		Note
Name Vorname	1	I II
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2	
	3	
Unterschrift der Kandidatin/des Kandidaten	4	
TECHNISCHE UNIVERSITÄT MÜNCHEN	5	
Fakultät für Mathematik Klausur	6	
MA9202 Mathematik für Physiker 2 (Analysis 1)	Σ	
Prof. Dr. N. Berger	I	korrektur
24. Februar 2017, 08:00 – 09:30 Uhr	Ⅱ Zwei	 itkorrektur
Hörsaal: Reihe: Platz:		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 6 Aufgaben Bearbeitungszeit: 90 min Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt		
ur von der Aufsicht auszufüllen:		
örsaal verlassen von bis		
orzeitig abgegeben um		

 $Musterl\ddot{o}sung \hspace{0.5cm} ({\rm mit\; Bewertung})$

Besondere Bemerkungen:

1. Vollständige Induktion

[7 Punkte]

Beweisen Sie mittels vollständiger Induktion: Für jedes $n \in \mathbb{N} \cup \{0\}$ ist $5^n + 7$ durch 4 teilbar.

LÖSUNG:

Induktions an fang n = 0: [1/2]

Die Zahl $5^0 + 7 = 1 + 7 = 8$ [1] ist durch 4 teilbar [1], da $8 = 2 \cdot 4$.

Induktionsschritt von n auf n+1: [1/2]

Es gilt

$$5^{n+1} + 7 \stackrel{[1]}{=} 5 \cdot 5^n + 35 - 35 + 7 \stackrel{[1]}{=} 5 \cdot (5^n + 7) - 28.$$

Nach Induktionsvoraussetzung ist der Ausdruck in der Klammer und damit der ganze erste Summand durch 4 teilbar [1]; der zweite Summand 28 ist ebenfalls durch 4 teilbar. [1] Somit ist auch die ganze Summe $5^{n+1} + 7$ durch 4 teilbar.

2. Komplexe Zahlen

[7 Punkte]

Es ist $z = \frac{1}{\sqrt{2}}(i+1) \in \mathbb{C}$ gegeben. Untersuchen Sie die Funktion $f : \mathbb{N} \to \mathbb{C}$, $n \in \mathbb{N} \mapsto f(n) = z^n$ auf Injektivität und Surjektivität.

LÖSUNG:

f nicht injektiv: [1] Es ist |z|=1 [1/2] und $\arg(z)=\pi/4$. [1/2]

Damit gilt mit Vorlesung $z^n = |z|^n e^{in\varphi} \stackrel{[1]}{=} e^{in\pi/4}$. Es ist z.B. f(1) = f(9). [2] f nicht surjektiv: [1] Es existiert kein $n \in \mathbb{N}$ für ein $w \in \mathbb{C}$, $|w| \neq 1$. [1] Z.B. $f^{-1}(\{2+0\cdot i\}) = \emptyset$.

3. Infimum und Supremum

[6 Punkte]

Hat die Menge $A:=\{x\in\mathbb{R}:\sin\left(\frac{1}{x}\right)=0\land x>0\}\subset\mathbb{R}$ ein Infimum, Minimum, Supremum und/oder Maximum in \mathbb{R} ? Bestimmen Sie ggf. jeweils Infimum, Minimum, Supremum bzw. Maximum.

LÖSUNG:

$$\sin\left(\frac{1}{x}\right) = 0 \land x > 0 \Leftrightarrow x_n = \frac{1}{n\pi}, \ n \in \mathbb{N}. \text{ So ist } A = \left\{\frac{1}{n\pi} : n \in \mathbb{N}\right\}$$
 [1]

 $\Rightarrow \sup A = 1/\pi$, da Folge $(1/(n\pi))_{n\in\mathbb{N}}$ monoton fallend [1], da $\sup A \in A$, so ist $\max A = \sup A$ [1]

 \Rightarrow inf A=0, da $\lim_{n\to\infty}1/(n\pi)=0$ [1] und da $0\not\in A$, so hat die Menge A kein Minimum. [1]

4. Konvergenz von Funktionenfolgen

[10 Punkte]

Betrachten Sie die Funktionenfolge $f_n: \mathbb{R} \to \mathbb{R}, x \mapsto f_n(x) = \sin\left((1+\frac{1}{n})x\right); n \in \mathbb{N}.$

- (a) Zeigen Sie: $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise gegen $f:\mathbb{R}\to\mathbb{R},\ x\mapsto f(x)=\sin(x)$ für $n\to\infty$.
- (b) Konvergiert $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen $f:\mathbb{R}\to\mathbb{R},\ x\mapsto f(x)=\sin(x)$ auf \mathbb{R} für $n\to\infty$?
- (c) Konvergiert $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen $f:\mathbb{R}\to\mathbb{R},\ x\mapsto f(x)=\sin(x)$ auf I:=[-10,10] für $n\to\infty$?

