EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul școlar 2017 - 2018

Matematică

BAREM DE EVALUARE ȘI DE NOTARE

Model

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	12	5p
2.	2	5p
3.	1	5p
4.	10	5 p
5.	54	5p
6.	5	5p

SUBIECTUL al II-lea (30 de puncte)

1.	Desenează piramida patrulateră	4p
	Notează piramida patrulateră	1p
2.	x=3	2p
	$y = 13 \Longrightarrow x + y = 16 = 4^2$	3 p
3.	$2(L+l)=220\mathrm{cm}$, unde L și l sunt lungimea, respectiv lățimea dreptunghiului	2p
	Cum $L \cdot l = (L-20)(l+10)$, obținem $L = 80 \text{ cm}$ și $l = 30 \text{ cm}$	3 p
4.	a) Reprezentarea unui punct care aparține graficului funcției f	2p
	Reprezentarea altui punct care aparține graficului funcției f	2p
	Trasarea graficului funcției f	1p
	b) $OM = \frac{1}{3}$, unde M este punctul de intersecție a graficului funcției f cu axa Ox	2p
	ON = 1, unde N este punctul de intersecție a graficului funcției f cu axa Oy	2p
	Unghiul determinat de graficul funcției f cu axa Oy este $\angle MNO$ și, cum $\triangle OMN$ este dreptunghic, obținem $tg(\angle MNO) = \frac{1}{3}$	1p
5.	$\frac{x}{x+2} - \frac{3}{2-x} - \frac{6x}{x^2 - 4} = \frac{x-3}{x+2}$	2p
	$\frac{(x-2)^2 - 1}{x^2 + x - 2} = \frac{x - 3}{x + 2}$	2p
	$E(x) = \frac{x-3}{x+2} : \frac{x-3}{x+2} = 1$, pentru orice x număr real, $x \ne -2$, $x \ne 1$, $x \ne 2$ și $x \ne 3$	1p

SUBIECTUL al III-lea (30 de puncte)

1.	a) Punctul O este mijlocul segmentului AC , deci $AO = 2 \mathrm{dm}$	3 p
	$OE = \frac{AO}{2} = 1 \mathrm{dm}$	2p
	b) ΔLEF este isoscel și O este mijlocul segmentului EF , deci $LO \perp EF$	2p
	Cum $\triangle AOL$ și $\triangle ABC$ sunt dreptunghice și $\blacktriangleleft OAL = \blacktriangleleft BAC$, obținem $\triangle AOL \sim \triangle ABC$	3 p
	c) $EF = 2 \text{dm}$ și ΔLEF echilateral, deci $OL = \sqrt{3} \text{dm}$, de unde obținem $AL = \sqrt{7} \text{dm}$	3 p
	$\triangle AOL \sim \triangle ABC \Rightarrow \frac{AO}{AB} = \frac{AL}{AC} \Rightarrow \frac{2}{AB} = \frac{\sqrt{7}}{4}$, deci $AB = \frac{8\sqrt{7}}{7}$ dm	2p
2.	a) Suma lungimilor tuturor muchiilor tetraedrului $ABCD$ este egală cu $6AB =$	3p
	$=6\cdot10=60\mathrm{cm}$	2p
	b) $ABCD$ este tetraedru regulat, deci $\mathcal{A}_{total\check{a}} = 4 \cdot \mathcal{A}_{\Delta ABC} =$	2p
	$=100\sqrt{3} \text{ cm}^2 = \sqrt{3} \text{ dm}^2$	3 p
	c) $\frac{DQ}{DN} = \frac{1}{3}$, deci Q este mijlocul segmentului DO , unde O este centrul de greutate al ΔBCD	1p
	TQ este linie mijlocie în $\Delta ODB \Rightarrow TQ \parallel BD$, unde T este mijlocul segmentului OB	1p
	$\frac{AP}{PM} = \frac{BT}{TM} \Rightarrow PT \parallel AB \text{ si, cum } PT \not\subset (ABD) \text{ si } TQ \not\subset (ABD), \text{ obținem } (PTQ) \parallel (ABD)$	2p
	Cum $PQ \subset (PTQ)$, obţinem $PQ \parallel (ABD)$	1p