MagicPanel 用户手册

zyfcode@outlook.com

最后更新: 2022年4月26日

目录

1	Mag	icPanel 简介 3
	1.1	功能简介
	1.2	MagicPanel 的面板数据格式规范3
	1.3	MagicPanel 的基本逻辑
	1.4	QuasiPanel 类简介
	1.5	Panel 类简介
	1.6	主要类方法速览
	1.7	链式调用
2	Qua	siPanel 类方法详解 5
	2.1	contents
	2.2	gen_panel
	2.3	import_from_csv
	2.4	standardize_hor
	2.5	standardize_policy
	2.6	standardize_ver
3	Pane	sl 类方法详解 9
	3.1	absorb
	3.2	add_var
	3.3	change
	3.4	contents
	3.5	extract
	3.6	export
	3.7	get
	3.8	get_syn_from_csv
	3.9	get_var_col

目录

4	示例代码	13
	3.15 variables	13
	3.14 units	13
	3.13 time	12
	3.12 sort	12
	3.11 paraphrase	12
	3.10 locate	12

1 MagicPanel 简介

1.1 功能简介

社会科学或计量经济学研究常常需要用到面板数据库,同一项研究使用的面板数据一般包括多个变量,而这些变量常常来自多个不同的数据源,格式也不尽相同。将这些数据手动合并到一起,费时费力且容易出错。

MagicPanel 库为合并不同格式的面板数据提供了工具。虽然R和Stata等专业统计软件提供了类似的数据合并选项,但它们一般要求待合并的两个数据库有相同的格式,而MagicPanel为不同格式的面板数据提供了可行方案。

1.2 MagicPanel 的面板数据格式规范

表1示例了 MagicPanel 的面板数据格式规范。我们将表格分成四个基本部分:

- 1. **变量名** (index / varname): 即 "表头", 在表1中为黄色的行。
- 2. **样本名** (unit): 如"国家名""城市名"等, 在表1中为红色的列。
- 3. **时间点**(timepoint):如"年份""季度"等,在表1中为蓝色的列。
- 4. **变量值**(value):确定样本名、时间点、变量名,可以在面板数据中确定唯一的一个单元格,该单元格中的内容就是"变量值",在表1中为白色的单元格。

表 1: 面板数据格式规范示例(数据无实际意义)

城市名	年份	专利申请量	人均GDP	人才政策
A市	2011	603	1.768	0
A市	2012	611	1.895	0
A市	2013	1614	1.936	1
A市	2014	1444	1.357	1
A市	2015	1554	1.872	1
B市	2011	641	1.367	0
B市	2012	668	1.452	0
B市	2013	644	1.432	0
B市	2014	545	1.118	0
B市	2015	617	1.317	0
C市	2011	1256	3.879	0
C市	2012	1310	4.208	0
C市	2013	1373	4.378	0
C市	2014	2161	3.779	1
C市	2015	2299	4.257	1

表2和表3示例了一些格式不规范的面板数据。MagicPanel 提供了一系列方法,将这些格式各异的数据转化成统一的面板数据规范格式。

专利申请量 2011 2012 2013 2014 2015 A市 603 611 1444 1554 B市 641 668 644 545 617 C市 1256 1373 2161 2299 1310

表 2: 不规范的面板数据示例一(数据无实际意义)

表 3: 不规范的面板数据示例二(数据无实际意义)

城市名	变量名	2011	2012	2013	2014	2015	
A市	专利申请量	603	611	1614	1444	1554	
B市	专利申请量	641	668	644	545	617	
C市	专利申请量	1256	1310	1373	2161	2299	
A市	人均 GDP	1.768	1.895	1.936	1.357	1.872	
B市	人均 GDP	1.367	1.452	1.432	1.118	1.317	
C市	人均 GDP	3.879	4.208	4.378	3.779	4.257	
A市	人才政策	0	0	1	1	1	
B市	人才政策	0	0	0	0	0	
C市	人才政策	0	0	0	1	1	

如果您是在浏览 gen_panel() 方法详解时跳转到这里的,可点击这里返回:gen_panel。

1.3 MagicPanel 的基本逻辑

1.4 QuasiPanel 类简介

```
__init__(self, contents=[[]])
```

QuasiPanel 类用于对"准面板"进行操作。

- 一些格式不太规范的面板数据,可以先声明为 QuasiPanel 类的一个实例,使用 QuasiPanel 类的一些方法进行标准化之后,再转换为 Panel 类的一个实例,以便进行进一步的操作。
 - contents 参数指定矩阵的初始内容,数据类型应当是一个 list,且这个 list 的内容应当是若干个长度相同的 list。默认值为一个空矩阵。

