Cálculo Integral: Repaso

Jonatan Ahumada Fernández

<2019-02-23 Sat>

Contents

1	Sustitución				
	1.1	Guías para sustitución simple	1		
	1.2	Guías para sustitución por partes	2		
2	Trig	onometría	2		
	2.1	Integrales fundamentales	2		
	2.2	Identidad fundamental (potencias impares)	2		
	2.3	Ángulo Medio (potencias pares)	3		
		2.3.1 Variación	3		
	2.4	Eliminación de raíces	3		
		2.4.1 Con ángulo medio	3		
		2.4.2 Con variación	3		
	2.5	Integrales capciosas	3		
	2.6	Sustitución trigonomética	4		
	2.7	Fracciones Parciales	4		
	2.8	Volúmenes	4		

1 Sustitución

1.1 Sustitución simple

- 1. Identifica si u y du aparecen en la misma expresión (salvo una diferencia de constantes).
- 2. Sustituye lo más complejo. Después integrar y derivar sus exponentes será más fácil.
- 3. Identifica qué identidad trigonométrica usarás.

1.2 Sustitución por partes

- 1. Se usa cuando las funciones implicadas no tienen relación en términios de sus derivadas (no hay u y du)
- 2. Ten claro el acrónimo ALPES antes de seleccionar u y dv.
- 3. Como aquí toca derivar, no olvides regla de la cadena.
- 4. Aquí se tienen en cuenta las potencias al reemplazar.

2 Trigonometría

2.1 Integrales fundamentales

$$\int \cos(mx)dx = \frac{1}{m}\sin(mx)$$
$$\int \sin(mx)dx = -\frac{1}{m}\cos(mx)$$

2.2 Identidad fundamental (potencias impares)

$$\sin^2(x) + \cos^2(x) = 1$$

Consistirá en expresar una expresión trigonometrica impar en términos de una par. Luego, se reemplazará una función trigonometrica al cuadrado por su identidad.

Luego, de sustituir, u y du, se resolverá un binomio cuadrado.

2.3 Ángulo Medio (potencias pares)

Tener cuidado con los signos.

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

El coeficiente de x se duplica.

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

2.3.1 Variación

$$2\cos^2(x) = 1 + \cos(2x)$$

Es lo mismo, solamente pasa el dos al otro lado. Como es el proceso inverso, el coeficiente de x se divide y crece la potencia.

2.4 Eliminación de raíces

2.4.1 Con ángulo medio

$$\int \sqrt{\frac{1 - \cos(2x)}{2}} dx = \int \sqrt{\sin^2(x)} dx$$

2.4.2 Con variación

$$\int \sqrt{1 - \cos(2x)} dx = \int \sqrt{2\cos^2(x)} dx$$

2.5 Integrales capciosas

Integral Expresión
$$\int \ln(x) dx \qquad \frac{1}{x}$$

$$\int e^{cx} dx \qquad \frac{e^{cx}}{c}$$

$$\int \tan(x) dx \qquad \sec^2(x)$$

$$\int \sec(x) dx \qquad \sec(x) \tan(x)$$

2.6 Sustitución trigonomética

Caso Expresión
$$\int \sqrt{a^2 - x^2} dx \quad x = a \sin \theta$$

$$\int \sqrt{a^2 + x^2} dx \quad x = a \tan \theta$$

$$\int \sqrt{x^2 - a^2} dx \quad x = a \sec \theta$$

Identidades específicas	
$\sin(2\theta)$	$2\sin\theta\cos\theta$
$\cos(2\theta)$	$\cos^2 \theta - \sin^2 \theta$

2.7 Fracciones Parciales

2.8 Volúmenes

Caso	Fórmula	Explicación
Secciones transverales	$\int_{a}^{b} Base \times Alturadx$	
Cilindros	$\int_a^b \pi R^2 dx$	radio: $f(x)$, $Area_{circulo} = \pi r^2$
Arandelas	$\int_a^b \pi (R^2 - r^2) dx$	Restas al solido otro sólido
Casquetes cilíndricos	$\int_{a}^{b} 2\pi x f(x) dx$	Se integra en un intervalo opuesto al eje respecto al cu