

Hilbert Space

作者: Jiahai Wang

时间: November 12, 2024

目录

第1章	Hilbert 空间	1
1.1	内积	1
1.2	Hillbert 空间的基	3
1.3	正交分解	7
1.4	对偶和共轭	10
1.5	Riesz 表示定理的应用	11

第1章 Hilbert 空间

1.1 内积

本节主要介绍内积定义, 内积与范数之间的联系.

定义 1.1

 $\mathbb{C}^n = \{ z = (z_1, \cdots, z_n) \mid z_i \in \mathbb{C} \} .$

$$(z,w) := \sum_{k=1}^n z_k \bar{w}_k$$

有性质:

(1) $(\lambda z_1 + \mu z_2, w) = \lambda (z_1, w) + \mu (z_2, w)$

(2) $(z, \lambda w_1 + \mu w_2) = \bar{\lambda}(z, w_1) + \bar{\mu}(z, w_2)$

(1)与(2)合称共轭双线性

(3) 共轭对称性: $(z,w) = \overline{(w,z)}$

(4) 正定性: $(z, z) \ge 0$. $(z, z) = 0 \Leftrightarrow z = 0$.

定义 1.2

X 是线性空间, 映射 $a: X \times X \to \mathbb{K}, (x,y) \mapsto a(x,y) \in \mathbb{K}$.

(1) 若 $a(\cdot,\cdot)$ 满足性质 (1),(2), 称 a 为 X 上的共轭双线性型, 称 q(x) := a(x,x) 为 a 的二次型.

(2) 若 a 满足性质 (1), (2), (3), (4), $a \to X 上的一个内积, <math>(X, a(\cdot, \cdot))$ 称为内积空间.

例题 1.1 (1) $X = \mathbb{C}^n$

• A 是 Hermitian 方阵, $(x,y) := xA\bar{y}^t$ 是 \mathbb{C}^n 上的共轭双线性型.

• A 是正定 Hermitian 方阵, $(x,y) := xA\bar{y}^t$ 是 \mathbb{C}^n 上的内积.

(2)
$$X = \ell^2 = \left\{ u = (x_1, \dots, x_n, \dots) \left| \sum_{k=1}^{\infty} |x_k|^2 < +\infty \right. \right\}$$

$$(u, v) := \sum_{k=1}^{\infty} x_k \bar{y}_k$$

是 ℓ^2 上的内积.

(3) $X = L^2(\Omega, \mu), (u, v) := \int_{\Omega} u\bar{v} d\mu 是 L^2$ 内积.

(4)
$$X = C^k(\bar{\Omega})$$

$$(u,v) := \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u \overline{\partial^{\alpha} v} \, dx$$

是 $C^k(\bar{\Omega})$ 上的内积.

命题 1.1

二次型 $q(x) = a(x, x) \in \mathbb{R} \Leftrightarrow a(x, y) = \overline{a(y, x)}, \forall x, y \in X$

命题 1.2 (Cauchy - Schwarz)

设 a 是 X 上的共轭双线性型, 若二次型 q(x) 满足正定性: $q(x) \ge 0, \forall x \in X$ 且 $q(x) = 0 \Leftrightarrow x = 0$, 那么 对 $\forall x, y \in X$ 有

$$\left|a\left(x,y\right)\right|^{2} \leq q\left(x\right)q\left(y\right)$$

等号成立当且仅当x与y线性相关.

证明 不妨设 $y \neq 0$,则对 $\forall \lambda \in \mathbb{K}$ 有

$$0 \le q(x + \lambda y) = q(x) + \lambda a(y, x) + \overline{\lambda}a(x, y) + |\lambda|^2 q(y)$$

取 $\lambda = -\frac{a(x,y)}{q(y)}$ 代入上式得

$$0 \le q(x + \lambda y) = q(x) - 2\frac{|a(x,y)|^2}{q(y)} + \frac{|a(x,y)|^2}{q(y)}$$
$$= q(x) - \frac{|a(x,y)|^2}{q(y)}$$

其中用到了 $a(x,y) = \overline{a(y,x)}$ (因为由假设 $q(x) \ge 0$ 知 $q(x) \in \mathbb{R}, \forall x \in X$, 由性质即得). 因此,

$$\left|a\left(x,y\right)\right|^{2} \leq q\left(x\right)q\left(y\right)$$

等号成立 $\Leftrightarrow x + \lambda y = 0$, 即 x, y 线性相关.

