Eigen-Structure of Sample Covariance

김성민

서울대학교 통계학과, 베이즈통계 연구실

2022. 10. 05

- Material
- 2 Motivation
- From vectors to measures
- 4 Stieltjes transform
- 5 Estimation
- 6 Simulation

- Material
- 2 Motivation
- From vectors to measures
- 4 Stieltjes transform
- Estimation
- Simulation

Material

- EL KAROUI, N. Spectrum estimation for large dimensional covariance matrices using random matrix theory.
 The Annals of Statistics 36, 6 (2008), 2757–2790 [1]
- PAUL, D. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model.
 Statistica Sinica (2007), 1617–1642 [3]
- LEDOIT, O., AND WOLF, M. A well-conditioned estimator for large-dimensional covariance matrices.
 Journal of multivariate analysis 88, 2 (2004), 365–411 [2]

- Material
- 2 Motivation
- From vectors to measures
- 4 Stieltjes transform
- Estimation
- Simulation

Eigenvalue of Covariance

- Principal component analysis (PCA)
- Low-dimensional approximation to the data by projecting the data on the "best" possible k-dimensional subspace.

Setting

- We observed iid random vectors X_1, \ldots, X_n in \mathbb{R}^p .
- Assume that covariance of X_i is Σ_p
- Sample covariance : $S_p = \frac{1}{n-1}(X-\bar{X})^T(X-\bar{X})$

Fixed p, large n

- It is well known that eigenvalues of S_p are good estimators of that of Σ_p .
- Let l_i be the ordered eigenvalues of S_p $(l_1 > l_2 > \cdots)$ and λ_i be the ordered that of Σ_p $(\lambda_1 > \lambda_2 > \cdots)$.

$$\sqrt{n}(I_i - \lambda_i) \stackrel{d}{\rightarrow} N(0, \lambda_i^2)$$

where X_i are normally distributed.

4□ > 4□ > 4 = > 4 = > = 99

Large n, large p

- Let us consider the simplest case where $\Sigma_p = I_p$.
- If X_i are iid and have a fourth moment, and if $\frac{p}{n} \to \gamma$, then

$$\mathit{I}_1
ightarrow (1+\sqrt{\gamma})^2$$
 a.s.

• Note that if n = p, then l_1 goes to 4.

Large n, large p

- [3] focuses on Eigenvector of Sample Covariance.
- $\Sigma_p = diag(I_1, I_2, \dots, I_M, 1, \dots, 1)$
- If $p/n \to \gamma \in (0,1)$, then the sample eigenvectors can be inconsistency according to true eigenvalues.
 - If $I_{\rm v}>1+\sqrt{\gamma}$,

$$|<
ho_{
m v},e_{
m v}>|
ightarrow\sqrt{\left(1-rac{\gamma}{(\it l_{
m v}-1)^2}
ight)\Big/\left(1+rac{\gamma}{\it l_{
m v}-1}
ight)}.$$

• If
$$I_{
u} \leq 1 + \sqrt{\gamma}$$
,

$$|< p_v, e_v >| \rightarrow 0.$$

Recent work on covariance estimation

- There is some work on shrinkage of eigenvalues to improve covariance estimation.
- [2] proposed to estimate Σ_p by $(1-\rho)S_p + \rho I_p$.
- The estimator can be viewed as maintaining eigenvector and linearly shrinkaging the eigenvalues.

◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕久で

- Materia
- 2 Motivation
- From vectors to measures
- 4 Stieltjes transform
- Estimation
- Simulation

김성민 (서울대학교) Eigen-Structure 2022. 10. 05 12 / 28

From vectors to measures

- There are some issues that arise when estimating vectors (set of eigenvalues) of high dimension.
- Propose to associate high-dimensional vectors probability measures.
 - Allow us to look into the structure of the population eigenvectors.
 - Practical benefits of the measure estimation approach.

From vectors to measures

- Suppose we have a eigenvalue $(\lambda_1, \ldots, \lambda_p)$ of Σ_p .
- Define a measure with p point mass with equal weight, and denote H_p as the **population spectral distribution**.

$$dH_p(x) = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i}(x).$$

ullet Equivalently, define **empirical spectral distribution** F_p as

$$dF_p(x) = \frac{1}{p} \sum_{i=1}^p \delta_{l_i}(x).$$

Example of spectral distribution

- Suppose $dH_p = (1 \frac{1}{p})\delta_1 + \frac{1}{p}\delta_2$.
 - \implies It means that the Σ_p has one eigenvalue that is equal to 1, and (p-1) that are equal to 2.
- Clearly, H_p weakly converges to H_{∞} , with $dH_{\infty} = \delta_1$.

