الإمتحات الوطني الموحد لنيل شهادة البكالوريا الدورة العادية 2009

مادة الرياضيات مسلك العلوم الرياضية أ و ب <u>المعامل 9</u> ملة الإنجاز: أربع ساعات

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

التمرين الأول: (4,5) ($\mathcal{M}_2(\mathbb{R})$ هي مجموعة المصفوفات المربعة من الرتبة 2.

 $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ نذکر أن $(\mathscr{M}_2(\mathbb{R}), +, \times)$ حلقة واحدية وحدتها

 $M(x,y)\in\mathbb{R}^* imes\mathbb{R}$ مجموعة المصفوفات (x,y) من $M(x,y)=egin{pmatrix} x&y\0&rac{1}{1}\end{pmatrix}$ بحيث $M(x,y)=egin{pmatrix} x&y\0&rac{1}{1}\end{pmatrix}$ بحيث $M(x,y)=egin{pmatrix} x&y\0&rac{1}{1}&1\end{pmatrix}$

- . ($\mathscr{M}_{2}(\mathbb{R}), \times$) بين أن \mathcal{F} جزء مستقر من $(\mathfrak{f})(1)$ بين أن $(\mathfrak{g})(2)$
 - بين أن (\mathcal{F}, \times) زمرة غير تبادلية . (\mathcal{F}, \times) 0,50 ن
- $x \in \mathbb{R}^*$ من \mathcal{F} ميث M(x,0) لتكن G مجموعة المصفوفات (2) 1,00 ن (\mathcal{F}_{\times}) بين أن G زمرة جزئية للزمرة
 - . $E = \mathbb{R}^* \times \mathbb{R}$ ليكن (3)0,50 ن

نزود المجموعة E بقانون التركيب الداخلي \perp المعرف بما يلي :

 $(\forall (x,y)\in E)$; $(\forall (a,b)\in E)$: $(x,y)\perp (a,b)=\left(ax,bx+\frac{y}{a}\right)$

نعتبر التطبيق: $\varphi: (\mathcal{F}.\times) \to (E.\perp)$

 $M(x, y) \rightarrow \varphi(M(x, y)) = (x, y)$

- . $(2,3) \perp (1,1)$ و $(1,1) \perp (2,3)$. 0,25 ن
 - بین أن φ تشاكل تقابلی . 0,50 ن
 - (E, \bot) استنتج بنیة (E, \bot) <u>0,50 ن</u>

التمرين الثاني: (4,0 ن) عدد عقدي يخالف 1 .

- $(E): z^2 (1-i)(m+1)z i(m^2+1) = 0$. z المعادلة ذات المجهول (I) المعادلة ذات المجهول (I)
 - $\Delta = [(1+i)(m-1)]^2$: هو $\Delta = [(1+i)(m-1)]^2$ تحقق أن مميز المعادلة $\Delta = [(1+i)(m-1)]^2$
 - (E) حل في المجموعة (E) المعادلة 0,25 ن

يساوي 1 يساوي (E) على الشكل الجبري قيمتى العدد العقدي m لكى يكون جداء حلى المعادلة (E) يساوي 1

. $z_2 = m - i$ و $z_1 = 1 - im$ نضع 2

<u>1,00 ن</u>

0,50 ن

<u>0,50 ن</u>

<u>0,75 ن</u>

0,50 ن

. و کان المثلثي المثلثي المثلثي z_2 و z_1 و کتب المثلثي $m=e^{i\theta}$ في حالة $m=e^{i\theta}$

المستوى العقدي (\mathcal{P}) منسوب إلى معلم متعامد ممنظم مباشر (\mathcal{P}) منسوب المستوى العقدي العقدي المستوى العقدي العقدي المستوى العقدي العقد

. $z_2=m-i$ و M_2 و M_1 التي ألحاقها على التوالي هي : m و m و M_1 و ر

حدد مجموعة النقط M بحيث تكون النقط M و M_1 و M_2 نقط مستقيمية.

 $z^{'}=1-iz$ التحويل \mathcal{R} الذي يربط كل نقطة M لحقها z بالنقطة M' التي لحقها \mathcal{R} التي لحقها \mathcal{R} الذي يربط كل نقطة Ω و قياسا لزاويته.

 $\Re e(m)+\Im m(m)=1$: نخيلي صرف إذا و فقط إذا كان $\dfrac{\mathrm{z}_2-\mathrm{z}_1}{\mathrm{z}_2-m}$: نجيلي صرف إذا و فقط إذا كان $\underbrace{}$

(هو جزءه التخيلي m هو $\mathfrak{R}e(m)$ هو الجزء الحقيقي للعدد m

استنتج مجموعة النقط M بحيث تكون النقط Ω و M و M_1 و متداورة M_2

. $a_n = 2^n + 3^n + 6^n - 1$: نضع \mathbb{N}^* نضع الثالث: (3,0) : التمرين الثالث: (n كال n كال التمرين الثالث: (n كال n ك

. \mathbb{N}^* من n من n عدد زوجي لكل n من n عدد زوجي لكل من n

. $a_n \equiv 0$ [3] محدد قيم n التي يكون من أجلها Θ

. p>3 ليكن معددا أوليا بحيث و

. $6^{p-1} \equiv 1[p]$ و $3^{p-1} \equiv 1[p]$ و $3^{p-1} \equiv 1[p]$ و $3^{p-1} \equiv 1[p]$ د $3^{p-1} \equiv 1[p]$ د $3^{p-1} \equiv 1[p]$

. a_{p-2} بين أن p يقسم

. $a_n \wedge q = q$ بين أنه لكل عدد صحيح طبيعي أولي q يوجد عدد صحيح طبيعي غير منعدم n بحيث \mathfrak{F}

 $(.\ q$ هو القاسم المشترك الأكبر للعددين $a_n \wedge q$)

التمرين الرابع: (10 ن) عدد صحيح طبيعي غير منعدم .

. بما يلى والدالة العددية f_n للمتغير الحقيقي χ المعرفة على المايل بما يلى وعتبر الدالة العددية المتغير الحقيقي بما يلى

 $(\forall x > 0)$; $f_n(x) = x(1 - \ln x)^n$ $f_n(0) = 0$

. $(\mathcal{O}, \vec{\imath}, \vec{\jmath})$ المنحنى الممثل للدالة f في معلم متعامد ممنظم (\mathcal{E}_n) المنحنى الممثل الدالة المنحنى الممثل الدالة المنحنى الممثل الممثل

ر بين أن الدالة f_n متصلة على اليمين في f_n (يمكن وضع f_n).

