Table 1. Table of hypotheses and associated specific predictions, whether each was supported ('yes'; signficant at p<0.05), rejected ('no'; opposite trend signficant at p<0.05), or found insigificant ('n.s.'; no significant correlation), and display items showing the results. 'RP' and 'DP' refer to ring- and diffuse- porous species, respectively.

	SCBI		Harvard Forest		
Hypotheses and Specific Predictions	RP	DP	RP	DP	Results
Warmer early springs result in earlier stem growth and longer growing seasons					
Day of year at which 25% of growth is achieved (DOY_{25}) is negatively correlated with early spring T.	yes	yes	yes	yes	Figs. 3-5
Day of year at which 50% of growth is achieved (DOY_{50}) is negatively correlated with early spring T.	yes	yes	yes	yes	Figs. 4-5
Day of year at which 75% of growth is achieved (DOY_{75}) is negatively correlated with early spring T.	n.s.	yes	yes	yes	Figs. 4-5
Day of year of max growth rate (DOY_{ip}) is negatively correlated with early spring T.	yes	yes	yes	yes	Fig. 4
Peak growing season length $(L_{PGS} = DOY_{75} - DOY_{25})$ is positively correlated with early spring T.	yes	yes	no	yes	Fig. 4
Maximum growth rates are independent of early spring temperatures.					
Max growth rate (g_{max}) is independent of early spring T.	n.s.	no (-)	no $(+)$	no (-)	Fig. 4
Annual stem growth responds positively to warmer spring temperatures.					
Annual growth (ΔDBH ; dendrobands) is positively correlated with early spring T.	n.s.	n.s.	yes	no	Fig. 4
On the centennial time scale, tree ring width (RW) is positively correlated with early spring T.	$mixed^1$	mixed^2	n.s.	no^3	Fig. 6

 $^{^1}$ One of nine species analyzed had significant positive response to April T_{max} ; one had significant negative response to March T_{max} one of two species analyzed had significant positive response to April T_{max} , both had negative response to May T_{max} one of the two species was negatively correlated with April T_{max} , and the other positively correlated with May T_{max} .

 $\label{thm:conditional} \mbox{Table 2. Dominant ring- and diffuse-porous species at SCBI and Harvard Forest, along with sample sizes analyzed here.$

site	xylem porosity	species	species code	dendro	meter bands	tree cores		
				n trees	n tree-years	n cores	date range	
SCBI	ring	Carya cordiformis	CACO	0	0	18		
	_	Carya glabra	CAGL	0	0	39		
		$Carya\ ovalis$	CAOVL	0	0	24		
		$Carya\ tomentosa$	CATO	0	0	17		
		$Fraxinus\ americana$	FRAM	0	0	69		
		$Quercus\ alba$	QURU	34	197	66		
		$Quercus\ montana$	QUPR	0	0	67		
		$Quercus\ rubra$	QUAL	35	229	71		
		Quercus velutina	QUVE	0	0	83		
	diffuse	Fagus grandifolia	FAGR	13	89	81		
		$Liriodendron\ tulipifera$	LITU	41	354	109		
Harvard	ring	Fraxinus americana	FRAM	9	27	0		
	O	Quercus alba	QURU	118	575	179	1901-2014	
		$Quercus\ velutina$	QUVE	11	50	0		
	diffuse	Fagus grandifolia	FAGR	8	45	0		
		Black Birch		8	44	0		
		Grey Birch		5	24	0		
		White Birch		3	13	0		
		$Betula\ alleghaniens is$	BEAL	21	90	44	1952-2013	
		Black Cherry		9	37	0		
		Acer rubrum	ACRU	144	669	59	1930-2014	
		Striped Maple		4	16	0		

Table 3. Summary of parameters describing the phenology and rate of growth for ring- and diffuse- porous species at SCBI and Harvard Forest.

	SC	CBI	Harvard Forest		
	ring	diffuse	ring	diffuse	
critical T_{max} window	3/22-4/9	2/19-5/21	4/2-5/7	3/19-5/7	
DOY_{25}	$123 \; (May \; 4)$	154 (June 4)	132 (May 15)	164 (June 14)	
DOY_{50}	152 (June 2)	172 (June 22)	159 (June 9)	182 (July 2)	
DOY_{75}	180 (June 30)	190 (July 9)	186 (July 6)	199 (July 19)	
DOY_{ip}	152 (June 2)	173 (June 23)	161 (June 11)	183 (July 3)	
$g_{max} \text{ (mm/day)}$	0.046	0.061	0.03	0.025	
L_{pgs}	56.5	35.8	54.5	35.1	
$\Delta DBH \text{ (mm/yr)}$	4.7	3.6	3.1	1.4	