UNIVERSIDAD POPULAR DEL CESAR

GUÍA DE ACTIVIDADES PARA LA CONSTRUCCIÓN DE CONOCIMIENTO

NOMBRE DE LA ASIGNATURA	Inteligencia Artificial							
NOMBRE DE LA ACTIVIDAD	Taller No 1 Ejercicios para realizar utilizando RNA en Matlab							
TIPO DE ACTIVIDAD	Sincrónica x Asincrónica Individual Grupal							
TEMÁTICA REQUERIDA PARA	TEMÁTICA REQUERIDA PARA LA ACTIVIDAD					OBJETIVOS		
Redes neuronales Artificiales			Conocer el entrenamiento backpropagation					
COMPETENCIAS			INSUMOS PARA EL DESARROLLO DE LA ACTIVIDAD / REFERENCIAS BIBLIOGRÁFICAS					VIDAD /
El estudiante debe conocer los con entrena una red neuronal en Matlab	Apuntes de cla	ise pa	ara entrenar y	simular	redes			

CONOCIMIENTOS PREVIOS REQUERIDOS

ESPECIFICACIONES DE LA ACTIVIDAD

Procedimientos:

- 1. Realizar los ejercicios utilizando Matlab
- 2. Trabajo para realizar individualmente
- 3. El usuario establece la configuración de la red a utilizar (Numero de capas, numero de neuronas por cada capa, selección de la función de activación, algoritmo de entrenamiento, parámetros de entrenamiento, entrenar y simular en una interfaz amigable)
- 4. El banco de datos de cada ejercicio debe estar almacenado previamente (TXT, XML, ETC)
- 3. La actividad tiene plazo de entrega 26 de marzo de 2023

Aplicacion de una Red Neuronal al reconocimiento de la letra "T" * 1.0

1. Adquisición de los valores de entrada.

Las entradas fueron colocadas en un vector de 10 elementos en el cual, los valores de cada término se corresponden a la suma total de cada columna, según sea el caso. Por ejemplo, la letra T dentro de una matriz de 10x10, quedaría representada así:

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0

El vector suma para cada columna, tendra la forma:

2	2	2	2	10	10	2	2	2	2

Nótese que la representación de cada letra es única. Se introdujeron otras letras y porque la intención era leer esas otras entradas, (A,B,C,D,E,F,G,I,O,U,T). Hacer un programa en matlab que me permira reconocer que letra es y si es una vocal

2. Entrenar

$$F(x,y,z) = sen(x) + cos(y) + z$$

donde: x, y están en el intervalo [0, 2 pi], z está en el intervalo [-1, 1] Analice 5 patrones

3. Entrenar

Х	Υ	S	С
-1	-1	-1	-1
-1	+1	+1	-1
+1	-1	+1	-1
+1	+1	-1	+1

4 Considere la tabla, en esta aparecen los estados de los sensores (S1, S2, S3) de un minirobot y los estados de sus motores (M1, M2), las demás condiciones no importan

S1	S2	S3	M1	M2
1	1	1	-1	-1
-1	1	1	-1	1
1	1	-1	1	-1
-1	-1	-1	1	1

Donde,

Si =1, obstáculo cerca

Si = -1, obstáculo lejos

Mi = -1, marcha atrás

Mi = 1, marcha adelante

Entrenar un perceptrón y adaline

5 Esta red neuronal, está entrenada para diagnosticar un resfriado a partir de los síntomas que se le indiquen

La red consta de 4 neuronas en la capa de entrada, con las siguientes equivalencias:

Neurona de entrada	Síntoma	Valor 0	Valor 1
1	Dolor de cabeza	No	Sí
2	Fiebre	No	Sí
3	Tos	No	Sí
4	Dolor de rodilla	No	Sí

A partir de estos datos, se elabora la siguiente tabla de entrenamiento:

X ₁	X ₂	X ₃	X4	Capa de salida
0	0	0	0	0
1	1	1	1	1
1	1	1	0	1
0	0	0	1	0
0	1	1	0	1
0	1	1	1	1
0	0	1	0	0
0	0	1	1	0
1	0	1	0	1
1	0	1	1	1

Los pesos sinápticos generados son:

Peso sináptico	Valor	Síntoma asociado
W ₁₁	2	Dolor de cabeza
W ₂₁	2	Fiebre
W ₃₁	0	Tos
W ₄₁	0	Dolor de rodilla
W ₀₁	-1	

6. Entrenar una red perceptrón y adaline

(0.1: Bajo 0.9 Alto)

X1	X2	Х3	d1	d2
0.1	0.9	0.1	0.1	0.9
0.1	0.1	0.9	0.1	0.9
0.1	0.1	0.1	0.1	0.1
0.9	0.9	0.9	0.9	0.9

Los pesos iniciales de la red se escogen al azar en el intervalo [-0.1, 0.1] y la rata de aprendizajes de 0.1

Peso evaluativo: La actividad tiene plazo de enviarla hasta el 25 de marzo a las 11:59 pm y tiene un peso del 20%, todas las soluciones se deben entregar en archivos .m

RECOMENDACIONES / OBSERVACIONES

Cualquier duda o recomendación me puede contactar por Wasaps al grupo de la clase y tener en cuenta revisar la rúbrica de evaluación