Teste de Hipóteses

VÍCTOR HUGO LACHOS DÁVILA

Teste De Hipóteses.

Exemplo 1. Considere que uma industria compra de um certo fabricante, pinos cuja resistência média à ruptura é especificada em 60 kgf (valor nominal da especificação). Em um determinado dia, a indústria recebeu um grande lote de pinos e a equipe técnica da industria deseja verificar se o lote atende as especificações.

Ho: O lote atende as especificações (Hipóteses nula)

H1: O lote não atende as especificações (Hipóteses alternativa)

Seja a v.a X: resistência à ruptura

 $X \sim N(\mu; 25)$

Ho: $\mu = 60$ (Hipóteses simples) (Hipóteses Composta bilateral) H1: µ ≠ 60

Definição: Uma hipóteses estatística é uma afirmação ou conjetura sobre o parâmetro, ou parâmetros, da distribuição de probabilidades de uma característica, X, da população ou de uma v.a.

Definição: Um teste de uma hipóteses estatística é o procedimento ou regra de decisão que nos possibilita decidir por Ho ou Ha, com base a informação contida na amostra.

Suponha que a equipe técnica da indústria tenha decidido retirar uma amostra aleatória de tamanho n=16, do lote recebido, medir a resistência de cada pino e calcular a resistência média \overline{X} (estimador de μ)

$$\overline{X} \sim N\left(\mu, \frac{25}{16}\right)$$

Para quais valores de \bar{x} a equipe técnica deve rejeitar Ho e portanto não aceitar o lote?

Definição: Região crítica (Rc) é o conjunto de valores assumidos pela variável aleatória ou estatística de teste para os quais a hipótese nula é rejeitada.

Se o lote está fora de especificação , isto é , H1:µ≠60, espera-se que a média amostral seja inferior ou superior a 60 kgf

Suponha que equipe técnica tenha decidido adotar a seguinte regra: rejeitar Ho se \bar{x} for maior que 62.5 kgf e ou menor que 57.5 kgf.

$$R_c = \{\overline{X} > 62,5 \text{ ou } \overline{X} < 57,5\}$$
 \Rightarrow Região de rejeição de Ho.

$$\overline{R}_c = R_a = \{57, 5 \le \overline{X} \le 62, 4\}$$
 \Rightarrow Região de aceitação de Ho.

Procedimento (teste)

$$Se \ \overline{x} \in R_c \Rightarrow Rejeita - se \ H_0$$

Se
$$\bar{x} \notin R_c \Rightarrow Aceita - se H_0$$

Tipos de Erros

Erro tipo I: Rejeitar Ho quando de fato Ho é verdadeiro.

Erro tipo II: Não rejeitamos Ho quando de fato Ho é falsa.

Exemplo 2: Considere o exemplo 1.

Ho: Aceitar o lote

H1: Não aceitar o lote

Erro tipo I: Não aceitar o lote sendo que ela está dentro das especificações.

Erro tipo II:Aceitar o lote sendo que ela está fora das especificações.

	Situação	
Decisão	Ho verdadeira	Ho falsa
Não rejeitar Ho	Decisção correta	Erro II
Rejeitar Ho	Erro I	Decisão correta

P(Erro tipo I)= α (nível de significância)

 $\alpha = P(\text{Rejeitar H}_0 \mid H_0 \text{ verdadeira})$

 $P(Erro\ II) = \beta = P(\text{N}\tilde{\text{a}}\text{o}\text{rejeitar}\text{H}_0 \mid H_0 \text{ falso}).$

$$1 - \beta = P(\text{Rejeitar} | H_0 \text{ \'e falso}).$$
 $\rightarrow \text{Poder do teste}$

Exemplo 3: Considerando as hipóteses do exemplo 1: H0: μ = 60 contra H1: μ ≠ 60.

