Compacité

1. Graphe fermé

Soient E, F deux espaces vectoriels normés et $f: E \longrightarrow F$ On note $Gr(f) = \{(x, y) \in E \times F \text{ tq } y = f(x)\}.$

- (a) Montrer que si f est continue, alors Gr(f) est fermé dans $E \times F$.
- (b) Prouver la réciproque lorsque f(E) est inclus dans un compact de F.
- (c) Donner un contrexemple si f(E) n'est pas inclus dans un compact.
- 2. Isométries d'un compact

Soit A une partie compacte d'un evn E et $f: A \longrightarrow A$ telle que $: \forall x, y \in A, \ d(f(x), f(y)) \ge d(x, y)$.

- (a) Soit $a \in A$ et (a_n) la suite définie par : $a_0 = a$, $a_{n+1} = f(a_n)$. Montrer que a est valeur d'adhérence de la suite (a_n) .
- (b) Soient $a, b \in A$. Montrer que d(f(a), f(b)) = d(a, b).
- (c) Montrer que f(A) = A.
- **3.** Fonction bicontinue sur un compact

Soit A une partie compacte d'un evn E et $f: A \longrightarrow F$ une fonction continue et injective (F = evn).

- (a) Montrer que $f^{-1}: f(A) \longrightarrow A$ est aussi continue.
- (b) Donner un exemple où A n'est pas compact et f^{-1} n'est pas continue.
- 4. Image d'une intersection

Soient E, F deux espaces vectoriel normés et $f: E \longrightarrow F$ continue. Soit (K_n) une suite décroissante de compacts de E. Montrer que $f(\bigcap K_n) = \bigcap_n f(K_n)$.

5. Boule unité non compact

Soit $E = \mathcal{C}([0, 2\pi])$ muni de la norme $\|.\|_2$. Pour $n \in \mathbb{N}$, on pose $f_n(x) = \cos(nx)$.

- (a) Calculer $||f_n f_p||_2$ pour $n, p \in \mathbb{N}$.
- (b) En déduire que $\overline{B}(0,1)$ n'est pas compacte.
- 6. Somme de deux compacts

Soient K, L deux parties compactes d'un espace vectoriel normé E.

On pose $K+L=\{x+y;\ x\in K,\ y\in L\}$. Démontrer que K+L est une partie compacte de E.

7. Somme d'un fermé et d'un compact

Soit F un fermé, et C un compact de \mathbb{R}^n .

On note $G = F + C = \{x + y; x \in F \text{ et } y \in C\}$. Montrer que G est fermé.

8. Soit $M \geq 0$ fixé et K la partie de \mathbb{R}^n définie par :

$$K = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n_+ \text{ tq } x_1 + x_2 + \dots + x_n = M\}$$

- (a) Montrer que K est compact.
- (b) Soit $f: K \to \mathbb{R}$ définie par $f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n x_i$, montrer que f admet un maximum qu'elle atteint en un point où toutes les coordonnées sont égales.
- (c) En déduire que la moyenne géométrique de réels positifs est inférieure à la moyenne arithmétique.

connexité par arc

- 9. Soient A et B deux parties connexes par arcs d'un \mathbb{K} -espace vectoriel E de dimension finie.
 - a) Montrer que $A \times B$ est connexe par arcs.
 - b) En déduire que $A + B = \{a + b/a \in A, b \in B\}$ est connexe par arcs.
- **10.** Soit $f: I \to \mathbb{R}$ injective et continue. Montrer que f est strictement monotone.

Indice : on peut considérer $\varphi(x,y) = f(x) - f(y)$ défini sur $X = \{(x,y) \in I^2, x < y\}$.