ادرس قابلية اشتقاق الدالة f_n على اليمين في 0 . \bigcirc

 $\lim_{x\to +\infty} \frac{f_2(x)}{x}$ و $\lim_{x\to +\infty} \frac{f_1(x)}{x}$ و $\lim_{x\to +\infty} f_2(x)$ و $\lim_{x\to +\infty} f_1(x)$: عدد النهايات التالية

 f_1 أدرس تغيرات الدالة أ 0,50 ن

0,25 ن

0,25 ن

 f_2 أدرس تغيرات الدالة f_2 0,50 ن

 (\mathcal{C}_2) و (\mathcal{C}_1) أدر س الوضع النسبي للمنحنيين أ (\mathcal{C}_2) و أ (\mathcal{C}_2) .

 $\|\vec{t}\| = \|\vec{j}\| = 2cm$: نأخذ (حي) (ناخذ A(1,1) نقطة انعطاف للمنحنى (حي) أنشئ المنحنيين (جي) و القبل القبل أنشئ المنحنيين (عدل القبل 0,50 ن

 $F(x) = \int_{-\pi}^{1} \frac{f_1(t)}{1+t^2} dt$: بما يلي $[-\infty,0]$ بما المعرفة على ا

 $(\forall x < 0) \; ; \; F'(x) = \frac{(x-1)e^{2x}}{(1+e^{2x})} \; : \; e^{i}$. $]-\infty,0[$ المجال على المجال على المجال $[-\infty,0]$ على المجال $[-\infty,0]$ على المجال $[-\infty,0]$ على المجال $[-\infty,0]$ 0,50 ن

 $(\forall x < 0) \; ; \; \frac{1}{2} \int_{-\pi}^{1} f_1(t) \, dt \le F(x) \le \frac{1}{1 + \rho^{2x}} \int_{-\pi}^{1} f_1(t) \, dt \; : \; \dot{0}$ <u>0,25 ن</u>

. $]0,+\infty[$ على المجال f_1 على الدالة $(x \to x)^2 \left(\frac{3}{4} - \frac{\ln x}{2}\right)$: على الدالة $(x \to x)^2 \left(\frac{3}{4} - \frac{\ln x}{2}\right)$ <u>0,25 ن</u>

> $\lim_{x \to -\infty} \int_{-\infty}^{1} f_1(t) dt = \frac{3}{\Lambda} : نین أن : ②$ <u>0,25 ن</u>

xنفترض أن الدالة F تقبل نهاية منتهية ℓ عندما يؤول x إلى 3

 $\frac{3}{9} \le \ell \le \frac{3}{4}$: بين أن

 $u_n = \int_{-r}^{r} f_n(x) dx$: نضع غیر منعدم طبیعی غیر منعدم الکال عدد صحیح طبیعی غیر منعدم

. $(\forall n \geq 1)$; $u_n \geq 0$: بين أن $(\hat{\mathbf{j}})$ بين أن $(\hat{\mathbf{j}})$

. [1,e] على المجال $f_{n+1}(x)-f_n(x)$ عدد إشارة Θ 0,50 ن

> <u>0,25 ن</u> . $(\forall n \geq 1)$; $u_{n+1} \leq u_n$: بين أن \mathfrak{C}

ربة استنتج أن المتتالية $(u_n)_{n>1}$ متقاربة \mathfrak{L} <u>0,25 ن</u>

 $(\forall n \geq 1)$; $u_{n+1} = \frac{-1}{2} + \frac{(n+1)}{2} u_n$: ن أن (2) بين أن (2)

. x=e و x=1 مساحة حيز المستوى المحصور بين (\mathcal{C}_1) و (\mathcal{C}_2) و المستقيمين cm^2 0,50 ن

 $\lim_{x\to +\infty} nu_n$ و $\lim_{x\to +\infty} u_n$: ڪدد Θ <u>0,50 ن</u>

. u_1 عدد حقيقى مخالف للعدد a

 $(\forall n \geq 1)$; $v_{n+1} = \frac{-1}{2} + \frac{(n+1)}{2} v_n$ و $v_1 = a$: نعتبر المتتالية $(v_n)_{n \geq 1}$ المعرفة بما يلي : . $d_n = |v_n - u_n|$: و لكل عدد صحيح طبيعي غير منعدم n نضع

> $(\forall n \geq 1)$; $d_n = \frac{n!}{2^{(n-1)}}d_1$: نین أن <u>0,25 ن</u>

 $(\forall n \geq 2)$; $\frac{n!}{2} \geq 3^{n-2}$: بين أن <u>0,25 ن</u>

 $\lim_{n \to +\infty} d_n = +\infty$: بین أن \mathfrak{C} <u>0,25 ن</u>

متباعدة. استنتج أن المتتالية $(v_n)_{n\geq 1}$ <u>0,25 ن</u>

لتمرين الأول: (4,5 ن)

-(j)(**1**)■

F مصفوفتین من M(a,b) و M(x,y)

$$M(x,y) \times M(a,b) = \begin{pmatrix} x & y \\ 0 & \frac{1}{x} \end{pmatrix} \times \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix}$$
 : لاينا
$$= \begin{pmatrix} xa & xb + \frac{y}{a} \\ 0 & \frac{1}{xa} \end{pmatrix}$$
$$= M\left(xa; xb + \frac{y}{a}\right)$$

 $(\mathcal{M}_{2}(\mathbb{R}),\times)$ إذن F جزء مستقر من

(-(-)(1) ■

 $(\mathcal{M}_2(\mathbb{R}), imes)$ لدينا F جزء مستقر من F إذن X قانون تركيب داخلي في

F و M(e,f) و M(c,d) و M(a,b) ثلاثة عناصر من M(a,b)

لدينا :

$$\left(M(a,b) \times M(c,d)\right) \times M(e,f) = M\left(ac,ad + \frac{b}{c}\right) \times M(e,f)$$

$$= M\left(eac,acf + \frac{ad}{e} + \frac{b}{ce}\right)$$

و لدينا كذلك :

$$M(a,b) \times (M(c,d) \times M(e,f)) = M(a,b) \times M\left(ce,cf + \frac{d}{e}\right)$$

$$= M\left(eac,acf + \frac{ad}{e} + \frac{b}{ce}\right)$$

و بالتالي :

$$(M(a,b) \times M(c,d)) \times M(e,f) = M(a,b) \times (M(c,d) \times M(e,f))$$

 $\left[imes F \, \,
ight]$ يعني $imes \left[imes \, \,
ight]$.

