

Lecture 18: Neural Networks and Backpropagation

Pattern Recognition and Computer Vision

Guanbin Li,

School of Computer Science and Engineering, Sun Yat-Sen University

Neural networks: the original linear classifier

(**Before**) Linear score function:
$$f=Wx$$

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Neural networks: 2 layers

(**Before**) Linear score function:
$$f = Wx$$

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

After applying feature transform, points can be separated by linear classifier

Neural networks: also called fully connected network

(**Before**) Linear score function:
$$f = Wx$$
(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

Neural networks: 3 layers

(**Before**) Linear score function:
$$f=Wx$$
 (**Now**) 2-layer Neural Network $f=W_2\max(0,W_1x)$ or 3-layer Neural Network $f=W_3\max(0,W_2\max(0,W_1x))$

 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$

Neural networks: hierarchical computation

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$f = W_2 \max(0, W_1 x)$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

Learn 100 templates instead of 10.

Share templates between classes

Neural networks: why is max operator important?

(**Before**) Linear score function:
$$f = Wx$$
 (**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function.**

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(**Before**) Linear score function:
$$f = Wx$$
 (**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function.**

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Architectures

A example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

x = np.random.randn(3, 1) # random input vector of three numbers (3x1)

h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)

h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)

out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Full code

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
 1
    from numpy.random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
7
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
9
      y_pred = h.dot(w2)
10
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad_h = grad_y_pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad_w1
19
      w2 -= 1e-4 * grad w2
20
```

Full code

```
import numpy as np
    from numpy.random import randn
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
      y_pred = h.dot(w2)
10
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad_h = grad_y_pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 = 1e-4 * grad_w1
19
      w2 -= 1e-4 * grad w2
20
```

Define the network

Full code

```
import numpy as np
    from numpy.random import randn
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 7
 8
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
      y_pred = h.dot(w2)
10
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad_h = grad_y_pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad_w1
19
      w2 -= 1e-4 * grad w2
20
```

Define the network

Forward pass

Full code

```
import numpy as np
    from numpy random import randn
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
      y_pred = h.dot(w2)
10
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
14
      grad_y_pred = 2.0 * (y_pred - y)
15
      grad_w2 = h.T.dot(grad_y_pred)
      grad_h = grad_y_pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad_w1
19
      w2 -= 1e-4 * grad w2
20
```

Define the network

Forward pass

Calculate the analytical gradients

Full code

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
                                                                 Define the network
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 7
    for t in range(2000):
9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
                                                                 Forward pass
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
                                                                 Calculate the analytical gradients
      grad_h = grad_y_pred.dot(w2.T)
16
      grad w1 = x.T.dot(grad h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad_w1
                                                                 Gradient descent
20
      w2 -= 1e-4 * grad w2
```

Setting the number of layers and their sizes

Biological Neurons

Biological Neurons

Biological Neurons

Biological Neurons

May 12, 2023

Biological Neurons

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

Biological Neurons

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Biological Neurons

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x) \text{Nonlinear score function}$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions}$$

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2)$$
 • Total loss: data loss + regularization

Problem: How to compute gradients?

$$s=f(x;W_1,W_2)=W_2\max(0,W_1x)$$
 Nonlinear score function $L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1)$ SVM Loss on predictions $W_i=\sum_{j\neq y_i}W_j^2$ Regularization

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization}$$
 If we can compute $\frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}$ then we can learn W_1 and W_2

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \sum_{j \neq y_i} \max(0, W_{j,:} \cdot x + W_{y_i,:} \cdot x + 1)$$

$$re-de$$

$$Problem C = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, W_{j,:} \cdot x + W_{y_i,:} \cdot x + 1) + \lambda \sum_k W_k^2$$

$$\nabla_W L = \nabla_W \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, W_{j,:} \cdot x + W_{y_i,:} \cdot x + 1) + \lambda \sum_k W_k^2\right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

Better Idea: Computational graphs + Backpropagation

Convolutional network (AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Really complex neural networks!!

