Algebra Relacional

Es la parte manipulativa del modelo relacional. Se divide en dos partes:

- 1. un conjunto de operadores que forman en conjunto la llamada álgebra relacional y
- 2. una operación de asignación, que asigna el valor de alguna expresión arbitraria del álgebra a una relación nombrada.

Se definen ocho operadores en dos grupos de cuatro cada uno:

- a. las operaciones tradicionales de conjuntos: unión, intersección, diferencia y producto cartesiano; y
- b. las operaciones relacionales restricción, proyección, reunión y división.

Restricción: extrae las tuplas especificadas de una relación dada (o sea, restringe la relación solo a las tuplas que satisfagan una condición dada)

Proyección: extrae los atributos especificados de una relación dada

Producto: a partir de dos relaciones especificadas, construye una relación que contiene todas las combinaciones posibles de tuplas, una de cada una de las dos relaciones.

Unión: Construye una relación formada por todas las tuplas que aparecen en cualquiera de las dos relaciones especificadas

Intersección: construye una relación formada por aquellas tuplas que aparezcan en las dos relaciones especificadas.

Diferencia: construye una relación formada por todas las tuplas de la primera relación que no aparezcan en la segunda de las dos relaciones especificadas.

Reunión: a partir de dos relaciones especificadas, construye una relación que contiene todas las posibles combinaciones de tuplas, una de cada una de las dos relaciones, tales que las dos tuplas participantes en cada una combinación dada satisfagan alguna condición especificada.

División: toma dos relaciones, una binaria y una unitaria, y construye una relación formada por todos los valores de un atributo de la relación binaria que concuerdan (en el otro atributo) con todos los valores en la relación unaria.

Rel: P - PROFESORES				Rel:S-SUELDOS		Rel: C - COORDINADORES			
Legajo	Nombre Nombre	Sede	Hs Sem	Hs Sem	Sueldo	Legajo	Nombre Nombre	Sede H	s Sem
1902	Juan	Oro Verde	20	10	200	1411	Pedro	Oro Verde	32
1505	Maria	Paraná	28	12	240	1505	Maria	Paraná	28
2035	José	Paraná	12	20	400				
1955	Ana	Paraná	12	28	560				
				32	640				

P UNION C			P INTERSECCIÓN C					
Legajo 1	Nombre	Sede	Hs Sem					
1902 Ju	uan	Oro Verde	20	Legajo	Nombre	Sede	Hs Sem	
1505 M	Maria	Paraná	28	1505	Maria	Paraná	28	
2035 Jo	osé	Paraná	12					
1955 A	Ana	Paraná	12					
1411 P	Pedro	Oro Verde	32					
DIFERENCIA (P – C)				DIFERENCIA (C – P)				
Legajo 1	Nombre	Sede	Hs Sem	Legajo	Nombre	Sede	Hs Sem	
1902 Ju	uan	Oro Verde	20	1411	Pedro	Oro Verde	32	
2035 Jo	osé	Paraná	12					
1955 A	Ana	Paraná	12					

RESTRICCIÓN (P where Horas Sem > 15)	REUNIÓN NATURAL P JOIN S					
Legajo Nombre Sede Hs Sem	Legajo Nombre Sede Hs Sem Sueldo					
1902 Juan Oro Verde 20	1902 Juan Oro Verde 20 400					
1505 Maria Paraná 28	1505 Maria Paraná 28 560					
	2035 José Paraná 12 240					
	1955 Ana Paraná 12 240					
PROYECCIÓN (P [Sede])						
Sede						
Oro Verde						
Paraná						

GUÍA DE PRÁCTICA

Dadas las siguientes relaciones, escribir en Algebra Relacional las siguientes consultas:

EJERCICIO 1

ITEMS (nro-i, descripción-i)
PEDIDOS (nro-c, nro-i, cantidad, precio)
CLIENTES (nro-c, nom-c, ciud-c)

- 1. Informar los clientes de Córdoba.
- 2. Informar los nombres de clientes que hayan pedido el item "ab1".
- 3. Informar los ítems pedidos por clientes de Rosario.
- 4. Informar los pedidos en los que el cliente "23" solicita items no solicitados por el cliente "30".
- 5. Informar los clientes que han pedido 2 o más ítems distintos.

