

数据类型 / 基本类型: 数值

陈斌 北京大学 gischen@pku.edu.cn

基本类型:数值

- > 整数类型
- > 浮点数类型
- 〉复数类型
- > 更多的数学函数

》 最大特点是不限制大小

• 无论多复杂的算式都可以直接得到结果

> 常见的运算

运算符	功能	备注		
m + n	加法			
m - n	减法	-		
m * n	乘法			
m // n	整数除法	结果是商的整数部分		
m/n	除法	"真"除法,得到小数		
m % n	求余数			
divmod(m, n)	求整数除法和余数	会得到两个整数,一个是 m // n,另一个是 m % n		
m ** n	求乘方	整数m的n次方		
abs(m)	求绝对值			

〉大小比较

> 连续比较判断

>>> 7 > 3 >= 3
True
>>> 12 < 23 < 22
False</pre>

m == n	相等比较	m 是否等于 n		
m > n	大于比较	m 是否大于 n		
m >= n	大于或等于比较	m 是否大于或者等于 n		
m < n	小于比较	m 是否小于 n		
m <= n	小于或等于比较	m 是否小于或者等于 n		

〉数的进制

我们用多少个不同符号来表示数?

通常用的十进制是0-9, 十个不同符号

逢十进一

十进制	0	1	2	3	4	5	6	7	8
二进制	0	1	10	11	100	101	110	111	1000
八进制	0	1	2	3	4	5	6	7	10
十六进制	0	1	2	з	4	5	6	7	8
十进制	9	10	11	12	13	14	15	16	17
二进制	1001	1010	1011	1100	1101	1110	1111	10000	10001
八进制	11	12	13	14	15	16	17	20	21
十六进制	9	а	b	C	d	u	f	10	11

> 整数的各种进制表示

• Python语言中可以直接用二进制、八进制和 十六进制来表示整数,只要加一个前缀用以 标识几进制即可

进制	表示	例子	
十进制 decimal	无前缀数字	367	
二进制 binary	0b 前缀	0b101101111	
八进制 octal	0o 前缀	00557	
十六进制 hexadecimal	0x 前缀	0x16f	

浮点数类型: float

- 〉操作与整数类似
- 〉 浮点数受到17位有效数字的限制
- 〉特点
- 科学记数法
- 有效位数
- 〉特性
- 进制转换导致精度误差 >>> 4.2 + 2.1 == 6.3

```
>>> 355/113
3.1415929203539825
>>> 3.1415926535897932
384626
3.141592653589793
>>> 123412342341234231
2341234.0
1.2341234234123424e+24
>>> 0.0000012312312312
3123123
1.2312312312312e-06
False
>>> 4.2 + 2.1
6.30000000000000001
```

复数类型

〉复数生成

- Python内置复数数据类型
- 〉复数运算
- 支持所有常见计算

```
>>> 1+3j
(1+3j)
>>> (1+2j)*(2+3j)
(-4+7j)
>>> (1+2j)/(2+3j)
(0.6153846153846154+0.07692307692307691j)
>>> (1+2j)**2
(-3+4j)
>>> (1+2j).imag
2.0
>>> (1+2j).real
1.0
```

复数类型

〉复数比较

• 复数之间只能比较是否相等

〉复数应用

• 求平面上两个点(x1, y1)和(x2, y2)的距离

更多的数学函数: math模块

〉数学常数

• 圆周率π、自然对数的底e等

〉数学函数

三角函数、对数、最大公约数、最小公倍数等

```
>>> import math
>>> dir(math)
['__doc__', '__loader__', '__name__', '__package__', '__spec__',
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil
', 'copysign', 'cos', 'cosh', 'degrees', e', 'erf', 'erfc', 'exp
', 'expm1', 'fabs', 'factorial', 'floor', fmod', 'frexp', 'fsum'
, 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf',
'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'mod
f', 'nan', 'pi , 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan',
'tanh', 'tau', 'trunc']
```

更多的数学函数: cmath模块

> 专门面向复数计算

- math模块中的数学函数只能用于计算整数 和浮点数,对于复数就无能为力了
- 〉平面直角坐标和极坐标之间的转换

```
>>> cmath.polar(1 + 1j)
(1.4142135623730951, 0.7853981633974483)
>>> cmath.rect(1, cmath.pi / 2)
(6.123233995736766e-17+1j)
```