Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

General Description

Artificial intelligence (AI) requires extreme computational horsepower, but Maxim is cutting the power cord from AI insights. The MAX78002 is a new breed of AI microcontroller built to enable neural networks to execute at ultra-low power and live at the edge of the IoT. This product combines the most energy-efficient AI processing with Maxim's proven ultra-low-power microcontrollers. Our hardware-based convolutional neural network (CNN) accelerator enables battery-powered applications to execute AI inferences while spending only microjoules of energy.

The MAX78002 is an advanced system-on-chip featuring an Arm[®] Cortex[®]-M4 with FPU CPU for efficient system control with an ultra-low-power deep neural-network accelerator. The CNN engine has a weight storage memory of 2MB, and can support 1-, 2-, 4-, and 8-bit weights (supporting networks of up to 16 million weights). The CNN weight memory is SRAM-based so that AI network updates can be made on the fly. The CNN engine also has TBD-KB of data memory. The CNN architecture is highly flexible, allowing networks to be trained in conventional toolsets like PyTorch and TensorFlow®, then converted for execution on the MAX78002 using tools provided by Maxim.

In addition to the memory in the CNN engine, the MAX78002 has large on-chip system memory for the microcontroller core, with 2.5MB flash and up to 384KB SRAM. Multiple high-speed and low-power communications interfaces are supported, including I²S, MIPI[®] CSI-2 camera serial interface, SD3.0/SDIO3.0/eMMC4.51 secure digital interface, and a parallel camera interface (PCIF).

The device is available in 144 CSBGA, 12mm x 12mm, 0.8mm pitch.

Applications

- Fitness/Health and Medical Wearables
- Hearables
- Industrial Sensors
- Wireless Computer Peripherals and I/O Devices

Benefits and Features

- Dual-Core Low-Power Microcontroller
 - · Arm Cortex-M4 Processor with FPU Up to 120MHz
 - 2.5MB Flash, 64KB ROM, and 384KB SRAM
 - Optimized performance with 16KB Instruction Cache
 - Optional Error Correction Code (ECC-SEC-DED) for SRAM
 - · 32-Bit RISC-V Coprocessor up to 60MHz
 - Up to 60 General-Purpose I/O Pins
 - Mobile Industry Processor Interface[®] (MIPI)
 - Camera Serial Interface 2 (CSI-2) Controller V2.1
 - · Support for two data lanes
 - 12-Bit Parallel Camera Interface
 - One I²S Master/Slave for Digital Audio Interface
 - Secure Digital Interface Supports SD3.0/SDIO3.0/ eMMC4.51
 - Convolutional Neural Net Accelerator (CNN)
 - Highly Optimized for Deep Convolutional Neural Networks
 - 2M 8bit weight capacity with 1,2,4,8-bit Weights
 - Programmable input image size up to 2048 x 2048 pixels
 - Programmable network depth up to 128 layers
 - Programmable per layer network channel widths up to 1024 channels
 - 1 and 2-dimensional convolution processing
 - · Capable of processing VGA images @ 30fps
 - Power Management Maximizes Operating Time for Battery Applications
 - Integrated Single-Inductor Multiple-Output (SIMO) Switch-Mode Power Supply (SMPS)
 - 2.85V to 3.6V supply voltage range
 - Support of Optional External Auxiliary CNN Power Supply.
 - Dynamic Voltage Scaling Minimizes Active Core Power Consumption
 - 23µA/MHz While Loop Execution at 3.0V from Cache (CM4 only)
 - Selectable SRAM Retention in Low Power modes with Real-Time Clock (RTC) enabled
 - · Security and Integrity
 - · Available Secure Boot
 - AES 128/192/256 Hardware Acceleration Engine
 - True Random Number Generator (TRNG) Seed Generator

Ordering Information appears at end of data sheet.

Simplified Block Diagram

TABLE OF CONTENTS

General Description	1
Applications	1
Benefits and Features	1
Simplified Block Diagram	2
Absolute Maximum Ratings	7
Package Information	7
144 CSBGA	7
Electrical Characteristics	7
Electrical Characteristics—I ² C	20
Electrical Characteristics—SD/SDIO/SDHC/MMC	22
Electrical Characteristics—SPI	22
Electrical Characteristics—I ² S	23
Electrical Characteristics—PCIF	24
Electrical Characteristics—1-Wire Master	24
Pin Configuration	30
144 CSBGA	30
Pin Description	31
Detailed Description	37
Arm Cortex-M4 with FPU Processor and RISC-V RV32 Processor	37
Convolutional Neural Network Accelerator (CNN)	37
Memory	39
Internal Flash Memory	40
Internal SRAM	40
Comparators	40
Dynamic Voltage Scaling (DVS) Controller	40
Clocking Scheme	40
General-Purpose I/O and Special Function Pins	41
Mobile Industry Processor Interface® (MIPI) Camera Serial Interface 2 (CSI-2) Controller	42
Parallel Camera Interface (PCIF)	42
Analog-to-Digital Converter	42
Single-Inductor Multiple-Output Switch-Mode Power Supply (SIMO SMPS)	43
Power Management	43
Power Management Unit	43
ACTIVE Mode	43
SLEEP Mode	43
LOW POWER Mode (LPM)	43
MICRO POWER Mode (µPM)	44
STANDBY Mode	44
BACKUP Mode	44

TABLE OF CONTENTS (CONTINUED)

	,	
	POWER DOWN Mode (PDM)	45
	Wakeup Sources	45
	Real-Time Clock	45
	Programmable Timers	46
	32-Bit Timer/Counter/PWM (TMR, LPTMR)	46
	Watchdog Timer (WDT)	47
	Pulse Train Engine (PT)	47
	Serial Peripherals	48
	USB Controller	48
	I ² C Interface (I2C)	48
	I ² S Interface (I2S)	48
	Serial Peripheral Interface (SPI)	48
	UART (UART, LPUART)	49
	1-Wire Master (OWM)	50
	Standard DMA Controller	50
	Security	50
	AES	50
	True Random Number Generator (TRNG) Non-Deterministic Random Bit Generator (NDRBG)	50
	CRC Module	51
	Bootloader	. 51
	Secure Bootloader	51
	Debug and Development Interface (SWD, JTAG)	. 51
Orc	lering Information	52
٦e	vision History	53

MAX78002

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

PRELIMINARY

LIST OF FIGURES	
Figure 1. I ² C Timing Diagram	
Figure 2. SD/SDIO/SDHC/MMC Timing Diagram	26
Figure 3. SPI Master Mode Timing Diagram	26
Figure 4. SPI Slave Mode Timing Diagram	27
Figure 5. I ² S Master Timing Diagram	28
Figure 6. Parallel Camera Interface Timing Diagram	
Figure 7. 1-Wire Master Data Timing Diagram	29
Figure 8. Clocking Scheme	41

MAX78002

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

アス田

LIST OF TABLES	
Table 1. BACKUP Mode SRAM Retention	
Table 2. Wakeup Sources	4!
Table 3. Timer Configuration Options	46
Table 4. Watchdog Timer Configuration Options	4 ⁻
Table 5. SPI Configuration Options	49
Table 6. UART Configuration Options	49
Table 7 Common CRC Polynomials	

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

Absolute Maximum Ratings

0.3V to +1.21V 0.3V to +1.21V
CNN3RAM0.3V to +1.21V
0.3V to +1.21V
0.3V to +2.75V
0.3V to +3.6V
0.3V to +1.89V
0.3V to +3.6V
0.3V to +3.6V
0.3V to +3.6V
0.3V to +1.89V
0.3V to V _{DDA} + 0.3V
0.3V to +3.6V
0.3V to V _{DDIO} + 0.5V
0.3V to V _{DDIOH} + 0.5V
0.3V to V _{DDA} + 0.2V

HFXIN, HFXOUT	-0.3V to V_{COREA} + 0.2V
CSI_CKP, CSI_CKN, CSI_D0P,	CSI_D0N, CSI_D1P,
CSI_D1N	0.3V to +3.6V
V _{DDIO} Combined Pins (sink)	100mA
V _{DDIOH} Combined Pins (sink)	100mA
V _{SSA}	100mA
V _{SS}	200mA
V _{SSPWR}	
Output Current (sink) by any GPIO Pin	25mA
Output Current (source) by any GPIO Pi	in25mA
Continuous Package Power Dissipat	
board) $T_A = +70^{\circ}C$ (derate	
+70°C)	2666.70mW
Operating Temperature Range	40°C to +105°C
Storage Temperature Range	
Soldering Temperature	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

144 CSBGA

Package Code	X14422+1				
Outline Number	21-0163				
Land Pattern Number	90-0185				
Thermal Resistance, Four-Layer Board:					
Junction-to-Ambient (θ _{JA})	30°C/W				
Junction-to-Case Thermal Resistance (θ _{JC})	13°C/W				

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Input Supply Voltage, Battery	V _{BAT}	V _{REGI} , V _{BAT} , and V _{DDIOH} must be connected together at the circuit-board level.	2.85	3.3	3.6	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Supply Voltage, SIMO	V _{REGI}	V _{REGI} , V _{BAT} , and V _{DDIOH} must be connected together at the circuit-board level.	2.85	3.3	3.6	V
Input Supply Voltage Core A	V _{COREA}		0.9	1.1	1.21	V
Input Supply Voltage Core B	V _{COREB}	0.9 1.1 1.21		V		
Input Supply Voltage, Analog	V _{DDA}	V _{DDA} and V _{DDIO} must be connected at the circuit-board level.	1.71	1.8	1.89	V
Input Supply Voltage, GPIO	V _{DDIO}	/ _{DDA} and V _{DDIO} must be connected at he circuit-board level. 1.71 1.8 1.89		V		
Input Supply Voltage, GPIO (High)	V _{DDIOH}	V _{REGI} , V _{BAT} , and V _{DDIOH} must be connected together at the circuit-board level.	2.85	3.3	3.6	V
Input Supply Voltage, CNN	V _{CNNX}	Switched off by V _{CCNX_EN} . When switched on, the voltage applied must be the same as V _{COREA} .	0.9	1.1	1.21	V
Input Supply Voltage, CNN RAM	V _{CNNXRAM}	Switched off by V _{CCNXRAM_EN} . When switched on, the voltage applied must be the same as V _{COREA} .	0.9	1.1	1.21	V
		Monitors V _{COREA}		0.76		
		Monitors V _{COREB}	0.72	0.76		
Power-Fail Reset	\/	Monitors V _{DDA}	1.58	1.64	1.69	V
Voltage	V _{RST}	Monitors V _{DDIO}	1.58	1.64	1.69	V
		Monitors V _{DDIOH}	1.58	1.64	1.69	
		Monitors V _{BAT}	TBD	2.74	TBD	
		Monitors V _{COREA}		0.63		
Power-On Reset Voltage	V _{POR}	Monitors V _{DDA}		1.25		V
Tollago		Monitors V _{BAT}		2.4		

