Introduction to VLSI Design

Lecture 19

Material primarily form textbook and lecture slides for Rabaey et. al. Digital Integrated Circuits, 2nd Edition (2002) and other online resources

Ratioed Logic

Goal: to reduce the number of devices over complementary CMOS

Pass Transistor Logic

Complementary Pass Transistor Logic

Cascading Pass Transistors

Introduction to VLSI Design

Dynamic CMOS

Dynamic CMOS

Introduction to VLSI Design

Dynamic CMOS

- In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of n requires 2n (n N-type + n P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires on n + 2 (n+1 N-type + 1 P-type) transistors

Dynamic Gate - Example

Two phase operation

Precharge (Clk = 0)

Evaluate (Clk = 1)

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on CL

Properties of Dynamic Gates

- Logic function is implemented by PDN only
 - N+2 transistors Vs 2N transistors for CMOS
- \Box Full swing outputs ($V_{OL} = GND \text{ and } V_{OH} = V_{DD}$)
- □ Faster switching speeds (reduced C_{in} and C_{out})
- Overall power dissipation usually higher than CMOS
- D PDN starts to work as soon as the input signals exceed V_{Tn} , so V_{M} , V_{IH} and V_{IL} equal to V_{Tn}
- □ Needs a precharge/evaluate clock

Issues with Dynamic Logic

- ☐ Charge leakage due to sub-threshold conduction
 - Operate circuits at the highest possible frequency
 - Level restoring circuits
- □ Charge sharing between C_L and internal node capacitances
- □ Clock feedthrough

Cascading Dynamic Gates

Domino Logic

Why Domino?

Properties of Domino Logic

- Only non-inverting logic can be implemented
- Very high speed
 - dynamic inverter can be skewed, only L-H transition
 - Input capacitance reduced smaller logical effort

NORA Logic

