Euclid's The Elements

Roman Styrku

Due Sept 6 2019

Book I: Definitions

- 1. Point: That which has no part
- 2. Line: Something has length but no width
- 3. Straight line: A line that lies evenly with points on it.
- 4. Line segment: A line that is bounded by 2 points.
- 5. Surface: Something that has length and width but no height.
- 6. Plane surface: A surface that lies evenly having straight lines as a part of it.
- 7. Rectilinear: When the lines containing an angle are straight
- 8. Rectilinear Angle: Inclination of 2 lines that meet one another in a plane but do not form a straight line.
- 9. Right Angle / Perpendicular Lines: When a straight line standing on a straight line makes the adjacent angles equal to one another, those 2 angles are right, and the straight-line standing is called the perpendicular of the line it is standing on.
- 10. Obtuse Angle: An angle greater than a right angle
- 11. Acute Angle: An angle less than a right angle.
- 12. Boundary: something that is a limit or extreme
- 13. Figure: something contained by any boundaries.
- 14. Circle: A plane that is contained by one line such that if an imaginary line were to be drawn from one point, all the line segments from the point to the line will be of equal length.
- 15. Center of a Circle: the point in circle from which the boundary lines are of equal distance.
- 16. Radius of a Circle: A straight line drawn from the point on a circle to the boundary lines.
- 17. Diameter of a Circle: A straight line drawn from one boundary end of a circle to another going through the center point.
- 18. Semicircle: A figure contained by taking the diameter of a circle and one side of the circumference that it connects to. Half of a circle.
- 19. Rectilinear Figure / Polygon: Figure that is contained by straight lines.
- 20. Triangle: Polygon contained by 3 straight lines.
- 21. Equilateral Triangle: Triangle contained by 3 straight lines of equal length.
- 22. Isosceles Triangle: Triangle contained by 2 lines of equal length and a 3rd line connecting the other two.
- 23. Scalene Triangle: Triangle that has 3 sides of unequal length.
- 24. Right Triangle: Triangle that has a right angle as a part of it.
- 25. Obtuse Triangle: Triangle which has an obtuse angle as a part of it.
- 26. Acute Triangle: Triangle which has all 3 angles acute.
- 27. Quadrilateral: Polygon being contained by 4 straight lines.
- 28. Square: Quadrilateral that has all 4 sides of equal length and every angle is a right angle.
- 29. Rectangle: Quadrilateral that has all 4 angles as right angles.
- 30. Rhombus: Quadrilateral that has all sides of equal length but not all angles are right.
- 31. Parallelogram: Quadrilateral that has opposing sides parallel.

- 32. Trapezoid: Any other quadrilateral.
- 33. Parallel Lines: if a straight line falling on two straight lines makes alternate angles equal, then the 2 lines being crossed are considered parallel.
- 34. Vertical Angles: The pair of opposite angles made when 2 straight lines intersect.
- 35. Alternate Interior Angles: Pair of angles on the inner side of each of the 2 lines but on opposite sides of the transversal.
- 36. Alternate Exterior Angles: Pair of angles on the outer side of each of the two lines but on the opposite sides of the transversal.
- 37. Corresponding Angles: Angles in matching corners when two lines are crossed by another line.

Book I: Postulates

- 1. Let it be that you should be able to draw a straight line from any point to any point. You would need 2 points in order to be able to draw a straight line from one to the other. This produces a line segment.
- 2. To produce a finite straight line continuously in a straight line. You would need to already have a line segment put to use this postulate. If you have a line segment you can always extend it to be longer (continuous). The result would be a ray.
- 3. To draw a circle with any center and radius. You would already need a center and a radius to use the postulate. Then you would use the radius line segment with the center point to draw the circle. The result is a circle.
- 4. All right angles are equal to one another. This one is just a statement the if you have 2 right angles, they will always be equal to each other. 2 right angles result in 2 equal angles.
- 5. If 1 straight line falling on 2 straight lines results in 2 acute interior angles, The 2 straight lines if going indefinitely will eventually cross. You would need 3 lines that create 2 acute angles in order to have this postulate.

Book I: Common Notions

- 1. Things equal to the same thing are also equal to one another.
 - a. If A = C AND B = C, Then A is equal to B.
- 2. If equal things are added to equal things, then the wholes are equal.
 - a. If A = B AND C = D, Then A + C = B + D.
- 3. If equal things are subtracted from equal things, then the remainders are equal.
 - a. If A + B AND C = D, Then C A = D B.
- 4. Things coinciding with one another are equal to one another.
 - a. If the coordinates of A are (0,2), and the coordinates of B are (0,2), Then A = B.
- 5. The whole is greater than the part.
 - a. If you have a circle C, and you slice A out of C, C as the whole will still always be greater than A.

