Tareal Anibal Painepil

April 30, 2025

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import statsmodels.api as sm
  import statsmodels.formula.api as smf
  import sklearn
  import scipy
  from scipy.stats import nbinom
  import seaborn as sns
  from statsmodels.iolib.summary2 import summary_col
  import warnings
  warnings.filterwarnings("ignore")
// watplotlib inline
```

RESPUESTAS 1. R: En este caso, para efectuar una limpieza mas precisa primero se mostrará la proporción de valores nulos por parametro con el objetivo de saber que variables nulas se podrian imputar o borrar sin modificar los resultados del analisis. Así como tambien el tipo de variables que estan poseen.

	Nulos	Proporción (%)	Tipo
Electricity	67816	47.69	float64
Evaporation	60843	42.79	float64

Parameter6_3pm	57094	40.15	float64
Parameter6_9am	53657	37.74	float64
Parameter5_9am	14014	9.86	float64
Parameter5_3pm	13981	9.83	float64
Parameter2_9am	10013	7.04	object
Parameter1_Dir	9330	6.56	object
Parameter1_Speed	9270	6.52	float64
Parameter2_3pm	3778	2.66	object
Parameter4_3pm	3610	2.54	float64
Parameter7_3pm	2726	1.92	float64
Parameter3_3pm	2630	1.85	float64
Parameter4_9am	1774	1.25	float64
Failure_today	1406	0.99	object
Leakage	1406	0.99	float64
Parameter3_9am	1348	0.95	float64
Parameter7_9am	904	0.64	float64
Min_Temp	637	0.45	float64
Max_Temp	322	0.23	float64
Location	0	0.00	int64
Date	0	0.00	datetime64[ns]
Failure_today Leakage Parameter3_9am Parameter7_9am Min_Temp Max_Temp Location	1406 1406 1348 904 637 322	0.99 0.99 0.95 0.64 0.45 0.23	object float64 float64 float64 float64 int64

VALORES UNICOS POR COLUMNA

Failure_today	2
Parameter6_3pm	10
Parameter6_9am	10
Parameter2_9am	16
Parameter1_Dir	16
Parameter2_3pm	16
Parameter3_9am	43
Parameter3_3pm	44
Location	49
Parameter1_Speed	67
Parameter4_9am	101
Parameter4_3pm	101
Electricity	145
Evaporation	356
Min_Temp	389
Parameter7_9am	440
Parameter7_3pm	500
Max_Temp	505
Parameter5_9am	546
Parameter5_3pm	549
Leakage	679
Date	3436
d+	

dtype: int64

continuacion 1.R: En base a la informacion otorgada, se podrian imputar las variables Failure_today,Leakage,Min_Temp,Max_Temp ya que, apenas cuentan con menos 1% de nulos.

con el objetivo de construir la matriz de correlación, se convertirá el parametro Failure_today en una variable binaria para poder utilizarla en la matriz de correlacion. Y asi estudiar que variables pueden explicar lo mismo y eliminar una de estas para simplicifar el estudio.

