Package 'sampling'

October 29, 2023

Version 2.10

Date 2023-10-27

Title Survey Sampling

Description Functions to draw random samples using different sampling schemes are available. Functions are also provided to obtain (generalized) calibration weights, different estimators, as well some variance estimators. Imports MASS, lpSolve License GPL (>= 2) Encoding UTF-8 NeedsCompilation yes Repository CRAN Date/Publication 2023-10-29 15:20:02 UTC R topics documented: balancedcluster 3 balancedstratification 4 balancedtwostage 5 belgianmunicipalities 6
License GPL (>= 2) Encoding UTF-8 NeedsCompilation yes Repository CRAN Date/Publication 2023-10-29 15:20:02 UTC R topics documented: balancedcluster 3 balancedstratification 4 balancedtwostage 5
Encoding UTF-8 NeedsCompilation yes Repository CRAN Date/Publication 2023-10-29 15:20:02 UTC R topics documented: balancedcluster 3 balancedstratification 4 balancedtwostage 5
NeedsCompilation yes Repository CRAN Date/Publication 2023-10-29 15:20:02 UTC R topics documented: balancedcluster 3 balancedstratification 4 balancedtwostage 5
Repository CRAN Date/Publication 2023-10-29 15:20:02 UTC R topics documented: balancedcluster 3 balancedstratification 4 balancedtwostage 5
Repository CRAN Date/Publication 2023-10-29 15:20:02 UTC R topics documented: balancedcluster 3 balancedstratification 4 balancedtwostage 5
Date/Publication 2023-10-29 15:20:02 UTC R topics documented: balancedcluster
R topics documented: balancedcluster
balancedcluster
balancedcluster
balancedstratification
balancedtwostage
balancedtwostage
E .
calib
calibev
checkcalibration
cleanstrata
cluster
disjunctive
fastflightcube
gencalib
getdata
Hajekestimator
Hajekstrata

Index

HTestimator	
inclusionprobabilities	
1	
inclusionprobastrata	
landingcube	
mstage	
MU284	
postest	
poststrata	
ratioest	
ratioest_strata	
rec99	
regest	
regest_strata	40
rhg	42
rhg_strata	43
rmodel	44
samplecube	46
srswor	48
srswor1	49
srswr	50
strata	51
swissmunicipalities	
UPbrewer	
UPmaxentropy	
UPmidzuno	
UPmidzunopi2	
UPminimalsupport	
UPmultinomial	
UPopips	
UPpivotal	
UPpoisson	
UPrandompivotal	65
· · · · · · · · · · · · · · · · · · ·	
UPsampford	
UPsampfordpi2	
UPsystematic	
UPsystematicpi2	
UPtille	
UPtillepi2	
varest	
varHT	73
vartaylor_ratio	74
writesample	75
	77

balancedcluster 3

|--|

Description

Selects a balanced cluster sample.

Usage

```
balancedcluster(X,m,cluster,selection=1,comment=TRUE,method=1)
```

Arguments

Χ	matrix of auxiliary variables on which the sample must be balanced.
m	number of clusters to be selected.
cluster	vector of integers that defines the clusters.
selection	 selection of the clusters with probabilities proportional to size, selection of the clusters with equal probabilities.
comment	a comment is written during the execution if comment is TRUE.
method	the used method in the function samplecube.

Value

Returns a matrix containing the vector of inclusion probabilities and the selected sample.

See Also

```
samplecube, fastflightcube, landingcube
```

```
############
## Example 1
############
# definition of the clusters; there are 15 units in 3 clusters
cluster=c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3)
# matrix of balancing variables
X=cbind(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15))
# selection of 2 clusters
s = balancedcluster(X, 2, cluster, 2, TRUE)
# the sample of clusters with the inclusion probabilities of the clusters
# the selected clusters
unique(cluster[s[,1]==1])
# the selected units
(1:length(cluster))[s[,1]==1]
# with the probabilities
s[s[,1]==1,2]
```

4 balancedstratification

balancedstratification

Balanced stratification

Description

Selects a stratified balanced sample (a vector of 0 and 1). Firstly, the flight phase is applied in each stratum. Secondly, the strata are aggregated and the flight phase is applied on the whole population. Finally, the landing phase is applied on the whole population.

Usage

balancedstratification(X,strata,pik,comment=TRUE,method=1)

Arguments

X matrix of auxiliary variables on which the sample must be balanced.

strata vector of integers that specifies the stratification.

pik vector of inclusion probabilities.

comment a comment is written during the execution if comment is TRUE.

method the used method in the function samplecube.

References

Tillé, Y. (2006), Sampling Algorithms, Springer.

Chauvet, G. and Tillé, Y. (2006). A fast algorithm of balanced sampling. *Computational Statistics*, 21/1:53–62.

Chauvet, G. and Tillé, Y. (2005). New SAS macros for balanced sampling. In INSEE, editor, *Journées de Méthodologie Statistique*, Paris.

Deville, J.-C. and Tillé, Y. (2004). Efficient balanced sampling: the cube method. *Biometrika*, 91:893–912.

Deville, J.-C. and Tillé, Y. (2005). Variance approximation under balanced sampling. *Journal of Statistical Planning and Inference*, 128/2:411–425.

balancedtwostage 5

See Also

```
samplecube, fastflightcube, landingcube
```

Examples

```
############
## Example 1
############
# variable of stratification (3 strata)
strata=c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3)
# matrix of balancing variables
X=cbind(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15))
# Vector of inclusion probabilities.
# the sample has its size equal to 9.
pik=rep(3/5,times=15)
# selection of a stratified sample
s=balancedstratification(X,strata,pik,comment=TRUE)
# the sample is
(1:length(pik))[s==1]
###########
## Example 2
############
data(MU284)
X=cbind(MU284$P75,MU284$CS82,MU284$SS82,MU284$S82,MU284$ME84)
strata=MU284$REG
pik=inclusionprobabilities(MU284$P75,80)
s=balancedstratification(X,strata,pik,TRUE)
#the selected units are
MU284$LABEL[s==1]
```

balancedtwostage

Balanced two-stage sampling

Description

Selects a balanced two-stage sample.

Usage

```
balancedtwostage(X,selection,m,n,PU,comment=TRUE,method=1)
```

Arguments

Χ	matrix of auxiliary variables on which the sample must be balanced.
selection	 for simple random sampling without replacement at each stage, for self-weighting two-stage selection.
m	number of primary sampling units to be selected.
n	number of second-stage sampling units to be selected.

PU vector of integers that defines the primary sampling units.

comment a comment is written during the execution if comment is TRUE.

method the used method in the function samplecube.

Value

The function returns a matrix whose columns are the following five vectors: the selected second-stage sampling units (0 - unselected, 1 - selected), the final inclusion probabilities, the selected primary sampling units, the inclusion probabilities of the first stage, the inclusion probabilities of the second stage.

See Also

samplecube, fastflightcube, landingcube, balancedstratification, balancedcluster

Examples

```
############
## Example 1
############
# definition of the primary units (3 primary units)
PU=c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3)
# matrix of balancing variables
X=cbind(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15))
# selection of 2 primary sampling units and 4 second-stage sampling units
# sample and inclusion probabilities
s=balancedtwostage(X,1,2,4,PU,comment=TRUE)
############
## Example 2
############
data(MU284)
X=cbind(MU284$P75,MU284$CS82,MU284$SS82,MU284$ME84)
N=dim(X)[1]
PU=MU284$CL
m = 20
n=60
# sample and inclusion probabilities
s=balancedtwostage(X,1,m,n,PU,TRUE)
```

belgianmunicipalities The Belgian municipalities population

Description

This data provides information about the Belgian population of July 1, 2004 compared to that of July 1, 2003, and some financial information about the municipality incomes at the end of 2001.

belgianmunicipalities 7

Usage

```
data(belgianmunicipalities)
```

Format

A data frame with 589 observations on the following 17 variables:

Commune municipality name.

INS 'Institut National de statistique' code.

Province province number.

Arrondiss administrative division number.

Men04 number of men on July 1, 2004.

Women04 number of women on July 1, 2004.

Tot04 total population on July 1, 2004.

Men03 number of men on July 1, 2003.

Women03 number of women on July 1, 2003.

Tot03 total population on July 1, 2003.

Diffmen number of men on July 1, 2004 minus the number of men on July 1, 2003.

Diffwom number of women on July 1, 2004 minus the number of women on July 1, 2003.

DiffTOT difference between the total population on July 1, 2004 and on July 1, 2003.

TaxableIncome total taxable income in euros in 2001.

Totaltaxation total taxation in euros in 2001.

averageincome average of the income-tax return in euros in 2001.

medianincome median of the income-tax return in euros in 2001.

Source

http://https://statbel.fgov.be/fr

```
data(belgianmunicipalities)
hist(belgianmunicipalities$medianincome)
```

8 calib

calib g-weights of the calibration estimator	
--	--

Description

Computes the g-weights of the calibration estimator. The g-weights should lie in the specified bounds for the truncated and logit methods.

Usage

```
calib(Xs,d,total,q=rep(1,length(d)),method=c("linear","raking","truncated",
"logit"),bounds=c(low=0,upp=10),description=FALSE,max_iter=500)
```

Arguments

Xs	matrix of calibration variables.
d	vector of initial weights.
total	vector of population totals.
q	vector of positive values accounting for heteroscedasticity; the variation of the g-weights is reduced for small values of q.
method	calibration method (linear, raking, logit, truncated).
bounds	vector of bounds for the g-weights used in the truncated and logit methods; 'low' is the smallest value and 'upp' is the largest value.
description	if description=TRUE, summary of initial and final weights are printed, and their boxplots and histograms are drawn; by default, its value is FALSE.
max_iter	maximum number of iterations in the Newton's method.

Details

The argument method implements the methods given in the paper of Deville and Särndal (1992).

Value

Returns the vector of g-weights.

References

Cassel, C.-M., Särndal, C.-E., and Wretman, J. (1976). Some results on generalized difference estimation and generalized regression estimation for finite population. *Biometrika*, 63:615–620.

Deville, J.-C. and Särndal, C.-E. (1992). Calibration estimators in survey sampling. *Journal of the American Statistical Association*, 87:376–382.

Deville, J.-C., Särndal, C.-E., and Sautory, O. (1993). Generalized raking procedure in survey sampling. *Journal of the American Statistical Association*, 88:1013–1020.

calib 9

See Also

checkcalibration, calibev, gencalib

```
############
## Example 1
############
# matrix of sample calibration variables
Xs=cbind(
c(1,1,1,1,1,0,0,0,0,0),
c(0,0,0,0,0,1,1,1,1,1),
c(1,2,3,4,5,6,7,8,9,10)
# inclusion probabilities
piks=rep(0.2, times=10)
# vector of population totals
total=c(24,26,290)
# the g-weights using the truncated method
g=calib(Xs,d=1/piks,total,method="truncated",bounds=c(0.75,1.2))
# the calibration estimator of X is equal to 'total' vector
t(g/piks)%*%Xs
# the g-weights are between lower and upper bounds
range(g)
############
## Example 2
###########
# Example of g-weights (linear, raking, truncated, logit),
# with the data of Belgian municipalities as population.
# Firstly, a sample is selected by means of Poisson sampling.
# Secondly, the g-weights are calculated.
data(belgianmunicipalities)
attach(belgianmunicipalities)
# matrix of calibration variables for the population
X=cbind(
Men03/mean(Men03),
Women03/mean(Women03),
Diffmen,
Diffwom,
TaxableIncome/mean(TaxableIncome),
Totaltaxation/mean(Totaltaxation),
averageincome/mean(averageincome),
medianincome/mean(medianincome))
# selection of a sample with expectation size equal to 200
# by means of Poisson sampling
# the inclusion probabilities are proportional to the average income
pik=inclusionprobabilities(averageincome, 200)
N=length(pik)
                            # population size
s=UPpoisson(pik)
                            # sample
Xs=X[s==1,]
                            # sample matrix of calibration variables
piks=pik[s==1]
                            # sample inclusion probabilities
                            # expected sample size
n=length(piks)
```

10 calibev

```
# vector of population totals of the calibration variables
total=c(t(rep(1,times=N))%*%X)
# computation of the g-weights
# by means of different calibration methods
g1=calib(Xs,d=1/piks,total,method="linear")
g2=calib(Xs,d=1/piks,total,method="raking")
g3=calib(Xs,d=1/piks,total,method="truncated",bounds=c(0.5,1.5))
g4=calib(Xs,d=1/piks,total,method="logit",bounds=c(0.5,1.5))
# in some cases, the calibration is not possible,
# particularly when bounds are used.
# if the calibration is possible, the calibration estimator of X is printed
if(checkcalibration(Xs,d=1/piks,total,g1)$result)
    print(c((g1/piks) %*% Xs)) else print("error")
if(!is.null(g2))
    if(checkcalibration(Xs,d=1/piks,total,g2)$result)
if(!is.null(g3))
     if(checkcalibration(Xs,d=1/piks,total,g3)$result & all(g3<=1.5) & all(g3>=0.5))
        print(c((g3/piks) %*% Xs)) else print("error")
if(!is.null(g4))
    if(checkcalibration(Xs,d=1/piks,total,g4)$result & all(g4<=1.5) & all(g4>=0.5))
        print(c((g4/piks) %*% Xs)) else print("error")
detach(belgianmunicipalities)
############
## Example 3
###########
# Example of calibration and adjustment for nonresponse in the 'calibration' vignette
# vignette("calibration", package="sampling")
```

calibev

Calibration estimator and its variance estimation

Description

Computes the calibration estimator of the population total and its variance estimation using the residuals' method.

