國立雲林科技大學 電子工程所

National Yunlin University of Science and Technology

Graduate School of Electronic Engineering

報告題目:汽車駕駛者監控系統設計與實現

報告日期(Date): 2022/12/23

姓名(Name): 謝昕樺(碩一生)

指導教授(Professor): 蘇慶龍副教授

E-mail: M11113020 yuntech.edu.tw

學號 (Student ID): M11113020

本週進度(Progress of this week)

● 準備 Paper 報告

12/10	Sat	14:00~20:00	(6.0	個小時)
12/11	Sun	14:00~19:00	(5.0	個小時)
12/11	Sun	21:00~02:00	(4.0	個小時)
12/12	Mon	13:00~15:00	(2.0	個小時)
12/12	Mon	17:00~20:00	(3.0	個小時)
12/12	Mon	23:00~02:00	(3.0	個小時)
12/13	Tue	16:30~23:00	(6.5	個小時)
12/14	Wed	13:00~21:00	(8.0	個小時)
12/15	Thu	12:30~14:00	(2.5	個小時)
12/15	Thu	16:30~18:30	(2.0	個小時)
12/16	Fri	16:30~22:00	(5.5	個小時)
12/17	Sat	14:00~16:30	(1.5	個小時)
12/17	Sat	19:00~21:00	(2.0	個小時)
12/17	Sat	00:00~04:30	(4.0	個小時)
12/18	Sun	18:00~20:00	(2.0	個小時)
12/18	Sun	22:00~02:30	(4.5	個小時)
12/19	Mon	14:00~02:00	(12.0	0 個小時)
12/20	Tue	14:00~15:00	(1.0	個小時)
12/20	Tue	16:00~17:30	(1.5	個小時)
12/20	Tue	23:00~01:30	(2.5	個小時)

12/9 進度	12/21 進度
1. 看學長 code 架構 2. Yolov5/Yolov7 架構	1. 準備 Paper 報告 2. 查看車道線論文
待辦事項	

閱讀文獻

Towards End-to-End Lane Detection: an Instance Segmentation Approach

摘要

論文作者提出一種多分支網路架構,將車道線以實例分割, 讓每條車道線都有自己的實例去進行端到端訓練,接著在運用 H-Net 網路中的 H 矩陣對屬於同一點車道線的像素做回歸

重點整理:

本論文使用了兩種網路架構 分別為 LaneNet 和 H-Net, LaneNet 是輸入用 Encoder 的 方式,輸出 Decoder 分為兩個 分支,分別為語義分割和實例 分割,最後將兩張圖合併,而 H-NET 是利用 Conv 和全連 接層計算 H 矩陣內 6 個參數

LaneNet

LaneNet 是利用 Encoder 和 Decoder 的方式,其中 Encoder 共用, Decoder 分成了兩個分支,分別為語義分割(semantic segmentation)和 實例分割(instance segmentation)

● 語義分割(semantic segmentation)

將相同類別的像素運用相同顏色做分類,而這篇論文是將每個像素點 給一個 Label 去判定是車道線還是背影,目的是將車道線和背景做分 割

本篇論文是參考 E-Net 論文中使用的 VGG16 架構, 並將 VGG16 架構中 Fully Connect 改成 Fully Convolution, Stage 1~3 為 Encoder, 其中 Stage 1和 Stage 2都使用下採樣, Stage 3沒有下採樣, Satge 4~5為 Decoder,將照片還原為原本大小並對其像素分類

Name	Type	Output size
initial		$16 \times 256 \times 256$
bottleneck1.0 4× bottleneck1.x	downsampling	$64 \times 128 \times 128$ $64 \times 128 \times 128$
bottleneck2.0 bottleneck2.1 bottleneck2.2 bottleneck2.3 bottleneck2.4 bottleneck2.5 bottleneck2.6 bottleneck2.7 bottleneck2.8	dilated 2 asymmetric 5 dilated 4 dilated 8 asymmetric 5 dilated 16	$128 \times 64 \times 64$ $128 \times 64 \times 64$
Repeat section 2,	without bottlened	k2.0
bottleneck4.0 bottleneck4.1 bottleneck4.2	upsampling	$64 \times 128 \times 128$ $64 \times 128 \times 128$ $64 \times 128 \times 128$
bottleneck5.0 bottleneck5.1	upsampling	$16 \times 256 \times 256$ $16 \times 256 \times 256$
fullconv		$C \times 512 \times 512$

