機械学習 第14回強化学習

立命館大学 情報理工学部

村上 陽平

Beyond Borders

講義スケジュール

□ 担当教員:村上、福森(第1回~第15回)

1	機械学習とは、機械学習の分類
2	機械学習の基本的な手順
3	識別(1)
4	識別(2)
5	識別(3)
6	回帰
7	サポートベクトルマシン
8	ニューラルネットワーク

9	深層学習
10	アンサンブル学習
11	モデル推定
12	パターンマイニング
13	系列データの識別
14	強化学習
15	半教師あり学習

□ 担当教員: 叶昕辰先生 (第16回の講義を担当)

今回の講義内容

- □ 取り扱う問題の定義
- □ 強化学習
- □ マルコフ決定過程による定式化
 - K-armed bandit 問題
- □ Q値の推定方法
 - モデルベース
 - モデルフリー (TD学習)
- □ 演習問題
- □ 定期試験について

取り扱う問題の定義:強化学習

- ロ 教師信号に準ずる情報が、一部の学習データのみに 与えられる状況で、各状態における最適な出力を学習
 - 教師あり/教師なし学習の中間的な設定
 - 教師時々あり学習という位置づけ

機械学習
中間的学習
教師なし学習
半教師あり学習
強化学習

口 強化学習

- 報酬を得るために、各状態に対して 何らかの行為を行う意思決定エージェントの学習
 - 行為を行う意思決定エージェントの例
 - ロボット、将棋や囲碁などを行うプログラムなど
 - エージェントには、状態に関する情報が与えられる
 - ロボットの場合: センサ・カメラ・マイクなどからの入力が環境
- エージェントが**なるべく多くの報酬を得ることを目的**として **状態 (カテゴリ) や状態の確率分布 (連続値) を入力**として、 **行為 (カテゴリ) を出力する関数**を学習
 - 学習過程の定式化にマルコフ決定過程が用いられる

強化学習:マルコフ決定過程

ロ マルコフ決定過程(Markov Decision Process; MDP)

- マルコフ性をもつ確率過程における意思決定問題 次の状態において、ある事象の起こる確率は現在の状態だけから決まる (過去の状態には依存しない) という性質
- マルコフ決定過程は、以下の条件を仮定
 - 1. 環境を離散的な状態の集合 $S = \{s | s \in S\}$ でモデル化
 - 2. 時刻 t で、ある状態 s_t において、エージェントが行為 a_t を行うと 報酬 r_{t+1} が得られ、状態 s_{t+1} に遷移
 - 3. 状態遷移は確率的で、その確率は遷移前の状態にのみ依存

報酬rは、たまにしか与えられない

将棋やチェスなどのゲームを考えると、「個々の手が良いか?悪いか?」は その手だけでは判断できず、

最終的に勝ったときに報酬が与えられる

1状態問題の定式化 -K-armed bandit 問題-

□ K-armed bandit

- K本のアームをもつスロットマシン
- マルコフ決定過程のもとで最も単純な例
 - **1状態**: 1台のスロットマシン
 - K種の行為: K本の内、どのアームを引くか?
 - 報酬:即時に与えられる
 - K本のアームは、それぞれ賞金の期待値が異なる(とする)
 - 学習結果:スロットマシンで、最大の報酬を得る行為

1状態問題の定式化 -K-armed bandit 問題-

- □ 報酬が決定的な状況での定式化
 - 全ての行為を順に試みて 最も報酬の高い行為を学習結果とすれば良い
 - Q値を最大にする行為を考える
 - Q値: 行為aによって得られる報酬の推定値Q(a)
 - ■定式化
 - 1. 行為aによって得られる報酬量が不明なので、 全てのaについてQ(a) = 0とする
 - 2. 可能なaを順番に行い、そのときの報酬 r_a を得る $\rightarrow Q(a) = r_a$
 - 3. Q値が最大のaが最終的に得られる行為

□ 報酬が非決定的な状況での定式化

- 行為aに対応する報酬rが確率分布p(r|a)に従うと仮定
 - 各アームを1回だけ引くのではなく、 何度も引いて、平均的な報酬が多いアームを選ぶことになる
 - 何度も試行して確率分布 p(r|a)を推定することと同じ
 - 下式に従って、試行を繰り返して 行為aの報酬の推定値Q(a)を収束させれば良い

※ 学習係数 η : Q値が収束するように時刻tの増加に従って減少(初期値:1以下の適当な値)

