Distribuição de Energia Elétrica

Impedância série de sistemas de distribuição aéreos e subterrâneos

Lucas Melo

Universidade Federal do Ceará

Junho de 2021

Uma linha de distribuição apresenta resistência e reatância, o que gera oposição à passagem de corrente. O cálculo desses valores de impedância série são necessário para determinação de queda de tensão, fluxo de carga, curto-circuito e perdas.

A resistência de pode ser determinada pela seguinte equação:

$$R_{dc} = \rho \frac{L}{A} \tag{1}$$

Em que L é o comprimento do condutor, A a sua área e ρ a resistividade elétrica do material.

A resistência de um condutor também irá depender da temperatura do ambiente em que este se encontra e da frequência da corrente consuzida.

Para resistência em uma dada temperatura T_1 é possível encontrar a resistência em uma temperatura T_2 , dado um coefiente de temperatura do material M, de acordo com a equação:

$$R_{T_2} = R_{T_1} \cdot \frac{M + T_2}{M + T_1} \tag{2}$$

M = 228,1 para o alumínio;

M = 241,5 para cobre.

Para uma ampla faixa de temperatura é possível aproximar o comportamento da resistência como uma função linear:

$$R_{T_2} = R_{T_1} \cdot [1 + \alpha \cdot (T_2 - T_1)] \tag{3}$$

Em que,

 α = coeficiente de temperatura.

 $\alpha = 0.00404$ para alumínio 61,2% IACS à 20°C.

 α = 0,00347 para alúminio alloy 6201-T81 à 20°C.

 $\alpha = 0.00383$ para cobre à 20°C.

 $\alpha = 0.0036$ para alumínio/aço à 20°C.

Assim, por exemplo para o alumínio 61,2% IACS para cada 10°C de créscimo na temperatura ambiente há um acréscimo de 4% na resistência.

Outro parâmetro que afeta a resistência é a frequência da corrente, por conta do chamado efeito Skin. Esse efeito tem a tendência de aumentar a resistência:

$$\frac{R_{ac}}{R_{dc}} = \frac{x}{2} \cdot \frac{ber(x) \cdot bei(x) - bei(x) \cdot ber(x)}{(bei(x))^2 + (ber(x))^2}$$
(4)

Em que:

$$x = 0,02768 \cdot \sqrt{\frac{f \cdot \mu}{R_{dc}}} \tag{5}$$

 μ = permeabilidade magnética relativa = 1 para condutores não magnéticos (incluindo alumínio e cobre).

bei, bei, ber e ber são as partes real e imaginária das funções de Bessel.

A reatância indutiva(própria e mútua) é função direta do fluxo magnético concatenado por um condutor.

Figura: Campos Magnéticos

Assumindo:

$$I_1 + I_2 + \dots + I_i + \dots + I_n = 0 (6)$$

A expressão para o fluxo concatenado total em um condutor i é:

$$\lambda_i = 2 \cdot 10^{-7} \cdot \left(I_1 \cdot ln \frac{1}{D_{i1}} + I_2 \cdot ln \frac{1}{D_{i2}} + \dots + I_i \cdot ln \frac{1}{GMR_i} + I_n \cdot ln \frac{1}{D_{in}} \right)$$
 (7)

Para chegar a expressão mostrada no slide anterior devemos inicialmente considerar dois condutores longos de comprimento l, espaçados por uma distância D, de modo que $l\gg D$. Analogamente ao fluxo concatenado por uma expira podemos associar o conceito de fluxo concatenado pelo retângulo entre os dois condutores, desprezando o efeito do fluxo em suas extremidades.

Outro conceito importante é o de fluxo concatenado com um condutor apenas. Para isso é necessário supor que o outro condutor de retorno encontra-se a uma distância D tendendo ao infinito. Dessa forma podemos admitir o fluxo concatenado com um condutor, que está dividido em:

- fluxo interno;
- fluxo externo.

Para o cálculo dos fluxos magnéticos adotamos a seguinte estratégia:

• Determinar uma expressão para a intensidade de campo magnético *H*, pela lei circuital de Ampere, ou seja:

$$\oint H_r \cdot dl = I_r \tag{8}$$

• Determinar uma expressão para a densidade de fluxo magnético *B*, que se relaciona com *H*, por meio da seguinte expressão:

$$B_r = \mu \cdot H_r \tag{9}$$

• Determina-se então a expressão para o fluxo magnético concatenado, que é dado pela seguinte expressão:

$$\Phi = \int_{S} B_r \cdot dS \tag{10}$$

 Por fim, a indutância relacionada ao condutor é determinada dividindo-se a expressão do fluxo magnético pela corrente que gera o fluxo:

$$L_r = \frac{\Phi}{I_r} \tag{11}$$

Realizando os procedimentos descritos nos slides anteriores, encontramos as expressões para indutância interna e externa de um condutor:

$$L_{int} = \frac{\mu}{8 \cdot \pi} \tag{12}$$

$$L_{ext} = \frac{\mu}{2 \cdot \pi} \cdot \ln\left(\frac{D}{r}\right) \tag{13}$$

De forma que:

$$L = L_{int} + L_{ext} = \frac{\mu}{8 \cdot \pi} + \frac{\mu}{2 \cdot \pi} \cdot \ln\left(\frac{D}{r}\right) = \frac{\mu}{2 \cdot \pi} \cdot \ln\left(\frac{D}{r \cdot e^{-1/4}}\right)$$
(14)

Substituindo $\mu \approx \mu_0 = 4 \cdot \pi \cdot 10^{-7}$ e considerando $r^{'} = r \cdot e^{-1/4}$, ficamos com:

$$L = 2 \cdot 10^{-7} \cdot \ln\left(\frac{D}{r'}\right) [H/m] \tag{15}$$

Essa é a expressão para a indutância, incluindo todo o fluxo concatenado do centro do condutor até um ponto externo P, a uma distância D do seu centro.

