

Realidad Virtual y Cuaterniones:

aplicaciones a la planificación de representaciones teatrales

Presentado por:

Lucía Salamanca López

Tutores:

Carlos Ureña Almagro Departamento de Lenguajes y Sistemas Informáticos Pedro A. García Sánchez Departamento de Álgebra

Parte I

Parte II

Introducción y motivación

Objetivos

Desarrollo del trabajo

Conclusiones y vías futuras

Historia de los cuaterniones

Descripción de los cuaterniones

Teorema de Frobenius

Cuaterniones y rotaciones en el espacio

Parte I

Introducción y motivación

La tragedia es la imitación de una acción seria y completa, de una extensión considerable, de un lenguaje sazonado, empleando cada tipo, por separado, en sus diferentes partes, y en la que tiene lugar la acción y no el relato, y que por medio de la compasión y del miedo logra la catarsis de tales padecimientos. [...] Una parte de la tragedia será el aderezo del espectáculo, y después la composición musical y la elocución, porque con estos medios llevan a cabo la imitación (Aristóteles, Poética, VI. Traducción de Alicia Villar [2004: 47-48])

Objetivos

- Conocer la herramienta Unity.
- Encontrar modelos.
- Búsqueda de realismo.
- Alteración de la iluminación.
- Movimiento de los personajes mediante trayectoria puntos.
- Ambientación.
- Visualización de la escena.

Diagrama de clases

StageManager

Manager

Play

UIManager

Luz normal -

ActorManager

SpotMove

Clases

Modelo X Bot

Modelo Opera Hall

Modelos importados

Método de McCandless

Foco a personajes

Iluminación

Movimiento

DEMO

Conclusiones y vías futuras

Personalizar iluminación

Luz de fondo

Música ambiente

Velocidad personajes

Parte II

Historia de los cuaterniones

• Sir William Rowan Hamilton (1805-1865)

$$a + bi + cj$$
 $i^2 = j^2 = -1$

16 octubre de 1843.

$$i^2 = j^2 = k^2 = ijk = -1$$

- Lectures on Quaternions (1853)
- *Elements on Quaternions* (1866)

Puente de Brougham

$$\{1, i, j, k\}$$

$$p = (p_0 + p_1 i + p_2 j + p_3 k), \quad q = (q_0 + q_1 i + q_2 j + q_3 k)$$

TMA FROBENIUS

Suma

$$p + q = (p_0 + q_0) + (p_1 + q_1)i + (p_2 + q_2)j + (p_3 + q_3)k.$$

Multiplicación

$$i^{2} = j^{2} = k^{2} = -1,$$

 $ij = -ji = k,$
 $jk = -kj = i,$
 $ki = -ik = j.$

$$p = (p_0 + p_1 i + p_2 j + p_3 k), \quad q = (q_0 + q_1 i + q_2 j + q_3 k)$$

TMA FROBENIUS

Conjugado

$$\bar{q} = q_0 - q_1 i - q_2 j - q_3 k$$

Propiedades

$$q\bar{q} = \bar{q}q = q_0^2 + q_1^2 + q_2^2 + q_3^2,$$

$$\bar{q} = q,$$

$$\overline{(p+q)} = \bar{p} + \bar{q},$$

$$\overline{(pq)} = \bar{q}\bar{p}.$$

$$p = (p_0 + p_1i + p_2j + p_3k), \quad q = (q_0 + q_1i + q_2j + q_3k)$$

TMA FROBENIUS

Norma

$$|q| = \sqrt{q\bar{q}} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2} = |\bar{q}|$$

 $|pq| = |p||q|$

Inverso

$$q^{-1} = \frac{q_0 - q_1 i - q_2 j - q_3 k}{q_0^2 + q_1^2 + q_2^2 + q_3^2} = \frac{\bar{q}}{|q|^2},$$

$$qq^{-1} = \frac{q\bar{q}}{|q|^2} = \frac{\bar{q}q}{|q|^2} = q^{-1}q = \frac{|q|^2}{|q|^2} = 1.$$

Teorema de Frobenius

Toda álgebra asociativa de división de dimensión finita sobre los reales es isomorfa a una de las siguientes: los números reales (\mathbb{R}) , los números complejos (\mathbb{C}) o los cuaterniones (\mathbb{H}) .

TMA FROBENIUS

Teorema de Rango Nulidad. Sea $f: V \rightarrow V'$ una aplicación lineal tal que V y V' son de dimensión finita. Entonces,

$$\dim (V) = \dim (Ker (f)) + \dim (Im(f)).$$

Lema. Sea A una matriz cuadrada de orden m y $p_A(\lambda)$ su polinomio característico. Entonces se verifica que

$$p_{\Delta}(A) = (-1)^m \lambda^m + (-1)^{m-1} tr(A) \lambda^{m-1} + q(\lambda)$$

donde $q(\lambda)$ es un polinomio de grado menor que m-1.

Lema. El conjunto *V* de todos los elementos a de *D* (álgebra de división de dimensión finita) tales que $a^2 \le 0$ es un subespacio vectorial de D de dimensión n-1. Además $D = \mathbb{R} \oplus V$ como espacios vectoriales reales, lo que implica que V genera D como álgebra.

$$Q = q_0 + q$$
$$q = q_1 i + q_2 j + q_3 k$$

$$P = p_0 + p p = p_1 i + p_2 j + p_3 k$$

$$PQ = p_0q_0 - p \cdot q + p_0q + q_0p + p \times q$$

$$r \longmapsto (\cos \frac{\alpha}{2} + \sin \frac{\alpha}{2}n)r(\cos \frac{\alpha}{2} - \sin \frac{\alpha}{2}n)$$

$$r \longmapsto qr\bar{q}$$

$$q = \cos(\alpha/2) + \sin(\alpha/2)n$$

FUENTES BIBLIOGRÁFICAS MÁS IMPORTANTES

- Unity Documentation. https://docs.unity3d.com/, 2022. Documentación completa de Unity.
- Unity Learn. https://learn.unity.com/, 2022. Página para el aprendizaje de Unity proporcionada por la herramienta.
- Johannes C. Familton. Quaternions: A History of Complex Noncommutative Rotation Groups in Theoretical Physics. Columbia University, 2015. A thesis submitted in partial fulfillment of the requirements for the degree of Ph.D of Columbia University. URL: https://arxiv.org/pdf/1504.04885.pdf.
- Frobenius Theorem. https://en.wikipedia.org/wiki/Frobenius theorem (real division algebras), Octubre 2021.
- G.F. Torres del Castillo. La representación de rotaciones mediante cuaterniones. Miscelánea Matemática, 29, 1999. Departamento de Física Matemática del Instituto de Ciencias de la Universidad Autónoma de Puebla México URL: https://miscelaneamatematica.org/download/tbl articulos.pdf2.b8d4415d314c3f7d.746f727265735f632e706466.pdf.

Presentado por: Lucía Salamanca López