Il pacchetto Engtlc

Versione 3.2

Claudio Fiandrino

18 dicembre 2012

Indice

1	1 Introduzione			1
2	Cor	ne inst	allare engtlc	3
3	I co	mandi	introdotti da engtlc	4
	3.1	Unità	di misura	4
	3.2	Simbol	li	8
		3.2.1	Simboli generali	8
		3.2.2	Coefficienti di riflessione	13
		3.2.3	Esempi	14
		3.2.4	Simboli di lunghezze d'onda	14
		3.2.5	Simboli di impedenza e ammettenza	14
		3.2.6	Esempi ulteriori	16
		3.2.7	Simboli di potenza	16
		3.2.8	Simboli di campi elettrico e magnetico	17
		3.2.9	Simboli di probabilità	
1	Lice	nza LI	PPI.	20

Capitolo 1

Introduzione

Questo pacchetto è stato realizzato in quattro periodi differenti: nel primo, si sono raggruppati i comandi fondamentali come unità di misura e simboli generali; nel secondo, sono state aggiunte alcune unità di misura e simboli come impedenze ed ammettenze.

Nella terza versione, in cui Alessio Sanna ha collaborato con preziosi suggerimenti, sono state inserite le unità di misura in byte, chip e i simboli per campi elettrico e mangetico. Ultimata in data 18/12/2009, è stata pubblicata in data 13/01/2010.

A causa della mia inesperienza nella programmazione IATEX, questa edizione era costellata di piccoli e grandi errori. Ringrazio Enrico Gregorio che mi ha cortesemente inviato un elenco delle modifiche da apportare per rendere migliore il pacchetto. Inoltre, sono stati aggiunti nuovi comandi come il simbolo di segnale analitico, di integrale, delta, i simboli delle lunghezze d'onda e di potenza.

Questa quarta versione, grazie al fondamentale aiuto di Claudio Beccari, rispetta le norme ISO e introduce comandi *alias* in inglese, come spiegato nella sezione 3.2. Inoltre nuovi comandi sono stati introdotti: simboli di probabilità, comandi per definire segnali nel dominio temporale, nel dominio delle frequenze, sequenze a tempo discreto e sequenze nel dominio della trasformata z.

Le finalità per cui engtle è stato creato sono molto semplici: serve a tutti coloro che lavorano, studiano in ambienti riguardanti ambiti elettronici e di telecomunicazionisti; infatti engtle è l'acronimo delle parole Engineering Telecommunications.

In che cosa aiuta? Serve a velocizzare la scrittura in ambiente LTEX; per esperienza personale ho avuto modo di notare quanto poco comodo possa essere il codice in casi in cui si debba ripetere molte volte alcune espressioni e magari occorra cambiare di poco rispetto a prima il codice.

Se si deve indicare l'espressione della probabilità della variabile x, il codice LATEX da scrivere risulta essere:

$$\mathcal{P}(x)$$

Nel caso in cui qualche riga successiva si deve indicare invece la probabilità dell'evento A occorrerebbe nuovamente digitare:

$$\mathcal{P}(A)$$

oppure copiare il codice precedente e cambiare solo l'argomento.

Con engtle è più semplice; occorre semplicemente scrivere:

$prob{\langle argomento \rangle}$

dove l' $\langle argomento \rangle$ è ciò che volete inserire, come x o A.

I seguenti capitoli sono così strutturati:

- ★ le procedure di installazione del pacchetto e le sue dipendenze sono spiegate nel capitolo 2;
- \star i comandi specifici introdotti da eng
tle sono illustrati nel capitolo 3.

Capitolo 2

Come installare engtlc

Se non trovate il pacchetto già installato nella vostra distribuzione TEX, è possibile effettuare il download dal mio sito internet http://claudiofiandrino.altervista.org nella sezione "latex projects"; in alternativa, è anche possibile scaricare il pacchetto dal sito ufficiale dei pacchetti LATEX http://tug.ctan.org/tex-archive/macros/latex/contrib/engtlc.

