Generalized Distand Association

Hesen Peng Tianwei Yu

Draft: May 25, 2015

Given two random vectors X and Y, we are interested in testing their probablistic association given n pairs of independent and identically distributed random samples $\{(X_i, Y_i)\}_{i=1}^n$. [1] proposed Mean Distance Association (MeDiA), a set of probablistic association statistics as functions of observation distances. The theoretical foundation of MeDiA relies upon the result below:

Theorem 1. (from [1]) Denote the distance between two independent random samples from (X,Y) as d_{XY} , and the distance between two independent random samples from (\hat{X},\hat{Y}) as $d_{\hat{X}\hat{Y}}$. Then we have

$$E(d_{XY}) \le E(d_{\hat{X}\hat{Y}})$$

In this paper, we would like to expand the theory above to general functions on the observation graph. The generalized mean distance would encompass a number of existing methods, like mutual information. Besides, the generalized mean distance naturally leads to the construction of several other probabilistic association statistics.

Theorem 2. (univariate g-transformation) Using the same notation, denote a monotonically increasing continuously differentiable function $g(\cdot)$. Denote the g-transformed distance as

$$\begin{array}{lcl} \tilde{d}_{XY} & = & g(d_{XY}) \\ \tilde{d}_{\hat{X}\hat{Y}} & = & g(d_{\hat{X}\hat{Y}}) \end{array}$$

Then we have:

$$E(\tilde{d}_{XY}) \leq E(\tilde{d}_{\hat{X}\hat{Y}})$$

and the average of the transformed distances \tilde{d} follow asymptotic normal distribution.

Proof. The proof follows directly from delta method. More specifically, for given $d_{\hat{X}\hat{Y}}$ and d_{XY} , there exists d'_{XY} , such that:

$$\tilde{d}_{\hat{X}\hat{Y}} = g(d_{\hat{X}\hat{Y}})
= g[(d_{\hat{X}\hat{Y}} - d_{XY}) + d_{XY}]
= g(d_{XY}) + g'(d'_{XY})(d'_{\hat{X}\hat{Y}} - d_{XY})
= \tilde{d}_{XY} + g'(d'_{XY})(d_{\hat{X}\hat{Y}} - d_{XY})$$

Following Theorem 1, taking expectation on both sides, and realizing that $g'(\cdot) \geq 0$, we conclude the proof.

Following Theorem 2, we can see that distance based mutual information statistic $MI = \sum \log(d_{ij})$ actually falls into the generalized mean distance family.

However, it would be helpful to realize that Theorem 2 has not yet encompass functions on the observation graph that give different weights depending on the value. We would make this up with the results below:

Theorem 3. (Multivariate f-transformation) Using the same notation as above, n-variate function f is continuous and monotonically increasing on every dimension of input. Define

$$\bar{d}_{XY} = g(d_{i1}^{XY}, \dots, d_{in}^{XY})$$

 $\bar{d}_{\hat{X}\hat{Y}} = g(d_{i1}^{\hat{X}\hat{Y}}, \dots, d_{in}^{\hat{X}\hat{Y}})$

Then we have:

$$E(\bar{d}_{XY}) \le E(\bar{d}_{\hat{X}\hat{Y}})$$

References

[1] Hesen Peng, Junjie Ma, Yun Bai, Jianwei Lu, and Tianwei Yu. Media: Mean distance association and its applications in nonlinear gene set analysis. *PLoS ONE*, 10(4):e0124620, 04 2015.