

Signal Isolated RS-485 Transceiver With Integrated DC to DC Converter

Datasheet (EN) 1.0

Product Overview

NSiP83086 series are high reliability isolated full duplex RS-485 transceiver with integrated DC to DC converter. The NSiP83086 isolated DC to DC converter uses on-chip transformer. The feedback PWM signal is sent to primary side(Isolator Side1) by a digital isolator based on Novosense capacity isolation technology. The NSiP83086 series are safety certified by UL1577 supporting 5kVrms insulation withstand voltage, while the high integrated solution can help to simplify system design and improve reliability.

The Bus pins of NSiP83086 are protected from $\pm 8kV$ system level ESD to GND₂. The device features a fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. The device have $96k~\Omega$ input impedance that allows up to 256 transceivers on the bus.

Key Features

- Up to 5000Vrms Insulation voltage
- ISO-Power integrated isolated DC-to-DC converter
- I/O voltage range supports 1.8~5.5V MCU
- Power supply voltage:

VDD: 4.5V to 5.5V for NSiP83086

3V to 5.5V for NSiP83086C and NSiP83086V

VDDL: 1.8V to 5.5V

- Over current and over temperature protection
- High CMTI: ±150kV/us
- Data rate: 16Mbps
- Up to 256 transceivers on the bus
- High system level EMC performance:

BUS Pins meet IEC61000-4-2 \pm 8kV ESD

Other Pins meet IEC61000-4-2 \pm 7kV ESD

- Operation temperature: -40 °C ~105 °C
- RoHS-compliant packages: SOW20 SOW16

Safety Regulatory Approvals

- UL recognition: up to 5000V_{RMS} for 1 minute per UL1577
- CQC certification per GB4943.1-2022
- CSA component notice 5A
- DIN VDE V 0884-11:2017-01

Applications

- Industrial automation system
- Isolated RS-485 communication
- Smart electric meter and water meter
- · Security and protection monitoring

Device Information

Part Number	Package	Body Size		
NSiP83086(C)(V)-DSWTR	SOW20	12.80mm × 7.50mm		
NSiP83086(V)-DSWR	SOW16	10.30mm x 7.50mm		

Note: (C), (V) could be empty representing 5V output version. V represents 3.3V output version, C version has SEL pin which can choose 3.3/5V output

Functional Block Diagrams

Figure 1. NSiP83086 Block Diagrams

NSiP83086

INDEX

1. PIN CONFIGURATION AND FUNCTIONS	3
2. ABSOLUTE MAXIMUM RATINGS	7
3. RECOMMENDED OPERATING CONDITIONS	7
4. THERMAL INFORMATION	7
5. SPECIFICATIONS	8
5.1. DC ELECTRICAL CHARACTERISTICS	10 11
6. HIGH VOLTAGE FEATURE DESCRIPTION	14
6.1. INSULATION AND SAFETY RELATED SPECIFICATIONS	14
7. FUNCTION DESCRIPTION	16
7.1. TRUE FAIL-SAFE RECEIVER INPUTS	17 17
8. APPLICATION NOTE	18
8.1. 256 TRANSCEIVERS ON THE BUS	18 18
9. PACKAGE INFORMATION	20
10. ORDER INFORMATION	21
11. DOCUMENTATION SUPPORT	21
12. TAPE AND REEL INFORMATION	22
13. REVISION HISTORY	24

