Using the electric field pulse function reported by Sakiyama et al., 2012, we define a pulse function for the electron temperature. The pulse peaks at 5 times the pulse duration; e.g. 5 ns. The temperature is only calculated until time equals 10 times tpulse; after that, it is set to gas temperature.

In[90]:= tpulse = 10^{-9} ; (*pulse duration is 1 ns as in Sakiyama et al. 2012*) Tepeak = 2.6; (*peak electron temperature in eV*) Tgas = 298; (*gas temperature in Kelvin*) $\text{Pulse[t_]} := \text{If} \Big[\text{t} < 10 * \text{tpulse}, \\ \text{Tgas} + (\text{Tepeak} * 11605 - \text{Tgas}) * \text{Exp} \Big[-0.5 * \Big(\frac{\text{t} - 5 * \text{tpulse}}{\text{tpulse}} \Big)^2 \Big],$ Tgas $\Big[\text{Tgas} \Big]$

Plot[Pulse[t * tpulse] / 11 605, {t, 0, 25}, PlotRange \rightarrow All, Frame \rightarrow True, FrameLabel \rightarrow {"Time (ns)", "Te (eV)"}]

