Capítulo 1

Tabla de horarios

Matemáticas e Ingeniería pág. 3					
Hora	Lunes	Martes	Miércoles	Jueves	Viernes
9:00-9:50			16.1	16.10	16.20
10:00-10:20	Inauguración		16.2	16.11	16.21
10:20-10:40	-		16.3	16.12	16.22
10:40-11:00	PLENARIA		16.4	16.13	16.23
11:00-11:20	1	Café	16.5	16.14	16.24
11:20-11:40	Traslado		16.6	16.15	16.25
11:40-12:00			16.7	16.16	16.26
12:00-12:20	1		16.8	16.17	
12:20-12:40	-		16.9	16.18	16.27
12:40-12:50	-				-
12:50-13:00	Traslado				
13:00-13:30		PLENARIA	PLENARIA	PLENARIA	PLENARIA
13:30-13:50		2	3	4	5
14:00-16:30	COMIDA			COMIDA	
16:40-17:40				16.19	16.28
17:40-18:10	Café		Tarde Libre	Café	
18:10-18:50				PLENARIA 8	PLENARIA 9
18:50-19:00	Traslado			HOMENAJE	Traslado
19:00-19:50	PLENARIA 6	PLENARIA 7		JORGE	Asamblea
19:50-20:50	HOMENAJE	HOMENAJE		IZE	General
20:50-21:00	ERNESTO	FRANCISCO			Traslado
21:00-21:50	LACOMBA	RAGGI			Clausura
Salón C3					

16.1 Ingeniería Matemática, una oportunidad para la Luis Javier Álvarez Noguera (CI, 2Lic) Matemática Latinoamericana

Carlos Eduardo Pérez Wilson (Invitado) (CPI, 1Lic)

16.2 Ecuaciones de Maxwell generalizadas: caso fraccionario

Juan Martínez Ortiz (CI, Pos)

16.3 Filtro Polinomial Optimo Risk-Sensitive Aplicado a un Sistema Excitable con Manejo de Ruido

Alicia Yesenia López Sánchez (RI, Pos)

16.4 Caracterización topológica de sistemas moleculares Enrique González Sosa (CI, Inv) casi esféricos

16.5 Análisis para la construcción de un software edu-

María Victoria Ramos Abundio (RT, Bach)

16.6 Caracterización hidrodinámica de suelos diádicos a partir de la curva de infiltración

Carlos Fuentes-Ruiz (CI, Inv)

16.7 Modelación del ciclo anual del agua en una parcela del Suroeste de Francia

16.8 Movimiento vertical de una partícula en un medio resistivo usando el

J. Juan Rosales García (CI, Pos)

16.9 Simulación computacional de la dinámica del mercado y adaptación de la capacidad de producción de una empresa de productos lácteos, mediante modelos de Forrester

Ciro Filemón Flores Rivera (RI, 2Lic)

16.10 Solución a problemas de Ingeniería Utilizando Métodos Numéricos y Computo de Alto Desempeño Salvador Botello Rionda (CPI, 1Lic)

16.11 **100** aplicaciones de las matemáticas José de Jesús Ángel Ángel (CDV, 2Lic)

16.12 Modelos Digitales de Rocas

Delia Jeanette Campos López (RI, 2Lic)

16.13 Cálculo Fraccionario como Herramienta de Modelación

Juan Martínez Ortiz (CDV, 2Lic)

16.14 Determinación de Parámetros de Diseño en Sistemas Energéticos

Darwin Young (CDV, 2Lic)

16.15 Transformada Discreta Wavelet aplicada en ingeniería

J. Jesús de Santiago Pérez (CDV, Inv)

16.16 Series de potencias del parámetro espectral para los problemas de Sturm-Liouville de cuarto orden Kira Khmelnytskaya (CI, 2Lic)

16.17 Programación en GPU's. Biblioteca Matemática Fernando Javier Alcántara López (RT, 1Lic)

16.18 Evaluación de la calidad del aislamiento eléctrico de alto voltaje utilizando SVM

Sergio Humberto Almanza Ruiz (RT, Pos)

16.19 La regularización de datos cerebrales de difusión de hidrogeno para la estimación de conectividad

Alonso Ramírez Manzanares (Invitado) (CPI, Pos)

16.20 Cálculo Fraccionario y Modelación de Medios Porosos

Miguel Ángel Móreles Vázquez (Invitado) (CPI, Pos)

16.21 Ajuste de parámetros para el modelo dinámico discreto de la red que regula la formación de flagelos en Escherichia coli K-12 MG1655

Sergio Iván Valdez Peña (RI, Pos)

16.22 FEMT, an open source library for solving large systems of equations in parallel

José Miguel Vargas Félix (CI, Inv)

16.23 Método de Elementos Finitos para resolver la Ecuación de Poisson en Unidades de Procesamiento Gráficas

Marcela Morales Quispe (RI, 2Lic)

16.24 Solución de ecuaciones diferenciales sin malla Cristóbal Enrique García Reyes (RI, 2Lic)

16.25 Implementación en paralelo del método de Montecarlo para la simulación computacional de fluidos a nivel atómico

Guillermo Amaro Rico (RT, Pos)

16.26 Modelación y simulación numérica de la intención de voto

Gerardo Mario Ortigoza Capetillo (RI, 2Lic)

16.27 Conceptos matemáticos detras de algoritmos robustos

Arturo Hernández Aguirre (Invitado) (CI, 1Lic)

16.28 La importancia de las matemáticas en la biología computacional

Mauricio Carrillo Tripp (Invitado) (CPI, 1Lic)