1.5 Panel 类简介

```
__init__(self, units: dict={"country": ["Aruba"]}, time: dict={"year": [2001, 2022]})
```

Panel 类用于对"面板"进行操作。

Panel 类的方法大多是为了进一步处理标准格式的面板。这些方法如果应用于格式不规范的数据,往往会造成错误,所以它们是 Panel 类独有的方法。

• units 参数指定面板数据第一列的内容。需要传入一个字典,键为表头(如"国家名"),值为包含所有样本名称(如国家名)的列表。默认值为 {"country": ["Aruba"]}。

• units 参数指定面板数据第二列的内容。需要传入一个字典,键为表头(如"年份"), 值为一个二元列表,分别指定了面板数据的起止时间点(如起止年份)。默认值为 {"year": [2001, 2022]}。

1.6 主要类方法速览

1.7 链式调用

MagicPanel 推荐使用链式调用的方式调用类方法,这可以使代码更清晰可读:

```
pn1 = (
    MagicPanel
    .QuasiPanel()
    .import_from_csv(path=path, filename="gdppc-horizonal-gbk", encoding="gb18030")
    .standardize_hor(index_row=0, unit_col=0, var_col=1, first_time_col=2)
    .gen_panel()
)
```

如果不习惯链式调用, 您依旧可以逐行单独调用方法:

```
pn1 = MagicPanel.QuasiPanel()
pn1.import_from_csv(path=path, filename="gdppc-horizonal-gbk", encoding="gb18030")
pn1.standardize_hor(index_row=0, unit_col=0, var_col=1, first_time_col=2)
pn1.gen_panel()
```

这两种写法是等效的。

2 QuasiPanel 类方法详解

2.1 contents

```
contents(self)
```

返回值为准面板的当前内容。返回值的数据类型是list。

2.2 gen_panel

```
gen_panel(self)
```

将一个 QuasiPanel 声明为 Panel。返回值为 Panel 类的一个实例。

注意: 必须确保 QuasiPanel 的内容已经符合面板数据的规范形式,才可以使用此方法。 参见MagicPanel 的面板数据格式规范。

通过 **standardize_hor**、**standardize_ver** 或 **standardize_policy** 方法生成的 QuasiPanel, 原则上都应该符合面板数据的规范,可以放心使用本方法声明为 Panel。

2.3 import_from_csv

```
import_from_csv(self, path: str, filename: str, encoding: str="utf-8", optimize: bool=
    True)
```

从指定的 csv 文件中读取数据,并覆盖矩阵的内容。返回值为更新后的 Matrix 实例。

- path 参数指定文件所在的文件夹。
- filename 参数指定文件名(不含后缀".csv")。
- encoding 参数指定 csv 文件的编码,默认为 utf-8 格式。
- optimize 参数指定是否要在导入时自动优化格式。默认值为True。格式优化包括:
 - 如果 csv 文件的末尾有空行,则会自动删去这些空行。这里的"空行"包括两种情况:长度为 0 的行;每一个单元格长度都为 0 的行。
 - 如果 csv 文件的各行长度不全相等,则会自动用空字符串补齐在较短的行的末尾, 使得各行长度相等。
 - 如果 csv 文件的最右侧有空列,则会自动删去这些空列。

2.4 standardize_hor

```
standardize_hor(self, index_row: int=0, unit_col: int=0, var_col=1, var_name="",
    first_time_col: int=2)
```

适用于**时间线横向排开、样本名和变量名纵向排列**的原始数据。显然这种排列方式不符合 MagicPanel 的格式规范。**standardize_hor** 方法将这种格式的数据转变为 MagicPanel 的规范格式。

返回值是更新内容后的一个 QuasiPanel 的实例。

- index_row 参数指定索引行(即"表头")的行号,行号从 0 开始计。默认值为 0。计算时,空行也包括在内。经过 Excel 渲染的 csv 文件,显示的行号可能不是真实的行号;因此,最好是在记事本中打开 csv 文件,查看表头的行号。在图1中,index_row 参数应设为 4。
- unit_col 参数指定样本名称(如"国家名""城市名"等)所在列的列号,列号从0开始计。默认值为0。计算时,空列也包括在内。在图1中,unit_col 参数应设为0或1。
- var_col 参数指定变量名称所在列的列号,列号从0开始计。默认值为1。计算时,空列也包括在内。在图1中,var_col 参数应设为2或3。如果原始数据中没有指定变量名的列,则该参数可设为None,相应地,需要指定var_name参数。
- var name 参数指定变量名。仅当 var col 的值为 None 时有效。默认值为空字符串。

