Контрольна Робота. Частина #2

Захаров Дмитро

12 жовтня, 2024

1 Умова

Нехай маємо систему пружин з жорсткістю $k_1 = 5 \frac{\text{H}}{\text{M}}$, $k_2 = 1 \frac{\text{H}}{\text{M}}$ та нульовими довжинами ℓ_1 , ℓ_2 (де $\ell_1 = \ell_2 = 1 \,\text{M}$). Координати мас $m_1 = 1 \,\text{кг}$, $m_2 = 1 \,\text{кг}$ описуються наступною системою рівнянь:

$$\begin{cases}
m_1 \ddot{x}_1 = -k_1(x_1 - \ell_1) + k_2(x_2 - x_1 - \ell_2), \\
m_2 \ddot{x}_2 = -k_2(x_2 - x_1 - \ell_2) + F(t)
\end{cases}$$

де $|F(t)| \le F_0$ — керування (сила, прикладена до другої маси).

- 1. За допомогою заміни змінних звести двовимірну лінійну систему до чотиривимірної лінійної (4 бали).
- 2. Застосувати принцип максимуму Понтрягіна для знаходження розв'язку задачі швидкодії. Виписати функцію Гамільтона-Понтрягіна, рівняння на спряжені змінні (2 бали). Розв'язати це рівняння за допомогою комп'ютера (4 бали). Виписати принцип максимума (2 бали).
- 3. Застосувати теорему Фельдбаума про число перемикань для цієї задачі (*3 бали*), можна рахувати на комп'ютері.
- 4. Побудувати за допомогою комп'ютера траєкторію яка переводить початкову точку у кінцеву. Взяти керування або +1, або -1, тобто без перемикань. Початкові умові взяти самостійно. У вас вийде 4 вимірна траєкторія, ви малюєте проекцію цієї 4 вимірної траєкторії на площини (x_1, x_2) та (x_3, x_4) .

2 Розв'язання

2.1 Пункт 1

Зробимо просту заміну: нехай $v_1:=\dot{x}_1,v_2:=\dot{x}_2$. Також, для зручності, нехай маємо $\omega_1^2:=k_1/m_1,\,\omega_2^2:=k_2/m_2,\,$ а також $\eta:=m_2/m_1.$ Тоді маємо систему

$$\begin{cases} \dot{v}_1 = -\omega_1^2(x_1 - \ell_1) + \eta \omega_2^2(x_2 - x_1 - \ell_2), \\ \dot{v}_2 = -\omega_2^2(x_2 - x_1 - \ell_2) + u(t), \\ \dot{x}_1 = v_1, \\ \dot{x}_2 = v_2. \end{cases}$$

з керуванням u(t) за умови $|u(t)| \leq u_m$, де ми позначили $u_m := F_0/m_2$. Трошки її розпишемо і переупорядкуємо:

$$\begin{cases} \dot{x}_1 = v_1, \\ \dot{x}_2 = v_2, \\ \dot{v}_1 = -(\omega_1^2 + \eta \omega_2^2) x_1 + \eta \omega_2^2 x_2 + \omega_1^2 \ell_1 - \eta \omega_2^2 \ell_2, \\ \dot{v}_2 = \omega_2^2 x_1 - \omega_2^2 x_2 + \omega_2^2 \ell_2 + u(t). \end{cases}$$

Позначимо вектор стану як $z := (x_1, x_2, v_1, v_2)$, тоді маємо систему

$$\dot{\boldsymbol{z}} = A\boldsymbol{z} + \boldsymbol{\beta}u(t) + \boldsymbol{\gamma}.$$

Матриці та вектори в цих позначеннях:

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -(\omega_1^2 + \eta \omega_2^2) & \eta \omega_2^2 & 0 & 0 \\ \omega_2^2 & -\omega_2^2 & 0 & 0 \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \boldsymbol{\gamma} = \begin{pmatrix} 0 \\ 0 \\ \omega_1^2 \ell_1 - \eta \omega_2^2 \ell_2 \\ \omega_2^2 \ell_2 \end{pmatrix}.$$

