L17 : Périmètres, Aires et Volumes

Niveau : transversal. Prérequis : calcul intégral.

1 Périmètre

Définition : Parler des unités de longueur (mètre, mille, pieds). (évoquer le cas particulier des polygones)

Propriété: Une homothétie de rapport k multiplie les mesures des périmètres par |k|. (laïus en fin de doc)

Tableau de conversion.

Définition : (aussi propriété) Le rapport On appelle et note ce rapport constant π .

Formulaire.

Exercice: 37p131 de "Maths 6e cycle 3 Dimensions" (périmètre d'une figure rigolote).

2 Aires

Définition : Discussion sur exprimée en unité d'aires, parler de m², acre, are etc.

Remarque : aucun lien en général entre aire et périmètre (exemple du carré 2x2, à qui on enlève un carré, puis qu'on étire en 4x1).

Propriété : Homothétie ... $|k|^2$.

Tableau de conversion.

Propriété : L'aire est inchangée par découpages et recollements. à faire : admis?

Formulaire.

Exercice: Soit le triangle ABC, I milieu de [AB]. Montrer que $\mathscr{A}(AIC) = \mathscr{A}(BIC)$.

Application: Dans repère canonique, soient A(-1;0), B(1;0) et M sur \mathscr{C}_f où $f: x \mapsto x^2 + 1$. Minimiser $\mathscr{A}(AMC)$.

Application : À périmètre fixé, quels sont les rectangles d'aire maximale?

Exercice: 60p165 de "Barbazo Tle Maths Compl" (calcul d'intégrale).

Application: Formule de Héron (c.f. développement).

Propriété : Soit $(\overrightarrow{i}, \overrightarrow{j})$ une BON et ABCD un parallélogramme. Alors $\mathscr{A}(ABCD) = \left| \det \left(\overrightarrow{AB}, \overrightarrow{AD} \right) \right|$ (en ayant définit le déterminant).

3 Volumes

Définition: (Volume) grandeur indiquant l'espace occupé par un solide. Unité principale (SI): m³.

Propriété : Homothétie ... $|k|^3$.

Tableau de conversion m³.

Définition (Contenance) grandeur indiquant la quantité de matière maximale qu'un solide peut contenir. Unité principale : L, correspond (1L) à la contenance d'un cube de 1 dm de côté. On en déduit la relation fondamentale $1L = 1 dm^3$.

Note : la distinction contenance-volume semble surfaite, se préaprer à un commentaire là-dessus (mais incontournable du BO).

Formulaire.

Exercice : 99p270 de "Barbazo Tle Maths Spé" : exo calcul volume d'un solide de révolution avec \int . Ici perche tendue pour démos formules de volumes ou aires classiques à la physicienne.

Exercice : 52p165 de "Barbazo 1^{re} Spé" : exo optimisation volume d'un cylindre dans cône.

Laïus sur l'homogénéité des longueurs, aires et volumes : à admettre, la maîtrise de la propriété demande beaucoup de lecture (eg "Mathématiques d'école - D. Perrin"), notamment le savoir de sa distinction propriété / axiome... (il choisit de lui conférer le statut d'axiome pour les aires et volumes).

S'attendre peut-être à : « et la mesure de l'aire de la surface d'un solide? ». Réviser les formules usuelles dans les manuels et elles aussi savoir les démontrer à la physicienne.