Classical Gram Schmidt Orthonormalisation

Let $\{v_1, \ldots, v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1, \ldots, q_m\}$ in \mathbb{R}^n such that

$$span\{v_1,...,v_k\} = span\{q_1,...,q_k\}, k = 1,...,m.$$

Classical Gram Schmidt Orthonormalisation

Let $\{v_1,\ldots,v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1,\ldots,q_m\}$ in \mathbb{R}^n such that

$$span\{v_1,...,v_k\} = span\{q_1,...,q_k\}, \ k = 1,...,m.$$

Classical Gram Schmidt (CGS):

Step 1: $q_1 := v_1/\|v_1\|_2$.

Step 2:
$$q_2 := \underbrace{(v_2 - (v_2^T q_1)q_1)}_{=:\hat{q}_2} / \|v_2 - (v_2^T q_1)q_1\|_2.$$

Step k: Assuming that q_1, \ldots, q_{k-1} are calculated as above,

$$q_k = \underbrace{(v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i)}_{=:\hat{q}_k} / ||v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i||_2.$$

Classical Gram Schmidt Orthonormalisation

Let $\{v_1, \dots, v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1,\ldots,q_m\}$ in \mathbb{R}^n such that

$$\operatorname{span}\{v_1,\ldots,v_k\} = \operatorname{span}\{q_1,\ldots,q_k\}, \ k = 1,\ldots,m.$$
Classical Gram Schmidt (CGS):
$$\mathcal{K}_{k} = \mathcal{V}_{k} \mathcal{V}_{k}, \ell = \mathcal{V}_{k} \mathcal{V}_{$$

Step 1: $q_1 := v_1/\|v_1\|_2$.

Step 2:
$$q_2 := \underbrace{(v_2 - (v_2^T q_1)q_1)}_{=:\hat{q}_2} / \|v_2 - (v_2^T q_1)q_1\|_2.$$

Step k: Assuming that q_1, \ldots, q_{k-1} are calculated as above,

$$q_k = \underbrace{(v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i)}_{=:\hat{q}_k} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i\|_2}_{=: \mathcal{N}_k \mathcal{R}} \xrightarrow{-1} \underbrace{\|v_k$$

in \mathbb{R}^3 produces the ordered orthonormal basis

$$\{(e_1+e_2)/\sqrt{2},(e_2-e_1)/\sqrt{2},e_3\}.$$

Equivalence of CGS and condensed QR decomposition

$CGS \equiv condensed QR$

Supose $\{v_1,\ldots,v_m\}$ is an ordered linearly independent subset of \mathbb{R}^n and $\{q_1,\ldots,q_m\}$ is the output of CGS on $\{v_1,\ldots,v_m\}$.

$$k=1,...,m$$
, $v_{R}=\sum_{i=1}^{R} \kappa_{i} + 2i \Rightarrow v_{R}=\sum_{k=1}^{R} \kappa_{i} + 2i \Rightarrow v_{R}=\sum_{k=1}^{R$

$$= 8[1]$$

$$V = [0 \cdots 9m] = [9R_1 \ 0R_2 \cdots 9R_m]$$

$$= 8R$$

CGS ≡ condensed QR

Supose $\{v_1, \ldots, v_m\}$ is an ordered linearly independent subset of \mathbb{R}^n and $\{q_1, \ldots, q_m\}$ is the output of CGS on $\{v_1, \ldots, v_m\}$. Then,

$$\underbrace{\begin{bmatrix} v_1 \cdots v_m \end{bmatrix}}_{=:V} = \underbrace{\begin{bmatrix} q_1 \cdots q_m \end{bmatrix}}_{=:Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ & r_{22} & \cdots & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix}}_{=:R}$$

where $r_{ij} = v_j^T q_i$ for j > i, $r_{jj} = \|\hat{q}_j\|_2$ and $r_{ij} = 0$ otherwise. Clearly, V = QR is a condensed QR decomposition of V.

