# Data Mining (Mining Knowledge from Data)

# Clustering

Marcel Jiřina, Pavel Kordík





### Outline of today's lecture

- Metrics
- Hierarchical clustering
  - Algorithms
  - Dendrograms
- K-means

### Cluster analysis

- We have data, but we do not know the category (class)
- We want to find sets of similar patterns, which are also dissimilar from patterns of other sets.
- We solve an optimization problem!
- What are our unknown parameters?
  - Number of clusters
  - Assignment of data (patterns) into clusters

### Clusters, representatives

The results of the survey, why people drink alcohol



 The task of cluster analysis is to find clusters in the data, or to assign them typical representatives

### Cluster analysis

• Classical cluster analysis is a tool for disjoint decomposition of a set of patterns in the input space  $\mathbb{R}^n$  into H > 1 classes (clusters).

 Cluster analysis requires maximum similarity of patterns within a class, while the maximum dissimilarity of patterns of different classes.

- For this we need to define the similarity of two models
  - the distance

#### **Metrics**

Metrics must meet certain conditions :

$$0 d(x,y) \ge 0$$

$$0 d(x,y) = 0 iff x = y$$

$$0 d(x,y) = d(y,x)$$

$$0 d(x,y) \le d(x,z) + d(z,y)$$

Triangular inequality

### Euclidean distance

- Two points in n-dimensional space
  - $P = (p_1, p_2, ..., pn)$
  - $Q = (q_1, q_2, ..., q_n)$
- Euclidean distance between points P and Q :

• 
$$e(P,Q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

- Often used  $e^2(P,Q)$ 
  - Euclidean distance without the square root

### Manhattan distance

 How do we calculate the distance between two cyclists in Manhattan?





•  $M(P,Q) = |p_1 - q_1| + |p_2 - q_2| + \dots + |p_n - q_n|$ 

### Cosine distance

It is invariant under rotation



• 
$$dist(P,Q) = \theta = \arccos\left(\frac{P \cdot Q}{\|P\| \cdot \|Q\|}\right)$$

### Edit distance

- E.g. to determine the distance of two words
- It is calculated as the number of deletions (insertions)
   of characters, needed to transform one word to
   another.

- How would you solve the problem?
- We always connect two closest vectors (points)



# Methods for evaluating distances of clusters

- Nearest neighbor method (single linkage) the distance of clusters is determined by the distance between the two closest objects (patterns) from different clusters
- Farthest neighbor method (complete linkage) the distance of clusters is determined by the distance between two outermost objects from different clusters
- Centroid linkage the distance of clusters is determined by the distance between their centers
- Average linkage the distance of clusters is determined as the average of the distances of all pairs of objects from different clusters
- Ward's linkage at each step it finds the pair of clusters that leads to minimum increase in total within-cluster variance after merging. This increase is a weighted squared distance between cluster centers.

# Single linkage

The nearest pattern is always chosen from the cluster



# Complete linkage

The furthest pattern is always chosen from the cluster



### Centroid linkage

The representative of the cluster is the centroid



# How many clusters did we find?

- Another view on our algorithm:
  - At the beginning each vector is a cluster
  - Linking vectors into clusters
  - At the end we get one large cluster
  - Number clusters do we have?
- The dendrogram =>
- The algorithm is called: hierarchical clustering



Just for illustration reasons, does not correspond to previous examples

# How many clusters did we find?

- It depends on where we made a "cut" of the dendrogram
- What happens when we cut the dendrogram at lower / higher level?
- Where belongs the new vector?



The problem? I need to calculate the distances to all the vectors!







### Contain the data really the clusters?

- Let's calculate the CPCC (Cophenetic Correlation Coeffitient)
- The CPCC is a normalized covariance of distances in the original space and in the dendrogram
- If the value CPPC is less than about 0.8, all the instances belong to a single large cluster
- Generally, the higher the cophenetic coefficient of correlation, the lower is the loss of information occurring in the process of merging of objects into clusters

- Pseudo-code of hierarchical clustering algorithm
  - c is a required number of clusters

```
    begin initialize c, c'←n, Di←{xi} i=1,...,n
    do c'←c'+1
    Calculate a matric of distances
    Find nearest clusters Di and Dj
    Merge clusters Di a Dj
    until c=c'
    return c clusters
    end
```

- The procedure ends when it reached the desired number of clusters
  - when c=1, we get the dendogram
- complexity
  - O(cn<sup>2</sup>d) and typically n>>c

#### K-means

- How to avoid the calculation of all mutual distances?
- Let's calculate distances from the representatives of clusters.
- The number of representatives is significantly smaller than the number of instances.
- Disadvantage: We have to determine the number of representatives (K) in advance.

### K-means

- Representatives here they are called centroids
- The center c of a cluster is calculated:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{X} \in c} \vec{x}$$

What does this mean? How vector are summed?





re-scaling

 Suppose that we know the number of clusters (centroids) and we are just looking for their position.

