North South University

Department of Computer Science and Engineering **Final**, Summer-2021

Course No: CSE231 Course Title: Digital Logic Design

Full Marks: 60 Time: 1hr 10 min

Guidelines for Final Examinations-Summer Semester 2021

- 1. Clearly write your name and id on top of your first page. You will be deducted 5 (five) points if it is not done.
- 2. Use pen (pencil only for diagram) and paper for answering questions.
- 3. Use camscanner if possible to take pictures.
- 4. Create a single PDF file and rename your file name with your name. submit one file only. If multiple files/images are submitted, all copies will be deleted.
- 5. Any scripts that are identified as submitted late will be penalized by 1 point per min.
- 6. Student must not take help from anyone, web resources, books etc. It is strictly prohibited. Failing to do so could result in disqualification.
- 7. There are a good mixture of questions of different difficulty level. Use your knowledge in answering questions that you are capable of answering by yourself.
- 8. If plagarism is detected (of any form) you will be given zero in final exam and an "F" grade in the course. No makeup/viva or any form of alternatives will be provided
- 9. Students who were involved in plagiarism (provider/receiver) will have the same fate
- 10. If anyone is suspected of violating the above-mentioned rules, he/she will be called for a Viva. The syllabus for Viva will include all chapters covered throughout the semester.

		5				
•	Draw state diagram & State Table					
	Write down Boolean functions					
2	a. Draw the circuit of a 4 bit Ripple Counter. write down the output of counter for the first 4 clock cycles. Assume initial value of the register is 0010 b. Design a 8x4 ROM (using decoder) with the following contents.					
	Address Data 000 0001 001 0001 010 1110 011 0000 100 0111 101 0110 110 1111 111 0101					
3 .	Consider a sequential circuit that can detect the following pattern 0101. You need to draw the state diagram (optimum) only. The sequence may repeat and the last value of a sequence can be considered as the starting of a new sequence.					
4 .	a. Draw the state table based on the following state diagram. b. Extend the state table for the input of T types of flip flop 1/0 0/0 1/1 1/1 1/1					

Consider the following piece of code and implement it using digital circuit. i=10, $while \ (i>0)$ $\{ \begin{cases} If \ (A[i] < B[i]) \\ Sum[i] = A[i] + B[i] \\ else \\ Sum[i] = A[i] \ x \ 2 \end{cases}$ i-- $\}$

Use only functional block to solve the program. The design must be fully operational.

Explain the operation of the proposed solution

Each array contains 4 bit data

Reduce the number of state in the following *state table, tabulate the reduced table, and draw the state diagram*.

Present State	Next State		Output	
	x = 0	x = 1	x = 0	x = 1
а	f	b	0	0
b	d	С	0	1
С	f	е	1	0
d	g	а	0	1
е	d	С	0	1
f	f	b	0	0
g	g	h	0	0
h	g	h	0	0

1 0

