Logica cu predicate de ordinul I Curs 1 - Sintaxa

Ștefan Ciobâcă

28 Noiembrie 2016

Logică pentru Informatică - Partea a II-a

- 1. Stefan Ciobâcă
- 2. http://profs.info.uaic.ro/~stefan.ciobaca/logica/
- 3. stefan.ciobaca@gmail.com
- 4. Consultații C508, marți de la 18 la 20.

Logica de predicate de ordinul I (LP1)

- 1. o nouă logică, mai expresivă decât LP
- 2. în engleză: first-order logic (FOL)

LP1 în loc de LP - motivație

Vreau să modelez în LP următorul raționament: "Știu că dacă sunt om atunci sunt muritor și că sunt om. Deci sunt muritor." Fie $p, q \in A$ două variabile propoziționale.

- 1. *p* "sunt om"
- 2. q "sunt muritor"

În logica propozițională, $p o q, p \models q$ corespunde raționamentului de mai sus.

LP1 în loc de LP - motivatie

Vreau să modelez următorul rationament: "Stiu că dacă cineva este om atunci acea persoană este muritor. Știu că Socrates este om. Deci Socrates este muritor." (imposibil de modelat în LP). Privire fugară în LP1:

- 1. P(x) "x este om"
- 2. Q(x) "x este muritor"
- 3. *S* "Socrates"
- În LP1, avem $\forall x.(P(x) \rightarrow Q(x)), P(S) \models Q(S).$

LP1

- 1. variabile, simboluri funcționale, termeni
- 2. simboluri predicative, formule
- 3. poziții
- 4. apariții legate/libere, variabile legate/libere
- 5. substituții

- Fixăm X o mulțime infinit numărabilă de simboluri numite variabile (a nu se confunda cu variabilele propoziționale din LP).
- 2. Fixăm $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$, unde:
 - 2.1 \mathcal{F}_0 este multimea simbolurilor funcționale de aritate 0.
 - 2.2 \mathcal{F}_1 este multimea simbolurilor funcționale de aritate 1.
 - 2.3 \mathcal{F}_2 este multimea simbolurilor funcționale de aritate 2.
 - 2.4 ...

 ${\cal F}$ - mulțime *indexată* de simboluri funcționale.

- 1. \mathcal{F}_0 simboluri constante,
- 2. \mathcal{F}_1 simboluri funcționale unare,
- 3. \mathcal{F}_2 simboluri funcționale binare,
- 4. \mathcal{F}_3 simboluri funcționale ternare,
- 5. \mathcal{F}_n simboluri funcționale *n*-are.

Exemplu

Fie
$$\mathcal{X} = \{x, y, z, x_1, x_2, x_3, \ldots\}$$
. Fie $\mathcal{F}_0 = \{c\}$, $\mathcal{F}_1 = \{h\}$ și $\mathcal{F}_2 = \{f, g\}$.

Alfabetul termenilor este $Alf_{\mathcal{T}} = \{'(',')'\} \cup \mathcal{X} \cup \mathcal{F}_0 \cup \mathcal{F}_1 \cup \dots$ Termenii sunt șiruri de caractere peste $Alf_{\mathcal{T}}$, definiți astfel:

Definiție

Mulțimea \mathcal{T} (a termenilor) este definită inductiv astfel:

- 1. orice variabilă $x \in \mathcal{X}$ este termen: $x \in \mathcal{T}$
- 2. orice simbol constant $c \in \mathcal{F}_0$ este termen: $c \in \mathcal{T}$
- 3. $dacă n \in \{1, 2, ...\}, f \in \mathcal{F}_n$ este un simbol funcțional de aritate n și $t_1, t_2, ..., t_n \in \mathcal{T}$ sunt termeni, atunci $f(t_1, ..., t_n)$ este termen.

