	Moth 18: Linear Algebra
	Instructor: Thang Huynh.
_	Email: thoota ucsd. edu.
	Office Hours: 9:30 - 10:30AM Monday & Web at APM 634
	Office Hours: 9:30 - 10:30AM Monday & Web at APM 634. Course Website: www.thanghuynh.io/teaching/math/8_wither/19/home
	⇒ . Syllabus
	. Gracting info.
	. Homework.
	. Exam Schedule.
	Textbook: Linear Algebra and Its Applications, 5th Edition.
	by Lay, Lay, and McDonald.
	Note: you only need the My Math Lab access code. This
	comes with an ebook.
	you can use My Moth Lab for the first 14 days
	without paying.
	- Piazza.
	Lecture notes posted online
	- Need to know:
	Final: March 18, 11:30am - 2:30 pm, Location: TBA
	Exam 1: Jan 30, in class.
	Exam 2: Feb 27, in class
	Homework My Modh Lab Online HW (required). Oppline HW (recommended).
	Motlab assanments + au =
	Motlab assignments + quiz Reading, discussion section, lecture.

linear Algebra is the branch of mathematics
concerning linear equations and their representations through matrices and vector spaces.
(1.1) Systems of Linear Egs:
. Deg: A linear eq in variables x, x, x is an equation of the form
where a_1, a_n and b are some (known) numbers
a; called the coefficients of x_i . E.g. 1) $x_i + 2x_j + 3x_3 \pm 0$. 2) $x_1 + 2x_2 = 3x_4$.
3) Q is $x_1^2 = x_2$ a linear equation? A, No
. Dog: A system of linear egs. (linear system) is a set of linear egs.
Two systems are equivalent is they have the
$E.g. \begin{cases} x_1 = 2 \\ x_2 + x_2 = x_2 \end{cases} \text{ and } \begin{cases} x_1 = x_1 \\ x_2 = 1 \\ x_2 = 2 \end{cases}$
are equivalent (both have no solutions)
Deg: A linear system is called "consistent" ig it has a solution. Otherwise, it is inconsistent
II

. 3	
	arranged in m rows and nor columns.
	E.g. a 2x4 matrix: 2 rows
	Note: We can encode a system of m equations in n variables as an $m \times (n+1)$ matrix. E.g. $\begin{cases} x_1 + 2x_2 + 3x_3 = 4 \end{cases} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3x_1 + x_2 + 6x_3 = 8 \end{bmatrix}$ This is called the augmented matrix of the system. In general, $\begin{cases} a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b_1 \end{cases}$
	$\begin{cases} a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_0 \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$
~	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	The mxn matrix \[\begin{align*} a_{11} & a_{12} & a_{1n} \\ a_{11} & a_{12} & a_{1n} \\ a_{12} & a_{13} & a_{14} & a_{15} \\ a_{14} & a_{15} & a_{15} & a_{15} & a_{15} \\ a_{15} & a_{15} & a_{15} & a_{15} & a_{15} & a_{15} \\ a_{15} & a_{15} & a_{15} & a_{15} & a_{15} & a_{15} & a_{15} \\ a_{15} &

E.x.1) What's the augmented matrix of	
$x_1 + x_2 - x_3 = 2$	
$x_2 + 1 - x_3$	
2) What's the system of equations whose	augmented
matrix is	0
1 2 13	
· ·	
2 3 4 5	
Let's solve a linear system, and see what he	ippens to
the augmented matrix at each step:	, ,
$2x_1 + 4x_2 = 6$ 246	
$3x_{1}-x_{2}=7$ $3-1.7$	
dividing the first egn by 2:	
$x_1 + 2x_2 = 3$ 1 2 3	
$3x_1 - x_2 = 7$ $3 - 17$	
Subtracting 3x (eqn 1) from eqn 2:	
$x_1 + 2x_2 = 3$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	
$0x_1 - 7x_2 = -2$ $0 - 7 - 2$	
Subtracting 2× (egn 2) from egn 1:	
$\frac{\chi_{1}}{1}$	
Multiplying egn 2 by 1/-7.	
$x_1 + 2x_2 = 3$ 1 2 3	
$x_2 = \frac{2}{7}$ [0 1 $\frac{2}{7}$]	
Subtracting 2x (eqn 2) from eqn 1:	
$x_1 + 0x_2 = \frac{11}{7}$	
$\chi_2 = 2/7 \qquad \left[0 1 2/7 \right]$	

* Idea: We can replace a linear system with an equivalent and simpler one by applying the following three operations to the augmented motinix. · Multiplying a row by a number. . Add a multiple of one row to another. . Reorder the rows. These are called the elementary row operations. Deg: Two metrices are row equivalent if you can get gram one to the other by doing elementary row operations. Ex. Solve $x_1 + x_2 = -1$ $x_1 + x_2 = 1$ $2x_1 - x_3 + x_2 = 3$ $\begin{bmatrix}
0 & 1 & 1 & -1 \\
1 & 1 & 0 & 1 \\
2 & 1 & -1 & 3
\end{bmatrix}
\xrightarrow{R_3 - 2R_2}
\begin{bmatrix}
0 & 1 & 1 & -1 \\
1 & 1 & 0 & 1 \\
0 & -1 & -1 & 1
\end{bmatrix}
\xrightarrow{R_1 - R_2}
\begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{bmatrix}$ $\Rightarrow \begin{cases} x_1 - x_3 = 2 & \begin{cases} x_1 = 2 + x_3 \\ x_2 + x_3 = -1 \end{cases} \Rightarrow \begin{cases} x_2 = -1 - x_3 \end{cases}$ Solution: $(x_1, x_2, x_3) = (2+t, -1-t, t)$ where t is any number. (The system is consistent, but there are infinitely many solutions)

