数字信号处理——

一门正在蓬勃发展的新学科

胡广书 崔子经 清华大学

[摘要] 数字信号处理是一门涉及众多学科,又广泛应用于众多领域的新兴学科,它既有着较为完整的理论体系,又正在以最快的速度形成自己的产业,因此,它是近三十年来发展最快的新学科之一。本文简要介绍了数字信号处理的理论范围、软、硬件实现及应用的一些基本内容。

关键词:数字信号处理(DSP)

1 前言

自 60 年代以来,随着计算机和信息学科的飞速发展,数字信号处理(Digital Signal Processing, DSP)技术应运而生并迅速发展,现已形成了一门独立的学科体系。目前在国外绝大部分重点工科院校中,都已把《数字信号处理》列为技术基础课,作为研究生和部分专业本科生的必修课或选修课,特别是国外的重点高校,都建立有信息处理中心,把教学、科研、人材培养紧密结合起来,不但在理论上而且在实际运用上都取得了丰硕的成果。目前,以 DSP 芯片及外围开发设备为主,正在形成一个具有较大潜力的产业与市场。

简单地说,数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、变换、综合、估值与识别等等的加工处理,借以达到提取信息和便于应用的目的。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,因此,具有许多模拟信号处理技术与设备所无法比拟的优点。

众所周知,几乎所有的工程技术领域都要 涉及到信号和信号检测问题。这些信号包括电 的、磁的、机械的、热的、生体的等等各个方面。 但信号检测到以后,如何在较强的背景噪声下 提取出真正的信号或信号的特征,以应用于工 程实际,则是信号处理技术要完成的任务。因此 可以说,信号处理是检测的必然继续,它和信号 检测一样也几乎涉及到所有的工程技术领域。 近二十多年来,数字信号处理是紧紧围绕着理论、实现及应用三个方面迅速发展起来的,它以众多的学科为理论基础,其成果又渗透到众多的学科,成为理论与实践并重、在高新技术领域中占有重要地位的新兴学科。

2 数字信号处理的理论

数字信号处理在理论上所涉及的范围极其 广泛,在数学领域,微积分、概率统计、随机过 程、高等代数、数值分析、近世代数、复变函数等 等都是它的基本工具,网络理论、信号与系统是 它的又一理论基础。在学科发展上,数字信号处 理又和最优控制、通信理论、故障诊断等紧紧处 连,近年来又成为人工智能、模式识别、神经知 连,近年来又成为人工智能、模式识别、神经 经等新兴学科的理论基础,其算法的实现(无论 是硬件和软件)又和计算机学科及微电子技经 密不可分。因此可以说,数字信号处理是把经典 的理论体系(如数学、系统、信息)作为自己的理 论基础,同时又使自己成为一系列新兴学科的 理论基础。

在国际上,一般把 1965 年快速傅里叶变换 (FFT)的问世,作为数字信号处理这一新学科的开端。在二十多年的发展中,数字信号处理自身已基本上形成一套较为完整的理论体系。这些理论主要包括:

- (1)信号的采集(A/D 技术、抽样定理、多抽样率、量化噪声分析等);
- (2)离散信号的分析(时域及频域分析、各种变换技术、信号特征的描述等);
 - (3)离散系统分析(系统的描述、系统的转

移函数及频率特性等);

- (4)信号处理中的快速算法(快速傅里叶变换、快速卷积与相关等);
- (5)信号的估值(各种估值理论、相关函数与功率谱估计等);
- (6)滤波技术(各种数字滤波器的设计与实现);
- (7)信号的建模(最常用的有 AR、MA、ARMA、PRONY 等各种模型);
- (8)信号处理中的特殊算法(如抽取、插值、 奇异值分解、反卷积、信号重建等);
- (9)信号处理技术的实现(软件实现与硬件 实现);
 - (10)信号处理技术的应用。

数字信号处理中所涉及到的信号包括确定性信号、平稳随机信号、时变信号、一维及多维信号、单通道及多通道信号。所涉及到的系统也包括一维系统、二维系统、多通道系统,对每一类特定的信号与系统,上述理论的各个方面又有不同的内容。

伴随着通讯技术、电子技术及计算机的飞速发展,数字信号处理这一新兴的理论也在不断地丰富和完善,各种新算、新理论正在不断地被提出,可以预计,在今后的十年中,数字信号处理的理论将更快地发展。

3 数字信号处理的实现

数字信号处理算法的实现,大体上有如下 几种方法:

(1)在通用的微计算机(如 PC/X86)上用软件来实现,软件可由使用者自己编写,也可使用现成的软件。自 IEEE DSP Comm 于 1979 年推出第一个信号处理软件包以来^[1],国外的研究机构、公司也在推出不同语言、不同用途的信号处理软件包^[2]。这种实现方法速度较慢,多用于教学与科研。

