

Why

1

Definition

Let X be a set and let A be a finite set. We denote the set of all finite sequences (strings) in A by $\mathcal{S}(A)$. We read $\mathcal{S}(A)$ aloud as "the strings in A."

A code for X in A is a function from X to $\mathcal{S}(A)$. In this context, we refer to the finite set A as an alphabet. The length of an object (w.r.t to a code $c: X \to \mathcal{S}(A)$) is the length of the sequence c(x). We call a code nonsingular if it is injective.

Examples

Extensions

We can extend a code $c: X \to \mathcal{S}(A)$ to a code for $\mathcal{S}(X)$ in a naural way. The *extension* of c is the function $C: \mathcal{S}(X) \to \mathcal{S}(A)$ defined, for $\xi = (\xi_1, \dots, \xi_n) \in \mathcal{S}(X)$, by

$$\mathcal{S}(\xi) = (c(\xi_1), \dots, c(\xi_n)).$$

We call an code uniquely decodable if its extension is injective. In other words, given the code $C(\xi)$ for a sequence $\xi \in \mathcal{S}(X)$, we can recover ξ .

¹Future editions will include.

Prefix-free codes

A code $C: X \to \mathcal{A}$ is prefix-free if, for all $x \in X$, C(x) is not a prefix² of C(x') for all $x' \neq x \in X$. Prefix-free codes are nice because they are uniquely decodable. The converse, is not true.

Proposition 1. There exists a set X, alphabet A, and not prefix-free code $C: X \to A$ such that C is uniquely decodable.

Proof. Try $X = \{A, B\}$, $D = \{0, 1\}$ and C(A) = (0), C(B) = 01. Proof by induction on the length of the sequence, base case length 1 and length 2 sequences.³

Example...

²To be defined.

³Future editions will expand on this account.

