For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA Formal Spec Public Review, and the comparison table at https://github.com/riscv/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com > and Peter Sewell < Peter. Sewell@cl.cam.ac.uk >). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/dataprotection/general-data.

Your name *
Luke Kenneth Casson Leighton
Your email address (optional)
lkcl@lkcl.net
Your organisation *
Independent Software and Hardware Libre Developer
Your role *
Full transparent, auditable, independent and accountable processor development

n/a

How important is each aspect of a formal ISA specification for RISC-V?

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	•	\circ	0	\circ
Assembly syntax and encoding specification		\circ		
Multicore concurrency (RVWMO+ZTSO)		•		\circ
Single-core concurrency (instruction cache behaviour, interrupts, etc.)				
Floating point		\bigcirc	\bigcirc	
Use as an emulator	\bigcirc	•	\circ	\bigcirc
Use as a test oracle in tandem verification	\circ	•	\circ	0
Generation of theorem-prover definitions for proof		\circ		\circ
Use for lightweight formal verification (bounded model-checking etc.)		•		0

Use in documentation, and readability	•	\bigcirc	\bigcirc	0
Use in test generation	•	\bigcirc	\bigcirc	\bigcirc
Use for hardware synthesis	\bigcirc	\bigcirc	•	0
Licencing, tool ecosystem, dependencies	•	\bigcirc	\bigcirc	0
Ease of extensibility	•	\bigcirc	\bigcirc	0
Plans for long-term development and maintenance	•	0	\bigcirc	0
Comments on any o	of the above			

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

	Good	Adequate	Inadequate
Overall, is the Forvis spec:			•

Forvis - comments

the answer is the same for all of the formal models: it is too early to make a decision. each of the models is extremely good: it's just that they're (all of them) incomplete (still under development in some way). in addition, i think you'll find that even *making* a choice will result in that team becoming a critical dependency *for the entire RISC-V ecosystem*. if they're an academic team, that's unfortunate: once the project no longer receives funding or the research project ends, then so does RISC-V "conformance". and if they're a Corporation, the Corporation may manipulate the RISC-V ecosystem for profit-maximising purposes, and if it goes bust, the project ends, and so does RISC-V "conformance". so not only is it a bad idea to pick one *right now*, it's a bad idea to pick only *ONE* of these formal verification suites *at all*. instead it would be far, far better for the RISC-V Formal Verification Group to develop a *STANDARD* for Formal Verification, to which **ALL** of these may comply. that's what a Standards Organisation does: develop *STANDARDS*, *NOT* select some random codebase off the internet and say "here! this is now a standard!". so you need to define the *expected results*, in sufficient detail and with sufficient clarity such that *ALL* of the FIVE formal models may conform and comply with it, in a machine-executable fashion. if that's too challenging, then at least some humanverifiable expectations may be defined.

GRIFT (Galois)

	Good	Adequate	Inadequate
Overall, is the GRIFT spec:	\circ	\circ	•

GRIFT - comments

the answer is the same for all of the formal models: it is too early to make a decision. each of the models is extremely good: it's just that they're (all of them) incomplete (still under development in some way). in addition, i think you'll find that even *making* a choice will result in that team becoming a critical dependency *for the entire RISC-V ecosystem*. if they're an academic team, that's unfortunate: once the project no longer receives funding or the research project ends, then so does RISC-V "conformance". and if they're a Corporation, the Corporation may manipulate the RISC-V ecosystem for profit-maximising purposes, and if it goes bust, the project ends, and so does RISC-V "conformance". so not only is it a bad idea to pick one *right now*, it's a bad idea to pick only *ONE* of these formal verification suites *at all*. instead it would be far, far better for the RISC-V Formal Verification Group to develop a *STANDARD* for Formal Verification, to which **ALL** of these may comply. that's what a Standards Organisation does: develop *STANDARDS*, *NOT* select some random codebase off the internet and say "here! this is now a standard!". so you need to define the *expected results*, in sufficient detail and with sufficient clarity such that *ALL* of the FIVE formal models may conform and comply with it, in a machine-executable fashion. if that's too challenging, then at least some humanverifiable expectations may be defined.

