Experimento 01 - Pêndulo Composto

Giovani Garuffi RA: 155559João Baraldi RA: 158044Lauro Cruz RA: 156175Lucas Schanner RA: 156412Pedro Stringhini RA: 156983

September 14, 2014

1 Resumo

O experimento é um estudo do pêndulo composto (formado por uma barra de alumínio e outra ferro acoplada) e seu comportamento. Medida a massa das barras, é realizada a cronometragem dos períodos de oscilação do pêndulo para diferentes configurações.

A partir dos valores dos períodos (T) e das distâncias dos diferentes eixos de rotação ao centro de massa (D) do pêndulo, é feito o gráfico T^2D x D^2 representando a função afim $T^2D = (4pi^2/g)D^2 + 4pi^2k^2/g$, sendo k o raio de giração do pêndulo. Assim, utilizandose o método dos mínimos quadrados, foram obtidos os valores do raio de giração: k = (0.46 + -0.02)m e da aceleração da gravidade: $g = (10.3 + -0.6)m/s^2$, valor dentro do esperado, considerando a aceleração da gravidade cerca de $9.8m/s^2$, dentro da margem de erro calculada. Como o momento de inércia do pêndulo em relação ao centro de massa é dado por $(M1 + M2) * k^2$, foi possível calcular seu valor: $Icm = (0.28 + -0.02)Kg.m^2$.

2 Objetivos

Investigar o movimento de um pêndulo e seu comportamento relacionando as grandezas sobre ele atuantes, como centro de massa, raio de giração e momento de inércia.

3 Procedimento Experimental e Coleta de Dados

3.1 Procedimento

Um pêndulo foi montado com uma barra metálica maior de alumínio e outra adicional de ferro colocada em sua extremidade inferior. Depois de devidamente medido (com fita métrica) e pesado (com balança analítica), ele foi fixado em um eixo de suspensão. No ponto mais baixo da trajetória do instrumento, foi acoplado um photogate ligado a um cronômetro inteligente adaptado a medição dos periodos (T) de oscilação do pêndulo. Assim, com o devido cuidado de acionar uma oscilação de ângulo menor que 15 graus para efeitos de aproximação, foram medidos tais períodos 7 vezes em cada uma das 6 configurações escolhidas, diferenciadas quanto às distâncias entre eixo fixo e centro de massa do pêndulo.

3.2 Dados Obtidos

As medidas da posição do centro de massa da barra maior de alumínio (x_1) e da menor de ferro (x_2) , aproximando-as como corpos homogêneos e fixando a origem na extremidade inferior do pêndulo, são equivalentes à metade do comprimento delas, resultando em:

$$x_1 = (0.0915 \pm 0.0005)M$$

 $x_2 = (0.7420 \pm 0.0005)M$

E suas respectivas Massas:

$$M_1 = (347.3 \pm 0.1)g$$

 $M_2 = (929.5 \pm 0.1)g$

As medidas de periodo tomadas estão presentes na seguinte tabela, relacionadas as distâncias do eixo de rotação à extremidade inferior do pêndulo.

Tabela 1: Medidas do Periodo de oscilação do pêndulo e suas médias aritméticas relacionadas à distância X do eixo de rotação à extremidade inferior do pêndulo.

X (metro)	Períodos (s)						Valor Médio (s)	
1.0450 ± 0.0005	1.8866	1.8878	1.8881	1.8869	1.8867	1.8862	1.8864	1.8870 ± 0.0003
0.9900 ± 0.0005	1.8877	1.8882	1.888	1.888	1.8851	1.8874	1.8869	1.8873 ± 0.0004
0.9400 ± 0.0005	1.9018	1.9026	1.9020	1.9048	1.902	1.9016	1.8985	1.9019 ± 0.0007
0.8900 ± 0.0005	1.9341	1.9349	1.9345	1.9342	1.9335	1.9335	1.9340	1.9341 ± 0.0002
0.8400 ± 0.0005	1.9956	1.9957	1.9947	1.9947	1.9946	1.9986	1.9935	1.9953 ± 0.0006
0.7915 ± 0.0005	2.1042	2.1027	2.1027	2.1024	2.1026	2.1023	2.1019	2.1027 ± 0.0003

Nota: erro instrumental do cronômetro = 0.0001s.

erro total calculado com base nos erros estatísticos e instrumentais.

