Quiz Questions: Induction and Recursion

- 1. Suppose you want to use mathematical induction to prove that $1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} 1$ for all positive integers n. Which of these is the correct statement to be proved in the basis step.
 - a. $1 + 2^1 = 2^{1+1} 1$
 - b. $1+2+2^2+\cdots+2^n$
 - c. $1 = 2^{0+1} 1$
 - d. $1+2+2^2+\cdots+2^n=2^{n+1}-1$

Explanation: Since we prove the equation for all positive integers, the base case is n = 1. Substituting n=1 into the equation gives $1 + 2^1 = 2^{1+1} - 1$.

- 2. Let $P(n) = n! < n^n$, where n > 1. What is the statement P(n + 1)?
 - a. $(n+1)n! < (n+1)^{n+1}$
 - b. $n! < n^{n+1}$
 - c. $(n+1)! < (n+1)^n$
 - d. $(n+1)n! < (n+1)^n$

Explanation: we have to substitute n + 1 for n in the inequality P(n). Considering that (n + 1)n! = (n + 1)! We see that $(n + 1) n! < (n + 1)^{n+1}$ corresponds to P(n + 1).

3. Suppose f(n) has the recursive definition $f(n) = \frac{3}{f(n-1)} + 1$ and you know that f(2) = 1/2.

What is the value f(1)?

- a. 2/3
- b. 1/2
- c. -6
- d. -6/5

Explanation: If we chose f(1) = -6, we can compute $f(2) = \frac{3}{-6} + 1 = -\frac{1}{2} + 1 = \frac{1}{2}$

- 4. Which of the following functions is not defined recursively?
 - a. f(n+1) = n * f(n-1) + 1
 - b. f(n) = n * f(n-1) + 1
 - c. f(n) = (n-1) * f(n) + 1
 - d. f(n+1) = (n+1) * f(n) + 1

Explanation: f(n) = (n-1) * f(n) + 1 is not a recursive definition for f, since f(n) is expressed in terms of f(n) itself, rather than f(k) for k < n. In fact, this is an equation that could be solved for f(n).

- 5. Let $2 \in S$ and if x, y in S then x * y 1 in S
 - a. $S = \{2, 3, 5, 8, 9, \dots\}$
 - b. $S = \{2, 3, 4, 5, 6, ...\}$
 - c. $S = \{2, 4, 8, 16, ...\}$
 - d. $S = \{2, 3, 5, 7, 11, ...\}$

Explanation: Initially $S = \{2\}$. Then in the first recursion we obtain $S = \{2,3\}$, since 2*2-1 = 3. In the second recursion we obtain $S = \{2,3,5,8\}$ since 2*3-1=5 and 3*3-1=8. In the third recursion we obtain, among others, $S = \{2,3,5,8,9,...\}$ since 2*5-1=9.

- 6. Which of the following formulae is not well-formed?
 - a. $(T \leftrightarrow F)$
 - b. $T \leftrightarrow T$
 - c. $(T \rightarrow F)$
 - d. $(F \rightarrow T)$

Explanation: in the recursive definition of well-formed formulae (see slide 41 of Week 8) it is required that a well-formed formulae is always enclosed in parenthesis (except individual variables T,F,s)

7. Which expression does fast recursive exponentiation evaluate when computing a^5?

a.
$$a * (a * (a * (a * (a * 1)))))$$

b.
$$a^0 * (a^{-1} * (a^3)^2)$$

c.
$$a^0 * (a^1 * (a^2))^2$$

d.
$$a^0 * (a^1 * (a^2)^2)$$

Explanation: Applying the recursive exponentation algorithm

$$fast_power(a,5) =$$

$$a^1 * (fast_power(a, 2))^2 =$$

$$a^{1} * (a^{0} * (fast_power(a, 1))^{2})^{2} =$$

$$a^{1} * (a^{0} * (a^{1} * fast_power(a, 0))^{2})^{2} =$$

$$a^1 * (a^0 * (a^1 * 1)^2)^2 =$$

$$a^1 * (a^0 * (a^2))^2$$

Note: the "correct" answer is actually not correct. The a^0 and a^1 have been unfortunately switched.

- 8. In merge sort when merging the lists 1,3,4 and 2,5,6 after 4 steps the partial result is
 - a. 1,2,3,4
 - b. 1,2,3,5
 - c. 3,4,5,6
 - d. 1,3,2,5

Explanation: After four steps, when merging the two lists, always the 4 smallest elements with have been selected, however they were distributed over the original lists.