МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Российский химико-технологический университет имени Д. И. Менделеева

ИНДИВИДУАЛЬНАЯ ДОМАШНЯЯ РАБОТА ПО ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ В ПРИМЕРАХ И ЗАДАЧАХ

Утверждено Редакционным советом университета в качестве учебного пособия

Москва

2022

УДК 546 (076.2) ББК 24.1я73 И60

Авторы: И. М. Артемкина, Ю. М. Артемкина, А. Я. Дупал, С. В. Кожевникова, Н. В. Свириденкова, С. Н. Соловьев, В. В. Щербаков

Рецензенты:

Доктор технических наук, профессор Российского химикотехнологического университета им. Д. И. Менделеева Н. А. Макаров

Доктор химических наук, профессор Ивановского государственного химико-технологического университета *А. И. Лыткин*

Индивидуальная домашняя работа по общей и неорганической И60 химии в примерах и задачах: учеб. пособие/ И. М. Артемкина, Ю. М. Артемкина, А. Я. Дупал, С. В. Кожевникова, Н. В. Свириденкова, С. Н. Соловьев, В. В. Щербаков. – М.: РХТУ им. Д. И. Менделеева, 2022. – 144 с.

ISBN 978-5-7237-1978-1

Пособие содержит примеры решения задач, задания для индивидуальной домашней работы и охватывает важнейшие разделы теоретических основ химии: строение вещества, химическая связь, реакции окисления-восстановления, основы химической термодинамики, химическое равновесие, равновесие в растворах электролитов и комплексные соединения.

Предназначено для студентов первого курса РХТУ им. Д.И. Менделеева, обучающихся по направлениям бакалавриата и специалитета. Материал пособия может быть использован при проведении семинарских занятий по первой части курса «Общая и неорганическая химия».

УДК 546 (076.2) ББК 24.1я73

- ISBN 978-5-7237-1978-1 © Российский химико-технологический университет им. Д. И. Менделеева, 2022
 - © Артемкина И. М., Артемкина Ю. М., Дупал А. Я., Кожевникова С. В., Свириденкова Н. В., Соловьев С. Н., Щербаков В. В., 2022

ОГЛАВЛЕНИЕ

Введение	4
1. Эквивалент. Закон эквивалентов	6
2. Способы выражения концентрации растворов	12
3. Квантовые числа. Квантовые числа и формы	
электронных облаков	18
4. Электронные формулы атомов и ионов	27
5. Реакции окисления-восстановления	29
6. Ковалентная связь. Гибридизация. σ- и π-связи	39
7. Метод Гиллеспи	46
8. Метод молекулярных орбиталей	50
9. Термохимия. Закон Гесса. Энтропия. Энергия Гиббса	53
10. Химическое равновесие	61
11. Электролитическая диссоциация	68
12. Произведение растворимости	78
13. Гидролиз	88
14. Химическая связь в комплексных соединениях	100
15. Диссоциация комплексных соединений	103
Приложение	118
Таблицы плотностей растворов	118
Справочные термодинамические данные	120
Стандартные электродные потенциалы	141

Введение

В учебное пособие включены вопросы и задачи по изучаемым в первом семестре основным разделам общей и неорганической химии: строение вещества, химическая связь, реакции окисления-восстановления, основы химической термодинамики, химическое равновесие, равновесие в растворах электролитов и комплексные соединения. В каждом из пятнадцати заданий приведены примеры решения задач по данной теме и тридцать вариантов индивидуальных задач для самостоятельного решения. Комбинацией представленных в пособии четырехсот пятидесяти заданий может быть составлено большое число различных вариантов индивидуальной домашней работы (ИДР) для студентов первого курса.

В таблицах приложения содержатся справочные величины плотностей растворов электролитов, стандартные a также термодинамические характеристики (энтальпии, энергии Гиббса образования и энтропии) и электродные потенциалы, необходимые для решения задач. Использование предлагаемых в пособии заданий позволит студентам первого курса хорошо подготовиться к изучению химии элементов во втором семестре, а также других химических дисциплин.

При составлении пособия для обозначения различных физикообозначения, химических величин применялись, В основном, рекомендованные Международным союзом теоретической и прикладной химии (IUPAC). В опубликованной ранее учебной литературе кафедры общей и неорганической химии Российского химико-технологического университета им. Д. И. Менделеева и используемой в настоящее время в учебном процессе обозначения некоторых величин отличаются рекомендованных IUPAC. Поэтому для описания равновесия в водных малорастворимых электролитов вместо рекомендованного IUPAC для произведения растворимости символа K_S употребляется обозначение ПР.

При описании равновесий в водных растворах комплексных соединений вместо константы устойчивости β использован символ K_y , а также обратная величина константы устойчивости — константа нестойкости K_H :

$$K_{\rm H} = \frac{1}{\beta} = \frac{1}{K_{\rm v}}.$$

Стандартные термодинамические характеристики (энтальпия, энергия Гиббса и энтропия) образования веществ обозначаются в пособии $\Delta H^o_{oбp}, \Delta G^o_{oбp},$ и $\Delta S^o_{oбp}.$

Индивидуальная домашняя работа (ИДР) включает в себя выполнение заданий по общей и неорганической химии. Оценка за каждое задание содержит формальные и содержательные критерии. Формальными критериями оценки являются: соблюдение сроков сдачи законченной работы, правильность оформления, грамотность структурирования работы. К содержательным критериям относятся правильность и полнота выполнения заданий работы.

ИДР оформляется в отдельной тетради. На титульном листе помимо названия (Индивидуальная домашняя работа по общей и неорганической химии) указывается Ф.И.О. студента, № учебной группы и приводится таблица оценок:

No					Итог
задания					
Баллы					

Каждое задание оформляется с новой страницы. При этом сначала указывается № задания и приводится его условие. После решения каждого задания на следующей строке даётся его ответ:

№ задания:
Условие:
Решение:
Otret.

1. ЭКВИВАЛЕНТ. ЗАКОН ЭКВИВАЛЕНТОВ

Пример 1

При взаимодействии 3,49 г металла с избытком разбавленной серной кислоты выделилось 1,68 л (н.у.) газа. Определить молярную массу эквивалента металла и его оксида.

Решение:

В соответствии с законом эквивалентов для процесса:

$$Me + nH^+ = Me^{n+} + \frac{n}{2}H_2$$

$$n_{\scriptscriptstyle \mathsf{NKB}}(\mathrm{Me}) = n_{\scriptscriptstyle \mathsf{NKB}}(\mathrm{H}_2)$$

Поскольку $f_{9кв}(H_2) = 1/2$, то 1 моль эквивалентов (моль экв.) водорода при н.у. занимает объём $V_{m,9кв} = 11,2$ л. Находим число молей эквивалентов участников реакции:

$$n_{_{9\text{KB}}}(\text{Me}) = n_{_{9\text{KB}}}(\text{H}_2) = \frac{1,68}{11.2} = 0,15$$
 моль экв.

Определяем молярную массу эквивалента металла:

$$n_{_{9 \text{KB}}} = \frac{m}{M_{_{9 \text{KB}}}}; \qquad M_{_{9 \text{KB}}} \text{(Me)} = \frac{3,49}{0,15} = 23,3 \text{ г/(моль экв.)}$$

Молярная масса эквивалента оксида составит соответственно:

$$M_{\text{экв}}(\text{Me}_{\text{x}}\text{O}_{\text{y}}) = M_{\text{экв}}(\text{Me}) + M_{\text{экв}}(\text{O}) = 23.3 + 8.0 = 31.3 \ \Gamma/(\text{моль экв.}).$$

Ответ: $M_{\text{экв}}(\text{Me}) = 23.3 \text{ г/(моль экв.)}; M_{\text{экв}}(\text{Me}_{\text{x}}\text{O}_{\text{y}}) = 31.3 \text{ г/(моль экв.)}.$

Пример 2

13,5 г хлорида металла образуют в обменной реакции 16,0 сульфата этого металла. Найти молярную массу эквивалента металла и его гидроксида.

Решение:

В соответствии с законом эквивалентов:

$$n_{_{\scriptscriptstyle { ext{
m 9KB}}}}($$
хлорида $)=n_{_{\scriptscriptstyle { ext{
m 9KB}}}}($ сульфата $)_{\scriptscriptstyle { ext{
m .}}}$

Число молей эквивалентов хлорида металла равно:

$$n_{_{
m 9KB}}({
m MeCl}_{_{
m y}}) = rac{m({
m MeCl}_{_{
m y}})}{M_{_{
m 9KB}}({
m MeCl}_{_{
m y}})} = rac{m({
m MeCl}_{_{
m y}})}{M_{_{
m 9KB}}({
m Me}) + M_{_{
m 9KB}}({
m x, порид-иона})} = rac{13.5}{M_{_{
m 9KB}}({
m Me}) + 35.5}.$$

Число молей эквивалентов сульфата металла равно:

$$n_{_{\text{ЭКВ}}}(\mathrm{Me_{_{X}}(SO_{_{4}})_{_{y}}}) = \frac{m(\mathrm{Me_{_{X}}(SO_{_{4}})_{_{y}}})}{M_{_{\mathrm{ЭКВ}}}(\mathrm{Me_{_{X}}(SO_{_{4}})_{_{y}}})} = \frac{m(\mathrm{Me_{_{X}}(SO_{_{4}})_{_{y}}})}{M_{_{\mathrm{ЭКВ}}}(\mathrm{Me}) + M_{_{\mathrm{ЭКВ}}}(\mathrm{сульфат-иона})} = \frac{16,0}{M_{_{\mathrm{ЭКВ}}}(\mathrm{Me}) + 48,0}.$$

По закону эквивалентов получаем:

$$\frac{13.5}{M_{MKR}(Me) + 35.5} = \frac{16.0}{M_{MKR}(Me) + 48.0}$$

Решая данное уравнение, находим, что молярная масса эквивалента металла равна 32,0 г/моль экв.

Молярная масса эквивалента гидроксида составит соответственно:

$$M_{\text{экв}}(\text{Me(OH)}_{\text{v}}) = 32.0 + 17.0 = 49.0 \ \Gamma/(\text{моль экв.}).$$

Ответ: $M_{\text{экв}}(\text{Me}) = 32,0 \ \Gamma/(\text{моль экв.}), M_{\text{экв}}(\text{Me}(\text{OH})_{\text{y}}) = 49,0 \ \Gamma/(\text{моль экв.}).$

Задания

1. Вычислите молярную массу эквивалента кислоты, 1,10 г которой содержит 0,05 г водорода, причём из трёх атомов водорода лишь один может замещаться на металл.

Определите молярную концентрацию 0,08 Н раствора H_3PO_2 , если фосфорноватистая кислота в результате реакции превращается в ортофосфорную кислоту.

2. На нейтрализацию 200 г 4,2 мас. % раствора КОН израсходовано 4,9 г ортофосфорной кислоты, содержащейся в 100 см³ раствора.

Вычислите молярную массу эквивалента кислоты, молярную и нормальную концентрации H_3PO_4 в исходном растворе.

3. Определите молярную массу эквивалента металла, если 0,54 г его вытесняют при растворении в кислоте 750 см³ водорода, измеренного при температуре 300 К и давлении 99,7 кПа.

Вычислите нормальную концентрацию $0,5\,$ М раствора $KMnO_4$, восстанавливающегося в результате реакции до MnO_2 .

4. 2,24 г некоторого простого вещества соединяются с 675 см³ кислорода (объём измерен при н.у.). Вычислите молярную массу эквивалента этого вещества и его оксида.

Определите нормальную концентрацию 0,005 М раствора угольной кислоты, превращающейся в результате реакции в карбонат кальция.

5. Вычислите молярную массу эквивалента карбоната бария, если на растворение 3,94 г BaCO₃ было израсходовано 80 мл 0,5 H раствора HNO₃.

Определите молярную концентрацию 0,08 H раствора $K_2Cr_2O_7$, если бихромат калия в результате реакции превращается в сульфат хрома (III).

6. 3,00 г некоторого элемента соединяются с 1,23 г серы. Вычислите молярную массу эквивалента элемента, его оксида, хлорида и гидроксида.

Определите молярную концентрацию 0,01~H раствора $Ba(OH)_2~B$ реакции: $Ba(OH)_2 + HCl \rightarrow Ba(OH)Cl + H_2O$.

7. Определите молярную массу эквивалента металла и его оксида, если 2,00 г металла образуют 4,41 г хлорида.

Вычислите молярную концентрацию и титр 0,25 H раствора KMnO₄, в результате реакции превращающегося в MnSO₄.

- 8. Сколько граммов КМnO₄ следует взять для окисления 50 г K₂SO₃, если реакцию проводить в присутствии H₂SO₄? В каком объёме 0,5 Н раствора КМnO₄ содержится найденное количество КМnO₄?
- 9. Какой объём 0,1 M раствора $K_2Cr_2O_7$ потребуется для окисления в кислой среде всего KI, содержащегося в 200 мл 0,6 M его раствора? Вычислите массу выделившегося йода.
- 10. Определите молярную массу эквивалента металла и галогена, если 0,100 г металла образуют 0,167 г оксида или 0,397 г галогенида.

Вычислите нормальную концентрацию $0,15~\mathrm{M}$ раствора $\mathrm{K}_2\mathrm{S}$, если в результате реакции окисления сульфида калия выделяется сера.

11. Какая масса $K_2Cr_2O_7$ требуется для окисления 7 г FeSO₄ в кислой среде?

В каком объёме воды надо растворить 7 г FeSO₄ для получения 1 H раствора, используемого в реакциях:

- a) $FeSO_4 + K_2Cr_2O_7 + H_2SO_4 \rightarrow$
- σ) FeSO₄ + Na₂S →

(принять, что объём раствора равен объёму воды).

12. Определите молярную массу эквивалента металла, если 0,650 г его гидроксида образуют 1,425 г сернокислой соли.

Вычислите нормальную концентрацию 1 M раствора H_2SO_4 в реакции: $H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + \dots$

- 13. В каком объёмном отношении нужно смешать 0.5 М раствор Na_2SO_3 и 0.1 М раствор Na_2S , чтобы выход серы был максимальным? Какой объём 0.5 М раствора Na_2SO_3 надо взять, чтобы получить 3.2 г серы?
- 14. Сколько миллилитров 0,02 H раствора можно приготовить для реакции окисления-восстановления из 1 г перманганата калия, если он восстанавливается в реакции до MnO₂? Сколько граммов MnO₂ получится?
- 15. Мышьяк образует два оксида, из которых один содержит 65,2 мас. % As, а другой 75,7 мас. % As. Определите молярные массы эквивалентов мышьяка в обоих случаях. Напишите формулы этих оксидов.

Вычислите нормальную концентрацию 0,08 M раствора H_3AsO_3 , в реакции: $H_3AsO_3+\ldots\to AsH_3+\ldots$

16. Для растворения 16,9 г металла потребовалось 14,7 г серной кислоты. Определите молярную массу эквивалента металла и объём выделившегося водорода.

Вычислите молярную концентрацию 0,6 H раствора H_3PO_4 в реакции: $H_3PO_4 + CaC1_2 \rightarrow CaHPO_4 + \dots$

17. На восстановление 1,80 г оксида металла израсходовано 876 см³ водорода (объём измерен при н.у.). Вычислите молярную массу эквивалента металла и его оксида.

Определите нормальную концентрацию 0,07~M раствора $NaNO_2$, используемого в реакции: $NaNO_2 + KMnO_4 + H_2SO_4 \rightarrow NaNO_3 + \dots$

18. При взаимодействии 5,95 г некоторого вещества с 2,75 г хлороводорода получается 4,40 г соли. Вычислите молярную массу эквивалента вещества и образовавшейся соли.

Определите молярную концентрацию 0,5 H раствора H_3PO_4 , используемого в реакции: $H_3PO_4 + Ba(OH)_2 \rightarrow Ba_3(PO_4)_2 + \dots$

19. Какую массу оксалата аммония $(NH_4)_2C_2O_4$ можно окислить действием 50 см 3 0,2 H раствора перманганата калия в кислой среде?

$$(NH_4)_2C_2O_4 + KMnO_4 + H_2SO_4 \rightarrow CO_2 + \dots$$

Какой объём углекислого газа выделится в результате реакции?

20. Какую массу сероводорода можно окислить до свободной серы одним граммом йода?

Определите молярную концентрацию 0,02 H раствора Na_2S , используемого в реакции: $Na_2S + HCI \rightarrow H_2S + ...$

21. Какую массу сульфата железа (II) можно окислить в кислой среде с помощью 20 мл 0,1 H раствора KMnO₄?

Определите нормальную концентрацию 0,09 M раствора $FeSO_4$, используемого в реакции: $FeSO_4 + NaOH \rightarrow Fe(OH)_2 + \dots$

22. Соединение металла с водородом содержит 10 мас. % водорода. Определите молярную массу эквивалента металла и гидрида металла.

Вычислите нормальную концентрацию 0,7 M раствора $MnSO_4$, который в ходе реакции окисляется до MnO_4^{2-} -иона.

23. Объём водорода, вытесненного из кислоты 1,8 г металла при 300 К и давлении 120 кПа, равен 4,16 л. Вычислите молярную массу эквивалента металла и определите, в каком объёме 0,3 Н раствора H₂SO₄ содержится необходимое для реакции количество кислоты.

24. Для получения 224 см³ (при н.у.) кислорода по реакции:

$$H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow O_2 + \dots$$

потребовалось 200 см^3 раствора KMnO_4 и 300 см^3 раствора H_2O_2 . Определите молярную концентрацию раствора окислителя и нормальную концентрацию раствора восстановителя.

25. На восстановление 3,2 г оксида металла израсходовано 896 см³ водорода, измеренного при нормальных условиях. Определите молярную массу эквивалента металла и его оксида.

Вычислите молярную концентрацию 0,1 H раствора KH_2PO_4 , принимающего участие в реакции: $KH_2PO_4 + KOH \rightarrow K_3PO_4 + \dots$

26. Определите объём 1 моль эквивалентов азота, измеренного при 700 К и давлении 30 МПа, если известно, что при образовании аммиака три объёма водорода соединяются с одним объёмом азота.

Вычислите нормальную концентрацию 0,3 M раствора $(NH_4)_2SO_4$, принимающего участие в реакции: $(NH_4)_2SO_4 + 2KOH \rightarrow 2NH_3 \cdot H_2O + K_2SO_4$.

27. Вычислите объём фосфина при нормальных условиях, который необходим для восстановления 250 см 3 0,2 М раствора КМпО $_4$ в кислой среде: $PH_3 + KMnO_4 + H_2SO_4 \rightarrow H_3PO_4 + \dots$

Определите нормальную концентрацию 0,2 M раствора K_2HPO_4 , примающего участие в реакции: $K_2HPO_4 + AlCl_3 \rightarrow AlPO_4 + \dots$

28. В каком объёмном отношении надо смешать 1 H раствор КВг и 0,3 M раствор КВгО₃ в кислой среде, чтобы выход брома был максимальным?

Сколько граммов брома можно получить, если взять 200 см 3 0,3 М раствора $KBrO_3$?

29. Определите молярную массу эквивалента металла, если 9 г его оксида образуют 11 г гидроксида.

Вычислите нормальную концентрацию 0,3 M раствора $KMnO_4$, принимающего участие в реакции: $K_2SO_3 + KMnO_4 + H_2O \rightarrow \dots$

30. Каким объёмом 1 М раствора КМпО₄ можно заменить 1 л 10 мас. % раствора $K_2Cr_2O_7$ (плотность раствора 1,08 г/см³) в реакциях окисления-восстановления, протекающих в: а) кислой среде, б) щелочной среде?

2. СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ

* – при решении задач этого раздела, помеченных звездочкой, следует пользоваться таблицами плотностей водных растворов, приведённых в приложении. Если в таблицах нет значения плотности, точно соответствующей концентрации раствора, нужно применить метод интерполяции (см. с. 13).

Пример 1

Какой объём 2,0 мас. % раствора NaCl и 14,0 мас. % раствора NaCl необходимо смешать для приготовления 150 мл 6,2 мас. % раствора этой соли?

Решение:

Решение задачи сводится к составлению уравнений материального баланса, согласно которым масса приготовленного раствора равна сумме масс составляющих его растворов, а масса растворённого вещества в приготовленном растворе равна сумме масс этого вещества в исходных растворах.

Пусть необходимый объём 14,0 мас. % раствора составляет V_1 мл, а объём 2,0 мас. % раствора — V_2 мл.

Для нахождения плотностей водных растворов хлорида натрия следует воспользоваться таблицей плотностей (Приложение, с. 118):

c, mac. %	ρ, г/cm ³
2	1,012
6	1,041
7	1,049
14	1,101

В таблице нет значения плотности, точно соответствующей концентрации раствора (6,2 мас. %). Применяем метод интерполяции.

Найдём плотность 6,2 мас. % раствора NaCl: плотность 6,0 мас. % раствора отличается от плотности 7,0 мас. % на 1,049 - 1,041 = 0,008 г/см³.

Составляем пропорцию:

$$0,008 \text{ г/cm}^3 \rightarrow 1 \%$$

$$x \Gamma/cm^3 \rightarrow 0.2 \%$$
,

из которой находим: $x = 0,0016 \text{ г/см}^3$. Таким образом, плотность 6,2 мас. % раствора равна $1,041 + 0,0016 = 1,0426 \text{ г/см}^3$.

Составляем уравнения материального баланса:

$$V_1 \cdot 1,101 + V_2 \cdot 1,012 = 150 \cdot 1,0426,$$
 (1)

$$V_1 \cdot 1,101 \cdot 0,14 + V_2 \cdot 1,012 \cdot 0,02 = 150 \cdot 1,0426 \cdot 0,062$$
 (2)

Решая систему уравнений (1) и (2), получаем, что нужно смешать 49,71 мл 14,0 мас. % раствора NaCl (V_1) и 100,45 мл 2,0 мас. % раствора NaCl (V_2).

Ответ: V_1 (14,0 мас. %) = 49,71 мл, V_2 (2,0 мас. %) = 100,45 мл.

Пример 2

Определить массу воды, в которой необходимо растворить 26,0 г $BaCl_2 \cdot 2H_2O$ для получения 0,55 M раствора $BaCl_2$ (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.

Решение:

Определим содержание $BaCl_2$ в полученном растворе. Для этого найдём содержание хлорида бария в кристаллогидрате. Молярная масса $BaCl_2$ составляет 208 г/моль, а $BaCl_2 \cdot 2H_2O - 244$ г/моль. Соответственно в 26 г $BaCl_2 \cdot 2H_2O$ содержится $208 \cdot 26,0/244 = 22,16$ г $BaCl_2$, что составляет 22,16/208=0,107 моль.

Находим объём 0,55 M раствора BaCl₂:

$$c_{\rm M} = \frac{n}{V}$$
, $V = \frac{n}{c_{\rm M}}$, $V = 0.107/0.55 = 0.195$ л.

Масса раствора равна: $m = V \cdot \rho = 195 \cdot 1,092 = 212,9 \ \Gamma$.

Находим массу воды, в которой необходимо растворить BaCl₂·2H₂O:

$$m(H_2O) = 212.9 - 26.0 = 186.9 \text{ }\Gamma.$$

Рассчитаем титр полученного раствора:

$$T = \frac{m_{\text{\tiny B-Ba}}}{V_{\text{\tiny D-Da}}} = \frac{22,16}{195} = 0,114 \text{ г/MJI}.$$

Моляльность полученного раствора m равна:

$$m = \frac{n_{\text{в-ва}}}{m(\text{H}_2\text{O})};$$
 $m = 0.107 \cdot 1000/(212.9 - 22.16) = 0.561$ моль/(кг H₂O).

Ответ: $m(H_2O) = 186.9 \text{ г}$; T = 0.114 г/мл, $m = 0.561 \text{ моль/(кг H}_2O)$.

Задания

- 31*. К 220 см³ раствора, содержащего 15 мас. % HNO₃, добавлено 50 см³ воды. Вычислите молярную концентрацию, титр и концентрацию в массовых процентах полученного раствора.
- 32*. Сколько граммов КС1 надо добавить к 200 см³ 19,1 мас. % раствора КС1, чтобы получить 21,0 мас. % раствор? Вычислите мольную долю КС1 в исходном растворе и молярную концентрацию полученного раствора.
- 33. К какому объёму 0,22 М раствора H_3PO_4 (плотность раствора 1,010 г/см³) следует добавить 50 см³ 9,4 мас. % раствора ортофосфорной кислоты (плотность раствора 1,050 г/см³) для получения 5,0 мас. % раствора с плотностью, равной 1,025 г/см³? Вычислите моляльность и титр полученного раствора.
- 34*. Сколько килограммов воды следует выпарить из двух тонн 42 мас. % раствора серной кислоты для получения 96 мас. % раствора? Определите объём полученного раствора, его плотность, титр и молярную концентрацию.
- 35. Для приготовления 1,19 M раствора хлорида кальция (плотность раствора 1,101 г/см³) взято 120 г кристаллогидрата $CaCl_2 \cdot 6H_2O$.

Найдите объём полученного раствора, мольную долю $CaCl_2$ в растворе, титр и моляльность раствора.

- 36*. Сколько см³ воды и раствора, содержащего 9,5 мас. % уксусной кислоты, потребуется для приготовления 300 см³ раствора, содержащего 4,5 мас. % СН₃СООН? Вычислите молярную концентрацию, титр и моляльность полученного раствора, а также мольное отношение H₂O:CH₃COOH.
- 37. Сколько граммов глауберовой соли $Na_2SO_4\cdot 10H_2O$ и 10 мас. % раствора Na_2SO_4 (плотность раствора 1,091 г/см³) надо взять, чтобы получить 1 л 16 мас. % раствора Na_2SO_4 (плотность раствора 1,151 г/см³)? Вычислите мольную долю Na_2SO_4 в полученном растворе и титр раствора, а также мольное отношение $H_2O:Na_2SO_4$.
- 38*. Смешали 2 л 25 мас. % раствора NaOH и 3 л 35 мас. % раствора NaOH. Какова молярная концентрация, титр и концентрация в массовых процентах полученного раствора?
- 39. До какого объёма надо упарить 500 мл 1 М раствора $NaNO_3$, чтобы получить 20 мас. % раствор $NaNO_3$ (плотность раствора 1,143 г/см³)? Вычислите молярную концентрацию, титр и моляльность полученного раствора?
- 40*. В каком объёме воды надо растворить 5 л хлороводорода (объём измерен при н.у.), чтобы получить 15 мас. % раствор НС1? Вычислите молярную концентрацию, моляльность и мольную долю НС1 в полученном растворе.
- 41*. Какой объём 19 мас. % раствора КОН следует добавить к 50 см³ воды для получения 11,5 мас. % раствора КОН? Вычислите молярную концентрацию, моляльность и титр полученного раствора.
- 42*. Сколько граммов NaOH и какой объём 9,3 мас. % раствора NaOH надо взять для получения 100 см³ 15,5 мас. % раствора? Вычислите молярную концентрацию, титр и моляльность полученного раствора.

- 43*. Сколько см³ 11 мас. % раствора H_2SO_4 и 20 мас. % раствора H_2SO_4 потребуется для приготовления 300 см³ 15 мас. % раствора? Вычислите молярную концентрацию и моляльность полученного раствора, мольную долю H_2SO_4 в исходном 11 мас. % растворе.
- 44*. Из 400 см³ 15 мас. % раствора КСІ выпариванием удалили 50 г воды. Чему равна концентрация (массовый процент, молярность, моляльность и титр) хлорида калия в оставшемся растворе?
- 45. В какой массе воды нужно растворить 40 г $Na_2CO_3\cdot 10H_2O$, чтобы получить 0,8 М раствор Na_2CO_3 (плотность раствора 1,080 г/см³)? Вычислите моляльность и титр раствора Na_2CO_3 .
- 46*. Сколько см³ воды надо добавить к 400 см³ 15,5 мас. % раствора HCl, чтобы получить 2,5 мас. % раствор? Вычислите мольную долю HCl в полученном растворе, молярную концентрацию и титр исходного раствора, а также мольное отношение H_2O :HCl.
- 47*. В каком объёме 2,5 мас. % раствора КСІ надо растворить 15 г КСІ, чтобы получить 17,5 мас. % раствор? Вычислите молярную концентрацию, титр и моляльность полученного раствора.
- 48*. К какому объёму 10 мас. % раствора HNO_3 следует добавить 100 см³ 40 мас. % раствора HNO_3 для получения 20 мас. % раствора? Вычислите молярную концентрацию, титр и моляльность 10 мас. % раствора HNO_3 .
- 49. При выпаривании 450 см³ 0,97 М раствора сульфата аммония (плотность раствора 1,069 г/см³) получили 20 мас. % раствор (плотность раствора 1,115 г/см³). Сколько граммов воды выпарили и каков объём полученного раствора, его молярная концентрация и титр?
- 50. Найти массу воды и массу $CaCl_2 \cdot 6H_2O$, необходимые для приготовления 700 см³ 1,41 М раствора $CaCl_2$ (плотность раствора 1,120 г/см³). Определите концентрацию раствора в массовых процентах, а также моляльность и титр раствора.

- 51*. В 5 л воды растворили 105 л аммиака, измеренного при нормальных условиях. Вычислите концентрацию NH₃ в полученном растворе в массовых процентах, мольную долю NH₃ в растворе и титр.
- 52. Сколько граммов $Na_2SO_4 \cdot 10H_2O$ надо добавить к 600 см³ 6 мас. % раствора Na_2SO_4 (плотность раствора 1,053 г/см³), чтобы получить 1,3 М раствор (плотность раствора 1,151 г/см³)? Вычислите титр и моляльность полученного раствора.
- 53. До какого объёма надо упарить 550 мл 11 мас. % раствора NaOH (плотность раствора 1,120 г/см³), чтобы получить 4,85 М раствор (плотность раствора 1,180 г/см³)? Вычислите мольную долю NaOH и мольное отношение компонентов в полученном растворе.
- 54. В каком объёме 0,6 М раствора Na_2CO_3 (плотность раствора $1,060~ \Gamma/cm^3$) надо растворить $10~ \Gamma~ Na_2CO_3\cdot 10H_2O$, чтобы получить 15,2~ мас. % раствор Na_2CO_3 (плотность раствора $1,160~ \Gamma/cm^3$)? Вычислите молярную концентрацию и титр полученного раствора.
- 55*. В 300 см³ воды растворено 12 л HCl (объём измерен при нормальных условиях). Вычислите молярную концентрацию, моляльность и титр полученного раствора.
- 56. Сколько см³ воды и раствора ортофосфорной кислоты, имеющего титр 1,00 г/мл и плотность 1,490 г/см³, потребуется для приготовления 1,5 л 30 мас. % раствора H₃PO₄, имеющего плотность 1,180 г/см³? Вычислите молярную концентрацию полученного раствора.
- 57. Какой объём 2,0 М раствора HClO₄ следует добавить к 500 г воды для получения 1,4 М раствора HClO₄? Плотности растворов равны соответственно 1,115 и 1,080 г/см³. Определите мольную долю HClO₄ в полученном растворе и его титр.
- 58. Сколько см³ воды надо добавить к 75 см³ 3,3 М раствора NH_4NO_3 (плотность раствора 1,10 г/см³), чтобы получить 1,3 М раствор NH_4NO_3 (плотность раствора 1,04 г/см³)? Вычислите моляльность и титр полученного раствора.

- 59*. Сколько см³ 17 мас. % раствора КОН и 31 мас. % раствора КОН потребуется для приготовления 2 л 5,6 М раствора (плотность раствора 1,240 г/см³)? Вычислите мольную долю КОН в полученном растворе, титр и моляльность 17 мас. % раствора КОН.
- 60. Какой объём 0,25 M раствора NH_4NO_3 следует добавить к 150 г воды для получения 0,5 мас. % раствора NH_4NO_3 ? Плотности 0,25 M и 0,5 мас. % растворов равны соответственно 1,006 г/см³ и 1,001 г/см³. Определите мольную долю NH_4NO_3 в исходном растворе, его титр и моляльность.

3. КВАНТОВЫЕ ЧИСЛА. КВАНТОВЫЕ ЧИСЛА И ФОРМЫ ЭЛЕКТРОННЫХ ОБЛАКОВ

Пример 1

А. Каковы значения квантового числа l для следующих состояний электрона: 4p, 5d, 3s, 5f, 7p, 4f, 3d?

Решение:

Побочное (орбитальное) квантовое число l принимает значение от 0 до (n-1). Независимо от величины n приняты следующие обозначения:

Обозначение	S	p	d	f
Величина <i>l</i>	0	1	2	3

Поэтому для электронов 4p, 5d, 3s, 5f, 7p, 4f, 3d квантовое число l принимает следующие значения:

Электрон	4 <i>p</i>	5 <i>d</i>	3 <i>s</i>	5 <i>f</i>	7 <i>p</i>	4 <i>f</i>	3 <i>d</i>
Величина <i>l</i>	1	2	0	3	1	3	2

Б. Охарактеризуйте квантовыми числами электроны в состоянии $5f^7$.

Решение:

Для всех семи $5f^{7}$ -электронов главное квантовое число равно 5, а побочное равно 3. Магнитное квантовое число может принимать значения от -3 до +3, а спиновые квантовые числа согласно правилу Хунда одинаковы и равны +1/2 (или -1/2). В результате получаем:

Квантовое число	n	l	m_l	$m_{\scriptscriptstyle S}$
Электрон 1	5	3	-3	+1/2
Электрон 2	5	3	-2	+1/2
Электрон 3	5	3	-1	+1/2
Электрон 4	5	3	0	+1/2
Электрон 5	5	3	1	+1/2
Электрон б	5	3	2	+1/2
Электрон 7	5	3	3	+1/2

В. Изобразите формы электронных облаков для состояний $3p_y$ и $2p_z$.

Решение:

Эти орбитали имеют форму «гантели», при этом $3p_y$ -орбиталь больше по размеру. Орбитали направлены по осям y $(3p_y)$ и z $(2p_z)$:

Пример 2

А. Какие значения квантовых чисел l и m_l возможны для 5f-состояния электрона?

