Khoa Kỹ Thuật Máy Tính

Thực hành môn Lý thuyết mạch điện

Sinh viên:

■ 22520009 - Đào Đặng Thanh An

• 22520070 - Phạm Thị Phương Anh

• 22520077 - Trần Ngọc Ánh

• 22520305 - Nguyễn Đức Anh Dương

■ 23520876 - Lại Hữu Hoàng Long

Lóp: CE121.O21

Giáo viên hướng dẫn: Trịnh Lê Huy

BÁO CÁO THỰC HÀNH BÀI 2

A. Chuẩn bị

1. Cho hình 2.1 là sơ đồ nguyên lý của mạch 2.2c. Cấp nguồn 5V vào E1, chỉnh biến trở POT1, POT2 sau đó tính và đọ đạc các giá trị sau:

Hình 2.1

POT1 = 2.7k ohm	Cường độ dòng điện chạy qua JMP1		
(Thực tế) POT1 =	- (Lý thuyết) $I_{JMP1} = 0.689 \text{mA}$		
2.68k ohm	- (Thực tế) $I_{JMP1} = 510 \mu\text{A}$		

POT2 = 4k ohm	Điện áp trên POT1
(Thực tế) POT2 =	- (Lý thuyết) $V_{POT1} = 1.8603V$
4.07k ohm	- (Thực tế) $V_{POT1} = 1.89 \text{ V}$
POT1 = 3.3k ohm	Cường độ dòng điện chạy qua JMP1
(Thực tế) POT1 =	- (Lý thuyết) $I_{JMP1} = 0.64 \text{mA}$
3.29k ohm	- (Thực tế) $I_{JMP1} = 476 \mu A$
POT2 = 1.5k ohm (Thực tế) POT2 = 1.57k ohm	$\begin{array}{ll} \text{Diện áp trên POT1} \\ & \text{- (Lý thuyết)} V_{POT1} = 2.11 V \\ & \text{- (Thực tế)} V_{POT1} = 2.16 \ V \end{array}$

***** Khi POT1 = 2.7k ohm, POT2 = 4k ohm:

$$R_{34} = 1000 + 1000 = 2000(\Omega)$$

$$R_{POT2.6} = 4000 + 4700 = 8700(\Omega)$$

$$R_{CD} = \left(\frac{1}{2000} + \frac{1}{3000} + \frac{1}{8700}\right)^{-1} = 1054.545(\Omega)$$

$$R_{AB} = \left(\frac{1}{1000} + \frac{1}{1000}\right)^{-1} = 500(\Omega)$$

$$R_{tm} = 2700 + 500 + 1054.545 + 3000 = 7254.545(\Omega)$$

$$I_{tm} = \frac{5}{7254.545} = 0.689 \text{mA} = I_{POT1} = I_{JMP1}$$

$$V_{POT1} = I_{POT1}.R_{POT1} = 1.86V$$

b) Mô phỏng V_{POT1}:

c) Mô phỏng I_{JMP1}:

***** Khi POT1 = 3.3k ohm, POT2 = 1.5k ohm

$$\begin{split} R_{34} &= 1000 + 1000 = 2000 \left(\Omega\right) \\ R_{POT2,6} &= 1500 + 4700 = 6000 \left(\Omega\right) \\ R_{CD} &= \left(\frac{1}{2000} + \frac{1}{3000} + \frac{1}{6200}\right)^{-1} = 1005.405 \left(\Omega\right) \\ R_{AB} &= \left(\frac{1}{1000} + \frac{1}{1000}\right)^{-1} = 500 \left(\Omega\right) \end{split}$$

$$R_{tm} = 2700 + 500 + 1005.405 + 3000 = 7205.405 (\Omega)$$

$$I_{tm} = \frac{5}{7205.405} = 0.64 \text{mA} = I_{POT1} = I_{JMP1}$$

$$V_{POT1} = I_{POT1}.R_{POT1} = 0,64.10^{-3}.3300 = 2.11V$$

b) Mô phỏng V_{POT1}:

c) Mô phỏng I_{JMP1}:

B. Nội dung thực hành.

- Tính toán các thông số của mạch điện.
- Lắp mạch điện.
- Thay đổi biến trở, theo dõi sự biến đổi của dòng điện và điện áp.
- Đo đạc các thông số của mạch điện.
- So sánh kết quả đo đạc với kết quả tính toán được và nhận xét.