4	А	В	С	D	Е	F	G	н	1
1	Data Source	World Development Indicators							
2									
3	Last Updated Date	2021/12/16							
4									
5	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964
6	Aruba	ABW	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
7	Africa Eastern and Southern	AFE	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
8	Afghanistan	AFG	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
9	Africa Western and Central	AFW	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
	Angola	AGO	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
11	Albania	ALB	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
12	Andorra	AND	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
13	Arab World	ARB	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
14	United Arab Emirates	ARE	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
15	Argentina	ARG	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					
16	Armenia	ARM	Taxes on income, profits and capital gains (% of revenue)	GC.TAX.YPKG.RV.ZS					

图 1: standardize_hor 方法应用示例

	Α	В
1	省份	是否实验组
2	A省	1
3	B省	1
4	C省	0
5	D省	1
6	E省	0
7	F省	0
8	G省	0
9	H省	1

图 2: 同时施行的政策

• first_time_col 参数指定起始年份的数据所在列的列号,列号从0开始计。默认值为 2。计算时,空列也包括在内。在图1中,first_time_col 参数应设为 4。

2.5 standardize_policy

```
standardize_policy(self, start, end, mode: str="sync", varname: str="", treat_time=0)
```

这个方法适用于处理一类特殊的数据,即政策变量。

这类变量往往连续多年取同样的值,并在个别时间节点发生变化。因此,原始数据常常仅指出了政策变化的时间节点,而没有标注每一年的变量值。standardize_policy 方法可以将这类原始数据转化成规范的面板数据形式。

本方法可以处理三类原始数据:

	Α	В
1	省份	政策施行年份
2	A省	2005
3	B省	
4	C省	2004
5	D省	2017
6	E省	
7	F省	2009
8	G省	
9	H省	2013

图 3: 不同时施行的政策

A		В	С	D
1	省份	年份	人才资助	医保起付线
2	A省	2010	10000	600
3	A省	2013	30000	300
4	B省	2010	0	200
5	B省	2017	10000	200
6	C省	2010	0	0
7	D省	2010	30000	1000
8	D省	2016	30000	600
9	D省	2018	50000	0
10	E省	2010	20000	500
11	F省	2010	20000	100
12	F省	2014	30000	100
13	F省	2019	50000	100
14	G省	2010	30000	300
15	H省	2010	40000	300

图 4: 多次变化的政策

- 1. **同时施行的**(synchronic)政策变量。即:控制组始终不施行政策,实验组的所有样本在同一时间施行政策。此时,传入的原始数据只需要如图2所示即可。处理这类数据时,需要在 standardize_policy() 的参数中额外指定**政策施行年份**。
- 2. **不同时施行的**(diachronic)政策变量。即: 控制组始终不施行政策, 实验组的样本施行政策有时间先后之别。此时, 传入的原始数据只需要如图3所示即可(控制组的"政策施行年份"一列值为空)。
- 3. **复杂的**(complex)政策。该模式允许原始数据中有多个变量,并且变量的值可以多次变化。此时,传入的原始数据需要如图4所示(**时间必须按先后顺序排列**),明确指定每次变化的时间点,以及变化后政策变量的值。
- start 参数指定面板数据从哪一个时间点开始记录。
- end 参数指定面板数据在哪一个时间点结束记录。
- mode 参数指定处理模式,分别对应上述的三类原始数据。值为 "sync"时,处理同时施行的(synchronic)政策;值为 "diac"时,处理不同时施行的(diachronic)政策;值为 "complex"时,处理复杂的(complex)政策。默认值为 "sync"。
- varname 参数指定政策变量的名称。仅在 mode="sync" 或 mode="diac" 时适用。
- treat_time 参数指定政策(同时)施行的时间点。默认值为 0。仅在 mode="sync" 时适用。

注意: 在所有模式中, 变量值的变化在政策施行当年即发生。

2.6 standardize ver

standardize_ver(self, index_row: int=0, unit_col: int=0, time_col: int=1, first_var_col:
 int=2)

适用于**样本名和时间线纵向排列、变量名横向排列**的原始数据。这种排列方式基本符合 MagicPanel 的格式规范。**standardize_ver** 方法对这种格式的数据进行一些微调,如删除多余的行和列等。

