Data Exploration Part 1

Lesson 1

Data Exploration

- > Why data exploration?
- > Need to understand relationships in data
 - > How to explain relationships?
 - > Which variables are dependent on other variables?
 - > Which feature contain information to predict the label?
- > Poor understanding of relationships leads to poor models
 - > Errors in the data
 - > Model based on poor understanding
 - > Model based on incorrect predictors

Data Exploration (Descriptive Statistics)

- > What is it?
 - > First look at your data
 - > Summary Statistics
- > Purpose: To gain a clear understanding of your data
 - What are the dimensions?
 - What columns are of interest?
 - Missing data?
 - Outliers?
 - Patterns?
 - Need to reformat?
 - Data types

Summary Statistics

Skew

Skew

Left-Skewed (Negative Skewness)

Right-Skewed (Positive Skewness)

Cumulative Distribution Function

Probability that some random variable X will be less than or equal to a certain value

- > Probability, so 0 < x < 1
- > Continuous and discrete variables
- > PMF can only be used on discrete
 - > Takes as input x, returns vector from [0,1] of probabilities "p"
 - > Form of a staircase
- > Jumps at each x(k)

$$F(x) = P(X \le x)$$

Quantiles of numerical variables

- Quantiles are inverse values of the CDF (cumulative distribution function).
- Inverse tells you what value of x would make F(x) return a value "p"
- Standard Normal: (shown in figure)
 - > Quantile(0.5) = 0, means at x=0, 50% of the distribution lies to the left. (This is also the median)
 - > Quantile(0.95) = 1.65

Frequency

Frequency: Counts

- > Numerical and categorical variables
- > Number of occurrences for an event in a fixed period
 - > Ex. Number of times a gene is expressed after a medical treatment
- > Modeled using Poisson distribution
 - > Assume events are random and univormly distributed

Poisson Distribution Formula

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

where

$$x = 0, 1, 2, 3, ...$$

 λ = mean number of occurrences in the interval

$$e = \text{Euler's constant} \approx 2.71828$$

Visualizing Counts

Histogram: Number of values in bin

Histogram of rnorm(1000)

Bar Plot: Count of Categorical Variables

Quantiles of numerical vectors

- Quantiles are inverse values of the CDF (cumulative distribution function).
- Inverse tells you what value of x would make F(x) return a value "p"
- Standard Normal: (shown in figure)
 - > Quantile(0.5) = 0, means at x=0, 50% of the distribution lies to the left. (This is also the median)
 - > Quantile(0.95) = 1.65

Inter Quartile Range (Q3 – Q1)

- > "Middle 50%" = 75% 25th percentile
- > Measures variability
- > Identifies outliers
 - > below Q1 1.5 IQR or above Q3 + 1.5 IQR

Visualizing IQR: Boxplots

Zestimate Error Distribution by Price Quantile

Visualizing Densities/CDFs

Relationships between variables

Covariance

- Expected value of the differences between x and y and their corresponding mean.
- E.g. if x is above it's mean when y is also above it's mean, then they will have a high covariance.
- Highly interpretable, but not bounded.
- Measures strength and direction of relationship

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

Xi = some elemet in the sample X Xbar = sample mean for x N = number of elements in both samples Correlation

- > Correlations (Pearson's) = scaled covariance
 - Bounded between 0 and 1.
 - Can be easier to interpret

$$r = r_{xy} = \frac{\text{Cov}(x, y)}{S_x \times S_y}$$
 Sx = std dev

Visualizing Relationships: Scatterplots

