BERT 和 LSTM-CRF 在不同数据集上的对比研究

许书闻

2025年7月20日

摘要

本报告介绍了基于 BERT 和 LSTM-CRF 模型的中英双语命名实体识别(NER)实验。实验在三个主流数据集(CoNLL-2003、WikiAnn、CoNLL-2012 OntoNotes v5)上进行了全面的性能评估,支持中文和英文。实验结果表明,BERT 模型在英文数据集上表现优异,F1 分数达到 86.01%,但在中文数据集上表现相对较差,F1 分数仅为 52.24%。LSTM-CRF 模型在中文 WikiAnn 数据集上取得了 68.66% 的 F1 分数,显示出在特定语言任务上的优势。

目录

T	引言		3
2	相关	工作	3
	2.1	传统方法	3
	2.2	深度学习方法	3
	2.3	多语言 NER	3
3	实验	2设置	3
	3.1	数据集	3
	3.2	模型架构	4
		3.2.1 LSTM-CRF 模型	4
		3.2.2 BERT 模型	4
	3.3	训练参数	4
	3.4	评估指标	5
4	实验	结果	5
	4.1	整体性能对比	5
	4.2	训练过程分析	6
		4.2.1 损失函数收敛	6
		4.2.2 训练损失曲线	7
	4.3	中英文数据集分析	8
		4.3.1 英文数据集	8
		4.3.2 中文数据集	8

5	总结			8
	5.1	BERT	模型特点	8
	5.2	LSTM	-CRF 模型特点	ç
	5.3	性能差	异原因	Ĉ
		5.3.1	模型容量	Ĉ
		5.3.2	预训练策略	ç
		5.3.3	语言特定因素	S

1 引言

命名实体识别(Named Entity Recognition, NER)是自然语言处理中的一项基础任务,旨在从文本中识别和分类命名实体,如人名、地名、组织名等。随着深度学习技术的发展,基于神经网络的 NER 模型取得了显著进展。本实验旨在比较两种主流的 NER 模型架构:基于 Transformer 的 BERT 模型和基于循环神经网络的 LSTM-CRF 模型,并在多语言环境下评估其性能。

2 相关工作

2.1 传统方法

传统的 NER 方法主要基于规则和统计机器学习,如隐马尔可夫模型 (HMM) 和条件随机场 (CRF)。 这些方法依赖于手工特征工程,性能有限且更耗费人工。

2.2 深度学习方法

近年来,深度学习方法在 NER 任务上取得了突破性进展:

- LSTM-CRF: 结合双向 LSTM 和 CRF 层,能够捕获序列依赖关系和标签转移约束
- BERT: 基于 Transformer 架构的预训练语言模型,通过大规模语料预训练获得丰富的语义表示

2.3 多语言 NER

多语言 NER 面临的主要挑战包括:

- 不同语言的分词策略差异(如中文需要特殊的 tokenizer)
- 语言特定的实体类型和标注规范
- 跨语言的知识迁移

3 实验设置

3.1 数据集

本实验使用了三个主流的 NER 数据集:

耒	1:	数据集比较
1	т.	XX 1/11/7/2 1/1/1/2

数据集	语言	训练样本	验证样本	实体类别	数据来源
CoNLL-2003	英文	14,987 旬	3,466 旬	4	路透社新闻
WikiAnn	英文	20,000 旬	10,000 旬	3	维基百科
WikiAnn	中文	20,000 旬	10,000 旬	3	维基百科
CoNLL-2012 OntoNotes v5	英文	59,924 句	8,528 旬	18	多领域 (新闻、对话、网络等)
CoNLL-2012 OntoNotes v5	中文	59,924 句	8,528 旬	18	多领域(新闻、对话、网络等)

3.2 模型架构

3.2.1 LSTM-CRF 模型

- 嵌入层: 100 维词嵌入, 支持预训练词向量
- LSTM 层: 双向 LSTM, 隐层维度 256
- **CRF 层**:条件随机场,描述标签序列之间的约束关系,排除了一些不可能发生的情况,从而提高了分类精度
- 优化器: Adam, 学习率设置为 0.001

3.2.2 BERT 模型

- 预训练模型: bert-base-cased (英文)、bert-base-chinese (中文)
- 分类头: 线性层,输出维度为标签数量
- 优化器: AdamW, 学习率 4e-5 (英文)、1e-4 (中文)
- 权重衰减: 0.01

3.3 训练参数

表 2: 训练超参数设置

参数	LSTM-CRF	BERT 英文	BERT 中文
批次大小	256	128	128
最大序列长度	128	128	128
训练轮数	30	10	10
学习率	0.001	4e-5	4e-5
嵌入维度	100	-	-
隐藏维度	256	-	-

参数解读:

• batch_size: GPU 显存充足,选择了较大的 256 和 128,且保证训练稳定性

• max_len: 选择 128 对于英文和中文句子都足够

• num_epochs: LSTM 从头训练, 所以训练 30 轮; BERT 加载预训练权重, 只在目标数据集上微调, 所以只训练 10 轮即收敛

• learning_rate: 采用线性放缩规则, batch_size 较大时取的 learning_rate 近似线性增大。

3.4 评估指标

采用标准的 NER 评估指标:

• 精确率 (Precision):正确识别的实体占预测实体的比例

• 召回率 (Recall):正确识别的实体占真实实体的比例

• F1 分数: 精确率和召回率的调和平均

• 准确率 (Accuracy): 正确预测的 token 比例

4 实验结果

4.1 整体性能对比

表 3: 不同模型在 CoNLL-2003 数据集上的性能对比

模型	精确率	召回率	F1 分数	准确率
BERT	0.8645	0.8558	0.8601	0.9698
LSTM-CRF	0.7456	0.7151	0.7300	0.9446

表 4: 不同模型在 WikiAnn 英文数据集上的性能对比

模型	精确率	召回率	F1 分数	准确率
BERT	0.7529	0.7801	0.7663	0.9057
LSTM-CRF	0.6037	0.6212	0.6123	0.8289

表 5: 不同模型在 WikiAnn 中文数据集上的性能对比

模型	精确率	召回率	F1 分数	准确率
BERT	0.7816	0.8291	0.8047	0.9395
LSTM-CRF	0.7013	0.6726	0.6866	0.9058

表 6: 不同模型在 CoNLL-2012 OntoNotes v5 英文数据集上的性能对比

模型	精确率	召回率	F1 分数	准确率
BERT	0.8109	0.8331	0.8218	0.9737
LSTM-CRF	0.7529	0.7264	0.7394	0.9598

表 7: 不同模型在 CoNLL-2012 OntoNotes v5 中文数据集上的性能对比

模型	精确率	召回率	F1 分数	准确率
BERT	0.5329	0.5123	0.5224	0.9199
LSTM-CRF	0.6450	0.5676	0.6038	0.9385

4.2 训练过程分析

4.2.1 损失函数收敛

- **BERT 模型**: 损失函数快速收敛,在 10 个 epoch 内达到稳定状态,训练损失从 0.0210 快速下降 到 0.0014
- **LSTM-CRF 模型**: 需要更多训练轮数(30 个 epoch)才能达到最佳性能,训练损失从 0.9014 逐 渐下降到 0.0263
- 过拟合现象: LSTM-CRF 在后期出现轻微过拟合,验证损失略有上升,但 F1 分数保持稳定

4.2.2 训练损失曲线

图 1: BERT 英文模型训练损失曲线

图 2: BERT 中文模型训练损失曲线

图 3: LSTM-CRF 英文模型训练损失曲线

(a) LSTM 中文 WikiAnn 训练曲线

(b) LSTM 中文 CoNLL-2012 训练曲线

图 4: LSTM-CRF 中文模型训练损失曲线

4.3 中英文数据集分析

4.3.1 英文数据集

- CoNLL-2003: BERT 模型表现最佳, F1 分数达到 86.01%, 相比 LSTM-CRF 提升了 13.01 个百分点
- WikiAnn 英文: BERT 模型同样优于 LSTM-CRF, F1 分数为 76.63%, 提升了 15.4 个百分点
- CoNLL-2012 英文: BERT 模型 F1 分数为 82.18%, 相比 LSTM-CRF 提升了 8.24 个百分点
- **原因分析**: BERT 的预训练知识在英文任务上发挥重要作用,特别是在标准化的新闻文本上

4.3.2 中文数据集

- WikiAnn 中文: BERT 模型 F1 分数为 80.47%, LSTM-CRF 为 68.66%, BERT 表现更好
- CoNLL-2012 中文: 令人意外的是, LSTM-CRF 模型 F1 分数为 60.38%, 反而优于 BERT 的 52.24%
- 挑战: 中文分词和实体边界的复杂性, 以及中文预训练模型的质量问题
- 改进空间: 需要更好的中文预训练模型和分词策略

5 总结

5.1 BERT 模型特点

- 1. 预训练知识: BERT 在大规模语料上预训练,获得了丰富的语义表示
- 2. 上下文理解: Transformer 架构能够捕获长距离依赖关系
- 3. 迁移学习: 预训练模型能够快速适应下游任务
- 4. 英文表现优异: 在英文数据集上表现显著优于 LSTM-CRF

5.2 LSTM-CRF 模型特点

1. 序列建模: 双向 LSTM 能够捕获序列的上下文信息

2. 标签约束: CRF 层学习标签转移概率,提高预测一致性

3. **计算效率**: 相比 BERT, 训练和推理速度更快

4. 可解释性: 模型结构相对简单, 便于理解和调试

5.3 性能差异原因

5.3.1 模型容量

- BERT 模型参数量大 (110M), 表达能力更强
- LSTM-CRF 参数量相对较小,在复杂任务上可能欠拟合

5.3.2 预训练策略

- BERT 通过掩码语言模型和下一句预测任务预训练
- LSTM-CRF 需要从头训练, 缺乏先验知识

5.3.3 语言特定因素

- 英文 BERT 预训练模型质量较高, 在英文任务上表现优异
- 中文 BERT 模型可能存在预训练质量问题,导致在复杂中文数据集上表现不佳
- 中文分词和实体边界的复杂性对模型性能影响较大