

WizFi210/220 Hardware design guide

WIZnet Co., Ltd. All Rights Reserved.

For more information, visit our website at http://www.wiznet.co.kr

1. DEVICE NAME

WizFi210 / WizFi220

2. FUNCTION

Serial/SPI to WiFi Module

2.1 Pin assignment

(TOP VIEW)

2.2 Pin description

PIN	NAME	I/O	IN BIAS	DESCRIPTION
1	GND	Р	NA	Ground
2	JTAG_TCK (*)	I	Pull-up	Joint Test Action Group Test Clock
3	JTAG_TDO (*)	0	NA	Joint Test Action Group Test Data Out
4	JTAG_TDI (*)	Ι	Pull-up	Joint Test Action Group Test Data In
5	JTAG_TMS (*)	I	Pull-up	Joint Test Action Group Test Mode Select
6	JTAG_NTRST (*)	I	Pull-up	Joint Test Action Group Test Mode Reset Active Low
7	ALARM1	I	Pull-down	Embedded Real Time Clock Wake Up Input 1
8	RTC_OUT1 (*)	0	NA	Embedded Real Time Clock Wake Up Output 1
9	VBAT	Р	NA	Embedded Real Time Clock Power Supply
10	DC_DC_CNTL	Ο	NA	VIN_3V3 Regulator Control Output
11	ALARM2 (*)	I	Pull-down	Embedded Real Time Clock Wake Up Input 2
12	ADC1 (*)	I	NA	General Analog to Digital Converter 1
13	ADC2 (*)	I	NA	General Analog to Digital Converter 2
14	MSPI_MISO / GPIO6 (*)	I	Pull-down	Master Serial Peripheral Interface Bus Data Input / General Purpose Input Output
15	MSPI_MOSI / GPIO7 (*)	0	Pull-down	Master Serial Peripheral Interface Bus Data Output / General Purpose Input Output
16	MSPI_CLK / GPIO5 (*)	0	Pull-down	Master Serial Peripheral Interface Bus Clock / General Purpose Input Output
17	VOUT_1V8 (*)	Р	NA	Internal 1.8V Vout
18	GND	Р	NA	Ground
19	MSPI_CS0 / GPIO4 (*)	0	Pull-down	Master Serial Peripheral Interface Bus Chip Select 0 / General Purpose Input Output
20	MSPI_CS1 / GPIO13 (*)	0	Pull-down	Master Serial Peripheral Interface Bus Chip Select 1 / General Purpose Input Output
21	I2C_CLK / GPIO9 (*)	IO	Pull-down	Inter-Integrated Circuit Clock / General Purpose Input Output

22	PWM0 / GPIO10	0	Pull-down	Pulse Width Modulator / General Purpose Input Out-put
23	GPIO19 / CLK_44MHz (*)	I	Pull-down	Internal Clock Circuitry Test Point / General Purpose Input Output
24	GPIO20 / CLK_22MHz (*)	I	Pull-down	Internal Clock Circuitry Test Point / General Purpose Input Output
25	GPIO21 / CLK_11MHz (*)	I	Pull-down	Internal Clock Circuitry Test Point / General Purpose Input Output
26	I2C_DATA / GPIO8 (*)	IO	Pull-down	Inter-Integrated Circuit Data / General Purpose Input Output
27	SSPI_MISO (*)	0	Pull-up	SPI Slave Transmit Data Output to the HOST
28	SSPI_CLK (*)	I	Pull-up	SPI Slave Clock Input from the HOST
29	SSPI_CS (*)	I	Pull-up	SPI Slave Chip Select Input from the HOST
30	SSPI_MOSI (*)	I	Pull-down	SPI Slave Receive Data Input from the HOST
31	GND	Р	NA	Ground
32	VIN_3V3	Р	NA	Single Supply Port
33	EN_1V8	I	NA	Internal 1.8V regulator enable port-Active High
34	VDDIO(**)	Р	NA	All I/O voltage domain (can be tied to VIN_3V3 or tied to HOST I/O supply)
35	EXT_RESETN (*)	IO	Pull-up	Ext Reset Output and Module Reset Input for ARM Debugger. If you will use ARM Debugger, Connect EXT_RESETN(35) to JTAG_TRSTN(6) thru 0-ohm resistor.
36	UART1_CTS / GPIO26 (*)	I	Pull-down	Universal Asynchronous Receiver Transmitter 1 Clear to Send Input / General Purpose Input Output
37	UART1_RTS / GPIO27	0	Pull-down	Universal Asynchronous Receiver Transmitter 1 Request to Send Output / General Purpose Input Out-put / Firmware Program Mode
38	UART1_RX / GPIO3 (*)	I	Pull-down	Universal Asynchronous Receiver Transmitter 1 Receive Input / General Purpose Input Output

