Interférences à deux ondes

Sor	nmaire	
I Introduction		
I/A Approximation par une onde plane		
I/B Déphasage		
I/C Valeurs particulières		
I/D Déphasage et différence de marche		
II Superposition d'ondes sinusoïdales de mêmes fréquences 5		
II/A Présentation		
II/B Signaux de même amplitude : $A_1 = A_2 = A_0$		
II/C Signaux d'amplitudes différentes : A_1	$\neq A_2 \ldots 8$	
II/D Bilan		
III Interférences lumineuses		
III/A Cohérence d'ondes lumineuses		
III/B Intensité lumineuse		
III/C Formule de Fresnel		
III/D Chemin optique et déphasage		
IV Expérience des trous d'Young		
IV/A Introduction		
IV/B Présentation		
IV/C Résolution		
Capacités exigibles		
☐ Interférences entre deux ondes acoustiques, mécaniques ou lumineuses de même fré- quence.	Déterminer l'amplitude de l'onde résultante en un point en fonction du déphasage.	
Différence de chemin optique. Conditions d'interférences constructives ou destruc-	Relier le déphasage entre les deux ondes à la différence de chemin optique.	
tives.	☐ Établir l'expression littérale de la différence	
☐ Exemple du dispositif des trous d'Young	de chemin optique entre les deux ondes.	
éclairé par une source monochromatique.	○ Exploiter la formule de FRESNEL fournie	
☐ Exprimer les conditions d'interférences constructives ou destructives.	pour décrire la répartition d'intensité lumi- neuse.	

✓ L'essentiel				
	i\(\begin{align*}{cccccccccccccccccccccccccccccccccccc			
= Définitions	ON2.1 : Différence de marche 5			
ON2.1 : Fronts d'ondes	\bigcirc ON2.2 : ΔL particuliers 5			
\bigcirc ON2.2 : Phase spatiale et déphasage 3	ON2.3 : Signal somme même amplitude			
ON2.3 : Hypothèses 6	ON2.4 : Cas extrêmes même amplitude 7			
ON2.4 : Cohérence entre sources 11	\bigcirc ON2.5 : Signal somme amplitudes \neq 8			
\bigcirc ON2.5 : Chemin optique 13	\bigcirc ON2.6 : Cas extrêmes amplitudes \neq 9			
ON2.6 : Description du résultat 14	\bigcirc ON2.7 : Intensité lumineuse OPPS 12			
ON2.7 : Présentation trous d'Young . 14	\bigcirc ON2.8 : Formule de Fresnel 13			
9 72 4444	\bigcirc ON2.9 : Chemin optique et $\delta_{2/1}(M)$ 13			
& Propriétés	\bigcirc ON2.10 : Intensité et interfrange 15			
 ON2.1 : Approxima° par une onde plane ON2.2 : Déphasage et différence de marche 	Applications			
\bigcirc ON2.3 : $\triangle L$ particuliers 5	ON2.1 : Interférences sonores 10			
 ON2.4 : Signal somme même amplitude ON2.5 : Cas extrêmes même amplitude 				
\bigcirc ON2.6 : Signal somme amplitudes \neq 8	ON2.1 : Superpositions sur une corde . 6			
\bigcirc ON2.7 : Cas extrêmes amplitudes \neq 9	ON2.2 : Cohérence			
ON2.8 : Condition d'interférence 12	\bigcirc ON2.3: Interfrange 16			
\bigcirc ON2.9 : Intensité lumineuse 12 \bigcirc ON2.10 : Formule de Fresnel 13	Points importants			
ON2.11 : Différence de chemin optique 14	ON2.1 : Analyse même amplitude 7			
ON2.12 : Intensité et interfrange 15	ON2.2 : Analyse amplitudes différentes 10			
	\bigcirc ON2.3 : Interférences (pour $\Delta \varphi_0 = 0$) . 10			

