

Typen

Unsichere Programme: Typfehler bei Auswertung

z.B. im
$$\lambda$$
-Kalkül: $(\lambda x. x+42)$ true \Rightarrow true $+42 =???$

Typisierung: Bestimme Ergebnistyp (möglichst vieler) sicherer

Programme, lehne unsichere ab

Einfache Typisierung:
$$\vdash (\lambda x. 2) : bool \rightarrow int$$

$$\vdash$$
 (λ x. 2) : int \rightarrow int

$$\vdash$$
 (λ f. 2) : (int \rightarrow int) \rightarrow int

Polymorphe Typen: $\vdash (\lambda x. 2) : \alpha \rightarrow int$

Typvariablen

- Basistypen: bool, int, unit, . . .
- Funktionstyp: $\tau_1 \rightarrow \tau_2$ (rechtsassoziativ)
- **Typvariablen:** $\alpha, \alpha_1, \alpha_2, \beta, \dots$

Weiterhin: $\tau, \tau_1, \tau_2, \dots$ steht für Typen

WS 2013/2014

Typsystem

Typsystem $\Gamma \vdash t : T$

 $\Gamma \vdash t : \tau - \text{im}$ Typkontext Γ hat Term t Typ τ . Γ ordnet freien Variablen x ihren Typ $\Gamma(x)$ zu.

Const:
$$\frac{c \in \textit{Const}}{\Gamma \mid -c : \tau_c}$$
 Var: $\frac{\Gamma(x) = \tau}{\Gamma \mid -x : \tau}$

ABS:
$$\frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \lambda x. \ t : \tau_1 \to \tau_2} \qquad \text{APP: } \frac{\Gamma \vdash t_1 : \tau_2 \to \tau \qquad \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash t_1 \ t_2 : \tau}$$

Vorsicht: darf keine Überschneidungen bei Typvariablen generieren!

Typisierung

Typ-Substitution

Endliche Abbildung von Typvariablen auf Typen.

Variablenkonvention: σ

Beispiel:
$$\sigma = [\alpha_1 \Leftrightarrow bool, \alpha_2 \Leftrightarrow \alpha_1 \to \alpha_1]$$

Wie Typvariablen substituieren für gültige Typisierung?

Lösung für Typsystem

$$(\sigma, \tau)$$
 Lösung für (Γ, t) , falls $\sigma\Gamma \vdash t : \tau$.

Beispiel: Sei
$$\Gamma = f : \alpha_1, a : \alpha_2$$
 und $t = f$ a Dann $([\alpha_1 \diamond \alpha_2 \rightarrow \alpha_3], \alpha_3), ([\alpha_1 \diamond \text{int} \rightarrow \text{int}, \alpha_2 \diamond \text{int}], \text{int})$ und

$$([\alpha_1 \Leftrightarrow \mathsf{int} \to \mathsf{bool} \to \mathsf{int}, \alpha_2 \Leftrightarrow \mathsf{int}], \mathsf{bool} \to \mathsf{int}) \ \mathsf{L\"osungen} \ \mathsf{f\"ur} \ (\Gamma, t)$$

Beispiel: Typisierung

Zu typisierender Term: $(\lambda x. x 0)$

Struktur:
$$(\alpha \to \beta) \to \gamma$$

$$\frac{\mathbf{x}: \mathsf{int} \to \beta \vdash \mathbf{x}: \mathsf{int} \to \beta \qquad \mathbf{x}: \mathsf{int} \to \beta \vdash \mathbf{0}: \mathsf{int}}{\mathbf{x}: \mathsf{int} \to \beta \vdash \mathbf{x} \; \mathbf{0}: \beta}$$
$$\vdash (\lambda \mathbf{x}. \; \mathbf{x} \; \; \mathbf{0}): (\mathsf{int} \to \beta) \to \beta$$

Lösungs-Beispiele:

- \bullet ([], (int $\rightarrow \beta$) $\rightarrow \beta$)
- \bullet ($[\beta \Leftrightarrow int]$, (int $\rightarrow int$) $\rightarrow int$)

Regel App:

APP:
$$\frac{\Gamma \models t_1 : \tau_2 \to \tau \qquad \Gamma \models t_2 : \tau_2}{\Gamma \models t_1 \ t_2 : \tau}$$

WS 2013/2014

β-Reduktion: Substitution von x (λx. t_1) $t_2 \Rightarrow t_1[x \mapsto t_2]$

Substitutionslemma

Wenn $\Gamma, x : \tau_1 \vdash t_1 : \tau_2$ und $\Gamma \vdash t_2 : \tau_1$, dann $\Gamma \vdash t_1[x \mapsto t_2] : \tau_2$.

Beweis: Induktion über Typsystemregeln.

β-Reduktion: Substitution von x (λx. t_1) $t_2 \Rightarrow t_1[x \mapsto t_2]$

Substitutionslemma

Wenn $\Gamma, x : \tau_1 \vdash t_1 : \tau_2$ und $\Gamma \vdash t_2 : \tau_1$, dann $\Gamma \vdash t_1[x \mapsto t_2] : \tau_2$.

Typerhaltungstheorem

Wenn $\Gamma \vdash t : \tau$ und $t \Rightarrow t'$, dann $\Gamma \vdash t' : \tau$.

Typsystem also korrekt bezüglich β -Reduktion.

Insbesondere: Reduziert t zu einer Konstanten c, so gilt:

$$\tau = \tau_{c}$$

β-Reduktion: Substitution von x (λx. t_1) $t_2 \Rightarrow t_1[x \mapsto t_2]$

Substitutionslemma

Wenn $\Gamma, x : \tau_1 \vdash t_1 : \tau_2$ und $\Gamma \vdash t_2 : \tau_1$, dann $\Gamma \vdash t_1[x \mapsto t_2] : \tau_2$.

