Instructions:

- Due 09/29 at 5:00pm on Gradescope.
- You must follow the submission policy in the syllabus

Problem 1. Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \pi/4 & -\sin \pi/4 \\ \sin \pi/4 & \cos \pi/4 \end{bmatrix}$$

- (a) Find a SVD of A. Hint: think about why the given factorization is not an SVD.
- (b) Draw what A does to the following points (here a point is anything shown in black, and the dotted lines represent the x and y axes.):

Problem 2.

- (a) Suppose **X** is a $n \times m$ matrix. How does $\|\mathbf{X}\|_{\mathsf{F}}$ relate to $\|\mathbf{X}^{\mathsf{T}}\|_{\mathsf{F}}$?
- (b) Suppose **X** is a $n \times m$ matrix. Write $\|\mathbf{X}\|_{\mathsf{F}}$ in terms of the column-norms $\|[\mathbf{X}]_{:,i}\|_{2}$.
- (c) Suppose **X** is a $n \times m$ matrix and **U** is a $n \times n$ orthogonal matrix ($\mathbf{U}^\mathsf{T}\mathbf{U} = \mathbf{I}$). Show that $\|\mathbf{U}\mathbf{X}\|_{\mathsf{F}} = \|\mathbf{X}\|_{\mathsf{F}}$. Hint: use (b) and show that $\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ for any vector **x**.
- (d) Let **A** be a $n \times m$ matrix with SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ and assume $n \geq m$. Prove that $\|\mathbf{A}\|_{\mathsf{F}} = \sqrt{\sigma_1^2 + \dots + \sigma_m^2}$, where σ_i are the singular values of **A**

Problem 3. Download the numpy data file from this link: https://drive.google.com/file/d/18Xf0029XXm3ENWfe3Z0a--Cf6tjyCViz/view?usp=drive link

Use the following code to import the file into numpy.

```
import numpy as np
import matplotlib.pyplot as plt
im = np.load('change this path/CIMS.npy')
```

If you are using google colab, you can copy the CIMS.npy file to your own drive and then

```
from google.colab import drive
drive.mount('/content/gdrive')
im = np.load('gdrive/MyDrive/change this path/CIMS.npy')
```

In both cases, forma matrix from the image data.

```
A = np.mean(im,axis=2)
```

Here we obtain **A** by averaging the red, green, and blue channels of the image. This results in a black and white image.

- (a) Plot the image using plt.imshow. You may want to use the colormap 'Greys_r' so that it looks like a greyscale image.
- (b) Compute the reduced SVD of **A**. You can use full_matrices=False to get the reduced SVD. This will be much faster than computing the full SVD.
 - For each k=1,10,100,200, make a plot of the best rank-k approximation \mathbf{A}_k to \mathbf{A} (i.e. via truncated SVD). Label each plot with the rank k as well as the relative error $\|\mathbf{A} \mathbf{A}_k\|_{\mathsf{F}} / \|\mathbf{A}\|_{\mathsf{F}}$
- (c) Remark on the quality of the plots.
 - How many numbers are required to store A? How many numbers are required to store the rank-k truncated SVD (as a factorization)?

Problem 4. Computing the SVD is expensive, but randomization can help us!

- (a) Randomized numerical linear algebra (RandNLA) is the study of the use of randomness in numerical linear algebra algorithms. One of the most famous randNLA algorithms is the randomized SVD. A simple version for approximating the SVD of a $m \times n$ matrix **A** can be described in several lines:
 - Choose a $n \times k$ matrix **R** with standard normal random entries
 - Compute X = AR
 - Compute $\mathbf{Q}_{,-,-} = \text{REDUCED-SVD}(\mathbf{X})$
 - $\hat{\mathbf{U}}, \hat{\mathbf{\Sigma}}, \hat{\mathbf{V}}^{\mathsf{T}} = \mathtt{REDUCED-SVD}(\mathbf{Q}^{\mathsf{T}}\mathbf{A})$:
 - Return approximate SVD of \mathbf{A} : $(\mathbf{Q}\hat{\mathbf{U}})\hat{\mathbf{\Sigma}}\hat{\mathbf{V}}^{\mathsf{T}}$

Implement this algorithm with the same matrix A as in Problem 3. To generate the random matrix, you can use np.random.randn(n,k).

Again make sure to use full_matrices=False when computing the SVD of $\mathbf{Q}^{\mathsf{T}}\mathbf{A}$. Compare this to long the whole randomized SVD took (all of the steps) against the time to compute the exact SVD in the previous problem.

- (b) Prove that the factors $\mathbf{Q}\hat{\mathbf{U}}$, $\hat{\mathbf{\Sigma}}$ and $\hat{\mathbf{V}}^T$ have the same properties as a SVD; i.e. $\mathbf{Q}\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$ have orthonormal columns and $\hat{\mathbf{\Sigma}}$ is diagonal with non-negative entires.
- (c) Make a plot of the rank k = 100 truncated SVD (from problem 1) and the k = 100 randomized SVD. Show the relative errors $\|\mathbf{A} (\mathbf{Q}\hat{\mathbf{U}})\hat{\mathbf{\Sigma}}\hat{\mathbf{V}}^{\mathsf{T}}\|_{\mathsf{F}}/\|\mathbf{A}\|_{\mathsf{F}}$ for each.
- (d) How long did this algorithm take to run vs. the reduced SVD in problem 3? Why was it so much faster? Hint: what are the dimensions of the matrices which we take the SVD of using this approach?