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 120MHz, total current into V _{REGI} pin, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in Active mode executing CoreMark [®] , RV32 in ACTIVE mode executing While(1), ECC disabled, all CNN quadrants disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA		TBD		
	I _{REGI_DACT}	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 120MHz, total current into V _{REGI} pin, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 and RV32 in ACTIVE mode executing While(1), ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA		TBD		μ A /MHz
V _{REGI} Current, ACTIVE Mode	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 120MHz, total current into V _{REGI} pin, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in ACTIVE mode executing While(1), RV32 in SLEEP mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/ sink 0mA Dynamic, total current into V _{REGI} pin, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in SLEEP mode, RV32 in ACTIVE mode running from ISO, ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/ sink 0mA	120MHz, total current into V _{REGI} pin, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in ACTIVE mode executing While(1), RV32 in SLEEP mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/		TBD		
		EB = 32 in 5, ECC abled, all ed to				
	I _{REGI_FACT}	Fixed, IPO enabled, ISO enabled, total current into V _{REGI} , V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in ACTIVE mode 0MHz, RV32 in ACTIVE mode 0MHz, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/ sink 0mA		TBD		μА

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
V _{REGI} Current, SLEEP Mode	I _{REGI_DSLP}	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 120MHz, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in SLEEP mode, RV32 in SLEEP mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled, standard DMA with 2 channels active; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	TBD		μΑ/MHz
Mode	I _{REGI_FSLP}	Fixed, IPO enabled, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in SLEEP mode, RV32 in SLEEP mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	TBD		mA
V _{REGI} Current, LOW	IREGI_DLP	Dynamic, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 powered off, RV32 in ACTIVE mode, f _{SYS_CLK} (MAX) = 60MHz, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	TBD		μΑ/MHz
POWER Mode	IREGI_FLP	Fixed, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 powered off, RV32 in ACTIVE mode 0MHz, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	TBD		mA
V _{REGI} Current, MICRO POWER Mode	I _{REGI_DMP}	Dynamic, ERTCO enabled, IBRO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, LPUART active, f _{LPUART} = 32.768kHz, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/ sink 0mA	TBD		μА
V _{REGI} Current, STANDBY Mode	I _{REGI_STBY}	Fixed, total current into V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/ sink 0mA	TBD		μА

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
		Total current into	All SRAM retained		TBD		
		V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} =	No SRAM retention		TBD]
		$V_{COREB} = 1.1V$,	SRAM0 retained		TBD]
V _{REGI} Current, BACKUP Mode	I _{REGI_BK}	RTC disabled, all CNN quadrants disabled, all CNN	SRAM0 and SRAM1 retained		TBD		μΑ
British Mode		memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ;	SRAM0, SRAM1, and SRAM2 retained		TBD		
V _{REGI} Current, POWER DOWN Mode	IREGI_PDM	Total current into V_R 3.0V, $V_{COREA} = V_{CO}$ tied to V_{SS} , V_{DDIO} , of source/sink 0mA	OREB = 1.1V; inputs	TBD			μА
V _{REGO_A} Output Voltage Range	V _{REGO_A_RA} NGE	V _{REGI} ≥ V _{REGO_A} +	200mV	0.5	1.8	1.85	V
V _{REGO_B} Output Voltage Range	V _{REGO_B_RA}	V _{REGI} ≥ V _{REGO_B} +	200mV	0.5	1.0	1.25	V
V _{REGO_C} Output Voltage Range	V _{REGO_C_RA}	V _{REGI} ≥V _{REGO_C} +	200mV	0.5 1.0 1.25		V	
V _{REGO_A} Output Current	V _{REGO_A_IOU} T	V _{REGO_A} output cur	rent	5 50		mA	
V _{REGO_B} Output Current	V _{REGO_B_IOU} T	V _{REGO_B} output current			5	50	mA
V _{REGO_C} Output Current	V _{REGO_C_IOU}	V _{REGO_C} output cur	V _{REGO_C} output current		10	100	mA
V _{REGO_X} Output Current Combined	V _{REGO_X_IOU} T_TOT	All three V _{REGO_X} o	utputs combined		20	100	mA
V _{REGO_X} Efficiency	V _{REGO_X_EFF}	V _{REGI} = TBD, V _{REGI} 30mA	_{D_X} = 1.1 V, load =		90		%
SLEEP Mode Resume Time	t _{SLP_ON}	Time from power mo of first user instruction			TBD		μs
LOW-POWER Mode Resume Time	t _{LP_ON}	Time from power mo of first user instruction			TBD		μs
MICROPOWER Mode Resume Time	t _{MP_ON}	Time from power mode exit to execution of first user instruction			us		
STANDBY Mode Resume Time	tstby_on	Time from power mode exit to execution of first user instruction		μs			
BACKUP Mode Resume Time	t _{BKU_ON}	Time from power mo of first user instruction	ime from power mode exit to execution f first user instruction		ms		
POWER-DOWN Mode Resume Time	t _{PDM_ON}	Time from power mo of first user instruction bootloader execution	n. Includes		TBD		ms

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
CLOCKS							,
System Clock Frequency	fsys_clk					120,000	kHz
Internal Phase Locked Loop (IPLL)	f _{IPLL}				100		MHz
Internal Primary Oscillator (IPO)	f _{IPO}				120		MHz
Internal Secondary Oscillator (ISO)	fiso				60		MHz
Internal Baud Rate Oscillator (IBRO)	f _{IBRO}				7.3728		MHz
		8kHz selected			8		
Internal Nano-Ring Oscillator (INRO)	f _{INRO}	16kHz selected	16			kHz	
Coomator (ii vi to)		30kHz selected			30		
External RTC Oscillator (ERTCO)	f _{ERTCO}	32kHz watch crystal, 90kΩ, C ₀ ≤ 2pF	32kHz watch crystal, C_L = 6pF, ESR < 90kΩ, $C_0 \le 2$ pF		32.768		kHz
RTC Operating Current	I _{RTC}	All power modes, RT	C enabled		0.3		μA
RTC Power-Up Time	t _{RTC_} ON				250		ms
External I ² S Clock Input Frequency	fEXT_I2S_CLK	I2S_CLKEXT selecte	ed			25	MHz
External System Clock Input Frequency	fEXT_CLK	EXT_CLK selected				80	MHz
External Low Power Timer 1 Clock Input Frequency	fEXT_LPTMR1_ CLK	LPTMR1_CLK selec	ted			8	MHz
External Low Power Timer 2 Clock Input Frequency	fEXT_LPTMR2_ CLK	LPTMR2_CLK selected				8	MHz
CONVOLUTIONAL NEU	RAL NETWORK						-
CNN Active Energy	E _{J_CNN}	Max power network, random data, and random mask configuration	x16 Quadrant 0, 1, 2, and 3 enabled		TBD		pJ/MAC

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN TYP	MAX	UNITS
	ICOREA_CNN_ MNISTA	MNIST Standard dataset, optimized network	x16 Quadrant 0 enabled; x16 Quadrant 1, 2, and 3 powered down and isolated	TBD		
	ICOREA_CNN_ MNISTB		x16 Quadrant 0, 1, 2, and 3 enabled	TBD		
V _{COREA} CNN Active Current	ICOREA_CNNM PRA		x16 Quadrant 0 enabled; x16 Quadrant 1, 2, and 3 powered down and isolated	TBD		
	ICOREA_CNNM PRB	COREA_CNNM PRB network, random data, and random mask configuration simple simpl	x16 Quadrant 0, 1, 2, and 3 enabled. External power supply must be used for V _{COREA} since the on-board SIMO will not supply above 100mA.	TBD		mA
	ICOREA_CNNM PA	DREA_CNNM PA Max power network, data, mask configuration DREA_CNNM PB	x16 Quadrant 0 enabled; x16 Quadrant 1, 2, and 3 powered down and isolated	TBD		
	ICOREA_CNNM PB		x16 Quadrant 0, 1, 2, and 3 enabled. External power supply must be used for VCOREA since the on-board SIMO will not supply above 100mA.	TBD		
V _{REGI} Mask Memory Retention Current	I _{REGI_} CNNMR	V _{COREB} = 1.0V	x16 Quadrant 0 only; x16 Quadrant 1, 2, and 3 powered down and isolated	TBD		μА
			x16 Quadrant 0, 1, 2, and 3 enabled	TBD		

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
V _{REGI} CNN Inactive Current	^I REGI_CNNIA	CNN enabled/ inactive, clocks disabled	x16 Quadrant 0 enabled; x16 Quadrant 1, 2, and 3 powered down and isolated		TBD		μА
			x16 Quadrant 0, 1, 2, and 3 enabled		TBD		
GENERAL-PURPOSE I/O)						
Input Low Voltage for All GPIO Except P3.0 and P3.1	V _{IL_} VDDIO	P3.0 and P3.1 can only use V _{DDIOH} as I/O supply and cannot use V _{DDIO} as I/O supply	V _{DDIO} selected as I/O supply			0.3 × V _{DDIO}	V
Input Low Voltage for All GPIO	V _{IL_VDDIOH}	V _{DDIOH} selected as	I/O supply			0.3 × V _{DDIOH}	V
Input Low Voltage for RSTN	V _{IL_RSTN}				0.5 x V _{DDIOH}		V
Input High Voltage for All GPIO Except P3.0 and P3.1	V _{IH_VDDIO}	P3.0 and P3.1 can only use V _{DDIOH} as I/O supply and cannot use V _{DDIO} as I/O supply	V _{DDIO} selected as I/O supply	0.7 × V _{DDIO}			٧
Input High Voltage for All GPIO	V _{IH_VDDIOH}	V _{DDIOH} selected as	I/O supply	0.7 × V _{DDIOH}			٧
Input High Voltage for RSTN	V _{IH_RSTN}				0.5 x V _{DDIOH}		٧
			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 00, I _{OL} = 1mA		0.2	0.4	
Output Low Voltage for		P3.0 and P3.1 can only use V _{DDIOH}	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 01, I _{OL} = 2mA		0.2	0.4	V
All GPIO Except P3.0 and P3.1	Vol_vddio	as I/O supply and cannot use V _{DDIO} as I/O supply	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 10, I _{OL} = 4mA		0.2	0.4	V
			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 11, I _{OL} = 8mA		0.2	0.4	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
		V _{DDIOH} selected as = 2.85V, GPIOn_DS = 1mA	I/O supply, V_{DDIOH} _SEL[1:0] = 00, I_{OL}		0.2	0.4	
Output Low Voltage for	Vol. vppiou	V _{DDIOH} selected as = 2.85V, GPIOn_DS = 2mA	I/O supply, V _{DDIOH} _SEL[1:0] = 01, I _{OL}		0.2	0.4	- V
All GPIO	Vol_vddioh	V _{DDIOH} selected as = 2.85V, GPIOn_DS = 4mA	I/O supply, V _{DDIOH} _SEL[1:0] = 10, I _{OL}		0.2	0.4	
		V _{DDIOH} selected as = 2.85V, GPIOn_DS = 8mA	I/O supply, V _{DDIOH} _SEL[1:0] = 11, I _{OL}		0.2	0.4	
Combined I _{OL} , All GPIO	I _{OL_} TOTAL					48	mA
Output High Voltage for			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 00, I _{OL} = -1mA	V _{DDIO} - 0.4			
	V _{OH} _vddio	P3.0 and P3.1 can only use V _{DDIOH} as I/O supply and cannot use V _{DDIO} as I/O supply	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 01, I _{OL} = -2mA	V _{DDIO} - 0.4			V
All GPIO Except P3.0 and P3.1			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 10, I _{OL} = -4mA	V _{DDIO} - 0.4			V
			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 11, I _{OL} = -8mA	V _{DDIO} - 0.4			
		V _{DDIOH} selected as = 2.85V, GPIOn_DS = -1mA	I/O supply, V_{DDIOH} _SEL[1:0] = 00, I_{OL}	V _{DDIOH} - 0.4			
Output High Voltage for All GPIO Except P3.0	V	V _{DDIOH} selected as = 2.85V, GPIOn_DS = -2mA	I/O supply, V_{DDIOH} _SEL[1:0] = 01, I_{OL}	V _{DDIOH} - 0.4			V
and P3.1	Voh_vddioh	V _{DDIOH} selected as = 2.85V, GPIOn_DS = -4mA	I/O supply, V _{DDIOH} _SEL[1:0] = 10, I _{OL}	V _{DDIOH} - 0.4			V
		V _{DDIOH} selected as = 2.85V, GPIOn_DS = -8mA		V _{DDIOH} - 0.4			
Output High Voltage for P3.0 and P3.1	Voh_vddioh	V _{DDIOH} = 2.85V, GF fixed at 00, I _{OL} = -1r		V _{DDIOH} - 0.4			V

