CS 4801: Assignment 3

Adam Camilli (aocamilli@wpi.edu)

Wednesday 28th November, 2018

- 1. Computing RSA by hand. Let p=43; q=37; b=23 be your initial parameters. You may use a calculator for this problem, but you should show all intermediate results.
 - (a) **Key generation**: Compute N and $\phi(N)$. Compute the private key

$$k_{\text{priv}} = a = b^{-1} \mod \phi(N)$$

using the extended Euclidean algorithm. Show all intermediate results.

1. Choose two prime numbers p, q:

$$p = 43, q = 37$$
 (given)

2. Compute N:

$$N = p \cdot q = 43 \cdot 37 = 1591$$

3. Compute $\phi(N)$:

$$\phi(N) = (p-1)(q-1) = 42 \cdot 36 = 1512$$

4. Choose random $b \mid 0 < b < \phi(N)$ with $gcd(b, \phi(N)) = 1$:

$$b = 23$$
 (given)

5. Compute a:

$$a = b^{-1} \mod \phi(N) = 23^{-1} \mod 1512$$

(Next Page)

$$s_0: 1512 = \mathbf{65}(23) + 17$$
 $p_0 = 0 \text{ (given)}$
 $s_1: 23 = \mathbf{1}(17) + 6$ $p_1 = 1 \text{ (given)}$
 $s_2: 17 = \mathbf{2}(6) + 5$ $p_2 = p_0 - p_1(q_0) \text{ mod } 1512$
 $= 0 - 1(65) \text{ mod } 1512 = 1447$
 $s_3: 6 = \mathbf{1}(5) + 1$ $p_3 = p_1 - p_2(q_1) \text{ mod } 1512$
 $= 1 - 1447(1) \text{ mod } 1512 = 66$
 $s_4: 5 = \mathbf{1}(5) + 0$ $p_4 = p_2 - p_3(q_2) \text{ mod } 1512$
 $= 1447 - 66(2) \text{ mod } 1512 = 1315$
 $p_5 = p_3 - p_4(q_3) \text{ mod } 1512$
 $= 66 - 1315(1) \text{ mod } 1512 = \mathbf{263}$

(b) **Encryption**: Encrypt the message X=91 by applying the square and multiply algorithm (first, transform the exponent to binary representation). Show all intermediate results.

The encrypted message is calculated

$$Y = \text{Enc}(X) = X^b \mod N$$
$$= 91^{23} \mod 1591$$

Convert exponent b to binary:

$$23_{10} = 2^4 + 2^3 - 1 = 11000_2 - 1 = 10111_2$$

Now execute square and multiply for $91^{23} \mod 1591$:

b	Algorithm step	mod reduction
1	91	$91 \mod 1591 = 91$
0	$(91)^2$	$(91)^2 \bmod 1591 = 326$
	$((91)^2)^2 \cdot 91$	$(326)^2 \cdot 91 \mod 1591 = 1018$
	$(((91)^2)^2 \cdot 91)^2 \cdot 91$	$(1018)^2 \cdot 91 \mod 1591 = 550$
1	$((((91)^2)^2 \cdot 91)^2 \cdot 91)^2 \cdot 91$	$(550)^2 \cdot 91 \bmod 1591 = 18$

$$\operatorname{Enc}(X) = 18$$

(c) **Decryption**: Decrypt the ciphertext Y computed above by applying the square and multiply algorithm. Show all intermediate results.

The decrypted message is calculated

$$X = Dec(Y) = X^{k_{priv}} \mod N$$
$$= 18^{263} \mod 1591$$

Convert exponent b to binary:

$$263_{10} = 2^8 + 2^3 - 1 = 100000000_2 + 1000_2 - 1 = 100000111_2$$

Now execute square and multiply for 18^{263} mod 1591:

	1	
b	Algorithm step	mod reduction
1	18	$18 \mod 1591 = 18$
0	$(18)^2$	$(18)^2 \mod 1591 = 324$
0	$((18)^2)^2$	$(324)^2 \mod 1591 = 1561$
0	$(((18)^2)^2)^2$	$(1561)^2 \bmod 1591 = 900$
	$((((18)^2)^2)^2)^2$	$(900)^2 \bmod 1591 = 181$
0	$((((((18)^2)^2)^2)^2)^2)^2$	$(181)^2 \bmod 1591 = 941$
1	$((18)^{16})^2 \cdot 18$	$(941)^2 \cdot 18 \bmod 1591 = 20$
1	$((18)^{32})^2 \cdot 18$	$(20)^2 \cdot 18 \bmod 1591 = 836$
1	$((18)^{64})^2 \cdot 18$	$(836)^2 \cdot 18 \mod 1591 = 91$

$$\operatorname{Dec}(Y) = X = 91$$

- 2. Eve records the transmission of an RSA-encrypted message in Question 1. Eve also knows the public key to be $k_{pub} = (N, b)$. Your goal is to recover the message X that has been encrypted with RSA in Question 1 Part b.
 - (a) Give the equation for the decryption of Y. Which variables are not known to Eve? Can Eve recover X? If so, how? If not, why?

$$Dec(Y) = Y^{k_{priv}} \bmod N$$

In this equation, the encrypted message Y is given to Eve, and N is available as part of k_{pub} . k_{priv} is unknown to Eve. Eve cannot easily decrypt Y without deriving k_{priv} however, since she cannot perform the calculation.

(b) To recover the private key a, Eve has to compute $a = b - 1 \mod \phi(N)$. Can Eve recover $\phi(N)$?