I. Introduction 3

I Introduction

I/A Approximation par une onde plane

Soit une source en un point S, émettant une onde sinusoïdale. En toute généralité, et même sans atténuation, son amplitude dépend du point considéré :

$$s(\vec{r},t) = A(r)\cos\left(\omega t - \vec{k}\cdot\vec{r} + \varphi_0\right)$$

avec \vec{k} le vecteur d'onde et \vec{r} le vecteur position en 3 dimensions. En effet, l'énergie totale d'une perturbation se répartit selon l'espace disponible. On les différencie alors selon les « vagues » qu'elles forment :

Définition ON2.1: Fronts d'ondes

Si les fronts d'ondes dessinent :

- \diamond une **droite**, alors l'onde est **plane**;
- ♦ un cercle, alors l'onde est circulaire;
- ♦ une **sphère**, alors l'onde est **sphérique**.

FIGURE ON2.1 – Front d'onde sphérique.

Pour obtenir de résultats simples, on se limite à des ondes planes avec l'approximation suivante :

🛡 Propriété ON2.1 : Approxima° par une onde plane

À des distances de la source S suffisamment grandes devant la longueur d'onde λ , on peut approximer la vibration s(M,t) par une onde plane :

avec A constante au voisinage de M.

Déphasage

Définition ON2.2 : Phase spatiale et déphasage

Soit deux signaux sinusoïdaux, de même fréquence, longueur d'onde et nature, provenant de 2 sources S_1 et S_2 , se superposant en un point M. Avec $n \in [1; 2]$:

On introduit alors pour simplifier la phase spatiale:

et

FIGURE ON2.3

Ainsi, le déphasage entre s_2 et s_1 se réduit à leur différence de phase spatiale :

I/C Valeurs particulières

Rappel ON2.1: Déphasages particuliers

En phase

Deux signaux sont en phase si leur déphasage est nul (modulo 2π) :

$$\Delta \varphi \equiv 0 \quad [2\pi] \Leftrightarrow \boxed{\Delta \varphi = 2p\pi} \quad p \in \mathbb{Z}$$

Les signaux passent par leurs valeurs maximales et minimales aux mêmes instants, et s'annulent simultanément.

En quadrature

Deux signaux sont en **quadrature phase** si leur déphasage est de $\pm \pi/2$ (modulo 2π) :

$$\Delta \varphi \equiv \pm \frac{\pi}{2} \quad [2\pi] \Leftrightarrow \boxed{\Delta \varphi = \left(p + \frac{1}{2}\right)\pi} \quad p \in \mathbb{Z}$$

Quand un signal s'annule, l'autre est à son maximum où à son minimum : c'est la relation entre un cosinus et un sinus.

En opposition

Deux signaux sont en **opposition de phase** si leur déphasage est de $\pm \pi$ (modulo 2π):

$$\Delta\varphi \equiv \pm\pi \quad [2\pi] \Leftrightarrow \boxed{\Delta\varphi = (2p+1)\pi} \quad p \in \mathbb{Z}$$

Lorsqu'un signal passe par sa valeur maximale, l'autre est à la valeur minimale, mais ils s'annulent simultanément.

FIGURE ON2.4 – En phase.

FIGURE ON2.5 – En quadrature.

FIGURE ON2.6 – En opposition.

I/D Déphasage et différence de marche

Comme les fréquences sont les mêmes, le déphasage se réexprime par une différence de distances.

Propriété ON2.2 : Déphasage et différence de marche

On a alors

avec
$$k = \frac{2\pi}{\lambda}$$

MPSI3 - 2024/2025

Différence de marche

Déphasage à l'origine

Interprétation ON2.1 : Différence de marche

 ΔL traduit la distance supplémentaire que doit par courir une onde par rapport à une autre pour arriver au même point M. Comme elles vont à la même vitesse c (même nature, même fréquence), cette distance supplémentaire introduit un retard de l'une par rapport à l'autre, c'est-à-dire un déphasage.

