Semidefinite Approximations of the Matrix Logarithm

CHEN Li

IORA, NUS

Reading Seminar June 5th, 2020

Outline

Introduction

Logarithm approximation

Semidefinite approximation of matrix logarithm

Numerical Experiments

Preliminaries

• Semidefinite representable

Definition 1

A convex function f is said to have a semidefinite representation of size d if its epigraph $\{(x,t):f(x)\leq t\}$ can be expressed in the form $\pi(L\cap \mathbf{H}_+^d)$ where π is a linear map, $L\subseteq \mathbf{H}^d$ is a subspace of $d\times d$ Hermitian matrices and \mathbf{H}_+^d is the Hermitian positive semidefinite cone.

- Essentially, it means we can write the epigraph in terms of SDP
- Matrix function

Definition 2

For a function $g: \mathbb{R}_{++} \to \mathbb{R}$, the corresponding matrix function can be defined for any $X \in \mathbf{H}^d_{++}$ by $g(X) = U \mathrm{diag}(g(\lambda_1),...,g(\lambda_d)) U^*$ where $X = U \mathrm{diag}(\lambda_1,...,\lambda_d) U^*$ eigendecomposition of X.

Examples

• Convex quadratic functions: $f(x) = x^TQx + c^Tx + d$ with $Q = R^TR$

$$f(x) \le t \Longleftrightarrow \begin{bmatrix} t - d - c^T x & x^T R^T \\ Rx & I \end{bmatrix} \succeq 0$$

• X² is semidefinite representable since

$$X^2 \preceq T \Longleftrightarrow \left[\begin{array}{cc} I & X \\ X & T \end{array} \right] \succeq 0$$

- $\|X\|_p = \left(\sum_{i=1}^d |\lambda_i(X)|^p\right)^{1/p}$ where $p \ge 1$ is rational, and more in [Ben-Tal and Nemirovski, 2001]
- Note 2×2 LMI can be modeled as second-order cone programming (SOCP)

$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \succeq 0 \Longleftrightarrow x + z \ge \sqrt{(x-z)^2 + 4y^2}, x \ge 0, z \ge 0$$

Problem

- Question: Is $\log X$ semidefinite representable?
- Answer: No. The feasible regions of semidefinite optimization problems are necessarily semialgebraic sets, i.e., they can be expressed as finite unions of sets defined by polynomial inequalities.
- Goal: Approximating $\log X \succeq T$ by linear matrix inequalities (LMIs)
- Want: Size of representation to grow mildly with approximation quality

Motivation

 Practice: How to solve convex optimization problems involving, e.g., quantum relative entropy?

$$D(A||B) = \text{Tr}(A(\log A - \log B)) \tag{1}$$

- No existing off-the-shelf methods
- Semidefinite approximation of log X and related function allows solving these problems by SDP solvers, e.g., SDPT3
- Theory: Understanding approximation power of SDP
 - ▶ What can we describe with small SDPs (or SOCPs)?
 - ▶ What can we approximate with small SDPs (or SOCPs, LPs)?

Outline

Introduction

Logarithm approximation

Semidefinite approximation of matrix logarithm

Numerical Experiments

Main idea

- Approximating integral representations via quadrature
 - ▶ Integral representations of functions:

$$\log x = \int_0^1 \frac{x - 1}{t(x - 1) + 1} dt$$

Quadrature approximation:

$$\log x \approx \sum_{j=1}^{m} w_j \frac{x-1}{t_j(x-1)+1} := r_m(x)$$

Using functional equations to improve approximations

$$\log x^{1/2} = \frac{1}{2}\log x$$

 Extending to matrix functions and generalizing logarithm to other functions

Scalar case: approximate $\log x$

- $r_m(x)$ is monotone, concave and semidefinite representable
 - $ightharpoonup f_t(x)$ is semidefinite representable:

$$f_t(x) := \frac{x-1}{t(x-1)+1} \ge \tau \Longleftrightarrow \begin{pmatrix} x-1-\tau & -\sqrt{t}\tau \\ -\sqrt{t}\tau & 1-t\tau \end{pmatrix} \succeq 0$$