首先是 Fully Convolution 部分,傳統 Conv 是將最後一層特徵壓縮至一個 1*1*n 維的 Vector 後進全連接利用 Softmax 進行分類,這樣做會讓 Image 丟失很多空間訊息,沒有辦法利用 Decoder 還原每個像素點的類別,若是將 Fully Connect 改成 Fully Conv 方式輸出到最後可以有 N 維的 Feature Map,這樣就可以對像素進行分類

接下來是 Upsampling 部分,當今天要 Decoder 回原本 Feature Map Size 的時候,是會先去尋找 Encoder 相同層的 Feature Map Size,將 Maxpooling 後的位置記錄下來,將其位置複製給 Decoder 的 Feature Map Size,其餘空洞地方補 0

				DownSamp	ling		UpSampling				
23	56	100	89	Downsamp	ш.ь		орэшпршть	0	0	100	0
84	54	12	45		84	100		84	0	0	0
24	102	160	120		140	160		0	0	160	0
63	140	145	84					0	140	0	0

接下來將 Encoder 經過幾層 Conv , Decoder 就做幾層 Conv , 並且和 Encoder 的 Feature Map 做 Concat

Encoder Decoder

● 實例分割(instance segmentation)

除了分類相同類別的像素外,還要知道有幾組相同類別的像素,每組都以不同顏色做標記,而這篇論文是將標記出來的車道線再進行分組依據 Input 輸入有幾組車道線就分幾組

車道線分組是參考 Deep Watershed Transform for Instance Segmentation 這篇論文,傳統的 Watershed Transform 會因為噪聲太多而產生許多分水嶺,因此利用卷積網路去學習特徵取代傳統梯度值

Watershed Transform 作法會找出局部最小值,將他們分為N類,接下來由這N類向外延伸找尋,以下圖為例目前是分成兩類,將 0 放入Priority Queue 內,此時局部最小值為 1,並搜尋 0 周圍 8 個像素點看有沒有像素點 1,若有與最近的 0 歸為同一類,若像素點 1 是在 2 組 8 個像素點之外,則自己歸類為一類以此類推

2	2	2	3	2
4	0	4	3	4
7	5	7	5	7
7	7	8	9	7
1	7	2	1	3
2	3	0	3	3
4	5	1	7	4
3	3	2	3	3

2B	2B	2B	3B	3B
4B	0 B	4B	3B	4B
7	5B	7	5B	7
7	7	8	9	7
1C	7	2A	1A	3A
2 C	3	0A	3A	3A
4C	5	1A	7A	4A
3C	3	2A	3A	3A

而相同 Label 的 Pixel 應該要更靠近彼此,不同 Label 的需要遠離彼此,因此 Loss 為式 1-1 和式 1-2, Loss Total 為式 1-3

$$L_{var} = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{Nc} \sum_{i=1}^{Nc} \left[\left| |\mu c - X_i| \right| - \delta_V \right]_{+}^{2}$$
 \$\frac{1}{C}\$ 1-1

$$L_{dist} = \frac{1}{C(C-1)} \sum_{CA=1}^{C} \sum_{CB=1}^{C} \sum_{CA\neq CB}^{C} \left[\delta d - ||\mu_{CA} - \mu_{CB}|| \right]_{+}^{2}$$
 \$\frac{1}{2}\$

$$L_{Total} = L_{var} + L_{dist}$$
 $\sharp (1-3)$

參數	作用
С	總共有幾條車道線
NC	每條車道線中實例像素數量
μс	每條車道線實例像素平均
X_i	當前車道線像素
δ_V	自訂義參數,用於調整 μc 和 X_i 距離
δd	自訂義參數,用於調整 μ_{CA} 和 μ_{CB} 距離
L_{var}	同一車道線像素向量 X_i 和車道線像素均值 μc 相減距離若大於
	δd ,模型更新讓 X_i 更靠近 μc
L_{dist}	不同車道線像素均值 μ_{CA} 和 μ_{CB} 若小於 δd ,模型更新讓 2 者遠離

