STA261: Problems 1

Alex Stringer

July, 2018

This assignment is not for credit. Complete the questions as preparation for the quiz in tutorial 1 on July 9th. The questions on the quiz will be very similar to the questions on the assignment.

- 1. Probability Distributions:
 - (a) Let $Z \sim N(0,1)$. Let Y = aZ, where $a \in \mathbb{R}$. Show that $Z \stackrel{d}{=} Y$ if and only if |a| = 1.
 - (b) Let $Z \sim N(0,1)$. Find the distribution of Z^2 .
 - (c) Let $Z_1 \sim N(0,1)$ and $Z_2 \sim N(0,1)$ independently. Show that $Z_1 + Z_2 \sim N(0,2)$.
 - (d) Use your answer to the previous question to prove that if $Z_i \sim N(0,1)$ independently for $i = 1 \dots n$, then $\sum_{i=1}^n Z_i \sim N(0,n)$.
 - (e) Let $Z_1 \sim N(0,1)$ and $Z_2 \sim N(0,1)$ independently. Find the distribution of $Z_1^2 + Z_2^2$. You can find hints in chapter 6 of the textbook.
 - (f) Let $Z_i \sim N(0,1), i=1...n$ independently as in the previous questions. Use your answers to the previous questions to find the distribution of $\sum_{i=1}^{n} Z_i^2$.
- 2. Independence: Let X and Y be random variables with distribution functions $F_X(x)$ and $F_Y(y)$, and corresponding density functions $f_X(s)$ and $f_Y(y)$. Define X and Y to be independent if $X|Y \stackrel{d}{=} X$ and $Y|X \stackrel{d}{=} Y$. This means that $F_{X|Y}(x) = F_X(x)$ for all x (and the same for y). We write $X \perp Y$.
 - (a) Show that this definition is mathematically equivalent to the usual definition of independence, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$.
 - (b) Recall the definition of the covariance between two random variables: Cov(X,Y) = E((X E(X))(Y E(Y))). Show that if $X \perp Y$, cov(X,Y) = 0.
 - (c) The converse is not true. As a counter example, let $Z \sim N(0,1)$.
 - (i) Find the distribution of $Z|Z^2 = z$.
 - (ii) Find the distribution of $Z^2|Z=z$.
 - (iii) Are Z and Z^2 independent?
 - (iv) Show $cov(Z, Z^2) = 0$. You can use your answers from question 1 if you need to.
 - (d) The converse is still not true, in general, even if X and Y are normal, because they might not be jointly normal. As a counter example, let $X \sim N(0,1)$, let $W \sim Unif\{-1,1\}$ (the discrete uniform distribution, P(W=-1) = P(W=1) = 1/2) be independent of X, and let Y = WX (this example is from an interesting wikipedia article here).
 - (i) Show that $X \stackrel{d}{=} Y$. This question is straightforward if you use the definition of the CDF and the rules of probability to show $F_Y(y) = F_X(y) \forall y \in \mathbb{R}$.
 - (ii) Show that cov(X, Y) = 0
 - (iii) Show that $X \not\perp Y$
 - (e) However, the converse is true if X and Y are jointly Normal. That is, if (X,Y) has a bivariate normal distribution. Let $X \sim N(0,1)$ and $Y \sim N(0,1)$, with cov(X,Y) = 0, and assume that (X,Y) has a bivariate normal distribution. Show that $X \perp Y$. Hint: use the bivariate normal density on page 81 of the textbook.
- 3. Convergence in Probability. Let $\{X_n\}$ be a sequence of random variables with $E(X_i) = \mu$ and $\lim_{n \to \infty} Var(X_n) = 0$. Show $X_n \xrightarrow{p} \mu$.
- 4. Convergence in Distribution. Let $\{X_n\}$ be a sequence of random variables and let $\mu \in \mathbb{R}$. Suppose $X_n \stackrel{d}{\to} \mu$. Show $X_n \stackrel{p}{\to} \mu$.
- 5. Law of Large Numbers. Let $\{X_i\}$ be a sequence of independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$.

- (a) Evaluate $\lim_{n\to\infty} P(|\bar{X}_n \mu| > 0.01)$.
- (b) Can you evaluate $P(|X_{100} \mu| > 0.01)$? Why or why not?
- 6. Central Limit Theorem. Suppose we measure the heights of n=100 randomly selected people on the University of Toronto campus at lunchtime. Let $X_1 \dots X_n$ be the random variables that represent the heights we might measure, in cm. Suppose we know from a previous experiment that these heights have a mean of 160cm and a standard deviation of 20cm.
 - (a) Why can't you evaluate the probability that the 10th person's height is greater than 170cm?
 - (b) Approximate the probability that the sample mean height of the people measured is greater than 170cm.
 - (c) Approximate the probability that the sample mean height of the people measured is less than 150cm.
 - (d) Approximate the probability that the sample mean height of the people measured is between 150cm and 170cm.
 - (e) Suppose we observed a sample mean of 164cm. What is the probabilty of observing this, or something farther from the true mean of 160cm (in either direction, lower or higher), in a sample of this size?