### How K-means works?

- Randomly initialize k centroids. Repeat until the algorithm converges:
  - The phase of assignment of vectors: assign each vector x to cluster  $X_i$ , for which the distance from x to  $\vec{\mu}_i$  (centroid  $X_i$ ) is minimal
  - The phase of moving the centroids: correct positions of the centroids according to current vectors in the clusters

$$\triangleright \vec{\mu}_i(Xi) = \frac{1}{|X_i|} \sum_{\vec{X}_j \in Xi} \vec{X}_j$$

# How K-means works?



1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color).



2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.



3. The centroid of each of the *k* clusters becomes the new mean.



4. Steps 2 and 3 are repeated until convergence has been reached.

# How K-means works?



### K-means distances

- We locally minimize energy
  - $\sum_{l=1}^{K} \sum_{xi \in Xl} ||xi \mu l||^2$

- What does it mean?
  - For K clusters sum distances of all vectors of a given cluster from its centroid
- Does it always converge to the global minimum of the energy?
- No, it converges often to local minima. It depend on initialization of the centroids.

### The K-means algorithm

- Input:
  - <u>n</u> patterns and a number of resulting centers <u>c</u>
- Output:
  - Resulting centers  $\mu_1, ..., \mu_c$
- Algorithm:

```
    begin initialize n, c, μ1,..., μc
    do classify n patterns to their nearest μi
    recalculate μi
    until no μi has changed
    return μ1,..., μc
    end
```

- Complexity:
  - O(ndcT)
  - *d* is the dimension of patterns and *T* is a number of iterations

# K-means algorithm for kids ©

- Once there was a land with N houses...
- One day K kings arrived to this land.
- Each house was taken by the nearest king.
- But the community wanted their king to be at the center of the village, so the throne was moved there.
- Then the kings realized that some houses were closer to them now, so they took those houses, but they lost some. This went on and on... (2-3-4)
- Until one day they couldn't move anymore, so they settled down and lived happily ever after in their village...

### Number of centers (clusters)

- For the K-means it is necessary to determine the K in advance – it is hard when you do not know anything about the data
- Think about an algorithm that will automatically derive the number of clusters from the data.

### What criterion to use for choosing K?

- Minimum of energy?
  - $W(K) = \sum_{l=1}^{K} \sum_{xi \in Xl} ||xi \mu l||^2$

 Inappropriate, it decreases to zero for K = number of instances.

It is better to find the maximum of function:

• 
$$H(K) = \frac{W(K) - W(K+1)}{W(K+1)}$$

### Silhouette – chart of clusters' outlines

• Iris data, for each instance calculate the certainty of its classification to cluster s(i) = <-1,1>

• 
$$s(i) = \frac{b(i)-a(i)}{\max\{a(i),b(i)\}}$$

Where *a*(*i*) is an average distance of instance *i* from instances of a cluster to which it is assigned

b(i) is an average distance of instance i from instances of the nearest cluster



### Rating the clustering by the Silhouette chart

Which output of the K-means is better?



- The one that has a better average value of s(i) for all instances.
- Ideally on testing data.

### Davies-Bouldin index

 Davies—Bouldin index (DBI) is a metric for evaluating clustering algorithms.

$$DB \equiv rac{1}{N} \sum_{i=1}^N D_i \qquad \qquad D_i \equiv \max_{j 
eq i} R_{i,j} \qquad \qquad R_{i,j} = rac{S_i + S_j}{M_{i,j}}$$

- 1.  $R_{i,j} \ge 0$ .
- 2.  $R_{i,j} = R_{j,i}$ .
- 3. When  $S_j\geqslant S_k$  and  $M_{i,j}=M_{i,k}$  then  $R_{i,j}>R_{i,k}$  .
- 4. When  $S_j = S_k$  and  $M_{i,j} \leqslant M_{i,k}$  then  $R_{i,j} > R_{i,k}$  .
- S<sub>i</sub> is a measure of scatter within the cluster
- M<sub>ij</sub> is a measure of separation between cluster C<sub>i</sub> and cluster C<sub>i</sub>

### Davies-Bouldin index

A<sub>i</sub> is the centroid of C<sub>i</sub> and T<sub>i</sub> is the size of the cluster I

$$S_i = \left(rac{1}{T_i}\sum_{j=1}^{T_i}\left|X_j - A_i
ight|^p
ight)^{1/p}$$

$$M_{i,j} = \left| \left| A_i - A_j 
ight| 
ight|_p = \Big( \sum_{k=1}^n \left| a_{k,i} - a_{k,j} 
ight|^p \Big)^{rac{1}{p}}$$

a<sub>k,i</sub> is the kth element of A<sub>i</sub>, and there are n such elements in A for it is an n dimensional centroid.