CGS ≡ condensed QR

Supose $\{v_1, \ldots, v_m\}$ is an ordered linearly independent subset of \mathbb{R}^n and $\{q_1, \ldots, q_m\}$ is the output of CGS on $\{v_1, \ldots, v_m\}$. Then,

$$\underbrace{[v_1\cdots v_m]}_{=:V} = \underbrace{[q_1\cdots q_m]}_{=:Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ & r_{22} & \cdots & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix}}_{=:R}$$

where $r_{ij} = v_j^T q_i$ for j > i, $r_{jj} = \|\hat{q}_j\|_2$ and $r_{ij} = 0$ otherwise. Clearly, V = QR is a condensed QR decomposition of V.

Exercise: Conversely if V = QR be a condensed QR decomposition of $V = [v_1 \cdots v_m] \in \mathbb{R}^{n \times m}$ where $R = [r_{ij}]_{m \times m}$ with $r_{ii} > 0$ for all $i = 1, \ldots, m$, then the columns q_1, \ldots, q_m of Q are equal to those obtained via CGS on the columns of V with

$$r_{ij} = \left\{ egin{array}{ll} \mathbf{v}_j^T \mathbf{q}_i, & i < j, \ \|\mathbf{\hat{q}}_j\|_2, & i = j \ 0, & ext{otherwise.} \end{array}
ight.$$

Numerical issues associated with CGS and Modified Gram Schmidt (MGS)

Flop count and numerical issues of CGS

For each $k=1,2,\ldots,m$, computing, $\hat{q}_k=v_k-\sum_{i=1}^{k-1}(v_k^Tq_i)q_i\longrightarrow 4n(k-1)$ flops $\|\hat{q}_k\|_2\longrightarrow 2n$ flops and one square root. So, $q_k=\frac{\hat{q}_k}{\|\hat{q}_k\|_2}\longrightarrow 4nk-n$ flops and one square root.

Flop count and numerical issues of CGS

For each k = 1, 2, ..., m, computing, $\hat{q}_k = v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i \longrightarrow 4n(k-1)$ flops $\|\hat{q}_k\|_2 \longrightarrow 2n$ flops and one square root.

So,

$$q_k = rac{\hat{q}_k}{\|\hat{q}_k\|_2} \longrightarrow 4nk-n$$
 flops and one square root.

Therefore the total cost of CGS is

$$\sum_{k=1}^{m} 4nk - n = 2nm^2 + O(nm) + O(m^2)$$

flops.

Flop count and numerical issues of CGS

For each $k=1,2,\ldots,m$, computing, $\hat{q}_k = v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i \longrightarrow 4n(k-1)$ flops $\|\hat{q}_k\|_2 \longrightarrow 2n$ flops and one square root.

So,

$$q_k = rac{\hat{q}_k}{\|\hat{q}_k\|_2} \longrightarrow 4nk - n$$
 flops and one square root.

Therefore the total cost of CGS is

$$\sum_{k=1}^{m} 4nk - n = 2nm^2 + O(nm) + O(m^2)$$

flops.

The quality of the orthonormalisation is measured by the departure from orthonormality $||I_m - Q^T Q||_2$ of the computed Q.

It is considered to be good in the presence of rounding error if $||I_m - Q^T Q||_2$ is O(u).

CGS is a poor performer in the presence of rounding error

The quality of orthonormalisation in CGS can be poor in the presence of rounding error.

Example: Consider the set of vectors $\{v_1, v_2, v_3\}$ where

$$v_1 := \left[egin{array}{c} 1 \ \epsilon \ 0 \ 0 \end{array}
ight], \ v_2 := \left[egin{array}{c} 1 \ 0 \ \epsilon \ 0 \end{array}
ight], \ v_3 := \left[egin{array}{c} 1 \ 0 \ 0 \ \epsilon \end{array}
ight],$$

where $\epsilon > 0$ is such that $\epsilon^2 < u$. Perform CGS on the set assuming that $fl(1+\epsilon^2)=1$ and there is no other rounding and report the departure from orthonormality.

