# Sorting Algorithms

Part 2



- Review of sorting & desirable properties for sorting algorithms
- Introduction to simple sorting algorithms
  - Bubble Sort
  - Selection Sort
  - Insertion Sort





 Sorting – arrange a collection of items according to some pre-defined ordering rules

- Desirable properties for sorting algorithms
  - Stability preserve order of already sorted input
  - Good run time efficiency (in the best, average or worst case)
  - In-place sorting if memory is a concern
  - Suitability the properties of the sorting algorithm are well-matched to the class of input instances which are expected i.e. consider specific strengths and weaknesses when choosing a sorting algorithm

## Overview of sorting algorithms

| Algorithm      | Best case | Worst case | Average case | Space Complexity | Stable? |
|----------------|-----------|------------|--------------|------------------|---------|
| Bubble Sort    | n         | $n^2$      | $n^2$        | 1                | Yes     |
| Selection Sort | $n^2$     | $n^2$      | $n^2$        | 1                | No      |
| Insertion Sort | n         | $n^2$      | $n^2$        | 1                | Yes     |
| Merge Sort     | n log n   | n log n    | n log n      | O(n)             | Yes     |
| Quicksort      | n log n   | $n^2$      | n log n      | n (worst case)   | No*     |
| Heapsort       | n log n   | n log n    | n log n      | 1                | No      |
| Counting Sort  | n + k     | n + k      | n + k        | n + k            | Yes     |
| Bucket Sort    | n + k     | $n^2$      | n + k        | $n \times k$     | Yes     |
| Timsort        | n         | n log n    | n log n      | n                | Yes     |
| Introsort      | n log n   | n log n    | n log n      | log n            | No      |

<sup>\*</sup>the standard Quicksort algorithm is unstable, although stable variations do exist



- A comparison sort is a type of sorting algorithm which uses comparison operations only to determine which of two elements should appear first in a sorted list.
- A sorting algorithm is called comparison-based if the only way to gain information about the total order is by comparing a pair of elements at a time via the order ≤.
- The simple sorting algorithms which we will discuss in this lecture (Bubble Sort, Insertion Sort, and Selection Sort) all fall into this category.
- A fundamental result in algorithm analysis is that no algorithm that sorts by comparing elements can do better than  $n\log n$  performance in the average or worst cases.
- Non-comparison sorting algorithms (e.g. Bucket Sort, Counting Sort, Radix Sort) can have better worst-case times.



- Named for the way larger values in a list "bubble up" to the end as sorting takes place
- Bubble Sort was first analysed as early as 1956 (time complexity is n in best case, and  $n^2$  in worst and average cases)
- Comparison-based
- In-place sorting algorithm (i.e. uses a constant amount of additional working space in addition to the memory required for the input)
- Simple to understand and implement, but it is slow and impractical for most problems even when compared to Insertion Sort
- Can be practical in some cases on data which is nearly sorted



- Compare each element (except the last one) with its neighbour to the right
  - If they are out of order, swap them
  - This puts the largest element at the very end
  - The last element is now in the correct and final place
- Compare each element (except the last two) with its neighbour to the right
  - If they are out of order, swap them
  - This puts the second largest element next to last
  - The last two elements are now in their correct and final places
- Compare each element (except the last three) with its neighbour to the right
  - ...
- Continue as above until there are no unsorted elements on the left



### Bubble Sort example





```
public static void bubbleSort(int[] a) {
  int outer, inner;
  for (outer = a.length - 1; outer > 0; outer--) { // counting down
    for (inner = 0; inner < outer; inner++) { // bubbling up</pre>
      if (a[inner] > a[inner + 1]) { // if out of order...
        int temp = a[inner]; // ...then swap
        a[inner] = a[inner + 1];
        a[inner + 1] = temp;
```



### Bubble Sort example

#### outer=4



#### inner=1



#### i<u>nne</u>r=2

| 5 2 7 | 3 | 1 |
|-------|---|---|
|-------|---|---|

#### inner=3





#### outer=3



#### inner=1



#### inner=2





#### outer=2



#### inner=1





#### outer=1





(done)

### Analysing Bubble Sort (worst case)

```
for (outer = a.length - 1; outer > 0; outer--) {
  for (inner = 0; inner < outer; inner++) {
    if (a[inner] > a[inner + 1]) {
        //swap code omitted
    }
}
```

- In the worst case, the outer loop executes n-1 times (say n times)
- On average, inner loop executes about n/2 times for each outer loop
- In the inner loop, comparison and swap operations take constant time k

• Result is 
$$n \times \frac{n}{2} + k = \frac{n^2}{2} + k \approx O(n^2)$$

### Selection Sort

- Comparison-based
- In-place
- Unstable
- Simple to implement
- Time complexity is  $n^2$  in best, worst and average cases
- Generally gives better performance than Bubble Sort, but still impractical for real world tasks with a significant input size
- In every iteration of Selection Sort, the minimum element (when using ascending order) from the unsorted subarray on the right is picked and moved to the sorted subarray on the left



- Search elements 0 through n-1 and select the smallest
  - Swap it with the element in location 0
- Search elements 1 through n-1 and select the smallest
  - Swap it with the element in location 1
- Search elements 2 through n-1 and select the smallest
  - Swap it with the element in location 2
- Search elements 3 through n-1 and select the smallest
  - Swap it with the element in location 3
- Continue in this fashion until there's nothing left to search

