MCWtests

1. Introduction to MCW testing

Originally, Monte Carlo-Wilcoxon (MCW) tests were designed to determined whether the differences between two sets of data were significantly biased in the same direction when compared with what it would be expected by chance. MCW tests proceed by calculating sum-of-ranks-based bias indexes, hence the reference to Frank Wilcoxon who invented the non-parametric rank-sum and signed-rank tests, before and after rearranging the dataset multiple times, hence the Monte Carlo reference often associated to analytical strategies based on repeated random sampling ^{1–5}.

The *MCWtests* package encompasses the original MCW test and three variations that differ in the data structures and the specific questions they interrogate.

- The **matched-measures univariate MCW (muMCW) test**, the original MCW test^{1–5}, assesses whether one set of inherently matched-paired measures is significantly biased in the same direction. For instance, muMCW tests can be used to analyze bodyweights or transcript abundances determined at two different timepoints for the same set of mice.
- The unmatched-measures MCW (uMCW) test assesses whether two sets of unmatched
 measures and their heterogeneity are significantly biased in the same direction. For instance,
 uMCW tests can be used to analyze bodyweights or transcript abundances determined for two sets
 of mice that have been maintained in different conditions.
- The matched-measures bivariate MCW (mbMCW) test assesses whether two sets of inherently matched-paired measures are significantly differentially biased in the same direction. For instance, mbMCW tests can be used to analyze bodyweights or transcript abundances determined at two different timepoints for two sets of mice that have been exposed to different conditions.
- The bias-measures MCW (bMCW) test assesses whether a set of measures of bias for a quantitative trait between two conditions or a subset of these bias measures are themselves significantly biased in the same direction. For instance, bMCW tests can be used to analyze bias indexes obtained using other MCW tests or fold change for transcript abundances spanning the entire transcriptome or only for genes located in specific genomic regions from two sets of mice exposed to different conditions.

2. MCW testing process

Although each MCW test examines distinct data structures to address slightly different questions, all MCW tests share two fundamental steps:

- 1. To quantitatively determine the extent and direction of the bias of the measure under analysis, MCW tests calculate a bias index (BI) by summing ranks and dividing these sums by the maximum possible value of the sums. Consequently, BIs range from 1 to -1 when the measure under analysis is completely biased in each possible direction.
- 2. To determine the significance of the BIs calculated for the user-provided dataset (observed BIs), a collection of expected-by-chance BIs is generated by rearranging the original dataset

multiple times and calculating BIs for each iteration. P_{upper} and P_{lower} values are calculated as the fractions of expected-by-chance BIs that have values higher or equal to and lower or equal to the observed BIs, respectively.

Each MCW test employs the user-provided parameter *max_rearrangements* to follow two alternative paths.

- **MCW exact tests.** If the number of distinct rearrangements that can be generated from the dataset under analysis is less than *max_rearrangements*, MCW tests will actually generate all possible data rearrangements to create the collection of expected-by-chance BIs. In this case, *P~upper~* and *P~lower~* values will be exact estimations of the likelihood of obtaining BIs with equal or more extreme values compared to observed BIs with datasets of the same size and range but different internal structures.
- **MCW approximated tests.** If the number of distinct rearrangements that can be generated from the dataset under analysis is greater than *max_rearrangements*, MCW tests will perform a specified number of random data rearrangements, equal to the value of *max_rearrangements*, to generate the collection of expected-by-chance BIs. In this case, *P~upper~* and *P~lower~* values will represent approximate estimations of the likelihood of obtaining BIs with equal or more extreme values compared to observed BIs with datasets of the same size and range but different internal structures.

3. MCWtests data and function structure

Each MCW test involves two local files, one exported function that users interacts with, and several internal functions that perform specific tasks.

1. Local files:

 Entry CSV dataset. Users provide data for MCW testing in a CSV file in the directory of their choice. This file can contain data for a single MCW test or multiple MCW tests to be executed simultaneously. Users can organize the entry dataset in two different layouts, vertical or horizontal, which is particularly useful for simultaneous testing when the data structures for each individual test are significantly different or very similar, respectively.

• **Results CSV table**. MCW test functions create a CSV file with the results of MCW testing, with a similar name to the entry CSV dataset file, in the same directory where the entry CSV is located.

2. Exported functions:

- MCWtest function: When executing this function, users must specify the path to the CSV file
 containing the entry dataset and the parameter max_rearrangements. The MCWtest function
 interprets this parameter as the maximum number of data rearrangement iterations used to define
 the size of the collection of expected-by-chance Bls. The MCWtest function performs the following
 tasks:
 - It loads the entry CSV dataset.
 - It determines whether MCW tests will proceed using the exact or approximated testing paths.
 - It calls the corresponding functions, *MCW_exact_test* and *MCW_approximated_test*, to run the exact and approximated tests, resepctively.
 - It writes the results of MCW testing to a CSV file in the same directory as the entry CSV file.

3. Internal functions:

- MCW_exact_test function: This function is called when the number of distinctive data rearrangements is less than the user-provided parameter max_rearrangements. The MCW_exact_test function performs the following tasks:
 - It generates all distinctive data rearrangements, either on its own or by executing the *MCW exact test combinations* function.
 - It calculates Bls for the user-provided data and each of the distinctive rearrangements of the dataset.
 - It calculates the P_{upper} and P_{lower} values as the fractions of expected-by-chance BIs with values higher or equal to and lower or equal to the observed BIs, respectively.
 - It returns the MCW exact testing results to the MCWtest function.
- MCW_exact_test_combinations function: This function is called to assist the MCW_exact_test function in generating all distinctive data rearrangements.
- MCW_approximated_test function: This function is called when the number of distinctive data rearrangements is greater than the user-provided parameter max_rearrangements. The MCW approximated test function performs the following tasks:
 - It calls the MCW_approximated_test_observed_BIs function to calculate BIs for the user-provided dataset.
 - It calls the MCW_approximated_test_simulated_BIs function to randomly rearrange the data and calculate the expected-by-chance BIs a specified number of times, which is equal to max_rearrangements.
 - It calculates the P_{upper} and P_{lower} values as the fractions of expected-by-chance BIs with values higher or equal to and lower or equal to the observed BIs, respectively.
 - It returns the MCW approximated testing results to the MCWtest function
- MCW_approximated_test_observed_Bls function: This function is called to calculate Bls for the user-provided dataset.
- MCW approximated test simulated BIs function: This function is called N times, where N =

max_rearrangements, to randomly rearrange the data and calculate the expected-by-chance Bls using the MCW_approximated_test_observed_Bls function.

4. Specific MCW tests

4.1 unmatched-measures MCW (uMCW) test

Introduction

The uMCW test is actually a combination of two different tests that assess whether two sets of unmatched measures and their heterogeneity are significantly biased in the same direction. Significantly different data heterogeneities between two conditions could indicate that the measure under analysis is more constrained or more relaxed in one of the conditions, potentially providing insights into the mechanisms underlying the variation of such measure. For instance, uMCW tests can be used to analyze bodyweights or transcript abundances determined for two sets of mice that have been maintained in different conditions.

uMCW testing entry dataset formatting

When executing the *uMCWtest* function, users must provide the path to a local CSV file named *X_uMCWtest_data.csv*, where *X* serves as a user-defined identifier. *X_uMCWtest_data.csv* can be structured in two distinct formats:

- Vertical layout: This format allows appending datasets with varying structures, such as different numbers of measures per set or between each appended test. Vertical entry datasets should include the following columns:
 - The condition column uniquely identifies each of the two measure sets under analysis.
 - The value column contains the actual measures under analysis.
 - As many informative columns as needed by users to contextualize the results of each test.
 The names of these columns should not include the terms *condition* or *value*. While these columns are optional when running a single test, at least one column is required when running multiple tests simultaneously. All rows for each individual test must contain the same information in these columns.
- Horizontal layout: This format allows appending datasets with similar structures, such as the same number of measures collected for each of the two conditions. Horizontal entry datasets should include the following columns:
 - Columns condition_a and condition_b uniquely identify the two measure sets under analysis.
 - Columns *a.i* and *b.j*, where *i* and *j* represent integers to differentiate specific measures within each set, contain the actual measures under analysis.
 - As many informative columns as needed by users to contextualize the results of each test.
 The names of these columns should not contain the term *condition* or have the same structure as the *a.i* and *b.j* columns. While these columns are optional when running a single test, at least one column is required when running multiple tests simultaneously.

The function *uMCWtest* eliminate missing values (NAs) from the dataset before proceeding these steps.

- To estimate the bias between the two sets of measures (e.g., a and b), the function uMCWtest performs these tasks:
 - It generates all possible disjoint data pairs using measures from both sets.
 - For each measure pair, it subtracts the second measure in the pair from the first measure in the pair.
 - It ranks the absolute values of all non-zero measure pair differences from lowest to highest.
 Measure pair differences with a value of 0 are assigned a 0 rank. If multiple measure pair differences have the same absolute value, all tied measure pair differences are assigned the lowest rank possible.
 - It assigns each measure pair rank a sign based on the sign of its corresponding measure pair difference.
 - It sums the signed ranks for measure pairs formed with measures from the two different sets (e.g., a-b and b-a).
 - For each type of disjoint set measure pairs (e.g., a-b and b-a), it calculates uMCW_BI by dividing the sum of signed ranks by the maximum number this sum could have if the corresponding measure pairs had the highest possible positive ranks. Consequently, uMCW_BI ranges between 1 when all the values for measures in the first set are higher than all the values from measures in the second set, and -1 when all the values for measures in the first set are lower than all the values from measures in the second set.
- To estimate the bias between the heterogeneity of two sets of measures, the function *uMCWtest* performs these tasks:
 - It generates all possible disjoint data pairs within each set, disregarding the order of the paired measures. For instance, the measure pair a.1-a.2 is considered equivalent to the measure pair a.2-a.1, and only the former is retained for the subsequent calculations.
 - For each measure pair, it subtracts the second measure from the first measure.
 - It ranks all measure pair differences with non-zero values from lowest to highest. Measure
 pair differences with a value of 0 are assigned a 0 rank. If multiple measure pair differences
 have the same absolute value, uMCWtest assigns all tied measure pair differences the lowest
 rank possible.
 - It sums ranks for measure pairs formed with measures from the same set (e.g., a-a and b-b).
 - For each type of same-set measure pairs (e.g., a-a and b-b), it divides each sum of signed ranks by the maximum number this sum could have if the corresponding measure pairs had the highest possible ranks.
 - It calculates two heterogeneity bias indexes (uMCW_HBIs) by subtracting the normalized sum of signed ranks from the previous step in two possible directions (e.g., a-b and b-a).
 Consequently, uMCW_HBI ranges between 1 when at least two measures in the first set have distinct values and all measures in the second set have the same value, and -1 when all measures in the first set have the same value and at least two measures in the second set have distinct values.
- To assess the significance of the uMCW_BIs and uMCW_HBIs obtained with the user-provided data (observed uMCW_BIs and uMCW_HBIs), the function *uMCWtest* performs these tasks:
 - It generates a collection of expected-by-chance uMCW_BIs and uMCW_HBIs. These
 expected values are obtained by rearranging the measures between the two sets multiple
 times. The user-provided parameter max_rearrangements determines the two paths that the
 function uMCWtest can follow to generate the collection of expected-by-chance uMCW_BIs

and uMCW_HBIs:

