Winter term 2023/2024

S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet MF11

Mathematical Finance: MF

Exercises (for discussion on Monday, 29.01.2024)

Exercise 1. Let $N \in \mathbb{N}$, $(X)_{n \leq N}$ be an adapted process with $E(|X_n|) < \infty$ for all $n \leq N$, $U = (U_n)_{n \leq N}$ the Snell-envelope of X, $M = (M_n)_{n \leq N}$ a martingale with $M_0 = 0$ and $A = (A_n)_{n \leq N}$ a previsible process with $A_0 = 0$ such that

$$U = U_0 + M + A$$

(Doob decomposition). Let \mathcal{T}_0 be the set of $\{0,...N\}$ -valued stopping times and $\sigma \in \mathcal{T}_0$. Show that $E(X_{\sigma}) = \sup_{\tau \in \mathcal{T}_0} E(X_{\tau})$ if and only if both $A_{\sigma} = 0$ and $X_{\sigma} = U_{\sigma}$ hold a.s.

Exercise 2. Let $S=(S^0,S^1,S^2,S^3,S^4,S^5)$ denote an arbitrage-free market with time horizon $N\in\mathbb{N}$. We have $S_n^0=\exp(rn)$ for some $r\geq 0$. Further let S^2 and S^3 denote the value processes for an American call option respectively an American put option with identical strike K and maturity N on the stock S^1 which does not pay dividends. S^4 and S^5 are price processes for the corresponding European call and put options. Prove the following inequalities

$$S_0^1 - K \le S_0^2 - S_0^3 \le S_0^1 - K \exp(-rN)$$

which are an analogue to the Put-Call-parity for European options.

Exercise 3. Suppose a customer wants to buy a European call option on the stock S^1 with strike $101.75 \in$ and maturity T = 31.03.2024. On the market European call options with strikes $100 \in$, $101 \in$, $102 \in$, $103 \in$, $104 \in$, $105 \in$ and maturity T = 31.03.2024 are liquidly traded. Their prices are given in the following table:

Strike
$$K_i$$
 | 100 € | 101 € | 102 € | 103 € | 104 € | 105 €
Price P_i | 7.453 € | 6.970 € | 6.448 € | 5.958 € | 5.467 € | 5.070 €

Suppose that in a very simple model the price of a European call option on S^1 with strike K and maturity T=31.03.2024 is given by

$$P(K, \vartheta_0, \vartheta_1) = \vartheta_0 + \vartheta_1 K$$

for parameters $\theta_0, \theta_1 \in \mathbb{R}$.

(a) Find ϑ_0, ϑ_1 such that

$$\sum_{i=1}^{6} (P_i - P(K_i, \vartheta_0, \vartheta_1))^2$$

is minimized.

- (b) Use the result from part (a) to determine the approximated fair price of the European call option with strike 103.5€.
- (c) Discuss whether for arbitrary strike K the pricing approach used in this exercise may lead to an arbitrage-free market.

Exercise 4. (bonus exercise)

We consider a market $S = (S^0, S^1)$ with three time points with $S^0 \equiv 1$, and the possible developments of S^1 are given by the tree below. As filtration choose $\sigma(S^1)$ and P is given by the transition probabilities $p_1, p_2, \ldots, p_{32}, p_{33}$ which are considered to be > 0.

a) An EMM Q is determined by the transition probabilities $q_1, q_2, \ldots, q_{32}, q_{33}$ in the tree. Determine conditions for Q. Is Q unique?

- b) We observe, at time n=0 a liquid European Call option on S^1 with strike 100 and maturity N=2 and price $S_0^2=7.5$. Furthermore, we choose the *model assumption* $q_2=q_{12}=q_{22}=q_{32}$. Show that there exists only one EMM Q of such form fitting to S_0^2 . Determine S^2 .
- c) Show that the market (S^0, S^1, S^2) with S^2 is complete.