TD 6

Exercice 1 – Apprentissage d'un réseau XOR

Le problème du XOR ("ou exclusif") est le suivant : les points (-1, -1), (1, 1) sont considérés négatifs, les points (-1, 1), (1, -1) positifs.

- **Q 1.1** Dessiner un réseau de neurone à 2 neurones cachés pour ces données. Enumérer quelques fonctions d'activations possibles. Lesquelles sont les plus judicieuses dans ce cas précis pour les différentes couches?
- Q 1.2 Proposer des valeurs pour les poids du réseau. La solution est-elle unique?
- Q 1.3 Même question pour un échiquier à 8 cases.

Exercice 2 – Caractérisation de la solution apprise par un réseau de neurone

Considérons un réseau à une couche cachée paramétré par le vecteur \mathbf{w} . On note $f_{\mathbf{w}}(\mathbf{x})$ la sortie pour une entrée \mathbf{x} .

Nous utiliserons les notations suivantes :

- un échantillon $\mathbf{x}^i = \{x_i^i\}_{j=1,\dots,d}$, son étiquette y^i , un ensemble d'apprentissage $\mathcal{D} = \{(\mathbf{x}^i, y^i)\}_{i=1,\dots,N}$;
- les poids vers la couche cachée sont les $\mathbf{w}^1 = \{w_{jh}^1\}_{j=1,\dots,d,\ h=1,\dots,H}$, les poids vers la couche de sortie sont les $\mathbf{w}^s = \{w_{hk}^s\}_{h=1,\dots,H,\ k=1,\dots,K}$.
- les fonctions d'activation g^1, g^s des deux couches.
- **Q 2.1** Combien de neurones cachés compte le réseau? De sorties? Dessiner le réseau. A quoi correspond un nombre de sorties supérieur à un?
- **Q 2.2** Exprimer la sortie $f_{\mathbf{w}}(\mathbf{x})$ en fonction des composantes de \mathbf{x} et \mathbf{w} .
- **Q 2.3** Donner l'expression du coût (moindres carrés) en fonction de la base d'apprentissage \mathcal{D} . Quelle est sa formulation théorique (en utilisant l'espérance d'une quantité)?
- **Q 2.4** Montrer qu'en chaque \mathbf{x} , la solution optimale correspond à $f^*(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}]$. A quoi correspond ce résultat?
- **Q 2.5** Pour la classification multiclasse, la sortie utilisée est un vecteur : $\mathbf{y} = [\dots, 1, \dots]$ avec un 1 en k-ième position si la classe de \mathbf{x} est k. De quoi $f_k^{\star}(\mathbf{x})$ est elle l'approximation dans ce cas là?
- **Q 2.6** Dans le cas de la régression, à quoi correspond $f^*(\mathbf{x})$? Donner un exemple graphique de régression 1D bruité dans lequel plusieurs valeurs de y correspondent à un \mathbf{x} .
- Q 2.7 Décomposition et interprétation du coût.
 - Récrire le critère de coût en un point x pour faire intervenir les termes $y f^*(\mathbf{x})$ et $f^*(\mathbf{x}) f_{\mathbf{w}}(\mathbf{x})$, puis $E_{y|\mathbf{x}} \left[\|y f^*(\mathbf{x})\|^2 \right]$.
 - Donner une interprétation de la signification de ce terme ainsi que des autres termes que vous avez fait apparaître. Pourquoi l'apprentissage ne permet pas toujours d'obtenir un coût nul?
- Q 2.8 La solution obtenue par descente de gradient est-elle unique? Pourquoi? De quoi dépend elle?

Exercice 3 – Rétro-propagation

On se place dans le cadre général d'un réseau de neurones multi-couches (sans fixer le nombre de couches). Soit $E(\mathbf{w})$ l'erreur aux moindres carrés pour un réseau avec les poids \mathbf{w} .

On considère les notations suivantes : l'activation du neurone a_i^k , la sortie au neurone i de la couche $k: z_i^k = g(a_i^k)$, et le poids d'un neurone i de la couche k-1 vers un neurone j de la couche $k: w_{i,j}^k$.

On notera δ_i^k l'erreur associée au neurone correspondant, g(x) la fonction d'activation.

- Q 3.1 Dessiner un bout du réseau.
- **Q 3.2** Rappeler l'expression de la *i*-ème sortie du PMC $f_{\mathbf{w}}(\mathbf{x})_i$ en fonction des entrées (les composantes de \mathbf{x}) dans le cas d'un réseau à une couche cachée.
- **Q 3.3** En déduire, dans le cas d'un réseau général, l'expression d'un z_i^h en fonction des z_j^{h-1} (sorties de la couche précédente).
- Q 3.4 Backward sur la couche de sortie

Pour appliquer l'algorithme du gradient, nous avons besoin de calculer le gradient du critère par rapport à tous les poids w_{ij}^k du réseau. Le calcul s'effectue par couche, de la dernière vers la première en répercutant les erreurs des différentes couches. Dans un premier temps, nous allons étudier $\frac{\partial E(\mathbf{w})}{\partial w_{ij}^s}$, les dérivées par rapport aux poids de la dernière couche cachée.

- **Q 3.4.1** Montrer que ces dérivées peuvent s'exprimer à l'aide de $\delta_j^s = \frac{\partial E(\mathbf{w})}{\partial a_j^s}$ et $\frac{\partial a_j^s}{\partial w_{ij}^s}$.
- **Q 3.4.2** Calculer les δ_j^s et les dérivées partielles de a_j^s par rapport à w_{ij}^s .
- ${\bf Q}$ 3.4.3 En déduire la dérivée du coût par rapport à un poids $w^s_{ij}.$
- Q 3.5 On considère maintenant le cas de cellules sur une couche cachée h. On note δ_i^h la dérivée du critère par rapport à l'activation d'une cellule d'une couche cachée a_i^h . Exprimer cette dérivée en fonction des δ_j^{h+1} correspondant aux cellules de la couche suivante et en fonction de quantités $\frac{\partial a_j^{h+1}}{\partial a^h}$.
- **Q 3.6** Que vaut $\frac{\partial a_j^{h+1}}{\partial a_i^h}$?
- **Q 3.7** En déduire la dérivée du coût par rapport à un poids w_{ji}^h d'une connexion d'un neurone j de la couche h-1 vers un neurone i de la couche h.
- Q 3.8 Résumer l'algorithme de backward propagation.