B. Statistik

- Qualitative Merkmale:
 - Variieren nach Beschaffenheit
 - Bspw. Geschlecht
- Quantitative Merkmale:
 - Variieren nach Wert/Zahlen
 - Bspw. Alter, Einkommen
- Diskrete Merkmale:
 - abgestufte Werte
 - Bspw. Einkommensklasse
- Stetige Merkmale:
- können im Intervall jeden reellen Wert annehmen
- Bspw. Körpergröße

Skalenniveaus

- Nominal
 - nur Gleichheit oder Andersartigkeit feststellbar (keine Bewertung)
- stets qualitativ (Religion, Beruf etc.)
- Ordinal
- natürliche oder festzulegende Rangfolge
- IQ, Schulnoten
- Kardinal
 - numerischer Art
 - Ausprägung und Unterschied sind messbar
 - verhältnisskaliert (Absoluter Nullpunkt vorhanden; Gewicht, Preis (Doppelt so viel.))
 - intervallskaliert (Kein Nullpunkt, nur Differenzen; Temperatur (10 Grad wärmer als gestern))

Werte

- Arithmetisches Mittel \overline{x}
- $-\ \overline{x}=\frac{1}{n}\sum_{i=1}^n a_i=\frac{a_1+a_2+\cdots+a_n}{n}$ Summe aller Abweichungen vom Mittel
- Verschiebung um kostanten Wert a a +
- -Multiplikation mit konstantem Wert $a\cdot$ \overline{x}
- Median \widetilde{x}

- Mittleres Element der geordneten Liste
- Bei gerader Anzahl, Durchschnitt der | Normal (Pearson) $r_{XY} = \frac{C_{XY}}{\sigma_x * \sigma_y}$ mittleren Elemente
- Quartile (FEHLT)
- Unteres Quartil $\tilde{x}_{0.25}$
- Oberes Quartil $\tilde{x}_{0.75}$
- Varianz σ^2
 - Populations Varianz

$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$

- Sample Varianz $S_{n-1}^2 =$
- Altn. Formel $\sigma^2 = \overline{x^2} \overline{x}^2$
- Eigenschaften:
 - * Immer > 0
 - * Addition mit a, Varianz unverändert
 - * Multiplikation mit b, $Varianz * b^2$
- Standardabweichung σ
 - $-\sigma = \sqrt{\sigma^2}$
 - StichprobenSDA $S = \sqrt{S_{n-1}^2}$
- Quartilsabstand (FEHLT)

Zweidimensionale Häuffigkeitstabellen

- Statistische Variablen X und Y mit versch.Auspräungen
- Spaltensummen sowie Zeilensummen = n
- Relative Häufigkeit $h_{ij} = \frac{n_{ij}}{n}$
- Randverteilung = Betrachtung einer einzigen Variable
- Z = X + Y; $\overline{z} = \overline{x} + \overline{y}$;

Kovarianz

- Arithmetisches Mittel des Produkts der Abweichung der einzelnen Beobachtungen von ihrem Mittel
- $C_{XY} := \frac{1}{n} \sum_{j=1}^{n} (x_j \overline{x})(y_j \overline{y})$ $C_{XY} = \overline{xy} \overline{x} * \overline{y}$
- $C_{XY} > 0$ "große X-Werte zu großen Y-Werten"
- $C_{XY} < 0$ "große Werte zu kleine Werten"
- Sind zwei Variablen statistisch unabhängig ist die Kovarianz = 0

Korrelation

- normiertes Maß für Strenge des linearen statistischen Zusammenhangs
- $-r_{XY}$ hat das gleiche Vorzeichen wie C_{XY}
- Bleibt unverändert bei linearer Transformation
- $-r_{XY}=r_{YX}$
- Rangkorrelation (Spearman) r_{XY}^{Sp} $r_{rg(X),rg(Y)}$
 - für ordinale Variablen
 - misst monotonen Anteil des stat. Zusammenhangs
 - Ränge müssen vorher berechnet werden
- Kovarianz und Korrelation deuten nicht zwangsweise eine kausale Beziehung!

