Problem 1. Zygmund p76 exercise 05

Give an example to show that $\phi(f(x))$ may not be measurable if ϕ and f are measurable and finite.

(Let F be the Cantor–Lebesgue function and let f be its inverse, suitably defined. Let ϕ be the characteristic function of a set of measure zero whose image under F is not measurable.)

Show that the same may be true even if f is continuous.

(Let g(x) = x + F(x), where F is the Cantor-Lebesgue function, and consider $f = g^{-1}$.) Cf. Exercise 22.

Problem 2.

Let $\chi_{[0,1]}$ be the characteristic function of [0,1]. Show that there is no everywhere continuous function f on \mathbb{R} such that

$$f(x) = \chi_{[0,1]}(x)$$
 almost everywhere.

Solution.

$$f(x)=\chi_{[0,1]}(x)$$
 almost everywhere.
$$\label{eq:constraint} \updownarrow$$

$$|\{x|f(x)\neq\chi_{[0,1]}(x)\}|=0.$$

Suppose, for the sake of contradiction, that $\exists f$ on \mathbb{R} s.t.

$$f(x) = \chi_{[0,1]}(x)$$
 almost everywhere.

Without loss of generality, $f(x) = 1, x \in [0, 1]$.

By the definition of continuous everywhere, $\forall \epsilon > 0, \exists \delta > 0$, s.t. $|x - 0| < \delta \Rightarrow |f(x) - f(0)| < \epsilon$, which means $|f(x) - 1| < \epsilon$.

$$\begin{split} &\Rightarrow f(x) \neq 0 \text{ on } [-\delta, 0] \\ &\Rightarrow f(x) \neq \chi_{[0,1]} \text{ on } [-\delta, 0], \delta > 0. \end{split}$$

Thus, $|\{x|f(x) \neq \chi_{[0,1]}(x)\}| \neq 0$, which contradicts the assumption that $f(x) = \chi_{[0,1]}(x)$ a.e.

Therefore, we conclude that there is no everywhere continuous function f on \mathbb{R} such that $f(x) = \chi_{[0,1]}(x)$ a.e.

Problem 3.

Let $\Gamma \subset \mathbb{R}^d \times \mathbb{R}$, $\Gamma = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : y = f(x)\}$, and assume f is measurable on \mathbb{R}^d . Show that Γ is a measurable subset of \mathbb{R}^{d+1} , and $|\Gamma| = 0$.

Solution.

It suffices to prove that $|\Gamma|_e = 0$. Since \mathbb{R}^d is a countable union of almost disjoint cubes of side length 1, it is enough to show that $|\Gamma'|_e = 0$, where

$$\Gamma' = \{(x, y) \in [0, 1]^d \times \mathbb{R} : y = f|_{[0, 1]^d}(x)\}.$$

Since we know $R = \bigsqcup_{k \in \mathbb{Z}} [k, k+1)$, it follows that

$$\Gamma' = \bigsqcup_{k \in \mathbb{Z}} \{ (x, y) \in [0, 1]^d \times [k, k+1) : y = f|_{[0, 1]^d}(x) \}.$$

Again, it is sufficient to prove that $|\Gamma''|_e = 0$, where

$$\Gamma'' = \{(x, y) \in [0, 1]^d \times [0, 1) : y = f|_{[0, 1]^d}(x)\}.$$

For every $n \in \mathbb{N}$, we have $[0,1) = \bigsqcup_{j=1}^n I_j$, where $I_j = \left[\frac{j-1}{n}, \frac{j}{n}\right)$ for all $j \in \{1, 2, \dots, n\}$.

Since we know

$$\Gamma'' = \bigsqcup_{j=1}^{n} \left\{ (x, y) \in [0, 1]^d \times I_j : y = f|_{[0, 1]^d}(x) \right\},\,$$

and $f|_{[0,1]^d}$ is measurable on $[0,1]^d$, it follows that

$$\begin{split} |\Gamma''|_e &\leq \sum_{j=1}^n \left| \left\{ (x,y) \in [0,1]^d \times I_j : y = f|_{[0,1]^d}(x) \right\} \right|_e \\ &= \sum_{j=1}^n \left| f|_{[0,1]^d}^{\text{pre}}(I_j) \times I_j \right|_e \\ &= \sum_{j=1}^n \left| f|_{[0,1]^d}^{\text{pre}}(I_j) \right| \cdot |I_j| \\ &= \frac{1}{n} \sum_{j=1}^n \left| f|_{[0,1]^d}^{\text{pre}}(I_j) \right| \\ &= \frac{1}{n} \left| \prod_{j=1}^n f|_{[0,1]^d}^{\text{pre}}(I_j) \right| \\ &= \frac{1}{n} \left| f|_{[0,1]^d}^{\text{pre}}(I_0,1) \right| \leq \frac{1}{n} \left| [0,1]^d \right| = \frac{1}{n} \end{split}$$

for all $n \in \mathbb{N}$. Hence, we have

$$|\Gamma''|_e \le \lim_{n \to \infty} \frac{1}{n} = 0.$$

Therefore, we obtain $|\Gamma''|_e = 0$.