REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

4 DEPORT DATE (DD 4444)(A)(A)	A DEDODT TYPE	O DATES COVERED (Frame Ta)
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
28 June 2016	Briefing Charts	28 June 2016 – 15 July 2016
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
Conservative Bin-to-Bin Fractional Col	llisions	
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Robert S. Martin		
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
		Q1AM
7. PERFORMING ORGANIZATION NAME(8. PERFORMING ORGANIZATION	
		REPORT NO.
Air Force Research Laboratory (AFMC		
AFRL/RQRS		
1 Ara Drive		
Edwards AFB, CA 93524-7013		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
3. Of ONCORMING / MONTORING ACENOT	NAME (O) AND ADDITEOU(LO)	10. di ditadiamani lak a Adikan im(a)
Air Force Research Laboratory (AFMC	7)	
	·)	44 ODONOOD/MONITODIO DEDODE
AFRL/RQR		11. SPONSOR/MONITOR'S REPORT
5 Pollux Drive		NUMBER(S)
Edwards AFB, CA 93524-7048	AFRL-RQ-ED-VG-2016-175	
		-

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work.

13. SUPPLEMENTARY NOTES

For presentation at 30th International Symposium on Rarefied Gas Dynamics; University of Victoria, Victoria, British Columbia, Canada (15 July 2016)

PA Case Number: #16326; Clearance Date: 7/12/16

14. ABSTRACT

Viewgraph/Briefing Charts

15	i. Sl	JBJ	ECT	TER	MS
----	-------	-----	-----	-----	----

N/A

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON J. Koo	
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	70	19b. TELEPHONE NO (include area code)
Unclassified	Unclassified	Unclassified			N/A

CONSERVATIVE BIN-TO-BIN FRACTIONAL COLLISIONS

Robert Martin

ERC Inc.,
SPACECRAFT PROPULSION BRANCH
AIR FORCE RESEARCH LABORATORY
EDWARDS AIR FORCE BASE, CA USA

30th International Symposium on Rarefied Gas Dynamics Distribution A: Approved for Public Release; Distribution Unlimited: PA #16326

OUTLINE

- BACKGROUND
- **2** Fractional Collisions
- 3 BIN-TO-BIN FRACTIONAL COLLISIONS
- 4 Conclusion

IMPORTANCE OF COLLISION PHYSICS

Important Collisions in Spacecraft Propulsion:

- Discharge and Breakdown in FRC
- Collisional Radiative Cooling/Ionization
- Combustion Chemistry

Common Features in Spacecraft Collisions:

- Relevant Densities Spanning Many Orders of Magnitude — 6+
- Transitions from Collisional to Collisionless
- Tiny Early e^- or Radical Populations Critical to Induction Delay
- Many types of Inelastic Collisions with Unknown Effects on Distribution Shapes

Shock Ionization

Kapper & Cambier, J. Appl. Phys. 109, (2011)

IMPORTANCE OF COLLISION PHYSICS

Important Collisions in Spacecraft Propulsion:

- Discharge and Breakdown in FRC
- Collisional Radiative Cooling/Ionization
- Combustion Chemistry

Common Features in Spacecraft Collisions:

- Relevant Densities Spanning Many Orders of Magnitude — 6+
- Transitions from Collisional to Collisionless
- Tiny Early e^- or Radical Populations Critical to Induction Delay
- Many types of Inelastic Collisions with Unknown Effects on Distribution Shapes

Need Low Noise & High Dynamic Range Collision Algorithms

Shock Ionization

Kapper & Cambier, J. Appl. Phys. 109, (2011)

STANDARD COLLISION MODELS

Previous Collision Methods:

- Monte Carlo Collisions (MCC)
 - Particles Collide with Background "Fluid"
 - Often Used in Plasma/PIC Simulation
 - Ion-e⁻ Collisions Assume Stationary Ions
 - No Conservation/Detailed Balance
- Direct Simulation Monte Carlo Collisions (DSMC)
 - Most Modern Versions use No-Time Counter (NTC) Method
 - Conservative/Reversible Collision
 - Satisfies Detailed Balance
 - Subset of Possible Collisions Sampled
 - Random Selection vs Z_{ij} for All/Nothing Collision

