Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Duration: 3 Hrs.

Faculty of Engineering End Sem (Odd) Examination Dec-2017 AU3CO03 / FT3CO03 / ME3CO03

Theory of Machines

Programme: B.Tech. Branch/Specialisation: AU/FT/ME

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1 (M	(ICQs)	should be written in full instea	d of only a, b, c or d.	
Q.1	i.	In a 4 bar linkage, if the lengths of shortest, longest and the other two links are denoted by s, l, p and q, then what would result in Grashof's linkage provided-		1
		(a) $1 + p < s + q$	(b) $l + s$	
		(c) 1 + p = s + q	(d) None of these	
	ii.	A ball and a socket joint form (a) Turning pair	ns a (b) Rolling pair	1
		(c) Sliding pair	(d) Spherical pair	
	iii.	Which of the geometric	- · · ·	1
		acceleration of piston?		
		(a) Klein's	(b) Ritterhaus's	
		(c) Bennett's	(d) All of these	
	iv.	In a mechanism with 'n'	number of links, the number of	1
		instantaneous centres will be	•	
		(a) $n(n-1)/2$ (b) $n+1$	(c) n (d) n-1	
	v.	Offset is provided to a cam fe		1
		(a) Minimize the side thrust		
		(c) Avoid jerk	(d) None of these	
	vi.		used in automobile engines is-	1
		• •	(b) Flat faced follower	
		(c) Spherical faced follower		
	vii.	A fixed point of contact in tw		1
		(a) Trace Point	(b) Pitch Point	
		(c) Fulcrum Point	(d) Contact Point	\circ
			F. I	

	viii.	ii. Reverted gear train is a type of		
		(a) Epicyclic gear train	(b) Simple gear train	
		(c) Compound gear train	(d) Reverse gear train	
	ix.	If an Aeroplane rolls about a	axis of rotation of engine rotor, the	1
		Gyroscopic effect will be		
		(a) Pitching (b) Yawing	(c) No Effect (d) None of these	
	х.	Gyro couple is dependent on		1
		(a) Inertia of rotor	(b) Precision velocity	
		(c) Rotor velocity	(d) All of these	
Q.2	i.	Differentiate between machin	ne and mechanism	3
Q.2	ii.		e slider crank mechanism and draw	7
	11.	figures to support your answe		,
OR	iii.	Explain Ackerman and Davis		7
Q.3	i.	-	of acceleration? Draw figures to	3
		support your explanation for		
	ii.	•	ation of the piston in a slider-crank	7
			30 mm size has moved 40 degree	
		-	tion.The connecting rod measures	
		-	ank is 240 r.p.m. Use either Klein's	
			elocity and accordingly polygon	
ΩD	:::	method.	DC and DO massages 60 mm and 15	7
OR	iii.	•	PS and PQ measures 60 mm and 15 r angles P, Q, R, and S are 45, 165,	,
		• •	ely. Find the speed of link RS if PQ	
		•	rise at this instant. Also locate the	
		1	e scaled drawing of the four bar	
		mechanism PQRS.	searce drawing of the four bar	
Q.4		Attempt any two:		
	i.	Classify the followers used in		5
	ii.	Explain six terms associated support your explanations.	with radial cams. Draw figures to	5

stroke
) mm
with
iginal
down
)

5

5

5

5

- Q.5 i. Classify gears and writes its advantages and disadvantages over other type of power transmission systems.
 - ii. In an Epicyclic gear train, an arm carries two gears A and B having 36 and 45 teeth respectively. If the arm rotates at 150 r.p.m. in counter clockwise direction about the centre of fixed gear A, determine the speed of gear B. If the gear A instead of being fixed, makes 300 rpm in the clockwise sense, what will be the speed of gear B.
- OR iii. A pinion having 30 teeth drives a gear having 80 teeth of involute type with pressure angle 20 degree, 12 mm module and 10 mm addendum. Find the length of path of contact, arc of contact, the contact ratio and the maximum speed of siding.

Q.6 Attempt any two:

- i. Explain the effect of gyrocouple on an aeroplane which is having a single propeller on the nose.when it tends to take a left turn and also when it is pitching up (raise the nose).
- ii. Explain the effect of Gyrocouple on the naval ship during steering and also during pitching.draw figures to support your answer.
- iii. A heavy turbine rotor of a sea vessel rotates at 1500 r.p.m. clockwise looking from the stern, its mass being 750 Kg and radius of gyration 250 mm. The vessel pitches with an angular velocity of 1 rad/s. Determine the gyrocouple transmitted to the vessel and its direction when bow is rising.

