

TRÍ TUỆ NHÂN TẠO Artificial Intelligence

Đoàn Vũ Thịnh Khoa Công nghệ Thông tin Đại học Nha Trang Email: thinhdv@ntu.edu.vn

Nha Trang, 06-2023

Thuật giải A* giải bài toán Puzzle 8

 Khởi tạo
 1
 2
 3

 0
 4
 6

 7
 5
 8

Kết thúc	1	2	3
	4	5	6
	7	8	0

Xây dựng hàm lượng giá: f(n) = g(n) + h(n)Trong đó:

- f(n): Hàm lượng giá heuristic tại trạng thái n
- g(n): Khoảng cách từ n đến trạng thái bắt đầu
- h(n): Khoảng cách từ trạng thái n đến mục tiêu

Thuật giải A* giải bài toán Puzzle 8

Hàm lượng giá h được tính:

- h1+=abs(src[i][j]-des[i][j]): h = |0-4|+|4-5|+|5-8|+|8-0|=16
- h2: số ô sai vị trí

Khoảng cách từ n đến trạng thái bắt đầu: g++ (sau mỗi bước giá trị khoảng cách (g) tự động tăng thêm 1 đơn vị. Do vậy giá trị của hàm f chỉ còn phụ thuộc vào giá trị của h.

Thuật giải A* giải bài toán Puzzle 8

Thuật giải A* giải bài toán Puzzle 8

Kết thúc Khởi tạo des[] src[] \in CLOSE 6 h1=16 h1=16 h1=18 h1=16 h2 = 3h2 = 4h2 = 2h2 = 4

1	2	3	1	2	3	CLOS
0	4	6	4	0	6	
		8				

Thuật giải A* giải bài toán Puzzle 8

 1
 2
 3
 1
 2
 3
 1
 2

 4
 5
 6
 7
 5
 8
 7
 5

 7
 8
 0
 1
 2
 3
 1
 2

 7
 5
 6
 1
 2
 3
 1
 5

CLOSE

Heuristic 1: Tổng số miếng sai vị trí Heuristic 2: Tổng khoảng cách sai vị trí của từng miếng.

Thuật giải A* giải bài toán Puzzle 8

Khởi tạo	1	2	3
	0	4	6
	7	5	8

Kết thúc	1	2	3
	4	5	6
	7	8	0

Trò chơi Puzzle 8 số với số tổ hợp các trường hợp có thể say ra là (3x3)! = 362.880 trường hợp.

Ta có thể giới hạn độ sâu của các nhánh sinh ra bằng phương pháp cắt cụt alpha-beta cho phép cắt bỏ những nhánh không cần thiết nhằm giảm bớt số trường hợp phải xét mà không ảnh hưởng đến kết quả đánh giá.

Chương 5. GIẢI THUẬT TÌM KIẾM LỜI GIẢI CHO TRÒ CHƠI Trò chơi 2 người đối kháng

- Xét một trò chơi trong đó 2 người thay phiên nhau đi nước của mình như cờ vua, cờ tướng, cờ caro
- Trò chơi có một trạng thái bắt đầu và mỗi nước đi sẽ biến đổi trạng thái hiện hành thành một trạng thái mới.
- Trò chơi sẽ kết thúc theo một quy định nào đó, nghĩa là cuộc chơi sẽ dẫn đến một t rạng thái phản ánh có một người chơi thắng cuộc hoặc một trạng thái không có ai thắng cuộc (trạng thái hòa).
- Phân tích xem từ một trạng thái nào đó sẽ dẫn đến đấu thủ nào sẽ thắng với điều kiện cả 2 đấu thủ đều sẽ đi những nước đi tốt nhất.

Trò chơi 2 người đối kháng

- Mỗi trò chơi có thể biểu diễn bởi một cây trò chơi
- Mỗi một nút cây biểu diễn cho một trạng thái
- Nút gốc biểu diễn trạng thái bắt đầu của trò chơi
- Mỗi nút lá biểu diễn cho một trạng thái kết thúc của trò chơi (thắng, thua, hòa)
- Nếu trạng thái X được biểu diễn bởi nút n thì các con của n biểu diễn cho tất cả các trạng thái kết quả của nước đi có thể xuất phát từ trạng thái X.

Trò chơi 2 người đối kháng

Trò chơi 2 người đối kháng

ROOT

- X: nút cha: 9 k.năng
- O: nút con: 8 k.năng
- X: nút cha: 7 k.năng
- •
- Tổng số: 9! k.năng
- Nguyên tắc gán giá trị cho nút:
- Nút lá nào thắng: 1
- Nút là nào thua: -1
- Nút lá nào hòa: 0

Trò chơi 2 người đối kháng

ROOT

- X: muốn thắng cần hướng đến các nút có giá trị 1 hay MAX
- O: muốn thắng cần hướng đến các nút có giá trị -1 hay MIN
- Nguyên tắc định trị:
- Nút lá: luôn có g.trị

