

MATHEMATICS SPECIALIST 3CD SEMESTER 1 2010

TEST 2

	Questions	Reading Time	Working Time	Marks
Calculator Free	1 – 4	5 minutes	15 minutes	12
Calculator Assumed	5 - 8	5 minutes	30 minutes	24
Total				36

1. [1, 2 marks]

rectangular

Express in exact polar form:

(a)
$$e^{i\frac{\pi}{6}}$$

= $\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$
= $\frac{\sqrt{3}}{2} + i \frac{1}{2}$

(b)
$$3e^{2+i\frac{2\pi}{3}}$$

 $= 3e^2 e^{i\frac{2\pi}{3}}$
 $= 3e^2 (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$
 $= 3e^2 (-\frac{1}{2} + i\frac{\sqrt{2}}{2})$
 $= -\frac{3}{2}e^2 + i\frac{3\sqrt{2}}{2}e^2$

2. [2 marks]

Given that $z = 3e^{i\theta}$, determine an expression in exponential form for iz. $i = 2e^{i\theta}$, $3e^{i\theta}$

3. [2, 1, 1 marks]

Given that $w = \sqrt{3} + i$, express in exact exponential form:

(a)
$$w = 2e^{i\frac{\pi}{6}}$$
 (b) $\overline{w} = 2e^{-i\frac{\pi}{6}}$ (c) $w^3 = 8e^{i\frac{\pi}{2}}$

4. [1, 2 marks]

The sketch of y = f(x) is given below.

Sketch on the same axes the graphs of:

(a)
$$y = f(|x|)$$

MATHEMATICS SPECIALIST 3CD SEMESTER 1 2010

TEST 2

	Questions	Reading Time	Working Time	Marks
Calculator Free	1 – 4	5 minutes	15 minutes	12
Calculator Assumed	5 - 8	5 minutes	30 minutes	24
Total				36

5. [2 marks]

Solve for x:

$$\sqrt[3]{3+|\mathbf{x}|} \le 2$$

6. [1, 1, 2 marks]

(a) Sketch the graph of $f(x) = |x^2 - 2x - 2|$.

Hence state the value(s) of b such that f(x) = b has exactly

- (a) three solutions b = 3
- (b) two solutions b > 3 or b = 0

7. [1, 4, 5 marks]

Consider the plane Π_1 : $\mathbf{r} = (3 + 2\mu - \lambda)\mathbf{i} + (5 - 4\mu + 2\lambda)\mathbf{j} + (7 + 3\mu + 3\lambda)\mathbf{k}$.

(a) Find the equation of the plane containing the point (2, 1, 5) and parallel to Π_1 .

$$\Gamma = (2 + 2M - \lambda)i + (1 - 4M + 2\lambda)i + (5 + 3M + 3\lambda)k$$

(b) Determine if the point (13, -9, 4) lies on the plane Π_1 .

$$13 = 3 + 2M - \lambda \Rightarrow 10 = 2M - \lambda - 0$$

$$-9 = 5 - 4M + 2\lambda \Rightarrow -14 = -4M + 2\lambda - 0$$

$$4 = 7 + 3M + 3\lambda \Rightarrow -3 = 3M + 3\lambda - 0$$

$$V = 2(2) - (-3)$$

(c) Write Π_1 in normal form (ie $\mathbf{r} \cdot \mathbf{n} = \mathbf{c}$).

Need vector
$$\bot$$
 to $2i-4\frac{1}{2}+3\frac{1}{2}$ and $-\frac{1}{2}+2\frac{1}{2}+3\frac{1}{2}$
 $(ai+bi+ck) \cdot (2i-4\frac{1}{2}+3k) = 0$
 $2a-4b+3c=0-9$
 $(ai+bi+ck) \cdot (-i+2\frac{1}{2}+3k) = 0$
 $-a+2b+3c=0-9$
 $3a-6b=0$
 $a=2b$
 $5o$ $a=2$ $b=1$ $c=0$
 $(2i+\frac{1}{2})$ $=(3i+5\frac{1}{2}+7k) \cdot (2i+\frac{1}{2})$ $=6+5$
 $[5(2i+\frac{1}{2})=1]$

8. [8 marks]

A sphere centred at (3, 4, -2) and with radius 2 can be defined by the vector equation $|\mathbf{r} - (3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})| = 2$. Determine the minimum distance the sphere is from the plane defined by x - y + 2z = 13.

Line CP:
$$\Gamma = (3\cancel{1} + 4\cancel{1} - 2\cancel{k}) + \lambda(\cancel{1} - \cancel{1} + 2\cancel{k})$$

= $(3+\lambda)\cancel{1} + (4-\lambda)\cancel{1} + (-2+2\lambda)\cancel{k}$

Intersection of line & plane.

$$6\lambda = 18$$

$$\lambda = 3$$