CGS is a poor performer in the presence of rounding error

The quality of orthonormalisation in CGS can be poor in the presence of rounding error.

Example: Consider the set of vectors $\{v_1, v_2, v_3\}$ where

$$v_1 := \left[egin{array}{c} 1 \\ \epsilon \\ 0 \\ 0 \end{array}
ight], \ v_2 := \left[egin{array}{c} 1 \\ 0 \\ \epsilon \\ 0 \end{array}
ight], \ v_3 := \left[egin{array}{c} 1 \\ 0 \\ 0 \\ \epsilon \end{array}
ight],$$

where $\epsilon > 0$ is such that $\epsilon^2 < u$. Perform CGS on the set assuming that $fl(1+\epsilon^2)=1$ and there is no other rounding and report the departure from orthonormality.

A modification to the CGS process which is theoretically equivalent to CGS called Modified Gram Schmidt(MGS) is seen to be superior in the presence of rounding error.

Modified Gram Schmidt(MGS)

Let $\{v_1,\ldots,v_m\}$ be a linearly independent subset of \mathbb{R}^n . The first two steps of MGS and CGS are the same. Assume that q_1,q_2 are formed.

Step 3: Let

$$\begin{array}{rcl}
v_3^{(1)} & := & v_3 - (v_3^T q_1) q_1 \\
v_3^{(2)} & := & v_3^{(1)} - \{\left(v_3^{(1)}\right)^T q_2\} q_2 \\
\tilde{q}_3 & := & v_3^{(2)} / \|v_3^{(2)}\|_2.
\end{array}$$

 $v_3^{(2)}$ and \tilde{q}_3 are respectively the same as \hat{q}_3 and q_3 of CGS in theory.

This is because $\left(v_3^{(1)}\right)^T q_2 = v_3^T q_2$ in theory.

However, the computed q_1 and q_2 are not exactly orthogonal to each other. Also the computed $v_3^{(1)}$ is not exactly orthogonal to q_1 . So the computed q_3 and \tilde{q}_3 are different.

Modified Gram Schmidt(MGS)

Continuing similarly till $\tilde{q}_1, \tilde{q}_2, \dots, \tilde{q}_{k-1}$ have been found, let **Step k**:

Thus MGS produces the orthonormal set $\{\tilde{q}_1, \tilde{q}_2, \dots, \tilde{q}_m\}$.

Modified Gram Schmidt(MGS)

Continuing similarly till $\tilde{q}_1, \tilde{q}_2, \dots, \tilde{q}_{k-1}$ have been found, let

Step k:

$$egin{array}{lll} v_k^{(1)} &:= & v_k - (v_k^T ilde{q}_1) ilde{q}_1 \\ v_k^{(2)} &:= & v_k^{(1)} - \{\left(v_k^{(1)}\right)^T ilde{q}_2\} ilde{q}_2 \\ & dots \\ v_k^{(k-1)} &:= & \underbrace{v_k^{(k-2)} - \{\left(v_k^{(k-2)}\right)^T ilde{q}_{k-1}\} ilde{q}_{k-1}}_{= \hat{q}_k ext{ of CGS in theory}} \\ ilde{q}_k &:= & \underbrace{v_k^{(k-1)} / \|v_k^{(k-1)}\|_2}_{= q_k ext{ in theory}} \\ \end{array}$$

Thus MGS produces the orthonormal set $\{\tilde{q}_1, \tilde{q}_2, \dots, \tilde{q}_m\}$.

Exercise: Prove that MGS produces an exactly orthonormal set when applied on the set of vectors $\{v_1, v_2, v_3\}$ considered earlier under the same assumptions with respect to rounding.