```
[4]: df['Failure today'] = df['Failure today'].map({'Yes': 1, 'No': 0})
    df_numeric = df.select_dtypes(include='number')
    corr = df numeric.corr()
    mask = np.triu(np.ones_like(corr, dtype=bool))
    f, ax = plt.subplots(figsize=(11, 9))
    cmap = sns.diverging_palette(230, 20, as_cmap=True)
    sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1, vmax=1, center=0,
               square=True, linewidths=.5, cbar kws={"shrink": .5})
    plt.title("Matriz de correlación (-1 a 1)")
    plt.show()
    corr_pairs = corr.unstack().reset_index()
    corr_pairs.columns = ['Variable 1', 'Variable 2', 'Correlación']
    corr_pairs = corr_pairs[corr_pairs['Variable 1'] != corr_pairs['Variable 2']]
    corr_pairs['Key'] = corr_pairs.apply(lambda row: frozenset([row['Variable 1'],_
     →row['Variable 2']]), axis=1)
    corr_pairs = corr_pairs.drop_duplicates(subset='Key').drop(columns='Key')
    corr_pairs['|Correlación|'] = corr_pairs['Correlación'].abs()
    top_corr = corr_pairs.sort_values(by='|Correlación|', ascending=False).head(20)
    failure_corr = corr[['Failure_today']].drop('Failure_today').
     ⇔sort_values(by='Failure_today', ascending=False)
    print("Top 20 correlaciones más fuertes:\n")
    display(top_corr[['Variable 1', 'Variable 2', 'Correlación']])
    print("\n" + "-"*60 + "\n")
    print("Correlación con 'Failure_today':\n")
    display(failure_corr)
```


Top 20 correlaciones más fuertes:

	Variable 1	Variable 2	Correlación
52	${\tt Max_Temp}$	Parameter7_3pm	0.984562
210	Parameter5_9am	Parameter5_3pm	0.961348
33	Min_Temp	Parameter7_9am	0.901813
51	${\tt Max_Temp}$	Parameter7_9am	0.887020
286	Parameter7_9am	Parameter7_3pm	0.860574
20	Min_Temp	${\tt Max_Temp}$	0.736267
34	Min_Temp	Parameter7_3pm	0.708865
104	Electricity	Parameter6_3pm	-0.704202
116	Parameter1_Speed	Parameter3_3pm	0.686419
103	Electricity	Parameter6_9am	-0.675610
172	Parameter4_9am	Parameter4_3pm	0.667388
100	Electricity	Parameter4_3pm	-0.629122
115	Parameter1_Speed	Parameter3_9am	0.604837

248	Parameter6_9am	Parameter6_3pm	0.604118
40	${\tt Max_Temp}$	Evaporation	0.588915
88	Evaporation	Parameter7_3pm	0.574275
196	Parameter4_3pm	Parameter7_3pm	-0.557989
87	Evaporation	Parameter7_9am	0.545497
194	Parameter4_3pm	Parameter6_3pm	0.523270
134	Parameter3_9am	Parameter3_3pm	0.519971

Correlación con 'Failure_today':

	Variable	Correlación	con	${\tt Failure_today}$
0	Leakage			0.500997
1	$Parameter4_3pm$			0.378766
2	Parameter4_9am			0.353358
3	Parameter6_9am			0.305950
4	Parameter6_3pm			0.272149
5	Parameter1_Speed			0.155490
6	Parameter3_9am			0.102267
7	Parameter3_3pm			0.080074
8	${\tt Min_Temp}$			0.056185
9	Location			-0.004168
10	Parameter7_9am			-0.096593
11	Parameter5_3pm			-0.106298
12	Evaporation			-0.187975
13	Parameter5_9am			-0.189804
14	${\tt Max_Temp}$			-0.228884
15	Parameter7_3pm			-0.234925
16	Electricity			-0.330635

2.R: Una vez analizado los datos entregados, se elegirán las variables que mayor explican la probabilidad de un fallo en los sensores.

Se descartaran variables que posean un porcentaje muy alto de nulos aunque tengan alta relacion con failure_day.

Asi como tambien solo se usarán variables que no tengan alta correlacion entre si. Siendo la eleccion tal que:

- -Leakage (filtración): por cada unidad que aumente esta variable, aumenta la probabilidad de fallo en 1.98 puntos porcentuales.
- -Parameter4_3pm: por cada unidad que aumente esta variable, aumenta la probabilidad de fallo en 0.43 puntos porcentuales.
- -Parameter3 $_$ 9am: por cada unidad que aumente esta variable, aumenta la probabilidad de fallo en 0.037 puntos porcentuales.
- -Min_Temp (consumo eléctrico): por cada unidad que aumente esta variable, aumenta la proba-

bilidad de fallo en 1.71 puntos porcentuales.

-Max_Temp (temperatura máxima): por cada unidad que aumente esta variable, disminuye la probabilidad de fallo en 1.72 puntos porcentuales.

