CHAP.4 – LA SENESCENCE VEGETALE : LE CAS DE LA MATURATION DES FRUITS

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

CHAP. 4 – LA MATURATION DES FRUITS

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

LES DIFFERENTES ETAPES DE LA VIE D'UN FRUIT

La naissance du fruit

La nouaison

La croissance

La maturation

La sénescence

LA SENESCENCE

- Terme utilisé lorsque la mort est le résultat de transformations programmées, qui ont leur origine dans le patrimoine génétique de la cellule
- Sénescence gouvernée par le génome = gouvernée « de l'intérieur »,
 - => dernière phase du développement cellulaire
 - => évolution naturelle

LE VIEILLISSEMENT

- Terme utilisé lorsque la mort est la conséquence de l'usure des cellules, consécutive au stress provoqué par le milieu extérieur
- Usure subie par la cellule et non gouvernée par le génome cellulaire

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

La maturation d'un fruit

acquisition d'un ensemble de qualités qualifiées d'organoleptiques,

qui se manifeste par un ensemble de changements définis par des modifications métaboliques particulières

La qualité organoleptique d'un fruit

Ensemble des propriétés d'un fruit en tant que stimulus des divers récepteurs sensoriels du consommateur, sollicités avant, pendant et après la consommation du fruit.

La qualité organoleptique d'un fruit

- Sensations visuelles
- Sensations olfactives
- Sensations tactiles
- Sensations gustatives

Maturation et modifications métaboliques

- Changement de coloration
- Perte de la fermeté
- Augmentation de la teneur en sucres
- Diminution de l'acidité
- Expression des arômes

Maturation, maturité et date de récolte

- fruit de bonne qualité organoleptique et gustative
 - = fruit récolté à maturité

la maturation doit précéder la récolte

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

Les fruits climactériques

- Intensification des échanges gazeux respiratoires
- Rejet de CO₂ et consommation d'O₂ en augmentation jusqu'à un maximum = le maximum climactérique
- Crise respiratoire : pomme, poire, avocat, banane
 ...
- Transformation des glucides, des acides organiques
- Risque de fermentation en conservation
- Production et émission de grandes quantités d'éthylène
- Fruit très sensible à un apport exogène d'éthylène

Variation de l'intensité respiratoire et de l'émission d'éthylène au cours de la maturation des fruits

in Hartmann, Joseph et Millet 1998

Fruit climactérique : pomme Golden delicious

Intensité $\oint \mu I \cdot CO_2 \cdot g^{-1} MF \cdot h^{-1}$ respiratoire Jours à + 15 °C

Fruit non climactérique : cerise bigarreau Napoléon

Les fruits non climactériques

- Absence de crise respiratoire : cerise, orange, citron ...
- Synthèse d'éthylène moins importante
- Peu de réaction à un apport exogène d'éthylène
- Hormone peu déterminante dans la maturation

Variation de l'intensité respiratoire et de l'émission d'éthylène au cours de la maturation des fruits

in Hartmann, Joseph et Millet 1998

Fruit climactérique : pomme Golden delicious

Intensité $\oint \mu I \cdot CO_2 \cdot g^{-1} MF \cdot h^{-1}$ respiratoire Jours à + 15 °C

Fruit non climactérique : cerise bigarreau Napoléon

Classification de quelques fruits selon leur comportement respiratoire

Fruits climactériques

Fruits non climactériques

- Abricot
- Avocat
- Banane
- Figue
- Fruit de la passion
- Goyave
- Kaki
- Kiwi
- Mangue
- Melon
- Nectarine
- Papaye
- Pêche
- Poire
- Pomme
- Prune
- Tomate
- Pastèque ...

- Ananas
- Agrumes
- Cerise
- Datte
- Fraise
- Litchi
- Myrtille
- Raisin
- Olive
- Concombre ...

Schéma de régulation de la maturation des fruits climactériques par l'éthylène

in Hartmann, Joseph et Millet 1998

Effets de l'éthylène sur les processus de sénescence

Accélération des processus de sénescence

Troubles physiologiques

- Maturation des fruits
- Dégradation des chlorophylles
- Ramollissement de la pulpe
- Abscission des fruits
- Sénescence des végétaux
- Jaunissement des feuilles
- Fanaison des fleurs
- Abscission des feuilles et des pétales

- Echaudure
- Troubles de sénescence
- Pulpe farineuse

Exemples d'échaudure

Evolution de l'équilibre hormonal

Synthèse d'éthylène et d'acide abscissique

Diminution des auxines et des cytokinines

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

Evolution des différents composants au cours de la maturation de la pomme

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 2.1. L'évolution des pigments
- 2.2. La respiration et la production d'éthylène
- 2.3. L'évolution des constituants organiques
- 2.4. L'émission de substances aromatiques volatiles
- 2.5. La synthèse des protéines enzymatiques
- 2.6. La perte de fermeté
- 2.7. La diminution des composés phénoliques
- 2.8. La transpiration
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 3. Le contrôle génétique de la maturation
- 3.1. Les gènes de maturation
- 3.2. La transformation du génome
- 4. La conservation après récolte

