

Projeto de Deep Learning

Bruno Fernandes

Conteúdo

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

Processo iterativo

- Prioridades
 - 1. Taxa de aprendizagem
 - 2. Termo de momento (β =0,9), tamanho do mini-batch e número de unidades escondidas
 - 3. Número de camadas e decaimento da taxa de aprendizagem

Os parâmetros do Adam normalmente não se ajustam (β_1 =0,9, β_2 =0,999, β 3=10⁻⁸)

• Selecione valores aleatórios dentro de um espaço de amostragem

 Dê um zoom onde os melhores valores são encontrados e repita o processo

• Escolha uma escala apropriada

90% cai no intervalo 0,1 - 1

Em Python

Ajustando termo do momento

• β=0,9 ... 0,999

• $1-\beta = 0,1 \dots 0,001$

	Х	Χ	Х	X	хх	Х	X	X	X	X
0,1					<i>r</i> ∈ [−	3 , − 1	L]			0,001
10-	1				$1-\beta=1$	0-r				10-3
					β =1-1	.0 ^r				

Abordagens para tunning de parâmetros

Conteúdo

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

Ortogonalização

 Processo para definir o que será ajustado primeiro

Imagina o controle de um carro a partir de uma única função que retorna a velocidade e o ângulo do volante

Ortogonalização

- Em aprendizagem de máquina, existem quatro objetivos a serem atingidos
 - Ajustar bem no treino
 - Senão, aumente o tamanho da rede ou mude o algoritmo de otimização
 - Ajustar bem no dev
 - Use regularização ou aumente o conjunto de treino
 - Ajustar bem no teste
 - Aumente o conjunto de dev
 - Funcionar bem no mundo real
 - Mude o conjunto de dev ou a função de custo

- Exemplo: ao invés de *precision* (p) e *recall* (r), use F1-score = $\frac{2}{\frac{1}{p} + \frac{1}{r}}$
- Outro exemplo: média de valores

 A tarefa nem sempre é simples: como combinar acurácia e tempo de execução?

Combinar múltiplos fatores

- Estabeleça uma das variáveis para ser maximizada e inclua restrições nas demais
- No caso da acurácia e do tempo
 - Maximizar acurácia <- otimizar
 - Sujeito a restrição de tempo menor que *T*ms <- satisfazer
- Com N métricas
 - 1 otimizar
 - N-1 satisfazer

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

Bias e Variância

 Se o erro no treino é alto, diz-se que o problema tem um bias alto (underfitting)

 Se o erro no dev é alto, diz-se que o problema tem uma variância alta (overfitting)

• Como definir se o erro do treino ou do dev é pior?

Performance Humana

• Serve como base para estimar o erro de bayes

- Enquanto o modelo for pior que o humano, faça:
 - Pegue mais dados rotulados de humanos
 - Pegue insights dos humanos sobre os erros (análise qualitativa manual)
 - Analise a relação dos erros nos conjuntos de treino e dev (bias e variância)

	Problema-1	Problema-2
Humano	1% bias	7,5%
Erro no treino	8% blas	8% variância
Erro no dev	10%	10%

- Problema-1
 - Foco no bias
- Problema-2
 - Foco na variância

Bias ou Variância

- Bias
 - Treinar uma rede maior
 - Treinar por mais tempo/melhor: momento, rmsprop, adam
 - Pesquisa por hiperparâmetros/arquitetura da rede
- Variância
 - Mais dados
 - Regularização: L2, dropout, data augmentation
 - Pesquisa por hiperparâmetros/arquitetura da rede

Análise do Erro

• Verificar qual tipo do erro é mais comum para concentrar os esforços

• Problema de reconhecimento de gato

• Erros

Imagem	Cachorro	Grandes felinos	Borrada	
1	X			Pitbull
2			X	
3		X	X	Dia chuvoso no zoológico
•••	•••		•••	
% do total	8%	43%	61%	

Conteúdo

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

Distribuição treino/teste

Anteriormente

Distribuição treino/teste

• Big data (milhões de dados)

É importante que os conjuntos de dev e teste venham da mesma distribuição!

