Aprendiendo Redes Bayesianas para Clasificación: Buscando en el espacio de los Grafos Acíclicos Parcialmente Dirigidos

Silvia Acid Luis M. de Campos Fco. Javier García

Uncertainty Treatment in Artificial Intelligence Research Group Department of Computer Science and Artificial Intelligence

Granada University (Spain)

Introducción

Clasificación supervisada

Aprender una red bayesiana y utilizarla como clasificador.

Nuestro método se basa en la utilización de un algoritmo de búsqueda especializado

Nuestro espacio de búsqueda son los C-RPDAGS que combinan dos conceptos de equivalencia para dags:

Equivalencia de clasificación

Equivalencia de independencia

Introducción

Redes Bayesianas como Clasificadores

- Una Red Bayesiana es una representación gráfica de una distribución de probabilidad, con dos componentes:
 - Un grafo directo acíclico (DAG) $G=(U,E_g)$ donde $U=\{X_1,X_2, ..., X_n\}$ es un conjunto de nodos que representa las variables del sistema y E_g es un conjunto de arcos que representa relaciones de dependencia directa entre las variables de U
 - Un conjunto de parámetros para cada variables de U, normalmente distribuciones de probabilidad condicionada.
- Una variable sólo se encuentra influenciado por el Markov Blanket de la misma (variables padres, hijos y padre de hijos)
- Para usar una red bayesiana como clasificador sólo nos hace falta saber el Markov Blanket de la variable a Clasificar

Redes Bayesianas como Clasificadores

Aprendizaje de Redes Bayesianas

- Comos las redes tienen dos componentes, hay que realizar dos tareas:
 - Aprendizaje de la estructura gráfica
 - Aprendizaje de los parámetros
 - Para realizar el aprendizaje paramétrico es necesario conocer antes la estructura de la red.
- Los algoritmos de aprendizaje estructural lo podemos dividir en:
 - Métodos basados en detección de independencias
 - Métodos basados en funciones de evaluación y técnicas de búsqueda (métrica+búsqueda)
 - Métodos híbridos
- En los métodos basados en el paradigma métrica+búsqueda, cada algoritmo está caracterizado por la función de evaluación y el procedimiento de búsqueda usado

Aprendizaje de Redes Bayesianas

Aprendizaje de Redes Bayesianas

- Los métodos basados en métrica+búsqueda buscan un grafo que maximice la métrica, dónde dicha métrica es una medida de adecuación del grafo a los datos.
- Estos métodos son eficientes principalmente gracias a la propiedad de descomponibilidad que muchas funciones de evaluación tienen.
- Una función de evaluación g se dice que es descomponible si la evaluación de cualquier estructura de una red bayesiana puede verse como un producto (o suma en el dominio logarítmico) de evaluaciones locales de un nodo y sus padres.

$$g(G:D) = \sum_{X \in U} g_D(X, Pa_G(X))$$

Aprendizaje de Redes Bayesianas

Clasificadores Bayesianos

Un método de métrica+búsqueda encuentra una red que maximice la función de evaluación, pero no necesariamente la capacidad predictora de la red.

- Se han desarrollado una serie de algoritmos que realizan una búsqueda entre diferentes tipos de DAGs, en su mayoría extensiones del modelo Naive Bayes.:
 - Naive Bayes (NB)
 - Tree Augmented NB (TAN)
 - Bayesian network augmented NB (BAN)
 - Semi NB
 - Selective NB
 - K-dependent Bayesian Classifier (KDB)
 - Hierachical NB (HNB)

Además tenemos:

- Redes Bayesianas (Unrestricted Bayesian Networks UBN-)
- Métodos basados en Markov Blanket (MB-GA, RMB-GA)
- Multiredes Bayesianas (Bayesian Multinets –BMN-)

Clasificadores Bayesianos

Class-Focused DAGs (C-DAGs)

Equivalencia de clasificación: Sean G=(V,E_g) y G'=(V,E_{g'}) dos DAGs. Sea pa cualquier distribución de probabilidad conjunta sobre V, sean p_G y p_{G'} la distribución de probabilidad que factorizan G y G' respectivamente, que se definen como $p_G(X | Pa_G(X)) = p_G(X | Pa_G(X))$ y $p_{G'}(X | Pa_{G'}(X)) = p_{G'}(X | Pa_{G'}(X))$, $\forall X \in V$. Si $p_G(C | x_1, ..., x_n) = p_{G'}(C | x_1, ..., x_n)$, decimos que G y G' son equivalentes en clasificacion.