1. Pin Configuration and Functions

Figure 1.1 NSiP83086(V)-DSWTR Package

Table1.1 NSiP83086(V)-DSWTR Pin Configuration and Description

PIN NO.	SYMBOL	FUNCTION					
1	GND ₁	Ground 1,the ground reference for Isolator Side 1					
2 VDD ₁		Power Supply for Isolator Side 1 ,It is recommended this pin have a $0.1\mu F$ + $10~\mu F$ capacitor to GND $_1$ (Pin1,Pin3)					
3	GND_1	Ground 1,the ground reference for Isolator Side 1					
4	R	Receiver output					
5	/RE	Receiver enable input, this is an active low input					
6	DE	Driver enable input, this is an active high input					
7	D	Driver transmit data input					
8	VDDL	/DDL I/O Power Supply input, Side1 I/O logic level					
9	GND_1	Ground 1,the ground reference for Isolator Side 1					
10 GND ₁		Ground 1,the ground reference for Isolator Side 1					
11 GND ₂ Ground 2,		Ground 2,the ground reference for Isolator Side 2					
12	V _{ISOIN}	Isolated power supply input. This pin must be connected externally to V _{ISOOUT} . It is recommended this pin have a 0.1 μF capacitor to GND ₂ (Pin11). Connect this pin to V _{ISOOUT} through a ferrite bead and short trace length for operation.					
13	Y	Non-inverting Driver Output. When the driver is disabled, or when VDDL is powered down, Pin Y is put into a high impedance state to avoid overloading the bus.					
14	GND ₂	Ground 2, the ground reference for Isolator Side 2					
		Inverting Driver Output. When the driver is disabled, or when VDD is powered down, Pin Z is put into a high impedance state to avoid overloading the bus.					
16	GND ₂	Ground 2, the ground reference for Isolator Side 2					
17	В	Inverting Receiver Input					

	18	А	Non-inverting Receiver Input
	19	V _{ISOOUT}	Isolated Power Supply Output. This pin must be connected externally to V_{ISOIN} . It is recommended this pin have a $0.1~\mu\text{F}$ and $10\mu\text{F}$ capacitor to GND $_2$ (Pin20). Connect this pin through a ferrite bead and short trace length to V_{ISOIN} for operation.
20 GND ₂ (GND_2	Ground 2, the ground reference for Isolator Side 2

Figure 1.2 NSiP83086C-DSWTR Package

Table1.2NSiP83086C-DSWTR Pin Configuration and Description

PIN NO.	SYMBOL	FUNCTION				
1	GND₁	Ground 1,the ground reference for Isolator Side 1				
2	VDD ₁	Power Supply for Isolator Side 1 ,It is recommended this pin have a 0.1 μ F + 10 μ F capacitor to GND ₁ (Pin1,Pin3)				
3	GND_1	Ground 1,the ground reference for Isolator Side 1				
4	R	Receiver output				
5	/RE	Receiver enable input, this is an active low input				
6	DE	Driver enable input, this is an active high input				
7 D 8 VDDL I/O Powe		Driver transmit data input				
		I/O Power Supply input, Side1 I/O logic level				
9	GND_1	Ground 1, the ground reference for Isolator Side 1				
10	GND ₁	Ground 1,the ground reference for Isolator Side 1				
11	SEL	VISO output voltage select, V _{ISOOUT} =5V when SEL is floating or connect to V _{ISOIN} , V _{ISOOUT} =3.3V when SEL short to GND ₂				
recommended this pin have a $0.1\mu\text{F}$ capacitor to GND_2 . Connect		Isolated power supply input. This pin must be connected externally to V _{ISOOUT} . It is recommended this pin have a 0.1 μF capacitor to GND ₂ . Connect this pin to V _{ISOOUT} through a ferrite bead and short trace length for operation.				
13 Y Non-inverting Driver Output. When the driver is disabled, or v		Non-inverting Driver Output. When the driver is disabled, or when VDDL is powered down, Pin Y is put into a high impedance state to avoid overloading the bus.				
14	GND ₂	Ground 2, the ground reference for Isolator Side 2				

15	Z	Inverting Driver Output. When the driver is disabled, or when VDD is powered down, Pin Z is put into a high impedance state to avoid overloading the bus.
16	GND ₂	Ground 2, the ground reference for Isolator Side 2
17	В	Inverting Receiver Input
18	А	Non-inverting Receiver Input
19	V _{ISOOUT}	Isolated Power Supply Output. This pin must be connected externally to V_{ISOIN} . It is recommended this pin have a 0.1 μ F and 10μ F capacitor to GND ₂ (Pin20). Connect this pin through a ferrite bead and short trace length to V_{ISOIN} for operation.
20	GND ₂	Ground 2, the ground reference for Isolator Side 2

Figure 1.3 NSiP83086(V)-DSWR Package
Table1.3NSiP83086(V)-DSWR Pin Configuration and Description

PIN NO.	SYMBOL	FUNCTION	
1	GND_1	Ground 1, the ground reference for Isolator Side 1	
2	VDD ₁	Power Supply for Isolator Side 1. It is recommended this pin have a 0.1 μ F + 10 μ F capacitor to GND ₁ (Pin1)	
3	R	Receiver output	
4	/RE	Receiver enable input, this is an active low input	
5	DE	Driver enable input, this is an active high input	
6	D	Driver transmit data input	
7	VDDL	I/O Power Supply input, Side1 I/O logic level	
8	GND ₁	Ground 1, the ground reference for Isolator Side 1	
9	GND ₂	Ground 2, the ground reference for Isolator Side 2	
10	NC Not Connected		

