# Notebook for Statistical Inference Course Project

#### Samuel B Baco

### PACKAGE LOADING

```
library(tidyverse)
library(ggpubr)
```

### PART 01: SIMULATION EXERCISE

#### 1.1 OVERVIEW

This report is related to course project (week 04) for Johns Hopkins Coursera Statistical Inference classes. The main object is to study the Exponential Distribution e compare it with the Central Limit Theorem.

#### 1.2 SIMULATIONS

Below it is possible to find the code and results to simulate 1000 exponentials, all having sample size if 40 and lambda of 0.2. The result was saved at **exponentials** variable.

```
lambda <- 0.2
n <- 40 # samples for each distribution
N <- 1000 # totals of distribution
exponentials <- replicate(N, rexp(n, lambda))</pre>
```

#### 1.3 SAMPLE MEAN VS THEORETICAL MEAN

For lambda = 0.2, the exponential distributions has an mean of 5 (1/lambda); To calculate the mean for all 1000 generated distributions, the apply function will be used. The results will be show using the ggplot2 package.

```
sMean <- as.data.frame(apply(exponentials, 2, mean))
names(sMean) <- c("mean.exp")
summary(sMean)</pre>
```

```
## mean.exp
## Min. :2.657
## 1st Qu.:4.421
## Median :4.908
## Mean :4.983
## 3rd Qu.:5.508
## Max. :7.760
```

Comparing the sample mean of theoretical mean, they are pretty close (5.045 vs 5).

### 1.4 SAMPLE VARIANCE VS THEORETICAL VARIANCE

Using the same dataframe created at **exponentials** and the same method (apply), the variances for all 1000 distributions were calculated. The theoretical variance for this example is  $25 ([1/lamda]^2)$ .

```
sVar <- as.data.frame(apply(exponentials, 2, var))
names(sVar) <- c("variance.exp")
summary(sVar)</pre>
```

```
## variance.exp
## Min. : 5.135
## 1st Qu.:16.805
## Median :22.417
## Mean :24.877
## 3rd Qu.:31.152
## Max. :94.130
```

Comparing the sample variance with theoretical variance, they are pretty close either (25.327 vs 25).

#### 1.5 DISTRIBUTION

In this section, the normality of the data will be investigated. From Central Limit theorem, it is know that a distribution of means is always normal. First, the investigation for sample mean will be investigated

#### Sample Mean

## Mean histogram for exponential distribution Density for 1000 distributions with lamba = 5 and sa



Doing a graphical analysis, it seems that the distribution of the sample mean is pratically normal.

## Sample Variance

Variance histogram for exponential distribut Density for 1000 distributions with lamba = 5 and sa



very skewed to the left.

The variance distribution, as expected, is

## PART 02: BASIC INFERENTIAL DATA ANALYSIS