UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATIONS, DECEMBER 2000 CHE 112F - PHYSICAL CHEMISTRY

Examiners: C.E. Chaffey, F.R. Foulkes, V.G. Papangelakis

Time allowed: 2.5 hours

Be sure to PRINT your name on every page!

General Instructions:

- 1. All calculations are to be made on the special pages supplied, which are to be handed in.
- 2. One question and solution per page. No marks will be assigned for material on other pages.
- 3. Use the back of the same page, if necessary.
- 4. Write all final answers in the rectangular boxes provided.
- 5. Marks will be deducted for answers not reported with a reasonable number of significant figures.
- 6. Programmable calculators are not permitted.

Data

1 atm =
$$1.01325 \times 10^5 \text{ Pa} = 1.01325 \text{ bar}$$
 R = $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ F=96 487 C mol⁻¹ T =0 + 273.15 N_A =6.02214 x 10^{23} mol^{-1} I mole of ideal gas at STP occupies 22.414 L

Data at 298 K, for $P^{\circ} = 1$ bar:

Substance	Formula	$\int \frac{c_p}{mol^{-1}} K^{-1}$	$\frac{s}{J} \frac{s}{K^{-1}} mol^{-1}$	$\Delta { m h_f}^{\circ}$ KJ mol $^{-1}$	$\Delta { m g_f}^\circ \ { m kJ~mol}^{-1}$
Carbon	C _(s) (graphite)	8.51	5.74	0	0
Hydrogen	$H_{2(g)}$	28.84	130.68	0	0
Oxygen	$O_{2(g)}$	29.38	205.15	0	0
Ethylene oxide	$C_2H_4O_{(g)}$	47.90	243.01	-52.64	-13.16
Ethanol	$C_2H_5OH_{(g)}$	65.44	282.70	-234.81	-168.20
Ethanol	$C_2H_5OH_{(liq)}$	112.3	165.27	-275.86	-174.25

Additional formulas:
$$\overset{\circ}{E}_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} \ln \left(\frac{a_C^c \cdot a_D^d}{a_A^a \cdot a_B^b} \right)$$

$$\Delta S^{\circ} = \sum_{\text{Products}} n_i s_i^{\circ} - \sum_{\text{Re } ac \text{ tan } ts} n_i s_i^{\circ}$$

$$\Delta G^{\circ} = \sum_{\text{Products}} n_i \left(\Delta g_f^{\circ} \right)_i - \sum_{\text{Re } ac \text{ tan } ts} n_i \left(\Delta g_f^{\circ} \right)_i$$

$$\Delta H^{\circ} = \sum_{\text{Products}} n_i \left(\Delta g_f^{\circ} \right)_i - \sum_{\text{Re } ac \text{ tan } ts} n_i \left(\Delta g_f^{\circ} \right)_i$$

- 1. (a) The solubility at 25°C of barium fluoride (BaF₂) in 0.500 M aqueous HC1 solution is 0.0100 mol L⁻¹. Calculate the solubility product K_{sp} of barium fluoride in water at 25°C. Note that some of the F⁻ ions in the above-mentioned HC1 solution will combine with some of the H⁺ ions to produce some undissociated hydrofluoric acid (HF), which is a weak acid with an acid dissociation constant at 25°C of $K_a = 0.0200$. For this problem you may neglect activity coefficient corrections. State and justify any simplifying assumptions you make.
- (b) A 500 mL solution of 0.300 M acetic acid (CH₃COOH) is added to 500 mL of 0.100M NaOH solution, both at 25°C. Calculate the final pH of the resulting solution at 25°C. The acid dissociation constant of aqueous acetic acid at 25°C is $K_a = 1.754 \times 10^{-5}$ For this problem you may neglect activity coefficient corrections, may assume that molarity = molality, and may assume that solution volumes are additive

Ans: (a) 6.4 x 10⁻⁹ (b) 4.45

- 2. (a) At 0°C and one atm partial pressure, the solubility in water of oxygen is $48.9 \text{ cm}^3 \text{ L}^{-1}$. How much oxygen will dissolve in ice water at 0°C that is exposed to the air at 0°C and one atm pressure? Report the O₂ solubility in millimoles per litre (mmol L⁻¹), Air may be considered to be 79.0% by volume nitrogen (N₂) and 21.0% by volume oxygen (O₂).
- (b) Elemental sulfur undergoes a phase transition by changing its crystallographic form from rhombic to monoclinic (both solid):

 $S(rhombic) \rightarrow S(monoclinic)$

The two forms are in equilibrium at 115°C under one atm pressure, whereas the equilibrium temperature is 200°C when the pressure is 100 atm. The enthalpy change of the above phase transformation may be assumed to be constant at +300 J mol⁻¹. Which of the two forms is more dense? Show your reasoning for reaching your conclusion.