F ليكن $M(e_1;e_2)$ العنصر المحايد للضرب

$$\Leftrightarrow \forall M(a,b) \in F ; M(a,b) \times M(e_1; e_2)$$
$$= M(e_1; e_2) \times M(a,b) = M(a,b)$$

$$\iff$$
 $M\left(ae_1; ae_2 + \frac{b}{e_1}\right) = M(a,b)$

من إعداد الأستاذ بدر الدين الفاتحى:

$$\Leftrightarrow \begin{cases} ae_1 = a \\ ae_2 + \frac{b}{e_1} = b \end{cases}$$

$$\Leftrightarrow \begin{cases} e_1 = 1 \in \mathbb{R}^* \\ e_2 = 0 \in \mathbb{R} \end{cases}$$

. F هو العنصر المحايد لضرب المصفوفات في M(1,0)=I

. F ين المصفوفة M(x',y') مماثلة المصفوفة المصفوفة M(x',y') بالنسب ل $M(x',y') = M(x',y') \times M(x,y) = I$

$$\iff M\left(xx', xy' + \frac{y}{x'}\right) = M(1,0)$$

$$\iff \begin{cases} x' = \frac{1}{x} \in \mathbb{R}^* \\ y' = -y \in \mathbb{R} \end{cases}$$

بالنسبة M(x,y) بالنسبة بن كل مصفوفة في M(x,y) بالنسبة النسبة بن كل مصفوفة النسبب في F .

لدينا 🗙 ليس تبادليا لأن :

$$\begin{cases}
M(x,y) \times M(y,x) = M(xy,x^2 + 1) \\
M(y,x) \times M(x,y) = M(xy,y^2 + 1)
\end{cases}$$

 $(\forall x \neq y)$; $x^2 + 1 \neq y^2 + 1$: نلاحظ إذن أن

خلاصة : (F,\times) زمرة غير تبادلية.

لدينا G جزء غير فارغ من F لأنها تضم العنصر M(1,0) على الأقل

G نتكن M(b,0) و M(a,0) مصفوفتين من

$$M(b,0) imes \left(M(a,0)\right)' = M(b,0) imes M\left(rac{1}{a},0
ight)$$
 : لدينا $M(b,0) imes M\left(rac{1}{a},0
ight)$

 $M\left(\frac{b}{a},0
ight)\in G$: ومنه $\frac{b}{a}
eq 0$ إذن a
eq 0

. (F, imes) زمرة جزئية للزمرة (G, imes) : و بالتالي

 $(1,1) \perp (2,3) = \left(2 ; 3 + \frac{1}{2}\right) = \left(2 ; \frac{7}{2}\right)$

 $(2,3) \perp (1,1) = (2 ; 2 + \frac{3}{1}) = (2,5)$

F مصفوفتین من M(c,d) و M(a,b)

 $egin{aligned} arphiig(M(c,d) imes M(a,b)ig) &= arphiig(Mig(ac;bc+rac{d}{a}ig)ig) \ &= ig(ac;bc+rac{d}{a}ig) \ &= ig(c,d)\perp (a,b) \ &= arphiig(M(c,d)ig)\perp arphiig(M(a,b)ig) \end{aligned}$

. (E, \perp) نحو (F, \times) نحو إذن φ تشاكل من

ليكن (a,b) عنصرا من E.

(-)(3) ■

arphiig(M(x,y)ig)=(a,b) : نريد حل المعادلة ذات المجهول M(x,y) التالية $\Leftrightarrow (x,y)=(a,b)$

) رمضان 2012 (الصفحة : 0

أحوية الدورة العادية 2009

$$\iff \begin{cases} m_1 = \sqrt[4]{2} \left(\sqrt{\frac{1}{2\sqrt{2} + 4}} + i \sqrt{\frac{\sqrt{2} + 2}{4}} \right) \\ m_2 = \sqrt[4]{2} \left(-\sqrt{\frac{1}{2\sqrt{2} + 4}} - i \sqrt{\frac{\sqrt{2} + 2}{4}} \right) \end{cases}$$

في هذا السؤال يجب ضبط جميع قواعد الصيغ المثلثية.

$$z_1 = re^{i arphi}$$
 : نضع $z_1 = 1 - i m$: لاينا $z_1 = 1 - i e^{i heta}$

$$= 1 - i(\cos\theta + i\sin\theta)$$
$$= (1 + \sin\theta) - i\cos\theta$$

 $_{1}$ إذن هدفنا هو ايجاد المجهولين $_{1}$ و $_{2}$ بدلالة $_{3}$ بحيث

 $(1 + \sin \theta) - i \cos \theta = r \cos \varphi + i \sin \varphi$

$$\Leftrightarrow \begin{cases} r\cos\varphi = 1 + \sin\theta \\ r\sin\varphi = -\cos\theta \end{cases}$$

$$(r\cos\varphi)^2 + (r\sin\varphi)^2 = r^2$$
 : لينا

$$(1+\sin\theta)^2+\cos^2\theta=r^2$$
 : إذن

$$r^2 = 2(1 + \sin \theta) = 2\left(\sin\frac{\pi}{2} + \sin \theta\right)$$
 : و منه $r^2 = 2\left(2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\cos\left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$ $= 4\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ $= 4\sin^2\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ $r = 2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ $r = 2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ $r = 2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$

نعوض r بقيمته في المعادلة الثانية من النظمة نحصل على :

$$\sin \varphi = \frac{-\cos \theta}{2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)}$$

$$= \frac{\cos(\pi - \theta)}{2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)}$$

$$= \frac{\sin\left(\frac{-\pi}{2} + \theta\right)}{2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)}$$

$$= \frac{-\sin\left(\frac{\pi}{2} - \theta\right)}{2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)}$$

$$\iff \begin{cases} x = a \\ y = b \end{cases}$$

M(x, y) وحيدا و هو إذن المعادلة تقبل حلا وحيدا

$$\forall (a,b) \in E$$
 , $\exists ! M(x,y) \in F$; $\varphi \big(M(x,y) \big) = (a,b)$: و منه و بالتالي φ تقابل من φ نحو

.
$$(E, \bot)$$
 نحو (F, \times) نحو خلاصة φ

نعلم أن التشاكل التقابلي يحافظ على بنية الزمرة.

