KEAMANAN INFORMASI

Contents

Pengantar 5	
Pendahuluan 7	
Prinsip-prinsip Keamanan Informasi	15
Kriptografi 19	
PGP / Gnu Privacy Guard 21	
Bibliography 23	

Pengantar

Buku ini muncul karena kebutuhan buku teks untuk kuliah keamanan informasi (*information security*). Jenis buku seperti ini agak langka. Bahkan dahulu ilmu yang terkait dengan keamanan - misalnya kriptografi - dianggap tidak boleh diajarkan sehingga referensi untuk hal itu sangat langka. Buku yang pertama kali terbit mengenai kriptografi adalah "Codebreakers" karangan David Kahn ¹, yang diterbitkan tahun 1969. Sejak saat ini, ilmu tentang keamanan (security) mulai terbuka untuk umum.

Buku teks berbeda dengan buku *how to* yang banyak beredar di toko buku. Buku tersebut biasanya hanya menjelaskan bagaimana menggunakan sebuah program tertentu, atau melakukan hal tertentu. Sementara itu buku teks digunakan untuk memberikan landasan teori sehingga pemahaman tidak bergantung kepada *tools* tertentu saja. Meskipun demikian, penggunaan *tools* sebagai contoh akan juga disampaikan dalam buku ini. Semoga dengan demikian, buku ini dapat bertahan lebih lama. (Meskipun saya agak ragu setelah melihat pesatnya perkembangan teknologi informasi.)

Urutan pembahasan juga membuat saya merenung cukup panjang. Ada beberapa hal yang disinggung di depan, tetapi pembahasan teorinya di belakang. Sementara itu kalau teorinya diletakkan di depan, maka siswa akan bosan karena terlalu banyak teori. Seharusnya memang buku ini dipaketkan dengan materi presentasi (slide) yang saya gunakan untuk mengajar. Yang itu belum saya benahi. Masih menunggu waktu.

Sebelumnya saya pernah membuat buku yang sejenis, tetapi kode sumber dari buku tersebut sudah hilang. Maklum, saya membuatnya di tahun 1990-an dengan menggunakan program FrameMaker, yang sudah tidak saya miliki lagi. Sekarang saya buat dari awal dengan menggunakan LATEX agar lebih bisa bebas.

Bagi Anda yang mengajarkan kuliah *security* dan ingin menggunakan buku ini sebagai buku teks, silahkan digunakan. Bagi para mahasiswa dan peneliti yang membutuhkan referensi untuk makalah Anda, semoga buku ini dapat membantu. Selain buku ini, saya juga menulis buku lain yang dapat diunduh juga: "Keamanan Perangkat

¹ David Kahn. *Codebreakers*. Scribner,

Lunak" $^{\rm 2}$. Yang ini saya gunakan untuk kuliah saya yang lainnya.

Dikarenakan buku ini masih dalam pengembangan, maka ada banyak bagian yang masih kosong atau meloncat. Mohon dimaafkan. Dalam penulisan selanjutnya, bagian-bagian tersebut akan diisi dan dilengkapi. Mohon masukkan jika hal ini terjadi.

Selamat menikmati versi 0.1.2 dari buku ini. Semoga bermanfaat.

Bandung, 2017 Budi Rahardjo, peneliti twitter: @rahard blog: http://rahard.wordpress.com

Penulisan referensi:

Budi Rahardjo, "Keamanan Informasi", PT Insan Infonesia, 2017.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

² Budi Rahardjo. *Keamanan Perangkat Lunak*. PT Insan Infonesia, 2016

Pendahuluan

Selalu ada aspek negatif dari sebuah pemanfaatan teknologi. Teknologi informasi tidak lepas dari masalah ini. Ada banyak manfaat dari teknologi informasi. Sayangnya salah satu aspek negatifnya adalah masalah keamanan (*security*).

Banyak tulisan dan buku yang mengajarkan cara merusak sebuah sistem informasi. Sementara itu buku yang mengajarkan cara pengamanannya agak minim. Demikian pula, ilmu untuk mengamankan sistem berbasis teknologi informasi juga harus lebih banyak diajarkan.