Sail (SRI/Cambridge)

	Good	Adequate	Inadequate
Overall, is the Sail spec:		0	•

Sail - comments

the answer is the same for all of the formal models: it is too early to make a decision. each of the models is extremely good: it's just that they're (all of them) incomplete (still under development in some way). in addition, i think you'll find that even *making* a choice will result in that team becoming a critical dependency *for the entire RISC-V ecosystem*. if they're an academic team, that's unfortunate: once the project no longer receives funding or the research project ends, then so does RISC-V "conformance". and if they're a Corporation, the Corporation may manipulate the RISC-V ecosystem for profit-maximising purposes, and if it goes bust, the project ends, and so does RISC-V "conformance". so not only is it a bad idea to pick one *right now*, it's a bad idea to pick only *ONE* of these formal verification suites *at all*. instead it would be far, far better for the RISC-V Formal Verification Group to develop a *STANDARD* for Formal Verification, to which **ALL** of these may comply. that's what a Standards Organisation does: develop *STANDARDS*, *NOT* select some random codebase off the internet and say "here! this is now a standard!". so you need to define the *expected results*, in sufficient detail and with sufficient clarity such that *ALL* of the FIVE formal models may conform and comply with it, in a machine-executable fashion. if that's too challenging, then at least some humanverifiable expectations may be defined.

RISC-V-PLV (MIT)

	Good	Adequate	Inadequate
Overall, is the RISC-V- PLV spec:	\circ	\circ	•

RISC-V-PLV - comments

the answer is the same for all of the formal models: it is too early to make a decision. each of the models is extremely good: it's just that they're (all of them) incomplete (still under development in some way). in addition, i think you'll find that even *making* a choice will result in that team becoming a critical dependency *for the entire RISC-V ecosystem*. if they're an academic team, that's unfortunate: once the project no longer receives funding or the research project ends, then so does RISC-V "conformance". and if they're a Corporation, the Corporation may manipulate the RISC-V ecosystem for profit-maximising purposes, and if it goes bust, the project ends, and so does RISC-V "conformance". so not only is it a bad idea to pick one *right now*, it's a bad idea to pick only *ONE* of these formal verification suites *at all*. instead it would be far, far better for the RISC-V Formal Verification Group to develop a *STANDARD* for Formal Verification, to which **ALL** of these may comply. that's what a Standards Organisation does: develop *STANDARDS*, *NOT* select some random codebase off the internet and say "here! this is now a standard!". so you need to define the *expected results*, in sufficient detail and with sufficient clarity such that *ALL* of the FIVE formal models may conform and comply with it, in a machine-executable fashion. if that's too challenging, then at least some humanverifiable expectations may be defined.

Kami (SiFive)

	Good	Adequate	Inadequate
Overall, is the Kami spec:		\circ	•

Kami - comments

Any additional comments

the answer is the same for all of the formal models: it is too early to make a decision. each of the models is extremely good: it's just that they're (all of them) incomplete (still under development in some way). in addition, i think you'll find that even *making* a choice will result in that team becoming a critical dependency *for the entire RISC-V ecosystem*. if they're an academic team, that's unfortunate: once the project no longer receives funding or the research project ends, then so does RISC-V "conformance". and if they're a Corporation, the Corporation may manipulate the RISC-V ecosystem for profit-maximising purposes, and if it goes bust, the project ends, and so does RISC-V "conformance". so not only is it a bad idea to pick one *right now*, it's a bad idea to pick only *ONE* of these formal verification suites *at all*. instead it would be far, far better for the RISC-V Formal Verification Group to develop a *STANDARD* for Formal Verification, to which **ALL** of these may comply. that's what a Standards Organisation does: develop *STANDARDS*, *NOT* select some random codebase off the internet and say "here! this is now a standard!". so you need to define the *expected results*, in sufficient detail and with sufficient clarity such that *ALL* of the FIVE formal models may conform and comply with it, in a machine-executable fashion. if that's too challenging, then at least some humanverifiable expectations may be defined.

Any additional comment	3	

This content is neither created nor endorsed by Google.

Google Forms

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA Formal Spec Public Review, and the comparison table at https://github.com/riscv/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com> and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/data-protection/general-data.

