17-5-2022

Diplomatura en BIG DATA

Data Mining & Machine Learning

ALUMNO: Escalada Christian, DNI: 33549575

PROFESORA: MARCELA LETICIA RICCILLO

Trabajo Práctico Nº1

Análisis Exploratorio de Datos - Iris Dataset

Enunciados:

Ejercicio 1 - Parte teórica

¿Por qué es importante testear un modelo de Machine Learning?

Ejercicio 2 – Clasificación

Parte A: Análisis Exploratorio de Datos

- 1. Abra el dataset iris:
 - a. data(iris).
 - b. Escriba en R ?iris y copie el párrafo de Description.
 - c. *Optativo:* busque en Internet alguna imagen de flores iris: *setosa, versicolor* y/o *virginica*. Indique la página web origen de la imagen.
- 2. Muestre dim(iris) y str(iris):
 - a. ¿Cuántas variables tiene el dataset?
 - b. ¿Qué significa cada variable?
- 3. Muestre summary(iris\$Species)
 - a. ¿Cuántas flores por cada especie hay en el dataset?
- 4. Realice un gráfico de barras de la variable a predecir:
 - a. Elija un título y color.
 - b. Indique cómo quedó el código R.
- 5. Muestre un summary(iris):
 - a. ¿En qué rango se encuentran los largos de los sépalos de las flores?
- 6. Elija 2 variables cuantitativas (que no sean Species)
 - a. Realice un gráfico de dispersión con esas 2 variables.
 - b. Coloréelo según la variable a predecir Species.
 - c. Elija un pch y con main="".
 - d. Puede agregar un título al gráfico.
 - e. Indique cómo quedó el código R.
- 7. Con la instrucción iris[numFlor,] se puede obtener los datos de una flor de la base. Considere los 2 últimos números de su DNI.
 - a. Muestre los datos de la flor de esa posición.
 - b. ¿De qué especie es esa flor?
 - c. *Optativo:* realice un esquema o dibujo de las medidas de la flor seleccionada.

Parte B: Conjuntos

- 1. Considere los 3 últimos dígitos de su DNI para el seteo de semilla.
 - a. Particione la base en un conjunto de entrenamiento y uno de testeo.
 - b. Además:
 - i. Si su DNI termina en **0**, **1**, **2**, **3**: Setee p=0.70
 - ii. Si su DNI termina en **4, 5, 6, 7**: Setee p=0.75
 - iii. Si su DNI termina en 8, 9: Setee p=0.80
 - c. Indique el código R utilizado.
- 2. ¿Cuántos elementos quedaron en total en el conjunto de entrenamiento y de testeo?
- 3. Muestre:
 - a. head(entreno)
 - b. head(testeo)
 - c. str(entreno)
 - d. str(testeo)
- 4. Muestre:
 - a. summary(iris\$Species)
 - b. summary(entrenar\$Species)
 - c. summary(testeo\$Species)
 - d. Verifique que en entreno y testeo haya quedado el porcentaje esperado de elementos según la partición con createDataPartition.
- 5. Escriba entreno Enter y luego testeo Enter.
 - a. La flor que obtuvo antes, ¿quedó en entrenamiento o en testeo?

Ejercicio 1 - Parte Teórica

¿Por qué es importante testear un modelo de Machine Learning?

• Es importante testear un modelo de Machine Learning porque es justamente en **Test** donde se puede verificar que el algoritmo realmente aprendió lo que se le trataba de enseñar en la parte de **Train**, además de que en este apartado es donde realmente se le puede medir su verdadera performance, para luego así **deployar** el algoritmo en proyectos de la vida real.

Ejercicio 2 – Parte Práctica

Parte A: Análisis Exploratorio de Datos

Respuestas 1:

Abra el dataset iris.

data(iris)

• Escriba en R ?iris y copie el párrafo de Description.

?iris

starting httpd help server ... done

Description

This famous (Fisher's or Anderson's) iris data set gives the measurements in centimete rs of the variables sepal length and width and petal length and width, respectively, f or 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Optativo:

https://jdvelasq.github.io/courses/_images/iris.png

Especies de Flores Iris

Respuestas 2:

• Muestre dim(iris) y str(iris).

```
dim(iris)
## [1] 150
           5
str(iris)
##
  'data.frame':
                 150 obs. of 5 variables:
   $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##
  $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
   ##
   $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##
               : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 .
   $ Species
##
```

- El Dataset de Iris tiene 5 variables, de las cuales **Species** es la variable *categórica cualitativa*, y **las restantes** son las variables *numéricas cuantitativas*.
- La variable **Species** indica la *especie a la que pertenece la flor*, mientras que **sepal.length & sepal width** indican el *largo y ancho del sépalo de la flor* y por último **Petal.Length & Petal.Width**, indican el *largo y ancho del pétalo de la flor*.

