

	EMC TEST REPORT
TEST REPORT NUMBER	OFP 1522ITE105-A
TEST REPORT DATE	10-May-2016
TEST REPORT VERSION	1.01
MANUFACTURER	NEOCORTEC A/S
PRODUCT NAME	NEOCORTEC Wireless Module
PRODUCT MODEL	NC2400C1
CONDITION OF EUT WHEN RECEIVED	Good and in working condition
ISSUED TO	NEOCORTEC A/S
	C/o HP Ventures A/S,
	Nannasgade 28, 2. sal
	2200 Copenhagen N, Denmark.
ISSUED BY	TARANG Lab
	Wipro Technologies, SJP2, Survey#70,77,78/8A,
	Dodda Kanelli, Sarjapur road, Bangalore.
	Karnataka. India - 560 035
	Tel: +91-80-30292929 Fax: +91-80-30298200
	Email: tarang.planet@wipro.com
	Web: www.wipro.com

AMENDMENT HISTORY

Amendment	Amendment	Author of Amendment	Previous Report	Previous
Number	Date		Version	Report Date
1.01	09 th May 2016	Dikshit Ravi Teja V	1.0	30 March 2016
Amendment	Cable loss	details added under section 4.1.		
Details				

TABLE OF CONTENTS

1	TEST	REPORT SUMMARY	7
2	GEN	ERAL INFORMATION	8
		ACCREDITATION DETAILS	
	2.2	MEASUREMENT UNCERTAINTY	8
3	INST	RUMENTATION AND CALIBRATION	9
	3.1	ΓEST AND MEASURING EQUIPMENT	9
		EQUIPMENTS USED	
4	PRO	DUCT INFORMATION	10
	4.1	DESCRIPTION OF THE PRODUCT	10
		SOFTWARE AND FIRMWARE DETAILS	
5		DETAILS	
J			
		PRODUCT AND TEST SETUP	
	5.1.1	PRODUCT CONFIGURATION	
	5.1.2	TEST SETUP DETAILS	
	5.1.3		
		APPLICABLE TESTS	
		TEST RESULT	
	5.3.1	CONDUCTED EMISSION	
	5.3.2	RADIATED EMISSIONS	
	5.3.3	EMISSIONS IN RESTRICTED FREQUENCY BANDS	
	5.3.4	6 DB BANDWIDTH MEASUREMENT	
	5.3.5	MAXIMUM CONDUCTED OUTPUT POWER	
	5.3.6	POWER SPECTRUM DENSITY	
	5.3.7	RADIO FREQUENCY POWER IN ANY 100 kHz BANDWIDTH OUTSIDE THE INTENTIONAL BAND	
	5.3.8	OPERATING BAND EDGE MEASUREMENT	63
A	NNEXU	RE I: ACRONYMS	65

LIST OF FIGURES

Figure 1: EUT Configuration	
Figure 2: Typical test setup for conducted emission test	
Figure 3: CE graph from 150 kHz to 30 MHz using Peak detector - Neutral	
Figure 4: CE graph from 150 kHz to 30 MHz using Average detector - Neutral	15
Figure 5: CE graph from 150 kHz to 30 MHz using Peak detector - Line	
Figure 6: CE graph from 150 kHz to 30 MHz using Average detector – Line	
Figure 7: CE graph from 150 kHz to 30 MHz using Peak detector - Neutral	18
Figure 8: CE graph from 150 kHz to 30 MHz using Average detector - Neutral	
Figure 9: CE graph from 150 kHz to 30 MHz using Peak detector - Line	
Figure 10: CE graph from 150 kHz to 30 MHz using Average detector – Line	19
Figure 11: CE graph from 150 kHz to 30 MHz using Peak detector - Neutral	
Figure 12: CE graph from 150 kHz to 30 MHz using Average detector - Neutral	
Figure 13: CE graph from 150 kHz to 30 MHz using Peak detector - Line	
Figure 14: CE graph from 150 kHz to 30 MHz using Average detector – Line	22
Figure 15: Typical test setup for Radiated Emission test	
Figure 16: RE graph from 9 kHz to 90 kHz using average detector – Parallel	26
Figure 17: RE graph from 110 kHz to 490 kHz using average detector - Parallel	
Figure 18: RE graph from 9 kHz to 30 MHz using peak detector – Parallel	
Figure 19: RE graph from 9 kHz to 90 kHz using average detector – Perpendicular	27
Figure 20: RE graph from 110 kHz to 490 kHz using average detector - Perpendicular	
Figure 21: RE graph from 9 kHz to 30 MHz using peak detector – Perpendicular	28
Figure 22: RE graph from 30 MHz to 1 GHz using peak detector - Horizontal polarization	29
Figure 23: RE graph from 30 MHz to 1 GHz using peak detector - Vertical polarization	29
Figure 24: RE graph from 1 GHz to 6 GHz using average detector - Horizontal polarization	30
Figure 25: RE graph from 1 GHz to 6 GHz using average detector - Vertical polarization	31
Figure 26: RE graph from 6 GHz to 18 GHz using Average Detector - Horizontal polarization	
Figure 27: RE graph from 6 GHz to 18 GHz using Average Detector - Vertical polarization	32
Figure 28: RE graph from 18 GHz to 26.5 GHz using Average Detector - Horizontal polarization	32
Figure 29: RE graph from 18 GHz to 26.5 GHz using Average Detector - Vertical polarization	
Figure 30: RE graph from 9 kHz to 90 kHz using Average Detector – Parallel	33
Figure 31: RE graph from 110 kHz to 490 kHz using Average Detector - Parallel	
Figure 32: RE graph from 9 kHz to 30 MHz using Peak Detector – Parallel	
Figure 33: RE graph from 9 kHz to 90 kHz using Average Detector – Perpendicular	
Figure 34: RE graph from 110 kHz to 490 kHz using Average Detector - Perpendicular	
Figure 35: RE graph from 9 kHz to 30 MHz using Peak Detector – Perpendicular	
Figure 36: RE graph from 30 MHz to 1 GHz using Peak Detector - Horizontal polarization	
Figure 37: RE graph from 30 MHz to 1 GHz using Peak Detector - Vertical polarization	
Figure 38: RE graph from 1 GHz to 6 GHz using Average Detector - Horizontal polarization	
Figure 39: RE graph from 1 GHz to 6 GHz using Average Detector - Vertical polarization	
Figure 40: RE graph from 6 GHz to 18 GHz using Average Detector - Horizontal polarization	
Figure 41: RE graph from 6 GHz to 18 GHz using Average Detector - Vertical polarization	39
Figure 42: Average Table for RE from 6GHz to 18 GHz	
Figure 43: RE graph from 18 GHz to 26.5 GHz using Average Detector - Horizontal polarization	
Figure 44: RE graph from 18 GHz to 26.5 GHz using Average Detector - Vertical polarization	
Figure 45: RE graph from 9 kHz to 90 kHz using Average Detector – Parallel	40
Figure 46: RE graph from 110 kHz to 490 kHz using Average Detector - Parallel	
Figure 47: RE graph from 9 kHz to 30 MHz using Peak Detector – Parallel	
Figure 48: RE graph from 9 kHz to 90 kHz using Average Detector – Perpendicular	
Figure 49: RE graph from 110 kHz to 490 kHz using Average Detector - Perpendicular	
Figure 50: RE graph from 9 kHz to 30 MHz using Peak Detector – Perpendicular	
Figure 51: RE graph from 30 MHz to 1 GHz using Peak Detector - Horizontal polarization	
Figure 52: RE graph from 30 MHz to 1 GHz using Peak Detector - Vertical polarization	44

Figure 53: RE graph from 1 GHz to 6 GHz using Average Detector - Horizontal polarization	44
Figure 54: RE graph from 1 GHz to 6 GHz using Average Detector - Vertical polarization	45
Figure 55: RE graph from 6 GHz to 18 GHz using Average Detector - Horizontal polarization	45
Figure 56: RE graph from 6 GHz to 18 GHz using Average Detector - Vertical polarization	46
Figure 57: RE graph from 18 GHz to 26.5 GHz using Average Detector - Horizontal polarization	46
Figure 58: RE graph from 18 GHz to 26.5 GHz using Average Detector - Vertical polarization	47
Figure 59: Typical test setup for Conducted RF measurements	50
Figure 60: 6 dB Bandwidth measurement for Low Channel	51
Figure 61: 6 dB Bandwidth measurement for Mid Channel	51
Figure 62: 6 dB Bandwidth measurement for High Channel	52
Figure 63: Typical test setup for Conducted RF measurements	
Figure 64: Output Power for Low Channel	
Figure 65: Output Power for Mid Channel	54
Figure 66: Output Power for High Channel	54
Figure 67: Typical test setup for Conducted RF measurements	56
Figure 68: Measurement for Low Channel	57
Figure 69: Measurement for Mid Channel	57
Figure 70: Measurement for High Channel	58
Figure 71: Typical test setup for Conducted RF measurements	
Figure 72: Spurious Emissions from 20 MHz to 1 GHz	
Figure 73: Spurious Emissions from 1 GHz to 26.5 GHz	
Figure 74: Spurious Emissions from 20 MHz to 1 GHz	
Figure 75: Spurious Emissions from 1 GHz to 26.5 GHz	61
Figure 76: Spurious Emissions from 20 MHz to 1 GHz	
Figure 77: Spurious Emissions from 1 GHz to 26.5 GHz	
Figure 78: Typical test setup for Conducted RF measurements	
Figure 79: Band Edge Measurement at Low channel	64
Figure 80: Band Edge Measurement at High Channel	64

