localization to the original ring, it is possible that $(u_1,u_2) \neq 1$ in R_S . Since we are approaching from a localization to the original ring, it is possible that $(u_1',u_2') \neq 1$ in R (moreover u_1' being non units in R_S and thus there exists a positive integer n such that $u_1' \mid u_2' \mid n$ or $u_2' \mid u_1' \mid n$ (x being a packet). If we have $u_1' \mid u_2' \mid n$ or $u_2' \mid u_1' \mid n$ in R_S , but since $(u_1',u_2') = 1$ in R_S which is an HCF domain, $(u_1',u_2'^{\dagger n}) = 1$ in R_S , which is a unit in R_S a contradiction to the assumption that u_1' is a unit in R_S a contradiction to the is a packet in R_S . R_S are both non units in R_S and hence x is a packet in R_S .

Now according to the definition $A_S = \{ r \mid s \in S \}$,

If r/s is a non unit in R_S and if $r = p_1 p_2 \cdots p_n$, p_i packets and $(p_i, p_j) = 1$ if $i \neq j$ then

 $r/s = (p_1/s_1)(p_2/s_2)...(p_n/s_n);$ where $s = s_1s_2...s_n$ (p_i/s_i) are packets if non unit and because of the HGF property ($(p_i/s_i).(p_i/s_i)$) = 1 if $i \neq j$, that is if R is a series of the R and so we see that

URD then so is $R_{\rm S}$ and so we state the Proposition 5. Let R be a URD and S be a multiplicative

and saturated set in R then $R_{\rm S}$ is a URD. The concept of a rigid non unit being simpler than

that of a packet we can easily prove the

Corollary μ_{\bullet} If R is a Semirigid domain and S is a multiplicative and saturated set in R then $R_{\rm S}$ is again a Seminisis domain.

In Example 1, we showed that the almost integral closure of a PID is a URD, we now extend this result and state the

Theorem 6. Let R be an integral domain, K its field of fractions and x an indeterminate over R, then R is a URD iff its almost integral closure S=R+xK[x] is a URD.