# Multi Energy Systems (MES)

Investigating Unknown Flexibilities Provided by Power-to-X Converters Considering Grid Support Strategies

Supervisor: Asst. Prof. Milos Cvetkovic

PhD: Digvijay Gusain

MSc: Bekir Caner Yagci (4857089)

Delft University of Technology Faculty of Electrical Engineering, Mathematics, and Computer Science



## Content

- Problem
- Research Questions
- Methodology
- Modelling
- Cases & Results
- Further Improvements



## **Problem**

- Energy systems need more flexibility and ways to measure it
- Power-to-X systems are able to provide this flexibility
- However, existing models are too simplified for control and flexibility analysis



P. Mancarella, "MES (multi-energy systems): An overview of concepts and evaluation models," Energy,vol. 65, pp. 1–17, 2014.



## Research Questions

- 1. What are the hidden flexibilities provided by Power-to-X modelling? (Demand-side flexibility, Demand Side Management)
- 2. How much district heating demand can be supplied from curtailed renewable energy in Maasvlakte 2, Port of Rotterdam and what is its effect on system flexibility?
- 3. How the existing flexibility affected when another flexible load is connected to the system? (Supply-side flexibility, Curtailment)

This project investigates the impact of MES flexibility service providers on balancing the stochastic variability of renewable energy sources by using co-simulation in OpenModelica environment.



# Methodology – Maasvlakte Energy Park





## Methodology – Flexibility

"Ability of a system to response challenges caused by power fluctuations [1]."

- 1. Electrical System Flexibility (for Grid Operator)
  - a) Supply-side Flexibility (Curtailment)
  - b) Demand-side Flexibility (DSM)
- Cost Flexibility (for Indutry)



# Methodology – Hierarchical Control





# Methodology – Co-simulation





# Modelling – Wind Turbine Generator





# Modelling – PV Farm





## Cases

#### First case:

Simulate P2G connected to RES and plot system parameters in Energysim. Measure the flexibility of electrolyser, system and excess RE.

### **Second case:**

Connect P2H (flexible load) to the previous system and do the same measurements. Expecting reduced excess RE, better grid performance (less power injection to/from grid, more stable active power on feeder) and smaller storage size. Measure the flexibility.



# **Initial Results**



30 time (s)



## **Initial Results**





# Conclusion & Expected Outcomes

- Recommendations for,
  - Multi-energy system modelling for ancillary services and control
  - Flexibility Measurement and Analysis
  - Maasvlakte 2 RES
- Flexibility(excess RE, power balance, cost) vs. t<sub>flex,on</sub>
- P,Q injected/withdrawn vs. time on feeder bus3



## References

[1] P. Schott, J. Sedlmeir, N. Strobel, T. Weber, G. Fridgen, and E. Abele, "A generic data model for describing flexibility in power markets," Energies, vol. 12, no. 10, pp. 1–29, 2019.



### **Multi Energy Systems (MES)**

Investigating Unknown Flexibilities Provided by Power-to-X Converters Considering Grid Support Strategies

Supervisor: Asst. Prof. Milos Cvetkovic

PhD: Digvijay Gusain

MSc: Bekir Caner Yagci (4857089)

E-mail: B.C.Yagci@student.tudelft.nl

Version Control: https://github.com/caneryagci/Multi-Energy-Systems-

Thesis-Project.git

