N compartments, within each a reaction (e.g. glycosylation) takes place $A_i \rightarrow B_i$ B: is carried out of compactment i at rate ki, providing some for Aix, laport flux to giver, output pass kn Bu to be determined.

$$dA_1 = R_0 - M_1 A_1$$
 ... $dA_2 = R_{1-1} B_{1-1} - M_2 A_3$
 $dB_1 = M_1 A_1 - R_1 B_1$... $dB_2 = M_2 A_3 - M_3 A_4$
 $dB_4 = M_1 A_1 - R_2 B_1$... $dB_4 = M_1 A_2 - M_2 B_3$
 $dB_4 = M_1 A_1 - R_2 B_1$... $dB_4 = M_2 A_3 - M_3 A_4$
 $dB_4 = M_1 A_1 - R_2 B_1$... $dB_4 = M_1 A_2 - M_2 B_3$
 $dB_4 = M_1 A_1 - R_2 B_1$... $dB_4 = M_1 A_2 - M_2 B_3$
 $dB_4 = M_1 A_1 - R_2 B_1$... $dB_4 = M_1 A_2 - M_2 B_3$
 $dB_4 = M_1 A_1 - R_2 B_1$... $dB_4 = M_1 A_2 - M_2 B_3$

In matrix form, writing V = (A, B, , A, B, , ..., AN, BN), dV = CV + (ko, 0, ... 0)

There $M_1 - k_1$ $k_{i-1} - M_i$ $M_i - k_i$

& has 2N eigenvalues -M1, -K1, ---, -MN, -KN => exponential relaxation to steady state.

Steely state: $A_1 = h_0$, $B_1 = m_1 A_1 = h_0$, $A_2 = h_1 B_1 = h_0$, $B_2 = m_2 A_2 = k_0 - m_1$ So No= Ro (Mi, Ini, ..., MN, NN) is ultimate state.

Alternatively dy = NR, were N is the stoichiometric matrix VER is vector of concentrations

> K E R 2NA1 = (Ko, M, A., M, B., ..., M: A:, N: B:, ..., MN AN, KN BN) is vector of reaction ontes and N is 2N x 2N+1

$$\frac{d}{dt} \begin{bmatrix} A_1 \\ B_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_8 \\ A_8$$

The flux vector $\mathbf{k} = (1, 1, ..., 1)^T$ satisfies $\mathbf{N} \mathbf{k} = 0$

Stochastic model State vector is (1/4, 1/6, , ..., 1/4; 1/6; , ..., 1/4, 1/6) = 1

There are 2N+1 possible transitions at my time, if we allow reactions to be reversible. Set $k_0 = 0$ but around n = (1, 0, 0, ---, 0) at t = 0. Thus

Here the Mi, hi can be treated

as transition probabilities between states.

Let $\Pi_{j}(t)$ be the fraction of realisations in state j, $1 \le j \le 2N+1$ $d\Pi_{j} = \sum_{n \ne j} (k_{j,n} \Pi_{n} - k_{n,j} \Pi_{j})$ or $d\Pi_{j} = k_{j} \Pi_{j}$

211+1

The stationary state is
$$T_2 = (0, -..., 0, 1)$$

One are simulate the evolution to their state from the initial audition $\Pi_0 = (1, 0, 0, ..., 0)$

Suppose the near first passage time to the find state has probability density f(t). Then MFTT = $\int_{0}^{\infty} f(t) dt$. The probability of not reaching the absorbing state at time t is $1-T_{2N+1}=\sum_{i=1}^{2N}T_i$, so the probability of making a first passage to the absorbing state is $1-\sum_{i=1}^{2N}T_i$. Unice has density $-\sum_{i=1}^{2N}dT_i=f(t)$. So MFPT = $\int_{0}^{\infty}-t\sum_{i=1}^{2N}dT_i$ and $dT_i=\widetilde{X}\widetilde{T}$ where \widetilde{X} is K minus its find column and final σV , and $\widetilde{T}=(T_1,\dots,T_{2N})$.

 $\widehat{K} \text{ is invertible, so } \widehat{\Pi} = \widehat{K} \cdot d\widehat{\Pi} \text{. Integrate by parts to give } \widehat{dk}$ $MFPT = \left[-k \sum_{i=1}^{N} \widehat{\Pi}_{i}^{i} \right]^{\infty} + \int_{i=1}^{N} \widehat{L}\widehat{\Pi}_{i}^{i} dk \qquad \left(\widehat{\Pi}_{i}^{i} \rightarrow 0 \text{ as } k \rightarrow \infty \right)$ $= \int_{0}^{\infty} \sum_{i=1}^{N} \left[\widehat{K}_{i}^{i} d\widehat{\Pi}_{i}^{j} dk \right] = \left[\sum_{i=1}^{N} \left\{ \widehat{K}_{i}^{i} \widehat{\Pi}_{i}^{j} dk \right\} \right]_{0}^{\infty} \qquad \widehat{\Pi} = (1, 0, 0, ---, 0) = e_{i}$ $= -\sum_{i=1}^{N} \left\{ \widehat{K}_{i}^{i} e_{i} \right\}_{i}^{N}$

For a single unit: $\tilde{K} = \begin{bmatrix} -m_1^+ & m_1^- \\ m_1^+ & -m_1^- - k_1 \end{bmatrix}$, $\tilde{K} = \frac{1}{m_1^+ k_1} \begin{pmatrix} -m_1^- - k_1 & -m_1^+ \\ -m_1^+ & -m_1^+ \end{pmatrix}$ $\tilde{K} = \frac{1}{m_1^+ k_1} \begin{pmatrix} -m_1^- - k_1 \\ -m_1^+ \end{pmatrix}$ and $MFPT = \frac{m_1^+ + m_1^- + k_1}{m_1^+ k_1}$

So the MFPT $\approx k_1^{-1}if$ $M_1^+ \gg \{M_1^-, k_1\}$ (fast reaction, slow delivery)

but MFPT $\approx k_1^{-1}\left(\frac{M_1^+ + M_1^-}{M_1^+}\right)$ if $k_1 \ll \{M_1^+, M_1^-\}$ (slow reaction, fact delivery).