Math 5110 Applied Linear Algebra -Fall 2021.

He Wang

he.wang@northeastern.edu

Homework 1.

1. Reading: [Gockenbach], Chapter 0 and Chapter 1.

Notations of **column** vectors: $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = (v_1, v_2, v_3)$. The right-side used in our book is a point notation. It is different from 1×3 matrix $[v_1 \ v_2 \ v_3]$.

2. Questions:

Rules of answering the questions: (1.) Write reason or proof for each conclusion of your answer.

- (2.) For calculation "by hand" questions, write down all steps of calculations. For calculation by Matlab questions write down (copy) the input and useful output.
- (3.) You can scan and submit your handwriting answers. However, it is highly recommended that you use **LaTex** to write your answers. (At least for some homework.) You can either use the online version https://www.overleaf.com/ or download the local disc version https://www.latex-project.org/get/ on Mac or PC. Warning: Texmaker or Texworks are just editors. You need to download the full tex first. I recommend to use Texmaker.

A basic template can be (copy the following text and run tex.) There are many packages for tex. For example, using "tikz" you can draw many beautiful pictures. A template I used for lecture notes is also on Canvas.

```
\documentclass[11pt]{paper}
\usepackage{amssymb,amscd,amsmath}
\usepackage[all]{xy}

\textwidth=17cm \textheight=23cm
\voffset=-0.4in
\hoffset=-0.9in

\begin{document}
\begin{center}
\textbf{Math 5110- Applied Linear Algebra-Homework 1 }

\textbf{Name: Your name}
\end{center}

\write your answers Here. For example

\textbf{Answer of Question 1:}

If you don't know how to write formulas in Latex, just Google: ''Latex ...."

\end{document}
```

1

For all questions, if there is no particular instruction, the field is real number field \mathbb{R} .

Question 1. Mark each of the following functions $F : \mathbb{R} \to \mathbb{R}$ injective, surjective or bijective, as is most appropriate. (You may wish to draw the graph of the function in some cases.)

- (a) $F(x) = x^2$;
- (b) $F(x) = x^3/(x^2 + 1)$;
- (c) F(x) = x(x l)(x 2);
- (d) $F(x) = e^x + 2$.

For F to be injective each line drawn parallel to the x -axis should meet the graph of y = F(x) at most once. For F to be surjective each such line should meet the graph at least once. Draw the graphs of the four functions and apply these tests.

We conclude that

- (a) is neither injective nor surjective,
- (b) is bijective,
- (c) is surjective but not injective, and
- (d) is injective but not surjective.

Question 2. Show that the following sets of numbers are fields if the usual addition and multiplication of arithmetic are used:

- (1) the set of all numbers of the form $a + b\sqrt{2}$ where a and b are rational numbers.
- (2) the set of all numbers of the form $a + b\sqrt{-1}$ where a and b are real numbers. What is this field?

(1) The definition of **sum** and **product** is by standard sum and product of polynomials

$$(a+b\sqrt{2}) + (c+d\sqrt{2}) := a+c+(b+d)\sqrt{2}$$
$$(a+b\sqrt{2}) \times (c+d\sqrt{2}) := ac+2bd+(ad+bc)\sqrt{2}$$

First note that the set of all numbers of the form $a + b\sqrt{2}$ is closed with respect to addition, multiplication, taking negatives, and forming inverses (if not zero).

We need **identity for sum** is 0, since $0 + a + b\sqrt{2} = a + b\sqrt{2}$,

The **identity for product** is 1 to satisfy the condition $1 \times (a + b\sqrt{2}) = a + b\sqrt{2}$.

