

Střední průmyslová škola a Vyšší odborná škola, Písek, Karla Čapka 402, Písek $18\text{-}20\text{-}\mathrm{M}/01 \; \mathrm{Informační} \; \mathrm{technologie}$

Maturitní práce

Dálkové ovládání zásuvek NETIO

Téma číslo 12

autor:

Milan Jiříček, B4.I

vedoucí maturitní práce:

Ing. Břetislav Bakala

Písek 2020/2021

Anotace

Maturitní práce se zaměřuje na porovnání platforem ESP8266 a ESP32. Cílem je vytvořit ovladač pro ovládání zásuvek značky NETIO s webovou aplikací pro konfiguraci a zjistit, která platforma je vhodná pro realizaci funkčního vzorku z hlediska spotřeby energie a reakční doby.

Annotation

The graduation thesis focuses on the comparison of the ESP8266 and ESP32 platforms. The goal is to create a driver for controlling NETIO sockets with a web application for configuration and to find out which platform is suitable for the implementation of a functional sample in terms of energy consumption and response time.

Poděkování Chtěl bych poděkovat panu učiteli Ing. Břetislavovi Bakalovi za odborné vedení práce a cenné rady, které mi pomohly tuto práci zkompletovat. Rád bych také poděkoval technickému řediteli Ing. Břetislavovi Bakalovi ml. společnosti NETIO products a.s. za cenné rady, věcné připomínky a vstřícnost při konzultacích a vypracování bakalářské práce. V neposlední řadě chci poděkovat Mgr. Haně Maříkové a Mgr. Vladimíře Špirhanzlové za pomoc při gramatické a stylistické kontrole.

Obsah

1	Uvo	od		4	
2	Základní informace				
	2.1 Zásuvka NETIO		ka NETIO	5	
	2.2	Platfo	rma ESP	5	
		2.2.1	ESP8266	5	
		2.2.2	ESP32	6	
3	Tvo	rba we	ebové stránky	7	
4					
	4.1	ESP82	266	8	
		4.1.1	Spotřeba ustálených stavů	8	
		4.1.2	Reakční čas jednotlivých situací	11	
		4.1.3	WiFi připojení	12	
		4.1.4	Odeslání HTTP requestu s připojenou WiFi	14	
5	Záv	ěr		16	
Pì	Přílohy				
\mathbf{A}	A Příloha				

 $\acute{\mathbf{U}}\mathbf{vod}$

Základní informace

2.1 Zásuvka NETIO

2.2 Platforma ESP

ESP jsou rodina mikročipů od společnosti Espressif Systems z Čínské Shangaje.

2.2.1 ESP8266

Historie

ESP8266 je levný mikročip, který umí využívat WiFi. První chip, který se dostal na světlo světa byl v modulu **ESP-01**. Tento modul dokázal připojit se na WiFi síť a provádět jednoduché TCP/IP spojení. Získal si velkou oblibu u skupinek hackerů díky nízké ceně.

Specifikace

ESP8266 nabízí:

- 32 bitový mikroprocesor RISC architektury založen na Tensilica Xtensa Diamond L106
- 16 Mb flash paměť a 36 KB RAM
- IEEE 802.11 b/g/n, integrované zabezpečení WEP a WPA/WPA2
- podporu I^2C a I^2S
- 16 GPIO pinů

2.2.2 ESP32

Tvorba webové stránky

Měření spotřeby a času

4.1 ESP8266

4.1.1 Spotřeba ustálených stavů

Při měření spotřeby ustálených stavů bylo použito napájení z USB. Měřeno bylo zařízením **Analog Discovery 2** od společnosti **DIGILENT**. Tímto zařízením je měřeno napětí na rezistoru a dle Ohmova zákona: $I = \frac{U}{R}$ vypočítán eletrický proud. Napětí je 3.3 V.

ESP běží kontinuálně

Schéma zapojení viz. obr. 4.1 Ústálený stav byl měřen za podmínek:

- Měřící rezistor má odpor $0.7\,\Omega$
- ESP8266 čeká na zmáčknutí tlačítka na pinu GPIO5

Obrázek 4.1: ESP8266 schéma zapojení kontinuálního ustáleného stavu

Obrázek 4.2: ESP8266 měření klidového stavu kontinualního režimu

Obrázek 4.3: ESP8266 schéma zapojení vypnutého ESP přes ENABLE pin

- ESP je neustále zapnuté, probíhá loop funkce pro kontrolu zmáčknutí
- Je připojeno k WiFi, je zaplý access point ESP, běží webserver

