## Proposition 12.1. We have

$$\varphi(u, v) = \frac{1}{2} [\Phi(u+v) - \Phi(u) - \Phi(v)]$$

for all  $u, v \in E$ . We say that  $\varphi$  is the polar form of  $\Phi$ .

*Proof.* By bilinearity and symmetry, we have

$$\Phi(u+v) = \varphi(u+v, u+v) 
= \varphi(u, u+v) + \varphi(v, u+v) 
= \varphi(u, u) + 2\varphi(u, v) + \varphi(v, v) 
= \Phi(u) + 2\varphi(u, v) + \Phi(v).$$

If E is finite-dimensional and if  $\varphi \colon E \times E \to \mathbb{R}$  is a bilinear form on E, given any basis  $(e_1, \ldots, e_n)$  of E, we can write  $x = \sum_{i=1}^n x_i e_i$  and  $y = \sum_{j=1}^n y_j e_j$ , and we have

$$\varphi(x,y) = \varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{i,j=1}^{n} x_i y_j \varphi(e_i, e_j).$$

If we let G be the matrix  $G = (\varphi(e_i, e_j))$ , and if x and y are the column vectors associated with  $(x_1, \ldots, x_n)$  and  $(y_1, \ldots, y_n)$ , then we can write

$$\varphi(x,y) = x^{\top} G y = y^{\top} G^{\top} x.$$

Note that we are committing an abuse of notation since  $x = \sum_{i=1}^{n} x_i e_i$  is a vector in E, but the column vector associated with  $(x_1, \ldots, x_n)$  belongs to  $\mathbb{R}^n$ . To avoid this minor abuse, we could denote the column vector associated with  $(x_1, \ldots, x_n)$  by  $\mathbf{x}$  (and similarly  $\mathbf{y}$  for the column vector associated with  $(y_1, \ldots, y_n)$ ), in which case the "correct" expression for  $\varphi(x, y)$  is

$$\varphi(x,y) = \mathbf{x}^{\top} G \mathbf{y}.$$

However, in view of the isomorphism between E and  $\mathbb{R}^n$ , to keep notation as simple as possible, we will use x and y instead of  $\mathbf{x}$  and  $\mathbf{y}$ .

Also observe that  $\varphi$  is symmetric iff  $G = G^{\top}$ , and  $\varphi$  is positive definite iff the matrix G is positive definite, that is,

$$x^{\top}Gx > 0$$
 for all  $x \in \mathbb{R}^n$ ,  $x \neq 0$ .

The matrix G associated with an inner product is called the *Gram matrix* of the inner product with respect to the basis  $(e_1, \ldots, e_n)$ .

Conversely, if A is a symmetric positive definite  $n \times n$  matrix, it is easy to check that the bilinear form

$$\langle x, y \rangle = x^{\top} A y$$