CSE 2331 Homework 1 Solutions

First, don't panic! There is a lot of dense formalism here but things are not as complicated as they seem. We will work some of these out together!

Unless otherwise stated, let f and g be a pair of asymptotically non-negative functions defined on an unbounded subset of positive real numbers.

- 1. Break the ice! Create an introductory post on the forum that includes your name, major, specialization areas, and hobbies. Please reply to at least two other posts. (Self-explanatory)
- 2. Using the definition of Θ , argue $3n \log_2(30n^3 10n + 1) \in \Theta(n \log n)$.

Proof. To show $3n \log_2(30n^3 - 10n + 1) \in \Theta(n \log n)$ we need to show that there exists constants $c_1, c_2 \in \mathbb{R}^+$ and $n_0 \in \mathbb{N}_0$ such that, for all $n \geq n_0$, it holds that

$$c_1 n \log n \le 3n \log_2(30n^3 - 10n + 1) \le c_2 n \log n.$$

We first prove the "big-O" side. In other words, we establish that there exists some $c_2 \in \mathbb{R}^+$, such that, for all sufficiently large n, $3n \log_2(30n^3 - 10n + 1) \le c_2 n \log n$. Observe that,

$$3n \log_2(30n^3 - 10n + 1) \le 3n \log_2(30n^3 + 1) \le 3n \log_2(31n^3)$$

$$\le 3n \log_2(n^4) = 12n \log_2(n),$$

where the first inequality drops the negative term -10n, the second inequality holds provided $n \geq 1$, and the third inequality holds provided $n \geq 31$.

Next, we argue the "big- Ω " side. Namely, that there exists some $c_1 \in \mathbb{R}^+$ such that $c_1 n \log n \leq 3n \log_2(30n^3 - 10n + 1)$ for all sufficiently large n. To see this, observe that $30n^3 - 10n + 1 \geq 30n^3 - 10n \geq 30n - 10n = 20n$, where the last inequality holds for all $n \geq 1$. Therefore, since $\log(n)$ is an increasing function, we have

$$3n\log_2(30n^3 - 10n + 1) \ge n\log_2(20n) \ge n\log_2(n).$$

By picking $c_1 = 1$, $c_2 = 12$ and $n_0 = \max(1, 31) = 31$ we have, for all $n \ge n_0$,

$$c_1 n \log n \le 3n \log_2(30n^3 - 10n + 1) \le c_2 n \log n.$$

Therefore, $3n \log_2(30n^3 - 10n + 1) \in \Theta(n \log n)$.

3. Using the definition of Θ , argue $7\sqrt{n^3-8n^2-11}+1\in\Theta(n\sqrt{n})$.

Proof. To show $7\sqrt{n^3 - 8n^2 - 11} + 1 \in \Theta(n\sqrt{n})$, we need to show that there exists constants $c_1, c_2 \in \mathbb{R}^+$ and $n_0 \in \mathbb{N}_0$ such that, for all $n \geq n_0$, it holds that

$$c_1 n \sqrt{n} \le 7\sqrt{n^3 - 8n^2 - 11} + 1 \le c_2 n \sqrt{n}.$$

We first prove the "big-O" side. In other words, we establish that there exists some $c_2 \in \mathbb{R}^+$, such that, for all sufficiently large n, $7\sqrt{n^3-8n^2-11}+1 \in \Theta(n\sqrt{n})$. Observe that,

$$7\sqrt{n^3 - 8n^2 - 11} + 1 \le 7\sqrt{n^3} + 1 = 7n\sqrt{n} + 1 \le 8n\sqrt{n},$$

where the first inequality simply drops the negative term $-8n^2 - 11$ and the second inequality holds provided $n \ge 1$.

Next, we argue the "big- Ω " side. Namely, that there exists some $c_1 \in \mathbb{R}^+$ such that $c_1 n \sqrt{n} \leq 7 \sqrt{n^3 - 8n^2 - 11} + 1$ for all sufficiently large n. To see this, observe that

$$7\sqrt{n^3 - 8n^2 - 11} + 1 \ge \sqrt{n^3 - 8n^2 - 11}.$$

Now, for sufficiently large n, it must be the case that $n^3 - 8n^2 - 11 \ge n^3/2$. To see this, consider

$$n^3 - 8n^2 - 11 \ge n^3 - 8n^2 - 11n^2 = n^3 - 19n^2 \ge n^3(1 - 19/n) \ge n^3/2$$

provided $n \geq 38$. Since $\sqrt{\cdot}$ is an increasing function, it follows that

$$7\sqrt{n^3 - 8n^2 - 11} + 1 \ge \sqrt{n^3/2} = n\sqrt{n/2} = n\sqrt{n}/\sqrt{2}.$$

Therefore, picking $c_1 = \frac{1}{\sqrt{2}}$, $c_2 = 8$, and $n_0 = 38$ we have, for all $n \ge n_0$,

$$c_1 n \sqrt{n} < 7\sqrt{n^3 - 8n^2 - 11} + 1 < c_2 n \sqrt{n}.$$

That is,
$$7\sqrt{n^3 - 8n^2 - 11} + 1 \in \Theta(n\sqrt{n})$$
.