[注: 当 $a(\cdot,\cdot)$ 是内积时, 记 $a(\cdot,\cdot)=(\cdot,\cdot)$,有 $|(x,y)|^2\leq \|x\|^2\|y\|^2$,其中 $\|x\|=\sqrt{(x,x)}$,即常见的 Cauchy-Schwarz 不等式.]

1.1.1 内积与范数

命题 1.3

设 $(X, (\cdot, \cdot))$ 是内积空间, 令 $\|x\| := \sqrt{(x, x)}$, 则 $(X, \|\cdot\|)$ 是赋范空间.

证明 (i) $||x|| \ge 0$. $||x|| = \sqrt{(x,x)} = 0 \Leftrightarrow x = 0$.

(ii)
$$\forall \lambda \in \mathbb{K}, \parallel \lambda x \parallel = \sqrt{\left(\lambda x, \lambda x\right)} = \sqrt{\left|\lambda\right|^2(x, x)} = \left|\lambda\right| \cdot \parallel x \parallel$$

(iii) $\forall x, y \in X$

$$\|x + y\|^{2} = (x + y, x + y)$$

$$= (x, x) + (x, y) + (y, x) + (y, y)$$

$$= \|x\|^{2} + 2 \operatorname{Re}((x, y)) + \|y\|^{2}$$

$$\leq \|x\|^{2} + 2 |(x, y)| + \|y\|^{2}$$

$$\leq \parallel x \parallel^2 + 2 \parallel x \parallel \cdot \parallel y \parallel + \parallel y \parallel^2$$
 (Cauchy - Schwarz)

$$= (||x|| + ||y||)^2$$

因此 $||x+y|| \le ||x|| + ||y||$.

[注:(1) 内积空间 ⊆ 赋范空间 ⊆ 度量空间

(2) 完备的内积空间称为 Hilbert 空间.]

命题 1.4

 $(X, \|\cdot\|)$ 是赋范空间, $\|\cdot\|$ 是内积诱导的 ⇔ $\|\cdot\|$ 满足平行四边形法则, 即

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \forall x, y \in X$$

1.2 Hillbert 空间的基

本节主要介绍内积空间正交的基本性质, Hilbert 空间基的存在性及性质, 可分 Hilbert 空间的结构.

1.2.1 正交

定义 1.3

 $(X,(\cdot,\cdot))$ 是内积空间, $M \subset X$ 为子集, $x,y \in X$.

- (1) 若 (x,y) = 0,称 x 与 y 正交, 记为 $x \bot y$.
- (2) 若对 $\forall y \in M$, 有 $x \perp y$, 称 $x \vdash M$ 正交, 记为 $x \perp M$.
- (3) 称 $M^{\perp} := \{x \in X \mid x \perp M\}$ 为 M 的正交补.

命题 1.5

 $(X,(\cdot,\cdot))$ 是内积空间, $M \subset X$, 则 $M^{\perp} \subset X$ 是闭子空间.

证明 (i) M[⊥] 是线性空间

设 $x, y \in M^{\perp}, \lambda, \mu \in \mathbb{K}$,则对 $\forall z \in M$ 有

$$(\lambda x + \mu y, z) = \lambda (x, z) + \mu (y, z) = 0$$

即 $(\lambda x + \mu y) \perp M$, 或 $(\lambda x + \mu y) \in M^{\perp}$.

(ii) M 是闭的.

设 $x_n \in M^{\perp}, x_n \to x$, 则对 $\forall y \in M$ 有

$$|(x,y)| = |(x-x_n,y) + (x_n,y)|$$

$$= \left| (x - x_n, y) \right| \le \left\| x - x_n \right\| \cdot \left\| y \right\| \to 0 \ (n \to \infty)$$

即 $x \perp y, x \in M^{\perp}$.

定义 1.4

 $(X,(\cdot,\cdot))$ 是内积空间, $S:=\{e_{\alpha}\mid \alpha\in\Lambda\}\subset X$, 若 S 满足:

(1) 对 $\forall \alpha, \beta \in \Lambda, e_{\alpha} \perp e_{\beta}$.

(2) 对 $\forall \alpha \in \Lambda, ||e_{\alpha}|| = 1$. 称 $S \in X$ 的一个正交规范集.

4

[注: 若 S 仅满足 (1), 称 S 为正交集. 若正交集 S 满足 $S^{\perp} = \{0\}$, 称 S 为完备的.] **问题 1.1** 完备正交集是否一定存在?

命题 1.6

非零的内积空间一定有完备正交集.

