Вычисления на GPU

План курса

- Введение в GPU и его роль в современных вычислениях
- Основы программирования на GPU
- Обзор фреймворков для работы с GPU
- Примеры кода на CUDA/OpenCL
- Резюме (???)

• А ЧЕ ПО ОЦЕНКЕ И ЗАДАЧКАМ

Что такое GPU?

• GPU (Graphics Processing Unit) — это специализированный процессор, изначально разработанный для обработки графики и визуализации.

• Современные GPU используются не только для рендеринга, но и для выполнения общих вычислений (GPGPU — General-Purpose computing on Graphics Processing Units).

Но ведь есть CPU!

GPU vs. CPU

	GPU	CPU
Архитектура	Тысячи более простых ядер, оптимизированных для параллельных вычислений	Несколько мощных ядер, оптимизированных для последовательных задач
Параллелизм	Эффективен в задачах, где можно выполнять множество одинаковых операций одновременно (например, обработка пикселей, матричные операции)	Хорошо справляется с задачами, требующими сложной логики и ветвления
Производительность	Высокая производительность на множестве потоков , но только при условии высокой степени параллелизма	Высокая производительность на одном потоке

Архитектура

Зачем нам GPU??

- Машинное обучение и искусственный интеллект
- Научные вычисления
- Рендеринг и графика
- Криптография и блокчейн

Не все так однозначно...

Преимущества	Ограничения
Высокая производительность: GPU может выполнять тысячи операций одновременно, что делает его идеальным для задач с высокой степенью параллелизма	Сложность программирования: Работа с GPU требует понимания параллельной архитектуры и специфических фреймворков (CUDA, OpenCL)
Энергоэффективность : GPU потребляет меньше энергии на выполнение параллельных задач по сравнению с CPU	Неэффективность для последовательных задач: Если задача не может быть распараллелена, GPU не даст преимущества перед CPU
Масштабируемость: Современные GPU поддерживают тысячи потоков, что позволяет эффективно решать задачи любого масштаба	Ограниченная память: Глобальная память GPU меньше, чем у CPU, что может стать проблемой для задач с большими объемами данных

Обзор фрейморков для работы с GPU

- Фреймворки для работы с GPU это наборы инструментов и библиотек, которые позволяют программистам использовать вычислительные мощности GPU для выполнения задач, отличных от обработки графики (GPGPU)
- Фреймворки упрощают взаимодействие с GPU, предоставляя высокоуровневые API для управления памятью, выполнения ядер (kernels) и синхронизации.
- Без фреймворков программирование на GPU было бы крайне сложным и требовало бы глубокого понимания аппаратной архитектуры.

OpenCL (Open Computing Language)

- OpenCL это открытый стандарт для параллельных вычислений на расличных системах (CPU, GPU и других устройствах). Он разработан Khronos Group и поддерживается на устройствах от разных производителей (NVIDIA, AMD, Intel, ARM и др.).
- Основные концепции OpenCL включают платформу, устройство, контекст, очередь команд и ядро.

Основные концепции OpenCL

CUDA

- CUDA это проприетарная технология NVIDIA для параллельных вычислений на GPU
- Разработана исключительно для GPU NVIDIA, поэтому оптимизирована для GPU NVIDIA

Основные концепции CUDA

- Потоки (Threads): Базовая единица выполнения. Потоки объединяются в блоки.
- Блоки (Blocks): Группа потоков, которые могут взаимодействовать через shared memory.
- Сетки (Grids): Группа блоков, выполняющих одно ядро.

