Understanding and Utilizing Deep Learning

[Project] Multispectral Pedestrian Detection Challenge

Department of Automotive Engineering, HYU

Soonmin Hwang

E-mail: soonminh@hanyang.ac.kr

Task: Pedestrian Detection

For a given pair of images (RGB/Thermal), recognize pedestrians

Dataset

KAIST Multispectral Pedestrian Detection Benchmark

- 20Hz, Day/Night
- Provide aligned pairs of {RGB, LWIR} images
- 1,182 unique pedestrians

Frontal view

Top view

Evaluation Metrics

IoU: Intersection over Union

•
$$IoU = \frac{area(B_p \cap B_{gt})}{area(B_p \cup B_{gt})} = \frac{1}{area(B_p \cap B_{gt})}$$

Decide "matched" detection == positive prediction

- Check if a detection has highly overlapped with a ground truth
 - → If $IoU[dt, gt] \ge IoU_threshold$

Classification of detections/ground truths

- TP(True Positive) 검출되었고 (positive), 그것이 맞았다 (true)
- FP (False Positive) 검출되었고 (positive), 그것이 틀렸다 (false) → 검출하지 말았어야 했다
- FN (False Negative) 검출되지 않았고 (negative), 그것이 틀렸다 (false) → 검출했어야 했다
- TN (True Negative) 검출되지 않았고 (negative), 그것이 맞았다 (true)

Evaluation Metrics

Average Precision

- Draw a precision-recall curve
- Take several recall values
 & threshold confidences for each recall value
- Sample precisions and take average

Miss rate @ FPPI

- FPPI: False Positive Per Image
- X-axis corresponds to confidence score threshold
- Y-axis corresponds to {1 recall}
- → Usually, we consider a range $[10^{-2}, 10^{0}]$ and average miss rate on log-fppi range

Example

Many occluded pedestrians

→ Difficult to assign individual labels

[TODO] Train a baseline model

Download dataset

Clone a baseline repository [README.md]

Train a model

Upload a prediction result to evaluation server

- Sign-up (<u>http://166.104.168.68:8888</u>)‡ (Open: 5/23)
- Send a message via LMS → manual approval
- Participate in the challenge
- Upload the result file (run/train/*/epoch?_predictions.json)
- You can only hold the best one in the leaderboard automatically
 - Please click edit button and leave model name/description

[‡] This server is only reachable in the campus. If you're not in campus (or in HYU-wlan), please use VPN (https://vpn.hanyang.ac.kr) – it takes a day (or two) to get permission.

[TODO] Train a baseline model

Split train set (train-all-04.txt) into train/val

- You need to create KAIST_annotation.json for your validation subset [<u>Link</u>]
- Still, you need to make predictions on test-all-20.txt to upload result to the evaluation server
- You can consider applying 5-fold cross validation to find good hyperparameters
 - When you have a good hyperparameter,
 you can consider re-training your model on train+val sets for best performance (up to you!)

[TODO] Update loss function

Labels in KAIST dataset

- Person
 - : obviously an individual pedestrian
- Cyclist
 - : a person riding two-wheeled vehicle
- People
 - : not distinguishable individuals
- Person?
 - : even human annotators cannot clearly determine whether a human shaped object is a pedestrian or not

- → This is not enough. Why? (hint: Is the current IoU-based matching good for this case?)
- → How to handle "people" label properly?

[TODO] Adjust anchors

Is current anchor setting best for pedestrian detection?

- Explain why
- Please think about criteria in deciding "anchors"
 - e.g., Each anchor should take the same number of positive boxes
- Adjust your anchors based on that
 - Tip: utilize debug_kaist.ipynb
- Provide an analysis on the above change "qualitatively" and "quantitatively"

[TODO] Modify data augmentation pipeline

Fix the current data augmentation for multispectral inputs

- Explain the issue
- How to fix this?
- Please make changes to fix it
- Analysis the changes
 - Hint: LoadRGBTImagesAndLabels class in utils/dataloaders.py

[TODO] Draw a plot

Miss rate – False Positive Per Image plot

Please use <u>utils/eval/kaisteval.py:L695-L711</u>

[TODO] Further improvements

Please try to achieve the best performance

- Please make all the submissions on the server "public"
- You can see the others' performance in the leaderboard
- Do whatever you want to beat the best model

Submission

Due data

• 6/13 11:59pm

Upload your predictions

To evaluation server

Upload to LMS

- PPT (no template)
- Specify your Github repository link

