Các giới hạn thường gặp

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

$$\bullet \lim_{x \to 0} \frac{\arctan x}{x} = 1.$$

•
$$\lim_{x \to +\infty} x^{\alpha} = +\infty, \alpha > 0.$$

$$\bullet \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

$$\bullet \lim_{x \to 0} \frac{\arcsin x}{x} = 1.$$

•
$$\lim_{x \to +\infty} (\ln x)^{\alpha} = +\infty, \alpha > 0.$$

$$\bullet \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

$$\bullet \lim_{x \to 0} \frac{\tan x}{x} = 1.$$

$$\bullet \lim_{x \to +\infty} a^x = +\infty, a > 1.$$

$$\bullet \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

•
$$\lim_{x \to 0} (1+x)^{1/x} = e$$
.

$$\bullet \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

$$\bullet \lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha.$$

•
$$\lim_{x \to 0} (1-x)^{1/x} = \frac{1}{e}$$
.

•
$$\lim_{x \to +\infty} \sin x$$
 không tồn tại.

Chú ý.
$$\lim_{x \to x_0} [u(x)]^{v(x)} (1^{\infty}) = e^{\lim_{x \to x_0} [u(x) - 1]v(x)}$$

Bảng đạo hàm các hàm số thường gặp

•
$$C' = 0$$

•
$$(x^{\alpha})' = \alpha . x^{\alpha - 1};$$
 $\left(\frac{1}{x}\right)' = -\frac{1}{x^2};$ $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ • $(\cot x)' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$

•
$$(a^x)' = a^x \ln a$$
, $(0 < a \ne 1)$; $(e^x)' = e^x$

•
$$(\log_a x)' = \frac{\log_a e}{x} = \frac{1}{x \ln a}, (0 < a \neq 1);$$

 $(\ln x)' = \frac{1}{x}$

$$\bullet \ (\sin x)' = \cos x$$

$$\bullet \ (\cos x)' = -\sin x$$

•
$$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

•
$$(\cot x)' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$$

$$\bullet \ (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

$$\bullet \ (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$\bullet \ (\arctan x)' = \frac{1}{x^2 + 1}$$

•
$$(\operatorname{arccotx})' = -\frac{1}{x^2 + 1}$$

Các khai triển Maclaurin thông dụng

$$1/e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n).$$

$$2/\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n}).$$

$$3/\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}).$$

$$3/\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}).$$

$$4/(1+x)^{m} = 1 + C_{m}^{1}x + C_{m}^{2}x^{2} + \dots + C_{m}^{n}x^{n} + o(x^{n}), \quad C_{m}^{k} = \frac{m(m-1)\dots(m-k+1)}{k!}, \ (m \in \mathbb{R}, \ k \in \mathbb{N}).$$

$$\text{HQ: } \frac{1}{1+x} = 1 - x + x^{2} - \dots + (-1)^{n}x^{n} + o(x^{n}) \quad \text{và} \quad \frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + o(x^{n}).$$

$$5/\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

$$5/\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots (-1)^{n-1} \frac{x^n}{n} + o(x^n).$$

$$6/\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + o(x^{2n}).$$

Chú ý. Các công thức trên vẫn còn đúng nếu thay x bởi $\alpha(x) \to 0$.

Bảng tích phân cơ bản

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, (\alpha \neq -1)$$

$$\bullet \int \frac{dx}{x} = \ln|x| + C$$

•
$$\int \sin(ax+b)dx = -\frac{\cos(ax+b)}{a} + C, (a \neq 0)$$

•
$$\int \cos(ax+b)dx = \frac{\sin(ax+b)}{a} + C, (a \neq 0)$$

$$\bullet \int \frac{dx}{\cos^2 x} = \tan x + C$$

•
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C, (a \neq 0)$$

•
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, (a \neq 0)$$

•
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + C$$

•
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

•
$$\int \sin(ax+b)dx = -\frac{\cos(ax+b)}{a} + C, (a \neq 0)$$
 •
$$\int \sqrt{x^2 \pm a}dx = \frac{x}{2}\sqrt{x^2 \pm a} \pm \frac{a}{2}\ln\left|x + \sqrt{x^2 \pm a}\right| + C$$

