VELLORE INSTITUTE OF TECHNOLOGY

CSE4020 Machine Learning Lab Assessment - 1

17BCE0581

SATYAM SINGH CHAUHAN

Importing the Required Libraries

- · matplotlib.pyplot
- pandas
- pylab
- numpy

In [1]:

```
import matplotlib.pyplot as plt
import pandas as pd
import pylab as pl
import numpy as np
%matplotlib inline
from sklearn import datasets
```

Load the diabetes dataset

```
In [26]:
```

```
diabetes = datasets.load_diabetes()
```

In [3]:

```
data1 = pd.DataFrame(data = np.c_[diabetes['data'],diabetes['target']],columns =
    diabetes['feature_names'] + ['target'])
```

Emploring and Studying the Datasets using head and describe functions

In [5]:

data1.head(10)

Out[5]:

	age	sex	bmi	bp	s1	s2	s3	s4	
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.0
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.0
2	0.085299	0.050680	0.044451	-0.005671	-0.045599	-0.034194	-0.032356	-0.002592	0.0
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.0
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.0
5	-0.092695	-0.044642	-0.040696	-0.019442	-0.068991	-0.079288	0.041277	-0.076395	-0.0
6	-0.045472	0.050680	-0.047163	-0.015999	-0.040096	-0.024800	0.000779	-0.039493	-0.0
7	0.063504	0.050680	-0.001895	0.066630	0.090620	0.108914	0.022869	0.017703	-0.0
8	0.041708	0.050680	0.061696	-0.040099	-0.013953	0.006202	-0.028674	-0.002592	-0.0
9	-0.070900	-0.044642	0.039062	-0.033214	-0.012577	-0.034508	-0.024993	-0.002592	0.0
4									•

In [6]:

data1.describe()

Out[6]:

						_
	age	sex	bmi	bp	s1	
count	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+
mean	-3.634285e- 16	1.308343e-16	-8.045349e- 16	1.281655e-16	-8.835316e- 17	1.327024e-
std	4.761905e-02	4.761905e-02	4.761905e-02	4.761905e-02	4.761905e-02	4.761905e-
min	-1.072256e- 01	-4.464164e- 02	-9.027530e- 02	-1.123996e- 01	-1.267807e- 01	-1.156131
25%	-3.729927e- 02	-4.464164e- 02	-3.422907e- 02	-3.665645e- 02	-3.424784e- 02	-3.03584(
50%	5.383060e-03	-4.464164e- 02	-7.283766e- 03	-5.670611e- 03	-4.320866e- 03	-3.81906
75%	3.807591e-02	5.068012e-02	3.124802e-02	3.564384e-02	2.835801e-02	2.984439e-
max	1.107267e-01	5.068012e-02	1.705552e-01	1.320442e-01	1.539137e-01	1.987880e-
4						>

Filtering the required Data

In [9]:

```
data2 = data1[['bmi','target']]
```

Exploring and Studying the Data

In [10]:

```
data2.head()
```

Out[10]:

target	bmi	
151.0	0.061696	0
75.0	-0.051474	1
141.0	0.044451	2
206.0	-0.011595	3
135.0	-0.036385	4

In [14]:

```
plt.scatter(data2.bmi,data2.target,color='blue')
plt.xlabel("BMI")
plt.ylabel("TARGET")
plt.show()
```


Split the data into training/testing sets

In [27]:

```
split = np.random.rand(len(data2)) < 0.8
train_data = data2[split]
test_data = data2[~split]</pre>
```

In [17]:

```
plt.scatter(train_data.bmi,train_data.target,color='blue')
plt.xlabel("BMI")
plt.ylabel("TARGET")
plt.show()
```


In [16]:

```
plt.scatter(test_data.bmi,test_data.target,color='blue')
plt.xlabel("BMI")
plt.ylabel("TARGET")
plt.show()
```


Create linear regression object Train the model using the training sets And Display The coefficients

```
In [19]:
```

```
from sklearn import linear_model
slr = linear_model.LinearRegression()
train_x = np.asanyarray(train_data[["bmi"]])
train_y= np.asanyarray(train_data[["target"]])
slr.fit(train_x,train_y)
print('Coefficient: ', slr.coef_)
print('Intercept: ',slr.intercept_)
```

Coefficient: [[900.59146152]] Intercept: [151.57092979]

Make predictions using the testing set

```
In [32]:
```

```
from sklearn.metrics import r2_score, mean_squared_error
test_x = np.asanyarray(test_data[["bmi"]])
test_y= np.asanyarray(test_data[["target"]])
test_result = slr.predict(test_x)
```

Calculating Mean Absolute Error

```
In [21]:
```

```
print("Mean Absolute Error: %.2f" %np.mean(np.absolute(test_result - test_y)))
```

Mean Absolute Error: 54.32

Calclulating Mean Squared Error

```
In [37]:
```

```
print('Mean squared error: %.2f' % mean_squared_error(test_y, test_result))
```

Mean squared error: 3684.43

Calculating Root Mean Squared Error

```
In [40]:
```

```
print('Root Mean squared error: %.2f'% np.sqrt(mean_squared_error(test_y, test_r
esult)))
```

Root Mean squared error: 60.70