LIST OF TABLES

Table 1: EUT details	10
Table 2: List of cables used for the testing	10
Table 3: Average table for CE from 150 kHz to 30 MHz – Line & Neutral	17
Table 4: Quasi Peak table for CE from 150 kHz to 30 MHz – Line & Neutral	17
Table 5: Average table for CE from 150 kHz to 30 MHz – Line & Neutral	20
Table 6: Quasi Peak table for CE from 150 kHz to 30 MHz – Line & Neutral	20
Table 7: Average table for CE from 150 kHz to 30 MHz – Line & Neutral	23
Table 8: Quasi Peak table for CE from 150 kHz to 30 MHz – Line & Neutral	23
Table 9: Quasi Peak table for RE from 9 kHz to 30 MHz - Parallel	27
Table 10: Quasi Peak table for RE from 9 kHz to 30 MHz - Perpendicular	28
Table 11: Quasi Peak table for RE from 30 MHz to 1 GHz	30
Table 12: Average Table for RE from 1 GHz to 6 GHz	31
Table 13: Average Table for RE from 6 GHz to 18 GHz	32
Table 14: Quasi Peak table for RE from 9 kHz to 30 MHz - Parallel	34
Table 15: Quasi Peak table for RE from 9 kHz to 30 MHz – Perpendicular	36
Table 16: Quasi Peak Table for RE from 30 MHz to 1 GHz	
Table 17: Average Table for RE from 1 GHz to 6 GHz	38
Table 18: Quasi Peak table for RE from 9 kHz to 30 MHz - Parallel	41
Table 19: Quasi Peak table for RE from 9 kHz to 30 MHz - Perpendicular	
Table 20: Quasi Peak Table for RE from 30 MHz to 1 GHz	44
Table 21: Average Table for RE from 1 GHz to 6 GHz	45
Table 22: Average Table for RE from 6 GHz to 18 GHz	46

1 TEST REPORT SUMMARY

Applicant	NEOCORTEC A/S
Manufacturer	NEOCORTEC A/S
Product Name	NEOCORTEC Wireless Module
Product Model	NC2400C1
Product Serial Number	NA
Date of Test	26 th May 2015 to 26 th Jun 2015
Venue of Test	Tarang Lab

Applicable Standard	FCC Section	RSS Rule part	Description	Results
47 CFR Ch. I	§15.207	RSS-Gen 8.8	Conducted emissions test	PASS
(10–1–13 Ed), Part 15,	§15.209	RSS-Gen 8.9, RSS-Gen 8.10	Radiated emissions test	PASS
Subpart C;	§15.205	RSS-Gen, 8.10	Emissions in restricted frequency bands	PASS
RSS-Gen,	§15.247 (a) (2)	RSS 247,5.2 (1)	6 dB Bandwidth measurement	PASS
Issue 4, Nov	§15.247 (b) (3)	RSS 247,5.4 (4)	Maximum conducted output power	PASS
2014	§15.247 (e)	RSS 247,5.2 (1)	Power spectral density	PASS
RSS 247 Issue 1 May	§15.247 (d)	RSS 247,5.5	Radio frequency power in any 100 kHz bandwidth outside the Intentional band	PASS
2015	§15.247 (d)	RSS 247,5.5	Operating band edge measurements	PASS

Neocortec NC2400C1 Wireless Module was tested by Tarang Lab as per the standards that are listed in the table above. Based on the observations during the test and interpretations by Tarang lab, results have been indicated. The test results produced in this report shall apply only to the above sample that has been tested under the specific conditions and modes of testing as described in the report. Other similar equipment may not necessarily reproduce same result due to production tolerances and measurement uncertainties. Any measurement uncertainties listed in this report are for information purpose only.

The results shall stand invalid, in case there are any modifications / additions / removals to the hardware or software or end use atmosphere to the product tested. This report shall not be modified or in any way revised unless it is expressly permitted and endorsed by Tarang lab, through a duly authorized representative. Particulars on Manufacturer / Supplier / Product configuration / performance criteria, given in this report, are based on the information given by the customer, along with test request. Tarang does not assume any responsibility for the correctness of such information for the above mentioned equipment under test.

Customer acknowledges that this is a test report and not a certificate to gain market access for the product. To gain market access, Customer needs appropriate clearance from the Government or authorized agency for the target market. For markets that allow self-declaration, customer needs to follow the procedure defined by the target market.

Prepared by	Reviewed by	Approved by
Dikolth Ravitya	Doenline	& Bother
Dikshit Ravi Teja V	Narendra Babu M	Satheesh I
EMI /EMC Test Engineer	Lead EMI/EMC Test Engineer	Technical Manager

Report Number: OFP 1522ITE105-A EMC TEST REPORT Page 7 of 65
--

2 GENERAL INFORMATION

2.1 ACCREDITATION DETAILS

Following are the accreditation and listing details for Tarang.

8 8	and wing are the accordance and insting country for Furning.		
Accreditation / Listing body	Registration / Company / Certificate Number		
NABL, India	Certificate No: T-1533, T-1534		
	http://www.nabl-india.org/		
FCC (Federal Communications	Registration Number: 799247		
Commission)	http://www.fcc.gov/		
IC (Industry Canada)	Company Number: 9023A-1		
	http://www.ic.gc.ca		

2.2 MEASUREMENT UNCERTAINTY

The following measurement uncertainties are applicable to the relevant tests that are mentioned below:

Name of the test	Measurement Uncertainty
Radiated Emission from 9 kHz to 30 MHz at 3 meter	± 1.9055 dB
Radiated Emission from 30 MHz to 1 GHz at 10 meter	± 4.6388 dB
Radiated Emission from 1 GHz to 18 GHz at 3 meter	± 3.2271 dB
Radiated Emission from 18 GHz to 26.5 GHz at 3 meter	± 3.7810 dB
Conducted Emission from 150 kHz to 30 MHz	± 1.6322 dB

3 INSTRUMENTATION AND CALIBRATION

3.1 TEST AND MEASURING EQUIPMENT

The list of following measuring equipment used for this testing conforms to the applicable standards. Performance of all test and measuring equipment including any accessories are checked periodically to ensure accuracy.

3.2 EQUIPMENTS USED

Name of Equipment	Manufacturer	Model No.	Serial No.	Calibration Due
EMI Test Receiver	R&S	ESU8	100324	10 th Mar 2016
EMI Test Receiver	R&S	ESIB40	100306	04 th Jul 2015
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130334	25 th Jul 2015
Pre-Amplifier	SONOMA	310	270817	14 th Apr 2016
V-LISN	SME	NSLK 8128	8128-243	08 th Aug 2015
Pulse Limiter	R&S	ESH3-Z2	101260	26 th Mar 2016
Double Ridged BB Horn	SME	BBHA 9120D	9120D 688	05 th Aug 2015
Broadband Horn Antenna	SME	BBHA 9170	9170 336	11 th Nov 2015
Preamplifier	TDK RF solutions	PA 02	100008	14 th Apr 2016
Preamplifier	TDK RF solutions	Preamp	2007331	10 th Nov 2015
Preamplifier	TDK RF solutions	Preamp	2007332	10 th Nov 2015
Active Loop Antenna	ETS Lindgren	6507	00104711	22 nd Apr 2015
Spectrum Analyzer	Agilent Technologies	E4407B	MY45112948	02 nd Apr 2016

4 PRODUCT INFORMATION

4.1 DESCRIPTION OF THE PRODUCT

The NEOCORTEC Wireless Module is a mobile Ad-Hoc network module operates in the range from 2400 MHz to 2483.5 MHz. This compliant transceiver enabling ultra-low power bi-directional wireless multi hob mesh network communication. It can support the network size up to 65,000 nodes. No dedicated nodes required for network control. All nodes are fully capable and autonomous. It is used in Wireless sensor networks, automatic meter reading, mobile Ad-hoc network, home control & building automation, industrial automation & monitoring purposes etc.

