

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Reexamination (2018-19)

Jan 2020

Max. Marks: 60

Class: S.E.

Course Code: ITC41 / CE41

Name of the Course: Design And Analysis of Algorithm

Duration: 3 Hrs Semester: IV

Branch: IT/COMP

Instructions:

(1) All Questions are Compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary.

Question No.	Question	Max. Mar ks	CO-BL- PI
Q. 1 a)	Define Big O, Big Ω and explain with diagram.	5	1-1-2.1.3
Q. 1 b)	Solve the given recurrence using Master Method Theorem: i) $T(n) = 4T(n/2) + n^2$ ii) $T(n) = 3T(n/3) + n/2$	5	1-3-2.1.2
Q. 1 c)	Write an algorithm for Binary Search. Explain with example. Comment on its time complexity.	5	2-2-2.1.3
Q. 2 a)	Solve the following 0/1 knapsack problem with dynamic Programming There are 5 Objects O1, O2, O3, O4, O5. Their corresponding details are given below. Weights : 2, 3, 3, 4, 6 Kg Values/profit : 1, 2, 5, 9, 4 Rs. Knapsack Capacity (M) = 10 Kgs. Calculate Maximum profit and Show which objects will be selected	8	3-3-2.2.3
Q2. b)	Consider the following set of frequencies. A=1, B=2, C=3, D=4, E=5, F=6, G=7 Find the Huffman code for the same.	7	4-3-1.1.2
Q.3 a)	State algorithm for finding Longest common Subsequence. (LCS). Find Longest common subsequence for following problem Str1 = ABBCDEB Str2 = BAABCEB	10	3-3-2.2.3
Q.3 b)	Explain Backtracking approach in general. Write an algorithm for the N queen problem. Apply it to solve 4 queen problems. OR Explain Branch and Bound strategy in general.	5	5-3-2.2.3

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Q4 a)	List the different String Matching Algorithms. And explain naïve string matching algorithm along with example. Comment on time complexity. OR	8	1-3-2.2.4
	Write an algorithm of String matching with Finite Automata. Give one example of it.		
Q.4b)	Solve the following linear programming using Simplex Algorithm. Maximize $Z = 4x + y$. subject to the constraints $x + y \le 50$, $3x + y \le 90$, $X \ge 0$, $y \ge 0$	7	6-3-2.2.3