

Shaping the Rules for a Sustainable Nuclear Technology

RCC-MRx code: context, overview, on-going developments

C PETESCH

RCC-MRx Sub-Committee Chairwoman

MatISSE/JPNM workshop on cross-cutting issues in structural materials R&D for future energy systems

JRC, Petten, 25-26 November, 2015

Outline of the Presentation

- ✓ Definitions: code, RCC-MRx, AFCEN...
- ✓ General methodology for a Design Code
- A particular case: RCC-MRx
 - > Structure
 - Content: what does the code include and not include
 - How it is managed
- ✓ RCC-MRx future developments
- Conclusion

RCC-M MECHANICAL COMPONENTS

RCC-C FUEL ASSEMBLIES

RCC-E **ELECTRICAL**

RCC-F

RSE-M IN-SERVICE INSPECTION

RULES

RCC-D FIELD OF DECONSTRUCTION

RCC-MRx MECHANICAL COMPONENTS

In a simple way...

In a simple way...

- ✓ A code or a standard:
 - > A set of technical rules
 - > A creation tool
 - Equipment sizing
 - Taking into account industrial experience
 - Guide for the designer
 - Check list of all necessary verifications
- √ The RCC-MRx code
 - Design and construction rules for mechanical components of nuclear installations: Sodium Fast Reactors (SFR), Research Reactors (RR) and Fusion Reactors (FR - ITER)

Main projects using RCC-MRx Code

AFCEN

RCCMRx- Matisse/JPNM- JRC Petten- 25-26 Nov 2015

AFCEN

Copyright AFCEN © 2015

Loading **Loading corresponding to Damage** Stresse or strain ≤ Limit corresponding to damage / margin Prevention of: **Tensile properties** Yield strength Rp - Excessive deformation Tensile strength Rm - Plastic instability Choice of material - Creep Material File - Progressive deformation **Defects** Elaboration modes - Fatigue **Examinations Toughness** Transition temperature - Fast fracture KV energy Chemical composition (toughness, ageing) - Corrosion **Chemical composition** (avoid crack - Stress corrosion Creation and activation of corrosion Products)

RCC-MRx subsection Z - Appendix A3 or Probationary Phase Rules	A3.4 : Basic data	A3.5 : Creep data	A3.6 : Irradiation data	A3.8 : Fracture Mech. data
Non Alloy Steels (13 RPS in Tome 2)				
A3.10NAS: P235GH	X			
A3.11NAS : P265GH	X			X
A3.12NAS : P295GH	X			X
Alloy Steels (16 RPS in Tome 2, 4 RPS in RPP))				
A3.11AS: 25CrMo4, 42CrMo4, 30CrNiMo8	X			
A3.13AS: 16MND5	X and Bolts			
A3.14AS: 10CrMo9-10 fully annealed	X	Х		
A3.15AS: 13CrMo4-5 quenched and tempered	X	Х		
A3.16AS : 2.25% Cr, 1% Mo normalised tempered or quenched tempered	X	Х		
A3.17AS: X10CrMoVNb9-2 quenched tempered	X	X		
A3.18AS : X10CrMoVNb9-1 normalised tempered or quenched tempered	X	Х		X
A3.19AS : Eurofer X10CrWVTa9-1 normalised tempered	X			
Stainless Steels (25 RPS in Tome 2)				
A3.1S: X2CrNiMo17-12-2(N) solution annealed	X	Х	Х	X
A3.2S: X6CrNi18-10 et X5CrNi18-10 solution annealed	X	X		
A3.3S: X2CrNiMo17-12-2, 17-12-3, X2CrNiMo18-14-3	X	X	X	
A3.4S: X2CrNi18-9, X2CrNi19-11	X	X		
A3.6S: X15CrNiW22-12 solution annealed followed by aging	X	X		
A3.7S: X2CrNiMo17-12-2 around 20% work hardening	X and Bolts	X	X	
A3.8S: X4CrNiMo16-05-01 quenched and annealed	X and Bolts			
A3.10S : X6NiCrTiMoVB25-15-2 heat treated structural hardening	X and Bolts	X		
Special Alloys Ni-Cr-Fe (5 RPS in Tome 2)				
A3.5SA: X5NiCrTiAl33-21 after annealing heat treatment at 980°C	X	X		
Aluminium alloys (7 RPS in Tome 2, 1 RPS in RPP)				
A3.1A: 5754-O	X	Х	X	
A3.2A: 6061-T6	X	X	Х	
Zirconium alloys (4 RPS in Tome 2)				
A3.1Z : Zircaloy 2	X	Х	Х	
A3.27 : 7ircaloy 4	X	X	Х	

