Esercizio 1

Considerare il programma riportato nel file "esercizio1.s" e indicare commenti, etichette, istruzioni e direttive di cui si compone. Assemblare e linkare il programma con il comando:

```
aarch64-linux-gnu-gcc -o esercizio1 -static esercizio1.s
```

Eseguire quindi il programma con il seguente comando. Cosa si ottiene in output?

```
qemu-aarch64 esercizio1
```

N.B.: I comandi su riportati si riferiscono al caso in cui si utilizza l'emulatore suggerito a lezione (già preinstallato nella macchina virtuale fornita).

Esercizio 2

Considerare il seguente programma riportato nel file "esercizio2.s" in cui vengono dichiarate alcune variabili: a destra sono riportate le equivalenti dichiarazioni in Python.

```
.data
list: .word 0, 1, 2, 3
bool: .byte 0
n: .word 123

list = [0, 1, 2, 3]
bool = False
n = 123
```

a. Analizzare l'allineamento della memoria con i comandi:

```
aarch64-linux-gnu-gcc -c esercizio2.s
aarch64-linux-gnu-objdump -s esercizio2.o
```

- b. Arricchire il programma delle direttive .align che si ritengono necessarie e verificare nuovamente se la memoria risulta allineata.
- c. Ripetere tutti i passaggi, cambiando la definizione di n come segue.

```
n: .quad 123
```

N.B.: I comandi su riportati si riferiscono al caso in cui si utilizza l'emulatore suggerito a lezione (già preinstallato nella macchina virtuale fornita).

Esercizio 3

Considerare il seguente programma riportato nel file "esercizio3.s", in cui vengono dichiarate alcune variabili: a destra sono riportate le equivalenti dichiarazioni in Python.

```
.data
a: .byte 0, 1, 2
b: .hword 15
c: .byte 'A'
d: .word 5, 2
e: .quad 9, 4
f: .asciz "Ciao"

a = [0, 1, 2]
b = 15
c = 'A'
d = [5, 2]
e = [9, 4]
f = "Ciao"
```

- a. Arricchire il programma delle direttive .align che si ritengono necessarie facendo in modo di limitare il più possibile il numero di bit 0 aggiunti.
- b. Analizzare l'allineamento della memoria con i comandi:

```
aarch64-linux-gnu-gcc -c esercizio3.s
aarch64-linux-gnu-objdump -s esercizio3.o
```

Quanti bit sono stati "sprecati"?

Quanti ne verrebbero sprecati se si usassero soltanto direttive .align 3?

c. Riordinare le direttive in modo tale che non sia necessario aggiungere alcun .align.

N.B.: I comandi su riportati si riferiscono al caso in cui si utilizza l'emulatore suggerito a lezione (già preinstallato nella macchina virtuale fornita).

Esercizio 4

Considerare il programma riportato nel file "esercizio4.s":

- a. Indicare la parte di programma che corrisponde alla dichiarazione di una macro.
- b. Indicare la/le invocazioni della macro presenti nel programma.
- c. Assemblare ed eseguire il programma con i seguenti comandi e verificare cosa si ottiene in output:

```
aarch64-linux-gnu-gcc -o esercizio4 -static esercizio4.s
qemu-aarch64 esercizio4
```

d. Modificare il programma in modo tale da stampare soltanto il numero 15.

N.B.: I comandi su riportati si riferiscono al caso in cui si utilizza l'emulatore suggerito a lezione (già preinstallato nella macchina virtuale fornita).

Esercizio 5

Considerare il programma riportato nel file "esercizio5.s":

1. Assemblare ed eseguire il programma con i seguenti comandi e verificare cosa si ottiene in output:

```
aarch64-linux-gnu-gcc -o esercizio5 -static esercizio5.s
qemu-aarch64 esercizio5
```

- 2. Cosa cambierebbe se .equ CONSTANT, 1 fosse sostituito con .equ CONSTANT, 10 ?
- 3. Commentare .equ CONSTANT, 1 quindi assemblare ed eseguire nuovamente il programma. Il programma si comporta in modo diverso: a cosa è dovuto questo comportamento?
- 4. Aggiungere una seconda costante CONSTANT2 e modificare il programma in modo tale che stampi 1 quando CONSTANT e CONSTANT2 sono definite, 0 altrimenti.

N.B.: I comandi su riportati si riferiscono al caso in cui si utilizza l'emulatore suggerito a lezione (già preinstallato nella macchina virtuale fornita).