

S51196 FASTERTRANSFORMER V5.4 NEW FEATURES AND BEYOND

BoYang Hsueh, 2023/03/24

What we provide

- FT provides highly optimized transformer layer for inference
- Based on C++, CUDA, cuBLAS and cuBLASIt
- Support FP32, FP16, BF16, INT8 (limited models) and FP8 (limited models)
- Support C++, TensorFlow, PyTorch and Triton backend
- Support MGMN serving (limited models)
- Open source (some kernels are binary files):
 - https://github.com/NVIDIA/FasterTransformer
 - https://github.com/triton-inference-server/fastertransformer_backend

v5.1 updates

- Optimize the GPT workflow in specific cases
 - Padding removal for context phase (like what we do in BERT)
 - Shared context optimization
 - Interactive generation
 - Prompt/P tuning for nemo GPT
 - Streaming decoding for GPT
- Support new models
 - OPT/UL2/GPT-NEOX/mT5
- Support bfloat16 on most models
- Support MGMN BERT

v5.2 updates

- New features on GPT
 - SmoothQuant
 - Extend int8 weight only quantization for more shapes
 - Support flash attention for long sequence on multi-head attention
- Prompt/P tuning for nemo T5
- Support new models
 - ► IA3, BLOOM, T5-MoE, SwinV2, BART, mBART

v5.3 updates

- Support GPT-MoE
- Support FP8 for Bert and GPT (Experimental, need CUDA 11.8 and Hopper GPU)
- Support DeBERTa

V5.4 updates

- Officially support FP8 on Bert and GPT.
- Support SmoothQuant on GPT

What is FP8?

- FP8 has two formats: e4m3 and e5m2
- ► In inference, we only consider e4m3

Allocate 1 bit to either range or precision

Support for multiple accumulator and output types

A100 FP16

H100 FP8

BERT FP8 benchmark

- Environment
 - Nvcr.io/nvidia/pytorch:22.10-py3
 - ► A100: NVIDIA A100-SXM4-80GB, 400W, driver: 515.65.01, run with FP16
 - ► H100: H100 80GB HBM3, 700W, driver 525.85.12, run with FP8
 - Model: Bert-Large

BERT FP8 benchmark

A100 FP16 v.s. H100 FP8

Single GPU GPT FP8 benchmark

- Environment
 - Nvcr.io/nvidia/pytorch:22.10-py3
 - ► A100: NVIDIA A100-SXM4-80GB, 400W, driver: 515.65.01, run with FP16
 - ► H100: H100 80GB HBM3, 700W, driver 525.85.12, run with FP8
 - Model: GPT-5B

Single GPU GPT FP8 benchmark

GPT-5B H100 FP8 v.s. H100 FP16 v.s. A100 FP16

Multi-GPU GPT FP8 benchmark Environment setting

- Nvcr.io/nvidia/pytorch:22.10-py3
- ► A100
 - Intra node: 8xA100-80GBs (with mclk 1593MHz, pclk 1410MHz) with AMD EPYC 7742 64-Core Processor, linked by NVSwitch
 - ► Inter node: Linked by Infiniband, 8x200Gb/s NICs
 - Inference data type: FP16
- ► H100
 - Intra node: 8xH100-80GBs (with mclk 2619MHz, pclk 1980MHz) with Intel(R) Xeon(R) Platinum 8480C, linked by NVSwitch
 - Inference data type: FP8
- Model: Megatron 530B

Multi-GPU GPT FP8 benchmark

A100 v.s. H100 for Latencies

Multi-GPU GPT FP8 benchmark

A100 v.s. H100 for Thoughput per GPU

From Bert(NLP)To ViT (VISION)

- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

From ViT To Swin

Shifted Windows Self-attention with relative position bias

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Swin FP16/FP32 workflow

INT8 QUANTIZATION OF SWIN LAYER

FUSED MHA FOR SWIN

IMPROVEMENT OF SWIN-LARGE PTQ ACCURACY

Accuracy on ImageNet

Window /Image size	Model name	FP16 Accuracy	Accuracy after PTQ(All GEMMs with INT8 O)	Accuracy after PTQ (FC2 & PatchMerge with INT32 O)
7/224	Swin-LARGE	86.25%	83.53%(-2.72%)	85.93%(-0.32%)
12/384	Swin-LARGE	87.25%	83.10%(-4.15%)	86.92%(-0.33%)
			INT8_MODE=1	INT8_MODE=2

How to improve the Swin-LARGE PTQ accuracy? (QAT of Swin-LARGE is very time-consuming)

Solution: Disable some quantization node.

Reason:

When 'k' gets large in GEMM(m*n*k), the output may have a very large scale, thus quantizing it may lead to significant accuracy loss.

Which GEMM has the largest 'k'?

For a swin transformer block with dim=96:

- OKV: k = 96
- Q*K: k = 32
- V*A: k = 32
- Proj: k = 96
- FC1: k = 96
- $F(7 \cdot k = 96 * 4)$
- PatchMerge: k = 96 * 4

Relaxing FC2&PatchMerge to be INT32 output is enough for improving PTQ accuracy.

