WS 13/14

Klausur: Rechnerarchitektur Datum: 28.01.14

Prüfer: Prof. Dr. J. Neuschwander Zeitdauer: 90 Min.

Name: Matr.-Nr.:

Hinweise:

Beschriften Sie <u>jedes zusätzlich</u> abgegebene Lösungsblatt deutlich lesbar mit Ihrem Namen und Ihrer Matrikelnummer.

Es sind für diese Klausur als Hilfsmittel nur Taschenrechner, ein handschriftliches DIN-A4 Blatt als Formelsammlung sowie der Befehlssatz des Prozessors M68000 zugelassen.

Bei jeder angegebenen Lösung muss der Lösungsweg nachvollziehbar sein.

Maximal erreichbare Punktzahl der Klausur: 38,5 Punkte

Mindestpunktzahl zum Bestehen der Klausur: 17 Punkte

Aufgabe 1: 10 Punkte
Aufgabe 2: 4,5 Punkte
Aufgabe 3: 4 Punkte
Aufgabe 4: 6 Punkte
Aufgabe 5: 5,5 Punkte
Aufgabe 6: 4 Punkte
Aufgabe 7: 4,5 Punkte

1. Aufgabe: (10 P)

Gegeben sei folgende Programmsequenz für einen RISC-Prozessor:

S1: LOAD R1, (A0) : R1:= <A0> S2: LOAD R2, (A1) ; R2:= <A1> R1, R2, R3 ; R1 := R2 + R3S3: ADD MUL R3, R4, 5 ; R3:= R4 * 5 S4: R3, R3, R1 ; R3 := R3 + R1S5: ADD STORE (A2), R3 ; <A2>:= R3 S6: S7: ADD R2, R1, R3 ; R2 := R1 + R3

Die einzelnen Befehle werden in einer DLX-Befehls-Pipeline verarbeitet. Die Latenzzeiten der einzelnen Stufen sind wie folgt:

IF	ID/OF	EX	MA	WB
4 ns	4 ns	3 ns	5 ns	3 ns

a) Markieren Sie mit Pfeilen nur die Abhängigkeiten der Pipelinestufen, die im gegebenen Programm zu Pipeline-Konflikten führen.

S1:	IF	ID/OF	EX	MA	WB	
!	L.	L.	L.	I.		ı

S2: IF ID/OF EX MA WB

S3: IF ID/OF EX MA WB

S4: IF ID/OF EX MA WB

S5: IF ID/OF EX MA WB

S6: IF ID/OF EX MA WB

S7: IF ID/OF EX MA WB

b) Wie viele Takte werden benötigt, um dieses Programm so abzuarbeiten?

Klausur: Rechnerarchitektur WS 13/14 Prof. Dr. J. Neuschwander

1 Tot. Dr. 3. Nedseriwander

c) Die auftretenden Pipeline-Konflikte sollen vom Compiler behandelt werden. Ergänzen Sie obiges Programmstück so, dass diese Pipeline-Konflikte beseitigt werden und das Ergebnis dem der normalen, sequentiellen Bearbeitung entspricht.

d) Wie viele NOP's sind im Programm noch erforderlich, wenn Load- und Result-Forwarding angewendet werden? Kennzeichnen Sie das jeweilige Forwarding.

S1:	IF	ID/OF	EX	MA	WB						
S2:		IF	ID/OF	EX	MA	WB					
S3:			IF	ID/OF	EX	MA	WB				
S4:				IF	ID/OF	EX	MA	WB			
S5:					F	ID/OF	EX	MA	WB		
S6:						IF	ID/OF	EX	MA	WB	
S7:							IF	ID/OF	EX	MA	WB

e) Die Latenzzeiten der einzelnen Pipelinestufen sind am Anfang der Aufgabe angegeben. Die Latenzzeit eines Pipelineregisters beträgt 1,25 ns. Mit welcher maximalen Taktfrequenz kann die Pipeline betrieben werden?

f) Wie viele Befehle muss ein Programm P mindestens besitzen, wenn der Speed-up der Pipeline den Wert 4,95 annehmen soll?

g) Geben Sie alle Datenabhängigkeiten im Programmstück an.

