APELLIDO	NOMBRE	PADRON	TURNO		N° de hojas	Corrección
			т	N		

- 1.- El transistor T_1 de la figura, de $k = k_1$ se encuentra polarizado en modo de características saturadas (modo analógico lineal) con $I_{DQ} = I_{DQ(T1)}$.
- a) Se reemplaza T_1 por otro transistor T_2 de la misma familia, pero de $k_2 = 1, 5.k_1$, sin modificar el resto del circuito y admitiendo que permanece en modo analógico. ¿La corriente de reposo pasará a valer $I_{DQ(T2)} = 1, 5.I_{DQ(T1)}$?. Justificar en base al proceso de estabilización del punto de reposo.

b)

- b1) ¿Por qué normalmente se debe estabilizar el punto de reposo en un circuito amplificador?.
- **b2)** ¿Qué *limitaciones* en el funcionamiento del circuito se tienen, al tratar de mejorar la estabilidad, variando solamente R_{S1} o variando R_{S1} , R_{G1} y R_{G2} convenientemente?.
- **b3)** Como consecuencia de esto, ¿cómo debería modificarse el circuito para lograr obtener máxima estabilidad en el punto Q, sin desmejorar sus características de señal?.

- a) Obtener las tensiones de reposo contra común de los terminales de ambos transistores.
- b) Dibujar el circuito de señal a frecuencias medias, sin reemplazar los transistores por su modelo. Definir frecuencias medias. Obtener por inspección el valor de R_I , R_{or} A_V y A_{VS} .
- c) Obtener el valor aproximado de la frecuencia de corte inferior para A_{vs}, f_i.
- d) Analizar cualitativamente cómo se modifican los puntos de reposo, R_1 , R_0 y A_v si en el circuito original se reemplaza T_1 por un MOSFET de canal inducido (en igual configuración en señal).
- e) Analizar cualitativamente cómo se modifican los puntos de reposo, R_I , R_o y A_v si en el circuito original se cortocircuita el capacitor de $1\mu F$.