ECNU ICPC

Team Reference Document FORE1GNERS March 2019

Contents

1	First Thing First	
•	1.1	Header
	1.2	55kai
2	Data	Structure
2	2.1	21.0
	2.1	
	2.2	A TOTAL CONTRACTOR OF THE PROPERTY OF THE PROP
	2.4	5_
	2.4	K-D Tree
	2.6	BIT
	2.7	Trie
	2.7	Treap
	2.0	Cartesian Tree
	2.10	LCT
	2.10	Mo's Algorithm On Tree
	2.12	CDQ's Divide and Conquer
	2.13	Persistent Segment Tree
	2.14	Persistent Union Find
	2	
3	Math	
3		
	3.1	Multiplication, Powers
	3.2	Matrix Power
	3.3	Sieve
	0.4	Prime Test
	3.5	Pollard-Rho
	3.6 3.7	Berlekamp-Massey
		Extended Euclidean
	3.8 3.9	Inverse
		Binomial Numbers
	3.10 3.11	NTT, FFT, FWT
	3.11	
	3.12	Factor Decomposition
	3.14	Primitive Root
	3.15	Ouadratic Residue
	3.16	Chinese Remainder Theorem
	3.17	Bernoulli Numbers
	3.18	Simplex Method
	3.19	BSGS
4	Cronk	n Theory
4	4.1	•
	4.1	
	4.2	Maximum Flow
	4.3	Path Intersection on Trees
	4.5	Centroid Decomposition (Divide-Conquer)
	4.6	Heavy-light Decomposition
	4.7	Bipartite Matching
	4.8	Virtual Tree
	4.9	Euler Tour
	4.10	SCC, 2-SAT
	4.11	Topological Sort
	4.12	General Matching
	4.13	Tarjan
	4.14	Bi-connected Components, Block-cut Tree
	4.15	Minimum Directed Spanning Tree
	4.16	Cycles
	4.17	Dominator Tree
	4.18	Global Minimum Cut
5	Geom	netrv
9	5.1	2D Basics
	5.2	P. L L
	5.2	Segments, lines
	5.4	Polygons
	5.5	Half-plane intersection

28

inline char NC() {

```
5.7
    5.9
    5.10
    String
    6.2
  7 Miscellaneous
        1 First Thing First
1.1 Header
  #include <bits/stdc++.h>
  using namespace Std;
  using LL = long long;
  #define FOR(i, x, y) for (decay <
     decltype(y) > :: type i = (x), _##i =
     (y); i < \# i; ++i)
  # define FORD(i, x, y) for (decay <
      decltype(x) > :: type i = (x), _##i =
     (y); i > \#i; --i)
  #ifdef Zerol
  # define dbq(x...) do { cout << "
     033[32;1m" << #x << " -> "; err(x) 
     ; } while (0)
  void err() { cout << "\033[39;0m" <<
  template < template < typename ... > class T
      , typename t, typename ... A >
  void err(T < t > a, A... X) { for (auto V
     : a) cout << v << ' '; err(x...); }
  template < typename T, typename ... A>
  void err(T a, A... x) { cout << a << '</pre>
       '; err(x...); }
  # else
  #define dbq(...)
  # endif
  1.2 55kai
```

```
static char buf[100000], *p1 = buf
        *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf)
       ) + fread(buf, 1, 100000, stdin
       ), p1 == p2) ? EOF : *p1++;
template \langle typename T \rangle
ьоог rn (T& v) {
    static char Ch;
    while (ch != EOF && !isdigit(ch))
       ch = nc();
    if (ch == EOF) return false;
    for (v = 0; isdigit(ch); ch = nc()
        v = v * 10 + ch - '0';
    return true;
template < typename T>
void O(T p) {
    static int Stk[70], tp;
    if (p == 0) \{ putchar('0'); return \}
    if (p < 0) \{ p = -p; putchar('-'); \}
    while (p) stk[++tp] = p \% 10, p /=
    while (tp) putchar(stk[tp--] + '0'
   Data Structure
2.1 RMQ
int f[maxn][maxn][10][10];
inline int highbit (int x) { return 31
   - __builtin_clz(x); }
inline int Calc(int X, int Y, int XX,
   int yy, int p, int q) {
    return max(
        \max(f[x][y][p][q], f[xx - (1)]
            << p) + 1][yy - (1 << q) +
            1][p][q]),
        \max(f[xx - (1 << p) + 1][y][p]
            [q], f[x][yy - (1 << q) +
            1][p][q])
    );
```

```
void init() {
    FOR (x, 0, highbit(n) + 1)
    FOR (y, 0, highbit(m) + 1)
        FOR (i, 0, n - (1 << x) + 1)
        FOR (j, 0, m - (1 << y) + 1) {
            if (!x && !y) { f[i][j][x
                [y] = a[i][j];
                continue; }
            f[i][j][x][y] = calc(
                i, j,
                i + (1 << x) - 1, j +
                    (1 << y) - 1,
                max(x - 1, 0), max(y -
                     1, 0)
            );
in line int get_max(int X, int Y, int)
   XX, int yy) {
    return calc(x, y, xx, yy, highbit(
       xx - x + 1), highbit(yy - y +
       1));
}
struct RMQ {
    int f[22][M];
    inline int highbit (int X) { return
        31 - __builtin_clz(x); }
    void init(int * V, int n) {
        FOR (i, 0, n) f[0][i] = v[i];
        FOR (x, 1, highbit(n) + 1)
            FOR (i, 0, n - (1 << x) +
                1)
                f[x][i] = min(f[x -
                    1][i], f[x - 1][i +
                     (1 << (x - 1))]);
    int get_min(int I, int r) {
        assert(| <= r);</pre>
        int t = highbit(r - l + 1);
        return min(f[t][I], f[t][r -
           (1 << t) + 1]);
} rmq;
```

2.2 Segment Tree Beats

```
namespace R {
# define Ison o \star 2, I, (I + r) / 2
# define rson o _{*} 2 + 1, (| + r) / 2 +
   1, r
    int m1[N], m2[N], cm1[N];
   LL sum[N];
    void UD (int O) {
        int | c = 0 * 2, rc = | c + 1;
        m1[o] = max(m1[lc], m1[rc]);
        sum[o] = sum[lc] + sum[rc];
        if (m1[lc] == m1[rc]) {
            cm1[o] = cm1[lc] + cm1[rc]
            m2[o] = max(m2[lc], m2[rc]
        } else {
            cm1[o] = m1[lc] > m1[rc] ?
                cm1[lc] : cm1[rc];
            m2[o] = max(min(m1[lc], m1
                [rc]), max(m2[lc], m2[
                rc]));
    void mod(int O, int X) {
        if (x \ge m1[0]) return;
        assert(x > m2[o]);
        sum[o] -= 1LL * (m1[o] - x) *
           cm1[o];
        m1[o] = x;
    void down(int 0) {
        int | c = 0 * 2, rc = | c + 1;
        mod(lc, m1[o]); mod(rc, m1[o])
    void build (int O, int I, int r) {
        if (| == r) { int t; read(t);
           sum[o] = m1[o] = t; m2[o] =
            -INF; cm1[o] = 1; }
        else { build(lson); build(rson
           ); up(o); }
    void update (int ql, int qr, int x,
        int O, int I, int r) {
        if (r < ql || qr < l || m1[o]
```

```
<= X) return;
        if (ql <= l && r <= qr && m2[o]
            ] < x)  { mod(o, x); return;
        down(o);
        update(ql, qr, x, lson);
            update(ql, qr, x, rson);
        up(o);
    int qmax(int ql, int qr, int O,
        int I, int \Gamma) {
        if (r < q| || qr < |) return -
           INF:
        if (q <= 1 \&\& r <= qr) return
            m1[o];
        down(o);
        return max(qmax(ql, qr, Ison),
             qmax(ql, qr, rson));
    LL qsum(int ql, int qr, int 0, int
        I, int r) {
        if (r < q| || qr < |) return
        if (q <= 1 \& r <= qr) return
             sum[o];
        down(o);
        return qsum(ql, qr, lson) +
            qsum(ql, qr, rson);
}
```

2.3 Segment Tree

```
struct IntervalTree {
# define Is 0 * 2, I, m
# define rs 0 * 2 + 1, m + 1, r
    static const LL M = maxn * 4, RS =
        1E18 - 1;
LL addv[M], setv[M], minv[M], maxv
        [M], sumv[M];
void init() {
        memset(addv, 0, sizeof addv);
        fill(setv, setv + M, RS);
        memset(minv, 0, sizeof minv);
        memset(maxv, 0, sizeof maxv);
```

```
memset(sumv, 0, size of sumv);
                                              if (p <= r && | <= q)
                                                                               # define mid ((l + r) >> 1)
                                              if (p <= | && r <= q) {
                                                                               #define Ison ql, qr, l, mid
                                                                               # define rson ql, qr, mid + 1, r
void maintain(LL o, LL I, LL r) {
                                                  if (op == 2) { setv[o] = v}
                                                     ; addv[o] = 0; }
                                                                                   struct P {
    if ( | < r ) 
                                                  else addv[o] += v;
       LL |c| = 0 + 2, |c| = 0 + 2
                                                                                       LL add sum:
                                             } else {
                                                                                       int Is, rs;
       sumv[o] = sumv[lc] + sumv[
                                                 pushdown(o);
                                                                                   tr[maxn * 45 * 2];
                                                 LL m = (l + r) / 2;
           rcl:
                                                                                   int SZ = 1;
       minv[o] = min(minv[lc],
                                                  update(p, q, ls, v, op);
                                                                                   int N(LL add, int I, int r, int Is
           minv[rc]);
                                                     update(p, q, rs, v, op)
                                                                                       , int rs) {
        maxv[o] = max(maxv[lc],
                                                                                       tr[sz] = \{add, tr[ls].sum + tr
                                                                                          [rs].sum + add * (len[r] -
           maxv[rc]);
    else sumv[o] = minv[o] =
                                             maintain(o, l, r);
                                                                                           len[l - 1]), ls, rs};
       maxv[o] = 0;
                                                                                       return SZ++;
    if (setv[o] != RS) { minv[o] =
                                         void query(LL p, LL q, LL o, LL I,
        maxv[o] = setv[o]; sumv[o]
                                              LL r, LL add, LL& ssum, LL&
                                                                                   int update (int o, int ql, int qr,
        = setv[o] * (r - | + 1); }
                                             smin, LL& smax) {
                                                                                       int I, int r, LL add) {
    if (addv[o]) { minv[o] += addv
                                                                                       if (q| > r || | > qr) return 0
                                              if (p > r \mid | | > q) return;
       [o]; maxv[o] += addv[o];
                                              if (setv[o] != RS) {
       sumv[o] += addv[o] * (r - I)
                                                 LL v = setv[o] + add +
                                                                                       const P& t = tr[o];
                                                     addv[o]:
        + 1); }
                                                                                       if (q < = 1 \& r < = qr) return
                                                                                           N(add + t.add, l, r, t.ls,
                                                 ssum += v * (min(r, q) -
                                                     \max(1, p) + 1);
void build (LL o, LL I, LL r) {
                                                                                           t.rs);
    if (I == r) addv[o] = a[I];
                                                 smin = min(smin, v);
                                                                                       return N(t.add, I, r, update(t
                                                 smax = max(smax, v);
                                                                                           .ls, Ison, add), update(t.
    else {
       LL m = (l + r) / 2;
                                             else\ if\ (p <= | && r <= q) 
                                                                                           rs, rson, add));
        build(ls); build(rs);
                                                 ssum += sumv[o] + add * (r)
                                                      - | + 1):
                                                                                   LL query (int O, int ql, int qr,
    maintain(o, l, r);
                                                 smin = min(smin, minv[o] +
                                                                                       int I, int r, LL add = 0) {
                                                      add):
                                                                                       if (q > r | | > qr) return
void pushdown(LL o) {
                                                 smax = max(smax, maxv[o] +
                                                                                           0;
   LL |c| = 0 * 2, rc = 0 * 2 + 1;
                                                      add);
                                                                                       const P& t = tr[o];
    if (setv[o] != RS) {
                                                                                       if (q <= 1 \&\& r <= qr) return
                                             } else {
        setv[lc] = setv[rc] = setv
                                                                                            add * (len[r] - len[l -
                                                 LL m = (I + r) / 2;
                                                 query(p, q, ls, add + addv)
           [o];
                                                                                           1]) + t.sum;
        addv[lc] = addv[rc] = 0;
                                                     [o], ssum, smin, smax);
                                                                                       return query(t.ls, lson, add +
                                                                                           t.add) + query(t.rs, rson,
                                                  query(p, q, rs, add + addv)
        setv[o] = RS:
                                                     [o], ssum, smin, smax);
                                                                                            add + t.add);
                                             }
    if (addv[o]) {
                                                                                   }
        addv[lc] += addv[o]; addv[
           rc] += addv[o];
                                     } IT;
       addv[o] = 0;
                                                                               2.4 K-D Tree
   }
                                                                               // global variable pruning
                                     // persistent
                                                                                  visit L/R with more potential
void update(LL p, LL q, LL o, LL l
                                                                               namespace kd {
   , LL r, LL v, LL op) {
                                     namespace tree {
```

const int K = 2, inf = 1E9, M = N;

```
const double \lim = 0.7;
                                                                                         P<sub>*</sub> Build() {
 struct P {
                                                                                                   pt = tmp; FOR (it, pool, pit)
                                                                                                                                                                           // binary_heap_tag
         int d[K], l[K], r[K], sz, val;
                                                                                                          *pt++ = it;
                                                                                                                                                                           // pairing_heap_tag: support editing
         LL sum:
                                                                                                   return build (tmp, pt);
                                                                                                                                                                           // thin_heap_tag: fast when increasing
         P * ls , * rs;
                                                                                                                                                                                  , can't join
         P* up() {
                                                                                                                                                                           #include <ext/pb_ds/priority_queue.hpp>
                                                                                          inline bool inside (int p[], int q
                  sz = |s->sz + rs->sz + 1;
                                                                                                 [], int | [], int r[]) {
                                                                                                                                                                           using namespace __gnu_pbds;
                                                                                                  FOR (i, 0, K) if (r[i] < q[i]
                  sum = 1s -> sum + rs -> sum +
                                                                                                          || p[i] < |[i]) return
                          val;
                                                                                                                                                                           typedef __qnu_pbds::priority_queue < LL,
                  FOR (i, 0, K) {
                                                                                                                                                                                    less<LL>, pairing_heap_tag> PQ;
                                                                                                          false;
                           I[i] = min(d[i], min(
                                                                                                                                                                          __qnu_pbds::priority_queue < int , cmp,
                                                                                                   return true;
                                  |s->|[i], rs->|[i]
                                                                                                                                                                                  pairing_heap_tag >:: point_iterator
                                                                                         LL query (P_* o, int I[], int r[])
                                                                                                                                                                                  it;
                           r[i] = max(d[i], max(
                                                                                                   if (0 == null) return 0;
                                                                                                                                                                          PQ pq, pq2;
                                  ls \rightarrow r[i], rs \rightarrow r[i]
                                                                                                  FOR (i, 0, K) if (o->r[i] < I[
                                                                                                          | | | r[i] < o->|[i] |
                                                                                                                                                                           int main() {
                                                                                                          return 0;
                                                                                                                                                                                    auto it = pq.push(2);
                  return this;
                                                                                                    if (inside(o->1, o->r, 1, r))
                                                                                                                                                                                   pq.push(3);
                                                                                                          return O->SUM;
                                                                                                                                                                                   assert(pq.top() == 3);
\} pool[M], *null = _{new} P, *pit =
                                                                                                    return query (o->|s, |, r) +
                                                                                                                                                                                   pq.modify(it, 4);
        pool;
                                                                                                          querv(o->rs, I, r) +
                                                                                                                                                                                   assert(pq.top() == 4);
                                                                                                                  (inside(o->d, o->d, I,
 static P *tmp[M], **pt;
                                                                                                                                                                                   pq2.push(5);
 void init() {
                                                                                                                          r) ? o->val : 0);
                                                                                                                                                                                   pg.join(pg2);
         null->Is = null->rs = null;
                                                                                                                                                                                   assert(pq.top() == 5);
         FOR (i, 0, K) null->[i] = inf
                                                                                          void dfs(P_* o) {
                , null \rightarrow r[i] = -inf;
                                                                                                   if (0 == null) return;
         null -> sum = null -> val = 0;
                                                                                                   *pt++ = o; dfs(o->ls); dfs(o->ls)
         null -> sz = 0;
                                                                                                          rs);
}
                                                                                                                                                                           // ov_tree_tag
                                                                                         P_* ins(P_* o, P_* x, int d = 0) {
                                                                                                                                                                           // rb_tree_tag
P_* build (P_{**} \mid P_{**} \mid P_{**}
                                                                                                   if (d == K) d = 0;
                                                                                                                                                                           // splay_tree_tag
                                                                                                   if (o == null) return x -> up();
        { // [1, r)
         if (d == K) d = 0;
                                                                                                  P_* oo = x->d[d] <= o->d[d] ?
                                                                                                                                                                           // mapped: null_typeor or
                                                                                                          o->ls : o->rs;
         if (| > = r) return | null |;
                                                                                                                                                                                   null_mapped_type (old) is null
         P_{**} m = I + (r - I) / 2;
                                                                                                   if (00->sz > 0->sz * lim) {
                                                                                                                                                                           // Node_Update should be
                 assert(l <= m \&\& m < r);
                                                                                                            pt = tmp; dfs(o); *pt++ =
                                                                                                                                                                                   tree_order_statistics_node_update
         nth_element(|, m, r, [&](const
                                                                                                                                                                                  to use find_by_order & order_of_key
                  P_* a, const P_* b) {
                                                                                                            return build (tmp, pt, d);
                                                                                                                                                                           // find_by_order: find the element
                  return a \rightarrow d[d] < b \rightarrow d[d];
                                                                                                                                                                                   with order +1 (0 - based)
         });
                                                                                                  oo = ins(oo, x, d + 1);
                                                                                                                                                                           // order_of_key: number of elements It
         P_* o = _*m;
                                                                                                   return O->up();
         o->ls = build(l, m, d + 1); o
                                                                                                                                                                           // support join & split
                ->rs = build(m + 1, r, d +
                1);
                                                                                                                                                                           #include <ext/pb_ds/assoc_container.
          return O->up();
                                                                                 2.5 STL+
                                                                                                                                                                           using namespace __gnu_pbds;
                                                                                 // priority_queue
```

```
using Tree = tree < int , null_type , less
                                                                                                      MOD:
                                                    return ret;
                                                                                                   ccc[i] = (ccc[i] + x * x %
   <int >, rb_tree_tag,
   tree_order_statistics_node_update >;
                                               int kth(LL k) {
                                                                                                       MOD * v) % MOD;
                                                    int p = 0;
Tree t:
                                                    for (int \lim = 1 << 20; \lim;
                                                                                           void add(LL I, LL r, LL v) { add(I
                                                       \lim /= 2
// Persistent BBT
                                                        _{if} (p + \lim < M && c[p +
                                                                                              (v); add(r + 1, -v); 
                                                           \lim ] < k) 
#include <ext/rope>
                                                                                           LL sum(LL x) {
                                                            p += lim;
using namespace __QNU_CXX;
                                                                                               static LL INV2 = (MOD + 1) /
                                                            k = c[p];
                                                                                                   2:
rope < int > S;
                                                                                               LL ret = 0:
                                                                                               for (LL i = x; i > 0; i = x
int main() {
                                                    return p + 1;
    FOR (i, 0, 5) s.push_back(i); // 0
                                                                                                   lowbit(i))
                                                                                                   ret += (x + 1) * (x + 2) %
    s.replace(1, 2, s); // 0 (0 1 2 3
                                           namespace bit {
                                                                                                       MOD * c[i] % MOD
                                                int c[maxn], cc[maxn];
                                                                                                            -(2 * x + 3) * cc
        4) 3 4
    auto ss = s.substr(2, 2); // 1 2
                                                inline int lowbit (int X) { return
                                                                                                               [i] % MOD
                                                   x \& -x;
    s.erase(2, 2); // 0 1 4
                                                                                                            + ccc[i];
    s.insert(2, s); // equal to s.
                                                void add(int X, int V) {
                                                                                               return ret % MOD * INV2 % MOD;
        replace (2, 0, s)
                                                    for (int i = X; i <= n; i +=
    assert(s[2] == s.at(2)); // 2
                                                       lowbit(i)) {
                                                                                          LL sum(LL I, LL r) \{ return sum(r) \}
}
                                                        c[i] += v; cc[i] += x * v;
                                                                                               - sum(1 - 1); }
// Hash Table
                                                void add(int I, int \Gamma, int V) {
                                                                                      2.7 Trie
#include <ext/pb_ds/assoc_container.hpp
                                                   add(1, v); add(r + 1, -v); }
                                                                                       namespace trie {
                                               int SUM (int X) {
                                                                                           const int M = 31;
#include <ext/pb_ds/hash_policy.hpp>
                                                    int ret = 0:
                                                                                           int ch[N * M][2], sz;
using namespace __qnu_pbds;
                                                    for (int i = x; i > 0; i = x
                                                                                           void init() { memset(ch, 0, size of
                                                       lowbit(i))
                                                                                               ch); sz = 2; }
gp_hash_table < int , int > mp;
                                                        ret += (x + 1) * c[i] - cc
                                                                                           void ins(LL x) {
                                                           [i];
cc_hash_table < int , int > mp;
                                                                                               int u = 1;
                                                    return ret;
                                                                                               FORD (i, M, -1) {
2.6 BIT
                                                                                                   b \circ o \circ b = x \& (1LL << i);
                                               int SUM(int | f, int | f) { return SUM
namespace bit {
                                                                                                   if (!ch[u][b]) ch[u][b] =
                                                   (r) - sum(1 - 1); }
    LL c[M];
                                                                                                       SZ++;
    inline int lowbit (int x) { return
                                                                                                   u = ch[u][b];
                                           namespace bit {
       x \& -x;
                                               LL c[N], cc[N], ccc[N];
    void add(int X, LL V) {
                                               in line LL lowbit (LL x) { return x
        for (; x < M; x += lowbit(x))
                                                   \{x - x; \}
            c[x] += v;
                                                void add(LL x, LL v) {
                                                                                      // persistent
                                                    for (LL i = x; i < N; i +=
    LL sum(int X) {
                                                                                       // !!! sz = 1
                                                       lowbit(i)) {
        LL ret = 0;
                                                        c[i] = (c[i] + v) \% MOD;
        for (; x > 0; x \rightarrow lowbit(x))
                                                                                       struct P { int W, Is, rs; };
                                                        cc[i] = (cc[i] + x * v) %
                                                                                      P \text{ tr}[M] = \{\{0, 0, 0\}\};
            ret += c[x];
```

```
int SZ;
int _new(int W, int Is, int rs) { tr[
   SZ] = {W, |S, |S}; return SZ++; }
int ins(int 00, int V, int d = 30) {
   P\& o = tr[oo]:
    if (d == -1) return _{new}(o.w + 1)
       0, 0);
    b \circ o \circ u = v \& (1 << d);
    return _{new(o.w + 1, u == 0 ? ins(
       o.ls, v, d - 1) : o.ls, u == 1
       ? ins(o.rs, v, d - 1) : o.rs);
int query (int pp, int qq, int V, int d
    = 30) {
    if (d == -1) return 0;
    bool u = v & (1 << d);
   P \& p = tr[pp], \& q = tr[qq];
    int lw = tr[q.ls].w - tr[p.ls].w;
    int rw = tr[q.rs].w - tr[p.rs].w;
    int ret = 0;
    if (u == 0) {
        if (rw) { ret += 1 << d; ret
           += query(p.rs, q.rs, v, d -
            1); }
        else ret += query(p.ls, q.ls,
           v, d - 1);
    } else {
        if (lw) { ret += 1 << d; ret
           += query(p.ls, q.ls, v, d -
            1); }
        else ret += query(p.rs, q.rs,
           v, d - 1);
    return ret;
```