Exercício

Encontre a expressão da indutância de uma linha a dois condutores a e b de modo que $I_a + I_b = 0$. Os condutores estão a uma distância D um do outro e possuem o mesmo raio r. Considere também $\mu \approx \mu_0 = 4 \cdot \pi \cdot 10^{-7}$.

Para formularmos uma expressão geral para indutância de um condutor devido ao fluxo concatenado por um conjunto de condutores dispersos no espaço por distâncias D_{ij} , de modo que este fluxo é gerado pelas correntes I_i em cada um dos condutores admitindo que: $\sum I_i = 0$.

Figura: Campos Magnéticos

Começamos por calcular o fluxo concatenado com o condutor 1 em relação a um ponto P.

O fluxo concatenado com o condutor 1 até o ponto P devido seu próprio fluxo é dado por:

$$\Phi_{1,P}^{(1)} = 2 \cdot 10^{-7} \cdot I_1 \cdot \ln \frac{D_{1,P}}{r_1'} \tag{16}$$

O fluxo concatenado com o condutor 1 até o ponto P devido o fluxo gerado pelo condutor 2 é dado por:

$$\Phi_{1,P}^{(2)} = 2 \cdot 10^{-7} \cdot I_2 \cdot \ln \frac{D_{2,P}}{D_{1,2}}$$
 (17)

O fluxo concatenado com o condutor 1 até o ponto P devido o fluxo gerado pelo condutor 3 é dado por:

$$\Phi_{1,P}^{(3)} = 2 \cdot 10^{-7} \cdot I_3 \cdot \ln \frac{D_{3,P}}{D_{1,3}}$$
 (18)

Assim, o fluxo concatenado total será dado por:

$$\Phi_{1,P} = \Phi_{1,P}^{(1)} + \Phi_{1,P}^{(2)} + \dots + \Phi_{1,P}^{(n)}$$
(19)

$$\Phi_{1,P} = 2 \cdot 10^{-7} \cdot \left(I_1 \cdot \ln \frac{D_{1,P}}{r_1'} + I_2 \cdot \ln \frac{D_{2,P}}{D_{1,2}} + \dots + I_n \cdot \ln \frac{D_{n,P}}{D_{1,n}} \right)$$
(20)

Aplicando propriedades logarítimicas:

$$\Phi_{1,P} = 2 \cdot 10^{-7} \cdot (I_1 \cdot \ln \frac{1}{r_1'} + I_2 \cdot \ln \frac{1}{D_{1,2}} + \dots + I_n \cdot \ln \frac{1}{D_{1,n}} + I_1 \cdot \ln D_{1,P} + I_2 \cdot \ln D_{2,P} + \dots + I_n \cdot \ln D_{n,P})$$

Considerando:

$$I_n = -(I_1 + I_2 + \dots + I_{n-1}) \tag{21}$$

$$\Phi_{1,P} = 2 \cdot 10^{-7} \cdot (I_1 \cdot \ln \frac{1}{r_1'} + I_2 \cdot \ln \frac{1}{D_{1,2}} + \dots + I_n \cdot \ln \frac{1}{D_{1,n}} + I_1 \cdot \ln \frac{D_{1,P}}{D_{n,P}} + I_2 \cdot \ln \frac{D_{2,P}}{D_{n,P}} + \dots + I_{n-1} \cdot \ln \frac{D_{n-1,P}}{D_{n,P}})$$

Deslocando o ponto P até uma distância muito grande do condutor 1, então:

$$\lim_{P \to \infty} \ln \left(\frac{D_{ip}}{D_{np}} \right) = 0 \tag{22}$$

Assim chegamos a expressão do fluxo concatenado com o condutor 1:

$$\Phi_1 = 2 \cdot 10^{-7} \cdot \left(I_1 \cdot \ln \frac{1}{r_1'} + I_2 \cdot \ln \frac{1}{D_{1,2}} + \dots + I_n \cdot \ln \frac{1}{D_{1,n}} \right)$$
 (23)

Que é a base da expressão obtida no início deste estudo:

$$\lambda_i = 2 \cdot 10^{-7} \cdot \left(I_1 \cdot ln \frac{1}{D_{i1}} + I_2 \cdot ln \frac{1}{D_{i2}} + \dots + I_i \cdot ln \frac{1}{GMR_i} + I_n \cdot ln \frac{1}{D_{in}} \right)$$
(24)

