Differential Equations

Ikhan Choi

November 20, 2023

Contents

Ι	Linear ordinary differential equations	3
1	Initial value problems	4
	1.1 Constant coefficient equations	4
	1.2 Variable coefficient equations	4
2	Boundary value problems	5
	2.1 Second order linear equations	5
	2.2 Orthogonal polynomials	5
	2.3 Sturm-Liouville theory	5
3	Inhomogeneous problems	6
	3.1 Method of undetermined coefficients	6
	3.2 Variation of parameters	6
	3.3 Laplace transform	6
II	Nonlinear ordinary differential equations	7
4	First order nonlinear equations	8
	4.1 Local existence theorems	8
	4.2 Implicit equations	9
	4.3 Global existence	9
5	Dynamical systems	10
	5.1 Equillibrium and stability	10
	5.2 Autonomous systems	10
	5.3 Hamiltonian systems	10
	5.4 Planar systems	10
6	Chaos	11
II	I Linear partial differential equations	12
7	Laplace's equation	13
	7.1 Harmonic functions	13
	7.2 Poisson equation	13
	7.3 Figenvalue problems	14

8	Heat equation		15	
	8.1	Heat kernel	15	
	8.2	Separation of variables	15	
9	Wave equation			
	9.1	First order partial differential equations	16	
	9.2	Initial value problems	16	
	9.3	Boundary value problems	16	
	9.4	Dispersive equations	16	
IV	N	onlinear partial differential equations	17	
10	Geo	metric PDEs	18	
11	Flui	d dynamics	19	
	11.1	Conservation laws	19	
	11.2	Euler and Burger equation	19	
		Non-linear waves		
	11.4	Navier-Stokes equation	19	

Part I

Linear ordinary differential equations

Initial value problems

1.1 Constant coefficient equations

existence uniqueness system of equations characteristic equations complex roots repeated roots

1.2 Variable coefficient equations

existence uniqueness series solution Frobenius method Fuch's theorem

Boundary value problems

2.1 Second order linear equations

Helmholtz Bessel Legendre Hermite Laguerre

2.2 Orthogonal polynomials

 L^2 space

2.3 Sturm-Liouville theory

Eigenvalue problems boundary conditions

Exercises

2.1 (Rayleigh-Ritz principle).

Inhomogeneous problems

- 3.1 Method of undetermined coefficients
- 3.2 Variation of parameters
- 3.3 Laplace transform

discontinuous data gluing

Exercises

3.1 (Damped oscillation).

Part II

Nonlinear ordinary differential equations

First order nonlinear equations

4.1 Local existence theorems

4.1 (Picard-Lindelöf theorem). Consider the following initial value problem:

$$x'(t) = f(t, x(t)), x(0) = x_0.$$

Construct an approximate solution $(x_n)_{n=0}^{\infty}$ defined inductively such that $x_0(t) \equiv x_0$ and

$$x'_{n+1}(t) = f(t, x_n(t)), \quad x_{n+1}(0) = x_0.$$

Suppose f satisfies

$$|f(t,x)| \le \frac{R}{T}, \qquad |f(t,x) - f(t,y)| \lesssim |x - y|$$

on the cylinder $[0, T] \times \overline{B(x_0, R)}$.

- (a) x_n is in $C^1([0, T], \overline{B(x_0, R)})$.
- (b) x_n is Cauchy in $C^1([0,T], \overline{B(x_0,R)})$.
- (c) The equation has a unique solution in $C^1([0,T],\overline{B(x_0,R)})$.

Proof. (a) It clearly follows from the explicit formula

$$x_{n+1}(t) = x_0 + \int_0^t f(s, x_n(s)) ds.$$

(b) Since

$$|x_1(t) - x_0(t)| \le \int_0^t |f(s, x_0)| \, ds \le Mt$$

and

$$|x_{n+1}(t) - x_n(t)| \le \int_0^t |f(s, x_n(s)) - f(s, x_{n-1}(s))| ds$$

$$\le K \int_0^t |x_n(s) - x_{n-1}(s)| dx$$

$$\le MK^n \int_0^t \frac{s^n}{n!} ds$$

$$= MK^n \frac{t^{n+1}}{(n+1)!},$$

we have the convergent series

$$\sum_{n=0}^{\infty} \|x_{n+1} - x_n\|_{\infty} \le TM \frac{e^{KT} - 1}{KT}.$$

Also,

$$|x'_{n+1}(t) - x'_n(t)| \le |f(t, x_n(t)) - f(t, x_{n-1}(t))| \le K|x_n(t) - x_{n-1}(t)| \le MK^{n+1} \frac{t^{n+1}}{(n+1)!}.$$

- (c) Limiting check. \Box
- 4.2 (Cauchy-Peano theorem).
- 4.3 (Carathéodory existence theorem).

4.2 Implicit equations

integrating factor, separable equations, exact equations

4.3 Global existence

- 4.4 (Gronwall's inequality).
- 4.5 (A priori estimate).

Dynamical systems

5.1 Equillibrium and stability

Bifurcations

Stability theory Lyapunov, invariant set

- 5.2 Autonomous systems
- 5.3 Hamiltonian systems
- 5.4 Planar systems

periodic orbit

5.1 (Poincaré-Bendixon).