2.8 Treap

```
namespace treap {
   const int M = maxn * 17;
   extern struct P* const null;
   struct P {
      P * Is, * rs;
      int V, SZ;
}
```

```
unsigned rd;
    P(int v): Is(null), rs(null),
        v(v), sz(1), rd(rnd()) {}
    P(): sz(0) {}
    P_* up() \{ sz = |s->sz + rs->sz \}
         + 1; return this; }
     int lower(int v) {
         if (this == NU||) return
         return this -> \vee >= \vee ? |s->
            lower(v) : rs->lower(v)
             + |s->sz + 1;
    int upper(int v) {
         if (this == Null) return
         return this \rightarrow V > V? |S \rightarrow V|
             upper(v) : rs->upper(v)
             + |s->sz + 1;
*const null = new P, pool[M], *
    pit = pool;
P_* merge(P_* | , P_* r) {
    if (I == null) return \Gamma; if (\Gamma
         == null) return 1;
     if (l->rd < r->rd) { l->rs =
        merge(I->rs, r); return I->
        up(); }
     else { r \rightarrow ls = merge(l, r \rightarrow ls)
        ; return r \rightarrow up(); }
void split (P_* \circ, int rk, P_* \& I, P)
    *& r) {
    if (0 == null) { | = r = null;
         return; }
     if (0->|s->sz >= rk) { split(o
        ->ls, rk, l, o->ls); r = o
        ->up(); }
     else { split(o->rs, rk - o->ls)
        ->sz - 1, o->rs, r); l = o
        ->up(); }
```

```
namespace treap {
    const int M = \max_{*} 17 * 12;
    extern struct P* const null, *pit;
    struct P {
        P * ls , * rs ;
        int V, SZ;
        LL sum;
        P(P_* | s, P_* rs, int v): |s(|s)|
             , rs(rs) , v(v) , sz(ls->sz+
             rs -> sz + 1)
        P() {}
         void * operator new(SiZe_t _) {
              return pit++; }
         template < typename T>
         int rk(int v, T&& cmp) {
             if (this == null) return
                 0;
             return Cmp(this \rightarrow V, V)?
                 ls \rightarrow rk(v, cmp) : rs \rightarrow rk
                 (v, cmp) + ls -> sz + 1;
         int lower (int v) { return rk(v
            , greater_equal<int >()); }
         int upper (int v) { return rk(v
```

, greater < int >()); }

// persistent set

```
\} pool[M], *pit = pool, *const
       null = new P:
   P_* merge(P_* I, P_* r) {
        if (I == null) return r; if (r
            == null) return 1;
        if (rnd() % (I->sz + r->sz) <
           |->sz| return new P\{|->|s|,
           merge(l->rs, r), l->v\};
        else return new P{merge(|, r->
           ls), r->rs, r->v;
    void split (P_* \circ, int rk, P_* \& I, P)
       *& r) {
        return; }
        if (o\rightarrow ls\rightarrow sz \rightarrow rk) \{ split(o
           ->ls, rk, l, r); r = new P{
           r, o->rs, o->v}; }
        else { split(o->rs, rk - o->ls
           ->sz - 1, |, r|; | = new P{
           o->|s|, |o->v|;
// persistent set with pushdown
int NOW;
namespace Treap {
    const int M = 10000000;
    extern struct P* const null, *pit;
    struct P {
        P * ls , * rs ;
        int SZ, time;
        LL cnt, sc, pos, add;
        bool rev;
        P_* up() { sz = ls->sz + rs->sz
            + 1; sc = |s->sc + rs->sc
           + cnt; return this; } //
           MOD
        P* check() {
            if (time == now) return
                this;
            P_* t = new(pit++) P; *t =
                * this; t->time = now;
                return t;
        P* _do_rev() { rev ^= 1; add
```

```
_{*}= -1; pos _{*}= -1; swap(ls,
       rs); return this; } // MOD
    P_* _do_add(LL v) { add += v;
       pos += V; return this; } //
        MOD
    P_* do_rev() { if (this == null
       ) return this; return Check
        ()->_do_rev(); } // FIX &
       MOD
    P_* do_add(LL V) { if (this ==
        null) return this; return
       check()->_do_add(v); } //
        FIX & MOD
    P* _down() { // MOD
        if (rev) { ls = ls->do_rev
            (); rs = rs->do_rev();
            rev = 0; }
        if (add) { Is = Is->do_add
            (add); rs = rs->do_add(
            add); add = 0; }
        return this;
    P* down() { return check()->
       _down(); } // FIX & MOD
    void _{split}(LL p, P_{*}& I, P_{*}& r
       ) { // MOD
        if (pos >= p) \{ ls -> split (
           p, l, r); ls = r; r =
            up(); }
                      { rs->split(
        else
           p, l, r); rs = l; l =
           up(); }
    void split (LL p, P_*& I, P_*& r)
        { // FIX & MOD
        if (this == null) | = r =
            null:
        else down()->_split(p, l,
            r);
\} pool[M], *pit = pool, *const
   null = new P;
P_* merge(P_* a, P_* b) {
    if (a == null) return b; if (b
        == null) return a;
    if (rand() \% (a->sz + b->sz) <
```

```
a\rightarrow sz) { a = a\rightarrow down(); a
            ->rs = merge(a->rs, b);
            return a->up(); }
         else
            \{ b = b - > down(); b - > ls = \}
            merge(a, b->Is); return b->
            up(); }
// sequence with add, sum
namespace treap {
    const int M = 8E5 + 100;
    extern struct P*const null;
    struct P {
        P * ls , * rs ;
        int sz, val, add, sum;
        P(int v, P_* ls = null, P_* rs =
             null): ls(ls), rs(rs), sz
            (1), val(v), add(0), sum(v)
             {}
        P(): sz(0), val(0), add(0),
            sum(0) {}
        P_* up() {
             assert(this != null);
             sz = |s->sz + rs->sz + 1;
             sum = |s->sum + rs->sum +
                val + add * sz;
             return this;
         void upd(int V) {
             if (this == NUII) return;
             add += v:
             sum += sz * v;
        P_* down() {
             if (add) {
                 Is ->upd(add); rs ->upd(
                     add);
                 val += add;
                 add = 0:
             return this;
```

```
P* select(int rk) {
         if (rk == Is -> sz + 1)
             return this;
         return |s->sz>= rk ? |s->
             select(rk) : rs->select
             (rk - ls -> sz - 1);
\} pool[M], *pit = pool, *const
    null = new P, *rt = null;
P_* merge(P_* a, P_* b) {
     if (a == null) return b \rightarrow up();
     if (b == null) return a \rightarrow up();
     if (rand() % (a->sz + b->sz) <
         a->sz) {
         a \rightarrow down() \rightarrow rs = merge(a \rightarrow
             rs, b);
         return a->up();
    } else {
         b->down()->ls = merge(a, b)
             ->|s);
         return b->up();
void split (P_* \circ, int rk, P_* \& I, P)
    *& r) {
    return; }
    o->down();
     if (0\rightarrow S\rightarrow SZ \rightarrow rk) {
         split(o->ls, rk, l, o->ls)
         r = o \rightarrow up();
    } else {
         split(o->rs, rk - o->ls->
             sz - 1, o->rs, r);
         I = o \rightarrow up();
inline void insert (int k, int V) {
    P *I, *r;
     split(rt, k - 1, l, r);
     rt = merge(merge(I, new (pit
        ++) P(v), r);
```

```
inline void erase (int k) {
        P *I, *r, *_, *t;
        split(rt, k - 1, l, t);
        split(t, 1, _, r);
        rt = merge(l, r);
   P* build(int I, int r, int a) {
        if (1 > r) return null;
        if (I == r) return new (pit++)
           P(a[1]);
        int m = (1 + r) / 2;
        return (new (pit++) P(a[m],
           build(I, m - 1, a), build(m
            + 1, r, a)))->up();
};
// persistent sequence
namespace treap {
    struct P;
    extern P*const Null;
    P* N(P* Is, P* rs, LL V, bool fill
    struct P {
        P * const IS , * const TS;
        const int SZ, V;
        const LL sum;
        bool fill;
        int cnt;
        void split (int k, P_*& I, P_*& r
           ) {
            if (this == null) \{ l = r \}
                = null; return; }
            if (|s->sz>=k) {
                ls -> split(k, l, r);
                r = N(r, rs, v, fill);
            } else {
                rs->split(k - ls->sz -
                     fill , l , r);
                I = N(Is, I, v, fill);
        }
```

```
0, 0, 1};
    P* N(P* Is, P* rs, LL v, bool fill
        Is -> cnt ++; rs -> cnt ++;
         return new P\{|s, rs, |s->sz+\}
            rs \rightarrow sz + fill, v, ls \rightarrow sum +
             rs \rightarrow sum + v, fill, 1};
    P_* merge(P_* a, P_* b) {
         if (a == null) return b;
         if (b == null) return a;
         if (rand() \% (a->sz + b->sz) <
             a->sz)
             return N(a->ls, merge(a->
                rs, b), a->v, a->fill);
         else
             return N(merge(a, b->ls),
                b->rs, b->v, b->fill);
    }
    void go(P_* O, int X, int Y, P_* \& I,
         P_{*} 8 m, P_{*} 8 r) {
        o->split(y, l, r);
        l \rightarrow split(x - 1, l, m);
    }
}
```

2.9 Cartesian Tree

```
void build() {
    static int s[N], last;
    int p = 0;
FOR (x, 1, n + 1) {
        last = 0;
        while (p && val[s[p - 1]] >
            val[x]) last = s[--p];
        if (p) G[s[p - 1]][1] = x;
        if (last) G[x][0] = last;
        s[p++] = x;
}
rt = s[0];
}
```

```
// do not forget down when findint L/R
    most son
// make_root if not sure
namespace Ct {
    extern struct P * const Null;
    const int M = N;
    struct P {
        P *fa, *ls, *rs;
        int V, maxv;
        bool rev;
        bool has_fa() { return fa->ls
            == this || fa->rs == this;
        bool d() { return fa \rightarrow ls = 
            this; }
        P_*& C(bool X) { return X ? Is
            : rs; }
        void do_rev() {
             if (this == NU||) return;
             rev ^= 1;
             swap(ls, rs);
        P* up() {
             maxv = max(v, max(ls -> maxv))
                , rs->maxv));
             return this;
        void down() {
             if (rev) {
                 rev = 0;
                 Is ->do_rev(); rs ->
                     do_rev();
            }
        void all_down() { if (has_fa()
            ) fa->all_down(); down(); }
    * const null = new P{0, 0, 0, 0, }
        0, 0}, pool[M], *pit = pool;
    void rot(P_* o) {
        bool dd = o \rightarrow d();
        P * f = o - > fa, * t = o - > c(!dd);
        if (f->has_fa()) f->fa->c(f->d
```

2.10 LCT

```
()) = 0; o->fa = f->fa;
    if (t != null) t -> fa = f; f -> c
        (dd) = t;
    o->c(!dd) = f->up(); f->fa = o
void splay (P_* \circ) {
    o->all_down();
     while (o->has_fa()) {
         if (o->fa->has_fa())
             rot(o->d() ^o->fa->d
                 () ? o : o \rightarrow fa);
         rot(o);
    o->up();
void access(P_* u, P_* v = null) {
    if (u == null) return;
    splay(u); u->rs = v;
    access(u->up()->fa, u);
void make_root(P_* o) {
    access(o); splay(o); o->do_rev
        ();
void split (P_* \circ, P_* \circ)
    make_root(o); access(u); splay
        (u);
void link(P_* u, P_* v) {
    make\_root(u); u->fa = v;
void Cut(P_* u, P_* v) {
    split(u, v);
    u\rightarrow fa = v\rightarrow ls = null; v\rightarrow up();
bool adj(P_* u, P_* v) {
    split(u, v);
    return V \rightarrow |S| == U \&\& U \rightarrow |S| ==
        null && u->rs == null;
bool linked (P_* u, P_* v) {
    split(u, v);
     return u == v || u -> fa != null
```

```
P_* findrt (P_* \circ)
        access(o); splay(o);
         while (0\rightarrow |s| = nu|l) = 0\rightarrow
            ls:
         return O;
    P_* findfa(P_* rt, P_* u) {
         split(rt, u);
        u = u - > ls;
         while (u->rs != null) {
             u = u \rightarrow rs;
             u->down();
         return U;
// maintain subtree size
P* up() {
    sz = |s->sz + rs->sz + _sz + 1;
    return this;
void access (P_* u, P_* v = null) {
    if (u == nu||) return;
    splay(u);
    u \rightarrow sz += u \rightarrow rs \rightarrow sz - v \rightarrow sz;
    u->rs = v:
    access(u->up()->fa, u);
void link (P_* u, P_* v) {
    split(u, v);
    u->fa = v; v->_sz += u->sz;
    v->up();
// latest spanning tree
namespace | Ct {
    extern struct P* null;
    struct P {
        P *fa, *ls, *rs;
         int V;
        P *minp;
         bool rev;
         bool has_fa() { return fa->ls
```

```
== this || fa->rs == this;
                                                if (u == null) return;
                                                splay(u); u->rs = v;
    bool d() { return fa \rightarrow ls = 
                                                access(u->up()->fa, u);
        this; }
    P_{\star}& C(bool X) { return X ? Is
                                            void make_root(P* o) { access(o);
                                               splay(o); o->do_rev(); }
        : rs; }
                                            void split (P* u, P* v) { make_root
    void do_rev() { if (this ==
        null) return; rev ^= 1;
                                               (u); access(v); splay(v); }
       swap(ls, rs); }
                                            bool linked (P_* u, P_* v) { split (u, P_* v) }
                                                v); return u == v || u->fa !=
    P* up() {
                                               null; }
                                            void link(P* u, P* v) { make_root(
        minp = this;
        if (minp->v > ls->minp->v)
                                               u); u->fa = v; }
                                            void cut(P_* u, P_* v) \{ split(u, v) \}
             minp = Is ->minp;
        if (minp->v > rs->minp->v)
                                               ; u->fa = v->ls = null; v->up()
                                               ; }
             minp = rs -> minp;
        return this;
    void down() { if (rev) { rev =
                                       using namespace Ct;
         0; ls ->do_rev(); rs ->
                                       int n, m;
       do_rev(); }}
                                       P_*p[maxn];
    void all_down() { if (has_fa())
                                       struct Q {
       ) fa->all_down(); down(); }
                                            int tp, u, v, l, r;
* null = new P{0, 0, 0, INF, 0,
                                       };
   0}, pool[maxm], *pit = pool;
                                       vector < Q > q;
void rot(P_* o) {
    bool dd = o \rightarrow d();
                                       int main() {
    P * f = o - sa , * t = o - sc(!dd);
                                           null ->minp = null;
    if (f->has_fa()) f->fa->c(f->d
                                           cin >> n >> m;
       ()) = 0; o->fa = f->fa;
                                           FOR (i, 1, n + 1) p[i] = new (pit
    if (t != null) t->fa = f; f->c
                                               ++) P{null, null, null, INF, p[
        (dd) = t;
                                               i], 0};
    o->c(!dd) = f->up(); f->fa = o
                                            int clk = 0;
                                           map<pair<int , int >, int > mp;
                                           FOR (_, 0, m) {
void splay (P_* \circ) {
                                                int tp, u, v; scanf("%d%d%d",
    o->all_down();
                                                   &tp , &u , &v);
                                                if (u > v) swap(u, v);
    while (o->has_fa()) {
                                                if (tp == 0) mp.insert({{u, v
        if (o->fa->has_fa()) rot(o
            ->d() ^oo->fa->d() ? o
                                                   }, clk });
            : o->fa);
                                                else if (tp == 1) {
                                                    auto it = mp. find (\{u, v\});
        rot(o);
                                                         assert(it != mp.end())
    o->up();
                                                    q.push_back({1, u, v, it ->}
void access(P_* u, P_* v = null) {
                                                        second, clk });
```

```
mp.erase(it);
    } else q.push_back({0, u, v,
        clk, clk });
    ++ clk;
for (auto & x: mp) q.push_back({1,
   x first first x first second.
   x.second, clk });
sort(q.begin(), q.end(), [](const
   Q& a, const Q& b) -> bool {
    return a.l < b.l; \});
map < P_*, int > mp2;
FOR (i, 0, q.size()) {
    Q\& cur = q[i];
    int u = cur.u, v = cur.v;
    if (cur.tp == 0) {
         if (!linked(p[u], p[v]))
            puts("N");
         else puts(p[v]->minp->v >=
             cur.r ? "Y" : "N");
         continue;
    if (linked(p[u], p[v])) {
        P_* t = p[v]->minp;
         if (t->v > cur.r) continue
        Q\& old = q[mp2[t]];
        cut(p[old.u], t); cut(p[
            old.v], t);
    P_* t = n_{ew} (pit++) P \{null,
        null, null, cur.r, t, 0};
    mp2[t] = i;
    link(t, p[u]); link(t, p[v]);
}
```

2.11 Mo's Algorithm On Tree

```
struct Q {
   int U, v, idx;
   bool operator < (const Q& b) const
   {
      const Q& a = *this;
      return blk[a.u] < blk[b.u] ||
      (blk[a.u] == blk[b.u] && in
      [a.v] < in[b.v]);</pre>
```

```
};
void dfs(int u = 1, int d = 0) {
    static int S[maxn], sz = 0,
       blk_cnt = 0, clk = 0;
    in[u] = clk++;
    dep[u] = d:
    int btm = sz;
    for (int V: G[u]) {
        if (v == fa[u]) continue;
        fa[v] = u;
        dfs(v, d + 1);
        if (sz - btm >= B) {
             while (sz > btm) blk[S]--
                sz]] = blk_cnt;
            ++blk_cnt;
    }
    S[sz++] = u;
    if (u == 1) while (SZ) blk [S[--SZ]
       ]] = blk_cnt - 1;
}
void flip (int k) {
    dbg(k);
    if (vis[k]) {
        // ...
    } else {
        // ...
    vis[k] ^= 1;
}
void go(int \& k) {
    if (bug == -1) {
        if (vis[k] && !vis[fa[k]]) bug
             = k;
        if (!vis[k] && vis[fa[k]]) bug
             = fa[k];
    flip(k);
    k = fa[k];
}
void mv(int a, int b) {
```

```
bug = -1;
    if (vis[b]) bug = b;
    if (dep[a] < dep[b]) swap(a, b);
    while (dep[a] > dep[b]) go(a);
    while (a != b) {
        go(a); go(b);
    }
    go(a); go(bug);
}

for (Q& q: query) {
    mv(u, q.u); u = q.u;
    mv(v, q.v); v = q.v;
    ans[q.idx] = Ans;
}
```

2.12 CDQ's Divide and Conquer

```
const int maxn = 2E5 + 100;
struct P {
    int X, y;
    int * f;
    ь о о і d1, d2;
} a[maxn], b[maxn], c[maxn];
int f[maxn];
void go2(int | I, int r) {
    if (1 + 1 == r) return;
    int M = (1 + r) >> 1;
    go2(1, m); go2(m, r);
   FOR (i, I, m) b[i].d2 = 0;
   FOR (i, m, r) b[i].d2 = 1;
   merge(b + I, b + m, b + m, b + r,
       c + 1, [](const P& a, const P&
       b) -> bool {
            if (a.y != b.y) return a.y
                < b.y;
            return a.d2 > b.d2;
        });
    int mx = -1;
   FOR (i, l, r) {
        if (c[i].d1 && c[i].d2) *c[i].
           f = max(*c[i].f, mx + 1);
        if (!c[i].d1 \&\& !c[i].d2) mx =
            max(mx, *c[i].f);
   FOR (i, I, r) b[i] = c[i];
```

```
}
void go1(int | r) { // [1, r)
    if (1 + 1 == r) return;
    int m = (1 + r) >> 1;
    go1(1, m);
    FOR (i, l, m) a[i].d1 = 0;
    FOR (i, m, r) a[i].d1 = 1;
    copy(a + 1, a + r, b + 1);
    sort(b + I, b + r, [](const P& a,
       const P& b) -> bool {
            if (a.x != b.x) return a.x
                < b.x;
            return a.d1 > b.d1;
        });
    go2(I, r);
    go1(m, r);
```

2.13 Persistent Segment Tree

```
namespace tree {
# define mid ((l + r) >> 1)
#define Ison I, mid
# define rson mid + 1, r
    const int MAGIC = M * 30;
    struct P {
        int sum, ls, rs;
   tr[MAGIC] = \{\{0, 0, 0\}\};
    int SZ = 1;
    int N(int sum, int Is, int rs) {
        if (sz == MAGIC) assert(0);
        tr[sz] = \{sum, ls, rs\};
        return SZ++;
   int ins (int O, int X, int V, int I
        = 1, int r = ls) {
        if (X < | | | X > r) return 0;
        const P& t = tr[o];
        if (I == r) return N(t.sum + v)
           , 0, 0);
        return N(t.sum + v, ins(t.ls,
           x, v, lson), ins(t.rs, x, v
           , rson));
    int query (int O, int ql, int qr,
       int I = 1, int r = Is) {
```

```
if (q > r | | > qr) return
                                                  return N(t.w + d, add(t.ls,
                                                    lson, x, d), add(t.rs, rson
        const P& t = tr[o];
                                                     , x, d));
        if (q < = 1 \& r < = qr) return
            t .sum:
                                             int Is_sum(const VI& rt) {
        return query (t.ls, ql, qr,
                                                 int ret = 0;
           lson) + query(t.rs, ql, qr,
                                                 FOR (i, 0, rt.size())
            rson);
                                                     ret += tr[tr[rt[i]].ls].w;
                                                  return ret;
                                             inline void Is(VI& rt) { transform
// kth
                                                 (rt.begin(), rt.end(), rt.begin
int query (int pp, int qq, int 1, int r
                                                 (), [&](int X)->int{ return tr[
   , int k) \{ // (pp, qq) \}
    if ( | == r) return | ;
                                                 x].ls; }); }
                                             inline void rs(VI& rt) { transform
    const P &p = tr[pp], &q = tr[qq];
    int w = tr[q.ls].w - tr[p.ls].w;
                                                 (rt.begin(), rt.end(), rt.begin
    if (k \le w) return query (p.ls, q)
                                                 (), [\&](int X) \rightarrow int \{ return tr[
       Is, Ison, k);
                                                 x].rs; }); }
    else return query (p.rs, q.rs, rson
                                             int query (VI&p, VI&q, int I, int
       , k - w);
                                                  r, int k) {
}
                                                  if (| == r) return | ;
                                                 int w = ls_sum(q) - ls_sum(p);
                                                  if (k \le w) 
Is(p); Is(q);
// with bit
                                                      return query(p, q, Ison, k
);
typedef Vector<int > VI;
struct TREE {
                                                  else {
                                                     rs(p); rs(q);
# define mid ((l + r) >> 1)
#define Ison I, mid
                                                     return query(p, q, rson, k
# define rson mid + 1, r
                                                          - w);
    struct P {
        int W, Is, rs;
    } tr[maxn * 20 * 20];
                                         } tree:
    int SZ = 1;
                                         struct BIT {
    TREE() { tr[0] = \{0, 0, 0\}; \}
                                             int root[maxn];
    int N(int W, int IS, int rS) {
                                             void init() { memset(root, 0,
        tr[sz] = \{w, ls, rs\};
                                                 size of root); }
        return SZ++;
                                             inline int lowbit (int X) { return
                                                 x \& -x;
                                             void update(int p, int X, int d) {
    int add(int tt, int 1, int r, int
                                                  for (int i = p; i <= m; i +=
       X, int d) {
        if (X < | | | r < x) return tt;
                                                    lowbit(i))
                                                     root[i] = tree.add(root[i
        const P& t = tr[tt];
                                                        ], 1, m, x, d);
        if (I == r) return N(t.w + d)
           0, 0);
```

```
int query (int 1, int r, int k) {
        VI p, q;
        for (int i = 1 - 1; i > 0; i
           -= lowbit(i)) p.push_back(
           root[i]);
        for (int i = r; i > 0; i = r
           lowbit(i)) g.push_back(root
           [i]);
        return tree.query(p, q, 1, m,
           k);
void init() {
   m = 10000;
   tree.sz = 1;
   bit.init();
   FOR (i, 1, m + 1)
        bit.update(i, a[i], 1);
```

