Anwendungen

Das Thema "Computer Grafiken" lässt sich in vielen Gebieten antreffen, wie z.B.:

- Videospiele
- Cartoons & Filme
- Datenvisualisierungen
- Berechnungen

Vektorgeometrie

Punkte vs. Vektoren

Grundsätzlich sind alle Punkte Ortsvektoren durch den Ursprung. Es gilt daher:

$$P = \vec{0} + \vec{p} = \vec{p}$$

Operationen

Addition / Subtraktion
$$ec{a}+ec{b}=egin{pmatrix} a_1+b_1\ a_2+b_2 \end{pmatrix}$$

Skalarmultiplikation $r \cdot a_2$

$$\vec{a} + \vec{b} = \begin{pmatrix} a_2 + b_2 \\ ... \end{pmatrix}$$
Kreuzprodukt

Transponieren

$$ec{a} imesec{b} = egin{pmatrix} a_2b_3 - a_3b_2 \ a_3b_1 - a_1b_3 \ a_1b_2 - a_2b_1 \end{pmatrix} egin{pmatrix} a_1 \ a_2 \ ... \end{pmatrix}^T = (a_1,a_2,...)$$

Euklidische Norm (Länge) $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + ...}$

Normalisierung $|\vec{a}|$

Skalarprodukt

$$ec{a} \circ ec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + ... = \left| ec{a}
ight| \cdot \left| ec{b}
ight| \cdot \cos lpha$$

st $\vec{a} \circ \vec{b} = 0$, sind die Vektoren orthogonal. Orthogonal: Vektoren stehen senkrecht aufeinander.

Orthogonale Projektion

$$ec{u}_p = \left(rac{ec{u} \circ ec{v}}{|ec{u}|^2}
ight) \cdot ec{u}$$

$$= |ec{v}| \cdot \cos \alpha \cdot \widehat{u}$$

Multiplikation

Allgemein nicht kommutativ:

$$ec{a}\cdotec{b}
eqec{b}\cdotec{a}$$

$$A\cdot B
eq B\cdot A$$

$$AB = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

3D Geometrien

Bestandteile von 3D-Obiekten

3D-Objekte bestehen im Allgemeinen immer aus diesen Elementen:

- Eckpunkte (Vertices): $V \in \mathbb{R}^3$
- Linien (Edges): $E \in (V_1, V_2)$
- Oberflächen (Faces): $F \in (V_1, V_2, V_3)$
- ⇒ Wir nennen 3D-Objekte auch «Meshes» ⇒ Meist werden Dreiecke für die Faces verwendet.
 ⇒ Eckpunkte können definiert oder berechnet werder

Indexing

Die Punkte V der Fläche F lassen sich auf verschiedene Arten referenzieren:

- Ohne Indexina:
 - 1 Punkte-Array $(l = 9 \cdot n_F)$
 - 3 Koordinaten pro Punkt
 - 3 Punkte pro Fläche
- Mit Indexing:
- 1 Punkte-Array ($l=3 \cdot n_V$)
- 1 Index-Array $(l = 3 \cdot n_E)$
- 3 Koordinaten pro einzigartigen Punkt
- 3 Indexe pro Fläche
- ⇒ Mit Indexing ist meistens effizienter als ohne Indexing

Koordinatensysteme

Ein Punkt einer Geometrie kann ie nach Ansichtsweise von verschiedenen Koordinatensystemen referenziert werden:

- 1. Modell (3D / Rechtshändig)
- 2. Welt (3D / Rechtshändig)
- 3. Kamera (3D / Linkshändig)
- 4. Bildschirm (2D)
- ⇒ Bei der Darstellung werden diese Punkte umtransformiert. \Rightarrow z.B. P(1,3,2) steht auf dem Bildschirm an P(5,4).

Transformation

Translation

Transformation können sukzessiv oder gemeinsam angewandt werden.

⇒ Die nachfolgenden Beispiele sind alle in 2D.

Verschiebe alle Punkte einer Geometrie um einen Vektor (Vektoraddition).

$$Tig(ec{x}ig) = ig(egin{matrix} x+d_1 \ y+d_2 \end{matrix}ig) = ec{x}+ec{d}$$

Skalierung

Verschiebe alle Punkte einer Geometrie um einen Faktor (Skalarmultiplikation).

$$Sig(ec{x}ig) = ig(egin{array}{c} s \cdot x \ s \cdot y \ \end{pmatrix} = s \cdot ec{x}$$

⇒ Die Faktoren s können auch unterschiedlich sein (s. Matrix).

