Импликанты

Элементарный конъюнкт

$$K(x_1, x_2, \ldots, x_n) = x_{i_1}^{\sigma_1} \& x_{i_2}^{\sigma_2} \& \ldots \& x_{i_k}^{\sigma_k}$$

называется импликантом булевой функции $f(x_1, x_2, \ldots, x_n)$, если

$$K(x_1, x_2, ..., x_n) = 1 \implies f(x_1, x_2, ..., x_n) = 1$$

для всех $x_1, x_2, \ldots, x_n \in B$.

- **Е**сли K присутствует в некоторой ДНФ функции f, то K является импликантом f.
- ightharpoonup Наоборот, если K является импликантом f, то $f = f \vee K$.
- ▶ Если K_1 и K_2 конъюнкты и $K = K_1 \& K_2 \neq 0$, то $K = K_1 \& K_2$ импликант для K_1 и для K_2 .

Сокращенная ДНФ для конъюнкции функций

Теорема. Конъюнкция сокращенных ДНФ для функций f и g является сокращенной ДНФ для конъюнкции f & g.

Доказательство. Пусть $f = \bigvee_{i=1}^{p} K_i$ и $g = \bigvee_{j=1}^{q} L_j$ — сокращенные ДНФ для функций f и g соответственно. Тогда

$$(\bigvee_{i=1}^{p} K_i) \& (\bigvee_{j=1}^{q} L_j) = \bigvee_{i=1}^{p} \bigvee_{j=1}^{q} K_i \& L_j$$

является ДНФ для f & g.

Пусть M – простой импликант функции f & g. Тогда он является импликантом как f, так и g. Следовательно, существуют простые импликанты K_{i_0} функции f и L_{j_0} функции g такие, что M — импликант для K_{i_0} и L_{j_0} .

Продолжение доказательства

Значит, M — импликант для конъюнкта K_{i_0} & L_{j_0} , входящего в ДНФ функции f & g. Поскольку, M — простой импликант функции f & g, то $M = K_{i_0}$ & L_{j_0} и входит в $\bigvee_{i=1}^p \bigvee_{j=1}^q K_i$ & $L_j = f$ & g.

Пусть теперь M — некоторый конъюнкт из $\bigvee_{i=1}^{p}\bigvee_{j=1}^{q}K_{i}$ & $L_{j}=f$ & g. Следовательно, он импликант функции f & g. Допустим, что M — не простой импликант функции, тогда существует простой импликант M' такой, что M — является импликантом для M'. По доказанному выше, M' — входит в $\bigvee_{i=1}^{p}\bigvee_{j=1}^{q}K_{i}$ & $L_{j}=f$ & g, следовательно, M поглощается M'. Таким образом, в $\bigvee_{i=1}^{p}\bigvee_{j=1}^{q}K_{i}$ & $L_{j}=f$ & g после поглощения входят лишь простые импликанты функции f & g.

Метод Нельсона нахождения сокращенной ДНФ

Можно заметить, что ДНФ вида $X_1^{\sigma_1} \vee X_k^{\sigma_k}$ является сокращенной ДНФ (Почему?).

Метод Нельсона нахождения сокращенной ДНФ

Можно заметить, что ДНФ вида $X_1^{\sigma_1} \vee X_k^{\sigma_k}$ является сокращенной ДНФ (Почему?).

Метод Нельсона состоит в раскрытии всех скобок в КНФ (последовательно или всех сразу) с удалением получающихся конъюнктов по закону поглощения $K_1K_2 \vee K_1 = K_1$.

Определение. Пусть \mathcal{P} — множество всех простых импликант f. ДНФ вида $f = \bigvee_{K \in \mathcal{S}} K$, где $\mathcal{S} \subseteq \mathcal{P}$, называется тупиковой ДНФ, если для всех $\mathcal{S}' \subsetneq \mathcal{S}$ имеем $f \neq \bigvee_{K \in \mathcal{S}'} K$.

Теорема. Минимальная ДНФ является тупиковой. Доказательство. Пусть $f = \bigvee_{K \in \mathcal{S}} K$ — минимальная ДНФ для f. Ясно, что вес $\bigvee_{K \in \mathcal{S}'} K$ будет еще меньше при $S' \subsetneq S$. Поэтому, $f \neq \bigvee_{K \in \mathcal{S}'} K$.

Пример

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
f	0	1	0	1	0	1	1	0

Сокращенная ДНФ для f:

$$f(x,y,x) = x \& y \& \overline{z} \lor \overline{x} \& z \lor \overline{y} \& z$$

является тупиковой и, следовательно, минимальной.