- $ightharpoonup f_t(x)$ is monotone and concave
- ▶ Gaussian quadrature: Let $t_j \in [0,1]$ be the quadrature nodes, and $w_j > 0$ be the quadrature weights.
- Exponentiation
 - when 0 < h < 1, x^h is closer to 1 than x is, the quadrature approximation is better at x^h

$$r_{m,k}(x) = 2^k r_m(\frac{x}{2^k})$$

 $ightharpoonup r_{m,k}(x)$ is monotone, concave and semidefinite representable

Illustration

Figure 1: Plot of the error $|r_{m,k}(x) - \log(x)|$ for different choices of (m,k). Left: m=k. Right: pairs (m,k) such that m+k=6.

Quality of approximation

Proposition 1

For any x > 0, we have

$$|r_{m,k}(x) - \log x| \le 2^k |\sqrt{\kappa} - \sqrt{\kappa^{-1}}|^2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa + 1}}\right)^{2m+1}$$

 $\approx 4 \cdot 4^{-m(k+2)} (\log x)^{2m+1}$

where $\kappa = x^{1/2^k}$.

Theorem 1

For any fixed a>1 and $\epsilon>0$, there exists a rational function r such that $|r(x)-\log x|<\epsilon$ for all $x\in [1/a,a]$, and r has a semidefinite representation of size $O(\sqrt{\log \frac{1}{\epsilon}})$.

• Proof. choose
$$k=k_1+k_2$$
 where $k_1=\log_2\ln a+1$, $k_2\geq \sqrt{\log_2\frac{32\ln a}{\epsilon}}$, and $m=k_2/2$.

Proof of Proposition 1

- Control the error $|r(x) \log x|$ based on the Chebyshev expansion [Trefethen, 2019]
 - Let $\log x = \int_{-1}^{1} \tilde{f}_t(x) d\nu(t)$ and $r_m(x) = \int_{-1}^{1} \tilde{f}_t(x) d\nu_m(t)$.
 - ▶ Compute the Chebyshev coefficients of the integrand

$$\tilde{f}_t(x) = \frac{2}{\frac{x+1}{x-1} - t} = 2\left(\sqrt{x} - 1/\sqrt{x}\right) \left(\frac{1}{2} + \sum_{k=1}^{\infty} \left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1}\right)^k T_k(t)\right)$$

Let $a_k(x) = 2\left(\sqrt{x} - 1/\sqrt{x}\right) \left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)^k$,

$$\begin{aligned} & & \left| \log x - r(x) \right| \\ & = & \left| \sum_{k=2m}^{\infty} a_k(x) \left(\int_{-1}^{1} T_k(t) d\nu(t) - \int_{-1}^{1} T_k(t) d\nu_m(t) \right) \right| \\ & = & \left| \sum_{k=m}^{\infty} a_{2k}(x) \left(\int_{-1}^{1} T_{2k}(t) d\nu(t) - \int_{-1}^{1} T_{2k}(t) d\nu_m(t) \right) \right| \\ & \leq & 4 |\sqrt{x} - 1/\sqrt{x}| \sum_{k=m}^{\infty} \left| \frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right|^{2k} \\ & = & \left| \sqrt{x} - 1/\sqrt{x} \right|^2 \left| \frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right|^{2m - 1} \end{aligned}$$

Proof of Propsition 1 Cont.

• Scale the bound to $r_{m,k}$, let $\kappa = x^{1/2^k}$,

$$|r_{m,k}(x) - \log x| \le 2^k |\sqrt{\kappa} - 1/\sqrt{\kappa}|^2 \left| \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right|^{2m-1}$$

• Note $\left|\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right| = \left|\tanh\left(\frac{1}{4}\log\kappa\right)\right| \le \left|\frac{1}{4}\log\kappa\right| = \frac{1}{2^{k+2}}\left|\log x\right|$

$$|r_{m,k}(x) - \log x| \le |\log x| \left| \frac{\sqrt{\kappa} - 1/\sqrt{\kappa}}{2} \right|^2 \left| \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right|^{2m-1}$$

