```
1 D:\Anaconda\python.exe D:/code/seq2vec/main.py
 2 D:\Anaconda\lib\site-packages\h5py\ init .py:36:
   FutureWarning: Conversion of the second argument of
   issubdtype from `float` to `np.floating` is deprecated
    In future, it will be treated as `np.float64 == np.
   dtype(float).type`.
     from ._conv import register converters as
   register converters
4 Using TensorFlow backend.
 5 D:\Anaconda\lib\site-packages\tensorflow\python\
   framework\dtypes.py:523: FutureWarning: Passing (type
   , 1) or '1type' as a synonym of type is deprecated; in
    a future version of numpy, it will be understood as (
  type, (1,)) / '(1,)type'.
     _np_qint8 = np.dtype([("qint8", np.int8, 1)])
 7 D:\Anaconda\lib\site-packages\tensorflow\python\
   framework\dtypes.py:524: FutureWarning: Passing (type
   , 1) or '1type' as a synonym of type is deprecated; in
    a future version of numpy, it will be understood as (
  type, (1,)) / '(1,)type'.
     _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
9 D:\Anaconda\lib\site-packages\tensorflow\python\
   framework\dtypes.py:525: FutureWarning: Passing (type
   , 1) or '1type' as a synonym of type is deprecated; in
    a future version of numpy, it will be understood as (
  type, (1,)) / '(1,)type'.
     _np_qint16 = np.dtype([("qint16", np.int16, 1)])
10
11 D:\Anaconda\lib\site-packages\tensorflow\python\
   framework\dtypes.py:526: FutureWarning: Passing (type
   , 1) or '1type' as a synonym of type is deprecated; in
    a future version of numpy, it will be understood as (
   type, (1,)) / '(1,)type'.
     _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
12
13 D:\Anaconda\lib\site-packages\tensorflow\python\
   framework\dtypes.py:527: FutureWarning: Passing (type
   , 1) or '1type' as a synonym of type is deprecated; in
    a future version of numpy, it will be understood as (
   type, (1,)) / '(1,)type'.
     _np_qint32 = np.dtype([("qint32", np.int32, 1)])
14
15 D:\Anaconda\lib\site-packages\tensorflow\python\
   framework\dtypes.py:532: FutureWarning: Passing (type
   , 1) or '1type' as a synonym of type is deprecated; in
    a future version of numpy, it will be understood as (
```

15 type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) 17 D:\Anaconda\lib\site-packages\sklearn\ensemble\ weight boosting.py:29: DeprecationWarning: numpy.core. umath tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release. from numpy.core.umath_tests import inner1d 18 19 WARNING:tensorflow:From D:\Anaconda\lib\site-packages\ keras\backend\tensorflow backend.py:1188: calling reduce sum (from tensorflow.python.ops.math ops) with keep dims is deprecated and will be removed in a future version. 20 Instructions for updating: 21 keep_dims is deprecated, use keepdims instead 22 WARNING:tensorflow:From D:\Anaconda\lib\site-packages\ keras\backend\tensorflow_backend.py:1290: calling reduce mean (from tensorflow.python.ops.math ops) with keep dims is deprecated and will be removed in a future version. 23 Instructions for updating: 24 keep dims is deprecated, use keepdims instead 25 RPI488 dataset 26 fold 0 27 SVM 28 0.8979591836734694 0.9534883720930233 0. 8367346938775511 0.9591836734693877 0.8019532181238482 _____ 30 AdaBoost 31 0.8469387755102041 0.9047619047619048 0. 7755102040816326 0.9183673469387755 0.7010681840159741 33 Random forest 34 0.9285714285714286 1.0 0.8571428571428571 1.0 0. 8660254037844387 36 fold 1

37	SVM
38	0.865979381443299 0.9069767441860465 0.8125 0.
	9183673469387755 0.735573560066312
39	
10	AdaBoost
41	0.8041237113402062 0.8372093023255814 0.75 0.
41	8571428571428571 0.611052381486151
42	85/14285/14285/1 0.011052581480151
42	
43	Random forest
44	0.8762886597938144 0.9285714285714286 0.8125 0.
	9387755102040817 0.7580745221824061
45	
46	fold 2
47	SVM
48	0.8556701030927835 0.9473684210526315 0.75 0.
	9591836734693877 0.7263728173773318
49	
50	AdaBoost
	0.8762886597938144 0.875 0.875 0.8775510204081632 0.
	7525510204081632
52	
53	Random forest
	0.8865979381443299 0.9743589743589743 0.
74	791666666666666 0.9795918367346939 0.7864521856445373
55	7,51000000000000000000000000000000000000
رر	
E 6	fold 3
	SVM
58	0.8350515463917526 0.8478260869565217 0.8125 0.
	8571428571428571 0.6704986311113921
59	

59	
60	AdaBoost
61	0.8247422680412371 0.8163265306122449 0.
-	83333333333334 0.8163265306122449 0.
	6496598639455783
6 2	0430336033433763
62	
63	Random forest
64	0.845360824742268 0.866666666666666 0.8125 0.
	8775510204081632 0.6918181193845235
65	
66	fold 4
	SVM
80	0.8762886597938144 0.9285714285714286 0.8125 0.
	9387755102040817 0.7580745221824061
69	
70	AdaBoost
71	0.7835051546391752 0.8292682926829268 0.
	708333333333334 0.8571428571428571 0.
	5723306975953574
72	
, _	
72	Dandam famat
	Random forest
/4	0.9175257731958762 0.95454545454546 0.875 0.
	9591836734693877 0.837753153502666
75	
76	mean performance of svm using kmer feature
	[0.86618977 0.91684621 0.80484694 0.92653061 0.
	73849455]
78	3
70	
٦.	
	mean performance of AdaBoost using kmer feature
80	<module 'd:\\anaconda\\lib\\site-<="" 'numpy'="" from="" td=""></module>
	<pre>packages\\numpy\\initpy'> [0.82711971 0.85251321</pre>

00 0 70042527 0 06520642 0 65722242
80 0.78843537 0.86530612 0.65733243]
81
82 mean performance of Random forest using kmer feature
·
83 [0.89086892 0.9448285 0.8297619 0.95102041 0.
78802468]
84
84
85
86 Process finished with exit code 0
87
87