- uMCW exact testing: If the number of distinct measure rearrangements that can alter their initial set distribution is less than max_rearrangements, the function uMCWtest calculates uMCW_BIs and uMCW_HBIs for all possible data rearrangements.
- *uMCW approximated testing*: If the number of distinct measure rearrangements that can alter their initial set distribution is greater than *max_rearrangements*, the function *uMCWtest* will perform N = *max_rearrangements* random measure rearrangements to calculate the collection of expected-by-chance uMCW_BIs and uMCW_HBIs.
- It calculates P_{upper} and P_{lower} values as the fraction of expected-by-chance uMCW_BIs and uMCW_HBIs that are higher or equal to and lower or equal to the observed uMCW_BIs and uMCW_HBIs, respectively.

uMCW testing results

The *uMCWtest* function reports to the console the total number of tests it will execute, and their exact and approximated counts. It also creates a CSV file named *X_uMCWtest_results.csv*, where *X* is a user-defined identifier for the entry dataset CSV file. The *X_uMCWtest_results.csv* file contains four rows for each uMCWtest, two for uMCW_BIs calculated for each condition contrast (e.g., a-b and b-a), and two for uMCW_HBIs calculated for each condition contrast.

The *X_uMCWtest_results.csv* file includes the following columns:

- User-provided informative columns to contextualize the results of each test.
- Columns condition_a and condition_b indicate the two measure sets under analysis.
- Columns N, n_a and n_b indicate the total number of measures and the number of measures belonging to each set after removing missing values (NAs).
- Column test_type distinguishes between exact and approximated tests.
- Column BI_type indicates the bias index type (uMCW_BI and uMCW_HBI) for each row of results.
- Column condition_contrast indicates the set contrast (e.g., a-b or b-a) for each row of results.
- Column *observed_BI* contains the values of uMCW_BIs and uMCW_HBIs obtained from analyzing the user-provided dataset.
- Column expected_by_chance_BI_N indicates the number of data rearrangements used to calculate
 the expected-by-chance uMCW_BIs and uMCW_HBIs. This value corresponds to the lowest
 number between all possible measure rearrangements and the parameter max_rearrangements.
- Columns pupper and plower represent the P_{upper} and P_{lower} values, respectively. They denote the fraction of expected-by-chance uMCW_BIs or uMCW_HBIs with values higher or equal to and lower or equal to the observed uMCW_BIs or uMCW_HBIs, respectively.

Examples

uMCW testing of multiple datasets organized vertically

This example of uMCW testing entry dataset with a vertical layout showcases data for three ideal tests (Table 1). The *Contrast* I test includes data for two sets of measures randomly selected from the same range (Figure 1). The *Contrast* II test includes data representing two sets of measures randomly selected from two different ranges, with measures from the second set being generally higher than those from the first set (Figure 1). The *Contrast* III test includes data representing two sets of measures randomly selected from two different ranges, with measures from the second set being generally higher and less

heterogeneous than those from the first set (Figure 1). The results of these uMCW tests align with the intended structure of the entry datasets (Table 2).

Table 1. uMCW testing entry dataset with vertical layout

	contrast		value
	<char></char>	<char></char>	<int></int>
1:	I	AAAA	63
2:	I	AAAA	22
3:	I	AAAA	87
4:	I	AAAA	34
5:	I	AAAA	27
6:	I	BBBB	32
7:	I	BBBB	10
8:	I	BBBB	74
9:	I	BBBB	31
10:	I	BBBB	76
11:	II	AAAA	51
12:	II	AAAA	5
13:	II	AAAA	25
14:	II	AAAA	4
15:	II	AAAA	38
16:	II	BBBB	68
17:	II	BBBB	98
18:	II	BBBB	41
19:	II	BBBB	100
20:	II	BBBB	67
21:	III	AAAA	46
22:	III	AAAA	14
23:	III	AAAA	35
24:	III	AAAA	11
25:	III	AAAA	36
26:	III	BBBB	56
27:	III	BBBB	51
28:	III	BBBB	50
29:	III	BBBB	51
30:	III	BBBB	60
	contrast	${\it condition}$	value

Figure 1. Data structure of uMCW testing entry dataset with vertical layout

Table 2. Results of uMCW testing using an entry dataset with vertical layout

		condition_a		. N	n_a	n_b	test_type	5 1
	<char></char>	<char></char>	<char></char>				<char></char>	
1:	I	AAAA	BBBB	10	5	5	approximated	
2:	I	AAAA	BBBB	10	5	5		
3:	I	AAAA	BBBB	10	5	5		
4:	I	AAAA	BBBB	10	5	5	approximated	uMCW_HBI
5:	II	AAAA	BBBB	10	5	5	approximated	uMCW_BI
6:	II	AAAA	BBBB	10	5	5	approximated	uMCW_BI
7:	II	AAAA	BBBB	10	5	5	approximated	uMCW_HBI
8:	II	AAAA	BBBB	10	5	5	approximated	uMCW_HBI
9:	III	AAAA	BBBB	10	5	5	approximated	uMCW_BI
10:	III	AAAA	BBBB	10	5	5	approximated	uMCW_BI
11:	III	AAAA	BBBB	10	5	5	approximated	uMCW_HBI
12:	III	AAAA	BBBB	10	5	5	approximated	uMCW_HBI
	condition	n_contrast ob	served_BI ex	kpected	d_by_cl	nance_E	 BI_N pupper p	lower
		<char></char>	<num></num>			<	int> <num></num>	<num></num>
1:		AAAA-BBBB @	0.03948718				200 0.430	0.595
2:		BBBB-AAAA -6	0.03948718				200 0.595	0.430
3:		AAAA-BBBB -0	0.02857143				200 0.500	0.505
4:		BBBB-AAAA @	0.02857143				200 0.505	0.500
5:		AAAA-BBBB -0	0.69794872					0.005
6:		BBBB-AAAA @	0.69794872				200 0.005	1.000
7:		AAAA-BBBB -@						0.285
8:			0.07766990					0.720
9:		AAAA-BBBB -6						0.000
10:			0.68358974					1.000
11:			0.39130435					0.970
12:		BBBB-AAAA -0						0.040
		2220 10001 (200 0.5.0	0.010

uMCW testing of multiple datasets organized horizontally

This example of uMCW testing entry dataset with a horizontal layout showcases data for nine ideal tests (Table 3). It includes two types of informative columns to accommodate cases where users might want to

perform multiple tests with a nested structure. The columns with the *contrast* prefix provide contextual information for groups of tests or rows, while the columns with the *element* prefix provide contextual information for each test or row. Each *Contrast* I row includes two sets of measures randomly selected from the same range (Figure 2). Each *Contrast* II row includes two sets of measures randomly selected from two different ranges, with the measures from the second set being generally higher than those from the first set (Figure 2). Each *Contrast* III row includes two sets of measures randomly selected from two different ranges, with the measures from the second set being generally higher and less heterogeneous than those from the first set (Figure 1). The results of these uMCW tests align with the intended structure of the entry datasets (Table 4).

Table 3. uMCW testing entry dataset with horizontal layout

	contras	st cor	ntrast_trait	elemer	nt_ID	elemen ⁻	t_chr	element	_start	eleme	ent_end
	<char< td=""><td>"></td><td><char></char></td><td><(</td><td>char></td><td></td><td><int></int></td><td></td><td><int></int></td><td></td><td><int></int></td></char<>	">	<char></char>	<(char>		<int></int>		<int></int>		<int></int>
1:		I	trait_a		x1		1		1000)	2000
2:		I	trait_a		x2	1			5000)	5500
3:		I	trait_a		х3		1		90000)	100000
4:]	ΙΙ	trait_b		x1		1		1000)	2000
5:]	ΙΙ	trait_b		x2		1		5000)	5500
6:]	ΙΙ	trait_b		x3		1		90000)	100000
7:	I	ΙΙ	trait_b		x1		1		1000)	2000
8:	I	ΙΙ	trait_b		x2		1		5000)	5500
9:	I	ΙΙ	trait_b		x3		1		90000)	100000
	conditi	ion_a	condition_b	a.1	a.2	a.3	a.4	a.5	b.1	b.2	b.3
	<(char>	<char></char>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1:		AAAA	BBBB	91	56	65	63	23	17	NA	50
2:		AAAA	BBBB	96	45	42	29	12	25	36	28
3:		AAAA	BBBB	77	98	31	93	34	34	97	77
4:		AAAA	BBBB	54	23		28	52	90	92	91
5:		AAAA	BBBB	37	5	18	26	11	48	84	62
6:		AAAA	BBBB	28	35		13		60	71	77
7:		AAAA	BBBB	20	32	14	3	6	46	56	45
8:		AAAA	BBBB	50	38		47		55	46	51
9:		AAAA	BBBB	31	36	2	37	47	54	48	48
	b.4	b.5									
	<int> <</int>										
1:	39	30									
2:	79	82									
3:	53	11									
4:	50	68									
5:	86	53									
6:	89	97									
7:	57	50									
8:	46	60									
9:	46	48									

