Remarque pH à l'équivalence :

Titrage d'une solution d'acide faible AH par une solution de base forte avec l'ion HO:

L'équation de la réaction est : AH_(aq) + HO^{*}_(aq) →A^{*}_(aq) + H₂O_(l)

La réaction étant totale, à l'équivalence les espèces AH et HO ont totalement disparu.

La solution ne contient alors que la base A' et H_2O . pH > 7.

Titrage d'une solution de base faible A par une solution d'acide fort avec l'ion H₃O⁺:

L'équation de la réaction est : A (aq) + H₃O (aq) → AH(aq) + H₂O(3)

La réaction étant totale, à l'équivalence les espèces A et H₃O ont totalement disparu.

La solution ne contient alors que l'acide AH et H₂O . pH < 7.

Titrage d'une solution d'acide fort (ou base forte) par une solution de base forte (ou acide fort)

L'équation de la réaction est : HO (aq) + H₃O (aq) → 2 H₂O(1)

La réaction étant totale, à l'équivalence les espèces HO et H₃O ont totalement disparu.

La solution ne contient alors que H_2O . pH = 7.

Série N°C5 : Transformations associées aux réactions acide-base en solution aqueuse –Titrages acido-basiques

Exercice 1 : Une solution aqueuse d'acide méthanoïque HCO₂H de concentration apportée C = 3, 0×10^{-2} mol/L a un pH égale à 2, 65 à 25°C.

- 1. Écrire l'équation de la réaction de l'acide méthanoïque avec l'eau.
- 2. Déterminer les concentrations des ions oxonium, des ions éthanoates et de l'acide méthanoïque.
- 3. En déduire les valeurs de la constante d'acidité K_A et du pK_A du couple considéré à 25°C.

Exercice 2:

- 1. Écrire les équations de réaction entre :
 - (a) L'acide lactique CH₃CHOHCO₂H et l'ion nitrite NO²⁻;
 - (b) L'acide formique HCO₂H et l'ion hydroxyde HO⁻
- 2. Calculer la constante d'équilibre associée à chacune de ces réactions à 25°C.
- 3. En déduire les valeurs de la constante d'acidité K_A et du pK_A du couple considéré à 25°C.

Données à 25°C:

$pK_a(CH_3CHOHCO_2H/CH_3CHOHCO^{2-}) = 3, 9$	$pK_a(HCO_2H/HCO^{2-}) = 3, 8$
$pK_a (HNO_2/NO^{2-}) = 3, 3$	$pK_a(H_2O/HO^-)=14, 0 = pKe$

Exercice3: Acide acétylsalicylique, ou aspirine C₉H₈O₄, noté HA est l'acide conjugué de l'ion acétylsalicylate, C₉H₇O₄⁻ noté A⁻. Le pKa de ce couple vaut 3,5 à 37°C . À cette température, le pH est égal à environ 1, 5 dans l'estomac, 6, 0 au niveau de duodénum et 7, 4 dans le sang .

1-Quelle est l'espèce prédominante du couple HA/A dans l'estomac, le duodénum et le sang ?

2- Exprimer puis Calculer le rapport $\frac{[A^-]}{[HA]}$ dans l'estomac

Exercice 4 : Le document ci-dessous représente le diagramme de distribution d'un mélange d'acide benzoïque , C_6H_5COOH (aq) , noté HA et d'ion benzoate , $C_6H_5COO^-_{(aq)}$ noté A- à 25°C. il indique les pourcentages d'acide benzoïque et d'ion benzoate en solution , en fonction du pH. La concentration molaire totale apportée en acide et base conjugué = 10 mmol/L . À partir du diagramme :

- 1. Déterminer la valeur du pKa du couple.
- 2. Déterminer les concentrations molaires en acide et base conjugués dans une solution de pH = 5,0.

Exercice 5 : On dispose au laboratoire d'un flacon contenant une solution aqueuse d'acide carboxylique, de nature et de concentration inconnues. L'acide carboxylique est noté R-COOH avec R représentant un atome d'hydrogène ou un groupe d'atomes. On se propose de déterminer la concentration de l'acide par titrage puis de l'identifier (c'est-à-dire de déterminer la nature de R).

I. Titrage de l'acide carboxylique

On titre un volume $V_a=50,0\,$ mL d'acide carboxylique R-COOH de concentration molaire C_a par une solution aqueuse S_b d'hydroxyde de sodium notée (Na⁺(aq) + HO⁻(aq)) de concentration molaire $C_b=2,5.10^{-2}$ mol.L⁻¹ . On note V_b le volume de solution aqueuse d'hydroxyde de sodium versé. Le suivi pH-métrique du titrage permet d'obtenir la courbe donnée cicontre .

- **1.** Faire un schéma légendé du dispositif expérimental utilisé pour effectuer ce titrage.
- 2. Écrire l'équation de la réaction du titrage.
- 3. Dresser le tableau d'avancement, en utilisant les grandeurs Ca, Cb, Va, et Vb
- 4. Définir l'équivalence du titrage.
- **5.** Déterminer graphiquement le volume V_{bE} de solution aqueuse d'hydroxyde de sodium versé à l'équivalence.
- **6.** Écrire la relation existant entre C_a,V_a, C_b et V_{bE} à l'équivalence. En déduire la valeur de la concentration molaire C_a, de l'acide carboxylique titré.