Dopo aver scaricato il file .zip, estraete il contenuto in una cartella di lavoro temporanea e copiate i file nella vostra home: /texmf/tex/latex/engtlc/(se non avete un albero personale texmf nella vostra home, createlo). Si ricorda di effettuare il refresh del database della vostra distribuzione dopo queste operazioni.

La cartella home viene indicata con: ~; questo simbolo è il modo standard con cui si fa riferimento alla home nei sistemi Linux. Per quanto riguarda i sistemi Mac, la cartella texmf dell'albero personale dovrebbe essere in ~/Library; sui sistemi Windows, a partire da Vista, il concetto di "home" non è ben chiaro mentre, per le versioni precedenti, dovreste trovare la cartella texmf in C:\Documents and Settings\(\lambda nome-utente \rangle \).

Si ricordi che questo pacchetto richiede come dipendenze alcuni pacchetti esterni come textcomp, amsmath, amssymb. Non vengono automaticamente caricati per evitare conflitti fra le possibili configurazioni che l'utente può specificare nel preambolo. Pertanto, la responsabilità di caricarli è esclusivamente dell'utilizzatore. Siccome questi pacchetti sono generalmente richiamati per altri scopi, non dovrebbero esserci problemi. In ogni caso, se non vengono caricati amsmath and amssymb, si riceverà un errore in quanto alcuni comandi richiedono l'uso di alcune funzionalità di questi pacchetti. Al contrario, se nel vostro preambolo non caricate textcomp, riceverete un warning: i comandi per cui è necessario possono funzionare ugualmente, ma con meno efficacia.

Capitolo 3

I comandi introdotti da engtlc

Esaminiamo ora quali sono le potenzialità engtlc.

Nella prima sezione si prenderanno in considerazione i comandi per scrivere le unità di misura mentre nella seconda i simboli generali.

3.1 Unità di misura

Credo che la possibilità di introdurre comandi per le unità di misura in maniera veloce e coerente sia veramente utile. Ovviamente anche altri pacchetti permettono di fare la stessa cosa, ma con comandi più lunghi. Ad esempio, con siunuitx se occorre scrivere "kbit/s", bisogna digitare:

Code Visualization \si{\kibi\bit\per\second} Kib/s

Per questo ho deciso di creare comandi più corti capaci di sostituire costrutti più lunghi come quello mostrato.

Le unità di misura di Engtle devono essere utilizzate in ambiente matematico, quindi in ambienti come $\$ \$, \[\] o all'interno di ambienti di tipo equation.

Si presti attenzione: se nel testo si inserisce un'unità di misura e ci si dimentica lo spazio dopo il comando, si ha un errore dovuto al fatto che il comando assorbe lo spazio seguente. Infatti:

Code Visualization 8 cm and 8 cm and

In questo modo, invece, il risultato è corretto:

Code Visualization 8 cm and

3.1. Unità di misura

Unità di misura temporali

Unità	Codice equivalente	Visualizzazione
ore	\ho	h
secondi	\s	\mathbf{s}
millisecondi	\ms	ms
microsecondi	\us	μs
nanosecondi	\ns	ns
picosecondi	\ps	ps

Unità di misura spaziali

Unità	Codice equivalente	Visualizzazione
micrometri	\um	μm
$\operatorname{millimetri}$	\mm	mm
centimetri	\cm	cm
decimetri	\dm	dm
metri	\m	m
kilometri	\km	km

Misure di corrente

Unità	Codice equivalente	Visualizzazione
microampere	\uA	μA
milliampere	\mA	mA
ampere	\A	A

Misure di tensione

Unità	Codice equivalente	Visualizzazione
microvolt	\uV	μV
$\operatorname{millivolt}$	$\mbox{\em V}$	mV
volt	\V	V
megavolt	\MV	MV

Misure di resistenza

Unità	Codice equivalente	Visualizzazione
milliohm	\mohm	$\mathrm{m}\Omega$
ohm	\ohm	Ω
kilohm	\kohm	$\mathrm{k}\Omega$
megaohm	\Mohm	$\mathrm{M}\Omega$

