

VERIFICATION OF NASA GALACTIC COSMIC RAY SIMULATOR FOR LARGE ANIMAL MODELS

Shirin Rahmanian¹, Tony C. Slaba²

¹*National Institute of Aerospace, Hampton, VA 23666*

²*NASA Langley Research Center, Hampton, VA 23681*

Outline

- Galactic Cosmic Ray Simulator (GCRsim) Beam Overview
- Transport Studies
- Digital Phantoms
- Simulation Results of GCRsim Beam in the Three Different Phantoms
- Summary and Conclusions

GCRsim Beam Overview: Background

- Space radiation poses multiple important health risks for astronauts
 - Cancer
 - Cardiovascular disease
 - Damage to Central Nervous System
- For long duration mission beyond low Earth orbit (LEO) risks mainly arise from galactic cosmic rays (GCR)
- Ground-based experiments will help to mitigate risks and reduce uncertainties

GCRsim Beam Overview: Objective

- Previous ground-based radiation studies mainly utilized single mono-energetic beams
 - Collectively improved our understanding of underlying biological mechanism
 - Poor analog for the complete space environment
- The GCR simulator (GCRsim) was developed at the NASA Space Radiation Laboratory (NSRL) to better represent the complex mixed field environment in space
- GCRsim is intended simulate radiation environment as seen by astronauts in deep space
 - Study health effects of GCR
 - Improve risk projections
 - Countermeasure development and testing

NASA's NSRL facility in Brookhaven, NY

GCRsim Beam Overview: Reference Field

- A single reference field was defined to approximate deep space environment
 - Female BFO (blood forming organ) behind 20 g/cm² spherical aluminum shielding during solar minimum

Reference field energy spectra for neutrons, hydrogen, and helium [Slaba et al. 2016]

Differential LET spectra of reference field with and without contributions from hydrogen and helium [Slaba et al. 2016]

GCRsim Beam Overview: Beam Definition

- The GCRsim at NSRL is designed to deliver deep space, shielded tissue environment to biological targets in a laboratory setting
- 33 mono-energetic beams of varying energies with ion species consisting of H, He, C, O, Fe, Si and Ti
- Sequential beam delivery reproducing the space environment over the full range of LET

Ion	Energy (MeV/n)	Range (cm)	LET (keV/ μ m)	Dose (mGy)	
^1H	100	<i>Polyethylene degrader to</i>			
^1H	150	15.9	0.54	35.0	
^1H	250	38.1	0.39	68.9	
^1H	1000	326.6	0.22	123.6	
^4He	100	<i>Polyethylene degrader to</i>			
^4He	150	16.0	2.17	7.5	
^4He	250	38.3	1.56	16.4	
^4He	1000	327.8	0.88	24.9	
^{12}C	1000	110.1	7.95	11.7	
^{16}O	350	17.0	20.8	15.4	
^{28}Si	600	22.7	50.2	8.1	
^{48}Ti	1000	32.5	109.5	4.5	
^{56}Fe	600	13.1	175.1	4.1	
Total				500.0	

GCRsim beam definition at NASA
[Simonsen et al. 2020]

Ion	Energy (MeV/n)	Range (cm)	LET (keV/ μ m)	Dose (mGy)
^1H	20.0	0.43	2.59	30.4
^1H	23.3	0.56	2.29	6.7
^1H	27.2	0.75	2.02	7.4
^1H	31.7	0.98	1.79	8.0
^1H	37.0	1.30	1.58	8.7
^1H	43.2	1.72	1.39	9.3
^1H	50.3	2.26	1.23	10.0
^1H	58.7	2.99	1.09	10.6
^1H	68.5	3.95	0.97	11.1
^1H	79.9	5.20	0.86	11.2
^1H	100.0	7.76	0.73	27.2

