High-level signatures and initial semantics

B. Ahrens, A. Hirshowitz, A. Lafont, M. Maggesi

Language with substitutions

Goal of our work: construct the syntax associated to a large class of *signatures*.

Aim: justify induction on the syntax with an initiality property

Example of a "language" with variables and substitution (i.e. replacing variables with any expression yields a valid expression): formal arithmetic expressions with +, \times , natural numbers.

$$x + (y \times 3)$$
 $\xrightarrow{\text{substitution}}$ $2 + ((z + 5) \times 3)$ $\xrightarrow{x \mapsto 2, y \mapsto z + 5}$

Abstract

- Definition of **syntax generated by a signature** (in the spirit of Initial Semantics): it is the initial object in a suitable category of models.
- Identification of a class of signatures which generate a syntax: **presentable signatures** (subsumes classical algebraic signatures, i.e. signatures for alguagages with variable binding such as lambda calculus).

Plan

PLAN (TODO)

1. Languages, monads and modules

2. Induction and Initiality

3. Signatures

Languages as monads

The language of arithmetic expressions as a monad:

- for any set of variables $X = \{x, y, z, ...\}$, there is a set A(X) of expressions taking free variables in X.

$$A(\emptyset) = \{0, 2, 1+2, 5 \times (3+1), \dots\}$$

 $A(\{x\}) = A(\emptyset) \cup \{x, x+3, 5 \times x, \dots\}$

- any variable $x \in X$ is a valid expression that we note $\underline{x} \in A(X)$

$$\forall X, \ var_X : X \to A(X)$$
$$x \mapsto x$$

- given a family $(t_x)_{x \in X}$ of expressions in A(Y), we can substitute each variable x of an expression $e \in A(X)$ with t_x :

$$< t >: A(X) \to A(Y)$$

 $e \mapsto e[x \mapsto t_x]$

1st monad law

The identity substitution:

Substituting all variables with the same variables (i.e. according to the family $(var_X(x))_{x \in X}$) does nothing:

$$\forall e \in A(X), \ e[x \mapsto x] = e$$

In other words, the following diagram commutes:

2nd monad law

Substitution of a variable:

Let $(t_x)_{x \in X}$ be a family of expressions in A(Y):

$$t: X \to A(Y)$$

Substituting an expression consisting of a single variable *var(y)* yields

$$t_y$$
:

$$\forall y \in X, \ y[x \mapsto t_x] = t_y$$

In other words, the following diagram commutes:

3rd monad law

Composition of substitutions:

Let

- $(t_x)_{x \in X}$ be a family of expressions in A(Y) $t: X \to A(Y)$
- $(u_y)_{y \in Y}$ be a family of expressions in A(Z) $u: Y \to A(Z)$

Then, for any expression e in A(X),

$$e[x \mapsto t_x][y \mapsto u_y] = e[x \mapsto t_x[y \mapsto u_y]]$$

In other words, the following diagram commutes:

Languages as monads

The language of arithmetic expressions as a monad:

We have, for each set X, a set A(X), and maps:

$$\forall X, \ var_X : X \to A(X)$$
$$\forall X, Y, (t_x \in A(Y))_{x \in X}, < t >: A(X) \to A(Y)$$

subjected to the three laws:

IDENTITY SUBSTITUTION

VARIABLE SUBSTITUTION

SUBSTITUTIONS

COMPOSITION OF

This is the definition of a monad on the category of Sets

9 / 31

Examples of monads

Some other examples of monads:

- the (untyped) syntax of lambda-calculus *L* (modulo alpha equivalence)

- the (untyped) syntax of lambda-calculus modulo beta-reduction and eta-expansion

Examples of monads

Some other examples of monads:

- the assignement $X \mapsto \mathscr{P}(X) = \{ U \mid U \subset X \} \text{ yields a monad } \mathscr{P}$.

$$\forall X, \ var_X : X \to \mathcal{P}(X)$$
$$x \mapsto \{x\}$$

Let $U \subset X$ (i.e. $U \in \mathscr{P}(X)$) and $(V_x)_{x \in X}$ a family of subsets of Y. Substitution is defined as union:

$$U[x \mapsto V_x] = \bigcup_{x \in U} V_x \quad \in \mathcal{P}(Y)$$

Operations as module morphisms

Arithmetic operations as module morphisms:

For each set X, the sum of two expressions $e,e' \in A(X)$ take free variables in X:

$$\forall X, \ add_X : A(X) \times A(X) \to A(X)$$

$$(e, e') \mapsto e + e'$$

Note that:

$$(e+e')[x \mapsto t_x] = e[x \mapsto t_x] + e'[x \mapsto t_x]$$

We characterize this situation as follows:

