

PATENT  
ATTY DKT: 1410-CA

**SEGMENTED CHOPPING AMPLIFIER**

by

Karl Thompson  
9934 Autumn Dawn  
Converse, Texas 78109

John L. Melanson  
901 W. 9th Street #201  
Austin, Texas

Chung-Kai Chow  
9705 Llano Estacado Lane  
Austin, Texas 78759

Ammisetti Prasad  
4600 Monterey Oaks Blvd., #617  
Austin, Texas 78749

Express Mail No.: EV304636714US  
Date of Deposit: OCT. 16, 2003

## BACKGROUND OF THE INVENTION

[0001] This application claims priority to US Provisional Patent Application No. 60/441,296, filed on January 21, 2003, and is incorporated herein in its entirety.

### Field of the Invention

[0002] The present invention relates to an amplifier, and, more particularly, to a chopping amplifier. More specifically, the present invention relates to a segmented chopping amplifier.

10    Description of Related Art

[0003] An amplifier may have several non-idealities, which affect the overall quality of signals that the amplifier processes. Some of these non-idealities are offset, 1/f noise, and thermal noise. Offset is spectrally represented as a signal with a zero frequency and an amplitude equivalent to the magnitude of the offset. The 1/f noise, as its name implies, is inversely proportional to frequency, and thermal noise is constant across all frequencies. The key feature is the frequency at which the magnitude of the 1/f noise is equal to the thermal noise. This frequency is known as the 1/f corner frequency and is typically located in the frequency domain between 15    1kHz to 1MHz for most amplifiers.

[0004] For most applications, the input signals that are applied to an amplifier are limited in frequency. For the input signals that fall below the 1/f corner frequency and have amplitudes less than the 1/f noise at the same frequency, the signal then becomes lost. Chopping techniques for amplifiers 20    have been utilized to modulate the offset and the 1/f noise to a higher frequency (e.g., a portion of the spectrum about a chop clock frequency  $f_{chop}$  at which no 1/f noise exist). Low pass filtering of the signal then removes the 25    offset and the 1/f noise and ideally leaves the signal only with thermal noise. Exemplary chopping techniques have been described in "Circuit Techniques

for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization" by Christian C. Enz and Gabor C. Temes, IEEE Proceedings, Nov 1996 and U.S. Patent No. 5,039,989 entitled "Delta-Sigma Analog-to-Digital Converter with Chopper Stabilization at the Sampling Frequency" to Welland et al.

[0005] With reference now to **Figure 1**, a chopping amplifier **100** according to the prior art is shown. Chopping amplifier **100** receives a differential input signal **101** and provides a differential output signal **120**. Chopping amplifier **100** has a chop clock controller **122**. Chop clock controller **122** is coupled to input chopping switches **104**, **106**, **108**, and **110** and output chopping switches **112**, **114**, **116**, and **118** and controls these switches.

[0006] Input and output chopping switches **104**, **106**, **108**, **110**, **112**, **114**, **116**, and **118** are divided into two groups. The first group includes input chopping switches **104**, **110** and output chopping switches **112**, **118**, which are controlled by clock signal  $\phi_A$  of chop clock controller **122**. The second group includes input chopping switches **106**, **108** and output chopping switches **114**, **116**, which are controlled by clock signal  $\phi_B$  of chop clock controller **122**. Referring now to **Figure 2**, a timing diagram for the clock signals of chop clock controller **122** according to the prior art is shown. Chop clock controller **122** generates the clock signals  $\phi_A$  and  $\phi_B$  according to a master chop clock signal  $\phi_{chop}$ . Clock signals  $\phi_A$  and  $\phi_B$  are non-overlapping clock signals as shown in the timing diagram of **Figure 2**. Non-overlapping clock signals  $\phi_A$  and  $\phi_B$  are needed to drive input and output chopping switches **104**, **106**, **108**, **110**, **112**, **114**, **116**, and **118** and to avoid shorting of inputs and outputs due to delays. A non-overlap period **202** illustrates the nature of non-overlapping clock signals  $\phi_A$  and  $\phi_B$ .