Asymptotic error via Taylor's expansion

$$|r_{m,k}(x) - \log x| \le 2^k \left[\sinh\left(2^{-(k+1)}\log x\right)\right]^2 \left[\tanh\left(2^{-(k+2)}\log x\right)\right]^{2m-1}$$

$$\sinh^2(2x)\tanh^{2m-1}(x) = 4x^{2m+1} + O(x^{2m+3})$$

Semidefinite approximation of relative entropy cone

- Relative entropy function: $(x,y) \in \mathbb{R}_{++} \times \mathbb{R}_{++} \mapsto x \log \frac{x}{y}$
- Relative entropy cone:

$$\mathcal{K}_{re} := \operatorname{cl}\left\{ (x, y, \tau) \in \mathbb{R}^2_{++} \times \mathbb{R} : x \log \frac{x}{y} \le \tau \right\}$$

Let

$$\mathcal{K}_{m,k} := \operatorname{cl}\left\{ (x, y, \tau) \in \mathbb{R}^2_{++} \times \mathbb{R} : xr_{m,k}(\frac{x}{y}) \le \tau \right\}$$

Theorem 2 (Approximation error for \mathcal{K}_{re})

For any fixed a>1 and $\epsilon>0$, there exist m,k with $m+k< O(\sqrt{\log\frac{1}{\epsilon}})$ such that:

- 1. For all $0 < a^{-1}y < x < ay$ and $(x, y, \tau) \in \mathcal{K}_{re}$, then $(x, y, \tau + x\epsilon) \in \mathcal{K}_{m,k}$;
- 2. For all $0 < a^{-1}y < x < ay$ and $(x, y, \tau) \in \mathcal{K}_{m,k}$, then $(x, y, \tau + x\epsilon) \in \mathcal{K}_{re}$.

Outline

Introduction

Logarithm approximation

Semidefinite approximation of matrix logarithm

Numerical Experiments

Extend to matrix function

Definition 3

A matrix function g is operator concave if for any $\lambda \in [0,1]$,

$$g(\lambda A + (1 - \lambda)B) \succeq \lambda g(A) + (1 - \lambda)g(B)$$

and is operator monotone if $A \leq B \Longrightarrow g(A) \leq g(B)$

Definition 4

Given a function $g: \mathbb{R}_{++} \to \mathbb{R}$, its noncommutative (NC) perspective is $P_q: \mathbf{H}_{++}^d \times \mathbf{H}_{++}^d \to \mathbf{H}^d$ defined by

$$P_g(X,Y) = Y^{1/2}g(Y^{-1/2}XY^{-1/2})Y^{1/2}$$
 (2)

- Fact 1: $\log X$ is operator concave and operator monotone
- Fact 2: If g is operator concave, then P_g is operator concave in both (X,Y). [Effros et al., 2014]

Semidefinite approximation of $\log X$

Proposition 2

Let $t \in [0,1]$ and $f_t(X) = (X-I)[t(X-I)+I]^{-1}$ is operator concave and matrix hypopgraph is semidefinite representable:

$$f_t(X) \succeq T, X \succ 0 \Longleftrightarrow \begin{bmatrix} X - I - T & -\sqrt{t}T \\ -\sqrt{t}T & I - tT \end{bmatrix} \succeq 0, X \succ 0$$
 (3)

• Proof. For $t \in (0,1]$, $X \succ 0$, we have

$$f_t(X) = I/t - (I/t)[(X - I) + I/t]^{-1}(I/t) \succeq T$$

$$\iff \begin{bmatrix} X - I + I/t & I/t \\ I/t & I/t - T \end{bmatrix} \succeq 0$$

$$\iff \begin{bmatrix} X - I - T & -\sqrt{t}T \\ -\sqrt{t}T & I - tT \end{bmatrix} \succeq 0$$

Semidefinite approximation of $\log X$ Cont.

- Implication: $r_m(X)$ is semidefinite representable, operator concave and operator monotone
- Generalization: For $X \succ 0, Y \succ 0$, we have

$$P_{f_t}(X,Y) \succeq T \iff \begin{bmatrix} X - Y - T & -\sqrt{t}T \\ -\sqrt{t}T & Y - tT \end{bmatrix} \succeq 0$$

Exponentiation

Proposition 3

The function $r_{m,k}$ is operator concave.

Proof.