Definimos então a indutância própria de um condutor pela expressão:

$$L_{ii} = \frac{\lambda_{ii}}{I_i} = 2 \cdot 10^{-7} \cdot ln \frac{1}{GMR_i} H/m$$
 (25)

E a indutância mútua entre dois condutores por:

$$L_{in} = \frac{\lambda_{in}}{I_n} = 2 \cdot 10^{-7} \cdot ln \frac{1}{D_{in}} H/m$$
 (26)

Indutância de linhas trifásicas equilibradas

Considere agora que temos uma linha trifásica equilibrada, com configuração geométrica de acordo com a figura:

Utilizando a equação:

$$\lambda_k = 2 \times 10^{-7} \sum_{m=1}^{M} I_m \ln \frac{1}{D_{km}} Wb - espira/m$$
 (27)

Indutância de linhas trifásicas equilibradas

Analisando a fase a, temos que o fluxo concatenado pelo condutor desta fase é:

$$\lambda_a = 2 \times 10^{-7} \left(I_a \ln \frac{1}{GMR} + I_b \ln \frac{1}{D} + I_c \ln \frac{1}{D} \right)$$
 (28)

Aplicando $I_b + I_c = -I_a$:

$$\lambda_a = 2 \times 10^{-7} \left(I_a \ln \frac{1}{GMR} - I_a \ln \frac{1}{D} \right)$$

$$= 2 \times 10^{-7} \left(I_a \ln \frac{D}{GMR} \right) Wb - espira/m$$
(30)

A indutância é dada por:

$$L_a = \frac{\lambda_a}{I_a} = 2 \times 10^{-7} \left(\ln \frac{D}{GMR} \right) H/m \ p/fase \tag{31}$$

Indutância de linhas trifásicas equilibradas

Caso, as distâncias entre os condutores fase não sejam iguais, então a indutância por fase não pode ser considerada. Logo, é preciso o cálculo de cada uma das indutâncias pois seus valores serão diferentes.

No entanto, isso pode ser contornado realizando a transposição da linha de acordo com a figura:

Impedância série de linhas trifásicas transpostas e equilibradas

Assim, para linhas de transmissão, onde consideramos as fases igualmente carregadas e transpostas é possível **combinar** as indutâncias próprias e mútuas em uma **indutância de fase**:

$$L_i = 2 \cdot 10^{-7} \cdot ln \frac{D_{eq}}{GMR_i} \ H/m \tag{32}$$

Em que:

$$D_{eq} = \sqrt[3]{D_{ab} \cdot D_{bc} \cdot D_{ca}} \quad pes \tag{33}$$

Impedância série de linhas trifásicas transpostas e equilibradas

Assumindo a frequencia do sistema em 60 Hz:

$$\omega = 2 \cdot \pi \cdot 60 \approx 377,0 \tag{34}$$

Calcula-se então a reatância

$$x_i = \omega \cdot L_i = 7,54 \cdot 10^{-5} \cdot ln \frac{D_{eq}}{GMR_i} \left[\Omega / metro \right]$$
 (35)

A impedância por fase de uma linha transposta e equilibrada é dada pela expressão:

$$z_i = r_i + j \cdot 7,54 \cdot 10^{-5} \cdot ln \frac{D_{eq}}{GMR_i} \left[\Omega / metro \right]$$
 (36)

Impedância série de linhas trifásicas transpostas e equilibradas

Sabendo então que 1 milha = 1.609,34 metros, então

$$x_{i} = (1,609 \cdot 10^{3} \cdot 7,54 \cdot 10^{-5}) \cdot ln \frac{D_{eq}}{GMR_{i}}$$

$$x_{i} = 0,12134 \cdot ln \frac{D_{eq}}{GMR_{i}} [\Omega/milha]$$

A impedância por fase de uma linha transposta e equilibrada é dada pela expressão:

$$z_i = r_i + j \cdot 0,12134 \cdot ln \frac{D_{eq}}{GMR_i} \left[\Omega/milha \right]$$
 (37)

Quando temos linhas desequilibradas e não transpostas é necessário manter os termos de indutância própria e mútua separados e levar em consideração a corrente de retorno pelo terra.

Separando os termos de indutância própria e mútua:

$$z_{ii} = r_i + j \cdot 0,12134 \cdot ln \frac{1}{GMR_i} \Omega/milha$$
 (38)

$$z_{ii} = r_i + j \cdot 0,12134 \cdot ln \frac{1}{GMR_i} \Omega/milha$$

$$z_{ij} = j \cdot 0,12134 \cdot ln \frac{1}{D_{ij}} \Omega/milha$$
(38)

Levando em consideração um circuito alimentado por uma fonte de tensão e aterrado no lado da carga:

Figura: Condutores com retorno de corrente pelo terra

Aplicando lei de Kirchoff:

$$V_{ig} = z_{ii} \cdot I_i + z_{ij} \cdot I_j + z_{id} \cdot I_d - (z_{dd} \cdot I_d + z_{di} \cdot I_i + z_{dj} \cdot I_j)$$
 (40)

Agrupando por correntes:

$$V_{ig} = (z_{ii} - z_{di}) \cdot I_i + (z_{ij} - z_{dj}) \cdot I_j + (z_{id} - z_{dd}) \cdot I_d$$
 (41)