(2)用单片机来实现,目前单片机的发展速度很快,其功能也很强。依靠单片机的硬件环境配以信号处理软件可用于工程实际,如数字控制、医疗仪器等。

(3)应用专门用于信号处理的 DSP 芯片来 实现,DSP 芯片较之单片机有着更为突出的优 点,如内部带有乘法器,采用并行结构,多总线, 速度快,配有适于信号处理的指令等,DSP 芯 片的问世及飞速发展,为信号处理技术应用于 工程实际提供了可能。

目前市场上的 DSP 芯片以美国德州仪器公司 (TI)的 TMS320CX 系列为主,其它有AT&T 公司的 DSP16、DSP32 系列, MO-TOROLA 公司的 DSP56X、DSP96X 系列, AD公司的 ADSP21X、ADSP210X 等系列。TM320系列从 TM32010 至 C20、C30、C40 已发展到C50 系列。DSP 芯片近几年已在我国得到应用,其中TI公司的产品约占 70%。

(4)利用特殊用途的 DSP 芯片来实现,现在国际上已推出专门用于 FFT、FIR 滤波、卷积、相关等专用芯片,其软件算法已在芯片内部用硬件电路实现,使用者给出输入数据,可在输出端直接得到结果。

DSP 芯片已形成了一个具有较大潜力的产业与市场。据报道,1992年 DSP 芯片的销售量为 11 亿美元,估计到 1996年将达 42 亿美元^[3]。

4 数字信号处理的应用

数字信号处理技术一经问世,便吸引了很多学科的研究者把它应用于自己的研究领域,可以说,数字信号处理是获得应用最快、取得成效最为显著的新学科之一。在语音、雷达、声纳、地震、图象、通信系统、系统控制、生物医学工程、机械振动、遥感遥测、地质勘探、航空航天、电力系统、故障检测、自动化仪器等众多领域都获得了极其广泛的应用,它有效地推动了众多工程技术领域的技术改造和学科发展。近年来,随着多媒体的发展,DSP 芯片已在家电、电话、磁盘机等设备中广泛应用。毫不夸张地说,只要你使用计算机(通用机、专用机、单板机,单片机或一个简单的 CPU)和数据打交道,你就必然要应用数字信号处理技术。

文献[4]概括了数字信号处理应用的 11 个

大方面,近100个子方面,本文不作翻译直接引用在此,供读者参考。

General-Purpose DSP	Graphics Imaging	Instrumentation
Digital filtering	3-D rotation	Spectrum analysis
Convolution	Robot vision	Function generation
Correlation	Image transmission/compression	Pattern matching
Hilbert transforms	Compression	Seismic processing
Fast fourier transform	Pattern recognition	Transient analysis
Adaptive filtering	Image enhancement	Digital filtering
Windowing	Homomorphic processing	Phase-locked loops
Waveform generation	Work stations	
Voice/Speech	Control	Military
Voice mail	Disk control	Secure communications
Speech vocoding	Servo control	Radar processing
Speech vecognition	Robot control	Sonar processing
Speaker verification	Laser printer control	Image processing
Speech enhancement	Engine control	Navigation
Speech synthesis	Motor control	Missile guidance
Text-to-specch	Kalman filtering	Radio frequency modems
Neural networks		Sensor fusion
Telecommunications		Automotive
Echo cancellation	FAX	Engine control
ADPCM telecoders	Cellular telephones	Vibration analysis
Digital PBXs	Speaker phones	Antiskid Brakes
Line repeaters	Digital speech	Adaptive ride control
Channel multiplexing	Interpolation(DSI)	Global positioning
1200 to 9200-bps modems	X. 25 packet switching	Navigation
Adaptive equalizers	video conferencing	Voice commands
DTMF encoding/decoding	Spread sapectrum	Digital radio
Data encryption	Communications	Cellular telephones
Consumer	Industrial	Medical
Radar detectors	Robotics	Hearing aids
Power tools	Numeric control	Patient monitoring
Digital audio/TV	Security access	Ultrasound equipment
Music synthesizer	Power line monitors	Diagnostic tools
Toys and games	Visual inspection	Prosthetics
Solid-state answering	Lathe control	Fetal monitors
Machines	Cam	NMR imaging

综上所述,数字信号处理是一涉及众多学科,又应用于众多领域的新兴学科,它既有较为完整的理论体系,又以最快的速度形成自己的产业。因此,这一新兴学科有着极其美好的发展前景,并将为国民经济的多个领域的发展作出自己的贡献。

参考文献

1 Programs for Digital Signal Processing, Edited by

the Digital signal Processing Committe IEEE Acoustics, Speech and Signal Processing Society, 1979.

- 2 美国热门产品集锦 《电子产品世界》No. 6. 1994
- 3 陈森锦 DSP 进军亚洲市场 《电子产品世界》 No. 10. 1993
- 4 Texas Instruments TMS320 User's Guide (SPRUO31) 1988, Table 1-1, P. 1-5.