Book I: Propositions that are Constructions

Number	Name	IF statement	THEN statement
	(if applicable)	(what you must have)	(what you will get)
[1,1]	making an	Straight line Segment AB.	Equilateral Triangle ABC.
	equilateral	Draw a circle with center	
	triangle	A and radius AB.	
		Draw a circle with center	
		B and radius AB.	
		Have the point of	
		intersection be Point C.	
		Draw a straight-line AC.	
		Draw a straight-line BC.	
[1,2]	copying a line	Straight Line Segment BC.	Line segment AL which is a copy of
	segment	Point A to copy it to.	line segment BC.
		Draw a straight-line AB.	
		Use [I,1] to draw	
		equilateral triangle DAB.	
		Extend the Line DA and	
		the line BD creating AE	
		and BF which are rays.	
		Use B as a center and BC	
		as a radius to draw a	
		circle. Label the	
		intersection with BF as G.	
		Lisa the Badius of BC with	
		Use the Radius of DG with	
		D as the center and draw	
		a circle.	
		Label the intersection of	
		Label the intersection of	
		the circle with AE as point L.	
[1,9]	angle	Angle BAC	construction: two congruent angles
[נייז]	bisection	Aligie DAC	construction. two congruent angles
	וווספכנוטוו	Take an arbitrary point D	Angle BAF and CAF which are equal.
		on AB to create AD	AF is the bisection.
		OIT AD to circuit AD	74 is the bisection.

		Take the length of AD and use it to create AE along the line AC Use DE to construct an equilateral triangle DEF.	
		Draw a line AF to complete the bisect.	
[1,10]	line bisection	line segment AB	Line CD bisecting line AB.
		Use AB to construct an equilateral triangle ABC.	
		Bisect the angle created by ACB.	
		Call the intersection of the bisector with AB Point D.	
		Your line CD would be the bisector for your line AB.	
[1,11]	dropping a perpendicular to a point on the line	line segment AB and a point C on the line Mark an arbitrary point D on AC.	Line CF perpendicular to AB.
		Make CE equal to AC on the segment CB.	
		Using DE create an equilateral triangle AFB.	
		Your line CF is your line that is perpendicular to AB.	
[1,12]	dropping a perpendicular to a point off	Line Segment AB. Point C.	Line CH Perpendicular to AB
	the line	Pick arbitrary point D on opposite side of where you want the perpendicular.	
		Draw a circle from point C with radius D. Labeling the	

		intersections with AB as E	
		and G.	
		Bisset the Live 5C and	
		Bisect the Line EG and	
		create point H.	
		Line CH is the	
		perpendicular line to AB.	
[1,22]	copying a	3 Straight lines A, B, and C	You get a final triangle FGK which is
[1,22]	triangle	to create a triangle from.	equal to the triangle with lengths A,
	triangle	to oreate a triangle from	B, and B.
		Set a ray from DE, D is set	3, 4.1.4 21
		E is continuous.	
		Along the line DE, create a	
		segment DF equal to A, FG	
		equal to B, and GH equal	
		to C.	
		Duran a simple with a sector F	
		Draw a circle with center F and radius FD.	
		and radius FD.	
		Draw a circle with center	
		G and radius GH.	
		Mark the intersection of	
		the 2 circles as point K.	
		Draw a line FK.	
		Your final copies triangle	
[1 00]		is FGK.	
[1,23]	copying an	Angle ABC to copy.	construction: a second angle
	angle	Take 2 arbitrary points on	congruent to the first
		the angle lines to create a	
		triangle DBE. Using that	
		triangle, USE I22 to	
		reconstruct the triangle	
		and in the end getting the	
		necessary angle.	
[1,31]	dropping a	Line AB and point C to	
' '	parallel	copy parallel to.	
		Take arbitrary point D on	
		the line AB.	
		Danie Co	
		Draw a line CD.	