LÖSUNG:

- (a) Wegen der Stetigkeit von sin [1/2], gilt für jedes $x \in \mathbb{R}$: $\lim_{n\to\infty} \sin((1+1/n)x) = \sin(\lim_{n\to\infty} (1+1/n)x) = \sin(1\cdot x) = \sin(x)$. [1/2]
- (b) Die Konvergenz ist auf \mathbb{R} nicht gleichmäßig. [1] Denn, wir wählen $x_n = n\pi/2$ [1]

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \ge |f_n(x_n) - f(x_n)| = |\sin\left(n\frac{\pi}{2} + \frac{\pi}{2}\right) - \sin\left(n\frac{\pi}{2}\right)| = 1.$$

Also ist $\lim_{n\to\infty} \sup_{x\in\mathbb{R}} |f_n(x) - f(x)| \ge 1$.

(c) Die Konvergenz ist auf I := [-10, 10] gleichmäßig. [1] Denn, nach dem Mittelwertsatz existiert ein $y \in (x, x + \frac{x}{n})$ mit

$$\sin(x + x/n) - \sin(x) \stackrel{[1]}{=} \cos(y)(x + x/n - x) \le |\cos(y)||x/n| \stackrel{[1]}{\le} |x/n|.$$

Somit gilt

$$\sup_{x \in I} |f_n(x) - f(x)| = \sup_{x \in I} |\sin(x + x/n) - \sin(x)| \le \sup_{x \in I} |x/n| = 10/n.$$

Also $\lim_{n\to\infty} \sup_{x\in I} |f_n(x) - f(x)| = 0.$

5. Potenzreihen [6 Punkte]

Betrachten Sie die komplexe Potenzreihe $P(z) = \sum_{n=0}^{\infty} n \, z^n \,, \ z \in \mathbb{C} \,.$

- (a) Bestimmen Sie den Konvergenzradius der Potenzreihe P.
- (b) Für welche $z\in\mathbb{C}$ ist P konvergent und für welche $z\in\mathbb{C}$ ist P divergent?

LÖSUNG:

(a)
$$R \stackrel{[1]}{=} \frac{1}{\limsup_{n \to \infty} \sqrt[n]{n}} \stackrel{[1]}{=} \frac{1}{\lim_{n \to \infty} \sqrt[n]{n}} \stackrel{[1]}{=} 1$$

(b) Nach Satz der Vorlesung gilt

P konvergiert auf $\{z \in \mathbb{C} : |z| < 1\}$ absolut [1]

und P ist in $\{z \in \mathbb{C} : |z| > 1\}$ divergent. [1]

P ist auf $\{z \in \mathbb{C} : |z| = 1\}$ divergent, da $(nz^n)_{n \in \mathbb{N}}$ für |z| = 1 keine Nullfolge. [1]

6. Extrema [6 Punkte]

Gegeben sei die Funktion $f:[0,2\pi]\to\mathbb{R},\ f(x)=\int\limits_0^x\frac{\sin(t)}{t}\mathrm{d}t.$ An welcher Stelle x_0 hat f ein Maximum? Begründen Sie Ihre Antwort!

LÖSUNG:

Aus der Vorlesung gilt, das uneigentliche Integral f existiert. [1]

Die Funktion f ist Stammfunktion von $g(x) = \sin(x)/x$, das heisst es gilt f'(x) = g(x). [1]

Das bedeutet f ist differenzierbar auf $(0, 2\pi)$ und damit stetig auf $[0, 2\pi]$. [1]

Da g(x) > 0 auf $(0, \pi)$, so ist f auf $(0, \pi)$ streng monoton steigend. [1]

Da g(x) < 0 auf $(\pi, 2\pi)$, so ist f auf $(\pi, 2\pi)$ streng monoton fallend. [1]

Damit hat f in $x_0 = \pi$ ein Maximum. [1]