

13. Übungsblatt

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik

Sommersemester 2021

16. Juli 2021

Abgabe bis 23. Juli 2021, 12:00 Uhr

Auf diesem Übungsblatt wird der Vorlesungsstoff bis zum Ende des Vorlesungsskripts auf Seite 97 behandelt.

Aufgabe 49 (K):

(i) Es sei die Funktion $f: \mathbb{R} \to \mathbb{C}$ gegeben durch

$$f(t) = \begin{cases} 2\sin(t), & -\pi \le t \le \pi, \\ 0, & \text{sonst.} \end{cases}$$

Berechnen Sie die Fouriertransformierte $\hat{f}: \mathbb{R} \to \mathbb{C}$.

(ii) Es sei $f: \mathbb{R} \to \mathbb{C}$ stückweise stetig und absolut integrierbar. Weiter sei f reellwertig. Zeigen Sie, dass dann $|\hat{f}|$ gerade ist, d.h. dass gilt $|\hat{f}(s)| = |\hat{f}(-s)|$ für alle $s \in \mathbb{R}$.

Aufgabe 50:

- (i) Es sei $f: \mathbb{R} \to \mathbb{C}$ stetig, stückweise glatt und absolut integrierbar. Weiter sei zudem $g := \hat{f}$ absolut integrierbar. Zeigen Sie, dass dann gilt: $f(t) = 2\pi \hat{g}(-t)$ für alle $t \in \mathbb{R}$.
- (ii) Für $\alpha > 0$ sei $\gamma_{\alpha} \colon \mathbb{R} \to \mathbb{C}$ definiert durch $\gamma_{\alpha}(s) := \frac{2\alpha}{\alpha^2 + s^2}$. Zeigen Sie: $\gamma_{\alpha} * \gamma_{\beta} = \gamma_{\alpha + \beta}$ für alle $\alpha, \beta > 0$.

Hinweis: Sie dürfen ohne Beweis verwenden, dass $\gamma_{\alpha} * \gamma_{\beta}$ eine stetig differenzierbare Funktion ist.

Aufgabe 51 (K):

(i) Es seien die Funktionen $f: \mathbb{R} \to \mathbb{C}, \ f(x) := xe^{-x^2}$ und

$$g \colon \mathbb{R} \to \mathbb{C}, \quad g(s) := \begin{cases} \frac{\widehat{f''}(s)}{s}, & s \neq 0, \\ 0, & s = 0, \end{cases}$$

gegeben. Zeigen Sie, dass g stetig ist und bestimmen Sie $\int_{-\infty}^{\infty} g(s) e^{ist} ds$ $(t \in \mathbb{R})$.

(ii) Es sei $f: \mathbb{R} \to \mathbb{C}$ schnell fallend, reellwertig und antisymmetrisch, d.h. es gilt f(t) = -f(-t) $(t \in \mathbb{R})$. Zeigen Sie, dass die Fouriertransformierte der Ableitung \hat{f}' reellwertig ist, d.h. dass $\hat{f}'(\mathbb{R}) \subseteq \mathbb{R}$ gilt.

Aufgabe 52:

Die Funktion $\varphi \colon \mathbb{R} \to \mathbb{C}$ sei beliebig oft differenzierbar und es gelte $\varphi(t) = 0$ für $|t| \ge 1$. Zeigen Sie, dass dann $s \mapsto s^n \hat{\varphi}(s)$ für jedes $n \in \mathbb{N}$ eine beschränkte Funktion ist.

Information

Aufgrund der aktuellen Situation wird dieses Modul teilweise in digitaler Form angeboten. Die gesamte Abwicklung wird über das System ILIAS stattfinden. Melden Sie sich dafür mit Ihrem KIT-Account an und treten Sie dem Kurs **Höhere Mathematik II (Analysis) für die Fachrichtung Informatik** bei. Sie können diesem Kurs direkt über folgenden Link beitreten:

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung. Dort werden Sie auch über mögliche Änderungen informiert.

Zum Bearbeiten der Übungsblätter sollten Sie pro Woche etwa 7-8 Seiten des Skripts mithilfe der angebotenen Vorlesungsvideos durcharbeiten.

Übungsschein

Jede (K)-Aufgabe wird mit maximal 8 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-6 und 7-13 **jeweils** mindestens 48 bwz. 56 Punkte (50%) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal.

Anmeldung zur Klausur

Die Klausur zur Höheren Mathematik I und II für die Fachrichtung Informatik wird am **14.09.2021** von **8:00 - 13:00 Uhr** stattfinden. Die Anmeldung zur Klausur ist ab sofort möglich. Beachten Sie bitte den **Anmeldeschluss** am **30.08.2021**. Eine nachträgliche Anmeldung ist nicht möglich.