Cook County Sales Tax Revenue Forecast

Time Series Analysis and Forecast Final Project - May 27, 2023

Team 9

Annabella Liang Juan Ramirez Ujjwal Sehrawat

Overview

- Business case and problem statement
- Modeling hypothesis and assumptions
- Data description and properties
- Data processing and EDA
- Feature Engineering
- Proposed modeling approaches
- Selected model results with justifications and tradeoffs
- **■** Insights/Recommendations & Future work

Business case and problem statement

Problem Statement:

Forecast Sales Tax Revenues for cook county over a 3-year horizon.

Business Case:

- Stakeholders: Cook County board members, policy makers & local residents.
- Sales tax Forecasting gives stakeholders empirical basis for data-driven decision-making about:
 - future borrowing,
 - use of accumulated reserves,
 - specification of budget balancing measures.
- 3 -year planning especially important as expenditure typically lags by 3 years.

Modeling hypothesis and assumptions

Hypothesis:

- We believe that sales tax revenue data from the past will be predictive of sales tax revenue data in the future.
- Exogenous variables (regional statistics) related to sales tax revenue will impact this aforementioned relationship & can help improve forecasting efficiency.

Assumptions:

- Publicly available Cook County's historical sales tax revenue data since its fiscal year 2010.
- The sales tax of the County has changed over the years, but currently stands at around 1.75%.
- Time series is stationary, i.e., statistical properties of time series does not change over time.
- Normal residuals.

Exploratory Data Analysis

Cook County - Sales Tax Revenue

Cook County - Changing Sales Tax Rates

Annual Pledged Sales Tax Revenues

Fiscal Years 2012 to 2021

Fiscal Year Ended 11/30	Home Rule Sales Tax Rate	Effective Date	Home Rule Sales Tax Revenues	Percent Change Over Prior Year	Pro Forma Debt Service Coverage Ratio(1)
2021	1.75%	1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$861.6	19.40%	10.2x
2020	1.75%		\$721.6	-13.96%	9.3x
2019	1.75%		838.7	-0.46%	10.8x
2018	1.75%		842.6	3.90%	10.8x
2017	1.75%	1111	811.0	25.96%	14.0x
2016	1.75%	1/1/2016	643.8	85.65%	99.6x
2015	0.75%		346.8	3.99%	46x
2014	0.75%	1000	333.5	-8.33%	44.5x
2013	0.75%	1/1/2013	363.8	-20.60%	47.9x
2012	1.00%	1/1/2012	458.2	-9.02%	60.8x

Source: Cook County Comptroller's Office

- Sales Tax Rates have changed several times over the span of the data
- Changing Tax Rates account for the jumps in the data
- Our next step is to scale the data

Cook County - Equalized Sales Tax Rates

- The equalized Cook County Sales tax rate data was scaled so that all the tax rates looked the same
- We're trying to forecast using the patterns of the data, not possible tax rate changes which are legislatively decided
- The trend and seasonality in the data are much more clear
- We can clearly see the effects of the COVID 19 Pandemic

Stationarity, ACF and PACF

- Differenced sales tax revenue:
- ADF & KPSS test results: stationary time series

Chicago Metropolitan Area Statistics

Other EDA Features

Models Selection and Evaluation

Auto SARIMAX

Performing stepwise search to minimize	ze aic
ARIMA(2,1,2)(1,1,1)[12]	: AIC=inf, Time=0.76 sec
ARIMA(0,1,0)(0,1,0)[12]	: AIC=3380.865, Time=0.02 sec
ARIMA(1,1,0)(1,1,0)[12]	: AIC=3375.851, Time=0.09 sec
ARIMA(0,1,1)(0,1,1)[12]	: AIC=3375.430, Time=0.16 sec
ARIMA(0,1,1)(0,1,0)[12]	: AIC=3382.207, Time=0.05 sec
ARIMA(0,1,1)(1,1,1)[12]	: AIC=3373.686, Time=0.28 sec
ARIMA(0,1,1)(1,1,0)[12]	: AIC=3376.622, Time=0.10 sec
ARIMA(0,1,1)(2,1,1)[12]	: AIC=3375.628, Time=0.66 sec
ARIMA(0,1,1)(1,1,2)[12]	: AIC=inf, Time=1.59 sec
ARIMA(0,1,1)(0,1,2)[12]	: AIC=3375.234, Time=0.34 sec
ARIMA(0,1,1)(2,1,0)[12]	: AIC=3377.582, Time=0.27 sec
ARIMA(0,1,1)(2,1,2)[12]	: AIC=inf, Time=1.58 sec
ARIMA(0,1,0)(1,1,1)[12]	: AIC=3376.772, Time=0.22 sec
ARIMA(1,1,1)(1,1,1)[12]	: AIC=3375.311, Time=0.41 sec
ARIMA(0,1,2)(1,1,1)[12]	: AIC=3376.106, Time=0.35 sec
ARIMA(1,1,0)(1,1,1)[12]	: AIC=3373.302, Time=0.25 sec
ARIMA(1,1,0)(0,1,1)[12]	: AIC=3374.742, Time=0.15 sec
ARIMA(1,1,0)(2,1,1)[12]	: AIC=3375.248, Time=0.81 sec
ARIMA(1,1,0)(1,1,2)[12]	: AIC=inf, Time=1.62 sec
ARIMA(1,1,0)(0,1,0)[12]	: AIC=3380.797, Time=0.18 sec
ARIMA(1,1,0)(0,1,2)[12]	: AIC=3374.718, Time=0.39 sec
ARIMA(1,1,0)(2,1,0)[12]	: AIC=3376.879, Time=0.39 sec
ARIMA(1,1,0)(2,1,2)[12]	: AIC=inf, Time=1.51 sec
ARIMA(2,1,0)(1,1,1)[12]	: AIC=3375.711, Time=0.32 sec
ARIMA(2,1,1)(1,1,1)[12]	: AIC=3377.176, Time=0.44 sec
ARIMA(1,1,0)(1,1,1)[12] intercept	: AIC=3374.976, Time=0.29 sec