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Combined I _{OH} , All GPIO	I _{OH_TOTAL}					-48	mA
Input Hysteresis (Schmitt)	V _{IHYS}				300		mV
Input Leakage Current Low	I _{IL}	V _{DDIO} = 1.89V, V _{DD} selected as I/O supp pullup disabled		-100		+100	nA
	lін	V _{DDIO} = 1.89V, V _{DD} selected as I/O supp internal pulldown dis	$Iy, V_{IN} = 3.6V,$	-800		+800	nA
Input Leakage Current High	I _{OFF}	V _{DDIO} = 0V, V _{DDIO} selected as I/O supp	V _{DDIO} = 0V, V _{DDIOH} = 0V, V _{DDIO} selected as I/O supply, V _{IN} < 1.89V			+1	
	I _{IH3V}	V _{DDIO} = 1.71V, V _{DE} selected as I/O supp		-2		+2	μA
Input Pullup Resistor RSTN	R _{PU_R}	Pullup to V _{DDIOH}	up to V _{DDIOH} 25			kΩ	
Input Pullup/Pulldown	R _{PU1}	Normal resistance, P	P1M = 0		25		kΩ
Resistor for All GPIO	R _{PU2}	Highest resistance, F	P1M = 1		1		ΜΩ
12-Bit SAR ADC							
Resolution					12		Bits
Effective # of Bits	ENOB		ADC_CLKCTRL.clkdiv = 0bX00. AINx input pkpk = V _{REF} – 10mV		10		Bits
External Reference Voltage	V _{REF}	V _{REF} ≤ V _{DDIOH}		2.048		V _{DDIOH}	V
Internal Reference	V _{INT_REF}	MCR_ADC_CFG0.ext_ref = 0, MCR_ADC_CFG0.ref_sel = 0			1.25		
Voltage	V _{INT_REF}	MCR_ADC_CFG0.e: MCR_ADC_CFG0.re			2.048		V
ADC Clock Rate	fACLK				1		MHz
ADC Clock Period	t _{ACLK}				1/f _{ACLK}		μs
			ADC_CLKCTRL.clk div = 0bX00	V _{SSA} + 0.05		V _{REF}	
Input Voltage Range	V_{AIN}	AIN[7:0], ADC_DATA.chan = [7:0]	ADC_CLKCTRL.clk div = 0bX01	V _{SSA} + 0.05		MIN(2*V REF,V _{DD} IOH)	V
		[7.0]	ADC_CLKCTRL.clk div = 0bX10	V _{SSA} + 0.05		MIN(2*V REF,V _{DD} IOH)	
Input Impodence	D	ADC_CLKCTRL.clkc	liv = 0bX01		5		kO.
Input Impedance	R_{AIN}	ADC_CLKCTRL.clkc	liv = 0bX10	50			kΩ
Analog Input	0	Fixed capacitance to	V _{SSA}		2		pF
Capacitance	C_{AIN}	Dynamically switched capacitance			1.2		pF
Integral Nonlinearity	INL					±1.5	LSb

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Differential Nonlinearity	DNL					±0.75	LSb
Offset Error	V	Chopping disabled			±9		LSb
Oliset Elloi	V _{OS}	Chopping enabled		±0.2			LSD
ADC Active Current		ADC active, reference buffer	MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 0, V _{DDA} = 1.8V MCR_ADC_CFG0.		500		
		div = 0bX00	ext_ref = 0, MCR_ADC_CFG0. ref_sel = 1, V _{DDA} = 3.3V		788		
	I _{ADC} enabled, ADC_CLKCT div = 0bX01 ADC active, reference buf enabled,	reference buffer enabled, ADC_CLKCTRL.clk	MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 0, V _{DDA} = 1.8V		440		μA
			MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 1, V _{DDA} = 3.3V		670		μ, τ
		reference buffer	MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 0, V _{DDA} = 1.8V		366		
		ADC_CLKCTRL.clk	MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 1, V _{DDA} = 3.3V		512		
		ADC_CLKCTRL.clkc	liv = 0bX00			1	
ADC Sample Rate	f _{ADC}	ADC_CLKCTRL.clkc	liv = 0bX01			0.625	MSPS
		ADC_CLKCTRL.clkdiv = 0bX10				0.125	
ADC Setup Time	t _{ADC_SU}	Any power-up of ADC clock or ADC bias to CpuAdcStart				500	μs
ADC Input Leakage	I _{ADC_LEAK}	ADC inactive or channel not selected			0.4		nA
Bandgap Temperature Coefficient	V _{TEMPCO}	Box method			45		ppm
COMPARATORS							
Input Offset Voltage	V _{OFFSET}				±1		mV

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		AINCOMPHYST[1:0] = 00		±23		
In most I bontono nin		AINCOMPHYST[1:0] = 01		±50		\/
Input Hysteresis	V_{HYST}	AINCOMPHYST[1:0] = 10		±2		mV
		AINCOMPHYST[1:0] = 11		±7		
Input Voltage Range	V _{IN_CMP}	Common-mode range	0.6		1.35	V
USB						
USB Transceiver Supply Voltage	V_{DDB}		3.0	3.3	3.6	V
Pin Capacitance (DP, DM)	C _{IN_USB}	Pin to V _{SSB}		8		pF
Driver Output Resistance	R_{DRV}	Steady state drive		44 ±10%		Ω
USB / FULL SPEED						
Single-Ended Input High Voltage (DP, DM)	V _{IH_USB}		2.1			V
Single-Ended Input Low Voltage (DP, DM)	V _{IL_USB}				0.5	V
Output High Voltage (DP, DM)	V _{OH_USB}	R_L = 1.5kΩ from DP and DM to V_{SSB} , I_{OH} = -4mA	2.8		V_{DDB}	V
Output Low Voltage (DP, DM)	V _{OL_USB}	R_L = 1.5kΩ from DP to V_{DDB} , I_{OL} = 4mA	V_{SS}		0.3	V
Differential Input Sensitivity	V_{DI}	DP to DM ; system requirement, not tested	0.2			V
Common-Mode Voltage Range	V_{CM}	Includes V _{DI} range; system requirement, not tested	0.8		2.5	V
Transition Time (Rise/ Fall) DP, DM	t _{RF}	C _L = 50pF	4		20	ns
Pullup Resistor on Upstream Ports	R_{PU}		1.05	1.5	1.95	kΩ
USB / HI-SPEED						
Hi-Speed Data Signaling Common-Mode Voltage Range	V _{HSCM}		-50		+500	mV
Hi-Speed Squelch	M	Squelch detected		100		
Detection Threshold	V_{HSSQ}	No squelch detected		200		mV
Hi-Speed Idle Level Output Voltage	V _{HSOI}		-10		+10	mV
Hi-Speed Low-Level Output Voltage	V _{HSOL}		-10		+10	mV
Hi-Speed High-Level Output Voltage	V _{HSOH}			400 ±40		mV

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Chirp-J Output Voltage (Differential)	V _{CHIRP} J			900 ±200		mV
Chirp-K Output Voltage (Differential)	V _{CHIRPK}			-700 ±200		mV
FLASH MEMORY						
Flash Erase Time	t _{M_ERASE}	Mass erase		20		me
Flasii Elase Tille	tp_ERASE	Page erase		20		ms
Flash Programming Time per Word	t _{PROG}	32-bit programming mode, f _{FLC_CLK} = 1MHz		42		μs
Flash Endurance			10			kcycles
Data Retention	t _{RET}	T _A = +105°C	10			years
MIPI CSI-2						,
Data Rate Per CSI-2 Lane					600	Mbps
Frequency (CSI_CKP, CSI_CKN)	f _{CK}				300	MHz
MIPI CSI-2 / HIGH SPEEL	D DC SPECIFICA	ATIONS				•
DC Common-mode Voltage (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	Vсмос		70		330	mV
Differential Input High Threshold (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{DIHT}				40	mV
Differential Input Low Threshold (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{DILT}		-40			mV
Differential Input Impedance (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	Z _{DI}		80	100	120	Ω
MIPI CSI-2 / HIGH SPEEI	D AC SPECIFICA	ATIONS				
Data To Clock Setup Time (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	tsetup		0.15			1/f _{CK}

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
Data To Clock Hold Time (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	^t HOLD		0.15			1/f _{CK}			
MIPI CSI-2 / LOW POWER DC SPECIFICATIONS									
Input High Voltage (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{IH}		740			mV			
Input Low Threshold (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V_{IL}				550	mV			
Input Hysteresis (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{HYS}		25			mV			

Electrical Characteristics—I²C

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STANDARD MODE			'			1
Output Fall Time	t _{OF}	Standard mode, from V _{IH(MIN)} to V _{IL(MAX)}		150		ns
SCL Clock Frequency	f _{SCL}		0		100	kHz
Low Period SCL Clock	t_{LOW}		4.7			μs
High Time SCL Clock	tHIGH		4.0			μs
Setup Time for Repeated Start Condition	tsu;sta		4.7			μѕ
Hold Time for Repeated Start Condition	t _{HD;STA}		4.0			μs
Data Setup Time	t _{SU;DAT}			300		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			800		ns
Fall Time for SDA and SCL	t _F			200		ns
Setup Time for a Stop Condition	tsu;sto		4.0			μs

Electrical Characteristics—I²C (continued)

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bus Free Time Between a Stop and Start Condition	t _{BUS}		4.7			μѕ
Data Valid Time	t _{VD;DAT}		3.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		3.45			μs
FAST MODE		•	,			1
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		150		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		400	kHz
Low Period SCL Clock	t_{LOW}		1.3			μs
High Time SCL Clock	tHIGH		0.6			μs
Setup Time for Repeated Start Condition	tsu;sta		0.6			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.6			μs
Data Setup Time	t _{SU;DAT}			125		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			30		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	tsu;sto		0.6			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		1.3			μs
Data Valid Time	t _{VD;DAT}		0.9			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.9			μs
FAST MODE PLUS						
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		80		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		1000	kHz
Low Period SCL Clock	t _{LOW}		0.5			μs
High Time SCL clock	tHIGH		0.26			μs
Setup Time for Repeated Start Condition	tsu;sta		0.26			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.26			μs

Electrical Characteristics—I²C (continued)