[0007] Chopping amplifier **100** modulates input signal **101** to a higher portion of the frequency spectrum, such as a chop clock frequency **fchop** of chop clock signal  $\phi_{chop}$ . Generally, no 1/f noise exists at the chop clock frequency **fchop**. Chopping amplifier **100** amplifies input signal **101** and adds

the 1/f noise and the thermal noise to produce an output signal **121** (before output switches **112**, **114**, **116**, and **118**). Output signal **121** of chopping amplifier **100** is modulated by the output chopping switches **112**, **114**, **116**, and **118**. The net effect of the switching by output chopping switches **112**,  
5 **114**, **116**, and **118** is the demodulation of the input signal back to the baseband (e.g.,  $f = 0$ ) and the modulation of the 1/f noise and the offset to the higher frequency  $f_{chop}$  where they are removed by low pass filtering. Thus, chopping amplifier **100** ideally eliminates errors due to the 1/f noise and offset during the amplification process.

10 [0008] However, chopping amplifier **100** has some non-idealities that could lead to distortion, excess noise above and beyond the thermal noise, and/or residual offset. For example, non-idealities exist in the asymmetries between clock signals  $\phi_A$  and  $\phi_B$  and when chopping amplifier **100** is operating in the open loop during the non-overlap periods (e.g., non-overlap  
15 period **202**).

[0009] In a traditional chopping scheme, operational amplifier **102** is operating in an open loop (e.g., all input and output chopping switches **104**, **106**, **108**, **110**, **112**, **114**, **116**, and **118** are open) during the non-overlap periods. This open loop situation can cause the output of operational amplifier **102** to runaway. Depending upon the nature of the runaway, distortion, noise, and/or residual offset may result. Furthermore, during the non-overlap period, input signal **101** is sampled and held at the input of operational amplifier **102**. Any broadband noise near the edge rate (e.g., twice the chopping frequency  $2 * f_{chop}$  of chopping clock signal  $\phi_{chop}$ ) gets  
20 aliased down to the frequency baseband, which causes severe degradation of dynamic range and linearity. This aliasing of the noise is especially problematic in over-sampled data converters which have a large amount of shaped quantization noise at or near twice the chopping frequency  $2 * f_{chop}$ .  
25

[0010] The present invention recognizes the desire and need for providing  
30 an improved chopping amplifier. The present invention further recognizes the

desire and need to provide a chopping amplifier that resolves the open loop problem and avoids the runaway situation. The present invention also recognizes the need and desire for a chopping amplifier that reduces aliasing of noise to the frequency baseband and the magnitude of chopping artifacts.

5 The present invention overcomes the problems and disadvantages in accordance with the prior art.

### Summary of the Invention

[0011] A chopping amplifier and method for chopping an input signal are disclosed. The chopping amplifier and method utilize at least two chopping 10 amplifier stages. A chopping operation of an input signal is segmented across two or more chopping amplifier stages, and the two or more chopping amplifier stages are responsive to a master controller. Chop clock signals of the chopping amplifier stages are staggered so that they have non-overlapping periods and at least one of the chopping amplifier stages is not 15 operating in an open loop at any given time. The non-overlapping periods are periodic so that a master chop clock of the master controller can be operated at a lower chop clock frequency. For every doubling of N number of chopping amplifier stages, magnitudes of chopping artifacts and the aliased components are each respectively reduced by 3 dB.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:

[0012] **Figure 1** is a detailed block diagram of an exemplary chopping amplifier according to the prior art;

10 [0013] **Figure 2** are exemplary timing diagrams of a master clock signal and non-overlapping clock signals for the chopping amplifier of **Figure 1** according to the prior art;

15 [0014] **Figure 3A** is a block diagram of an exemplary segmented chopping amplifier with two segmented chopping amplifier stages according to the present invention;

[0015] **Figure 3B** are exemplary timing diagrams of a master clock signal and main chop clock signals for generating non-overlapping chop clock signals for the segmented chopping amplifier of **Figure 3A**;

