CLAIMS

1. A method of inhibiting OPN production, comprising administering an effective amount of a pyridazine derivative represented by the following formula (I) or a derivative thereof:

[Chemical Formula 2]

wherein:

 R^1 means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C_{1-6} alkoxy groups;

 R^2 means a phenyl group which may be substituted at the 4-position thereof with a C_{1-6} alkoxy group or C_{1-6} alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C_{1-6} alkoxy groups and C_{1-6} alkoxythio groups;

 R^3 means a hydrogen atom; a C_{1-6} alkoxy group; a halogenated C_{1-6} alkyl group; a C_{3-6} cycloalkyl group; a phenyl, pyridyl or phenyloxy group which may be substituted by 1 to 3 substituents selected from halogen

15

20

10

atoms, C₁₋₆ alkyl groups, C₁₋₆ alkoxy groups, carboxyl groups, C₂₋₇ alkoxycarbonyl groups, nitro groups, amino groups, C₁₋₆ alkylamino groups and C₁₋₆ alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C₂₋₇ alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

5

10

15

20

25

A means a single bond, a C_{1-6} linear or branched alkylene group, or a C_{2-9} linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R^3 is a halogenated C_{1-6} alkyl group.

2. The method of claim 1, wherein in the formula (I),

 R^1 is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C_{1-6} alkoxy group;

 R^2 is a phenyl group substituted at the 4-position thereof with a C_{1-6} alkoxy group or a C_{1-6} alkylthio group;

 R^3 is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and A is a C_{1-3} alkylene group or C_{3-4} alkenylene group.

3. The method of claim 1, wherein in the formula (I),

R¹ is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

R² is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

5

10

20

R³ is a hydrogen atom, phenyl group,
4-chlorophenyl group, 2-pyridyl group or 3-pyridyl
group; and

A is a methylene group, ethylene group or 2-propenylene group.

- 4. The method of claim 1, wherein the active ingredient is
- 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-py ridylmethyl)-2H-pyridazine-3-thione,
- 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-py ridylmethyl)-2H-pyridazin-3-one,
 - 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-py ridazin-3-one,
 - 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl
 - 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridin

]-2H-pyridazin-3-one,

- yl)-2H-pyridazin-3-one,
- 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.
- 25 5. An OPN production inhibitor, comprising as an

active ingredient a pyridazine derivative represented by the following formula (I) or a derivative thereof: [Chemical Formula 3]

$$\begin{array}{c}
R^1 \\
 & N \\
 &$$

5 wherein:

 R^1 means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C_{1-6} alkoxy groups;

 R^2 means a phenyl group which may be substituted at the 4-position thereof with a C_{1-6} alkoxy group or C_{1-6} alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C_{1-6} alkoxy groups and C_{1-6} alkoxythio groups;

 R^3 means a hydrogen atom; a C_{1-6} alkoxy group; a halogenated C_{1-6} alkyl group; a C_{3-6} cycloalkyl group; a phenyl, pyridyl or phenyloxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, carboxyl groups, C_{2-7} alkoxycarbonyl groups, nitro groups, amino groups, C_{1-6} alkylamino groups and C_{1-6} alkylthio groups;

15

20

a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C2-7 alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C_{1-6} linear or branched alkylene group, or a C_{2-9} linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R^3 is a halogenated C_{1-6} alkyl group.

The inhibitor of claim 5, wherein in the formula(I),

 R^1 is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C_{1-6} alkoxy group;

 R^2 is a phenyl group substituted at the 4-position thereof with a C_{1-6} alkoxy group or a C_{1-6} alkylthio group;

R³ is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C_{1-3} alkylene group or C_{3-4} alkenylene group.

- 7. The inhibitor of claim 5, wherein in the formula(I),
 - R^1 is a phenyl or pyridyl group which may be

25

5

10

15

substituted at the 4-position thereof with a chlorine atom or a methoxy group;

R² is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R³ is a hydrogen atom, phenyl group, 4-chlorophenyl group, 2-pyridyl group or 3-pyridyl

> A is a methylene group, ethylene group or 2-propenylene group.

