

AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Previously presented): An optical compensating film comprising an adhesive layer having adhesive property on both sides and formed by coating the adhesive onto a stretched norbornene-based resin film,

wherein the adhesive strength between the adhesive layer and the stretched norbornene-based resin film is not smaller than 10 N/20 mm,

and wherein the adhesive is an acrylic adhesive and the adhesive layer is disposed directly on the norbornene-based resin film.

2. (Original): The optical compensating film according to claim 1, wherein the norbornene-based resin film is subjected to a surface treatment and the adhesive layer is provided thereon.

3. (Original): The optical compensating film according to claim 2, wherein the surface treatment is a corona discharge treatment.

4. (Original): The optical compensating film according to claim 3, wherein in the corona discharge treatment, the discharge frequency is in the range from 50 Hz to 500 kHz and the discharge amount is in the range from 0.001 kV · A · min/m² to 5 kV · A · min/m².

5. (Canceled).

6. (Original): The optical compensating film according to claim 1, wherein the thickness of the stretched norbornene-based resin film is in the range from 20 µm to 200 µm.

7. (Previously presented): The optical compensating film according to claim 1, wherein the stretched norbornene-based resin film has been stretched by a stretching ratio in the range of from 1.01 to 10 times the original length.

8. (Previously presented): A polarizing plate comprising the optical compensating film of claim 1, wherein the optical compensating film is adhered to the polarizing plate via the adhesive layer.

9. (Currently amended): A liquid crystal display comprising the optical compensating film of claim 1 and a polarizing plate, wherein the polarizing plate is adhered to the optical compensating film via the adhesive layer.

10. (Previously presented): A method for producing an optical compensating film formed by coating an adhesive onto a stretched norbornene-based resin film, the method comprising subjecting the stretched norbornene-based resin film to a surface treatment and coating an acrylic adhesive having adhesive property on both sides directly onto the surface-treated stretched norbornene-based resin film, and setting the adhesive strength between the adhesive layer and the stretched norbornene-based resin film to be 10 N/20 mm or more.

11. (Original): The method for producing an optical compensating film according to claim 10, wherein the surface treatment is a corona discharge treatment.

12. (Cancel)

13. (Original): The method for producing an optical compensating film according to claim 10, wherein the thickness of the stretched norbornene-based resin film is in the range from 20 μm to 200 μm .

14. (Previously presented): The method for producing an optical compensating film according to claim 10, wherein the stretched norbornene-based resin film has been stretched by a stretching ratio of from 1.01 times to 10 times the original length.

15-20. (Canceled)