The Case for FPGAs The Case for More FPGAs

Outline

- Introduction
- Popularity of FPGAs
- Advantages of FPGAs
- New Era for FPGAs

- Back in the early 1980s, IC designers tried to get the most out of each and every transistor on their circuits
- Ross Freeman
 - □ Proposed a chip packed with transistors that formed loosely organized logic blocks that in turn could be configured and reconfigured with software
 - ☐ So sometimes a bunch of transistors wouldn't be used
 - ☐ Betted that Moore's Law would eventually make transistors really cheap

World's first commercial FPGA introduced in 1985

What is an FPGA?

- Field-programmable gate array (FPGA)
 - ☐ An IC whose function and wiring can be re-programmed
 - □ Different from ASIC (application specific integrated circuit), it is not designed and made for a specific system

It's Hot

Intel Seals \$16.7 Billion Altera Deal

Dylan McGrath

12/28/2015 04:02 PM EST

Waxman said that by 2020 Intel believes a third of the data center market could be using the type of chips that Altera specializes in.

It's Hot

AMD closes landmark \$50B acquisition of chipmaker Xilinx

"Xilinx offers industry-leading FPGAs, adaptive SoCs, AI inference engines and software expertise that enable AMD to offer the strongest portfolio of high-performance and adaptive computing solutions in the industry and capture a larger share of the approximately \$135 billion market opportunity we see across cloud, edge, and intelligent devices".

Dr. Lisa Su, Chair and CEO (2022)

FPGA Everywhere

FPGAs inside a lot of consumer electronics

Numerous FPGA Applications

- Medical
- Advanced driving assistance
- Emulation system
- Military
- Aerospace

More FPGA Deployment

- Data center
- Machine learning
- Telecommunication

Why FPGA is a good match for Convolution Neural Network?

Biological neuron vs Artificial neuron

Why FPGA is a good match for Convolution Neural Network?

- FPGA offers
 - massively parallel architectures
 - □ efficient DSP resources (for numerical operations like dot-product accumulation)
 - adaptable to any numerical representations and sizes
 - □ large amount of on-chip memory

Primary DNN Calculation is Input Vector * Weight Matrix = Output Vector

Key Operation: Multiply-Accumulate, or "MAC"

FPGAs for Logic Emulation

- State-of-the-art electronic system
 - ☐ Huge gate count (over hundreds of millions)
 - □ Before committing to silicon, need to verify that it can function correctly under all operating conditions
- FPGA-based logic emulation of electronic system can
 - □ Provide orders-of-magnitude faster debugging and functional verification compared to software based simulation
 - □ Bringup/develop/validate software part before silicon is ready

Moore's Law and FPGAs

- With technology scaling, FPGAs achieve
 - ☐ Increasing capacity
 - ☐ Faster performance
 - More functionality

Cost of IC Fabrication

- Cost: billions of US dollars
- Typical fab line occupies about 1 city block, employs a few hundred people.
- New fabrication processes require 6-8 month turnaround.
- Most profitable period is first 18 months-2 years.

Changes in Silicon Processing

Massive Investment for Advanced-Node Design and Manufacturing

30-40M

units

Severe Reduction in Number of Fabs for Advanced Nodes

Why FPGAs in Consumer Products?

- Prohibitive fabrication cost for custom silicon in advanced process nodes
 - → not viable except for large volume requiring extremely high performance

■ FPGAs come to the rescue

FPGA vs ASIC

- FPGAs (field-programmable gate arrays) are standard parts:
 - □ Off-the-shelf
 - □ Pre-manufactured
 - ☐ Millions of customers share manufacturing costs
- ASIC:
 - ☐ Tailored to your application
 - □ Require own set of masks for manufacturing
 - ☐ High startup cost

FPGA vs ASIC

Source: Xilinx

Standard Parts vs Custom Silicon

- When to build your design with an FPGA or with custom silicon?
 - □ FPGAs have shorter design cycle
 - □ FPGAs have no manufacturing delay
 - ☐ FPGAs reduce inventory
 - □ FPGAs are slower, larger, more power-hungry

Which Way to Go?

ASICs

High performance

Low power

Low cost in high volumes

FPGAs

Off-the-shelf

Low development cost

Short time to market

Reconfigurability

- Xilinx's interposer-based 2.5D FPGAs
 - ☐ First commercial 2.5D IC: Virtex-7 2000T
 - 4 dies
 - Die-to-die connection through interposer-based 2.5D technology
 - 6.8 billion transistors (~ 20 million ASIC gates)

☐ Interposerbased inter-die connection

For better manufacturing yield (to save cost), a very large SoC has been sliced into 4 smaller FPGA chips made by TSMC's 28nm process technology.

■ Recent AMD VP1902 by TSMC's 7nm process

- Intel EMIB-based 2.5D FPGAs
 - ☐ Stratix 10 uses Embedded Multi-Die Interconnect Bridge (EMIB) to connect two adjacent dies

Silicon-bridge based connection

Hybrid CPU-FPGA Device

■ Hybrid Xeon CPU-Arria 10 FPGA chip

References

- S. M. Trimberger. 2015. "Three ages of FPGAs: A retrospective on the first thirty years of FPGA technology", *Proc. of IEEE*, 318-331
- E. Nurvitadhi et al. 2017. "Can FPGAs beat GPUs in accelerating next-generation deep neural networks?" in *Proc. of the International Symposium on Field-Programmable Gate Arrays*, 5-14.