Regression Modeling

Prediction of travel time for flights from Taiwan to Hong Kong

Overview

- 1. Problem Statement
- 2. Exploratory Data Analysis
- 3. Feature Engineering
- 4. Baseline Regression Modeling
- 5. More Regression Modeling
- 6. Conclusion and Recommendations

Problem Statement

To predict the estimated time taken for an aircraft, plying the route from from Taiwan Taoyuan International Airport (IATA: TPE) to Hong Kong International Airport (IATA: HKG), at any point in time at which it is detected on the flight radar to arrive to Hong Kong.

Summary flight info

Feature	Type	Description
flight_id	object	Unique identifier for every flight record
flight_callsign	object	Used by Air Traffic Control to denote a specific flight
aircraft_model	object	Aircraft model of the flight
aircraft_registration	object	Each aircraft is assigned a registration number—often called a tail number—that is unique to the aircraft. Registration numbers are based on the country of registration, with the United Kingdom employing 'G' as their first letter identifier, followed by a hyphen and four further letters e.g. G-STBA. In the United States 'N' is used as the first letter followed by either letters or numbers e.g. N463UA.
airline	object	Airline operating the flight
origin	object	Country which the flight departed from
destination	object	Country which the flight arrived at
scheduled_departure_utc	float	Scheduled departure in Unix Time (UTC); elapsed seconds since January 1st 1970 00:00:00 UTC (Universal Time)
scheduled_arrival_utc	float	Scheduled arrival in Unix Time (UTC); elapsed seconds since January 1st 1970 00:00:00 UTC (Universal Time)
real_departure_utc	float	Real departure in Unix Time (UTC); elapsed seconds since January 1st 1970 00:00:00 UTC (Universal Time)
estimated_arrival_utc	float	Estimated arrival in Unix Time (UTC); elapsed seconds since January 1st 1970 00:00:00 UTC (Universal Time)
real flight duration	float	Duration in which the plane is in the air (in seconds)

Flight radar info

Feature	Type	Description
flight_id	object	Unique identifier for every flight record
timestamp_utc	int	Time of observation in Unix Time (UTC); elapsed seconds since January 1st 1970 00:00:00 UTC (Universal Time)
timestamp_dt	int	Timestamp of observation (YYYY-MM-DD HH:MM)
latitude	float	Latitude of aircraft's coordinate (WGS 84) at time of observation
longitude	float	Longitude of aircraft's coordinate (WGS 84) at time of observation
altitude	int	Altitude of aircraft (feet above mean sea level) at time of observation
heading	int	Compass heading of aircraft, denoted as 0-359
speed	int	Speed of the aircraft over the ground, measured in Knots (nautical miles per hour)

 Most number of departures happen to be on 2017-01-26

Top international route in Jan 2017

- Not normally distributed
- Bi-modal

Histogram of arrivals within 60 min interval

```
df_arrivals_at_hkg['forecasted_arrival_dt'] = \
(df_arrivals_at_hkg['real_departure_dt'] + pd.to_timedelta(df_arrivals_at_hkg['real_flight_duration'], unit='s'
.fillna(df_arrivals_at_hkg['real_departure_dt'] + pd.to_timedelta(df_arrivals_at_hkg['scheduled_flight_duration'
.fillna(df_arrivals_at_hkg['scheduled_departure_dt'] + pd.to_timedelta(df_arrivals_at_hkg['real_flight_duration')
.fillna(df_arrivals_at_hkg['scheduled_arrival_dt'])\
.fillna(df_arrivals_at_hkg['estimated_arrival_dt'])
```


	flight_id	timestamp_utc	latitude	longitude	altitude	heading	speed	timestamp_dt
27371	c31cf95	1484662603	28.258541	121.633163	11600	8	0	2017-01-17 14:16:43
27372	c31cf95	1484662641	24.921299	120.893318	19450	256	0	2017-01-17 14:17:21
27373	c31cf95	1484662667	24.853016	120.848541	20684	230	390	2017-01-17 14:17:47
27374	c31cf95	1484662677	24.837517	120.830132	21338	219	454	2017-01-17 14:17:57
27375	c31cf95	1484662694	24.831850	120.808067	22190	258	329	2017-01-17 14:18:14

