Fundamentals of Probabilistic Data Mining

Chapter III - Model-based clustering

Clustering with 3 clusters

Mixture models

Mixture models 2/24

Clustering

- ▶ Data: points $(x_i)_{i=1,...n}$ in \mathbb{R}^d .
- Aim: find (maybe predict?) *K* clusters (*K* fixed here).
- Distance-based approaches: close points tend to be in the same cluster. No explicit assumption required. Clusters cannot be nested.
- ▶ Model-based approaches: let z_j be the cluster of x_j . If $z_i = z_j = k$ then x_i and z_j should have the same (conditional) distribution p_k .

Z is an unknown / latent variable, useful for clustering. (e.g. $z=0
ightarrow {
m blue})$

Mixture models

Mixture models

- Added value: to incorporate probabilistic constraints (clusters with different means, or same means but different covariances...)
- **Example** (latter case): $p(x|z=k) = \mathcal{N}(0, \sigma_k I)$, or $p(x|z=k) = \mathcal{N}(0, \sigma_k \Sigma)$, etc.

Definition 1 (McLachalan & Peel, 2000).

Let $\{p_{\theta}\}_{\theta \in \Theta}$ be a parametric family of distributions. $x \to p(x)$ is a mixture of distributions iff there exists $K, \pi_1, \dots, \pi_K, \theta_1, \dots, \theta_K$, such that

$$p = \sum_{k=1}^{K} \pi_k p_{\theta_k}.$$

- Mixtures: convex combinations of distributions.
- ▶ Defines new parametric families of distributions. Parameter $\lambda = (\pi_1, \dots, \pi_K, \theta_1, \dots, \theta_K)$ (for given K).

Mixture models 4/24

Mixtures and clustering

 Equivalence of mixture representation and existence of some hidden state variable Z with

$$\forall K \in \{1, \dots, K\}, \ \pi_k = P(Z = k), \ \forall x \ p_{\theta_k}(x) = p(x|Z = k)$$
$$p(x) = \sum_{k=1}^K P(Z = k)p(x|Z = k) = \sum_{k=1}^K \pi_k p_{\theta_k}(x)$$

- Clustering: Z interpreted as the cluster of X (find Z).
- More generally: representation of heterogeneous sources (find λ).
- Potential use of mixtures in various settings (density estimation, ...).
- Cluster: essentially a conditional distribution referred to as emission distribution – plus a prior on Z (see generative models for classification).

Mixture models 5/24

Remark

- Possible extensions to p(.|z=k) being in different parametric families.
- Examples: mixtures of Weibull and Gamma distributions, mixtures of PDFs with respect to the same reference measures, mixtures of arbitrary measures, ...

$$\begin{aligned} &\text{for } x \geq 0, \ p(x) = \\ &0.2 \frac{a}{b} \left(\frac{x}{b}\right)^{a-1} \exp\left[\left(-\frac{x}{b}\right)^a\right] + 0.8 \frac{c^k}{(k-1)!} x^{k-1} \exp(-cx). \end{aligned}$$

Mixture models 6/24

Interpretation: example (I)

- ➤ *X*: weight of some rodent.
- Proportion of females 1/3, males 2/3.
- Females generally lighter than males, the heaviest females potentially heavier than the lightest males.
- Gaussian (conditional) distribution of X for each gender.
 Dependence of means on gender.
- Unknown genders in population both genders are mixed ("mixture").

