

沉积温度对SCOT光电性能及表面形貌的影响

报告人: 刘奕阳 2019.11.23

指导教师: 孟凡英 刘正新

SCOT—村科及制备

SCOT成分wt%—In₂O₃: ZrO₂: TiO₂: Ga₂O₃=98.5:0.5:0.5:05

RF-sputter: Ar+O2 初始真空: ~10-4Pa

功率	溅射压强	氧分压	薄膜厚度	沉积温度
120W	0.45Pa	0.008	70nm & 400nm	RT~ 160°C

Post annealing: air-200°C 30min

图科学院上海微系统与信息技术研究所 Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences

100

Titanium-doped indium oxide films prepared by d.c. magnetron sputtering using ceramic target Yoshiyuki Abe ·Norike Ishiyama

Fig. 4 Substrate temperature dependency of resistivity, carrier density and Hall mobility of ITiO films of 1.6 at.% Ti-doping. Total gas pressure: 0.6 Pa, oxygen content in sputtering gas: 1 vol.%. Film thickness: 500 nm

Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titaniumdoped indium oxide films deposited by radio frequency magnetron sputtering L.T. Yan, R.E.I. Schropp

Fig. 4. Effect of post-annealing on the electrical properties of IWO and ITIO films deposited at 20 W for 1 h (error bars reflect the sample to sample variations).

SCOT温度系列-电学性能

中國科学院上海微系统与信息技术研究所

Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences

SCOT温度系列-光学性能

中國科学院上海微系统与信息技术研究所 Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences

SCOT-SEM-PA-70nm

中国科学院上海微系统与信息技术研究所 Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences

SCOT-AFM-PA

Intensity

SCOT-SEM&XRD-PA

所有薄膜表现出与标准 IO一致的晶向;不同沉 积温度下,薄膜表现出 不同的择优取向,而退 火之后择优取向被消除。

关于室温沉积下SCOT薄膜表面白色颗粒的分析 颗粒尺寸太小,直接表征困难,EDS结果不理想,XPS、SIMS无法探测

	元素种类	熔点	沸点
	In	156.61℃	2060℃
	Zr	1852±2℃	4377°C
	Ti	1668℃	3287℃
RT	Ga	29.8℃	2403℃

RT<29.8℃<70℃<115℃<160℃ 四种元素的金属活动性顺序: Ti>Zr >Ga>In 熔化→析出→蒸发

总结

- 1、SCOT电学性能随温度升高先增强再降低,而且具有不同于传统TCO 材料的低温特性;
- 2、相对于主流的ITO, SCOT在长波段的透过性表现优秀;
- 3、温度对SCOT薄膜表面的粗糙程度影响很大;
- 4、结晶质量越好,光学带隙越小;
- 5、氧不足和低温同时存在的情况下,会影响SCOT中Ga元素的有效掺杂;
- 6、高温沉积使薄膜更致密。

Thank you!