COMP 3331/9331: Computer Networks and Applications

Week 8

Network Layer: Control Plane (Routing)

Chapter 5: Section 5.1 - 5.2, 5.6

Network layer, control plane: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- hierarchical routing

5.6 ICMP: The Internet Control Message Protocol

Self study

Network-layer functions

Recall: two network-layer functions:

- forwarding: move packets
 from router's input to
 appropriate router output
- routing: determine route taken by packets from source Control plane to destination

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)

Per-router control plane

Individual routing algorithm components *in each and every router* interact with each other in control plane to compute forwarding tables

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables

Network layer, control plane: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- Hierarchical routing

5.6 ICMP: The Internet Control Message Protocol

Internet Routing

- Internet Routing works at two levels
- Each AS runs an intra-domain routing protocol that establishes routes within its domain
 - AS -- region of network under a single administrative entity
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Distance Vector, e.g., Routing Information Protocol (RIP)
- ASes participate in an inter-domain routing protocol that establishes routes between domains
 - Path Vector, e.g., Border Gateway Protocol (BGP)

Graph abstraction

graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (u,w), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Graph abstraction: costs

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Link Cost

- Typically simple: all links are equal
- Least-cost paths => shortest paths (hop count)
- Network operators add policy exceptions
 - Lower operational costs
 - Peering agreements
 - Security concerns

Network layer, control plane: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- hierarchical routing

5.6 ICMP: The Internet Control Message Protocol

Routing algorithm classes

Link State (Global)

- Routers maintain cost of each link in the network
- Connectivity/cost changes flooded to all routers
- Converges quickly (less inconsistency, looping, etc.)
- Limited network sizes

Distance Vector (Decentralised)

- Routers maintain next hop & cost of each destination.
- Connectivity/cost changes iteratively propagate form neighbour to neighbour
- Requires multiple rounds to converge
- Scales to large networks

Link State Routing

- Each node maintains its local "link state" (LS)
 - i.e., a list of its directly attached links and their costs

Link State Routing

- Each node maintains its local "link state" (LS)
- Each node floods its local link state
 - on receiving a new LS message, a router forwards the message to all its neighbors other than the one it received the message from

Flooding LSAs

- Routers transmit Link State Advertisement (LSA) on links
 - A neighbouring router forwards out on all links except incoming
 - Keep a copy locally; don't forward previously-seen LSAs
- Challenges
 - Packet loss
 - Out of order arrival
- Solutions
 - Acknowledgements and retransmissions
 - Sequence numbers
 - Time-to-live for each packet

Link State Routing

- Each node maintains its local "link state" (LS)
- Each node floods its local link state
- Eventually, each node learns the entire network topology
 - Can use Dijkstra's to compute the shortest paths between nodes

A Link-State Routing Algorithm

Dijkstra 's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- **\star** C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to dest. v
- p(V): predecessor node along path from source to
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
Initialization:
   N' = \{u\}
   for all nodes v
    if v adjacent to u
       then D(v) = c(u,v)
    else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
   add w to N'
   update D(v) for all v adjacent to w and not in N':
      D(v) = \min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Step	Set N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1						
2						
3						
4						
5						


```
    1 Initialization:
    2 N' = {A};
    3 for all nodes v
    4 if v adjacent to A
    5 then D(v) = c(A,v);
    6 else D(v) = ∞;
    ...
```


Step	Set N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	A	2,A	5,A	1,A	∞	∞
	AD					
2						
3						
4						
5						


```
8 Loop
9 find w not in N' s.t. D(w) is a minimum;
10 add w to N';
11 update D(v) for all v adjacent to w and not in N':
12 If D(w) + c(w,v) < D(v) then</li>
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N';
```

Step	Set N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
→ 1	AD <	2, A	4,D		2,D	
2						
3						
4						
5						


```
9 find w not in N' s.t. D(w) is a minimum;
10 add w to N';
11 update D(v) for all v adjacent
to w and not in N':
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N';
```

Step	Set N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2, A	4,D		2,D	
- 2	ADE	2, A	3,E			4,E
3						
4						
5						


```
    Noop
    find w not in N' s.t. D(w) is a minimum;
    add w to N';
    update D(v) for all v adjacent to w and not in N':
    If D(w) + c(w,v) < D(v) then</li>
    D(v) = D(w) + c(w,v); p(v) = w;
    until all nodes in N';
```