Mixture models 7/24

Interpretation: example (II)

$$\pi_1 = 1/3; \ \pi_2 = 2/3; \ \mu_1 = 3; \ \mu_2 = 7; \ \sigma = 2$$

If some rodent weighs 3g, its probability to be a female (Z = 1) is no longer 1/3 (compute it)

Histogram and mixture density function

Mixture models 8/24

Interpretation: example (III)

$$\pi_1 = 1/3; \ \pi_2 = 2/3; \ \mu_1 = 3; \ \mu_2 = 7; \ \sigma = 2$$

$$p_X(3) = \frac{1}{3} \times \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{1}{8}(3-3)^2\right) + \frac{2}{3} \times \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{1}{8}(7-3)^2\right)$$

Hence,

$$P(Z = 1|X = 3) = \frac{p_X(3|Z = 1)P(Z = 1)}{p_X(3)}$$

$$= \frac{\frac{1}{3}\exp(-0)}{\frac{1}{3}\exp(-0) + \frac{2}{3}\exp(-2)}$$

$$\approx 0.79 > \frac{1}{3} = P(Z = 1)$$

Mixture models 9/24

Identifiability issues

- Generally in statistics, a parametric family of models $\{p_{\lambda}\}_{{\lambda}\in\Lambda}$ has identifiable parameter iff $\forall (\lambda,\lambda')\in\Lambda^2,\ p_{\lambda}=p_{\lambda'}\Rightarrow\lambda=\lambda'.$
- Ensures uniqueness of parameter (interpretation, necessary condition for unique estimation, ...).
- Identifiability cannot be achieved for mixtures with variable and even fixed K, since for every $\lambda = (\pi_1, \dots, \pi_K, \theta_1, \dots, \theta_K)$, for every permutation $\kappa \in \mathcal{S}_K$ of the labels (values of the categorical value Z), if we set $\lambda' = (\pi_{\kappa(1)}, \dots, \pi_{\kappa(K)}, \theta_{\kappa(1)}, \dots, \theta_{\kappa(K)})$, we have

$$p_{\lambda} = \sum_{k=1}^K \pi_k p_{\theta_k} = \sum_{k=1}^K \pi_{\kappa(k)} p_{\theta_{\kappa(k)}} = p_{\lambda'}.$$

Mixture models 10/24

Identifiability for mixtures

 For mixture models: identifiability required up to a permutation of the labels (equivalence classes), requiring that

$$\begin{split} &\sum_{k=1}^K \pi_k p_{\theta_k} = \sum_{k=1}^{K'} \pi_k' p_{\theta_k}' \\ &\Rightarrow K = K' \text{ and } \exists \kappa \in \mathcal{S}_K \, \forall k, \, \pi_k = \pi_{\kappa(k)}' \text{ and } \theta_k = \theta_{\kappa(k)}'. \end{split}$$

- Necessary condition: $\forall k, \pi_k > 0$.
- Additional sufficient condition for mixture identifiability: $\{p_{\theta}\}_{\theta \in \Theta}$ linearly independent PDFs.

Exercise 1

Show that the mixtures of uniform distributions $\{\mathcal{U}(a,b)|(a,b)\in\mathbb{R}^2, a< b\}$ are not identifiable.

Mixture models 11/24

Identifiability for mixtures (II)

Show that the mixtures of uniform distributions $\{\mathcal{U}(a,b)|(a,b)\in\mathbb{R}^2, a< b\}$ are not identifiable. We consider

$$\frac{1}{2}\,\mathcal{U}(0,1) + \frac{1}{2}\,\mathcal{U}(1,2) = \mathcal{U}(0,2) = \frac{1}{4}\,\mathcal{U}(0,\frac{1}{2}) + \frac{3}{4}\,\mathcal{U}(\frac{1}{2},2).$$

Indeed,

$$\begin{aligned} \forall x \in [0, 2], \, x \notin \{\frac{1}{2}, 1\} &\Rightarrow \frac{1}{2} \mathbb{1}_{[0, 1]}(x) + \frac{1}{2} \mathbb{1}_{[1, 2]}(x) = \frac{1}{2} \\ &= \mathbb{1}_{[0, 2]}(x) = \frac{1}{4} \mathbb{1}_{[0, \frac{1}{2}]}(x) + \frac{3}{4} \mathbb{1}_{[\frac{1}{2}, 2]}(x). \end{aligned}$$

