1 TATA41 - Föreläsning 1

Föreläsaren heter Hans gunnmark. Det är samma bok som grunken. Envariabels analys skapades 1700-talet, av Newton och Libnitz.

2 Gränsvärden

Slå in ett tal i miniräknaren, tryck på roten ur knappen flera gånger så kommer talet närmare och närmare 1. Det kommer aldrig riktigt till 1, det går mot 1.

2.1 Exempel

 $\frac{1}{x}$ går mot 0 då x går mot ∞ $\frac{x^3-1}{x-1}$ går mot 3 då x går mot 1

2.2 Definition av gränsvärde

Låt f vara en funktion vars definitionsmängd D_f innehåller godtyckligt stora tal (dvs D_f är inte en uppåt begränsad mängd).

Påståendet " $f(x) \to A, x \to \infty$ " betyder följande:

För varje $\epsilon>0$ (oavsett hur litet) finns ett tal ω (som får bero på ϵ) sådant att $A-\epsilon< f(x)< A+\epsilon, x>\omega$ och $x\in D_f$

2.3 Exempel

Låt $f(x) = \frac{1}{x}$ och undersök om ovanstående vilkor är uppfyllt ifall A=0 resp. A=5.

$$D_f = \mathbb{R} \{0\} = \{x \in \mathbb{R} : x \neq 0\}$$

är ej uppåt begränsad. Ok.

2.3.1 Fallet A=0

Låt $\epsilon > 0$ vara godtyckligt, och betrakta olikheten $A - \epsilon < f(x) < A + \epsilon$, dvs $-\epsilon < \frac{1}{x} < \epsilon$.

Denna olikhet är sann för alla $x>\frac{1}{\epsilon}$ (och för alla $x<\frac{-1}{\epsilon}$, men det är irrelevant här). Vilkoret är därmed uppfyllt (med $\omega=\frac{1}{\epsilon}$), vilket betyder att påståendet " $\frac{1}{x}\to 0, x\to \infty$ " är sant.

2.3.2 Fallet A=5

Betrakta olikhet $A-\epsilon < f(x) < A+\epsilon$ för (t.ex.) $\epsilon=1$ $4<\frac{1}{x}<6 \Leftrightarrow \frac{1}{6}< x<\frac{1}{4}$ För detta val av ϵ finns det inget ω sådant att olikheten är uppfylld för alla $x>\omega$ Vilkoret är därmed ej uppfyllt, så " $\frac{1}{x}\to 5, x\to\infty$ " är falskt.

2.4 Sats

Om $f(x) \to A_1$, och $f(x) \to A_2, x \to \infty$, så är $A_1 = A_2$

2.5 Bevis

Vi antar $A_1 \neq A_2$ och härleder en motsägelse.

Låt $\epsilon > 0$ vara så litet att intervallen $[A_1 - \epsilon, A_1 + \epsilon]$ och $[A_2 - \epsilon, A_2 + \epsilon]$ inte överlappar.

Förutsättningen $(f \to A_1 \text{ och } A_2)$ innebär (enl. def ovan) att det finns ω_1 och ω_2 .

Så att:

$$\begin{cases} A_1 - \epsilon < f(x) < A_1 + \epsilon, \forall x > \omega_1; (x \in D_f) \\ A_2 - \epsilon < f(x) < A_2 + \epsilon, \forall x > \omega_2; (x \in D_f) \end{cases}$$

Men båda olikheterna kan ej vara sanna samtidigt, eftersom intervallen inte överlappar.

Påståendet " $f(x) \to A, x \to \infty$ " kan alltså vara sant för högst ett tal A, och om ett sådant tal finns så kalla sdet för gränsvärdet (limes) av $f(x), x \to \infty$ Skrivsätt:

$$\lim_{x \to \infty} f(x) = A$$

Obs! Blanda inte ihop de två skrivsätten. Dvs skriv inte skrivsätten t.ex. $\lim_{x\to\infty}A$ eftersom $\lim_{x\to\infty}f(x)=A$ (är gränsvärdet). Det är f(x) som går mot A inte lim.

2.6 Räkneregler

Man använder nästan aldrig definitionen direkt för att räkna ut gränsvärden. Istället används räknelagar.

2.7 Sats

Om $f(x) \to A$ och $g(x) \to B, x \to \infty$, så gäller även följande då $x \to \infty$.