S1:	LOAD	R1, (A0)	; R1:= <a0></a0>
S2:	LOAD	R2, (A1)	; R2:= <a1></a1>
S3:	ADD	R1, R2, R3	; R1:= R2 + R3
S4:	MUL	R3, R4, 5	; R3:= R4 * 5
S5:	ADD	R3, R3, R1	; R3:= R3 + R1
S6:	STORE	(A2), R3	; <a2>:= R3</a2>
S7:	ADD	R2, R1, R3	; R2:= R1 + R3

Stellen Sie die jeweiligen Abhängigkeiten durch einen Pfeil dar und benennen Sie diese Abhängigkeit.

S1 S2

S3

S4

S5

S7 S6

WS 13/14 Prof. Dr. J. Neuschwander

Prof. Dr. J. Neuschwander

Aufgabe: (4,5 P)

Klausur: Rechnerarchitektur

a) Durch architekturelles Re-Design einer CPU wird die Anzahl der Taktzyklen für ein Programm P um 20% reduziert. Die Laufzeit von P soll jedoch insgesamt um 30% reduziert werden. Welche Taktfrequenz muss dazu gewählt werden, wenn die ursprüngliche Frequenz vor dem Re-Design 800 Mhz betragen hat?

- b) Ein Rechnersystem wird durch zusätzliche Spezialhardware in der CPU verbessert. Durch diese CPU-Erweiterung laufen Berechnungen um den Faktor 20 schneller als bei herkömmlicher Ausführung. Verwenden Sie das Gesetz von Amdahl, um folgende Fragen zu beantworten:
 - I. Wie viel Prozent des Codes müssen sich mit Hilfe der CPU-Erweiterung beschleunigen lassen, um einen Speedup (Gesamtbeschleunigung) von 3 zu erreichen?

II. Welcher Prozentsatz des Codes muss auf der Spezialhardware ausgeführt werden, um lediglich ein Drittel des Speedups aus I.) zu erreichen?

Klausur: Rechnerarchitektur WS 13/14 Prof. Dr. J. Neuschwander

3. Aufgabe: (4P)

3.1: Es soll ein 7-fach-satzassoziativer Cache-Speicher mit 256 Sätzen realisiert werden. Die Blockgröße im Hauptspeicher beträgt 32 Byte und die Hauptspeicheradresse ist 32 Bit breit. Zur Verwaltung eines Cache-Blocks werden 1 Valid-Bit, 1 Dirty-Bit und ein 3-Bit LRU-Zähler verwendet.

Bestimmen Sie den insgesamt erforderlichen Speicherbedarf für den Tag- und für den Datenspeicher zur Realisierung dieses Cache-Speichers.

- 3.2: Gegeben sei ein m-fach-satzassoziativer Cache-Speicher mit einer Cachelinegröße von 64 Byte. Die Hauptspeicheradresse umfasst 32 Bit. Der Satzindex ist 12 Bit breit. Die Kapazität des Cache beträgt 2 MB.
- a) Wie viele Bit umfasst der Tag?
- b) Wie groß ist in diesem Fall die Assoziativität m?
- c) Wie viele Befehle der Länge 32 Bit können sich gleichzeitig im Cache-Speicher befinden?

WS 13/14 Prof. Dr. J. Neuschwander

4. Aufgabe: (6P)

Klausur: Rechnerarchitektur

(Zur Ermittlung der Punktzahl in dieser Teilaufgabe werden <u>von den richtig angekreuzten</u> <u>Aussagen die falsch angekreuzten Aussagen abgezogen</u>; Nicht angekreuzte Aussagen zählen nicht und gehen somit nicht in die Bewertung ein.)

Fragen	richtig	falsch
Bei der Memory-Mapped-Adressierung liegen Speicheradressen und Ein-/Ausgabe-Adressen in separaten Adressräumen.		
Mit Interleaving bezeichnet man die Verschachtelung von Hauptspeicherzugriffen auf verschiedene DRAM-Speicherbänke.		
Beim Simultaneous Multithreading (SMT) wird jedem Befehlsstrom ein eigener Registersatz zugewiesen.		
Die mittlere Zugriffszeit in einem Speichersystem, das aus einem Verbund von Cachespeicher und Arbeitsspeicher besteht, wird mit der Abnahme der Hitrate kleiner.		
Alle Befehle innerhalb eines VLIW-Befehls müssen unabhängig voneinander sein und die Zuordnung der einzelnen Befehle zu den Ausführungseinheiten erfolgt dynamisch durch den Prozessor.		
Bei SRAM-Speicherbausteinen kann die Zykluszeit durch Interleaving kompensiert werden.		
Branch-Recovery dient zur Korrektur falscher Entscheidungen bei spekulativer Befehlsverarbeitung.		
Zur Lösung von Steuerflusskonflikten in einer Pipeline werden bei der verzögerten Sprungtechnik die Verzögerungszeiten durch NOP-Befehle ausgefüllt.		
Die History Bits im Branch-Target-Buffer (BTB) werden bei einer Pipeline jeweils in der Write-Back (WB)-Phase aktualisiert.		
Beim Cycle-by-Cycle-Interleaving (Multithreading) werden Threads solange ausgeführt, bis ein Befehl mit langer Latenzzeit auftritt.		
Beim sogenannten Bus Snooping wertet der Prozessor die Adressen beim Zugriff anderer Busmaster auf den Hauptspeicher zur Konsistenzsicherung aus.		
SIMD-Maschinen führen verschiedene Befehle auf denselben Daten aus (Array-Prozessoren).		

