Definition

- Spezialfall
 - $\Omega = \{\omega_1, ..., \omega_n\}$ mit $1 \le n < \infty$
 - Elementarereignis hat dieselbe [[Wahrscheinlichkeit]]
 - z.B. symmetrischer Würfel
- es gilt wegen N und A

$$1\stackrel{ ext{(N)}}{=}P(\Omega)\stackrel{ ext{(A)}}{=}\sum_{i=1}^N\underbrace{P(\omega_i)}_{ ext{alle gleich groß}}=N imes P(\omega).$$

$$\begin{array}{ll} - \ P(\Omega) = \frac{1}{n} \\ - \ P(A) = \frac{|A|}{|\Omega|} \ \mathrm{mit} \ |\Omega| = n \end{array}$$

* Wahrscheinlichkeitsmaß

Beispiele

Beispiel

Wir interessieren uns für die Augenzahl beim Würfeln mit zwei Würfel.

- Wie lautet ein geeignetes Ω?
- ▶ Beschreibe $A_k = \{\omega : \text{Augenzahl} = k\}.$
- ▶ Was ist $P(A_5)$?

2x würfeln:

$$\Omega = \{1, \dots, 6\}^2 \qquad |\Omega| = 36$$

$$P(\omega) = \frac{1}{36}$$

$$A_k$$
 - {Ayenzoll is k }
$$= \oint (o_1b) \in \mathbb{Z} : a+b=k$$
}

$$P(A_5) = ?$$

$$P(A_5) = {(1,4), (2,3), (3,2), (4,1)}$$

$$P(A_5) = {(1,4), (2,3), (3,2), (4,1)}$$

$$= {(2,4), (2,3), (3,2), (4,1)}$$

Themengebiete

• [[Urnenmodell mit Zurücklegen]]

- ullet [[Urnenmodell ohne Zurücklegen]]
- $\bullet \ [[{\it Diskrete Wahrscheinlichkeitsr\"{a}ume}]]$