Démonstration ON2.1 : Différence de marche

[I/D) 2 Valeurs particulières

$igoplus Propriété ON2.3 : \Delta L$ particuliers

Pour des sources de même phase à l'origine, on a $\Delta \varphi_0 = 0$. Les déphasages particuliers se réécrivent alors en termes de différence de marche, avec $p \in \mathbb{Z}$:

 $\Delta L({
m M})$ En phase En quadrature En opposition

\heartsuit Démonstration ON2.2 : ΔL particuliers

On part du lien entre $\Delta \varphi$ et ΔL , avec $\Delta \varphi_0 = 0$, et de la définition du vecteur d'onde :

Comme $p \in \mathbb{Z}$, $-p \in \mathbb{Z}$, donc le signe – importe peu. Ainsi,

- ♦ En phase :
- ♦ En quadrature :
- ♦ En opposition :

Tout fonctionne comme si on remplaçait 2π par λ .

II | Superposition d'ondes sinusoïdales de mêmes fréquences

II/A Présentation

La plupart du temps, les ondes se croisent sans interagir particulièrement, et on ne voit que la somme des signaux. Voir l'animation geogebra ¹.

^{1.} https://www.geogebra.org/m/jyh2ZMXJ

Exemple ON2.1: Superpositions sur une corde

t = 0

t = 0

 $t = \Delta t$

 $t = \Delta t$

 $t = 2\Delta t$

 $t = 2\Delta t$

FIGURE ON2.7 – Mêmes amplitudes.

FIGURE ON2.8 – Amplitudes opposées.

Étudions mathématiquement ce phénomène en utilisant deux sources sinusoïdales.

Définition ON2.3 : Hypothèses

Chaque source émet une OPPS 2 de même fréquence et même nature depuis les points S_1 et S_2 :

et

et on s'intéresse à leur somme $s(M,t) = s_1(M,t) + s_2(M,t)$ en un point M de l'espace.

FIGURE ON2.9 – Schéma.

II/B Signaux de même amplitude : $A_1 = A_2 = A_0$

II/B) 1 Cas général

Outils ON2.1 : Somme de cosinus

On remplace la somme par un produit grâce à la relation

$$\cos p + \cos q = 2\cos\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

Démonstration ON2.3 : Signal somme même amplitude

Propriété ON2.4 : Signal somme même amplitude

Ainsi, avec

II/B) 2 Cas extrêmes

♥ Propriété ON2.5 : Cas extrêmes même amplitude

L'amplitude de s(M,t) est **maximale** pour des signaux **en phase** et **minimale** pour des signaux en **opposition de phase**, avec :

En phase

En opposition

♥ Démonstration ON2.4 : Cas extrêmes même amplitude

Amplitude maximale

A(M) est maximale pour

 \Rightarrow $p \in \mathbb{Z}$

Ce déphasage correspond à des **signaux en phase**. Lorsque les signaux sont en phase, les maxima et minima de vibration se correspondent et donnent à chaque instant une amplitude double.

Amplitude minimale

A(M) est minimale pour

 \Rightarrow $p \in \mathbb{Z}$

Ce sont donc des **signaux en opposition de phase**. Lorsque les signaux sont en opposition de phase, les maxima et minima de vibration s'opposent, et l'amplitude résultante est nulle.

[II/B] 3 Conclusion

Important ON2.1: Analyse même amplitude

Le signal somme de deux OPPS de même amplitude A_0 et même pulsation ω est :

- 1) Un signal sinusoïdal et de même pulsation ω ;
- 2) D'amplitude **dépendante de M**, et
 - \diamond Maximale $A_{\max} = 2A_0$ pour signaux en phase $(\Delta \varphi_{2/1} = 2p\pi, p \in \mathbb{Z})$;
 - \diamond Minimale $A_{\min} = 0$ pour signaux en opposition de phase $(\Delta \varphi_{2/1} = (2p+1)\pi, p \in \mathbb{Z})$.

 ${\bf FIGURE~ON2.10} - \\ {\bf Somme~avec~d\acute{e}phasage}~ \Delta \varphi_{2/1} = \pi/3.$

 ${\bf FIGURE~ON2.11} - \\ {\bf Somme~avec~d\acute{e}phasage~} \Delta \varphi_{2/1} = 3\pi/4.$

II/C Signaux d'amplitudes différentes : $A_1 \neq A_2$

II/C) 1 Cas général

On peut soit utiliser la trigonométrie classique, soit les complexes :

Outils ON2.2 : Trigonométrie

$$cos(a + b) = cos a cos b - sin a sin b$$
$$cos(a - b) = cos a cos b + sin a sin b$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$|\underline{z}|^2 = \underline{z} \cdot \underline{z}^* \quad \text{et} \quad \tan(\arg(\underline{z})) = \frac{\operatorname{Im}(\underline{z})}{\operatorname{Re}(\underline{z})}$$

P.

