# CM 1606 Computational Mathematics

#### **Tensors**

Week 09 | Ganesha Thondilege













# Learning Outcomes

- Covers LO1 for Module
- On completion of this lecture, students are expected to be able to:
  - Recall direction cosines of vectors
  - Identify tensors
  - Identify the way that high dimensional input data can specify using tensors
  - Discuss applications in Machine learning







#### CONTENT

- Introduction
- What is a tensor
- Rank of a tensor
- Transformation rules
- Coordinate transformation
- Summation convention







# Introduction

Temperature – Colombo city 303 K

- Single component to specify the temperature
- Scalar
- Component Zero basis vectors





# Displacement from Homagama to 30<sup>th</sup> floor of the WTC west tower 32km

B:WTC west tower 30th floor

Displacement  $\overrightarrow{AB} = 32km$ 

Direction: From A to B = AB

A: Homagama







Displacement from Homagama to 30<sup>th</sup> floor of the WTC west tower

- 32km

B:WTC west tower 30th floor



A: Homagama

Displacement AB = 32km

 $Direction: From\ A\ to\ B = AB$ 

 $20km-To\ west$ 

25km – To North

0.9km - up







#### Displacement using basis vectors

B:WTC west tower 30th floor



$$\vec{AB} = -20i + 25j + 0.9k$$



Component vectors



Displacement using basis vectors









# Introduction ctd.

- Consider a rectangular steel beam and the point O inside the beam
- How we can specify all the stresses act on the point O

Stresses on O?

























We can combine all these components in a 3\*3 matrix as

$$P = \begin{pmatrix} P_{xx} & P_{xy} & P_{xz} \\ p_{yx} & P_{yy} & Pyz \\ P_{zx} & p_{zy} & P_{zz} \end{pmatrix}$$

Use this matrix P to specify all stresses acting on the point O





#### **Tensors**

- P has 9 components and 2 basis vectors per component
  - 2 basis vectors 1 for the cross-sectional area
    - 1 for the direction of force
- This concept is known as Tensors

In an m dimensional space, a tensor of rank n is a mathematical object that has n indices, m<sup>n</sup> components.

- obeys some transformation rules
- Generally, m=3



# Rank of a Tensor

# Number of basis vectors needed to fully specify a component of a tensor.

Scalar

Component – Zero basis vectors – A tensor of rank zero

• *Vector* – 3 *componets* 

1 basis vector per component

i, j and k

So, a vector is a tensor of rank 1







• P is a tensor of rank 2 – Stress tensor m dimensional space, rank n Tensor $\rightarrow m^n$  components

| Scalar      | Vector       | Stress Tensor(P) |
|-------------|--------------|------------------|
| 1 component | 3 components | 9 components     |
| 3^(0)       | 3^(1)        | 3^(2)            |
| rank 0      | rank 1       | rank 2           |







# Tensor of rank 3

- 27 components= $>3^3$  rank 3 tensor
- How can we specify this 27 components?





#### Rank 3 tensor - Triad

- Any component  $a_{xyz}$
- 3 pages









# Transformation rules

- A tensor is an object that transforms like a tensor
- A tensor is an object that is invariant under a change of coordinate systems, with components that change according to a special set of mathematical formulae.

Rank zero tensor(scalar)

Temp=303K



Change of coordinate system does not change the temp.







- Vector Rank 1 tensor
- Displacement =  $\overrightarrow{AB}$  = -20i + 25j + 0.9k

B:WTC west tower 30th floor







• It change the way that we write the  $\overrightarrow{AB}$  using new basis vectors i', j', and k'

Does it change the vector itself?

No. vector still from A to B







#### Coordinate transformation

#### $OXYZ \rightarrow OX'Y'Z'$





Direction cosines of Ox', OY' & OZ' relative to OXYZ are

$$OX' \rightarrow l_1, m_1, n_1$$

$$OY' \rightarrow l_2, m_2, n_2$$

$$0Z' \rightarrow l_3, m_3, n_3$$







# Coordinate transformation



Then two equivalent systems of transformation equations

$$x' = l_1 x + m_1 y + n_1 z$$
  
 $y' = l_2 x + m_2 y + n_2 z$   
 $z' = l_3 x + m_3 y + n_3 z$ 







### Coordinate transformation

$$x = l_1x' + m_1y' + n_1z'$$

$$y = l_2x' + m_2y' + n_2z'$$

$$z = l_3x' + m_3y' + n_3z'$$

#### This transformation can be written as

$$egin{pmatrix} {\sf X} & {\sf Y} & {\sf Z} \ egin{pmatrix} l_1 & m_1 & n_1 \ l_2 & m_2 & n_2 \ l_3 & m_3 & n_3 \end{pmatrix}$$







### Summation convention

The sum of

$$a_1x_1 + a_2x_2 + a_3x_3 \dots + a_nx_n$$
 can be written as

$$\sum_{i=1}^{n} a_i x_i$$

The compact notation for this is

$$a_i x^i$$
 (Einstein Notation)



# Example

Write  $a_{rs}x^{s} = b_{r}(r, s = 1, 2, 3, ..., n)$  in full.

Hint: Substitute values for r first and then substitute for s.







# Example

• Write all the tensors in

$$T = a_{ij}x^{i} taking n = 3$$







### Tensor Addition

• Take the element wise addition of two tensors with same dimensions and results a new tensor with the same dimensions







### Tensor subtraction

 Take the element wise subtraction of two tensors with same dimensions and results a new tensor with the same dimensions







# Reference

https://www.youtube.com/watch?v=f5liqUk0ZTw