For each element $a + b\sqrt{2} \in F$, the **inverse for sum** is $-a - b\sqrt{2}$, since $a + b\sqrt{2} + (-a - b\sqrt{2}) = 0$

The **multiplicative inverse** $(a + b\sqrt{2})^{-1} := x + y\sqrt{2}$ of $a + b\sqrt{2} \in F$ is calculated the condition

$$(a+b\sqrt{2})\times(x+y\sqrt{2})=1$$

That is

$$x + y\sqrt{2} = \frac{1}{a^2 - 2b^2}(a - b\sqrt{2})$$

The usual rules of arithmetic guarantee that the field axioms hold for the set numbers.

(2) The definition of **sum** and **product** is by standard sum and product of polynomials

$$(a+b\sqrt{-1}) + (c+d\sqrt{-1}) := a+c+(b+d)\sqrt{-1}$$
$$(a+b\sqrt{-1}) \times (c+d\sqrt{-1}) := ac-bd+(ad+bc)\sqrt{-1}$$

First note that the set of all numbers of the form $a + b\sqrt{-1}$ is closed with respect to addition, multiplication, taking negatives, and forming inverses (if not zero).

We need **identity for sum** is 0, since $0 + a + b\sqrt{-1} = a + b\sqrt{-1}$,

The **identity for product** is 1 to satisfy the condition $1 \times (a + b\sqrt{-1}) = a + b\sqrt{-1}$.

For each element $a+b\sqrt{-1} \in F$, the **inverse for sum** is $-a-b\sqrt{-1}$, since $a+b\sqrt{-1}+(-a-b\sqrt{-1})=0$

The **multiplicative inverse** $(a + b\sqrt{-1})^{-1} := x + y\sqrt{-1}$ of $a + b\sqrt{-1} \in F$ is calculated the condition

$$(a+b\sqrt{-1})\times(x+y\sqrt{-1})=1$$

That is

$$x + y\sqrt{-1} = \frac{1}{a^2 + b^2}(a - b\sqrt{-1})$$

The usual rules of arithmetic guarantee that the field axioms hold for the set numbers.

Denote $i = \sqrt{-1}$. This is complex filed, which is the same as question 5.

Question 3. Show that the set of all $n \times n$ matrices $\mathbb{R}^{n \times n}$ with the usual matrix addition and multiplication is not a field if n > 1.

If n > 1, there are non-zero matrices in $\mathbb{R}^{n \times n}$ which are not invertible, thus, $\mathbb{R}^{n \times n}$ is not a field.

Question 4. Write down the two operations on field \mathbb{Z}_3 .

+	[0]	[1]	[2]
[0]			
[1]			
[2]			

×	[0]	[1]	[2]
[0]			
[1]			
[2]			

Question 5. Some basic knowledge of complex numbers.

• Just as \mathbb{R} denotes the set of real numbers, we will use \mathbb{C} to denote the set of complex numbers z = a + ib. Here $i = \sqrt{-1}$, and a and b are real numbers called/denoted

$$a = Re(z) =$$
real part of z
 $b = Im(z) =$ imaginary part of z

- The **complex conjugate** of $z = a + bi \in \mathbb{C}$ is $\bar{z} := a bi$
- The **absolute value** of z is $|z| = \sqrt{a^2 + b^2}$.
- $z\bar{z} = |z|^2$

Show that \mathbb{C} is a **field** with the usual sum, scalar product and product.

Same as question 2.

Question 6. Find all values of h that make the following matrices consistent.

a)
$$\begin{bmatrix} 1 & h & | & 4 \\ 3 & 6 & | & 8 \end{bmatrix}$$

$$R_2 - 3R_1 = \begin{bmatrix} 1 & h & | & 4 \\ 0 & -3h + 6 & | & -4 \end{bmatrix}$$

 \therefore the augmented matrix is consistent if $h \neq 2$, as that will make R_2 , $0 = -4$ which is inconsistent.

b)
$$\begin{bmatrix} -4 & 12 & | & h \\ 2 & -6 & | & -3 \end{bmatrix}$$

$$R_2 + \frac{1}{2}R_1 = \begin{bmatrix} -4 & 12 & | & h \\ 0 & 0 & | & h-3 \end{bmatrix}$$

 \therefore the augmented matrix is consistent if and only if h = 3, otherwise it's inconsistent.