证明 $(X, (\cdot, \cdot))$ 是内积空间, 在 X 的所有正交子集构成的集合 \mathcal{X} 中引入序关系为包含关系. 于是, \mathcal{X} 中任意完全有序子集有上界, 为它们的并. 根据 \mathbf{Zorn} 引理, \mathcal{X} 有极大元 S, 则 $S^{\perp} = \{0\}$. 否则, 存在 $0 \neq x_0 \in S^{\perp}$,则 $S \subset \widetilde{S} := S \cup \{x_0\}$, \widetilde{S} 仍是正交集, 与 S 的极大性矛盾.

1.2.2 Hilbert 空间的基

定理 1.1 (Bessel Inequality)

 $(X,(\cdot,\cdot))$ 是内积空间, $S:=\{e_{\alpha}\mid \alpha\in\Lambda\}\subset X$ 为正交规范集, 则对 $\forall x\in X$ 有

$$\sum_{\alpha \in \Lambda} \left| (x, e_{\alpha}) \right|^2 \le \|x\|^2$$

 \Diamond

证明 (i) 上述和是至多可数项求和. 对指标 Λ 的任意有限子集, 不妨记为 $\{1,2,\cdots,m\}$ 有

$$0 \le \left\| x - \sum_{i=1}^{m} (x, e_i) e_i \right\|^2$$

$$= \left(x - \sum_{i=1}^{m} (x, e_i) e_i, x - \sum_{i=1}^{m} (x, e_i) e_i \right)$$

$$= \left\| x \right\|^2 - 2 \sum_{i=1}^{m} |(x, e_i)|^2 + \sum_{i=1}^{m} |(x, e_i)|^2$$

$$= \left\| x \right\|^2 - \sum_{i=1}^{m} |(x, e_i)|^2$$

即

$$\sum_{i=1}^{m} |(x, e_i)|^2 \le ||x||^2$$

根据估计式,对 $\forall n \in \mathbb{N}$,满足 $|(x,e_{\alpha})| > \frac{1}{n}$ 的指标 α 只有有限个,从而 $(x,e_{\alpha}) \neq 0$ 的指标 α 是至多可数个. (ii) 由 (i), $\sum_{\alpha \in \Lambda} \left| (x,e_{\alpha}) \right|^2$ 中至多有可数项求和,结论成立!

推论 1.1

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, $S=\{e_{\alpha}\mid \alpha\in\Lambda\}$ 是 X 中的正交规 范集, 则对 $\forall x\in X$ 有

$$(1) \sum_{\alpha \in \Lambda} (x, e_{\alpha}) e_{\alpha} \in X$$

$$(2) \left\| x - \sum_{\alpha \in \Lambda} (x, e_{\alpha}) e_{\alpha} \right\|^{2} = \left\| x \right\|^{2} - \sum_{\alpha \in \Lambda} \left| (x, e_{\alpha}) \right|^{2}$$

证明 (1) 由定理的证明, $\sum_{\alpha \in \Lambda} (x, e_{\alpha}) e_{\alpha}$ 是至多可数和, 不妨记为

$$\sum_{\alpha \in \Lambda} (x, e_{\alpha}) e_{\alpha} = \sum_{k=1}^{\infty} (x, e_{k}) e_{k}$$

令 $x_m = \sum_{k=1}^m (x, e_k) e_k$,则对 $\forall p \in \mathbb{N}$ 有

$$\left\| x_{m+p} - x_m \right\|^2 = \left\| \sum_{k=m+1}^{k=m+p} (x, e_k) e_k \right\|^2 = \sum_{k=m+1}^{m+p} \left| (x, e_k) \right|^2$$

由 Bessel 不等式, $\sum\limits_{k=1}^{\infty} |(x,e_k)|^2 \le \|x\|^2$,因此级数收敛. 由上知, $\{x_m\} \subset X$ 是基本列,有 $\lim\limits_{m \to \infty} x_m = \sum\limits_{k=1}^{\infty} (x,e_k) e_k \in X$ 。

(2) 注意到对 $\forall m \in \mathbb{N}$, 有

$$\left\| x - \sum_{k=1}^{m} (x, e_k) e_k \right\|^2 = \left\| x \right\|^2 - \sum_{k=1}^{m} \left| (x, e_k) \right|^2$$

定义 1.5

 $(X,\|\cdot\|)$ 是内积空间, $S=\{e_\alpha\mid\alpha\in\Lambda\}$ 为 X 的正交规范集, 若对 $\forall x\in X$, 有

$$x = \sum_{\alpha \in \Lambda} (x, e_{\alpha}) e_{\alpha}$$

称 S 为 X 的一组正交规范基, $\{(x,e_{\alpha}) \mid \alpha \in \Lambda\}$ 称为 x 关于 S 的 Fourier 系数.