- H_p : Population spectral distribution, F_p : Empirical spectral distribution,
- $F_p \to F_{\infty}$.
- $H_p \to H_\infty$.
- Some theorem connects F_{∞} and H_{∞} .
- Our goal is estimating H_p by F_p .

- Material
- 2 Motivation
- From vectors to measures
- 4 Stieltjes transform
- Estimation
- Simulation

김성민 (서울대학교) Eigen-Structure 2022. 10. 05 17/28

Stieltjes transform of measures

ullet Stieltjes transform of a measure G on $\mathbb R$ is defined as

$$m_G(z) = \int \frac{dG(x)}{x-z}$$
 for $z \in \mathbb{C}^+$,

where $\mathbb{C}^+ = \mathbb{C} \cup \{z : \mathit{Im}(z) > 0\}.$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Properties of Stieltjes transforms on $\mathbb R$

Properties

- If G is a probability measure, $m_G(z) \in \mathbb{C}^+$ if $z \in \mathbb{C}^+$ and $\lim_{v \to \infty} (-iy) \cdot m_G(iy) = 1$.
- If F and G are two measures, and if $m_F(z)=m_G(z)$, for all $z\in\mathbb{C}^+$, then G=F, a.s.
- And so on....

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

Stieltjes transform of the spectral distribution

• Stieltjes transform of the spectral distribution Γ_p of a $p \times p$ matrix A_p is

$$m_{\Gamma_p}(z) = \frac{1}{p} trace((A_p - zI_p)^{-1}).$$

Definition

We will call v_{F_n} the function defined by

$$v_{F_p}(z) = (1 - \frac{p}{n}) \frac{-1}{z} + \frac{p}{n} m_{F_p}(z).$$

Theorem

Theorem

Suppose the data matrix X can be written $X=Y\Sigma_p$, where Σ_p is a $p\times p$ positive definite matrix and Y is an $n\times p$ matrix whose entries are i.i.d. (real or complex), with $E(Y_{ij})=0$, $E(|Y_{ij}|^2)=1$ and $E(|Y_{ij}|^4)<\infty$. Assume that H_p converges weakly to a limit denoted H_∞ . Then, when $p,n\to\infty$, and $p/n\to\gamma$, $\gamma\in(0,\infty)$:

- $v_{F_p}(z) o v_{\infty}(z)$ a.s., where $v_{\infty}(z)$ is a deterministic function.
- ullet $v_{\infty}(z)$ satisfies the Marcenko-Pastur equation

$$-\frac{1}{v_{\infty}(z)} = z - \gamma \int \frac{\lambda dH_{\infty}(\lambda)}{1 + \lambda v_{\infty}(z)} \quad \forall z \in \mathbb{C}^+.$$

 The previous equation has one and only one solution which is the Stieltjes transform of a measure.

◆ロト ◆御 ト ◆差 ト ◆ 差 ト ・ 差 ・ 夕 Q @

- Materia
- 2 Motivation
- From vectors to measures
- 4 Stieltjes transform
- Estimation
- Simulation

김성민 (서울대학교) Eigen-Str

Strategy

- **1** Estimating the measure H_{∞} appearing in the Marcenko-Pastur equation.
- **②** Estimating λ_i as the ith quantile of \hat{H}_{∞} .
- **3** Since we are considering fixed distribution asymptotics $(H_p = H_\infty)$, \hat{H}_∞ will serve as estimate of H_p

- Material
- 2 Motivation
- From vectors to measures
- 4 Stieltjes transform
- Estimation
- 6 Simulation

Examples

- n = 500, p = 100
- CASE1 : Consider the Σ_p which has 50% of its eigenvalues equal to 1 and 50% equal to 2.
- CASE2 : Consider the Toeplitz matrix Σ_p with entries $0.3^{|i-j|}$.

(c)

References I

- EL KAROUI, N. Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics 36, 6 (2008), 2757–2790.
- [2] LEDOIT, O., AND WOLF, M. A well-conditioned estimator for large-dimensional covariance matrices. *Journal of multivariate analysis* 88, 2 (2004), 365–411.
- [3] PAUL, D. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. *Statistica Sinica* (2007), 1617–1642.