

CS 6375 Linear Regression

Rishabh Iyer University of Texas at Dallas

Recap: Course Topics

Supervised Learning

- SVMs & kernel methods
- Decision trees, Random Forests, Gradient Boosted Trees
- Nearest Neighbor: KNN Classifiers
- Logistic Regression
- Neural networks
- Probabilistic models: Bayesian networks, Naïve Bayes

Unsupervised Learning

- Clustering: k-means & spectral clustering
- Dimensionality reduction
- PCA
- Matrix Factorizations

Parameter estimation

 Bayesian methods, MAP estimation, maximum likelihood estimation, expectation maximization, ...

Evaluation

AOC, cross-validation, precision/recall

Statistical Methods

- Boosting, bagging, bootstrapping
- Sampling
- Reinforcement Learning, Semi-supervised Learning, Active Learning,

Part I: Recap of Supervised Learning and Linear Regression Setup

Recap: Supervised Learning

- Input: $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$
 - $x^{(m)}$ is the m^{th} data item and $y^{(m)}$ is the m^{th} label
- Goal: find a function f such that $f(x^{(m)})$ is a "good approximation" to $y^{(m)}$
 - Can use it to predict y values for previously unseen x values

Recap: Classification vs Regression

Classification vs Regression

- Input: pairs of points $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$
- Regression case: $y^{(m)} \in \mathbb{R}$
- Classification case: $y^{(m)} \in [0, k-1]$ [k-class classification]
- If k = 2, we get Binary classification

Recap: Examples of Supervised Learning

Classification

- Spam email detection
- Handwritten digit recognition
- Medical Diagnosis
- Fraud Detection
- Face Recognition

Regression

- Housing Price Prediction
- Stock Market Prediction
- Weather Prediction
- Market Analysis and Business Trends

Recap: Hypothesis Space

- Hypothesis space (Aka Model): set of allowable functions $f: X \to Y$
- Goal: find the "best" element of the hypothesis space
 - How do we measure the quality of f?

Recap: Supervised Learning Workflow

- Step 4: Obtain Predictions $\hat{\mathbf{y}}_t = f(x_t)$ on all Test Data
- Step 5: Evaluation -- Measure the error $Err(\hat{y}_t, y_t)$

- Simple linear regression
 - Input: pairs of points $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^d$ and $y^{(m)} \in \mathbb{R}$ (Regression)
 - Hypothesis space: set of linear functions $f(x) = a^T x + b$ with $a \in \mathbb{R}^n$, $b \in \mathbb{R}$
 - In one dimension, $a, b \in \mathbb{R}$ and f(x) = ax + b
 - Error metric and Loss Function: squared difference between the predicted value and the actual value

Regression

Regression

How do we compute the error of a specific hypothesis?

- For any data point, x, the learning algorithm predicts f(x)
- In typical regression applications, measure the fit using a squared loss function

$$L(f) = \frac{1}{M} \sum_{m} (f(x^{(m)}) - y^{(m)})^{2}$$

- Want to minimize the average loss on the training data
- The optimal linear hypothesis is then given by

$$\min_{a,b} \frac{1}{M} \sum_{m} (ax^{(m)} + b - y^{(m)})^2$$

$$\min_{a,b} \frac{1}{M} \sum_{m} (ax^{(m)} + b - y^{(m)})^2$$

How do we find the optimal a and b?

$$\min_{a,b} \frac{1}{M} \sum_{m} (ax^{(m)} + b - y^{(m)})^{2}$$

- How do we find the optimal a and b?
 - Solution 1: take derivatives and solve (there is a closed form solution!)
 - Solution 2: use gradient descent

$$\min_{a,b} \frac{1}{M} \sum_{m} (ax^{(m)} + b - y^{(m)})^{2}$$

- How do we find the optimal a and b?
 - Solution 1: take derivatives and solve (there is a closed form solution!)
 - Solution 2: use gradient descent
 - This approach is much more likely to be useful for general loss functions

Recap – Housing Price Prediction Application

ome	Facts	

2 days	Time on Redfin	Active	Status
\$4/month	HOA Dues	Residential, Single Family	Property Type
Single Detached, Mid-Century Modern, Ranch, Traditional	Style	1969	Year Built
10,019 Sq. Ft.	Lot Size	Canyon Creek Country Club 9	Community
		14375892	MLS#

Part II: Gradient Descent and Optimization

Iterative method to minimize a (convex) differentiable function f

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y)$$

for all $\lambda \in [0,1]$ and all $x, y \in \mathbb{R}^n$

Iterative method to minimize a (convex) differentiable function f

- Pick an initial point x_0
- Iterate until convergence

$$x_{t+1} = x_t - \gamma_t \nabla f(x_t)$$

where γ_t is the t^{th} step size (sometimes called learning rate)

Basics of Convexity and Gradient Desc

- For additional reading, please see some of my slides from my Spring 2020 Class "Optimization in Machine Learning"
- Github Location for Lecture Notes and Slides: https://github.com/rishabhk108/OptimizationML
- Please skim through:
 - Lectures 1 and 2 for basics
 - Lectures 3-5 for convex functions
 - Lectures 6-8 on Gradient Descent
 - This includes slightly more mathematical details like convergence analysis and proofs for convergence etc.

$$\min_{a,b} \frac{1}{M} \sum_{m} (ax^{(m)} + b - y^{(m)})^{2}$$

- What is the gradient of this function?
- What does a gradient descent iteration look like for this simple regression problem?

