

《Augmented bug localization using past bug information》	2010	ASRC
《ALBFL: A novel neural ranking model for software fault localization via combining static and dynamic features》	2021	IST
《Early Life Cycle Software Defect Prediction. Why? How?》	2021	ICSE

Augmented Bug Localization Using Past Bug Information

2010 ASRC

01

Semantic Extraction

Extracted identifier names and string literals at the method level of granularity.

02

BugXplore Module

This module collects information from previously documented bugs and appends it to the existing method documents.

03

Query Module

Creating and querying the information retrieval model.

Figure 1. Augmented bug localization process diagram

ALBFL: A novel neural ranking model for software fault localization via

combining static and dynamic features

2021 IST

Fig. 1. The Architecture of Our Model ALBFL.

ALBFL: A novel neural ranking model for software fault localization via combining static and dynamic features

Fig. 11. The effectiveness of ALBFL on the method level.

Early Life Cycle Software Defect Prediction. Why? How?

2021 ICSE

Fig. 1: 1.2 million commits for 155 GitHub projects. Black:Red (shaded) = Clean:Defective commits. In this paper, we compare (a) models learned up to the vertical green (dotted) line to (b) models learned using more data.