Propriété ON2.6 : Signal somme amplitudes \neq

Ainsi, avec

Démonstration ON2.5 : Signal somme amplitudes \neq

En réels

En complexes

En supposant directement que $s(M,t) = A(M)\cos(\omega t + \varphi(M))$ (par linéarité),

Dans tous les cas, on trouve $\begin{cases} A(\mathbf{M}) = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\left(\Delta\varphi_{2/1}(\mathbf{M})\right)} \\ \varphi(\mathbf{M}) = \arctan\left(\frac{A_1\sin\varphi_1(\mathbf{M}) + A_2\sin\varphi_2(\mathbf{M})}{A_1\cos\varphi_1(\mathbf{M}) + A_2\cos\varphi_2(\mathbf{M})}\right) \end{cases}$

II/C) 2 Cas extrêmes

$igoplus ext{Propriété ON2.7}: ext{Cas extrêmes amplitudes} eq$

L'amplitude de s(M,t) est **maximale** pour des signaux **en phase** et **minimale** pour des signaux en **opposition de phase**, avec :

En phase

En opposition

$lackbox{$\stackrel{\checkmark}{$}$}$ Démonstration ON2.6 : Cas extrêmes amplitudes \neq

Amplitude maximale

Max pour

 \Rightarrow $p \in \mathbb{Z}$

Amplitude minimale

Min pour

 $p \in \mathbb{Z}$

II/C)3Conclusion

Important ON2.2 : Analyse amplitudes différentes

Le signal somme de deux OPPS d'amplitudes A_1 et A_2 de même pulsation ω est :

- 1) Un signal sinusoïdal et de même pulsation ω ;
- 2) D'amplitude **dépendante de M**, et
 - \diamond Maximale $A_{\text{max}} = A_1 + A_2$ pour signaux en phase $(\Delta \varphi_{2/1} = 2p\pi)$;
 - \diamond Minimale $A_{\min} = |A_1 A_2|$ pour signaux en opposition de phase $(\Delta \varphi_{2/1} = (2p+1)\pi)$.

FIGURE ON2.12 - Signaux en phase.

FIGURE ON2.13 – Signaux en opposition.

Bilan

Important ON2.3 : Interférences (pour $\Delta \varphi_0 = 0$)

Pour deux OPPS de même fréquence, nature et phase à l'origine* se superposant en M :

L'amplitude de la somme est **maximale** si les signaux sont **en phase** :

L'amplitude de la somme est **minimale** si les signaux sont en opposition de phase :

$$\Delta \varphi_{2/1}(\mathbf{M}) = 2p\pi$$
 \Leftrightarrow $\Delta L_{2/1}(\mathbf{M}) = p\lambda$

$$\Delta \varphi_{2/1}(\mathbf{M}) = (2p+1)\pi \quad \stackrel{*}{\Leftrightarrow} \quad$$

$$\Delta L_{2/1}(\mathbf{M}) = (2p+1)\frac{\lambda}{2}$$

On parle d'interférences constructives.

On parle d'interférences destructives.

 $p \in \mathbb{Z}$ est appelé l'ordre d'interférence ^a.

Application ON2.1 : Interférences sonores

Soient 2 émetteurs sonores envoyant une onde progressive sinusoïdale de même fréquence, même amplitude et **même** phase à l'origine. Le premier est fixé à l'origine du repère, l'émetteur 2 est mobile et à une distance d du premier, et un microphone est placé à une distance fixe x_0 de l'émetteur 1 et est aligné avec les deux émetteurs.

a. Pour une animation et visualisation dans le plan, voir ce site.

