Rapport de stage (été 2022) Caractérisation des singularités de type J

Sous la supervision du

Professeur

Frédéric Rochon

et de Mehrdad Najafpour

Par Habib Jaber

Soit $a = (a_0, a_1, ..., a_m)$ et $b = (b_0, b_1, ..., b_m)$ deux éléments de \mathbb{N}^{m+1} . On dit que a et b sont congruents si $a_0 = b_0$ et $a_i \equiv b_i \mod(a_0) \ \forall \ i > 1$. On dénote par [a] la classe d'equivalence de $a \in \mathbb{N}^{m+1}$. Une singularité (isolée) est une classe d'equivalence [a] telle que PGCD $(a_0, a_i) = 1 \ \forall \ i \in \{1, ..., m\}$.

Définition 1.1:

Un éclatement d'une singularité [a] est un choix de représentant $b=(b_0,....,b_m) \in [a]$ tel que PGCD $(b_i,b_j) = 1 \forall i,j \in \{0,...,m\}$.

Si $(a_0,...,a_m)$ est un éclatement de [b], alors pour chaque i > 0 tel que $a_i > 1$, on a une nouvelle singularité $[a^i] = [(a_0^i,...,a_m^i)]$ definie par $a_j^i := a_j$ si $j \notin \{0,i\}$, $a_0^i = a_i$ et a_i^i choisi de sorte que $a_i^i \equiv -a_0 \mod(a_i)$.

On dénote par E_a l'ensemble des singularités associées à l'éclatement a.Si E_a = φ ,on dit que l'éclatement est lisse.

Définition 1.2:

Un élément $(a_0,...,a_n) \in (\mathbb{N}^{m+1})^{n+1}$ est une suite d'éclatements d'une singularité [b] si a_0 est un éclatement de [b] et \forall j > 0 a_j est un éclatement de $[b_j]$,où $[b_{j+1}] \in \bigcup_{i=0}^{j} Ea_i \setminus \{[b_1],...[b_j]\} \ \forall$ $j \in \{0,...,n-1\}$. Dans ce cas,([b₁],...,[b_n]) est la suite de singularités associée a la suite d'éclatements.

Définition 1.3:

Une singularité [a] $\in \mathbb{N}^{m+1}$ est de type J si elle admet un éclatement lisse ou s'il existe une suite d'éclatements (a₀,...,a_n),telle que $\bigcup_{i=0}^{n} Ea_i = \{[b_1],...,[b_n]\}$ pour la suite de singularités associeés $([b_1],...,[b_n])$.

Exemple 1.1:

Soit [b] la singularité spécifiée par b = (5,3,2,1), alors a_0 := b est un éclatement de [b] avec Ea_0 = $\{[(2,1,1,1)],[(3,1,2,1)]\}$.

La singularité [(2,1,1,1)] admet l'éclatement lisse a_1 = (2,1,1,1).

La singularité [(3,1,2,1)] admet l'éclatement $a_2 = (3,1,2,1)$ telle que $Ea_2 = \{[(2,1,1,1)]\}$.

La singularité [(2,1,1,1)] admet l'éclatement lisse $a_3:=(2,1,1,1)$.

Ainsi,(a₀,a₁,a₂,a₃) est une suite d'éclatements montrant que [b] est une singularité de type J.

Dans ce qui suit, on se restreint au cas où m=2.

On désigne par a mod(b) l'unique entier appartenant à $\{0,...,b-1\}$. Par exemple, $27 \mod(13)=1$ et $(-27) \mod(13)=12$.

Lemme 1.1:

Soit a et $b \in \mathbb{N}^*$ tels que b ne divise pas a, alors (-a) mod(b) = b-(a mod(b)).

Preuve:

- Si a < b ,alors (-a)mod(b)=b-a=b-(a mod(b))
- Si a > b,la preuve se fait par récurrence forte sur a ;
 - pour a = 1,(-1) mod (b)= b-1 = b-(1 mod(b)) .
 - o supposons que (-x) mod(b) = b- (x mod(b)) $\forall 2 \le x < a, x \in \mathbb{N}$.

Considérons la division euclidienne de a par b,

 $a=k.b+r, 0 \le r < b \le a \text{ avec } k, r \in \mathbb{N}.$

Si r = 1, la peuve est similaire au cas où a = 1.

Pour $2 \le r < b \le a$; on a:

 $b-(a \mod(b)) = b-(r \mod(b)) = (-r) \mod(b) = (kb-a) \mod(b) = (-a) \mod(b).$

Lemme 1.2:

Soit a et b $\in \mathbb{N}^*$, alors PGCD(a,b) = PGCD(a+kb,b) \forall k \in Z.

Preuve:

Soit d=PGCD(a,b) et d'=PGCD(a+kb,b).On montre que d=d'.

d divise a et d divise b, alors d divise toute combinaison linéaire de a et b.En particulier,d divise 1.a+k.b.Ce qui implique que d divise d'.

D'autre part, d' divise a+kb et d' divise b, alors d' divise 1.(a+kb)+(-k)b = a.Ce qui implique que d' divise d. Ainsi d=d'.

Proposition 1.1:

soit a_1 et a_2 deux entiers premiers entre eux tels que $a_1 \ge a_2$, alors $b=[(a_1+a_2,a_1,a_2)]$ est une singularité de type J.

preuve:

la preuve se fait par récurrence forte sur a₁ et a₂,

- pour $a_1=a_2=1$, [(2,1,1)] est une singularité de type J puisqu'elle admet l'éclatement lisse (2,1,1).
- supposons que [(a'+b',a',b')] est une singularité de type J pour tout a' et b' tels que 1 < a' < a₁ et
 1 < b' < b₁, alors

$$[(a_1,(-(a_1+a_2)) \mod(a_1),a_2)] = [(a_1,(-a_2) \mod(a_1),a_2)] = [(a_1,a_1-a_2,a_2)]$$

$$[(a_1+a_2,a_1,a_2)]$$

$$[(a_2,a_1 \mod(a_2),(-a_1) \mod(a_2)] = [(a_2,a_1 \mod(a_2),a_2-(a_1 \mod(a_2)))]$$
2.