Ans: (a) 0.458 mmol L⁻¹ (b) Rhombic

- 3. (a) 60.0 mol of gaseous methane (CH₄) is pumped into an evacuated (empty) rigid vessel. When the temperature of the methane in the vessel is 730°C, its pressure is 6.00 bar. What is the volume of the vessel? Report your answer in m³.
- (b) 60.0 mol of gaseous methane (CH₄) and 60.0 mol of steam are pumped into an evacuated (empty) rigid vessel. The initial temperature of the gas in the vessel is 730°C and the total initial pressure is 12.0 bar. Then the following reaction producing gaseous carbon monoxide and hydrogen proceeds to equilibrium:

$$CH_4 + H_2O_{(g)} = CO_{(g)} + 3H_{2(g)}$$

The temperature is constant at 730° C, and the volume is constant. At 730° C, the thermodynamic equilibrium constant for this reaction is K = 27.0. What is the equilibrium mole fraction of H_2 ? Hint: At constant volume and temperature, the partial pressure of each gas is directly proportional to its number of moles.

Ans: (a) 0.8340 m³ (b) 0.375

4. Ethylene oxide (C_2H_4O) can react with hydrogen gas to produce ethanol (C_2H_5OH) :

$$C_2H_4O_{(g)} + H_{2(g)} = C_2H_5OH_{(liq)}$$

For this reaction producing one mol of liquid ethanol at one bar pressure, calculate:

- (a) the molar entropy change, ΔS° at T=298K, at T = 298 K;
- (b) the molar Gibbs free energy change, ΔG° , at T= 298 K;
- (c) the molar enthalpy change ΔH° , at T= 340 K, a higher temperature.

Ans: (a)
$$-208.42 \text{ J K}^{-1} \text{ mol}^{-1}$$
 (b) $-161.09 \text{ kJ mol}^{-1}$ (c) $-221.73 \text{ kJ mol}^{-1}$

5. (a) Consider the following unbalanced redox reaction:

$$H_2C_2O_4 + M_0O_4^{2-} \xrightarrow{acid} CO_2 + M_0^{3+}$$

Using the method of half-reactions:

- (i) Determine the balanced oxidation half-reaction;
- (ii) Determine the balanced reduction half-reaction; and
- (iii) Determine the balanced overall reaction.

Ans:
$$a(i) \text{ H}_2\text{C}_2\text{O}_4 \rightarrow 2\text{CO}_2 + 2\text{H}^+ + 2\text{e}^-$$

(ii) $\text{MoO}_4^{2^-} + 8\text{H}^+ \rightarrow \text{Mo}^{3^+} + 4\text{H}_2\text{O}$

(iii)
$$3H_2C_2O_4 + 2MoO_4^{2-} + 10H^+ \rightarrow 6CO_2 + 2Mo^{3+} + 8H_2O$$

- (b) For the cell $Cu_{(s)} \mid 0.00100 \text{ molal } CuSO_{4(aq)} \mid 0.00100 \text{ molal } Cu_2SO_{4(aq)} \mid Cu_{(s)}$
- (i) Write the anode, cathode, and overall cell reaction when n = 2.
- (ii) Calculate a_{Cu^+} the molal activity of the cuprous ions (Cu⁺) in the 0.00100 molal aqueous Cu₂SO₄, solution, using the Debye-Hückel equation for aqueous solutions at 25°C to calculate the cation activity coefficient:

$$\log_{10}\gamma_{i} = -0.5108z_{i}^{2}\sqrt{I}$$

You may assume that at the low concentrations involved, molarity = molality, and that all the salts are completely dissociated into ions. (5)

- (iii) Calculate the cell voltage at 25°C, taking into account the activities of the cuprous and cupric ions when using the Nernst equation. (5)
- (iv) What is the numerical value of the equilibrium constant K at 25°C for the reaction

$$2Cu^{+}_{(aq)} \iff Cu(s) + Cu^{++}_{(aq)} \qquad K = \frac{a_{Cu++}}{a_{Cu+}^2}$$

Data: $\begin{array}{ccc} Cu^{+}_{(aq)} + e^{-} <==> Cu_{(s)} & E^{\circ}_{298.15} \text{ (V vs SHE)} \\ Cu^{++}_{(aq)} + 2e^{-} <==> Cu_{(s)} & E^{\circ}_{2}; = +0.337 \text{ V} \end{array}$

Ans:
$$b(i)$$
Anode: $Cu \rightarrow Cu^{++} + 2e^{-}$
Cathode: $2Cu^{+} + 2e^{-} \rightarrow 2Cu$
Cell: $2Cu^{+} \rightarrow Cu + Cu^{++}$
(ii) 1.88×10^{-3} ; (iii) $0.111V$;
(iv) 1.22×10^{6}

[Total Marks 100]