Step	o S	Set N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	\	2,A	5,A	1,A	∞	∞
1	Α	νD	2,A	4,D		2,D	
2	Δ	DE	2,A	3,E			4,E
→ 3	Α	DEB		3,E			4,E
4							

5

```
    Note: Note
```

Step	Set N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D		2,D	
2	ADE	2,A	3,E			4,E
3	ADEB		3,E			4,E
- 4	ADEBC					4,E
5						


```
    → 8 Loop
    9 find w not in N' s.t. D(w) is a minimum;
    10 add w to N';
    11 update D(v) for all v adjacent to w and not in N':
    12 If D(w) + c(w,v) < D(v) then</li>
    13 D(v) = D(w) + c(w,v); p(v) = w;
    14 until all nodes in N';
```

Step	Set N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D		2,D	
2	ADE	2,A	3,E			4,E
3	ADEB		3,E			4,E
4	ADEBC					4,E
→ 5	ADEBCF					


```
    8 Loop
    9 find w not in N' s.t. D(w) is a minimum;
    10 add w to N';
    11 update D(v) for all v adjacent to w and not in N':
    12 If D(w) + c(w,v) < D(v) then</li>
    13 D(v) = D(w) + c(w,v); p(v) = w;
    14 until all nodes in N';
```

Step	Set N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	(1,A)	∞	∞
1	AD		4,D		(2,D)	
2	ADE		(3,E)			4,E
3	ADEB					
4	ADEBC					
5	ADEBCE					

To determine path $A \rightarrow C$ (say), work backward from C via p(v)

The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table

resulting shortest-path tree from A:

Destination	Link
В	(A,B)
С	(A,D)
D	(A,D)
E	(A,D)
F	(A,D)

Issue #1: Scalability

- How many messages needed to flood link state messages?
 - O(N x E), where N is #nodes; E is #edges in graph
- Processing complexity for Dijkstra's algorithm?
 - $O(N^2)$, because we check all nodes w not in N' at each iteration and we have O(N) iterations
- \bullet How many entries in the LS topology database? O(E)
- \star How many entries in the forwarding table? O(N)

Issue#2: Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - The shortest paths are no longer consistent
 - Can cause transient forwarding loops

Oscillations

oscillations possible:

• e.g., suppose link cost equals amount of carried traffic:

Network layer, control plane: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- hierarchical routing

5.6 ICMP: The Internet Control Message Protocol

Distance vector algorithm

Bellman-Ford equation

```
let
  d_{x}(y) := cost of least-cost path from x to y
then
  d_{x}(y) = \min \{c(x,v) + d_{v}(y)\}
                             cost from neighbor v to destination y
                    cost to neighbor v
            min taken over all neighbors v of x
```

Bellman-Ford example

clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

node achieving minimum is next hop in shortest path, used in forwarding table

How Distance-Vector (DV) works

Each router maintains its shortest distance to every destination via each of its neighbours

Each router computes its shortest distance to every destination via <u>any</u> of its neighbors

From node A

A

	via B	via C
to B	?	?
to C	?	?
to D	?	?

A's DV

	min dist
to B	?
to C	?
to D	?

How does A initialize its dist() table and DV?

How does A initialize its dist() table and DV?

From node A

	via B	via C
to B	c(A,B)	∞
to C	8	c(A,C)
to D	8	∞

A's DV

	mindist
to B	c(A,B)
to C	c(A,C)
to D	∞

Each router initializes its dist() table based on its immediate neighbors and link costs

Assume that A's DV is as follows at some later time

From node A

	via B	via C
to B	c(A,B)	∞
to C	8	c(A,C)
to D	8	∞

A's DV

	mindist
to B	5
to C	6
to D	2

Each router sends its DV to its immediate neighbors

From node B		
	via A	via C
to A	5	∞
to C	15	1
to D	00	∞

mindist

to A 5

to C 1

to D ∞

B's DV

Routers process received DVs

Distance Vector Routing

- Each router knows the links to its neighbors
- Each router has provisional "shortest path" to every other router -- its distance vector (DV)
- Routers exchange this DV with their neighbors
- Routers look over the set of options offered by their neighbors and select the best one
- Iterative process converges to set of shortest paths