Usage

```
calibev(Ys,Xs,total,pikl,d,g,q=rep(1,length(d)),with=FALSE,EPS=1e-6)
```

Arguments

Ys	vector of interest variable; its size is n, the sample size.
Xs	matrix of sample calibration variables.
total	vector of population totals for calibration.
pikl	matrix of joint inclusion probabilities of the sample units.
d	vector of initial weights of the sample units.
g	vector of g-weights; its size is n, the sample size.

calibev 11

q vector of positive values accounting for heteroscedasticity; its size is n, the sam-

ple size.

with if TRUE, the variance estimation takes into account the initial weights d; oth-

erwise, the final weights w=g*d are taken into account; by default, its value is

FALSE.

EPS tolerance in checking the calibration; by default, its value is 1e-6.

Details

If with is TRUE, the following formula is used

$$\widehat{Var}(\widehat{Ys}) = \sum_{k \in s} \sum_{\ell \in s} ((\pi_{k\ell} - \pi_k \pi_\ell) / \pi_{k\ell}) (d_k e_k) (d_\ell e_\ell)$$

else

$$\widehat{Var}(\widehat{Ys}) = \sum_{k \in s} \sum_{\ell \in s} ((\pi_{k\ell} - \pi_k \pi_\ell) / \pi_{k\ell}) (w_k e_k) (w_\ell e_\ell)$$

where e_k denotes the residual of unit k.

Value

The function returns two values:

cest the calibration estimator, evar its estimated variance.

References

Deville, J.-C. and Särndal, C.-E. (1992). Calibration estimators in survey sampling. *Journal of the American Statistical Association*, 87:376–382.

Deville, J.-C., Särndal, C.-E., and Sautory, O. (1993). Generalized raking procedure in survey sampling. *Journal of the American Statistical Association*, 88:1013–1020.

See Also

calib

12 checkcalibration

```
X=cbind(
Men03/mean(Men03),
Women03/mean(Women03),
Diffmen,
Diffwom,
TaxableIncome/mean(TaxableIncome),
Totaltaxation/mean(Totaltaxation),
averageincome/mean(averageincome),
medianincome/mean(medianincome))
# selection of a sample of size 200
# using systematic sampling
# the inclusion probabilities are proportional to the average income
pik=inclusionprobabilities(averageincome, 200)
N=length(pik)
                            # population size
s=UPsystematic(pik)
                           # draws a sample s using systematic sampling
Xs=X[s==1,]
                            # matrix of sample calibration variables
piks=pik[s==1]
                           # sample inclusion probabilities
n=length(piks)
                            # sample size
# vector of population totals of the calibration variables
total=c(t(rep(1,times=N))%*%X)
g1=calib(Xs,d=1/piks,total,method="linear") # computes the g-weights
pikl=UPsystematicpi2(pik) # computes the matrix of joint inclusion probabilities
pikls=pikl[s==1,s==1]
                            # the same matrix for the units in the sample
Ys=Tot04[s==1]
                       # the variable of interest is Tot04 (sample level)
calibev(Ys,Xs,total,pikls,d=1/piks,g1,with=FALSE,EPS=1e-6)
detach(belgianmunicipalities)
```

checkcalibration

Check calibration

Description

Checks the validity of the calibration. In some cases, the computed g-weights do not allow calibration and the calibration estimators do not exist.

Usage

```
checkcalibration(Xs, d, total, g, EPS=1e-6)
```

Arguments

Xs	matrix of calibration variables.
d	vector of initial weights.
total	vector of population totals.
g	vector of g-weights.
EPS	control value used to check the calibration, by default equal to 1e-6.

cleanstrata 13

Details

In the case where calibration is not possible, the 'value' indicates the difference in obtaining the calibration.

Value

The function returns the following three objects:

message a message concerning the calibration,

result TRUE if the calibration is possible and FALSE, otherwise.

value value of max(abs(tr-total)/total, which is used as criterium to validate the cal-

ibration, where tr=crossprod(Xs, g*d). If the total vector contains zeros, the

value is max(abs(tr-total)).

See Also

calib

Examples

```
# matrix of auxiliary variables
Xs=cbind(c(1,1,1,1,1,0,0,0,0,0),c(0,0,0,0,1,1,1,1,1),c(1,2,3,4,5,6,7,8,9,10))
# inclusion probabilities
pik=rep(0.2,times=10)
# vector of totals
total=c(24,26,280)
# g-weights
g=calib(Xs,d=1/pik,total,method="raking")
# check if the calibration is possible
checkcalibration(Xs,d=1/pik,total,g)
```

cleanstrata

Clean strata

Description

Renumbers a variable of stratification (categorical variable). The strata receive a number from 1 to the last stratum number. The empty strata are suppressed. This function is used in 'balancedstratification'.

Usage

```
cleanstrata(strata)
```

Arguments

strata

vector of stratum numbers.

14 cluster

See Also

balancedstratification

Examples

```
# definition of the stratification variable strata=c(-2,3,-2,3,4,4,4,-2,-2,3,4,0,0,0) # renumber the strata cleanstrata(strata)
```

cluster

Cluster sampling

Description

Cluster sampling with equal/unequal probabilities.

Usage

Arguments

data frame or data matrix; its number of rows is N, the population size.

clustername the name of the clustering variable.

size sample size.

method method to select clusters; the following methods are implemented: simple ran-

dom sampling without replacement (srswor), simple random sampling with replacement (srswr), Poisson sampling (poisson), systematic sampling (system-

atic); if the method is not specified, by default the method is "srswor".

pik vector of inclusion probabilities or auxiliary information used to compute them;

this argument is only used for unequal probability sampling (Poisson, systematic). If an auxiliary information is provided, the function uses the inclusion-

probabilities function for computing these probabilities.

description a message is printed if its value is TRUE; the message gives the number of se-

lected clusters, the number of units in the population and the number of selected

units. By default, the value is FALSE.

Value

The function returns a data set with the following information: the selected clusters, the identifier of the units in the selected clusters, the final inclusion probabilities for these units (they are equal for the units included in the same cluster). If method is "srswr", the number of replicates is also given.

disjunctive 15

See Also

```
mstage, strata, getdata
```

Examples

```
############
## Example 1
############
# Uses the swissmunicipalities data to draw a sample of clusters
data(swissmunicipalities)
# the variable 'REG' has 7 categories in the population
# it is used as clustering variable
# the sample size is 3; the method is simple random sampling without replacement
cl=cluster(swissmunicipalities,clustername=c("REG"),size=3,method="srswor")
# extracts the observed data
# the order of the columns is different from the order in the initial database
getdata(swissmunicipalities, cl)
############
## Example 2
###########
# the same data as in Example 1
# the sample size is 3; the method is systematic sampling
\# the pik vector is randomly generated using the U(0,1) distribution
cl_sys=cluster(swissmunicipalities,clustername=c("REG"),size=3,method="systematic",
pik=runif(7))
# extracts the observed data
getdata(swissmunicipalities,cl_sys)
```

disjunctive

Disjunctive combination

Description

Transforms a categorical variable into a matrix of indicators. The values of the categorical variable are integer numbers (positive or negative).

Usage

```
disjunctive(strata)
```

Arguments

strata

vector of integer numbers.

See Also

balancedstratification

16 fastflightcube

Examples

```
# definition of the variable of stratification
strata=c(-2,3,-2,3,4,4,4,-2,-2,3,4,0,0,0)
# computation of the matrix
disjunctive(strata)
```

fastflightcube

Fast flight phase for the cube method

Description

Executes the fast flight phase of the cube method (algorithm of Chauvet and Tillé, 2005, 2006). The data are sorted following the argument order. Inclusion probabilities equal to 0 or 1 are tolerated.

Usage

```
fastflightcube(X,pik,order=1,comment=TRUE)
```

Arguments

X matrix of auxiliary variables on which the sample must be balanced.

pik vector of inclusion probabilities.

order 1, the data are randomly arranged,

2, no change in data order,

3, the data are sorted in decreasing order.

comment a comment is written during the execution if comment is TRUE.

References

Tillé, Y. (2006), Sampling Algorithms, Springer.

Chauvet, G. and Tillé, Y. (2006). A fast algorithm of balanced sampling. *Computational Statistics*, 21/1:53–62.

Chauvet, G. and Tillé, Y. (2005). New SAS macros for balanced sampling. In INSEE, editor, *Journées de Méthodologie Statistique*, Paris.

Deville, J.-C. and Tillé, Y. (2004). Efficient balanced sampling: the cube method. *Biometrika*, 91:893–912.

Deville, J.-C. and Tillé, Y. (2005). Variance approximation under balanced sampling. *Journal of Statistical Planning and Inference*, 128/2:411–425.

See Also

samplecube

gencalib 17

Examples

```
# Matrix of balancing variables
X=cbind(c(1,1,1,1,1,1,1,1,1),c(1,2,3,4,5,6,7,8,9))
# Vector of inclusion probabilities.
# The sample size is 3.
pik=c(1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3)
# pikstar is almost a balanced sample and is ready for the landing phase
pikstar=fastflightcube(X,pik,order=1,comment=TRUE)
pikstar
```

gencalib

g-weights of the generalized calibration estimator

Description

Computes the g-weights of the generalized calibration estimator. The g-weights should lie in the specified bounds for the truncated and logit methods.

Usage

```
gencalib(Xs,Zs,d,total,q=rep(1,length(d)),method=c("linear","raking","truncated","logit"),
bounds=c(low=0,upp=10),description=FALSE,max_iter=500,C=1)
```

Arguments

Xs	matrix of calibration variables.
Zs	matrix of instrumental variables with same dimension as Xs.
d	vector of initial weights.
total	vector of population totals.
q	vector of positive values accounting for heteroscedasticity; the variation of the g-weights is reduced for small values of q.
method	calibration method (linear, raking, logit, truncated).
bounds	vector of bounds for the g-weights used in the truncated and logit methods; 'low' is the smallest value and 'upp' is the largest value.
description	if description=TRUE, summary of initial and final weights are printed, and their boxplots and histograms are drawn; by default, its value is FALSE.
max_iter	maximum number of iterations in the Newton's method.
С	value of the centering constant, by default equals 1.

18 gencalib

Details

The generalized calibration or the instrument vector method computes the g-weights $g_k = F(\lambda' z_k)$, where z_k is a vector with values defined for $k \in s$ (or $k \in r$ where r is the set of respondents) and sharing the dimension of the specified auxiliary vector x_k . The vectors z_k and x_k have to be stronlgy correlated. The vector λ is determined from the calibration equation $\sum_{k \in s} d_k g_k x_k = \sum_{k \in U} x_k$ or $\sum_{k \in r} d_k g_k x_k = \sum_{k \in U} x_k$. The function F plays the same role as in the calibration method (see calib). If Xs=Zs the calibration method is obtain. If the method is "logit" the g-weights will be centered around the constant C, with low<C<upp. In the calibration method C=1 (see calib).

Value

The function returns the vector of g-weights.

References

Deville, J.-C. (1998). La correction de la nonréponse par calage ou par échantillonnage équilibré. Paper presented at the *Congrès de l'ACFAS*, *Sherbrooke*, *Québec*.

Deville, J.-C. (2000). Generalized calibration and application for weighting for non-response, *COMPSTAT 2000: proceedings in computational statistics*, p. 65–76.

Estevao, V.M., and Särndal, C.E. (2000). A functional form approach to calibration. *Journal of Official Statistics*, 16, 379–399.

Kott, P.S. (2006). Using calibration weighting to adjust for nonresponse and coverage errors. *Survey Methodology*, 32, 133–142.

