第二讲 深度前馈神经网络

目录

- 感知机
- 前馈神经网络与反向传播算法
- 反向传播算法分析
- 过度拟合与正则化
- 深度神经网络的优化与扩展

感知机

- 前馈网络与递归网络结构及数学模型
- How to mimic some intelligent behaviors?
- Perceptron: Data Classification
- An Intuitive Example

Neural Network Structures

A Neural Network=Neurons+Connection

神经网络分类:

- •前馈神经网络(Feed forward NNs): 没有后向反馈连接
- •递归神经网络(Recurrent NNs): 有后向反馈连接

Neural Networks

Feed forward NNs (FNNs):

No feedback connection

Recurrent NNs (RNNs):

have feedback connection

Neural Networks

Feed forward NNs

Recurrent NNs

Feed Forward NNs

Math Model of FNNs

Math Model of FNNs

Math Model of FNNs

$$a = f(Wx)$$

$$a_i = f_i \left(\sum_{j=1}^R w_{ij} x_j \right)$$

Three Steps for Neural Network

Different connection leads to different network structures

Network parameter θ : all the weights and biases in the "neurons"

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define *a function set*

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Output Layer as Multi-Class Classifier

Feature extractor replacing feature engineering

Example Application

Input

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

 Q: How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

- Q: Can the structure be automatically determined?
 - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

Three Steps for Deep Learning

Loss for an Example

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} l^n$$

Find *a function in function set* that
minimizes total loss L

Find the network parameters θ^* that minimize total loss L

Three Steps for Deep Learning

Gradient Descent

Gradient Descent

Gradient Descent

This is the "learning" of machines in deep learning

Even alpha go using this approach.

People image

Actually

I hope you are not too disappointed :p

Backpropagation

• Backpropagation: an efficient way to compute $\partial L/\partial w$ in neural network

Three Steps for Deep Learning

感知机

1.感知机的网络结构

2.例子

3.感知机的训练规则

4.感知机的局限

Single Layer FNNs

How to mimic intelligent behaviors?

Perceptron

Data Classification

An Intuitive Example

Apple/Banana Classifier

Apple/Banana Classifier

- 1. 特征描述 (Measurement Vector)
- 2. NN结构设计
- 3. NN学习,以具备分类能力
- 4. NN性能分析

Prototype Vectors

Measurement Vector

$$\mathbf{p} = \begin{bmatrix} \text{shape} \\ \text{texture} \\ \text{w eight} \end{bmatrix}$$

Shape: {1 : round ; -1 : eliptical}

Texture: {1 : smooth ; -1 : rough}

Weight: $\{1 : > 1 \text{ lb.}; -1 : < 1 \text{ lb.}\}$

Banana

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

Perceptron

1

Apple

$$\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

perceptron

-1

Apple/Banana Classifier

- 1. 特征描述(Measurement Vector)
- 2. NN结构设计
- 3. NN学习,以具备分类能力
- 4. NN性能分析

选择网络结构: 多少神经元? 多少层网络?

Banana

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

Perceptron

1

Apple

$$\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

perceptron

—]

Banana

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

Perceptron

Apple

$$\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

perceptron

$$a = \text{hardlims}(wp + b)$$

$$= \text{hardlims} \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + b$$

Decision plan

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ p_2 \\ p_3 \end{bmatrix} + b = 0$$

Decision Plan

Banana

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \qquad \mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Apple

$$\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$a = hardlims \left[\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + b \right]$$

$$p_1 = 0$$

$$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + 0 = 0$$

Check

Banana

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

$$a = hardlims \left[\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + 0 \right] = 1 \text{(b ana na)}$$

Banana

Check

$$a = hardlims \left[\begin{bmatrix} 1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + 0 \right] = -1 \text{ (apple)}$$

Check

"Rough" Banana:

$$a = hardlims \left[\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} + 0 \right] = 1 \text{ (b ana na)}$$

Banana:

$$a = hardlims \left[\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + 0 \right] = 1 \text{(b anana)}$$

Apple:

$$a = hardlim s \left[\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + 0 \right] = -1 \text{ (apple)}$$

"Rough" Banana:

na:

$$a = hardlims \left[\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} + 0 \right] = 1 \text{ (b anana)}$$

Perceptron

$$a = hardlims \left[\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + b \right]$$

$$p_{1} = 0$$

$$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} + 0 = 0$$

How to adjust W by learning?

