LAB SESSION WEEK 9 – TUTORIAL NOTES

GENERAL INFO

1. Final Assessments will be online

Final VLSM Defence on Week 12. This is an 8 mins. interview to partially complete 1 exercise

Final Skills Demo during Final Assessment Period. This is a 15 mins. interview to complete 2 tasks

MUST READ assessment information pages on Canvas

MUST READ Convenor's announcements

- 2. VLSM Test 1 one-to-one feedback today if not received last week
- 3. Mid-Sem Skills assessment one-to-one feedback today
- 4. VLSM Test 2 next week

30 mins. to complete

Not a classful major network

5. Today you will complete labs 7a and 8a. **Do NOT do these on Packet Tracer.**

Not all STP configuration commands available in PT.

Also, remember your Final Skills Demos are done on ATC equipment

TUTORIAL

L2 redundancy issues and Spanning Tree Protocol

- 1. Link and hardware redundancy in a network are necessary → increased network availability
- 2. But, L2 redundancy can cause several issues:
 - L2 Loops
 - Broadcast storms
 - Duplicated unicast frames
 - MAC address table instability

The network will then become unavailable

- 3. STP will allow you to have redundancy in place, but avoiding L2 loop issues by blocking alternative paths
- 4. If the active path becomes unavailable \rightarrow alternative paths will be unblocked
- 5. How to determine the active and alternative paths → Root Bridge and Root path selection*
- *This is the reason you will see ports in orange when first booting up a switch or plugging in a cable, STP is running by default, and it needs to work out/update the topology.

STP root bridge selection

- 1. Switch with the lowest Bridge ID
- 2. Bridge ID determined by:
 - a. A priority value \rightarrow 32768 by default
 - b. MAC address of the switch
 - c. Optional extended ID

STP root port selection

- 1. The root path \rightarrow the path with the lowest path cost along the way from a switch to the root bridge
- 2. The path cost \rightarrow sum of the cost of all links along the way
- 3. What is the cost of a link:
 - a. By default, is determined by the speed

Data rate	STP Cost
4 Mbps	250
10 Mbps	100
16 Mbps	62
100 Mbps	19
1 Gbps	4
2 Gbps	3
10 Gbps	2

- b. A switchport STP cost can be customized
- 4. If 2+ ports have the same path cost to the root:

 Lowest <u>received</u> BID wins (i.e. the port connected to the bridge with the lowest <u>BID</u>)
- 5. If the 2+ ports are connected to the same bridge (i.e. equal received BID)

 Lowest <u>received</u> port priority (i.e. the port connected to the port with lowest priority at the other end)

 What is the port priority? 128 by default or customized by configuration command
- 6. If the 2+ ports are connected to ports with equal priority

 The interface ID breaks the tie: the lowest <u>received</u> interface ID wins

STP port roles: Root, Designated, Non-designated or Alternate

1. Root Port

- Exist only on non-root bridges
- It's the port facing the root path (lowest path cost)
- Only one root port per switch
- Root ports forward traffic →
 passing frames and populate the MAC table

2. Designated Port

- All ports in the root bridge are designated
- Only one designated port per segment \rightarrow the other one is either root, or alternate
- How to determine which port in a segment is designated or alternate?
 - Root path cost (lowest path to root bridge from the switch)
 - If path cost the same → Bridge ID breaks the tie: <u>lower</u> BID wins
- Designated ports forward traffic → passing frames populate the MAC table

3. Alternate port

• Goes to the blocking state \rightarrow do not forward traffic, frames arriving to these ports will not populate the MAC table.

STP versions

- By default, cisco 2960 in the lab run PVST → a cisco proprietary version of STP standard 802.1d
 Builds a STP topology for each VLAN → different topologies for different VLANs allow load balancing
 Bridge priority, port-priority and port cost can be customized per VLAN
- 2. Rapid STP standard 802.1w is and evolution 802.1d → allows for faster network convergence Most prominent changes are the states of the ports (we will not go in details)
- 3. By default, cisco 3650 in the lab run rapid PVSTP is the cisco proprietary version of 802.1w

Fine Tuning Spanning Tree

- 1. We can modify STP default values to control the STP topology
- 2. Selection of root bridge:
 - Change the bridge priority to something lower than the default
 - Or use explicit command (which effectively lowers the priority) → preferred method
- 3. Selection of secondary root bridge
 - Change de bridge priority to something lower than the default but higher than the primary
 - Or use explicit command (again, effectively lowers the priority) → preferred method
- 4. **PortFast** feature sets a port to go into the forwarding state before STP converges
 - Used on switchports connected to host ports to speed access to the network
 - NOT to be used on switchports connected to other switches, hubs or routers
 - A port with PortFast on will still send/receive BPDUs and participate on STP
- 5. **BPDU Guard** feature → disables PortFast on a port when BPDU received
 - If a BPDU is received, it means there is a switch at the other end → PortFast should not be enable
 - This is used to protect the STP topology