返回值是更新内容后的一个 QuasiPanel 的实例。

- index_row 参数指定索引行(即"表头")的行号,行号从0开始计。默认值为0。计算时,空行也包括在内。经过 Excel 渲染的 csv 文件,显示的行号可能不是真实的行号;因此,最好是在记事本中打开 csv 文件,查看表头的行号。
- unit_col 参数指定样本名称(如"国家名""城市名"等)所在列的列号,列号从0开始计。默认值为0。计算时,空列也包括在内。
- time_col 参数指定变量名称所在列的列号,列号从0开始计。默认值为1。计算时,空 列也包括在内。
- first_var_col 参数指定第一个变量所在列的列号,列号从0开始计。默认值为2。计算时,空列也包括在内。

3 Panel 类方法详解

3.1 absorb

absorb(self, new_panel: "Panel", mode: str="new", mapping: dict={})

将一个新的面板数据合并到原来的面板中。

注意:合并时以原来的面板数据为基础。合并后保持原面板数据的样本顺序;**当新面板中有原面板没有的样本**(如原面板时间只到2010年为止,但新面板存在2011年的数据)时,新面板中多出来的样本会被舍弃。

absorb 方法提供两种模式:

- 新数据 (new) 模式, 即合并一个新的数据库进来, 添加为新的变量。
- **补充数据**(complementary)**模式**,即用新的数据填补原有数据中的缺失值(如果不是 缺失值、则不会填充,而是保留原有数据)。

应慎用"补充数据模式",因为不同来源的数据很可能有单位不一致、统计口径有差异等问题,贸然合并会影响数据质量。

- new_panel 参数指定新的面板,需要传入一个 Panel 类的实例。
- mode 参数指定合并的模式: "new" 为新数据模式, "complementary" 为补充数据模式。 默认值为 "new"。

mapping参数指定补充数据模式中变量名的对应情况。对于新数据来说,只有在mapping 中指定的变量会用于数据合并,其他的变量将被忽略。在补充数据模式下,必须一一指明变量名的对应情况,即使原变量名和对应的变量名相同。传入数据的格式为:{"原变量名A":"对应变量名A","原变量名B":"对应变量名B";...}。

3.2 add_var

```
add_var(self, varname: str)
```

给数据库添加一个新变量,变量的初始值为空字符串。

• varname 参数指定新变量的名称。

3.3 change

```
change(self, unit: str, timepoint, var: str, value: str)
```

通过指定样本名、时间点和变量名确定单元格,并改写该单元格的值。 如果找不到对应的单元格,则不对数据作任何改动。

- unit 参数指定样本名(如具体国家名)。
- timepoint 参数指定时间点(如具体年份)。
- var 参数指定变量名。
- value 参数指定为该单元格赋的新值。

3.4 contents

```
contents(self)
```

返回值为面板的当前内容。返回值的数据类型是list。

3.5 extract

```
extract(self, varlist: list)
```

通过指定变量,提取当前数据集的子数据集。返回值为 Panel 类的一个实例。如果指定的变量中有原数据集中不存在的变量,则忽略之。

• varlist 参数指定需要提取的变量名(表的前两列无需指定)。

3.6 export

```
export(self, path: str, filename: str, encoding: str="utf-8")
```

将当前面板数据导出为 csv 文件。

- path 参数指定导出文件所在的文件夹。
- filename 参数指定文件名(不含后缀".csv")。
- encoding 参数指定 csv 文件的编码,默认为 utf-8 格式。如果使用 Excel 打开导出文件时 乱码,可以尝试声明 encoding="gb18030"。

3.7 get

```
get(self, unit: str, timepoint, var: str)
```

通过指定样本名、时间点和变量名, 获取面板数据中的一个单元格的值。

返回值为一个字符串、即要查找的单元格的值。

如果找不到对应的单元格,则返回None。

- unit 参数指定样本名(如具体国家名)。
- timepoint 参数指定时间点(如具体年份)。
- var 参数指定变量名。

3.8 get syn from csv

```
get_syn_from_csv(path: str, filename: str, encoding: str="utf-8")
```

从csv文件中获取同义词词典。返回值为一个字典。

关于该字典的形式和用途,参见paraphrase。

- path 参数指定 csv 文件所在的文件夹。
- filename 参数指定文件名(不含后缀".csv")。
- encoding 参数指定 csv 文件的编码, 默认为 utf-8 格式。

3.9 get_var_col

```
get_var_col(self, varname: str)
```

返回值为变量名对应的列号。

如果数据中有重复的变量名(这种情况应尽量避免),则返回第一个匹配到的列号。如果找不到该变量,则返回 None。

• varname 参数指定要查找的变量名。

3.10 locate

```
locate(self, unit: str, timepoint, var: str)
```

通过指定样本名、时间点和变量名,锁定面板数据中的一个单元格。 返回值为一个元组,包含要查找的单元格的行号和列号(行号和列号从0开始计)。 如果找不到对应的单元格,则返回(None, None)。