2.14 Persistent Union Find

```
namespace Uf {
    int fa[maxn], sz[maxn];
    int undo [maxn], top;
    void init() { memset(fa, -1,
       size of fa); memset(sz, 0,
       size of SZ); top = 0; }
    int findset(int x) { while (fa[x]
       != -1) x = fa[x]; return x; }
   bool join(int X, int Y) {
       x = findset(x); y = findset(y)
        if (X == Y) return false;
       if (sz[x] > sz[y]) swap(x, y);
       undo[top++] = x;
       fa[x] = y;
       sz[y] += sz[x] + 1;
        return true;
   inline int checkpoint() { return
       top; }
    void rewind(int t) {
        while (top > t) {
            int x = undo[--top];
            sz[fa[x]] -= sz[x] + 1;
```

```
fa[x] = -1;
}
}
```

3 Math

3.1 Multiplication, Powers

```
LL mul(LL u, LL v, LL p) {
    return (U * V - LL ((long double) U
        * v / p) * p + p) % p;
LL mul(LL u, LL v, LL p) { // better
   LL t = u * V - LL((long double) U
       * v / p) * p;
    return t < 0? t + p: t;
LL bin(LL x, LL n, LL MOD) {
    n \% = (MOD - 1); // if MOD is prime
    LL ret = MOD != 1;
    for (x \% = MOD; n; n >>= 1, x = mul
       (x, x, MOD))
        if (n & 1) ret = mul(ret, x,
           MOD);
    return ret;
}
```

3.2 Matrix Power

```
struct Mat {
    static const LL M = 2;
   LL v[M][M];
   Mat() \{ memset(v, 0, sizeof V); \}
    void eye() { FOR (i, 0, M) v[i][i]
        = 1; }
   LL* operator [] (LL X) { return V[
       x]; }
    const LL* operator [] (LL X) const
        \{ return V[X]; \}
   Mat operator * (const Mat& B) {
        const Mat& A = *this;
        Mat ret;
        FOR (k, 0, M)
            FOR (i, 0, M) if (A[i][k])
                FOR (j, 0, M)
                    ret[i][j] = (ret[i
```

```
[j] + A[i][k]
                    * B[k][j]) %
                    MOD;
    return ret;
Mat pow(LL n) const {
    Mat A = *this, ret; ret.eye();
    for (; n; n >>= 1, A = A * A)
        if (n & 1) ret = ret * A;
    return ret;
Mat operator + (const Mat& B) {
    const Mat& A = *this;
    Mat ret;
    FOR (i, 0, M)
        FOR (j, 0, M)
             ret[i][j] = (A[i][j]
                 + B[i][j]) % MOD;
    return ret;
void Prt() const {
    FOR (i, 0, M)
        FOR (j, 0, M)
             printf("%||d%c", (*
                 this)[i][j], j ==
                M - 1 ? '\n' : ' '
                 );
```

3.3 Sieve

```
const LL p_max = 1E5 + 100;
LL phi[p_max];
void get_phi() {
    phi[1] = 1;
    static bool vis[p_max];
    static LL prime[p_max], p_sz, d;
    FOR (i, 2, p_max) {
        if (!vis[i]) {
            prime[p_sz++] = i;
            phi[i] = i - 1;
        }
        for (LL j = 0; j < p_sz && (d
            = i * prime[j]) < p_max; ++
        j) {
            vis[d] = 1;
        }
}</pre>
```

```
if (i % prime[j] == 0) {
                 phi[d] = phi[i] *
                    prime[j];
                 break;
             else phi[d] = phi[i] * (
               prime[j] - 1);
// mobius
const LL p_max = 1E5 + 100;
LL mu[p_max];
void get_mu() {
    mu[1] = 1;
    static bool VIS [p_max];
    static LL prime[p_max], p_sz, d;
    mu[1] = 1;
    FOR (i, 2, p_max) {
        if (!vis[i]) {
            prime[p_sz++] = i;
            mu[i] = -1;
        for (LL j = 0; j < p_sz && (d)
           = i * prime[j]) < p_max; ++
            j) {
            vis[d] = 1;
            if (i % prime[j] == 0) {
                mu[d] = 0;
                 break;
             else mu[d] = -mu[i];
    }
}
// min_25
namespace min25 {
    const int M = 1E6 + 100;
    LL B, N;
    // g(x)
    in line LL pg(LL x) { return 1; }
    inline LL ph(LL x) { return x \%
       MOD; }
    // Sum [g(i),{x,2,x}]
    inline LL psq(LL x) { return x %
       MOD - 1: }
```

```
inline LL psh(LL x) {
                                                  if (p * p > X) break;
                                                                                    void init() {
    static LL inv2 = (MOD + 1) /
                                                  ans -= fgh(pg(p), ph(p));
                                                                                        static bool VIS[M];
        2;
                                                  for (LL pp = p, e = 1; pp)
                                                                                        static LL pr[M], p_sz, d;
    x = x \% MOD;
                                                      <= x; ++e, pp = pp * p)
                                                                                        FOR (i, 2, M) {
                                                      ans += fpk(p, e, pp) *
                                                                                            if (!vis[i]) { pr[p_sz++]
    return X * (x + 1) % MOD *
       inv2 % MOD - 1;
                                                           (1 + go(x / pp, i)
                                                                                               = i; f[i] = -1; 
}
                                                          ) % MOD;
                                                                                            FOR (i, 0, p_sz) {
                                                                                                if ((d = pr[i] * i) >=
// f(pp = p^k)
inline LL fpk(LL p, LL e, LL pp) {
                                              return ans % MOD;
                                                                                                    M) break;
                                                                                                vis[d] = 1:
     return (pp - pp / p) % MOD; }
// f(p) = fgh(g(p), h(p))
                                          LL solve(LL _N) {
                                                                                                if (i \% pr[i] == 0) {
inline LL fgh(LL g, LL h) { return
                                                                                                    f[d] = 0;
                                              N = N:
                                              B = sqrt(N + 0.5);
    h - q; 
                                                                                                     break;
                                              get_prime(B);
                                                                                                else f[d] = -f[i];
LL pr[M], pc, sq[M], sh[M];
                                              int SZ = 0;
                                              for (LL I = 1, V, r; I <= N; I
void get_prime(LL n) {
                                                                                        FOR (i, 2, M) f[i] += f[i -
    static bool vis[M]; pc = 0;
                                                  = r + 1) {
                                                  v = N / I; r = N / v;
                                                                                           1];
    FOR (i, 2, n + 1) {
                                                  w[sz] = v; g[sz] = psg(v);
        if (! vis[i]) {
                                                                                    in line LL s_fg(LL n) { return 1; }
            pr[pc++] = i;
                                                      h[sz] = psh(v);
                                                  if (v \le B) id1[v] = sz;
            sq[pc] = (sq[pc - 1] +
                                                                                    in line LL S_q(LL n) { return n; }
                 pg(i)) % MOD;
                                                      else id2[r] = sz;
            sh[pc] = (sh[pc - 1] +
                                                  SZ++;
                                                                                    LL N. rd M:
                 ph(i)) % MOD;
                                                                                    bool vis [M];
                                              FOR (k, 0, pc) {
                                                                                    LL go(LL n) {
        FOR (j, 0, pc) {
                                                  LL p = pr[k];
                                                                                        if (n < M) return f[n];
             if (pr[i] * i > n)
                                                  FOR (i, 0, sz) {
                                                                                        LL id = N / n;
                                                      LL v = w[i]; if (p * p)
                                                                                        if (vis[id]) return rd[id];
                break:
            vis[pr[i] * i] = 1;
                                                           > V) break;
                                                                                        vis[id] = true;
            if (i \% pr[i] == 0)
                                                      LL t = id(v / p);
                                                                                        LL& ret = rd[id] = s_fq(n);
                                                      q[i] = (q[i] - (q[t] -
                                                                                        for (LL I = 2, v, r; I <= n; I
                break;
        }
                                                                                            = r + 1) {
                                                           sg[k]) * pg(p)) %
                                                                                            v = n / I; r = n / v;
    }
                                                         MOD;
                                                                                            ret -= (s_g(r) - s_g(l -
}
                                                      h[i] = (h[i] - (h[t] -
LL w[M];
                                                           sh[k]) * ph(p)) %
                                                                                               1)) * go(v);
LL id1[M], id2[M], h[M], g[M];
                                                         MOD;
inline LL id(LL X) { return X \le B
                                                                                        return ret;
    ? id1[x] : id2[N / x]; }
                                                                                    LL solve(LL n) {
LL go(LL x, LL k) {
                                              return (go(N, -1) \% MOD + MOD)
    if (x <= 1 || (k >= 0 && pr[k])
                                                 + 1) % MOD;
                                                                                        N = n:
         > X)) return 0;
                                                                                        memset(vis, 0, size of vis);
    LL t = id(x);
                                                                                        return go(n);
    LL ans = fgh((g[t] - sg[k +
                                                                                   }
                                      // see cheatsheet for instructions
        1]), (h[t] - sh[k + 1]);
                                      namespace dujiao {
    FOR (i, k + 1, pc) {
                                          const int M = 5E6;
        LL p = pr[i];
                                          LL f[M] = \{0, 1\};
                                                                               3.4 Prime Test
```

```
ьоог checkQ(LL a, LL n) {
    if (n == 2 || a >= n) return 1;
    if (n == 1 || !(n \& 1)) return 0;
    LL d = n - 1;
    while (!(d \& 1)) d >>= 1;
    LL t = bin(a, d, n); // usually
       needs mul-on-LL
    while (d != n - 1 \&\& t != 1 \&\& t
       != n - 1) {
        t = mul(t, t, n);
        d <<= 1;
    return t == n - 1 || d & 1;
}
bool primeQ(LL n) {
    static vector<LL> t = \{2, 325,
       9375, 28178, 450775, 9780504,
       1795265022};
    if (n \le 1) return false;
    for (LL k: t) if (!checkQ(k, n))
        return false;
    return true;
}
```

3.5 Pollard-Rho

```
mt19937 mt(time(0));
LL pollard_rho(LL n, LL c) {
    LL x = uniform_int_distribution <LL
       >(1, n - 1)(mt), y = x;
    auto f = [\&](LL v) \{ LL t = mul(v,
        (v, n) + C; return t < n ? t:
       t - n; };
    while (1) {
        x = f(x); y = f(f(y));
        if (X == Y) return n;
        LL d = gcd(abs(x - y), n);
        if (d != 1) return d;
    }
}
LL fac[100], fcnt;
void get_fac(LL n, LL cc = 19260817) {
    if (n == 4) \{ fac[fcnt++] = 2; fac \}
       [fcnt++] = 2; return; 
    if (primeQ(n)) { fac[fcnt++] = n;
       return; }
    LL p = n;
```

3.6 Berlekamp-Massey

```
namespace BerlekampMassey {
    inline void Up(LL& a, LL b) { (a
       += b) %= MOD; }
   V mul(const V&a, const V&b, const
        V\& m, int k) {
       V r; r.resize(2 * k - 1);
       FOR (i, 0, k) FOR (j, 0, k) up
           (r[i + j], a[i] * b[j]);
       FORD (i, k - 2, -1) {
           FOR (j, 0, k) up(r[i + j],
                r[i + k] * m[i]);
            r.pop_back();
        return r;
   V pow(LL n, const V& m) {
        int k = (int) m. size() - 1;
           assert (m[k] == -1 \mid |m[k]
           == MOD - 1);
       V r(k), x(k); r[0] = x[1] = 1;
        for (; n; n >>= 1, x = mul(x)
           x, m, k))
           if (n \& 1) r = mul(x, r, m)
               , k);
        return [;
   LL go (const V& a, const V& x, LL n
        // a: (-1, a1, a2, ..., ak).
           reverse
        // x: x1, x2, ..., xk
        // x[n] = sum[a[i]*x[n-i],{i}
           ,1,k}]
        int k = (int) a.size() - 1;
        if (n \le k) return x[n-1];
        if (a.size() == 2) return x[0]
            * bin(a[0], n - 1, MOD) %
           MOD:
       V r = pow(n - 1, a);
       LL ans = 0;
```

```
FOR (i, 0, k) up (ans, r[i] * x)
       [i]);
    return (ans + MOD) % MOD;
V BM(const V& x) {
    V a = \{-1\}, b = \{233\}, t;
    FOR (i, 1, x.size()) {
        b.push_back(0);
        LL d = 0, Ia = a.size(),
           lb = b.size();
        FOR (i, 0, la) up(d, a[i]
           * x[i - la + 1 + j]);
        if (d == 0) continue;
        t.clear(); for (auto& v: b
           ) t.push_back(d * v %
           MOD);
        FOR (_, 0, la - lb) t.
           push_back(0);
        lb = max(la, lb);
        FOR (j, 0, la) up(t[lb - 1
            - j], a[la - 1 - j]);
        if (lb > la) {
            b.swap(a);
            LL inv = -get_inv(d,
               MOD);
            for (auto \& V: b) V = V
                 * inv % MOD;
        a.swap(t);
    for (auto & v: a) up(v, MOD);
    return a;
```

3.7 Extended Euclidean

```
LL gcd(LL a, LL b) {
    if (!a) return b; if (!b) return a
    ;
    int t = ctz(a | b);
    a >>= ctz(a);
    do {
        b >>= ctz(b);
        if (a > b) swap(a, b);
        b -= a;
    } while (b);
    return a << t;
}

3.8 Inverse
// if p is prime
inline LL get_inv(LL x, LL p) { return</pre>
```

```
inline LL get_inv(LL x, LL p) { return
    bin(x, p - 2, p); 
// if p is not prime
LL get_inv(LL a, LL M) {
   static LL X, Y;
   assert(exgcd(a, M, x, y) == 1);
   return (x \% M + M) \% M;
LL inv[N];
void inv_init(LL n, LL p) {
   inv[1] = 1;
   FOR (i, 2, n)
       inv[i] = (p - p / i) * inv[p %]
           il % p;
LL invf[M], fac[M] = \{1\};
void fac_inv_init(LL n, LL p) {
   FOR (i, 1, n)
       fac[i] = i * fac[i - 1] % p;
   invf[n-1] = bin(fac[n-1], p-
      2, p);
   FORD (i, n - 2, -1)
       invf[i] = invf[i + 1] * (i +
          1) % p;
```

3.9 Binomial Numbers

```
inline LL C(LL n, LL m) { // n >= m >=
```

```
return n < m \mid | m < 0 ? 0 : fac[n]
        * invf[m] % MOD * invf[n - m]
       % MOD;
// The following code reverses n and m
LL C(LL n, LL m) { // m >= n >= 0
    if (m - n < n) n = m - n;
    if (n < 0) return 0;
    LL ret = 1;
    FOR (i, 1, n + 1)
        ret = ret * (m - n + i) % MOD
           * bin(i, MOD - 2, MOD) %
           MOD:
    return ret;
LL Lucas(LL n, LL m) \{ // m >= n >= 0 \}
    return m? C(n % MOD, m % MOD) *
       Lucas(n / MOD, m / MOD) % MOD :
        1;
// precalculations
LL C[M][M];
void init_C(int n) {
    FOR (i, 0, n) {
       C[i][0] = C[i][i] = 1;
        FOR (j, 1, i)
            C[i][j] = (C[i - 1][j] + C
                [i - 1][i - 1]) \% MOD;
```

3.10 NTT, FFT, FWT

```
// NTT
LL wn[N << 2], rev[N << 2];
int NTT_init(int n_) {
   int step = 0; int n = 1;
   for (; n < n_; n <<= 1) ++step;
   FOR (i, 1, n)
       rev[i] = (rev[i >> 1] >> 1) |
            ((i & 1) << (step - 1));
   int g = bin(G, (MOD - 1) / n, MOD)
   ;
   wn[0] = 1;
   for (int i = 1; i <= n; ++i)
       wn[i] = wn[i - 1] * g % MOD;</pre>
```

```
return n;
void NTT(LL a[], int N, int f) {
    FOR (i, 0, n) if (i < rev[i])
        std::swap(a[i], a[rev[i]]);
    for (int k = 1; k < n; k <<= 1) {
        for (int i = 0; i < n; i += (k)
            << 1)) {
            int t = n / (k << 1);
            FOR (j, 0, k) {
                LL w = f == 1 ? wn[t *
                    j] : wn[n - t * j
                    1;
                LL x = a[i + j];
                LL y = a[i + j + k] *
                   w % MOD:
                a[i + j] = (x + y) %
                   MOD:
                a[i + j + k] = (x - y)
                    + MOD) % MOD;
    if (f == -1) {
        LL ninv = get_inv(n, MOD);
        FOR (i, 0, n)
            a[i] = a[i] * ninv % MOD;
// FFT
// n needs to be power of 2
typedef double LD;
const LD PI = acos(-1);
struct C {
    LD r, i;
    C(LD r = 0, LD i = 0): r(r), i(i)
};
C operator + (const C& a, const C& b)
    return C(a.r + b.r, a.i + b.i);
C operator - (const C& a, const C& b)
    return C(a.r - b.r, a.i - b.i);
```

```
Coperator * (const C& a, const C& b)
    return C(a.r * b.r - a.i * b.i, a.
       r * b.i + a.i * b.r);
void FFT(C \times [], int N, int P) {
    for (int i = 0, t = 0; i < n; ++i)
        if (i > t) swap(x[i], x[t]);
        for (int j = n >> 1; (t ^= j)
           < i; i >>= 1);
    for (int h = 2; h <= n; h <<= 1) {
        C \text{ wn}(\cos(p * 2 * PI / h), \sin(
           p * 2 * PI / h));
        for (int i = 0; i < n; i += h)
            C w(1, 0), u;
            for (int j = i, k = h >>
                1; j < i + k; ++j) {
                u = x[j + k] * w;
                 x[j + k] = x[j] - u;
                 x[j] = x[j] + u;
                w = w * wn;
        }
    if (p == -1)
        FOR (i, 0, n)
           x[i].r /= n;
void conv(C a[], C b[], int n) {
    FFT(a, n, 1);
    FFT(b, n, 1);
    FOR (i, 0, n)
        a[i] = a[i] * b[i];
    FFT(a, n, -1);
}
// C_k = \sum_{i=1}^{n} \{i \in A_i \mid B_j \}
template \leq typename T>
void fwt(LL a[], int n, T f) {
    for (int d = 1; d < n; d_* = 2)
        for (int i = 0, t = d * 2; i < 0
            n; i += t
```

```
FOR (j, 0, d)
                f(a[i + j], a[i + j +
                    d]);
void AND(LL& a, LL& b) { a += b; }
void OR(LL\& a, LL\& b) \{ b += a; \}
void XOR (LL& a, LL& b) {
    LL x = a, y = b;
    a = (x + y) \% MOD;
    b = (x - y + MOD) \% MOD;
void rAND(LL& a, LL& b) { a \rightarrow b; }
void rOR(LL\& a, LL\& b) \{ b = a; \}
void rXOR(LL& a, LL& b) {
    static LL INV2 = (MOD + 1) / 2;
    LL x = a, y = b;
    a = (x + y) * INV2 % MOD;
    b = (x - y + MOD) * INV2 % MOD;
}
FWT subset convolution
a[popcount(x)][x] = A[x]
b[popcount(x)][x] = B[x]
fwt(a[i]) fwt(b[i])
c[i + j][x] += a[i][x] * b[j][x]
rfwt (c[i])
ans [x] = c[popcount(x)][x]
```

3.11 Simpson's Numerical Integration

```
LD simpson(LD |, LD r) {
    LD c = (| + r) / 2;
    return (f(|) + 4 * f(c) + f(r)) *
        (r - |) / 6;
}

LD asr(LD |, LD r, LD eps, LD S) {
    LD m = (| + r) / 2;
    LD L = simpson(|, m), R = simpson(
        m, r);
    if (fabs(L + R - S) < 15 * eps)
        return L + R + (L + R - S) /
    15;
```

return asr(l, m, eps / 2, L) + asr

```
(m, r, eps / 2, R);
}
LD asr(LD |, LD r, LD eps) { return
    asr(|, r, eps, simpson(|, r)); }
```

3.12 Gauss Elimination

```
// n equations, m variables
// a is an n x (m + 1) augmented
    matrix
// free is an indicator of free
// return the number of free variables
   , -1 for "404"
int n, m;
LD a [maxn] [maxn], x [maxn];
ь о o i free_x [maxn];
in line int sgn(LD x) { return (x > eps)
   -(x < -eps);
int gauss(LD a[maxn][maxn], int n, int
    m) {
 memset(free_x , 1, size of free_x);
     memset(x, 0, size of X);
  int r = 0, c = 0;
  while (r < n \&\& c < m) {
    int m_r = r;
    FOR (i, r + 1, n)
      if (fabs(a[i][c]) > fabs(a[m_r][
         cl)) m_r = i;
    if (m_r != r)
      FOR (j, c, m + 1)
         swap(a[r][j], a[m_r][j]);
    if (!sgn(a[r][c])) {
      a[r][c] = 0; ++c;
      continue;
    FOR (i, r + 1, n)
      if (a[i][c]) {
        LD t = a[i][c] / a[r][c];
        FOR (j, c, m + 1) a[i][j] -= a
           [r][j] * t;
    ++r; ++c;
  FOR (i, r, n)
    if (sgn(a[i][m])) return -1;
```

```
if (r < m) {
 FORD (i, r - 1, -1) {
    int f_{cnt} = 0, k = -1;
    FOR (j, 0, m)
      if (sgn(a[i][j]) && free_x[j])
        ++f_{cnt}; k = j;
    if (f_{cnt} > 0) continue;
    LD s = a[i][m];
    FOR (j, 0, m)
      if (j != k) s -= a[i][j] * x[j]
         1;
    x[k] = s / a[i][k];
    free_x[k] = 0;
  return m - r;
FORD (i, m - 1, -1) {
 LD s = a[i][m];
 FOR (j, i + 1, m)
    s -= a[i][j] * x[j];
  x[i] = s / a[i][i];
return 0;
```

