Selección de features

M. Bouza, P. Briff, N. Horro

¿Por qué es importante reducir la cantidad de features?

Distintas formas de reducir dimensiones

- Selección de features: elegimos, con cierto criterio, un subconjunto de los variables originales. Existen tres enfoques:
 - Métodos de filtrado: se realiza un análisis supervisado de los features para determinar cuáles son los más relevantes, y sólo luego se procede al modelado. Ej. selección basada en test estadísticos.
 - Métodos embebidos: la selección de features se encuentra naturalmente incorporada al proceso de modelado. Ej: árboles de decisión, LASSO
 - Métodos Wrapper: emplean un método iterativo de búsqueda, donde en cada paso se da al predictor un subconjunto distinto de features, y utiliza la performance del predictor para guiar la selección del siguiente subconjunto de variables. Ej: eliminación recursiva de features (recursive feature elimination - RFE)
- Métodos de proyección de variables: busco transformar mis variables para llevarlas a un espacio de menor dimensión. Ejemplo: PCA, ICA, SVD, etc.

Métodos básicos de selección

- 1. Eliminar variables constantes: Si existe algún feature que toma siempre el mismo valor para todas las mediciones, debemos quitarlo
- 2. Eliminar variables cuasi-constantes: una buena idea puede ser eliminar variables cuya varianza sea muy pequeña.
- 3. Eliminar variables duplicadas
- 4. Eliminar variables muy correlacionadas. ¿Cómo elegir entre todas las variables correlacionadas?
 - La que tenga menos # de datos faltantes
 - Elegir la más correlacionada con la variable de salida
 - Entrenar algún algoritmo de ML con las variables correlacionadas y elegir la más informativa

Observación: Estos métodos son no paramétricos, ya que no dependen de la variable de salida

Métodos de filtrado

Los métodos de filtrado disponibles dependen de los tipos de las variables de entrada y salida.

Caso	Variable de Entrada	Variable de Salida	Método
1	Númerica	Numérica	Pearson, Spearman's, Información Mutua
2	Númerica	Categórica	ANOVA, Kendall's,Información Mutua
3	Categórica	Numérica	Poco frecuente.
4	Categórica	Categórica	χ^2 , Información Mutua

Numérica-Numérica

Coeficiente de correlación de Pearson

Coeficiente de correlación de Pearson:

$$r = rac{\sum_{i=1}^{n}(X_{i} - ar{X})(Y_{i} - ar{Y})}{\sqrt{\sum_{i=1}^{n}(X_{i} - ar{X})^{2}}\sqrt{\sum_{i=1}^{n}(Y_{i} - ar{Y})^{2}}}$$

- Asume que las variables siguen una distribución normal
- Es un estimador de $\rho = \frac{cov(X,Y)}{\sigma_{X}\sigma_{Y}} \Rightarrow$ mide relación lineal entre variables
- Bajo la hipótesis nula que las variables están descorrelacionadas (independientes)

 - $t = r\sqrt{\frac{n-2}{1-r^2}} \sim t_{n-2}$ $z = \frac{1}{2}\ln\left(\frac{1+r}{1-r}\right) = \operatorname{arctanh}(r) \approx \mathcal{N}\left(0, \frac{1}{\sqrt{n-3}}\right) \text{(transformación de Fisher)}$
 - $lackbox{lack} f = rac{r^2}{1-r^2}(n-1) \sim F_{1,n-2}$. Representa la proporción de la varianza explicada por una función lineal de la variable X.

Numérica-Numérica

Coeficiente de Spearman

Coeficiente de Spearman

$$ho=rac{cov(rg_X,rg_Y)}{\sigma_{rg_X}\sigma_{rg_y}}$$
 , si no hay valores repetidos: $ho=1-rac{6\sum d_i^2}{n(n^2-1)},\ d_i=(rg(x)_i-rg(y)_i)$

- Es un método no paramétrico, basado en estadísticas de orden
- Mide la relación monotónica entre variables las variables
- \circ Bajo la hipótesis de variables independientes, $t=r\sqrt{rac{n-2}{1-r^2}}\sim t_{n-2}$
- Menos sensible a outliers

Numérica - Numérica

Información Mutua

Información mutua:

Recordemos que
$$I(X,Y) = \int \int f_{X,Y}(x,y) \log \left(\frac{f_{X,Y}(x,y)}{f_X(x)f_Y(y)} \right) dx \ dy = H(X) - H(X|Y)$$

- Debemos estimar las funciones de densidad (probabilidad). El algoritmo de Scikit-learn lo hace basándose en el principio de vecinos más cercanos (A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual information". Phys. Rev. E 69, 2004.).
- No paramétrico (no hace suposiciones de la distribución de las variables)
- Permite identificar relaciones no lineales entre variables. Si $I(X,Y) = 0 \Rightarrow X,Y$ son independientes

