Problem Set 2

Exercise 1:

Suppose the supply function for product X is given by: $Q_X^S = -30 + 2P_X - 4P_Z$

a) How much of product X is produced when $P_X = 600 and $P_Z = 60 ?

Solution 1a):

Insert $P_X = 600 and $P_Z = 60 into the supply function:

$$Q_X^S = -30 + 2 * 600 - 4 * 60$$

$$Q_X^S = -30 + 1,200 - 240$$

$$Q_X^S = 930$$

b) How much of product X is produced when $P_X = \$80$ and $P_Z = \$60$?

Solution 1b):

Insert $P_X = \$80$ and $P_Z = \$60$ into the supply function:

$$Q_X^S = -30 + 2 * 80 - 4 * 60$$

$$Q_X^S = -30 + 160 - 240$$

$$Q_X^S = -110$$

Notably, having a negative output in supply is impossible. Thus, the quantity supplied is zero,

i.e.,
$$Q_X^S = 0$$
 if $P_X = \$80$ and $P_Z = \$60$.

c) Suppose that P_Z = \$60. Determine the supply function and inverse supply function for good X. Graph the inverse supply function.

Solution 1c):

*Insert P*_Z = \$60 *into the supply function:*

$$Q_X^S = -30 + 2P_X - 4 * 60$$

$$Q_X^S = -30 + 2P_X - 240$$

$$Q_X^S = 2P_X - 270$$

To obtain the inverse supply equation, simply solve for P_X :

$$Q_X^S = 2P_X - 270$$

$$2P_X = Q_X^S + 270$$

$$P_X = \frac{1}{2}Q_X^S + 135$$

The inverse supply function is graphed below:

Exercise 2:

Suppose the demand function for good *X* is given by:

$$Q_X^D = 6000 - \frac{1}{2}P_X - P_Y + 9P_Z + \frac{1}{10}M$$

Research shows that the prices of related goods are given by: $P_Y = \$6,500$ and $P_Z = \$100$. The average income of individuals consuming this product is: M = \$70,000.

a) Indicate whether goods Y and Z are substitutes or complements for good X.

Solution 2a):

Cross price elasticity of demand:

$$E_{Q_X,P_Y} = \alpha_Y \frac{P_Y}{Q_X}$$

$$E_{Q_X,P_Y} = -1 * \frac{P_Y}{Q_Y^D} < 0$$

Good Y is a complement good for good X since the cross-price elasticity is negative, i.e., $E_{Q_X,P_Y} < 0$ "

This means that the demand for good *X* decreases as the price for good *Y* increases and vice versa (e.g., toner and printer)

$$E_{Q_X,P_Z} = \alpha_Y \frac{P_Z}{Q_X}$$

$$E_{Q_X,P_Z} = (+) 9 * \frac{P_Z}{Q_Y^D} > 0$$

Good Z is a substitute good for good X since the cross-price elasticity is positive, i.e., $E_{Q_X,P_Y} > 0$ This means that the demand for good X will increase as the price for good Z increases and vice versa (e.g., butter and margarine)

b) Is X an inferior or a normal good?

Solution 2b):

Income elasticity:

$$E_{Q_X,M} = \alpha_M \frac{M}{Q_X^D}$$

$$E_{Q_X,M} = (+) \frac{1}{10} \frac{M}{Q_X^D} > \mathbf{0}$$

Good X is considered a normal good, as the income elasticity is positive, i.e., $E_{Q_X,M} > 0$ The demand for good X increases as the income (M) increases and vice versa (e.g., high tech products, cars, home services...)

For inferior foods, the demand for a good *X* would deacrese as income (*M*) increases and vice versa, (e.g., secondhand clothing, used cars...)

c) How many units of good X will be purchased when $P_X = $5,230$?

Solution 2c):

Insert in all known variables in demand function:

$$Q_X^D = 6000 - \frac{1}{2}P_X - P_Y + 9P_Z + \frac{1}{10}M$$

$$Q_X^D = 6000 - \frac{1}{2} * 5,230 - 6,500 + 9 * 100 + \frac{1}{10} * 70,000$$

$$Q_X^D = 6000 - 2,615 - 6,500 + 900 + 7,000$$

$$Q_X^D = 4,785$$

d) Determine the demand function and inverse demand function for good X.