3.13 Factor Decomposition

3.14 Primitive Root

3.15 Quadratic Residue

```
LL q1, q2, w;
struct P \left\{ // x + y * sqrt(w) \right\}
    LL x, y;
P pmul(const P& a, const P& b, LL p) {
    res.x = (a.x * b.x + a.y * b.y % p
        * w) % p;
    res.y = (a.x * b.y + a.y * b.x) %
       p;
    return res;
P bin (P x, LL n, LL MOD) {
    P ret = \{1, 0\};
    for (; n; n >>= 1, x = pmul(x, x,
       MOD))
        if (n \& 1) ret = pmul(ret, x,
           MOD);
    return ret;
LL Legendre (LL a, LL p) { return bin(a
   (p-1) >> 1, p);
LL equation_solve(LL b, LL p) {
    if (p == 2) return 1;
    if ((Legendre(b, p) + 1) \% p == 0)
```

```
return -1;
   LL a:
    while (true) {
        a = rand() \% p;
       w = ((a * a - b) % p + p) % p;
        if ((Legendre(w, p) + 1) % p
           ==0)
            break;
    return bin({a, 1}, (p + 1) >> 1, p
       ) . x ;
// Given a and prime p, find x such
   that x * x = a \pmod{p}
int main() {
   LL a, p; cin >> a >> p;
   a = a \% p;
   LL x = equation_solve(a, p);
    if (x == -1) {
        puts("No root");
   } else {
       LL v = p - x;
        if (x == y) cout << x << endl;
        else cout << min(x, y) << ""
           << max(x, y) << endl;
```

3.16 Chinese Remainder Theorem

```
LL CRT(LL *m, LL *r, LL n) {
    if (!n) return 0;
    LL M = m[0], R = r[0], x, y, d;
    FOR (i, 1, n) {
        d = ex_gcd(M, m[i], x, y);
        if ((r[i] - R) % d) return -1;
        x = (r[i] - R) / d * x % (m[i] / d);
        R += x * M;
        M = M / d * m[i];
        R %= M;
    }
    return R >= 0 ? R : R + M;
}
```

3.17 Bernoulli Numbers

```
namespace Bernoulli {
    LL inv [M] = \{-1, 1\};
    LL C[M][M];
    void init();
    LL B[M] = \{1\};
    void init() {
        inv_init(M, MOD);
        init_C (M);
        FOR (i, 1, M - 1) {
            LL\& s = B[i] = 0;
            FOR (j, 0, i)
                s += C[i + 1][j] * B[j]
                    ] % MOD;
            s = (s \% MOD * -inv[i + 1]
                 % MOD + MOD) % MOD;
        }
   LL p[M] = \{1\};
   LL go(LL n, LL k) {
        n %= MOD;
        if (k == 0) return n;
        FOR (i, 1, k + 2)
            p[i] = p[i - 1] * (n + 1)
                % MOD;
        LL ret = 0;
        FOR (i, 1, k + 2)
            ret += C[k + 1][i] * B[k +
                1 - i % MOD * p[i] %
               MOD;
        ret = ret \% MOD * inv[k + 1] \%
            MOD;
        return ret;
    }
}
```

3.18 Simplex Method

```
// x = 0 should satisfy the
    constraints
// initialize v to be 0
// n is dimension of vector, m is
    number of constraints
// min { b x } / max { c x }
// A x >= c / A x <= b
// x >= 0
namespace | p {
    int n, m;
```

}

```
double a[M][N], b[M], c[N], v;
void pivot(int | , int e) {
    b[I] /= a[I][e];
    FOR (j, 0, n) if (j != e) a[l
       ][i] /= a[l][e];
    a[I][e] = 1 / a[I][e];
    FOR (i, 0, m)
        if (i != | && fabs(a[i][e
           ]) > 0) {
            b[i] -= a[i][e] * b[l
               1;
            FOR (j, 0, n)
                 if (j != e) a[i][j
                    ] -= a[i][e] *
                    a[l][j];
            a[i][e] = -a[i][e] * a
                [|][e];
        }
    v += c[e] * b[1];
    FOR (j, 0, n) if (j != e) c[j]
        -= c[e] * a[l][i];
    c[e] = -c[e] * a[I][e];
double simplex() {
    while (1) {
        v = 0:
        int e = -1, I = -1;
        FOR (i, 0, n) if (c[i] >
            eps) \{ e = i; break; \}
        if (e == -1) return V;
        double t = INF;
        FOR (i, 0, m)
            if (a[i][e] > eps && t
                 > b[i] / a[i][e])
                t = b[i] / a[i][e
                    ];
                 I = i;
        if (I == -1) return INF;
        pivot(I, e);
}
```

3.19 BSGS

```
// p is a prime
LL BSGS(LL a, LL b, LL p) \{ // a^x = b \}
    (mod p)
    a \% = p;
    if (!a && !b) return 1;
    if (!a) return -1;
    static map<LL, LL> mp; mp.clear();
    LL m = sqrt(p + 1.5);
    LL v = 1;
    FOR (i, 1, m + 1) {
        v = v * a % p;
       mp[v * b % p] = i;
    LL vv = v:
    FOR (i, 1, m + 1) {
        auto it = mp. find(vv);
        if (it != mp.end()) return i *
            m - it ->second:
        vv = vv * v % p;
    return -1;
// p can be not a prime
LL exBSGS(LL a, LL b, LL p) \{ // a^x = 
    b (mod p)
    a %= p; b %= p;
    if (a == 0) return b > 1 ? -1 : b
       == 0 && p != 1;
    LL c = 0, q = 1;
    while (1) {
        LL g = \_gcd(a, p);
        if (g == 1) break;
        if (b == 1) return C;
        if (b \% q) return -1;
        ++c; b /= g; p /= g; q = a / g
            * q % p;
    static map<LL, LL> mp; mp.clear();
    LL m = sqrt(p + 1.5);
    LL v = 1:
    FOR (i, 1, m + 1) {
        v = v * a % p;
        mp[v * b % p] = i;
```

```
FOR (i, 1, m + 1) {
    q = q * v % p;
    auto it = mp.find(q);
    if (it != mp.end()) return i *
        m - it -> second + c;
}
return -1;
}
```

4 Graph Theory

4.1 LCA

```
void dfs (int U, int fa) {
    pa[u][0] = fa; dep[u] = dep[fa] +
       1;
   FOR (i, 1, SP) pa[u][i] = pa[pa[u]
       [[i - 1]][i - 1];
    for (int & v: G[u]) {
        if (V == fa) continue;
        dfs(v, u);
int Ica(int U, int V) {
    if (dep[u] < dep[v]) swap(u, v);</pre>
    int t = dep[u] - dep[v];
   FOR (i, 0, SP) if (t & (1 << i)) u
        = pa[u][i];
   FORD (i, SP - 1, -1) {
        int uu = pa[u][i], vv = pa[v][
           i];
        if (uu != vv) \{ u = uu; v = vv \}
    return u == v ? u : pa[u][0];
}
```

4.2 Maximum Flow

```
struct E {
    int to, cp;
    E(int to, int cp): to(to), cp(cp)
        {}
};

struct Dinic {
    static const int M = 1E5 * 5;
    int M, S, t;
```

```
vector < E > edges;
vector < int > G[M];
int d[M];
int cur[M];
void init(int N, int S, int t) {
    this \rightarrow S = S; this \rightarrow t = t;
    for (int i = 0; i <= n; i++) G
        [i].clear();
    edges.clear(); m = 0;
void addedge (int U, int V, int cap
    edges.emplace_back(v, cap);
    edges.emplace_back(u, 0);
    G[u].push_back(m++);
    G[v]. push_back(m++);
bool BFS() {
    memset(d, 0, size of d);
    queue<int > Q;
    Q.push(s); d[s] = 1;
    while (!Q.empty()) {
         int x = Q.front(); Q.pop()
         for (int \& i : G[x]) {
             E \&e = edges[i];
             if (!d[e.to] && e.cp >
                  0) {
                 d[e.to] = d[x] +
                     1;
                 Q.push(e.to);
        }
    return d[t];
int DFS(int U, int Cp) {
    if (u == t \mid \mid !cp) return cp;
    int tmp = cp, f;
    for (int \& i = cur[u]; i < G[u])
        ]. size(); i++) {
        E\& e = edges[G[u][i]];
         if (d[u] + 1 == d[e.to]) {
             f = DFS(e.to, min(cp,
                 e.cp));
             e.cp -= f;
```

4.3 Minimum Cost Maximum Flow

```
struct E {
   int from, to, cp, v;
   E() {}
   E(int f, int t, int Cp, int V):
       from (f), to (t), cp (cp), v(v) \{\}
struct MCMF {
   int N, M, S, t;
   vector < E > edges :
   vector<int > G[maxn];
   ьоог ing [maxn];
   int d[maxn]; // shortest path
    int p[maxn]; // the last edge id
       of the path from s to i
    int a [maxn]; // least remaining
       capacity from s to i
    void init (int _n, int _s, int _t)
    void addedge (int from, int to, int
        cap, int cost) {
       edges.emplace_back(from, to,
           cap, cost);
       edges emplace_back(to, from,
           0, -cost);
       G[from].push_back(m++);
       G[to].push_back(m++);
```

```
bool BellmanFord(int &flow, int &
   cost) {
   FOR (i, 0, n + 1) d[i] = INF;
   memset(inq, 0, size of inq);
   d[s] = 0, a[s] = INF, inq[s] =
        true;
    queue<int > Q; Q.push(s);
    while (!Q.empty()) {
        int u = Q.front(); Q.pop()
        inq[u] = false;
        for (int \& idx : G[u]) {
            E &e = edges[idx];
            if (e.cp && d[e.to] >
               d[u] + e.v) {
                d[e.to] = d[u] + e
                    . V ;
                p[e.to] = idx;
                a[e.to] = min(a[u])
                    ], e.cp);
                if (!inq[e.to]) {
                    Q.push(e.to);
                    ing[e.to] =
                        true;
        }
    if (d[t] == INF) return false;
    flow += a[t];
    cost += a[t] * d[t];
    int u = t;
    while (u != s) {
        edges[p[u]].cp -= a[t];
        edges[p[u] ^ 1].cp += a[t
           1:
        u = edges[p[u]].from;
    return true;
int qo() {
    int flow = 0, cost = 0;
    while (BellmanFord(flow, cost)
       );
```

```
return COST;
}
MM;
```

4.4 Path Intersection on Trees

```
int intersection(int X, int y, int XX,
    int yy) {
    int t[4] = {|ca(x, xx), |ca(x, yy)
        , |ca(y, xx), |ca(y, yy)};
    sort(t, t + 4);
    int r = |ca(x, y), |rr = |ca(xx, yy);
    if (dep[t[0]] < min(dep[r], |dep[rr])
        | | |dep[t[2]] < max(dep[r], |dep[rr]))
        return 0;
    int tt = |ca(t[2], t[3]);
    int ret = 1 + |dep[t[2]] + |dep[t[3]] - |dep[tt]| * 2;
    return ret;
}</pre>
```

4.5 Centroid Decomposition (Divide Conquer)

```
int get_rt(int u) {
    static int q[N], fa[N], sz[N], mx[
       N1:
    int p = 0, cur = -1;
   q(p++) = u; fa(u) = -1;
    while (++cur < p)
        u = q[cur]; mx[u] = 0; sz[u] =
            1;
        for (int& V: G[u])
            if (!vis[v] && v != fa[u])
                fa[q[p++] = v] = u;
   FORD (i, p - 1, -1) {
       u = q[i];
        mx[u] = max(mx[u], p - sz[u]);
        if (mx[u] * 2 \le p) return u;
        sz[fa[u]] += sz[u];
       mx[fa[u]] = max(mx[fa[u]], sz[
           u]);
    assert(0);
```

```
void dfs(int u) {
            u = qet_rt(u);
            Vis[u] = true;
            get_dep(u, -1, 0);
            // ...
            for (E& e: G[u]) {
                int V = e.to;
                if (VIS[V]) continue;
                // ...
                dfs(v);
         // dynamic divide and conquer
         const int maxn = 15E4 + 100, INF = 1E9
         struct E {
            int to, d;
(Divide- vector <E> G[maxn];
         int n, Q, w[maxn];
        LL A, ans;
         bool vis[maxn];
         int sz[maxn];
         int get_rt(int u) {
            static int Q[N], fa[N], SZ[N], MX[
               N];
            int p = 0, cur = -1;
            q[p++] = u; fa[u] = -1;
            while (++cur < p) {
                u = q[cur]; mx[u] = 0; sz[u] =
                    1;
                for (int \& V: G[u])
                    if (!vis[v] && v != fa[u])
                        fa[q[p++] = v] = u;
            FORD (i, p - 1, -1) {
                u = q[i];
                mx[u] = max(mx[u], p - sz[u]);
                if (mx[u] * 2 \le p) return u;
```

```
sz[fa[u]] += sz[u];
        mx[fa[u]] = max(mx[fa[u]], sz[
           u]);
    assert(0);
int dep[maxn], md[maxn];
void get_dep(int u, int fa, int d) {
    dep[u] = d; md[u] = 0;
    for (E& e: G[u]) {
        int V = e.to;
        if (vis[v] || v == fa)
            continue;
        qet_dep(v, u, d + e.d);
        md[u] = max(md[u], md[v] + 1);
}
struct P {
    int W;
    LL s;
};
using VP = vector <P>;
struct R {
   VP *rt , *rt2;
    int dep;
};
VP pool[maxn << 1], *pit = pool;</pre>
vector < R > tr[maxn];
void qo(int u, int fa, VP* rt, VP* rt2
   ) {
    tr[u].push_back({rt, rt2, dep[u]})
    for (E& e: G[u]) {
        int V = e.to;
        if (v == fa || vis[v])
            continue;
        go(v, u, rt, rt2);
}
void dfs (int u) {
    u = get_rt(u);
    vis[u] = true;
```

```
get_dep(u, -1, 0);
    VP* rt = pit++; tr[u].push_back({
       rt, nullptr, 0});
    for (E& e: G[u]) {
        int V = e.to;
        if (VIS[V]) continue;
        go(v, u, rt, pit++);
        dfs(v);
bool cmp(const P& a, const P& b) {
   return a.w < b.w; }
LL query (VP& p, int d, int I, int r) {
    I = lower_bound(p.begin(), p.end()
       , P{I, -1}, cmp) - p.begin();
    r = upper_bound(p.begin(), p.end()
       P\{r, -1\}, cmp\} - p.begin() -
        1;
    return p[r].s - p[l - 1].s + 1LL_*
        (r - l + 1) * d;
int main() {
    cin >> n >> 0 >> A:
    FOR (i, 1, n + 1) scanf("%d", &w[i
       ]);
    FOR (_, 1, n) {
        int u, v, d; scanf("%d%d%d", &
           u, &v, &d);
        G[u].push_back(\{v, d\}); G[v].
           push_back({u, d});
    }
    dfs (1);
    FOR (i, 1, n + 1)
        for (R& x: tr[i]) {
            x.rt->push_back({w[i], x.
                dep });
            if (x.rt2) x.rt2->
                push_back({w[i], x.dep
                });
    FOR (it, pool, pit) {
        it ->push_back({-INF, 0});
        sort(it ->begin(), it ->end(),
```

```
cmp);
   FOR (i, 1, it ->size())
        (*it)[i].s += (*it)[i -
           1].s;
while (Q--) {
   int u; LL a, b; scanf("%d%lld%
      Ild", &u, &a, &b);
   a = (a + ans) \% A; b = (b +
       ans) % A;
   int I = min(a, b), r = max(a, b)
       b);
   ans = 0;
   for (R& x: tr[u]) {
       ans += query(*(x.rt), x.
           dep, I, r);
        if (x.rt2) ans -= query (*(
           x.rt2), x.dep, I, r);
   printf("%IId\n", ans);
```

4.6 Heavy-light Decomposition

```
// usage: hld::predfs(1, 1); hld::dfs
int fa[N], dep[N], idx[N], out[N],
   ridx [N];
namespace hld {
    int sz[N], son[N], top[N], clk;
    void predfs(int u, int d) {
        dep[u] = d; sz[u] = 1;
        int & maxs = son[u] = -1;
        for (int & V: G[u]) {
            if (v == fa[u]) continue;
            fa[v] = u;
            predfs(v, d + 1);
            sz[u] += sz[v];
            if (maxs == -1 \mid | sz[v] >
               sz[maxs]) maxs = v;
       }
   }
    void dfs (int U, int tp) {
       top[u] = tp; idx[u] = ++clk;
           ridx[clk] = u;
```

```
if (son[u] != -1) dfs(son[u],
       tp);
    for (int \& V: G[u])
        if (v != fa[u] \&\& v != son
           [u]) dfs(v, v);
    out[u] = clk:
template \leq typename T>
int QO(int U, int V, T&& f = [](
   int , int ) {}) {
    int uu = top[u], vv = top[v];
    while (uu != vv) {
        if (dep[uu] < dep[vv]) {</pre>
            swap(uu, vv); swap(u, v
           ); }
        f(idx[uu], idx[u]);
        u = fa[uu]; uu = top[u];
    if (dep[u] < dep[v]) swap(u, v</pre>
       );
    // choose one
    // f(idx[v], idx[u]);
    // if (u != v) f(idx[v] + 1,
       idx [u]);
    return V;
int up(int u, int d) {
    while (d) {
        if (dep[u] - dep[top[u]] <
            d) {
            d = dep[u] - dep[top[
                u ]];
            u = top[u];
        } else return ridx [idx [u]
            - dl:
        u = fa[u]: --d:
    return U;
int finds (int U, int rt) { // find
    u in which sub-tree of rt
    while (top[u] != top[rt]) {
        u = top[u];
        if (fa[u] == rt) return u;
        u = fa[u];
    }
```

```
return ridx [idx [rt] + 1];
```

4.7 Bipartite Matching

```
struct MaxMatch {
    int n;
   vector<int > G[maxn];
    int vis [maxn], left [maxn], clk;
    void init(int n) {
        this ->n = n;
       FOR (i, 0, n + 1) G[i]. clear()
       memset(left, -1, size of left);
       memset(vis, -1, size of vis);
    bool dfs(int u) {
        for (int V: G[u])
           if (vis[v] != clk) {
               vis[v] = clk;
               if (left[v] == -1 ||
                   dfs(left[v])) {
                   left[v] = u;
                   return true;
           }
        return false;
   int match() {
        int ret = 0;
        for (clk = 0; clk \le n; ++clk)
           if (dfs(clk)) ++ret;
        return ret;
} MM;
// max weight: KM
namespace R {
    const int maxn = 300 + 10;
   int n, m;
    int left[maxn], L[maxn], R[maxn];
```

```
int w[maxn][maxn], slack[maxn];
bool visL[maxn], visR[maxn];
bool dfs (int u) {
    visL[u] = true;
   FOR (v, 0, m) {
        if (VISR[V]) continue;
        int t = L[u] + R[v] - w[u]
           ][v];
        if (t == 0) {
            visR[v] = true;
            if (left[v] == -1 ||
               dfs(left[v])) {
                left[v] = u;
                return true;
        } else slack[v] = min(
           slack[v], t);
    return false;
int qo() {
   memset(left, -1, size of left);
   memset(R, 0, size of R);
   memset(L, 0, size of L);
   FOR (i, 0, n)
        FOR (j, 0, m)
            L[i] = max(L[i], w[i]]
               j]);
   FOR (i, 0, n) {
        memset(slack, 0x3f, size of
            slack);
        while (1) {
            memset(visL, 0, size of
                visL); memset(visR
                , O, size of VisR);
            if (dfs(i)) break;
            int d = 0x3f3f3f3f;
            FOR (j, 0, m) if (!
               visR[i]) d = min(d,
                slack[i]);
            FOR (j, 0, n) if (visL)
               [i]) L[i] -= d;
            FOR (j, 0, m) if (visR
```

4.8 Virtual Tree

```
void go(vector<int >& V, int& k) {
    int u = V[k]; f[u] = 0;
    dbg(u, k);
    for (auto& e: G[u]) {
        int V = e.to;
        if (v == pa[u][0]) continue;
        while (k + 1 < V.size()) {
            int to = V[k + 1];
            if (in[to] <= out[v]) {
                go(V, ++k);
                if (key[to]) f[u] += w
                    [to];
                 else f[u] += min(f[to])
                    ], (LL)w[to]);
            } else break;
    dbg(u, f[u]);
inline bool CMP (int a, int b) { return
    in[a] < in[b]; 
LL solve(vector<int>& V) {
    static vector < int > a; a.clear();
    for (int& x: V) a.push_back(x);
    sort(a.begin(), a.end(), cmp);
    FOR (i, 1, a.size())
        a.push_back(lca(a[i], a[i -
           1]));
    a.push_back(1);
    sort(a.begin(), a.end(), cmp);
    a.erase(unique(a.begin(), a.end())
       , a.end());
    dbq(a);
    int tmp; go(a, tmp = 0);
```

4.9 Euler Tour

return f[1];

```
int S[N \ll 1], top;
Edge edges [N << 1];
set < int > G[N];
void DFS(int u) {
    S[top++] = u:
    for (int eid: G[u]) {
        int v = edges[eid].get_other(u
           );
        G[u].erase(eid);
        G[v].erase(eid);
        DFS(v);
        return;
void fleury(int start) {
    int u = start;
    top = 0; path.clear();
    S[top++] = u:
    while (top) {
        u = S[--top]:
        if (!G[u].empty())
            DFS(u);
         else path.push_back(u);
}
```

