# Electrical Stimulation Electrodes

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

#### **Lecture - Outline**

- Electrical Stimulation
  - Excitable Tissue
  - Action Potentials
- Application of Artificial Stimulation
  - Cardiac Pacemakers
  - Functional Electrical/ Neuromusc Stim
  - Deep Brain Stimulation
- Constant Voltage and Constant Current Stim
- Electrochemical Reactions
  - Polarization
  - Charge Balancing

# Nerve Signalling – information transmission



- Nerve signals propagate at about 100 m/s
- Information is frequency encoded by nervous system
- End-organs decode, i.e., demodulate the frequency encoded signals
- For example, skeletal muscle fibres act as a demodulator

# Nerve Action Potential is a Propagating Wave

- Nerve action potential travels from point of initiation
- It travels at a speed determined by the characteristics of the nerve membrane
  - Passive electrical properties
  - Insulation due to myelin
  - Ion channel dynamics
- Its propagation is like a travelling wave
- Similar to peristalsis in the gastrointestinal system where contraction moves as a wave

## Initiating Action Potential by Elect Stim



### Cardiac Pacemaker



# Deep Brain Stimulation



#### Spinal Injury, Muscle Paralysis & Artificial Stimulation

#### Natural / Healthy



a.) Normal Physiology

#### Pathology/Artificial Stimulation



b.) Pathology and artificial compensation

# Electrical Stimulation with Surface Electrodes





## Foot Drop Correction (Naveen G, MS-Thesis)





# Constant Voltage and Constant Current Stimulation

- Nerve stimulation threshold
  - Current along the nerve
- Constant voltage
  - Voltage drop across electrode alters effective current
- Constant current
  - Stimulus voltage adjusted to compensate for electrode impedance

### Stimulation model



#### Charge accumulation in electrode-tissue interface

 Stimulus current charges capacitor



#### **Stimulation Electrode Reactions**

- Steel electrodes
  - Fe → Fe<sup>++</sup>+2e
- Platinum electrodes



### **Charge Balancing**



### **End of Lecture**