Typerhaltungstheorem

Wenn $\Gamma \vdash t : \tau$ und $t \Rightarrow t'$, dann $\Gamma \vdash t' : \tau$.

Beweis: Induktion über Typsystemregeln. Fall App:

Annahmen: $\Gamma \vdash t_1 : \tau_1 \rightarrow \tau_2$ $\Gamma \vdash t_2 : \tau_1$ $t_1 \ t_2 \Rightarrow t'$

Wenn $t_1 \Rightarrow t_1'$, dann $\Gamma \vdash t_1' : \tau_1 \rightarrow \tau_2$.

Wenn $t_2 \Rightarrow t_2'$, dann $\Gamma \vdash t_2' : \tau_1$.

Zu zeigen: $\Gamma \vdash t' : \tau_2$

β-Reduktion: Substitution von x (λx. t_1) $t_2 \Rightarrow t_1[x \mapsto t_2]$

Substitutionslemma

Wenn $\Gamma, x : \tau_1 \vdash t_1 : \tau_2$ und $\Gamma \vdash t_2 : \tau_1$, dann $\Gamma \vdash t_1[x \mapsto t_2] : \tau_2$.

Typerhaltungstheorem

Wenn $\Gamma \vdash t : \tau$ und $t \Rightarrow t'$, dann $\Gamma \vdash t' : \tau$.

Beweis: Induktion über Typsystemregeln. Fall App:

Annahmen: $\Gamma \vdash t_1 : \tau_1 \to \tau_2$ $\Gamma \vdash t_2 : \tau_1$ $t_1 t_2 \Rightarrow t'$

Wenn $t_1 \Rightarrow t_1'$, dann $\Gamma \vdash t_1' : \tau_1 \rightarrow \tau_2$.

Wenn $t_2 \Rightarrow t_2'$, dann $\Gamma \vdash t_2' : \tau_1$.

Zu zeigen: $\Gamma \vdash t' : \tau_2$

Fallunterscheidung über t_1 $t_2 \Rightarrow t'$:

 β -Reduktion innerhalb von t_1 oder t_2 Behauptung folgt aus Annahmen.

 $t_1 = \lambda x. \ t^* \text{ und } t' = t^*[x \mapsto t_2] \Rightarrow \Gamma, x : \tau_1 \vdash t^* : \tau_2$ $\Rightarrow \text{Substitutionslemma}$

Untypisierbare λ -Terme

Typisierbare λ -Terme

t typisierbar im Kontext Γ , falls τ mit $\Gamma \vdash t : \tau$ exisitert.

- $(\lambda x. x + 42)$ true nicht typisierbar.
 - Angenommen, $\Gamma \vdash (\lambda x. x + 42)$ *true* : τ .
 - \Rightarrow (App) Existiert τ' mit $\Gamma \models \mathit{true} : \tau'$ und $\Gamma \models \lambda x. \ x + 42 : \tau' \rightarrow \tau.$
 - \Rightarrow (Const) $\tau' = \tau_{true} = \text{bool und (Abs) } \Gamma, x : \tau' \vdash x + 42 : \tau$
 - \Rightarrow (App) $\tau' = \tau = \text{int}$, da $\tau_+ = \text{int} \rightarrow \text{int} \rightarrow \text{int}$. Widerspruch.

Untypisierbare λ -Terme

Typisierbare λ -Terme

t typisierbar im Kontext Γ , falls τ mit $\Gamma \vdash t : \tau$ exisitert.

- $(\lambda x. x + 42)$ true nicht typisierbar.
 - Angenommen, $\Gamma \vdash (\lambda x. x + 42)$ *true* : τ .
 - \Rightarrow (App) Existiert τ' mit $\Gamma \vdash true : \tau'$ und $\Gamma \vdash \lambda x. \ x + 42 : \tau' \to \tau$.
 - \Rightarrow (Const) $\tau' = \tau_{true} = \text{bool und (Abs) } \Gamma, x : \tau' \vdash x + 42 : \tau$
 - \Rightarrow (App) $\tau' = \tau = \text{int}$, da $\tau_+ = \text{int} \rightarrow \text{int} \rightarrow \text{int}$. Widerspruch.

Aber: nicht alle sicheren Programme typisierbar

■ In diesem Sinn: Typsystem nicht vollständig bzgl. β -Reduktion

Untypisierbare λ -Terme

Typisierbare λ -Terme

t typisierbar im Kontext Γ , falls τ mit $\Gamma \vdash t : \tau$ exisitert.

- $(\lambda x. x + 42)$ true nicht typisierbar.
 - Angenommen, $\Gamma \vdash (\lambda x. x + 42)$ *true* : τ .
 - \Rightarrow (App) Existiert τ' mit $\Gamma \vdash true : \tau'$ und $\Gamma \vdash \lambda x. x + 42 : \tau' \rightarrow \tau$.
 - \Rightarrow (Const) $\tau' = \tau_{true} = \text{bool und (Abs) } \Gamma, x : \tau' \vdash x + 42 : \tau$
 - \Rightarrow (App) $\tau' = \tau = \text{int}$, da $\tau_+ = \text{int} \rightarrow \text{int} \rightarrow \text{int}$. Widerspruch.
- $\omega = (\lambda x. x x) (\lambda x. x x)$ nicht typisierbar
 - Angenommen $\Gamma \vdash (\lambda x. x x) (\lambda x. x x) : \tau$.
 - \Rightarrow (App) Existiert τ' mit $\Gamma \vdash \lambda x. \ x \ x : \tau' \to \tau$ (und $\Gamma \vdash \lambda x. \ x \ x : \tau'$).
 - \Rightarrow (Abs) $\Gamma, x : \tau' \vdash x x : \tau$
 - \Rightarrow (App) Existiert τ'' mit $\Gamma, x : \tau' \vdash x : \tau'' \rightarrow \tau$ und $\Gamma, x : \tau' \vdash x : \tau''$.
 - \Rightarrow (Var) $\tau' = (\tau'' \to \tau)$ und $\tau' = \tau''$. Also: $\tau'' = (\tau'' \to \tau)$
 - Typen sind endlich! \Rightarrow Keine Lösung für τ'' .
- Auch Y nicht typisierbar