Proposición: Dado cualquier DAG G=(V,E_g), sea G_c=(V,Ec) un subgrafo de G definido como sigue:

- 1. $Pa_{Gc}(C)=Pa_{G}(C)$,
- 2. $\forall X \in V, X \neq C$, si $C \in Pa_G(X)$ entonces $Pa_G(X) = Pa_{GC}(X)$,
- 3. $\forall X \in V, X \neq C$, si $C \notin Pa_G(X)$ entonces $Pa_{GC}(X) = \emptyset$

Entonces G y G_c son equivalentes en clasificación

Nótese que G_c no es igual al subgrafo de G inducido por el Markov Blanket de C. Este formalismo tiene menos arcos.

G_c es el mínimo subgrafo de vualaquier DAG G que realiza la función de clasificador igual que G para la variable C

Class-Focused DAGs (C-DAGs)

Class-Focused DAGs (C-DAGs)

Class-focused DAG: Un DAG $G=(U,E_g)$ es un class-focused DAG (C-DAG) respecto de la variable C si y sólo si satisface la siguiente condición:

 $\forall X,Y \in G$, $Si X \rightarrow Y \in E_g$ entonces Y=C o X=C o C $\rightarrow Y \in E_g$

De esta forma un C-DAG contiene sólo arcos entre la clase y otras variables (en cualquier dirección). Y arcos entre variables e hijos de la clase.

Un C-DAG puede verse como na representación canónica de una clase de DAGs, donde todos ellos con equivalentes como clasificadores para C

Class-Focused DAGs (C-DAGs)

PDAGs

Los objetos gráficos que vamos a usar para representar equivalencias en independencia de DAGs son los PDAGs (Acyclic Partically Directed Graphs): Un PDAG es un grafo que contiene enlaces dirigidos (arcos) y no dirigidos (aristas) pero no tiene ciclos dirigidos.

Definamos alguna notación:

- El esqueleto de un DAG es el grafo no dirigido que resulta de ignorar la dirección de cada arco
- Un patrón h-h (cabeza-cabeza head-to-head-) en un DAG G es una tripleta ordenada de nodos (X,Y,Z), doden G contiene los arcos X→Y y Y←Z
- Dado un PDAG G=(V,E $_g$), se define los siguiente conjuntos de nodos para cada nodo $X \in V$:
 - $Ch_{G}(X)=\{Y \in V \mid X \rightarrow Y \in E_{G}\}$, el conjunto de hijos de X.
 - $Sib_{G}(X)=\{Y \in V \mid X-Y \in E_{G}\}$, el conjunto de siblings de X.
 - $Ad_G(X)=\{Y \in V \mid X \rightarrow Y \in E_G \text{ o } X \longrightarrow Y \in E_G\}$, el conjunto de adyacentes de X. Obviamente $Ad_G(X)=Pa_G(X) \cup Ch_G(X) \cup Sib_G(X)$

Hay un tipo de PDAGs que pueden ser usados para representar canónicamente clases de DAGs que son equivalentes en independencias: se denominan Completed PDAGs (también conocidos por essential graphs o patterns). Este tipo reduce el espacio de búsqueda, pero el precio que tiene que pagar por esta reducción es que no aprovecha la propiedad de descomposición de las métricas, lo cual los hace poco eficientes.

Nuestro objetivo es aplicar la equivalencia de independencia alos C-DAGs, para ello utilizaremos los Restricted PDAGs (RPDAGs) que se diferencian ligeramente de los Completed PDAGs: dos diferentes RPDAGs pueden corresponde a la misma clase de equivalencia de DAGs pero que nos permiten aprovechar la propiedad de descomponibilidad de la métrica.