4. Prove $O(f) \cap \Omega(f) \subset \Theta(f)$. We give two possible arguments. The first is directly from the definition, while the second uses a theorem from the lecture slides.

Proof. We first argue that $O(f) \cap \Omega(f)$ is a subset of $\Theta(f)$ by arguing that any $g \in O(f) \cap \Omega(f)$ must also be in $\Theta(f)$. To see this, suppose $g \in O(f) \cap \Omega(f)$. Since $g \in O(f)$, there exists a pair of constants $c_O \in \mathbb{R}^+$, $n_O \in \mathbb{N}_0$, such that, for all $n \geq n_O$, we have

$$g(n) \le c_O f(n)$$
.

At the same time, since $g \in \Omega(f)$, so there exists constants $c_{\Omega} \in \mathbb{R}^+$, $n_{\Omega} \in \mathbb{N}_0$, such that, for all $n \geq n_{\Omega}$, we have

$$c_{\Omega}f(n) \leq g(n).$$

Therefore, for all $n \geq \max(n_O, n_\Omega)$, it holds that

$$c_{\Omega}f(n) \leq g(n) \leq c_{O}f(n).$$

That is, the definition of $g \in \Theta(f)$ is satisfied by picking $c_1 = c_{\Omega}$, $c_2 = c_O$, and $n = \max(n_O, n_{\Omega})$.

You may have used the following argument instead, which uses a theorem from the lecture slides:

Proof. Suppose $g \in O(f) \cap \Omega(f)$. Since $g \in \Omega(f)$, we know that $f \in O(g)$. Because $g \in O(f)$, and $f \in O(g)$, and it follows by a Theorem on the lecture slides that $g \in \Theta(f)$. Therefore, any g in $O(f) \cap \Omega(f)$ is also in $\Theta(f)$.

5. Prove $\Theta(f) \subset O(f) \cap \Omega(f)$.

We again give two possible arguments. The first is directly from the definition, while the second uses a theorem from the lecture slides.

¹This, together with the previous question, shows that $O(f) \cap \Omega(f) = \Theta(f)$.

Proof. We argue that $\Theta(f)$ is a subset of $O(f) \cap \Omega(f)$. Suppose $g \in \Theta(f)$. Then, by definition of Θ , there must be constants $c_1, c_2 \in \mathbb{R}^+$, and $n_{\Theta} \in \mathbb{N}_0$ such that, for all $n \geq n_{\Theta}$,

$$c_1 f(n) \le g(n) \le c_2 f(n).$$

Thus, we see that $g \in O(f)$ by picking $n_0 = n_{\Theta}$ and $c = c_2$ in the definition of O. Further, we see that $g \in \Omega(f)$ by picking $n_0 = n_{\Theta}$ and $c = c_1$ in the definition of Ω . Therefore, $g \in O(f) \cap \Omega(f)$.

You may have used the following argument instead, which uses a theorem from the lecture slides:

Proof. Suppose $g \in \Theta(f)$. Then, it follows by a Theorem on the lecture slides that $f \in O(g)$ and $g \in O(f)$. Since $f \in O(g)$, we know that $g \in \Omega(f)$. Therefore, $g \in O(f) \cap \Omega(f)$.

Note that, taken together, this result and the previous problem prove $(O(f) \cap \Omega(f)) = \Theta(f)$.

6. Suppose $f \in O(g)$. Prove or disprove $2^{f(n)} \in O(2^{g(n)})$.

Proof. We will argue that this is false by giving one possible counter-example. Let f(n) = 2n and g(n) = n. By our limit test, $f(n) \in \Theta(g(n))$. Yet,

$$\lim_{n \to \infty} \frac{2^{f(n)}}{2^{g(n)}} = \lim_{n \to \infty} \frac{2^{2n}}{2^n} = \frac{4^n}{2^n} = \lim_{n \to \infty} 2^n = \infty.$$

It follows that $2^{f(n)} \in \omega(2^{g(n)})$, and so $2^{f(n)} \notin O(2^{g(n)})$.

7. Compute

$$o(f) \cap \omega(f)$$
.

