		O CHEMISTRY							
	<u>IISTRY</u>	0: 1: 1							
1.		t of ion discharge	d during electro	olysis is	• •	roportion	al to		
	(1) current				(2) Time				
	(3) Resistar		(4) Chemical equivale				ent of the ion		
2.	Three Faraday of electricity are passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and								
	molten NaCl taken in three different electrolytic cells. The amount of Al, Cu, and Na deposited at the cathodes will be in the ratio of :								
	(1) 1 mole : 2 mole : 3 mole				(2) 3 mole : 2 mole : 1 mole				
	(3) 1 mole : 1.5 mole : 3 mole			(4) 1.5 mole : 2 mole : 3 mole					
3.	What is the amount of chlorine evolved when 2 amperes of current is passed for 30 minutes in an aqueous solution of NaCl?								
	(1) 66 g	(2) 33	g	(3) 1.3	2 g		(4) 99 g		
4.	The minimum equivalent conductance is fused state is shown by								
	(1) <i>MgCl</i> ₂	(2) Be	eCl_2	(3) <i>Cr</i>	Cl_2		$(4) SrCl_2$		
5.	Two Pt electrodes fitted in a conductance cell are 1.5 cm apart and the cross-sectional area of each							each	
	electrode is $0.75cm^2$. The cell constant is								
	(1) 1.25		(2) 0.5cm		$(3) \ 2.0 cm^{-1}$		(4) $0.2cm^{-1}$		
6.	$\lambda_{CICH_{2}COONa} = 224 ohm^{-1} cm^{2} gmeq^{-1}, \lambda_{NaCL} = 38.2 ohm^{-1} cm^{2} gmeq^{-1}, \lambda_{HCI} = 203 ohm^{-1} cm^{2} gmeq^{-1}, \text{ What}$							What	
	is the value of λ_{CICH_2COOH} .								
	(1) $288.5 \ ohm^{-1}cm^2 \ gmeq^{-1}$				$(2) 289.5 ohm^{-1}cm^2 gmeq^{-1}$				
	(3) 388.8 $ohm^{-1}cm^2 gmeq^{-1}$				$(4) 59.5 \ ohm^{-1}cm^2 \ gmeq^{-1}$				
7.	Specific conductance of 0.1 M nitric acid is $6.3 \times 10^{-2} ohm^{-1} cm^{-1}$. The molar conductance of solution								
	is								
	(1) $630 \ ohm^{-1}cm^2mole^{-1}$			(2) $315 \ ohm^{-1}cm^2mole^{-1}$					
	(3) $100 \ ohm^{-1}cm^2mole^{-1}$				$(4)\ 6300\ ohm^{-1}cm^2mole^{-1}$				
8.	Given, for Sn^{+4}/Sn^{+2} , standard reduction potential is 0.15 V and for Au^{+3}/Au , standard reduction								
	potential is 1.5V. For the reaction, $3Sn^{+2} + 2Au^{+3} \rightarrow 3Sn^{+4} + 2Au$ the value of E_{cell}^0 is								
	(1) + 1.35		(2) + 2.55		(3) - 1.35		(4) -2.55		
9.	What is the electrode potential (in volt) of the following electrode at 25° C? $Ni^{+2}(0.1M) Ni(s)$								
	(Standard reduction potential of Ni^{+2} Ni is $-0.25V$, $\frac{2.303RT}{F} = 0.06$								
	(1) - 0.82V		(2) - 0.28V		(3) - 0.22V		(4) - 0.34V		
10.	E_1, E_2 and E_3 are the emfs of the following three galvanic cells respectively								
	i) $Zn_{(s)} Zn^{+2}(0.1M) Cu^{+2}(1M) Cu_{(s)}$ ii) $Zn_{(s)} Zn^{+2}(1M) Cu^{+2}(1M) Cu_{(s)}$								
	iii) $Zn_{(s)} Zn^{+2}(1M) Cu^{+2}(0.1M) Cu_{(s)}$				Which one of the following is true?				
	(1) $E_3 > E_1$	$>$ E_2	(2) $E_2 > E_1 > $	E_3	(3) $E_3 > E_2 >$	E_1	(4) $E_1 > E_2 > E_3$		