Your name *
Josh Scheid
Your email address (optional)
jscheid@ventanamicro.com
Your organisation *
Ventana Micro Systems
Your role *
Engineer

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	•	\circ	\circ	\circ
Assembly syntax and encoding specification		\circ		0
Multicore concurrency (RVWMO+ZTSO)	•	\circ		0
Single-core concurrency (instruction cache behaviour, interrupts, etc.)				0
Floating point	\bigcirc	•	\bigcirc	\bigcirc
Use as an emulator	\bigcirc	\circ	•	0
Use as a test oracle in tandem verification	\circ	•		\circ
Generation of theorem-prover definitions for proof		\circ		0
Use for lightweight formal verification (bounded model- checking etc.)		•		\circ

Use in documentation, and readability		\circ	\bigcirc	\circ
Use in test generation	\bigcirc			\circ
Use for hardware synthesis	\bigcirc	\bigcirc		\circ
Licencing, tool ecosystem, dependencies	•	\bigcirc	\bigcirc	0
Ease of extensibility	\bigcirc		\circ	\bigcirc
Plans for long-term development and maintenance		\bigcirc		\circ

Comments on any of the above

The intent behind the content of the prose specification versus the formal specification should be explicit. This will help guide the content so that the two appear as complementary instead of redundant.

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

	Good	Adequate	Inadequate
Overall, is the Forvis spec:	\circ	\circ	•

Forvis - comments			
Concurrency.			
GRIFT (Galois)			
	Good	Adequate	Inadequate
Overall, is the GRIFT spec:			
GRIFT - comments			
Privilege levels and conc	urrency.		
Sail (SRI/Cambridge	e)		
	Good	Adequate	Inadequate
Overall, is the Sail spec:	\circ		
Sail - comments			
RISC-V-PLV (MIT)			
	Good	Adequate	Inadequate
Overall, is the RISC-V- PLV spec:	0		

Concurrency.			
Kami (SiFive)			
	Good	Adequate	Inadequate
Overall, is the Kami spec:			
Kami - comments			
Privilege levels and con	currency.		
Any additional com	ıments		

This content is neither created nor endorsed by Google.

Google Forms

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA Formal Spec Public Review, and the comparison table at https://github.com/riscv/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com> and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/data-protection/general-data.

Your name *
Chuanhua Chang
Your email address (optional)
chchang@andestech.com
Your organisation *
Andes Technology
Your role *
Senior director of RD/Architecture

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	•	\circ	\circ	\circ
Assembly syntax and encoding specification		\circ		0
Multicore concurrency (RVWMO+ZTSO)		•		\circ
Single-core concurrency (instruction cache behaviour, interrupts, etc.)				•
Floating point	\bigcirc	•		\bigcirc
Use as an emulator	•	\circ	\circ	\bigcirc
Use as a test oracle in tandem verification	•	\circ	\circ	0
Generation of theorem-prover definitions for proof		•		0
Use for lightweight formal verification (bounded model-checking etc.)		•		\circ

Use in documentation, and readability	0	•	0	0		
Use in test generation	\bigcirc	•	\bigcirc	\circ		
Use for hardware synthesis	0			\bigcirc		
Licencing, tool ecosystem, dependencies	\bigcirc	\circ				
Ease of extensibility			\bigcirc	\bigcirc		
Plans for long-term development and maintenance	•					
Comments on any of the above						

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

	Good	Adequate	Inadequate
Overall, is the Forvis spec:	\circ	•	

Forvis - comments			
GRIFT (Galois)			
	Good	Adequate	Inadequate
Overall, is the GRIFT spec:			
GRIFT - comments			
0 11/001/0 1 11	`		
Sail (SRI/Cambridge			
	Good	Adequate	Inadequate
Overall, is the Sail spec:	•		
Sail - comments			
More features, good read	ability, can gener	ate C	
RISC-V-PLV (MIT)			
	Good	Adequate	Inadequate
Overall, is the RISC-V- PLV spec:	\bigcirc	•	\bigcirc

RISC-V-PLV - comments					
Kami (SiFive)					
	Good	Adequate	Inadequate		
Overall, is the Kami spec:	0				
Kami - comments					
Any additional com	ments				

This content is neither created nor endorsed by Google.

Google Forms

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA Formal Spec Public Review, and the comparison table at https://github.com/riscv/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com> and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/data-protection/general-data.