Kontingenzkoeffizient

- beschreibt die Stärke des Zusammenhangs zweier Merkmale, nicht deren Rich-
- Chi-Quadrat $QK = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ji} E_{ij})^2}{E_{ij}}$
 - $-E_{ij} = \frac{1}{n} * n_i * n_j = \frac{1}{n} n(x_i) * n(y_j)$ - Siehe Erweiterte Kontingeztabelle
 - X und Y unabhängig: OK = 0
 - Sonst QK > 0
 - Für 2x2 Matrix: QK $n(ad-bc)^2$ $\overline{(a+b)(a+c)(b+d)(c+d)}$
 - à bis d sind Inhalte der Tabelle, Summen sind Randhäufigkeiten
- Kontingenzkoeffizient $K := \sqrt{\frac{QK}{QK+n}}$
 - normiertes Maß
 - X und Y unabhängig: K = 0
 - $-0 \le K \le K_{max} = \sqrt{\frac{m-1}{m}} < 1$
 - m = Minimum von Zeilenzahl und Spaltenzahl
- Korrigierter K.-koeffizient $K^* := \frac{K}{K_{max}} =$ $\sqrt{\frac{(QK+n)(m-1)}{(QK+n)(m-1)}}$
- $-0 \le K^* \le 1$
 - Vergleichbar mit anderen K-Tabellen

Regression

- Lineare Regression y(x) = a + bx
 - $-b = \frac{c_{XY}}{s_{-}^2}$ und $a = \overline{y} b\overline{x}$
 - Interpret: b*x erhöht und Achsenabschnitt(meist nicht anwendbar)
 - Regressionswerte = $\hat{y}_i = y(x_i)$
- Residuen (Fehler) $e_i = y_i \hat{y}_i$
- Andere Regressionen:
 - $-\hat{y} = a + bx + cx^2$ Quadr. Regr.
 - $-\hat{y} = a + x^b$ Potenzfunkt.
- $-\hat{y} = ab^x$ Expo-funkt.
- Meth. kleinste Quadrate
- Varianzzerlegung $SSQ_{Total} = SSQ_{Reg} +$ SSQ_{Resi}
 - $-SSQ_{Reg} = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$ (Abweichung von Vorhersage und Mittelwert)
 - $-SSQ_{Total} = \sum_{i=1}^{n} (y_i \overline{y})^2$ (Gesamtab-
- $-SSQ_{Resi} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ (Abweichung von Vorhersage und y)
- Bestimmtheitsmaß $R^2 = \frac{\mathring{S} \mathring{S} Q_{Reg}}{SSQ_{Total}} =$ $\frac{S_{\hat{Y}}^2}{S_Y^2} = r^2$
- $-r^2$ gilt nicht für Quadr. Reg. !!!
- Schlecht $0 < R^2 < 1$ Gut
- $-R^2 \ge 0.8$ akzeptabel
- Multiple Regr.
 - Y wird durch mehrere Variablen erklärt
 - $-\hat{y} = a + b_1x_3 + b_2x_3 + b_3x_3$
- Adjustiertes Bestimmtheitsmaß $R_a^2 = R^2 \frac{k}{n-k-1}*(1-R^2)$
 - Hinzunahme von Params, erhöht den R^2 automatisch, auch wenn es nicht besser wird
 - -n = AnzahlderMesswerte
 - -k = AnzahlderReg.Params
 - $-R_a^2$ kann auch kleiner/negativ werden - > Variable nicht aufnehmen
- Anmerkungen:
 - Residualplot: Gutes Modell, wenn kein Muster erkennbar!
 - Optimum finden: 1.Ableitung = 0 setzen

- "Faktor Größe" hat nichts mit Einfluss zutun, nur bei standardisierten Daten

Wahrsch. Rech.