5. Aufgabe: (5,5 P)

Gegeben seien ein *Direct-Mapped-Cache* (DM) und ein *2-Way-Set-Associative* Cache (A2). Die beiden Cache-Speicher haben jeweils eine Speicherkapazität von 64 Bytes und werden in Blöcken von je 8 Bytes geladen. Die Hauptspeicheradresse umfasst 24 Bit. Falls erforderlich, wird die "*Least Recently Used*"-Ersetzungsstrategie verwendet.

Als Aktualisierungsstrategie wird das Copy-Back-Verfahren verwendet.

a)	Welche Bits der 24-Bit Adresse bilden Offset, Tag und Index? Skizzieren Sie
	hierzu die Unterteilung der Hauptspeicheradresse für die beiden Cache-Speicher.

DM:

A2:

Betrachten Sie die folgenden Lese- und Schreibzugriffe auf die in hexadezimaler Schreibweise angegebenen Hauptspeicheradressen:

Adresse	\$8A	\$12	\$6C	\$9A	\$34	\$54	\$68	\$FE	\$17
read/write	r	r	W	W	r	W	W	r	r

Gehen Sie davon aus, dass zum Start dieser Adressfolge die beiden Cachespeicher leer sind.

c)

b) Geben Sie in der folgenden Tabelle an, ob es sich beim Zugriff auf die jeweiligen Adressen um einen Cache-Miss (Kennzeichnung "–") oder einen Cache-Hit (Kennzeichnung "X ") handelt und geben Sie auch an, ob der entsprechende Cacheblock in den Hauptspeicher zurückkopiert werden muss (ja) oder nicht (nein).

Füllen Sie die Tabelle nur für den DM-Cache aus:

Adresse	\$8A	\$12	\$6C	\$9A	\$34	\$54	\$68	\$FE	\$17
read/write	r	r	W	W	r	W	W	r	r
Hit / Miss									
write back?									

Tabelle (falls benötigt) als Hilfe:

Adresse			
\$8A			
\$12			
\$6C			
\$9A			
\$34			
\$8A \$12 \$6C \$9A \$34 \$54 \$68 \$FE			
\$68			
\$FE			
\$17			

6. Aufgabe: (4 P)

Der in einem 32-Bit-Rechnersystem eingesetzte TLB (Translation Look Aside Buffer) dient der Beschleunigung der Adressumsetzung. Der Adressspeicher des d be 2 eir Bi

r		chteten TLB ist 21 Bit breit und teilt sich auf in eine Segmentnummer (8Bit) und seitennummer (13 Bit). Der Datenspeicher, der die Framenummer enthält, ist 12 eit.
	a)	Skizzieren Sie die Unterteilung der virtuellen Adresse (jeweils Längenangaben in Bit).
	b)	Wie groß darf ein Segment des virtuellen Speichers maximal sein?
	c)	Wie groß ist eine Seite und wieviele Seiten passen maximal in ein Segment?
	d)	Mit wieviel Byte muss der Hauptspeicher minimal ausgebaut sein, damit alle Frames darin Platz finden?

e) Wie groß ist ein Programm P (in Byte), wenn es im Hauptspeicher 5 Frames belegt, wobei der letzte Frame nur zu 75% belegt ist?

WS 13/14 Prof. Dr. J. Neuschwander

Gegeben sei nun eine andere Speicherverwaltungseinheit (MMU). Der virtuelle Speicher ist in 8 Seiten mit je 1 kByte unterteilt. Der physische Speicher hat eine Kapazität von 4 kByte. Der aktuelle Ausschnitt der Seitentabelle ist in folgender Tabelle angegeben.