See Also

```
checkcalibration, calib
```

```
############
## Example 1
############
# matrix of sample calibration variables
Xs=cbind(
c(1,1,1,1,1,0,0,0,0,0,0)
c(0,0,0,0,0,1,1,1,1,1,1)
c(1,2,3,4,5,6,7,8,9,10))
# inclusion probabilities
piks=rep(0.2,times=10)
# vector of population totals
total=c(24,26,290)
# matrix of instrumental variables
Zs=Xs+matrix(runif(nrow(Xs)*ncol(Xs)),nrow(Xs),ncol(Xs))
# the g-weights using the truncated method
g=gencalib(Xs,Zs,d=1/piks,total,method="truncated",bounds=c(0.5,1.5))
# the calibration estimator of X is equal to the 'total' vector
t(g/piks)%*%Xs
# the g-weights are between lower and upper bounds
```

getdata 19

```
summary(g)
############
## Example 2
############
# Example of generalized g-weights (linear, raking, truncated, logit),
# with the data of Belgian municipalities as population.
# Firstly, a sample is selected by means of Poisson sampling.
# Secondly, the g-weights are calculated.
data(belgianmunicipalities)
attach(belgianmunicipalities)
# matrix of calibration variables for the population
X=cbind(Totaltaxation/mean(Totaltaxation), medianincome/mean(medianincome))
# selection of a sample with expected size equal to 200
# by means of Poisson sampling
# the inclusion probabilities are proportional to the average income
pik=inclusionprobabilities(averageincome,200)
                            # population size
N=length(pik)
s=UPpoisson(pik)
                            # sample
Xs=X[s==1,]
                            # sample calibration variable matrix
piks=pik[s==1]
                            # sample inclusion probabilities
                            # expected sample size
n=length(piks)
# vector of population totals of the calibration variables
total=c(t(rep(1,times=N))%*%X)
Z=cbind(TaxableIncome/mean(TaxableIncome), averageincome/mean(averageincome))
# defines the instrumental variables (sample level)
Zs=Z[s==1,]
# computation of the generalized g-weights
# by means of different generalized calibration methods
g1=gencalib(Xs,Zs,d=1/piks,total,method="linear")
g2=gencalib(Xs,Zs,d=1/piks,total,method="raking")
g3=gencalib(Xs,Zs,d=1/piks,total,method="truncated",bounds=c(0.5,8))
g4=gencalib(Xs,Zs,d=1/piks,total,method="logit",bounds=c(0.5,1.5))
# In some cases, the calibration is not possible
# particularly when bounds are used.
# if the calibration is possible, the calibration estimator of X total is printed
if(checkcalibration(Xs,d=1/piks,total,g1)$result) print(c((g1/piks)%*% Xs)) else print("error")
if(!is.null(g2))
if(checkcalibration(Xs,d=1/piks,total,g2)$result) print(c((g2/piks)%*% Xs)) else print("error")
if(!is.null(g3))
if(checkcalibration(Xs,d=1/piks,total,g3)$result) print(c((g3/piks)%*% Xs)) else print("error")
if(!is.null(g4))
if(checkcalibration(Xs,d=1/piks,total,g4)$result) print(c((g4/piks)%*% Xs)) else print("error")
detach(belgianmunicipalities)
############
## Example 3
###########
# Generalized calibration and adjustment for unit nonresponse in the 'calibration' vignette
# vignette("calibration", package="sampling")
```

getdata Get data

20 getdata

Description

Extracts the observed data from a data frame (a population). The function is used after a sample has been drawn from this population.

Usage

```
getdata(data, m)
```

Arguments

data population data frame or data matrix; its number of rows is N, the population

size.

m vector of selected units or sample data frame.

See Also

```
srswor, UPsystematic, strata, cluster, mstage
```

```
############
## Example 1
############
# Generates artificial data (a 235X3 matrix with 3 columns: state, region, income).
# The variable 'state' has 2 categories (nc and sc);
# the variable 'region' has 3 categories (1, 2 and 3);
# the variable 'income' is generated using the U(0,1) distribution.
data=rbind(matrix(rep("nc",165),165,1,byrow=TRUE),
matrix(rep("sc",70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep(1,100), rep(2,50), rep(3,15), rep(1,30),rep(2,40)),
1000*runif(235))
names(data)=c("state", "region", "income")
# the inclusion probabilities are computed using the variable 'income'
pik=inclusionprobabilities(data$income,20)
# draws a sample using systematic sampling (sample size is 20)
s=UPsystematic(pik)
# extracts the observed data
getdata(data,s)
###########
## Example 2
############
# see other examples in 'strata', 'cluster', 'mstage' help files
```

Hajekestimator 21

Description

Computes the Hájek estimator of the population total or population mean.

Usage

```
Hajekestimator(y,pik,N=NULL,type=c("total","mean"))
```

Arguments

у	vector of the variable of interest; its length is equal to n, the sample size.
pik	vector of the first-order inclusion probabilities; its length is equal to n, the sample size.
N	population size; N is only used for the total estimator; for the mean estimator its value is NULL.
type	the estimator type: total or mean.

See Also

HTestimator

```
# Belgian municipalities data
data(belgianmunicipalities)
# Computes the inclusion probabilities
pik=inclusionprobabilities(belgianmunicipalities$Tot04,200)
N=length(pik)
n=sum(pik)
# Defines the variable of interest
y=belgianmunicipalities$TaxableIncome
# Draws a Poisson sample of expected size 200
s=UPpoisson(pik)
# Computes the Hajek estimator of the population mean
Hajekestimator(y[s==1],pik[s==1],type="mean")
# Computes the Hajek estimator of the population total
Hajekestimator(y[s==1],pik[s==1],N=N,type="total")
```

22 Hajekstrata

H	Hajekstrata	The Hajek estimator for a stratified design

Description

Computes the Hájek estimator of the population total or population mean for a stratified design.

Usage

```
Hajekstrata(y,pik,strata,N=NULL,type=c("total","mean"),description=FALSE)
```

Arguments

у	vector of the variable of interest; its length is equal to n, the sample size.
pik	vector of the first-order inclusion probabilities for the sampled units; its length is equal to n, the sample size.
strata	vector of size n, with elements indicating the unit stratum.
N	vector of population sizes of strata; N is only used for the total estimator; for the mean estimator its value is NULL.
type	the estimator type: total or mean.
description	if TRUE, the estimator is printed for each stratum; by default, FALSE.

See Also

HTstrata

```
# Swiss municipalities data
data(swissmunicipalities)
# the variable 'REG' has 7 categories in the population
# it is used as stratification variable
# computes the population stratum sizes
table(swissmunicipalities$REG)
# do not run
# 1
      2 3
             4 5 6 7
# 589 913 321 171 471 186 245
# the sample stratum sizes are given by size=c(30,20,45,15,20,11,44)
# the method is simple random sampling without replacement
# (equal probability, without replacement)
st=strata(swissmunicipalities, stratanames=c("REG"), size=c(30,20,45,15,20,11,44),
method="srswor")
# extracts the observed data
# the order of the columns is different from the order in the swsissmunicipalities data
x=getdata(swissmunicipalities, st)
# computes the population sizes of strata
N=table(swissmunicipalities$REG)
```

HTestimator 23

```
N=N[unique(x$REG)]
#the strata 1  2  3  4  5  6  7
#corresponds to REG 4  1  3  2  5  6  7
# computes the Hajek estimator of the total of Pop020
Hajekstrata(x$Pop020,x$Prob,x$Stratum,N,type="total",description=TRUE)
```

HTestimator

The Horvitz-Thompson estimator

Description

Computes the Horvitz-Thompson estimator of the population total.

Usage

```
HTestimator(y,pik)
```

Arguments

y vector of the variable of interest; its length is equal to n, the sample size.

pik vector of the first-order inclusion probabilities; its length is equal to n, the sam-

ple size.

See Also

UPtille

```
data(belgianmunicipalities)
attach(belgianmunicipalities)
# inclusion probabilities
pik=inclusionprobabilities(Tot04,200)
N=length(pik)
n=sum(pik)
# draws a Poisson sample of expected size 200
s=UPpoisson(pik)
# Horvitz-Thompson estimator of the total of TaxableIncome
HTestimator(TaxableIncome[s==1],pik[s==1])
detach(belgianmunicipalities)
```

24 HTstrata

HTstrata	The Horvitz-Thompson estimator for a stratified design

Description

Computes the Horvitz-Thompson estimator of the population total for a stratified design.

Usage

```
HTstrata(y,pik,strata,description=FALSE)
```

Arguments

vector of the variable of interest; its length is equal to n, the sample size. У pik

vector of the first-order inclusion probabilities for the sampled units; its length

is equal to n, the sample size.

vector of size n, with elements indicating the unit stratum. strata

description if TRUE, the estimator is printed for each stratum; by default, FALSE.

See Also

HTestimator

```
# Swiss municipalities data base
data(swissmunicipalities)
# the variable 'REG' has 7 categories in the population
# it is used as stratification variable
# computes the population stratum sizes
table(swissmunicipalities$REG)
# do not run
# 1
      2 3
              4 5 6 7
# 589 913 321 171 471 186 245
\# the sample stratum sizes are given by size=c(30,20,45,15,20,11,44)
# the method is simple random sampling without replacement
# (equal probability, fixed sample size, without replacement)
st=strata(swissmunicipalities,stratanames=c("REG"),size=c(30,20,45,15,20,11,44),
method="srswor")
# extracts the observed data
# the order of the columns is different from the order in the initial data
x=getdata(swissmunicipalities, st)
# computes the HT estimator of the total of Pop020
HTstrata(x$Pop020,x$Prob,x$Stratum,description=TRUE)
```

inclusion probabilities 25

inclusionprobabilities

Inclusion probabilities

Description

Computes the first-order inclusion probabilities from a vector of positive numbers (for a probability proportional-to-size sampling design). Their sum is equal to n, the sample size.

Usage

```
inclusionprobabilities(a,n)
```

Arguments

- a vector of positive numbers.
- n sample size.

See Also

inclusionprobastrata

```
############
## Example 1
############
# a vector of positive numbers
a=1:20
\# inclusion probabilities for a sample size n=12
inclusionprobabilities(a,12)
###########
## Example 2
###########
# Computation of the inclusion probabilities proportional to the number
# of inhabitants in each municipality of the Belgian municipalities data.
data(belgianmunicipalities)
pik=inclusionprobabilities(belgianmunicipalities$Tot04,200)
# the first-order inclusion probabilities for each municipality
data.frame(pik=pik,name=belgianmunicipalities$Commune)
# the sum is equal to the sample size
sum(pik)
```

26 landingcube

Description

Computes the inclusion probabilities for a stratified design. The inclusion probabilities are equal in each stratum.

Usage

```
inclusionprobastrata(strata,nh)
```

Arguments

strata vector that defines the strata.

nh vector of the number of selected units in each stratum.

See Also

balancedstratification

Examples

```
# the strata
strata=c(1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3)
# sample size in each stratum
nh=c(2,3,3)
# inclusion probabilities for each stratum
pik=inclusionprobastrata(strata,nh)
#check for each stratum
cbind(strata, pik)
```

landingcube

Landing phase for the cube method

Description

Landing phase of the cube method using linear programming.

Usage

```
landingcube(X,pikstar,pik,comment=TRUE)
```

Arguments

X matrix of auxiliary variables on which the sample must be balanced.

pikstar vector obtained at the end of the flight phase.

pik vector of inclusion probabilities.

comment a comment is written during the execution if comment is TRUE.

References

Tillé, Y. (2006), Sampling Algorithms, Springer.

Chauvet, G. and Tillé, Y. (2006). A fast algorithm of balanced sampling. *Computational Statistics*, 21/1:53–62.

Chauvet, G. and Tillé, Y. (2005). New SAS macros for balanced sampling. In INSEE, editor, *Journées de Méthodologie Statistique*, Paris.

Deville, J.-C. and Tillé, Y. (2004). Efficient balanced sampling: the cube method. *Biometrika*, 91:893–912.

Deville, J.-C. and Tillé, Y. (2005). Variance approximation under balanced sampling. *Journal of Statistical Planning and Inference*, 128/2:411–425.

See Also

```
samplecube, fastflightcube
```

Examples

```
# matrix of balancing variables
X=cbind(c(1,1,1,1,1,1,1,1,1),c(1.1,2.2,3.1,4.2,5.1,6.3,7.1,8.1,9.1))
# the sample size is 3
# vector of inclusion probabilities
pik=c(1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3)
# pikstar is almost a balanced sample and is ready for the landing phase
pikstar=fastflightcube(X,pik,order=1,comment=TRUE)
# selection of the sample
s=landingcube(X,pikstar,pik,comment=TRUE)
round(s)
```

mstage

Multistage sampling

Description

Implements multistage sampling with equal/unequal probabilities.

Usage

```
mstage(data, stage=c("stratified","cluster",""), varnames, size,
method=c("srswor","srswr","poisson","systematic"), pik, description=FALSE)
```

Arguments

data frame or data matrix; its number of rows is N, the population size.

stage list of sampling types at each stage; the possible values are: "stratified", "cluster"

and "" (without stratification or clustering). For multistage element sampling,

this argument is not necessary.

varnames list of stratification or clustering variables.

size list of sample sizes (in the order in which the samples appear in the multistage

sampling).

method list of methods to select units at each stage; the following methods are imple-

mented: simple random sampling without replacement (srswor), simple random sampling with replacement (srswr), Poisson sampling (poisson), systematic sampling (systematic); if the method is not specified, by default the method

is "srswor". The method can be different at each stage.

pik list of selection probabilities or auxiliary information used to compute them; this

argument is only used for unequal probability sampling (Poisson, systematic). If an auxiliary information is provided, the function uses the inclusion probabilities

function for computing these probabilities.

description a message is printed if its value is TRUE; the message gives the number of

selected units and the number of the units in the population. By default, its

value is FALSE.

Details

The data should be sorted in ascending order by the columns given in the varnames argument before applying the function. Use, for example, data[order(data\$state,data\$region),].

Value

The function returns a list, which contains the stages (if m is this list, the stage i is m\$'i' etc) and the following information:

ID_unit the identifier of selected units at each stage.

Prob_number_stage

the inclusion probability at stage 'number'.

Prob the final unit inclusion probability given in the last stage; it is the product of unit

inclusion probabilities at each stage.