Distance vector routing

iterative, asynchronous: each local iteration

each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

each node:

wait for (change in local link cost or msg from neighbor)

recompute estimates

if DV to any dest has changed, notify neighbors

Distance Vector

- c(i,j): link cost from node i to j
- dist_Z(A,V): shortest dist. from A to V via Z
- mindist(A,V): shortest dist. from A to V

```
0 At node A
1 Initialization:
    for all destinations V do
        if V is neighbor of A
            dist_{V}(A, V) = mindist(A, V) = c(A, V);
5
        else
6
             dist_{V}(A, V) = mindist(A, V) = \infty;
     send mindist(A, *) to all neighbors
loop:
   wait (until A sees a link cost change to neighbor V /* case 1 */
          or until A receives mindist(V,*) from neighbor V) /* case 2 */
     if (c(A, V) changes by \pm d) /* \leftarrow \mathbf{case 1} */
11
        for all destinations Y do
12
                  dist_{\vee}(A, Y) = dist_{\vee}(A, Y) \pm d
     else /* \leftarrow case 2: */
        for all destinations Y do
14
15
                  dist_{V}(A, Y) = c(A, V) + mindist(V, Y);
     update mindist(A, *)
15 if (there is a change in mindist(A, *))
          send mindist(A, *) to all neighbors
16
17 forever
```

Distance Vector

- c(i,j): link cost from node i to j
- dist_Z(A,V): shortest dist. from A to V via Z
- mindist(A,V): shortest dist. from A to V

```
0 At node A
1 Initialization:
    for all destinations V do
        if V is neighbor of A
            dist_{V}(A, V) = mindist(A, V) = c(A, V);
5
        else
6
             dist_{V}(A, V) = mindist(A, V) = \infty;
     send mindist(A, *) to all neighbors
loop:
   wait (until A sees a link cost change to neighbor V /* case 1 */
          or until A receives mindist(V,*) from neighbor V) /* case 2 */
     if (c(A, V) changes by \pm d) /* \leftarrow \mathbf{case 1} */
11
        for all destinations Y do
12
                  dist_{\vee}(A, Y) = dist_{\vee}(A, Y) \pm d
     else /* \leftarrow case 2: */
        for all destinations Y do
14
15
                  dist_{V}(A, Y) = c(A, V) + mindist(V, Y);
     update mindist(A, *)
15 if (there is a change in mindist(A, *))
          send mindist(A, *) to all neighbors
16
17 forever
```

Example: Initialization

from Node B

	via A	via C	via D	min dist
to A	2	8	∞	2
to B	-	ı	-	0
to C	8	1	∞	1
to D	∞	∞	3	3

from Node D

	via B	via C
	ם	
to A	8	8
to B	3	8
to C	8	1
to D	ı	-

min dist

 ∞

from Node C

	via A	via B	via D	min dist
to A	7	∞	∞	7
to A	/	\sim		
to B	∞	1	∞	1
to C	-	-	-	0
to D	8	∞	1	1

	via B	via C
to A	-	-
to B	2	8
to C	8	7
to D	8	8

min dist	min dist
0	0
2	2
7	7
∞)	∞

from Node B

	via A	via C	via D	min dist
to A	2	∞	∞	2
to B	-	-	-	0
to C	8	1	∞	1
to D	8	∞	3	3

from Node D

	via B	via C
to A	8	8
to B	3	8
to C	8	1
to D	-	-

min dist
∞
3
1
0

from Node A

	via B	via C
to A	-	-
to B	2	8
to C	8	7
to D	8	8

min dist

0

2

7

∞

	via A	via B	via D	d d
to A	7	8	8	
to B	∞	1	8	
to C	-	-	-	
to D	∞	8	1	

50

	via B	via C
to A	-	-
to B	2	8
to C	8	7
to D	8	8

min dist	
0	
2	
7	
8	

from Node B

	via A	via C	via D	min dist
to A	2	8	∞	2
to B	-	-	-	0
to C	8	1	∞	1
to D	8	8	3	3

from Node D

	via B	via C
to A	8	8
to B	3	8
to C	8	1
to D	ı	-

_	
	min dist
	∞
	3
	1
	0

from Node A

	via B	via C
to A	-	-
to B	2	8
to C	8	7
to D	8	8

min dist

0
2
7

	via A	via B	via D	min dist
	, ,			7
to A	7	8	8	/
				4
to B	∞	1	∞	1
to C	-	-	-	0
to D	∞	∞	1	1
	- •	- •	1	

