Math 172 Assignment 4 Tuesday, February 20, 2018

13.2 (4, 12, 14) 13.3 (1, R2) 13.4 (2, 3, R4)

13.2.4 Determine the degree over Q of $2 + \sqrt{3}$ and of $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

1

13.2.12 Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K containing F is either K or F.

13.2.14 Prove that if $[F(\alpha):F]$ is odd then $F(\alpha)=F(\alpha^2)$.

3

13.3.1 Prove that it is impossible to construct the regular 9-gon.

READ ONLY 13.3.2 Prove that Archimedes' construction actually trisects the angle θ . [Note the isosceles triangles in Figure 5 to prove that $\beta = \gamma = 2\alpha$.]

Fig. 5

13.4.2 Determine the splitting field and its degree over \mathbb{Q} for $x^4 + 2$.

13.4.3 Determine the splitting field and its degree over Q for $x^4 + x^2 + 1$.

6

READ ONLY 13.4.4 Determine the splitting field and its degree over \mathbb{Q} for $x^6 - 4$.