AB INBEV: OPTIMAL PRODUCT RECOMMENDATION RANKING FRAMEWORK

Team Supermodels: Iris Brook, Emily Hahn, Mackenzie Lees, Pranav Girish

Mentor: Heather Fraser

AB InBev Team: Aditya Nanda, Rohan Jain, Subhro Mukherjee

- 1. Our Journey
- 2. Final Model
- 3. Results
- 4. Discussion

OUR JOURNEY

THE PROBLEM:

Task: Improve personalized and dynamic recommendations on BEES e-commerce platform using app behavior data

Method: Create a ranking algorithm for recommendations and assess precision

TIMELINE

- Use Python and SQL to integrate and analyze data
- Convert data types
- Remove duplicates and N/A values

Data Cleaning

Classification Models

- Curate unranked list of product recommendations
- Rank by probability from model
- 30 day moving window

- Learning to Rank technology
- LightFM and LightGBM
- Use Logistic Regression to calculate scores

Ranking Algorithms

FINAL MODEL

Data Selection and Feature Engineering

Counts of interaction data and significant features (ex. product information)

Counts based on a 30-day rolling window

Split data using time-split

Resampling using the Synthetic Minority Over-sampling Technique (SMOTE)

Ranking Using LightGBM

Logistic Regression for scores

Optimizes Normalized Discounted Cumulative Gain with LambdaRank

RESULTS

UPSELL

- Mean Average Precision (MAP):
 - 8% point increase at rank 1
 - Current model: 14%
 - 5% point increase at rank 1-3
 - Current model: 7%

SUGGESTED ORDER

- 1% point increase in overall precision
 - Current model: 30-40%
- 2% point increase in rank 1-3 precision
 - Current model: 35-45%

DISCUSSION

DISCUSSION

Interaction Data

Customer interactions are correlated to purchase behaviors

Future Models

Integrate live interaction data into existing models for better predictions

A/B Testing

Understand impact of improved recommendations on sales and future customer interactions

THANK YOU! QUESTIONS?

Mackenzie Lees

mlees28@mit.edu

Emily Hahn

ech232@mit.edu

Pranav Girish

pranav7@mit.edu

Iris Brook

irisb211@mit.edu