Capítulo 2

Resúmenes

16. Matemáticas e Ingeniería

16.1. Ingeniería Matemática, una oportunidad para la Matemática Latinoamericana (CPI, 1Lic)

Carlos Eduardo Pérez Wilson, carlos@ing-mat.udec.cl (Universidad de Concepción (UdeC), Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Matemática)

Mientras en el seno disciplinar sigue existiendo la eterna pugna entre matemáticas "puras" y "aplicadas", desde un tiempo se ha venido instalando en varios países y con bastante impacto el concepto de Ingeniería Matemática, con el cual se ha logrado instalar a la Matemática en el contexto de la I+D+i, en la formación profesional, en la especialización e incluso en el emprendimiento. A pesar de lo breve del nombre, el concepto de Ingeniería Matemática presenta diferentes matices dependiendo de cada país, pasando de ser un término muy conocido y amplio, hasta simplemente un sinónimo de matemática aplicada. La idea de esta conferencia es presentar algunos de estos matices, para mostrar a través de diferentes casos o situaciones, que la Ingeniería Matemática, incluso en el contexto particular de cada país, puede ser una poderosa herramienta de vinculación con otras disciplinas, de renovación y ampliación de capital humano matemático, y sobre todo, de posicionamiento de la Matemática en el contexto sociocultural actual, tan relacionado con la tecnología y la innovación.

16.2. Ecuaciones de Maxwell generalizadas: caso fraccionario (CI, Pos)

Juan Martínez Ortiz, jmartinez_ortiz@yahoo.com (Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas (UAZ))

Coautores: J. Juan Rosales García, Manuel Guía Calderón

Este trabajo presenta la solución general de las ecuaciones de Maxwell en derivadas parciales fraccionarias espacio-temporales. Se muestra la deducción de estas ecuaciones a través de una transformación del operador derivada oridinaria al operador fraccionario. Para esto se emplean las derivadas espacio-temporales fraccionarias en el sentido de Caputo y se extiende la aplicación del método de descomposición de Adomian, desarrollado para ecuaciones diferenciales de orden entero, a ecuaciones diferenciales fraccionarias. Como casos particulares se obtienen las soluciones de las ecuaciones de onda y de difusión.

16.3. Filtro Polinomial Optimo Risk-Sensitive Aplicado a un Sistema Excitable con Manejo de Ruido (RI. Pos)

Alicia Yesenia López Sánchez, ali.trinity90@gmail.com (Universidad Autónoma de Nuevo León (UANL) Facultad de Ciencias Fisico Matemáticas Posgrado en Ciencias con Orientación en Matemáticas)

Coautor: María Aracelia Alcorta

Las ecuaciones de filtrado óptimo polinomial risk-sesitive con observaciones lineales y criterio a minimizar exponencial con diferencia de la media al cuadrado se ha aplicado a un modelo Fitz Hugh-Nagumo. Este modelo tiene características de representar un sistema excitable con manejo del ruido, el cual se presenta en algunos campos de aplicación desde la cinética de reacciones químicas y Físicas del estado solido hasta procesos biológicos. Se pretende experimentar con las ecuaciones de filtrado en este modelo, para concluir acerca de su efectividad en este tipo de sistemas, en los cuales se pretende mantener cierta frecuencia del ruido. A la vez se aplican de métodos de filtrado en este modelo, para concluir acerca de su efectividad en este tipo de sistemas, en los cuales se pretende mantener cierta frecuencia del ruido. A la vez se aplican dos métodos de filtrado polinomial diferentes: Risk- Sensitive y el polinomial, comparando resultados de ambos.

16.4. Caracterización topológica de sistemas moleculares casi esféricos (CI, 2Lic)

Luis Javier Álvarez Noguera, lja@matcuer.unam.mx (Universidad Nacional Autónoma de México (UNAM), Instituto de Matemáticas, Unidad Cuernavaca)

Para un sistema constituido por masas puntuales en R3 consideramos el problema de determinar la forma del poliedro determinado por esos puntos. Mostramos cómo el uso de la excentricidad como medio de determinar la forma es insuficiente cuando el poliedro formado por el sistema no es una esfera redonda y proponemos una nueva manera de determinar la forma del poliedro calculando su convexidad y usando los q-extensores para entender mejor las simetrías o la falta de ellas. Se presentan resultados de caracterización de formas micelares para un par de compuestos químicos simulados mediante dinámica molecular.

16.5. Análisis para la construcción de un software educativo (RT, Bach)

María Victoria Ramos Abundio, vicky_vero17@hotmail.com (Unidad Académica de Matemáticas (UAM) Ext.-Acapulco)
Coautores: Pedro Alberto López Ocampo, Petra Baldivia Noyola

La introducción de la tecnología en la educación actualmente se enfrenta a grandes retos; esto debido a las grandes aportaciones de herramientas y recursos digitales que apoyan a la comprensión de conocimientos y conceptos, tal es el caso del software educativo; es por ello que nosotros como alumnos de la licenciatura en matemáticas del área de Matemática Educativa en colaboración con compañeros de las áreas de Matemáticas y Computación, nos interesamos en la elaboración de un software educativo para la enseñanza de métodos de factorización en el nivel medio superior que sirva como herramienta de apoyo para la transmisión de conocimientos de manera motivadora e innovadora y además que permita la mejora de los mismos. Como colaboradores de este proyecto nos dimos a la tarea de documentar todo lo referente a los requerimientos del sistema. Esto, se realizó de la siguiente manera: Se analizó la forma tradicional de la enseñanza de las matemáticas en el nivel medio superior, así como también se revisaron diferentes teorías y métodos de enseñanza-aprendizaje. Se consultaron los planes de estudios de la Universidad Autónoma de Guerrero en el Nivel Medio Superior, esto para conocer lo métodos de factorización enseñados en este nivel. Se realizó una búsqueda en libros, manuales impresos y electrónicos de información relacionada con los métodos de factorización y temas relacionados a estos, es decir aquellos temas denominados conocimientos previos. Se estructuró la presentación del contenido, etc. Se desarrollo una propuesta metodológica para el desarrollo de un Software Educativo que permitiera a los alumnos del Nivel Medio Superior obtener conocimientos sobre 6 diferentes métodos de factorización.