Trò chơi 2 người đối kháng

- Giá trị nút MAX là giá trị lớn nhất của các nút con
- Giá trị nút MIN là giá trị nhỏ nhất của các nút con
- Bài toán tìm MAX hoặc MIN của dãy số (giải thuật vét cạn)
- Có 2 cách giải:
 - Cách 1: MAX = MIN = A0, duyệt A1-An tìm MAX, MIN
 - Cách 2: $MAX = -\infty$ và $MIN = +\infty$
- Áp dụng cách 2 cho bài toán: Mỗi nút sẽ có một giá trị tạm: Nút MAX có giá trị tam = $-\infty$ và nút MIN có giá trị tạm $+\infty$
- Khi tìm thấy giá trị của một nút con thì tính lại giá trị tạm của nút cha: giá trị tạm mới của nút MAX = LN(giá trị tạm cũ, giá trị nút con) VÀ giá trị tạm mới của nút MIN = NN(giá trị tạm cũ, giá trị của con)

Kỹ thuật vét cạn (MIN-MAX)

1. Xét nút A: tạm A = -∞ (vì A
 là MAX)

- 2. Xét nút B (con A, nút lá): valB = 1
 - tạm A = MAX(tạm A,1) = 1

Trò chơi 2 người đối kháng

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

- P là nút đang xét và đã có 1 số nút con đã xét và một số con chưa xét.
- Q là nút đang xét (Q ⊂ P)
- Gọi V_P, V_Q: giá trị tạm P,Q
- Nếu P là MAX thì Q là MIN (MIN - MAX đan xen nhau)

- Nếu VP >= VQ: cắt tỉa các con chưa xét của Q (cắt tỉa ∝)
- Nếu P là nút MIN thì Q sẽ là nút MAX: VP <= VQ: cắt tỉa các con chưa xét của Q (cắt tỉa β)

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

Nếu VP >= VQ: cắt tỉa các con chưa xét của Q (cắt tỉa ∝) – vì sao?

 Nếu xét hết tất cả các con của Q, ta sẽ tìm được giá trị của Q là V

• Vì Q là nút MIN: $V \le VQi \le VP_{(*)}$

Vì P là nút MAX(V_P,V)

 Từ (*) ta nhận thấy có xét tất cả các nút con của Q cũng không làm ảnh hưởng đến giá trị của nút P

MAX
MIN
MAX
MIN

 Nếu tất cả các nút con của Q đã xét hoặc bị cắt thì giá trị tạm của Q (V_Q) sẽ là giá trị của nút Q

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

Xét nút A có nút con B là nút
 lá = 1 nên tạm A ≥ 1

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

- Xét nút C có nút con E chưa
 là nút lá = 1 nên
- Xét nút I là con E có giá trị là
 O nên valE ≥ 0
- Nên tạm C ≤ 0

■ Ghi chú: MAX >= và MIN <=

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

- A là nút MAX (>=1), C là MIN (<=0). Một số $X \le 0$ và $X \ge 1$ thì không tồn tại X
- Nên nút còn lại của C (nút F) không cần xét
- Xén tía alpha
- Nút C sẽ nhận giá trị valC=0

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

- Xét nút D có 2 con G và H chưa có giá trị nên
- Xét nút G, có con là nút J có giá trị là 0 nên tạm G ≥ 0
- Vì nút G có 1 con đã xét nên valG=0

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

- D là nút MIN có tạm $D \le 0$
- Nút A là nút MAX ≥ 1
- D là nút $MIN \leq 0$
- $X \leq 0 \ v \land X \geq 1 \ th \land \exists ! X$
- Cắt tỉa nhánh con của D là H

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

- Nút D có các nhánh đã xét
 nên valD= 0
- Các nút con B,C,D của D đã xét. MAX(tamamjAA,valD) =1 nên valA=1
- Kết quả nút A so với PP vét cạn là không đổi nhưng số trường hợp phải xét ít hơn nhiều so với PP trước.

Ghi chú: MAX >= và MIN <=</p>

- Xét nút E có 2 nút con đã biết nên valE = MAX(2,1)=2
- Nút B có tạm B: <=2

Xém tía $\propto -\beta$ (Alpha – Beta pruning)

 Nút F có 2 nhánh đều xác định nên valF = 6

- Nút F có 2 nhánh đều xác định nên valF = 6
- Nút B có 2 nhanh đều đã xét nên
 valB = 2

- Nút F có 2 nhánh đều xác định nên valF = 6
- Nút B có 2 nhanh đều đã xét nên
 valB = 2
- Nút A có tạm A >= 2

- Xét nút C có 2 con G và H đều
- Xét nút G có valG = MAX(8,3)

- Xét nút C là con của A
- $\nexists X (X \le 8 \ va) X \ge 2)$ nên
- Xét nút H có tạm H >= 5

- Xét nút H là con của C
- $\nexists X (X \le 8 \ va) X \ge 5)$ nên
- Xét nút con bên phải H và tính lai valH = MAX(5,2) = 5

- Xét nút C có 2 nút con đã biết
- valC = MIN(tam C,5) = 5

- Xét nút D là con của A chưa có giá trị và có 2 con I,E chưa có giá trị.
- Xét nút I: I = MAX(3,4)

- Xét nút D có con là I: tam D <=4</p>
- Xét nút A có con là D
- $\exists X (X \le 4 v \land X \ge 2)$ nên xét tiếp con của D (nút K)
- Tam K >= 2

- Xét nút K
- $\exists X (X \le 4 \ v \ a \ X \ge 2)$ nên xét tiếp con của K (nút bên phải)
- val K >= MAX(2,6)=6

- Xét nút D có 2 con đã biết
- valD = MIN(tam D,6) = 4

- Xét nút A có 3 con đã biết
- valA = MAX(tam A, 5, 4) = 5

HẾT CHƯƠNG 5