

Qual o valor pago para encher o tanque de combustível de um automóvel? Quanto tempo leva uma viagem de Barreiras até Salvador? Qual o valor pago para encher o tanque de combustível de um automóvel?

Quanto tempo leva uma viagem de Barreiras até Salvador?

DEPENDE!!!

Qual o valor pago para encher o tanque de combustível de um automóvel?

- Tamanho do tanque
- Valor do combustível

Quanto tempo leva uma viagem de Barreiras até Salvador?

Na matemática, **FUNÇÃO** é uma relação de dependência entre duas grandezas, na qual uma está em função da outra.

Por exemplo:

O valor cobrado na bomba depende da quantidade de combustível com a qual se abasteceu o carro.

Suponha que o preço do litro de combustível seja R\$ 6,10.

Se o preço do litro de combustível for R\$ 6,10.

Qual é a expressão matemática que define o valor pago P (em R\$) em função da quantidade de litros abastecida x?

FUNÇÃO Vamos fazer uma tabela:

Quantidade abastecida	Valor pago (em R\$)
1 litro	6,10 . 1 = 6,10
5 litros	6,10 . 5 = 30,50
10 litros	6,10 . 10 = 61,00
x litros	6,10 . x = p

Resumindo:

Quantidade abastecida	Valor pago (em R\$)
1 litro	6,10
5 litros	30,50
10 litros	61,00
15 litros	91,50

Coloque em um conjunto:

Quantidade abastecida	Valor pago (em R\$)
1 litro	6,10
5 litros	30,50
10 litros	61,00
15 litros	91,50

Exercício 1

Um empreendedor produz salgadinhos para festa, os PREÇOS DEPENDEM DA QUANTIDADE que for encomendada, mais uma taxa fixa de R\$ 15,00 para o frete. Sabendo que a cada 100 salgadinhos o valor cobrado é de R\$ 135,00. Qual é a expressão que nos fornece o valor a ser cobrado P em função da quantidade vendida x?

Sabendo que a cada 100 salgadinhos o valor cobrado é de R\$ 135,00, mais uma taxa fixa de R\$ 15,00 para o frete.

$$P = 15 + 135.x$$

FRETE VALOR FIXO CENTO (CADA 100 UNIDADES)

Representação de uma função através de um diagrama

Observe que existe apenas <u>uma</u> correspondência da "Quantidade" para o "Valor cobrado"

Exercício 2

As relações a seguir representam função de A em B?

Exercício 2 - Resposta

As relações a seguir representam função de A em B?

Temos um elemento em A que está associado a dois elementos em B.

Exercício 2 - Reposta

As relações a seguir representam função de A em B?

Temos um elemento em A que não está associado a nenhum elemento em B.

Não

FUNÇÃO - Definição

Uma relação entre dois conjuntos A e B, será uma função $f: A \rightarrow B$, se e somente se, cada elemento $x \in A$, existir um, e somente um $f(x) \in B$.

Na matemática, **FUNÇÃO** é uma relação de dependência entre duas grandezas. Mas o que é uma grandeza?

- a) Tudo aquilo que pode ser contado e medido, como o tempo, a velocidade, comprimento, preço, idade, temperatura entre outros.
- b) Coisas com tamanho maior que 10 metros, como carros, trens, caminhões etc.

Na matemática, **FUNÇÃO** é uma relação de dependência entre duas grandezas. Mas o que é uma grandeza?

- a) Tudo aquilo que pode ser contado e medido, como o tempo, a velocidade, comprimento, preço, idade, temperatura entre outros.
- b) Coisas com tamanho maior que 10 metros, como carros, trens, caminhões etc.

Opções

Resultado
desejado

Ponto de partida

Finalidade

Matematicamente falando...

CONTRADOMÍNIO Opções

DOMÍNIO

Ponto de partida

Resultado desejado

Finalidade

FUNÇÃO

Matematicamente falando...

CONTRADOMÍNIO

Nomeclatura

f(x) ou y significam a mesma coisa.

Exercício 3

Dados os conjuntos $A = \{-3, -1, 0, 1, 3\}$ e $B = \{-9, -3, 0, 1, 3, 27\}$ e uma relação entre A e B expressa por $y = 3x^2$, em que $x \in A$ e $y \in B$. Encontre os conjuntos: Domínio, Contradomínio e Imagem dessa função.