マルコフ決定過程による定式化

□ 複数の状態をもつ問題に拡張

■ ロボットRが迷路を移動して、ゴールGに到着すれば 報酬が与えられる状況を考える

状態遷移を伴う問題

報酬や遷移が確率的であると想定

例えば、ロボットのゴールを探知するセンサが ノイズで誤作動をしたり、路面状況でスリップ が生じるなどの不確定(確率的)な要因で 行為が成功しない状況が考えられる

- この問題を以下の状況でのマルコフ決定過程として定式化
 - 報酬と次状態への遷移の確率:現在の状態と行為のみに依存
- 時刻tにおける状態 $s_t \in S$ ・ 報酬 $r_{t+1} \in \mathbb{R}$ (実数)、確率分布 $p(r_{t+1}|s_t,a_t)$
- 時刻tにおける行為 $a_t \in A(s_t)$ ・ 次状態 $s_{t+1} \in S$ 、確率分布 $p(s_{t+1}|s_t, a_t)$

11

マルコフ決定過程による定式化

- □ マルコフ決定過程における学習
 - ■「各状態でどの行為をとれば良いのか?」という 意思決定規則(政策π)を獲得していくプロセス
 - 政策πの良さは、その政策に従って行動したときの 累積報酬の期待値で評価
 - ・ 状態 s_t から政策 π に従って行動した時に得られる 累積報酬の期待値 $V^{\pi}(s_t)$

$$V^{\pi}(s_t) = E(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots) = E\left(\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i}\right)$$

- $-\gamma$:割引率 $(0 \le \gamma < 1)$
 - » あとに得られる報酬ほど割引いて計算するための係数
 - »同じ報酬に辿り着けるなら、より短い手順を優先

マルコフ決定過程による定式化

- □ 学習の目標は、最適政策 π*を獲得すること
 - **最適政策** π*
 - 累積報酬の期待値が全ての状態に対して最大となる政策 $\pi^* \equiv \operatorname*{argmax} V^\pi(s_t)$, $\forall s_t$
 - 最適政策 π^* に従ったときの累積報酬の期待値 $V^{\pi^*}(s_t)$
 - ・ 状態 s_t で行為 a_t を行った後、最適政策に従ったときの期待 累積報酬の見積もり $Q^*(s_t, a_t)$ が最大となる行為 a_t を選択

$$Q^*(s_t, a_t) = E(r_{t+1}) + \gamma \sum_{s_{t+1}} P(s_{t+1}|s_t, a_t) \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$
(※ 式の導出:次スライドの補足資料)

・ 状態 s_t での最適政策 $\pi^*(s_t)$

$$\pi^*(s_t)$$
: Choose a_t^* if $Q^*(s_t, a_t^*) = \max_{a_t} Q^*(s_t, a_t) = V^{\pi^*}(s_t)$

どのようにしてQ値を推定するか?

□ マルコフ決定過程による定式化

■ 状態 s_t で行為 a_t を行った後、最適政策に従ったときの期待累積報酬の見積もり $Q^*(s_t, a_t)$ の算出方法

$$V^{\pi^*}(s_t) = \max_{a_t} Q^*(s_t, a_t) = \max_{a_t} E\left(\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i}\right)$$
 最適政策 π^* に 従ったときの 累積報酬の 期待値 $= \max_{a_t} E\left(\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i}\right) = \max_{a_t} E\left(r_{t+1} + \gamma \sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i+1}\right)$ 大態 s_{t+1} 以降も最適政策 π^* に 従ったときの累積報酬

無限時刻の和で表現される状態評価関数を、隣接時刻間の再帰方程式で表現

補足資料

□ マルコフ決定過程による定式化(つづき)

前のスライドでは

無限時刻の和の状態評価関数を、隣接時刻間の再帰方程式で表現

※ この再帰方程式をベルマン方程式 (Bellman equation) と呼ぶ

$$V^{\pi^*}(s_t) = \max_{a_t} E\left(\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i}\right) = \max_{a_t} E\left(r_{t+1+} \gamma V^{\pi^*}(s_{t+1})\right)$$
 機接時刻間の再帰方程式 無限時刻の和の 状態評価関数 状態遷移確率 $V^{\pi^*}(s_t) = \max_{a_t} \left\{E(r_{t+1}) + \gamma \sum_{s_{t+1}} \frac{P(s_{t+1}|s_t,a_t)V^{\pi^*}(s_{t+1})}{P(s_{t+1}|s_t,a_t)V^{\pi^*}(s_{t+1})}\right\}$ Q値を用いて 書き換えると… $V^{\pi^*}(s_t,a_t) = E(r_{t+1}) + \gamma \sum_{s_{t+1}} P(s_{t+1}|s_t,a_t) \max_{a_{t+1}} Q^*(s_{t+1},a_{t+1})$

