Gabarito da AD1 - Fundamentos de Algoritmos para Computação - 2008/01

- 1. (2.0) Considere as seguintes relações entre conjuntos:
 - (a) $A \cup B = A$
 - (b) $|A \cup B \cup C| = |A| + |B| + |C|$.

Para cada uma delas determine as condições em que é válida, e a seguir prove-a, sem usar o Diagrama de Venn.

Resposta: Na letra (a) temos que a relação $A \cup B = A$ é válida se $B \subseteq A$, isto é, $B \subseteq A \Rightarrow A \cup B = A$.

Prova: Se $B \subseteq A$ então $\forall x \in B$, $x \in A$, logo temos que $A \cup B \subseteq A$. Por outro lado, $A \subseteq A \cup B$. Logo, vale a igualdade, $A \cup B = A$, que é o que queríamos mostrar.

Portanto, temos que a condição válida para a letra (a) é que $B \subseteq A$.

Na letra (b) temos que a igualdade $|A \cup B \cup C| = |A| + |B| + |C|$, é válida quando os conjuntos A, B e C são disjuntos 2 a 2, isto é, $A \cap B = A \cap C = B \cap C = \emptyset \Rightarrow |A \cup B \cup C| = |A| + |B| + |C|$.

Prova: Pelo princípio de inclusão e exclusão de três conjuntos, temos $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$.

Como, por hipótese, $A \cap B = A \cap C = B \cap C = \emptyset$ resulta em $A \cap B \cap C = \emptyset$. Portanto, temos que $|A \cap B| = |A \cap C| = |B \cap C| = |A \cap B \cap C| = 0$. Portanto, temos que $|A \cup B \cup C| = |A| + |B| + |C|$.

Observação: Na realidade as condições dadas em (a) e (b) são necessárias e suficientes.

2. (2.0) Mostre pelo princípio da indução matemática que:

$$\sum_{i=1}^{n} (-1)^{i} i^{2} = (-1)^{n} \cdot \frac{n(n+1)}{2}$$
, para todo n natural.

Resposta: Seja $P(n): \sum_{i=1}^n (-1)^i i^2 = (-1)^n \cdot \frac{n(n+1)}{2}$, para $n \in \mathbb{N}$.

Base da indução: Para n=1, resulta que a soma se reduz ao primeiro fator dado, que é o $(-1)^1 1^2 = (-1)^1 \cdot 1 \cdot \frac{2}{2} = (-1)^1 \cdot \frac{1 \cdot (1+1)}{2}$.

Logo, P(1) é verdadeira.

Hipótese de indução:

Suponha verdadeiro para k, isto é, P(k) é verdadeiro:

$$P(k): \sum_{i=1}^{k} (-1)^{i} i^{2} = (-1)^{k} \cdot \frac{k(k+1)}{2}$$

Devemos provar que P(k+1) é verdadeiro, isto é:

$$P(k+1): \sum_{i=1}^{k+1} (-1)^{i} i^{2} = (-1)^{k+1} \cdot \frac{(k+1)(k+2)}{2}$$

Desenvolvendo para k+1 e usando a hipótese de indução, temos que:

$$\sum_{i=1}^{k+1} (-1)^{i} i^{2} = \underbrace{(-1)^{1} 1^{2} + (-1)^{2} 2^{2} + \ldots + (-1)^{k} k^{2}}_{(Por\ hipótese\ indutiva)} + (-1)^{k+1} (k+1)^{2} = \underbrace{(-1)^{k} \cdot \frac{k(k+1)}{2} + (-1)^{k+1} (k+1)^{2}}_{2} = \underbrace{(-1)^{k} \cdot (k+1) \left[\frac{k}{2} + (-1)(k+1) \right]}_{2} = \underbrace{(-1)^{k} \cdot (k+1) \left[\frac{k}{2} + (-k-1) \right]}_{2} = \underbrace{(-1)^{k} \cdot (k+1) \frac{k-2k-2}{2}}_{2} = \underbrace{(-1)^{k} \cdot (k+1) \frac{(-1)(k+2)}{2}}_{2} = \underbrace{(-1)^{k+1} \cdot \frac{(k+1)(k+2)^{2}}{2}}_{2} = \underbrace{(-1)^{k+1} \cdot \frac{(k+1)(k+2)^{2}$$

Logo, pelo princípio da indução, a expressão é verdadeira, $\forall n \in \mathbb{N}$.

