WHAT IS CLAIMED IS:

4

5

6

1

2 2

3

1

2

1		1.	For	use	in	a c	hanr	nel	decod	er,	a	hybr	rid	frequenc	cy-
2	time	doma	in	equa:	lize	r f	for	imp	roved	sta	ati	.c a	nd	multi-pa	ath
3	perfo	ormano	ce o	ver a	a de	cis	ion	fee	dback	equa	ali	zer	con	mprisina:	:

- a frequency domain equalizer having forward and feedback paths; and
- a decision feedback equalizer decision network within said feedback path of said frequency domain equalizer, said frequency domain equalizer and said decision feedback equalizer decision network both employing a single error vector to update error correction therein.
- 2. The hybrid frequency-time domain equalizer as set forth in Claim 1 wherein said decision feedback equalizer decision network further comprises a decision device within said feedback path for said frequency domain equalizer.
- 3. The hybrid frequency-time domain equalizer as set forth in Claim 2 wherein said decision device employs trellis decisions to minimize decoding error.

2

3

- 4. The hybrid frequency-time domain equalizer as set forth in Claim 1 wherein said decision feedback equalizer decision network further comprises a time domain feedback filter within said feedback path for said frequency domain equalizer.
- 5. The hybrid frequency-time domain equalizer as set forth in Claim 1 wherein taps updates for said decision feedback equalizer decision network are separate from tap updates for said frequency domain equalizer.

1	6.	Α	re	ceiver	comprising
2		ar	n	input	receiving

5

6

8

9

10\$

11

12

13

1411

15

1

2

3

an input receiving single carrier digital signals; and

a channel decoder employing a hybrid frequencytime domain equalizer for improved static and multi-path performance over a decision feedback equalizer, said hybrid frequency-time domain equalizer comprising:

a frequency domain equalizer having forward and feedback paths; and

a decision feedback equalizer decision network within said feedback path of said frequency domain equalizer, said frequency domain equalizer and said decision feedback equalizer decision network both employing a single error vector to update error correction therein.

7. The receiver as set forth in Claim 6 wherein saiddecision feedback equalizer decision network further comprises a decision device within said feedback path for said frequency domain equalizer.

2

3

1

2

3

- 8. The receiver as set forth in Claim 7 wherein said decision device employs trellis decisions to minimize decoding error.
 - 9. The receiver as set forth in Claim 6 wherein said decision feedback equalizer decision network further comprises a time domain feedback filter within said feedback path for said frequency domain equalizer.
 - 10. The receiver as set forth in Claim 6 wherein taps updates for said decision feedback equalizer decision network are separate from tap updates for said frequency domain equalizer.

1	11. For use in a channel decoder, a method of hybrid
2	frequency-time domain equalization for improved static and
3	multi-path performance over a decision feedback equalizer
4	comprising:
5	receiving a single carrier input signal at a
6	frequency domain equalizer having forward and feedback
7	paths; and
8	employing a decision feedback equalizer decision
9 📆	network within the feedback path of the frequency domain
10 m	equalizer, the frequency domain equalizer and the decision
11	feedback equalizer decision network both employing a single
12	error vector to update error correction therein.
31 2 *** *** ****************************	
1 ****	12. The method as set forth in Claim 11 wherein the
2	step of employing a decision feedback equalizer decision

step of employing a decision feedback equalizer decision
network within the feedback path of the frequency domain
equalizer further comprises:

employing a decision device within the feedback path for the frequency domain equalizer.

5

1		13.	The	metho	od as	set	for	th :	in	Clair	n 12	2 whe	erein	the
2	step	of	empl	oying	a de	ecisi	on o	devi	.ce	with	in	the	feed	oack
3	path	for	the f	Freque	ency d	lomain	n equ	uali	zer	fur	her	com	prise	s:
4			empl	Loying	tre	llis	dec.	isic	ns	with	in	the	feed	back
5	path	fo	r th	e fr	equen	су	doma	in	equ	ualiz	er	to	minin	mize

14. The method as set forth in Claim 11 wherein the step of employing a decision feedback equalizer decision network within the feedback path of the frequency domain equalizer further comprises:

utilizing a time domain feedback filter within the feedback path for the frequency domain equalizer.

15. The method as set forth in Claim 11 further comprising:

updating taps for the decision feedback equalizerdecision network separately from tap updates for the
frequency domain equalizer.

6

1

2 🔁

3 📳

4 111

Marie Marie

1 5

2

3

4

5

decoding error.

			-
1			
2			
3			
4			
5)		
6	5		
7			
8			
	***** ***** ******		
10	The state of the s		
	2 6		

3 11,

5

1

2

- 16. For use in a channel decoder, a hybrid frequencytime domain equalizer for improved static and multi-path performance over a decision feedback equalizer comprising:
- a decision feedback equalizer having forward and feedback paths; and
- a frequency domain equalizer within said forward path of said decision feedback equalizer, said frequency domain equalizer and said decision feedback equalizer decision network both employing a single error vector to update error correction therein.
- 17. The hybrid frequency-time domain equalizer as set forth in Claim 16 wherein said decision feedback equalizer further comprises a decision device within said feedback path, said feedback path forming a portion of a feedback path for said frequency domain equalizer.
- 18. The hybrid frequency-time domain equalizer as set forth in Claim 17 wherein said decision device employs trellis decisions to minimize decoding error.

2

3

- 19. The hybrid frequency-time domain equalizer as set forth in Claim 16 wherein said decision feedback equalizer further comprises a time domain feedback filter within said feedback path.
- 20. The hybrid frequency-time domain equalizer as set forth in Claim 16 wherein taps updates for said decision feedback equalizer are separate from tap updates for said frequency domain equalizer.