Chapter II: MATRIX ALGEBRA

1 Matrix Operations

Notation and Definition

Let A be an $m \times n$ matrix, that is A has m rows and n columns.

• The columns of A are vectors in \mathbb{R}^m and we often denote them by $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ so that

$$A = \left[\begin{array}{cccc} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{array} \right]$$

• The entry in ith row and jth column us denoted by a_{ij} and is called (i,j)-entry of A. So we have

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{2,1} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \cdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \cdots & \cdots & \vdots \\ a_{m1} & a_{i2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

- The main diagonal entries of A are $a_{11}, a_{22}, a_{33} \dots$
- The matrix A is a diagonal matrix if A is a square $n \times n$ matrix whose nondiagonal entries are zero.

Sums and Scalar Multiples

Definition 1.1 (Sum of matrices). Let A and B be both $m \times n$ matrices. Suppose $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ and $B = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{bmatrix}$. Then the **sum** A + B is defined by

$$A + B = \left[\begin{array}{cccc} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{array} \right] + \left[\begin{array}{cccc} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{array} \right] = \left[\begin{array}{cccc} (\vec{a}_1 + \vec{b}_1) & (\vec{a}_2 + \vec{b}_2) & \cdots & (\vec{a}_n + \vec{b}_n) \end{array} \right]$$

Alternatively, if C = A + B then C is again a $m \times n$ matrix with $c_{ij} = a_{ij} + b_{ij}$.

Definition 1.2 (Scalar multiples). Let r be a scalar $(c \in \mathbb{R})$ and let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix. Then, the scalar multiple rA is defined by

$$rA = r \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix} = \begin{bmatrix} r\vec{a}_1 & r\vec{a}_2 & \cdots & r\vec{a}_n \end{bmatrix}.$$

Example 1.3.

(a) Let
$$A = \begin{bmatrix} 0 & 2 & -1 \\ -4 & -5 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & 2 & -2 \\ -2 & -2 & -4 \end{bmatrix}$. Then
$$A + B = \begin{bmatrix} 0 & 2 & -1 \\ -4 & -5 & 3 \end{bmatrix} + \begin{bmatrix} -3 & 2 & -2 \\ -2 & -2 & -4 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -3 \\ -6 & -7 & -1 \end{bmatrix}.$$

(b) Let
$$r = -2$$
 and $A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 2 & 4 \end{bmatrix}$. Then

$$-2A = -2 \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ -6 & 2 \\ -4 & -8 \end{bmatrix}.$$

The sum of matrices have similar properties as the sum of vectors as the following shows.

Proposition 1.4. Let A, B and C be matrices of the same size, and let r and s be scalars. Denote by 0 the matrix whose entries are all zero (the zero matrix). Then

(a)
$$A + B = B + A$$
 (commutative)

(b)
$$(A+B)+c=A+(B+C)$$
 (associative)

(c)
$$A + 0 = 0 + A = A$$

(d)
$$r(A+B) = rA + rB$$
 (distributive)

(e)
$$(r+s)A = rA + sA$$
 (distributive)

(f)
$$r(sA) = (rs)A$$
 (associative)

Matrix Multiplication

Definition 1.5 (Composition of linear transformations). Let $T: \mathbb{R}^n \to \mathbb{R}^m$ and $U: \mathbb{R}^p \to \mathbb{R}^n$ be a linear transformations with standard matrix $A \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ and $B = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_p \end{bmatrix}$ respectively. The **composition** $T \circ U$ of T and U is given by

$$T \circ U : \mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$$

with $T \circ U(\vec{x}) = T(U(\vec{x}))$ for every vector \vec{x} in \mathbb{R}^p .

Note

• Let
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$
 be a vector in \mathbb{R}^p . We have
$$T \circ U(\vec{x}) = T(U(\vec{x})) = A(B\vec{x}) \quad \text{note that } B\vec{x} \text{ is a vector in } \mathbb{R}^n$$

$$= A(x_1\vec{b}_1 + x_2\vec{x}_2 + \dots + x_p\vec{b}_p)$$

$$= Ax_1\vec{b}_1 + Ax_2\vec{x}_2 + \dots + Ax_p\vec{b}_p$$

$$= x_1A\vec{b}_1 + x_2A\vec{x}_2 + \dots + x_pA\vec{b}_p \quad \text{note that each } A\vec{b}_i \text{ is a vector in } \mathbb{R}^m$$

$$= \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \dots & A\vec{b}_p \end{bmatrix} \vec{x}$$
Hence, $T \circ U(\vec{x}) = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \dots & A\vec{b}_p \end{bmatrix} \vec{x}$

We define the product AB of matrices A and B from the definition of the composition of the corresponding linear transformations.