16.6. Caracterización hidrodinámica de suelos diádicos a partir de la curva de infiltración (CI, Inv)

Carlos Fuentes-Ruiz, cbfuentesr@gmail.com (Universidad Autónoma de Querétaro (UAQ))

La infiltración del agua en el suelo es de fundamental importancia en la agricultura ya que es el mecanismo para aportar agua a las plantas. La infiltración es descrita por una ecuación tipo Fokker-Planck no lineal, que resulta de la conservación de la masa y de la ley de Darcy. La medida más accesible es la evolución temporal del volumen infiltrado de agua a través de la superficie del suelo y un problema inverso consiste en encontrar las características hidrodinámicas del suelo compuestas por las curvas de retención de humedad y de conductividad hidráulica. En suelos que tienen dos sistemas de poros, el medio matricial y el medio saturado, el movimiento del agua se estudia con dos ecuaciones Fokker-Planck acopladas con un término de fuente o sumidero en ellas que permite la transferencia de agua entre los medios. Otro problema inverso consiste en caracterizar la función de transferencia entre los medios a partir del volumen de agua infiltrado en el tiempo observado en la superficie de todo el suelo.

16.7. Modelación del ciclo anual del agua en una parcela del Suroeste de Francia (CI, Inv)

Enrique González Sosa, egs@uaq.mx (Universidad Autónoma de Querétaro. DEPFI)

El intercambio masa y energía entre las superficies continentales y la atmósfera es controlada por los flujos de vapor y por la transferencia de masa en el continuo suelo-planta-atmósfera. Las alteraciones en las tasas de evaporación pueden influenciar las variaciones diurnas, estacionales o interanuales de las condiciones climáticas y ser un mecanismo responsable de los cambios del ciclo anual del agua. Del mismo modo los lechos vegetales o mulchs producto de la senescencia y descomposición de la vegetación o provocadas por el ser humano del mismo modo tienen un papel importante en el intercambio de masa y energía en el sistema suelo-vegetación-atmósfera. En este trabajo se demuestra la influencia que tienen las cubiertas vegetales en el proceso de evaporación, la cual se reduce sustancialmente, mediante la aplicación de modelo SiSPAT (Simple Soil Plant Atmosphere Transfert). Dos versiones del modelo fueron utilizadas para evaluar el efecto mulch o invernadero; la versión que no toma en cuenta el efecto mulch (SiSPAT) y la versión modificada para simular el efecto de la cubierta vegetal (SiSPAT-Mulch). La modelación fue llevada a cabo con tres años de observaciones en continuo de las variables climáticas (1995-1997), flujos de superficie, propiedades de la vegetación y el contenido de humedad y temperatura del suelo. La modelación con la versión SiSPAT-mulch reprodujo correctamente la temperatura y el contenido

de humedad de suelo y los flujos de superficie. La evaporación anual del suelo desnudo disminuyo en un factor de 2-4 y la transpiración remontó entre un 30 y 50 %. Por otra parte, dependiendo de las propiedades físicas del mulch el modelo mostró que la evaporación anual se reduce entre un 4 y 10 %, obteniendo de está forma una mayor disponibilidad de agua en el ciclo anual. Finalmente se realizó un análisis de sensibilidad para detectar posibles incongruencias en los resultados por el efecto del periodo de tiempo aplicado en la adquisición de las variables climáticas.

16.8. Movimiento vertical de una partícula en un medio resistivo usando el (CI, Pos)

J. Juan Rosales García, rosales@ugto.mx (Departamento de Ingeniería Eléctrica, División de Ingenierías Campus Irapuato-Salamanca (DICIS), Universidad de Guanajuato)

Coautores: Manuel Guía Calderón, Juan Martínez Ortiz

En la literatura especializada existen varias aplicaciones del cálculo fraccionario a sistemas físicos. Sin embargo, el paso de la derivada ordinaria a la fraccionaria es directo, y por consiguiente los parámetros físicos (masa, resistencia, capacitancia, etc.,) tienen diferentes unidades. En esta presentación mostramos que existe una transformación del operador derivada ordinaria al operador fraccionario. Esto nos permite de manera sistemática construir ecuaciones diferenciales fraccionarias para sistemas físicos. En particular, se analiza el movimiento vertical de un cuerpo en un medio resistivo.

