

多视角知识融合的蛋白质功能预测

南京农业大学 人工智能学院 汇报人: 朱一亨 2024年08月19日

研究背景

- > 现有的蛋白质功能预测方法分类
 - 1. 基于模板匹配的方法
 - 2. 基于统计机器学习的方法
 - 3. 基于深度学习的方法
 - 3.1. 手工设计特征表示 (One-hot encoding、PSSM)
 - 3.2. 大语言模型特征表示 (ESM、ProtTrans) (2022年后成为主流方法)

现有方法的不足和挑战

- ▶目前大部分方法只采用大语言模型抽取蛋白质的特征表示,完全抛弃了 传统的手工特征表示方法。
 - DeepGO-SE, Nature Machine Intelligence (ESM2), 2024
 - SPROF-GO, BIB (ProtTrans), 2023
 - ATGO, PLOS CB (ESM-1b), 2023

▶ 现有的蛋白质功能预测方法只注重从蛋白质自身挖掘知识,忽略了编码基因中的知识。

Multi-View Knowledge Fusion for GO Prediction (MVK-GO)

数据集构建

- (1) 从蛋白质功能注释数据库GOA中,下载全部134778个蛋白质
- (2) 选择在UniProt 数据库中状态为 "Reviewed" 的80653个蛋白质
- (3) Training dataset: 70212 proteins, before 2020-06-30
- (4) Validation dataset: 974 proteins, 2020-07-01 between 2021-06-30
- (5) Test dataset: 1522 proteins, 2021-07-01 between 2023-06-30
- (6) CD-HIT: (sequence identity<30%, training, validation, test datasets)

现有主流蛋白质功能预测方法的性能比较

D	36.4.4	F_{max}			ı		S_{\min}		AUPR				
Dataset	Method	MF	BP	CC	ı	MF	BP	CC	MF	BP	CC		
	BLAST	0.627	0.409	0.502		7.47	23.14	8.26	0.397	0.240	0.306		
	ESM2 + FC	0.679	0.430	0.618		7.09	22.59	7.34	0.627	0.351	0.635		
Validation Dataset	ProtTrans + FC	0.678	0.415	0.639		7.23	22.80	7.18	0.632	0.347	0.590		
(974 proteins)	ATGO	0.689	0.415	0.604		6.86	24.63	7.49	0.650	0.362	0.641		
	MVKGO	0.701	0.439	0.634	·	6.76	21.90	7.14	0.707	0.388	0.650		
Test Dataset	BLAST	0.645	0.395	0.495		7.89	25.11	8.67	0.377	0.227	0.274		
(1522 proteins)	ESM2 + FC	0.687	0.427	0.617		7.33	23.96	7.67	0.616	0.346	0.618		
	ProtTrans + FC	0.680	0.424	0.623		7.58	23.95	7.64	0.621	0.355	0.581		
	ATGO	0.691	0.424	0.607		7.24	23.99	7.87	0.658	0.361	0.625		
	MVKGO	0.706	0.446	0.630		7.00	23.53	7.62	0.710	0.381	0.641		

基于手工特征表示的深度学习预测方法

Hand-craft feature-based deep learning method for GO prediction (HCFGO)

PSSM: Position-specific scoring matrix

PSS: Predicted secondary structure

FC: Fully connected layer

BVPD: Binary vector for protein family

HCFGO消融实验

Dataset			F_{max}			S_{min}		AUPR			
	Method	MF	BP	CC	MF	BP	CC	MF	BP	CC	
	PSSM	0.607		0.559	8.15		8.06	0.515		0.521	
	PSS										
Validation Dataset	InterPro	0.662	0.402	0.575	7.36	22.95	8.00	0.606	0.309	0.547	
(974 proteins)	PSSM + PSSM + InterPro (C)	0.667	0.407	0.594	7.20	22.69	7.54	0.607	0.329	0.564	
	PSSM + PSSM + InterPro (CT)	0.675	0.410	0.592	7.01	22.67	7.56	0.623	0.349	0.568	
	PSSM	0.611		0.537	8.45		8.70	0.525		0.490	
	PSS										
Test Dataset	InterPro	0.664	0.389	0.570	7.63	24.48	8.33	0.615	0.285	0.515	
(1522 proteins)	PSSM + PSSM + InterPro (C)	0.679	0.403	0.578	7.41	24.03	8.11	0.619	0.320	0.535	
	PSSM + PSSM + InterPro (CT)	0.682	0.412	0.580	7.23	23.91	8.14	0.630	0.340	0.539	

C: Cross-Entropy

CT: Cross-Entropy + Triplet Loss

PSSM + PSSM + InterPro (CT) =HCFGO

基于蛋白质语言模型的预测方法

Protein language model-based method for GO prediction (PLMGO)

基于GO术先验概率的预测方法

Navie Bayes-based method for GO prediction (Naive)

$$S(G_i, P_j) = \frac{N_{G_i}}{N_D}$$

基于DNA语言模型的预测方法

DNA language model-based method for GO prediction (DLMGO)

