Homework #1

Sam Fleischer

April 5, 2016

Problem 1										•						 									2
Problem 2																 									3
Problem 3																 									4
Problem 4																 				•					4
Problem 5																 									5
Problem 6			•		•											 				•					6
Problem 7																 									7
Problem 8			•		•											 				•					7
Problem 9																									R

Problem 1

If f and g are measurable functions on Ω , then $\|fg\|_1 \le \|f\|_1 \|g\|_\infty$. If $f \in L^1$ and $g \in L^\infty$, then $\|fg\|_1 = \|f\|_1 \|g\|_\infty$ if and only if $|g(x)| = \|g\|_\infty$ a.e. on the set where $f(x) \ne 0$.

Proof. Let f and g be measurable functions on Ω . Then

$$\begin{aligned} \|fg\|_1 &= \int_{\Omega} \left| (fg)(x) \right| \mathrm{d}\mu \\ &= \int_{\Omega} \left| f(x) \right| \left| g(x) \right| \mathrm{d}\mu \\ &\leq \int_{\Omega} \left| f(x) \right| \underset{x \in \Omega}{\mathrm{ess sup}} \left| g(x) \right| \mathrm{d}\mu \\ &= \underset{x \in \Omega}{\mathrm{ess sup}} \left| g(x) \right| \int_{\Omega} \left| f(x) \right| \mathrm{d}\mu \\ &= \|f\|_1 \|g\|_{\infty} \end{aligned}$$

Now let $f \in L^1$ and $g \in L^\infty$. First, suppose $|g(x)| = ||g||_{\infty}$ a.e. on the set where $f(x) \neq 0$. In other words, define $A \subset \Omega$ by

$$A = \{x \in \Omega : f(x) \neq 0\}$$

and assume $|g(x)| = ||g||_{\infty}$ for almost all $x \in A$. Again, in other words, define $B \subset A$ by

$$B = \{x \in A : |g(x)| < ||g||_{\infty}\}$$

and assume $\mu(B) = 0$. Then

$$||fg||_1 = \int_{\Omega} |(fg)(x)| d\mu$$

$$= \int_{A} |(fg)(x)| d\mu + \int_{\Omega \setminus A} |(fg)(x)| d\mu$$

since f(x) = 0 for $x \in \Omega \setminus A$ by definition of A. Thus

$$||fg||_1 = \int_A |(fg)(x)| d\mu$$

$$= \int_B |(fg)(x)| d\mu^{-0} + \int_{A\setminus B} |(fg)(x)| d\mu$$

since $\mu(B) = 0$. For $x \in A \setminus B$, $|g(x)| = ||g||_{\infty}$. Thus,

$$\begin{split} \left\| fg \right\|_1 &= \int_{A \setminus B} \left| (fg)(x) \right| \mathrm{d}\mu \\ &= \int_{A \setminus B} \left| f(x) \right| \left| g(x) \right| \mathrm{d}\mu \\ &= \int_{A \setminus B} \left| f(x) \right| \left\| g \right\|_{\infty} \mathrm{d}\mu \\ &= \left\| g \right\|_{\infty} \int_{A \setminus B} \left| f(x) \right| \mathrm{d}\mu \\ &= \left\| g \right\|_{\infty} \left[\int_{A \setminus B} \left| f(x) \right| \mathrm{d}\mu + \int_{B} \left| f(x) \right| \mathrm{d}\mu + \int_{\Omega \setminus A} \left| f(x) \right| \mathrm{d}\mu \right] \end{split}$$

since $\mu(B) = 0$ and f(x) = 0 for $x \in \Omega \setminus A$ implies

$$\int_{B} |f(x)| d\mu = 0 \quad \text{and} \quad \int_{\Omega \setminus A} |f(x)| d\mu = 0$$

Thus,

$$\begin{split} \|fg\|_1 &= \|g\|_{\infty} \left[\int_{A \setminus B} |f(x)| \mathrm{d}\mu + \int_B |f(x)| \mathrm{d}\mu + \int_{\Omega \setminus A} |f(x)| \mathrm{d}\mu \right] \\ &= \|g\|_{\infty} \int_{\Omega} |f(x)| \mathrm{d}\mu \\ &= \|f\|_1 \|g\|_{\infty} \end{split}$$