- $ightharpoonup f_t$ is operator monotone and operator concave
- ▶ Power function $x \mapsto x^{1/2^k}$ is operator concave [Carlen, 2010]
- ▶ Operator concave and monotone ∘ Operator concave ⇒ Operator concave

Approximating the operator relative entropy cone

• Operator relative entropy:

$$D_{op}(X||Y):=P_{-\log}(Y,X)=-X^{1/2}\log(X^{-1/2}YX^{-1/2})X^{1/2}$$
 is jointly convex in (X,Y)

• Operator relative entropy cone:

$$K_{re}^d := \operatorname{cl}\left\{ (X, Y, T) \in \mathbf{H}_{++}^d \times \mathbf{H}^d : D_{op}(X||Y) \leq T \right\}$$

• Approximate K_{re}^d by

$$K_{m,k}^d := \operatorname{cl}\left\{ (X, Y, T) \in \mathbf{H}_{++}^d \times \mathbf{H}^d : P_{-r_{m,k}}(Y, X) \leq T \right\}$$

where

$$P_{-r_{m,k}}(Y,X) = -X^{1/2}r_{m,k}(X^{-1/2}YX^{-1/2})X^{1/2}$$

Semidefinite approximation of K_{re}^d

Theorem 3

The cone $K_{m,k}^d$ has the following semidefinite representation:

The cone
$$K_{m,k}^d$$
 has the following semidefinite representation:
$$(X,Y,T)\in K_{m,k}^d$$

$$\updownarrow$$

$$Z_0=Y \begin{bmatrix} Z_i & Z_{i+1} \\ Z_{i+1} & X \end{bmatrix}\succeq 0, i=1,...,k-1$$

$$\sum_{j=1}^n w_jT_j=-2^{-k}T \begin{bmatrix} Z_k-X-T_j & -\sqrt{t_j}T_j \\ -\sqrt{t_j}T_j & X-t_jT_j \end{bmatrix}\succeq 0, j=1,...,m$$
 where w_i and $t:(i-1)$ where w_i and $v:(i-1)$ where $v:(i-1)$ are the weights and nodes for the

where w_i and t_i (j = 1,, m) are the weights and nodes for the m-point Gauss-Legendre quadrature on the interval [0,1].

Proof of Theorem 3

• Define h-weighted matrix geometric mean of $A, B \succ 0$ as

$$A \#_h B := A^{1/2} (A^{-1/2} B A^{-1/2})^h A^{1/2},$$

i.e., the NC perspective of the power function x^h where $h \in (0,1)$.

• $A\#_hB$ is operator concave in (A,B) and semidefinite representable for rational h. [Fawzi and Saunderson, 2017]

•

$$X\#_{1/2}Y\succeq T\Longleftrightarrow \exists W\in \mathbf{H}^d \text{ s.t. } \left[\begin{array}{cc} X & W \\ W & Y \end{array}\right]\succeq 0, W\succeq T$$

Proof of Theorem 3 Cont.

Decomposition

$$\begin{array}{rcl} & P_{r_{m,k}}(Y,X) \\ = & 2^k P_{r_m}(X\#_{1/2^k}Y,X) \\ = & 2^k P_{r_m}(X\#_{1/2}(X\#_{1/2}\cdots(X\#_{1/2}(X\#_{1/2}Y))),X) \end{array}$$

- Semidefinite representation of weighted matrix geometric means
 - ▶ $X\#_{1/2}Y$ is monotone in its second argument.

$$X\#_{2^{-k}}Y \succeq V \iff \begin{array}{c} \exists Z_0, \dots, & \left\lfloor \begin{array}{c} X & Z_{i+1} \\ Z_{i+1} & Z_i \end{array} \right\rfloor \succeq 0 \\ Z_k \in \mathbf{H}^d \text{ s.t.} & i = 0, \dots k-1, \\ Z_0 = Y, Z_k \succeq V \end{array}$$

Proof of Theorem 3 Cont.

• Semidefinite representation of P_{r_m}

$$\exists T_1, ..., T_m \in \mathbf{H}^d \text{ s.t.}$$

$$\sum_{j=1}^m w_j T_j = T$$

$$\begin{bmatrix} V - X - T_j & -\sqrt{t_j} T_j \\ -\sqrt{t_j} T_j & X - t_j T_j \end{bmatrix} \succeq 0$$

$$j = 1, ...m$$

• P_{r_m} is monotone in its first argument.

