

Guía Práctica 4 - Complejidad

1. Mostrar usando la definición de $\mathcal{O}()$ tomada de 1 2:

$$\mathcal{O}(f(n)) = \{ t : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 \Rightarrow t(n) \le cf(n) \}.$$

- a) $50n 8 \in \mathcal{O}(n)$
- b) $5n^2 3n + 6 \in \mathcal{O}(n^2)$
- c) $2^n + 7n + 3 \in \mathcal{O}(2^n)$
- 2. Determinar $\mathcal{O}()$ y $\Omega()$ de las siguientes funciones:
 - a) $5n^2$
 - b) $3n^2 + 2n$
 - c) $3^n + 2^n$
 - d) $n + \log_2(n)$
 - e) $n^2 + \log_2(n)$
- 3. Determinar $\Theta()$ de las siguientes funciones:
 - a) $n^2 + 2n$
 - b) $t(n) = \begin{cases} 2n+4 & \text{si n par} \\ 7n^2 + n & \text{si n impar} \end{cases}$
 - c) $t(n) = \begin{cases} 4n+5 & \text{si n par} \\ 5n+n & \text{si n impar} \end{cases}$
- 4. Reescribir los siguientes órdenes de complejidad de menor a mayor (<): $\mathcal{O}(n)$, $\mathcal{O}(n \log n)$, $\mathcal{O}(n!)$, $\mathcal{O}(n^2)$, $\mathcal{O}(5)$, $\mathcal{O}(\log \log n)$, $\mathcal{O}(3^n)$, $\mathcal{O}(\sqrt{n})$, $\mathcal{O}(n^n)$, $\mathcal{O}(n^$

Etiquete cada \mathcal{O} como sublineal, lineal o superlineal. Dentro de éstas últimas puede decir cuáles son polinómicas (cuadráticas, cúbicas, etc.) o exponenciales.

- 5. Para cada uno de los fragmentos de código siguientes:
 - Diga qué $\mathcal{O}()$ poseen.
 - Impleméntelos y dé el tiempo de ejecución para \neq valores de n.
 - Compare estimación teórica (primer ítem) con tiempos reales (segundo ítem).

¹Marzal y Gracia. Introducción al análisis de algoritmos.

 $^{^{2}} https://arco.esi.uclm.es/public/mirror/Introducci\%C3\%B3n\%20al\%20an\%C3\%A1lisis\%20de\%20algoritmos.pdf$

Algorithm 1:	Algorithm 2:
$sum \leftarrow 0$	$sum \leftarrow 0$
for $i \leftarrow 1$ to n do	for $i \leftarrow 1$ to n do
$sum \leftarrow sum + 1$	$\underline{\hspace{1cm}}$ for $j \leftarrow 1$ to n do
	$sum \leftarrow sum + 1$

Algorithm 3:	Algorithm 4:		
$sum \leftarrow 0$	$sum \leftarrow 0$		
for $i \leftarrow 1$ to n do	for $i \leftarrow 1$ to n do		
for $j \leftarrow 1$ to n^2 do	for $j \leftarrow 1$ to i do		
$sum \leftarrow sum + 1$	$sum \leftarrow sum + 1$		

Algorithm 5:	Algorithm 6:	
$sum \leftarrow 0$	$i \leftarrow 1$	
for $i \leftarrow 1$ to n do	while $i \leq n \operatorname{\mathbf{do}}$	
for $j \leftarrow 1$ to i^2 do	$j \leftarrow 1$	
for $k \leftarrow 1$ to j do	while $j \leq n$ do	
$sum \leftarrow sum + 1$	$j \leftarrow j * 2$	
	$i \leftarrow i + 1$	

Algorithm 7:	Algorithm 8:		
$i \leftarrow 1$	$i \leftarrow 1$		
while $i \leq n$ do	while $i \leq 10$ do		
$j \leftarrow 1$	$j \leftarrow 1$		
while $j \leq i$ do	while $j \leq 10 \text{ do}$		
$j \leftarrow j + 1$	$j \leftarrow j + 1$		
$i \leftarrow i + 1$	$i \leftarrow i + 2$		

6. ¿Cuál es el propósito de los siguientes algoritmos? Analizar el tiempo de ejecución en el peor caso y expresarlos en notación \mathcal{O} .