11.	The standard emf of Daniell cell is 1.10V. The maximum electrical work obtained from the cell is							
	(1) 106.15kJ	(2) 212.3kJ	(3) 350.8kJ	(4) 175.4kJ				
12.	$Zn^{+2} \to Zn_{(s)}; E^{\circ} = -0.76V; C$	$Cu^{+2} \to Cu_{(s)}; E^{\circ} = -0.3$	34V Which of the following	lowing is spontaneous?				
	$(1) Zn^{+2} + Cu \rightarrow Zn + Cu^{+2}$		$(2) Cu^{+2} + Zn \rightarrow Cu$	$a + Zn^{+2}$				
	(3) $Zn^{+2} + Cu^{+2} \to Zn + Cu$		(4) None of these					
13.	When compared to ΔG° for	the formation of Al_2O	Q_3 the ΔG° for the form	nation of Cr_2O_3 is				
	(1) Same	(2) Unpredicted	(3) Higher	(4) Lower				
14.	If the ΔG of a cell reaction	$AgCl + e^- \rightarrow Ag + Cl^-$	is -21.20 kJ; the stan	dard e.m.f., of cell is				
	(1) 0.229 V	(2) 0.220V	(3) - 0.220V	(4) - 0.110V				
15.	Standard reduction potentials	s at $25^{\circ}C$ of $Li^{+} Li,Bi$	$a^{+2} Ba, Na^+ Na $ and Ma	$Mg^{+2} Mg \text{ are } -3.05, -2.90, -$				
	2.71 and – 2.37 volt respecti	vely. Which one of the	e following is the stron	ngest oxidising agent?				
	(1) Na^+	(2) <i>Li</i> ⁺	(3) Ba^{+2}	(4) Mg^{+2}				
16.	When lead storage battery di	scharges						
	(1) SO_2 is evolved		(2) $PbSO_4$ is consumed					
	(3) H_2SO_4 is consumed		(4) Lead is formed					
17.	What is correct Nernst equation for reaction taking place in the following cell?							
	$Mg_{(s)} Mg_{(aq)}^{+2} Cl_{(aq)}^{-} Cl_{2(g)} (1a)$	tm) / pt						
	(1) $E_{cell} = E_{cell}^{\circ} - \frac{0.0592}{n} \times \log \frac{1}{n}$	$\left\lceil Cl^{-} \right\rceil^{2}$	$E = E^{\circ}$ 0.0	Mg^{+2}				
	$(1) E_{cell} = E_{cell} - \frac{1}{n} \times 10g$	$S = \frac{1}{Mg^{+2}}$	(2) $E_{cell} = E_{cell}^{\circ} - \frac{0.0}{100}$	$\frac{1}{n} \times \log \frac{1}{[Cl^-]}$				
	(3) $E_{cell} = E_{cell}^{\circ} - \frac{0.0592}{n} \times \log n$	$g[Mg^{+2}][Cl^-]^2$	(4) $E_{cell} = E_{cell}^{\circ} - \frac{0.0}{100}$	$\frac{1592}{n} \times \log \frac{\left[Mg^{+2}\right]}{\left[Cl^{-}\right]^{2}}$				
18.	The cell potential of the follo	owing cell at $25^{\circ}C$ (in	volts) is					
	$(Pt)H \begin{vmatrix} H^+ & Cu^{+2} \\ (0.01M) & (0.1M) \end{vmatrix} Cu$	$e(E_{Cu^{+2}/cu} = 0.337V)$						
	(1) 0.308	(2) 0.427	(3) - 0.308	(4) 0.337				
19.	The reduction potential at p	$o^H = 14$ for the Cu^{+2} / C	<i>u</i> couples is					
	[Given, $E_{Cu^{+2}/Cu}^{\circ} = 0.34V; K_{sp}$]	$Cu(OH)_2 = 1 \times 10^{-19}$						
	(1) 0.34V	(2) - 0.34	(3) 0.22V	(4) - 0.22V				
20.	The equilibrium constant for	the following redox re	eaction at 298 K is 1×	10^{8} .				
	$2Fe_{(aq)}^{+3} + 2I_{(aq)}^{-} \Longrightarrow 2Fe_{(aq)}^{+2} + I_{(aq)}^{-}$	$_{2(s)}$ If the standard reduced	uction potential of iod	line becoming iodide is				
	+0.54 V, What is the standar	d reduction potential of	of Fe^{+3} / Fe^{+2} ?					
	(1) - 0.652V (5) - 0.77V	(2) + 0.77V	(3) + 1.006 V	(4) - 1.006V				
21.	The charge in coloumb on 1	gm ion of N^{3-} is $x \times x$	10 ⁵ coloumbs. The val	lue of 'x' is				
22.	A current of 3 amphere was	passed for 2 hour thro	ugh a solution of CuS	CO_4 . 3gm of Cu^{+2} ions				
	Were discharged at cathode.	Calculate the current	efficiency.					
23.	$E^0 = 0.059$ and $K_c = 10^a$ for	a cell reaction involving	ng the change $2A + 3B$	$B^{+2} \rightarrow 2A^{+3} + 3B$. What is the				
	value of 'a'							

