COMP 3311 DATABASE MANAGEMENT SYSTEMS

LECTURE 22 EXERCISES
CONCURRENCY CONTROL:
TIMESTAMP-BASED PROTOCOLS

Recall that this schedule is <u>not serializable</u> because there is a cycle T_1 , T_2 , T_3 , T_1 . Therefore, the schedule will fail under any protocol that aims at conflict serializability.

Precedence Graph

EXERCISE I (CONTD)

Use the single-version, timestamp-ordering protocol, to complete the following non-serializable schedule assuming the timestamps 1, 2, and 3 for transactions T_1 , T_2 , and T_3 , respectively. Show where the protocol will fail. Assume initial R/W timestamp of all items is 0.

Read If $TS(T_i) < WTS(Q)$ rollback If $TS(T_i) \ge WTS(Q)$ RTS(Q) = max($TS(T_i)$, RTS(Q)) Write If $TS(T_i) < RTS(Q)$ rollback If $TS(T_i) < WTS(Q)$ rollback

```
Otherwise WTS(Q) = TS(T_i)
RTS(X)=2
                 WTS(X)=2
                                      RTS(Y)=3
                                                        WTS(Y)=3
                                                                             RTS(Z)=0
                                                                                               WTS(Z)=3
                                                T_2 [TS=2]
               T₁ [TS=1]
                                                                                  T_3 [TS=3]
       read(X) \sqrt{TS(T_1)}=1 \ge WTS(X)=0; set RTS(X)=1
                                        read(Y) \sqrt{TS(T_2)}=2 \ge WTS(Y)=0; set RTS(Y)=2
                                         write(Y) \sqrt{TS(7_2)}=2 \ge RTS(Y)=2 \& \ge WTS(Y)=0; set WTS(Y)=2
                                                                          write(\mathbb{Z}) \checkmark TS(\mathcal{T}_3)=3 \geq RTS(\mathbb{Z})=0 & \geq WTS(\mathbb{Z})=0; set WTS(\mathbb{Z})=3
       write(X) \sqrt{TS(T_1)}=1 \ge RTS(X)=1 \& \ge WTS(X)=0; set WTS(X)=1
                                        read(X) \sqrt{TS(T_2)}=2 \ge WTS(X)=1; set RTS(X)=2
                                         write(X) \sqrt{TS(T_2)}=2 \ge RTS(X)=2 \& \ge WTS(X)=1; set WTS(X)=2
                                                                          read(Y) \sqrt{TS(T_3)=3} \ge WTS(Y)=2; set RTS(Y)=3
                                                                           write(Y) \sqrt{TS(T_3)=3} \ge RTS(Y)=3 \& \ge WTS(Y)=2; set WTS(Y)=3
       write(\mathbb{Z}) TS(\mathcal{T}_1)=1 < WTS(\mathbb{Z})=3 \Longrightarrow rollback
```

EXERCISE I (CONTD)

Use the single-version, timestamp-ordering protocol, to complete the following non-serializable schedule assuming the timestamps 1, 2, and 3 for transactions T_1 , T_2 , and T_3 , respectively. Show where the protocol will fail. Assume initial R/W timestamp of all items is 0.

Read If $TS(T_i) < WTS(Q)$ rollback If $TS(T_i) \ge WTS(Q)$ RTS(Q) = max(TS(T_i), RTS(Q)) Write If $TS(T_i) < RTS(Q)$ rollback If $TS(T_i) < WTS(Q)$ ignore Otherwise $WTS(Q) = TS(T_i)$

```
RTS(X)=2
                 WTS(X)=2
                                       RTS(Y)=3
                                                         WTS(Y)=3
                                                                               RTS(Z)=0
                                                                                                 WTS(Z)=3
                                                 T_2 [TS=2]
               T₁ [TS=1]
                                                                                    T_3 [TS=3]
       read(X) \sqrt{TS(T_1)}=1 \ge WTS(X)=0; set RTS(X)=1
                                         read(Y) \sqrt{TS(T_2)}=2 \ge WTS(Y)=0; set RTS(Y)=2
                                         write(Y) \sqrt{TS(7_2)}=2 \ge RTS(Y)=2 \& \ge WTS(Y)=0; set WTS(Y)=2
                                                                           write(\mathbb{Z}) \checkmark TS(\mathcal{T}_3)=3 \geq RTS(\mathbb{Z})=0 & \geq WTS(\mathbb{Z})=0; set WTS(\mathbb{Z})=3
       write(X) \sqrt{TS(T_1)}=1 \ge RTS(X)=1 \& \ge WTS(X)=0; set WTS(X)=1
                                         read(X) \sqrt{TS(T_2)}=2 \ge WTS(X)=1; set RTS(X)=2
                                         write(X) \sqrt{TS(T_2)}=2 \ge RTS(X)=2 \& \ge WTS(X)=1; set WTS(X)=2
                                                                            read(Y) \sqrt{TS(T_3)=3} \ge WTS(Y)=2; set RTS(Y)=3
                                                                            write(Y) \sqrt{TS(T_3)=3} \ge RTS(Y)=3 \& \ge WTS(Y)=2; set WTS(Y)=3
       write(\mathbb{Z}) TS(\mathcal{T}_1)=1 < WTS(\mathbb{Z})=3 \Longrightarrow ignore
```

Use the multi-version, timestamp-ordering protocol to complete the schedule of Exercise 1 assuming the timestamps 1, 2, and 3 for transactions T_1 , T_2 , and T_3 , respectively. Assume initial R/W timestamp of T_1 , T_2 , and T_3 , respectively. Assume initial R/W timestamp of T_1 , T_2 , and T_3 , respectively. Assume initial R/W timestamp of T_3 , T_4 , and T_5 are used to label versions.

