Sara Mortara, Andrea Sánchez-Tapia, Diogo S. B. Rocha

aula 07

#### sobre a aula

- 1. noções básicas de gráficos
- 2. editando gráficos básicos no R
- 3. perfumaria

# 1. noções básicas de gráficos

# como [NÃO] fazer

# meu gráfico 3D



## não mesmo



#### como fazer melhor



como [NUNCA] fazer

#### **Pie Chart of Countries**



# #nunca



# como [NÃO] fazer

#### **Pie Chart of Countries**



## único gráfico de pizza possível



Percentage of pizza that will be left

# como (tentar) fazer melhor



#### como fazer melhor



# mas sempre pode gráfico de barras?



# um gráfico de barras com medida de erro é melhor



#### melhor ainda é economizar tinta



mas também a tinta tem que valer a pena



# uma tabela?

| Tratamento | Efeito          |
|------------|-----------------|
| 1          | $6.7 \pm 0.4$   |
| 2          | $12.3 \pm 0.98$ |
|            |                 |

no corpo do texto

O efeito do tratamento 2 (12.3  $\pm$  0.98) foi maior do que o tratamento 1 (6.7  $\pm$  0.4).

#### um diagrama de pontos

1.0

1.5

Victoria Vancouver imor Tierra del Fuego Tasmania Taiwan Sumatra Spitsbergen Southampton South America Sakhalin Prince of Wales Novaya Zemlva North America Newfoundland New Zealand (S New Zealand (N) New Guinea New Britain Moluccas Mindanao Melville Madagascar Luzon Kvushu Jáva Ireland Iceland Honshu Hokkaido Hispaniola Hainan Greenland Europe Ellesmere Devon Cuba Celon Celebes Britain Borneo Banks Baffin Axel Heibera Australia Asia Antarctica Africa

um diagrama de pontos melhor



log10(area) (log10(sq. miles)

# como [NÃO] fazer



#### como fazer melhor



# como fazer melhor de outro jeito





1. só apresentar um gráfico quando necessário

- 1. só apresentar um gráfico quando necessário
- 2. não enganar o(a) leitor(a)

- 1. só apresentar um gráfico quando necessário
- 2. não enganar o(a) leitor(a)
- 3. moderar na quantidade de cores e de tinta

- 1. só apresentar um gráfico quando necessário
- 2. não enganar o(a) leitor(a)
- 3. moderar na quantidade de cores e de tinta
- 4. sempre que possível apresentar medida de erro

- 1. só apresentar um gráfico quando necessário
- 2. não enganar o(a) leitor(a)
- 3. moderar na quantidade de cores e de tinta
- 4. sempre que possível apresentar medida de erro
- 5. ordem dos elementos importa

- 1. só apresentar um gráfico quando necessário
- 2. não enganar o(a) leitor(a)
- 3. moderar na quantidade de cores e de tinta
- 4. sempre que possível apresentar medida de erro
- 5. ordem dos elementos importa
- 6. 'las=1' importa muito mais

2. editando gráficos no R

## gráfico de barras

```
#perfil dos alunxs da disciplina
nivel <- c("iniciante", "intermediário", "experiente")
perc <- c(73.3, 20, 6.7)
alunxs <- data.frame(nivel, perc)
alunxs</pre>
```

```
## nivel perc
## 1 iniciante 73.3
## 2 intermediário 20.0
## 3 experiente 6.7
```

gráfico de barras padrão





como mudar a ordem das barras?

## [1] iniciante intermediário experiente
## Levels: iniciante intermediário experiente

# gráfico de barras ordenado

```
# agora vamos refazer o gráfico
barplot(perc ~ nivel, data=alunxs)
```



deixando o rótulo do eixo y na vertical

## deixando o rótulo do eixo y na vertical



#### mudando o rótulo dos eixos

#### mudando o rótulo dos eixos



#### incluindo cor

#### incluindo cor



#### incluindo cor pelo nome

## incluindo cor pelo nome



## incluindo cor pelo código hexadecimal

## incluindo cor pelo código hexadecimal



## incluindo cor pelo código RGB

## incluindo cor pelo código RGB



#### precisa de cor?



#### precisa de cor?



## gráfico de barras com subcategorias

```
d.Titanic <- as.data.frame(Titanic)
head(d.Titanic)</pre>
```

```
## Class Sex Age Survived Freq
## 1 1st Male Child No 0
## 2 2nd Male Child No 0
## 3 3rd Male Child No 35
## 4 Crew Male Child No 0
## 5 1st Female Child No 0
## 6 2nd Female Child No 0
```

## gráfico de barras com subcategorias



gráfico de barras em "mosaico"