Решение:

Квантовое число l принимает значение от 0 до (n-1), а квантовое число m_l принимает значение от -l до +l. В результате получаем для 5f-состояния: l=3, m_l = -3, -2, -1, 0, 1, 2, 3.

Б. Охарактеризуйте квантовыми числами электроны атома молибдена в состоянии $4d^55s^1$.

Решение:

Для d-электронов l=2, для s-электрона l=0. В результате получаем:

Квантовое	n	l	m_l	m_s
число				
4 <i>d</i> -электрон 1	4	2	-2	+1/2
4d-электрон 2	4	2	-1	+1/2
4d-электрон 3	4	2	0	+1/2
4d-электрон 4	4	2	1	+1/2
4d-электрон 5	4	2	2	+1/2
5 <i>s</i> -электрон	5	0	0	+1/2

В. Какие узловые поверхности отвечают $2p_z$ и 3s состояниям электрона?

Решение:

Для $2p_z$ -электрона имеется одна шарообразная узловая поверхность, проходящая на бесконечно большом расстоянии от ядра, вторая — плоская узловая поверхность, располагающаяся в плоскости xy. Для 3s-электрона имеются три шарообразные узловые поверхности: одна шарообразная узловая поверхность, проходящая на бесконечно большом расстоянии от ядра и две, проходящие на расстояниях от ядра, отвечающих двум минимумам электронной плотности.

Задания

- 61. А. Какие значения квантовых чисел m_l и m_s возможны для 2p-состояния электрона?
- Б. Охарактеризуйте квантовыми числами электроны атома натрия (основное состояние).
- В. Какие узловые поверхности отвечают 1s и 3 $d_{x^2-y^2}$ состояниям электрона?

- 62. А. Укажите максимально возможное число электронов в s-, d-оболочках атома. Ответ обоснуйте.
- Б. Охарактеризуйте квантовыми числами d-электроны атома цинка (основное состояние).
- В. Приведите график функции радиального распределения вероятности нахождения электрона в атоме для состояний 2p и 3p. Укажите общее число и вид узловых поверхностей для орбиталей 2p и 3p.
- 63. А. Какие значения квантовых чисел m_l и m_s возможны для 3p-состояния электрона?
- Б. Охарактеризуйте квантовыми числами d-электроны атома кобальта (основное состояние).
- В. Приведите график функции радиального распределения вероятности нахождения электрона в атоме водорода для состояний 3s и 3p. Укажите общее число и вид узловых поверхностей для орбиталей 3s и 3p.
- 64. А. Сколько орбиталей в атоме могут характеризоваться значением квантового числа l=3 при фиксированном значении квантового числа n.
- Б. Охарактеризуйте квантовыми числами d-электроны атома хрома (основное состояние).
- В. Приведите график функции радиального распределения вероятности нахождения электрона в атоме водорода для состояний 3*p* и 2*s*. Укажите общее число и вид узловых поверхностей орбиталей 3*p* и 2*s*.
 - 65. А. Каков физический смысл побочного квантового числа?
- Б. Охарактеризуйте квантовыми числами f -электроны атома гольмия (основное состояние).
- В. Приведите график функции радиального распределения вероятности нахождения электрона в атоме водорода для состояний 1s и 2p. Укажите общее число узловых поверхностей для орбиталей 1s и 2p.

66. А. Какие из приведённых ниже выражений для волновых функций электрона в атоме водорода невозможны и почему?

(r -расстояние электрона от ядра, K -константа)

$$\Psi = Ke^{-r}; \quad \Psi = Ke^{r}; \quad \Psi = K/r; \quad \Psi = K \arcsin r.$$

- Б. Охарактеризуйте квантовыми числами f-электроны атома европия (основное состояние).
- В. Какие узловые поверхности отвечают $2p_z$ и $3d_{x^2-y^2}$ состояниям электрона?
- 67. А. Сколько электронов в атоме стронция (основное состояние) имеют значение l=0?
- Б. Охарактеризуйте квантовыми числами электроны внешнего слоя атома селена (основное состояние).
- В. Какие узловые поверхности отвечают $2p_x$ и $3d_{yz}$ состояниям электрона?
- 68. А. Какую характеристику движения электрона определяет спиновое квантовое число?
- Б. Охарактеризуйте квантовыми числами электроны атома кремния (основное состояние).
- В. Какие узловые поверхности отвечают $2p_y$ и $3d_{xz}$ состояниям электрона?
- 69. А. Сколько электронов атома теллура (основное состояние) имеют значение квантового числа l=1?
- Б. Охарактеризуйте квантовыми числами электроны внешнего слоя атома сурьмы (основное состояние).
- В. Какие узловые поверхности отвечают $2p_x$ и $3d_{xy}$ состояниям электрона?
- 70. А. Сколько электронов атома марганца (основное состояние) имеют значение квантового числа l=1?

- Б. Охарактеризуйте квантовыми числами электроны внешнего слоя атома полония (основное состояние).
- В. Какие узловые поверхности отвечают $2p_z$ и $3d_{yz}$ состояниям электрона?
- 71. А. Какую характеристику движения электрона определяет спиновое квантовое число?
- Б. Охарактеризуйте квантовыми числами электроны атома углерода (основное состояние).
- В. Какие узловые поверхности отвечают $2p_y$ и $3d_{xy}$ состояниям электрона?
 - 72. А. Какое квантовое число обозначается буквами s, p, d, f? Какие его значения соответствуют этим буквам?
- Б. Охарактеризуйте квантовыми числами d-электроны атома осмия (основное состояние).
- В. Какие узловые поверхности отвечают 2s и $3d_{z^2}$ состояниям электрона?
- 73. А. Какую характеристику движения электрона определяет магнитное квантовое число?
- Б. Охарактеризуйте квантовыми числами электроны атома азота (основное состояние).
- В. Какие узловые поверхности отвечают $2p_x$ и $3d_{xy}$ состояниям электрона?
- 74. А. Каковы значения квантового числа l для следующих состояний электрона: 3p, 3d, 4s, 5f, 2p, 4f, 5d?
- Б. Охарактеризуйте квантовыми числами электроны атома кислорода (основное состояние).
- В. Какие узловые поверхности отвечают 2s и $3d_{yz}$ состояниям электрона?

- 75. А. Какие значения квантового числа m_l возможны для 4f-состояния электрона?
- Б. Охарактеризуйте квантовыми числами d-электроны атома молибдена (основное состояние).
- В. Какие узловые поверхности отвечают 3s и $3d_{xz}$ состояниям электрона?
- 76. А. Какие значения квантового числа m_l возможны для 4d-состояния электрона?
- Б. Охарактеризуйте квантовыми числами электроны атома фтора (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $3d_{xy}$ и $2p_x$.
- 77. А. Сколько орбиталей в атоме могут характеризоваться значением квантового числа n=3?
- Б. Охарактеризуйте квантовыми числами электроны атома магния (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $3d_{2}$ и 2s.
 - 78. А. Каков физический смысл побочного квантового числа?
- Б. Охарактеризуйте квантовыми числами d-электроны атома ниобия (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $3d_{zx}$ и 3s.
 - 79. А. Каков физический смысл главного квантового числа?
- Б. Охарактеризуйте квантовыми числами электроны внешнего слоя атома сурьмы (основное состояние).
- В. Изобразите формы электронных облаков для состояний $3d_{z^2}$ и $3d_{v}$.
- 80. А. Укажите максимальное число электронов в атоме, обладающих определённым значением главного квантового числа.
- Б. Охарактеризуйте квантовыми числами электроны внешнего слоя атома свинца (основное состояние).

- В. Изобразите формы электронных облаков для состояний $3d_{x^2-y^2}$ и $3d_{xy}$.
- 81. А. В приведённом ряду укажите обозначения состояния электронов, которые невозможны: 1s, 3d, 2d, 4f, 5f, 1p, 3p. Ответ обоснуйте.
- Б. Охарактеризуйте квантовыми числами электроны внешнего слоя атома ксенона (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $2p_z$ и $3d_{xz}$.
- 82. А. Сформулируйте правило Хунда и приведите иллюстрирующий его пример.
- Б. Охарактеризуйте квантовыми числами электроны атома алюминия (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $2p_x$ и $3d_y$.
- 83. А. Каковы значения квантового числа l для следующих состояний электрона: 3p, 3d, 4s, 5f, 2s, 4d, 4f?
- Б. Охарактеризуйте квантовыми числами электроны внешнего слоя атома германия (основное состояние).
- В. Изобразите формы электронных облаков для состояний $3d_{x^2-y^2}$ и $2p_{_{\scriptscriptstyle V}}$.
- 84. А. Укажите максимально возможное число электронов в p- и f-оболочках атома. Ответ обоснуйте.
- Б. Охарактеризуйте квантовыми числами d-электроны атома никеля (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $2p_x$ и $3d_{z^2}$.
- 85. А. Перечислите квантовые числа электронов в атоме и укажите интервалы их изменения.
- Б. Охарактеризуйте квантовыми числами d-электроны атома кобальта (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $3d_{xz}$ и $2p_x$.

- 86. А. Каковы значения квантового числа l для следующих состояний электрона: 1s, 3s, 4s, 4f, 4p, 3d, 4d?
- Б. Охарактеризуйте квантовыми числами f-электроны атома самария (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $2p_x$ и 3s.
- 87. А. Расположите орбитали атома водорода в порядке увеличения их энергии: 3d, 1s, 5p, 2s, 4f.
- Б. Охарактеризуйте квантовыми числами d-электроны атома железа (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $2p_x$ и 2s.
- 88. А. В приведенном ряду укажите состояния электронов, которые невозможны: 2s, 2p, 3p, 3f, 2d, 5f, 6p. Ответ обоснуйте.
- Б. Охарактеризуйте квантовыми числами f-электроны атома тербия (основное состояние).
 - В. Изобразите формы электронных облаков для состояний $2p_z$ и 1s.
- 89. А. Какие характеристики состояния электрона в атоме определяет главное квантовое число?
- Б. Охарактеризуйте квантовыми числами d-электроны атома марганца (основное состояние).
 - В. Изобразите формы электронных облаков для состояний 3s и $2p_y$.
- 90. А. Укажите максимально возможное число электронов в s- и f-оболочках атома. Ответ обоснуйте.
- Б. Охарактеризуйте квантовыми числами f-электроны атома диспрозия (основное состояние).
 - В. Изобразите формы электронных облаков для состояний 2s и 2 p_z .

4. ЭЛЕКТРОННЫЕ ФОРМУЛЫ АТОМОВ И ИОНОВ

Пример

Напишите электронные формулы атомов элементов с зарядом ядра 63, 48, 52. Приведите примеры атомов элементов, имеющих сходную электронную структуру. К какому типу элементов (s, p, d, f) они относятся? Какие степени окисления возможны для атома элемента, приведённого в задании последним? Напишите электронные формулы наиболее устойчивых «ионов» этого элемента.

Решение:

Электронные формулы элементов:

 $_{63}$ Eu — $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^75s^25p^66s^2$ или *KLM* $4s^24p^64d^{10}4f^75s^25p^66s^2$; $_{48}$ Cd — $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^2$ или *KLM* $4s^24p^64d^{10}5s^2$; $_{52}$ Te — $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^4$ или *KLM* $4s^24p^64d^{10}5s^25p^4$.

Сходную электронную структуру имеют: $_{63}$ Eu и $_{95}$ Am; $_{48}$ Cd, $_{30}$ Zn, $_{80}$ Hg и $_{112}$ Cn; $_{52}$ Te, $_{16}$ S, $_{34}$ Se, $_{84}$ Po и $_{116}$ Lv.

 $_{63}$ Eu – f-элемент; $_{48}$ Cd – d-элемент; $_{52}$ Te – p-элемент.

Стоящий в подгруппе кислорода теллур проявляет чётные степени окисления в соединениях: –2, 0, +4, +6. Наиболее устойчивые «ионы» этого элемента:

 ${\rm Te}^{-2}{:}\ 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6;$

 Te^{+4} : $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^2$;

Te⁺⁶: $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}$.

Задания

Напишите электронные формулы атомов элементов с зарядом ядра А, Б, В. Приведите примеры атомов элементов, имеющих сходную электронную структуру. К какому типу элементов (*s*, *p*, *d*, *f*) они относятся? Какие степени окисления возможны для атома элемента, приведённого в задании последним? Напишите электронные формулы наиболее устойчивых «ионов» этого элемента.

Номер задания	Порядког	вый номер элемента (заряд ядра)
	A	Б	В
91	30	35	81
92	13	44	83
93	7	59	73
94	17	63	24
95	43	56	75
96	10	93	35
97	47	65	52
98	8	69	74
99	38	57	33
100	14	20	41
101	48	60	50
102	92	46	34
103	71	12	21
104	80	61	32
105	87	95	26
106	64	79	53
107	54	11	28
108	94	15	72
109	9	67	82
110	19	58	39
111	66	77	31
112	88	68	27
113	45	90	51
114	62	86	29
115	78	70	49
116	36	91	25
117	96	18	42
118	16	89	22
119	76	84	40
120	85	37	23

5. РЕАКЦИИ ОКИСЛЕНИЯ-ВОССТАНОВЛЕНИЯ

Пример 1

А. Напишите уравнения реакций окисления-восстановления. Отметьте реакцию диспропорционирования и реакцию внутримолекулярного окисления-восстановления.

1)
$$PH_3 + KMnO_4 + KOH \rightarrow$$

2)
$$H_2SO_3 + H_2SeO_3 \rightarrow$$

3)
$$Cl_2 + Ca(OH)_2 \xrightarrow{t}$$

4) Fe(NO₃)₃
$$\xrightarrow{t}$$

5)* Fe + HCl
$$\rightarrow$$

6) S + HNO_{3 (конц)}
$$\rightarrow$$

7)* KI + MnO₂ + H₂SO₄
$$\rightarrow$$

Решение: (для реакции (1) приведён пример подстрочного баланса электронов)

1)
$$P^{-3}H_3 + 8KMn^{+7}O_4 + 11KOH \rightarrow K_3P^{+5}O_4 + 8K_2Mn^{+6}O_4 + 7H_2O_4 + 1e$$

2)
$$2H_2SO_3 + H_2SeO_3 \rightarrow 2H_2SO_4 + Se + H_2O$$

- 3) $6\text{Cl}_2 + 6\text{Ca}(\text{OH})_2 \xrightarrow{t} 5\text{Ca}(\text{Cl}_2 + \text{Ca}(\text{ClO}_3)_2 + 6\text{H}_2\text{O}$ реакция диспропорционирования
- 4) $4Fe(NO_3)_3 \xrightarrow{t} 2Fe_2O_3 + 12NO_2 + 3O_2$ реакция внутримолекулярного окисления-восстановления

5)* Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂

6)
$$S + 6HNO_{3 \text{ (KOHII)}} \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$$

7)*
$$2KI + MnO_2 + 2H_2SO_4 \rightarrow I_2 + K_2SO_4 + MnSO_4 + 2H_2O$$

Используя таблицу стандартных электродных потенциалов (Приложение, с. 141), подтвердите расчетом возможность протекания двух реакций, отмеченных в задании знаком *.

Решение:

 $E^{o}_{peakции} = E^{o}_{okucn} - E^{o}_{вocct}$; если $E^{o}_{peakции} > 0$, то реакция протекает; если $E^{o}_{peakции} < 0$, то реакция самопроизвольно не протекает.

5)* Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂

Электродные потенциалы:

$$H^+ + e = \frac{1}{2} H_2$$
; $E^0 = 0.00 B$;

$$Fe^{2+} + 2e = Fe$$
; $E^{0} = -0.44$ B;

$$E^{o}_{peakuuu} = E^{o}_{okucn} - E^{o}_{boccr} = 0.00 - (-0.44) = +0.44$$
 В. Реакция идет.

7)*
$$2KI + MnO_2 + 2H_2SO_4 \rightarrow I_2 + K_2SO_4 + MnSO_4 + 2H_2O_4$$

Электродные потенциалы:

$$MnO_2 + 4H^+ + 2e = Mn^{2+} + 2H_2O$$
; $E^0 = 1.24$ B;

$$I_2 + 2e = 2I^-$$
; $E^0 = 0.54$ B;

$$E^{o}_{\text{ реакции}} = E^{o}_{\text{ окисл}} - E^{o}_{\text{ восст}} = 1,24 - 0,54 = +0,70 \text{ B. Реакция идет.}$$

Б. Определите фактор эквивалентности и молярную массу эквивалента окислителя и восстановителя (не являющихся одновременно и средой, в которой протекает реакция) в трёх межмолекулярных реакциях окисления-восстановления (на выбор), не имеющихся в вашем варианте.

Решение:

Фактор эквивалентности равен 1/n, где для окислительновосстановительных реакций n — число электронов, принимаемых одной молекулой окислителя, или число электронов, отдаваемых одной молекулой восстановителя. Молярная масса эквивалента равна молярной массе, умноженной на фактор эквивалентности.

1)
$$5KBr + KBrO_3 + 3H_2SO_4 \rightarrow 3Br_2 + 3K_2SO_4 + 3H_2O$$
.

Фактор эквивалентности окислителя (KBrO₃) равен 1/5; фактор эквивалентности восстановителя (KBr) равен 1. Молярная масса эквивалента окислителя (KBrO₃) равна $167 \cdot 1/5 = 33,4$ г/(моль экв.); молярная масса эквивалента восстановителя (KBr) равна $119 \cdot 1 = 119$ г/(моль экв.).

2)
$$MnO_2 + O_2 + NaOH \rightarrow Na_2MnO_4 + H_2O$$
.

Фактор эквивалентности окислителя (O_2) равен 1/4; фактор эквивалентности восстановителя (MnO_2) равен 1/2. Молярная масса

эквивалента окислителя (O_2) равна $32 \cdot 1/4 = 8$ г/(моль экв.); молярная масса эквивалента восстановителя (MnO_2) равна $55 \cdot 1/2 = 27,5$ г/(моль экв.).

3) Al +
$$3KMnO_4 + 6KOH \rightarrow K_3[Al(OH)_6] + 3K_2MnO_4$$
.

Фактор эквивалентности окислителя (KMnO₄) равен 1; фактор эквивалентности восстановителя (Al) равен 1/3. Молярная масса эквивалента окислителя (KMnO₄) равна $158 \cdot 1 = 158 \text{ г/(моль экв.)}$; молярная масса эквивалента восстановителя (Al) равна $27 \cdot 1/3 = 9 \text{ г/(моль экв.)}$.

Задания

A. Напишите реакций уравнения окисления-восстановления. Отметьте диспропорционирования реакцию И реакцию внутримолекулярного окисления-восстановления. Используя таблицу стандартных электродных потенциалов (Приложение, с. 141), подтвердите расчётом возможность протекания двух реакций, отмеченных в задании знаком *.

Б. Определите фактор эквивалентности и молярную массу эквивалента окислителя и восстановителя (не являющихся одновременно и средой, в которой протекает реакция) в трёх межмолекулярных реакциях окисления-восстановления (на выбор), не имеющихся в вашем варианте.

121.

1)* Al + NaOH +
$$H_2O \rightarrow$$

2)
$$P_4 + HNO_{3 \text{ (KOHII)}} \rightarrow$$

3) MnO₂ + KNO₃ + KOH
$$\stackrel{t}{\longrightarrow}$$

4)*
$$Na_2S + NaNO_2 + H_2SO_4 \rightarrow$$

5)
$$H_2SO_3 + HClO_3 \rightarrow$$

6)
$$Fe(NO_3)_3 \xrightarrow{t}$$

7) KClO₃
$$\xrightarrow{t}$$

1) Si+ NaOH +
$$H_2O \rightarrow Na_2SiO_3 + ...$$

2)*
$$I_2 + HNO_{3 \text{ (KOHII)}} \rightarrow HIO_3 + \dots$$

3)
$$NH_2OH + KMnO_4 + H_2SO_4 \rightarrow N_2 + ...$$

4)* FeSO₄ + Br₂ + H₂SO₄
$$\rightarrow$$

5)
$$H_2S + SO_2 \rightarrow$$

6)
$$Cu(NO_3)_2 \xrightarrow{t}$$

7) S + NaOH
$$\stackrel{t}{\longrightarrow}$$

1) NH₃ + O₂
$$\xrightarrow{t, kat}$$

2)
$$Zn + HNO_{3 \text{ (ou. pa36)}} \rightarrow$$

3)
$$N_2H_4 + KMnO_4 + H_2SO_4 \rightarrow N_2 + ...$$

4)*
$$K_2MnO_4 + Cl_2 \rightarrow$$

5)* NaNO₂ + KI +
$$H_2SO_4 \rightarrow$$

6) HNO₂
$$\xrightarrow{t}$$

7)
$$Pb(NO_3)_2 \xrightarrow{t}$$

124.

1)*
$$Zn + HCl \rightarrow$$

2)
$$Sb + HNO_{3 \text{ (конц)}} \rightarrow Sb_2O_5 + \dots$$

$$3)* MnO_2 + NaI + H_2SO_4 \rightarrow$$

4)
$$HCOOH + KMnO_4 + H_2SO_4 \rightarrow$$

5)
$$H_2S + HNO_{3 \text{ (конц)}} \rightarrow$$

6)
$$Cl_2 + Ba(OH)_2 \xrightarrow{t}$$

7)
$$Hg(NO_3)_2 \xrightarrow{t}$$

1)
$$FeS_2 + O_2 \xrightarrow{t}$$

2)* S + HNO_{3 (конц)}
$$\xrightarrow{t}$$

3)
$$MnO_2 + O_2 + KOH \rightarrow$$

4)
$$H_2C_2O_4 + KMnO_4 + H_2SO_4 \rightarrow$$

5)* FeCl₃ + HI
$$\rightarrow$$

6) Al(NO₃)₃
$$\xrightarrow{t}$$

7)
$$Cl_2 + LiOH \rightarrow$$

1)* Be + NaOH +
$$H_2O \rightarrow Na_2[Be(OH)_4] + ...$$

2)
$$Cu + H_2SO_{4 \text{ (KOHII)}} \rightarrow$$

3)*
$$MnO_2 + HCl_{(KOHIL)} \rightarrow$$

4)
$$MnO_2 + KNO_3 + KOH \xrightarrow{t, \text{ сплавление}}$$

5)
$$K_2S + NaOCl + H_2SO_4 \rightarrow$$

6)
$$NO_2 + H_2O \rightarrow$$

7) Mn(NO₃)₂
$$\xrightarrow{t}$$

127.

1) NO + O₂
$$\rightarrow$$

2)*
$$Mg + H_2SO_4$$
 (конц) \rightarrow

3)
$$PH_3 + KMnO_4 + H_2SO_4 \rightarrow$$

4)*
$$MnSO_4 + KMnO_4 + H_2O \rightarrow$$

5)
$$FeSO_4 + HNO_{3 \text{ (KOHII)}} + H_2SO_4 \rightarrow$$

6) Ba(NO₃)₂
$$\xrightarrow{t}$$

7)
$$H_2O_2 \xrightarrow{t}$$

128.

1) CuS + HNO_{3 (KOHII)}
$$\xrightarrow{t}$$

2) B + HNO_{3 (KOHII)}
$$\xrightarrow{t}$$

$$3)* K_2SO_3 + KMnO_4 + H_2O \rightarrow$$

4) MnS + HNO_{3 (конц)}
$$\rightarrow$$

5)*
$$H_2O_2 + KI + H_2SO_4 \rightarrow$$

6) NH₄NO₂
$$\xrightarrow{t}$$

7)
$$Cl_2 + H_2O \rightarrow$$

1)
$$FeO \cdot Cr_2O_3 + K_2CO_3 + O_2 \xrightarrow{t} Fe_2O_3 + K_2CrO_4 + \dots$$

2) C + HNO_{3 (KOHII)}
$$\xrightarrow{t}$$

$$3)*\ Zn + KMnO_4 + H_2SO_4 \rightarrow$$

4)
$$NaNO_2 + Na_2CrO_4 + KOH \rightarrow$$

5)* HI+
$$H_2SO_4$$
 (kohil) $\rightarrow I_2 + S + \dots$

6) K₂SO₃
$$\xrightarrow{t}$$

7) KMnO₄
$$\xrightarrow{t}$$

1)
$$C_2H_2 + O_2 \xrightarrow{t}$$

2) Se + HNO_{3 (конц)}
$$\rightarrow$$
 H₂SeO₃ + ...

3)*
$$(NH_4)_2S + K_2Cr_2O_7 + H_2SO_4 \rightarrow S + ...$$

4)*
$$K_2SO_3 + KMnO_4 + NaOH \rightarrow$$

5) Al+ Fe₃O₄
$$\xrightarrow{t}$$

6) Pb(NO₃)₂
$$\xrightarrow{t}$$

7)
$$K_2MnO_4 + H_2O \rightarrow$$

131.

1)* Al + HCl
$$\rightarrow$$

2) Al + HNO_{3 (pas6)}
$$\rightarrow$$

3)*
$$H_2O_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow$$

4)
$$P_4 + KMnO_4 + H_2SO_4 \rightarrow$$

5)
$$Na[Sn(OH)_3] + Bi(NO_3)_3 + NaOH + H_2O \rightarrow Bi + ...$$

6) KClO₃
$$\xrightarrow{t, kat}$$

7)
$$I_2 + NaOH \rightarrow NaIO_3 + ...$$

132.

1)
$$FeS_2 + O_2 \xrightarrow{t}$$

2) As + HNO_{3 (конц)}
$$\rightarrow$$

3)
$$H_3PO_3 + KMnO_4 + H_2SO_4 \rightarrow$$

4)*
$$NaNO_2 + Na_2Cr_2O_7 + H_2SO_4 \rightarrow$$

5)* MnSO₄ + KMnO₄ + H₂O
$$\rightarrow$$

6)
$$P_4 + KOH + H_2O \xrightarrow{t} KH_2PO_2 + ...$$

7)
$$(NH_4)_2Cr_2O_7 \xrightarrow{t}$$

1) B + NaOH + H₂O
$$\xrightarrow{t}$$
 NaBO₂ + ...

2)
$$Tc + HNO_{3 \text{ (KOHII)}} \rightarrow HTcO_4 + \dots$$

$$3)* K_2SO_3 + KMnO_4 + H_2SO_4 \rightarrow$$

4)*
$$H_2S + K_2Cr_2O_7 + H_2SO_4 \rightarrow S + ...$$

5)
$$PbS + HNO_{3 \text{ (KOHII)}} \rightarrow PbSO_4 + \dots$$

6)
$$HClO_3 \xrightarrow{t} ClO_2 + HClO_4 + ...$$

7) HNO₃
$$\stackrel{t}{\longrightarrow}$$

1) Fe + H₂O + O₂
$$\rightarrow$$

2)
$$Au + HCl + HNO_3 \rightarrow H[AuCl_4] + ...$$

3)*
$$Mn(OH)_2 + Cl_2 + KOH \rightarrow MnO_2 + ...$$

4)*
$$KMnO_4 + Cr_2(SO_4)_3 + H_2SO_4 \rightarrow$$

5)
$$Pb_3O_4 + HCl_{(KOHIL)} \rightarrow PbCl_2 + ...$$

6) NH₄NO₃
$$\xrightarrow{t}$$

7)
$$P_4O_6 + H_2O \xrightarrow{t} PH_3 + \dots$$

135.

1)* Al +
$$H_2SO_{4 \text{ (pa36)}} \rightarrow$$

2) Ba + HNO_{3 (конц)}
$$\rightarrow$$

3)
$$AsH_3 + KMnO_4 + H_2SO_4 \rightarrow H_3AsO_4 + ...$$

4)
$$H_2S + K_2CrO_4 + KOH \rightarrow$$

5)* KBr+ KBrO₃ +
$$H_2$$
SO₄ \rightarrow

6) Mn(NO₃)₂
$$\xrightarrow{t}$$

7)
$$AuF \rightarrow AuF_3 + ...$$

136.

1)
$$C_2H_4 + O_2 \xrightarrow{t}$$

2)
$$Cu + HNO_{3 (KOHIL)} \rightarrow$$

3)*
$$Na_2O_2 + KMnO_4 + H_2SO_4 \rightarrow$$

4)
$$Cr_2O_3 + KClO_3 + H_2SO_{4 \text{ (конц)}} \rightarrow$$

5)* KI + KNO₂ + CH₃COOH
$$\rightarrow$$

6) HNO₂
$$\xrightarrow{t}$$

7) Ca(NO₃)₂
$$\xrightarrow{t}$$

1)* Fe + HCl
$$\rightarrow$$

2)
$$Pt + HNO_3 + HCl \rightarrow H_2[PtCl_6] + ...$$

$$3)* H2O2 + KMnO4 + H2SO4 \rightarrow$$

4)
$$Zn + K_2CrO_4 + KOH + H_2O \rightarrow$$

5) KI + CuSO₄
$$\rightarrow$$

6) Fe(NO₃)₃
$$\xrightarrow{t}$$

7) KClO₃
$$\stackrel{t}{\longrightarrow}$$

1) NH₃ + O₂
$$\xrightarrow{t}$$

2)
$$Si + HNO_3 + HF \rightarrow H_2[SiF_6] + ...$$

3)* FeSO₄ + KMnO₄ + H₂SO₄
$$\rightarrow$$

4)
$$KCrO_2 + PbO_2 + KOH \rightarrow K_2[Pb(OH)_4] + ...$$

5)*
$$PbO_2 + HCl_{(KOHII)} \rightarrow$$

6) Bi(NO₃)₃
$$\xrightarrow{t}$$

7) S + NaOH
$$\stackrel{t}{\longrightarrow}$$

139.

1)
$$ZnS + O_2 \xrightarrow{t}$$

2)
$$P_4 + H_2SO_{4 \text{ (конц)}} \rightarrow$$

$$3)* KI + KMnO_4 + H_2SO_4 \rightarrow$$

4)* NaI + Na₂Cr₂O₇ + H₂SO₄
$$\rightarrow$$

5)
$$KBr + H_2SO_4$$
 (конц) $\rightarrow Br_2 + \dots$

6) NaNO₃
$$\xrightarrow{t}$$

7)
$$Cl_2 + Sr(OH)_2 \rightarrow$$

1)
$$C_2H_6+O_2 \xrightarrow{t}$$

2)
$$Sn + H_2SO_4$$
 (kohii) $\rightarrow Sn(SO_4)_2 + ...$

3) MnSO₄+ KClO₃ + KOH
$$\xrightarrow{t$$
, сплавление \rightarrow

4)* FeSO₄ +
$$K_2Cr_2O_7 + H_2SO_4 \rightarrow$$

5)*
$$Na_2S + Cl_2 \rightarrow$$

6)
$$Mg(NO_3)_2 \xrightarrow{t}$$

7)
$$Cl_2 + CsOH \xrightarrow{t}$$

1)
$$C_2H_5OH+O_2 \xrightarrow{t}$$

2) Ag + HNO_{3 (конц)}
$$\rightarrow$$

3)
$$Mn(NO_3)_2 + NaBiO_3 + HNO_3 \rightarrow Bi(NO_3)_3 + ...$$

4)*
$$Cr(OH)_3 + Br_2 + KOH \rightarrow$$

5)*
$$FeSO_4 + KMnO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + \dots$$

6) Al(NO₃)₃
$$\xrightarrow{t}$$

7)
$$H_2O_2 \xrightarrow{t}$$

142.

1)
$$SO_2 + O_2 \xrightarrow{t, kat}$$

2)* Co + HNO_{3 (pa36)}
$$\rightarrow$$
 NO + ...

$$3)* KNO2 + KMnO4 + H2SO4 \rightarrow$$

4)
$$PH_3 + K_2Cr_2O_7 + H_2SO_4 \rightarrow H_3PO_4 + ...$$

5)
$$SO_2 + H_2O + HClO \rightarrow HCl + ...$$

6) AgNO₃
$$\xrightarrow{t}$$

7)
$$K_2SO_3 \xrightarrow{t}$$

143.

1)
$$Cu + HNO_{3 \text{ (конц)}} \rightarrow$$

2) C + H₂SO_{4 (конц)}
$$\xrightarrow{t}$$

3)* KNO₂+ KMnO₄ + H₂O
$$\rightarrow$$

4)*
$$Na_2S + K_2Cr_2O_7 + H_2SO_4 \rightarrow$$

5)
$$Zn + H_3AsO_3 + H_2SO_4 \rightarrow AsH_3 + ...$$

6)
$$K_2MnO_4 + H_2O \rightarrow$$

7) KMnO₄
$$\xrightarrow{t}$$

1)
$$Zn + HNO_{3 (pa36)} \rightarrow$$

2)
$$Ta + HNO_3 + HF \rightarrow H_2[TaF_7] + ...$$

3)*
$$KNO_2 + KMnO_4 + NaOH \rightarrow$$

4)* Al +
$$K_2Cr_2O_7 + H_2SO_4 \rightarrow$$

5)
$$SO_2 + SeO_2 + H_2O \rightarrow Se + ...$$

6) Pb(NO₃)₂
$$\xrightarrow{t}$$

7)
$$NO_2 + Ba(OH)_2 \rightarrow$$

1)*
$$Zn + NaOH + H_2O \rightarrow$$

2) Fe + HNO_{3 (pa36)}
$$\rightarrow$$

$$3)* H_2S + KMnO_4 + H_2O \rightarrow$$

4)
$$CrCl_3 + H_2O_2 + NaOH \rightarrow$$

5)
$$H_2O_2 + CaOCl_2 \rightarrow O_2 + ...$$

6)
$$P_4 + KOH + H_2O \xrightarrow{t} KH_2PO_2 + ...$$

7)
$$(NH_4)_2Cr_2O_7 \xrightarrow{t}$$

146.

1)
$$Cu_2S + HNO_{3 \text{ (конц)}} \rightarrow$$

2)
$$Sn + HNO_{3 \text{ (конц)}} \rightarrow H_2SnO_3 + \dots$$

3)*
$$KMnO_4 + HCl_{(KOHII)} \rightarrow$$

4)
$$Na_2SO_3 + Na_2CrO_4 + NaOH \rightarrow$$

$$5)* NaI + PbO_2 + H_2SO_4 \rightarrow$$

6)
$$HClO_3 \xrightarrow{t} ClO_2 + HClO_4 + ...$$

7) HNO₃
$$\xrightarrow{t}$$

147.

