Solutions for Midterm 2 (Math 33A, Fall 2019)

Problem 1 (7 points in total)

Let V be the x-z plane in \mathbb{R}^3 .

What is the orthogonal projection of $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ onto V?

You should (i) compute the projection $\text{proj}_V(v)$ and (ii) make a drawing of $\text{proj}_V(v)$.

Solution:

An orthonormal basis for V is given by the standard basis vectors e_1 and e_3 .

We have

$$\operatorname{proj}_{V}(v) = (v \cdot e_{1})e_{1} + (v \cdot e_{3})e_{3}$$

$$= e_{1} + 3e_{3} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

Drawing:

Problem 2 (10 points in total)

Let \mathcal{B} be the basis of \mathbb{R}^2 given by the vectors

$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

and

$$v_2 = \begin{bmatrix} -1\\3 \end{bmatrix}.$$

Find the \mathcal{B} -coordinates of the vectors v_1 , $2v_1$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by the matrix

$$A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}.$$

Find the \mathcal{B} -matrix of T.

Solution:

We have

$$[v_1]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

and

$$[2v_1]_{\mathcal{B}} = \begin{bmatrix} 2\\0 \end{bmatrix}$$

To find the \mathcal{B} -coordinates for e_2 we solve the following linear system:

$$\begin{bmatrix} 1 & -1 & | & 0 \\ 2 & 3 & | & 1 \end{bmatrix} \quad \leadsto \quad \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 5 & | & 1 \end{bmatrix} \quad \leadsto \quad \begin{bmatrix} 1 & 0 & | & 1/5 \\ 0 & 1 & | & 1/5 \end{bmatrix} \;.$$

And thus we get

$$[e_2]_{\mathcal{B}} = \begin{bmatrix} 1/5\\1/5 \end{bmatrix}$$

The \mathcal{B} -matrix of T is

$$B = \begin{bmatrix} | & | \\ [T(v_1)]_{\mathcal{B}} & [T(v_2)]_{\mathcal{B}} \end{bmatrix}$$

We have $T(v_1) = Av_1 = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ and $T(v_2) = Av_2 = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$. We note that $T(v_1) = 5e_1$ and $T(v_2) = 5e_1 + 5e_2$. Hence, to find the \mathcal{B} -coordinates of $T(v_1)$ and $T(v_2)$, we siply have to compute the \mathcal{B} -coordinates of e_1 similarly as we have done for e_2 , and then we can use the fact that \mathcal{B} -coordinates are linear.

We have

$$[e_1]_{\mathcal{B}} = \begin{bmatrix} 3/5 \\ -2/5 \end{bmatrix}$$

Thus

$$[T(v_1)]_{\mathcal{B}} = \begin{bmatrix} 3\\-2 \end{bmatrix}$$

and

$$[T(v_2)]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}.$$

Thus we get

$$B = \begin{bmatrix} 3 & 4 \\ -2 & -1 \end{bmatrix}.$$

Problem 3 (6 points in total)

Let

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Find a basis for the image of A and a basis for the kernel of A.

Solution:

We first put the matrix in RREF: $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

The solutions of the system Ax = 0 are

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} r \\ t \\ r \end{bmatrix} = r \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Thus, a basis for the kernel of A is given by the vectors

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

A basis for the image of A is given by the column vectors of A corresponding to the column vectors of RREF(A) that contain pivots. Thus, a basis for the image of A is given by the vector

$$\begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}.$$

Problem 4 (10 points in total)

Compute the QR decomposition of the following matrix.

$$M = \begin{bmatrix} -1 & -1 \\ 1 & 3 \\ -1 & -1 \\ 1 & 3 \end{bmatrix}$$

Solution:

Denote the column vectors of the matrix by v_1 and v_2 . We first use the Gram-Schmidt algorithm to compute an orthonormal basis $\mathcal{U} = \{u_1, u_2\}$ for the subspace of \mathbb{R}^4 spanned by v_1 and v_2 :

$$u_1 = \frac{v_1}{\parallel v_1 \parallel} = \begin{bmatrix} -1/2\\1/2\\-1/2\\1/2 \end{bmatrix}$$

$$u_2 = \frac{v_2^{\perp}}{\parallel v_2^{\perp} \parallel}$$

where $v_2^{\perp} = v_2 - (v_2 \cdot u_1)u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Thus $u_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$. We thus have the matrix Q:

$$Q = \begin{bmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \\ -1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}.$$

To compute the matrix R, we recall that

$$R = \begin{bmatrix} | & | \\ [v_1]_{\mathcal{U}} & [v_2]_{\mathcal{U}} \\ | & | \end{bmatrix}$$

We have $v_1 = ||v_1|| u_1 = 2u_1$ and $v_2 = (v_2 \cdot u_1) + ||v_2^{\perp}|| u_2 = 4u_1 + 2u_2$. Thus

$$R = \begin{bmatrix} 2 & 4 \\ 0 & 2 \end{bmatrix} .$$

Answer the following questions with true or false.

1.	Let A be an arbitrary 4×5 matrix (i.e., with 4 rows and 5 columns). The column vectors of A cannot be linearly independent.
	TRUE
2.	There exists a subspace V of \mathbb{R}^5 so that V and its orthogonal complement V^\perp have the same dimension.
	FALSE
3.	Any square matrix A is similar to itself.
	TRUE
4.	There exists a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^3$ with kernel of dimension 1.
	FALSE
5.	Let V be any subspace of \mathbb{R}^n , and $T \colon \mathbb{R}^n \to \mathbb{R}^n$ the orthogonal projection onto V . Let v be a vector in the kernel of T . Then $v \cdot w = 0$ for all vectors w in V .
	TRUE