Щоб прибрати доданок γ , зробимо заміну $z = w + \delta$, тоді маємо:

$$\dot{\boldsymbol{w}} = A(\boldsymbol{w} + \boldsymbol{\delta}) + \boldsymbol{\beta}u(t) + \boldsymbol{\gamma} \implies \dot{\boldsymbol{w}} = A\boldsymbol{w} + \boldsymbol{\beta}u(t) + A\boldsymbol{\delta} + \boldsymbol{\gamma}.$$

Ми хочемо занулити доданок $A\boldsymbol{\delta} + \boldsymbol{\gamma}$, тому оберемо

$$oldsymbol{\delta} = -A^{-1}oldsymbol{\gamma} = egin{pmatrix} \ell_1 \ \ell_1 + \ell_2 \ 0 \ 0 \end{pmatrix}$$

В такому разі маємо наступне рівняння $\dot{\boldsymbol{w}} = A\boldsymbol{w} + \boldsymbol{\beta}u(t)$, де A та $\boldsymbol{\beta}$ виглядають так:

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -(\omega_1^2 + \eta \omega_2^2) & \eta \omega_2^2 & 0 & 0 \\ \omega_2^2 & -\omega_2^2 & 0 & 0 \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \boldsymbol{w} = \boldsymbol{z} - \begin{pmatrix} \ell_1 \\ \ell_1 + \ell_2 \\ 0 \\ 0 \end{pmatrix}$$

2.2 Пункт 2

Спочатку, сформулюємо принцип максимуму Понтрягіна.

Lemma 2.1. Спрощене формулювання принципу максимума Понтрягіна. Нехай маємо наступну динамічну систему:

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t)), \ \mathbf{x}(0) = \mathbf{x}_0, \ \mathbf{u}(t) \in \Omega, \ t \in [0, T]$$

і ми маємо функціонал $\mathcal{L}(\mathbf{u}) = \Psi(\mathbf{x}(T)) + \int_0^T \ell(\mathbf{x}(t), \mathbf{u}(t)) dt \to \inf$. Введемо вектор множників Лагранжа $\psi(t)$, деяке $\lambda_0 < 0$ та Гамільтоніан

$$\mathcal{H}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\psi}(t), t) := \boldsymbol{\psi}^{\top} f(\mathbf{x}(t), \mathbf{u}(t)) + \lambda_0 \ell(\mathbf{x}(t), \mathbf{u}(t))$$

Принцип максимуму Понтрягіна стверджує, що оптимальна траєкторія $\mathbf{x}^*(t)$, керування $\mathbf{u}^*(t)$, та відповідний вектор множників Лагранжа $\boldsymbol{\psi}^*(t)$ має максимізувати Гамільтоніан \mathcal{H} , тобто

$$(\forall t \in [0, T]) \ (\forall \mathbf{u}(t) \in \Omega) \ \{ \mathcal{H}(\mathbf{x}^*(t), \mathbf{u}^*(t), \boldsymbol{\psi}^*(t), t) \ge \mathcal{H}(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\psi}(t), t) \},$$

де вектор множників знаходиться з рівнянь

$$\dot{\boldsymbol{\psi}}(t) = -\nabla_{\mathbf{x}} \mathcal{H}(\mathbf{x}^*(t), \mathbf{u}^*(t), \boldsymbol{\psi}, t), \ \boldsymbol{\psi}(T) = -\nabla_{\mathbf{x}} \Psi(\mathbf{x}(T))$$

Тепер запишемо вище виписане у наших позначеннях. Отже, маємо:

$$f(\boldsymbol{w}, u) = A\boldsymbol{w} + \boldsymbol{\beta}u, \quad \Psi(\boldsymbol{w}) \equiv 0, \quad \ell(\boldsymbol{w}, u) \equiv 1.$$

