Formal Methods in Software Developement Modeling with propositional logic

Mădălina Erașcu

West University of Timișoara Faculty of Mathematics and Informatics

Based on slides of the lecture Satisfiability Checking (Erika Ábrahám), RTWH Aachen

October 25, 2018

Before we solve this problem...

Suppose we can solve the satisfiability problem... how can this help us?

Before we solve this problem...

- Suppose we can solve the satisfiability problem... how can this help us?
- There are numerous problems in the industry that are solved via the satisfiability problem of propositional logic
 - Logistics
 - Planning
 - Electronic Design Automation industry
 - Cryptography
 - **...**
- For the following examples, use a SAT solver to find a satisfying assignment.

Example 1: Assignment of frequencies

- n radio stations
- For each station assign one of k transmission frequencies, k < n.
- *E* set of pairs of stations, that are too close to have the same frequency.

Example 1: Assignment of frequencies

- n radio stations
- For each station assign one of k transmission frequencies, k < n.
- E set of pairs of stations, that are too close to have the same frequency.
- Q: Can we assign to each station a frequency, such that no station pairs from E have the same frequency?

■ Notation:

■ Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

- Notation:
 - $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$
- **■** Constraints:

■ Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

■ Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} X_{s,f} \right)$$

Every station is assigned at most one frequency:

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Every station is assigned at most one frequency:

$$\bigwedge_{s=1}^{n} \bigwedge_{f1=1}^{k-1} \bigwedge_{f2=f1+1}^{k} \left(\neg x_{s,f1} \lor \neg x_{s,f2} \right)$$

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Every station is assigned at most one frequency:

$$\bigwedge_{s=1}^{n} \bigwedge_{f1=1}^{k-1} \bigwedge_{f2=f1+1}^{k} \left(\neg x_{s,f1} \lor \neg x_{s,f2} \right)$$

Close stations are not assigned the same frequency:

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Every station is assigned at most one frequency:

$$\bigwedge_{s=1}^{n} \bigwedge_{f=1}^{k-1} \bigwedge_{f^2=f+1}^{k} \left(\neg x_{s,f1} \lor \neg x_{s,f2} \right)$$

Close stations are not assigned the same frequency:

For each $(s1, s2) \in E$,

$$\bigwedge_{f=1}^{k} \left(\neg x_{s1,f} \lor \neg x_{s2,f} \right)$$

Example 2: Seminar topic assignment

- n participants
- n topics
- Set of preferences $E \subseteq \{1, ..., n\} \times \{1, ..., n\}$ (p, t) ∈ E means: participant p would take topic t

Example 2: Seminar topic assignment

- n participants
- n topics
- Set of preferences $E \subseteq \{1, ..., n\} \times \{1, ..., n\}$ (p, t) ∈ E means: participant p would take topic t
- Q: Can we assign to each participant a topic which he/she is willing to take?

■ Notation:

■ Notation: $x_{p,t}$ = "participant p is assigned topic t"

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

- Notation: $x_{p,t} =$ "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

- Notation: $x_{p,t} =$ "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

- Notation: $x_{p,t} =$ "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

Each participant is assigned at most one topic:

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

Each participant is assigned at most one topic:

$$\bigwedge_{p=1}^{n} \bigwedge_{t1=1}^{n-1} \bigwedge_{t2=t1+1}^{n} (\neg x_{p,t1} \lor \neg x_{p,t2})$$

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

Each participant is assigned at most one topic:

$$\bigwedge_{p=1}^{n} \bigwedge_{t1=1}^{n-1} \bigwedge_{t2=t1+1}^{n} \left(\neg x_{p,t1} \lor \neg x_{p,t2} \right)$$

Each participant is willing to take his/her assigned topic:

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

Each participant is assigned at most one topic:

$$\bigwedge_{p=1}^{n} \bigwedge_{t1=1}^{n-1} \bigwedge_{t2=t1+1}^{n} \left(\neg x_{p,t1} \lor \neg x_{p,t2} \right)$$

Each participant is willing to take his/her assigned topic:

$$\bigwedge_{p=1}^{n} \bigwedge_{(p,t)\notin E} \neg x_{p,i}$$

Each topic is assigned to at most one participant:

Each topic is assigned to at most one participant:

$$\bigwedge_{t=1}^{n} \bigwedge_{p_1=1}^{n-1} \bigwedge_{p_2=p_1+1}^{n} \left(\neg x_{p_1,t} \vee \neg x_{p_2,t} \right)$$