Московский Физико-Технический Институт (государственный университет)

Лабораторная работа 5.4.1

Определение энергии α-частиц по величине их пробега в воздухе

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2022

Содержание

Теоретические сведения	3
Ход работы	5
Исследование пробега $lpha$ -частиц с помощью счетчика Гейгера	5
Определение пробега $lpha$ -частиц сцинтилляционным счетчиком .	9
Определение пробега α -частиц с помощью ионизационной камеры	13
Вывод	16

Цель работы: измерить пробег α-частиц в воздухе двумя способами: с помощью торцевого счетчика Гейгера и сцинтилляционного счетчика, — по полученным величинам определить энергию частиц.

Теоретические сведения

При α -распаде исходное родительское ядро испускает ядро гелия (α -частицу) и превращается в дочернее ядро, число протонов и число нейтронов которого уменьшается на две единицы. Функциональная связь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой

$$\lg T_{1/2} = \frac{a}{\sqrt{E}} + b,\tag{1}$$

полученной на основе экспериментальных данных X. Гейгером и Дж. Нэттолом в 1911 г.

Экспериментально энергию α -частиц удобно определять по величине их пробега в веществе. Рассмотрим подробно взаимодействие заряженных частиц с веществом. Тяжелые заряженные частицы с малым зарядом (Z=1,2, т. е. протоны и α -частицы) при прохождении в веществе теряют свою энергию, главным образом, в результате неупругих столкновений с атомами вещества. Эти неупругие столкновения вызывают ионизацию и возбуждение атомов, и поэтому такие потери называются ионизационными.

Нас будут интересовать процессы, происходящие в области энергий α -частиц до 10 МэВ, поскольку частицы именно с такими энергиями испускаются радиоактивными ядрами.

Предположим, что частица с зарядом z, движущаяся в направлении x, проходит на расстоянии y (прицельный параметр) от покоящегося свободного электрона. Полная потеря энергии на единице пути в результате взаимодействия со всеми электронами, расположенными на любых возможных прицельных расстояниях y (Z – заряд атомов):

$$\left(\frac{dE}{dx}\right)_{\text{MOH}} \simeq 2\pi \frac{e^4 z^2}{mv^2} nZ \ln \frac{2mv^2}{\overline{I}},$$
 (2)

где \overline{I} — средний ионизационный потенциал.

Величину dE/dx называют тормозной способностью вещества.

Путь тяжелых заряженных частиц в веществе практически прямолинеен, а разброс длин путей, обусловленный многократным кулоновским

рассеянием на ядрах, невелик, и поэтому можно говорить о длине пробега заряженных частиц в веществе.

В диапазоне энергий α -частиц от 4 до 9 МэВ связь длины пробега и энергии частицы хорошо описывается выражением:

$$R = 0.32E^{3/2}, (3)$$

где R – в см, а E – в МэВ.

Формула (2) показывает, что при данной скорости потери энергии пропорциональны произведению плотности электронов на длину пути: $\Delta E \propto n_e \Delta x$. В заданной среде плотность электронов пропорциональна обычной плотности:

$$n_e = \rho N_A Z/A,\tag{4}$$

где N_A – постоянная Авогадро, A – атомная масса вещества, Z – атомный номер элемента.

Поэтому энергия, теряемая α -частицей при прохождении некоторого слоя вещества, определяется произведением ρx . Другими словами, энергию частиц удобнее определять не пробегом, выраженным в сантиметрах, а произведением плотности среды на пробег: $R' = \rho R$.

Рассеяние α-частиц в веществе и статистический характер потерь энергии приводят к тому, что даже при одинаковой начальной энергии пробеги разных α -частиц несколько отличаются друг от друга. Эти различия проявляются в форме кривой, выражающей зависимость числа частиц от расстояния, пройденного ими в поглотителе (рис. 1).

При малых глубинах число частиц не меняется с расстоянием. В конце пути это число не сразу обрывается до нуля, а приближается к нему постепенно. Как видно из кривой dN/dx, бо́льшая часть α частиц останавливается в узкой области, расположенной около некоторого значения x, которое называется средним пробегом $R_{\rm cp}$. Иногда вместо $R_{\rm cp}$ измеряют экстраполированный пробег R_9 . Чтобы его глубины их проникновения в вещество получить, нужно продолжить ка-

Рис. 1. Зависимость числа α -частиц от

сательную к кривой N(x), взятую в точке $x = R_{\rm cp}$, до пересечения с осью x.

