Siamese Network & AutoAug

Paper review

Contributions

• Proposed the effective **Siamese Architecture** for classification/verification on large number of categories with only small train samples(Face recognization/Fingerprint recognization).

• Proposed a discriminative loss function which does not need to estimate the probability distribution of data.

Architecture

• **Shared** weights Convolutional Network. (Identical Network, one network)

• Ew is the defined similarity metrics called scalar energy function in the energy-based models(EBM).

Figure 1. Siamese Architecture.

Contrastive Loss Function in Training

 Energy function **Ew** should satisfy that energy of impostor pair should be large/ increase and the energy of genuine pair should be small/decrease.

 Remaining part is to prove how to derive the Loss Function to meet the requirement.

Simplified Loss Function

Results

- False accept(FA, 认伪(率))
- False reject(FR, 拒真(率))
- 3 datasets in total, trained in 2 datasets and verified on 3 datasets.

Figure 6. AT&T dataset: percent false reject vs. false accept.

Figure 7. AR/Purdue dataset: percent false reject vs. false accept.

	AT&T		AR/Purdue	
	Val	Test	Val	Test
Number of Subjects	35	5	96	40
Images/Subject	10	10	26	26
Images/Model	_	5	_	13
No. Genuine Images	500	500	750	500
No. Impostor Images	500	4500	750	4500

	False Accept			
	10%	7.5%	5%	
AT&T (Test)	0.00	1.00	1.00	
AT&T (Validation)	0.00	0.00	0.25	
AR (Test)	11	14.6	19	
AR (Validation)	0.53	0.53	0.80	

Table 1. Above: Details of the validation and test sets for the two datasets. Below: False reject percentage for different false accept percentages.

Differences with Self-Supervised Learning

• Output is different. SSL is the trained network while SN is the label.

• SN is still need labels when training.

• The idea of loss function design is different.

• SSL maybe regarded as a special type of SN. Essentially, they are the same.

AutoAugment Google Brain

AutoAugment: Learning Augmentation Strategies from Data Contributions

 Automatically find the best augmentation policy (AutoAugment-direct) for any interested dataset.

 Find the transferable augmentation policy cross different datasets (AutoAugment-transfer)

AutoAugment

Problem definition

• Formulate the problem of finding the best augmentation policy as a discrete search problem.

Two components: Search algorithm and Search space.

- Search algorithm: Reinforcement Learning
- Search space: 5 sub-policies or operations

AutoAugment Workflow & Results

-	Original	Sub-policy 1	Sub-policy 2	Sub-policy 3	Sub-policy 4	Sub-policy 5
Batch 1	15	15	15	15	15	15
Batch 2	15	1	15	1	15	15
Batch 3	15	1	15	15	15	15
		ShearX, 0.9, 7 Invert, 0.2, 3	ShearY, 0.7, 6 Solarize, 0.4, 8	ShearX, 0.9, 4 AutoContrast, 0.8, 3	Invert, 0.9, 3 Equalize, 0.6, 3	ShearY, 0.8, 5 AutoContrast, 0.7, 3

Dataset	Model	Baseline	Cutout [12]	AutoAugment
CIFAR-10	Wide-ResNet-28-10 [67]	3.9	3.1	$2.6 {\pm} 0.1$
	Shake-Shake (26 2x32d) [17]	3.6	3.0	$2.5 {\pm} 0.1$
	Shake-Shake (26 2x96d) [17]	2.9	2.6	2.0 ± 0.1
	Shake-Shake (26 2x112d) [17]	2.8	2.6	1.9 ± 0.1
	AmoebaNet-B (6,128) [48]	3.0	2.1	$1.8 {\pm} 0.1$
	PyramidNet+ShakeDrop [65]	2.7	2.3	$\boldsymbol{1.5 \pm 0.1}$
Reduced CIFAR-10	Wide-ResNet-28-10 [67]	18.8	16.5	14.1±0.3
	Shake-Shake (26 2x96d) [17]	17.1	13.4	10.0 ± 0.2
CIFAR-100	Wide-ResNet-28-10 [67]	18.8	18.4	17.1±0.3
	Shake-Shake (26 2x96d) [17]	17.1	16.0	14.3 ± 0.2
	PyramidNet+ShakeDrop [65]	14.0	12.2	10.7 ± 0.2
SVHN	Wide-ResNet-28-10 [67]	1.5	1.3	1.1
	Shake-Shake (26 2x96d) [17]	1.4	1.2	1.0
Reduced SVHN	Wide-ResNet-28-10 [67]	13.2	32.5	8.2
	Shake-Shake (26 2x96d) [17]	12.3	24.2	5.9

Results