Substitutindo $I_i + I_j + I_d = 0 \rightarrow I_d = -(I_i + I_j)$, obtém-se

$$V_{ig} = \hat{z}_{ii} \cdot I_i + \hat{z}_{ij} \cdot I_j \tag{42}$$

$$\hat{z}_{ii} = z_{ii} + z_{dd} - z_{di} - z_{id} \tag{43}$$

$$\hat{z}_{ij} = z_{ij} + z_{dd} - z_{dj} - z_{id} \tag{44}$$

$$V_{ig} = \hat{z}_{ii} \cdot I_i + \hat{z}_{ij} \cdot I_j \tag{45}$$

$$\hat{z}_{ii} = z_{ii} + z_{dd} - z_{di} - z_{id} \tag{46}$$

$$\hat{z}_{ij} = z_{ij} + z_{dd} - z_{dj} - z_{id} \tag{47}$$

Figura: Circuito primitivo equivalente.

Até aqui, para aplicarmos as equações de fluxo concatenado com um condutor por um grupo de condutores admitimos a hipótese de que a soma das correntes era nula.

Isso implica limitar o cálculo, considerando apenas o efeito das correntes de sequência positiva ou negativa, **desprezando o efeito das correntes de sequência zero**, ou seja da terra, em que:

$$I_a + I_b + I_c = 3 \cdot I_0 \neq 0 \tag{48}$$

A consideração do efeito do solo resolve este problema, quando aplicamos o **método das imagens** permitindo analisar casos em que a soma das correntes não é nula.

Método das imagens de Carson

Método das imagens:

Figura: Condutores e suas imagens

Método das imagens de Carson

Para os condutores visualizados no slide anterior temos que:

$$\sum_{i=1}^{n} I_i = I \tag{49}$$

Para as imagens desses mesmos condutores:

$$\sum_{i=1}^{n} I_i = -I (50)$$

Assim, para todo o conjunto de condutores, a soma total das correntes é nula, permitindo a aplicação da expressão do fluxo concatenado com um condutor i por um grupo de condutores.

Equações de Carson

Como o solo não é um condutor perfeito, apresenta resistividade $\rho \neq 0$. Isso faz com que **as correntes se distribuam de modo diferente de acordo com a frequência**, ou seja, para frequências mais elevadas as correntes tendem a se concetrar na superfície, apresentando um efeito semelhante ao efeito pelicular em um condutor.

A formulação matemática deste tratamento é relativamente complexa, envolvendo uma decomposição em série de Bessel, proposta por Carson em 1926 e conhecida como **correção de Carson**.

Equações de Carson

Em seu desenvolvimento Carson propõe que a impedância de uma linha desequilibrada pode ser dado pelo equacionamento considerando $\rho=0$ mais a adição de um termo de correção, dessa forma:

$$z_{ii} = (r_{ii} + \Delta r_{ii}) + j \cdot \left(0,12134 \cdot ln \frac{1}{GMR_i} + \Delta x_{ii}\right) \Omega/milha$$

$$z_{ij} = \Delta r_{ij} + j \cdot \left(0,12134 \cdot ln \frac{1}{D_{ij}} + \Delta x_{ij}\right) \Omega/milha$$

Equações de Carson

$$z_{ii} = (r_{ii} + \Delta r_{ii}) + j \cdot \left(0,12134 \cdot ln \frac{1}{GMR_i} + \Delta x_{ii}\right) \Omega/milha$$

$$z_{ij} = \Delta r_{ij} + j \cdot \left(0,12134 \cdot ln \frac{1}{D_{ij}} + \Delta x_{ij}\right) \Omega/milha$$

Quando $\rho = 0$, então:

$$\Delta r_{ii} = \Delta r_{ij} = 0 \tag{51}$$

$$\Delta x_{ii} = 0.12134 \cdot \ln S_{ii}$$

$$\Delta x_{ij} = 0.12134 \cdot \ln S_{ij}$$
(52)

Equações de Carson

Quando, no entanto, consideramos $\rho \neq 0$, com a finalidade de se considerar o efeito de resistividade do solo não nula:

Impedância própria de um condutor i:

$$\hat{z}_{ii} = r_i + 4\omega P_{ii}G + j\left(X_i + 2\omega G \cdot ln\frac{S_{ii}}{RD_i} + 4\omega Q_{ii}G\right) \Omega/milha$$
 (53)

Impedância mútua entre os condutores i e j:

$$\hat{z}_{ij} = 4\omega P_{ij}G + j\left(2\omega G \cdot ln\frac{S_{ij}}{D_{ij}} + 4\omega Q_{ij}G\right) \Omega/milha$$
 (54)

Equações de Carson

Em que:

```
G = 0.1609344 \times 10^{-3} \ \Omega/milha;
```

 RD_i = Raio do condutor i em pés;

 GMR_i = Raio Médio Geométrico do condutor i em pés;

 $\omega = 2\pi f$ = frequencia angular do sistema em rad/seg;

 ρ = resistividade da terra em Ω – *metros*;

 D_{ij} = distância entre os condutores i e j em pés;

 S_{ij} = distância entre o condutor i e a imagem j em pés;

 θ_{ij} = ângulo entre um par de linhas desenhadas do condutor i para sua própria imagem e para a imagem do condutor j.