C. Báo cáo kết quả.

1. Bài tập 2.2: Cho hình 2.2 là sơ đồ nguyên lý của mạch 2.2d. Cấp nguồn 3.3V vào E2 để tính toán, đo đạc, suy ra các giá trị yêu cầu như trong bảng 2.2.

Hình 2.2

Bảng 2.2: Sử dụng nguồn 3.3V để tính toán và đo đạc thực tế các giá trị trên mạch 2.2d.

		Lý thuyết	Đo đạc
POT3 = 4k ohm	V _{POT3}	$V_{POT3} = 0.932 \text{ V}$	$V_{POT3} = 0.952 \text{ V}$
(Thực tế) POT3 =	$=>I_{JMP5}$	$I_{JMP5} = 0.233 \text{ mA}$	$I_{JMP5} = 0.233 \text{ mA}$
4.08k ohm	V_{POT4}	$V_{POT4} = 0.0376 \text{ V}$	$V_{POT4} = 30.1 \text{ mV}$
POT4 = 4k ohm	$=>I_{JMP8}$	$I_{JMP8} = 0.93 \text{ mA}$	$I_{JMP8} = 0.00742 \text{ mA}$
(Thực tế) POT4 =			
4.05k ohm			
POT3 = 1.3k ohm	V_{POT3}	$V_{POT3} = 0.456 \text{ V}$	$V_{POT3} = 475.2 \text{ mV}$
(Thực tế) POT3 =	\Rightarrow I_{JMP5}	$I_{JMP5} = 0.3507 \text{ mA}$	$I_{JMP5} = 0.352 \text{ mA}$
1.35k ohm	V_{POT4}	$V_{POT4} = 0.274 \text{ V}$	$V_{POT4} = 30.1 \text{ mV}$
POT4 = 4k ohm	\Rightarrow I_{JMP8}	$I_{JMP8} = 0.068 \text{ mA}$	$I_{JMP8} = 0.00742 \text{ mA}$
(Thực tế) POT4 =			
4.05k ohm			

❖ Khi POT3 = 4k ohm, POT4 = 4k ohm:

a) Lý thuyết:

Phương pháp dòng mắc lưới:

$$\begin{bmatrix} 11700 & -4000 & -4700 \\ -4000 & 12700 & -4000 \\ -4700 & -4000 & 13400 \end{bmatrix} \begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \begin{bmatrix} 3.3 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} I_{A} = 4,392.10^{-4} (A) \\ I_{D} = 2,062.10^{-4} (A) \\ I_{C} = 2,156.10^{-4} (A) \end{cases}$$

$$\Rightarrow \begin{cases} I_{POT3} = I_{A} - I_{B} = 0,233.10^{-3} (A) \\ I_{POT4} = -I_{B} + I_{C} = 0,93.10^{-3} (A) \end{cases}$$

$$\Rightarrow \begin{cases} V_{POT3} = I_{POT3}.4000 = 0,932 (V) \\ V_{POT4} = I_{POT4}.4000 = 0,037 (V) \end{cases}$$

b) Mô phỏng V_{POT3}, I_{JMP5}:

c) Mô phỏng V_{POT4}, I_{JMP8}:

***** Khi POT3 = 1.3k ohm, POT4 = 4k ohm:

a) Lý thuyết:

Phương pháp dòng mắc lưới:

$$\begin{bmatrix} 9000 & -1300 & -4700 \\ -1300 & 10000 & -4000 \\ -4700 & -4000 & 13400 \end{bmatrix} \begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \begin{bmatrix} 3.3 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} I_{A} = 5,06.10^{-4} (A) \\ I_{D} = 1,553.10^{-4} (A) \\ I_{C} = 2,238.10^{-4} (A) \end{cases}$$

$$\Rightarrow \begin{cases} I_{POT3} = I_{A} - I_{B} = 0,3507.10^{-3} (A) \\ I_{POT4} = -I_{B} + I_{C} = 0,0685.10^{-3} (A) \end{cases}$$

$$\Rightarrow \begin{cases} V_{POT3} = I_{POT3}.1300 = 0,46 (V) \\ V_{POT4} = I_{POT4}.4000 = 0,274 (V) \end{cases}$$

b) Mô phỏng V_{POT3}, I_{JMP5}:

c) Mô phỏng V_{POT4} , I_{JMP8} :

Bài tập 2.3: Cho hình 2.3 là sơ đồ nguyên lý của mạch 2.2d. Cấp nguồn 5V vào E3 để tính toán, đo đạc các giá trị yêu cầu như trong bảng 2.3.

Hình 2.3

Bảng 2.3: Sử dụng nguồn 5V để tính toán và đo đạc thực tế các giá trị trên mạch 2.3b.

		Lý thuyết	Đo đạc
POT5 = 15k ohm	I _{POT5}	$I_{POT5} = 0.075 \text{ mA}$	$I_{POT5} = 0.074 \text{ mA}$
(Thực tế) POT5 =	$=>V_{R13}$	$V_{R13} = 3.148 \text{ V}$	$V_{R13} = 3.79 \text{ V}$
15.23k ohm	\Rightarrow V _{R14}	$V_{R14} = 1.852 \text{ V}$	$V_{R14} = 2.229 \text{ V}$
POT5 = 35k ohm	I_{POT5}	$I_{POT5} = 0.058 \text{ mA}$	$I_{POT5} = 0.057 \text{ mA}$
(Thực tế) POT5 =	$=> V_{R13}$	$V_{R13} = 3.148 \text{ V}$	$V_{R13} = 2.939 \text{ V}$
35.2k ohm	$=> V_{R14}$	$V_{R14} = 1.852 \text{ V}$	$V_{R14} = 1.7286 \text{ V}$

***** Khi POT5 = 15k ohm:

$$\begin{split} R_{POT5,15} &= 15000 + 51000 = 66000 \left(\Omega\right) \\ R_{13,14} &= 51000 + 30000 = 81000 \left(\Omega\right) \\ R_{tm} &= \left(\frac{1}{66000} + \frac{1}{81000}\right)^{-1} = 36,367.10^{3} \left(\Omega\right) \\ I_{tm} &= \frac{5}{36,367.10^{3}} = 137,486.10^{-6} \left(A\right) \\ U_{tm} &= U_{POT5,15} = U_{13,14} = 5V \\ I_{POT5,15} &= \frac{5}{66000} = 75,758.10^{-6} \left(A\right) = I_{POT5} = I_{R15} \\ \Rightarrow I_{POT5} &= 0,075.10^{-3} \left(A\right) \\ I_{13,14} &= \frac{5}{81000} = 61,728.10^{-6} \left(A\right) = I_{13} = I_{14} \\ \Rightarrow \begin{cases} V_{13} &= 61,728.10^{-6}.51000 = 3,148 \left(V\right) \\ V_{14} &= 61,728.10^{-6}.30000 = 1,852 \left(V\right) \end{cases} \end{split}$$

b) Mô phỏng I_{POT5} , V_{R13} , V_{R14} :

❖ Khi POT5 = 35k ohm:

$$R_{POT5,15} = 35000 + 51000 = 86000 (\Omega)$$

$$R_{13,14} = 51000 + 30000 = 81000(\Omega)$$

$$R_{tm} = \left(\frac{1}{86000} + \frac{1}{81000}\right)^{-1} = 41,713.10^{3} (\Omega)$$

$$I_{tm} = \frac{5}{41,713.10^3} = 119,868.10^{-6} (A)$$

$$\begin{split} &U_{tm} = U_{POT5,15} = U_{13,14} = 5V \\ &I_{POT5,15} = \frac{5}{86000} = 58,140.10^{-6} \, \text{(A)} = I_{POT5} = I_{R15} \\ &\Rightarrow I_{POT5} = 0,0581.10^{-3} \, \text{(A)} \\ &I_{13,14} = \frac{5}{81000} = 61,728.10^{-6} \, \text{(A)} = I_{13} = I_{14} \\ &\Rightarrow \begin{cases} V_{13} = 61,728.10^{-6}.51000 = 3,148 \, \text{(V)} \\ V_{14} = 61,728.10^{-6}.30000 = 1,852 \, \text{(V)} \end{cases} \end{split}$$

b) Mô phỏng I_{POT5}, V_{R13},V_{R14}:

Bài tập 2.4: Cho hình 2.4 là sơ đồ nguyên lý của mạch 2.6, sau đó sử dụng nguồn 3.3V và 5V để tính toán, đo đạc, suy ra các giá trị yêu cầu như trong bảng 2.4.

Hình 2.4

Bảng 2.4: Sử dụng nguồn 5V và 3.3V để tính toán và đo đạc thực tế các giá trị trên mạch 2.6.

		Lý thuyết	Đo đạc
E4 = 5V	V_{POT6}	$V_{POT6} = 1.523 \text{ V}$	$V_{POT6} = 1.58 \text{ V}$
E5 = 3.3V	$=>I_{POT6}$	$I_{POT6} = 0.461 \text{ mA}$	$I_{POT6} = 0.319 \text{ mA}$
POT6 = 3.3k ohm	$=>I_{R16}$	$I_{R16} = 0.423 \text{ mA}$	$I_{R16} = 0.702 \text{ mA}$
(Thực tế) POT6 =	$=>I_{R17}$	$I_{R17} = 0.037 \text{ mA}$	$I_{R17} = 0.043 \text{ mA}$
3.36k ohm			
E4 = 3.3V	V_{POT6}	$V_{POT6} = 0.639 \text{ V}$	$V_{POT6} = 0.7 \text{ V}$
E5 = 5V	$=>I_{POT6}$	$I_{POT6} = 0.019 \text{ mA}$	$I_{POT6} = 0.012 \text{ mA}$
POT6 = 3.3k ohm	$=>I_{R16}$	$I_{R16} = 0.394 \text{ mA}$	$I_{R16} = 0.398 \text{ mA}$
(Thực tế) POT6 =	$=>I_{R17}$	$I_{R17} = 0.375 \text{ mA}$	$I_{R17} = 0.382 \text{ mA}$
3.36k ohm			

***** Khi E4 = 5V, E5 = 3.3V, POT6 = 3.3k ohm:

$$\begin{split} &K_{1}\left(A\right) \colon I_{POT6} - I_{16} - I_{17} = 0 \\ &K_{2}\left(I\right) \colon -3300I_{POT6} - 4700I_{17} + 5 - 3, 3 = 0 \\ &K_{2}\left(II\right) \colon -8200I_{16} + 4700I_{17} + 3, 3 = 0 \\ &\Rightarrow \begin{cases} I_{POT6} = 0, 46.10^{-3} \left(A\right) \\ I_{16} = 0, 42.10^{-3} \left(A\right) \\ I_{17} = 0, 03.10^{-3} \left(A\right) \end{cases} \\ &\Rightarrow V_{POT6} = I_{POT6}.R_{POT6} = 1,52326 \left(V\right) \end{split}$$

b) Mô phỏng:

***** Khi E4 = 3.3V, E5 = 5V, POT6 = 3.3k ohm:

$$K_1(A): I_{POT6} - I_{16} - I_{17} = 0$$

$$K_2(I): -3300I_{POT6} - 4700I_{17} + 3,3 - 5 = 0$$

$$K_2(II): -8200I_{16} + 4700I_{17} + 5 = 0$$

$$\Rightarrow \begin{cases} I_{POT6} = 0.019.10^{-3} (A) \\ I_{16} = 0.39.10^{-3} (A) \\ I_{17} = 0.38.10^{-3} (A) \end{cases}$$

$$\Rightarrow$$
 $V_{POT6} = I_{POT6}.R_{POT6} = 0,6387(V)$

b) Mô phỏng:

