Question 1)

(1A) Let's first consider the factor of cancer only. Is there any difference between the six types of cancers in terms of their survival times? Conduct appropriate tests and list all assumptions for those tests. Which test is the most powerful one? Explain.

- The assumption of normality means that the data must be distributed in a bell-shaped curve. If
 the data is not normally distributed, the ANOVA test may be less powerful and may not be able
 to detect significant differences between the groups.
- The assumption of equal variances or homoscedasticity means that the variances of the data must be equal. If the variances are not equal, the ANOVA test may be less powerful and may not be able to detect significant differences between the groups.
- The assumption of independence means that the data must be independent of each other. If the data is not independent, the ANOVA test may be less powerful and may not be able to detect significant differences between the groups.

Just by looking at normal, QQ, and distributions, I can tell that many of the assumptions for ANOVA are violated making ANOVA not that great for our data.

Anova on T1 The p-value is less than 0.05, so we can reject the null hypothesis that there is no difference between the six types of cancers in terms of their survival times. This means that there is a significant difference between the survival times of patients with different types of cancer.

		Dependent Vari	able: T2		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	1016409.660	203281.932	6.63	<.0001
Error	57	1746827.768	30646.101		
Corrected Total	62	2763237.429			

Anova on T2 The p-value is less than 0.05, so we can reject the null hypothesis that there is no difference between the six types of cancers in terms of their survival times. This means that there is a significant difference between the survival times of patients with different types of cancer.

	The ANOVA Procedure										
Dependent Variable: T3											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F						
Model	5	452330.782	90466.156	1.92	0.1044						
Error	57	2679340.646	47005.976								
Corrected Total	62	3131671.429									

Anova on T3 The p-value is not less than 0.05, so we can **fail to reject the null hypothesis** that there is no difference between the six types of cancers in terms of their survival times.

	Dependent Variable: T4											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F							
Model	5	1903.92520	380.78504	1.05	0.3974							
Error	57	20664.01131	362.52651									
Corrected Total	62	22567.93651										

Anova on T4 The p-value is not less than 0.05, so we can **fail to reject the null hypothesis** that there is no difference between the six types of cancers in terms of their survival times.

	imper of c	Observat	ions and	Per	cent C	lass	ified	into o	and	cer	
rom cancer	- 1		2	3		4		5		6	Total
1	0.00	83.3	0	.67	0	0 .00		0.00		0.00	12 100.00
2	0.00	93.7	5 6	.25	0	0 .00		0.00		0.00	16 100.00
3	0.00	37.5	6 50	8 .00	0	00.		0.00		2 12.50	16 100.00
4	0.00	42.8	3 16 28	.57	14	29		0.00		1 14.29	100.00
5	0.00	20.0	1 20	.00	0	.00	4	0.00		1 20.00	100.00
6	0.00	14.2	1 28	.57	14	1 .29	1	1 4.29		2 28.57	100.00
Total	0.00	57.1		16 .40	3	.17		3 4.76		6 9.52	63 100.00
Priors	0.19048	0.2539	0.25	397	0.11	111	0.0	7937	0.	11111	
		Error C	ount Est	imat	es for	can	cer				
	1	2	3		4		5		6	Tot	al

I have a strong reason to believe that T1and T2 contributed most to the classification because ANOVA said there was difference in Means for those two variables. I believe Linear discriminant function works better if means are different.

(1C)

I used K means with k=1 and I got 0 percent error rate. It was surprising how accurate it was. Maybe this accuracy rate is deceiving.

(1D) Now let's consider the factor of gender as well as the factor of cancer. Use an appropriate method to answer the following questions: 1. Is there any difference in gender regarding the survival times? 2. Is

there any interaction effect between gender and cancer type on the survival times? Show all necessary work.