Keamanan Informasi

Ketika kita berbicara tentang security, yang muncul dalam benak kebanyakan orang adalah network security, keamanan jaringan. Padahal sesungguhnya yang ingin kita amankan adalah informasi. Bahwa informasi tersebut dikirimkan melalui jaringan adalah benar, tetapi tetap yang ingin kita amankan adalah informasinya. Nanti akan kita bahas lebih lanjut mengapa demikian. Maka judul dari buku ini adalah "Keamanan Informasi".

Beberapa Contoh Kasus

Untuk menunjukkan betapa banyaknya masalah keamanan informasi, berikut ini ada beberapa contoh kasus-kasus. Contoh ini bukanlah daftar yang komplit, melainkan hanya sampel dari kondisi yang ada. Bahkan, kemungkinan kondisi yang ada lebih parah daripada contoh-contoh ini.

Beberapa contoh kasus di luar negeri (diurutkan berdasarkan tahun kejadiannya) antara lain dapat dilihat dari daftar berikut.

 2006-2008. Tahun-tahun ini ditandai dengan mulai masuknya aspek manajemen ke dalam bidang keamanan informasi. Standar ISO (mulai dari 17799 dan kemudian menjadi seri 27000) mulai digunakan di berbagai instansi. Adanya bencana alam (tsunami, banjir, gempa, dan sejenisnya) membuat orang mulai memikirkan keberlangsungannya sistem IT. Perangkat IT semakin mengecil dalam ukuran sehingga mulai dibawa pengguna ke kantor. Misalnya pengguna membawa sendiri akses internet dengan menggunakan handphone 3G. Penggunaan kartu sebagai pengganti uang juga mulai populer. (Less cash society.)

- 2013. Virus masih tetap mendominasi masalah. Pencurian identitas (*identity theft*) mulai marak. Cyber war mulai menjadi bagian dari diskusi.
- 3. 2014. Heartbleed dan Bash Bug. (Yang ini lebih mudah dijelaskan dengan menggunakan gambar. Sayangnya saya tidak memiliki hak untuk memasukkan gambar tersebut ke dalam buku ini. Di kesempatan berikutnya akan saya usahakan memberi penjelasan dengan kata-kata dulu.)
- 4. 2014. Bursa Singapura terganggu karena masalah software. Perdagangan saham sempat terhenti.
- 5. 2016. Sebuah firma hukum di Panama bernama Mossack Fonseca (MF) mengalami kebocoran data. Data yang bocor berupa tabungan / investasi orang-orang terkenal dari beberapa negara (termasuk Indonesia). Kasus ini disebut *Panama Papers Breach*. Kebocoran ini diduga karena *Slider plugin* yang digunakan oleh situsnya (yang menggunakan Wordpress) sudah kadaluawarsa dan memiliki kerentanan. Hasil eksploitasi memperkenankan orang untuk mengambil berkas sesukanya.
- 6. 2016. CCTV digunakan sebagai bagian dari Distributed DoS attack. Ini menunjukkan bahwa perangkat yang menjadi bagian dari Internet of Things (IoT) dapat menjadi target serangan untuk kemudian dijadikan "anak buah" (zombie) untuk menyerang tempat lain. Kode sumber Mirai yang digunakan untuk melakukan penyerangan tersedia di internet. Jika kita tidak siap, ini dapat menjadi masalah yang berikutnya.
- 2016. Serangan DDoS terhadap berbagai DNS (Domain Name System) servers. Serangan menggunakan bantuan botnet sehingga menghabiskan bandiwdth jaringan dalam orde Gbps.

Selain contoh-contoh di atas, tentunya masih banyak kasus-kasus lain. Ada yang menganalogikan ini sebagai puncak dari *iceberg*. Di bawah laut lebih banyak lagi masalah yang tidak terlihat.

Beberapa contoh kasus yang terkait dengan Indonesia dapat dilihat dari daftar berikut.