Při klidovém stavu byl naměřen eletrický proud průměrně 96.81 mA viz. obr. 4.2. Měření probíhalo 50 s. Pro jednotné porovnání je třeba vypočítat příkon:

$$P = 96.81 \times 10^{-3} \text{A} \times 3.3 \text{ V}$$

Dle rovnice se příkon rovná $319.5\times 10^{-3}~\mathrm{W}$

ESP vypnuté přes ENABLE pin

Schéma zapojení viz. obr. 4.3

Měření proběhlo za podmínek:

• Měřící rezistor má odpor $10\,\Omega$

Obrázek 4.4: Měření klidového režimu enable případu

• pin enable byl připojen manuálně

Po připojení ESP8266 proud nevzrostl a drží se stále na 240 μA, což neodpovídá teoretickým hodnotám, které by se měly pohybovat okolo 3 μA viz. obr. 4.4.

Pro výpočet bude jako průměrný odebraný proud použita hodnota uvedena v datasheetu což je 3 μA. Víme, že napětí je 3.3 V takže jsme schopni spočítat eletrický příkon:

$$P = 3 \times 10^{-6} \text{A} \times 3.3 \text{ V}$$

Výsledek je 9.9×10^{-6} W.

Deep sleep režim

Schéma zapojení viz. obr. 4.5

Kvůli citlivosti Analog Discovery 2 nejsme schopni změřit spotřebu deep sleep režimu, je nutné změřit microampérmetrem. Pro výpočet spotřebované energie dosadíme za průměrný elektrický proud hodnotu z datasheetu, která odpovídá 20 μA. Spočítáme elektrický příkon:

$$P = 20 \times 10^{-6} \text{A} \times 3.3 \text{ V}$$

Ten v této situaci odpovídá hodnotě 66×10^{-6} W.

Obrázek 4.5: ESP8266 schéma uvedené v deep sleep stavu

	Kontinuální	Enable	Deep Sleep
Eletrický proud	$96.81 \times 10^{-3} \text{ A}$	$3 \times 10^{-6} \text{ A}$	$20 \times 10^{-6} \text{ A}$
Spotřeba	$319.5 \times 10^{-3} \; \mathrm{W}$	$9.9\times10^{-6}~\mathrm{W}$	$66\times10^{-6}~\mathrm{W}$

Tabulka 4.1: Porovnání klidových stavů ESP8266

Shrnutí výsledků měření spotřeby

4.1.2 Reakční čas jednotlivých situací

Reakční doba byla změřena pomocí kamery. K tlačítku jsem připojil LED, místnost jsem izoloval od světla a zmáčknutí tlačítka a reakci zásuvky jsem natočil ve zpomaleném režimu s 240 snímky za sekundu. Dále jsem zjistil rozdíl mezi rozsvícení LED u tlačítka a LED zabudované v zásuvce, signalizující sepnutí viz. obr. 4.2.

Porovnání reakčních časů

Nejrychlejší reakce byla pokud ESP8266 bylo neustále zapnuto. Nejpomalejší naopak bylo pokud ESP8266 bylo nutné zapnout, je to z důvodu načtení sketche do operační paměti,

	Kontinuální	Enable	Deep Sleep
Reakční doba	$196\mathrm{ms}$	$3100\mathrm{ms}$	$967\mathrm{ms}$

Tabulka 4.2: Porovnání reakčního času jednotlivých situací ESP8266

Obrázek 4.6: Měření dynamického připojení k AP

načtení konfigurace WiFi a následnému připojení.

4.1.3 WiFi připojení

Cílem měření je zjistění rychlostí připojení různými způsoby k přístupovému body, spotřeby a následné porovnání případů.

Dynamické přidělení IP adresy

Měření proběhlo za použití DHCP protokolu, kde by přístupový pod měl zvolit IP adresu pro zařízení. Bylo provedeno za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- Přístupový bod nebyl zabezpečen
- Přístupový bod se nachází 3.5 m od zařízení

Měření bylo provedeno 5x. Průměrný čas se pohybuje okolo 4.7 s. Jak je možno vidět na grafu, tak dvě WiFi připojení trvaly o 2 sekundy kratší dobu. Toto chování přisuzuji rozmanitému provozu na Přístupovém bodu, který zárověň probíhá s měřením. viz. obr. 4.6

Statické přidělení IP adresy

Použita byla statická adresa, která byla přidělena ESP8266 před připojením na AP. Bylo provedeno za podmínek:

Obrázek 4.7: Měření statického připojení k AP

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- Přístupový bod nebyl zabezpečen
- Přístupový bod se nachází 3.5 m od zařízení

Měření proběhlo 5x. Průměrný čas byl $3.7\,\mathrm{s}.$ viz. obr. $4.7\,$

Zabezpečený AP

Připojení na access point je šifrované. Bylo provedeno za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- IP adresa je nastavena staticky
- Přístupový bod se nachází 3.5 m od zařízení
- Bylo použito zabezpečení WPA2-PSK