$$\alpha = P\left[\overline{X} > 62,5 \text{ ou } \overline{X} < 57,5 \mid H_0 : \mu = 60\right] \implies Sob \ H_0, \ \overline{X} \sim N(60,25/16).$$

$$\alpha = P\left[\overline{X} > 62,5 \mid H_0 : \mu = 60\right] + P\left[\overline{X} < 57,5 \mid H_0 : \mu = 60\right] =$$

$$P\left[\frac{\overline{X} - 60}{\sqrt{25/16}} > \frac{62,5 - 60}{\sqrt{25/16}}\right] + P\left[\frac{\overline{X} - 60}{\sqrt{25/16}} < \frac{57,5 - 60}{\sqrt{25/16}}\right] =$$

$$P[Z > 2] + P[Z < -2] = 0,02275 + 0,02275 = 0,0445$$

 $\beta = P(Aceitar H_0 | H_1 \text{ verdadeiro}) = P[57,5 \le \overline{X} \le 62,5 | H_1 : \mu \ne 60]$

Para o cálculo de β considerar H_1 : μ =63,5. Sob H_1 , $\overline{x} \sim N\left(63,5;\frac{25}{16}\right)$.

$$\beta = P[57,5 \le \overline{X} \le 62,5 \mid H_1 : \mu = 63,5] = P[\overline{X} \le 62,5] - P[\overline{X} \le 57,5]$$
$$= P[Z \le -0,8] - P[Z \le -4,8] = 0,21186 + 0,00 = 0,21186.$$

Testes bilaterais e unilaterais

Se a hipótese nula e alternativa de um teste de hipóteses são:

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

onde μ_0 é uma constante conhecida, o teste é chamada de *teste* bilateral.

Em muitos problemas tem-se interesse em testar hipótese do tipo:

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0$$

o teste é chamado de teste unilateral esquerdo. E quando

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

o teste é chamada de teste unilateral direito.

Exemplo 4: Uma região do país é conhecida por ter uma população obesa. A distribuição de probabilidade do peso dos homens dessa região entre 20 e 30 anos é normal com média de 90 kg e desvio padrão de 10 kg. Um endocrinologista propõe um tratamento para combater a obesidade que consiste de exercícios físicos, dietas e ingestão de um medicamento. Ele afirma que com seu tratamento o peso médio da população da faixa em estudo diminuirá num período de três meses.

Neste caso as hipóteses que deverão ser testados são:

$$H_0: \mu = 90$$

$$H_1: \mu < 90$$

onde μ é a média dos pesos do homens em estudo após o tratamento.

Exemplo 5: Um fabricante de uma certa peça afirma que o tempo médio de vida das peças produzidas é de 1000 horas. Suponha que os engenheiros de produção têm interesse em verificar se a modificação do processo de fabricação aumenta a duração das peças

$$H_0: \mu = 1000$$

$$H_1: \mu > 1000$$

sendo μ o tempo médio das peças produzidas pelo novo processo.

Procedimento básico de teste de hipóteses

O procedimento básico de teste de hipóteses relativo ao parâmetro θ de uma população, será decomposto em 4 passos:

(i) Definição as hipóteses:

$$H_0: \theta = \theta_0$$

$$H_1: \theta < \theta_0 \text{ ou } \theta > \theta_0 \text{ ou } \theta \neq \theta_0$$

- (ii) Identificação da estatística do teste e caracterização da sua distribuição.
- (iii) Definição da regra de decisão, com a especificação do nível de significância do teste.
- (iv) Cálculo da estatística de teste e tomada de decisão.

Teste de hipóteses para uma média populacional

Considere uma amostra aleatória de tamanho n de uma população normal com média μ (desconhecida) e variância σ^2 (conhecida) Inicialmente, considera-se o caso do teste unilateral esquerdo. Suponha que tem-se interesse em verificar as seguintes hipóteses:

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0$$

(ii) A estatística do teste é a média amostral \overline{X} . Se população é normal (ou se amostra é grande $n \geq 30$, mesmo que a população não é normal) a distribuição de \overline{X} é $N(\mu,\sigma^2/n)$ e a variável aleatória sob H_0

