# BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – RÉSOLUTIONS À LA MAIN

#### CHRISTOPHE BAL

Document, avec son source  $L^AT_EX$ , disponible sur la page https://github.com/bc-writing/drafts.

## Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».



#### Table des matières

| 1.   | Ce qui nous intéresse               | 2  |
|------|-------------------------------------|----|
| 2.   | Notations utilisées                 | 2  |
| 3.   | Les carrés parfaits                 | 3  |
| 3.1. | Structure                           | 3  |
| 3.2. | Distance entre deux carrés parfaits | 3  |
| 4.   | Avec 2 facteurs                     | 4  |
| 5.   | Avec 3 facteurs                     | 5  |
| 6.   | Avec 4 facteurs                     | 6  |
| 7.   | Avec 5 facteurs                     | 7  |
| 8.   | Avec 6 facteurs                     | 10 |
| 9.   | Sources utilisées                   | 13 |
| 10.  | AFFAIRE À SUIVRE                    | 14 |

Date: 25 Jan. 2024 - 3 Fév. 2024.

#### 1. CE QUI NOUS INTÉRESSE

Dans l'article « Note on Products of Consecutive Integers »  $^1$ , Paul Erdos démontre que pour tout couple  $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$ , le produit de (k+1) entiers consécutifs  $n(n+1) \cdots (n+k)$  n'est jamais le carré d'un entier.

Dans ce document, nous proposons quelques cas particuliers résolus de façon « adaptative » à la sueur des neurones; le but recherché est de fournir différentes approches même si parfois cela peut prendre plus de temps.

#### 2. Notations utilisées

Dans la suite, nous emploierons les notations suivantes.

- $\forall (n,k) \in \mathbb{N}^* \times \mathbb{N}$ ,  $\pi_n^k = \prod_{i=0}^k (n+i)$ . Par exemple,  $\pi_n^0 = n$ ,  $\pi_n^1 = n(n+1)$  et  $\pi_{n+2}^3 = (n+2)(n+3)(n+4)(n+5)$ .
- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\}$  est l'ensemble des carrés parfaits. On note aussi  ${}^{2}_{*}\mathbb{N} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}$ .  $\mathbb{N}_{sf}$  est l'ensemble des naturels non nuls sans facteur carré  ${}^{2}$ .
- $\mathbb{P}$  désigne l'ensemble des nombres premiers.  $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*, \ v_p(n) \in \mathbb{N}$  est la valuation p-adique de n, c'est-à-dire  $p^{v_p(n)} \mid n$  et  $p^{v_p(n)+1} \nmid n$ , autrement dit  $p^{v_p(n)}$  divise n, contrairement à  $p^{v_p(n)+1}$ .
- $\forall (n,m) \in \mathbb{N}^2$ ,  $n \wedge m$  désigne le PGCD de n et m.
- 2  $\mathbb{N}$  désigne l'ensemble des nombres naturels pairs. 2  $\mathbb{N}+1$  est l'ensemble des nombres naturels impairs.
- $(a \pm b)$  est un raccourci pour (a + b)(a b).

<sup>1.</sup> J. London Math. Soc. 14 (1939).

<sup>2.</sup> En anglais, on dit « square free ».

#### 3. Les carrés parfaits

#### 3.1. Structure.

Fait 3.1.  $\forall n \in {}_*^2\mathbb{N}$ , s'il existe  $m \in {}_*^2\mathbb{N}$  tel que n = fm alors  $f \in {}_*^2\mathbb{N}$ .

Démonstration. Considérer les décompositions en facteurs premiers de n, m et f.

Fait 3.2.  $\forall (a,b) \in \mathbb{N}^* \times \mathbb{N}^*$ , si  $a \wedge b = 1$  et  $ab \in {}^2_*\mathbb{N}$ , alors  $a \in {}^2_*\mathbb{N}$  et  $b \in {}^2_*\mathbb{N}$ .

 $\begin{array}{l} \textit{D\'{e}monstration.} \text{ Clairement, } \forall p \in \mathbb{P} \text{ , nous avons } v_p(ab) \in 2\mathbb{N} \text{ . Or } p \in \mathbb{P} \text{ ne peut diviser à la fois } a \text{ et } b \text{ , donc } \forall p \in \mathbb{P} \text{ , } v_p(a) \in 2\mathbb{N} \text{ et } v_p(b) \in 2\mathbb{N} \text{ , autrement dit } (a,b) \in {}^2_*\mathbb{N} \times {}^2_*\mathbb{N} \text{ . } \end{array}$ 

Fait 3.3. Soit  $(a,b) \in \mathbb{N}^* \times \mathbb{N}^*$  tel que  $ab \in {}_*^2\mathbb{N}$ , ainsi que  $(\alpha,\beta,A,B) \in (\mathbb{N}_{sf})^2 \times \mathbb{N}^2$  tel que  $a = \alpha A^2$  et  $b = \beta B^2$ . Nous avons alors forcément  $\alpha = \beta$ .

