Exercises

1. Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ and let $f \colon \mathbb{N} \to \mathbb{N}$ be a function given by

$$f(x) = 2x + 3.$$

- (i) Find f(f(4) + 1).
- (ii) Find $f(\{1, 2, 3, 4, 5\})$.
- (iii) Find $f^{-1}(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\})$.
- (iv) Is f injective?
- (v) Is f surjective?
- 2. Let $\mathbb{N} = \{1, 2, 3, \ldots\}$. Are the following functions injective, surjective and/or bijective?
 - (i) $f: \mathbb{N} \to \mathbb{N}, f(n) = 2n$;
 - (ii) $f: \mathbb{N} \to \mathbb{N}, f(n) = 2^n$;
 - (iii) $f: \mathbb{N} \to \mathbb{N}, f(n) = \text{number of all positive divisors of } n.$
- 3. Let $S = \{1, 2, 3, \ldots\}$. Let R be a relation on he set $S \times S$ defined by

$$(a,b) R(c,d) \Leftrightarrow 2a - b = 2c - d.$$

- (i) Show that R is an equivalence relation.
- (ii) If $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$, find R[(2, 5)], the equivalence class of (2, 5).
- 4. Let R_1 be a partial order on X, and let R_2 a partial order on Y. Let R be a relation on $X \times Y$ defined by:

$$(x_1, y_1) R(x_2, y_2) \Leftrightarrow x_1 R_1 x_2 \wedge y_1 R_2 y_2.$$

Show that R is a partial order on $X \times Y$.

- 5. Let $\mathbb{R}^+ = \{x \mid x \in \mathbb{R} \land x > 0\}$, and let $\mathbb{N} = \{1, 2, 3, \ldots\}$. Are the following functions injective, surjective and/or bijective?
 - (i) $f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) = |x|;$
 - (ii) $f: \mathbb{N} \to \mathbb{R}^+, f(x) = 2x + 7;$
 - (iii) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(x, y) = 2x y$.
- 6. Let $S = \{x \in \mathbb{N} \mid 2 \le x \le 16\}$. Let R be the relation of division on S, that is,

$$x R y \Leftrightarrow x | y$$
.

- (i) Draw the Hasse diagram with respect to R.
- (i) Find all R-maximal elements, if they exist.
- (iii) Find all R-minimal elements, if they exist.
- (iv) Does R define a lattice on S?
- 7. Let $S = \mathbb{R}$. Let R be a relation on S defined by

$$x R y \Leftrightarrow x - y \in \mathbb{Z}$$
.

- (i) Show that R is an equivalence relation.
- (ii) Find $R[\frac{1}{2}]$, the equivalence class of $\frac{1}{2}$.
- 8. Let $S=\{1,2,\ldots,10\}.$ Let R be a relation on S defined by $x\,R\,y \Leftrightarrow x+y \text{ is even and } x \leq y.$
 - (i) Show that R is a partial order on S.
 - (ii) Draw the Hasse diagram with respect to R.
 - (i) Find all R-maximal elements, if they exist.
 - (iii) Find all R-minimal elements, if they exist.
 - (iv) Does R define a lattice on S?
- 9. A partial order R is given by the following Hasse diagram:

- (i) Find all R-maximal elements, if they exists.
- (iii) Find all R-minimal elements, if they exists.
- (iii) Does there exist an R-least element?
- (iv) Does there exist the R-greatest element?
- (v) Find all R-upper bounds of $\{a, b, c\}$, if they exist.
- (vi) Find the R-lowest upper bound of $\{a, b, c\}$, if it exists.
- (vii) Find all R-lower bounds of $\{f, g, h\}$, if they exist.

- (viii) Find the R-greatest lower bound of $\{f, g, h\}$, if it exists.
- 10. Let $S = \mathbb{N}$. Let R be a relation on S defined by

$$x R y \Leftrightarrow (\exists a)(a \in \mathbb{N} \land xy = a^2).$$

- (i) Show that R is an equivalence relation.
- (ii) If $S = \{1, 2, 3, \dots, 10\}$, find R[1], the equivalence class of 1.
- (iii) If $S = \{1, 2, 3, ..., 10\}$, find all equivalence classes with more then one element.
- 11. Let $n \geq 2$ and $M = \{1, 2, ..., n\} \subset \mathbb{N}$. Let R be a relation on the power set $\mathcal{P}(M)$ of M defined by:

$$ARB \Leftrightarrow A \cup \{1\} = B \cup \{n\}.$$

- (i) Show that R is neither irreflexive, nor symmetric, nor strict total.
- (ii) Show that R is transitive.
- 12. Let $S = \{[a,b] \mid a,b \in \mathbb{R}\} \cup \{[a,\infty) \mid a \in \mathbb{R}\} \cup \{(-\infty,b] \mid b \in \mathbb{R}\}$ be the set of all bounded or unbounded closed intervals on \mathbb{R} . Let R be a relation on S defined by

$$ARB \Leftrightarrow A \subseteq B$$
,

and let $U = \{[1, 10], [3, 20], [4, 15]\} \subset S$.

- (i) Find an R-lower bound for U that is not the R-greatest lower bound for U.
- (ii) Find the R-greatest lower bound for U.
- (iii) Find an R-upper bound for U that is not the R-least upper bound for U.
- (iv) Find the R-least upper bound for U.
- (v) Is R a linear order on S?
- (vi) Find a subset $V \subseteq S$ that has no R-lower bound.
- 13. Find a bijection between the interval $(-3, \infty)$ and the set \mathbb{R} .
- 14. Show that the intervals $[-5, \infty)$ and [-1, 1) are equipolent.