上圖中像素點 Loss 是以 Mean Shift 為基礎,以半徑大小 $2\delta_V$ 和 δ_d > $6\delta_V$ 的圓做出發去進行分類,若在半徑大小內相同組別像素者,計算其像素點平均值,更新圓的中心點,再進行比較直到中心點不再移動為止

• H-Net

LaneNet 的輸出是每條車道線的像素點集合,需要利用多項式回歸將車道線擬合出來,因此論文利用了一個可以轉置矩陣 H(式 1-4)的 H-Net 神經網路訓練

$$\mathbf{H} = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & f & 1 \end{bmatrix}$$

$$\vec{\mathbf{x}} \ 1-4$$

轉置矩陣 H 內部有 6 個參數,因此 H-Net 輸出是一個 6 維 Vector,神經網路訓練如下

Type	Filters	Size/Stride	Output
Conv+BN+ReLU	16	3x3	128x64
Conv+BN+ReLU	16	3x3	128x64
Maxpool		2x2/2	64x32
Conv+BN+ReLU	32	3x3	64x32
Conv+BN+ReLU	32	3x3	64x32
Maxpool		2x2/2	32x16
Conv+BN+ReLU	64	3x3	32x16
Conv+BN+ReLU	64	3x3	32x16
Maxpool		2x2/2	16x8
Linear+BN+ReLU		1x1	1024
Linear		1x1	6

TABLE I H-NET NETWORK ARCHITECTURE.

接下來要計算其損失函數,計算方法是以 y 座標去預測 x 座標,首先假設地面有 N 個車道線真實像素點 $P_i = [x_i, y_i, 1]^T \in P$,接下來利用 H-Net 計算出來的輸出 H 進行座標轉換如式 1-5

接下來用最小平方法進行多項式參數 $W = [\alpha, \beta, \gamma]^T$ 預測如式 1-6 利用真實座標點減去預測座標點

$$Loss = \frac{1}{2}(W^T Y - X)^2$$

$$\frac{\partial Loss(W)}{\partial W} = > \frac{\partial Loss(u)}{\partial u} \frac{\partial u}{\partial W} = 0$$

$$Y^T(W^TY - X) = 0$$

$$YW^TY^T - XY^T = 0$$

$$\frac{XY^T}{YW^TY^T} = 1$$

$$W = (XY^T)(YY^T)^{-1}$$
 $\sharp (1-6)$

接下來利用預測出結果的多項式參數 $W = [\alpha, \beta, \gamma]^T$ 預測出 x_i' 如式(1-7)

$$x_i' = \alpha y'^2 + \beta y' + \gamma \qquad \qquad \vec{\pm} (1-7)$$

將xi投射回真實座標如式(1-8)

$$P_i^* = H^{-1}P_i'$$
 $\sharp (1-8)$

最後將利用 MSE 預測 x_i' 和 x_i 的 Loss Function 如式(1-9)

$$Loss = \frac{1}{N} \sum_{i=1}^{N} (x_i' - x_i)^2$$
 \sharp (1-9)

Fig. 3. Curve fitting. *Left:* The lane points are transformed using the matrix H generated by H-Net. *Mid:* A line is fitted through the transformed points and the curve is evaluated at different heights (red points). *Right:* The evaluated points are transformed back to the original image space.

● 比較結果

論文最後有利用 2 次式和 3 次式去擬合車道線,以及比較有無使用 H 轉置矩陣如下圖

	2th ordr (MSE)	3rd ordr (MSE)	Avg. miss/lane
no transform	53.91	17.23	0
fixed transform	48.09	9.42	0.105
cond. transform	33.82	5.99	0

並且輸入大小 512*256 圖像,得出結果為 19ms,每秒最多處理 52 偵

		time (ms)	fps
LaneNet	Forward pass	12	62.5
Laneret	Clustering	4.6	02.3
H-Net	Forward pass	0.4	416.6
II-Net	Lane Fitting	2	410.0
	Total	19	52.6

TABLE IV

SPEED OF THE DIFFERENT COMPONENTS FOR AN IMAGE SIZE OF 512x256 MEASURED ON A NVIDIA 1080 TI. IN TOTAL, LANE DETECTION CAN RUN AT 52 FPS.

