練習 7.8

I. Explain why each of the following integrals is improper.

(a)
$$\int_{1}^{\infty} x^{4} e^{-x^{4}} dx$$

(b)
$$\int_0^{\pi/2} \sec x \, dx$$

(c)
$$\int_0^2 \frac{x}{x^2 - 5x + 6} dx$$
 (d) $\int_{-\infty}^0 \frac{1}{x^2 + 5} dx$

(d)
$$\int_{-\infty}^{0} \frac{1}{x^2 + 5} dx$$

5-40 Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

5.
$$\int_{1}^{\infty} \frac{1}{(3x+1)^{2}} dx$$
 9. $\int_{4}^{\infty} e^{-y/2} dy$ II. $\int_{-\infty}^{\infty} \frac{x}{1+x^{2}} dx$

9.
$$\int_{1}^{\infty} e^{-y/2} dy$$

$$\prod_{-\infty}^{\infty} \frac{x}{1+x^2} \, dx$$

15.
$$\int_{2\pi}^{\infty} \sin \theta \ d\theta$$

15.
$$\int_{2\pi}^{\infty} \sin \theta \ d\theta$$
 23. $\int_{-\infty}^{\infty} \frac{x^2}{9 + x^6} \ dx$ 27. $\int_{0}^{1} \frac{3}{x^5} \ dx$

27.
$$\int_0^1 \frac{3}{x^5} dx$$

$$35. \int_0^3 \frac{dx}{x^2 - 6x + 5}$$

49-54 Use the Comparison Theorem to determine whether the integral is convergent or divergent.

49.
$$\int_0^\infty \frac{x}{x^3 + 1} dx$$
 53. $\int_0^1 \frac{\sec^2 x}{x \sqrt{x}} dx$

53.
$$\int_0^1 \frac{\sec^2 x}{x\sqrt{x}} \, dx$$

7.8 答案

EXERCISES 7.8 PAGE 515

Abbreviations: C, convergent; D, divergent

- **I.** (a) Infinite interval (b) Infinite discontinuity
- (c) Infinite discontinuity (d) Infinite interval

- 5. $\frac{1}{12}$ 9. $2e^{-2}$ II. D 15. D 23. $\pi/9$
- 27. D

- **35.** D **49.** C **53.** D