38. Une primitive, à une constante additive près de la fonction $\frac{1}{x^2+2x+10}$

1.
$$\frac{\sqrt{14}}{22} \ln \frac{x+1-\sqrt{11}}{x+1+\sqrt{11}}$$
 3. $\arctan \sqrt{x^2+1}$

1.
$$\frac{\sqrt{11}}{22} \ln \frac{x+1-\sqrt{11}}{x+1+\sqrt{11}}$$
 3. $\arctan \sqrt{x^2+2x+10}$ • 5. $\ln \frac{x^2+2x+10}{3x+2}$

2.
$$\frac{1}{3}$$
 arc tg $\frac{x+1}{3}$

4. arc tg
$$(x + 10)$$

39. Calculer l'aire de la surface comprise entre les courbes d'équation y = x; $y = \ln x$; x = 1 et x = e.

1.
$$\frac{e^2}{2}$$

$$e^{2} = \frac{e^{2} - 1}{2}$$

$$\frac{e^3+3}{}$$

$$\frac{e^{-+1}}{2}$$

1.
$$\frac{e^2}{2}$$
 2. $\frac{e^2-1}{2}$ 3. $\frac{e^3+3}{2}$ 4. $\frac{e^2+1}{2}$ 5. $\frac{e^2-3}{2}$ (B.-83)

40. Une primitive, à une constante additive près, de la fonction définie par

$$\frac{3}{x^2-1}$$
 est:

$$1.-3$$
 arc $\sin^2 x$

3.
$$\frac{3\ln(x^2-1)}{2x}$$
 5. $\sqrt{\left(\frac{x-1}{x+2}\right)^2}$

5.
$$\sqrt{\left(\frac{x-x}{x+x}\right)^2}$$

2. arc tan
$$\sqrt{x^2 - 2}$$
 4. $\ln \sqrt{\frac{|x - 1|^3}{|x - 1|^3}}$

1.
$$\ln \sqrt{\frac{x-1}{x+1}}^2$$

41. L'aire de la surface par la courbe $y = e^{-x}$, les axes 0x et 0y et la droite d'équation $x = 2 \ln 3$ vaut :

42. L'aire de la surface comprise entre les droites x = 1 et x = e et les courbes $y = x^2$ et y = -1/x vaut :

controls
$$y - x$$
 or $y = -1/x$ value
 $e^{5} + 2e^{2} - 3$ $e^{3} - 1$ e^{3}

$$e^{3}-4$$

1.
$$\frac{e^5 + 2e^2 - 3}{3e^2}$$
 2. $\frac{e^3 - 1}{3}$ 3. $\frac{e^3 - 2}{3}$ 4. $\frac{e^3 - 4}{3}$ 5. $\frac{e^5 - 4e^2 - 3}{3e^2}$ (B.-84)

www.ecoles-rdc.net

Les questions 43 et 44 se rapportent à la fonction $\frac{1}{8x^2 - 4x + 1}$

43. Déterminer une primitive de f, à une constante additive près :

1.
$$1/2$$
 arc $tg(4x-3)$ 3. $1/2$ arc $tg(2x-4)$

1. 1/2 arc
$$tg(4x-3)$$
 3. 1/2 arc $tg(2x-4)$
2. 1/3 arc $tg(3x-4)$ 4. 1/2 arc $tg(4x-1)$

5.
$$1/3$$
 arc tg $(3x - 2)$ (B. 84)