Contents

Preface				XV	
1.	Intro	oduction	to Semiconductor Lithography	1	
	1.1	Basics	of IC Fabrication	2	
		1.1.1	Patterning	2 2 3	
		1.1.2	Etching	3	
		1.1.3	Ion Implantation	5	
		1.1.4	Process Integration	6	
	1.2	Moore'	's Law and the Semiconductor Industry	7	
	1.3	Lithogi	raphy Processing	12	
		1.3.1	Substrate Preparation	14	
		1.3.2	Photoresist Coating	15	
		1.3.3	Post-Apply Bake	18	
		1.3.4	Alignment and Exposure	19	
		1.3.5	Post-exposure Bake	23	
		1.3.6	Development	24	
		1.3.7	Postbake	25	
		1.3.8	Measure and Inspect	25	
		1.3.9	Pattern Transfer	25	
		1.3.10	Strip	26	
	Prob	lems		26	
2.	Aeri	al Image	Formation – The Basics	29	
	2.1	Mather	natical Description of Light	29	
		2.1.1	Maxwell's Equations and the Wave Equation	30	
		2.1.2	General Harmonic Fields and the Plane Wave in		
			a Nonabsorbing Medium	32	
		2.1.3	Phasors and Wave Propagation in an Absorbing		
			Medium	33	
		2.1.4	Intensity and the Poynting Vector	36	
		2.1.5	Intensity and Absorbed Electromagnetic Energy	37	

	2.2	Basic	Imaging Theory	38
		2.2.1	Diffraction	39
			Fourier Transform Pairs	43
		2.2.3	Imaging Lens	45
		2.2.4	Forming an Image	47
		2.2.5	Imaging Example: Dense Array of Lines and Spaces	48
		2.2.6	Imaging Example: Isolated Space	50
		2.2.7	The Point Spread Function	51
		2.2.8	Reduction Imaging	53
	2.3		Coherence	56
		2.3.1		57
		2.3.2	•	58
		2.3.3	Hopkins Approach to Partial Coherence	62
		2.3.4	Sum of Coherent Sources Approach	63
		2.3.5	Off-Axis Illumination	65
		2.3.6	Imaging Example: Dense Array of Lines and Spaces	
			Under Annular Illumination	66
		2.3.7	Köhler Illumination	66
		2.3.8	Incoherent Illumination	69
	2.4		Imaging Examples	70
	Prob	lems		71
3.	Aeri		e Formation – The Details	75
	3.1	Aberra	ations	75
		3.1.1	The Causes of Aberrations	75
		3.1.2	Describing Aberrations: the Zernike Polynomial	78
		3.1.3	Aberration Example – Tilt	81
		3.1.4	Aberration Example – Defocus, Spherical	
			and Astigmatism	83
		3.1.5	Aberration Example – Coma	84
		3.1.6	Chromatic Aberrations	85
		3.1.7	Strehl Ratio	90
	3.2	Pupil 1	Filters and Lens Apodization	90
	3.3	Flare		91
		3.3.1	Measuring Flare	92
		3.3.2	Modeling Flare	94
	3.4	Defoci	us	95
		3.4.1	Defocus as an Aberration	95
		3.4.2	Defocus Example: Dense Lines and Spaces and	
			Three-Beam Imaging	98
		3.4.3	Defocus Example: Dense Lines and Spaces and	
			Two-Beam Imaging	100
		3.4.4	Image Isofocal Point	102
		3.4.5	Focus Averaging	103
		3.4.6	Reticle Defocus	104
		3.4.7	Rayleigh Depth of Focus	105