M(1,0) زمرة غير تبادلية عنصرها المحايد هو المصفوفة (F,\times) : (F,\times) زمرة غير تبادلية عنصرها المحايد هو النسبة لـ (F,\times) في (F,\times) و كل مصفوفة (F,\times) تقبل مماثلة (F,\times) بالنسبة لـ (F,\times) زمرة غير تبادلية عنصرها المحايد هو الزوج (F,\times) و كل زوج (F,\times) يقبل مماثلا (F,\times) يقبل مماثلا و كل زوج (F,\times) يقبل مماثلا و كل زوج (F,\times)

$$\begin{cases} \varphi(M(1,0)) = (1,0) \\ \varphi(M(\frac{1}{x}, -y)) = (\frac{1}{x}, -y) \end{cases}$$

لتمرين الثاني: (4,0)

-(i)(1)(I)

$$\Delta = (1 - i)^{2}(m + 1)^{2} + 4i(m^{2} + 1)$$

$$= -2i(m^{2} + 2m + 1) + 4im^{2} + 4i$$

$$= 2im^{2} - 4im + 2i$$

$$= 2i(m^{2} - 2m + 1)$$

$$= (1 + i)^{2}(m - 1)^{2}$$

—(•)(I)∎

$$z_1 = (1 - im)$$
 $z_2 = (m - i)$

-©(1)(I)■

$$z_1z_2=1$$
 : و ننطلق من $m=re^{i heta}$: نضع $m=re^{i heta}$: \Leftrightarrow $(1-im)(m-i)=1$ \Leftrightarrow $m-i-m^2i-m=1$

$$\Leftrightarrow m^2 = -1 + i$$

$$\Leftrightarrow r^2 e^{2i\theta} = \sqrt{2} \left(\frac{-\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right)$$

$$\Leftrightarrow r^2 e^{2i\theta} = \sqrt{2}e^{\frac{3i\pi}{4}}$$

$$\iff \begin{cases} r^2 = \sqrt{2} \\ \theta = \frac{3\pi}{8} + k\pi ; k \in \{0,1\} \end{cases}$$

$$\Leftrightarrow \begin{cases} r = \sqrt[4]{2} \\ \theta = \frac{3\pi}{8} \end{cases} \quad \theta = \frac{11\pi}{8}$$

$$\iff \begin{cases} m_1 = \sqrt[4]{2} e^{\frac{3i\pi}{8}} \\ m_2 = \sqrt[4]{2} e^{\frac{11i\pi}{8}} \end{cases}$$

أجوية الدورة العادية 2009 من إعداد الأستاذ بدر الدين الفاتحي: () رمضان 2012 الصفحة : 151

$$\Leftrightarrow \cos \varphi = \frac{-\cos(\pi - \theta)}{2\sin(\frac{\pi}{4} - \frac{\theta}{2})}$$

$$\Leftrightarrow \cos \varphi = \frac{-\sin(\frac{-\pi}{2} + \theta)}{2\sin(\frac{\pi}{4} - \frac{\theta}{2})}$$

$$\Leftrightarrow \cos \varphi = \frac{-2\sin(\frac{-\pi}{4} + \frac{\theta}{2})\cos(\frac{-\pi}{4} + \frac{\theta}{2})}{2\sin(\frac{\pi}{4} - \frac{\theta}{2})}$$

$$\Leftrightarrow \cos \varphi = \frac{2\sin(\frac{\pi}{4} - \frac{\theta}{2})\cos(\frac{-\pi}{4} + \frac{\theta}{2})}{2\sin(\frac{\pi}{4} - \frac{\theta}{2})}$$

$$\Leftrightarrow \cos \varphi = \cos(\frac{-\pi}{4} + \frac{\theta}{2})$$

$$\Leftrightarrow \varphi = (\frac{-\pi}{4} + \frac{\theta}{2})[k\pi] : \psi$$

$$z_2=2\sin\left(rac{\pi}{4}-rac{ heta}{2}
ight)e^{i\left(rac{-\pi}{4}+rac{ heta}{2}
ight)}$$
 : و بالنالي :

(1)(II) ■

m = x + iy : نضع

$$\Leftrightarrow (x+y) + i(y-x+1) \in \mathbb{R}$$

$$\Leftrightarrow y-x+1=0$$

$$\Leftrightarrow y=x-1$$

. y=x-1 إذن مجموعة النقط M تشكل مستقيما معادلته

_(j\2)(II)■

$$z'=1-iz$$
 ننطلق من

نريد كتابة هذه المتساوية على شكل:

بحیث
$$z'=e^{i\theta}(z-\omega)+\omega$$

$$\left\{ egin{aligned} \mathrm{e}^{i heta} &= -i \ -\omega \mathrm{e}^{i heta} + \omega &= 1 \end{aligned}
ight.$$
 دينا

$$= \frac{-2\sin\left(\frac{\pi}{4} - \frac{\theta}{2}\right)\cos\left(\frac{\pi}{4} - \frac{\theta}{2}\right)}{2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)}$$

$$= \frac{-2\cos\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)}{2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)}$$

$$= -\cos\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sin\left(\frac{-\pi}{4} + \frac{\theta}{2}\right)$$

$$\psi \equiv \left(\frac{-\pi}{4} + \frac{\theta}{2}\right)[k\pi]$$

$$\psi = \frac{-\pi}{4} + \frac{\theta}{2}$$

$$\psi = \frac{-\pi}{4} + \frac{\theta}{2}$$

$$z_1 = \left(2\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\right)e^{i\left(\frac{-\pi}{4} + \frac{\theta}{2}\right)}$$
 : و بالتالي :

 $z_2 = re^{i arphi}$: بنفس الطريقة نضع

$$z_2 = m - i = e^{i\theta} - i = \cos\theta + i(\sin\theta - 1)$$

هدفنا هو البحث عن r و ϕ بدلالة heta بحيث :

$$r\cos\varphi + ir\sin\varphi = \cos\theta + i(\sin\theta - 1)$$

$$\Leftrightarrow \begin{cases} \cos \theta = r \cos \varphi \\ \sin \theta - 1 = r \sin \varphi \end{cases}$$

$$(r\cos\varphi)^2 + (r\sin\varphi)^2 = r^2$$
 لاينا :

$$(\cos \theta)^2 + (\sin \theta - 1)^2 = r^2$$
 ; μές:

$$r^2 = 2(1 - \sin \theta)$$
 : و منه

$$r^2 = 2(1 + \sin(-\theta))$$
 : أي

نعلم حسب الجزء الأول من هذا السؤال أن:

$$2(1+\sin\theta)=4\sin^2\left(\frac{\pi}{4}+\frac{\theta}{2}\right)$$

$$2(1+\sin(-\theta))=4\sin^2\left(\frac{\pi}{4}-\frac{\theta}{2}\right) \ \ :$$
 يعني $r^2=4\,\sin^2\left(\frac{\pi}{4}-\frac{\theta}{2}\right)$ و منه :

ملحظة : لقد تم اختيار القيمة الموجبة لـ r لأن معيار عدد عقدي يكون دائما عددا موجبا.

: على على المعادلة الأولى من النظمة نحصل على العوض r

$$\cos \varphi = \frac{\cos \theta}{2 \sin \left(\frac{\pi}{4} - \frac{\theta}{2}\right)}$$

أجوبة الدورة العادية 2009 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 52.