1)
$$As_2O_3 + HNO_3$$
 (KOHII) $\rightarrow H_3AsO_4 + ...$

2)
$$S + H_2SO_4$$
 (kohil) \rightarrow

3)
$$MnSO_4 + CaOCl_2 + NaOH \rightarrow$$

4)*
$$Na_2SO_3 + Na_2Cr_2O_7 + H_2SO_4 \rightarrow$$

5)*
$$Na_2S + Na_2SO_3 + H_2SO_4 \rightarrow$$

6)
$$Cu(NO_3)_2 \xrightarrow{t}$$

7)
$$P_4O_6 + H_2O \xrightarrow{t} PH_3 + \dots$$

1)
$$FeS_2 + HNO_{3 (KOHIL)} \rightarrow$$

2)
$$Sn + HNO_{3 (pas6)} \rightarrow Sn(NO_3)_2 + ...$$

$$3)* H2O2 + MnO2 + H2SO4 \rightarrow$$

4)*
$$Cr(OH)_3 + Cl_2 + KOH \rightarrow$$

5)
$$H_2S + H_2SO_{4 \text{ (KOHII)}} \rightarrow$$

6)
$$AuF \rightarrow AuF_3 + ...$$

7) NH₄NO₂
$$\xrightarrow{t}$$

1)
$$Cu_2O + HNO_{3 (конц)} \rightarrow$$

2)* HI + O₂
$$\rightarrow$$
 I₂ + ...

3)
$$H_2S + KMnO_4 + KOH \rightarrow$$

4)*
$$SnCl_2 + K_2Cr_2O_7 + HCl \rightarrow$$

5) Fe(NO₃)₂ + KClO + KOH
$$\rightarrow$$

6) KClO₃
$$\xrightarrow{t, kat}$$

7)
$$K_2MnO_4 + H_2O \rightarrow$$

150.

1)
$$As_2S_3 + HNO_3$$
 (KOHII) $\xrightarrow{t} H_3AsO_4 + ...$

2)*
$$Br_2 + Cl_2 + H_2O \rightarrow HBrO_3 + ...$$

$$3)* H_2S + KMnO_4 + H_2SO_4 \rightarrow$$

4)
$$Cr_2(SO_4)_3 + H_2O_2 + KOH \rightarrow$$

5)
$$K_2HPO_3 + HgCl_2 + H_2O \rightarrow Hg + ...$$

6) NH₄NO₃
$$\xrightarrow{t}$$

7)
$$P_4 + NaOH + H_2O \xrightarrow{t} NaH_2PO_2 + ...$$

6. КОВАЛЕНТНАЯ СВЯЗЬ. ГИБРИДИЗАЦИЯ. σ- И π-СВЯЗИ

Пример 1

Укажите количество связей в ионе BF_4^- , образованных по донорноакцепторному механизму.

Решение:

$$_{5}\text{B}\ 1s^{2}2s^{2}2p^{1}$$

$$_{9}\text{F }1s^{2}2s^{2}2p^{5}$$

По донорно-акцепторному механизму образована 1 связь.

Пример 2

Изобразите схемы перекрывания орбиталей при образовании σ- и π -связей в молекулах COCl₂ и CH₃-C≡C-H.

Решение:

COCl₂

1. Графическая формула молекулы:

$$C1$$
 $C=0$

В молекуле три σ-связи и одна π-связь

- 2. Гибридизация sp^2 .
- 3. Три гибридных орбитали атома углерода участвуют в образовании трех σ -связей, а один p-электрон в образовании π -связи с атомом кислорода, которая располагается под углом 90° к плоскости молекулы.

4. Молекула COCl₂ – плоский треугольник; полярная.

CH₃–C≡C–H

1. Графическая формула молекулы:

В молекуле шесть σ-связей и две π-связи.

- 2. Гибридизация sp^3 у первого атома углерода и sp- у второго и третьего атомов углерода.
- 3. Две гибридных орбитали второго и третьего атомов углерода участвуют в образовании двух σ -связей и два p-электрона в образовании двух π -связей, которые располагается под углом 90° друг к другу.

4. Молекула полярная.

Пример 3

Изобразите валентные схемы для молекулы N_2O .

Решение:

KC (N-N) = (2+3)/2 = 2.5

Кратность связи (КС):

$$KC (N-O) = (2+1)/2 = 1.5$$

Пример 4

Изобразите валентные схемы для молекулярного иона PO_4^{3-} .

Решение:

Кратность связи: $KC = 5/4 = 1 \frac{1}{4}$.

Задания

- 150. А. Укажите количество связей в ионе SiF_6^{2-} , образованных по донорно-акцепторному механизму.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CO_2 и CCl_3COOH .
- 151. А. Какова геометрическая форма молекулы AX_5 , если валентные орбитали атома A находятся в dsp^3 -гибридном состоянии.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах H_2C =CH-COOH и BCl_3 .
- 152. А. Укажите количество связей в молекуле Be₂Cl₄, образованных по донорно-акцепторному механизму.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах

$$H_2 C - CH_2$$
 и $HC \equiv C - CH_3$. OH OH

- 154. А. Какой тип гибридизации валентных орбиталей атома А отвечает плоскому расположению связей в молекуле типа AX₃?
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH_3COOH и C_4H_{10} .

- 155. А. Укажите количество связей в ионе AlH₄⁻, образованных по донорно-акцепторному механизму.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах C_6H_6 и CO_2 .
- 156. А. Какой вид гибридизации валентных орбиталей атома А отвечает линейному расположению связей в молекуле типа AX_2 ?
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH₃CHO и C₃H₈.
- 157. А. Какой вид гибридизации валентных орбиталей атома А отвечает октаэдрическому расположению связей в молекуле типа AX_6 ?
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах C_6H_5OH и C_2H_6 .
- 158. А. Укажите количество связей в молекуле Al_2I_6 образованных по донорно-акцепторному механизму.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CS_2 и C_2H_6 .
- 159. А. Какой вид гибридизации валентных орбиталей атома А отвечает квадратному расположению связей в молекулах типа AX₄?
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH_3OH и COS.
- 160. А. Укажите количество связей в ионе BH₄-, образованных по донорно-акцепторному механизму.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах HCN и $C_6H_5CH_3$.
- 161. А. Изобразите форму *sp*-гибридных орбиталей и укажите направленность гибридных электронных облаков в пространстве.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH_3COH и SiF_4 .
- 162. А. Изобразите форму sp^2 -гибридных орбиталей и укажите направленность гибридных электронных облаков в пространстве.

- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах $HC\equiv C-CH_3$ и BF_3 .
- 163. А. Изобразите форму sp^3 -гибридных орбиталей и укажите направленность гибридных электронных облаков в пространстве.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах C_3H_7OH и CS_2 .
- 164. А. Изобразите схему перекрывания s-орбиталей при образовании σ -связи.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах НСООН и SiH₄.
- 165. А. Изобразите схему перекрывания p-орбиталей при образовании σ -связи.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах $Si(CH_3)_4$ и HCHO.
- 166. А. Изобразите схему перекрывания s- и p-орбиталей при образовании σ -связи.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах C_6H_5COOH и PF_3 .
- 167. Изобразите схему перекрывания d-орбиталей при образовании π -связи.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах

$$CH_3-C-CH_3$$
 и BeF_2 .

- 168. А. Изобразите валентные схемы для молекулы HN₃.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH₃COOH и CH₃Cl.
 - 169. А. Изобразите валентные схемы для молекулы SO_3 .

- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH_2 =CH- CH_2Cl и CH_4 .
 - 170. А. Изобразите валентные схемы для молекулы SO₂.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH_2 =CHCl и C_2H_5OH .
 - 171. А. Изобразите валентные схемы для молекулы HNO₃.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH=C-CH=CH $_2$ и PH $_3$.
 - 172. А. Изобразите валентные схемы для иона ${\rm CO_3}^{2-}$.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH_2 =CH-CH= CH_2 и NH_3 .
 - 173. А. Изобразите валентные схемы для иона SO_3^{2-} .
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах

$$CH_2 = C - CH = CH_2$$
 и Br_2 . CH_3

- 174. А. Изобразите валентные схемы для иона N_3^- .
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах

$$CH_2 = C - CH = CH_2$$
 и HBr.

- 175. А. Изобразите валентные схемы для молекулы HN₃.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах ClCH₂COOH и Na₂.
 - 176. А. Изобразите валентные схемы для молекулы NO₂.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах C_2Cl_4 и CH_2Cl_2 .
 - 177. А. Изобразите валентные схемы для иона NO_2^- .

- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах CH_2 =CH-COOH и HF.
 - 178. А. Изобразите валентные схемы для иона NO_3^- .
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах

$$CH_2 = C - COOH$$
 и H_2O . CH_3

- 179. А. Какой вид гибридизации валентных орбиталей атома А отвечает тетраэдрическому расположению связей в молекуле типа AX_4 ?
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах C_6H_5Cl и $CHCl_3$.
- 180. А. Укажите количество связей в ионе NH₄⁺, образованных по донорно-акцепторному механизму.
- Б. Изобразите схемы перекрывания орбиталей при образовании σ и π -связей в молекулах C_2H_5COH и $AsCl_3$.

7. МЕТОД ГИЛЛЕСПИ

Обозначения в методе Гиллеспи

 AX_nE_m – представление химической формулы молекулы (иона):

А – центральный атом,

- X лиганд, с которым центральный атом образует химическую связь, т.е. даёт связывающие электронные пары (другой атом, связанный с центральным),
 - Е неподелённая электронная пара,
- n число связывающих электронных пар (общее число партнеров центрального атома по химической связи),
 - m число неподелённых электронных пар.

Алгоритм определения геометрии молекул по методу Гиллеспи

- 1. Определяется число лигандов n, с которыми образует связь центральный атом (на основе формулы молекулы).
- 2. Определяется общее число связывающих и неподелённых электронных пар (n+m):

$$n+m=\frac{N_{u}+\sum N_{n}-z}{2}-\pi.$$

В этом уравнении:

 $N_{\rm ц}$ — число электронов центрального атома на его внешнем электронном слое,

 $\Sigma N_{\scriptscriptstyle
m J}$ – число электронов лигандов, которые участвуют в образовании связей с центральным атомом,

 π — число π -связей в молекуле,

z — заряд иона (для определения строения молекулярного иона).

3. Определяется число неподелённых электронных пар: m = (n + m) - n.

Записывается AX_nE_m .

- 4. Определяется пространственное расположение всех электронных пар (связывающих и неподелённых).
- 5. Устанавливается геометрия молекулы (расположение в пространстве связывающих электронных пар).

Пример 1

На основе метода Гиллеспи предскажите геометрическую форму молекулы SF₄. Определите, полярна указанная молекула или нет. Ответ обоснуйте.

Решение:

- 1. n = 4.
- 2. n + m = (6 + 4)/2 = 5.
- 3. m = 5 4 = 1. AX₄E₁.

4. Пространственное расположение всех электронных пар – тригональная бипирамида.

5. Геометрия молекулы – «качели»

Молекула SF₄ полярная, поскольку геометрическая сумма дипольных моментов связей не равна нулю (находящиеся на одной прямой F-S-F дипольные моменты связей S-F компенсируют друг друга).

Пример 2

На основе метода Гиллеспи предскажите геометрическую форму молекулярного иона ${\rm CO_3}^{2-}$.

1.
$$n = 3$$
.

2.
$$n+m=\frac{4+6-2}{2}-1=3$$
.

3.
$$m = 3 - 3 = 0$$
. AX₃E₀.

4. Пространственное расположение всех электронных пар – правильный треугольник.

48

5. Геометрия – правильный треугольник.

Задания

На основе метода Гиллеспи предскажите геометрическую форму следующих молекул и ионов. Определите, полярны указанные молекулы или нет. Ответ обоснуйте.

- 181. H₂O; SF₆; SnCl₂; SO₄²⁻.
- 182. NH₃; H₂S; SnCl₄; SO₃²⁻.
- 183. PH₃; H₂S; TeCl₄; PO₄³⁻.
- 184. SbH₃; H₂Te; SO₂; BF₄⁻.
- 185. SO₃; AsH₃; SnCl₄; BH₄-.
- 186. SOCl₂; XeF₂; SiCl₄; AlH₄-.
- 187. XeF₄; SO₂Cl₂; ClF₃; NO₃⁻.
- 188. ClF₅; CH₄; SO₃; AsO₄³⁻.
- 189. PCl₆⁻; ClF₃; CHF₃; SiF₆²⁻.
- 190. (CH₃)₂S; XeF₂; CO₂; PCl₆⁻.
- 191. NCl₃; XeF₆; COS; ClO₃⁻.
- 192. PCl₃; CH₃Cl; SO₂; NO₂⁻.
- 193. PCl₅; COCl₂; COSe; NH₄⁺.
- 194. POCI₃; COF₂; CH₂F₂; PCl₄⁺.
- 195. BCl₃; ICl₅; BeCl₂; SO₃²⁻.
- 196. BF₃; IF₇; CHF₃; SeO₄²⁻.
- $197. \ CCl_4; \ \ IF_5; \ \ SeO_3; \ \ PH_4{}^+.$
- 198. SCl₄; H₂S; SOCl₂; SO₄²⁻.
- 199. PF₅; F₂O; SO₂; ClO₄⁻.

200. PF₃; H₂O; SO₃; PO₄³⁻.

201. COCl₂; SF₆: CO₂; ICl₄⁻.

202. H₂Te; IF₃; COS; ClO₂⁻.

203. CF₄; BrF₃; O₃; SiO₄⁴⁻.

204. ICl₅; NF₃; CS₂; Al(OH)₄-.

205. CH₃Cl; BrF₅; SOCl₂; H₃O⁺.

206. CCl₂F₂; XeF₄; SO₂Cl₂; PF₆⁻.

207. SiF₄; SO₂; HCN; NH₄⁺.

208. SF_6 ; IF_7 ; CS_2 ; SiF_6^{2-} .

209. XeF₂; BF₃; POCl₃; SO₄²⁻.

210. BeH₂; NH₃; SeOCl₂; SeO₄²⁻.

8. МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ

Пример

Распределите электроны по молекулярным орбиталям для следующих частиц: O_2^{2-} , O_2 , O_2^{2+} (формально можно считать, что ион O_2^{2-} имеется в молекуле H_2O_2 , а ион O_2^{2+} – в молекуле F_2O_2); определите кратность связи и магнитные свойства каждой частицы. Объясните, как изменяется длина и энергия связи в приведённом ряду частиц. Какие частицы (молекулы или ионы) изоэлектронны имеющейся в ряду нейтральной частице?

Решение:

 $O_2^{2-} - 18$ электронов.

 $O_2^{2-} [KK^*(\sigma 2s)^2(\sigma^* 2s)^2(\sigma 2p_z)^2(\pi 2p_x)^2(\pi 2p_y)^2(\pi^* 2p_x)^2(\pi^* 2p_y)^2].$

Кратность связи (КС) равна половине разности числа связывающих и разрыхляющих электронов: KC = (10 - 8)/2 = 1. Молекулярный ион O_2^{2-} не содержит неспаренных электронов, он диамагнитен.

 $O_2 - 16$ электронов.

O₂
$$[KK^*(\sigma 2s)^2(\sigma^* 2s)^2(\sigma 2p_z)^2(\pi 2p_x)^2(\pi 2p_y)^2(\pi^* 2p_x)^1(\pi^* 2p_y)^1].$$

Кратность связи: KC = (10 - 6)/2 = 2. Молекула O_2 содержит два неспаренных электрона, поэтому она парамагнитна.

 $O_2^{2+} - 14$ электронов.

$$O_2^{2+}$$
 [$KK^*(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p_x)^2(\pi 2p_y)^2(\sigma 2p_z)^2$].

Кратность связи: KC = (10 - 4)/2 = 3. Молекулярный ион O_2^{2+} не содержит неспаренных электронов, он диамагнитен.

В ряду: O_2^{2-} , O_2 , O_2^{2+} увеличивается кратность связи, а следовательно, возрастает энергия связи и уменьшается длина связи.

Распределение $[KK^*(\sigma 2s)^2(\sigma^* 2s)^2(\sigma 2p_z)^2(\pi 2p_x)^2(\pi 2p_y)^2(\pi^* 2p_x)^1(\pi^* 2p_y)^1]$ электронов по молекулярным орбиталям будут иметь двухатомные частицы (молекулы и ионы), у которых суммарное число электронов на этих орбиталях такое же (16), как в молекуле кислорода. К таким частицам относятся, например, NO^- , N_2^{2-} , CO^{2-} .

Задания

Распределите электроны по молекулярным орбиталям для следующих частиц. Определите кратность связи и магнитные свойства каждой частицы. Объясните, как изменяется длина и энергия связи в приведённом ряду частиц. Какие частицы (молекулы или ионы) изоэлектронны имеющейся в ряду нейтральной частице?

Номер задания	Молекулы и ионы		
211	H_2	H_2^+	H_2^-
212	He ₂	He ₂ ⁺	He ₂ ⁻
213	Li_2	Li ₂ ⁺	Li ₂ ⁻
214	Be_2	$\mathrm{Be_2}^+$	$\mathrm{Be_2}^-$
215	B_2	$\mathbf{B_2}^+$	$\mathrm{B_2}^-$
216	C_2	C_2^+	C_2^-
217	N_2	N_2^+	N_2^-
218	O_2	$\mathrm{O_2}^+$	$O_2^- F_2^-$
219	F_2	F_2^+	F_2^-
220	Ne_2	Ne ₂ ⁺	Ne ₂ ⁻
221	CN	CN ⁺	CN-
222	CO	CO ⁺	CO-
223	NO	NO^+	NO ⁻
224	BF	BF ⁺	BF ⁻
225	BN	BN ⁺	BN ⁻
226	OF	OF ⁺	OF ⁻
227	ВО	BO^+	BO ⁻
228	BeO	$\mathrm{BeO}^{\scriptscriptstyle +}$	BeO ⁻
229	LiO	LiO ⁺	LiO ⁻
230	LiB	LiB ⁺	LiB ⁻
231	LiC	LiC ⁺	LiC ⁻
232	LiN	LiN ⁺	LiN ⁻
233	LiF	LiF ⁺	LiF ⁻
234	BeB	BeB ⁺	BeB ⁻
235	BeC	BeC ⁺	BeC ⁻
236	BeN	BeN ⁺	BeN ⁻
237	BeF	BeF ⁺	BeF ⁻
238	BC	BC ⁺	BC ⁻
239	CF	CF ⁺	CF ⁻
240	NF	NF ⁺	NF ⁻

9. ТЕРМОХИМИЯ. ЗАКОН ГЕССА. ЭНТРОПИЯ. ЭНЕРГИЯ ГИББСА

Пример 1

Пользуясь справочными термодинамическими данными (Приложение, с. 120), определите ΔH^{o}_{298} , ΔG^{o}_{298} , ΔS^{o}_{298} химической реакции:

$$N_2 O_{(r)} + 3 H_{2(r)} = N_2 H_{4(r)} + H_2 O_{(\varkappa)}.$$

Решение:

Справочные данные приведены в таблице:

Вещество	$N_2H_{4(\Gamma)}$	$H_2O_{(m)}$	$H_{2(\Gamma)}$	$N_2O_{(r)}$
$\Delta { m H}^{ m o}{}_{ m oбp, 298}, { m к} { m Дж/моль}$	95,3	-285,83	0	82,01
$\Delta G^{o}_{oбp, 298}$, кДж/моль	159,10	-237,25	0	104,12
S° ₂₉₈ , Дж/моль·К	238,50	70,08	130,52	219,83

$$\Delta H^{o}_{298, x.p} = \Delta H^{o}_{oбp, 298} (N_{2}H_{4(\Gamma)}) + \Delta H^{o}_{oбp, 298} (H_{2}O_{(ж)}) - 3\Delta H^{o}_{oбp, 298} (H_{2(\Gamma)}) - \Delta H^{o}_{oбp, 298} (N_{2}O_{(\Gamma)}) = 95,3 + (-285,83) - 82,01 = -272,54 \text{ кДж.}$$

$$\Delta G^{o}_{298, x.p} = \Delta G^{o}_{oбp, 298} (N_{2}H_{4(\Gamma)}) + \Delta G^{o}_{oбp, 298} (H_{2}O_{(ж)}) - 3\Delta G^{o}_{oбp, 298} (H_{2(\Gamma)}) - \Delta G^{o}_{oбp, 298} (N_{2}O_{(\Gamma)}) = 159,10 + (-237,25) - 104,12 = -182,27 \text{ кДж.}$$

$$\Delta S^{o}_{298, x.p} = S^{o}_{298} (N_{2}H_{4(\Gamma)}) + S^{o}_{298} (H_{2}O_{(ж)}) - 3S^{o}_{298} (H_{2(\Gamma)}) - S^{o}_{298} (N_{2}O_{(\Gamma)}) = 238,50 + 70,08 - 3\cdot130,52 - 219,83 = -302,81 \text{ Дж/K.}$$

$$\mathbf{OTBET:} \ \Delta H^{o}_{298, x.p} = -272,54 \text{ кДж;}$$

$$\Delta G^{o}_{298, x.p} = -182,27 \text{ кДж;}$$

$$\Delta S^{o}_{298, x.p} = -302,81 \text{ Дж/K.}$$

Пример 2

На основе справочных термодинамических данных (Приложение, с. 120) определите среднюю энтальпию связи N–H в молекуле NH₃.

Решение:

$$NH_{3(\Gamma)}
ightarrow N_{(\Gamma)} + 3H_{(\Gamma)}; \, \Delta H^o{}_x = 3\Delta H^o{}_{cp. \, cbязи \, N-H}$$

Вещество	$H_{(r)}$	$N_{(r)}$	$NH_{3(\Gamma)}$
$\Delta { m H}^{ m o}{}_{ m ofp,\ 298},\ { m к}{ m Д}{ m ж}/{ m моль}$	218,0	472,7	-46,2

$$\Delta H^{o}_{x} = 3\Delta H^{o}_{oбр, 298} (H_{(r)}) + \Delta H^{o}_{oбp, 298} (N_{(r)}) - \Delta H^{o}_{oбp, 298} (NH_{3(r)}) = 3.218,0 + 472,7 - (-46,2) = 1172,9 кДж.$$

$$\Delta H^o_{\text{ср. связи N-H}} = \frac{1}{3} \ \Delta H^o_x = 1172,9 \cdot 1/3 = 390,97 \ кДж.$$

Ответ: $\Delta H^{o}_{cp. cвязи N-H} = 390,97 кДж.$

Пример 3

Вычислите среднюю энтальпию связи P–C1 в молекуле PCl₅, используя следующие термохимические уравнения:

1.
$$P_{(\kappa, \, \delta e \pi)} + \frac{5}{2} \, \text{Cl}_{2(\Gamma)} \longrightarrow P \text{Cl}_{5(\Gamma)}; \, \Delta H^o_1 = -374,84 \, кДж;$$

2.
$$P_{(\kappa, \, \text{бел})} \rightarrow P_{(\Gamma)}; \, \Delta H^o{}_2 = 316,5 \, \, \kappa Дж;$$

3.
$$Cl_{2(\Gamma)} \rightarrow 2Cl_{(\Gamma)}$$
; $\Delta H^{o}_{3} = 242,6$ кДж.

Решение:

По определению средней энтальпии связи:

$$PCl_{5(\Gamma)} \rightarrow P_{(\Gamma)} + 5Cl_{(\Gamma)}; \Delta H^o_{\ x} = 5\Delta H^o_{\ cp.\ cbязи\ P-Cl}$$

$$\begin{array}{c|c} P_{(K,\delta \in \Pi)} + \frac{5}{2} \operatorname{Cl}_{2(\Gamma)} & \xrightarrow{\Delta H_{1}^{O}} & \operatorname{PCl}_{5(\Gamma)} \\ & & & \\ \Delta H_{2}^{O} & \frac{5}{2} \Delta H_{3}^{O} & & \\ & & & \\ P_{(\Gamma)} & & 5 \operatorname{Cl}_{(\Gamma)} & & \end{array}$$

$$\Delta H^{o}_{1} = \Delta H^{o}_{2} + \frac{5}{2} \Delta H^{o}_{3} - \Delta H^{o}_{x}$$

$$\Delta H^{o}_{x} = \Delta H^{o}_{2} + \frac{5}{2} \Delta H^{o}_{3} - \Delta H^{o}_{1}$$

$$\Delta H^{o}_{x} = 316,5 + \frac{5}{2} 242,6 - (-374,84) = 1297,84$$
 кДж

$$\Delta H^{o}_{\text{ cp. cвязи P-Cl}} = \frac{1}{5} \ \Delta H^{o}_{\ x} = \frac{1}{5} \cdot 1297,84 = 259,57 \ кДж$$

Ответ: $\Delta H^{o}_{cp. cbязи P-Cl} = 259,57 кДж.$

Задания

Пользуясь справочными термодинамическими данными (Приложение, с. 120), определите ΔH^{o}_{298} , ΔG^{o}_{298} , ΔS^{o}_{298} приведенных реакций.

Определите также энергию (энтальпию) связи в молекуле (среднюю энергию связи в молекуле), указанной в задании в скобках.

a)
$$NH_4NO_{2\,(\kappa)}=N_{2\,(\Gamma)}+2H_2O_{\,(\varkappa)}$$

$$6) H2O(ж) = H2O(r) (H2O)$$

в)
$$H_{2(\Gamma)} = 2H_{(\Gamma)}$$

$$\Gamma$$
) $O_{2(\Gamma)} = 2O_{(\Gamma)}$

242.

a)
$$NH_4NO_{3 (\kappa)} = N_2O_{(\Gamma)} + 2H_2O_{(ж)}$$

δ)
$$N_2O_{(r)} = N_{2(r)} + \frac{1}{2}O_{2(r)}$$
 (N₂)

в)
$$N_{2(\Gamma)} = 2N_{(\Gamma)}$$

$$\Gamma$$
) $O_{2(\Gamma)} = 2O_{(\Gamma)}$

243.

a)
$$AgNO_{3(\kappa)} = Ag_{(\kappa)} + NO_{2(\kappa)} + \frac{1}{2}O_{2(\kappa)}$$

6)
$$2NO_{2(r)} = N_2O_{4(r)}$$
 (NO₂)

B)
$$N_{2(\Gamma)} = 2N_{(\Gamma)}$$

$$\Gamma$$
) $O_{2(\Gamma)} = 2O_{(\Gamma)}$

244.

a)
$$NO_{2(r)} = \frac{1}{2}N_{2(r)} + O_{2(r)}$$

б)
$$2NO_{2(\Gamma)} = N_2O_{4(ж)}$$
 (NO₂)

B)
$$N_{2 (\Gamma)} = 2N_{(\Gamma)}$$

$$\Gamma)~O_{2~(\Gamma)}=2O_{~(\Gamma)}$$

245.

a)
$$NH_4Cl_{(\kappa)} = NH_{3(\Gamma)} + HCl_{(\Gamma)}$$

δ)
$$NH_{3(r)} = \frac{1}{2}N_{2(r)} + \frac{3}{2}H_{2(r)}$$
 (NH₃)

B)
$$H_{2(\Gamma)} = 2H_{(\Gamma)}$$

$$\Gamma$$
) $N_{2(\Gamma)} = 2N_{(\Gamma)}$

a)
$$NH_4Cl_{(\kappa)} = NH_{3(r)} + HCl_{(r)}$$

6)
$$HCl_{(r)} = \frac{1}{2}H_{2(r)} + \frac{1}{2}Cl_{2(r)}$$
 (HCl)

B)
$$H_{2(\Gamma)} = 2H_{(\Gamma)}$$

$$\Gamma$$
) $Cl_{2(\Gamma)} = 2Cl_{(\Gamma)}$

a)
$$PCl_{3(\Gamma)} = \frac{1}{4} P_{4(\kappa, \delta e \pi b i \check{u})} + \frac{3}{2} Cl_{2(\Gamma)}$$

б)
$$P_{4 (\kappa, \, \text{белый})} = P_{4 (\kappa, \, \text{красный})}$$
 (PCl₃)

в)
$$P_{4 (\kappa, \delta e \pi b i \check{\mu})} = 4 P_{(\Gamma)}$$

$$\Gamma$$
) $Cl_{2(\Gamma)} = 2Cl_{(\Gamma)}$

248.

а)
$$PCl_{5(r)} = \frac{1}{4} P_{4(\kappa, \delta e \pi b i b)} + \frac{5}{2} Cl_{2(r)}$$

б)
$$P_{4 (\kappa, \, \text{белый})} = P_{4 (\kappa, \, \text{красный})}$$
 (PCl₅)

в)
$$P_{4 (\kappa, \delta e \pi b i \check{\mu})} = 4 P_{(\Gamma)}$$

$$\Gamma$$
) $Cl_{2(\Gamma)} = 2Cl_{(\Gamma)}$

249.

a)
$$Pb(NO_3)_{2 (\kappa)} = PbO_{(\kappa)} + 2NO_{2 (r)} + \frac{1}{2}O_{2 (r)}$$

δ)
$$NO_{2(r)} = \frac{1}{2}N_{2(r)} + O_{2(r)}$$
 (NO₂)

B)
$$N_{2(\Gamma)} = 2N_{(\Gamma)}$$

$$\Gamma$$
) $O_{2(\Gamma)} = 2O_{(\Gamma)}$

250.

a)
$$CaCO_{3(\kappa)} = CaO_{(\kappa)} + CO_{2(\Gamma)}$$

$$δ) CO2 (Γ) = C(κ, Γραφυτ) + O2 (Γ)$$
 (CO₂)

в)
$$C_{(\kappa, \, \Gamma pa \varphi u \tau)} = C_{(\Gamma)}$$

$$\Gamma$$
) $O_{2(\Gamma)} = 2O_{(\Gamma)}$

a)
$$CCl_{4 (ж)} = C_{(\kappa, \, \Gamma pa \varphi u \tau)} + 2Cl_{2 (\Gamma)}$$

$$6) CCl4 (ж) = CCl4 (r) (CCl4)$$

в)
$$C_{(\kappa, \, \Gamma pa \varphi u \tau)} = C_{(\Gamma)}$$

$$\Gamma) \ Cl_{2 \ (\Gamma)} = 2Cl_{\ (\Gamma)}$$

a)
$$PH_{3(r)} + 4Cl_{2(r)} = PCl_{5(r)} + 3HCl_{(r)}$$

б)
$$PH_{3(\Gamma)} = \frac{1}{4} P_{4(K, 6 \text{елый})} + \frac{3}{2} H_{2(\Gamma)}$$
 (PH₃)

в) $P_{4 (\kappa, \delta e \pi b i \check{\mu})} = 4 P_{(\Gamma)}$

$$\Gamma$$
) $H_{2(\Gamma)} = 2H_{(\Gamma)}$

253.

a)
$$SO_{3(x)} + H_2O_{(x)} = H_2SO_{4(x)}$$

δ)
$$HBr_{(r)} = \frac{1}{2} H_{2(r)} + \frac{1}{2} Br_{2(r)}$$
 (HBr)

в)
$$H_{2(\Gamma)} = 2H_{(\Gamma)}$$

$$\Gamma$$
) $Br_{2(\Gamma)} = 2Br_{(\Gamma)}$

254.

a)
$$HBr_{(r)} = \frac{1}{2}H_{2(r)} + \frac{1}{2}Br_{2(x)}$$

$$δ) Br2 (ж) = Br2 (Γ)$$
(HBr)

B)
$$H_{2(\Gamma)} = 2H_{(\Gamma)}$$

$$\Gamma$$
) $Br_{2(\Gamma)} = 2Br_{(\Gamma)}$

255.

