共六个大题,基本都在老师考前画的重点内,不过还是有些出乎意料的···可能因为往年开卷的原因,感觉复习资料特别少,简单整理一下供大家参考。

一、概念题

- 1、机器学习过程,每个环节主要操作
- 2、集成学习的概念, BOOSTING 和 BAGGING 思想
- 3、交叉验证法
- 4、特征提取和特征选择的区别
- 5、隐马尔科夫模型定义形式,以及解决的三个问题?
- 6、贝叶斯决策过程

= svm

- 1、svm 概念,其目的,什么是最优化分类面
- 2、最优拉格朗日形式
- 3、核函数为什么要引入函数
- 4、验证核函数,基本如下,只是 x,y 换成了 x1,x2,映射函数是(x^2 x 1/2) T 我们现在考虑核函数 $K(v_1,v_2)=< v_1,v_2>^2$,即"内积平方"。 这里面 $v_1=(x_1,y_1),v_2=(x_2,y_2)$ 是二维空间中的两个点。

这个核函数对应着一个二维空间到三维空间的映射,它的表达式是:

$$\Phi(v) = v = \begin{bmatrix} x \\ y \end{bmatrix} \Phi(v) = \begin{bmatrix} x^2 \\ \sqrt{2}xy \\ y^2 \end{bmatrix}$$
可以验证,

$$egin{align} egin{aligned} egin{$$

http://blog.csdn.net/Weyoung_

- 1. 描述 bp 算法
- 2. 前向传播表达式 a1
- 3. 输出层输出形式

(嗯,又一个原封不动的)

四、深度学习

- 1. 卷积层作用
- 2. 激活函数以及形式

3. 输出

给出上图左 1, 左二, 问你卷积后输出几个, 大小为多少, (输出即右一图, 这页 ppt 我根本就没瞅啊, 现在就是后悔!!!)

五、决策树

- 1. 决策树算法思想是什么,两个分类
- 2. 给出一个表格
- 1) 写出预处理数据集
- 2) 决策树缺失项 以及依据
- 3) 决策树分类规则
- 4) 给数据判断结果

给出的表格、决策树基本如下:

NO.	属性		类别			
	天气	气温	湿度	风		
1	晴	热	高	无风	N	
2	晴	热	高	有风	N	
3	多云	热	高	无风	P	<i>⇒</i> /+
4	雨	适中	高	无风	P	实体
5	雨	冷	正常	无风	P	(样本)
6	雨	冷	正常	有风	N	概念的正
7	多云	冷	正常	有风	P	一、 ^{观心的丘} —例和反例
8	晴	适中	高	无风	N	
9	晴	冷	正常	无风	P	训练集
10	雨	适中	正常	无风	P	
11	晴	适中	正常	有风	P	
12	多云	适中	高	有风	P	
13	多云	热	正常	无风	P	
14	雨	适中	高	有风	N	

六、DBSCAN 算法应用计算(给距离矩阵求聚类结果)

下面给出一个样本事务数据库(见左表),对它实施DBSCAN算法。 根据所给的数据通过对其进行DBSCAN算法,以下为算法的步骤(设n=12,用户输入 ε =1,MinPts=4)

样本事务数据库

件								
序号	属性1	属性 2						
1	1	0						
2	4	0						
3	0	1						
4	1	1						
5	2	1						
6	3	1						
7	4	1						
8	5	1						
9	0	2						
10	1	2						
11	4	2						
12	1	3						

距离矩阵

	1	2	3	4	5	6	7	8	9	10	11	12
1	0											
2	3	0										
3	1.4	4. 1	0									
4	1	3. 2	1	0								
5	1.4	2.2	2	1	0							
6	2. 2	1.4	3	2	1	0						
7	3. 2	1	4	3	2	1	0					
8	4. 1	1.4	5	4	3	2	1	0				
9	2. 2	4.5	1	1.4	2. 2	3. 2	4. 1	5. 1	0			
10	2	3.6	1.4	1	1.4	2. 2	3. 2	4. 1	1	0		
11	3.6	2	4.1	3.2	2. 2	1.4	1	1. 4	4	3	0	
12	3	4. 2	2.2	2	2. 2	2.8	3.6	4. 5	1.4	1	3. 2	0

聚出的类为{1, 3, 4, 5, 9, 10, 12}, {2, 6, 7, 8, 11}。

步骤	选择的点	在ε中 点的 个数	通过计算可达点而找到的新 簇
1	1	2	无
2	2	2	无
3	3	3	无
4	4	5	簇C ₁ : {1, 3, 4, 5, 9, 10, 12}
5	5	3	已在一个簇C ₁ 中
6	6	3	无
7	7	5	簇C ₂ : {2, 6, 7, 8, 11}
8	8	2	已在一个簇C₂中
9	9	3	已在一个簇C₁中
10	10	4	已在一个簇 C_1 中,
11	11	2	已在一个簇C ₂ 中
12	12	2	已在一个簇C ₁ 中

第1步,在数据库中选择一点1,由于在以它为圆心的,以1为半 径的圆内包含2个点(小于4),因此它不是核心点,选择下 一个点。

一个点。 第2步,在数据库中选择一点2,由于在以它为圆心的,以1为半 径的圆内包含2个点,因此它不是核心点,选择下一个点。 第3步,在数据库中选择一点3,由于在以它为圆心的,以1为半 径的圆内包含3个点,因此它不是核心点,选择下一个点。 第4步,在数据库中选择一点4,由于在以它为圆心的,以1为半 径的圆内包含5个点,因此它是核心点,寻找从它出发可达 的点(直接可达4个: 1,3,5,10,间接可达3个),聚出的新 类{1,3,4,5,9,10,12},选择下一个点。 第5步,在数据库中选择一点5,已经在簇1中,选择下一个点。

第6步,在数据库中选择一点6,由于在以它为圆心的,以1为半径的圆内包含3个点,因此它不是核心点,选择下一个点。第7步,在数据库中选择一点7,由于在以它为圆心的,以1为半

径的圆内包含5个点,因此它是核心点,寻找从它出发可达的点,聚出的新类{2,6,7,8,11},选择下一个点。第8步,在数据库中选择一点8,已经在簇2中,选择下一个点。第9步,在数据库中选择一点9,已经在簇1中,选择下一个点。第10步,在数据库中选择一点10,已经在簇1中,选择下一个点。第11步,在数据库中选择一点11,已经在簇2中,选择下一个点。第12步,选择12点,已经在簇1中,由于这已经是最后一点所有

点都已处理,程序终止。

最后,感谢我晨哥的试题回忆服务。整理不易,欢迎打赏(手动狗头) https://blog.csdn.net/weixin_42039835/article/details/103478413