See Also

```
cluster, strata, getdata
```

```
###############
## Example 1
###############
# Two-stage cluster sampling
```

```
# Uses the 'swissmunicipalities' data
data(swissmunicipalities)
b=swissmunicipalities
b=b[order(b$REG,b$CT),]
attach(b)
# the variable 'REG' (region) has 7 categories;
# it is used as clustering variable in the first-stage sample
# the variable 'CT' (canton) has 26 categories;
# it is used as clustering variable in the second-stage sample
# 4 clusters (regions) are selected in the first-stage
# 1 canton is selected in the second-stage from each sampled region
# the method is simple random sampling without replacement in each stage
# (equal probability, without replacement)
m=mstage(b,stage=list("cluster","cluster"), varnames=list("REG","CT"),
size=list(4,c(1,1,1,1)), method=list("srswor","srswor"))
# the first stage is m[[1]], the second stage is m[[2]]
#the selected regions
unique(m[[1]]$REG)
#the selected cantons
unique(m[[2]]$CT)
# extracts the observed data
x=getdata(b,m)[[2]]
# check the output
table(x$REG,x$CT)
############
## Example 2
############
# Two-stage element sampling
# Generates artificial data (a 235X3 matrix with 3 columns: state, region, income).
# The variable "state" has 2 categories ('n','s').
# The variable "region" has 5 categories ('A', 'B', 'C', 'D', 'E').
# The variable "income" is generated using the U(0,1) distribution.
data=rbind(matrix(rep('n',165),165,1,byrow=TRUE),matrix(rep('s',70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep('A',115),rep('D',10),rep('E',40),rep('B',30),rep('C',40)),
100*runif(235))
names(data)=c("state", "region", "income")
data=data[order(data$state,data$region),]
table(data$state,data$region)
# the method is simple random sampling without replacement
# 25 units are drawn in the first-stage
# in the second-stage, 10 units are drawn from the already 25 selected units
m=mstage(data,size=list(25,10),method=list("srswor","srswor"))
# the first stage is m[[1]], the second stage is m[[2]]
# extracts the observed data
xx=getdata(data,m)[[2]]
# check the result
table(xx$state,xx$region)
############
## Example 3
###########
# Stratified one-stage cluster sampling
# The same data as in Example 2
# the variable 'state' is used as stratification variable
```

```
# 165 units are in the first stratum and 70 in the second one
# the variable 'region' is used as clustering variable
# 1 cluster (region) is drawn in each state using "srswor"
m=mstage(data, stage=list("stratified","cluster"), varnames=list("state","region"),
size=list(c(165,70),c(1,1)),method=list("","srswor"))
# check the first stage
table(m[[1]]$state)
# check the second stage
table(m[[2]]$region)
# extracts the observed data
xx=getdata(data,m)[[2]]
# check the result
table(xx$state,xx$region)
############
## Example 4
############
# Two-stage cluster sampling
# The same data as in Example 1
# in the first-stage, the clustering variable is 'REG' (region) with 7 categories
# 4 clusters (regions) are drawn in the first-stage
# each region is selected with the probability 4/7
# in the second-stage, the clustering variable is 'CT'(canton) with 26 categories
# 1 cluster (canton) is drawn in the second-stage from each selected region
# in region 1, there are 3 cantons; one canton is selected with prob. 0.2, 0.4, 0.4, resp.
# in region 2, there are 5 cantons; each canton is selected with the prob. 1/5
# in region 3, there are 3 cantons; each canton is selected with the prob. 1/3
# in region 4, there is 1 canton, which it is selected with the prob. 1
# in region 5, there are 7 cantons; each canton is selected with the prob. 1/7
# in region 6, there are 6 cantons; each canton is selected with the prob. 1/6
# in region 7, there is 1 canton, which it is selected with the prob. 1
# it is necessary to use a list of selection probabilities at each stage
# prob is the list of the selection probabilities
# the method is systematic sampling (unequal probabilities, without replacement)
# ls is the list of sizes
ls=list(4,c(1,1,1,1))
prob=list(rep(4/7,7),list(c(0.2,0.4,0.4),rep(1/5,5),rep(1/3,3),rep(1,1),rep(1/7,7),
rep(1/6,6), rep(1,1))
m=mstage(b,stage=list("cluster","cluster"),varnames=list("REG","CT"),
size=ls, method=c("systematic", "systematic"), pik=prob)
#the selected regions
unique(m[[1]]$REG)
#the selected cantons
unique(m[[2]]$CT)
# extracts the observed data
xx=getdata(b,m)[[2]]
# check the result
table(xx$REG,xx$CT)
############
## Example 5
###########
# Stratified two-stage cluster sampling
# The same data as in Example 1
# the variable 'REG' is used as stratification variable
```

MU284 31

```
# there are 7 strata
# the variable 'CT' is used as first clustering variable
# first stage, clusters (cantons) are drawn from each region using "srswor"
# 3 clusters are drawn from the regions 1,2,3,5, and 6, respectively
# 1 cluster is drawn from the regions 4 and 7, respectively
# the variable 'COM' is used as second clustering variable
# second stage, 2 clusters (municipalities) are drawn from each selected canton using "srswor"
m=mstage(b,stage=list("stratified","cluster","cluster"), varnames=list("REG","CT","COM"),
size=list(size1=table(b$REG),size2=c(rep(3,3),1,3,3,1), size3=rep(2,17)),
method=list("","srswor","srswor"))
# extracts the observed data
getdata(b,m)[[3]]
```

MU284

The MU284 population

Description

This data is from Särndal et al (1992), see Appendix B, p. 652.

Usage

data(MU284)

Format

A data frame with 284 observations on the following 11 variables.

LABEL identifier number from 1 to 284.

P85 1985 population (in thousands).

P75 1975 population (in thousands).

RMT85 revenues from 1985 municipal taxation (in millions of kronor).

CS82 number of Conservative seats in municipal council.

SS82 number of Social-Democratic seats in municipal council.

S82 total number of seats in municipal council.

ME84 number of municipal employees in 1984.

REV84 real estate values according to 1984 assessment (in millions of kronor).

REG geographic region indicator.

CL cluster indicator (a cluster consists of a set of neighboring).

Source

http://lib.stat.cmu.edu/datasets/mu284

postest postest

References

Särndal, C.-E., Swensson, B., and Wretman, J. (1992), *Model Assisted Survey Sampling*, Springer Verlag, New York.

Examples

```
data(MU284)
hist(MU284$RMT85)
```

postest

Poststratified estimator

Description

Computes the poststratified estimator of the population total.

Usage

```
postest(data, y, pik, NG, description=FALSE)
```

Arguments

data	data frame or data matrix; its number of rows is n, the sample size.
У	vector of the variable of interest; its length is equal to n, the sample size.
pik	vector of the first-order inclusion probabilities for the sampled units; its length is equal to n, the sample size.
NG	vector of population frequency in each group G; for stratified sampling with poststratification, NG is a matrix of population frequency in each cell GH.
description	if TRUE, the estimator is printed for each poststratum; by default, FALSE.

See Also

```
poststrata
```

postest 33

```
# 589 913 321 171 471 186 245
# the sample stratum sizes are given by size=c(30,20,45,15,20,11,44)
# the method is simple random sampling without replacement
st=strata(swissmunicipalities,stratanames=c("REG"),
size=c(30,20,45,15,20,11,44), method="srswor")
# extracts the observed data
# the order of the columns is different from the order in the initial data
x=getdata(swissmunicipalities, st)
px=poststrata(x,"REG")
#computes the population frequency in each group
ct=unique(px$data$REG)
yy=table(swissmunicipalities$REG)[ct]
postest(px$data,y=px$data$Pop020,pik=px$data$Prob,NG=diag(yy))
HTstrata(x$Pop020,x$Prob,x$Stratum)
#the two estimators are equal
############
## Example 2
###########
# systematic sampling and poststratification
data(belgianmunicipalities)
Tot=belgianmunicipalities$Tot04
name=belgianmunicipalities$Commune
pik=inclusionprobabilities(Tot,200)
#selects a sample
s=UPsystematic(pik)
#the sample is
which(s==1)
# extracts the observed data
b=getdata(belgianmunicipalities,s)
pb=poststrata(b,"Province")
#computes the population frequency in each group
ct=unique(pb$data$Province)
yy=table(belgianmunicipalities$Province)[ct]
postest(pb$data,y=pb$data$TaxableIncome,pik=pik[s==1],NG=yy,description=TRUE)
HTestimator(pb$data$TaxableIncome,pik=pik[s==1])
############
## Example 3
############
#cluster sampling and postratification
data(swissmunicipalities)
# the variable 'REG' has 7 categories in the population
# it is used as clustering variable
# the sample size is 3; the method is simple random sampling without replacement
cl=cluster(swissmunicipalities,clustername=c("REG"),size=3,method="srswor")
# extracts the observed data
# the order of the columns is different from the order in the initial data
c=getdata(swissmunicipalities, cl)
pc=poststrata(c,"CT")
#computes the population frequency in each group
ct=unique(pc$data$CT)
yy=table(swissmunicipalities$CT)[ct]
postest(pc$data,y=pc$data$Pop020,pik=pc$data$Prob,NG=yy,description=TRUE)
############
```

poststrata poststrata

```
## Example 4
############
#postratification with two criteria
#artificial data
data=rbind(matrix(rep("nc",165),165,1,byrow=TRUE)),matrix(rep("sc",70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep(1,100), rep(2,50), rep(3,15), rep(1,30),rep(2,40)),
1000*runif(235))
names(data)=c("state", "region", "income")
# computes the population stratum sizes
table(data$region,data$state)
# not run
     nc sc
  1 100 30
  2 50 40
# 3 15
#selects a sample of size 10
s=srswor(10,nrow(data))
# postratification using region and state
ps=poststrata(data[s==1,],c("region","state"))
#computes the population frequency in each group
ct=unique(ps$data$poststratum)
yy=numeric(length(ct))
for(i in 1:length(ct))
  xy=ps$data[ps$data$poststratum==ct[i],]
  xstate=unique(xy$state)
  ystate=unique(xy$region)
  xx=data[data$state==xstate & data$region==ystate,]
  yy[i]=nrow(xx)
postest(ps\$data,y=ps\$data\$income,pik=rep(10/nrow(data),10),NG=yy,description=TRUE)
```

poststrata

Postratification

Description

Poststratification using several criteria.

Usage

```
poststrata(data, postnames = NULL)
```

Arguments

data frame or data matrix; its number of rows is n, the sample size.

postnames vector of poststratification variables.

ratioest 35

Value

The function produces an object, which contains the following information:

data the final data frame with a new column ('poststratum') containg the unit post-

stratum.

npost the number of poststrata.

See Also

postest

Examples

```
# Example from An and Watts (New SAS procedures for Analysis of Sample Survey Data)
# generates artificial data (a 235X3 matrix with 3 columns: state, region, income).
# the variable "state" has 2 categories ('nc' and 'sc').
# the variable "region" has 3 categories (1, 2 and 3).
# the income variable is randomly generated
data=rbind(matrix(rep("nc",165),165,1,byrow=TRUE),matrix(rep("sc",70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep(1,100), rep(2,50), rep(3,15), rep(1,30),rep(2,40)),
1000*runif(235))
names(data)=c("state", "region", "income")
# computes the population stratum sizes
table(data$region,data$state)
# not run
     nc sc
  1 100 30
 2 50 40
# 3 15 0
# postratification using two criteria: state and region
poststrata(data,postnames=c("state","region"))
```

ratioest

Ratio estimator

Description

Computes the ratio estimator of the population total.

Usage

```
ratioest(y,x,Tx,pik)
```

Arguments

У	vector of the variable of interest; its length is equal to n, the sample size.
X	vector of auxiliary information; its length is equal to n, the sample size.
Tx	population total of x.
pik	vector of the first-order inclusion probabilities; its length is equal to n, the sample size.

36 ratioest_strata

Value

The function returns the value of the ratio estimator.

See Also

regest

Examples

```
# population
data(MU284)
# there are 3 outliers which are deleted from the population
MU281=MU284[MU284$RMT85<=3000,]
attach(MU281)
# computes the inclusion probabilities using the variable P85; sample size 120
pik=inclusionprobabilities(P85,120)
# defines the variable of interest
y=RMT85
# defines the auxiliary information
x=CS82
# draws a systematic sample of size 120
s=UPsystematic(pik)
\ensuremath{\text{\#}} computes the ratio estimator of the total of RMT85
ratioest(y[s==1],x[s==1],sum(x),pik[s==1])
detach(MU281)
```

ratioest_strata

Ratio estimator for a stratified design

Description

Computes the ratio estimator of the population total for a stratified design. The ratio estimator of a total is the sum of ratio estimator in each stratum.

Usage

```
ratioest\_strata(y,x,TX\_strata,pik,strata,description=FALSE)
```

Arguments

description

У	vector of the variable of interest; its length is equal to n, the sample size.
X	vector of auxiliary information; its length is equal to n, the sample size.
TX_strata	vector of population x-total in each stratum; its length is equal to the number of strata.
pik	vector of the first-order inclusion probabilities; its length is equal to n, the sample size.
strata	vector of size n, with elements indicating the unit stratum.

if TRUE, the ratio estimator in each stratum is printed; by default, it is FALSE.

ratioest_strata 37

Value

The function returns the value of the ratio estimator.