Solution 2d):

For the given income and prices of other goods, the demand function for good X is:

$$Q_X^D = 6000 - \frac{1}{2}P_X - P_Y + 9P_Z + \frac{1}{10}M$$

$$Q_X^D = 6000 - \frac{1}{2} * P_X - 6,500 + 9 * 100 + \frac{1}{10} * 70,000$$

$$Q_X^D = 6000 - \frac{1}{2}P_X - 6,500 + 900 + 7,000$$

$$Q_X^D = 7,400 - \frac{1}{2}P_X$$

<u>To find the inverse demand function, solve for the price P_X :</u>

$$Q_X^D = 7,400 - \frac{1}{2}P_X$$

$$\frac{1}{2}P_X = 7,400 - Q_X^D$$

$$P_{\rm X} = 14,800 - 2Q_{\rm X}^{\rm D}$$

The inverse demand function is graphed in the figure below:

Exercise 3:

The demand curve for product *X* us given by the following function:

$$Q_X^D = 300 - 2P_X$$

a) Find the inverse demand curve.

Solution 3a):

To find the inverse demand function, solve for the price P_X :

$$Q_X^D = 300 - 2P_X$$

$$2P_X = 300 - Q_X^D$$

$$P_X = 150 - \frac{1}{2} Q_X^D$$

b) How much consumer surplus (CS) of consumers receive when $P_X = \$45$?

Solution 3b):

Find quantity demand if $P_X = 45 :

$$Q_X^D = 300 - 2P_X$$

$$Q_X^D = 300 - 2 * 45$$

$$Q_X^D = 300 - 90$$

$$Q_X^D=210$$

From 3a) we know that the vertical intercept of the inverse demand curve is 150.

The consumer surplus is calculated by:

$$CS = \frac{1}{2} \begin{bmatrix} P_X^{\text{max}} & -P_X \end{bmatrix} * Q_X^D$$

$$CS = \frac{1}{2}[150 - 45] * 210$$

$$CS = \frac{1}{2} * 105 * 210$$

$$CS = 52.5 * 210$$

$$CS = 11,025$$

c) How much consumer surplus (CS) do consumers receive when $P_X = 30 ?

Solution 3c):

Find quantity demand if $P_X = 30 :

$$Q_X^D = 300 - 2P_X$$

$$Q_X^D = 300 - 2 * 30$$

$$Q_X^D = 300 - 60$$

$$Q_X^D = 240$$

From 3a) we know that the vertical intercept of the inverse demand curve is 150.

The consumer surplus is calculated by:

$$CS = \frac{1}{2} \begin{bmatrix} P_X^{\text{max}} & -P_X \end{bmatrix} * Q_X^D$$

$$CS = \frac{1}{2}[150 - 30] * 240$$

$$CS = \frac{1}{2} * 120 * 240$$

$$CS = 60 * 240$$

$$CS = 14,400$$

d) In general, what happens to the level of consumer surplus (CS) as the price of a good falls?

Solution 3d):

So long as the law of demand holds, a decrease in price leads to an increase in consumer surplus, and vice versa.

In general, there is an inverse relationship between the price of a product and consumer surplus.

$$CS = \frac{1}{2} \begin{bmatrix} P_X^{\max} & -P_X \end{bmatrix} * Q_X^D$$
 If $P_X \uparrow \to Q_X^D \downarrow \to CS \downarrow$ If $P_X \downarrow \to Q_X^D \uparrow \to CS \uparrow$

Exercise 4:

Suppose the demand and supply are given by the following equations:

$$Q_X^D = 14 - \frac{1}{2}P_X$$
 and $Q_X^S = \frac{1}{4}P_X - 1$

a) Determine the equilibrium price (P_X^*) and quantity (Q_X^*)

Solution 4a):

To find the equilibrium price set $Q_X^D = Q_X^S$ and solve for P_X

$$Q_X^D = Q_X^S$$

$$14 - \frac{1}{2}P_X = \frac{1}{4}P_X - 1$$

$$\frac{1}{4}P_X + \frac{1}{2}P_X = 14 + 1$$

$$\frac{3}{4}P_X = 15$$

$$P_X^* = 20$$

To find the equilibrium quantity, put P_X^* into the demand or supply function and solve for Q_X^* :

Demand Function	Supply Function
$Q_X^D = 14 - \frac{1}{2} P_X^*$	$Q_X^S = \frac{1}{4} P_X^* - 1$
$Q_X^D = 14 - \frac{1}{2}20$	$Q_X^S = \frac{1}{4}20 - 1$
$Q_X^D = 14 - 10$	$Q_X^S = 5 - 1$
$Q_X^* = 4$	$Q_X^* = 4$

The equilibrium is shown in the figure below:

b) Suppose a \$12 excise tax is imposed on the good. Determine the new equilibrium price and quantity

Solution 4b):

A \$12 excise tax shifts the supply curve up by the amount of the tax.