Exemplu

În continuarea exemplului de mai sus: fie $\mathcal{X} = \{x, y, z, x_1, x_2, x_3, \ldots\}$. Fie $\mathcal{F}_0 = \{c\}$, $\mathcal{F}_1 = \{h\}$ și $\mathcal{F}_2 = \{f, g\}$, avem următorii termeni:

$$x \in \mathcal{T}$$
 $y \in \mathcal{T}$ $x_3 \in \mathcal{T}$ $c \in \mathcal{T}$ $h(x) \in \mathcal{T}$ $h(y) \in \mathcal{T}$ $h(c) \in \mathcal{T}$ $g(x,y) \in \mathcal{T}$ $f(c,c) \in \mathcal{T}$ $f(c,y) \in \mathcal{T}$ $f(h(x),y) \in \mathcal{T}$ $g(h(c),h(c)) \in \mathcal{T}$ $f(c,y) \in \mathcal{T}$ $f\left(g\left(f(x,y),h(c)\right),f(c,c)\right) \in \mathcal{T}$

- 1. orice variabilă $x \in \mathcal{X}$ este termen: $x \in \mathcal{T}$
- 2. orice simbol constant $c \in \mathcal{F}_0$ este termen: $c \in \mathcal{T}$
- 3. dacă $n \in \{1, 2, ...\}$, $f \in \mathcal{F}_n$ este un simbol funcțional de aritate $n \neq i \ t_1, t_2, ..., t_n \in \mathcal{T}$ sunt termeni, atunci $f(t_1, ..., t_n)$ este termen.

Formule atomice

Vom fixa în continuare o mulțime indexată de simboluri predicative:

$$\mathcal{P} = \mathcal{P}_0 \cup \mathcal{P}_1 \cup \mathcal{P}_2 \cup \dots$$

- 1. \mathcal{P}_0 este multimea simbolurilor predicative constante,
- 2. \mathcal{P}_1 este mulțimea simbolurilor predicative unare,
- 3. \mathcal{P}_2 este mulțimea simbolurilor predicative binare iar
- 4. \mathcal{P}_n este mulțimea simbolurilor predicative *n*-are.

Definitie

Mulțimea At, a formulelor atomice, este definită astfel:

- 1. $\mathcal{P}_0 \subseteq At$,
- 2. $dac\ P \in \mathcal{P}_n \ (cu\ n \geq 1) \ si \ t_1, \ldots, t_n \in \mathcal{T}$, atunci $P(t_1, \ldots, t_n) \in At$.

Formule atomice

Exemplu

Fie $\mathcal{P}_0 = \{P\}$, $\mathcal{P}_1 = \{Q\}$ și $\mathcal{P}_2 = \{R\}$ ($\mathcal{P}_3 = \mathcal{P}_4 = \ldots = \emptyset$). Câteva exemple de formule atomice sunt:

$$P \in At$$
 $Q(x) \in At$ $Q(c) \in At$ $Q(f(f(x,y),c)) \in At$
 $R(c,x) \in At$ $R(h(x),f(x,y)) \in At$
 $R(f(f(x,y),f(x,y)),h(c)) \in At$

Formulele atomice sunt șiruri de caractere peste alfabetul $Alf_{At} = Alf_{\mathcal{T}} \cup P_0 \cup P_1 \cup P_2 \cup \dots$

Formule LP1

Definiție

Mulțimea LP1 (formule din logica de ordinul I) este definită inductiv astfel:

- 1. $At \subseteq LP1$;
- 2. Dacă $F \in LP1$, atunci $(\neg F) \in LP1$ și $(F) \in LP1$;
- 3. Dacă $F_1, F_2 \in LP1$, atunci $(F_1 \wedge F_2) \in LP1$, $(F_1 \vee F_2) \in LP1$;
- 4. $Dacă F \in LP1 \ si \ x \in \mathcal{X}$, atunci $(\forall x.F) \in LP1 \ (si \ (\exists x.F) \in LP1)$.
- N.B. Vom considera următoarele notații: $F_1 \to F_2 \stackrel{\textit{notație}}{=} \neg F_1 \lor F_2$, $F_1 \leftarrow F_2 \stackrel{\textit{notație}}{=} F_2 \to F_1$, $F_1 \leftrightarrow F_2 \stackrel{\textit{notație}}{=} (F_1 \to F_2) \land (F_2 \to F_1)$.

