Derivación de las Ecuaciones Canónicas de Hartree-Fock

Basado en "Modern Quantum Chemistry" de Szabo y Ostlund 13 de octubre de 2025

1. Introducción: El Objetivo

El método de Hartree-Fock busca encontrar la mejor aproximación para la función de onda de un sistema de N electrones, asumiendo que esta puede ser descrita por un único determinante de Slater $|\Psi_0\rangle$. "La mejor. aproximación es aquella que minimiza la energía del sistema.

El objetivo es, por lo tanto, minimizar el valor de expectación de la energía E_0 $\langle \Psi_0 | \mathcal{H} | \Psi_0 \rangle$, que es un **funcional** de los espín-orbitales $\{\chi_a\}$ que componen el determinante. Sin embargo, esta minimización debe realizarse sujeta a una restricción fundamental: los espín-orbitales deben permanecer ortonormales entre sí.

$$[a|b] = \int \chi_a^*(1)\chi_b(1)dx_1 = \delta_{ab}$$

[cite: 69]

Para resolver este problema de minimización con restricciones, utilizamos la técnica de variación de funcionales junto con el método de los multiplicadores indeterminados de Lagrange.

Planteamiento del Problema de Minimización 2.

Primero, definimos el funcional que vamos a minimizar. Este funcional, que llamare- $\operatorname{mos} \mathcal{L}$, incluye la energía del determinante de Slater y las restricciones de ortonormalidad. La energía de un único determinante de Slater, E_0 , está dada por:

$$E_0[\{\chi_a\}] = \sum_{a=1}^{N} [a|h|a] + \frac{1}{2} \sum_{a=1}^{N} \sum_{b=1}^{N} ([aa|bb] - [ab|ba])$$

[cite: 78]

Donde [a|h|a] son las integrales de un electrón (energía cinética y atracción nuclear) y [aa|bb] (Coulomb) y [ab|ba] (intercambio) son las integrales de dos electrones.

Construimos el funcional Lagrangiano \mathcal{L} restando las restricciones de la energía, cada una multiplicada por un multiplicador de Lagrange ϵ_{ba} : $[\operatorname{cite}_s tart] \mathcal{L}[\{\chi_a\}] = E_0[\{\chi_a\}] - \sum_{a=1}^N \sum_{b=1}^N \epsilon_{ba}([a|b] - \delta_{ab})[cite: 75]$ $[\operatorname{cite}_s tart] Los multiplicadores \epsilon_{ba} \text{ forman una matriz que debe ser Hermítica } (\epsilon_{ba} = \epsilon_{ab}^*)$

para asegurar que el funcional \mathcal{L} sea real[cite: 79, 80].

Aplicando la Condición Variacional 3.

 $[cite_s tart] Para en contrar el mínimo, la primera variación de Leon respecto a los espín - orbitales de be$ 0[cite: 85, 86]. [citestart] Estosignificaque cualquier cambioin finitesimalen los espín – orbitales, $\chi_a \rightarrow$ $\chi_a + \delta \chi_a$, no debe alterar el valor de \mathcal{L} en el mínimo[cite: 84]. [cite_start] $\delta \mathcal{L} = \delta E_0 - \sum_{a=1}^{N} \sum_{b=1}^{N} \epsilon_{ba} \delta[a|b] = 0[cite: 86]$

Al calcular la variación de cada término y simplificar (agrupando los términos que contienen $\delta \chi_a^*$ y sus complejos conjugados), llegamos a la siguiente expresión para $\delta \mathcal{L}$:

$$\delta \mathcal{L} = \sum_{a=1}^{N} \int \delta \chi_a^*(1) \left(h(1)\chi_a(1) + \sum_{b=1}^{N} (J_b(1) - K_b(1))\chi_a(1) - \sum_{b=1}^{N} \epsilon_{ba}\chi_b(1) \right) dx_1$$

 $[cite_s tart] + \text{complejo conjugado} = 0$ [cite: 109, 110]

 $[cite_s tart] Donde J_b$ y K_b son los operadores de Coulomb e intercambio, respectivamente[cite: 108]. [cite_s tart] Dadoquela variación $\delta \chi_a^*$ es arbitraria, la única forma de que la ecuación sea siempre cero es que el término entre paréntesis sea idénticamente cero cite: 112].

Esto nos lleva a las ecuaciones de Hartree-Fock en su forma general: [cite_s tart] $h(1) + \sum_{b=1}^{N} (J_b)$ $\sum_{b=1}^{N} \epsilon_{ba} \chi_b(1) [cite: 113]$

 $[cite_s tart] Podemos de finire lo perador de Fock, f(1), como el término entre corchetes [cite:]$

114]. Conesto, la ecuación se simplifica a: [cite_start] $f|\chi_a\rangle = \sum_{b=1}^N \epsilon_{ba}|\chi_b\rangle$ [cite: 116]

 $[cite_s tart] Este resultado a \'un no esuna ecuaci\'on de eigenvalores est\'andar, y aque el operador de Fock actuality and the following properties of the following prop$ da como resultado una combinación lineal de todos los espín-orbitales[cite: 118].

La Invarianza Unitaria y la Forma Canónica 4.

 $[cite_s tart] Unpunt oclave esque un determinant e de Slateres invariante (salvo por un factor de faseir relevant estate) de la composition della composit$ a partir de los originales $\{\chi_a\}$ mediante una matriz unitaria U:

 $[\text{cite}_s tart] \chi'_a = \sum_b \chi_b U_{ba} [cite: 125]$

[cite_start] Elnuevo de terminante de Slater $-\Psi_0'$ y el original $|\Psi_0\rangle$ están relacionados por $|\Psi_0'\rangle = \det(U)|\Psi_0\rangle$ [cite: 148]. Como U es unitaria, $|\det(U)|$ [citestart] = 1, por lo que la función de onda es físicamente la misma cite: 156

[cite_start] Además, sepuededemostrarque el operador de Fock es invariante bajo est atransforma = f)[cite: 183]. Sinembargo, la matriz de multiplicado resde La grange s'isetrans forma de la siguiente mande la siguiente ma $[\text{cite}_s tart]\epsilon' = U^{\dagger} \epsilon U[\text{cite}: 191]$

Aquí es donde reside la solución. [cite_s tart] $Comolamatriz\epsilon$ es Hermítica [cite: 195] [cite_s tart], lateoría será diagonal:

$$\epsilon'_{ab} = \epsilon'_a \delta_{ab}$$

Ahora, reescribimos las ecuaciones de Hartree-Fock para el nuevo conjunto de orbitales $\{\chi'_a\}$ (que llamaremos canónicos):

$$f'|\chi_a'\rangle = \sum_{b=1}^N \epsilon_{ab}'|\chi_b'\rangle$$

Como f'=f y ϵ'_{ab} es diagonal, la suma del lado derecho se colapsa a un solo término:

[cite_start] $f|\chi_a'\rangle = \epsilon_a'|\chi_a'\rangle$ [cite : 198]

Finalmente, si omitimos las primas para simplificar la notación, llegamos a las **ecua-**ciones canónicas de Hartree-Fock:

 $[\text{cite}_s tart] f |\chi_a\rangle = \epsilon_a |\chi_a\rangle [cite: 202]$

[cite_start] Estasíes una verda de raecuación de eigenvalores [cite : 2]. [cite_start] Loses pín – orbitales { χ_c que son solución de esta ecuación se denominan **espín-orbitales canónicos** y sus eigenvalores asociados, ϵ_a , son las energías orbitales [cite: 2, 200]. [cite_start] Estasecuaciones, als en el esta el est