결과 요약지

대회명: 근골격 데이터

참가팀명		딥러블			팀원수	2	
참가주제	근골격 데이터						
	1.개발 환경						
모델 설명	Shapely SimpleITK six sklearn sqlite tensorboard tensorflow-estimator tensorflow-gpu termcolor terminado testpath threadpoolctl tifffile tk tomli tornado tqdm traitlets typing_extensions urllib3 wcwidth webencodings Werkzeug wheel widgetsnbextension wrapt xz zipp	1.8.0 2.1.1 1.16.0 0.0 3.36.0 2.0.2 2.0.1 2.0.0 1.1.0 0.12.1 0.5.0 3.0.0 2021.11.2 8.6.11 1.2.2 6.1 4.62.3 5.1.1 4.0.0 1.26.7 0.2.5 0.5.1 2.0.2 0.37.0 3.5.2 1.13.3 5.2.5 3.6.0	<pre></pre>	pip> pip> pip> pip> pip> pip> pip> pip>			
	zlib 2. 모델 설명	1.2.11					
	1.MISSON 1: 척추 X-ray 모델						
	1) 데이터	1			1		
	Train sets	Valida	ation sets	Test sets		Total	
	173		43	24		240	

a)학습용 데이터 가공

- -.Dcm -> .jpg
- -.json -> .png
- b) 이미지 크기
- -512*512

c) 코드 순서

- 1.data_preprosessing.ipynb / 이미지 전처리
- 2. spine-base.ipynb / 학습
- 3.evaluation.ipynb / 검증

2.MISSON 2: 무릎 X-ray 모델

1) 데이터

class	data
Train	172
Validation	44
Test	24
Total	240

: validation set과 test set을 제외한 172 개 데이터로 학습하였음

: train과 validation은 8:2 비율로 나누었음

2) 모델 학습 파라미터

: learning rate가 너무 떨어져서 reduce_lr callback은 사용하지 않음

: 50 에폭 기준으로 earlystop을 사용하였으나 학습 loss가 계속해서 떨어져서 실행 되진 않음

: 데이터가 적어 batch size는 32로 늘렸으며 , 에폭은 1000으로 실행하였음

: 에폭 기준으로 log를 저장하여 tensorboard를 통해 학습 진행도를 꾸준히 확인하 였음

1.MISSON 1: 척추 X-ray 모델

1)테스트 데이터 로드

2) 딥러닝 모델 성능 평가 결과

acc avg : 0.9926

specificity avg : 0.9968 sensitivity avg : 0.8677

dsc avg : 0.8823

결과

성능 평가

3) 척추 각도 및 거리 알고리즘 검증 평가

- L4-L5 각도 측정 비교 (왼쪽:딥러블 / 오른쪽:정답)

```
알고리즘:
                                 정답 json: 4.344206705540099
           2.362533155041766
할고리즘:
                                 정답 json: 13.960041705303624
          18.19124762617083
할고리즘:
                                  정답 json: 22,92778449233107
           12.091730838198394
알고리즘:
                                 정답 json: 5,296476359053976
           85.04354194946474
알고리즘:
           14.102234856631028
                                 정답 json: 15.48811530885612
                                 정답 json: 5.738305930431428
정답 json: 6.67223639679098
할고리즘 :
           5.606165951466643
할고리즘:
           16.09081634885221
알고리즘:
                                 정답 json: 5,987122109357242
           11.587330647526375
할고리즘 :
                                 정답 json: 3.59310660190373
           4.535599991337212
할고리즘:
                                  정답 json: 15.889254141936588
           116.56505117707799
할고리즘:
                                 정답 json: 14.086299765850043
           28.73979529168807
알고리즘:
알고리즘:
                                 정답 json:
                                             7.633546356604524
           4.960980910189332
                                  정답 json: 40.88918642166332
           11.164032811584164
할고리즘:
                                 정답 json: 21,31603658398785
           20.80679101271124
                                 정답 json: 25.45895408447377
정답 json: 14.14787549922678
정답 json: 24.99335012404527
알고리즘:
           1.3639275316029233
할고리즘:
알고리즘:
           164.74488129694217
                                             14.147875499226789
           11.051703271602694
                                              24.99335012404527
                                  정답
알고리즘:
           10.549611570812248
                                      json:
                                              12.299888159267864
                                  정답 json:
정답 json:
할고리즘:
알고리즘:
알고리즘:
           157.01128319791923
                                              1.3180774040926184
           11.913692605255847
                                              6.174831242746487
할고리즘:
                                정답 json: 19.194369147206494
           5.95983911071301
                                 정답 json: 12.444139418923376
정답 json: 12.060330462123EEE
알고리즘:
           12.260599273398618
할고리즘:
                                              12.060330462123556
           0.7518305506137538
할고리즘:
                                  청답 json:
           13.274162221417749
                                             14.49912046550896
```