Respuestas 3:

Muestre summary(iris\$Species).

```
summary(iris$Species)

## setosa versicolor virginica
## 50 50 50
```

• Por cada especie hay *50 flores* en el dataset.

Respuestas 4:

• Gráfico de barras de la **variable Species**:

```
plot(iris$Species, main="Gráfico de Especies Iris",col=c("red", "blue", "green"))
```

Gráfico de Especies Iris

Respuestas 5:

• Muestre un summary(iris).

```
summary(iris)
                                                         Petal.Width
##
     Sepal.Length
                      Sepal.Width
                                       Petal.Length
##
    Min.
           :4.300
                     Min.
                             :2.000
                                      Min.
                                              :1.000
                                                        Min.
                                                               :0.100
    1st Qu.:5.100
##
                     1st Qu.:2.800
                                       1st Qu.:1.600
                                                        1st Qu.:0.300
    Median :5.800
                     Median :3.000
                                      Median :4.350
                                                        Median :1.300
##
            :5.843
    Mean
                     Mean
                             :3.057
                                      Mean
                                              :3.758
                                                        Mean
                                                                :1.199
##
    3rd Qu.:6.400
                     3rd Qu.:3.300
                                       3rd Qu.:5.100
                                                        3rd Qu.:1.800
##
##
    Max.
            :7.900
                     Max.
                             :4.400
                                      Max.
                                              :6.900
                                                        Max.
                                                               :2.500
          Species
##
##
    setosa
               :50
##
    versicolor:50
##
    virginica:50
##
##
##
```

• El largo de los sépalos de las flores se encuentra en el rango de los 4.3cm - 7.9cm.

Respuestas 6:

• Elija 2 variables y grafique.

```
# Primero importamos Librerias
library(caret)

## Loading required package: ggplot2

## Loading required package: lattice

# Graficamos:

xyplot(iris$Sepal.Length~iris$Sepal.Width, groups=iris$Species, pch=c(3,4,5),col=c("red", "blue", "green"),auto.key=TRUE, main="Largo vs Ancho de Iris Sepal",xlab="Ancho Sepal", ylab="Largo Sepal")
```

Largo vs Ancho de Iris Sepal

• Elegí las variables cuantitativas: Sepal.Length & Sepal.Width para realizar el gráfico de dispersión requerido, además para representar a cada una de las flores elegí un pch de 3, 4, 5, que representan un rombo, una cruz y un signo suma, los colores que utilicé para cada especie son el rojo, azul, verde, por último a mi gráfico le agregue un título: "Largo vs Ancho de Iris Sepal".

Respuestas 7:

• Muestre los datos de la flor de la posición: iris[2numDNI,]

```
flor= iris[75,]
flor

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 75 6.4 2.9 4.3 1.3 versicolor
```

- La Flor que se muestra según mis dos últimos números de mi DNI es: una *Especie Versicolor*
- Optativo:

Especie Versicolor: Click Aquí

Especie Versicolor

Parte B: Conjuntos

Respuestas 1:

- Mis 3 últimos números de mi DNI son: 575.
- Mi último número de DNI es 5.
- p va a ser igual a 0.75.
- El código va a quedar:

```
set.seed(575); particion=createDataPartition(y=iris$Species,p=0.75,list=FALSE)
entreno=iris[particion,]
testeo=iris[-particion,]
```

Respuestas 2:

• En el conjunto de Entrenamiento guedaron 114 elementos.

```
dim(entreno)
## [1] 114 5
```

• En el conjunto de Testeo quedaron 36 elementos.

```
dim(testeo)
## [1] 36 5
```