The EUT is configured in below defined channels

LOW CHANNEL	2401.312012 MHz
MID CHANNEL	2441.749954 MHz
HIGH CHANNEL	2482.187897 MHz

Product	NEOCORTEC Wireless Module
Model Number	NC2400C1
Serial Number	NA
Product Category / Type of Equipment	ITE
EUT Operating Voltage	3.6 V DC
EUT Operating Current (Max)	27.5 mA

Table 1: EUT details

S. No.	Cable/Port Name	Cable	Cable Length	Cable Loss	Power /	Shielded /
		Color	(mm)	(dB)	Interconnection cable	Unshielded
1	RF Cable (SMA	Black	200	0.65	Interconnection (RF	Shielded
	Bulk Head)				Cable)	

Table 2: List of cables used for the testing

4.2 SOFTWARE AND FIRMWARE DETAILS

Smart RF Studio 7 from Texas instrument

5 TEST DETAILS

5.1 PRODUCT AND TEST SETUP

5.1.1 PRODUCT CONFIGURATION

The EUT was powered through DC power supply (3.6VDC). The EUT was programmed to continuous transmit mode and the output was monitored in Spectrum Analyzer. Figure 1 shows the product configuration during the tests. The operating frequency range of EUT is from 2400 MHz to 2483.5 MHz. During Radiated Emission test, the laptop was removed once the configuration was done. During all other tests, laptop was kept near to the EUT and connection was established.

5.1.2 TEST SETUP DETAILS

Figure 1: EUT Configuration

5.1.3 ACCESSORIES

Item	Manufacturer	Model Number	Serial Number
Laptop	Wipro	WNBER7PEM4712R	FE-200100212
Titanis 2.4 GHz Swivel Antenna (2.2dBi)	Antennova	B4844 / B6090	NA

5.2 APPLICABLE TESTS

Applicable	Description	Test level / Test Voltage	Applicability
Standard			
47 CFR Ch. I	Conducted Emission test	150 kHz to 30 MHz	Power lines
(10–1–13 Ed),	Radiated Emissions test	9 kHz to 26.5 GHz	Enclosure
Part 15, Subpart	Emissions in Restricted frequency bands	9 kHz to 26.5 GHz	Enclosure
C;	6 dB Bandwidth measurement	≥ 500 kHz	Antenna port
	Maximum Conducted Output Power	≤ 1 Watt	Antenna port
RSS-Gen, Issue 4, Nov 2014	Power Spectral Density	Power spectral density should be ≤ 8 dBm in 3 kHz bandwidth	Antenna port
RSS 247 Issue 1 May 2015	Conducted Spurious Emissions	20 dB below intentional frequency	Antenna port
	Operating Band edge measurements	2400 MHz to 2483.5 MHz	Antenna port

5.3 TEST RESULT

5.3.1 CONDUCTED EMISSION

5.3.1.1 TEST SPECIFICATION

Test Standard	47 CFR Ch. I (10–1–13 Ed), Part 15, Subpart C
	RSS-Gen, Issue 4, Nov 2014
Test Procedure	ANSI C63.4-2014
Type of Cable (Shielded/Unshielded)	Shielded
Frequency Range	150 kHz to 30MHz
Resolution Bandwidth	9 kHz
Video Bandwidth	30 kHz
Step size	4 kHz
Pre Scan Measurement Time	20 ms
Final Measurement Time	1 second
Attenuation	10 dB
Detector	Peak, Quasi peak and Average
Input Voltage	3.6 V DC
Input Frequency	NA
Temperature	23.0 °C
Humidity	58.0 %
Tested By	Suresh.G.N.
Test Date	01st Jun 2015

5.3.1.2 LIMITS

Standard	Reference section	Frequency range	Quasi Peak Limit (dBµV/m)	Average Limit (dBµV/m)
47 CFR Ch. I (10–1–		150 kHz to 500 kHz	66 to 56*	56 to 46*
13 Ed), Part 15,	§15.207	500 kHz to 5 MHz	56	46
Subpart C		5 MHz to 30 MHz	60	50
RSS-Gen, Issue 4,	8.8			
Nov 2014				

5.3.1.3 TEST SETUP

Figure 2: Typical test setup for conducted emission test

5.3.1.4 TEST PROCEDURE

The test procedure is in accordance with ANSI C63.4-2014. The Conducted Emission test was performed in the test site with a horizontal ground reference plane and a vertical ground reference plane bonded together. The EUT was placed on a 0.8 m height non-metallic wooden table. The power supply to the EUT was feed through a LISN (50 Ω / 50 μ H). The conducted emission measurement test system was configured through software as per standard. The EUT was powered through power adapter and connected to LISN.

LISN (Voltage Method):

The conducted RF emission coupled to the RF port of the LISN was measured using an EMI receiver. Pre-scan was carried out in max hold mode and conducted emission from the EUT through the Power line was plotted in the Graph. The predominant peaks at various frequencies closer to limit line and above the limit line were identified using peak search option and listed. The Quasi-peak and Average measurement was carried out for the listed frequencies and compared with the limit specified in standard.

5.3.1.5 MEASUREMENT GRAPHS AND DATA

LOW CHANNEL _ CONTINUOUS TX

Figure 3: CE graph from 150 kHz to 30 MHz using Peak detector - Neutral

Figure 4: CE graph from 150 kHz to 30 MHz using Average detector - Neutral

Figure 5: CE graph from 150 kHz to 30 MHz using Peak detector - Line

Figure 6: CE graph from 150 kHz to 30 MHz using Average detector - Line

Freq	Freq (Max)	Line	(AVG) Trace	Transducer N	Transducer L	Cable + Pulse limiter	(AVG) EMI	(AVG) Limit	(AVG) Margin
(MHz)	(MHz)		(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.2180	0.22	L1	-0.43	0.00	0.07	10.11	9.74	52.89	-43.15
0.2580	0.25	N	-0.08	0.10	0.00	10.10	10.13	51.73	-41.60
0.5200	0.52	L1	-6.60	0.00	0.06	10.10	3.57	46.00	-42.43
0.5200	0.51	N	-9.84	0.10	0.00	10.10	0.36	46.00	-45.64
13.5620	13.56	N	5.86	0.29	0.00	10.30	16.45	50.00	-33.55
13.5620	13.56	L1	6.01	0.00	0.25	10.30	16.56	50.00	-33.44
21.6700	21.67	N	-7.57	0.38	0.00	10.44	3.25	50.00	-46.75
24.0900	24.08	N	-8.15	0.38	0.00	10.50	2.73	50.00	
24.0900	24.09	L1	-7.66	0.00	0.36		3.21	50.00	-46.79
24.9060	24.91	L1	0.24	0.00	0.37	10.52	11.13	50.00	-38.87
24.9100	24.91	N	0.66	0.39	0.00	10.52	11.57	50.00	-38.43
24.9980	25.00	L1	1.10	0.00	0.37	10.52	11.99	50.00	-38.01
25.0020	25.00	N	0.38	0.39		10.52		50.00	-38.71
25.0580	25.06	N	22.34	0.39	0.00	10.52	33.24	50.00	-16.76
25.0580	25.06	L1	22.19	0.00	0.37	10.52	33.08	50.00	-16.92
29.5700	29.57	N	-3.82	0.40	0.00	10.54	7.12	50.00	-42.88
29.5700	29.57	L1	-3.55	0.00	0.41	10.54	7.40	50.00	-42.60
29.8820	29.88	N	-6.51	0.40	0.00	10.54	4.43	50.00	-45.57

Table 3: Average table for CE from 150 kHz to 30 MHz - Line & Neutral

Freq	Freq (Max)	Line	(QP) Trace	Transducer N	Transducer L	Cable + Pulse limiter	(QP) EMI	(QP) Limit	(QP) Margin
(MHz)	(MHz)		(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.2180	0.22	L1	5.56	0.00	0.07	10.11	15.73	62.89	-47.16
0.2580	0.25	N	5.98	0.10	0.00	10.10	16.19	61.73	-45.54
0.5200	0.52	L1	-2.34	0.00	0.06	10.10	7.82	56.00	-48.18
0.5200		N	-4.50	0.10	0.00	10.10		56.00	-50.30
13.5620	13.56	N	17.00	0.29	0.00	10.30	27.59	60.00	-32.41
13.5620		L1	17.70	0.00	0.25	10.30	28.26	60.00	-31.74
21.6700	21.67	N	-0.91	0.38	0.00	10.44	9.91	60.00	-50.09
24.0900	24.08	N	-1.70	0.38	0.00	10.50	9.18	60.00	-50.82
24.0900		L1	-1.27	0.00	0.36	10.50		60.00	-50.41
24.9060	24.91	L1	4.65	0.00	0.37	10.52		60.00	-44.47
24.9100	24.91	N	4.35	0.39	0.00	10.52	15.25	60.00	-44.75
24.9980	25.00	L1	4.32	0.00	0.37	10.52	15.21	60.00	-44.79
25.0020	25.00	N	3.80	0.39	0.00	10.52	14.71	60.00	-45.29
25.0580		N	22.99	0.39	0.00	10.52	33.90	60.00	-26.10
25.0580	25.06	L1	22.45	0.00	0.37	10.52	33.34	60.00	-26.66
29.5700	29.57	N	3.47	0.40	0.00	10.54	14.41	60.00	-45.59
29.5700	29.57	L1	3.50	0.00	0.41	10.54	14.45	60.00	-45.55
29.8820	29.88	N	-1.06	0.40	0.00	10.54	9.88	60.00	-50.12

Table 4: Quasi Peak table for CE from 150 kHz to 30 MHz – Line & Neutral

Note:

