

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு முதலாம் தவணைப் பரீட்சை - 2023

0

National Field Work Centre, Thondaimanaru. 1st Term Examination - 2023

	1 Term Examination - 20	023
Grade - 12 (2024)	chemistry	Marking Scheme
027 #	CHEMISTRY	
240	Part I	
(1) 2 (6)	2 (11) 5 (16)	5 (20)
(2) 5 (7)	5 (12) 2 (17)	3 (22)
(4).4	(13) 3 (18)	4 (23) 3
(5) 3 (10) 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 (24) 2,
		25 × 02 = 50 marks
	Part II.	e v
(a) (1) True (11) True		
(IV) False.		
(V) True (V) False	6×03=(18)	
(b) (b)	F- N= S- F:	
(II) N =	angillar / V shape S-	Trigonal planer
N=	(-1) $S = (+4)$ $\boxed{3}$	

C)
$$10 - 0 - 12 - 12 = 0$$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 12 - 12 = 0$
 $10 - 0 - 0 - 0 = 0$
 $10 - 0 - 0 - 0 = 0$
 $10 - 0 - 0 = 0$
 $10 - 0 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 $10 - 0 = 0$
 1

رگ (2) (a) (1) Lyman (B) (1) -36, -327 KJmol (05)+65) (111) -36-(-327) = 291/c3mol1 (AND) Energy of one photon = 291 come = 48.322 x1334 = 4.832 × 10 2 /cj E=hor $25 = \frac{1}{100} = \frac{4.832 \times 10^{22} \times 10^{3}}{6.626 \times 10^{34}}$ = 7.29×1045-15 (V) E=0-(-1311)12 Ing) = 1311 /czmb-1 (b) (1) Iz CH4cg) (11) PHNO2 (11) Nacloag) (IV) HCHO, HBY 7×04=(28) (C) (1) Xe F4. No of Lone pairs = Bt

No of lone pairs = D

Electron pair geometry = Octa hedral Square planar Shape

\37
(b) (1) Al(OH)3 < Mg(OH)2 < Ba(OH)2
(1) NH2 < N2H4 < NH20H
(11) SF6 < SF4 LSF2
(IV) $O_2 < O_3 < H_2 O_2$ $5 \times 0.7 = (3.5)$
(V) Ma (Zn < V
(C) (1) Molecules of Brz and Icl are grove-tronic. (Brz=160gne-1) (Icl=162:5gne) Browne - 1-21
Bromune molecules are non-polar and
Bromine molecules are non-polar and Braboils at (sei). Icl Consists & polar molecules and boils at 97'c
· Boiling point of Br2 / Icl. (10)
(11) Sodrum atom can donate one election as
of has one electron in the Valance Shell while, Mg atom donates 2 electrony
Shell while. My atom donates 2 electrony
to the metallic bond.
(Ma=15252p635) (Mg=152252p6352)
atoms in creases the Strength of the Metalic bond is Enhanced as well radius of Na > Ma
radius of is Enhanced as well.
Ma> Ma
1: Strengther of Metallic bond Na < Mg
melting of point 2 Mg >Na.

(11) $M_9 = 12 = 15^2 25^2 29^6 35^2$
$A1 = 13 = 15^{2}25^{2}210^{6}35^{3}31^{6}$
$M_{2} = \frac{1}{2} \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$
Mg -352 type full filled more Steble
Shan At.
: 79 mg> 20 Al.
(4) (a) (100)
(a) (a)
Mass comp 40 6.67 53.22
Mass comp 40 6.67 53.33
· mbe comp? 40 6.67 53.33
$\frac{1}{12}$ $\frac{40}{12}$ $\frac{6.67}{12}$ $\frac{53.33}{12}$
16
3.33 6.67 3.33
mole ratio 3.33 6.67 2.23
3:33
3,33
2
35
Empirical formula = CH20 (35)
Empirical formular mass = 12+2+18
$(CH_2O)n = 90$
30n=90
n=2
· Molepular b. 0
· Molecular formula is C3+603 (5)
363

4, 6
4(b) molecular mass g Na2 Co3
-23 +12+ 16x2
11=0/m = 1.06g = 106groe 1.
10ceptol-
=0.01msl.
[Na2 Co3car)] = 0.01msf = 0.01
1000 A (E)
= 0.025modn3
(111) Max Obscar 2 Natag + Cosag
(111) Mas Oscar 2 Matag + Costag
[Natago] = 0.025x2
= 0.05 ms din3
(N) (CO3=1) = 00025MSdm3 (5)
(C) Am
$M=\Lambda q$
= 10ml x 1.15gml = 11.59
$\frac{11.59}{11.59} \times 100 = 20.1$
/W 11.59 - 00 /·
(d) () KMnO ₄ · +7
(10 K2MnO4 +6 (14) M203 +3.
(111) $M_{n}O_{2} + 4$