Figure 2. Data structure of uMCW testing entry dataset with horizontal layout

Table 4. Results of uMCW testing using an entry dataset with horizontal layout

	contrast	contrast_trait	element_ID	element_chr	element_start	element_end
	<char></char>	<char></char>	<char></char>	<int></int>	<int></int>	<int></int>
1:	I	trait_a	x1	1	1000	2000
2:	I	trait_a	x1	1	1000	2000
3:	I	trait_a	x1	1	1000	2000
4:	I	trait_a	x1	1	1000	2000
5:	I	trait_a	x2	1	5000	5500
6:	I	trait_a	x2	1	5000	5500
7:	I	trait_a	x2	1	5000	5500
8:	I	trait_a	x2	1	5000	5500
9:	I	trait_a	x3	1	90000	100000
10:	I	trait_a	x3	1	90000	100000
11:	I	trait_a	x3	1	90000	100000
12:	I	trait_a	x3	1	90000	100000
13:	II	trait_b	x1	1	1000	2000
14:	II	trait_b	x1	1	1000	2000
15:	II	trait_b	x1	1	1000	2000
16:	II	trait_b	x1	1	1000	2000
17:	II	trait_b	x2	1	5000	5500
18:	II	trait_b	x2	1	5000	5500
19:	II	trait_b	x2	1	5000	5500
20:	II	trait_b	x2	1	5000	5500
21:	II	trait_b	x3	1	90000	100000
22:	II	trait_b	x3	1	90000	100000
23:	II	trait_b	x3	1	90000	100000
24:	II	trait_b	x3	1	90000	100000
25:	III	trait_b	x1	1	1000	2000
26:	III	trait_b	x1	1	1000	2000
27:	III	trait_b	x1	1	1000	2000
28:	III	trait_b	x1	1	1000	2000
29:	III	trait_b	x2	1	5000	5500
30:	III	trait_b	x2	1	5000	5500
31:	III	trait_b	x2	1	5000	5500
32:	III	trait_b	x2	1	5000	5500

22.	III	±nai± b		v2		1		90000	100000
33: 34:	III	trait_b trait_b		x3 x3		1 1		90000	100000
35:	III	trait_b		x3		1 1		90000	100000
36:	III	trait_b	ol omon±	x3	al amanı		al aman±	90000	100000
	contrast con								
	condition_a		N	n_a	n_b	τε	st_type	BI_typ	
1.	<char></char>		<int> <i< td=""><td></td><td></td><td></td><td><char></char></td><td><char< td=""><td></td></char<></td></i<></int>				<char></char>	<char< td=""><td></td></char<>	
1:	AAAA	BBBB	9	5			exact	uMCW_B	
2:	AAAA	BBBB	9	5 5				uMCW_HB	
3:	AAAA	BBBB	9				exact	uMCW_B	
4:	AAAA	BBBB	9	5				uMCW_HB	
5:	AAAA	BBBB	10	5			ximated	uMCW_B	
6:	AAAA	BBBB	10	5			ximated	uMCW_B	
7:	AAAA	BBBB	10	5 5			ximated		
8:	AAAA	BBBB	10				ximated		
9:	AAAA	BBBB	10	5			ximated		
10:	AAAA	BBBB	10	5 5			ximated		
11:	AAAA	BBBB	10				ximated		
12:	AAAA	BBBB	10	5 5			ximated		
13:	AAAA	BBBB	10	5 5			ximated		
14: 15:	AAAA AAAA	BBBB	10 10	5 5			ximated	uMCW_B	
16:	AAAA	BBBB	10	5 5			ximated		
17:		BBBB	10	5 5			ximated		
18:	AAAA	BBBB		5 5			ximated	uMCW_B	
	AAAA	BBBB	10	5 5			ximated	uMCW_B	
19:	AAAA	BBBB	10	5 5			ximated		
20:	AAAA	BBBB	10	5 5			ximated		
21:	AAAA	BBBB	10	5 5			ximated	uMCW_B	
22: 23:	AAAA AAAA	BBBB	10 10	5 5			ximated ximated	uMCW_B	
		BBBB BBBB							
24:	AAAA		10	5			ximated		
25: 26:	AAAA AAAA	BBBB	10 10	5 5			ximated ximated		
27:		BBBB							
28:	AAAA AAAA	BBBB BBBB	10 10	5 5			ximated ximated		
	AAAA	BBBB		5			ximated		
29: 30:	AAAA	BBBB	10 10	5 5			ximated		
31:	AAAA	BBBB	10	5			ximated		
32:	AAAA	BBBB	10	5			ximated		
33:	AAAA	BBBB	10	5			ximated		
34:	AAAA	BBBB	10	5			ximated		
35:	AAAA	BBBB	10	5			ximated		
36:	AAAA			5 5					
50.		BBBB condition b	10				ximated		
	condition_a		N N	n_a			st_type		
	condition_co	ntrast obse <char></char>		exp	ecteu_L	y_criu	nce_bi_r <int></int>		pper
1.			<mu></mu>						num>
1: 2:		A-BBBB 0.50 A-BBBB 0.40						0.0634 5 0.2530	
								6 0.2539	
3:		B-AAAA -0.50 B-AAAA -0.40						0.9444 0.7609	
4:	RRR	D-AAAA -0.40	0700013				120	0.7698	4171

```
5:
             AAAA-BBBB -0.066153846
                                                          200 0.58000000
 6:
                                                          200 0.42500000
             BBBB-AAAA
                        0.066153846
 7:
             AAAA-BBBB
                        0.064039409
                                                          200 0.41000000
 8:
             BBBB-AAAA -0.064039409
                                                          200 0.59500000
 9:
             AAAA-BBBB
                        0.161538462
                                                          200 0.31500000
10:
             BBBB-AAAA -0.161538462
                                                          200 0.70500000
11:
             AAAA-BBBB -0.043062201
                                                          200 0.54500000
12:
             BBBB-AAAA 0.043062201
                                                          200 0.47000000
13:
             AAAA-BBBB -0.649743590
                                                          200 0.98000000
14:
             BBBB-AAAA 0.649743590
                                                          200 0.02000000
15:
             AAAA-BBBB
                        0.024390244
                                                          200 0.46500000
                                                          200 0.53500000
16:
             BBBB-AAAA -0.024390244
17:
             AAAA-BBBB -0.778974359
                                                          200 1.000000000
18:
             BBBB-AAAA 0.778974359
                                                          200 0.00500000
19:
             AAAA-BBBB -0.123809524
                                                          200 0.85500000
20:
             BBBB-AAAA 0.123809524
                                                          200 0.15500000
             AAAA-BBBB -0.801538462
                                                          200 1.000000000
21:
22:
             BBBB-AAAA
                        0.801538462
                                                          200 0.01000000
23:
             AAAA-BBBB
                        0.009803922
                                                          200 0.46500000
24:
             BBBB-AAAA -0.009803922
                                                          200 0.54500000
25:
             AAAA-BBBB -0.807692308
                                                          200 1.000000000
26:
             BBBB-AAAA
                        0.807692308
                                                          200 0.000000000
27:
             AAAA-BBBB
                        0.303921569
                                                          200 0.000000000
28:
             BBBB-AAAA -0.303921569
                                                          200 1.000000000
29:
             AAAA-BBBB -0.558461538
                                                          200 0.98500000
30:
                        0.558461538
                                                          200 0.01500000
             BBBB-AAAA
31:
             AAAA-BBBB
                        0.288888889
                                                          200 0.07000000
32:
             BBBB-AAAA -0.288888889
                                                          200 0.93000000
33:
             AAAA-BBBB -0.576923077
                                                          200 0.99000000
34:
             BBBB-AAAA 0.576923077
                                                          200 0.01500000
35:
                        0.527777778
             AAAA-BBBB
                                                          200 0.01500000
36:
             BBBB-AAAA -0.527777778
                                                          200 0.99000000
    condition_contrast observed_BI expected_by_chance_BI_N
                                                                   pupper
        plower
         <num>
 1: 0.9444444
 2: 0.76984127
 3: 0.06349206
 4: 0.25396825
 5: 0.42500000
 6: 0.58000000
 7: 0.59500000
 8: 0.41000000
 9: 0.70500000
10: 0.31500000
11: 0.47000000
12: 0.54500000
13: 0.02000000
14: 0.98000000
```

15: 0.53500000

16: 0.46500000 17: 0.00500000 18: 1.00000000 19: 0.15500000 20: 0.85500000 21: 0.01000000 22: 1.00000000 23: 0.54500000 24: 0.46500000 25: 0.00000000 26: 1.00000000 27: 1.00000000 28: 0.00000000 29: 0.01500000 30: 0.98500000 31: 0.93000000 32: 0.07000000 33: 0.01500000 34: 0.99000000 35: 0.99000000 36: 0.01500000 plower

4.2 matched-measures univariate MCW (muMCW) test

Introduction

The muMCW test assesses whether one set of inherently matched-paired measures is significantly biased in the same direction. For instance, muMCW tests can be used to analyze bodyweights or transcript abundances determined at two different timepoints for the same set of mice.

muMCW testing entry dataset formatting

When executing the *muMCWtest* function, users must provide the path to a local CSV file named *X_muMCWtest_data.csv*, where *X* serves as a user-defined identifier. *X_muMCWtest_data.csv* can be structured in two distinct formats:

- Vertical layout: This format allows appending datasets with varying structures, such as different numbers of measure matched-pairs for each appended test. Vertical entry datasets should include the following columns:
 - Columns *condition_a* and *condition_b* uniquely identify the two conditions under which matched-paired measures were collected.
 - Columns value a and value b contain the actual measures under analysis.
 - As many informative columns as needed by users to contextualize the results of each test.
 The names of the these columns should not contain the terms condition or value. While these columns are optional when running a single test, at least one column is required when running multiple tests simultaneously. All rows for each individual test must contain the same

information in these columns.

- Horizontal layout: This format allows appending datasets with similar structures, such as the same number of matched-paired measures for each appended test. Horizontal entry datasets should include the following columns:
 - Columns *condition_a* and *condition_b* uniquely identify the two conditions under which matched-paired measures were collected.
 - Columns *a.i* and *b.i*, where *i* represents integers to differentiate each specific matched-pairs of measures, contain the actual measures under analysis.
 - As many informative columns as needed by users to contextualize the results of each test.
 The names of these columns should not contain the term *condition* or have the same structure as the *a.i* and *b.i* columns. While these columns are optional when running a single test, at least one column is required when running multiple tests simultaneously.

muMCW testing process

The function *muMCWtest* eliminates any matched-paired measures with at least one missing value (NA) before proceeding with the following steps.

