86 线性变换的值域与核

一、值域与核的概念

定义1:设 σ 是线性空间V的一个线性变换,

集合
$$\sigma(V) = \{ \sigma(\alpha) | \alpha \in V \}$$

称为线性变换 σ 的值域,也记作 $\text{Im } \sigma$,或 $\sigma(V)$.

集合
$$\sigma^{-1}(0) = \{\alpha \mid \alpha \in V, \sigma(\alpha) = 0\}$$

称为线性变换 σ 的核,也记作 $\ker \sigma$ 或者 $null\sigma$.

注: $\sigma(V)$, $\sigma^{-1}(0)$ 皆为V的子空间.

事实上,
$$\sigma(V) \subseteq V, \sigma(V) \neq \emptyset$$
,且对

$$\forall \sigma(\alpha), \sigma(\beta) \in \sigma(V), \ \forall k \in P$$

有
$$\sigma(\alpha) + \sigma(\beta) = \sigma(\alpha + \beta) \in \sigma(V)$$

$$k\sigma(\alpha) = \sigma(k\alpha) \in \sigma(V)$$

即 $\sigma(V)$ 对于 V 的加法与数量乘法封闭.

 $: \sigma(V)$ 为V的子空间.

再看
$$\sigma^{-1}(0)$$
. 首先, $\sigma^{-1}(0) \subseteq V$, $\sigma(0) = 0$,

$$\therefore 0 \in \sigma^{-1}(0), \ \sigma^{-1}(0) \neq \emptyset.$$

又对
$$\forall \alpha, \beta \in \sigma^{-1}(0)$$
, 有 $\sigma(\alpha) = 0, \sigma(\beta) = 0$ 从而

$$\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta) = 0.$$

$$\sigma(k\alpha) = k\sigma(\alpha) = k0 = 0, \quad \forall k \in P$$

$$\exists \beta \quad \alpha + \beta \in \sigma^{-1}(0), \quad k\alpha \in \sigma^{-1}(0),$$

 $: \sigma^{-1}(0)$ 对于V的加法与数量乘法封闭.

故 $\sigma^{-1}(0)$ 为 V 的 子空间.

定义2: 线性变换 σ 的值域 $\sigma(V)$ 的维数 称为 σ 的秩;

 σ 的核 $\sigma^{-1}(0)$ 的维数称为 σ 的零度.

例1、在线性空间 $P[x]_n$ (最高次方是 x^{n-1})中,令

$$D(f(x)) = f'(x)$$

则 $D(P[x]_n) = P[x]_{n-1}$,

$$D^{-1}(0) = P$$

所以D的秩为n-1,D的零度为1.

二、有关性质

- 1. (定理10) 设 σ 是n 维线性空间V的线性变换, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是V的一组基, σ 在这组基下的矩阵是A, 则
 - 1) σ 的值域 $\sigma(V)$ 是由基象组生成的子空间,即 $\sigma(V) = L\left(\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n)\right)$
 - 2) σ 的秩=A的秩.

证: 1)
$$\forall \xi \in V$$
, 设 $\xi = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n$,
于是 $\sigma(\xi) = x_1 \sigma(\varepsilon_1) + x_2 \sigma(\varepsilon_2) + \dots + x_n \sigma(\varepsilon_n)$
 $\in L(\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n))$
即 $\sigma(V) \subseteq L(\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n))$
又对 $\forall x_1 \sigma(\varepsilon_1) + x_2 \sigma(\varepsilon_2) + \dots + x_n \sigma(\varepsilon_n)$
 $= \sigma(x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n) \in \sigma(V)$

$$\therefore L(\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n)) \subseteq \sigma(V).$$

因此,
$$\sigma(V) = L(\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n)).$$

2) 由1), σ 的秩等于基象组 $\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n)$

的秩, 又
$$(\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n)) = \sigma(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$$

$$= (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n, A.$$

由第六章 § 5的结论3知, $\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n)$ 的秩

等于矩阵A的秩.

 \therefore 秩(σ) = 秩(A).

2. 设 σ 为n维线性空间V的线性变换,则

 σ 的秩+ σ 的零度=n

 $\exists \mathbb{I} \quad \dim \sigma(V) + \dim \sigma^{-1}(0) = n.$

证明:设 σ 的零度等于r,在核 $\sigma^{-1}(0)$ 中取一组基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r$

并把它扩充为V的一组基: $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r, \dots, \varepsilon_n$

由定理10, $\sigma(V)$ 是由基象组 $\sigma(\varepsilon_1)$, $\sigma(\varepsilon_2)$, \cdots , $\sigma(\varepsilon_n)$

生成的.

但
$$\sigma(\varepsilon_i) = 0$$
, $i = 1, 2, \dots, r$.

$$\therefore \ \sigma(V) = L(\sigma(\varepsilon_{r+1}), \dots, \sigma(\varepsilon_n))$$

下证 $\sigma(\varepsilon_{r+1}), \dots, \sigma(\varepsilon_n)$ 为 $\sigma(V)$ 的一组基,即证它们线性无关.

