Income (£)') ax.set_xlabel('Room Type') sns.despine(offset=5) Yearly Income vs. Room Type
50000 - (J) 40000 - E
10000 - 100000
Entire home/apt Private room Room Type
conducting a simple description analysis. # this analysis table illustrates count, sum, mean etc. information of illegal listings by different boroughs and room types. df_illegal_desc = df_illegal.groupby(['neighbourhood', 'room_type']).agg({'yearly_income':['count', 'sum', 'mean', 'median', 'std',lambda x: x.quantile(0.25),lambda x: x.quantile(0.75)]}).reset_index() df_illegal_desc.columns = df_illegal_desc.columns.droplevel(0) cols = df_illegal_desc.columns.values
<pre>cols[0] = 'neighbourhood' cols[1] = 'room_type' cols[-2] = 'Q1' cols[-1] = 'Q3' df_illegal_desc.columns = cols df_illegal_desc.sort_values(by='mean', ascending=False).head(10)</pre>
Out[5]: neighbourhood room_type count sum mean median std Q1 Q3 O Barking and Dagenham Entire home/apt 35 7.836612e+05 22390.318629 12403.440 29054.368731 5365.440 25016.640 I Barking and Dagenham Private room 31 1.171697e+05 3779.668645 3394.800 3382.289874 1468.320 5049.144
2 Barnet Entire home/apt 116 2.048593e+06 17660.288276 10358.832 21077.530480 4729.536 21914.400 3 Barnet Private room 89 6.934610e+05 7791.697079 2489.520 21120.368894 1132.704 4716.288 4 Bexley Entire home/apt 17 2.637666e+05 15515.680941 6670.368 19248.919728 5023.200 10588.464
61 Waltham Forest Private room 73 4.292440e+05 5880.055233 3825.360 6376.600673 1761.984 7116.384 62 Wandsworth Entire home/apt 229 5.809471e+06 25368.869031 17332.800 34284.724463 8755.824 30691.200 63 Wandsworth Private room 165 1.939076e+06 11751.972945 6089.664 28776.021995 2852.736 11764.224 64 Westminster Entire home/apt 1107 4.427120e+07 39992.049951 21143.808 84802.944882 10882.680 40426.272
65 Westminster Private room 322 1.471245e+07 45690.836571 16230.456 96913.573003 7366.992 37179.408 66 rows × 9 columns
<pre>In [6]: # to go one step further, I have divided and categorized the boroughs of London into Innter and Outer London. # also, their direction of locations have been specified with East, West, North and South. mapping = {} for b in ['Enfield', 'Waltham Forest', 'Redbridge', 'Barking and Dagenham', 'Havering', 'Greenwich', 'Bexley']: mapping[b] = 'Outer East and North East' for b in ['Haring', 'Islington', 'Hackney', 'Tower Hamlets', 'Newham', 'Lambeth', 'Southwark', 'Lewisham']:</pre>
<pre>mapping[b] = 'Inner East' for b in ['Bromley', 'Croydon', 'Sutton', 'Merton', 'Kingston upon Thames']: mapping[b] = 'Outer South' for b in ['Wandsworth', 'Kensington and Chelsea', 'Hammersmith and Fulham', 'Westminster', 'Camden']: mapping[b] = 'Inner West' for b in ['Richmond upon Thames', 'Hounslow', 'Ealing', 'Hillingdon', 'Brent', 'Harrow', 'Barnet', 'City of London']:</pre>
<pre>mapping[b] = 'Outer West and North West'</pre>
similar to what we did above, we are now calculating the mean and median of yearly income of different locations of London. df_illegal_2 = df_illegal.set_index('neighbourhood').groupby([mapping, 'room_type']).agg({'yearly_income':['mean', 'median']}).reset_index() df_illegal_2.columns = df_illegal_2.columns.droplevel(0) cols = df_illegal_2.columns.values
<pre>df_illegal_2 = df_illegal.set_index('neighbourhood').groupby([mapping, 'room_type']).agg({'yearly_income':['mean', 'median']}).reset_index() df_illegal_2.columns = df_illegal_2.columns.droplevel(0)</pre>
<pre>df_illegal_2 = df_illegal.set_index('neighbourhood').groupby([mapping, 'room_type']).agg({'yearly_income':['mean', 'median']}).reset_index() df_illegal_2.columns = df_illegal_2.columns.droplevel(0) cols = df_illegal_2.columns.values cols[0] = 'area' cols[1] = 'room_type' df_illegal_2.columns = cols df_illegal_2.columns = cols df_illegal_2.sort_values(by='mean', ascending=False).head(10) # plotting strip plot for visualisation. X axis conveys the two room types, Enitre home/apt and private room. y axis is the yearly income(mean) # for the value of hue, it is different categorical areas of London. This is the mapping which we have constructed as in dict type. sns.set_theme(style="whitegrid") f, ax = plt.subplots() sns.despine(bottom=True, left=True) g = sns.stripplot(x="room_type", y="mean", hue="area", data=df_illegal_2, dodge=True, alpha=.45, zorder=1) g.legendset_title('Area')</pre>
<pre>df illegal 2 = df illegal set_index('neighbourhood').groupby([mapping, 'room_type']).agg(('yearly_income':['mean', 'median']}).reset_index() ff illegal 2.columns = df illegal 2.columns.values cols[0] = 'area' cols[0] = 'room_type' df_illegal 2.columns = cols ff_illegal 2.columns = cols ff_illeg</pre>
<pre>df_illegal_2 = df_illegal_set_index('neighbourhood').groupby([mapping, 'room_type']).agg({'yearly_income':['mean', 'median']}).reset_index() df_illegal_2.columns = df_illegal_2.columns.droplevel(0) cols = df_illegal_2.columns.values cols[0] = 'room_type' df_illegal_2.columns = cols df_illegal_2.columns = cols df_illegal_2.sort_values(by='mean', ascending=False).head(10) # plotting strip plot for visualisation. X axis conveys the two room types, Enitre home/apt and private room. y axis is the yearly income(mean) # for the value of nue, it is different categorical areas of London. This is the mapping which we have constructed as in dict type. sns.set_theme(style="whitegrid") f, ax = plt.subplots() sns.despine(bottom=True, left=True) g = sns.stripplot(x="room_type", y="mean", hue="area", data=df_illegal_2, dodge=True, alpha=.45, zorder=1) g.legendset_itle('Area') # Show the mean of means sns.pointplot(x="room_type", y="mean",</pre>
of illegal 2 of illegal 2.columes of fillegal 2.columes values culs[3] = 'tone_Lype' or illegal 2.columes = cols of illegal 2.columes
of illegal_2 ed_illegal_sec_index('esiphborhood').groupby('mapping, 'room_type')).agg({'yearly_iscome':['mean', 'median']}).roset_index() of illegal_2.columns = dillegal_2.columns.yeinl
drillegal 2 = of libral set_index ("mightourbood") arounty(mapsium, "room_type"]).agg(('yearly_income':['mean', 'median'])).resei_index() drillegal 2 columns around colid 2 columns around colid 3 = resource drillegal 2 columns drillegal 3 columns drillegal 4 columns d
or 1 logal 2 of 1 logal 3 of index (registromore) groupsy(mapping, "rose type")).agg((yearly teams"; [ranca", "macka"))) reset trides() which (or invest) colicio invest
Lincal_2 = dintercol_col_col_col_col_col_col_col_col_col_
Second Content of the Content of t
set Throat 2 or fail of the fail of the control of
in Tribugal 2 will, "Tribugal and, tribugal 2 will, complete (According to the process of the pr
Exposit of the Tables of the Control (1999) and the Control (199
1200 To Prince
Trigot is an integral context consequence in the context of the
distribution of the product of the production of
But the first of the content of th
and the first and the first conduction of the co
The state of the s
Secretary of the control of the cont
The content of the
Compared to the compared to
Section of the control of the contro
Service of the control of the contro
Grant Control of Contr
Figure 1. Comment of the comment of
Part
Service of the control of the contro

