

UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO ESTRUTURA DE DADOS II (DEINO083) 2022.2

Professor(a): João Dallyson Sousa de Almeida

Data: 21/12/2022

Matrícula: Aluno:

3º Avaliação (100%)

1) (2pt) Protocolos de roteamento de estado de enlace utilizam difusão para propagar informações de estado de enlace que são usadas para calcular rotas individuais. Entretanto, algumas técnicas provocam a transmissão de pacotes redundantes na rede. Idealmente, cada nó deveria receber apenas uma cópia do pacote de difusão. Uma técnica utilizada para resolver o problema da redundância de pacotes, é a por *spanning* tree (árvore difusão geradora). Se cada enlace tiver um custo associado e o custo de uma árvore for a soma dos custos dos enlaces, então uma árvore cujo custo seja o mínimo entre todas as árvores geradoras do grafo é geradora árvore denominada uma mínima.

Considere uma rede composta por 6 roteadores, designados pelas letras A, B, C, D, E e F, conectados conforme a seguinte tabela de custos de seus

enlaces:

Conexão	Enlace
A-B	5
A-G	2
A-F	5
B-C	6
8-D	4_
·C-D	
C-E	8
C-F	5
D.F	3

Neste cenário, apresente o custo da árvore geradora mínima correspondente. Descreva a sua solução.

- item(2.0pt) Marque V para verdadeiro e F para falso para as afirmativas abaixo sobre Grafos.
 - a) (V) Um grafo G(V,E) é Hamiltoniano se existe um ciclo em G que passa por todos as vértices.
 - b) (√) O algoritmo de Busca em Largura é implementado com o auxílio de uma pilha.
 - c) (V) O grau de um vértice é o número de arestas incidentes neste vértice.
 - d) (√) Uma árvore de espalhamento de um grafo ponderado conectado é mínima se a soma dos pesos de todas as arestas for mínima.
 - e) (√) O algoritmo de Dijkstra utiliza a técnica de relaxamento e produz, ao final de sua execução, uma árvore de caminhos mais curtos entre um vértice origem s para todos os vértices que são alcançáveis a partir de s.

f) (V) O algoritmo de Bellman-Ford pode ser usado para detectar no grafo a existência de ciclos com pesos negativos.

g) (F) Um componente fortemente conectado de G = (V, E) é um conjunto máximo de vértices C ⊆V tal que para todo par de vértices u e v em C, u e v são mutuamente alcançáveis.

h) (v) O algoritmo de Busca em Profundidade ordenar para utilizado pode ser topologicamente um grafo acíclico.

i) (F) Um grafo é fortemente conexo se possuir

apenas um componente conectado.

i) (V) A quantidade de memória requerida para representar grafos em matriz de adjacências depende da quantidade de arestas.

DEPARTAMENTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO ESTRUTURA DE DADOS II (DEINO083) 2022.2

 (2pt) Mostre a ordenação dos vértices produzidas pela Ordenação Topológica no grafo abaixo. Descreva sua solução e assuma que cada lista de adjacências está ordenada alfabeticamente.

5) (2pt) Execute a busca em largura no grafo abaixo partindo do vértice B. Em seguida apresente responda as questões a seguir. (a) Mostre a árvore de busca em largura (b) Apresente o vértice mais distante de B (quantidade de arestas). (c) Qual o vértice a ser alcançado com maior custo e com menor custo (considerando o peso da aresta)?

4) (2pt) Execute o algoritmo de Dijkstra no gráfico ponderado abaixo, usando o vértice "d" como origem. Apresente o estado da fila de prioridade após a cada iteração e a árvore de caminho mais curto final.