4.10 SCC, 2-SAT

```
int n, m;
vector < int > G[N], rG[N], vs;
int used[N], cmp[N];

void add_edge(int from, int to) {
    G[from].push_back(to);
    rG[to].push_back(from);
}

void dfs(int v) {
    used[v] = true;
    for (int u: G[v]) {
        if (!used[u])
```

```
dfs(u);
    vs.push_back(v);
void rdfs(int V, int k) {
    used[v] = true;
    cmp[v] = k;
    for (int u: rG[v])
        if (!used[u])
            rdfs(u, k);
int SCC() {
    memset(used, 0, size of (used));
    vs.clear();
    for (int V = 0; V < n; ++V)
        if (!used[v]) dfs(v);
    memset(used, 0, size of (used));
    int k = 0;
    for (int i = (int) VS.Size() - 1;
       i >= 0; --i)
        if (!used[vs[i]]) rdfs(vs[i],
            k++);
    return k;
}
int main() {
    cin >> n >> m;
    n <sub>*</sub>= 2:
    for (int i = 0; i < m; ++i)
        int a, b; cin >> a >> b;
        add_edge(a - 1, (b - 1) ^ 1);
        add_{edge}(b - 1, (a - 1) ^ 1);
    scc();
    for (int i = 0; i < n; i += 2) {
        if (cmp[i] == cmp[i + 1]) {
            puts("NIE");
             return 0;
    for (int i = 0; i < n; i += 2) {
        if (cmp[i] > cmp[i + 1])
            printf("%d\n", i + 1);
        else printf("%d\n", i + 2);
```

```
4.11 Topological Sort
vector<int > toporder(int n) {
    vector<int > orders;
    queue<int > q;
    for (int i = 0; i < n; i++)
        if (!deg[i]) {
            q.push(i);
            orders.push_back(i);
    while (!q.empty()) {
        int u = q.front(); q.pop();
        for (int V: G[u])
            if (!--deq[v]) {
                q.push(v);
                orders.push_back(v);
    return orders;
}
```

4.12 General Matching

```
// O(n ^ 3)
vector<int > G[N];
int fa[N], mt[N], pre[N], mk[N];
int lca_clk , lca_mk[N];
pair < int , int > ce[N];
void connect(int U, int V) {
    mt[u] = v:
   mt[v] = u;
int find (int x) { return x == fa[x]?
   x : fa[x] = find(fa[x]); }
void flip (int S, int U) {
    if (S == U) return;
    if (mk[u] == 2) {
        int v1 = ce[u]. first, v2 = ce[
           u].second;
        flip (mt[u], v1);
        flip(s, v2);
        connect(v1, v2);
    } else {
        flip(s, pre[mt[u]]);
```

```
int get_lca(int u, int v) {
   lca_clk++;
    for (u = find(u), v = find(v); u
        = find(pre[u]), v = find(pre[v
       1)) {
        if (u \&\& lca_mk[u] == lca_clk)
             return U;
        lca_mk[u] = lca_clk;
        if (v && lca_mk[v] == lca_clk)
             return V;
        lca_mk[v] = lca_clk;
   }
void access (int U, int D, const pair <
   int , int >& c, vector < int >& q) {
    for (u = find(u); u != p; u = find
       (pre[u])) {
        if (mk[u] == 2) {
            ce[u] = c:
            g.push_back(u);
        fa[find(u)] = find(p);
bool aug(int S) {
    fill(mk, mk + n + 1, 0);
    fill(pre, pre + n + 1, 0);
   iota(fa, fa + n + 1, 0);
        vector < int > q = \{s\};
        mk[s] = 1;
    int t = 0;
    for (int t = 0; t < (int) q.size()
       ; ++t) {
        // g size can be changed
        int u = q[t];
        for (int \&V: G[u]) {
            if (find(v) == find(u))
                continue;
            if (!mk[v] && !mt[v]) {
                flip(s, u);
                connect(u, v);
                return true;
            } else if (!mk[v]) {
```

connect(pre[mt[u]], mt[u]);

```
int W = mt[v];
                mk[v] = 2; mk[w] = 1;
                pre[w] = v; pre[v] = u
                q.push_back(w);
            \} else if (mk[find(v)] ==
               1) {
                int p = get_lca(u, v);
                access(u, p, {u, v}, q
                access(v, p, \{v, u\}, q)
    return false;
int match() {
    fill(mt + 1, mt + n + 1, 0);
    lca\_clk = 0;
    int ans = 0;
   FOR (i, 1, n + 1)
        if (!mt[i]) ans += aug(i);
    return ans;
```

4.13 Tarjan

```
// articulation points
// note that the graph might be
   disconnected
int dfn[N], low[N], clk;
void init() { clk = 0; memset(dfn, 0,
   size of dfn); }
void tarjan(int u, int fa) {
   low[u] = dfn[u] = ++clk;
   int cc = fa != -1;
    for (int \& V: G[u]) {
        if (V == fa) continue;
        if (!dfn[v]) {
            tarjan(v, u);
            low[u] = min(low[u], low[v])
               1);
            cc += low[v] >= dfn[u];
        else low[u] = min(low[u],
           dfn[v]);
```

```
if (cc > 1) // ...
}
// bridge
// note that the graph might have
    multiple edges or be disconnected
int dfn[N], low[N], clk;
void init() { memset(dfn, 0, size of
   dfn); clk = 0; }
void tarjan(int U, int fa) {
    low[u] = dfn[u] = ++clk;
    int _{fst} = 0;
    for (E& e: G[u]) {
        int V = e.to; if (V == fa \&\&
           ++_fst == 1) continue;
        if (!dfn[v]) {
            tarjan(v, u);
            if (low[v] > dfn[u]) //
            low[u] = min(low[u], low[v])
        elselow[u] = min(low[u],
            dfn[v]);
}
int low[N], dfn[N], clk, B, bl[N];
vector<int > bcc[N];
void init() { B = clk = 0; memset(dfn,
     O, size of dfn); }
void tarjan(int u) {
    static int St[N], p;
    static bool in [N];
    dfn[u] = low[u] = ++clk;
    st[p++] = u; in[u] = true;
    for (int \& V: G[u]) {
        if (!dfn[v]) {
            tarjan(v);
            low[u] = min(low[u], low[v])
                1):
        else if (in[v]) low[u] = min
            (low[u], dfn[v]);
    if (dfn[u] == low[u]) {
```

```
while (1) {
    int x = st[--p]; in[x] =
        false;
    bl[x] = B; bcc[B].
        push_back(x);
    if (x == u) break;
}
++B;
}
```

4.14 Bi-connected Components, Blockcut Tree

```
// Array size should be 2 * N
// Single edge also counts as bi-
// Use |V| <= |E| to filter
struct E { int to, nxt; } e[N];
int hd[N], ecnt;
void addedge(int u, int V) {
    e[ecnt] = \{v, hd[u]\};
   hd[u] = ecnt++;
int low[N], dfn[N], clk, B, bno[N];
vector < int > bc[N], be[N];
bool vise [N];
void init() {
    memset(vise, 0, size of vise);
    memset(hd, -1, size of hd);
    memset(dfn, 0, size of dfn);
    memset(bno, -1, size of bno);
    B = clk = ecnt = 0;
void tarjan(int u, int feid) {
    static int St[N], p;
    static auto add = [\&](int X) {
        if (bno[x] != B) { bno[x] = B;}
            bc[B].push_back(x); }
    };
    low[u] = dfn[u] = ++clk;
    for (int i = hd[u]; \sim i; i = e[i].
       nxt) {
        if ((feid ^ i) == 1) continue;
        if (!vise[i]) { st[p++] = i;}
            vise[i] = vise[i ^ 1] =
```

```
true; }
        int V = e[i].to;
        if (!dfn[v]) {
           tarjan(v, i);
           low[u] = min(low[u], low[v])
               ]);
            if (low[v] >= dfn[u]) {
               bc[B]. clear(); be[B].
                   clear();
               while (1) {
                   int eid = st[--p];
                   add(e[eid].to);
                      add(e[eid ^ 1].
                      to);
                   be[B].push_back(
                      eid);
                   if ((eid ^ i) <=
                      1) break;
               ++B:
       else low[u] = min(low[u],
           dfn[v]);
// block - cut tree
// cactus -> block - cut tree
//N >= |E| * 2
vector<int > G[N];
int nn;
struct E { int to, nxt; };
namespace C {
   E e[N * 2]:
    int hd[N], ecnt;
    void addedge(int u, int v) {
       e[ecnt] = \{v, hd[u]\};
       hd[u] = ecnt++;
    int idx[N], clk, fa[N];
    bool ring[N];
```

```
void init() { ecnt = 0; memset(hd,
    -1, size of hd); clk = 0; }
void dfs(int u, int feid) {
   idx[u] = ++clk;
    for (int i = hd[u]; \sim i; i = e[
       i].nxt) {
        if ((i ^ feid) == 1)
           continue;
        int V = e[i].to;
        if (!idx[v]) {
            fa[v] = u; ring[u] =
               false;
            dfs(v, i);
            if (!ring[u]) { G[u].
               push_back(v); G[v].
               push_back(u); }
        else if (idx[v] < idx[u]
           ]) {
            ++nn;
            G[nn].push_back(v); G[
               v].push_back(nn);
               // put the root of
                the cycle in the
                front
            for (int X = U; X != V)
               ; x = fa[x]) {
                ring[x] = true;
                G[nn].push_back(x)
                   ; G[x].
                   push_back(nn);
            ring[v] = true;
       }
   }
```

4.15 Minimum Directed Spanning Tree

```
// edges will be modified
vector<E> edges;
int in[N], id[N], pre[N], vis[N];
// a copy of n is needed
LL zl_tree(int rt, int n) {
    LL ans = 0;
    int v, _n = n;
    while (1) {
```

```
fill(in, in + n, INF);
for (E &e: edges) {
    if (e.u != e.v && e.w < in
       [e.v]) {
        pre[e.v] = e.u;
        in[e.v] = e.w;
    }
FOR (i, 0, n) if (i != rt &&
   in[i] == INF) return -1;
int tn = 0;
fill(id, id + _n, -1); fill(
   vis, vis + _n, -1);
in[rt] = 0;
FOR (i, 0, n) {
    ans += in[v = i];
    while (vis[v] != i && id[v
       ] == -1 \&\& v != rt) {
        vis[v] = i; v = pre[v]
           ];
    if (v != rt && id[v] ==
        -1) {
        for (int u = pre[v]; u
           != v; u = pre[u])
          id[u] = tn:
        id[v] = tn++;
    }
if (tn == 0) break;
FOR (i, 0, n) if (id[i] == -1)
    id[i] = tn++;
for (int i = 0; i < (int))
   edges.size(); ) {
    auto &e = edges[i];
    v = e.v:
    e.u = id[e.u]; e.v = id[e.
       v ]:
    if (e.u != e.v) { e.w -=
       in[v]; i++; }
    else { swap(e, edges.back
        ()); edges.pop_back();
n = tn; rt = id[rt];
```

```
return ans;
```

4.16 Cycles

```
// refer to cheatsheet for elaboration
LL cycle4() {
    LL ans = 0;
    iota(kth, kth + n + 1, 0);
    sort(kth, kth + n, [\&](int x, int)
       y)  { return deg[x] < deg[y]; })
    FOR (i, 1, n + 1) rk[kth[i]] = i;
    FOR (u, 1, n + 1)
        for (int V: G[u])
            if (rk[v] > rk[u]) key[u].
               push_back(v);
    FOR (u, 1, n + 1) {
        for (int V: G[u])
            for (int w: key[v])
                if (rk[w] > rk[u]) ans
                    += cnt[w]++;
        for (int V: G[u])
            for (int w: key[v])
                if (rk[w] > rk[u]) --
                    cnt[w];
    return ans;
int cycle3() {
    int ans = 0;
    for (E &e: edges) { deg[e.u]++;
       deg[e.v]++; }
    for (E &e: edges) {
        if (deg[e.u] < deg[e.v] || (
           deg[e.u] == deg[e.v] \&\& e.u
            < e.v)
           G[e.u].push_back(e.v);
        else G[e.v].push_back(e.u);
    FOR (x, 1, n + 1) {
        for (int y: G[x]) p[y] = x;
        for (int y : G[X]) for (int Z:
           G[y]) if (p[z] == x) ans++;
    return ans;
```

4.17 Dominator Tree vector < int > G[N], rG[N]; vector<int > dt[N]; namespace t | { int fa[N], idx[N], clk, ridx[N]; int c[N], best[N], semi[N], idom[N 1; void init(int n) { clk = 0; fill(c, c + n + 1, -1);FOR (i, 1, n + 1) dt[i].clear (); FOR (i, 1, n + 1) semi[i] =best[i] = i; fill(idx, idx + n + 1, 0);void dfs (int u) { idx[u] = ++clk; ridx[clk] = u;for (int& V: G[u]) if (!idx[v]) { $fa[v] = u; dfs(v); }$ int fix (int x) { if (C[X] == -1) return X; int &f = c[x], rt = fix(f); if (idx[semi[best[x]]] > idx[semi[best[f]]]) best[x] = best[f]; return f = rt;void GO(int rt) { dfs(rt); FORD (i, clk, 1) { int x = ridx[i], mn = clk+ 1: for (int & u: rG[x]) { if (!idx[u]) continue; // reaching all might not be possible fix(u); mn = min(mn,idx[semi[best[u]]]) c[x] = fa[x];

```
dt[semi[x] = ridx[mn]].
    push_back(x);
x = ridx[i - 1];
for (int& u: dt[x]) {
    fix(u);
    if (semi[best[u]] != x
        ) idom[u] = best[u
        ];
    else idom[u] = x;
}
dt[x].clear();
}

FOR (i, 2, clk + 1) {
    int u = ridx[i];
    if (idom[u] != semi[u])
        idom[u] = idom[idom[u
        ]];
    dt[idom[u]].push_back(u);
}
```

4.18 Global Minimum Cut

```
struct StoerWanger {
   LL n, vis[N];
   LL dist[N];
   LL q[N][N];
    void init (int nn, LL w[N][N]) {
        n = nn;
        FOR (i, 1, n + 1) FOR (j, 1, n + 1)
            + 1)
            a[i][i] = w[i][i]:
        memset(dist, 0, size of (dist));
   }
   LL min_cut_phase(int clk, int &x,
       int &y) {
        int t;
        vis[t = 1] = clk;
        FOR (i, 1, n + 1) if (vis[i]
           != clk)
            dist[i] = g[1][i];
        FOR (i, 1, n) {
```

```
x = t; t = 0;
            FOR (j, 1, n + 1)
                if (vis[j] != clk &&
                    (!t || dist[j] >
                    dist[t]))
                    t = j;
            vis[t] = clk:
            FOR (j, 1, n + 1) if (vis[
               [] != clk)
                dist[j] += g[t][j];
        y = t;
        return dist[t];
    void merge(int X, int y) {
        if (x > y) swap(x, y);
        FOR (i, 1, n + 1)
            if (i != x && i != y) {
                g[i][x] += g[i][y];
                g[x][i] += g[i][y];
        if (y == n) return;
        FOR (i, 1, n) if (i!= y) {
            swap(g[i][y], g[i][n]);
            swap(g[y][i], g[n][i]);
    }
    LL qo() {
        LL ret = INF;
        memset(vis, 0, size of vis);
        for (int i = 1, x, y; n > 1;
           ++i, --n) {
            ret = min(ret,
               min_cut_phase(i, x, y))
            merge(x, y);
        return ret;
} sw;
```

5 Geometry

5.1 2D Basics

```
0: (x > 0 ? 1 : -1); 
 struct L;
 struct P;
 typedef P V;
 struct P {
              LD x, y;
                 explicit P(LD x = 0, LD y = 0): x(
                           x), y(y) {}
                 explicit P(const L& I);
};
 struct L {
              P s, t;
              L() {}
              L(P s, P t): s(s), t(t) {}
};
Poperator + (const P& a, const P& b)
             \{ return P(a.x + b.x, a.y + b.y); \}
Poperator - (const P& a, const P& b)
            \{ return P(a.x - b.x, a.y - b.y); \}
Poperator * (const P& a, LD k) {
              return P(a.x * k, a.y * k);
P operator / (const P& a, LD k) {
              return P(a.x / k, a.y / k); }
 inline bool operator < (const P& a,
              const P& b) {
               return sgn(a.x - b.x) < 0 \mid \mid (sgn(a.x - b.x)) \mid 
                           a.x - b.x) == 0 && sqn(a.y - b.
                           (v) < 0);
 bool operator == (const P\& a, const P\&
                 b) { return ! sgn(a.x - b.x) && !
             sgn(a.y - b.y); }
P::P(const L& I) { *this = 1.t - 1.s;}
 ostream & operator << (ostream &os.
              const P &p) {
                return (OS << "(" << p. x << "," <<
                               p.y << ")");
istream & operator >> (istream &is, P &
             p) {
                return (is \Rightarrow p.x \Rightarrow p.y);
```

5.2 Polar angle sort

```
int quad(P p) {
    int x = sgn(p.x), y = sgn(p.y);
    if (x > 0 \&\& y >= 0) return 1;
    if (x \le 0 \&\& y > 0) return 2;
    if (x < 0 \&\& y <= 0) return 3;
    if (x >= 0 \&\& y < 0) return 4;
    assert(0);
struct cmp_angle {
    P p;
    bool operator () (const P& a,
        const P& b) {
        int qa = quad(a - p), qb =
            quad(b - p);
        if (qa!= qb) return qa < qb;
            // compare quad
         int d = sgn(cross(a, b, p));
         if (d) return d > 0;
         return dist(a - p) < dist(b - p)
           p);
};
```

5.3 Segments, lines

```
Protation (const P& p, const LD& r) {
    return P(p.x * cos(r) - p.y * sin(r)
   ), p.x * sin(r) + p.y * cos(r)); }
P RotateCCW90 (const P& p) { return P(-
   p.y, p.x); }
P RotateCW90 (const P& p) { return P(p.
   y, -p.x); }
V normal(const V& v) { return V(-v.y,
   v.x) / dist(v); }
// inclusive: <=0; exclusive: <0
bool p_on_seq(const P& p, const L& seq
   ) {
    P = seq.s, b = seq.t;
    return !sqn(det(p - a, b - a)) &&
       sgn(dot(p - a, p - b)) <= 0;
LD dist_to_line(const P& p, const L& l
   ) {
    return fabs(cross(l.s, l.t, p)) /
       dist(I);
LD dist_to_seg(const P& p, const L& 1)
    if (1.s == 1.t) return dist(p - 1)
    V vs = p - 1.s, vt = p - 1.t;
    if (sgn(dot(I, vs)) < 0) return
       dist(vs);
    else if (sqn(dot(l, vt)) > 0)
        return dist(vt);
    else return dist_to_line(p, 1);
// make sure they have intersection in
     advance
P l_intersection(const L& a, const L&
   b) {
    LD s1 = det(P(a), b.s - a.s), s2 =
        det(P(a), b.t - a.s);
    return (b.s * s2 - b.t * s1) / (s2
        - s1);
LD angle (const V& a, const V& b) {
    LD r = asin(fabs(det(a, b)) / dist
       (a) / dist(b));
    if (sgn(dot(a, b)) < 0) r = PI - r
```

```
return [;
}
// 1: proper; 2: improper
int S_I_cross(const L& seg, const L&
   line) {
    int d1 = sgn(cross(line.s, line.t,
        seq.s));
    int d2 = sqn(cross(line.s, line.t,
        seq.t));
    if ((d1 ^ d2) == -2) return 1; //
       proper
    if (d1 == 0 \mid | d2 == 0) return 2;
    return 0;
}
// 1: proper; 2: improper
int S_cross(const L& a, const L& b, P&
    p) {
    int d1 = sgn(cross(a.t, b.s, a.s))
        , d2 = sgn(cross(a.t, b.t, a.s)
    int d3 = sgn(cross(b.t, a.s, b.s))
        , d4 = sgn(cross(b.t, a.t, b.s)
    if ((d1 ^ d2) == -2 && (d3 ^ d4)
       == -2) { p = I_intersection(a,
       b); return 1; }
    if (!d1 \&\& p_on_seg(b.s, a)) \{ p =
        b.s; return 2; }
    if (!d2 \&\& p_on_seg(b.t, a)) \{ p =
        b.t; return 2; }
    if (!d3 \&\& p_on_seg(a.s, b)) \{ p =
        a.s; return 2; }
    if (!d4 \&\& p_on_seg(a.t, b)) \{ p =
        a.t; return 2; }
    return 0;
```

5.4 Polygons

```
typedef Vector<P> S;

// 0 = outside , 1 = inside , -1 = on
    border
int inside(const S& S, const P& p) {
    int cnt = 0;
    FOR (i, 0, s.size()) {
```

```
P = s[i], b = s[nxt(i)];
        if (p_on_seg(p, L(a, b)))
           return -1;
        if (sgn(a.y - b.y) \le 0) swap(
           a, b);
        if (sgn(p.y - a.y) > 0)
           continue;
        if (sgn(p.y - b.y) \le 0)
            continue;
        cnt += sgn(cross(b, a, p)) >
    return bool (cnt & 1);
// can be negative
LD polygon_area(const S& s) {
    LD ret = 0;
    FOR (i, 1, (LL)s.size() - 1)
        ret += cross(s[i], s[i + 1], s
           [0]);
    return ret / 2;
// duplicate points are not allowed
// s is subject to change
const int MAX_N = 1000;
S convex_hull(S& s) {
      assert (s. size () >= 3);
    sort(s.begin(), s.end());
    S ret(MAX_N * 2);
    int SZ = 0;
    FOR (i, 0, s.size()) {
        while (SZ > 1 && sgn(cross(ret
           [sz - 1], s[i], ret[sz -
           2])) < 0) --sz;
        ret[sz++] = s[i];
    int k = SZ;
    FORD (i, (LL)s.size() - 2, -1) {
        while (sz > k && sgn(cross(ret
           [sz - 1], s[i], ret[sz -
           2])) < 0) --sz;
        ret[sz++] = s[i];
    ret.resize(sz - (s.size() > 1));
    return ret;
```

```
// centroid
P ComputeCentroid(const vector < P > & p)
    P c(0, 0);
    LD scale = 6.0 * polygon_area(p);
    for (unsigned i = 0; i < p.size();
        i++) {
        unsigned j = (i + 1) \% p. size
            ();
        c = c + (p[i] + p[j]) * (p[i].
            x * p[j].y - p[j].x * p[i].
            y);
    return C / scale;
}
// Rotating Calipers, find convex hull
LD rotatingCalipers (vector < P>& qs) {
    int n = qs.size();
    if (n == 2)
        return dist(qs[0] - qs[1]);
    int i = 0, j = 0;
    FOR (k, 0, n) {
        if (!(qs[i] < qs[k])) i = k;
        if (qs[j] < qs[k]) j = k;
    LD res = 0;
    int Si = i, Sj = j;
    while (i != Si || i != Si) {
        res = max(res, dist(qs[i] - qs
            [i]));
        if (sgn(cross(qs[(i+1)%n] - qs))
            [i], qs[(j+1)%n] - qs[j]))
            < 0)
            i = (i + 1) \% n;
        else j = (j + 1) \% n;
    return res;
```