CASA0013: Foundations of Spatial Data Science

Github(Dataset): https://github.com/henry-kang-7/CASA0013.git

from sklearn.metrics import silhouette_samples, silhouette_score

cols = ['id', 'room_type', 'price', 'reviews_per_month', 'neighbourhood',

'calculated_host_listings_count', 'availability_365', 'minimum_nights',

df.drop(index=df[((df.reviews_per_month.isna()) | (df.last_review.isna()))].index, axis=0, inplace=True)

Student Name : Jeonghwa Kang

Reproducible Analysis

from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import PowerTransformer

we are selecing columns that are needed only.

'last_review', 'latitude', 'longitude']

shape[0] = no. of rows, shape[1] = no. of columns.
print(f"Data frame is {df.shape[0]} x {df.shape[1]}")

drop rows where reviews_per_month and last_review is NA.

reading csv file 'listings.csv' with specified columns above.
df = pd.read_csv('listings.csv', low_memory=True, usecols=cols)

In [1]: from sklearn.cluster import KMeans, OPTICS

import matplotlib.pyplot as plt

pick any 6 samples to confirm.
df.sample(6, random_state=1)

import geopandas as gpd
import seaborn as sns
import pandas as pd
import numpy as np

pts = PowerTransformer()

import math

%matplotlib inline

print(df.shape)

