Product Quantization for Nearest Neighbor Search

Hervé Jégou, Matthijs Douze, Cordelia Schmid

Information Retrieval Course, A.Y. 2024/25 Student: Irene Testa

Outline

- Background
- Results Replication
- 3 Additional Experiments
- 4 Conclusion

Methodology Overview

Product Quantization (PQ)

- ▶ Goal: Compress the data and enable efficient Approximate Nearest Neighbor (ANN) search.
- ▶ Quantization process: Split each vector into m subvectors, cluster each using K-Means with k^* centroids, and replace each subvector with its closest centroid index.
- Distance Approximation:
 - Asymmetric Distance Computation (ADC): Compute squared Euclidean distances from each query subvector to all subspace centroids and store them in lookup tables. Approximate the distance to a database vector by summing the stored distances corresponding to its centroid indices.
 - Symmetric Distance Computation (SDC): Precompute a look-up table of squared distances between centroid pairs. During search, quantize query subvectors and approximate the distance to a database vector by summing the corresponding precomputed distances.

Product Quantization with Inverted File Index (IVF)

- ▶ Goal: Limit distance computation to a subset of the database and reduce quantization error.
- ▶ Indexing: Database vectors are clustered into buckets using K-Means with k' centroids. Differences between each item and its bucket centroid (residuals) are encoded with PQ and stored in posting lists.
- ▶ Non-exhaustive search: Identify the w nearest buckets and compute distances only between the guery residuals and items within those buckets.

Validation Experiments

Table 1: Summary of the datasets.

	Dimensions	Learning set size	Database set size	Queries set size
siftsmall	128	25 000	10 000	100
sift	128	100 000	1 000 000	10 000
gist	960	25 000	10 000	100
glove	300	25 000	10 000	100

Figure 1: True vs. estimated distances between a typical SIFT query and database vectors ($m=8, k^*=256$). Results from the original paper.

Table 2: Comparison with the fairs library on the siftsmall dataset ($m=8,\ k^*=256$).

	Reconstruction	Nearest	Average
	Error	Recall@10	Kendall- $ au$
faiss	0.0899	0.8700 0.8700	0.8734

Figure 2: True vs. estimated distances between a typical SIFT query and database vectors ($m=8,\ k^*=256$). Replicated results.

Key Experiments

Figure 3: Experiments from the original paper on the sift dataset.

Figure 4: Reproduced experiments on the siftsmall dataset.

Data Pre-processing

Figure 5: Effect of feature scaling on the siftsmall dataset.

Figure 6: Effect of a random orthogonal transformation on the glove dataset.

Dimensionality Reduction

Figure 7: Effect of PCA on the siftsmall dataset. 'Subspace Red.': Subvectors are reduced, centroids computed and stored in the reduced space. 'Centroids Red.': Centroids are computed in the reduced space and then reprojected to the original space. 'Full Vectors Red.': Entire vectors are reduced before PQ training.

Figure 8: Effect of whitening on the siftsmall dataset

Feature Partitioning

Figure 9: Effect of feature partitioning on the glove dataset.

Figure 10: Effect of feature partitioning on the gist dataset.

Sample Weighting

Background

Figure 11: Effect of sample weighting in centroid computation on the siftsmall dataset.

Centroid Shrinkage

Background

- ▶ Introduced in [1].
- Available in the scikit-learn implementation of NearestCentroid.
- ► Acts as **feature selection**: centroid features with little variation across centroids are set to zero.

Figure 12: Effect of centroid shrinkage on the siftsmall dataset.

Fuzzy Product Quantization

- ▶ Proposed in [2], leveraging Fuzzy C-Means clustering:
 - Lower reconstruction error.
 - Slower convergence and an extra hyperparameter to tune.
- ▶ Records the **top two** centroids with highest membership probabilities and their **ratio** $r = \frac{p_2}{p_1}$:
 - Requires 4× PQ storage: 2 bytes for the indices (np.int8) and 2 bytes for the probability ratio (np.float16).
- Estimates distance via a **weighted average** of the distances between the query (ADC) and the two centroids, using $p_1 = \frac{1}{1+r}$ and $p_2 = \frac{r}{1+r}$ as weights.
 - Higher recall.
 - Two extra multiplications and one addition per vector.

Table 3: Comparison of PQ methods.

Method	Fuzzifier	Reconstruction Error	Avg. # iterations	Compression Factor	Recall@1
PQ	_	0.157	73	128	0.30
FuzzyPQ	1.1	0.139	196	32	0.39
FuzzyPQ	1.2	0.150	177	32	0.32
FuzzyPQ	1.3	0.207	94	32	0.23

Figure 13: Search performance of FuzzyPQ on the siftsmall dataset with varying degree of fuzziness.

Coarse Clustering Algorithms

Figure 14: Comparison of K-Means variants as coarse clustering algorithms for building Inverted File Indexes: impact on search performance and time on the sift dataset.

Results Summary

Background

- ▶ We implemented Product Quantization (PQ) and validated it against the faiss library.
- ▶ We successfully **replicated** the results from the original paper.
- ▶ We explored alternative approaches, with promising results from:
 - Feature Scaling and Partitioning: Often improve search performance with relatively low computational cost.
 - Fuzzy PQ: Reduces quantization error and boosts performance, at the cost of higher storage and training time.
 - Bisecting K-Means for coarse clustering: drastically reduces training time without affecting performance.

GitHub repository: https://github.com/iretes/IR-proj

References

- [1] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, "Diagnosis of multiple cancer types by shrunken centroids of gene expression," *Proceedings of the National Academy of Sciences*, vol. 99, no. 10, pp. 6567–6572, 2002.
- [2] X. Ding, Q. Hou, and X. Liu, "An improved product quantization method applying fuzzy clustering," in 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), IEEE, 2022, pp. 924–928.
- [3] H. Jegou, M. Douze, and C. Schmid, "Product quantization for nearest neighbor search," *IEEE transactions on pattern analysis and machine intelligence*, vol. 33, no. 1, pp. 117–128, 2010.
- [4] Y. Matsui, Y. Uchida, H. Jégou, and S. Satoh, "A survey of product quantization," *ITE Transactions on Media Technology and Applications*, vol. 6, no. 1, pp. 2–10, 2018.

Thank you!