а)
$$Al_4C_{3\,(\kappa)}+12H_2O_{\,(ж)}=4Al(OH)_{3\,(амор \varphi ны \breve{\mu})}+3CH_{4\,(\Gamma)}$$

б)
$$CH_{4(\Gamma)} = C_{(\kappa, \Gamma pa\phi \mu r)} + 2H_{2(\Gamma)}$$
 (CH₄)

в)
$$C_{(\kappa, \, \Gamma pa \varphi u \tau)} = C_{(\Gamma)}$$

$$\Gamma$$
) $H_{2(\Gamma)} = 2H_{(\Gamma)}$

256.

a)
$$CaC_{2(\kappa)} + 2H_2O_{(x)} = Ca(OH)_{2(\kappa)} + C_2H_{2(r)}$$

б)
$$C_2H_{2(\Gamma)} = 2C_{(\kappa, \Gamma pa\phi u r)} + H_{2(\Gamma)}$$
 (С \equiv С в ацетилене)

в) $C_{(\kappa, \, \Gamma pa \phi u r)} = C_{(\Gamma)}$

$$\Gamma$$
) $H_{2(\Gamma)} = 2H_{(\Gamma)}$

Принять энергию связи С-Н равной 414 кДж/моль

a)
$$C_2H_5OH_{(r)} = C_2H_{4(r)} + H_2O_{(xc)}$$

б)
$$C_2H_{4 (\Gamma)} = 2C_{(\kappa, \Gamma pa \phi u \Gamma)} + 2H_{2 (\Gamma)}$$
 (С=С в этилене)

B)
$$C_{(K, \Gamma pa\phi \mu T)} = C_{(\Gamma)}$$

$$\Gamma$$
) $H_{2(\Gamma)} = 2H_{(\Gamma)}$

Принять энергию связи С-Н равной 414 кДж/моль

258.

a)
$$2CH_{4(r)} = C_2H_{6(r)} + H_{2(r)}$$

б)
$$C_2H_{6(\Gamma)} = 2C_{(\kappa, \Gamma pa\phi \mu \Gamma)} + 3H_{2(\Gamma)}$$
 (С-С в этане)

в)
$$C_{(\kappa, \Gamma pa \phi \mu T)} = C_{(\Gamma)}$$

$$\Gamma$$
) $H_{2(\Gamma)} = 2H_{(\Gamma)}$

Принять энергию связи С-Н равной 414 кДж/моль

259.

a)
$$4NH_{3(r)} + 5O_{2(r)} = 4NO_{(r)} + 6H_2O_{(r)}$$

δ) NO_(r) =
$$\frac{1}{2}$$
N_{2(r)} + $\frac{1}{2}$ O_{2(r)} (NO)

B)
$$N_{2(r)} = 2N_{(r)}$$

$$\Gamma$$
) $O_{2(\Gamma)} = 2O_{(\Gamma)}$

260.

a)
$$BaCl_{2(\kappa)} + 2H_2O_{(\kappa)} = BaCl_2 \cdot 2H_2O_{(\kappa)}$$

δ)
$$BH_{3(\Gamma)} = B_{(\kappa)} + \frac{3}{2}H_{2(\Gamma)}$$
 (BH₃)

B)
$$H_{2(\Gamma)} = 2H_{(\Gamma)}$$

$$\Gamma$$
) $B_{(\kappa)} = B_{(\Gamma)}$

261.

a)
$$Ba(OH)_{2 (\kappa)} + H_2SO_{4 (\varkappa)} = BaSO_{4 (\kappa)} + 2H_2O_{(\varkappa)}$$

δ)
$$BCl_{3(r)} = B_{(κ)} + \frac{3}{2}Cl_{2(r)}$$
 (BCl₃)

B)
$$Cl_{2(\Gamma)} = 2Cl_{(\Gamma)}$$

$$\Gamma$$
) $B_{(\kappa)} = B_{(\Gamma)}$

a)
$$Be(OH)_{2 (\kappa)} + H_2SO_{4 (\kappa)} = BeSO_{4 (\kappa)} + 2H_2O_{(\kappa)}$$

6)
$$BBr_{3(r)} = B_{(\kappa)} + \frac{3}{2}Br_{2(r)}$$
 (BBr₃)

B)
$$Br_{2(\Gamma)} = 2Br_{(\Gamma)}$$

$$\Gamma$$
) $B_{(\kappa)} = B_{(\Gamma)}$

a)
$$CH_3OH_{(x)} + \frac{3}{2}O_{2(r)} = CO_{2(r)} + 2H_2O_{(x)}$$

$$6) CH3OH(x) = CH3OH(r) (CH4)$$

B)
$$Be_2C_{(K)} + 4H_2O_{(\Gamma)} = 2Be(OH)_{2(K)} + CH_{4(\Gamma)}$$

264.

a)
$$Na_2CO_{3(\kappa)} + 2HCl_{(\Gamma)} = 2NaCl_{(\kappa)} + H_2O_{(\kappa)} + CO_{2(\Gamma)}$$

δ)
$$Br_{2(m)} = 2Br_{(r)}$$
 (CO₂)

B)
$$CH_{4(r)} + 2O_{2(r)} = CO_{2(r)} + 2H_2O_{(x)}$$

265.

a)
$$4\text{Fe}(OH)_{2 \text{ (K)}} + O_{2 \text{ (\Gamma)}} + 2H_2O_{\text{ (Ж)}} = 4\text{Fe}(OH)_{3 \text{ (K)}}$$

δ)
$$H_{2(r)} + \frac{1}{2}O_{2(r)} = H_2O_{(r)}$$
 (H₂O)

B)
$$SO_{3(m)} + H_2O_{(m)} = H_2SO_{4(m)}$$

266.

a)
$$PH_{3(r)} + 3Cl_{2(r)} = PCl_{3(x)} + 3HCl_{(r)}$$

$$6) PCl3 (ж) = PCl3 (r) (PCl3)$$

B)
$$4PH_{3(\Gamma)} + 8O_{2(\Gamma)} = P_4O_{10(\kappa)} + 6H_2O_{(\varkappa)}$$

267.

a)
$$CH_3OH_{(ж)} = CO_{(r)} + 2H_{2(r)}$$

6)
$$CO_{(r)} + \frac{1}{2}O_{2(r)} = CO_{2(r)}$$
 (CO)

B)
$$(NH_4)_2Cr_2O_{7(K)} = N_{2(\Gamma)} + Cr_2O_{3(K)} + 4H_2O_{(K)}$$

a)
$$CrO_{3(\kappa)} + 2HCl_{(r)} = CrO_2Cl_{2(r)} + H_2O_{(r)}$$

б)
$$C_2H_{2(\Gamma)} + \frac{5}{2}O_{2(\Gamma)} = 2CO_{2(\Gamma)} + H_2O_{(ж)}$$
 (HCl)

B)
$$2CrO_{3(\kappa)} + CH_3OH_{(ж)} = Cr_2O_{3(\kappa)} + CO_{2(r)} + 2H_2O_{(ж)}$$

269.

a)
$$Al_2S_{3(\kappa)} + 6H_2O_{(x)} = 2Al(OH)_{3(\kappa)} + 3H_2S_{(r)}$$

6)
$$AlCl_{3(r)} = Al_{(\kappa)} + \frac{3}{2}Cl_{2(r)}$$
 (AlCl₃)

B)
$$Al_{(K)} = Al_{(\Gamma)}$$

$$\Gamma$$
) $Cl_{2(\Gamma)} = 2Cl_{(\Gamma)}$

a)
$$C_2H_5OH_{(m)} + 3O_{2(r)} = 2CO_{2(r)} + 3H_2O_{(m)}$$

δ) AsCl_{3 (r)} = As (κ) +
$$\frac{3}{2}$$
Cl_{2 (r)} (AsCl₃)

- $B) As_{(K)} = As_{(\Gamma)}$
- Γ) $Cl_{2(\Gamma)} = 2Cl_{(\Gamma)}$

10. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Пример 1

Пользуясь справочными данными, определите $K_{\text{равн}}$ при температуре 298 К для реакции:

$$CO_{(\Gamma)} + Cl_{2(\Gamma)} \rightleftharpoons COCl_{2(\Gamma)}$$

Решение:

Вещество	$CO_{(r)}$	$\text{Cl}_{2(\Gamma)}$	$\mathrm{COCl}_{2(\Gamma)}$
$\Delta G^{o}_{oбp, 298}$, кДж/моль	-137,14	0	-206,77

$$\Delta G^{o}_{298, x,p} = \Delta G^{o}_{oбp, 298} (COCl_{2(r)}) - \Delta G^{o}_{oбp, 298} (CO_{(r)}) - \Delta G^{o}_{oбp, 298} (Cl_{2(r)}) =$$

$$= -206,77 - (-137,14) = -69,63 \text{ кДж}.$$

$$\Delta G^{o}_{T} = -RT \ln K_{\text{равн}}.$$

Учитывая перевод кДж в Дж, получаем:

$$K_{\text{равн}} = e^{-\frac{\Delta G_{\text{T}}^{\circ}}{RT}} = e^{\frac{69,63\cdot 10^3}{8,314\cdot 298}} = 1,60\cdot 10^{12}$$

Ответ: $K_{\text{равн}} = 1,60 \cdot 10^{12}$.

Пример 2

При некоторой температуре для химической реакции

равновесная концентрация [COCl₂]=1,2 моль/л. Определите $K_{\text{равн}}$, если исходные концентрации $CO_{(\Gamma)}$ и $Cl_{2(\Gamma)}$ равны 2,0 и 1,8 моль/л.

С	CO _(r) +	- $\text{Cl}_{2(\Gamma)}$	\rightleftarrows COCl _{2(r)}
C_{HCX}	2,0	1,8	0
$\mathcal{C}_{ ext{npopear}}$	1,2	1,2	1,2
$c_{ m pash}$	0,8	0,6	1,2

$$K_{\text{равн}} = \frac{\left[\text{COCl}_2\right]}{\left[\text{CO}\right]\left[\text{Cl}_2\right]} = \frac{1,2}{0,8 \cdot 0,6} = 2,5$$

Ответ: $K_{\text{равн}} = 2,5.$

Пример 3

При некоторой температуре для химической реакции:

$$SO_{2(r)} + Cl_{2(r)} \rightleftarrows SO_2Cl_{2(r)}$$

 $K_{\text{равн}} = 4,0.$ Определите равновесную концентрацию SO_2Cl_2 , если

$$c_{\text{исх}}(SO_2) = 2 \text{ моль/л}$$

$$c_{\text{исх}}(\text{Cl}_2) = 2$$
 моль/л

$$c_{\text{исх}}(SO_2Cl_2) = 1$$
 моль/л

Решение:

С	$SO_{2(\Gamma)}$ +	$\text{Cl}_{2(\Gamma)} \subset$	\geq SO ₂ Cl _{2(Γ)}
C_{HCX}	2	2	1
Спрореаг	x	x	x
C _{равн}	2- <i>x</i>	2- <i>x</i>	1+ <i>x</i>

$$K_{\text{равн}} = \frac{\left[\text{SO}_2\text{Cl}_2\right]}{\left[\text{SO}_2\right]\left[\text{Cl}_2\right]} = \frac{1+x}{(2-x)^2} = 4$$

$$1 + x = 4(4 - 4x + x^2)$$

$$4x^2 - 17x + 15 = 0$$

$$D = e^2 - 4ac = 49$$

$$x_1 = (17+7)/8 = 3$$
 – не подходит; $x_2 = (17-7)/8 = 1,25$ – подходит.

$$[SO_2Cl_2] = 1+1,25 = 2,25$$
 моль/л.

Ответ: $[SO_2Cl_2] = 2,25$ моль/л.

Задания

Задания «а» и «б» даны для одного и того же процесса. В задании «а», пользуясь справочными данными (Приложение, с. 120), следует определить константу равновесия при 298,15 К.

271.

a)
$$2NO_{(r)} + O_{2(r)} \rightleftharpoons 2NO_{2(r)}$$

б) Найдите начальные концентрации NO и O_2 , если известно, что равновесные концентрации NO, O_2 и NO₂ при некоторой температуре равны 0.5 моль/л, а начальная концентрация NO₂ равна нулю.

272.

a)
$$PCl_{3(\Gamma)} + Cl_{2(\Gamma)} \rightleftharpoons PCl_{5(\Gamma)}$$

б) Найдите равновесную концентрацию PCl₅, если константа равновесия при некоторой температуре равна 2, а исходные концентрации PCl₃, Cl₂ и PCl₅ равны соответственно 1 моль/л, 2 моль/л и 0 моль/л.

273.

a)
$$N_{2(\Gamma)} + 3H_{2(\Gamma)} \rightleftharpoons 2NH_{3(\Gamma)}$$

б) Найдите начальные концентрации N_2 и H_2 , если известно, что равновесные концентрации N_2 , H_2 и NH_3 при некоторой температуре равны 1 моль/л, а начальная концентрация NH_3 – нулю.

274.

a)
$$SO_{2(\Gamma)} + Cl_{2(\Gamma)} \rightleftharpoons SO_2Cl_{2(\Gamma)}$$

б) Найдите равновесную концентрацию SO_2Cl_2 , если константа равновесия при некоторой температуре равна 1,5, а исходные концентрации SO_2 , Cl_2 и SO_2Cl_2 равны соответственно 2 моль/л, 1 моль/л, 0 моль/л.

275.

a)
$$2H_{2\,(\Gamma)} + O_{2\,(\Gamma)} \rightleftarrows 2H_2O_{\,(\Gamma)}$$

б) Найдите начальные концентрации H_2 и O_2 , если известно, что равновесные концентрации H_2 , O_2 и H_2O при некоторой температуре равны

соответственно 2 моль/л; 1,5 моль/л; 3 моль/л, а начальная концентрация H_2O – нулю.

276.

- a) $SbCl_{3(\Gamma)} + Cl_{2(\Gamma)} \rightleftharpoons SbCl_{5(\Gamma)}$
- б) Найдите константу равновесия при некоторой температуре, если известно, что к моменту наступления равновесия прореагировало 80 % SbCl₃, а начальные концентрации SbCl₃, Cl₂ и SbCl₅ равны соответственно 1 моль/л; 2 моль/л; 1,5 моль/л.

277.

a)
$$CO_{(\Gamma)} + H_2O_{(\Gamma)} \rightleftharpoons CO_{2(\Gamma)} + H_{2(\Gamma)}$$

б) Найдите равновесные концентрации CO_2 и H_2 , если константа равновесия при некоторой температуре равна 1, а исходные концентрации CO, H_2O , CO_2 и H_2 равны соответственно 1 моль/л; 1 моль/л; 0 моль/л; 0 моль/л.

278.

a)
$$Br_{2(\Gamma)} + F_{2(\Gamma)} \rightleftharpoons 2BrF_{(\Gamma)}$$

б) Найдите равновесные концентрации всех веществ, если константа равновесия при некоторой температуре равна 3, а исходные концентрации $Br_{2 (r)}$, $F_{2 (r)}$, $BrF_{(r)}$ равны соответственно 2 моль/л; 2 моль/л; 0 моль/л.

279.

a)
$$CH_{4(r)} + 2F_{2(r)} \rightleftharpoons 2HF_{(r)} + CH_2F_{2(r)}$$

б) Найдите начальные концентрации CH_4 и F_2 , если известно, что равновесные концентрации CH_4 , F_2 , CH_2F_2 и HF при некоторой температуре равны соответственно 1 моль/л; 2 моль/л; 0,5 моль/л; 1 моль/л, а начальные концентрации CH_2F_2 , HF — нулю.

a)
$$CO_{(r)} + 2H_{2(r)} \rightleftharpoons CH_3OH_{(r)}$$

б) Найдите начальные концентрации СО и H_2 , если известно, что равновесные концентрации СО, H_2 и CH_3OH при некоторой температуре равны 1,2 моль/л, а начальная концентрация CH_3OH равна нулю.

281.

a)
$$C_2H_{2(\Gamma)} + H_{2(\Gamma)} \rightleftharpoons C_2H_{4(\Gamma)}$$

б) Найдите начальные концентрации C_2H_2 и H_2 , если известно, что равновесные концентрации C_2H_2 , H_2 и C_2H_4 при некоторой температуре равны соответственно 2,2 моль/л; 1,4 моль/л; 2,0 моль/л, а начальная концентрация C_2H_4 – нулю.

282.

a)
$$CaCO_{3(\kappa)} \rightleftharpoons CaO_{(\kappa)} + CO_{2(\kappa)}$$

б) Принимая $\Delta H^{o}_{T} = \Delta H^{o}_{298}$ и $\Delta S^{o}_{T} = \Delta S^{o}_{298}$, оцените температуру начала разложения $CaCO_{3 (\kappa)}$.

283.

a)
$$WO_{3(\kappa)} + 3H_{2(\Gamma)} \rightleftharpoons W_{(\kappa)} + 3H_2O_{(\Gamma)}$$

б) Принимая $\Delta H^{o}_{T} = \Delta H^{o}_{298}$ и $\Delta S^{o}_{T} = \Delta S^{o}_{298}$, оцените температуру, при которой константа равновесия равна 1.

284.

a)
$$CH_{4(r)} + CO_{2(r)} \rightleftharpoons 2CO_{(r)} + 2H_{2(r)}$$

б) Принимая $\Delta H^{o}_{T} = \Delta H^{o}_{298}$ и $\Delta S^{o}_{T} = \Delta S^{o}_{298}$, оцените температуру, при которой константа равновесия равна 1.

285.

a)
$$C_{(\kappa, \Gamma pa\phi \mu r)} + H_2 O_{(\Gamma)} \rightleftharpoons CO_{(\Gamma)} + H_{2(\Gamma)}$$

б) Принимая $\Delta H^{o}_{T} = \Delta H^{o}_{298}$ и $\Delta S^{o}_{T} = \Delta S^{o}_{298}$, оцените температуру, при которой константа равновесия равна 1.

a)
$$2NO_{2(\Gamma)} \rightleftharpoons N_2O_{4(\Gamma)}$$

б) Найдите равновесную концентрацию N_2O_4 , если константа равновесия при некоторой температуре равна 3, а исходные концентрации NO_2 и N_2O_4 равны соответственно 2 моль/л и 0 моль/л.

287.

a) NaH
$$_{(\kappa)}$$
 \rightleftharpoons Na $_{(\kappa)}$ + $\frac{1}{2}$ H_{2 $_{(\Gamma)}$}

б) Принимая $\Delta H^{o}_{T} = \Delta H^{o}_{298}$ и $\Delta S^{o}_{T} = \Delta S^{o}_{298}$, оцените температуру начала разложения $NaH_{(K)}$.

288.

- a) $2AlCl_{3(\Gamma)} \rightleftharpoons Al_2Cl_{6(\Gamma)}$
- б) Найдите равновесную концентрацию Al_2Cl_6 , если константа равновесия при некоторой температуре равна 1, а исходные концентрации $AlCl_3$ и Al_2Cl_6 составляли соответственно 2 моль/л и 3 моль/л.

289.

a) As
$$_{(\Gamma)}$$
 + $\frac{3}{2}$ Cl_{2 (Γ)} \rightleftharpoons AsCl_{3 (Γ)}

б) Найдите начальные концентрации As и Cl_2 , если известно, что равновесные концентрации As, Cl_2 и $AsCl_3$ при некоторой температуре равны соответственно 4 моль/л; 3 моль/л; 1 моль/л, а начальная концентрация $AsCl_3$ – нулю.

290.

a)
$$2NaHCO_{3(\kappa)} \rightleftharpoons Na_2CO_{3(\kappa)} + CO_{2(r)} + H_2O_{(r)}$$

б) Принимая $\Delta H^{o}_{T} = \Delta H^{o}_{298}$ и $\Delta S^{o}_{T} = \Delta S^{o}_{298}$, оцените температуру начала разложения NaHCO_{3 (к)}.

291.

a)
$$NH_4Cl_{(K)} \rightleftharpoons NH_{3(\Gamma)} + HCl_{(\Gamma)}$$

б) Принимая $\Delta H^{o}_{T} = \Delta H^{o}_{298}$ и $\Delta S^{o}_{T} = \Delta S^{o}_{298}$, оцените температуру начала разложения $NH_{4}Cl_{(\kappa)}$.

a)
$$C_2H_{2(\Gamma)} + H_{2(\Gamma)} \rightleftharpoons C_2H_{4(\Gamma)}$$

б) Найдите равновесную концентрацию C_2H_4 , если константа равновесия при некоторой температуре равна 10, а исходные концентрации C_2H_2 ; H_2 и C_2H_4 равны соответственно 3 моль/л; 2 моль/л; 0 моль/л.

293.

a)
$$H_{2(\Gamma)} + \frac{1}{2}O_{2(\Gamma)} \rightleftharpoons H_2O_{(\Re)}$$

 $H_2O_{(\Re)} \rightleftharpoons H_2O_{(\Gamma)}$

б) Найдите давление насыщенного пара воды при 298 К.

294.

a)
$$C_2H_{4(r)} + H_{2(r)} \rightleftharpoons C_2H_{6(r)}$$

б) Найдите равновесную концентрацию C_2H_6 , если константа равновесия при некоторой температуре равна 10, а исходные концентрации C_2H_4 , H_2 и C_2H_6 равны соответственно 2 моль/л; 2 моль/л; 1 моль/л.

295.

a) BeCO<sub>3 (
$$\kappa$$
)</sub> \rightleftharpoons BeO (κ) + CO_{2 (Γ)}

б) Запишите выражение для константы равновесия и проанализируйте влияние изменения температуры, давления, концентраций компонентов на смещение равновесия.

296.

a)
$$C_2H_5OH_{(r)} \rightleftharpoons C_2H_{4(r)} + H_2O_{(xx)}$$

б) Запишите выражение для константы равновесия и проанализируйте влияние изменения температуры и давления на смещение равновесия.

297.

a)
$$CrO_{3(\kappa)} + 2HCl_{(r)} \rightleftharpoons CrO_{2}Cl_{2(r)} + H_{2}O_{(\varkappa)}$$

б) Запишите выражение для константы равновесия и проанализируйте влияние изменения температуры и давления, введения инертного газа на смещение равновесия.

a)
$$WO_{3(\kappa)} + 3H_{2(\Gamma)} \rightleftharpoons W_{(\kappa)} + 3H_2O_{(\Gamma)}$$

б) Запишите выражение для константы равновесия и проанализируйте влияние температуры и давления на смещение равновесия.

299.

a)
$$Pb(NO_3)_{2 (\kappa)} \rightleftharpoons PbO_{(\kappa)} + 2NO_{2 (r)} + \frac{1}{2}O_{2 (r)}$$

б) Запишите выражение для константы равновесия и проанализируйте влияние изменения температуры, давления и введения инертного газа на смещение равновесия.

300.

a)
$$2NO_{2(\Gamma)} \rightleftharpoons N_2O_{4(\Gamma)}$$

б) Найдите равновесную концентрацию N_2O_4 , если константа равновесия при некоторой температуре равна 2, а исходные концентрации NO_2 и N_2O_4 составляли соответственно 2 моль/л и 1 моль/л.

11. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ Пример 1

В 1 л 0,1 М раствора CH₃COOH растворили 4,48 л (н.у.) HCl. Как изменилась при этом степень диссоциации уксусной кислоты? Принять объём конечного раствора равным 1 л. $K_{\text{лис}}$ (CH₃COOH) = 1,75·10⁻⁵.

Решение:

$$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$$
.

$$K_{\rm дис} \approx \alpha^2 c$$
.

$$\alpha = \sqrt{\frac{K_{\text{дис}}}{c}} = \sqrt{\frac{1,75 \cdot 10^{-5}}{0.1}} = 0,0132 = 1,32 \cdot 10^{-2}$$
.

$$HCl \rightarrow H^+ + Cl^-$$
.

$$n(HCl) = \frac{4,48}{22,4} = 0,2$$
 моль.

$$c_{\text{M}}(\text{HC1}) = 0,2/1 = 0,2$$
 моль/л.

Пусть x (моль/л) — концентрация ионов H^+ за счёт собственной диссоциации уксусной кислоты, тогда:

$$K_{\text{дис}} = \frac{[\text{H}^+][\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} = \frac{x(x+0,2)}{0,1-x} = \frac{0,2x}{0,1} = 2x = 1,75 \cdot 10^{-5}$$
.

$$x = 8,75 \cdot 10^{-6}$$
.

$$\alpha_1 = \frac{[H^+]}{c} = \frac{8,75 \cdot 10^{-6}}{0.1} = 8,75 \cdot 10^{-5}$$
.

$$\frac{\alpha}{\alpha_1} = \frac{1,32 \cdot 10^{-2}}{8,75 \cdot 10^{-5}} = 151 \text{ pas.}$$

Ответ: степень диссоциации уменьшится в 151 раз.

Пример 2

На сколько единиц измениться pH раствора слабой одноосновной кислоты при его разбавлении в 10 раз?

Решение:

$$K_{\text{дис}} = \frac{[H^+]^2}{c}$$
.

$$c_2 = \frac{c_1}{10}.$$

$$\frac{[H^+]_1^2}{c_1} = \frac{[H^+]_2^2}{c_2}; \qquad \frac{[H^+]_1^2}{c_1} = \frac{10[H^+]_2^2}{c_1}.$$

$$[H^{+}]_{1}^{2}=10[H^{+}]_{2}^{2};$$
 $[H^{+}]_{1}=\sqrt{10}[H^{+}]_{2}.$

$$\Delta pH = pH_2 - pH_1.$$

$$pH = -lg[H^+].$$

$$\Delta pH = -lg[H^+]_2 + lg[H^+]_1.$$

$$\Delta pH = -lg[H^+]_2 + lg(\sqrt{10}[H^+]_2) = -lg[H^+]_2 + lg\sqrt{10} + lg[H^+]_2$$
.

$$\Delta pH = \lg \sqrt{10} = \frac{1}{2}.$$

Ответ: рН увеличится на 0,5.

Пример 3

Какой объём 0,5 М раствора CH₃COONа следует прилить к 1 л 0,1 М раствора CH₃COOH, чтобы рН полученного раствора составил 5? Считать объём полученного раствора равным сумме объёмов сливаемых растворов. $K_{\text{дис}}$ (CH₃COOH) = 1,75·10⁻⁵.

Решение:

$$CH_3COOH \implies H^+ + CH_3COO^-.$$

 $CH_3COONa \rightarrow Na^+ + CH_3COO^-.$
 $pH = -lg[H^+].$
 $[H^+] = 10^{-pH} = 10^{-5}$ моль/л.

Пусть следует прилить x литров раствора CH_3COONa .

$$K_{\text{\tiny ДИС. K-ТЫ}} = \frac{[\text{H}^+][\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]}.$$

 $[CH_3COO^-] \approx c_{\text{соли}}.$

[CH₃COOH] ≈ $c_{\text{K-Tbl}}$.

$$K_{\text{дис. K-TЫ}} = [H^+] \frac{c_{\text{соли}}}{c_{\text{K-TЫ}}}$$
.

$$\frac{c_{\text{\tiny COJIU}}}{c_{\text{\tiny K-Tbl}}} = \frac{K_{\text{\tiny ДИС. K-Tbl}}}{[\text{H}^+]} \, .$$

$$\frac{c_{\text{\tiny COJIM}}}{c_{\text{\tiny K-Tbl}}} = \frac{1,75 \cdot 10^{-5}}{10^{-5}} = 1,75.$$

$$c_{\text{coли}} = \frac{0.5x}{1+x} \,.$$

$$c_{\text{\tiny K-TbI}} = \frac{0,1}{1+x} \, .$$

$$\frac{c_{\text{соли}}}{c_{\text{к-ты}}} = \frac{0.5x(1+x)}{(1+x)0.1} = 1.75.$$

$$5x = 1.75.$$

x = 0.35 л = 350 мл.

Ответ: V = 350 мл.

Залания

- 301. а) Вычислите концентрацию ионов Na^+ и SO_4^{2-} в растворе Na_2SO_4 , титр которого равен 0,0025 г/мл.
- б) Сколько воды необходимо прибавить к 100 мл 0,01 М раствора HCN, чтобы степень диссоциации синильной кислоты возросла в 4 раза? Как изменится значение pH раствора? Константа диссоциации HCN равна $7.9 \cdot 10^{-10}$.
- в) Во сколько раз изменится степень диссоциации HCN, если к полученному в задаче б) раствору добавить 0,1 г HNO $_3$?
 - 302. a) Определите рН 0,7 мас. % раствора КОН ($\rho = 1,005 \text{ г/см}^3$).
- б) Константа диссоциации пероксида водорода ($H_2O_2 \rightleftharpoons H^+ + HO_2^-$) при 298 К равна 1,4·10⁻¹². Вычислите степень диссоциации и рН 1 М раствора H_2O_2 .
- в) Рассчитайте концентрацию гидропероксид-ионов HO_2^- в растворе, 1 л которого содержит 1 моль H_2O_2 и 0,001 моль HCl.
 - 303. a) Вычислите концентрацию ионов Cl⁻ в 0,03 М растворе BaCl₂.
- б) Константы ступенчатой диссоциации сероводородной кислоты K_1 и K_2 равны соответственно $6\cdot 10^{-8}$ и $1\cdot 10^{-14}$. Определите концентрации ионов H^+ , HS^- и S^{2-} в 0,05 M растворе H_2S .
- в) К 0,2 М раствору HCN ($K_{\text{дис}} = 7,9 \cdot 10^{-10}$) добавили такое количество KCN, что концентрация соли в растворе стала равна 0,02 моль/л. Как изменится при этом степень диссоциации HCN?

- 304. а) Определите pH 2 мас. % раствора NaOH ($\rho = 1,021 \text{ г/см}^3$).
- б) Константа диссоциации NH_4OH при 298 К равна $1,8\cdot10^{-5}$. Найдите концентрацию, при которой степень диссоциации NH_4OH равна 2 %. Вычислите концентрацию ионов H^+ в этом растворе.
- в) Как изменится pH, если к 1 литру раствора NH₄OH ($\alpha = 0.8$ %) прибавить 100 мл 20 мас. % раствора NH₄Cl ($\rho = 1.057$ г/см³).
- 305. а) Какой раствор имеет более щелочную среду: 2 мас. % раствор КОН ($\rho = 1,016 \text{ г/см}^3$) или 1,6 мас. % раствор NaOH ($\rho = 1,016 \text{ г/см}^3$)?
- б) Степень диссоциации хлорноватистой кислоты в 0,001 M растворе HClO равна 0,71 %. Определите константу диссоциации и pH раствора HClO.
- в) Рассчитайте концентрацию ионов ClO^- в растворе, 150 мл которого содержат $1,5\cdot 10^{-3}$ моль HClO и $1,5\cdot 10^{-3}$ моль HCl.
- 306. а) Вычислите концентрацию ClO_4 -ионов в растворе, содержащем 3 г хлорной кислоты в 300 мл раствора.
- б) Определите константу диссоциации фтороводородной кислоты и рН раствора, если степень диссоциации НF в 0,25 М растворе равна 5,1 %.
- в) В какой пропорции необходимо смешать первый (HClO₄) и второй (HF) растворы, чтобы степень диссоциации HF уменьшилась в 6 раз? Принять, что объём после смешения равен сумме объёмов смешанных растворов.
- 307. а) Сколько граммов КОН надо растворить в 1 л воды, чтобы рН стал равен 12?
- б) Степень диссоциации бромноватистой кислоты в растворе и рН раствора соответственно равны 0,04 % и 5,3. Определите концентрацию раствора и константу диссоциации HBrO.
- в) Сколько граммов КВrO надо добавить к имеющемуся раствору НВrO (объём 1 л), чтобы концентрация H⁺-ионов уменьшилась в 5 раз?
- 308. а) Вычислите концентрацию ионов Na^+ и Cl^- в растворе NaCl, титр которого равен $0{,}003$ г/мл.

- б) Во сколько раз изменится степень диссоциации и на сколько единиц изменится рН, если раствор слабого электролита разбавить в 100 раз?
- в) Во сколько раз изменится степень диссоциации слабого электролита, если в раствор добавить соль, имеющую со слабым электролитом одинаковый ион, а концентрации соли и слабого электролита равны? Задачу решите в общем виде.
- 309. а) Вычислите концентрацию ионов NO_3^- в 0,02 M растворе $Al(NO_3)_3$.
- б) Константы ступенчатой диссоциации угольной кислоты K_1 и K_2 равны соответственно $4,5\cdot10^{-7}$ и $4,7\cdot10^{-11}$. Определите концентрации ионов H^+ , HCO_3^- и CO_3^{2-} в 0,01 М растворе H_2CO_3 .
- в) К 0,1 М раствору HClO ($K_{\text{дис}} = 5 \cdot 10^{-8}$) добавили такое количество KClO, что концентрация соли в растворе стала равна 0,005 моль/л. Как изменится при этом степень диссоциации HClO?
- 310. а) Вычислите концентрацию ионов Sr^{2+} и NO_3^- в растворе $Sr(NO_3)_2$, титр которого равен 0,008 г/мл.
- б) Сколько воды необходимо прибавить к 300 мл 0,0025 М раствора H_2S , чтобы степень диссоциации сероводородной кислоты возросла в 3 раза? Как изменится рН раствора? Константа диссоциации H_2S по первой ступени равна $6\cdot10^{-8}$, диссоциацией кислоты по второй ступени можно пренебречь.
- в) Во сколько раз изменится степень диссоциации, если к полученному в задаче б) раствору добавить $1 \, \Gamma \, H_2 SO_4$.
 - 311. а) Определите pH 0,3 мас. % раствора HClO₄ ($\rho = 1,002 \text{ г/см}^3$).
- б) Константа диссоциации HClO при 298 К равна 5·10⁻⁸. Вычислите степень диссоциации и рН 0,01 М раствора хлорноватистой кислоты.
- в) Рассчитайте концентрацию ClO^- ионов в растворе, 1 мл которого содержит $1\cdot 10^{-5}$ моль HClO и $1\cdot 10^{-6}$ моль HCl.
 - 312. а) Определите pH 0,2 мас. % раствора $Ba(OH)_2$ ($\rho = 1,002$ г/см³).

- б) Константа диссоциации хлорноватистой кислоты при 298 К равна $5\cdot10^{-8}$. Найдите концентрацию HClO, при которой степень диссоциации HClO равна 0,2 %. Вычислите pH этого раствора.
- в) Как изменится pH, если к 2 л раствора HClO ($\alpha = 0.2$ %) прибавить 1 мл 2 мас. % раствора KClO ($\rho = 1.013$ г/см³).
 - 313. а) Какой раствор имеет более кислую среду:
 - 1 мас. % раствор HCl ($\rho = 1,003 \text{ г/см}^3$) или
 - 1 мас. % раствор $HClO_4$ ($\rho = 1,005 \text{ г/см}^3$)?
- б) Определите константу диссоциации и степень диссоциации NH₄OH, если pH децимолярного раствора NH₄OH равен 11,13.
- в) Рассчитайте концентрацию ионов NH_4^+ в растворе, 300 мл которого содержат 0,1 моль NH_4OH и 0,1 моль KOH.
- 314. a) Сколько граммов NaOH следует растворить в 3 л воды, чтобы рH стал равен 11,5?
- б) Степень диссоциации хлорноватистой кислоты в растворе и рН раствора равны соответственно 0,63 % и 5,1. Определите концентрацию раствора и константу диссоциации HClO.
- в) Сколько граммов КСІО надо добавить к имеющемуся раствору НСІО (объём 1л), чтобы концентрация Н⁺-ионов уменьшилась в 7 раз?
- 315. a) Вычислите концентрацию Na⁺-ионов в растворе, содержащем 0,8 г едкого натра в 200 мл раствора.
- б) Определите константу диссоциации NH₄OH и рH раствора, если степень диссоциации NH₄OH в 0,2 M растворе равна 0,95 %.
- в) В какой пропорции необходимо смешать первый (NaOH) и второй (NH₄OH) растворы, чтобы степень диссоциации NH₄OH уменьшилась в 20 раз?
- 316. а) Вычислите концентрацию ионов K^+ и ClO_4^- в растворе $KClO_4$, титр которого равен $0{,}012$ г/мл.
- б) Сколько воды необходимо прибавить к 20 мл 0,1 M раствора NH₄OH, чтобы степень диссоциации NH₄OH возросла в 10 раз?

Как изменится значение pH раствора? Константа диссоциации NH_4OH равна $1.8\cdot10^{-5}$.