Second, suppose $B \subset A$ (as defined above) has positive measure. Then

$$\int_{B} |(fg)(x)| d\mu = \int_{B} |f(x)| |g(x)| d\mu < \int_{B} |f(x)| ||g||_{\infty} d\mu$$

Thus,

$$\begin{split} \|fg\|_1 &= \int_{\Omega} \left| (fg)(x) \right| \mathrm{d}\mu \\ &= \int_{B} \left| (fg)(x) \right| \mathrm{d}\mu + \int_{A \setminus B} \left| (fg)(x) \right| \mathrm{d}\mu + \int_{\Omega \setminus A} |(fg)(x)| \, \mathrm{d}\mu \\ &< \int_{B} \left| f(x) \right| \|g\|_{\infty} \mathrm{d}\mu + \int_{A \setminus B} \left| f(x) \right| \|g\|_{\infty} \mathrm{d}\mu \\ &= \|g\|_{\infty} \int_{A} \left| f(x) \right| \mathrm{d}\mu \\ &= \|g\|_{\infty} \int_{\Omega} \left| f(x) \right| \mathrm{d}\mu \\ &= \|f\|_{1} \|g\|_{\infty} \end{split}$$

Problem 2

 $\|f_n - f\|_{\infty} \to 0$ if and only if there exists a measurable set E such that $\mu(E^C) = 0$ and $f_n \to f$ uniformly on E.

Proof. Assume $||f_n - f||_{\infty} \to 0$. For each n, define K_n by

$$K_n = \inf_K \left\{ \left| f_n(x) - f(x) \right| \le K \text{ for almost all } x \in \Omega \right\}$$

Then define E^C by

$$E^C = \left\{ x \in \Omega \, : \, \left| f_n(x) - f(x) \right| > K_n \right\}$$

Then $\mu(E^C) = 0$. Also,

$$||f_n - f||_{\sup} = \sup_{x \in E} |f_n(x) - f(x)| = K_n \to 0$$

Now assume $f_n \to f$ uniformly on E and $\mu(E^C) = 0$. Then

$$||f_n - f||_{\infty} = \operatorname{ess \, sup}_{x \in \Omega} |f_n(x) - f(x)| = \sup_{x \in E} |f_n(x) - f(x)| \to 0$$

Problem 3

We say $\{f_n\}$ converges in measure to f if for every $\varepsilon > 0$,

$$\mu(\lbrace x: |f_n(x) - f(x)| \ge \varepsilon\rbrace) \to 0 \text{ as } n \to \infty.$$

If $\|f_n - f\|_p \to 0$ $(p < \infty)$ then $f_n \to f$ in measure, and hence some subsequence converges to f a.e. On the other hand if $f_n \to f$ in measure and $|f_n| \le g \in L^p$ for all $n \ (p < \infty)$ then $\|f_n - f\|_p \to 0$.

Proof. Suppose $||f_n - f||_p \to 0$. Then $\int_{\Omega} |f_n - f|^p d\mu \to 0$. Choose $\varepsilon > 0$ and define $A_{n,\varepsilon}$ as

$$A_{n,\varepsilon} = \left\{ x : \left| f_n(x) - f(x) \right| \ge \varepsilon \right\}.$$

Then

$$0 \leftarrow \int_{\Omega} |f_n - f| d\mu = \int_{A_{n,c}} |f_n - f| d\mu + \int_{\Omega \setminus A_{n,c}} |f_n - f| d\mu$$

Since each integrand is positive, each integral is positive, and thus

$$\int_{A_{n,\varepsilon}} |f_n - f| d\mu \to 0 \quad \text{and} \quad \int_{\Omega \setminus A_{n\varepsilon}} |f_n - f| d\mu \to 0$$

But since $|f_n(x) - f(x)| \ge \varepsilon$ for all $x \in A_{n,\varepsilon}$, then the only way for $\int_{A_{n,\varepsilon}} |f_n - f| d\mu$ to converge to 0 is for $\mu(A_{n,\varepsilon}) \to 0$ as $n \to \infty$. Thus f_n converges to f in measure.

Next we show a subsequence of $\{f_n\}$ converges to f pointwise a.e. Consider $\varepsilon_k \to 0$. Then $\exists n_k$ such that $\forall n \ge n_k, \mu(A_{n,\varepsilon_k}) < 2^{-k}$. Define $A_k = A_{n_k,\varepsilon_k}$ and note $\mu(A_k) < 2^{-k}$. Then define B_m by

$$B_m = \bigcup_{k=m}^{\infty} A_k$$
 and note $\mu(B_m) \le \sum_{k=m}^{\infty} 2^{-k} = 2^{-m+1}$.