- 1) From the output All of the P values for gender are over .05 so we fail to reject null hypothesis of means being the same for gender. The Levels of Gender chart above somewhat confirms this.
- 2) There is a little interaction effect between gender and cancer. But, it's not significant. Before Adding the interaction effect We rejected the null hypothesis for T1 and T2 only. After adding the interaction effect also We rejected the null hypothesis for T1 and T2 only. That's why I believe interaction isn't important.

Question 2)

2A) Since the unit of measurement is the same for those stocks, I believe it's best to use covariance matrix. Sometimes it depends on the scenario; I remember covariance matrix had an easier time converging to exact values. PCs are generally computed from covariance matrix rather than correlation. Cov remains closer to the spirit and intent of PCA, especially if further computations on PCs are used. In some cases, the PCs will be more interpretable if correlation matrix is used. For example, if the variances differ widely, the PCs of covariance will be dominated by the variables with large variances. The other variables will contribute little.

2C)

I consistantly found that Week 56 was the best week after suming up the returns for all stocks by week.

2D)

- There is Kaiser criterion which says keep PCs that are bigger than one.
- The is the elbow scree plot which says keep 2-3 eigenvalues from our data.
- If Cumulative proportion of variance explained is 80 percent then that amount of PCs should be kept
- Retain the PCs with eigenvalues above the average of all eigenvalues.

2E) The first PC we kept maximized the variance captured. The second PC is orthogonal to first PC. This method helps transform a set of possibly correlated stock into a new set of "hybrid" uncorrelated stocks. The principal components are linear combinations of the original stock variables. The banks will be combined into one PC while the oil companies will be combined into another orthogonal PC.

Question 3)

I tried to model multivariate using multiple regression on the 3 variables.

Y1 = x1 + x2 + x3 + x4

Y2 = x1 + x2 + x3 + x4

Y3 = x1 + x2 + x3 + x4

All of the Anova's had P value less then .05. The R^2 of the regression was good for prediction purpose. Standard errors were't bad. I think most of the tests are statistically useful for performance.

3B)

The Kurtosis is small and near 0 which is a good thing for normality assumption!

The QQ plots also confirm normality!

3C)

Were do stepwise model selection to see which tests are best for which performance measure. There are ways to find reduced models that don't hurt overall accuracy.

For first performace measure 4th test is probably the best measure.

For second performace measure, 4th test is also the best measure.

For third performace measure, 4th and second test are the best measures

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	68.95355	1.35196	6792.43757	2601.27	<.0001
x1	0.35938	0.07409	61.43177	23.53	<.0001
x2	0.30034	0.09598	25.57001	9.79	0.0031
х3	0.79575	0.13364	92.58581	35.46	<.0001
x4	0.44315	0.03059	548.00956	209.87	<.0001

Bounds on condition number: 1.9804, 28.288

All variables left in the model are significant at the 0.1500 level.

All variables have been entered into the model.

	Summary of Stepwise Selection												
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F					
1	x4		1	0.8599	0.8599	95.5309	294.63	<.0001					
2	x2		2	0.0459	0.9058	51.1952	22.88	<.0001					
3	х3		3	0.0264	0.9322	26.5263	17.90	0.0001					
4	x1		4	0.0233	0.9555	5.0000	23.53	<.0001					

nary	of Stepwise	Selection						
er In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F	Step	Variable Entered	Va Re
1	0.8599	0.8599	95.5309	294.63	<.0001	Step		IN
2	0.0459	0.9058	51.1952	22.88	<.0001	1	х4	
3	0.0264	0.9322	26 5263	17 90	0.0001	2	x2	

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	83.34162	1.02013	11074	6674.45	<.0001
x1	0.53739	0.05149	180.75408	108.94	<.0001
х3	0.63980	0.10506	61.53599	37.09	<.0001
x4	0.22455	0.02316	155.91474	93.97	<.0001

Bounds on condition number: 1.7596, 13.42

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

			Summary	of Stepwise	Selection			
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1	x4		1	0.7269	0.7269	133.564	127.74	<.0001
2	x1		2	0.1464	0.8733	39.2981	54.32	<.0001
3	х3		3	0.0566	0.9299	4.1158	37.09	<.0001