•
$$\int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C$$

•
$$\int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C$$

•
$$\int \frac{dx}{\cos^2(ax+b)} = \frac{1}{a}\tan(ax+b) + C, (a \neq 0)$$

Tích phân suy rộng loại 1 5

Ghi chú. Ta có kết quả

$$I = \int_{a}^{+\infty} \frac{dx}{x^{\alpha}} (a > 0) \xrightarrow{\text{hội tụ } \Leftrightarrow \alpha > 1, I = \frac{1}{\alpha - 1} a^{1 - \alpha}}.$$

$$\searrow \text{phân kỳ } \Leftrightarrow \alpha \leq 1.$$

Chú ý. Nếu f(x), g(x) > 0, $\forall x \geq a$ và $f(x) \sim g(x)$, khi $x \to +\infty$ thì hai tích phân $\int_{a}^{+\infty} f(x) dx$ và $\int_{a}^{+\infty} g(x)dx \text{ cùng hội tụ hoặc cùng phân kỳ.}$

Chuỗi số và chuỗi lũy thừa

Các chuỗi số dương quan trọng

Chuỗi quan trọng: Chuỗi cấp nhân (CSN) $\sum_{n=0}^{\infty} aq^n \ (a \neq 0)$ và Chuỗi điều hòa $\sum_{n=0}^{\infty} \frac{1}{n^{\alpha}} \ (\alpha - \text{chuỗi})$.

• Chuỗi
$$\sum_{n=1}^{\infty} aq^n$$
 hội tụ $\Leftrightarrow |q| < 1$, tổng $S = \sum_{n=1}^{\infty} aq^n = \frac{aq}{1-q}$.

• Chuỗi
$$\sum_{n=1}^{\infty} aq^n$$
 phân kỳ $\Leftrightarrow |q| \geq 1$.

• Chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ hội tụ khi và chỉ khi $\alpha > 1$, phân kỳ khi và chỉ khi $\alpha \leq 1$.

Chú ý. Nếu $u_n, v_n > 0$, $u_n \sim v_n$ khi $n \to \infty$ thì chuỗi $\sum_{n=1}^{\infty} u_n$ và chuỗi $\sum_{n=1}^{\infty} v_n$ cùng hội tụ hoặc cùng phân kỳ.

6.2 Các tiêu chuẩn (TC) hội tụ

Chú ý: Cho $\sum_{n=1}^{\infty} u_n$ là chuỗi số dương có giới hạn

$$\rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} \left(\text{d'Alembert} \right) \quad \text{hoặc} \quad \rho = \lim_{n \to \infty} \sqrt[n]{u_n} \left(\text{Cauchy} \right) \left(\rho \in \overline{\mathbb{R}} \right).$$

Khi đó: Nếu $\rho < 1$ thì chuỗi hội tụ, $\rho > 1$ thì chuỗi phân kỳ.

Chú thích: Nếu chuỗi $\sum_{n=1}^{\infty} u_n$ có dấu bất kỳ thì ta áp dụng TC *d'Alembert* hoặc *Cauchy* cho chuỗi $\sum_{n=1}^{\infty} |u_n|$:

i/ Nếu chuỗi $\sum_{n=1}^{\infty}|u_n|$ hội tụ thì chuỗi $\sum_{n=1}^{\infty}u_n$ cũng hội tụ (tuyệt đối).

ii/ Nếu chuỗi $\sum_{n=1}^{\infty} |u_n|$ phân kỳ thì chuỗi $\sum_{n=1}^{\infty} u_n$ cũng phân kỳ.

6.3 Bán kính hội tụ của chuỗi lũy thừa

Định lý. Giả sử tồn tại giới hạn

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \rho \text{ hoặc } \lim_{n \to \infty} \sqrt[n]{|a_n|} = \rho \text{ (0 } \le \rho \le +\infty).$$

Khi đó, bán kính hội tụ (BKHT) của chuỗi lũy thừa $\sum_{n=0}^{\infty} a_n x^n$ cho bởi công thức

$$R = \begin{cases} \frac{1}{\rho}, & \text{n\'eu } 0 < \rho < +\infty, \\ 0, & \text{n\'eu } \rho = +\infty, \\ +\infty, & \text{n\'eu } \rho = 0. \end{cases}$$

Chú thích. Nếu tồn tại giới hạn $\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}$ thì giới hạn đó chính là BKHT của chuỗi $\sum_{n=0}^{\infty}a_nx^n$.

Chú ý: Miền hội tụ $\sum_{n=0}^{\infty} a_n x^n = \text{Khoảng hội tụ } (-R, R) \cup \{B\}$, với $B \in \{\pm R\}$, R là BKHT của chuỗi $\sum_{n=0}^{\infty} a_n x^n$.

