LECTURE 1

Author

Tom Jeong

August 19, 2024

Contents

1	Relations	3
2	equivalence and partial order relations	3
3	Partial orders	5

1 Relations

Let S be a set (e.g. $\mathbb{N} = \{1, 2, 3, \dots\}$), integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ rational numbers \mathbb{Q} i should know these .. RECALL: cartesian product: $A \times B = \{(a, b) | a \in A, b \in B\}$

Definition 1.1. A <u>relation</u> R on a set S is a subset $R \subseteq S \times S$. we write xRy (read "x is related to y") to denote an element $(x,y) \in R$

some examples of relations: "is orthogonal to" is a relation o the set of vectors in \mathbb{R}^3 another example "is congruent to" is a relation on the set of polygons "divides" is a relation on the set of integers

WE say the relation R is

- 1. reflexive if xRx for all $x \in S$
- 2. symmetric if xRy implies yRx for all $x, y \in S$
- 3. antisymmetric if xRy and yRx implies x = y for all $x, y \in S$
- 4. <u>transitive</u> if xRy and yRz implies xRz for all $x, y, z \in S$

(sometimes we note \sim for the relation R) going back to examples: "is congruent to" is reflexive, symmetric, and transitive

2 equivalence and partial order relations

Definition 2.1. two very important types of relations are:

- 1. equivalence relations
 - (a) reflextive
 - (b) symmetric
 - (c) transitive
- 2. partial order relations
 - (a) reflexive
 - (b) antisymmetric
 - (c) transitive

e.g.
$$R = \{(a,b)|b-a \in \mathbb{N}\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

is R an equivalence relation? a partial ordering?

- 1. reflexive: aRa? yes since $a a = 0 \in \mathbb{N}$
- 2. antisymmetric: aRb and bRa implies a = b? if aRb then $b a \in \mathbb{N}$ and if bRa then $a b \in \mathbb{N}$ so a and b are the same

3. transitive: aRb and bRc implies aRc? if aRb then $b-a \in \mathbb{N}$ and if bRc then $c-b \in \mathbb{N}$ so $c-a=(c-b)+(b-a)\in \mathbb{N}$

Exercise: check that aRb iff $a \leq b$

e.g. fix
$$n \in \mathbb{Z}^+$$
 $R = \{(a, b) | a - b \in n\mathbb{Z}\} \subseteq \mathbb{Z} \times \mathbb{Z}$

Exercise this is an equivalece relation

aRb if a - b = nk for some $k \in \mathbb{Z}$

we call this relation congruence module n

<u>notation:</u>if R is an equivalence relation, we often denote it by \sim

Definition 2.2 (equivalence class). If \sim is an equivalene relation on S we can fix and element $x \in S$ and consider all elements of S that is equivalent to x:

$$[x] = \{s \in S | s \sim x\} \subseteq S$$

and x is a representative of this equivalence class

e.g.
$$S = \{a, b, c, d, e\}$$
 and $\sim = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, a), (c, d), (d, c), (d, e), (e, d), (c, e), (e, c)\}$
 $[a] = \{a, b\} = [b]$ and $[c] = \{c, d, e\} = [d] = [e]$

Q: are equivalence classes always disjoint?

A: yes, if $[x] \cap [y] \neq \emptyset$ then [x] = [y]

Lemma 2.1. Let \sim be an equivalene relation on S and $x,y\in S$. Then [x]=[y] iff $x\sim y$

proof of lemma 2.1. iff

 \rightarrow : supose [x] = [y] then $x \in [x]$, since \sim is reflexive and so $x \in [y]$ Thus, $x \sim y$

 \leftarrow : Let $s \in [x]$ since $x \sim x$ and $x \sim y$ (by assumption) then $s \sim y$ since it is transitive.

hence $s \in [y]$ and so $[x] \subseteq [y]$

similarly, if $s \in [y]$, then $s \sim y$ and $x \sim y$ so since \sim is symmetric and transitive $s \sim x$ and so xin[x] hence $[y] \subseteq [x]$