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr>F
Intercept	75.82927	1.60933	8514.65011	2220.17	<.0001
x2	0.94326	0.10140	331.90448	86.54	<.0001
х3	-0.61672	0.15930	57.48392	14.99	0.0003
х4	0.80409	0.03646	1865.74813	486.49	<.0001

Bounds on condition number: 1.8856, 14.624

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

			Summary	of Stepwise	Selection			
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr>F
1	х4		1	0.8917	0.8917	98.3160	395.19	<.0001
2	x2		2	0.0617	0.9534	18.0538	62.31	<.0001
3	х3		3	0.0114	0.9649	4.8033	14.99	0.0003

$$H_0: \rho_2=\rho_3=\cdots=\rho_s=0$$
 vs $H_a:$ At least $\rho_2\neq 0$

		Adjusted	Approximate	Squared			s of Inv(E)*H (1-CanRsq)		Test of H0: The car	nonical correlations in	the current row	and all that fol	low are zero
	Canonical Correlation	Canonical Correlation	Standard Error	Canonical Correlation	Eigenvalue	Difference	Proportion	Cumulative	Likelihood Ratio	Approximate F Value	Num DF	Den DF	Pr > F
1	0.994483	0.994021	0.001572	0.988996	89.8745	86.5063	0.9621	0.9621	0.00214847	87.39	12	114.06	<.0001
2	0.878107	0.872097	0.032704	0.771071	3.3682	3.1956	0.0361	0.9982	0.19524127	18.53	6	88	<.0001
3	0.383606	0.366795	0.121835	0.147153	0.1725		0.0018	1.0000	0.85284669	3.88	2	45	0.0278

	Corre	lations A	mon	g the	Origin	al Va	riables	
	Cor	relations	Amo	ong t	he VAR	Varia	ables	
		x1		x2	x	3	x4	
	x1	1.0000	0.5	907	0.146	9 0	.4126	
	x2	0.5907	1.0	000	0.386	0 0	.5746	
	х3	0.1469	0.3	860	1.000	0 0	.5664	
	x4	0.4126	0.5	746	0.566	4 1	.0000	
	Cor	Correlations Among the WITH Variables						
			y1 y2			у3		
	y1	1.00	000	(.9261	C	.8840	
	y2	0.92	61	1	.0000	C	.8425	
	у3	0.88	40	(.8425	1	.0000	
Correlation	ns Be	tween the	VAF	R Var	iables a	ind th	ne WIT	H Variables
		у	1			y2		у3
x1		0.572	0		0.5	415		0.7004
x2		0.708	1		0.7	459		0.6375
х3		0.674	4		0.4	654		0.6411
x4		0.927	3		0.9	443		0.8526

Critical value for First, second and third canonical correlations.

$$\begin{array}{ll} \text{simplify} \, \frac{1.96}{\sqrt{\left(1-0.994483^2\right)}} & \text{simplify} \, \frac{1.96}{\sqrt{\left(1-0.878107^2\right)}} & \text{simplify} \, \frac{1.96}{\sqrt{\left(1-0.383606^2\right)}} \\ \text{Solution} & \text{Solution} & \text{Solution} \\ 18.68484... & 4.09643... & 2.12236... \end{array}$$

Since the Aproximate F value > the above Critical values we conclude all canonical cor of them are significant.

