INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4067 16-channel analog multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT4067

FEATURES

• Low "ON" resistance:

80 Ω (typ.) at $V_{CC} = 4.5 \text{ V}$

70 Ω (typ.) at $V_{CC} = 6.0 \text{ V}$

60 Ω (typ.) at $V_{CC} = 9.0 \text{ V}$

typical "break before make" built-in

· Output capability: non-standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4067 are high-speed Si-gate CMOS devices and are pin compatible with the "4067" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4067 are 16-channel analog multiplexers/demultiplexers with four address inputs (S_0 to $S_3)$, an active LOW enable input (\overline{E}), sixteen independent inputs/outputs (Y_0 to Y_{15}) and a common input/output (Z). The "4067" contains sixteen bidirectional analog switches, each with one side connected to an independent input/output (Y_0 to Y_{15}) and the other side connected to a common input/output (Z).

With \overline{E} LOW, one of the sixteen switches is selected (low impedance ON-state) by S_0 to S_3 . All unselected switches are in the high impedance OFF-state. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_0 to S_3 .

The analog inputs/outputs (Y_0 to Y_{15} , and Z) can swing between V_{CC} as a positive limit and GND as a negative limit. V_{CC} to GND may not exceed 10 V.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

CVMDOL	DADAMETED	CONDITIONS	TYP	ICAL	UNIT
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNII
t _{PZL} / t _{PZH}	turn-on time	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$			
	Ē to V₀s		26	32	ns
	S _n to V _{os}		29	33	ns
t _{PLZ} / t _{PHZ}	turn-off time				
	Ē to V₀s		27	26	ns
	S _n to V _{os}		29	30	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	29	29	pF
Cs	max. switch capacitance				
	independent (Y)		5	5	pF
	common (Z)		45	45	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{ (C_L + C_S) \times V_{CC}^2 \times f_o \}$ where:

f_i = input frequency in MHz

 f_o = output frequency in MHz

 $\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} = \text{sum of outputs}$

C_L = output load capacitance in pF

C_S = max. switch capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

74HC/HCT4067

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	Z	common input/output
9, 8, 7, 6, 5, 4, 3, 2, 23, 22, 21, 20, 19, 18, 17, 16	Y ₀ to Y ₁₅	independent inputs/outputs
10, 11, 14, 13	S ₀ to S ₃	address inputs
12	GND	ground (0 V)
15	Ē	enable input (active LOW)
24	V _{CC}	positive supply voltage

74HC/HCT4067

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

FUNCTION TABLE

		CHANNEL			
Ē	S ₃	S ₂	S ₁	S ₀	ON
L	L	L	L	L	Y ₀ – Z
L	L	L	L	Н	$Y_1 - Z$
L	L	L	Н	L	$Y_2 - Z$
L	L	L	Н	Н	Y ₃ – Z
L	L	Н	L	L	Y ₄ – Z
L	L	Н	L	Н	$Y_5 - Z$
L	L	Н	Н	L	$Y_6 - Z$
L	L	Н	Н	Н	$Y_7 - Z$
L	Н	L	L	L	Y ₈ – Z
L	Н	L	L	Н	Y ₉ – Z
L	Н	L	Н	L	Y ₁₀ – Z
L	Н	L	Н	Н	Y ₁₁ – Z
L	Н	Н	L	L	Y ₁₂ – Z
L	Н	Н	L	Н	Y ₁₃ – Z
L	Н	Н	Н	L	Y ₁₄ – Z
L	Н	Н	Н	Н	Y ₁₅ – Z
Н	Χ	X	Х	Х	none

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

74HC/HCT4067

74HC/HCT4067

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5$ or $V_I > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5$ or $V_S > V_{CC} + 0.5$ V
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
$\pm I_{CC}; \pm I_{GND}$	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note

1. To avoid drawing V_{CC} current out of terminal Z, when switch current flows in terminals Y_n , the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Y_n . In this case there is no limit for the voltage drop across the switch, but the voltages at Y_n and Z may not exceed V_{CC} or GND.

RECOMMENDED OPERATING CONDITIONS

CVMDOL	DADAMETED		74HC			74HC	Г	UNIT	CONDITIONS
SYMBOL	PARAMETER	min.	typ.	max.	min.	typ.	max.	UNII	CONDITIONS
V _{CC}	DC supply voltage	2.0	5.0	10.0	4.5	5.0	5.5	V	
VI	DC input voltage range	GND		V _{CC}	GND		V _{CC}	V	
Vs	DC switch voltage range	GND		Vcc	GND		Vcc	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTER- ISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$

