1 Некоторые определения из теории множеств. Прямое произведение, разбиение множеств. Мощность объединения

Опр

Пустое множество (\varnothing) - мно-во, которому $\not\in$ ни один элемент

Опр

Число элементов мн-ва A - мощность |A|

Опр

Множество чисел от k до l обозначается k:l

Опр

Мн-во A - подм
н-во мн-ва B ($A\subset B$), если каждый элемент из A принадлежит B

Опр

С - объединение А и В $(A \cap B)$, если оно состоит из всех элементов А и В $(C = \{x | x \in A \text{ и } x \in B\})$

Опр

 $\bigcap_{i=1}^n A_i, \quad \bigcup_{i=1}^n A_i$ - объединение и пересечение конечного числа мн-в $(\bigcap_{i\in I} A_i, \quad \bigcup_{i\in I} A_i)$ - аналогично

Опр

Если пересечение мн-в пусто, то они называются дизъюнктивными

Опр

Мн-во C называется разностью мн-в A и B ($C = A \setminus B$), если оно состоит из всех эл-в, принадлежащих A и не принадлежащих B

Опр

 $A\triangle B=A\setminus B\cap B\setminus A$ - симметрическая разность

Опр

Мн-во упорядоченных пар (i,j), где $i\in A,\ j\in B$ называется прямым произведением мн-в A и B

$$A \times B = \{(i, j) | i \in A, \quad j \in B\}$$

Замечание

Мощность прямого произведения $|A \times B| = |A| \cdot |B|$. Аналогично произведение \forall конечного числа множеств

Опр

Пусть $A_1,...,A_k$ - ненулевые и попарно дизъюнктивные, $M=A_1\cap...\cap A_k$ и мн-во $\{A_1,...,A_k\}$ называется разбиением М (если они попарно не дизъюнктивные, то это покрытие)

Опр

Разбиение A мн-ва M называется измельчением B, если $\forall A_i \in A$ содержится в некотором $B_i \in B$

Опр

Пусть A, B - размельчения мн-ва M, разбиение C называется произведением A и B, если оно является из измельчением, причем самым крупным $C = A \cdot B$

Теорема

Произведение двух разбиений существует

Док-во

Предъявим разбиение, которое будет пересечением $A = \{A_1, ..., A_k\}$ и $B = \{B_1, ..., B_l\}$, точнее $D_{ij} = A_i \cup B_j$, $i \leqslant k$, $j \leqslant l$ и $\mathcal{P} = \cup D_{ij}$ (т.е. без пустых строк). Покажем, что тогда оно самое крупное.

Пусть $\exists F = \{F_1, ..., F_t\}$ - измельчение A и B, тогда $\forall F_k \ \exists A_{i_k}, \ B_{i_k} : F_k A_{i_k}, \ B_{i_k} \Rightarrow F_k \subset (A_{i_k} \cup B_{i_k}) = D_{i_k j_k} \Rightarrow$ мельче F

2 Вектора из нулей и единиц

Пусть мн-во B состоит из двух элементов которые отождествляются с 0 и 1, т.е. B=0:1

Произведение m экзмемпляров такого мн-ва обозначим за $B^m = (0:1)^m$, состоит из 2^m эл-ов

Опр

Вектор из нулей и единиц - упорядоченный набор из фиксированного числа нулей и единиц, т.е. эл-т мн-ва B^m

Упорядоченный набор из чисел оычно называется вектором, m - размерностью вектора, каждый отдельный элемент набора - компонента вектора

Замечание

Модели, в которых используются наборы из 0 и 1:

1. Геометрическая интерпретация

Точкой в m-мерном пространстве является m-мерный вектор, каждая его компонента - одна из декартовых координат точки. Набор из 0 и 1, рассматриваемый как точка в пространстве, определяет вершину куба, построенного на ортах (единичных отрезках) координатных вероятностей

2. Логичнская интерпретация

Операции над векторами выполняются покомпонентно, т.е. независимо над соотв. компонентами векторов-операндов

