CMPT 733 Further Topics in Deep Learning

Sequence learning, Sentiment analysis, Word2Vec, DL-Vis

Steven Bergner

sbergner@sfu.ca

17 March 2019

Overview

- Deep learning approaches for sequence learning with RNNs
- Natural language processing, e.g.
 - Sentiment analysis
 - Word embeddings
- Visualization for Deep Learning

Recap: Choosing architecture family

- No structure → fully connected
- Spatial structure → convolutional
- Sequential structure → recurrent

Types of connectivity

Sequence Modeling with Recurrent Nets

Classical Dynamical Systems

- Recurrent network models a dynamical system that is updated in discrete steps over time
- Function f takes input from time t to output at time t+1
- Rules persist across time

Unfolding Computation Graphs

- Recurrent graph can be unfolded, where hidden state h is influencing itself
- Backprop through time is just backprop on unfolded graph

Recurrent Hidden Units

More than one layer

Recurrence only through output

Avoid backprop through time

Mitigation: Teacher forcing(

 Use actual or expected output from the training dataset at current time y(t) as input o(t) to the next time step, rather than generated output

 Backprop stops when it reaches y(t-1) via o(t-1)

Sequence Input, Single Output

• E.g. sentiment analysis of some review text

Fully Connected Graphical Model

 Too many dependencies among variables, if each has its own set of parameters

RNN Graphical Model

- Organize variables according to time with single update rule
- Finite set of relationships may extend to infinite sequences
- h acts as "memory state" summarizing relevant history

Bidirectional RNN

 Later information may be used to reassess previous observations

Exploding Gradients from Function Composition

 Example: one input variable, color encodes number of times RNN update rule is run

- Exponentiation of weights from one time step to the next
- Feed-forward nets don't have this problem, due to different weights in each layer

LSTMs

Use addition over time instead of multiplication

Gradient Clipping

- Add learning rate time gradient to update parameters
- Believe direction of gradient, but not its magnitude

Sentiment Analysis Word embeddings

Sentiment Analysis

- Computational study of opinions, sentiments, subjectivity, evaluations, attitudes, appraisal, affects, views, emotions, etc., expressed in text
- Aka Opinion mining

Step A: Text processing

- Break up text into sentences
- Tokenize words
- Remove stop words [I, had, the, a, as, there]
- What other preprocessing could be useful?

B1: Words -> hash indices

- Each word is a string
- Hash each string to a number

Problem:

Large vocab leads to large vectors -> store as sparse vec

B2: Doc -> word count vector

- Term frequency (TF)
 - Count the number of occurrences of each string in each doc
- Frequent words with less meaning dominate
- Scale down with a measure of ubiquity
 - inverse doc frequency (IDF)
- Semantically equivalent words are not grouped together

Better: Use Word2Vec

Distributional Hypothesis

- Words that are used and occur in same context tend to support the same meaning
- Word semantics are taken into account
- "Judge a word by the company it keeps."
- Dense word representation (word2vec, see Spark ML)

C: Document \rightarrow average vectors

- Word vectors → clusters, docs → avg cluster vectors
- Use k-means, cluster groups synonyms or topics

D: Regression / Classification

- Linear regression: star rating
- Logistic regression: likes, smiley types, etc.

Sentiment using LSTMs

- Stanford Sentiment Treebank
 - https://nlp.stanford.edu/sentiment/treebank.html
- Sentiment via LSTM using word2vec
 - https://github.com/git-steb/pytorch-sentiment-classification
 - fork of: https://github.com/clairett/pytorch-sentiment-classification/

Visualization Recap: Data, Task, and Encoding

→ Consume

Search

	Target known	Target unknown
Location known	Lookup	: Browse
Location unknown	⟨`@.> Locate	₹ ⊙ > Explore

Query

Targets

All Data

Attributes

Network Data

→ Topology

Spatial Data

Tasks

Actions

- Analyze
- Search
- Query

Targets

- Item & Attributes
- Topology & Shape
- Models

Visualization for ML

- Tensorboard: Visualizing Learning
- How to use t-SNE efficiently

Model visualization

- LSTM-Vis: http://lstm.seas.harvard.edu/client/index.html
- Building blocks of interpretability
- SHAP (SHapley Additive exPlanations)
- Lime: Explaining the predictions of any ML classifier

Sources

- I. Goodfellow, Y. Bengio, A. Courville "Deep Learning" MIT Press 2016 [link]
- Apala Guha's slides from 2017 CMPT 733