- To estimate the bias for all matched-paired measures in the dataset, the function *muMCWtest* performs the following tasks:
 - For each matched-pair of measures, it subtracts values for the two possible condition contrasts (e.g., a-b and b-a).
 - For each condition contrast, it ranks the absolute values of non-zero differences from lowest to highest. Measure pair differences with a value of 0 are assigned a 0 rank. If multiple measure pair differences have the same absolute value, all tied measure pair differences are assigned the lowest rank possible.
 - It assigns each measure pair rank a sign based on the sign of its corresponding measure pair difference.
 - It sums the signed ranks for each condition contrast.
 - It calculates muMCW_BI by dividing each sum of signed ranks by the maximum number that sum could have if the corresponding measure pairs had the highest possible positive ranks.
 Consequently, muMCW_BI ranges between 1 when all measures corresponding to the first condition are higher than all measures corresponding to the second condition, and -1 when all measures corresponding to the first condition are lower than all measures corresponding to the second condition.
- To assess the significance of the muMCW_BIs obtained from the user-provided dataset (observed muMCW_BIs), the function muMCWtest performs the following tasks:
 - It generates a collection of expected-by-chance muMCW_Bls. These expected values are
 obtained by rearranging the measures between and within the two conditions multiple times.
 The user-provided parameter max_rearrangements determines the two paths that the
 function muMCWtest can follow to generate the collection of expected-by-chance
 muMCW Bls:
 - muMCW exact testing: If the number of distinct measure rearrangements that can alter their initial pair and set distribution is less than max_rearrangements, the function muMCWtest calculates muMCW_BIs for all possible data rearrangements.
 - muMCW approximated testing: If the number of distinct measure rearrangements that can alter their initial pair and set distribution is greater than max_rearrangements, the

function muMCWtest performs $N = max_rearrangements$ random measure rearrangements to calculate the collection of expected-by-chance muMCW_BIs.

• It calculates the P_{upper} and P_{lower} values as the fraction of expected-by-chance muMCW_BIs that are higher or equal to and lower or equal to the observed muMCW_BIs, respectively.

muMCW testing results

The *muMCWtest* function reports to the console the total number of tests it will execute, and their exact and approximated counts. It also creates a CSV file named *X_muMCWtest_results.csv* where *X* is a user-defined identifier for the entry dataset CSV file. The *X_muMCWtest_results.csv* file contains two rows for each muMCW test, with muMCW_BIs calculated for each possible condition contrast (e.g., a-b and b-a).

The *X_muMCWtest_results.csv* file includes the following columns:

- User-provided informative columns to contextualize the results of each test.
- Columns condition_a and condition_b indicate the two conditions for which matched-paired measures were provided.
- Column N indicates the total number of measure matched-pairs after removing matched-pairs with missing values (NAs).
- Column test_type distinguishes between exact and approximated tests.
- Column BI_type indicates muMCW_BI.
- Column condition contrast indicates the condition contrast for each row of results.
- Column observed_BI contains the value of muMCW_BIs obtained from analyzing the user-provided dataset.
- Column expected_by_chance_BI_N indicates the number of data rearrangements used to calculate
 the expected-by-chance muMCW_BIs. This value corresponds to the lowest number between all
 possible measure rearrangements and the parameter max_rearrangements.
- Columns pupper and plower represent P_{upper} and P_{lower} values, respectively. They denote the
 fraction of expected-by-chance muMCW_Bls with values higher or equal to and lower or equal to
 the observed muMCW_Bls, respectively.

Examples

muMCW testing of multiple datasets organized vertically

This example of muMCW testing entry dataset with a vertical layout showcases data for two ideal tests (Table 5). The *Contrast* I test includes data representing one set of matched-paired measures randomly selected from the same range (Figure 3). The *Contrast* II test includes data representing one set of matched-paired measures randomly selected from two different ranges, with measures from the second condition in each matched-pair being generally higher than measures from the first condition in each matched-pair (Figure 3). The results of these muMCW tests align with the intended structure of the entry datasets (Table 6).

Table 5. muMCW testing entry dataset with vertical layout

1:	I	AAAA	BBBB	19	35
2:	I	AAAA	BBBB	81	43
3:	I	AAAA	BBBB	43	2
4:	I	AAAA	BBBB	96	99
5:	I	AAAA	BBBB	33	69
6:	I	AAAA	BBBB	65	53
7:	I	AAAA	BBBB	96	43
8:	I	AAAA	BBBB	15	37
9:	I	AAAA	BBBB	92	82
10:	I	AAAA	BBBB	46	56
11:	II	AAAA	BBBB	25	52
12:	II	AAAA	BBBB	6	83
13:	II	AAAA	BBBB	56	66
14:	II	AAAA	BBBB	33	40
15:	II	AAAA	BBBB	28	47
16:	II	AAAA	BBBB	28	48
17:	II	AAAA	BBBB	19	67
18:	II	AAAA	BBBB	27	55
19:	II	AAAA	BBBB	47	45
20:	II	AAAA	BBBB	57	77
	contrast	${\tt condition_a}$	${\tt condition_b}$	value_a	value_b

Figure 3. Data structure of muMCW testing entry dataset with vertical layout

Table 6. Results of muMCW testing using an entry dataset with vertical layout

	contrast	condition_a	${\tt condition_b}$	N	test_type	BI_type	
	<char></char>	<char></char>	<char></char>	<int></int>	<char></char>	<char></char>	
1:	I	AAAA	BBBB	10	approximated	muMCW_BI	
2:	I	AAAA	BBBB	10	approximated	muMCW_BI	
3:	II	AAAA	BBBB	10	approximated	muMCW_BI	
4:	II	AAAA	BBBB	10	approximated	muMCW_BI	
	condition	n_contrast ob	oserved_BI ex	kpected	d_by_chance_B	I_N pupper	plower
		<char></char>	<num></num>		<ii< td=""><td>nt> <num></num></td><td><num></num></td></ii<>	nt> <num></num>	<num></num>

1	: AAAA-BBBB	0.2181818	200	0.285	0.725
2	BBBB-AAAA	-0.2181818	200	0.725	0.285
3	: AAAA-BBBB	-0.9454545	200	1.000	0.000
4	BBBB-AAAA	0.9454545	200	0.000	1.000

muMCW testing of multiple datasets organized horizontally

This example of muMCW testing entry dataset with a horizontal layout showcases data for six ideal tests (Table 7). It includes two types of informative columns to accommodate cases where users might want to perform multiple tests with a nested structure. The columns with the *contrast* prefix provide contextual information for groups of tests or rows, while the columns with the *element* prefix provide contextual information for each test or row. Each *Contrast* I row includes one set of matched-paired measures randomly selected from the same range (Figure 4). Each *Contrast* II row includes one set of matched-paired measures randomly selected from two different ranges, with the measures for the second condition in each matched-pair being generally higher than measures from the first condition in each matched-pair (Figure 4). The results of these muMCW tests align with the intended structure of the entry datasets (Table 8).

Table 7. muMCW testing entry dataset with horizontal layout

	contro	ast co	ntrast_trait	elemer	nt_ID	elemen	t_chr	element	t_start	eleme	ent_end
	<cho< td=""><td>ar></td><td><char></char></td><td><(</td><td>char></td><td></td><td><int></int></td><td></td><td><int></int></td><td>></td><td><int></int></td></cho<>	ar>	<char></char>	<(char>		<int></int>		<int></int>	>	<int></int>
1:		I	trait_a		x1		1		1000)	2000
2:		I	trait_a		x2		1		5000)	5500
3:		I	trait_a		х3		1		90000)	100000
4:		II	trait_b		x1		1		1000)	2000
5:		II	trait_b		x2		1		5000)	5500
6:		II	trait_b		х3		1		90000)	100000
	condi	tion_a	condition_b	a.1	a.2	a.3	a.4	a.5	b.1	b.2	b.3
	•	<char></char>	<char></char>	<int></int>							
1:		AAAA	BBBB	91	56	65	63	23	17	57	NA
2:		AAAA	BBBB	96	45	42	29	12	25	36	28
3:		AAAA	BBBB	77	98	31	93	34	34	97	77
4:		AAAA	BBBB	54	23	59	28	52	90	92	91
5:		AAAA	BBBB	37	5	18	26	11	48	84	62
6:		AAAA	BBBB	28	35	43	13	6	60	71	77
	b.4	b.5									
	<int></int>	<int></int>									
1:	39	30									
2:	79	82									
3:	53	11									
4:	50	68									
5:	86	53									
6:	89	97									

Figure 4. Data structure of muMCW testing entry dataset with horizontal layout

Table 8. Results of muMCW testing using an entry dataset with horizontal layout

	contrast co	ntrast_trait	element_ID	element_	chr elem	ent_start	element_end
	<char></char>	<char></char>	<char></char>	<i< td=""><td>nt></td><td><int></int></td><td><int></int></td></i<>	nt>	<int></int>	<int></int>
1:	I	trait_a	x1		1	1000	2000
2:	I	trait_a	x1		1	1000	2000
3:	I	trait_a	x2		1	5000	5500
4:	I	trait_a	x2		1	5000	5500
5:	I	trait_a	x3		1	90000	100000
6:	I	trait_a	x3		1	90000	100000
7:	II	trait_b	x1		1	1000	2000
8:	II	trait_b	x1		1	1000	2000
9:	II	trait_b	x2		1	5000	5500
10:	II	trait_b	x2		1	5000	5500
11:	II	trait_b	x3		1	90000	100000
12:	II	trait_b	x3		1	90000	100000
	condition_a	condition_b	N te	est_type	BI_type	condition	n_contrast
	<char></char>	<char></char>	<int></int>	<char></char>	<char></char>		<char></char>
1:	AAAA	BBBB	4	exact	muMCW_BI		AAAA-BBBB
2:	AAAA	BBBB	4	exact	muMCW_BI		BBBB-AAAA
3:	AAAA	BBBB	5 appro	oximated	muMCW_BI		AAAA-BBBB
4:	AAAA	BBBB	5 appro	oximated	muMCW_BI		BBBB-AAAA
5:	AAAA	BBBB	5 appro	oximated	muMCW_BI		AAAA-BBBB
6:	AAAA	BBBB	5 appro	oximated	muMCW_BI		BBBB-AAAA
7:	AAAA	BBBB	5 appro	oximated	muMCW_BI		AAAA-BBBB
8:	AAAA	BBBB	5 appro	oximated	muMCW_BI		BBBB-AAAA
9:	AAAA	BBBB	5 appro	oximated	muMCW_BI		AAAA-BBBB
10:	AAAA	BBBB	5 appro	oximated	muMCW_BI		BBBB-AAAA
11:	AAAA	BBBB	5 appro	oximated	muMCW_BI		AAAA-BBBB
12:	AAAA	BBBB	5 appro	oximated	muMCW_BI		BBBB-AAAA
	observed_BI	expected_by_	_chance_BI_N	N pupp	er pl	ower	
	<num></num>		<int></int>	> <nu< td=""><td>ım> <</td><td>:num></td><td></td></nu<>	ım> <	:num>	
1:	0.40000000		105	5 0.71428	57 0.638	0952	
2:	-0.40000000		105	5 0.63809	52 0.714	2857	
3:	0.06666667		200	0.46500	0.630	0000	
4:	-0.06666667		200	0.63000	00 0.465	0000	