20 [0016] **Figure 4** is a detailed block diagram of the exemplary segmented chopping amplifier of **Figure 3A**;

[0017] **Figure 5** are exemplary timing diagrams of non-overlapping chop clock signals for the segmented chopping amplifier having two segmented chopping amplifier stages as shown in **Figures 3A and 4**;

25 [0018] **Figure 6** is a block diagram of an exemplary segmented chopping amplifier with N number of segmented chopping amplifier stages in which N is an integer equal to two or greater according to the present invention;

[0019] **Figure 7** are exemplary timing diagrams of a master chop clock signal and main chop clock signals utilized to generate non-overlapping chop clock signals for a segmented chopping amplifier having four segmented chopping amplifier stages.

DETAILED DESCRIPTION OF THE INVENTION

[0020] A segmented chopping amplifier and method for chopping an input signal across a number of segmented chopping amplifier stages are disclosed.

5 [0021] With reference now to **Figure 3A**, a block diagram of an exemplary segmented chopping amplifier **300** having two segmented chopping amplifier stages **302a** and **302b** and a master chop clock controller **304** according to the present invention is shown. The present invention can be a segmented chopping amplifier having N number of segmented chopping amplifier stages, 10 in which N is an integer value greater than one. Each segmented chopping amplifier stage contributes  $1/N$  amount of the overall gain of the segmented chopping amplifier. The N number of segmented chopping amplifier stages are coupled in parallel to each other. Segmented chopping amplifier **300** is an exemplary segmented chopping amplifier **300** in which N equals two since it 15 has two segmented chopping amplifier stages **302a** and **302b**.

[0022] Segmented chopping amplifier **300** segments the chopping operation of differential input signal **303** across the two segmented chopping amplifier stages **302a** and **302b**. Segmented chopping amplifier **300** generates differential output signal **305** from the two segmented chopping amplifier stages **302a** and **302b**. The two segmented chopping amplifier stages **302a** and **302b** are coupled in parallel to each other and are responsive to master chop clock controller **304**. Master chop clock controller **304** has a master chop clock signal  $\phi_{mchop}$  with a chopping frequency  $f_{mchop}$ . 20

25 [0023] Referring now to **Figure 3B**, exemplary timing diagrams of master clock signal  $\phi_{mchop}$  of master chop clock controller **304** and main chop clock signals  $\phi_{304a}$  and  $\phi_{304b}$  for corresponding clock amplifier stages **302a** and **302b** are shown. Main chop clock signals  $\phi_{304a}$  and  $\phi_{304b}$  are derived and based on master chop clock signal  $\phi_{mchop}$ . Main chop clock signals  $\phi_{304a}$  30 and  $\phi_{304b}$  are used by a non-overlapping clock generator (not shown) to

generate non-overlapping clock signals for clock amplifier stages 302a and 302b. The non-overlapping clock signals will be discussed later in more detail. Master chop clock controller 304 controls operations of segmented chopping amplifier stages 302a and 302b. Master chop clock controller 304 can independently control the two segmented chopping amplifier stages 302a and 302b. Also, each segmented chopping amplifier stage 302a and 302b can perform its own independent chopping operation.

[0024] With reference now to **Figure 4**, segmented chopping amplifier 300 of **Figure 3A** is shown in more detail. Segmented chopping amplifier stage 302a has a differential operational amplifier 402a, input chopping switches 406, 408, 410, and 412, and output chopping switches 414, 416, 418, and 420. Segmented chopping amplifier stage 402b has a differential operational amplifier 402b, input chopping switches 422, 424, 426, and 428, and output chopping switches 430, 432, 434, and 436. Input chopping switches 406, 408, 410, 412, 422, 424, 426, and 428 are coupled to input signal 303 as shown in **Figure 4**. Output chopping switches 414, 416, 418, 420, 430, 432, 434, and 436 are coupled to output signal 305 as shown in **Figure 4**.

