# CSE802 Final Project CNN on Unconstrainted Face Recognition

Mengying Sun
Deliang Yang
04/26/2017

# Outline

- Network Structure
- Model 1
- Model 2
- Model 3
- Evaluation & Comparison
- Summary & Future improvement
- Conclusion

#### Work Flow

- Use 100 classes' samples as developmental evaluation
- 80% train, 20% test for each class
- Compare loss and accuracy for training set and test set
- Parameters tuning
- Apply the final model structure and hyperparameters to the large scale dataset (CASIA)
- Validate the model with LFW + BLUFR

| Layer                | Output dim     | Parameters # |
|----------------------|----------------|--------------|
| conv2d_1             | 110 x 110 x 32 | 896          |
| conv2d_2             | 108 x 108 x 64 | 18496        |
| activation_1 ReLU    |                |              |
| max_pooling2d_1      | 54 x 54 x 64   |              |
| conv2d_3             | 52 x 52 x 64   | 36928        |
| conv2d_4             | 50 x 50x 128   | 73856        |
| activation_2 ReLU    |                |              |
| max_pooling2d_2      | 25 x 25 x 128  |              |
| conv2d_5             | 23 x 23 x 128  | 147584       |
| conv2d_6             | 21 x 21 x 256  | 295168       |
| activation_3 ReLU    |                |              |
| max_pooling2d_3      | 10 x 10 x 256  |              |
| conv2d_7             | 8 x 8 x 256    | 590080       |
| conv2d_8             | 6 x 6 x 384    | 885120       |
| activation_4 ReLU    |                |              |
| average_pooling2d_1  | 3 x 3 x 384    |              |
| flatten_1            | 3456           |              |
| dropout_1            | 3456           |              |
| dense_1              | 10575          | 36557775     |
| activation_5 Softmax |                |              |

- Loop 20 times:
  - Loop 47 times:
    - Fetch data from 225 new classes
    - Fit the CNN model for 1 epoch
- (Equivalent to 20 epochs, but...)
- Low efficiency (I/O) and overfitted,
   95% train accuracy, but
- Bad results:





• 225 classes per epoch

- Overfitted
  - High training accuracy
  - Low VR and DIR on LFW



- Loop 47 times:
  - Fetch data from 225 new classes
  - Fit the CNN model for 20 epochs
- (Hopefully equivalent to 20 epochs, but...)
- Wrong again.
- Results are better:

|                                    | PCA @ 500 dim | LDA   |
|------------------------------------|---------------|-------|
| Verification @ FAR = 0.1%:         | 9.67%         | 8.02% |
| Open-set Identification @ Rank = 1 | 1.54%         | 2.52% |





# Dropout Rate Exploration

- In 100-class dev mode
- Higher dropout rate:
  - Higher train loss
  - Lower train accuracy
  - Lower test loss
  - Higher test accuracy
- Tradeoff
- Finally, dropout rate is chosen to be 0.60



Dropout=0.2 Dropout=0.4

# Model 3 (Latest)

- Use ImageDataGenerator in Keras
- Function flow\_from\_directory()
- Rescale, shuffle, transformation supported
- Samples in CASIA are chosen randomly to fit the model
- Longer time for each epoch

- Converge slowly
- Training accuracy is not high
- Results:

|                                       | PCA @ 500 dim | LDA    |
|---------------------------------------|---------------|--------|
| Verification @ FAR = 0.1%:            | 10.54%        | 13.02% |
| Open-set Identification<br>@ Rank = 1 | 2.66%         | 3.39%  |



- 25 epochs trained
- Performance did not improve too much over time
- LDA > PCA
- Testing result may not improve if we train more epochs



# Comparison to Other Method

|                                    | LE (Learning-based descriptors) |        | High Dimensional LBP |        | CNN Model 3 |        |
|------------------------------------|---------------------------------|--------|----------------------|--------|-------------|--------|
| Feature size                       |                                 | 20736  |                      | 127440 |             | 3456   |
| Method                             | PCA                             | LDA    | PCA                  | LDA    | PCA         | LDA    |
| Verification @ FAR = 0.1%:         | 8.94%                           | 20.95% | 8.20%                | 30.86% | 10.54%      | 13.02% |
| Open-set Identification @ Rank = 1 | 4.93%                           | 13.39% | 5.32%                | 17.46% | 2.66%       | 3.39%  |

## PCA Feature Extraction – VR & DIR ROC





## LDA Feature Extraction – VR & DIR ROC





# Improvement

#### Try different:

- Activation function
- Optimizer (learning rate, decay, momentum etc.)
- Layer
- Batch size
- Batch normalization
- Residual Network

## Conclusion

- Training method is important
- LDA outperforms PCA most of the time in BLUFR
- High dimensional LBP has the best performance at present
- Many things can be done to improve VR/DIR

# Thanks!