Несмотря на наличие коллиматора, в данной работе мы имеем дело не с узкими параллельными пучками частиц, а с пучками конечных размеров, обладающими заметной угловой расходимостью. Это приводит к тому, что экспериментально наблюдаемые зависимости числа α -частиц от глубины их проникновения качественно правильно передают появление брэгговского пика и, тем самым, относительную величину пробега частиц с разной энергией. Однако в силу указанных причин брэгговский пик оказывается смещенным и сильно размытым. Поэтому лучшей оценкой пробега оказывается экстраполированный пробег.

Ход работы

Исследование пробега α -частиц с помощью счетчика Гейгера

Для определения пробега α -частиц с помощью счетчика радиоактивный источник помещается на дно стальной цилиндрической бомбы (рис. 2), в которой может перемещаться торцевой счетчик Гейгера. Его чувствительный объем отделен от наружной среды тонким слюдяным окошком, сквозь которое могут проходить α -частицы.

Рис. 2. Установка для измерения пробега α -частиц с помощью торцевого счетчика Гейгера

Импульсы, возникающие в счетчике, усиливаются и регистрируются пересчетной схемой. Путь частиц в воздухе зависит от расстояния между источником и счетчиком. Перемещение счетчика производится путем вращения гайки, находящейся на крышке бомбы.

- 1. Включим пересчетную установку и высоковольтный выпрямитель.
- 2. Проведем измерения зависимости скорости счета N от расстояния x между источником и счетчиком. Результаты пишем в таблицу 1.

x, MM	σ_x , mm	N_0	t, c	N, c^{-1}	$\sigma_N, \mathrm{c}^{-1}$
10	0,5	149	10,2	14,61	1,20
11	0,5	453	30,4	14,90	0,70
12	0,5	638	40,1	15,91	0,60
13	0,5	685	45,1	15,19	0,60
14	0,5	600	40,1	14,96	0,60
15	0,5	430	30,3	14,19	0,70
16	0,5	646	45,2	14,29	0,60
17	0,5	605	49,3	12,27	0,50
18	0,5	217	40,1	5,41	0,40
19	0,5	57	90,2	0,63	0,10
20	0,5	16	41,0	0,39	0,10
21	0,5	26	70,1	0,37	0,07
22	0,5	18	65,3	0,28	0,06
24	0,5	17	70,2	0,24	0,06
26	0,5	14	70,2	0,20	0,05
28	0,5	13	54,8	0,24	0,07
30	0,5	15	70,0	0,21	0,06

Таблица 1. Зависимость скорости счета от расстояния

3. Построим график N(x). Для этого попробуем аппроксимировать наш набор точек кривой вида

$$N(x) = \frac{A}{1 + \exp\left(\frac{x - x_0}{B}\right)} + C.$$

Используя МНК, получаем следующие коэффициенты:

- $A = (14.7 \pm 0.2)$
- $B = (0.46 \pm 0.04)$ mm
- $C = (0.26 \pm 0.03)$
- $x_0 = (17.7 \pm 0.5)$ MM

Также, чтобы проанализировать производную dN/dx, построим график $-2\frac{dN}{dx}(x)$.

Помимо этого, построим график N(x) с аппроксимацией центральной части, чтобы найти $R_{\mathfrak{d}}$ как пересечение линейной экстраполяции до пересечения с осью абсцисс.

Рис. 3. График зависимости N(x)

Рис. 4. График зависимости N(x) с аппроксимацией центральной части

Из графиков получаем:

•
$$R_{\rm cp} = x_0 = (17.7 \pm 0.5) \text{ MM} = (1.77 \pm 0.05) \text{ cm};$$

•
$$R_9 = (19 \pm 3) \text{ MM} = (1.9 \pm 0.3) \text{ cm}.$$

При плотности воздуха $\rho=1,17\cdot 10^{-3}\,\frac{\Gamma}{{\rm cm}^3}\,(P=99,3\,$ кПа, $t=22\,$ °C):

•
$$R'_{\rm cp} = (2.07 \pm 0.06) \cdot 10^{-3} \, \frac{\Gamma}{{\rm cm}^2};$$

•
$$R'_9 = (2.2 \pm 0.4) \cdot 10^{-3} \frac{\Gamma}{\text{cm}^2}$$
.