Основные концепции CUDA

- •Pастение поток (thread)
- •Ряд в грядке warp (32 threads)
- •Грядка блок (block)
- •Ряд из грядок сетка (grid)

Основные концепции программирования на OpenCL и CUDA

- Код выполняется отдельно на хосте (host) и отдельно на устройстве (device)
- Создание "окружения" для работы кода (платформа, контекст, очереди и др.)
- Выделение памяти на хосте и устройстве, копирование данных с хоста на устройство
- Выполнение ядра
- Копирование результатов ядра на хост
- **Удаление** всех созданных сущностей, чтобы не было утечек памяти

Примеры кода на OpenCL (ядро)

```
__kernel void vector_add(__global const float *A, __global const float *B, __global float *C) {
   int id = get_global_id(0); // Получаем уникальный идентификатор потока
   C[id] = A[id] + B[id]; // Складываем элементы векторов
}
```

Примеры кода на OpenCL (хост)

```
#include <iostream>
#include <vector>
#include <CL/cl.hpp>
int main() {
    // Исходные данные
    std::vector<float> A = {1, 2, 3, 4, 5};
    std::vector<float> B = {10, 20, 30, 40, 50};
    std::vector<float> C(A.size());
    // Получаем платформы и устройства
    std::vector<cl::Platform> platforms;
    cl::Platform::get(&platforms);
    auto platform = platforms.front();
    std::vector<cl::Device> devices;
    platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
    auto device = devices.front();
    // Создаем контекст и очередь команд
    cl::Context context(device);
    cl::CommandQueue queue(context, device);
    // Выделяем память на GPU
    cl::Buffer bufferA(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * A.size(),
A.data());
    cl::Buffer bufferB(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * B.size(),
B.data());
    cl::Buffer bufferC(context, CL_MEM_WRITE_ONLY, sizeof(float) * C.size());
```

Примеры кода на OpenCL (хост)

```
// Компилируем ядро
const char* kernel_code = R"(
    __kernel void vector_add(__global const float *A, __global const float *B, __global float *C) {
        int id = get_global_id(0);
       C[id] = A[id] + B[id];
)";
cl::Program program(context, kernel_code);
program.build("-cl-std=CL1.2");
// Создаем ядро и устанавливаем аргументы
cl::Kernel kernel(program, "vector_add");
kernel.setArg(0, bufferA);
kernel.setArg(1, bufferB);
kernel.setArg(2, bufferC);
// Запускаем ядро
queue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(A.size()), cl::NullRange);
// Копируем результат обратно на СРИ
queue.enqueueReadBuffer(bufferC, CL_TRUE, 0, sizeof(float) * C.size(), C.data());
// Выводим результат
for (float c : C) {
    std::cout << c << " ";
return 0;
```

Примеры кода на CUDA (ядро)

```
__global__ void vector_add(const float *A, const float *B, float *C, int N) {
   int idx = blockIdx.x * blockDim.x + threadIdx.x;
   if (idx < N) {
        C[idx] = A[idx] + B[idx];
   }
}</pre>
```

Примеры кода на CUDA (хост)

```
#include <iostream>
#include <vector>
__global__ void vector_add(const float *A, const float *B, float *C, int N) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < N) {
        C[idx] = A[idx] + B[idx];
int main() {
   // Исходные данные
    int N = 5;
    std::vector<float> A = {1, 2, 3, 4, 5};
    std::vector<float> B = {10, 20, 30, 40, 50};
    std::vector<float> C(N);
   // Выделяем память на GPU
   float *d_A, *d_B, *d_C;
    cudaMalloc(&d_A, N * sizeof(float));
    cudaMalloc(&d_B, N * sizeof(float));
    cudaMalloc(&d_C, N * sizeof(float));
   // Копируем данные на GPU
    cudaMemcpy(d_A, A.data(), N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_B, B.data(), N * sizeof(float), cudaMemcpyHostToDevice);
```

Примеры кода на CUDA (хост)

```
// Запускаем ядро
int blockSize = 256;
int gridSize = (N + blockSize - 1) / blockSize;
vector_add<<<gridSize, blockSize>>>(d_A, d_B, d_C, N);
// Копируем результат обратно на CPU
cudaMemcpy(C.data(), d_C, N * sizeof(float), cudaMemcpyDeviceToHost);
// Освобождаем память на GPU
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
// Выводим результат
for (float c : C) {
    std::cout << c << " ";
return 0;
```