# A Demonstration of Sampling Frequency Switching in the LTC2145 ADC

Gen2 Hardware Meeting - Aug 16<sup>th</sup>, 2018



ty@wisc.edu





#### Overview

• This is an update on the development of the SloDAQ\*. My previous presentation was about two months ago and can be found <a href="here">here</a>.

• The main result here is the demonstration of sampling frequency switching in the LTC2145 ADC, between idle (10 MHz) and triggered state (120 MHz), which can save us significant power.

### From Last Time...

• Tested the iCE40 FPGA on a dev board. Demonstrated digital waveform capture and transfer (via UART) to my laptop.

#### ICE40UP5K-B-EVN



## From Last Time...

#### ICE40UP5K-B-EVN



# From Last Time...





# This time



### This time

 1Vpp at 6 MHz Sine wave from the waveform generator, digitized at 120MHz by the DC1620A dev board, buffered and sent to my computer by the ICE40UP5K dev board.

 Note: this is twice the sampling frequency from last time.



#### The Main Test

• It is wasteful to digitize at full clock speed during idle periods (no signal). Can the ADC be slowed down and only digitize at full speed during a trigger?



# The Main Test



# The Main Test



## Conclusions

- No quantitative statement to make at this point.
- But from the look at these waveforms, it seems like the ADC is able to handle the sudden frequency change from 10MHz to 120MHz fine.
- Mystery irregularities seen in waveforms might be due to noise in the setup, and bugs in my firmware.
- A quantitative test can be done after we route our own board. Also power measurements.
- iCE40 running at 120MHz, (What about 240?)

# Backup Slide