Для энергий получаем:

- $E_{\rm cp} = (3.13 \pm 0.06) \text{ MaB};$
- $E_9 = (3.3 \pm 0.4) \text{ M}_9\text{B}.$

Как видим, результаты совпадают по порядку с истинным значением $E=5{,}15~{\rm MpB}$, однако только лишь по нему и совпадают. Объясняется такое расхождение тем, что часть энергии α -частиц тратится на преодоление слюдяной пластинки.

Определение пробега α -частиц сцинтилляционным счетчиком

Установка состоит из цилиндрической камеры, на дне которой находится исследуемый препарат. Камера герметично закрыта стеклянной пластинкой, на которую с внутренней стороны нанесен слой люминофора. С наружной стороны к стеклу прижат фотокатод фотоумножителя (рис. 5). Оптический контакт ФЭУ-стекло обеспечивается тонким слоем вазелинового масла.

Сигналы с фотоумножителя через усилитель поступают на пересчетную установку. Рабочее напряжение фотоумножителя указано на высоковольтном выпрямителе. Определение пробега сводится к измерению зависимости интенсивности счета от давления в камере.

Рис. 5. Установка для измерения пробега α -частиц с помощью сцинтилляционного счетчика

- 1. Включим пересчетную установку и высоковольтный выпрямитель.
- 2. Проведем измерения зависимости счета N от давления P в камере. Результаты занесем в таблицу 2.
- 3. Построим график зависимости N(P).

$P_{\text{изм}}$, торр	$P = P_0 - P_{\text{изм}}$, торр	N_0	t, c	N, c^{-1}	$\sigma_N, \mathrm{c}^{-1}$
0	745	2	10	0,2	0,2
100	645	6	10	0,6	0,3
150	595	3	10	0,3	0,2
200	545	5	10	0,5	0,2
350	395	2	10	0,2	0,2
400	345	2	10	0,2	0,2
450	295	38	10	3,8	0,6
480	265	95	10	7,2	0,8
500	245	97	10	9,7	1,0
510	235	115	10	11,5	1,0
535	210	222	10	22,2	2,0
550	195	401	10	40,1	2,0
580	165	722	10	72,2	3,0
590	155	996	10	99,6	3,0
600	145	1182	10	118,2	4,0
640	105	1967	10	196,7	5,0
650	95	2309	10	230,9	5,0
675	70	2877	10	287,7	5,0
700	45	3123	10	312,3	6,0
730	15	3516	10	351,6	6,0
735	10	3544	10	354,4	6,0

Таблица 2. Зависимость N(P)

Рис. 6. Зависимость N(x)

Рис. 7. Зависимость N(x) с аппроксимацией центральной части

Из графиков получаем:

- $P_{\rm cp} = (112 \pm 4) \text{ ropp};$
- $P_9 = (204 \pm 13)$ Topp.

Это давление, при котором длина свободного пробега равна расстоянию от источника для люминофора L=9 см.

Пересчитаем длину свободного пробега для нормальных условий $(P=760 \text{ торp},\, t=15 \, ^{\circ}\text{C})$:

$$R_9 = L \frac{P_9}{P_0},$$

где $P_0 = 760$ торр. Тогда:

- $R_{\rm cp} = (1.32 \pm 0.05) \text{ cm};$
- $R_9 = (2.4 \pm 0.2)$ cm.

При плотности воздуха $\rho=1.17\cdot 10^{-3}\,\frac{\Gamma}{{\rm cm}^3}\,(P=99.3~{\rm к\Pi a},\,t=22~{\rm ^{\circ}C})$:

- $R'_{\rm cp} = (1.55 \pm 0.06) \cdot 10^{-3} \frac{\Gamma}{{\rm cm}^2};$
- $R'_9 = (2.8 \pm 0.2) \cdot 10^{-3} \frac{\Gamma}{\text{cm}^2}$.

