Author: Pavel Kocourek

Problem Set 1

- 1. Prove that the $\sqrt{3}$ is irrational.
- 2. Find the minimum, maximum, infimum, and supremum (in case it exists) of the following sets:

a.
$$S = [-1, 1)$$

b.
$$S = \mathbb{R}_-$$

c.
$$S = \mathbb{R}_{--}$$

d.
$$S = \left\{ -\frac{1}{n+1} : n \in \{1, 2, \dots, 5\} \right\}$$

$$e. S = \left\{ n + \frac{1}{n} : n \in \mathbb{N} \right\}$$

f.
$$S = \{x^3 \in \mathbb{Q} : x^2 < 2\}$$

$$g. S = \left\{ \frac{a}{b} : a < 10 \text{ and } b > 5 \right\}$$

h. $S = \mathbb{I} \cap [0, 1]$, where \mathbb{I} is the set of all irrational numbers

i.
$$S = [-10, 5) \cap (-5, 10]$$

j.
$$S = [-10, 5) \cup (-5, 10]$$

- 3. Consider the function $f:\mathbb{R}\to\mathbb{R}$ given by the formula $f(x)=2x+x^2$:
 - a. What is its domain and codomain?
 - b. What is its range?
 - c. What is the image of the interval (-1, 2)
 - d. What is the preimage of the interval (-10, 0].
 - e. Does the inverse function f^{-1} exist? If so, what is its formula?
- 4. Consider the function $f:[-5,10]\to\mathbb{R}$ defined as the indicator function of rational numbers (i.e., $f(x)=\mathbf{1}_{\mathbb{Q}}(x)$):
 - a. What is its domain and codomain?

- b. What is its range?
- c. What is the image of the interval (-1, 2)?
- d. What is the preimage of the interval (-10, 0].
- e. Does the inverse function f^{-1} exist? If so, what is its formula?
- 5. Consider the (real valued) function $f(x) = 1 + \sqrt{5 x^2}$:
 - a. What is its domain? (When a function's domain is not specified, it is assumed to be the set of all real numbers on which the function is well-defined i.e., the function's prescription makes sense.)
 - b. What is its range?
 - c. What is the image of the interval (-1, 2)?
 - d. What is the preimage of the interval (-10, 0].
 - e. Does the inverse function f^{-1} exist? If so, what is its formula?