Machine Learning Redes Neurais Artificiais

Prof. Hugo de Paula

Redes neurais artificiais

Método bioinspirado baseado em redes de neurônios artificiais interconectados.

Vantagens:

- Alta acurácia e robusto à bases com erros
- Saída pode ser discreta (classificação) ou contínua (previsão) ou multivalorada.

Redes neurais artificiais

Críticas:

- Treinamento demorado e sensível a diversos parâmetros tais como topologia da rede, número de neurônios, taxa de aprendizado, número de épocas utilizadas.
- Difícil de compreender a função aprendida (pesos).

Neurônio Artificial (perceptron)

$$f(a) = \begin{cases} 1, se \ a \ge \theta \\ 0, se \ a < \theta \end{cases}$$

- 1. Inicia com pesos aleatórios
- 2. Calcula o erro na saída: $\varepsilon = saida_{RNA} saida_{REAL}$

3. Atualiza pesos: $w_i(t+1) = w_i(t) + \varepsilon \cdot TA \cdot E$

TA é taxa de aprendizado (ex. 0.05). *E* é entrada.

Perceptron: exemplo

saída: 1 – feliz, 0 – infeliz

Calorias	Horas Sono	Estado
0.9	0.25	0
0.66	0.15	0
0.83	0.55	1
0.86	0.63	1
0.16	0.2	0
0.1	0.65	0
0.33	0.8	1
0.53	0.87	1
0.6	0.46	0
0.23	1	1

- Treinamento parou quando atingiu $\varepsilon = 0.0001$
- Durou 30 épocas (300 iterações)
- TA = 0.01, f(a): $\theta = 0.5$
- Pesos finais:

$$W_0 = 0.416882$$

$$W_1 = 0.507391$$

Perceptron: exemplo

Desvantagem: só resolve problemas linearmente separáveis

Redes perceptron muticamadas (MLP)

Dado um número suficiente de neurônios escondidos, uma MLP com uma camada escondida aproxima qualquer função contínua (Cybenko, 1989).

Overfitting: uma rede hipertreinada, ou possui mais neurônios do que precisa, se ajusta a grupo específico de dados, diminuindo sua generalização.

Redes neurais artificiais: estruturas

Redes feed-forward

- Single-layer ou multi-layer.
- Implementam funções não possuem estado interno.

Redes neurais artificiais: estruturas

Redes recorrentes

- Possuem ciclos direcionados com atrasos possuem estado interno.
- Redes de Hopfield: implementam memória associativa.
- Máquinas de Boltzmann: usa funções estocásticas de ativação.

Aviso legal

O material presente nesta apresentação foi produzido a partir de informações próprias e coletadas de documentos obtidos publicamente a partir da Internet. Este material contém ilustrações adquiridas de bancos de imagens de origem privada ou pública, não possuindo a intenção de violar qualquer direito pertencente à terceiros e sendo voltado para fins acadêmicos ou meramente ilustrativos. Portanto, os textos, fotografias, imagens, logomarcas e sons presentes nesta apresentação se encontram protegidos por direitos autorais ou outros direitos de propriedade intelectual.

Ao usar este material, o usuário deverá respeitar todos os direitos de propriedade intelectual e industrial, os decorrentes da proteção de marcas registradas da mesma, bem como todos os direitos referentes a terceiros que por ventura estejam, ou estiveram, de alguma forma disponíveis nos slides. O simples acesso a este conteúdo não confere ao usuário qualquer direito de uso dos nomes, títulos, palavras, frases, marcas, dentre outras, que nele estejam, ou estiveram, disponíveis.

É vedada sua utilização para finalidades comerciais, publicitárias ou qualquer outra que contrarie a realidade para o qual foi concebido. Sendo que é proibida sua reprodução, distribuição, transmissão, exibição, publicação ou divulgação, total ou parcial, dos textos, figuras, gráficos e demais conteúdos descritos anteriormente, que compõem o presente material, sem prévia e expressa autorização de seu titular, sendo permitida somente a impressão de cópias para uso acadêmico e arquivo pessoal, sem que sejam separadas as partes, permitindo dar o fiel e real entendimento de seu conteúdo e objetivo. Em hipótese alguma o usuário adquirirá quaisquer direitos sobre os mesmos.

O usuário assume toda e qualquer responsabilidade, de caráter civil e/ou criminal, pela utilização indevida das informações, textos, gráficos, marcas, enfim, todo e qualquer direito de propriedade intelectual ou industrial deste material.

© PUC Minas • Todos os direitos reservados, de acordo com o art. 184 do Código Penal e com a lei 9.610 de 19 de fevereiro de 1998.

Proibidas a reprodução, a distribuição, a difusão, a execução pública, a locação e quaisquer outras

modalidades de utilização sem a devida autorização da Pontifícia Universidade Católica de Minas Gerais.