Equações de Carson

Ainda,

$$X_i = 2\omega G \cdot ln \frac{RD_i}{GMR_i} \Omega/milha$$
 (55)

$$P_{ij} = \frac{\pi}{8} - \frac{1}{3\sqrt{2}} k_{ij} cos(\theta_{ij}) + \frac{k_{ij}^2}{16} cos(2\theta_{ij}) \cdot \left(0,6728 + \ln\frac{2}{k_{ij}}\right)$$
 (56)

$$Q_{ij} = -0.0386 + \frac{1}{2} \cdot ln \frac{2}{k_{ij}} + \frac{1}{3\sqrt{2}} k_{ij} cos(\theta_{ij})$$
 (57)

$$k_{ij} = 8,565 \times 10^{-4} \cdot S_{ij} \cdot \sqrt{\frac{f}{\rho}}$$
 (58)

De modo a simplificar os cálculos foram feitas duas aproximações nas equações apresentadas anteriormente, considerando apenas o primeiro termo de P_{ij} e os dois primeiros termos de Q_{ij} :

$$P_{ij} = \frac{\pi}{8} \tag{59}$$

$$Q_{ij} = -0.0386 + \frac{1}{2} ln \frac{2}{k_{ij}}$$
 (60)

Fazendo essas simplificações e substituindo f=60~Hz e $\rho=100~\Omega-metro$, chega-se as expressões:

$$\hat{z}_{ii} = r_i + 0.0953 + j \cdot 0.12134 \cdot \left(ln \frac{1}{GMR_i} + 7.93402 \right) \Omega/milha$$

$$\hat{z}_{ij} = 0.0953 + j \cdot 0.12134 \cdot \left(ln \frac{1}{D_{ij}} + 7.93402 \right) \Omega/milha$$

Alguns valores de resistividade do solo podem ser dados por:

Tipo de Terreno	Resistividade $\Omega \cdot m$		
Água do mar	0,01 - 1,0		
Pântano	10 - 100		
Terra úmida	100		
Terra seca	1.000		
Ardósia	10.000.000		
Arenitoo	1.000.000.000		

Comparando os valores de impedâncias obtidos com os valores encontrados na primeira situação, as equações de Carson demonstram que:

$$r_d = 0,09530 \ \Omega/milha \tag{61}$$

$$ln\frac{D_{id} \cdot D_{di}}{GMR_d} = 7,93402 \tag{62}$$

Matriz primitiva de linhas aéreas

As equações de Carson são utilizadas então para calcular uma **matriz** de impedâncias primitiva que é do tipo $n \times n$.

Por exemplo se tivermos um sistema a quatro condutores, (3 fases e 1 neutro), essa matriz será 4×4 .

De modo geral para um sistema trifásico com m condutores neutro:

$$[\hat{z}_{primitiva}] = \begin{bmatrix} \hat{z}_{aa} & \hat{z}_{ab} & \hat{z}_{ac} & | & \hat{z}_{an1} & \hat{z}_{an2} & \hat{z}_{anm} \\ \hat{z}_{ba} & \hat{z}_{bb} & \hat{z}_{bc} & | & \hat{z}_{bn1} & \hat{z}_{bn2} & \hat{z}_{bnm} \\ \hat{z}_{ca} & \hat{z}_{cb} & \hat{z}_{cc} & | & \hat{z}_{cn1} & \hat{z}_{cn2} & \hat{z}_{cnm} \\ - & - & - & - & - & - & - \\ \hat{z}_{n1a} & \hat{z}_{n1b} & \hat{z}_{n1c} & | & \hat{z}_{n1n1} & \hat{z}_{n1n2} & \hat{z}_{n1nm} \\ \hat{z}_{n2a} & \hat{z}_{n2b} & \hat{z}_{n2c} & | & \hat{z}_{n2n1} & \hat{z}_{n2n2} & \hat{z}_{n2nm} \\ \hat{z}_{nma} & \hat{z}_{nmb} & \hat{z}_{nmc} & | & \hat{z}_{nmn1} & \hat{z}_{nmn2} & \hat{z}_{nmnm} \end{bmatrix}$$
 (63)

Matriz primitiva de linhas aéreas

De forma geral e simplificada:

$$[\hat{z}_{primitiva}] = \begin{bmatrix} \hat{\mathbf{z}}_{ij} & \hat{\mathbf{z}}_{in} \\ \hat{\mathbf{z}}_{nj} & \hat{\mathbf{z}}_{nn} \end{bmatrix}$$
 (64)

Na grande maioria das aplicações a matriz de impedâncias precisa ser reduzida para o tamanho de 3 x 3. Uma técnica muito utilizada para realizar a redução do sistema é chamada de *redução de Kron*. Dado o sistema exemplo:

Figura: Sistema a 4 condutores com neutro aterrado.