				Contents	ix
	3.5	Imagir	ng with Scanners Versus Steppers		106
	3.6	_	Nature of Light		108
		3.6.1	Describing Polarization		111
		3.6.2	Polarization Example: TE Versus TM Image of		
			Lines and Spaces		113
		3.6.3	Polarization Example: The Vector PSF		114
		3.6.4	Polarization Aberrations and the Jones Pupil		114
	3.7	Immer	rsion Lithography		117
		3.7.1	The Optical Invariant and Hyper-NA Lithography		118
		3.7.2	Immersion Lithography and the Depth of Focus		120
	3.8	Image	Quality		121
		3.8.1	Image CD		121
		3.8.2	Image Placement Error (Distortion)		123
		3.8.3	Normalized Image Log-Slope (NILS)		123
		3.8.4	Focus Dependence of Image Quality		125
	Probl	ems			126
4.	_		Resist: Standing Waves and Swing Curves		129
	4.1	4.1.1	ng Waves		130
		4.1.1	The Nature of Standing Waves		130
		4.1.2	Standing Waves for Normally Incident Light in a Single Film		131
		4.1.3			135
		4.1.3	Standing Waves in a Multiple-Layer Film Stack Oblique Incidence and the Vector Nature		133
		4.1.4	of Light		137
		4.1.5	Broadband Illumination		141
	4.2		Curves		144
	4.2	4.2.1	Reflectivity Swing Curve		144
		4.2.2			148
		4.2.3	e e e e e e e e e e e e e e e e e e e		149
		4.2.4	Swing Ratio		151
		4.2.5	Effective Absorption		154
	4.3		m Antireflection Coatings		156
	1.5	4.3.1	BARC on an Absorbing Substrate		157
		4.3.2	<u> </u>		160
		4.3.3	BARC on a Transparent Substrate		164
		4.3.4	BARC Performance		165
	4.4		ntireflection Coatings		167
	4.5	-	ast Enhancement Layer		170
	4.6		t of the Phase of the Substrate Reflectance		170
	4.7	-	ng in Resist		173
		4.7.1	Image in Resist Contrast		173
		4.7.2	Calculating the Image in Resist		177
		4.7.3	Resist-Induced Spherical Aberrations		179
		4.7.4	Standing Wave Amplitude Ratio		181

	4.8	Defini	ng Intensity	183
		4.8.1	Intensity at Oblique Incidence	183
		4.8.2	Refraction into an Absorbing Material	184
		4.8.3	Intensity and Absorbed Energy	187
	Prob	lems		188
5.	Con	ventiona	al Resists: Exposure and Bake Chemistry	191
	5.1	Expos	ure	191
		5.1.1	Absorption	191
		5.1.2	Exposure Kinetics	194
	5.2		Apply Bake	199
		5.2.1	1	200
		5.2.2	Solvent Diffusion and Evaporation	205
		5.2.3	Solvent Effects in Lithography	209
	5.3		xposure Bake Diffusion	210
	5.4		ed Bake Temperature Behavior	214
	5.5	Measu	aring the ABC Parameters	217
	Prob	lems		219
6.	Chei	mically A	Amplified Resists: Exposure and Bake Chemistry	223
	6.1	Expos	ure Reaction	223
	6.2	Chemi	ical Amplification	224
		6.2.1	Amplification Reaction	225
		6.2.2	Diffusion	227
		6.2.3	Acid Loss	230
		6.2.4	Base Quencher	232
		6.2.5	Reaction–Diffusion Systems	233
	6.3	Measu	ring Chemically Amplified Resist Parameters	235
	6.4	Stocha	astic Modeling of Resist Chemistry	237
		6.4.1	Photon Shot Noise	237
		6.4.2	Chemical Concentration	239
		6.4.3	<u> </u>	241
		6.4.4	Photon Absorption and Exposure	242
		6.4.5	Acid Diffusion, Conventional Resist	246
		6.4.6	Acid-Catalyzed Reaction–Diffusion	247
		6.4.7	Reaction–Diffusion and Polymer Deblocking	251
		6.4.8	Acid–Base Quenching	253
	Prob	lems		254
7.	Phot	oresist I	Development	257
	7.1	Kineti	cs of Development	257
		7.1.1	A Simple Kinetic Development Model	258
		7.1.2	Other Development Models	261
		7.1.3	Molecular Weight Distributions and the Critical	
			Ionization Model	264
		714	Surface Inhibition	265