Beispiel: if ChF 1 2 = $(((\lambda x. x) ChF) 1) 2$

Vorgabe: $\Gamma = \mathtt{ChF} : \alpha \to \beta \to \beta$

ChF hat Typ von Church Boolean cfalse

$$\Gamma \vdash (((\lambda x. x) ChF) 1) 2 : \alpha_1$$

Start der Typisierung mit Variable α_1

Beispiel: if ChF 1 2 = $(((\lambda x. x) ChF) 1) 2$

Vorgabe: $\Gamma = \mathtt{ChF} : \alpha \to \beta \to \beta$

$$\mathsf{APP} \ \frac{\Gamma \vdash ((\lambda \mathtt{x}.\,\mathtt{x})\,\mathsf{ChF})\,\mathbf{1} : \alpha_2 \to \alpha_1 \qquad \Gamma \vdash \mathbf{2} : \alpha_2}{\Gamma \vdash (((\lambda \mathtt{x}.\,\mathtt{x})\,\mathsf{ChF})\,\mathbf{1})\,\mathbf{2} : \alpha_1}$$

Passende Regel anwenden:

APP:
$$\frac{\Gamma \vdash t_1 : \tau_2 \to \tau \qquad \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash t_1 \ t_2 : \tau}$$

Problem: Wachsende Komplexität im Unterbaum durch $\alpha_2 \rightarrow \alpha_1$

Beispiel: if ChF 1 2 = $(((\lambda x. x) ChF) 1) 2$

Vorgabe: $\Gamma = \mathtt{ChF} : \alpha \to \beta \to \beta$

$$\mathsf{APP} \; \frac{\Gamma \vdash ((\lambda \mathtt{x}.\,\mathtt{x})\,\mathsf{ChF})\,\mathbf{1} : \alpha_{\mathbf{3}} \qquad \Gamma \vdash 2 : \alpha_{\mathbf{2}}}{\Gamma \vdash (((\lambda \mathtt{x}.\,\mathtt{x})\,\mathsf{ChF})\,\mathbf{1})\,\mathbf{2} : \alpha_{\mathbf{1}}}$$

Passende Regel anwenden:

APP:
$$\frac{\Gamma \vdash t_1 : \tau_2 \to \tau \qquad \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash t_1 \ t_2 : \tau}$$

Problem: Wachsende Komplexität im Unterbaum durch $\alpha_2 \to \alpha_1$ Lösung: vorerst α_3 und $\alpha_3 = \alpha_2 \to \alpha_1$ später.

 $\alpha_5 = \alpha_4 \rightarrow \alpha_3$

Beispiel: if ChF 1 2 = $(((\lambda x. x) ChF) 1) 2$

Vorgabe: $\Gamma = \mathtt{ChF} : \alpha \to \beta \to \beta$

$$\begin{array}{c} \mathsf{APP} \; \frac{\Gamma \vdash (\lambda \mathtt{x}.\,\mathtt{x}) \; \mathsf{ChF} : \alpha_5 \qquad \Gamma \vdash 1 : \alpha_4}{\Gamma \vdash ((\lambda \mathtt{x}.\,\mathtt{x}) \; \mathsf{ChF}) \; 1 : \alpha_3} \qquad \dots \\ \\ \mathsf{APP} \; \frac{\Gamma \vdash ((\lambda \mathtt{x}.\,\mathtt{x}) \; \mathsf{ChF}) \; 1 : \alpha_3}{\Gamma \vdash (((\lambda \mathtt{x}.\,\mathtt{x}) \; \mathsf{ChF}) \; 1) \; 2 : \alpha_1} \end{array}$$

Äquivalent...

APP:
$$\frac{\Gamma \models t_1 : \tau_2 \to \tau \qquad \Gamma \models t_2 : \tau_2}{\Gamma \models t_1 \ t_2 : \tau}$$

Beispiel: if ChF 1 2 = $(((\lambda x. x) ChF) 1) 2$

Vorgabe: $\Gamma = ChF : \alpha \rightarrow \beta \rightarrow \beta$

$$lpha_3=lpha_2 olpha_1$$
 $lpha_5=lpha_4 olpha_3$ $lpha_7=lpha_6 olpha_5$

$$\begin{array}{c} \mathsf{APP} & \frac{\Gamma \vdash \lambda \mathtt{x.\,x} : \alpha_7 \quad \Gamma \vdash \mathsf{ChF} : \alpha_6}{\Gamma \vdash (\lambda \mathtt{x.\,x}) \, \mathsf{ChF} : \alpha_5} \\ \mathsf{APP} & \frac{\Gamma \vdash (\lambda \mathtt{x.\,x}) \, \mathsf{ChF} : \alpha_5}{\Gamma \vdash ((\lambda \mathtt{x.\,x}) \, \mathsf{ChF}) \, \mathsf{1} : \alpha_3} \quad \dots \\ & \Gamma \vdash (((\lambda \mathtt{x.\,x}) \, \mathsf{ChF}) \, \mathsf{1}) \, \mathsf{2} : \alpha_1 \end{array}$$

Äquivalent...