Algorithm 9:	Algorithm 10:		
$\boxed{ \textbf{Input: } a, n \textbf{: integer} }$	$\mathbf{Input} \colon a,n \colon \mathbf{integers}$		
Output: b	Output: b		
b: long integer	b: long integer		
$b \leftarrow 1$	c: long integer		
for $k \leftarrow 0$ to $k < n$ do	$b \leftarrow 1$		
$b \leftarrow b * a$	$c \leftarrow a$		
	for $k \leftarrow n \ to \ k > 0 \ do$		
	if $k \mod 2 == 0$ then		
	$k \leftarrow k/2$		
	$c \leftarrow c * c$		
	else		
	$k \leftarrow k-1$		
	$b \leftarrow b * c$		

7. A partir de una secuencia de números A, calcular otra B tal que cada uno de sus elementos B_i sea el promedio de todos los anteriores en la secuencia original, incluído el $i - \acute{e}simo$.

Ejemplo:

$$\vec{A} = [1, 3, 5, 4, 2, 1]$$

 $\vec{B} = [1, 2, 3, 3, 25, 3, 2, 66]$

8. Un arreglo A contiene n-1 enteros **únicos** $\in [0, n-1]$; es decir, hay un número de este intervalo que no está en A. Escriba un algoritmo para encontrar ese número faltante en $\mathcal{O}(n)$. Sólo es posible utilizar $\mathcal{O}(1)$ espacio adicional además del arreglo A mismo.

Ejemplo:

$$N=5$$
. El arreglo puede contener elementos (no repetidos) $\in [0,4]$. Si el vector $= [1,4,2,0]$, entonces el elemento que falta es **3**.

9. Suponga que cada renglón de un arreglo $A_{n,n}$ posee valores 0 y 1 de tal manera que en cualquier renglón de A todos los 1's van antes que los 0's. Describa un método de $\mathcal{O}(n)$ para determinar el renglón de A que contenga la mayor cantidad de 1's.

Ejemplo:

1	1	0	0	0
1	1	1	0	0
1	1	1	1	0
1	0	0	0	0
1	1	1	0	0

- 10. Para cada solución que tenga de los problemas de las guías anteriores, comente, si es posible, el $\mathcal{O}()$ de su solución. Si no es posible (por ejemplo talla indeterminada del problema, o caminos de ejecución no determinísticos) explique por qué. Para los problemas que no tenga resuelto, trate de proponer un algoritmo (al menos en forma coloquial) y vea si puede determinar el $\mathcal{O}()$ de su propuesta.
- 11. Realice algoritmos (no es necesario implementarlos, suficiente con pseudocódigo claro) para:
 - a) Sumar $N \in \mathbb{N}$ y $M \in \mathbb{N}$ tales que n y m representan la cantidad de dígitos cada uno. Piense que el número de dígitos puede ser muy grande.
 - b) Multiplicar $N \in \mathbb{N}$ y $M \in \mathbb{N}$ tales que n y m representan la cantidad de dígitos cada uno. Piense que el número de dígitos puede ser muy grande.
 - c) Multiplicar las matrices $A_{m,n}$ y $B_{n,q}$. NOTA: En todos los casos exprese el $\mathcal{O}()$ de su algoritmo.
- 12. Resolver en lenguage C++ y obtener **ACCEPTED** en los jueces correspondientes para los siguientes problemas:
 - a) Integer Inquiry http://uva.onlinejudge.org/external/4/424.html
 - b) 500! http://uva.onlinejudge.org/external/6/623.html
 - c) Overflow http://uva.onlinejudge.org/external/4/465.html

NOTA: En todos los casos exprese el $\mathcal{O}()$ de su algoritmo.