- unit 参数指定样本名(如具体国家名)。
- timepoint 参数指定时间点(如具体年份)。
- var 参数指定变量名。

3.11 paraphrase

```
paraphrase(self, synonyms: dict)
```

该方法可以解决一个常见的问题,即不同的数据库对同一个样本采用不同的称呼方式。如 "Cambodia"和 "Kampuchea"都是指柬埔寨、"Cote d'Ivoire"和 "Ivory Coast"都是指科特迪瓦等。

• synonyms 参数指定一个同义词词典。这个词典需要逐个指明每个样本的别名对应的标准名称。传入数据的格式为: {"别名1": "标准名1", "别名2": "标准名2", ...}。

3.12 sort

```
sort(self, varlist: list=[], reverse=False)
```

将面板数据重新排序。先按照用户设置排序,对于按照用户设置无法分出顺序的,按照 样本名称和时间升序排列。

- varlist 参数指定排序依据的变量。放在前面的变量优先级更高。默认值为空列表。当 varlist 参数为默认值时,即对原始数据按照样本名称和时间升序排列。
- reverse 参数指定是否降序排列。默认值为 False。

在 Python 中,字符串排序是按照字典顺序,因此会出现 "345" > "1234" 的情况。为了避免这种情况,对于所有数字型的变量,MagicPanel 会将其自动转成浮点数(float)再进行排序。

3.13 time

time(self)

返回值为面板包含的所有时间点(如所有年份),从小到大排序。

4 示例代码 13

3.14 units

```
units(self)
```

返回值为面板包含的所有样本名(如所有国家名),按字母顺序排序。

3.15 variables

```
variables(self)
```

返回值为面板包含的所有变量名(即"表头"的各项),按原始顺序排序。

4 示例代码

```
# 以下为MagicPanel库的示例代码。
# 访问 https://github.com/pku-zyf/MagicPanel/,可在 "example-data" 文件夹获取本示例代码
   用到的原始数据。
#将 "example-data" 文件夹复制到本示例代码所在的路径,即可运行。
# 所有数据仅供示例使用,无任何实际意义。
import MagicPanel
from os.path import dirname, join, realpath
def main():
   # 获取原始数据所在路径。
   path = join(dirname(realpath(__file__)), "example-data")
   # 导入"人均GDP"数据(横向)。
   pn1 = (
      MagicPanel
      .QuasiPanel()
      .import_from_csv(path=path, filename="gdppc-horizonal-gbk", encoding="gb18030")
      .standardize_hor(index_row=0, unit_col=0, var_col=1, first_time_col=2)
      .gen_panel()
   #导入"人口"数据(纵向)。
   pn2 = (
      MagicPanel
      .QuasiPanel()
      .import_from_csv(path=path, filename="pop-vertical-utf8", encoding="utf8")
      .standardize_ver(index_row=2, unit_col=0, time_col=1, first_var_col=2)
      .gen_panel()
   #导入"人才政策"数据(虚拟变量)。
```

4 示例代码 14

```
pn3 = (
      MagicPanel
      .QuasiPanel()
       .import_from_csv(path=path, filename="policy-big5", encoding="big5")
       .standardize_policy(varname="人才政策", start=2011, end=2020, mode="diac")
      .gen_panel()
   #导入"专利数量"数据(横向)。
   pn4 = (
      MagicPanel
      .QuasiPanel()
      .import_from_csv(path=path, filename="patent-horizonal-gbk", encoding="gbk")
       .standardize_hor(index_row=1, unit_col=0, var_col=None, var_name="专利数量",
          first_time_col=1)
       .gen_panel()
   )
   #导入"专利数量"补充数据(横向)。
   pn5 = (
      MagicPanel
      .QuasiPanel()
      .import_from_csv(path=path, filename="patent-horizonal-sup-gbk", encoding="gbk")
       .standardize_hor(index_row=1, unit_col=0, var_col=None, var_name="专利数量",
          first_time_col=1)
      .gen_panel()
   )
   # 合并数据。
   pn = (
      pn1
      .absorb(pn2)
      .absorb(pn3)
      .absorb(pn4)
      .absorb(pn5, mode="complementary", mapping={"专利数量": "专利数量"})
      .sort()
   )
   # 导出数据。导出为gb18030格式,可在Windows系统的Excel中直接打开。
   pn.export(path=path, filename="result", encoding="gb18030")
if __name__ == "__main__":
   main()
```