Modelling malaria transmission and control

Sebastian Funk

Centre for the mathematical modelling of infectious diseases London School of Hygiene & Tropical Medicine

Modelling malaria transmission and contro

Objectives of this lecture

- Become familiar with the Ross-MacDonald model for malaria transmission
- Appreciate the key features of malaria epidemiology and how these affect transmission dynamics
- Understand the basic reproductive ratio of malaria and how its components are linked to control

Modelling malaria transmission and control

Ronald Ross

* 1857, Almora, India † 1932, London

1897: Malaria in mosquito 1902: Nobel Prize

"...With tears and toiling breath, I find thy cunning seeds, O million-murdering Death."

Modelling malaria transmission and contro

Ronald Ross

A priori method

"we assume a knowledge of the causes, construct our differential equations on that supposition, follow up the logical consequences, and finally test the calculated results by comparing them with the observed statistics."

A posteriori method

"we commence with observed statistics, endeavour to fit analytical laws to them, and so work backwards to the underlying cause."

Ross (1916-1917)

An application of the theory of probabilities to the study of a priori pathometry. I-III Philos Trans R Soc Lond A

Philos Trans R Soc Lond A

George MacDonald

* 1903, Sheffield † 1967, London

An overview of malaria

- Malaria parasite = the protozoan Plasmodium
- 5 species which infect humans:
 - P. falciparum: most dangerous (cerebral malaria/severe anaemia)
 - P. vivax: milder disease but still significant (relapsing)
 - P. ovale (relapsing), P. malariae: rarer, mostly benign disease
 - P. knowlesi: zoonosis from monkeys (Singh & Cox-Singh 2004)
- Ancient disease, ~50,000-100,000 years old
 - Strong force in human evolution

Modelling malaria transmission and contr

Equations of a basic Ross-MacDonald model

 $\lambda_{\text{H}}\text{:}$ force of infection on humans r: recovery rate from Malaria

 S_H , I_H , S_M , I_M are the proportions of humans/mosquitoes that are susceptible/infected, i.e., $\boldsymbol{I}_{\boldsymbol{H}}$ is the prevalence of infection in humans.

 $\lambda_{M} \\ :$ force of infection on mosquitoes $\mu \\ :$ mosquito death rate

Force of infection: humans

 λ_H

From the viewpoint of a susceptible human: The rate at which I'll get infected with malaria

= (rate at which infected mosquitoes bite me and transmit infection)

- = (rate at which I get bitten by mosquitoes) · (proportion of mosquitoes that are infected) . (probability that I get infected when bitten by an infected mosquito)
- = (rate at which one mosquito bites) · (number of mosquitoes) · (probability that a biting mosquito chooses me) (proportion of mosquitoes that are infected) · (probability that I get infected when bitten by an infected mosquito)

Force of infection: humans

 λ_H

From the viewpoint of a susceptible human: The rate at which I'll get infected with malaria

$$I_H = aM \frac{1}{H} I_M b$$

= (rate at which one mosquito bites) · (number of mosquitoes) · (probability that a biting mosquito chooses me) . (proportion of mosquitoes that are infected) · (probability that I get infected when bitten by an infected mosquito)

Force of infection: humans

Entomological inoculation rate (EIR)

Where

- a = biting rate
- (number of bites taken on humans per mosquito per time unit)
- m = number of mosquitoes per human (m=M/H)
- I_M = prevalence of infection in mosquitoes
- = probability that a bite by an infectious mosquito leads to successful mosquito-to-human transmission

Force of infection on humans depends on prevalence in mosquitoes

Equations of a basic Ross-MacDonald model

 $\begin{cases} \frac{dS_H}{dt} = rI_H - I_H S_H \\ \frac{dI_H}{dt} = I_H S_H - rI_H \end{cases}$

 λ_{H} : force of infection on humans r: recovery rate from Malaria

 $S_{H}\text{, }I_{H}\text{, }S_{M}\text{, }I_{M}$ are the proportions of humans/mosquitoes that are susceptible/infected, i.e., $I_{\rm H}$ is the prevalence of infection in humans.

 $\frac{dS_{M}}{dt} = M - I_{M}S_{M} - MS_{M}$ $\lambda_{M}: \text{ force of infection on mosquitoes}$ $\mu: \text{ mosquito death rate}$

Force of infection: mosquitoes

 λ_M

From the viewpoint of a susceptible mosquito: The rate at which I'll get infected with malaria

- = (rate at which I bite infectious humans and become infected)
- = (rate at which I bite humans) · (probability that a human is infected) · (probability that I become infected through the bite)

 $I_{M} = aI_{H}c$

Force of infection: mosquitoes

$\lambda_M = acI_H$

197

Where

- a = biting rate (as above)
- c = probability that a bite taken on infectious human leads to successful human-to-mosquito transmission
- I_H = prevalence of infectious humans

Force of infection on mosquitoes depends on prevalence in humans

Modelling malaria transmission and contro

Equations of a basic Ross-MacDonald model

$$\begin{cases} \frac{dS_H}{dt} = rI_H - I_H S_H \\ \frac{dI_H}{dt} = I_H S_H - rI_H \end{cases}$$

 $S_{\rm H}, I_{\rm H}, S_{\rm M}, I_{\rm M}$ are the proportions of humans/mosquitoes that are susceptible/infected, i.e., $I_{\rm H}$ is the prevalence of infection in humans.

$$\begin{cases} \frac{dS_M}{dt} = m - I_M S_M - m S_M \\ dI \end{cases}$$

$$\left(\frac{dI_M}{dt} = I_M S_M - mI_M\right)$$

Modelling malaria transmission and contr

Equations of a basic Ross-MacDonald model

 S_H, I_H, S_M, I_M are the proportions of humans/mosquitoes that are susceptible/infected, i.e., I_H is the prevalence of infection in humans.

Modelling malaria transmission and control

Objectives of this lecture

- Become familiar with the Ross-MacDonald model for malaria transmission
- Appreciate the key features of malaria epidemiology and how these affect transmission dynamics
- Understand the basic reproductive ratio of malaria and how its components are linked to control

Smith DL et al. (2012).
Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens.
PLoS Pathog 8(4): e1002588.http://dx.doi.org/10.1371/journal.ppat.1002588