```
[5]: import statsmodels.api as sm
    from sklearn.impute import SimpleImputer
    vars_modelo = ['Leakage', 'Parameter4_9am', 'Parameter3_9am', 'Min_Temp', |
      X1 = df[vars_modelo].copy()
    imputer = SimpleImputer(strategy='mean') #El modelo no podia contener NaN, por
     ⇔ende, se imputo con la media a cada parametro elegido.
    X1 = pd.DataFrame(imputer.fit_transform(X1), columns=vars_modelo)
    X1 = sm.add constant(X1)
    y = df['Failure_today'].reset_index(drop=True)
    X1 = X1.reset index(drop=True)
    mask = y.notna()
    X1 = X1[mask]
    y = y[mask]
    model = sm.OLS(y, X1)
    results = model.fit(cov_type='HCO')
    print(results.summary())
```

OLS Regression Results

				=======	=========	
Dep. Variable: Model:	Fai	ilure_today OLS	R-squared: Adj. R-squ		0.360 0.360	
	т					
Method:		-	F-statisti		9505.	
Date:	Thu, 2	-	Prob (F-st		0.00	
Time:		21:23:20	Log-Likeli	hood:	-45050.	
No. Observations:		140787	AIC:		9.011e+04	
Df Residuals:		140781	BIC:		9.017e+04	
Df Model:		5				
Covariance Type:		HCO				
============	=======			========		=
==						
	coef	std err	Z	P> z	[0.025	
0.975]						
						_
const	0.0201	0.008	2.566	0.010	0.005	
0.035						
Leakage	0.0198	0.001	30.788	0.000	0.018	
0.021						
Parameter4_9am	0.0043	7.61e-05	56.783	0.000	0.004	
0.004						
Parameter3_9am	0.0037	0.000	28.308	0.000	0.003	

0.004 Min_Temp 0.018 Max_Temp -0.017	0.0171	0.000	67.098 -74.179	0.000	0.017 -0.018
Omnibus: Prob(Omnibus): Skew: Kurtosis:		22401.412 0.000 0.503 8.742	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.		1.725 199321.401 0.00 665.

Notes:

[1] Standard Errors are heteroscedasticity robust (HCO)

3.R: Al correr el modelo probit, este muestra que el parametro leakage es el mayor factor de fallo en los sensores. Ademas, esto se valida con un Pseudo R-squ.: 1.000.

Lo cual puede significar que leakage interfiere con el modelo, no permitiendo generalizar y realizar prediccines. El resto de parametros disminuyen la probabilidad de fallo aunque en una medida muy pequeña.

Todos los parametros parecen tener un valor p cercano a 0 por ende, parecer ser significativos hasta el momento.

El análisis mostró que la variable Leakage predice casi perfectamente la ocurrencia de falla, resultando en separación perfecta. Por lo tanto, a partir de este punto será removida del modelo para evitar sobreajuste.

```
[]: # modelo Probit
model = sm.Probit(y, X1)
probit_model = model.fit(cov_type='HCO')
print(probit_model.summary())

