Total variation regularization for X-ray tomography

Vesa Kaarnioja

LUT School of Engineering Science

February 3, 2021

Some helpful resources on the Chambolle–Pock algorithm:

- A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. *J. Math. Imaging Vision* **40**:120-145, 2011.
- L. Condat. A generic proximal algorithm for convex optimization application to total variation minimization. *IEEE Signal Proc. Letters* **21**(8):985–989, 2014.
- E. Y. Sidky, J. H. Jørgensen, and X. Pan. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm. *Phys. Med. Biol.* 57:3065–3091, 2012.
- Operator Discretization Library. https://odl.readthedocs.io/math/solvers/nonsmooth/chambolle_pock.html, 2017.
- PORTAL. https: //portal.readthedocs.io/en/latest/chambollepock.html, written by P. Paleo, 2015.

Additional resources on total variation regularization for X-ray tomography:

J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems

with Practical Applications. 2012. S. Siltanen. Total variation regularization for X-ray tomography. FIPS Computational Blog, https://blog.fips.fi/tomography/x-ray/

total-variation-regularization-for-x-ray-tomography/,

2017.

Recall that the discrete measurement model for X-ray tomography can be expressed as

$$y = Ax$$
.

This time, we consider solving the inverse problem of recovering \boldsymbol{x} based on noisy measurements \boldsymbol{y} .

We are interested in anisotropic total variation regularization

$$\underset{x>0}{\arg\min} \left\{ \frac{1}{2} \|y - Ax\|^2 + \lambda \|Dx\|_1 \right\}, \quad \lambda > 0,$$

where $\|x\|_1 = \sum_i |x_i|$, $D = \begin{bmatrix} L_H \\ L_V \end{bmatrix}$ is the discretized (image) gradient operator,

$$||Dx||_1 = \sum_j |(Dx)_j| = \sum_j |(L_H x)_j| + \sum_j |(L_V x)_j|,$$

and L_H and L_V denote the horizontal and vertical (image) finite difference matrices, respectively.

Special feature: TV regularization preserves sharp edges.

x_{91}	x_{92}	x_{93}	x_{94}	x_{95}	x_{96}	x_{97}	x_{98}	x_{99}	x_{100}
x_{81}	x_{82}	x_{83}	x_{84}	x_{85}	x_{86}	x_{87}	x_{88}	x_{89}	x_{90}
x_{71}	x_{72}	x_{73}	x_{74}	x_{75}	x_{76}	x_{77}	x_{78}	x_{79}	x_{80}
x_{61}	x_{62}	x_{63}	x_{64}	x_{65}	x_{66}	x_{67}	x_{68}	x_{69}	x_{70}
x_{51}	x_{52}	x_{53}	x_{54}	x_{55}	x_{56}	x_{57}	x_{58}	x_{59}	x_{60}
x_{41}	x_{42}	x_{43}	x_{44}	x_{45}	x_{46}	x_{47}	x_{48}	x_{49}	x_{50}
x_{31}	x_{32}	x_{33}	x_{34}	x_{35}	x_{36}	x_{37}	x_{38}	x_{39}	x_{40}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}

Recall that the vector x is related to the density matrix $(f_{i,j})$ of the computational domain via

$$x_{(j-1)n+i} = f_{i,j}, \quad i,j \in \{1,\ldots,n\}.$$

$$x = f(:)$$
 and $f = reshape(x,n,n)$


```
\begin{bmatrix} -1 & 1 & & & & \\ & -1 & 1 & & & \\ 1 & & -1 & & & \\ & & & -1 & 1 & \\ & & & & -1 & 1 \end{bmatrix}
```



```
\begin{bmatrix} -1 & 1 & & & & & & & & & & \\ & -1 & 1 & & & & & & & & \\ 1 & & -1 & & & & & & & & \\ & & & -1 & 1 & & & & & & \\ & & & -1 & 1 & & & & & \\ & & & & & -1 & 1 & & & \\ & & & & & & -1 & 1 & & \\ & & & & & & 1 & & -1 \end{bmatrix}
```

```
n = 3;
block = spdiags([1,-1,1].*ones(n,3),[1-n,0,1],n,n);
%block = -eye(n)+diag(ones(n-1,1),1); block(end,1) = 1;
LH = [];
for ii = 1:n
   LH = blkdiag(LH,block); % form the 9x9 block matrix
end
```


