一阶 RC 电路的零状态响应

RC 电路的零状态响应是指在换路前,电容元件初始储能 $u_{C}(0_{-})=0$ 的情况下,由外加电源激励在电路中产生的响应。因此分析 RC 电路的零状态响应,实质就是分析电容的充电过程。

图 4 所示的 RC 电路中开关 S 闭合前,电容电压 $u_C(0_-)=0$,电路处于零状态。当 t=0 时刻开关 S 闭合,电路与直流电源接通,电源向电容元件开始充电。根据换路定律,换路瞬间 $u_C(0_+)=u_C(0_-)=0$ 。

图 4 RC 充电电路

(1) 电容电压 u_c 的变化规律 根据基尔霍夫电压定律得

$$u_R + u_C = i_C R + u_C = U$$

将
$$i_C = C \frac{du_C}{dt}$$
代入,得

$$RC\frac{du_C}{dt} + u_C = U$$
 一阶常系数线性非齐次微分方程

(2) 解方程

微分方程的全解 u_c 由两部分组成,一个是特解特解 u_c' ,另一个是通解 u_c'' 。即

$$u_C = u_C' + u_C''$$

 u_c' 为特解,即稳态分量,当电路达到稳态时,电容器充电完毕,电容两端电压等于电源电压,即 $u_c'=u_c(\infty)=U$ 。

 u_c'' 为对应的齐次方程的通解,对应的齐次方程为

$$RC\frac{du_C}{dt} + u_C = 0$$

$$u_C'' = Ae^{pt} = Ae^{-\frac{t}{RC}}$$

微分方程的全解为

$$u_C = u_C' + u_C'' = U + Ae^{-\frac{t}{\tau}}$$

根据初始条件,定积分常数 A。当 t=0+=0 时,

$$u_C(0_+) = u_C(0_-) = 0$$

所以

$$u_C(0_+) = U + A = 0$$

A = -U

则

$$u_C'' = -Ue^{-\frac{t}{\tau}}$$

电容电压 u_c 的全解为

$$u_C = u_C' + u_C'' = U + (-Ue^{-\frac{t}{\tau}}) = U(1 - e^{-\frac{t}{\tau}})$$

 u_{C} 随时间变化曲线如图 5 所示。

图 5 u_C 的变化曲线

由图可见, u_c' 不随时间变化, u_c'' 按指数规律衰减而趋于零。因此,电压 u_c 按指数规律随时间增长而趋于稳态值。

充电电流 i_c 的变化规律为

$$i_C = C \frac{du_C}{dt} = \frac{U}{R} e^{-\frac{t}{\tau}}$$

(3) u_c 与 i_c 随时间变化的响应曲线 u_c 与 i_c 随时间变化的响应曲线如图 6 所示。

图 6 零状态时 u_C 、 i_C 、 u_R 变化曲线

由图可见,电压电压 u_c 随时间按指数规律增长,最后趋于稳定值U;充电电

流 i_c 随时间指数规律从 $i_c(0_+) = \frac{U}{R}$ 值逐渐衰减为零,这时充电结束。

(4) 时间常数

当 $t = \tau$ 时,

$$u_C = U(1 - e^{-\frac{t}{\tau}}) = U(1 - e^{-1}) = 0.632U$$

也就是 $t = \tau$ 时, 电容电压 u_c 上升到稳态值 U的 63.2%。

在工程实际中,由于 $t=(3\sim5)\tau$ 时 $u_c\approx U$,电容充电过程基本结束,电路达到稳态,这时电容电压的稳态值 $u_c(\infty)=U$ 。

3. 一阶 RC 电路的全响应

RC 电路的全响应是指在换路前,电容元件具有初始储能,同时又有外施电源的激励,这时在电路中所产生的响应称 *RC* 电路的全响应。

(1) 电压 u_c 的变化规律

根据叠加定理,可以把RC 电路的全响应看成是零输入响应 $U_0e^{-\frac{1}{\tau}}$ 和零状态

响应 $U(1-e^{-\frac{t}{\tau}})$ 叠加的结果。即

全响应 = 零输入响应 + 零状态响应

$$u_C = U_0 e^{-\frac{t}{RC}} + U (1 - e^{-\frac{t}{RC}})$$
 $(t \ge 0)$

RC 电路的全响应实质上是稳态分量 U 和暂态分量叠加的结果。

全响应 = 零输入响应 + 零状态响应

$$u_C = U_0 e^{-\frac{t}{RC}} + U (1 - e^{-\frac{t}{RC}})$$
 $(t \ge 0)$

即:

$$=U + (U_0 - U)e^{-\frac{t}{RC}}$$
 $(t \ge 0)$

(2) 电流 i_c 的变化规律

$$i_C = C \frac{du_C}{dt} = \frac{U - U_0}{R} e^{-\frac{t}{\tau}}$$

(3) 讨论

在电容电压与电流表达式中,U为电容电压的稳态值, U_0 为电容电压的初始值。

当 $U>U_0$ 时,换路后,电容处于充电状态, u_c 随时间按指数规律上升,响应曲线如图 T(a)所示,这时电流 T(a) 方充电电流。

当 $U < U_0$ 时,则换路后,电容处于放电状态, u_c 随时间按指数规律衰减,响应曲线如图 7(b)所示,这时电流 i_c 为放电电流。

- 7 全响应时 u_c 变化曲线
 - (a) $U>U_0$ (b) $U<U_0$