THE PERFORMANCE OF SWIN TRANSFORMER

Performance with SWIN-V1 model on one A10 GPU

Batch size	torch.jit.trace (ms)	FT cpp (ms)	FT cpp speedup	FT torch op (ms)	FT speedup
1	5.04	0.92	5.48	1.39	3.63
8	7.53	3.2	2.24	3.28	2.3
16	14.8	6.1	2.43	6.4	2.31
32	29.27	11.89	2.46	12.31	2.38

Image size: 224x224, window size 7x7, inference data type: FP16

THE PERFORMANCE OF SWIN TRANSFORMER

Performance with SWIN-V1 model on one A10 GPU

Batch_size	TINY with FP16 (ms)	TINY with INT8 (ms)	INT8 Speedup
1	0.91	1.01	0.91
8	3.2	2.15	1.49
16	6.1	3.96	1.54
32	11.89	7.4	1.61
64	23.2	15.28	1.52
Batch_size	Large with FP16 (ms)	Large with INT8 (ms)	INT8 Speedup
Batch_size 1	Large with FP16 (ms) 1.86	Large with INT8 (ms) 2.17	INT8 Speedup 0.86
			<u> </u>
1	1.86	2.17	0.86
1 8	1.86 7.54	2.17 4.62	0.86 1.63

Image size: 224x224, window size 7x7, All ran by FT cpp

INT 8 weight only quantization

- Quantization is an optimization for both model size and inference speed
- There are two common ways to quantize the model
 - Post training quantization (PTQ): less cost, lower accuracy
 - Quantization aware training (QAT): higher cost, higher accuracy

	FP16	INT8
Weight size for 530B	1060 GBs	530 GBs
At least require # of node	2 nodes	1 node
peak flops	312 TFLOPs	624 TOPs

INT 8 weight only quantization

- For large language model, it is hard to use both PTQ (due to accuracy) and QAT (due to cost)
- We find a way to combine the accuracy of FP16 and weight size of INT8

	FP16	INT8
Weight size for 530B	1060 GBs	530 GBs
At least require # of node	2 nodes	1 node
peak flops	312 TFLOPs	624 TOPs

INT 8 weight only quantization

- For large language model, it is hard to use both PTQ (due to accuracy) and QAT (due to cost)
- We find a way to combine the accuracy of FP16 and weight size of INT8
- INT8 weight only save the weights by INT8, but activations are saved by FP16
- In GEMM, we load INT8 weight, cast to FP16, and use FP16 tensor core

	FP16	INT8	INT8 weight only
Weight size for 530B	1060 GBs	530 GBs	530 GBs
At least require # of node	2 nodes	1 node	1 node
peak flops	312 TFLOPs	624 TOPs	312 TFLOPs

	FP16	INT8	INT8 weight only
Weight size for 530B	1060 GBs	530 GBs	530 GBs
At least require # of node	2 nodes	1 node	1 node
peak flops	312 TFLOPs	624 TOPs	312 TFLOPs

INT 8 weight only quantization

- Pros of INT8 weight only
 - Small weight size (half of FP16)

Assume for GEMM $[M,K] \times [K,N] \rightarrow [M,N]$ Memory read/write in GEMM: MK + KN + MNCompute in GEMM: 2MKN

If M is small, like 1 Memory read/write in GEMM: K + KN + N

Compute in GEMM: 2KN

- Faster when batch size is small (bounded by reading weight when batch size is small)
- Only need to quantize weight, simpler than PTQ and QAT
- Cons:
 - Little slower when batch size is large (need to cast INT8 to FP16 in GEMM)

	FP16	INT8	INT8 weight only
Weight size for 530B	1060 GBs	530 GBs	530 GBs
At least require # of node	2 nodes	1 node	1 node
peak flops	312 TFLOPs	624 TOPs	312 TFLOPs

SmoothQuant

Table 1: SmoothQuant achieves high hardware efficiency while maintaining the accuracy of LLMs with 530 billion parameters in a training-free fashion.

	LLM (100B+) Accuracy	Hardware Efficiency
ZeroQuant	×	✓
Outlier Suppression	×	✓
LLM.int8()	✓	×
SmoothQuant	✓	✓

https://arxiv.org/pdf/2211.10438.pdf

https://arxiv.org/pdf/2211.10438.pdf

SmoothQuant

SmoothQuant

Innut langth				INT8-TP8 Memory (GBs per GPU)
128	231.68	64.97	253.93	65.89
256	450.61	65.85	433.99	66.61
512	838.18	66.72	838.63	68.08
1024	1706.85	68.44	1688.69	71.20

Megatron 530B, Batch size 4, output length 1, linked by NVSwitch intra node, by Infiniband inter node.

Accuracy of FP16 on LAMBADA: 80.83 Accuracy of INT8 on LAMBADA: 80.56

Triton generation feature

Streaming (Decoupled mode)

Interactive generation

DEVELOPERS CAN FOCUS ON MODELS AND APPLICATIONS

Triton Takes Care of Plumbing To Deploy Models for Inference

Standardized Inference Platform

Inferencing on GPU and CPU

Support for All Major Framework Backends for Flexibility & Consistency

Standard HTTP, gRPC, and C++ Communication

Inference Serving on GPU, CPU, and Mixed Workloads

Cloud | Data Center | Edge Bare metal | Virtualization

Jetson | Windows | ARM

Different Types of **Oueries**

Real time

Batch Stream Ensemble

Maximized Hardware Utilization

Support for Different Types of Inference Oueries and Use Cases

Concurrent Model Execution Increases Throughput & Utilization, lowering TCO

Dynamic Batching Maximizes Throughput Under Latency Constraint

Configuration

- Inputs, output settings and runtime parameters (like TP size)
- instance_group:
 - Must be KIND_CPU: Control all GPUs by FT directly, necessary for MGMN serving.
 - assume 8 gpus, 8 model instances, tensor para size 2, then we will distribute model instances to [0, 1], [2, 3], [4, 5], [6, 7], [0, 1], [2, 3], [4, 5], [6, 7] GPUs;
 - ► Two instance instances on GPUs [0, 1] will share the same weights

Instance group

Instance 4	Instance 5	Instance 6	Instance 7
Instance 0	Instance 1	Instance 2	Instance 3
weight 0	weight 1	weight 2	weight 3
GPU 0 GPU 1	GPU 2 GPU 3	GPU 4 GPU 5	GPU 6 GPU 7

Workflow on Triton