Rotation

Rotiere alle Punkte einer Geometrie um einen Winkel θ.

$$R_{ heta}ig(ec{x}ig) \Rightarrow egin{pmatrix} x \cdot \cos heta - y \cdot \sin heta \ x \cdot \sin heta + y \cdot \cos heta \end{pmatrix}$$

⇒ Einfachheitshalber nur in 2D.

Gesamt-Transformationen

Wir würden gerne zuerst die Transformationen zusammenrechnen und dan auf alle Punkte anwenden (effizenz). Problem: Die Translation ist keine lineare Abbildung. Das bedeutet:

$$s\cdot\left(ec{d}+ec{x}
ight)
eq\left(s\cdotec{d}
ight)+ec{x}$$

⇒ Oder: Sukzessiv ist nicht gleich gemeinsam.

Homogene Koordinaten

Um das Problem der Translation zu lösen, werden alle kartesischen Koordinaten P(x,y) auf homogene Koordinaten $P_H(x,y,1)$ abgebildet.

- \Rightarrow Oder Allgemeiner. P(x,y,w) repräsentiert P(x/w,y/w). \Rightarrow Die Punkte werden also zu Linien im projektiven Raum. \Rightarrow Diese Linien verlaufen alle durch den Nullpunkt.

Translation (Matrix)

Die Translation lautet nun:

$$\begin{pmatrix} 1 & d_1 \\ 1 & d_2 \\ & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+d_1 \\ y+d_2 \\ 1 \end{pmatrix}$$

Skalierung (Matrix)

Die Skalierung lautet nun:

$$\begin{pmatrix} s_1 & & \\ & s_2 & \\ & & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} s_1 \cdot x \\ s_2 \cdot y \\ 1 \end{pmatrix}$$

Rotation (Matrix)

Die Rotation lautet nun:

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \\ & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \\ 1 \end{pmatrix}$$

Gesamt-Transformationen (Matrix)

Wir können nun die einzelnen Transformations-Matrizen miteinander multiplizieren und erhalten so die Gesamt-Transfor-

$$M_{
m R} \cdot ig(M_{
m S} \cdot ec{x} ig) = (M_{
m R} \cdot M_{
m S}) \cdot ec{x}$$

Projektionen

Definition

Um ein 3D-Objekt auf einem 2D-Bildschirm darzustellen, müssen wir es zuerst in diese 2D-Dimension projizieren. Wir unterscheiden dabei:

- Perspektivische Projektion
- Orthogonale Projektion

Perspektivische Projektion

Projiziere den Punkt P(x, y, z) auf die XY-Ebene (z=0) basierend auf der Kameraposition $E(e_x, e_y, e_z)$.

Gesucht ist die Projektion $C(c_x, c_y)$.

$$c_x = rac{e_x z - e_z x}{z - e_z} \qquad c_y = rac{e_y z - e_z y}{z - e_z}$$

 $\stackrel{
ightharpoonup}{}$ Die Dimension wird also um eins reduziert (\mathbb{R}^3 zu \mathbb{R}^2). \Rightarrow Bei 2D einfach eine Komponente (z.B. x) weglassen.

Orthogonale Projektion

Projiziere den Punkt P(x, y, z) auf die XY-Ebene (z=0) basierend auf der Kameraposition $E(e_x, e_y, e_z)$.

Gesucht ist die Projektion $C(c_x, c_y)$.

$$c_y = x$$
 $c_y = y$

View Frustum

Bezeichnet die Sichtbarkeit (Clip-Space) bei der perspektivischen Projektion. Es wird definiert durch:

- Öffnungswinkel (Field of View)
- Seitenverhältnis (Aspect Ratio)
- Near und Far-Plane (Clipping Distance)
- ⇒ Der Öffnungswinkel bestimmt die Grösse von Objekten ⇒ Die Brennweite (Kamera) hestimmt die Tiefenschärfe

GPU-Berechnung

Grafik-Pipeline

Double Buffering

TODO

Shader-Programme

Sind auf der GPU laufende Programme für die Berechnung des Bildes. Es gibt:

- Vertex-Shader: Projektion der Modell-Eckpunkte in den Clip-Space.
- Fragment-Shader: Berechnung der Farbe ei-
- ⇒ Arbeitet immer in einzelnen Primitiven (z.B. ein Eckpunkt).

