### Mid 2 RC Part 1: Static Electrics (Chap4)

## 1 Poisson's Equation and Laplace's Equation

#### 1.1 Poisson's Equation:

$$\nabla^2 V = -\frac{\rho}{\epsilon}$$

• In Cartesian System:

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

• In Cylindrical System:

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial^2 \varphi} + \frac{\partial^2 V}{\partial z^2}$$

• In Spherical System:

$$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \varphi^2}$$

#### 1.2 Laplace's Equation

For a simple medium with no free charge:

$$\nabla^2 V = 0$$

For problem involving conductors:

- ullet use Laplace's Equation to obtain electric potential V.
- Use  $E = -\nabla V$  to work out E.
- Use  $\rho_s = \epsilon E$  to get charge density on the conductor surface.

### 1.3 Uniqueness of Electrostatic Solutions

A solution of Poisson's Equation or Laplace's Equation that satisfies the given boundary conditions is a unique solution.

# 2 Method of Images

• Point charge and conducting planes



• Line Charge and Parallel Conducting Cylinder



• Point Charge and a Conducting Sphere



### $\bullet$ Charge Sphere and Grounded Plane



**Example** Find the force on the charge +q in the figure below. Note that the xy plane is grounded conductor plane.



### 3 Boundary Value problem in Cartesian Coordinates

#### 3.1 Boundary Condition Problem

- In order to find specific voltage on conductor systems without isolated free charge.
- General idea: Use boundary condition to find coefficients for general solution form from Laplace equation.
- Types of boundary condition: (1) Dirichlet: V is specific; (2) Neumann:  $\frac{dV}{dn}$  is specified on boundaries (3) Mixed: V is specific on some boundaries;  $\frac{dV}{dn}$  is specified on some boundaries.
- Solution Form: Separation of variables, which means V(x, y, z) = X(x)Y(y)Z(z). When the potential or normal derivative is specified, and it coincide with coordinate surfaces of an orthogonal, curvilinear coordinate system.

#### 3.2 Boundary condition value in Cartesian Coordinate

(1) Laplace's Equation for V in Cartesian coordinates is

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

(2) To use the Separation of variables and take it into Laplace's Equation.

$$\frac{1}{X(x)}\frac{d^2X(x)}{dx^2} + \frac{1}{Y(y)}\frac{d^2Y(y)}{dy^2} + \frac{1}{Z(z)}\frac{d^2Z(z)}{dz^2} = 0$$

(3) In order to satisfied all x,y,z values, these three parts should be constant. Then we can get

$$\frac{1}{X(x)}\frac{d^2X(x)}{dx^2} = -k_x^2, \frac{1}{Y(y)}\frac{d^2Y(y)}{dy^2} = -k_y^2, \frac{1}{Z(z)}\frac{d^2Z(z)}{dz^2} = -k_z^2$$

$$k_x^2 + k_y^2 + k_z^2 = 0$$

- (4) List the boundary conditions we got.
- (5) The general solution formats for above differential equation  $\frac{d^2X(x)}{dx^2} + k_x^2X(x) = 0$  are:

| $k_x^2$ | $k_x$ | X(x)                        | Exponential forms $^{\dagger}$ of $X(x)$ |
|---------|-------|-----------------------------|------------------------------------------|
| 0       | 0     | $A_0x + B_0$                |                                          |
| +       | k     | $A_1\sin kx + B_1\cos kx$   | $C_1 e^{jkx} + D_1 e^{-jkx}$             |
| -       | jk    | $A_2\sinh kx + B_2\cosh kx$ | $C_2 e^{kx} + D_2 e^{-kx}$               |

We need to choose the proper form of solution given boundary condition.

If V is independent of x, We can see X(x)=0;

If V goes to infinity or 0 as x goes to infinity, we choose  $k_x^2$  is negative.

(6) Find the coefficients through boundary condition.

#### Example

Two infinite grounded metal plates lie parallel to the xz plane, one at y=0, the other at y=a(Fig.2). The left end, at x=0, is closed off with an infinite strip insulated form the two plates and maintained at a specific potential  $V_0(y)$ . Find the potential inside this "slot."



## 4 Boundary-value Problems in Cylindrical Coordinates

(1) Laplace Equation:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

(2) General solution: Assuming V is independent of Z.