Contents	XI	

		7.1.5	Extension to Negative Resists	267
		7.1.6	Developer Temperature	267
		7.1.7	Developer Normality	268
	7.2	The D	evelopment Contrast	270
		7.2.1	Defining Photoresist Contrast	270
		7.2.2	Comparing Definitions of Contrast	274
		7.2.3	The Practical Contrast	276
		7.2.4	Relationship between γ and $r_{\text{max}}/r_{\text{min}}$	277
	7.3	The D	evelopment Path	278
		7.3.1	The Euler–Lagrange Equation	279
		7.3.2	The Case of No z-Dependence	280
		7.3.3	The Case of a Separable Development Rate Function	282
		7.3.4	Resist Sidewall Angle	283
		7.3.5	The Case of Constant Development Gradients	284
		7.3.6	Segmented Development and the Lumped	
			Parameter Model (LPM)	286
		7.3.7	LPM Example – Gaussian Image	287
	7.4	Measu	ring Development Rates	292
	Prob	lems		293
8.	Lithe	ographic	c Control in Semiconductor Manufacturing	297
	8.1		ng Lithographic Quality	297
	8.2		l Dimension Control	299
		8.2.1	Impact of CD Control	299
		8.2.2	÷	303
		8.2.3		305
		8.2.4	Defining Critical Dimension	307
	8.3	How to	o Characterize Critical Dimension Variations	309
		8.3.1	Spatial Variations	309
		8.3.2	Temporal Variations and Random Variations	311
		8.3.3	Characterizing and Separating Sources of CD Variations	312
	8.4	Overla	ny Control	314
		8.4.1	Measuring and Expressing Overlay	315
		8.4.2	Analysis and Modeling of Overlay Data	317
		8.4.3	Improving Overlay Data Analysis	320
		8.4.4	Using Overlay Data	323
		8.4.5	Overlay Versus Pattern Placement Error	326
	8.5	The Pr	rocess Window	326
		8.5.1	The Focus–Exposure Matrix	326
		8.5.2	Defining the Process Window and DOF	332
		8.5.3	The Isofocal Point	336
		8.5.4	Overlapping Process Windows	338
		8.5.5	Dose and Focus Control	339
	8.6	H–V E	Bias	343
		8.6.1	Astigmatism and H-V Bias	343
		8.6.2	Source Shape Asymmetry	345

	8.7	Mask l	Error Enhancement Factor (MEEF)	348
		8.7.1	Linearity	348
		8.7.2	Defining MEEF	349
		8.7.3	Aerial Image MEEF	350
		8.7.4	Contact Hole MEEF	352
		8.7.5	Mask Errors as Effective Dose Errors	353
		8.7.6	Resist Impact on MEEF	355
	8.8	Line-E	End Shortening	356
		8.8.1	Measuring LES	357
		8.8.2	Characterizing LES Process Effects	359
	8.9	Critica	l Shape and Edge Placement Errors	361
	8.10	Pattern	n Collapse	362
	Probl	ems		366
9.	Grad	ient-Ba	sed Lithographic Optimization: Using the	
	Norn	nalized 1	Image Log-Slope	369
	9.1	Lithog	raphy as Information Transfer	369
	9.2	Aerial	Image	370
	9.3	Image	in Resist	377
	9.4	Exposi	ure	378
	9.5	Post-ex	xposure Bake	381
		9.5.1		381
		9.5.2		383
		9.5.3	* *	384
		9.5.4	Chemically Amplified Resists – Reaction–Diffusion	
			with Quencher	391
	9.6	Develo	pp	393
		9.6.1	Conventional Resist	397
		9.6.2	Chemically Amplified Resist	399
	9.7	Resist	Profile Formation	400
		9.7.1	The Case of a Separable Development	
			Rate Function	400
		9.7.2	Lumped Parameter Model	401
	9.8		dge Roughness	404
	9.9	Summ	ary	406
	Probl	ems		408
10.			Chhancement Technologies	411
	10.1	Resolu		412
		10.1.1	Defining Resolution	413
		10.1.2		416
		10.1.3		418
		10.1.4	1 0	418
	10.2	-	l Proximity Correction (OPC)	419
		10.2.1	•	419
		10.2.2	Proximity Correction – Rule Based	422

			Contents	xiii
	10.2.3	Proximity Correction – Model Based		425
		Subresolution Assist Features (SRAFs)		427
10.3	Off-Axi	s Illumination (OAI)		429
10.4	Phase-S	hifting Masks (PSM)		434
	10.4.1	Alternating PSM		435
	10.4.2	Phase Conflicts		438
	10.4.3	Phase and Intensity Imbalance		439
	10.4.4	Attenuated PSM		441
	10.4.5	Impact of Phase Errors		445
10.5	Natural	Resolutions		450
	10.5.1	Contact Holes and the Point Spread Function		450
	10.5.2	The Coherent Line Spread Function (LSF)		452
	10.5.3	The Isolated Phase Edge		453
Proble	ems			454
Appendix A	. Gloss	sary of Microlithographic Terms		457
Appendix B	B. Curl,	Divergence, Gradient, Laplacian		491
Appendix C	The l	Dirac Delta Function		495
Index				501