Exact Solutions for the Full Problem with Force Control and with Flow Control

The Equations: Force Control

Forward Problem

$$\partial_t \rho = \nabla^2 \rho - \nabla \cdot (\rho \mathbf{w}_{Flow}) + \nabla \cdot (\rho \nabla V_{ext}) + w_{Force} + f$$

$$\rho = \rho_0 \quad \text{at} \quad t = 0.$$

$$\frac{\partial \rho}{\partial n} - \rho \mathbf{w}_{Flow} \cdot \mathbf{n} + \rho \frac{\partial V_{ext}}{\partial n} = 0$$

Dirichlet

$$\rho = 0$$

Adjoint Equation

$$\partial_t p = -\rho + \hat{\rho} - \nabla p \cdot \mathbf{w}_{Flow} - \nabla^2 p + \nabla p \cdot \nabla V_{ext}$$
$$p(r, T) = 0$$

$$\frac{\partial p}{\partial n} = 0,$$

Dirichlet

$$p = 0$$
.

Gradient Equation

$$w_{Force} = -\frac{1}{\beta}p$$

Exact Solutions: Force Control

(+++ Just a very small adaptation from John's notes!+++)

Dirichlet BCs

We choose:

$$\rho = 2e^t \cos(\frac{\pi x}{2})$$

$$p = (e^T - e^t) \cos(\frac{\pi x}{2})$$

$$V_{ext} = \frac{1}{2} \cos(\frac{\pi x}{2})$$

The expression for V_{ext} is chosen such that $V_{ext} = \frac{1}{2}V_{extOld}$, where $V_{extOld} = \cos(\frac{\pi x}{2})$ is taken from John's notes. Then a valid choice of \mathbf{w}_{Flow} is $\frac{1}{2}\nabla V_{extOld}$:

$$\mathbf{w}_{Flow} = -\frac{1}{2}\nabla\cos(\frac{\pi x}{2}) = \frac{\pi}{4}\sin(\frac{\pi x}{2}).$$

Note that it can be verified that $\mathbf{w}_{Flow} - \nabla V_{ext} = -\nabla V_{extOld}$. Therefore, the expressions for w_{Force} , f and $\hat{\rho}$ are the same as in John's notes:

$$w_{Force} = -\frac{1}{\beta} (e^T - e^t) \cos(\frac{\pi x}{2}),$$

which follows from the gradient equation and the choice of p. Also, from computations and choice of ρ , p and V_{ext} , we get:

$$f = \left((2 + \frac{\pi^2}{2} - \frac{1}{\beta})e^t + \frac{1}{\beta}e^T \right) \cos(\frac{\pi x}{2}) - \frac{\pi^2}{2}e^t \left(\sin^2(\frac{\pi x}{2}) - \cos^2(\frac{\pi x}{2}) \right)$$
$$\hat{\rho} = e^t \cos(\frac{\pi x}{2}) - \frac{\pi^2}{4}(e^T - e^t) \cos(\frac{\pi x}{2}) - \frac{\pi^2}{4}(e^T - e^t) \sin^2(\frac{\pi x}{2})$$

Neumann BCs

We choose:

$$\rho = 2e^t \cos(\pi x)$$
$$p = (e^T - e^t) \cos(\pi x)$$
$$V_{ext} = \frac{1}{2} \cos(\pi x)$$

The expression for V_{ext} is again chosen such that $V_{ext} = \frac{1}{2}V_{extOld}$, where $V_{extOld} = \cos(\pi x)$ is taken from John's notes. Then a valid choice of \mathbf{w}_{Flow} is $\frac{1}{2}\nabla V_{extOld}$:

$$\mathbf{w}_{Flow} = -\frac{1}{2}\nabla\cos(\pi x) = \frac{\pi}{2}\sin(\pi x).$$

Note that it can be verified that $\mathbf{w}_{Flow} - \nabla V_{ext} = -\nabla V_{extOld}$. Therefore, the expressions for w_{Force} , f and $\hat{\rho}$ are again the same as in John's notes:

$$w_{Force} = -\frac{1}{\beta}(e^T - e^t)\cos(\pi x),$$

which follows from the gradient equation and the choice of p. Also, from computations and choice of ρ, p and V_{ext} , we get:

$$f = \left((2 + 2\pi^2 - \frac{1}{\beta})e^t + \frac{1}{\beta}e^T \right) \cos(\pi x) - 2\pi^2 e^t \left(\sin^2(\pi x) - \cos^2(\pi x) \right)$$
$$\hat{\rho} = e^t \cos(\pi x) - \pi^2 (e^T - e^t) \cos(\pi x) - \pi^2 (e^T - e^t) \sin^2(\pi x)$$

The Equations: Flow Control

Forward Problem

$$\partial_t \rho = \nabla^2 \rho - \nabla \cdot (\rho \mathbf{w}_{Flow}) + \nabla \cdot (\rho \nabla V_{ext}) + w_{Force} + f$$

 $\rho = \rho_0 \text{ at } t = 0.$

No-Flux
$$\frac{\partial \rho}{\partial n} - \rho \mathbf{w}_{Flow} \cdot \mathbf{n} + \rho \frac{\partial V_{ext}}{\partial n} = 0$$
 Dirichlet
$$\rho = 0$$