$$egin{bmatrix} -1 & & 1 \ & -1 & & 1 \ \end{bmatrix}$$


```
\begin{bmatrix} -1 & & 1 & & & & & \\ & -1 & & 1 & & & & \\ & & -1 & & 1 & & & \\ & & & -1 & & 1 & & \\ & & & -1 & & 1 & & \\ & & & & -1 & & 1 & \\ 1 & & & & & -1 & & \\ & 1 & & & & & -1 & \\ & & 1 & & & & -1 & \\ \end{bmatrix}
```

```
\label{eq:local_problem} \begin{split} n &= 3; \\ \text{LV} &= \text{spdiags}([1,-1,1].*\text{ones}(\text{n}^2,3),[-\text{n}^2+\text{n},0,\text{n}],\text{n}^2,\text{n}^2); \\ \text{%LV} &= -\text{eye}(\text{n}^2) + \text{diag}(\text{ones}(\text{n}^2-\text{n},1),\text{n}) + \text{diag}(\text{ones}(\text{n},1),\text{n}-\text{n}^2); \end{split}
```

Let $F: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and $G: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ be convex lower semicontinuous functions and K is a linear operator. Let F^* denote the Fenchel conjugate of F. Consider the abstract problem $\min \max \{\langle Kx, \eta \rangle + G(x) - F^*(\eta) \}.$

$$\frac{1}{x} = \frac{1}{\eta} \left(\left(\frac{1}{x} \right), \frac{1}{\eta} \right) = \left(\frac{1}{\eta} \right)$$

The general form of the Chambolle–Pock algorithm can be written as

$$\eta_{k+1} = \operatorname{prox}_{\sigma F^*}(\eta_k + \sigma K \widetilde{x}_k),$$
 (update dual variable) $x_{k+1} = \operatorname{prox}_{\tau G}(x_k - \tau K^{\mathrm{T}} \eta_{k+1}),$ (update primal variable) $\widetilde{x}_{k+1} = x_{k+1} + \theta(x_{k+1} - x_k),$ (extrapolation)

where $\tau>0$ is the primal step size, $\sigma>0$ is the dual step size, $\theta>0$ is an extrapolation parameter, and the *proximal operator* of a function f is defined as

defined as
$$\mathrm{prox}_f(\eta) := \arg\min \big\{ f(x) + \tfrac{1}{2} \|x - \eta\|^2 \big\}.$$

If $\sigma \tau \leq 1/L^2$, $L = ||K||_2$ (operator norm), and $\theta = 1$, then the algorithm can be shown to converge at linear rate $\mathcal{O}(k^{-1})$ [Chambolle and Pock 2010].

 $\min_{x\geq 0} \Big\{ \tfrac12 \|y - Ax\|^2 + \lambda \|Dx\|_1 \Big\}, \quad \lambda > 0,$ in the above framework.

Let us recast the TV regularization problem

$$\lambda \|Dx\|_1 = \max_{\|z\|_{\infty} \le 1} \langle Dx, \lambda z \rangle = \max_{\|z\|_{\infty} \le \lambda} \langle Dx, z \rangle = \max_{z} \big\{ \langle Dx, z \rangle - \iota_{\lambda}(z) \big\},$$

Note that

 $\frac{1}{2}||Ax - y||^2 = \max_{q} \left\{ \langle Ax - y, q \rangle - \frac{1}{2}||q||^2 \right\},\,$

since $0 = \nabla_q(\langle Ax - y, q \rangle - \frac{1}{2}||q||^2) = Ax - y - q$ iff q = Ax - y.