- 1. 1999. Nama domain Timor Timur (.TP) diacak-acak. Diduga pelakunya adalah pemerintah Indonesia. Investigasi lebih lanjut menunjukkan bahwa ini tidak dilakukan oleh pemerintah Indonesia tetapi oleh seseorang (atau sekelompok) yang berada di Amerika Serikat.
- 2. 2011. Perusahaan Research in Motion (RIM) yang memproduksi Blackberry dipaksa untuk memiliki server di Indonesia. Alasan utama adalah agar dapat dilakukan lawful interception, yaitu penyadapan secara legal untuk kasus-kasus tertentu. Pihak RIM keberatan. Tidak ada server RIM di Indonesia.
- 3. 2015. Serangan man-in-the-browser (MITB) dilakukan terhadap berbagai layanan internet banking di Indonesia sehingga mengakibatkan hilangnya uang nasabah³
- 4. 2016. Aplikasi Pokemon Go mulai muncul dan ramai digunakan. Aplikasi ini menggunakan lokasi pengguna sebagai bagian dari permainannya, yaitu untuk menampilkan monster Pokemon sesuai dengan lokasi. Selain itu, foto dari lingkungan sekitarnya dapat juga kita ambil dan kita bagikan (share) dengan orang lain melalui media sosial. Aplikasi ini dilarang digunakan di lingkungan milter dan pemerintahan karena dikhawatirkan dapat membocorkan data rahasia. (Sebetulnya ada banyak aplikasi lain yang juga menggunakan data lokasi seperti Waze dan Google Maps, tetapi ini tidak "terlihat". Bahkan lebih berbahaya lagi adalah penggunaan layanan email gratisan untuk akun resmi pemerintahan atau instansi lain di Indonesia.)
- 5. 2016. Berbagai market place (seperti Tokopedia, Bukalapak, dll.) dan aplikasi handphone (seperti Go-Jek) diserang oleh orang yang mencoba melakukan password cracking. Asumsinya adalah seseorang akan menggunakan userid (alamat email) dan password yang sama untuk situs-situs tersebut. Identitas yang bocor di sebuah layanan (web site, application) dicoba digunakan di tempat lain.
- 6. 2016. Topik pembentukan "Badan Cyber Nasional (BCN)" mulai hangat dibicarakan.
- 7. 2017. Seorang (beberapa?) mahasiswa di sebuah perguruan tinggi di Indonesia meminta bantuan cracker untuk mengubah nilainya di sistem informasi kampusnya.

Saat ini semakin banyak lagi masalah keamanan yang ditemui. Hal ini disebabkan semakin banyak pemanfaatan teknologi informasi dan jaringan internet. Selain itu teknik untuk menemukan lubang

³ http://regional.kompas.com/read/ 2015/08/11/12185971/ Kronologi. Hilangnya. Uang. Nasabah. Bank. Mandiri. Versi. Korban

keamanan juga semakin canggih sehingga lebih banyak ditemukan kelemahan-kelemahan tersebut.

Sebuah survey yang dilakukan oleh *Information Week* di Amerika Serikat (tahun?) menunjukkan bahwa hanya 22 persen manager yang menganggap keamanan sistem informasi sebagai hal yang penting. Bagaimana meyakinkan mereka untuk melakukan investasi di pengamanan?

Rendahnya kesadaran atas masalah keamanan (lack of security awareness) merupakan salah satu kunci utama munculnya masalah keamanan. Para praktisi juga masih menjalankan kebiasaan buruk, seperti misalnya berbagi password admin.

Masalah keamanan informasi yang biasanya berupada data teknis harus diterjemahkan ke angka finansial agar dapat dimengerti oleh pihak pimpinan. Sebagai contoh, di Inggris ada survey mengenai berapa biaya yang dikeluarkan perusahaan jika sistem mereka tidak dapat diakses (down).

Security Life Cycle

Banyak orang yang beranggapan bahwa masalah keamanan informasi dapat dipecahkan dengan membeli produk keamanan, misalnya firewall, anti-virus, dan seterusnya. Kemanan informasi sebetulnya berupa sebuah siklus sebagaimana ditampilkan pada Gambar 1.

