Quantizing neural networks

Optimizing AI - Session 2

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Quantization,
- 3 Pruning,
- 4 Factorization,
- Distillation,
- Operators and Architectures,
- **7** Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- 2 Quantization,
- Pruning,
- 4 Factorization,
- Distillation,
- Operators and Architectures,
- 7 Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

Today's Summary

- Objectives
- 2 Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization

- 3 Quantization : Neural Networks
 - Quantization Post Training
 - Quantization Aware Training

Plan

- Objectives
- Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization

- 3 Quantization : Neural Networks
 - Quantization Post Training
 - Quantization Aware Training

- Reduce model size
 - $lue{}$ Fewer bits ightarrow Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

Table: Performance on the ImageNet dataset and complexities

Network	Alexnet	Inceptionv1	ResNet50	ResNet152
Top-5 error	16.4%	6.7%	5.25%	4.49%
Num. Weights	61M	7M	25.5M	63.75M
Num. MAC	724M	1.43G	3.9G	11.31G

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

Figure 7.1: The area and energy cost for additions and multiplications at different precision, and memory accesses in a 45 nm process. The area and energy scale different for multiplication and addition. The energy consumption of data movement (red) is significantly higher than arithmetic operations (blue). (Figure adapted from [121].)

From: Sze, Vivienne, et al. "Efficient processing of deep neural networks." Synthesis Lectures on Computer Architecture

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

Plan

- Objectives
- 2 Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization

- **3** Quantization: Neural Networks
 - Quantization Post Training
 - Quantization Aware Training

- To add to FP numbers:
 - lacksquare Shift M according to E (int shift n_E bits)
 - Add M (int add n_M bits)
 - Normalize (0 < M < 1)
- To multiply to FP numbers:
 - Multiply M (int mult n_M bits)
 - Add E (int mult n_E bits)
 - Normalize (0 < M < 1)

Integers, fixed point

- Fixed point (-i)
- Short range
- Simple computation

Quantizing

In practice, data/weights are often random and may have high variation ranges (ex: Gaussian distribution). Quantizing with full precision requires too many bits \rightarrow need approximations to reduce the number of bits:

Remove l the least significant bits → residual errors, requires round operations to improve the performance.

$$X_{\mathsf{round}} = 2^l \mathsf{round}(2^{-l} \times X)$$

Remove q **the most significant bits** \rightarrow risk of overflow, requires **saturation** mechanism.

$$X_{saturate} = \min(X, 2^{n-q} - 1)$$
 (for n bits unsigned)

Exemple: $\mathbf{D} = \{-47, 64, 3, -26\}$ requires 9 bits for full precision. But the value 64 is closed to the value 63.

Therefore $\hat{\mathbf{D}} = \{-47, 63, 3, -26\}$ can be used instead \rightarrow 1 MSB removed + saturation at $2^6 - 1$, slight loss of precision.

Estimating the impact of quantization

Impact on weights

Signal-to-Quantization Noise Ratio metric.

 W_k : weight number index k in the set.

 \hat{W}_k : quantized weight index k in the set.

L: number of element in the set.

$$\mathrm{SQNR}(\hat{W}) = \frac{\sum_{k=0}^{L-1} |W_k|^2}{\sum_{k=0}^{L-1} \underbrace{|W_k - \hat{W}_k|^2}_{\text{quantization error}}}$$

Generally expressed in dB: $SQNR_{dB} = 10log_{10}(SQNR)$

Impact on network performance

Directly measure the accuracy of the network. For instance: Top-1 or Top-5 errors.

Quantizing trained networks: example

Fully connected network with 1 hidden layer, trained on MNIST. 6 bits weights (hidden layer) \rightarrow SQNR optimal at $\times 2^{-7}$ (see figure).

Plan

- Objectives
- 2 Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization

- 3 Quantization : Neural Networks
 - Quantization Post Training
 - Quantization Aware Training

Quantization Post Training: Weights

Start by considering weights with a few number of bits n. Find the point position (2^{-v}) which maximize the SQNR for each trained weight sets $\hat{W}(v)$:

$$\hat{W}_k(v) = 2^v \underbrace{\max(\min(\mathsf{round}(2^{-v} \times W_k), 2^{n-1} - 1), -2^{n-1})}_{\mathsf{saturation}}$$

Quantize \rightarrow measure accuracy \rightarrow increase the number of bits and repeat.

Different weight sets can be considered

- Whole network,
- per layer,
- per neuron.

Finer sets segmentation \rightarrow better accuracy.

Depends on how weights are stored in hardware (parallel accesses).

