LEARNING MAY WORK...

Matthieu R Bloch January 10, 2019

RECAP: COMPONENTS OF SUPERVISED MACHINE LEARNING

- 1. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$ $\{\mathbf{x}_i\}_{i=1}^N$ drawn i.i.d. from an unknown probability distribution $P_{\mathbf{x}}$ on \mathcal{X}
 - $lacksquare \{y_i\}_{i=1}^N$ are the corresponding targets $y_i \in \mathcal{Y} riangleq \mathbb{R}$
- 2. An unknown conditional distribution $P_{y|\mathbf{x}}$
 - $lacksquare P_{y|\mathbf{x}}$ models $f:\mathcal{X} o\mathcal{Y}$ with noise
- 3. A set of hypotheses ${\cal H}$ as to what the function could be
- 4. A loss function $\ell:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}^+$ capturing the "cost" of prediction
- 5. An *algorithm* **ALG** to find the best $h \in \mathcal{H}$ that explains f

LOGISTICS

Registration update

Lecture videos on Canvas

- Media gallery
- Please keep coming to class!

Self-assessment online here

■ Due Friday January 18, 2019 (11:59PM EST) (Friday January 25, 2019 for DL)

Lecture slides and notes

■ I will make every effort to post ahead of time

http://www.phdcomics.com

RECAP: THE SUPERVISED LEARNING PROBLEM

Learning is not *memorizing*

- ullet Our goal is not to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}
- Our goal is to find the best $h \in \mathcal{H}$ that accurately predicts values of unseen samples

Consider hypothesis $h \in \mathcal{H}$. We can easily compute the *empirical risk* (a.k.a. *in-sample* error)

$$\widehat{R}_N(h) riangleq rac{1}{N} \sum_{i=1}^N \ell(y_i, h(\mathbf{x}_i))$$

What we really care about is the *true risk* (a.k.a. out-sample error)

$$R(h) \triangleq \mathbb{E}_{\mathbf{x}y}(\ell(y, h(\mathbf{x})))$$

Question #1: Can generalize?

• For a given h, is $\widehat{R}_N(h)$ close to R(h)?

Question #2: Can we learn well?

- Given \mathcal{H} , the *best* hypothesis is $h^{\sharp} \triangleq \operatorname{argmin}_{h \in \mathcal{H}} R(h)$
- lacksquare Our algorithm can only find $h^* riangleq \mathop{\mathrm{argmin}}_{h \in \mathcal{H}} \widehat{R}_N(h)$
- Is $\widehat{R}_N(h^*)$ close to $R(h^{\sharp})$?
- Is $R(h^{\sharp}) \approx 0$?

WHY THE QUESTIONS MATTERS

Quick demo: nearest neighbor classification

CAN WE LEARN?

Our objective is to find a hypothesis h^* that ensures a small risk

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{R}_N(h)$$

For a fixed $h_i \in \mathcal{H}$, how does $\widehat{R}_N(h_i)$ compares to $R(h_i)$?

Observe that for $h_i \in \mathcal{H}$

■ The empirical risk is a sum of iid random variables

$$\widehat{R}_N(h_j) = rac{1}{N} \sum_{i=1}^N \mathbf{1}\{h_j(\mathbf{x}_i)
eq y\}$$

$$lacksquare \mathbb{E}(\widehat{R}_N(h_j)) = R(h_j)$$

 $\mathbb{P}\left(\left|\widehat{R}_N(h_j) - R(h_j)
ight| > \epsilon
ight)$ is a statement about the deviation of a normalized sum of iid random variables from its mean

We're in luck! Such bounds, a.k.a, known as concentration inequalities, are a well studied subject

A SIMPLER LEARNING PROBLEM

Consider a special case of the general supervised learning problem

- 1. Dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$ $\{\mathbf{x}_i\}_{i=1}^N \frac{drawn \ i.i.d. \ from \ unknown \ P_{\mathbf{x}} \ \text{on} \ \mathcal{X}$ $\{y_i\}_{i=1}^N \text{ labels with } \mathcal{Y} = \{0,1\} \ \text{(binary classification)}$
- 2. Unknown $f:\mathcal{X} \to \mathcal{Y}$, no noise.
- 3. Finite set of hypotheses $\mathcal{H}, |\mathcal{H}| = M < \infty$

•
$$\mathcal{H} \triangleq \{h_i\}_{i=1}^M$$

4. Binary loss function $\ell:\mathcal{Y} imes\mathcal{Y} o\mathbb{R}^+:(y_1,y_2)\mapsto \mathbf{1}\{y_1
eq y_2\}$

In this very specific case, the true risk simplifies

$$R(h) \triangleq \mathbb{E}_{\mathbf{x}y}(\mathbf{1}\{h(\mathbf{x}) \neq y\}) = \mathbb{P}_{\mathbf{x}y}(h(\mathbf{x}) \neq y)$$