L4-L5 각도에 대한 r2 score= -0.2427490574760589

- L4-L5 거리 측정 비교 (왼쪽:딥러블 / 오른쪽:정답)

```
알고리즘:
                             정답 json: 46.32493928760188
         13.892443989449804
알고리즘:
                             정답 json: 50.695167422546305
         19.72941965694886
알고리즘:
         14.0089257261219
                            정답 json: 63.50590523722971
알고리즘:
         41.00304866714181
                             정답 json:
                                       72.47068372797375
알고리즘:
                              정답 json: 84.48076704197234
         15.628499608087784
알고리즘:
                              정답 json:
         14.212670403551895
                                        8.134123677446759
                              청답 json:
알고리즘:
         27.613402542968153
                                        54.56189146281496
알고리즘:
                            정답 json: 92.91393867445294
         16.3783393541592
알고리즘:
                             정답 json: 2.5536186089547512
         20.09975124224178
할고리즘:
         196.05420168922674
                              정답 json: 8.232131315765074
알고리즘:
                              정답 json:
         167.08381130438698
                                        88.60022573334675
알고리즘:
         18.117670931993437
                              정답 json:
                                        89.1852005660132
알고리즘:
         16.3783393541592
                            정답 json: 36.05551275463989
알고리즘:
          30.700162866017504
                              정답 json:
                                        15.329706716046461
                              정답 json:
알고리즘:
         11.672617529928752
                                        42.95346318982906
                              정답 json:
알고리즘:
         28.460498941515414
                                        34
알고리즘:
                             정답 json:
         16.15549442140351
                                       99.12618221237011
                              정답 json: 16.327694662750158
알고리즘:
         14.534441853748634
                              정답 json:
알고리즘:
                                        10.28869671046824
          16.560495161679196
                             정답 json:
알고리즘:
          18.66815470259447
                                       68.59300255857006
알고리즘:
                             정답 json:
          18.34393632784414
                                       127.58134659894448
알고리즘:
                              정답 json: 36,22154055254967
         14.637281168304447
                             정답 json:
알고리즘:
          6.576473218982953
                                       43.86342439892262
                             청합 json:
알고리즘:
         13.46291201783626
                                       8.671272859275044
```

L4-L5 거리에 대한 r2 score= -0.7571963519993772

2.MISSON 2: 무릎 X-ray 모델

```
Point 1 Distance Error: 41.219 ± 13.622
                                               (mm)
Point 2 Distance Error: 39.318 ± 14.277
                                               (mm)
Point 3 Distance Error: 50.157 ± 34.303
                                               (mm)
Point 4 Distance Error: 49.005 ± 35.477
                                               (mm)
Point 5 Distance Error:
                         73.058 \pm 28.962
                                               (mm)
                         76.29 \pm 28.275
Point 6 Distance Error:
                                              (mm)
Point 7 Distance Error:
                         103.435 \pm 21.587
                                                (mm)
Point 8 Distance Error:
                         112.782 \pm 20.962
                                                (mm)
```

Line 1 R2 Score: -0.3647943864840868 Line 2 R2 Score: 0.028861979417636574 Line 3 R2 Score: -0.0999505455589833 Line 4 R2 Score: -7.2516232102451745

```
Line 1 Distance Error: 1.553 \pm 1.157 (mm)

Line 2 Distance Error: 1.377 \pm 0.937 (mm)

Line 3 Distance Error: 1.517 \pm 0.974 (mm)

Line 4 Distance Error: 4.55 \pm 1.758 (mm)
```

: 24 개 데이터로 모델 성능 평가 실행, R2 score 와 같이 상관관계를 평가하는 점수를

출력하기에는 조금 적은 데이터로 생각됨.