5: 0.33333333 200 0.3050000 0.7700000 6: -0.33333333 200 0.7700000 0.3050000 7: -1.00000000 200 1.0000000 0.0500000 8: 1.00000000 200 0.0500000 1.0000000 9: -1.00000000 200 1.0000000 0.0650000 10: 1.00000000 200 0.0650000 1.0000000 11: -1.00000000 200 1.0000000 0.0250000 12: 1.00000000 200 0.0250000 1.0000000

4.3 matched-measures bivariate MCW (mbMCW) test

Introduction

The mbMCW test assesses whether two sets of inherently matched-paired measures are significantly differentially biased in the same direction. For instance, mbMCW tests can be used to analyze bodyweights or transcript abundances determined at two different timepoints for two sets of mice that have been exposed to different conditions.

mbMCW testing entry dataset formatting

When executing the *mbMCWtest* function, users must provide the path to a local CSV file named *X_mbMCWtest_data.csv*, where *X* serves as a user-defined identifier. *X_mbMCWtest_data.csv* can be structured in two distinct formats:

- Vertical layout: This format allows appending datasets with varying structures, such as different numbers of matched-pairs per set or between each appended test. Vertical entry datasets should include the following columns:
 - Columns *matched_condition_a* and *matched_condition_b* uniquely identify the two conditions under which matched-paired measure were collected.
 - Column unmatched_condition uniquely identifies the two sets of matched-paired measures under analysis.
 - Columns value_a and value_b contain the actual measures under analysis.
 - As many informative columns as needed by users to contextualize the results of each test.
 The names of these columns should not contain the terms condition or value. While these columns are optional when running a single test, at least one column is required when running multiple tests simultaneously. All rows for each individual test must contain the same information in these columns.
- Horizontal layout: This format allows appending datasets with similar structures, such as the same number of matched-paired measures collected for two conditions. Horizontal entry datasets should include the following columns:
 - Columns matched_condition_a and matched_condition_b uniquely identify the two conditions under which matched-paired measure were collected.
 - Columns unmatched_condition_x and unmatched_condition_y uniquely identify the two different sets of matched-paired measures under analysis.
 - Columns *x.a.i*, *y.a.i*, *x.b.i* and *y.b.i*, where *i* represents integers to differentiate each specific matched-pair of measures, contain the actual measures under analysis.

• As many informative columns as needed by users to contextualize the results of each test. The name of these columns should not contain the term *condition* or have the same structure as the *x.a.i*, *y.a.i*, *x.b.i* and *y.b.i* columns. While these columns are optional when running a single test, at least one column is required when running multiple tests simultaneously.

mbMCW testing process

The function *mbMCWtest* eliminates any matched-paired measures with at least one missing value (NA) before proceeding with the following steps.

- To estimate the differential bias between the two sets of matched-paired measures in the dataset,
 the function mbMCWtest performs the following tasks:
 - For each matched-paired measure, it subtracts the values for the two possible matched condition contrasts (e.g., a-b and b-a).
 - For each matched condition contrast, it ranks the absolute values of non-zero differences from lowest to highest. Measure pair differences with a value of 0 are assigned a 0 rank. If multiple measure pair differences have the same absolute value, all tied measure pair differences are assigned the lowest rank possible.
 - It assigns each measure pair rank a sign based on the sign of its corresponding measure pair difference.
 - For each set of matched-paired measures (e.g., x and y), it sums the signed ranks for each matched condition contrast (e.g., a-b and b-a).
 - For each set of matched-paired measures (e.g., x and y) and each matched condition contrast (e.g., a-b and b-a), it calculates one mbMCW_BI. This value is obtained by dividing each sum of signed ranks by the maximum number this sum could have if the corresponding measure pairs had the highest possible positive ranks. Consequently, mbMCW_BI ranges between 1 when all the values for matched-pair measure differences in the set under analysis have the highest positive values, and -1 when all the values for matched-pair measure differences in the set under analysis have the lowest negative values.
- To assess the significance of the mbMCW_BIs obtained from the user-provided dataset (observed mbMCW_BIs), the function mbMCWtest perfoms the following tasks:
 - It generates a collection of expected-by-chance mbMCW_BIs. These expected values are
 obtained by rearranging the matched-pair measures between the two sets multiple times.
 The user-provided parameter max_rearrangements determines the two paths the function
 mbMCWtest can follow to generate the collection of expected-by-chance mbMCW_BIs:
 - mbMCW exact testing: If the number of distinct matched-paired measure rearrangements that can alter their initial set distribution is less than max_rearrangements, the function mbMCWtest calculates mbMCW_BIs for all possible data rearrangements.
 - mbMCW approximated testing: If the number of distinct matched-paired measure rearrangements that can alter their initial set distribution is greater than max_rearrangements, the function mbMCWtest performs N = max_rearrangements random measure rearrangements to calculate the collection of expected-by-chance mbMCW_BIs.
 - It calculates P_{upper} and P_{lower} values as the fraction of expected-by-chance mbMCW_BIs that are higher or equal to and lower or equal to the observed mbMCW_BIs, respectively.

mbMCW testing results

The *mbMCWtest* function reports to the console the total number of tests it will execute, and their exact and approximated counts. It also creates a CSV file named *X_mbMCWtest_results.csv*, where *X* is a user-defined identifier for the entry dataset CSV file. The *X_mbMCWtest_results.csv* file contains four rows for each mbMCWtest, with mbMCW_BIs calculated for each possible contrast between matched and unmatched measures (e.g., a-b, b-a, x-y and y-x).

The *X_mbMCWtest_results.csv* file includes the following columns:

- · User-provided informative columns to contextualize the results of each test.
- Columns matched_condition_a and matched_condition_b indicate the conditions for which matched-paired measures were provided.
- Columns unmatched_condition_x and unmatched_condition_y indicate the two sets of matchedpairs measures.
- Columns N, N_x and N_y indicate the total number of matched-paired measures, and their distribution between the two unmatched sets after removing any matched-pair with missing values (NAs).
- Column test_type distinguishes between exact and approximated tests.
- Column BI_type indicates mbMCW_BI.
- Column matched_condition_contrast and unmatched_condition_contrast indicate the matched and unmatched condition contrast for each row of results.
- Column observed_BI contains the value of mbMCW_BIs obtained from analyzing the user-provided dataset.
- Column expected_by_chance_BI_N indicates the number of data rearrangements used to calculate
 the expected-by-chance mbMCW_BIs. This value corresponds to the lowest number between all
 possible measure rearrangements and the parameter max_rearrangements.
- Columns pupper and plower represent the P_{upper} and P_{lower} values, respectively. They denote the fraction of expected-by-chance mbMCW_BIs with values higher or equal to and lower or equal to the observed mbMCW_BIs, respectively.

Examples

mbMCW testing of multiple datasets organized vertically

This example of mbMCW testing entry dataset with a vertical layout showcases data for two ideal tests (Table 9). The *Contrast* I test includes data for two sets of matched-paired measures randomly selected from the same range (Figure 5). The *Contrast* II test includes data for two sets of matched-paired measures. For the first set, matched-pair measures were randomly selected from the same range. For the second set, matched-pair measures were randomly selected from two different ranges, with the measures corresponding to the second condition of each matched-pair being generally higher than the measures corresponding to the first condition of each matched-pair (Figure 5). The results of these mbMCW tests align with the intended structure of the entry datasets (Table 10).

Table 9. mbMCW testing entry dataset with vertical layout

4	_			2222	VAAA
1:	I		AAAA	BBBB	XXXX
2:	I		AAAA	BBBB	XXXX
3:	I		AAAA	BBBB	XXXX
4:	I		AAAA	BBBB	XXXX
5:	I		AAAA	BBBB	XXXX
6:	I		AAAA	BBBB	YYYY
7:	I		AAAA	BBBB	YYYY
8:	I		AAAA	BBBB	YYYY
9:	I		AAAA	BBBB	YYYY
10:	I		AAAA	BBBB	YYYY
11:	II		AAAA	BBBB	XXXX
12:	II		AAAA	BBBB	XXXX
13:	II		AAAA	BBBB	XXXX
14:	II		AAAA	BBBB	XXXX
15:	II		AAAA	BBBB	XXXX
16:	II		AAAA	BBBB	YYYY
17:	II		AAAA	BBBB	YYYY
18:	II		AAAA	BBBB	YYYY
19:	II		AAAA	BBBB	YYYY
20:	II		AAAA	BBBB	YYYY
		matched		d_condition_b unmatch	
	value_a v		condition_a macene	a_conarcion_b animacci	ica_conarcion
	<int></int>	<int></int>			
1:	6	37			
2:	25	18			
3:	13	27			
4:	48	16			
5:	44	70			
6:	30	19			
7:	9	24			
8:	16	47			
9:	47	33			
10:	14	23			
11:	13	47			
12:	14	41			
13:	42	13			
14:	40	38			
15:	47	11			
16:	36	70			
17:	38	64			
18:	31	60			
19:	33	67			
20:	25 value_a v	69			