 $QP\ EMI\ (dB\mu V/m) = QP\ Trace\ (dB\mu V) + Cable\ (dB) + Transducer\ (dB/m) - Preamp\ (dB)$ $QP\ Margin\ (dB) = QP\ EMI\ (dB\mu V/m) - Limit\ (dB\mu V/m)$ $AVERAGE\ EMI\ (dB\mu V/m) = AVERAGE\ Trace\ (dB\mu V) + Cable\ (dB) + Transducer\ (dB/m) - Preamp\ (dB)$ $AVERAGE\ Margin\ (dB) = AVERAGE\ EMI\ (dB\mu V/m) - Limit\ (dB\mu V/m)$

MID CHANNEL _CONTINUOUS TX

Figure 7: CE graph from 150 kHz to 30 MHz using Peak detector - Neutral

Figure 8: CE graph from 150 kHz to 30 MHz using Average detector - Neutral

Figure 9: CE graph from 150 kHz to 30 MHz using Peak detector - Line

Figure 10: CE graph from 150 kHz to 30 MHz using Average detector - Line

Freq	Freq (Max)	Line	(AVG) Trace	Cable + Pulse limiter	Transducer N	Transducer L	(AVG) EMI	(AVG) Limit	(AVG) Margin AVL
(MHz)	(MHz)		(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.2220	0.23	N	-0.13	10.10	0.10	0.00	10.07	52.57	
0.2300	0.23	L1	-0.05	10.10	0.00	0.06	10.12	52.41	
0.5200	0.52	N	-5.89		0.10	0.00	4.31	46.00	
0.5200	0.52	L1	-5.68	10.10	0.00	0.06	4.48	46.00	-41.52
11.3740	11.37	L1	-11.77	10.23	0.00	0.22	-1.31	50.00	
13.5620	13.56	N	4.81	10.30	0.29	0.00	15.40	50.00	-34.60
13.5620	13.56	L1	4.96	10.30	0.00	0.25	15.51	50.00	
23.3260	23.33	L1	-3.86		0.00	0.35	6.97	50.00	-43.03
23.5060	23.51	N	-8.12		0.38	0.00	2.75	50.00	
24.9100	24.91	N	3.04	10.52	0.39	0.00	13.95	50.00	
24.9100	24.91	L1	2.88	10.52	0.00	0.37	13.76	50.00	-36.24
24.9980	25.00	L1	1.93	10.52	0.00	0.37	12.82		
25.0020	25.00	N	3.90	10.52	0.39		14.81	50.00	
25.0580	25.06	N	24.92		0.39		35.83		
25.0580	25.06	L1	24.55		0.00	0.37	35.44	50.00	
26.6660	26.66	N	-9.15		0.39		1.77	50.00	
27.1220	27.12	N	-5.48		0.39	0.00	5.44	50.00	
28.8900	28.89	L1	-9.72	10.54	0.00	0.40	1.22	50.00	
29.0700	29.07	N	-2.75	10.54	0.40	0.00	8.18	50.00	-41.82

Table 5: Average table for CE from 150 kHz to 30 MHz – Line & Neutral

Freq	Freq (Max)	Line	(QP) Trace	Cable + Pulse limiter	Transducer N	Transducer L	(QP) EMI	(QP) Limit	(QP) Margin
(MHz)	(MHz)		(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.2220	0.23	N	5.78	10.10	0.10	0.00	15.98	62.57	-46.59
0.2300	0.23	L1	5.94	10.10	0.00	0.06	16.11	62.41	-46.30
0.5200	0.52	N	-0.80	10.10	0.10	0.00	9.40	56.00	-46.60
0.5200	0.52	L1	-0.46	10.10	0.00	0.06	9.70	56.00	-46.30
11.3740		L1	-6.01	10.23	0.00	0.22	4.44	60.00	-55.56
13.5620	13.56	N	16.01	10.30	0.29	0.00	26.60	60.00	-33.40
13.5620		L1	15.59	10.30	0.00	0.25	26.14	60.00	-33.86
23.3260	23.33	L1	1.52	10.48	0.00	0.35	12.35	60.00	-47.65
23.5060	23.51	N	-0.91	10.49	0.38	0.00	9.96	60.00	-50.04
24.9100		N	5.82	10.52	0.39	0.00	16.73	60.00	-43.27
24.9100	24.91	L1	5.73	10.52	0.00	0.37	16.61	60.00	-43.39
24.9980	25.00	L1	5.27	10.52	0.00	0.37	16.16	60.00	-43.84
25.0020	25.00	N	6.41	10.52	0.39	0.00	17.32	60.00	-42.68
25.0580	25.06	N	25.12	10.52	0.39	0.00	36.02	60.00	-23.98
25.0580		L1	24.99	10.52	0.00	0.37	35.88	60.00	-24.12
26.6660	26.66	N	-1.81	10.53	0.39	0.00	9.10	60.00	-50.90
27.1220	27.12	N	2.04	10.53	0.39	0.00	12.96	60.00	-47.04
28.8900	28.89	L1	-2.22	10.54	0.00	0.40	8.72	60.00	-51.28
29.0700	29.07	N	4.48	10.54	0.40	0.00	15.42	60.00	-44.58

Table 6: Quasi Peak table for CE from 150 kHz to 30 MHz - Line & Neutral

Note:

 $QP \ EMI \ (dB\mu V/m) = QP \ Trace \ (dB\mu V) + Cable \ (dB) + Transducer \ (dB/m) - Preamp \ (dB)$ $QP \ Margin \ (dB) = QP \ EMI \ (dB\mu V/m) - Limit \ (dB\mu V/m)$ $AVERAGE \ EMI \ (dB\mu V/m) = AVERAGE \ Trace \ (dB\mu V) + Cable \ (dB) + Transducer \ (dB/m) - Preamp \ (dB)$ $AVERAGE \ Margin \ (dB) = AVERAGE \ EMI \ (dB\mu V/m) - Limit \ (dB\mu V/m)$

HIGH CHANNEL_CONTINUOUS TX

Figure 11: CE graph from 150 kHz to 30 MHz using Peak detector - Neutral

Figure 12: CE graph from 150 kHz to 30 MHz using Average detector - Neutral

Figure 13: CE graph from 150 kHz to 30 MHz using Peak detector - Line

Figure 14: CE graph from 150 kHz to 30 MHz using Average detector - Line

Freq	Freq (Max)	Line	(AVG) Trace	Cable + Pulse limiter	Transducer N	Transducer L	(AVG) EMI	(AVG) Limit	(AVG) Margin AVL
(MHz)	(MHz)		(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.2500	0.25	N	0.74	10.10	0.10	0.00	10.95	51.75	-40.80
0.2500	0.24	L1	0.34	10.10	0.00	0.06	10.51	52.03	
0.5200	0.52	N	-6.58	10.10	0.10	0.00	3.62	46.00	-42.38
0.5200	0.52	L1	-5.86	10.10	0.00	0.06	4.30	46.00	-41.70
13.5580	13.56	L1	6.49	10.30	0.00	0.25	17.05	50.00	-32.95
13.5620	13.56	N	6.51	10.30	0.29	0.00	17.10	50.00	-32.90
21.6700	21.67	L1	-2.45	10.44	0.00	0.34	8.33	50.00	-41.67
22.8940	22.90	L1	-8.76	10.47	0.00	0.35	2.06	50.00	-47.94
23.6180	23.62	L1	-9.10	10.49	0.00	0.36	1.75	50.00	-48.25
23.9380	23.95	N	-6.73		0.38	0.00	4.15	50.00	-45.85
24.9100	24.91	N	3.12	10.52	0.39	0.00	14.02	50.00	-35.98
24.9100	24.91	L1	3.51	10.52	0.00	0.37	14.39	50.00	-35.61
24.9980	25.00	N	4.90	10.52	0.39	0.00	15.81	50.00	-34.19
25.0020	25.00	L1	4.48	10.52	0.00	0.37	15.37	50.00	-34.63
25.0580	25.06	N	26.14	10.52	0.39	0.00	37.05	50.00	-12.95
25.0580	25.06	L1	26.18	10.52	0.00	0.37	37.07	50.00	-12.93
26.4380	26.44	L1	-9.36		0.00	0.38	1.55	50.00	-48.45
27.1220	27.12	L1	-4.59	10.53	0.00	0.39	6.33	50.00	-43.67
27.2340	27.23	N	-9.22	10.53	0.39	0.00	1.71	50.00	-48.29