定理 1.2

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, $S=\{e_{\alpha}\mid \alpha\in\Lambda\}$ 是正交规范集,下列三条等价:

- (1) S 是 X 的正交规范基
- (2) S 是完备的
- (3) Parseval 等式成立: $\|x\|^2 = \sum_{\alpha \in \Lambda} |(x, e_\alpha)|^2, \forall x \in X$

证明 $(1)\Rightarrow (2)$ (反证) 假设 S 不完备, $\exists 0\neq x\in S^{\perp}$, 则 $(x,e_{\alpha})=0, \forall \alpha\in\Lambda$. 但由于 S 是 X 的正交规范基, $x=\sum_{\alpha\in\Lambda}(x,e_{\alpha})\,e_{\alpha}=0$, 矛盾.

 $(2) \Rightarrow (3)$ (反证) 若 $\exists x \in X$, 使得 Parseval 等式不成立, 则有

$$\left\| x - \sum_{\alpha \in \Lambda} (x, e_{\alpha}) e_{\alpha} \right\|^{2} = \left\| x \right\|^{2} - \sum_{\alpha \in \Lambda} |(x, e_{\alpha})|^{2} > 0$$

令 $y := x - \sum_{\alpha \in \Lambda} (x, e_{\alpha}) e_{\alpha} \neq 0$,于是, 对 $\forall \alpha \in \Lambda, (y, e_{\alpha}) = (x, e_{\alpha}) - (x, e_{\alpha}) = 0$,即 $y \in S^{\perp}$,与 S 完备矛盾. (3) \Rightarrow (1) 注意到

$$\left\| x - \sum_{\alpha \in \Lambda} (x, e_{\alpha}) e_{\alpha} \right\|^{2} = \left\| x \right\|^{2} - \sum_{\alpha \in \Lambda} \left| (x, e_{\alpha}) \right|^{2}, \forall x \in X$$

若 Parseval 等式成立, 则 $x-\sum\limits_{\alpha\in\Lambda}(x,e_{\alpha})\,e_{\alpha}=0$, 即 S 为 X 的正交规范基。

例题 1.2 (1) $X = L^2[0, 2\pi], (u, v) := \int_0^{2\pi} u\bar{v} dt$

$$S := \left\{ e_n(t) = \frac{1}{\sqrt{2\pi}} e^{int} \middle| n \in \mathbb{Z} \right\}$$

是 $(X,(\cdot,\cdot))$ 的一个正交规范基.

$$(2) X = \ell^2 := \left\{ x = (x_1, \dots, x_n, \dots) \mid x_i \in \mathbb{C}, \sum_{k=1}^{\infty} |x_k|^2 < \infty \right\}$$

$$(x,y) := \sum_{k=1}^{\infty} x_k \bar{y}_k$$

$$S := \left\{ e_n = \left(\underbrace{0, \cdots, 0, 1}_{n}, 0, \cdots\right) \mid n = 1, 2, \cdots \right\}$$
 为 ℓ^2 的一组正交规范基.

(3) $X = H^2(D) := \left\{ u \, \text{在}D \, \text{上全纯} \, \middle| \, \int_D |u|^2 \, \mathrm{d}x \, \mathrm{d}y < \infty \right\}, D \subseteq \mathbb{R}^2$ 为单位圆盘. 规定内积为

$$(u,v) := \iint_D u\bar{v} \, \mathrm{d}x \, \mathrm{d}y$$

则 $S:=\left\{u_n=\sqrt{\frac{n+1}{\pi}}z^n\middle|\ n=0,1,\cdots\right\}$ 为 $H^2\left(D\right)$ 的一组正交规范基.

定理 1.3 (Gram-Schmit 正交化)

线性代数

C

1.2.3 可分 Hilbert 空间的结构(选读)

定义 1.6

 (X,ρ) 是度量空间, 若存在 X 的可数子集 M, 使得 $\overline{M}=X$, 称 X 是可分的.

定义 1.7

 $(X_1, (\cdot, \cdot)_1), (X_2, (\cdot, \cdot)_2)$ 为内积空间, 若 $\exists T : X_1 \to X_2$ 满足:

- (1) T 是线性同构 (既单又满)
- (2) 对 $x, y \in X_1$, 有 $(Tx, Ty)_2 = (x, y)_1$

称 T 是内积空间 $(X_1, (\cdot, \cdot)_1)$ 到 $(X_2, (\cdot, \cdot)_2)$ 的一个等距同构.