Démonstration. Le fait 3.1 donne  $\alpha\beta \in {}^2_*\mathbb{N}$ . De plus,  $\forall p \in \mathbb{P}$ , nous avons  $v_p(\alpha) \in \{0,1\}$  et  $v_p(\beta) \in \{0,1\}$ . Finalement,  $\forall p \in \mathbb{P}$ ,  $v_p(\alpha) = v_p(\beta)$ , autrement dit  $\alpha = \beta$ .

3.2. Distance entre deux carrés parfaits.  $C^2 - A^2 = 6$  est impossible.

$$B^2 - A^2 = 8$$
 avec  $(B, A) = (3, 1)$ 

 $C^2 - A^2 = 3$  n'est possible que si (C, A) = (2, 1)

Notant  $m \in \mathbb{N}^*$  tel que  $m^2 = w^2 - 16$ , nous arrivons à  $w^2 - m^2 = 16$ . D'après le fait 3.5,  $w^2 - m^2 = \sum_{k=m+1}^w (2k-1)$ . Ceci n'est possible que si  $(w,m) = (5,3)^3$ .

Ensuite, prenant  $m \in \mathbb{N}^*$  tel que  $m^2 = u^2 - 9$ , comme  $u^2 - m^2 = \sum_{k=m+1}^w (2k-1)$ , on a  $(u,m) = (5,4)^4$ . On aboutit alors à la contradiction suivante.

Fait 3.4. 
$$\forall (N, M) \in \mathbb{N}^* \times \mathbb{N}^*$$
, si  $N > M$ , alors  $N^2 - M^2 = \sum_{k=M+1}^{N} (2k-1)$ .

Démonstration. Il suffit d'utiliser  $N^2 = \sum_{k=1}^{N} (2k-1)$ , une formule facile à démontrer algébriquement, et évidente à découvrir géométriquement.

L'identité précédente permet d'éliminer beaucoup de situations en s'aidant, si besoin, d'un petit programme informatique (voir un peu plus bas).

Fait 3.5. Soit  $(N, M) \in \mathbb{N}^* \times \mathbb{N}^*$  tel que N > M.

- (1)  $N^2 M^2 \ge 2M + 1$ .
- (2)  $N^2 M^2 < 3$  est impossible.

Démonstration.

(1) 
$$N^2 - M^2 = \sum_{k=M+1}^{N} (2k-1) \ge 2(M+1) - 1 = 2M+1$$

On peut aussi juste procéder comme suit.

$$N^2 - M^2 = (N - M)(N + M) \ge 1 \cdot (M + 1 + M) = 2M + 1$$

(2) Immédiat puisque  $2M + 1 \ge 3$ .

<sup>3.</sup> Noter que l'on doit avoir  $2w-1 \leq 16\,,$  d'où  $w \in [\![0\,;8]\!]$  .

<sup>4.</sup> Noter que  $2u-1 \leq 9$  implique  $u \in [0;5]$ . Ceci permet d'analyser tous les cas mentalement.

#### 4. Sources utilisées

- (1) Un échange consulté le 28 janvier 2024, et titré « n(n+1)...(n+k) est un carré ? » sur le site lesmathematiques.net.
  - La démonstration du fait 7.1 via le principe des tiroirs trouve sa source dans cet échange.
- (2) L'article « Le produit de 5 entiers consécutifs n'est pas le carré d'un entier. » de T. Hayashi, Nouvelles Annales de Mathématiques, est consultable via Numdam, la bibliothèque numérique française de mathématiques.
  - Cet article a inspiré la preuve alternative du fait 7.1.
- (3) Un échange consulté le 28 janvier 2024, et titré « product of six consecutive integers being a perfect numbers » sur le site https://math.stackexchange.com.
  - La démonstration courte du fait 8.1 est donné dans cet échange. Vous y trouverez aussi un très joli argument basé sur les courbes elliptiques rationnelles.

| BROUILLON - CAR | RRÉS PARFAITS | ET I | PRODUITS | D'ENTIERS | CONSÉCUTIFS - | RÉSOLUTIONS | À LA | MAIN |
|-----------------|---------------|------|----------|-----------|---------------|-------------|------|------|
|                 |               |      |          |           |               |             |      |      |
|                 |               | 5.   | AFFAIR   | E À SUIV  | RE            |             |      |      |

### Temporary page!

 $L^{A}T_{E}X$  was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page will go away, because  $L^{A}T_{E}X$  now knows how many pages to expect for this document.