Table 7: Average table for CE from 150 kHz to 30 MHz - Line & Neutral

Freq	Freq (Max)	Line	(QP) Trace	Cable + Pulse limiter	Transducer N	Transducer L	(QP) EMI	(QP) Limit	(QP) Margin QPL
(MHz)	(MHz)		(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.2500	0.25	N	6.80	10.10	0.10	0.00	17.00	61.75	-44.75
0.2500	0.24	L1	6.30	10.10	0.00	0.06	16.47	62.03	-45.56
0.5200	0.52	N	-1.70	10.10	0.10	0.00	8.50	56.00	-47.50
0.5200	0.52	L1	-0.91	10.10	0.00	0.06	9.26	56.00	-46.74
13.5580	13.56	L1	17.93	10.30	0.00	0.25	28.48	60.00	-31.52
13.5620	13.56	N	17.90	10.30	0.29	0.00	28.50	60.00	-31.50
21.6700	21.67	L1	2.50	10.44	0.00	0.34	13.28	60.00	-46.72
22.8940	22.90	L1	-2.46		0.00	0.35	8.36	60.00	-51.64
23.6180	23.62	L1	-2.52	10.49	0.00	0.36	8.33	60.00	-51.67
23.9380	23.95	N	-1.16		0.38	0.00	9.72	60.00	-50.28
24.9100	24.91	N	5.85	10.52	0.39	0.00	16.75	60.00	-43.25
24.9100	24.91	L1	5.96	10.52	0.00	0.37	16.85	60.00	-43.15
24.9980	25.00	N	7.50	10.52	0.39	0.00	18.41	60.00	-41.59
25.0020	25.00	L1	7.26	10.52	0.00	0.37	18.15	60.00	-41.85
25.0580	25.06	N	26.35	10.52	0.39	0.00	37.25	60.00	-22.75
25.0580	25.06	L1	26.36	10.52	0.00	0.37	37.25	60.00	-22.75
26.4380	26.44	L1	-2.89	10.53	0.00	0.38	8.01	60.00	-51.99
27.1220	27.12	L1	3.32	10.53	0.00	0.39	14.23	60.00	-45.77
27.2340	27.23	N	-2.71	10.53	0.39	0.00	8.22	60.00	-51.78

Table 8: Quasi Peak table for CE from 150 kHz to 30 MHz - Line & Neutral

Note:

 \overline{QP} EMI $(dB\mu V/m) = QP$ Trace $(dB\mu V) + Cable$ (dB) + Transducer (dB/m) - Preamp (dB) QP Margin (dB) = QP EMI $(dB\mu V/m) - Limit$ $(dB\mu V/m)$ AVERAGE EMI $(dB\mu V/m) = AVERAGE$ Trace $(dB\mu V) + Cable$ (dB) + Transducer (dB/m) - Preamp (dB) AVERAGE Margin (dB) = AVERAGE EMI $(dB\mu V/m) - Limit$ $(dB\mu V/m)$

5.3.1.6 RESULT

Conducted Emissions from the EUT are within the specified Limit line.

5.3.2 RADIATED EMISSIONS

5.3.2.1 TEST SPECIFICATIONS

Test Standard	47 CFR Ch. I (10–1	13 Ed) Part 15 St	shpart C	
Test Standard	RSS-Gen, Issue 4, N			
			issue i iviay 2015	
Test Procedure	ANSI C63.4-2014;	ANSI C63.10-2013		
Frequency Range	9 kHz to	150 kHz to	30 MHz to	1 GHz to
	150 kHz	30 MHz	1 GHz	26.5 GHz
Resolution Bandwidth	1 kHz	10 kHz	120 kHz	1 MHz
Video Bandwidth	3 kHz	30 kHz	300 kHz	3 MHz
Step size	400Hz	4 kHz	40 kHz	400 kHz
Pre Scan Measurement Time	50ms	50ms	20ms	5ms
Final Measurement Time	1 s	1 s	1 s	1 s
Attenuation	10 dB	3 10 dB		4 dB
Test Distance	3 m	3 m	3 m	3 m
Polarization	Parallel & Perpendic	cular	Horizontal and Vert	ical
Detector	Average & Quasi Pe	eak	Quasi Peak &	Average
			Average	
Input Voltage	3.6V DC			
Input Frequency	NA			
Temperature	22.1 °C	22.1 ℃	23.6 °C	23.0 °C
Humidity	51.6 %	51.6 %	57.8 %	58 %
Tested By	Suresh. G.N	Suresh. G.N	Narendra	Narendra
Test Date	20 th Jun 2015	20 th Jun 2015	30 th May 2015	12 th Jun 2015

5.3.2.2 LIMITS

Standard	Reference section	Frequency range	Limit (dBµV/m) at 3 meter
47 CFR Ch. I (10–1–13	§15.209	9 kHz to 490 kHz	128.51 to 93.80*
Ed), Part 15, Subpart C	8.9	490 kHz to 1.705 MHz	73.80 to 62.97*
RSS-Gen, Issue 4, Nov	8.10	1.705 MHz to 30 MHz	69.54
2014			

Note: * Decreases with the logarithm of the frequency

Standard	Reference section	Frequency range	Limit (dBµV/m) at 10
			meter
47 CFR Ch. I (10–1–13	§15.209	30 MHz to 88 MHz	29.54
Ed), Part 15, Subpart C		88 MHz to 216 MHz	33.06
RSS-Gen, Issue 4, Nov	8.9	216 MHz to 960 MHz	35.56
2014	8.10	960 MHz to 1000 MHz	43.52

Standard	Reference section	Frequency range	Limit (dBµV/m) at 3
			meter
47 CFR Ch. I (10–1–13	§15.209	1000 MHz to 26.5 GHz	53.98
Ed), Part 15, Subpart C			
RSS-Gen, Issue 4, Nov	8.9, 8.10		
2014			

Report Number: OFP 1522ITE105-A	EMC TEST REPORT	Page 24 of 65
---------------------------------	-----------------	---------------

5.3.2.3 TEST SETUP

Figure 15: Typical test setup for Radiated Emission test

5.3.2.4 TEST PROCEDURE

The test procedure is in accordance with ANSI C63.4-2014 & ANSI C63.10-2013. The Radiated Emission test was performed inside a Semi-Anechoic chamber. The EUT was placed on a 0.8meter height non-metallic table for the frequency range below 1GHz and 1.5 meter height non-metallic table for the frequency range above 1GHz. The test setup was placed on a rotating turn table to enable 0 to 360 degree rotation.

The EUT was placed 3 meter away from the receiving antenna for the radiated emission measurement in the frequency range 9 kHz to 30MHz and 1GHz to 26.5 GHz and at 10 meter distance for the measurements in the frequency range 30MHz to 1GHz. The receiving antenna was mounted on an antenna mast to enable height variation from 1 to 4 meter above the ground plane for the frequency range 30 MHz to 1 GHz & 1 to 2 meter for frequency range 1 GHz to 26.5 GHz. A tunable band reject filter offering an attenuation 40 dB (approx.) was used to attenuate the intentional band during the testing.

The radiated emission measurement test system was configured through software as per standard. Pre-scan (Peak) was taken at different angle of EUT at 22.5 degree step, by rotating the turn table from 0 to 360 degree and by varying the antenna height from 1 to 4 meter in both vertical and horizontal polarization from 30 MHz to 1 GHz & 1 to 2 meter for 1 GHz to 26.5 GHz and in parallel & perpendicular orientation for 9 kHz to 30 MHz (using a loop antenna) with fixed height at 1 meter. The measurement was carried out in max hold mode and maximum amplitude of radiated emissions from the EUT was plotted in graph. The predominant peaks at various frequencies, which are closer to limit line were identified using peak search option and listed. The Quasi-peak measurement was carried out for the listed frequencies for the frequency range 30MHz to 1GHz. The average measurement was carried out for the listed frequency in the range of 1 GHz to 26.5 GHz.

5.3.2.5 MEASUREMENT GRAPHS / DATA

LOW CHANNEL CONTINUOUS TX

Figure 16: RE graph from 9 kHz to 90 kHz using average detector – Parallel

Figure 17: RE graph from 110 kHz to 490 kHz using average detector - Parallel

Figure 18: RE graph from 9 kHz to 30 MHz using peak detector - Parallel

Freq	Freq (Max)	Pol	EUT Ttbl Agl	(QP) Trace	Cable	Transducer	(QP) EMI	Limit	(QP) Margin
(MHz)	(MHz)		(deg)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
0.01	0.01	V	136.90	42.06	0.15	28.73	70.94	126.89	-55.95
0.45	0.45	V	288.30	35.87	0.21	17.50	53.58	94.48	-40.90

Table 9: Quasi Peak table for RE from 9 kHz to 30 MHz - Parallel

Figure 19: RE graph from 9 kHz to 90 kHz using average detector – Perpendicular

Figure 20: RE graph from 110 kHz to 490 kHz using average detector - Perpendicular

Figure 21: RE graph from 9 kHz to 30 MHz using peak detector – Perpendicular

Freq	Freq (Max)	Pol	EUT Ttbl Agl	(QP) Trace	Cable	Transducer	(QP) EMI	Limit	(QP) Margin
(MHz)	(MHz)		(deg)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
0.01	0.01	V	136.90	42.06	0.15	28.73	70.94	126.89	-55.95
0.45	0.45	V	288.30	35.87	0.21	17.50	53.58	94.48	-40.90

Table 10: Quasi Peak table for RE from 9 kHz to 30 MHz - Perpendicular

Figure 22: RE graph from 30 MHz to 1 GHz using peak detector - Horizontal polarization

Figure 23: RE graph from 30 MHz to 1 GHz using peak detector - Vertical polarization