Your name *
Frédéric Pétrot
Your email address (optional)
frederic.petrot@univ-grenoble-alpes.fr
Your organisation *
Grenoble-INP TIMA Laboratory
Your role *
Professor

Note	

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	•	\circ	\circ	\circ
Assembly syntax and encoding specification		\circ		\circ
Multicore concurrency (RVWMO+ZTSO)	•	\circ		\circ
Single-core concurrency (instruction cache behaviour, interrupts, etc.)				
Floating point		\bigcirc	\bigcirc	•
Use as an emulator	•	\bigcirc	\circ	\bigcirc
Use as a test oracle in tandem verification	•	\circ		\circ
Generation of theorem-prover definitions for proof		•		0
Use for lightweight formal verification (bounded model- checking etc.)		•		0

Use in documentation, and readability	0	•	0	\circ	
Use in test generation	\bigcirc	\circ	\bigcirc	•	
Use for hardware synthesis	\bigcirc	\circ	•	\bigcirc	
Licencing, tool ecosystem, dependencies	•	0	0	\circ	
Ease of extensibility	\circ	•	\circ	\bigcirc	
Plans for long-term development and maintenance				•	
Comments on any of the above					

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

	Good	Adequate	Inadequate
Overall, is the Forvis spec:			•

Forvis - comments

Supports neither instruction encodings and asm syntax nor conccurency				
GRIFT (Galois)				
	Good	Adequate	Inadequate	
Overall, is the GRIFT spec:				
GRIFT - comments				
Seems to support the lea	st features amon	g the tools you propos	е	
Sail (SRI/Cambridge	e)			
	Good	Adequate	Inadequate	
Overall, is the Sail spec:	•			
Sail - comments				
The tool covers encoding the fastest one in simula		• -	em provers, and is	
RISC-V-PLV (MIT)				
	Good	Adequate	Inadequate	
Overall, is the RISC-V- PLV spec:	\circ			

RISC-V-PLV - comments

Does not cover most of the things I feel interesting	(encoding) or very	hard to have
right (concurrency).		

Kami (SiFive)

	Good	Adequate	Inadequate
Overall, is the Kami spec:	0		0

Kami - comments

Covers	half	my	need	s!	
--------	------	----	------	----	--

Any additional comments

Note that I am not an expert in formal stuff, and that my analysis comes from your comparison chart, not from my own experience.

This content is neither created nor endorsed by Google.

Google Forms

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA_Formal_Spec_Public_Review, and the comparison table at https://github.com/riscy/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com > and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/data- protection/general-data.

Your name *
Tariq Kurd
Your email address (optional)
tariq.kurd@huawei.com
Your organisation *
Huawei
Your role *
CPU Architect

Huawei RISC-V development

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	•	\circ	\circ	\circ
Assembly syntax and encoding specification	•	\circ		0
Multicore concurrency (RVWMO+ZTSO)		\circ		•
Single-core concurrency (instruction cache behaviour, interrupts, etc.)				0
Floating point	\bigcirc	•	\bigcirc	\bigcirc
Use as an emulator	•	\circ	\bigcirc	0
Use as a test oracle in tandem verification	\circ	•	\circ	0
Generation of theorem-prover definitions for proof		\circ		
Use for lightweight formal verification (bounded model-checking etc.)		•		\circ

Use in documentation, and readability	•		\bigcirc	\bigcirc
Use in test generation	•	\bigcirc	\bigcirc	\bigcirc
Use for hardware synthesis	\bigcirc	•	\bigcirc	0
Licencing, tool ecosystem, dependencies	•		\bigcirc	\circ
Ease of extensibility	•	\bigcirc	\bigcirc	0
Plans for long-term development and maintenance	•		0	0
Comments on any of the above				

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

	Good	Adequate	Inadequate
Overall, is the Forvis spec:	\bigcirc		•

Forvis - comments			
too slow			
GRIFT (Galois)			
	Good	Adequate	Inadequate
Overall, is the GRIFT spec:			
GRIFT - comments			
too slow			
Sail (SRI/Cambridge))		
	Good	Adequate	Inadequate
Overall, is the Sail spec:	•		
Sail - comments			
Faster, specification langu	uage is better		
RISC-V-PLV (MIT)			
	Good	Adequate	Inadequate
Overall, is the RISC-V- PLV spec:	\circ		

too slow			
Kami (SiFive)			
	Good	Adequate	Inadequate
Overall, is the Kami spec:			
Kami - comments			
unknown speed, no priv	ilege level support?)	
Any additional com	nments		
	ort F-extension, othe		

This content is neither created nor endorsed by Google.

Google Forms

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA_Formal_Spec_Public_Review, and the comparison table at https://github.com/riscy/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com > and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/dataprotection/general-data.