Figure 5. Data structure of mbMCW testing entry dataset with vertical layout

Table 10. Results of mbMCW testing using an entry dataset with vertical layout

```
contrast matched_condition_a matched_condition_b unmatched_condition_x
     <char>
                           <char>
                                                <char>
                                                                        <char>
1:
          Ι
                             AAAA
                                                  BBBB
                                                                          XXXX
2:
          Ι
                             AAAA
                                                  BBBB
                                                                          XXXX
3:
          Ι
                             AAAA
                                                  BBBB
                                                                          XXXX
4:
          Τ
                             AAAA
                                                  BBBB
                                                                          XXXX
                             AAAA
                                                                          XXXX
5:
         II
                                                  BBBB
6:
         II
                             AAAA
                                                  BBBB
                                                                          XXXX
7:
         II
                             AAAA
                                                  BBBB
                                                                          XXXX
8:
         II
                             AAAA
                                                  BBBB
                                                                          XXXX
   unmatched_condition_y
                               Ν
                                   Nx
                                         N_y
                                                 test_type BI_type
                   <char> <int> <int> <int>
                                                    <char>
                                                              <char>
1:
                     YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
2:
                     YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
3:
                     YYYY
                                     5
                                            5 approximated mbMCW_BI
                              10
                     YYYY
                                     5
4:
                              10
                                            5 approximated mbMCW_BI
5:
                                     5
                     YYYY
                                            5 approximated mbMCW_BI
                              10
6:
                     YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
7:
                                     5
                     YYYY
                              10
                                            5 approximated mbMCW_BI
8:
                     YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
   matched_condition_contrast unmatched_condition_contrast observed_BI
                        <char>
                                                       <char>
                                                                     <num>
1:
                     AAAA-BBBB
                                                    XXXX-YYYY 0.01886792
2:
                                                    YYYY-XXXX -0.01886792
                     AAAA-BBBB
3:
                     BBBB-AAAA
                                                    XXXX-YYYY -0.01886792
4:
                     BBBB-AAAA
                                                    YYYY-XXXX 0.01886792
5:
                     AAAA-BBBB
                                                    XXXX-YYYY 0.64705882
6:
                     AAAA-BBBB
                                                    YYYY-XXXX -0.64705882
7:
                     BBBB-AAAA
                                                    XXXX-YYYY -0.64705882
8:
                                                    YYYY-XXXX 0.64705882
                     BBBB-AAAA
   expected_by_chance_BI_N pupper plower
                      <int> <num>
                                     <num>
1:
                        200
                             0.470
                                     0.570
2:
                        200
                             0.570
                                     0.470
```

3:	200	0.570	0.470
4:	200	0.470	0.570
5:	200	0.035	0.980
6:	200	0.980	0.035
7:	200	0.980	0.035
8:	200	0.035	0.980

mbMCW testing of multiple datasets organized horizontally

This example of mbMCW testing entry dataset with a vertical layout showcases data for six tests (Table 11). It includes two types of informative columns to accommodate cases where users might want to perform multiple tests with a nested structure. The columns with the *contrast* prefix provide contextual information for groups of tests or rows, while the columns with the *element* prefix provide contextual information for each test or row. Each *Contrast* I row includes two sets of matched-paired measures randomly selected from the same range (Figure 6). Each *Contrast* II row includes two sets of matched-paired measures. For the first set, matched-pair measures were randomly selected from the same range. For the second set, matched-pair measures were randomly selected from two different ranges, with the measures corresponding to the second condition of each matched-pair being generally higher than the measures corresponding to the first condition of each matched-pair (Figure 6). The results of these mbMCW tests align with the intended structure of the entry datasets (Table 12).

Table 11. mbMCW testing entry dataset with horizontal layout

	contrast	<pre>contrast_trait</pre>	eleme	ent_ID	eleme	ent_chr	eleme	ent_star	t ele	ement_e	end
	<char></char>	<char></char>	<	char>		<int></int>		<int< td=""><td>></td><td><ir< td=""><td>nt></td></ir<></td></int<>	>	<ir< td=""><td>nt></td></ir<>	nt>
1:	I	trait_a		x1		1		100	0	20	000
2:	I	trait_a		x2		1		500	0	55	500
3:	I	trait_a		x3		1		9000	0	1000	000
4:	II	trait_b		x1		1		100	0	20	000
5:	II	trait_b		x2		1		500	0	55	500
6:	II	trait_b		x3		1		9000	0	1000	000
	matched_condition_a matched_condition_b unmatched_condition_x										
		<char></char>		<	char>			<cha< td=""><td>r></td><td></td><td></td></cha<>	r>		
1:		AAAA			BBBB			XX	XX		
2:		AAAA BBBB			BBBB	XXXX					
3:		AAAA			BBBB	XXXX					
4:		AAAA BBBB			XXXX						
5:		AAAA BBBB			XXXX						
6:		AAAA			BBBB			XX	XX		
	unmatched	d_condition_y x	.a.1 x	(.a.2	x.a.3	x.a.4	x.a.5	y.a.6 y	.a.7	y.a.8	y.a.9
		<char> <</char>	int> <	int>	<int></int>	<int></int>	<int></int>	<int> <</int>	int>	<int></int>	<int></int>
1:		YYYY	3	31	21	4	44	27	48	17	36
2:		YYYY	20	7	30	27	40	34	34	17	7
3:		YYYY	14	12	12	32	10	27	36	42	10
4:		YYYY	12	16	35	36	38	36	49	6	22
5:		YYYY	7	16	28	20	17	42	14	20	43
6:		YYYY	5	30	17	46	22	47	13	32	20
	y.a.10 x	b.1 x.b.2 x.b.3	3 x.b.	4 x.b	.5 y.b	o.6 y.b	.7 y.b	o.8 y.b.	9 y.Ł	0.10	

	<int></int>										
1:	7	42	70	17	30	17	18	36	20	36	48
2:	26	41	19	2	1	48	22	34	8	11	7
3:	5	25	27	23	13	14	2	43	35	21	23
4:	2	15	18	17	33	14	68	64	77	75	63
5:	29	26	31	25	48	16	54	61	51	68	68
6:	28	19	42	26	26	13	78	64	70	51	52

Figure 6. Data structure of mbMCW testing entry dataset with horizontal layout

Table 12. Results of mbMCW testing using an entry dataset with horizontal layout

	contrast	contrast_trait	${\tt element_ID}$	element_chr	${\tt element_start}$	element_end
	<char></char>	<char></char>	<char></char>	<int></int>	<int></int>	<int></int>
1:	I	trait_a	x1	1	1000	2000
2:	I	trait_a	x1	1	1000	2000
3:	I	trait_a	x1	1	1000	2000
4:	I	trait_a	x1	1	1000	2000
5:	I	trait_a	x2	1	5000	5500
6:	I	trait_a	x2	1	5000	5500
7:	I	trait_a	x2	1	5000	5500
8:	I	trait_a	x2	1	5000	5500
9:	I	trait_a	x3	1	90000	100000
10:	I	trait_a	x3	1	90000	100000
11:	I	trait_a	x3	1	90000	100000
12:	I	trait_a	x3	1	90000	100000
13:	II	trait_b	x1	1	1000	2000
14:	II	trait_b	x1	1	1000	2000
15:	II	trait_b	x1	1	1000	2000
16:	II	trait_b	x1	1	1000	2000
17:	II	trait_b	x2	1	5000	5500
18:	II	trait_b	x2	1	5000	5500
19:	II	trait_b	x2	1	5000	5500
20:	II	trait_b	x2	1	5000	5500