Aplicando lei de Kirchoff:

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \\ V_{ng} \end{bmatrix} = \begin{bmatrix} V'_{ag} \\ V'_{bg} \\ V'_{cg} \\ V'_{ng} \end{bmatrix} + \begin{bmatrix} \hat{z}_{aa} & \hat{z}_{ab} & \hat{z}_{ac} & \hat{z}_{an} \\ \hat{z}_{ba} & \hat{z}_{bb} & \hat{z}_{bc} & \hat{z}_{bn} \\ \hat{z}_{ca} & \hat{z}_{cb} & \hat{z}_{cc} & \hat{z}_{cn} \\ \hat{z}_{n1a} & \hat{z}_{n1b} & \hat{z}_{n1c} & \hat{z}_{nn} \end{bmatrix} \cdot \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \\ I_{n} \end{bmatrix}$$
(65)

De forma particionada:

$$\begin{bmatrix} \mathbf{V}_{abc} \\ \mathbf{V}_{ng} \end{bmatrix} = \begin{bmatrix} \mathbf{V}'_{abc} \\ \mathbf{V}'_{ng} \end{bmatrix} + \begin{bmatrix} \hat{\mathbf{z}}_{ij} & \hat{\mathbf{z}}_{in} \\ \hat{\mathbf{z}}_{nj} & \hat{\mathbf{z}}_{nn} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I}_{abc} \\ \mathbf{I}_{n} \end{bmatrix}$$
(66)

Sabendo que a tensão de neutro nos dois lados da linha é zero:

$$\mathbf{V_{abc}} = \mathbf{V'_{abc}} + \mathbf{\hat{z}_{ij}} \cdot \mathbf{I_{abc}} + \mathbf{\hat{z}_{in}} \cdot \mathbf{I_n}$$

$$\mathbf{0} = \mathbf{0} + \mathbf{\hat{z}_{ni}} \cdot \mathbf{I_{abc}} + \mathbf{\hat{z}_{nn}} \cdot \mathbf{I_n}$$

$$(67)$$

Resolvendo a segunda equação para I_n:

$$\mathbf{I}_{\mathbf{n}} = -\hat{\mathbf{z}}_{\mathbf{n}\mathbf{n}}^{-1} \cdot \hat{\mathbf{z}}_{\mathbf{n}\mathbf{j}} \cdot \mathbf{I}_{\mathbf{a}\mathbf{b}\mathbf{c}} \tag{69}$$

$$\mathbf{I}_{\mathbf{n}} = -\hat{\mathbf{z}}_{\mathbf{n}\mathbf{n}}^{-1} \cdot \hat{\mathbf{z}}_{\mathbf{n}\mathbf{j}} \cdot \mathbf{I}_{\mathbf{a}\mathbf{b}\mathbf{c}} \tag{70}$$

Substituindo I_n na primeira equação:

$$\mathbf{V}_{abc} = \mathbf{V}_{abc}^{'} + (\mathbf{\hat{z}}_{ij} - \mathbf{\hat{z}}_{in} \cdot \mathbf{\hat{z}}_{nn}^{-1} \cdot \mathbf{\hat{z}}_{nj}) \cdot \mathbf{I}_{abc}$$
 (71)

Em que podemos representar:

$$\mathbf{V}_{abc} = \mathbf{V}'_{abc} + \mathbf{\hat{z}}_{abc} \cdot \mathbf{I}_{abc} \tag{72}$$

Com **z**̂_{abc} dado por:

$$\hat{\mathbf{z}}_{abc} = (\hat{\mathbf{z}}_{ij} - \hat{\mathbf{z}}_{in} \cdot \hat{\mathbf{z}}_{nn}^{-1} \cdot \hat{\mathbf{z}}_{nj})$$
 (73)

A forma final da redução de *Kron* é dada justamente por:

$$\hat{\mathbf{z}}_{abc} = (\hat{\mathbf{z}}_{ij} - \hat{\mathbf{z}}_{in} \cdot \hat{\mathbf{z}}_{nn}^{-1} \cdot \hat{\mathbf{z}}_{nj}) \tag{74}$$

Que neste caso terá os seguintes elementos:

$$\mathbf{\hat{z}_{abc}} = \begin{bmatrix} z_{aa} & z_{ab} & z_{ac} \\ z_{ba} & z_{bb} & z_{bc} \\ z_{ca} & z_{cb} & z_{cc} \end{bmatrix} \Omega/milha$$
 (75)

Para um sistema a três fios basta que se apliquem as equações de Carson para encontrarmos a matriz $\hat{\mathbf{z}}_{abc}$ que como já tem as dimensões 3×3 não precisa passar pela redução de Kron

Assim, de forma geral:

Figura: Rede trifásica a três condutores

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{u} = \begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{u} + \begin{bmatrix} z_{aa} & z_{ab} & z_{ac} \\ z_{ba} & z_{bb} & z_{bc} \\ z_{ca} & z_{cb} & z_{cc} \end{bmatrix} \cdot \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \end{bmatrix}$$
(76)

Componentes Simétricas

A transformação de componentes de fase para componentes simétricas têm como objetivo desacoplar os componentes do circuito, passando desta situação de acomplamento:

Componentes Simétricas

Para uma situação em que não há acomplamento:

Componentes Simétricas

Ou seja, dessa situação:

$$\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} z_{aa} & z_{ab} & z_{ac} \\ z_{ba} & z_{bb} & z_{bc} \\ z_{ca} & z_{cb} & z_{cc} \end{bmatrix} \cdot \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}$$
(77)

Para essa:

$$\begin{bmatrix} V_0 \\ V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} z_0 & 0 & 0 \\ 0 & z_1 & 0 \\ 0 & 0 & z_2 \end{bmatrix} \cdot \begin{bmatrix} I_0 \\ I_1 \\ I_2 \end{bmatrix}$$
 (78)

Para obtermos as impedâncias de sequência de uma linha de distribuição basta aplicarmos a teoria de Fortescue:

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \cdot \begin{bmatrix} V_0 \\ V_1 \\ V_2 \end{bmatrix}$$
 (79)

Em que $a = 1,0/120^{\circ}$.

