Goal: to show that
$$E\left[\frac{1}{3}(y-\hat{y})^2\right]$$
 is minimized by $f^*(x) = E\left[Y|X=x\right]$ for any given X .

(1) $E\left[\frac{1}{3}(y-\hat{y})^2\right]$ is minimized when $E\left[(y-\hat{y})^2\right]$ is min.

(2) $E\left[(y-\hat{y})^2\right] = E\left[(\hat{y} - E\left[Y|X=x] + E\left[Y|X=x] - y\right)^2\right]$

(3) let $a = \hat{y} - E\left[Y|X=x\right]$ and $b = E\left[Y|X\right] - y$.

(4) then $(2) = E\left[(a+b)^2\right] = E\left[a^2\right] + E\left[2ab\right] + E\left[b^2\right]$

Starting with $E\left[b^2\right]$;

 $E\left[b^2\right] = E\left[\left(E\left[Y|X=x\right] - y\right)^2\right]$. This is invariable; not dependent on $f^*(x)$

(5) $E\left[2ab\right] = 2E\left[ab\right] = 2E\left[\hat{y}E\left[Y|X=x] - \hat{y}y - E\left[Y|X=x]^2 + yE\left[Y|X=x\right]\right]$
 $E\left[\hat{y}\right] = f^*(x) = E\left[Y|X=x\right]$
 $\Rightarrow (5) = 2\left[E\left[Y|X=x\right]^2 - E\left[Y|X=x\right]\right] - E\left[Y|X=x\right]^2$

Therefore $E\left[\frac{1}{2}(y-\hat{y})^2\right]$ is min when $E\left[a^2\right]$ is min $E\left[a^2\right] = E\left[(\hat{y} - E\left[Y|X=x\right])^2\right]$
 $ext{arg nin} \left((\hat{y} - E\left[Y|X=x\right])^2\right) = E\left[Y|X=x\right]$