ナレッジグラフ推論チャレンジ 本部門発表資料(差分)

グラフ畳み込みネットワークを用いた推理小説の犯人推定 とその根拠の解釈

東京都市大学大学院 総合理工学研究科情報専攻 | 産業技術総合研究所:

勝島修平

東京都市大学大学院 総合理工学研究科情報専攻: 穴田一

産業技術総合研究所: 福田賢一郎

目次

- 問題の概要
- アプローチの特徴と結果
- 既存研究
- 提案手法
- 結果
- 課題
- まとめ

問題の概要

人工知能の発展に伴った説明性を持つAIの開発の必要性

ナレッジグラフ推論チャレンジの開催

小説の内容を構造化したナレッジグラフを利用し、推理小説の犯人を説明付きで推定

アプローチの特徴と結論

特徴

- グラフ畳み込みネットワークによる小説の学習
- Layer-wise relevance propagationによるノード分析

結論

小説に必要な知識を追加した場合、犯人を推定可能

黒川ら TransEによる埋め込み手法

場面	主語	述語	対象	場 所	起点	終点	時間	何	理由
1	Helen	come				House of Holmes			
2	Helen	beScared							
•••									
6	Helen	obtain					Within 2 months	money	

■SVO形式に分解

場面	主語	述語	目的語	トリプル
1	Helen	come	house of Holmes	
2	Helen	beScared		
6	Helen	obtain	within 2 months	ᄆᄱᇎᇎᄼ
6	Helen	obtain	money	目的語を分解

スコア関数

$$f(h,r,t) = \|\mathbf{V}_h + \mathbf{V}_r - \mathbf{V}_t\|$$

→トリプル関係が成り立つように学習

犯人推定

小説「まだらの紐」と「悪魔の足」を組み合わせ、

?に該当する人物のスコアをランキング

→犯人 'Roylott' を2位で予想

*ホームズ、ワトソン、被害者ジュリアを除いて

既存研究の問題点

場面ごとの同時性を考慮していない

第72場面

"Helen heard whistle at the corridor on the death day of Julia" ヘレンはジュリアの死んだ日に廊下でホイッスルの音を聞いた

主語	述語	目的語
Helen	hear	Whistle
Helen	hear	Death_day_of_Julia
helen	hear	corridor

同時に扱うべき単語

課題

場面ごとの単語の同時性

提案

Graph Convolutional Network によるグラフ構造の学習

提案手法

提案手法のフロー

Ж. ф

他小説 ConceptNet

独目 オントロジ-

murderと登場人物とのコサイン類似度を計算 →類似度の高い人物を犯人としての特徴を 持っているとして推定

提案手法 (graph convolutional network)

提案手法のフロー

隣接行列 Aノード同士の隣接関係: ノードの特徴ベクトル: 特徵行列 H

$$\mathbf{H}^{(l+1)} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{\mathbf{A}} \widetilde{D}^{-\frac{1}{2}} \mathbf{H}^{(l)} W^{(l)} \right)$$

$$\mathbf{H}^{(l+1)} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{\mathbf{A}} \widetilde{D}^{-\frac{1}{2}} \mathbf{H}^{(l)} W^{(l)} \right)$$

 σ :活性化関数 $W^{(l)}$: 重み, \widetilde{D} :次数行列

$$\mathbf{A}' = Sigmoid(\mathbf{H}\mathbf{H}^T)$$
$$L = ||y - \mathbf{A}'||_2^2$$

提案手法 (layer-wise relevance propagation)

概要

- 深層学習における説明手法
- 層のユニットごとの関係性を逆伝播、入力データの出力データへの関係性を計算

• z_{ij} は層Iのユニットiから層I+1ユニットへ順伝播する値

提案手法 独自オントロジー(僧坊荘園用)

独自オントロジー (鵜飼さん作成 犯罪方法オントロジー参考)

GCNの形式に合わせて、述語もノードとして僧坊荘園用のネットワークを構築

- 殺害犯は動機・凶器・機会を有する
- 正当防衛で愛する人(lady_brackenstall)守る→殺害動機
- 船員は紐の結び方(特殊知識)を知っている→殺害機会

ConceptNet

GCNに合わせて無向ノードとして表現

実験設定

変更前	変更後			
追加知識であるConceptNetに対して施した処理				
冠詞	無			
複数形	単数形			
2語以上の空白	_ (アンダーバー)			
antonym	含めない			
大文字	小文字			
小説データに対	して施した処理			
場面番号	場面番号_小説名			
大文字	小文字			

Antoynumは反意語を示すため、学習には含めず _小説名はConceptNet上の数字と差別化するため

結果

犯人推定

犯人Roylottの順位			
まだらの紐	+ConceptNet[murder]	+ConceptNet[murder] +ConceptNet[kill]	+ConceptNet[murder] +ConceptNet[kill] +ConceptNet[snake]
10%欠損	2	2	1
25%欠損	2	2	2

ConceptNetのデータを段階的に追加 ConceptNetのmurder, 実際の事件のデータを加えた場合は犯人推定一位

25%欠損で犯人推定が出来ていない →snakeの知識が十分でない

結果 (差分)

犯人推定

犯人Roylottの順位				
まだらの紐	+ConceptNet[murder] +ConceptNet[kill] +悪魔の足	+ConceptNet[murder] +ConceptNet[kill] +僧坊荘園		
10%欠損	2	2		
25%欠損	2	2		

犯人Jack Crockerの順位		
僧坊荘園	+独自オントロジー	
	+ ConceptNet[murder]	
10%	1	

他小説のデータを加えただけでは、犯人推定はできず、構築した独自オントロジーを加えた場合は順位が一位

結果 (差分)

LRP

	LRPによる貢献度のRoylottから見た重要ノード上位5つ
1	91_speckledband
2	One_building_of mansion_of_Roylott
3	Dog_whip_of_Roylott
4	139_speckledband
5	38_speckledband

Dog_whip_of_roylottは、実際の小説のまだらの紐にて殺害に用いられる犯行手段 →グラフ構造から関係性を学習

結果 (差分)

LRP

	LRPによる貢献度のjack crockerから見た重要ノード5つ
1	355_abbey_grange
2	308_abbey_grange
3	310_abbey_grange
4	282_abbey_grange
5	thought_of_jack_crocker

犯人推定方法オントロジーにおける愛人lady brackenstall をbrackenstallから守る(正当防衛による)殺害
→thout_of _jack_crockerを近く学習

●嘘の考慮

ナレッジグラフの情報をそのまま学習しているため、 嘘の考慮が出来ない

LRP

隣接しているノードの貢献度しか示すことが出来ない

 ConcepetNet上の語義の曖昧性 似たような意味、品詞の違う単語を考慮できていない。 学習が不安定→より密なグラフを作成

まとめ

- GCNとLRPを組み合わせることで、必要な知識があった場合犯人推定を行うことができた
- 追加知識にConceptNetと独自オントロジーを定義
- 追加知識の準備や定義方法に関して課題が残る
- より説明性の高いシステムの構築を目指す

ACKNOWLEDGEMENTS

この成果は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務(JPNP20006, JPNP180013)の結果得られたものです.

謝辞

本研究を進めるにあたり、江上周作(産業技術総合研究所)様から多大なご指導を賜りました。改めまして、感謝申し上げます。