Misure di conduttanza

Unità	Codice equivalente	Visualizzazione
picosiemens	\pSi	pS
nanosiemens	\nSi	nS
microsiemens	\uSi	μS
millisiemens	\mSi	mS
siemens	\Si	S
kilosiemens	\kSi	kS
megasiemens	\MSi	MS

Misure di capacità

Unità	Codice equivalente	Visualizzazione
femtofarad	\fFa	$_{ m fF}$
picofarad	\pFa	pF
nanofarad	\nFa	nF
microfarad	\uFa	$\mu \mathrm{F}$
millifarad	\mFa	mF
farad	\Fa	F

Misure di induttanza

Unità	Codice equivalente	Visualizzazione
femtohenry	\fHe	fH
picohenry	∖рНе	pН
nanohenry	\nHe	$_{ m nH}$
microhenry	\uHe	μН
millihenry	\mHe	mH
henry	\He	Н

Misure in dB

Unità	Codice equivalente	Visualizzazione
dB	\dB	dB
dBm	\dBm	dBm

Misure di potenza

Unità	Codice equivalente	Visualizzazione
microwatt	\uW	μW
milliwatt	\mbox{mW}	mW
watt	\W	W
kilowatt	\kW	kW
megawatt	\MW	MW

Misure di frequenza

Unità	Codice equivalente	Visualizzazione
hertz	\Hz	$_{ m Hz}$
kilohertz	\kHz	kHz
megahertz	\MHz	MHz
gigaahertz	\GHz	GHz
terahertz	\THz	THz

Misure di Bit, byte e chip secondo lo standard ISO

Unità	Codice equivalente	Visualizzazione
bit	\bit	bit
kibibit	\kbit	Kib
mebibit	\Mbit	Mib
byte	\Byte	В
kibibyte	\kByte	KiB
mebibyte	\MByte	Mib
gibibyte	\GByte	GiB
tebibyte	\TByte	TiB
bit per second	\bits	bit/s
kibibit per second	\kbits	$\mathrm{Kib/s}$
mebibit per second	\Mbits	Mib/s
byte per second	\Bytes	$\mathrm{B/s}$
kibibyte per second	\kBytes	KiB/s
mebibyte per second	\MBytes	MiB/s
gibibyte per second	\GBytes	$\mathrm{GiB/s}$
tebibyte per second	\TBytes	TiB/s
chip per second	\chips	chip/s
kibichip per second	\kchips	Kichip/s
mebichip per second	\Mchips	Michip/s
chip su bit per second	\chipsubit	chip/bit

In questa sezione sono riportati una serie di simboli utili in diversi ambiti.

Tutti questi comandi devono essere usati in ambiente matematico. Alcuni hanno un nome sia in inglese che in italiano e negli esempi si riportano entrambi: nella prima riga la versione inglese mentre nella seconda in italiano. Se l'esempio è caratterizzato da una sola riga, il comando non presenta differenze fra italiano ed inglese.

3.2.1 Simboli generali

Fine esercizio

Il comando di fine esercizio inserisce un quadrato nero allineato a destra.

Codice	Visualizzazione
\exerend	
\finees	

Comando di "implicazione" con spaziatura

Questo comando è molto simile a \implies, ma prima e dopo il simbolo viene inserita una spaziatura che l'utente può scegliere grazie all'argomento opzionale e la spaziatura inserita per default è di 0.5 cm; è possibile cambiare tale definizione assegnando al registro \Implepace un valore differente; ad esempio:

\setlength{\Implspace}{3mm}

La sintassi del comando è:

 $\Spimplies[\langle spazio\ opzionale\ in\ unit\grave{a}\ di\ \pace\rangle] \freeciadex[\langle spazio\ opzionale\ in\ unit\grave{a}\ di\ \pace\rangle]$

Nella seguente tabella, ricordando che \Spimplies e \frecciadex sono sinomini, nella prima linea l'argomento opzionale è stato utilizzato, mentre nella seconda no; in questo modo è possibile apprezzare la differenza fra i due casi, fermo restando che il registro \Implespace non è stato modificato.