- 24. How many of the following are strong electrolytes NH₄Cl, CH₃COONa, H₃BO₃ NH₄OH, NaCl, NaCN
- If $\Delta G = -386.0 KJ$ and n=2, What is cell potential 25.
- The p^H at which reduction potential of 1 atm H/H^+ will be equal to 0.059V 26.
- E^0 for a cell having 2 electrons involved in redox change is 0.2655V. The equilibrium constant for the 27. redox change is 10^a . The value of 'a' is
- 96.5 A current is passed for 10sec through 1 litre solution of 0.1 M $CuSO_4$. After 10sec, the p^H of 28. solution is
- For the Cell $\frac{pt Cl_2 |HCl|Cl_2, pt if E_{cell}}{P_1}$ is 0.02644, the ratio of $\frac{P_2}{P_1}$ is ______ 29.
- Total charge required to convert some mole of Mn_3O_4 to MnO_4^{2-} is 40f. How many mole of Mn_3O_4 30. were converted.

CHEMISTRY										
61-70	3	3	3	2	2	3	1	1	2	4
71-80	2	2	3	2	4	3	3	2	4	2
81-90	3	42	6	4	2	1	9	2	8	4

CHEMISTRY

- (i) The amount of ion discharged during electrolysis is not directly proportional to resistance. 1.
 - (ii) It is proportional to current, time and electro chemical equivalent of the ion.
 - (iii) $m = z \times i \times t$

m = the amount of ion discharged

z = electrochemical equivalent

i = current

t = time

2. Equivalent of A1 = Equivalent of Cu

= Equivalent of Na

or $\frac{1}{2}$ mole A1 = $\frac{1}{2}$ mole Cu = 1 mole Na or 2 : 3 : 6 or 1 : 1.5 : 3 mole ratio

According to Faraday's 1st law 3.

$$m = \frac{Eit}{96500}$$

$$m = \frac{Eit}{96500}$$
 = $E = \frac{Atomic mass of chlorine}{Valency of chlorine}$

$$i = 2$$
, $t = 30 \times 60 = E = \frac{35.5}{1} = 35.5$

$$\therefore m = \frac{35.5 \times 2 \times 30 \times 60}{96500} = 1.324g$$

- BeCl₂ has higher covalent character hence it ionizes in least extent in the fused state. 4.
- Cell constant $\frac{1}{a} = \frac{1.5}{0.75} = 2.0 cm^{-1}$ 5.

$$CICH_2COONa + HCl \rightarrow ClCH_2COOH + NaCl$$

6.
$$\lambda_{CICH_2COONa} + \lambda_{HCl} = \lambda_{CICH_2COOH} + \lambda_{NaCl}$$

$$224 + 203 = \lambda_{CICH_2COOH} + 38.2 \Rightarrow \lambda_{CICH_2COOH} = 427 - 38.2 = 388.8 \, ohm^{-1}cm^2gmeq^{-1}$$

7.
$$\Delta_m = \frac{1000 \times k}{molarity} = \frac{1000 \times 6.3 \times 10^{-2}}{0.1} = 630 \, ohm^{-1} cm^2 mole^{-1}.$$