Semidefinite approximation of quatum relative entropy

• Recall $D(A||B) = \text{Tr}(A(\log A - \log B))$

Proposition 4 ([Tropp, 2015])

Given $A, B \in \mathbf{H}^d_{++}$, we have $D(A||B) = \phi(D_{op}(A \otimes I||I \otimes \bar{B}))$ where ϕ is the unique linear map from $\mathbb{C}^{d^2 \times d^2} \to \mathbb{C}$ such that $\phi(X \otimes Y) = \operatorname{Tr}(XY^T)$, \bar{B} is the elementwise complex conjugate of B.

Corollary 1

$$D(A||B) \leq \tau$$

$$\updownarrow$$

$$\exists T \in \mathbf{H}^{d^2} \text{ s.t. } (A \otimes I, I \otimes \bar{B}, T) \in K^{d^2}_{re}, \phi(T) \leq \tau$$

• Fact: $X \leq Y \Longrightarrow \phi(X) \leq \phi(Y)$

Beyond matrix logarithm

- It is possible to extend such approximation idea to other functions
- Recall two pillars of approximation:
 - Quadrature approximation of integral representation
 - Functional equation
- Any operator monotone function admits an integral representation in terms of rational functions

Theorem 4 (Löwner's Theorem [Hansen and Pedersen, 1982])

If $g: \mathbb{R}_{++} \longrightarrow \mathbb{R}$ is a operator monotone function, then there is a unique probability measure ν supported on [0,1] such that $g(x) = g(1) + g'(1) \int_0^1 f_t(x) \mathrm{d}\nu(t)$.

• It is also possible to find other functional equations like $P_g \circ \Phi = P_g$ where g is positive operator monotone and Φ has contraction and monotonicity properties [Fawzi et al., 2019].

Outline

Introduction

Logarithm approximation

Semidefinite approximation of matrix logarithm

Numerical Experiments

Maximum entropy problems

$$\max \quad -\sum_{i=1}^{n} x_i \log x_i$$
 s.t.
$$Ax = b \quad (A \in \mathbb{R}^{\ell \times d})$$

$$x \ge 0$$

• m = k = 3

		Successive approximation (CVX)		Padé approximation (this paper)		
n	ℓ	time (s)	accuracy	time (s)	accuracy	$ p_{sa} - p_{Pade} $
50	25	$0.34 \mathrm{\ s}$	1.065e-05	0.32 s	1.719e-06	8.934e-06
100	50	$0.52 \ s$	1.398e-06	$0.34 \; s$	2.621e-06	1.222e-06
200	100	$1.10 \ {\rm s}$	6.635 e-06	$0.88 \; s$	2.767e-06	3.868e-06
400	200	$3.38 \mathrm{\ s}$	2.662 e - 05	$0.72 \; { m s}$	1.164 e - 05	1.498e-05
600	300	$9.14 \ s$	2.927e-05	$1.84 \mathrm{\ s}$	2.743e-05	1.843e-06
1000	500	52.40 s	1.067 e - 05	$3.91 \mathrm{\ s}$	1.469 e - 04	1.362 e-04

• CVX's successive approximation : use Taylor expansion

Geometric programming

			Successive approximation (CVX)		Padé approximation (this paper)		
n	ℓ	$_{\mathrm{sp}}$	time (s)	accuracy	time (s)	accuracy	$ p_{sa} - p_{Pade} $
50	50	0.3	1.28 s	2.509e-07	0.94 s	2.106e-06	1.856e-06
50	100	0.3	$1.78 \ s$	2.045e-05	$1.03 \ s$	3.122e-05	1.077e-05
100	100	0.1	$1.57 \mathrm{\ s}$	4.759e-06	1.16 s	5.197e-06	4.383e-07
100	150	0.1	$3.60 \mathrm{\ s}$	8.484e-06	1.60 s	2.240e-06	6.244e-06
100	200	0.1	$7.60 \; s$	1.853e-06	$2.69 \ s$	3.769e-06	1.916e-06
200	200	0.1	$7.47 { m \ s}$	2.441e-07	3.72 s	7.505e-07	9.945e-07
200	400	0.1	42.71 s	3.666e-06	14.36 s	2.855e-06	6.521e-06
200	600	0.1	184.33 s	7.899e-06	35.45 s	4.480e-06	3.419e-06

