

h(125)→aa→yyyy

NEU Meeting
25th July 2018

Tanvi Wamorkar¹, Toyoko Orimoto¹, Andrea Massironi²
[1] Northeastern University
[2] INFN Milano-Bicocca and CERN

Overview of the updates

- Presented at the Hgg working group meeting
 - Link
 - Strategy to divide the analysis into 3 broad categories depending on m(a)

- This presentation:
 - Present trigger studies
 - Aim of these studies is to establish that the low mass h→xx online triggers can be utilized by us

Triggers and Pre-Selection

- For 2016
 - OR of the two Di-photon triggers is applied
 - HLT_Diphoton30EB_18EB_R9Id_OR_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55
 - HLT_Diphoton30PV_18PV_R9Id_AND_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55
 - Schematic diagrams illustrating the two HLT paths are in the backup
- To achieve good data/simulation comparison, a pre-selection that is tighter than the online selection is applied on data and Monte Carlo

		R9 (5x5)	HoE	$\sigma_{i\eta i\eta}$ (5x5)	pfPhoIso	TrackerIso
Both photons in barrel	Barrel	> 0.5	< 0.07	< 0.0105	< 4 GeV	< 6 GeV
At least one in endcap			I	l	1	
At least one in endcap	Endcap	> 0.9	< 0.035	< 0.0275	< 4 GeV	< 6 GeV

- Electron Veto: no Pixel seed
- p_T leading $\gamma > 30$ GeV, p_T subleading $\gamma > 18$ GeV
- For both γ 's $|\eta| < 2.5$, but not in the ECAL EB-EE gap
- $M_{\chi\chi} > 55 \text{ GeV}$
- Have not applied the loose photon ID MVA > -0.9 yet (to remain unbiased)
- Scaled p_T's: p_T leading $\gamma/M_{\gamma\gamma}>0.47$ and p_T subleading $\gamma/M_{\gamma\gamma}>0.28$

Recap: Reco level categorization

Possible to reconstruct the 4γ invariant mass in these categories

4 Resolved Photons case

of events w/ 4 resolved photons

(all photons within detector acceptance)
+ pass (pre-selection && trigger)

of events w/ 4 resolved photons (all photons within detector acceptance)

- For m(a) > 10 GeV the fully resolved topology is the dominant one (26% for m(a) = 10 GeV to 46% for m(a) = 60 GeV)
- From this simple study, we can see that the existing low mass diphoton triggers have an efficiency ranging from 30% for m(a) = 10 GeV to 55% for m(a) = 60 GeV

2 Resolved + 1 Merged Photons case

of events w/ 2 resolved + 1 merged photons

(all photons within detector acceptance)
+ pass (pre-selection && trigger)

of events w/ 2 resolved + 1 merged photons (all photons within detector acceptance)

• For m(a) = 5 GeV, around ~10% of the events lie under this category

2 pairs of Merged Photons case (1)

 $\epsilon_{2_{\mathbf{Y}}} =$

of events w/ 2 merged photons
(all photons within detector acceptance)
+ pass (pre-selection && trigger)

of events w/ 2 merged photons (all photons within detector acceptance)

2 pairs of Merged Photons case (2)

- Selections at the online level are based on 5x5 and Supercluster based variables
- For m(a) < 5 GeV, photons are mostly merged
- Since for m(a) < 5 GeV, the event would almost look like H-> $\gamma\gamma$, the diphoton object is then the Higgs (and not "a")
- Maybe its a good idea to check the effect of application of the standard h→xx trigger on m(a) < 10 GeV? —> Doing currently!
- Major difference b/w the standard and low-mass diphoton trigger is in the diphoton mass cut
 - For standard h→χχ: M_{χχ} > 90 GeV
 - For low mass h→χχ: M_{χχ} > 55 GeV

Low mass/Merged photons scenario

- For m(a) > 10 GeV the fully resolved topology is the dominant one (26% for m(a) = 10 GeV to 46% for m(a) = 60 GeV)
- For m(a) = 100 MeV and 1 GeV, the dominant category is 2 pairs of merged γ 's (all γ 's in acceptance)
 - However, for this mass regime a separate analysis has to be developed since the standard photon identification MVA will cease to work
 - New classification would be needed in this case; In contact with Michael Andrews (from CMU) (working on developing mass regression on merged photon clusters) Link to Michael's presentation
 - Mass regression on merged photon clusters: For exotic light scalar decays, A→γγ, try to perform mass regression on the merged photon cluster

Comments & Future steps

- For 2017 data taking
 - One HLT path was active during data taking
 - HLT_Diphoton30EB_18EB_R9Id_OR_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55
 - Currently producing MicroAOD's with the 2017 recipe of flashgg (framework for h→ɣɣ analyses)
- For 2018 data taking
 - The diphoton mass requirement has been removed from the online HLT path for the low mass diphoton triggers Good News :)
- With additional plots (& corrections to the existing plots), present the detailed trigger study at the Hgg working group meeting tomorrow

Backup

Logic of Gen-Reco Matching

- Start by identifying a merged photon at Gen level (if $\Delta R < 0.15$)
- Loop over the collection of Reco photons and look for one which is close to the Gen-level merged photon within a cone of $\Delta R = 0.15$
- If more than one such Reco photons are found, then the one with the least ΔR is flagged as a merged photon at the Reco-level
- By doing this, we can flag each photon at the Reco level as "resolved" or "merged"
- Next step is to mimic the categories @ Reco level