ANOVA:

$$F=rac{S_e^2}{S_d^2}\sim F_{k-1,N-k}, \quad S_e^2=rac{\sum_{i=1}^k n_i (ar{x}_i-ar{x})^2}{k-1}, \; S_b^2=rac{\sum_{i=1}^k (n_i-1)S_k}{N-k}$$

$$\bar{x}_k = \frac{\sum_{i=1}^{n_i} x_k^i}{n_i}, \quad S_k = \frac{\sum_{i=1}^{n_i} \left(x_k^i - \bar{x}_k\right)^2}{n_i - 1}, \quad N = \text{\# de muestras}, \ k = \text{\# de categorias}, \ n_i = \text{\# de muestras de clase } i$$

Recordamos: Representaba un test donde bajo H0 todas las medias son iguales. En este caso, vamos a comparar las medias de la variable para cada categoría.

F va a ser grande si var. entre clases es mucho mayor que var. dentro de las clases, lo cual es poco probable que ocurra si las medias son todas iguales.

- Supone: independencia entre observaciones, distribución normal de las variables numéricas, homocedasticidad
- Analiza relación lineal entre variables

Coeficiente de correlación de Kendall

Coeficiente de Kendal b (considera empates):

$$\begin{split} \tau_b &= \frac{n_c - n_d}{\sqrt{(n_0 - n_1)(n_0 - n_2)}}, \\ n_0 &= \binom{n}{2} \quad n_1 = \sum_i t_i (t_i - 1)/2 \quad n_2 = \sum_j u_j (u_j - 1)/2 \\ n_c &= \text{\# pares concordantes} \quad n_d = \text{\# pares discordantes} \\ t_i &= \text{\# valores empatados del grupo } i \text{ de x } u_j = \text{\# valores empatados del grupo } j \text{ de y} \end{split}$$

- Test no paramétrico basado en rangos (estadísticas de orden)
- Mide la correlación de rangos
- Asume que la variable categóriça tiene ordinalidad
- \circ Costo computacional orden $_{n^2}$

Kruskall-Wallis / Información Mutua

Coeficiente de Kruskall-Wallis

$$H_k = rac{n-1}{n} \sum_{i=1}^C rac{n_i [ar{R}_i - 0.5(n+1)]^2}{(n^2-1)/12}$$
 $ar{R}_i = ext{promedio de los } n_i ext{ rangos de la clase } i$

- Test no paramétrico, equivalente a ANOVA, pero sobre los datos rankeados.
- \circ Observación: Si $X \sim \mathcal{U}(\{1,2,\ldots,n\}) \Rightarrow \mathbb{E}[X] = 0.5(n+1), \ \mathbb{V}(X) = (n^2-1)/12$
- Criterio de Información mutua:
 - Se define de forma enteramente análoga al caso Numérica-Numérica

Categórica - Categórica

Test Chi-cuadrado

Test de Chi-Cuadrado (test de independencia de Pearson):

$$\chi = \sum_{i,j} rac{O_{ij} - E_{ij}}{E_{ij}}$$

donde O_{ij} son la cantidad de observaciones pertenecientes a las categorías i, j de cada variable, y E_{ij} es el valor esperado observado si las variables fueran independientes.

- o Se usa para rechazar la H0 que las variables son independientes. o $\chi \sim \chi^2_{r-1k,-1}$, r y k son la cantidad de factores de las variables de entrada y salida respectivamente.
- Criterio de Información mutua

Categórica - Numérica

Es el caso menos frecuente, pero si ocurriera se puede tratar con los mismos criterios que Numérica categórica con los roles intercambiados.

Comentarios finales

- Ventajas:
 - Son simples y suelen ser rápidos de computar,
- Desventajas:
 - Propensos a la sobre selección de variables,
 - Puede haber desconexión entre lo que el test reconoce como importante y lo que necesita el modelo.

Bibliografía

- "Python Machine Learning Cookbook, practical solutions from preprocessing to deep learning", Albon, Cris. O'Reilly Media, Inc., 2018.
- "Feature Engineering and Selection, A Practical Approach for Predictive Models", Max Khun and Kjell Johnson. CRC Press, 2020.
- "Measures of Association How to Choose?" Harry Khamis, PhD. Journal of Diagnostic Medical Sonography May/June 2008 VOL. 24, NO. 3
 - (https://journals.sagepub.com/doi/pdf/10.1177/8756479308317006)
- "The Kendall Rank CorrelationCoefficient", Hervé Abdi
 (https://personal.utdallas.edu/~herve/Abdi-KendallCorrelation2007-pretty.pdf)
- W. H. Kruskal and W. A. Wallis, "Use of ranks in one-criterion variance analysis," Journal of the American Statistical Association, vol. 47, no.260, pp. 583–621, 1952.