Freq	Freq (Max)	Pol	EUT Ttbl Agl	Twr Ht	(QP) Trace	Cable	Preamp	Transducer	(QP) EMI	Limit	(QP) Margin
(MHz)	(MHz)		(deg)	(cm)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
34.24	34.33	Н	41.10	101.00	19.28	1.20	32.20	9.94	-1.78	29.54	-31.32
34.24	34.06	V	136.10	183.00	19.59	1.19	32.20	9.96	-1.47	29.54	-31.01
38.24	38.20	Ι	257.20	286.00	22.21	1.28	32.20	10.43	1.72	29.54	-27.82
38.24	38.28	V	10.30	149.00	22.04	1.28	32.20	10.44	1.56	29.54	-27.98
64.00	63.88	H	240.90	362.00	20.55	1.62	32.16	9.48	-0.51	29.54	-30.05
64.00	64.00	V	159.80	315.00	20.78	1.62	32.16	9.47	-0.30	29.54	-29.84
74.00	73.98	Η	167.50	100.00	22.17	1.74	32.14	8.58	0.35	29.54	-29.19
74.00	73.97	V	81.30	285.00	22.30	1.74	32.14	8.58	0.48	29.54	-29.06
144.92	144.82	Н	61.60	191.00	21.75	2.37	32.05	10.97	3.03	33.06	-30.03
144.92	144.94	V	83.00	144.00	21.70	2.37	32.05	10.97	3.00	33.06	-30.06

Table 11: Quasi Peak table for RE from 30 MHz to 1 GHz

Figure 24: RE graph from 1 GHz to 6 GHz using average detector - Horizontal polarization

Figure 25: RE graph from 1 GHz to 6 GHz using average detector - Vertical polarization

Freq (MHz)	Freq (MHz) (Max)	Twr Ht (cm)	Pol	EUT Ttbl Agl (deg)	(AVG) Trace (dBµV)	Transducer (dB)	Preamp (dB)	Cable (dB)	(AVG) EMI (dBµV/m)	Limit (dBµV/m)	(AVG) Margin (dB)
2401.6	2401.22	100	V	42	55.16	24.3	31.44	2.6	50.62	53.98	-3.36
4802.4	4802.4	100	Н	141.6	37.2	28.47	28.66	3.66	40.66	53.98	-13.32
4802.4	4853.19	111	V	194.1	25.86	28.45	28.57	3.69	29.44	53.98	-24.54

Table 12: Average Table for RE from 1 GHz to 6 GHz

Figure 26: RE graph from 6 GHz to 18 GHz using Average Detector - Horizontal polarization

Figure 27: RE graph from 6 GHz to 18 GHz using Average Detector - Vertical polarization

Freq	Freq (Max)	Pol	EUT Ttbl Agl	Twr Ht	(AVG) Trace	Cable	Transducer	Preamp	(AVG) EMI	Limit	(AVG) Margin
(MHz)	(MHz)		(deg)	(cm)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
6974.40	6983.48	Н	188.20	200.00	34.83	4.21	32.54	28.30	43.28	53.98	-10.70
6985.60	6998.90	V	72.50	200.00	34.49	4.21	32.59	28.30	42.98	53.98	-11.00
14643.60	14847.55	V	239.10	100.00	29.85	6.60	39.13	28.20	47.38	53.98	-6.60
14957.20	15072.60	Н	211.30	100.00	29.64	6.68	39.01	28.23	47.11	53.98	-6.87

Table 13: Average Table for RE from 6 GHz to 18 GHz

Figure 28: RE graph from 18 GHz to 26.5 GHz using Average Detector - Horizontal polarization

Figure 29: RE graph from 18 GHz to 26.5 GHz using Average Detector - Vertical polarization

MID CHANNEL CONTINUOUS TX

Figure 30: RE graph from 9 kHz to 90 kHz using Average Detector – Parallel

Figure 31: RE graph from 110 kHz to 490 kHz using Average Detector - Parallel

Figure 32: RE graph from 9 kHz to 30 MHz using Peak Detector – Parallel

Freq	Freq (Max)	Pol	EUT Ttbl Agl	(QP) Trace	Cable	Transducer	(QP) EMI	Limit	(QP) Margin
(MHz)	(MHz)		(deg)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
0.01	0.01	V	136.90	42.06	0.15	28.73	70.94	126.89	-55.95
0.45	0.45	V	288.30	35.87	0.21	17.50	53.58	94.48	-40.90

Table 14: Quasi Peak table for RE from 9 kHz to 30 MHz - Parallel

Figure 33: RE graph from 9 kHz to 90 kHz using Average Detector – Perpendicular

Figure 34: RE graph from 110 kHz to 490 kHz using Average Detector - Perpendicular

Figure 35: RE graph from 9 kHz to 30 MHz using Peak Detector - Perpendicular

Freq	Freq (Max)	Pol	EUT Ttbl Agl	(QP) Trace	Cable	Transducer	(QP) EMI	Limit	(QP) Margin
(MHz)	(MHz)		(deg)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
0.01	0.01	V	136.90	42.06	0.15	28.73	70.94	126.89	-55.95
0.45	0.45	V	288.30	35.87	0.21	17.50	53.58	94.48	-40.90

Table 15: Quasi Peak table for RE from 9 kHz to 30 MHz - Perpendicular

Figure 36: RE graph from 30 MHz to 1 GHz using Peak Detector - Horizontal polarization

Figure 37: RE graph from 30 MHz to 1 GHz using Peak Detector - Vertical polarization

Freq	Freq (Max)	Pol	EUT Ttbl Agl	Twr Ht	(QP) Trace	Transducer	Cable	Preamp	(QP) EMI	FCC Limit	FCC Margin
(MHz)	(MHz)		(deg)	(cm)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
32.2	8 32.28	Н	32.40	267.00	22.64	10.09	1.16	32.53	1.37	39.08	-37.71
36.2	0 36.23	Н	146.40	255.00	22.56	10.10	1.23	32.52	1.37	39.08	-37.71
207.7	0 207.74	Н	168.30	297.00	22.40	12.75	2.86	32.10	5.91	43.52	-37.61
759.2	5 759.32	V	79.60	400.00	22.66	20.90	5.32	31.64	17.24	46.44	-29.20

Table 16: Quasi Peak Table for RE from 30 MHz to 1 GHz

Figure 38: RE graph from 1 GHz to 6 GHz using Average Detector - Horizontal polarization

Figure 39: RE graph from 1 GHz to 6 GHz using Average Detector - Vertical polarization

Freq (MHz)	Freq (Max) (MHz)	Pol	Twr Ht (cm)	EUT Ttbl Agl (deg)	(AVG) Trace (dBµV)	Transducer (dB)	Preamp (dB)	Cable (dli)	(AVG) EMI (dByV/m)	Avg Limit (dBµV/m)	(AVG) Margin (dB)
2180.90	2094.92	н	200.00	85.60	25.58	23.25	32.08	2.43	19.18	53.98	-34.80
2441.60	2441.60	V	100.00	275.50	52.95	24.43	31.37	2.62	48.63	53.98	-5.35
4883.20	4883.20	н	100.00	168.80	40.54	28.45	28.51	3,70	44,18	53.98	-9,80
4883.60	4883.60	V	111.00	163.20	42,44	28.45	28.51	3.71	46.08	53.98	-7.90

Table 17: Average Table for RE from 1 GHz to 6 GHz

Figure 40: RE graph from 6 GHz to 18 GHz using Average Detector - Horizontal polarization

Figure 41: RE graph from 6 GHz to 18 GHz using Average Detector - Vertical polarization

Freq	Freq (Max)	Pol	Twr Ht	EUT Ttbl Agl	(AVG) Trace	Cable	Transducer	Preamp	(AVG) EMI	Limit	(AVG) Margin
(MHz)	(MHz)		(cm)	(deg)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
6978.00	6992.68	V	100.00	232.20	34.38	4.21	32.57	28.30	42.86	53.98	-11.12
6980.00	6717.73	Н	100.00	233.10	32.77	4.16	31.80	28.33	40.40	53.98	-13.58
7324.80	7434.16	Н	200.00	233.90	28.52	4.38	32.96	28.80	37.06	53.98	-16.92
7324.80	7373.97	V	200.00	130.90	28.34	4.35	32.91	28.73	36.88	53.98	-17.10
9766.40	9959.18	Н	100.00	190.80	28.34	5.09	36.42	28.10	41.75	53.98	-12.23
9766.40	10170.56	V	100.00	353.80	28.55	5.13	36.74	28.12	42.30	53.98	-11.68

Figure 42: Average Table for RE from 6GHz to 18 GHz

Figure 43: RE graph from 18 GHz to 26.5 GHz using Average Detector - Horizontal polarization

Figure 44: RE graph from 18 GHz to 26.5 GHz using Average Detector - Vertical polarization

