

Guidelines for the Specification and Design of Large-Scale Semantic Applications

ASWC 2009

Oscar Muñoz-García - <u>omunoz@fi.upm.es</u>
Raúl García-Castro - rgarcia@fi.upm.es

Speaker: Raúl García Castro Date: 07/11/2024

Motivation

How can I specify the semantic functionalities of my application?

How can I carry out the development process of my semantic application?

Semantic applications require different software development techniques.

- •They manipulate huge quantities of heterogeneous decentralized information.
- •They integrate semantic and non-semantic data.
- •They explore different sources at run-time.

Need **guidelines** that can be easily adapted and **integrated** in the software **development process**

Scope

Overview of the Guidelines

Requirements Elicitation Activity

Task 1. Identify the use cases

Objective

To gather information about the application from the business requirements and to distil scenarios from this information

Technique

To select and adapt semantic-related scenarios from a catalogue of 5 use cases

Use Cases Catalogue

Query Information

To obtain integrated information from several resources given a query

Search Resources

To obtain resources (annotated with the corresponding metadata) related to a given query

Browse Resources

To navigate through categorised resources utilizing ontologies as indexes

Extract Information

To extract meaningful information from a set of resources obtaining after performing a search

Manage Knowledge

To collaboratively construct and evolve shared knowledge by

- •Managing classes, properties, instances, mappings, annotations...
- Learning or populating an ontology, ...

Task 2. Identify Semantic Characteristics and Ontological Needs

Objective

To collect semantic application requirements and ontological needs

Technique

To apply 4 questionnaires oriented to obtain the values of 32 characteristics and ontological needs

Characteristics

Ontologies

- (1) Use of a single ontology or a network of ontologies
- (2) Design-time or run-time ontology selection
- (3) Use of generic or domain-specific ontologies
- (4) Generation of new ontologies
- (5) Use of internal or external ontologies
- (6) Ontologies reuse and reengineering
- (7) Non-ontological resources reengineering
- (8) Ontologies dynamicity
- (9) Centralization or distribution of ontologies
- (10) Scalabitlity regarding the number of ontologies
- (11) Scalability regarding the number of ontology elements
- (12) Ontologies encoding heterogeneity
- (13) Ability to resolve conceptual heterogeneity in ontologies

Data

- (14) Data domain dependence
- (15) Data Generation
- (16) Use of internal or external data sources
- (17) Use of linked data
- (18) Data distribution
- (19) Data dynamicity
- (20) Design-time or run-time data selection
- (21) Data scalability
- (22) Use of non-semantic data
- (23) Data encoding heterogeneity

Reasoning

- (24) Kind of semantic reasoning
- (25) Sound reasoning
- (26) Complete reasoning
- (27) Hybrid reasoning
- (28) Reasoning with contradictory data
- (29) Reasoning with incomplete data
- (30) Reasoning with uncertainty
- (31) Distributed reasoning

Non-functional

(32) Interoperability with other applications

Task 3. Identify System Models

Objective

To preliminary specify the application from

- An external perspective
 - Systems involved and their limits
- A structural perspective
 - By modelling the structure of the information processed

Technique

To build system model using a set of templates taking into account

- Identified use cases
- Application characteristics

Basic Symbols

Relationships

Unstructured

document

. . .

System Models Templates Catalogue

Includes 11 system models templates

Component Identification Activity

Architectural Patterns Catalogue

the previously identified System Models

To draw the architecture by applying 28 architectural patterns associated to

Conclusions

- Our main goal is to facilitate the development of semantic applications for non-expert software engineers.
 - Adapting the Requirements Engineering and Design processes from SE.
 - Allowing to design the architecture of SA from scratch and to include semantic components into traditional information systems.
- The techniques described are novel and specially oriented to the specification and design of the semantic functionalities of an application.
- The semantic characteristics of an application will influence the whole development process.
- The use cases are useful to start analysing the application from concrete functional user needs.
- The system models are graphical representations of the macro-structure and environment of the application. We have provided architectural patterns that aim to facilitate the Architectural Design of the Semantic Application.
 - These architectural patterns are not bound to a particular implementation.