- * $f(x) + g(x) \rightarrow A + B$
- * $f(x) \times g(x) \to A \times B \text{ (och } cf(x) \to cA, c=\text{konstant)}$
- $* \frac{f(x)}{g(x)} \to \frac{A}{B} \text{ om } B \neq 0$

Under förutsättning att vänsterledens def.mängder innehåller godt, stora tal.

2.8 Bevis för räknelagen för plus

Låt $\epsilon>0$ Sätt $\phi=\frac{\epsilon}{2}$ Gränsvärdes definitionen ger att det finns ω_1 och ω_2 så att

$$\begin{cases} A - \phi < f(x) < A + \phi, x > \omega_1, x \in D_f, \\ B - \phi < g(x) < B + \phi, x > \omega_2, x \in D_g \end{cases}$$

Ledvis addition ger att

$$(A - \phi) + (B - \phi) < f(x) + g(x) < (A + \phi) + (B + \phi)$$

om $x > \omega_1$ och $x > \omega_2$ och $x \in D_f$ och $x \in D_g$ dvs (eftersom $\phi + \phi + \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$)

$$(A+B) - \epsilon < f(x) + g(x) < (A+B) + \epsilon$$

om $x > \omega = \max(\omega_1, \omega_2)$ och $x \in D_{f+g}$

2.9 Exempel

Vi har redan visat att $\frac{1}{x} \to 0$ då $x \to \infty.$ Räknelagen för gånger ger då

$$\frac{1}{x^2} = \frac{1}{x} \times \frac{1}{x} \to 0 \times 0 = 0, x \to \infty$$

$$\frac{1}{x^3} = \frac{1}{x^2} \times \frac{1}{x} \to 0 \times 0 = 0, x \to \infty$$

osv.

Även t.ex. $\frac{1}{x^{\frac{1}{2}}} = \frac{1}{\sqrt{x}} \to x \to \infty$. Räknelagarna ger även t.ex.

$$\frac{2x^2 - 3x + 1}{5x^2 + 4} = \frac{x^2(2 - \frac{3}{x} + \frac{1}{x^2})}{x^2(5 + \frac{4}{x^2})} \to \frac{2 - 0 + 0}{5 + 0} = \frac{2}{5}, x \to \infty$$

och

$$\sqrt{x^2 + x} - x = \frac{(\sqrt{x^2} + x)(\sqrt{x^2} - x)}{\sqrt{x^2} + x} = \frac{(x^2 + x) - x^2}{\sqrt{x^2 + x} + x} = \frac{x}{\sqrt{x^2} \sqrt{1 + \frac{1}{x}} + x} = \frac{x}{x(\sqrt{1 + \frac{1}{x}} + 1)} = \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} \to \frac{1}{\sqrt{1 + 0} + 1} = \frac{1}{2}, x \to \infty$$

Vi kan anta att x > 0 när vi ska låta $x \to \infty$. Då är $\sqrt{x^2} = |x| = x$ I sista steget används att \sqrt{x} är en kontinuerlig funtion. Mer om det nästa gång.

Se boken för det def. av gr.v då $x\to -\infty, x\to a$ (ett reellt tal), då $x\to a^+$ resp a^- (höger- resp vänster-gränsvärde), och av s.k. oegentligt gr.v. $f(x)\to \infty$ eller $-\infty$.

2.10 Exempel

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \frac{5}{4}$$

ty

$$\frac{x^2 + x - 6}{x^2 - 4} = \frac{(x - 2)(x + 3)}{(x - 2)(x + 2)} = \frac{x + 3}{x + 2} \to \frac{2 + 3}{2 + 2} = \frac{5}{4}, x \to 2$$

Exempel 2.11

Låt $f(x) = \frac{1}{x}$ (för $x \neq 0$) * $f(x) \to \infty$ då $x \to 0^+$ * $f(x) \to -\infty$ då $x \to 0^-$ * f(x) har inget gr.v. (inte ens oengentligt) då $x \to 0$

2.12Exempel

Låt:

$$f(x) = \begin{cases} 5, x \neq 3, \\ 6, x = 3, \end{cases}$$

Då är $\lim_{x\to 3} f(x) = 5$ (Att f(3) = 6 påverkar per def. inte gränsvärdet)