El problema de la braquistòcrona usant tècniques d'optimització

24 de Desembre del 2020

Nom	DNI
Rubén Aciego	48038376R
Daniel Vilardell	48109585W

$\hat{\mathbf{I}}\mathbf{ndex}$

C	Cod	lis i gr	àfiqu	es													
2	.1	Fitxer	.run g	glo	val												
2	.2	Fitxer	s .mod	1.													
		2.2.1	Part	a													
		2.2.2	Part	b													
		2.2.3	Part	c													
2	.3	Fitxer	s .dat														
		2.3.1	Part	a													
		2.3.2	Part	b													
		2.3.3	Part	\mathbf{c}													
2.4	.4	Grafiq	ues .														
		2.4.1	Part														
		2.4.2	Part	b													
		2.4.3	Part	\mathbf{c}													

1 Formulació matematica del problema

La formulació matematica es ben senzilla, el que hem de minimitzar es el temps que tarda en arribar a (a,b) tenint en compte que $t=\frac{d}{v}$ i que si discretitzem x i y la $d_i=\sqrt{(x_i-x_{i-1})^2+(y_i-y_{i-1})^2}$ ens donaria la distancia entre dos punts de la funció (x_{i-1},y_{i-1}) i (x_i,y_i) . La velositat en un fragment de distancia es calcularia de la forma que ens han proposat al enunciat, es a dir $v=\sqrt{2gy_i}$. Aixi doncs el problema a resoldre es el següent:

P: min
$$\sum_{i=1}^{n} \frac{\sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}}{\sqrt{2gy_i}}$$
$$x_0 = 0 \qquad y_0 = 0$$
$$x_n = a \qquad y_n = b$$

Tenint en compte però que multiplicar per $\frac{1}{\sqrt{2g}}$ no variarà el resultat, ja que es una constant, podem formular el problema de la següent forma.

P: min
$$\sum_{i=1}^{n} \sqrt{\frac{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}{y_i}}$$
$$x_0 = 0 \qquad y_0 = 0$$
$$x_n = a \qquad y_n = b$$

2 Codis i gràfiques

2.1 Fitxer .run gloval

2.2 Fitxers .mod

2.2.1 Part a

2.2.2 Part b

2.2.3 Part c

2.3 Fitxers .dat

2.3.1 Part a

2.3.2 Part b

2.3.3 Part c

2.4 Grafiques

2.4.1 Part a

Figura 1: Grafica model A amb n=500

Figura 2: Grafica model A amb n=100 Figura 3: Grafica model A amb n=10

2.4.2 Part b

Figura 4: Grafica model B amb n=500

Figura 5: Grafica model B amb n=100 Figura 6: Grafica model B amb n=10

2.4.3 Part c

Figura 7: Grafica model C amb n=500

Figura 8: Grafica model C amb n=100 Figura 9: Grafica model C amb n=10

3 Demostració de que el model B es un problema convex

Per tal de demostrar això veurem que el determinant de la Hessiana es semidefinit positiu. Com que nomes te com a variable les x, calculem la segona derivada de $f(x) = \sum_{i=1}^n \sqrt{\frac{(x_i-x_{i-1})^2+(y_i-y_{i-1})^2}{y_i}}$. Com que y es un vector constant calcular aquesta matriu hessiana no serà massa complicat. Per linealitat de les derivades, si demostrem que la hessiana de $g(x) = \sqrt{\frac{(x_i-x_{i-1})^2+(y_i-y_{i-1})^2}{y_i}}$ per tot $i \in (1,n)$ es semidefinida positiva, la hessiana de la funció original serà definida.

$$\nabla g(x) = \left(\frac{x_{i-1} - x_i}{\sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}}, \frac{x_i - x_{i-1}}{\sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}}\right)$$

$$\nabla^2 g(x) = \begin{pmatrix} \frac{(y_i - y_{i-1})^2}{((x_i - x_{i-1})^2 + (y_i - y_{i-1})^2)^{\frac{3}{2}}} & \frac{-(y_i - y_{i-1})^2}{((x_i - x_{i-1})^2 + (y_i - y_{i-1})^2)^{\frac{3}{2}}} \\ \frac{-(y_i - y_{i-1})^2}{((x_i - x_{i-1})^2 + (y_i - y_{i-1})^2)^{\frac{3}{2}}} & \frac{(y_i - y_{i-1})^2}{((x_i - x_{i-1})^2 + (y_i - y_{i-1})^2)^{\frac{3}{2}}} \end{pmatrix}$$

Com que tots els menors de la matriu hessiana son positius, per el criteri de Sylvester podem confirmar que la matriu hessiana es semidefinida positiva i per tant la funció g(x) es convexa. La suma de funcions convexas dona com a resultat una funció convexa i per tant f(x) es convexa. Com que les restriccions també son convexes ja que es tracten de una igualtat en un punt, podem confirmar que el model B del problema es un problema d'optimització convex.