Exemplu

$$P \in LP1$$
 $Q(x) \in LP1 \quad R\left(h(x), f(x, y)\right) \in LP1 \quad (\neg Q(f(x, y))) \in LP1$
 $(P \land Q(x)) \in LP1 \quad \left(Q(x) \lor R\left(h(x), f(x, y)\right)\right) \in LP1$
 $(Q(x) \to R(x, y)) \in LP1 \quad ((Q(x) \land P) \lor Q(y)) \in LP1$
 $(\forall x. (Q(x) \lor P)) \in LP1 \quad ((\exists x. Q(x)) \lor (\neg P)) \in LP1$

- 1. At \subseteq LP1;
- 2. Dacă $F \in LP1$, atunci $(\neg F) \in LP1$ și $(F) \in LP1$;
- 3. Dacă $F_1, F_2 \in LP1$, atunci $(F_1 \land F_2) \in LP1$, $(F_1 \lor F_2) \in LP1$ (și $(F_1 \to F_2) \in LP1$);
- 4. Dacă $F \in LP1$ și $x \in \mathcal{X}$, atunci $(\forall x.F) \in LP1$ (și $(\exists x.F) \in LP1$).

Sumar

Mulțimea termenilor (\mathcal{T}):

$$t ::= x \mid c \mid f(\underbrace{t, \dots, t}_{n})$$
 $x \in \mathcal{X}, c \in \mathcal{F}_{0}, f \in \mathcal{F}_{n}$

Multimea formulelor atomice (At):

$$a := P \mid Q(\underbrace{t, \dots, t}_{n}) \qquad P \in \mathcal{P}_{0}, Q \in \mathcal{P}_{n}$$

Mulțimea formulelor de ordinul I (LP1):

$$F ::= a \mid (\neg F) \mid (F) \mid (F \lor F) \mid (F \land F) \mid (F \to F) \mid (\forall x.F) \mid (\exists x.F) \quad a \in At, x \in \mathcal{X}$$

Exemplu

$$\mathcal{P}_1 = \{P, Q\}, \mathcal{F}_0 = \{s\}$$

- 1. P(x) "x este om"
- 2. Q(x) "x este muritor"

$$\left((\forall x. (P(x) \to Q(x))) \land P(s) \right) \to Q(s)$$

Exemplu

$$\mathcal{P}_2 = \{L\}$$

- \blacktriangleright L(x,y) "x îl iubește pe y"
- 1. $(\forall x.(\exists y.L(x,y)))$ "everybody has somebody whom they love" (Optimist)
- 2. $(\exists y.(\forall x.L(x,y)))$ "there is someone who everyone loves" (Popular)
- 3. $(\forall y.(\exists x.L(x,y)))$ "everyone is loved by someone" (Hopeless Romantic)
- 4. http://ctp200.com/comic/27

Arborele abstract asociat unui termen

- 1. dacă t = c, $c \in \mathcal{F}_0$, atunci arb(t) = c
- 2. dacă t = x, $x \in \mathcal{X}$, atunci arb(t) = (x)
- 3. dacă $t=f(t_1,\ldots,t_n)$, $f\in\mathcal{F}_n$ (n>0), $t_1,\ldots,t_n\in\mathcal{T}$, atunci

Arborele abstract asociat unui termen - exemplu

Arborele abstract asociat unei formule - ¬, ()

- ▶ dacă $F = (\neg F_1)$, atunci $arb(F) = arb(F_1)$
- ightharpoonup dacă $F=(F_1)$, atunci $arb(F)=arb(F_1)$