4 Análise dos Resultados e Discussões

4.1 Centro de Massa

A posição do do centro de Massa relativo a extrememidade inferior pode ser calculado como

$$x_{cm} = \frac{x_1 \cdot M_1 + x_2 \cdot M_2}{M_1 + M_2} = 0.555M$$

O erro associado à essa medida, propagado a partir dos erros de x_1 , M_1 , x_2 e M_2 é de

$$\Delta x_{cm} = 0.009m$$

4.2 Períodos

O período de oscilação do pêndulo, T, para pequenos ângulos de oscilação, é dado por

$$T = 2\pi \sqrt{\frac{I_0}{Mgd}}$$

Onde I_0 é o momento de inércia do pendulo em relação ao ponto de suspensão. Utilizando o teorema dos eixos paralelos, e lembrando que $I_{cm} = Mk^2$, sendo k o raio de giração, deduz-se a equação

$$T = 2\pi \sqrt{\frac{D + \frac{k^2}{D}}{g}}$$

que pode ser reescrita como

$$T^2D = \frac{4\pi^2}{g} \cdot D^2 + \frac{4\pi^2}{g} \cdot k^2 \tag{1}$$

Sendo que

$$D = X - x_{cm}$$

Table 1: Periodos de oscilação relacionados à distância D dos eixo de rotação ao centro de massa. O erro em D é constante igual a 0.009M (propagado a partir do erro em X e em x_{cm}) e o erro em T^2D foi propagado a partir do erro em D e em T.

Tabela 2: Periodos de oscilação relacionados à distância D dos eixo de rotação ao centro de massa.

D (M)	T(s)	D^2	T^2D
0.490 ± 0.009	1.8870 ± 0.0003	0.240 ± 0.008	1.74 ± 0.03
0.435 ± 0.009	1.8873 ± 0.0004	0.189 ± 0.008	1.55 ± 0.03
0.385 ± 0.009	1.9019 ± 0.0007	0.148 ± 0.007	1.39 ± 0.03
0.335 ± 0.009	1.9341 ± 0.0002	0.112 ± 0.007	1.25 ± 0.03
0.285 ± 0.009	1.9953 ± 0.0006	0.081 ± 0.005	1.13 ± 0.04
0.236 ± 0.009	2.1027 ± 0.0003	0.055 ± 0.004	1.04 ± 0.04

Nota: Erro em D propagado a partir do erro em X e em x_{cm} . Erro em T^2D foi propagado a partir do erro em D e em T.

$$\Delta D = \sqrt{\Delta X^2 + \Delta x_{cm}^2} = 0.009m$$

Percebe-se que deve existir uma relação linear entre T^2D e D^2 .

Fazendo a regressão linear de $T^2D \ge D^2$ por mínimos quadrados, obtem-se os coeficientes

$$a = 3.8 \pm 0.2$$

$$b = 0.83 \pm 0.04$$

onde a é o coeficiente angular e b é o coeficiente linear. A reta formada pode ser vista no Gráfico 1, sobreposta aos pontos da tabela.

4.3 Gravidade

A interpretação física do coeficiente angular encontrado é, por (1),

$$a = \frac{4\pi^2}{q} = 3.8 \pm 0.2$$

 $\log podemos encontrar g como$

$$g = \frac{4\pi^2}{3.8} = 10.3m/s^2$$

e seu erro associado, propagado a partir do erro em a é

$$\Delta g = \frac{4\pi^2}{a^2} \cdot \Delta a = \pm 0.6m/s^2$$

 $Gráfico\ 1:\ T^2D\ em\ função\ de\ D^2.\ Nota-se\ que\ os\ dados\ coletados\ se\ encaixam\ muito\ bem\ em\ uma\ projeção\ linear.$

4.4 Raio de giração

A interpretação física do coeficiente linear, a partir de (1), é

$$b = \frac{4\pi^2}{q} \cdot k^2 = 0.83 \pm 0.04$$

logo,

$$k = \sqrt{\frac{g \cdot b}{4\pi^2}} = 0.46m$$
$$\Delta k = \pm 0.02m$$

4.5 Momento de Inércia

O momento de inércia pode ser descrito em função do raio de giração como

$$I_{cm} = Mk^2$$

$$I_{cm} = 0.28(m^2 \cdot Kg)$$

E o erro ΔI_{cm} pode ser calculado a partir da expressão

$$\Delta I_{cm} = \sqrt{(2mk \cdot \Delta k)^2 + (k^2 \cdot \Delta M)^2} = \pm 0.02(m \cdot Kg)$$

5 Conclusões