Lecture 10

Linearity

Let T = X + Y, show E(T) = E(X) + E(Y)

$$\sum_t P(T=t) = \sum_x x P(X=x) + \sum_y y P(Y=y)$$

Extreme dependent X = Y

$$E(X+Y) = E(2X) = 2E(X)$$

Negetive Binomial

parameters r, p

story: independent Bern(p) trials #failures before the rth success

PMF:
$$P(X=n)={n+r-1 \choose r-1}p^r(1-p)^n$$

E(X): E(X) = E(X1 + 1) = E(X1) + 1 + 1 = E(X1)

 X_j is #failures between (j-1)th and jth success, $X_j \sim Geom(p)$

Geom

 $X \sim FS(p)$ time until 1st success , counting the success

Let Y=X-1, Then $Y\sim Geom(p)$

$$E(X) = E(Y+1) = E(Y) + 1 = q/p + 1 = 1/p$$

Putnam

Random permutation of $1,2,\ldots n$, where $\ n\geq 2$

Find expected # of local maxima. Ex. 3214756

Let I_j be indecator r.v of position j having a local max, $1 \leq j \leq n$

$$E(I_1+\cdots+I_n)=E(I_1)+\cdots+E(I_n)=rac{n-2}{3}+2/2=rac{n+1}{3}$$

St.Petersburg Paradox

Get $\mathbf{2}^{x}$ where X is #filps of fair coin until first H, including the success

$$Y=2^x$$
 find ${\it E}(Y)$

$$E(Y) = \sum_{k=1}^{\infty} 2^k rac{1}{2^k} = \sum 1 = \infty$$

bound at 2^{40} . Then $\sum_{k=1}^{40} 2^k rac{1}{2^k} = 40$

 $E(2^x)=\infty$ not $q=2^{E(x)}=4$