Mixed effects models

Readings for today

- Bates, Douglas M. "Ime4: Mixed-effects modeling with R." (2010): 470-474.
- Yarkoni, T. (2019). The generalizability crisis. PsyArXiv

Topics

1. Fixed vs. random effects

2. Towards increased generalizability

3. Random effects vs. nuisance terms

Fixed vs. random effects

Example: random factors

Q: Does having distracting stimuli on classroom walls impact learning?

Variables:

- Y_{recall} : item recall after 5 minutes
- $X_{walls}: \begin{cases} 1, & \text{distracting walls} \\ 0, & \text{blank walls} \end{cases}$
- $\cdot Z_{class}$: categorical classroom ID

If classroom ID is an arbitrary label, what does a unit change in Z_{class} mean with regards to unit changes in Y_{recall} ?

Mixed effects models

$$Y = \sum_{j=1}^{p} \hat{\beta}_{j} X + \sum_{k=1}^{q} \hat{\nu}_{k} Z$$
fixed effects random effects

Fixed Variables whose relationship with Y are stationary and covary in Effects: a meaningful way.

Random Qualitative variables that are not of primary interest but have a Effects: systematic influence on Y.

Example: random effect

Q: Does SSRI dosage increase positive affect?

Variables:

- Y_{affect} : positive affect score
- X_{SSRI} : dosage as mg/kg body weight
- Z_{hospital}: hospital ID

Types of random effects

Mean effects: The random factor shifts \bar{Y} (i.e., $\hat{\beta}_0$), but does not impact the nature of $\hat{\beta}_i X$.

Types of random effects

Slope effects: The random factor shifts $\hat{\beta}_i X$, but does not impact \bar{Y} .

Simpson's Paradox

Across batch (group) trends conflict with within batch (group) trends

Towards increased generalizability

Random variables

Examples:

- Subject ID
- Voxe
- Neuron
- Classroom
- Data collection site
- EEG system
- Stimulus presentation software

- Image stimuli
- Testing computer
- Operating system
- Testing room

There are many random factors that contribute to experimental effects that we often overlook.

Example: generalizable model

Q: Do people respond faster to animate objects than inanimate objects?

Variables:

- Y_{RT} : reaction time
- $X_{animacy}: \begin{cases} 1, & \text{animate} \\ 0, & \text{inanimate} \end{cases}$
- $\cdot Z_{image}$: JPG image ID number

Traditional model:

$$Y_{RT} = \hat{\beta}_0 + \hat{\beta}_1 X_{animacy}$$

Full model:

$$Y_{RT} = \hat{\beta}_0 + \hat{\beta}_1 X_{animacy} + \hat{\nu}_2 Z_{image}$$
 hypotheses incidental

Considerations

Incidental factors:

- Image stimuli
- Testing computer
- Operating system
- Testing room
- Research assistant
- Monitor type
- Electrode
- Scanner

Limitations:

- Statistical power (more factors = greater model variance)
- Random effects are largely uninterpretable

Random effects vs nuisance terms

The problem of confounds

Confounds: Variables that influence the $Y=\hat{f}(X)$ relationship but are not needed to evaluate the central hypothesis.

Random Effects

Nuisance Factors

Nuisance factors

Two types of X:

- $X_{target} o$ factors of interest
- $X_{nuisance} o$ factors that impact $\hat{\beta_i} X_{target}$

Units are meaningful, not random

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_{target} + \hat{\beta}_2 X_{nuisance}$$

$$\text{hypothesis} \quad \text{incidental}$$

Collinearity

A correlation between two or more predictor variables in X.

Strong case:
$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

Set:
$$X_1 = X_2 \rightarrow \rho(X_1, X_2) = 1$$

Then:
$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

 $= \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_1$
 $= \hat{\beta}_0 + X_1 (\hat{\beta}_1 + \hat{\beta}_2)$
 $= \hat{\beta}_0 + \tilde{\beta}_1 X_1$
 $= \hat{\beta}_0 + \tilde{\beta}_1 X_1$

Nuisance factors \underline{can} leverage the effect that collinearity has on $\hat{f}(X)$ in order to usefully temper confounded relationships between X_{target} and Y.

Nuisance vs. Random

OLS:
$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_{target} + \hat{\beta}_2 X_{nuisance}$$

Objective:
$$\min(\|Y - \hat{\beta}_0 - \hat{\beta}_1 X_{target} - \hat{\beta}_2 X_{nuisance}\|^2)$$

Objective:
$$\min(\|Y - \hat{\beta}_0 - \hat{\beta}_1 X_{target} - \hat{\nu}_1 \Lambda_\theta Z_{random}\|^2 + \|\hat{\nu}\|^2)$$

covariance matrix that explains structure in Z_{random}

$$\hat{\nu} \sim N(0, \Sigma_{\theta}), \Sigma_{\theta} = \sigma \Lambda_{\theta} \Lambda_{\theta}'$$

Take home message

 Accounting for random effects in your model, as well as nuisance factors, can improve the generalizability of your results by accounting for incidental influences on your outcome measures.