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Neural networks: Backpropagation

Backpropagation: a simple example

$$f(x,y,z) = (x+y)z$$

Neural networks: Backpropagation

Backpropagation: a simple example

$$f(x,y,z)=(x+y)z$$

Neural networks: Backpropagation

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want:

May 12, 2023

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$rac{\partial f}{\partial y} = rac{\partial f}{\partial q} rac{\partial q}{\partial y}$$
Upstream Local gradient gradient

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$rac{\partial f}{\partial x} = rac{\partial f}{\partial q} rac{\partial q}{\partial x}$$
Upstream Local gradient gradient

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) &= e^x & \qquad & \qquad & rac{df}{dx} &= e^x & \qquad & f(x) &= rac{1}{x} & \qquad &
ightarrow & rac{df}{dx} &= -1/x^2 \ & f_a(x) &= ax & \qquad &
ightarrow & rac{df}{dx} &= a & \qquad & rac{df}{dx} &= 1 \end{aligned}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(x) = e^x \qquad \qquad o \qquad \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad \qquad o \qquad \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \ f_c(x)=c+x \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ & & \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

$$egin{aligned} rac{df}{dx} = e^x \ \hline rac{df}{dx} = a \end{aligned} \hspace{0.5cm} f(x) = rac{1}{x} \hspace{1cm}
ightarrow \hspace{0.5cm} rac{df}{dx} = -1/x^2 \ f_c(x) = c + x \end{array} \hspace{0.5cm}
ightarrow \hspace{0.5cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Computational graph

Neural networks: Backpropagation

$$\begin{array}{ll} \text{Sigmoid local} & \frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \left(1-\sigma(x)\right)\sigma(x) \end{array}$$
 gradient:

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \left(1 - \sigma(x)
ight)\sigma(x)$$

$$\begin{array}{ll} \text{Sigmoid local} & \frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \left(1-\sigma(x)\right)\sigma(x) \end{array}$$
 gradient:

Neural networks: Backpropagation Patterns

Backpropagation: Patterns in gradient flow

add gate: gradient distributor

Neural networks: Backpropagation Patterns

Backpropagation: Patterns in gradient flow

add gate: gradient distributor

mul gate: "swap multiplier"

Backpropagation: Patterns in gradient flow

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

Backpropagation: Patterns in gradient flow

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Backpropagation Implementation: "Flat" code

Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Backward pass: Compute grads

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Backpropagation Implementation: "Flat" code

Forward pass: Compute output s1 = w s2 = s s3 = s

Base case

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Backpropagation Implementation: "Flat" code

Forward pass: Compute output

```
s0 = w0 * x0

s1 = w1 * x1

s2 = s0 + s1

s3 = s2 + w2

L = sigmoid(s3)
```

def f(w0, x0, w1, x1, w2):

Sigmoid

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Backpropagation Implementation: "Flat" code

Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Add gate

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Backpropagation Implementation: "Flat" code

Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Add gate

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

def f(w0, x0, w1, x1, w2):

s0 = w0 * x0s1 = w1 * x1

s2 = s0 + s1

s3 = s2 + w2

L = sigmoid(s3)

Neural networks: Backpropagation Patterns

Backpropagation Implementation: "Flat" code

Forward pass: Compute output

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
```

Multiply gate

 $grad_x0 = grad_s0 * w0$

Recap: Vector derivatives

So far: backprop with scalars

What about vector-valued functions?

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will y change?

Vector to Vector

$$x \in \mathbb{R}^N, y \in \mathbb{R}^M$$

Derivative is **Jacobian**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \quad \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will each element of y change?

Backprop with Vectors

May 12, 2023

Backprop with Vectors

Gradients of variables wrt loss have same dims as the original variable

Backprop with Vectors

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Backprop with Vectors

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Backprop with Matrices (or Tensors)

May 12, 2023

Backprop with Matrices (or Tensors)

Backprop with Matrics

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Also see derivation in the course notes:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Backprop with Matrices (or Tensors)

N=64, D=M=4096

Each Jacobian takes ~256 GB of

memory! Must work with them implicitly!

Backprop with Vectors

$$[N \times D][N \times M][M \times D]$$

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

$$[D \times M][D \times N][N \times M]$$

$$\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y} \right)$$

These formulas are easy to remember: they are the only way to make shapes match up!

Neural Networks: Summary

- Summary for today
- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Next time:

Image Classification with CNNs

Pattern Recognition and Computer Vision

Guanbin Li, School of Computer Science and Engineering, Sun Yat-Sen University