Dado trucado

J. Abellán22/10/2017

Teorema del límite central con dado trucado

Vamos a comprobar, mediante simulación, que la variable aleatoria Y suma de un número n grande de variables aleatorias, cuyas funciones de distribución distan mucho de ser normales, es normal. Es decir:

$$Y = \sum_{i=1}^{n} X_i$$

es normal, aunque las v.a. X_i no lo sean, cuando $n \to \infty$.

Veamos a continuación las funciones de distribución de las variables X_i y la normal de igual media y varianza:

Dado raro: Xm= 0.5 ,deX= 0.35

Los estadísticos de este tipo de variable X son $\overline{X}=1/2$ y $\sigma_X^2=((1/3)^3+1-(2/3)^3)/2-(1/2)^2$.

Pasamos a generar la variable aleatoria Y sumando n variables X con diferentes valores de n=1,2,4,10,...

n= 1 ; dY= 0.35

n= 2 ; dY= 0.25

n= 4 ; dY= 0.17

n= 10 ; dY= 0.11

n= 20 ; dY= 0.08

n= 100 ; dY= 0.03

Queda comprobado que la \mathbf{suma} de un número grande de varias variables aleatorias no gaussianas es $\mathbf{gaussiana}$.