- Zufallsvariable $X: \Omega > Rmit X(\omega) = x$
 - Funktion, die jedem Möglichen Ergenis eine reelle Zahl zuordnet
 - Wahrscheinlichkeits-/ Dichtefunktion f: P(X=x)
 - Verteiteilungsfunktion $F: P(X \le t)$
 - -F ist Stammfunktion für f aber muss mit + C angepasst werden
- Diskrete
- f: R > [0, 1] mit f(x) = P(X = x)
- -P(X=X) Wahrscheinlichkeit mit der X die Realisation x annimmt
- $-F(t) = P(X \le t) = \sum_{x_i \le t} P(X = x_i)$
- Zufallsvariable ist stetig, Wahrscheinlichkeit durch Dichtefunktion abbilden lässt
- Dichtefunktion, wenn $\int_{-\infty}^{+\infty} f(x)dx = 1$ und $f(x) \geq 0$
- $-F(t) = P(X \le t) = \int_{-\infty}^{t} f(x)dx$
- Erwartungswert
- Diskret: $E(X) = \sum_{i=1}^{n} x_i * f(x_i)$ Stetig: $E(X) = \int_{x_{min}}^{x_{max}} x * f(x) dx$ Varianz $(Var(X) = \sigma^2)$ & SDA $(\sigma =$ $\sqrt{\sigma^2}$
 - Es gilt: $\sigma^2 = E((X E(X))^2) =$ $E(X^2) - (E(X))^2$
 - Diskret: $Var(X) = \sum_{i=1}^{n} (x_i x_i)$ E(X))² * $f(x_i)$
 - Stetig: $Var(X) = \int_{x_{min}}^{x_{max}} (x E(X))^2 *$ f(x)dx
- Rechenregeln
 - -E(a+b*X) = a+b*E(X)

- $-Var(a+b*X) = b^2*Var(X)$ -E(X+Y) = E(X) + E(Y)
- Stichprobe:
 - Stichprobenmittel von unabhängigen Variablen $\overline{X} := \frac{1}{n}(X_1 + \ldots + X_n)$
 - $-E(\overline{X}=\mu)$ und $\sigma_{\overline{X}}=\frac{\sigma}{\sqrt{n}}$
- Normalverteilung
 - SD-normalverteilung mit $\mu = 0$ und
- z-Transformation $z = \frac{x-\mu}{\sigma}$
- Zentr.Grenz.Satz: Für hinreichend großes n jeder Vertilung gilt $\overline{X}_n \tilde{N}(\mu, \frac{\sigma^2}{n})$ "normalverteilt"

Schl. Statistik

Anmerkungen

• α meist 5% oder 1%

Mittelwerttest

- GG ist norm. verteilt oder n > 30
- Stichprobenmittel \overline{x} und ggf. Stichprobenvarianz s^2 bekannt
- \bullet σ der GG bekannt
- $-z = \sqrt{n} \frac{\overline{x} \mu_0}{\sigma}$
- - > Tabelle Norm. Verteilung
- \bullet σ der GG unbekannt
 - $-t = \sqrt{n-1} \frac{\overline{x} \mu_0}{s_n}$ --> t Tabelle!
- Zweiseitig: $|z| \le z[1 \alpha/2] H_0$ behalten; $|z| > z[1 - \alpha/2] H_0$ verwerfen
- Ober/Rechts: $z \leq z[1 \alpha] H_0$ behalten; $z > z[1 - \alpha] H_0$ verwerfen
- Unten/Links: $z \ge z[1 \alpha] H_0$ behalten; $z < z[1 - \alpha] H_0$ verwerfen
- Gleiches für t-1

Varianztest

• GG ist normalverteilt, α und σ_0 bekannt | • Krit.Wert: $c = \chi^2_{(k-1)(l-1)}[1-\alpha]$

