INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT1383-to-8 line decoder/demultiplexer; inverting

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT138

FEATURES

- · Demultiplexing capability
- Multiple input enable for easy expansion
- · Ideal for memory chip select decoding
- · Active LOW mutually exclusive outputs
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT138 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT138 decoders accept three binary weighted address inputs (A_0, A_1, A_2) and when enabled, provide 8 mutually exclusive active LOW outputs $(\overline{Y}_0$ to $\overline{Y}_7)$.

The "138" features three enable inputs: two active LOW $(\overline{E}_1 \text{ and } \overline{E}_2)$ and one active HIGH (E_3) . Every output will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E_3 is HIGH.

This multiple enable function allows easy parallel expansion of the "138" to a 1-of-32 (5 lines to 32 lines) decoder with just four "138" ICs and one inverter.

The "138" can be used as an eight output demultiplexer by using one of the active LOW enable inputs as the data input and the remaining enable inputs as strobes. Unused enable inputs must be permanently tied to their appropriate active HIGH or LOW state.

The "138" is identical to the "238" but has inverting outputs.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
	PARAWETER	CONDITIONS	НС	нст	UNIT
	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
t _{PHL} / t _{PLH}	A_n to \overline{Y}_n		12	17	ns
t _{PHL} / t _{PLH}	E_3 to \overline{Y}_n \overline{E}_n to \overline{Y}_n		14	19	ns
	\overline{E}_{n} to \overline{Y}_{n}				
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	67	67	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_1 \times V_{CC}^2 \times f_0)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT138

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
1, 2, 3 A ₀ to A ₂		address inputs					
$ \overline{E}_1, \overline{E}_2 $		enable inputs (active LOW)					
6 E ₃		enable input (active HIGH)					
8 GND		ground (0 V)					
15, 14, 13, 12, 11, 10, 9, 7 \overline{Y}_0 to \overline{Y}_7		outputs (active LOW)					
16	V _{CC}	positive supply voltage					

Philips Semiconductors Product specification

3-to-8 line decoder/demultiplexer; inverting

74HC/HCT138

FUNCTION TABLE

	INPUTS							OUTPUTS								
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	\overline{Y}_0	\overline{Y}_1	₹ ₂	₹ ₃	\overline{Y}_4	₹ 5	₹ ₆	Y ₇			
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н			
X	Н	X	X	Х	X	Н	Н	Н	Н	Н	Н	Н	Н			
X	X	L	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	н			
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н			
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н			
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н			
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	н			
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	н			
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н			
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н			
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L			

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Philips Semiconductors Product specification

3-to-8 line decoder/demultiplexer; inverting

74HC/HCT138

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
					74HC	UNIT		WAVEFORMO				
		+25			-40 to +85 -40 t		-40 to +125		V _{CC} (V)	WAVEFORMS		
		min.	typ.	max.	min.	max.	min.	max.		()		
t _{PHL} / t _{PLH}	propagation dolay		41	150		190		225		2.0		
	propagation delay A_n to \overline{Y}_n		15	30		38		45	ns	4.5	Fig.6	
			12	26		33		38		6.0		
	propagation delay E_3 to \overline{Y}_n		47	150		190		225		2.0		
t _{PHL} / t _{PLH}			17	30		38		45	ns	4.5	Fig.6	
			14	26		33		38		6.0		
	propagation delay \overline{E}_n to \overline{Y}_n		47	150		190		225		2.0		
t _{PHL} / t _{PLH}			17	30		38		45	ns	4.5	Fig.7	
			14	26		33		38		6.0		
t _{THL} / t _{TLH}	output transition		19	75		95		110		2.0		
	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7	
			6	13		16		19		6.0		

74HC/HCT138

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
A _n	1.50
Ēn	1.25
E ₃	1.00

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
SYMBOL		74НСТ									WAVEFORMS	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	VVAVEFORIVIS	
		min.	typ.	max.	min.	max.	min.	max.		()		
t _{PHL} / t _{PLH}	$\begin{array}{c} \text{propag}\underline{a}\text{tion delay} \\ A_n \text{ to } \overline{Y}_n \end{array}$		20	35		44		53	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay E_3 to \overline{Y}_n		18	40		50		60	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{E}_n to \overline{Y}_n		19	40		50		60	ns	4.5	Fig.7	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7	

74HC/HCT138

AC WAVEFORMS

Fig.6 Waveforms showing the address input (A_n) and enable input (E_3) to output (\overline{Y}_n) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".