Nama : Ahmad Kelas : Tekom B 23 NIM : 230210501020

1. Yaitu:

Koin tersedia: 10, 7, 2, dan 1

Uang yang ditukar: 20 (dari 3 digit terakhir NIM: 020)

Solusi Greedy:

20 = 10 + 10 (menggunakan 2 koin)

Solusi Optimal:

20 = 10 + 10 (menggunakan 2 koin, solusi sama dengan greedy)

2. Yaitu:

	1	2	3	4	5
Profit	200	75	50	105	115
Weight	55	60	45	50	48

Solusi:

Properti Objek			Greedy By			Solusi Optimal	
i	Wi	Pi	Pi/Wi	Profit	Weight	Density	Z F V
1	55	200	3,64	1	0	1	1
2	60	75	1,25	0	0	0	0
3	45	50	1.11	0	0	0	0
4	50	105	2.10	1	1	1	1
5	48	115	2.40	1	1	1	1
Total Bobot			153	98	153	153	
Total Keuntungan			420	220	420	420	

Solusi Optimal = X = (1,0,0,1,1)

Kesimpulan: Profit dan Density memberi solusi optimal

3. Yaitu:

Pencarian Elemen Maksimum dan Minimum dalam Array

Deskripsi: Cari elemen maksimum dan minimum dari sebuah array besar dengan pendekatan divide and conquer untuk mengurangi jumlah perbandingan.

Solusi:

- 1. Divide: Bagi array menjadi dua bagian hingga setiap bagian hanya memiliki satu elemen.
- 2. Conquer:
 - Jika array memiliki satu elemen, elemen itu adalah maksimum dan minimum.
- Jika array memiliki dua elemen, bandingkan keduanya untuk menentukan maksimum dan minimum.
- 3. Combine:
 - Gabungkan hasil dari dua subarray dengan cara:
- Bandingkan maksimum dari kedua subarray untuk menentukan maksimum keseluruhan.
- Bandingkan minimum dari kedua subarray untuk menentukan minimum keseluruhan.

Contoh:

Array input: [12, 3, 45, 7, 19, 8, 24, 6]

- Divide: [12, 3, 45, 7] dan [19, 8, 24, 6]
- [12, 3] dan [45, 7]; [19, 8] dan [24, 6]
- [12], [3], [45], [7], [19], [8], [24], [6]
- Conquer:
- Bandingkan setiap elemen untuk menemukan maksimum dan minimum di setiap subarray:

```
-[12, 3]: max = 12, min = 3
```

$$- [45, 7]: max = 45, min = 7$$

$$-[19, 8]$$
: max = 19, min = 8

$$-[24, 6]$$
: max = 24, min = 6

- Combine:

- Dari [12, 3] dan [45, 7]: max = 45, min = 3
- Dari [19, 8] dan [24, 6]: max = 24, min = 6
- Gabungkan hasil akhir:
- Max = 45, Min = 3

Hasil: Elemen maksimum adalah 45, elemen minimum adalah 3.