Gradients for Linear Regression

The Loss Function for Linear Regression is:

$$L(a,b) = \frac{1}{M} \sum_{m} (ax^{(m)} + b - y^{(m)})^{2}$$

The gradients with respect to a and b are:

$$\nabla L_a(a,b) = \frac{1}{M} \sum_m 2(ax^{(m)} + b - y^m) x^{(m)}$$

$$\nabla L_b(a,b) = \frac{1}{M} \sum_m 2(ax^{(m)} + b - y^m)$$

The gradients can be obtained by using the chain rule

• In higher dimensions, the linear regression problem is essentially the same with $x^{(m)} \in \mathbb{R}^n$

$$\min_{a \in \mathbb{R}^n, b} \frac{1}{M} \sum_{m} \left(a^T x^{(m)} + b - y^{(m)} \right)^2$$

- Can still use gradient descent to minimize this
 - Not much more difficult than the n=1 case

- Gradient descent converges under certain technical conditions on the function f and the step size γ_t
 - If f is convex, then any fixed point of gradient descent must correspond to a global minimum of f
 - In general, for a nonconvex function, may only converge to a local optimum
- Very fast convergence because the Linear Regression is smooth (loosely, think differentiable) and strongly convex (loosely, bounded below by a quadratic function)*

^{*} See Lectures 6-8 for better understanding of smooth and strongly convex

Part III: Polynomial Regression

Polynomial Regression

- What if we enlarge the hypothesis class?
 - Quadratic functions: $ax^2 + bx + c$
 - k-degree polynomials: $a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$

$$\min_{a_k, \dots, a_0} \frac{1}{M} \sum_{m} \left(a_k (x^{(m)})^k + \dots + a_1 x^{(m)} + a_0 - y^{(m)} \right)^2$$

Polynomial Regression

- What if we enlarge the hypothesis class?
 - Quadratic functions: $ax^2 + bx + c$
 - k-degree polynomials: $a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$
- Can we always learn "better" with a larger hypothesis class?

Polynomial Regression

- What if we enlarge the hypothesis class?
 - Quadratic functions: $ax^2 + bx + c$
 - k-degree polynomials: $a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$
- Can we always learn "better" with a larger hypothesis class?

Caveats with Polynomial Regression

- Larger hypothesis space always decreases the cost function, but this does NOT necessarily mean better predictive performance
 - This phenomenon is known as overfitting
 - Ideally, we would select the simplest hypothesis consistent with the observed data
- In practice, we cannot simply evaluate our learned hypothesis on the training data, we want it to perform well on unseen data (otherwise, we can just memorize the training data!)
 - Report the loss on some held-out test data (i.e., data not used as part of the training process)

Overfitting

- As the degree of the polynomial (k) increases, training error decreases monotonically
- As *k* increases test error can increase
- Test error can decrease at first, but increases
- Overfitting can occur
 - When the model is too complex and trivially fits the data (i.e., too many parameters)
 - When the data is not enough to estimate the parameters
 - Model captures the noise (or the chance)

Part IV: Hands On

House Price Prediction

Boston House Price Dataset

CRIM: Per capita crime rate by town ZN: Proportion of residential land zoned for lots over 25,000 sq. ft INDUS: Proportion of non-retail business acres per town CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) NOX: Nitric oxide concentration (parts per 10 million) RM: Average number of rooms per dwelling AGE: Proportion of owner-occupied units built prior to 1940 DIS: Weighted distances to five Boston employment centers RAD: Index of accessibility to radial highways TAX: Full-value property tax rate per \$10,000 PTRATIO: Pupil-teacher ratio by town **B:** $1000 \, (Bk - 0.63)^2$, where Bk is the proportion of [people of African American descent] by town LSTAT: Percentage of lower status of the population MEDV: Median value of owner-occupied homes in \$1000s

Summary of the Hands On Portion

- Load the Dataset
- Exploratory Data Analysis
- Training a Linear Regression Model
- Training a Polynomial Regression Model
- Training a Linear/Poly Regression from scratch using gradient descent

Gradient Descent: Good Convergence

Gradient Descent: Slow Convergence

Gradient Descent: Divergence

