MODEL BASED DESIGN

References

- Slides are from Edward A. Lee & Sanjit Seshia, UC Berkeley, EECS 149 Fall 2013
 - Copyright © 2008-2016, Edward A. Lee & Sanjit A. Seshia, All rights reserved
- Some slides from Philip Asare w/ Joanne Dugan and Ron Williams from UVA

Modeling, Design, Analysis

- Modeling is the process of gaining a deeper understanding of a system through imitation. Models specify what a system does.
- Design is the structured creation of artifacts. It specifies how a system does what it does.
- Analysis is the process of gaining a deeper understanding of a system through dissection. It specifies why a system does what it does (or fails to do what a model says it should do).

What is Modelling?

■Developing insight about a system, process, or artefact through imitation.

■A model is the artefact that imitates the system, process, or artefact of interest.

■A mathematical model is in the form of a set of definitions and mathematical formulas/objects.

The Kopetz Principle

Prof. Dr. Hermann Kopetz

Many (predictive) properties that we assert about systems (determinism, timeliness, reliability, safety) are in fact not properties of an *implemented* system, but rather properties of a *model* of the system.

■We can make definitive statements about models, from which we can infer properties of system realizations. The validity of this inference depends on model fidelity, which is always approximate.

(paraphrased)

What is Model-Based Design?

- 1. Create a mathematical model of all the parts of the embedded system
 - Physical world
 - Control system
 - Software environment
 - Hardware platform
 - Network
 - Sensors and actuators

Different sub-systems, different approaches to Modelling

- 2. Construct the implementation from the model
 - Goal: automate this construction, like a compiler
 - In practice, only portions are automatically constructed

Modelling Techniques

- Models that are abstractions of system dynamics
 - (how things change over time)

■ Examples:

- Modelling physical phenomena Ordinary Differential Equations (ODEs)
- Feedback control systems time-domain Modelling
- Modelling modal behaviour FSMs, hybrid automata
- Modelling sensors and actuators calibration, noise
- Modelling software concurrency, real-time models
- Modelling networks latencies, error rates, packet loss

Modelling of Continuous Dynamics

 Ordinary differential equations, Laplace transforms, feedback control systems, stability analysis, robustness analysis, ...

An Example: Modelling Helicopter Dynamics

Image from Zhou Z, Huang J. <u>Influence of Rotor Dynamic Scattering on Helicopter Radar Cross-Section.</u> Sensors. 2020; 20(7):2097.

Modelling Physical Motion

- Six degrees of freedom:
 - Position: x, y, z

- Orientation: pitch, yaw, roll

Notation

Position is given by three functions:

$$x: \mathbb{R} \to \mathbb{R}$$
$$y: \mathbb{R} \to \mathbb{R}$$
$$z: \mathbb{R} \to \mathbb{R}$$

- Where the domain \mathbb{R} represents time and the co-domain \mathbb{R} (range) represents position along the axis.
- \blacksquare Collecting into a vector (x):

$$x: \mathbb{R} \to \mathbb{R}^3$$

Position at time $t \in \mathbb{R}$ is $\mathbf{x}(t) \in \mathbb{R}^3$

Notation

■ Velocity:

$$\dot{\mathbf{x}}: \mathbb{R} \to \mathbb{R}^3$$

■ Is the derivative, $\forall t \in \mathbb{R}$,

$$\dot{\mathbf{x}}(t) = \frac{d}{dt}\mathbf{x}(t)$$

■ Acceleration $\ddot{\mathbf{x}}$: $\mathbb{R} \to \mathbb{R}^3$ is the second derivative

$$\ddot{\mathbf{x}}(t) = \frac{d^2}{dt^2} \mathbf{x}(t)$$

Newton's Second Law

- Force on an object is $F: \mathbb{R} \to \mathbb{R}^3$
- Newton's second law states $\forall t \in \mathbb{R}$,

$$F(t) = \frac{d}{dt} (M\dot{x}(t))$$

$$F(t) = M\ddot{x}(t)$$

- where M is the mass.
- Converting to integral equation:

$$x(t) = x(0) + \int_0^t \dot{x}(\tau)d\tau$$

$$= x(0) + \int_0^t [\dot{x}(0) + \int_0^\tau \ddot{x}(\alpha)d\alpha]d\tau$$

$$= x(0) + t\dot{x}(0) + \frac{1}{M}\int_0^t \int_0^\tau F(\alpha)d\alpha d\tau$$

Orientation

- lacktriangle Orientation: $\theta \colon \mathbb{R} \to \mathbb{R}^3$
- Angular velocity: $\dot{\theta}$: $\mathbb{R} \to \mathbb{R}^3$
- Angular acceleration: $\ddot{\theta}$: $\mathbb{R} \to \mathbb{R}^3$
- Torque: $T: \mathbb{R} \to \mathbb{R}^3$

$$\theta(t) = \begin{bmatrix} \theta_x(t) \\ \theta_y(t) \\ \theta_z(t) \end{bmatrix} = \begin{bmatrix} roll \\ yaw \\ pitch \end{bmatrix}$$