On néglige l'influence de l'émetteur 2 sur l'émetteur 1 et toute atténuation.

- 1 Lorsque d = 0, qu'enregistre-t-on au niveau du microphone?
- On part de d=0 et on augmente d jusqu'à ce que le signal enregistré soit nul. Ceci se produit pour d=6.0 cm. Expliquer cette extinction.
- 3 En déduire la longueur d'onde du son émis.
- Pour d = 12,0 cm, quelle sera l'amplitude du signal enregistré?

III Interférences lumineuses

$[\mathbf{III}/\mathbf{A}]$

Cohérence d'ondes lumineuses

Définition ON2.4 : Cohérence entre sources

La plupart des sources lumineuses ont une phase à l'origine qui **n'est pas constante**, mais prend une valeur aléatoire au bout d'un certain temps généralement très court : on dit qu'elles envoient des **trains d'ondes**. On définit ainsi :

- ♦ Temps de cohérence :
- ♦ Longueur de cohérence :

Propriété ON2.8 : Condition d'interférence

Pour interférer, deux sources doivent être cohérentes, c'est-à-dire avoir $\Delta \varphi_0 = \text{cte}$; ceci n'est en général pas réalisable par manque de contrôle sur cette variation de phase à l'origine, et les interférences lumineuses se font donc avec une unique source, donnant forcément des ondes cohérentes.

Exemple ON2.2: Cohérence

Tableau ON2.1 – Temps et longueurs de cohérence

Source	τ_c (s)	L_c (m)
Lumière du Soleil	2×10^{-15}	6×10^{-7}
Ampoule	3×10^{-14}	1×10^{-5}
Raie rouge hydrogène	1×10^{-11}	4×10^{-3}
Laser hélium-néon	1×10^{-9}	3×10^{-1}

Intensité lumineuse

Propriété ON2.9 : Intensité lumineuse

En général

L'intensité lumineuse est reliée à son signal par :

OPPS

Pour une OPPS:

♥ Démonstration ON2.7 : Intensité lumineuse OPPS

La période (temporelle) typique d'une onde lumineuse est de l'ordre de $10^{-15}\,\mathrm{s}$, ou $\approx 1\,\mathrm{fs}$: c'est une échelle de temps infinitésimale **bien inférieure au temps de détection** de n'importe quel capteur optique : l'œil humain a un temps de réponse $\approx 10^{-1}\,\mathrm{s}$, un capteur CCD $\approx 10^{-6}\,\mathrm{s}$. Ainsi, un récepteur optique n'est sensible **qu'à l'énergie moyenne du signal**. Cette énergie est proportionnelle au carré de la grandeur $s(\mathrm{M},t)$ propagée par l'onde (ici électromagnétique), d'où l'expression précédente.

Pour une OPPS (monochromatique), on a donc

cohérent avec sa représentation temporelle. On le démontre aussi par intégration (cf. Ap.E6.3).

FIGURE ON2.14 – $\cos^2(\omega t)$ et sa moyenne.

III/C Formule de FRESNEL

Propriété ON2.10 : Formule de Fresnel

L'intensité lumineuse I(M) résultant de l'interférence de 2 ondes monochromatiques en un point M de l'espace s'écrit :

ou

si $A_1 = A_2 = A_0$, c'est-à-dire $I_1 = I_2 = I_0$. On trouve alors

En phase

En opposition

Démonstration ON2.8 : Formule de Fresnel

Soient 2 ondes lumineuses **cohérentes** et de même pulsation, d'amplitudes A_1 et A_2 , interférant en un point M. On a vu que le signal somme $s(M,t) = s_1(M,t) + s_2(M,t)$ avait une amplitude

$$A(M) = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi_{2/1}(M)}$$

On trouve donc l'intensité I(M) en en prenant le carré et en multipliant par $\frac{1}{2}K$:

III/D Chemin optique et déphasage

La propagation des ondes lumineuses se fait dans des milieux avec des indices optiques n qui peuvent être différents, et donc avec des vitesses v=c/n différentes. Pour continuer à travailler comme on le fait, il faut cependant que la vitesse des signaux soient les mêmes (même fréquence et même longueur d'onde). On définit ainsi le **chemin optique**:

