Tutorial 8

SC-220 Groups and Linear Algebra Autumn 2019 (Linear transformations)

(1) Which of the following from \mathbb{R}^2 to \mathbb{R}^2 is a linear transformation

(a)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

(b)
$$T(x_1, x_2) = (x_2, x_1)$$

(c)
$$T(x_1, x_2) = (x_1^2, x_2)$$

$$(d)T(x_1, x_2) = (\sin(x_1), x_2)$$

(e)
$$T(x_1, x_2) = (x_1 - x_1, 0)$$

- (2) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ -x \end{pmatrix}$ for all $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$
 - (a) Show that T is surjective.
 - (b) Find dim (null (T)).
 - (c) Find the matrix for T with respect to the canonical basis of \mathbb{R}^2 .
- (3) Let T be a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 defined by $T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 x_1)$
 - (a) What is the matrix of T relative to the standard ordered basis in \mathbb{R}^3 and \mathbb{R}^2 respectively.
 - (b) What is the matrix of T relative to the ordered basis in $B = \{u_1, u_2, u_3\}$ in \mathbb{R}^3 and $B' = \{v_1, v_2\}$ in \mathbb{R}^3 where $u_1 = (1, 0, -1), u_2 = (1, 1, 1), u_3 = (1, 0, 0)$ and $v_1 = (0, 1), v_2 = (1, 0)$.
- (4) Let T be a linear operator on \mathbb{R}^3 the matrix representation in the standard ordered basis is $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}$. Find the basis for the range of T and the null space of T.
- (5) Let T be the linear operator on the space of 2×2 complex matrices such that $T(A) = A^t$. Find a matrix representation of T with respect the basis E_{ij} where E_{ij} are matrices that have the $(i, j)^{th}$ element 1 and 0 elsewhere.

1