Finally, Define $B = \bigcap_{m=1}^{\infty} B_m$ and note $\mu(B) \le \mu(B_m) \le 2^{-m+1}$ for any integer m. Since $2^{-m+1} \to 0$ as $m \to \infty$, this shows $\mu(B)$ is arbitrarily small, i.e. $\mu(B) = 0$. Finally, choose $x \notin B$. Then $x \notin B_m$ for some $m \ge 1$, and thus $x \notin A_k$ for all $k \ge m$. This shows $\exists \{n_k\}$ subsequence of $\{f_n\}$ such that

$$|f_{n_k}(x) - f(x)| < \varepsilon_k$$

for all k. Since $\varepsilon_k \to 0$, this shows there is a subsequence $\{f_{n_k}\}$ which converges pointwise for all $x \notin B$, but since $\mu(B) = 0$, this is pointwise a.e.

Problem 4

If $f_n, f \in L^p$ $(p < \infty)$ and $f_n \to f$ point-wise a.e., then $\|f_n - f\|_p \to 0$ if and only if $\|f_n\|_p \to \|f\|_p$.

Proof. Suppose $f_n, f \in L^p(\Omega)$ and $p < \infty$. Also suppose $f_n \to f$ point-wise a.e. Let $\|f_n - f\|_p \to 0$. Then by the reverse triangle inequality,

$$0 \le \left| \|f_n\|_p - \|f\|_p \right| \le \|f_n - f\|_p \to 0$$

Thus $\|f_n\|_p \to \|f\|_p$. Now let $\|f_n\|_p \to \|f\|_p$. Then by Theorem 1.9 from Lieb and Loss ("Missing term in Fatou's lemma"),

$$\lim_{n\to\infty} \int_{\Omega} \left| \left| f_n(x) \right|^p - \left| f_n(x) - f(x) \right|^p - \left| f(x) \right|^p \right| d\mu = 0$$

By the triangle inequality,

$$\int_{\Omega} |f_n|^p d\mu \le \int_{\Omega} |f|^p d\mu + \int_{\Omega} |f - f_n|^p d\mu$$

$$\implies ||f_n||_p^p - ||f||_p^p \le ||f - f_n||_p^p$$

Problem 5

Suppose $0 . Then <math>L^p \not\subset L^q$ if and only if Ω contains sets of arbitrarily small positive measure, and $L^q \not\subset L^p$ if and only if Ω contains sets of arbitrarily large finite measure. [Hint: for the "if" implication: in the first case there is a disjoint sequence $\{E_n\}$ with $0 < \mu(E_n) \le 2^{-n}$, and in the second case there is a disjoint sequence $\{E_n\}$ with $1 \le \mu(E_n) < \infty$. Consider $f = \sum a_n \mathcal{X}_{E_n}$ for suitable constants a_n .]

Proof. Suppose 0 .

(a) Let Ω contain sets of arbitrarily small positive measure. That is, \exists disjoint sets E_n and integers k_n with $0 < k_1 < k_2 < \dots$ such that $2^{-k_{n+1}} < \mu(E_n) < 2^{-k_n}$. Note $n \le k_n$ for all integers n. Define f by

$$f = \sum_{n=1}^{\infty} 2^{\frac{2n}{p+q}} \mathscr{X}_{E_n}$$

The following calculations show $||f||_p < \infty$ but $||f||_q = \infty$, and thus $L^p \not\subset L^q$.

$$\|f\|_p^p = \int_{\Omega} |f|^p \mathrm{d}x = \sum_{n=1}^{\infty} \int_{E_n} 2^{\frac{2np}{p+q}} \mathrm{d}x = \sum_{n=1}^{\infty} 2^{\frac{2np}{p+q}} \mu(E_n) \leq \sum_{n=1}^{\infty} 2^{\frac{2np}{p+q}} 2^{-k_n} \leq \sum_{n=1}^{\infty} 2^{\frac{2k_np}{p+q}} 2^{-k_n} = \sum_{n=1}^{\infty} \left(2^{\frac{p-q}{p+q}} \right)^{k_n} < \infty$$

since p - q < 0 and thus $2^{\frac{p-q}{p+q}} < 1$.

