How is BERT surprised? Layerwise detection of linguistic anomalies

Bai Li, Zining Zhu, Guillaume Thomas, Yang Xu, Frank Rudzicz

Submitted to ACL 2021 (under review)

Syntactic and semantic anomalies

Syntactic: *The cat won't eating the food

Semantic: #The plane laughed at the runway

#Colorless green ideas sleep furiously
*Furiously sleep ideas green colorless
(Chomsky, 1957)

Research Question: Are LMs sensitive to different types of linguistic anomalies?

Motivation from N400 / P600

• Early work on event-related potentials found semantic anomalies trigger N400, while syntactic anomalies trigger P600.

• But follow-up experiments found it's not so simple.

Proposed Method: Gaussian Model

- Idea: Train a Gaussian model (one per layer) on BERT embeddings from in-domain text (BNC).
- Surprisal of new point = log likelihood according to this Gaussian distribution.

• Fun fact: if using Gaussian with full covariance matrix, equivalent to Mahalanobis distance.

High surprisals in upper layers

Evaluating Gaussian Model

- Use BLiMP for validation (67k grammaticality sentence pairs).
- Only takes 1k sentences for accuracy to plateau.
- RoBERTa is best performing model (0.83 accuracy on BLiMP).
- We also experimented with covariance matrix, GMM, 1-SVM.

Types of anomaly

- Morphosyntactic: error in inflected form of word ("the boy eat the sandwich")
- **Semantic**: violation of semantic restriction ("the **house** ate the sandwich")
- **Commonsense**: situation that's atypical in real world ("the customer served the waitress")

Data sources: BLiMP (3 tasks, template generated), psycholinguistic studies (9 tasks from 7 papers, written by researchers)

Example Sentences

Type	Task	Correct Example	Incorrect Example		
Morphosyntax	BLiMP (Subject-Verb)	These casseroles disgust Kayla.	These casseroles disgusts Kayla.		
	BLiMP (Det-Noun)	Craig explored that grocery store.	Craig explored that grocery stores.		
	Osterhout and Nicol (1999)	The cats won't eat the food that Mary gives them.	The cats won't eating the food that Mary gives them.		
Semantic	BLiMP (Animacy)	Amanda was respected by some waitresses.	Amanda was respected by some picture .		
	Pylkkänen and McElree (2007)	The pilot flew the airplane after the intense class.	The pilot amazed the airplane after the intense class.		
	Warren et al. (2015)	Corey's hamster explored a nearby backpack and filled it with sawdust.	Corey's hamster entertained a nearby backpack and filled it with sawdust.		
	Osterhout and Nicol (1999)	The cats won't eat the food that Mary gives them.	The cats won't bake the food that Mary gives them.		
	Osterhout and Mobley (1995)	The plane sailed through the air and landed on the runway.	The plane sailed through the air and laughed on the runway.		
Commonsense	Warren et al. (2015)	Corey's hamster explored a nearby backpack and filled it with sawdust.	Corey's hamster lifted a nearby backpack and filled it with sawdust.		
	Federmeier and Kutas (1999)	"Checkmate," Rosalie announced with glee. She was getting to be really good at chess .	"Checkmate," Rosalie announced with glee. She was getting to be really good at monopoly .		
	Chow et al. (2016)	The restaurant owner forgot which customer the waitress had served.	The restaurant owner forgot which waitress the customer had served.		
	Urbach and Kutas (2010)	Prosecutors accuse defendants of committing a crime.	Prosecutors accuse sheriffs of committing a crime.		

Surprisal Gap (RoBERTa)

Calculate difference in surprisals, scaled by standard deviation:

$$\begin{aligned} & \operatorname{surprisal} \operatorname{gap}_L(\mathcal{D}) = \\ & \frac{\mathbb{E}\{\operatorname{surprisal}_L(\boldsymbol{s}_i') - \operatorname{surprisal}_L(\boldsymbol{s}_i)\}_{i=1}^n}{\sigma\{\operatorname{surprisal}_L(\boldsymbol{s}_i') - \operatorname{surprisal}_L(\boldsymbol{s}_i)\}_{i=1}^n} \end{aligned}$$

Morphosyntactic anomalies: produce surprisals starting from layers 3-4.

Surprisal Gap (RoBERTa)

Calculate difference in surprisals, scaled by standard deviation:

$$\begin{aligned} & \operatorname{surprisal} \operatorname{gap}_L(\mathcal{D}) = \\ & \frac{\mathbb{E}\{\operatorname{surprisal}_L(\boldsymbol{s}_i') - \operatorname{surprisal}_L(\boldsymbol{s}_i)\}_{i=1}^n}{\sigma\{\operatorname{surprisal}_L(\boldsymbol{s}_i') - \operatorname{surprisal}_L(\boldsymbol{s}_i)\}_{i=1}^n} \end{aligned}$$

Semantic anomalies: low surprisals until upper layers (9 and above).

Surprisal Gap (RoBERTa)

Calculate difference in surprisals, scaled by standard deviation:

$$\begin{aligned} & \operatorname{surprisal} \operatorname{gap}_L(\mathcal{D}) = \\ & \frac{\mathbb{E}\{\operatorname{surprisal}_L(\boldsymbol{s}_i') - \operatorname{surprisal}_L(\boldsymbol{s}_i)\}_{i=1}^n}{\sigma\{\operatorname{surprisal}_L(\boldsymbol{s}_i') - \operatorname{surprisal}_L(\boldsymbol{s}_i)\}_{i=1}^n} \end{aligned}$$

Commonsense anomalies: no surprisals at any layer.

Comparing vs MLM

How does Gaussian anomaly model compare vs masked language model?

Type	Task	Size	RoBERTa	
туре	lask	Size	GM	MLM
	BLiMP (Subject-Verb)	2000	0.971	0.957
Morphosyntax	BLiMP (Det-Noun)	2000	0.983	0.999
	Osterhout and Nicol (1999)	90	1.000	1.000
	BLiMP (Animacy)	2000	0.767	0.754
	Pylkkänen and McElree (2007)	70	0.932	0.955
Semantic	Warren et al. (2015)	30	0.944	1.000
	Osterhout and Nicol (1999)	90	0.841	1.000
	Osterhout and Mobley (1995)	90	0.906	0.981
	Warren et al. (2015)	30	0.750	0.450
Commonsense	Federmeier and Kutas (1999)	34	0.583	0.875
Commonsense	Chow et al. (2016)	44	0.432	n/a
	Urbach and Kutas (2010)	120	0.485	0.939

- MLM usually better than GM
- Bigger difference in commonsense tasks, less in morphosyntactic tasks
- Conclusion: RoBERTa uses different mechanisms to solve MLM, depending on the type of anomaly.

Conclusions

Proposed a new method to measure surprisals at intermediate layers of language models.

Validated Gaussian model on BLiMP, training requires only a small amount of in-domain data.

RoBERTa produces different patterns depending on type of linguistic anomaly (morphosyntactic vs semantic vs commonsense).