Arborele abstract asociat unei formule - $P(t_1, \ldots, t_n)$

dacă
$$F = P(t_1, \ldots, t_n)$$
, atunci P $arb(F) = arb(t_1)$ $arb(t_n)$

Arborele abstract asociat unei formule - \wedge

ho dacă $F=(F_1\wedge F_2)$, atunci ho ho

Arborele abstract asociat unei formule - V

Arborele abstract asociat unei formule - \forall

$$\forall x$$
 dacă $F = (\forall x.F_1)$, atunci $arb(F) = arb(F_1)$

Arborele abstract asociat unei formule - \exists

$$\exists x$$

$$\mid$$

$$\mid$$

$$dacă $F = (\exists x.F_1), \text{ atunci } arb(F) = arb(F_1)$$$

Exemplu

Despre paranteze

La fel cum scriem $-3 \times 4 + 5$ în loc de $(((-3) \times 4) + 5)$, vom renunța la paranteze după cum urmează:

1. vom scrie $\neg P(x) \land Q(y) \lor R(x,y)$ în loc de $\left(\left((\neg P(x)) \land Q(y)\right) \lor R(x,y)\right)$ (la fel ca la logica propozițională).

Ordinea de prioritate: $\neg, \forall, \exists, \land, \lor, \rightarrow$.

Exemplu

$$\forall x. (P(x) \land \neg Q(x) \to R(x)) \text{ in loc de}$$
 $(\forall x. \Big((P(x) \land (\neg Q(x))) \to R(x) \Big)) \text{ in loc de}$

When in doubt: use parantheses.

Definitie

O poziție p este un șir de numere naturale $n_1 \cdot \ldots \cdot n_k$. Pentru k=0, șirul vid este notat cu ϵ .

Exemplu

Spre exemplu, o poziție este $p = 0 \cdot 2 \cdot 1$.

Definiție

Pozițiile atașate unui termen, notate pos(t), sunt:

- 1. $pos(c) = \{\epsilon\}$, $dac \check{a} c \in \mathcal{F}_0$
- 2. $pos(x) = \{\epsilon\}$, $dac \check{a} x \in \mathcal{X}$
- 3. $pos(f(t_1,\ldots,t_n))=\{\epsilon\}\cup\bigcup_{i\in\{1,\ldots,n\}}i\cdot pos(t_i),\ dac\ f\in\mathcal{F}_n.$

În definitia de mai sus, am notat cu $i \cdot P$ mulțimea de poziții obținută din P prin adăugarea numărului i în față: $i \cdot P = \{i \cdot p \mid p \in P\}.$

Exemplu

Pentru t = f(g(a, b), y), avem $pos(t) = \{\epsilon, 1, 2, 1 \cdot 1, 1 \cdot 2\}$.

Exemplu

Pentru t = f(g(a, b), y), avem $pos(t) = \{\epsilon, 1, 2, 1 \cdot 1, 1 \cdot 2\}$.

Definiție

Fie t un termen și fie $p \in pos(t)$ o poziție a termenului. Termenul aflat la poziția p în termenul t, notat $t|_p$ este definit astfel:

- 1. $t|_{\epsilon}=t$,
- 2. $f(t_1,\ldots,t_n)|_{i\cdot p}=(t_i)|_p$.

Exemplu

Pentru t = f(g(a, b), y), și p = 1, avem $t|_p = g(a, b)$. Dacă $q = 1 \cdot 2$, atunci $t|_q = b$.

Pozițiile unei formule

Funcția pos se extinde si asupra formulelor:

Definiție

- 1. $pos(P(t_1,\ldots,t_n)) = \{\epsilon\} \cup \bigcup_{i\in\{1,\ldots,n\}} i \cdot pos(t_i),$
- 2. $pos(\neg F) = \{\epsilon\} \cup 1 \cdot pos(F),$
- 3. $pos(F_1 \land F_2) = pos(F_1 \lor F_2) = \{\epsilon\} \cup 1 \cdot pos(F_1) \cup 2 \cdot pos(F_2),$
- 4. $pos(\forall x.F_1) = pos(\exists x.F_1) = \{\epsilon\} \cup 1 \cdot pos(F_1).$