APP:
$$\frac{\Gamma \models t_1 : \tau_2 \to \tau \qquad \Gamma \models t_2 : \tau_2}{\Gamma \models t_1 \ t_2 : \tau}$$

Beispiel: if ChF 1 2 = $(((\lambda x. x) ChF) 1) 2$ Vorgabe: $\Gamma = ChF : \alpha \rightarrow \beta \rightarrow \beta$

 $\alpha_3 = \alpha_2 \rightarrow \alpha_1$ $\alpha_5 = \alpha_4 \rightarrow \alpha_3$ $\alpha_7 = \alpha_6 \rightarrow \alpha_5$ $\alpha_7 = \alpha_8 \rightarrow \alpha_9$

$$\begin{array}{c} \mathsf{ABS} \ \frac{\Gamma, \mathtt{x} : \alpha_8 \models \mathtt{x} : \alpha_9}{\Gamma \models \lambda\mathtt{x} . \mathtt{x} : \alpha_7} \quad \Gamma \models \mathsf{ChF} : \alpha_6}{\Gamma \models (\lambda\mathtt{x} . \mathtt{x}) \; \mathsf{ChF} : \alpha_5} \quad \dots \\ \mathsf{APP} \ \frac{\Gamma \vdash ((\lambda\mathtt{x} . \mathtt{x}) \; \mathsf{ChF}) \; 1 : \alpha_3}{\Gamma \vdash (((\lambda\mathtt{x} . \mathtt{x}) \; \mathsf{ChF}) \; 1) \; 2 : \alpha_1} \quad \dots \end{array}$$

ABS: $\frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \lambda x. \ t : \tau_1 \rightarrow \tau_2}$ muss α_7 Funktionstyp sein. Wegen

$$\frac{1, x : \tau_1 \vdash \iota : \tau_2}{\Gamma \vdash x \vdash \tau_2}$$

Beispiel: if ChF 1 2 = $(((\lambda x. x) ChF) 1) 2$ Vorgabe: $\Gamma = ChF : \alpha \rightarrow \beta \rightarrow \beta$

$$\alpha_3 = \alpha_2 \to \alpha_1$$

$$\alpha_5 = \alpha_4 \to \alpha_3$$

$$\alpha_7 = \alpha_6 \to \alpha_5$$

$$\alpha_7 = \alpha_8 \to \alpha_9$$

$$\alpha_8 = \alpha_9$$

$$\begin{array}{l} \text{ABS} & \frac{\text{VAR} \; \frac{\left(\Gamma, \mathbf{x} : \alpha_{8}\right)\left(\mathbf{x}\right) = \alpha_{9}}{\left(\Gamma, \mathbf{x} : \alpha_{8}\right) \vdash \mathbf{x} : \alpha_{9}}}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{x} : \alpha_{7}} & \Gamma \vdash \text{ChF} : \alpha_{6}} \\ \text{APP} & \frac{\Gamma \vdash \left(\lambda \mathbf{x} . \mathbf{x}\right) \text{ChF} : \alpha_{5}}{\Gamma \vdash \left(\left(\lambda \mathbf{x} . \mathbf{x}\right) \text{ChF}\right) \; \mathbf{1} : \alpha_{3}} & \dots}{\Gamma \vdash \left(\left(\left(\lambda \mathbf{x} . \mathbf{x}\right) \text{ChF}\right) \; \mathbf{1}\right) \; \mathbf{2} : \alpha_{1}} \end{array}$$

Wegen VAR:
$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$$
 muss $\alpha_8 = \alpha_9$.

Beispiel: if ChF 1 2 = (((
$$\lambda$$
x.x) ChF) 1) 2
Vorgabe: Γ = ChF: $\alpha \rightarrow \beta \rightarrow \beta$

$$\alpha_{3} = \alpha_{2} \rightarrow \alpha_{1}$$

$$\alpha_{5} = \alpha_{4} \rightarrow \alpha_{3}$$

$$\alpha_{7} = \alpha_{6} \rightarrow \alpha_{5}$$

$$\alpha_{7} = \alpha_{8} \rightarrow \alpha_{9}$$

$$\alpha_{8} = \alpha_{9}$$

$$\alpha_{6} = \alpha \rightarrow \beta \rightarrow \beta$$

$$\begin{array}{c} \text{ABS} & \frac{\text{Var} \; \frac{\left(\Gamma, \mathbf{x} : \alpha_{8}\right)(\mathbf{x}) = \alpha_{9}}{\left(\Gamma, \mathbf{x} : \alpha_{8}\right) \vdash \mathbf{x} : \alpha_{9}}}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{x} : \alpha_{7}} \; \quad \text{Var} \; \frac{\Gamma(\text{ChF}) = \alpha_{6}}{\Gamma \vdash \text{ChF} : \alpha_{6}}}{\Gamma \vdash \text{ChF} : \alpha_{6}} \\ \text{APP} & \frac{\Gamma \vdash (\lambda \mathbf{x} . \mathbf{x}) \; \text{ChF} : \alpha_{5}}{\Gamma \vdash ((\lambda \mathbf{x} . \mathbf{x}) \; \text{ChF}) \; \mathbf{1} : \alpha_{3}}}{\Gamma \vdash (((\lambda \mathbf{x} . \mathbf{x}) \; \text{ChF}) \; \mathbf{1}) \; \mathbf{2} : \alpha_{1}} \end{array}$$

Äquivalent für
$$\alpha_6$$
 VAR: $\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$ Unterbaum $\Gamma \vdash (\lambda \mathbf{x}. \, \mathbf{x})$ ChF: α_5 abgeschlossen.

