Assignment 5 of Math 5302

Due Date: March 25, 2022 at 11:59pm

1. Let f be a real-valued bounded function on [-1, 1]. Let

$$\alpha(x) = \begin{cases} 0 & \text{if } -1 \le x < 0; \\ 2 & \text{if } 0 \le x \le 1. \end{cases}$$

Assume f is Riemann-Stieltjes integrable with respect to α on [-1,1]. Show that

(a) f is continuous at 0 from the left.

(b) $\int_{-1}^{1} f(x)d\alpha(x) = 2f(0)$.

2. Let f and α be a real-valued bounded functions on [a,b] and α is increasing. Let $L(f,\alpha)$ and $U(f,\alpha)$ represent the lower and upper Darboux-Stieltjes integral of f with respect to α on [a,b], respectively.

(a) Show that $U(f, \alpha) \leq U(|f|, \alpha)$.

(b) Is it true that $L(f, \alpha) \leq L(|f|, \alpha)$?

3. Let α be a bounded real-valued increasing function on [a,b]. Assume a < c < b and α is continuous at c. Let

$$f(x) = \begin{cases} 1 & \text{if } x = c; \\ 0 & \text{if } x \neq c. \end{cases}$$

Show directly that f is Darboux-Stieltjes integrable on [a,b] and $\int_a^b f(x)d\alpha(x)=0$. (Do not use Theorem 8.16.)

4. Let f and α be real-valued bounded functions on [a,b] and α is increasing on [a,b]. Assume f is Darboux-Stieltjes integrable with respect to α on [a,b]. Let $[c,d] \subset [a,b]$. Show that f is Darboux-Stieltjes integrable with respect to α on [c,d].

5. Let α be a real-valued bounded function on [a,b] and α is increasing with $\alpha(a) < \alpha(b)$. Let

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational;} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Show that if α is continuous on [a,b], then f is not Darboux-Stieltjes integrable with respect to α on [a,b].

1