HIGH CHANNEL CONTINUOUS TX

Figure 45: RE graph from 9 kHz to 90 kHz using Average Detector – Parallel

Figure 46: RE graph from 110 kHz to 490 kHz using Average Detector - Parallel

Figure 47: RE graph from 9 kHz to 30 MHz using Peak Detector – Parallel

Freq	Freq (Max)	Pol	EUT Ttbl Agl	(QP) Trace	Cable	Transducer	(QP) EMI	Limit	(QP) Margin
(MHz)	(MHz)		(deg)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
0.01	0.01	V	136.90	42.06	0.15	28.73	70.94	126.89	-55.95
0.45	0.45	V	288.30	35.87	0.21	17.50	53.58	94.48	-40.90

Table 18: Quasi Peak table for RE from 9 kHz to 30 MHz - Parallel

Figure 48: RE graph from 9 kHz to 90 kHz using Average Detector – Perpendicular

Figure 49: RE graph from 110 kHz to 490 kHz using Average Detector - Perpendicular

Figure 50: RE graph from 9 kHz to 30 MHz using Peak Detector - Perpendicular

Freq	Freq (Max)	Pol	EUT Ttbl Agl	(QP) Trace	Cable	Transducer	(QP) EMI	Limit	(QP) Margin
(MHz)	(MHz)		(deg)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
0.01	0.01	V	136.90	42.06	0.15	28.73	70.94	126.89	-55.95
0.45	0.45	V	288.30	35.87	0.21	17.50	53.58	94.48	-40.90

Table 19: Quasi Peak table for RE from 9 kHz to 30 MHz - Perpendicular

Figure 51: RE graph from 30 MHz to 1 GHz using Peak Detector - Horizontal polarization

Figure 52: RE graph from 30 MHz to 1 GHz using Peak Detector - Vertical polarization

Freq (MHz)	Freq (Max) (MHz)	Pol	EUT Ttbl Agl (deg)	Twr Ht (cm)	(QP) Trace (dBµV)	Cable (dB)	Preamp (dB)	Transducer (dB)	(QP) EMI (dBµV/m)	FCC Limit (dBµV/m)	(QP) Margin FCC (dB)
48.48	48.44	V	179.70	145.00	23.14	1.41	32.20	10.09	2.44	40.00	-37.56

Table 20: Quasi Peak Table for RE from 30 MHz to 1 GHz

Figure 53: RE graph from 1 GHz to 6 GHz using Average Detector - Horizontal polarization

Figure 54: RE graph from 1 GHz to 6 GHz using Average Detector - Vertical polarization

Freq	Freq (Max)	Twr Ht	Pol	EUT Ttbl Agl	(AVG) Trace	Transducer	Preamp	Cable	(AVG) EMI	Avg Limit	(AVG) Margin
(MHz)	(MHz)	(cm)		(deg)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4964.80	4964.80	100.00	Н	122.90	35.60	28.43	28.36	3.75	39.41	53.98	-14.57
4964.80	4964.80	100.00	V	262.50	33.98	28.43	28.36	3.75	37.79	53.98	-16.19
5800.00	5639.57	100.00	H	246.60	25.72	29.21	28.37	3.89	30.46	53.98	-23.52

Table 21: Average Table for RE from 1 GHz to 6 GHz

Figure 55: RE graph from 6 GHz to 18 GHz using Average Detector - Horizontal polarization

Figure 56: RE graph from 6 GHz to 18 GHz using Average Detector - Vertical polarization

Freq	Freq (Max)	Pol	EUT Ttbl Agl	Twr Ht	(AVG) Trace	Cable	Transducer	Preamp	(AVG) EMI	AVG Limit	(AVG) Margin
(MHz)	(MHz)		(deg)	(cm)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
6978.40	6995.88	V	10.80	100.00	34.43	4.21	32.58	28.30	42.92	53.98	-17.08
6987.60	6985.50	Н	106.80	100.00	34.83	4.21	32.55	28.30	43.28	53.98	-16.72
7446.40	7447.15	Н	134.30	100.00	38.71	4.38	32.97	28.81	47.26	53.98	-12.74
14824.80	14267.76	Н	276.70	200.00	30.31	6.22	38.35	28.61	46.27	53.98	-13.73
14976.00	14842.45	V	267.50	100.00	30.11	6.60	39.12	28.21	47.63	53.98	-12.37

Table 22: Average Table for RE from 6 GHz to 18 GHz

Figure 57: RE graph from 18 GHz to 26.5 GHz using Average Detector - Horizontal polarization

Figure 58: RE graph from 18 GHz to 26.5 GHz using Average Detector - Vertical polarization

5.3.2.6 RESULT

Radiated Emissions from the EUT are within the specified limit line.

5.3.3 EMISSIONS IN RESTRICTED FREQUENCY BANDS

5.3.3.1 TEST SPECIFICATION

Test Standard	47 CFR Ch I (10–	1–13 Ed) Part 15 S	ubpart C, Section §1:	5 205	
1 cst standard	RSS-Gen, Issue 4,	, ,	dopart e, section 31	3.203	
Test Procedure	ANSI C63.10-2013				
Frequency Range	9 kHz to	150 kHz to 30	30 MHz to	1 GHz to	
	150 kHz	MHz	1 GHz	26.5 GHz	
Resolution Bandwidth	1 kHz	10 kHz	120 kHz	1 MHz	
Video Bandwidth	3 kHz	30 kHz	300 kHz	3 MHz	
Step size	400 Hz	4 kHz	40 kHz	400 kHz	
Pre Scan Measurement Time	50 ms	50 ms	20 ms	5 ms	
Final Measurement Time	1 s	1 s	1 s	1 s	
Attenuation	10 dB	10 dB	10 dB	4 dB	
Test Distance	3 m	3 m	3 m	3 m	
Polarization	Parallel & Perpend	icular	Horizontal and Vertical		
Detector	Quasi Peak & Ave	rage	Quasi Peak &	Average	
			Average		
Input Voltage	3.6 V DC				
Input Frequency	NA				
Temperature	22.1 ℃	22.1 °C	23.6 °C	23.0 °C	
Humidity	51.6 %	51.6 %	57.8 %	58.0 %	
Tested By	Suresh. G.N Suresh. G.N		Narendra	Narendra	
Test Date	20th Jun2015	20th Jun.2015	30 th May 2015	12 th Jun2015	

5.3.3.2 LIMITS

Standard	Reference section	Frequency range	Limit (dBµV/m) at 3 meter
47 CFR Ch. I (10–1–13	§15.209, §15.205	9 kHz to 490 kHz	128.51 to 93.80*
Ed), Part 15, Subpart C	8.9	490 kHz to 1.705 MHz	73.80 to 62.97*
RSS-Gen, Issue 4, Nov	8.10	1.705 MHz to 30 MHz	69.54
2014			

Note: * Decreases with the logarithm of the frequency

Standard	Reference section	Frequency range	Limit (dBµV/m) at 10 meter
47 CFR Ch. I (10–1–13	§15.209, §15.205	30 MHz to 88 MHz	29.54
Ed), Part 15, Subpart C		88 MHz to 216 MHz	33.06
		216 MHz to 960 MHz	35.56
RSS-Gen, Issue 4, Nov	8.9	960 MHz to 1000 MHz	43.52
2014	8.10		

Standard	Reference section	Frequency range	Limit (dBµV/m) at 3 meter
47 CFR Ch. I (10–1–13	§15.209, §15.205	1000 MHz to 26.5 GHz	53.98
Ed), Part 15, Subpart C			
RSS-Gen, Issue 4, Nov	8.9		
2014	8.10		

|--|

5.3.3.3 TEST SETUP

Refer Section 5.3.2.3 for test setup.

5.3.3.4 TEST PROCEDURE

Refer Section 5.3.2.4 for test procedure.

5.3.3.5 MEASUREMENT GRAPHS/DATA

Refer Section 5.3.2.5 for the graphs and data.

5.3.3.6 RESULTS

Radiated Emissions from the EUT in the restricted bands of operation is within the specified limit line.

5.3.4 6 DB BANDWIDTH MEASUREMENT

5.3.4.1 TEST SPECIFICATION

Test Standard	47 CFR Ch. I (10–1–13 Ed), Part 15, Subpart C,
	RSS 247 Issue 1 May 2015
Resolution Bandwidth	100 kHz
Video Bandwidth	300 kHz
Sweep Time	Auto
Test Mode	Conducted
Detector	Peak
Input Voltage	3.6 V DC
Input Frequency	NA
Temperature	21.0 °C
Humidity	54.0 %
Tested By	Narendra
Test Date	22 nd June 2015

5.3.4.2 LIMITS

Standard	Reference	Frequency	Limit (min. 6 dB
	section	range	Bandwidth)
47 CFR Ch. I (10–1–13 Ed), Part 15, Subpart C	§15.247 (a) (2)	2400 MHz to	≥ 500 kHz
RSS 247 Issue 1 May 2015	5.2 (1)	2483.5 MHz	

5.3.4.3 TEST SETUP

Figure 59: Typical test setup for Conducted RF measurements

5.3.4.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per the "558074 D01 DTS measurement Guidance v03r02". The RF output of the EUT was connected to the input port of Spectrum analyzer. Captured the data from spectrum analyzer and compared with the limits specified in the standard.

