MUH334E18YV6 # /10

Name: **SOLUTION**

[10p] Consider the graph G whose adjacency matrix representation is given below: $G_{ij} = c(e_{i o j})$

Let node 0 be the source and node 9 be the sink. Find the maximum flow.

Show your work. (No point if the solution is obtained by brute force or guessing.)

G	0	1	2	3	4	5	6	7	8	9
0	0	6	0	0	0	6	0	0	2	0
1	0	0	3	0	0	3	0	0	0	0
2	0	0	0	2	0	6	0	3	0	0
3	0	0	0	0	4	0	0	0	0	0
4	0	0	0	0	0	0	0	4	0	7
5	0	0	0	0	0	0	3	0	2	0
6	0	0	0	0	0	0	0	2	1	0
7	0	0	0	0	0	0	0	0	0	3
8	0	0	0	0	0	0	0	0	0	6
9	0	0	0	0	0	0	0	0	0	0

Use Ford-Fulkerson algorithm to find the max flow <u>or</u> alternatively consider the s-t cut (A,B) with $A=\{0,1,5,6\}$ and $B=\{2,3,4,7,8,9\}$.

$$cap(A,B) = \sum_{e_{A \to B}} c(e) = c(e_{0 \to 8}) + c(e_{1 \to 2}) + c(e_{5 \to 8}) + c(e_{6 \to 7}) + c(e_{6 \to 8})$$
$$= 2 + 3 + 2 + 2 + 1$$
$$= 10$$

It can be shown that this is a min cut, so the max flow is 10.