Yes. Eve knows that in RSA k_{priv} is generated using N, which is a product of two primes p and q. k_{priv} is calculated using the value $\phi(N)$ which is equivalent to (p-1)(q-1). In order to find this value she must factorize N. The computational difficulty of factoring large N is the foundation of RSA's security, since if this is done the rest of the calculation of k_{priv} is comparatively trivial.

(c) Compute the message X. (Hint: Start by factoring $N = p \cdot q$. Then use $\phi(N)$ to compute b)

$$\sqrt{|N|} \approx 39.89$$

Therefore it is sufficient to check N's divisibility with primes less than or equal to 39:

primes = $\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\}$

$\frac{1591}{2}$	Ø
$\frac{1591}{3}$	Ø
1591 <u>1591</u>	Ø
$\frac{1591}{7}$	Ø
<u>1591</u>	Ø
$\frac{11}{1591}$	Ø
13 1591	Ø
$\frac{17}{1591}$	Ø
$\frac{23}{1591}$	Ø
$\frac{29}{1591}$	Ø
$\frac{31}{1591}$	Ø
33 1591	~
$\frac{1031}{37}$	43

We now know $N=p\cdot q=37\cdot 43$. $\phi(N)$ is therefore $(p-1)(q-1)=36\cdot 42=1512$.

Since we are given public key exponent b=23, we can now calculate a and decrypt Y as in problem 1:

$$a = 23^{-1} \mod 1512 = 263$$

$$\mathrm{Dec}(Y=18)=X=91$$

(d) Can Eve do the same message recovery attack (as in (c)) for large N, e.g., |N|=1024 bit?

Technically yes, however presently (2018) the factorization of N would take several millenia to accomplish using the fastest algorithm (general number field sieve) on supercomputers. Eve therefore would likely not be able to use this attack.

(e) Eve recovers a message-ciphertext pair (X, Y). Can she recover the private key a?

6

Even if no random padding is performed (as would be recommended in real life) Eve can still not feasibly compute a with (X,Y). Were this case, RSA would not be a correct public-key encryption algorithm, since any user can calculate an arbitrary (X,Y) using a public key. Detecting a this way would be equivalent to guessing, since Eve's only option is to try and reproduce Y by encrypting X using different possible values of a.

- 3. Find the following using Extended Euclidean Algorithm
 - (a) Find 17^{-1} mod 37 using Extended Euclidean Algorithm

During each step s_i , recursively calculate

$$p_i = p_{i-2} - p_{i-1}q_{i-2} \bmod n$$

 q_i is equal to the coefficient on the left side (bolded). Repeat until remainder is 0 and iterate right side (p calcuation) one more time.

$$gcd(17, 37) = 1$$

$$\therefore \exists \text{ integers } (p, n) \mid 17p = 37n + 1$$

$$s_0: 37 = \mathbf{2}(17) + 3$$
 $p_0 = 0 \text{ (given)}$
 $s_1: 17 = \mathbf{5}(3) + 2$ $p_1 = 1 \text{ (given)}$
 $s_2: 3 = \mathbf{1}(2) + 1$ $p_2 = p_0 - p_1(q_0) \mod 37$
 $= 0 - 1(2) \mod 37 = 35$
 $s_3: 2 = \mathbf{2}(1) + 0$ $p_3 = p_1 - p_2(q_1) \mod 37$
 $= 1 - 35(5) \mod 37 = 11$
 $p_4 = p_2 - p_3(q_2) \mod 37$
 $= 35 - 11(1) \mod 37 = \mathbf{24}$

Modular inverse is 24

(b) Find $13^{-1} \mod 91$

$$gcd(13, 91) = 13$$

$$\therefore \nexists \text{ integers } (p, n) \mid 13p = 91n + 1$$

13 not invertible modulo 91

(c) Find $13^{-1} \mod 448$

$$\gcd(13, 448) = 1$$

$$\therefore \exists \text{ integers } (p, n) \mid 13p = 448n + 1$$

$$s_0: 448 = \mathbf{34}(13) + 4 \qquad p_0 = 0 \text{ (given)}$$

$$s_1: 13 = \mathbf{2}(6) + 1 \qquad p_1 = 1 \text{ (given)}$$

$$s_2: 6 = \mathbf{6}(1) + 0 \qquad p_2 = p_0 - p_1(q_0) \text{ mod } 448$$

$$= 0 - 1(34) \text{ mod } 448 = 414$$

$$p_3 = p_1 - p_2(q_1) \text{ mod } 448$$

$$= 1 - 414(2) \text{ mod } 448 = \mathbf{69}$$
Modular inverse is $\mathbf{69}$

(d) Find $16^{-1} \mod 4725$

$$\gcd(16,4725) = 1$$

$$\therefore \exists \text{ integers } (p,n) \mid 16p = 4725n + 1$$

$$s_0: 4725 = \mathbf{295}(16) + 5 \quad p_0 = 0 \text{ (given)}$$

$$s_1: 16 = \mathbf{3}(5) + 1 \quad p_1 = 1 \text{ (given)}$$

$$s_2: 5 = \mathbf{5}(1) + 0 \quad p_2 = p_0 - p_1(q_0) \mod 4725$$

$$= 0 - 1(295) \mod 4725 = 4430$$

$$p_3 = p_1 - p_2(q_1) \mod 4725$$

$$= 1 - 4430(3) \mod 4725 = \mathbf{886}$$
Modular inverse is $\mathbf{886}$