Perceptron – Part Two

Perceptron Learning

Math Model

$$a_i = f_i \left(\sum_{j=1}^R w_{ij} p_j + b_i \right)$$

$$n_i = \sum_{j=1}^R w_{ij} p_j + b_i$$

$$a = f(Wp + b)$$

- Supervised Learning
 - Network is provided with a set of examples of proper network behavior (inputs/targets)

Decision Plan

$$a = hardlims \left[\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + b \right]$$

为了获得决策面,令净输入为0:

$$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + 0 = 0$$

决策面的法向量即W

input

Question: How to adjust W?

$$a = f(Wp + b)$$

$$\{\mathbf{p}_1,\mathbf{t}_1\}$$
, $\{\mathbf{p}_2,\mathbf{t}_2\}$, ..., $\{\mathbf{p}_Q,\mathbf{t}_Q\}$

$$a = f(Wp + b)$$

$$E(W) = \sum_{i=1}^{Q} (t_i - a_i)^2$$
$$= \sum_{i=1}^{Q} [t_i - f(Wp_i + b)]^2$$

$$\left\{ q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_1 = 1 \right.$$

$$\left\{ q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_1 = 1 \right\} \qquad \left\{ q_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, t_2 = 0 \right\} \qquad \left\{ q_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t_3 = 0 \right\}$$

$$\left\{ q_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t_3 = 0 \right\}$$

Classification: 2 classes

$$\left\{ q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_1 = 1 \right.$$

$$\left\{ q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_1 = 1 \right\} \qquad \left\{ q_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, t_2 = 0 \right\} \qquad \left\{ q_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t_3 = 0 \right\}$$

$$\left\{ q_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t_3 = 0 \right\}$$

$$a = f(\mathbf{w}^T p) = f(\mathbf{w}_1 p_1 + \mathbf{w}_2 p_2)$$

$$\left\{ q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_1 = 1 \right.$$

$$\left\{ q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_1 = 1 \right\} \qquad \left\{ q_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, t_2 = 0 \right\} \qquad \left\{ q_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t_3 = 0 \right\}$$

$$\left\{ q_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t_3 = 0 \right\}$$

$$a = f(\mathbf{w}^T p) = f(\mathbf{w}_1 p_1 + \mathbf{w}_2 p_2)$$

$$w_1 p_1 + w_2 p_2 = 0$$

Starting Point

Random initial weight:

$$w = \begin{bmatrix} 1.0 \\ -0.8 \end{bmatrix}$$

Starting Point

Random initial weight:

$$w = \begin{bmatrix} 1.0 \\ -0.8 \end{bmatrix}$$

Present q₁ to the network: $\left\{ q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_1 = 1 \right\}$

$$a = f(w^T q_1) = f\left[\begin{bmatrix} 1.0 & -0.8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}\right] = f(-0.6) = 0$$

Incorrect Classification!

Adjusting W

First Iteration

$$w^{new} = w^{old} + q_1 = \begin{bmatrix} 1.0 \\ -0.8 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2.0 \\ 1.2 \end{bmatrix}$$

Learning Rule:

If t = 1 and a = 0, then $w^{new} = w^{old} + q$

First iteration

$$w^{new} = w^{old} + q_1 = \begin{bmatrix} 1.0 \\ -0.8 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2.0 \\ 1.2 \end{bmatrix}$$

Learning Rule:

If t = 1 and a = 0, then $w^{new} = w^{old} + q$

First Iteration

$$w^{new} = w^{old} + q_1 = \begin{bmatrix} 1.0 \\ -0.8 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2.0 \\ 1.2 \end{bmatrix}$$

Learning Rule:

If t = 1 and a = 0, then $w^{new} = w^{old} + q$

Checking

$$w = \begin{bmatrix} 2.0 \\ 1.2 \end{bmatrix}$$

Present
$$q_2$$
 to the network: $\begin{cases} q_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, t_2 = 0 \end{cases}$

$$a = f(w^T q_2) = f\left[\begin{bmatrix} 2.0 & 1.2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix}\right] = f(0.4) = 1$$

Incorrect Classification!

$$w^{new} = w^{old} - q_2 = \begin{bmatrix} 2.0 \\ 1.2 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3.0 \\ -0.8 \end{bmatrix}$$

Learning Rule:

$$w^{new} = w^{old} - q_2 = \begin{bmatrix} 2.0 \\ 1.2 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3.0 \\ -0.8 \end{bmatrix}$$

Learning Rule:

$$w^{new} = w^{old} - q_2 = \begin{bmatrix} 2.0 \\ 1.2 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3.0 \\ -0.8 \end{bmatrix}$$

Learning Rule:

Checking

$$w = \begin{bmatrix} 3.0 \\ -0.8 \end{bmatrix}$$

Present q_3 to the network: $\left\{ q_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t_3 = 0 \right\}$

$$a = f(w^T q_3) = f\left[\begin{bmatrix} 3.0 & -0.8 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}\right] = f(0.8) = 1$$

Incorrect Classification!