MVK-GO消融实验

					F_{max}			S_{\min}			AUPR		
	Dataset	Method	MF	BP	CC	MF	BP	CC	MF	BP	CC		
		HCFGO	0.675	0.410	0.592	7.01	22.67	7.56	0.623	0.349	0.568		
		PLMGO	0.678	0.415	0.639	7.23	22.80	7.18	0.632	0.347	0.590		
PDN: PLMGO + DLMGO + Naïve		DLMGO	0.294	0.232	0.403	11.18	25.42	8.29	0.219	0.124	0.318		
HDN: HCFGO + DLMGO + Naive		Naïve	0.380	0.237	0.474	11.00	25.67	8.64	0.171	0.130	0.352		
HPN: HCFGO + PLMGO + Naive	Validation Dataset	PDN	0.678	0.414	0.631	7.23	22.40	7.17	0.669	0.355	0.647		
HPD: HCFGO + PLMGO + DLMGO	(974 proteins)	HDN	0.675	0.418	0.594	7.00	22.45	7.51	0.663	0.357	0.585		
MKVGO: HCFGO + PLMGO + DMLGO + N	Vaive	HPN	0.696	0.434	0.637	6.85	22.04	7.17	0.699	0.380	0.618		
		HPD	0.691	0.435	0.632	6.86	21.96	7.15	0.698	0.386	0.654		
		MKVGO	0.701	0.439	0.634	6.76	21.90	7.14	0.707	0.388	0.650		

MVK-GO消融实验

	_			F_{max}			S_{min}				
	Dataset	Method	MF	BP	CC	MF	BP	CC	MF	BP	CC
		HCFGO	0.682	0.412	0.580	7.23	23.91	8.14	0.630	0.340	0.539
		PLMGO	0.680	0.424	0.623	7.58	23.95	7.64	0.621	0.355	0.581
PDN: PLMGO + DLMGO + Naïve		DLMGO	0.319	0.252	0.450	11.77	26.97	8.99	0.219	0.142	0.390
HDN: HCFGO + DLMGO + Naive	T . D	Naïve	0.367	0.234	0.470	11.79	27.16	9.04	0.174	0.129	0.342
HPN: HCFGO + PLMGO + Naive	Test Dataset	PDN	0.682	0.433	0.627	7.53	23.74	7.63	0.664	0.358	0.638
HPD: HCFGO + PLMGO + DLMGO	(1522 proteins)	HDN	0.684	0.422	0.582	7.19	23.78	8.12	0.679	0.347	0.577
MKVGO: HCFGO + PLMGO + DMLGO + Nair	ve	HPN	0.704	0.439	0.624	6.99	23.36	7.63	0.706	0.374	0.607
		HPD	0.700	0.441	0.632	7.03	23.28	7.63	0.708	0.382	0.641
		MKVGO	0.706	0.446	0.630	7.00	23.25	7.62	0.710	0.381	0.641

为什么选择ProtTrans 而不选择ESM系列?

		F_{max}				S_{min}		AUPR			
Dataset	Method	MF	BP	CC	MF	BP	CC	MF	BP	CC	
V.1' 1.4' D.4 4	MVK-GO (ProtTrans)	0.701	0.439	0.634	6.76	21.90	7.14	0.707	0.388	0.650	
Validation Dataset	MVK-GO (ESM2 + FC)	0.697	0.441	0.622	6.81	21.72	7.23	0.714	0.390	0.645	
(974 proteins)	MVK-GO (ATGO)	0.703	0.432	0.611	6.63	21.96	7.38	0.697	0.386	0.649	
Test Dataset	MVK-GO (ProtTrans)	0.706	0.446	0.630	7.00	23.53	7.62	0.710	0.381	0.641	
(1522 proteins)	MVK-GO (ESM2 + FC)	0.705	0.440	0.616	6.97	23.30	7.67	0.708	0.378	0.634	
	MVK-GO (ATGO)	0.699	0.435	0.609	7.05	23.39	7.85	0.706	0.375	0.638	

为什么不采用复杂的神经网络处理蛋白质语言模型的特征表示?

Dataset		F _{max}					S_{min}			AUPR			
	Method	MF	BP	CC		MF	BP	CC		MF	BP	CC	
Validation Dataset	ESM2 + FC	0.679				7.09				0.627			
(974 proteins)	ESM2 + BiLSTM	0.649				7.53			_	0.591			
Test Dataset	ESM2 + FC	0.687				7.33				0.616			
(1522 proteins)	ESM2 + BiLSTM	0.664				7.68				0.617			

为什么采用决策融合而不采用特征融合?

我们可以得到什么结论?

▶ 针对传统的手工特征表示方法,只有设计复杂的深度神经网络,仍然可以取得较好的性能。

▶ 基于手工特征表示的预测方法 (HCFGO) 能够与基于蛋白质/DNA大语言模型的预测方法 (PLMGO和DLMGO) 相互补充,进一步提升预测性能。

下一步的工作计划?

- ➤ 采用更好预测性能的PSSM
- ➤ 在CAFA5数据集上测试性能
- ➤ 在HCFGO中考虑融入结构数据