

+37/1/48+

IPS - S7 - Jean-Matthieu Bourgeot

QCM2

	I	PS
Quizz	$d\mathbf{u}$	23/04/2014

Nom et prénom : SCHILLIARTZ Emmanuel

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 •

On considère une résistance thermométrique Pt100 de résistance $R_C(T)=R_0(1+\alpha T)$ où Treprésente la température en °C, $R_0=1\mathrm{k}\Omega$ la résistance à 0°C et $\alpha=3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant

L'étendu de mesure est [-25°C; 60°C].

 $V_G \cap \bigcup_{R_C(T)} V_{\text{mes}}$ Pour quelles valeurs de V_G le courant dans le capteur est toujours inférieur à 5mA.

$V_G \le 5 \text{V}$
$V_G \leq 11,6$ V

Question 2 •

3/3

2/2

Quelle est la résistance d'un fil métallique ? On note :

- ρ : la resistivité du matériau.
- l: la longueur du fil.
- S: la surface de la section du fil.

$$R = \rho lS$$

$$R = \rho \frac{S}{I}$$

$$R = \frac{lS}{a}$$

Question 3 • Soit F_{\max} la plus haute fréquence contenue dans un signal. D'aprés le théorème de Shannon, pour échantillonner sans pertes il faut que la fréquence d'échantillonnage F_e vérifie quelle condition?

 \square $F_e < 2F_{\text{max}}$ \square $F_{\text{max}} > 2F_e$ \square $F_e > 2F_{\text{max}}$ 1/1

 $F_{\text{max}} < 2F_e$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

4/4

... des différences de potentiels. ...des différences de températures.

... des températures. ... des potentiels.

... des résistances.

... des courants.

	Question 5 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste bobinée ?
	Le pas de bobinage
0/2	La longueur du potentiomètre
0/2	La résistance maximale du potentiomètre
	La course électrique.
	La taille des grains de la poudre utilisée
	Question 6 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
	Les voies sont symétriques.
	Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
3/3	Le gain est fixé par une seule résistance.
	De rejeter les perturbations de mode différentiel.
	Les impédances d'entrées sont élevées.
	Des impedances d'enviers sons cièvees.
	Question 7 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms.
	Quel est le pas de quantification de ce CAN?
1/1	☐ 80 mV.s ⁻¹ ☐ 78 mV ☐ 1.25 V ☐ 10 mV.s ⁻¹
	Question 8 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s . Que dire de la stabilité du système bouclé ?
8/8	
	Question 9 • Soit v_{1p} et v_{2p} les tensions parasites superposées aux deux voies d'entrées d'un amplificateur différentiel. Que vaut la tension parasite de mode commun en entrée de l'amplificateur différentiel?
0/4	
	1