16-channel analog multiplexer/demultiplexer

74HC/HCT4067

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 V

					T _{amb} (°C)				TE	ST CO	NDITIC	NS
SYMBOL	PARAMETER			7	4HC/F								
STIVIBUL	PARAMETER	+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	l _S (μ A)	Vis	Vı	
		min.	typ.	max.	min.	max.	min.	max.]	(',	(μα τη		
R _{ON}	ON-resistance		_	_		_		_	Ω	2.0	100	V _{CC}	V_{IH}
	(peak)		110	180		225		270	Ω	4.5	1000	to	or
			95	160		200		240	Ω	6.0	1000	GND	V_{IL}
			75	130		165		195	Ω	9.0	1000		
R _{ON}	ON-resistance (rail)		150	_		_		_	Ω	2.0	100	GND	V _{IH}
			90	160		200		240	Ω	4.5	1000	or	or
			80	140		175		210	Ω	6.0	1000	V_{CC}	V_{IL}
			70	120		150		180	Ω	9.0	1000		
ΔR_{ON}	maximum variation		_						Ω	2.0		V _{CC}	V _{IH}
	of ON-resistance		9						Ω	4.5		to	or
	between any two		8						Ω	6.0		GND	V_{IL}
	channels		6						Ω	9.0			

Notes

- At supply voltages (V_{CC} GND) approaching 2 V, the analog switch ON-resistance becomes extremely non-linear.
 Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.7.

16-channel analog multiplexer/demultiplexer

74HC/HCT4067

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°(C)				TE	TEST CONDITIONS	
OVMDOL	DADAMETED				74HC					V _{CC}	,,	OTLIED
SYMBOL	PARAMETER		+25		−40 t	o +85	-40 to	+125	UNIT	(V)	VI VCC or GND VIH or VIL VIH or VIL VIH or VIL VCC or GND	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0		
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.50 1.35 1.80 2.70		0.50 1.35 1.80 2.70		0.50 1.35 1.80 2.70	V	2.0 4.5 6.0 9.0		
±Iı	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	or	
±Is	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	or	$ V_S = V_{CC} - GND$ (see Fig.8)
±I _S	analog switch OFF-state current all channels			0.8		8.0		8.0	μΑ	10.0	or	$ V_S = V_{CC} - GND$ (see Fig.9)
±I _S	analog switch ON-state current			0.8		8.0		8.0	μА	10.0	or	$ V_S = V_{CC} - GND$ (see Fig.9)
Icc	quiescent supply current			8.0 16.0		80.0 160		160 320	μА	6.0 10.0	or	$V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND

74HC/HCT4067

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				•	T _{amb} (°	C)				TES	T CONDITIONS
CVMDOL	DADAMETED				74HC	;			LINUT		T CONDITIONS OTHER $R_L = \infty;$ $C_L = 50 \text{ pF}$ (see Fig.16)
SYMBOL	PARAMETER		+25		- 40 f	to +85	-40 to	+125	UNIT	V _{CC}	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os} ; Y _n to Z		25 9 7 5	75 15 13 9		95 19 16 11		110 22 19 14	ns	2.0 4.5 6.0 9.0	
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os} ; Z to Y _n		18 6 5 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 9.0	
t _{PHZ} / t _{PLZ}	turn-off time E to Y _n		74 27 22 20	250 50 43 38		315 63 54 48		375 75 64 57	ns	2.0 4.5 6.0 9.0	
t _{PHZ} / t _{PLZ}	turn-off time S _n to Y _n		83 30 24 21	250 50 43 38		315 63 54 48		375 75 64 57	ns	2.0 4.5 6.0 9.0	
t _{PHZ} / t _{PLZ}	turn-off time E to Z		85 31 25 24	275 55 47 42		345 69 59 53		415 83 71 63	ns	2.0 4.5 6.0 9.0	
t _{PHZ} / t _{PLZ}	turn-off time S _n to Z		94 34 27 25	290 58 47 45		365 73 62 56		435 87 74 68	ns	2.0 4.5 6.0 9.0	
t _{PZH} / t _{PZL}	turn-on time E to Y _n		80 29 23 17	275 55 47 42		345 69 59 53		415 83 71 63	ns	2.0 4.5 6.0 9.0	
t _{PZH} / t _{PZL}	turn-on time S _n to Y _n		88 32 26 18	300 60 51 45		375 75 64 56		450 90 77 68	ns	2.0 4.5 6.0 9.0	
t _{PZH} / t _{PZL}	turn-on time Ē to Z		85 31 25 18	275 55 47 42		345 69 59 53		415 83 71 63	ns	2.0 4.5 6.0 9.0	
t _{PZH} / t _{PZL}	turn-on time S _n to Z		94 34 27 19	300 60 51 45		375 75 64 56		450 90 77 68	ns	2.0 4.5 6.0 9.0	

74HC/HCT4067

Note to AC CHARACTERISTICS FOR 74HC

1. Due to higher Z terminal capacitance (16 switches versus 1) the delay figures to the Z terminal are higher than those to the Y terminal.