Нахождение минимальной ДНФ

- 1. Строим сокращенную ДНФ.
- 2. Последовательно удаляем лишние конъюнкты из сокращенной ДНФ, находим все тупиковые ДНФ.
- 3. Находим минимальную ДНФ, выбирая тупиковую ДНФ с наименьшим весом.

Булевы функции как подмножества \mathbb{R}^n

- ▶ $B = \{0, 1\} \subseteq \mathbb{R}$ и $B^n \subseteq \mathbb{R}^n$.
- lacktriangle Отождествим функцию $f:B^n o B$ с множеством

$$N_f = \{(x_1, x_2, \dots, x_n) \in B^n | f(x_1, x_2, \dots, x_n) = 1\}$$

ightharpoonup В частности, $K = X_{i_1}^{\sigma_1} X_{i_2}^{\sigma_2} \dots X_{i_k}^{\sigma_k}$ отождествляем с множеством $(x_1, x_2, \dots, x_n) \in B^n$ таких, что

$$\mathbf{X}_{i_1} = \sigma_1, \mathbf{X}_{i_2} = \sigma_2, \ldots, \mathbf{X}_{i_k} = \sigma_k,$$

которое называется (n-k) – мерной гранью.

Полные конъюнкты (0 - мерные грани) - вершины:

ightharpoonup В частности, $K = X_{i_1}^{\sigma_1} X_{i_2}^{\sigma_2} \dots X_{i_k}^{\sigma_k}$ отождествляем с множеством $(x_1, x_2, \dots, x_n) \in B^n$ таких, что

$$\mathbf{X}_{i_1} = \sigma_1, \mathbf{X}_{i_2} = \sigma_2, \ldots, \mathbf{X}_{i_k} = \sigma_k,$$

которое называется **(n – k)** – мерной гранью.

Конъюнкты длины n-1 (1-мерные грани) — ребра:

В частности, $K = X_{i_1}^{\sigma_1} X_{i_2}^{\sigma_2} \dots X_{i_k}^{\sigma_k}$ отождествляем с множеством $(x_1, x_2, \dots, x_n) \in B^n$ таких, что

$$\mathbf{X}_{i_1} = \sigma_1, \mathbf{X}_{i_2} = \sigma_2, \dots, \mathbf{X}_{i_k} = \sigma_k,$$

которое называется (n-k) – мерной гранью.

Конъюнкты длины n-2 (2 – мерные грани) — грани:

В частности, $K = X_{i_1}^{\sigma_1} X_{i_2}^{\sigma_2} \dots X_{i_k}^{\sigma_k}$ отождествляем с множеством $(x_1, x_2, \dots, x_n) \in B^n$ таких, что

$$\mathbf{X}_{i_1} = \sigma_1, \mathbf{X}_{i_2} = \sigma_2, \dots, \mathbf{X}_{i_k} = \sigma_k,$$

которое называется (n-k) – мерной гранью.

Конъюнкты длины n-2 (2 – мерные грани) — грани:

ightharpoonup В частности, $K = X_{i_1}^{\sigma_1} X_{i_2}^{\sigma_2} \dots X_{i_k}^{\sigma_k}$ отождествляем с множеством $(x_1, x_2, \dots, x_n) \in B^n$ таких, что

$$\mathbf{X}_{i_1} = \sigma_1, \mathbf{X}_{i_2} = \sigma_2, \dots, \mathbf{X}_{i_k} = \sigma_k,$$

которое называется (n-k) – мерной гранью.

Конъюнкты длины n-2 (2 – мерные грани) — грани:

Соотношения между f и N_f

- lacktriangle Если $f=g\lor h$, то $N_g\subseteq N_f,\ N_h\subseteq N_f$
- lacktriangle Если $f=g\lor h$, то $N_f=N_g\cup N_h$
- $lackbox{ Если } f = igvee_{i=1}^m K_i, ext{ то } N_{\mathcal{K}_i} \subseteq N_f$ для любого $i \ (1 \leq i \leq m)$ и $N_f = igcup_{i=1}^m N_{\mathcal{K}_i}$
- ▶ Если K импликант для f, то $N_K \subseteq N_f$
- ▶ Если K простой импликант для f, то $N_K \subseteq N_f$ и для любой грани $N_{K'}$: $N_K \subseteq N_{K'} \subseteq N_f \Rightarrow N_K = N_{K'}$ (такая грань называется максимальной гранью)
- ightharpoonup Если N_K максимальная грань, то K простой импликант

Метод получения сокращенной ДНФ

- 1. Выписываем все грани, содержащиеся в f.
- 2. Выписываем все ребра, содержащиеся в f, но не содержащиеся в 1.
- 3. Выписываем все вершины, содержащиеся в f, но не содержащиеся в 1 и 2.

Пример построения сокращенной ДНФ