A = {-3, -1, 0, 1, 3} e B = {-9, -3, 0, 1, 3, 27} e y = $3x^2$, em que $x \in A$ e $y \in B$.

X	$y = 3x^2$	y
-3	$y = 3 \cdot (-3)^2 = 3 \cdot 9$	27
-1		
0		
1		
3		

X	$y = 3x^2$	y
-3	$y = 3 \cdot (-3)^2 = 3 \cdot 9$	27
-1	$y = 3 \cdot (-1)^2 = 3 \cdot 1$	3
0	$y = 3 \cdot (0)^2 = 3 \cdot 0$	0
1	$y = 3 \cdot 1^2 = 3 \cdot 1$	3
3	$y = 3 \cdot 3^2 = 3 \cdot 9$	27

X	y
-3	27
-1	3
0	0
1	3
3	27

Exercício 3 - Resposta

Dados os conjuntos $A = \{-3, -1, 0, 1, 3\}$ e $B = \{-9, -3, 0, 1, 3, 27\}$ e uma relação entre A e B expressa por $y = 3x^2$, em que $x \in A$ e $y \in B$. Encontre os conjuntos Domínio, Contradomínio e Imagem dessa função.

Domínio:
$$A = \{-3, -1, 0, 1, 3\}$$

Contradomínio: $B = \{-9, -3, 0, 1, 3, 27\}$
Imagem: $Im = \{0, 3, 27\}$

Exercício 4

```
Dada a função f(x) = 2x - 3, o domínio \{2, 3, 4\} e o
contradomínio composto pelos naturais de 1 a 10, qual das
opções abaixo representa o conjunto imagem dessa função?
a) {1, 3, 5}
b) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
c) {4, 6, 8}
d) {1, 2, 3, 4, 5}
e) {1, 3, 8}
```

Dada a função f(x) = 2x - 3, o domínio $\{2, 3, 4\}$ e o contradomínio composto pelos naturais entre 1 e 10,

X	f(x) = 2x - 3	y
2	$f(2) = 2 \cdot 2 - 3 = 4 - 3 = 1$	1
3	$f(3) = 2 \cdot 3 - 3 = 6 - 3 = 3$	3
4	$f(4) = 2 \cdot 4 - 3 = 8 - 3 = 5$	5
lm= {1, 3, 5} ←		

Exercício 4 - Resposta

Dada a função f(x) = 2x - 3, o domínio $\{2, 3, 4\}$ e o contradomínio composto pelos naturais entre 1 e 10, qual das opções abaixo representa o conjunto imagem dessa função?

```
a) {1, 3, 5}
b) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
c) {4, 6, 8}
d) {1, 2, 3, 4, 5}
e) {1, 3, 8}
```


Será possível, as funções apresentarem comportamentos diferentes, caracterizando, assim, alguns tipos de funções?

902

Quais diagramas apresentam função de A em B?

Quais diagramas apresentam função de A em B?

Quais diagramas apresentam função de A em B?

Vamos analisar as seguintes situações:

Observe que cada ponto de A chega em UM ponto diferente em B.

É FUNÇÃO

Sobram elementos no conjunto B.

FUNÇÃO INJETORA

Função injetora, também chamada de função injetiva, é aquela em que cada elemento da imagem está ligado a um único elemento do domínio.

Vamos analisar as seguintes situações:

Não sobram elementos no conjunto B.

Dois elementos do conjunto A PODEM chegar ao mesmo elemento de B.

FUNÇÃO SOBREJETORA

Não sobra elemento no conjunto B.

Vamos analisar as seguintes situações:

Não sobram elementos no conjunto B. (Sobrejetora)

Cada ponto de A chega em UM ponto diferente em B. (Injetora)

FUNÇÃO BIJETORA

O contradomínio é igual ao conjunto imagem. (É injetora e sobrejetora ao mesmo tempo)

Dados os conjuntos $A = \{-3, -1, 0, 2\}$ e $B = \{-1, 0, 1, 2, 3, 4\}$, determine o conjunto domínio, contradomínio e a imagem da função definida por f(x) = x + 2 e classifique a função quanto ao seu tipo.