Codice	Visualizzazione
A\Spimplies[0.3] B	$A \implies B$
A \frecciadex B	$A \implies B$

Si noti come inserendo nell'argomento opzionale la spaziatura default, si ottenga lo stesso risultato:

Codice	Visualizzazione
A\Spimplies B	$A \implies B$
A\frecciadex $[0.5]$ B	$A \implies B$

Comando di "implicazione" verticale

Codice	Visualizzazione
\Downimplies	\
\frecciadown	\downarrow

Varianza del rumore bianco

Codice	Visualizzazione
\noisevar	$\frac{N_0}{2}$
\varianzarumore	$rac{N_0}{2}$

Trasformata di Fourier

Comando per la trasformata di Fourier di \boldsymbol{x} .

Codice	Visualizzazione
\fourier{x}	$\mathcal{F}\{x\}$

Trasformata inversa di Fourier

Il comando per la trasformata inversa opera in maniera analoga del precedente.

Codice	Visualizzazione
\invfourier{x}	$\mathcal{F}^{-1}\{x\}$

Parte reale

Codice	Visualizzazione
\bfRe{x}	$\mathbf{Re}\{x\}$
$\operatorname{partereale}\{x\}$	$\mathbf{Re}\{x\}$

Parte immaginaria

Codice	Visualizzazione
\bfIm{x}	$\mathbf{Im}\{x\}$
$\operatorname{parteimm}\{x\}$	$\mathbf{Im}\{x\}$

Quantità di informazione

Codice	Visualizzazione
\Info{x}	$I\left(x\right)$

Segnali nei differenti domini

I quattro comandi seguenti definiscono segnali, usando come convenzione lettere minuscole per segnali nel dominio del tempo e sequenze discrete mentre i segnali nel dominio delle frequenze e della trasformata z assumono automaticamente la lettera maiuscola.

Visualizzazione
x(t)
G(f)
h(n)
K(z)

Segnale analitico

Codice	Visualizzazione
\analytic{x} \analitic{x}	\mathring{x} \mathring{x}

Versori

Codice	Visualizzazione
\unitvec{x}	\hat{x}
\versore{x}	\hat{x}

Vettori

Codice	Visualizzazione
\vector{x} \vettore{x}	\overrightarrow{x} \overrightarrow{x}

Coseno con frequenza specifica

Codice	Visualizzazione
$\cosine{f_0}$	$\cos\left(2\pi f_0 t\right)$
$\coseno{f_0}$	$\cos\left(2\pi f_0 t\right)$

Seno con frequenza specifica

Codice	Visualizzazione
$\sine{f_0}$	$\sin\left(2\pi f_0 t\right)$
$\scincture{2} seno{f_0}$	$\sin\left(2\pi f_0 t\right)$

Energia

Codice	Visualizzazione
\energy{m} \energia{m}	\mathcal{E}_m \mathcal{E}_m

Modulo

Codice	Visualizzazione
\Abs{x}	x
$\mbox{modulo}\{x\}$	x

Exponential with ISO compliant natural base

Le norme ISO richiedono che la base di un logaritmo naturale e dell'esponenziale utilizzino il tondo.

Codice	Visualizzazione
\rmexp{x}	e^x
$\ensuremath{\ensuremath}\ensuremath{\ens$	e^x

Unità immaginaria secondo lo standard ISO

In modo simile al comando precedente, le norme ISO impongono che l'unità immaginaria sia scritta in tondo; in ingegneria elettronica e delle telecomunicazioni si usa la lattera "j" per evitare confusione con il simbolo di corrente i; il tondo è usato per distinguere l'unità immaginaria con il simbolo di densità di corrente j.