Mixture models 12/24

Clustering with mixtures in three steps

- 1. $(Z_i, X_i)_{i=1,...,n}$ assumed independent ("independent mixture model").
- 2. Parameter estimation (maximum likelihood) \equiv learning from an unlabelled sample of size $n \to \hat{\lambda}_n$.
- 3. $\forall (i, k)$ compute $P_{\hat{\lambda}_n}(Z_i = k | X_i = x_i)$ (see previous slide)
- 4. MAP: $\forall i,\, \hat{Z}_i = \arg\max_k P_{\hat{\lambda}_n}(Z_i = k|X_i = x_i)$

Clustering with bivariate mixtures

Mixture models 13/24

Learning stage

$$\hat{\lambda}_n = \arg \max_{\lambda \in \mathcal{C}} \sum_{i=1}^n \ln \left[\sum_{k=1}^K \pi_k p_{\theta_k}(x_i) \right] = \arg \max_{\lambda \in \mathcal{C}} \ell_{x_1, \dots, x_n}(\lambda)$$

with
$$\mathcal{C}=\{(\pi_1,\ldots,\pi_K,\theta_1,\ldots,\theta_K)|\ \sum\limits_k\pi_k=1\ \mathsf{and}\ \forall k\,\pi_k\geq 0\}.$$

Likelihood equations:

$$\frac{\partial \ell_{x_1,\dots,x_n}}{\partial \pi_k}(\lambda) = \sum_{i=1}^n \frac{p_{\theta_k}(x_j)}{\sum\limits_{l=1}^K \pi_l p_{\theta_l}(x_j)} = 0$$

$$\nabla_{\theta_k} \ell_{x_1,\dots,x_n}(\lambda) = \sum_{i=1}^n \frac{\pi_k \nabla_{\theta_k} p_{\theta_k}(x_j)}{\sum\limits_{l=1}^K \pi_l p_{\theta_l}(x_j)} = 0$$
 and constraints...

- Non linear equations
- No closed form solution
- Newton method may work but what properties to expect from it?

Mixture models 14/24

EM algorithm: basic idea

EM algorithm: basic idea 15/24

Learning stage

Difficulty \equiv non-linearity, from

$$\hat{\lambda}_n = \arg\max_{\lambda \in \mathcal{C}} \sum_{i=1}^n \quad \ln\left[\sum_{k=1}^K \pi_k p_{\theta_k}(x_i)\right]$$
Comes from z being hidden

If known states
$$(Z_1,\ldots,Z_n)$$
: maximize
$$\sum_{i=1}^n \sum_{k=1}^K 1\!\!1_{\!\{z_i=k\}} \ln\left[\pi_k p_{\theta_k}(x_i)\right] = \sum_{i=1}^n \sum_{k=1}^K 1\!\!1_{\!\{z_i=k\}} \ln(\pi_k) \\ + \sum_{i=1}^n \sum_{k=1}^K 1\!\!1_{\!\{z_i=k\}} \ln p_{\theta_k}(x_i).$$

with same complexity as MLE estimation on K independent i.i.d. samples within family $\{p_{\theta}\}_{\theta \in \Theta}$.

EM algorithm: basic idea 16/24

EM algorithm: principle

$$\hat{\lambda} = rg \max_{\lambda} \ln \left[p_{\lambda}(oldsymbol{x})
ight] = rg \max_{\lambda} \ln \left[\sum_{oldsymbol{z}} p_{\lambda}(oldsymbol{x}, oldsymbol{z})
ight]$$

where:

- x observed, z hidden with finite values (arbitrary random vectors, extension to continuous z with integrals).
- ▶ $p_{\lambda}(\mathbf{x}, \mathbf{z})$ easy to maximize, $p_{\lambda}(\mathbf{x})$ difficult to maximize.