See Also

ratioest

```
###########
# Example 1
###########
# uses MU284 data as population with the 'REG' variable for stratification
# there are 3 outliers which are deleted from the population
MU281=MU284[MU284$RMT85<=3000.]
attach(MU281)
# computes the inclusion probabilities using the variable P85
# sample size 120
pik=inclusionprobabilities(P85,120)
# defines the variable of interest
v=RMT85
# defines the auxiliary information
x=CS82
# computes the population stratum sizes
table(REG)
# not run
#12345678
# 24 48 32 37 55 41 15 29
# a sample is drawn in each region
# the sample stratum sizes are given by size=c(4,10,8,4,6,4,6,7)
s=strata(MU281,c("REG"),size=c(4,10,8,4,6,4,6,7), method="systematic",pik=P85)
# extracts the observed data
MU281sample=getdata(MU281,s)
# computes the population x-totals in each stratum
TX_strata=as.vector(tapply(CS82,list(REG),FUN=sum))
# computes the ratio estimator
ratioest_strata(MU281sample$RMT85,MU281sample$CS82,TX_strata,
MU281sample$Prob, MU281sample$Stratum)
detach(MU281)
###########
# Example 2
###########
# this is an artificial example (see Example 1 in the 'strata' function)
# there are 4 columns: state, region, income and aux
# 'income' is the variable of interest, and 'aux' is the auxiliary information
# which is correlated to the income
data=rbind(matrix(rep("nc",165),165,1,byrow=TRUE)),matrix(rep("sc",70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep(1,100), rep(2,50), rep(3,15), rep(1,30),rep(2,40)),
1000*runif(235))
names(data)=c("state", "region", "income")
attach(data)
```

38 rec99

```
aux=income+rnorm(length(income),0,1)
data=cbind.data.frame(data,aux)
# computes the population stratum sizes
table(data$region,data$state)
# not run
     nc sc
# 1 100 30
# 2 50 40
# 3 15 0
# there are 5 cells with non-zero values; one draws 5 samples (1 sample in each stratum)
# the sample stratum sizes are 10,5,10,4,6, respectively
# the method is 'srswor' (equal probability, without replacement)
s=strata(data,c("region","state"),size=c(10,5,10,4,6), method="srswor")
# extracts the observed data
xx=getdata(data,s)
# computes the population x-total for each stratum
TX_strata=na.omit(as.vector(tapply(aux,list(region,state),FUN=sum)))
# computes the ratio estimator
ratioest_strata(xx$income,xx$aux,TX_strata,xx$Prob,xx$Stratum,description=TRUE)
```

rec99

The 1999 census data

Description

This data provides census information about the municipalities of the Haute-Garonne department, France, with less than 10000 inhabitants in 1999.

Usage

data(rec99)

Format

A data frame with 554 observations on the following 10 variables:

CODE_N municipality code.

COMMUNE municipality name.

BVQ_N code of the Daily Life Basin to which the municipality belongs.

POPSDC99 number of inhabitants.

LOG number of dwellings.

LOGVAC number of vacant dwellings.

STRATLOG a four-modality variable which equals 1 if the municipality has less than 100 dwellings, 2 if it has between 100 and 299 dwellings, 3 if it has between 300 and 999 dwellings and 4 if it has 1000 dwellings or more.

surf_m2 surface in square meters.

lat centre geographical latitude of the center.

lon_centre geographical longitude of the center.

regest 39

Source

For the first 8 variables, 'Institut national de la statistique et des études économiques', France (http://www.insee.fr). The geographical positions are available under the Open Database License ("© OpenStreetMap contributors"). https://www.openstreetmap.org/copyright

Examples

```
data(rec99)
hist(rec99$LOG)
```

regest Regression estimator

Description

Computes the regression estimator of the population total, using the design-based approach. The underling regression model is a model without intercept.

Usage

```
regest(formula,Tx,weights,pikl,n,sigma=rep(1,length(weights)))
```

Arguments

formula regression model formula (y~x).

Tx population total of x, the auxiliary variable.

weights vector of the weights; its length is equal to n, the sample size.

pikl matrix of joint inclusion probabilities for the sample.

n the sample size.

sigma vector of positive values accounting for heteroscedasticity.

Value

The function returns a list with following components:

regest value of the regression estimator.
coefficients vector of estimated beta coefficients.

std_error estimated standard error of the estimated coefficients.

t_valuet-values associated to the coefficients.p_valuep-values associated to the coefficients.

cov_mat covariance matrix of the estimated coefficients.

weights specified weights.

y response variable.

x model matrix.

40 regest_strata

See Also

```
ratioest,regest_strata
```

Examples

```
# uses the MU284 population to draw a systematic sample
data(MU284)
# there are 3 outliers which are deleted from the population
MU281=MU284[MU284$RMT85<=3000,]
attach(MU281)
# computes the inclusion probabilities using the variable P85; sample size 40
pik=inclusionprobabilities(P85,40)
# joint inclusion probabilities for systematic sampling
pikl=UPsystematicpi2(pik)
# draws a systematic sample of size 40
s=UPsystematic(pik)
# defines the variable of interest for the selected sample
y=RMT85[s==1]
# defines the auxiliary information for the selected sample
x1=CS82[s==1]
x2=SS82[s==1]
# joint inclusion probabilities for the selected sample
pikls=pikl[s==1,s==1]
# first-order inclusion probabilities for the selected sample
piks=pik[s==1]
# computes the regression estimator with the model y^x1+x2-1
r=regest(formula=y^x1+x2-1,Tx=c(sum(CS82),sum(SS82)),weights=1/piks,pikl=pikls,n=40)
# the regression estimator
r$regest
# the estimated beta coefficients
r$coefficients
\# the regression estimator is the same as the calibration estimator (method="linear")
Xs=cbind(x1,x2)
total=c(sum(CS82),sum(SS82))
g1=calib(Xs,d=1/piks,total,method="linear")
checkcalibration(Xs,d=1/piks,total,g1)
calibev(y,Xs,total,pikls,d=1/piks,g1,with=TRUE,EPS=1e-6)
detach(MU281)
```

regest_strata

Regression estimator for a stratified design

Description

Computes the regression estimator of the population total for a stratified sampling, using the design-based approach. The same regression model is used for all strata. The underling regression model is a model without intercept.

regest_strata 41

Usage

```
regest_strata(formula, weights, Tx_strata, strata, pikl,
sigma=rep(1,length(weights)), description=FALSE)
```

Arguments

formula regression model formula $(y \sim x)$.

weights vector of the weights; its length is equal to n, the sample size.

Tx_strata population total of x, the auxiliary variable.

strata vector of stratum identificator.

pikl joint inclusion probabilities for the sample.

sigma vector of positive values accounting for heteroscedasticity.

description if TRUE, the following components are printed for each stratum: the Horvitz-

Thompson estimator, the estimated beta coefficients, their estimated standard

error, t_values, p_values, and the covariance matrix. By default, FALSE.

Value

The function returns the value of the regression estimator computed as the sum of the stratum estimators.

See Also

regest

```
# generates artificial data
y=rgamma(10,3)
x=y+rnorm(10)
Stratum=c(1,1,2,2,2,3,3,3,3,3)
# population size
N=200
# sample size
n=10
# assume proportional allocation, nh/Nh=n/N
# joint inclusion probabilities (for the sample)
pikl=matrix(n*(n-1)/(N*(N-1)),n,n)
diag(pikl)=n/N
regest_strata(formula=y~x-1,weights=rep(N/n,n),Tx_strata=c(50,30,40),
strata=Stratum,pikl,description=TRUE)
```

42 rhg

rhg

Response homogeneity groups

Description

Computes the response homogeneity groups and the response probability for each unit in these groups.

Usage

```
rhg(X, selection)
```

Arguments

X sample data frame; it should contain the columns 'ID_unit' and 'status'; 'ID_unit'

denotes the unit identifier (a number); 'status' is a 1/0 variable denoting the

response/non-response of a unit.

selection vector of variable names in X used to construct the groups.

Details

Into a response homogeneity group, the reponse probability is the same for all units. Data are missing at random within groups, conditionally on the selected sample.

Value

The initial sample data frame and also the following components:

rhgroup the response homogeneity group for each unit.

prob_response the response probability for each unit; for the units with status=0, this probability

is 0.

References

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer

See Also

```
rhg_strata, calib
```

```
# defines the inclusion probabilities for the population
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
# X is the population data frame
X=cbind.data.frame(pik,c("A","B","A","A","C","B"))
names(X)=c("Prob","town")
# selects a sample using systematic sampling
```

rhg_strata 43

```
s=UPsystematic(pik)
# Xs is the sample data frame
Xs=getdata(X,s)
# adds the status column to Xs (1 - sample respondent, 0 otherwise)
Xs=cbind.data.frame(Xs,status=c(1,0,1))
# creates the response homogeneity groups using the 'town' variable
rhg(Xs,selection="town")
```

rhg_strata

Response homogeneity groups for a stratified sampling

Description

Computes response homogeneity groups and the corresponding response probability for each unit into a group, for a stratified sampling.

Usage

```
rhg_strata(X, selection)
```

Arguments

Χ

sample data frame; it should contain the columns 'ID_unit','Stratum', and 'status'; 'ID_unit' denotes the unit identifier (a number); 'Stratum' denotes the unit stratum; 'status' is a 1/0 variable denoting the response/non-response of a unit in the sample.

selection

vector of variable names in X used to construct the groups.

Details

Into a response homogeneity group, the reponse probability is the same for all units. Data are missing at random within groups, conditionally on the selected sample.

Value

The initial sample data frame and also the following components:

rhgroup response homogeneity group for each unit, conditionally on its stratum.

prob_response response probability for each unit; for the units with status=0, this probability is

0.

References

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer

See Also

```
rhg, calib
```

44 rmodel

Examples

```
############
## Example 1
############
# uses Example 2 from the 'strata' function help file
data=rbind(matrix(rep("nc",165),165,1,byrow=TRUE),matrix(rep("sc",70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep(1,100), rep(2,50), rep(3,15), rep(1,30),rep(2,40)),
1000*runif(235))
names(data)=c("state", "region", "income")
# draws a sample
s1=strata(data,c("region","state"),size=c(10,5,10,4,6), method="systematic",
pik=data$income)
# extracts the observed data
s1=getdata(data,s1)
# randomly generates the 'status' variable (1-sample respondent, 0-otherwise)
status=ifelse(runif(nrow(s1))<0.3,0,1)</pre>
# adds the 'status' variable to the sample data frame s1
s1=cbind.data.frame(s1,status)
# creates classes of income using the median of income
# suppose that the income is available for all units in the sample
classincome=ifelse(s1$income<median(s1$income),1,2)</pre>
# adds 'classincome' to s1
s1=cbind.data.frame(s1,classincome)
# computes the response homogeneity groups using the 'classincome' variable
rhg_strata(s1,selection=c("classincome"))
###########
## Example 2
############
# the same data as in Example 1
# but we also add the 'sex' column (1-female, 2-male)
# suppose that the sex is available for all units in the sample
sex=c(rep(1,12),rep(2,8),rep(1,10),rep(2,5))
s1=cbind.data.frame(s1,sex)
# computes the response homogeneity groups using the 'classincome' and 'sex' variables
rhg_strata(s1,selection=c("classincome","sex"))
```

rmodel

Response probability using logistic regression

Description

Computes the response probabilities using logistic regression for non-response adjustment. For stratified sampling, the same logistic model is used for all strata.

Usage

```
rmodel(formula,weights,X)
```

rmodel 45

Arguments

```
formula regression model formula (y\sim x).

weights vector of weights; its length is equal to n, the sample size.

X sample data frame.
```

Value

The function returns the sample data frame with a new column 'prob_resp', which contains the response probabilities.

See Also

rhg

```
# Example from An and Watts (New SAS procedures for Analysis of Sample Survey Data)
# generates artificial data (a 235X3 matrix with 3 columns: state, region, income).
# the variable "state" has 2 categories ('nc' and 'sc').
# the variable "region" has 3 categories (1, 2 and 3).
# the sampling frame is stratified by region within state.
# the income variable is randomly generated
data=rbind(matrix(rep("nc",165),165,1,byrow=TRUE),matrix(rep("sc",70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep(1,100), rep(2,50), rep(3,15), rep(1,30),rep(2,40)),
1000*runif(235))
names(data)=c("state", "region", "income")
# computes the population stratum sizes
table(data$region,data$state)
# not run
     nc sc
# 1 100 30
# 2 50 40
# 3 15
# there are 5 cells with non-zero values; one draws 5 samples (1 sample in each stratum)
# the sample stratum sizes are 10,5,10,4,6, respectively
# the method is 'srswor' (equal probability, without replacement)
s=strata(data,c("region","state"),size=c(10,5,10,4,6), method="srswor")
# extracts the observed data
x=getdata(data,s)
# generates randomly the 'status' column (1 - respondent, 0 - nonrespondent)
status=round(runif(nrow(x)))
x=cbind(x,status)
# computes the response probabilities
rmodel(x$status~x$income+x$Stratum,weights=1/x$Prob,x)
# the same example without stratification
rmodel(x$status~x$income,weights=1/x$Prob,x)
```

46 samplecube

Description

Selects a balanced sample (a vector of 0 and 1) or an almost balanced sample. Firstly, the flight phase is applied. Next, if needed, the landing phase is applied on the result of the flight phase.