 $A(X) \times A(X)$ has a notion of substitution \bigwedge A x A is a **module** on A add commutes with substitution add is a **module morphism**

Module over a monad

Substitution on A x A:

Let $(t_x)_{x \in X}$ be a family of expressions in A(Y): $t: X \to A(Y)$

Then we can define substitution on $A(X) \times A(X)$:

$$\langle t \rangle : A(X) \times A(X) \to A(Y) \times A(Y)$$

 $(e, e') \mapsto (e, e')[x \mapsto t_x] := (e[x \mapsto t_x], e'[x \mapsto t_x])$

that inherit some properties of substitution on A:

- (identity substitution) $(e, e')[x \mapsto x] = (e, e')$
- (composition of substitutions) for any other family $(u_y)_{y \in Y}$ of expressions in A(Z), $(e,e')[x \mapsto t_x][y \mapsto u_y] = (e,e')[x \mapsto t_x[y \mapsto u_y]_A$

This is an example of a module over the monad A

Module over a monad

Module over a monad:

A module over the monad A:

- associates a set M(X) to any set X: M(X) can be thought of as "generalized" expressions taking variables in X.
- is equipped, given any family $(t_x)_{x \in X}$ of elements of A(Y), with a substitution $\langle t \rangle_M : M(X) \to M(Y)$ satisfying:

IDENTITY SUBSTITUTION

COMPOSITION OF SUBSTITUTIONS

Examples of modules

Modules over a monad:

Some examples of modules over a monad **R**:

- **R** itself (already satisfies identity substitution and composition of substitution by definition of a monad)
- $\mathbf{R} \times \mathbf{R}$ (i.e. the assignement $X \mapsto R(X) \times R(X)$)
- M x N for any module M and N

Important example: Derivative of a module

- $X \mapsto R(X + \{n\})$ where $n \notin X$ yields a module denoted by R'
- more generally, we similarly define M' given a module M

Module morphism

Module morphism:

Let **M** and **N** be two modules over a monad **R**. A module morphism between **M** and **N** is a family of maps $(f_X:M(X) \to N(X))_X$ that *commutes with substitution*: for any $e \in M(X)$ and family $(t_x)_{x \in X}$ of elements of M(Y),

$$f_X(e)[x \mapsto t_x]_N = f_Y(e[x \mapsto y_x]_M)$$

Example:

$$add: A \times A \rightarrow A$$

$$add(e, e')[x \mapsto t_x] = add(e[x \mapsto t_x], e'[x \mapsto t_x])$$

Examples of module morphisms

Some module morphisms:

- id_M : M → M denoting the family of identity maps $(id_{M(X)}:M(X) \to M(X))_X$ for any module M
- **app**: L x L \rightarrow L denoting the application operation of the lambda calculus monad L: app(t,u) = t u
- What about the abstraction operation abs : $t \mapsto \lambda x.t$ of lambda calculus?

Binding variables:

In $\lambda x.t$, the term t depends on an additional free variable x: If $\lambda x.t \in L(Y)$, then $t \in L(Y + \{x\}) = L'(Y)$

abs:L' → L is a module morphism

Plan

PLAN

1. Languages, monads and modules

2. Induction and Initiality

3. Signatures

Induction

Example: computing the free variables of a lambda-term

We compute it by induction on the syntax:

$$fv(x) = \{x\}$$
 (variable)
 $fv(tu) = fv(t) \cup fv(u)$ (application)
 $fv(\lambda x.t) = fv(t) \setminus \{x\}$ (abstraction)

This is formalized in our setting as a family of maps $(fv_X: L(X) \rightarrow \mathcal{P}(X))_X$ which commutes with variable and substitution:

$$fv(var_L(x)) = \{x\} \qquad fv(u[x \mapsto t_x]_L) = \bigcup_{y \in fv(u)} t_y$$
$$= var_{\mathcal{P}}(x) \qquad = fv(u)[x \mapsto fv(t_x)]_{\mathcal{P}}$$

(This is a definition of a monad morphism)