EJERCICIO 2

VUELOS (nro-vuelo, desde, hasta) AVION-UTILIZADO (nro-vuelo, tipo-avión, nro-avión) INFO-PASAJEROS (nro-vuelo, dni, nombre, origen, destino)

Los vuelos no pueden tener más de dos escalas y no hay cambio de tipo de avión para un mismo número de vuelo.

- 1. Informar los números de vuelo que van desde A hasta F.
- 2. Informar los tipos de avión que no son utilizados en ningún vuelo que pase por B.
- 3. Informar los pasajeros y números de vuelo para aquellos pasajeros que viajan desde A hasta D pasando por B.
- 4. Informar los tipos de avión que son utilizados en todos los vuelos que pasan por C.

EJERCICIO 3

Empleado (nro_empleado, nombre, domicilio, localidad, antigüedad)

Funcion (nro_funcion, descripcion)

Planta (nro_planta, descripcion, localidad)

Tarea (nro_empleado, nro_funcion)

Organización (nro_planta, nro_funcion)

Trabaja (nro_empleado, nro_planta)

Distancia (localidad1, localidad2, distancia)

- 1. Informar los empleados que realizan la función Diseño
- 2. Informar los empleados que trabajan el la planta nº 2
- 3. Informar los nombres de los empleados que viven más lejos de su lugar de trabajo.

EJERCICIO 4

Artículos(nro_art,descripcion,peso,precio_unit,fabricado_en)

Facturas(nro_fact, nro_cli, fecha, fecha_venc)

DetalleFactura(nro_fact,nro_art,cant)

Clientes(nro_cli, nombre, domicilio, ciudad, País, Ocupación)

Listar los nombres de los clientes que hayan comprado al menos 2 artículos distintos.

```
U: Unión
```

|X| : Junta

π : Proyección **σ** : Selección

X: Producto Cartesiano

doc←4 : Renombre del campo de posición 4 por doc

Ejercicio 3

```
T1 = ( PLANTA |X| ( EMPLEADO |X| TRABAJA )

T2 = \pi_{4,11} ( T1 |X| _{3=1 \land 7=2} DISTANCIA )

\pi_{2} ( EMPLEADO |X| ( T2 - \pi_{3,4} ( \sigma_{2>4} ( T2 X T2 ))))
```

Ejercicio 4

```
T1 = (\mathbf{\pi}_{1,8}) (ARTICULOS |X| (DETALLE_FACTURA |X| (CLIENTES |X| FACTURAS))) \mathbf{\pi}_{2} (CLIENTES |X| \mathbf{\pi}_{2} (\mathbf{\sigma}_{1 \Leftrightarrow 3} (T1 X T1)))
```

Ejercicio 5

```
T1 = \pi_{doc\leftarrow4} ( \sigma_{2="Juan\ Perez"} ( PERSONAS |X| <sub>1=1</sub> SUPERVISA_A ))
T2 = \pi_{doc\leftarrow5} ( \sigma_{2="Juan\ Perez"} ( PERSONAS |X| <sub>1=2</sub> SUPERVISA_A ))
T3 = T1 U T2
\pi_2 ( PERSONAS |X| <sub>1=1</sub> T3 )
```

Ejercicio 7

```
T1 = \pi_{1,2} (\sigma_{1=5 \land 2=6} ( EXAMENES X EXAMENES )

T2 = \pi_{1,2} (\sigma_{2=4} ( T1 X CORRELATIVA ))

T3 = (\pi_1 CURSAR) - (\pi_1 (\sigma_{1=3 \land 2=4} ( T2 X CURSAN )))

\pi_2 ( ALUMNOS |X| T3)
```

Ejercicio 9

```
T1 = \pi_{1,2} ( \sigma_{9="español"} ( FACULTADES |X| ( CARRERAS |X| ( ESTUDIANTEDE |X| ALUMNOS))))
T2 = \pi_1 (FACULTADES – T1)
\pi_2 (ALUMNOS |X| ( ESTUDIANTEDE |X| ( CARRERAS |X| T2)
```