17. Nemlineáris egyenletek megoldása 1.

A) Ismertesse a nemlineáris egyenletek megoldásának feladatát. Mutassa be a megoldás létezését biztosító állításokat. Írja fe la Bolzano-tételt (bizonyítás nélkül), és segítségével igazolja a Brouwer-féle fixpont-tételt.

Feladat

Keressük meg egy $f \in \mathbb{R} \to \mathbb{R}$ nemlineáris függvény gyökét, avagy zérushelyét. (\exists ?, 1, több?)

$$f(x^*) = 0, \qquad x^* = ?$$

Ekvivalens módon átfogalmazható (általában): keressük meg egy $\varphi\in\mathbb{R}\to\mathbb{R}$ nemlineáris függvény fixpontját.

$$x^* = \varphi(x^*), \qquad x^* = ?$$

Fixpont:

Az $x^* \in \mathbb{R}^n$ pontot a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *fixpontjának* nevezzük, ha $x^* = \varphi(x^*)$.

Bolzano tétel:

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

Megjegyzés:

- $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,
- C[a; b]: az [a; b] (zárt) intervallumon folytonos függvények halmaza.
- $f(a) \cdot f(b) < 0$: f(a) és f(b) különböző előjelűek
- van gyök az (a; b) (nyílt) intervallumban

Megoldás létezését biztosító állítások:

- **1** Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$
- 2 valamint $f \in D(a; b)$ és f' > 0 (vagy < 0),

akkor $\exists ! \ x^* \in (a; b) : f(x^*) = 0.$

Biz.: A Bolzano-tételből következik, hogy van gyök. f szigorúan monoton, ezért egyértelmű is.

Brouwer-féle fixpont-tétel:

- $oldsymbol{0}$ és $\varphi \in C[a;b]$,

akkor $\exists x^* \in [a; b] : \varphi(x^*) = x^*$.

Biz.: Definiáljuk a $g(x) = x - \varphi(x)$ függvényt, majd alkalmazzuk a Bolzano-tételt.

1 Mivel $\varphi(a), \varphi(b) \in [a; b] \Rightarrow$

$$g(a) = a - \varphi(a) \le 0, \quad g(b) = b - \varphi(b) \ge 0$$

 $\Rightarrow \quad g(a) \cdot g(b) \le 0.$

- **9** Ha $g(a) \cdot g(b) = 0$, akkor g(a) = 0 vagy g(b) = 0. Ez azt jelenti, hogy első esetben a, második esetben b fixpont.
- **6** Ha $g(a) \cdot g(b) < 0$, akkor a Bolzano-tétel miatt van g-nek gyöke (a;b)-ben, azaz

$$\exists x^* \in (a; b) : g(x^*) = x^* - \varphi(x^*) = 0 \quad \Leftrightarrow \quad \varphi(x^*) = x^*$$

П

B) Kontrakció fogalma [a, b] intervallumon és a Banach-féle fixpont-tétel (bizonyítás nélkül). Igazolja az elégséges feltételt kontrakcióra.

Kontrakció:

A
$$\varphi: \mathbb{R}^n \to \mathbb{R}^n$$
 leképezés *kontrakció*, ha $\exists \ q \in [0,1)$, hogy
$$\|\varphi(x) - \varphi(y)\| \leq q \cdot \|x - y\| \,, \qquad \forall x,y \in \mathbb{R}^n.$$

Megj.:

- ullet kontrakció pprox összehúzás, q: kontrakciós együttható
- most n=1, $\|.\|=|.|$; $\mathbb R$ helyett $[a;b]\subset \mathbb R$, így jobban használható

A $\varphi: [a; b] \to \mathbb{R}$ leképezés kontrakció [a; b]-n, ha $\exists q \in [0, 1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Banach-féle fixpont-tétel:

Ha a φ : [a; b] \rightarrow [a; b] függvény kontrakció [a; b]-n q kontrakciós együtthatóval, akkor

- $oldsymbol{0}$ $\exists ! \, x^* \in [a;b] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), \ k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k\to\infty} x_k = x^*$,
- 3 továbbá a következő hibabecslések teljesülnek:
 - $\begin{aligned} & \bullet \ |x_k x^*| \leq q^k \cdot |x_0 x^*| \leq q^k (b a), \\ & \bullet \ |x_k x^*| \leq \frac{q^k}{1 q} \cdot |x_1 x_0|. \end{aligned}$

Kontrakció elégséges feltétele:

- $oldsymbol{0} \varphi \colon [a;b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a;b]$ és
- ② $|\varphi'(x)| < 1 \ (\forall x \in [a; b]),$

 $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b])$, akkor φ kontrakció [a; b]-n.

- C^1 : egyszer folyonosan differenciálható, vagyis a deriváltja folytonos.
- A kontrakciós tulajdonság függ az intervallumtól.

Biz.: A Lagrange-féle középértéktétel segítségével.

$$q:=\max_{x\in[a;b]}\left|\varphi'(x)\right|<1$$

 $\forall x, y \in [a; b] (x < y) : \exists \xi \in (x; y) :$

$$|\varphi(x) - \varphi(y)| = |\varphi'(\xi)| \cdot |x - y| \le q \cdot |x - y|.$$