Пример

- 3. Двоичное представление (натуральные числа)
 - Число представляется в виде суммы степеней 2
- 4. Состояние памяти компьютера
- 5. Сообщение, передаваемое по каналу связи
- 6. Можно задавать подмножества мн-ва 1:n

3 Алгоритм перебора 0-1 векторов. Коды Грея

Опр

Код Γ рея — такое упорядочение k-ичных (обычно двоичных) векторов, что соседние вектора отличаются только в одном разряде

Алгоритм

it - номер итерации, k_{it} - номер обновляемой компоненты

x_4	x_3	x_2	x_1	it	\mathbf{k}_{it}
0	0	0	0	0	1
0	0	0	<u>1</u>	1	2
0	0	1	1	2	1
0	0	1	0	3	3
0	1	1	0	4	1
0	1	1	<u>1</u>	5	2
0	1	0	1	6	1
0	1	0	0	7	4

Суть алгоритма: зафиксируем нулевое значение у m-й компоненты и переберем все наборы длины m-1 для ост. компонент. Перебрав их меняем значение m-й компоненты на 1 и перебинаем набор длины m-1 в обратном порядке

Замечание*

Явная формула для проверки $G_i = i \oplus (\lfloor i/2 \rfloor)$

4	Перебор элементов прямого произведени	я множеств

5	Размещения, сочетания, перестановки без повторений

6	Размещения, сочетания, перестановки с повторениями

7 Два алгоритма перебора перестановок. Нумерация перестановок

8 Задача о минимуме скалярного произведения

9 Числа Фибоначчи. Теорема о представлении

10 Перебор сочетаний. Нумерация сочетаний

11	Бином	Ньютона	и	его	комбинаторное	использование

12 Свойства биномиальных коэффициентов

13 Основные определения теории вероятностей

14 Условные вероятности и формула Байеса

15 Математическое ожидание и дисперсия случайной величины

16 Схема Бернулли

17 Случайные числа. Схема Уолкера

18 Двоичный поиск и неравенство Крафта

19 Энтропия. 2 леммы

20 Теорема об энтропии

21 Операции над строками переменной длины

22 Поиск образца в строке (Карпа-Рабина, Бойера-Мура)

23 Суффиксное дерево

24 Задача о максимальном совпадении двух строк

25 Код Шеннона-Фано. Алгоритм Хаффмена. 3 леммы

26 Сжатие информации по методу Зива-Лемпеля

27 Метод Барроуза-Уилера

28 Избыточное кодирование. Коды Хэмминга

29 Шифрование с открытым ключом

30 Сортировки (5 методов)

31 Информационный поиск и организация информации

32 Хеширование

33 АВЛ-деревья

34 В-деревья

35 Биноминальные кучи

36 Основные определения теории графов

37 Построение транзитивного замыкания

38 Обходы графа в ширину и глубину. Топологическая сортировка

39 Связность. Компоненты связности и сильной связности

40 Алгоритм поиска контура и построение диаграммы порядка

41 Теорема о связном подграфе

Деревья. Теорема о шести эквивалентных определениях дерева

43	Задача о кратчайшем остовном дереве. Алгоритм Прима

44 Алгоритм Краскала

45 Задача о кратчайшем пути. Алгоритм Дейкстры

46 Алгоритм Левита

47 Задача о кратчайшем дереве путей

48 Сетевой график и критические пути. Нахождение резервов работ

49 Задача о максимальном паросочетании в графе. Алгоритм построения

50 Теорема Кенига

51 Алгоритм построения контролирующего множества

52 Задача о назначениях. Венгерский метод

53 Задача коммивояжера. Метод ветвей и границ

54 Метод динамического программирования. Задача линейного раскроя

55 Приближенные методы решения дискретных задач. Жадные алгоритмы Алгоритмы с гарантированной оценкой точности. Алгоритм Эйлера

57 Жадные алгоритмы. Задача о системе различных представителей

58 Приближенные методы решения дискретных задач

59 Конечные автоматы

60 Числа Фибоначчи. Производящие функции

61 Числа Каталана

62 ?Алгоритм Кристофидеса (возможно будет)