16.9. Simulación computacional de la dinámica del mercado y adaptación de la capacidad de producción de una empresa de productos lácteos, mediante modelos de Forrester (RI, 2Lic)

Ciro Filemón Flores Rivera, ciro.flores@itesm.mx (Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Campus Hidalgo)

Coautores: Edén Mayor García, Saúl Domínguez Casasola

El sector de productos lácteos constituye cerca del 0.22 por ciento del PIB en México, por lo que su estudio es muy relevante para mejorar las condiciones económicas de la PEA en dicho sector. Se modela el comportamiento de las ventas de productos lácteos así como la capacidad que tiene una empresa para responder a tales cambios mediante la consideración de tres bloques: clientes, abastecimiento y producción. En el primer bloque se incluyen aspectos demográficos, de mercadotecnia así como el proceso de expansión de ventas a través de mecanismos de contagio de información; el segundo bloque abarca variables de demanda, consumo actual y el proceso de abastecimiento del producto; finalmente el tercer bloque modela la capacidad de producción así como el comportamiento dinámico del cumplimiento de pedidos. El modelo completo consta de 95 variables de las cuales 14 son de nivel, 18 de flujo, 5 lookup y 58 auxiliares. Se resuelve el conjunto resultante de EDO's discretas aplicando la metodología de dinámica de sistemas de Forrester mediante el empleo del software VENSIM. Se modelan diferentes escenarios atendiendo a variaciones en la tasa de recomendación, el gasto per cápita en el consumo de productos lácteos y el tiempo de retraso en la entrega del producto. Esto permite definir políticas óptimas para el crecimiento sostenido de la empresa.

16.10. Solución a problemas de Ingeniería Utilizando Métodos Numéricos y Computo de Alto Desempeño (CPI, 1Lic)

Salvador Botello Rionda, botello@cimat.mx (Ciencias de la Computación Centro de Investigación en Matemáticas A.C. (CIMAT))

Se Presentan una serie de problemas que fueron resueltos utilizando técnicas optimas de métodos numéricos. Se mostraran aplicación en problemas de estructuras de Ingeniería Civil, Solución a problemas de Ingeniería Mecánica, Procesamiento de imágenes medicas, Visualización estéreo, Modelado de fluidos en posos petroleros, etc. En los últimos tiempos y gracias a la aparición de sistemas que pueden controlar varias computadoras al mismo tiempo, se han desarrollado algoritmos para resolver grandes sistemas de ecuaciones (hablamos cientos de millones) y se han logrado aplicaciones a problemas antes inabordables. Se hablara de sistemas de computo en paralelo: con memoria distribuida (MPI), con memoria compartida (OPENMP) y en tarjetas gráficas (GPU-CUDA) y sus aplicaciones.

16.11. 100 aplicaciones de las matemáticas (CDV, 2Lic)

José de Jesús Ángel Ángel, jjaa@math.com.mx (Facultad de Ingeniería)

En el contexto de la ingeniería, una de las preocupaciones más recurrentes de los estudiantes, es conocer si las matemáticas sirven de algo o no. En esta plática de una manera simplificada hablamos de cómo se han llegado a aplicar las matemática

en varias áreas de la ingeniería y el conocimiento en general. Planteamos lo "imposible" de evitar las matemáticas al resolver problemas. Hablamos de aplicaciones en la seguridad de la información, en Internet, en el arte, en la medicina, en la política, en fin se tratará de mencionar una buen número de aplicaciones de las matemáticas.

16.12. Modelos Digitales de Rocas (RI, 2Lic)

Delia Jeanette Campos López, ddelzzz@gmail.com (Universidad Nacional Autónoma de México (UNAM))

Coautores: Ana Sofía Ríos Hernández, Luis Javier Álvarez Noquera

En la industria petrolera se necesitan determinar una serie de propiedades de las rocas en las que se encuentran almacenados los hidrocarburos para alimentar adecuadamente a los simuladores de yacimientos. Hace relativamente poco tiempo se han empezado a utilizar tomografías computarizadas de rocas para determinar sus propiedades físicas. Sin embargo, las propiedades que se necesitan no pueden obtenerse directamente del tomógrafo, sino que se tienen que calcular. Para esto es que se tienen que hacer modelos digitales de las rocas y a partir de ellos calcular las propiedades útiles como densidad, porosidad, micro y macroporosidad, estructura fractal, permeabilidad absoluta direccional, propiedades elásticas, factor de formación y exponente de cementación, presión capilar, índice de resistividad y permeabilidad relativa entre otras. En el Laboratorio de Simulación de nuestra Unidad se ha empezado a trabajar en este tipo de modelado matemático de rocas para resolver este problema localmente para nuestra industria del petróleo. En la charla se expondrán algunas de estas ideas con mayor detalle y se hablará de algunos de los enfoques que hemos adoptado.

16.13. Cálculo Fraccionario como Herramienta de Modelación (CDV, 2Lic)

Juan Martínez Ortiz, jmartinez_ortiz@yahoo.com (Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas (UAZ))

Coautores: J. Juan Rosales García, Manuel Guía Caldrón

En esta plática se presentan los fundamentos del cálculo fraccionario, así como la herramienta usual de modelación, es decir, las ecuaciones diferenciales fraccionarias y sus métodos de solución. Se ilustra esta técnica en la modelación de diversos sistemas físicos.

16.14. Determinación de Parámetros de Diseño en Sistemas Energéticos (CDV, 2Lic)

Darwin Young, dyoung@comimsa.com (Corporación Mexicana de Investigación en Materiales (COMIMSA))
Coautores: Mauricio Garza. Jöns Sánchez

El presente trabajo describe las bases matemáticas del procedimiento para la optimización de parámetros que determinan el incremento de eficiencia de sistemas solares híbridos, en diferentes categorías, como son colectores solares, contenedores solares, celdas solares, tanques térmicos, sistemas energéticos en general que ocupen como fuente primaria o secundaria captación de radiación directa o difusa de energía solar que permiten determinar la optimización de parámetro de acuerdo a ángulos acimutales, factores ambientales como velocidad de viento, humedad y temperatura ambiente, y presencia de factores contaminantes, partículas suspendidas y aerosoles. Mediante la introducción de factores de eficiencia por dispersión, absorción, reflexión y extinción de potencia radiativa. Se considera el calculo del flujo actínico es la fracción del espectro de radiación solar que tiene la capacidad de fotolizar compuestos como el bióxido de nitrógeno y algunos hidrocarburos, los cuales son indispensables para el estudio fotoquímico de los episodios de Ozono que a su vez reduce la cantidad de radiación que incide en los colectores o sistemas. La forma de obtener esta información es mediante la solución de las ecuaciones de transferencia radiativa.