#### gráfico de barras em "mosaico"



## gráfico de dispersão

gráfico de dispersão



gráfico de dispersão com cor transparente



adicionando uma imagem ao gráfico

## adicionando uma imagem ao gráfico



# gráficos com múltiplas janelas

```
x <- log(cars$speed)
v <- log(cars$dist)</pre>
zones \leftarrow matrix(c(2,0,1,3), ncol=2, byrow=TRUE)
layout(zones, widths=c(4/5, 1/5), heights=c(1/5, 4/5))
xhist <- hist(x, plot=FALSE)</pre>
yhist <- hist(y, plot=FALSE)</pre>
top <- max(c(xhist$counts, yhist$counts))</pre>
plot(x,y, las=1, xlab="log(speed)", ylab="log(dist)",
     col=mycol, bty='l', pch=19)
abline(m1)
grid.raster(pic, .16, .63, width=.15)
par(mar=c(0,3,1,1))
barplot(xhist$counts, axes=FALSE, ylim=c(0, top),
        space=0, col=mycol)
par(mar=c(3,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top),
        space=0, horiz=TRUE, col=mycol)
```

## gráficos com múltiplas janelas



# mais gráficos com múltiplas janelas

```
sal <- read.csv("data/salarios.csv")</pre>
head(sal)
     salario experiencia sexo
##
## 1 3936.68
                     4.7
                            Η
                    4.0 H
## 2 3502.86
## 3 4837.77
                     5.6 H
## 4 5083.71
                     5.6 H
## 5 7000.00
                   7.2 H
                     5.2
                            Η
## 6 4283.94
# criando modelos lineares
mh <- lm(salario ~ experiencia, data=sal[sal$sexo=="H",])</pre>
mm <- lm(salario ~ experiencia, data=sal[sal$sexo=="M",])
coefh <- coef(mh)
coefm <- coef(mm)
# definindo os limites dos eixos
limy <- c(min(sal$salario),max(sal$salario))</pre>
```

# criando o gráfico com janelas A e B

```
# define parametros graficos
par(mfrow=c(1,2), las=1, bty="1")
# plot dos valores de salario dos homens
plot(salario ~ experiencia, data=sal[sal$sexo=="H",],
     col="tomato".
    ylim=limy, xlim=limx,
    vlab=labv, xlab=labx)
# linha do previsto pelo modelo a + bx
abline(a=coefh[1], b=coefh[2],
      col='tomato', lwd=2)
mtext("A", 3, adj=0, font=2)
grid.raster(readPNG("figs/male.png"), .16, .75, width=.10)
## plot do salario das mulheres
plot(salario ~ experiencia, data=sal[sal$sexo=="M",],
     col="navy",
    ylim=limy, xlim=limx,
    ylab="", xlab=labx)
mtext("B", 3, adj=0, font=2)
grid.raster(readPNG("figs/female.png"), .66, .75, width=.08)
abline(a=coefm[1], b=coefm[2],
      col='navy', lwd=2)
```

## criando o gráfico com janelas A e B



## séries temporais

```
data(longley)
head(longley)
```

| ## |      | ${\tt GNP.deflator}$ | GNP     | Unemployed | Armed.Forces | Population | Year E | Cm; |
|----|------|----------------------|---------|------------|--------------|------------|--------|-----|
| ## | 1947 | 83.0                 | 234.289 | 235.6      | 159.0        | 107.608    | 1947   |     |
| ## | 1948 | 88.5                 | 259.426 | 232.5      | 145.6        | 108.632    | 1948   |     |
| ## | 1949 | 88.2                 | 258.054 | 368.2      | 161.6        | 109.773    | 1949   |     |
| ## | 1950 | 89.5                 | 284.599 | 335.1      | 165.0        | 110.929    | 1950   |     |
| ## | 1951 | 96.2                 | 328.975 | 209.9      | 309.9        | 112.075    | 1951   |     |
| ## | 1952 | 98.1                 | 346.999 | 193.2      | 359.4        | 113.270    | 1952   |     |

## séries temporais

barplot(GNP ~ Year, data = longley)



séries temporais de outra forma



séries temporais de uma melhor forma



3. perfumaria

#### recursos para apresentações

- paletas de cores:
  - Color Brewer
  - Adobe Color
  - COLOR lovers
- ícones para adicionar em gráficos:
  - ► The noun project
- pacotes de R:
  - wesanderson
    - RColorBrewer
  - swatches
  - colourlovers

temos que falar de:

- ▶ ggplot2
- ► gganimate

#### por favor não vamos voltar no tempo



## por favor não vamos voltar no tempo



\$ %## extra %Vamos brincar um pouco com as cores, o R aceita tanto as especificação de cor usando um nome já existente no R como usando o código RGB ou hexadecimal de definição de cores em bytes. Se for usar nomes, tem nomes como "black", "darkgreen", "tomato" e você encontra uma vasta lista no link

"darkgreen", "tomato" e você encontra uma vasta lista no link (http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf). Se for usar a especificação em RGB precisamos usar a função RGB, ou de forma mais direta, o R aceita o nome da cor em hexadecimal diretamente. A especificação de cores em código é bastante útil quando você quer criar sua própria paleta de cores. \$