5.5 Half-plane intersection

```
struct LV {
    P p, v; LD ang;
    LV() {}
    LV(P s, P t): p(s), v(t - s) { ang}
    = atan2(v.y, v.x); }
```

```
}; // MMMMMM
bool operator < (const LV &a, const LV
   & b) { return a.ang < b.ang; }
bool On_left(const LV& I, const P& p)
   \{ return sgn(cross(I.v, p - I.p)) \}
   >= 0; }
P I_intersection(const LV& a, const LV
   & b) {
    Pu = a.p - b.p; LDt = cross(b.v,
        u) / cross(a.v, b.v);
    return a.p + a.v * t;
}
S half_plane_intersection(vector<LV>&
   L) {
    int n = L.size(), fi, la;
    sort(L.begin(), L.end());
    vector<P> p(n); vector<LV> q(n);
    q[fi = Ia = 0] = L[0];
    FOR (i, 1, n) {
        while (fi < la && !on_left(L[i
           ], p[la - 1])) la - -;
        while (fi < la && !on_left(L[i
            ], p[fi])) fi++;
        q[++la] = L[i];
        if (sgn(cross(q[la].v, q[la -
           1].v)) == 0) {
            la --;
            if (on_left(q[la], L[i].p)
               ) q[la] = L[i];
        if (fi < la) p[la - 1] =
           l_intersection(q[la - 1], q
           [la]);
    while (fi < la && !on_left(q[fi],
       p[la - 1])) la - -;
    if (la - fi <= 1) return vector < P
       >();
    p[la] = l_intersection(q[la], q[fi
    return vector < P > (p. begin() + fi, p
        .begin() + la + 1);
}
```

```
5.6 Circles
    P p; LD r;
    C(LD x = 0, LD y = 0, LD r = 0): p
       (x, y), r(r) {}
    C(P p, LD r): p(p), r(r) {}
};
P compute_circle_center(P a, P b, P c)
    b = (a + b) / 2:
    c = (a + c) / 2;
    return l_intersection({b, b +
       RotateCW90(a - b)}, {c , c +
       RotateCW90(a - c)});
// intersections are clockwise subject
vector < P > c_l_intersection (const L& l,
    const C& c) {
    vector < P > ret;
    P b(1), a = 1.s - c.p;
    LD x = dot(b, b), y = dot(a, b), z
        = dot(a, a) - c.r * c.r;
    LD D = y * y - x * z;
    if (sgn(D) < 0) return ret;
    ret.push_back(c.p + a + b * (-y +
       sqrt(D + eps)) / x);
    if (sqn(D) > 0) ret.push_back(c.p
       + a + b * (-y - sqrt(D)) / x);
    return ret;
```

vector<P> c_c_intersection(C a, C b) {

```
vector < P > ret :
    LD d = dist(a.p - b.p);
    if (sgn(d) == 0 || sgn(d - (a.r +
       (b.r)) > 0 || sgn(d + min(a.r, b.r)
       (r) - \max(a.r, b.r) < 0
        return ret;
    LD x = (d * d - b.r * b.r + a.r *
       a.r) / (2 * d);
    LD y = sqrt(a.r * a.r - x * x);
    P v = (b.p - a.p) / d;
    ret.push_back(a.p + v * x +
       RotateCCW90(v) * y);
    if (sgn(y) > 0) ret.push_back(a.p
       + v * x - RotateCCW90(v) * y);
    return ret;
// 1: inside, 2: internally tangent
// 3: intersect , 4: ext tangent 5:
int C_C_relation(const C& a, const C&
   v) {
    LD d = dist(a.p - v.p);
    if (sqn(d - a.r - v.r) > 0) return
         5;
    if (sqn(d - a.r - v.r) == 0)
       return 4:
    LD I = fabs(a.r - v.r);
    if (sgn(d-1) > 0) return 3;
    if (sqn(d-1) == 0) return 2;
    if (sqn(d-1) < 0) return 1;
// circle triangle intersection
// abs might be needed
LD sector_area(const P& a, const P& b,
    LD r) {
    LD th = atan2(a.y, a.x) - atan2(b.
       y, b.x);
    while (th \le 0) th += 2 * PI;
    while (th > 2 * PI) th -= 2 * PI;
    th = min(th, 2 * PI - th);
    return r * r * th / 2;
LD c_tri_area(P a, P b, P center, LD r
   ) {
    a = a - center; b = b - center;
```

```
int ina = sgn(dist(a) - r) < 0,
       inb = sgn(dist(b) - r) < 0;
    // dbg(a, b, ina, inb);
    if (ina && inb) {
        return fabs(cross(a, b)) / 2;
    } else {
        auto p = c_l_intersection(L(a,
            b), C(0, 0, r);
        if (ina ^ inb) {
            auto cr = p_on_seg(p[0], L
                (a, b)) ? p[0] : p[1];
            if (ina) return
                sector_area(b, cr, r) +
                fabs(cross(a, cr)) /
                2;
            else return sector_area(a,
                 cr, r) + fabs(cross(b,
                 cr)) / 2;
        } else {
            if ((int) p.size() == 2 &&
                 p_on_seg(p[0], L(a, b)
               )) {
                if (dist(p[0] - a) >
                    dist(p[1] - a)
                    swap(p[0], p[1]);
                 return sector_area(a,
                    p[0], r) +
                    sector_area(p[1], b
                    , r)
                    + fabs(cross(p[0],
                         p[1])) / 2;
            } else return Sector_area(
                a, b, r);
typedef Vector < P > S;
LD c_poly_area(S poly, const C& c) {
    LD ret = 0; int n = poly.size();
    FOR (i, 0, n) {
        int t = sgn(cross(poly[i] - c)
           p, poly[(i + 1) % n] - c.p)
        if (t) ret += t * c_tri_area(
           poly[i], poly[(i + 1) % n],
            c.p, c.r);
```

```
return ret;
```

5.7 Circle Union

```
// version 1
// union O(n^3 log n)
struct CV {
   LD yl, yr, ym; C o; int type;
    CV() {}
    CV(LD yl, LD yr, LD ym, C c, int t
        : yl(yl), yr(yr), ym(ym), type
           (t), o(c) {}
pair < LD, LD > c_point_eval(const C& c,
   LD x) {
   LD d = fabs(c.p.x - x), h = rt(sq(
       c.r) - sq(d));
    return \{c.p.y - h, c.p.y + h\};
pair < CV, CV > pairwise_curves ( const C&
   c, LD xI, LD xr) {
    LD yl1, yl2, yr1, yr2, ym1, ym2;
    tie(y|1, y|2) = c_point_eval(c, x|
    tie(ym1, ym2) = c_point_eval(c, (
       xl + xr) / 2;
    tie(yr1, yr2) = c_point_eval(c, xr
    return \{CV(y|1, yr1, ym1, c, 1),
       CV(y|2, yr2, ym2, c, -1);
bool operator < (const CV& a, const CV
   & b) { return a.ym < b.ym; }
LD cv_area(const CV& v, LD xI, LD xr)
    LD I = rt(sq(xr - xI) + sq(v.yr -
       v.yl));
    LD d = rt(sq(v.o.r) - sq(1 / 2));
    LD ang = atan(I / d / 2);
    return ang * sq(v.o.r) - d * I /
       2;
LD circle_union(const vector < C > & cs) {
    int n = cs.size();
```

```
vector < LD > xs;
FOR (i, 0, n) {
    xs.push_back(cs[i].p.x - cs[i
       ].r);
    xs.push_back(cs[i].p.x);
    xs.push_back(cs[i].p.x + cs[i
       1. r);
    FOR (j, i + 1, n) {
        auto pts =
            c_c_intersection(cs[i],
            cs[i]);
        for (auto& p: pts) xs.
           push_back(p.x);
}
sort(xs.begin(), xs.end());
xs.erase(unique(xs.begin(), xs.end
   (), [](LD x, LD y) { return sgn
   (x - y) == 0; \}), xs.end());
LD ans = 0;
FOR (i, 0, (int) xs.size() - 1) {
    LD xI = xs[i], xr = xs[i + 1];
    vector < CV > intv:
    FOR (k, 0, n) {
        auto \& C = CS[k];
        if (sgn(c.p.x - c.r - xI)
           <= 0 \&\& sqn(c.p.x + c.r)
            - xr) >= 0) {
            auto t =
                pairwise_curves(c,
                xl, xr);
            intv.push_back(t.first
                ); intv.push_back(t
                .second);
    sort(intv.begin(), intv.end())
    vector <LD> areas(intv.size());
   FOR (i, 0, intv.size()) areas[
       i] = cv_area(intv[i], xl,
       xr);
    int CC = 0;
    FOR (i, 0, intv.size()) {
```

```
if (CC > 0) {
                ans += (intv[i].yl -
                    intv[i - 1].yl +
                    intv[i].yr - intv[i
                     -1].yr) * (xr -
                    xI) / 2;
                ans += intv[i - 1].
                    type * areas[i -
                    1];
                ans -= intv[i].type *
                    areas[i];
            cc += intv[i].type;
    return ans;
// version 2 (k-cover, O(n^2 log n))
inline LD angle (const P & p) { return
   atan2(p.v.p.x); 
// Points on circle
// p is coordinates relative to c
struct CP {
  P p;
  LD a;
  int t;
  CP() {}
  CP(P p, LD a, int t) : p(p), a(a), t
     (t) {}
};
bool operator < (const CP & U, const CP &
   V) { return U.a < V.a; }
LD cv_area(LD r, const CP &q1, const
   CP &q2) {
  return (r * r * (q2.a - q1.a) -
     cross(q1.p, q2.p)) / 2;
}
LD ans[N];
void circle_union(const vector<C> &cs)
  int n = cs.size();
  FOR(i, 0, n) {
    // same circle, only the first one
```

```
counts
bool OK = true;
FOR(j, 0, i)
if (sgn(cs[i].r - cs[j].r) == 0 &&
    cs[i].p == cs[i].p) {
  Ok = false;
  break;
if (!ok)
  continue;
auto &c = cs[i];
vector < CP > ev:
int belong_to = 0;
P bound = c.p + P(-c.r, 0);
ev.emplace_back(bound, -PI, 0);
ev.emplace_back(bound, PI, 0);
FOR(j, 0, n) {
  if (i == j)
    continue;
  if (c_c_relation(c, cs[j]) \le 2)
    if (sgn(cs[j].r - c.r) >= 0)
       // totally covered
      belong_to++;
    continue;
  auto its = c_c_intersection(c,
     cs[i]);
  if (its.size() == 2) {
   P p = its[1] - c.p, q = its[0]
        - c.p;
    LD a = angle(p), b = angle(q);
    if (sgn(a - b) > 0) {
      ev.emplace_back(p, a, 1);
      ev.emplace_back(bound, PI,
          -1);
      ev.emplace_back(bound, -PI,
         1);
      ev.emplace_back(q, b, -1);
    } else {
      ev.emplace_back(p, a, 1);
      ev.emplace_back(q, b, -1);
    }
sort(ev.begin(), ev.end());
```

5.8 Minimum Covering Circle

```
P compute_circle_center(P a, P b) {
    return (a + b) / 2;
bool p_in_circle(const P& p, const C&
   c) {
    return sgn(dist(p - c.p) - c.r) <=
C min_circle_cover(const vector < P > &in
    vector <P> a(in.begin(), in.end());
    dbg(a.size());
    random_shuffle(a.begin(), a.end())
    P c = a[0]; LD r = 0; int n = a.
       size();
    FOR (i, 1, n) if (!p_in_circle(a[i
       ], {c, r})) {
        c = a[i]; r = 0;
        FOR (j, 0, i) if (!p_in_circle
            (a[i], \{c, r\}))
            c = compute_circle_center(
               a[i], a[j]);
            r = dist(a[j] - c);
            FOR (k, 0, j) if (!
                p_in_circle(a[k], {c, r
                })) {
                C =
                    compute_circle_center
                    (a[i], a[j], a[k]);
                r = dist(a[k] - c);
```

```
return \{C, r\};
                                                  a.x - b.x) == 0 && (sgn(a.y - b)
}
                                                  (v) < 0
                                                                                     ostream & operator << (ostream &os,
                                                                              (sgn
                                                                                         const P &p) {
                                                                                         return (OS << "(" << p. x << "," <<
5.9 Circle Inversion
C inv(C c, const P& o) {
    LD d = dist(c.p - o);
    assert(sgn(d) != 0);
                                                                                        p) {
   LD a = 1 / (d - c.r);
   LD b = 1 / (d + c.r);
    c.r = (a - b) / 2 * R2;
    c.p = o + (c.p - o) * ((a + b) *
       R2 / 2 / d);
    return C;
                                                                                        dist2(p)); }
}
                                                                                        * b.z; }
5.10 3D Basics
struct P;
struct L;
                                                                                  &&
typedef PV;
                                                                                             - v.v \star w.x);
struct P {
                                                                                  sqn}
   LD x, y, z;
```

```
explicit P(LD x = 0, LD y = 0, LD
                                                z = 0: x(x), y(y), z(z) {}
                             explicit P(const L& 1);
};
  struct L {
                         P s, t;
                         L() {}
                          L(P s, P t): s(s), t(t) {}
};
  struct F {
                         Pa, b, c;
                         F() {}
                         F(P a, P b, P c): a(a), b(b), c(c)
                                                      {}
};
Poperator + (const P& a, const P& b)
Poperator - (const P& a, const P& b)
P operator * (const P& a, LD k) { }
P operator / (const P& a, LD k) { }
 in line intoperator < (const P\&a),
                         const P& b) {
                            return sgn(a.x - b.x) < 0 \mid \mid (sgn(a.x - b.x)) \mid
```

```
p. v << "," << p.z << ")");
                                         istream & operator >> (istream &is, P &
                                              return (is >> p.x >> p.y >> p.z);
                                      b LD dist2 (const P& p) { return p.x * p.
                                             x + p.y * p.y + p.z * p.z;
                                        LD dist(const P& p) { return sqrt(
                                         LD dot(const V& a, const V& b) {
                                             return a.x * b.x + a.y * b.y + a.z
                                      O P cross (const P& V, const P& W) {
                                              return P(V.y * W.Z - V.Z * W.y, V.
                                                 Z \star W.X - V.X \star W.Z, V.X \star W.Y
                                       ( LD mix(const V& a, const V& b, const V
                                             & c) { return dot(a, cross(b, c));
                                         // counter - clockwise
                                          // axis = 0 around
                                          // axis = 1 around axis
                                          // axis = 2 around axis z
                                      b P rotation (const P& p, const LD& r,
                                             int axis = 0) {
                                              if (axis == 0)
                                      Z
                                                  return P(p.x, p.y * cos(r) - p
                                                      z * sin(r), p.y * sin(r) +
                                                      p.z * cos(r));
                                       <
                                              else if (axis == 1)
                                       0)
                                                  return P(p.z * cos(r) - p.x *
                                                     sin(r), p.y, p.z * sin(r) +
                                                      p.x * cos(r));
                                              else if (axis == 2)
                                                  return P(p.x * cos(r) - p.y *
                                                     sin(r), p.x * sin(r) + p.y
bool operator == (const P\& a, const P\&
    b) { return ! sqn(a.x - b.x) && !
                                                      * cos(r), p.z);
   sgn(a.y - b.y) \&\& !sgn(a.z - b.z);
                                          // n is normal vector
P::P(const L\& I) { *this = I.t - I.s;}
                                         // this is clockwise
```

```
Protation (const P& p, const LD& r,
                      const P& n) {
                      LD c = cos(r), s = sin(r), x = n.x
                                             , y = n.y, z = n.z;
                         return P((x * x * (1 - c) + c) * p
                                            .x + (x * y * (1 - c) + z * s)
                                            * p.y + (x * z * (1 - c) - y *
                                            s) * p.z,
                                                                              (x * y * (1 - c) - z * s)
                                                                                                        * p.x + (y * y * (1 -
                                                                                                       (c) + (c) 
                                                                                                  z * (1 - c) + x * s) *
                                                                                                       p.z,
                                                                              (x * z * (1 - c) + y * s)
                                                                                                       * p.x + (y * z * (1 -
                                                                                                       c) - x * s) * p.y + ( }
                                                                                                   z * z * (1 - c) + c) *
                                                                                                       p.z);
}
```

5.11 3D Line, Face

```
// <= 0 inproper, < 0 proper
bool p_on_seg(const P& p, const L& seg
   ) {
    Pa = seq.s, b = seq.t;
    return !sgn(dist2(cross(p - a, b -
        a))) && sgn(dot(p - a, p - b))
        <= 0;
LD dist_to_line(const P& p, const L& l
    return dist(cross(l.s - p, l.t - p
       )) / dist(l);
LD dist_to_seg(const P& p, const L& 1)
    if (1.s == 1.t) return dist(p - 1.t)
    V vs = p - 1.s, vt = p - 1.t;
    if (sgn(dot(I, vs)) < 0) return
       dist(vs);
    else if (sgn(dot(l, vt)) > 0)
       return dist(vt);
    else return dist_to_line(p, 1);
}
```

```
P norm (const F& f) { return cross(f.a
    - f.b, f.b - f.c); }
int p_on_plane(const F& f, const P& p)
     { return sgn(dot(norm(f), p - f.a)
    ) == 0; }
// if two points are on the opposite
 // return 0 if points is on the line
// makes no sense if points and line
    are not coplanar
 int opposite_side(const P& u, const P&
     v, const L& 1) {
         return sgn(dot(cross(P(I), u -
            l.s), cross(P(I), v - I.s)
            )) < 0;
bool parallel (const L& a, const L& b)
    { return !sgn(dist2(cross(P(a), P(b
    )))); }
 int S_intersect(const L& u, const L& V
     return p_on_plane(F(u.s, u.t, v.s)
        , v.t) &&
            opposite_side(u.s, u.t, v)
            opposite_side(v.s, v.t, u);
5.12 3D Convex
 struct FT {
     int a, b, c;
    FT() { }
    FT(int a, int b, int c): a(a), b(
        b), c(c) { }
};
 bool p_on_line(const P& p, const L& I)
     return !sgn(dist2(cross(p - 1.s, P
        (|))));
vector<F> convex_hull(vector<P> &p) {
     sort(p.begin(), p.end());
    p.erase(unique(p.begin(), p.end())
```

```
, p.end());
    random_shuffle(p.begin(), p.end())
    vector <FT> face;
    FOR (i, 2, p.size()) {
        if (p_on_line(p[i], L(p[0], p
           [1]))) continue;
        swap(p[i], p[2]);
        FOR (j, i + 1, p.size())
            if (sgn(mix(p[1] - p[0], p
                [2] - p[1], p[j] - p
                [0]))) {
                swap(p[j], p[3]);
                face.emplace_back(0,
                    1, 2);
                face.emplace_back(0,
                    2, 1);
                goto found;
found:
    vector<vector<int >> mk(p.size(),
       vector<int >(p. size()));
    FOR (v, 3, p.size()) {
        vector<FT> tmp;
        FOR (i, 0, face.size()) {
            int a = face[i].a, b =
                face[i].b, c = face[i].
            if (sgn(mix(p[a] - p[v], p
                [b] - p[v], p[c] - p[v]
                ])) < 0) {
                mk[a][b] = mk[b][a] =
                mk[b][c] = mk[c][b] =
                mk[c][a] = mk[a][c] =
            } else tmp.push_back(face[
               i]);
        face = tmp:
        FOR (i, 0, tmp.size()) {
            int a = face[i].a, b =
               face[i].b, c = face[i].
               C;
```

```
if (mk[a][b] == v) face.
                emplace_back(b, a, v);
            if (mk[b][c] == v) face.
                emplace_back(c, b, v);
            if (mk[c][a] == v) face.
                emplace_back(a, c, v);
        }
    vector<F> out;
   FOR (i, 0, face.size())
        out.emplace_back(p[face[i].a],
            p[face[i].b], p[face[i].c
           1);
    return OUT;
}
```

String

Aho-Corasick Automation

```
const int N = 1e6 + 100. M = 26:
int mp(char ch) { return ch - 'a'; }
struct ACA {
    int ch[N][M], danger[N], fail[N];
    int SZ;
    void init() {
        sz = 1;
        memset(ch[0], 0, sizeof ch[0])
        memset(danger, 0, size of
           danger);
    void insert (const string &s, int m
        int N = S.Size(); int U = 0, C
        FOR (i, 0, n) {
            c = mp(s[i]);
            if (!ch[u][c]) {
                memset(ch[sz], 0,
                    size of Ch[SZ]);
                danger[sz] = 0; ch[u][
                    c] = sz++;
            u = ch[u][c];
        danger[u] \mid = 1 << m;
```

```
fail[0] = 0;
         for (int C = 0, U; C < M; C++)
            u = ch[0][c];
             if (u) { Q.push(u); fail[u
                | = 0; \}
         while (!Q.empty()) {
             int r = Q.front(); Q.pop()
             danger[r] |= danger[fail[r
                11;
             for (int C = 0, u; C < M;
                C++) {
                 u = ch[r][c];
                 if (!\mathbf{u}) {
                     ch[r][c] = ch[fail]
                        [r]][c];
                     continue;
                 fail[u] = ch[fail[r]][
                    c];
                 Q.push(u);
} ac;
char S[N];
int main() {
    int n; scanf("%d", &n);
    ac.init();
    while (n--) {
        scanf("%s", s);
        ac.insert(s, 0);
    ac.build();
    scanf("%s", s);
    int u = 0; n = strlen(s);
    FOR (i, 0, n) {
        u = ac.ch[u][mp(s[i])];
        if (ac.danger[u]) {
            puts("YES");
```

void build() {

queue<int > Q;

```
return 0;
puts ("NO");
return 0;
```

6.2 Hash

```
const int p1 = 1e9 + 7, p2 = 1e9 + 9;
ULL xp1[N], xp2[N], xp[N];
void init_xp() {
    xp1[0] = xp2[0] = xp[0] = 1;
    for (int i = 1; i < N; ++i) {
        xp1[i] = xp1[i - 1] * x % p1;
       xp2[i] = xp2[i - 1] * x % p2;
       xp[i] = xp[i - 1] * x;
struct String {
    char S[N];
    int length, subsize;
    bool sorted;
    ULL h[N], hI[N];
    ULL hash() {
        length = strlen(s);
       ULL res1 = 0, res2 = 0;
       h[length] = 0; // ATTENTION!
        for (int j = length - 1; j >=
           0; --i) {
        #ifdef ENABLE_DOUBLE_HASH
            res1 = (res1 * x + s[i]) %
                p1;
            res2 = (res2 * x + s[i]) %
                p2;
           h[i] = (res1 << 32) | res2
        #else
            res1 = res1 \star x + s[i];
           h[i] = res1;
        #endif
            return h[0];
    // hash of [left, right)
    ULL get_substring_hash(int left,
```

```
int right) const {
        int len = right - left;
    #ifdef ENABLE_DOUBLE_HASH
        // get hash of s[left...right
            - 11
        unsigned int mask32 = \sim (0u);
        ULL left1 = h[left] >> 32,
           right1 = h[right] >> 32;
        ULL left2 = h[left] & mask32,
           right2 = h[right] \& mask32;
        return (((left1 - right1 * xp1
           [len] % p1 + p1) % p1) <<
           32) |
               (((left2 - right2 * xp2)
                   [len] \% p2 + p2) \%
                   p2));
    #else
        return h[left] - h[right] * xp
           [len];
    #endif
    void get_all_subs_hash(int sublen)
        subsize = length - sublen + 1;
        for (int i = 0; i < subsize;
           ++ i )
            hl[i] = get_substring_hash
               (i, i + sublen);
        sorted = 0;
    void sort_substring_hash() {
        sort(hl, hl + subsize);
        sorted = 1;
    bool match(ULL key) const {
        if (!sorted) assert (0);
        if (!SUDSIZE) return false;
        return binary_search(hl, hl +
           subsize, key);
    void init (const char *t) {
        length = strlen(t);
        strcpy(s, t);
int LCP(const String &a, const String
```