定理 1.4

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间,则 X 是可分的 $\Leftrightarrow (X,(\cdot,\cdot))$ 同构于 ℓ^2 或 \mathbb{K}^n .

- V 19 da 99

证明 (i) 先证明 $(X, (\cdot, \cdot))$ 是可分 Hilbert 空间 $\Leftrightarrow X$ 有至多可数的规范正交基. (\Rightarrow) 设可数集 $M \subset X$ 稠密, 即 $\bar{M} = X$. 取 M 的一个极大线性无关组

$$M' = \{x_1, \dots, x_k, \dots, x_N\} \ (N = +\infty \ \text{if} \ N < +\infty)$$

把M'中元素 Schmidt 正交化得

$$S = \{e_1, \cdots, e_k, \cdots, e_N\}$$

则有 $\overline{\operatorname{Span} S} = \overline{\operatorname{Span} M'} = X$, 对 $\forall x \in X$, 存在基本列

$$\left\{ x_m := \sum_{k=1}^N a_{m,k} e_k \right\}$$

使得 $x_m \to x$. 那么对任意 k 固定, $\{a_{m,k} \mid m=1,\cdots,\infty\} \subset \mathbb{K}$ 是基本列 (因为 $|a_{m,k}-a_{n,k}| \leq \left\|x_m-x_n\right\|$), 记 $a_k = \lim_{m \to \infty} a_{m,k}$, 则 $x = \sum_{k=1}^N a_k e_k$, 即 S 是 X 的一组规范正交基.

(\Leftarrow) 设 $S = \{e_1, \dots, e_N\}$, N 同上, 是 X 的一组规范正交基, 于是, 对 $\forall x \in X, x = \sum_{k=1}^{N} a_k e_k, a_k \in \mathbb{K}$. 取

$$M = \left\{ \left. \sum_{k=1}^{N} a_k e_k \right| \operatorname{Re}(a_k), \operatorname{Im}(a_k) \in \mathbb{Q} \right\}$$

则 M 可数, 且 M 在 X 中稠密.

(ii) 由 (i), 取 X 的一组规范正交基 $S=\left\{e_1,\cdots,e_N\right\}, N=\infty$ 或 $N=n<\infty$. 做对应

$$T: X \to \ell^2 \ \text{g} \mathbb{K}^n$$

$$x = \sum_{k=1}^{N} (x, e_k) e_k \mapsto ((x, e_1), \dots, (x, e_N))$$

由 Parseval 等式有

$$||x||^2 = \sum_{k=1}^{N} |(x, e_k)|^2 \, \forall x \in X$$

由此可见, 对应 $T \in X \to \mathbb{K}^N$ (当 $N < \infty$) 或 $X \to \ell^2$ (当 $N = \infty$) 的既单又满线性同构. 此外,

$$(x,y) = \left(\sum_{i=1}^{N} (x,e_i) e_i, \sum_{j=1}^{N} (x,e_j) e_j\right) = \sum_{i=1}^{N} (x,e_i) \overline{(y,e_i)}, \forall x,y \in X$$

因此 T 还是保持内积的. 于是当 $N < \infty$ 时, X 同构于 \mathbb{K}^N ; 而当 $N = \infty$ 时, X 同构于 ℓ^2 .

1.3 正交分解

本节主要介绍 Hilbert 空间中点到闭凸集最佳逼近元的存在性,由此导出 Hilbert 空间关于闭子空间的分解.

1.3.1 点到闭凸子集的最佳逼近

定义 1.8

 (X, ρ) 是度量空间, $x \in X, M \subset X$ 是子集. 若存在 $y \in M$ 使得

$$\rho\left(x,y\right) = \inf_{z \in M} \rho\left(x,z\right)$$

 $\pi y \neq x$ 到 M 的最佳逼近元. 此类问题称为最佳逼近问题.

定理 1.5

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, $x \in X, C \subset X$ 是闭凸集, 则存在唯一 $y \in C$ 使得

$$\parallel x-y\parallel =\inf_{z\in C}\parallel x-z\parallel$$

Ç

证明 (i) 存在性: 不妨设 $x \notin C$, 否则取 y = x 即可. 对 $x \notin C$, 由 C 闭性

$$d = \inf_{z \in C} \parallel x - z \parallel > 0$$

取 $z_n \in C$ 使得

$$d \le \left\| x - z_n \right\| \le d + \frac{1}{n}$$

注意到对 $\forall m, n \in \mathbb{N}$,

即 $\{z_n\} \subset C$ 是基本列, 记 $y = \lim_{n \to \infty} z_n \in C$. 在 (3.31) 式中令 $n \to \infty$ 得到

$$d = \inf_{z \in C} \parallel x - z \parallel = \parallel x - y \parallel$$

(ii) 唯一性: 设 y, y' 满足条件, 则

$$\|y - y'\|^2 = 2\left(\|y - x\|^2 + \|y' - x\|^2\right) - 4\left\|\frac{y + y'}{2} - x\right\|^2$$

$$< 4d^2 - 4d^2 = 0$$

从而 y = y'.