3. (1.0) Tomando-se 6 pontos sobre uma reta e 8 pontos sobre outra reta paralela à primeira, quantos triângulos podemos formar com vértices nessas duas retas?

Resposta: Sejam A a reta com 6 pontos e B a reta com 8 pontos.

Para fomarmos um triângulo usando vértices dessas duas retas paralelas temos que um vértice pertence a uma reta e dois vértices pertencem a outra reta, logo existem duas possibilidades a serem consideradas:

(i.) Se a reta A possui apenas um vértice do triângulo, então podemos escolher tal vértice de $C_6^1=6$ maneiras, e a reta B possui dois vértices do triângulo, logo temos $C_8^2=\frac{8!}{6!2!}=28$ maneiras de escolhermos estes vértices para formarmos um triângulo.

Portanto, pelo princípio multiplicativo, temos $C_6^1.C_8^2=6\times28=168$ maneiras de formarmos triângulos, sabendo que a reta A possui um vértice do triângulo e a reta B possui dois vértices do triângulo.

(ii.) Se a reta A possui dois vértices do triângulo, então podemos escolher esses vértices de $C_6^2 = \frac{6!}{4!2!} = 15$ maneiras. Neste caso, a reta B possui apenas um vértice do triângulo que pode ser escolhido de $C_8^1 = 8$ maneiras diferentes.

Portanto, pelo princípio multiplicativo, temos $C_8^1.C_6^2=8\times15=120$ maneiras de formarmos triângulos, sabendo que a reta A possui dois vértices do triângulo e a reta B possui um vértice do triângulo.

Concluímos, então, pelo princípio aditivo, que o número de triângulos que podemos formar com duas retas paralelas é a soma das possibilidades 1 e 2, isto é, $C_6^1.C_8^2 + C_8^1.C_6^2 = 168 + 120 = 288$. Logo, temos 288 maneiras de formarmos triângulos com vértices nas duas retas paralelas.

4. (1.0) De quantas maneiras podemos arrumar as letras da palavra *ATABALHOAM ENTO* de modo que as vogais fiquem consecutivas e as consoantes também? Justifique.

Resposta: Como as vogais devem estar consecutivas e as consoantes também, então basta encontrarmos de quantas maneiras podemos arrumar as vogais, as consoantes, e depois permutamos em duas posições já que tanto as vogais quanto as consoantes devem estar sempre juntas.

- O número de maneiras de arrumarmos as vogais é $P_7^{4,2,1} = \frac{7!}{4!2!}$, já que temos 7 vogais, sendo 4 letras A, 2 letras O e letras E.
- O número de maneiras de arrumarmos as consoantes é $P_7^{2,1,1,1,1,1} = \frac{7!}{2!}$, já que temos 7 consoantes, sendo 2 letras T, 1 letra B, 1 letra L, 1 letra H, 1 letra M, 1 letra N.

Como as vogais devem sempre ficar juntas e as consoantes também, as únicas maneiras de formamos palavras são as vogais vindo na frente das consoantes ou as consoantes vindo na frente das vogais, isto é, $P_2 = 2!$.

Portanto, pelo princípio multiplicativo, o número de maneiras que podemos arrumar as letras da palavra $ATABAL\ HOAMENTO$ de modo que as vogais fiquem consecutivas e as consoantes também é $P_2.P_7^{4,2,1}.P_7^{2,1,1,1,1,1}$.

- 5. (2.0) Em um cinema tem 6 lugares disponíveis e na fila de espera têm 10 pessoas, sendo 6 homens e 4 mulheres.
 - (a) De quantas maneiras podem ser ocupados os lugares?

Resposta: Há duas maneiras de pensarmos na resolução desta questão:

PRIMEIRA MANEIRA: Consideramos que importa a ordem dos assentos no cinema.

Como importa a ordem dos assentos das pessoas, devemos usar arranjo simples, então podemos ocupar os lugares de $A_{10}^6 = \frac{10!}{4!} = 10.9.8.7.6.5$ maneiras.

