0.1 MAT 171 - Section 1.7: Linear and Absolute Value Inequalities

Inequalities and the English Translation					
a < b	$a \le$	b			
a > b	$a \ge$	b			

Interval and Inequality Notation						
Inequality	Interval	Set-Builder	Graph			
$a \le x \le b$			←			
$a \le x < b$			←			
$a < x \le b$			←			
a < x < b			←			
$x \ge a$			←			
x > a			←			
$x \le b$			←			
x < b			$\left \leftarrow \right $			

Graph and Write in the Notation <u>Not</u> Given					
Inequality	Interval	Set-Builder	Graph		
$-2 < x \le 5$			←		
x < -3			←		
	(-4,1]		←		
	$[3,\infty)$		←		

Solve and Graph:

1)
$$6x + 3 < 3x + 12$$

$$2) - \frac{7}{8}x < -14 \qquad \longleftarrow$$

$$\overline{\mathbf{3)}} - \frac{y-3}{6} - 1 > \frac{y}{3} \qquad \longleftarrow$$

3)
$$-8 \le 3r - 1 \le -1$$

1: Definition of Absolute value

The absolute value of x is represented by |x| and is defined as follows:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Evaluate:

b.
$$|-5| =$$

5)
$$|20 - 5y| = 50$$

6)
$$3|2x-1|=21$$

Solve and write the answer in inequality and interval notation.

7)
$$|4 - 5z \le 8$$

8)
$$\frac{b}{10} - 3 > 8$$