GLSL Programmiermodell

Kommunikation in den Pipeline-Stages:

- in: Aus vorherigem Stage
- out: An nächsten Stage
- uniform: Für alle Primitiven gleich

Beleuchtung & Texturen

Allgemeines

Die Farbe eines Objekts (bzw. Pixels) besteht immer aus:

- Objekt-Farben / Texturen
- Beleuchtung

Farbdarstellung

Subtraktive Farbberechnung

Die Farbanteile, welche in Lichtquelle und Objekt vorkommen, sind sichtbar:

$$C_{ ext{Total}} = egin{pmatrix} R_{ ext{Light}} \cdot R_{ ext{Object}} \ G_{ ext{Light}} \cdot G_{ ext{Object}} \ B_{ ext{Light}} \cdot B_{ ext{Object}} \end{pmatrix}$$

Alternative mit gemittelten Werten:

$$C_{ ext{Total}} = rac{1}{2} \cdot \left(C_{ ext{Light}} + C_{ ext{Object}}
ight)$$

Additive Farbberechnung

Die Farbanteile der Lichtquellen werden zusammengerechnet:

$$C_{ ext{Total}} = ec{1} - egin{pmatrix} (1 - R_{ ext{L1}}) \cdot (1 - R_{ ext{L2}}) \ (1 - G_{ ext{L1}}) \cdot (1 - G_{ ext{L2}}) \ (1 - B_{ ext{L1}}) \cdot (1 - B_{ ext{L2}}) \end{pmatrix}$$

Oberflächennormale

Nicht-triviale Belichtungsmodelle berücksichtigen die Ausrichtung der Oberfläche:

$$N_{V_1} = (V_2 - V_1) \times (V_3 - V_1)$$

Normale eines Vertex V_1 von einer Fläche $F \in (V_1, V_2, V_3)$

⇒ Dieser Wert wird nun auf die Fläche F interpoliert. ⇒ Kann im voraus oder «on-the-fly» berechnet werden

EVT. BILD

Beleuchtungsmodelle

Ambient Lighting

Belichtung von einem globalen Licht mit Remission in alle Richtungen.


```
uniform float ambientStrength;
uniform vec3 lightColor;
uniform vec3 objectColor;
out vec4 fragColor;
void main() {
 vec3 ambient = ambientStrength
                 * lightColor;
 // Component-wise multiplication
  vec3 color = ambient * objectColor;
  fragColor = vec4(color, 1.0);
                  ambient-fragment-shader.glsl
```

Diffuse Lighting

Belichtung von einer Punktquelle mit Remission in alle Richtungen.


```
# Initializations...
void main() {
 vec3 normDir = normalize(normal);
  vec3 lightDir =
   normalize(lightPos - fragPos);
  float cosTheta =
   max(dot(normDir, lightDir), 0.0);
  vec3 diffuse = cosTheta
                  * lightColor
                  * objectColor;
  fragColor = vec4(diffuse, 1.0);
                   diffuse-fragment-shader.glsl
```

⇒ Wird für matte Oberflächen verwendet.

Specular Lighting

Belichtung von einer Punktquelle mit Remission in eine Richtung.

Initializations

```
void main() {
 vec3 normDir = normalize(normal);
  vec3 cameraDir = normalize(cameraPos
  vec3 lightDir = normalize(lightPos
  vec3 reflectDir = reflect(-lightDir
  float cosTheta = max(dot(cameraDir,
  float intensity = pow(cosTheta, shim
 vec3 specular = intensity * lightCol
fragColor = vec4(specular, 1.0);
```

specular-fragment-shader.glsl

Wird f
ür spiegelnde Oberfl
ächen verwendet.