	Create an angle DCE equal to CDB.	
	Extend EA to create EF and EF will be parallel to AC	

Book I: Propositions

Number	Name	IF statement	THEN statement
	(if applicable)	(what you must have)	(what you will get)
[1,4]	SAS	If 2 triangles have 2 sides	The triangles are equal and all
		equal respectively and the	remaining angles and sides equal
		angle contained by the	each other respectively.
		straight sides are also	
		equal respectively.	
[1,5]		isosceles triangle	two congruent angles
[1,6]		triangle with 2 congruent	isosceles triangle
		angles	
[1,8]	SSS	If 2 triangles have all 3	The triangles are equal.
		sides equal respectively	
[1,13]		If a straight line stands	Then you have either 2 right angles,
		on another straight line.	or 2 angles whose sums will equal
			that of 2 right angles.
[1,14]		If with any straight line	You have two straight lines that are
		and a point, two straight	in a straight line with one another.
		lines not on the same side	
		sun up to 2 right angles.	
[1,15]		If two straight lines cut	Then they make vertical angles that
		each other.	are equal to each other.
[1,16]		If with any triangle, one of	Then the exterior angle is greater
		the sides is produced.	than either of the interior and
			opposite angles.
[1,17]		If you have any triangle	The sum of 2 of the angles will always
			be less than the sum of 2 right
			angles.
[1,18]		If you have any triangle.	The angle opposite of the longest
			side will always be the greatest angle
			in the triangle.
[1,19]		If you have any triangle.	The side opposite of the greatest
			angle will always be the longest side.

[1,20]		If you have any triangle	The sum of any of the 2 sides will always be greater than the length of the 3 rd side.
[1,26]	ASA	If you have 2 triangles that have 2 angles respectively that are equal to each other, and the sides between the 2 angles are also equal to each other respectively.	Then you have congruent triangles.
	AAS	If you have 2 triangles that have 2 angles that are congruent respectively, and one of the sides not between the 2 angles are respectively congruent.	Then you have congruent triangles.
	RASS	If you have 2 triangles that each have right angles and one leg and hypotenuse are also respectively congruent.	Then you have 2 congruent triangles.
[1,27]		If a straight line falling on 2 straight lines makes equal alternate angles.	Then the straight lines are parallel.
[1,28]		If a straight line falling on 2 straight lines makes the exterior angle equal to the interior and opposite angle, or the sum of the interior angles equals 2 right angles.	Then you have 2 lines that are parallel.
[1,29]		If you have a straight line falling on 2 parallel straight lines.	Then you have the alternate angles congruent, exterior angles are congruent to the interior and opposite angle, and the sum of the interior angles are equal to 2 right angles.
[1,30]		If you have straight lines that are both parallel to the same straight line.	Then the 2 lines are also parallel to each other.
[1,32]		If in any triangle one of the sides is produced,	Then the exterior angle equals the sum of the two interior and opposite angles, and the sum of the three interior angles of the triangle equals two right angles.
[1,33]		If you have straight lines that join the ends of equal	Then the 2 lines are equal and parallel to each other.

		and parallel straight lines in the same direction.	
[1,34]		If you have a parallelogrammic area.	Then the opposite sides and angles are equal, and the diameter will bisect the areas.
[1,35]		If you have 2 parallelograms which have the same base and their parallels equal each other.	Then they are both equal to each other.
[1,36]		If you have 2 parallelograms that are on equal bases and in the same parallels.	Then the two parallelograms equal each other.
[1,37]		If you have 2 triangles which are on the same base and in the same parallels.	Then the 2 triangles are equal.
[1,38]		If you have 2 triangles that are on equal bases and in the same parallels.	Then the 2 triangles equal each other.
[1,39]		If you have 2 equal triangles which are on the same base and side.	Then they are also on the same parallels.
[1,47]	Pythagorean Theorem	If you have a right angled triangle.	The squares on the side opposite the right angle equals the sum of the squares on the sides containing the right triangles

Book III: Propositions that are Constructions

Number	IF statement	THEN statement
	(what you must have)	(what you will get)
[III,1]	A Circle	Choose 2 Arbitrary points A and B on
		the circumference and draw line
		segment AB.

		Bisect the segment AB and mark the two point of intersection with the circle points C and E.
		Bisect line segment CE to get point F. F is your center.
[III,17]	You have circle with	From center E draw a circle with
[111,17]		
	center E and you want to	radius A. Draw segment AE and mark
	draw a straight line from	the intersection with the circle D.
	point A touching the	Draw the right angle of AE from point
	circle. TANGENT	D. Mark the intersection of the outer
		circle as point F. Draw FE. Mark the
		intersection of the inner section as
		point B. Line AB will be the tangent.