All Random Flip vs Number of Collisions: $Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle dt$

Continuum to Discrete Representation:

ullet Many Particles $\widetilde{\rightarrow}$ Continuous Distribution

- $\bullet \ \ Many \ Particles \ \widetilde{\rightarrow} \ Continuous \ Distribution$
- Discretized VDF Yields Vlasov
 But Collision Integral Still a Problem

- $\bullet \ \ Many \ Particles \ \widetilde{\rightarrow} \ Continuous \ Distribution$
- Discretized VDF Yields Vlasov
 But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities

- Many Particles $\widetilde{\rightarrow}$ Continuous Distribution
- Discretized VDF Yields Vlasov
 But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)

- Many Particles $\widetilde{\rightarrow}$ Continuous Distribution
- Discretized VDF Yields Vlasov
 But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)
- Variable Weights Permit Extra DOF in Tails

Continuum to Discrete Representation:

- Many Particles $\widetilde{\rightarrow}$ Continuous Distribution
- Discretized VDF Yields Vlasov
 But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)
- Variable Weights Permit Extra DOF in Tails

Variable Weight "All-or-Nothing" Collisions?

Continuum to Discrete Representation:

- Many Particles $\widetilde{\rightarrow}$ Continuous Distribution
- Discretized VDF Yields Vlasov
 But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)
- Variable Weights Permit Extra DOF in Tails

Variable Weight "All-or-Nothing" Collisions?

Continuum to Discrete Representation:

- Many Particles $\widetilde{\rightarrow}$ Continuous Distribution
- Discretized VDF Yields Vlasov But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)
- Variable Weights Permit Extra DOF in Tails

Variable Weight "All-or-Nothing" Collisions?

Physically Inconsistent!

(Mixing Violates Momentum/Energy Conservation)

NTC Collisions:

• (Collision Rate Volume):(Cell Volume)

$$Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} dt = \frac{w_i w_j}{2V_{cell}^2} \langle \sigma v \rangle_{ij} dt$$

<u>Fractional-NTC Collisions:</u>

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible

Fractional-NTC Collisions:

$$Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} dt = \frac{w_i w_j}{2V_{cell}^2} \langle \sigma v \rangle_{ij} dt$$

$$P_{max} = w \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$$

$$N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$$

 $P_{ij} = w \langle \sigma v \rangle_{ii} dt / V_{cell}$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes

Fractional-NTC Collisions:

$$Z_{ij} = rac{n_i n_j}{2} \left< \sigma v
ight>_{ij} \mathrm{dt} = rac{w_i w_j}{2 V_{cell}^2} \left< \sigma v
ight>_{ij} \mathrm{dt}$$

$$P_{ij} = w \langle \sigma v \rangle_{ij} dt/V_{cell}$$

$$P_{max} = w \langle \sigma v \rangle_{ij}^{max} dt/V_{cell}$$

$$N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ii}^{max} dt/V_{cell}$$

$$Rand(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{ij}^{max}}$$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

$$Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} dt = \frac{w_i w_j}{2V_{cell}^2} \langle \sigma v \rangle_{ij} dt$$

$$P_{ij} = w \langle \sigma v \rangle_{ij} dt/V_{cell}$$

$$P_{max} = w \langle \sigma v \rangle_{ij}^{max} dt/V_{cell}$$

$$N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$$

$$Rand(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{ij}^{max}}$$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

Select f by Cost/Accuracy Tradeoff

$$Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} \, \mathrm{d}t = \frac{w_i w_j}{2 V_{cell}^2} \langle \sigma v \rangle_{ij} \, \mathrm{d}t$$

$$P_{ij} = w \langle \sigma v \rangle_{ij} dt/V_{cell}$$

$$P_{max} = w \langle \sigma v \rangle_{ij}^{max} dt/V_{cell}$$

$$N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$$

$$Rand(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{ij}^{max}}$$

$$N_{select} = f N_p$$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

- Select f by Cost/Accuracy Tradeoff
- Collision Δw Scaled for Skipped

$$Z_{ij} = rac{n_i n_j}{2} \left< \sigma v \right>_{ij} \mathrm{d}t = rac{w_i w_j}{2 V_{cell}^2} \left< \sigma v \right>_{ij} \mathrm{d}t$$

$$P_{ij} = w \langle \sigma v \rangle_{ij} dt/V_{cell}$$

$$P_{max} = w \langle \sigma v \rangle_{ij}^{max} dt/V_{cell}$$

$$N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$$

$$Rand(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{ij}^{max}}$$

$$N_{select} = f N_p$$

 $\Delta w_{ij} = \frac{N_p^2/2}{N_{select}} Z_{ij}$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