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Setup Time	t _{SU;DAT}			50		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			50		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	tsu;sto		0.26			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		0.5			μs
Data Valid Time	t _{VD;DAT}		0.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.45			μs

Electrical Characteristics—SD/SDIO/SDHC/MMC

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Clock Frequency in Data Transfer Mode	fSDHC_CLK		0		f _{HSCLK} /2	MHz
Clock Period	t _{CLK}			1/f _{SDHC} _CLK		ns
Clock Low Time	t _{WCL}			7		ns
Clock High Time	twch			7		
Input Setup Time	t _{ISU}			5		ns
Input Hold Time	t _{IHLD}			1		ns
Output Valid Time	tovld			5		ns
Output Hold Time	tohld			6		ns

Electrical Characteristics—SPI

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MASTER MODE						
SPI Master Operating Frequency for SPI0	f _{MCK0}	f _{SYS_CLK} = 120MHz, f _{MCK0(MAX)} = f _{SYS_CLK} /2			60	MHz
SPI Master Operating Frequency for SPI1	f _{MCK1}	f _{SYS_CLK} = 120MHz, f _{MCK1(MAX)} = f _{SYS_CLK} /4			30	MHz
SPI Master SCK Period	t _{MCKX}			1/f _{MCKX}		ns
SCK Output Pulse- Width High/Low	t _{MCH} , t _{MCL}		t _{MCKX} /2			ns
MOSI Output Hold Time After SCK Sample Edge	t _{MOH}		t _{MCX} /2			ns

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
MOSI Output Valid to Sample Edge	t _{MOV}		t _{MCKX} /2		ns
MOSI Output Hold Time After SCK Low Idle	t _{MLH}		t _{MCKX} /2		ns
MISO Input Valid to SCK Sample Edge Setup	t _{MIS}		3		ns
MISO Input to SCK Sample Edge Hold	t _{MIH}		t _{MCKX} /2		ns
SLAVE MODE					
SPI Slave Operating Frequency	fsck			60	MHz
SPI Slave SCK Period	tsck		1/f _{SCK}		ns
SCK Input Pulse-Width High/Low	tsch, tscl		t _{SCK} /2		
SSx Active to First Shift Edge	tsse		10		ns
MOSI Input to SCK Sample Edge Rise/Fall Setup	tsis		3		ns
MOSI Input from SCK Sample Edge Transition Hold	t _{SIH}		3		ns
MISO Output Valid After SCLK Shift Edge Transition	t _{SOV}		10		ns
SCK Inactive to SSx Inactive	tssd		10		ns
SSx Inactive Time	tssh		1/f _{SCK}		μs
MISO Hold Time After SSx Deassertion	tslh		10		ns

Electrical Characteristics—I²S

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SLAVE						
Bit Clock Frequency	f _{BCLKS}				25	MHz
Bit Clock Period	t _{BCLKS}		1/f _{BCLKS}			μs
BCLK High Time	twbclkhs			0.5		1/f _{BCLKS}
BCLK Low Time	twbclkls			0.5		1/f _{BCLKS}
Setup Time for LRCLK	tLRCLK_BLCKS			20		ns
Delay Time, BCLK to SD (Output) Valid	t _{BCLK_SDOS}			20		ns

Electrical Characteristics—I²S (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Setup Time for SD (Input)	tsu_sdis			10		ns
Hold Time SD (Input)	t _{HD_SDIS}			10		ns
MASTER						
Bit Clock Frequency	f _{BCLKM}	Source only from I2S_EXTCLK (P0.14 Alternate Function 2)			80	MHz
Bit Clock Period	t _{BCLKM}		1/f _{BCLK} M			μs
BCLK High Time	twbclkhm			0.5		1/f _{BCLKM}
BCLK Low Time	twbclklm			0.5		1/f _{BCLK}
Delay Time BCLK to LRCLK Valid	tBLCK_LRCLK M			20		ns
Delay Time, BCLK to SD (Output) Valid	tBCLK_SDOM			20		ns
Setup Time for SD (Input)	tsu_sdim			10		ns
Hold Time SD (Input)	t _{HD_SDIM}			10		ns

Electrical Characteristics—PCIF

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PCIF			•			
PCIF Operating Frequency	fCLK				10	MHz
PCIF Clock Period	tCLK			1/f _{CLK}		ns
PCIF_PCLK Output Pulse-Width High/Low	twch, twcl		t _{CLK} /2			ns
PCIF_VSYNC, PCIF_HSYNC Setup Time	tssu			5		ns
PCIF_VSYNC, PCIF_HSYNC Hold Time	tshld			5		ns
PCIF_D0-PCIF_D11 Setup TIme	t _{DSU}			5		ns
PCIF_D0_PCIF_D11 Hold Time	t _{DHLD}			5		ns

Electrical Characteristics—1-Wire Master

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	SYMBOL CONDITIONS MIN TYP MA		MAX	UNITS	
Write 0 Low Time	4	Standard		60		
WITE O LOW TITLE	™0L	Overdrive		8		μs

Electrical Characteristics—1-Wire Master (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS	
		Standard	6			
Write 1 Low Time	t _{W1L}	Standard, Long Line mode	8		μs	
		Overdrive	1			
		Standard	70			
Presence Detect Sample	t _{MSP}	Standard, Long Line mode	85		μs	
Sample		Overdrive	9			
		Standard	15			
Read Data Value	t _{MSR}	Standard, Long Line mode	24		μs	
		Overdrive	3			
		Standard	10			
Recovery Time	t _{REC0}	Standard, Long Line mode	20		μs	
		Overdrive	4			
Doost Time High	4	Standard	480			
Reset Time High	t _{RSTH}	Overdrive	58		μs	
Reset Time Low		Standard	600			
	^t RSTL	Overdrive	70		- μs	
Time Clet	4	Standard	70			
Time Slot	^t SLOT	Overdrive	12		μs	

Figure 1. I²C Timing Diagram

Figure 2. SD/SDIO/SDHC/MMC Timing Diagram

Figure 3. SPI Master Mode Timing Diagram

Figure 4. SPI Slave Mode Timing Diagram

Figure 5. I²S Master Timing Diagram

Figure 6. Parallel Camera Interface Timing Diagram

Figure 7. 1-Wire Master Data Timing Diagram

Pin Configuration

144 CSBGA

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

Pin Description

			FUNCTION MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
POWER	(See the Applic	ations Information	n section for bypa	ss capacitor rec	ommendations.)
A10	V _{BAT}		<u> </u>	_	TBD
C13	V _{REGI}	_	_	_	Battery Power Supply for the SIMO Switch-Mode Power Supply (SMPS). Bypass device pin C9 with 2 x 47µF capacitors placed as close as possible to the device pin C9 and V _{SSPWR} pins for applications using a coin cell as the battery. See Bypass Capacitors for more information. If power to the device is cycled, the voltage applied to this device pin must reach V _{REGI_POR} .
B10	V_{DDA}	_	_		1.8V Analog Power Supply
D12	V _{DDB}	_	_	_	USB Transceiver Supply Voltage. Bypass this pin to V_{SSB} with a 1.0 μ F capacitor as close as possible to the package.
A4	V _{REF}	_	_	_	ADC External Reference Input. This is the reference input for the analog-to-digital converter.
A8	V _{COREA}			_	Digital Core Supply Voltage A
B8	V _{COREB}	_			Digital Core Supply Voltage B
B12	V _{BST}	_	_	_	Boosted Supply Voltage for the Gate Drive of High-Side Switches. Bypass V _{BST} to LXB with a 3.3nF capacitor.
B11	V _{REGO_} A	_	_	_	Buck Converter A Voltage Output. Bypass V _{REGO_A} with a 22µF capacitor to V _{SS} placed as close as possible to the V _{DDA} device pin.
C11	V _{REGO_B}	_	_	_	Buck Converter B Voltage Output. Bypass V _{REGO_B} with a 22µF capacitor to V _{SS} placed as close as possible to the closest V _{COREB} device pin.
A11	V _{REGO_C}	_	_	_	Buck Converter C Voltage Output. Bypass V _{REGO_C} with a 22µF capacitor to V _{SS} placed as close as possible to the closest V _{COREA} device pin.
D1	V _{DDIO}	_	_	_	GPIO Supply Voltage. Bypass this pin to V_{SS} with a 1.0 μ F capacitor placed as close as possible to the package.
E1	V _{DDIOH}	_	_	_	GPIO Supply Voltage, High. $V_{DDIOH} \ge V_{DDIO}$. Bypass this pin to V_{SS} with a 1.0µF capacitor placed as close as possible to the package.
E12	V _{USB0P9}	_	_	_	Bypass with 4.7nF to V _{SSB} . Do not connect this device pin to any other external circuitry.
C8	V _{CSI2P5}	_	<u> </u>	_	Bypass with 4.7nF to V_{SS} . Do not connect this device pin to any other external circuitry.

144 CSBGA

		ı	FUNCTION MODE	1	
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
F1, G1, A2, G2, G3, G4, A5, B5, C5, D5, M6, N6, K7, L7, M7, N7, C9, F10, F11, F12, G12, F13, G13	V _{SS}	_		_	Digital Ground
B4	V _{SSA}	_	_	_	Analog Ground
A13	V _{SSPWR}	_	_	_	Ground for the SIMO Switch-Mode Power Supply (SMPS). This device pin is the return path for the V _{REGI} device pins C6 and C9.
C12	V _{SSB}	_	_	_	USB Transceiver Ground
B13	LXA	_	_	_	Switching Inductor Input A. Connect a 2.2µH inductor between LXA and LXB.
A12	LXB	_	_	_	Switching Inductor Input B. Connect a 2.2µH inductor between LXA and LXB.
N1, N2, N3	V _{CNN0}	_	_	_	TBD
H1, H2, H3	V _{CNN1}	_	_	_	TBD
N11, N12, N13	V _{CNN2}	_	_	_	TBD
H11, H12, H13	V _{CNN3}	_	_	_	TBD
M1, M2	V _{CNN0RAM}	_	<u> </u>	_	TBD
J1, J2	V _{CNN1RAM}	_		_	TBD
M12, M13	V _{CNN2RAM}	_	_	_	TBD
J12, J13	V _{CNN3RAM}	_	_	_	TBD
K9	V _{CNN0_EN}	_		_	TBD
M9	V _{CNN1_EN}	_		_	TBD
L10	V _{CNN2_EN}	_		_	TBD
N10	V _{CNN3} EN	_		_	TBD
L9	V _{CNN0RAM_E}	_	_	_	TBD