[0025] As shown in **Figure 3A**, segmented chopping amplifier 300 has a master chop clock controller 304. Master chop clock controller 304 is coupled to input chopping switches 406, 408, 410, 412, 422, 424, 426, and 428 and output chopping switches 414, 416, 418, 420, 430, 432, 434, and 436 and controls these switches.

[0026] Referring now to **Figure 5**, exemplary timing diagrams of non-overlapping chop clock signals  $\phi_{402a1}$ ,  $\phi_{402a2}$ ,  $\phi_{402b1}$ , and  $\phi_{402b2}$  for segmented chopping amplifier 300 having two segmented chopping amplifier stages 302a and 302b of **Figures 3A** and 4 are shown. Input chopping switches 406, 408, 410, and 412 and output chopping switches 414, 416, 418, and 420 of segmented chopping amplifier stage 302a are divided into two groups. The first group includes input chopping switches 406, 412 and output chopping switches 414, 420, which are controlled by clock signal  $\phi_{402a1}$  from

master chop clock controller 304. The second group includes input chopping switches 408, 410 and output chopping switches 416, 418, which are controlled by clock signal  $\phi_{402a2}$  from master chop clock controller 304. Furthermore, input chopping switches 422, 424, 426, and 428 and output 5 chopping switches 430, 432, 434, and 436 of segmented chopping amplifier stage 302b are divided into two further groups. The third group includes input chopping switches 422, 428 and output chopping switches 430, 436, which are controlled by clock signal  $\phi_{402b1}$  from master chop clock controller 304. The fourth group includes input chopping switches 424, 426 and output 10 chopping switches 432, 434, which are controlled by clock signal  $\phi_{402b2}$  from master chop clock controller 304.

[0027] Non-overlapping clock signals  $\phi_{402a1}$ ,  $\phi_{402a2}$ ,  $\phi_{402b1}$ , and  $\phi_{402b2}$  are needed to drive input chopping switches 406, 408, 410, 412, 422, 424, 426, and 428 and output chopping switches 414, 416, 418, 420, 430, 15 432, 434, and 436 and to avoid shorting of inputs and outputs due to delays. In Figure 5, non-overlap periods 502, 504, 506, 508, ..., 550, 552 illustrate the nature of non-overlapping clock signals  $\phi_{402a1}$ ,  $\phi_{402a2}$ ,  $\phi_{402b1}$ , and  $\phi_{402b2}$ .

[0028] Chopping amplifier 300 modulates input signal 303 to a higher 20 portion of the frequency spectrum, such as chop clock frequency  $fmchop$  of chop clock signal  $\phi mchop$ . Generally, no 1/f noise exists via the input chopping switches 406, 408, 410, 412, 422, 424, 426, and 428 at the chop clock frequency  $fmchop$ . Chopping amplifier 300 amplifies input signal 303 and adds the 1/f noise and the thermal noise to produce an output signal 305. 25 Output signal 305 of chopping amplifier 300 is modulated by the output chopping switches 414, 416, 418, 420, 430, 432, 434, and 436. The net effect of the switching by output chopping switches 414, 416, 418, 420, 430, 432, 434, and 436 is the demodulation of the input signal back to the baseband (e.g.,  $f = 0$ ) and the modulation of the 1/f noise and the offset to the higher 30 frequency  $fmchop$ , where they are removed by low pass filtering. Thus,

chopping amplifier **300** eliminates errors due to the 1/f noise and offset during the amplification process.

[0029] With reference to **Figure 5**, non-overlap periods **502, 504, 506, 508,..., 550, 552** are out of synchronization (e.g., not aligned) and do not 5 occur at the same time with respect to each other. For example, non-overlap period **502** occurs at time **t1**, non-overlap period **504** occurs at time **t2**, non-overlap period **506** occurs at time **t3**, non-overlap period **508** occurs at time **t4,..., t<sub>m</sub>**, non-overlap period **550** occurs at time **t<sub>m</sub>**, non-overlap period **552** occurs at time **t<sub>n</sub>**. In other words, non-overlapping clock signals **φ402a1, φ402a2, φ402b1, and φ402b2** are staggered so that at least one of the two 10 segmented chopping amplifier stages **302a** and **302b** is not operating in an open loop at any given time.