Ion	Energy (MeV/n)	Range (cm)	LET (keV/ μ m)	Dose (mGy)
^4He	20.0	0.43	10.34	11.0
^4He	23.3	0.57	9.14	2.1
^4He	27.2	0.75	8.06	2.2
^4He	31.7	0.99	7.12	2.3
^4He	37.0	1.31	6.29	2.5
^4He	43.2	1.73	5.56	2.6
^4He	50.3	2.28	4.92	2.7
^4He	58.7	3.01	4.36	2.7
^4He	68.5	3.97	3.86	2.7
^4He	79.9	5.23	3.43	2.7
^4He	100.0	7.81	2.90	6.1

Transport Studies

- The GCRsim is suitable for animal models such as mice and rats to represent internal radiation environment seen at critical organ locations within the human body
- Radiation transport studies using phantom models of mouse (Digimouse) and rat (Digirat) have been previously completed [Simonsen et al. 2020]
 - Geant4 Monte Carlo code was used to simulate the GCRsim in the digital phantoms
- Verified key physical parameters of the GCRsim beams
 - Homogeneous internal dose distribution across radiosensitive tissues
 - Reproduces the dose and fluence spectra of the reference field as function of linear transfer energy (LET)

Digital Phantoms

- Digital phantoms are voxelized 3D models of an animal created from CT or MR images
 - Digimouse: Digital model of 28 g male mouse
 - Digirat: scaled model of Digimouse resulting in a 754 g rat
 - Digipig: Digital model of a 35 kg male minipig
- Each voxel identifies important radiosensitive tissues
 - Quantities of interest were calculated in these radiosensitive organs
- Simulations performed with each of these phantoms
 - Geant4 Monte Carlo simulation
 - 500 mGy GCRsim beam dose
 - Isotropic irradiation conditions

Digipig, Digirat and Digimouse shown side by side for comparison

Simulation Results: Dose Distribution

- Relatively homogenous dose distribution was seen throughout all three animal phantoms
- 95% of the voxel doses were within 6%, 7%, and 8% of the mean values in Digimouse, Digirat, and Digipig, respectively

Simulation Result: Tissue Dose

- No major variation in tissue doses was observed
 - All values compared well with beam dose of 500 mGy
 - Bone dose slightly lower in all animals due to density difference
- Digimouse: mean soft tissue dose was 4.6% higher than the beam dose
 - Bone dose was 6% lower
- Digirat: mean soft tissue dose 2% lower than the beam dose
 - Bone dose was 11% lower
- Digipig: mean soft tissue dose about 10% lower than the beam dose
 - Bone dose was 20% lower

Side by side comparison of simulated dose in major radiosensitive organs of Digimouse, Digirat and Digipig.

Simulation Result: Fluence and Dose Spectra

Comparison of the cumulative fluence (on the left), and cumulative dose (on the right) as a function of LET within radiosensitive organs of the three different animal phantoms

- Simulated spectra in all three animal models compare well with reference field
- The difference between the phantoms and the reference field was less than 15% in LET domain that contributes most heavily to dose

Summary and Conclusion

- It was shown from the Monte Carlo simulations that the relevant radiation quantities in larger animals such as minipigs have comparable values to rodent models and the reference field.
- The differences observed were within expectations due to the increased mass and most likely not substantial enough to significantly change biological responses.
- These results suggest that no major modifications may be required for the existing GCRsim beam to support studies with large animal models.
- Nevertheless, further analysis with large animals may be needed to evaluate the radiation field in the internal organs for specific experimental design considerations.

References

- [Simonsen et al. 2020] Simonsen, L. C., T. C. Slaba, P. Guida, and A. Rusek. "NASA's first ground-based galactic cosmic ray simulator: Enabling a new era in space radiobiology research." *PLoS Biology* 18, no. 5 (2020): e3000669.
- [Slaba et al. 2016] Slaba, T. C., S. R. Blattnig, J. W. Norbury, A. Rusek, and C. La Tessa. "Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation." *Life Sciences in Space Research* 8 (2016): 52-67