定理 1.6

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, $C\subset X$ 是闭凸集, $x\in X$, 则 y 是 x 在 C 中最佳逼近元 \Leftrightarrow $\mathrm{Re}\,(x-y,y-z)\geq 0$ 或 $\mathrm{Re}\,(x-y,z-y)\leq 0, \forall z\in C$.

证明 对 $\forall z \in C$, 作线段 $z_t = (1-t)y + tz, t \in [0,1]$.

$$||x - z_t||^2 = ||(x - y) + t(y - z)||^2$$

$$= ||x - y||^2 + 2t \operatorname{Re}(x - y, y - z) + t^2 ||y - z||^2$$

令 $\varphi_{z}(t) = \left\| x - z_{t} \right\|^{2}$,则 $y \in \mathbb{Z}$ 在 C 中最佳逼近元,当且仅当

$$\varphi_z(t) \ge \varphi_z(0) \ (\forall z \in C, \forall t \in [0,1])$$

下只需证 $\operatorname{Re}(x-y,y-z) \geq 0 \ (\forall z \in C)$ 成立当且仅当红色成立.

$$\varphi_z'(0) = 2\operatorname{Re}(x - y, y - z)$$

因此, $\operatorname{Re}(x-y,y-z) \geq 0 \ (\forall z \in C)$ 成立当且仅当 $\varphi'_z(0) \geq 0$, 又因为

$$\varphi_{z}(t) - \varphi_{z}(0) = \varphi'_{z}(0) t + ||y - z||^{2} t^{2}$$

所以 $\varphi'_z(0) \ge 0$ 成立当且仅当红色成立。

1.3.2 正交分解

命题 1.7

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, $X_0\subset X$ 是闭子空间, $x\in X,y$ 是 x 在 X_0 中的最佳逼近 $\Leftrightarrow x-y\bot X_0-y$. 其中 $X_0-y:=\{z-y\mid z\in X_0\}$ (还是 X_0 自己)

证明 设 y 是 x 在 X_0 中最佳逼近元,则对 $\forall w = z - y, z \in X_0$,有

$$\operatorname{Re}(x-y,w) \leq 0$$

注意到 $-w \in X_0 - y$,得

$$\operatorname{Re}(x-y,w) \geq 0$$

得

$$\operatorname{Re}(x-y,w)=0, \ \forall w\in X_0-y$$

再由 X_0 是线性空间, $iw \in X_0 - y$, 代入上式得

$$0 = \operatorname{Re}(x - y, iw) = \operatorname{Im}(x - y, w)$$

由上面得 $(x-y,w)=0, \forall w \in X_0-y=X_0$

定理 1.7

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, X_0 是闭子空间, 则对 $\forall x \in X$,

$$x = y + z, y \in X_0, z \in X_0^{\perp}$$

且这种分解唯一, y 称为 x 在 X_0 上的正交投影.

证明 对 $\forall x \in X$,记 $y \in X$ 在 X_0 中最佳逼近元, $\mathbf{x} - \mathbf{y} \perp X_0$,令 z = x - y,则 $x = y + z, y \in X_0, z \in X_0^{\perp}$.下证唯一性, 设 $x = y + z = y' + z', y, y' \in X_0, z, z' \in X_0^{\perp}$.则

$$y - y' = z' - z \in X_0 \cap X_0^{\perp} = \{0\}$$

从而 y = y', z = z'.

[注: $(X, (\cdot, \cdot))$ 是 Hilbert 空间, X_0 是闭子空间, 则 $X = X_0 \oplus X_0^{\perp}$.]

1.3.3 正交投影算子

定义 1.9

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, 设 X_0 是 X 的一个闭线性子空间, 由正交分解定理, $\forall x \in X, x = y + z, y \in X_0^\perp, z \in X_0$. 定义 $P: X \to X_0, x \mapsto Px := z$, 称 $P \to X$ 到 X_0 的正交投影算子.