Usage

```
samplecube(X,pik,order=1,comment=TRUE,method=1)
```

Arguments

X matrix of auxiliary variables on which the sample must be balanced.

pik vector of inclusion probabilities.

order 1, the data are randomly arranged

the data are randomly arranged,
 no change in data order,

3, the data are sorted in decreasing order.

comment a comment is written during the execution if comment is TRUE.

method 1, for a landing phase by linear programming,

2, for a landing phase by suppression of variables.

References

Tillé, Y. (2006), Sampling Algorithms, Springer.

Chauvet, G. and Tillé, Y. (2006). A fast algorithm of balanced sampling. *Computational Statistics*, 21/1:53–62.

Chauvet, G. and Tillé, Y. (2005). New SAS macros for balanced sampling. In INSEE, editor, *Journées de Méthodologie Statistique*, Paris.

Deville, J.-C. and Tillé, Y. (2004). Efficient balanced sampling: the cube method. *Biometrika*, 91:893–912.

Deville, J.-C. and Tillé, Y. (2005). Variance approximation under balanced sampling. *Journal of Statistical Planning and Inference*, 128/2:411–425.

See Also

landingcube, fastflightcube

samplecube 47

```
# the sample size is 3.
pik=c(1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3)
# selection of the sample
s=samplecube(X,pik,order=1,comment=TRUE)
# The selected sample
(1:length(pik))[s==1]
###########
## Example 2
############
# 2 strata and 2 auxiliary variables
\# we verify the values of the inclusion probabilities by simulations
X=rbind(c(1,0,1,2),c(1,0,2,5),c(1,0,3,7),c(1,0,4,9),
c(1,0,5,1),c(1,0,6,5),c(1,0,7,7),c(1,0,8,6),c(1,0,9,9),
c(1,0,10,3),c(0,1,11,3),c(0,1,12,2),c(0,1,13,3),
c(0,1,14,6),c(0,1,15,8),c(0,1,16,9),c(0,1,17,1),
c(0,1,18,2),c(0,1,19,3),c(0,1,20,4))
pik=rep(1/2,times=20)
ppp=rep(0,times=20)
sim=10 #for accurate results increase this value
for(i in (1:sim))
ppp=ppp+samplecube(X,pik,1,FALSE)
ppp=ppp/sim
print(ppp)
print(pik)
############
## Example 3
############
# unequal probability sampling by cube method
# one auxiliary variable equal to the inclusion probability
N=100
pik=runif(N)
pikfin=samplecube(array(pik,c(N,1)),pik,1,TRUE)
###########
## Example 4
############
# p auxiliary variables generated randomly
N=100
p=7
x=rnorm(N*p,10,3)
# random inclusion probabilities
pik= runif(N)
X=array(x,c(N,p))
X=cbind(cbind(X,rep(1,times=N)),pik)
pikfin=samplecube(X,pik,1,TRUE)
############
## Example 5
###########
# strata and an auxiliary variable
N=100
a=rep(1,times=N)
b=rep(0,times=N)
V1=c(a,b,b)
V2=c(b,a,b)
```

48 srswor

```
V3=c(b,b,a)
X=cbind(V1,V2,V3)
pik=rep(2/10,times=3*N)
pikfin=samplecube(X,pik,1,TRUE)
###########
## Example 6
############
# Selection of a balanced sample using the MU284 population,
# Monte Carlo simulation and variance comparison with
# unequal probability sampling of fixed sample size.
############
data(MU284)
# inclusion probabilities, sample size 50
pik=inclusionprobabilities(MU284$P75,50)
# matrix of balancing variables
X=cbind(MU284$P75,MU284$CS82,MU284$SS82,MU284$S82,MU284$ME84,MU284$REV84)
# Horvitz-Thompson estimator for a balanced sample
s=samplecube(X,pik,1,FALSE)
HTestimator(MU284\$RMT85[s==1],pik[s==1])
# Horvitz-Thompson estimator for an unequal probability sample
s=samplecube(matrix(pik),pik,1,FALSE)
HTestimator(MU284$RMT85[s==1],pik[s==1])
# Monte Carlo simulation; for a better accuracy, increase the value 'sim'
sim=5
res1=rep(0,times=sim)
res2=rep(0,times=sim)
for(i in 1:sim)
cat("Simulation number ",i,"\n")
s=samplecube(X,pik,1,FALSE)
res1[i]=HTestimator(MU284$RMT85[s==1],pik[s==1])
s=samplecube(matrix(pik),pik,1,FALSE)
res2[i]=HTestimator(MU284$RMT85[s==1],pik[s==1])
# summary and boxplots
summary(res1)
summary(res2)
ss=cbind(res1,res2)
colnames(ss) = c("balanced sampling", "uneq prob sampling")
boxplot(data.frame(ss), las=1)
```

srswor

Simple random sampling without replacement

Description

Draws a simple random sampling without replacement of size n (equal probabilities, fixed sample size, without replacement).

srswor1 49

Usage

```
srswor(n,N)
```

Arguments

```
n sample size.

N population size.
```

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise).

See Also

```
srswr
```

Examples

```
############
## Example 1
############
#select a sample
s=srswor(3,10)
#the sample is
which(s==1)
############
## Example 2
###########
data(belgianmunicipalities)
Tot=belgianmunicipalities$Tot04
name=belgianmunicipalities$Commune
n=200
#select a sample
s=srswor(n,length(Tot))
#the sample is
which(s==1)
#names of the selected units
as.vector(name[s==1])
```

srswor1

Selection-rejection method

Description

Draws a simple random sampling without replacement of size n using the selection-rejection method (equal probabilities, fixed sample size, without replacement).

50 srswr

Usage

```
srswor1(n,N)
```

Arguments

n sample size.

N population size.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise).

References

Fan, C.T., Muller, M.E., Rezucha, I. (1962), Development of sampling plans by using sequential (item by item) selection techniques and digital computer, *Journal of the American Statistical Association*, 57, 387–402.

See Also

srswor

Examples

```
s=srswor1(3,10)
#the sample is
which(s==1)
```

srswr

Simple random sampling with replacement

Description

Draws a simple random sampling with replacement of size n (equal probabilities, fixed sample size, with replacement).

Usage

```
srswr(n,N)
```

Arguments

n sample size.

N population size.

strata 51

Value

Returns a vector of size N, the population size. Each element k of this vector indicates the number of replicates of unit k in the sample.

See Also

UPmultinomial

Examples

```
s=srswr(3,10)
#the selected units are
which(s!=0)
#with the number of replicates
s[s!=0]
```

strata

Stratified sampling

Description

Stratified sampling with equal/unequal probabilities.

Usage

```
strata(data, stratanames=NULL, size, method=c("srswor","srswr","poisson",
"systematic"), pik,description=FALSE)
```

Arguments

data	data frame or data matrix; its number of rows is N, the population size.
stratanames	vector of stratification variables.
size	vector of stratum sample sizes (in the order in which the strata are given in the input data set).
method	method to select units; the following methods are implemented: simple random sampling without replacement (srswor), simple random sampling with replacement (srswr), Poisson sampling (poisson), systematic sampling (systematic); if "method" is missing, the default method is "srswor".
pik	vector of inclusion probabilities or auxiliary information used to compute them; this argument is only used for unequal probability sampling (Poisson and systematic). If an auxiliary information is provided, the function uses the inclusion-probabilities function for computing these probabilities.
description	a message is printed if its value is TRUE; the message gives the number of selected units and the number of the units in the population. By default, the value is FALSE.

52 strata

Details

The data should be sorted in ascending order by the columns given in the stratanames argument before applying the function. Use, for example, data[order(data\$state,data\$region),].

Value

The function produces an object, which contains the following information:

ID_unit the identifier of the selected units.

Stratum the unit stratum.

Prob the unit inclusion probability.

See Also

```
getdata, mstage
```

```
############
## Example 1
############
# Example from An and Watts (New SAS procedures for Analysis of Sample Survey Data)
# generates artificial data (a 235X3 matrix with 3 columns: state, region, income).
# the variable "state" has 2 categories ('nc' and 'sc').
# the variable "region" has 3 categories (1, 2 and 3).
# the sampling frame is stratified by region within state.
# the income variable is randomly generated
data=rbind(matrix(rep("nc",165),165,1,byrow=TRUE),matrix(rep("sc",70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep(1,100), rep(2,50), rep(3,15), rep(1,30),rep(2,40)),
1000*runif(235))
names(data)=c("state", "region", "income")
# computes the population stratum sizes
table(data$region,data$state)
# not run
     nc sc
  1 100 30
# 2 50 40
# 3 15
          0
# there are 5 cells with non-zero values
# one draws 5 samples (1 sample in each stratum)
# the sample stratum sizes are 10,5,10,4,6, respectively
# the method is 'srswor' (equal probability, without replacement)
s=strata(data,c("region","state"),size=c(10,5,10,4,6), method="srswor")
# extracts the observed data
getdata(data,s)
# see the result using a contigency table
table(s$region,s$state)
############
## Example 2
############
# The same data as in Example 1
```

swissmunicipalities 53

```
# the method is 'systematic' (unequal probability, without replacement)
# the selection probabilities are computed using the variable 'income'
s=strata(data,c("region","state"),size=c(10,5,10,4,6), method="systematic",pik=data$income)
# extracts the observed data
getdata(data,s)
# see the result using a contigency table
table(s$region,s$state)
############
## Example 3
############
# Uses the 'swissmunicipalities' data as population for drawing a sample of units
data(swissmunicipalities)
# the variable 'REG' has 7 categories in the population
# it is used as stratification variable
# Computes the population stratum sizes
table(swissmunicipalities$REG)
# do not run
# 1 2 3
              4 5 6 7
# 589 913 321 171 471 186 245
# sort the data to obtain the same order of the regions in the sample
data=swissmunicipalities
data=data[order(data$REG),]
\# the sample stratum sizes are given by size=c(30,20,45,15,20,11,44)
# 30 units are drawn in the first stratum, 20 in the second one, etc.
# the method is simple random sampling without replacement
# (equal probability, without replacement)
st=strata(data,stratanames=c("REG"),size=c(30,20,45,15,20,11,44),\ method="srswor")
# extracts the observed data
getdata(data, st)
# see the result using a contingency table
table(st$REG)
```

swissmunicipalities The Swiss municipalities population

Description

This population provides information about the Swiss municipalities in 2003.

Usage

```
data(swissmunicipalities)
```

Format

A data frame with 2896 observations on the following 22 variables:

CT Swiss canton.

REG Swiss region.

COM municipality number.

54 UPbrewer

Nom municipality name.

HApoly municipality area.

Surfacesbois wood area.

Surfacescult area under cultivation.

Alp mountain pasture area.

Airbat area with buildings.

Airind industrial area.

P00BMTOT number of men.

P00BWTOT number of women.

Pop020 number of men and women aged between 0 and 19.

Pop2040 number of men and women aged between 20 and 39.

Pop4065 number of men and women aged between 40 and 64.

Pop65P number of men and women aged between 65 and over.

H00PTOT number of households.

H00P01 number of households with 1 person.

H00P02 number of households with 2 persons.

H00P03 number of households with 3 persons.

H00P04 number of households with 4 persons.

POPTOT total population.

Source

Swiss Federal Statistical Office.

Examples

data(swissmunicipalities)
hist(swissmunicipalities\$POPTOT)

UPbrewer

Brewer sampling

Description

Uses the Brewer's method to select a sample of units (unequal probabilities, without replacement, fixed sample size).

Usage

UPbrewer(pik,eps=1e-06)

UPmaxentropy 55

Arguments

pik vector of the inclusion probabilities.

eps the control value, by default equal to 1e-06; it is used to control pik (pik>eps &

pik < 1-eps).

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise).

References

Brewer, K. (1975), A simple procedure for \$pi\$pswor, Australian Journal of Statistics, 17:166-172.

