STATS 780/CSE 780 Prof. Sharon McNicholas

Projection Pursuit Regression

Prof. Sharon McNicholas

STATS 780/CSE 780

1

STATS 780/CSE 780

Prof. Sharon McNicholas

Introduction

- Projection pursuit regression (PPR) was introduced by Friedman (1981).
- Despite the fact that it can be very effective, and has been around since 1981, most of you probably have not heard about PPR.
- The idea is quite straightforward.
- However, there are implementation subtleties and interpretation is generally challenging.

2

The Idea

- ullet We want to predict Y based on p-dimensional ${\bf X}$.
- Using notation similar to Hastie et al. $(2009)^a$, let $\omega_1, \ldots, \omega_M$ be (unknown, p-dimensional) unit vectors.
- The PPR model is given by

$$f(\mathbf{X}) = \sum_{m1}^{M} g_m(\boldsymbol{\omega}_m' \mathbf{X}) = \sum_{m1}^{M} g_m(V_m),$$

where $V_m = \boldsymbol{\omega}_m' \mathbf{X}$ and $g_1(), \dots, g_m()$ are unspecified functions.

^a Hastie, T., Tibshirani, R. and Friedman, J. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Second Edition. Springer: NY.

3

STATS 780/CSE 780

Prof. Sharon McNicholas

The Unspecified Functions $g_m()$

- $g_m(V_m)$ is called a ridge function, and it needs to be estimated.
- $V_m = \omega_m' \mathbf{X}$ is the projection of \mathbf{X} onto ω_m .
- ullet We want to find "good" ω_m .
- Hence the name, projection pursuit.
- Let's look at two examples of ridge functions, taken from Hastie et al. (2009).

4

Examples of Ridge Functions

FIGURE 11.1. Perspective plots of two ridge functions.

(Left:)
$$g(V) = 1/[1 + \exp(-5(V - 0.5))],$$
 where $V = (X_1 + X_2)/\sqrt{2}.$

(Right:)
$$g(V) = (V + 0.1)\sin(1/(V/3 + 0.1))$$
, where $V = X_1$.

5

STATS 780/CSE 780

Prof. Sharon McNicholas

Model Fitting

- Suppose we observe $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$.
- The idea is to fit the PPR model by choosing $g_1(),\ldots,g_M()$ and $\pmb{\omega}_1,\ldots,\pmb{\omega}_M$ to make the error

$$\sum_{i=1}^{n} [y_i - f(\mathbf{x}_i)] = \sum_{i=1}^{n} \left[y_i - \sum_{m=1}^{M} g_m(\boldsymbol{\omega}_m' \mathbf{x}_i) \right]$$

small.

- ullet Note that M also needs to be chosen.
- See Hastie et al. (2009) for further details on model fitting in PPR.

6

Comments

- Note that for "large" M and sensible choice of $g_1(), \ldots, g_m()$, PPR can do a "good" job at approximating any continuous function in \mathbb{R}^p .
- In this sense, PPR can be viewed as a universal approximator.
- However, as mentioned at the outset of the class, interpretation is generally (very) difficult.
- If the goal is prediction and modelling *per se* is not considered important difficulties in interpretation may not matter.

7

STATS 780/CSE 780

Prof. Sharon McNicholas

Comments contd.

- Broadly, PPR is a non-linear statistical model.
- There is a relationship between PPR and neural networks...
- ...and we will look at neural networks next.
- But first, let's look at some PPR examples in R.