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

144 CSBGA

			FUNCTION MODE						
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION				
N9	V _{CNN1RAM_E} N		_	_	TBD				
K10	V _{CNN2RAM_E} N	_	_	_	TBD				
M10	V _{CNN3RAM_E} N	_	_	_	TBD				
RESET AND CONTROL									
C10	RSTN	_	_	_	Active-Low, External System Reset Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for RTC circuitry) and begins execution. This pin has an internal pullup to the VDDIOH supply.				
СГОСК					2.00				
B9	32KOUT	_	_	_	32kHz Crystal Oscillator Output				
A9	32KIN	-	_	_	32kHz Crystal Oscillator Input. Connect a 32kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, this pin can be configured as the input for an external CMOS-level clock source.				
A3	HFXIN	_	_	_	32MHz Crystal Oscillator Input. Connect a 32MHz crystal between HFXIN and HFXOUT for Bluetooth operation. Optionally, this pin can be configured as the input for an external CMOS-level clock source.				
В3	HFXOUT	_	_	_	32MHz Crystal Oscillator Output				
GPIO AN	D ALTERNATE	FUNCTION (See 1	the Applications I	nformation sectio	n for GPIO and Alternate Function Matrices.)				
K6	P0.0	P0.0	UART0A_RX	_	UART0 Receive Port Map A				
L6	P0.1	P0.1	UART0A_TX	_	UART0 Transmit Port Map A				
E11	P0.2	P0.2	TMR0A_IOA	UARTOB_CTS	Timer 0 I/O 32 Bits or Lower 16 Bits Port Map A; UART0 Clear to Send Port Map B				
E10	P0.3	P0.3	EXT_CLK/ TMR0A_IOB	UARTOB_RTS	External Clock for Use as SYS_OSC/Timer 0 I/O Upper 16 Bits Port Map A; UART0 Request to Send Port Map B				
H4	P0.4	P0.4	SPI0A_SS0	TMR0B_IOAN	SPI0 Port Map A Slave Select 0; Timer 0 Inverted Output Port Map B				
B2	P0.5	P0.5	SPI0A_MOSI	TMR0B_IOBN	SP0 Port Map A Master-Out Slave-In Serial Data 0; Timer 0 Inverted Output Upper 16 Bits Port Map B				
C2	P0.6	P0.6	SPI0A_MISO	OWM_IO	SPI0 Port Map A Master-In Slave-Out Serial Data 1; 1-Wire Master Data I/O				
D2	P0.7	P0.7	SPI0A_SCK	OWM_PE	SPI0 Port Map A Clock; 1-Wire Master Pullup Enable Output				

144 CSBGA

			FUNCTION MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
E2	P0.8	P0.8	SPI0A_SDIO2	TMR0B_IOA	SPI0 Port Map A Data 2 I/O; Timer 0 I/O 32 Bits or Lower 16 Bits Port Map B
F2	P0.9	P0.9	SPI0A_SDIO3	TMR0B_IOB	SPI0 Port Map A Data 3 I/O; Timer 0 I/O Upper 16 Bits Port Map B
D9	P0.10	P0.10	I2C0A_SCL	SPI0_SS2	I2C0 Port Map A Clock; SPI0 Slave Select 2
D8	P0.11	P0.11	I2C0A_SDA	SPI0_SS1	I2C0 Port Map A Serial Data; SPI0 Slave Select 1
J3	P0.12	P0.12	UART1A_RX	TMR1B_IOAN	UART1 Receive Port Map A; Timer 1 Inverted Output Port Map B
K3	P0.13	P0.13	UART1A_TX	TMR1B_IOBN	UART1 Transmit Port Map A; Timer 1 Inverted Output Upper 16 Bits Port Map B
G11	P0.14	P0.14	TMR1A_IOA	I2S_CLKEXT	Timer 1 I/O 32 Bits or Lower 16 Bits Port Map A; I2S External Clock Input
G10	P0.15	P0.15	TMR1A_IOB	PCIF_VSYNC	Timer 1 I/O Upper 16 Bits Port Map A; Parallel Camera Interface Vertical Sync
D7	P0.16	P0.16	I2C1A_SCL	PT2	I2C1 Port Map A Clock; Pulse Train 2
D6	P0.17	P0.17	I2C1A_SDA	PT3	I2C1 Port Map A Serial Data; Pulse Train 3
H10	P0.18	P0.18	PT0	OWM_IO	Pule Train 0; 1-Wire Master Data I/O
J10	P0.19	P0.19	PT1	OWM_PE	Pulse Train 1; 1-Wire Master Pullup Enable Output
J4	P0.20	P0.20	SPI1A_SS0	PCIF_D0	SPI1 Port Map A Slave Select 0; Parallel Camera Interface Data 0
A1	P0.21	P0.21	SPI1A_MOSI	PCIF_D1	SPI1 Port Map A Master Out Slave In Serial Data 0; Parallel Camera Interface Data 1
B1	P0.22	P0.22	SPI1A_MISO	PCIF_D2	SPI1 Port Map A Master In Slave Out Serial Data 1; Parallel Camera Interface Data 2
C1	P0.23	P0.23	SPI1A_SCK	PCIF_D3	SPI1 Port Map A Clock; Parallel Camera Interface Data 3
K1	P0.24	P0.24	SPI1A_SDIO2	PCIF_D4	SPI1 Port Map A Data 2; Parallel Camera Interface Data 4
L1	P0.25	P0.25	SPI1A_SDIO3	PCIF_D5	SPI1 Port Map A Data 3; Parallel Camera Interface Data 5
M5	P0.26	P0.26	TMR2A_IOA	PCIF_D6	Timer 2 I/O 32 Bits or Lower 16 Bits Port Map A; Parallel Camera Interface Data 6
N5	P0.27	P0.27	USB_EXTCLK/ TMR2A_IOB	PCIF_D7	USB External Clock/Timer 2 I/O Upper 16 Bits Port Map A; Parallel Camera Interface Data 7
M8	P0.28	P0.28	SWDIO	_	Serial Wire Debug Data I/O
N8	P0.29	P0.29	SWCLK	_	Serial Wire Debug Clock
K5	P0.30	P0.30	I2C2A_SCL	PCIF_D8	I2C2 Port Map A Clock; Parallel Camera Interface Data 8
L5	P0.31	P0.31	I2C2A_SDA	PCIF_D9	I2C2 Port Map A Serial Data; Parallel Camera Interface Data 9
K2	P1.0	P1.0	UART2A_RX	RV_TCK	UART2 Receive Port Map A; 32-bit RISC-V Test Port Clock

144 CSBGA

PIN	NAME	FUNCTION MODE			
		Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
L2	P1.1	P1.1	UART2A_TX	RV_TMS	UART2 Transmit Port Map A; 32-bit RISC-V Test Port Select
L3	P1.2	P1.2	I2S0A_SCK	RV_TDI	I2S0 Port Map A Bit Clock; 32-bit RISC-V Test Port Data Input
М3	P1.3	P1.3	12S0A_WS	RV_TDO	I2S0 Port Map A Left/Right Clock; 32-bit RISC-V Test Port Data Output
M4	P1.4	P1.4	I2S0A_SDI	TMR3B_IOA	I2S0 Port Map A Serial Data Input; Timer 3 I/O 32 Bits or Lower 16 Bits Port Map B
N4	P1.5	P1.5	I2S0A_SDO	TMR3B_IOB	I2S0 Port Map A Serial Data Output; Timer 3 I/O Upper 16 Bits Port Map B
K8	P1.6	P1.6	TMR3A_IOA	PCIF_D10	Timer 3 I/O 32 Bits or Lower 16 Bits Port Map A; Parallel Camera Interface Data 10
L8	P1.7	P1.7	TMR3A_IOB	PCIF_D11	Timer 3 I/O Upper 16 Bits Port Map A; Parallel Camera Interface Data 11
K4	P1.8	P1.8	PCIF_HSYNC	RXEV0	Parallel Camera Interface Horizontal Sync; CM4 RX Event Input
L4	P1.9	P1.9	PCIF_PCLK	TXEV0	Parallel Camera Interface Pixel Clock; CM4 TX Event Output
K13	P1.10	P1.10	SDHC_CDN	ADC CLK_EXT	Secure Digital Interface Card Present; ADC External Clock Input
K11	P1.11	P1.11	SDHC_DAT3	_	Secure Digital Interface Data Bus Bit 3
L11	P1.12	P1.12	SDHC_DAT2	ADC_HW_TRIG _A	Secure Digital Interface Data Bus Bit 2; ADC Trigger Input A
K12	P1.13	P1.13	SDHC_DAT1	ADC_HW_TRIG _B	Secure Digital Interface Data Bus Bit 1; ADC Trigger Input B
L12	P1.14	P1.14	SDHC_DAT0	ADC_HW_TRIG _C	Secure Digital Interface Data Bus Bit 0; ADC Trigger Input C
J11	P1.15	P1.15	SDHC_WP	_	Secure Digital Interface Write Protect
M11	P1.16	P1.16	SDHC_CMD	_	Secure Digital Interface Bus Command
L13	P1.17	P1.17	SDHC_CLK	_	Secure Digital Interface Clock
F4	P2.0	P2.0	AIN0/AINON	_	Analog to Digital Converter Input 0/Comparator 0 Negative Input
E4	P2.1	P2.1	AIN1/AIN0P	_	Analog to Digital Converter Input 1/Comparator 0 Positive Input
D4	P2.2	P2.2	AIN2/AIN1N	_	Analog to Digital Converter Input 2/Comparator 1 Negative Input
C4	P2.3	P2.3	AIN3/AIN1P	_	Analog to Digital Converter Input 3/Comparator 1 Positive Input
F3	P2.4	P2.4	AIN4/AIN2N	LPTMR0B_IOA	Analog to Digital Converter Input 4/Comparator 2 Negative Input; Low-Power Timer 0 I/O Port Map B
E3	P2.5	P2.5	AIN5/AIN2P	LPTMR1B_IOA	Analog to Digital Converter Input 5/Comparator 2 Positive Input; Low-Power Timer 1 I/O Port Map B

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

144 CSBGA

PIN	NAME	FUNCTION MODE						
		Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION			
D3	P2.6	P2.6	LPTMR0_CLK/ AIN6/AIN3N	LPUARTB_RX	Low-Power Timer 0 External Clock Input/Analog to Digital Converter Input 6/Comparator 3 Negative Input; Low-Power UART 0 Receive Port Map B			
C3	P2.7	P2.7	LPTMR1_CLK/ AIN7/AIN3P	LPUARTB_TX	Low-Power Timer 1 External Clock Input/Analog to Digital Converter Input 7/Comparator 3 Positive Input; Low-Power UART Transmit Port Map B			
D11	P3.0	P3.0	PDOWN	WAKEUP	Power-Down Output; Wakeup Input. This device pin can only be powered by V _{DDIOH} .			
D10	P3.1	P3.1	SQWOUT	WAKEUP	Square-Wave Output; Wakeup Input. This device pin can only be powered by V _{DDIOH} .			
USB								
E13	DP	_	_	_	USB DP Signal. This bidirectional pin carries the positive differential data or single-ended data. This pin is weakly pulled high internally when the USB is disabled.			
D13	DM	_	_	_	USB DM Signal. This bidirectional pin carries the negative differential data or single-ended data. This pin is weakly pulled high internally when the USB is disabled.			
MIPI CSI-2								
В6	CSI_CKP	_	_	_	MIPI CSI-2 receiver differential clock positive input.			
A6	CSI_CKN	_	_	_	MIPI CSI-2 receiver differential clock negative input.			
C7	CSI_D0P	_	_	_	MIPI CSI-2 receiver differential data lane 0 positive input.			
C6	CSI_D0N	_	_	_	MIPI CSI-2 receiver differential data lane 0 negative input.			
B7	CSI_D1P	_	_	_	MIPI CSI-2 receiver differential data lane 1 positive input.			
A7	CSI_D1N	_	_	_	MIPI CSI-2 receiver differential data lane 1 negative input.			

Detailed Description

The MAX78002 is part of a new breed of low-power microcontrollers built to thrive in the rapidly evolving AI at the edge market. These products include Maxim's proven low-power MCU IP along with deep neural network AI acceleration.

