Linear systems

Consider $m{A} \in \mathcal{L}(X)$ with eigenvalues λ_i and the ODE

$$\dot{\pmb{y}} = \pmb{A}\pmb{y}$$

The solution is $\mathbf{y}(t) = \exp(\mathbf{A}t)\mathbf{y}_0$, hence $\mathbf{y}^* = \mathbf{0}$ is

- ▶ assymptotically stable if $\Re \lambda_i < 0$, $\forall i$
- ightharpoonup stable if $\Re \lambda_i \leq 0$, $\forall i$ Bonded by a multiple
- ▶ unstable if $\exists i$ such that $\Re \lambda_i > 0$

Linear systems

Consider $\mathbf{A} \in \mathcal{L}(X)$ with eigenvalues λ_i and the ODE

$$\dot{y} = Ay$$

The solution is $y(t) = \exp(\mathbf{A}t)y_0$, hence $y^* = \mathbf{0}$ is

- ightharpoonup assymptotically stable if $\Re \lambda_i < 0$, $\forall i$
- ▶ stable if $\Re \lambda_i < 0$. $\forall i$
- ▶ unstable if $\exists i$ such that $\Re \lambda_i > 0$

Form Hartman-Grobman:

Consider $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ and define $\mathbf{A} = D\mathbf{f}(\mathbf{x}^*)$ and λ_i the eigenvalues of \mathbf{A} . The equilibrium $\mathbf{x}^{\mathbf{N}}$ is

- assymptotically stable if $\Re \lambda_i < 0$, $\forall i$ cannot tell stability if $\exists i$ s.t. $\Re \lambda_i = 0$ Lyapunous direct method
- ▶ unstable if $\exists i$ such that $\Re \lambda_i > 0$

No equivilence between liver system.

BIBO stability

Bounded Input - Bounded Output (BIBO) stability Consider

$$\Rightarrow \underline{\dot{y} = Ay + Bu}, \quad \boxed{||u(\underline{t})|| \langle b|| + \varepsilon R}$$

Theorem

- input is bounded If the equilibrium $\mathbf{x}^* = \mathbf{0}$ is assymptotically stable. then our system is BIBO stable.

Note this applies for nonlinear systems, but only

The End