- Select f by Cost/Accuracy Tradeoff
- Collision Δw Scaled for Skipped
- Add Particles & Original Reduced

$$Z_{ij} = rac{n_i n_j}{2} \left< \sigma v \right>_{ij} \mathrm{d}t = rac{w_i w_j}{2 V_{cell}^2} \left< \sigma v \right>_{ij} \mathrm{d}t$$

$$P_{ij} = w \langle \sigma v \rangle_{ij} dt/V_{cell}$$

$$P_{max} = w \langle \sigma v \rangle_{ij}^{max} dt/V_{cell}$$

$$N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$$

$$Rand(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{ij}^{max}}$$

$$N_{select} = f N_p$$

$$\Delta w_{ij} = \frac{N_p^2/2}{N_{select}} Z_{ij}$$
 $w_i = w_i - \Delta w_{ij} \& w_j = w_j - \Delta w_{ij}$
 $w_{(N_p+1)} = \Delta w_{ij} \& w_{(N_p+2)} = \Delta w_{ij}$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

- Select f by Cost/Accuracy Tradeoff
- Collision Δw Scaled for Skipped
- Add Particles & Original Reduced
- +2 Particles/Collision! → Must Merge

$$W(N_p+2)=\Delta W_i$$

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Attempted Collisions/Cell:

$$\nu = \hat{f}(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$$

Select Pair (i,j) if:

Rand
$$< \frac{w_i + w_j - w_{min}}{N_p(N_p - 1)(2\bar{w} - w_{min})}$$

-or-
Rand $< \frac{w_i + w_j - w_{min}}{(2w_{max} - w_{min})}$

Collide If:

Rand
$$< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$$

Perform Standard VHS Collisions

Generate/Modify Particles with:

$$\pm \Delta w/f = \pm \min(w_i, w_i)/f$$

Stochastic Weighted Particle Method:

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF

Attempted Collisions/Cell:

$$\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$$

Select Pair (i,j) if:

Rand
$$< \frac{w_i + w_j - w_{min}}{N_p(N_p - 1)(2\bar{w} - w_{min})}$$

-or-
Rand $< \frac{w_i + w_j - w_{min}}{(2w_{min} - w_{min})}$

Collide If:

Rand
$$< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$$

Perform Standard VHS Collisions

Generate/Modify Particles with:

$$\pm \Delta w/f = \pm \min(w_i, w_i)/f$$

Update
$$\langle \sigma v \rangle^{max}$$

Stochastic Weighted Particle Method:

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$

Attempted Collisions/Cell:

$$\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$$

Select Pair (i,j) if:

Rand
$$< \frac{w_i + w_j - w_{min}}{N_p(N_p - 1)(2\bar{w} - w_{min})}$$

-Or-

Rand
$$< \frac{w_i + w_j - w_{min}}{(2w_{max} - w_{min})}$$

Collide If:

Rand
$$< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$$

Perform Standard VHS Collisions

Generate/Modify Particles with:

$$\pm \Delta w/f = \pm \min(w_i, w_i)/f$$

Stochastic Weighted Particle Method:

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$
- Converges to NTC for w_i=const

Attempted Collisions/Cell:

$$\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$$

Select Pair (i,j) if:

Rand
$$< \frac{w_i + w_j - w_{min}}{N_p(N_p - 1)(2\bar{w} - w_{min})}$$

-Or-

Rand
$$< \frac{w_i + w_j - w_{min}}{(2w_{max} - w_{min})}$$

Collide If:

Rand
$$< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$$

Perform Standard VHS Collisions

Generate/Modify Particles with:

$$\pm \Delta w/f = \pm \min(w_i, w_i)/f$$

Stochastic Weighted Particle Method:

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$
- Converges to NTC for w_i=const
- Only Adds 1-particle/collision for $\Delta w = \min(w_i, w_i)$

Attempted Collisions/Cell:

$$\nu = \hat{f}(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$$

Select Pair (i,j) if:

Rand
$$< \frac{w_i + w_j - w_{min}}{N_p(N_p - 1)(2\overline{w} - w_{min})}$$

-or-
Rand $< \frac{w_i + w_j - w_{min}}{(2w_{min} - w_{min})}$

$$(2w_{ma})$$

Collide If:

Rand
$$< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$$

Perform Standard VHS Collisions

Generate/Modify Particles with:

$$\pm \Delta w/f = \pm \min(w_i, w_i)/f$$

Stochastic Weighted Particle Method:

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$
- Converges to NTC for w_i=const
- Only Adds 1-particle/collision for $\Delta w = \min(w_i, w_i)$
- Adds 2-particles/collision for $\Delta w = \min(w_i, w_i)/f$

Attempted Collisions/Cell:

$$\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$$

Select Pair (i,j) if:

Rand
$$< \frac{w_i + w_j - w_{min}}{N_p(N_p - 1)(2\overline{w} - w_{min})}$$

-or-
Rand $< \frac{w_i + w_j - w_{min}}{(2w_{min} - w_{min})}$

Rand
$$< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$$

Perform Standard VHS Collisions

Generate/Modify Particles with:

$$\pm \Delta w/f = \pm \min(w_i, w_i)/f$$

Update
$$\langle \sigma v \rangle^{max}$$

Stochastic Weighted Particle Method:

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$
- Converges to NTC for w_i=const
- Only Adds 1-particle/collision for $\Delta w = \min(w_i, w_i)$
- Adds 2-particles/collision for $\Delta w = \min(w_i, w_i)/f$
- Still Requires Merge $w_i \neq \text{const}$

Attempted Collisions/Cell:

$$\nu = \hat{f}(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$$

Select Pair (i,j) if:

$$\begin{aligned} &\text{Rand} < \frac{w_i + w_j - w_{min}}{N_p(N_p - 1)(2\overline{w} - w_{min})} \\ &\quad \text{-or-} \\ &\text{Rand} < \frac{w_i + w_j - w_{min}}{(2w_{max} - w_{min})} \end{aligned}$$

Collide If:

Rand
$$< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$$

Perform Standard VHS Collisions

Generate/Modify Particles with:

$$\pm \Delta w/f = \pm \min(w_i, w_i)/f$$

REVIEW OF CONSERVATIVE MERGE

Merge to Pair \rightarrow DOF for Conservation:

- (n+2):2 yields Exact Mass, Momentum, and Kinetic Energy Conservation
- Applied Spatially also Shown to Conserve Electrostatic Energy
- Though Energy Conserving, Still Thermalizes VDF

$$\begin{aligned} w_{cell} &= \sum_{i}^{(n+2)} w_i \\ \overline{\vec{v}} &= \frac{1}{w_{cell}} \sum_{i}^{(n+2)} w_i \vec{v}_i \\ \overline{V^2} &= \frac{1}{w_{cell}} \sum_{i}^{(n+2)} w_i \left(\vec{v}_i - \overline{\vec{v}} \right)^2 \\ w_{(a/b)} &= w_m/2 \\ \vec{v}_{(a/b)} &= \overline{\vec{v}} \pm \hat{\mathcal{R}} \sqrt{\overline{V^2}} \\ \text{Similarly: } \vec{x}_{(a/b)} &= \overline{\vec{x}} \pm \hat{\mathcal{R}} \sqrt{\overline{\vec{x}^2}} \end{aligned}$$

REVIEW OF CONSERVATIVE MERGE

Merge to Pair \rightarrow DOF for Conservation:

- (n+2):2 yields Exact Mass,
 Momentum, and Kinetic Energy
 Conservation
- Applied Spatially also Shown to Conserve Electrostatic Energy
- Though Energy Conserving, Still Thermalizes VDF