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

(iii) É razoável, rejeitar H_0 em favor de H_1 , se a média amostral \overline{X} é demasiado pequena em relação μ_0 . A região crítica, então poderia ser obtido, selecionando um k da média amostral, de maneira que $Rc=\{\ \overline{X} \leq k\ \}$ onde k é tal que $P(\overline{X} \leq k | H_0: \mu=\mu_0)=\alpha$. Ou seja sob H_0

$$\left| P\left(\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \le \frac{k - \mu_0}{\sigma / \sqrt{n}}\right) = P\left(z \le \frac{k - \mu_0}{\sigma / \sqrt{n}}\right) = \alpha$$

$$\Rightarrow \frac{k - \mu_0}{\sigma / \sqrt{n}} = z_\alpha \Rightarrow k = \mu_0 + z_\alpha \times \frac{\sigma}{\sqrt{n}}$$

$$\Rightarrow Rc = \left\{ \overline{X} \le \mu_0 + z_\alpha \times \frac{\sigma}{\sqrt{n}} \right\}$$

(iv) Conclusão: se $\bar{x} \in Rc = \left\{ \bar{X} \le \mu_0 + z_\alpha \times \frac{\sigma}{\sqrt{n}} \right\}$, rejeita-se H_0 em caso contrário não se rejeita H_0 .

Método alternativo

Um método alternativo prático é trabalhar diretamente na escala Z

(i)
$$H_0: \mu = \mu_0$$
 contra $H_1: \mu < \mu_0$

(ii) A estatística de teste

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

(iii) A região crítica para um nível de significância α fixado

$$Rc = \{z \in R; Z \le z_{\alpha}\}$$

iv) se $z_{obs} \in Rc = \{Z \le z_{\alpha}\}$, rejeitase H_0 em caso contrário não se rejeita H_0 .

Exemplo

Um comprador de tijolos acha que a qualidade dos tijolos está diminuindo. De experiências anteriores, considera-se a resistência média ao desmoronamento de tais tijolos é igual a 200 kg, com um desvio padrão de 10 kg. Uma amostra de 100 tijolos, escolhidos ao acaso, forneceu uma média de 195 kg. Ao nível de significância de 5%, pode-se afirmar que a resistência média ao desmoronamento diminuiu?

(i) As hipóteses de interesse são:

$$H_0: \mu = 200 \, Kg$$

$$H_1: \mu < 200 \, Kg$$

- (ii) A estatística do teste é a média amostral \overline{X} . Já que n=100 \geq 30, tem-se que sob H₀ $\overline{X} \sim N\left(200, \frac{100}{100}\right)$.
- (iii) A região crítica, então poderia ser obtido, selecionando um k da média amostral, de maneira que Rc={ $\overline{X} \le k$ } onde k é tal que $P(\overline{X} \le k | H_0: \mu = \mu_0) = \alpha = 0.05$. Ou se ja sob H_0

$$P\left(\frac{\overline{X} - 200}{10/\sqrt{100}} \le \frac{k - 200}{10/\sqrt{100}}\right) = P\left(z \le \frac{k - 200}{1}\right) = \alpha = 0.05 \Rightarrow k - 200 = -1.64 \Rightarrow k = 198.36$$

$$\Rightarrow Rc = \{\overline{X} \le 198,36\}$$

(iv) Do enunciado tem-se $\bar{x}=195\in Rc=\{\bar{X}\leq 198,36\}, \Rightarrow$ rejeita-se H_0 ao nível de 5% de significância.

Método alternativo

(i)
$$H_0$$
: $\mu = 200$ contra H_1 : $\mu < 200$

(ii) A estatística de teste

$$Z = \frac{\overline{X} - 200}{\sigma / \sqrt{n}} \sim N(0,1)$$

(iii) A região crítica para um nível de significância α =0,05 fixado

iv) Do enunciado temos: $z_{obs} = \frac{195 - 200}{10 / \sqrt{100}} = -5 \in R_c \implies \text{rejeita-se H}_{0.}$ ao nível de

5% de significância.

Procedimento Geral

A seguir é apresentado o procedimento geral de teste de hipóteses para uma média populacional considerando o procedimento alternativo descrito acima.