$$\left\|f\right\|_q^q = \int_{\Omega} \left|f\right|^q \mathrm{d}x = \sum_{n=1}^{\infty} \int_{E_n} 2^{\frac{2nq}{p+q}} \, \mathrm{d}x = \sum_{n=1}^{\infty} 2^{\frac{2nq}{p+q}} \mu(E_n) \geq \sum_{n=1}^{\infty} 2^{\frac{2nq}{p+q}} 2^{-k_{n+1}} \geq \sum_{n=1}^{\infty} 2^{\frac{2nq}{p+q}} 2^{-(n+1)} = \frac{1}{2} \sum_{n=1}^{\infty} \left(2^{\frac{q-p}{p+q}}\right)^n = \infty$$

since q - p > 0 and thus $2^{\frac{q-p}{p+q}} > 1$.

(b) Let Ω contain sets of arbitrarily large positive measure. That is, \exists disjoint sets E_n and integers k_n with $0 < k_1 < k_2 < \dots$ such that $2^{k_n} \le \mu(E_n) \le 2^{k_{n+1}}$. Note $n \le k_n$ for all integers n. Define f by

$$f = \sum_{n=1}^{\infty} 2^{-\frac{2n}{p+q}} \mathscr{X}_{E_n}$$

The following calculations show $\|f\| = \infty$ but $\|f\|_q < \infty$, and thus $L^q \not\subset L^p$.

$$\|f\|_{p}^{p} = \int_{\Omega} |f|^{p} dx = \sum_{n=1}^{\infty} \int_{E_{n}} 2^{\frac{-2np}{p+q}} dx = \sum_{n=1}^{\infty} 2^{\frac{-2np}{p+q}} \mu(E_{n}) \ge \sum_{n=1}^{\infty} 2^{\frac{-2np}{p+q}} 2^{k_{n}} \ge \sum_{n=1}^{\infty} 2^{\frac{-2np}{p+q}} 2^{n} = \sum_{n=1}^{\infty} \left(2^{\frac{q-p}{p+q}}\right)^{n} = \infty$$

since q > p and thus $2^{\frac{q-p}{p+q}} > 1$.

$$\|f\|_q^q = \int_{\Omega} |f|^q dx = \sum_{n=1}^{\infty} \int_{E_n} 2^{\frac{-2nq}{p+q}} dx = \sum_{n=1}^{\infty} 2^{\frac{-2nq}{p+q}} \mu(E_n) \le \sum_{n=1}^{\infty} 2^{\frac{-2nq}{p+q}} 2^{k_{n+1}} \le \sum_{n=1}^{\infty} 2^{\frac{-2k_{n+1}p}{p+q}} 2^{k_{n+1}} = \sum_{n=1}^{\infty} \left(2^{\frac{p-q}{p+q}} \right)^{k_{n+1}} < \infty$$

since p-q < 0 and thus $2^{\frac{p-q}{p+q}} < 1$.

Problem 6

If $f \in L^{\infty}(\Omega) \cap L^{q}(\Omega)$ for some q then $f \in L^{p}(\Omega)$ for all p > q and

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p$$
.

Proof. Let p > q. Then

$$||f||_p^p = \int_{\Omega} |f|^p d\mu$$

$$= \int_{\Omega} |f|^{p-q} |f|^q d\mu$$

$$\leq \int_{\Omega} ||f||_{\infty}^{p-q} |f|^q d\mu$$

$$= ||f||_{\infty}^{p-q} \int_{\Omega} |f|^q d\mu$$

$$= ||f||_{\infty}^{p-q} ||f||_q^q$$

$$< \infty$$

since p-q>0, $\|f\|_{\infty}<\infty$, and $\|f\|_q<\infty$. Thus $f\in L^p(\Omega)$. Next we show $\|f\|_{\infty}=\lim_{p\to\infty}\|f\|_p$. By the above calculation,

$$\begin{split} \lim_{p \to \infty} & \|f\|_p \leq \lim_{p \to \infty} \left[\|f\|_{\infty}^{\frac{p-q}{p}} \|f\|_q^{\frac{q}{p}} \right] \\ &= \lim_{p \to \infty} \|f\|_{\infty}^{\frac{p-q}{p}} \cdot \lim_{p \to \infty} \|f\|_q^{\frac{q}{p}} \\ &= \|f\|_{\infty} \end{split}$$

