LISTING OF THE CLAIMS

1-14 (Cancelled).

15. (Original) A fluoroalkanol-substituted α,β -unsaturated ester having the structure of formula (V)

(V)
$$R^{15} \xrightarrow{R^{16}} R^{16}$$

$$R^{2} \xrightarrow{R^{6A}} R^{5}$$
HO R^{7A}

wherein:

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

 R^2 , R3, R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring;

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino;

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated; and one of R^{15} and R^{16} is hydrogen, and the other has the structure of formula (VI)

(VI)
$$R^{18}$$

in which R^{17} is selected from hydrogen, fluoro, C_1 - C_4 alkyl, fluorinated C_1 - C_4 alkyl, -CH₂-COOH, -CF₂-COOH, -CH₂-COOR²⁰, and -CF₂-COOR²⁰, R^{18} is hydrogen or fluoro, R^{19} is hydrogen, fluoro, or -COOH, and R^{20} is a nonhydrogen substituent.

16. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 15, wherein:

 R^1 is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy;

 R^2 is selected from hydrogen, C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, and fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{30} alicyclic group;

R^{6A} is selected from hydrogen, C₁-C₁₂ alkyl, and C₁-C₁₂ haloalkyl;

 R^{7A} is C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl;

R¹⁷ is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰;

 R^{18} and R^{19} are independently selected from hydrogen and fluoro; and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.

17. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 16, wherein:

 R^1 is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

 R^2 is hydrogen or C_1 - C_8 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{18} alicyclic group;

R^{6A} is selected from hydrogen, C₁-C₈ alkyl, and fluorinated C₁-C₈ alkyl;

R^{7A} is C₁-C₈ alkyl or fluorinated C₁-C₈ alkyl;

R¹⁷ is selected from hydrogen and methyl; and

R¹⁸ and R¹⁹ are hydrogen.

18. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 17, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R² is hydrogen or C₁-C₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{14} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{7A} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 19. (Original) The fluoroalkanol-substituted α , β -unsaturated ester of claim 17 wherein R^2 and R^3 are taken together to form a C_3 - C_{18} alicyclic group.
- 20. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein R^2 and R^3 are taken together to form a C_5 - C_{14} alicyclic group.
- 21. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein R⁴ and R⁵ are hydrogen.
- 22. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 19, wherein R⁴ and R⁵ are hydrogen.

- 23. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 20, wherein R⁴ and R⁵ are hydrogen.
- 24. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein R^{6A} and R^{7A} are both trifluoromethyl.
- 25. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein one of R^{6A} and R^{7A} is methyl and the other is trifluoromethyl.
- 26. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 15, wherein R^{15} is hydrogen and R^{16} has the structure of formula (VI)

$$(VI) \qquad \qquad \bigcap_{\mathsf{R}^{17}}^{\mathsf{R}^{18}} \mathsf{R}^{19}$$

27. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 15, wherein R^{15} has the structure of formula (VI)

(VI)
$$R^{18}$$
 R^{19}

and R¹⁶ is hydrogen.

28-49 (Cancelled).

50. (Original) A method for synthesizing a fluoroalkanol-substituted α , β -unsaturated ester from a fluorinated polyol having the structure of formula (IV)

(IV)
$$R^{13} \xrightarrow{R^{14}} R^{14}$$

$$R^{2} \xrightarrow{R^{6A}} R^{5}$$

wherein

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy,

 R^2 , R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form an alicyclic group,

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkyl)amino, or di(C_1 - C_{24} alkyl)amino,

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated, and one of R^{13} and R^{14} is hydroxyl and the other is selected from hydrogen and hydroxyl, the method comprising:

contacting the fluorinated polyol with an acylation reagent selected from acyl chlorides of the formula Cl-(CO)-CR¹⁷=CR¹⁸R¹⁹ and anhydrides of the formula O[(CO)-CR¹⁷=CR¹⁸R¹⁹]₂ under reaction conditions effective to result in esterification of a hydroxyl group present at R¹³, R¹⁴, or at both R¹³ and R¹⁴, to provide an -O-(CO)-CR¹⁷=CR¹⁸R¹⁹ substituent, wherein R¹⁷ is selected from hydrogen, fluoro, C_1 - C_4 alkyl, fluorinated C_1 - C_4 alkyl, -CH₂-COOH, -CF₂-COOH, -CH₂-COOR²⁰, and -CF₂-COOR²⁰, R¹⁸ is hydrogen or fluoro, R¹⁹ is hydrogen, fluoro, or -COOH, and R²⁰ is a nonhydrogen substituent.

- 51. (Original) The method of claim 50, wherein prior to admixture of the fluorinated polyol with the acylation reagent, the fluorinated polyol is treated with a deprotonating base.
 - 52. (Original) The method of claim 51, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

 R^2 is hydrogen or C_1 - C_4 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{12} alicyclic group;

Application No. 10/729,453 Response dated June 25, 2007 Response to Office Action dated February 23, 2007

 R^{6A} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{7A} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 53. (Original) The method of claim 51, wherein the acylation reagent is an acyl chloride of the formula Cl-(CO)-CR¹⁷=CR¹⁸R¹⁹.
- 54. (Original) The method of claim 53, wherein R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰, R^{18} and R^{19} are independently selected from hydrogen and fluoro, and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.
- 55. (Original) The method of claim 51, wherein the acylation reagent is an anhydride of the formula O[(CO)-CR¹⁷=CR¹⁸R¹⁹]₂.
- 56. (Original) The method of claim 55, wherein R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰, R^{18} and R^{19} are independently selected from hydrogen and fluoro, and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.

57-70 (Cancelled).

-9-

71. (Original) A fluoroalkanol-substituted α,β -unsaturated esters selected from the group consisting of

$$F_{3}C$$
 OH $F_{3}C$ OH

Application No. 10/729,453 Response dated June 25, 2007 Response to Office Action dated February 23, 2007

$$H_3CO$$
 CF_3
 CF_3
 CF_3

$$CF_3$$
 CF_3 CF_3

72-74 (Cancelled).

-13-