• Suponha o problema para reconhecer gatos com a câmera do celular

• Entretanto, para treinar seu modelo de maneira mais eficaz, você coletou também imagens da Web

 Você tem 200 mil imagens coletadas da Web e 10 mil imagens coletadas pelo app mobile

Como deve ser separado os conjuntos de treino, dev e teste?

- Opção 1: Junta tudo em única conjunto, embaralha e separa
 - Ruim porque o alvo será majoritariamente imagens da Web
- Opção 2: separa 5 mil imagens aleatórias do app para treino e as outras 5 mil para dev e teste, as 200 mil da Web ficam para treino
 - Existe o risco das imagens no conjunto de dev/teste representarem um problema bem mais difícil e, consequentemente, obter uma taxa bem pior, mas que não quer dizer o problema da variância
 - Solução: crie um novo conjunto treino-dev com a mesma distribuição do treino para avaliar a convergência do modelo

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

- Substitui camadas de um modelo já treinado para um problema por novas camadas a serem treinadas para um novo problema
- Pode treinar só as novas camadas ou a rede toda (pre-training + fine tunning)
- Pode reinicializar os pesos das últimas camadas ou mesmo substitui-las
- Sempre deve substituir a camada de softmax
- Faz sentido quando se tem muitos dados no problema de origem e bem menos no de destino
- Via de regra, sempre opte por transfer learning
 - A não ser que o conjunto de dados seja absurdamente grande, assim como os recursos computacionais

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

Multi-task learning

- Pode ser mais fácil treinar uma rede para várias tarefas juntas do que uma rede por tarefa
- Dessa forma, pode indicar que numa mesma imagem tem um gato e um cachorro, mas nenhum coelho
- Não se usa softmax na saída
- No caso de algumas saídas não informar se tem o label ou não, simplesmente ignore-as no cálculo do erro

- Faz sentido quando
 - As tarefas compartilham características de baixo nível
 - Os conjuntos de dados das tarefas são similares
 - Pode treinar uma rede neural para rodar bem em todos os problemas (normalmente, só não dá certo se a rede não for grande o suficiente)

Multi-task for Vision?

Share hidden layers (shared representation)

 Cha Zhang, et al. "Improving Multiview Face Detection with Multi-Task Deep Convolutional Neural Networks"

Conteúdo

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

End-to-end Deep Learning

 Abordagem tradicional envolve uma série de passos até o resultado final

 Uma forma de simplificar o sistema é deixar que a rede aprenda todo o processo

 Só funciona bem se tiver muitos dados, com poucos é melhor a abordagem tradicional

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

Data augmentation

- Estratégia para aumentar a quantidade de padrões de treino apresentados a rede
 - Espelhamento
 - Recorte aleatório
 - Rotação
 - Shearing
 - Warping
 - Color shift
 - PCA
- Na prática: https://keras.io/preprocessing/image/

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional


```
    Criação do modelo

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu', data_format='channels_first',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.summary()
```


 Treino e teste model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, batch size=batch size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])

Congelando pesos e trocando a última camada

```
for layer in model.layers:
    layer.trainable = False
modelTL = model
modelTL.pop()
modelTL.add(Dense(2, activation='softmax'))
```


 Treinando e testando modelTL.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) batch_size = 32 epochs = 120modelTL.fit(cat_train_x, cat_train_y, batch size=32, epochs=epochs, verbose=1, validation_data=(cat_test_x, cat_test_y)) score = modelTL.evaluate(cat_test_x, cat_test_y, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])

• Existem também outras formas...

Vamos olhar o código

- Ajuste de hiperparâmetros
- Ortogonalização
- Bias, variância e performance humana
- Distribuição treino/teste
- Transfer learning
- Multi-task learning
- End-to-end learning
- Data augmentation
- Prática: Transfer Learning
- O Estado da Visão Computacional

O Estado da Visão Computacional

- Fontes de conhecimento:
 - Dados rotulados
 - Características construídas a mão/arquitetura da rede/outros componentes

Dicas para benchmarks

- Ensembling
 - Comitê com médias das saídas (3 a 15 redes)

- Multi-crop em tempo de teste
 - Espelha-se a imagem de teste e pega 10 crops (ou menos) da imagem e tira a média dos resultados

Projeto de Deep Learning

Bruno Fernandes