Third Iteration

$$w^{new} = w^{old} - q_3 = \begin{bmatrix} 3.0 \\ -0.8 \end{bmatrix} - \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3.0 \\ 0.2 \end{bmatrix}$$

Learning Rule:

Third Iteration

$$w^{new} = w^{old} - q_3 = \begin{bmatrix} 3.0 \\ -0.8 \end{bmatrix} - \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3.0 \\ 0.2 \end{bmatrix}$$

Learning Rule:

Algorithm Converged

Patterns are now correctly classified.

Learning Rule:

If t = a, then $w^{new} = w^{old}$

$$\left\{ q_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_1 = 1 \right\} \qquad \left\{ q_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, t_2 = 0 \right\} \qquad \left\{ q_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t_3 = 0 \right\}$$

If
$$t = 1$$
 and $a = 0$, then $w^{new} = w^{old} + q$
If $t = 0$ and $a = 1$, then $w^{new} = w^{old} - q$
If $t = a$, then $w^{new} = w^{old}$

Define
$$e = t - a$$

If
$$e = 1$$
, then $w^{new} = w^{old} + q$

If
$$e = -1$$
, then $w^{new} = w^{old} - q$

If
$$e = 0$$
, then $w^{new} = w^{old}$

Define
$$e = t - a$$

$$w^{new} = w^{old} + eq = w^{old} + (t - a)q$$

Since, a bias is a weight with an input of 1.

$$w^{new} = w^{old} + eq = w^{old} + (t - a)q$$

$$b^{new} = b^{old} + e = w^{old} + (t - a)b$$

Perceptron

Multiple-Neuron Perceptrons

$$a = \text{hardlim}(\text{Wp} + \text{b})$$

Learning Algorithm

$$\mathbf{W}^{new} = \mathbf{W}^{old} + \mathbf{ep}^T$$

$$\mathbf{b}^{new} = \mathbf{b}^{old} + \mathbf{e}$$

Multiple-Neuron Perceptrons

Step 1: Design the perceptron structure.

$$a = \text{hardlim}(\text{Wp} + \text{b})$$

Step 2: Training the network by learning algorithm.

Learning Algorithm

$$\mathbf{W}^{new} = \mathbf{W}^{old} + \mathbf{ep}^{T}$$

$$\mathbf{b}^{new} = \mathbf{b}^{old} + \mathbf{e}$$

Apple/Banana Example

Training Set

$$\left\{\mathbf{p}_{1} = \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, t_{1} = \begin{bmatrix} 1\\1 \end{bmatrix} \right\} \qquad \left\{\mathbf{p}_{2} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, t_{2} = \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$$

Apple/Banana Example

Initial Weights:

$$W = \begin{bmatrix} 0.5 & -1 & -0.5 \end{bmatrix}$$

$$b=0.5$$

First Iteration:

$$a = hardlim(\mathbf{W}\mathbf{p}_1 + b) = hardlim \left[\begin{bmatrix} 0.5 & -1 & -0.5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + 0.5 \right]$$

$$a = hardlim(-0.5) = 0$$
 $e = t_1 - a = 1 - 0 = 1$

$$\mathbf{W}^{new} = \mathbf{W}^{old} + e\mathbf{p}^{T} = \begin{bmatrix} 0.5 & -1 & -0.5 \end{bmatrix} + (1) \begin{bmatrix} -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -0.5 & 0 & -1.5 \end{bmatrix}$$

$$b^{new} = b^{old} + e = 0.5 + (1) = 1.5$$

$$a = hardlim (\mathbf{W}\mathbf{p}_{2} + b) = hardlim (\begin{bmatrix} -0.5 & 0 & -1.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + (1.5))$$

$$a = hardlim (2.5) = 1$$

$$e = t_{2} - a = 0 - 1 = -1$$

$$\mathbf{W}^{new} = \mathbf{W}^{old} + e\mathbf{p}^{T} = \begin{bmatrix} -0.5 & 0 & -1.5 \end{bmatrix} + (-1) \begin{bmatrix} 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1.5 & -1 & -0.5 \end{bmatrix}$$

$$b^{new} = b^{old} + e = 1.5 + (-1) = 0.5$$

Check

$$a = hardlim (\mathbf{W}\mathbf{p}_1 + b) = hardlim (\begin{bmatrix} -1.5 & -1 & -0.5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + 0.5)$$

$$a = hardlim (1.5) = 1 = t_1$$

$$a = hardlim (\mathbf{W}\mathbf{p}_2 + b) = hardlim (\begin{bmatrix} -1.5 & -1 & -0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + 0.5)$$

$$a = hardlim (-1.5) = 0 = t_2$$

Perceptron Ability

• The perceptron rule will always converge to weights which accomplish the desired classification, assuming that such weights exist.