NSiP83086

11	Y	Non-inverting Driver Output. When the driver is disabled, or when VDD is powered down, Pin Y is put into a high impedance state to avoid overloading the bus.				
12	Z	Inverting Driver Output. When the driver is disabled, or when VDD is powered down, Pin Z is put into a high impedance state to avoid overloading the bus.				
13	В	Inverting Receiver Input				
14	А	Non-inverting Receiver Input				
15	V _{ISOOUT}	Isolated Power Supply Output. It is recommended this pin have a 0.1 μF and $10 \mu F$ capacitor to GND ₂ (Pin16).				
16	GND ₂	Ground 2, the ground reference for Isolator Side 2.				

2. Absolute Maximum Ratings

Parameters	Symbol	Min	Тур	Мах	Unit	Comments
Power Supply Voltage	VDD,VDDL	-0.5		6	V	
Maximum Input Voltage	/RE, DE, D	-0.4		VDDL+0.4	V	
Driver Output/Receiver Input Voltage	V_A , V_B , V_Y , V_Z	-7		12	V	
R output current	Io	-15		15	mA	
Operating Temperature	Topr	-40		105	°C	
Storage Temperature	Tstg	-40		150	$^{\circ}$	
Floatra static discharge	НВМ			±8000	V	
Electrostatic discharge	CDM			±2000	V	

3. Recommended Operating Conditions

Parameters	Symbol	Min	Тур	Мах	Unit
NSiP83086	VDD	4.5	5	5.5	V
Power Supply Voltage					
NSiP83086C and NSiP83086V	VDD	3	3.3/5	5.5	V
Power Supply Voltage					
Operating Temperature	Topr	-40		105	$^{\circ}$
Side1 High Level Input Voltage	V _{IH}	0.7*VDDL		VDDL	V
Side1 Low Level Input Voltage	V_{IL}	0		0.3*VDDL	V
Data rate	DR			16	Mbps

4. Thermal Information

Parameters	Symbol	SOW20	SOW16	Unit
IC Junction-to-Air Thermal Resistance	θ_{JA}	68.5	61	°C/W
Junction-to-top characterization parameter	ψπ	17.1	10.2	°C/W
Junction-to-board characterization parameter	Ψјв	50.9	37.2	°C/W

5. Specifications

5.1. DC Electrical Characteristics

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Power supply voltage	VDD ₁	4.5		5.5	V	
NSiP83086	VDDL	1.8		5.5	V	
Power supply voltage	VDD ₁	3		5.5	V	
NSiP83086C/NSiP83086V	VDDL	1.8		5.5	V	
Supply current condition: VDD=4	.5V~5.5V, VDDI	_=1.8~5.5V, Ta=	40°C to 10	05℃.		
	IDD		72	90	mA	VDD=5V VDDL=3.3V R _L =120 Ω
	(500kbps)		118	140	mA	VDD=5V VDDL=3.3V R _L =54 Ω
Supply current V _{ISOOUT} = 5V	IDD		100	130	mA	VDD=5V VDDL=3.3V R _L =120 Ω
VISCOUT — 3 V	(16Mbps)		130	160	mA	VDD=5V VDDL=3.3V R _L =54 Ω
	IDDL			5	mA	
Supply current condition: VDD=3	~5.5V, VDDL=1	.8~5.5V, Ta=-40)°C to 105°	C.		
Supply current	IDD		40	55	mA	VDD=5V VDDL=3.3V R _L =120 Ω
$V_{ISOOUT} = 3.3V$	(500kbps)		61	80	mA	VDD=5V VDDL=3.3V R _L =54 Ω
	IDD (16Mbps)		45	65	mA	VDD=5V VDDL=3.3V R _L =120 Ω
			60	80	mA	VDD=5V VDDL=3.3V R _L =54 Ω
	IDDL			5	mA	
Isolated supply voltage	V _{ISOOUT}		5		V	NSiP83086
	V _{ISOOUT}		3.3/5		V	NSiP83086C
	V _{ISOOUT}		3.3		V	NSiP83086V
Thermal-Shutdown Threshold	T _{TS}		165		$^{\circ}$	
Thermal-Shutdown Hysteresis	T _{TSH}		15		$^{\circ}$	
Common Mode Transient Immunity	CMTI	100	150		kV/us	Figure 5.12
Side1						
Input High Voltage	V _{IH}	0.7*VDDL			V	DE, D, /RE
Input Low Voltage	V _{IL}			0.3*VDDL	V	DE, D, /RE
Input Current	I ₁	-20		20	uA	D, DE, /RE