PDAGs

Restricted PDAGs (RPDAGs)

Restricted PDAG: Un PDAG G=(V,E_G) es un RPDAG si y sólo si satisface las siguientes condiciones:

- 1. $\forall X \in V$, Si $Pa_G(X) \neq \emptyset$ entonces $Sib_G(X) = \emptyset$
- 2. G no contiene ningún ciclo dirigido
- 3. G no contiene ningún ciclo completamente no dirigido
- 4. Si $X \rightarrow Y \in E_G$ entonces $|Pa_G(Y)| \ge 2$ o $Pa_G(X) \ne \emptyset$ La primera condición prohíbe configuraciones del tipo $Y \rightarrow X - Z$ en el RPDAG G.
 - La condición 4 nos dice que $X \rightarrow Y$ existe eb G sólo si es parte de un patrón h-h o existe otr arco (originado por un patrón h-h) que va a X.

Como los RPDAGs son representaciones de conjuntos de equivalencias de independencia de DAGs, definiremos que conjuntos de DAGs están representados por un RPDAG.

- Extensión de un RPDAG: Dado un RPDAG $G = (V, E_G)$, decimos que un DAG $H = (V, E_H)$ es una extensión de G (Ext(G)) si y sólo si:
 - G y H tienen el mismo esqueleto
 - Si $X \rightarrow Y \in E_G$ entonces $X \rightarrow Y \in E_H$
 - G y H tienen los mismos patrones h-h (el proceso de dirigir los enlaces de G para producir H no genera nuevos patrones h-h).

Restricted PDAGs (RPDAGs)

Class Focused RPDAG (C-RPDAG)

- Class Focused RPDAG: Un class-focused RPDAG (C-RPDAG) es un RPDAG cuya extensiones son C-DAGs.
- Caracterización de C-RPDAG: Un PDAG G=(U,E_g) es un class-focused RPDAG (C-RPDAG) respecto de la variable C si y sólo si satisface las siguientes condiciones:
 - 1. G no contiene ningún ciclo dirigido
 - 2. Si $Pa_G(C)\neq\emptyset$ entonces $|Pa_G(C)|\geq 2$ y Sib_G(C)= \emptyset
 - 3. $\forall X \in V$, $X \neq C$, si $Pa_G(X) \neq \emptyset$ entonces $C \in Pa_G(X)$ y además $|Pa_G(X)| \geq 2$ o $|Pa_G(C)| \geq 2$
 - 4. $\forall X \in V$, $X \neq C$, si $Sib_G(X) \neq \emptyset$ entonces $Sib_G(X) = \{C\}$ y $Pa_G(X) = \emptyset$
- Con la definición de C-RPDAG obtenemos una reducción del espacio de búsqueda al trabajar con elementos equivalentes en clasificación y equivalentes en independencias
- Nos centramos sólo en aquellas estructuras útiles para clasificación
- No se impone una estructura NB, aunque se puede obtener
- Podemos movernos por estructuras más expresivas
- La selección de características es inherente a nuestro enfoque
- Téngase en cuenta que C-RPDAG no es una representación canónica de clases equivalentes de clasificación de DAGs.

Class Focused RPDAG (C-RPDAG)

C-RPDAG Search Space

C-RPDAG Search Space

El Método de Búsqueda

- Usamos un método de búsqueda local en el espacio de los C-RPDAGs
- Comenzamos con un grafo vacío.
- Necesitamos definir una serie de operadores para movernos de una configuración a otra configuración vecina que siga estando en el espacio de los C-RPDAGs
- Los operadores son básicamente: la inclusión de un enlace (orientado o no) entre dos nodos no adyacentes y el borrado de un enlace entre dos nodos adyacentes.
- Los operadores deberán cumplir una serie de condiciones para obtener un vecino válido.

El Método de Búsqueda

El Método de Búsqueda

Operator	Conditions	Actions
$A_ParentOfC(X)$	$X \not\in Ad_G(C); Pa_G(C) \neq \emptyset$	$\operatorname{insert}(X \to C, G)$
A _ChildOfC(X)	$X \not\in Ad_G(C); Pa_G(C) \neq \emptyset$	$\operatorname{insert}(C \to X, G)$
$A_SiblingOfC(X)$	$X \not\in Ad_G(C); Pa_G(C) = \emptyset$	$insert(X{-\!\!\!\!-} C,\!G)$
$A \bot HHOfC(X, Y)$	$X \notin Ad_G(C); Pa_G(C) = \emptyset; Y \in Sib_G(C)$	$\begin{aligned} &\operatorname{insert}(X \to C, G) \\ &\operatorname{delete}(Y -\!\!\!\!-\!\!\!\!-\!$
$A_ParentOfChild(X, Y)$	$X \not\in Ad_G(Y); Y \in Ch_G(C)$ There is no directed path from Y to X in G	$\operatorname{insert}(X \to Y, G)$
A _HHOfChild (X, Y)	$X \not\in Ad_G(Y); Y \in Sib_G(C)$ There is no directed path from Y to X in G	$\operatorname{insert}(X \to Y, G)$ $\operatorname{delete}(C - Y, G)$ $\operatorname{insert}(C \to Y, G)$