Beispiel: if ChF 1 2 = (((
$$\lambda$$
x.x) ChF) 1) 2
Vorgabe: Γ = ChF : $\alpha \to \beta \to \beta$

$$\begin{array}{l} \alpha_3 = \alpha_2 \rightarrow \alpha_1 \\ \alpha_5 = \alpha_4 \rightarrow \alpha_3 \\ \alpha_7 = \alpha_6 \rightarrow \alpha_5 \\ \alpha_7 = \alpha_8 \rightarrow \alpha_9 \\ \alpha_8 = \alpha_9 \\ \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta \\ \alpha_4 = \text{int} \end{array}$$

$$\begin{array}{c} \mathsf{APP} \\ \mathsf{APP} \\ \mathsf{APP} \\ \mathsf{APP} \\ \hline \\ \mathsf{APP} \\ \hline \end{array} \begin{array}{c} \dots \\ \hline \Gamma \vdash (\lambda \mathtt{x}.\,\mathtt{x}) \ \mathsf{ChF} : \alpha_5 \\ \hline \Gamma \vdash ((\lambda \mathtt{x}.\,\mathtt{x}) \ \mathsf{ChF}) \ \mathsf{1} : \alpha_3 \\ \hline \Gamma \vdash (((\lambda \mathtt{x}.\,\mathtt{x}) \ \mathsf{ChF}) \ \mathsf{1}) \ \mathsf{2} : \alpha_1 \\ \hline \end{array} \qquad \dots$$

Weiter mit den Const-Unterbäumen

CONST:
$$\frac{c \in Const}{\Gamma \vdash c : \tau_c}$$

Beispiel: if ChF 1 2 = (((
$$\lambda$$
x.x) ChF) 1) 2
Vorgabe: Γ = ChF : $\alpha \to \beta \to \beta$

$$\alpha_{3} = \alpha_{2} \rightarrow \alpha_{1}$$

$$\alpha_{5} = \alpha_{4} \rightarrow \alpha_{3}$$

$$\alpha_{7} = \alpha_{6} \rightarrow \alpha_{5}$$

$$\alpha_{7} = \alpha_{8} \rightarrow \alpha_{9}$$

$$\alpha_{8} = \alpha_{9}$$

$$\alpha_{6} = \alpha \rightarrow \beta \rightarrow \beta$$

$$\alpha_{4} = \text{int}$$

$$\alpha_{2} = \text{int}$$

$$\begin{array}{c} \mathsf{APP} \\ \mathsf{APP} \\ \mathsf{APP} \\ \hline \\ \mathsf{APP} \\ \hline \end{array} \underbrace{\frac{\Gamma \vdash (\lambda \mathtt{x.\,x}) \, \mathsf{ChF} : \alpha_5}{\Gamma \vdash ((\lambda \mathtt{x.\,x}) \, \mathsf{ChF}) \, \mathsf{1} : \alpha_3}}_{\Gamma \vdash (((\lambda \mathtt{x.\,x}) \, \mathsf{ChF}) \, \mathsf{1}) \, \mathsf{2} : \alpha_1}$$

Const
$$\frac{\mathbf{2} \in \mathit{Const}}{\Gamma \mid \!\!\!\!- \mathbf{2} : \alpha_{\mathbf{2}}}$$

Weiter mit den Const-Unterbäumen

CONST:
$$\frac{c \in Const}{\Gamma \vdash c : \tau_c}$$

Beispiel: if ChF 1 2 = (((
$$\lambda$$
x.x)ChF) 1) 2
Vorgabe: Γ = ChF: $\alpha \to \beta \to \beta$

$$\begin{array}{c} \mathsf{APP} \\ \mathsf{APP} \\ \mathsf{APP} \\ \hline \\ \mathsf{APP} \\ \hline \end{array} \underbrace{\frac{\Gamma \vdash (\lambda \mathtt{x.\,x}) \, \mathsf{ChF} : \alpha_5}{\Gamma \vdash ((\lambda \mathtt{x.\,x}) \, \mathsf{ChF}) \, \mathsf{1} : \alpha_3}}_{\Gamma \vdash (((\lambda \mathtt{x.\,x}) \, \mathsf{ChF}) \, \mathsf{1}) \, \mathsf{2} : \alpha_1}$$

Const
$$\frac{\mathbf{2} \in \mathit{Const}}{\Gamma \mid \mathbf{2} : \alpha_{\mathbf{2}}}$$

Gleichungssystem C "unifizieren" für Lösung (σ, α_1) der Typinferenz

Unifikation

Suchen Substitution, die alle Bedingungen erfüllt: Unifikator

Unifikator

Substitution σ unifiziert Gleichung $\tau = \tau'$, falls $\sigma \tau = \sigma \tau'$. σ unifiziert C, falls $\forall c \in C$ gilt: σ unifiziert c.

Beispiel: $C = \{\alpha_1 \rightarrow \alpha_2 = \alpha_4 \rightarrow \alpha_3, \alpha_3 = \mathsf{bool} \rightarrow \alpha_4\}$ $\gamma = [\alpha_1 \diamondsuit \mathsf{int}, \alpha_2 \diamondsuit \mathsf{bool} \rightarrow \mathsf{int}, \alpha_3 \diamondsuit \mathsf{bool} \rightarrow \mathsf{int}, \alpha_4 \diamondsuit \mathsf{int}]$ Unifikator für C

Allgemeinster Unifikator (most general unifier, mgu)

 σ mgu, falls $\forall \gamma$ Unifikator \exists Substitution δ . $\gamma = \delta \circ \sigma$.

Beispiel: $\sigma = [\alpha_1 \diamond \alpha_4, \alpha_2 \diamond \mathsf{bool} \to \alpha_4, \alpha_3 \diamond \mathsf{bool} \to \alpha_4] \ \mathit{mgu}$ für obiges C

• für γ wähle z.B. $\delta = [\alpha_4 \Leftrightarrow int]$

Unifikation

Unifikationsalgorithmus: unify(C) =

```
if C = \emptyset then [] else let \{\tau_1 = \tau_2\} \cup C' = C in if \tau_1 == \tau_2 then \mathrm{unify}(C') else if \tau_1 == \alpha and \alpha \notin FV(\tau_2) then \mathrm{unify}([\alpha \circ \tau_2] C') \circ [\alpha \circ \tau_2] else if \tau_2 == \alpha and \alpha \notin FV(\tau_1) then \mathrm{unify}([\alpha \circ \tau_1] C') \circ [\alpha \circ \tau_1] else if \tau_1 == (\tau_1' \to \tau_1'') and \tau_2 == (\tau_2' \to \tau_2'') then \mathrm{unify}(C' \cup \{\tau_1' = \tau_2', \tau_1'' = \tau_2''\}) else fail
```

