Homework: Week 8

Joseph Ismailyan

Math 100

Due: November 22, 2017

Professor Boltje MWF 9:20a-10:25a

Chapter 10.

2.

Proposition: For every teger $n \in \mathbb{N}$, it follows that $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{2}$. *Proof.* Observe that if n = 1 the statement $1^2 = \frac{1((1)+1)(2(1)+1)}{c}$ = 1, so the statement is true. Now let $k \geq 1$, $1^2 + 2^2 + 3^2 + \ldots + (k+1)^2$ $1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2 =$ $\frac{k(k+1)(2k+1)}{2} + (k+1)^2$ $+ 1)\frac{k(2k+1)}{6} + (k+1)$ $1)(\frac{k(2k+1+6k+6)}{2})$ $1)(\frac{2k^2+7k+6}{6}) = (k+1)(\frac{2k^2+4k+3k+6}{6})$ $1)(\frac{2k(k+1)+3(k+2)}{2})$ (k(k+1)(k+1+1)(2k+2+1) $\frac{}{(k+1)((k+1)+1)(2(k+1)+1)}$ Therefore $1^2 + 2^2 + 3^2 + \ldots + (k+1)^2 =$ (k+1)((k+1)+1)(2(k+1)+1)It follows by induction that $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{2}$ for every natural number n.

4.

Proposition: If $n \in \mathbb{N}$, then $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3}$. Proof. Observe that if n=1 the statement $1(1+1) = \frac{1(1+1)(1+2)}{3} \to 2 = \frac{1(2)(3)}{3} = 2$ so the statement is true for n=1. Now let $k \geq 1$, so $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \cdots + (k+1)((k+1)+1) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \cdots + k(k+1) + (k+1)((k+1)+1) = \frac{k(k+1)(k+2)}{3} + (k+1)((k+1)+1) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) = \frac{k(k+1)(k+2)+3(k+1)(k+2)}{3} = \frac{(k+1)(k+2)+3(k+1)(k+2)}{3}$. It follows by induction that $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3}$ for every natural number n.

8.

Proposition: If $n \in \mathbb{N}$, then $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$. Proof. Observe that if n = 1, then $\frac{1}{(1+1)!} = 1 - \frac{1}{(1+1)!} \to \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2}$, so the statement is true for n = 1. Now let $k \ge 1$, so $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{k}{(k+1)!} + \frac{2}{(k+1)!} = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{k}{(k+1)!} + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!} + \frac{(k+1)}{(k+1)+1} = 1 - \frac{1}{(k+1)!} + \frac{(k+1)}{(k+2)!} = 1 - (\frac{1}{(k+1)!} - \frac{(k+1)}{(k+2)(k+1)!}) = 1 - \frac{k+1-(k+1)}{(k+2)!} = 1 - \frac{1}{(k+2)!} = 1 - \frac{1}{(k+2)!}$. It follows by induction that $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$ for every natural number n.

20.

Proposition: $(1+2+3+\cdots+n)^2 =$ $1^3 + 2^3 + 3^3 + \cdots + n^3$ for every $n \in \mathbb{N}$. *Proof.* Observe that if n = 1, then $1^2 = 1^3$, which is true. Now let $k \ge 1$, so then $(1+2+3+\cdots+(k+1))^2 =$ $(1+2+3+\cdots+k+(k+1))^2$.. If we say $a = (1+2+3+\cdots+k)$ and b = (k+1)then $(a + b)^2 = a^2 + b^2 + 2ab$, then substituting back in for a and b we get $(1+2+3+\cdots+k)^2+(k+1)^2+$ $2(1+2+3+\cdots+k)(k+1)$. Note that $(1+2+3+\cdots+k) = \frac{k(k+1)}{2}$ and $(1+2+3+\cdots+k)^2 = 1^3+2^{\frac{2}{3}}+3^3+$ $\dots + n^3$. So $1^3 + 2^3 + 3^3 + \dots + n^3 + \dots$ $(k+1)^2 + 2\frac{k(k+1)}{2}(k+1) = 1^3 + 2^3 + 1^3$ $3^3 + \cdots + n^3 + (k+1)^2 + k(k+1) =$ $1^3+2^3+3^3+\cdots+n^3+(k+1)^2(k+1) =$ $1^3 + 2^3 + 3^3 + \dots + n^3 + (k+1)^3$. It follows by induction that (1+2+3+ $(\dots + n)^2 = 1^3 + 2^3 + 3^3 + \dots + n^3$ for every $n \in \mathbb{N}$.

30.

Proposition: F_n is the nth Fibonacci number. Show that $F_n = \frac{(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}}$ Proof. Observe that if n = 1, then $F_1 = \frac{(\frac{1+\sqrt{5}}{2})^1 - (\frac{1-\sqrt{5}}{2})^1}{\sqrt{5}} = \frac{\frac{2\sqrt{5}}{2}}{\sqrt{5}} = 1$. And if n = 2, then $F_2 = \frac{(\frac{1+\sqrt{5}}{2})^2 - (\frac{1-\sqrt{5}}{2})^2}{\sqrt{5}} = \frac{(\frac{3+\sqrt{5}}{2}) - (\frac{3-\sqrt{5}}{2})}{\sqrt{5}} = \frac{2\sqrt{5}}{2\sqrt{5}} = 1$. Now let $k \ge 1$. Note that $F_{k+2} = F_k + F_{k+1}$. So then $\frac{(\frac{1+\sqrt{5}}{2})^k - (\frac{1-\sqrt{5}}{2})^k}{\sqrt{5}} + \frac{(\frac{1+\sqrt{5}}{2})^{k+1} - (\frac{1-\sqrt{5}}{2})^{k+1}}{\sqrt{5}} = \frac{(\frac{1+\sqrt{5}}{2})^k - (\frac{1-\sqrt{5}}{2})^k + (\frac{1+\sqrt{5}}{2})^k - (\frac{1-\sqrt{5}}{2})^k - (\frac{1-\sqrt{5}}{2})^k}{\sqrt{5}} = \frac{(\frac{1+\sqrt{5}}{2})^k + (\frac{1+\sqrt{5}}{2})^k - (\frac{1-\sqrt{5}}{2})^k - (\frac{1-\sqrt{5}}{2})^k$

32.

Proposition: Show that the number of n-digit binary numbers that have no consecutive 1's is the Fibonacci number F_{n+2} Proof. Let n=1, then $a_1=2 \to F_{1+2}=F_3=2$. Assume that the given statement is true for n=k. So $a_k=F_{k+2}$. Observe that the sequence of $a'_n s$ satisfy $a_{n+1}=a_n+a_{n-1}$. So $a_{n+1}=a_n+a_{n-1}=F_{n+2}+F_{(n-1)+2}=F_{n+2}+F_{n+1}=F_3=F_{(n+1)+2}$ thus the result is true for n=k+1. Therefore by induction, the number of n-digit binary numbers that have no consecutive 1's is the Fibonacci number F_{n+2} , where $n \in \mathbb{N}$.