The empirical risk becomes

$$\widehat{R}_N(h) = rac{1}{N} \sum_{i=1}^N \mathbf{1}\{h(\mathbf{x}_i)
eq y\}$$

CONCENTRATION INEQUALITIES 101

Lemma (Markov's inequality)

Let X be a non-negative real-valued random variable. Then for all t>0

$$\mathbb{P}\left(X\geq t
ight)\leq rac{\mathbb{E}(X)}{t}.$$

Lemma (Chebyshev's inequality)

Let X be a real-valued random variable. Then for all t>0

$$\mathbb{P}\left(|X - \mathbb{E}(X)| \geq t
ight) \leq rac{\mathrm{Var}(X)}{t^2}.$$

Proposition (Weak law of large numbers)

Let
$$\{X_i\}_{i=1}^N$$
 be i.i.d. real-valued random variables with finite mean μ and finite variance σ^2 . Then
$$\mathbb{P}\left(\left|\frac{1}{N}\sum_{i=1}^N X_i - \mu\right| \geq \epsilon\right) \leq \frac{\sigma^2}{N\epsilon^2} \qquad \lim_{N \to \infty} \mathbb{P}\left(\left|\frac{1}{N}\sum_{i=1}^N X_i - \mu\right| \geq \epsilon\right) = 0.$$

8

BACK TO LEARNING

By the law of large number, we know that

$$\forall \epsilon > 0 \quad \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}}\left(\left|\widehat{R}_N(h_j) - R(h_j)\right| \geq \epsilon\right) \leq \frac{\mathrm{Var}(\mathbf{1}\{h_j(\mathbf{x}_1) \neq y\})}{N\epsilon^2} \leq \frac{1}{N\epsilon^2}$$

Given enough data, we can *generalize*

How much data? $N=rac{1}{\delta\epsilon^2}$ to ensure $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)
ight|\geq\epsilon
ight)\leq\delta.$

That's not quite enough! We care about $\widehat{R}_N(h^*)$ where $h^*=\mathop{
m argmin}_{h\in\mathcal{H}}\widehat{R}_N(h)$

ullet If $M=|\mathcal{H}|$ is large we should expect the existence of $h_k\in\mathcal{H}$ such that $\widehat{R}_N(h_k)\ll R(h_k)$

$$\mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)\right| \geq \epsilon\right) \leq ?$$
 $\mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)\right| \geq \epsilon\right) \leq \mathbb{P}\left(\exists j : \left|\widehat{R}_N(h^*) - R(h^*)\right| \geq \epsilon\right)$
 $\mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)\right| \geq \epsilon\right) \leq \frac{M}{N\epsilon^2}$

We need $N \geq rac{M}{\delta\epsilon^2}$ to ensure $\mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)\right| \geq \epsilon
ight) \leq \delta.$

CONCENTRATION INEQUALITIES 102

We can obtain *much* better bounds than with Chebyshev

Lemma (Hoeffding's inequality)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued zero-mean random variables such that $X_i\in[a_i;b_i]$. Then for all $\epsilon>0$

$$\mathbb{P}\left(\left|\frac{1}{N}\sum_{i=1}^{N}X_i\right| \geq \epsilon\right) \leq 2\exp\Biggl(-\frac{2N^2\epsilon^2}{\sum_{i=1}^{N}(b_i-a_i)^2}\Biggr).$$

In our learning problem

$$egin{aligned} orall \epsilon > 0 & \mathbb{P}\left(\left|\widehat{R}_N(h_j) - R(h_j)\right| \geq \epsilon
ight) \leq 2\exp(-2N\epsilon^2) \ orall \epsilon > 0 & \mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)\right| \geq \epsilon
ight) \leq 2M\exp(-2N\epsilon^2) \end{aligned}$$

We need $N \geq rac{1}{2\epsilon^2} igl(\log M + \log rac{\grave{2}}{\delta} igr)$

M can be quite large (almost exponential in N) and, with enough data, we can generalize h^{st} .

How about learning $h^{\sharp} \triangleq \operatorname{argmin}_{h \in \mathcal{H}} R(h)$?

LEARNING CAN WORK!

9

11

Lemma.

10

If
$$orall j\in \mathcal{H}\left|\widehat{R}_N(h_j)-R(h_j)
ight|\leq \epsilon$$
 then $\left|R(h^*)-R(h^\sharp)
ight|\leq 2\epsilon.$

How do we make $R(h^{\sharp})$ small?

- ullet Need bigger hypothesis class $\mathcal{H}!$ (could we take $M o \infty$?)
- Fundamental trade-off of learning

WHAT IS A GOOD HYPOTHESIS?

12

Ideally we want $|\mathcal{H}|$ small so that $R(h^*)pprox R(h^\sharp)$ and get lucky s that $R(h^*)pprox 0$

In general this is *not* possible

lacksquare Remember, we usually have to learn $P_{y|\mathbf{x}}$, not a function f

Next time

- What is the optimal binary classification hypothesis class?
- How small can $R(h^*)$ be?