Kombinationsmodelle

Phong-Shading

Die Belichtung wird aus Ambient-, Diffuseund Specular-Anteilen zusammengesetzt.

$$C_{ ext{Total}} = rac{1}{3} \cdot ig(C_{ ext{Ambient}} + C_{ ext{Diffuse}} + C_{ ext{Specular}} ig)$$

⇒ Problem: Ab 90° gibt es kei<u>ne Spiegelung mehr.</u>

Blinn-Phong-Shading

Löst das Problem von Phong-Shading durch die Verwendung eines «Halfway-Vectors».


```
void main() {
 vec3 halfwayDir = normalize(lightDir
 float cosTheta = max(dot(normDir, ha
                 blinn-phong-fragment-shader.glsl
```

Texturen

Texturen sind Bilddateien, welche Eigenschaften (wie z.B. die Farbe) einer Oberfläche definieren.

Texture-Mapping

Beschreibt die Abbildung von 3D-Vertex-Koordinaten auf 2D-Textur-Koordinaten.

uniform sampler2D texUnit: in vec2 texCoord; out vec4 fragColor; void main(void) { fragColor = texture(texUnit, texCoord): texture-fragment-shader.glsl

Komplexe Oberflächen

Grundformen

3D-Objekte lassen sich wie bisher durch Punkte, aber auch durch Funktionen beschreiben:

- Funktionen: Kontinuierlicher Wertebereich
 - Explizit: z = -ax + by + ...
 - Implizit: $0 = x^2 + 2y^2 + ...$
 - Parametrisch: $P = \vec{0} + s\vec{u} + ...$
- Punkte: Festgelegter Wertebereich
- ⇒ Explizite Funktionen sind nach einer Variablen aufgelöst. ⇒ Implizite sind nicht aufgelöst (algebraische Oberflächen). ⇒ Algebraische Oberflächen: Sphäre, Torus, Würfel, etc.

Vor- und Nachteile

Es gibt keine beste Repräsentationsform für Objekte. Beide haben ihre Vor- und Nachteile:

- Funktionen:
- Pro: Wenig Speicherplatz, Schnittpunkte mathematisch berechenbar, beliebig genaue Auflösung
- Con: Beschränkte Formen, komplexe Herleitung, grafische Transformationen sind schwieria
- Punkte:
- Pro: Beliebige Geometrie, vielseitig einsetzbar, direkter GPU-Support, einfache Berechnung
- Con: Fixe Genauigkeit, hoher Speicherbedarf, Rechenzeit abhängig von der Anzahl Primitiven

Zusammengesetzte Formen

TODO

Triangulation

Beschreibt die Umwandlung einer Punktwolke (z.B. Rohdaten) in ein Polygon-Mesh.

⇒ Die Oberflächen werden rekonstruiert / approximiert.

Sweep-Strategie

- 1. Laufe von links nach rechts.
- 2. Für jeden Punkt:
 - a. Zeichne eine Linie zu den 2 vorherigen Punkten, für die ailt:
 - Keine Dellen entstehen
 - Keine Überschneidungen entstehen
 - b. Verbinde nun alle weiteren Punkte innerhalb dieser Form.
- 3. Wiederhole, bis zum Ende.

⇒ Die entstehende Form nennt sich "Konvexe Hülle".

Insert-Strategie

- 1. Zeichne 2 Anfangsdreiecke um alle Punkte. 2. Für alle Punkte (zufällige Wahl):
 - a. Bestimme das umfassende Dreieck.
 - b. Unterteile dieses Dreieck in 3 weitere Dreiecke. D.h. Verbinde alle Eckpunkte mit dem gewählten Punkt.
- 3. Wiederhole, bis zum Ende.
- 4. Entferne nun alle künstlichen Anfangspunkte und die damit verbundenen Dreiecke.

Problem

Beide Strategien erzeugen "unschöne", spitze Dreiecke.

Delaunay Triangulation

- 1. Rekursiv für alle Dreiecke:
 - a. Wähle ein anliegendes Dreieck
 - b. Ersetze die längere der inneren Kanten
 - durch die Kürzere. (Edge-Flip)
- 2. Wiederhole, bis zum Ende.

Approximationen

Marching Squares Algorithmus

Mit diesem Algorithmus lassen sich die Isolinien von Heat Maps diskret bestim-

- 1. Gitter über die Daten legen.
- 2. Betrachtungshöhe (Potenzial) festlegen.
- 3. Für alle Quadrate im Gitter:
 - a. Eckpunkte beachten.
 - b. Nach Schema unten Linien einzeichnen.
- 4. Wiederhole, bis zum Ende.
- ⇒ "Heat Map": 2D-Visualisierung von 3D-Landschaften.
 ⇒ "Isolinien": Die Höhenlinien einer Heat Map.

Weitere Algorithmen

- Marching Cubes (3D-Heat-Maps)
- Interpolation: Punkte «vervollständigen»
 - Polynomial: $f = a_0 x^0 + ... + a_n x^n$ Splines: Stückweise Interpolation der
 - Punkte mit linearen, quadratischen oder kubischen Funktionen.
- NURBS: Interpolation in 3D

selbstähnliche geometrische Strukturen.

⇒ Sie können rekursiv definiert und aufgebaut werden.

Formale Definition

- Anfangsform: f
- Ersetzungsregeln: f o f + f -f + f
- Strich: f
- Positive Rotation: +
- Negative Rotation: —
- Abzweigung (Kind): [f]
- Kontext: Rotation 60°
- Beispiele: Koch Kurve, Hilbert Kurve, Fraktale, etc. So lassen sich u.a. Bäume generieren (z.B. mit Zufallszahlen).

Beschreibt ein rekursives Verfahren für

das Verfeinern von Oberflächen.

Subdivision Curves ist das Äquivalent für Kurven.

Curves: Chaikin's Algorithmus

1. Beginne mit einer Kurve

Subdivision Surfaces

- 2. Markiere die Anfangspunkte (Blau)
- 3. Setze in der Mitte von allen Strecken einen neuen Punkt (Schwarz ohne Füllung)
- 4. Setze nun in der Mitte der neuen Strecken einen Punkt (Rot)
- 5. Streiche nun alle schwarzen Punkte und verbinde die Roten und Blauen.
- 6. Wiederhole, solange wie gewünscht.

 $^{\diamond}$ Die neuen Punkte stehen an 1/4 und 3/4 der Originalstrecke. ⇒ Diese Gewichtung kann auch variiert werder

Surfaces: Algorithmen

Dreiecksbasiert Loop

 $\sqrt{3}$ Subdivision

Rechtecksbasiert

Catmull-Clark

Doo-Sabin

Vorteile

Vorteile von Subdivision-Surface, insbesondere im Vergleich zu NURBS:

- Beliebige Oberflächentopologie
- Kompakte Repräsentation
- Level-of-Detail Rendering
- Intuitiv mit einfachen Algorithmen
- ⇒ NURBS-Flächen können nur Scheiben, Zylinder oder Tori sein.

Korrektur & Optimierung

TODO

Qualitätsmerkmale

Mesh Smoothing

Mesh Reduktion / Remeshing

Diese Verfahren haben das Ziel, die Anzahl der Oberflächen zu reduzieren.

Vertex Clustering

- 1. Wähle ein Grösse epsilon (Toleranz)
- 2. Teile den Raum in Quadrate dieser Grösse
- 3. Berechne pro Quadrat einen repräsentativen Eckpunkt (z.B. Mittelpunkt aller Punkte)
- 4. Lösche die originalen Punkte und ersetzte sie durch den neuen Eckpunkt.

Je nach Berechnungsverfahren des repräsentativen Eckpunkts kann sich die Topologie des Meshes stark unterscheiden.

 \Rightarrow Das Verfahren spielt also eine starke Rolle für die Qualität

Inkrementelle Reduktion

Resampling / Remeshing

Rasterisierung & Sichtbarkeit

Rasterisierung

Da ein 2D-Bildschirm aus Pixeln besteht, müssen wir nach der Projektion die Linien noch in ein Raster abbilden. Es gibt verschiedene Methoden dazu:

- Vollständig Zusammenhängend
- Minimal Zusammenhängend
- Aliased (Binär)
- Anti-Aliased (Prozentual)

Aliasing

Zeichne ausschliesslich die Pixel eines Dreiecks, für die gilt:

- Das Pixel-Zentrum liegt in dem Dreieck.
- Das Pixel-Zentrum liegt auf der oberen oder linken Seite des Dreiecks.
- ⇒ Technisch wird das Dreieck zeilenweise gezeichnet.
 ⇒ Dazu wird u.a. der Bresenham Linien-Algorithmus verwendet.

Bresenham Linien-Algorithmus

Basierend auf zwei Punkten P_{Start} und P_{Ende} , zeichne die Linie nach dem Bresenham Linien-Algorithmus:

- 1. Berechne $\Delta x = x_{\mathrm{Ende}} x_{\mathrm{Start}}$
- 2. Berechne $\Delta y = y_{
 m Ende} y_{
 m Start}$
- **3**. Berechne $m=\Delta y/\Delta x$
- **4.** Wenn $\Delta x \geq \Delta y$ dann mit i=0:
 - a. $x_i = x_{\mathrm{Start}} + i$
 - b. $y_i = y_{ ext{Start}} + \lfloor m \cdot i + 0.5
 floor$
 - **c**. Zeichne den Pixel (x_i, y_i)
- $\mathsf{d.}\ i \leftarrow i+1$

 $^{
ightharpoonup}$ Bei $\Delta x \geq \Delta y$ wird die Berechnung von x_i und y_i vertauscht.

Anti-Aliasing

Zeichne alle Pixel eines Dreiecks unter Beachtung der prozentualen Abdeckung. Das bedeutet:

- Erhöhe das Pixelraster (z.B. 4x)
- Berechne die Abdeckung nach Aliasing
- Reduziere das Pixelraster und zeichne alle Pixel anhand der berechneten Abdeckung.

Varianten davon sind:

- Super-Sampling: Die komplette GPU-Pipeline läuft mit einem erhöhten Pixelraster.
- Multisampling: Nur der Z-Buffer läuft mit einem erhöhten Pixelraster.

Probleme (Aliasing Effekte)

Wenn die Auflösung eines Texturmusters grösser ist als die Auflösung der Anzeigefläche, kann der Moiré-Effekt auftreten.

⇒ Dies passiert bei beiden Aliasing-Verfahren. ⇒ Problem: Ein Pixel alleine kann kein Muster darstellen.

Mipmaps

Beschreibt eine "Pyramide" von Texturen, bei der die Auflösung anhand der Distanz zur Kamera gewählt wird.

⇒ Je näher das Objekt, desto hochauflösender die Textur. ⇒ Damit kann der Moiré-Effekt verhindert werden.

Sichtbarkeit

Z-Buffer (Depth-Buffer)

Erlaubt das korrekte Zeichnen von überlappenden Objekten.

- Initialisiere den Buffer mit $Z_{\mathrm{B}} = \infty$
- Für alle Objekt-Pixel:
- \circ Ermittle die Distanz zur Kamera $Z_{
 m O}$
- Wenn $Z_{
 m B}>Z_{
 m O}$:
 - Zeichne das Pixel

- Wenn $Z_{\rm B} < Z_{\rm O}$:
 - Zeichne das Pixel nicht
- $^{
 ightharpoonup} Z_{
 m B} > Z_{
 m O}$ bedeutet, dass das Objekt näher ist.
- ⇒ Z-Fighting: Problem bei gleichen Z-Werten. ⇒ Z-Funktion: Normalerweise 1 - 1/z

Spiegelungen & Schatten

Spiegelungen

Flächen

Berechne die Szene aus Sicht einer virtuellen Spiegelkamera und projiziere das Bild in Form einer Textur auf die Fläche.

⇒ Winkel und Distanz sind dabei äquivalent.

Kuaeln

Berechne die Szene für alle Seiten einer umliegenden Bounding-Box und projiziere das Bild dann auf die Kugel.

⇒ Die Spiegelkamera steht dabei in der Kugelmitte. ⇒ Je grösser die Bounding-Box, desto kleiner der Fehler

Environment Mapping

Beschreiben 360°-Bilder, welche für Spiegelungen und Hintergründe verwendet werden können.

Schatten

Shadow Mapping

Projiziere die Szene aus Sicht der Lichtquelle auf die zu belichtende Oberfläche.

. ⇒ Zeichne zuerst die Schatten und dann die Objekte. ⇒ Bilde dazu nicht die Farbwerte, sondern die Tiefenwerte ab.

Depth-Map

Visualisierung des Z-Buffers.

- Schwarz: $Z_O = 0$ (Nahe)
- Weiss: $Z_O = \infty$ (Weit weg)