 $\alpha \in FV(\tau)$ occur check, verhindert zyklische Substitutionen

Korrektheitstheorem

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Beweis: Siehe Literatur

$$\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{C} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{C}) = \end{split}$$


```
\sigma = mgu \text{ von } C = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_8, \alpha_8 = \alpha_8 \rightarrow \alpha_8 \rightarrow \alpha_8, \alpha_8 = \alpha_8 \rightarrow \alpha_8
\alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} ?
unify(C) = unify(
\{\alpha_3 = \alpha_2 \rightarrow \alpha_1\} \cup \{\alpha_5 = \alpha_4 \rightarrow \alpha_3,
                    \alpha_7 = \alpha_6 \rightarrow \alpha_5
                    \alpha_7 = \alpha_8 \rightarrow \alpha_9, \ \alpha_8 = \alpha_9,
                    \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int},
```



```
\sigma = mgu \text{ von } C = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_8, \alpha_8 = \alpha_8 \rightarrow \alpha
\alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} ?
unify(C) = unify(
\{\alpha_3 = \alpha_2 \rightarrow \alpha_1\} \cup \{\alpha_5 = \alpha_4 \rightarrow \alpha_3,
                    \alpha_7 = \alpha_6 \rightarrow \alpha_5
                    \alpha_7 = \alpha_8 \rightarrow \alpha_9, \ \alpha_8 = \alpha_9,
                    \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int},
```



```
\sigma = mgu \text{ von } C = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_8, \alpha_8 = \alpha_8 \rightarrow \alpha
\alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} ?
unifv(C) = ... = unify(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \{\alpha_5 = \alpha_4 \rightarrow \alpha_2 \rightarrow \alpha_1\} \cup \{
                    \alpha_7 = \alpha_6 \rightarrow \alpha_5
                    \alpha_7 = \alpha_8 \rightarrow \alpha_9, \ \alpha_8 = \alpha_9,
                    \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int},
```

$$[\alpha_3 \, \diamond \, \alpha_2 \rightarrow \alpha_1]$$

WS 2013/2014


```
\sigma = mgu \text{ von } C = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_8, \alpha_8 = \alpha_8 \rightarrow \alpha_8 \rightarrow \alpha_8, \alpha_8 = \alpha_8 \rightarrow \alpha
\alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} ?
unify(C) = ... = unify(
   \{\alpha_7 = \alpha_6 \rightarrow \alpha_4 \rightarrow \alpha_2 \rightarrow \alpha_1\} \cup \{
                   \alpha_7 = \alpha_8 \rightarrow \alpha_9, \ \alpha_8 = \alpha_9,
                   \alpha_{\rm A} = \alpha \rightarrow \beta \rightarrow \beta, \alpha_{\rm A} = {\rm int}, \alpha_{\rm P} = {\rm int},
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |\alpha_5 \Leftrightarrow \alpha_4 \to \alpha_2 \to \alpha_1| o
```

$$[\alpha_3 \, \diamond \, \alpha_2 \to \alpha_1]$$


```
\sigma = mgu \text{ von } C = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_8, \alpha_8 = \alpha_8 \rightarrow \alpha_8 \rightarrow \alpha_8, \alpha_8 = \alpha_8 \rightarrow \alpha
\alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} ?
unify(C) = ... = unify(
\{\alpha_6 \rightarrow \alpha_4 \rightarrow \alpha_2 \rightarrow \alpha_1 = \alpha_8 \rightarrow \alpha_9\} \cup \{\alpha_8 = \alpha_9,
                 \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int},
              [\alpha_7 \Leftrightarrow \alpha_6 \to \alpha_4 \to \alpha_2 \to \alpha_1] \circ [\alpha_5 \Leftrightarrow \alpha_4 \to \alpha_2 \to \alpha_1] \circ
              [\alpha_3 \, \Leftrightarrow \, \alpha_2 \to \alpha_1]
```