De forma reduzida:

$$\mathbf{V_{abc}} = \mathbf{A} \cdot \mathbf{V_{012}} \tag{80}$$

Da mesma forma para as correntes de linha:

$$\mathbf{I_{abc}} = \mathbf{A} \cdot \mathbf{I_{012}} \tag{81}$$

Para obtermos a metriz de impedâncias de sequência a partir das impedâncias de fase:

$$\mathbf{V_{012}} = \mathbf{A}^{-1} \cdot \mathbf{V_{abc}} \tag{82}$$

Em que:

$$\mathbf{A}^{-1} = \frac{1}{3} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix}$$
 (83)

Aplicando a expressão das tensões de sequência em função das tensões de fase na seguinte expressão:

$$\mathbf{V}_{\mathbf{abc}n} = \mathbf{V}_{\mathbf{abc}m} + \mathbf{Z}_{\mathbf{abc}} \cdot \mathbf{I}_{\mathbf{abc}} \tag{84}$$

$$\mathbf{V}_{\mathbf{0}12n} = \mathbf{A}^{-1} \cdot \mathbf{V}_{\mathbf{a}\mathbf{b}\mathbf{c}n} \tag{85}$$

Ficamos com:

$$\mathbf{V}_{\mathbf{0}12n} = \mathbf{A}^{-1} \cdot \mathbf{V}_{\mathbf{a}\mathbf{b}\mathbf{c}m} + \mathbf{A}^{-1} \cdot \mathbf{Z}_{\mathbf{a}\mathbf{b}\mathbf{c}} \cdot \mathbf{A} \cdot \mathbf{I}_{\mathbf{0}12}$$
 (86)

$$\mathbf{V}_{012n} = \mathbf{V}_{012m} + \mathbf{Z}_{012} \cdot \mathbf{I}_{012} \tag{87}$$

Em:

$$\mathbf{V}_{012n} = \mathbf{V}_{012m} + \mathbf{Z}_{012} \cdot \mathbf{I}_{012} \tag{88}$$

Z₀₁₂ é dada por:

$$\mathbf{Z_{012}} = \mathbf{A}^{-1} \cdot \mathbf{Z_{abc}} \cdot \mathbf{A} = \begin{bmatrix} z_{00} & z_{01} & z_{02} \\ z_{10} & z_{11} & z_{12} \\ z_{20} & z_{21} & z_{22} \end{bmatrix}$$
(89)

As impedâncias de sequência são dadas pelos termos da diagonal de \mathbf{Z}_{012} , ou seja:

- z₀₀: impedância de sequência zero;
- z_{11} : impedância de sequência positiva;
- z₂₂: impedância de sequência negativa.

<u>Impedâncias de Sequência</u>

Os termos que não estão na diagonal de \mathbb{Z}_{012} representam um acoplamento entre as impedâncias de sequência.

Para que essas impedâncias mútuas fossem zero, era preciso assumir que a linha é transposta.

Nesse caso:

$$z_{s} = \frac{1}{3} \cdot (z_{aa} + z_{bb} + z_{cc})$$

$$z_{m} = \frac{1}{3} \cdot (z_{ab} + z_{bc} + z_{ca})$$
(90)

$$z_m = \frac{1}{3} \cdot (z_{ab} + z_{bc} + z_{ca}) \tag{91}$$

$$\mathbf{Z_{abc}} = \begin{bmatrix} z_s & z_m & z_m \\ z_m & z_s & z_m \\ z_m & z_m & z_s \end{bmatrix} \Omega/milha$$
 (92)

Quando essa metodologia é utilizada, resulta em uma matriz de sequência *diagonal*, ou seja, os termos que não estão na diagonal principal são zero, e as impedâncias de sequência são dadas por:

$$z_{00} = z_s + 2 \cdot z_m \ \Omega/milha \tag{93}$$

$$z_{11} = z_s - z_m \Omega/milha \tag{94}$$

$$z_{22} = z_s - z_m \Omega/milha \tag{95}$$

Impedância série de linhas aéreas

Exemplo:

Calcule a matriz de impedâncias de fase para a linha mostrada abaixo, utilizando as equaçõesmodificadas de Carson.

Figura: Configuração de linhas subterrâneas

Impedância série de linhas subterrâneas

Uma configuração típica para linhas de distribuição subterrâneas seria:

Figura: Configuração de linhas subterrâneas

Os cabos a, b e c são cabos concêntricos. Assim a matriz primitiva para essa linha seria do tipo 7×7 . Se não houvesse o condutor neutro adicional, teríamos então uma matriz 6×6 .

