Wave experiment

Diego Domenzain

Constants and units

$$\begin{array}{lll} \varepsilon_o = 8.85 \cdot 10^{-12} & \text{F/m} \\ \mu_o = 4\pi \cdot 10^{-7} & \text{H/m} \\ c = \frac{1}{\sqrt{\varepsilon_o \mu_o}} = 299792458 & \text{m/s} \end{array} \right| \begin{array}{ll} \text{vacuum permittivity} \\ \text{vacuum permeability} \\ \text{light speed in vacuum} \end{array}$$

Table 1: Constants.

$$\begin{array}{ccccccc} \text{ns} & \rightarrow & \text{s} & | \cdot 10^{-9} \\ \text{MHz} & \rightarrow & \text{Hz} & | \cdot 10^{6} \\ \text{GHz} & \rightarrow & \text{Hz} & | \cdot 10^{9} \\ \text{MHz} & \rightarrow & \text{GHz} & | \cdot 10^{-3} \end{array}$$

Table 2: Unit conversions.

Before going to the field

- \bullet Choose f_o and maximum target permittivity $\varepsilon_{max}.$
- Compute λ_o ,

$$\lambda_o = \frac{c}{f_o \sqrt{\varepsilon_{max}}},$$

$$\approx \frac{300}{f_{o,MHz} \sqrt{\varepsilon_{max}}} \quad [1/m].$$
(2)

$$\approx \frac{300}{f_{o,MHz}\sqrt{\varepsilon_{max}}}$$
 [1/m]. (2)

• Choose $\Delta sr \geq \lambda_o$ and compute $\Delta r \leq \lambda_o/2$. For example,

$$\Delta sr = \lambda_o + \text{odometer-wheel}$$
 and $\Delta r = \lambda_o/4$.

$f_o \; MHz$	λ_o m	$\lambda_o/4$ m
50	1	0.2
100	0.5	0.1
200	0.25	0.05
250	0.2	0.05
500	0.1	0.02

Table 3: Approximate wavelengths (and spacings) for $\varepsilon_{max}=30$. You can do your own by computing $\lambda_o=300/f_{o,MHz}/\sqrt{\varepsilon_{max}}$.

After going to the field

Save data and time-shift: ss2gerjoii_w.m

- 1. Loop through done survey lines and save all of the data to .mat in disk, and store r and t as r_{all} and t_{all} in memory.
- 2. Loop over all saved lines and rewrite them,
 - (a) get r and t for line,
 - (b) correct for time-shift: $t \leftarrow t t_{all}(t = t_o)$, $d^o \leftarrow d^o$ corrected,
 - (c) transform $\{r, t, \Delta t, \Delta r, \Delta sr, f_o\}$ to m, ns and GHz,
 - (d) use Δs , Δsr and r_{all} to create source-receivers tuples $\{s,r\}$ in real coordinates.
- 3. Store all $\{s, r\}$ to disk.

Quick-see and compute $\Delta t, \Delta x$: datavis_w.m

- 1. Choose data d^o together with $\{r, t, \Delta t, \Delta r, \Delta sr, f_o\}$.
- 2. Dewow.
- 3. See d^o in the frequency domain and filter out unwanted signal with a bandpass filter $[f_{min}, f_{max}]$.
- 4. Find first arrival event time t_{fa} before which all recordings should be silent. For example, $t_{fa} = \Delta sr/c$.
- 5. Choose up to which receivers the data looks good.
- 6. Choose v_{min} and compute $\varepsilon_{max} = (c/v_{min})^2$ to see if v_{min} makes sense.

7. Compute Δx using the wavelength condition,

$$\Delta x = \frac{v_{min}}{n_{\lambda} \cdot f_{max}}.$$
(3)

8. Choose $\varepsilon_{min} \geq 1$ and compute Δt_{\bullet} with the *cfl condition*,

$$v_{max} = \frac{c}{\sqrt{\varepsilon_{min}}},\tag{4}$$

$$v_{max} = \frac{c}{\sqrt{\varepsilon_{min}}},$$

$$\Delta t_{\bullet} = c_f \cdot \frac{1}{v_{max}\sqrt{1/\Delta x^2 + 1/\Delta z^2}}.$$
(5)

Most likely, $\Delta t_{ullet} < \Delta t$ because the gpr system computes Δt to satisfy the *Nyquist condition* on the frequency it can measure ($\approx 1.2\,GHz$).

Get the data ready for the fwi scheme: data2fwi_w.m

- 1. Choose data d^o together with $\{r, t, \Delta t, \Delta r, \Delta sr, f_o\}$.
- 2. Dewow d^o .
- 3. Bandpass filter d^o with $[f_{min}, f_{max}]$.
- 4. Remove unwanted receivers.
- 5. Perform 2.5d→2d conversion.
- 6. Mute unwanted events. For example, everything before t_{fa} .
- 7. Interpolate d^o on time vector $t_{\bullet} = t(1) : \Delta t_{\bullet} : t(n_t)$ and set,

$$t \leftarrow t_{\bullet}$$
 (6)

$$\Delta t \leftarrow \Delta t_{\bullet}.\tag{7}$$

The *spline* interpolation works best.

- 8. Estimate source wavelet.
- 9. Save d^o to disk with its respective $\{s, r\}$ on binned coordinates in the new discretized vectors x and z.
- 10. Loop until all data has been preprocessed.

Get parameters ready for fwi scheme: param2fwi_w.m

- Complete structures,
 - o parame_
 - o geome_
 - o finite_

with the space and time parameters computed in data2fwi_w.m.

Complete gerjoii_ structure for inversion: w_load.m

For one radargram_ structure,

- Load source location $[i_z, i_x]$ a 1×2 vector.
- ullet Load receiver locations $[i_x,i_z]$ an $n_r imes 2$ matrix.
- Modify source and receivers to account for PML and air.
- Build M_w .
- Load d^o (of size $n_t \times n_r$) and $std(d^o)$ (of size $n_t n_r \times 1$).
- Load source wavelet.

The source wavelet is updated and saved to disk in the wvlets_ structure after each iteration.

Inversion routine

- 1. Begin while loop.
- 2. Compute update,
 - Begin for loop through experiments,
 - ullet load source-receivers, d^o , $\mathrm{std}(d^o)$ and wavelet,
 - build M_w ,
 - forward run,
 - evaluate objective function,
 - compute gradient
 - compute step-size,

- compute and store update,
- estimate source wavelet and store,
- end for loop.

Stack all updates into one update.

- 3. Update.
- 4. End while loop.

Extracting more information

- 1. Build source-receiver matrix of size $n_s \times n_r$ on binned coordinates in discretized vectors x and z.
- 2. Interferometry.
- 3. Velocity semblance.
- 4. Source estimation.