MGS ≡ Condensed QR

Exercise: Let $\{v_1, \dots, v_m\}$ be a linearly independent subset of \mathbb{R}^n . For $j=1,\dots,i-1$, and $i=1,\dots,m$, let \tilde{q}_i and $v_i^{(j)}$ be the vectors obtained via Modified Gram Schmidt. Let $\tilde{Q}=[\tilde{q}_1\cdots \tilde{q}_m]$, $V=[v_1\cdots v_m]$, and $\tilde{R}=[\tilde{r}_{ij}]\in\mathbb{R}^{m\times m}$ be an upper triangular matrix with $\tilde{r}_{ik}=\left(v_k^{(i)}\right)^Tq_i$ for $1\leq i\leq k-1$ and $\tilde{r}_{kk}=\|v_k^{(k-1)}\|_2$ for $k=1,\dots,m$. Prove that

$$V = \tilde{Q}\tilde{R}$$

is theoretically the same condensed QR decomposition of V as the one via CGS and has the exact same flop count.

MGS ≡ Condensed QR

Exercise: Let $\{v_1,\ldots,v_m\}$ be a linearly independent subset of \mathbb{R}^n . For $j=1,\ldots,i-1$, and $i=1,\ldots,m$, let \tilde{q}_i and $v_i^{(j)}$ be the vectors obtained via Modified Gram Schmidt. Let $\tilde{Q}=[\tilde{q}_1\cdots\tilde{q}_m]$, $V=[v_1\cdots v_m]$, and $\tilde{R}=[\tilde{r}_{ij}]\in\mathbb{R}^{m\times m}$ be an upper triangular matrix with $\tilde{r}_{ik}=\left(v_k^{(i)}\right)^Tq_i$ for $1\leq i\leq k-1$ and $\tilde{r}_{kk}=\|v_k^{(k-1)}\|_2$ for $k=1,\ldots,m$. Prove that

$$V = \tilde{Q}\tilde{R}$$

is theoretically the same condensed QR decomposition of V as the one via CGS and has the exact same flop count.

The computed \tilde{Q}_c from MGS satisfies $\|I_m - \tilde{Q}_c^T \tilde{Q}_c\|_2 \approx \kappa_2(V)u$. [Higham, 96], [Björck, 96] So, orthonormalisation is poor if $\kappa_2(V)$ is large.

MGS ≡ Condensed QR

Exercise: Let $\{v_1, \dots, v_m\}$ be a linearly independent subset of \mathbb{R}^n . For $j=1,\dots,i-1$, and $i=1,\dots,m$, let \tilde{q}_i and $v_i^{(j)}$ be the vectors obtained via Modified Gram Schmidt. Let $\tilde{Q}=[\tilde{q}_1\cdots \tilde{q}_m]$, $V=[v_1\cdots v_m]$, and $\tilde{R}=[\tilde{r}_{ij}]\in\mathbb{R}^{m\times m}$ be an upper triangular matrix with $\tilde{r}_{ik}=\left(v_k^{(i)}\right)^Tq_i$ for $1\leq i\leq k-1$ and $\tilde{r}_{kk}=\|v_k^{(k-1)}\|_2$ for $k=1,\dots,m$. Prove that

$$V = \tilde{Q}\tilde{R}$$

is theoretically the same condensed QR decomposition of V as the one via CGS and has the exact same flop count.

The computed \tilde{Q}_c from MGS satisfies $||I_m - \tilde{Q}_c^T \tilde{Q}_c||_2 \approx \kappa_2(V)u$. [Higham, 96], [Björck, 96] So, orthonormalisation is poor if $\kappa_2(V)$ is large.

Numerically CGS with one more re-orthogonalisation is done. The computed Q_c satisfies $||I_m - Q_c^T Q_c||_2 \approx cu$ for some small c > 0 if $\kappa_2(V) \ll 1/u$. [Giraud et. al., 2005]

