

Pendulo Gravítico

Determinação do período do pêndulo simples e aferição com o valor da Aceleração da Gravidade local g

Procedimento Experimental

Material

- Suporte do Pêndulo
- Massas de chumbo, linha inextensível e com massa desprezável
- Régua graduada, Cronómetro, fita métrica, transferidor, balança

Comece a sessão de laboratório por estimar o atraso e a precisão que obtém na medição do tempo com o cronómetro, tendo em conta o tempo de reacção do sistema nervoso. Para cada membro do Grupo e com uma régua graduada e a ajuda de um(a) colega obtenha 15 medidas da queda da régua e a partir da média e desvio padrão obtenha o seu tempo de reação e a incerteza. ¹

Ensaio	A - Distância	B - Distância	C - Distância		
#	de queda (cm)	de queda (cm)	de queda (cm)		
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
Média \overline{D} (m)					
Desvio padrão $\sigma_{\overline{D}}$ (m)					
Tempo de reação \bar{t} (s)					
Desvio padrão $\sigma_{\overline{t}}$ (s)					

$$^{1}\overline{t} = \sqrt{\frac{2\overline{D}}{g}} \text{ e } \sigma_{\overline{t}} = \sqrt{\frac{2}{g}} \cdot \frac{1}{2\sqrt{\overline{D}}} \cdot \sigma_{\overline{D}} = \overline{t} \cdot \frac{1}{2\overline{D}} \cdot \sigma_{\overline{D}}$$

Monte o sistema de pêndulo gravítico e obtenha o seu período para diversos comprimentos do fio L, usando a medição de N ciclos. A medição é um intervalo de tempo e como tal o atraso da reação compensa no início e no fim. No entando deve considerar como erro de medição o dobro do desvio padrão. Para o erro de $\overline{\Delta t}$ deve considerar o majorante entre este erro, $2\sigma_{\overline{t}}$ e o maior desvio entre o valor médio $\overline{\Delta t}$ e cada ensaio individual.

Obtenha o valor de g_{exp} para estes ensaios, usando a expressão (9) do texto de apoio, bem como a respectiva incerteza experimental. Compare o valor final de g_{exp} obtido com o valor tabelado g_{tab} para Lisboa e estime o desvio à exactidão que obteve.

Angulo inicial: $\theta \simeq $	rad, Número de ciclos:	$N = \underline{\hspace{1cm}}$
----------------------------------	------------------------	--------------------------------

Ensaio #	L: ±	(m) L:	±	(m)	L: ±	(m)	L:	±	(m)
A (s)	土		±		±			±	
B (s)	土		±		±		±		
C (s)	土		土		±		±		
Média $\overline{\Delta t}$ (s)	土		土		±		土		
Período \overline{T} (s)	±		土		土		土		
$\overline{g} \ (ms^{-2})$	土		土		±		土		

$$g_{exp} = \underline{\qquad} \pm \underline{\qquad} (ms^{-2})$$

Tenha em atenção os seguintes aspectos e comente-os na discussão final:

- \bullet Qual a vantagem de usar na medição N ciclos do pêndulo?
- ullet Naturalmente a massa utilizada não é pontual. Qual é o efeito na medida e incerteza do comprimento L?
- Uma massa pendurada num fio tem mais que o grau de liberdade em θ . Tente assegurar-se que o pêndulo oscila apenas ao longo de um plano.
- Tente minimizar o efeitos de paralaxe na determinação do ângulo máximo.
- Qual a posição do pêndulo usa para cronometrar o intervalo de tempo?
- Utilize apenas algarismos significativos nas tabelas.

Actividades adicionais, se tiver tempo:

- Utilize a montagem electrónica com barreira óptica para medição precisa do período. Compare com os outros resultados.
- Verifique experimentalmente que o período do pêndulo não depende do valor da massa.
- Verifique experimentalmente a dependência do ângulo máximo no período do pêndulo. Para que valores de θ_0 o valor calculado de g' se afasta de g_{exp} com desvio de 5%?
- Tente estimar a percentagem de energia devido ao atrito que se perde em cada ciclo

.

Análise, conclusões e comentários finais