CPGE PTSI

Sciences Industrielles pour l'Ingénieur

Renaud Costadoat

Compte rendu

Statique, lois de Coulomb

Lycée le Corbusier

PTSI
PT

Date : .../.../

Thème:

Modéliser le comportement statique de systèmes avec frottement

Objectifs:

Découverte de l'arc-bouttement

Mise en évidence de l'influence des efforts répartis

Support:

Winch

Nom :	Prénom :
Nom :	Prénom :
Nom :	Prénom :

1 Le Winch

1.1 Etude expérimentale

Question 1 : Remplissez un tableau de mesure suivant le modèle suivant.

Nombre de tours	t(N) 1er essai	t(N) 2ème essai	t(N) moyen
1			
2			
3			

	stion 2 : n graphic	Placez les points expérimentaux de t en fonction de l'angle d'enroulement θ que.
1.2	Modél tambo	lisation de l'action mécanique de contact entre la corde et le our
Ques	stion 3 :	Précisez la normale extérieure matière à la Corde au point M.
	stion 4 : e au poin	Donnez l'expression de l'aire élémentaire dS de la surface cylindrique de la t M en fonction de R , de $d\theta$ et de la largeur l de la Corde C.
M en la ba	fonction se locale	Ecrire l'action mécanique locale du Tambour sur la Corde $(T \to C)$ au point du facteur d'adhérence f_0 entre le Tambour et la Corde, des vecteurs de , de la pression de contact $p(\theta)$. (On utilisera la loi de Coulomb relative à la limite du glissement).

1.3 Equilibre statique de la corde

Ľéqua	ation de résulta	nte du Princip	e Fondame	ental de la	Statique ap	ppliqué à l'é	élément de
corde se	traduit par:	,	,				

 $\overrightarrow{df_{T \to C}(M)_M} + \overrightarrow{T_{T \to C}(\theta)_M} + \overrightarrow{T_{T \to C}(\theta + d\theta)_M} = \overrightarrow{0}$ Par projection de l'équation précédente sur la base locale, on en déduit les équations suivantes:

- $\operatorname{sur} \overrightarrow{n(M)} : \overrightarrow{df_{T \to C}(M)_M} . \overrightarrow{n(M)} (T_{T \to C}(\theta) + T_{T \to C}(\theta + d\theta)) . sin\left(\frac{d\theta}{2}\right) = 0$ $\operatorname{sur} \overrightarrow{t(M)} : \overrightarrow{df_{T \to C}(M)_M} . \overrightarrow{t(M)} + (-T_{T \to C}(\theta) + T_{T \to C}(\theta + d\theta)) . cos\left(\frac{d\theta}{2}\right) = 0$

Question 6:	Linéarisez les expressions précédentespour $\frac{d\theta}{2} \to 0$.

Question 7: Montrez que si l'on pose :

$$dT_{T \to C}(\theta) = T_{T \to C}(\theta + d\theta) - T_{T \to C}(\theta) \text{ et } T_{T \to C}(\theta) = \frac{T_{T \to C}(\theta + d\theta) + T_{T \to C}(\theta)}{2}, \text{ on obtient : } - \text{sur } \overrightarrow{n(M)} : \overrightarrow{df_{T \to C}(M)_M}.\overrightarrow{n(M)} = T_{T \to C}(\theta).d\theta$$

- sur $\overrightarrow{t(M)}$: $\overrightarrow{df_{T\to C}(M)_M}$. $\overrightarrow{t(M)} = -dT_{T\to C}(\theta)$

Question 8 : En remplaçant $\overrightarrow{df_{T \to C}(M)_M}$ par son expression (question 5), montrez que :

- $\begin{array}{l} \ \operatorname{sur} \ \overrightarrow{n(M)} : T_{T \to C}(\theta) = p(\theta).Rl, \\ \ \operatorname{sur} \ \overrightarrow{t(M)} : dT_{T \to C}(\theta) = -p(\theta).f_0.Rld\theta \end{array}$

Question 9: Ecrivez le rapport $\frac{dT_{T \to C}}{T_{T \to C}}(\theta)$ et simplifiez son expression.

Statique, lois de Co	oulomb	PT
Question 10: In	tégrez le rapport $\frac{dT_{T \to C}}{T_{T \to C}}(\theta)$ entre $\theta = 0$ et $\theta = \theta_f$.	
Question 11: Enfonction de T .	n remplaçant $T_{T o C}(0) = T$ et $T_{T o C}(heta_f) = t$, donnez l'ex	spression de t en
	n déduire, à l'aide des résultats de l'étude expérimentale l ence entre la corde et le tambour.	a valeur moyenne
	racez, avec cette valeur du facteur d'adhérence, la cour de l'expérimentation du Q2.	be théorique sur
On souhaite ma	aintenant déterminer le couple transmis par le Tambour	5 à la Corde.
	éterminez le moment élémentaire $\overrightarrow{dM_{O,T\to C}}(\theta)$ au point Con de $T_{T\to C}(\theta)$ et R, à l'aide des questions 5 et 8.) du Tambour sur

Question 15: Intégrez le moment élémentaire $\overrightarrow{dM_{O,T\to C}}(\theta)$ entre $\theta=0$ et $\theta=\theta_f$. Endéduire le moment en O: $\overrightarrow{M_{O,T\to C}}$.
Question 16: Calculez la valeur de la norme de ce moment pour 1, 2 et 3 tours d'enrou ement de la corde.
Question 16 : Estimez l'intensité de la force exercée par l'utilisateur.