RAYTRACER PART I OF II

RAYTRACING OVERVIEW

- Loosely based on the way we perceive the world around us (visually)
- A (near) infinite number of photons are emitted by a light source.
 - Some bounce around our environment
 - Some are absorbed
 - Some are reflected
 - Some of the reflected photons reach our retina.

OVERVIEW, CONT.

- Impractical to simulate!
 - Millions (Billions, Trillions) of "photons"
 - Most don't hit our eye.
- Observation:
 - But...if we trace photons backwards from the eye to the light source (by sending out a ray):
 - (At least) One ray per pixel
 - Definitely do-able on the computer.
 - If the ray hits something, use it to color the pixel.
 - We guarantee we're only computing photons that actually matter to us.

OVERVIEW, CONT.

- This is the same technique used in early fps-games
- Technically, this is a ray-casting.

OVERVIEW, CONT.

- More advanced renderings can be obtained by recursively bouncing rays off hit objects
 - Reflections
 - Refractions
 - Ambient Occlusion
 - Subsurface scatter
 - ...

PHASE 1: DEFINE CAMERA SPACE

- We'll define camera space:
 - origin is (virtual) camera position.
 - axes are perpendicular and define a Left-handed coordinate system (since our world does)
 - Imagine yourself where the camera is (and oriented with the camera) – camera C.S. should look to you like world C.S.

CAMERA SPACE, CONT.

CAMERA SPACE, CONT.

- What you'll be given:
 - \vec{C} : Camera position
 - \overrightarrow{COI} : Position of the center of interest
 - \overline{Cup} : The general upwards direction of the camera
- What you'll need to calculate:
 - \overrightarrow{CamX} , \overrightarrow{CamY} , and \overrightarrow{CamZ} : the camera's local axes

STEP2: DEFINE VIRTUAL VIEW PLANE

- One key idea in R.T. is that of the virtual view plane.
- Imagine your pygame window (let's say 100 x 70 pixels) is sitting in front of the camera in our 3d world.
 - Centered about the camera's z axis
 - Tilted parallel to the camera x and y axes.
 - The same proportions as the pygame window

Note: in the drawing, this is a 17x17 pygame surface

VIRTUAL VIEW PLANE, CONT.

- The details given to us:
 - The width, height of the pygame window
 - The near distance (how far in front of the camera is the plane, in virutal world-units [NOT pixels])
 - The (vertical) field-of-view (the angle made by the camera and the top-middle and bottom-middle points on the view plane)
 - [See next slide for an illustration of the role of both of these]
- We need to compute:
 - The width and height of the view plane (in virtual world units)
 - The position (in 3d) of the upper-left corner of the virtual view plane (that corresponds to the origin in the pygame window)
- [Do it on the board...]

PHASE 3: GEOMETRIC PRIMITIVES

- Now we need something to render!
- In rasterizers (later), everything is polygon-based.
- In raytracers, it can be polygon-based (see the bonus section)
 - More often, though, it is a symbolic formula.
- 3 common ways to define a primitive symbolically:
 - Implicit: A <u>definition</u> of all points on the surface (a test)
 - Example: points on a (3d) sphere:

$$x^2 + y^2 + z^2 = r^2$$

- Parametric: A way to generate all points on the surface
 - Example: t in the range 0...1, points on a (2D) unit circle centered at origin.
 - $\overrightarrow{P(t)} = [\cos(2\pi t) \quad \sin(2\pi t)]$
- "Straightforward": The usual way we explain the surface
 - Example: Sphere
 - Specify center (vector3) and radius (scalar)
 - The way we'll implement it in python

(INFINITE) PLANES (9.5)

- Implicit form: $\vec{p} \bullet \hat{n} = d$ Or as scalars (in 3D): ax + by + cz = dWhere [a, b, c] is \hat{n} and [x, y, z] is \vec{p}
- Graphical Interpretation of \widehat{n} and d:
- [On board]
 - Above / on / below "test"
 - Finding closest point on a plane to another point (possibly not on the plane)
 - Drawing in pygame
 - Ray intersection

SPHEROIDS (9.3)

Implicit form

$$\|\vec{P} - \vec{C}\| = r$$
 or $(\vec{P} - \vec{C}) \bullet (\vec{P} - \vec{C}) = r^2$

- Where
 - P is any point on the spheroid
 - C is the center of the spheroid
 - r is the radius of the spheroid
- [On board]
 - in / out / on test
 - Ray intersection test

CALCULATE THE 3D POSITION OF AN ARBITRARY PYGAME PIXEL

- You'll be given:
 - (ix, iy): integer positions on the pygame window.
 - view_width and view_plane_height and view_plane_origin (from previous calculations)
- Find the 3d position of that pixel's counterpart in 3d.
- [Do it on the board...]

