Suites Réelles Suites extraites MPSI 2

1 Dfinition

Définition 1.0.1

On dit que \underline{v} est une suite extraite de \underline{u} si il existe une application ϕ strictement croissante telle que $\forall n \in \mathbb{N}, \ v_n = u_{\phi(n)}$

On appelle galement v une sous-suite de u.

On a notamment:

- $(w_n)_{n\in\mathbb{N}}$ la suite des termes d'indices pairs de u
- $(z_n)_{n\in\mathbb{N}}$ la suite des termes d'indices impairs de u

2 Proprits de limites

Propriété 2.0.1

Lemme: Si $\phi \mathbb{N} \to \mathbb{N}$ est strictement croissante, alors $\phi(n) \geqslant n$

Par reurrence, avec $\phi(0) \ge 0$ et $\phi(n+1) > \phi(n)$

Propriété 2.0.2

Si u tend vers l avec $l \in \mathbb{R}$, alors toute suite extraite de u tend vers l

(1) 1^{er} cas: $l \in \mathbb{R}$

Soit v une suite extraite de u, et $\phi:n\to\mathbb{N}$ une application strictement croissante. Montrer que v converge vers l

Soit ε un rel strictement positif.

Donc $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n - l| < \varepsilon$

Soit n_0 un tel entier. On a $\forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow n_0 \leqslant n \leqslant \phi(n)$

On a donc $\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_{\phi(n)} - l| < \varepsilon$

Donc v converge vers l.

(2) On proced de manire analogue avec $l = \pm \infty$