设
$$k_{r+1}\sigma(\varepsilon_{r+1})+\cdots+k_n\sigma(\varepsilon_n)=0$$

则有
$$\sigma(k_{r+1}\varepsilon_{r+1}+\cdots+k_n\varepsilon_n)=0$$

$$\therefore \quad \xi = k_{r+1} \varepsilon_{r+1} + \dots + k_n \varepsilon_n \in \sigma^{-1}(0)$$

即 ξ 可被 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r$ 线性表出.

设
$$\xi = k_1 \varepsilon_1 + k_2 \varepsilon_2 + \cdots + k_r \varepsilon_r$$

于是有
$$k_1\varepsilon_1 + k_2\varepsilon_2 + \cdots + k_r\varepsilon_{r,} - k_{r+1}\varepsilon_{r+1} - \cdots - k_n\varepsilon_n = 0$$

由于 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为V的基.

∴因此仅有
$$k_1 = k_2 = \cdots = k_n = 0$$

故 $\sigma(\varepsilon_{r+1}), \dots, \sigma(\varepsilon_n)$ 线性无关,即它为 $\sigma(V)$ 的一组基.

$$: \sigma$$
 的秩= $n-r$.

因此, σ 的秩十 σ 的零度=n.

注意:

虽然 $\sigma(V)$ 与 $\sigma^{-1}(0)$ 的维数之和等于n ,但是 $\sigma(V)$ + $\sigma^{-1}(0)$ 未必等于V.

如在例1中,

$$D(P[x]_n) + D^{-1}(0) = P[x]_{n-1} \neq P[x]_n$$

3. 设 σ 为n维线性空间V的线性变换,则

- i) σ 是满射 $\Leftrightarrow \sigma(V) = V$
- ii) σ 是单射 $\Leftrightarrow \sigma^{-1}(0) = \{0\}$

证明: i) 显然.

ii) 因为 $\sigma(0) = 0$, 若 **为**单射,则 $\sigma^{-1}(0) = \{0\}$.

反之,若 $\sigma^{-1}(0) = \{0\}$,任取 α 、 $\beta \in V$,若

$$\sigma(\alpha) = \sigma(\beta), \quad \text{if} \quad \sigma(\alpha - \beta) = \sigma(\alpha) - \sigma(\beta) = 0,$$

从而 $\alpha - \beta \in \sigma^{-1}(0) = \{0\}$, 即 $\alpha = \beta$. 故 σ 是単射.

4. 设 σ 为n 维线性空间V的线性变换,则 σ 是单射 $\Leftrightarrow \sigma$ 是满射.

证明: σ 是单射

$$\Leftrightarrow \sigma^{-1}(0) = \{0\}$$

$$\Leftrightarrow \dim \sigma^{-1}(0) = 0$$

$$\Leftrightarrow \dim \sigma(V) = n$$

$$\Leftrightarrow \sigma(V) = V$$

 $\Leftrightarrow \sigma$ 是满射.

例2、设A是一个n阶方阵, $A^2 = A$, 证明: A相似于

证:设A是n维线性空间V的一个线性变换 σ 在一组基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 下的矩阵,即 $\sigma(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) A$

由
$$A^2 = A$$
, 知 $\sigma^2 = \sigma$.

任取 $\alpha \in \sigma(V)$,则总有 $\beta \in V$,使得 $\alpha = \sigma(\beta)$,

则
$$\sigma(\alpha) = \sigma(\sigma(\beta)) = \sigma^2(\beta) = \sigma(\beta) = \alpha$$

故有
$$\alpha \in \sigma(V)$$
, $\sigma(\alpha) = 0$ 当且仅当 $\alpha = 0$.

因此有
$$\sigma(V) \cap \sigma^{-1}(0) = \{0\}$$

从而
$$\sigma(V) + \sigma^{-1}(0)$$
 是直和.

所以有
$$V = \sigma(V) \oplus \sigma^{-1}(0)$$
.

在 $\sigma(V)$ 中取一组基: $\eta_1, \eta_2 \cdots, \eta_r$

在 $\sigma^{-1}(0)$ 中取一组基: $\eta_{r+1}, \dots, \eta_n$

则 $\eta_1, \eta_2, \dots, \eta_r, \eta_{r+1}, \dots, \eta_n$ 就是V的一组基.

显然有,

$$\sigma(\eta_1) = \eta_1, \ \sigma(\eta_2) = \eta_2, \ \cdots, \ \sigma(\eta_r) = \eta_r,$$

$$\sigma(\eta_{r+1})=0, \ \sigma(\eta_{r+2})=0, \ \cdots, \ \sigma(\eta_n)=0.$$

用矩阵表示即

 $若n \times n$ 矩阵A满足 $A^2 = A$,则称A为幂等矩阵.同样满

足 $\sigma^2 = \sigma$ 的线性变换称为等幂线性变换.