Best model: ARIMA(1,1,0)(1,1,1)[12] Total fit time: 13.286 seconds

SARIMAX Results

Dep. Varia	ble: y				No. Observ	vations:	116
Model:	SA	RIMAX(1,	1, 0)x(1, 1, [1], 12)	Log Likelih	bood	-1682.65
Date:	Tue	e, 23 May	2023		AIC		3373.302
Time:	21:	52:33			BIC		3383.841
Sample:	0				HQIC		3377.571
	- 11	6					
Covariano	e Type: opg	1					
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.0070	0.036	-0.194	0.846	-0.078	0.064	
ar.S.L12	0.3455	0.135	2.557	0.011	0.081	0.610	
ma. S.L12	-0.6193	0.136	-4.555	0.000	-0.886	-0.353	
sigma2	8.915e+12	5.66e-15	1.58e+27	0.000	8.91e+12	8.91e+1	12
Ljung-Box	(L1) (Q):	9.41 J	arque-Bera	(JB):	19,51		
Prob(Q):		0.00 F	rob(JB):		0.00		
Heteroske	dasticity (H):	1.03 9	kew:		-0.11		
Prob(H) (t	wo-sided):	0.94 K	Curtosis:		5.12		

Auto SARIMA Residual Analysis and Error Metrics

1b_stat 21.143228 1b_pvalue 0.048322 Name: 12, dtype: float64

SARIMA Model Predictions

Errors				
MAE	11,469,496.42			
MAPE	0.17			
sMAPE	15.82			
MASE	1.85			

	Errors
MAE	10,758,156.75
MAPE	0.17
sMAPE	14.95
MASE	1.74

Errors				
MAE	7,541,089.67			
MAPE	0.13			
sMAPE	10.99			
MASE	1.22			

SARIMAX Residuals

PROPHET

PROPHET RESIDUAL ANALYSIS

PROPHET with all 3 regressors

ERRORS		
MAE	18694668.759	
MAPE	0.2362	
sMAPE	45.62	
MASE	1.92	

VARMA

Error covariance matrix

	coef	std err	z	P> z	[0.025	0.975]
sqrt.var.Equivalent Sales Tax	8.937e+06	4.76e-10	1.88e+16	0.000	8.94e+06	8.94e+06
sqrt.cov.Equivalent Sales Tax.GDP	0.5227	0.001	593.960	0.000	0.521	0.524
sqrt.var.GDP	3.5644	0.002	1439.778	0.000	3.560	3.569
sqrt.cov.Equivalent Sales Tax.households	0.1346	0.009	14.584	0.000	0.117	0.153
sqrt.cov.GDP.households	0.1951	0.007	29.953	0.000	0.182	0.208
sqrt.var.households	0.6316	0.035	17.958	0.000	0.563	0.700
sqrt.cov.Equivalent Sales Tax.CPI	0.0278	0.015	1.919	0.055	-0.001	0.056
sqrt.cov.GDP.CPI	0.1758	0.018	9.689	0.000	0.140	0.211
sqrt.cov.households.CPI	0.0980	0.019	5.073	0.000	0.060	0.136
sqrt.var.CPI	0.1719	0.010	16.810	0.000	0.152	0.192

ERRORS			
MAE	9004335.26		
MAPE	1.04		
sMAPE	178.86		
MASE	1.21		

VAR

Summary of Re	egression Results	_	
Model: Method: Date: Time:	VAI OLS Thu, 25, May, 2023 10:37:4	5 3	
No. of Equation Nobs: Log likelihood: AIC:	138.000	BIC: HQIC: FPE: Det(Omega_mle):	24.6627 23.8065 1.22077e+10 7.67049e+09

Correlation matrix of residuals

	Equivalent Sales Tax	GDP	households	CPI
Equivalent Sales Tax	1.000000	0.179586	0.057303	0.101240
GDP	0.179586	1.000000	0.278093	0.673668
households	0.057303	0.278093	1.000000	0.477868
CPI	0.101240	0.673668	0.477868	1.000000

ERRORS			
MAE	9341932.75		
MAPE	1.25		
sMAPE	180.58		
MASE	0.84		

Conclusion

Forecasting with the best Model

Next Steps and Future Recommendations

- Adjust ARIMA Orders
- Adjust Forecast time horizons
- Explore other economic variables (income statistics, population statistics, tourism etc.)
- Granger Causality Analysis
- Volatility Analysis (TBATs, GARCH,etc.)

Appendix

Forecasting with the Best Model

Predictions are based on Moody's analytics forecasts of the economic variables

