@ NYC Data Science Academy (2nd August 2017)

Senti-Meter

by Shivakumar Ranganathan (*Kumar*) 1 Overview

2 Methodology

3 Data Visualization & Analysis

4 Conclusions & Future Work

1 Overview

■ Senti-Meter=Sentiments (tweets) + Measurement (use of positive and negative words)

1 Overview

- Objective(s)
 - a) **Scrape** tweets using **Selenium**
 - b) Quantify the sentiment of people towards governors of all 50 States in US.
 - c) Rank the Governors based on a sentiment analysis of the tweets and compare the rankings with the recently published Morning Consult Governor Approval rankings¹
 - d) Provide **insight** on **performance** that pertain to **age**, **party affiliation** and **gender** of governors

¹https://morningconsult.com/governor-approval-ratings-july-2017/

2 Methodology

- Web scraping
 - a) **Selenium** used to scrape 43,737 tweets [target was to extract 1000 tweets for each governor]
 - b) All **sampled tweets** had **reference** to @Governor (twitter verified account) handle. This kept out irrelevant tweets and tweets from people with similar names as the Governors

2 Methodology

- Sentiment Analysis & Data Visualization
 - a) **R-Studio** was used for postprocessing the scraped data

```
b) Each tweet was cleaned up (using 'gsub', 'tolower', 'str split') and the
individual words were matched with a word repository to obtain a sentiment
score [+1 if positive, 0 if neutral and -1 if negative]. For example—
> score = as.integer(unlist(score.sentiment("Web scraping"))
is exciting and fun", pos, neg)))
> score
[1] 2
> score = as.integer(unlist(score.sentiment("Web scraping
is okay", pos, neg)))
> score
Γ1 0
> score = as.integer(unlist(score.sentiment("Web scraping"))
can be challenging at times", pos, neg)))
> score
\lceil 1 \rceil - 1
```

2 Methodology

c) The word repository contains a list of 2006 positive words and 4784 negative words²³ and can be downloaded from—

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon

barbaric accusing admonishment agonizingly aborted terror darker in a ported terror darker below time and acker below provided the screwed to proken the screwed destructive and provided the screwed the

ardently affordably accomplishment selling achievements accolade admiringly achieved admiring star user adored accurate should be proposed accurate accounter class accounter class star user accurate should be proposed accurate should be proposed accurately accomplished accomplished accomplished achievement admirative admirative admirative admirative accomplished achievement admirative accomplished achievement admirative adventuresome admirative accomplished achievement accomplished accompl

² Hu, Minqing, and Bing Liu. "Mining and summarizing customer reviews." Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2004.

³ Liu, Bing, Minqing Hu, and Junsheng Cheng. "Opinion observer: analyzing and comparing opinions on the web." Proceedings of the 14th international conference on World Wide Web. ACM, 2005.

• Tweets scraped listed by **state** (43,737 tweets in total)

Tweets scraped by name of governor (43,737 tweets in total)

Party affiliation of current governors [Republican, Democrat, Independent]

Data: score_analysis • Chart ID: GeoChartID22243a82102 • googleVis-0.6.2 R version 3.4.0 (2017-04-21) • Google Terms of Use • Documentation and Data Policy

Mean sentiment score of governors

Data: score_analysis • Chart ID: GeoChartID222441e97e3c • googleVis-0.6.2 R version 3.4.0 (2017-04-21) • Google Terms of Use • Documentation and Data Policy

Standard deviation on sentiment score of governors

Data: score_analysis • Chart ID: GeoChartID222438cf7667 • googleVis-0.6.2 R version 3.4.0 (2017-04-21) • Google Terms of Use • Documentation and Data Policy

Bar plot with mean sentiment score for each state

Bar plot with mean sentiment score for each governor

Box plot with mean sentiment score and party affiliation

■ **Box plot** with **mean** sentiment score and **gender** of governor

• Scatter plot with mean sentiment score and age of governor

ANOVA Test

 H_0 : $\mu_1 = \mu_2$

Analysis of Variance Table

Response: Mean_Sentiment_Score

1			
	Df Sum Sq	Mean Sq	F value Pr(>F)
Gender	1 0.00043 (0.0004314	0.0243 0.8769
Party	2 0.03095 (0.0154772	0.8708 0.4255
Age	1 0.00017 (0.0001658	0.0093 0.9235
Residuals	45 0.79979 C	0.0177731	

Fail to reject H₀

Word cloud of **top** three governors (min. frequency= 25)

-1 0

day

today

budget

carney

berman

support

join

https

news

IOWA

2

3

DELAWARE

NORTH DAKOTA

■ Word cloud of bottom three governors (min. frequency= 25)

danmalloyct

chrischristie

NEW YORK

CONNECTICUT

NEW JERSEY

Key word search—

Keyword	Count	State
	40	ОН
health	38	KY
	32	RI
	98	KS
tax	68	ID
	38	AK
	82	NJ
trump	53	ОН
	40	SC
	43	OK
education	31	NM
	31	DE
	37	AL
jobs	37	MI
	36	WV

Rankings based on mean sentiment score and comparison with Morning Consult

Trainings sussed on mean sensitive sector and comparison with materials					
State	Governor	Party	Tweets Scraped	Twitter Rank (from top)	Morning Consult (from top)
Iowa	Kim Reynolds	Republican	957	1	-
Delaware	John Carney Jr.	Democratic	1005	2	28
North Dakota	Doug Burgum	Republican	1129	3	4
Utah	Gary Herbert	Republican	1017	4	9
Hawaii	David Ige	Democratic	1017	5	36
Massachusetts	Charlie Baker	Republican	273	6	1
Vermont	Phil Scott	Republican	57	7	8
Ohio	John Kasich	Republican	1014	8	20
Nevada	Brian Sandoval	Republican	1013	9	7
Wyoming	Matt Mead	Republican	1012	10	3

State	Governor	Party	Tweets scraped	Twitter Rank (from bottom)	Morning Consult (from bottom)
Minnesota	Mark Dayton	Democratic	138	1	17
New York	Andrew Cuomo	Democratic	1011	2	23
Connecticut	Dan Malloy	Democratic	1018	3	3
New Jersey	Chris Christie	Republican	1009	4	1
New Mexico	Susana Martinez	Republican	1011	5	11
Oregon	Kate Brown	Democratic	1009	6	21
Kansas	Sam Brownback	Republican	1017	7	2
Missouri	Eric Greitens	Republican	1003	8	29
Virginia	Terry McAuliffe	Democratic	1015	9	23
Kentucky	Matt Bevin	Republican	1015	10	13

5 Conclusions and Future Outlook

- Tweets can be used as a quick way to gauge the approval of governors. It only takes few hours of coding and data processing when compared to conventional polling techniques that require significant \$\$ and resources.
- The analysis can be improved by taking inputs from multiple social media platforms (facebook ,...).
- Sentiment analysis can be **improved** by constantly **updating the list** of positive and negative words as the society evolves with time.
- There is always a **segment of population** who **do not use social media** platforms to express emotions. This will have an impact on the data analysis.
- It would be interesting to study how predictions change as a function of the sample size of tweets.
- This study can be extended to gauge the sentiment towards **President and Presidential Candidates** as well.
- With the right imagination, sky is the limit!

