UT SummerSchool 'Metabarcoding: from lab to bioinformatics' 01.08.2022

Metabarcoding

Sten Anslan <sten.anslan@ut.ee>

DNA barcoding - identification of specimens based on the specific DNA sequence. *first proposed by Hebert et al (2003).*

DNA barcoding - identification of specimens based on the specific DNA sequence. *first proposed by Hebert et al (2003).*

Onychiurus armatus

Illumina.com

DNA metabarcoding – identification of multiple species from a single bulk sample

Onychiurus armatus Orchesella cincta Entomobrya nivalis Protaphorura fimata Megalothorax minimus Isotomiella sp.

Environmental DNA (eDNA)

eDNA is a complex mixture of genomic DNA from many diferent organisms found in an environmental sample (Taberlet et al 2012).

/bulk samples wocDNA

DNA metabarcoding

identifying species and biological communities;

monitoring diseases,
ecosystem health,
water quality,
species invasions etc.

identifying species ->
sex ratios,
body condition (e.g. age, size),
absolute abundance (no. of individuals)

Morph. id

rare species, cryptic species, juveniles, DNA traces,

relative abundance(?)

DNA metabarcoding

identifying species ->
sex ratios,
body condition (e.g. age, size),
absolute abundance (no. of individuals)

Morph. id

rare species, cryptic species, juveniles, DNA traces,

relative abundance(?)

DNA metabarcoding

VS.

Not completely overlapping patterns is species identifications, but highly overlapping community structure patterns!

Sampling DNA extraction DNA amplification Sequencing Sequence analyses Identification of taxa

Genus		Species
Staurosira	0.96	Staurosira_brevistriata
Amphora	0.23	Amphora_aff_atomoides
Amphora	0.62	Amphora_pediculus
Navicula	0.94	Navicula_cryptocephala
Neidium	0.32	Neidium_productum
Anomoeo	0.47	Anomoeoneis_fogedii
Gomphon	0.21	Gomphonema capitatum

Biological interpretation

Sampling

DNA extraction

DNA amplification

Sequencing

Sequence analyses

@M01338:44:000000000-AFFTE:1:1101:9082:1061 1:N:0:5

+

8BCC@EGGGEGEFFEGGGGGGGGFFFFAGGGGGC#GC#:CFGGFGGGEGG9FGGGCAFEGFGEFCFGGGGF-CF7EFFGGFDFFFGCDGFGGGGGGGGGG-CFCFFP9-@PCF7B-ABFCFF8FFGGFCF@F7FFGAADBFFCBGCFEFD<PFFCFC-C<CFGG,E;FGGDCF9@DC9BCD;=E9>7;DB,2;;?C,<?,?D;EDC1<?F9?5D?+2++302*2]19577CF***02:D::6:2*.)

@M01338:44:000000000-AFFTE:1:1101:10307:1063 1:N:0:5

-

@M01338:44:000000000-AFFTE:1:1101:10533:1065 1:N:0:5

EFFFGGGGGGGGGFGFFAGGGGGC#:CFGGFGGGEGG9FGGGCAFEGFGEFCFGGGGF<CF7EFFGGFDFFFGCDGFGGGGGGGGGG4?,,E<+BEFFGGGGGGGGG |F7B=ABFCFF8FFGGFCF@F7FFGAADBFFCBGCFEFD<DFCFFGCFFC<<CFGG,E;FGGDCF9@DC9BCD;=E9>7;DB,2;;7C,<?,?D;EDC1<?F99;;;CC,>CC<,,11=CC,+0:<C |1957?CF*.*02:D::6::2*.|

::000000000-AFFTE:1:1101:10307:1063 1:N:0:5

Sampling

DNA extraction

DNA amplification

Sequencing

Sequence analyses

Identification of taxa

1	Α	В	С	D	E	F	G	Н
1	Kingdom	Phylum	Order	Class	Family	Genus	Species	OTU
2	Fungi	Zygomycota	Mucoromycotina_	Mucorales	Cunninghamellace	Absidia	Absidia_glauca	otu4
3	Fungi	Ascomycota	Eurotiomycetes	Eurotiales	Trichocomaceae	Aspergillus	Aspergillus_amstelodami	otu25
4	Fungi	Ascomycota	Eurotiomycetes	Eurotiales	Trichocomaceae	Aspergillus	Aspergillus_niger	otu26
5	Fungi	Zygomycota	Zygomycota_cls_Ir	Basidiobolales	Basidiobolaceae	Basidiobolus	Basidiobolus_magnus	otu5
6	Fungi	Zygomycota	Zygomycota_cls_Ir	Basidiobolales	Basidiobolaceae	Basidiobolus	Basidiobolus_ranarum	otu6
7	Fungi	Basidiomycota	Agaricomycetes	Cantharellales	Cantharellaceae	Cantharellus	Cantharellus_decolorans	otu13
8	Fungi	Basidiomycota	Agaricomycetes	Cantharellales	Cantharellaceae	Cantharellus	Cantharellus_decolorans	otu15
9	Fungi	Ascomycota	Dothideomycetes	Hysteriales	Gloniaceae	Cenococcum	Cenococcum_geophilum	otu33
10	Fungi	Ascomycota	Dothideomycetes	Capnodiales	Davidiellaceae	Cladosporium	Cladosporium_cladosporioide	otu44
11	Fungi	Ascomycota	Dothideomycetes	Capnodiales	Davidiellaceae	Cladosporium	Cladosporium_oxysporum	otu31

Biological interpretation

Overview of the emergence of eDNA studies

Taberlet et al. 2018

- Sediments
- Water
- Biofilms
- Bulk specimens
- Air
- Snow
- Soil
- Litter
- Roots and other plant parts
- Dust
- Skin
- Gut
- Feces

DNA extraction

DNA amplification

Sequencing

0.23 Amphora_aff_atomoides

0.62 Amphora_pediculus 0.94 Navicula_cryptocephala

Sequence analyses

Identification of taxa

DNA extraction

DNA amplification

Sequencing

Sequence analyses

Identification of taxa

Genus		Species
Staurosira	0.96	Staurosira_brevistriata
Amphora	0.23	Amphora_aff_atomoides
Amphora	0.62	Amphora_pediculus
Navicula	0.94	Navicula_cryptocephala
Neidium	0.32	Neidium_productum
Anomoeo	0.47	Anomoeoneis_fogedii
Gomphon	0.21	Gomphonema capitatum

Lab work sessions

Bioinformatics sessions

Sten Anslan <sten.anslan@ut.ee>