Q値の推定手法

□ Q値の推定手法は モデルに関する知識の前提によって分類

■ モデルベースの手法

• 環境をモデル化する知識(<mark>状態遷移確率と報酬の確率分布)</mark> が与えられている場合に、動的計画法の考えを用いて Q値を求める

■ モデルフリーの手法

• 環境のモデルを持っていない場合(状態遷移確率と報酬の 確率分布が未知の場合)、試行錯誤を通じて環境と 相互作用をした結果を使って学習する

Q値の推定手法:モデルベースの学習

ロ モデルベースの手法

- 以下の2つの情報が与えられているものとする
 - 状態遷移確率 $P(s_{t+1}|s_t,a_t)$
 - 報酬の確率分布 $P(r_{t+1}|s_t,a_t)$
- Value iterationアルゴリズムによって、 状態評価関数 V(s)の最適値を求める
 - それぞれの状態でQ値を最大とする行為(最適政策)が求まる
 - 次スライドでValue iterationアルゴリズムを説明

Q値の推定手法:モデルベースの学習

□ Value iterationアルゴリズム

```
V(s)を任意の値で初期化
repeat
for all s \in S do
for all a \in A do
Q(s,a) \leftarrow E(r|s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s')
end for
V(s) \leftarrow \max_{a} Q(s,a)
end for
until V(s)が収束
```

%V(s): 状態価値関数、E(r|s,a): 報酬の期待値、 $P(r_{t+1}|s_t,a_t)$: 報酬の確率分布

※ 報酬がもらえる状態(例:ゴール)が1つだけある場合 てまえ ゴール状態の1つ手前での最適行為が得られ、次にその一つ手前、さらにその一つ手前…と 繰り返しを重ねるごとに正しい最適値が得られる状態がゴールを中心に広がっていくイメージ

Q値の推定手法:モデルフリーの学習

□ TD (Temporal Difference) 学習

- モデルが未知なので、環境の探索が必要になる
- 探索戦略として ϵ -greedy法を用いる
 - 確率 1ϵ (0 < ϵ < 1)で最適な行為、 確率 ϵ で、それ以外の行為を実行する探索手法
 - ・ 実際は、Q値を確率に変換した下式を基準に行為を選択

$$P(a|s) = \frac{\exp\{Q(s,a)/T\}}{\sum_{a \in A} \exp\{Q(s,a)/T\}}$$

- 探索の初期は色々な行為を試し、落ち着いてくると最適な行為を 多く選ぶように温度Tの概念を導入
 - » 学習が進むにつれて、Tを小さくすることで、学習結果が安定
- 温度Tが高ければ全ての行為を等確率に近い確率で選択し、 低ければ最適なものに偏る

Q値の推定手法:決定的なTD学習

ロ 報酬と遷移は未知だが決定的に定まる場合の

TD学習を考える

- 例:迷路での最適行為の獲得
 - この場合のベルマン方程式は、確率的な要素を取り除いて表現

$$Q(s_t, a_t) = r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$

迷路の例(迷路での最適行為の獲得)

Q値の推定手法:決定的なTD学習

- TD学習のアルゴリズム
 - 報酬と遷移が決定的な場合

```
Q(s,a)を0に初期化 for all エピソード do repeat 探索基準に基づき行為aを選択 行為aを実行し、報酬rと次状態s'を観測 /* 以下の式でQ値を更新 */ Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a') s \leftarrow s' until sが終了状態 end for
```

※ エピソード:1回の試行(スタートからゴールに着くか、ある移動回数に達するまでの行為系列)

※ 学習データ: エピソードの集合

Q値の推定手法:決定的なTD学習

□ TD学習(Q値の更新)の例

- 状態s1にロボットRがいるときのQ値が左図であったとする
- 右に移動する行為 a_{right} をとると、報酬は0、状態 s_2 になる
 - Q値は以下のように更新 $(\% \gamma = 0.9)$ $Q(s_1, a_{\text{right}}) \leftarrow r + \gamma \max_{a'} Q(s_2, a') \leftarrow 0 + 0.9 \max\{66,81,100\} \leftarrow 90$
 - これを可能な全ての遷移系列について繰り返せば、ゴールGの報酬が未端まで伝播して、全状態での最適行動が求まる

Q値の推定手法:確率的なTD学習

□ 報酬と遷移は非決定的な場合のTD学習を考える

- 現在のQ値に一定割合の更新分を加えて、その割合を 時間とともに減らす更新式を用いる
 - 1状態・非決定性の問題と同様

$$Q(s,a) \leftarrow Q(s,a) + \eta \left\{ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right\}$$

- 学習係数ηを適切に設定し、各状態で全ての行為を 十分な回数行えれば、Q値が収束することが証明
 - あくまで理論上の話で、実際にロボットを動かして強化学習を 行わせるようなケースは少なく、パラメータを変えてシミュレーション 結果を評価することが多い

演習問題15-1(5分間)

□「強化学習」と「教師あり/教師なし学習」の違いを 考えなさい