Table 3: Geometric programming (34) using our method (with (m,k)=(3,3)) and the successive approximation scheme of CVX, on different random instances. The column "sp" indicates the sparsity of the power vectors $a_{j,k}$ (i.e., how many variables appear in each monomial terms). Also we used $w_0 = w_1 = \cdots = w_\ell = 5$ (i.e., the posynomial objective as well as the posynomial constraints all have 5 terms). Accuracy is measured via absolute error between the optimal value returned by the approximation and the built-in Mosek solver for geometric programs (mskgpopt).

Variational formula for trace

$$\operatorname{Tr}(Y) = \max_{X \succ 0} \operatorname{Tr}(X) - D(X||Y)$$

```
time (s)
                                                            n
                                                                          accuracy
                                                            5
                                                                2.37 s
                                                                          1.143e-06
cvx_begin
  variable X(n,n) symmetric
                                                            10
                                                                4.32 s
                                                                          2.844e-06
  maximize (trace(X) - quantum_rel_entr(X,Y))
                                                                9.56 s
                                                                          4.732e-06
cvx end
                                                            20
                                                                24.39 \ s
                                                                          7.537e-06
                                                                77.02 s
                                                                          9.195e-06
                                                                163.07 \text{ s}
                                                            30
                                                                          1.290e-05
```

Table 4: Result of solving the optimization problem (35) for different Hermitian positive definite matrices Y of size $n \times n$ with Tr[Y] = 1. The problems were implemented using CVX as shown above and solved using SDPT3. The accuracy column reports the quantity |p-1| where p is the optimal value returned by the solver (note that the matrix Y is sampled to have trace one).

available at https://github.com/hfawzi/cvxquad

Further topics

- Specific topics:
 - Lower bounds: Given $\epsilon > 0$, what is the smallest $s(\epsilon)$ such that there exists SOCP representable f with $\max_{x \in [1/e,e]} |f(x) \log x| < \epsilon$?
 - ▶ Self-concordant barriers for cone K_{re}^d ?
 - ▶ Smaller semidefinite approximations for D(X||Y)?
- Broad issues:
 - ▶ What can we describe with small SDPs (or SOCPs)?
 - ▶ What can we approximate with small SDPs (or SOCPs)?
 - ▶ How to approximate and preserve structural properties?

Conclusion

- Principled approximations scheme
- Complexity of SDP approximation grows mildly with approximation quality
- Matrix logarithm has ϵ -approximate semidefinite description with $O(\sqrt{\log \frac{1}{\epsilon}})$ $2n \times 2n$ LMIs.
- A new SOCP approximation for relative entropy cone

Further Reading I

Ben-Tal, A. and Nemirovski, A. (2001).

Lectures on modern convex optimization: analysis, algorithms, and engineering applications.

SIAM.

Carlen, E. (2010).

Trace inequalities and quantum entropy: an introductory course.

Entropy and the quantum, 529:73-140.

Effros, E., Hansen, F., et al. (2014).

Non-commutative perspectives.

Ann. Funct. Anal, 5(2):74-79.

Fawzi, H. and Saunderson, J. (2017). Lieb's concavity theorem, matrix geometric means, and semidefinite optimization.

Linear Algebra and its Applications, 513:240–263.

Further Reading II

- Fawzi, H., Saunderson, J., and Parrilo, P. A. (2019). Semidefinite approximations of the matrix logarithm. Foundations of Computational Mathematics, 19(2):259–296.
- Hansen, F. and Pedersen, G. K. (1982).

 Jensen's inequality for operators and löwner's theorem.

 Mathematische Annalen, 258(3):229–241.
- Trefethen, L. N. (2019).

 Approximation theory and approximation practice, volume 164.

 Siam.
- Tropp, J. A. (2015).

 An introduction to matrix concentration inequalities.

 arXiv preprint arXiv:1501.01571.