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°	°C)			Т	TEST CONDITIONS			
SYMBOL	PARAMETER				74HC	Υ			UNIT				
STIVIBUL	PARAWETER		+25		-40 t	to +85	-40 to +125			V _{CC} (V)	Vı	OTHER	
		min.	typ.	max.	min.	max.	min.	max.		(-,			
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±I _I	input leakage current			0.1		1.0		1.0	μΑ	5.5	V _{CC} or GND		
± I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	5.5	V _{IH} or V _{IL}	$ V_S = V_{CC} - GND$ (see Fig.8)	
±Is	analog switch OFF-state current all channels			0.8		8.0		8.0	μА	5.5	V _{IH} or V _{IL}	$ V_S = V_{CC} - GND$ (see Fig.9)	
±I _S	analog switch ON-state current			0.8		8.0		8.0	μΑ	5.5	V _{IH} or V _{IL}	$ V_S = V_{CC} - GND$ (see Fig.9)	
I _{CC}	quiescent supply current			8.0		80.0		160	μА	4.5 to 5.5	V _{CC} or GND	$V_{is} = GND \text{ or}$ V_{CC} ; $V_{os} = V_{CC}$ or GND	
ΔΙ _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μΑ	4.5 to 5.5	V _{CC} -2.1 V	other inputs at V _{CC} or GND	

Note

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
Ē	0.6
S _n	0.5

16-channel analog multiplexer/demultiplexer

74HC/HCT4067

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns$

					T _{amb} (°	C)				TEST	CONDITIONS
CVMDOL	DADAMETED				74HC	Т					OTHER
SYMBOL	PARAMETER		+25		-40 t	to +85	-40 to	o +125	UNIT	V _{CC}	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(')	
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os} ; Y _n to Z		9	15		19		22	ns	4.5	R _L = ∞; - C _L = 50 pF
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os} ; Z to Y _n		6	12		15		18	ns	4.5	(see Fig.16)
t _{PHZ} / t _{PLZ}	turn-off time E to Y _n		26	55		69		83	ns	4.5	
t _{PHZ} / t _{PLZ}	turn-off time S_n to Y_n		31	55		69		83	ns	4.5	
t _{PHZ} / t _{PLZ}	turn-off time E to Z		30	60		75		90	ns	4.5	
t _{PHZ} / t _{PLZ}	turn-off time S_n to Z		35	60		75		90	ns	4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$
t _{PZH} / t _{PZL}	turn-on time E to Y _n		32	60		75		90	ns	4.5	(see Fig.17)
t _{PZH} / t _{PZL}	turn-on time S _n to Y _n		35	60		75		90	ns	4.5	
t _{PZH} / t _{PZL}	turn-on time E to Z		38	65		81		98	ns	4.5	
t _{PZH} / t _{PZL}	turn-on time S _n to Z		38	65		81		98	ns	4.5	

Note

1. Due to higher Z terminal capacitance (16 switches versus 1) the delay figures to the Z terminal are higher than those to the Y terminal.

16-channel analog multiplexer/demultiplexer

74HC/HCT4067

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

 $GND = 0 V; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	TYP.	UNIT	V _{CC} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	4.5 9.0	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	4.5 9.0	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	4.5 9.0	note 3	$R_L = 600 \Omega$; $C_L = 50 pF$ f = 1 MHz (see Figs 11 and 15)
f _{max}	minimum frequency response (–3 dB)	90 100	MHz MHz	4.5 9.0	note 4	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 12 and 13)
C _S	maximum switch capacitance independent (Y) common (Z)	5 45	pF pF			

Notes

- 1. V_{is} is the input voltage at Y_n or Z terminal, whichever is assigned as an input.
- 2. V_{os} is the output voltage at Y_n or Z terminal, whichever is assigned as an output.
- 3. Adjust input voltage V_{is} is 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 4. Adjust input voltage V_{is} is 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

16-channel analog multiplexer/demultiplexer

74HC/HCT4067

16-channel analog multiplexer/demultiplexer

74HC/HCT4067

distortion.

Fig.15 Test circuit for measuring switch "OFF" signal feed-through.

AC WAVEFORMS

16-channel analog multiplexer/demultiplexer

74HC/HCT4067

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	GND	V _{CC}
t _{PZL}	V _{CC}	GND
t _{PHZ}	GND	V _{CC}
t _{PLZ}	V _{CC}	GND
others	open	pulse

C_L = load capacitance including jig and probe capacitance (see AC

CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the

pulse generator.

 $t_r = t_f = 6$ ns, when measuring t_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.18 Test circuit for measuring AC performance.

FAMILY	AMPLI- TUDE	V _M	t _r , t _f	
			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

Fig.19 Input pulse definitions.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".