Последовательности

Определение. Пусть имеется некоторое непустое множество U. Любая функция $a: \mathbb{N} \to U$ называется последовательностью элементов множества U. Элементы последовательности обычно обозначают так: $a_1 = a(1), a_2 = a(2), \ldots, a_n = a(n), \ldots$, а саму последовательность обозначают $\{a_n\}_{n=1}^{\infty}$.

Определение. *Числовой последовательностью* называют последовательность элементов какого-нибудь фиксированного множества чисел $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$. Обычно, если иное специально не оговоренно, говоря о числовых последовательностях, мы будем иметь в виду \mathbb{R} -последовательности, реже \mathbb{C} -последовательности.

Пример 24.1. Последовательности полных графов разного размера $\{K_n\}$.

Пример 24.2. Последовательность, в которой значение каждого элемента на единицу больше его номера, можно записать как $\{n+1\}$ или $\{a_n\}$, где $a_n=n+1$.

Определение. Последовательность $\{a_n\}$ называется ограниченной сверху, если найдётся такое число C, что при всех натуральных n будет выполнено неравенство $a_n < C$.

Задача 24.1. Дайте определение последовательности, ограниченной снизу.

Задача 24.2. Приведите пример последовательности (а) ограниченной сверху, но не ограниченной снизу; (б) не ограниченной ни сверху, ни снизу.

Определение. Последовательность $\{a_n\}$ называется ограниченной, если она ограничена и сверху, и снизу.

Задача 24.3. (a) Дайте определение ограниченной последовательности корректное для комплексных последовательностей и эквивалентное предыдущему для вещественных. (б) Каков геометрический смысл этих определений?

Задача 24.4. Приведите пример ограниченной вещественной последовательности, у которой (a) есть и наибольший, и наименьший член; (б) есть наибольший, но нет наименьшего члена; (в) есть наименьший, но нет наибольшего члена; (г) нет ни наименьшего, ни наибольшего члена.

Задача 24.5. Исследуйте на ограниченность следующие последовательности, а также изобразите их на координатной плоскости:

a.
$$a_n = \frac{200 - 3n}{101 - 2n};$$
B. $a_n = \frac{n^2}{2^n};$
c. $a_n = \frac{1,01^n}{n};$
d. $a_n = 1,01^n;$
e. $a_n = \frac{1,01^n}{n};$
f. $a_n = \frac{100^n}{n!};$
f. $a_n = \frac{100^n}{n!};$
g. $a_n = n \sin n;$
g. $a_n = (3 - 2i)^n;$

Определение. Суммой последовательностей $\{a_n\}$ и $\{b_n\}$ называется последовательность $\{c_n\}$ такая, что $c_n = a_n + b_n$ при всех $n \in \mathbb{N}$. Аналогичным образом определяют разность, произведение, отношение двух последовательностей.

Задача 24.6. Известно, что (a) сумма; (б) произведение двух последовательностей — ограниченная последовательность. Правда ли, что хотя бы одна из исходных последовательностей ограничена?

Задача 24.7. Верно ли, что (a) сумма; (б) разность; (в) произведение; (г) отношение ограниченных последовательностей — ограниченная последовательность?

Задача 24.8. Являются ли ограниченными последовательности:

a.
$$a_n = \sum_{i=1}^n \frac{1}{2^i};$$
 B. $a_n = \sum_{i=1}^n \frac{1}{i(i+1)};$ $a_n = \sum_{i=1}^n \frac{1}{i!};$ **6.** $a_n = \sum_{i=1}^n \frac{1}{i};$ **7.** $a_n = \sum_{i=1}^n \frac{1}{i^2};$

Задача 24.9. Являются ли ограниченными следующие последовательности:

Листок №24 23.08.2019

a.
$$a_1 = 1, a_{n+1} = \sqrt{2 + a_n};$$
 B. $a_n = (1 + \frac{1}{n})^n;$ **6.** $a_1 = 1, a_{n+1} = a_n + \frac{1}{a_n};$ **r.** $a_n = \sqrt[n]{n};$

Определение. Пусть имеется некоторое множество U (универсум) и некоторое утверждение (предикат) A про его элементы. То есть для каждого $a \in U$ мы знаем либо, что A(a) верно, либо, что неверно. Для построения стандартных математических суждений принято использовать кванторы всеобщности и существования следующим образом

$$\forall a \in U \quad A(a)$$
 читают, как «Для любого $a \in U$ верно $A(a)$ », $\exists a \in U \quad A(a)$ читают, как «Существует $a \in U$ такой, что верно $A(a)$ ».

Иногда так же выделяют квантор «существует единственный» ∃!. **Пример 24.3.**

a.
$$\forall x \in \mathbb{N}$$
 $\exists y \in \mathbb{N}$ $y = x + 1$.**B.** $\forall x \in \mathbb{N}$ $\exists y \in \mathbb{R}$ $x < y$.**6.** $\exists x \in \mathbb{R}$ $\forall y \in \mathbb{R}$ $|x| \geqslant y$.**r.** $\forall x \in \mathbb{N}$ $\exists y \in \mathbb{R}$ $y < x$.

Задача 24.10 (функция Сколема). (а) В каких утверждениях из примера можно поменять местами кванторы всеобщности и существования? В каких нельзя? Почему? (б) Докажите, что любое утверждение вида $\forall a \in A \quad \exists b \in B \quad C(a,b)$ можно переделать так, чтобы квантор существования стоял в начале.* (в) Докажите, что любое утверждение можно переписать так, чтобы сначала шли кванторы существования, затем кванторы всеобщности, а затем некоторый предикат.

Задача 24.11. Запишите с помощью кванторов определения ограниченной снизу, ограниченной, возрастающей, убывающей, невозрастающей, неубывающей последовательностей.

Определение. Последовательность называется *монотонной*, если она является неубывающей либо невозрастающей. Последовательность называется *строго монотонной*, если она является возрастающей, либо убывающей. Очевидно, что строго монотонная последовательность является монотонной.

Задача 24.12. Сформулируйте, не используя отрицания, определение последовательности, которая (a) не является возрастающей; (б) не является ограниченной сверху; (в) не является ограниченной; (г) не является монотонной. Запишите их с помощью кванторов.

Задача 24.13. Про каждую из последовательностей задачи 24.5 выясните, является ли она монотонной, и найдите, если это возможно, ее наибольший и наименьший члены.

Задача 24.14. Про каждую из последовательностей задачи 24.9 выясните, является ли она монотонной, и найдите, если это возможно, ее наибольший и наименьший члены.

Задача 24.15. Есть ли последовательность, члены которой найдутся в любом интервале числовой оси?

Задача 24.16. (а) Определим последовательность $\{a_n\}$ следующим образом: для любого натурального n пусть a_n равно сумме всех чисел вида $\frac{1}{k}$, где k — натуральное, $1 \le k \le n$. Ограничена ли последовательность $\{a_n\}$? (б) Последовательность $\{b_n\}$ зададим так: для любого натурального n пусть b_n равно сумме всех чисел вида $\frac{1}{k}$, где k — натуральное, $1 \le k \le n$ и в десятичной записи числа k нет цифры 9. Ограничена ли последовательность $\{b_n\}$?

^{*}Подсказка: внимательно прочитайте название задачи.