Respuestas 3:

```
Muestre:
# Observamos las primeras filas de Train.
head(entreno)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                       1.4
                                                    0.2 setosa
## 2
              4.9
                          3.0
                                        1.4
                                                    0.2 setosa
              4.7
                          3.2
                                       1.3
                                                    0.2 setosa
## 3
## 4
              4.6
                          3.1
                                       1.5
                                                    0.2 setosa
                                                    0.2 setosa
## 5
              5.0
                          3.6
                                        1.4
## 8
              5.0
                          3.4
                                        1.5
                                                    0.2 setosa
# Observamos las primeras filas de Test.
head(testeo)
##
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 6
               5.4
                           3.9
                                         1.7
                                                     0.4
                                                          setosa
                                                     0.3
## 7
               4.6
                           3.4
                                         1.4
                                                          setosa
## 13
                                                     0.1
               4.8
                           3.0
                                         1.4
                                                          setosa
## 17
               5.4
                                                     0.4
                           3.9
                                         1.3
                                                          setosa
## 20
               5.1
                           3.8
                                         1.5
                                                     0.3
                                                          setosa
## 28
               5.2
                           3.5
                                        1.5
                                                     0.2 setosa
# Observamos la estructura interna de Entreno.
str(entreno)
## 'data.frame':
                    114 obs. of 5 variables:
##
  $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5 4.4 4.9 5.4 4.8 ...
  $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.4 2.9 3.1 3.7 3.4 ...
##
   $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.5 1.4 1.5 1.6 ...
##
   $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 ...
##
   $ Species
##
                  : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 .
. .
# Observamos la estructura interna de Testeo.
str(testeo)
## 'data.frame':
                    36 obs. of 5 variables:
   $ Sepal.Length: num 5.4 4.6 4.8 5.4 5.1 5.2 5.2 5.5 5 4.5 ...
   $ Sepal.Width : num 3.9 3.4 3 3.9 3.8 3.5 3.4 4.2 3.2 2.3 ...
##
   $ Petal.Length: num 1.7 1.4 1.4 1.3 1.5 1.5 1.4 1.4 1.2 1.3 ...
##
   $ Petal.Width : num 0.4 0.3 0.1 0.4 0.3 0.2 0.2 0.2 0.2 0.3 ...
##
##
   $ Species
                 : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 .
. .
```

Respuestas 4:

Muestre:

```
summary(iris$Species)
##
       setosa versicolor virginica
##
           50
                       50
                                  50
summary(entreno$Species)
##
       setosa versicolor
                           virginica
##
           38
                       38
summary(testeo$Species)
##
       setosa versicolor virginica
##
           12
                       12
```

• Verifique que en entreno y testeo haya quedado el porcentaje esperado de elementos según la partición con createDataPartition.

```
particion con createDataPartition.

# Comprobamos si el % de Train coincide con la partición creada.

porcentaje= (38*3*100)/150
cat("El Porcentaje obtenido es:",porcentaje,"%; Coincide con la partición Hecha con createDataPartition.")

## El Porcentaje obtenido es: 76 %; Coincide con la partición Hecha con createDataPartition.

# Comprobamos si el % de Test coincide con la partición creada.

porcentaje= (12*3*100)/150 #%
cat("El Porcentaje obtenido es:",porcentaje,"%; Coincide con la partición Hecha con createDataPartition.")

## El Porcentaje obtenido es: 24 %; Coincide con la partición Hecha con createDataPartition.
```

Respuestas 5:

entreno

Escriba entreno – Enter y luego testeo – Enter.

