STAT3622 Data Visualization (Lecture 1)

Introduction to Data Science

Dr. Yiwei Fan The University of Hong Kong

18 January 2021

R Programming

R Programming

- R is a programming language and free software environment for statistical computing and graphics.
- The R language is widely used among statisticians and data miners for developing statistical software and data analysis.
- Although R has a command line interface, there are several third-party graphical user interfaces, such as RStudio, an integrated development environment.

RStudio and R Markdown

RStudio IDE

- RStudio is a popular IDE (Integrated Development Environment) for R programming
- It is a powerful editor for R coding and debugging.
- It is a powerful generator for HTML, PDF, dynamic documents and slide shows.
- RStudio can be run on both Desktop and Cloud.
- Check out more nice features of RStudio at its official website

RStudio IDE

R Markdown

- Click here to view a fantastic micro-video tutorial
- Browse here for a gallery of creative Rmarkdown works

R Markdown (Demonstrated)

knitr::kable(head(iris), format = 'html')

Sepal.Length	Sepal.Width	Sepal. Length Sepal. Width Petal. Length Petal. Width Species	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

- Dynamic documentation: report, table, graphics ...
- R packages by Yihui Xie: knitr, bookdown, xaringan, etc

R Markdown (Demonstrated)

plot(iris, col=iris\$Species)

• Data-generated graphics that are reproducible

Exploratory Data Analysis

Exploratory Data Analysis

The EDA is a statistical approach to make sense of data by using a variety of techniques (mostly graphical). It may help us

- Assess assumption about variables distribution
- Identify relationship between variables
- Extract important variables
- Suggest use of appropriate models
- Detect problems of collected data (e.g. outliers, missing data, measurement errors)

Example: Anscombe Dataset

Anscombe Dataset:

y 4	6.58	2.76	7.71	8.84	8.47	7.04	5.25	12.50	5.56	7.91	6.89
x 4	8	8	∞	∞	8	∞	8	19	∞	8	8
y3	7.46	6.77	12.74	7.11	7.81	8.84	80.9	5.39	8.15	6.45	5.73
x 3	10	8	13	6	11	14	9	4	12	7	5
y2	9.14	8.14	8.74	8.77	9.56	8.10	6.13	3.10	9.13	7.26	4.74
X X	10	8	13	6	11	14	9	4	12	_	2
yı	8.04	6.95	7.58	8.81	8.33	96.6	7.24	4.26	10.84	4.82	2.68
X1	10	8	13	6	11	14	9	4	12	_	5

Source: Anscombe, F. J. (1973). Graphs in statistical analysis. American Statistician, 27, 17-21.

Example: Anscombe Dataset (Descriptive)

Mean and standard deviation:

y4	7.50	2.03
x 4	9.00	3.32
y3	7.50	2.03
x 3	9.00	3.32
y2	7.50	2.03
X2	00.6	3.32
yı	7.50	2.03
X1	9.00	3.32
	mean	ps

x-y correlation:

rho4	0.82
rho3	0.82
rho_2	0.82
rho1	0.82

Example: Anscombe Dataset (Graphic)

Statistical Graphics

• Univarite

- Histogram, Stem-and-Leaf, Dot, Q-Q, Density plots
- Boxplot, Box-and-whisker
- o Bar, Pie, Polar, Waterfall charts

• Bivariate

• XYplot, Line, Area, Scatter, Bubble charts

• Trivariate

o 3D Scatter, Contour, Level/Heatmap, Surface plots

Which Chart to Use?

Simple Base Graphics

Iris Dataset


```
data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width: num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1
   # Piris
                                                                                                              ## 'data.frame':
## $ Sepal.Length
## $ Sepal.Width
## $ Petal.Length
## $ Petal.Width
## $ Species
DataX = iris
                                  str(DataX)
```

```
setosa :50
versicolor:50
                                                                                                                                                    Species
                                                                                                                                                                           virginica:50
                                                                                                                                                           Min. :0.100
1st Qu.:0.300
                                                                                                                                                                                  Mean :1.199
3rd Qu.:1.800
Max. :2.500
                                                                                                                                                                           Median :1.300
                                                                                                                                                   Petal.Width
                                                            Sepal. Length Sepal. Width Petal. Length Petal. Width Species
                                                                                    setosa
                                                                     setosa
                                                                                            setosa
                                                                                                    setosa
                                                                                                            setosa
                                                                            setosa
                                                                                                                                                            Min.
                                                                     Median :4.350
Mean :3.758
3rd Qu.:5.100
Max. :6.900
                                                                                                                                                           Min. :1.000
1st Qu.:1.600
                                                                                                                                                    Petal. Length
                                                                     Min. :2.000
1st Qu.:2.800
Median :3.000
Mean :3.057
3rd Qu.:3.300
Max. :4.400
                                                                                                                                                   Sepal.Width
                                                                    3.5
3.2
3.1
3.6
3.9
                                        # tail
                                                                                                                                                           Min. :4.300

1st Qu. :5.100

Median :5.800

Mean :5.843

3rd Qu. :6.400

Max. :7.900
                                                                    5. 1
4. 9
4. 7
4. 6
5. 0
                                                                                                                                                    Sepal. Length
                                                                                                                                summary (DataX)
                    Ŋ
                                        head(DataX)
dim(DataX)
                   ## [1] 150
                                                                     1 2 2 4
                                                                                                  5
                                                            #######
                                                                                                                                                    ######
```