EXERCISE 2 (CONTD)

Read

Reads always succeed

Multi-version timestamp-ordering protocol assuming the timestamps 2, 1

and 3 for transactions T_1 , T_2 and T_3 respectively.

The following schedule is conflict serializable.

- (a) What is the equivalent serial schedule?
- (b) Assign appropriate timestamps to the transactions T_1 , T_2 , T_3 and T_4 so that the schedule is conflict serializable according to the single version, timestamp-based protocol. Assume initial R/W timestamp of all items is 0.

<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₃	T_4
read(X)			
write(X)			
	read(X)		
		read(Y)	
		write(Y)	
	write(X)		
			read(Y)
write(Y)			

EXERCISE 3 (CONTD)

(a) What is the equivalent serial schedule?

Precedence Graph

The equivalent serial schedule is T_3 , T_4 , T_1 , T_2

(b) Assign appropriate timestamps to the transactions T_1 , T_2 , T_3 and T_4 so that the schedule is conflict serializable according to the single version, timestamp-based protocol. Assume initial R/W timestamp of all items is 0.

EXERCISE 3 (CONTD)

We note that, for this schedule, any other order of timestamps will fail according to the single version timestamp-ordering protocol as shown below for the order T_1 , T_2 , T_3 , T_4 .

```
Read
If TS(T_i) < WTS(Q) rollback
If TS(T_i) \ge WTS(Q)
RTS(Q) = max(TS(T_i), RTS(Q))

Write
If TS(T_i) < RTS(Q) rollback
If TS(T_i) < WTS(Q) ignore
Otherwise WTS(Q) = TS(T_i)
```

<i>T</i> ₁ [TS=1]	<i>T</i> ₂ [TS=2]	<i>T</i> ₃ [TS=3]	<i>T</i> ₄ [TS=4]	
read(X) $\sqrt{TS(T_1)}=1 \ge WT$	S(X)=0; set RTS(X)=1			
write(X) \checkmark TS(T_1)=1 \ge RT	$S(X)=1 \& \ge WTS(X)=0$; set $WTS(X)=0$	()=1		
	read(X) $\sqrt{TS(T_2)}=2 \ge WT$	S(X)=1; set RTS(X)=2		
		read(Y) $\sqrt{TS(T_3)}=3 \ge WT$	S(Y)=0; set RTS(Y)=3	
		write(Y) \checkmark TS(7_3)=3 \ge RT	$S(Y)=3 \& \ge WTS(Y)=0$; set WTS(Y) =3
	write(X) \checkmark TS(T_2)=2 \ge RT	$S(X)=2 \& \ge WTS(X)=1$; set $WTS(X)=1$)=2	
			read(Y) $\sqrt{TS(T_4)}=4 \ge W$	TS(Y)=3; set RTS(Y)=4
write(\mathbf{Y}) TS(\mathcal{T}_1)=1 < RTS(\mathbf{Y})=4 <mark>⇒ rollback</mark>			

Use the multi version, timestamp-ordering protocol, to complete the conflict serializable schedule of **Exercise 3** assuming the timestamps 1, 2, 3, and 4 for transactions T_1 , T_2 , T_3 and T_4 , respectively. Show where the protocol will fail. Assume initial R/W timestamp of all items is 0.

```
Read Reads always succeed set RTS(Q) = max(TS(T_i), RTS(Q_k))

Write If TS(T_i) < RTS(Q) rollback If TS(T_i) = WTS(Q) overwrite contents

If TS(T_i) > WTS(Q) create new version set R/WTS(Q)=TS(T_i)
```

<i>T</i> ₁ [TS=1]	T ₂ [TS=2]	<i>T</i> ₃ [TS=3]	T ₄ [TS=4]	
read(X_0) \checkmark set RTS(X_0)=1				
write(X_1) \checkmark TS(T_1)=1 \ge RTS	$S(X_0)=1 \& > WTS(X_0)=0$; create X_1 ; see	t R/WTS(X ₁)=1		
	read(X_1) \checkmark set RTS(X_1)=2			
		read(Y_0) \checkmark set RTS(Y_0)=3		
		write(Y_1) \checkmark TS(T_3)=3 \ge RTS	$(\mathbf{Y}_0)=3 \& > WTS(\mathbf{Y}_0)=0$; create \mathbf{Y}_1 ;	set R/WTS(Y ₁)=3
	write(X_2) \checkmark TS(T_2)=2 \ge RTS	$S(X_1)=2 \& > WTS(X_1)=1$; create X_2 ; s	et R/WTS(X ₂)=2	
			read(Y_1) \checkmark set RTS(Y_1)=4	
write(\mathbf{Y}) TS(\mathcal{T}_1)=1 < RTS(\mathbf{Y}_1):	-4 <mark>→ rollback</mark>			

Note that this is <u>not</u> a blind write since T_3 read Y_0 setting its RTS to 3 before writing Y_1 . Therefore, T_1 can no longer read Y_0 since its RTS is greater than that of T_1 (i.e., T_1 cannot find a version whose TS is less than or equal to its timestamp.