On montre d'abord que $(a_1,(-a_2) \mod (a_1),a_2)$ et $(a_2,a_1 \mod (a_2),(-a_1) \mod (a_2))$ sont des éclatements. Par le lemme 1.2,on a PGCD (a_1-a_2,a_1) = PGCD (a_1-a_2,a_2) = PGCD (a_1,a_2) = 1, alors 1 est un éclatement. D'autre part, Si on montre que PGCD $(a_1 \mod (a_2),a_2)$ = 1, alors le lemme 1.2 impliquera que est aussi un éclatement . Or, si $a_1 \mod (a_2)$ = $r \in \{0,...,a_2-1\}$, alors $a_1=k.a_2+r$, $k \in Z$.

Ainsi,
$$PGCD(r,a_2) = PGCD(a_1-k.a_2,a_2) = PGCD(a_1,a_2) = 1$$
.

Maintenant , on voit que :

$$(a_1-a_2)+a_2=a_1$$
 et $a_1 \mod(a_2)+(a_2-(a_1 \mod(a_2)))=a_2$;

ainsi 1 et 2 satisfont à l'hypothèse de récurrence, donc 1 et 2 sont des singularités de type J,ce qui implique que [(a₁+a₂,a₁,a₂)] l'est aussi.

Exemple 1.2:

[(60,31,29)] est une singularité de type J.

Proposition 1.2:

soit (a_0,a_1,a_2) un éclatement d'une singularité [a] tel que $a_1 > a_2$ et soit $k \in \mathbb{N}^*$. Alors [a] est une singularité de type J si et seulement si $[b]=[(a_0+k(a_1a_2),a_1,a_2)]$ l'est aussi.

Preuve:

Le fait que $(a_0+k(a_1a_2),a_1,a_2)$ est un éclatement de [b] découle du lemme 1.2.Il suffit de voir que les deux éclatements génèrent les mêmes singularités ;

et

$$[(a_{1,}(-a_{0}) \mod(a_{1}), a_{2})]$$

$$(a_{0}, a_{1}, a_{2})$$

$$[(a_{2}, a_{1} \mod(a_{2}), (-a_{0}) \mod(a_{2})].$$

Exemple 1.3:

On vérifie que [(13,10,3)] est une singularité de type J.On obtient une infinité de singularités de type J en ajoutant à 13 les multiples de 30.

Je termine avec une conjecture, un petit corollaire qui en découle et quelques remarques.

Conjecture:

Soit $a=(a_0,a_1,a_2)$ un éclatement d'une singularité [a] tel que $a_0 < a_1+a_2+PGCD(a_0-a_1, a_0-a_2)$, alors [a] est une singularité de type J si et seulement si $a_1+a_2+PGCD(a_0-a_1,a_0-a_2)=a_0+1$.

Exemple 1.4:

Considérons a=(19,13,8).on a que $a_1+a_2+PGCD(a_0-a_1, a_0-a_2)=13+8+PGCD(6,11)=22$ et $a_0+1=20$, donc [(19,13,8)] n'est pas une singularité de type J.

Corollaire 1.1:

Étant donné deux entiers a_1 et a_2 premiers entre eux, alors a_0 := a_1 + a_2 est le plus petit entier qui fait en sorte que $[(a_0,a_1,a_2)]$ est une singularité de type J.

Preuve:

Si $a_0 < a_1 + a_2$ alors $a_0 < a_1 + a_2 + PGCD(a_0 - a_1$, $a_0 - a_2)$. D'autre part, $a_0 < a_1 + a_2$ implique $a_0 + 1 < a_1 + a_2 + 1 \le a_1 + a_2 + PGCD(a_0 - a_1$, $a_0 - a_2)$. d'après la conjecture précédente, $[(a_0, a_1, a_2)]$ n'est pas une singularité de type J.

Exemple 1.4:

[(59,31,29)] n'est pas une singularité de type J puisque 59 < 60.

Remarques:

1) Quelqu'un peut essayer de prouver la conjecture par récurrence sur a_1 et a_2 .On voit déjà,dans un sens,que lorsque $a_1=a_2=1$,la condition est satisfaite($a_0 < a_0 +1$) et $a_1+a_2+PGCD(a_0-a_1, a_0-a_2)=1+1+a_0-1=a_0+1$!

- 2) la condition $a_0 < a_1 + a_2 + PGCD(a_0 a_1, a_0 a_2)$ est nécessaire. Par exemple, on vérifie que [(23,10,3)] est une singularité de type J, mais $3+10+PGCD(13,20) \neq 24$
- 3) lorsque $a_0=a_1+a_2$, on sait déjà que $[(a_0,a_1,a_2)]$ est une singularité de type J.Mais quelqu'un peut s'assurer en utilisant la conjecture précédente. En effet, si $a_0=a_1+a_2$, alors $a_1+a_2+PGCD(a_0-a_1,a_0-a_2)=a_1+a_2+PGCD(a_2,a_1)=a_1+a_2+1=a_0+1$!

Références:

1. Vestislav Apostolov and Yann Rollin. ALE scalar-flat Kähler metrics on non-compact weighted projective spaces. Math. Ann., 367(3-4):1685–1726, 2017.