

FEN_842 Risk Measurement

Lecture 4a The Group Assignment

Winfried G. Hallerbach PhD

March 26, 2025

Make an impact

Group Assignment

Estimating & evaluating ex-ante portfolio risk

- US multi-asset Total Return fund
- "Yale-type" default mix
- intended active trades as per afternoon Thu 12-Dec-2024

	Equities	Fixed Income		Alternatives			
portfolio:	Equities	Tsies	CorplG	CorpHY	AbsReturn	Oil	Total
default	50%	30%	5%	0%	10%	5%	100%
active	-10%	10%	-5%	5%	5%	-5%	0%
augmented	40%	40%	0%	5%	15%	0%	100%

- role : team of junior quants, providing quant support to the PM
- each Thu morning 11:00 am : sparring meeting with PM
- task : critically analyze & challenge the active trades the PM plans to implement
- up to Wed 11-Dec-2024 market close data

Group Assignment

General Research Question

The PM wants to know from you:

- what is the ex-ante risk profile of the augmented portfolio on Thursday 30-Nov-2023 close
- how does this compare against the default mix ?
- how does this compare against the ex-ante risk profile over time ?

You have to decide on:

- what horizon(s)
- what risk measures
- what parameter settings

you deem relevant to capture the ex-ante risks of these portfolios

→ always motivate your choices, and critically interpret & evaluate the estimated risk statistics

Group Assignment

Research Questions

- RQ 1 volatility: what are the ex-ante volatilities of the augmented & default portfolios on Wed 11-Dec-2024 close? how does this compare against the course of these ex-ante volatilities over time?
- RQ 2 downside risk: what are the ex-ante VaRs of the augmented & default portfolios on Wed 11-Dec-2024 close? how does this compare against the course of these ex-ante VaRs over time?
- RQ 3 risk decomposition: what are the ex-ante risk decompositions of the augmented & default portfolios on Wed 11-Dec-2024 close? how does this compare against the course of these decompositions over time?
- RQ 4 tail risk: as per Wed 11-Dec-2024 close, how do the tail risks of the default portfolio change after implementing the active positions?
- Data: spreadsheet with daily total return index series of portfolio components, Fri 30-Dec-1994 thru Wed 11-Dec-2024 (7,540 index observations)

Always start with the data

Garbage In, Garbage Out

- inspection
- → before any data processing, hence original source data
- \rightarrow plot!
- → descriptive statistics : max/min mean, stdev, skewness, kurtosis
- → beware of mechanical rules (winsorizing etc)!
- evaluation of potentially suspect data points or missing values
 - → explanation ?
 - → be careful to identify "outliers" → "influential observations"
- handling
- \rightarrow deletion \rightarrow NaN, N/A?
- → substitution → forward-filling: use previous non-missing level value
- → document in your report!

"home work": what did you find in the assignment data set?

Data inspection: plotting index series

US equity market

- use log axis, or plot ln(index)
- especially for longer periods

Data inspection: don't pre-process

Results obtained from data for the assignment

- calculate returns
- calculate descriptive statistics :

Daily (%)	Mkt	Tsies	CorplG	CorpHY	AR	Oil
Mean	0.0489	0.0042	0.0220	0.0274	0.0314	0.0074
Standard Error	0.0138	0.0056	0.0038	0.0035	0.0104	0.0534
Median	0.0820	0.0000	0.0318	0.0466	-0.0030	0.0894
Mode	0.7400	0.0000	0.0000	0.0000	-0.0770	0.0000
Standard Devia	1.1963	0.4820	0.3303	0.3016	0.9003	4.6362
Kurtosis	9.09	2.70	5.29	38.26	7.05	2459.79
Skewness	-0.26	0.00	-0.55	-2.21	0.14	-38.86
Range	23.3480	7.2359	5.7538	8.1057	15.0700	355.0526
Minimum	-11.9940	-2.7503	-3.7575	-4.7275	-8.9760	-301.9661
Maximum	11.3540	4.4856	1.9962	3.3782	6.0940	53.0864
Count	7539	7539	7539	7539	7539	7539

do not do this: always start with the original source data!

- inspection: 20-Apr-2020 negative price!
- evaluation:
 - > correct price :
 - wet oil: low demand (covid),
 - high supply (OPEC dispute)
 - → full storage facilities
 - paper oil: closing-out longs to avoid
 - physical delivery:
 - sellers had to pay buyers a
 - premium of \$37 / bl
 - > but biases all return statistics

- handling of this influential observation ?
 - convention: repeat previous day's price if there is an issue, so as to preserve the whole data row
- → forward-filling

Risk profile: metrics

Towards a multi-dimensional risk profile

decide on risk metrics:

- full domain, partial domain
- risk is one word, but not one number → multiple metrics
- risk profile >> risk metrics → also analyze risk contributions

what about ...:

- drawdowns > very relevant in practice depend on a series of returns (cf average) → large estimation error → show average of 3 or 5 largest DDs
 - \rightarrow DDs change with vola level \rightarrow also show normalized DDS (DD/vola)
- betas? → with respect to what? why?
- Sharpe Ratios, IRs \rightarrow why?
- what is the underlying Q you hope to correlations, TEV? \rightarrow why? answer, why is it relevant to the RQ?

Methodology

How to estimate & evaluate risk metrics?

methodology - risk models:

- chose risk models: EWMA, GARCH(1,1), VaR, ES, parametric / non-parametric,
- chose risk forecast horizon(s)
- settings → confidence level of VaR, ES

methodology - estimation:

- estimation lookback window → overlap Y/N ?
- optimized vs fixed parameters → EWMA, GARCH,, VaR multiplier for vola

methodology - evaluation:

- back test set-up → out-of-sample period
 - → evaluation criteria

Back testing

Setting-up your back test: no forward-looking bias!

goal: find the models & settings that provide the best risk forecasts as per Wed 11-Dec-2024 close

when using pre-determined parameters : rolling windows

when estimating parameters : . rolling windows ?

. full sample?

. separate in-sample & out-of-sample periods?

Do's & don'ts ...

Do's: . see previous slides

. early plan writing your report!

Don'ts:

- Answer.The.Research.Questions.
- always start simple, extend later ← Occam's Razor
- always explain what you're doing & why
- always discuss & critically evaluate results
- always be clear & concise in your writing, edit your text
- do not come up with alternative strategies, portfolio optimizations
- do not include / attach excel sheets, notebooks, code etc

