Gráficos

Informática aplicada al medio ambiente curso 2010/2011

Gráficos en Matlab

- Comando básico: plot(x1, y1, x2, y2, x3, y3,..., 'opciones')
- X e Y: Vectores de la misma longitud
- Opciones: Color, estilo, etc. del gráfico
- Ej.: x= -2.9:0.2: 2.9; y=exp(-x.*x); plot(x,y)

Opciones

```
Cadena que especifica el estilo de linea, del
     marcador, color, grosor, etc.
0.9
0.8
    Color: r (Red), g(Green), b(Blue), c(Cyan), m
     (Magenta), y (Yellow), k (black), w (White)
0.6
    Estilo: - (solida), -- (trazas), : puntos), -. (lineas
    y puntos)
0.5
0.4
    Marcadores: +, o, *, ., x, s (square), d
     (diamante), ^ v > o < (triángulos en distinto
     sentido), p (estrella 5 puntas, pentagram), h
     (estrella 6 puntas, hexagram)
```

Objetos gráficos

- Podemos añadir objetos al gráfico actual:
 - xlabel('etiqueta del eje x')
 - ylabel('etiqueta eje y')
 - title('título del gráfico')
 - text (x, y, 'texto')
 - Si x e y son vectores, el texto se repite
 - Si texto es una matrix de cadenas, de la misma dimensión que x e y, se situa cada texto en una posición
 - gtext('texto'): la posición se indica con el ratón. (solo en Matlab)

Objetos gráficos

- Leyenda:
 - legend('leyenda 1',
 'leyenda 2', ...) →
 añade la leyenda del
 eje, por cada serie de
 datos mostrada
 - legend(..., 'location', posicion)
 - legend off | toggle
 - grid on | off | minor
 - Rejilla del gráfico

- Posición
 - North = center top
 - South = center bottom
 - east = right center
 - west = left center
 - northeast = right top (por omisión)
 - Northwest = left top
 - Southeast = right bottom
 - southwest = left bottom
 - Best = Menor conflicto
 - +Outside: Margen
 - Ej: BestOutside

Ejemplo

- x = 0:.2:12; plot (x, bessel(1, x), x, bessel(2, x), x, bessel(3,x)); legen('Primero', 'Segundo', 'Tercero', 'Location', 'NortEastOutside'); grid on
- Soluciones diferencial de Bessel, variando el

grado

Control de ejes

- axis: controla el escalado y apariencia de los ejes
- axis ([xmin xmax ymin ymax])
 - Fija los límites de los ejes x e y
- axis equal → mismo ratio de aspecto x e y
- axis normal ó auto→ valor por omisión
- axis square → Ajusta los ejes para que el gráfico sea cuadrado (o cúbico en 3D)
- axis off | on → Oculta o muestra los ejes (lineas, marcas y etiquetas asociadas)

Creación de gráficos

Pasos

- Cargar los datos
- Procesar datos
- Usar función de creación del gráfico (ej.: plot)
- Situar límites de los ejes, marcas, mallas, textos, etc.

Superposición de gráficos

- Pares de vectores en el mismo comando de creación del gráfico
- Usando hold on / hold off
 - El gráfico se crea por etapas
 - Es útil cuando los datos a dibujar no están disponibles al mismo tiempo

Ejemplo

- Aproximación de Taylor para la función seno.
- x=linspace(0, 2*pi, 100)
- y1=sin(x)
- plot(x, y1)
- hold on
- $y2=x-(x.^3)/6+(x.^5)/120$
- plot(x, y2, 'o')
- axis ([0 5 -1 5])
- hold off

Superposción de gráficos

- Usando line (x, y, 'parámetros', 'valor')
- Parámetros
 - color
 - linestyle
 - Marker

```
%Ejemplo de hold
x=linspace(0, 2*pi, 100)
y1=\sin(x)
plot(x, y1)
y2 = x - (x.^3)/6 + (x.^5)/120
line(x, y2, 'marker', 'o')
line(x, x, 'linestyle', '--')
axis ([ 0 5 -1 5])
legend('sin(t)', 'Aproximación 3er
   orden', 'lineal')
```

Ejemplo

Ejes logarítmicos

- loglog (x, y): ambos ejes en escala logarítmica
- semilogx(x, y): eje X logarítmico
- semilogy(x, y): eje y logarítmico