# Efectos marginales promedio
mfxp = probit_model.get_margeff()
print(mfxp.summary())
```

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.000000

Iterations: 35

Probit Regression Results

______ Dep. Variable: Failure_today No. Observations: 140787 Model: Probit 140781 Df Residuals: Method: MLE Df Model: 5 Date: Thu, 24 Apr 2025 Pseudo R-squ.: 1.000 21:23:23 Log-Likelihood: -0.00031878 Time: LL-Null: converged: False -74787.Covariance Type: HC0 LLR p-value: 0.000

				=======		======
0.975]	coef	std err	z	P> z	[0.025	
const -95.534	-97.4396	0.972	-100.229	0.000	-99.345	
Leakage 94.978	93.2252	0.894	104.257	0.000	91.473	
Parameter4_9am -0.001	-0.0058	0.002	-2.593	0.010	-0.010	
Parameter3_9am 0.001	-0.0057	0.003	-1.780	0.075	-0.012	
Min_Temp 0.033	0.0184	0.007	2.532	0.011	0.004	
Max_Temp -0.017	-0.0367 ======	0.010	-3.741	0.000	-0.056 	.======
						=======

Complete Separation: The results show that there is complete separation or perfect prediction.

In this case the Maximum Likelihood Estimator does not exist and the parameters are not identified.

Probit Marginal Effects

==	
=======================================	===========
At:	overall
Method:	dydx
Dep. Variable:	Failure_today

0.975]	dy/dx	std err	z	P> z	[0.025	
Leakage 1.35e-06	1.016e-06	1.69e-07	6.010	0.000	6.85e-07	
Parameter4_9am -6.21e-12	n -6.331e-11	2.91e-11	-2.173	0.030	-1.2e-10	
Parameter3_9am 9.34e-12	n -6.172e-11	3.63e-11	-1.702	0.089	-1.33e-10	
9.34e-12 Min_Temp 3.81e-10	2.004e-10	9.23e-11	2.171	0.030	1.95e-11	
Max_Temp -1.13e-10	-3.994e-10	1.46e-10	-2.729	0.006	-6.86e-10	
==========	:========		:=======		.========	===

==

4.R: Gracias al cambio de remover la variable leakage, el modelo encontró una solución válida y ya no existe el problema de separacion. Los valores p arrojan numeros cercanos a 0 por ende, todas las variables son altamente significativas. Es estadísticamente válido, converge adecuadamente, y todos los parametros seleccionados muestran efectos robustos y coherentes con la lógica del proceso.

```
[]: # Redefinir las variables SIN Leakage
     vars_modelo = ['Parameter4_9am', 'Parameter3_9am', 'Min_Temp', 'Max_Temp']
     X1 = df[vars modelo].copy()
     imputer = SimpleImputer(strategy='mean')
     X1 = pd.DataFrame(imputer.fit transform(X1), columns=vars modelo)
     X1 = sm.add constant(X1)
     y = df['Failure_today'].reset_index(drop=True)
     X1 = X1.reset_index(drop=True)
     mask = y.notna()
     X1 = X1[mask]
     y = y[mask]
[8]: logit_model = sm.Logit(y, X1).fit(cov_type='HCO')
     print(logit_model.summary())
     mfxl = logit model.get margeff()
     print(mfxl.summary())
     params = logit model.params
     conf = logit_model.conf_int()
     conf['Odds Ratio'] = params
```

Optimization terminated successfully.

Current function value: 0.394667

conf.columns = ['2.5%', '97.5%', 'Odds Ratio']

Iterations 7

odds_ratios = np.exp(conf)
print("\n Odds Ratios:")

print(odds_ratios)

Logit Regression Results

______ Dep. Variable: Failure_today No. Observations: 140787 Model: Logit Df Residuals: 140782 Method: MLE Df Model: Date: Thu, 24 Apr 2025 Pseudo R-squ.: 0.2570 Time: 21:23:24 Log-Likelihood: -55564. True LL-Null: -74787. converged: LLR p-value: Covariance Type: HC0 0.000 std err z P>|z| coef [0.025 0.975]

const -4.171	-4.3158	0.074	-58.306	0.000	-4.461	
Parameter4_9am 0.059	0.0574	0.001	92.296	0.000	0.056	
Parameter3_9am 0.037	0.0353	0.001	37.902	0.000	0.034	
Min_Temp 0.222	0.2173	0.002	99.726	0.000	0.213	
Max_Temp -0.197	-0.2015	0.002	-84.256	0.000	-0.206	
=======================================						:=====

==

Logit Marginal Effects

Dep. Variable: Failure_today
Method: dydx
At: overall

0.975]	dy/dx	std err	z	P> z	[0.025	
Parameter4_9am 0.007	0.0073	6.79e-05	107.175	0.000	0.007	
Parameter3_9am 0.005	0.0045	0.000	38.765	0.000	0.004	
Min_Temp 0.028	0.0276	0.000	112.640	0.000	0.027	
Max_Temp -0.025	-0.0256	0.000	-91.454	0.000	-0.026	

==

Odds Ratios:

	2.5%	97.5%	Odds Ratio
const	0.011553	0.015442	0.013356
Parameter4_9am	1.057794	1.060376	1.059084
Parameter3_9am	1.034074	1.037860	1.035965
Min_Temp	1.237367	1.247979	1.242661
Max Temp	0.813682	0.821345	0.817504

5.R: -Si bien los modelos OLS y Probit con la variable Leakage presentan buen ajuste estadístico, sólo el modelo Logit sin Leakage entrega resultados válidos y útiles para la predicción real de fallas, evitando problemas de sobreajuste y separación perfecta.

Las variables Parameter4_9am, Parameter3_9am, Min_Temp y Max_Temp demostraron ser robustas y estadísticamente significativas en todas las especificaciones.

Por lo tanto, el modelo Logit sin Leakage es el más adecuado para responder la pregunta de investigación y analizar los factores asociados a la probabilidad de falla.

6.R: un aumento en Parameter4_9am, Parameter3_9am y Max_Temp se asocia con un mayor número esperado de fallos en el mes, mientras que un aumento en Min_Temp se relaciona con una menor cantidad de fallos.

Todos los coeficientes son estadísticamente significativos (p < 0.001), lo que indica que estos factores influyen de manera relevante en la frecuencia de fallas mensuales.