Definition 1.6 (Product of matrices). Let A be an $m \times n$ matrix, and if $B = \begin{bmatrix} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_p} \end{bmatrix}$ is an $n \times p$ matrix, the product AB is the $m \times p$ matrix defined by

$$AB = \left[\begin{array}{ccc} A\vec{b}_1 & A\vec{b}_2 & \cdots & A\vec{b}_p \end{array} \right]$$

Row-Column Rule

If A is an $m \times n$ matrix and if B is $n \times p$ matrix, then (i, j)-entry $(AB)_{ij}$ of the product AB is the sum of the products of corresponding entries from row i of A and row j of B. That is

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$$

Note:

• From the row-column rule, if $row_i(A)$ denote the *i*th row of the matrix A, then

$$row_i(AB) = row_i(A) \cdot B$$

• The product AB is defined only when the number of the columns of A is the same as the rows of B. If A is of size $m \times n$ and if B is of $n \times p$, then AB is an $m \times p$ matrix.

Example 1.7. Let
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 1 \\ 3 & 0 \end{bmatrix}$. Compute AB .

(a) By using Definition 1.6, we have $AB = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 \end{bmatrix}$, with

$$A\vec{b}_{1} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 11 \\ -3 \end{bmatrix}, \quad A\vec{b}_{2} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

So

$$AB = \left[\begin{array}{cc} 4 & 1 \\ 11 & -1 \\ -3 & -0 \end{array} \right]$$

(b) By using the Row-Column Rule, we have

$$AB = \begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} (1)(-2) + (2)(3) & (1)(1) + (2)(0) \\ (-1)(-2) + (3)(3) & (-1)(1) + (3)(0) \\ (0)(-2) + (-1)(3) & (0)(1) + (-1)(0) \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 11 & -1 \\ -3 & -0 \end{bmatrix}$$

Proposition 1.8. Let A be a $m \times n$ matrix, and let B and C be matrices of appropriate sizes so that the following sums and products are defined. Let r be a scalar and let I_n denote the identity matrix of size $n \times n$. Then

(a)
$$A(BC) = (AB)C$$
 (associative)

(b)
$$A(B+C) = AB + AC$$
 (left distributive)

(c)
$$(B+C)A = BA + CA$$
 (left distributive)

(d)
$$r(AB) = (rA)B = A(rB)$$

(e)
$$I_m A = I_n A$$
.

The following is a list of important differences between the properties of matrices and that of real numbers.

Remark 1.9.

- (a) In general $AB \neq BA$.
- (b) In general, AC = AB does not imply B = C. That is, the cancellation laws do not hold.
- (c) In general, AB = 0 does not imply that either A = 0 or B = 0.

Example 1.10.

(a) Let
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then
$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, BA = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

So $AB \neq BA$, and BA = 0 yet $A \neq 0$ and $B \neq 0$.

(b) Let
$$A = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 1 \\ 3 & 4 \end{bmatrix}$, and $C = \begin{bmatrix} -3 & -5 \\ 2 & 1 \end{bmatrix}$. Then
$$AB = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -21 & -21 \\ 7 & 7 \end{bmatrix}, AC = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -3 & 5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -21 & -21 \\ 7 & 7 \end{bmatrix}$$

We have AB = AC yet $B \neq C$.

Definition 1.11 (Powers of matrix). Let A be a $n \times n$ matrix and let k be a positive integer. We define A^k to be the kth power of A by

$$A^k = \underbrace{A \cdot A \cdots A}_{k \text{ times}}$$

We put $A^0 = I_n$ and $A^1 = A$

Example 1.12. Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
. Then

$$A^2 = AA = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}.$$

The Transpose of a Matrix

Definition 1.13 (Transpose of a matrix). Let A be an $m \times n$ matrix. The transpose A^T of A is the $n \times m$ matrix whose columns are formed from the corresponding rows of A. That is

$$(A^T)_{ij} = a_{ji}.$$

Example 1.14. Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$. Then

$$A^T = \left[\begin{array}{rr} 1 & 0 \\ -2 & 1 \\ 3 & 4 \end{array} \right]$$

Proposition 1.15. Let A and B be matrices whose sizes are appropriate so the following operations are defined. Let P be a scalar. Then

- (a) $(A^T)^T = A$
- (b) $(A+B)^T = A^T + B^T$
- (c) $(rA)^T = rA^T$
- (d) $(AB)^T = B^T A^T$. The transpose of a product of matrices equals the product of the transposes in the reverse order.

Note

Note that generally $(AB)^T \neq A^TB^T$. Most of the time the product A^TB^T is not even defined.