The MAX78002 is an advanced system-on-chip featuring an Arm[®] Cortex[®]-M4 with FPU CPU for efficient computation of complex functions and algorithms with integrated power management. It also includes a 2MB-weight CNN accelerator. The devices offer large on-chip memory with 2.5MB flash and up to 384KB SRAM. Multiple high-speed and low-power communications interfaces are supported including high-speed USB, SDHC, high-speed SPI, I2C serial interface, and LPUART. Additional low-power peripherals include flexible LPTIMER and analog comparators. A MIPI CSI-2 camera interface is included for capturing images from an image sensor for processing by the CNN. An I²S interface is included for interfacing to an audio codec for capturing audio samples also for processing by the CNN.

Arm Cortex-M4 with FPU Processor and RISC-V RV32 Processor

The Arm Cortex-M4 with FPU processor CM4 is ideal for the artificial intelligence system control. The architecture combines high-efficiency signal processing functionality with low power, low cost, and ease of use.

The Arm Cortex-M4 with FPU DSP supports single instruction, multiple data (SIMD) path DSP extensions, providing:

- Four parallel 8-bit add/sub
- Floating point single precision
- Two parallel 16-bit add/sub
- Two parallel MACs
- 32- or 64-bit accumulate
- Signed, unsigned, data with or without saturation

The addition of a 32-bit RISC-V coprocessor RV32 provides the system with ultra-low power consumption signal processing.

Convolutional Neural Network Accelerator (CNN)

The CNN accelerator consists of 64 parallel processors with 1.31MB of SRAM-based storage. Each processor includes a pooling unit and a convolutional engine with dedicated weight memory. Four processors share one data memory. These are further organized into groups of 16 processors that share common controls. A group of 16 processors operates as a slave to another group or independently. Data is read from SRAM associated with each processor and written to any data memory located within the accelerator. Any given processor has visibility of its dedicated weight memory and the data memory instance it shares with the three others.

The features of the CNN accelerator include:

- Data Storage
 - 1.31MB SRAM based data storage
 - · Configured as 20Kx8 bit integers x64 channels or 80Kx8 bit integers x4 channels for input layers
 - Input Data Format 8 bit signed values
 - · Selectable Output Data Format 8 bit signed integer or 32 bit signed integer
 - Arm AMBA APB accessible
 - · Hardware CNN results data unload assist
- Weight Storage
 - SRAM based with selectable data retention mode
 - Configurable from 2M 8 bit integer weights to 16M 1 bit logical weights
 - Optional 4x processing mode splits each weight memory into 4 parallel memories with a common address generating 4x the number of masks each cycle
 - All processors include the following dedicated weight storage
 - 1x Processing Mode
 - 4096x9x8 bit weights
 - 8192x9x4 bit weights
 - 16384x9x2 bit weights

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

- 32768x9x1 bit weights
- · 4x Processing Mode
 - 4x1024x9x8 bit weights
 - 4x2048x9x4 bit weights
 - 4x4096x9x2 bit weights
 - 4x8192x9x1 bit weights
- The first processor in each x16 includes additional weight storage for input layer processing
 - 1x Processing Mode
 - 1024x9x8 bit weights
 - 2048x9x4 bit weights
 - 4096x9x2 bit weights
 - 8196x9x1 bit weights
 - · 4x Processing Mode
 - 4x256x9x8 bit weights
 - 4x512x9x4 bit weights
 - 4x1024x9x2 bit weights
 - 4x2048x9x1 bit weights
- Programmable Per x16 processor weight RAM start address, start pointer, and mask count.
- · Arm AMBA APB accessible
- · Optional weight load hardware assist for packed weight storage
- 128 Independently configurable layers (Per x16 Processor)
 - Programmable start layer any of the 128 layers
 - · Linked layer mode allows arbitrary non-sequential layer execution
 - Configurable Per Layer Parameters
 - Processor and mask enables (16 channels)
 - Input data format byte-wide input data or 4x8bit wide input data (x16 processors 0, 4, 8, or 12 only)
 - · Per layer data streaming
 - · Up to Eight simultaneous streaming layers available for the first eight layers
 - Optional FIFO input data paths (first layer only)
 - · Selectable streaming termination layer transition to non-stream processing mode
 - Programmable per stream configuration
 - Stream start relative to prior stream
 - Three stream processing delay counters 2 column counters for non-integer ratios, 1-row delta counter
 - Data SRAM circular buffer size
 - Programmable Input data size (separate Row, Column fields)
 - · Programmable Row and Column Padding 0 to 3 bytes
 - Configurable Number of input channels 1 1024
 - Configurable Number of output channels 1 1024 (determined by the kernel count value)
 - Selectable Kernel bit width size (1, 2, 4, 8)
 - Selectable Kernel SRAM pointer start address and count
 - · Optional In-flight Input Image Pooling
 - Pool Mode None, Maximum or Average
 - · Pool Size 2x2 to 16x16 with independent row and column counts
 - Pool Dilation 0 to 15
 - · Programmable Stride 1 to 4 common row/column stride value
 - · Data SRAM read pointer base address
 - Configurable Read Pointer increment value for flexible input channel access
 - · Data SRAM write pointer configuration
 - · Base Address
 - · Independent offsets for output channel storage in SRAM
 - Programmable stride increment offset
 - Bias 8192 8 bit integers with an option for 1024 10 bit integers using multiple x16 processors
 - Optionally configurable as 4x2048x8 bit bias for 4x mode (with an option for 10-bit bias using multiple x16 processors)

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

- Pre-activation output scaling direction (up/down) and 0 to 15 bit shift magnitude
- · Output Activation None, ReLU, Absolute Value
- Passthru mode allows input data to be passed directly through to the output with programmable data relocation.
- · Element-wise operations (add, subtract, XOR, OR) with optional convolution up to 16 elements
- Deconvolution
- · Flattening for MLP processing
- · Depthwise Convolution
- Simple logic modes support single mask bit +1/-1, 0/-1 modes
- No mask mode supports convolutions with a fixed mask value of one

Processing

- 64 parallel physical channel processors
 - Organized as 4 x 16 Processors
 - 8-bit integer datapath with an option for 32-bit integers on the output layer
 - · Per Channel Processor Enable/Disable
 - Expandable to 1024 parallel logical channel processors
- Configurable 3x3 or 1x1 2D kernel size
- Configurable 1D kernel size to 1x9
- · Full resolution sum-of-products arithmetic for 1024 8 bit integer (data and weight) channels
- Two maximum operating frequency modes up to 50MHz in non-pipelined mode or up to 200 MHz in pipeline mode
- Up to 16 output channels per clock processing rate
- Conditional execution allows early layer termination and branching based on the programmable address and/or data and/or count match
- Input Layer Maximum Input Size
 - · 20K bytes, 64 channels, non-streaming, APB I/F
 - · 80K bytes, 16 channels, non-streaming, APB I/F
 - 80K bytes, 4 channels, non-streaming, FIFO I/F
 - 2048x2048 bytes, 4 channels, streaming, FIFO I/F
- Hidden Layers Maximum Input Size
 - Up to 20K bytes per channel, x64 channels, non-streaming
 - 20K bytes can be split equally across 1-16 logical channels, non-streaming
 - · 4M bytes per channel, x64 channels, streaming
 - · 4M bytes can be split equally across 8 layers, streaming
- Optional Interrupt on CNN completion and FIFO full and empty statuses
- User accessible BIST on all internal memories
- User accessible Zeroization of all internal memories
- Single-step operation with full data SRAM access for CNN operation debug
- Power Management
 - Independent x16 processor supply enables
 - Independent x16 processor mask retention enables
 - Independent x16 datapath clock enables
 - Functional APB clock gating with per x16 processor override registers clocked only during APB write access.
 - CNN Clock frequency scaling (divide by 2, 4, 8, 16)
 - Chip level voltage control for power-performance optimization
- Input Data Row Buffer Memory (TRAM)
 - Organized as 12Kx16 or optionally as 4x3Kx16 in read-ahead mode
 - Programmable per layer TRAM read/write pointer start and rollover values
 - Automatically allocates memory based on the programmed number of input channels
- Read Ahead input processing mode allows the next input data byte to be pre-processed while the current input byte
 output channel generation is active.

Memory

Internal Flash Memory

2.5MB of internal flash memory provides nonvolatile storage of program and data memory.

Internal SRAM

The internal 384KB SRAM provides low-power retention of application information in all power modes except POWER DOWN. The SRAM is divided into 8 banks. SRAM0 and SRAM1 are both 32KB, SRAM2, SRAM3, SRAM4, and SRAM5 are all 64KB each. SRAM6 is 48KB and SRAM7 is 16KB. SRAM4, SRAM5, SRAM6, and SRAM7 are accessible by the RV-32 in LOW POWER mode. For enhanced system reliability, SRAM0 (32KB) can be configured with error correction coded (ECC) single error correction-double error detection (SED-DED). This data retention feature is optional and configurable. This granularity allows the application to minimize its power consumption by only retaining the most essential data.

Comparators

The eight AIN[7:0] inputs can be configured as four pairs and deployed as four independent comparators with the following features:

- Comparison events can trigger interrupts
- Events can wake the CM4 from SLEEP, LOW POWER, MICRO POWER, STANDBY, or BACKUP operating modes
- Can be active in all power modes

Dynamic Voltage Scaling (DVS) Controller

The DVS controller works using the fixed high-speed oscillator and the $V_{\rm COREA}$ supply voltage to optimally operate the Arm core at the lowest practical voltage. The ability to adaptively adjust the voltage provides a significant reduction in dynamic power consumption.

The DVS controller provides the following features:

- Controls DVS monitoring and adjustment functions
- Continuous monitoring with programmable monitor sample period
- Controlled transition to a programmable operating point
- Independent high and low operating limits for safe, bounded operation
- Independent high, center, and low operating range delay line delay monitors
- Programmable adjustment rate when an adjustment is required
- Single clock operation
- Arm peripheral bus interface provides control and status access
- Interrupt capability during error

Clocking Scheme

Multiple clock sources can be selected as the system clock:

- Internal phase-locked loop (IPLL) at a nominal frequency of 120MHz
- Internal primary oscillator (IPO) at a nominal frequency of 100MHz
- Internal secondary oscillator (ISO) at a nominal frequency of 60MHz
- Configurable internal nano-ring oscillator (INRO) at 8kHz, 16kHz, or 30kHz
- External RTC oscillator at 32.768kHz (ERTCO) (external crystal required)
- Internal baud rate oscillator at 7.3728MHz (IBRO)
- External square-wave clock up to 80MHz

There are multiple external clock inputs:

- LPTMR0 and LPTMR1 can be clocked from unique external sources.
- I²S can be be clocked from its own external source.
- USB can be clocked from its own external source.

Figure 8. Clocking Scheme

General-Purpose I/O and Special Function Pins

Most general-purpose I/O (GPIO) pins share both a firmware-controlled I/O function and one or more alternate functions associated with peripheral modules. Pins can be individually enabled for GPIO or peripheral special function use. Configuring a pin as a special function usually supersedes its use as a firmware-controlled I/O. Although this multiplexing between peripheral and GPIO functions is usually static, it can also be done dynamically. The electrical characteristics of a GPIO pin are identical whether the pin is configured as an I/O or special function, except where explicitly noted in the Electrical Characteristics tables.