Sesuatu yang akan kita amankan disebut dengan "aset". Untuk itu, langkah pertaman dalam pengamanan adalah menentukan aset yang ingin dilindungi. Apa saja yang dianggap sebagai aset harus ditentukan bersama dengan pemilik dari sistem (aplikasi, data, dsb.) sebab mereka yang mengetahui mana aset dan mana yang bukan aset. Proses ini disebut assesment dan dapat dilakukan dengan melalui training atau awareness terhadap pihak-pihak terkait. Seringkali pemilik aplikasi memahami mana asetnya tetapi pihak operasional (orang-orang IT yang diberi tugas untuk mengamankan sistem) tidak tahu.

Setelah mengetahui aset yang ingin diamankan, aset tersebut harus kita beri harga (value). Pengamanan nantinya akan disesuai dengan dengan nilai dari aset tersebut. Akan sulit kita melakukan investasi pengamanan yang biasanya lebih mahal dari nilai asetnya. Sebagai contoh, jika kita memiliki sebuah komputer yang harganya Rp. 5.000.000,- maka akan sulit untuk menerima biaya pengamanan yang harganya Rp. 100.000.000,- (lebih mahal). Biaya pengamanan harus lebih murah daripada nilai asetnya. Jika biaya pengamanan lebih mahal, mungkin lebih baik membeli barang sejenis saja sebagai duplikat.

Untuk hal-hal yang terkait dengan teknologi informasi, pendaf-

Figure 1: Security Life Cycle

taran aset-aset ini tidak mudah karena ada hal-hal yang tidak terlihat secara kasat mata. Aset ini dapat kita bagi menjadi tiga (3) jenis; hardware, software, dan data. Mari kita mulai mencoba mendata.

Aset yang berbentuk perangkat keras (hardware) agak "mudah" didata karena terlihat oleh mata, tetapi ada beberapa hal yang membuatnya menjadi susah. Salah satunya adalah nilai dari aset tersebut. Harga komputer cenderung jatuh dengan cepat. Berapa depresiasi dari sebuah server? Contoh-contoh aset perangkat keras antara lain komputer, router, perangkat jaringan, disk, dan seterusnya. Apakah notebook termasuk aset atau barang habis? Bagaimana dengan USB flashdisk? Apakah itu termasuk aset juga?

Beberapa kejadian terkait dengan kesulitan mendata perangkat keras antara lain tidak diketahuinya pemilik dari perangkat tersebut. Database perangkat keras sering tidak tersedia. Sebagai contoh, sering kali tidak diketahui harddisk dan lokasi server yang menggunakan disk tersebut.

Jika pendataan perangkat keras sudah susah, maka pendataan perangkat lunak lebih susah lagi. Masalahnya, perangkat lunak tidak terlihat secara kasat mata sehingga pendataannya harus melalui pemilik layanan / pemilik aplikasi. Sebagai contoh, sebuah layanan online memiliki aplikasi di server web dan juga database di server database. Aplikasi-aplikasi tersebut berbentuk beberapa perangkat

lunak yang tentunya memiliki harga.

Penentuan harga (nilai) dari perangkat lunak cukup rumit. Untuk aplikasi yang dibeli, dapat digunakan harga pembelian tersebut. Bagaimana menentukan harga aplikasi yang dikembangkan sendiri? Ada yang menggunakan jumlah waktu pengembang (dalam man days) yang kemudian dikalikan dengan honor (gaji) orang tersebut. Itulah harga dari aplikasi tersebut. Lantas bagaimana dengan produk free software atau (sebagian dari) open source yang kebanyakan dapat diperoleh secara gratis? Bagaimana menentukan harga mereka? Ini masih menjadi pertanyaan. Hal lain yang menyulitkan adalah berapa depresiasi dari perangkat lunak?

Bagian selanjutnya dari aset teknologi informasi adalah data. Jika pendaftaran aset hardware dan software sudah sukar, pendaftaran data lebih sukar lagi. Data apa saja yang dimiliki oleh sistem? Pada umumnya data apa saja yang tersedia tidak terdaftar. Masing-masing aplikasi hanya memiliki data tersendiri.