Question 7. Determine which of the matrices below are in reduced row-echelon form.

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 5 \end{bmatrix}; D = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \end{bmatrix}; E = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \\ 4 \end{bmatrix}$$

B, D

Question 8. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ be two matrices over the field \mathbb{Z}_2 . Compute A + B, A^2 and AB over the field \mathbb{Z}_2 .

$$A + B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, A^2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 and
$$AB = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Question 9. For which values of t does the matrix $A = \begin{bmatrix} 6 & -1 & 1 \\ t & 0 & 1 \\ 0 & 1 & t \end{bmatrix}$ NOT have an inverse?

Adjoin the matrix I_3 , and put the resulting matrix $[A|I_3]$ in its reduced row echelon form R. The original matrix will fail to be invertible if and only if the first three columns of R do not form the matrix I_3 . This occurs precisely when $t^2 + t - 6 = 0$, that is, t = 2 or -3. Method 2: Using determinant $\det(A) = 0$.

Question 10. We says that two $m \times n$ matrices in reduced row-echelon form are of the same type if they have the same number of leading 1's in the same position.

- (1) How many types of 3×2 matrices in reduced row-echelon form.
- (2) How many types of 2×3 matrices in reduced row-echelon form.
- (3) Find all 4×1 matrices in reduced row-echelon form.

List all of them. (Use * to denote any real number. Group them by rank)

(1)
$$3 \times 2$$
 rref:
$$\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix}, \begin{bmatrix}
1 & * \\
0 & 0 \\
0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix}.$$
(2) 2×3 **rref**:
$$\begin{bmatrix}
1 & 0 & * \\
0 & 1 & * \\
0 & 1 & * \end{bmatrix}, \begin{bmatrix}
1 & * & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
1 & * & * \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 1 & * \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}.$$
(3) $\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$; and $\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}$

Question 11. For which values of a, b, c, d, and e is the following matrix in reduced row-echelon form? $\begin{bmatrix} 1 & a & b & 3 & 0 & -21 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & a & b & 3 & 0 & -2 \\ 0 & 0 & c & 1 & d & 3 \\ 0 & e & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$e = 0$$
; $c = 1$; $d = 0$; $b = 0$; a any real number

Question 12. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 2 \end{bmatrix}$$
.

- (1) Calculation $\mathbf{rref}(A)$ over \mathbb{R} by hand. Solve $A\vec{x} = \vec{0}$ and write all solutions in parametric vector forms.
- (2) Calculation **rref**(A) over field \mathbb{Z}_7 by hand.
- (3) Using Matlab verify your result and calculation $\mathbf{rref}(A)$ over field \mathbb{Z}_2 and \mathbb{Z}_3 . (Matlab function is uploaded on Canvas, put the rrefgf.m file in the same folder with your calculation file.)
- (4) Is it possible that a matrix M has different rank over different fields \mathbb{Z}_p ? (By calculation in (3))

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & -4 & -5 & -6 \end{bmatrix} \xrightarrow{R_3 + 4R_2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 7 & 2 \end{bmatrix} \xrightarrow{R_3/7} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 2/7 \end{bmatrix} \xrightarrow{R_2 - 3R_3} \xrightarrow{R_1 - 3R_3} \begin{bmatrix} 1 & 2 & 0 & 0 & 6/7 \\ 0 & 1 & 0 & 8/7 \\ 0 & 0 & 1 & 2/7 \end{bmatrix} = \mathbf{rref}(A)$$

$$(2) A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 3 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{R_3/2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_3} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{rref}(A)$$

$$(3) \text{ See Matlab out put:}$$

(4) Compare Ar2 and Ar7, we can see that , the first three columns different rank. So $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ has different rank over \mathbb{Z}_2 and \mathbb{Z}_7 .