3E)

Standard	lized Canonical Coe	fficients for the V	AR Variables
	V1	V2	V3
x1	0.2755	-0.7600	0.9739
x2	0.1040	0.6823	-0.4803
х3	0.1916	-1.0607	-0.5996
x4	0.6621	0.7199	0.1194

Standardized Canonical Coefficients for the WITH Variables							
	W1	W2	W3				
y1	0.4577	-1.2772	-2.7673				
y2	0.2119	2.4517	1.0480				
у3	0.3688	-1.1229	1.8067				

Standard	ized Variance	of the VAR Va	riables Expla	ined by	
	Their Own Canonical Variables				pposite I Variables
Canonical Variable Number	Proportion	Cumulative Proportion	Canonical R-Square	Proportion	Cumulative Proportion
1	0.5594	0.5594	0.9890	0.5533	0.5533
2	0.0983	0.6578	0.7711	0.0758	0.6291
3	0.1919	0.8497	0.1472	0.0282	0.6573

Standardized Variance of the WITH Variables Explained by						
		r Own I Variables	Canonical R-Square	The Opposite Canonical Variables		
Canonical Variable Number	Proportion	Cumulative Proportion		Proportion	Cumulative Proportion	
1	0.9206	0.9206	0.9890	0.9105	0.9105	
2	0.0463	0.9670	0.7711	0.0357	0.9462	
3	0.0330	1.0000	0.1472	0.0049	0.9511	

I still think X4 is the best variable because it's most correlated with V1 and V2 which have the biggest cononical R^2. X4 which is math ability also had the largest partial R^2 in stepwise regression 86%, 89%, and 73% respectivly for y1 y2 y3.

I calculated the 95^2 prediction ellipse and for two components below.

4)

4A)

- Choose m factors necessary for the variance accounted for to achieve a predetermined percentage, say 80%, of the total variance
- Choose m = number of eigenvalues greater than the average eigenvalue. For R the average is 1.
- Use the scree plot based on the eigenvalues of R. If the graph drops sharply, followed by a straight line with much smaller slope, choose m equal to the number of eigenvalues before the straight line begins.

I believe One or two factors will be enough. This is because after 2 factors all of the eigen values are much less than 1. Furthermore Eivenvalues 1 and 2 account for 85 percent of the information. Also the scree plot flattens after 2.

Iteration	Change			Co	mmunaliti	es		
1	0.1602	0.96090	0.98036	0.91394	0.89492	0.62059	0.88437	0.96294
2	0.0506	0.96068	0.99329	0.90283	0.90223	0.57003	0.88810	0.95387
3	0.0147	0.96144	1.00000	0.89934	0.91336	0.55533	0.89191	0.94610
4	0.0117	0.96200	1.00000	0.89774	0.92510	0.55071	0.89531	0.93986
5	0.0115	0.96249	1.00000	0.89661	0.93658	0.54890	0.89844	0.93559
6	0.0110	0.96283	1.00000	0.89558	0.94761	0.54785	0.90134	0.93260
7	0.0105	0.96305	1.00000	0.89458	0.95815	0.54705	0.90404	0.93043
8	0.0101	0.96318	1.00000	0.89362	0.96822	0.54634	0.90655	0.92880
9	0.0096	0.96326	1.00000	0.89269	0.97784	0.54569	0.90891	0.92752
10	0.0092	0.96332	1.00000	0.89180	0.98705	0.54508	0.91113	0.92648
11	0.0088	0.96335	1.00000	0.89096	0.99587	0.54450	0.91323	0.92559
12	0.0041	0.96337	1.00000	0.89016	1.00000	0.54397	0.91522	0.92482

	Factor Pattern						
	Factor1	Factor2	Factor3				
у1	0.97487	-0.09011	-0.04976				
y2	0.95123	0.03944	-0.32131				
уз	0.93247	0.03339	0.11667				
x1	0.66532	0.67639	0.32822				
x2	0.71912	0.16172	-0.00252				
х3	0.65446	-0.61855	0.41953				
x4	0.91037	-0.15631	-0.26997				

Variance Explained by Each Factor					
Factor1	Factor2	Factor3			
4.9415996	0.9014769	0.4759512			

Final Communality Estimates: Total = 6.319028						
y1	y2	у3	x1	x2	х3	х4
0.9609688	1.0096249	0.8842340	1.0078822	0.5432966	0.9869328	0.9260885

4D)

	Rotated Factor Pattern						
	Factor1	Factor2	Factor3				
y1	0.79892	0.36032	0.43917				
y2	0.93878	0.31191	0.17615				
у3	0.65303	0.51348	0.44059				
х1	0.26334	0.96839	0.02734				
x2	0.55041	0.45107	0.19206				
х3	0.29884	0.05183	0.94601				
х4	0.89026	0.17361	0.32155				

The first factor is able to explain the y1 y2 y3 and x4 really well. The other factors factor 2 and 3 are better at explaining x1 and x3 at .60 threshold.