39	UART1_TX / GPIO2 (*)	0	Pull-down	Universal Asynchronous Receiver Transmitter 1 Transmitter Output / General Purpose Input Output
40	UARTO_TX / GPIO1	0	Pull-down	Universal Asynchronous Receiver Transmitter 0 Transmitter Output / General Purpose Input Output
41	UARTO_RTS / GPIO25	0	Pull-down	Universal Asynchronous Receiver Transmitter 0 Request to Send Output / General Purpose Input Out-put
42	UARTO_RX / GPIO0	I	Pull-down	Universal Asynchronous Receiver Transmitter 0 Receive Input / General Purpose Input Output
43	UARTO_CTS / GPIO24	I	Pull-down	Universal Asynchronous Receiver Transmitter 0 Clear to Send Input / General Purpose Input Output
44	GPIO31	IO	Pull-down	General Purpose Input Output
45	GPIO30	IO	Pull-down	General Purpose Input Output
46	GPIO29	IO	Pull-down	General Purpose Input Output
47	GPIO28	IO	Pull-down	General Purpose Input Output
48	GND	Р	NA	Ground
49	EXT-ANT	IO	NA	External Antenna pad

^(*) is not available in this version.

(**) To allow for design flexibility and support for multiple sensors with different voltages, the VDDIO banks are split, such that some of the VDDIO banks can be 1.8 V and some can be 3.3 V. If a VDDIO bank is connected to 1.8 V then the corresponding I/O signals for that bank should be driven at the same voltage.

VDDIO Bank 1 : GPIO28~29, JTAG, VDDIO Bank 2 : SPI1(Master), Misc VDDIO Bank 3 : GPIO18~23, PWM

VDDIO Bank 4 : I2C, SPI2(Slave), GPIO16~17

VDDIO Bank 5 : UART0~1 VDDIO Bank 6 : GPIO30~31

3. ELECTRICAL SPECIFICATION

3.1 Absolute maximum ratings

Parameter	Min	Тур	Max	Unit
Storage temperature	-55		+125	°C
Supply Voltage (Vdd18)	-0.5		2.2	V
Supply Voltage (Vdd33)	-0.5		4.0	V

- Vdd18 refers to voltages supplied to pins identified as Vdd_rf, Vdd_adc, Vdd_core.
- Vdd33 refers to voltages supplied to pins identified as Vdd_sw, Vdd_rtc, Vdd_io

3.2 Operating conditions

Parameter	Min	Тур	Max	Unit
Operating Ambient Range	-40		+85	°C
RTC Supply Voltage	1.2	3.3	3.6	V
CORE Supply Voltage	1.7	1.8	1.9	V
Single Supply Voltage	3.0	3.3	3.6	V

3.3 Digital input specifications

Parameter	Min	Тур	Max	Unit
IO Supply Voltage	1.62 / 3	1.8 / 3.3	1.98 / 3.63	V
Input Low Voltage (V _{IL})	-0.3		0.25V _{DDIO}	V
Input High Voltage (V _{IH})	0.8V _{DDIO}		V_{DDIO}	V
Schmitt trig. Low to High threshold point (V _{T+})	1.5			V
Schmitt trig. High to Low threshold point (V _{T-})			1	V

3.4 Digital output specifications

Parameter	Min	Тур	Max	Unit
IO Supply Voltage	1.62 / 3	1.8 / 3.3	1.98 / 3.63	V
Output Low Voltage (V _{IL})	0		0.4	V
Output High Voltage (V _{IH})	1.3		V_{DDIO}	V

Output rise time (t _{TLH})		7	ns
Output fall time (t _{THL})		7	ns

3.5 I/O digital specifications (Tri-state)

Parameter	Min	Тур	Max	Unit
IO Supply Voltage	1.62/3	1.8/3.3	1.98/3.63	
Input Low Voltage (V _{IL})	-0.3		0.25V _{DDIO}	V
Input High Voltage (V _{IH})	0.8V _{DDIO}		V_{DDIO}	V
Schmitt trig. Low to High threshold point (V_{T+})	1.5			V
Schmitt trig. High to Low threshold point (V_{T-})			1	V
Pull-Up Resistor (R _u)	0.05		1	МΩ
Pull-Down Resistor (R _d)	0.05		1	V
Output Low Voltage (V _{OL})	0		0.4	V
Output High Voltage (V _{OH})	1.3		V_{DDIO}	ns
Output rise time @ 3.3V (t _{ToLH})			7	ns
Output fall time @ 3.3V (t _{ToHL})			7	ns
Input rise time (t _{TiLH})			7	ns
Input fall time (t _{TiHL})			7	ns