WS 2013/2014

200


```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{C} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{C}) = \ldots = \text{unify}( &\text{otherwise} ) \end{split}
```

```
\{\alpha_{8} = \alpha_{9}\} \cup \{\alpha_{6} = \alpha \rightarrow \beta \rightarrow \beta, \ \alpha_{4} = \text{int}, \ \alpha_{2} = \text{int}, \\ \alpha_{6} = \alpha_{8}, \ \alpha_{4} \rightarrow \alpha_{2} \rightarrow \alpha_{1} = \alpha_{9}, \\ \}) \circ
[\alpha_{7} \Rightarrow \alpha_{6} \rightarrow \alpha_{4} \rightarrow \alpha_{2} \rightarrow \alpha_{1}] \circ [\alpha_{5} \Rightarrow \alpha_{4} \rightarrow \alpha_{2} \rightarrow \alpha_{1}] \circ [\alpha_{3} \Rightarrow \alpha_{2} \rightarrow \alpha_{1}]
```



```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{C} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{C}) = \ldots = \text{unify}( &\text{otherwise} ) \end{split}
```

```
\begin{aligned} &\{\alpha_{6}=\alpha\rightarrow\beta\rightarrow\beta\}\cup\{\ \alpha_{4}=\text{int},\ \alpha_{2}=\text{int},\\ &\alpha_{6}=\alpha_{9},\ \alpha_{4}\rightarrow\alpha_{2}\rightarrow\alpha_{1}=\alpha_{9},\\ &\})\circ\\ &[\alpha_{8}\diamond\alpha_{9}]\circ\\ &[\alpha_{7}\diamond\alpha_{6}\rightarrow\alpha_{4}\rightarrow\alpha_{2}\rightarrow\alpha_{1}]\circ[\alpha_{5}\diamond\alpha_{4}\rightarrow\alpha_{2}\rightarrow\alpha_{1}]\circ\\ &[\alpha_{3}\diamond\alpha_{2}\rightarrow\alpha_{1}] \end{aligned}
```



```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{C} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{C}) = \ldots = \, \text{unify}( &\text{constant} ) \end{split}
```

```
 \begin{aligned} \{\alpha_{4} &= \mathsf{int}\} \cup \{ \ \alpha_{2} &= \mathsf{int}, \\ \alpha \to \beta \to \beta = \alpha_{9}, \ \alpha_{4} \to \alpha_{2} \to \alpha_{1} = \alpha_{9}, \\ \} \\ ) \circ \\ & [\alpha_{6} \diamond \alpha \to \beta \to \beta] \circ [\alpha_{8} \diamond \alpha_{9}] \circ \\ & [\alpha_{7} \diamond \alpha_{6} \to \alpha_{4} \to \alpha_{2} \to \alpha_{1}] \circ [\alpha_{5} \diamond \alpha_{4} \to \alpha_{2} \to \alpha_{1}] \circ \\ & [\alpha_{3} \diamond \alpha_{2} \to \alpha_{1}] \end{aligned}
```



```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{C} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{C}) = \ldots = \text{unify}( &\text{otherwise} ) \end{split}
```

```
\begin{aligned} \{\alpha_{\mathbf{2}} &= \mathsf{int}\} \cup \{\\ \alpha \to \beta \to \beta &= \alpha_{\mathbf{9}}, \; \mathsf{int} \to \alpha_{\mathbf{2}} \to \alpha_{\mathbf{1}} = \alpha_{\mathbf{9}},\\ \}\\ ) \circ \\ [\alpha_{\mathbf{4}} & \varphi \; \mathsf{int}] \circ \; [\alpha_{\mathbf{6}} & \varphi \; \alpha \to \beta \to \beta] \circ \; [\alpha_{\mathbf{8}} & \varphi \; \alpha_{\mathbf{9}}] \circ \\ [\alpha_{\mathbf{7}} & \varphi \; \alpha_{\mathbf{6}} \to \alpha_{\mathbf{4}} \to \alpha_{\mathbf{2}} \to \alpha_{\mathbf{1}}] \circ \; [\alpha_{\mathbf{5}} & \varphi \; \alpha_{\mathbf{4}} \to \alpha_{\mathbf{2}} \to \alpha_{\mathbf{1}}] \circ \\ [\alpha_{\mathbf{3}} & \varphi \; \alpha_{\mathbf{2}} \to \alpha_{\mathbf{1}}] \end{aligned}
```



```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{\textbf{C}} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{\textbf{C}}) = \ldots = \text{unify}( \end{aligned}
```

```
\begin{split} &\{\alpha \to \beta \to \beta = \alpha_9\} \cup \{ \text{ int } \to \text{ int } \to \alpha_1 = \alpha_9, \\ &\} \\ ) \circ & [\alpha_4 \Leftrightarrow \text{ int }] \circ [\alpha_6 \Leftrightarrow \alpha \to \beta \to \beta] \circ [\alpha_8 \Leftrightarrow \alpha_9] \circ \\ &[\alpha_7 \Leftrightarrow \alpha_6 \to \alpha_4 \to \alpha_2 \to \alpha_1] \circ [\alpha_5 \Leftrightarrow \alpha_4 \to \alpha_2 \to \alpha_1] \circ \\ &[\alpha_3 \Leftrightarrow \alpha_2 \to \alpha_1] \end{split}
```



```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{C} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{C}) = \ldots = \text{unify}( &\text{constant} ) \end{split}
```

```
\{\operatorname{int} \rightarrow \operatorname{int} \rightarrow \alpha_1 = \alpha \rightarrow \beta \rightarrow \beta\} \cup \{
\} ) \circ \qquad [\alpha_9 \, \Diamond \, \alpha \rightarrow \beta \rightarrow \beta] \circ [\alpha_2 \, \Diamond \operatorname{int}] \circ
[\alpha_4 \, \Diamond \operatorname{int}] \circ [\alpha_6 \, \Diamond \, \alpha \rightarrow \beta \rightarrow \beta] \circ [\alpha_8 \, \Diamond \, \alpha_9] \circ
[\alpha_7 \, \Diamond \, \alpha_6 \rightarrow \alpha_4 \rightarrow \alpha_2 \rightarrow \alpha_1] \circ [\alpha_5 \, \Diamond \, \alpha_4 \rightarrow \alpha_2 \rightarrow \alpha_1] \circ
[\alpha_3 \, \Diamond \, \alpha_2 \rightarrow \alpha_1]
```



```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{\textbf{C}} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{\textbf{C}}) = \ldots = \text{unify}( \end{aligned}
```



```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{C} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{C}) = \ldots = \text{unify}( &\text{constant} ) \end{split}
```

```
\{\mathsf{int} = {\color{red}\beta}\} \cup \{ \begin{array}{l} \alpha_1 = \mathsf{int}, \} \\ ) \circ \qquad \qquad [\alpha \, \lozenge \, \mathsf{int}] \circ [\alpha_9 \, \lozenge \, \alpha \, \rightarrow \, \beta \, \rightarrow \, \beta] \circ [\alpha_2 \, \lozenge \, \mathsf{int}] \circ \\ [\alpha_4 \, \lozenge \, \mathsf{int}] \circ [\alpha_6 \, \lozenge \, \alpha \, \rightarrow \, \beta \, \rightarrow \, \beta] \circ [\alpha_8 \, \lozenge \, \alpha_9] \circ \\ [\alpha_7 \, \lozenge \, \alpha_6 \, \rightarrow \, \alpha_4 \, \rightarrow \, \alpha_2 \, \rightarrow \, \alpha_1] \circ [\alpha_5 \, \lozenge \, \alpha_4 \, \rightarrow \, \alpha_2 \, \rightarrow \, \alpha_1] \circ \\ [\alpha_3 \, \lozenge \, \alpha_2 \, \rightarrow \, \alpha_1] \\ \end{array}
```



```
\begin{split} \sigma &= \textit{mgu} \; \text{von} \; \textit{\textbf{C}} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \; ? \\ &\text{unify}(\textit{\textbf{C}}) = \ldots = \; \text{unify}( \end{aligned}
```

```
 \begin{aligned} \{\alpha_1 &= \mathsf{int}\} \cup \{\} \\ ) \circ &\qquad [\beta \, \Diamond \, \mathsf{int}] \circ \, [\alpha \, \Diamond \, \mathsf{int}] \circ \, [\alpha_9 \, \Diamond \, \alpha \, \rightarrow \, \beta \, \rightarrow \, \beta] \circ \, [\alpha_2 \, \Diamond \, \mathsf{int}] \circ \\ [\alpha_4 \, \Diamond \, \mathsf{int}] \circ &\qquad [\alpha_6 \, \Diamond \, \alpha \, \rightarrow \, \beta \, \rightarrow \, \beta] \circ \, [\alpha_8 \, \Diamond \, \alpha_9] \circ \\ [\alpha_7 \, \Diamond \, \alpha_6 \, \rightarrow \, \alpha_4 \, \rightarrow \, \alpha_2 \, \rightarrow \, \alpha_1] \circ &\qquad [\alpha_5 \, \Diamond \, \alpha_4 \, \rightarrow \, \alpha_2 \, \rightarrow \, \alpha_1] \circ \\ [\alpha_3 \, \Diamond \, \alpha_2 \, \rightarrow \, \alpha_1] \end{aligned}
```



```
\begin{split} &\sigma = \textit{mgu} \, \text{von} \, \textit{C} = \{\alpha_3 = \alpha_2 \rightarrow \alpha_1, \alpha_5 = \alpha_4 \rightarrow \alpha_3, \alpha_7 = \alpha_6 \rightarrow \alpha_5, \alpha_7 = \alpha_8 \rightarrow \alpha_9, \alpha_8 = \alpha_9, \alpha_6 = \alpha \rightarrow \beta \rightarrow \beta, \alpha_4 = \text{int}, \alpha_2 = \text{int} \} \, ? \\ &\text{unify}(\textit{C}) = \ldots = \text{unify}( &\text{constant} ) \end{split}
```