16.15. Transformada Discreta Wavelet aplicada en ingeniería (CDV, Inv)

J. Jesús de Santiago Pérez, jjdesantiago@hspdigital.org (Universidad Autónoma de Querétaro (UAQ), Facultad de Ingeniería campus San Juan del Río)

Los conceptos de señales y sistemas están relacionados con una gran variedad de campos en la ingeniería, las técnicas y algoritmos desarrollados para el procesamiento y análisis de señales tienen un papel importante en áreas muy diversas de la tales como comunicaciones, aeronáutica, circuitos, acústica, sismología, calidad de la energía, control de procesos y en general con cualquier sistema dinámico que aparezca en la naturaleza o industria. Las señales se definen como funciones de una o más variables independientes y contienen información acerca del comportamiento o características de algún fenómeno o sistema. De ahí la importancia del desarrollo y aplicación de técnicas para el procesamiento de señales que ayuden al monitoreo y diagnostico de sistemas en ingeniería, y a su vez repercutan en la mejora de la calidad y productividad. Uno de los aspectos importantes en el procesamiento de señales es el análisis en tiempo-frecuencia, y dentro de este campo la

Transformada Discreta de Wavelet (DWT) ha sido en los últimos años una herramienta muy importante en el campo de la ingeniería. La DWT es una herramienta matemática muy eficiente para el procesamiento de señales no estacionarias pues provee un análisis multiresolución basado en la representación tiempo-frecuencia de la señal lo que permite el estudio en múltiples bandas de frecuencia. Se ha incrementado su uso en los últimos años en aplicaciones tales como: filtros digitales, reconocimiento de patrones, encriptación de datos, compresión de imágenes y sonido, detección de fallas en sistemas mecánicos entre muchos otros. En este trabajo se presenta los fundamentos matemáticos básicos de la DWT y se muestran algunas aplicaciones a ingeniería desarrolladas en trabajos de investigación en la Universidad Autónoma de Querétaro.

16.16. Series de potencias del parámetro espectral para los problemas de Sturm-Liouville de cuarto orden (CI, 2Lic)

Kira Khmelnytskaya, khmel@uaq.edu.mx ()

Coautores: Vladislav V. Kravchenko, Jesús A. Baldenebro-Obeso

En este trabajo se consideran problemas de Sturm-Liouville de cuarto orden. Como modelos matemáticos dichos problemas surjen en diversas aplicaciones, como por ejemplo en ingeniería mecánica al estudiar los fenómenos de pérdida de estabilidad y de fuerza crítica. La solución general de la ecuación de Sturm-Liouville de cuarto orden se presenta en forma de las series de potencias del parámetro espectral (SPPS por sus siglas en ingles). Los coeficientes de estas series se calculan explícitamente por medio de la integración recursiva y se demuestra su convergencia uniforme. Con base en dichas SPPS representaciones se obtienen las ecuaciones características para los problemas espectrales que surgen en mecánica y la teoría de elasticidad. Se muestra que los problemas espectrales se reducen al cómputo de los ceros de las funciones analíticas del parámetro espectral correspondientes al problema dadas por sus expansiones en series de Taylor. Esto conduce a un método numérico simple y eficiente para resolver problemas espectrales para ecuaciones de Sturm-Liouville de cuarto orden. Así mismo se consideran varios ejemplos de aplicación del nuevo método.

16.17. Programación en GPU's. Biblioteca Matemática (RT, 1Lic)

Fernando Javier Alcántara López, alcantaralopez@hotmail.com (Universidad Autónoma de Querétaro (UAQ)) En la actualidad cuando se trabajan con problemas numéricos, ya no sólo es necesario la obtención de resultados precisos, además es necesario que éstos se presenten de manera rápida. En ésta conferencia se presenta una propuesta para atacar ésta problema, el cual es, la realización de cálculos en la tarjeta gráfica, mas precisamente, la GPU; a través de una biblioteca realizada en la tesis de licenciatura de los estudiantes Fernando Alcántara y Juan Carlos Mota. Además se presenta una aplicación, la cual es un mouse óptico que incorpora diversas funciones de la biblioteca llamada MATHGPU.

16.18. Evaluación de la calidad del aislamiento eléctrico de alto voltaje utilizando SVM (RT, Pos)

Sergio Humberto Almanza Ruiz, algecomb@hotmail.com (Posgrado Interinstitucional en Ciencia y Tecnología (PICYT)) Coautores: Javier Yánez Mendiola, Arturo Hernández Aguirre, Jöns Sánchez Aguilar, Rubén Jaramillo Vacio En esta plática se hablará de la aplicación de maquina de soporte vectorial para la identificación de tipos de descarga parcial en redes eléctricas subterráneas de CFE. La medición de descargas parciales es la técnica más eficiente para determinación del estado del aislamiento, aunque con los sistemas de medición de descargas parciales en sitio, la identificación del fenómeno se realiza empíricamente. Existen en la literatura diversos trabajos donde realizó la identificación del tipo de descarga parcial mediante algoritmos de aprendizaje de máquina. El SVM maximiza el margen de separación entre clases, además puede clasificar datos no linealmente separables. El problema de encontrar un clasificador que maximice el margen de separación entre clases se puede ver geométricamente como encontrar el vector unitario w y el parámetro b ,con los cuales, se maximiza la distancia de los puntos de ambas clases al hiperplano que los separa. Lo anterior se puede plantear de manera analítica de la siguiente forma: Suponiendo que se tienen n ejemplos $(x_1,y_1),\ldots,(x_n,y_n)$ con etiquetas de clase $y_i \in \{1,-1\}$. Encontrar el hiperplano < w, x > +b = 0 (de parámetros (w,b)) que cumpla las siguientes condiciones:

$$\text{minimizar } \frac{1}{2}|w|^2$$

para toda $w \in R^d$ y $b \in R$ sujetos a,

$$y_i(\langle w, x_i \rangle + b) - 1 \ge 0$$
 para toda $i \le n$.

Sin embargo existen problemas de clasificación donde los datos no son linealmente separables en el espacio de entradas, para ello se utilizan las técnicas de kernel. También se mostraran los resultados obtenidos en la clasificación de descargas parciales con SVM .

16.19. La regularización de datos cerebrales de difusión de hidrogeno para la estimación de conectividad (CPI, Pos)

Alonso Ramírez Manzanares, alram@cimat.mx (Universidad de Guanajuato, Departamento de Matemáticas)
En esta plática revisaremos el problema de la estimación de conexiones cerebrales en la materia blanca. Se explicará que para este fin se utilizan imágenes de resonancia magnética conocidas como pesadas en difusión de hidrógeno. Mostraré que es un problema de investigación importante dentro del campo de procesamiento de imágenes medicas. Posteriormente veremos que las estimación local de datos (estimaciones en un pequeña región del cerebro) son problemas mal condicionados que requieren regularizarse mediante la introducción de conocimiento previo. Veremos que, una vez que tenemos estimadores locales, estos se pueden integrar globalmente mediante un proceso conocido como tractografía cerebral. Se mostrarán algunas estrategias de regularización y resultados de la aplicación de las mismas.

16.20. Cálculo Fraccionario y Modelación de Medios Porosos (CPI, Pos)

Miguel Ángel Móreles Vázquez, moreles@cimat.mx (Centro de Investigación en Matemáticas (CIMAT))
En la platica mostraremos aplicaciones del Calculo Fraccionario en Ingeniería Petrolera. Presentaremos modelos de difusión anómala en pozos y flujo en medios porosos altamente heterogéneos. Haremos un breve repaso a la integral de Riemann Liouville y a las diferentes nociones de derivada fraccionaria.

16.21. Ajuste de parámetros para el modelo dinámico discreto de la red que regula la formación de flagelos en Escherichia coli K-12 MG1655 (RI, Pos)

Sergio Iván Valdez Peña, ivvan@cimat.mx (Centro de Investigación en Matemáticas (CIMAT) A.C.)

Coautores: Beatriz Carely Luna Olivera, David Alberto Velázquez Ramírez, Agustino Martínez Antonio, Arturo Hernández Aguirre, Salvador Botello

Estudios actuales revelan que los genes en un organismo no actúan de forma aislada. En la expresión genética se sintetiza una proteína a partir de la información en un gen, dicha proteína puede ser responsable de activar o inhibir la expresión de otro gen, creando de esta manera interacciones complejas. Éstas interacciones pueden ser representadas en una red, donde los vértices simbolizan los genes y las aristas dirigidas las interacciones. Además de la representación estática de la red, podemos asociar a cada gen un nivel de expresión o cantidad de proteína sintetizada, lo cual nos permite una interpretación dinámica de estos sistemas. Se ha propuesto modelar estos sistemas usando diversos formalismos, en este trabajo usamos un sistema dinámico discreto de mapeos acoplados afines a pedazos, que considera el tiempo discreto y los valores que toman las variables continuos. Usando este formalismo proponemos un modelo para la red que regula la formación de flagelos en E. coli K-12 MG1655, y ajustamos los parámetros del modelo usando un algoritmo genético aplicado a los datos experimentales de crecimiento y actividad del promotor para cada factor de transcripción en esta red. Los resultados muestran que el modelo de mapeos acoplados, con los parámetros obtenidos, reproduce satisfactoriamente la dinámica real de regulación del desarrollo de flagelos en E. Coli.

16.22. FEMT, an open source library for solving large systems of equations in parallel (CI,

José Miguel Vargas Félix, miguelvargas@cimat.mx (Centro de Investigación en Matemáticas A. C. (CIMAT))
Coautor: Salvador Botello Rionda

FEMT is an open source muli-platform library and tools (Windows, Linux and Mac OS) for solving large sparse systems of equations in parallel. This software is specialy set to solve systems of equations resulting from finite element, finite volume and finite differences discretizations. The library, was developed in standard C++ using templates extensively. It includes several routines for solving sparse systems of equations, like conjugate gradient, biconjugate gradient, Cholesky and LU factorizations, these were implemented with OpenMP support. Also, the library includes an implementation of the Schur substructuring method, it was implemented with MPI to run in clusters of computers. A set of tools are included for using the FEMT library without pain. Learning how to use a library could take a lot of time, also not all users feel confortable programming in C++. With this in mind we developed several programs for accessing the library solvers through named

pipes. From the user point of view, a named pipe is just a file where you write the system of equations using standard file functions, another file (named pipe) is used to read the result. See the tutorial below for an example. This makes possible to use the FEMT library from any programming languaje (as long it has support for accessing files), like C/C++, Fortran, Python, C#, Java, etc. In this work we will describe the solvers included in the library, there are three kind of solvers: direct, iterative and domain decomposition. Direct and iterative solvers are designed to run in parallel in multi-core computers using OpenMP. The domain decomposition solver has been designed to run in clusters of computers using a combination of MPI (Message Passing Interface) and OpenMP. We will show some numerical results of finite element modelation of solid deformation and heat difussion, with systems of equations that have from a few million, to more than one hundred million degrees of freedom. http://www.cimat.mx/ miguelvargas/FEMT.

