Отчет по лабораторной работе №8

Администрирование локальных сетей

Амуничников Антон, НПИбд-01-22

Содержание

Сг	писок литературы	21
5	Контрольные вопросы	19
4	Выводы	18
3	Выполнение лабораторной работы	E
2	Задание	5
1	Цель работы	4

Список иллюстраций

3.1	Логическая схема локальнои сети с добавленным DNS-сервером	6
3.2	Активация порта	7
3.3	Конфигурация dns-сервера	7
3.4	Конфигурация dns-сервера	8
3.5	Окно настройки сервиса DNS	9
3.6	Настройка DHCP-сервис на маршрутизаторе	10
3.7	Настройка DHCP-сервис на маршрутизаторе	11
3.8	Информация о пулах DHCP	12
3.9	Информация о привязках выданных адресов	12
3.10	Просмотр статического ір-адреса	13
3.11	Замена в настройках статического распределения адресов на дина-	
	мическое	13
3.12	Просмотр динамически заданного ір-адреса	14
3.13	Проверка доступности устройств из разных подсетей	14
3.14	Информация по адресу www.donskaya.rudn.ru	15
	Запрос адреса по протоколу DHCP в режиме симуляции	15
3.16	Список событий по DHCP запросу	16
3.17	DHCP запрос на выделение адреса. Заголовки пакета	16
3.18	DHCP ответ с выделенным адресом. Заголовки пакета	17

1 Цель работы

Приобрести практические навыки по настройке динамического распределения IP-адресов посредством протокола DHCP (Dynamic Host Configuration Protocol) в локальной сети.

2 Задание

- 1. Добавить DNS-записи для домена donskaya.rudn.ru на сервер dns.
- 2. Настроить DHCP-сервис на маршрутизаторе.
- 3. Заменить в конфигурации оконечных устройствах статическое распределение адресов на динамическое.
- 4. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

В логическую рабочую область проекта добавим сервер dns и подключим его к коммутатору msk-donskaya-sw-3 через порт Fa0/2 (рис. 3.1), не забыв активировать порт при помощи соответствующих команд на коммутаторе (рис. 3.2).

Рис. 3.1: Логическая схема локальной сети с добавленным DNS-сервером

Рис. 3.2: Активация порта

В конфигурации сервера укажем в качестве адреса шлюза 10.128.0.1 (рис. 3.3), а в качестве адреса самого сервера — 10.128.0.5 с соответствующей маской 255.255.255.0 (рис. 3.4).

Рис. 3.3: Конфигурация dns-сервера

Рис. 3.4: Конфигурация dns-сервера

Настроем сервис DNS (рис. 3.5):

- в конфигурации сервера выберем службу DNS, активируем её (выбрав флаг On);
- в поле Туре в качестве типа записи DNS выберем записи типа A(A Record);
- в поле Name укажем доменное имя, по которому можно обратиться, например, к web-серверу www.donskaya.rudn.ru, затем укажем его IP-адрес в соответствующем поле 10.128.0.2;
- нажав на кнопку Add , добавьте DNS-запись на сервер;
- аналогичным образом добавим DNS-записи для серверов mail, file, dns согласно распределению адресов из таблицы, сделанной в лабораторной работе №3;
- сохраним конфигурацию сервера.

Рис. 3.5: Окно настройки сервиса DNS

Настроем DHCP-сервис на маршрутизаторе, используя приведённые в лабораторной работе №8 команды для каждой выделенной сети(рис. 3.6):

- укажем IP-адрес DNS-сервера;
- перейдем к настройке DHCP;
- зададим название конфигурируемому диапазону адресов (пулу адресов), укажем адрес сети, а также адреса шлюза и DNS-сервера;
- зададим пулы адресов, исключаемых из динамического распределения (см. табл. 3.1).

Таблица 3.1: Регламент выделения ір-адресов (для сети класса С)

IP-адреса	Назначение
1	Шлюз
2-19	Сетевое оборудование
20-29	Серверы
30-199	Компьютеры, DHCP
200-219	Компьютеры, Static
220-229	Принтеры