Selection of Near Neighbors in VDF <u>Limits Thermalization</u>

 $(\approx$ Near Neighbor Pairs in 2:1 Merges that Limit Numerical Cooling)

$$\begin{aligned} w_{cell} &= \sum_{i}^{(n+2)} w_{i} \\ \overline{\vec{v}} &= \frac{1}{w_{cell}} \sum_{i}^{(n+2)} w_{i} \vec{v}_{i} \\ \overline{V^{2}} &= \frac{1}{w_{cell}} \sum_{i}^{(n+2)} w_{i} \left(\vec{v}_{i} - \overline{\vec{v}} \right)^{2} \\ w_{(a/b)} &= w_{m}/2 \\ \vec{v}_{(a/b)} &= \overline{\vec{v}} \pm \hat{\mathcal{R}} \sqrt{\overline{V^{2}}} \\ \text{Similarly: } \vec{x}_{(a/b)} &= \overline{\vec{x}} \pm \hat{\mathcal{R}} \sqrt{\overline{x^{2}}} \end{aligned}$$

REVIEW OF CONSERVATIVE MERGE

Merge to Pair \rightarrow DOF for Conservation:

- (n+2):2 yields Exact Mass, Momentum, and Kinetic Energy Conservation
- Applied Spatially also Shown to Conserve Electrostatic Energy
- Though Energy Conserving, Still Thermalizes VDF

Selection of Near Neighbors in VDF <u>Limits Thermalization</u>

(≈ Near Neighbor Pairs in 2:1 Merges that Limit Numerical Cooling)

Octree Velocity Bins

Efficient Neighbor Selection

OD-THERMALIZATION

Bi-Maxwellian Thermalization Results

Comparison of 10x Runs from Same Initial Distribution

OD-THERMALIZATION

Bi-Maxwellian Thermalization Results

Mean and RMS Fluctuation of Sample Runs Fluctuations Level Tuneable with f Independent of Particles Count

OD-THERMALIZATION

Bi-Maxwellian Thermalization Results

Fluctuations Level Tuneable with f Independent of Particles Count

COLLISIONAL BEAMS IN POTENTIAL WELL

 Initial Bi-Maxwellian Distribution in Potential Well

- Initial Bi-Maxwellian Distribution in Potential Well
- NTC Collisions Results in Beam Thermalization

- Initial Bi-Maxwellian Distribution in Potential Well
- NTC Collisions Results in Beam Thermalization
- Fractional-NTC Collisions Produce Same Behavior

- Initial Bi-Maxwellian Distribution in Potential Well
- NTC Collisions Results in Beam Thermalization
- Fractional-NTC Collisions Produce Same Behavior
- Particles/Cell Dramatically Different

- Initial Bi-Maxwellian Distribution in Potential Well
- NTC Collisions Results in Beam Thermalization
- Fractional-NTC Collisions Produce Same Behavior
- Particles/Cell Dramatically Different
- Fringe Extends to Lower Densities with Variable Weights

- Initial Bi-Maxwellian Distribution in Potential Well
- NTC Collisions Results in Beam Thermalization
- Fractional-NTC Collisions Produce Same Behavior
- Particles/Cell Dramatically Different
- Fringe Extends to Lower Densities with Variable Weights
- Relative 'Error' Unknown without Analytical Solution or High Fidelity Simulation

MACH 2 ARGON SHOCK

1D Normal Argon Shock Test

- Simple Verification vs. DS1V
- Initial Conditions: $T_0 = 293 \text{K}, n_0 = 1 \text{E} 22/\text{m}^3, v_0 = 637.4 \text{(m/s)}$
- Initial Jump to Post-Shock at 1cm
- VHS Collisions: T_{ref} =273K, d_{ref} =4.17Å, ω_{VHS} =0.81

MACH 2 ARGON SHOCK

1D Normal Argon Shock Test

- Simple Verification vs. DS1V
- Initial Conditions: $T_0 = 293$ K, $n_0 = 1$ E22/m³, $v_0 = 637.4$ (m/s)
- Initial Jump to Post-Shock at 1cm
- VHS Collisions: T_{ref} =273K, d_{ref} =4.17Å, ω_{VHS} =0.81
- Time Average: \bar{n} from $t \in [80, 100) \mu s$