Your name *
andrew dellow
Your email address (optional)
Your organisation *
hisilicon
Your role *
chief security architect

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	•	\circ	\circ	\bigcirc
Assembly syntax and encoding specification		•		
Multicore concurrency (RVWMO+ZTSO)	\circ	\circ	0	\circ
Single-core concurrency (instruction cache behaviour, interrupts, etc.)			0	
Floating point	\bigcirc	\bigcirc	•	\bigcirc
Use as an emulator	\bigcirc	•	\circ	\bigcirc
Use as a test oracle in tandem verification	•	\circ		\circ
Generation of theorem-prover definitions for proof		•		
Use for lightweight formal verification (bounded model-checking etc.)	•	\circ	0	\circ

Use in documentation, and readability	•	0	\bigcirc	0
Use in test generation	\bigcirc	•	\bigcirc	\bigcirc
Use for hardware synthesis	•	\bigcirc	\bigcirc	0
Licencing, tool ecosystem, dependencies	\bigcirc	•	\bigcirc	0
Ease of extensibility	\bigcirc	•	\bigcirc	0
Plans for long-term development and maintenance		0		
Comments on any of the above				

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

	Good	Adequate	Inadequate
Overall, is the Forvis spec:		•	\circ

Forvis - comments			
GRIFT (Galois)			
	Good	Adequate	Inadequate
Overall, is the GRIFT spec:			
GRIFT - comments			
Soil (SDI/Combridge)			
Sail (SRI/Cambridge)	Good	Adequate	Inadequate
Overall, is the Sail spec:	•	O	
Sail - comments			
RISC-V-PLV (MIT)			
()	Good	Adequate	Inadequate
Overall, is the RISC-V- PLV spec:	\circ		

RISC-V-PLV - comments				
Kami (SiFive)				
	Good	Adequate	Inadequate	
Overall, is the Kami spec:				
Kami - comments				
Any additional com	ments			

This content is neither created nor endorsed by Google.

Google Forms

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA_Formal_Spec_Public_Review, and the comparison table at https://github.com/riscy/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com > and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/dataprotection/general-data.

Your name *
Håkan Thörngren
Your email address (optional)
hth313@gmail.com
Your organisation *
Coming startup
Your role *
Principal developer

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	\bigcirc	•	\bigcirc	\bigcirc
Assembly syntax and encoding specification		•		
Multicore concurrency (RVWMO+ZTSO)		\bigcirc		•
Single-core concurrency (instruction cache behaviour, interrupts, etc.)				
Floating point		•	\bigcirc	\bigcirc
Use as an emulator	\bigcirc	\bigcirc	\circ	•
Use as a test oracle in tandem verification	\circ	\circ	\bigcirc	•
Generation of theorem-prover definitions for proof		\bigcirc		•
Use for lightweight formal verification (bounded model- checking etc.)		0		•

Use in documentation, and readability	\circ	•	0	0
Use in test generation	•	\bigcirc	\bigcirc	\bigcirc
Use for hardware synthesis	\bigcirc	\bigcirc	\bigcirc	•
Licencing, tool ecosystem, dependencies	•	\bigcirc	\circ	0
Ease of extensibility	•	\bigcirc	\bigcirc	\bigcirc
Plans for long-term development and maintenance	•			0
Comments on any of the above				

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

	Good	Adequate	Inadequate
Overall, is the Forvis spec:		\bigcirc	

Forvis - comments

Haskell is a strongly desired by me and Forvis has is a permissive license. It seems quite well executed. I can definitely see this one would be useful to me and it should serve well as a formal model.

GRIFT (Galois)

	Good	Adequate	Inadequate
Overall, is the GRIFT spec:		\circ	•

GRIFT - comments

GPL, totally unusable for partial inclusion in commercial products. While it is a formal specification, I can definitely see that there are chance for an executable specification to be at least partially included in actual products, test or development and there is a wide grey zone. People may say that a license will say what is allowed or not, but many commercial users will be very careful with this, and there are alternatives without this problem. I will for sure stay at a safe distance from this one.

Sail (SRI/Cambridge)

	Good	Adequate	Inadequate
Overall, is the Sail spec:		•	

Sail - comments

I put it on Adequate, I have somewhat limited use of it as I am focused on Haskell and will have most use for such specification, but I am not to dismiss it.