In GPIO mode, pins are logically divided into ports of 32 pins. Each pin of a port has an interrupt function that can be

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

independently enabled, and configured as a level- or edge-sensitive interrupt. All GPIOs of a given port share the same interrupt vector.

When configured as GPIO, the following features are provided. The features can be independently enabled or disabled on a per-pin basis.

- Configurable as input, output, bidirectional, or high impedance
- Optional internal pullup resistor or internal pulldown resistor when configured as input
- Exit from low-power modes on rising or falling edge
- Selectable standard- or high-drive modes

The MAX78002 provides up to 60 GPIO pins. Caution is needed since Port 3 (P3.0 and P3.1 device pins) are configured in a different manner from the above description.

Mobile Industry Processor Interface® (MIPI) Camera Serial Interface 2 (CSI-2) Controller

The MIPI-CSI-2 is a low voltage interface suited for CMOS image sensors with the following features:

- D-PHY 2.1
- MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 2.1 compliant
- Implements all three CSI-2 MIPI Layers (Pixel to Byte packing, Low-Level Protocol, Lane Management)
- Receiver only
- Two data lanes, one clock lane
- Supports high speed (4.5+ Gbit/s) D-PHY operation
- Support for all CSI-2 data types
- Error collection support

Parallel Camera Interface (PCIF)

The PCIF is a low voltage interface suited for CMOS image sensors. It provides up to 12-bits of parallel access capability with single capture and continuous mode operation.

Analog-to-Digital Converter

The 12-bit successive approximation register (SAR) ADC provides an external reference input and a single-ended input multiplexer. The multiplexer selects an input channel from one of the eight external analog input signals (AIN0–AIN7) or the internal power supply inputs.

The reference for the ADC can be:

- External V_{RFF} input
- V_{SSA} analog supply (TBD)

An optional feature allows samples captured by the ADC to be automatically compared against user-programmable high and low limits. Up to four channel limit pairs can be configured in this way. The comparison allows the ADC to trigger an interrupt (and potentially wake the CPU from a power mode) when a captured sample goes outside the preprogrammed limit range. Since this comparison is performed directly by the sample limit monitors, it can be performed even while the CPU is in SLEEP, LOW POWER or MICRO POWER mode. The eight AIN[7:0] inputs can be configured as four pairs and deployed as four independent comparators.

The ADC measures the following voltages:

- AIN[7:0] up to 3.3V
- VBAT
- V_{SS}
- VCOREA
- V_{COREB}
- 2.5V internal LDO
- 0.9V internal LDO
- V_{DDB}
- V_{DDA}
- Internal die temperature sensor output

Single-Inductor Multiple-Output Switch-Mode Power Supply (SIMO SMPS)

The SIMO SMPS built into the device provides a monolithic power supply architecture for operation from a single lithium cell. The SIMO provides three buck regulator outputs that are voltage programmable. This architecture optimizes power consumption efficiency of the device and minimizes the bill of materials for the circuit design since only a single inductor/capacitor pair is required.

Power Management

Power Management Unit

The power management unit (PMU) provides high-performance operation while minimizing power consumption. It exercises intelligent, precise control of power distribution to the CPUs and peripheral circuitry.

The PMU provides the following features:

- User-configurable system clock
- Automatic enabling and disabling of crystal oscillators based on power mode
- Multiple power domains
- Fast wake-up of powered-down peripherals when activity detected
- Optional control of external switches to provide the CNN with dedicated power from an external source

ACTIVE Mode

In this mode, the CM4 and the RV32 can execute application code and all digital and analog peripherals are available on demand. Dynamic clocking disables peripherals not in use, providing the optimal mix of high performance and low power consumption. The CM4 has access to all system SRAM. The RV32 has access to SRAM4, SRAM5, SRAM6, and SRAM7. Both the CM4 and the RV32 can execute from internal flash simultaneously. SRAM7 can be configured as an instruction cache for the RV32.

SLEEP Mode

This mode consumes less power, but wakes faster because the clocks can optionally be enabled.

The device status is as follows:

- CM4 is asleep.
- RV32 is asleep.
- CNN quadrants and memory are configurable.
- Peripherals are on.
- Standard DMA is available for optional use.

LOW POWER Mode (LPM)

This mode is suitable for running the RV32 processor to collect and move data from enabled peripherals.

The device status is as follows:

- The CM4, SRAM0, SRAM1, SRAM2, and SRAM3 are in state retention.
- CNN quadrants and memory are configurable and active.
- The RV32 can access the SPI, all UARTS, all timers, I²C, 1-Wire, pulse train engines, I²S, CRC, AES, TRNG, PCIF, and comparators, as well as SRAM4, SRAM5, SRAM6, and SRAM7. SRAM7 can be configured to operate as RV32 instruction cache.
- The transition from LOW POWER mode to ACTIVE mode is faster than the transition from BACKUP mode because system initialization is not required.
- The DMA can access flash.
- IPO and IPLL can be optionally powered down.
- The following oscillators are enabled:
 - IBRO
 - ERTCO
 - INRO
 - ISO

MICRO POWER Mode (µPM)

This mode is used for extremely low power consumption while using a minimal set of peripherals to provide wakeup capability.

The device status is as follows:

- Both CM4 and RV32 are state retained. System state and all SRAM is retained.
- CNN quadrants are powered off.
- CNN memory provides selectable retention.
- The GPIO pins retain their state.
- All non-MICRO POWER peripherals are state retained.
- The following oscillators are powered down:
 - IPO
 - IPLL
 - ISO
- The following oscillators are enabled:
 - IBRO
 - ERTCO
 - INRO
- The following MICRO POWER mode peripherals are available to wake up the device:
 - LPUART0
 - WWDT1
 - · All four low-power analog comparators

STANDBY Mode

This mode is used to maintain the system operation while keeping time with the RTC.

The device status is as follows:

- Both CM4 and RV32 are state retained. System state and all SRAM are retained.
- CNN quadrants are powered off.
- CNN memory provides selectable retention.
- GPIO pins retain their state.
- All peripherals are state retained.
- The following oscillators are powered down:
 - IPO
 - IPLL
 - ISO
 - IBRO
- The following oscillators are enabled:
 - ERTCO
 - INRO

BACKUP Mode

This mode is used to maintain the system RAM. The device status is as follows:

- CM4 and RV32 are powered off.
- SRAM0 thru SRAM7 can be configured to be state retained as per [[Table 0. Backup Mode SRAM Retention]].
- CNN memory provides selectable retention.
- All peripherals are powered off.

The following oscillators are powered down:

- IPO
- IPLL
- ISO
- IBRO

The following oscillators are enabled:

- ERTCO
- INRO

Table 1. BACKUP Mode SRAM Retention

RAM BLOCK	RAM SIZE
SRAM0	32KB + ECC
SRAM1	32KB
SRAM2	64KB
SRAM3	64KB
SRAM4	64KB
SRAM5	64KB
SRAM6	48KB
SRAM7	16KB

POWER DOWN Mode (PDM)

This mode is used during product level distribution and storage. The device status is as follows:

- CM4 and RV32 are powered off.
- All peripherals and SRAM are powered down.
- All oscillators are powered down.
- There is no data retention in this mode, but values in flash memory are preserved.
- Voltage monitors are operational.

Wakeup Sources

The sources of wakeup from the SLEEP, LOW POWER, MICRO POWER, STANDBY, BACKUP, and POWER DOWN operating modes are summarized in <u>Table 2</u>.

Table 2. Wakeup Sources

OPERATING MODE	WAKEUP SOURCE
SLEEP	Any enabled peripheral with interrupt capability; RSTN
LOW POWER (LPM)	SPI0, I ² S, I ² C, UARTs, timers, watchdog timers, wakeup timer, all comparators, RTC, GPIOs, RSTN, and RV32
MICRO POWER (µPM)	All comparators, LPUART, LPTMR1, LPTIMER2, LPWDT0, RTC, wakeup timer, GPIOs, RSTN
STANDBY	RTC, wakeup timer, GPIOs, CMP0, RSTN
BACKUP	RTC, wakeup timer, GPIOs, CMP0, RSTN
POWER DOWN (PDM)	P3.0, P3.1, RSTN

Real-Time Clock

An RTC keeps the time of day in absolute seconds. The 32-bit seconds register can count up to approximately 136 years and be translated to calendar format by application software.

The RTC provides a time-of-day alarm that can be programmed to any future value between 1 second and 12 days. When configured for long intervals, the time-of-day alarm can be used as a power-saving timer, allowing the device to remain in an extremely low-power mode, but still awaken periodically to perform assigned tasks. A second independent 32-bit 1/4096 subsecond alarm can be programmed with a tick resolution of 244µs. Both can be configured as recurring alarms. When enabled, either alarm can cause an interrupt or wake the device from most low-power modes.

The time base is generated by a 32.768kHz crystal or an external clock source that must meet the electrical/timing requirements in the *Electrical Characteristics* table.

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

The RTC calibration feature provides the ability for user software to compensate for minor variations in the RTC oscillator, crystal, temperature, and board layout. Enabling the SQWOUT alternate function outputs a timing signal derived from the RTC. External hardware can measure the frequency and adjust the RTC frequency in increments of ±127ppm with 1ppm resolution. Under most circumstances, the oscillator does not require any calibration.

Programmable Timers

32-Bit Timer/Counter/PWM (TMR, LPTMR)

General-purpose, 32-bit timers provide timing, capture/compare, or generation of pulse-width modulated (PWM) signals with minimal software interaction.

The timer provides the following features:

- 32-bit up/down autoreload
- Programmable prescaler
- PWM output generation
- Capture, compare, and capture/compare capability
- External pin multiplexed with GPIO for timer input, clock gating, or capture
- Timer output pin
- TMR0–TMR3 can be configured as 2 × 16-bit general-purpose timers
- Timer interrupt

The MAX78002 provides six 32-bit timers (TMR0, TMR1, TMR2, TMR3, LPTMR0, and LPTMR1). LPTMR0 and LPTMR1 are capable of operation in the SLEEP, LOW POWER, and MICRO POWER modes.

I/O functionality is supported for all of the timers. Note that the function of a port can be multiplexed with other functions on the GPIO pins, so it might not be possible to use all of the ports depending on the device configuration. See <u>Table 3</u> for individual timer features.

Table 3. Timer Configuration Options

	REGISTER	SINGLE	DUAL	SINGLE	POWER	CLOCK SOURCE						
INSTANCE	ACCESS NAME	32 BIT	16 BIT	16 BIT	MODE	PCLK	ISO	IBRO	INRO	ERTCO	LPTMR0_CLK	LPTMR1_C
TMR0	TMR0	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	Yes	No	No R
TMR1	TMR1	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No Yes No		No	No
TMR2	TMR2	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	Yes	No	No
TMR3	TMR3	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	Yes	No	No
LPTMR0	TMR4	No	No	Yes	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	No	Yes	Yes	Yes	Yes	No

Table 3. Timer Configuration Options (continued)

LPTMR1 TMR5 No No Yes SLEEP, LOW POWER, MICRO POWER

Watchdog Timer (WDT)

Microcontrollers are often used in harsh environments where electrical noise and electromagnetic interference (EMI) are abundant. Without proper safeguards, these hazards can disturb device operation and corrupt program execution. One of the most effective countermeasures is the windowed watchdog timer (WDT), which detects runaway code or system unresponsiveness.