Exercício 5 - Resolução

Dados os conjuntos $A = \{-3, -1, 0, 2\}$ e $B = \{-1, 0, 1, 2, 3, 4\}$, determine o conjunto domínio, contradomínio e a imagem da função definida por f(x) = x + 2.

$$D = \{ -3, -1, 0, 2 \}$$

$$CD = \{-1, 0, 1, 2, 3, 4\}$$

Exercício 5 - Resolução

$$D = \{-3, -1, 0, 2\}$$
 $f(x) = x + 2$

$$f(-3) = -3 + 2 = -1$$

$$f(-1) = -1 + 2 = 1$$

$$f(0) = 0 + 2 = 2$$

$$f(2) = 2 + 2 = 4$$

Conjunto imagem (Im)

Exercício 5 - Resolução

Dados os conjuntos $A = \{-3, -1, 0, 2\}$ e $B = \{-1, 0, 1, 2, 3, 4\}$, determine o conjunto domínio, contradomínio e imagem da função definida por f(x) = x + 2.

Cada elemento da imagem está ligado a um único elemento do domínio? SIM

INJETORA

O contradomínio é igual ao conjunto imagem? NÃO Então não é sobrejetora. Logo não pode ser bijetora

Marque a alternativa que representa a função abaixo:

Exercício 6 - Resolução

Marque a alternativa que representa a função abaixo:

Vamos começar testando só o 1 em cada uma das alternativas.

Eliminamos as alternativas a,b,e.

Só pode ser a alternativa c ou d.

a)
$$f(1) = 2.1 + 2 = 4$$

b)
$$f(1) = 1^2 + 2 = 3$$

c)
$$f(1) = 2$$
. $1^2 = 2$ Sobrejetora

d)
$$f(1) = 2$$
. $1^2 = 2$ Bijetora

e)
$$f(1) = 1^2 = 1$$

Exercício 6 - Resolução

Marque a alternativa que representa a função abaixo:

O contradomínio é igual ao conjunto imagem? SIM (SOBREJETORA)

Cada elemento da imagem está ligado a um único elemento do domínio? SIM (INJETORA)

Logo se é injetora e sobrejetora ao mesmo tempo ela é BIJETORA

Marque a alternativa que representa a função abaixo:

- a) f(x) = 2x + 2; Bijetora
- b) $f(x) = x^2 + 2$; Injetora
- c) $f(x) = 2x^2$; Sobrejetora
- d) $f(x) = 2x^2$; Bijetora
- e) $f(x) = x^2$; Injetora

Seja uma função f de A em B, em que A = $\{x \in \mathbb{Z}/ -2 \le x \le 2\}$, definida por f(x) = 2x - 3. Qual deve ser o conjunto B para que f seja bijetora?

Exercício 7 - Resolução

Seja uma função f de A em B, em que $A = \{x \in \mathbb{Z}/ -2 \le x \le 2\}$, definida por f(x) = 2x - 3. Qual deve ser o conjunto B para que f seja bijetora?

Todos os elementos de A formarão todos os elementos de B.

Exercício 7 - Resolução

A =
$$\{x \in \mathbb{Z}/-2 \le x \le 2\}$$
 $f(x) = 2x - 3$
 $f(-2) = 2 \cdot (-2) - 3 = -4 - 3 = -7$
 $f(-1) = 2 \cdot (-1) - 3 = -2 - 3 = -5$
 $f(0) = 2 \cdot (0) - 3 = 0 - 3 = -3$
 $f(1) = 2 \cdot (1) - 3 = 2 - 3 = -1$
 $f(2) = 2 \cdot (2) - 3 = 4 - 3 = 1$

Seja uma função f de A em B, em que A = $\{x \in \mathbb{Z}/ -2 \le x \le 2\}$, definida por f(x) = 2x - 3. Qual deve ser o conjunto B para que f seja bijetora?

$$B = \{-7, -5, -3, -1, 1\}$$

(UFF-RJ) Em um certo dia, três mães deram à luz em uma maternidade. A primeira teve gêmeos, a segunda trigêmeos e a terceira, um único filho. Considere, para aquele dia, o conjunto das 3 mães, o conjunto das 6 crianças e as seguintes relações:

- I. A que associa cada mãe ao seu filho.
- II. A que associa cada filho à sua mãe.
- III. A que associa cada criança ao seu irmão.

São funções:

- a) Somente a I.
- b) Somente a II.
- c) Somente a III.
- d) Todas.
- e) Nenhuma.

I. A que associa cada mãe ao seu filho

I. A que associa cada mãe ao seu filho

Não é função, pois temos um elemento do domínio com mais de uma imagem no contradomínio.