Basic R Plots: Histogram and Density Plot

```
# using freq=FALSE
                                                                                                                            hist(x, breaks=20, col=5, main='More Bins and Coloring') hist(x, breaks=20, freq=F, main='Histogram plus Density Plot')
                                                                                                                                                                                                                  lines(density(x), col=2, lty=1, lwd=2) #add the density curve
x = DataX$Sepal.Length # a continuous variable
                                                                                   hist(x, main='Histogram (Default)')
                                           par(mfrow=c(1,3))
```


Basic R Plots: Boxplot

```
boxplot(DataX[,1:4], col=c(2,3,4,5), main='Side-by-side Boxplot') boxplot(Sepal.Width~Species, DataX, col=c(6,7,8), main="Boxplot with Grouping")
                                                   boxplot(DataX$Sepal.Width, main='Boxplot of Sepal.Width') # Outliers
par(mfrow=c(1,3))
```


• An outlier is an observation that is numerically distant from the rest of the data (e.g. outside 1.5 times the interquartile range above the upper quartile and below the lower quartile).

Basic R Plots: Pie and Bar Charts

 $barplot(table(DataX\$Species[DataX\$Flag]), \ col=c(5,6,7))\\ barplot(table(DataX\$Species, DataX\$Flag), \ col=c(5,6,7), \ beside=T)$ DataX\$Flag = DataX\$Sepal.Length>5 # Create a binary flag pie(table(DataX\$Species[DataX\$Flag]), col=c(2,3,4)) par(mfrow=c(1,3))

Relationship Between Variables

```
par(mfrow=c(1,2)); par(mar=c(4,4,1,4))
plot(x, y, xlab="Petal.Length", ylab="Petal.Width")
abline(coef(lm(y~x)), col=1, lty=2)
plot(x, y, col=c(2,3,4)[z], pch=20, cex=2.0, xlab="Petal.Length", ylab="Petal.Width")
abline(lm(y~x), col=1, lty=2)
x = DataX\$Petal.Length; y = DataX\$Petal.Width; z = DataX\$Species
                                                                                                                                                                                                                                                                                                legend("topleft", levels(z), pch=20, col=c(2, 3, 4))
```


Petal.Width

Pairwise Scatter Plot

plot(DataX, col=DataX\$Species, main="Pairwise Scatter Plot")

pairs(DataX[,1:4],
 col = c(4,5,6)[DataX\$Species],
 main="More Sophisticated")

Using R:Lattice Package

R:Lattice

- Using trellis graphs for multivariate data
- Multipanel conditioning and grouping
- Elegant high-level data visualization
- Covering most of statistical charts
- Figures and Codes can be found at http://lmdvr.r-forge.r-project.org/
- However, plot customization are not so straightforward

Univariate Distributions

library(lattice); library(gridExtra)
p1 = histogram(DataX\$Sepal.Length)
p2 = bwplot(DataX\$Sepal.Length)
grid.arrange(p1, p2, ncol=2)

Histogram with Conditioning

histogram(data=DataX, ~Sepal.Length|Species, breaks=12, layout = c(3, 1))

Density plot with Grouping

densityplot(data=DataX, ~Sepal.Length, groups=Species,
 plot.points=F, auto.key=list(space="top", columns=3))

Boxplot with Grouping

bwplot(data=DataX, Sepal.Width~Species)

Bivariate plot with Grouping

Bivariate plot with Conditioning

xyplot(data=DataX, Sepal.Length ~ Petal.Length|Species,
type=c("p", "smooth", "g"), layout=c(1,3)) # conditioning

Trivariate 3D Plot

cloud(data=DataX, Sepal.Length ~ Sepal.Length * Petal.Width, groups = Species, auto.key = list(space="top", columns=3), panel.aspect = 0.8)

Trivariate Heatmap

Levelplot of Pairwise Distance Matrix

Thank you!