NSiP83086

Output Voltage High	V _{OH}	0.8*VDDL			V	IOH = -4mA
Output Voltage Low	V _{OL}			0.2*VDDL	٧	IOL = 4mA
Output Short-Circuit Current	I _{OSR}			150	mA	$0 \le V_R \le VDDL$
Three-State Output Current	I _{OZR}			15	uA	0 ≤ V _R ≤ VDDL , /RE = high
Input Capacitance	C _{IN}		2		pF	DE, D, /RE
Driver						
				5.5	V	No Load, V _{ISOOUT} =5V
Differential Output Voltage	V _{od}	2.7		5.5	V	Figure 5.7, R _L =120Ω V _{Isoout} =5V
	1 351	2.1		5.5	V	Figure 5.7, R_L =54 Ω (RS-485) V_{Isoout} =5 V
Change in magnitude of the differential output voltage	Δ V _{OD}			0.2	V	, R_L =120 Ω or R_L =54 Ω V_{lsoout} =5 V
Common-Mode Output Voltage	V _{oc}			3	V	, R_L =120 Ω or R_L =54 Ω V_{lsoout} =5 V
Change in Magnitude of Common-Mode Voltage	Δ V _{oc}			0.2	V	, R_L =120 Ω or R_L =54 Ω V_{Isoout} =5 V
Driver Short-Circuit Output				200	mA	0 ≤ V _{Test} ≤ 12 V
Current	I _{OSD}	-200			mA	-7V ≤ V _{Test} ≤ 0V
Output Leakage Current (Y and				200	uA	DE=0V, V _{Test} =12V
Z) Full-Duplex	lo	-200			uA	DE=0V, V _{Test} =-7V
Receiver						
Input Current (A and B)	1 1			200	uA	DE=0V, V _{ISOIN} =0V, V _{Test} =12V
input current (A and b)	I_A, I_B	-200			uA	DE=0V, V _{ISOIN} =0V, V _{Test} =-7V
Receiver Differential Threshold Voltage	V_{TH}	-200	-125	-10	mV	V _{CM} =0V
Receiver Input Hysteresis	ΔV_{TH}		15		mV	V _A +V _B =0
Receiver Input Resistance	R _{IN}	96			kΩ	-7V ≤ V _{CM} ≤ 12V, DE=0V

5.2. Switching Electrical Characteristics

(VDD=3V~5.5V,VDDL=1.8~5.5V, Ta=-40 $^{\circ}$ C to 105 $^{\circ}$ C. Unless otherwise noted, Typical values are at VDD=VDDL = 5V, Ta = 25 $^{\circ}$ C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Driver						
Maximum Data Rate	f_{MAX}			16	Mbps	
Driver Propagation Delay	t _{PLH}		22	60	ns	$\frac{\text{See Figure 5.8}}{\text{C}_L = 50 \text{pF}}, \text{R}_L = 54 \Omega,$
	t _{PHL}		21	60	ns	$\frac{\text{See Figure 5.8}}{\text{C}_L = 50 \text{pF}}, \text{R}_L = 54 \Omega,$
Driver Pulse Width Distortion, t PHL - t PLH	t _{skew}		1	8	ns	See Figure 5.8, $R_L=54\Omega$, $C_L=50pF$
Driver Output Falling Time or Rising time	t _F			15	ns	See Figure 5.8, $R_L=54\Omega$, $C_L=50pF$
	t _R			15	ns	See Figure 5.8, $R_L=54\Omega$, $C_L=50pF$
Driver Enable to Output High	t _{zh}		22.8	50	ns	See Figure 5.9, $R_L=120\Omega$, $C_L=50pF$
Driver Enable to Output Low	t _{zL}		19.1	50	ns	See Figure 5.9, $R_L=120\Omega$, $C_L=50pF$
Driver Disable to Output High	t _{HZ}		28	50	ns	See Figure 5.9, $R_L=120\Omega$, $C_L=50pF$
Driver Disable to Output Low	t _{LZ}		27.1	50	ns	See Figure 5.9, $R_L=120\Omega$, $C_L=50pF$
Receiver						
Maximum Data Rate	f_{MAX}	16			Mbps	
Receiver Propagation Delay	t _{PLH}		65.8	140	ns	See Figure 5.10, C _L =15pF
	t _{PHL}		71.4	140	ns	See Figure 5.10, C _L =15pF
Receiver Pulse Width Distortion, t PHL - t PLH	t _{skew}		5.6	12	ns	See Figure 5.10, C _L =15pF
Receiver Output Falling Time or	t _F			15	ns	See Figure 5.10, C _L =15pF
Rising time	t _R			15	ns	See Figure 5.10, C _L =15pF
Receiver Enable to Output High	t _{zH}		6	15	ns	See Figure 5.11, $R_L=1k\Omega$, $C_L=15pF$
Receiver Enable to Output Low	t _{zL}		6	15	ns	See Figure 5.11, $R_L=1k\Omega$, $C_L=15pF$
Receiver Disable to Output High	t _{HZ}		8	15	ns	See Figure 5.11,