TURF - SWPM+Octree

Target N/Cell Quadrupled per Line

MACH 2 ARGON SHOCK

1D Normal Argon Shock Test

- Simple Verification vs. DS1V
- Initial Conditions: $T_0 = 293$ K, $n_0 = 1$ E22/m³, $v_0 = 637.4$ (m/s)
- Initial Jump to Post-Shock at 1cm
- VHS Collisions: T_{ref} =273K, d_{ref} =4.17Å, ω_{VHS} =0.81
- Time Average: \bar{n} from $t \in [80, 100)\mu s$
- Error (Normalized L₁): $err=|n-\bar{n}|/\bar{n}$
- Error Controlled: $err \propto \sqrt{N/cell}$

2D Argon Shock Test

- Initial Conditions like M=2 Except: $v_0 = 2550 \text{m/s}$
- Specular: x=5-5.04mm with $y=\pm 2$ mm
- Half Domain Modeled: 80μm × 80μm Cells

2D Argon Shock Test

- Initial Conditions like M=2 Except: $v_0 = 2550 \text{m/s}$
- Specular: x=5-5.04mm with $y=\pm 2$ mm
- Half Domain Modeled: 80μm × 80μm Cells
- Time Average: \bar{n} from $t \in [80, 100)\mu s$
- SWPM Similar to Standard DSMC

2D Argon Shock Test

- Initial Conditions like M=2 Except: $v_0 = 2550 \text{m/s}$
- Specular: x=5-5.04mm with $y=\pm 2$ mm
- Half Domain Modeled: 80μm × 80μm Cells
- Time Average: \bar{n} from $t \in [80, 100)\mu s$
- SWPM Similar to Standard DSMC
- Despite Different Np/Cell

TURF Np/Cell - SWPM+Octree

Issue with Collide then Merge

• Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral

ISSUE WITH COLLIDE THEN MERGE

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1+2f)N_{max}$

Issue with Collide then Merge

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1 + 2f)N_{max}$
- For DSMC-like Results, $f \approx O(1)$

ISSUE WITH COLLIDE THEN MERGE

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1 + 2f)N_{max}$
- For DSMC-like Results, $f \approx O(1)$
- Time Accurate or Dense Simulations, $f \approx O(10)+$?

Issue with Collide then Merge

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1+2f)N_{max}$
- For DSMC-like Results, $f \approx O(1)$
- Time Accurate or Dense Simulations, $f \approx O(10)+$?
- Merge Contracts back to $O(N_{max})$ Particles
- Merge Immediately after Collide per Spatial Cell?..
- Sort for Merge still $\propto (1+2f) \log(1+2f)$?

Issue with Collide then Merge

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1+2f)N_{max}$
- For DSMC-like Results, $f \approx O(1)$
- Time Accurate or Dense Simulations, $f \approx O(10)+$?
- Merge Contracts back to $O(N_{max})$ Particles
- Merge Immediately after Collide per Spatial Cell?..
- Sort for Merge still $\propto (1+2f) \log(1+2f)$?
- Combine Collision and Merge in Single Step?

• Fractional Collision as Rate Equation

$$\begin{bmatrix} \vdots \\ \dot{w}_{i} \\ \vdots \\ \dot{w}_{j} \\ \vdots \\ \dot{w}_{i'} \\ \vdots \\ \dot{w}_{j'} \\ \vdots \\ \vdots \end{bmatrix} = \sum_{k=1}^{N_{select}} \begin{bmatrix} \vdots \\ -w_{i} \langle \sigma v \rangle_{ij}^{k} w_{j} \\ \vdots \\ -w_{i} \langle \sigma v \rangle_{ij}^{k} w_{j} \\ \vdots \\ w_{i} \langle \sigma v \rangle_{ij}^{k} w_{j} \\ \vdots \\ w_{i} \langle \sigma v \rangle_{ij}^{k} w_{j} \\ \vdots \\ \vdots \end{bmatrix}$$