Report Number: OFP 1522ITE105-A	EMC TEST REPORT	Page 50 of 65
---------------------------------	-----------------	---------------

5.3.4.5 MEASUREMENT GRAPHS/DATA LOW CHANNEL CONTINUOUS TX

Figure 60: 6 dB Bandwidth measurement for Low Channel

MID CHANNEL CONTINUOUS TX

Figure 61: 6 dB Bandwidth measurement for Mid Channel

HIGH CHANNEL CONTINUOUS TX

Figure 62: 6 dB Bandwidth measurement for High Channel

5.3.4.6 RESULT

The 6 dB Bandwidth for all the channels were found higher than 500 kHz. Refer below table for consolidated data.

Channel Frequency (MHz)	Recorded value (kHz)	Limit (kHz)	Result
LOW	609.909	≥500	PASS
MID	617.399	≥500	PASS
HIGH	608.133	≥500	PASS

5.3.5 MAXIMUM CONDUCTED OUTPUT POWER

5.3.5.1 TEST SPECIFICATION

Test Standard	47 CFR Ch. I (10–1–13 Ed), Part 15, Subpart C
	RSS-247 Issue 1, May 2015
Sweep Time	Auto
Attenuation	10 dB
Test Mode	Conducted
Detector	Peak
Input Voltage	3.6 V DC
Input Frequency	NA
Temperature	21.0 °C
Humidity	54.0 %
Tested By	Narendra
Test Date	23 rd June 2015

5.3.5.2 LIMITS

Standard	Reference section	Frequency range	Limit
47 CFR Ch. I (10–1–13 Ed), Part 15, Subpart C	§15.247 (a) (3)	2400 MHz to	\leq 30 dBm
RSS 247 Issue 1 May 2015	5.4 (4)	2483.5 MHz	(1W)

5.3.5.3 TEST SETUP

Figure 63: Typical test setup for Conducted RF measurements

5.3.5.4 TEST PROCEDURE

A Broadband Peak RF Power meter is used for output power measurement. Measurements were done as per Section 9.1.2 (Method PKPM1) of KDB "558074 D01 DTS measurement Guidance v03r02". The RF output of the EUT was connected to the input port of power meter and the result is captured.

5.3.5.5 MEASUREMENT GRAPHS / DATA

Figure 64: Output Power for Low Channel

Figure 65: Output Power for Mid Channel

Figure 66: Output Power for High Channel

5.3.5.6 TEST RESULT:

Maximum conducted output power for all channels is within the specified limits. Refer below table for consolidated data.

Channel Frequency	Peak Conducted Output	Limit (dBm)	Result
(MHz)	Power(dBm)		
LOW	2.14	30	PASS
MID	1.95	30	PASS
HIGH	1.71	30	PASS

Note: EUT was operated with 100% duty cycle

5.3.6 POWER SPECTRUM DENSITY

5.3.6.1 TEST SPECIFICATION

Test Standard	47 CFR Ch. I (10–1–13 Ed), Part 15, Subpart C
Test Standard	RSS-247 Issue 1, May 2015
Frequency Range	2400 MHz to 2483 MHz
Resolution Bandwidth	10 kHz
Video Bandwidth	30 kHz
Sweep Time	Auto
Test Mode	Conducted
Detector	Peak
Input Voltage	3.6 V DC
Input Frequency	NA
Temperature	21.0 °C
Humidity	54.0 %
Tested By	Narendra
Test Date	22 nd June 2015

5.3.6.2 LIMITS

Standard	Reference section	Frequency range	Limit
47 CFR Ch. I (10–1–13	e15 247 (a)		
Ed), Part 15, Subpart C	§15.247 (e)	2400 MHz to 2483.5	< 9dDm in ony 2 laHz hand
RSS-247, Issue 1, May	5.2(2)	MHz	\leq 8dBm in any 3 kHz band
2015	5.2(2)		

5.3.6.3 TEST SETUP

Figure 67: Typical test setup for Conducted RF measurements

5.3.6.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per KDB "558074 D01 DTS measurement Guidance v03r02". The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. Captured the data from spectrum analyzer and compared with the limits specified in the standard.

Report Number: OFP 1522ITE105-A	EMC TEST REPORT	Page 56 of 65
---------------------------------	-----------------	---------------

5.3.6.5 MEASUREMENT GRAPHS / DATA

Figure 68: Measurement for Low Channel

Figure 69: Measurement for Mid Channel

Figure 70: Measurement for High Channel

5.3.6.6 RESULT

Power Spectral Density for all channels are within the specified limit. Refer below table for consolidated result.

Channel	Recorded value (dBm/10 kHz)	Calculated Value (dBm/3 kHz)	Limit (dBm/3 kHz)	Result
LOW	-3.023	-8.253	8	PASS
MID	-4.753	-9.983	8	PASS
HIGH	-4.205	-9.435	8	PASS

Note: Bandwidth correction Factor = 10log (3 KHz/10kHz)

5.3.7 RADIO FREQUENCY POWER IN ANY 100 KHZ BANDWIDTH OUTSIDE THE INTENTIONAL BAND

5.3.7.1 TEST SPECIFICATION

Test Standard	47 CFR Ch. I (10–1–13 Ed), Part 15, Subpart C
	RSS-247 Issue 1, May 2015
Frequency Range	20 MHz to 26.5 GHz
Resolution Bandwidth	100 kHz
Video Bandwidth	300 kHz
Sweep Time	Auto
Test Mode	Conducted
Detector	Peak
Input Voltage	3.6 V DC
Input Frequency	NA
Temperature	21.0 °C
Humidity	54.0 %
Tested By	Narendra
Test Date	23 rd June 2015

5.3.7.2 LIMITS

Standard	Reference section	Frequency range	Limit
47 CFR Ch. I (10–1–13	§15.247 (d)	2400 MHz to 2483.5 MHz	-20 dB in any 100 kHz band
Ed), Part 15, Subpart C			outside the Intentional band
RSS-247 Issue 1, May	5.5		
2015			

5.3.7.3 TEST SETUP

Figure 71: Typical test setup for Conducted RF measurements

5.3.7.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per Section 11.3 of KDB "558074 D01 DTS measurement Guidance v03r02". The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. Captured the data from spectrum analyzer and compared with the limits specified in the standard

Report Number: OFP 1522ITE105-A EMC TEST REPORT Page 59 of 65

5.3.7.5 MEASUREMENT GRAPHS / DATA LOW CHANNEL

Figure 72: Spurious Emissions from 20 MHz to 1 GHz

Figure 73: Spurious Emissions from 1 GHz to 26.5 GHz

MID CHANNEL

Figure 74: Spurious Emissions from 20 MHz to 1 GHz

Figure 75: Spurious Emissions from 1 GHz to 26.5 GHz

HIGH CHANNEL

Figure 76: Spurious Emissions from 20 MHz to 1 GHz

Figure 77: Spurious Emissions from 1 GHz to 26.5 GHz

5.3.7.6 RESULT

Radio frequency power in any 100 kHz bandwidth outside the intentional band is below -20dB from the carrier in all channels.

5.3.8 OPERATING BAND EDGE MEASUREMENT

5.3.8.1 TEST SPECIFICATION

Test Standard	47 CFR Ch. I (10–1–13 Ed), Part 15, Subpart C
	RSS-247 Issue 1, May 2015
Frequency Range	2400 MHz to 2483.5 MHz
Resolution Bandwidth	100 kHz
Video Bandwidth	300 kHz
Span	2 MHz
Test Mode	Conducted
Detector	RMS
Input Voltage	3.6 V DC
Input Frequency	NA
Temperature	21.0 °C
Humidity	54.0 %
Tested By	Narendra
Test Date	22 nd June 2015

5.3.8.2 LIMITS

Standard	Reference section	Frequency range	Limit
47 CFR Ch. I (10–1–13	§15.247 (d)	2400 MHz to 2483.5	30dB below the maximum
Ed), Part 15, Subpart C		MHz	in- band average PSD level
RSS-247 Issue 1, May	5.5		
2015			

5.3.8.3 TEST SETUP

Figure 78: Typical test setup for Conducted RF measurements

5.3.8.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per Section 13 of KDB "558074 D01 DTS measurement Guidance v03r02". The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. Captured the data from spectrum analyzer and compared with the limits specified in the standard.

Report Number: OFP 1522ITE105-A EMC TEST REPORT Page 63 of 65

5.3.8.5 MEASUREMENT GRAPHS / DATA

Figure 79: Band Edge Measurement at Low channel

Figure 80: Band Edge Measurement at High Channel

5.3.8.6 RESULT

Operating band edge is below -30 dB from the carrier in all channels.

ANNEXURE I: ACRONYMS

dB	Decibel
dBμV	Decibel micro Volts
EUT	Equipment Under Test
FCC	Federal Communications Commission
GHz	Giga Hertz
kHz	Kilo Hertz
LISN	Line Impedance Stabilization Network
MHz	Mega Hertz
QP	Quasi Peak

END OF REPORT