Motivation behind developing a compiler for DataFrame

Jan. 8, 2025 Kazuhisa Ishizaka, NEC

Kazuhisa Ishizaka

Primary author of FireDucks

Background:

- Automatic parallelizing compiler (Ph.D)
- Parallel processing for manycore processor
- Software for vector supercomputer
 - TensorFlow-VE
 - LLVM-VE compiler

OSCAR Parallelizing Compiler

FireDucks: DataFrame Compiler

Architecture of FireDucks

Background in 2021

Needs for Speed in Data Science

Evolution of Compiler Technology

^{*} Development of FireDucks started in 2021

Background in 2021

Needs for Speed in Data Science

Evolution of Compiler Technology

Data preparation in Data Science

https://x.com/BigDataBorat/status/306596352991830016

Beyond pandas

AUTHOR
Wes McKinney

Sep. 21, 2017

- 1.Internals too far from "the metal"
- 2.No support for memory-mapped datasets
- 3. Poor performance in database and file ingest / export
- 4. Warty missing data support
- 5.Lack of transparency into memory use, RAM management
- 6. Weak support for categorical data
- 7. Complex groupby operations awkward and slow
- 8. Appending data to a DataFrame tedious and very costly
- 9.Limited, non-extensible type metadata
- 10. Eager evaluation model, no query planning
- 11. "Slow", limited multicore algorithms for large datasets

Beyond pandas

Wes McKinney

Apache Arrow

https://arrow.apache.org/

- Core library for high performance data science
 - Columnar memory format and operations implemented in C++
- PyArrow: python binding, but different API from pandas

11. "Slow", limited multicore algorithms for large datasets

Sep. 2

ent

Beyond pandas

The Golden Age of Compilers

The Golden Age of Compilers

in an era of Hardware/Software co-design

International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2021)

> Chris Lattner SiFive Inc

April 19, 2021

Acceleration of Deep Learning

Deep Learning Frameworks

Deep Learning HW

GPU TPU

CPU(SIMD)

Accelerators(xPU)

Deep Learning Compilers

Model optimization and hardware adaption

- Representing DL model as hardware-independent IR
- Applying DL-specific optimizations
- Executing optimized IR using deep learning kernels for a hardware

Table 1. The comparison of DL compilers, including TVM, nGraph, TC, Glow, and X

		TVM	nGraph	TC	Glow	XLA
ontend	Developer	Apache	Intel	Facebook	Facebook	Google
	Programm-	Python/C++	Python/C++	Python/C++	Python/C++	Python/C++
	ing	Lambda expression	Tensor expression	Einstein notation	Layer programming	Tensorflow interface
	ONNX	✓	✓	×	✓	✓
Fron	support	tvm.relay.frontend	Use ngraph-onnx		ONNXModelLoader	Use tensorflow-onnx

M. Li et al., "The Deep Learning Compiler: A Comprehensive Survey," in IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 3, pp. 708-727, 1 March 2021, doi: 10.1109/TPDS.2020.3030548.

OpenXLA: Machine Learning Compiler

https://github.com/openxla/xla

LLVM and MLIR

- De facto standard of compiler infrastructure
- Started as academic project at UIUC
- Used in many OSS and productions

- Sub project of LLVM
- Used in OpenXLA
- Framework to define a compiler IR

Use of LLVM/MLIR in FireDucks

Frontend generates DataFrame IR from pandas API

Motivation behind FireDucks

Needs for Speed in Data Science

Motivation for Future FireDucks

Use FireDucks in you projects and give us your feedback!

Apache Arrow

- Core library for high performance data science
- Columnar memory format and operations implemented in C++
- Used by many projects including Apache Spark, Dask, Polars, cudf, etc.

PyArrow

- Python binding of Apache Arrow
- Deferent API from pandas

https://arrow.apache.org/