## 2- Formules de Bresse

Soit (G, xyz) le repère mobil, orthonormé, de référence lié à la section (S).  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$ : sont les unitaires portées par les axes de ce repère.

2-1-Déplacement élémentaire de la section (S') par rapport à (S)

\* Effort Normal: N

Translation de vecteur :  $\frac{N}{ES} \cdot \vec{i} dx$ 

\* Efforts Tranchants : Ty, Tz

Translation de vecteur :  $(\frac{T_y}{GS_r} \cdot \vec{j} + \frac{T_z}{GS_r} \cdot \vec{k}).dx$ 

\* Moments de flexion : My, Mz

Rotation autour de G',centre de gravité de (S') de vecteur :

$$(\frac{M_y}{EI_y} \cdot \vec{j} + \frac{M_z}{EI_z} \cdot \vec{k}).dx$$

\* Moment de torsion : Mt

Rotation autour du centre de torsion C', de vecteur

$$\frac{M_t}{GJ} \cdot \vec{i}.dx$$

## 2-2- Expression des formules de Bresse pour des poutres à plan moyen chargées dans leur plan moyen (cas des poutres droites)

Soit  $G_0G_1$  la fibre moyenne de la poutre dans l'état initial, et  $G_0'G_1'$  la fibre moyenne de la poutre déformée. La courbe  $G_0'G_1'$  est appelée ligne élastique ou déformée de la poutre.



Connaissant le déplacement  $(u_0,v_0,\omega_0)$  de la section  $S_0$  de centre de gravité  $G_0$ , on peut calculer le déplacement  $(u,v,\omega)$  d'une section quelconque (S) de centre de gravité G, sous l'effet des sollicitations.

$$\begin{split} \mathbf{U}_{(x)} &= \mathbf{U}_0 + \int\limits_{x_0}^x \frac{\mathbf{N}}{\mathbf{E}\mathbf{S}} d\xi \\ \mathbf{V}_{(x)} &= \mathbf{V}_0 + \boldsymbol{\omega}_0 (\mathbf{x} - \mathbf{x}_0) + \int\limits_{x_0}^x \frac{\mathbf{M}_z (\mathbf{x} - \xi)}{\mathbf{E}\mathbf{I}_z} d\xi - \int\limits_{x_0}^x \frac{\mathbf{T}}{\mathbf{G}\mathbf{S}_r} d\xi \\ \boldsymbol{\omega}_{(x)} &= \boldsymbol{\omega}_0 + \int\limits_{x_0}^x \frac{\mathbf{M}_z}{\mathbf{E}\mathbf{I}_z} d\xi \end{split}$$

x<sub>0</sub>: abscisse du point G<sub>0</sub>

x : celle du point G, où on cherche le déplacement

 $\xi$ : une abscisse variant de  $x_0$  à x

## REMARQUES:

a) Les formules peuvent se généraliser au cas des poutres courbes ou gauches de faibles courbures.

b) cas pratique, Ty=0 et x0=0, et on calcule  $(u,v,\omega)$  de l'extrémité de la poutre



$$U_{1} = U_{0} + \int_{0}^{L} \frac{N}{ES} dx$$

$$V_{1} = V_{0} + \omega_{0}L + \int_{0}^{L} \frac{M_{z}(L - x)}{EI_{z}} dx$$

$$\omega_{1} = \omega_{0} + \int_{0}^{L} \frac{M_{z}}{EI_{z}} dx$$

c) rotations aux extrémités d'une poutre droite



$$\begin{split} \omega_{_0} &= \frac{V_{_1} - V_{_0}}{L} - \int\limits_{_0}^L (1 - \frac{x}{L}) \cdot \frac{M_{_z}}{EI_{_z}} \cdot dx \\ \omega_{_1} &= \frac{V_{_1} - V_{_0}}{L} + \int\limits_{_0}^L (\frac{x}{L}) \cdot \frac{M_{_z}}{EI_{_z}} \cdot dx \end{split}$$