II. A que associa cada filho a sua mãe

É função, pois temos cada elemento do domínio associado a uma única imagem no contradomínio.

III. A que associa cada criança ao seu irmão

Não é função, pois temos um elemento do domínio que não possui imagem.

São funções:

- a) Somente a I.
- b) Somente a II.
- a) Somente a III.
- b) Todas.
- c) Nenhuma.

(Cesesp-PE) Sejam: A o conjunto dos automóveis matriculados na cidade de Recife e B o conjunto dos dígitos de 0 a 9. Considere a função $f: A \rightarrow B$ definida por: f(x) é o último dígito à direita na matrícula do automóvel x. Assinale, dentre as alternativas, a correta:

- a) f é função injetora
- b) f é função sobrejetora
- c) f é função bijetora
- d) a imagem de f é o conjunto {0, 1, 2, 3}
- e) a imagem de f é o conjunto {1, 2, 3, 4, 5, 6, 7, 8, 9}

(Cesesp-PE) Sejam: A o conjunto dos automóveis matriculados na cidade de Recife e B o conjunto dos dígitos de 0 a 9. Considere a função $f: A \rightarrow B$ definida por: f(x) é o último dígito à direita na matrícula do automóvel x. Assinale, dentre as alternativas, a correta:

Como existem mais que 10 carros em Recife os elementos de B receberão mais que uma flecha.

(SOBREJETORA)

Note que cada elemento do conjunto B é imagem do elemento do conjunto A; logo, o conjunto imagem da função f é o próprio conjunto B.

- a) f é função injetora
- b) f é função sobrejetora
- c) f é função bijetora
- d) a imagem de f é o conjunto {0, 1, 2, 3}
- e) a imagem de f é o conjunto {1, 2, 3, 4, 5, 6, 7, 8, 9}

(PUC-SP) Seja a função f de D = $\{1, 2, 3, 4, 5\}$ em \mathbb{R} definida por f(x) = (x - 2)(x - 4). Determine o seu conjunto imagem.

Para determinarmos o conjunto imagem, basta substituir os valores do conjunto D (domínio) na expressão da função f(x).

$$f(x) = (x-2)(x-4)$$

$$f(1) = (1-2)(1-4) = (-1)(-3) = 3$$

$$f(x) = (x - 2)(x - 4)$$

$$f(1) = (1 - 2)(1 - 4) = (-1)(-3) = 3$$

$$f(2) = (2 - 2)(2 - 4) = 0 \cdot (-3) = 0$$

$$f(x) = (x - 2)(x - 4)$$

$$f(1) = (1 - 2)(1 - 4) = (-1)(-3) = 3$$

$$f(2) = (2 - 2)(2 - 4) = 0 \cdot (-3) = 0$$

$$f(3) = (3 - 2)(3 - 4) = 1 \cdot (-1) = -1$$

$$f(x) = (x - 2)(x - 4)$$

 $f(1) = (1 - 2)(1 - 4) = (-1)(-3) = 3$
 $f(2) = (2 - 2)(2 - 4) = 0 \cdot (-2) = 0$
 $f(3) = (3 - 2)(3 - 4) = 1 \cdot (-1) = -1$
 $f(4) = (4 - 2)(4 - 4) = 2 \cdot 0 = 0$
 $f(5) = (5 - 2)(5 - 4) = 3 \cdot 1 = 3$

$$Im(f) = \{-1, 0, 3\}$$

Para saber se um gráfico representa uma função é preciso verificar se cada elemento do domínio existe apenas um único correspondente no contradomínio. Geometricamente significa que qualquer reta perpendicular ao eixo *Ox* deve interceptar o gráfico **em um único ponto**.

Qualquer reta perpendicular ao eixo Ox intercepta o gráfico em um único ponto; portanto, o gráfico representa uma função de x em y.

Existem retas perpendiculares ao eixo Ox que interceptam o gráfico em mais de um ponto; portanto, o gráfico não representa uma função de x em

Existem retas perpendiculares ao eixo Ox que interceptam o gráfico em mais de um ponto; portanto, o gráfico não representa uma função de x em v.

A função y = f(x) é crescente para $1 \le x < 3$, decrescente para $3 \le x < 4$ e é constante para $x \ge 4$. O gráfico que mais adequadamente representa a função y = f(x) é