Mathematically that means that the intercept of the inverse supply function increases by \$12.

Inverse supply function before tax:

$$Q_X^S = \frac{1}{4}P_X - 1$$

$$\frac{1}{4}P_X = 1 + Q_X^S$$

$$P_X = 4 + 4Q_X^S$$

Inverse demand function after tax:

$$P_X^{tax} = 4 + tax + 4Q_X^S$$

$$P_X^{tax} = 4 + 12 + 4Q_X^S$$

$$P_X^{tax} = 16 + 4Q_X^S$$

After Tax quantity supplied:

$$P_X^{tax} = 16 + 4Q_X^S$$

$$4Q_X^S = P_X - 16$$

$$Q_X^{S,tax} = \frac{1}{4}P_X - 4$$

To find the new equilibrium price, we equate quantity demand to after-tax quantity supplied:

$$Q_X^D = Q_X^{S,tax}$$

$$14 - \frac{1}{2}P_X = \frac{1}{4}P_X - 4$$

$$\frac{1}{4}P_X + \frac{1}{2}P_X = 14 + 4$$

$$\frac{3}{4}P_X = 18$$

$$P_X^* = 24$$

To find the equilibrium quantity, put P_x^* into the demand or supply function and solve for Q_x^* :

Demand Function	Supply Function
_	$Q_X^{S,tax} = \frac{1}{4}P_X^* - 4$
$Q_X^D = 14 - \frac{1}{2}24$	$Q_X^{S,tax} = \frac{1}{4}24 - 4$
$Q_X^D = 14 - 12$	$Q_X^{S,tax} = 6 - 4$
$Q_X^{tax*} = 2$	$Q_X^{tax *} = 2$

c) How much tax revenue does the government earn with the \$12 tax?

Solution 4c):

After imposing the tax, a total of Q_X^{tax} = 2 units are sold.

With a tax rate of \$12 per unit, total tax revenues (TR) are:

$$TR = tax * Q_X^{tax *}$$

$$TR = 12 * 2$$

$$TR = 24$$

Exercise 5:

Suppose the supply curve for product *X* is given by:

$$Q_X^S = -520 + 20P_X$$

a) Find the inverse supply curve.

Solution 5a):

Inverse supply curve:

$$Q_X^S = -520 + 20P_X$$

$$20P_X = Q_X^S + 520$$

$$P_X = 26 + \frac{1}{20} Q_X^S$$

b) How much surplus do producers receive when $Q_X^S=400$ and $Q_X^S=1,200$?

Solution 5b):

Producer Surplus (PS):

$$PS = \frac{1}{2} \left[P_X - P_X^{\min} \right] * Q_X^S$$

For $Q_X^S = 400$:	For $Q_X^S = 1,200$:
$PS = \frac{1}{2} \left[26 + \frac{1}{20} Q_X^S - P_X^{\min} \right] * Q_X^S$	$PS = \frac{1}{2} \left[26 + \frac{1}{20} Q_X^S - P_X^{\min} \right] * Q_X^S$
$PS = \frac{1}{2} \left[26 + \frac{1}{20} 400 - 26 \right] * 400$	$PS = \frac{1}{2} \left[26 + \frac{1}{20} 1,200 - 26 \right] * 1,200$
$PS = \frac{1}{2}[26 + 20 - 26] * 400$	$PS = \frac{1}{2}[26 + 60 - 26] * 1,200$
$PS = \frac{1}{2}[46 - 26] * 400$	$PS = \frac{1}{2}[86 - 26] * 1,200$
$PS = \frac{1}{2}20 * 400$	$PS = \frac{1}{2}60 * 1,200$
PS = 4,000	PS = 36,000