Quantization Post Training: Activation

Start by considering activations with a few number of bits n. Find the point position (2^{-v}) which maximize the SQNR for each activation sample set $\hat{W}(v)$:

$$\hat{W}_k(v) = 2^v \underbrace{\max(\min(\mathsf{round}(2^{-v} \times W_k), 2^{n-1} - 1), -2^{n-1})}_{\mathsf{saturation}}$$

Quantize \rightarrow measure accuracy \rightarrow increase the number of bits and repeat.

Also different strategies

- Whole network,
- per layer,
- per neuron.

Finer sets segmentation \rightarrow better accuracy. Depends on how activations are stored (parallel accesses).

Quantization Aware Training

- Quantize Forward
- Quantize Backward & Forward
- Weights
- Weights & Activations

Quantization Aware Techniques yield way better accuracy

Algorithm 1 SGD training with BinaryConnect. C is the cost function for minibatch and the functions binarize(w) and clip(w) specify how to binarize and clip weights. L is the number of layers.

Require: a minibatch of (inputs, targets), previous parameters w_{t-1} (weights) and b_{t-1} (biases), and learning rate η .

Ensure: updated parameters w_t and b_t .

1. Forward propagation:

$$w_b \leftarrow \text{binarize}(w_{t-1})$$

For k = 1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

2. Backward propagation:

Initialize output layer's activations gradient $\frac{\partial C}{\partial a_L}$

For k=L to 2, compute $\frac{\partial C}{\partial a_{k-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and w_b

3. Parameter update:

Compute $\frac{\partial C}{\partial w_b}$ and $\frac{\partial C}{db_{t-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and a_{k-1}

$$w_t \leftarrow \text{clip}(w_{t-1} - \eta \frac{\partial C}{\partial w_b})$$

$$b_t \leftarrow b_{t-1} - \eta \frac{\partial C}{\partial b_{t-1}}$$

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David.

"Binaryconnect: Training deep neural networks with binary weights during propagations." Advances in neural information processing systems. 2015.

https://arxiv.org/pdf/1511.00363.pdf

1. Forward propagation:

 $w_b \leftarrow \text{binarize}(w_{t-1})$ For k=1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

1. Forward propagation:

$$w_b \leftarrow \text{binarize}(w_{t-1})$$

1. Forward propagation:

 $w_b \leftarrow \text{binarize}(w_{t-1})$ For k=1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

2. Backward propagation:

Initialize output layer's activations gradient $\frac{\partial C}{\partial a_L}$ For k=L to 2, compute $\frac{\partial C}{\partial a_{k-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and w_b

3. Parameter update:

Compute $\frac{\partial C}{\partial w_b}$ and $\frac{\partial C}{db_{t-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and a_{k-1} $w_t \leftarrow \text{clip}(w_{t-1} - \eta \frac{\partial C}{\partial w_b})$ $b_t \leftarrow b_{t-1} - \eta \frac{\partial C}{\partial b_{t-1}}$

Binarization: Stochastic vs Deterministic

Deterministic

$$w_b = \begin{cases} +1, & \text{if } w \ge 0 \\ -1, & \text{otherwise} \end{cases}$$

Stochastic

$$w_b = \begin{cases} +1, & \text{with probability } p = \sigma(w) \\ -1, & \text{with probability } 1 - p \end{cases}$$

avec

$$\sigma(x) = \operatorname{clip}(\frac{x+1}{2},0,1) = \max(0,\min(1,\frac{x+1}{2}))$$

Binarization: Stochastic vs Deterministic

Deterministic

$$w_b = \begin{cases} +1, & \text{if } w \ge 0 \\ -1, & \text{otherwise} \end{cases}$$

Stochastic

$$w_b = \begin{cases} +1, & \text{with probability } p = \sigma(w) \\ -1, & \text{with probability } 1-p \end{cases}$$

avec

$$\sigma(x)=\operatorname{clip}(\frac{x+1}{2},0,1)=\max(0,\min(1,\frac{x+1}{2}))$$

Quantization while Learning - Binary Weighted network (XNOR-NET)

Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." European conference on computer vision. Springer, Cham, 2016. https://arxiv.org/pdf/1603.05279.pdf

Quantization while Learning - Binary Weighted network (XNOR-NET)

	Net work Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
Standard Convolution	Real-Value Inputs 0.11 - 0.21 0.34	+,-,×	1x	1x	%56.7
Binary Weight	Real-Value Inputs 0.11 - 0.21 0.34 0.25 0.61 0.52 Binary Weights 1 - 1 1 4 1 1	+,-	~32x	~2x	%56.8
BinaryWeight Binary Input (XNOR-Net)	Binary Inputs 1 -11 Binary Weights 1 -11 2 1 1	XNOR , bitcount	~32x	~58x	%44.2

Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." European conference on computer vision. Springer, Cham, 2016. https://arxiv.org/pdf/1603.05279.pdf