ІР-адреса Назначение

230-254 Резерв

```
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.104, changed state to up

msk-donskaya-aiamunichnikov-gw-01>enable
Password:
msk-donskaya-aiamunichnikov-gw-01#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-aiamunichnikov-gw-01(config)#ip name server 10.128.0.5
% Invalid input detected at '^' marker.

msk-donskaya-aiamunichnikov-gw-01(config)#ip name server 10.-28.0.5^Z
msk-donskaya-aiamunichnikov-gw-01(config)#ip name server 10.-28.0.5^Z
msk-donskaya-aiamunichnikov-gw-01(config)#ip name-server 10.128.0.5
msk-donskaya-aiamunichnikov-gw-01(config)#ip name-server 10.128.0.5
msk-donskaya-aiamunichnikov-gw-01(config)#ip name-server 10.128.0.5
msk-donskaya-aiamunichnikov-gw-01(config)#ip dhcp pool dk
msk-donskaya-aiamunichnikov-gw-01(config)#ip dhcp pool dk
msk-donskaya-aiamunichnikov-gw-01(dhcp-config)#efault-router 10.128.0.5
msk-donskaya-aiamunichnikov-gw-01(dhcp-config)#efault-router 10.128.0.5
msk-donskaya-aiamunichnikov-gw-01(config)#ip dhcp excluded address 10.128.3.1
% Invalid input detected at '^' marker.

msk-donskaya-aiamunichnikov-gw-01(config)#ip dhcp excluded address 10.128.3.1 10.128.3.29
% Invalid input detected at '^' marker.

msk-donskaya-aiamunichnikov-gw-01(config)#ip dhcp exculed-address 10.128.3.1 10.128.3.29
% Invalid input detected at '^' marker.

msk-donskaya-aiamunichnikov-gw-01(config)#ip dhcp exculed-address 10.128.3.1 10.128.3.29
% Invalid input detected at '^' marker.

msk-donskaya-aiamunichnikov-gw-01(config)#ip dhcp exculed-address 10.128.3.1 10.128.3.29
% Invalid input detected at '^' marker.
```

Рис. 3.6: Настройка DHCP-сервис на маршрутизаторе

Рис. 3.7: Настройка DHCP-сервис на маршрутизаторе

Посмотрим информацию о настроенных пулах DHCP (рис. 3.8).

IOS Command Line Interface

Рис. 3.8: Информация о пулах DHCP

Также посмотрим информацию о привязках выданных адресов (рис. 3.9), но пока нет выданных адресов.

Рис. 3.9: Информация о привязках выданных адресов

Изначально у нас были заданы статические ip-адреса, можем посмотреть их с помощью команды ipconfig (рис. 3.10).

```
C:\>ipconfig
FastEthernet0 Connection:(default port)
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address.....: FE80::207:ECFF:FE87:6365
  IPv6 Address....: ::
  IPv4 Address..... 10.128.3.2
  Subnet Mask..... 255.255.255.0
  Default Gateway....::
                            10.128.3.1
Bluetooth Connection:
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address....: ::
  IPv6 Address....: ::
  IPv4 Address..... 0.0.0.0
  Subnet Mask..... 0.0.0.0
  Default Gateway....:
                            0.0.0.0
```

Рис. 3.10: Просмотр статического ір-адреса

Теперь на оконечных устройствах заменим в настройках статическое распределение адресов на динамическое (рис. 3.11).

Рис. 3.11: Замена в настройках статического распределения адресов на динамическое

Проверим, какой ір-адрес выделен теперь (рис. 3.12).

```
C:\>ipconfiq
FastEthernet0 Connection:(default port)
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address.....: FE80::207:ECFF:FE87:6365
  IPv6 Address....: ::
  IPv4 Address..... 10.128.3.30
  Subnet Mask..... 255.255.255.0
  Default Gateway....::
                            10.128.3.1
Bluetooth Connection:
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address....: ::
  IPv6 Address....: ::
  IPv4 Address..... 0.0.0.0
  Subnet Mask..... 0.0.0.0
  Default Gateway....: ::
```