SEGUNDA MANEIRA: Consideramos que não importa a ordem dos assentos no cinema.

Como não importa a ordem dos assentos das pessoas, devemos usar combinação simples, então podemos ocupar os lugares de $C_{10}^6 = \frac{10!}{6!4!} = \frac{10.9.8.7}{4.3.2.1}$ maneiras.

(b) De quantas maneiras podem ser ocupados os lugares se têm de entrar o mesmo número de homens e de mulheres?

Resposta: Se devemos ocupar o mesmo número de homens e mulheres nos assentos do cinema e há apenas 6 assentos então devemos ocupar 3 assentos para os homens e 3 assentos para as mulheres. Como podemos considerar a importância da ordem ou não, devemos, novamente, considerar duas possibilidades:

PRIMEIRA MANEIRA: Consideramos que importa a ordem dos assentos no cinema.

Como importa a ordem dos assentos das pessoas devemos combinar os homens em 3 assentos, as mulheres em 3 assentos e depois permutarmos, homens e mulheres, nos 6 assentos do cinema, logo temos C_6^3 para escolhermos os homens, C_4^3 para escolhermos as mulheres e P_6 para escolhermos onde as mulheres e os homens sentam. Logo, pelo princípio multiplicativo, temos $P_6.C_6^3.C_4^3$ maneiras de ocuparmos os lugares, sendo que devem entrar o mesmo número de homens e de mulheres no cinema e importa a ordem dos assentos.

SEGUNDA MANEIRA: Consideramos que não importa a ordem dos assentos no cinema.

Como não importa a ordem dos assentos das pessoas, devemos usar combinação simples, então temos C_6^3 para escolhermos os homens e C_4^3 para escolhermos as mulheres, logo temos C_6^3 . C_4^3 maneiras de ocuparmos os lugares, sendo que devem entrar o mesmo número de homens e de mulheres no cinema.

6.(2.0)

(a) De quantos modos distintos podemos pedir 10 sucos de laranja, se temos 3 opções: pequeno, médio e grande? Justifique sua solução.

Resposta: Denotamos por x_1 , x_2 e x_3 os números de sucos de laranja pequeno, médio e grande, respectivamente. Calculamos os modos distintos de pedir os sucos de laranja, que é equivalente a encontrar o número de soluções inteiras

não negativas $(x_i \ge 0, i = 1, 2, 3)$ da equação:

$$x_1 + x_2 + x_3 = 10$$

que corresponde a $CR_3^{10}=C_{12}^{10}=\frac{12.11.10!}{10!2!}=66$ modos diferentes de pedir os sucos de laranja.

(b) E se quisermos pelo menos 2 pequenos e pelo menos 3 grandes?

Resposta: Neste problema usamos a mesma notação que no item anterior. Temos como restrição de que cada pedido possui pelo menos dois sucos de laranja pequeno e pelo menos três sucos de laranja grande, que é equivalente a encontrar o número de soluções da equação $x_1+x_2+x_3=10$, de tal forma que $x_1\geq 2,\,x_2\geq 0$ e $x_3\geq 3$.

Iremos fazer este problema recair em um outro problema em que sabemos resolver, pois $x_1 \ge 2$, $x_3 \ge 3$ significa que $x_1 - 2 \ge 0$ e $x_3 - 3 \ge 0$, respectivamente. Definindo, $y_1 = x_1 - 2$ e $y_3 = x_3 - 3$, temos que $y_1 \ge 0$ e $y_3 \ge 0$.

Substituindo $x_1 = y_1 + 2$ e $x_3 = y_3 + 3$ na equação $x_1 + x_2 + x_3 = 10$ temos que $y_1 + x_2 + y_3 = 5$, com $y_1, x_2, y_3 \ge 0$.

Logo, temos que o número de modos de distribuir 10 sucos de laranja tal que tenha pelo menos dois sucos de laranja pequenos e pelo menos três sucos de laranja grandes corresponde ao número de soluções não-negativas da equação $y_1+x_2+y_3=5$, com $y_1,x_2,y_3\geq 0$. Esse número é dado por $CR_3^5=C_7^5=\frac{7!}{5!2!}=\frac{7!}{5!2!}=21$.