命题 1.8

 $((X,(\cdot,\cdot))$ 是 Hilbert 空间, $\{0\} \neq X_0 \subset X$ 是闭子空间, $P \in X$ 到 X_0 的正交投影算子. 则有

- (1) P 是线性算子
- (2) *P* ∈ $\mathcal{L}(X, X_0)$ 且 ||P|| = 1

证明 (1) 线性性: 对 $\forall \lambda, \mu \in \mathbb{K}, x_1, x_2 \in X, Px_1 = z_1 \in X_0, Px_2 = z_2 \in X_0$.

$$\lambda x_1 + \mu x_2 = \lambda (Px_1 + y_1) + \mu (Px_2 + y_2)$$

$$= (\lambda \cdot Px_1 + \mu \cdot Px_2) + (\lambda y_1 + \mu y_2)$$

由正交分解的唯一性,有

$$P(\lambda x_1 + \mu x_2) = \lambda \cdot Px_1 + \mu \cdot Px_2$$

即 P 是线性的.

(2) || P ||= 1. 由正交分解, $\forall x \in X$, 有

$$||x||^2 = ||y||^2 + ||Px||^2$$

从而 $\|Px\|^2 \le \|x\|^2$,即 $\|Px\| \le 1$ · $\|x\|$. 所以 $\|P\| \le 1$,又对 $\forall x \in X_0 \setminus \{0\}$ 有 Px = x,则 $\frac{\|Px\|}{\|x\|} = 1$,从而 $\|P\| = 1$.

1.4 对偶和共轭

1.4.1 Riesz 表示定理

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, 任给一个 $y \in X$, 定义 $f_y: X \to \mathbb{K}, x \mapsto (x,y)$, 则 f_y 有性质:

- 1. 线性性
- 2. 对 $\forall x \in X, |f_y(x)| = |(x,y)| \le \|y\| \cdot \|x\|$, 所以 $\|f_y(x)\| \le \|y\|$, 即 $f_y \in X^*$ (有界线性泛函全体 $\mathcal{L}(X,\mathbb{K}) = X^*$)
 - 3. $||f_y|| = ||y||$ (特别地, 取 x = y) [注记:Hilbert 空间给定一点, 利用内积得到一个有界线性泛函.

问题 1.2 给定 Hilbert 空间上一个有界线性泛函 $f \in X^*$, 是否存在 $y \in X$ 使得 $f = f_y$?

定理 1.8 (Riesz 表示定理:)

 $(X,(\cdot,\cdot))$ 是 Hilbert 空间, $f\in X^*$, 则存在唯一 $y_0\in X$, 使得 $f(x)=(x,y_0)$, $\forall x\in X$ 或 $f=f_{y_0}$.

证明 参看《泛函分析讲义》张恭庆

[注:(1) $||f_y|| = ||y||$;(2)Hilbert 空间上的有界线性泛函全体等同于它自身 (指 Hilbert 空间自己). 因为由 (1) 知存在等距同构.]

1.5 Riesz 表示定理的应用

1.5.1 测度论

定义 1.10

 $(\Omega, \mathcal{B}, \mu)$ 是测度空间, 若存在可测集列 $\{\Omega_n \mid n=1,2,\cdot\}$ 使得

- (1) $\mu\left(\Omega_n\right) < +\infty$
- (2) $\Omega_n \subset \Omega_{n+1}$
- (3) $\Omega = \bigcup_{n} \Omega_n$

n=1 称 Ω 关于 μ 是 σ -有限的.

定义 1.11

 $(\Omega, \mathcal{B}, \mu)$, $(\Omega, \mathcal{B}, \nu)$ 是测度空间, 若对 $\forall E \in \mathcal{B}$ 且 $\mu(E) = 0$, 有 $\nu(E) = 0$, 称 ν 关于 μ 是绝对连续的.

定理 1.9 (Radon - Nikodym 定理)

设 $(\Omega, \mathcal{B}, \mu), (\Omega, \mathcal{B}, \nu)$ 是两个 σ -有限测度,且 ν 关于 μ 绝对连续,即

$$E \in \mathcal{B}, \mu(E) = 0 \Rightarrow \nu(E) = 0$$

则存在关于 μ 的可测函数g,且 $g(x) \geq 0$ a.e. μ , 使得

$$\nu(E) = \int_{E} g(x) d\mu, \ \forall E \in \mathcal{B}$$

证明 (i) 先证 $\mu(\Omega) < +\infty$ 的情形.