					$R_L=1k\Omega$, $C_L=15pF$
Receiver Disable to Output Low	t _{LZ}	8	15	ns	See Figure 5.11, $R_L=1k\Omega$, $C_L=15pF$

5.3. Typical Performance Characteristics

Figure 5.1 NSiP83086 supply current vs Temperature (Data Rate=16MHz,DE=VDDL,/RE=GND,VDD=5V,V_{ISOOUT}=3.3V)

Figure 5.2 NSiP83086 supply current vs Temperature (Data Rate=500KHz,DE=VDDL,/RE=GND,VDD=5,V_{ISOOUT}=3.3V)

Figure 5.3 NSiP83086 supply current vs Temperature (Data Rate=16MHz,DE=VDDL,/RE=GND,VDD=5V,VISOOUT=5V)

Figure 5.4 NSiP83086 supply current vs Temperature
(Data Rate=500KHz,DE=VDDL,/RE=GND,VDD=5V,V_{ISOOUT}=5V)

Figure 5.5 Driver Propagation Delay vs Temperature

Figure 5.6 Receiver Propagation Delay vs Temperature

5.4. Parameter Measurement Information

Figure 5.7 Driver DC Test Load

Figure 5.8 Driver Timing Test Circuit and waveform

Figure 5.9 Driver Enable Disable Timing Test Circuit and waveform

Figure 5.10 Receiver Propagation Delay Test Circuit and waveform

Figure 5.11 Receiver Enable Disable Timing Test Circuit and waveform

Figure 5.12 Common-Mode Transient Immunity Test Circuit

6. High Voltage Feature Description

6.1. Insulation and Safety Related Specifications

Parameters	Symbol	Value	Unit	Comments
Minimum External Air Gap (Clearance)	CLR	8.0	mm	Shortest terminal-to-terminal distance through air
Minimum External Tracking (Creepage)	CPG	8.0	mm	Shortest terminal-to-terminal distance across the package surface
Distance through the insulation	DTI	16	um	Minimum internal gap (internal clearance – capacitive signal isolation)
	511	100	um	Minimum internal gap (internal clearance – transformer power isolation)
Tracking Resistance (Comparative Tracking Index)	СТІ	>600	V	DIN EN 60112 (VDE 0303-11); IEC 60112
Material Group		I		

6.2. DIN VDE V 0884-11 (VDE V 0884-11) :2017-01 INSULATION CHARATERISTICS

Description	Test Condition	Symbol	Value	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage ≤ 150Vrms			I to IV	
For Rated Mains Voltage ≤ 300Vrms			I to IV	
For Rated Mains Voltage ≤ 600Vrms			I to III	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum repetitive peak isolation voltage	AC voltage(bipolar)	V _{IORM}	1166	Vpeak
Maximum working isolation voltage	AC voltage(TDDB) test	V _{IOWM}	824	Vrms
	DC Voltage	V _{IOWM}	1166	V_{DC}
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.5 = V_{pd (m)},$ 100%production test,	V _{pd (m)}	1749	Vpeak
	t _{ini} = t _m = 1 sec, partial discharge < 5 pC			
Input to Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.2 = V_{pd (m)}, t_{ini} = 60$ sec, $t_m = 10$ sec, partial	V _{pd (m)}	1399	Vpeak