Průměrný čas byl 4.7 s.

viz. obr. 4.8

Obrázek 4.8: Měření zabezpečeného připojení k AP

Pořadí	Dynamické	Statické	Zabezpečení
1.	$5.3385\mathrm{s}$	$3.589\mathrm{s}$	$4.733\mathrm{s}$
2.	$5.3445\mathrm{s}$	$3.583\mathrm{s}$	$4.733\mathrm{s}$
3.	$3.619\mathrm{s}$	$3.631\mathrm{s}$	$4.733\mathrm{s}$
4.	$5.333\mathrm{s}$	$3.481\mathrm{s}$	$4.733\mathrm{s}$
5.	$3.627\mathrm{s}$	$3.613\mathrm{s}$	$4.733\mathrm{s}$
Průměr	$4.6524\mathrm{s}$	$3.5794\mathrm{s}$	$4.709\mathrm{s}$

Tabulka 4.3: Porovnání reakční doby naměřené připojením k WiFi

Závěr

Z výsledků měření je nejrychlejší připojení pomocí statické IP adresy, nicméně je velice náročné nastavit IP adresu, masku a bránu pro běžného uživatele. Připojení s DHCP je pomalejší průměrně o 1 s než případ se statickou IP adresou. DHCP vyniká jednoduchostí použití pro běžného uživatele. K zabezpečené WiFI trvá stejně dlouho jako s DHCP. viz tabulka 4.3

4.1.4 Odeslání HTTP requestu s připojenou WiFi

Cílem měření je zjistit čas odesílání HTTP requestu a následné odpovězení zásuvky NETIO. Pokus byl proveden za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velitosti $0.7\,\Omega$

Pořadí	připojené k WiFi
1.	$778.9\mathrm{ms}$
2.	$743\mathrm{ms}$
3.	$772.9\mathrm{ms}$
4.	$744.5\mathrm{ms}$
5.	623.1 ms
Průměr	$table 732.48\mathrm{ms}$

Tabulka 4.4: Čas odeslání HTTP requestu a reakce zásuvky

Operace	reakční doba	spotřeba
Dynamické připojení	$4.6524\mathrm{s}$	$385.19\mu\mathrm{Wh}$
Statické připojení	$3.5794\mathrm{s}$	$295.59\mu\mathrm{Wh}$
Zabezpečené připojení	$4.709\mathrm{s}$	$393.15\mu\mathrm{Wh}$
HTTP komunikace	$0.73248\mathrm{s}$	$67.75\mu\mathrm{Wh}$

Tabulka 4.5: Spotřeba jednotlivých akcí

- ESP8266 zkontroluje připojení k WiFi a pokud není navázáno, pokusí se ho navázat
- Načtení uložené konfigurace WiFi trvá 300 ms
- ESP ukončí reakci, pokud dostane zpětnou vazbu od zásuvky

Jelikož ESP přestane reagovat až po odpovězení zásuvky, dokážeme zjistit celkový čas včetně zapnutí, zkontrolování WiFi připojení, sestavení a odeslání HTTP requestu, reakce zásuvky a zpracování HTTP zprávy.

viz tabulka 4.4

Spotřeba jednotlivých operací ESP8266 byla spočítána: $E = U \times I \times t$

Závěr

Seznam tabulek

4.1	Porovnání klidových stavů ESP8266	11
4.2	Porovnání reakčního času jednotlivých situací ESP8266	11
4.3	Porovnání reakční doby naměřené připojením k WiFi	14
4.4	Čas odeslání HTTP requestu a reakce zásuvky	15
4.5	Spotřeba jednotlivých akcí	15

Seznam obrázků

4.1	ESP8266 schéma zapojení kontinuálního ustáleného stavu	8
4.2	ESP8266 měření klidového stavu kontinualního režimu	9
4.3	ESP8266 schéma zapojení vypnutého ESP přes ENABLE pin	9
4.4	Měření klidového režimu enable případu	10
4.5	ESP8266 schéma uvedené v deep sleep stavu	11
4.6	Měření dynamického připojení k AP	12
4.7	Měření statického připojení k AP	13
48	Měření zaheznečeného připojení k AP	14

Příloha A

Příloha

Literatura

- [1] ESPRESSIF SYSTEMS,
.WT8266-S1 WiFi Module datasheet. Shangai, Čína: Espressif Systems, 2015. ISBN ISBN.
- [2] ESP8266. In: Wikipedia: the free encyclopedia [Online]. San Francisco (CA): Wikimedia Foundation, 2021 [cit.2021–01–23]. Dostupné z: https://en.wikipedia.org/w/index.php?title=ESP8266