FEUILLE D'EXERCICE 3

Exercice 1 – Récurrence sur les formules

1.

$$simpl(x \land y \Rightarrow z) = \neg simpl(x \land y) \lor z$$
$$= \neg(\neg(\neg x \lor \neg y)) \lor z$$

2.

$$\begin{aligned} ht(P) &= 0 & \text{si P atomique} \\ ht(\neg(P)) &= 1 + ht(P) \\ ht(P \circ Q) &= 1 + \max(ht(P), ht(Q)) & \circ \in \{\lor, \land, \Rightarrow\} \end{aligned}$$

- 3. Montrons que pour toutes formules P, simpl(P) ne contient pas le symbole \Rightarrow : $\varphi(n)$: Pour toute formule (P), Si ht(P) = n alors simpl(P) ne contine pas \Rightarrow
 - cas de bases : $\varphi(0)$: Si ht(P) = 0 simpl(P) ne rajoute jamais le symbole ' \Rightarrow '
 - cas de récursif : Supossons $\varphi(n)$ vrai.

Prenons P de hauteur n+1:

$$3 cas : C = \{P \land Q, P \lor Q, P \Rightarrow Q\}$$

Si $P' \in C$ d'après $\varphi(n)$ simpl(P) et simpl(Q) ne contient pas de symbole ' \Rightarrow ' (car P et Q sont de hauteur n) or simpl(P') ne rajout jamais le symbole ' \Rightarrow ' donc P' ne contient pas le symbole ' \Rightarrow '

4. Montrond par récurrence structurelle que simpl(P) ne contient pas de \Rightarrow :

 $simple(\top) : a \vee \neg a$

 $simple(\bot) : \neg(a \lor \neg a)$

simpl(p) : p

Supposons la propritété vrai pour P_1 et P_2

 $simpl(\neg P_1) : \neg(simpl(P_1))$ vrai car $simpl(P_1)$ ne contient pas de \Rightarrow .

 $simpl(P_1 \wedge P_2) : \neg(\neg simpl(P_1) \vee \neg simpl(P_2))$ vrai par H.P

 $simpl(P_1 \vee P_2) : simpl(P_1) \vee simpl(P_2)$ vrai par H.P

 $simpl(P_1 \Rightarrow P_2) : \neg simpl(P_1) \lor simpl(P_2)$ vrai par H.P

5. Voir question 3.

Exercice 2 – Structure arborescente des formules, définition récursive.

$$a := \neg P \Rightarrow Q \vee \neg (P \vee R)$$

1.
$$(\neg P) \Rightarrow (Q \vee \neg (P \vee R))$$

2. forme arborescente :

- 3. A est vrai quand : P est vrai ou quand Q est vrai ou P et R Faux.
- 4. $P \wedge \neg Q$
- 5. (a) neg(A) est vrai quand : P est faut et Q est faut et P ou R est vrai.

(b)

$$\begin{split} neg(\top) &= \bot \\ neg(\bot) &= \top \\ neg(p) &= \neg p \\ neg(\neg P) &= P \\ neg(P \land Q) &= neg(P) \lor neg(Q) \\ neg(P \lor Q) &= neg(P) \land neg(Q) \\ neg(P \Rightarrow Q) &= P \land neg(Q) \end{split}$$

p une variable propositionnelle

(c) évident
$$(\neg(P \land Q) \Leftrightarrow \neg P \lor \neg Q)$$
 pareil pour $\lor \neg(P \Rightarrow Q) \Leftrightarrow (P \land \neg Q)$

Exercice 3 – Sous formules

1.
$$\neg(p \lor (q \land r)) \Rightarrow (p \land q)$$

 $\{p \land q, q \land r, p \lor (q \land r), \neg(p \lor (q \land r)), \neg(p \lor (q \land r)) \Rightarrow (p \land q), p, q, r\}$
2.

$$sf(\top) = \{\}$$

$$sf(\bot) = \{\}$$

$$sf(p) = \{p\}$$

$$sf(\neg P) = sf(P) \cup \{\neg P\}$$

$$sf(P \land Q) = sf(P) \cup sf(Q) \cup \{P \land Q\}$$

$$sf(P \lor Q) = sf(P) \cup sf(Q) \cup \{P \lor Q\}$$

$$sf(P \Rightarrow Q) = sf(P) \cup sf(Q) \cup \{P \Rightarrow Q\}$$

3.

Exercice 4 -

Exercice 5 -

Exercice 6 – Modèles de relation, examen session 2 2014/15

Exercice 7 – 1. $\exists x_1, \dots, x_n, \forall x, x = x_1 \lor \dots \lor x = x_n$ au plus n-1 éléments 2. $B_n = \forall x_1, \dots, x_n, \exists x, x \neq x_1 \land \dots \land x \neq x_n$ au plus n-1 éléments

Exercice 8 – La théorie des entiers de Peano :

$$\begin{split} I &\models \begin{cases} \forall x \neg 0 = S(x) \\ \forall x, y, S(x) = S(y) \Rightarrow x = y \end{cases} \\ 1. \ a_n &= Val_I(S^n(0)) \\ \mathfrak{D} &= \{a_n | n \in \mathbb{N}\} \\ a_n &= a_p, n 0 \ x \mapsto Val(S^{p-1}(0)) \text{ impossible} \\ -n &> 0 : \end{split}$$

$$Val(S^n(0)) &= Val(S^p(0)) \\ Val(S^{n-1}(0)) &= Val(S^{p-1}(0)) \\ Val(S(S^{n-1}(0))) &= Val(S(S^{p-1}(0))) \\ Val(S^{n-1}(0)) &= Val(S^{p-1}(0)) \\ Val(S^{n-1}(0)) &= Val(S^{p-1}(0)) \end{cases}$$

2.
$$\mathfrak{D} = \{0\} S(x) = 0$$

3.
$$\mathfrak{D} = \{0, 1\} S(x) = 1$$

4.

Exercice 9 -

Exercice 10 – Logique monadique, examen 2017/18

1.
$$\tau(1) = (F, F), \tau(2) = (V, F), \tau(3) = (F, V), \tau(4) = (V, F), \tau(5) = (F, F), \tau(6) = (V, V)$$

- 2. Il peut y avoir 4 valeurs différentes dans l'interprétation N dans une interprétation quelqu
conque il y a maximum 4 et minimum 1 valeurs différentes
- 3. $\operatorname{val}(i,A) = \operatorname{val}(i',A)$ Supposon vra
i $A := \operatorname{val}(i,A) = \operatorname{val}(i',A)$

$$val(i, \neg A) = neg(val(i, A))$$
$$= neg(val(i', A))$$
$$= val(i', A)$$

__

$$\begin{aligned} val(i,A \wedge B) &= et(val(i,A),val(i,B)) \\ &= et(val(i',A),val(i',B)) \\ &= val(i',A \wedge B) \end{aligned}$$

pareil pour \vee mais avec la fonction ou()

 $val(i, P(X)) = x \mapsto i(x) \models P(x)$ $x \mapsto i'(x) \models P(x)$

_

$$\begin{split} I, i \vDash \forall x, A \Leftrightarrow \forall d \in \mathcal{D}, I, i + \{x \mapsto d\} \vDash A \\ \Leftrightarrow \forall d \in \mathcal{D}, I, i' + \{x \mapsto d\} \vDash A \\ \Leftrightarrow I, i' \vDash \forall x, A \end{split} \qquad \text{par H.P et } i + \{x \mapsto d\} \cong i' + \{x \mapsto d\} \end{split}$$

4. (a)