Digits Recognizer

 $\label{eq:Group 2} \mbox{G.X. Liu, D.W. Chen and K.I. Chung}$

May 3, 2017

Introduction

Data Resource Information Image Examples

Summary Statistics

Means 20% Trimmed Means Principal Component Analysis

Future Work

Models

Predict Instantly Online

The Handwritten Digits

They are originally from the MNIST database.

- ► 60000 training data
- ▶ 10000 test data

Now, it is a competition on the Kaggle.

- 42000 training data
- 28000 test data

Information

- ► Images contain 28 × 28 pixels.
- ► There are 784 independent variables.
- ▶ The response labels the real values of images.

Table: Frequency of Digits

digit		1	2	3	4
freq.	4132	4684	4177	4351	4072
digit	5	6	7	8	9
freq.	3795	4137	4401	4063	4188

Representation

The function, f transfers an observation with 784 variables into an 28×28 image matrix.

$$M = \begin{bmatrix} \operatorname{pixel}_{000} & \operatorname{pixel}_{001} & \cdots & \operatorname{pixel}_{027} \\ \operatorname{pixel}_{028} & \operatorname{pixel}_{029} & \cdots & \operatorname{pixel}_{055} \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{pixel}_{756} & \operatorname{pixel}_{757} & \cdots & \operatorname{pixel}_{783} \end{bmatrix}_{28 \times 28}$$

Images from the Training Data

Images from the Test Data

6

9

3

1

8

9

4

Some Naked-eyed Unrecognizable Images

The Mean Images of the Different Digits

The Mean Curves of the Different Digits

The 20% Trimmed Mean Images of the Different Digits

The 20% Trimmed Mean Curves of the Different Digits

Coefficients for the Principal Component

	PC1	PC2		PC43		PC784
pixel ₀	0.000	0.000		0.000		0.000
pixel_1	0.000	0.000		0.000		-0.072
:	:	÷	٠	:	٠	:
pixel ₄₆₂	0.075	-0.013		0.059		0.000
÷	:	:	٠	:	٠	:
pixel ₇₈₃	0.000	0.000		0.000		0.000
Variance	5.149	3.781		0.221		0.000
Cumulative						
Ratio of	0.098	0.169	• • •	0.800		1.000
Total Variance						

Cumulative Ratio of Total Variance

Scatter Plot for the First Two Components

Separated Scatter Plot for the First Two Components

Models

- One-Versus-All Logistic Regression
- ▶ PC One-Versus-All Logistic Regression
- K-Nearst Neighbors Classifier (KNN)
- Random Forest
- Support Vector Machine (SVM)
- Convolutional Neural Network (CNN)

Example

- http://myselph.de/neuralNet.html
- Neural Network Model
- Trained with Matlab and Displayed in JavaScript
- ▶ 3 msec
- ▶ 1.92% error rate

Plans

```
Plan A Calculate on JavaScript (Less Time Complexity)
```

```
Plan B Front-End + LAMP + R (More Time Complexity)
```

$${\sf Plan} \; {\sf C} \; \; {\sf Front-End} \; + \; {\sf PHP} \; + \; {\sf Cloudinary} \; + \; {\sf R}$$

Thank you for listening.