Sanjuksha Nirgude

snirgude@wpi.edu linkedin.com/in/sanjuksha/ Santa Clara, CA, USA. 95051 +1-571-314-8588 sanjuksha.github.io github.com/sanjuksha

INTRODUCTION

Self-driven and ambitious Robotics Software Engineer working in an inter disciplinary team on real-world robotics applications. Writing complex algorithms and production level code in a collaborative and fast-paced environment everyday. Looking forward to working in a role and environment which brings out the best in me.

TECHNICAL SKILLS

Languages: C++, Python, MATLAB, HTML

Softwares: ROS, Linux, Git, Gazebo, Rviz, Latex, Doxygen, SolidWorks, MoveIt

Libraries & packages: PyTorch, OpenCV, TensorFlow, Keras, GTest

Courses & Concepts: Localization, Path Planning, Perception, Algorithms, Mobile Robotics, Robot Controls & Dynamics, Swarm Intelligence, AI, OOP, SLAM, CARLA, Behavior Trees, Autonomous Driving, Obstacle Avoidance, Navigation, Data Structures, RabbitMQ, Sensor Fusion, State Machines, Triaging, Debugging, PubSub.

EDUCATION

Worcester Polytechnic Institute (WPI)

Master of Science in Robotics Engineering

GPA: 4.0/4.0

Worcester, MA

May 2019

University of Pune (UoP)

Bachelor of Mechanical Engineering

Percentage: 71/100

June 2016

WORK EXPERIENCE

Open Robotics Software Engineer-Robotics

Aug 2022 - Present

- Verified and implemented the build instructions & tutorials for ROS/Gazebo(garden release), while understanding the architecture of Gazebo packages.
- Implemented bug fixes in Gazebo rendering packages regarding lens flare from wide-angle camera, as a part of the NASA VIPER team.
- Reviewed and tested code from individual open-source contributors for gazebosim.

Symbotic LLC Advanced Controls Engineer

Aug 2019 - Aug 2022

- Worked on automated mobile robots for warehouse automation with case under pick ability.
- Analyzed sensor data to create tools for diagnosing real-time issues with the AMR.
- Calculated, applied and tested improvements to several existing features considering future expansion of the robot's capabilities.
- Improved scalability of code while handling robot peculiarities in simulation of over 100 robots at once.
- Enhanced the performance of the robot by tracking down the reason behind the current limitations of the robot in certain scenarios and came up with a solution for the same.
- Debugged and solved a localization problem while working with multiple teams to verify results.
- Development and deployment of pick/place algorithms based on conventional and AI based control strategies.
- Worked in a test driven environment while collaborating with the test team to validate algorithms.
- Implemented features for improving pick/place ability by programming, unit testing, debugging and troubleshooting.

Waypoint Robotics Inc Robotics Intern

Aug, 2018 - Dec, 2018

- Assembled an AMR and developed its behavior using LIDAR data & digital IO to provide feedback to bystanders about the robot's intention.
- Expanded the robot's programming environment functionality by sensor fusion, motion planning and contributed new elements to the product GUI.
- Integrated detection DL algorithm on live video input from a mobile robot camera and developed a motion algorithm for the robot depending on this input.

Cere Labs Pvt Ltd Machine Learning Intern

March, 2016 - June, 2016

- Demonstrated application of Reinforcement Learning (RL) method, specifically the Q-learning algorithm by making a crawling robot move towards a wall by itself using ultrasonic sensor data and Raspberry Pi controller.
- Documented the entire process of building the robot and implementation of reinforcement learning algorithm by publishing multiple posts on the company blog.

PROJECTS (URL)

Atlas's Escape Humanoid Robotics

Jan - May, 2019

- Developed Atlas's behavior by combining perception, locomotion and manipulation to detect a door and walk towards it in Gazebo using ROS and C++.
- Used BGR images from the camera and LiDAR point cloud data to sense the door.

Automated Cinematography using an UAV Motion Planning

Aug - Dec, 2018

- Used a hector quadrotor to do a 360 degree view of a human subject in simulation for cinematography purposes.
- Implemented a local RRT* path planner to avoid obstacles on a quadrotor using ROS and captured images of the Gazebo environment using RViz.

Facial Key-point Detection Computer Vision Nanodegree (Udacity)

May - Aug, 2018

- Created CNN to detect 68 facial key points using image processing and deep learning.
- Used Haar Cascade face detector for faces and PyTorch to develop a 3- layered CNN for feature detection.

Fuzzy Logic Controller for Indoor Navigation of Mobile Robots Robot Control

Jan - May, 20

- Designed and implemented fuzzy logic controller (TFLC & OAFLC) on TurtleBot2 using Kinect generated stereo-vision, point-cloud & laser-scan data from RViz.
- The Takagi-Sugeno-Kang fuzzy inference technique and the Centroid defuzzification methods were used to implement the controller.

Collective transport of Concave objects using a robot swarm Swarm Intelligence Jan – May, 2018

- Implemented occlusion based collective transport strategy for transport of concave objects in C++ by converting them to convex objects by filling the concavity by swarm of Khepera IV robots in ARGoS.
- The robots have no prior knowledge of the object to be moved and they do not communicate with each other
 explicitly.

Detection, Recognition, Pose Estimation of Objects Deep Learning for Perception Aug—Dec, 2017

- Achieved 98% accuracy in object recognition and an average of 85% in angle estimation on TableTop dataset.
- The images in the dataset were captured from 8 different angles and 2 different heights.

COMPETITION

Badminton Playing Robot ABU RoboCon 2015

March, 2014 – March, 2015

- Designed a mechatronic solution for two badminton playing robots to detect and localize shuttle using pure visual information.
- Worked in a team of 40 and score 5th position in the national level competition.

Hybrid and Eco Robot ABU RoboCon 2016

March, 2015 - March, 2016

- Designed an underactuated eco robot which is being driven by an autonomous Hybrid robot using wireless charging through a predefined path.
- The eco robot uses line following capability to traverse through the path.
- The Hybrid robot uses a 3-jaw chuck mechanism to climb a pole.

VOLUNTEER EXPERIENCE

Co-Organizer Women in Robotics Boston Chapter

March, 2020 – July, 2022

- Women in Robotics is a global community to which I contribute as an organizer of a local chapter.
- Organizing events ranging from interviews of inspiring women working in the field to technical events digging to the core of various robotics concepts.

Robotics Outreach Program

March, 2015 - Dec, 2016

• Organized workshops in over 40 middle schools in India to share the knowledge of robotics in order to promote robotics engineering as a career prospect for students.

ADDITIONAL PROJECTS (TEAM SIZE, FRAMEWORK, LANGUAGES)

Face Recognition using neural networks (3, Keras, Python)	Aug, $2017 - Dec$, 2017
Baxter Kinematics and Dynamics Library (5, Python)	Jan, 2018 - March, 2018
Teleoperation of a robotic arm using IMU (5,Arduino, Python)	Aug, $2017 - Dec$, 2017
Robot Learning From Demonstration via MoCap (5, Trinia, Python)	Jan, 2018 - March, 2018
Image Captioning using nueral networks (Udacity) (1, Python)	June, $2018 - Aug, 2018$
Landmark detection and Robot Tracking (Udacity) (1, Python)	June, $2018 - Aug, 2018$