II. Identification de l'acide carboxylique R-COOH

L'équation de mise en solution de l'acide carboxylique dans l'eau est :

$$R\text{-COOH}_{(aq)} + H_2O_{(\ell)} \leftrightarrows R\text{-COO}_{(aq)}^- + H_3O_{(aq)}^+$$
 (1)

- 1. Donner l'expression de la constante d'acidité KA du couple R-COOH_(aq) / R-COO⁻_(aq).
- 2. Montrer qu'à partir de l'expression de la constante d'acidité KA, on peut écrire :

$$pH = pK_A + \log \frac{[RCOO^-]}{[RCOOH]}$$

- 3. Quel est le réactif limitant lorsqu'on a versé un volume de solution Sb égal à $V_b = \frac{VbE}{2}$?
- **4.** En utilisant le tableau d'avancement, montrer que pour un volume de solution S_b égal à $V_b = \frac{VbE}{2}$ on a :

$$x_f = \frac{C_{b.V_{bE}}}{2}$$

- **5.** Montrer que $[RCOOH_{(aq)}]_{\acute{e}q} = [RCOO^{-}_{(aq)}]\acute{e}q$, lorsque $V_b = \frac{V_bE}{2}$
- **6.** À l'aide de la relation établie à la question **II.2**. et de l'égalité [[RCOOH_(aq)]_{éq} = [RCOO⁻(aq)]_{éq}, déduire l'expression du pH pour $V_b = \frac{VbE}{2}$

Couple acide / base	pK _A
HCl ₂ C-COOH / HCl ₂ C-COO	1,3
H ₂ CIC-COOH / H ₂ CIC-COO ⁻	2,9
H-COOH / H-COO	3,8
H ₃ C-COOH / H ₃ C-COO	4,8

Exercice 6 : L'objectif de cet exercice est l'étude de quelques propriétés de l'ammoniac et de l'hydroxylamine NH₂OH dissouts dans l'eau et de déterminer la concentration de l'ammoniac dans un produit commercial à l'aide d'une solution d'acide chlorhydrique de concentration connue.

Données : toutes les mesures sont effectuées à 25°C.

La masse volumique de l'eau : $1,0 g. cm^{-3}$

La masse molaire du chlorure d'hydrogène : $M(HCl) = 36.5 g. mol^{-1}$

Le produit ionique de l'eau : $K_e = 10^{-14} \frac{10^{-14}}{NH^+}$

 $NH_{3}OH^{+}$ $/NH_{2}OH$ est K_{A2} $_{4}/_{NH_{3}}$ est K_{A1} et La constante d'acidité du couple :

I. Préparation de la solution d'acide chlorhydrique

On prépare une solution S_A d'acide chlorhydrique de concentration $C_A = 0.015$ mol. L⁻¹ en diluant une solution commerciale de concentration C_0 en cet acide et dont la densité par rapport à l'eau est d=1,15. Le pourcentage massique de l'acide dans cette solution commerciale est P = 37%.

- 1. Trouver l'expression de la quantité de matière d'acide n(HCl) contenue dans un volume V de la solution commerciale en fonction de P, d, ρ , V et M(HCl). Puis vérifier que $C_0 = 11,6$ mol. L⁻¹.
- 2. Calculer le volume qu'il faut prélever de la solution commerciale pour préparer 1L de la solution.

II. Etude de quelques propriétés d'une base dissoute dans l'eau.

On considère une solution aqueuse d'une base B de concentration C. On note KA la constante d'acidité du couple BH $^+$ /B et τ l'avancement final de sa réaction avec l'eau.

1. Montrer que : $K_A = \frac{K_{e} \cdot (1-\tau)}{2\tau^2}$

2. On mesure le pH₁ d'une solution S₁ d'ammoniac NH₃ de concentration $C = 1,.02.10^{-2} mol. L^{-1}$ et le pH₂ d'une solution S₂ d'hydroxylamine NH₂OH ayant la même concentration C;

On trouve alors $pH_1 = 10.6$ et $pH_2 = 9.0$.

- **2-1** Calculer les taux d'avancement finaux τ_1 et τ_2 respectifs des réactions de NH₃et de NH₂OH avec l'eau.
- **2-2** Calculer la valeur de chacune des constantes pK_{A1} et pK_{A2} .

III. Dosage acide-base d'une solution diluée d'ammoniac.

Pour déterminer la concentration C_B d'une solution commerciale concentrée d'ammoniac, on procède par dosage acido – basique, On prépare par dilution une solution S de concentration $C' = \frac{CB}{ABC}$

On réalise le dosage pH- métrique d'un volume $V = 20 \, mL$ de la solution S à l'aide d'une solution S_A d'acide chlorhydrique $(H_3O^+_{(aq)} + Cl^-_{(aq)})$ de concentration $C_A = 0.015$ mol. L⁻¹.

On mesure le pH du mélange après chaque addition d'un volume d'acide ; Les résultats obtenus permettent de tracer la courbe de dosage $pH = (V_A)$ (**fig 1**). On atteint l'équivalence lorsqu'on ajoute le volume V_{AE} de la solution.

- 1. Ecrire l'équation de la réaction du dosage.
- 2. Déterminer le volume V_{AE}. En déduire C' et C_B.
- 3. Déterminer en justifiant votre réponse l'indicateur coloré convenable pour effectuer ce dosage en l'absence du ph-mètre.
- **4.** Déterminer le volume V_{A1} de la solution d'acide chlorhydrique qu'il faut ajouter pour que la relation [NH₄⁺]= 15.[NH₃] soit vérifiée dans le mélange réactionnel.
- 5. En utilisant la valeur du **pH** correspondant à l'addition de 5 mL d'acide chlorhydrique, calculer le taux d'avancement final de la réaction du dosage (pouvez d'utiliser le tableau d'avancement). Conclure.

L'indicateur coloré	Zone de virage
phénolphtaléine	8,2 - 10
Rouge de	5,2 - 6,8
chlorophénol	
Hélianthine	3,1 - 4,4