Corollary:

$$[x] \cap [y] = \emptyset$$
 if $[x] \neq [y]$

Proof. suppose $[x] \cap [y] \neq \emptyset$ then there exists $s \in [x] \cap [y]$ then $s \sim x$ and $s \sim y$ by lemma $2.1 \ x \sim y$ and so [x] = [y]

Definition 2.3. a <u>partition</u> on a set S is a collection $(S_i)_{i \in I}$ of nonempty subsets of S such that

1.
$$S = \bigcup_{i \in I} S_i$$

2. $S_i \cap S_j = \emptyset$ for all $i, j \in I$ with $i \neq j$

e.g. $S = \{a, b, c, d, e\}$ and $S_1 = \{a, b\}, S_2 = \{c, d, e\}$ is a partition of S

Theorem 2.2. Let S be a set with an equivalence relation \sim : Then the set of equivalence classes $S/\sim=\{[x]|x\in S\}$ is a partition of S conversely, if $(S_i)_{i\in I}$ is a partition of S then there exists an equivalence relation \sim on S such that $S/\sim=(S_i)_{i\in I}$

Proof. \to we will first show that the set of equivalence classes is a partition, we already showed $[x] \cap [y] = \emptyset$ if $[x] \neq [y]$ so we need to show that $S = \bigcup_{x \in S} [x]$ let $s \in S$ then $s \in [s]$ so $s \in \bigcup_{x \in S} [x]$ and so $S \subseteq \bigcup_{x \in S} [x]$ For each $x \in S$, $[x] \subseteq S$ so $\bigcup_{x \in S} [x] \subseteq S$ and so $S = \bigcup_{x \in S} [x]$

 \leftarrow now suppose $(S_i)_{i\in I}$ is a partition of S. Define $x \sim y$ iff $x,y \in S_i$ for some i. We have \sim is reflexive since each $x \in S_i$ for some $i \in I$. As $\bigcup_{i \in I} S_i = S$.

 \sim is symmetric since containm ent in a set have an order

$$\sim$$
 is transitive since if $x, y \in S_i$ and $y, z \in S_j$ then $x, y, z \in S_i \cap S_j = \emptyset$ so $x \sim z$

e.g. $S = \mathbb{Z}, \sim$ is $\equiv \mod n$ $S/\sim = \{[0], [1], \dots, [n-1]\}$ is a partition of \mathbb{Z}

$$[0] = \{\dots, -2n, -n, 0, n, 2n, \dots\}$$
(1)

$$[1] = \{\dots, -2n+1, -n+1, 1, n+1, 2n+1, \dots\}$$
 (2)

$$\vdots (3)$$

$$[n-1] = \{\dots, -2n+n-1, -n+n-1, n-1, 2n+n-1, \dots\}$$
(4)

3 Partial orders

<u>notation:</u> when a relation R is a partial order, we often denote it by \leq e.g. \leq is a partial order on $mathbb{R}$

Let S be a set and $\mathbb{P}(s)$ its power set. \leq is a partial order on $\mathbb{P}(S)$

ex: "Divides" is a partial order on \mathbb{N} (but not on \mathbb{Z})

Definition 3.1 (minimal and first element). let \leq be ap artial order on a set S. An element $s \in S$ is minimal if $x \leq s \to x = s \forall x \in S$.

An element $t \in S$ is called a <u>first</u> element if $t \le x \forall x \in S$.. (Warning: not every minimal element is a first element)

e.g. $S = \{2, 3, 4, 5, 6...\}$ divides is a partial order on S

2 is a minimal element. 3 is a minimal element . 5 is a minimal element. every prime number is a minimal element But they are not first elements

Proposition 3.1. 1. A first element is unique

- 2. a first element is a minimal element
- 3. a minimal element needs not to be a first element ***