See Also

UPsystematic

Examples

```
#define the inclusion probabilities
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
#select a sample
s=UPbrewer(pik)
#the sample is
which(s==1)
```

UPmaxentropy

Maximum entropy sampling

Description

Maximum entropy sampling with fixed sample size and unequal probabilities (or Conditional Poisson sampling) is implemented by means of a sequential method (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPmaxentropy(pik)
UPmaxentropypi2(pik)
UPMEqfromw(w,n)
UPMEpikfromq(q)
UPMEpiktildefrompik(pik,eps=1e-6)
UPMEsfromq(q)
UPMEpik2frompikw(pik,w)
```

56 UPmaxentropy

Arguments

n	sample size.
pik	vector of prescribed inclusion probabilities.
eps	tolerance in the Newton's method; by default is 1E-6.
q	matrix of the conditional selection probabilities for the sequential algorithm.
W	parameter vector of the maximum entropy design.

Details

The maximum entropy sampling maximizes the entropy criterion:

$$I(p) = -\sum_{s} p(s) \log[p(s)]$$

The main procedure is UPmaxentropy which selects a sample (a vector of 0 and 1) from a given vector of inclusion probabilities. The procedure UPmaxentropypi2 returns the matrix of joint inclusion probabilities from the first-order inclusion probability vector. The other procedures are intermediate steps. They can be useful to run simulations as shown in the examples below. The procedure UPMEpiktildefrompik computes the vector of the inclusion probabilities (denoted pikt) of a Poisson sampling from the vector of the inclusion probabilities of the maximum entropy sampling. The maximum entropy sampling is the conditional design given the fixed sample size. The vector w can be easily obtained by w=pikt/(1-pikt). Once piktilde and w are deduced from pik, a matrix of selection probabilities q can be derived from the sample size n and the vector w via UPMEqfromw. Next, a sample can be selected from q using UPMEsfromq. In order to generate several samples, it is more efficient to compute the matrix q (which needs some calculation), and then to use the procedure UPMEsfromq. The vector of the inclusion probabilities can be recomputed from q using UPMEpikfromq, which also checks the numerical precision of the algorithm. The procedure UPMEpik2frompikw computes the matrix of the joint inclusion probabilities from q and w.

References

Chen, S.X., Liu, J.S. (1997). Statistical applications of the Poisson-binomial and conditional Bernoulli distributions, *Statistica Sinica*, 7, 875-892;

Deville, J.-C. (2000). *Note sur l'algorithme de Chen, Dempster et Liu*. Technical report, CREST-ENSAI, Rennes.

Matei, A., Tillé, Y. (2005) Evaluation of variance approximations and estimators in maximum entropy sampling with unequal probability and fixed sample size, *Journal of Official Statistics*, Vol. 21, No. 4, p. 543-570.

Tillé, Y. (2006), Sampling Algorithms, Springer.

UPmidzuno 57

```
# Second method by using intermediate procedures
n=sum(pik)
pikt=UPMEpiktildefrompik(pik)
w=pikt/(1-pikt)
q=UPMEqfromw(w,n)
UPMEsfromq(q)
# Matrix of joint inclusion probabilities
# First method: direct computation from pik
UPmaxentropypi2(pik)
# Second method: computation from pik and w
UPMEpik2frompikw(pik,w)
###########
## Example 2
############
# other examples in the 'UPexamples' vignette
# vignette("UPexamples", package="sampling")
```

UPmidzuno

Midzuno sampling

Description

Uses the Midzuno's method to select a sample of units (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPmidzuno(pik,eps=1e-6)
```

Arguments

pik vector of the inclusion probabilities.
eps control value, by default equal to 1e-6.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise). The value 'eps' is used to control pik (pik>eps & pik < 1-eps).

References

Midzuno, H. (1952), On the sampling system with probability proportional to sum of size. *Annals of the Institute of Statistical Mathematics*, 3:99-107.

Deville, J.-C. and Tillé, Y. (1998), Unequal probability sampling without replacement through a splitting method, *Biometrika*, 85:89-101.

58 UPmidzunopi2

See Also

UPtille

Examples

```
#define the prescribed inclusion probabilities
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
#select a sample
s=UPmidzuno(pik)
#the sample is
which(s==1)
```

UPmidzunopi2

Joint inclusion probabilities for Midzuno sampling

Description

Computes the joint (second-order) inclusion probabilities for Midzuno sampling.

Usage

UPmidzunopi2(pik)

Arguments

pik

vector of the first-order inclusion probabilities.

Value

Returns a NxN matrix of the following form: the main diagonal contains the first-order inclusion probabilities for each unit k in the population; elements (k,l) are the joint inclusion probabilities of units k and l, with k not equal to l. N is the population size.

References

Midzuno, H. (1952), On the sampling system with probability proportional to sum of size. *Annals of the Institute of Statistical Mathematics*, 3:99-107.

See Also

UPmidzuno

```
#define the prescribed inclusion probabilities pik=c(0.2,0.7,0.8,0.5,0.4,0.4) #matrix of joint inclusion probabilities UPmidzunopi2(pik)
```

UPminimalsupport 59

UPminimalsupport

Minimal support sampling

Description

Uses the minimal support method to select a sample of units (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPminimalsupport(pik)
```

Arguments

pik

vector of the inclusion probabilities.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise).

References

Deville, J.-C., Tillé, Y. (1998), Unequal probability sampling without replacement through a splitting method, *Biometrika*, 85, 89-101. Tillé, Y. (2006), *Sampling Algorithms*, Springer.

```
############
## Example 1
############
#defines the prescribed inclusion probabilities
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
#selects a sample
s=UPminimalsupport(pik)
#the sample is
which(s==1)
############
## Example 2
###########
data(belgianmunicipalities)
Tot=belgianmunicipalities$Tot04
name=belgianmunicipalities$Commune
pik=inclusionprobabilities(Tot, 200)
#selects a sample
s=UPminimalsupport(pik)
#the sample is
which(s==1)
```

60 UPmultinomial

```
#names of the selected units
as.vector(name[s==1])
```

UPmultinomial

Multinomial sampling

Description

Uses the Hansen-Hurwitz method to select a sample of units (unequal probabilities, with replacement, fixed sample size).

Usage

```
UPmultinomial(pik)
```

Arguments

pik

vector of the inclusion probabilities.

Value

Returns a vector of size N, the population size. Each element k of this vector indicates the number of replicates of unit k in the sample.

References

Hansen, M. and Hurwitz, W. (1943), On the theory of sampling from finite populations. *Annals of Mathematical Statistics*, 14:333-362.

```
#defines the prescribed inclusion probabilities pik=c(0.2,0.7,0.8,0.5,0.4,0.4) #selects a sample s=UPmultinomial(pik) #the selected units are which(s!=0) #with the number of replicates s[s!=0] #or use rep((1:length(pik))[s!=0],s[s!=0])
```

UPopips 61

UPopips	Order pips sampling

Description

Implements order πps sampling (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPopips(lambda, type=c("pareto", "uniform", "exponential"))
```

Arguments

lambda vector of working inclusion probabilities or target ones.
type the type of order sampling (pareto, uniform, exponential).

Value

Returns a vector of the selected units; its length is equal to the sample size.

References

Rosén, B. (1997), Asymptotic theory for order sampling, *Journal of Statistical Planning and Inference*, 62:135-158.

Rosén, B. (1997), On sampling with probability proportional to size, *Journal of Statistical Planning and Inference*, 62:159-191.

See Also

inclusion probabilities

```
#define the working inclusion probabilities
lambda=c(0.2,0.7,0.8,0.5,0.4,0.4)
#draw a Pareto sample
s=UPopips(lambda, type="pareto")
#the sample is
s
```

62 UPpivotal

UP	ni	vο	t.	a1

Pivotal sampling

Description

Selects an unequal probability sample using the pivotal method (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPpivotal(pik,eps=1e-6)
```

Arguments

pik vector of the inclusion probabilities.
eps control value, by default equal to 1e-6.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise). The value eps is used to control pik (pik>eps & pik < 1-eps).

References

Deville, J.-C. and Tillé, Y. (1998), Unequal probability sampling without replacement through a splitting method, *Biometrika*, 85:89-101.

Chauvet, G. and Tillé, Y. (2006). A fast algorithm of balanced sampling. to appear in Computational Statistics.

Tillé, Y. (2006), Sampling Algorithms, Springer.

See Also

UPrandompivotal

```
#define the prescribed inclusion probabilities pik=c(0.2,0.7,0.8,0.5,0.4,0.4) #select a sample s=UPpivotal(pik) #the sample is which(s==1)
```

UPpoisson 63

UPpoisson

Poisson sampling

Description

Draws a Poisson sample using a prescribed vector of first-order inclusion probabilities (unequal probabilities, without replacement, random sample size).

Usage

```
UPpoisson(pik)
```

Arguments

pik

vector of the first-order inclusion probabilities.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise).

See Also

inclusionprobabilities

```
############
## Example 1
############
# inclusion probabilities
pik=c(1/3,1/3,1/3)
# selects a sample
s=UPpoisson(pik)
#the sample is
which(s==1)
############
## Example 2
############
data(belgianmunicipalities)
Tot=belgianmunicipalities$Tot04
name=belgianmunicipalities$Commune
n=200
pik=inclusionprobabilities(Tot,n)
# select a sample
s=UPpoisson(pik)
#the sample is
which(s==1)
# names of the selected units
getdata(name,s)
```

64 UPrandompivotal

UPrandompivotal

Random pivotal sampling

Description

Selects a sample using the pivotal method, when the order of the population units is random (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPrandompivotal(pik,eps=1e-6)
```

Arguments

pik vector of the inclusion probabilities.
eps control value, by default equal to 1e-6.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise). The value 'eps' is used to control pik (pik>eps and pik<1-eps).

References

Deville, J.-C. and Tillé, Y. (1998), Unequal probability sampling without replacement through a splitting method, *Biometrika*, 85:89–101.

Tillé, Y. (2006), Sampling Algorithms, Springer.

See Also

UPpivotal

```
#define the prescribed inclusion probabilities pik=c(0.2,0.7,0.8,0.5,0.4,0.4) #select a sample s=UPrandompivotal(pik) #the sample is which(s==1)
```

UPrandomsystematic 65

UPrandomsystematic

Random systematic sampling

Description

Selects a sample using the systematic method, when the order of the population units is random (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPrandomsystematic(pik,eps=1e-6)
```

Arguments

pik vector of the inclusion probabilities.
eps control value, by default equal to 1e-6.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise). The value 'eps' is used to control pik (pik>eps and pik<1-eps).

References

Madow, W.G. (1949), On the theory of systematic sampling, II, *Annals of Mathematical Statistics*, 20, 333-354.

See Also

UPsystematic

```
#define the prescribed inclusion probabilities
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
#select a sample
s=UPrandomsystematic(pik)
#the sample is
(1:length(pik))[s==1]
```

UPsampford UPsampford

LID		_	
UPS	ampt	for	d

Sampford sampling

Description

Uses the Sampford's method to select a sample of units (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPsampford(pik,eps=1e-6, max_iter=500)
```

Arguments

pik vector of the inclusion probabilities.

eps control value, by default equal to 1e-6.

max_iter maximum number of iterations in the algorithm.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise). The value eps is used to control pik (pik>eps & pik < 1-eps). The sample size must be small with respect to the population size; otherwise, the selection time can be very long.

References

Sampford, M. (1967), On sampling without replacement with unequal probabilities of selection, *Biometrika*, 54:499-513.

See Also

```
UPsampfordpi2
```

```
#define the prescribed inclusion probabilities
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
s=UPsampford(pik)
#the sample is
which(s==1)
```

UPsampfordpi2 67

UPsampfordpi2

Joint inclusion probabilities for Sampford sampling

Description

Computes the joint (second-order) inclusion probabilities for Sampford sampling.

Usage

```
UPsampfordpi2(pik)
```

Arguments

pik

vector of the first-order inclusion probabilities.

Value

Returns a NxN matrix of the following form: the main diagonal contains the first-order inclusion probabilities for each unit k in the population; elements (k,l) are the joint inclusion probabilities of units k and l, with k not equal to l. N is the population size.

References

Sampford, M. (1967), On sampling without replacement with unequal probabilities of selection, *Biometrika*, 54:499-513.

Wu, C. (2004). R/S-PLUS Implementation of pseudo empirical likelihood methods under unequal probability sampling. Working paper 2004-07, Department of Statistics and Actuarial Science, University of Waterloo.