since as $p \to \infty$, $\frac{p-q}{p} \to 1$ and $\frac{q}{p} \to 0$. Also, the definition of $\|\cdot\|_{\infty}$ implies that for any ε , $\mu(E_{\varepsilon}) > 0$ where

$$E_\varepsilon = \left\{x \,:\, \left|f(x)\right| \geq \left\|f\right\|_\infty - \varepsilon\right\}.$$

but $\mu(E_{\varepsilon}) \to 0$ and $\varepsilon \to 0$. Thus,

$$\begin{aligned} \|f\|_{p}^{p} &= \int_{\Omega} |f|^{p} d\mu \\ &= \int_{\Omega \setminus E_{\varepsilon}} |f|^{p} d\mu + \int_{E_{\varepsilon}} |f|^{p} d\mu \\ &\geq \int_{E_{\varepsilon}} |f|^{p} d\mu \\ &\geq \int_{E_{\varepsilon}} |\|f\|_{\infty} - \varepsilon|^{p} d\mu \\ &= \mu(E_{\varepsilon}) \|\|f\|_{\infty} - \varepsilon|^{p} \\ \Longrightarrow \lim_{p \to \infty} \|f\|_{p} &= \lim_{p \to \infty} \left[\mu(E_{\varepsilon})^{\frac{1}{p}} \|\|f\|_{\infty} - \varepsilon\| \right] \\ &= \|\|f\|_{\infty} - \varepsilon\| \end{aligned}$$

Since ε is arbitrarily small, we find $||f||_{\infty} \le \lim_{p \to \infty} ||f||_p$. Thus,

$$||f||_{\infty} = \lim_{n \to \infty} ||f||_p$$

Problem 7

Prove that when $\infty \ge r \ge q \ge 1$, $f \in L^r(\Omega) \cap L^q(\Omega) \implies f \in L^p(\Omega)$ for all $r \ge p \ge q$.

Proof. Let $f \in L^q(\Omega) \cap L^r(\Omega)$. For $p \in [q, r]$ where $r < \infty$, by convexity of \mathbb{R} , $\exists a \in [0, 1]$ such that

$$\frac{1}{p} = \frac{a}{r} + \frac{1-a}{q}$$

Then

$$\begin{split} \|f\|_p^p &= \int_\Omega |f|^p \mathrm{d}\mu \\ &= \int_\Omega |f|^{pa} |f|^{p(1-a)} \mathrm{d}\mu \\ &\leq \left(\int_\Omega |f|^{(pa)\left(\frac{r}{pa}\right)} \mathrm{d}\mu\right)^{\frac{pa}{r}} \left(\int_\Omega |f|^{(p(1-a))\left(\frac{q}{p(1-a)}\right)} \mathrm{d}\mu\right)^{\frac{p(1-a)}{q}} \quad \text{by H\"older's Inequality} \\ &= \left(\int_\Omega |f|^r\right)^{\frac{pa}{r}} \left(\int_\Omega |f|^q\right)^{\frac{p(1-a)}{q}} \\ &= \|f\|_r^{pa} \|f\|_q^{p(1-a)} \\ &\Rightarrow \|f\|_p \leq \|f\|_r^a \|f\|_q^{1-a} < \infty \\ &\Rightarrow f \in L^p(\Omega) \end{split}$$

For $r = \infty$, problem 6 implies $f \in L^p(\Omega)$.

Problem 8

Prove that a strongly convergent sequence in $L^p(\mathbb{R}^n)$ is also a Cauchy sequence.

Proof. Let $\{f_n\}_n$ be a strongly convergent sequence in $L^p(\mathbb{R}^n)$ and let $\epsilon > 0$. Then there is some N such that $\|f_N - f\| < \frac{\epsilon}{2}^{\frac{1}{p}}$. Then for all $m, n \ge N$,

$$||f_n - f_m||_p^p \le ||f_n - f||_p^p + ||f_m - f||_p^p$$

since $|a+b|^p \le |a|^p + |b|^p$ for all $a, b \in \mathbb{C}$ and $p \in (0, \infty]$. Then

$$||f_n - f_m||_p^p < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus $\{f_n\}_n$ is Cauchy.

Problem 9

Give three different examples of ways for a sequence $f_k \in L^p(\mathbb{R}^n)$ to converge weakly to zero, but not strongly to anything. Verify your claims for these exmples.