Induction

Example: computing the free variables of a lambda-term

fv also commutes with 'application' and 'abstraction'

$$app_{\mathcal{P}}: \mathcal{P} \times \mathcal{P} \to \mathcal{P}$$

$$(V, V') \mapsto V \cup V'$$

$$abs_{\mathcal{P},X}: \mathcal{P}'(X) \to \mathcal{P}$$

$$V \mapsto V \setminus \{n\}$$

Actually, these commutations **define** fv uniquely by induction:

$$fv(x) = \{x\}$$
 (commutation with variable)
 $fv(tu) = fv(t) \cup fv(u)$ (commutation with application)
 $fv(\lambda x.t) = fv(t) \setminus \{x\}$ (commutation with abstraction)

fv is the unique family of maps that makes the following diagrams commute:

More generally, let R be a monad with application and abstraction.

$$X \xrightarrow{\text{var}_{R,X}} R(X)$$

$$R(X) \xrightarrow{\langle t \rangle_R} R(Y)$$

$$R(X) \times R(X) \xrightarrow{app_R} R(X)$$

$$R(X+\{n\}) \xrightarrow{abs_R} R(X)$$

More generally, let R be a monad with application and abstraction.

Then there is a unique family $(f_X)_X$ of maps (defined by induction) that makes the following diagrams commute:

More generally, let R be a monad with application and abstraction.

Then there is a unique family $(f_X)_X$ of maps (defined by induction) that makes the following diagrams commute:

Syntax and initiality

A definition of a syntax:

A **syntax** is a monad that comes with an *induction principle*, *i.e.* which is initial in a suitable category of *monads* + *operations that it implements.*

Example:

The monad L of lambda calculus is initial in the category of monads + application and abstraction.

We say that L is the **syntax generated** by the **signature** of **application** and **abstraction**.

We will now present a general definition of **signatures**.

What a signature should be:

L is initial among the monads R that model the signature ΣL of application and abstraction, i.e. monads R that come with module morphisms:

$$app_R: R \times R \to R \\ abs_R: R' \to R$$
 or $[app_R, abs_R]: R \times R + R' \to R$ \geq $\Sigma L(R)$

A syntax S is initial among the monads R that model its associated signature Σ , i.e. monads R that come with a module morphism:

$$\sigma_R:\Sigma_R\to R$$

Thus, a signature Σ should assign to any monad R a module Σ_R over it.

Let **R** be a monad that models the signature of application and abstraction. Then there exists a unique monad morphism $\mathbf{f}: \mathbf{L} \to \mathbf{R}$ which commutes with abstraction and application:

Let **R** be a monad that models a signature Σ (there is a module morphism $\sigma_R: \Sigma_R \to R$). Then there exists a unique monad morphism $f: S \to R$ which commutes with σ :

Let **R** be a monad that models the signature of application and abstraction. Then there exists a unique monad morphism $\mathbf{f}: \mathbf{L} \to \mathbf{R}$ which commutes with abstraction and application:

Let \mathbf{R} be a monad that models a signature Σ (there is a module morphism $\sigma_R:\Sigma_R\to\mathbf{R}$). Then there exists a unique monad morphism $\mathbf{f}:\mathbf{S}\to\mathbf{R}$ which commutes with σ :

Thus, a signature Σ assigns to any monad morphism $f: R \to R'$ a family of maps $(\Sigma(f)_X : \Sigma_R(X) \to \Sigma_{R'}(X))_{X.}$

As for module morphisms, we require that this family commutes with substitution:

$$\Sigma(f)_Y(e[x\mapsto t_x]_{\Sigma_R})=\Sigma(f)_X(e)[x\mapsto f_X(t_x)]_{\Sigma_R'}$$
 Let **R** be a monad that models a signature **\Sigma** (there is a module morphism

 $\sigma_R: \Sigma_R \to R$). Then there exists a unique monad morphism $f: S \to R$ which

commutes with σ :

$$\Sigma_{L}(X) \xrightarrow{\sigma_{L}} L(X)$$

$$\Sigma(f)_{X} \downarrow \qquad \qquad \downarrow f_{X}$$

$$\Sigma_{R}(X) \xrightarrow{\sigma_{R}} R(X)$$

Plan

PLAN

- 1. Languages, monads and modules
- 2. Induction and Initiality
- 3. Signatures

Definition of signatures

A **signature** Σ is given by:

- for each monad R, a module Σ_R over it
- for each monad morphism $f: R \to S$, a family $\Sigma(f): \Sigma_R \to \Sigma_S$ of morphisms which commutes with substitution:

$$\Sigma(f)_Y(e[x \mapsto t_x]_{\Sigma_R}) = \Sigma(f)_X(e)[x \mapsto f_X(t_x)]_{\Sigma_R'}$$

such that (functoriality)

$$\Sigma(f \circ g) = \Sigma(f) \circ \Sigma(g)$$
 and $\Sigma(id_R) = id_{\Sigma R}$

A **model** of a signature Σ is a monad R together with a morphism of modules $\sigma_R: \Sigma_R \to R$

A **model morphism** of a signature Σ between two models R and R' is a monad morphism $f: R \to S$ which commutes with $\sigma: \sigma_R \circ f = \Sigma_f \circ \sigma_{R'}$

The **syntax generated by** a signature Σ is its initial model.