```
[]: df['Date'] = pd.to_datetime(df['Date'])
     df['YearMonth'] = df['Date'].dt.to period('M').astype(str)
     num vars = df.select dtypes(include='number').columns.tolist()
     num vars.remove('Failure today')
     df_mensual = df.groupby('YearMonth')[num_vars].mean().reset_index()
     fallos_mensuales = df.groupby('YearMonth')['Failure_today'].sum().reset_index()
     fallos_mensuales.rename(columns={'Failure_today': 'Fail_Count'}, inplace=True)
     df_mensual = df_mensual.merge(fallos_mensuales, on='YearMonth')
     import pandas as pd
     import matplotlib.pyplot as plt
     df_mensual[['YearMonth', 'Fail_Count']].head()
     import statsmodels.api as sm
     from sklearn.preprocessing import StandardScaler
     vars_poisson = ['Parameter4_9am', 'Parameter3_9am', 'Min_Temp', 'Max_Temp']
     df_model_poisson = df_mensual[vars_poisson].copy()
     df_model_poisson = df_model_poisson.fillna(df_model_poisson.mean())
     scaler = StandardScaler()
     X_poisson_scaled = scaler.fit_transform(df_model_poisson)
     X_poisson = pd.DataFrame(X_poisson_scaled, columns=vars_poisson)
     X_poisson = sm.add_constant(X_poisson)
     y_poisson = df_mensual['Fail_Count'].values
     poisson_model = sm.GLM(y_poisson, X_poisson, family=sm.families.Poisson()).fit()
     print(poisson_model.summary())
```

Generalized Linear Model Regression Results

```
Dep. Variable:
                                     No. Observations:
                                                                      113
Model:
                               GLM Df Residuals:
                                                                      108
Model Family:
                           Poisson Df Model:
Link Function:
                               Log
                                    Scale:
                                                                   1.0000
Method:
                              IRLS
                                    Log-Likelihood:
                                                                  -2534.4
                   Thu, 24 Apr 2025
Date:
                                    Deviance:
                                                                   4251.3
Time:
                           21:23:25 Pearson chi2:
                                                                 3.01e+03
                                   Pseudo R-squ. (CS):
No. Iterations:
                                                                    1.000
Covariance Type:
                          nonrobust
                   coef std err z P>|z| [0.025]
0.975]
```

const	5.5808	0.006	941.021	0.000	5.569	
5.592						
Parameter4_9am	0.6422	0.019	33.189	0.000	0.604	
0.680						
Parameter3_9am	0.5145	0.012	42.147	0.000	0.491	
0.538						
Min_Temp	-0.4894	0.044	-11.165	0.000	-0.575	
-0.403						
Max_Temp	0.6419	0.052	12.439	0.000	0.541	
0.743						
==========						

==

7.R: Al existir un coeficiente de la regresión positivo (0.0845) y significativo (p < 0.001) podemos concluir que la diferencia positiva entre varianza y media es estadísticamente significativa por ende, existe sobre dispersion