[0030] For example, in **Figure 5**, at each respective times **t1, t3,...t<sub>m</sub>**, chopping amplifier stage **302b** is operating in an open loop (e.g., all input 15 chopping switches **422, 424, 426, and 428** and output chopping switches **430, 432, 434, and 436** are open) while chopping amplifier stage **302a** is not operating in an open loop. At these times while chopping amplifier stage **302b** is in the open loop, chopping amplifier stage **302a** defines output signal **305**. Additionally, at each respective times **t2, t4,..., t<sub>n</sub>**, chopping amplifier 20 stage **302a** is operating an open loop (e.g., input chopping switches **406, 408, 410, and 412** and output chopping switches **414, 416, 418, and 420** are open) while chopping amplifier stage **302b** is not operating in the open loop. At these times while chopping amplifier stage **302a** is in the open loop, chopping amplifier stage **302b** defines output signal **305**. By driving the output in this 25 manner, the open loop problem is averted and the runaway situation is avoided since the chopping amplifier stage not operating in open loop drives output signal **305**.

[0031] With further reference to **Figure 5**, the occurrences of non-overlapping periods **502, 504, 506, 508,..., 550, 552** happen at regular times 30 and are periodic (e.g., times **t1, t2, t3, t4,..., t<sub>m</sub>, t<sub>n</sub>** are each equally spaced

apart in time). More specifically, the non-overlapping periods occur at regular times or periods since non-overlapping clock signals  $\phi_{402a1}$ ,  $\phi_{402a2}$ ,  $\phi_{402b1}$ , and  $\phi_{402b2}$  are chopped ninety (90) degree out-of-phase with each other. The ninety degree out-of-phase difference between the chop clock signals of segmented chopping amplifier stages **302a** and **302b** is determined by the mathematical formula 180 degrees/N in which N equals the number of segmented chopping amplifier stages for the segmented chopping amplifier. In the example of **Figures 3A, 4, and 5**, N equals to two, and thus the signals for each of the segmented chopping amplifier stages are ninety degrees (180 degrees/2) out of phase with each other. If, for example, N equals four, then the chop clock signals would be forty-five (45) degrees (e.g., 180 degrees/4) out of phase and so on and so forth for other values of N.

[0032] Referring again to **Figure 5**, the rate of non-overlap periods **502**, **504**, **506**, **508**, ..., **550**, **552** periodically occurring is four (4) times the chopping frequency **fmchop** of master chop clock signal  $\phi_{mchop}$  (e.g.,  $4 * fmchop$ ) This rate of periodic occurrences results in the down modulation of noise at around  $4 * fmchop$  instead of  $2 * fmchop$ . In over-sampled converters, very little noise exists at the sampling frequency (fs). If the chop clock is designed such that **fmchop** equals  $fs/4$  and the chop clock signal timing of **Figure 5** is utilized, then the increase in base-band noise due to aliasing would be insignificant. Such a design would avoid having to set **fmchop** at relatively high frequencies, such as  $fs/2$ , and instead **fmchop** can be set at lower frequencies (e.g.,  $fs/4$ ). Also, the advantage is more apparent with a higher N number of segmented chopping amplifier stages (e.g.,  $fmchop = fs/8$  for  $N = 4$  and  $fmchop = fs/16$  for  $N = 8$ ).

[0033] Referring now to **Figure 6**, a block diagram of an exemplary segmented chopping amplifier **600** with a master chop clock controller **604** and N number of segmented chopping amplifier stages **602a**, **602b**, **602c**, ..., **602N** is shown. Master chop clock controller **604** has  $\phi_{mchop}$  with a chopping frequency **fmchop**. Segmented chopping amplifier stages **602a**, **602b**, **602c**, ..., **602N** are coupled together in parallel. The N number of

segmented chopping amplifier stages **602a, 602b, 602c,..., 602N** are responsive to master chop clock controller **604**. Each segmented chopping amplifier stage **602a, 602b, 602c,..., 602N** contributes 1/N amount of the overall gain of segmented chopping amplifier **600**. Segmented chopping amplifier **600** segments the chopping operation of differential input signal **603** across the N number of segmented chopping amplifier stages **602a, 602b, 602c,..., 602N**. Segmented chopping amplifier **600** generates differential output signal **605** from the N number of segmented chopping amplifier stages **602a, 602b, 602c,..., 602N**.