Syntax generated by a signature

This notion of signature is very general so that we do not expect that all of them generate a syntax.

Examples of syntax generating signatures:

$-R \mapsto R \times R$:

models are monads R that comes with a module morphism R \times R \rightarrow R.

The syntax corresponds to a language with variables and a binary

operator b: expr ::= x (variable)

| b(t, u) where t and u are any expressions

$-R \mapsto R \times R + R'$:

By universal property of the disjoint sum +, models are monads R equipped with two modules morphisms R x R \rightarrow R and R' \rightarrow R.

The syntax corresponds to lambda calculus

Syntax generated by a signature

This notion of signature is very general so that we do not expect that all of them generate a syntax.

Examples of syntax generating signatures:

$-R \mapsto R \times R$:

models are monads R that comes with a module morphism R \times R \rightarrow R.

The syntax corresponds to a language with variables and a binary

operator b: expr ::= x (variable)

| b(t, u) where t and u are any expressions

$-R \mapsto R \times R + R'$:

By universal property of the disjoint sum +, models are monads R equipped with two modules morphisms R x R \rightarrow R and R' \rightarrow R.

The syntax corresponds to lambda calculus

Algebraic signatures

More generally, any signature of the form $R \mapsto R' \times R'' \times R''' + R \times R'' \times R''' \times R''' \times R + ...$ (i.e. any disjoint sum of products of finite derivatives of the monad) generates a syntax. We call them **algebraic signatures**: they correspond to languages with n-ary operations that can bind a finite number of variables in their arguments.

Our main result: quotients of algebraic signatures also generate a syntax

Example:

- R \mapsto (R x R) / S₂ associates to any monad R the module of its unordered pairs. Models (in particular the syntax) are monads equipped with a binary *commutative* operation.

Algebraic signatures

More generally, any signature of the form $R \mapsto R' \times R'' \times R''' + R \times R'' \times R''' \times R''' \times R + ...$ (i.e. any disjoint sum of products of finite derivatives of the monad) generates a syntax. We call them **algebraic signatures**: they correspond to languages with n-ary operations that can bind a finite number of variables in their arguments.

Our main result: quotients of algebraic signatures also generate a syntax

Example:

- R \mapsto (R x R) / S₂ associates to any monad R the module of its unordered pairs. Models (in particular the syntax) are monads equipped with a binary *commutative* operation.

Quotient of a signature

Quotient of a set:

A quotient of a set X is a set Y together with a surjection $f: X \to Y$. $(x \sim x')$ iff f(x) = f(y).

Quotient of a signature:

A quotient of a signature Σ is a signature Ψ together with a family of module morphisms $(\mathbf{f_R}:\Sigma_R\to\Psi_R)_R$ that is pointwise surjective and commutes with any monad morphism $\mathbf{m}:\mathbf{R}\to\mathbf{R}'$ in the sense that:

$$f_{R'} \circ \Sigma(m) = \Psi(m) \circ f_R$$
 (naturality condition)

Quotient of a signature

Quotient of a set:

A quotient of a set X is a set Y together with a surjection $f: X \to Y$. $(x \sim x')$ iff f(x) = f(y).

Quotient of a signature:

A quotient of a signature Σ is a signature Ψ together with a family of module morphisms $(\mathbf{f_R}:\Sigma_R\to\Psi_R)_R$ that is pointwise surjective and commutes with any monad morphism $\mathbf{m}:\mathbf{R}\to\mathbf{R}'$ in the sense that:

$$f_{R'} \circ \Sigma(m) = \Psi(m) \circ f_R$$
 (naturality condition)

Quotients of algebraic signatures

Theorem: Let **S** be the syntax generated by an algebraic signature Σ . Then any quotient Ψ of Σ generates a syntax (obtained by quotienting adequatly the syntax **S**)

Examples of quotient algebraic signatures:

TODO

Quotients of algebraic signatures

Theorem: Let **S** be the syntax generated by an algebraic signature Σ . Then any quotient Ψ of Σ generates a syntax (obtained by quotienting adequatly the syntax **S**)

Examples of quotient algebraic signatures:

TODO