Penentuan harga dari data lebih sukar lagi. Sebagai contoh, berapa harga data transkrip mahasiswa? Bagi mahasiswa, data tersebut sangat berharga sehingga harus dilindungi. Bagi orang lain, data tersebut mungkin tidak ada nilainya. Maukah Anda membeli data transkrip mahasiswa ITB seharga Rp. 30.000.000,-? Saya yakin tidak ada yang mau. Bagaimana jika Rp. 3.000.000,- saja? Mungkin masih tidak. Bagaimana jika Rp. 3.000,-? Mungkin mau. Apakah nilai dari data transkrip tersebut hanya tiga ribu rupiah? Jika iya, bagaimana nilai perlindungan yang akan kita berikan?

Setelah mengetahui aset yang akan dilindungi, langkah pertama yang dilakukan adalah melakukan desain pengamanan. Hal ini dilakukan dengan mengembangkan kebijakan dan prosedur (policies and procedures). Banyak yang melupakan langkah ini dan langsung melakukan implementasi, tetapi tanpa PnP ini akan sulit. Sebagai contoh, siapa yang boleh melakukan akses kepada data transkrip tersebut? Ini dituangkan dalam kebijakan. Tanpa kebijakan ini, perangkat pengamanan yang ada (authorization dan access control) akan sulit diterapkan. Rules apa yang akan dipakai? Banyak kejadian sistem pengamanan diterapkan dengan salah karena tidak memiliki desain yang benar.

Desain pengamanan ini kemudian diterapkan secara teknis melalui perangkat pengamanan (security devices). Penerapan ini dapat meminta bantuan vendor.

Meskipun sudah diterapkan pengamanan, insiden keamanan akan tetap dapat terjadi. Ketika insiden ini terjadi, maka harus dilakukan investigasi terlebih dahulu. Apakah insiden yang terjadi tersebut benar-benar insiden ataukah kejadian biasa saja? Jika memang itu adalah insiden, maka akan diproses lebih lanjut sesuai dengan kebijakan dan prosedur yang ada.

Ini kemudian menjadi siklus; security life cycle. Banyak orang yang masih menganggap security adalah sebuah produk sehingga mereka lebih fokus kepada pembelian produk pengamanan tertentu tanpa memperhatikan faktor lain (misalnya aset mana yang akan dilindungi). Ini seperti mengatasi sakit kepala dengan menggunakan obat penghilang rasa sakit tanpa perlu mencari tahu apa sumber permasalahan sesungguhnya.

Prinsip-prinsip Keamanan Informasi

Ada beberapa prinsip utama dalam keamanan informasi. Bab ini akan membahas prinsip-prinsip tersebut secara singkat. Hal-hal yang lebih rinci dan teknis, misalnya bagaimana mengimplementasikan aspek keamanan, akan dibahas pada bagian terpisah.

Aspek Keamanan

Ketika kita berbicara tentang keamanan informasi, maka yang kita bicarakan adalah tiga hal; confidentiality, integrity, dan availability. Ketiganya sering disebut dengan istilah CIA, yang merupakan gabungan huruf depan dari kata-kata tersebut. Selain ketiga hal tersebut, masih ada aspek keamanan lainnya.

Ketika kita berbicara tentang keamanan sebuah sistem - jaringan, aplikasi, atau apa pun - yang kita lakukan adalah mengevaluasi aspek C, I, dan A dari sistem tersebut. Prioritas dari ketiga aspek tersebut berbeda-beda untuk jenis sistem dan organisasi yang menggunakannya. Ada sistem yang aspek *integrity* lebih penting daripada kerahasiaannya (*confidentiality*). Untuk itu, pahami ketiga aspek ini. Ini adalah prinsip utama dari keamanan.

Confidentiality

Confidentiality atau kerahasiaan adalah aspek yang biasa dipahami tentang keamanan. Aspek confidentiality menyatakan bahwa data hanya dapat diakses atau dilihat oleh orang yang berhak. Biasanya aspek ini yang paling mudah dipahami oleh orang. Jika terkait dengan data pribadi, aspek ini juga dikenal dengan istilah *Privacy*.

Serangan terhadap aspek confidentiality dapat berupa penyadapan data (melalui jaringan), memasang *keylogger* untuk menyadapapa-apa yang diketikkan di keyboard, dan pencurian fisik mesin / disk yang digunakan untuk menyimpan data.