Définition ON2.5 : Chemin optique

Le trajet d'un rayon lumineux dans un milieu d'indice n entre les points A et B s'écrit (AB) :

Démonstration ON2.9 : Chemin optique et $\delta_{2/1}(M)$

Propriété ON2.11 : Différence de chemin optique

Le déphasage entre 2 ondes lumineuses, de même longueur d'onde λ_0 dans le vide, se superposant en M est

avec

Différence de chemin

Déphasage à l'origine

IV Expérience des trous d'Young

Introduction

La nature de la lumière a été sujet à de grands débats durant de nombreux siècles, entre vision corpusculaire et ondulatoire. C'est en 1802 que l'expérience dite des « trous d'Young » a permis de confirmer la nature ondulatoire de la lumière en réalisant une figure d'interférences lumineuses³. Une version moderne de cette expérience consiste à pointer un unique laser de longueur d'onde λ_0 sur deux fentes fines horizontales et parallèles : ces fentes diffractent la lumière est se comportent comme deux sources cohérentes.

Définition ON2.6: Description du résultat

La zone de l'espace où les faisceaux se superposent est appelé champ d'interférences. Sur un écran, on observe alors des variations d'intensité lumineuse :

- ♦ au milieu des zones claires (maximum local d'intensité) on a des interférences constructives:
- ♦ au milieu des zones sombres (minimum local d'intensité) on a des interférences destructives.

FIGURE ON2.15 – Figure d'interférence.

On appelle interfrange et on le note i la distance séparant deux milieux de franges brillantes (ou sombres) consécutives.

Présentation

Définition ON2.7 : Présentation trous d'Young

Soit S une source lumineuse ponctuelle, monochromatique de longueur d'onde λ_0 , éclairant deux fentes fines horizontales et parallèles F_1 et F_2 distantes de 2a, avec O au milieu. S est situé sur un axe optique perpendiculaire à un écran placé à une distance D très supérieure à a (pour l'approximation en ondes planes). Le milieu de propagation est l'air, d'indice optique n=1.

^{3.} Voir la vidéo La plus belle expérience de la Physique

FIGURE ON2.16 - Schéma des trous d'Young

On se limite au tracé de 2 rayons qui interfèrent au point M(x), passant chacun par une des fentes (voir Figure ON2.16). On a alors successivement :

♥ Interprétation ON2.2 : Expérience des trous d'Young

♦ Diffraction :

♦ Interférences : avec la formule de Fresnel pour des intensités égales,

$$I(M) = 2I_0 \left(1 + \cos(\Delta \varphi_{2/1}(M)) \right)$$

▷ Constructives :

▷ Destructives :

$[{ m IV/C}]$

Résolution

♥ Propriété ON2.12 : Intensité et interfrange

Pour $I_1 = I_2 = I_0$, on obtient

décrivant des franges, espacées de

FIGURE ON2.17 - Franges avec atténuation.

Démonstration ON2.10 : Intensité et interfrange

Intensité

On cherche donc à exprimer F_1M et F_2M . Pour cela, on place les points H_1 et H_2 projetés orthogonaux de F_1 et F_2 sur l'écran, créant ainsi deux triangles rectangles : F_1H_1M et F_2H_2M .

et

et

et

Or,
$$\sqrt{1+\varepsilon} \underset{\varepsilon \to 0}{\sim} 1 + \frac{\varepsilon}{2}$$
; comme $D \gg (x ; a) \Rightarrow \frac{x \pm a}{D} \ll 1$, alors avec $\varepsilon = \left(\frac{x \pm a}{D}\right)^2$ on a :

 et

et

Ainsi,

Soit

Interfrange

- ♦ Interférences constructives :
- ♦ Interférences destructives :
- ♦ Interfrange :

Exemple ON2.3: Interfrange

Avec deux fentes séparées de 0,20 mm, $\lambda_0 = 632 \, \mathrm{nm}$ et $D = 1,0 \, \mathrm{m}$, on trouve 4

^{4.} Voir une autre animation ici.