from Node B

	via A	via C	via D	mir dis
to A	2	∞	∞	2
to B	-	-	-	0
to C	8	1	∞	1
to D	8	8	3	3

from Node D

	via B	via C
to A	8	8
to B	3	8
to C	8	1
to D	-	-

min dist
8
3
1
0

from Node A

	via B	via C		
to A	-	-		
to B	2	8		
to C	8	7		
to D	8	8		

	via A	via B	via D	m di
to A	7	8	∞	
to B	∞	1	∞	
to C	-	-	-	(
to D	∞	8	1	•

from Node B

	via A	via C	via D	min dist
to A	2	∞	∞	2
to B	-	-	-	0
to C	8	1	∞	1
to D	∞	∞	3	3

	via B	via C
to A	8	8
to B	3	8
to C	8	1
to D	ı	-

min dist
∞
3
1
0

from Node A

	via B	via C
to A		-
to B	2	8
to C	3	7
to D	5	8

min dist

0

2

3

	via A	via B	via D	mi dis
to A	7	∞	∞	7
to B	∞	1	∞	1
to C	-	-	-	0
to D	8	∞	1	1

All nodes know the best two-hop paths.

Make sure you believe this

from Node B

	via A	via C	via D	min dist
to A	2	8	∞ ∞	2
to B	-	-	-	0
to C	9	1	4	1
to D	∞	2	3	2

from Node D

	via B	via C
to A	5	8
to B	3	2
to C	4	1
to D	-	-

	min dist
	5
	2
	1
Ī	0

from Node A

	via B	via C
to A	-	-
to B	2	8
to C	3	7
to D	5	8

min dist
0
2
3
5

	via A	via B	via D	min dist
	, ,)		0
to A	7	3	8	3
				4
to B	9	1	4	
				0
to C	\-	-	-	U
to D	≫	1	1	1
to D	8	4		

	via A	via C	via D	mir dist
to A	2	8	∞	2
to B	-	-	-	0
to C	9	1	4	1
to D	8	2	3	2

dist	
2	
0	
	l

from Node D

	via B	via C
to A	5	8
to B	3	2
to C	4	1
to D	ı	-

min dist
5
2
1
0

from Node A

	via B	via C
to A		-
to B	2	8
to C	3	7
to D	5	8

min dist 0

	via A	via B	via D		
to A	7	3	∞		
ιο / ι		0			
to B	9	1	4		
to C	_	_	_		
				_	
to D	8	4	1		

Example: Nov

Updated

from Note B

	via A	via C	via D	min
to A	2	8	∞	
to B	-	-		0
to C	/5	1/	4	1
to D	¹ 7	2	3	2

from Node D

	via B	via C
to A	5	8
to B	3	2
to C	4	1
to D	-	-

m di	
5	5
2	2
1	
)

from Node A

	via B	via C
to A	-	-
to B	2	8
to C	3	7
to D	5	8

min dist

0

2

3

from Node C

	via A	via B	via D
to A	7	3	8
to B	9	1	4
to C	-	-	-
to D	8	4	1

min dist

3

1

Check: All nodes know the best three-hop paths.