Student ID: 21044456

-2 -2 0 Entire home/apt Private room price In [10]: # adding the cluster values to our geo-dataframe as well. # all the listings in each borough share the same value of clusters. # this is because we want to see how the listings in different boroughs are linked together if there is. gdf_mlg_rs = pd.merge(gdf, mlg, on = 'neighbourhood') def plt_ldn(b): fig, ax = plt.subplots(1, figsize=(14, 12))b.plot(ax=ax, edgecolor='#cc2d2d', facecolor='None', zorder=3) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.axis('off') return fig, ax fig, $ax = plt_ldn(boros)$ fig.suptitle(f"{c_nm} Results (k={k_pref})", fontsize=20, y=0.92) gdf_mlg_rs.plot(column=c_nm, ax=ax, linewidth=0, zorder=0, categorical=True, legend=True) Out[10]: <AxesSubplot:> KMeans Results (k=3) In [11]: # preparing for sillouette analysis. x = []y = [] **for** k **in** range(2,15): # using mlg table, we will conduct sillouette analysis to see where the listings are clustered. kmeans = KMeans(n_clusters=k, n_init=25, random_state=42).fit(mlg) # calculate the overall silhouette score here. silhouette_avg = silhouette_score(mlg, kmeans.labels_) y.append(k) x.append(silhouette_avg) print('.', end='') $print(f"Largest silhouette score was {max(x):6.4f} for k={y[x.index(max(x))]}")$ plt.plot(y, x) plt.gcf().suptitle("Average Silhouette Scores") Largest silhouette score was 0.5414 for k=4 Out[11]: Text(0.5, 0.98, 'Average Silhouette Scores') Average Silhouette Scores 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40

In [12]: # number of clusters k_pref=3 # calcaulting the clustering based on the mlg table. kmeans = KMeans(n_clusters=k_pref, n_init=25, random_state=42).fit(mlg) # calculating the overall silhouette score silhouette_avg = silhouette_score(mlg, kmeans.labels_) # Calculating the silhouette values sample_silhouette_values = silhouette_samples(mlg, kmeans.labels_) # creating a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2)fig.set_size_inches(9, 5) # the 1st subplot is the silhouette plot # the silhouette coefficient can range from -1, 1 ax1.set_xlim([-1.0, 1.0]) # the (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. $ax1.set_ylim([0, mlg.shape[0] + (k + 1) * 10])$ $y_lower = 10$ # for each of the clusters... for i in range(k_pref): # aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[kmeans.labels_ == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i # set the color ramp color = plt.cm.Spectral(i/k) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # the vertical line for average silhouette score of all the values ax1.axvline(x=silhouette_avg, color="red", linestyle="--", linewidth=0.5) ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks(np.arange(-1.0, 1.1, 0.2)) # Was: [-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1] # 2nd Plot showing the actual clusters formed --# we can only do this for the first two dimensions # so we may not see fully what is causing the # resulting assignment colors = plt.cm.Spectral(kmeans.labels_.astype(float) / k) ax2.scatter(mlg[mlg.columns[0]], mlg[mlg.columns[1]], marker='.', s=30, lw=0, alpha=0.7, c=colors) # labeling the clusters centers = kmeans.cluster_centers_ # draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200) for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='\$%d\$' % i, alpha=1, s=50)ax2.set_title("Visualization of the clustered data") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette results for KMeans clustering " "with %d clusters" % k_pref), fontsize=14, fontweight='bold') plt.show() Silhouette results for KMeans clustering with 3 clusters The silhouette plot for the clusters. Visualization of the clustered data Feature space for the 2nd feature -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 2 Feature space for the 1st feature The silhouette coefficient values In [13]: # extracting two columns from the mlg table. mlg2 = mlg.loc[:,['Entire home/apt', 'Private room']] mlg2.head() # conducting the nearest neighbours analysis. nbrs = NearestNeighbors(n_neighbors=4).fit(mlg2) distances, indices = nbrs.kneighbors(mlg2) distances = np.sort(distances, axis=0) distances = distances[:,1] plt.plot(distances) plt.gcf().suptitle("Nearest Neighbour Distances") Out[13]: Text(0.5, 0.98, 'Nearest Neighbour Distances') Nearest Neighbour Distances 1.0 0.8 0.6 0.4 0.2 25 In [14]: # conducting Optics analysis c_nm = 'Optics' e = 0.6 # run the clustering for the mlg2 dataset. opt = OPTICS(min_samples=len(mlg2.columns)+1, max_eps=math.ceil(e * 100)/25, n_jobs=-1).fit(mlg2) # create new column and assign the values of clusters

mlg2[c_nm] = pd.Series(opt.labels_, index=mlg2.index, name=c_nm)

gdf_mlg_rs.plot(column=c_nm, ax=ax, linewidth=0, zorder=0, legend=True, categorical=True)

Optics Results

gdf_mlg_rs = pd.merge(gdf, mlg2, on='neighbourhood')

fig.suptitle(f"{c_nm} Results", fontsize=20, y=0.92)

plot the results we have.
fig, ax = plt_ldn(boros)

Out[14]: <AxesSubplot:>