Figura: Cabo com condutor neutro concêntrico.

Os dados necessários para a aplicação das equações de Carson em cabos concêntricos são:

- d_c = diâmetro do condutor fase;
- d_{od} = diâmetro nominal do cabo de neutro concêntrico;
- d_s = diâmetro dos fios de neutro concêntrico;
- GMR_c = Raio Médio Geométrico do condutor de fase;
- *GMR*_s = Raio Médio Geométrico dos fios de neutro;
- r_c = Resistência do condutor de fase;
- r_s = Resistência do fio de neutro;
- k = número de fios do condutor de neutro concêntrico.

Figura: Cabo com condutor neutro concêntrico.

Concentric Neutral 15 kV Cable

Conductor Size AWG or kcmil	Diameter over Insulation Inches	Diameter over Screen Inches	Outside Diameter Inches	Copper Neutral No.×AWG	Ampacity UG Duct Amps
Full Neutral					
2(7×)	0.78	0.85	0.98	10×14	120
1(19×)	0.81	0.89	1.02	13×14	135
1/0(19×)	0.85	0.93	1.06	16×14	155
2/0(19×)	0.90	0.97	1.13	13×12	175
3/0(19×)	0.95	1.02	1.18	16×12	200
4/0(19×)	1.01	1.08	1.28	13×10	230
250(37×)	1.06	1.16	1.37	16×10	255
350(37×)	1.17	1.27	1.47	20×10	300

Figura: Tabela de cabos com condutor neutro concêntrico tipo neutro completo

1/3 Neutral					
2(7×)	0.78	0.85	0.98	6×14	135
1(19×)	0.81	0.89	1.02	6×14	155
$1/0(19 \times)$	0.85	0.93	1.06	6×14	175
2/0(19×)	0.90	0.97	1.10	7×14	200
$3/0(19\times)$	0.95	1.02	1.15	9×14	230
4/0(19×)	1.01	1.08	1.21	11×14	240
250(37×)	1.06	1.16	1.29	13×14	260
350(37×)	1.17	1.27	1.39	18×14	320
500(37×)	1.29	1.39	1.56	16×12	385
750(61×)	1.49	1.59	1.79	15×10	470
$1000(61 \times)$	1.64	1.77	1.98	20×10	550

Figura: Tabela de cabos com condutor neutro concêntrico tipo neutro 1/3

O Raio Médio Geométrico equivalente do condutor neutro concêntrico é dado por:

$$GMR_{cn} = \sqrt[k]{GMR_s \cdot k \cdot R^{k-1}} \quad [pes]$$
 (96)

Em que *R* é raio do circulo que passa pelo centro dos fios que compõem o neutro concêntrico:

$$R = \frac{d_{od} - d_s}{2 \times 12} \quad [pes] \tag{97}$$

A resistência equivalente do condutor de neutro é dada por:

$$r_{cn} = \frac{r_s}{k} \left[\Omega / milha \right] \tag{98}$$

As distâncias entre os condutores neutros e outros condutores fase e ainda entre outros condutores neutro é dada por:

 Distância entre um neutro concêntrico e seu próprio condutor fase:

$$D_{ij} = R (99)$$

- Distância entre um condutor neutro concêntrico um condutor neutro adjacente:
 - $D_{ij} = D_{nm}$ = distância entre condutores fase centro a centro.
- Distância entre um condutor neutro concêntrico e um condutor fase adjacente:

$$D_{ij} = \sqrt[k]{D_{nm}^k - R^k \quad [pes]} \tag{100}$$

Exercício:

Calcule as matrizes de impedâncias de fase e de sequência para a linha subterrânea de condutores de neutro concêntrico conforme mostrado na figura:

Figura: Configuração de condutores com neutro concêntrico.

Cabo Tape-Shielded

Cabo Tape-Shielded

Para o cálculo da matriz de impedâncias de fase da linha com condutores do tipo Tape Shielded é necessário inicialmente obter os valores de resistência e GMR dos condutores fase e da fita de blindagem. Para o condutor fase temos os valores tabelados. Para a fita de blindagem temos:

$$r_s = 7,9385 \times 10^8 \frac{\rho}{d_s \cdot T} \Omega / milha \tag{101}$$

$$GMR_s = \frac{d_s - \frac{T}{1000}}{24} pes$$
 (102)

Cabo Tape-Shilded

Tape-Shielded 15 kV Cable Tape Thickness = 5 mils

Conductor Size AWG or kcmil	Diameter over Insulation Inches	Diameter over Screen Inches	Jacket Thickness mils	Outside Diameter Inches	Ampacity in UG Duct Amps
1/0	0.82	0.88	80	1.06	165
2/0	0.87	0.93	80	1.10	190
3/0	0.91	0.97	80	1.16	215
4/0	0.96	1.02	80	1.21	245
250	1.01	1.08	80	1.27	270
350	1.11	1.18	80	1.37	330
500	1.22	1.30	80	1.49	400
750	1.40	1.48	110	1.73	490
1000	1.56	1.66	110	1.91	565