Для энергий получаем:

- $E_{\rm cp} = (2.9 \pm 0.1) \text{ M}{\circ}\text{B};$
- $E_9 = (3.8 \pm 0.2) \text{ M}_9\text{B}.$

Опять же, результаты совпадают по порядку с истинным значением. Однако они все еще не очень точны, хотя значение, полученное экстраполяцией, ближе этим методом, ближе всего к действительному значению.

Определение пробега α -частиц с помощью ионизационной камеры

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами (схема камеры приведена на рис.8). Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС.

Рис. 8. Схема устройства ионизационной камеры

Заполняющий сосуд газ сам по себе не проводит электрический ток, возникает он только при прохождении быстрой заряженной частицы, которая рождает в газе на своем пути ионы.

Ток, протекающий через камеру, вначале будет резко возрастать, а затем, начиная с некоторого напряжения V_0 , станет постоянным, то есть выйдет на плато.

Прохождение тока через камеру регистрируется посредством измерения напряжения на включенном в цепь камеры сопротивлении R.

В данной работе измерение пробега α -частицы проводится по величине тока ионизации в сферической камере. Разность потенциалов между электродами составляет 300 В. Вакуумная установка содержит кран и манометр. Она позволяет изменять давление в камере от атмосферного до 10 торр. Величина тока ионизации измеряется электрометром, состоящим из нескольких стандартных микросхем, по величине падения напряжения на сопротивлении $R=100\ \mathrm{MOm}$. Значение измеряемого ионизационного тока высвечивается на цифровом табло.

- 1. Включим установку в сеть. Запишем значение «нулевого» показания табло: $I_0=19\ \mathrm{nA}.$
- 2. Включим питание ионизационной камеры.
- 3. Проведем измерения зависимости тока от давления. Результаты запишем в таблицу 3.

P, Topp	I, пА	P,	торр	I , πA	P, Topp	I , Π A
40	22		245	329	455	742
45	26		255	343	465	759
55	27		265	374	475	782
65	36		275	389	485	797
75	52		285	403	495	814
85	62		295	429	505	831
95	74		305	449	515	849
105	83		315	465	525	864
115	93		325	475	535	884
125	127		335	495	545	912
135	140		345	519	555	932
145	154		355	546	575	964
155	169		365	561	595	982
165	197		375	594	615	994
175	211		385	608	635	1002
185	225		395	624	655	1003
195	235		405	635	675	994
205	255		415	652	685	988
215	286		425	683	705	981
225	300		435	708	725	974
235	310		445	726	745	968

Таблица 3. Зависимость тока от давления

Теперь построим график зависимости I(P). По графику определим $P_{\mathfrak{d}}$ как пересечение двух прямых, продолженных на прямолинейных участках графика.

Получаем следующее значение:

$$P_9 = (611 \pm 10) \text{ Topp.}$$

При найденном давлении длина свободного пробега равна расстоянию между внутренним и внешним электродами:

$$L = \frac{10 - 0.5}{2}$$
 cm = 4.75 cm.

Пересчитаем длину свободного пробега для нормальных условий.

$$R_{
m 9} = L rac{P_{
m 9}}{P_0}, \,\, {
m гдe}\,\, P_0 = 760 \,\, {
m topp}.$$

Тогда:

$$R_9 = (3.82 \pm 0.06) \text{ cm}.$$

$$R'_{9} = (4.47 \pm 0.07) \cdot 10^{-3} \frac{\Gamma}{\text{cm}^2}.$$

Рис. 9. Зависимость I(P)

Посчитаем энергию α -частиц:

$$E = (5,22 \pm 0,05)$$
 МэВ

В этот раз значение чрезвычайно близко к истинному $E=5.15~{
m MpB}!$

Вывод

В данной работе мы измерили пробег α -частиц в воздухе. Получили достаточно много разных значений, неслабо отличающихся друг от друга. Однако они все оказываются одного порядка и даже того же порядка, что и истинное значение. Это же верно и для найденных энергий α -частиц. Значения, найденные с помощью счетчика Гейгера и сцинтилляционного счетчика, занижены по сравнению с реальным значением. Лучше всего к действительности подобрался способ с ионизационной камерой: $E=(5.22\pm0.05)$ МэВ; в то время как настоящее значение E=5.15 МэВ. Заниженные значения в первых двух методах объясняется несовершенством методики: α -частицы тратят свою энергию на преодоление дополнительных препятствий.