ٷڡڲڎڡڲۉڡڲۉڡڲۏڡڲۉڡڲۅڡڲۅڡڲۅڡڲۄڡڲۄڡڲۉڡڲۉڡڲۉڡڲۉڡ ؙ

(4)
$$3^n(1+2^n) \equiv 1[2]$$
 نحصل على : من (3) و (3) نحصل على :

$$(2^n-1)+3^n(1+2^n)\equiv 2[2]$$
 : و من (1) و من

$$2\equiv 0$$
[2] : گأن : $(2^n-1)+3^n(1+2^n)\equiv 0$ [2] : يعني
$$a_n\equiv 0$$
[2] : و منه

$$[\,\,n\,$$
و بالتالي : $[\,a_n\,]$ عدد زوجي كيفما كان العدد الصحيح الطبيعي

$$a_n = 2^n + 3^n + 3^n 2^n - 1$$
 : لدينا

$$a_n = 2^n(3^n + 1) + (3^n - 1)$$
 : يعني

$$3^n \equiv 0[3]$$
 : إذن $3^n \equiv 0[3]$: نعلم أن

(6)
$$(3^n + 1) \equiv 1[3]$$
 و (5) $(3^n - 1) \equiv -1[3]$: منه

$$2^{n}(3^{n}+1)+(3^{n}-1)\equiv 2^{n}-1[3]$$
 : من (5) و (6) نحصل على (5) عني : يعني (5)

$$2^n \equiv (-1)^n [3]$$
 : إذن $2 \equiv -1[3]$ و لدينا في الأخير

(8)
$$(2^n - 1) \equiv ((-1)^n - 1)[3]$$
 : $ightharpoonup (3)$

$$a_n \equiv (-1)^n - 1$$
من المتو افقتين (7) و (8) نستنتج أن :

$$(-1)^{2k} - 1 = 0$$
 عدد زوجي نحصل على : n عدد عدد زوجي نحصل على :

$$a_n \equiv 0$$
ائي : ا

$$(-1)^{2k+1}-1=-2$$
 : عدد فردي نحصل على n عدد فردي نحصل على

$$\left[\ a_n \equiv -2[3] \
ight]$$
 : و منه

بتطبیق مبر هنة (Fermat) مرتین نحصل علی:

$$\begin{cases} p & \text{if } p \\ p \land 2 = 1 \end{cases} \implies \boxed{2^{p-1} \equiv 1[p]} (1)$$

و

$$\begin{cases} p & \text{if } p \\ p \land 3 = 1 \end{cases} \Rightarrow \boxed{3^{p-1} \equiv 1[p]} (2)$$

نضرب المتوافقتين (1) و (2) طرفا بطرف نحصل على :

$$3^{p-1} \cdot 2^{p-1} \equiv 1[p]$$

$$6^{p-1} \equiv 1[p]$$
 : يعنى

$$\left\{egin{aligned} & heta = rac{-n}{2} \ \omega = rac{1}{2} - rac{1}{2}i \end{aligned}
ight.$$
 (بذن:

$$z^{'}=e^{rac{-\pi i}{2}}\Big(z-rac{1}{2}+rac{i}{2}\Big)+\Big(rac{1}{2}-rac{i}{2}\Big)$$
 : و هنه

 $\frac{-\pi}{2}$ و زاویته $\Omega\left(\frac{1}{2}-\frac{i}{2}\right)$ و النقطة $\Omega\left(\frac{1}{2}-\frac{i}{2}\right)$ و زاویته R

—(•)(2)(II)■

$$m=x+iy$$
 و $\Re e(m)=x$ نضع $\Im m(m)=y$

. نخیلي صرف
$$\frac{z_2-z_1}{z_2-m} \iff \overline{\left(\frac{z_2-z_1}{z_2-m}\right)} = -\left(\frac{z_2-z_1}{z_2-m}\right)$$

$$\iff \frac{\overline{m}+i-1-i\overline{m}}{i} = \frac{m-i-1+im}{i}$$

$$\iff$$
 $(x - iy) + i - 1 - i(x - iy) = (x + iy) - i - 1 + i(x + iy)$

$$\Leftrightarrow -2ix + 2i - 2iy = 0$$

$$\Leftrightarrow x + y = 1$$

$$\Leftrightarrow \Re e(m) + \Im m(m) + 1$$

—(হ)(2)(II)■

ننطلق من كون النقط Ω و M و M_1 و متداورة

$$\iff arg\left(\frac{z_2-z_1}{z_2-m}\right) \equiv arg\left(\frac{z_2-z_0}{z_1-z_0}\right)[\pi]$$

$$\left(\frac{z_2 - z_{\Omega}}{z_1 - z_{\Omega}}\right) = \frac{-i\left(\frac{1}{2} - \frac{i}{2} - m\right)}{\left(\frac{1}{2} - \frac{i}{2} - m\right)} = -i$$
 الاينا :

إذن :
$$\frac{z_2 - z_\Omega}{z_1 - z_0}$$
 عدد تخيلي صرف.

و منه:
$$\frac{z_2 - z_1}{z_2 - m}$$
 عدد تخیلي صرف كذلك.

$$\Leftrightarrow \Re e(m) + \Im m(m) = 1$$

$$\Leftrightarrow y = -x + 1$$

بن مجموعة النقط M التي من أجلها Ω و M و M_1 و متداورة M_2

$$(\Delta): y = -x + 1$$
 : أَشَكُلُ المستقيم (Δ) الذي معادلته

التمرين الثالث: (3,3 ن)

-(j)(**1**)■

$$a_n = 2^n + 3^n + 6^n - 1$$
 : Levil

$$= (2^n - 1) + 3^n (1 + 2^n)$$

$$3 \equiv 1$$
[2] و $2 \equiv 0$ [2] الدينا

$$3^n \equiv 1[2]$$
 و $2^n \equiv 0[2]$: إذن

(3)
$$3^n \equiv 1[2]$$
 $\binom{(1)}{(2)} \binom{(2^n - 1) \equiv 1[2]}{(2^n + 1) \equiv 1[2]}$: a.i.e.

أجوية الدورة العادية 2009 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012

<u>التمرين الرابع :</u>

(1) $3 \cdot 2^{p-1} \equiv 3[p]$: اذن $2^{p-1} \equiv 1[p]$: لدينا

$$(2)\left[2\cdot 3^{p-1}\equiv 2[p]
ight]$$
 . إذن $(2)\left[2\cdot 3^{p-1}\equiv 1[p]
ight]$

$$(3)$$
 $\boxed{6\cdot 6^{p-2}\equiv 1[p]}$: الإن $=6^{p-1}\equiv 1[p]$

و لدينا :
$$-6 \equiv -6[p]$$

$$3 \cdot 2^{p-1} + 2 \cdot 3^{p-1} + 6 \cdot 6^{p-2} - 6 \equiv 0[p]$$

$$\Leftrightarrow$$
 6 · 2^{p-2} + 6 · 3^{p-2} + 6 · 6^{p-2} - 6 \equiv 0[p]

$$\Leftrightarrow 6(2^{p-1} + 3^{p-1} + 6^{p-2} - 1) \equiv 0[p]$$

$$\Leftrightarrow 6(a_{p-2}) \equiv 0[p]$$

$$\Leftrightarrow \left[p / 6(a_{p-2}) \right]_{(5)}$$

 $6 = 2^1 \times 3^1$ نُفَكَكُ العدد 6 إلى جداء عوامل أولية نجد :

و لدينا
$$p$$
 عدد أولي أكبر من 3 إذن : p عدد أولي أكبر من 3

$$p/a_{p-2}$$
 : (Gauss) من (5) و

ليكن q عددا أوليا .

