Explanation vs Prediction

Marco Morales marco.morales@columbia.edu

Nana Yaw Essuman nanayawce@gmail.com

GR5069
Topics in Applied Data Science
for Social Scientists
Spring 2020
Columbia University

a framework to explore explanation vs prediction Shmueli (2010)

- theoretically...
 - ightharpoonup let $\mathcal X$ cause $\mathcal Y$ through the function $\mathcal F$

$$\mathcal{Y} = \mathcal{F}(\mathcal{X})$$

- empirically...
 - **X** and *Y* operationalize \mathcal{X} and \mathcal{Y}
 - ightharpoonup f is the model that operationalizes \mathcal{F}
- **explanatory modeling** seeks an f close to \mathcal{F}

$$E(Y) = f(\mathbf{X})$$

predictive modeling seeks an \hat{f} that best predicts Y_{new}

$$E(Y_{new}) = \hat{f}(\mathbf{X}_{new})$$

a different — but related — perspective

Expected Prediction Error (Hastie et al. 2009)

$$EPE = Var(Y) + Bias^2 + Var(\hat{f}(x))$$
 (1)

where:

$$\begin{split} \textit{EPE} &= \text{Expected Prediction Error} \\ \textit{Var}(Y) &= E\{Y - f(x)\}^2 : \text{random error} \\ \textit{Bias}^2 &= \{E(\hat{f}(x)) - f(x)\}^2 : \text{model mispecification} \\ \textit{Var}(\hat{f}(x)) &= E\{\hat{f}(x) - E(\hat{f}(x))\}^2 : \text{sample estimation} \end{split}$$

explanatory modeling

$$min\{Bias^2\}$$

predictive modeling

$$min\{Bias^2 + Var(\hat{f}(x))\}$$

in more detail: how explanation \neq prediction

Explanatory Modeling

f resembles \mathcal{F} theory-selected \mathbf{X} may use alternate \mathbf{X} and Y backward-looking model fit validation $\min(Bias^2)$ in (1) $|E[\hat{\beta}] - \beta| \rightarrow 0$

Predictive Modeling

 \hat{f} links \mathbf{X}, Y association-selected \mathbf{X} requires exact \mathbf{X} and Y forward-looking predictive error validation $\min\{Bias^2 + Var(\hat{f}(x))\}$ in (1) $\min(|Y_{new} - \tilde{Y}_{new}|)$

Example: think of a simple time-series

Explanation: problem to solve is observed *Y*

- explanatory models: characterize Y exactly as observed
 and not otherwise
- \blacktriangleright must estimate θ w/o bias to make valid **inferences**

Prediction: problem to solve is Y_{new}

- **predictive models:** project Y_{new} based on X_{new}
- ▶ most likely, $\psi \neq \theta$ where ψ exists but may be useless for inference

to put it in perspective...

- any model will contain a combination of degrees of:
 - explanatory power
 - predictive accuracy
- two different dimensions or one with tradeoffs?
- a "good" model is sophisticatedly simple (Zellner 2001)

Explanation

what do we mean by explanation?

- explanation: provide a rationale for why something happened the way it happened and not in a different way
 - necessary for meaningful inference
 - more formally, find a model that describes

$$E(Y) = f(X, \theta)$$

- problems to solve:
 - approximate the "true" data-generating mechanism
 - find the f that is sufficiently close to \mathcal{F}
 - recover the "true" parameter values that govern the observed data
 - find the appropriate θ in $P(Y|X,\theta)$

focus for inference: successful recovery of θ

- inference requires having the "correct" estimated parameters $\hat{\theta}$, so we spend time
 - i) carefully **describing null hypotheses** for estimated parameters: $H_0: \theta=0$
 - ii) characterizing distributions under the null: $\theta \stackrel{H_0}{\sim} t_{\nu}(0,1)$
 - iii) evaluating **how unlikely** is the estimated value under the null: $Pr(\hat{\theta} > k)$

- iv) using theory to ensure that estimated parameters are unbiased
- using statistics to ensure that appropriate variances were estimated

an example: price elasticity of demand

based on economic theory

we hypothesize a relation between price (p) and quantity sold (q) of a good — price elasticity:

$$\eta_D = \frac{\% \Delta q^D}{\% \Delta p}$$

• we fit a model and estimate $\hat{\beta}$ to recover η_D

$$\log(q) = \alpha + \beta * \log(p) + \epsilon$$

• from the estimated parameter $\hat{\beta}$, we infer that a 1% increase in p decreases q by 0.4%

do not forget: experiments and causal inference

- recovering parameters for inference is hard too many things could go wrong
 - observational data is messy; must rely on theory as guidance
- causal inference is even harder: must compare potential outcomes under treatment and without treatment
 - experiments are golden standard for causal inference: treatment assignment is unconfounded
 - observational data for causal inference requires balance in pre-treatment covariates to compare appropriate groups
 - observational data does not always have "untreated" observations

Prediction

what do we mean by prediction?

- ethimologically:
 - predict: prae- before + dicere to say
 - forecast: fore- before + casten to prepare
 - prognosticate: pro- before + gnoscere to know
- generically, the use of a model that leverages observed information to project new information

$$\tilde{Y}_{new} = \hat{f}(Y_{obs}, X_{obs})$$

problem to solve: find an "appropriate" model \hat{f} that can produce \tilde{Y}_{new} with small errors $(\min\{|Y_{new} - \tilde{Y}_{new}|\})$

some empirical considerations for prediction

- Predictability depends on (Hyndman et al. 2013):
 - how well we know factors that influence the predictions
 - how much data (and of what quality!)
 - recursive influence of predictions (especially forecasts)
- Key question: what to predict?
 - every item?
 - at what level of aggregation?
 - at what frequency?
- Objective: find a model with consistently "small" predictive errors
 - cope with risk of overfitting the model

what do we mean by "overfitting"?

- overfitting: capturing patterns in the training data that do not extend to new observations
- an overfit model may generate systematically large predictive errors
 - predictions are not generalizable to new data
- challenge: find the set of predictors that carry the appropriate "signal" to projections of the future
 - enough information to capture meaningful patterns
 - ...not so much as to also capture patterns that are irrelevant for the future
 - the bias-variance tradeoff

overfitting: the bias-variance tradeoff perspective

Model Complexity

Figure: James et al (2013)

validation to minimize overfitting

- i) fit model on a training set
- ii) measure error on a test set

- usually, error on test set > error on training set
 - caveat: training and test sets should come from the same population
- validation can take many flavors (e.g. k-fold validation, leave p-out cross-validation...)

do not forget: predictions carry uncertainty!

- the future is unknown, therefore predictions have uncertainty
 - many predictive models only produce point estimates of predictions, and ignore prediction intervals
 - may generate erroneous impression that predictions have no uncertainty
- when possible, estimate the range of values where predictions may lie with a given probability

some (empirically validated) rules of thumb

1. keep it simple:

- start parsimonious and add complexity (iff called for)
- increased complexity typically reduces accuracy

2. rely on domain expertise to select inputs

- statistical significance a faulty guide for inclusion
- domain expertise should drive variables to include

3. include more (useful) information

high correlation in predictors not an issue

4. fit \neq accuracy

well-fitting models may impose unwarranted "structure" and "certainty" to the forecast

5. update models constantly

update parameters as new information arrives

Explanation vs Prediction

Marco Morales marco.morales@columbia.edu

Nana Yaw Essuman nanayawce@gmail.com

GR5069
Topics in Applied Data Science
for Social Scientists
Spring 2020
Columbia University