Gráficos múltiples

- subplot (m, n, p)
 - Divide la venta gráfica en MxN subventanas
 - Asigna la ventana p-ésima como la actual, donde se dibujará el gráfico

Ejemplo

```
X=[0:0.01:3];
y=abs(exp(-0.5*x).*sin(5*x));
subplot(2, 2, 1); plot (x, y)
title('normal'); hold on
subplot (2, 2, 2); loglog (x, y)
title ('escala logarítmico en ambos
   ejes')
subplot(2, 2, 3); semilogx(x, y)
title ('escala logarítmica eje x')
subplot (2, 2, 4); semilogy(x, y)
title('escala logarítmica eje y')
hold off
```


- Gráfico de barras
 - bar(x, y, 'opciones plot', 'tipo')
 - Tipos:
 - Apilado: 'stacked'
 - Agrupado: 'grouped', valor por omisión
 - barh: En horizontal
- Ejemplo
 - x = -2.9:0.2:2.9;
 - barh(x,exp(-x.*x),'r')

- Gráfico de escaleras: stairs(x, y)
 - Útil para series temporales o datos digitales
- Ejemplo:
 - x= linspace(-2*pi,2*pi,40)
 - stairs(x,sin(x))

- Gráfico de tallo o líneas verticales:
 - stem(x, y, opciones)
- Ejemplo
 - t = linspace(-2*pi,2*pi,10)
 - h =
 stem(t,cos(t),'fill','--');

- Gráfico de tarta
 - pie(X, opciones...)
 - Representa los valores de una serie de datos, normalizados a X/sum(X) → porcentaje del total
- Ejemplo
 - $\mathbf{x} = [1 \ 3 \ 0.5 \ 2.5 \ 2];$
 - pie(x)

Histogramas (1/2)

- Muestran la distribución de una serie de datos, representando cuantos puntos hay en cada intervalo
- hist(y)
 - Representa el histograma mediante barras verticales
 - Ancho = rango
 - Altura = Puntos en el intervalo.
 - Por omisión 10 intervalos equidistantes

Histogramas (2/2)

- hist(y, n_intervalos):
 fijamos el número de intervalos
- hist(y, x) : x = vector con ancho de cada intervalo
- Ejemplo:
 - yn = randn(10000,1);
 - hist(yn)

Gráficos en coordenadas polares

- polar(angulos, radios)
- Dibuja las coordenadas polares en un plano, indicando los angulos y el radio de cada punto
- Ejemplo:
 - t = 0:.01:2*pi;
 - polar(t,sin(2*t).*cos(2*
 t),'--r')

 Informática aplicada al Medio Ambiente

Gráficos 3D

- Representación en 3D, datos 1D o 2D
 - Barras 3D
 - $x = [1 \ 3 \ 0.5 \ 2.5 \ 2]$
 - bar3(x)
 - Tarta 3D
 - $x = [1 \ 3 \ 0.5 \ 2.5 \ 2]$
 - pie3(x)

Gráficos 3D

Gráficos de lineas:

- plot3(x, y, z):
 Equivalente a plot,
 para dibujar lineas en
 3D
- Ejemplo
 - t = 0:pi/50:10*pi;
 - plot3(sin(t),cos(t),t)
 - axis square; grid on

Gráficos 3D

- Gráfico de tallos 3D
- Ejemplo: transformada rápida de fourier (fft)
 - th = (0:127)/128*2*pi;
 - x = cos(th);
 - $y = \sin(th)$;
 - f =
 abs(fft(ones(10,1),128
));
 - stem3(x,y,f')

Contornos

- contour(x, y, z)
 - Permiten dibujar isolineas en 2D
 - Z= matriz NxM, representa la altura
- Ejemplo
 - [X,Y] = meshgrid(-2:.2:2,-2:.2:3);
 - Z = X.*exp(-X.^2-Y.^2);
 - contour(X,Y,Z);

Superficies

- mesh(x, y, z)
 - Representan la altura de una seríe de puntos en una rejilla
- meshc → muestra contorno debajo
- Ejemplo
 - [X,Y] = meshgrid(-3:.125:3);
 - Z = peaks(X,Y);
 - meshc(X,Y,Z)

