

DESCRIPTION:

With high ability to withstand the shock loading of large current, T835-800H series triacs provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrants products especially recommended for use on inductive load.

MAIN FEATURES

Symbol	Value	Unit
I _{T(RMS)}	8	А
VDRM /VRRM	600/800/1200	V

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Value	Unit		
Storage junction temperature range		T _{stg}	-40 - 150	$^{\circ}$ C		
Operating junction	Operating junction temperature range		Operating junction temperature range		-40 - 125	$^{\circ}$ C
Repetitive peak of	f-state voltage (T _j =25℃)	V_{DRM}	600/800/1200	V		
Repetitive peak re	Repetitive peak reverse voltage (Tj=25°C)		600/800/1200	V		
Non repetitive surg	Non repetitive surge peak Off-state voltage		V _{DRM} +100	V		
Non repetitive peak reverse voltage		V _{RSM}	V _{RRM} +100	V		
RMS on-state current	TO-251/TO-220C TO-220A(Non-Ins) (Tc=100°C) TO-220A(Ins)/ TO-220F(Ins) (Tc=95°C) TO-262 (Tc=90°C)	I _{T(RMS)}	8	А		
Non repetitive surge peak on-state current (full cycle, F=50Hz)		I _{TSM}	80	Α		

I ² t value for fusing (tp=10ms)	l ² t	32	A ² s
Critical rate of rise of on-state current $(I_G=2\times I_{GT})$	dl/dt	50	A/µs
Peak gate current	I _{GM}	4	Α
Average gate power dissipation	P _{G(AV)}	1	W
Peak gate power	P _{GM}	5	W

ELECTRICAL CHARACTERISTICS (T_j =25 $^{\circ}$ C unless otherwise specified)

3 Quadrants

Symbol	Test Condition Qu	Quadrant	Quadrant	Value				Unit
		Quadrant		TW	SW	CW	BW	Oill
lgт	$V_D=12V R_L=33\Omega$	I - II -III	MAX	5	10	35	50	mA
V _{GT}	VD-12V KL-3312	I - II -III	MAX	1.5				٧
V_{GD}	V _D =V _{DRM} T _j =125℃ R _L =3.3KΩ	I - II -III	MIN	0.2			V	
IL	I _G =1.2I _{GT}	I -III	MAX	20	25	50	70	mΛ
		II	IVIAA	25	35	70	90	mA
lн	I _{TM} =100mA		MAX	15	20	40	60	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	50	200	500	1000	V/µs

4 Quadrants

Symbol	Test Condition	Quadrant		Va	Unit		
Symbol	rest Condition			С	В	Oill	
lar		I - II -III	MAX	25	50	mA	
I _{GT} V _D =12V R _L =330	V _D =12V R _L =33Ω	IV	IVIAX	50	70		
V _G T		ALL	MAX	1.	V		
V _{GD}	$V_D=V_{DRM}$ $T_j=125$ °C $R_L=3.3$ $KΩ$	ALL	MIN	0	V		
IL I _G =1	1 -4 01	I -III-IV	MAY	MAX 50	50	70	mA
	I _G =1.2I _{GT}	II	IVIAA	70	90	IIIA	
lн	I _{TM} =200mA		MAX	40	60	mA	
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	200	500	V/µs	

STATIC CHARACTERISTICS

Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{тм} =11A tp=380µs	T _j =25℃	1.5	V
IDRM	V _D =V _{DRM} V _R =V _{RRM}	Tj=25℃	5	μΑ
I _{RRM}		T _j =125℃	1	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th(j-c)}		TO-251	2.1	°C/W
	junction to case(AC)	TO-220A(Ins)	2.7	
		TO-220C/ TO-220A(Non-Ins)	1.8	
		TO-220F(Ins)	2.9	
		TO-262	3.0	

FIG.1: Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I²t (dI/dt < 50A/µs)

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

