BTRY/STSCI 4030 - Linear Models with Matrices - Fall 2017 Midterm - Monday, October 15

	Midterm - Monday, October 15			
NAME:				

Instructions:

NETID:

It is not necessary to complete numerical calculations (using a calculator) if you clearly show how the answer can be obtained, and if the exact answer is not required in subsequent parts.

A set of formulae and notes is provided with the exam; other outside material is not allowed. You may directly use any result on the notes without proving it.

You may reference any result in the formulae by it's number; e.g. the Eigendecomposition for a symmetric matrix is in 5.2a.

1

The questions on this exam are inspired from a consulting meeting that Giles had with a student in Consumer Behavior on October 4 this year. The student was interested in how a student's ecological consciousness affected their preferences for displaying a brand name on a t-shirt. The following description is highly idealized.

- Subjects were given a survey about their ecological attitudes and given a numeric score, x_2 , rating their ecological awareness. We will use this as x_2 .
- Subject's were also classified as being religious $(x_1 = 1)$ or not $(x_1 = 0)$.
- Subjects were asked to rate their preference for two t-shirts displaying a brand logo: one large and one small. The difference in their preferences is the response y.

Throughout, we assume the usual framework of a linear regression, that

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \epsilon \sim N(0, \sigma^2 I)$$

for any particular X that we are working with.

We will first only use the categorical variable x_1 . For this we assume we have

- n_0 subjects with $x_1 = 0$, with average response \bar{y}_0 .
- n_1 subjects with $x_1 = 1$ with average response \bar{y}_1 .
- Totalling $n = n_0 + n_1$ subjects with average response $\bar{y} = (n_0 \bar{y}_0 + n_1 \bar{y}_1)/n$.

It may be helpful to note that we can write

$$ar{y}_1 = rac{oldsymbol{x}_1^Toldsymbol{y}}{oldsymbol{x}_1^Toldsymbol{x}_1}$$

1. (10 points) Regressing y on x_1 , we would use a covariate matrix $X_1 = [\mathbf{1}, \boldsymbol{x}_1]$, express $X_1^T X_1$ and $X_1^T \boldsymbol{y}$ in terms of n_0, n_1, \bar{y}_0 and \bar{y}_1 .

2. (12 points) Hence, express $(X_1^T X_1)^{-1}$ and $\hat{\beta}$ in terms of n_0 , n_1 , \bar{y}_0 and \bar{y}_1 . It may help to have the following formula

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad-bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right].$$

Give (in words) an interpretation of $\hat{\beta}_0$ and $\hat{\beta}_1$.

3. (12 points) Write the prediction for a new subject with $x_1 = 1$ in terms of $\hat{\beta}_0$ and $\hat{\beta}_1$. Show that it's variance is σ^2/n_1 .

We will now also consider x_2 . Using both categorical (x_1) and continuous (x_2) covariates often referred to as the *Analysis of Covariance (ANCOVA)*, even if Giles thinks it's all just part of linear regression.

For this, we will write the average value of x_2 among subjects with $x_1 = 0$ to be $\bar{x}_{2,0}$ and among subjects with $x_1 = 1$ to be $\bar{x}_{2,1}$ and write \tilde{x}_2 to be x_2 with the group mean subtracted:

$$\tilde{x}_{i2} = \begin{cases} x_{i2} - \bar{x}_{2,0} & \text{if } x_{i1} = 0 \\ x_{i2} - \bar{x}_{2,1} & \text{if } x_{i1} = 1 \end{cases} = (I - H_1) \boldsymbol{x}_2$$

and we will set $X_2 = [\mathbf{1}, \boldsymbol{x}_1, \tilde{\boldsymbol{x}}_2].$

4. (10 points) Show that $\tilde{\boldsymbol{x}}_2$ can be written as $\boldsymbol{x}_2 - \alpha_1 \mathbf{1} - \alpha_2 \boldsymbol{x}_1$. What are α_1 and α_2 ? You may find earlier questions useful.

5.	(12 points)	Write out	$X_2^T X_2$ for	this new	model.	Show that	your	esti-
	mates $\hat{\beta}_0$ as	$\operatorname{nd} \hat{eta}_1 \operatorname{are} v$	nchanged	from Que	estion 2.			

If we are interested in β_1 , was there any point to adding x_2 ?

6. (10 points) Give an expression for the variance inflation factor for $\hat{\beta}_2$ in terms of \tilde{x}_2 and x_2 .

7. (14 points) By writing out the prediction equation $\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 \tilde{x}_2$ in terms of x_2 , find $\hat{\beta}_1^*$, the estimate of $\hat{\beta}_1$ in a model where we used $X_2^* = [\mathbf{1}, \mathbf{x}_1, \mathbf{x}_2]$ instead of X.

Why has $\hat{\beta}_2$ not changed? What is the variance of $\hat{\beta}_1^*$?

8. (10 points) There is a concern that the slope on x_2 (awareness) might be different between the $x_1 = 1$ group and the $x_1 = 0$ group. For this reason, the researcher considers adding an interaction term to produce a design matrix $X = [\mathbf{1}, \mathbf{x}_1, \tilde{\mathbf{x}}_2, \mathbf{x}_1 \tilde{\mathbf{x}}_2]$ where the last column is the element-wise product of x_1 and \tilde{x}_2 .

Define a sum of squares to measure the total contribution of \tilde{x}_2 to the model in this case.

9. (10 points) In the general regression model $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, when describing VIFs, we have described $\sigma^2/(\boldsymbol{x}_1^T C \boldsymbol{x}_1)$ as the "minimum possible variance" that could be achieved for β_1 .

To see this, write $X = [\boldsymbol{x}_1, X_{-1}]$ to separate \boldsymbol{x}_1 from the other covariates, and assume \boldsymbol{x}_1 is centered.

We'll consider $\tilde{X}_{-1} = X_{-1} - \boldsymbol{x}_1 \boldsymbol{\alpha}$ where $\boldsymbol{\alpha}$ is a p-1-dimensional row vector and use a new design matrix $\tilde{X} = [\boldsymbol{x}_1, \tilde{X}_{-1}]$.

Show that the variance of β_1 is minimized when α is chosen so that $\tilde{X}_{-1}^T x_1 = \mathbf{0}$.

The following formula may be helpful

$$(\tilde{X}^T \tilde{X})^{-1} = \begin{bmatrix} \frac{1}{r} & -\frac{1}{r} (\tilde{X}_{-1}^T \tilde{X}_{-1})^{-1} \tilde{X}_{-1}^T \boldsymbol{x}_1 \\ -\frac{1}{r} \boldsymbol{x}_1^T \tilde{X}_{-1} (\tilde{X}_{-1}^T \tilde{X}_{-1})^{-1} & \left(\tilde{X}_{-1}^T \tilde{X}_{-1} - \frac{\tilde{X}_{-1}^T \boldsymbol{x}_1 \boldsymbol{x}_1^T \tilde{X}_{-1}}{\boldsymbol{x}_1^T \boldsymbol{x}_1} \right)^{-1} \end{bmatrix}$$

with
$$r = \boldsymbol{x}_1^T \boldsymbol{x}_1 - \boldsymbol{x}_1^T \tilde{X}_{-1} (\tilde{X}_{-1}^T \tilde{X}_{-1})^{-1} \tilde{X}_{-1}^T \boldsymbol{x}_1.$$

Bonus: Describe, at least heuristically, how you could generalize the ANCOVA analysis if we replaced x_2 with a matrix of continuous covariates $Z = [z_1, \dots, z_q]$.