

Modelos Não Paramétricos

Professor: Pedro M. Almeida-Junior

5 de junho de 2021

Departamento de Estatística (UEPB)

Regressão Não paramétrica

Introdução

- Uma curva de regressão descreve uma relação geral entre uma variável explicativa X e uma variável de resposta Y.
- Tendo observado X, o valor médio de Y é dado tem termos de uma função de regressão.
- Se n pontos de dados $\{(X_i, Y_i)\}_{i=1}^n$ foram coletados, a relação de regressão pode ser modelado como

$$Y_i = m(X_i) + \epsilon_i, \quad i = 1, \ldots, n$$

com a função de regressão desconhecida m e erros de observação ϵ_i .

1

- O objetivo de uma análise de regressão é produzir uma análise razoável para a função de resposta desconhecida m.
- Ao reduzir os erros observacionais, permite que a interpretação se concentre em detalhes importantes da dependência média de Y em X.
 Este procedimento de aproximação de curva é comumente chamado de "suavização".
- Essa tarefa de aproximar a função média pode ser feita essencialmente de duas maneiras: (i) Abordagem paramétrica e (ii) Abordagem não paramétrica.

- A abordagem paramétrica frequentemente usada é assumir que a curva média m tem alguma forma funcional pré-especificada, por exemplo, uma linha com inclinação e interceptação desconhecidas.
- A forma funcional é totalmente descrita por um conjunto finito de parâmetros.
- O termo não paramétrico, refere-se à forma funcional flexível da curva de regressão. Existem outras noções de "estatísticas não paramétricas" que se referem principalmente a métodos livres de distribuição.
- No presente contexto, entretanto, nem a distribuição do erro nem a forma funcional da função média são pré-especificadas.

Objetivos Abordagem Não Paramétrica

- A abordagem n\u00e3o param\u00e9trica para estimar uma curva de regress\u00e3o tem como objetivos principais:
 - Fornecer um método versátil de explorar uma relação geral entre duas variáveis.
 - 2. Fornecer previsões de observações ainda a serem feitas sem referência a um modelo paramétrico fixo.

Função kernel

- Uma abordagem conceitualmente simples para uma representação da sequência de peso $\{W_{ni}(x)\}_{i=1}^n$ é descrever a forma da função de peso $W_{ni}(x)$ por uma função de densidade com um parâmetro de escala que ajusta o tamanho e a forma dos pesos próximos a x.
- É bastante comum referir-se a essa função de forma como um kernel
 K. O kernel é uma função real contínua, limitada e simétrica K que se integra a um,

$$\int K(u)du=1$$

Tipos de Kernels

Figura 1: Tipos de Kernels

A sequência de peso para suavizadores de kernel (para x unidimensional) é definida por

$$W_{ni}(x) = K_h(x - x_i) / \hat{f}_h(x),$$

em que

$$\hat{f}_h(x) = n^{-1} \sum_{i=1}^n K_h(x - x_i)$$

е

$$K_h(u) = h^{-1}K(u/h)$$

Algoritmo de classificação k-NN

Algoritmo k-NN

O algoritmo k-Nearest Neighbors (k-NN) foi proposto por Cover e Hart e é considerado um classificador não paramétrico. O algoritmo k-NN possui os seguintes recursos:

- √ k-NN é um algoritmo de aprendizado supervisionado que usa um conjunto de dados de entrada rotulado para prever a saída dos pontos de dados.
- √ É um dos algoritmos de aprendizado de máquina simples e pode ser facilmente implementado para um conjunto variado de problemas.
- \checkmark k-NN verifica a semelhança de um ponto de dados com seu vizinho e classifica o ponto de dados na classe com a qual é mais semelhante.

- Dada uma amostra de teste onde a classe é desconhecida, o método encontra k mais próximo no conjunto de treinamento para cada observação da amostra de teste segundo uma determinada distância (geralmente utilizada distância euclideana) e atribui uma classe à observação de acordo com o voto da maioria das classes desses vizinhos;
- A distância euclidiana entre os pontos P = (p₁, p₂,..., p_n) e
 Q = (q₁, q₂,..., q_n), num espaço euclidiano n-dimensional, é
 definida como:

$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_n-q_n)^2}=\sqrt{\sum_{i=1}^n(p_i-q_i)^2}$$

Distância de Mahalanobis

Formalmente, a distância de Mahalanobis entre um grupo de valores com média $\boldsymbol{\mu} = (\mu_1, \mu_2, \mu_3, \dots, \mu_p)^T$ e matriz de covariância S para um vetor multivariado $\boldsymbol{x} = (x_1, x_2, x_3, \dots, x_p)^T$ é definida como:

$$D_M(x) = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^{\top} S^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

- O algoritmo estima a probabilidade de uma observação pertencer a cada grupo com base na informação do vizinho mais próximo k definida a seguir.
- Considere G partições não vazias, que sao C_1, C_2, \ldots, C_G , tal que, $C_j \subset \mathbb{R}^p$ é um subconjunto de tamanho n_j , para $j=1,\ldots,g$, $n=\sum_{j=1}^n n_j, C_i \cap C_j = \emptyset$ para todo $i \neq j$.

Seja y ∈ ℝ^p uma observação a ser classificada e {x_{i1}, x_{i2},..., x_{ik}} o conjunto de k vizinhos, tal que, k ≤ n e {i₁,...,i_k} ⊂ {1,...,n}.
 Assim para j = 1,...G, a regra de classificação de k-NN é definida como:

$$\hat{c}_{kNN} = \arg\max_{c} \widehat{P}_{k}(G = c)$$

em que

$$\widehat{P}_k(G=c) = k^{-1} \sum_{\nu=1}^k \mathbb{I}_c\left(\mathbf{x}_{i_{\nu}}\right)$$

е

$$\mathbb{I}_{c}\left(\mathbf{x}_{i_{\nu}}\right) = \begin{cases} 1, & \text{if } \mathbf{x}_{i_{\nu}} \in C_{j} \\ 0, & \text{if } \mathbf{x}_{i_{\nu}} \notin C_{j} \end{cases}$$
 (1)

Ilustração Algoritmo k-NN

Figura 2: Ilustração k-NN

Figura 3: k-NN com k = 3 vizinhos

Figura 4: k-NN com k = 7 vizinhos