

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Инструментального и прикладного программного обеспечения

Практическая работа №8

по дисциплине «Проектирование информационных систем»

Студент группы ИКБО-04-22

<u>Егоров Л.А.</u> (Ф.И.О. студента)

Принял

<u>Ткаченко Д.И.</u> (Ф.И.О. преподавателя)

СОДЕРЖАНИЕ

1	РАСЧЁТ	ИНФОРМАЦИОННОЙ	ЭНТРОПИИ	ПРОЕКТИРУЕМОЙ
(СИСТЕМЫ	[3
1.1	Цель и зад	дачи работы		3
1.2	Описание	ЭСЕ и наполнение системи	Ы	3
1.3	Расчёт мат	тематического ожидания си	істемы	4
1.4	Расчёт дис	сперсии системы		4
1.5	Расчёт сре	еднеквадратического отклог	нения системы	5
1.6	Расчёт энт	гропии системы		5
1.7	⁷ Параметра	ы проектируемой ИС		5
ЗА	КЛЮЧЕНИ	ИЕ		

1 РАСЧЁТ ИНФОРМАЦИОННОЙ ЭНТРОПИИ ПРОЕКТИРУЕМОЙ СИСТЕМЫ

1.1 Цель и задачи работы

Цель работы: изучить методы расчета информационной энтропии проектируемой системы и применить их для анализа степени неопределенности данных в рамках проектирования информационной системы.

Задачи:

- освоить теоретические основы информационной энтропии, включая формулу Шеннона;
- провести анализ данных проектируемой системы для определения ключевых параметров, влияющих на энтропию;
- выполнить расчет энтропии системы на основе выявленных параметров;
- проинтерпретировать полученные результаты и оценить их влияние на проектирование информационной системы.

1.2 Описание ЭСЕ и наполнение системы

Элементарная семантическая единица (ЭСЕ) — неделимая единица информации, использующаяся в ИС. ЭСЕ представляет собой завершенную контекстную конструкцию, вызываемую в результате поиска по различным атрибутам или в результате тех или иных команд в виде отклика или отчета. В случае исследования системы «Электронный университет» за ЭСЕ выбрано количество долгов по изучаемым дисциплинам.

Система наполнена 100 ЭСЕ, но в рамках ограничения объёма данной работы приведены только первые десять записей в Таблице 1.1.

Таблица 1.1 — Список элементарных семантических единиц

Наименование дисциплины	Количество долгов
Проектирование баз данных	560
Математическая логика и теория алгоритмов	1940
Информатика	733

Продолжение Таблицы 1.1

Математический анализ	456
Моделирование сред и разработка приложений виртуальной и дополненной реальности	976
Проектирование информационных систем	1034
Объектно-ориентированное программирование	287
Структуры и алгоритмы обработки данных	254
Философия	156
Безопасность жизнедеятельности	1

Для оценки данных вероятностей принято решение разбить весь диапозон значений на 10 дискретных величин с шагом в 200 (Таблица 1.2).

Таблица 1.2 — Список элементарных семантических единиц

Диапозон	x	P(x)
0 — 200	78,5	0,2
200 — 400	270,5	0,2
400 — 600	508	0,2
600 — 800	733	0,1
800 — 1000	976	0,1
1000 — 1200	1034	0,1
1200 — 1400	0	0
1400 — 1600	0	0
1600 — 1800	0	0
1800 — 2000	1940	0,1

1.3 Расчёт математического ожидания системы

Расчет математического ожидания распределения долгов выполняется по Формуле 1.1.

$$M_{x_i} = \sum_{i=0}^{n} [p_i \cdot x_i]$$
 (1.1)

Рассчитанное значение математического ожидания равно 639,7 [долгов].

1.4 Расчёт дисперсии системы

Расчет дисперсии распределения долгов выполняется по Формуле 1.2.

$$D(x_i) = M(x_i^2) - M^2(x_i)$$
(1.2)

Рассчитанное значение дисперсии равно 290525,31 [долгов²].

1.5 Расчёт среднеквадратического отклонения системы

Расчет среднеквадроберского отклонения распределения долгов выполняется по Формуле 1.3.

$$\sigma_{x_i} = \sqrt{D_{x_i}} \tag{1.3}$$

Рассчитанное значение среднеквадратического отклонения равно 539 [долгов].

1.6 Расчёт энтропии системы

Энтропия системы — это сумма произведений вероятностей различных состояний системы на логарифмы этих вероятностей, взятая с обратным знаком (Формула 1.4).

$$H(x) = -\sum_{i=0}^{n} [p_i \cdot \log_a p_i]$$
(1.4)

За основание логарифма а взято двоичное основание. Используя данные из Таблицы 1.2, получено значение энтропии, равное 2,722 [бит].

1.7 Параметры проектируемой ИС

В Таблице представлены результаты расчётов основных характеристик проектируемой ИС:

Таблица 1.3 — Параметры проектируемой ИС

Параметр	Значение	
Математическое ожидание	639,7 [долгов]	
Дисперсия	290525,31 [долгов ²]	
Среднеквадратическое отклонение	539 [долгов]	
Энтропия	2,722 [бит]	

ЗАКЛЮЧЕНИЕ

В рамках практической работы изучена теория информационной энтропии как меры неопределенности данных. На основе анализа параметров проектируемой системы проведены расчеты по формуле Шеннона. Результаты расчетов позволили количественно оценить уровень хаотичности информации в системе и выявить области, требующие оптимизации. Полученные данные могут быть использованы для улучшения структуры базы данных, минимизации избыточности информации и повышения эффективности обработки данных в проектируемой информационной системе.