Group Members: Johnson Absolu, Koffi Gnamien Aristide, Ramon N. Nguema

Class: Database Development I

Professor: Frank Ravanshad

Project: Car Dealership Database Phase 2

Date: Tuesday, November, 8th, 2022

Relational Schema

For this phase II, we converted the E-R Diagram of the exclusive Wolksvagen car dealership into a relational model. For that, we worked with every entity inside the er diagram and put through all their possible forms (1NF, 2NF, and 3NF) in order to get well behaved tables. Overall, we've been able to normalize every table and we ended with a pretty straightforward output. To accomplish our goal, we went through a process of elimination of all multivalued attributes first, then we removed any partial dependencies within each table, and finally we took all transitive dependencies so we can keep moving forward with a clean relational model.

Original Tables

Inventory	Inventory ID, Inventory total
Order	Order ID, Item, (order_date), (shipped_date), (delivery_date), order_total, payment_method
Car	<u>Car ID</u> , Body_type, Year, Model, (Trim), {color}, Price, [Total], [Status]
Employee	Employee_ID, (Employee_name), Emp_address, Title

Customer	Customer ID, (Customer_name), Customer_address), Phone_number,
	Email_address, Order_id

Sub-Entities

ISA	Sales_number, Commission
Driver	License_ID, License_class, Truck_num, Delivery_number

Inventory Entity is an entity with an ID of inventory_ID and a simple attribute of invertory_total, that keeps track of the number of vehicles.

inventory ID is a unique identifier that identifies the inventory.

Inventory total is a simple attribute that tracks the total number of inventory.

Car Entity is an entity with an ID of Car_ID, it has nine attributes. Its attributes are, Car_ID, Body type, Year, Model, Trim, Color, Price, Total units and Status.

Car_ID is a unique identifier that identifies a car.

Body type is a simple attribute that identifies the body type of the car.

Year is a simple attribute that identifies the age of the car.

Trim is a composite attribute that is composed of Engine_size, Transmission and **Drivetrain.**

Color is a multi-value attribute, it allows a car to be more than one color.

Price is a simple attribute that defines the currency value of a car.

Total Units is a derived attribute. Its value is derived from Model and Trim.

Status is a derived attribute. Its value is derived off of

Order Entity is an entity with an id of Order_id, it tracks customer orders and has seven attributes. The attributes are Order_id, Item, Order_date, Shipped_date, Delivery_date, Order total, and Payment total.

Order id is a unique identifier that identifies an order.

Item is a simple attribute that defines an object/entity that is included in an order.

Order date is a simple attribute that states the date an order is placed.

Shipped date is a simple attribute that states the data that an order is shipped.

Delivery date is a simple attribute that states the date an order is delivered.

Order_total is a simple attribute that states the total amount of an order.

Payment method is a simple attribute that calculates the method used to place an order.

Customer Entity is an entity with an id of Customer_ID. It identifies a customer who places an order, and has six attributes. Its attributes are Customer_ID, customer_name, customer_address, phone_number, email_address and order_id.

Customer_ID is a unique identifier that identifies a customer.

Customer_name is a composite attribute that captures a customer's name, it is composed of First Name and Last Name.

Customer_address is a composite attribute that captures a customer's address. It is composed of a house number, Street, City, State and Zip Code.

Phone_number is a simple attribute that captures a customer's phone number who places an order.

Email_Address is a simple attribute that captures a customer's email addres who places an order.

Order_ID is a foreign key in the customer entity that matches a customer to an order.

Employee is an entity with an id of Emp_ID, It is a super entity with total generalization of sub entities ISA and Driver. It has seven attributes, which are f Emp_ID, Emp_name, Emp_address, Title.

Emp_id is a unique identifier that identifies an employee.

Emp_Name is a composite attribute that captures an employee's name. It is composed of First name, and Last name.

Emp Address is a simple attribute that captures an employee's address.

Title is a simple attribute that states the title of an employee.

ISA is a Sub-entity of Employee with total specialization and disjoint constraint of the Employee entity. It has two attributes, sales number and commission.

Sales number is a simple attribute that connects an order with an ISA.

Commission is a simple attribute that states a commission amount from a sales.

Driver is a Sub-entity of Employee with total specialization and disjoint constraint of the employee entity. Its ID is License_ID and It has 4 attributes, License_id, truck_num and delivery number.

License ID is a simple attribute that captures the license number.

Truck Num is a simple attribute that states a truck number, this number is assigned to a Driver.

Delivery number is a simple attribute that states a number for a delivery.

Integrity constraints

- Domain constraints

- Later, we'll define the components of each table and their data such as domain name, meaning, data type, size (or length), and allowable values or allowable range (if applicable). For this job, we just focused on normalization.

- Entity Integrity

- For entity integrity constraints, all primary keys will be set to NOT NULL since primary key values would be used to identify individual rows in a relation

- Referential Integrity

 Through normalization, we made sure that every foreign key matches with the primary key. Also, we removed duplicate and unnecessary data through the process of decomposition.

Normalized Tables

Candidate keys

TABLE NAME	ATTRIBUTES
Inventory	<u>Inventory ID</u> , Inventory_total
Car	<u>Car ID</u> , Drive_train, Transmission, Price, Total_units, Status
Car Color	Color ID, Car_ID, Color_name
Car Model	Car ID, Model, Engine_size
Order	Order ID, Item, order_date, shipped_date, delivery_date, order_total, payment_method
Customer	Customer Id, First_name, Last_name, House_number, Street, Phone_number, Email_address, Zip code
Customer Zip Code	Zip Code, State, City, Customer Id
Employee	Employee ID, First_name, Last_name, Employee_address, Title
E Driver	<u>D Employee ID</u> , License_id, Truck_number, Delivery_number
E ISA	<u>I Employee ID</u> , Sales_number, Commission

Foreign Keys

Car_ID	References the relationship between the Car entity(parent), Car Color, and Car Body Type
Custome ID	References the relationship between the Customer entity(parent) and Customer Zip Code
Order_id	References the relationship between the Customer entity(parent) and Order
Car_ID	References the relationship between the Car entity(parent), Model the child

DEPENDENCIES

Inventory relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - **Inventory ID** => Inventory Total
- Transitive dependencies: N/A

Car relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - <u>Car ID</u> => Drive Train, Transmission, Price, Total Units, Status
- Transitive dependencies
 - Body type => Model, Engine size

Color relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - <u>Color ID</u>, <u>Car ID</u> => Color name
- Transitive dependencies: N/A

Model relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - Model, Car ID => Engine Size
- Transitive dependencies: N/A

Order relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - Order_ID => Item, Order_Date, Shipped_date, Delivery_date, Order total, Payment Method
- Transitive dependencies: N/A

Customer relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - <u>Customer_id</u> => Full Name, Phone number, Email address, Street, House Number, <u>Order ID</u>
- Transitive dependencies:
 - Zip Code => State, City

Customer Zip Relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - **Zip Code**, **Customer_id** => State, City
- Transitive dependencies: N/A

Employee relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - **Emp ID** => FirstName, LastName, EmpAddress, Title
- Transitive dependencies: N/A

Driver relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - <u>Dempid</u> => License_ID, License Class, Truck Number, Delivery Number
- Transitive dependencies: N/A

ISA relation

- Partial Functional Dependencies: N/A
- Full Functional Dependencies:
 - **IEMPID** => Sales Number, Commission
- Transitive dependencies: N/A

^{**} The red color represents foreign keys**

Diagram Key (Beta)

- FOREIGN KEY
- ENTITY NAME

Diagram Key (Beta)

FOREIGN KEY