7 Đạo hàm riêng và vi phân

Cho hàm số z = f(x, y)

$$\ \, \blacksquare \,$$
 Vi phân cấp 1: $df=f'_xdx+f'_ydy$

Vi phân cấp 2:
$$d^2f = f_{xx}''dx^2 + 2f_{xy}''dxdy + f_{yy}''dy^2$$

• Vi phân cấp
$$n: d^n f = \left(\frac{\partial \cdot}{\partial x} dx + \frac{\partial \cdot}{\partial y} dy\right)^n f \equiv \sum_{k=0}^n C_n^k \frac{\partial^n f}{\partial x^k \partial y^{n-k}} (dx)^k (dy)^{n-k}$$

Tính gần đúng dùng vi phân: Nếu hàm f khả vi tại điểm (x_0, y_0) , và $|\Delta x|$, $|\Delta y|$ khá bé, ta có

$$f(x_0 + \Delta x, y_0 + \Delta y) \simeq f(x_0, y_0) + \underbrace{\frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y}_{df(x_0, y_0)}$$

8 Cực trị

Thuật toán: Tìm cực trị của hàm z = f(x, y).

- B1: Giải hệ $\begin{cases} z'_x = 0 \\ z'_y = 0 \end{cases}$ để tìm điểm dừng $M_0(x_0, y_0)$.
- B2: Tính z''_{xx} , z''_{xy} , z''_{yy} và suy ra

$$A = z_{xx}''(x_0, y_0), \ B = z_{xy}''(x_0, y_0), C = z_{yy}''(x_0, y_0), \ \text{và } \Delta = B^2 - AC.$$

- B3: Kết luận: i) Nếu $\Delta = B^2 AC < 0$ và A > 0 (hay C > 0) thì f đạt cực tiểu tại M_0 ,
 - ii) Nếu $\Delta = B^2 AC < 0$ và A < 0 (hay C < 0) thì f đạt cực đại tại M_0 ,
 - iii) Nếu $\Delta = B^2 AC > 0$ thì f không đạt cực trị tại M_0 ,
 - iv) Nếu $\Delta = B^2 AC = 0$ ta chưa kết luận và cần phải xét cụ thể.

Thuật toán Tìm cực trị của hàm z = f(x, y) với điều kiện $\varphi(x, y) = 0$.

- Bước 1. Lập hàm Lagrange $L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$.
- Bước 2. Giải hệ

$$\begin{cases} L'_x = \frac{\partial f}{\partial x}(x, y) + \lambda \frac{\partial \varphi}{\partial x}(x, y) = 0 \\ L'_y = \frac{\partial f}{\partial y}(x, y) + \lambda \frac{\partial \varphi}{\partial y}(x, y) = 0 \\ L'_\lambda = \varphi(x, y) = 0 \end{cases}$$

tìm điểm dừng $M_0(x_0, y_0)$ ứng với λ_0 .

• Bước 3. Tính $\varphi_1=\varphi_x'(M_0),\, \varphi_2=\varphi_y'(M_0),\, L_{11}=L_{xx}''(M_0),\, L_{12}=L_{21}=L_{xy}''(M_0),\, L_{22}=L_{yy}''(M_0),\, \text{và}$

$$\overline{D} = \overline{D}(x_0, y_0, \lambda_0) = \begin{vmatrix} 0 & \varphi_1 & \varphi_2 \\ \varphi_1 & L_{11} & L_{12} \\ \varphi_2 & L_{21} & L_{22} \end{vmatrix}$$

- Bước 4. Kết luận:
 - i/ $\overline{D}>0\Rightarrow$ Hàm số đạt cực đại có điều kiện tại $M_0(x_0,y_0)$
 - ii/ \overline{D} < $0 \Rightarrow$ Hàm số đạt cực tiểu có điều kiện tại $M_0(x_0, y_0)$.

9 Tích phân hàm nhiều biến

9.1 Cách tính tích phân hai lớp

10 Xét trường hợp $D = [a, b] \times [c, d] = \{(x, y) : a \le x \le b, c \le y \le d\}$ là hình chữ nhật. i/ Nếu f(x, y) = X(x)Y(y) thì

$$\iint\limits_D f(x,y) \, dx dy = \left(\int_a^b X(x) dx \right) \left(\int_c^d Y(y) dy \right).$$

ii/ Nếu f(x, y) tùy ý thì

$$\iint\limits_D f\left(x,y\right) dx dy = \int_a^b \left(\int_c^d f(x,y) dy\right) dx = \int_a^b dx \int_c^d f(x,y) dy = \int_a^b \int_c^d f(x,y) dy dx$$

hay

$$\iint\limits_D f(x,y) \, dx dy = \int_c^d \left(\int_a^b f(x,y) dx \right) dy = \int_c^d dy \int_a^b f(x,y) dx = \int_c^d \int_a^b f(x,y) dx dy.$$