Matlab Input

```
1 A=[1 2 3 4;
2 1 1 0 2;
3 2 0 1 2]
4 S=sym(A)
5 rref(S)
6 rref(A)
7 Ar2 = rrefgf(A,2)
8 Ar3 = rrefgf(A,3)
9 Ar7 = rrefgf(A,7)
```

Matlab Output

Question 13. (Solve a linear system over field
$$\mathbb{Z}_7$$
.) Let $A = \begin{bmatrix} 3 & 1 & 4 \\ 5 & 2 & 6 \\ 0 & 5 & 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}$.

- (1) Calculation $\mathbf{rref}(A|\vec{b})$ over field \mathbb{Z}_7 .
- (2) Find solution of the linear system $A\vec{x} = \vec{b} \mod 7$.

$$\mathbf{rref}(A|\vec{b}) = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
So solutions over \mathbb{Z}_7 is $\vec{x} = \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} \mod 7$.

Question 14. (Use Matlab) Solve the linear system

$$\begin{cases} 3x_1 + 11x_2 + 19x_3 &= -2\\ 7x_1 + 23x_2 + 39x_3 &= 10\\ -4x_1 - 3x_2 - 2x_3 &= 6 \end{cases}$$

and write solutions in parametric vector forms

$$\mathbf{rref}(A) = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
. No solution.

Question 15. (Use Matlab) Solve the linear system

$$\begin{cases} 3x_1 + 6x_2 + 9x_3 + 5x_4 + 25x_5 &= 53 \\ 7x_1 + 14x_2 + 21x_3 + 9x_4 + 53x_5 &= 105 \\ -4x_1 - 8x_2 - 12x_3 + 5x_4 - 10x_5 &= 11 \end{cases}$$

and write solutions in parametric vector forms.

Let *A* be the augmented matrix.

$$\mathbf{rref}(A) = \begin{bmatrix} 1 & 2 & 3 & 0 & 5 & 6 \\ 0 & 0 & 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So,
$$\begin{cases} x_4 = 7 - 2x_5 \end{cases}$$
 and $\begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{cases} = \begin{bmatrix} 6 - 2x_2 - 3x_3 - 5x_5 \\ x_2 \\ x_3 \\ 7 - 2x_5 \\ x_5 \end{cases} = \begin{bmatrix} 6 \\ 0 \\ 0 \\ 7 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -5 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}$, where x_2, x_3, x_5 are any real numbers.

Question 16. (Use Matlab) Solve the linear system

$$\begin{cases} 2x_1 + 4x_2 + 3x_3 + 5x_4 + 6x_5 &= 37\\ 4x_1 + 8x_2 + 7x_3 + 5x_4 + 2x_5 &= 74\\ -2x_1 - 4x_2 + 3x_3 + 4x_4 - 5x_5 &= 20\\ x_1 + 2x_2 + 2x_3 - x_4 + 2x_5 &= 26\\ 5x_1 - 10x_2 + 4x_3 + 6x_4 + 4x_5 &= 24 \end{cases}$$

and write solutions in parametric vector forms. (Hint: In Matlab, if you want precise value, use symbolic calculation A=sym(A))

Let *A* be the augmented matrix and calculate rref(A) in Matlab.

$$\begin{cases} x_1 = -8221/4340 \approx -1.89 \\ x_2 = 8591/8680 \approx 0.99 \\ x_3 = 4695/434 \approx 10.82 \\ x_4 = -459/434 \approx -1.06 \\ x_5 = 699/434 \approx 1.61 \end{cases}$$

Question 17. (1) If A, B and C are $n \times n$ matrices and $ABC = I_n$, is each of the matrices invertible? What are their inverses?

- (2) Suppose A and B are $n \times n$ matrices. If AB is invertible, are both A and B are invertible?
 - (1) By invertible theorem, A and C are invertible and $A^{-1} = BC$ and $C^{-1} = AB$. Then $AB = C^{-1}$, then CAB = I. So, B is invertible and $B^{-1} = CA$.