事实上,等幂矩阵相似的矩阵也是等幂矩阵.

设A与B相似,则存在非奇异矩阵P,使得

$$P^{-1}AP = B \implies B^2 = P^{-1}A^2P = P^{-1}AP = B$$

因此B也是幂等矩阵.

当A是满秩幂等矩阵时, $A^2 = A \Rightarrow A = E$ 为单位矩阵.

例3、设 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 是线性空间V的一组基,已知

线性变换
$$\sigma$$
在此基下的矩阵为 $A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{pmatrix}$

- 2) 在 $\sigma^{-1}(0)$ 中选一组基,把它扩充为V的一组基, 并求 σ 在这组基下的矩阵.
- 3) 在 $\sigma(V)$ 中选一组基,把它扩充为V的一组基, 并求 σ 在这组基下的矩阵.

解: 由题意得

$$\sigma(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}) = (\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}) \begin{pmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{pmatrix}$$

先求 $\sigma^{-1}(0)$

设
$$\xi \in \sigma^{-1}(0)$$
, 在基底 ε_1 , ε_2 , ε_3 , ε_4 下, 其坐标为 $(x_1, x_2, x_3, x_4)^T$,即 $\xi = x_1\varepsilon_1 + x_2\varepsilon_2 + x_3\varepsilon_3 + x_4\varepsilon_4$

$$\sigma(\xi) = \sigma(\varepsilon_1, \ \varepsilon_2, \ \varepsilon_3, \ \varepsilon_4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$= (\varepsilon_1, \ \varepsilon_2, \ \varepsilon_3, \ \varepsilon_4) \begin{pmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0$$

掛比
$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

解此齐次线性方程组,得它的一个基础解系:

$$\begin{pmatrix} -2 & -2/3 & 1 & 0 \end{pmatrix}^T, \begin{pmatrix} -1 & -2 & 0 & 1 \end{pmatrix}^T$$

从而
$$\eta_1 = -2\varepsilon_1 - 2/3\varepsilon_2 + \varepsilon_3$$
, $\eta_2 = -\varepsilon_1 - 2\varepsilon_2 + \varepsilon_4$

是
$$\sigma^{-1}(0)$$
的一组基. $\sigma^{-1}(0) = L(\eta_1, \eta_2)$.

再求 $\sigma(V)$. 由于 σ 的零度为2,所以 σ 的秩为2,

即 $\sigma(V)$ 为2维的. 又由矩阵A,有

$$\sigma(\varepsilon_1) = \varepsilon_1 - \varepsilon_2 + \varepsilon_3 + 2\varepsilon_4$$

$$\sigma(\varepsilon_2) = 2\varepsilon_2 + 2\varepsilon_3 - 2\varepsilon_4$$

所以,
$$\sigma(\varepsilon_1)$$
, $\sigma(\varepsilon_2)$ 线性无关, 从而有

$$\begin{split} \sigma(V) &= L \Big(\sigma(\varepsilon_1), \sigma(\varepsilon_2), \sigma(\varepsilon_3), \sigma(\varepsilon_4) \Big) \\ &= L \Big(\sigma(\varepsilon_1), \sigma(\varepsilon_2) \Big) \end{split}$$

 $\sigma(\varepsilon_1), \sigma(\varepsilon_2)$ 就是 $\sigma(V)$ 的一组基.

2) 因为 η_1, η_2 是 $\sigma^{-1}(0)$ 的一组基,故扩展为

$$(\varepsilon_{1}, \varepsilon_{2}, \eta_{1}, \eta_{2}) = (\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}) \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & -2/3 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= (\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}) D_{1}$$

从而, ε_1 , ε_2 , η_1 , η_2 线性无关,即为V的一组基.

 σ 在基 $\varepsilon_1, \varepsilon_2, \eta_1, \eta_2$ 下的矩阵为

$$D_1^{-1}AD_1 = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 9/2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & -2 & 0 & 0 \end{pmatrix}.$$

3) 因为

$$\left(\sigma(\varepsilon_{1}), \sigma(\varepsilon_{2}), \varepsilon_{3}, \varepsilon_{4}\right) = \left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & -2 & 0 & 1 \end{pmatrix}$$

$$= \left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) D_{2}$$

$$\overrightarrow{\square} \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & -2 & 0 & 1 \end{vmatrix} = 2 \neq 0, \quad \therefore \quad D_{2} \ \overrightarrow{\square} \not \sqsubseteq .$$

从而 $\sigma(\varepsilon_1)$, $\sigma(\varepsilon_2)$, ε_3 , ε_4 线性无关,即为V的一组基. σ 在这组基下的矩阵为

$$D_2^{-1}AD_2 = \begin{pmatrix} 5 & 2 & 2 & 1 \\ 9/2 & 1 & 3/2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$