- μ von GG. bekannt
- $\bullet t_n = \frac{1}{\sigma_{-}^2} \sum_{i=1}^n (x_i \mu)^2$
 - $-H_0: \sigma^2 = \sigma_0^2$ gegen $H_1: \sigma^2 \neq \sigma_0^2$ Krit: $t_n < \chi_n^2[\alpha/2]$ und $t_n > \chi_n^2[1-\alpha/2]$ - $H_0: \sigma^2 \ge \sigma_0^2$ gegen $H_1: \sigma^2 < \sigma_0^2$ Krit:
 - $t_n < \chi_n^2[\alpha]$
 - $-H_0: \sigma^2 \leq \sigma_0^2$ gegen $H_1: \sigma^2 > \sigma_0^2$ Krit: $t_n > \chi_n^2 [1 - \alpha]$
- μ von GG. unbekannt
- $-t_n = n * \frac{s_n^2}{2}$
- $-H_0: \sigma^2 = \sigma_0^2$ gegen $H_1: \sigma^2 \neq \sigma_0^2$ Krit: $t_n < \chi_{n-1}^2 [\alpha/2] \text{ und } t_n > \chi_{n-1}^2 [1-\alpha/2] - H_0: \sigma^2 \ge \sigma_0^2 \text{ gegen } H_1: \sigma^2 < \sigma_0^2 \text{ Krit:}$
- $t_n < \chi^2_{n-1}[\alpha]$ $H_0: \sigma^2 \le \sigma_0^2 \text{ gegen } H_1: \sigma^2 > \sigma_0^2 \text{ Krit:}$
- $t_n > \chi_{n-1}^2 [1 \alpha]$

Differenztest

- GG ist normalverteilt
- σ_X^2 und σ_Y^2 gleich aber unbekannt
- δ_0 vorgegeben oder $\delta = \mu_X \mu_Y$ $t = \frac{\overline{x} \overline{y} \delta_0}{\sqrt{\frac{1}{n} + \frac{1}{m}} * s}$
- $\bullet \ \ s = \sqrt{\frac{n*s_n^2 + m*s_m^2}{n + m 2}}$
- H_0 : $\delta = \delta_0$ gegen H_1 : $\delta \neq \delta_0$ Krit: $|t_n| > t_{n+m-2}[1 - \alpha/2]$
- $H_0: \delta \geq \delta_0$ gegen $H_1: \delta < \delta_0$ Krit: $t_n < t_{n+m-2}[\alpha]$
- $H_0: \delta \leq \delta_0$ gegen $H_1: \delta > \delta_0$ Krit: $t_n > t_{n+m-2}[1-\alpha]$

χ^2 Test

- $E_{ij}immer \geq 5$
- $H_0 = X$, Y sind unabhängig; $H_1 = X$, Y sind abhängig
- Prüfgröße χ^2 (wie oben, mit erw. Kont.-Tabelle)

- $\chi^2 < c \text{ H0 behalten}$
- $\chi^2 > c \text{ H0 verwerfen}$

P-Test

Excel Tests

- Koeffizienten für jede X_i > Formel lässt sich daraus ableiten
- Parameter wird nur im Modell behalten wenn $t > \left| \frac{\beta_j}{\hat{\sigma}_i} \right| > 2$
- Signifikanzniveau von ca. 5%
- Alternativ: p-Werte ; α werden behalten, p-Werte λ a werden verworfen
- F-Test des Bestimmtheitsmaßes:
 - Testet ob, nicht auch alle Parameter = 0 sein könnten (Sinnhaftigkeit der Regression)
 - Prüfgröße F aus Excel
 - FWert: aus F-Verteilung oder gegeben
 - $-F \geq FWert H_0$ verwerfen, Regressionsansatz sinnvoll
 - $-F < FWert H_0$ behalten, Regressionsansatz schlecht
 - Einfacher: Über F.Krit
 - $pWert < F.Krit H_0$ behalten, Regressionsansatz sinnvoll
 - $-pWert > F.Krit H_0$ verwerfen, Regressionsansatz schlecht

Other

$$\begin{array}{c|c} n_{ij} & (n_{ij} - E_{ij})^2 \\ \hline n_{ij} - E_{ij} & E_{ij} \end{array}$$

Test\Realität H_0 richtig H_1 richtig H_0 behalten ok (Spezifität) β Fehler H_0 verwerfen α Fehler ok (Sisitivität)