8.
$$E_{cell}^{\circ} = E_{cathode}^{\circ} - E_{anode}^{\circ} = 1.5 - 0.15 = 1.35V.$$

$$E_{Ni^{+2}/Ni} = E_{Ni^{+2}/N}^{\circ} - \frac{2.303RT}{nF} \log[Ni^{+2}/N]$$

9.
$$= -0.25 - \frac{0.06}{2} \log \left(\frac{1}{0.1} \right) \quad (\because n = 2)$$
$$= -0.25 - 0.03 \times 1$$

$$E_{Ni^{+2}/N} = -0.28V$$

$$E_{cell} = E_{Cell}^{\circ} + \frac{0.0591}{n} \log \frac{\left[Cu^{+2}\right]}{\left[Zn^{+2}\right]}$$

10.
$$E_1 = E_{Cell}^{\circ} + \frac{0.0591}{2} \log \frac{1}{0.1}; E_1 = E_{Cell}^{\circ} + 0.02955$$

$$E_2 = E_{Cell}^{\circ} + \frac{0.0591}{2} \log \frac{1}{1}; E_2 = E_{Cell}^{\circ}$$

$$E_3 = E_{Cell}^{\circ} + \frac{0.0591}{2} \log \frac{0.1}{1}; E_3 = E_{Cell}^{\circ} + 0.02955.$$
 $\therefore E_1 > E_2 > E_3$

11. Electrical work = nFE_{cell}°

$$= 2 \times 96500 \times 1.1 = 212300 J = 212.3 kJ$$

$$Zn^{+2} \rightarrow Zn_{(s)}; E^{\circ} = -0.76V$$

12.
$$Cu^{+2} \to Cu_{(s)}; E^{\circ} = -0.34V$$

A redox reaction is feasible if E_{cell} is positive.

- 13. Al acts as a good reducing agent and reduces oxides of metals like Cr, Fe, Mn etc. $Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3 + heat$; Therefore ΔG° for the formation of Al_2O_3 is lower in comparison to ΔG° for the formation of Cr_2O_3 .
- 14. Given $\Delta G = -21.20 \text{k} = -21200 \text{J}$

$$\therefore \Delta G = -nFE$$

$$E = \frac{21200}{1 \times 96500} = 0.2196V = 0.22V.$$

- 15. (i). More is the reduction potential of an oxidizing agent (i.e less ve value)
 - (ii). Mg^{+2} acts as the strongest oxidizing agent.
- 16. H_2SO_4 is consumed when lead storage battery is discharged.

17.
$$Mg_{(s)} | Mg_{(gg)}^{+2} | | Cl_{(gg)} | Cl_{2(g)} (1atm) / Pt$$

Oxidation half reaction, $Mg \rightarrow Mg^{+2} + 2e^{-}$

Reduction half reaction, $Cl_2 + 2e^- \rightarrow 2Cl^-$

Net Cell reaction, $Mg + Cl_2 \rightarrow Mg^{+2} + 2Cl^{-1}$

Nernst equation,
$$E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \left[Cl^{-} \right]^{2} \left[Mg^{+2} \right]$$
.

Here n = 2.

18.
$$(Pt)H_2 \begin{vmatrix} H^+ \\ (0.01M) \end{vmatrix} \begin{vmatrix} Cu^{+2} \\ (0.1M) \end{vmatrix} Cu$$
 For the above cell, the cell reaction is $H_2 + Cu^{+2} \rightarrow 2H^+ + Cu$

According to the Nernst equation

$$\begin{split} E_{cell} &= E_{Cu^{+2}/Cu}^{\circ} - \frac{0.0591}{n} \log \frac{\left[H^{+}\right]^{2}}{\left[Cu^{+2}\right]} \\ &= 0.337 - \frac{0.0591}{2} \log \frac{\left(0.01\right)^{2}}{\left(0.1\right)} = 0.337 - 0.02955 \log 10^{-3} = 0.337 + .0.08865 \\ &= 0.42565 \approx 0.427. \end{split}$$

$$p^{H} = 14; p^{OH} = 0 \text{ and } [OH^{-}] = 1M$$

$$[Cu^{+2}][OH^{-}]^{2} = K_{sp} = 1.0 \times 10^{-19}$$

19. Given, :
$$[Cu^{+2}] = 1.0 \times 10^{-19} M$$

$$Cu^{+2} + 2e^{-} \rightarrow Cu$$

$$E_{Cu^{+2}/Cu} = E_{Cu^{+2}/Cu} - \frac{0.0591}{2} \log \frac{1}{\left[Cu^{+2}\right]} = 0.34 - \frac{0.0591}{2} \log 10^{19} = -0.22V$$

$$K_{c} = 1 \times 10^{8}$$

$$E_{(I_{2}/I^{-})}^{\circ} = +0.54V$$
20. Given,
$$E_{(Fe^{+3}/Fe^{+2})}^{\circ} = ?$$

$$2Fe_{(aa)}^{+3} + 2I_{(aa)}^{-} \rightleftharpoons 2Fe_{(aa)}^{+2} + I_{2(s)}$$

