

Hybrid circuits: interacting living neurons, model neurons and robots

Rodrigo Amaducci

Grupo de Neurocomputación Biológica (GNB)
Universidad Autónoma de Madrid

 Networks built by connecting computational models with living cells.

 Networks built by connecting computational models with living cells.

 Networks built by connecting computational models with living cells.

- Powerful tool to explore and characterize neural system dynamics.
- Useful to assess the role of specific circuit components.
- Set a baseline for machine and biological elements interaction.

Living circuit preparation

- Typically dynamic-clamp.
- DAQ and amplifier specifications.
- Temporal precision:
 - Milliseconds scale or higher?
 - Soft real-time
 - Under milliseconds scale?
 - Hard real-time

Computational setup

- Hardware-based:
 - Electronic circuits
 - Microcontrollers (Arduino, Teensy, etc)
- Software-based:
 - Soft real-time:
 - Normal OS (Windows, Linux, MacOS, etc)
 - Hard real-time:
 - Real-time OS (Preempt-RT, Xenomai, etc)

Izhikevich model (2003) 105 94000 steps

Hindmarsh and Rose model (1984)

- Each model have different temporal and amplitude scales.
- Every electrophysiological experiment is different (and can change over time).

- All amplitude and time scale adjustments have to be addressed specifically for each preparation.
- This can be done by hand, but takes a lot of precious time.
- Automatic adaptation and mappings of hybrid circuits help to solve this issue.
- More about this techniques in the following talk.

Some existing tools

Name	Platform	Real-time support	Reference
LCG	Linux	Soft real-time	Linaro et al., 2014
StdpC	Windows	Soft real-time	Nowotny et al., 2006
PC NEURON Simulink	Windows	Hard real-time (xPC and Simulink)	Biró and Giugliano, 2015
CLEM	Windows	Soft real-time	Hazan and Ziv, 2017
Falcon	Windows	Soft real-time	Ciliberti and Kloosterman, 2017
Open Ephys GUI	Windows/Linux/ MacOS	Soft real-time	Siegle et al., 2017
RTXI	Linux	Hard real-time (Xenomai)	Patel et al., 2017
RTHybrid	Linux	Soft and hard real-time (Xenomai or Preempt-RT)	Amaducci et at, 2019

Some existing tools

Name	Platform	Real-time support	Reference
LCG	Linux	Soft real-time	Linaro et al., 2014
StdpC	Windows	Soft real-time	Nowotny et al., 2006
PC NEURON Simulink	Windows	Hard real-time (xPC and Simulink)	Biró and Giugliano, 2015
CLEM	Windows	Soft real-time	Hazan and Ziv, 2017
Falcon	Windows	Soft real-time	Ciliberti and Kloosterman, 2017
Open Ephys GUI	Windows/Linux/ MacOS	Soft real-time	Siegle et al., 2017
RTXI	Linux	Hard real-time (Xenomai)	Patel et al., 2017
RTHybrid	Linux	Soft and hard real-time (Xenomai or Preempt-RT)	Amaducci et at, 2019

RTXI

Real-Time eXperiment Interface

- Open-source.
- Hard real-time:
 - Linux with Xenomai
- Designed for general data acquisition and control in biological research.
- Users can add custom modules.
- Great flexibility.

Pause Modify

[Patel et al, 2017]

RTHybrid

- Open-source.
- Soft real-time:
 - Standard linux
- Hard real-time:
 - Linux with Xenomai
 - Linux with Preempt-RT
- Designed specifically to build hybrid circuits.
- Includes neuron and synapse model library and adaptation algorithms.

Hybrid circuit with RTHybrid

Neuron model:

[Hindmarsh and Rose, 1984]

Synapse models:

[Golowasch et al., 1999]

[Amaducci et al, 2019]

Hybrid circuit with RTHybrid

Neuron model:

[Ghigliazza and Holmes, 2004]

Synapse models:

[Golowasch et al., 1999]

[Amaducci et al, 2019]

Hybrot (Hybrid robot)

https://www.youtube.com/watch?v=qFLPWpT1H7U

Conclusions

- Hybrid circuit closed-loop experiments are a great tool to study neural dynamics.
- However, technical requirements, such as temporal precision or adaptation to biological elements, make them difficult to implement.
- Standardization of real-time software beyond specific platforms will largely contribute to the use and dissemination of closed-loop protocols.

Thank you!

If you want to see more about closed-loops, check these posters and talks!

P206: Parameter exploration in neuron and synapse models driven by stimuli from living neuron recordings.

P207: Hybrid robot driven by a closed-loop interaction with a living central pattern generator with online feedback.

O11: Experimental and computational characterization of interval variability in the sequential activity of the Lymnaea feeding CPG.

Sunday 19th - 9pm (Berlin Time)

Sunday 19th - 9pm (Berlin Time)

Monday 20th - 9pm (Berlin Time)

- R. Amaducci, M. Reyes-Sanchez, I. Elices, F.B. Rodriguez, P. Varona. 2019. RTHybrid: A Standardized and Open-Source Real-Time Software Model Library for Experimental Neuroscience. Frontiers in Neuroinformatics 13:11. https://doi.org/10.3389/fninf.2019.00011
- **M. Reyes-Sanchez, R. Amaducci, I. Elices, F.B. Rodriguez, P. Varona.** *2020*. Automatic adaptation of model neurons and connections to build hybrid circuits with living networks. *Neuroinformatics 18: 377–393*. https://doi.org/10.1007/s12021-019-09440-z
- I. Elices, R. Levi, D. Arroyo, F.B. Rodriguez, P. Varona. 2019. Robust dynamical invariants in sequential neural activity. Sci Rep 9, 9048. https://doi.org/10.1038/s41598-019-44953-2