- Fractional Collision as Rate Equation
- Bin Moments needed for Particle Pairs

_		
\dot{w}_i		$-\Delta w_{ij}$
\dot{w}_j		$-\Delta w_{ij}$
$\dot{w}_{i'}$		Δw_{ij}
$\dot{w}_{j'}$		Δw_{ij}
_		Δw_{ij}
$(wv)_i$		Δ
$(wv)_i$	N_{select}	$-\Delta w_{ij}v_i$
$(wv)_{i'}$	$=\sum_{i}^{n}$	$-\Delta w_{ij}v_j$
	k=1	$\Delta w_{ij}v_{i'}$
$(wv)_{j'}$		$\Delta w_{ij}v_{j'}$
-		
$(wv^2)_i$		$-\Delta w_{ij}v_i^2$
$(wv^2)_i$		$-\Delta w_{ij}v_j^2$
$(wv^2)_{i'}$		$\Delta w_{ij}v_{i'}^2$
$(wv^2)_{i'}$		$\left[\begin{array}{c} \Delta w_{ij} v_{j'}^2 \end{array}\right]$
\ \ r r r \ / i/		

- Fractional Collision as Rate Equation
- Bin Moments needed for Particle Pairs
- Particle Pairs (i,j) Picked Randomly
- DSMC-like Collision (VHS,VSS,etc.) Random $\chi, \theta \rightarrow (v_{i'}, v_{i'})$

$$\begin{vmatrix} \dot{w}_{i} \\ \dot{w}_{j} \\ \dot{w}_{i'} \\ \dot{w}_{j'} \\ \dot{w$$

- Fractional Collision as Rate Equation
- Bin Moments needed for Particle Pairs
- Particle Pairs (i,j) Picked Randomly
- DSMC-like Collision (VHS,VSS,etc.) Random $\chi, \theta \rightarrow (v_{i'}, v_{i'})$
- Octree to Find i' and j' Bins $8^L \rightarrow \text{Few Levels to Search}$

\dot{w}_i		$-\Delta w_{ij}$
\dot{w}_j		
$\dot{w}_{i'}$		$-\Delta w_{ij}$
$\dot{w}_{j'}$		Δw_{ij}
		Δw_{ij}
		_
$(wv)_i$		$-\Delta w_{ij}v_i$
$(wv)_i$	N_{select}	$-\Delta w_{ij}v_j$
$(wv)_{i'}$	$=$ $\sum_{i=1}^{n}$	
	k=1	$\Delta w_{ij}v_{i'}$
$(wv)_{j'}$		$\Delta w_{ij}v_{j'}$
-		
$(wv^2)_i$		$-\Delta w_{ij}v_i^2$
$(wv^2)_i$		$-\Delta w_{ij}v_i^2$
		$\Delta w_{ij} v_{i'}^2$
$(wv^2)_{i'}$		$\Delta w_{ij}v_{i'}^2$
$(wv^2)_{i'}$		L ┷wŋvj′.

- Fractional Collision as Rate Equation
- Bin Moments needed for Particle Pairs
- Particle Pairs (i,j) Picked Randomly
- DSMC-like Collision (VHS,VSS,etc.) Random $\chi, \theta \rightarrow (v_{i'}, v_{j'})$
- Octree to Find i' and j' Bins $8^L \rightarrow$ Few Levels to Search

Conserve Mass, Momentum, and Energy Memory Constant Independent of N^{select}

$\begin{bmatrix} \dot{w}_{i} \\ \dot{w}_{j} \\ \dot{w}_{i'} \\ \dot{w}_{j'} \\ - \\ (wv)_{i} \\ (wv)_{j} \\ (wv)_{j'} \\ (wv)_{j'} \\ - \\ (wv^{2})_{i} \\ (wv^{2})_{j} \\ (wv^{2})_{j'} \end{aligned}$	$=\sum_{k=1}^{N_{select}}$	$ \begin{bmatrix} -\Delta w_{ij} \\ -\Delta w_{ij} \\ \Delta w_{ij} \\ \Delta w_{ij}v_{ij} \end{bmatrix} $ $ -\Delta w_{ij}v_{ij} \\ -\Delta w_{ij}v_{ij} \\ \Delta w_{ij}v_{ij} $ $ -\Delta w_{ij}v_{ij}^{2} \\ -\Delta w_{ij}v_{ij}^{2} $ $ \Delta w_{ij}v_{ij}^{2} $
		$\Delta w_{ij} v_{i'}^2 \\ \Delta w_{ij} v_{j'}^2$