};

```
&b, int ai, int bi) {
// Find LCP of a[ai...] and b[bi
 int l = 0, r = min(a.length - ai,
    b.length - bi);
 while ( | < r )  {
     int mid = (1 + r + 1) / 2;
     if (a.get_substring_hash(ai,
        ai + mid) == b.
        get_substring_hash(bi, bi +
         mid))
         I = mid:
     else r = mid - 1;
return ;
```

6.3 KMP

```
void qet_pi(int a[], char S[], int n)
   int j = a[0] = 0;
   FOR (i, 1, n) {
        while (j \&\& s[i] != s[j]) j =
           a[i - 1];
       a[i] = i += s[i] == s[i];
void get_Z(int a[], char S[], int n) {
    int I = 0, r = 0; a[0] = n;
   FOR (i, 1, n) {
       a[i] = i > r ? 0 : min(r - i +
            1, a[i - 1];
        while (i + a[i] < n \&\& s[a[i]]
            == s[i + a[i]]) ++a[i];
        if (i + a[i] - 1 > r) { | | = i;}
            r = i + a[i] - 1;
```

6.4 Manacher

```
int RL[N];
void manacher(int * a, int n) { // "abc
   " => "#a#b#a#"
   int r = 0, p = 0;
   FOR (i, 0, n) {
```

```
if (i < r) RL[i] = min(RL[2 *
       p - i], r - i);
    else RL[i] = 1;
    while (i - RL[i] >= 0 \&\& i +
       RL[i] < n && a[i - RL[i]]
       == a[i + RL[i]])
        RL[i]++;
    if (RL[i] + i - 1 > r) { r = }
       RL[i] + i - 1; p = i; 
FOR (i, 0, n) --RL[i];
```

6.5 Palindrome Automation

```
// num: the number of palindrome
   suffixes of the prefix represented
// cnt: the number of occurrences in
   string (should update to father
   before using)
namespace pam {
    int t[N][26], fa[N], len[N], rs[N
       ], cnt[N], num[N];
    int SZ, N, last;
    int _new(int | ) {
       memset(t[sz], 0, size of t[0]);
       len[sz] = I; cnt[sz] = num[sz]
            = 0:
        return SZ++;
    void init() {
        rs[n = sz = 0] = -1;
       last = _{new}(0);
       fa[last] = _new(-1);
    int get_fa(int x) {
        while (rs[n-1-len[x]] !=
           rs[n]) x = fa[x];
        return X;
    void ins(int ch) {
        rs[++n] = ch;
        int p = get_fa(last);
        if (!t[p][ch]) {
            int np = _{new(len[p] + 2)};
           num[np] = num[fa[np] = t[
```

```
get_fa(fa[p])][ch]] +
                1;
            t[p][ch] = np;
        ++cnt[last = t[p][ch]];
}
```

6.6 Suffix Array

```
struct SuffixArray {
    const int L;
    vector<vector<int>> P;
    vector<pair<int , int >, int > >
        М:
    int s[N], sa[N], rank[N], height[N
    // s: raw string
    // sa[i]=k: s[k...L-1] ranks i (0
    // rank[i]=k: the rank of s[i...L
        -1] is k (0 based)
    // height[i] = lcp (sa[i-1], sa[i])
    SuffixArray(const string &raw_s):
        L(raw_s.length()), P(1, vector
       < int > (L, 0)), M(L) 
        for (int i = 0; i < L; i++)
            P[0][i] = this \rightarrow S[i] = int
                (raw_s[i]);
        for (int skip = 1, level = 1;
            skip < L; skip <sub>*</sub>= 2, level
            ++) {
            P. push_back(vector < int > (L,
                 0));
            for (int i = 0; i < L; i)
                ++)
                M[i] = make_pair(
                    make_pair(P[level -
                     1][i], i + skip <
                    L ? P[level - 1][i
                    + skip ] : -1000), i
                    );
            sort (M. begin (), M. end ());
            for (int i = 0; i < L; i)
                ++)
                P[level][M[i].second]
                    = (i > 0 \&\& M[i].
```

```
first == M[i - 1].
                first) ? P[level][M
                [i - 1].second] : i
    for (unsigned i = 0; i < P.
       back().size(); ++i) {
        rank[i] = P.back()[i];
        sa[rank[i]] = i;
// This is a traditional way to
   calculate LCP
void getHeight() {
    memset(height, 0, size of
       height);
    int k = 0;
    for (int i = 0; i < L; ++i) {
        if (rank[i] == 0) continue
        if (k) k--;
        int j = sa[rank[i] - 1];
        while (i + k < L \&\& i + k)
           < L && s[i + k] == s[j]
           + k]) ++k;
        height[rank[i]] = k;
    rmq_init(height, L);
int f[N][Nlog];
inline int highbit (int x) {
    return 31 - __builtin_clz(x);
int rmq_query(int X, int y) {
    int p = highbit(y - x + 1);
    return min(f[x][p], f[y - (1
       << p) + 1][p]);
// arr has to be 0 based
void rmq_init(int *arr, int length
    for (int x = 0; x \le highbit(
       length); ++x)
        for (int i = 0; i \le
           length - (1 << x); ++i)
```

```
if (!x) f[i][x] = arr[
                i ];
            else f[i][x] = min(f[i]
                [x - 1], f[i + (1)]
                << (x - 1))][x -
                1]);
#ifdef NEW
// returns the length of the
   longest common prefix of s[i...
   L-1] and s[j...L-1]
int LongestCommonPrefix(int i, int
    int len = 0;
    if (i == j) return L - i;
    for (int k = (int) P.size() -
       1; k \ge 0 \& i < L \& i < L
       ; k--) {
        if (P[k][i] == P[k][j]) {
            i += 1 << k;
            i += 1 << k;
            len += 1 << k;
    return len;
int LongestCommonPrefix(int i, int
    j) {
    // getHeight() must be called
    if (i == j) return L - i;
    if (i > j) swap(i, j);
    return rmq_query(i + 1, j);
#endif
int checkNonOverlappingSubstring(
   int K) {
    // check if there is two non-
        overlapping identical
        substring of length K
    int minsa = 0, maxsa = 0;
    for (int i = 0; i < L; ++i) {
        if (height[i] < K) {</pre>
            minsa = sa[i]; maxsa =
```

```
sa[i];
                                            printf("%d\n", left);
            } else {
                minsa = min(minsa, sa[
                                        i]);
                                        // rk [0..n-1] -> [1..n], sa/ht [1..n]
                maxsa = max(maxsa, sa[
                                        // s[i] > 0 && s[n] = 0
                   i]);
                                        // b: normally as
                if (\max sa - \min sa > = K) // c: normally as bucket1
                   return 1;
            }
                                        // f: normally as cntbuf
                                        template < SiZe_t SiZe >
        return 0;
    }
                                        struct SuffixArray {
                                            bool t[size << 1];
    int
                                            int b[size], c[size];
       checkBelongToDifferentSubstring
                                            int sa[size], rk[size], ht[size];
       (int K, int split) {
        int minsa = 0, maxsa = 0;
                                            inline bool isLMS (const int i,
                                                const bool *t) { return i > 0
        for (int i = 0; i < L; ++i) {
            if (height[i] < K) {</pre>
                                               && t[i] && !t[i - 1]; }
               minsa = sa[i]; maxsa =
                                            template < class T>
                    sa[i];
                                            inline void inducedSort(T s, int *
            } else {
                                                Sa, const int N, const int M,
                minsa = min(minsa, sa[
                                                const int bs,
                   i]);
                maxsa = max(maxsa, sa[
                   i ]);
                if (maxsa > split &&
                   minsa < split)
                                                fill(b, b + M, 0); fill(sa, sa)
                   return 1;
                                                    + n, -1);
                                                FOR (i, 0, n) b[s[i]]++;
        return 0;
                                                f[0] = b[0];
                                                FOR (i, 1, M) f[i] = f[i - 1]
    }
} *S;
                                                   + b[i];
                                                FORD (i, bs - 1, -1) sa[--f[s[
int main() {
    int sp = s.length();
                                                   p[i]]]] = p[i];
    s += "<sub>*</sub>" + t;
                                                FOR (i, 1, M) f[i] = f[i - 1]
    S = new SuffixArray(s);
                                                   + b[i - 1];
    S->getHeight();
                                                FOR (i, 0, n) if (sa[i] > 0 &&
    int left = 0, right = sp;
                                                    !t[sa[i] - 1]) sa[f[s[sa[i
    while (left < right) {
                                                    ] - 1]]++] = sa[i] - 1;
                                                f[0] = b[0];
        // ...
                                                FOR (i, 1, M) f[i] = f[i - 1]
        if (S->
           checkBelongToDifferentSubstring
                                                   + b[i];
                                                FORD (i, n - 1, -1) if (sa[i]
           (mid, sp))
            // ...
                                                   > 0 \&\& t[sa[i] - 1]) sa[--f]
                                                   [s[sa[i] - 1]]] = sa[i] -
    }
```

```
1;
template < class T>
inline void Sais(T S, int *Sa, int
    n, bool *t, int *b, int *c,
   int M) {
    int i, j, bs = 0, cnt = 0, p =
        -1, x, *r = b + M;
   t[n - 1] = 1;
   FORD (i, n - 2, -1) t[i] = s[i]
       | < s[i + 1] | | (s[i] == s[
       i + 1] && t[i + 1]);
   FOR (i, 1, n) if (t[i] && !t[i
        -1]) c[bs++] = i;
   inducedSort(s, sa, n, M, bs, t
       , b, r, c);
    for (i = bs = 0; i < n; i++)
       if (isLMS(sa[i], t)) sa[bs
       ++] = sa[i];
   FOR (i, bs, n) sa[i] = -1;
   FOR (i, 0, bs) {
        x = sa[i]:
        for (j = 0; j < n; j++) {
            if (p == -1 || s[x + j])
               ] != s[p + j] || t[
               x + j] != t[p + j])
                \{ cnt++, p = x; \}
                break; }
            else if (j > 0 && (
               isLMS(x + j, t) | |
               isLMS(p + j, t))
                break;
        x = (\sim x \& 1 ? x >> 1 : x -
            1 >> 1), sa[bs + x] =
           cnt - 1;
    for (i = j = n - 1; i >= bs; i
       --) if (sa[i] >= 0) sa[j--]
        = sa[i];
    int *s1 = sa + n - bs, *d = c
       + bs:
    if (cnt < bs) sais(s1, sa, bs,
        t + n, b, c + bs, cnt);
    else FOR (i, 0, bs) sa[s1[i]]
       = i:
```

bool *t,

int *b,

int *f

, int *

```
FOR (i, 0, bs) d[i] = c[sa[i]]
        inducedSort(s, sa, n, M, bs, t
           , b, r, d);
    template < typename T>
    inline void getHeight (T S, const
       int N, const int *Sa) {
        for (int i = 0, k = 0; i < n;
           i++) {
            if (rk[i] == 0) k = 0;
            else {
                 if (k > 0) k - -;
                 int j = sa[rk[i] - 1];
                 while (i + k < n \&\& j)
                    + k < n \&\& s[i + k]
                    == s[j + k]) k++;
            ht[rk[i]] = k;
    template < class T>
    in line void init(T s, int n, int M)
       ) {
        sais(s, sa, ++n, t, b, c, M);
        for (int i = 1; i < n; i++) rk
           [sa[i]] = i;
        getHeight(s, n, sa);
};
SuffixArray <N> sa;
int main() {
    int n = s.length();
    sa.init(s, n, 128);
   FOR (i, 1, n + 1) printf("%d%c",
       sa.sa[i] + 1, i == _i - 1 ? '\n }
       ':'');
    FOR (i, 2, n + 1) printf ("%d%c", 1)
       sa.ht[i], i == _i - 1 ? '\n' :
       ' ');
```

6.7 Suffix Automation

```
namespace Sam { const int M = N << 1; int t[M][26], len[M] = \{-1\}, fa[M]
```

```
], sz = 2, last = 1;
    void init() { memset(t, 0, (sz +
       10) * size of t[0]); SZ = 2;
       last = 1; }
    void ins (int ch) {
        int p = last, np = last = sz
        len[np] = len[p] + 1;
        for (; p && !t[p][ch]; p = fa[
           p]) t[p][ch] = np;
        if (!p) { fa[np] = 1; return;
        int q = t[p][ch];
        if (len[p] + 1 == len[q]) fa[
           npl = q;
        else {
            int nq = sz++; len[nq] =
               len[p] + 1;
            memcpy(t[nq], t[q], size of
                t[0]);
            fa[nq] = fa[q];
            fa[np] = fa[q] = nq;
            for (; t[p][ch] == q; p =
               fa[p]) t[p][ch] = nq;
    int C[M] = \{1\}, a[M];
    void rsort() {
        FOR (i, 1, sz) c[i] = 0;
        FOR (i, 1, sz) c[len[i]]++;
        FOR (i, 1, sz) c[i] += c[i -
           1];
       FOR (i, 1, sz) a[--c[len[i]]]
           = i;
// really - generalized sam
int t[M][26], len[M] = {-1}, fa[M], sz
    = 2, last = 1;
LL cnt[M][2];
void ins (int ch, int id) {
    int p = last, np = 0, nq = 0, q =
       -1;
    if (!t[p][ch]) {
       np = sz++;
        len[np] = len[p] + 1;
```

```
for (; p && !t[p][ch]; p = fa[
            p]) t[p][ch] = np;
    if (!p) fa[np] = 1;
    else {
        q = t[p][ch];
        if (len[p] + 1 == len[q]) fa[
            np] = q;
        else {
            nq = sz++; len[nq] = len[p]
               ] + 1;
            memcpy(t[nq], t[q], size of
                 t[0]);
            fa[nq] = fa[q];
            fa[np] = fa[q] = nq;
             for (; t[p][ch] == q; p =
                fa[p]) t[p][ch] = nq;
    last = np ? np : nq ? nq : q;
    cnt[last][id] = 1;
// lexicographical order
// rsort2 is not topo sort
void ins (int ch, int pp) {
    int p = last, np = last = sz++;
    len[np] = len[p] + 1; one[np] =
       pos[np] = pp;
    for (; p && !t[p][ch]; p = fa[p])
       t[p][ch] = np;
    if (!p) { fa[np] = 1; return; }
    int q = t[p][ch];
    if (\operatorname{len}[q] == \operatorname{len}[p] + 1) fa[\operatorname{np}] =
    else {
        int nq = sz++; len[nq] = len[p
            ] + 1; one[nq] = one[q];
        memcpy(t[nq], t[q], size of t
            [0]);
        fa[nq] = fa[q];
        fa[q] = fa[np] = nq;
        for (; p && t[p][ch] == q; p =
             fa[p]) t[p][ch] = nq;
// lexicographical order
```

```
void rsort() {
// generalized sam
int up[M], c[256] = \{2\}, a[M];
                                              FOR (i, 1, 256) c[i] = 0;
                                              FOR (i, 2, sz) up[i] = _{*}(one[i] +
void rsort2() {
   FOR (i, 1, 256) c[i] = 0;
                                                  len[fa[i]]);
                                              FOR (i, 2, sz) c[up[i]]++;
   FOR (i, 2, sz) up[i] = s[one[i] +
       len[fa[i]];
                                              FOR (i, 1, 256) c[i] += c[i - 1];
   FOR (i, 2, sz) c[up[i]]++;
                                              FOR (i, 2, sz) aa[--c[up[i]]] = i;
   FOR (i, 1, 256) c[i] += c[i - 1];
                                              FOR (i, 2, sz) G[fa[aa[i]]].
   FOR (i, 2, sz) a[--c[up[i]]] = i;
                                                  push_back(aa[i]);
   FOR (i, 2, sz) G[fa[a[i]]].
       push_back(a[i]);
                                          // match
}
                                          int u = 1, I = 0;
                                          FOR (i, 0, strlen(s)) {
                                               int ch = s[i] - 'a';
int t[M][26], len[M] = \{0\}, fa[M], sz
   = 2, last = 1;
                                               while (u \&\& !t[u][ch]) \{ u = fa[u] \}
char * one [M];
                                                  ]; | = |en[u]; }
void ins (int Ch, char * pp) {
                                              ++1; u = t[u][ch];
    int p = last, np = 0, nq = 0, q =
                                               if (!u) u = 1;
       -1;
                                               if (1) // do something...
    if (!t[p][ch]) {
        np = sz++; one[np] = pp;
                                          // substring state
        len[np] = len[p] + 1;
                                          int get_state(int | , int r) {
                                              int u = rpos[r], s = r - l + 1;
        for (; p && !t[p][ch]; p = fa[
                                              FORD (i, SP - 1, -1) if (len[pa[u
           p]) t[p][ch] = np;
                                                  |[i]| >= s) u = pa[u][i];
    if (!p) fa[np] = 1;
                                               return <mark>U</mark>;
    else {
        q = t[p][ch];
        if (len[p] + 1 == len[q]) fa[
                                          // LCT - SAM
                                          namespace | ct_sam {
           np = q
                                               extern struct P * const Null;
        else {
            nq = sz++; len[nq] = len[p]
                                               const int M = N;
                ] + 1; one[ng] = one[g
                                               struct P {
                                                   P *fa, *ls, *rs;
            memcpy(t[nq], t[q], size of
                                                   int last;
                 t[0]);
            fa[nq] = fa[q];
                                                   bool has_fa() { return fa->ls
            fa[np] = fa[q] = nq;
                                                      == this || fa->rs == this;
            for (; t[p][ch] == q; p =
               fa[p]) t[p][ch] = nq;
                                                   bool d() { return fa \rightarrow ls = 
                                                      this; }
                                                   P_*& C(bool X) { return X ? Is
    last = np ? np : nq ? nq : q;
                                                      : rs; }
                                                   P_* up() { return this; }
int up[M], c[256] = \{2\}, aa[M];
                                                   void down() {
vector < int > G[M];
                                                       if (|s != null) |s->|ast =
```

```
last:
         if (rs != null) rs->last =
             last;
    void all_down() { if (has_fa()
       ) fa->all_down(); down(); }
* const null = new P\{0, 0, 0, 0\},
     pool[M], *pit = pool;
P_* G[N];
int t[M][26], len[M] = {-1}, fa[M]
   ], sz = 2, last = 1;
void rot(P_* o) {
    bool dd = o \rightarrow d();
    P * f = o - sa , * t = o - sc(!dd);
    if (f->has_fa()) f->fa->c(f->d
        ()) = 0; o->fa = f->fa;
    if (t != null) t->fa = f; f->c
        (dd) = t:
    o->c(!dd) = f->up(); f->fa = o
void splay (P_* \circ) {
    o->all_down();
    while (o->has_fa()) {
         if (o->fa->has_fa())
            rot(o->d() ^o->fa->d
                () ? o : o \rightarrow fa);
        rot(o);
    o->up();
void access(int last, P* u, P* v =
    null) {
    if (u == null) { v->last =
       last; return; }
    splay(u);
    P * t = u;
    while (t->|s|!=nu|!) t=t->
        ls:
    int L = len[fa[t - pool]] + 1,
        R = len[u - pool];
    if (u->last) bit::add(u->last
        -R + 2, u \rightarrow last - L + 2,
        1);
```

```
else bit:: add (1, 1, R - L + 1)
    bit::add(last - R + 2, last -
       L + 2, -1);
    u->rs=v;
    access(last, u->up()->fa, u);
v_{old} insert (P_* u, P_* v, P_* t) {
    if (v != null) { splay(v); v->
       rs = null; }
    splay(u);
    u->fa = t; t->fa = v;
void ins (int ch, int pp) {
    int p = last, np = last = sz
       ++;
    len[np] = len[p] + 1;
    for (; p && !t[p][ch]; p = fa[
       p) t[p][ch] = np;
    if (!p) fa[np] = 1;
    else {
        int q = t[p][ch];
        if (len[p] + 1 == len[q])
           \{ fa[np] = q; G[np] -> fa \}
            = G[q]; 
        else {
            int ng = sz++; len[ng]
                 = len[p] + 1;
            memcpy(t[nq], t[q],
                size of t[0]);
            insert(G[q], G[fa[q]],
                G[nq]);
            G[nq] -> last = G[q] ->
                last:
            fa[nq] = fa[q];
            fa[np] = fa[q] = nq;
            G[np]->fa = G[nq]:
            for (; t[p][ch] == q;
                p = fa[p]) t[p][ch]
                 = nq;
    access(pp + 1, G[np]);
```

7 Miscellaneous

7.1 Date

```
// Routines for performing
   integers from 1 to 12, days
// are expressed as integers from 1 to
// vears are expressed as 4-digit
   integers.
string dayOfWeek[] = {"Mo", "Tu", "We"
   , "Th", "Fr", "Sa", "Su"};
// converts Gregorian date to integer
   (Julian day number)
int DateToInt (int m, int d, int y){
  return
   1461 * (y + 4800 + (m - 14) / 12)
      / 4 +
   367 * (m - 2 - (m - 14) / 12 * 12)
        / 12 -
   3 * ((y + 4900 + (m - 14) / 12) /
       100) / 4 +
   d - 32075:
// converts integer (Julian day number
   ) to Gregorian date: month/day/year
void IntToDate (int jd, int &m, int &d
   , int &v) {
 int X, N, İ, j;
 x = id + 68569;
 n = 4 * x / 146097;
 x = (146097 * n + 3) / 4
 i = (4000 * (x + 1)) / 1461001;
```

```
x -= 1461 * i / 4 - 31;
j = 80 * x / 2447;
d = x - 2447 * j / 80;
x = j / 11;
m = j + 2 - 12 * x;
y = 100 * (n - 49) + i + x;
}
// converts integer (Julian day number
) to day of week
string IntToDay (int jd) {
  return dayOfWeek[jd % 7];
}
```

7.2 Subset Enumeration

```
// all proper subset
for (int S = (S - 1) & S; s; s = (S -
    1) & S) {
        // ...
}

// subset of length k
template < typename T >
void Subset(int k, int n, T&& f) {
    int t = (1 << k) - 1;
    while (t < 1 << n) {
        f(t);
        int x = t & -t, y = t + x;
        t = ((t & ~y) / x >> 1) | y;
    }
}
```

7.3 Digit DP

```
LL dfs(LL base, LL pos, LL len, LL s,
    bool limit) {
    if (pos == -1)         return s ? base :
        1;
    if (!limit && dp[base][pos][len][s
        ] != -1)         return dp[base][pos][
        len][s];
    LL ret = 0;
    LL ed = limit ? a[pos] : base - 1;
    FOR (i, 0, ed + 1) {
        tmp[pos] = i;
        if (len == pos)
             ret += dfs(base, pos - 1,
```

```
len - (i == 0), s,
                limit && i == a[pos]);
        else if (s \&\&pos < (len + 1) /
             2)
            ret += dfs(base, pos - 1,
                len , tmp[len - pos] ==
                i, \lim k \& i == a[pos]
                ]);
        else
            ret += dfs(base, pos - 1,
                len , s , limit && i == a
                [pos]);
    if (!limit) dp[base][pos][len][s]
       = ret;
    return ret;
}
LL solve(LL x, LL base) {
    LL sz = 0;
    while (X) {
        a[sz++] = x \% base;
        x /= base;
    return dfs (base, sz - 1, sz - 1,
       1, true);
}
```