The inhibitor of claim 5, wherein said active 10 8. ingredient is

> 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-py ridylmethyl) -2H-pyridazine-3-thione,

> 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-py ridylmethyl) -2H-pyridazin-3-one,

> 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-py ridazin-3-one,

> 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one,

2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridin yl)-2H-pyridazin-3-one,

5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

A preventive and therapeutic agent for a disease 9. resulting from enhanced OPN production, comprising as

5

group; and

15

20

an active ingredient a pyridazine derivative represented by the following formula (I) or a derivative thereof:

[Chemical Formula 4]

(I)

wherein:

 R^1 means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C_{1-6} alkoxy groups;

10

5

 R^2 means a phenyl group which may be substituted at the 4-position thereof with a C_{1-6} alkoxy group or C_{1-6} alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C_{1-6} alkoxy groups and C_{1-6} alkoxythio groups;

15

 R^3 means a hydrogen atom; a C_{1-6} alkoxy group; a halogenated C_{1-6} alkyl group; a C_{3-6} cycloalkyl group; a phenyl, pyridyl or phenyloxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, carboxyl groups, C_{2-7} alkoxycarbonyl groups, nitro groups, amino

groups, C_{1-6} alkylamino groups and C_{1-6} alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C_{2-7} alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C_{1-6} linear or branched alkylene group, or a C_{2-9} linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R^3 is a halogenated C_{1-6} alkyl group.

10. The preventive and therapeutic agent of claim 9, wherein in the formula (I),

 R^1 is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C_{1-6} alkoxy group;

 R^2 is a phenyl group substituted at the 4-position thereof with a C_{1-6} alkoxy group or a C_{1-6} alkylthio group;

R³ is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

11. The preventive and therapeutic agent of claim 9,

A is a C_{1-3} alkylene group or C_{3-4} alkenylene group.

wherein in the formula (I),

10

15

20

R¹ is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

 ${
m R}^2$ is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

5

10

20

R³ is a hydrogen atom, phenyl group,
4-chlorophenyl group, 2-pyridyl group or 3-pyridyl
group; and

A is a methylene group, ethylene group or 2-propenylene group.

- 12. The preventive and therapeutic agent of claim 9, wherein said active ingredient is
- 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-py ridylmethyl)-2H-pyridazine-3-thione,
- 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-py ridylmethyl)-2H-pyridazin-3-one,
 - 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-py ridazin-3-one,
 - 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one,
 - 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridin yl)-2H-pyridazin-3-one,
 - 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.
- 25 13. Use of a pyridazine derivative represented by the

following formula (I) or a derivative thereof for the production of an OPN production inhibitor:

[Chemical Formula 5]

$$\begin{array}{c}
R^{1} \\
\downarrow \\
N \\
N \\
A - R^{3}
\end{array}$$
(I)

wherein:

 R^1 means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C_{1-6} alkoxy groups;

 R^2 means a phenyl group which may be substituted at the 4-position thereof with a C_{1-6} alkoxy group or C_{1-6} alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C_{1-6} alkoxy groups and C_{1-6} alkoxythio groups;

 R^3 means a hydrogen atom; a C_{1-6} alkoxy group; a halogenated C_{1-6} alkyl group; a C_{3-6} cycloalkyl group; a phenyl, pyridyl or phenyloxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, carboxyl groups, C_{2-7} alkoxycarbonyl groups, nitro groups, amino groups, C_{1-6} alkylamino groups and C_{1-6} alkylthio groups;

10

5

15

a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C_{2-7} alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C_{1-6} linear or branched alkylene group, or a C_{2-9} linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R^3 is a halogenated C_{1-6} alkyl group.

14. Use of claim 13, wherein in the formula (I), R^1 is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C_{1-6} alkoxy group;

 R^2 is a phenyl group substituted at the 4-position thereof with a C_{1-6} alkoxy group or a C_{1-6} alkylthio group;

 ${\rm R}^3$ is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C_{1-3} alkylene group or C_{3-4} alkenylene group.

15. Use of claim 13, wherein in the formula (I),

R¹ is a phenyl or pyridyl group which may be
substituted at the 4-position thereof with a chlorine
atom or a methoxy group;

25

5

10

15

 ${\ensuremath{\mathsf{R}}}^2$ is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R³ is a hydrogen atom, phenyl group,
4-chlorophenyl group, 2-pyridyl group or 3-pyridyl
group; and

A is a methylene group, ethylene group or 2-propenylene group.

- 16. Use of claim 13, wherein said active ingredient is
- 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-py ridylmethyl)-2H-pyridazine-3-thione,
 - 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-py ridylmethyl)-2H-pyridazin-3-one,
 - 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-py ridazin-3-one,
 - 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one,
 - 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridin yl)-2H-pyridazin-3-one,
- 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.
 - 17. Use of a pyridazine derivative represented by the following formula (I) or a derivative thereof for the production of a preventive and therapeutic agent for a disease resulting from enhanced OPN production:

25

15

٦.