Adjoint Equation

$$\partial_t p = -\rho + \hat{\rho} - \nabla p \cdot \mathbf{w}_{Flow} - \nabla^2 p + \nabla p \cdot \nabla V_{ext}$$
$$p(r, T) = 0$$

No-Flux
$$\frac{\partial p}{\partial n} = 0,$$
 Dirichlet
$$p = 0.$$

Gradient Equation

$$\mathbf{w}_{Flow} = -\frac{1}{\beta}\rho\nabla p$$

Exact Solutions: Flow Control

(+++ Just a very small adaptation from John's notes!+++)

Dirichlet BCs

We choose:

$$\rho = 2e^t \cos(\frac{\pi x}{2})$$
$$p = (e^T - e^t) \cos(\frac{\pi x}{2})$$

Then, from the gradient equation we find that:

$$\mathbf{w}_{Flow} = \frac{\pi}{\beta} e^t (e^T - e^t) \cos(\frac{\pi x}{2}) \sin(\frac{\pi x}{2}).$$

Then we need to solve the forward equation using these quantities. That is:

$$\partial_t \rho - \nabla^2 \rho + \nabla \cdot (\rho \mathbf{w}_{Flow}) = \nabla \cdot (\rho \nabla V_{ext}) + w_{Force} + f.$$

One choice is to set:

$$\nabla \cdot (\rho \mathbf{w}_{Flow}) = \nabla \cdot (\rho \nabla V_{ext}),$$

which implies that

$$\mathbf{w}_{Flow} = \nabla V_{ext}$$
$$= \frac{\pi}{\beta} e^t (e^T - e^t) \cos(\frac{\pi x}{2}) \sin(\frac{\pi x}{2}).$$

Then, integrating this, we find V_{ext} :

$$V_{ext} = \int_{\Omega} \frac{\pi}{\beta} e^t (e^T - e^t) \cos(\frac{\pi x}{2}) \sin(\frac{\pi x}{2}) dx$$
$$= \frac{1}{\beta} e^t (e^T - e^t) \sin^2(\frac{\pi x}{2}).$$

Since we know that $\nabla \cdot (\rho \mathbf{w}_{Flow}) = \nabla \cdot (\rho \nabla V_{ext})$, the remaining terms to balance are:

$$\partial_t \rho - \nabla^2 \rho = w_{Force} + f.$$

Then

$$w_{Force} + f = (2 + \frac{\pi^2}{2})e^t \cos(\frac{\pi x}{2}),$$

where $w_{Force} + f$ is one force term. Now $\hat{\rho}$ can be found using the adjoint equation:

$$\partial_t p = -\rho + \hat{\rho} - \nabla p \cdot \mathbf{w}_{Flow} - \nabla^2 p + \nabla p \cdot \nabla V_{ext},$$

which reduces to:

$$\partial_t p = \rho - \hat{\rho} - \nabla^2 p,$$

due to the choices of \mathbf{w}_{Flow} and V_{ext} , which gives:

$$\hat{\rho} = \partial_t p + \rho + \nabla^2 p$$

$$= (1 - \frac{\pi^2}{4})e^t \cos(\frac{\pi x}{2}) + \frac{\pi^2}{4}e^t \cos(\frac{\pi x}{2}).$$

Neumann BCs

Choose scaling factors $c\beta$ in \mathbf{w}_{Flow} to damp the advection dominance. We choose:

$$\rho = c^{1/2} \beta^{1/2} 2e^t \cos(\pi x)$$
$$p = c^{1/2} \beta^{1/2} (e^T - e^t) \cos(\pi x).$$

Then, from the gradient equation, we get:

$$\mathbf{w}_{Flow} = c\beta \frac{2\pi}{\beta} e^t (e^T - e^t) \cos(\pi x) \sin(\pi x)$$
$$= c2\pi e^t (e^T - e^t) \cos(\pi x) \sin(\pi x),$$

where it can be noted that β is cancelled out. Again the choice is to set:

$$\nabla \cdot (\rho \mathbf{w}_{Flow}) = \nabla \cdot (\rho \nabla V_{ext}),$$

which implies that

$$\mathbf{w}_{Flow} = \nabla V_{ext}$$
$$= c2\pi e^t (e^T - e^t) \cos(\pi x) \sin(\pi x).$$

Then, integrating this, we find V_{ext} :

$$V_{ext} = \int_{\Omega} c2\pi e^t (e^T - e^t) \cos(\pi x) \sin(\pi x) dx$$
$$= ce^t (e^T - e^t) \sin^2(\pi x).$$

The remaining terms to balance in the forward equation are again:

$$\partial_t \rho - \nabla^2 \rho = w_{Force} + f.$$

This is:

$$w_{Force} + f = c^{1/2} \beta^{1/2} 2e^t \cos(\pi x) + c^{1/2} \beta^{1/2} 2\pi^2 \cos(\pi x),$$

where $w_{Force} + f$ is again one force term. Then, from the adjoint equation, as before, we can derive $\hat{\rho}$:

$$\hat{\rho} = \partial_t p + \rho + \nabla^2 p$$

= $c^{1/2} \beta^{1/2} (1 - \pi^2) e^t \cos(\pi x) + c^{1/2} \beta^{1/2} \pi^2 e^T \cos(\pi x).$