Point mass rotating around a fixed axis

- Angular version of force is torque.
- Just as force is a push or a pull, a torque is a twist.
- Units: newton-meters/radian, Joules/radian
- Note that radians are meter/meter (2π meters of circumference per 1 meter of radius), so as units, are optional.
- \blacksquare Radius of arm: $r \in \mathbb{R}$
- lacksquare Force orthogonal to arm: $f \in \mathbb{R}$
- lacksquare Mass of object: $m \in \mathbb{R}$

$$T = r \times F$$

$$L = r \times p$$

angular momentum, momentum

Rotational Version of Newton's Second Law

$$T(t) = \frac{d}{dt} \Big(I(t)\dot{\theta}(t) \Big)$$

■ Where I(t) is a 3 x 3 matrix called the moment of inertia tensor:

$$\begin{bmatrix} T_{x}(t) \\ T_{y}(t) \\ T_{z}(t) \end{bmatrix} = \frac{d}{dt} \begin{pmatrix} \begin{bmatrix} I_{xx}(t) & I_{xy}(t) & I_{xz}(t) \\ I_{yx}(t) & I_{yy}(t) & I_{yz}(t) \\ I_{zx}(t) & I_{zy}(t) & I_{zz}(t) \end{bmatrix} \begin{bmatrix} \dot{\theta}_{x}(t) \\ \dot{\theta}_{y}(t) \\ \dot{\theta}_{z}(t) \end{bmatrix} \end{pmatrix}$$

Here, for example, $T_y(t)$ is the net torque around the y axis (which would cause changes in yaw), $I_{yx}(t)$ is the inertia that determines how acceleration around the x axis is related to torque around the y axis.

Simple Example

Yaw Dynamics

$$T_{y}(t) = I_{yy}\ddot{\theta}_{y}(t)$$

■ To account for initial angular velocity:

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau$$

 $\tau = r \times F$ $L = r \times p$

Feedback Control Problem

- A helicopter without a tail rotor, like the one below, will spin uncontrollably due to the torque induced by friction in the rotor shaft.
- Control system problem: Apply torque using the tail rotor to counterbalance the torque of the top rotor.

Actor Model of Systems

lacksquare A system is a function that accepts an input signal and yields an output signal. S

■ The domain and range of the system function are sets of signals, which themselves are functions.

$$x: \mathbb{R} \to \mathbb{R}, \qquad y: \mathbb{R} \to \mathbb{R}$$

Parameters may affect the definition of the function S.

$$S: X \to Y$$
$$X = Y = \mathbb{R} \to \mathbb{R}$$

Actor model of the helicopter

■ Input is the net torque of the tail rotor and the top rotor. Output is the angular velocity around the y axis.

Parameters of the model are shown in the box. The input and output relation is given by the equation.

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau$$

Composition of actor models

 $i=\dot{ heta}_{y}(0)$ (initial value of integration)

Actor models with multiple inputs

$$S: (\mathbb{R} \to \mathbb{R})^2 \to (\mathbb{R} \to \mathbb{R})$$

$$\forall t \in \mathbb{R}, \qquad y(t) = (S(x_1, x_2))(t) = x_1(t) + x_2(t)$$

Actor models with multiple inputs

$$S: (\mathbb{R} \to \mathbb{R})^2 \to (\mathbb{R} \to \mathbb{R})$$

$$\forall t \in \mathbb{R}, \quad y(t) = (S(x_1, x_2))(t) = x_1(t) - x_2(t)$$

Stability: Bounded-Input Bounded-Output

A system is bounded-input bounded-output (BIBO) stable if for an input that is bounded for all time, the output remains bounded for all time

More formally

Let x(t) be the input signal and y(t) be the output signal. The input is bounded if there is some real number $A < \infty$ such that $x(t) < A, \forall \ t \in \mathbb{R}$ and similarly the output is bounded if there is some real number B such that $y(t) < B, \forall \ t \in \mathbb{R}$. The system is stable (in the BIBO sense) if for a bounded input x(t) there exists some bound B for the output y(t).

The helicopter is not BIBO stable. Why?

Stability: Proportional controller

$$\begin{split} \dot{\theta}_y(t) &= \dot{\theta}_y(0) + \frac{1}{I_{yy}} \int_0^t T_y(\tau) d\tau \\ &= \dot{\theta}_y(0) + \frac{K}{I_{yy}} \int_0^t \left(\Psi(\tau) - \dot{\theta}_y(\tau) \right) d\tau \end{split}$$

Note that the angular velocity appears on both sides, so this equation is not trivial to solve.

