CSCU9YE - Artificial Intelligence

Lecture 6: Evolutionary Algorithms

Outline

Optimisation problems

- The travelling salesman problem
- Vehicle routing
- Other 'fun' and practical examples

Optimisation methods

- Constructive Heuristics,
- Single point algorithms
- Population-based algorithms

Combinatorial explosion...

Consider that Tom would be traveling through Europe and wishes to visit all 28 EU capitals.

In this case, there would be 5 billion, billion, billion billion billion possible tours... billion

		111								- 1	Factoria	1	
									1	= 1!			
									2	= 2!			
									6	= 3!			The combinatorial
									24	= 4!			explosion
									120	= 5!	8-bit	255	explosion
									720	= 6!			
									5040	= 7!			The growth of the
									40320	= 8!	16-bit	65535	
								3	62880	= 9!			Factorial Function
								36	28800	= 10!			
								399	16800	= 11!			-
								4790	01600	= 12!	32-bit	42949 67295	Travelling Salesmar
								62270	20800	= 13!			size of the search
							8	71782	91200	= 14!			
							130	76743	68000	= 15!			space:
							2092	27898	88000	= 16!			(n-1)!/2
									96000				(11.1) =
									28000				
									32000				
									40000		64-bit	18446 74407 37095 51615	
									40000				
									80000				
									40000				
									60000				
									00000				
									00000				
									00000				
									00000				
									00000				
									00000				
		2							00000				
									00000				
									00000		120 bit	2402 02266 02002 04624 62274 60742 47602 44455	
1											120-D1T	3402 82366 92093 84634 63374 60743 17682 11455	
1	055)T	4/900	20014	49296	10000	33/32	32000	00000	= >>!			

xplosion

ravelling Salesman ize of the search pace: 1-1)!/2

The vehicle routing problem

Given: A set of customers, a set of vehicles and a central depot

Goal: Design minimum cost routes visiting all customers

Representation: A set of routes one for each truck

Objective: Reduce the number of trucks used and

the total distance travelled

Classification of optimisation algorithms

- Single solution algorithms are exploitation oriented
- Population-based algorithms are exploration oriented

Classification of metaheuristics

What is an evolutionary algorithm?

- EAs fall into the category metaheuristic algorithms
- They are stochastic, population-based algorithms
- Inspired by the process of Evolution by Natural Selection
- Variation operators (recombination and mutation) create the necessary diversity and thereby facilitate novelty
- Selection reduces diversity and acts as a force pushing quality

Natural evolution: fact and theory

- Changes across successive generations in the heritable characteristics of biological populations
- Theory of Evolution: One of the great intellectual revolutions of human history
- Life on Earth evolved from a universal common ancestor approximately 3.8 billion years ago

Examples of Apparent Design in Nature

Evolution by natural selection

Natural Selection

- 1. Variation
- 2. Hereditary transmission
- 3. High rate of population growth
- 4. Differential survival and reproduction

Charles Darwin & Alfred Wallace: Theory of evolution by means of Natural Selection.

1859: On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life

Evolutionary Computation

Branch of *Computational Intelligence* that study methods that mimic evolution by natural selection, with the aim of solving complex design and optimisation problems

Fitness → chances for survival and reproduction Quality → chance for seeding new solutions

Outline of an Evolutionary Algorithm

```
Generate [P(0)]
t = 0
WHILE NOT Termination Criterion [P(t)] DO
     Evaluate [P(t)]
     P'(t) = Select[P(t)]
    P''(t) = Apply_Variation_Operators [P'(t)]
    P(t+1) = Replace [P(t), P''(t)]
     t = t + 1
END
RETURN Best Solution
Representation: Genetic material
```

Fitness Function: Task to perform

Origins of Evolutionary Algorithms

Evolution Strategy (Germany)

Ingo Rechenberg & Hans-Paul Schwefel (1960s and 1970s)

Genetic Algorithms (US)

John Holland (1975)

David Goldberg (1989)

Alan Turing. Mathematician, wartime code-breaker and pioneer of computer science. Article: "Computing Machinery and Intelligence," (1950)

Google Scholar: 88,000 citations

Evolutionary (Genetic) Algorithms

Parent selection: Better individuals get higher chance (proportional to fitness).

- Proportional selection (roulette wheel, stochastic universal sampling)
- Scaling methods
- Rank selection
- Tournament selection
- $(\mu + \lambda)$ and (μ, λ) selection


```
Generate [P(0)]

t = 0

WHILE NOT Termination_Criterion [P(t)] DO

Evaluate [P(t)]

P' (t) = Select [P(t)]

P"(t) = Apply_Variation_Operators

[P'(t)]

P(t+1) = Replace [P(t), P"(t)]

t = t + 1
```

END
RETURN Best Solution

Tournament selection

Evolutionary (Genetic) Algorithms

Replacement (population models)

- Generational: each generation set of parents replaced by the offspring
- Steady-state: one offspring is generated per generation. One member is replaced
- Generation gap: a proportion of the population is replaced

```
Generate [P(0)]
t = 0
WHILE NOT Termination Criterion [P(t)] DO
     Evaluate [P(t)]
     P'(t) = Select[P(t)]
     P''(t) = Apply Variation Operators
      [P'(t)]
     P(t+1) = Replace [P(t), P''(t)]
     t = t + 1
END
RETURN Best Solution
```

Search operators for binary representation

Mutation

- Alter each gene independently with a probability P_m (mutation rate)
- Typically: 1/chromosome_length

Search operators for binary representation

Recombination/crossover

- One-point
- N-point
- Uniform
- P_c typically in range (0.6, 0.9)

Search operators for permutation representation

Mutation

- 2-swap: Solutions generated by swapping two cities from a given tour
- Every solution has n(n-1)/2 neighbours
- Examples:

Move/Mutation Operators for the TSP

Fig. 2.5 City swap operator and 2-opt operator for the TSP.