- в) Во сколько раз изменится степень диссоциации NH₄OH, если к полученному в задаче б) раствору добавить 1 г NaOH?
- 317. а) Вычислите концентрацию ионов Ba^{2+} и NO_3^- в 0,003 M растворе $Ba(NO_3)_2$.
- б) Константы ступенчатой диссоциации фосфористой кислоты K_1 и K_2 равны соответственно $1,6\cdot10^{-3}$ и $6,3\cdot10^{-7}$. Определите концентрации ионов H^+ , $H_2PO_3^-$, HPO_3^{2-} в 0,8 М растворе H_3PO_3 .
- в) К 0,15 М раствору NH₄OH ($K_{\text{дис}} = 1,8\cdot10^{-5}$) добавили такое количество NH₄Cl, что концентрация соли в растворе стала равной 0,2 моль/л. Определите рН полученного раствора.
 - 318. а) Определите рН 0,2 мас. % раствора HNO₃ ($\rho = 1,001 \text{ г/см}^3$).
- б) Константа диссоциации HCN при 298 К равна 7,9·10⁻¹⁰. Вычислите степень диссоциации и рН 0,1 М раствора HCl.
- в) Рассчитайте концентрацию цианид-ионов в растворе, 2 л которого содержат 0,1 моль HCN и 0,0005 моль HCl.
- 319. а) Вычислите концентрацию ионов K^+ в 2 мас. % растворе KCl. Плотность раствора равна 1,011 г/см³.
- б) Определите степень диссоциации угольной кислоты и концентрацию кислоты в водном растворе, если рН раствора равен 4,5, а первая константа диссоциации H_2CO_3 равна $4,5\cdot10^{-7}$. Диссоциацией кислоты по второй ступени можно пренебречь.
- в) Сколько граммов HNO $_3$ достаточно растворить в 100 мл 0,02 М раствора H_2CO_3 , чтобы степень диссоциации угольной кислоты уменьшилась в 150 раз?
 - 320. a) Определите pH 0,1 мас. % раствора HCl ($\rho = 1,00 \text{ г/см}^3$).
- б) Константа диссоциации азотистоводородной кислоты равна $2,6\cdot10^{-5}$. Определите концентрацию HN_3 , при которой степень диссоциации HN_3 равна 1,5 %. Вычислите pH этого раствора.

- в) Как изменится pH, если к 1 л раствора HN₃ ($\alpha = 0.8$ %) прибавить 100 мл 10 мас. % раствора NaN₃ ($\rho = 1.10$ г/см³)?
 - 321. а) Какой раствор имеет более кислую реакцию:
 - 0.2 мас. % раствор HNO₃ ($\rho = 1.00 \text{ г/см}^3$) или
 - 0,2 мас. % раствор HClO₄ ($\rho = 1,00 \text{ г/см}^3$)?
- б) Определите константу диссоциации и степень диссоциации бромноватистой кислоты, если рН миллимолярного раствора НВгО равен 5,85.
- в) Рассчитайте концентрацию ионов BrO⁻ в растворе, 200 мл которого содержат 0,01 моль HBrO и 0,005 моль HBr.
- 322. а) Сколько граммов $Ba(OH)_2$ надо растворить в 1 л воды, чтобы pH стал равен 11?
- б) Степень диссоциации NH₄OH в растворе и рН раствора равны соответственно 1,8 % и 11. Определите концентрацию раствора и константу диссоциации NH₄OH.
- в) Сколько граммов NH₄Cl надо добавить к имеющемуся раствору NH₄OH (объём 1 л), чтобы концентрация H⁺-ионов увеличилась в 10 раз?
- 323. a) Вычислите концентрацию Cl⁻-ионов в растворе, содержащем 0,5 г хлороводорода в 100 л раствора.
- б) Определите константу диссоциации бромноватистой кислоты и рН раствора, если степень диссоциации HBrO в 0,01 М растворе равна 0,0447 %.
- в) В какой пропорции необходимо смешать первый (HCl) и второй (HBrO) растворы, чтобы степень диссоциации HBrO уменьшилась в 10 раз?
- 324. a) Сколько граммов HNO₃ надо растворить в 200 мл воды, чтобы рН был равен 2,5?
- б) Степень диссоциации HCN в растворе и рН раствора равны соответственно 0,089 % и 6,05. Определите концентрацию раствора и константу диссоциации синильной кислоты.

- в) Сколько граммов NaCN надо добавить к имеющемуся раствору HCN (объём 1 л), чтобы концентрация ионов H⁺ уменьшилась в 200 раз?
- 325. а) Вычислите концентрацию ионов K^+ и CO_3^{2-} в растворе K_2CO_3 титр которого равен 0,052 г/мл (без учёта гидролиза).
- б) Сколько воды необходимо прибавить к 10 мл 0,02 М раствора H_2CO_3 , чтобы степень диссоциации угольной кислоты увеличилась в 2 раза? Как изменится значение рН раствора? Константа диссоциации H_2CO_3 по первой ступени равна $4,5\cdot10^{-7}$ (диссоциацией кислоты по второй ступени можно пренебречь).
- в) Во сколько раз изменится степень диссоциации H_2CO_3 , если к полученному в задаче б) раствору добавить 0,001 г HNO_3 ?
 - 326. а) Определите pH 0,1 мас. % раствора HCl ($\rho = 1,00 \text{ г/см}^3$).
- б) Константа диссоциации NH_4OH при 298 K равна $1.8\cdot10^{-5}$. Вычислите степень диссоциации и pH 0.05 M раствора NH_4OH .
- в) Рассчитайте концентрацию ионов аммония в растворе, 0,5 л которого содержат 0,1 моль NH₄OH и 0,01 моль КОН.
- 327. а) Вычислите концентрации ионов Al^{3+} и Cl^- в 0,2 М растворе $AlCl_3$. Пренебречь изменением концентрации Al^{3+} -ионов за счёт гидролиза соли.
- б) Константы ступенчатой диссоциации мышьяковистой кислоты K_1 и K_2 равны соответственно $6\cdot10^{-10}$ и $1,7\cdot10^{-14}$. Определите концентрации ионов H^+ , $H_2AsO_3^-$, $HAsO_3^{2-}$ в 0,05 М растворе H_3AsO_3 .
- в) К 0,5 M раствору HF ($K_{\text{дис}} = 6,6\cdot10^{-4}$) добавили такое количество KF, что концентрация соли в растворе стала равна 0,5 моль/л. Определите рН полученного раствора.
- 328. а) Вычислите концентрацию ионов SO_4^{2-} в 2 мас. % растворе Na_2SO_4 . Плотность раствора равна 1,010 г/см 3 .
- б) Определите степень диссоциации сероводородной кислоты и концентрацию кислоты в водном растворе, если рН раствора равен 5,3, а

первая константа диссоциации H_2S равна $6\cdot 10^{-8}$. Диссоциацией кислоты по второй ступени можно пренебречь.

- в) Сколько граммов NaHS достаточно растворить в 750 мл 0,001 M раствора H₂S, чтобы степень диссоциации H₂S уменьшилась в 10 раз?
 - 329. a) Определите рН 0,1 мас. % раствора $HClO_4$ ($\rho = 1,001 \text{ г/см}^3$).
- б) Константа диссоциации синильной кислоты при 298 К равна $7,9\cdot10^{-10}$. Найдите концентрацию HCN, при которой степень диссоциации HCN равна 0,1 %. Вычислите pH этого раствора.
- в) Как изменится pH, если к 500 мл раствора HCN (α = 0,1 %) прибавить 2 мл 1 мас. % раствора KCN (ρ = 1,005 г/см³)?
 - 330. а) Какой раствор имеет более щелочную среду:
 - 0.02 мас. % раствор $Sr(OH)_2$ ($\rho = 1.00 \text{ г/см}^3$) или
 - 0,02 мас. % раствор RbOH ($\rho = 1,00 \text{ г/см}^3$)?
- б) Определите константу диссоциации и степень диссоциации хлорноватистой кислоты, если рН сантимолярного раствора HClO равен 4,65.
- в) Рассчитайте концентрацию ионов ClO⁻ в растворе, 500 мл которого содержат 0,005 моль HClO и 0,0005 моль HCl.

12. ПРОИЗВЕДЕНИЕ РАСТВОРИМОСТИ Пример 1

Вычислите ΔG^{o}_{298} процесса растворения PbI_2 и растворимость (моль/л, г/л) PbI_2 , если $\Pi P(PbI_2) = 10^{-8}$ (298 K).

На основе этих данных задачи определите:

- 1. Сколько граммов PbI_2 можно растворить в 50 л воды?
- 2. Сколько литров воды потребуется для растворения 1 г PbI_2 ?

Решение:

$$\Delta G^{o}_{T} = -RT \ln \Pi P.$$

$$\Delta G^{o}_{298} = -8,314 \cdot 10^{-3} \cdot 298 \ln 10^{-8} = 45,64$$
 кДж.

$$PbI_{2(\kappa p)} \rightleftharpoons Pb^{2+}_{(\text{\tiny Hac. p-p})} + 2I^{-}_{(\text{\tiny Hac. p-p})}$$
.

$$\Pi P = [Pb^{2+}][I^{-}]^{2}$$
.

Пусть растворимость $PbI_2 = P$ моль/л, тогда

P

P

2F

$$PbI_{2\,(\kappa p)} \rightleftarrows Pb^{2+}_{(\text{\tiny Hac. p-p})} + 2I^{-}_{(\text{\tiny Hac. p-p})}$$

$$\Pi P = [Pb^{2+}][I^{-}]^2 = P(2P)^2 = 4P^3.$$

$$P=\sqrt[3]{\frac{\Pi P}{4}}=\sqrt[3]{\frac{10^{-8}}{4}}=1,36\cdot 10^{-3}$$
 моль/л.

 $P(\Gamma/\Pi) = P(MOЛЬ/\Pi) \cdot M(\Gamma/MOЛЬ).$

$$P(PbI_2) = 1,36 \cdot 10^{-3} \cdot 461 = 0,627 \ г/л.$$

1. Сколько граммов PbI_2 можно растворить в 50 л воды?

$$0,627 \Gamma - 1 л,$$

$$x$$
 Г $-$ 50 л.

$$x = 31,35 \text{ }\Gamma.$$

2. Сколько литров воды потребуется для растворения 1 г PbI₂?

$$0.627 \Gamma - 1 \pi$$

$$1 \Gamma$$
 – x л.

$$x = 1,59$$
 л

Ответ: $P(PbI_2) = 1,36 \cdot 10^{-3} \text{ моль/л}; P(PbI_2) = 0,627 \text{ г/л};$

$$m(PbI_2) = 31,35 \ \Gamma; \ V(H_2O) = 1,59 \ л.$$

Пример 2

Смешали 1 л 0,01 М раствора $Pb(NO_3)_2$ и 3 л 0,1 М раствора KI. Выпадет ли осадок PbI_2 , если при некоторой температуре $\Pi P(PbI_2) = 3,56\cdot 10^{-9}$? Считать объём конечного раствора равным 4 л.

Решение:

Условие выпадение осадка: ПК > ПР.

$$PbI_{2\,(\kappa p)} \rightleftarrows Pb^{2+}_{(\text{\rm Hac. p-p})} + 2I^-_{(\text{\rm Hac. p-p})} \,. \label{eq:pbI2}$$

$$\Pi K = [Pb^{2+}][I^{-}]^{2}.$$

$$Pb(NO_3)_2 \rightarrow Pb^{2+} + 2NO_3^-$$
.

$$KI \rightarrow K^+ + I^-$$
.

С учётом разбавления:

$$c_{\text{M}}(\text{Pb}(\text{NO}_3)_2) = 0.01/4 = 0.0025 \text{ моль/л.}$$

$$c_{\text{M}}(\text{KI}) = (0,1\cdot3)/4 = 0,075 \text{ моль/л}.$$

 $[Pb^{2+}] = 0,0025$ моль/л (по уравнению диссоциации).

 $[I^-] = 0,075$ моль/л (по уравнению диссоциации).

$$\Pi K = [Pb^{2+}][I^{-}]^{2} = 0.0025 \cdot (0.075)^{2} = 1.41 \cdot 10^{-5}.$$

По условию: $\Pi P(PbI_2) = 3.56 \cdot 10^{-9}$.

ПК > ПР – осадок выпадет.

Ответ: ПК > ПР – осадок выпадет.

Пример 3

По справочным данным определить величину растворимости CaF_2 в моль/л при 298 К.

Решение:

$$CaF_{2 \text{ (KP)}} \rightleftharpoons Ca^{2+}_{\text{(Hac. p-p)}} + 2F^{-}_{\text{(Hac. p-p)}}$$
.

$$\Delta G^{o}{}_{298} = \Delta G^{o}{}_{oбp,\;298} \left(Ca^{2+}{}_{(p\text{-p, ct. c})} \right) + 2\Delta G^{o}{}_{oбp,\;298} \left(F^{-}{}_{(p\text{-p, ct. c})} \right) - \Delta G^{o}{}_{oбp,\;298} \left(CaF_{2\;(\kappa p)} \right).$$

Вещество	Ca ²⁺ (p-p, c _T . c)	F ⁻ (p-p, ct. c)	CaF _{2 (кр)}
ΔG° _{обр,298,} кДж/моль	-552,8	-277,7	-1168,5

$$\Delta G^{o}_{298} = -552.8 + 2(-277.7) - (-1168.5) = 60.3$$
 кДж.

$$\Delta G^{o}_{T} = -RT \ln \Pi P.$$

$$\Pi P = e^{-\frac{\Delta G_T^0}{RT}} = e^{-\frac{60,3\cdot10^3}{8,314\cdot298}} = 2,69\cdot10^{-11}.$$

$$\Pi P = P(2P)^2 = 4P^3$$
.

$$P = \sqrt[3]{\frac{\Pi P}{4}} = \sqrt[3]{\frac{2,69 \cdot 10^{-11}}{4}} = 1,89 \cdot 10^{-4} \text{ моль/л}.$$

Ответ: $P = 1,89 \cdot 10^{-4}$ моль/л.

Задания

- 331. При некоторой температуре произведение растворимости Ag_2S равно $1\cdot 10^{-51}$. Определите:
 - а) растворимость Ag₂S в воде;
 - б) растворимость Ag₂S в 0,01 M растворе Na₂S;
 - в) растворимость Ag₂S в 0,01 M растворе AgNO₃;
 - Γ) в каком количестве воды растворяется 1 Γ Ag₂S.
- 332. При некоторой температуре произведение растворимости Ag_2SO_4 равно $8\cdot 10^{-5}$. Определите:
 - а) растворимость Ag₂SO₄ в воде,
 - б) растворимость Ag_2SO_4 в 0,1 M растворе K_2SO_4 ;
 - в) растворимость Ag₂SO₄ в 0,1 M растворе AgNO₃;
 - Γ) в каком количестве воды растворяется 1 Γ Ag₂SO₄.
- 333. При 300 К произведение растворимости AgCl равно 1,6·10⁻¹⁰. Определите:
 - а) растворимость AgCl в воде;
 - б) ΔG^{o} процесса растворения AgCl;
 - в) растворимость AgCl в 0,01 M растворе AgNO₃;
 - г) в каком количестве воды растворяется 1 г AgCl.
- 334. При некоторой температуре произведение растворимости CuS равно $4\cdot 10^{-38}$. Определите:
 - а) растворимость CuS в воде;
 - б) растворимость CuS в 0,01 M растворе CuSO₄;
 - в) растворимость CuS в 0,01 M растворе Na₂S;
 - г) в каком количестве воды растворяется 1 г CuS.
- 335. При 300 К произведение растворимости Cu_2S равно $2,5\cdot 10^{-50}$. Определите:
 - а) растворимость Cu_2S в воде;
 - б) ΔG^o процесса растворения Cu_2S ;
 - в) растворимость Cu₂S в 0,1 M растворе Na₂S;

- Γ) в каком количестве воды растворяется 1 Γ Cu₂S.
- 336. При 300 К произведение растворимости $Al(OH)_3$ $2 \cdot 10^{-33}$. Определите:
 - а) в каком количестве воды растворяется 1 г Al(OH)₃;
 - б) растворимость Al(OH)₃ в воде;
 - в) растворимость Al(OH)₃ в 0,001 М растворе AlCl₃;
 - г) ΔG° процесса растворения $Al(OH)_3$.
 - 337. При 300 К растворимость $Ni(OH)_2$ в воде равна $1 \cdot 10^{-4}$ моль/л.

Определите:

- а) произведение растворимости Ni(OH)₂;
- б) растворимость $Ni(OH)_2$ в 0,01 M растворе $NiCl_2$;
- в) в каком количестве воды растворяется 1 г Ni(OH)₂;
- г) ΔG° процесса растворения Ni(OH)₂.
- 338. При 300 К растворимость $Fe(OH)_2$ в воде равна $5\cdot 10^{-6}$ моль/л. Определите:
 - а) произведение растворимости Fe(OH)₂;
 - б) растворимость Fe(OH)₂ в 0,001 M растворе FeCl₂;
 - в) в каком количестве воды растворяется 1 г $Fe(OH)_2$;
 - г) ΔG^{o} процесса растворения $Fe(OH)_2$.
- 339. При 300 К произведение растворимости $Fe(OH)_3$ равно $5 \cdot 10^{-38}$. Определите:
 - а) растворимость Fe(OH)₃ в воде;
 - б) растворимость Fe(OH)₃ в 0,1 M растворе FeCl₃;
 - в) в каком количестве воды растворяется 1 г Fe(OH)3;
 - г) ΔG^{o} процесса растворения $Fe(OH)_{3}$.
- 340. При некоторой температуре произведение растворимости $BaCO_3$ равно $8\cdot 10^{-9}$.

- а) растворимость ВаСО₃ в воде;
- б) растворимость ВаСО₃ в 0,01 М растворе Na₂CO₃;

- в) растворимость BaCO₃ в 0,01 M растворе BaCl₂;
- г) в каком количестве воды растворяется 1 г ВаСО₃.
- 341. При 300 K в 1 л воды растворяется $1\cdot 10^{-6}$ г $Bi(OH)_3$. Определите:
 - а) произведение растворимости Ві(ОН)₃;
 - б) растворимость $Bi(OH)_3$ в 0,1 M растворе $Bi(NO_3)_3$;
 - в) в каком количестве воды растворяется 1 моль Ві(ОН)3;
 - г) ΔG° процесса растворения $Bi(OH)_3$.
- 342. При 300 К произведение растворимости $Cu(OH)_2$ равно 5,6· 10^{-20} Определите:
 - а) растворимость $Cu(OH)_2$ в воде;
 - б) растворимость $Cu(OH)_2$ в 0,001 M растворе $CuCl_2$;
 - в) в каком количестве воды растворяется 1 моль Сu(OH)2;
 - г) ΔG° процесса растворения $Cu(OH)_2$.
- 343. При некоторой температуре произведение растворимости $Ca_3(PO_4)_2$ равно $3\cdot 10^{-33}$.

Определите:

- а) растворимость Са₃(РО₄)₂ в воде;
- б) растворимость $Ca_3(PO_4)_2$ в 0,01 M растворе $CaCl_2$;
- в) растворимость $Ca_3(PO_4)_2$ в 1 M растворе Na_3PO_4 ;
- г) в каком количестве воды растворяется 1 г $Ca_3(PO_4)_2$.
- 344. При некоторой температуре в 10 л воды растворяется $7 \cdot 10^{-2}$ г $Mg(OH)_2$.

- а) произведение растворимости $Mg(OH)_2$;
- б) растворимость Mg(OH)₂ в 0,01 M растворе MgCl₂;
- в) растворимость Mg(OH)₂ в 0,01 M растворе NaOH;
- г) в каком количестве воды растворяется 1 г $Mg(OH)_2$.

345. При 300 К в 100 л воды растворяется 278 г PbCl₂.

Определите:

- а) произведение растворимости PbCl₂;
- б) растворимость $PbCl_2$ в 0,01 M растворе KCl;
- в) растворимость $PbCl_2$ в 0,01 M растворе $Pb(NO_3)_2$;
- г) ΔG^{o} процесса растворения PbCl₂.
- 346. При некоторой температуре произведение растворимости CaF_2 равно $4\cdot 10^{-11}$.

Определите:

- а) растворимость СаF₂ в воде;
- б) растворимость CaF_2 в 0,001 M растворе $CaCl_2$;
- в) в каком количестве воды растворяется 1 г СаF₂.
- г) растворимость CaF₂ в 0,001 M растворе NaF.
- 347. При некоторой температуре произведение растворимости MgF_2 равно $6\cdot10^{-9}$.

Определите:

- а) растворимость MgF_2 в воде;
- б) растворимость MgF₂ в 0,01 M растворе MgCl₂;
- в) растворимость MgF₂ в 0,01 M растворе NaF;
- г) в каком количестве воды растворяется 1 г MgF_2 .
- 348. При некоторой температуре произведение растворимости $PbSO_4$ равно $2 \cdot 10^{-8}$.

- а) растворимость PbSO₄ в воде;
- б) растворимость $PbSO_4$ в 0,01 M растворе $Pb(NO_3)_2$;
- в) растворимость PbSO₄ в 0,01 M растворе Na₂SO₄;
- г) в каком количестве воды растворяется 1 г PbSO₄.

349. При некоторой температуре растворимость $PbBr_2$ равна $1,2\cdot 10^{-2}$ моль/л.

Определите:

- а) произведение растворимости PbBr₂;
- б) растворимость PbBr₂ в 0,1 M растворе NaBr;
- в) растворимость $PbBr_2$ в 0,1 M растворе $Pb(NO_3)_2$;
- г) в каком количестве воды растворяется 1 г PbBr₂.
- 350. При некоторой температуре растворимость $CaSO_4$ равна $8\cdot 10^{-3}$ моль/л.

Определите:

- а) произведение растворимости CaSO₄;
- б) растворимость CaSO₄ в 0,01 M растворе Na₂SO₄;
- в) растворимость CaSO₄ в 0,01 M растворе CaCl₂;
- г) в каком количестве воды растворяется 1 г CaSO₄.
- 351. При 300 К растворимость BaSO₄ в 0,01 М растворе Na₂SO₄ равна $1\cdot 10^{-8}$ моль/л.

Определите:

- а) произведение растворимости BaSO₄;
- б) растворимость BaSO₄ в 0,01 M растворе BaCl₂;
- в) в каком количестве воды растворяется 1 г $BaSO_4$;
- г) ΔG^o процесса растворения $BaSO_4$.
- 352. При 300 К растворимость PbI_2 в 0,1 М растворе NaI равна $9\cdot 10^{-7}$ моль/л.

- а) произведение растворимости PbI₂;
- б) растворимость PbI_2 в 0,1 M растворе $Pb(NO_3)_2$;
- в) в каком количестве воды растворяется $1 \ \Gamma \ PbI_2;$
- г) ΔG^o процесса растворения PbI_2 .

353. При 300 К растворимость Ag_3PO_4 в 0,01 М водном растворе $AgNO_3$ равна $8\cdot 10^{-10}$ г/л.

Определите:

- а) произведение растворимости Ад₃РО₄;
- б) растворимость Ag₃PO₄ в 1 M растворе Na₃PO₄;
- в) в каком количестве воды растворяется 1 г Ад₃РО₄;
- г) ΔG^{o} процесса растворения $Ag_{3}PO_{4}$.
- 354. При 300 К произведение растворимости $Co(OH)_2$ равно $2 \cdot 10^{-16}$. Определите:
 - а) растворимость $Co(OH)_2$ в воде;
 - б) растворимость $Co(OH)_2$ в 0,01 M растворе $CoCl_2$;
 - в) достаточно ли 10^5 л воды для растворения 1 г Co(OH)₂;
 - г) ΔG^{o} процесса растворения $Co(OH)_2$.
- 355. Смешали 1 л 0,001 M раствора NaF с 2 л 0,001 M раствора CaCl₂. Считая объём полученного раствора равным 3 л, определите:
 - а) образуется ли осадок СаF₂;
 - б) растворимость CaF_2 в воде;
 - в) растворимость СаF₂ в 0,01 М растворе NaF;
 - Γ) растворимость CaF_2 в 0,01 M растворе CaI_2 .

$$\Pi P(CaF_2) = 4 \cdot 10^{-11}.$$

- 356. Смешали равные объёмы $0,01~\mathrm{M}$ раствора $ZnSO_4$ и $0,0001~\mathrm{M}$ раствора Na_2S . Считая объём полученного раствора равным сумме объёмов смешиваемых растворов, определите:
 - а) образуется ли осадок ZnS;
 - б) растворимость ZnS в воде;
 - в) растворимость ZnS в 0,001~M растворе ZnCl $_2$;
 - г) растворимость ZnS в 0,001 M растворе Na₂S.

$$\Pi P(ZnS) = 8 \cdot 10^{-26}.$$

357. Смешали 2 л 0,001 M раствора Hg(NO₃)₂ и 3 л 0,0001 M раствора KI. Считая объём полученного раствора равным 5 л, определите:

- а) образуется ли осадок HgI₂;
- б) растворимость HgI_2 в воде;
- в) ΔG^{o} процесса растворения HgI_{2} ;
- г) растворимость HgI_2 в 0,001 M растворе $Hg(NO_3)_2$.
- $\Pi P(HgI_2) = 4.10^{-58}$ при 300 К.
- 358. Смешали равные объёмы 0,0001 M раствора CoCl₂ и 0,0001 M раствора NaOH. Считая объём полученного раствора равным сумме объёмов смешиваемых растворов, определите:
 - а) образуется ли осадок Со(ОН)2;
 - б) растворимость $Co(OH)_2$ в воде;
 - в) растворимость $Co(OH)_2$ в 0,01 M растворе $CoCl_2$;
 - г) растворимость Co(OH)₂ в 0,01 M растворе NaOH.
 - $\Pi P(Co(OH)_2) = 2 \cdot 10^{-16}$.
- 359. Смешали равные объёмы 0,0001 M раствора NiCl₂ и 0,0001 M раствора NaOH. Считая объём полученного раствора равным сумме объёмов смешиваемых растворов, определите:
 - а) образуется ли осадок Ni(OH)2;
 - б) растворимость Ni(OH)2 в воде;
 - в) растворимость Ni(OH)₂ в 0,01 M растворе NiCl₂;
 - Γ) растворимость Ni(OH)₂ в 0,01 M растворе NaOH.
 - $\Pi P(Ni(OH)_2) = 7 \cdot 10^{-14}.$
- 360. Смешали равные объёмы 0,001 M раствора FeCl₂ и 0,0001 M раствора NaOH. Считая объём полученного раствора равным сумме объёмов смешиваемых растворов, определите:
 - а) образуется ли осадок Fe(OH)2;
 - б) растворимость $Fe(OH)_2$ в воде;
 - в) растворимость $Fe(OH)_2$ в 0,001 M растворе $FeCl_2$;
 - Γ) растворимость Fe(OH)₂ в 0,001 M растворе NaOH.
 - $\Pi P(Fe(OH)_2) = 4.8 \cdot 10^{-16}$.

13. ГИДРОЛИЗ

Пример 1

Вычислите $K_{\text{гидр}}$, $\alpha_{\text{гидр}}$ и pH для 0,01 M раствора NH₄Cl, $K_{\text{дис}}$ (NH₄OH) = 1,8·10⁻⁵.

Решение:

 NH_4Cl – гидролиз по катиону, pH<7.

$$NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$$

$$K_{\text{гидр}} = \frac{\left[\text{NH}_4\text{OH}\right]\left[\text{H}^+\right]}{\left\lceil\text{NH}_4^+\right\rceil}$$

Умножим числитель и знаменатель на концентрацию [OH⁻].

 $K_{\rm w} = [{\rm H}^+][{\rm OH}^-]$ – ионное произведение воды.

$$K_{\text{гидр}} = \frac{\left[\text{NH}_{4}\text{OH} \right] \left[\text{H}^{+} \right] \left[\text{OH}^{-} \right]}{\left[\text{NH}_{4}^{+} \right] \left[\text{OH}^{-} \right]}$$

 $NH_4OH \rightleftharpoons NH_4^+ + OH^-$

$$K_{\text{дис. осн}} = \frac{\left[\text{NH}_{4}^{+} \right] \left[\text{OH}^{-} \right]}{\left[\text{NH}_{4} \text{OH} \right]}$$

$$K_{\text{гидр}} = \frac{K_{\text{W}}}{K_{\text{дис. осн}}}$$

$$K_{\text{гидр}} = \frac{K_{\text{W}}}{K_{\text{дис. осн}}} = \frac{10^{-14}}{1,8 \cdot 10^{-5}} = 5,56 \cdot 10^{-10}$$

$$K_{\text{гидр}} = \frac{\left[H^{+}\right]^{2}}{c}$$

c – концентрация гидролизующейся соли в растворе, моль/л.

$$[H^{+}] = \sqrt{K_{\text{гидр}} \cdot c_{\text{соли}}} = \sqrt{5,56 \cdot 10^{-10} \cdot 0,01} = 2,36 \cdot 10^{-6} _{\text{МОЛЬ/Л}}$$

$$pH = -lg[H^+]$$

$$pH = -lg2,36 \cdot 10^{-6} = 5,63$$

$$[H^+] = c \cdot \alpha_{\text{гидр}}$$

$$\alpha_{\Gamma \nu \mu p} = [H^+]/c$$

$$\alpha_{\text{гидр}} = 2.36 \cdot 10^{-6} / 0.01 = 2.36 \cdot 10^{-4}$$

Ответ: $K_{\text{гидр}} = 5,56 \cdot 10^{-10}, \ \alpha_{\text{гидр}} = 2,36 \cdot 10^{-4}, \ \text{pH} = 5,63.$

Пример 2

Определите pH 0,1 M растворов Na_3PO_4 , Na_2HPO_4 и NaH_2PO_4 при 298,15 K, если ступенчатые константы диссоциации H_3PO_4 равны:

$$K_{\text{дис},1} = 7,11 \cdot 10^{-3};$$

$$K_{\text{дис},2} = 6,34 \cdot 10^{-8};$$

$$K_{\text{дис},3} = 4,40 \cdot 10^{-13}$$
.

Решение:

Уравнения диссоциации:

1.
$$H_3PO_4 \rightleftharpoons H^+ + H_2PO_4^-$$

2.
$$H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-}$$

3.
$$HPO_4^{2-} \iff H^+ + PO_4^{3-}$$

$$K_{\text{дис, 1}} = \frac{\left[H^{+}\right]\left[H_{2}PO_{4}^{-}\right]}{\left[H_{3}PO_{4}\right]}$$

$$K_{\text{дис, 2}} = \frac{\left[H^{+}\right]\left[HPO_{4}^{2-}\right]}{\left[H_{2}PO_{4}^{-}\right]}$$

$$K_{\text{дис, 3}} = \frac{\left[H^{+}\right]\left[PO_{4}^{3-}\right]}{\left[HPO_{4}^{2-}\right]}$$

Уравнения гидролиза:

1.
$$PO_4^{3-} + HOH \rightleftharpoons HPO_4^{2-} + OH^{-}$$

2.
$$HPO_4^{2-} + HOH \rightleftharpoons H_2PO_4^- + OH^-$$

3.
$$H_2PO_4^- + HOH \rightleftharpoons H_3PO_4 + OH^-$$

$$K_{\text{гидр, 1}} = \frac{\left[\text{HPO}_4^{2-}\right]\left[\text{OH}^-\right]}{\left[\text{PO}_4^{3-}\right]}$$

$$K_{\text{гидр},2} = \frac{\left[\text{H}_2\text{PO}_4^-\right]\left[\text{OH}^-\right]}{\left[\text{HPO}_4^{2^-}\right]}$$

$$K_{\text{гидр, 3}} = \frac{\left[\text{H}_{3}\text{PO}_{4}\right]\left[\text{OH}^{-}\right]}{\left[\text{H}_{2}\text{PO}_{4}^{-}\right]}$$

$$K_{\text{гидр, 1}} = \frac{K_{\text{W}}}{K_{\text{лис. 3}}} = \frac{10^{-14}}{4,40 \cdot 10^{-13}} = 2,27 \cdot 10^{-2}$$

$$K_{\text{гидр},2} = \frac{K_{\text{W}}}{K_{\text{run},2}} = \frac{10^{-14}}{6,34 \cdot 10^{-8}} = 1,58 \cdot 10^{-7}$$

$$K_{\text{гидр, 3}} = \frac{K_{\text{W}}}{K_{\text{гид, 1}}} = \frac{10^{-14}}{7.11 \cdot 10^{-3}} = 1.41 \cdot 10^{-12}$$

Na₃PO₄

$$K_{\text{гидр},1} = 2,27 \cdot 10^{-2};$$

$$K_{\text{гидр,2}} = 1,58 \cdot 10^{-7};$$

$$K_{\text{гидр,3}} = 1,41 \cdot 10^{-12}.$$

Так как $K_{\text{гидр},1} > K_{\text{гидр},2}$, то можно считать, что Na₃PO₄ подвергается гидролизу по первой ступени.

$$K_{\text{гидр, 1}} = \frac{\left[\text{OH}^{-}\right]^{2}}{c}$$

$$[OH^-] = \sqrt{K_{\text{гидр, 1}} \cdot c} = \sqrt{2, 27 \cdot 10^{-2} \cdot 0, 1} = 4,76 \cdot 10^{-2}$$

$$pOH = -lg[OH^{-}] = -lg4,76 \cdot 10^{-2} = 1,32$$

$$pH = 14 - pOH = 14 - 1,32 = 12,68.$$

Na₂HPO₄

$$Na_2HPO_4 \rightarrow 2Na^+ + HPO_4^{2-}$$

2.
$$HPO_4^{2-} + HOH \rightleftharpoons H_2PO_4^- + OH^-$$

$$K_{\text{гидр,2}} = 1,58 \cdot 10^{-7}.$$

3.
$$HPO_4^{2-} \rightleftharpoons H^+ + PO_4^{3-}$$

$$K_{\text{дис},3} = 4,40 \cdot 10^{-13}$$

 $K_{\text{гидр,2}} > K_{\text{дис,3}} -$ идёт гидролиз.

$$K_{\text{гидр, 2}} = \frac{\left[\text{OH}^{-}\right]^{2}}{c}$$

$$\left[\text{OH}^{-} \right] = \sqrt{K_{\text{гидр}, 2} \cdot c} = \sqrt{1,58 \cdot 10^{-7} \cdot 0,1} = 1,26 \cdot 10^{-4}$$

$$pOH = -lg[OH^{-}] = -lg1,26 \cdot 10^{-4} = 3,90$$

$$pH = 14 - pOH = 14 - 3.90 = 10.1$$
.