El Método de Búsqueda

El Método de Búsqueda A_ParentofC(X) A_ChildofC(X) A_HHofC(X,Y) A_SiblingofC(X)

A_ParentofChild(X,Y)

El Método de Búsqueda

A_HHofChild(X)

El Método de Búsqueda

Operator	Conditions	Actions
D-ParentOfC(X)	$X \in Pa_G(C); Pa_G(C) \ge 3$	$delete(X \to C,G)$
$D_{-}ChildOfC(X)$	$X \in Ch_G(C)$	$\forall Z \in Pa_G(X)$ $delete(Z \rightarrow X,G)$
$D_{-}SiblingOfC(X)$	$X \in Sib_G(C)$	$\operatorname{delete}(X{-\!\!\!\!-} C,\!G)$
$\mathrm{D}\operatorname{-HHOfC}(X,Y)$	$X \in Pa_G(C); Y \in Pa_G(C); Pa_G(C) = 2$	$\begin{aligned} \operatorname{delete}(X \to C, G) \\ \operatorname{delete}(Y \to C, G) \\ \operatorname{insert}(Y -\!\!\!\!-\!\!\!\!-\!$
D_ParentOfChild (X, Y)	$X \in Pa_G(Y); Y \in Ch_G(C)$ $ Pa_G(Y) \ge 3 \text{ or } Pa_G(C) \ne \emptyset$	$\operatorname{delete}(X \to Y, G)$
DHHOfChild(X, Y)	$X \in Pa_G(Y); Y \in Ch_G(C)$ $ Pa_G(Y) < 3; Pa_G(C) = \emptyset$	$\begin{aligned} & \operatorname{delete}(X \to Y, G) \\ & \operatorname{delete}(C \to Y, G) \\ & \operatorname{insert}(C - Y, G) \end{aligned}$

El Método de Búsqueda

El Método de Búsqueda

El Método de Búsqueda

Función de Evaluación

- El método de búsqueda descrito se tiene que aplicar con una función de evaluación
- Usamos una métrica no especializada en clasificación usada comúnmente en el aprendizaje de Redes Bayesianas (por ejemplo BIC, BDe, K2, etc.)
- Por eficiencia la métrica usada debe ser descomponible. Así sólo tendremos que evaluar la parte que el operador modifica y no el grafo entero.
- Sea G un C-RPDAG y G' cualquier C-RPDAG obtenido de aplicar los operadores descritos anteriormente. Sea g una métrica descomponible:

Función de Evaluación

Función de Evaluación

(a) If the operator is A_ParentOfC(X) then

$$g(G':D) = g(G:D) - g_D(C, Pa_G(C)) + g_D(C, Pa_G(C)) \cup \{X\})$$

(b) If the operator is $A_{-}ChildOfC(X)$ then

$$g(G':D) = g(G:D) - g_D(X,\emptyset) + g_D(X,\{C\})$$

(c) If the operator is A_SiblingOfC(X) then

$$g(G':D) = g(G:D) - g_D(C,\emptyset) + g_D(C,\{X\})$$

(d) If the operator is $A_{-}HHOfC(X, Y)$ then

$$g(G':D) = g(G:D) - g_D(C, \{Y\}) + g_D(C, \{X,Y\})$$

(e) If the operator is A_ParentOfChild(X, Y) then

$$g(G':D) = g(G:D) - g_D(Y, Pa_G(Y)) + g_D(Y, Pa_G(Y) \cup \{X\})$$

(f) If the operator is $A_HHOfChild(X, Y)$ then

$$g(G':D) = g(G:D) - g_D(Y, \{C\}) + g_D(Y, \{C, X\})$$

Función de Evaluación

Función de Evaluación

(g) If the operator is D-ParentOfC(X) then

$$g(G':D) = g(G:D) - g_D(C, Pa_G(C)) + g_D(C, Pa_G(C) \setminus \{X\})$$

(h) If the operator is $D_-ChildOfC(X)$ then

$$g(G':D) = g(G:D) - g_D(X, Pa_G(X)) + g_D(X, \emptyset)$$

(i) If the operator is D_SiblingOfC(X) then

$$g(G':D) = g(G:D) - g_D(C, \{X\}) + g_D(C, \emptyset)$$

(j) If the operator is $D_{-}HHOfC(X,Y)$ then

$$g(G':D) = g(G:D) - g_D(C, Pa_G(C)) + g_D(C, Pa_G(C) \setminus \{X\})$$

(k) If the operator is D_ParentOfChild(X, Y) then

$$g(G':D) = g(G:D) - g_D(Y, Pa_G(Y)) + g_D(Y, Pa_G(Y) \setminus \{X\})$$

(1) If the operator is $D_HHOfChild(X, Y)$ then

$$g(G':D) = g(G:D) - g_D(Y, \{C, X\}) + g_D(Y, \{C\})$$

Función de Evaluación

Resultados Experimentales

- 31 Conjuntos de Datos de UCI (excepto mofn-3-7-10 y corral)
- Las variables continuas han sido discretizadas y los casos con valores perdidos han sido eliminados
- Se ha estudiado nuestro método contra NB, TAN, BAN y búsqueda local en un Red Bayesiana sin restricciones (UBN)
- BAN y UBN usan búsqueda local en el espacio de DAGs
- La métrica usada es BDeu
- Suavizado en el aprendizaje paramétrico

Take 1	e-bother t		
Data Set	Instances	Attributes	Classes
adult	45222	14	2
australian	690	14	2
breast	682	10	2
car	1728	6	4
chess	3196	36	2
cleve	296	13	2
corral	128	6	2
crx	653	15	2
diabetes	768	8	2
DNA-nominal	3186	60	3
flare	1066	10	2
german	1000	20	2
glass	214	9	7
glass2	163	9	2
heart	270	13	2
hepatitis	80	19	2
iris	150	4	3
letter	20000	16	26
lymphography	148	18	4
mofn-3-7-10	1324	10	2
mushroom	8124	22	2
nursery	12960	8	5
pima	768	8	2
satimage	6435	36	6
segment	2310	19	7
shuttle-small	5800	9	7
soybean-large	562	35	19
splice	3190	60	3
vehicle	846	18	4
vote	435	16	2
waveform-21	5000	21	3

Resultados Experimentales

Resultados Experin

Media de 3 evaluaciones, en cada evaluación se ha realizado un 10-fold Cross Validation.