16.23. Método de Elementos Finitos para resolver la Ecuación de Poisson en Unidades de Procesamiento Gráficas (RI, 2Lie)

Marcela Morales Quispe, marcelamq@cimat.mx (Centro de Investigación en Matemáticas, (CIMAT) Departamento de Ciencias de la Computación)

En los últimos años, el surgimiento de la computación de propósito general en las Unidades de Procesamiento Gráficas (GPUs) ha provocado el interés en la transferencia de una amplia gama de algoritmos numéricos a este tipo de procesadores de alto rendimiento. Las GPUs cuentan con el respaldo de equipos energizados por el mercado de los video juegos, está creciendo en popularidad debido a su considerable éxito, y está impulsada por un movimiento preocupados por el alto rendimiento en las arquitecturas de sistemas heterogéneos, donde son coprocesadores utilizados para acelerar cálculos numéricamente intensivos. Recientemente, las GPUs han tenido un éxito importante en aplicaciones de modelación numérica. Por el beneficio que las GPUs aportan se presenta su aplicación a cálculos sobre mallas no estructuradas como las en Método de Elemento Finito (FEM), ya que la operación principal (producto matriz-vector) considerado es altamente paralelizable por que esta operación se realiza por cada elemento de nuestro dominio esto implica que se pueden abordar mallas no estructuradas muy grandes en las que se consideran hasta millones de elementos. Se considera la ecuación de calor (ecuación de Poisson) en 3D con elementos tipo tetraedro y un punto de integración para encontrar la distribución de la temperatura en los nodos de la discretización de nuestro dominio. La metodología a seguir consiste en realizar el cálculo de las matrices de rigidez elementales y el vector de fuerzas asociado también elemental, a éstos aplicarles las condiciones de contorno (condiciones tipo Dirichlet y Neumann); éstas operaciones se realizan en el CPU, seguidamente se resuelve el sistema de ecuaciones lineales mediante el método de Gradiente Conjugado en el GPU considerando que el sistema de ecuaciones por resolver no es en sí un sistema de ecuaciones ya que no se cuenta con la matriz de rigidez ensamblada, ni con el vector de fuerzas ensamblado; es decir no se tiene de forma explícita un sistema de ecuaciones, razón por lo cual nuestro gradiente conjugado considera las características del sistema de ecuaciones para encontrar la temperatura en los nodos como si se tuviese el sistema de ecuaciones ensamblado. En este trabajo se harán comparaciones con los tiempo de ejecución de esta metodología y con una adicional que toma en cuenta el cómputo paralelo en CPU, a saber: OpenMP.

16.24. Solución de ecuaciones diferenciales sin malla (RI, 2Lic)

Cristóbal Enrique García Reyes, cegarcia@cimat.mx (Centro de Investigación en Matemáticas AC (CIMAT) Departamento Ciencias de la Computación)

El método 'Smoothed Particles Hydrodynamics(SPH)' soluciona una ecuación diferencial transitoria, donde la solución de ecuaciones diferenciales parciales (EDP) de orden mayor a 1 se puede descomponer en sus correspondientes ecuaciones diferenciales ordinarias(EDO)[1] haciendo un computo mucho más rápido, ya que no se deben solucionar sistemas de ecuaciones como en otros métodos como Elemento Finito. Se abordará el problema de transferencia de calor en un objeto sólido separando la forma clásica de la EDP de segundo orden en sus dos correspondientes EDO de primer orden para un problema de 2 dimensiones, siendo este método fácilmente trasladado a 1 o 3 dimensiones de manera casi inmediata. Además se muestra que este método presenta deficiencias en las fronteras y se tratará de dar una corrección a este problema, usando diferentes acercamientos tales como series de Taylor[2] y partículas fantasma. Otro beneficio del método es que todas las partículas, en las que es discretizado el dominio del problema, se pueden computar de manera independiente obteniendo una gran velocidad de solución usando una implementación con multiprocesadores(OpenMP) o con tarjetas gráficas(GPU's). Este trabajo muestra una pequeña introducción al método 'Smoothed Particles Hydrodynamics', se muestran algunos resultados obtenidos para la solución de la ecuación de calor con diferentes acercamientos para tratar de dar solución a los problemas de ajustes en la frontera. Además de se hará un comparativo en las implementaciones en serial y en paralelo. Referencias: [1] J.H. Jeong, M.S. Jhon, J.S. Halow, J. van Osdol, Smoothed Particle Hydrodynamics: Applications to Heat Conduction, Computer Physics Communications 153(2003) 71-84. [2] J.K. Chen, J.E. Beraun, T.C. Carney, A Corrective Smoothed Particle Method for Boundary Value Problems in Heat Conduction, Int. J. Numer. Meth. Engng. 46, 231-252(1999).

16.25. Implementación en paralelo del método de Montecarlo para la simulación computacional de fluidos a nivel atómico (RT, Pos)

Guillermo Amaro Rico, amaro@cimat.mx (Centro de Investigación en Matemáticas (CIMAT))

En la simulación computacional de fluidos a nivel atómico, el Método de Montecarlo se utiliza para generar muestras del espacio fase, compatibles con las condiciones de frontera. Los sistemas estudiados comprenden desde cientos de miles a millones de partículas.