NaH₂PO₄

$$NaH_2PO_4 \rightarrow Na^+ + H_2PO_4^-$$

3.
$$H_2PO_4^- + HOH \rightleftharpoons H_3PO_4 + OH^-$$

$$K_{\text{гидр,3}} = 1,41 \cdot 10^{-12}$$

2.
$$H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-}$$

$$K_{\text{лис},2} = 6.34 \cdot 10^{-8}$$

 $K_{\text{дис},2} > K_{\text{гидр},3} -$ идёт диссоциация, **pH<7**.

$$K_{\text{дис, 2}} = \frac{\left[H^+\right]^2}{c}$$

$$[H^+] = \sqrt{K_{\text{дис},2} \cdot c} = \sqrt{6,34 \cdot 10^{-8} \cdot 0,1} = 7,96 \cdot 10^{-5}$$

$$pH = -lg[H^+] = -lg7,96 \cdot 10^{-5} = 4,10.$$

Ответ: $pH(Na_3PO_4) = 12,68$; $pH(Na_2HPO_4) = 10,1$; $pH(NaH_2PO_4) = 4,10$.

Пример 3

Вычислите $K_{\text{гидр}}$, $\alpha_{\text{гидр}}$ и pH CH₃COONH₄ в водном растворе, если

$$K_{\text{дис}}(\text{NH}_4\text{OH}) = 1,80 \cdot 10^{-5},$$

$$K_{\text{дис}}(\text{CH}_3\text{COOH}) = 1,75 \cdot 10^{-5}.$$

Решение:

CH₃COONH₄ – гидролиз по катиону и по аниону

$$CH_{3}COO^{-} + NH_{4}^{+} + HOH \iff CH_{3}COOH + NH_{4}OH$$

$$K_{\text{гидр}} = \frac{\left[\text{NH}_4\text{OH}\right]\left[\text{CH}_3\text{COOH}\right]}{\left[\text{CH}_3\text{COO}^-\right]\left[\text{NH}_4^+\right]}$$

Умножим числитель и знаменатель на ионное произведение воды

$K_{\rm w} = [{\rm H}^+][{\rm OH}^-]$:

$$K_{\text{\tiny FMJEP}} = \frac{ \left[\text{NH}_4 \text{OH} \right] \left[\text{CH}_3 \text{COOH} \right] \left[\text{H}^+ \right] \left[\text{OH}^- \right] }{ \left[\text{CH}_3 \text{COO}^- \right] \left[\text{NH}_4^+ \right] \left[\text{H}^+ \right] \left[\text{OH}^- \right] }$$

$$K_{\text{дис. K-TЫ}} = \frac{\left[\text{CH}_{3}\text{COO}^{-}\right]\left[\text{H}^{+}\right]}{\left[\text{CH}_{3}\text{COOH}\right]}$$

$$K_{\text{дис. осн}} = \frac{\left[\text{NH}_{4}^{+}\right]\left[\text{OH}^{-}\right]}{\left[\text{NH}_{4}\text{OH}\right]}$$

$$K_{\text{гидр}} = \frac{K_W}{K_{\text{лис к-ты}} \cdot K_{\text{лис осн}}}$$

$$K_{\text{гидр}} = \frac{10^{-14}}{1,75 \cdot 10^{-5} \cdot 1,80 \cdot 10^{-5}} = 3,17 \cdot 10^{-5}$$

$$K_{\text{\tiny FMJEP}} = \frac{ \left[\text{NH}_4 \text{OH} \right] \left[\text{CH}_3 \text{COOH} \right] }{ \left[\text{CH}_3 \text{COO}^- \right] \left[\text{NH}_4^+ \right] }$$

$$K_{\text{гидр}} = \frac{(c\alpha_{\text{гидр}})^2}{(c - c\alpha_{\text{гидр}})(c - c\alpha_{\text{гидр}})} = \frac{\alpha_{\text{гидр}}^2 c^2}{c^2 (1 - \alpha_{\text{гидр}})^2} = \frac{\alpha_{\text{гидр}}^2}{(1 - \alpha_{\text{гидр}})^2}$$

$$K_{\text{гидр}} = \frac{\alpha_{\text{гидр}}^2}{\left(1 - \alpha_{\text{гидр}}\right)^2}$$

$$K_{\text{\tiny ГИДДР}} = \frac{\left[\text{NH}_4\text{OH}\right]\!\left[\text{CH}_3\text{COOH}\right]}{\left\lceil\text{CH}_3\text{COO}^-\right\rceil\!\left\lceil\text{NH}_4^+\right\rceil}$$

Умножим числитель и знаменатель на [H⁺]:

$$K_{\text{\tiny PMAD}} = \frac{\left[\text{NH}_4\text{OH}\right]\left[\text{CH}_3\text{COOH}\right]\left[\text{H}^+\right]}{\left[\text{CH}_3\text{COO}^-\right]\left[\text{NH}_4^+\right]\left[\text{H}^+\right]}$$

$$K_{\text{дис. K-TЫ}} = \frac{\left[\text{H}^+\right]\left[\text{CH}_3\text{COO}^-\right]}{\left[\text{CH}_3\text{COOH}\right]}$$

$$K_{\text{гидр}} = \frac{\left[H^{+}\right]}{K_{\text{дис. к-ты}}} \frac{\left[\text{NH}_{4}\text{OH}\right]}{\left\lceil\text{NH}_{4}^{+}\right\rceil}$$

$$\left[\mathbf{H}^{+}\right] = K_{\text{дис. K-ТЫ}} K_{\text{гидр}} \frac{\left[\mathbf{NH}_{4}\mathbf{OH}\right]}{\left[\mathbf{NH}_{4}^{+}\right]}$$

$$\frac{\left[NH_{4}OH\right]}{\left\lceil NH_{4}^{^{+}}\right\rceil }=\frac{1}{\alpha _{_{\text{\tiny FMJAP}}}}$$

$$\begin{bmatrix} \mathbf{H}^{+} \end{bmatrix} = K_{\text{дис. к-ты}} \frac{K_{\text{гидр}}}{\alpha_{\text{гидр}}}$$

$$K_{\text{гидр}} \approx \alpha_{\text{гидр}}^{2} \quad \left(K_{\text{гидр}} = \frac{\alpha_{\text{гидр}}^{2}}{(1 - \alpha_{\text{гидр}})^{2}} \right)$$

$$\alpha_{\text{гидр}} \approx \sqrt{K_{\text{гидр}}}$$

$$\begin{bmatrix} \mathbf{H}^{+} \end{bmatrix} = K_{\text{дис. к-ты}} \frac{K_{\text{гидр}}}{\sqrt{K_{\text{гидр}}}}$$

$$\left[\mathbf{H}^{+}\right] = K_{\text{дис. к-ты}} \cdot \sqrt{K_{\text{гидр}}}$$

$$\alpha_{\text{\tiny FMJD}} = \sqrt{3,17 \cdot 10^{-5}} = 5,63 \cdot 10^{-3}$$

$$\left[H^{+} \right] = 1,75 \cdot 10^{-5} \cdot \sqrt{3,17 \cdot 10^{-5}} = 9,85 \cdot 10^{-8}$$

$$pH = -lg[H^+].$$

$$pH = -lg 9.85 \cdot 10^{-8} = 7.01.$$

Ответ: $K_{\text{гидр}} = 3,17 \cdot 10^{-5}$, $\alpha_{\text{гидр}} = 5,63 \cdot 10^{-3}$, pH=7,01.

Задания

- 361. А. Вычислите pH раствора, полученного смешением 30 мл 0,01 H раствора NH₄OH и 10 мл 0,2 H раствора NH₄Cl, если константа диссоциации NH₄OH равна $1,8\cdot10^{-5}$. Считать, что соль диссоциирована нацело.
 - Б. Напишите уравнения реакций:

гидролиз Na₂HPO₄

гидролиз Cu(CH₃COO)₂

$$BeCl_2 + K_2CO_3 + H_2O \rightarrow$$

- 362. А. Вычислите pH 0,02 H раствора бензоата натрия C_6H_5COONa , если константа диссоциации C_6H_5COOH равна $6,3\cdot10^{-5}$.
 - Б. Напишите уравнения реакций:

гидролиз NH₄Cl

$$AlCl_3 + CH_3COONa + H_2O \rightarrow Al(OH)_2(CH_3COO) \downarrow + \dots$$
 гидролиз SbCl₃

363. А. Вычислите pH 0,04 M раствора бензоата калия C_6H_5COOK , если константа диссоциации C_6H_5COOH равна $6,3\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз HCOONH₄

$$Co(NO_3)_2 + Na_2CO_3 + H_2O \rightarrow$$

гидролиз BiCl₃

364. А. Вычислите pH 0,1 H раствора NH₄CN, если константы диссоциации NH₄OH и HCN равны соответственно $1.8 \cdot 10^{-5}$ и $7.2 \cdot 10^{-10}$.

Б. Напишите уравнения реакций:

гидролиз СН₃СООК

$$Ni(NO_3)_2 + Na_2CO_3 + H_2O \rightarrow$$

гидролиз $Bi(NO_3)_3$

365. А. Вычислите pH 0,05 M раствора формиата калия HCOOK, если константа диссоциации HCOOH равна 1,8·10⁻⁴.

Б. Напишите уравнения реакций:

гидролиз KFe(SO₄)₂

$$Na_2SiO_3 + NH_4Cl + H_2O \rightarrow$$

$$Fe(NO_3)_3 + Na_2CO_3 + H_2O \rightarrow$$

366. А. Вычислите pH 0,01 H раствора гипохлорита калия, если константа диссоциации HClO равна $5,0\cdot10^{-8}$.

Б. Напишите уравнения реакций:

гидролиз $(NH_4)_2SO_4$

$$Co(NO_3)_2 + K_2CO_3 + H_2O \rightarrow$$

$$FeCl_3 + K_2CO_3 + H_2O \rightarrow$$

367. А. Вычислите pH 0,1 M раствора гипохлорита натрия, если константа диссоциации HClO равна 5,0·10⁻⁸.

Б. Напишите уравнения реакций:

гидролиз Ca(ClO)₂

$$Pb(NO_3)_2 + K_2CO_3 + H_2O \rightarrow$$

гидролиз $Cr(NO_3)_3$

368. А. Вычислите pH 0,1 H раствора C_6H_5COONa , если константа диссоциации бензойной кислоты C_6H_5COOH равна $6,3\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз K_2SO_3

$$CuSO_4 + Na_2CO_3 + H_2O \rightarrow$$

гидролиз PCl₅

369. А. Вычислите pH 0,06 H раствора NH₄I, если константа диссоциации NH₄OH равна $1.8\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз Na₃PO₄

$$CrCl_3 + K_2S + H_2O \rightarrow$$

$$POCl_3 + KOH_{(pactbop, u36bitok)} \rightarrow$$

370. А. Вычислите pH 0,08 H раствора NH₄Br, если константа диссоциации NH₄OH равна $1,8\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз К2СО3

$$CrCl_3 + (NH_4)_2S + H_2O \rightarrow$$

гидролиз $Cr_2(SO_4)_3$

371. А. Вычислите pH 0,08 M раствора бензоата натрия C_6H_5COONa , если константа диссоциации бензойной кислоты C_6H_5COOH равна $6,3\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз Na₂CO₃

$$Be(NO_3)_2 + Na_2CO_3 + H_2O \rightarrow$$

гидролиз POCl₃

372. А. Вычислите концентрацию ионов H^+ в 0,1 H растворе NH₄Cl, если константа диссоциации NH₄OH равна $1,8\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз K₂S

$$Al_2(SO_4)_3 + (NH_4)_2S + H_2O \rightarrow$$

$$CuCl_2 + Na_2CO_3 + H_2O \rightarrow$$

373. А. Вычислите pH 0,05 M раствора Na_2CO_3 , если константы ступенчатой диссоциации угольной кислоты соответственно равны: $K_1 = 4,5\cdot10^{-7}$, $K_2 = 4,8\cdot10^{-11}$. Расчет произвести, учитывая только первую ступень гидролиза.

Б. Напишите уравнения реакций:

гидролиз NaClO

$$MgCl_2 + K_2CO_3 + H_2O \rightarrow$$

 Γ идролиз SO_2Cl_2

374. А. Вычислите концентрацию ионов H^+ в 0,05 H растворе NH_4NO_3 , если константа диссоциации NH_4OH равна $1,8\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз К₃РО₄

$$AlCl_3 + (NH_4)_2S + H_2O \rightarrow$$

$$SO_2Cl_2 + KOH_{(pаствор, избыток)} \rightarrow$$

375. А. Степень гидролиза $NaNO_2$ в 0,005 H растворе составляет 0,007 %. Вычислите константу гидролиза соли и pH раствора.

Б. Напишите уравнения реакций:

гидролиз Li₂S

$$AlCl_3 + K_2CO_3 + H_2O \rightarrow$$

$$SOCl_2 + KOH_{(pactbop, \, \text{избыток})} \longrightarrow$$

376. А. Вычислите pH 0,05 H раствора NaClO, если константа диссоциации HClO равна $5,0\cdot10^{-8}$.

Б. Напишите уравнения реакций:

гидролиз KBrO

$$ZnSO_4 + K_2CO_3 + H_2O \rightarrow$$

гидролиз $SOCl_2$

377. А. Вычислите pH 0,1 M раствора Na_3PO_4 , если константы ступенчатой диссоциации ортофосфорной кислоты равны соответственно $K_1 = 7,11\cdot10^{-3}$, $K_2 = 6,34\cdot10^{-8}$, $K_3 = 4,40\cdot10^{-13}$. Расчет произвести, учитывая только первую ступень гидролиза.

Б. Напишите уравнения реакций:

гидролиз Na₂HPO₄

гидролиз NiCl₂

$$Al_2(SO_4)_3 + (NH_4)_2S + H_2O \rightarrow$$

378. А. Вычислите pH 0,05 M раствора K_3PO_4 , если константы ступенчатой диссоциации H_3PO_4 равны соответственно $K_1=7,11\cdot10^{-3}$, $K_2=6,34\cdot10^{-8}$, $K_3=4,40\cdot10^{-13}$. Расчет произвести, учитывая только первую ступень гидролиза.

Б. Напишите уравнения реакций:

гидролиз Na₂S

гидролиз Al(CH₃COO)₃

$$Cr(NO_3)_3 + (NH_4)_2S + H_2O \rightarrow$$

379. А. Вычислите pH 0,05 M раствора K_2SO_3 , если константы ступенчатой диссоциации сернистой кислоты равны соответственно $K_1 = 1,7 \cdot 10^{-2}$, $K_2 = 6,2 \cdot 10^{-8}$. Расчет произвести, учитывая только первую ступень гидролиза.

Б. Напишите уравнения реакций:

гидролиз $Al_2(SO_4)_3$

гидролиз HCOONH₄

$$Cu(NO_3)_2 + Na_2CO_3 + H_2O \rightarrow$$

380. А. Вычислите pH раствора, полученного смешением 10 мл 0,01 H раствора NH₄OH и 30 мл 0,5 H раствора NH₄Cl, если константа диссоциации NH₄OH равна $1,8\cdot10^{-5}$. Считать, что соль диссоциирована нацело.

Б. Напишите уравнения реакций:

гидролиз $Cu(NO_3)_2$

гидролиз Na₂S

$$Fe(NO_3)_3 + K_2CO_3 + H_2O \rightarrow$$

381. А. Вычислите pH 0,1 M раствора Na_2SO_3 , если константы ступенчатой диссоциации сернистой кислоты равны соответственно

 $K_1 = 1,7 \cdot 10^{-2}, K_2 = 6,2 \cdot 10^{-8}$. Расчет произвести, учитывая только первую ступень гидролиза.

Б. Напишите уравнения реакций:

гидролиз $Fe_2(SO_4)_3$

гидролиз (NH₄)₂HPO₄

$$Cu(NO_3)_2 + K_2CO_3 + H_2O \rightarrow$$

382. А. рН 0,1 М раствора ацетата натрия составляет 8,9. Вычислите константу гидролиза CH₃COONa, а также степень гидролиза соли в 0,1 М растворе.

Б. Напишите уравнения реакций:

гидролиз FeCl₃

гидролиз $(NH_4)_2SO_4$

$$Al(NO_3)_3 + CH_3COOK + H_2O \rightarrow Al(OH)_2(CH_3COO)\downarrow + ...$$

383. А. pH 0,01 M раствора КСN составляет 10,6. Вычислите константу гидролиза КСN, а также степень гидролиза соли в 0,01 M растворе.

Б. Напишите уравнения реакций:

$$Cr(NO_3)_3 + K_2S + H_2O \rightarrow$$

гидролиз CrCl₃

гидролиз $(NH_4)_2SO_3$

384. А. Смешали 150 мл 0,01 H раствора CH_3COOH и 450 мл 0,1 H раствора CH_3COON а. Вычислите pH полученного раствора, если константа диссоциации уксусной кислоты равна $1,75\cdot10^{-5}$. Считать, что соль диссоциирована нацело.

Б. Напишите уравнения реакций:

гидролиз MnSO₄

гидролиз $(NH_4)_2S$

$$Al(NO_3)_3 + K_2S + H_2O \rightarrow$$

385. А. Вычислите pH 0,01 H раствора CH_3COONH_4 , если константы диссоциации CH_3COOH и NH_4OH равны соответственно 1,75·10⁻⁵ и 1,8·10⁻⁵.

Б. Напишите уравнения реакций:

гидролиз BaS

 $KAl(SO_4)_2 + K_2CO_3 + H_2O \rightarrow$

гидролиз $(NH_4)_2SO_4$

386. А. Вычислите pH 0,1 M раствора Na_2CO_3 , если константы ступенчатой диссоциации угольной кислоты равны соответственно $K_1 = 4,5\cdot 10^{-7}$, $K_2 = 4,8\cdot 10^{-11}$. Расчет произвести, учитывая только первую ступень гидролиза.

Б. Напишите уравнения реакций:

гидролиз CH₃COONa

гидролиз $Fe_2(SO_4)_3$

 $AlCl_3 + Na_2CO_3 + H_2O \rightarrow$

387. А. Вычислите pH 0,01 H раствора NaCN, если константа диссоциации HCN равна $7,2\cdot10^{-10}$.

Б. Напишите уравнения реакций:

гидролиз NaHS

 $KAl(SO_4)_2 + Na_2S + H_2O \rightarrow$

гидролиз $Al(NO_3)_3$

388. А. Вычислите pH 0,0001 H раствора CH₃COONa, если константа диссоциации уксусной кислоты равна $1,75\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз NaHSO₃

гидролиз BaS

 $FeCl_3 + Na_2CO_3 + H_2O \rightarrow$

389. А. В каком соотношении следует смешать 0,1 H растворы CH_3COOH и CH_3COON а, чтобы полученная смесь имела pH = 5. Считать, что соль диссоциирована нацело. Константа диссоциации CH_3COOH равна $1.75\cdot10^{-5}$.

Б. Напишите уравнения реакций:

гидролиз КНСО3

гидролиз Си(СН₃СОО)₂

$$KCr(SO_4)_2 + K_2S + H_2O \rightarrow$$

390. А. Вычислите pH раствора, полученного смешением 500 мл 0,01 H раствора CH_3COOH и 500 мл 0,5 H раствора CH_3COON а, если константа диссоциации CH_3COOH равна $1,75\cdot10^{-5}$. Считать, что соль диссоциирована нацело.

Б. Напишите уравнения реакций:

гидролиз Na₂HPO₄

гидролиз $KCr(SO_4)_2$

 $CuSO_4 + Na_2CO_3 + H_2O \rightarrow$

14. ХИМИЧЕСКАЯ СВЯЗЬ В КОМПЛЕКСНЫХ СОЕДИНЕНИЯХ Пример

На основе известных вам квантово-химических методов описания химической связи в комплексных соединениях объясните образование химической связи в комплексном ионе $[Fe(CN)_6]^{4-}$ и укажите:

- а) тип гибридизации орбиталей центрального атома;
- б) геометрическую форму комплексного иона;
- в) магнитные свойства комплексов;
- г) наличие или отсутствие окраски.

Решение:

Метод валентных связей

 $[Fe(CN)_{6}]^{4-}$

 $_{26}$ Fe ... $3d^{6}4s^{2}$

$$Fe^{2+} ... 3d^6$$

 CN^- – лиганд сильного поля, способен перевести электроны в спаренное состояние: (P) $E_{\text{пары}} < E_{\text{св}}$.

Гибридизация – d^2sp^3 (внутренняя).

Геометрия – октаэдр.

Диамагнитен – нет неспаренных электронов.

Теория кристаллического поля (ТКП)

 $[Fe(CN)_{6}]^{4-}$

Расщепление *d*-уровня в октаэдрическом поле лиганда.

$$_{26}$$
Fe ... $3d^{6}4s^{2}$

$$Fe^{2+} ... 3d^6$$

 CN^- – лиганд сильного поля, способен перевести электроны в спаренное состояние: $P < \Delta_{\text{окт}}$.

ТКП даёт простое объяснение факту наличия или отсутствия окраски у комплекса. Если возможны электронные переходы между T_{2g} и E_{g} (электронная конфигурация центрального иона от d^{1} до d^{9}) — комплексные соединения **окрашены**. Если переходы невозможны (d^{0} или d^{10}) — **бесцветны.**

Комплекс $[Fe(CN)_6]^{4-}$ – окрашен, поскольку возможны переходы между T_{2g} и E_g .

Задания

На основе известных вам квантово-химических методов описания химической связи в комплексных соединениях объясните образование химической связи в указанных ниже комплексных соединениях и укажите:

- а) тип гибридизации орбиталей центрального атома;
- б) геометрическую форму иона или молекулы;
- в) спиновое состояние и распределение электронов по орбиталям;
- г) магнитные свойства комплексов;
- д) наличие или отсутствие окраски.

391.	$[Cr(H_2O)_6]^{3+}$	$[Cr(CN)_6]^{3-}$
391.	$ Cf(\Pi_2O)_6 ^2$,	[CI(CIV)6]

392.
$$[NiCl_4]^{2-}$$
, $[Ni(CN)_4]^{2-}$

393.
$$[FeF_6]^{4-}$$
, $[Cu(NH_3)_4]^{2+}$

394. [Ni(CO)₄],
$$[Mn(H_2O)_6]^{2+}$$

395.
$$[Co(NO_2)_6]^{3-}$$
, $[HgI_4]^{2-}$

396.
$$[AgCl_2]^-$$
, $[Fe(H_2O)_6]^{2+}$

397.
$$[Zn(OH)_4]^{2-}$$
, $[Ni(NH_3)_6]^{2+}$

398.
$$[Ag(S_2O_3)_2]^{3-}$$
, $[Fe(H_2O)_6]^{3+}$

399.
$$[Co(NH_3)_6]^{3+}$$
, $[HgI_4]^{2-}$

400.
$$[HgS_2]^{2-}$$
, $[Co(CN)_6]^{3-}$

401.
$$[MnF_6]^{4-}$$
, $[Ag(NH_3)_2]^+$

402.
$$[FeF_6]^{3-}$$
, $[CuCl_2]^{-}$

403. [Fe(CO)₅],
$$[Cr(NH_3)_6]^{3+}$$

404.
$$[Zn(NH_3)_4]^{2+}$$
, $[Cr(NH_3)_6]^{2+}$

405.
$$[Co(NH_3)_6]^{3+}$$
, $[Zn(OH)_4]^{2-}$

406.
$$[NiF_4]^{2-}$$
, $[MnCl_6]^{4-}$

407.
$$[Cu(NH_3)_2]^+$$
, $[Ni(CN)_4]^{2-}$

408.
$$[Au(CN)_2]^+$$
, $[Cr(CN)_6]^{3-}$

409.
$$[AgI_2]^-$$
, $[Pd(CN)_4]^{2-}$

410.
$$[Pb(OH)_4]^{2-}$$
, $[Cr(CO)_6]$

411.
$$[Cu(S_2O_3)_2]^{3-}$$
, $[Mo(CO)_6]$

412.
$$[Zn(CN)_4]^{2-}$$
, $[W(CO)_6]$

413.
$$[Co(H_2O)_6]^{2+}$$
, $[Ru(CO)_5]$

414.
$$[CoF_4]^{2-}$$
, $[Pt(CN)_4]^{2-}$

415.
$$[AgBr_2]^-$$
, $[Ni(CN)_4]^{2-}$

416.
$$[FeF_6]^{4-}$$
, $[AlF_6]^{3-}$

417.
$$[Sn(OH)_3]^-$$
, $[Os(CO)_5]$

418.
$$[Cu(NH_3)_4]^{2+}$$
, $[Ag(NH_3)_2]^+$

419.
$$[Mn(H_2O)_6]^{2+}$$
, $[Cr(CN)_6]^{3-}$

420.
$$[Co(H_2O)_6]^{2+}$$
, $[NiF_4]^{2-}$

15. ДИССОЦИАЦИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ Пример 1

Произойдёт ли выпадение осадка сульфида ртути при сливании равных объёмов 0,001~M раствора $K_2[HgI_4]$, содержащего избыточный KI в количестве 0,1~M моль/л и 0,05~M раствора K_2S ?

$$\Pi P(HgS) = 1,6.10^{-52}, K_y([HgI_4]^{2-}) = 6,6.10^{30}.$$

Решение:

$$K_2[HgI_4] \rightarrow 2K^+ + [HgI_4]^{2-}$$
.

$$[HgI_4]^{2-} \rightleftharpoons Hg^{2+} + 4I^{-}$$
.

ПК > ПР – условие выпадения осадка.

Слили **равные объёмы**, следовательно, все концентрации **уменьшились вдвое**:

$$c_{\text{M}}(\text{K}_2[\text{HgI}_4]) = 0,001/2 = 5 \cdot 10^{-4} \text{ моль/л}.$$

$$c_{\text{M}}(\text{KI}) = 0.1/2 = 0.05 \text{ моль/л}.$$

$$c_{\text{M}}(\text{K}_2\text{S}) = 0.05/2 = 0.025 \text{ моль/л}.$$

$$\stackrel{0,05\text{ моль/л}}{\text{KI}} o \stackrel{0,05\text{ моль/л}}{\text{K}}^+ + \stackrel{1}{\text{I}}^-$$
 .

$$HgS \rightleftharpoons Hg^{2+} + S^{2-}$$
.

$$\Pi K = [Hg^{2+}][S^{2-}].$$

$$K_{2}S \xrightarrow{0,025 \text{ моль/л}} 2K^{+} + S^{2-}$$
.
$$K_{y} = \frac{[HgI_{4}]^{2-}}{[Hg^{2+}][I^{-}]^{4}}.$$

Пусть равновесная концентрация $[Hg^{2+}] = x$ моль/л, тогда:

$$K_{y} = \frac{5 \cdot 10^{-4} - x}{x(4x + 0.05)^{4}} = 6.6 \cdot 10^{30}.$$

$$K_{y} = \frac{5 \cdot 10^{-4}}{x(0,05)^{4}} = 6,6 \cdot 10^{30}$$
.

 $x = 1,21 \cdot 10^{-29}$ моль/л – [Hg²⁺].

$$\Pi K = [Hg^{2+}][S^{2-}].$$

$$\Pi K = 1,21 \cdot 10^{-29} \cdot 0,025 = 3,025 \cdot 10^{-31}$$
.

$$\Pi P(HgS) = 1.6 \cdot 10^{-52}$$
.

ПК > ПР – осадок выпадет.

Ответ: $\Pi K > \Pi P$ – осадок выпадет.

Пример 2

Сколько граммов серебра в виде ионов содержится в 2,0 л 0,50 М раствора трицианоаргентата (I) калия, содержащего избыточный цианид калия в количестве 5,0 моль/л? Константа устойчивости комплексного иона равна $3,6\cdot10^{20}$.

Решение:

$$K_{2}[Ag(CN)_{3}] \rightarrow 2K^{+} + [Ag(CN)_{3}]^{2^{-}}.$$

$$[Ag(CN)_{3}]^{2^{-}} \rightleftarrows Ag^{+} + 3CN^{-}$$
 5,0 моль/л $KCN \rightarrow K^{+} + CN^{-}$.

$$K_y = \frac{[Ag(CN)_3]^{2^-}}{[Ag^+][CN^-]^3}$$
.

Пусть равновесная концентрация $[Ag^+] = x$ моль/л, тогда:

$$[Ag(CN)_{3}]^{2-} \rightleftharpoons Ag^{+} + 3CN^{-}.$$

$$K_{y} = \frac{0.5 - x}{x(3x + 5, 0)^{3}} = 3.6 \cdot 10^{20}.$$

$$K_{y} = \frac{0.5}{x \cdot 5.0^{3}} = 3.6 \cdot 10^{20}.$$

$$K_{y} = \frac{0.5}{x \cdot 125} = 3.6 \cdot 10^{20}.$$

 $x = 1,11 \cdot 10^{-23}$ моль/л (концентрация [Ag⁺]).

В 1 л содержится $1,11\cdot10^{-23}$ моль [Ag⁺].

В 2 л содержится $2,22 \cdot 10^{-23}$ моль [Ag⁺].

$$m(Ag^+) = 108 \cdot 2,22 \cdot 10^{-23} = 2,4 \cdot 10^{-21} \text{ r.}$$

Ответ: $m(Ag^+) = 2,4 \cdot 10^{-21} \text{ г.}$

Пример 3

Произойдёт ли осаждение сульфида ртути при прибавлении к 1 л $0.5~\mathrm{M}$ раствора $\mathrm{K}_2[\mathrm{HgI}_4]$, содержащего $5.0~\mathrm{моль/л}$ избыточного KI , такого количества моль ионов S^{2-} , которое содержится в $3~\mathrm{л}$ насыщенного раствора CdS ?

$$\Pi P(HgS) = 1,6 \cdot 10^{-52}, \quad \Pi P(CdS) = 8,0 \cdot 10^{-27}, \quad K_y([HgI_4]^{2-}) = 6,6 \cdot 10^{30}.$$

Решение:

$$K_2[HgI_4] \rightarrow 2K^+ + [HgI_4]^{2-}$$
.

$$[HgI_4]^{2-} \iff Hg^{2+} + 4I^{-}$$
.

$$\stackrel{5,0 \text{ моль/л}}{\text{KI}} \rightarrow \stackrel{5,0 \text{ моль/л}}{\text{K}^+} + \stackrel{1^-}{\text{I}^-}.$$

$$K_{y} = \frac{[HgI_{4}]^{2-}}{[Hg^{2+}][I^{-}]^{4}}.$$

Пусть равновесная концентрация $[Hg^{2+}] = x$ моль/л, тогда:

$$K_{y} = \frac{0.5 - x}{x(4x + 5.0)^{4}} = 6.6 \cdot 10^{30}$$
.

$$K_{y} = \frac{0.5}{x \cdot 5.0^{4}} = 6.6 \cdot 10^{30}$$
.

$$K_{y} = \frac{0.5}{x \cdot 625} = 6.6 \cdot 10^{30}$$
.

 $x = 1,21 \cdot 10^{-34}$ моль/л – [Hg²⁺].

Насыщенный раствор CdS:

$$\overset{P}{CdS} \ \rightleftarrows \ \overset{P}{Cd}^{2^{+}} + \overset{P}{S}^{2^{-}} \, .$$

$$\Pi K = \Pi P = [Cd^{2+}][S^{2-}] = P^2.$$

$$P = \sqrt{\Pi P} = \sqrt{8,0.10^{-27}} = 8,94.10^{-14}$$
.

 $P = 8.94 \cdot 10^{-14} \text{ моль/л}.$

В 1 л содержится $8,94 \cdot 10^{-14}$ моль [S²⁻].

В 3 л содержится $2,68 \cdot 10^{-13}$ моль [S²⁻].

$$HgS \rightleftharpoons Hg^{2+} + S^{2-}$$
.

ПК > ПР – условие выпадения осадка.

$$\Pi K = [Hg^{2+}][S^{2-}].$$

$$\Pi K = 1,21 \cdot 10^{-34} \cdot 2,68 \cdot 10^{-13} = 3,24 \cdot 10^{-47}$$

$$\Pi P(HgS) = 1,6.10^{-52}$$
.

ПК > ПР – осадок выпадет.

Ответ: $\Pi K > \Pi P$ – осадок выпадет.

Задания

- 421. А. Константа нестойкости иона $[Ag(S_2O_3)_2]^{3-}$ составляет 3,5·10⁻¹⁴. Сколько граммов серебра содержится в виде ионов в 1 л 0,1 М раствора $Na_3[Ag(S_2O_3)_2]$, содержащем, кроме того, 25 г $Na_2S_2O_3$ ·5 H_2O .
 - Б. Дать названия следующим комплексным соединениям:

 $K[Nd(SO_4)_2], K_2[Ni(CN)_4], [Ag(NH_3)_2]NO_3.$

В. Написать уравнения реакций:

$$NiSO_4 + Na_2C_2O_{4 \text{ M36}} \rightarrow$$

Ni(NO₃)₂+NH<sub>3
$$\mu$$
3 δ</sub> →

AgNO₃ + NaCl
$$_{и36}$$
 →

422. А. При какой концентрации ионов Cl^- начнётся выпадение осадка AgCl из 0,1 M раствора [Ag(NH₃)₂]NO₃, содержащего, кроме того, 1 моль NH₃ в 1 л раствора.

$$\Pi P(AgCl) = 1.8 \cdot 10^{-10}, K_H[Ag(NH_3)_2]^+ = 5.7 \cdot 10^{-8}.$$

Б. Дать названия следующим комплексным соединениям:

 $Na_3[Ag(S_2O_3)_2]$, $KFe[Fe(CN)_6]$, $[Ag(NH_3)_2]ClO_4$.

В. Написать уравнения реакций:

$$K_4[Fe(CN)_6] + KMnO_4 + H_2SO_4 \rightarrow$$

$$K[Al(H_2O)_2(OH)_4] + H_2SO_{4 \text{ M3}\tilde{0}} \rightarrow$$

$$Cr_2(SO_4)_3 + KOH_{изб} \rightarrow$$

423. А. Константа нестойкости иона $[Ag(CN)_2]^-$ составляет $1,4\cdot 10^{-20}$. Вычислить концентрацию ионов Ag^+ в 0,05 М растворе $K[Ag(CN)_2]$, содержащем, кроме того, 0,01 моль KCN в 1 л раствора.