Perlindungan terhadap aspek *confidentiality* dapat dilakukan dengan menggunakan kriptografi, dan membatasi akses (segmentasi jaringan)

Integrity

Aspek integrity mengatakan bahwa data tidak boleh berubah tanpa ijin dari yang berhak. Sebagai contoh, jika kita memiliki sebuah pesan atau data transaksi di bawah ini (transfer dari rekening 12345 ke rekening 6789 dengan nilai transaksi teretentu), maka data transaksi tersebut tidak dapat diubah seenaknya.

TRANSFER 12345 KE 6789 100000

Serangan terhadap aspek integrity dapat dilakukan oleh man-inthe-middle, yaitu menangkap data di tengah jalan kemudian mengubahnya dan meneruskannya ke tujuan. Data yang sampai di tujuan (misal aplikasi di web server) tidak tahu bahwa data sudah diubah di tengah jalan.

Perlindungan untuk aspek integrity dapat dilakukan dengan menggunakan message authentication code.

Availability

Ketergantungan kepada sistem yang berbasis teknologi informasi menyebabkan sistem (beserta datanya) harus dapat diakses ketika dibutuhkan. Jika sistem tidak tersedia, not available, maka dapat terjadi masalah yang menimbulkan kerugian finansial atau bahkan nyawa. Itulah sebabnya aspek availability menjadi bagian dari keamanan.

Serangan terhadap aspek availability dilakukan dengan tujuan untuk meniadakan layanan atau membuat layanan menjadi sangat lambat sehingga sama dengan tidak berfungsi. Serangannya disebut Denial of Service (DOS).

Perlindungan terhadap aspek availability dapat dilakukan dengan menyediakan redundansi. Sebagai contoh, jaringan komputer dapat menggunakan layanan dari dua penyedia jasa yang berbeda. Jika salah satu penyedia jasa jaringan mendapat serangan (atau rusak), maka masih ada satu jalur lagi yang dapat digunakan.

Aspek Keamanan Lainnya

Selain ketiga aspek utama (CIA), yang sudah dibahas pada bagian sebelumnya, ada aspek keamanan lainnya. Yang ini sifatnya tambahan, meskipun kadang menjadi bagian yang cukup signifikan juga.

Non-repudiation

Aspek non-repudiation atau nir-sangkal digunakan untuk membuat para pelaku tidak dapat menyangkal telah melakukan sesuatu. Aspek ini biasanya kental di dalam sistem yang terkait dengan transaksi. Contoh penggunaannya adalah dalam sistem lelang elektronik.

Implementasi dari aspek ini dapat dilakukan dengan menggunakan *message authentication code* (dengan menggunakan fungsi *hash*) dan pencatatan (logging).

Authentication

Proses Authentication digunakan untuk membuktikan klaim bahwa seseorang itu adalah benar-benar yang diklaim (bagaimana membuktikan bahwa saya adalah pengguna dengan nama "budi").

Proses pembuktian seseorang ini lebih mudah dilakukan di dunia nyata dibandingkan dengan di dunia maya (siber, cyber). Di dunia nyata akan sulit bagi saya untuk membuat klaim palsu bahwa saya seorang wanita. (Saya memiliki kumis dan jenggot.) Namun di dunia maya, saya dapat membuat klaim bahwa saya seorang wanita dengan hanya memilih nama wanita dan memasang foto wanita.

Proses authentication ini dapat dilakukan dengan bantuan hal lain, yang sering disebut "faktor". (Sehingga ada istilah two-factor authentication.) Faktor-faktur tersebut adalah sebagai berikut.

- 1. Sesuatu yang diketahui. Contoh dari faktor ini adalah nama, userid, password, dan PIN.
- 2. Sesuatu yang dimiliki. Contoh dari faktor ini adalah kartu, kunci, dan token.
- 3. Sesuatu yang menjadi bagian dari fisik pengguna. Contoh dari faktor ini adalah sidik jari, retina mata, dan biometric lainnya.

Selain faktor-faktor di atas, ada juga yang menambahkan faktor lain seperti berikut ini:

- 1. orang tersebut berada di tempat tertentu. (Proximity);
- 2. authentication dengan menggunakan bantuan pihak lain, pihak ketiga yang terpercaya (trusted third party).

