UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

ARQUITECTURA DE COMPUTADORAS

SEMESTRE: Quinto o sexto

CLAVE: **0605**

HORAS A LA SEMANA/SEMESTRE			
TEÓRICAS	PRÁCTICAS	CRÉDITOS	
4/64	2/32	10	

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Diseño de Sistemas Digitales.

SERIACIÓN INDICATIVA SUBSECUENTE: Sistemas Operativos.

OBJETIVO(S): Al terminar el curso el alumno poseerá un conocimiento general de los problemas intrínsecos del diseño de una arquitectura de computadora, conocerá las diferentes alternativas de solución para los problemas mencionados y los distintos paradigmas que las engendran, conocerá los mecanismos utilizados para cuantificar el desempeño de los diversos componentes de una arquitectura y su costo, conocerá los diversos componentes de una arquitectura funcional y las relaciones entre ellos, comprenderá la relación entre el hardware, sus características y estructura y el software de sistema y su desempeño.

NUM. HORAS	UNIDADES TEMÁTICAS	
10	1. Medidas de desempeño y principios cuantitativos de	
	diseño de computadoras	
	1.1 Tendencias tecnológicas, de costo y de uso de las computadoras.	
	1.2 Labores del diseñador de computadoras, relación costo-beneficio.	
	1.3 Medidas de desempeño, benchmarks, criterios de evaluación.	
10	2. Organización de una computadora	
	2.1 Concepto de arquitectura de Von Neumann, componentes funda-	
	mentales.	
	2.2 Etapas de ejecución de instrucción.	
10	3. El conjunto de instrucciones, diseño y característica	
	3.1 Clasificación de arquitecturas del conjunto de instrucciones.	
	3.2 Operandos, tipos y tamaño.	
	3.3 Modos de direccionamiento.	
	3.4 Formatos de instrucción.	
	3.5 La relación entre el diseño del conjunto de instrucciones y el	
	compilador.	

6	4. Organizacion funcional	
	4.1 Ruta de datos, unidades funcionales.	
	4.2 Señales de control.	
	4.3 Unidades de control, alternativas de diseño (microprogramadas	
	vs. alambradas, organización horizontal y vertical).	
10	5. Pipeline	
	5.1 Concepto de pipeline y de paralelismo a nivel de instrucción.	
	5.2 Revisión del ciclo de ejecución de instrucción.	
	5.3 Características de diseño que facilitan el pipeline.	
	5.4 Hazards, su clasificación y métodos de solución.	
	5.5 Medidas de desempeño del pipeline.	
10	6. La jerarquía de memoria	
	6.1 Organizacion de la memoria, relación costo-desempeño.	
	6.2 Memorias cache, esquemas de colocación de bloque, mapeo de	
	directiones.	
	6.3 Políticas de reemplazo, de manejo de escritura y de fallos de	
	escritura en cache.	
	6.4 Medidas de desempeño de memoria cache.	
10	7. Entrada/Salida, canales	
	7.1 Esquemas de manejo de entrada salida, interrupciones.	
	7.2 Canales (buses), canales síncronos y asíncronos, bus-master y	
	arbitraje.	
	7.3 Dispositivos de almacenamiento externo, discos, medidas de de-	
	sempeño en discos, alternativas de diseño de controladores, detección	
	y corrección de errores.	
	7.4 Acceso directo a memoria.	
	7.5 Relación entre el sistema de E/S y el sistema operativo, impacto	
	en el desempeño.	
8. Sistemas de multiprocesadores		
	8.1 La clasificación de Flynn (SISD, SIMD, MIMD, MISD).	
	8.2 Comunicación entre procesadores.	
	8.3 Arquitecturas de memoria centralizada compartida.	
	8.4 Arquitecturas de memoria distribuida compartida.	
	8.5 Sincronización.	
	8.6 Coherencia de caches.	
	8.7 Clusters, sistemas de paso de mensajes, despachadores de proce-	
	SOS.	

20	9. Tendencias en arquitecturas modernas	
	9.1 Arquitecturas superescalares.	
	9.2 Esquemas de predicción de salto.	
	9.3 Prefetch.	
	9.4 Arquitecturas VLIW, ruteo de instrucciones, construcción de bun-	
	dles.	

BIBLIOGRAFÍA BÁSICA:

1. Hennessy, J. L., Patterson, D. A., Computer Architecture: A Quantitative Approach, 3a edición, San Francisco, California: Morgan Kaufmann, 2003.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Hamacher, V. C., Vranesic, Z., Zaky, S., *Computer Organization*, 5a. edición, New York: McGraw Hill, 2002.
- 2. Mano, M., Kime, C. R., Logic and Computer Design Fundamentals, 2a edición, New Jersey: Prentice Hall, 2000.
- 3. Murdocca, M. J., Heuring, V. P., *Principles of Computer Architecture*, New Jersey: Prentice Hall, 2000.
- 4. Patterson, D., Hennessy, J. Computer Organization and Design: The Hardware Software Interface, San Francisco, California: Morgan Kaufmann, 1998.
- 5. Tanenbaum, A.S. Structured Computer Organization, 4a. edición, New Jersey: Prentice Hall, 1999.
- 6. Stallings, W. Computer Organization and Architecture: Designing for Performance, New Jersey: Prentice Hall, 1999.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.