1D Normal Argon Shock Test

Mach 2 Case Repeated

1D Normal Argon Shock Test

- Mach 2 Case Repeated
- Bin-to-Bin Collsions Results Similar

TURF - Bin to Bin

1D Normal Argon Shock Test

- Mach 2 Case Repeated
- Bin-to-Bin Collsions Results Similar
- Target Np/Cell Still Error Control (Target N/Cell Quadrupled per Line)

TURF - Bin to Bin

1D Normal Argon Shock Test

- Mach 2 Case Repeated
- Bin-to-Bin Collsions Results Similar
- Target Np/Cell Still Error Control (Target N/Cell Quadrupled per Line)
- Collision Core $\approx 3x$ Slower
- Non-Ideal: Dynamic Range Low

1D Normal Argon Shock Test

- Mach 2 Case Repeated
- Bin-to-Bin Collsions Results Similar
- Target Np/Cell Still Error Control (Target N/Cell Quadrupled per Line)
- Collision Core $\approx 3x$ Slower
- Non-Ideal: Dynamic Range Low
- Proof-of-Concept with Real X-Section
- Expansion/Plume will be Better Case

TURF - Bin to Bin

2D Argon Shock Test

Mach 8 Case Also Repeated

2D Argon Shock Test

- Mach 8 Case Also Repeated
- Bin-to-Bin Collsions Results Similar

Mach 8 Argon Bow Shock

2D Argon Shock Test

- Mach 8 Case Also Repeated
- Bin-to-Bin Collsions Results Similar
- Target Np/Cell Still Error Control

TURF: Np/Cell - Standard DSMC

TURF: (Np/Cell) SWPM+Octree TURF: Np/Cell - Standard DSMC

2D Argon Shock Test

- Mach 8 Case Also Repeated
- Bin-to-Bin Collsions Results Similar
- Target Np/Cell Still Error Control
- B2B Run with f=4x Collisions (Note: SWPM+Octree f=1x)

•	Standard - Collisions	548.9s	1x
	Standard - Total Run	7945.3s	100%
	SWPM+Octree - Collisions	2719.6s	4.95x
	SWPM+Octree - Total Run	9542.4s	120%
	Bin-to-Bin - Collisions	13163.6s	24.0x
	Bin-to-Bin - Total Run	18860.5s	237%

TURF: Np/Cell - Standard DSMC

TURF: (Np/Cell) SWPM+Octree TURF: Np/Cell - Standard DSMC

TURF: (Np/Cell) Bin-to-Bin

2D Argon Shock Test

- Mach 8 Case Also Repeated
- Bin-to-Bin Collsions Results Similar
- Target *Np/Cell* Still Error Control
- B2B Run with f=4x Collisions (Note: SWPM+Octree f=1x)

	Standard - Collisions	548.9s	1x
	Standard - Total Run	7945.3s	100%
•	SWPM+Octree - Collisions	2719.6s	4.95x
•	SWPM+Octree - Total Run	9542.4s	120%
	Bin-to-Bin - Collisions	13163.6s	24.0x
	Bin-to-Bin - Total Run	18860.5s	237%

- Some Cost Compensated by Lower Np
- Too much Fill for Better Wake
- Significant Optimizations Still Needed (i.e. Data Structures, Sort->Sums, v-Bounds, Morton curve)

TURF: Np/Cell - Standard DSMC

TURF: (Np/Cell) SWPM+Octree
TURF: Np/Cell - Standard DSMC

TURF: (Np/Cell) Bin-to-Bin

Conclusion

- Standard Collision Incompatible with Variable Weight
- SWPM+Octree Option for Variable Weight Collision
- Bin-To-Bin Potentially Alleviates Memory Constraints
- Initial Verification vs. Standard Shock Cases Positive
- Limited Utility in Standard Shock Cases
- Performance with Strong Expansion/Plume Needed
- SWPM/Bin-to-Bin more Useful for Trace Species?

Thank You

Questions?