# 15-453

## FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

#### NP-COMPLETENESS II

**Tuesday April 1** 

# There are googols of NP-complete languages

#### K-CLIQUE



k-clique = complete subgraph of k nodes

#### K-CLIQUE



k-clique = complete subgraph of k nodes

Assume a reasonable encoding of graphs (example: the adjacency matrix is reasonable)

CLIQUE = { (G,k) | G is an undirected graph with a k-clique }

**Theorem: CLIQUE is NP-Complete** 

- (1) CLIQUE ∈ NP
- (2) 3SAT ≤<sub>P</sub> CLIQUE

### **CLIQUE** is NP-Complete



### **CLIQUE** is NP-Complete



### 3SAT ≤<sub>P</sub> CLIQUE

We transform a 3-cnf formula of into (G,k) such that

$$\phi \in 3SAT \Leftrightarrow (G,k) \in CLIQUE$$

The transformation can be done in time that is polynomial in the length of  $\phi$ 

$$(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$$



$$-x_2$$

$$\bigcirc X_2$$



#nodes = 3(# clauses)

k = #clauses







#nodes = 3(# clauses)

k = #clauses



#nodes = 3(# clauses)

k = #clauses



#### 3SAT ≤<sub>P</sub> CLIQUE

We transform a 3-cnf formula of into (G,k) such that

$$\phi \in 3SAT \Leftrightarrow (G,k) \in CLIQUE$$

- If φ has m clauses, we create a graph with m clusters of 3 nodes each, and set k=m
- Each cluster corresponds to a clause.
- Each node in a cluster is labeled with a literal from the clause.
- We do not connect any nodes in the same cluster
- We connect nodes in different clusters whenever they are not contradictory

The transformation can be done in time that is polynomial in the length of φ

$$(x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land (x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)$$



$$(x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land (x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)$$



#### VERTEX COVER



vertex cover = set of nodes that cover all edges

#### **VERTEX COVER**



vertex cover = set of nodes that cover all edges

VERTEX-COVER = { (G,k) | G is an undirected graph with a k-node vertex cover }

**Theorem: VERTEX-COVER is NP-Complete** 

- (1) VERTEX-COVER ∈ NP
- (2)  $3SAT \leq_{P} VERTEX-COVER$

#### 3SAT ≤<sub>P</sub> VERTEX-COVER

We transform a 3-cnf formula of into (G,k) such that

$$\phi \in 3SAT \Leftrightarrow (G,k) \in VERTEX-COVER$$

The transformation can be done in time polynomial in the length of  $\phi$ 

$$(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$$





#nodes = 2(#variables) + 3(#clauses)

$$(X_1 \lor X_1 \lor X_2) \land (\neg X_1 \lor \neg X_2 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_2)$$



#nodes = 2(#variables) + 3(#clauses)

$$(X_1 \lor X_1 \lor X_2) \land (\neg X_1 \lor \neg X_2 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_2)$$



#nodes = 2(#variables) + 3(#clauses)

$$(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$$



k = 2(#clauses) + (#variables)

$$(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$$



φ satisfiable then put "true" literals on top in vertex cover For each clause, pick a true literal and put other 2 in vertex cover

$$(X_1 \lor X_1 \lor X_2) \land (\neg X_1 \lor \neg X_2 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_2)$$



φ satisfiable then put "true" literals on top in vertex cover For each clause, pick a true literal and put other 2 in vertex cover

$$(x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land (x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)$$

### HAMILTON PATH



### HAMILTON PATH



## HAMPATH = { (G,s,t) | G is an directed graph with a Hamilton path from s to t}

**Theorem:** HAMPATH is NP-Complete

- (1) HAMPATH  $\in$  NP
- (2)  $3SAT \leq_P HAMPATH$

**Proof is in Sipser, Chapter 7.5** 



- ASSIGNMENT.
- · ZIG-ZAG IF Y: is TRUE (1); ZKC-ZIG Y Y, is TRUE (1).



SUPPOSE O SATISFIABLE WITH SOME TRUTH ASSIGNMENT. ZIG ZAG IF X: 6 TRUE, ZAG - ZIG IF X. TRUE. DETOUR ON CLAUSES NOT ALREADY COVERED. If hamiltonian path were not normal:



Case: a<sub>2</sub> separator node
Only edges entering a<sub>2</sub> would be a<sub>1</sub> and a<sub>3</sub>

Case:  $a_3$  separator node. Then  $a_1$ ,  $a_2$  in same clause pair Only edges entering  $a_2$  would be  $a_1$ ,  $a_3$ , c

## UHAMPATH = { (G,s,t) | G is an undirected graph with a Hamilton path from s to t}

**Theorem: UHAMPATH is NP-Complete** 

- (1) UHAMPATH ∈ NP
- (2) HAMPATH ≤<sub>P</sub> UHAMPATH

HAMPATH & UHAMPATH uin umidwout sout vin mid out . Z IN EXAMPLE: . Why do we need mid?

SUBSETSUM = { (S, t) | S is multiset of integers and for some Y  $\subseteq$  S, we have  $\sum_{v \in Y} y = t$  }

#### **Theorem: SUBSETSUM is NP-Complete**

- (1) SUBSETSUM ∈ NP
- (2) 3SAT ≤<sub>P</sub> SUBSETSUM

#### HW

Let G denote a graph, and s and t denote nodes.

#### SHORTEST PATH

$$= \{(G, s, t, k) \mid$$

G has a simple path of length < k from s to t }

#### LONGEST PATH

$$= \{(G, s, t, k) \mid$$

G has a simple path of length > k from s to t }

WHICH IS EASY? WHICH IS HARD? Justify

## WWW.FLAC.WS