ÔN TẬP

Giới hạn

Tìm giới hạn nếu tồn tại hoặc chứng minh không tồn tại

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y}{x^2 + y^2}$$

$$\lim_{\substack{x \to \infty \\ y \to \infty}} \left(\frac{xy}{x^2 + y^2} \right)^{x^2}$$

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{xy}{x^2 + y^2}$$

Tích phân bội

Bài 2. Tính các tích phân sau:

- a) $\iint_D 2|x|dxdy$, D là hình thang với các đỉnh (-1,4), (5,4), (1,1), (4,1).
- b) $\iint_{\mathcal{D}} \sin(x+y) dx dy$, D là miền giới hạn bởi y = 0, y = x, $x + y = \frac{\pi}{2}$.
- c) $\iint_{\mathcal{D}} (x+y) dx dy$, D là miền giới hạn bởi $y^2 = 2x$, x+y=4, x+y=12.
- d) $\iint_{\mathcal{D}} (|x| + |y|) dx dy$, D là miền giới hạn bởi $|x| + |y| \le 1$.
- e) $\iint_D y dx dy$, D là nửa trên hình tròn tâm $\left(\frac{a}{2}, 0\right)$, bán kính bằng $\frac{a}{2}$.
- f) $\iint (x^2 + y^2) dx dy$, D là hình tròn $x^2 + y^2 \le 2ax$.
- g) $\iint_{\Omega} \sqrt{a^2 x^2 y^2} dx dy$, D là nửa trên hình tròn $x^2 + y^2 \le a^2$.
- h) $\iint_D \sin \sqrt{x^2 + y^2} dx dy$, D là miền giới hạn bởi $x^2 + y^2 = \pi^2$, $x^2 + y^2 = 4\pi^2$.
- i) $\iint_{D} \sqrt{4 \frac{x^{2}}{a^{2}} \frac{y^{2}}{b^{2}}} dx dy$, D là miền giới hạn bởi $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$, $\frac{x^{2}}{4a^{2}} + \frac{y^{2}}{4b^{2}} = 1$ thuộc góc phần tư thứ nhất.
- j) $\iiint_B xy^2z^3dxdydz$, B là miền được giới hạn bởi các mặt z=xy, y=x, x=1, z=0.
- k) $\iint_B xyzdxdydz$, B là miền được giới hạn bởi các mặt $x^2+y^2+z^2=1, \ x\geq 0, \ y\geq 0, \ z\geq 0.$
- 1) $\iiint_{\mathbb{R}} \sqrt{x^2 + y^2} dx dy dz$, B là miền được giới hạn bởi các mặt $x^2 + y^2 = z^2$, z = 1.
- m) $\iiint\limits_{R} \sqrt{x^2 + y^2 + z^2} dx dy dz , B là hình cầu <math>x^2 + y^2 + z^2 \le z.$

n) $\iiint_{\mathbb{R}} (x^2 + y^2) dx dy dz$, B là miền được giới hạn bởi các mặt $x^2 + y^2 = 2z$, z = 2.

o) $\iiint_{B} (x^2 + y^2 + z^2) dx dy dz$, B là miền được giới hạn bởi mặt cầu $x^2 + y^2 + z^2 = x + y + z$.

Một vài ứng dụng của tích phân 2 lớp.

- ightharpoonup Diện tích của miền phẳng D trong mặt phẳng Oxy: $S = \iint_D dx dy$.
- Thể tích vật thể hình trụ mà phía trên giớ hạn bởi mặt z = f(x, y), phía dưới bởi miền D của mặt phẳng Oxy: $V = \iint_{\Sigma} f(x, y) dx dy$.
- ightharpoonup Diện tích của mặt cong có phương trình $z=f\left(x,y\right)$ được chiếu lên miền D của mặt Oxy:

$$S = \iint_{D} \sqrt{1 + z_{x}^{'2} + z_{y}^{'2}} dx dy.$$

Bài 3. Tính diện tích của miền D giới hạn bởi

a)
$$y = 0, x = 1, y = x^3$$
.

b)
$$y = 0$$
, $y = x$, $x^2 + y^2 = 2x$.

c)
$$x = 0, y = 0, x = 2, y = e^x$$
.

d)
$$y = -1$$
, $y = -x$, $x^2 + y^2 = -2y$.

e)
$$y^2 = x + 2$$
, $x = 2$.

Bài 4. Tính thể tích vật thể giới hạn bởi:

a)
$$z = 1 + x + y, z = 0, x + y = 1, x = 0, y = 0.$$

b)
$$y = x^2$$
, $y = 1$, $x + y + z = 4$, $z = 0$.

c)
$$x = y^2 - x^2$$
, $z = 0$, $y = \pm 2$.

d)
$$x + y + z = a, x^2 + y^2 = R^2, x \ge 0, y \ge 0, z = 0, (a \ge R\sqrt{2})$$

e)
$$z = x^2 + y^2$$
, $y = x^2$, $y = 1$, $z = 0$.

f)
$$z^2 = xy$$
, $x^2 + y^2 = a^2$.

Bài 5. Tính các tích phân đường sau

- a) $\oint_C y^3 dx x^3 dy$, C là chiều dương đường tròn tâm O, bán kính bằng 2.
- b) $\oint_C y^3 dx x^3 dy$, C là chiều dương các đường tròn đồng tâm O, bán kính bằng 1, 2.

- c) $\oint_C (y^2 7y) dx + (2xy + 2x) dy$, C đường bao quanh hình tròn $x^2 + y^2 \le 1$.
- d) $\oint_C (y^2 \sin e^x + xy) dx (x^2 + \operatorname{sech}^4 y 2xy) dy$, C là đường bao quanh của hình vuông có các đính (0,0), (0,1), (1,1), (1,0).