	discharge < 5 pC			
After Input and /or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd (m)}, t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	$V_{pd (m)}$	1399	Vpeak
Maximum transient isolation voltage	$V_{TEST} = V_{IOTM}$; t = 60 s (qualification);	V_{IOTM}	7000	Vpeak
	$V_{TEST} = 1.2 \times V_{IOTM}$; t = 1 s (100% production)			
Maximum Surge Isolation Voltage	Test method per IEC60065,1.2/50us waveform, V _{TEST} = 1.3xV _{ISOM}	V_{IOSM}	5384	Vpeak
Isolation resistance	V _{IO} =500V	R _{IO}	>1012	Ω
Isolation capacitance	f=1MHz	C _{IO}	0.6	pF
Total Power Dissipation at 25℃ for SOW20 Package		Ps	1459	mW
Safety input, output, or supply current for SOW20 Package	$\theta_{JA} = 68.5^{\circ}\text{C/W}, V_{I} = 5.5 \text{ V}, T_{J} = 125^{\circ}\text{C}, T_{A} = 25^{\circ}\text{C}$	ls	265	mA
Total Power Dissipation at 25℃ for SOW16 Package		Ps	1639	mW
Safety input, output, or supply current for SOW16 Package	$\theta_{JA} = 61^{\circ}\text{C/W}, V_{I} = 5.5 \text{ V}, T_{J} = 125^{\circ}\text{C}, T_{A} = 25^{\circ}\text{C}$	I _S	298	mA
Safety Temperature		Ts	125	$^{\circ}\mathbb{C}$

Figure 6.1NSiP83086 Thermal Derating Curve for SOW20 package, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11

Figure 6.2NSiP83086 Thermal Derating Curve for SOW16 package, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11

6.3. Regulatory Information

The NSiP83086 are approved or pending approval by the organizations listed in table.

С	UL	VDE	сос
UL 1577 Component Recognition Program ¹	Approved under CSA Component Acceptance Notice 5A	DIN VDE V 0884-11(VDE V 0884-11):2017-01 ²	Certified by CQC11- 471543-2012 GB4943.1-2022
Single Protection, 5000V _{RMS} Isolation voltage	Single Protection, 5000V _{RMS} Isolation voltage	Basic Insulation 1166Vpeak, V _{IOSM} =5384V _{PEAK}	Basic insulation
File (pending) File (pending)		File (pending)	File (pending)

7. Function Description

NSiP83086 is a high reliability isolated full duplex RS-485 transceiver. Data isolation is achieved using Novosense integrated capacitive isolation that allows data transmission between the logic side and the Bus side. The 83086 series are safety certified by UL1577 supporting 5kV_{RMS} insulation withstand voltage.

7.1. True Fail-Safe Receiver Inputs

The devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. The receiver threshold is fixed between -10mV and -200mV, which meets EIA/TIA-485 standard. If the differential input voltage (V_A - V_B) is greater than or equal to -10mV, receiver output R is logic high. In the case of a terminated bus with all transmitters disabled, the differential input voltage is pulled to zero by the termination resistors. Due to the receiver threshold, the receiver output R is logic high.

7.2. Truth Tables

Table 7.1 Driver Function Table

VDD₁ status	Input	Enable Input	Outputs	
	(D)	(DE)	Υ	Z
PU	Н	Н	Н	L
PU	L	Н	L	Н
PU	X	L	Z	Z
PU	X	OPEN	Z	Z
PU	OPEN	Н	Н	L
PD	X	X	Z	Z

Table 7.2 Receiver Function Table¹

VDD status	Differential Input	Enable Input	Output
	(VA-VB)	(/RE)	(R)
PU	≥-10mV	L/Open	н
PU	≤-200mV	L/Open	L
PU	Open/Short	L/Open	Н
PU	X	Н	Z
PU	Idle	L	Н
PD	Х	X	Z

¹PD= Powered down; PU= Powered up; H= Logic High; L= Logic Low; X= Irrelevant; Z= High Impedance;

7.3. EMI Considerations

NSIP83086 use a small on-chip transformer to provide power for RS485 Transceiver. The on-chip transformer operates at high frequency, which may degrade EMI performance, to achieve better EMI performance, special considerations must be taken during PCB layout. Please see the application note if needed.