Number of electrons involved (n) = 2

$$\begin{split} E_{cell}^{\circ} &= \frac{0.0591}{n} \log K_c = \frac{0.591}{2} \log 1 \times 10^8 = 0.0591 \times 4 = 0.2364V \\ E_{cell}^{\circ} &= E_{\left(Fe^{+3}/Fe^{+2}\right)}^{\circ} - E_{\left(I_2/I^{-}\right)} \\ 0.23 &= E_{\left(Fe^{+3}/Fe^{+2}\right)}^{o} - (+0.54) \\ E_{\left(Fe^{+3}/Fe^{+2}\right)}^{\circ} &= 0.23 + 0.54 = +0.77V \end{split}$$

21. The charge on $1N^{3-} = 3 \times 1.602 \times 10^{-19} C$ The charge on 1gm ion $N^{3-} = 3 \times 1.602 \times 10^{-19} \times 6.023 \times 10^{23}$

$$=2.89\times10^{5}coloumb$$

$$m_{cu} = \frac{E.i.t}{96500}$$
22.
$$3 = \frac{63.5 \times i \times 2 \times 60 \times 60}{2 \times 96500}$$

$$i = 1.266 amphere$$

$$Current\ efficiency = \frac{Current\ passed\ actually}{Total\ current\ passed\ \exp er \min ently} \times 100$$

$$= \frac{1.266}{3} \times 100$$

$$= 42.2\%$$

$$E^{\circ} = 0.059 = \frac{0.059}{10 \text{ g/s}} = \frac{0.059}{10 \text{ g/s$$

$$E^{\circ} = 0.059 = \frac{0.059}{6} 10g \, k_c$$

23.
$$\log k_c = 6$$
$$k_c = 10^6$$
$$a = 6$$

24. Four salts are strong electrolytes

$$-\Delta g = -nf \; E_{cell}$$

25.
$$386 \times 10^3 = 2 \times E \times 96500$$
$$E = 2volt$$

$$E = E^{\circ} + \frac{0.059}{1} 10g [H^{+}]$$

$$E^{\circ} = 0$$

26.
$$E = 0.05910g[H^+]$$

$$If[H^+] = 10^{-1} then E = 0.059$$

$$p^H = 1$$

$$E_{cell} = E^{\circ} + \frac{0.059}{2} 10gk$$

27.
$$0.265 = 0.029510gk_c$$
$$k_c = 10^9$$
$$a = 9$$

28.
$$Cu^{+2} + 2e^{-} \to Cu$$
$$2H_{2}O \to O_{2} + 4H^{+} + 4e^{-}$$

Equation of H^+ formed = equation of Cu^{+2} lost

$$=\frac{1t}{96500} = \frac{96.5x10}{9650} = 0.01$$

$$[H^+] = \frac{0.01}{1} = 10^{-2}$$

$$p^{\scriptscriptstyle H}=2$$

$$2cl^{-} \rightarrow Cl_{2} + 2e^{-}$$

$$Cl_{2} + 2e^{-} \rightarrow 2Cl^{-}$$

$$29. \qquad E_{cell} = \frac{0.059}{2} \log \frac{P_{2}}{P_{1}}$$

$$\therefore \frac{0.02664 \times 2}{0.059} = \log \frac{P_{2}}{P_{1}}$$

$$\frac{P_{2}}{P_{1}} = 8$$

$$\left(Mn + \frac{8}{3}\right)_{3} \rightarrow 3mn^{6+} + 10e^{-}$$

$$30. \qquad \frac{1mole\ Mn_{3}O_{4}\ required\ 10\ f}{?}$$

$$\frac{40 \times 1}{10} = 4\ mole$$