Exercises

5.2 (Undamped pendulum).

$$x''(t) + \sin x(t) = 0$$

5.3 (Approximated pendulum).

$$x''(t) + x(t) - \frac{1}{6}x(t)^3 = \alpha$$

5.4 (Van der Pol oscillator).

$$x''(t) - \mu(1 - x(t)^2)x'(t) + x(t) = 0$$

5.5 (Lotka-Volterra model). Also known as predator-prey equations.

Chaos

Attractors

Part III Linear partial differential equations

Laplace's equation

7.1 Harmonic functions

- 7.1 (Mean value property).
- 7.2 (Maximum principle).
- 7.3 (Newtonian potential).
- 7.4 (Dirichlet problem for half space).
- 7.5 (Dirichlet problem for open ball).

7.2 Poisson equation

7.6 (Weak derivative).

7.7 (Dirac delta function). Let Ω be an open subset of \mathbb{R}^d . The *Dirac delta function* is a linear functional $\delta: C_c^\infty(\Omega) \to \mathbb{R}$ defined by $\delta(\varphi) := \varphi(0)$. We conventionally use the function-like notation $\delta(x)$ to denote $\varphi(0)$ by

$$\int \delta(x)\varphi(x)\,dx.$$

7.8 (Fundamental solution of the Laplace equation). Let $d \ge 2$. The Fundamental solution of the Laplace equation is a function $\Phi : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ that solves the boundary value problem

$$\begin{cases} -\Delta \Phi(x) = \delta(x) & \text{in } \mathbb{R}^d, \\ \Phi(x) \to 0 & \text{as } |x| \to \infty. \end{cases}$$

(a) The funcdamental solution is given by

$$\Phi(x) := \begin{cases} -\frac{1}{2\pi} \log|x| & \text{if } d = 2\\ \frac{1}{(d-2)\omega_d} \frac{1}{|x|^{d-2}} & \text{if } d \ge 3 \end{cases}.$$

In particular, Φ and $\nabla \Phi$ are locally integrable on \mathbb{R}^d but $\nabla^2 \Phi$ is not.

(b) For $u \in C_0^2(\mathbb{R}^d)$,

$$u(x) = -\int \Phi(x - y) \Delta u(y) \, dy.$$

Proof. Note that $\nabla \Phi(y) \cdot \nabla u(x-y)$ is integrable in y. Then,

$$\begin{split} -\int \Phi(y)\Delta u(x-y)\,dy &= -\int \nabla \Phi(y)\cdot \nabla u(x-y)\,dy \\ &= -\lim_{\varepsilon \to \infty} \int_{|y| \ge \varepsilon} \nabla \Phi(y)\cdot \nabla u(x-y)\,dy \\ &= -\lim_{\varepsilon \to \infty} \int_{|y| = \varepsilon} \nabla \Phi(y)u(x-y)\cdot v\,dS. \end{split}$$

Since

$$\nabla \Phi(x) = -\frac{1}{\omega_d} \frac{x}{|x|^d}, \quad v = \frac{x}{|x|},$$

we get

$$-\int \Phi(y)\Delta u(x-y)\,dy = \lim_{\varepsilon \to \infty} \frac{1}{\omega_d \varepsilon^{d-1}} \int_{|y|=\varepsilon} u(x-y)\,dS_y = u(x).$$

7.9 (Green's function of the Poisson equation). Let Ω be a bounded open subset of \mathbb{R}^d for $d \geq 2$. *Green's function of the Poisson equation* is a function $G: \Omega^2 \setminus \{(x,x) \in \Omega\} \to \mathbb{R}$ that solves the boundary value problem

$$\begin{cases} -\Delta_y G(x, y) = \delta(x - y) & \text{in } y \in \Omega \setminus \{x\}, \\ G(x, y) = 0 & \text{on } y \in \partial \Omega. \end{cases}$$

for each $x \in \Omega$.

Define $\phi:\Omega^2\to\mathbb{R}$ to be a function that solves the boundary value problem

$$\begin{cases} -\Delta_y \phi(x, y) = 0 & \text{in } y \in \Omega, \\ \phi(x, y) = \Phi(x - y) & \text{on } y \in \partial \Omega. \end{cases}$$

for each $x \in \Omega$. Assume for the domain Ω that there exists a unique ϕ .

(a) Green's function is given by

$$G(x, y) = \Phi(x - y) - \phi(x, y).$$

where Φ is the fundamental solution of the Laplace equation. Physically, $y \mapsto -\phi(x,y)$ has a meaning of the electric potential generated by the induced surface charge of a grounded conductor provided a point charge is at x.

(b) The Green representation formula holds: for $u \in C^2(\Omega) \cap C(\overline{\Omega})$,

$$u(x) = -\int_{\Omega} G(x,y)\Delta u(y) dy - \int_{\partial\Omega} u(y)\nabla_{y}G(x,y) \cdot \nu dS_{y}.$$

7.10 (Existence and uniqueness of Poisson equation). representation formulas describe the solution assuming

7.3 Eigenvalue problems

Heat equation

8.1 Heat kernel

Duhamel's principle

8.2 Separation of variables

Wave equation

- 9.1 First order partial differential equations
- 9.2 Initial value problems

d'Alambert Kirchhoff odd reflection

9.3 Boundary value problems

Dirichlet, Neumann, Mixed

9.4 Dispersive equations

Part IV

Nonlinear partial differential equations

Geometric PDEs

gradient flow curvature flow

Fluid dynamics

- 11.1 Conservation laws
- 11.2 Euler and Burger equation
- 11.3 Non-linear waves

Nonlinear diffusion?

11.4 Navier-Stokes equation