Question 5)

5A)

5B)

- Cubic clustering criterion (CCC): a measure of the deviation of the clusters from the distribution expected if data points were obtained from a uniform distribution. A larger CCC, a better clustering.
- Pseudo-F statistic: a ratio of the mean sum of squares between groups to the mean sum of squares within group. A larger pseudo-F, a better clustering.

With two, three, 4 clusters respectively:

I choose two clusters because two clusters has the highest Pesudo F statistics & Cubic Custer Criterion,

Obs	col	CLUSTER	DISTANCE
1	Duke	1	0.54121
2	UPenn	1	0.59359
3	Columbia	1	0.68464
4	Dartmout	1	0.74145
5	Northwes	1	0.75373
6	Stanford	1	0.82377
7	MIT	1	0.83861
8	Cornell	1	0.88630
9	Brown	1	0.94298
10	Georgeto	1	1.21093
11	Yale	1	1.36407
12	UChicago	1	1.38184
13	Princeto	1	1.40509
14	Harvard	1	1.46222
15	NotreDam	1	1.53344
16	UVir	1	1.85867
17	JohnsHop	1	2.36741
18	UCBerkel	1	2.48512
19	CalTech	1	3.03489
20	UWiscons	2	0.75447
21	PennStat	2	1.16158
22	UMichiga	2	1.66774
23	Purdue	2	1.96790
24	TexasA&M	2	2.17147
25	Carnegie	2	2.67807