Б. Дать названия следующим комплексным соединениям:

$$[Cu(en)_2][PtCl_4], \quad K_2[HgI_4], \quad [Fe(H_2O)_6]SO_4.$$

В. Написать уравнения реакций:

$$ZnSO_4 + NH_{3 \text{ M}36} \rightarrow$$

$$CdCl_2 + Na_2SO_{3 \text{ M36}} \rightarrow$$

$$CoCl_2 + Na_2C_2O_4$$
 изб \rightarrow

424. А. Константа нестойкости иона $[Cd(CN)_4]^{2-}$ составляет $7,8\cdot 10^{-18}$. Вычислить концентрацию ионов Cd^{2+} в 0,1 М растворе $K_2[Cd(CN)_4]$, содержащем в избытке 0,1 моль KCN в 1 л раствора.

Б. Дать названия следующим комплексным соединениям:

$$[Pt(NH_3)_4NO_2Cl]SO_4, \quad K_3[Ag(S_2O_3)_2], \quad H[BF_4].$$

В. Написать уравнения реакций:

$$CuSO_4 + NH_{3 \mu 3\delta} \rightarrow$$

$$ZnSO_4 + Na_2SO_{3 \mu 3\delta} \rightarrow$$

425. А. Произойдёт ли образование осадка Ag_2S после добавления 10 мл насыщенного раствора ZnS к 1 л 0,01 M раствора $K_2[Ag(CN)_3]$, содержащего избыточных 0,02 моль KCN?

$$K_{\rm H}[{\rm Ag}({\rm CN})_3]^{2-} = 2.8 \cdot 10^{-21}, \quad \Pi P({\rm Ag}_2 {\rm S}) = 6.3 \cdot 10^{-50}, \quad \Pi P({\rm ZnS}) = 1.6 \cdot 10^{-24}.$$

Б. Дать названия следующим комплексным соединениям:

$$NH_4[Cr(NH_3)_2(NCS)_4], [CrF_3(H_2O)_3], K_2[PtBr_4].$$

В. Написать уравнения реакций:

$$Al_2(SO_4)_3 + KOH_{1/30} \rightarrow$$

$$FeCl_2 + KCN_{\mu 36} \rightarrow$$

$$CoCl_2 + NH_{3 \text{ M36}} \rightarrow$$

426. А. Константа нестойкости иона $[Ag(NH_3)_2]^+$ составляет $5,7\cdot 10^{-8}$. Какова концентрация ионов Ag^+ в 0,08 М растворе $[Ag(NH_3)_2]NO_3$, содержащем, кроме того, 0,8 моль NH_3 в 1 л раствора? Сколько граммов NaCl можно добавить к 1 л указанного раствора до начала выпадения осадка AgCl? $\Pi P(AgCl) = 1,8\cdot 10^{-10}$.

Б. Дать названия следующим комплексным соединениям:

$$Na_2[Pt(CN)_4Cl_2], Na_2[Zn(OH)_4], H_2[SiF_6].$$

В. Написать уравнения реакций:

AgNO₃ + NH<sub>3
$$\mu$$
3 δ</sub> →

$$K[Ag(CN)_2]+Zn \rightarrow$$

$$Ni(NO_3)_2 + NH_{3 \text{ M}36} \rightarrow$$

427. А. Выпадет ли осадок AgI, если к 1 л 0,1 M раствора $[Ag(NH_3)_2]NO_3$, содержащего, кроме того, 1 моль NH_3 в 1 л раствора, добавить $1\cdot10^{-5}$ моль KI? $\Pi P(AgI) = 8,3\cdot10^{-17}$, $K_H[Ag(NH_3)_2]^+ = 5,7\cdot10^{-8}$.

Б. Дать названия следующим комплексным соединениям:

$$[Co(NH_3)_6]Cl_3$$
, $K[Sn(OH)_3]$, $Fe_3[Fe(CN)_6]_2$.

В. Написать уравнения реакций:

$$ZnSO_4 + KOH_{M30} \rightarrow$$

$$Na_2[Pb(OH)_4] + HNO_{3 \mu 3\delta} \rightarrow$$

$$AgI + Na_2S_2O_{3 \text{ изб}} \rightarrow$$

428. А. При какой концентрации ионов S^{2-} начнётся выпадение осадка CdS из 0,05 M раствора $K_2[Cd(CN)_4]$, содержащего 0,1 моль KCN в 1 л раствора?

$$\Pi P(CdS) = 7.9 \cdot 10^{-27}, K_H [Cd(CN)_4]^{2-} = 7.8 \cdot 10^{-18}.$$

Б. Дать названия следующим комплексным соединениям:

$$[Co(H_2O)_4(NO_2)_2]NO_3$$
, $[Ag(NH_3)_2]ClO_4$, $Na[Au(CN)_2]$.

В. Написать уравнения реакций:

$$K_4[Fe(CN)_6] + H_2O_2 + H_2SO_4 \rightarrow$$

$$Na_3[Cr(OH)_6] + HNO_{3 \text{ M}36} \rightarrow$$

$$Co(NO_3)_2 + Na_2C_2O_4_{1/30} \rightarrow$$

429. А. Какова концентрация ионов Ag^+ в 0,05 M растворе $K_2[Ag(CN)_3]$, содержащем, кроме того, 0,05 моль KCN в 1 л раствора?

$$K_{\rm H}[{\rm Ag}({\rm CN})_3]^{2-} = 2.8 \cdot 10^{-21}.$$

Б. Дать названия следующим комплексным соединениям:

$$Li_{3}[AlH_{6}], K_{4}[Fe(CN)_{6}], K_{2}[HgS_{2}].$$

$$FeCl_2 + K_3[Fe(CN)_6] \rightarrow$$

$$AgNO_3 + NH_3 \cdot H_2O_{\mu 3\delta} \rightarrow$$

$$CuSO_4 + NH_3 \cdot H_2O_{\text{ M3}\tilde{0}} \rightarrow$$

430. А. Произойдёт ли осаждение сульфида ртути при прибавлении к 1 л 0,001 М раствора $K_2[HgI_4]$, содержащего 0,05 моль KI, такого количества моль ионов S^{2-} , которое содержится в 1 л насыщенного раствора CdS?

$$K_{\rm H}[{\rm HgI_4}]^{2-} = 1.5 \cdot 10^{-31}, \quad \Pi P({\rm CdS}) = 7.9 \cdot 10^{-27}, \quad \Pi P({\rm HgS}) = 1.6 \cdot 10^{-52}.$$

Б. Дать названия следующим комплексным соединениям:

$$K_3[Al(C_2O_4)_3]$$
, $[Co(en)_3]SO_4$, $Ca_2[Fe(CN)_6]$.

В. Написать уравнения реакций:

$$PtCl_2 + KCN_{\mu 3\bar{0}} \rightarrow$$

$$[Co(NH_3)_4]Cl_2 + KCN_{\mu 3\delta} \rightarrow$$

$$Hg(NO_3)_2 + KI_{и3б}$$
 →

- 431. А. Произойдёт ли образование осадка иодида серебра, если к 1 л 0,01 М раствора $K_2[Ag(CN)_3]$, содержащему избыточных 0,02 моль KCN, добавить $1\cdot10^{-3}$ моль KI? $\Pi P(AgI) = 8,3\cdot10^{-17}$, $K_H[Ag(CN)_3]^{2-} = 2,8\cdot10^{-21}$.
 - Б. Дать названия следующим комплексным соединениям:

$$[Cr(NH_3)_6](NO_3)_3$$
, $K_2[PtCl_6]$, $[Co(NH_3)_3(NO_2)_3]$.

В. Написать уравнения реакций:

$$K_4[Fe(CN)_6] + K_2Cr_2O_7 + H_2SO_4 \rightarrow$$

$$[Cu(NH_3)_4]SO_4 + Na_2S \rightarrow$$

BeCl₂ + KOH
$$_{\text{изб}}$$
 \rightarrow

- 432. А. Сколько граммов серебра содержится в виде ионов в 2 л 0,3 М раствора $Na_3[Ag(S_2O_3)_2]$, содержащего, кроме того, 12,5 г $Na_2S_2O_3 \cdot 5H_2O$ в 1 л раствора? Константа нестойкости иона $[Ag(S_2O_3)_2]^{3-}$ составляет 3,5 · 10⁻¹⁴.
 - Б. Дать названия следующим комплексным соединениям:

$$[Pt(NH_3)_2Cl_2], \quad [Co(NH_3)_5Cl]Cl_2, \quad K_2[HgI_4].$$

$$Na_2[Pb(OH)_4] + HNO_{3 \text{ изб}} \rightarrow$$

$$[Ni(NH_3)_6](NO_3)_2 + K_2S \rightarrow$$

$$[Cu(NH_3)_4]SO_4 + Fe \rightarrow$$

433. А. Сколько граммов RbCl нужно добавить до начала выпадения осадка AgCl к 1 л 0,05 M раствора [Ag(NH₃)₂]NO₃, содержащего, кроме того, 1 моль NH₃ в 1 л раствора?

$$\Pi P(AgCl) = 1.8 \cdot 10^{-10}, K_H[Ag(NH_3)_2]^+ = 5.7 \cdot 10^{-8}.$$

Б. Дать названия следующим комплексным соединениям:

 $K[Co(NH_3)_2(NO_2)_4], [Pt(NH_3)_5Cl]Cl_3, K_3[Cr(OH)_6].$

В. Написать уравнения реакций:

$$ZnSO_4 + NaOH_{\mu 3\bar{0}} \rightarrow$$

$$[Ni(NH_3)_6](OH)_2 + H_2SO_{4 \mu 3\delta} \rightarrow$$

$$CdSO_3 + Na_2SO_3_{\mu_3\delta} \rightarrow$$

434. А. Сколько граммов КСl нужно добавить к 1 л 0,08 M раствора $[Ag(NH_3)_2]NO_3$, содержащего, кроме того, 0,8 моль NH_3 в 1 л раствора, до начала выпадения осадка AgCl?

$$\Pi P(AgC1) = 1.8 \cdot 10^{-10}, K_v[Ag(NH_3)_2]^+ = 1.75 \cdot 10^7.$$

Б. Дать названия следующим комплексным соединениям:

 $H[AuCl_4], K_3[Co(NO_2)_6], [Cu(NH_3)_4]Cl_2.$

В. Написать уравнения реакций:

$$ZnCl_2 + Na_2SO_{3 \mu 3\delta} \rightarrow$$

$$[Zn(NH_3)_4](OH)_2 + HNO_{3 \mu 3\delta} \rightarrow$$

$$AlCl_3 + NaOH_{\mu 36} \rightarrow$$

435. А. Какова концентрация ионов Ag^+ в 0,2 M растворе $[Ag(NH_3)_2]NO_3$, содержащем, кроме того, 0,1 моль NH_3 в 1 л раствора?

$$K_{y}[Ag(NH_{3})_{2}]^{+} = 1,75 \cdot 10^{7}.$$

Б. Дать названия следующим комплексным соединениям:

$$K[AgCl_2], \quad [Pt(NH_3)_4Br_2]SO_4, \quad [Co(NH_3)_3(NO_3)_3].$$

$$NiSO_4 + Na_2C_2O_4_{1/3}$$
 \rightarrow

$$[Cu(NH_3)_4](OH)_2 + H_2SO_{4 \text{ M3}\delta} \rightarrow$$

$$Pb(NO_3)_2 + KOH_{M30} \rightarrow$$

436. А. Выпадет ли осадок AgBr, если к 1 л 0,5 M раствора $[Ag(NH_3)_2]NO_3$, содержащего, кроме того, 2 моль NH_3 в 1 л раствора, добавить 10^{-4} моль KBr?

$$\Pi P(AgBr) = 5.3 \cdot 10^{-13}, K_y[Ag(NH_3)_2]^+ = 1.75 \cdot 10^7.$$

Б. Дать названия следующим комплексным соединениям:

 $K_3[Cr(C_2O_4)_2(OH)_2], K_2[SnF_6], Na_3[Fe(NH_3)(CN)_5].$

В. Написать уравнения реакций:

$$Fe_2(SO_4)_3 + K_4[Fe(CN)_6] \rightarrow$$

$$AgNO_3 + NH_3 \cdot H_2O_{\mu 3\delta} \rightarrow$$

$$Co(NO_3)_2 + Na_2C_2O_4_{\mu3\delta} \rightarrow$$

437. А. Выпадет ли осадок AgBr, если к 2 л 0,3 М раствора $[Ag(NH_3)_2]NO_3$, содержащего, кроме того, 1 моль NH_3 в 1 л раствора, прибавить 1 л 0,01 H раствора KBr?

$$\Pi P(AgBr) = 5,3 \cdot 10^{-13}, \quad K_y[Ag(NH_3)_2]^+ = 1,75 \cdot 10^7.$$

Б. Дать названия следующим комплексным соединениям:

 $K_2[Be(OH)_4], [Cu(NH_3)_4][PtCl_4], K_3[Fe(NH_3)(CN)_5].$

В. Написать уравнения реакций:

$$[Ni(H2O)6](NO3)2 + NH3 изб \rightarrow$$

$$FeSO_4 + K_3[Fe(CN)_6] \rightarrow$$

AgCl + NH₃·H₂O
$$_{\text{изб}}$$
 →

438. А. При какой концентрации ионов Cl^- начнётся выпадение AgCl из 0,3 M раствора [Ag(NH₃)₂]NO₃, содержащего, кроме того, 1,5 моль NH₃ в 1 л раствора?

$$\Pi P(AgC1) = 1.8 \cdot 10^{-10}, K_y[Ag(NH_3)_2]^+ = 1.75 \cdot 10^7.$$

Б. Дать названия следующим комплексным соединениям:

 $[Cr(H_2O)_3F_3], \quad [Pt(NH_3)_3Cl]Cl, \quad [Co(NH_3)_6][Co(NO_2)_6].$

В. Написать уравнения реакций:

$$Ni(NO_3)_2 + NH_{3 \text{ M36}} \rightarrow$$

$$AgBr + Na_2S_2O_3$$
 изб \rightarrow

$$FeCl_2 + KCN_{\mu 3\bar{0}} \rightarrow$$

439. А. Какова концентрация ионов Ag^+ в 0,1 M растворе $K_2[Ag(CN)_3]$, содержащем в избытке 0,1 моль KCN в 1 л раствора?

$$K_v[Ag(CN)_3]^{2-} = 3.6 \cdot 10^{20}$$
.

Б. Дать названия следующим комплексным соединениям:

$$K_3[Cr(CN)_6]$$
, $[Cr(H_2O)_6]Cl_3$, $H_2[SiF_6]$.

В. Написать уравнения реакций:

$$Hg(NO_3)_2 + KI_{135} \rightarrow$$

$$CuSO_4 + NH_3 \cdot H_2O_{\text{изб}} \rightarrow$$

$$Co(NO_3)_2 + Na_2C_2O_{4 \text{ M36}} \rightarrow$$

440. А. Какова концентрация ионов Ag^+ в 0,3 M растворе $K_2[Ag(CN)_3]$, содержащем, кроме того, 0,15 моль KCN в 1 л раствора?

$$K_{\rm H}[{\rm Ag}({\rm CN})_3]^{2-} = 2.8 \cdot 10^{-21}$$

Б. Дать названия следующим комплексным соединениям:

$$K[Cu(CN)_2], [Cu(NH_3)_4](NO_3)_2, [Pt(NH_3)_2Cl_4].$$

В. Написать уравнения реакций:

$$[Cd(NH_3)_4]Cl_2 + KCN_{\rm \, {\scriptscriptstyle H3}\bar{\scriptscriptstyle 0}} \rightarrow$$

BeCl₂ + NaOH
$$_{и3б}$$
 →

$$K_4[Fe(CN)_6] + KMnO_4 + H_2SO_4 \rightarrow$$

441. А. Выпадет ли осадок сульфида ртути при прибавлении к 1 л $0,02~\mathrm{M}$ раствора $\mathrm{K}_2[\mathrm{HgI}_4]$, содержащего $0,05~\mathrm{mon}$ ь $\mathrm{KI},\,0,078~\mathrm{r}$ $\mathrm{Na}_2\mathrm{S}$?

$$\Pi P(HgS) = 1.6 \cdot 10^{-52}, K_V[HgI_4]^{2-} = 6.7 \cdot 10^{30}.$$

Б. Дать названия следующим комплексным соединениям:

$$[Pd(NH_3)_2(H_2O)Cl]Cl, K[Ag(CN)_2], [Al(H_2O)_3F_3].$$

В. Написать уравнения реакций:

$$K[Ag(CN)_2] + Zn \rightarrow$$

$$K_3[Cr(OH)_6] + HCl_{1/30} \rightarrow$$

$$AgNO_3 + NH_3 \cdot H_2O_{M30} \rightarrow$$

442. А. Произойдёт ли образование осадка иодида серебра, если к 1 л $0,1\,$ М раствора $K_2[Ag(CN)_3]$, содержащего избыточных $0,5\,$ моль KCN, добавить 10^{-2} моль KI?

$$\Pi P(AgI) = 8.3 \cdot 10^{-17}, K_H[Ag(CN)_3]^{2-} = 2.8 \cdot 10^{-21}.$$

Б. Дать названия следующим комплексным соединениям:

$$K_3[Ga(OH)_6]$$
, $[Pt(NH_3)_4Cl_2]Cl_2$, $[Cu(NH_3)_4](NO_3)_2$.

В. Написать уравнения реакций:

$$K[Al(H_2O)_2(OH)_4] + HCl_{ M36} \rightarrow$$

$$Ni(NO_3)_2 + NH_{3 \text{ M36}} \rightarrow$$

$$CoCl_2 + Na_2SO_3$$
 изб \rightarrow

443. А. Произойдёт ли осаждение сульфида ртути при добавлении к $1\ \pi\ 0,008\ M$ раствора $K_2[HgI_4]$, содержащего 0,1 моль KI, такого количества моль ионов S^{2-} , которое содержится в $2\ \pi\$ насыщенного раствора ZnS?

$$K_{\rm H}[{\rm HgI_4}]^{2-} = 1.5 \cdot 10^{-31}, \quad \Pi P({\rm ZnS}) = 8.0 \cdot 10^{-26}, \quad \Pi P({\rm HgS}) = 1.6 \cdot 10^{-52}.$$

Б. Дать названия следующим комплексным соединениям:

$$[Cr(H_2O)_6]Cl_3, \quad [Co(NH_3)_6][Co(NO_2)_6], \quad K_2[PtCl_4(OH)_2].$$

В. Написать уравнения реакций:

$$NiSO_4 + Na_2C_2O_{4 \mu 36} \rightarrow$$

$$K_4[Fe(CN)_6] + KMnO_4 + H_2SO_4 \rightarrow$$

$$Cr_2(SO_4)_3 + KOH_{M3\delta} \rightarrow$$

444. А. Произойдёт ли осаждение сульфида ртути при прибавлении к 1 л 0,02 М раствора $K_2[HgI_4]$, содержащего 0,1 моль KI, такого количества моль ионов S^{2-} , которое содержится в 1 л насыщенного раствора CdS?

$$K_{\rm H}[{\rm HgI_4}]^{2-} = 1.5 \cdot 10^{-31}, \quad \Pi P({\rm CdS}) = 7.9 \cdot 10^{-27}, \quad \Pi P({\rm HgS}) = 1.6 \cdot 10^{-52}.$$

Б. Дать названия следующим комплексным соединениям:

$$K_2[PtCl_4], [Ni(NH_3)_6][PtCl_4], [Co(NH_3)_5Cl]SO_4.$$

В. Написать уравнения реакций:

$$Al_2(SO_4)_3 + KOH_{M30} \rightarrow$$

$$Cd(NO_3)_2 + Na_2SO_3_{M30} \rightarrow$$

445. А. Сколько моль аммиака должно содержаться в 1 л 0,3 М раствора [Ag(NH₃)₂]NO₃, чтобы прибавление 0,75 г КСl к 1 л раствора не вызвало выпадения осадка хлорида серебра?

$$K_{\rm H}[{\rm Ag(NH_3)_2}]^+ = 5.7 \cdot 10^{-8}, \quad \Pi P({\rm AgCl}) = 1.8 \cdot 10^{-10}.$$

Б. Дать названия следующим комплексным соединениям:

$$[Pt(NH_3)_3Br]Br$$
, $[Pt(NH_3)_4][PtBr_6]$, $K_3[Al(OH)_6]$.

В. Написать уравнения реакций:

$$K_4[Fe(CN)_6] + H_2O_2 + H_2SO_4 \rightarrow$$

$$AgNO_3 + NH_{3 \text{ M}36} \rightarrow$$

$$ZnSO_4 + KOH_{M30} \rightarrow$$

446. А. Сколько моль аммиака должно содержаться в 2 л 0,05 М раствора $[Ag(NH_3)_2]NO_3$, чтобы прибавление 2,3 г КС1 к 1 л раствора не вызвало выпадения осадка хлорида серебра?

$$K_{\rm H}[{\rm Ag}({\rm NH_3})_2]^+ = 5,7\cdot 10^{-8}, \quad \Pi P({\rm AgCl}) = 1,8\cdot 10^{-10}.$$

Б. Дать название следующим комплексным соединениям:

$$K_2[Pt(CN)_4Cl_2], \quad Na_4[Fe(CN)_6], \quad [Cu(NH_3)_4]SO_4.$$

$$K_4[Fe(CN)_6] + K_2Cr_2O_7 + H_2SO_4 \rightarrow$$

$$PtCl_2 + KCl_{1/30} \rightarrow$$

$$FeCl_2 + K_3[Fe(CN)_6] \rightarrow$$

447. А. Сколько моль аммиака должно содержаться в 1 л 0,1 М раствора [Ag(NH₃)₂]NO₃, чтобы прибавление 1,5 г KCl к 1 л раствора не вызвало выпадения осадка хлорида серебра?

$$K_{\rm H}[Ag(NH_3)_2]^+ = 5.7 \cdot 10^{-8}, \quad \Pi P(AgCl) = 1.8 \cdot 10^{-10}.$$

Б. Дать названия следующим комплексным соединениям:

 $[Fe(H_2O)_6]SO_4, K_2[Ni(CN)_4], H_2[PtCl_6].$

В. Написать уравнения реакций:

$$[Ag(NH_3)_2]NO_3 + Na_2S \rightarrow$$

$$CoCl_2 + NH_{3 \text{ M36}} \rightarrow$$

448. А. Выпадет ли осадок AgBr, если к 1 л 0,1 М раствора $[Ag(NH_3)_2]NO_3$, содержащего, кроме того, 1 моль NH_3 в 1 л раствора, прибавить $1\cdot 10^{-5}$ моль KBr?

$$K_{\rm H}[{\rm Ag}({\rm NH_3})_2]^+ = 5.7 \cdot 10^{-8}, \quad \Pi P({\rm AgBr}) = 5.3 \cdot 10^{-13}.$$

Б. Дать названия следующим комплексным соединениям:

$$[Pt(NH_3)_2Br_2], [Cu(H_2O)_4]SO_4\cdot H_2O, [Cu(NH_3)_4](OH)_2.$$

В. Написать уравнения реакций:

SnCl₂ + NaOH
$$_{\text{изб}}$$
 →

$$[Zn(NH_3)_4]SO_4 + HCl_{1/3} \rightarrow$$

$$FeCl_3 + K_4[Fe(CN)_6] \rightarrow$$

449. А. При какой концентрации ионов S^{2-} начнётся выпадение осадка CdS из 0,3 M раствора $K_2[Cd(CN)_4]$, содержащего 0,2 моль KCN в 1 л раствора?

$$K_{\rm H}[{\rm Cd}({\rm CN})_4]^{2-} = 7.8 \cdot 10^{-18}, \quad \Pi P({\rm CdS}) = 7.9 \cdot 10^{-27}.$$

Б. Дать названия следующим комплексным соединениям:

 $[Pt(NH_3)_2Cl_2], \quad Ba_2[Fe(CN)_6], \quad [Co(NH_3)_6](NO_3)_2.$

В. Написать уравнения реакций:

$$FeCl_3 + K_4[Fe(CN)_6] \rightarrow$$

$$FeCl_3 + KCN_{\text{ \tiny M36}} \rightarrow$$

$$[Ag(NH_3)_2]NO_3 + Na_2S \rightarrow$$

450. А. При какой концентрации ионов S^{2-} начнётся выпадение осадка CdS из 0,2 M раствора $K_2[Cd(CN)_4]$, содержащего 0,05 моль KCN в 1 л раствора?

$$K_{\rm H}[{\rm Cd}({\rm CN_4})]^{2-} = 7.8 \cdot 10^{-18}, \quad \Pi P({\rm CdS}) = 7.9 \cdot 10^{-27}.$$

Б. Дать названия следующим комплексным соединениям:

$$K_2[Ni(CN)_4], \ \ [Ag(NH_3)_2]Br, \ \ [Pt(NH_3)_2SO_3].$$

$$SnCl_2 + KOH_{и30} \rightarrow$$

$$CoCl_2 + NH_{3 \text{ M36}} \rightarrow$$

$$[Zn(NH_3)_4]SO_4 + HCl_{ H3G} \rightarrow$$

ПРИЛОЖЕНИЕ ТАБЛИЦЫ ПЛОТНОСТЕЙ РАСТВОРОВ

Таблица П.1.1 Плотности водных растворов некоторых электролитов (в г/см³) при 20 °C

			npn 20 V	_		
с, мас. %	NaOH	КОН	NaCl	KCl	HCl	NH ₃
0	0,998	0,998	0,998	0,998	0,998	0,998
1	1,010	1,008	1,005	1,004	1,003	0,994
2	1,021	1,016	1,012	1,011	1,008	0,990
3	1,032	1,024	1,020	1,017	1,012	0,984
4	1,043	1,033	1,027	1,024	1,018	0,981
5	1,054	1,041	1,034	1,030	1,023	0,977
6	1,065	1,048	1,041	1,037	1,028	0,973
7	1,076	1,055	1,049	1,043	1,033	0,969
8	1,087	1,064	1,056	1,050	1,038	0,965
9	1,098	1,072	1,063	1,057	1,043	0,961
10	1,109	1,080	1,071	1,063	1,047	0,958
12	1,131	1,099	1,086	1,077	1,057	0,950
14	1,153	1,116	1,101	1,090	1,067	0,943
16	1,175	1,137	1,116	1,104	1,078	0,936
18	1,197	1,154	1,132	1,118	1,088	0,930
20	1,219	1,173	1,148	1,133	1,098	0,923
22	1,241	1,193	1,164	1,147	1,108	0,916
24	1,263	1,217	1,180	1,162	1,119	0,910
26	1,285	1,238	1,197		1,129	0,904
28	1,306	1,260			1,139	0,898
30	1,328	1,285			1,149	0,892
32	1,349	1,307			1,159	
34	1,370	1,331			1,169	
36	1,390	1,355			1,179	
38	1,410	1,382			1,189	
40	1,430	1,408			1,198	

Таблица $\Pi.1.2$ Плотности водных растворов азотной, серной и уксусной кислот (в г/см³) при 20 °C

с, мас. %	HNO ₃	H ₂ SO ₄	CH₃COOH	с, мас. %	HNO ₃	H ₂ SO ₄	CH₃COOH
0	0,998	0,998	0,998	43	1,266	1,329	1,052
1	1,004	1,005	1,000	46	1,285	1,357	1,054
2	1,009	1,012	1,001	49	1,304	1,385	1,057
3	1,015	1,018	1,003	52	1,322	1,415	1,059
4	1,020	1,025	1,004	55	1,339	1,445	1,061
5	1,026	1,032	1,006	58	1,356	1,477	1,063
6	1,031	1,038	1,007	61	1,372	1,509	1,065
7	1,037	1,045	1,008	64	1,387	1,542	1,066
8	1,043	1,052	1,010	67	1,400	1,576	1,068
9	1,049	1,059	1,011	70	1,413	1,611	1,069
10	1,054	1,066	1,013	73	1,426	1,646	1,069
13	1,072	1,087	1,017	76	1,438	1,681	1,070
16	1,090	1,109	1,021	79	1,449	1,716	1,070
19	1,109	1,132	1,025	82	1,459	1,749	1,070
22	1,128	1,155	1,029	85	1,469	1,779	1,069
25	1,147	1,178	1,033	88	1,477	1,802	1,068
28	1,167	1,202	1,036	91	1,485	1,819	1,065
31	1,187	1,227	1,040	94	1,491	1,8312	1,062
34	1,207	1,252	1,043	97	1,497	1,8363	1,057
37	1,227	1,277	1,046	100	1,513	1,8305	1,050
40	1,246	1,303	1,049				

СПРАВОЧНЫЕ ТЕРМОДИНАМИЧЕСКИЕ ДАННЫЕ

Таблица П.2.1 Термодинамические характеристики образования ($\Delta H^{o}_{oбp}$, $\Delta G^{o}_{oбp}$, кДж/моль) и стандартные энтропии (S^{o} , Дж/(моль·К)) веществ при 298,15 К

Вещество и состояние	ΔH ^o _{обр., 298,15} кДж/моль	ΔG ^o _{обр., 298,15} кДж/моль	S°, 298,15 Дж/(моль·К)
Ag (ĸ)	0	0	42,55
Ag^+ (p-p; ∞ H_2O)	105,6	77,13	72,6
AgBr (κ)	-100,7	-97,2	107,1
AgCl (κ)	-127,1	-109,8	96,1
AgCl ₂ ⁻ (p-p; ∞ H ₂ O, гип. недис.)	-245,2	-214,8	228,9
AgCN (κ)	145,9	156,9	107,2
$Ag(CN)_2^-$ (p-p; ∞ H ₂ O, гип. недис.)	269,0	301,7	201,3
AgF (κ)	-205,9	-187,9	84
AgF (p-p; 20 H ₂ O)	-223,5	1	1
AgF (p-p; 50 H ₂ O)	-223,7	1	1
AgF (p-p; 1000 H ₂ O)	-223,7	1	1
AgF (p-p; ∞ H ₂ O)	-225,9	-200,6	58,8
AgI (κ)	-61,9	-66,4	115,5
$Ag(NH_3)_2^+$ (p-p; ∞ H ₂ O, гип. недис.)	-111,2	-17,6	246
AgNO ₃ (κ)	-124,5	-33,6	140,9
AgNO ₃ (p-p; 50 H ₂ O)	-103,7	-	-
AgNO ₃ (p-p; 1000 H ₂ O)	-101,7	-	-
$AgNO_3$ (p-p; ∞ H_2O)	-101,8	-34,5	219,8
$Ag_2O(\kappa)$	-31,1	-11,3	121,0
$Ag_2S(\kappa)$	-32,8	-40,8	144,0
$Ag(S_2O_3)_2$ (p-p; ∞ H ₂ O, гип. недис.)	-1296,2	-1033,2	98,9
$Ag_2SO_4(\kappa)$	-717,2	-619,6	199,8
$Al(\Gamma)$	329,1	288,5	164,4
Al (κ)	0	0	28,34
$\mathrm{Al^{3+}}\left(\mathrm{p-p;} \propto \mathrm{H_2O}\right)$	-529,7	-490	-301
Al_4C_3 (κ)	-209	-196	89,0
AlCl (r)	-45,9	-72,1	227,9
AlCl ₃ (r)	-585	- 571	313,8
AlCl ₃ (κ)	-704,2	-628,6	109,3
AlCl ₃ (p-p; 1000 H ₂ O)	-1035,4	-	-
AlCl ₃ (p-p; 10000 H ₂ O)	-1036,6	-	-
AlCl ₃ (p-p; ∞ H ₂ O)	-1031,0	-883,8	-132
AlCl ₃ 6H ₂ O (κ)	-2691,6	-2261,3	318,0
$Al_2Cl_6(\Gamma)$	-1293	-1209	444,3

	.Н ^о обр., 298,15 кДж/моль	ΔG° обр., 298,15	S ^o , 298,15
Al ₂ Cl ₆ (κ)		кДж/моль	Дж/(моль·К)
` ′	-1408,3	-1257,2	218,6
	-151	-24,8	209,6
AlF (Γ)	-263,3	-288,7	215,01
AlF ₃ (r)	-1210,8	-1194,3	277,0
AlF ₃ (κ)	-1510,4	-1431,1	66,5
AlF ₆ ³⁻ (p-p; ∞ H ₂ O, гип. недис.)	-2518	-2275	24
AlH ₃ (κ)	-11,4	46	30,0
AlI ₃ (κ)	-307,9	-304,1	190
AlBr ₃ (κ)	-513,88	-490,60	180,25
Al(NO ₃) ₃ 6H ₂ O (κ)	-2850,1	-2203,5	468
AlO₂ (р-р; ∞ H₂O, гип. недис.)	-934,9	-832,1	-46
Al(OH) ₃ (aморф.)	-1276	-	-
Al(OH) ₄ - (p-p; ∞ H ₂ O, гип. недис.)	-1506,5	-1306,6	90
Al ₂ O ₃ (κ)	-1675,7	-1582,3	50,9
Al ₂ O ₃ (аморф)	-1602	-	-
$Al_2S_3(\kappa)$	-724	-	-
Al ₂ (SO ₄) ₃ (κ)	-3441,8	-3100,9	239,2
Al ₂ (SO ₄) ₃ (p-p; 55 H ₂ O)	-3771,6	-	-
Al ₂ (SO ₄) ₃ (p-p; 100 H ₂ O)	-3780,1	-	-
Al ₂ (SO ₄) ₃ (p-p; 800 H ₂ O)	-3786,6	-	-
$Al_2(SO_4)_3$ (p-p; ∞ H_2O)	-3792,4	-3217,1	-548
As (Γ)	288,7	247,4	174,1
As (κ)	0	0	35,61
AsCl ₃ (Γ)	-271,1	-258,1	326,2
AsCl ₃ (ж)	-315,5	-268,4	212,5
AsF ₃ (ж)	-956,9	-909,6	181,2
AsH ₃ (Γ)	66,4	68,9	222,97
AsI ₃ (κ)	-64,9	-65,8	213,0
AsO_4^{3-} (p-p; ∞ H ₂ O)	-890,1	-648,9	-167,28
As ₄ O ₆ (κ)	-1334,7	-1176,4	233
As ₂ O ₅ (κ)	-926,4	-783,8	105,4
As_2S_3 (K)	-159,0	-158,0	164
HAsO ₄ ²⁻ (p-p; ∞ H ₂ O, гип. недис.)	-908,3	-715,6	-5
H ₂ AsO ₄ ⁻ (р-р; ∞ H ₂ O, гип. недис.)	-911,5	-755,6	119
H ₃ AsO ₄ (p-p; ∞ H ₂ O, гип. недис.)	-908,6	-768,2	171
Au (ĸ)	0	0	47,4
AuBr ₃ (κ)	-54	-18,0	155
AuCl (κ)	-36,4	-14,6	85,9
AuCl ₃ (κ)	-118	-54	164