Codice	Visualizzazione
\iu\omega	$\mathrm{j}\omega$

Modulo con esponente

Codice	Visualizzazione
\AbsPow{x}{2}	$ x ^2$
$\mbox{moduloexp}{x}{2}$	$ x ^2$

Funzione valutata per un certo valore della variabile indipendente

Codice	Visualizzazione
\for{f(x)}{x_0}	$f(x) _{x_0}$

Un rapporto in dB

Questo comando è un'applicazione particolare del comando \for.

Codice	Visualizzazione
\indB{\dfrac{C}{I}}	$\left. \frac{C}{I} \right _{\mathrm{dB}}$

Massimo

Codice	Visualizzazione
$\max\{x\}$	$\max\{x\}$
$\mbox{\mbox{\tt massimo}}\{x\}$	$\max\{x\}$

Minimo

Codice	Visualizzazione
$\mathbb{Min}\{x\}$	$\min\{x\}$
$\min \{x\}$	$\min\{x\}$

Velocità della luce

Code	Visualization
\clight	$3 \cdot 10^8$
\valc	$3 \cdot 10^{8}$

Logaritmo con una base specifica

Codice	Visualizzazione
\Log{2}{x}	$\log_2 x$
\loga{2}{x}	$\log_2 x$

${\bf Integrale}$

Questo comando definisce un'integrale su tutto l'asse reale, da $-\infty$ a $+\infty$:

Codice	Visualizzazione
\infint{x\diff x}	$\int_{-\infty}^{+\infty} x \mathrm{d}x$
<pre>\intinf{x\diff x}</pre>	$\int_{-\infty}^{+\infty} x \mathrm{d}x$

Si noti l'uso del differenziale con il comando \diff in accordo con le norme ISO che impongono di scrivere il simbolo in tondo con un'opportuna spaziatura a destra e a sinistra.

Delta di Dirac

Codice	${\bf Visualizzazione}$
\deltain{x}	$\delta\left(x\right)$

3.2.2 Coefficienti di riflessione

I simboli descritti sono quelli utilizzati nei corsi di campi elettromagnetici; esistono due tipi di comandi: quelli generici e quelli specifici dove è possibile specificare il punto di misurazione.

Coefficienti di riflessione generici

Codice	Visualizzazione
\Vgamma	${ m v}_{\Gamma}$
\gammatens	$^{ m V}\Gamma$
\Cgamma	$^{ m I}\Gamma$
\gammacorr	$^{ m I}\Gamma$

Coefficienti di riflessione specifici

- I:	77. 1
Codice	Visualizzazione
\Vgammain{A}	$^{ m V}\Gamma_{ m A}$
\gammatensin{A}	$^{ m V}\Gamma_{ m A}$
\Cgammain{A}	$^{ ext{I}}\Gamma_{ ext{A}}$
\gammacorrin{A}	$^{\mathrm{I}}\Gamma_{\mathrm{A}}$

Poichè il coefficiente di riflessione in tensione è più usato rispetto a quello in corrente, esiste un comando più corto per indicarlo:

Codice	Visualizzazione
\gammain{A}	$\Gamma_{ m A}$

Il coefficiente di riflessione di Kurokawa

Codice	Visualizzazione
\gammak	${}^{\mathrm{k}}\Gamma$

3.2.3 Esempi

Ecco alcuni esempi che illustrano l'utilità di engtlc:

Il codice standard per scrivere le espressioni precedenti sarebbe:

\$\textbf{Re}\left\lbrace \mathcal{F}\left\lbrace
\left\vert x \right\vert^{2} \right\rbrace \right\rbrace\$

3.2.4 Simboli di lunghezze d'onda

Esistono tre tipi di comandi differenti:

Nel vuoto

Codice	Visualizzazione
\1bvt	λ_0

In guida - materiale dielettrico

Codice	Visualizzazione
\lbg	λ_g

In guida - vuota

Codice	Visualizzazione
\lbgvt	λ_{g_0}

3.2.5 Simboli di impedenza e ammettenza

Con engtle è possibile scrivere ogni tipo di impedenze e ammettenze.