: q نفصل في هذا السؤال بين ثلاث حالات للعدد

q=2 الحالة الأولى: إذا كان

(÷)(2)(II)■

$$(\forall n \in \mathbb{N}^*)$$
 : $2/a_n$: (j) السؤ ال $(0,1)$ فإنه حسب نتيجة السؤ ال

$$(\exists n \in \mathbb{N}^*) : a_n \land q = q$$
 : إذن

q=3 الحالة الثانية : إذا كان

$$(orall n \epsilon \mathbb{N}^*) : 3 \ / \ a_n \ : (rac{oldsymbol{arphi}}{2})$$
 السؤال السؤال

$$(\exists n \in \mathbb{N}^*) : a_n \wedge q = q$$
 إذن

q>3 الحالة الثالثة : إذا كان

$$(\forall q>3) \; ; \; q \: / \: a_{q-2}$$
 : رأينا في السؤال (2) أن

$$\left[(\exists n \in \mathbb{N}^*) : a_n \land q = q \right]$$
 : إذن

خلاصة: نستنتج من هذه الحالات الثلاث أن:

$$(\forall q \in \mathbb{P})$$
, $(\exists n \in \mathbb{N}^*)$: $a_n \land q = q$

التمرين الرابع: (3,3 ن) الجزء ا

$$\ln x = n \ln t$$
 : نضع $x = t^n$

$$t = e^{\left(\frac{\ln x}{n}\right)}$$
 : و منه

$$\lim_{x \to 0^{+}} f_{n}(x) = \lim_{x \to 0^{+}} x (1 - \ln x)^{n} :$$

$$= \lim_{t \to 0^{+}} t^{n} (1 - n \ln t)^{n}$$

$$= \lim_{t \to 0^{+}} \left(t - n \ln t \right)^{n} = 0 = f_{n}(0)$$

إذن f_n دالة متصلة على يمين الصفر.

$$\lim_{x \to 0^+} \left(\frac{f_n(x) - f_n(0)}{x - 0} \right) = \lim_{x \to 0^+} (1 - \ln x)^n = +\infty \notin \mathbb{R}$$

إذن f_n غير قابلة للإشتقاق على اليمين في الصفر إ

$\lim_{x \to +\infty} \left(\frac{f_2(x)}{x} \right) = \lim_{x \to +\infty} (1 - \ln x)^2 = +\infty$

$$\lim_{x \to +\infty} f_2(x) = \lim_{x \to +\infty} x(1 - \ln x)^2 = +\infty$$

$$\lim_{x \to +\infty} \left(\frac{f_1(x)}{x} \right) = \lim_{x \to +\infty} (1 - \ln x) = -\infty$$

$$\lim_{x \to +\infty} f_1(x) = \lim_{x \to +\infty} x(1 - \ln x) = -\infty$$

$f_1(x) = x(1 - \ln x) \qquad :$ الدينا

$$f_1'(x) = (x - x \ln x)'$$
 : إذن :
 $= 1 - (\ln x + 1)$
 $= -\ln x$

و منه : $f_1^{'}$ تنعدم في العدد 1

$$f_{1}^{'}(x) < 0$$
 : فإن $x > 1$: إذا كان

$$f_{1}^{'}(x)>0$$
 : فإن $x<1$: إذا كان

أجوبة الدورة العادية 2009 من إعداد الأستاذ بدر الدين الفاتحى : (الصفحة : 154

(€)(1) ■

(j)(2) **■**

-(j)(**1**)■

: كما يلي كما الدالة أ f_1 كما يلي

(-(-)(2) ■

$$f_2'(x) = (x(1 - \ln x)^2)'$$

$$= (1 - \ln x)^2 - \frac{2x}{x}(1 - \ln x)$$

$$= (1 - \ln x)^2 - 2(1 - \ln x)$$

$$= (1 - \ln x)(1 - \ln x - 2)$$

$$= (1 - \ln x)(-1 - \ln x)$$

. e نلاحظ أن f_2' تنعدم في و

-(j)(**3**)■

x	0		1		e	+∞
$\ln x$	-	_	ø	+		+
$(1-\ln x)$		+		+	0	_
$x(1-\ln x)\ln x$		_	0	+	0	_

. [1;e] على المجال (\mathscr{C}_2) يوجد فوق (\mathscr{C}_2) على المجال

و $[e;+\infty[$ و المجالين على المجالين $[e;+\infty[$ و المجالين على المجالين وجد أسفل $[\mathscr{C}_2]$

$]0,+\infty[$ لدينا الدالة $x o rac{f_1(x)}{1+x^2}$ متصلة على

ين فهي تقبل دالة أصلية ψ بحيث :

$$F(x) = \psi(1) - \psi(e^x)$$
 s $\psi'(x) = \frac{f_1(x)}{(1+x^2)}$

.] $-\infty$; 0[الإشتقاق على F : إذن

$$F'(x) = (\psi(1))' - (\psi(e^x))'$$
 : او لدينا $= 0 - e^x \psi'(e^x)$

$$= \frac{-e^x f_1(e^x)}{1 + e^{2x}}$$

$$= \frac{(x - 1)e^{2x}}{1 + e^{2x}}$$

 $(\forall x < 0) \; ; \; F'(x) = \frac{(x-1)e^{2x}}{1+e^{2x}}$: لينا

$$\left((orall x < 0) \; ; \; rac{e^{2x}}{1+e^{2x}} > 0
ight.
ight)$$
 : و بما أن

(x-1) فإن إشارة F'(x) متعلقة فقط بإشارة

$$x < 1 \iff x < 0$$
 : و لدينا

$$x - 1 < 0$$
 : e ais

 $]-\infty;0]$ المجال [F'(x)<0 يعني F'(x)<0 يعني و بالتالي ي

أجوبة الدورة العادية 2009 من إعداد الأستاذ بدر الدين الفاتحى : () رمضان 2012 من إعداد الأستاذ بدر الدين الفاتحى : (