Pozițiile unei formule

Termenul sau formula aflat/aflată la poziția p în formula F, notat(ă) $F|_p$ este:

Definitie

- 1. $F|_{\epsilon} = F$,
- 2. $P(t_1, \ldots, t_n)|_{i \cdot p} = t_i|_p$
- 3. $(\neg F)|_{1 \cdot p} = F|_p$
- 4. $(F_1 \wedge F_2)|_{i \cdot p} = (F_1 \vee F_2)|_{i \cdot p} = (F_1 \to F_2)|_{i \cdot p} = (F_i)|_p$ $(i \in \{1, 2\}),$
- 5. $(\forall x.F_1)|_{1 \cdot p} = (\exists x.F_1)|_{1 \cdot p} = (F_1)|_p$.

Exemplu

$$(\forall x.(P(x) \land Q(y)))|_{1\cdot 2} = Q(y)$$

Apariții ale variabilelor

Mulțimea variabilelor unui termen t este notată var(t) și este definită astfel:

Definiție

- 1. $var(c) = \emptyset$ (dacă $c \in \mathcal{F}_0$)
- 2. $var(x) = \{x\} (dacă x \in \mathcal{X})$
- 3. $var(f(t_1,...,t_n)) = \bigcup_{i \in \{1,...,n\}} var(t_i)$

Similar, se definește var(F) ca fiind mulțimea variabilelor dintr-o formulă F.

În mod alternativ,

$$var(t) = \{x \in \mathcal{X} \mid \text{există } p \in pos(t) \text{ a.i. } t|_p = x\}.$$

Domeniul de vizibilitate al unei variabile - analogie

```
1: for (int x = 1; x <= 10; ++x) {
2: for (int x = 1; x <= 10; ++x) {
3: s++;
4: }
5: }
```

 $\forall x.(Q(x) \land \exists x.P(x))$

Domeniul de vizibilitate a "primei variabile" x (cea cuantificată universal) este $(Q(x) \land \exists x. P(x))$, iar domeniul de vizibilitate a celei de-a "doua variabile" x (cea cuantificată existențial) este P(x).

Definitie

O apariție a unei variabile x într-o formulă F (respectiv intr-un termen t) este o pozitie p a.i. $F|_p = x$ (respectiv $t|_p = x$).

Definitie

O apariție p a unei variabile x într-o formulă F este legată dacă există un prefix q a lui p astfel incât $F|_q = \forall x.G$ sau $F|_q = \exists x.G$ (dacă pe drumul de la apariția respectivă spre rădăcina arborelui formulei găsim un nod $\forall x$ sau $\exists x$).

O aparitie p a unei variabile x într-o formulă F este liberă dacă nu este legată.

Exemplu

Definitie

Mulțimea variabilelor unei formule care au cel puțin o apariție legată se notează bound(F):

- 1. $bound(P(t_1,\ldots,t_n))=\emptyset$,
- 2. $bound(\neg F_1) = bound(F_1)$,
- 3. $bound(F_1 \wedge F_2) = bound(F_1 \vee F_2) = bound(F_1 \rightarrow F_2) = bound(F_1) \cup bound(F_2),$
- 4. $bound(\forall x.F_1) = bound(\exists x.F_1) = bound(F_1) \cup \{x\}.$

Exemplu

$$bound\left(\left(\forall x. \Big(P(x)\Big)\right) \lor R(x,y)\right) = \{x\}$$

Definitie

Mulțimea variabilelor unei formule care au cel puțin o apariție liberă se notează free(F):

- 1. $free(P(t_1,\ldots,t_n)) = var(t_1) \cup \ldots \cup var(t_n)$,
- 2. $free(\neg F_1) = free(F_1)$,
- 3. $free(F_1 \wedge F_2) = free(F_1 \vee F_2) = free(F_1 \rightarrow F_2) = free(F_1) \cup free(F_2)$,
- 4. $free(\forall x.F_1) = free(\exists x.F_1) = free(F_1) \setminus \{x\}.$

Atenție! free(F) și bound(F) pot avea elemente în comun.