(1)

• Since $||x||_1 = \sum_i |x_i| = \langle |x|, 1 \rangle = \langle x, \operatorname{sign}(x) \rangle$,

where $\iota_{\lambda}(z)=0$ if $\|z\|_{\infty}\leq\lambda$ and $\iota_{\lambda}(z)=+\infty$ otherwise.

Then (1) is equivalent to

 $\min_{x} \max_{q,z} \left\{ \langle Ax - y, q \rangle + \langle Dx, z \rangle - \frac{1}{2} \|q\|^2 - \iota_{\lambda}(z) + \iota_{+}(x) \right\},\,$

where $\iota_+(x)=0$ if $x\geq 0$ and $\iota_+(x)=+\infty$ otherwise.

It is easy to see that

$$\min_{x} \max_{q,z} \left\{ \langle Ax - y, q \rangle + \langle Dx, z \rangle - \frac{1}{2} \|q\|^2 - \iota_{\lambda}(z) + \iota_{+}(x) \right\}$$

is tantamount to

$$\min_{x} \max_{q,z} \left\{ \left\langle Kx, \begin{bmatrix} q \\ z \end{bmatrix} \right\rangle + G(x) - F^*(q,z) \right\},$$

where

$$egin{align} G(x) &= \iota_+(x), \ F^*(q,z) &= \langle y,q
angle + rac{1}{2} \|q\|^2 + \iota_\lambda(z), \ \mathcal{K} &= egin{bmatrix} A \ D \end{bmatrix}. \end{array}$$

The proximal mapping corresponding to G is simply the projection onto $\{x \geq 0 \mid x \in \mathbb{R}^n\}$:

$$\operatorname{prox}_{\tau G}(x) = (\max(x_i, 0))_i = \max(x, 0).$$

On the other hand,

$$\operatorname{prox}_{\sigma F^*}(q, z) = \left(\frac{q - \sigma y}{1 + \sigma}, \frac{\lambda z}{\max(\lambda, |z|)}\right). \tag{N.B. } \eta = (q, z))$$

Noting that $K^{T} = [A^{T}, D^{T}]$, the Chambolle-Pock algorithm takes the form

$$\begin{cases} \eta_{k+1} = \operatorname{prox}_{\sigma F^*}(\eta_k + \sigma K \widetilde{x}_k) \\ x_{k+1} = \operatorname{prox}_{\tau G}(x_k - \tau K^{\mathrm{T}} \eta_{k+1}) \\ \widetilde{x}_{k+1} = x_{k+1} + \theta(x_{k+1} - x_k) \end{cases}$$

$$\begin{cases} \widetilde{x}_{k+1} = x_{k+1} + \theta(x_{k+1} - x_k) \\ q_{k+1} = \frac{q_k + \sigma A \widetilde{x}_k - \sigma y}{1 + \sigma} \\ z_{k+1} = \frac{\lambda(z_k + \sigma D \widetilde{x}_k)}{\max(\lambda, |z_k + \sigma D \widetilde{x}_k|)} \\ x_{k+1} = \max(x_k - \tau A^{\mathrm{T}} q_{k+1} - \tau D^{\mathrm{T}} z_{k+1}, 0) \quad \text{(elementwise max)} \\ \widetilde{x}_{k+1} = x_{k+1} + \theta(x_{k+1} - x_k). \end{cases}$$

Pseudocode for the Chambolle-Pock algorithm

```
Given: projection matrix A, data y, regularization parameter \lambda.
 1. Form the difference matrices L_H and L_V. Set D = [L_H; L_V];
 2. L = svds([A;D],1); % alt. use the power method
 3. tau = 1/L, sigma = 1/L, theta = 1;
 4. x = zeros(size(A,2),1), q = zeros(size(A,1),1);
 5. z = zeros(2*size(A,2),1), xhat = x;
    Repeat
      6. q = (q+sigma*(A*xhat-y))/(1+sigma);
      7. z = lambda *
         (z+sigma*D*xhat)./max(lambda,abs(z+sigma*D*xhat));
      8. \text{ xold} = x;
      9. x = max(x-tau*A'*q-tau*D'*z,0);
     10. xhat = x+theta*(x-xold);
    until convergence.
```