Рис. 3.12: Просмотр динамически заданного ір-адреса

Проверим доступность устройств из разных подсетей (рис. 3.13). Как видно, пингование проходит успешно.

```
C:\>ping 10.128.5.30
Pinging 10.128.5.30 with 32 bytes of data:
Reply from 10.128.5.30: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.5.30:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping www.donskaya.rudn.ru
Pinging 10.128.0.2 with 32 bytes of data:
Request timed out.
Reply from 10.128.0.2: bytes=32 time=1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.2:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Рис. 3.13: Проверка доступности устройств из разных подсетей

Можем также попробовать с компьютера через web browser перейти по адресу www.donskaya.rudn.ru. (рис. 3.14) Увидим информацию, которая там лежит.

Рис. 3.14: Информация по адресу www.donskaya.rudn.ru

В режиме симуляции изучим, каким образом происходит запрос адреса по протоколу DHCP (рис. 3.15) (какие сообщения и какие отклики передаются по сети).

Рис. 3.15: Запрос адреса по протоколу DHCP в режиме симуляции

Можем также посмотреть список событий, чтобы понять, как происходит запрос (рис. 3.16). Оконечное устройство отправляет запрос на получение ір-адреса по протоколу DHCP. Сначала DHCP-пакет рассылается всем устройствам сети и принимается маршрутизатором. В заголовках DHCP при этом указан только MAC-адрес устройства, которому нужен адрес, ір-адреса еще нет (рис. 3.17).

0.00	2 msk-donskaya-aiamunichnikov-sw-3	mail	DHCP
0.00	2 msk-donskaya-aiamunichnikov-sw-3	msk-donskaya-aiamunichnikov-sw-2	DHCP
0.00	2	dns	DHCP
0.00	3 dns	msk-donskaya-aiamunichnikov-sw-3	DHCP
0.00	3 msk-donskaya-aiamunichnikov-sw-3	mail	DHCP
0.00	3 msk-donskaya-aiamunichnikov-sw-3	msk-donskaya-aiamunichnikov-sw-2	DHCP
0.00	msk-donskaya-aiamunichnikov-sw-2	web	DHCP
0.00	3 msk-donskaya-aiamunichnikov-sw-2	file	DHCP
0.00	msk-donskaya-aiamunichnikov-sw-2	msk-donskaya-aiamunichnikov-sw-1	DHCP
0.00	4 msk-donskaya-aiamunichnikov-sw-3	mail	DHCP
0.00	4 msk-donskaya-aiamunichnikov-sw-3	msk-donskaya-aiamunichnikov-sw-2	DHCP
0.00	4 msk-donskaya-aiamunichnikov-sw-2	web	DHCP
0.00	4 msk-donskaya-aiamunichnikov-sw-2	file	DHCP
0.00	4 msk-donskaya-aiamunichnikov-sw-2	msk-donskaya-aiamunichnikov-sw-1	DHCP
0.00	4 msk-donskaya-aiamunichnikov-sw-1	msk-donskaya-aiamunichnikov-mc-1	DHCP
0.00	4 msk-donskaya-aiamunichnikov-sw-1	msk-donskaya-aiamunichnikov-gw-1	DHCP
0.00	4 msk-donskaya-aiamunichnikov-sw-1	msk-donskaya-aiamunichnikov-sw-4	DHCP
90.00	5 msk-donskaya-aiamunichnikov-sw-2	web	DHCP
90.00	5 msk-donskaya-aiamunichnikov-sw-2	file	DHCP
0.00	5 msk-donskaya-aiamunichnikov-sw-2	msk-donskaya-aiamunichnikov-sw-1	DHCP
90.00	5 msk-donskaya-aiamunichnikov-sw-1	msk-donskaya-aiamunichnikov-mc-1	DHCP
9.00	msk-donskaya-aiamunichnikov-sw-1	msk-donskaya-aiamunichnikov-qw-1	DHCP

Рис. 3.16: Список событий по DHCP запросу

Рис. 3.17: DHCР запрос на выделение адреса. Заголовки пакета

Затем маршрутизатор выделяет адрес нужному mac-адресу на основе информации об уже занятых в этой подсети адресах. Он отправляет ответ устройству о том, какой именно адрес выделен. Теперь в заголовках указан адрес шлюза подсети и адрес устройства (рис. 3.18). После того, как устройство получило адрес, оно сообщает маршрутизатору о принятии этого адреса.

Рис. 3.18: DHCP ответ с выделенным адресом. Заголовки пакета

4 Выводы

В процессе выполнения данной лабораторной работы я приобрел практические навыик по настройке динамического распределения IP-адресов посредством DHCP (Dynamic host Configuration Protocol) в локальной сети.

5 Контрольные вопросы

1. За что отвечает протокол DHCP?

Протокол DHCP — это стандартный протокол, определяемый RFC 1541 (который заменяется RFC 2131), позволяющий серверу динамически распределять IP-адреса и сведения о конфигурации клиентам.

2. Какие типы DHCP-сообщений передаются по сети?

По данным источника, в DHCP-протоколе используются следующие типы сообщений:

- DHCPDISCOVER клиент отправляет пакет, пытаясь найти сервер DHCP в сети.
- DHCPOFFER сервер отправляет пакет, включающий предложение использовать уникальный IP-адрес.
- DHCPREQUEST клиент отправляет пакет с просьбой выдать в аренду предложенный уникальный адрес.
- DHCPACK сервер отправляет пакет, в котором утверждается запрос клиента на использование IP-адреса.
- 3. Какие параметры могут быть переданы в сообщениях DHCP?

Параметры DHCP могут включать IP-адреса, шлюзы, DNS-серверы, временные интервалы аренды и другие настройки сети.

4. Что такое DNS?

DNS (Система доменных имён, англ. Domain Name System) — это иерархическая децентрализованная система именования для интернет-ресурсов подключённых к Интернет, которая ведёт список доменных имён вместе с их числовыми IP-адресами или местонахождениями. DNS позволяет перевести простое запоминаемое имя хоста в IP-адрес.

5. Какие типы записи описания ресурсов есть в DNS и для чего они используются?

Основными ресурсными записями DNS являются:

- А-запись одна из самых важных записей. Именно эта запись указывает на IP-адрес сервера, который привязан к доменному имени.
- МХ-запись указывает на сервер, который будет использован при отсылке доменной электронной почты.
- NS-запись указывает на DNS-сервер домена.
- CNAME-запись позволяет одному из поддоменов дублировать DNS-записи своего родителя.

Список литературы