2° i/ Trường hợp $D=\{(x,y): a\leq x\leq b,\ g_1(x)\leq y\leq g_2(x)\}$.

$$\iint\limits_{D} f(x,y) \, dx dy = \int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy \right) dx = \int_{a}^{b} dx \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy dx.$$

ii/ Trường hợp $D = \{(x, y) : h_1(y) \le x \le h_2(y), c \le y \le d\}.$

$$\iint_D f(x,y) \, dx dy = \int_c^d dy \int_{h_1(y)}^{h_2(y)} f(x,y) dx = \int_c^d \left(\int_{h_1(y)}^{h_2(y)} f(x,y) dx \right) dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dx dy.$$

9.2 Cách tính tích phân đường loại 2

 $1/\stackrel{\textstyle \frown}{AB}: \begin{cases} x=x(t) \\ y=y(t), \ t:=t_A=a\mapsto b=t_B. \end{cases}$ Ta có công thức:

$$\int_{\widehat{AB}} P(x,y)dx + Q(x,y)dy = \int_a^b \left[P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t) \right] dt.$$

 $2/\mathrm{i}/\widehat{AB}: y=y(x), \ x:x_A=a\mapsto b=x_B.$ Ta có công thức

$$\int_{\widehat{AB}} P(x, y) dx + Q(x, y) dy = \int_{a}^{b} \left[P(x, y(x)) + Q(x, y(x)) y'(x) \right] dx.$$

ii/ $\widehat{AB}: x = x(y), y: y_A = c \mapsto d = y_B$. Ta có công thức

$$\int_{\widehat{AB}} P(x, y) dx + Q(x, y) dy = \int_{c}^{d} \left[P(x(y), y) x'(y) + Q(x(y), y) \right] dy.$$

Công thức Green:

$$\oint_C Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy.$$

10 Phương trình vi phân

10.1 Phương trình vi phân cấp 1 thông dụng

10.1.3. Phương trình vi phân tuyến tính cấp 1

• Phương trình vi phân tuyến tính cấp 1 có dạng

$$y' + p(x)y = q(x), a < x < b$$
 (1)

• Phương pháp biến thiên hằng số Lagrange. Tìm nghiệm tổng quát của (1) ở dạng

$$y = C(x)e^{-\int p(x)dx}. (2)$$

Thuật toán minh họa pp biến thiên hằng số Lagrange

• B1: Tính

$$A(x) = e^{-\int p(x)dx}.$$

• B2: Tính

$$B(x) = \int q(x)e^{\int p(x)dx}dx = \int \frac{q(x)}{A(x)}dx.$$

• B3: Nghiệm tổng quát của (1) là

$$y = A(x) [B(x) + C], C \in \mathbb{R},$$

lưu ý các hằng số trong các tích phân ở B1 và B2 chọn bằng 0 (tức là ta chỉ lấy một nguyên hàm).

10.2 Phương trình vi phân tuyến tính cấp 2 có hệ số hằng

• Phương trình vi phân tuyến tính cấp 2 có hệ số hằng là phương trình có dạng

$$y'' + py' + qy = f(x), \ a < x < b, (p, q \in \mathbb{R})$$
(3)

• Phương trình thuần nhất của phương trình (3) là

$$y'' + py' + qy = 0. (4)$$

• Phương trình đặc trung của (4) là

$$k^2 + pk + q = 0. (5)$$

Ta có các trường hợp sau:

 \circ i/ Phương trình (5) có hai nghiệm thực phân biệt k_1 , k_2 . Nghiệm tổng quát của phương trình (4) là

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}, \ C_1, C_2 \in \mathbb{R}.$$

o ii/ Phương trình (5) có nghiệm kép k. Nghiệm tổng quát của phương trình (4) là

$$y = C_1 e^{kx} + C_2 x e^{kx} = e^{kx} (C_1 + C_2 x), C_1, C_2 \in \mathbb{R}.$$

 \circ iii/ Phương trình (5) có nghiệm phức $k_{1,2} = \alpha \pm i\beta$. Nghiệm tổng quát của phương trình (4) là

$$y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right), C_1, C_2 \in \mathbb{R}.$$