Berry: (a) Fra Taylor folge, at $f(x) = f(x_0) + \langle \nabla f(x_0), x - \lambda_0 \rangle$ $+\frac{1}{2}(x-x_0)'$ fless $f(x,+c(x-x_0))(x-x_0)$ for et tal CE [O, 1]. f konker (=) $(x-x_0)'$ Hen $f(x_0+c(x-x_0))$ $(x-x_0) \leq 0$ for all $x-x_b$ og c. Desfor $f(x) - f(x_0) \leq \langle \nabla f(x_0), \chi - \chi_0 \rangle$ (a) Lad x, y & Pa : x, y & S med $f(x) \ge a$ f(y) za For LE [O, 1] lad $z = \lambda x + (1 - \lambda) y \in S$ f konkar -) $f(x) \geq \chi f(x) + (1-\chi)f(\lambda)$ $2 \lambda a + (1-\lambda)a = a$ =) 2 ∈ Pa =) Pa konvelis.