(2) If AB is invertible, then there exist a matrix C such that ABC = I. Then by (1) each matrix is invertible.

Question 18. Provide a counter-example to the statement: For any 2×2 matrices A and B, $(AB)^2 = A^2B^2$.

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
$$(AB)^2 = \begin{bmatrix} 0 & 0 \\ 12 & 16 \end{bmatrix}$$
$$A^2B^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Question 19. Find an example of a 2×2 nonidentity matrix whose transpose is its inverse.

Suppose
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 Then, $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ and $A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ We want $A^{-1} = A^T$. We may set $ad - bc = 1$, then we need $a = d$ and $b = -c$.

So, examples will be $A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ such that $a^2 + b^2 = 1$.

For example $\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$ or $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$. Later, we will see more examples like this for $n \times n$ matrices, called orthogonal matrix.

Question 20. Here are a couple of new definitions: An $n \times n$ matrix A is symmetric provided $A^T = A$ and skew-symmetric provided $A^T = -A$.

(1) Give examples of symmetric and skew-symmetric 2×2 , 3×3 , and 4×4 matrices.

- (2) What can you say about the main diagonal of a skew-symmetric matrix?
- (3) Give an example of a matrix that is both symmetric and skew-symmetric.
- (4) Prove that for any $n \times n$ matrix A, the matrices $A + A^T$, AA^T , and A^TA are symmetric and $A A^T$ is skew-symmetric.
- (5) Prove that any $n \times n$ can be written as the sum of a symmetric and skew-symmetric matrices. Hint: Did you do part (4) yet?
- (1) Write some examples. e.g., for symmetric matrices $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{bmatrix}$

For skew-symmetric matrices, we should notice that the diagonal elements are 0. For example,

$$\begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix}$$

- (2) All zeros. Since $a_{ii} = -a_{ii}$.
- (3) zero matrix.
- (4) $(A + A^T)^T = A^T + (A^T)^T = A^T + A$. $(AA^T)^T = (A^T)^T A^T = AA^T$

$$(AA^T)^T = (A^T)^T A^T = AA^T$$

$$(A^T A)^T = A^T (A^T)^T = A^T A.$$

So, all above three are symmetric.

(5)
$$A = \frac{(A + A^T)^T}{2} + \frac{(A - A^T)^T}{2} = \frac{A^T - A}{2} = -(A - A^T)$$
. (Skew-symmetric)

(5)
$$A = \frac{(A + A^T)}{2} + \frac{(A - A^T)}{2}$$

- Question 21. Find a LU-factorization for the matrix $A = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix}$
 - $L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_1 & 1 & 0 & 0 \\ 0 & l_2 & 1 & 0 \\ 0 & 0 & l_3 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} d_1 & u_1 & 0 & 0 \\ 0 & d_2 & u_2 & 0 \\ 0 & 0 & d_3 & u_3 \\ 0 & 0 & 0 & d_4 \end{bmatrix}.$ $d_1 = 4,$ $l_j = 1/d_j,$ $d_{j+1} = 4 - l_j,$ for j = 1, 2, 3. $d_1 = 4$,

$$d_{j+1} = 4 - l_j$$
, for $j = 1, 2, 3$.

- Question 22. Find a LU-factorization for the tridiagonal matrix $A = \begin{bmatrix} q_1 & r_1 & 0 & 0 \\ p_1 & q_2 & r_2 & 0 \\ 0 & p_2 & q_3 & r_3 \\ 0 & 0 & p_2 & q_3 \end{bmatrix}$ as $L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_1 & 1 & 0 & 0 \\ 0 & l_2 & 1 & 0 \\ 0 & 0 & l_3 & 1 \end{bmatrix}$
- and $U = \begin{bmatrix} 0 & d_1 & u_1 & 0 & 0 \\ 0 & d_2 & u_2 & 0 \\ 0 & 0 & d_3 & u_3 \\ 0 & 0 & 0 & d_4 \end{bmatrix}$. Find relations between $\{q_i, p_i, r_i\}$ and $\{l_i, d_i, u_i\}$. (Think about the general situation

This is the key question, which can be used for question 21 and 23.