Les gènes de la maturation chez la tomate étude des mutants monogéniques

in Hartmann, Joseph et Millet 1998

Gènes mutants Effet	Nr	rin	nor	alc	gf	yf
Crise respiratoire	- 50 %	0	0	0	normale	normale
Crise éthylénique	- 50 %	0	0	0	normale	normale
Fermeté de la chair	+	++	++	+++	normale	normale
Durée de vie après la cueillette	× 1,5	×3à5	×3 à 5	× 4	normale	normale
Destruction de la chlorophylle	oui	oui	oui	oui	non	oui
Couleur finale du fruit	orangé rouge	jaune	orangé pâle	orangé moyen	rouille	jaune
Activité de la polygalacturonase	très faible	0	traces	très faible	normale	normale

Les gènes de maturation identifiés

Tomate	Avocat
4 gènes de polygalacturonases	6 gènes de cellulases

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 3. Le contrôle génétique de la maturation
- 3.1. Les gènes de maturation
- 3.2. La transformation du génome
- 4. La conservation après récolte

La transformation du génome : déclencher la maturation des fruits à volonté

 Contrôler l'amollissement de la chair Hydrolyse des pectines liée à l'expression des polygalacturonases et des cellulases

 Contrôler la synthèse d'éthylène
 Bloquer la synthèse d'éthylène puis déclencher la maturation au moment opportun par apport d'éthylène exogène

La transformation du génome : bloquer la synthèse de l'éthylène

```
méthionine
SAM = S-adénosyl-méthionine
         introduction gène antisens d'ACC synthétase
ACC = acide 1-aminocyclopropane-1-carboxylique
         introduction gène bactérien d'ACC désaminase
éthylène
                    α-cétobutyrate
```

La transformation du génome : bloquer la synthèse de l'éthylène

 par la construction d'un ARN antisens de l'ACC synthétase

production d'éthylène nulle fruit vert : synthèse lycopène non initiée OGM sensible à un apport exogène de C₂H₄

La transformation du génome : bloquer la synthèse de l'éthylène

```
méthionine
SAM = S-adénosyl-méthionine
         introduction gène antisens d'ACC synthétase
ACC = acide 1-aminocyclopropane-1-carboxylique
         introduction gène bactérien d'ACC désaminase
éthylène
                    α-cétobutyrate
```

La transformation du génome : bloquer la synthèse de l'éthylène

 par l'introduction d'un gène bactérien d'ACC désaminase

pas de modification phénotypique réduction de la production d'éthylène >90% OGM sensible à un apport exogène de C₂H₄ OGM mûr fermeté prolongée de 6 semaines

- 1. Les différentes étapes de la vie d'un fruit
- 2. Evolution du fruit au cours de la maturation
- 3. Le contrôle génétique de la maturation
- 4. La conservation après récolte

La physiologie du fruit après récolte

Tissus vivants

- Cueillette => fruit privé des apports de la plante mère : eau , glucides, sels minéraux, autres métabolites et hormones.
 - => perte de poids

Les enjeux de la conservation après récolte

- Acquérir ou conserver une qualité compatible avec la commercialisation dans des conditions économiques acceptables
- Circuits de commercialisation complexes :
- Développement des transports à l'échelle mondiale
- Concurrence entre pays producteurs
- Contraintes imposées par la grande distribution
- => Acquérir et conserver la meilleure qualité possible, à l'issue des transports et des traitements nécessaires à la commercialisation.

Maturité commerciale et durée de survie après récolte

Maturité commerciale

Le fruit a atteint les qualités nécessaires à sa commercialisation

• Durée de (sur)vie commerciale

débute à la récolte et se termine lorsque les altérations dépassent un niveau critique supportable qui fait que le fruit n'est plus commercialisable ou consommable

La durée de vie verte DVV

- Récolte des bananes au stade vert puis Stockage
- Pendant le stockage :
 bananes vertes, fermes
 aucun changement significatif de la couleur
 de la peau, de la texture, de la composition
 du fruit
 - ... jusqu'à ce que le fruit commence à mûrir
- Vie Verte = stade préclimactérique

Les critères de qualité commerciale

Qualité organoleptique

 Qualité nutritionnelle ou diététique : teneur en eau, vitamines, fibres ...

 Qualité sanitaire : absence de résidus de pesticides, anti-oxydants ...

Appréciation objective de la qualité

- Enquêtes consommateurs
- Analyses physico-chimiques: teneur en sucres, acidité, résidus de pesticides, couleur, calibre, texture de la chair ...
- Tests à la cueillette : définir si les probabilités d'une bonne qualité sont assez élevées pour justifier la conservation

Appréciation objective de la qualité

Critères visuels

- Calibre
- Forme
- Couleur

Critères physico-chimiques

- Fermeté
- Taux de sucres
- Acidité
- Test amidon
- Dosage composés aromatiques

Le test amidon

http://pedagogie.ac-toulouse.fr/svt/serveur/lycee/segui/pomme/pomme%20eau%20iodee.jpg

Robot Pimprenelle – Société SETOP GIRAUD Technologie

www.setop.fr

Les procédés de conservation

- Conservation en fruitier ventilé : procédé « artisanal »
- Conservation en chambre froide : procédé le plus employé
- Conservation en atmosphère contrôlée : procédé qui garantit la plus longue durée de conservation

Les conditions de conservation

- Diminution de la température : utilisation du froid « industriel »
- Atmosphère contrôlée : basse ou très basse teneur en O₂, enrichissement en CO₂, élimination de l'éthylène
- Composés chimiques susceptibles d'orienter le métabolisme : hormones, antioxydants, fongicides ...

La conservation après récolte

in Hartmann, Joseph et Millet 1998