(Hint: Suppose g(n) is in the intersection and use limit tests to compare with f(n). Could such a g(n) exist?)

Proof. We claim that $o(f) \cap \omega(f) = \emptyset$. To see why, suppose there exists a $g(n) \in o(f(n)) \cap \omega(f(n))$. Since $g(n) \in o(f(n))$, any such g(n) must satisfy

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty.$$

On the other hand, since $g(n) \in \omega(f(n))$, any such g(n) must satisfy

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

This is a contradiction since the limit cannot be both 0 and ∞ . Therefore, no such g(n) exists.

8. Let $c \in \mathbb{R}^+$, $f(n) = 2^{n+c}$, $g(n) = 2^{n \cdot c}$ Prove that $f(n) \in \Theta(2^n)$ and, for $c \neq 1$, that $g \notin \Theta(2^n)$.

Proof. Observe,

$$\lim_{n \to \infty} \frac{f(n)}{2^n} = \lim_{n \to \infty} \frac{2^{n+c}}{2^n} = \lim_{n \to \infty} 2^c = 2^c.$$

Therefore, $f(n) \in \Theta(2^n)$.

Suppose $c \neq 1$ and consider,

$$\lim_{n \to \infty} \frac{g(n)}{2^n} = \lim_{n \to \infty} \frac{2^{n \cdot c}}{2^n} = \lim_{n \to \infty} 2^{n \cdot (c-1)} = \lim_{n \to \infty} \left(2^{c-1}\right)^n = \begin{cases} \infty & c > 1\\ 0 & c < 1 \end{cases}.$$

Note that neither outcome is a positive constant and so $g(n) \notin \Theta(2^n)$.

9. Prove that for any $\varepsilon > 0$, no matter how small, and $k \ge 1$, no matter how large, it holds that $n \log(n)^k \in o(n^{1+\varepsilon})$. Hint²

²Use a ratio test and L'Hopital's rule. One possibly helpful trick to simplify the work is to make everything to the k power and then use the fact that raising to the k power is continuous to "pull" the limit inside. i.e. $\lim_{x\to\infty}(\cdots)^k=(\lim_{x\to\infty}\cdots)^k$

Proof.

$$\lim_{n \to \infty} \frac{n \log^k(n)}{n^{1+\varepsilon}} = \lim_{n \to \infty} \frac{\log^k(n)}{n^{\varepsilon}} = \lim_{n \to \infty} \left(\frac{\log(n)}{n^{\varepsilon/k}}\right)^k.$$

Now, by continuity of $(...)^k$,

$$\lim_{n \to \infty} \left(\frac{\log(n)}{n^{\varepsilon/k}} \right)^k = \left(\lim_{n \to \infty} \frac{\log(n)}{n^{\varepsilon/k}} \right)^k.$$

Applying L'Hopital's rule and noting that $\varepsilon/k > 0$,

$$\left(\frac{k}{\varepsilon \ln(2)} \lim_{n \to \infty} \frac{1}{n^{\varepsilon/k}}\right)^k = \left(\frac{k}{\varepsilon \ln(2)}\right)^k \cdot \left(\lim_{n \to \infty} \frac{1}{n^{\varepsilon/k}}\right)^k = \left(\frac{k}{\varepsilon \ln(2)}\right)^k \cdot 0^k = 0.$$

10. Show $n! \in o(n^n)$ Hint³ and $n! \in \omega(2^n)$.

Proof. Note that,

$$0 \le \frac{n!}{n^n} = \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{1}{n} \le \frac{1}{n},$$

where the second inequality follows from the fact that every term in the product is between 0 and 1. By taking a limit,

$$0 \le \lim_{n \to \infty} \frac{n!}{n^n} \le \lim_{n \to \infty} \frac{1}{n} = 0.$$

Thus,

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0,$$

and so $n! \in o(n^n)$ by the ratio test.

Now consider

$$\frac{n!}{2^n} = \frac{n}{2} \cdot \frac{n-1}{2} \cdots \frac{3}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} \ge \left(\frac{3}{2}\right)^{n-2} \cdot \frac{2}{2} \cdot \frac{1}{2},$$

³Use ratio test. If you expand the ratio, you get $\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{1}{n}$. Note that the whole product is bounded from above by from the smallest term (1/n) since every positive term in the product is at most 1.

and note

$$\lim_{n\to\infty}\frac{n!}{2^n}\geq \frac{1}{2}\lim_{n\to\infty}\left(\frac{3}{2}\right)^{n-2}=\infty,$$

where the first inequality is obtained by replacing all but the last two factors in the product 3/2. Thus $n! \in \omega(2^n)$.