Impedenze e ammettenze generiche

Per esprimere un'impedenza o un'ammettenza calcolata nel punto A di una linea si utilizzano i comandi:

Codice	Visualizzazione
\z{A}	$Z_{ m A}$
\y{A}	$Y_{ m A}$

La caratterizzazione di impedenze e ammettenze normalizzate in un punto A, avviene con i comandi:

Codice	Visualizzazione
\znorm{A}	$z_{ m A}$
\ynorm{A}	$y_{ m A}$

Impedenze e ammettenze caratteristiche

Per inserire questi simboli si utilizza:

Codice	Visualizzazione
\zinf	Z_{∞}
\yinf	Y_{∞}

In una guida ci sono diversi modi che hanno impedenze o ammettenze caratteristiche diverse: per caratterizzarli univocamente esiste un comando apposito; per esempio, definire una seconda impedenza o ammettenza caratteristica con label 2, si usi:

Codice	Visualizzazione
\zinf[2]	$Z_{\infty 2}$
$\zinfn{2}$	$Z_{\infty 2}$
\yinf[2]	$Y_{\infty 2}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$Y_{\infty 2}$

Per evitare confusione, si presti attenzione quando si inserisce una label usando i comandi \zinf o \yinf: è necessario fare ricorso all'argomento opzionale oppure al comando per definire impedenze e ammettenze caratteristiche con label (n finale):

Impedenza con argomento opzionale	Visualizzazione
\zinf[2]	$Z_{\infty 2}$
Impedenza con label	Visualizzazione
\zinfn{2}	$Z_{\infty 2}$
Impedenza generica	Visualizzazione
\zinf{2}	$Z_{\infty}2$

L'ultimo comando non è sbagliato secondo la sintassi L^ATEX, ma probabilmente non è il risultato che ci si aspetta . . .

Impedenze e ammettenze nel vuoto sono caratterizzate attraverso:

Codice	Visualizzazione
\zvt	Z_0
\yvt	Y_0

3.2.6 Esempi ulteriori

Con engtle la potenza disponibile si può scrivere in questo modo:

 $\[\potdisp=\frac{\mathbb{V}_{2}}{\partereale_{4\cdot_{z}_{}}}\]$

con cui si ottiene:

$$P_{\rm disp} = \frac{|V|^2}{4 \cdot \mathbf{Re}\{Z_{\rm G}\}}$$

Senza i comandi di engtle sarebbe necessario un codice più lungo:

3.2.7 Simboli di potenza

In questa sezione si riportano i comandi per inserire simboli di potenza; possono essere usati indifferentemente in modo matematico o meno.

Potenza in un punto

Per caratterizzare la potenza in un punto specifico, ad esempio su una porta o una sezione di guida A, si usi:

Codice	Visualizzazione
\powerin{A}	$P_{ m A}$
\potin{A}	$P_{ m A}$

Potenza disponibile

Codice	Visualizzazione
\availpow	$P_{ m disp}$
\potdisp	$P_{ m disp}$

Potenza di alimentazione di un generatore di segnali

Codice	Visualizzazione
\potDC	$P_{ m CC}$
\potCC	$P_{ m DC}$

Il vecchio nome del comando \potalim è stato mantenuto per ragioni di compatibilità.

Potenza irradiata

Codice	Visualizzazione
\irrpow \potirr	$P_{ m irr} \ P_{ m irr}$

Potenza dissipata

Visualizzazione
$P_{ m diss} \ P_{ m diss}$

Potenza incidente

Codice	Visualizzazione
\incpow	$P_{ m inc}$
\potinc	$P_{ m inc}$

Si presti attenzione che, in questa versione rispetto alle precedenti, questi simboli, a meno del primo <page-header> hanno un argomento opzionale: può venire usato per indicare esplicitamente in quale punto è stata effettuata la misura. Per descrivere, ad esempio, la potenza dissipata per un dispositivo in trasmissione, si utilizzi $\mathsf{potdiss[tx]}$ che darà come risultato P^{tx}_{diss} . Ovviamente, se l'argomento è racchiuso da $\{\ \}$ invece di $[\]$ si otterrà un risultato differente. Infatti, $\mathsf{potirr\{rx\}}$ diventa $P_{\mathsf{irr}}rx$.