: 60개 데이터로 모델 성능 평가를 실행하면 보다 높은 점수가 나올 것이라 생각됨.

1.MISSON 1: 척추 X-ray 모델

첨부한 3.evalidation 코드에서

먼저 딥러닝 성능파트 부분에서 밑에 있는 코드를 모두 실행 그 중

1) Predit_save 함수의 pred_img_path에 딥러닝이 예측한 이미지를 저장할 경로 및 이름 설정

```
def predict_save(pred_list,name_list):
    pred_img_path = '../dataset/spine/ex1/train/pred/'
    if not os.path.isdir(pred_img_path):
        os.makedirs(pred_img_path)

imgs = pred_list
for i in range(imgs.shape[0]):
    img = imgs[i]
    img[img <= 0.5] = 0
    img[img > 0.5] = 255
    img = array_to_img(img)
    img.save(pred_img_path+"%s_pred.png" %(name_list[i]))
```

기타 사항

2) Args에 훈련데이터 경로, 테스트데이터 경로 설정, load_model 함수에 딥러닝 모델이 있는 경로 설정

```
args = easydict.EasyDict({
        "train_path" : "../dataset/spine/ex1/train/",
        "test_path":"../dataset/spine/ex1/test/",
        "image_size": 512,
        "epochs":100,
        "batch_size":4
})
model=load_model("../dataset/spine/ex1/train/pred/ap_aug_exp1.h5",custom_objects={'dice_coef_loss':
# model = multi_gpu_model(model.gpus=2)
test_name = predict_val(model,args.test_path,image_size = args.image_size)
```

→ 딥러닝 결과 산출

척추 L4-L5 사이 간격 및 분절 각도 측정 알고리즘 성능평가 파트에서 밑에 있는 코드를 모두 실행 그 중

3) Get_result 함수에서 딥러닝이 예측한 이미지가 들어있는 경로 설정(path변수) 및 test_path변수에서 이름 알맞게 설정

```
def get_results(test_name):

angle_list = []
dist_list = []
angle_list.clear()
dist_list.clear()
len(test_name)
for i in range(len(test_name)):
# 예측 이미지 경로
path="../dataset/spine/ex1/train/pred/"
test_path=path+test_name[i]+"_pred.png"
# test_name=glob.glob(test_path+"/*.png")
```

4) args에서 훈련 및 테스트셋 경로 설정

```
args = easydict.EasyDict({
    "train_path" : "../dataset/spine/ex1/train/",
    "test_path":"../dataset/spine/ex1/test/",
    "image_size": 512,
    "epochs":100,
    "batch_size":4
})

angle_list,dist_list = get_results(test_name)
get_score(angle_list,dist_list,test_name,args.test_path)
```

→ r2 score 산출

2.MISSON 2: 무릎 X-ray 모델

2-1. 테스트 데이터 개수만 변경하여 np.zeros 변수 넣어주시면 됩니다.

: original_size_label = np.zeros((테스트셋 개수, 8, 2))

: original_size_predict = original_size_predict.reshape(테스트셋 개수, 8, 2)

2-2. predict, label, file_name, reduce_ratio, pixel_spacing 변수 npy 파일 경로 설정해주세요.

2-3. test set npy 파일 형성 시 512 사이즈로 제작해주시면 됩니다.

: 1_load_data.ipynb 파일에서 test set 이미지를 512 사이즈로 resize하여 npy 파일 생성 >

3_evaluation.ipynb 파일에서 성능 평가	