Measuring Angles

Objectives

1 Name angles and identify their parts.

2 Measure angles using a protractor

Work with congruent angles.

4 Solve problems using the Angle Addition Postulate

Angles

Angles are formed by 2 rays with the same endpoint.

Angles

Angles are formed by 2 rays with the same endpoint.

The rays are the **sides** and the endpoint is the **vertex**.

Naming Angles

You can name an angle by

its vertex, ∠A

Naming Angles

You can name an angle by

- its vertex, ∠A
- a point on each ray and the vertex, ∠BAC or ∠CAB

Naming Angles

You can name an angle by

- its vertex, ∠A
- a point on each ray and the vertex, ∠BAC or ∠CAB
- \bullet a number, $\angle 1$

Parts of an Angle

The **interior** of an angle is the region containing all of the points between the rays.

Parts of an Angle

The **interior** of an angle is the region containing all of the points between the rays.

The **exterior** of an angle is all of the points outside the interior.

(a) What are two other names for $\angle 1$?

(a) What are two other names for $\angle 1$?

 $\angle JMK$ and $\angle KMJ$

(b) What are two other names for $\angle KML$?

(b) What are two other names for $\angle KML$?

 $\angle LMK$ and $\angle 2$

Objectives

Name angles and identify their parts.

2 Measure angles using a protractor.

Work with congruent angles.

4 Solve problems using the Angle Addition Postulate

Using a Protractor

When measuring angles using a protractor, place the middle of the protractor at the vertex of the angle and align the $1800/0^{\circ}$ line along one of the angle's sides.

Using a Protractor

When measuring angles using a protractor, place the middle of the protractor at the vertex of the angle and align the $1800/0^{\circ}$ line along one of the angle's sides.

Using a Protractor

When measuring angles using a protractor, place the middle of the protractor at the vertex of the angle and align the $1800/0^{\circ}$ line along one of the angle's sides.

Find the measure of each angle.

(a)

Find the measure of each angle.

(a)

Find the measure of each angle.

(a) **90**°

(b)

(b)

(b) **120**°

(c)

(c)

(c) **75**°

Objectives

Name angles and identify their parts.

Measure angles using a protractor.

3 Work with congruent angles.

4 Solve problems using the Angle Addition Postulate

Congruent Angles

Congruent Angles

Congruent Angles

$$m\angle A = m\angle B$$

Congruent Angles

$$m\angle A = m\angle B$$

$$\angle A \cong \angle B$$

Use the figure to find the missing value.

(a) $\angle JMK \cong ?$

Use the figure to find the missing value.

(a) $\angle JMK \cong$? $\angle RMG$

Use the figure to find the missing value.

- (a) $\angle JMK \cong ?$
- $\angle RMG$
- (b) $\angle IGN \cong ?$

Use the figure to find the missing value.

- (a) $\angle JMK \cong ?$
- $\angle RMG$
- (b) $\angle IGN \cong ?$
- $\angle HGM$

Use the figure to find the missing value.

- (a) $\angle JMK \cong ?$
- $\angle RMG$
- (b) $\angle IGN \cong ?$
- $\angle HGM$
- (c) $\angle RMP \cong ?$

Use the figure to find the missing value.

- (a) $\angle JMK \cong ?$
- $\angle RMG$
- (b) $\angle IGN \cong ?$
- $\angle HGM$
- (c) $\angle RMP \cong ?$

 $\angle QHL$

Objectives

Name angles and identify their parts.

2 Measure angles using a protractor

Work with congruent angles.

Solve problems using the Angle Addition Postulate

Angle Addition Postulate

The **Angle Addition Postulate** is similar to the Segment Addition Postulate.

Angle Addition Postulate

The **Angle Addition Postulate** is similar to the Segment Addition Postulate.

If B is in the interior of $\angle AOC$ then

$$m\angle AOB + m\angle BOC = m\angle AOC$$

(a)
$$m\angle LKN = 145^{\circ}$$

(a)
$$m\angle LKN = 145^{\circ}$$

$$m\angle LKM + m\angle MKN = m\angle LKN$$

(a)
$$m\angle LKN = 145^{\circ}$$

$$m\angle LKM + m\angle MKN = m\angle LKN$$
$$2x + 10 + 4x - 3 = 145$$

(a)
$$m\angle LKN = 145^{\circ}$$

$$m\angle LKM + m\angle MKN = m\angle LKN$$
$$2x + 10 + 4x - 3 = 145$$
$$6x + 7 = 145$$

(a)
$$m\angle LKN = 145^{\circ}$$

$$m\angle LKM + m\angle MKN = m\angle LKN$$

 $2x + 10 + 4x - 3 = 145$
 $6x + 7 = 145$
 $6x = 138$

(a)
$$m\angle LKN = 145^{\circ}$$

$$m\angle LKM + m\angle MKN = m\angle LKN$$
$$2x + 10 + 4x - 3 = 145$$
$$6x + 7 = 145$$
$$6x = 138$$
$$x = 23$$

(a)
$$m\angle LKN = 145^{\circ}$$

$$m\angle LKM = 2(23) + 10$$

$$m\angle LKM + m\angle MKN = m\angle LKN$$
$$2x + 10 + 4x - 3 = 145$$
$$6x + 7 = 145$$
$$6x = 138$$
$$x = 23$$

$$m \angle MKN = 4(23) - 3$$

(a)
$$m\angle LKN = 145^{\circ}$$

$$m\angle LKM = 2(23) + 10$$

 $m\angle LKM = 56^{\circ}$

$$m\angle LKM + m\angle MKN = m\angle LKN$$
$$2x + 10 + 4x - 3 = 145$$
$$6x + 7 = 145$$
$$6x = 138$$
$$x = 23$$

$$m \angle MKN = 4(23) - 3$$
$$m \angle MKN = 89^{\circ}$$

$$m\angle KLN + m\angle MLN = m\angle KLM$$

$$m\angle KLN + m\angle MLN = m\angle KLM$$
$$10x - 5 + 4x + 3 = 180$$

$$\begin{array}{c|c}
 & N \\
\hline
 & 10x - 5 & 4x + 3 \\
\hline
 & K & L & M
\end{array}$$

$$m \angle KLN + m \angle MLN = m \angle KLM$$

 $10x - 5 + 4x + 3 = 180$
 $14x - 2 = 180$

$$m \angle KLN + m \angle MLN = m \angle KLM$$

$$10x - 5 + 4x + 3 = 180$$

$$14x - 2 = 180$$

$$14x = 182$$

$$x = 13$$

$$m \angle KLN = 10(13) - 5$$

$$m \angle MLN = 4(13) + 3$$

$$m\angle EFH + m\angle GFH = 90$$

$$m\angle EFH + m\angle GFH = 90$$
$$2x + 2 + x + 1 = 90$$

$$m\angle EFH + m\angle GFH = 90$$

 $2x + 2 + x + 1 = 90$
 $3x + 3 = 90$

$$m\angle EFH + m\angle GFH = 90$$
$$2x + 2 + x + 1 = 90$$
$$3x + 3 = 90$$
$$3x = 87$$

$$m\angle EFH + m\angle GFH = 90$$
$$2x + 2 + x + 1 = 90$$
$$3x + 3 = 90$$
$$3x = 87$$
$$x = 29$$