[Chemical Formula 6]

$$R^1$$
 N
 N
 $A-R^3$

(I)

wherein:

 R^1 means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C_{1-6} alkoxy groups;

 R^2 means a phenyl group which may be substituted at the 4-position thereof with a C_{1-6} alkoxy group or C_{1-6} alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C_{1-6} alkoxy groups and C_{1-6} alkoxythio groups;

 R^3 means a hydrogen atom; a C_{1-6} alkoxy group; a halogenated C_{1-6} alkyl group; a C_{3-6} cycloalkyl group; a phenyl, pyridyl or phenyloxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, carboxyl groups, C_{2-7} alkoxycarbonyl groups, nitro groups, amino groups, C_{1-6} alkylamino groups and C_{1-6} alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or

15

10

5

_

unsubstituted aminocarbonyl group; a C_{2-7} alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C_{1-6} linear or branched alkylene group, or a C_{2-9} linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R^3 is a halogenated C_{1-6} alkyl group.

18. Use of claim 17, wherein in the formula (I),

 R^1 is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C_{1-6} alkoxy group;

 R^2 is a phenyl group substituted at the 4-position thereof with a C_{1-6} alkoxy group or a C_{1-6} alkylthio group;

 ${\rm R}^3$ is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C_{1-3} alkylene group or C_{3-4} alkenylene group.

19. Use of claim 17, wherein in the formula (I),

R¹ is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

R² is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

10

5

15

20

R³ is a hydrogen atom, phenyl group,
4-chlorophenyl group, 2-pyridyl group or 3-pyridyl
group; and

A is a methylene group, ethylene group or 2-propenylene group.

5

15

20. Use of claim 17, wherein the active ingredient is

5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-py ridylmethyl)-2H-pyridazine-3-thione,

5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-py ridylmethyl)-2H-pyridazin-3-one,

5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-py ridazin-3-one,

2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one,

2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridin yl)-2H-pyridazin-3-one,

5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

21. An OPN production inhibitor composition comprising a pyridazine derivative represented by the following formula (I) or a derivative thereof and a pharmaceutically acceptable carrier:

[Chemical Formula 7]

$$\begin{array}{c}
R^{1} \\
\downarrow \\
N \\
X
\end{array}$$

$$\begin{array}{c}
N \\
A-R^{3}
\end{array}$$

$$\begin{array}{c}
(I)
\end{array}$$

wherein:

 R^1 means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C_{1-6} alkoxy groups;

 R^2 means a phenyl group which may be substituted at the 4-position thereof with a C_{1-6} alkoxy group or C_{1-6} alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C_{1-6} alkoxy groups and C_{1-6} alkoxythio groups;

 R^3 means a hydrogen atom; a C_{1-6} alkoxy group; a halogenated C_{1-6} alkyl group; a C_{3-6} cycloalkyl group; a phenyl, pyridyl or phenyloxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, carboxyl groups, C_{2-7} alkoxycarbonyl groups, nitro groups, amino groups, C_{1-6} alkylamino groups and C_{1-6} alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C_{2-7} alkylcarbonyl

10

5

15

groups; or a substituted or unsubstituted
piperazinocarbonyl group;

A means a single bond, a C_{1-6} linear or branched alkylene group, or a C_{2-9} linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R^3 is a halogenated C_{1-6} alkyl group.

22. The composition of claim 21, wherein in the formula
(I),

 R^1 is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C_{1-6} alkoxy group;

 R^2 is a phenyl group substituted at the 4-position thereof with a C_{1-6} alkoxy group or a C_{1-6} alkylthio group;

 ${\ensuremath{\mathsf{R}}}^3$ is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

23. The composition of claim 21, wherein in the formula
(I),

A is a C_{1-3} alkylene group or C_{3-4} alkenylene group.

R¹ is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

 ${\ensuremath{\mbox{R}}}^2$ is a phenyl group substituted at the 4-position

15

10

5

20

thereof with a methoxy group or a methylthio group;

R³ is a hydrogen atom, phenyl group,

4-chlorophenyl group, 2-pyridyl group or 3-pyridyl group; and

A is a methylene group, ethylene group or 2-propenylene group.