AU3CO03 / FT3CO03 / ME3CO03 Theory of Machines

Marking Scheme

Q.1	i.	(b) $1 + s$	1
	ii.	(d) Spherical pair	1
	iii.	(d) All of the above	1
	iv.	(a) $n(n-1)/2$	1
	v.	(a) Minimize the side thrust	1
	vi.	(d) Roller follower	1
	vii.	(b) Pitch Point	1
	viii.	(c) Compound gear train	1
	ix.	(c) No Effect	1
	х.	(d) All of these	1
Q.2	i.	At least 3 difference between machine & mechanics - 3 marks.	3
	ii.	Explanation of single slider crank chain 1 mark	7
		Name of all inversions – 1 mark	
		Minimum 5 related figures of each category- 1 $mark*5 = 5$	
OR	iii.	marks Ackerman steering diagram with explanation – 2.5 marks	7
OK	111.	Mathematical Expression Ackerman - 1 mark	,
		Davis steering gear diagram with explanation – 2.5 marks	
		Mathematical Expression Davis 1 mark	
		Watternation Daylession Dayles I mark	
Q.3	i.	Definition coriolis component of acceleration with	3
		mathematical expression - 1 mark	
		4 diagrams showing directions of acceleration	
		(0.5 marks * 4 = 2 marks)	
	ii.	Drawing Velocity polygon acceleration polygon or Klein's	7
		construction 3 marks.	
		Construction explanations steps – 2 marks	
		Velocity calculation (V=0.628 m/sec) - 1 mark	
		Acceleration calculation ($a = 15 \text{ m/sec}^2$) - 1 mark	
OR	iii.	Drawing configuration diagram for 4 bar mechanism with	7
		suitable scale - 1 mark	
		Formula used to calculate no. of ICR – 1 mark	
		Book keeping table - 1 mark	

		Calculating angular speed of (RS=44.34 RPM) - 1 mark	
Q.4	i.	According to contact (knife edge, spherical, roller, flat) with $sketch - 2 marks$	5
		According to motion (oscillating, reciprocating) with sketch - 1 mark	
		According to motion (R-R-R, D-R-R-D, D-R-D, D-R-D)	
		with sketch - 1 mark	
		According to path follower (radial, offset) with sketch – 1 mark	
	ii.	Related diagram for terms used in radial cam 2 marks	5
		Definition of any six (Base circle, trace point, pitch circle, prime	
		circle, pressure angle, pitch curve, lift/fall/dwell) 0.5 marks each	
. D		- (6 * 0.5 mark = 3 marks)	_
OR	iii.	Displacement diagram for SHM with suitable scale – 2 marks	5
		Cam profile for knife Edge follower with suitable steps – 2 marks Suitable Profile labelling - 1 mark	
		Suitable Florife labelling - I maik	
Q.5	i.	Classification of gears (Axis, peripheral speed, meshing,	4
(pressure angle, profile) 2 marks	-
		Advantages of gear – 1 marks	
		Disadvantages of gear – 1 mark	
	ii.	Drawing configuration diagram – 1 mark	6
		Draw table calculation of velocity for each members -3 marks	
		Calculation for 1^{st} case speed of gear B= 270 clockwise – 1	
		mark	
		Calculation for 2^{nd} case speed of gear B= 510 anticlockwise – 1	
OR	iii.	mark Drawing diagram showing pitch circle, base circle, addendum	6
71 0	111.	circle - 1 mark	Ū
		Calculation of length of path of contact with related formula	
		=52 mm – 2 marks	
		Calculation of arc of contact=55.6 mm – 1 mark	
		Calculation of contact ratio= 1.5 or say 2 – 1 mark	
		Calculation of maximum speed of siding= $(\omega 1+\omega 2)^2 27.3$	
		mm/sec) - 1 mark	

Circle diagram – 1 mark
Locating all ICR's – 2 marks

	Attempt any two:	
i.	Top and front view of aeroplane with direction representation	5
	for axis - 2 marks	
	Explanation of effect left/right turn with figure - 1.5 marks	
	Explanation of effect pitching upward/downward with figure -	
	1.5 marks	
ii.	Top and front view of naval ship with direction representation	5
	for axis - 2 marks	
	Explanation of effect left/right turn with figure - 1.5 marks	
	Explanation of effect pitching upward/downward with figure -	
	1.5 marks	
iii.	Related diagram – 1 mark	5
	Writing expression $T = I \omega \omega_p - 1 \text{ mark}$	
	Calculation of gyroscopic couple = 7.3 KNm - 2 marks	
	Gyroscopic couple effect when bow is rising – 1 mark	

Q.6
