HEURISTIC ANALYSIS

```
Problems Definition & Result Matrix:
- Air Cargo Action Schema:
Action(Load(c, p, a),
        PRECOND: At(c, a) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)
        EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
        PRECOND: In(c, p) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)
        EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
        PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
        EFFECT: \neg At(p, from) \land At(p, to)
- Problem 1 initial state and goal:
Init(At(C1, SFO) \land At(C2, JFK)
        \land At(P1, SFO) \land At(P2, JFK)
        \land Cargo(C1) \land Cargo(C2)
        \land Plane(P1) \land Plane(P2)
        \land Airport(JFK) \land Airport(SFO))
Goal(At(C1, JFK) \land At(C2, SFO))
```

Optimal Plan:

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Search Method	Optimalit y	Plane Length	Time Elapsed	New nodes	# Node Expand	Goal Tests
breadth_first_search	Yes	6	0.052	180	43	56
depth_first_graph_s earch	No	20	0.029	84	21	22
greedy_best_first_gr aph_search h_1	Yes	6	0.01	28	7	9

In Problem 1, greedy best first graph search h 1 performs best, highly efficiency and consumed least amount of memory(node expand). BFS optimum result but takes more time and consume more memory. Depth_first_graph_search didn't optimize result but it consume less time and memory than BFS.

Search Method	Optimality	Plane Length	Time Elapsed	New nodes	# Node Expand	Goal Tests
astar_search h_1						
astar_search h_ignore_pre conditions						

- Problem 2 initial state and goal:

 $Init(At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL)$

 \land $At(P1, SFO) \land At(P2, JFK) \land At(P3, ATL)$

 \land Cargo(C1) \land Cargo(C2) \land Cargo(C3)

 \land *Plane*(*P1*) \land *Plane*(*P2*) \land *Plane*(*P3*)

 \land Airport(JFK) \land Airport(SFO) \land Airport(ATL))

 $Goal(At(C1, JFK) \land At(C2, SFO) \land At(C3, SFO))$

Optimal Plan

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Load(C3, P3, ATL)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Search Method	Optimalit y	Plane Length	Time Elapsed	New nodes	# Node Expand	Goal Tests
breadth_first_search	Yes	9	11.86	30509	3343	4609
depth_first_graph_s earch	No	619	4.99	5602	624	625
greedy_best_first_gr aph_search h_1	No	17	3.40	8910	990	992

The table shows depth_first_graph_search and greedy_best_first_graph_search h_1 have no optimal result, execute quickly and consume less memory. depth_first_graph_search output large

plane Length. Breadth_first_search reach optimal solution and the Node expand more than two other algorithms.

Search Method	Optimality	Plane Length	Time Elapsed	New nodes	# Node Expand	Goal Tests
astar_search h_1						
astar_search h_ignore_precondi tions						

• • • •

- Problem 3 initial state and goal:

• • •

 $Init(At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL) \land At(C4, ORD)$

 \land $At(P1, SFO) \land At(P2, JFK)$

 \land $Cargo(C1) \land Cargo(C2) \land Cargo(C3) \land Cargo(C4)$

 \land *Plane*(*P1*) \land *Plane*(*P2*)

 \land Airport(JFK) \land Airport(SFO) \land Airport(ATL) \land Airport(ORD))

 $Goal(At(C1, JFK) \wedge At(C3, JFK) \wedge At(C2, SFO) \wedge At(C4, SFO))$

,,,

Optimal Plan:

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C1, P1, JFK)

Unload(C3, P1, JFK)

Fly(P2, ORD, SFO)

Unload(C2, P2, SFO)

Unload(C4, P2, SFO)

Search Method	Optimality	Plane Length	Time Elapsed	New nodes	# Node Expand	Goal Tests
breadth_first_search	Yes	12	59.71	129631	14663	18098
depth_first_graph_s earch	No	392	2.47	3364	408	409

Search Method	Optimality	Plane Length	Time Elapsed	New nodes	# Node Expand	Goal Tests
greedy_best_first_gr aph_search h_1	No	22	25.08	49429	5614	5616

The table shows again depth_first_graph_search and greedy_best_first_graph_search h_l have no optimal result but execute quickly and consume less memory. depth_first_graph_search output large plane Length. Breadth_first_search reach optimal solution and the Node expand more than two other algorithms.

Search Method	Optimality	Plane Length	Time Elapsed	New nodes	# Node Expand	Goal Tests
astar_search h_1						
astar_search h_ignore_pre conditions						

References:

http://aima.cs.berkeley.edu/2nd-ed/newchap11.pdf