Beispiel: Lösung

Beispiel: if ChF 1 2 = $(((\lambda x. x) ChF) 1) 2$

Lösung der Typinferenz: $(\sigma, \sigma\alpha_1)$ wobei $\sigma =$

$$\begin{split} & [\alpha_1 \diamond \mathsf{int}] \circ [\beta \diamond \mathsf{int}] \circ [\alpha \diamond \mathsf{int}] \circ [\alpha_9 \diamond \alpha \to \beta \to \beta] \circ [\alpha_2 \diamond \mathsf{int}] \circ [\alpha_4 \diamond \mathsf{int}] \circ \\ & [\alpha_6 \diamond \alpha \to \beta \to \beta] \circ [\alpha_8 \diamond \alpha_9] \circ [\alpha_7 \diamond \alpha_6 \to \alpha_4 \to \alpha_2 \to \alpha_1] \circ \\ & [\alpha_5 \diamond \alpha_4 \to \alpha_2 \to \alpha_1] \circ [\alpha_3 \diamond \alpha_2 \to \alpha_1] = \end{split}$$

 $\begin{array}{l} \left[\begin{array}{c} \alpha_{1} \diamondsuit \operatorname{int}, \beta \diamondsuit \operatorname{int}, \alpha \diamondsuit \operatorname{int}, \alpha_{9} \diamondsuit \operatorname{int} \to \operatorname{int} \to \operatorname{int}, \alpha_{2} \diamondsuit \operatorname{int}, \alpha_{4} \diamondsuit \operatorname{int}, \\ \alpha_{6} \diamondsuit \operatorname{int} \to \operatorname{int} \to \operatorname{int}, \alpha_{8} \diamondsuit \operatorname{int} \to \operatorname{int} \to \operatorname{int}, \\ \alpha_{7} \diamondsuit \left(\operatorname{int} \to \operatorname{int} \to \operatorname{int}\right) \to \operatorname{int} \to \operatorname{int} \to \operatorname{int}, \\ \alpha_{5} \diamondsuit \operatorname{int} \to \operatorname{int} \to \operatorname{int}, \alpha_{3} \diamondsuit \operatorname{int} \to \operatorname{int} \right] \end{array}$

Typisierung:
$$\sigma$$
 (ChF : $\alpha \to \beta \to \beta$) \vdash if ChF 1 2 : $\sigma\alpha_1$ \Leftrightarrow ChF : int \to int \vdash if ChF 1 2 : int

Allgemeinste Typen

Falls t nicht typisierbar: Unifikation schlägt fehl

⇒ Verfahren korrekt bezüglich Typsystem

Allgemeinster Typ (principal type):

Sei t typisierbar im Kontext Γ , dann existiert ein allgemeinster Typ τ mit $\Gamma \vdash t : \tau$, so dass für alle Typisierungen $\Gamma \vdash t : \tau'$ eine Substitution σ existiert, mit $\sigma \tau = \tau'$.

Unser Verfahren liefert immer allgemeinsten Typen dank Unifikation.

 \Rightarrow Verfahren vollständig bezüglich Typsystem, jeder gültige Typ τ' aus Ergebnis τ bestimmbar

∃ Allgemeinster Typ

- ⇒ keine Mehrdeutigkeiten bei Typinferenz
- ⇒ Lösung eindeutig