Please write down all people in your team.

1. 2.

3. 4.

7.1 Graph Theory

7.1.1 Terminology

Since we're introducing a new concept, Graph Theory, we need to go over the various terms so that we can communicate about these graphs properly.

• **Graph:** A graph is a type of diagram that contains *vertices* (aka nodes) and *edges*.

- **Node:** A vertex of the graph, drawn as a dot.
 - Adjacent nodes: Two nodes that are connected by an edge.
 - Node degree: The amount of edges that are connected to a node. Loops are counted twice.
- Edge: A line that connects two nodes together.
 - Parallel edges: Two edges that have the same two endpoints.
 - Loop: An edge that begins and ends at the same node, creating a loop.
 - -[a,b] is used to indicate an edge with a and b as endpoints, though direction can be either way.

Question 1 ____ / 6

Identify each item for the graph G given.

- a. How many nodes (vertices) are there?
- b. How many edges are there?

c. Write down the degree of each node:

Vertex	7 01	deg(v)
vertez	\ U	ueg(v)
a		
b		
c		
d		
e		
f		

- d. The **maximum degree** of a graph is the highest deg(v) value. What is this graph's maximum degree?
- e. The **minimum degree** of a graph is the lowest deg(v) value. What is this graph's minimum degree?

- Walk: A series of alternating nodes and edges, traversing between adjacent nodes.
 - Closed walk: When the beginning and ending node of a walk are the same.
 - Length of a walk: The amount of edges in the walk.
 - Trivial walk: A walk of length 0.
 - Path: A walk with no repeated vertices.
 - Trail: A walk with no repeated edges.
 - * Circuit: A closed trail.
 - Trivial circuit: A circuit with one vertex and no edges.
 - · Cycle: A nontrivial circuit where the only repeated node is the first/last one.
 - * Eulerian: A trail or circuit where every edge is traversed.

Question 2 ____ / 3

Answer the following questions, using the graph H given.

- a. Come up with several walks from a to c. Write all steps (each node visited). Also label the **length** of each walk.
- b. Come up with a **closed walk**, beginning and ending at a. You can choose to visit all nodes or not.
- c. Come up with a **path**, where no vertices are repeated.

Question 3 ____ / 5

Answer the following questions, using the graph I given.

- a. Come up with a **trail**, a walk with no repeated edges.
- b. Come up with a circuit, a closed trail.
- c. Come up with a **cycle**, a circuit where the only repeated node is the first/last one..
- d. Identify: Did you come up with any **Eulerian Trails**? If not, create one.
- e. Identify: Are there any **parallel edges**?

- Simple graph: A graph that has no loops or parallel edges.
- **Directed graph:** The edges in the graph are given a direction, which can only be traversed in that way.
 - Edges are denoted with parentheses (a, b), showing that it goes from a to b.

Question 4 _____ / 1

Draw a **Directed Graph** using the following list of edges:

(Don't confuse these for points on an x, y plane that are interconnected, each ordered pair is its own set of information - beginning and end nodes.)

- A graph is **connected** if there is a walk between any pair of distinct nodes.
- A graph H is a **subgraph** of a graph G if all nodes and edges in H are also nodes and edges in G.
- A **connected component** of a graph G is a connected subgraph H of G such that no other connected subgraph of G containing H exists.

^aDiscrete Mathematics, Ensley and Crawley

Question 5 _____ / 2

Draw a graph that is **not connected**, and draw a **subgraph** of your graph.