(i)

$$H_{0}: \mu = \mu_{0} \ (ou \ge \mu_{0}) \quad H_{0}: \mu = \mu_{0} \ (ou \le \mu_{0}) \quad H_{0}: \mu = \mu_{0}$$

$$\underbrace{H_{1}: \mu < \mu_{0}}_{U.Esquerdo} \qquad \underbrace{H_{1}: \mu > \mu_{0}}_{U.Direito} \qquad \underbrace{H_{1}: \mu \ne \mu_{0}}_{Bilateral}$$

- (ii) A estatística de teste
- (a) Quando a variância e conhecida

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

(b) Quando a variância é desconhecida e amostra pequenas

$$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$$

(iii) A região crítica para um nível de significância α fixado

(iv) Se a $ET_{obs} \in R_C$., rejeita-se H_o em caso contrário não se rejeita H_0 .

Exemplo

Os registros dos últimos anos de um colégio atestam para calouros admitidos uma nota média 115 (teste vocacional). Para testar a hipóteses de que a média de uma nova turma é a mesma das turmas anteriores, retirou-se, ao acaso, uma amostra de 20 notas, obtendo-se média 118 desvio padrão 20. Use α =0,05

Supondo que as notas dos novos calouros tem distribuição normal com média μ e desvio padrão σ

(i) As hipóteses de interesse são:

$$H_0: \mu = 115$$

$$H_1: \mu \neq 115$$

(ii) A estatística de teste

$$T = \frac{\overline{X} - 115}{S/\sqrt{n}} \sim t(n-1)$$

(iii) A região crítica para um nível de significância α =0,05 fixado

$$Rc = \{ z \in T; |T| \ge 2,093 \}$$

iv) Do enunciado temos: $T_{obs} = \frac{118-115}{20/\sqrt{20}} = 0.67 \notin R_c \implies \text{não rejeita-se H}_{0.}$ ao nível de 5% de significância.

Teste de hipóteses para uma proporção populacional

O procedimento para os testes de hipóteses para proporção populacional é basicamente igual ao procedimento para o teste para uma média populacional. Considere o problema de testar a hipótese que a proporção de sucessos de um ensaio de Bernoulli é igual a valor especifico, po. Isto é, testar as seguintes hipóteses:

(i)
$$H_0: p = p_0 \ (ou \ge p_0) \quad H_0: p = p_0 \ (ou \le \mu_0) \quad H_0: p = p_0$$

$$\underbrace{H_1: p < p_0}_{U.Esquerdo} \qquad \underbrace{H_1: p > p_0}_{U.Direito} \qquad \underbrace{H_1: p \ne p_0}_{Bilateral}$$

(ii) A estatística de teste

$$Z = \frac{\hat{p} - p_o}{\sqrt{\frac{p_0(1 - p_o)}{n}}} \sim N(0,1)$$

Exemplo

Um estudo é realizado para determinar a relação entre uma certa droga e certa anomalia em embriões de frango. Injetou-se 50 ovos fertilizados com a droga no quarto dia de incubação. No vigésimo dia de incubação, os embriões foram examinados e 7 apresentaram a anomalia. Suponha que deseja-se averiguar se a proporção verdadeira é inferior a 25% com um nível de significância de 0,05.

(i) As hipóteses de interesse são:

$$H_0: p = 0.25$$

$$H_1: p < 0.25$$

(ii) A estatística de teste

$$Z = \frac{\hat{p} - 0.25}{\sqrt{\frac{0.25(1 - 0.25)}{50}}} \sim N(0.1)$$

(iii) A região crítica para um nível de significância α =0,05 fixado

iv) Do enunciado temos n=50, $\hat{p} = \frac{7}{50} = 0.14$: $z_{obs} = \frac{0.14 - 0.25}{\sqrt{\frac{0.025 \times 0.75}{50}}} = -1.7963 \in R_c \implies$

rejeita-se H_{0.} ao nível de 5% de significância.

