計量分析 2:復習テスト 6

	学籍番号		
		2022年11月10日	
		『提出とは認めない.正答に修正した上で, 〔12 月 1 日の予定)にまとめて提出すること	
1. 2 変量	ズデータを $((y_1,x_1),\ldots,(y_n))$	(x_n)) とする. y_i の x_i 上への単回帰モデル	ーは
		$E(y_i x_i) = \alpha + \beta x_i$	
回帰の)誤差項は $u_i := y_i - \mathrm{E}(y_i x_i)$	$x_i)$. 以下の式を証明しなさい.	
(a)		$E(u_i x_i) = 0$	
(b)		$E(u_i) = 0$	
(c)		$\mathrm{E}(x_iu_i)=0$	
(d)		$cov(x_i, u_i) = 0$	

 $cov(x_i, y_i) = \beta \operatorname{var}(x_i)$

(e)

2. 次の OLS 問題を考える.

$$\min_{a,b} \quad \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
and $a, b \in \mathbb{R}$

OLS 問題の解を (a^*,b^*) ,OLS 残差を $e_i:=y_i-a^*-b^*x_i$ とする.また $((y_1,x_1),\dots,(y_n,x_n))$ の標本平均を (\bar{y},\bar{x}) とする.以下の式を証明しなさい. (a)

$$\sum_{i=1}^{n} e_i = 0$$
$$\sum_{i=1}^{n} x_i e_i = 0$$

(b)
$$\sum_{i=1}^{n} (x_i - \bar{x})e_i = 0$$

(c)
$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = b^{*2} \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} e_i^2$$

解答例

1. (a) 期待値の線形性より

$$E(u_i|x_i) = E(y_i - E(y_i|x_i)|x_i)$$

$$= E(y_i|x_i) - E(y_i|x_i)$$

$$= 0$$

(b) 繰り返し期待値の法則より

$$E(u_i) = E(E(u_i|x_i))$$

$$= E(0)$$

$$= 0$$

(c) 繰り返し期待値の法則より

$$E(x_i u_i) = E(E(x_i u_i | x_i))$$

$$= E(x_i E(u_i | x_i))$$

$$= E(0)$$

$$= 0$$

(d) 前2問より

$$cov(x_i, u_i) = E(x_i u_i) - E(x_i) E(u_i)$$

(e) 前問より

$$cov(x_{i}, y_{i}) := E((x_{i} - E(x_{i}))(y_{i} - E(y_{i})))$$

$$= E((x_{i} - E(x_{i}))(E(y_{i}|x_{i}) + u_{i} - E(E(y_{i}|x_{i}) + u_{i})))$$

$$= E((x_{i} - E(x_{i}))(\alpha + \beta x_{i} + u_{i} - E(\alpha + \beta x_{i} + u_{i})))$$

$$= E((x_{i} - E(x_{i}))[\alpha + \beta x_{i} + u_{i} - (\alpha + \beta E(x_{i}) + E(u_{i}))])$$

$$= E((x_{i} - E(x_{i}))[\beta(x_{i} - E(x_{i})) + u_{i} - E(u_{i})])$$

$$= E(\beta(x_{i} - E(x_{i}))^{2} + (x_{i} - E(x_{i}))(u_{i} - E(u_{i})))$$

$$= \beta E((x_{i} - E(x_{i}))^{2}) + E((x_{i} - E(x_{i}))(u_{i} - E(u_{i})))$$

$$= \beta var(x_{i}) + cov(x_{i}, u_{i})$$

$$= \beta var(x_{i})$$

2. (a) 1 階の条件より

$$\sum_{i=1}^{n} (y_i - a^* - b^* x_i) = 0$$
$$\sum_{i=1}^{n} x_i (y_i - a^* - b^* x_i) = 0$$

すなわち

$$\sum_{i=1}^{n} e_i = 0$$
$$\sum_{i=1}^{n} x_i e_i = 0$$

(b)

$$\sum_{i=1}^{n} (x_i - \bar{x})e_i = \sum_{i=1}^{n} x_i e_i - \bar{x} \sum_{i=1}^{n} e_i$$
= 0

$$\bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$= \frac{1}{n} \sum_{i=1}^{n} (a^* + b^* x_i + e_i)$$

$$= a^* + b^* \bar{x}$$

したがって

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} [b^*(x_i - \bar{x}) + e_i]^2$$

$$= \sum_{i=1}^{n} \left[b^{*2}(x_i - \bar{x})^2 + 2b^*(x_i - \bar{x})e_i + e_i^2 \right]$$

$$= b^{*2} \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2b^* \sum_{i=1}^{n} (x_i - \bar{x})e_i + \sum_{i=1}^{n} e_i^2$$

第2項は0.