5

10

. 20

25

24. The composition of claim 21, wherein the active ingredient is

5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-py ridylmethyl)-2H-pyridazine-3-thione,

5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-py ridylmethyl)-2H-pyridazin-3-one,

5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-py ridazin-3-one,

2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one,

2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridin yl)-2H-pyridazin-3-one,

5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

25. A preventive and therapeutic agent composition for a disease resulting from enhanced OPN production, comprising a pyridazine derivative represented by the following formula (I) or a derivative thereof and a pharmaceutically acceptable carrier:

[Chemical Formula 8]

wherein:

(I)

 R^1 means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C_{1-6} alkoxy groups;

 R^2 means a phenyl group which may be substituted at the 4-position thereof with a C_{1-6} alkoxy group or C_{1-6} alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C_{1-6} alkoxy groups and C_{1-6} alkoxythio groups;

 R^3 means a hydrogen atom; a C_{1-6} alkoxy group; a halogenated C_{1-6} alkyl group; a C_{3-6} cycloalkyl group; a phenyl, pyridyl or phenyloxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, carboxyl groups, C_{2-7} alkoxycarbonyl groups, nitro groups, amino groups, C_{1-6} alkylamino groups and C_{1-6} alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or

15

10

5

unsubstituted aminocarbonyl group; a C_{2-7} alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C_{1-6} linear or branched alkylene group, or a C_{2-9} linear or branched alkenylene group; and

5

10

15

20

25

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R^3 is a halogenated C_{1-6} alkyl group.

26. The composition of claim 25, wherein in the formula
(I),

 R^1 is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C_{1-6} alkoxy group;

 R^2 is a phenyl group substituted at the 4-position thereof with a C_{1-6} alkoxy group or a C_{1-6} alkylthio group;

 ${
m R}^3$ is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C_{1-3} alkylene group or C_{3-4} alkenylene group. 27. The composition of claim 25, wherein in the formula

(I),

R¹ is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

 ${
m R}^2$ is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R³ is a hydrogen atom, phenyl group,
4-chlorophenyl group, 2-pyridyl group or 3-pyridyl group; and

A is a methylene group, ethylene group or 2-propenylene group.

- 28. The composition of claim 25, wherein the active ingredient is
- 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-py ridylmethyl)-2H-pyridazine-3-thione,
 - 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-py ridylmethyl)-2H-pyridazin-3-one,
 - 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-py ridazin-3-one,
 - 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one,
 - 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridin yl)-2H-pyridazin-3-one,
- 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one,
 or a salt thereof.
 - 29. A therapeutic method of a disease resulting from enhanced OPN production, comprising administering an effective amount of a pyridazine derivative represented by the following formula (I) or a derivative thereof:

25

15

[Chemical Formula 9]

(I)

wherein:

 R^1 means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C_{1-6} alkoxy groups;

 R^2 means a phenyl group which may be substituted at the 4-position thereof with a C_{1-6} alkoxy group or C_{1-6} alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C_{1-6} alkoxy groups and C_{1-6} alkoxythio groups;

 R^3 means a hydrogen atom; a C_{1-6} alkoxy group; a halogenated C_{1-6} alkyl group; a C_{3-6} cycloalkyl group; a phenyl, pyridyl or phenyloxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, carboxyl groups, C_{2-7} alkoxycarbonyl groups, nitro groups, amino groups, C_{1-6} alkylamino groups and C_{1-6} alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or

10

5

15

unsubstituted aminocarbonyl group; a C2-7 alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C_{1-6} linear or branched alkylene group, or a C_{2-9} linear or branched alkenylene group; and

5

10

15

20

25

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R^3 is a halogenated C_{1-6} alkyl group.

30. The method of claim 29, wherein in the formula (I),

 R^1 is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C_{1-6} alkoxy group;

 R^2 is a phenyl group substituted at the 4-position thereof with a C_{1-6} alkoxy group or a C_{1-6} alkylthio group;

 ${\ensuremath{R}}^3$ is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

31. The method of claim 29, wherein in the formula (I),

A is a C_{1-3} alkylene group or C_{3-4} alkenylene group.

R¹ is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

 ${\ensuremath{\mathsf{R}}}^2$ is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R³ is a hydrogen atom, phenyl group,
4-chlorophenyl group, 2-pyridyl group or 3-pyridyl
group; and

A is a methylene group, ethylene group or 2-propenylene group.

5

- 32. The method of claim 29, wherein the active ingredient is
- 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-py ridylmethyl)-2H-pyridazine-3-thione,
 - 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-py ridylmethyl)-2H-pyridazin-3-one,
 - 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-py ridazin-3-one,
 - 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one,
 - 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridin yl)-2H-pyridazin-3-one,
- 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one,
 or a salt thereof.
 - 33. The method of claim 29, wherein said disease resulting from said enhanced OPN production is post-PTCA restenosis, a kidney disease, tuberculosis,
- 25 sarcoidosis, cirrhosis, colorectal cancer, ovarian

cancer, prostatic cancer, breast cancer, urinary calculus or myelomatous tumor.

5

34. The method of claim 29, wherein said disease resulting from said enhanced OPN production is multiple myeloma.