7.4. Output Short and Over Temperature Protection

The NSiP83086 series are protected against output short for V_{ISOOUT}. When short on V_{ISOOUT} occurs, the device will be in Hiccup mode and the power transferred will be limit, which will limit the temperature of the device to protect the device.

The NSiP83086 series also protected against over temperature. When the chip is over 165 $^{\circ}$ C, it will be shut down until the temperature of below 145 $^{\circ}$ C.

8. Application Note

8.1. 256 Transceivers on the Bus

The devices have a 1/8-unit-load receiver input impedance ($96k\Omega$) that allows up to 256 transceivers on the bus. Connect any combination of these devices, and/or other RS-485 devices, for a maximum of 32 unit-loads to the line.

8.2. ESD Protection

ESD protection structures are enhanced on all pins to protect against electrostatic discharge encountered during handing and assembly. The Bus pins have extra protection against static electricity to bus side (V_{ISOOUT} side).

ESD protection can be tested in various ways. Below is the ESD spec of the devices.

Bus pins:

±8kV using the Contact Discharge method specified in IEC 61000-4-2

Other pins except bus pins:

±7kV using the Contact Discharge method specified in IEC 61000-4-2

8.3. Layout Considerations

The NSiP83086 requires a $10\mu\text{F}+0.1\mu\text{F}$ bypass capacitor between VDD₁ and GND₁, 10uF+0.1uF bypass capacitor between V_{ISOOUT} and GND₂. The capacitor should be placed as close as possible to the package. To eliminate line reflections, each cable end (A-B, Y-Z) is terminated with a resistor, whose value matches the characteristic impedance of the cable($54\,\Omega/120\,\Omega$). It's good practice to place the bus connectors and termination resistor as close as possible to the A and B, Y and Z pins.

8.4. Typical Application

Figure 8.1 NSiP83086 in Half-Duplex RS-485 Mode

Figure 8.2 NSiP83086 typical application circuit

Figure 8.3 Typical isolated Full-Duplex RS-485 application

9. Package Information

Figure 9.1 SOW20 Package Shape and Dimension in millimeters and inches

Figure 9.2 SOW16 Package Shape and Dimension in millimeters

10. Ordering Information

Part Number	Isolation Rating (kV _{RMS})	V _{ISOOUT}	Duplex	Max Data Rate (Mbps)	MSL	Temperature	No. of Nodes	Package Type	Package Drawing	SPQ
NSiP83086- DSWTR	5	5V	Full	16	3	-40 to 105°C	256	SOP20(300mil)	SOW20	1000
NSiP83086C- DSWTR	- 5	5/3.3V	Full	16	3	-40 to 105°C	256	SOP20(300mil)	SOW20	1000
NSiP83086V- DSWTR	5	3.3V	Full	16	3	-40 to 105°C	256	SOP20(300mil)	SOW20	1000
NSiP83086- DSWR	5	5V	Full	16	3	-40 to 105°C	256	SOP16(300mil)	SOW16	1000
NSiP83086V- DSWR	- 5	3.3V	Full	16	3	-40 to 105°C	256	SOP16(300mil)	SOW16	1000
NOTE: All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry						stry				

NOTE: All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures.

11. Documentation Support

Part Number	Product Folder	Datasheet	Application Note
NSiP83086	tbd	tbd	tbd

12. Tape And Reel Information

Figure 12.1 Tape and Reel Information of SOW20

Figure 12.2 Tape and Reel Information of SOW16

8. Surface resistivity $:10^5 \sim 10^{10} \Omega/\Box$

13. Revision History

Revision	Description	Date
1.0	Initial Version	2022/11/30

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as any warranty or authorization of, express or implied, including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third party's intellectual property rights.

You are solely responsible for your use of Novosense' products and applications, and for the safety thereof. You shall comply with all laws, regulations and requirements related to Novosense's products and applications, although information or support related to any application may still be provided by Novosense.

The resources are intended only for skilled developers designing with Novosense' products. Novosense reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided. Novosense authorizes you to use these resources exclusively for the development of relevant applications designed to integrate Novosense's products. Using these resources for any other purpose, or any unauthorized reproduction or display of these resources is strictly prohibited. Novosense shall not be liable for any claims, damages, costs, losses or liabilities arising out of the use of these resources.

For further information on applications, products and technologies, please contact Novosense (www.novosns.com).

Suzhou Novosense Microelectronics Co., Ltd