Example:
$$\mathbf{x} = (x_1, ..., x_n), \mathbf{z} = (z_1, ..., z_n)$$

- Try to maximize $\ln p_{\lambda}(\boldsymbol{x}, \boldsymbol{z})$ rather than $\ln p_{\lambda}(\boldsymbol{x})$.
- Since \boldsymbol{z} is hidden, consider $E[\ln p_{\lambda}(\boldsymbol{X},\boldsymbol{Z})|\boldsymbol{X}=\boldsymbol{x}]$.
- Expectation under which p_{λ} if λ and $\hat{\lambda}$ are unknown?
- lpha $rg \max_{\lambda} E_{\lambda}[\ln p_{\lambda}(X, Z)|X = x]$ seems too complicated: proceed iteratively.

EM algorithm: basic idea 17/24

EM algorithm: formulation

We need an initial value $\lambda^{(0)}$.

$$\lambda^{(m+1)} = \arg\max_{\lambda} E_{\lambda^{(m)}} \left[\ln p_{\lambda}(\boldsymbol{X}, \boldsymbol{Z}) | \boldsymbol{X} = \boldsymbol{x} \right] = \arg\max_{\lambda} Q(\lambda, \lambda^{(m)})$$

where

$$Q(\lambda, \lambda^{(m)}) = \sum_{\boldsymbol{z}} \ln p_{\lambda}(\boldsymbol{x}, \boldsymbol{z}) p_{\lambda^{(m)}}(\boldsymbol{z}|\boldsymbol{x}).$$

- ► E = Expectation (compute $E_{\lambda^{(m)}}[\ln p_{\lambda}(\boldsymbol{X},\boldsymbol{Z})|\boldsymbol{X}=\boldsymbol{x}]$ or at least any relevant quantity for the maximisation)
- M = maximisation (update parameter $\lambda \to \lambda^{(m+1)}$ using $\lambda^{(m)}$).

EM algorithm: basic idea 18/24

EM algorithm: main property

Theorem 1 (Dempster *et al.***, 1977).**

 $(\ln p_{\lambda^{(m)}}(x))_{m\geq 0}$ is a non-decreasing sequence.

Some concave function *f*

Remark 1.

- $(\ln p_{\lambda^{(m)}}(x))_{m\geq 0}$ may not converge.
- $(\lambda^{(m)})_{m\geq 0}$ may not converge, or may converge to a saddle point, a local maximum, ...)

EM algorithm: basic idea 19/24

Application of EM to clustering

Gaussian independent mixtures - completed likelihood

Exercise 2

Compute the so-called completed likelihood

$$\ell_{\boldsymbol{x},\boldsymbol{z}}(\lambda) = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}_{\{z_i = k\}} \ln \left[\pi_k p_{\theta_k}(x_i) \right]$$

and its maximizer $\hat{\lambda}_{x,z}$ if $X \in \mathbb{R}^d$ has conditional multivariate Gaussian distribution with parameter $\theta = (\mu, \Sigma)$.

We give

$$\begin{split} &\nabla \mu \left[(x-\mu)^T \Sigma^{-1} (x-\mu) \right] = -2 \Sigma^{-1} (x-\mu), \\ &\nabla_{\Sigma} \left[(x-\mu)^T \Sigma^{-1} (x-\mu) \right] = -\Sigma^{-2} (x-\mu) (x-\mu)^T \\ &\text{and } \nabla_{\Sigma} \left[\ln(\det(\Sigma)) \right] = \Sigma^{-1}. \end{split}$$

EM algorithm: reestimation formulas

Exercise 3

- Read and answer the preparatory questions for next lab session (Independent mixture models).
- Give the reestimation formulas of the EM algorithm for independent mixtures with multivariate Gaussian emission distributions.

References

References 23/24

References

Dempster, A.P., Laird, N.M. and Rubin, D.B.

Maximum Likelihood from Incomplete Data via the EM Algorithm, (with discussion)

Journal of the Royal Statistical Society Series B 39, pp. 1–38 (1977)

McLachlan, G.J. and Peel, D.

Finite Mixture Models

Wiley Series in Probability and Statistics, John Wiley and Sons, 2000.

References 24/24