Book III: Propositions

Number	IF statement	THEN statement
	(what you must have)	(what you will get)
[111,2]	If you have two random	The straight line joining the points
	points on the	will fall within the circle.
	circumference of a circle.	
[111,3]	If you have 1 straight line	It also bisects the segment that isn't
	going through the center	crossing the center.
	and bisecting a straight	
	line not in the center. If it	
	also cuts the segment at a	
	right angle.	
[111,4]	If in a circle you have two	Then they do not bisect each other.
	lines that do not pass	
	through the center but	
	intersect each other.	
[111,5]	If 2 circles intersect each	Then they do not have the same
	other.	center.
[111,6]	If 2 circles touch each	Then they do not have the same
	other at any point.	center.
[III,12]	If 2 circles touch one	Then the straight line joining their
	another at one point	centers passes through the point of
	without crossing.	contact.
[III,16]	If you have a straight line	Then the line will always fall outside
	drawn at a right angle	the circle
	from the end of a	
	diameter of a circle.	
[III,18]	If a straight line is tangent	The straight line joined will be
	to a circle and another line	perpendicular to the tangent.

	is joined from the center to the intersection.	
[III,19]	If a straight line is tangent to a circle and from the intersection you draw a straight line at a right angle from the tangent.	The center of the circle will be on the line.
[111,20]	If you have a circle with an two points to create an angle from.	The angle at the center is double the angle at the circumference.
[III,21]	In a circle with a line segment.	The angles int the segment will equal one another.
[III,31]	If you have a circle where a right angle from the diameter, and take the intersection of bisector to the circle.	Then the segments from that points to the end of the diameter will also be right angles.

Book IV: Definitions

- 1. Inscribe: the largest object that you could fit inside of the figure.
- 2. Circumscribe: The smallest object you could fit outside of the figure.

Book IV: Propositions that are Constructions

Number	IF statement	THEN statement
	(what you must have)	(what you will get)
[IV,3]	If you want to	Extend EF from the triangle in 2
	circumscribe a	directions to points E going to G and
	equiangular triangle using	F going to H
	triangle DEF around a	
	circle ABC.	Take the center K of the circle and
		drab a radius KB at random.
		On the line KB construct an angle BKA
		equal to the angle of DEG and angle
		BKC equaling the angle DFH.
		Using points ABC draw The tangents
		at all 3 vertices. LAM, MBN, and NCL
		using the intersections.
		The reculting triangle LNAN is view
		The resulting triangle LMN is your
[1) (4]	If you want to in parily a	equiangular triangle.
[IV,4]	If you want to inscribe a	Bisect 2 of the angles and label the
	circle about a triangle ABC	intersection D.

		Draw perpendicular lines to all 3
		sides from point D, label the
		intersections E, F, and G.
		. ,
		Your inscribed circle has center D and
		radius of either E, F, or G. All points
		fall on the circle.
[IV,5]	You have a triangle ABC	Bisect the lines AB and AC, label the
	and you want to	points on the 2 sides, D and E. Mark
	circumscribe a circle	the intersection as F.
	around the triangle.	
		Draw perpendicular lines from the
		bisectors and label the intersection F.
		Join FB, FC, and FA
		Since AD is congruent to DB and DF is
		at a right angle the base AF is
		congruent to FB and FC.
		Cog. doc to 1.2 dd 1 d.
		Your circumscribed circle is with
		center F and radius FA, FB, or FC
		since they are congruent.
[IV,6]	If you want to inscribe a	Draw to diameters AC and BD at right
	square inside a given	angles.
	circle.	
		Connect AB, BC, CD, DA to get your
		inscribed square.
[IV,7]	To circumscribe a square	Draw two diameters at right angles.
[1,4,7]	around a circle.	Braw two diameters at right angles.
	around a circle.	Draw the tangents at each of the 4
		Draw the tangents at each of the 4
		points.
		Connect the points to get your
		circumscribed square.
[IV,8]	If you want to inscribe a	Bisect all sides of the square labeling
	circle inside a square	the points EFKH.
	ABCD.	
	_	Draw the lines perpendicular on the
		midpoints. Mark the intersection G.
		mapoints. Mark the intersection o.
		Vous inscribed sizele has senter Card
		Your inscribed circle has center G and
		radius GE.
[IV,9]	If you want to	Draw AC and BD. Mark the
	circumscribe a circle about	intersection E.
	a given square ABCD.	

		Your circumscribed circle has center E and radius EA.
[IV,10]	To get an isosceles	Start with a line AB. Construct point C
	triangle having each angle	where rectangle AB by BC is equal to
	at the base double the remaining one.	the square on CA.
		Construct a circle with center A and radius AB.
		Construct a line BD with the length of AC from point B to the circumference of the circle.
		ABD is your isosceles triangle.
[IV,11]	To inscribe a pentagon in a circle.	Inscribe triangle ABC in the circle.
		From point D inscribe a triangle DCE
		congruent to ABC.
		Pentagon ADBCE is your inscribed
		pentagon.