Feature Engineering

		0	•					
	flight_id	timestamp_dt	real_departure_dt	time_since_real_departure	latitude	longitude	altitude	heading
152164	c33e9e8	2017-01-18 11:53:40	2017-01-18 11:53:45	-5.0	25.067184	121.244965	0	49
152165	c33e9e8	2017-01-18 11:53:46	2017-01-18 11:53:45	1.0	25.070297	121.248878	50	48
152166	c33e9e8	2017-01-18 11:53:54	2017-01-18 11:53:45	9.0	25.076294	121.256813	525	50
152167	c33e9e8	2017-01-18 11:54:00	2017-01-18 11:53:45	15.0	25.079367	121.260925	775	51
. 1	flight_id	timestamp_dt	real_departure_dt	time_since_real_departure	latitude	longitude	altitude	heading
52445	c33e9e8	2017-01-18 13:29:27	2017-01-18 11:53:45	5742.0	22.287163	113.872627	450	74

	1000			37				
152445	c33e9e8	2017-01-18 13:29:27	2017-01-18 11:53:45	5742.0	22.287163	113.872627	450	74
152446	c33e9e8	2017-01-18 13:29:33	2017-01-18 11:53:45	5748.0	22.288513	113.876900	375	70
152447	c33e9e8	2017-01-18 13:30:01	2017-01-18 11:53:45	5776.0	22.294333	113.895111	50	71
152448	c33e9e8	2017-01-18 13:30:10	2017-01-18 11:53:45	5785.0	22.296242	113.900909	0	69

Feature Engineering

```
# Filter to get records where
# plane has taken off; i.e. speed > 0
# plane's time since real departure >= 0
temp = merged df.loc[(merged df['flight id'] == unique flight id) &
                     (merged df['time since real departure'] >= 0) ₺
                     (merged df['speed'] > 0)].sort values(by='timestamp utc')
# time since real departure after arrival
# where altitude = 0
possible arrival df = temp.loc[(temp['altitude'] == 0) &
                               (temp['time since real departure'] > 11)]
if possible arrival df.shape[0] > 0:
    complete flights.append(unique flight id)
    calculated flight duration = possible arrival df.iloc[0]['time since real departure']
    temp = temp[temp['time since real departure'] <= calculated flight duration]
    temp = temp.assign(calculated flight duration=calculated flight duration)
    filtered df = filtered df.append(temp, ignore index=True)
else:
    incomplete flights.append(unique flight id)
```

Feature Engineering

- Heatmap was plotted to investigate multicollinearity
- There are features in the dataset that describe a common attribute of the displacement_to_hkg, displacement_fr_twn, latitude, longitude.
- These features tend to exhibit high correlation among themselves

Baseline Regression Modeling

- Features: latitude, longitude, altitude, heading, speed
- RMSE value: 1909.991128
- Adjusted R2: 0

More Regression Modeling

	model_name	mse	rmse	mae	r2	r2_adjusted
0	Random Forest Regression	8.970662e+04	299.510628	86.043145	0.975403	0.975399
1	Linear Regression	1.307992e+05	361.661743	184.162588	0.964136	0.964130
2	Lasso Regression	1.307993e+05	361.661815	184.162983	0.964136	0.964130
3	Ridge Regression	1.307998e+05	361.662606	184.201100	0.964135	0.964130
4	AdaBoost Regression	1.695393e+05	411.751498	322.838671	0.953513	0.953506
5	ElasticNet Regression	2.524455e+05	502.439582	311.995118	0.930781	0.930771
6	Baseline	3.648066e+06	1909.991128	1666.500000	-0.000281	-0.000427

Regression Modeling

Random Forest Regression

Conclusion and Recommendation

- The Random Forest Regressor had the lowest RMSE
- This model may not necessarily be reliable when predicting outside the time periods of Jan 2017, as this model omits potentially important time-dependent variables such as enroute weather information
- Obtain more information of the flight journey if financially feasible