Multiply LU and compare with A we have three classes for elementary algebraic equations.

$$LU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_1 & 1 & 0 & 0 \\ 0 & l_2 & 1 & 0 \\ 0 & 0 & l_3 & 1 \end{bmatrix} \begin{bmatrix} d_1 & u_1 & 0 & 0 \\ 0 & d_2 & u_2 & 0 \\ 0 & 0 & d_3 & u_3 \\ 0 & 0 & 0 & d_4 \end{bmatrix} = \begin{bmatrix} d_1 & u_1 & 0 & 0 \\ l_1d_1 & l_1u_1 + d_2 & u_2 & 0 \\ 0 & l_2d_2 & l_2u_2 + d_3 & u_3 \\ 0 & 0 & l_3d_3 & l_3u_3 + d_4 \end{bmatrix}.$$

Compare LU with the given matrix $A = \begin{bmatrix} q_1 & r_1 & 0 & 0 \\ p_1 & q_2 & r_2 & 0 \\ 0 & p_2 & q_3 & r_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. (Reminder: A is known. Find L and U.)

We quickly get

$$u_i = r_i$$
 for $i = 1, 2, 3$ and $q_1 = d_1$.

Next use $l_1d_1 = p_1$ to get $l_1 = p_1/d_1$.

Use $l_1u_1 + d_2 = q_2$ to get $d_2 = q_2 - l_1u_1$.

Keep going, we get l_2 , d_3 , l_3 , d_4 in order. White as one recurrence formula,

$$l_t = \frac{p_t}{d_t}$$
 for $t = 1, 2, 3$

and

$$d_{t+1} = q_{t+1} - l_t u_t$$
 for $t = 1, 2, 3$

Here, we write 4×4 matrix. Even for $n \times n$ matrix. We already see the patten. Just change 3 to n-1, we have the same result using the recurrence relation.

Question 23. Consider LU factorization of the $n \times n$ matrices $A = \begin{bmatrix} 1 & 4 & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \ddots & \ddots & 4 & 1 \\ \vdots & & \ddots & & \ddots & \ddots & \vdots \end{bmatrix}$

Using the above two questions

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_1 & \ddots & 0 & 0 \\ 0 & \ddots & 1 & 0 \\ 0 & 0 & l_{n-1} & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} d_1 & u_1 & 0 & 0 \\ 0 & d_2 & \ddots & 0 \\ 0 & 0 & \ddots & u_{n-1} \\ 0 & 0 & 0 & d_n \end{bmatrix}.$$

$$u_i = 1$$

$$d_1 = 4$$

$$l_i = 1/d_i$$

$$l_j = 1/d_j,$$

 $d_{j+1} = 4 - l_j,$ for $j = 1, 2, 3, ..., n - 1.$

Question 24. Let I_n be the $n \times n$ identity matrix. Let \vec{u} be a unit vector in \mathbb{R}^n . Define $H_n = I_n - 2\vec{u}\vec{u}^T$.

- (1) Is H_n an symmetric matrix? Prove your result.
- (2) Is H_n an orthogonal matrix? (i.e. is $H_n^T H_n = I_n$?)
- (3) What is H_n^2 ?

- (4) What is $H_n \vec{u}$?
- (5) Suppose $\vec{u} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 \\ 1 \\ \vdots \end{bmatrix}$. Write down H_3 and H_4 ?

 - (1) Yes. Check $H_n^T = H_n$ (2) Yes. Check $H_n^T H_n = I_n$ (3) $H_n^2 = I_n$ (4) $H_n \vec{u} = -\vec{u}$