Inferência Para Duas Amostras

Teste de hipóteses e intervalo de confiança para $\mu_1 - \mu_2$

Suponha que $X_1,...,X_n$ é uma amostral aleatória de tamanho n de uma população com característica X, que tem distribuição normal com média μ_1 e variância σ_1^2 . Considere que $Y_1,...,Y_m$ é uma amostra aleatória de tamanho m, de uma população com característica Y que tem distribuição normal com média μ_2 e variância σ_2^2 , alem disso, X e Y são independentes. Suponha que tem-se interesse em verificar se existe ou não uma diferença significativa entre as médias populacionais μ_1 e μ_2 . O procedimento básico de teste, neste caso é a seguinte:

$$H_{_{0}}: \mu_{_{1}} - \mu_{_{2}} = \Delta (ou \geq \Delta) \quad H_{_{0}}: \mu = \mu_{_{0}} (ou \leq \Delta) \quad H_{_{0}}: \mu_{_{1}} - \mu_{_{2}} = \Delta$$

$$\underbrace{H_{_{1}}: \mu_{_{1}} - \mu_{_{2}} < \Delta}_{U.Esquerdo} \qquad \underbrace{H_{_{1}}: \mu_{_{1}} - \mu_{_{2}} > \Delta}_{UDireito} \qquad \underbrace{H_{_{1}}: \mu_{_{1}} - \mu_{_{2}} \neq \Delta}_{Bilateral}$$

onde Δ é constante conhecida no caso Δ =0, temos teste de hipóteses para a igualdade de 2 médias populacionais

(ii) A estatística de teste

(a) Quando σ_1^2 , $e \sigma_2^2$ são conhecidos

$$Z = \frac{\overline{X} - \overline{Y} - \Delta}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \tilde{N}(0,1)$$

(b) Quando $\sigma_1^2 = \sigma_2^2 = \sigma^2$ desconhecidos

$$T = \frac{\overline{X} - \overline{Y} - \Delta}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \tilde{sob H_0} t(n+m-2)$$

onde
$$S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$$

Exemplo 1: Estuda-se o conteúdo de nicotina de duas marcas de cigarros (A e B), obtendo-se os seguintes resultados.

A: 17; 20; 23; 20

B: 18; 20; 21; 22; 24

Admitindo que o conteúdo de nicotinas das duas marcas tem distribuição normal e que as variâncias populacionais são iguais, com α =0,05, pode-se afirmar que existe alguma diferença significativa no conteúdo médio de nicotina nas duas marcas?

Sejam X: O conteúdo de nicotina da marca A $X \sim N(\mu_1, \sigma_1^2)$

Y: O conteúdo de nicotina da marca B $Y \sim N(\mu_2, \sigma_2^2)$

Nosso interesse é testar as seguintes hipóteses:

(i)
$$H_{_{0}}: \mu_{_{1}} = \mu_{_{2}} \qquad H_{_{0}}: \mu_{_{1}} - \mu_{_{2}} = 0$$

$$H_{_{1}}: \mu_{_{1}} \neq \mu_{_{2}} \qquad H_{_{1}}: \mu_{_{1}} - \mu_{_{2}} \neq 0$$

Boxplots do Conteúdo de Nicotina por Marca

$$n = 4$$
, $\overline{X} = 20 S_1^2 = 6$
 $m = 5$, $\overline{Y} = 21 S_2^2 = 5$

A estatística de teste é dada por:

(ii)
$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \tilde{sob}_{H_0} t(n+m-2)$$

(iii) A região crítica, para α =0,05, (parte achurada) representa os valores correspondente da distribuição t-Student com n+m-2=4+5-2=7 graus de liberdade com mostra a figura

$$Rc = \{t \in t(7); |T| \ge 2.365\}$$

(iv) Dos dados do exemplo temos:

$$S_{p}^{2} = \frac{(n-1)S_{1}^{2} + (m-1)S_{2}^{2}}{n+m-2} = \frac{(4-1)(6) + (5-1)5}{4+5-2} = \frac{38}{7}$$

Daí temos, que estatística observada ou calculada é:

$$T_{obs} = \frac{\overline{X} - \overline{Y}}{\sqrt{S_{p}^{2} \left(\frac{1}{n} + \frac{1}{m}\right)}} = \frac{20 - 21}{\sqrt{\frac{38}{7} \left(\frac{1}{4} + \frac{1}{5}\right)}} = -0,641$$