10 [0034] In one embodiment, N is an integer multiple of two and equal to or greater than two. In this embodiment, the doubling of N number of segmented chopping amplifier stages **602a, 602b, 602c,..., 602N** provides advantages in reducing chopping artifacts and aliasing of noise. For example, for every doubling of N number of segmented chopping amplifier stages **602a, 602b, 602c,..., 602N**, magnitudes of chopping artifacts that are folded into an operational base-band of chopping amplifier **600** are reduced by 3 dB. Also, for every doubling of N number of segmented chopping amplifier stages **602a, 602b, 602c,..., 602N**, aliasing of noise is reduced by 3 dB.

15 [0035] Mathematical support for the 3 dB reduction in magnitudes of chopping artifacts and aliasing of noise is as follows:

20 Equation 1 -  $N_{\text{nsys}} = \text{Square Root of } (N_{n1}^2 + N_{n2}^2 + 2*K*N_{n1}*N_{n2})$ , where:

$N_{\text{nsys}}$  is the resultant total root-mean-square (rms) value of chopping artifacts/aliased noise;

25  $N_{n1}$  is the rms value of chopping artifacts/aliased noise of first segmented chopping amplifier stage **302a**; and

$N_{n2}$  is the rms value of chopping artifacts/aliased noise of second segmented chopping amplifier stage **302b**;

K is the correlation coefficient (-1 <= K <= +1; K = 0 means that the two sources of the chopping artifacts/aliased noise are un-correlated; K = +1/-1 means that the two sources of the chopping artifacts/aliased noise are fully correlated).

5 [0036] In the present invention, both the chopping artifacts/aliased noise for each segmented chopping amplifier stage add in an un-correlated manner (e.g., K = 0) since segmented chopping amplifier stages **302a** and **302b** perform chopping operations independently of each other. Therefore, equation 1 simplifies to:

10  $N_{\text{nsys}} = \text{Square Root of } (N_{n1}^2 + N_{n2}^2).$

Thus, the above root mean square (rms) addition causes the magnitude of the total noise (e.g., for both chopping artifacts and the aliased noise) to decrease by 3 dB.

15 [0037] With reference now to **Figure 7**, exemplary timing diagrams of clock signals for a segmented chopping amplifier having N equal to four (4) segmented chopping amplifier stages are shown. Exemplary timing diagrams include a master clock signal  $\phi_{\text{mchop}}$  for a master chop clock controller of segmented chopping amplifier having four (4) stages. Exemplary timing diagrams further include main chop clock signals  $\phi_{700a}$ ,  $\phi_{700b}$ ,  $\phi_{700c}$ , and  $20 \phi_{700d}$ . Main chop clock signals  $\phi_{700a}$ ,  $\phi_{700b}$ ,  $\phi_{700c}$ , and  $\phi_{700d}$  are utilized by a non-overlapping chop clock signal generator for generating non-overlapping chop clock signals for a segmented chopping amplifier having four segmented chopping amplifier stages. The non-overlapping chop clock signals would ideally be out of phase by forty-five (45) degrees (e.g., 180 degrees/N = 45 degrees) so that non-overlapping periods of the non-overlapping chop clock signals occur at a periodic rate.

25 [0038] The present invention provides an improved chopping amplifier and method, which are a segmented chopping amplifier and method. The present invention provides a segmented chopping amplifier and method that resolve

the open loop problem and avoids the runaway situation. The present invention also provides a segmented chopping amplifier and method that reduce aliasing of noise to the frequency baseband and the magnitude of chopping artifacts. The present invention overcomes the problems and  
5 disadvantages in accordance with the prior art.

[0039] While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.