(j)(1) **=**

 $n \geq 1$ و $1 \leq x \leq e$ ليكن

 $(1 - \ln x) \ge 0$ و منه : $0 \le \ln x \le 1$

 $\int_1^e f_n(x) dx \ge 0$: و بالتالي $x(1-\ln x)^n \ge 0$: اي $u_n \ge 0$: اي ا

(÷)(1)**■**

$$|f_{n+1}(x) - f_n(x)|$$
 = $|x(1 - \ln x)^{n+1} - x(1 - \ln x)^n|$
= $|x(1 - \ln x)^n(-\ln x)|$

 $-\ln x \le 0$ و بما أن $1 \le x \le e$ و بما أن $1 \le x \le e$ و بما أن

 $\left[f_{n+1}(x) \leq f_n(x)
ight]$: $f_{n+1}(x) - f_n(x) \leq 0$: و منه

 $\forall x \in [1,e]$; $f_{n+1}(x) \leq f_n(x)$: نما أن

 $\int_{1}^{e} f_{n+1}(x) dx \le \int_{1}^{e} f_{n}(x) dx$: فإن

 $u_{n+1} \le u_n$: و منه

. الدينا $u_{n+1} \leq u_n$ الدينا $u_{n+1} \leq u_n$ الدينا

0 و لدينا : $u_n)_{n\geq 1}$ إذن : $(\forall n\geq 1)$; $u_n\geq 0$ و لدينا :

و بالتالى: $(u_n)_{n>1}$ متتالية متقاربة.

——(j)(2) **■**

 $u_{n+1} = \int_{1}^{e} f_{n+1}(x) dx = \int_{1}^{e} \underbrace{x}_{u'} \underbrace{(1 - \ln x)^{n+1}}_{v} dx$: Levil

 $= \left[\frac{x^2}{2} (1 - \ln x)^{n+1} \right]_1^e - \frac{(n+1)}{2} \int_1^e x^2 \left(\frac{-1}{x} \right) (1 - \ln x)^n dx$

 $= \frac{-1}{2} + \frac{(n+1)}{2} \int_{1}^{e} x (1 - \ln x)^{n} dx$

 $=\frac{-1}{2}+\frac{(n+1)}{2}u_n$

 $(\forall n \geq 1) \; ; \; u_{n+1} = \frac{-1}{2} + \frac{(n+1)}{2} u_n$ و بالنالي :

x < 0 : بحيث $t \in [e^x; 1]$ ليكن

 $e^x < t < 1$: يعنى

 $1 + e^{2x} < 1 + t^2 < 2$; and $e^{2x} = 1 + t^2 < 2$

 $\Leftrightarrow \quad \frac{1}{2} < \frac{1}{1+t^2} < \frac{1}{1+e^{2x}}$

 $\Leftrightarrow \frac{1}{2}f_1(t) < \frac{f_1(t)}{1+t^2} < \frac{f_1(t)}{1+e^{2x}}$

 $\iff \frac{1}{2} \int_{e^x}^1 f_1(t) \, dt < \int_{e^x}^1 \left(\frac{f_1(t)}{1+t^2} \right) dt < \int_{e^x}^1 \left(\frac{f_1(t)}{1+e^{2x}} \right) dt$

 $\Leftrightarrow \left(\frac{1}{2} \int_{e^x}^1 f_1(t) dt < F(x) < \frac{1}{(1 + e^{2x})} \int_{e^x}^1 f_1(t) dt \right) (*)$

 $\left(x^{2}\left(\frac{3}{4} - \frac{\ln x}{2}\right)\right) = 2x\left(\frac{3}{4} - \frac{\ln x}{2}\right) + x^{2}\left(\frac{-1}{2x}\right) : \frac{3x}{2} - x \ln x - \frac{x}{2}$ $= x(1 - \ln x)^{1}$ $= f_{1}(x)$

 $[0;+\infty[$ على f_1 على $x o x^2\Big(rac{3}{4}-rac{\ln x}{2}\Big)$ على .

(হ)(2)■

 $\int_{e^{x}}^{1} f_{1}(t) dt = \left[x^{2} \left(\frac{3}{4} - \frac{\ln x}{2}\right)\right]_{e^{x}}^{1}$: البينا $= \frac{3}{4} - e^{2x} \left(\frac{3}{4} - \frac{x}{2}\right)$ $= \frac{3}{4} - \frac{3e^{2x}}{4} + \frac{xe^{2x}}{2}$

 $\lim_{x \to -\infty} xe^{2x} = 0^- = 0$ و $\lim_{x \to -\infty} e^{2x} = 0^+ = 0$: بما أن

 $\lim_{x \to -\infty} \int_{e^x}^1 f_1(t) \, dt = \lim_{x \to -\infty} \left(\frac{3}{4} - \frac{3e^{2x}}{4} + \frac{xe^{2x}}{2} \right) = \left[\frac{3}{4} \right] : \dot{\mathbf{g}}$

نعود إلى التأطير (*) .

 $\frac{1}{2} \int_{e^x}^1 f_1(t) \, dt < F(x) < \frac{1}{(1+e^{2x})} \int_{e^x}^1 f_1(t) \, dt \quad : \text{لاينا}$

 $\lim_{x \to -\infty} \left(\frac{1}{2} \int_{e^x}^1 f_1(t) \, dt \right) < \lim_{x \to -\infty} F(x) < \lim_{x \to -\infty} \left(\frac{1}{(1 + e^{2x})} \int_{e^x}^1 f_1(t) \, dt \right)$

 $\Leftrightarrow \boxed{\frac{3}{8} < l < \frac{3}{4}}$

أجوبة الدورة العادية 2009 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 156

ڲۅڡڲۅڡڲۅڡڲ؈؈ڲۅڡڲۅڡڲۅڡڲۅڡڲۅڡڲۅڡڲۅڡڲۅڡڲۅڡڲۅڡڲۅڡڲ

⊕3 ■

$$(\forall n \ge 2) \; ; \; \frac{1}{n+1} \le u_n \le \frac{1}{n-1}$$

$$\Leftrightarrow$$
 $(\forall n \ge 2)$; $\frac{n}{n+1} \le nu_n \le \frac{n}{n-1}$

$$\iff \left((\forall n \ge 2) \; ; \; \frac{1}{1 + \frac{1}{n}} \le nu_n \le \frac{1}{1 - \frac{1}{n}} \right) (4)$$

$$\lim_{n \to \infty} \left(\frac{1}{n+1} \right) = \lim_{n \to \infty} \left(\frac{1}{n-1} \right) = 0$$
 دينا :

$$\overbrace{\lim_{n \infty} u_n = 0}$$
 : إذن حسب التأطير (3) إذن حسب التأطير

$$\lim_{n \to \infty} \left(\frac{1}{n + \frac{1}{n}} \right) = \lim_{n \to \infty} \left(\frac{1}{n - \frac{1}{n}} \right) = 1$$
 : و لدينا