Como $T_{obs} \notin Rc \Rightarrow N$ ão se rejeita H_{o}

Bernoulli(p₁)

população 1

$$X_1, \dots, X_n$$

$$\hat{p}_{1} \sim N\left(p_{1}, \frac{p_{1}(1-p_{2})}{n}\right)$$

$$\hat{p}_{1} - \hat{p}_{2} \sim N \left(p_{1} - p_{2}, \frac{p_{1}(1-p_{1})}{n} + \frac{p_{2}(1-p_{2})}{m} \right)$$

Bernoulli(p₂)

população 2

$$Y_1, \dots, Y_m$$

$$\hat{p}_2 \sim N\left(p_2, \frac{p_2(1-p_2)}{2}\right)$$

Teste de hipóteses para $p_1 - p_2$

Suponha que tem-se duas amostras independentes de tamanhos n e m suficientemente grandes (n>30 e m>30), de duas populações Bernoulli, com probabilidades de sucessos p_1 e p_2 respectivamente. E sejam X: o número de sucessos na amostra de tamanho n e Y: o número de sucessos na amostra de tamanho m. Portanto, X~B(n, p_1 e Y~ B(m, p_2). Há interesse em verificar as seguintes hipóteses estatística:

(i)
$$H_{0}: p_{1} = p_{2} (ou \ge p_{2}) \quad H_{0}: p_{1} = p_{2} (ou \le p_{2}) \quad H_{0}: p_{1} = p_{2}$$

$$\underbrace{H_{1}: p_{1} < p_{2}}_{U.Esquerdo} \qquad \underbrace{H_{1}: p_{1} > p_{2}}_{U.Direito} \qquad \underbrace{H_{1}: p_{1} \ne p_{2}}_{Bilateral}$$

(ii) A estatística de teste

$$Z = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0,1)$$

onde
$$\hat{p}_{1} = \frac{x}{n}$$
, $\hat{p}_{2} = \frac{y}{m}$; $\overline{p} = \frac{x+y}{n+m} = \frac{n\hat{p}_{1} + m\hat{p}_{2}}{n+m}$

Os passos (iii) e (iv) são equivalentes ao procedimento de teste para uma média populacional.

Exemplo 3: Dois tipos de solução de polimento estão sendo avaliados para possível uso em uma operação de polimento na fabricação de lentes intra-oculares usadas no olho humano depois de uma operação de catarata. Trezentas lentes foram polidas usando a primeira solução de polimento e, desse número 253 não tiveram defeitos induzidos pelo polimento. Outras 300 lentes foram polidas, usando a segunda solução de polimento sendo 196 lentes consideradas satisfatórios. Há qualquer razão para acreditar que as duas soluções diferem? Use α =0,01.

X: o número de lentes sem defeito das 300 polidas com a 1ª solução, ⇒X~B(300,p₁)

Y: o número de lentes sem defeito das 300 polidas com a 2ª solução ⇒Y~B(300,p₂).

Nosso interesse é testar as seguintes hipóteses:

$$H_{_{0}}: p_{_{1}} = p_{_{2}}$$

$$H_{\scriptscriptstyle 1}:p_{\scriptscriptstyle 1}\neq p_{\scriptscriptstyle 2}$$

(ii) A estatística de teste

$$Z = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0,1)$$

(iii) A região crítica, para α=0,01, (parte achurada) representa os valores correspondente da distribuição norma padrão com mostra a figura

$$Rc = \{t \in Z; |Z| \ge 2.58\}$$

0,005 0,005

(iv) Dos dados do exemplo temos:

$$\hat{p}_{1} = \frac{253}{300} = 0,8433; \hat{p}_{2} = \frac{196}{300}; n = m = 300; \overline{p} = \frac{253 + 196}{300} = 0,7483$$

$$Z_{obs} = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} = \frac{0,8433 - 0,6533}{\sqrt{0,7483(0,2517)\left(\frac{1}{300} + \frac{1}{300}\right)}} = 5,36$$

Como $Z_{obs} \in Rc \Rightarrow rejeita - se H_0$