Check

from Node B

	via A	via C	via D	min dist
to A	2	4	8	2
to B	-	-	-	0
to C	5	1	4	1
to D	7	2	3	2

from Node D

	via B	via C
to A	5	4
to B	3	2
to C	4	1
to D	-	-

min dist	
4	
2	
1	
0	

from Node A

	via B	via C
to A	-	-
to B	2	8
to C	3	7
to D	4	8

from Node C

	via A	via B	via D	
to A	7	3	6	
to B	9	1	3	
to C	-	-	-	
to D	12	3	1	

min dist

3

Example: End of 3nd Full Exchange

No further change in DVs → Convergence!

from Node B

	via A	via C	via D	min dist
to A	2	4	7	2
to B	-	-	-	0
to C	5	1	4	1
to D	6	2	3	2

from Node D

	via B	via C
to A	5	4
to B	3	2
to C	4	1
to D	ı	-

min dist	
4	
2	
1	
0	

from Node A

	via B	via C
to A	-	-
to B	2	8
to C	3	7
to D	4	8

min dist

0
2
3

	via A	via B	via D	mir dis	
	, , ,			3	
to A	7	3	5	3	
_	_		_	1	
to B	9	1	3	<u>'</u>	
1- 0				0	
to C	-	-	-	U	
to D	11	3	1	1	
10 D	' '	<u> </u>		•	

Intuition

- Initial state: best one-hop paths
- One simultaneous round: best two-hop paths
- Two simultaneous rounds: best three-hop paths
- ***** ...
- Kth simultaneous round: best (k+1) hop paths
- Must eventually converge
 - as soon as it reaches longest best path
-but how does it respond to changes in cost?

Problems with Distance Vector

- A number of problems can occur in a network using distance vector algorithm
- Most of these problems are caused by slow convergence or routers converging on incorrect information
- Convergence is the time during which all routers come to an agreement about the best paths through the internetwork
 - whenever topology changes there is a period of instability in the network as the routers converge
- Reacts rapidly to good news, but leisurely to bad news

DV: Link Cost Changes

Link cost changes here

"good news travels fast"

DV: Link Cost Changes

Link cost changes here

DV: Link Cost Changes

This is the "Counting to Infinity" Problem

Link cost changes here

"bad news travels slowly" (not yet converged)

The "Poisoned Reverse" Rule

- Heuristic to avoid count-to-infinity
- If B routes via C to get to A:
 - B tells C its (B's) distance to A is infinite (so C won't route to A via B)

If B routes through C to get to A:
B tells C its (B's) distance to A is infinite

Link cost changes here

Converges after C receives another update from B 7

Will Poison-Reverse Completely Solve the Count-to-Infinity Problem?

Numbers in blue denote the best cost to destination D advertised along the link

Quiz: Link-state routing

- In link state routing, each node sends information of its direct links (i.e., link state) to _____?
- A. Immediate neighbours
- B. All nodes in the network
- C. Any one neighbor
- D. No one

Quiz: Distance-vector routing

- In distance vector routing, each node shares its distance table with _____?
- A. Immediate neighbours
- B. All nodes in the network
- C. Any one neighbor
- D. No one

Quiz: Distance-vector routing

- Which of the following is true of distance vector routing?
- A. Convergence delay depends on the topology (nodes and links) and link weights
- B. Convergence delay depends on the number of nodes and links
- C. Each node knows the entire topology
- D. A and C
- E. B and C

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires
 O(nE) msgs
 - may have oscillations
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

Real Protocols

Link State

Open Shortest Path First (OSPF)

Intermediate system to intermediate system (IS-IS)

Distance Vector

Routing Information Protocol (RIP)

Interior Gateway Routing Protocol (IGRP-Cisco)

Border Gateway Protocol (BGP)

Network layer, control plane: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- hierarchical routing

5.6 ICMP: The Internet Control Message Protocol

Self study

ICMP: Internet Control Message Protocol

- Used by hosts & routers to communicate network level infromation
 - Error reporting: unreachable host, network, port
 - Echo request/reply (used by ping)
- Works above IP layer
 - ICMP messages carried in IP datagrams
- ICMP message: type, code plus IP header and first
 8 bytes of IP datagram payload causing error

ICMP: Internet Control Message Protocol

Type	Code	Description
0	0	echo reply(ping)
3	0	dest. network unreachable
3	I	dest host unreachable
3	3	dest port unreachable
3	4	frag needed; DF set
8	0	echo request(ping)
11	0	TTL expired
11	I	frag reassembly time exceeded
12	0	bad IP header

Traceroute and ICMP

- Source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- When nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type II, code 0)
 - ICMP messages includes IP address of router

when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