RCC-MRx General Overview

Section I (RDG)

- General provisions
- Entrance Keys Applic
- Equipment specification
- Management system

Vessels
Pumps
Valves
Pipes
Bellows
Boxes
Heat exchangers

Section III

TOME 1: DESIGN

Subsection A (RA): general provisions and entrance keys Subsection B (RB): class N1_{Rx} components and supports Subsection C (RC): class N2_{Rx} components and supports Subsection D (RD): class N3_{Rx} components and supports Subsection K (RK): Examination and handling mechanisms Subsection L (RL): Irradiation devices Subsection Z (Ai): Appendixes (properties of materials etc.)

Section II (REC)

Additional requirements

For class 3 components

- application of Standard NF EN 13445
- •application of Standard NF EN 13480
- •Eurocode 3

Special requirements

- European regulation ESP
- •French regulation ESPN
- European regulation REACH

TOME 2 (RM): MATERIAL PROCUREMENT SPECIFICATIONS TOME 3 (RMC): TESTING AND EXAMINATION METHODS

TOME 4 (RS) : WELDING

TOME 5 (RF): FABRICATION

TOME 6 (RPP): PROBATIONARY PHASE RULES

RCC-MRx General Overview

TOME 1

- ✓ RB 1000 GENERAL
- ✓ RB 2000 MATERIALS
- ✓ RB 3000 DESIGN
- ✓ RB 4000 FABRICATION AND ASSOCIATED EXAMINATIONS
- ✓ RB 5000 TESTS

- GENERAL
- ANALYSIS RELATED TERMS
- SIZING RULES
- ANALYSIS METHODS
- RULES FOR PREVENTION OF TYPE P DAMAGES
- RULES FOR PREVENTION OF TYPE S DAMAGES

RULES FOR BOLTS, BOLTED ASSEMBLIES AND MECHANICAL

CONNECTORS

DESIGN RULES FOR SUPPORTS

RCC-MRx General Overview

- ✓ Materials and Design rules have class 1 or 2 nuclear component
 - > in creep conditions (significant
 - in irradiated conditions (signification)

Probationary Phase Rules

PPR	Title	Paragraph(s)	Purpose	Status
RPP1-2012-RA5000	Management system	RA 5000	Establishment and use of a quality management system	Renewal 2012-2015
RPP2-2012-9%Cr	Properties of chrome alloy steels from Annex A3.18AS	A3.18AS	Properties of chrome alloy steels from Annex A3.18AS – cyclic behaviour and creep	Renewal 2012-2015
RPP3-2012-RM 243-2	RM 243-2 thick plates	RM 243-2 and A3.18AS	Extension of application of RM 243-2 to thick sheets (up to 250 mm)	Renewal 2012-2015
RPP4-2012-Eurofer	Eurofer	RM 242-6, 243-3 and 244-3, appendix A3.19S	Introduction of Eurofer	Renewal 2012-2015
RPP5-2012-STR-S Casing 6061-T6	RM 522-7 casing 6061- T6	RM 522-7, appendix A3.GEN and A3.2A	S-RPS: Type 6061 T652 Al-Si-Mg alloy forged blanks for the core casing and additional information in associated Appendices A3.GEN and A3.2A	Renewal 2012-2015
RPP6-2012 aluminium welds	US inspection of welds on aluminium alloys	RS 7714.4 RS 7724.4	Introduction of measures for US inspection of welds on aluminium alloys	Renewal 2012-2015
RPP7-2012-A16	A16 – Locating defects	A16.2122	Definition of a general procedure for locating defects	Renewal 2012-2015
RPP8-2013-SMC2	Use of the SMC2 method for prevention of type S damages	RB 3645.82 RB 3661.1 RB 3661.24	Extension of the method of Seismic Moments Classification SMC2 to type S damages	Renewal 2013-2015
RPP9-2013-800H	800H Alloy	RM 412-4 RM 414-3 A3.6SA	Introduction of bars and tubes RPS in alloy 800H and the associated appendix A3	Renewal 2013-2015
RPP10-2015- A3.2A.69	6061-T6 swelling	A3.2A.69	New swelling law for 6061-T6	Introduction 2015

