LINEAR FILTERING

Linear Filters

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of the original pixel values, using the same set of weights at each point.

Linear Filtering (warm up slide)

Original

0	0	0
0	1	0
0	0	0

?

Linear Filtering (warm up slide)

Original

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

?

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

Original

4	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

?

Original

Blur (with a box filter)

Original

(Note that filter sums to 1)

Original

0	0	0
0	2	0
0	0	0

Sharpening filter

- Accentuates differences with local average
- Also known as Laplacian

Average Filter (box filter)

- Mask with positive entries, that sum to 1.
- Replaces each pixel with an average of its neighborhood.
- If all weights are equal, it is called a box filter.

1	1	1	1
<u></u>	1	1	1
9	1	1	1

Example: Smoothing with a box filter

Smoothing with a Gaussian

- Smoothing with a box actually doesn't compare at all well with a defocussed lens
- Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the box filter would give a little square.

- A Gaussian gives a good model of a fuzzy blob
- It closely models many physical processes (the sum of many small effects)

Smoothing with box filter revisited

- Smoothing with an average actually doesn't compare at all well with a defocused lens
- Most obvious difference is that a single point of light viewed in a defocused lens looks like a fuzzy blob; but the averaging process would give a little square
- Better idea: to eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center, like so:

Gaussian Kernel

Idea: Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003				

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

 Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case).

Slide credit: Christopher Rasmussen

A real neuron

Smoothing with a Gaussian

Mean vs. Gaussian filtering

Efficient Implementation

- Both the BOX filter and the Gaussian filter are separable into two 1D convolutions:
 - First convolve each row with a 1D filter
 - Then convolve each column with a 1D filter.
 - (or vice-versa)

Associativity of Filtering

- Let "*" be linear filtering.
- A*B*C = (A*B)*C = A*(B*C)
 - Linear operators are associative.
 - Examples:
 - Addition
 - Integration
 - Matrix multiplication
 - Filtering

Separability example

The filter factors into a product of 1D filters:

Perform convolution along rows:

Followed by convolution along the remaining column:

Separability of the Gaussian filter

For example, recall the 2D Gaussian

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

Differentiation and Filtering

 Recall, for 2D function, f(x,y):

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right)$$

 This is linear and shift invariant, so must be the result of a convolution. We could approximate this as

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

(which is obviously a convolution)

Filters are templates

- Applying a filter at some point can be seen as taking a dotproduct between the image and some vector
- Filtering the image is a set of dot products

- Insight
 - filters look like the effects they are intended to find
 - filters find effects they look like

"Noise" reduction