Traveling Salesman Problem Visualization

Search operators for permutation representation

Example recombination: Combining two permutations into two new permutations

- choose random crossover point
- copy first parts into children
- create second part by inserting values from other parent:
 - in the order they appear there
 - beginning after crossover point
 - skipping values already in child

Memetic (hybrid) algorithms

Combination of GAs with local search operators, or GAs that use instance specific knowledge in operators

Could be faster and more accurate than GAs, and are the "state-of-the-art" on many problems

- The term meme was coined by R. Dawkins (1976)
- The term memetic algorithms by P. Moscato (1989)
- The idea of hybridisation in GAs is older

(Eiben, Smith, 2003²³)

Other evolutionary algorithms

Evolution Strategies

- Specialised in continuous search spaces: min. $f: \mathbb{R}^n \rightarrow \mathbb{R}$
- Rechenberg & Schwefel in the 60s, Technical University of Berlin. Applied to hydrodynamic shape optimisation
- Special feature: self-adaptation of mutation parameters

Genetic Programming

- Evolve a population of computer programs
- Applied to: machine learning tasks (prediction, classification...)
- Representation
 - Non-linear genomes: trees, graphs
 - Linear genomes: grammatical evolution

Human competitive results of Evolutionary Computation

Awards program (2004 – to date) HUMIES (\$10,000.00) each year

Real-world applications of EC

John R. Koza

Scientist and businessman. Popularised Genetic Programming, millionaire, co-inventor of rub-off instant lottery game ticket

Quantum computing circuits, analogue electrical circuits, antennas, mechanical systems, controllers, game playing, , image recognition, optical lens systems, bioinformatics, robotics, scheduling, software repair, communication protocols, ..., etc.

Evolved Antennas for Deployment on NASA's Space Technology 5 Mission

J. D. Lohn, G. S. Hornby, D. S. Linden, able Systems Group, Computational Sciences Division

- Winner of the 2004 Hummies award
- Evolved antenna that is now flying space
- One of the top evolvable hardware results to date

GECCO-2004

Previous human designed antenna (helical). Did not meet the requirements.

Evolved Antennas: Better than conventional design.

Aerodynamic Shape Optimisation

Figure 5.5. Airfoil geometric parameters

Japanese bullet trains (Shinkansen) Nose Shape Optimisation

Evolutionary Software Testing at Facebook

Sapienz: Automated software testing at scale

Getafix: Fixing bugs automatically

Engineering manager Mark Harman wins 2019 IEEE Harlan D. Mills award

Simulated Evolution of Virtual Block Creatures

Video

Virtual creatures (Karl Sims, 1994)

Representation: coded instructions for their growth and locomotion

Fitness Function: ability to perform a given task

Swimming

Hopping

Following

Competing

Karl Sims - Evolved Virtual Creatures, Evolution Simulation, 1994

Evolutionary Art

Automated Artist-Critic Coevolution

Starting from images of landmark buildings and natural objects, a virtual evolutionary artist competes against a deep convolutional neural network art-critic producing intriguing results.

Author: Alan Blair

https://PickArtSo.com

Evolutionary Robotics & Embodied Evolution

"Given the fact that evolution can produce intelligence, it is plausible that Artificial Evolution can produce Artificial Intelligence". Gusz Eiben

From evolutionary computation to the evolution of things, *Nature volume 521, pages 476–482 (28 May 2015)*, by A. Eiben & Jim Smith https://www.nature.com/articles/nature14544

Neuroevolution

- EAs used to generate NN weights, topologies, rules or ensembles
- Fitness function measures performance in the task
- Can be applied more widely than supervised learning algorithms

Main Motivation: to train NNs in sequential decision tasks with sparse reinforcement information.

Robotics, Game Playing, ALife

Optimisation skeletal & muscle models

'Teach' creatures to walk.

Skeletal and muscle model has many parameters. These can be optimised.

Here, using an evolutionary algorithm (CMA-ES).

Other population-based algorithms: the social

behaviour metaphor

Ant colony optimisation (ACO)

Dorigo, Di Caro & Gambardella (1991).

- Inspired by the behaviour of real ant colonies
- A set of software agents artificial ants search for good solutions
- Ants build solutions incrementally by moving on the graph

- Eberhart & Kennedy, 1995
- Inspired by social behaviour of bird flocking or fish schooling
- Solutions (called particles) fly through the search space by following the current optimum particles
- At each iteration they accelerate towards the best locations

Summary

Optimisation Problems

- The travelling salesman problem
- Vehicle routing
- Other 'fun' and practical examples

Population-based algorithms

- Inspired by evolution by natural selection
- Main variants (GA, Hybrid, ES, GP)
- Other population based approaches