Code management

BOARD of GOVERNORS

Chairman of Afcen, Presidents of the Committees, General Secretary and Administrators

EXECUTIVE COMMITTEE

Training Committee

Publishing Committee

General Secretary

Quality Committee

Other Subcommittees

- Fire
- Electricty
- Civil Work
- Fuel

RCC-M Subcommittee
(Design and construction
PWR)
S Marie Areva

- 1. Design
- 2. Materials
- 3. Examination
- 4. Technology

5. Fabrication

RCC-MRx Subcommittee
(Design and construction
SFR, ITER, RR,...)
C. Petesch CEA

WG1

Design

WG2-3
Materials Examination

WG4-5
Welding Fabrication

RSE-M Subcommittee (In Service Inspection PWR)

L. Lobgeois EdF

- 1. Test
- 2. Examination
- 3.Flaw analysis
- 4. Repair
- **5. ISI**

Procedure for code updating

Afcen Working Groups

MRx-WG1 (Tome 1) and MRx-WG2-5 (Tomes 2,3,4,5)

Objectives:

Investigation on Modification Requests (Instruction files = justifications + modified text).

Updating and Preparation of justification documents (Criteria), new editions.

GTT-RX: Pre-Normative Task
Groups for the RCC-MRx Code

Objectives:

Preparation of Modifications with their justification reports and modified text.

CEN Workshop CWS64

Objectives:

Recommandations R&D propositions

Afcen RCC-MRx Sub-Committee (MRx-SC)

Afcen members and invited experts

Objectives :

Organisation and dispatching the MRx-WG work according Afcen procedures, examination and approbation of WG work:

Instruction files, justification documents (Critria), new editions.

Find the ressources for the MRx-SC and MRx-WG activities.

Participation in CEN MRx Workshop – instruction of CW Agreements

Users of RCC-MR, RCC-MX, RCC-MRx

Modification Requests

Pre-Normative r&D

Objectives:

Modifications of RCC-MRx Code with their justification reports and modified texts.

Afcen Editorial Committee for publication (MRx editions every 3 years)

Modification requests overview

OVERVIEW OF THE MODIFICATION REQUESTS DISTRIBUTION

2012 Edition

2015 Edition

On-going developpments

- ✓ Mid and long term needs for materials:
 - Material characteristics at high temperatures
 - 316LN, 800 Alloys, ...
 - Lifetime and irradiation issues
 - 60 Years Lifetime thermal ageing, creep/fatigue approach to re-assess, database to extent (base metal but also welds),
 - Irradiation issues
 - Adaptation of the ratcheting and creep-fatigue rules for 9%Cr and other non-stainless steel materials
 - > Joining processes
 - · hot isostatic pressing
 - Welding
 - new filler materials, especially for automatic welding,
 - ageing&creep issues
 - Hard rolling
 - Hard facing materials (stellite replacement)
- ✓ Mid and long term needs for components design
 - Sodium and high temperature bellows rules
 - Compact heat exchanger (for gas power conversion)
 - Sodium Nuclear valves design rules
- ✓ Best compliance with regulation evolution (eg : pressure equipments regulation)
- ✓ Possible impact of future safety assessments

- √ To answer to GEN IV projects needs, some topics are still not codified, dealing with complex technical issues, requiring research and development or needed to collect participation of different experts.
- ✓ There is also a need for an opening to new processes, new materials, new design rules:
 - > Development of probationary phase rules,
 - Work on a guideline defining how to get and evaluate the material data for their introduction in the RCC-MRx code,
 - > Participation to the Cen Workshop 64.
- √ This opening shall be done in parallel to a work on the development of Criteria (background) of the code
 - Stainless Steel Material Report,
 - Design rules (Creep design rules, Bolt design rules, Ratcheting rules, Irradiation rules,...).
- ✓ Edition of design criteria is planed in 2017, a next edition of the code in 2018

Thanks for your attention

