In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [5]:

```
df = pd.read_csv(r"C:\Users\Dell\Downloads\Iris.csv.")
```

In [6]:

df

Out[6]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [7]:

df.head()

Out[7]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [8]:

df.tail()

Out[8]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

In [9]:

```
df.columns
```

Out[9]:

In [10]:

```
df.describe()
```

Out[10]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [11]:
```

```
df.info
```

Out[11]:

```
<bound method DataFrame.info of</pre>
                                          Id SepalLengthCm SepalWidthCm Petal
LengthCm PetalWidthCm
       1
                      5.1
                                      3.5
                                                       1.4
                                                                       0.2
0
1
       2
                      4.9
                                      3.0
                                                       1.4
                                                                       0.2
2
       3
                      4.7
                                      3.2
                                                       1.3
                                                                       0.2
3
       4
                      4.6
                                      3.1
                                                       1.5
                                                                       0.2
4
       5
                      5.0
                                      3.6
                                                       1.4
                                                                       0.2
                      . . .
                                      . . .
                                                       . . .
                                                                       . . .
                      6.7
145
     146
                                      3.0
                                                       5.2
                                                                       2.3
146
     147
                      6.3
                                      2.5
                                                       5.0
                                                                       1.9
147
     148
                      6.5
                                      3.0
                                                       5.2
                                                                       2.0
148
     149
                      6.2
                                      3.4
                                                       5.4
                                                                       2.3
149
     150
                      5.9
                                      3.0
                                                       5.1
                                                                       1.8
```

```
Species
```

```
0 Iris-setosa
```

••

145 Iris-virginica

146 Iris-virginica

147 Iris-virginica

148 Iris-virginica

149 Iris-virginica

[150 rows x 6 columns]>

In [12]:

```
from sklearn.preprocessing import LabelEncoder
```

In [13]:

```
LE = LabelEncoder()
```

In [14]:

```
df.iloc[:,-1] = LE.fit_transform(df.iloc[:,-1])
```

¹ Iris-setosa2 Iris-setosa

² Iris-setosa3 Iris-setosa

⁴ Iris-setosa

In [15]:

df

Out[15]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	0
1	2	4.9	3.0	1.4	0.2	0
2	3	4.7	3.2	1.3	0.2	0
3	4	4.6	3.1	1.5	0.2	0
4	5	5.0	3.6	1.4	0.2	0
145	146	6.7	3.0	5.2	2.3	2
146	147	6.3	2.5	5.0	1.9	2
147	148	6.5	3.0	5.2	2.0	2
148	149	6.2	3.4	5.4	2.3	2
149	150	5.9	3.0	5.1	1.8	2

150 rows × 6 columns

In [17]:

df = df.sample(frac=1)

In [18]:

df.head(10)

Out[18]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
68	69	6.2	2.2	4.5	1.5	1
139	140	6.9	3.1	5.4	2.1	2
69	70	5.6	2.5	3.9	1.1	1
26	27	5.0	3.4	1.6	0.4	0
55	56	5.7	2.8	4.5	1.3	1
38	39	4.4	3.0	1.3	0.2	0
67	68	5.8	2.7	4.1	1.0	1
77	78	6.7	3.0	5.0	1.7	1
25	26	5.0	3.0	1.6	0.2	0
124	125	6.7	3.3	5.7	2.1	2

In [22]:

```
x = df.iloc[:,:-1]
x.head()
```

Out[22]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
68	69	6.2	2.2	4.5	1.5
139	140	6.9	3.1	5.4	2.1
69	70	5.6	2.5	3.9	1.1
26	27	5.0	3.4	1.6	0.4
55	56	5.7	2.8	4.5	1.3

In [23]:

```
y =df.iloc[:,-1]
y.head()
```

Out[23]:

Name: Species, dtype: int32

In [24]:

```
from sklearn.model_selection import train_test_split
```

In [25]:

```
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=50)
```

In [26]:

```
X_train.head()
```

Out[26]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
12	13	4.8	3.0	1.4	0.1
116	117	6.5	3.0	5.5	1.8
130	131	7.4	2.8	6.1	1.9
60	61	5.0	2.0	3.5	1.0
22	23	4.6	3.6	1.0	0.2

```
In [27]:
X_train.shape
Out[27]:
(120, 5)
In [28]:
from sklearn.tree import DecisionTreeClassifier
In [29]:
dt = DecisionTreeClassifier()
In [30]:
dt.fit(X_train,y_train)
Out[30]:
DecisionTreeClassifier()
In [31]:
from sklearn.metrics import classification_report,confusion_matrix
In [32]:
y_predicted = dt.predict(X_test)
In [33]:
y_predicted
Out[33]:
array([0, 1, 1, 0, 0, 1, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 2, 2, 1, 0, 2,
       2, 2, 0, 2, 1, 1, 2, 1])
In [34]:
y_test = np.array(y_test)
In [35]:
y_test
Out[35]:
array([0, 1, 1, 0, 0, 1, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 2, 2, 1, 0, 2,
       2, 2, 0, 2, 1, 1, 2, 1])
In [36]:
from sklearn.metrics import accuracy_score
```

```
In [37]:
```

```
accuracy_score(y_predicted, y_test)
```

Out[37]:

1.0

In [38]:

from sklearn.metrics import confusion_matrix

In [39]:

```
confusion_matrix(y_predicted, y_test)
```

Out[39]:

In [40]:

from sklearn .metrics import classification_report

In [41]:

print(classification_report(y_predicted, y_test))

support	f1-score	recall	precision	
8	1.00	1.00	1.00	0
7	1.00	1.00	1.00	1
15	1.00	1.00	1.00	2
30	1.00			accuracy
30	1.00	1.00	1.00	macro avg
30	1.00	1.00	1.00	weighted avg

In [42]:

from sklearn import tree

In [43]:

```
plt.figure(figsize=(20,17))
dtviz = tree.plot_tree(dt,feature_names = x.columns, filled = True, fontsize =20)
```



```
In [44]:
```

THANK YOU

In []: