Текстовые интерфейсы для последовательности событий

Филатов Андрей

Московский физико-технический институт Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. Стрижов В.В.

21 Июня, 2023

Мотивация

Цель

Создание модели, которая способна решать нескольких задач одновременно

Проблема

На последовательностях событий под каждую задачу строится отдельная модель, что увеличивает общее время обучения моделей и число параметров.

Решение

Создание одной мультизадачной модели в форме текстового интерфейса.

Постановка задачи

1. Дана выборка объектов

$$\mathscr{D} = \{x_i, \{y_{ik}\}_{k=1}^T\}; x_i \in \mathbb{R}^{in \times d}, y_i \in \mathbb{R},$$

где x_i множество последовательностей, y_{ik} — множество разметок, d - число признаков. \mathcal{L}_k - функция ошибки для k-ой разметки.

2. Модель выбирается из класса нейронных сетей:

$$\{\mathscr{T}: (G(X), C_i, W)\} \rightarrow \hat{Y}, \}$$

где $C_i \in \mathbb{R}^{n_{in} \times N}$ набор слов, идентифицирующий задачу, $\hat{Y} \in \mathbb{R}^{n_{out} \times N}$ - общее пространство ответов, где N - размер словаря, G(X) — кодировщик данных последовательности событий $Q_i: \hat{Y} \to Y_i$ модель декодирования ответа для i-ой задачи.

3. Задача оптимизации ставится следующим образом:

$$\arg\min_{\mathscr{T}} \ \mathbb{E}_{\mathsf{x} \sim \mathsf{X}, \tau_j \sim \mathsf{T}} \ \mathscr{L}_{\tau_j}(Q_j(\mathscr{T}(\mathsf{x}, C_j)), \tau_j(\mathsf{x}))$$

Данные для экспериментов

Для экспериментов использовался датасет AlfaBattle¹. Он состоит из **450 млн. транзакций** клиентов банка с 1.5 млн. уникальных пользователей. Транзакция в этом датасете представляет собой последовательность событий, каждое событие которого описывается **набором из 19 признаков**;

app_id	amnt	mcc	day_of_week	hour	city	weekofyear
3589	0.71	2	6	18	1	4
4891	0.53	2	3	18	1	9
3832	0.41	36	7	13	2	13
14584	0.19	3	3	12	1	38
6209	0.5	15	2	13	60	12

Пример транзакций

¹AlfaBattle

Исследование архитектур для моделей последовательности событий

Для определения архитектуры для кодировщика последовательности проведено сравнение трех подходов:

Task (Metric)	Encoder	Decoder	Encoder-Decoder
Default (AUC)	0.76 ± 0.001	0.78 ± 0.001	0.77 ± 0.001
Next MCC (Accuracy)	0.4754 ± 0.005	0.4853 ± 0.0007	0.480 ± 0.0009
Next Amount (L1)	0.069 ± 0.0001	0.066 ± 0.0001	0.068 ± 0.0001
Next Time (Accuracy)	0.75 ± 0.02	0.80 ± 0.01	0.77 ± 0.03

Модели типа Decoder решают задачи лучше других подходов.

Формирование датасета вопросов по транзакциям

Для оценивания качества текстового интерфейсов был сконструирован датасет вопросов и ответов к последовательностям событий.

- ▶ Binary. Задаётся вопрос, на который нужно ответить "Да"или "Нет".
- Multichoice. Задаётся вопрос и предоставляется выбор из нескольких вариантов ответа.
- ▶ Open-ended. Задаётся вопрос в открытой форме, без указания вариантов.

Сконструирован датасет из 50+ различных шаблонов вопросов и ответов. Под каждый вопрос реализовано несколько перефразирования.

Результаты на мультизадачности

Для валидации мультизадачности текстового интерфейса произведено сравнение на четырех основных задачах.

	Default	Next MCC	Next Amount	Next Hour
Single task	0.783 ± 0.001	$0.756{\pm}0.001$	0.703 ± 0.001	0.7043 ± 0.001
MCC + Amount	-	$0.750 {\pm} 0.001$	0.6549 ± 0.001	-
MCC + default	0.7715 ± 0.001	$0.7554 {\pm} 0.001$	-	-
12 tasks	0.7616 ± 0.001	0.7585 ± 0.001	$0.6893 {\pm} 0.001$	$0.651{\pm}0.001$

Текстовый интерфейс, обученный на нескольких задачах имеет сравнимое качество с моделями, которые были построены для решения отдельных задач.

Результаты на вычислительную эффективность

Подход	Время обучения	Число параметров
12 отдельных моделей	8 GPU-дней	324 миллионов
Текстовый интерфейс на 12 задачах	1 GPU-день	200 миллионов

Для обучения текстового интерфейса требуется меньше времени и суммарно необходимо меньшее число параметров.

Результаты, выносимые на защиту

- 1. Предложена подход к построению модели для решения нескольких задач для последовательностей событий.
- 2. Проведено исследование выбора моделей представления последовательностей событий.
- 3. Проведены эксперименты по мультизадачности и вычислительной эффективности текстового интерфейса.

Опубликованные работы

Atanov, A. **Filatov, A.**, Yeo, T., Sohmshetty A., Zamir, A. (2022) Task Discovery: Finding the Tasks that Neural Networks Generalize on. *Advances in Neural Information Processing Systems*, *35*