en	cren	.0				
##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa

## 24	5.1	3.3	1.7	0.5 setosa
## 25	4.8	3.4	1.9	0.2 setosa
## 26	5.0	3.0	1.6	0.2 setosa
## 27	5.0	3.4	1.6	0.4 setosa
## 30	4.7	3.2	1.6	0.2 setosa
## 31	4.8	3.1	1.6	0.2 setosa
## 32	5.4	3.4	1.5	0.4 setosa
## 33	5.2	4.1	1.5	0.1 setosa
## 35	4.9	3.1	1.5	0.2 setosa
## 37	5.5	3.5	1.3	0.2 setosa
## 38	4.9	3.6	1.4	0.1 setosa
## 39	4.4	3.0	1.3	0.2 setosa
## 40	5.1	3.4	1.5	0.2 setosa
## 41	5.0	3.5	1.3	0.3 setosa
## 43	4.4	3.2	1.3	0.2 setosa
## 44	5.0	3.5	1.6	0.6 setosa
## 46	4.8	3.0	1.4	0.3 setosa
## 47	5.1	3.8	1.6	0.2 setosa
## 48	4.6	3.2	1.4	0.2 setosa
## 49	5.3	3.7	1.5	0.2 setosa
## 51				
	7.0	3.2	4.7	1.4 versicolor
## 52	6.4	3.2	4.5	1.5 versicolor
## 54	5.5	2.3	4.0	1.3 versicolor
## 55	6.5	2.8	4.6	1.5 versicolor
## 56	5.7	2.8	4.5	1.3 versicolor
## 57	6.3	3.3	4.7	1.6 versicolor
## 59	6.6	2.9	4.6	1.3 versicolor
## 60	5.2	2.7	3.9	1.4 versicolor
## 61	5.0	2.0	3.5	1.0 versicolor
## 64	6.1	2.9	4.7	1.4 versicolor
## 65	5.6	2.9	3.6	1.3 versicolor
## 66	6.7	3.1	4.4	1.4 versicolor
## 67				1.5 versicolor
	5.6	3.0	4.5	
## 68	5.8	2.7	4.1	1.0 versicolor
## 69	6.2	2.2	4.5	1.5 versicolor
## 71	5.9	3.2	4.8	1.8 versicolor
## 73	6.3	2.5	4.9	1.5 versicolor
## 74	6.1	2.8	4.7	1.2 versicolor
## 75	6.4	2.9	4.3	1.3 versicolor
## 76	6.6	3.0	4.4	1.4 versicolor
## 77	6.8	2.8	4.8	1.4 versicolor
## 78	6.7	3.0	5.0	1.7 versicolor
## 79	6.0	2.9	4.5	1.5 versicolor
## 80	5.7	2.6	3.5	1.0 versicolor
## 81	5.5	2.4	3.8	1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97			4.2	1.3 versicolor
	5.7	2.9		
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica

## 102	5.8	2.7	5.1	1.9	virginica
## 105	6.5	3.0	5.8	2.2	virginica
## 106	7.6	3.0	6.6	2.1	virginica
					_
## 108	7.3	2.9	6.3	1.8	virginica
## 110	7.2	3.6	6.1	2.5	virginica
## 111	6.5	3.2	5.1	2.0	virginica
## 112	6.4	2.7	5.3	1.9	virginica
## 114	5.7	2.5	5.0	2.0	virginica
## 115	5.8	2.8	5.1	2.4	virginica
					_
## 116	6.4	3.2	5.3	2.3	virginica
## 117	6.5	3.0	5.5	1.8	virginica
## 118	7.7	3.8	6.7	2.2	virginica
## 119	7.7	2.6	6.9	2.3	virginica
## 120	6.0	2.2	5.0	1.5	virginica
## 121	6.9	3.2	5.7	2.3	virginica
## 122	5.6	2.8	4.9	2.0	virginica
## 124	6.3	2.7	4.9	1.8	virginica
					_
## 126	7.2	3.2	6.0	1.8	virginica
## 127	6.2	2.8	4.8	1.8	virginica
## 128	6.1	3.0	4.9	1.8	virginica
## 129	6.4	2.8	5.6	2.1	virginica
## 130	7.2	3.0	5.8	1.6	virginica
## 131	7.4	2.8	6.1	1.9	virginica
## 133	6.4	2.8	5.6	2.2	virginica
## 134	6.3	2.8	5.1	1.5	virginica
					_
## 136	7.7	3.0	6.1	2.3	virginica
## 137	6.3	3.4	5.6	2.4	virginica
## 138	6.4	3.1	5.5	1.8	virginica
## 140	6.9	3.1	5.4	2.1	virginica
## 141	6.7	3.1	5.6	2.4	virginica
## 143	5.8	2.7	5.1	1.9	virginica
## 144	6.8	3.2	5.9	2.3	virginica
## 145	6.7	3.3	5.7	2.5	virginica
## 146					_
	6.7	3.0	5.2	2.3	virginica
## 147	6.3	2.5	5.0		virginica
## 148	6.5	3.0	5.2		virginica
## 150	5.9	3.0	5.1	1.8	virginica
testeo					
##	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
## 6	5.4	3.9	1.7	0.4	setosa
## 7	4.6	3.4	1.4	0.3	setosa
## 13	4.8	3.0	1.4	0.1	setosa
## 17	5.4	3.9	1.3	0.4	setosa
## 20	5.1	3.8			
			1.5	0.3	setosa
## 28	5.2	3.5	1.5	0.2	setosa
## 29	5.2	3.4	1.4	0.2	setosa
## 34	5.5	4.2	1.4	0.2	setosa
## 36	5.0	3.2	1.2	0.2	setosa
## 42	4.5	2.3	1.3	0.3	setosa
## 45	5.1	3.8	1.9	0.4	setosa
## 50	5.0	3.3	1.4	0.2	setosa
## 53			4.9		
	6.9	3.1			versicolor
## 58	4.9	2.4	3.3		versicolor
## 62	5.9	3.0	4.2		versicolor
## 63	6.0	2.2	4.0		versicolor
## 70	5.6	2.5	3.9	1.1	versicolor
## 72	6.1	2.8	4.0	1.3	versicolor
## 89	5.6	3.0	4.1		versicolor
	2.0	2.0	· · -	_,,	·

```
## 90
                 5.5
                             2.5
                                           4.0
                                                        1.3 versicolor
                 5.5
## 91
                             2.6
                                           4.4
                                                        1.2 versicolor
## 93
                 5.8
                             2.6
                                           4.0
                                                        1.2 versicolor
## 98
                 6.2
                             2.9
                                           4.3
                                                        1.3 versicolor
## 99
                 5.1
                             2.5
                                           3.0
                                                        1.1 versicolor
## 103
                 7.1
                             3.0
                                           5.9
                                                        2.1
                                                             virginica
## 104
                 6.3
                             2.9
                                           5.6
                                                        1.8
                                                             virginica
## 107
                 4.9
                             2.5
                                           4.5
                                                        1.7
                                                             virginica
## 109
                 6.7
                             2.5
                                           5.8
                                                        1.8
                                                             virginica
                                                        2.1 virginica
## 113
                 6.8
                             3.0
                                           5.5
## 123
                 7.7
                             2.8
                                           6.7
                                                        2.0 virginica
## 125
                 6.7
                             3.3
                                           5.7
                                                        2.1 virginica
## 132
                 7.9
                             3.8
                                           6.4
                                                        2.0
                                                             virginica
## 135
                 6.1
                                                        1.4 virginica
                             2.6
                                           5.6
## 139
                 6.0
                             3.0
                                           4.8
                                                        1.8 virginica
## 142
                 6.9
                             3.1
                                           5.1
                                                        2.3
                                                             virginica
## 149
                 6.2
                             3.4
                                           5.4
                                                        2.3 virginica
```