Behaviour of the controller

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{K}{I_{yy}} \int_{0}^{t} \left(\Psi(\tau) - \dot{\theta}_{y}(\tau) \right) d\tau$$

Desired angular velocity: $\Psi(\tau) = 0$

Simplifies differential equation to:

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) - \frac{K}{I_{yy}} \int_{0}^{\tau} \dot{\theta}_{y}(\tau) d\tau$$

Which can be solved as follows (see textbook):

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0)e^{-Kt/I_{yy}}u(t)$$

More Realistic Scenario

27

System Properties – Causality

- The current output can only depend on the current and past inputs
- More formally:

Let $x|_{t \le \tau}$ be an input that has values only at times $t \le \tau$ (this is called a restriction in time)

$$\mathsf{IF}\ x_1|_{t\leq \tau} = x_2|_{t\leq \tau}$$

THEN a system S for which x_1 and x_2 are valid inputs is causal if and only if $S(x_1)|_{t \le \tau} = S(x_2)|_{t \le \tau}$

Source: XKCD -Correlation

System Properties – Strict Causality

Strict causality \Rightarrow causality

- The current output can only depend on the past inputs
- More formally:

Let $x|_{t<\tau}$ be an input that has values only at times $t<\tau$

IF
$$x_1|_{t < \tau} = x_2|_{t < \tau}$$

THEN a system S for which x_1 and x_2 are valid inputs is strictly causal if and only if $S(x_1)|_{t \le \tau} = S(x_2)|_{t \le \tau}$ Note that the output of S is for times up to **and including** t

For the integrator, the value of x at time τ is irrelevant for $y(\tau)$. So, x_1 can differ from x_2 at time τ .

System Properties – Memoryless

- The current output only depends on the current input
- More formally:

Remember that if x is a signal, then x is a function, hence x(t) is the value at time t of this function

Additionally, the system S is also a function and hence (S(x))(t) is the output of the system at t for an input signal x

A system S is memoryless if there is some function $f: A \to B$ such that (S(x))(t) = f(x(t))

(i.e., the output at t depends on the input at t only)

System Properties – Linearity

- Must satisfy superposition
 - Additivity

$$S(x_1 + x_2) = S(x_1) + S(x_2)$$

- Homogeneity

$$S(a \cdot x) = a \cdot S(x)$$

Superposition

$$S(a \cdot x_1 + b \cdot x_2) = a \cdot S(x_1) + b \cdot S(x_2)$$

Is the helicopter system linear?

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \int_{0}^{t} \frac{1}{I_{yy}} \cdot T_{y}(\tau) d\tau$$

$$S(T_{y}) = \dot{\theta}_{y}(0) + \int_{0}^{t} \frac{1}{I_{yy}} \cdot T_{y}(\tau) d\tau$$

$$S(a \cdot T_y) = \dot{\theta}_y(0) + \int_0^t \frac{1}{I_{yy}} \cdot a \cdot T_y(\tau) d\tau$$
$$a \cdot S(T_y) = a \cdot \left[\dot{\theta}_y(0) + \int_0^t \frac{1}{I_{yy}} \cdot T_y(\tau) d\tau \right]$$

$$S(a \cdot T_y) \neq a \cdot S(T_y)$$

System Properties – Time-Invariance

- The output of the system acting on a delayed version of the input is equal to the delayed version of the output of the system acting on the original system.
- More formally

Let D_{τ} be an actor (system) that delays a signal such that $D_{\tau}(x(t)) = x(t-\tau)$

Then a system S is time invariant if and only if $S(D_{\tau}(x)) = D_{\tau}(S(x))$

System Properties

■ Time Invariance Example

- Let $x(t) = \sin(t)$ and $S(x) = a \cdot x$
- Then $S(x(t-\tau)) = S(\sin(t-\tau)) = a \cdot \sin(t-\tau)$
- and $(S(x))(t-\tau) = S(\sin(t))|_{t=t-\tau} = a \cdot \sin(t-\tau)$
- $S(x(t-\tau)) = (S(x))(t-\tau)$

■ Time Variance Example

- Let $x(t) = \sin(t)$ and $S(x) = t \cdot x$
- Then $S(x(t-\tau)) = S(\sin(t-\tau)) = t \cdot \sin(t-\tau)$
- and $(S(x))(t-\tau) =$

$$S(\sin(t))\Big|_{t=t-\tau} = (t-\tau) \cdot \sin(t-\tau)$$

 $-S(x(t-\tau)) \neq (S(x))(t-\tau)$

Key Concepts

- Models describe physical dynamics.
- Specifications are executable models.
- Models are composed to form designs.
- Models evolve during design.
- Deployed code may be (partially) generated from models.
- Modelling languages have semantics.
- Modelling languages themselves may be modelled (meta models)

- For embedded systems, this is about
 - Time
 - Concurrency
 - Dynamics

Summary

- Signals and systems: formal definition
- Continuous dynamical systems with Newton mechanics
- Actor models
- Some properties of systems