Virtuelle	Physische
Seitennummer	Framenummer
0	3
1	1
2	-
3	-
4	2
5	-
6	0
7	-

f) Ermitteln Sie die physische Adresse (Dezimaldarstellung) zu den folgenden virtuellen Adresse (Dezimaldarstellung) :

4096

g) Ermitteln Sie die virtuelle Adresse (Dezimaldarstellung) zu den folgenden physischen Adresse (Dezimaldarstellung) :

4095

Prof. Dr. J. Neuschwander

7. Aufgabe: (4,5 P)

In der folgenden Aufgabe soll für alle Teilaufgaben jeweils die in Tabelle 8.1 dargestellte Ausgangssituation herrschen. Das Zeichen \$ kennzeichnet die hexadezimale Darstellung von Zahlen.

Prozessor-Register					
Datenregister			Inh	nalt	
D0	\$	00	00	11	11
D1	\$	22	22	33	33
D2	\$	44	44	55	55
D3	\$	66	66	77	77
D4	\$	88	88	99	99
D5	\$	AA	AA	ВВ	ВВ
D6	\$	CC	CC	DD	DD
D7	\$	EE	EE	FF	FF

Adressregister		Inf	nalt	
A0	\$ 00	01	00	02
A1	\$ 00	01	00	06
A2	\$ 00	01	00	0A
A3	\$ 00	01	00	0E
A4	\$ 00	01	00	00
A5	\$ 00	01	00	00
A6	\$ 00	01	00	00
A7	\$ 00	0F	FF	FA

Arbeitsspeicher (16 Bit)			
Adresse	Inhalt		
\$ 10000	\$ 00 01		
\$ 10002	\$ 02 03		
\$ 10004	\$ 04 05		
\$ 10006	\$ 06 07		
\$ 10008	\$ 08 09		
\$ 1000A	\$ OA OB		
\$ 1000C	\$ 0C 0D		
\$ 1000E	\$ 0E 0F		
\$ 10010	\$ 10 11		
\$ 10012	\$ 12 13		

.

\$ FFFFA	\$ 01 02
\$ FFFFC	\$ 03 04
\$ FFFFE	\$ 05 06

Tabelle 8.1 : Ausgangssituation Register und Hauptspeicher

a) Tragen Sie den Inhalt der Datenregister D1 und D4 (<u>je 32 Bit</u>) in Tabelle 8.2 ein, nachdem mit der <u>Ausgangssituation entsprechend Tabelle 8.1</u> alle folgenden Befehle nacheinander ausgeführt wurden:

DC.W	\$1234
EQU	\$1234
DS.L	\$2
MOVE.L	K1, D1
ADD.W	#K2, D1
SWAP	D1
CMP.W	#0,D1
BGT	M1
SUB.W	D3, D4
SWAP	D4
MOVE.L	D4,ERG
	EQU DS.L MOVE.L ADD.W SWAP CMP.W BGT SUB.W SWAP

Prozessor-Register		
Datenregister	Inhalt	
D1	\$	
D4	\$	

Tabelle 8.2 : Lösung zu Teilaufgabe a)

Klausur: Rechnerarchitektur WS 13/14

Prof. Dr. J. Neuschwander

b) Tragen Sie den Inhalt der Datenregister D0, D1 und D2 sowie der Adressregister A0 und A1(<u>je 32 Bit</u>) in Tabelle 8.3 ein, nachdem mit der <u>Ausgangssituation</u> <u>entsprechend Tabelle 8.1</u> die folgenden Befehle nacheinander ausgeführt wurden:

ANF	EQU	\$FFFFC
	MOVE.L	#ANF, A0
	MOVE.W	(A2)+, D0
	MOVE.L	(A2)+, D1

Prozessor-Register		
Datenregister	Inhalt	
D0	\$	
D1	\$	

Adressregister	Inhalt
A0	\$

Tabelle 8.3 : Lösung zu Teilaufgabe b)

c) Tragen Sie den Inhalt der Datenregister D3 und D4 (je 32 Bit) in Tabelle 8.4 ein, nachdem mit <u>der Ausgangssituation entsprechend Tabelle 8.1</u> die folgenden Befehle nacheinander ausgeführt wurden:

SWAP D3 ADD.L (A0)+, D3 LSL.W #2, D4

Prozessor-Register		
Datenregister	Inhalt	
D3	\$	
D4	\$	

Tabelle 8.4 : Lösung zu Teilaufgabe c)