Proof. Three types of examples are given in Lieb and Loss section 2.9:

(a) "Oscillates to Death" Let $x \in \mathbb{R}^n$ be denoted $x = (x_1, x_2, \dots, x_n)$. Define $f_k \in L^p$ as

$$f_k(x) = \left[\sum_{i=1}^n \sin(k\pi x_i)\right] \mathcal{X}_{[0,1]^n}$$

(b) "Goes Up the Spout" Let $p \ge 1$ and define $f(x) = \mathcal{X}_{[-1,1]^n}$ where \mathcal{X} is the characteristic function. Define $f_k \in L^p(\mathbb{R}^n)$ as

$$f_k(x) = k^{\frac{k}{p}} f(kx) = k^{\frac{n}{p}} \mathscr{X}_{\left[-\frac{1}{k}, \frac{1}{k}\right]^n}$$

Then for all k,

$$||f_k||_p^p = \int_{\left[-\frac{1}{k}, \frac{1}{k}\right]^n} \left(k^{\frac{n}{p}}\right)^p dx = k^n \left(\frac{2^n}{k^n}\right) = 2^n$$

So clearly $f_k \not\to 0$ in $\|\cdot\|_p$. However, for a fixed functional $L \in L^p(\mathbb{R}^n)^*$, there is a function $\ell \in L^q(\mathbb{R}^n)$ (where $\frac{1}{p} + \frac{1}{q} = 1$) such that

$$L(f) = \int_{\mathbb{D}^n} \ell(x) f(x) dx$$

for all $f \in L^p(\mathbb{R}^n)$. Note

$$L(f_k) = \int_{\mathbb{R}^n} \ell(x) f_k(x) dx$$

$$= \int_{\left[-\frac{1}{k}, \frac{1}{k}\right]^n} \ell(x) k^{\frac{n}{p}} dx$$

$$= k^{\frac{n}{p}} \int_{\left[-\frac{1}{k}, \frac{1}{k}\right]^n} \ell(x) dx$$

$$\leq k^{\frac{n}{p}} \left(\int_{\left[-\frac{1}{k}, \frac{1}{k}\right]^n} 1 dx \right)^{\frac{1}{p}} \left(\int_{\left[-\frac{1}{k}, \frac{1}{k}\right]^n} |\ell(x)|^q dx \right)^{\frac{1}{q}} \text{ by H\"older's Inequality}$$

$$= 2^{\frac{n}{p}} \left(\int_{\left[-\frac{1}{k}, \frac{1}{k}\right]^n} |\ell(x)|^q dx \right)^{\frac{1}{q}} \xrightarrow[k \to \infty]{} 0$$

since $\left[-\frac{1}{k},\frac{1}{k}\right]^n \to \{0\}$. Thus $f_k \to 0$ but $f_k \neq 0$. Since f_k does not converge strongly to 0, it does not strongly to anything, since if it did, it would also weakly converge there (a contradiction). The only candidate function for f_k to converge strongly to is a delta function, but $\delta(x) \notin L^p(\mathbb{R}^n)$.

(c) "Wanders Off to Infinity" Let $f(x) = \mathcal{X}_{[0,1]^n}$. Define $f_k \in L^p(\mathbb{R}^n)$ as

$$f_k(x) = f(x - (k, 0, ..., 0))$$

Then $||f_k||_p = 1$ for all k, and thus $f_k \not\to 0$. However, for any $\ell \in L^q(\mathbb{R}^n)$ where $\frac{1}{p} + \frac{1}{q} = 1$,

$$\int_{[k,k+1]\times[0,1]^{n-1}} |\ell(x)|^q \mathrm{d}x \to 0$$

since

$$\int_{\mathbb{R}^n} |\ell(x)|^q < \infty$$

Thus, for any $L \in L^p(\mathbb{R}^n)^*$, $\exists \ell \in L^q(\mathbb{R}^n)$ such that

$$L(f) = \int_{\mathbb{R}^n} \ell(x) f(x) dx$$

for all $f \in L^p(\mathbb{R}^n)$, and thus

$$L(f_k) = \int_{\mathbb{R}^n} \ell(x) \mathcal{X}_{[k,k+1] \times [0,1]^{n-1}} dx = \int_{[k,k+1] \times [0,1]^{n-1}} \ell(x) dx \to 0$$

which shows $f_k \to 0$. Since $f_k \neq 0$, then f_k does not strongly converge at all.