Також, оскільки $\ell \equiv \text{const}$, то доданок $\lambda_0 \ell(\mathbf{x}(t), u(t))$ в Гамільтоніані не впливає на максимум, тому можемо його взагалі не враховувати. Таким чином, маємо Гамільтоніан

$$\mathcal{H}(\boldsymbol{w}, u, \boldsymbol{\psi}, t) = \boldsymbol{\psi}^{\top} f(\boldsymbol{w}, u) = \langle \boldsymbol{\psi}, f(\boldsymbol{w}, u) \rangle$$

= $\psi_1 w_3 + \psi_2 w_4 + (\eta \omega_2^2 w_2 - (\omega_1^2 + \eta \omega_2^2) w_1) \psi_3 + (u + \omega_2^2 w_1 - \omega_2^2 w_2) \psi_4$

Отже, маємо обрати $u^* = \arg\max_{u \in \Omega} \mathcal{H}(\mathbf{w}(t), u(t), \boldsymbol{\psi}(t), t)$. Видно, що єдиний доданок, що залежить від u — це $u\psi_4$, тому максимум буде досягнуто при $u^* = \operatorname{sign}(\psi_4)u_m$. Залишилось записати рівняння на множник Лагранжа. Маємо

$$\dot{\boldsymbol{\psi}} = -\nabla_{\boldsymbol{w}} \mathcal{H} = -A^{\top} \boldsymbol{\psi}$$

Звідси рівняння має вигляд:

$$\begin{cases} \dot{\psi}_1 = -\omega_2^2 \psi_4 + (\omega_1^2 + \eta \omega_2^2) \psi_3 \\ \dot{\psi}_2 = -\eta \omega_2^2 \psi_3 + \omega_2^2 \psi_4 \\ \dot{\psi}_3 = -\psi_1 \\ \dot{\psi}_4 = -\psi_2 \end{cases}$$

Систему можна розв'язати і чисельно, проте оскільки у нас немає умов трансверсальності, то розв'язок буде надто складно виглядати (навіть в чисельних розрахунках, містити невідомі константи). У файлу він наведений.

2.3 Пункт 3

Сформулюємо теорему Фельдбаума про число перемикань (спрощено).

Theorem 2.2. Теорема Фельдбаума про число перемикань. Нехай маємо задачу швидкодії для рівняння $\dot{\mathbf{x}} = A\mathbf{x} + Bu$ за умови $|u| \leq 1$ (кінці задані), $\mathbf{x} \in \mathbb{R}^n$. Нехай система є повністю керованою. Тоді, якщо спектр $\sigma(A) \subset \mathbb{R}$, то оптимальне керування $u^*(t)$ має $\leq (n-1)$ перемикань.

По-перше, з'ясуємо, чи є наша система повністю керованою. Для цього знайдемо матрицю керованості $K = [B, AB, A^2B, A^3B]$. Маємо:

$$B = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad AB = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad A^2B = \begin{pmatrix} 0 \\ 0 \\ \eta\omega_2^2 \\ -\omega_2^2 \end{pmatrix}, \quad A^3B = \begin{pmatrix} \eta\omega_2^2 \\ -\omega_2^2 \\ 0 \\ 0 \end{pmatrix}$$

Отже,

$$K = \begin{pmatrix} 0 & 0 & 0 & \eta \omega_2^2 \\ 0 & 1 & 0 & -\omega_2^2 \\ 0 & 0 & \eta \omega_2^2 & 0 \\ 1 & 0 & -\omega_2^2 & 0 \end{pmatrix}$$

Видно, що ранг матриці K дорівнює 4, тому система є повністю керованою. Подивимось тепер на спектр матриці A. Тут підставимо наші конкретні значення ($\omega_1 = \sqrt{5}, \omega_2 = 1, \eta = 1$). В такому разі, власні значення будуть:

$$\lambda_{1,2} = \pm i \sqrt{\frac{7 + \sqrt{29}}{2}}, \quad \lambda_{3,4} = \pm i \sqrt{\frac{7 - \sqrt{29}}{2}}$$

Тому $\sigma(A) \subset \mathbb{C} \setminus \mathbb{R}$, тобто теорема Фельдбаума не застосовується.

2.4 Пункт 4

Цей пункт вирішив не виконувати :)