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 V}{\partial \phi^2} = 0$$

- (3) Separation of variables:  $V(r, \phi) = R(r)\Phi(\phi)$
- (4) Equations for  $\Phi(\phi)$

$$\frac{d^2\Phi(\phi)}{d\phi^2} + k^2\Phi(\phi) = 0$$

Since the solution should be periodic among phi, we can get k=n and we should use  $k^2 > 0$  be like

$$\Phi(\phi) = A_{\phi} \sin n\phi + B_{\phi} \cos n\phi$$

(5) Equations for R(r): After using separation of variables, we get

$$\frac{r}{R(r)}\frac{d}{dr}\left[r\frac{dR(r)}{dr}\right] = k^2$$

Which is a second order differential Equation

$$r^{2}\frac{d^{2}R(r)}{dr^{2}} + r\frac{dR(r)}{dr} - n^{2}R(r) = 0$$

And the general solution is

$$R(r) = A_r r^n + B_r r^{-n}$$

If we study the area including r=0,  $B_r$ =0, Otherwise, V goes to infinity at r=0 If we study the area including r=  $\infty$ ,  $S_r$ =0

(6) Equations for  $V_n(r, \phi)$ ,

$$V_n(r,\phi) = r^n \left( A_n \sin n\phi + B_n \cos n\phi \right) + r^{-n} \left( A'_n \sin n\phi + B'_n \cos n\phi \right), \quad n \neq 0$$

(7) Special case: if V is independent of  $\phi$ , k=0. Then we get

$$\frac{d}{dr} \left[ r \frac{dR(r)}{dr} \right] = 0$$

$$V(r) = C_1 \ln r + C_2$$

**Example** An infinity long, thin, conducting circular tube of radius b is split in two halves. The upper half is kept at a potential  $V = V_0$  and the lower half at  $V = -V_0$ . Determine the potential distribution both inside and outside the tube.



### 5 Boundary-value Problem in Spherical Coordinates

(1) Since we only consider the situation that V is independent of  $\phi$ , the Laplace Equation in Spherical coordinates is simplified to

$$\frac{1}{R^2} \frac{\partial}{\partial R} \left( R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial V}{\partial \theta} \right) = 0$$

(2) By using separation of variables, we assign  $V(R,\theta) = \Gamma(R)\Theta(\theta)$ . Then it looks like

$$\frac{1}{\Gamma(R)} \frac{d}{dR} \left[ R^2 \frac{d\Gamma(R)}{dR} \right] + \frac{1}{\Theta(\theta) \sin \theta} \frac{d}{d\theta} \left[ \sin \theta \frac{d\Theta(\theta)}{d\theta} \right] = 0$$

(3) General solutions for  $\Gamma(R)$ . Firstly,we assume the part for  $\Gamma(R)$  equals to  $k^2$ :

$$\frac{1}{\Gamma(R)}\frac{d}{dR}\left[R^2\frac{d\Gamma(R)}{dR}\right] = k^2$$

It is actually second differential Equation:

$$R^{2}\frac{d^{2}\Gamma(R)}{dR^{2}} + 2R\frac{d\Gamma(R)}{dR} - k^{2}\Gamma(R) = 0$$

The solution form is

$$\Gamma_n(R) = A_n R^n + B_n R^{-(n+1)}, \text{ where } k = n(n+1), n > 0$$

(4) General Solutions for  $\theta$ . Similarly, we can get

$$\frac{1}{\Theta(\theta)\sin\theta} \frac{d}{d\theta} \left[ \sin\theta \frac{d\Theta(\theta)}{d\theta} \right] = -k^2$$

Since we already know  $n(n+1)=k^2$ , we can get the second differential equation:

$$\frac{d}{d\theta} \left[ \sin \theta \frac{d\Theta(\theta)}{d\theta} \right] + n(n+1)\Theta(\theta) \sin \theta = 0$$

. It is called Legendre's equation and for  $theta \in [0, \pi]$ , the solution has special forms called Legendre's polynomials:

$$\Theta_n(\theta) = P_n(\cos \theta)$$

There are some solutions forms for usual n.

| n | $P_n(\cos\theta)$                                            |  |
|---|--------------------------------------------------------------|--|
| 0 | 1                                                            |  |
| 1 | $\cos \theta$                                                |  |
| 2 | $\frac{1}{2}\left(3\cos^2\theta-1\right)$                    |  |
| 3 | $\frac{1}{2} \left( 5 \cos^3 \theta - 3 \cos \theta \right)$ |  |

(5) By Combing them together,

$$V_n(R,\theta) = \left[ A_n R^n + B_n R^{-(n+1)} \right] P_n(\cos \theta)$$

**Example** An uncharged conducting sphere of radius b is placed in an initially uniform Electric Field  $\mathbf{E}_0 = \mathbf{a}_x E_0$ . Determine (a) the potential distribution  $V(\mathbf{R}, \theta)$  and (b) the electric field intensity  $\mathbf{E}(R, \theta)$  after the introduction of sphere.