21.		1	la.		,	1		00000	100000
21:	II	trait_		x3		1		90000	100000
22:	II	trait_		x3		1		90000	100000
23:	II	trait_		x3		1		90000	100000
24:	II	trait_		x3		1	. 7	90000	100000
									element_end
	matched_cor		itcnea_			unmatcr	nea_coi		
1.		<char></char>		<	char>			<char></char>	
1:		AAAA			BBBB				
2:		AAAA			BBBB			XXXX	
3:		AAAA AAAA			BBBB BBBB			XXXX	
4: 5:		AAAA			BBBB			XXXX	
6:		AAAA			BBBB			XXXX	
7:		AAAA			BBBB			XXXX	
8:		AAAA			BBBB			XXXX	
		AAAA			BBBB			XXXX	
9:		AAAA						XXXX	
10: 11:		AAAA			BBBB BBBB			XXXX	
12:		AAAA						XXXX	
					BBBB			XXXX	
13:		AAAA			BBBB				
14:		AAAA AAAA			BBBB			XXXX	
15:					BBBB			XXXX	
16: 17:		AAAA			BBBB				
		AAAA			BBBB			XXXX	
18:		AAAA			BBBB			XXXX	
19:		AAAA			BBBB			XXXX	
20:		AAAA			BBBB			XXXX	
21:		AAAA			BBBB			XXXX	
22:		AAAA AAAA			BBBB			XXXX	
23:					BBBB			XXXX	
24:		AAAA	ام ماما .		BBBB			XXXX	•
	matched_cor								
	unmatched_c	-	N	N_x	N_y		t_type	٠.	
1.		<char></char>					<char></char>		
1:		YYYY	10	5				mbMCW_BI	
2:		YYYY	10	5				mbMCW_BI	
3:		YYYY	10	5 5				mbMCW_BI	
4:		YYYY	10					mbMCW_BI	
5:		YYYY	10	5				mbMCW_BI	
6:		YYYY	10	5				mbMCW_BI	
7:		YYYY	10	5				mbMCW_BI	
8:		YYYY	10	5				mbMCW_BI	
9:		YYYY	10	5				mbMCW_BI	
10:		YYYY	10	5				mbMCW_BI	
11:		YYYY	10	5				mbMCW_BI	
12:		YYYY	10	5				mbMCW_BI	
13:		YYYY	10	5				mbMCW_BI	
14:		YYYY	10	5				mbMCW_BI	
15:		YYYY	10	5				mbMCW_BI	
16:		YYYY	10	5	5	approxi	ımatea	mbMCW_BI	

```
17:
                      YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
18:
                      YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
19:
                              10
                                     5
                                            5 approximated mbMCW_BI
                      YYYY
20:
                      YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
                                     5
21:
                      YYYY
                              10
                                            5 approximated mbMCW_BI
22:
                      YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
23:
                                     5
                                            5 approximated mbMCW_BI
                      YYYY
                              10
24:
                      YYYY
                              10
                                     5
                                            5 approximated mbMCW_BI
                                                 test_type BI_type
    unmatched_condition_y
                               Ν
                                   N_x
                                         N_y
    matched_condition_contrast unmatched_condition_contrast observed_BI
                         <char>
                                                       <char>
                                                                     <num>
 1:
                      AAAA-BBBB
                                                    XXXX-YYYY -0.18181818
 2:
                      AAAA-BBBB
                                                    YYYY-XXXX 0.18181818
 3:
                      BBBB-AAAA
                                                    XXXX-YYYY 0.18181818
 4:
                      BBBB-AAAA
                                                    YYYY-XXXX -0.18181818
 5:
                      AAAA-BBBB
                                                    XXXX-YYYY -0.18181818
 6:
                      AAAA-BBBB
                                                    YYYY-XXXX 0.18181818
 7:
                      BBBB-AAAA
                                                    XXXX-YYYY 0.18181818
 8:
                      BBBB-AAAA
                                                    YYYY-XXXX -0.18181818
 9:
                      AAAA-BBBB
                                                    XXXX-YYYY -0.09803922
10:
                      AAAA-BBBB
                                                    YYYY-XXXX 0.09803922
11:
                      BBBB-AAAA
                                                    XXXX-YYYY 0.09803922
12:
                      BBBB-AAAA
                                                    YYYY-XXXX -0.09803922
                      AAAA-BBBB
                                                    XXXX-YYYY 0.88888889
13:
14:
                      AAAA-BBBB
                                                    YYYY-XXXX -0.88888889
15:
                      BBBB-AAAA
                                                    XXXX-YYYY -0.88888889
16:
                      BBBB-AAAA
                                                    YYYY-XXXX 0.8888889
17:
                      AAAA-BBBB
                                                    XXXX-YYYY 0.41818182
18:
                      AAAA-BBBB
                                                    YYYY-XXXX -0.41818182
19:
                      BBBB-AAAA
                                                    XXXX-YYYY -0.41818182
20:
                      BBBB-AAAA
                                                    YYYY-XXXX 0.41818182
21:
                      AAAA-BBBB
                                                    XXXX-YYYY 0.69811321
22:
                      AAAA-BBBB
                                                    YYYY-XXXX -0.69811321
23:
                      BBBB-AAAA
                                                    XXXX-YYYY -0.69811321
24:
                      BBBB-AAAA
                                                    YYYY-XXXX 0.69811321
    matched_condition_contrast unmatched_condition_contrast observed_BI
    expected_by_chance_BI_N pupper plower
                       <int>
                              <num>
                                     <num>
 1:
                         200
                              0.660
                                     0.375
 2:
                         200
                              0.375
                                    0.660
                              0.375
 3:
                         200
                                     0.660
 4:
                         200
                              0.660
                                     0.375
 5:
                         200
                              0.720
                                     0.315
 6:
                         200
                              0.315
                                     0.720
 7:
                         200
                              0.315 0.720
                              0.720 0.315
 8:
                         200
 9:
                              0.630
                                     0.425
                         200
10:
                         200
                              0.425
                                     0.630
11:
                         200
                              0.425
                                     0.630
12:
                         200
                              0.630 0.425
```

```
13:
                            0.000 1.000
                        200
14:
                        200
                            1.000 0.000
15:
                            1.000 0.000
                        200
16:
                            0.000 1.000
                        200
17:
                            0.035 0.975
                        200
18:
                        200
                            0.975 0.035
                            0.975 0.035
19:
                        200
20:
                        200
                            0.035 0.975
21:
                        200
                            0.005 1.000
22:
                            1.000 0.005
                        200
23:
                        200
                            1.000 0.005
24:
                        200
                            0.005 1.000
    expected_by_chance_BI_N pupper plower
```

4.4 bias-measures MCW (bMCW) test

Introduction

The bMCW test is actually a combination of two tests that assess whether a set of measures of bias for a quantitative trait between two conditions or a subset of these bias measures are themselves significantly biased in the same direction. For instance, bMCW tests can be used to analyze bias indexes obtained using other MCW tests or fold change for transcript abundances spanning the entire transcriptome or only for genes located in specific genomic regions from two sets of mice exposed to different conditions.

bMCW testing entry dataset formatting

When executing the *bMCWtest* function, users must provide the path to a local CSV file named *X_bMCWtest_data.csv*, where *X* serves as a user-defined identifier. *X_bMCWtest_data.csv* should include the following columns:

- Column bias_value contains the value of the bias measure under analysis.
- Columns subset_x, where x represents the specific type of subset for each column, such as "chr" for chromosomes or "GO" for Gene Ontology. These columns are required if users intend to assess whether bias measures for certain subsets of elements in the dataset are significantly biased in the same direction. Columns subset_x can indicate whether an element belongs to a subset using either "YES" and "NO", or specific subset names like "chr1" or "chrX", or a combination of both, such as "chr1", "chrX" and "NO". The function bMCW test will transform the dataset to conduct independent analysis of each subset of elements marked as "YES" or with a specific subset name in each subset_x column.
- As many informative columns as needed by users to contextualize the results of each test. The
 names of these columns should not contain the terms bias_value or subset. While these columns
 are optional when running a single test, at least one column is required when running multiple tests
 simultaneously. All rows for each individual test must contain the same information in these
 columns.
- Users can specify columns with information relevant about each element or row using the column name structure *element_x*, where *x* indicates the specific information in each column (see example).
 However, *element_x* columns are not essential for bMCW testing and will not be included in the

bMCW testing process

The function *bMCWtest* eliminates missing values (NAs) from the dataset before proceeding with the following steps.

- To estimate the bias for all bias measures in the entire dataset or a subset of them, the function *bMCWtest* performs the following tasks:
 - It ranks all bias measures with non-zero values from lowest to highest. Bias measures with a
 value of 0 are assigned a 0 rank. If multiple bias measures have the same absolute value, all
 tied bias measures are assigned the lowest rank possible.
 - It assigns each rank a sign based on the sign of its corresponding bias measure.
 - It calculates a whole-set bias index (bMCW_wBl) by summing the signed ranks for all elements in the dataset and dividing it by the maximum number that sum could have if all bias measures were positive. Consequently, bMCW_wBl ranges between 1 when all bias measures are positive, and -1 when all bias measures are negative.
 - It calculates a subset bias index (bMCW_sBI) for each subset of elements under analysis by summing the signed ranks for the elements in the subset and dividing it by the maximum number that sum could have if the elements in the subset had the highest possible positive bias measures. Consequently, bMCW_sBI ranges between 1 when the bias measures for the subset in question have the highest positive bias measures in the entire dataset, and -1 when the bias measures for the subset in question have the lowest negative bias measures in the entire dataset.
- To assess the significance of the bMCW-wBIs and bMCW-sBIs obtained from the user-provided dataset (observed bMCW-wBIs and bMCW-sBIs), the function bMCWtest performs the following tasks,
- It generates a collection of expected-by-chance bMCW_wBIs by rearranging the signs of all signed ranks multiple times. The function *bMCWtest* also generates a collection of expected-by-chance bMCW_sBIs by rearranging the subset of elements multiple times. The user-provided parameter *max_rearrangements* determines the two paths that the function *bMCWtest* can follow to generate the collection of expected-by-chance bMCW_wBIs and bMCW_sBIs:
- *bMCW exact testing*: If the number of distinct bias measure rearrangements that can alter their initial sign distribution or subset distribution is less than *max_rearrangements*, the function *bMCWtest* calculates bMCW_wBIs or bMCW_sBIs for all possible data rearrangements.
- *bMCW approximated testing*: If the number of distinct bias measure rearrangements that can alter their initial sign distribution or subset distribution is greater than *max_rearrangements*, the function *bMCWtest* performs $N = *max_rearrangements*$ random measure rearrangements to calculate the collection of expected-by-chance bMCW_wBIs or bMCW_sBIs.
- It calculates *P~upper~* and *P~lower~* values, as the fraction of expected-by-chance bMCW-wBIs and bMCW-sBIs that are higher or equal to and lower or equal to the observed bMCW-wBIs and bMCW-sBIs, respectively.

bMCW testing results

The *bMCWtest* function reports to the console the total number of tests it will execute, and their exact and approximated counts. It also creates a CSV file named *X_bMCWtest_results.csv*, where *X* is a user-defined identifier for the entry dataset CSV file. The *X_bMCWtest_results.csv* file contains one row for each bMCWtest to indicate the results of whole-set bMCW testing, and as many rows as necessary to indicate the results of subset bMCW testing. Rows for whole-set analyses will be at the top of *X_bMCWtest_results.csv* file.

The *X_bMCWtest_results.csv* file includes the following columns:

- User-provided informative columns to contextualize the results of each test.
- Column subset_type indicates whether the results in each row corresponds to whole-set tests or specific subset tests, such as "chr" for chromosomes or "GO" for Gene Ontology terms.
- Column tested_subset indicates the name of the subset under analysis. For whole-set tests, the
 tested_subset column indicates "none". For subset tests, the tested_subset column indicates
 "YES" or the specific name of the subset under analysis, such as "chr1" or "chrX".
- Columns *N* and *n* indicate the total number of elements in the whole set and those associated with the subset under analysis, respectively, after removing missing values (NAs). For *whole-set* tests, columns *N* and *n* have the same value.
- Column test_type distinguishes between exact and approximated tests.
- Column BI_type indicates whether results correspond to whole-set tests (bMCW_wBI) or to subset tests (bMCW_sBIs).
- Column observed_BI contains the value of bMCW_BIs obtained from analyzing the user-provided dataset.
- Column expected_by_chance_BI_N indicates the number of data rearrangements used to calculate
 the expected-by-chance bMCW_wBIs and bMCW_sBIs. This value corresponds to the lowest
 number between all possible measure rearrangements and the parameter max_rearrangements.
- Columns pupper and plower represent the P_{upper} and P_{lower} values, respectively. They denote the fraction of expected-by-chance bMCW_wBls or bMCW_sBls with values higher or equal to and lower or equal to the observed bMCW_wBls or bMCW_sBls, respectively.

