Feuille d'exercice n° 13 : Continuité

Exercice 1 Etudier la continuité de

- 1. $f(x) = x + \sqrt{x |x|}$.
- $2. \ g(x) = \lfloor x \rfloor + \sqrt{x \lfloor x \rfloor}.$

Exercice 2 (${\mathfrak{D}}$) Les fonctions suivantes sont-elles prolongeables par continuité sur ${\mathbb R}$?

a)
$$f(x) = \sin x \sin\left(\frac{1}{x}\right)$$
; b) $f(x) = \frac{1}{x} \ln \frac{e^x + e^{-x}}{2}$; c) $f(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$.

Exercice 3 f est une application croissante, continue de \mathbb{R} dans \mathbb{R} . On définit pour tout réel x, $F(x) = \sup\{y \in \mathbb{R}/f(y) \leq x\}$.

- 1. F est-elle toujours définie?
- 2. On prend pour cette question, $\forall x \in \mathbb{R}, f(x) = x^2$. Déterminer F.
- 3. On prend pour cette question, $f(x) = \begin{cases} x 1 & \text{si } x \leq -1 \\ -2 & \text{si } |x| < 1 \\ 2x 4 & \text{si } x \geq 1 \end{cases}$

Déterminer F, étudier sa continuité, continuité à droite, à gauche.

Exercice 4

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \begin{cases} x & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \\ 1/x & \text{si } x \in \mathbb{Q} \setminus \{0\} \\ 0 & \text{si } x = 0. \end{cases}$

- 1. Montrer que f est une bijection de \mathbb{R} sur \mathbb{R} .
- 2. a) En revenant à la définition de continuité, montrer que f est continue en 1 et en -1.
 - b) Soient $a \in \mathbb{Q}$ et $b \in \mathbb{R} \setminus \mathbb{Q}$. Donner, en la justifiant, la valeur, pour tout $n \in \mathbb{N}^*$, des quantités suivantes :

(i)
$$f(a+1/n)$$
 (ii) $f(a+\sqrt{2}/n)$ (iii) $f(b+1/n)$ (iv) $f\left(\frac{\mathbb{E}(b.10^n)}{10^n}\right)$.

- c) Que dire de la continuité de f en $x \in \mathbb{R} \setminus \{-1, 1\}$?
- 3. À quoi ressemblerait la courbe représentative de f vue par un myope ?

Exercice 5 Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue telle que $\forall x \in I, f(x)^2 = 1$. Montrer que f = 1 ou f = -1.

Exercice 6 Soient $(a, b) \in \mathbb{R}^2$ tel que a < b, et soit f, g définies et continues sur [a; b] telles que $\forall x \in [a; b], \ 0 < g(x) < f(x)$.

Montrer : $\exists \lambda \in \mathbb{R}_+^*, \ \forall x \in [a; b], \ (1 + \lambda)g(x) < f(x).$

Exercice 7 (Trouver toutes les fonctions vérifiant :

- 1. $f: \mathbb{R} \to \mathbb{R}$ continue en $0, \forall x \in \mathbb{R}, f(2x) = f(x) \cos x$
- 2. $f: \mathbb{R} \to \mathbb{R}$ continue, $\forall x \in \mathbb{R}, \ f(2x+1) = f(x)$

Exercice 8 (\circlearrowleft) Montrer qu'une fonction continue périodique non constante définie sur \mathbb{R} possède une plus petite période (strictement positive).

Exercice 9 (Soit f une fonction de [a, b] dans [a, b] telle que pour tout x et x' ($x \neq x'$) de [a, b] on ait : |f(x) - f(x')| < |x - x'|.

- 1. Montrer que f est continue sur [a, b].
- 2. Montrer que l'équation f(x) = x admet une et une seule solution dans [a, b]. (On pourra introduire la fonction : $x \mapsto g(x) = f(x) x$).

Exercice 10 (%)

Soit P un polynôme de degré impair et à coefficients réels. Montrer que P possède une racine réelle.

Exercice 11

Soient $f, g \in \mathcal{C}([a, b], \mathbb{R})$. On suppose que $: \forall x \in [a, b], \exists x' \in [a, b] \mid f(x) = g(x')$. On veut montrer que $: \exists c \in [a, b] \mid f(c) = g(c)$. Raisonnons par l'absurde et supposons que pour tout $x \in [a, b], f(x) \neq g(x)$.

- 1. Montrer qu'alors f g est de signe constant et ne s'annule pas.
- 2. On suppose que f g > 0.
 - (i) Montrer que f et g possèdent chacune un maximum sur [a,b]. On les notera M_f et M_q .
 - (ii) Montrer que $M_g \geqslant M_f$ et conclure.
- 3. Retrouver le résultat si f g < 0.

Exercice 12 Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue telle que f(a)=f(b).

- 1. Montrer que la fonction $g(t) = f(t + \frac{b-a}{2}) f(t)$ s'annule en au moins un point de $[a, \frac{a+b}{2}]$.
- 2. Application : une personne parcourt 4 km en 1 heure. Montrer qu'il existe un intervalle de 30 mn pendant lequel elle parcourt exactement 2 km.

Exercice 13 (%) — TVI à l'infini —

Soit $f:[0,+\infty[\to\mathbb{R}$ continue ayant une limite $\ell\in\overline{\mathbb{R}}$ en $+\infty$. Montrer que f prend toute valeur comprise entre f(0) et ℓ (ℓ exclu).

Exercice 14 f et g sont deux fonctions continues de [a;b] dans [a;b] avec a < b, telles que

$$\forall x \in [a;b], \ f \circ g(x) = g \circ f(x)$$
.

On pose $E = \{x \in [a; b] / f(x) = x\}.$

- 1. Montrer que E a une borne inf et une borne sup. On notera $\alpha = \inf E$ et $\beta = \sup E$.
- 2. Montrer qu'il existe une suite (α_n) d'éléments de E telle que $\lim_{n \to +\infty} \alpha_n = \alpha$. On montrerait de même qu'il existe une suite (β_n) d'éléments de E telle que $\lim_{n \to +\infty} \beta_n = \beta$.
- 3. Montrer que α et β sont dans E.
- 4. Montrer que $g(\alpha)$ et $g(\beta)$ sont dans E.
- 5. Établir que $\exists x_0 \in [a; b], \ f(x_0) = g(x_0)$ (on pourra considérer la fonction h = g f).