3.2.8 Simboli di campi elettrico e magnetico

Per quanto riguarda i campi elettrico e magnetico, i comandi engtle sono alquanto generici in quanto ogni istituto e docente usa convenzioni diverse; per dispense informali, i vettori sono spesso rappresentati con un trattino sottolineato. Per indicare \overrightarrow{A} , ad esempio, si utilizza \underline{A} . Si distinguono:

* campi elettrico e magnetico in funzione di un vettore posizione \overrightarrow{r} e del tempo;

 \star fasori di campi elettrico e magnetico in funzione del vettore posizione \overrightarrow{r} .

Siccome eng
tle adotta la convenzione sopra citata, il vettore posizione \overrightarrow{r} è indicato con
 r.

Campi in to	funzione del tempo Visualizzazione	Codice	Fasori Visualiz	zazione
\Efield	$\underline{\mathcal{E}}(\underline{r},t)$	\phasor	Efield	$\underline{E}(\underline{r})$
\campoe	$\underline{\mathcal{E}}(\underline{r},t)$	\campoe	fas	$\underline{E}(\underline{r})$
\Hfield	$\underline{\mathcal{H}}(\underline{r},t)$	\phasor	Hfield	$\underline{H}(\underline{r})$
\c ampoh	$\underline{\mathcal{H}}(\underline{r},t)$	\campoh	fas	$\underline{H}(\underline{r})$

Si presti attenzione: i simboli di energia $\ensuremath{\mbox{\sc henergy}}\{\ensuremath{\mbox{\sc ampo}}\ensuremath{\mbox{\sc energy}}\}$ e campo elettrico $\ensuremath{\mbox{\sc campo}}\ensuremath{\mbox{\sc energy}}$ si distinguono in quanto il secondo è un vettore e non presenta pedici.

3.2.9 Simboli di probabilità

Probabilità

La probabilità di un evento A, o di una variabile x, si caratterizza come:

Codice	Visualizzazione
\prob{\text{A}}}	$\mathcal{P}\left(\mathbf{A}\right)$
\prob{x}	$\mathcal{P}\left(x\right)$

Valor medio

Codice	Visualizzazione
\expval{x}	$\mathbb{E}\left[x\right]$
\valatt{x}	$\mathbb{E}\left[x\right]$

Varianza

Codice	Visualizzazione
\var{x}	$\operatorname{Var}\left[x\right]$

Probabilità congiunta

Grazie a questo comando, è possibile inserire una virgola che separa adeguatamente le due variabili stocastiche:

Codice	Visualizzazione
\comma	$\mathcal{P}\left(x,y ight)$

Probabilità condizionata

In modo simile al comando precedente, si inserisce un filetto verticale per rappresentare il simbolo di condizione fra due variabili stocastiche:

Codice	Visualizzazione
\given \dato	$\begin{array}{c} \mathcal{P}\left(x \mid y\right) \\ \mathcal{P}\left(x \mid y\right) \end{array}$

Ringraziamenti

Voglio ringraziare il prof. Enrico Gregorio, che molto gentilmente mi ha inviato una lista completa di errori e correzioni da apportare nella terza versione.

Un ringraziamento speciale è per il prof. Claudio Beccari per i numerosi suggerimenti e l'adattamento del pacchetto in conformità con le norme ISO.

Capitolo 4

Licenza LPPL

engtle è distribuito con Licenza LPPL: LATEX Project Public Licence.

```
%% engtlc.sty
%% Copyright 2010-2012 Claudio Fiandrino
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
http://www.latex-project.org/lppl.txt
and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status 'maintained'.
%
% The Current Maintainer of this work is Fiandrino Claudio.
%
% This work consists of the file engtlc.sty.
```