Evaluation Report: Model_A vs Model_B

1. Summary of Model Performance

Model	Training Set	Test Set	Accuracy	Observation
Model_A	Balanced	Balanced	0.44	Best-case; consistent and fair performance across classes
Model_A	Balanced	Imbalanced	0.43	Robust to skew; handles real-world class imbalance well
Model_B	Imbalanced	Imbalanced	0.43	Strong performance due to aligned skew, but biased toward majority class
Model_B	Imbalanced	Balanced	0.44	Generalization improved; still struggles with minority class prediction

Class-wise Performance:

Model_A (Balanced → Balanced)

- **Accuracy:** 0.44
- Strong on Class 1 (Precision: 0.51, Recall: 0.63) and Class 5 (0.54, 0.59)
- Weakest on Class 2 (F1-score: 0.29)
- Balanced across metrics, even if not highest in precision

Model A (Balanced → Imbalanced)

- **Accuracy:** 0.43
- Great **recall** for minority **Class 1** (0.64) and **Class 5** (0.57)
- Class 2 again weak across all metrics
- Demonstrates generalization power across different distributions

Model B (Imbalanced → Imbalanced)

- **Accuracy:** 0.43
- Appears strong, but performance benefits from matching test skew
- Lower macro F1 due to underperformance on rare classes (Class 2 & 3)

Model B (Imbalanced → Balanced)

- **Accuracy:** 0.44
- High precision for Class 1 (0.51), also good for Class 5 (0.54)
- Poor recall on Class 2 (0.26), Class 3 (0.30)
- Shows weakness in unseen class distributions

2. Evaluation Matrix Observations

Model A on Imbalanced Test Set:

Evaluation of balanced Model on imbalanced Test Set: precision recall f1-score support 1 0.35 0.64 0.45 200 300 2 0.32 0.31 0.31 3 0.47 0.34 0.39 500 4 0.40 0.44 0.50 600 5 0.47 0.57 0.52 400 0.43 2000 accuracy 0.42 0.42 2000 0.45 macro avg 0.44 0.43 0.43 2000 weighted avg

• Precision:

- o Highest for Class 4 (0.50) and Class 5 (0.47).
- o Low for Class 2 (0.31), indicating false positives.

• Recall:

- Strongest for Class 1 (0.64) and Class 5 (0.57), indicating successful capture of true positives.
- Very low for Class 2 (0.32), meaning many class 2 instances are missed.

• F1-Score:

- o Class 5 has the best balance between precision and recall (0.52).
- o Class 2 performs the worst (0.31), due to both low precision and recall.

Model_B on Balanced Test Set:

Evaluation of Imbalanced Model on Balanced Test Set:

	р	recision	recall	f1-score	support
	1	0.51	0.63	0.56	400
	2	0.32	0.26	0.29	400
	3	0.35	0.30	0.32	400
	4	0.42	0.42	0.42	400
	5	0.54	0.59	0.56	400
accura	су			0.44	2000
macro a	vg	0.43	0.44	0.43	2000
weighted a	vg	0.43	0.44	0.43	2000
macro a	cy vg	0.43	0.44	0.44 0.43	26 26

- Best balanced performance: Class 1 and 5
- Weakest: Class 2 (precision and recall both low)

Insight: Although Model_B has high precision in some classes, the recall is generally poor it **misses many actual instances**, which is concerning in real-world use cases where missing a prediction is costlier than a false positive.

3 Observations from Confusion Matrices

ModelA trained on imbalanced dataset

Model_A (on imbalanced test set):

- Class 1: 127/200 correctly classified → strong recall
- Class 5: $230/400 \rightarrow$ strong precision and recall
- Balanced training allows **fair distribution of predictions**
- Still misses Class 2 (many misclassified as Class 1 or 3)

ModelB trained on Balanced Dataset

Model_B (on balanced test set):

- Class 1: 251/400 predicted correctly \rightarrow very high precision
- Class 2 and Class 3 misclassified heavily (spread into adjacent classes)
- Imbalanced training causes skewed behavior even on balanced test

4. Effect of Training Data Distribution on Generalization

- Balanced training (Model_A):
 - o Produces a model that generalizes more fairly across all classes.
 - o Handles both imbalanced and balanced test sets better.
 - Improves recall for rare classes and avoids overfitting to dominant ones.
- Imbalanced training (Model_B):
 - Leads to a biased model that struggles to correctly identify minority classes.
 - Performs poorly when tested on a balanced dataset due to lack of exposure to rare classes.

Aspect	Balanced Training (Model_A)	Imbalanced Training (Model_B)
Bias	Low – treats all classes equally	High – overpredicts frequent classes
Generalization	Good on both balanced and imbalanced	Inconsistent, especially on balanced
Recall on Rare	Higher	Poor (Class 2, 3)

Balanced Training Aspect Imbalanced Training (Model_B) (Model_A)

Skewed, affected by poor minority **Macro F1 Score** Fair across all classes class performance

Concentrated around majority classes Wide and even **Confusion Spread**

4. Recommendation:

Deploy Model_A (trained on balanced data)

Why?

- Fair and generalizable performance across both test types
- **Higher macro F1** ensures each class is treated equally
- Safer for real-world use cases where minority class prediction matters (e.g., fraud, abuse, medical flags)
- Reduces risk of bias, critical in applications with legal, ethical, or fairness implications.