La información que genera una corrida de MC es la posición de cada partícula del sistema en cada instante de tiempo. Empleando las técnicas tradicionales de la mecánica estadística podemos pasar de esta información microscópica a la obtención de magnitudes macroscópicas que nos permitan conectar con el experimento.

Para realizar el muestreo es necesario calcular la energía potencial del sistema en cada instante. Para este cálculo es indispensable estimar las distancias entre todos los pares de partículas siendo ésta la parte que más poder de cómputo y tiempo consume.

En este trabajo se plantea un sistema de vecindario regido por un radio de corte utilizando el potencial de Lennard-Jones. Para determinar las vecindades de influencia de cada una de las partículas se utiliza un modelo de particionamiento estructural del dominio. Las vecindades de cada una de las partículas se calcula de forma independiente, analizando en cada caso solo las particiones adyacentes a la partición que pertenece cada partícula, en contra parte con los métodos tradicionales donde es necesario analizar todos los pares de partículas.

El proceso de construcción de las vecindades y el muestreo del espacio de fase se realiza utilizando, OpenMP y CUDA, en una estación de trabajo con 24 núcleos y 4 GPU, esto nos permite obtener un mejor rendimiento y una disminución considerable en los tiempos de ejecución, en comparación con los programas secuenciales tradicionales.

16.26. Modelación y simulación numérica de la intención de voto (RI, 2Lic)

Gerardo Mario Ortigoza Capetillo, gerardo_ortigoza@yahoo.com (Facultad de Ingeniería Universidad Veracruzana campus Veracruz)

En esta charla se presenta un modelo biológico de propagacion de enfermedades para modelar y simular la intención de voto. Se define un autómata celular mediante reglas simples. Se consideran 3 partidos rojo, azul y amarillo. Los votantes se clasifican en indecisos, voto blando, voto normal y voto duro. Con datos historiales del IFE se estiman tasas de crecimiento y se definen las condiciones iniciales; se consideran simulaciones a 90 días, se muestran resultados de la simulación y diferentes escenarios.

16.27. Conceptos matemáticos detras de algoritmos robustos (CI, 1Lic)

Arturo Hernández Aguirre, artha@cimat.mx (Centro de Investigación en Matemáticas (CIMAT) Area de Computación) El gradiente es un concepto ulilizado por infinidad de algorítmos de optimización. ¿Qué otros conceptos podriamos utilizar para construir nuevos algoritmos? En esta charla se mostrarán algunos ejemplos de estas ideas, aplicaciones y resultados.

16.28. La importancia de las matemáticas en la biología computacional (CPI, 1Lic)

Mauricio Carrillo Tripp, trippm@langebio.cinvestav.mx (Laboratorio Nacional de Genómica para la Biodiversidad (Langebio) - Cinvestav Sede Irapuato)

Estamos viviendo el inicio de una nueva era en el campo de la Biología, lo que ahora ya podemos definir claramente como Biología Computacional. El desarrollo de esta área naciente se debe en gran medida a los avances tecnológicos dentro del cómputo de alto rendimiento y a la unión estrecha de la Biología convencional con otras ramas del conocimiento como la Física y las Matemáticas. Actualmente, el campo de la Biología Computacional cubre un espectro muy amplio de escalas biológicas temporales y espaciales; desde la bioquímica cuántica y los modelos moleculares que representan reacciones y el comportamiento termodinámico y estructural de biomoléculas, hasta la biología de sistemas que trata de representar redes metabólicas complejas y organismos enteros de forma holística, pasando por la bioinformática, la cual intenta identificar patrones y señales presentes en el código genético. En esta plática se presentará un panorama general de las herramientas matemáticas y análisis numérico utilizadas en la actualidad en la Biología Computacional.

Índice de expositores

\mathbf{A}	\mathbf{L}
– – Alcántara López Fernando Javier	López Sánchez Alicia Yesenia
16.177	16.3
Almanza Ruiz Sergio Humberto	
16.187	7 . / I
Álvarez Noguera Luis Javier	\mathbf{M}
16.43	Martínez Ortiz Juan
Amaro Rico Guillermo	$16.2 \dots 3$
16.2510	16.136
Ángel Ángel José de Jesús	Morales Quispe Marcela
16.115	16.239
	Móreles Vázquez Miguel Ángel
В	16.208
Botello Rionda Salvador	
16.105	U
	Ortigoza Capetillo Gerardo Mario
\mathbf{C}	16.2610
\mathbf{C}	
Campos López Delia Jeanette	D
16.12	
Carrillo Tripp Mauricio	Pérez Wilson Carlos Eduardo
16.28	16.1
D	D
D	\mathbf{R}
De Santiago Pérez J. Jesús	Ramírez Manzanares Alonso
16.156	16.19
	Ramos Abundio María Victoria
F	16.5
Flores Rivera Ciro Filemón	Rosales García J. Juan 16.85
16.95	10.8
Fuentes-Ruiz Carlos	
16.6	\mathbf{V}
	Valdez Peña Sergio Iván
	16.218
G	Vargas Félix José Miguel
García Reyes Cristóbal Enrique	16.22
16.249	
González Sosa Enrique	T 7
16.74	Y
	Young Darwin
${f H}$	16.146
	
Hernández Aguirre Arturo 16.2710	
10.2410	
K	
IX Khmelnytskaya Kira	
16.16	
10.10	

Índice de expositores