A Formal Proof of Deadlock Freedom

Lemma $Spec \Rightarrow \Box LInv$

Theorem $Spec \Rightarrow DeadlockFree$

DEFINE $T0 \stackrel{\triangle}{=} Trying(0)$ $T1 \triangleq Trying(1)$

 $Success \triangleq InCS(0) \vee InCS(1)$ Fairness $\stackrel{\triangle}{=} \forall i \in \{0,1\} : \operatorname{WF}_{vars}((pc[i] \neq "ncs") \land P(i))$

1 $\langle 1 \rangle 1$. Suffices Assume: $\Box LInv \wedge \Box [Next]_{vars} \wedge Fairness \wedge \Box \neg Success$ $T0 \lor T1 \leadsto \text{False}$ Prove:

1.1 $\langle 2 \rangle 1$. Suffices: $\Box LInv \wedge \Box [Next]_{vars} \wedge Fairness \Rightarrow DeadlockFree$ PROOF: By the lemma and the definition of Spec.

1.2 $\langle 2 \rangle 2$. DeadlockFree $\equiv ((\Box \neg Success) \land (T0 \lor T1) \rightsquigarrow FALSE)$

PROOF: By definition of DeadlockFree and the tautology $(F \rightsquigarrow G) \equiv$

1.3 $\langle 2 \rangle 3$. Q.E.D.

PROOF: By $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, and the proof rule $(\Box F \land \Box G \vdash H \leadsto K) \vdash (\Box F \Rightarrow (\Box G \land H \leadsto K))$

 $((\Box \neg G) \land F \leadsto \text{FALSE}.$

since $Fairness \equiv \Box Fairness$.

2 $\langle 1 \rangle 2$. Case: $T0 \sim$ false.

2.1 $\langle 2 \rangle 1$. $T0 \rightsquigarrow \Box(pc[0] = \text{``e2''})$

implies $T0 \sim (pc[0] = \text{``e2''})$, and $\Box LInv \wedge \Box [Next]_{vars}$ implies (pc[0] ="e2") $\Rightarrow \Box(pc[0] = \text{"e2"}).$

2.2 $\langle 2 \rangle 2$. $\Box (pc[0] = \text{``e2''}) \leadsto \Box ((pc[0] = \text{``e2''}) \land \neg x[1])$

2.2.1 $\langle 3 \rangle 1$. Suffices Assume: $\Box(pc[0] = \text{``e2''})$

PROVE: TRUE $\rightsquigarrow \Box \neg x[1]$

reaches cs. The code and fairness therefore imply that process 1 must eventually either reach and remain forever at ncs, or T1 must become

PROOF: LInv implies that process 0 is never at e3 or e4, and $\Box \neg Success$ (from the step $\langle 1 \rangle 1$ assumption) implies $\Box \neg InCS(0)$. Therefore, Fairness

PROOF: By proof rule $(\Box F \vdash G \leadsto H) \vdash (\Box F \land G \leadsto \Box F \land H)$.

 $\langle 3 \rangle 2$. TRUE $\rightsquigarrow (\Box(pc[1] = "ncs") \lor \Box T1)$ 2.2.2

PROOF: By $\Box \neg Success$ (from the step $\langle 1 \rangle 1$ assumption), process 1 never

true and remain true forever. $\langle 3 \rangle 3. \ (\Box(pc[1] = \text{"ncs"}) \Rightarrow \Box \neg x[1]$ 2.2.3

PROOF: LInv implies that x[1] equals FALSE when process 1 is at ncs.

forever at e4 with x[1] equal to FALSE. $\langle 3 \rangle 5$. Q.E.D. 2.2.5 PROOF: By $\langle 3 \rangle 2 - \langle 3 \rangle 4$ and Leads-To Induction. **2.3** $\langle 2 \rangle 3$. Q.E.D. $\langle 3 \rangle 1. \ \Box((pc[0] = \text{``e2''}) \land \neg x[1]) \rightsquigarrow InCS(0)$ 2.3.1 $\langle 3 \rangle 2$. Q.E.D. 2.3.2 PROOF: $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, and $\langle 3 \rangle 1$ imply $T0 \sim InCS(0)$, and $InCS(0) \wedge InCS(0)$ $\Box \neg Success$ implies false.

PROOF: $\Box LInv \wedge \Box (pc[0] = \text{``e2''}) \text{ imply } \Box x[0].$ Thus, $\Box T1$ (the case assumption), $\Box \neg InCS(1)$ (by the step $\langle 1 \rangle 1$ assumption $\Box \neg Success$), the code, and fairness imply that process 1 must eventually reach and remain

 $3 \langle 1 \rangle 3$. Case: $T1 \rightsquigarrow \text{false}$. 3.1 $\langle 2 \rangle 1$. $\Box T1$ is true time t_1 .

 $\langle 3 \rangle 4. \quad \Box T1 \leadsto \Box \neg x[1]$

2.2.4

PROOF: By the step $\langle 1 \rangle 1$ assumption, $\Box \neg InCS(1)$ (which is implied by $\Box \neg Success$) is true at time t_1 . From the code and the step $\langle 1 \rangle 3$ case assumption, this implies that $\Box T1$ is true at time t_1 . 3.2 $\langle 2 \rangle 2$. Either $\Box \neg T0$ is true a time t_1 , or T0 is true at some time $t_2 \geq t_1$.

PROOF: Obviously, $\Box \neg T0$ is false at time t_1 iff T0 is true at some time $t_2 \geq t_1$. 3.3 $\langle 2 \rangle$ 3. Case: $\Box \neg T0$ is true at time t_1 $\langle 3 \rangle 1$. There is some $t_3 \geq t_1$ such that $\Box \neg x[0]$ is true at time t_3 . 3.3.1

PROOF: By the code and fairness, $\neg T0$ true at time t_1 implies that pro-

cess 0 is at ncs at some time $t_3 \geq t_1$. The code and $\neg T0$ true at all times $t \geq t_1$ and the code imply that process 0 is at ncs with $\neg x[0]$ true for all $t > t_3$. $\langle 3 \rangle 2$. $\Box (T_1 \wedge \neg x[0])$ is true at time t_3 3.3.2

PROOF: By $\langle 3 \rangle 1$ and $\langle 2 \rangle 1$. $\langle 3 \rangle 3$. Q.E.D. 3.3.3 PROOF: Step $\langle 3 \rangle 2$, the code, and fairness imply that process 1 reaches e2at some time $t_4 \geq t_3$. Step $\langle 3 \rangle 2$ implies $\Box \neg x[0]$ is true at time t_4 , which

by fairness implies that process 1 reaches its critical section at some time $t_5 > t_4$. Since $t_5 \ge t_1$, this contradicts the assumption from step $\langle 1 \rangle 1$ that $\Box \neg Success$ is true at time t_1 .

3.4 $\langle 2 \rangle$ 4. Case: T0 is true at time $t_2 \geq t_1$ Proof: By $\langle 1 \rangle 2$.

3.5 $\langle 2 \rangle$ 5. Q.E.D.

PROOF: By $\langle 2 \rangle 2$, $\langle 2 \rangle 3$, and $\langle 2 \rangle 4$.

4 (1)4. Q.E.D.

PROOF: By the step $\langle 1 \rangle 1$ assumption, $\langle 1 \rangle 2$ (letting t_2 equal t_1), and $\langle 1 \rangle 3$.

CLOSE