Mejor clasificador en negrita y peor en cursiva

C-RPDAG nunca es el peor y es el mejor mayor número de veces

xperin	Data Set	NB	TAN	BAN	UBN	CRPDAG
	adult	83.13 ± 0.52	85.25 ± 0.57	85.54 ± 0.55	85.43 ± 0.51	85.29 ± 0.45
	australian	85.22 ± 3.60	84.93 ± 3.53	85.94 ± 3.96	85.75 ± 4.63	86.04 ± 4.25
ones, en	breast	97.56 ± 1.50	95.55 ± 2.30	97.56 ± 1.71	97.65 ± 1.75	97.56 ± 1.71
	car	85.40 ± 2.58	93.87 ± 1.96	93.09 ± 2.03	92.98 ± 2.10	93.07 ± 1.97
ha	chess	87.84 ± 1.79	92.32 ± 1.59	96.88 ± 1.23	97.02 ± 1.03	96.53 ± 1.19
Cross	cleve	83.24 ± 6.87	80.88 ± 8.52	82.57 ± 7.52	83.57 ± 7.61	81.78 ± 7.56
01033	corral	86.82 ± 9.09	99.49 ± 1.54	$\textbf{100.00} \pm \textbf{0.00}$	$\textbf{100.00} \pm \textbf{0.00}$	$\textbf{100.00} \pm \textbf{0.00}$
4	crx	86.97 ± 3.94	86.26 ± 5.19	86.56 ± 4.36	86.71 ± 4.31	87.02 ± 3.70
JAN 1	diabetes	$\textbf{78.17} \pm \textbf{3.75}$	78.91 ± 4.02	78.65 ± 3.70	$\textbf{79.09} \pm \textbf{3.34}$	78.78 ± 3.74
(X)	DNA-nominal	95.40 ± 0.84	$94.84 \pm \theta.86$	95.31 ± 1.05	95.95 ± 1.14	96.15 ± 1.10
	flare	80.40 ± 3.59	82.99 ± 3.16	82.93 ± 2.99	82.27 ± 2.99	83.27 ± 2.98
	german	$\textbf{75.27} \pm \textbf{3.43}$	72.70 ± 3.68	74.67 ± 3.41	73.80 ± 4.62	74.30 ± 4.07
n negrita	glass	72.78 ± 8.02	68.59 ± 7.38	71.83 ± 8.58	69.06 ± 9.59	$\textbf{73.10} \pm \textbf{7.51}$
	glass2	83.38 ± 8.79	85.04 ± 7.91	85.04 ± 7.99	84.82 ± 8.44	85.86 ± 7.81
	heart	83.46 ± 8.45	82.84 ± 8.33	82.10 ± 8.41	83.33 ± 8.06	82.22 ± 8.16
	hepatitis	85.00 ± 10.38	90.00 ± 8.64	88.75 ± 8.76	89.58 ± 11.06	88.75 ± 9.47
638	iris	94.22 ± 4.77	93.33 ± 5.43	94.44 ± 4.55	94.89 ± 5.27	94.67 ± 4.64
100	letter	74.01 ± 1.00	85.86 ± 0.79	84.35 ± 0.70	84.43 ± 0.85	85.08 ± 0.75
el peor y	lymphography	84.41 ± 10.20	81.95 ± 10.60	84.43 ± 10.29	79.08 ± 11.85	81.54 ± 11.07
	mofn-3-7-10	85.40 ± 3.50	90.69 ± 2.26	87.29 ± 3.55	99.17 ± 2.48	99.50 ± 1.15
úmero de	mushroom	95.38 ± 0.84	99.98 ± 0.06	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00
	nursery	90.26 ± 0.80	92.28 ± 0.85	91.82 ± 0.81	93.12 ± 0.81	93.52 ± 0.61
	pima	77.91 ± 4.75	78.78 ± 4.56	78.03 ± 4.56	78.78 ± 4.64	78.03 ± 4.54
	satimage	82.43 ± 1.03	88.52 ± 0.96	88.29 ± 0.98	83.49 ± 1.72	88.19 ± 1.12
	segment	92.16 ± 1.69	95.02 ± 1.26	94.34 ± 1.28	94.56 ± 1.29	94.34 ± 1.29
	shuttle-small	99.01 ± 0.37	99.67 ± 0.25	99.72 ± 0.18	99.69 ± 0.17	99.60 ± 0.23
	soybean-large	91.70 ± 3.56	86.11 ± 4.16	92.53 ± 3.37	88.55 ± 3.96	90.33 ± 3.25
	splice	95.45 ± 1.08	94.90 ± 0.98	95.28 ± 1.08	95.73 ± 1.11	96.27 ± 1.13
	vehicle	62.85 ± 4.79	70.73 ± 3.99	71.56 ± 3.69	65.13 ± 4.99	$\textbf{71.91} \pm \textbf{3.91}$
	vote	90.04 ± 5.10	94.57 ± 3.02	94.34 ± 3.16	94.57 ± 3.05	93.49 ± 3.22
	$waveform\hbox{-}21$	81.82 ± 1.32	82.89 ± 1.26	82.36 ± 1.67	79.81 ± 1.76	82.45 ± 1.67
Resu	Times best	2	8	6	9	12
	Times worst	18	10	1	2	0

Resultados Experimentales

En esta tabla comparamos cada método con los demás.

