ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA DE TRANSPORTES PTR 5744 - PESQUISA OPERACIONAL APLICADA AO PLANEJAMENTO DE TRANSPORTES

2ª SÉRIE DE PROBLEMAS - 1º Período de 2018

Problema 1

Uma empresa do setor de autopeças produz quatro tipos diferentes de módulos eletrônicos utilizados na fabricação de veículos e caminhões novos. A mesma recebeu uma encomenda de uma montadora para o fornecimento quinzenal das quantidades de módulos como mostrado na tabela abaixo. Entretanto, sua capacidade de produção não é suficiente para atender toda a demanda quinzenal, o que obrigaria a empresa a adquirir de terceiros parte da produção. Cada um dos módulos necessita de certo número de horas nos setores de montagem e de calibração e ajustes eletrônicos, como mostrado na tabela abaixo. O número total de horas quinzenais disponíveis para montagem é de 5000h e de 9000 horas por quinzena para calibração e ajustes.

	Modelo 1	Modelo 2	Modelo 3	Modelo 4
Demanda	2500	2000	1000	500
Custo Unitário Produção (\$/unid)	100	180	200	300
Custo Unitário Terceirizado (\$/unid)	130	192	230	350
Horas Montagem (h/unid)	1	2	4	1
Horas Calibração e ajustes (h/unid)	2	1	2	4

Pede-se:

- a) Determinar a solução ótima do problema em termos quantos módulos devem ser produzidos quinzenalmente e quantos devem ser terceirizados de forma a atender à demanda total de cada um dos quatro tipos com o mínimo custo.
- b) Proceder à análise de sensibilidade, identificando quais os preços sombra das duas restrições de recursos, interpretando o que significam e justificando o valor.
- c) Para o(s) modelo(s) que é(são) exclusivamente terceirizado(s), identificar, com base no relatório de análise de sensibilidade, para quanto deveria ser aumentado/diminuído o custo unitário de produção de forma a viabilizar a sua produção no lugar da terceirização.
- d) Idem em relação aos modelos que são produzidos e não terceirizados, identificar, com base no relatório de análise de sensibilidade, para quanto deveria ser aumentado/diminuído o custo da terceirização de forma a viabilizar a sua terceirização ao invés de produção.

Problema 2

Uma empresa produz quatro tipos de bloco de concreto. Cada bloco passa por quatro processos: mistura, vibração, inspeção e secagem. O quadro abaixo indica o número de horas necessárias por lote de 1000 blocos, conjuntamente com o número total de horas disponíveis por processo e lucro unitário por produto. Assume-se que o processo de secagem não tem restrição de tempo.

Processo	Bloco 1	Bloco 2	Bloco 3	Bloco 4	Total Horas
Mistura	1	2	10	16	800
Vibração	1,5	2	4	5	1000
Inspeção	0,5	0,6	1	2	340
Lucro (\$/unid)	8	14	30	5	

Sabendo-se que o tableau correspondente à solução ótima é formado pelas variáveis básicas x_2 , x_1 e x_7 , nessa ordem, determinar o tableau final (não é para resolver o simplex e sim utilizar os conceitos apresentados na aula de 6/3), e mostrar como são calculados/determinados, com base nesse tableau, os custos reduzidos, os preços sombra e suas respectivas faixas de variação. Demonstrar que essa é a solução ótima.

Como ficaria a formulação matemática caso fosse possível produzir um novo tipo de bloco, com lucro unitário de \$20 e que consome 0,8h de mistura, 1h de vibração e 0,5h de inspeção por lote de mil unidades. A partir desse tableau gerado acima, fazer as iterações do Simplex e determinar a nova solução ótima.

Problema 3

Determinar os duais associados aos seguintes problemas:

a)

Maximize
$$Z = 2x_1 + 7x_2 + 4x_3$$
,

subject to

$$\begin{array}{l} x_1 + 2x_2 + x_3 \le 10 \\ 3x_1 + 3x_2 + 2x_3 \le 10 \end{array}$$

b)

Maximize
$$-4x_2 + 3x_3 + 2x_4 - 8x_5$$
,

subject to:

$$3x_1 + x_2 + 2x_3 + x_4 = 3,$$

 $x_1 - x_2 + x_4 - x_5 \ge 2,$