La flor que obtuvo antes, ¿quedó en entrenamiento o en testeo?

```
# Verificamos si está en Train:
entreno["75",]
##
      Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                             Species
## 75
               6.4
                            2.9
                                         4.3
                                                      1.3 versicolor
# Verificamos si está en Test:
testeo["75",]
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## NA
                NA
                             NA
                                          NA
                                                       NA
                                                             <NA>
```

Podemos observar en base a los datos, que la **Flor** obtenida según mis **2** últimos números de **DNI**, quedó en el Dataset de **Entrenamiento**.

Bibliografia:

- R plot pch symbols
- xyplot-xlab-ylab
- R-Graphics
- R Markdown Cheat Sheet I
- R Markdown Cheat Sheet II
- Flores Iris
- R Chunks
- R cat
- R print
- Ejemplo Iris I
- Ejemplo Iris II

Anexo Código:

Parte A: Análisis Exploratorio de Datos

```
data(iris)
?iris
dim(iris)
str(iris)
summary(iris$Species)
plot(iris$Species, main="Gráfico de Especies Iris",col=c("red", "blue", "green"))
summary(iris)
library(caret)
xyplot(iris$Sepal.Length~iris$Sepal.Width, groups=iris$Species, pch=c(3,4,5),col=c("red", "blue", "green"),auto.key=TRUE, main="Largo vs Ancho de Iris Sepal",xlab="Ancho Sepal", ylab="Largo Sepal")
flor= iris[75,]
flor
```

Parte B: Conjuntos:

```
set.seed(575); particion=createDataPartition(y=iris$Species,p=0.75,list=FALSE)
entreno=iris[particion,]
testeo=iris[-particion,]
dim(entreno)
dim(testeo)
head(entreno)
head(testeo)
str(entreno)
str(testeo)
summary(iris$Species)
summary(entreno$Species)
summary(testeo$Species)
(38*3*100)/150 #%
(12*3*100)/150 #%
entreno["75",] # esta en train
testeo["75",] # no está en test
```

¡Muchas Gracias!