Examples

bMCW testing of multiple datasets

This example of bMCW testing entry dataset includes bias measures for three tests, each with ten elements distributed across four subsets: chr1, chr2, chrX and chrY (Table 13), In this example, the bias measures under study are uMCW_BIs, which range from 1 and -1. The *Contrast* I test includes bias measures randomly selected from the same range (Figure 7). The *Contrast* II test includes bias measures randomly selected from the same range, with most of them having positive values (Figure 7). The *Contrast* III includes bias measures randomly selected from the same range for three of the four subsets, while bias measures for the fourth subset are randomly selected with the largest positive values in the dataset (Figure 7). The results of these bMCW tests align with the intended structure of the entry datasets (Table 14).

Table 13. bMCW testing entry dataset

	contrast	contrast_trait	element_ID	element_chr	element_start	element_end
	<char></char>	<char></char>	<char></char>	<char></char>	<int></int>	<int></int>
1:	I	trait_a	x1	chr1	1000	2000
2:	I	trait_a	x2	chr1	5000	5500
3:	I	trait_a	x3	chr1	90000	100000
4:	I	trait_a	x4	chr2	150	300
5:	I	trait_a	x5	chr2	2545	7000
6:	I	trait_a	x6	chr2	80000	100000
7:	I	trait_a	x7	chrX	4000	7000
8:	I	trait_a	x8	chrX	9000	10000
9:	I	trait_a	x9	chrX	30000	31000
10:	I	trait_a	x10	chrY	800	1000
11:	II	trait_b	x1	chr1	1000	2000
12:	II	trait_b	x2	chr1	5000	5500
13:	II	trait_b	x3	chr1	90000	100000
14:	II	trait_b	x4	chr2	150	300
15:	II	trait_b	x5	chr2	2545	7000
16:	II	trait_b	x6	chr2	80000	100000
17:	II	trait_b	x7	chrX	4000	7000
18:	II	trait_b	x8	chrX	9000	10000
19:	II	trait_b	x9	chrX	30000	31000
20:	II	trait_b	x10	chrY	800	1000
21:	III	trait_c	x1	chr1	1000	2000
22:	III	trait_c	x2	chr1	5000	5500
23:	III	trait_c	x3	chr1	90000	100000
24:	III	trait_c	x4	chr2	150	300
25:	III	trait_c	x5	chr2	2545	7000
26:	III	trait_c	x6	chr2	80000	100000
27:	III	trait_c	x7	chrX	4000	7000
28:	III	trait_c	x8	chrX	9000	10000
29:	III	trait_c	x9	chrX	30000	31000
30:	III	trait_c	x10	chrY	800	1000

	CHAI >	CIIOI >	CHAI / CHAIL
1:	chr1	uMCW_BI	AAAA-BBBB 0.59883185
2:	chr1	uMCW_BI	AAAA-BBBB -0.37376010
3:	chr1	uMCW_BI	AAAA-BBBB 0.75433521
4:	chr2	uMCW_BI	AAAA-BBBB -0.36807420
5:	chr2	uMCW_BI	AAAA-BBBB -0.97818020
6:	chr2	uMCW_BI	AAAA-BBBB 0.59299509
7:	chrX	uMCW_BI	AAAA-BBBB -0.58644011
8:	chrX	uMCW_BI	AAAA-BBBB -0.36797886
9:	chrX	uMCW_BI	AAAA-BBBB -0.63406711
10:	chrY	uMCW_BI	AAAA-BBBB 0.17762437
11:	chr1	uMCW_BI	AAAA-BBBB -0.03649558
12:	chr1	uMCW_BI	AAAA-BBBB 0.74867686
13:	chr1	uMCW_BI	AAAA-BBBB 0.81900144
14:	chr2	uMCW_BI	AAAA-BBBB 0.95044745
15:	chr2	uMCW_BI	AAAA-BBBB 0.87731860

16:	chr2	uMCW_BI	AAAA-BBBB	0.30838414
17:	chrX	uMCW_BI	AAAA-BBBB	0.44241725
18:	chrX	uMCW_BI	AAAA-BBBB	0.83965786
19:	chrX	uMCW_BI	AAAA-BBBB	0.65278713
20:	chrY	uMCW_BI	AAAA-BBBB	-0.41912458
21:	chr1	uMCW_BI	AAAA-BBBB	0.42249472
22:	chr1	uMCW_BI	AAAA-BBBB	0.69599878
23:	chr1	uMCW_BI	AAAA-BBBB	0.59133980
24:	chr2	uMCW_BI	AAAA-BBBB	-0.04787103
25:	chr2	uMCW_BI	AAAA-BBBB	0.01716967
26:	chr2	uMCW_BI	AAAA-BBBB	0.09079163
27:	chrX	uMCW_BI	AAAA-BBBB	-0.07600623
28:	chrX	uMCW_BI	AAAA-BBBB	-0.09808774
29:	chrX	uMCW_BI	AAAA-BBBB	-0.02192925
30:	chrY	uMCW_BI	AAAA-BBBB	-0.08190336
	subset_chr	bias_measure	${\tt condition_contrast}$	bias_value

Figure 7. Data structure of bMCW testing entry dataset

Table 14. bMCW testing results

	${\tt contrast}$	contrast_trait	bias_measure	${\tt condition_contrast}$	subset_type
	<char></char>	<char></char>	<char></char>	<char></char>	<char></char>
1:	I	trait_a	uMCW_BI	AAAA-BBBB	wholeset
2:	II	trait_b	uMCW_BI	AAAA-BBBB	wholeset
3:	III	trait_c	uMCW_BI	AAAA-BBBB	wholeset
4:	I	trait_a	uMCW_BI	AAAA-BBBB	subset_chr
5:	I	trait_a	uMCW_BI	AAAA-BBBB	subset_chr
6:	I	trait_a	uMCW_BI	AAAA-BBBB	subset_chr
7:	I	trait_a	uMCW_BI	AAAA-BBBB	subset_chr
8:	II	trait_b	uMCW_BI	AAAA-BBBB	subset_chr
9:	II	trait_b	uMCW_BI	AAAA-BBBB	subset_chr
10:	II	trait_b	uMCW_BI	AAAA-BBBB	subset_chr
11:	II	trait_b	uMCW_BI	AAAA-BBBB	subset_chr

```
12:
         III
                     trait_c
                                   uMCW_BI
                                                     AAAA-BBBB
                                                                subset_chr
13:
         III
                     trait_c
                                   uMCW_BI
                                                     AAAA-BBBB
                                                                subset_chr
14:
         III
                     trait_c
                                   uMCW_BI
                                                     AAAA-BBBB
                                                                 subset_chr
15:
                     trait_c
                                   uMCW_BI
                                                     AAAA-BBBB
         III
                                                                subset_chr
    tested subset
                       Ν
                             n
                                   test_type BI_type observed_BI
           <char> <int> <int>
                                      <char>
                                               <char>
                                                             <num>
 1:
                      10
                            10 approximated bMCW_wBI
             none
                                                        -0.1636364
 2:
             none
                      10
                            10 approximated bMCW_wBI
                                                         0.8545455
 3:
             none
                      10
                               approximated bMCW_wBI
                                                         0.2363636
 4:
             chr1
                      10
                             3
                                       exact bMCW_sBI
                                                         0.444444
 5:
                             3
             chr2
                      10
                                       exact bMCW_sBI
                                                        -0.2592593
                             3
 6:
             chrX
                      10
                                       exact bMCW_sBI
                                                        -0.555556
 7:
             chrY
                      10
                             1
                                       exact bMCW_sBI
                                                         0.1000000
 8:
             chr1
                      10
                             3
                                       exact bMCW_sBI
                                                         0.444444
                             3
 9:
             chr2
                      10
                                       exact bMCW_sBI
                                                         0.7777778
                             3
                      10
                                       exact bMCW_sBI
                                                         0.6296296
10:
             chrX
11:
             chrY
                      10
                             1
                                       exact bMCW_sBI
                                                        -0.3000000
                             3
12:
             chr1
                      10
                                       exact bMCW_sBI
                                                         1.0000000
13:
                             3
             chr2
                      10
                                       exact bMCW_sBI
                                                         0.1481481
14:
             chrX
                      10
                             3
                                       exact bMCW_sBI
                                                        -0.4814815
                                       exact bMCW_sBI
15:
             chrY
                      10
                             1
                                                        -0.5000000
    expected_by_chance_BI_N
                                               plower
                                   pupper
                       <int>
                                    <num>
                                                <num>
 1:
                         200 0.435000000 0.64500000
 2:
                         200 0.050000000 0.96500000
 3:
                         200 0.090000000 0.92500000
 4:
                         120 0.075000000 0.94166667
 5:
                         120 0.700000000 0.33333333
 6:
                         120 0.900000000 0.12500000
 7:
                          10 0.400000000 0.70000000
 8:
                         120 0.658333333 0.40000000
 9:
                         120 0.175000000 0.87500000
10:
                         120 0.366666667 0.68333333
11:
                          10 1.000000000 0.10000000
12:
                         120 0.008333333 1.00000000
13:
                         120 0.483333333 0.55833333
14:
                         120 0.966666667 0.04166667
15:
                          10 0.900000000 0.20000000
```

References

- 1. Díaz-Castillo, C. <u>Females and Males Contribute in Opposite Ways to the Evolution of Gene Order in Drosophila</u>. *PLoS ONE* **8**, e64491 (2013).
- Díaz-Castillo, C. <u>Transcriptome dynamics along axolotl regenerative development are consistent</u> with an extensive reduction in gene expression heterogeneity in dedifferentiated cells. *PeerJ* 5, e4004 (2017).
- 3. Chamorro-Garcia, R. et al. <u>Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice</u>. *Nature Communications* **8**, (2017).
- 4. Díaz-Castillo, C. Same-Sex Twin Pair Phenotypic Correlations are Consistent with Human Y

- Chromosome Promoting Phenotypic Heterogeneity. Evolutionary Biology 45, 248–258 (2018).
- 5. Diaz-Castillo, C., Chamorro-Garcia, R., Shioda, T. & Blumberg, B. <u>Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Exposure To An Environmental Stressor in Mice</u>. *Scientific Reports* **9**, (2019).