The WDT is a 32-bit, free-running counter with a configurable prescaler. When enabled, the WDT must be periodically reset by the application software. Failure to reset the WDT within the user-configurable timeout period indicates that the application software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger an interrupt, system reset, or both. Either response forces the instruction pointer to a known good location before resuming instruction execution. The windowed timeout period feature provides more detailed monitoring of system operation, requiring the WDT to be reset within a specific window of time. See Table 4 for individual timer features.

The MAX78002 provides two instances of the watchdog timer—WDT0 and LPWDT0.

Table 4. Watchdog Timer Configuration Options

INSTANCE NAME	REGISTER ACCESS NAME	DOWER MODE				
INSTANCE NAME	REGISTER ACCESS NAME		PCLK	IBRO	INRO	ERTCO
WDT0	WDT0	ACTIVE, SLEEP, LOW POWER	Yes	Yes	No	No
LPWDT0	WDT1	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	Yes	Yes	Yes

Pulse Train Engine (PT)

Multiple, independent pulse train generators can provide either a square-wave or a repeating pattern from 2 to 32 bits in length. Any single pulse train generator or any desired group of pulse train generators can be synchronized at the bit level, allowing for multibit patterns. Each pulse train generator is independently configurable.

The pulse train generators provide the following features:

- Independently enabled
- · Safe enable and disable for pulse trains without bit banding
- Multiple pin configurations allow for flexible layout
- Pulse trains can be started/synchronized independently or as a group
- Frequency of each enabled pulse train generator is also set separately, based on a divide down (such as divide by 2, divide by 4, and divide by 8) of the input pulse train module clock
- Input pulse train module clock can be optionally configured to be independent from the system AHB clock
- Multiple repetition options
 - Single shot (nonrepeating pattern of 2 to 32 bits)
 - Pattern repeats user-configurable number of times or indefinitely
 - Termination of one pulse train loop count can restart one or more other pulse trains

The pulse train engine feature is an alternate function associated with a GPIO pin. In most cases, enabling the pulse train engine function supersedes the GPIO function.

The MAX78002 provide up to four instances of the pulse train engine peripheral (PT[3:0]).

Serial Peripherals

USB Controller

The integrated USB slave controller is compliant with the High-Speed (480Mb/s) USB 2.0 specification. The integrated USB physical interface (PHY) reduces board space and system cost. An integrated voltage regulator enables smart switching between the main supply and V_{DDB} when connected to a USB host controller. The USB controller supports DMA for the endpoint buffers. A total of 11 endpoint buffers are supported with configurable selection of IN or OUT in addition to endpoint 0.

I²C Interface (I2C)

The I²C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many or many-to-many communications medium. These engines support standard-mode, fast-mode plus and high-speed mode I²C speeds. It provides the following features:

- Master or slave mode operation
 - · Supports up to 4 different slave addresses in slave mode
- Supports standard 7-bit addressing or 10-bit addressing
- RESTART condition
- Interactive receive mode
- Tx FIFO preloading
- Support for clock stretching to allow slower slave devices to operate on higher speed busses
- Multiple transfer rates
 - Standard mode: 100kbps
 - · Fast mode: 400kbps
 - Fast mode plus: 1000kbps
 - · High-speed mode: 3.4Mbps
- Internal filter to reject noise spikes
- Receiver FIFO depth of 8 bytes
- Transmitter FIFO depth of 8 bytes

The MAX78002 provides three instances of the I²C peripheral—I2C0, I2C1, and I2C2.

I²S Interface (I2S)

The I²S interface is a bidirectional, four-wire serial bus that provides serial communications for codecs and audio amplifiers compliant with the I²S Bus Specification, June 5, 1996. It provides the following features:

- Master and slave mode operation
- Support for 4 channels
- 8, 16, 24, and 32 bit frames
- Receive and transmit DMA support
- Wakeup on FIFO status (full/empty/threshold)
- Pulse density modulation support for receive channel
- Word select polarity control
- · First bit position selection
- Interrupts generated for FIFO status
- Receiver FIFO depth of 32 bytes
- Transmitter FIFO depth of 32 bytes

The MAX78002 provides one instance of the I²S peripheral (I2S0).

Serial Peripheral Interface (SPI)

SPI is a highly configurable, flexible, and efficient synchronous interface among multiple SPI devices on a single bus. The bus uses a single clock signal and multiple data signals, and one or more slave select lines to address only the intended target device. The SPI operates independently and requires minimal processor overhead.

The provided SPI peripherals can operate in either slave or master mode and provide the following features:

- SPI modes 0, 1, 2, or 3 for single-bit communication
- 3- or 4-wire mode for single-bit slave device communication
- Full-duplex operation in single-bit, 4-wire mode
- Dual and quad data modes supported
- Multiple slave selects on some instances
- Multimaster mode fault detection
- Programmable interface timing
- Programmable SCK frequency and duty cycle
- 32-byte transmit and receive FIFOs
- Slave select assertion and deassertion timing with respect to leading/trailing SCK edge

The MAX78002 provides two instances of the SPI peripheral—SPI0 and SPI1. See Table 5 for configuration options.

Table 5. SPI Configuration Options

INSTANCE	DATA	DATA SLAVE SELECT LINES 81 CTBGA MAXIMUM FREQUENCY MASTER MODE (MHz)		MAXIMUM FREQUENCY SLAVE MODE (MHz)
SPI0	3-wire, 4-wire, dual, or quad data support	3	50	50
SPI1	3-wire, 4-wire, dual, or quad data support	1	25	50

UART (UART, LPUART)

The universal asynchronous receiver-transmitter (UART, LPUART) interface supports full-duplex asynchronous communication with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry-standard request to send (RTS) and clear to send (CTS) flow control signaling. Each instance is individually programmable.

- 2-wire interface or 4-wire interface with flow control
- 8-byte send/receive FIFO
- Full-duplex operation for asynchronous data transfers
- Interrupts available for frame error, parity error, CTS, Rx FIFO overrun, and FIFO full/partially full conditions
- Automatic parity and frame error detection
- Independent baud-rate generator
- Programmable 9th-bit parity support
- Multidrop support
- Start/stop bit support
- Hardware flow control using RTS/CTS
- 12.5Mbps for UART maximum bit rate
- 1.85Mbps for LPUART maximum bit rate
- Two DMA channels can be connected (read and write FIFOs)
- Programmable word size (5 bits to 8 bits)

The MAX78002 provides four instances of the UART peripheral—UART0, UART1, UART2, and LPUART0. LPUART0 is capable of operation in the SLEEP, LOW POWER, and MICRO POWER modes. See <u>Table 6</u> for configuration options.

Table 6. UART Configuration Options

INSTANCE NAME	REGISTER ACCESS NAME	HARDWARE FLOW CONTROL	POWER MODE	CLOCK SOURCE		
INSTANCE NAME	REGISTER ACCESS NAME	HARDWARE FLOW CONTROL	POWER MODE	PCLK	IBRO	ERTCO
UART0	UART0	Yes	ACTIVE, SLEEP, LOW POWER	Yes	Yes	No
UART1	UART1	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	No

Table 6. UART Configuration Options (continued)

UART2	UART2	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	No
LPUART0	UART3	No	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	Yes	Yes

1-Wire Master (OWM)

Maxim's 1-Wire bus consists of one signal that carries data and also supplies power to the slave devices and a ground return. The bus master communicates serially with one or more slave devices through the bidirectional, multidrop 1-Wire bus. The single-contact serial interface is ideal for communication networks requiring minimal interconnection.

The provided 1-Wire master supports the following features:

- Single contact for control and operation
- Unique factory identifier for any 1-Wire device
- Multiple device capability on a single line

The OWM supports both standard (15.6kbps) and overdrive (110kbps) speeds.

Standard DMA Controller

The standard DMA controller allows automatic one-way data transfer between two entities. These entities can be either memories or peripherals. The transfers are done without using CPU resources. The following transfer modes are supported:

- 4-channel
- Peripheral to data memory
- Data memory to peripheral
- Data memory to data memory
- Event support

All DMA transactions consist of an AHB burst read into the DMA FIFO followed immediately by an AHB burst write from the FIFO.

The MAX78000 provides one instance of the standard DMA controller.

Security

AES

The dedicated hardware-based AES engine supports the following algorithms:

- AES-128
- AES-192
- AES-256

The AES keys are automatically generated by the engine and stored in dedicated flash to protect against tampering. Key generation and storage is transparent to the user.

True Random Number Generator (TRNG) Non-Deterministic Random Bit Generator (NDRBG)

The device provides a non-deterministic entropy source that can be used to generate cryptographic seeds or strong encryption keys as part of an overall framework for a secure customer application.

Software can use random numbers to trigger asynchronous events that add complexity to program execution to thwart replay attacks or key search methodologies.

The TRNG can support the system-level validation of many security standards. Maxim Integrated will work directly with the customer's validation laboratory to provide the laboratory with any required information. Contact Maxim Integrated for details of compliance with specific standards.

CRC Module

A cyclic redundancy check (CRC) hardware module provides fast calculations and data integrity checks by application software. It supports a user-defined programmable polynomial up to 32-bits. Direct memory access copies data into the CRC module so that CRC calculations on large blocks of memory are performed with minimal CPU intervention. Examples of common polynomials are depicted in <u>Table 7</u>.

Table 7. Common CRC Polynomials

ALGORITHM	POLYNOMIAL EXPRESSION	ORDER	POLYNOMIAL	CHECK
CRC-32-ETHERNET	x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x^{1} + x^{0}	0xEDB8 8320	LSB	0xDEBB 20E3
CRC-CCITT	x ¹⁶ + x ¹² + x ⁵ + x ⁰	0x0000 8408	LSB	0x0000 F0B8
CRC-16	x ¹⁶ + x ¹⁵ + x ² + x ⁰	0x0000 A001	LSB	0x0000 B001
USB DATA	$x^{16}+ x^{15} + x^{2}+ x^{0}$	0x8005 0000	LSB	0000 0000
PARITY	x ¹ + x ⁰	0x0000 0001	MSB	_

Bootloader

The bootloader allows loading and verification of program memory through a UART or SWD interface. It provides the following features:

- Program loading of Motorola[®] SREC format files
- Permanent lock state prevents altering or erasing program memory
- Access to the USN for device or customer application identification
- Disable SWD interface to block debug access port functionality

Secure Bootloader

Versions of the device which support the secure feature provides the following features:

- Optional challenge/response through secret HMAC SHA-256 authenticates host before executing bootloader commands
- · Automatic program memory verification and authentication before execution after every reset (secure boot)

Debug and Development Interface (SWD, JTAG)

The serial wire debug interface is used for code loading and ICE debug activities for the CM4. JTAG interface is provided for the RV32. All devices in mass production have the debugging/development interface enabled.

Motorola is a registered trademark and registered service mark of Motorola Trademark Holdings, LLC.

PRELIMINARY

Ordering Information

PART	FLASH (MB)	SYSTEM RAM (KB)	BOOTLOADER	SECURE BOOT	PIN-PACKAGE
MAX7800GXE+	2.5	384 + ECC 8	Yes	No	144 CSBGA, 12mm x 12mm, 0.8mm pitch

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	TBD	Initial release	_

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.