3.6 RTC input specifications

Parameter	Min	Тур	Max	Unit
RTC Supply Voltage (V _{DDRTC})	1.2		3.6	V
Input Low Voltage (V _{IL})	-0.3		0.25V _{DDRTC}	V
Input High Voltage (V _{IH})	0.8V _{DDRTC}		V_{DDRTC}	V
Schmitt trig. Low to High threshold point (V_{T+})	0.57V _{DDRTC}		0.68V _{DDRTC}	V
Schmitt trig. High to Low threshold point (V_{T-})	0.27V _{DDRTC}		0.35V _{DDRTC}	V

3.7 RTC output specifications

Parameter	Min	Тур	Max	Unit
RTC Supply Voltage (V _{DDRTC})	1.2		3.6	V
Output Low Voltage (V _{OL})	0		0.4	V
Output High Voltage (V _{OH})	0.8V _{DDRTC}		V_{DDRTC}	V
Output rise time (t _{TLH})	19		142	ns
Output fall time (t _{THL})	21		195	ns

3.8 Internal 1.8V regulator specifications

Parameter	Min	Тур	Max	Unit
Output Voltage (VOUT_1V8)		1.8		V
Maximum Output Current (IVOUT_1V8)		250	300	mA
1.8V Regulator Enable "H" Voltage (EN_1V8)	1.0		VIN_3V3	V
1.8V Regulator Enable "L" Voltage (EN_1V8)	0		0.25	V

3.9 Power consumption (VDD=3.3V, VDDIO=1.8V, Temp=25°C)

WizFi210 / WizFi220	Min	Тур	Max	Unit
Standby mode		35	50	uA
(Only V _{DDRTC} is active)		33		<i>G.,</i> 1
Idle mode			10 / 12	mA
(CPU running, WLAN disconnected)			10 / 12	ША
Receive		125	130	mA
(-81dBm RX sens. @11Mbps)		123	130	IIIA
Transmit		125 / 250	140 / 260	m Λ
(+8dBm at antenna port @11Mbps)		135 / 250	140 / 260	mA

3.10 Power consumption (VDD=3.3V, VDDIO=3.3V, Temp=25°C)

WizFi210 / WizFi220	Min	Тур	Max	Unit
Standby mode (Only V _{DDRTC} is active)		35	50	uA
Idle mode (CPU running, WLAN disconnected)			11 / 13	mA

Receive (-81dBm RX sens. @11Mbps)	125	130	mA
Transmit	135 / 250	140 / 260	mA
(+8dBm at antenna port @11Mbps)	,	.,	

3.11 RF specifications

Specification	Description	
Modulation Technique	DSSS for 1, 2Mbps CCK for 5.5, 11Mbps	
Data Rate	IEEE 802.11b: 1, 2, 5.5 and 11Mbps	
Receive Sensitivity	-84dBm ± 1dB @ 11Mbps -88dBm ± 1dB @ 5.5Mbps -90dBm ± 1dB @ 2Mbps -94dBm ± 1dB @ 1Mbps	
Transmit power (Average)	WizFi210 : 8dBm ± 1dB @ 11Mbps WizFi220 : 17dBm ± 1.5dB @ 11Mbps	
Frequency Range	USA: 2.400 ~ 2.483GHz Europe: 2.400 ~ 2.483GHz Japan: 2.400 ~ 2.497GHz China: 2.400 ~ 2.483GHz	
Operating Channels	USA/Canada: 11 (1~11) Major Europe Countries: 13 (1~13) France: 4 (10~13) Japan: 14 for IEEE 802.11b (1~13 or 14th), 13 for IEEE 802.11g (1~13) Korea/China: 13 (1~13)	
Antenna	U.FL External Antenna Support External Antenna Pad Support 1dBi Chip Antenna (Optional)	

4. Basic reference schematics

4.1 V_{IN} = Battery, Standby mode support

4.2 V_{IN} = DC Adaptor, always active

- GPIO29 is used for mode transition between data and command mode.
- GPIO21 is used for factory reset and enable the limited AP mode. So, this should be considered, except in special cases
- In order to upgrade the firmware of the WizFi210, the hardware design to transit between run mode and program mode is required as shown as above.

5. MECHANICAL SPECIFICATION

5.1 Module Dimension

5.2 Recommended PCB Footprint

6. Reference layout design

6.1 Top layer design sample

6.2 Bottom layer design sample

6.3 All layer design sample

7. IR REFLOW TEMPERATURE PROFILE

	Condition	Recommend	Range	Unit
Temperature Ramp up rate for (A)		3	2~4	°C/s
Pre-Heat	Pre-heat time (B)	130	60~180	sec
	Pre-heat ending temperature (C)	200	150~200	$^{\circ}$
I looting	Peak Temperature range (D)	236	230~240	$^{\circ}$
Heating	Melting time that is the time over 218°C (E)	45	30~50	sec