See Also

UPsampford

```
#define the prescribed inclusion probabilities pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
#matrix of joint inclusion probabilities
UPsampfordpi2(pik)
```

68 UPsystematic

UPsystematic

Systematic sampling

Description

Uses the systematic method to select a sample of units (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPsystematic(pik,eps=1e-6)
```

Arguments

pik vector of the inclusion probabilities. eps control value, by default equal to 1e-6.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise).

References

Madow, W.G. (1949), On the theory of systematic sampling, II, *Annals of Mathematical Statistics*, 20, 333-354.

See Also

inclusionprobabilities, UPrandomsystematic

```
############
## Example 1
############
#defines the prescribed inclusion probabilities
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
#selects a sample
s=UPsystematic(pik)
#the sample is
which(s==1)
############
## Example 2
############
data(belgianmunicipalities)
Tot=belgianmunicipalities$Tot04
name=belgianmunicipalities$Commune
pik=inclusionprobabilities(Tot, 200)
```

UPsystematicpi2 69

```
#selects a sample
s=UPsystematic(pik)
#the sample is
which(s==1)
# extracts the observed data
getdata(belgianmunicipalities,s)
```

UPsystematicpi2

Joint inclusion probabilities for systematic sampling

Description

Computes the joint (second-order) inclusion probabilities for systematic sampling.

Usage

```
UPsystematicpi2(pik)
```

Arguments

pik

vector of the first-order inclusion probabilities.

Value

Returns a NxN matrix of the following form: the main diagonal contains the first-order inclusion probabilities for each unit k in the population; elements (k,l) are the joint inclusion probabilities of units k and l, with k not equal to l. N is the population size.

References

Madow, W.G. (1949), On the theory of systematic sampling, II, *Annals of Mathematical Statistics*, 20, 333-354.

See Also

UPsystematic

```
#define the prescribed inclusion probabilities pik=c(0.2,0.7,0.8,0.5,0.4,0.4) #matrix of joint inclusion probabilities UPsystematicpi2(pik)
```

70 UPtille

UPtille

Tille sampling

Description

Uses the Tillé's method to select a sample of units (unequal probabilities, without replacement, fixed sample size).

Usage

```
UPtille(pik,eps=1e-6)
```

Arguments

pik vector of the inclusion probabilities. eps control value, by default equal to 1e-6.

Value

Returns a vector (with elements 0 and 1) of size N, the population size. Each element k of this vector indicates the status of unit k (1, unit k is selected in the sample; 0, otherwise). The value eps is used to control pik (pik>eps & pik < 1-eps).

References

Tillé, Y. (1996), An elimination procedure of unequal probability sampling without replacement, *Biometrika*, 83:238-241.

Deville, J.-C. and Tillé, Y. (1998), Unequal probability sampling without replacement through a splitting method, *Biometrika*, 85:89-101.

See Also

UPsystematic

UPtillepi2 71

```
# see in the 'UPexamples' vignette
# vignette("UPexamples", package="sampling")
```

UPtillepi2

Joint inclusion probabilties for Tille sampling

Description

Computes the joint (second-order) inclusion probabilities for Tillé sampling.

Usage

```
UPtillepi2(pik,eps=1e-6)
```

Arguments

pik vector of the first-order inclusion probabilities.

eps control value, by default equal to 1e-6.

Value

Returns a NxN matrix of the following form: the main diagonal contains the first-order inclusion probabilities for each unit k in the population; elements (k,l) are the joint inclusion probabilities of units k and l, with k not equal to l. N is the population size. The value eps is used to control pik (pik > eps & pik < 1-eps).

References

Tillé, Y. (1996), An elimination procedure of unequal probability sampling without replacement, *Biometrika*, 83:238-241.

See Also

UPtille

```
#defines the prescribed inclusion probabilities pik=c(0.2,0.7,0.8,0.5,0.4,0.4) #matrix of joint inclusion probabilities UPtillepi2(pik)
```

72 varest

va	മ	τ

Variance estimation using the Deville's method

Description

Computes the variance estimation of an estimator of the population total using the Deville's method.

Usage

```
varest(Ys, Xs=NULL, pik, w=NULL)
```

Arguments

Ys	vector of the variable of interest; its length is equal to n, the sample size.
Xs	matrix of the auxiliary variables; for the calibration estimator, this is the matrix of the sample calibration variables.
pik	vector of the first-order inclusion probabilities; its length is equal to n, the sample size.
W	vector of the calibrated weights (for the calibration estimator); its length is equal to n, the sample size.

Details

The function implements the following estimator:

$$\widehat{Var}(\widehat{Ys}) = \frac{1}{1 - \sum_{k \in s} a_k^2} \sum_{k \in s} (1 - \pi_k) \left(\frac{y_k}{\pi_k} - \frac{\sum_{l \in s} (1 - \pi_l) y_l / \pi_l}{\sum_{l \in s} (1 - \pi_l)} \right)$$

where
$$a_k = (1 - \pi_k) / \sum_{l \in s} (1 - \pi_l)$$
.

References

Deville, J.-C. (1993). Estimation de la variance pour les enquêtes en deux phases. Manuscript, INSEE, Paris.

See Also

calibev

```
# Belgian municipalities data base
data(belgianmunicipalities)
attach(belgianmunicipalities)
# Computes the inclusion probabilities
pik=inclusionprobabilities(Tot04,200)
N=length(pik)
n=sum(pik)
```

varHT 73

```
# Defines the variable of interest
y=TaxableIncome
# Draws a Tille sample of size 200
s=UPtille(pik)
# Computes the Horvitz-Thompson estimator
HTestimator(y[s==1],pik[s==1])
# Computes the variance estimation of the Horvitz-Thompson estimator
varest(Ys=y[s==1],pik=pik[s==1])
# for an example using calibration estimator, see the 'calibration' vignette
# vignette("calibration", package="sampling")
```

varHT

Variance estimators of the Horvitz-Thompson estimator

Description

Computes variance estimators of the Horvitz-Thompson estimator of the population total.

Usage

varHT(y,pikl,method)

Arguments

y vector of the variable of interest; its length is equal to n, the sample size.

pikl matrix of joint inclusion probabilities; its dimension is nxn.

method if 1, an unbiased variance estimator is computed; if 2, the Sen-Yates-Grundy

variance estimator for fixed sample size is computed; be default, the method is

1.

Details

If method is 1, the following estimator is implemented

$$\widehat{Var}(\widehat{Y}_{HT})_1 = \sum_{k \in s} \sum_{\ell \in s} \frac{y_k y_\ell}{\pi_{k\ell} \pi_k \pi_\ell} (\pi_{k\ell} - \pi_k \pi_\ell)$$

If method is 2, the following estimator is implemented

$$\widehat{Var}(\widehat{Y}_{HT})_2 = \frac{1}{2} \sum_{k \in s} \sum_{\ell \in s} \left(\frac{y_k}{\pi_k} - \frac{y_\ell}{\pi_\ell} \right)^2 \frac{\pi_k \pi_\ell - \pi_{k\ell}}{\pi_{k\ell}}$$

See Also

HTestimator

74 vartaylor_ratio

Examples

```
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
N=length(pik)
n=sum(pik)
# Defines the variable of interest
y=rnorm(N,10,2)
# Draws a Poisson sample of expected size n
s=UPpoisson(pik)
# Computes the Horvitz-Thompson estimator
HTestimator(y[s==1],pik[s==1])
# Computes the joint inclusion prob. for Poisson sampling
pikl=outer(pik,pik,"*")
diag(pikl)=pik
# Computes the variance estimator (method=1, the sample size is not fixed)
varHT(y[s==1],pikl[s==1,s==1],1)
# Draws a Tille sample of size n
s=UPtille(pik)
# Computes the Horvitz-Thompson estimator
HTestimator(y[s==1],pik[s==1])
# Computes the joint inclusion prob. for Tille sampling
pikl=UPtillepi2(pik)
# Computes the variance estimator (method=2, the sample size is fixed)
varHT(y[s==1],pikl[s==1,s==1],2)
```

vartaylor_ratio

Taylor-series linearization variance estimation of a ratio

Description

Computes the Taylor-series linearization variance estimation of the ratio

$$\frac{\widehat{Y}_s}{\widehat{X}_s}$$
.

The estimators in the ratio are Horvitz-Thompson type estimators.

Usage

```
vartaylor_ratio(Ys,Xs,pikls)
```

Arguments

Ys	vector of the first observed variable; its length is equal to n, the sample size.
Xs	vector of the second observed variable; its length is equal to n, the sample size.
pikls	matrix of joint inclusion probabilities of the sample units: its dimension is nxn.

writesample 75

Details

The function implements the following estimator:

$$\widehat{Var}(\frac{\widehat{Ys}}{\widehat{Xs}}) = \sum_{i \in s} \sum_{j \in s} \frac{\pi_{ij} - \pi_i \pi_j}{\pi_{ij}} \frac{\widehat{z}_i \widehat{z}_j}{\pi_i \pi_j}$$

where
$$\widehat{z}_i = (Ys_i - \widehat{r}Xs_i)/\widehat{X}_s, \widehat{r} = \widehat{Y}_s/\widehat{X}_s, \widehat{Y}_s = \sum_{i \in s} Ys_i/\pi_i, \widehat{X}_s = \sum_{i \in s} Xs_i/\pi_i.$$

References

Woodruff, R. (1971). A Simple Method for Approximating the Variance of a Complicated Estimate, Journal of the American Statistical Association, Vol. 66, No. 334, pp. 411–414.

Examples

```
data(belgianmunicipalities)
attach(belgianmunicipalities)
# inclusion probabilities, sample size 200
pik=inclusionprobabilities(Tot04,200)
# the first variable (population level)
Y=Men04
# the second variable (population level)
X=Women04
# population size
N=length(pik)
# joint inclusion probabilities for Poisson sampling
pikl=outer(pik,pik,"*")
diag(pikl)=pik
# draw a sample using Poisson sampling
s=UPpoisson(pik)
# sample inclusion probabilities
piks=pik[s==1]
# the first observed variable (sample level)
Ys=Y[s==1]
# the second observed variable (sample level)
Xs=X[s==1]
# matrix of joint inclusion prob. (sample level)
pikls=pikl[s==1,s==1]
# ratio estimator and its estimated variance
vartaylor_ratio(Ys, Xs, pikls)
```

writesample

All possible samples of fixed size

Description

Gives a matrix whose rows are the vectors (with 0 and 1; 1 - a unit is selected, 0 - otherwise) of all samples of fixed size.

76 writesample

Usage

```
writesample(n,N)
```

Arguments

n sample size.N population size.

See Also

landingcube

```
# all samples of size 4
# from a population of size 10
w=writesample(4,10)
# the samples are (read by rows)
t(apply(w,1,function(x) (1:ncol(w))[x==1]))
```

Index

* datasets	UPbrewer, 54
belgianmunicipalities, 6	UPmaxentropy, 55
MU284, 31	UPmidzuno, 57
rec99, 38	UPmidzunopi2, 58
swissmunicipalities, 53	UPminimalsupport, 59
* survey	UPmultinomial, 60
balancedcluster, 3	UPopips, 61
balancedstratification, 4	UPpivotal, 62
balancedtwostage, 5	UPpoisson, 63
calib, 8	UPrandompivotal, 64
calibev, 10	UPrandomsystematic, 65
checkcalibration, 12	UPsampford, 66
cleanstrata, 13	UPsampfordpi2, 67
cluster, 14	UPsystematic, 68
disjunctive, 15	UPsystematicpi2, 69
fastflightcube, 16	UPtille, 70
getdata, 19	UPtillepi2, 71
Hajekestimator, 21	varest, 72
Hajekstrata, 22	varHT, 73
HTestimator, 23	vartaylor_ratio, 74
HTstrata, 24	writesample, 75
inclusionprobabilities, 25	
inclusionprobastrata, 26	balancedcluster, 3, 6
landingcube, 26	balancedstratification, 4, 6, 14, 15, 26
mstage, 27	balancedtwostage, 5
postest, 32	belgianmunicipalities, 6
postest, 32 poststrata, 34	calib, 8, 11, 13, 18, 42, 43
ratioest, 35	calibev, 9, 10, 72
ratioest, 33	checkcalibration, 9, 12, 18
regest, 39	cleanstrata, 13
regest_strata, 40	cluster, 14, 20, 28
regest_strata, 40 rhg, 42	Cluster, 14, 20, 20
	disjunctive, 15
rhg_strata, 43	3
rmodel, 44	fastflightcube, <i>3</i> , <i>5</i> , <i>6</i> , 16, 27, 46
samplecube, 46	
srswor, 48	gencalib, 9, 17
srswor1, 49	getdata, 15, 19, 28, 52
srswr, 50	Uniakontimatan 21
strata, 51	Hajekestimator, 21

78 INDEX

Hajekstrata, 22 HTestimator, $2I$, 23 , 24 , 73 HTstrata, 22 , 24 inclusionprobabilities, 14 , 25 , 28 , 51 , 61 , 63 , 68 inclusionprobastrata, 25 , 26 landingcube, 3 , 5 , 6 , 26 , 46 , 76	UPsampfordpi2, 66, 67 UPsystematic, 20, 55, 65, 68, 69, 70 UPsystematicpi2, 69 UPtille, 23, 58, 70, 71 UPtillepi2, 71 varest, 72 varHT, 73 vartaylor_ratio, 74
mstage, <i>15</i> , <i>20</i> , 27, <i>52</i> MU284, 31	writesample, 75
postest, 32, 35 poststrata, 32, 34	
ratioest, 35, 37, 40 ratioest_strata, 36 rec99, 38 regest, 36, 39, 41 regest_strata, 40, 40 rhg, 42, 43, 45 rhg_strata, 42, 43 rmodel, 44	
samplecube, 3 , 5 , 6 , 16 , 27 , 46 srswor, 20 , 48 , 50 srswor1, 49 srswr, 49 , 50 strata, 15 , 20 , 28 , 51 swissmunicipalities, 53	
UPbrewer, 54 UPmaxentropy, 55 UPmaxentropypi2 (UPmaxentropy), 55 UPMEpik2frompikw (UPmaxentropy), 55 UPMEpikfromq (UPmaxentropy), 55 UPMEpiktildefrompik (UPmaxentropy), 55 UPMEqfromw (UPmaxentropy), 55 UPMEsfromq (UPmaxentropy), 55 UPmidzuno, 57, 58 UPmidzunopi2, 58 UPminimalsupport, 59 UPmultinomial, 51, 60 UPopips, 61 UPpivotal, 62, 64 UPpoisson, 63 UPrandompivotal, 62, 64 UPrandomsystematic, 65, 68 UPsampford, 66, 67	