	Good	Adequate	Inadequate
Overall, is the RISC-V-PLV spec:			
RISC-V-PLV - comm	nents		
Haskell, permissive licer often orphaned as soon good stuff come out of	as the academic in	nterest shifts, as it ofte	en does. Lots of
Kami (SiFive)			
	Good	Adequate	Inadequate
Overall, is the Kami spec:			0
Kami - comments			
A .1 1 1 11			

Another non-Haskell specification, see comments about Sail.

Any additional comments

This content is neither created nor endorsed by Google.

RISC-V Formal ISA Specification Public Review: Survey

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA Formal Spec Public Review, and the comparison table at https://github.com/riscv/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com> and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/data-protection/general-data.

Your name *
Nathan Studer
Your email address (optional)
Nathan.Studer@DornerWorks.com
Your organisation *
DornerWorks
Your role *
Senior Engineer

The group you are speaking for, if any

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	•	\circ	\circ	\circ
Assembly syntax and encoding specification		\circ		\circ
Multicore concurrency (RVWMO+ZTSO)		•		\bigcirc
Single-core concurrency (instruction cache behaviour, interrupts, etc.)		•		0
Floating point	\bigcirc	\bigcirc		\bigcirc
Use as an emulator	•	\circ	\bigcirc	\bigcirc
Use as a test oracle in tandem verification	\circ	\circ	\circ	•
Generation of theorem-prover definitions for proof		\circ		
Use for lightweight formal verification (bounded model- checking etc.)		\circ	0	•

Use in documentation, and readability	•	0	\circ	\bigcirc
Use in test generation	\bigcirc	\bigcirc	\bigcirc	•
Use for hardware synthesis	\bigcirc	\bigcirc	•	\bigcirc
Licencing, tool ecosystem, dependencies	•	\bigcirc	\circ	0
Ease of extensibility	•	\bigcirc	\bigcirc	
Plans for long-term development and maintenance	•	\bigcirc		\bigcirc
Comments on any o	of the above			

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

Forvis (Bluespec)

	Good	Adequate	Inadequate
Overall, is the Forvis spec:	•		

Forvis - comments			
GRIFT (Galois)			
	Good	Adequate	Inadequate
Overall, is the GRIFT spec:			
GRIFT - comments			
Sail (SRI/Cambridge))		
	Good	Adequate	Inadequate
Overall, is the Sail spec:			
Sail - comments			
RISC-V-PLV (MIT)			
	Good	Adequate	Inadequate
Overall, is the RISC-V- PLV spec:		•	

RISC-V-PLV - comments			
Kami (SiFive)			
Raini (on ive)	Good	Adequate	Inadequate
Overall, is the Kami spec:			
Kami - comments			
Any additional com	nments		

This content is neither created nor endorsed by Google.

RISC-V Formal ISA Specification Public Review: Survey

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA Formal Spec Public Review, and the comparison table at https://github.com/riscv/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com> and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/data-protection/general-data.

Your name *
Jesse Millwood
Your email address (optional)
jesse.millwood@dornerworks.com
Your organisation *
DornerWorks
Your role *
Embedded Software Engineer

The group you are speaking for, if any

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	\bigcirc	•	\bigcirc	
Assembly syntax and encoding specification	•	\bigcirc		0
Multicore concurrency (RVWMO+ZTSO)	\circ	•	0	\circ
Single-core concurrency (instruction cache behaviour, interrupts, etc.)		•		0
Floating point	\circ	\bigcirc	0	•
Use as an emulator	\bigcirc	\bigcirc	•	\bigcirc
Use as a test oracle in tandem verification		\circ		•
Generation of theorem-prover definitions for proof	•	\bigcirc		\bigcirc
Use for lightweight formal verification (bounded model- checking etc.)		0	0	0

Use in documentation, and readability	•	0	\circ	\bigcirc
Use in test generation	\bigcirc	\bigcirc	•	\bigcirc
Use for hardware synthesis	\bigcirc	\bigcirc	•	\bigcirc
Licencing, tool ecosystem, dependencies	•	0	\bigcirc	\bigcirc
Ease of extensibility	•	\bigcirc	\bigcirc	\bigcirc
Plans for long-term development and maintenance	•	0	\bigcirc	\bigcirc
Comments on any of the above				

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

Forvis (Bluespec)

	Good	Adequate	Inadequate
Overall, is the Forvis spec:		•	

Forvis - comments				
GRIFT (Galois)				
Citil I (Galolo)	Good	Adequate	Inadequate	
Overall, is the GRIFT spec:		•		
GRIFT - comments				
Sail (SRI/Cambridge)			
	Good	Adequate	Inadequate	
Overall, is the Sail spec:	•			
Sail - comments				
RISC-V-PLV (MIT)				
	Good	Adequate	Inadequate	
Overall, is the RISC-V- PLV spec:	\bigcirc	•		

RISC-V-PLV - comments			
Kami (SiFive)			
	Good	Adequate	Inadequate
Overall, is the Kami spec:			
Kami - comments			
Any additional com	nments		

This content is neither created nor endorsed by Google.