PHASE 4: TYING IT ALL TOGETHER

- An outline of the RayTracer:
 - For each pixel (ix, iy)
 - Calculate the 3d counter-part to (ix, iy) [step3]
 - Create a Ray (origin = camera, direction = away from camera [for perspective effect])
 - [Talk briefly about Orthogonal projections]
 - See if that ray hits any objects in the scene:
 - If not, set (ix, iy) to a background color
 - If so, get the color of the <u>closest</u> hit point / object and set (ix, iy) to that color
- Some considerations:
 - Raytracing takes a long time don't "freeze" the program.
 - Note our "one-line-at-a-time" approach.
 - We'll modify the last step late to include lighting / shading.

PHASE 5!: FOR THE BRAVE...

- I won't go through these in class (at least until we've gone through the normal material)
- These are two additional primitives you can implement to earn some bonus points.

AABB (9.4.1)

- Straightforward:
 - Define exactly <u>2</u> of these (VectorN's)
 - pmin: the minimum x/y/z value of the box
 - pmax: the maximum x/y/z value of the box
 - center: the middle position of the box
 - pextents: a vector which is long enough to connect pmin & pmax
 - Or said another way, the elements are width / height / depth.
 - Note: given any two, you can derive the other two.
- A good "rough test" for complex primitives

AABB

- The easy way to do a Ray-AABB hit-test is to:
 - define a set of 6 planes (in 3d) (probably in __init__)
 - When given a ray, test it against all 6 planes. But...
 - ...hitting the plane isn't good enough:
 - If hitting either the left or right plane: the hit point must satisfy:
 - pmin.y <= hitPt.y <= pmax.y</p>
 - pmin.z <= hitPt.z <= pmax.z</p>
 - If hitting the top / bottom plane, the hit point must satisfy:
 - pmin.x <= hitPt.x <= pmax.x</pre>
 - pmin.z <= hitPt.z <= pmax.z</p>
 - If hitting the front / back plane (normals of plane in z direction), this hit point must satisfy:
 - pmin.x <= hitPt.x <= pmax.x</pre>
 - pmin.y <= hitPt.y <= pmax.y</pre>
 - If the hit point satisfies these, count it as a hit with the box.

POLYGON

- A polygon is a planar collection of points
 - Note: most modellers (blender / maya) will allow non-planar poly's.
 - This math won't work without them.
 - To be sure, you can triangulate your mesh (triangles are always planar)
- Recall (from Lecture 4) that the *area* of a triangle made up of 3 points is calculated as:

$$\vec{v} = \vec{a} - \vec{c}$$

$$\vec{w} = \vec{b} - \vec{c}$$

$$area(\Delta abc) = \frac{\|\vec{v} \times \vec{w}\|}{2}$$

- To determine if a point is within a triangle, calculate the barycentric coordinates for each point in triangle:
 - bary(\vec{a}) = $area(\Delta pcb)/area(\Delta abc)$
 - bary (\vec{b}) = $area(\Delta pad)/area(\Delta abc)$
 - bary (\vec{c}) = $area(\Delta pab)/area(\Delta abc)$
- Note:
 - $\vec{p} = bary(\vec{a}) * \vec{a} + bary(\vec{b}) * \vec{b} + bary(\vec{c}) * \vec{c}$
- The point p can only be in the triangle if:
 - $1 \varepsilon \le bary(\vec{a}) + bary(\vec{b}) + bary(\vec{c}) \le 1 + \varepsilon$
 - ε is a small number (0.0001) needed for float errors
- So the Ray-triangle test is:
 - See if Ray hits plane.
 - If it does, do the barycentric test above.