En cada fila tenemos cuantas veces es mejor un algoritmo respecto a los demás

En cada columna tenemos cuantas veces es peor un algoritmo

		NB	TAN	BAN	UBN	CRPDAG	
	NB	_	12	7	7	5	31
	TAN	19	_	13	10	12	54
Better	$_{\mathrm{BAN}}$	23	17	_	13	10	63
	UBN	24	19	16	_	12	71
	CRPDAG	25	19	15	17	_	76
		91	67	51	47	39	

Resultados Experimentales

Resultados Experimentales

- En esta tabla tenemos cuando nuestro método es mejor o peor que el resto y, además, este resultado es significativo.
- Para ello se ha utilizado el Test de rangos con signos de Wilcoxon para muestras pareadas.
- El número de veces que es mejor significativamente es 36 frente al número de veces que es peor es 9

	NB	TAN	$_{\mathrm{BAN}}$	$_{\mathrm{UBN}}$	Total
CRPDAG is better	16	9	5	6	36
CRPDAG is worse	2	3	3	1	9

Resultados Experimentales

Resultados Experimentale

- Hemos observado
 que UBN obtiene
 mejores resultados
 que NB y TAN
- Para determinar la influencia de la métrica se ha hecho una comparativa de nuestro método usando las mástricas BDeu y BIC
- BIC es peor

Resultados

Data Set	BIC	BDeu
adult	$85.42 \pm 0.48 *$	85.29 ± 0.45
australian	86.28 ± 3.57	86.04 ± 4.25
breast	97.56 ± 1.71	97.56 ± 1.71
car	85.63 ± 2.69	$93.07 \pm 1.97 *$
chess	95.81 ± 1.24	$96.53 \pm 1.19 *$
cleve	82.46 ± 7.61	81.78 ± 7.56
corral	100.00 ± 0.00	100.00 ± 0.00
crx	86.62 ± 3.67	87.02 ± 3.70
diabetes	78.57 ± 3.44	78.78 ± 3.74
DNA-nominal	$96.33 \pm 1.04 *$	96.15 ± 1.10
flare	82.77 ± 2.83	83.27 ± 2.98
german	$\textbf{74.40} \pm \textbf{4.46}$	74.30 ± 4.07
glass	70.12 ± 7.26	$\textbf{73.10} \pm \textbf{7.51}$
glass2	84.83 ± 8.42	85.86 ± 7.81
heart	82.59 ± 8.25	82.22 ± 8.16
hepatitis	87.50 ± 10.11	88.75 ± 9.47
iris	94.22 ± 4.77	94.67 ± 4.64
letter	76.73 ± 0.95	$85.08 \pm 0.75 *$
lymphography	81.78 ± 10.56	81.54 ± 11.07
mofn-3-7-10	93.56 ± 1.88	$99.50 \pm 1.15 *$
mushroom	100.00 ± 0.00	100.00 ± 0.00
nursery	91.30 ± 0.76	$93.52 \pm 0.61*$
pima	$\textbf{78.51} \pm \textbf{4.51}$	78.03 ± 4.54
satimage	84.57 ± 1.12	$88.19 \pm \mathbf{1.12*}$
segment	92.17 ± 1.69	$94.34 \pm 1.29 *$
shuttle-small	$99.79 \pm 0.17 *$	99.60 ± 0.23
soybean-large	91.70 ± 3.56	90.33 ± 3.25
splice	96.30 ± 1.05	96.27 ± 1.13
vehicle	71.75 ± 3.80	$\textbf{71.91} \pm \textbf{3.91}$
vote	92.96 ± 4.17	93.49 ± 3.22
waveform-21	82.47 ± 1.58	82.45 ± 1.67
Times better	12	16
Times signific. better	3	7

Conclusiones

- Especializando el algoritmo de búsqueda en un esquema de métrica+búsqueda conseguimos buenos resultados sin usar una métrica especializada.
- La búsqueda basada en C-RPDAGs nos permiten trabajar con un espacio de búsqueda asequible y obtenemos redes no restringidas.
- La utilización de una métrica u otra influye en la construcción de la red como clasificador.
- Sería interesante utilizar un algoritmo de búsqueda más potente en el espacio de C-RPDAGs

Conclusiones

Clases de Elvira

Paquete elvira.learning.classification.supervised.discrete

Clases:

- MarkovBlanketLearning.java: Abstracta, hereda de Learning.java e implementa el interfaz Classifier.java
- LocalSearchLearning.java
- BANLearning.java
- CRPDAGLearinig.java

Clases de Elvira