```
[]: # Añadir valores esperados del modelo Poisson al DataFrame mensual
     df_mensual['plambda'] = poisson_model.mu
     import seaborn as sns
     import matplotlib.pyplot as plt
     sns.histplot(data=df_mensual, x="plambda", kde=True)
     plt.title("Distribución de tasas esperadas () - Modelo Poisson")
     plt.xlabel(" (lambda estimado)")
     plt.ylabel("Frecuencia")
     plt.show()
     # Sobredispersión auxiliar
     aux = ((y_poisson - poisson_model.mu) ** 2 - poisson_model.mu) / poisson_model.
     auxr = sm.OLS(aux, poisson_model.mu).fit()
     print(auxr.summary())
```


OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.142

Model: OLS Adj. R-squared (uncentered):

0.135

Method: Least Squares F-statistic:

18.59

Date: Thu, 24 Apr 2025 Prob (F-statistic):

3.50e-05

Time: 21:23:25 Log-Likelihood:

-623.23

No. Observations: 113 AIC:

1248.

Df Residuals: 112 BIC:

1251.

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1	0.0845	0.020	4.312	0.000	0.046	0.123
Omnibus: Prob(Omnibus) Skew: Kurtosis:):	137.69 0.00 4.40 26.16	0 Jarqu 6 Prob(0.383 2891.493 0.00 1.00
=========	========		=======	========	========	========

Notes:

- [1] R^{2} is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- 8.R: Las variables Parameter4_9am y Parameter3_9am son los predictores más relevantes y robustos para explicar la frecuencia de fallas mensuales según el modelo binomial negativa, mientras que el efecto de las temperaturas mínimas y máximas no resultó significativo

```
[]: import statsmodels.api as sm

X_poisson.index = df_mensual.index
y_poisson = df_mensual['Fail_Count']

# Ajustar modelo Binomial Negativa
nb_model = sm.GLM(y_poisson, X_poisson, family=sm.families.NegativeBinomial()).

ofit()

print(nb_model.summary())
```

Generalized Linear Model Regression Results

============			=========
Dep. Variable:	Fail_Count	No. Observations:	113
Model:	GLM	Df Residuals:	108
Model Family:	NegativeBinomial	Df Model:	4
Link Function:	Log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-741.09
Date:	Thu, 24 Apr 2025	Deviance:	35.911
Time:	21:23:25	Pearson chi2:	17.2
No. Iterations:	14	Pseudo R-squ. (CS):	0.1348
Covariance Type:	nonrobust		
==			
	coef std err	z P> z	[0.025
0.975]			

const	5.5562	0.094	58.930	0.000	5.371	
5.741						
Parameter4_9am	1.0429	0.278	3.751	0.000	0.498	
1.588						
Parameter3_9am	0.8437	0.172	4.900	0.000	0.506	
1.181						
Min_Temp	-0.9619	0.644	-1.494	0.135	-2.224	
0.300						
Max_Temp	1.2372	0.752	1.645	0.100	-0.237	
2.711						
===========						

==

9.R: el modelo Poisson no considera la sobredispersión presente en los datos, lo que puede llevar a una sobrestimación de la significancia de algunas variables. El modelo Binomial Negativa, al corregir este problema, entrega estimaciones y significancias más realistas, por ende, el modelo Binomial Negativa es el más adecuado para la investigacion, ya que ajusta correctamente la variabilidad extra observada en los datos mensuales de fallas.

Parameter4_9am y Parameter3_9am resultaron ser las variables más robustas a la especificación, mostrando efectos positivos y significativos en ambos modelos.