Exemplu

$$free\left(\left(\forall x.\Big(P(x)\Big)\right)\vee R(x,y)\right)=\{x,y\}$$

Exemplu

Fie $F = P(x) \land \forall x. Q(x, y)$. Prima apariție a lui x este liberă. Singura apariție a lui y este liberă. A doua apariție a lui x este legată. Avem $var(F) = \{x, y\}$, bound $(F) = \{x\}$ și $free(F) = \{x, y\}$.

Substituții

Definiție

O substituție este o funcție $\sigma: \mathcal{X} \to \mathcal{T}$, cu proprietatea că $\sigma(x) \neq x$ pentru un număr finit de variabile $x \in \mathcal{X}$.

Definitie

Dacă $\sigma: \mathcal{X} \to \mathcal{T}$ este o substituție, atunci mulțimea $dom(\sigma) = \{x \mid \sigma(x) \neq x\}$ se numește domeniul substituției σ .

Substituții - exemplu

Fie funcția $\sigma: \mathcal{X} \to \mathcal{T}$, astfel încât:

- 1. $\sigma(x) = h(x)$;
- 2. $\sigma(y) = f(h(x), a);$
- 3. $\sigma(z) = z$, pentru orice variabilă $z \in \mathcal{X} \setminus \{x, y\}$.

Conform definiției de mai sus, σ este o substituție de domeniu $dom(\sigma) = \{x, y\}.$

Substituții - extensia homomorfică

Definiție

Dacă $\sigma: \mathcal{X} \to \mathcal{T}$ este o substituție, atunci extensia homomorfică a lui σ la mulțimea termenilor este funcția $\sigma^{\sharp}: \mathcal{T} \to \mathcal{T}$, definită astfel:

- 1. $\sigma^{\sharp}(x) = \sigma(x)$, pentru orice $x \in \mathcal{X}$;
- 2. $\sigma^{\sharp}(f(t_1,\ldots,t_n)) = f(\sigma^{\sharp}(t_1),\ldots,\sigma^{\sharp}(t_n))$, pentru orice simbol funcțional $f \in \mathcal{F}_n$ de aritate $n \in \mathbb{N}$ și orice termeni $t_1,\ldots,t_n \in \mathcal{T}$.

Substituții - extensia homomorfică - exemplu

Fie substituția $\sigma: \mathcal{X} \to \mathcal{T}$, astfel încât:

- 1. $\sigma(x) = h(x)$;
- 2. $\sigma(y) = f(h(x), a);$
- 3. $\sigma(z) = z$, pentru orice variabilă $z \in \mathcal{X} \setminus \{x, y\}$.

Avem că $\sigma^{\sharp}(g(x)) = g(\sigma^{\sharp}(x)) = g(\sigma(x)) = g(h(x)).$

Practic, pentru a obține $t\sigma$ din t, fiecare apariție a unei variabile x din t este înlocuită cu termenul $\sigma(x)$.

Notăm $\sigma^{\sharp}(t) = \sigma(t) = t\sigma$.

Substituții - operația de actualizare

Definitie

Dacă $\sigma: \mathcal{X} \to \mathcal{T}$ este o substituție, $x \in \mathcal{X}$ este o variabilă și $t \in \mathcal{T}$ este un termen, atunci $\sigma[x \mapsto t]$ este o (nouă) substituție $\sigma': \mathcal{X} \to \mathcal{T}$, notată $\sigma' = \sigma[x \mapsto t]$, definită astfel:

- 1. $\sigma'(y) = \sigma(y)$ pentru orice $y \in \mathcal{X} \setminus \{x\}$;
- 2. $\sigma'(x) = t$.

Operația de actualizare - exemplu

Fie substituția $\sigma: \mathcal{X} \to \mathcal{T}$, astfel încât:

- 1. $\sigma(x) = h(x)$;
- 2. $\sigma(y) = f(h(x), a);$
- 3. $\sigma(z) = z$, pentru orice variabilă $z \in \mathcal{X} \setminus \{x, y\}$.