$$\mathbf{W}^{new} = \mathbf{W}^{old} + \mathbf{ep}^T$$

$$\mathbf{b}^{new} = \mathbf{b}^{old} + \mathbf{e}$$

Perceptron limitation

Linear Decision Boundary:

$$_{1}\mathbf{w}^{T}\mathbf{p}+b=0$$

Linearly Inseparable Problems:

Exercise 1

设有4类,其输入向量分别如下所示:

C1:
$$\left\{ \mathbf{p}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, p_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$
 C2:
$$\left\{ \mathbf{p}_3 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, p_4 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\}$$

C2:
$$\left\{ \mathbf{p}_3 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, p_4 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\}$$

C3:
$$\left\{ \mathbf{p}_{5} = \begin{bmatrix} -1\\2 \end{bmatrix}, p_{6} = \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$$
 C4:
$$\left\{ \mathbf{p}_{7} = \begin{bmatrix} -1\\-1 \end{bmatrix}, p_{8} = \begin{bmatrix} -2\\-2 \end{bmatrix} \right\}$$

C4:
$$\left\{ \mathbf{p}_7 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, p_8 = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \right\}$$

试设计一种感知机网络,进行分类。

C1:
$$\left\{ \mathbf{p}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, p_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$

C2:
$$\left\{ \mathbf{p}_3 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, p_4 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\}$$

C3:
$$\left\{ \mathbf{p}_{5} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, p_{6} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$$

C4:
$$\left\{ \mathbf{p}_7 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, p_8 = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \right\}$$

由于, 2^S个线性可分类别可以用具有S个神经元的感知机进行分类, 因此, 此类问题至少需要具有2个神经元的感知机。

2个神经元的感知机可以生成两条决策线

定义4个类别的目标输出:

C1:
$$\left\{ t_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, t_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

C2:
$$\left\{t_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, t_4 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$$

C3:
$$\left\{t_5 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, t_6 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right\}$$

C4:
$$\left\{t_7 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, t_8 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right\}$$

可以设定2个权值向量为:

$$w_1 = \begin{bmatrix} -3 \\ -1 \end{bmatrix} \qquad w_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

权值向量的矩阵表示形式:

$$W = \begin{bmatrix} w_1^T \\ w_2^T \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$$

可以设定2个权值向量为:

$$w_1 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$$

$$w_1 = \begin{bmatrix} -3 \\ -1 \end{bmatrix} \qquad w_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

计算偏移量,令:

$$w_i^T P + b_i = 0$$

$$b_1 = -w_1^T P = -[-3 \quad -1] \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1$$

$$b_2 = -w_2^T P = -\begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$$

Exercise 2

请利用感知机学习规则训练一个感知机网络,求解上述分类问题。

利用上述设定的目标向量以及输入向量,构成的训练集为:

$$\left\{\mathbf{p}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, t_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right\}$$

$$\left\{ \mathbf{p}_3 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, t_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$\left\{\mathbf{p}_{5} = \begin{bmatrix} -1\\2 \end{bmatrix}, t_{5} = \begin{bmatrix} 1\\0 \end{bmatrix}\right\}$$

$$\left\{\mathbf{p}_{7} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, t_{7} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right\}$$

$$\left\{\mathbf{p}_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, t_{2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right\}$$

$$\left\{\mathbf{p}_{4} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, t_{4} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$$

$$\left\{ \mathbf{p}_{6} = \begin{bmatrix} -2\\1 \end{bmatrix}, t_{6} = \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$$

$$\left\{ \mathbf{p}_8 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}, t_8 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

设初始权值和偏移向量为:

$$W(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$b(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

The 1st Iteration:

$$a = hard \lim \left(W(0)P_1 + b(0)\right) = hard \lim \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$e = t_1 - a = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$w(1) = w(0) + ep_1^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

$$b(1) = b(0) + e = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The 2nd Iteration:

$$a = hard \lim \left(W(1) P_2 + b(1) \right) = hard \lim \left(\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$e = t_2 - a = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$w(2) = w(1) + ep_2^T = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

$$b(2) = b(1) + e = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The 3rd Iteration:

$$a = hard \lim (W(2)P_3 + b(2)) = hard \lim \left(\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$e = t_3 - a = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$w(3) = w(2) + ep_3^T = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix}$$

$$b(3) = b(2) + e = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

继续迭代,直至第8次:

$$W(8) = W(7) = W(6) = W(5) = W(4) = W(3) = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix}$$

$$b(8) = b(7) = b(6) = b(5) = b(4) = b(3) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

The 9th Iteration:

$$a = hard \lim \left(W(8)P_1 + b(8)\right) = hard \lim \left(\begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$e = t_1 - a = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$w(9) = w(8) + ep_1^T = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$$

$$b(9) = b(8) + e = \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

至此, 算法收敛。最终决策线如图所示:

