Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

$4^{\underline{a}}$ Lista - MAT 137 - Introdução à Álgebra Linear

- 1. Quais as coordenadas do vetor v = (1, 0, 0) em relação à base $\beta = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}.$
- 2. Determine as coordenadas do vetor u = (4, 5, 3) de \mathbb{R}^3 em relação às seguintes bases:
 - (a) Canônica;
 - (b) $\{(1,1,1),(1,2,0),(3,1,0)\};$
 - (c) $\{(1,2,1),(0,3,2),(1,1,4)\}.$
- 3. Quais as coordenadas do vetor $p(t) = t^3 2t^2 + 1$ em relação à base $\beta = \{t^3 + 1, t^2 1, t, 2\}$.
- 4. Considere a base ordenada $\gamma = \{v_1, v_2, v_3\}$ do \mathbb{R}^3 onde

$$v_1 = (1, 0, -1), \quad v_2 = (1, 1, 1), \quad v_3 = (1, 0, 0).$$

Encontre as coordenadas do vetor $u=(a,b,c)\in\mathbb{R}^3$ com relação à base ordenada γ .

5. Considere o espaço vetorial real \mathbb{R}^2 . A matriz da mudança da base ordenada $\gamma = \{(1,1), (-2,2)\}$, para a base ordenada $\alpha = \{v_1, v_2\}$ é dada por

$$\left[\begin{array}{cc} 1 & 0 \\ 4 & -2 \end{array}\right].$$

Determine a base ordenada α . Determine o elemento $u \in \mathbb{R}^2$ tal que $[u]_{\alpha} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

6. Considere as bases $\beta=\{u_1,u_2,u_3\}$ e $\gamma=\{w_1,w_2,w_3\}$ de \mathbb{R}^3 , relacionadas da seguinte forma:

$$\begin{cases} w_1 = u_1 - u_2 - u_3 \\ w_2 = 2u_2 + 3u_3 \\ w_3 = 3u_1 + u_3 \end{cases}$$

Pede-se:

- (a) Determine as matrizes de mudança de base $[I]^{\beta}_{\gamma}$ e $[I]^{\gamma}_{\beta}$.
- (b) Sabendo que

$$[u]_{\beta} = \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right],$$

determine o vetor u com relação à base γ .

7. Considere a seguinte matriz de mudança de base

$$[I]^{\beta}_{\beta'} = \left[egin{array}{ccc} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{array}
ight].$$

Encontre:

(a)
$$[v]_{\beta}$$
, onde $[v]_{\beta'} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

(b)
$$[v]_{\beta'}$$
, onde $[v]_{\beta} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

- 8. Considere o subconjunto de vetores $\beta = \{ (1,1,0), (0,1,1), (1,0,1) \}.$
 - (a) Mostre que β é uma base para \mathbb{R}^3 .
 - (b) Encontre a matriz de mudança de coordenadas, $A = [I]_{\beta}^{\mathcal{C}}$, da base canônica $\mathcal{C} = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 para a base β . Qual é a matriz de mudança de coordenadas, $A' = [I]_{\mathcal{C}}^{\beta}$, da base β para a base canônica?
 - (c) Quais são as coordenadas dos vetores canônicos e_1 , e_2 e e_3 em relação à base β ?
 - (d) Quais são as coordenadas do vetor v = (1, -2, 5) em relação à base β ?
- 9. Considere o subconjunto de vetores $\beta = \{ (1, 1, -2), (1, -1, 0), (1, 1, 1) \}.$
 - (a) Mostre que β é uma base para $I\!\!R^3$.
 - (b) Encontre a matriz de mudança de coordenadas, $A = [I]_{\beta}^{\mathcal{C}}$, da base canônica $\mathcal{C} = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 para a base β . Qual é a matriz de mudança de coordenadas, $A' = [I]_{\mathcal{C}}^{\beta}$, da base β para a base canônica?
 - (c) Quais são as coordenadas dos vetores canônicos $e_1,\ e_2$ e e_3 em relação à base β ?
 - (d) Quais são as coordenadas do vetor v = (1, -2, 5) em relação à base β ?