### Selection Sort example



The element at index 4 is the smallest, so swap with index 0

The element at index 2 is the smallest, so swap with index 1

The element at index 3 is the smallest, so swap with index 2

The element at index 3 is the smallest, so swap with index 3. Selection Sort might swap an array element with itself; this is harmless, and not worth checking for

### Selection Sort in Java

```
public static void selectionSort(int[] a) {
  int outer=0, inner=0, min=0;
  for (outer = 0; outer < a.length - 1; outer++) { // outer counts up</pre>
    min = outer;
    for (inner = outer + 1; inner < a.length; inner++) {</pre>
      if (a[inner] < a[min]) { // find index of smallest value</pre>
        min = inner;
    // swap a[min] with a[outer]
    int temp = a[outer];
    a[outer] = a[min];
    a[min] = temp;
```

# **Analysing Selection Sort**



outer=0, min=4

outer=1, min=2

outer=2, min=3

outer=3, min=3

(done)

- The outer loop runs n-1 times
- The inner loop executes about n/2 times on average (from n to 2 times)
- Result is  $(n-1) \times \frac{n}{2} \approx n^2$  in best, worst and average cases



- Similar to the method usually used by card players to sort cards in their hand.
- Insertion Sort is easy to implement, stable, in-place, and works well on small lists and lists that are close to sorted.
- On data sets which are already substantially sorted it runs in n+d time, where d is the number of inversions.
- However, it is very inefficient for large random lists.
- Insertion Sort is iterative and works by splitting a list of size n into a head ("sorted") and tail ("unsorted") sublist.



- Start from the left of the array, and set the "key" as the element at index 1. Move any elements to the left which are > the "key" right by one position, and insert the "key".
- Set the "key" as the element at index 2. Move any elements to the left which are > the key right by one position and insert the key.
- Set the "key" as the element at index 3. Move any elements to the left which are > the key right by one position and insert the key.
- ...
- Set the "key" as the element at index n-1. Move any elements to the left which are > the key right by one position and insert the key.
- The array is now sorted

## Insertion Sort example



a[1]=5 is the key; 7>5 so move 7 right by one position, and insert 5 at index 0

a[2]=2 is the key; 7>2 and 5>2 so move both 7 and 5 right by one position, and insert 2 at index 0

a[3]=3 is the key; 7>3 and 5>3 so move both 7 and 5 right by one position, and insert 3 at index 1

a[4]=1 is the key; 7>1, 5>1, 3>1 and 2>1 so move 7, 5, 3 and 2 right by one position, and insert 1 at index 0

(done)

### Insertion Sort in Java

```
public static void insertionSort(int a[]) {
  for (int i=1; i<a.length; i++) {</pre>
    int key = a[i]; // value to be inserted
    int j = i-1;
    //move all elements > key right one position
    while (j>=0 && a[j] > key) {
      a[j+1] = a[j];
      j = j-1;
    a[j+1] = key; //insert key in its new position
```

# **Analysing Insertion Sort**

- The total number of data comparisons made by Insertion Sort is the number of inversions d plus at most n-1
- A sorted list has no inversions therefore Insertion Sort runs in linear  $\Omega(n)$  time in the best case (when the input is already sorted)
- On average, a list of size n has  $\frac{(n-1)\times n}{4}$  inversions, and the number of comparisons is  $n-1+\frac{(n-1)\times n}{4}\approx n^2$
- In the worst case, a list of size n has  $\frac{(n-1)\times n}{2}$  inversions (reverse sorted input), and the number of comparisons is  $n-1+\frac{(n-1)\times n}{2}\approx O(n^2)$



- The main advantage that Insertion Sort has over Selection Sort is that the inner loop only iterates as long as is necessary to find the insertion point.
- In the worst case, it will iterate over the entire sorted part. In this case, the number of iterations is the same as for Selection Sort; hence, the worst-case running time is  $O(n^2)$  the same as Selection Sort and Bubble Sort.
- At the other extreme, however, if the array is already sorted, the inner loop won't need to iterate at all. In this case, the running time is  $\Omega(n)$ , which is the same as the running time of Bubble Sort on an array which is already sorted.
- Bubble Sort, Selection Sort and Insertion Sort are all in-place sorting algorithms.
- Bubble Sort and Insertion Sort are stable, whereas Selection Sort is unstable.



| Criteria                                      | Sorting algorithm |
|-----------------------------------------------|-------------------|
| Small number of items to be sorted            | Insertion Sort    |
| Items are mostly sorted already               | Insertion Sort    |
| Concerned about worst-case scenarios          | Heap Sort         |
| Interested in a good average-case behaviour   | Quicksort         |
| Items are drawn from a uniform dense universe | Bucket Sort       |
| Desire to write as little code as possible    | Insertion Sort    |
| Stable sorting required                       | Merge Sort        |

Reference: Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2<sup>nd</sup> Edition. O' Reilly.



### Recap

- Bubble Sort, Selection Sort, and Insertion Sort are all  $\mathcal{O}(n^2)$  in the worst case
- It is possible to do much better than this with even with comparisonbased sorts, as we will see in the next lecture
- From this lecture on simple  $O(n^2)$  sorting algorithms:
  - Bubble Sort is extremely slow, and is of little practical use
  - Selection Sort is generally better than Bubble Sort
  - Selection Sort and Insertion Sort are "good enough" for small input instances
  - Insertion Sort is usually the fastest of the three. In fact, for small n (say 5 to 10 elements), Insertion Sort is usually faster than more complex algorithms