注意到 $L^2\left(\Omega,(\mu+\nu)\right)$ 关于 $(u,v):=\int_\Omega uv\,\mathrm{d}\,(\mu+\nu)$ 是实 Hilbert 空间. 定义 $f:L^2\left(\Omega,(\mu+\nu)\right)\to\mathbb{R},u\mapsto f\left(u\right):=\int_\Omega u\,\mathrm{d}\mu$,则

$$|f(u)| = \left| \int_{\Omega} u \, d\mu \right| \le \left(\int_{\Omega} 1 \, d\mu \right)^{\frac{1}{2}} \left(\int_{\Omega} u^2 \, d\mu \right)^{\frac{1}{2}}$$
$$= |\mu(\Omega)|^{\frac{1}{2}} \| u \|_{L^2(\Omega,\mu)}$$

$$\leq \left|\mu\left(\Omega\right)\right|^{\frac{1}{2}} \parallel u \parallel_{L^{2}\left(\Omega,\mu+\nu\right)}$$

于是, f 是 $L^2(\Omega,(\mu+\nu))$ 上的一个有界线性泛函, 根据 Riesz 表示定理, 存在 $v\in L^2(\Omega,(\mu+\nu))$, 使得对 $\forall u\in L^2(\Omega,(\mu+\nu))$ 有

$$\int_{\Omega} u \, \mathrm{d}\mu = \int_{\Omega} uv \, \mathrm{d}(\mu + \nu)$$

即

$$\int_{\Omega} u (1 - v) d\mu = \int_{\Omega} uv d\nu$$

断言: $0 < v(x) \le 1$, a.e. μ .

 $\diamondsuit F := \left\{ x \in \Omega \mid v\left(x\right) \leq 0 \right\}, \, \mathbb{R} \, u\left(x\right) = \chi_F\left(x\right),$

$$\mu(F) \le \int_{F} (1-v) d\mu = \int_{F} v d\nu \le 0$$

从而 $\mu(F) = 0$.

同样, 令 $G := \{x \in \Omega \mid v(x) > 1\}$, 取 $u(x) = \chi_G(x)$

$$0 \ge \int_{G} (1 - v) d\mu = \int_{G} v d\nu \ge \nu(G) \ge 0$$

从而 $\int_G (1-v) \, \mathrm{d}\mu = 0$.又因为 $1-v\left(x\right) < 0, x \in G$.所以 $\mu\left(G\right) = 0$.因此, $0 < v\left(x\right) \leq 1, x \in \Omega$, a.e. μ .令 $g\left(x\right) = \frac{1-v\left(x\right)}{v\left(x\right)}$,则 $g\left(x\right) \geq 0$, a.e. μ ,且 $g\left(x\right)$ 关于 μ 可测.对 $\forall E \in \mathcal{B}$,取 $u = \frac{\chi_E\left(x\right)}{v\left(x\right) + \frac{1}{n}}$, $\forall n \in \mathbb{N}$,有

$$\int_{\Omega} \chi_{E}\left(x\right) \frac{1 - v\left(x\right)}{v\left(x\right) + \frac{1}{n}} d\mu = \int_{\Omega} \chi_{E}\left(x\right) \frac{v\left(x\right)}{v\left(x\right) + \frac{1}{n}} d\nu$$

因为 ν 关于 μ 绝对连续, 且 v(x)>0, a.e. μ , 故 v(x)>0, a.e. ν . 由单调收敛定理, 令 $n\to\infty$ 有

$$\int_{E} g(x) d\mu = \int_{E} 1 d\nu = \nu(E), E \in \mathcal{B}$$

(ii) 再考虑 $\mu(\Omega) = +\infty$ 的情形.

由 $(\Omega, \mathcal{B}, \mu)$ 是 σ 有限的, 取 $\{\Omega_n\} \subset \mathcal{B}$, 使得 $\Omega = \bigcup_{n=1}^{\infty} \Omega_n, \Omega_n \subset \Omega_{n+1}, \mu(\Omega_n) < \infty, \forall n \geq 1$. 对 $\forall E \in \mathcal{B}$, 由 (i) 知, 存在 μ 可测函数 $g_n(x) \geq 0$, a.e.

$$\int_{E \cap \Omega_n} g_n(x) \, \mathrm{d}\mu = \nu \left(E \cap \Omega_n \right)$$

Bibliography

- [1] Erwin Kreyszig—Introductory functional analysis with applications
- [2] John B. Conway—A Course in Functional Analysis
- [3] Peter D. Lax—Functional Analysis
- [4] 泛函分析讲义张恭庆
- [5] 实变函数与泛函分析概要郑维行