7.4 Simulated Annealing

```
// Minimum Circle Cover
using LD = double;
```

```
const int N = 1E4 + 100;
                                                                  nxt_y = cur_y +
int x[N], y[N], n;
                                                                   rd() * T;
LD eval(LD xx, LD yy) {
                                                               LD nxt_ans = eval(
    LD r = 0;
                                                                  nxt_x , nxt_y);
    FOR (i, 0, n)
                                                               if (nxt_ans <
        r = max(r, sqrt(pow(xx - x[i],
                                                                  best_ans) {
        2) + pow(yy - y[i], 2)));
                                                                   best_x = nxt_x
                                                                      ; best_y =
    return r;
                                                                      nxt_y;
mt19937 mt(time(0));
                                                                   best_ans =
auto rd = bind(
                                                                      nxt_ans;
    uniform_real_distribution <LD>(-1,
    1), mt);
int main() {
                                                           cur_x = best_x; cur_y
    int X, Y;
                                                              = best_y;
     while (cin >> X >> Y >> n) {
                                                          T_{*}=.9;
        FOR (i, 0, n) scanf("%d%d", &x
            [i], &y[i]);
                                                       if (eval(cur_x, cur_y) < M</pre>
        pair <LD, LD> ans;
                                                          ) {
        LD M = 1e9;
                                                           ans = {cur_x, cur_y};
        FOR (_, 0, 100) {
                                                              M = eval(cur_x)
            LD cur_x = X / 2.0, cur_y
                                                              cur_y);
                = Y / 2.0, T = max(X, Y)
                                                      }
                );
                                                  printf("(%.1f,%.1f).\n%.1f\n",
             while (T > 1e-3) {
                 LD best_ans = eval(
                                                       ans first, ans second,
                                                      eval(ans.first, ans.second)
                    cur_x, cur_y);
                 LD best_x = cur_x,
                                                      );
                    best_y = cur_y;
                FOR (___, 0, 20) {
                                          }
                     LD nxt_x = cur_x +
                         rd() * T,
```

杜教筛

得到 $f(n) = (f * g)(n) - \sum_{d|n,d < n} f(d)g(\frac{n}{d})$ 。 构造一个积性函数 g,那么由 $(f*g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})$, 求 $S(n) = \sum_{i=1}^{n} f(i)$,其中 f 是一个积性函数。

$$g(1)S(n) = \sum_{i=1}^{n} (f * g)(i) - \sum_{i=1}^{n} \sum_{d|i,d < i} f(d)g(\frac{n}{d}) \quad (1)$$

$$\stackrel{t=\frac{i}{d}}{=} \sum_{i=1}^{n} (f * g)(i) - \sum_{t=2}^{n} g(t) S(\lfloor \frac{n}{t} \rfloor)$$
 (2)

当然,要能够由此计算 S(n),会对 f,g 提出一些要求:

- f*g 要能够快速求前缀和。
- g 要能够快速求分段和 (前缀和)。
- 在预处理 S(n) 前 $n^{rac{2}{3}}$ 项的情况下复杂度是 $O(n^{rac{2}{3}})_{\circ}$ 对于正常的积性函数 g(1)=1,所以不会有什么问题

素性测试

- 前置: 快速乘、快速幂
- int 范围内只需检查 2, 7, 61
- long long 范围 2, 325, 9375, 28178, 450775, 9780504, 1795265022
- 3E15 内 2, 2570940, 880937, 610386380, 4130785767
- 4E13 内 2, 2570940, 211991001, 3749873356
- http://miller-rabin.appspot.com/

扩展欧几里得

- 如果 a 和 b 互素,那么 x 是 a 在模 b 下的逆元
- 注意 x 和 y 可能是负数

类欧几里得

- $m = \lfloor \frac{an+b}{c} \rfloor.$
- (c,c,n); 否则 f(a,b,c,n) = nm f(c,c-b-1,a,m-1)。 f(a, b, c, n) = $f(a,b,c,n) = (\frac{a}{c})n(n+1)/2 + (\frac{b}{c})(n+1) + f(a \bmod c, b \bmod$ $\sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor$: $\stackrel{\cdot}{=} a \geq c \text{ or } b \geq c \text{ B}$;
- $g(a,b,c,n) = (\frac{a}{c})n(n+1)(2n+1)/6 + (\frac{b}{c})n(n+1)/2 +$ $g(a,b,c,n) \; = \; \textstyle \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \colon \; \stackrel{\mbox{\tiny def}}{=} \; a \; \geq \; c \; \; \mbox{or} \; \; b \; \geq \; c \; \; \mbox{bt},$ 1)m - f(c, c - b - 1, a, m - 1) - h(c, c - b - 1, a, m - 1)) $g(a \bmod c, b \bmod c, c, n); \ \textcircled{AM} \ g(a, b, c, n) = \frac{1}{2}(n(n + c, n))$
- $h(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor^2$: $\stackrel{\text{def}}{=} a \geq c \text{ or } b \geq$ $c,b \bmod c,c,n)$; 否则 h(a,b,c,n) = nm(m+1) - 2g(c,c-1) $(c,c,n) \ + \ 2(\frac{a}{c})g(a \bmod c,b \bmod c,c,n) \ + \ 2(\frac{b}{c})f(a \bmod c,c,n)$ $(\frac{b}{c})^2 (n \ + \ 1) \ + \ (\frac{a}{c}) (\frac{b}{c}) n (n \ + \ 1) \ + \ h (a \bmod c, b \bmod c)$ b-1, a, m-1) - 2f(c, c-b-1, a, m-1) - f(a, b, c, n)时,h(a,b,c,n) = 0 $(\frac{a}{c})^2 n(n + 1)(2n + 1)/6 +$

斯特灵数

- 第一类斯特灵数: 绝对值是 n 个元素划分为 k 个环排列 的方案数。s(n,k) = s(n-1,k-1) + (n-1)s(n-1,k)
- 第二类斯特灵数: n 个元素划分为 k 个等价类的方案数 S(n,k) = S(n-1,k-1) + kS(n-1,k)

一些数论公式

- 当 $x \ge \phi(p)$ 时有 a^x $\equiv a^{x \mod \phi(p) + \phi(p)} \pmod{p}$
- $\mu^2(n) = \sum_{d^2|n} \mu(d)$
- $\sum_{d|n} \varphi(d) = n$
- $\sum_{d|n} 2^{\omega(d)} = \sigma_0(n^2)$,其中 ω 是不同素因子个数
- $\sum_{d|n} \mu^2(d) = 2^{\omega(d)}$

些数论函数求和的例子

- $\sum_{i=1}^{n} i[gcd(i,n) = 1] = \frac{n\varphi(n) + [n=1]}{2}$
- $\sum_{i=1}^{n} \sum_{j=1}^{m} [gcd(i,j) = x] = \sum_{d} \mu(d) \lfloor \frac{n}{dx} \rfloor \lfloor \frac{m}{dx}.$
- $\sum_{d} \varphi(d) \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$ $\sum_{i=1}^{n} \sum_{j=1}^{m} gcd(i,j) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|gcd(i,j)} \varphi(d)$
- $S(n) = \sum_{i=1}^{n} \mu(i) = 1 \sum_{i=1}^{n} \sum_{d|i,d < i} \mu(d) \stackrel{t = \frac{1}{d}}{=}$ $\sum_{t=2}^{n} S(\lfloor \frac{n}{t} \rfloor) \ (\mathbb{A}J\mathbb{H} \ [n=1] = \sum_{d|n} \mu(d))$
- $S(n) = \sum_{i=1}^{n} \varphi(i) = \sum_{i=1}^{n} i \sum_{i=1}^{n} \sum_{d|i,d < i} \varphi(i) \stackrel{t = \frac{1}{d}}{=}$ $\tfrac{i(i+1)}{2} - \textstyle\sum_{t=2}^n S(\tfrac{n}{t}) \ (\text{AJH} \ n = \textstyle\sum_{d|n} \varphi(d))$
- $\sum_{i=1}^{n} \mu^{2}(i) = \sum_{i=1}^{n} \sum_{d^{2}|n} \mu(d) = \sum_{d=1}^{\lfloor \sqrt{n} \rfloor} \mu(d) \lfloor \frac{n}{d^{2}} \rfloor$ $\sum_{i=1}^{n} \sum_{j=1}^{n} gcd^{2}(i,j) = \sum_{d} d^{2} \sum_{t} \mu(t) \lfloor \frac{n}{dt} \rfloor^{2}$
- $\stackrel{x=dt}{=} \sum_{x} \left\lfloor \frac{n}{x} \right\rfloor^{2} \sum_{d|x} d^{2} \mu\left(\frac{t}{x}\right)$
- $\sum_{i=1}^{n} \varphi(i) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} [i \perp j] 1 =$ $\frac{1}{2} \sum_{i=1}^{n} \mu(i) .$

斐波那契数列性质

- $F_{a+b} = F_{a-1} \cdot F_b + F_a \cdot F_{b+1}$
- $F_1+F_3+\cdots+F_{2n-1}=F_{2n}, F_2+F_4+\cdots+F_{2n}=F_{2n+1}-1$
- $\sum_{i=1}^{n} F_i = F_{n+2} 1$
- $\sum_{i=1}^{n} F_i^2 = F_n \cdot F_{n+1}$
- $F_n^2 = (-1)^{n-1} + F_{n-1} \cdot F_{n+1}$
- $gcd(F_a, F_b) = F_{gcd(a,b)}$
- 模 n 周期 (皮萨诺周期)
- $-\pi(p^k) = p^{k-1}\pi(p)$ $\forall p \equiv \pm 1 \pmod{10}, \pi(p)|p-1$ $\pi(2) = 3, \pi(5) = 20$ $\pi(nm) = lcm(\pi(n), \pi(m)), \forall n \perp m$

常见生成函数

 $\forall p \equiv \pm 2 \pmod{5}, \pi(p)|2p+2$

- $(1+ax)^n = \sum_{k=0}^n \binom{n}{k} a^k x^k$
- $1 x^{r+1}$ 1 - x $= \sum_{k=0}^{n} x^k$
- 1-ax $\sum_{k=0}^{\infty} a^k x^k$

- $(\frac{1}{1}x)^2 = \sum_{k=0}^{\infty} (k+1)x^k$
- $\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} x^k$
- $e^x = \sum_{k=0}^{\infty} \frac{x}{k!}$
- $\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{n}$

佩尔方程

正整数,则称此二元二次不定方程为佩尔方程。 -个丢番图方程具有以下的形式: $x^2-ny^2=1$ 。且 n 为

明了佩尔方程总有非平凡解。而这些解可由 \sqrt{n} 的连分数求出。 际上对任意的 n, $(\pm 1,0)$ 都是解)。对于其余情况,拉格朗日证 若 n 是完全平方数,则这个方程式只有平凡解 (±1,0) (实

$$x = [a_0; a_1, a_2, a_3] = x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{$$

其中最小的i,将对应的 (p_i,q_i) 称为佩尔方程的基本解,或 列,由连分数理论知存在i使得 (p_i,q_i) 为佩尔方程的解。取 $x_i + y_i \sqrt{n} = (x_1 + y_1 \sqrt{n})^i$ 。或者由以下的递回关系式得到: 最小解,记作 (x_1,y_1) ,则所有的解 (x_i,y_i) 可表示成如下形式: 设 $\frac{p_i}{q_i}$ 是 \sqrt{n} 的连分数表示: $[a_0; a_1, a_2, a_3, \ldots]$ 的渐近分数

$$x_{i+1} = x_1 x_i + n y_1 y_i, \ y_{i+1} = x_1 y_i + y_1 x_i$$

容易解出 k 并验证。 前的系数通常是 -1)。暴力/凑出两个基础解之后加上一个 0, 通常, 佩尔方程结果的形式通常是 $a_n = ka_{n-1} - a_{n-2}(a_{n-2})$

Burnside & Polya

是说有多少种东西用 g 作用之后可以保持不变。 $|X/G|=\frac{1}{|G|}\sum_{g\in G}|X^g|$ 。 X^g 是 g 下的不动点数量,也就

同,每个置换环必须染成同色 -种置换 g,有 c(g) 个置换环, $|Y^X/G|=\frac{1}{|G|}\sum_{g\in G}m^{c(g)}$ 。用 m 种颜色染色,然后对于 为了保证置换后颜色仍然相

1.12皮克定理

2S = 2a + b - 2

- S 多边形面积
- a 多边形内部点数
- b 多边形边上点数

1.13 莫比乌斯反演

- $g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d})$ $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n})f(d)$
- 1.14低阶等幂求和
- $\sum_{i=1}^{n} i^{1} = \frac{n(n+1)}{2} = \frac{1}{2}n^{2} + \frac{1}{2}n$ $\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n$

- $= \left[\frac{n(n+1)}{2}\right]^2 = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2$
- $\sum_{i=1}^{n} i^4 =$ $\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3$
- $\sum_{i=1}^{n} i^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12} = \frac{1}{6}n^6 + \frac{1}{2}n^5 + \frac{5}{12}n^4 \frac{1}{12}n^2$

1.15

- 错排公式: $D_1 = 0, D_2 = 1, D_n = (n-1)(D_{n-1} + D_{n-2}) =$ $n!(\tfrac{1}{2!}-\tfrac{1}{3!}+\dots+(-1)^n\tfrac{1}{n!})=\lfloor\tfrac{n!}{e}+0.5\rfloor$
- 卡塔兰数 (n 对括号合法方案数, n 个结点二叉树个数 的三角形划分数,n 个元素的合法出栈序列数): $C_n =$ $n \times n$ 方格中对角线下方的单调路径数,凸 n+2 边形 $\frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}$

1.16 伯努利数与等幂求和

 $\sum_{i=0}^{n} i^{k} = \frac{1}{k+1} \sum_{i=0}^{k} {k+1 \choose i} B_{k+1-i} (n+1)^{i}$ 。也可以 $\sum_{i=0}^{n} i^{k} = \frac{1}{k+1} \sum_{i=0}^{k} {k+1 \choose i} B_{k+1-i}^{+} n^{i}$ 。区别在于 $B_{1}^{+} = 1/2$ 。

1.17 数论分块

 $f(i) = \lfloor \frac{n}{i} \rfloor = v$ 时 i 的取值范围是 [l, r]。

for (LL 1 v = N / 1; r = N /1, v, r; 1 <= N; 1

1.18

- Nim 游戏: 每轮从若干堆石子中的一堆取走若干颗。 先手 必胜条件为石子数量异或和非零。
- 异或和非零 (对于偶数阶梯的操作可以模仿)。 推动一级,直到全部推下去。先手必胜条件是奇数阶梯的 阶梯 Nim 游戏:可以选择阶梯上某一堆中的若干颗向下
- Anti-SG: 无法操作者胜。先手必胜的条件是:
- SG 不为 0 且某个单一游戏的 SG 大于 1 。
- SG 为 0 且没有单一游戏的 SG 大于 1。
- Every-SG: 对所有单一游戏都要操作。 先手必胜的条件是 单一游戏中的最大 step 为奇数。
- 对于终止状态 step 为 0
- 对于 SG 为 0 的状态, step 是最大后继 step +1
- 对于 SG 非 0 的状态, step 是最小后继 step +1
- 树上删边: 叶子 SG 为 0, 非叶子结点为所有子结点的 SG 值加 1 后的异或和

账政:

- 打表找规律
- 寻找一类必胜态 (如对称局面)
- 直接博弈 dp

2 **函**浴

2.1 带下界网络流

- 无源汇: u → v 边容量为 [l,r],连容量 r l,虚拟源点到 v 连 l, u 到虚拟汇点连 l。
- 有源汇: 为了让流能循环使用, 连 $T \rightarrow S$, 容量 ∞ .
- 最大流: 跑完可行流后, 加 $S' \to S$, $T \to T'$, 最大流就是答案 $(T \to S)$ 的流量自动退回去了,这一部分就是下界部分的流量)。
- 最小流: T 到 S 的那条边的实际流量,减去删掉那条边后 T 到 S 的最大流。
- 费用流:必要的部分(下界以下的)不要钱,剩下的按照 最大流。

2.2 二分图匹配

- 最小覆盖数 = 最大匹配数
- 最大独立集 = 顶点数 二分图匹配数
- DAG 最小路径覆盖数 = 结点数 拆点后二分图最大匹配数

2.3 差分约束

一个系统 n 个变量和 m 个约束条件组成,每个约束条件形如 $x_j-x_i \leq b_k$ 。可以发现每个约束条件都形如最短路中的三角不等式 $d_u-d_v \leq w_{u,v}$ 。因此连一条边 (i,j,b_k) 建图。

若要使得所有量两两的值最接近,源点到各点的距离初始 成 0,跑最远路。

若要使得某一变量与其他变量的差尽可能大,则源点到各点距离初始化成 ∞,跑最短路。

2.4 三元环

将点分成度人小于 \sqrt{m} 和超过 \sqrt{m} 的两类。现求包含第一类点的三元环个数。由于边数较少,直接枚举两条边即可。由于一个点度数不超过 \sqrt{m} ,所以一条边最多被枚举 \sqrt{m} 次,复杂度 $O(m\sqrt{m})$ 。再求不包含第一类点的三元环个数,由于这样的点不超过 \sqrt{m} 个,所以复杂度也是 $O(m\sqrt{m})$ 。

对于每条无向边 (u,v),如果 $d_u < d_v$,那么连有向边 (u,v),否则有向边 (v,u)。度数相等的按第二关键字判断。然后枚举每个点 x,假设 x 是三元组中度数最小的点,然后暴力往后面枚举两条边找到 y,判断 (x,y) 是否有边即可。复杂度也是 $O(m\sqrt{m})$ 。

2.5 四元环

考虑这样一个四元环,将答案统计在度数最大的点 b 上。考虑枚举点 u,然后枚举与其相邻的点 v,然后再枚举所有度数比 v 大的与 v 相邻的点,这些点显然都可能作为 b 点,我们维护一个计数器来计算之前 b 被枚举多少次,答案加上计数器的值,然后计数器加一。

枚举完 u 之后,我们用和枚举时一样的方法来清空计数器就好了。

任何一个点,与其直接相连的度数大于等于它的点最多只有 $\sqrt{2m}$ 个。所以复杂度 $O(m\sqrt{m})$ 。

2.6 支配树

- semi [x] 半必经点 (就是 x 的祖先 z 中,能不经过 z 和 x 之间的树上的点而到达 x 的点中深度最小的)
- idom[x] 最近必经点(就是深度最大的根到 x 的必经点)

3 计算几何

3.1 k 次圆覆盖

一种是用竖线进行切分,然后对每一个切片分别计算。扫描线部分可以魔改,求各种东西。复杂度 $O(n^3 \log n)$ 。

复杂度 $O(n^2 \log n)$ 。原理是:认为所求部分是一个奇怪的多边形 + 若干弓形。然后对于每个圆分别求贡献的弓形,并累加多边形有向面积。可以魔改扫描线的部分,用于求周长、至少覆盖 k 次等等。内含、内切、同一个圆的情况,通常需要特殊处理。

3.2 三维凸包

增量法。先将所有的点打乱顺序、然后选择四个不共面的点组成一个四面体,如果找不到说明凸包不存在。然后遍历剩余的点,不断更新凸包。对遍历到的点做如下处理。

- 1. 如果点在凸包内,则不更新。
- 如果点在凸包外,那么找到所有原凸包上所有分隔了对于 这个点可见面和不可见面的边,以这样的边的两个点和新 的点创建新的面加人凸包中。

1 随机素数表

862481,914067307, 954169327 512059357, 394207349, 207808351,108755593, $47422547,\ 48543479,\ 52834961,\ 76993291,\ 85852231,\ 95217823,$ $17997457,\,20278487,\,27256133,\,28678757,\,38206199,\,41337119$ 10415371, $4489747, \quad 6697841, \quad 6791471, \quad 6878533, \quad 7883129,$ $210407, \ 221831, \ 241337, \ 578603, \ 625409,$ 330806107, 42737, 46411, 50101, 52627, 54577, 2174729, 2326673, 2688877, 2779417, 132972461,11134633,534387017, 409580177,345593317, 227218703,171863609, 12214801,345887293,306112619,437359931, 698987533,173629837, 764016151, 311809637,15589333,483577261, 362838523,191677, 713569,176939899. 906097321373523729 17148757. 91245533133583, 788813, 194869,

适合哈希的素数: 1572869, 3145739, 6291469, 12582917, 25165843, 50331653

 $1337006139375617,\ 19,\ 46,\ 3;\ 3799912185593857,\ 27,\ 47,\ 5.$ 263882790666241, 15, 44, 7; 1231453023109121, 35, 15, 37, 7; 2748779069441, 5, 39, 3; 6597069766657, 3, 41, 17, 27, 3; 3221225473, 3, 30, 5; 75161927681, 35, 31, 3; $1004535809,\ 479,\ 21,\ 3;\ 2013265921,\ 15,\ 27,\ 31;\ 2281701377,$ 104857601, 25, 22, 3; 167772161, 5, 25, 3; 469762049, 7, 26, 3; 10; 5767169, 11, 19, 3; 7340033, 7, 20, 3; 23068673, 11, 21, 3; $12289,\ 3,\ 12,\ 11;\ 40961,\ 5,\ 13,\ 3;\ 65537,\ 1,\ 16,\ 3;\ 786433,\ 3,\ 18,$ 17, 1, 4, 3; 97, 3, 5, 5; 193, 3, 6, 5; 257, 1, 8, 3; 7681, 15, 9, 17; 77309411329, 9, 33, 7; 206158430209, 3, 36, 22; 2061584302081, 39582418599937, 9, 42, NTT 素数表: $p = r2^k + 1$, 原根是 g. 3, 1, 1, 2; 5, 1, 2, 2; 5; 79164837199873, 9, 45, 43,

5 心态崩了

- (int)v.size()
- 1LL << k
- 递归函数用全局或者 static 变量要小心
- · 预处理组合数注意上限
- 想清楚到底是要 multiset 还是 set
- 提交之前看一下数据范围,测一下边界

- 数据结构注意数组大小(2 倍, 4 倍)
- 字符串注意字符集
- 如果函数中使用了默认参数的话, 注意调用时的参数个数
- 注意要读完
- 构造参数无法使用自己
- ,树链剖分/dfs 序,初始化或者询问不要忘记 idx, ridx
- 排序时注意结构体的所有属性是不是考虑了
- 不要把 while 写成 if
- 不要把 int 开成 char
- 清零的时候全部用 0 到 n+1。
- 模意义下不要用除法
- 哈希不要自然溢出
- 最短路不要 SPFA,乖乖写 Dijkstra
- 上取整以及 GCD 小心负数
- mid 用 1 + (r 1) / 2 可以避免溢出和负数的问题
- 小心模板自带的意料之外的隐式类型转换
- 求最优解时不要忘记更新当前最优解
- 图论问题一定要注意图不连通的问题
- · 处理强制在线的时候 lastans 负数也要记得矫正
- 不要觉得编译器什么都能优化

