BADGR: An Autonomous Self-Supervised Learning-Based Navigation System

Gregory Kahn, Pieter Abbeel, Sergey Levine Berkeley Al Research (BAIR), University of California, Berkeley

Robotics and Automation Letters, 2021

Motivation

Navigation for mobile robots is often regarded as primarily a geometric problem.
 (Construct map → Plan path on the map → Track the planned path)

Motivation

- Navigation for mobile robots is often regarded as primarily a geometric problem.
 (Construct map → Plan path on the map → Track the planned path)
- However, these methods **could not** handle terrain properties and physical attributes of the environment for deciding the traversability. (ex) tall grass)

Motivation

- Navigation for mobile robots is often regarded as primarily a **geometric problem**.
 - (Construct map \rightarrow Plan path on the map \rightarrow Track the planned path)
- However, these methods **could not** handle terrain properties and physical attributes of the environment for deciding the traversability. (ex) tall grass)

Let's learn the traversability from experience.

Contribution

The paper propose **BADGR**,

- an end-to-end learning-based mobile robot navigation system
- that can be trained entirely with self- supervised,
- off-policy data gathered in real-world environments,
- without any simulation or human supervision (auto labeling),
- and can improve as it gathers more data.
- Model based RL for decision making.
- Perform point goal navigation task in an unknown environment. (no prior knowledge of the environment)

Method

- Mobile robot platform
- Data collection
- Self-supervised data labelling
- Predictive model
- Planning

- Method: Mobile robot platform
 - Wheeled mobile robot
 - Sensor: Camera (for BADGR), 2D Lidar (for Baseline), IMU, GPS
 - Onboard computing: NVIDIA Jetson TX2

linear acceleration, angular velocity

- Mobile robot platform
- Data collection
- Self-supervised data labelling
- Predictive model
- Planning

- Mobile robot platform
- Data collection
- Self-supervised data labelling
- Predictive model
- Planning

Method: Data collection

- Gather large amounts of diverse data with minimal human intervention.
- Used time-correlated random walk control policy for data gathering. (off-policy)
- Detect collision using Lidar and IMU. If it is dangerous, reset the robot to safe coordinate.

Method: Self-supervised data labelling

- Mobile robot platform
- Data collection
- Self-supervised data labelling
- Predictive model
- Planning
- Calculate labels for specific navigational events, which include collision, bumpiness, position.
- **Collision**: Lidar < threshold || IMU magnitude sudden drop
- **Bumpiness**: |*IMU angular velocity*| > *threshold*
- Position: Wheel odometry + IMU

- Mobile robot platform
- Data collection
- Self-supervised data labelling
 - Predictive model
- Planning

- Method: Predictive model
 - Predict *H* future steps, conditioned on current observation and *H* intended future command sequences.

Command sequences

Current observation

Collision Bumpiness Position Method: Predictive model

- Mobile robot platform
- Data collection
- Self-supervised data labelling
- Predictive model
- Planning
- Predict *H* future steps, conditioned on current observation and *H* intended future command sequences.

- Mobile robot platform
 - Data collection
- Self-supervised data labelling
- Predictive model
- Planning

Method: Planning

- Gradient free optimizer + model predictive control
- Use task specific rewards which are functions of the outputs of learned predictive model

(Model based RL)

- Mobile robot platform
 - Data collection
- Self-supervised data labelling
- Predictive model
 - Planning

- Method: Planning
 - Gradient free optimizer + model predictive control
 - Use task specific rewards which are functions of the outputs of learned predictive model

Algorithm 2 Deploying BADGR

- 1: **input**: trained predictive model f_{θ} , reward function R
- 2: while task is not complete do
- 3: get current observation o_t from sensors
- 4: solve Eqn. 2 using f_{θ} , \mathbf{o}_t , and R
- to get the planned action sequence $\mathbf{a}_{t:t+H}^*$
- 5: execute the first action \mathbf{a}_t^*

Experiment

- Urban environment
- Off-road environment (e.g. tall grass)
- Self-improvement
- Generalization

Reward for "Point goal navigation"

$$\begin{split} R^{\text{COLL}}(\hat{\mathbf{e}}_{t'}^{0:K}) &= \ \hat{\mathbf{e}}_{t'}^{\text{COLL}} \quad \text{Don't collide} \\ R^{\text{POS}}(\hat{\mathbf{e}}_{t'}^{0:K}) &= \ (1 - \hat{\mathbf{e}}_{t'}^{coll}) \cdot \frac{1}{\pi} \angle (\hat{\mathbf{e}}_{t'}^{\text{POS}}, \mathbf{p}^{\text{GOAL}}) + \hat{\mathbf{e}}_{t'}^{coll} \quad \text{Move to the goal direction} \\ R^{\text{BUM}}(\hat{\mathbf{e}}_{t'}^{0:K}) &= \ (1 - \hat{\mathbf{e}}_{t'}^{coll}) \cdot \hat{\mathbf{e}}_{t'}^{\text{BUM}} + \hat{\mathbf{e}}_{t'}^{coll}, \quad \text{Don't run on bumpy terrain} \end{split}$$

Experiment: Urban environment

Urban environment

Self-improvement Generalization

Off-road environment (e.g. tall grass)

Experiment : Off-road environment

- Urban environment
- Off-road environment (e.g. tall grass) Self-improvement
- Generalization

Experiment : Self-improvement

- Urban environment
- Off-road environment (e.g. tall grass)
- Self-improvement
- Generalization

- Urban environment
- Off-road environment (e.g. tall grass)
- Self-improvement
- Generalization

Experiment: Generalization

Limitations (Personal thought)

- Generalization in various environments is left as question.
- Directly running robots in real world to collect data is inefficient and not good for robots.
- Difficult to be robust for various goal positions. (Typical problem for autonomous navigation in unknown environments)
- Wobbling control outputs requires post-processing.

However, it is very simple and works well in an unknown environment.

Project page

https://sites.google.com/view/badgr

Q & A