Substituția $\sigma' = \sigma[x \mapsto x]$ este definită astfel:

- 1. $\sigma'(x) = x$;
- 2. $\sigma'(y) = f(h(x), a);$
- 3. $\sigma'(z) = z$, pentru orice variabilă $z \in \mathcal{X} \setminus \{x, y\}$.

Substituții - extensia homomorfică la mulțimea formulelor

Definitie

Pentru orice substituție $\sigma: \mathcal{X} \to \mathcal{T}$, extensia homomorfică a lui σ la mulțimea formulelor este funcția $\sigma^{\flat}: LP1 \to LP1$, definită astfel:

- 1. $\sigma^{\flat}(P(t_1,\ldots,t_n))=P(\sigma^{\sharp}(t_1),\ldots,\sigma^{\sharp}(t_n));$
- 2. $\sigma^{\flat}(\neg F) = \neg(\sigma^{\flat}(F));$
- 3. $\sigma^{\flat}(F_1 \circ pF_2) = (\sigma^{\flat}(F_1)) \circ p(\sigma^{\flat}(F_2))$ (pentru orice operator logic $op \in \{\land, \lor\}$);
- 4. $\sigma^{\flat}(\forall y.F) = \forall y.((\sigma')^{\flat}(F))$, unde $\sigma' = \sigma[y \mapsto y]$,
- 5. $\sigma^{\flat}(\exists y.F) = \exists y.((\sigma')^{\flat}(F))$, unde $\sigma' = \sigma[y \mapsto y]$,

Substituții - extensia homomorfică la mulțimea formulelor

Fie substituția $\sigma: \mathcal{X} \to \mathcal{T}$, astfel încât:

- 1. $\sigma(x) = h(x)$;
- 2. $\sigma(y) = f(h(x), a);$
- 3. $\sigma(z) = z$, pentru orice variabilă $z \in \mathcal{X} \setminus \{x, y\}$.

Avem că $\sigma^{\flat}(\forall x.(P(x) \land Q(h(y)))) = \forall x.(P(x) \land Q(h(f(h(x), a)))).$

Substituții - extensia homomorfică la mulțimea formulelor

Practic, pentru a obține formula $\sigma^{\flat}(F)$ din formula F, fiecare apariție **liberă** a variabilei x din formula F este înlocuită cu termenul $\sigma(x)$.

Atenție! Aparițiile legate ale variabilelor nu sunt înlocuite prin aplicarea substituției.

Ca și în cazul termenilor, vom folosi notația

$$\sigma^{\flat}(F) \stackrel{\text{notație}}{=} \sigma(F) \stackrel{\text{notație}}{=} F\sigma.$$

Substituții acceptate

Definiție

Prin range (σ) notăm mulțimea de termeni

$$range(\sigma) = \{\sigma(x) \mid x \in dom(\sigma)\}.$$

Definiție

O formulă F acceptă o substituție $\sigma:\mathcal{X}\to\mathcal{T}$ (sau, σ este permisă pentru F) dacă

$$bound(F) \cap var(range(\sigma)) = \emptyset.$$

N.B. Avem voie să calculăm formula $F\sigma$ chiar dacă F nu acceptă σ . Noțiunea de acceptare va fi folosită în câteva teoreme a căror concluzie va fi adevărată doar dacă o anumită formulă acceptă o anumită substituție.

Substituții acceptate - exemplu

Fie substituția $\sigma: \mathcal{X} \to \mathcal{T}$, astfel încât:

- 1. $\sigma(x) = h(x)$;
- 2. $\sigma(y) = f(h(x), a);$
- 3. $\sigma(z) = z$, pentru orice variabilă $z \in \mathcal{X} \setminus \{x, y\}$.

Substituția σ este permisă pentru $\forall y.P(x)$, dar nu este permisă pentru $\forall x.P(x)$.