Q1

```
1 data survtime;
    infile "/home/u63223421/SURVTIME.txt" delimiter=' ';
    input cancer gender t T1 T2 T3 T4;
 7 PROC UNIVARIATE data=survtime;
 8 VAR T1 T2 T3 T4;
    HISTOGRAM T1 T2 T3 T4 / NORMAL;
 10 QQPLOT T1 T2 T3 T4 / NORMAL;
 11 RUN;
 12 proc anova data=survtime;
 13 class cancer;
 14 | model T1 T2 T3 T4 = cancer;
 15 means cancer / tukey;
 16 | run;
 17 PROC DISCRIM LIST pool=Yes;
 18 CLASS cancer;
 VAR T1 T2 T3 T4;
PRIORS proportional;
 21 RUN;
 22 PROC DISCRIM LIST pool=Yes Method=NPAR k=1;
    CLASS cancer ;
    VAR T1 T2 T3 T4;
 24
 25
    PRIORS proportional;
 26 RUN;
 27 PROC GLM DATA=survtime;
 28 CLASS gender cancer;
 29 MODEL T1-T4 = gender cancer;
 30 LSMEANS gender / DIFF;
 31 LSMEANS gender*cancer / DIFF;
 32 RUN:
proc glm data=survtime;
class gender cancer;
model T1 T2 T3 T4 = gender cancer gender*cancer;
run;
proc glm data=survtime;
    class Gender Cancer;
    model T1 T2 T3 T4 = Gender | Cancer;
    means Gender Cancer / hovtest=levene;
run;
```

```
1 DATA stock data;
      INFILE '/home/u63223421/stock price.txt' DLM='09'x ;
      INPUT JP_Morgan Citibank Wells_Fargo Royal_Dutch_Shell Exxon_Mobil;
4 RUN:
 5 PROC PRINCOMP Cov DATA=stock data OUTSTAT=pc stats;
      VAR JP_Morgan Citibank Wells_Fargo Royal_Dutch_Shell Exxon_Mobil;
6
7 RUN;
8 /* Week with highest gain = 56*/
9 data stock_data;
      infile '/home/u63223421/stock price.txt' dlm='09'x ;
10
11
       input JP Morgan Citibank Wells Fargo Royal Dutch Shell Exxon Mobil;
12
      Week = N;
      Total_Return = sum(of JP_Morgan Citibank Wells_Fargo Royal_Dutch_Shell Exxon Mobil);
13
14 | run;
15 proc sort data=stock_data;
      by descending Total_Return;
17 | run;
18
19 proc print data=stock data(obs=1);
20
      var Week JP Morgan Citibank Wells Fargo Royal Dutch Shell Exxon Mobil;
21 run;
22 /* Question D */
23 proc princomp data=stock_data n=5 outstat=pc_stats;
      var JP Morgan Citibank Wells Fargo Royal Dutch Shell Exxon Mobil;
24
25 run;
26
27 proc print data=pc stats;
28
      var Variable Eigenvalue Proportion Cumulative;
29 run;
Q3)
1 DATA salesman;
     INFILE '/home/u63223421/salesman.txt' DLM=' ';
     INPUT y1 y2 y3 x1 x2 x3 x4;
4 RUN;
5 proc reg data=salesman;
6 model y1 y2 y3 = x1 x2 x3 x4;
7 run;
8 PROC UNIVARIATE data=salesman;
9 VAR y1 y2 y3;
10
   HISTOGRAM y1 y2 y3 / NORMAL;
11
   QQPLOT y1 y2 y3 / NORMAL;
12 RUN;
13 |/* this code says that kurtiosis and skewneess is near zero so normality of residual
14 is present*/
15 PROC REG data=salesman;
MODEL y1 y2 y3 = x1 x2 x3 x4 / selection=stepwise;
17 RUN;
19 PROC CANCORR data=salesman ALL MStat= exact;
20 WITH y1 y2 y3;
   VAR x1 x2 x3 x4;
21
22 RUN;
23 PROC PRINCOMP COV OUT=results plots(ncomp = 2)=score(ellipse);
24 VAR y1 y2 y3;
25 RUN:
```

```
DATA salesman;
INFILE '/home/u63223421/salesman.txt' DLM=' ';
INPUT y1 y2 y3 x1 x2 x3 x4;

RUN;
/* A*/
PROC FACTOR data=salesman method=principal scree rotate=none;
VAR y1 y2 y3 x1 x2 x3 x4;
RUN;
/* B*/
PROC FACTOR METHOD=PRIN PLOTS=scree;
RUN;
/*Iterated Principal Factor Method*/
PROC FACTOR METHOD=PRINIT NFACT=3 PRIORS=SMC HEYWOOD MAXITER=100 plots= all;
RUN;
/* D */
PROC FACTOR METHOD=PRINIT NFACT=3 PRIORS=SMC HEYWOOD MAXITER=100 rotate=varimax plots= all;
```

Q5)

```
2 data college1;
      infile '/home/u63223421/university.txt' delimiter='' ;
3
      input col $ SAT top acrate sfr annualexpenses gradrate;
4
5 run;
6
7
   proc standard data=college1 out=college mean=0 std=1;
     var SAT top acrate sfr annualexpenses gradrate;
8
9 run;
 // |L WILL)
 78 proc tree data=ProTree nclusters=4 out=newdata noprint;
     copy SAT top acrate sfr annualexpenses gradrate;
 80
 81 run;
 82 proc sort data=newdata;
 83 by CLUSTER;
 84 run;
 85 proc print data=newdata;
 86 var col CLUSTER;
 87 run;
 22
/* Method #1 for getting seeds: Random 5 observations
21 proc fastclus data=college maxc=2 replace=random maxiter=10 radius=1.25 out=Clus_out;
var SAT top acrate sfr annualexpenses gradrate;
id col;
24 run;
26 proc sort data=Clus_out;
by CLUSTER distance;
28 run;
30 proc print data=Clus_out;
31 var col CLUSTER distance;
```