RISC-V Formal ISA Specification Public Review: Survey

For this public review, please first read the README and the descriptions of the current status of the various models at https://github.com/riscv/ISA Formal Spec Public Review, and the comparison table at https://github.com/riscv/ISA Formal Spec Public Review/blob/master/comparison table.md, then fill in the form below with your opinions and rationale for them. After submission, you will be able to see the other responses so far, and to edit your response.

This survey is organised by the RISC-V Formal ISA Specification Task Group and the University of Cambridge (contacts: Nikhil, Task Group Chair <nikhil@bluespec.com> and Peter Sewell <Peter.Sewell@cl.cam.ac.uk>). The intention is to publish all responses to this survey, attributed to the names and contact details provided. In submitting a response you consent to this occurring; if you do not wish this to happen please do not complete the survey. For more details on how we will handle your personal information, please see https://www.information-compliance.admin.cam.ac.uk/data-protection/general-data.

Your name *
Andrew Tolmach
Your email address (optional)
tolmach@pdx.edu
Your organisation *
Portland State University
Your role *
Professor

The group you are speaking for, if any

How important is each aspect of a formal ISA specification for RISC-

	Very important	Important	Not very important	No opinion
Functional coverage of ISA	•	\bigcirc	\circ	\circ
Assembly syntax and encoding specification		•		0
Multicore concurrency (RVWMO+ZTSO)		\bigcirc		\circ
Single-core concurrency (instruction cache behaviour, interrupts, etc.)				0
Floating point	\bigcirc	\bigcirc	\bigcirc	•
Use as an emulator	•	\bigcirc	\bigcirc	\bigcirc
Use as a test oracle in tandem verification	\bigcirc		\circ	0
Generation of theorem-prover definitions for proof		\bigcirc		0
Use for lightweight formal verification (bounded model- checking etc.)		\circ		\circ

Use in documentation, and readability	•	0	\bigcirc	0
Use in test generation	\bigcirc	•	\circ	\bigcirc
Use for hardware synthesis	0	\bigcirc	•	\bigcirc
Licencing, tool ecosystem, dependencies	\circ	•	0	\bigcirc
Ease of extensibility	•	\bigcirc	\circ	\bigcirc
Plans for long-term development and maintenance	•	\bigcirc	0	\bigcirc

Comments on any of the above

Obviously, each of these may be crucial to somebody: I've answered what is important to me.

The Candidate Formal Models

For each of the candidate formal models, please give your overall view for whether it would be good, adequate, or inadequate for the needs of the RISC-V ecosystem, explaining why.

Forvis (Bluespec)

	Good	Adequate	Inadequate
Overall, is the Forvis spec:			\bigcirc

Forvis - comments

Uses Haskell to good effections conventional ISA descriptions definitions suitable for use	ons. But I'm not	t sure how easy it will b	
GRIFT (Galois)			
(Good	Adequate	Inadequate
Overall, is the GRIFT spec:			
GRIFT - comments			
Only accessible to Haskell	experts.		
Sail (SRI/Cambridge)			
	Good	Adequate	Inadequate
Overall, is the Sail spec:	\circ		
Sail - comments			
Probably the best choice a heavy-weight for the minin produce very idiomatic def	nal subsets of th	ne ISA. Current extracti	on to Coq does not
RISC-V-PLV (MIT)			
	Good	Adequate	Inadequate
Overall, is the RISC-V- PLV spec:	\bigcirc		

RISC-V-PLV - comments

Similar to Forvis, but requires somewhat more Haskell expertise to read (OK for me, but probably not ideal for broader community).

Kami (SiFive)

	Good	Adequate	Inadequate
Overall, is the Kami spec:	\bigcirc	\bigcirc	•

Kami - comments

Organization focused on synthesis is not so natural for other purposes. Coq is not very accessible to broader community.

Any additional comments

This content is neither created nor endorsed by Google.