MINING DI SOCIAL COMMITMENT ANALIZZANDO LOG DI PROCESSI DI BUSINESS

Università degli Studi di Torino

Dipartimento di Informatica

Candidato:

Mossio Giacomo

Relatore:

Prof. Micalizio Roberto

Sessione DICEMBRE 2020 a.a. 2019/2020

Perché estrarre i commitment?

- La materia del process mining ha un'importanza notevole al giorno d'oggi
- Social Commitment: «Strumento concettuale per modellare le relazioni sociali tra gli agenti che costituiscono un sistema»
- I commitment sono utili alla coordinazione e catturano relazioni non esplicite
- I commitment possono essere utilizzati per stabilire la compliance delle esecuzioni o anche nei modelli per il calcolo di diagnosi distribuite

Social Commitment

«La risorsa x si impegna nei confronti di y ad eseguire la condizione q_x quando la condizione p_v viene rispettata»

- Il concetto di social commitment ammette interpretazioni flessibili
- Le condizioni possono essere composte da singole attività o da espressioni logico-temporali AND (∧), OR (∨) e BEFORE (⋅)

Come estrarre i commitment

- Handover of work = «relazione tra due agenti che interagiscono in un sistema, misurata in base alla frequenza con cui un'attività di un agente x è causalmente seguita da un'attività di un agente y»
- Dipendenza causale = «valore che rappresenta quanto frequentemente un'attività p è seguita da un'altra attività q»
- Handover of work + Causal depencies → Social Commitments

Algoritmo di mining di commitment

Creazione dei commitment base

- 1. ['paga', 'cliente', 'inviaMerce', 'corriere', 0.96]
- 2. ['offerta', 'cliente', 'inviaMerce', 'corriere', 0.25] 🗙

C('corriere', 'cliente', 'paga', 'inviaMerce')

Unione dei commitment

- 1. C('venditore', 'cliente', 'offre', 'accetta')
- 2. C('venditore', 'cliente', 'offre', 'rifiuta')

C('venditore', 'cliente', 'offre', 'accetta V rifiuta')

Concatenazione dei commitment

- 1. C('corriere', 'cliente', 'paga', 'inviaMerce')
- 2. C('venditore', 'corriere', 'inviaMerce', 'inviaRicevuta')

C('venditore', 'cliente', 'paga · inviaMerce', 'inviaRicevuta')

Case Study: Hiring Process

Log dell'Hiring Process

1	TIMESTAMP	RESOURCE	ACTIVITY	NEWCASEID
2	2020-09-12 07:27:28.504	hirer1	postJob	0.1
3	2020-09-12 07:27:28.504	hirer1	postJob	0.3
4	2020-09-12 07:27:28.504	hirer1	postJob	0.2
5	2020-09-12 07:27:28.595	candidate3	apply	0.1
6	2020-09-12 07:27:28.597	candidate7	apply	0.3
7	2020-09-12 07:27:28.599	evaluator2	screenInterview	0.1
8	2020-09-12 07:27:28.607	candidate4	apply	0.2
9	2020-09-12 07:27:28.622	evaluator6	screenInterview	0.2
10	2020-09-12 07:27:28.691	evaluator5	screenInterview	0.3
11	2020-09-12 07:27:28.915	evaluator6	rejectionNotice	0.2
12	2020-09-12 07:27:28.926	evaluator2	makeOffer	0.1
13	2020-09-12 07:27:28.94	evaluator5	makeOffer	0.3
14	2020-09-12 07:27:28.948	candidate7	responseNo	0.3
15	2020-09-12 07:27:28.967	candidate3	responseNo	0.1
16	2020-09-12 07:27:28.979	evaluator5	offerRejected	0.3
17	2020-09-12 07:27:29.005	evaluator2	offerRejected	0.1
18	2020-09-12 07:28:08.986	hirer1	postJob	1.1
19	2020-09-12 07:28:08.986	hirer1	postJob	1.2
20	2020-09-12 07:28:08.986	hirer1	postJob	1.3
21	2020-09-12 07:28:08.994	candidate3	apply	1.1
22	2020-09-12 07:28:08.998	evaluator2	screenInterview	1.1
23	2020-09-12 07:28:09.004	evaluator2	makeOffer	1.1
24	2020-09-12 07:28:09.027	candidate3	responseNo	1.1
25	2020-09-12 07:28:09.038	evaluator2	offerRejected	1.1
26	2020-09-12 07:28:09.316	candidate5	apply	1.2
27	2020-09-12 07:28:09.316	candidate7	apply	1.3
28	2020-09-12 07:28:09.319	evaluator4	screenInterview	1.2

Valori delle dipendenze causali

- C. ['screenInterview', 'evaluator', 'makeOffer', 'evaluator', 0.984375]
- D. ['screenInterview', 'evaluator', 'rejectionNotice', 'evaluator', 0.988636363636363636]
- E. ['makeOffer', 'evaluator', 'responseNo', 'candidate', 0.972972972972973]
- F. ['makeOffer', 'evaluator', 'responseYes', 'candidate', 0.9615384615384616]
- G. ['makeOffer', 'evaluator', 'positionFilled', 'hirer', 0.6666666666666666]
- H. ['responseNo', 'candidate', 'offerRejected', 'evaluator', 0.9705882352941176]
- 1. ['responseNo', 'candidate', 'positionFilled', 'hirer', 0.75]
- J. ['offerRejected', 'evaluator', 'positionFilled', 'hirer', 0.9166666666666666]
- K. ['responseYes', 'candidate', 'offerAccepted', 'evaluator', 0.9565217391304348]
- L. ['responseYes', 'candidate', 'positionFilled', 'hirer', 0.75]
- M. ['offerAccepted', 'evaluator', 'positionFilled', 'hirer', 0.9565217391304348]
- N. ['positionFilled', 'hirer', 'positionClosed', 'evaluator', 0.9655172413793104]
- O. ['rejectionNotice', 'evaluator', 'positionFilled', 'hirer', 0.96875]

Heuristic Net ricavata

Commitment estratti

Processi di business \longrightarrow $C(x, y, p_y, \mathbf{p_y} \cdot \mathbf{q_x})$

- 1. C(evaluator, hirer, postJob apply, postJob apply screenInterview (makeOffer V rejectionNotice))
- 2. C(candidate, evaluator, makeOffer, makeOffer (responseYes V responseNo))
- 3. C(evaluator, candidate, responseNo, responseNo offerRejected)
- 4. C(hirer, candidate, responseYes offerAccepted, responseYes offerAccepted positionFilled)

Sviluppi futuri

- Aumentare la compatibilità con i log
- Ampliare la validazione dell'algoritmo su processi di tipo diverso
- Aggiungere un criterio di valutazione sistematica della bontà dei commitment
- Implementare un metodo che, sfruttando i commitment, valuti la compliance dell'esecuzione dei processi rispetto al modello degli stessi