Authorization

Pada aspek sebelumnya, authentication, kita dapat mengetahui siapa pengguna dan roles dari pengguna tersebut. Selanjutnya hak akses akan diberikan kepada pengguna sesuai dengan roles yang dimilikinya. Inilah aspek authorization. Perlu diingatkan kembali bahwa aspek authorization ini membutuhkan authorization, sehingga dia letaknya setelah authorization.

Kriptografi

Ada dua cara untuk mengamankan data, yaitu menyembunyikan data atau menyandikan data. Cara pertama menggunakan steganografi, sementara cara kedua menggunakan kriptografi.

[Masih harus ditulis.]

PGP / Gnu Privacy Guard

Pretty Good Privacy (PGP) pada awalnya adalah aplikasi yang dapat digunakan pengguna untuk menggunakan kriptografi di berbagai aplikasi dengan lebih mudah. Pengembangan selanjutnya PGP menjadi bagian dari *public key infrastructure*.

Sejarah

[... more to be written ...]

Gnu Privacy Guard (GPG) merupakan implementasi dari PGP yang bersifat terbuka. (Catatan: Singkatan dari GPG ini merupakan guyonan terhadap PGP.) Bab ini akan membahas lebih banyak tentang GGP, meskipun konsep yang sama dapat juga diterapkan pada PGP jika Anda menggunakan produk PGP yang komersial.

Dalam buku ini, kita akan menggunakan GPG versi *command line interface*, yaitu dengan mengetikkan perintah "gpg" di program terminal atau CMD.exe. Ada banyak program *GUI* dari GPG ini. Silahkan gunakan manual terkait dengan program-program tersebut. Prinsipnya masih tetap sama.

Menggunakan Gnu Privacy Guard, gpg

Awal dari penggunakan GPG adalah membuat pasangan kunci publik dan privat. Hal ini dapat dilakukan dengan menggunakan perintah berikut.

gpg --key-gen

Perintah di atas akan menanyakan beberapa hal, seperti jenis algoritma yang digunakan (pilih RSA dan RSA), panjang kuncinya (pilih 2048), dan alamat email yang akan digunakan untuk kunci tersebut. Dalam contoh buku ini saya akan menggunakan alamat email "rahard2017@gmail.com". Gunakan alamat email Anda sebagai penggantinya/

Setelah proses key generation selesai, kunci publik dapat diekspor dengan menggunakan perintah berikut. Gantikan "rahard2017@gmail.com" dengan alamat email Anda.

```
gpg --export --armor rahard2017@gmail.com > kunci-public.asc
```

Akan dihasilkan berkas "kunci-public.asc". Tanpa perintah redirect output yang menggunakan ">" itu, hasilnya hanya akan ditampilkan di layar saja. Tentu saja Anda dapat menggunakan nama berkas lainnya.

Untuk melihat informasi mengenai kunci Anda, dapat digunakan perintah berikut:

```
gpg --fingerprint rahard2017
pub
      2048R/EB6CEB46 2017-02-14 [expires: 2017-03-07]
      Key fingerprint = 810B 2149 3366 E699 F95E 9E49 07E1 BDC5 EB6C EB46
          [ultimate] Budi Rahardjo <rahard2017@gmail.com>
uid
sub
     2048R/C2E83C60 2017-02-14 [expires: 2017-03-07]
```

Perhatikan bahwa kunci publik yang ini memiliki ID "EB6CEB46". ID ini dapat digunakan untuk bertukar kunci, atau untuk melakukan proses-proses lainnya. Sebagai contoh, kita dapat mengirimkan kunci ini ke server agar dapat dilihat atau dicari oleh orang lain. Keyserver yang akan kita gunakan dalam contoh ini adalah pgp.mit.edu.

```
gpg --keyserver pgp.mit.edu --send-keys EB6CEB46
```

Bibliography

- [1] David Kahn. Codebreakers. Scribner, 1967.
- [2] Budi Rahardjo. *Keamanan Perangkat Lunak*. PT Insan Infonesia, 2016.