$$\lim_{n \to \infty} n u_n = 1$$
 : (4) إذن حسب التأطير

 $n \geq 1$ ليكن

·(j)(4) **=**

$$d_n = |v_n - u_n|$$
 في البداية لدينا :
$$= \left| \frac{-1}{2} + \frac{n}{2} v_{n-1} + \frac{1}{2} - \frac{n}{2} u_{n-1} \right|$$

$$= \frac{n}{2} |v_{n-1} + u_{n-1}|$$

$$\begin{split} |v_n - u_n| &= \frac{n}{2} |v_{n-1} - u_{n-1}| \qquad : \\ &= \left(\frac{n}{2}\right) \left(\frac{n-1}{2}\right) |v_{n-2} - u_{n-2}| \\ &= \left(\frac{n}{2}\right) \left(\frac{n-1}{2}\right) \left(\frac{n-2}{2}\right) |v_{n-3} - u_{n-3}| \\ &\vdots \qquad \vdots \qquad \vdots \\ &= \left(\frac{n}{2}\right) \left(\frac{n-1}{2}\right) \left(\frac{n-2}{2}\right) \cdots \left(\frac{2}{2}\right) |v_1 - u_1| \end{split}$$

$$\left((orall n \geq 1) \; ; \; d_n = rac{n!}{2^{n-1}} d_1
ight) \; :$$
 و بالتالي

 $(\forall n\geq 2)$; $\frac{n!}{2}\geq 3^{n-2}$: ننبر هن على أن

 $\frac{2!}{2} \ge 3^0$: n=2 الترجع لدينا من أجل

 $(\forall n \geq 2)$; $\frac{n!}{2} \geq 3^{n-2}$: نفترض أن

$$\frac{(n+1)!}{2} = (n+1)\frac{n!}{2} \ge (n+1)3^{n-2}$$
 : لينا

 $(n+1) \ge 3$: فإن $n \ge 2$: بما أن

$$(n+1)3^{n-2} \ge 3^{n-1}$$
 : يعنى $(n+1)3^{n-2} \ge 3 \cdot 3^{n-2}$ و منه

$$S = \left| \int_{1}^{e} (f_{2}(x) - f_{1}(x)) dx \right|$$

$$= \left| \int_{1}^{e} f_{2}(x) dx - \int_{1}^{e} f_{1}(x) dx \right|$$

$$= |u_{1} - u_{2}|$$

$$u_{n+1} = \frac{-1}{2} + \frac{(n+1)}{2}u_n$$
 : و لدينا $u_0 = \int_1^e x \, dx = \boxed{\frac{e^2}{2} - \frac{1}{2}}$: إذن

$$u_1 = \frac{-1}{2} + \frac{1}{2} \left(\frac{e^2}{2} - \frac{1}{2} \right) = \underbrace{\frac{e^2}{4} - \frac{3}{4}}$$

$$u_2 = \frac{-1}{2} + \frac{e^2}{4} - \frac{1}{2} - \frac{1}{4} = \boxed{\frac{e^2}{4} - \frac{5}{4}}$$

 $S = |u_1 - u_2| = \left(\frac{e^2}{4} - \frac{3}{4}\right) - \left(\frac{e^2}{4} - \frac{5}{4}\right) = \frac{1}{2}(unit\acute{e})^2$

 $\|ec{t}\| = \|ec{f}\| = 2cm$: هي وحدة المعلم و بما أن $unit\acute{e} = 2cm$ فإن فإن فإن المعلم و بما أن المعلم و ا

$$(unité)^2 = 4cm^2$$
 : و منه

$$S = \frac{1}{2} (unit\acute{e})^2 = \boxed{2 cm^2}$$
 : و بالتالي

 $0 \leq u_{n+1}$: لدينا حسب ما سبق

$$0 \le \frac{-1}{2} + \frac{(n+1)}{2} u_n$$
 : إذن

$$\frac{1}{2} \le \frac{(n+1)}{2} u_n \quad :$$
و منه

$$(1) \boxed{\frac{1}{(n+1)} \le u_n} \quad : \dot{u}_n$$

$$u_{n+1} \le u_n$$
 : و لدينا كذلك

$$\frac{-1}{2} + \frac{(n+1)}{2} u_n \le u_n \qquad :$$
اذن

$$\iff \frac{-1}{2} + \frac{nu_n}{2} + \frac{u_n}{2} \le u_n$$

$$\iff u_n\left(\frac{n+1-2}{2}\right) \le \frac{1}{2}$$

$$\iff u_n\left(\frac{n-1}{2}\right) \le \frac{1}{2}$$

$$\Leftrightarrow \boxed{(\forall n \ge 2) \quad u_n \le \frac{1}{n-1}} \tag{2}$$

من (1) و (2) نستنتج أن :

-(j)(3)■

(3)
$$(\forall n \ge 2)$$
; $\frac{1}{n+1} \le u_n \le \frac{1}{n-1}$

أجوبة الدورة العادية 2009 من إعداد الأستاذ بدر الدين الفاتحي : (أصفحة : 157

$$\frac{(n+1)!}{2} \ge 3^{(n+1)-2} : \frac{1}{2}$$

$$(\forall n \geq 2) \; ; \; rac{n!}{2} \geq 3^{n-2}$$
 و بالنالي :

$$(orall n \geq 2) \; ; \; rac{n!}{2} \geq 3^{n-2}$$
 : ننطلق من العلاقة :

$$\Leftrightarrow n! \ge 3^{n-2} \cdot 2$$

$$\iff n! \ge \frac{3^{n-2} \cdot 2^{n-1}}{2^{n-2}}$$

$$\iff \frac{n!}{2^{n-2}} \ge \left(\frac{3}{2}\right)^{n-2}$$

$$\iff \left(d_n \ge \left(\frac{3}{2}\right)^{n-2} d_1\right)$$

بما أن : $\frac{3}{2}^{n-2}$ متتالية هندسية أساسها العدد الموجب و الأكبر من 1

$$\lim_{n \to \infty} \left(\frac{3}{2}\right)^{n-2} = +\infty \quad : \dot{0}$$

$$\left[\lim_{n\infty}d_n=+\infty
ight]$$
 و منه :

 $d_n = |v_n - u_n|$: لدينا

■ (4)(د)

. نفترض أن $(v_n)_{n\geq 1}$ متتالية متقاربة

و نعلم أن المتتالية $(u_n)_{n\geq 2}$ متقاربة .

إذن $(d_n)_{n\geq 2}$ متقاربة

$$\boxed{d_n o +\infty}$$
 : $\boxed{oldsymbol{\mathfrak{C}}}$: ڪن حسب السؤ الر

و بالتالي من هذا التناقض نستنتج أن المتتالية $(v_n)_{n\geq 1}$ متباعدة.

■ العمد لله رب العامين

أجوبة الدورة العادية 2009 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 158