What does "simpler" mean for augmented matrix?
Deg: A matrix is in row-echelon form is
1) All rows of zeros are on the bottom.
2) The left most non-zero entry of each row
(the leading entry) is to the right of the leading
entry of the row above it. E.g. [0 [2] 1 TT 0 14 "leading [1] 0 0 , 29] 0 0 0 0 3 2 4 entry" 0 [1] 0 , 16
E.g. [0 2 1 T 0 4 leading [1] 00,29]
000324 entry"01016
00001200月3
[00000,0]
Not row-echelon:
0 4 5 1 0 0 0 1
In general,
· Row Echelon Form:
OOEXXX
0000 x x
00000
<u>L</u>
Reduced Row Echelon Form:
0 1 × 0 0 × 1 × 1
0 0 0 II 0 x x
0 0 0 0 1 × ×

7		
	Thm: By performing row operations, every matrix ean be transformed to reduced row echelon form,	
(and that form is unique,	1
	E.g. Find RREF of the following augmented matrix. [3 -9 12 -9 6 15.7]	
	3 -7 8 -5 8 9	
	0 3 -6 6 4 -5	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0 3 -6 6 4 : -5	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	R-18/2 0 +3 -6 6 4 -5	
	$\begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \end{bmatrix}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$+3R_{2}$ $\boxed{1}$ 0 -2 3 $\boxed{5}$ $\boxed{-4}$	
	0 1 -2 2 1 -3	
	[1] O -2 3 O'-24]	

-2201-7 columns

pivot cou lin, system -> the original is equivalent to 3/2 -223 + 3 x4 -223 + 224 pree variables piret variables -

8	
	Ex: Given $2x_1 - x_2 = h$.
	-6z + 3x - k
	a) For which hand k is the system consistent?
	b) For which hand k is there a unique solution?
	Let's consider the augmented matrix
	$\begin{bmatrix} 2 & -1 & h \\ -6 & 3 & k \end{bmatrix} \xrightarrow{R+3R} \begin{bmatrix} 2 & -1 & h \\ 0 & k+3h \end{bmatrix}$
	. If $k+3h=0$, then the system is consistent
	and has insinitely many solutions
	. If k+3h \neq 0, then the system is inconsistent
	* Existence & Uniqueness:
	. If the right most column of the augmented matrix
	is pivotal, the system is inconsistent.
	E.g. 1002
	0 0 1 3 this system is 0 0 0 5 inconstistent.
	[OOO; 5] inconstistent.
	pivot columns
	. Otherwise, the system is consistent.
	If there are pree variables, there are so many role I not (i.e. every colum but the last one is pivotal), the system has unique so
	If not (i.e. every colum but the last one is
	pivotal), the system has unique so

Geometry of vector addition and scalar multiplication [3] parallelogram

٠	(10)

Vector anthmetic works just like real number anthmetic.
$\vec{u} + \vec{v} = \vec{v} + \vec{v}$
$\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
7 + 0 = 0 + 7 = 0
where $\overrightarrow{O} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
[0]
$\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} - \vec{o}.$
$c(\vec{a} + \vec{c}) = c\vec{a} + c\vec{c}$
$(c+d)\vec{u} = c\vec{u} + d\vec{u}.$
$c(d\vec{u}) = (cd)\vec{u}$
$4\vec{a} = \vec{a}$.

* Linear Combinations:

Given vectors $\overrightarrow{U_1}, \overrightarrow{U_2}, \dots, \overrightarrow{U_n}$ a linear combination of these vector is a vector of the form $\overrightarrow{Q_1}, \overrightarrow{U_1}, + \overrightarrow{Q_2}, \overrightarrow{U_1}, + \dots + \overrightarrow{Q_n}, \overrightarrow{U_n}$ for some scalars $\overrightarrow{Q_1}, \overrightarrow{Q_2}, \dots, \overrightarrow{Q_n}$.

F.g.
$$2\begin{bmatrix}1\\-1\end{bmatrix} - \begin{bmatrix}2\\1\end{bmatrix} - \begin{bmatrix}2\\-2\end{bmatrix} + \begin{bmatrix}-2\\-1\end{bmatrix} = \begin{bmatrix}0\\-3\end{bmatrix}$$

span: The span of a collection of vectors is the set of all linear combinations of those vectors.

(wheet are	F.g. $\mp s$ in the span generated by $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$? i.e. can we express $\begin{bmatrix} 7 \\ 4 \end{bmatrix}$ in the form $x \begin{bmatrix} 1 \\ -2 \end{bmatrix} + x \begin{bmatrix} 2 \\ 5 \end{bmatrix}$? i.e. $\pm s$ scalars i.e. $\pm s$ such that
	$\begin{bmatrix} 77 \\ 4 \\ -3 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} \alpha_1 + 2\alpha_2 \\ -2\alpha_1 + 5\alpha_2 \\ -5\alpha_1 + 6\alpha_2 \end{bmatrix}.$
	=) Solve the lin system $ \begin{cases} x_1 + 2x_2 = 7 & 1 & 2 & 7 \\ -2x_1 + 5x_2 = 4 & = & -2 & 5 & 4 \\ -5x_1 + 6x_2 = -3 & -5 & 6 & -3 \end{cases} $ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	* The question: "Is w in the span of {v, v, v, 3?" is the same as the question "Is the system whose augmented matrix is [v, v, v, 3?" (v, v, v
	=) To answer, this question, we use row echelon form and check to see if the augmented column is pivotal!