Домашнее задание № 1

Раффаэле Делла Пиетра, 675

Задание 1

Порождают ли циклы длины 12 группу перестановок на 12 элементах?

Используя композиции циклов длиной 12 можно получить любую транспозицию транспозицию:

$$(i_1, i_2, i_3, i_4, i_5, a, b, i_6, i_7, i_8, i_9, i_{10})^2 \implies \{i_1, i_2, i_3, i_4, i_5, a, b, i_6, i_7, i_8, i_9, i_{10}\} \rightarrow \{i_3, i_4, i_5, a, b, i_6, i_7, i_8, i_9, i_{10}, i_1, i_2\}$$

$$(i_1, i_9, i_7, a, i_4, i_2, i_{10}, i_8, i_6, b, i_5, i_3) \implies \{i_3, i_4, i_5, a, b, i_6, i_7, i_8, i_9, i_{10}, i_1, i_2\} \rightarrow \{i_1, i_2, i_3, i_4, i_5, b, a, i_6, i_7, i_8, i_9, i_{10}\}$$

$$(i_1, i_9, i_7, a, i_4, i_2, i_{10}, i_8, i_6, b, i_5, i_3) \circ (i_1, i_2, i_3, i_4, i_5, a, b, i_6, i_7, i_8, i_9, i_{10})^2 = (a, b)$$

Любой цикл можно разложить на транспозиции: $(i_1,\ldots,i_k)=(i_1,i_k)\circ(i_1,i_{k-1})\circ\ldots\circ(i_1,i_3)\circ(i_1,i_2)$. Это действительно так, потому что сначала i_2 становится на место i_1 , далее i_3 становится на место бывшего $i_2,\,i_4\to i_3,\ldots,i_k\to i_{k-1},i_1$ остаётся на месте i_k . Цикл делает то же самое, поэтому равенство выполняется. Таким образом, любой цикл можно разложить на транспозиции, любую транспозицию можно разложить на композицию трёх циклов длиной $12\Longrightarrow$ циклы длины 12 порождают S_{12} .

Задание 2

Пусть G — группа вращений куба, H_{ν} — её подгруппа, состоящая из элементов, оставляющих вершину ν на месте.

- **a)** Каков индекс подгруппы H_{ν} ?
- **b)** Найдите два поворота (на 90^o и на 180^o), которые являются элементами одного левого смежного класса по подгруппе H_{ν} .
- с) Подгруппа, левые и правые смежные классы по которой совпадают, называется нормальной (страница
- 40 книги Вялого). Является ли H_{ν} нормальной подгруппой G?
- **d**) Являются ли полученные в пункте (б) повороты сопряжёнными элементами G? Подсказка: $G < S_8$.
- а) |G|=24, всего вершин $8 \implies$ по теореме Лагранжа $(G:H_{\nu})=3$.
- b) Куб $A_1B_1C_1D_1A_2B_2C_2D_2$, рассматриваем подгруппу H_{A_1} и циклы вершин, порождённые этой подгруппой: $(A_2B_1D_1)$ и $(B_2C_1D_2)$, назовём этот поворот p. Возьмём левый смежный класс по подгруппе H_{A_1} , порождённый поворотом вокруг оси, перпендиклярной начальному положению плоскости $A_1B_1C_1D_1$ от A_1 к B_1 , назовём этот поворот t_{90} .

Тогда элемент $(t_{90} \circ p)$ будет поворотом на 180^o относительно оси,

проходящей через середины A_1B_1 и C_2D_2 . Сам t_{90} будет элемент этого же левого смежного класса, т. к. H_{A_1} содержит тождественный поворот.

c) Не является. Рассмотрим левый и правый смежные классы по подгруппе H_{A_1} , порождённые поворотом на 180^o как в прошлом пункте, назовём этот поворот t_{180} .

Тогда $t_{180} \circ p$ будет переводить вершину A_1 в B_1 , а $p \circ t_{180}$ — в D_1 .

d) Рассмотрим спектры этих поворотов в $S_8: t_{90} \to (4,4), t_{90} \circ p \to (2,2,2,2) \implies$ не сопряжённые.

Задание 3

При каком условии на m и n $C_m \times C_n$ является циклической группой? Найти максимальный порядок элемента в этой группе при любых m и n.

m и n должны быть взаимно простыми. C_m и C_n — циклические группы \Longrightarrow в C_m есть образующий элемент a, в C_n есть образующий элемент b. $C_m \times C_n$ — тоже циклическая \Longrightarrow в ней есть образующий элемент (a^k, b^l) . Допустим, $\mathrm{HOK}(m,n) \neq mn \implies \exists \ T = \mathrm{HOK}(m,n) < mn: \ m,n \mid T$

 $(a^k, b^l)^T = (a^{kT}, b^{lT}) = (e, e) \implies |C_m \times C_n| < mn \implies$ это не циклическая группа, т. к не существует элемента, степени которого порождают все элементы группы (всего различных степеней меньше количества элементов в группе).

Максимальный порядок элемента тоже будет равен T, потому что равенство $(a^k, b^l)^T = (e, e)$ не зависит от того, какие k и l выбрать, то есть верно для всех элементов $C_m \times C_n$.

Задание 4

При каком a отображение $\sigma(m)=a^m \bmod 17$ является перестановкой на 16 элементах? Достаточно предъявить одно такое a. Найти спектр этой перестановки.

Для
$$a=5$$
:

Циклы: $(1\ 7\ 12\ 13\ 6\ 9\ 10\ 2\ 15\ 5\ 11\ 14\ 8\ 16)(3)(4)$, спектр (14,1,1).