Продолжение таол. 11.2				
Вещество и состояние	ΔH ^o _{обр., 298,15} кДж/моль	$\Delta { m G^o}_{ m oбp.,\ 298,15}$ кДж/моль	S ^o , 298,15 Дж/(моль·К)	
AuCl ₄ -(p-p; ∞ H ₂ O, гип. недис.)	-322,0	-235,6	268,3	
AuF ₃ (κ)	-431,4	-		
Au(OH) ₃ (κ)	-477,8	-349,8	121	
Au ₂ O ₃ (κ)	-13,0	78,7	_	
В (г)	561,6	517,6	153,33	
B ₂ (Γ)	845,2	788,6	201,79	
Β (κ)	0	0	5,86	
ВВг ₃ (ж)	-239,3	-237,5	228	
B(CH ₃) ₃ (Γ)	-124	-36,2	315,0	
BCl ₃ (r)	-403,8	-388,7	289,5	
BCl ₃ (ж)	-427,1	-387,1	206	
BF ₃ (Γ)	-1136,9	-1120,3	254,3	
BF_4^- (p-p; ∞ H ₂ O)	-1572	-1482	176	
ВН ₃ (г)	92	96	187,7	
BN (κ)	-252,6	-226,8	14,8	
B(OH) ₃ (к)	-1094,2	-968,8	88,7	
BO ₄ ⁻ (р-р; ∞ H ₂ O, гип. недис.)	-1344,1	-1152,9	101	
$B_2H_6(\Gamma)$	38	90	232	
Β ₂ Ο ₃ (κ)	-1272,9	-1193,8	54,0	
В ₂ О ₃ (аморф.)	-1254,0	-	-	
HBO ₂ (к)	-803,8	-736,1	49	
Ва (г)	179	147	170,13	
Ва (к)	0	0	62,5	
$\mathrm{Ba^{2+}}\ (\mathrm{p-p}; \infty\ \mathrm{H_2O})$	-524,0	-546,8	8,4	
BaCO ₃ (κ)	-1211	-1132,2	112,1	
BaCl ₂ (ĸ)	-844,0	-795,7	123,7	
BaCl ₂ (p-p; 50 H ₂ O)	-855,7	-	-	
BaCl ₂ (p-p; 100 H ₂ O)	-855,8	-	-	
BaCl ₂ (p-p; 1000 H ₂ O)	-856,7	-	-	
BaCl₂ (p-p; ∞ H₂O)	-858,2	-809,3	121,4	
BaCl ₂ 2H ₂ O (κ)	-1446,4	-1282,9	203,3	
BaCrO ₄ (κ)	-1428,8	-1332	172,01	
Ba(NO ₃) ₂ (κ)	-978,6	-783,2	213,8	
BaH ₂ (к)	-190,1	-151,3	63	
ВаО (к)	-548	-520	72,0	
BaO ₂ (κ)	-623	-	-	
Ba(OH) ₂ (κ)	-941	-855	109	
Ba(OH) ₂ (p-p; 400 H ₂ O)	-984,5	-	-	
Ba(OH) ₂ (p-p; ∞ H ₂ O)	-984,1	-861,4	-13,4	

		търодоли	011110 10031. 11.2.1
Вещество и состояние	$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	$\Delta { m G^o}_{ m oбp.,\ 298,15}$ кДж/моль	S ^o , _{298,15} Дж/(моль·К)
BaS (κ)	-456	-451	78,4
BaSO ₄ (к)	-1458,9	-1347,9	132,2
BaSiO ₃ (κ)	-1617	-1534	109,6
Ве (г)	324	286	136,16
Ве (к)	0	0	9,50
Be^{2+} (p-p; ∞ H ₂ O)	-377,4	-375,7	-127
BeCO ₃ (κ)	-1046	-965	52
BeCl ₂ (κ)	-496,2	-449,5	75,8
BeF ₂ (κ)	-1027,3	-979,9	53,3
BeH ₂ (Γ)	126	115	174,6
ВеО (к)	-609,2	-579,9	13,77
Be(OH) ₂ (к)	-905,8	-816,5	45,56
BeSO ₄ (κ)	-1201,2	-1089,8	77,9
BeSO ₄ (p-p; 20 H ₂ O)	-1273,9	-	-
BeSO ₄ (p-p; 50 H ₂ O)	-1278,2	-	-
BeSO ₄ (p-p; 100 H ₂ O)	-1279,8	-	-
BeSO ₄ (p-p; 1000 H ₂ O)	-1283,9	-	-
BeSO ₄ (p-p; ∞ H ₂ O)	-1288,4	-1121,4	-109
Be ₂ C (κ)	-117,2	-	-
Be ₃ N ₂ (κ)	-587,9	-532,5	34,3
Ві (к)	0	0	56,9
Bi ³⁺ (p-p; ∞ H ₂ O)	81,0	91,8	175
BiCl ₃ (r)	-263,0	-252,6	356,5
BiCl ₃ (κ)	-378,7	-313,1	172
BiI₄⁻ (p-p; ∞ H ₂ O, гип. недис.)	-	-211,8	-
$Bi_2S_3(\kappa)$	-155,6	-152,9	200
$Bi_2O_3(\kappa)$	-577,8	-497,3	151,5
BiOCl (κ)	-371,1	-321,0	103
Bi(OH) ₃ (κ)	-712,1	-	-
Br (r)	111,84	82,38	174,9
$\mathrm{Br}_{2}\left(\Gamma\right)$	30,91	3,13	245,37
$\operatorname{Br}_{2}\left(\mathfrak{K}\right)$	0	0	152,2
Br ⁻ (Γ)	-218,87	-238,66	163,38
$Br^{-}(p-p; \infty H_2O)$	-121,4	-104,1	83,3
BrF (r)	-42,39	-57,71	228,9
BrF ₃ (Γ)	-255,6	-229,5	292,5
$BrF_5(\Gamma)$	-428,9	-350,3	-
$BrO_3^-(p-p; \infty H_2O)$	-82,8	1,9	164,8
HBr (Γ)	-36,3	-53,3	198,59

	продолж	ение таол. 11.2.1	
Вещество и состояние	ΔH ^o _{обр., 298,15} кДж/моль	$\Delta { m G^o}_{ m oбp.,\ 298,15}$ кДж/моль	S ^o , 298,15 Дж/(моль·К)
HBr (p-p; 20 H ₂ O)	-118,7	-	-
HBr (p-p; 50 H ₂ O)	-119,9	-	-
HBr (p-p; 100 H ₂ O)	-120,3	-	-
HBr (p-p; 1000 H ₂ O)	-121,1	-	-
HBr (p-p; ∞ H ₂ O)	-121,4	-104,1	83,3
С (г)	715,1	669,7	157,99
С (к, алмаз)	1,83	2,83	2,37
С (к, графит)	0	0	5,74
CCl ₄ (r)	-102,9	-60,7	309,9
CCl ₄ (ж)	-135,4	-64,6	214,4
CF ₄ (Γ)	-933,0	-888,4	261,37
CHBr ₃ (г)	42	32,5	330,7
CHCl ₃ (Γ)	-101,3	-68,6	295,9
СНГ3 (г)	-698,7	-664,3	259,57
$CH_2F_2(\Gamma)$	-445,6	-418,1	246,6
СН ₃ ОН (г)	-202,0	-163,3	239,7
СН ₃ ОН (ж)	-239,45	-167,1	126,6
СН ₄ (г)	-74,81	-50,82	186,31
CN⁻ (p-p; ∞ H ₂ O)	150,6	171,6	96,4
CNO⁻ (p-p; ∞ H ₂ O)	-145,90	-96,07	101,13
CNS⁻ (p-p; ∞ H ₂ O)	74,27	89,96	146,05
СО (г)	-110,52	-137,14	197,54
$CO_2(\Gamma)$	-393,51	-394,38	213,67
CO_3^{2-} (p-p; ∞ H ₂ O)	-676,64	-527,6	– 56
$COCl_2(\Gamma)$	-221	-207	284
COS (r)	-141,70	-168,94	231,53
$C_2H_2(\Gamma)$	226,0	208,5	200,83
C ₂ H ₄ (г)	52,5	68,3	219,3
$C_2H_6(\Gamma)$	-84,7	-33,0	229,5
$C_2H_5OH(\Gamma)$	-234,6	-168,1	282,4
С ₂ H ₅ OH (ж)	-276,9	-174,2	161,0
С ₆ H ₆ (ж)	49,03	124,5	172,8
C_6H_{12} (ж) (циклогексан)	-156,23	26,65	204,39
HCN (Γ)	134,7	124,3	201,71
HCN (Γ)	134,7	124,3	201,71
HNCS (Γ)	127,61	112,89	248,03
$COOH^{-}(p-p; \infty H_2O)$	-426,2	-351,5	91
$\text{CH}_3\text{COO}^-\text{ (p-p;} \infty \text{ H}_2\text{O)}$	-485,64	-369,37	87,58
$C_2O_4^{2-}$ (p-p; ∞ H ₂ O)	-824,25	-674,86	51,04

	T		
Вещество и состояние	ΔH ^o _{oбp., 298,15} кДж/моль	$\Delta { m G^o}_{ m oбp.,\ 298,15}$ кДж/моль	S ^o , _{298,15} Дж/(моль·К)
$HC_2O_4^-$ (p-p; ∞ H ₂ O)	-818,18	-688,47	117,03
HCOOH (p-p; ∞ H ₂ O, гип. недис.)	-426,2	-373,0	163
HCO ₃ - (р-р; ∞ H ₂ O, гип. недис.)	-691,3	-586,6	93
H ₂ CO ₃ (p-p; ∞ H ₂ O, гип. недис.)	-699,0	-623,3	190
$CS_2(\Gamma)$	116,7	66,55	237,8
СЅ2 (ж)	88,70	64,41	151,04
Са (к)	0	0	41,6(63)
Ca^{2+} (p-p; ∞ H ₂ O)	-543,1	-552,8	56,5
$CaC_{2}(\kappa)$	-60	-65	70,0
CaCl ₂ (к)	-795,9	-749,4	108,4
CaCl ₂ (p-p; 20 H ₂ O)	-870,3	-	-
CaCl ₂ (p-p; 50 H ₂ O)	-873,2	-	-
CaCl ₂ (p-p; 100 H ₂ O)	-874,1	-	-
CaCl ₂ (p-p; 1000 H ₂ O)	-875,7	-	-
CaCl₂ (p-p; ∞ H₂O)	-877,3	-815,3	169,5
CaCO ₃ (к)	-1206,8	-1128,4	91,7
CaF ₂ (к)	-1220,9	-1168,5	68,5
$Ca(OH)_2(\kappa)$	-985,1	-897,1	83,4
СаНРО4 (к)	-1808,6	-1675,4	111,4
CaHPO₄·2H ₂ O (к)	-2397,46	-2148,60	189,45
$Ca(H_2PO_4)_2$ (κ)	-3114,6	-2811,8	189,5
Ca(H ₂ PO ₄) ₂ ·H ₂ O (к)	-3408,29	-3057,00	259,83
$Ca_3(PO_4)_2(\kappa)$	-4120,8	-3885,0	236,0
Ca(NO ₃) ₂ (к)	-938,8	-743,5	193,3
СаО (к)	-635,1	-603,5	38,1
CaS (ĸ)	-476,98	-471,93	56,61
CaSO ₄ (к)	-1436,3	-1323,9	106,7
Ca ₃ N ₂ (к)	-431,8	-	-
Cd (к)	0	0	51,76
$\mathrm{Cd}^{2+}\left(\mathrm{p-p};\infty\mathrm{H}_{2}\mathrm{O}\right)$	-75,3	-77,7	-71
CdCl ₂ (к)	-390,8	-343,2	115,3
CdO (ĸ)	-259,0	-229,3	54,8
CdSO ₄ (ĸ)	-934,41	-823,88	123,05
CdS (ĸ)	-157	-153,2	71,1
	0	0	71,5
Се (к)		_	,-
Ce (κ) Ce ³⁺ (p-p; ∞ H ₂ O)		-675.4	-209.6
Ce (κ) Ce ³⁺ (p-p; ∞ H ₂ O) Ce ⁴⁺ (p-p; ∞ H ₂ O)	-700,8 -538,1	-675,4 -506,7	-209,6 -295

		пределя	eiiiie 140ii. 11.2:1
Вещество и состояние	ΔH ^o _{oбp., 298,15}	ΔG ^o _{oбp., 298,15}	S ^o , 298,15 Дж/(моль·К)
C1- (p)	кДж/моль	кДж/моль	
Cl ⁻ (r)	-233,62	-239,85	153,25
Cl (p-p; ∞ H ₂ O)	-167,1	-131,26	56,5
Cl ₂ (r)	0	0	222,98
ClO^{-} (p-p; ∞ H ₂ O)	-110,0	-36,6	33
ClO_2^- (p-p; ∞ H ₂ O)	-66,53	17,12	101,25
$\text{ClO}_3^-\text{(p-p;} \infty \text{ H}_2\text{O})$	-95,6	-0,2	164,4
ClO_4^- (p-p; ∞ H ₂ O)	-123,6	-3,4	183,7
HCl (г)	-92,31	-95,30	186,79
HCl (p-p; 20 H ₂ O)	-163,7	-	-
HCl (p-p; 50 H ₂ O)	-165,3	-	-
HCl (p-p; 100 H ₂ O)	-165,8	-	-
HCl (p-p; 1000 H ₂ O)	-166,7	-	-
$HCl(p-p; \infty H_2O)$	-167,1	-131,26	56,5
HClO ₄ (ж)	-34,9	84,0	188,3
$ClO_2(\Gamma)$	104,60	122,34	257,02
$\text{Cl}_2\text{O}\left(\Gamma\right)$	75,73	93,40	266,23
Со (к)	0	0	30,04
$\text{Co}^{2+} \text{ (p-p; } \infty \text{ H}_2\text{O}\text{)}$	-56,6	-53,6	-110
Co^{3+} (p-p; ∞ H ₂ O)	94	130	285
CoCl ₂ (k)	-310,0	-267,3	109,7
Co(NH ₃) ₆ ²⁺ (p-p; ∞ H ₂ O, гип. недис)	-	-239,6	-
$\mathrm{Co}(\mathrm{NH_3})_6^{3+}\mathrm{(p-p;} \propto \mathrm{H_2O},\mathrm{гип.}\mathrm{недис})$	-594,5	-221	332
СоО (к)	-238,9	-215,1	52,7
CoSO ₄ (к)	-867,76	-760,83	113,39
Cr (к)	0	0	23,6(64)
$\operatorname{Cr}^{2+}(\operatorname{p-p}; \infty \operatorname{H}_2\operatorname{O})$	-138,91	-183,26	41,87
Cr^{3+} (p-p; ∞ H ₂ O)	-236,0	-223,1	215,5
CrCl ₃ (к)	-570	-501	124,7
CrCl ₃ (p-p; 300 H ₂ O)	-720	-	-
CrCl ₃ (p-p; ∞ H ₂ O)	-737,3	-616,9	385,0
Сг ₂ О ₃ (к)	-1140,6	-1059,0	81,2
CrO ₃ (ĸ)	-590	-513	73,2
$\text{CrO}_4^{2-}(\text{p-p}; \infty \text{ H}_2\text{O})$	-882	-729	54
CrO_2Cl_2 (Γ)	-528,9	-492,5	330
Сr(OH) ₃ (к., свежеосажд.)	-1013	-867	-
$\operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{p-p};\infty\operatorname{H}_2\operatorname{O})$	-1491	-1305	270
(NH ₄) ₂ Cr ₂ O ₇ (к)	-1807	_	
Cs (r)	76,9	49,9	175,49
Cs (κ)	0	0	85,23
Co (n)	<u> </u>	U	05,25

		I - / /	CHITC 14031. 11.2.1
Вещество и состояние	$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	ΔG ^o oбр., 298,15 кДж/моль	S ^o , 298,15 Дж/(моль·К)
Cs^+ (p-p; ∞ H ₂ O)	—258,07	-291,6	132,2
Сs (p-p, ∞ H2O) СsВr (к)	-405,5	-391,1	113,0
CsCl (k)	-442,44	-414,0	101,17
CsF (κ)	-553,5	- 	93,01
CsI (k)	-346,5	-340,2	122,2
CsOH (κ)	-340,5 -416,6	-3 4 0,2	103
$Cs_2SO_4(\kappa)$	-1444,3	-1325,0	211,9
` '	0	0	33,1
Cu (κ) Cu⁺ (p-p; ∞ H ₂ O)	72,8	50,0	
		,	
Cu^{2+} (p-p; ∞ H ₂ O)	66,9(94)	65,6(56)	<u>–93</u>
CuCl (K)	-137,3 -205.85	-120,1	87
CuCl ₂ (K)	-205,85	-161,71	108,07
$Cu(NH_3)_2^+$ (p-p; ∞ H ₂ O, гип. недис.)	-151,04	-63,1	-263,59
$Cu(NH_3)^{2+}$ (p-p; ∞ H ₂ O, гип. недис.)	-36,86	15,76	17,90
$Cu(NH_3)_2^{2+}$ (p-p; ∞ H ₂ O, гип. недис)	-140,21	-30,50	117,74
$Cu(NH_3)_3^{2+}$ (p-p; ∞ H ₂ O, гип. недис)	-244,01	-73,18	204,24
$Cu(NH_3)_4^{2+}$ (p-p; ∞ H ₂ O, гип. недис)	-346,4	-111,5	281
$Cu(NH_3)_5^{2+}$ (p-p; ∞ H ₂ O, гип. недис)	-448,23	-134,64	309,47
Cu ₂ O (κ)	-173,2	-150,6	92,9
CuO (κ)	-162,0	-134,3	42,63
CuS (к)	-53,14	-53,58	66,53
$Cu_2S(\kappa)$	-79,50	-86,27	120,92
CuSO ₄ (к)	-770,9	-661,79	109,2
CuSO ₄ ·5H ₂ O (κ)	-2279,4	-1880	300
CuSO ₄ (p-p; 50 H ₂ O)	-837,5	-	-
CuSO ₄ (p-p; 100 H ₂ O)	-837,9	-	-
CuSO ₄ (p-p; 1000 H ₂ O)	-839,4	-	
$\text{CuSO}_4 \text{ (p-p;} \infty \text{ H}_2\text{O})$	-844,1	-680,1	-75
F (r)	79,38	62,30	158,64
F- (r)	-259,68	-266,61	145,47
$F_2(\Gamma)$	0	0	202,7
F⁻ (p-p; ∞ H ₂ O)	-331,5	-277,7	-13,8
HF_2^- (p-p; ∞ H ₂ O)	-660,65	-581,52	67,78
HF (r)	-273,30	-275,41	173,67
Fe (к)	0	0	27,15
Fe^{2+} (p-p; ∞ H ₂ O)	-87,1	-78,9	-131
Fe^{3+} (p-p; ∞ H ₂ O)	-46,4	-4,5	-309
Fe(CN) ₆ ⁴⁻ (p-p; ∞ H ₂ O, гип. недис.)	457,7	696,0	98
Fe(CN) ₆ ³⁻ (p-p; ∞ H ₂ O, гип. недис.)	564,0	731,7	269

продолжение таол. 1		
$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	$\Delta G^{ m o}_{ m oбp.,\ 298,15}$ кДж/моль	S ^o , _{298,15} Дж/(моль·К)
-341,7	-303,4	118
-416,6	-	-
-423,4	-	-
-421,3	-341,4	-18
-399,4	-	-
-531,8	-	-
-528,0	-	-
-547,7	-398,3	-140
-738,15	-665,09	95,40
-764	-695	338
-265	-244	60,8
-562	-479,7	88
-827	-699,6	105
-822	-740	87
-1117,13	-1014,17	146,19
-927,59	-819,77	107,53
-2580	-2253	283
-100,42	-100,78	60,29
-177,40	-166,05	52,93
0	0	41,09
-1089,10	-998,24	84,98
0	0	31,13
-504,6	-466,0	347,7
90,8	113,2	217,1
-580,2	-521,6	39,7
217,98	203,27	114,60
0	0	0
1536,21	1517,00	108,84
139,03	132,26	108,85
0	0	130,52
0	0	75,9
61,3	31,8	174,85
173,5	164,7	25
171,8	153,6	82
-228,24	-180,90	140,02
-265,06	-210,81	192,76
-169,45	-152,22	170,31
-207,07	-181,35	217,70
-105,44	-103,05	184,05
	кДж/моль -341,7 -416,6 -423,4 -421,3 -399,4 -531,8 -528,0 -547,7 -738,15 -764 -265 -562 -827 -822 -1117,13 -927,59 -2580 -100,42 -177,40 0 -1089,10 0 -1089,10 0 -504,6 90,8 -580,2 217,98 0 1536,21 139,03 0 0 61,3 173,5 171,8 -228,24 -265,06 -169,45 -207,07	АН° обр., 298,15 кДж/моль АG° обр., 298,15 кДж/моль -341,7 -303,4 -416,6 - -423,4 - -421,3 -341,4 -399,4 - -531,8 - -547,7 -398,3 -764 -665,09 -764 -695 -265 -244 -562 -479,7 -827 -699,6 -822 -740 -1117,13 -1014,17 -927,59 -819,77 -2580 -2253 -100,42 -100,78 -177,40 -166,05 0 0 -1089,10 -998,24 0 0 -504,6 -466,0 90,8 113,2 -580,2 -521,6 217,98 203,27 0 0 1536,21 1517,00 139,03 132,26 0 0 0 0 <

Продолжение таол. 11.2			
Вещество и состояние	$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	$\Delta G^{ m o}_{ m oбp.,\ 298,15}$ кДж/моль	S ⁰ , 298,15 Дж/(моль·К)
НgO (к, красн.)	-90,88	-58,65	70,3
НдО (к, желт.)	-90,46	-58,52	71,3
HgS (K)	-59,0	-51,42	82,42
Hg ₂ SO ₄ (к)	-744,7	-627,51	200,71
I (r)	106,76	70,21	180,67
I ₂ (Γ)	62,43	19,37	260,6
$I_{2}\left(\kappa\right)$	0	0	116,1
I⁻ (p-p; ∞ H ₂ O)	-55,2	-51,67	111
I ₃ ⁻ (p-p; ∞ H ₂ O)	-51,46	-51,42	239,32
<u>Γ</u> (r)	-195,02	-221,92	169,15
IO_3^- (p-p; ∞ H ₂ O)	-233,9	-141,5	120,9
НІ (г)	26,57	1,78	206,48
HI (p-p; 50 H ₂ O)	-54,2	-	-
HI (p-p; 100 H ₂ O)	-54,5	-	-
HI (p-p; 1000 H ₂ O)	-54,9	-	-
HI (p-p; ∞ H ₂ O)	-55,2	-51,67	111
In (κ)	0	0	57,82
In ₂ O ₃ (κ)	-925,92	-831,98	107,95
$In_2(SO_4)_3$ (κ)	-2725,50	-2385,87	302,08
К (г)	88,9	60,4	160,23
Κ (κ)	0	0	64,68
K^+ (p-p; ∞ H ₂ O)	-252,25	-282,52	100,9
$K[AlH_4](\kappa)$	-170,7	-	-
$KAl(SO_4)_2$ (κ)	-2465,00	-2235	204,50
$KAl(SO_4)_2 \cdot 12H_2O(\kappa)$	-6063,2	-5143,1	687
$K[BF_4](\kappa)$	-1884	-1782,1	134
KBr (κ)	-393,5	-380,1	95,9
KBrO ₃ (κ)	-376,1	-287,0	149,2
KCN (k)	-113,4	-101,9	127,8
K ₂ CO ₃ (к)	-1150,18	-1064,87	155,52
KCl (к)	-436,56	-408,6	82,55
KCl (p-p; 20 H ₂ O)	-420,46	-	-
KCl (p-p; 50 H ₂ O)	-419,50	-	-
KCl (p-p; 100 H ₂ O)	-419,15	-	-
KCl (p-p; 1000 H ₂ O)	-419,07	-	-
KCl (p-p; ∞ H ₂ O)	-419,35	-413,78	157,4
KClO ₃ (к)	-389,1	-287,5	142,97
KClO ₄ (κ)	-427,2	-297,4	151,04
KF (κ)	-566,1	-536,4	66,5

		Продолжение таол. п.2.1		
Вещество и состояние	$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	$\Delta { m G^o}_{ m ofp.,\ 298,15}$ кДж/моль	S ^o , 298,15 Дж/(моль·К)	
KF 2H ₂ O (κ)	-1162,3	-1020,1	155,0	
КН (к)	-57,82	-34,0	50	
KHF ₂ (κ)	-925,9	-857,8	104,3	
KI (κ)	-327,74	-322,76	106,06	
KMnO ₄ (κ)	-833,9	-734,0	171,7	
KNO ₃ (κ)	-494,5	-394,6	132,9	
КОН (к)	-424,67	-378,9	78,9	
KOH (p-p; 20 H ₂ O)	-481,11	-	-	
KOH (p-p; 50 H ₂ O)	-481,44	-	-	
KOH (p-p; 100 H ₂ O)	-481,55	-	-	
KOH (p-p; 1000 H ₂ O)	-481,92	-	-	
KOH (p-p; ∞ H ₂ O)	-482,29	-439,84	90	
K ₂ CrO ₄ (к)	-1407,9	-1299,8	200	
$K_2Cr_2O_7(\kappa)$	-2062	-1882	291	
K ₂ O (κ)	-362	-322	96	
KO ₂ (κ)	-283	-238	117	
KO ₃ (κ)	-261	-181	105	
K ₂ S (к)	-387	-373	113	
K ₂ SO ₄ (к)	-1439,3	-1321,3	175,6	
$K_3[Fe(CN)_6]$ (κ)	-253,6	-131,5	420,9	
$K_4[Fe(CN)_6]$ (κ)	-600,4	-458,6	419,1	
La (ĸ)	0	0	56,90	
LaCl ₃ (к)	-1070,68	-997,07	144,35	
Li (r)	159,3	126,7	138,67	
Li (κ)	0	0	29,1	
$\text{Li}^+\text{(p-p;} \infty \text{H}_2\text{O})$	-278,45	-292,3	10,5	
Li[AlH ₄] (κ)	-107,1	-35,6	78,7	
LiBr (к)	-351,0	-341,7	74,01	
LiCl (κ)	-408,4	-384,1	59,29	
LiH (к)	-90,67	-68,7	20,6	
LiNO ₃ (κ)	-483,2	-380,5	88	
LiOH (κ)	-484,9	-439,0	42,8	
Li ₂ O (κ)	-597,9	-561,2	37,61	
Li_2CO_3 (κ)	-1216,00	-1132,67	90,16	
Li ₂ SO ₄ (к)	-1435,86	-1321,28	114,00	
Mg (κ)	0	0	32,7	
Mg^{2+} (p-p; ∞ H ₂ O)	-468,1	-457,3	-133,9	
MgCl ₂ (κ)	-644,8	-595,3	89,54	
MgO (ĸ)	-601,5	-569,3	27,07	

		Продолжение таол. 11.2.1		
Вещество и состояние	ΔH ^o _{обр., 298,15} кДж/моль	$\Delta G^{ m o}_{ m oбp.,\ 298,15}$ кДж/моль	S ^o , 298,15 Дж/(моль·К)	
Mg(OH) ₂ (к)	-924,7	-833,7	63,2	
МgCO ₃ (к)	-1095,85	-1012,15	65,10	
MgSO ₄ (κ)	-1287,4	-1173,2	91,5	
MgSO ₄ *6H ₂ O (к)	-3089,50	-2635,10	348,10	
MgSO ₄ (p-p; 25 H ₂ O)	-1372,1	-	-	
MgSO ₄ (p-p; 50 H ₂ O)	-1373,1	_	_	
MgSO ₄ (p-p; 100 H ₂ O)	-1373,8	-	-	
MgSO ₄ (p-p; 1000 H ₂ O)	-1375,8	_	_	
$MgSO_4$ (p-p; ∞ H ₂ O)	-1379,1	-1203,0	-115,9	
Mn (κ)	0	0	32,0	
Mn^{2+} (p-p; ∞ H ₂ O)	-220,2	-231,0	-62	
MnO (κ)	-385,1	-363,34	61,5	
MnO ₂ (κ)	-521,5	-466,7	53,1	
Mn ₂ O ₃ (κ)	-957,72	-879,91	110,46	
Mn ₃ O ₄ (κ)	-1387,60	-1282,91	154,81	
MnO_4 (p-p; ∞ H ₂ O)	-538,1	-445,3	196	
MnO_4^{2-} (p-p; ∞ H ₂ O)	-	-499,2	-	
MnCO ₃ (к)	-881,66	-811,40	109,54	
MnCl ₂ (κ)	-481,16	-440,41	118,24	
MnS (ĸ)	-214,35	-219,36	80,75	
MnSO ₄ (к)	-1066,8	-959,0	112,5	
MnSO ₄ (p-p; 20 H ₂ O)	-1120,6	-	-	
MnSO ₄ (p-p; 50 H ₂ O)	-1123,1	-	-	
MnSO ₄ (p-p; 100 H ₂ O)	-1123,7	-	-	
MnSO ₄ (p-p; 1000 H ₂ O)	-1125,9	-	-	
MnSO ₄ (p-p; ∞ H ₂ O)	-1131,2	-976,7	-44	
Мο (κ)	0	0	28,62	
MoO ₂ (к)	-589,1	-533,2	46,28	
MoO ₃ (к)	-745,2	-668,1	77,7	
MoO ₄ ²⁻ (p-p; ∞ H ₂ O)	-997,9	-838,9	36	
N (Γ)	472,71	455,59	153,19	
$N_2(\Gamma)$	0	0	191,5	
NH ₂ OH (Γ)	-50,9	-3,62	235,6	
NH ₃ (Γ)	-46,2	-16,71	192,6	
NH ₃ (ж)	-69,87	-	-	
NH ₃ (p-p; 1 H ₂ O)	-75,44	-	-	
NH ₃ (p-p; 20 H ₂ O)	-80,10	-	-	
NH ₃ (p-p; 50 H ₂ O)	-80,23	-	-	
NH ₃ (p-p; 100 H ₂ O)	-80,28	-	-	

Вещество и состояние $\Delta H^o_{oбр., 298,15}$ кДж/моль $\Delta G^o_{oбр., 298,15}$ кДж/моль $S^o_{, 2}$ Дж/(моль)NH3 (p-p; 1000 H2O) $-80,28$ -NH4+ (p-p; ∞ H2O) $-132,3$ $-79,5$ 114 NH4Al(SO4)2 (к) $-2353,50$ $-2039,80$ 216	оль•К)
$NH_3 \text{ (p-p; } 1000 \text{ H}_2\text{O})$ $-80,28$ - $-80,28$ $-132,3$ $-79,5$ $-140,0$ $-132,3$ $-79,5$ $-140,0$ $-$	4 3
NH_4^+ (p-p; ∞ H_2O) $-132,3$ $-79,5$ 114	4.3
	.,0
	5,31
NH ₄ Cl (κ) -314,2 -203,2 95,	,81
NH ₄ Cl (p-p; 20 H ₂ O) –299,0 -	
NH ₄ Cl (p-p; 50 H ₂ O) -298,9 -	
NH ₄ Cl (p-p; 100 H ₂ O) –298,9 -	-
NH ₄ Cl (p-p; 1000 H ₂ O) –299,1 -	
NH ₄ Cl (p-p; ∞ H ₂ O)	0,8
$NH_4NO_2(\kappa)$ –256,1	
NH ₄ NO ₃ (κ) -365,43 -183,83 151	,04
(NH ₄) ₂ SO ₄ (κ) -1180,31 -901,53 220	,08
NH ₄ OH (p-p; ∞ H ₂ O, гип. недис.) –366,2 –264,0 18	1,7
NO (Γ) 90,2 86,6 210	0,6
NOCl (Γ) 52,59 66,37 263	,50
NO ₂ (r) 33,5 51,55 240	0,2
NO_2^- (p-p; ∞ H ₂ O) $-104,6$ $-37,1$ 139	9,5
NO_3^- (p-p; ∞ H ₂ O) $-207,4$ $-111,6$ 14'	7,2
$N_2H_4(\Gamma)$ 95,3 159,1 233	8,5
$N_2O(\Gamma)$ 82,01 104,12 219	,86
$N_2O_4(\Gamma)$ 9,6 98,4 303	3,8
$N_2O_4(\kappa)$ -19,0 97,9 209	9,2
N_2O_5 (K) $-42,7$ 114,1 178	8,2
$N_2O_5(\Gamma)$ 13,30 117,14 355	,65
HNO ₃ (\times) $-173,00$ $-79,90$ 156	,16
HNO ₃ (Γ) $-133,91$ $-73,78$ 266	5,78
$HNO_3 (p-p; 1 H_2O)$ -187,7 -	•
HNO ₃ (p-p; 20 H ₂ O) -206,7 -	•
HNO ₃ (p-p; 50 H ₂ O) -206,9 -	•
HNO ₃ (p-p; 100 H ₂ O) -206,9 -	
HNO ₃ (p-p; 1000 H ₂ O) -207,1 -	
HNO ₃ (p-p; ∞ H ₂ O)	7,2
Na (κ) 0 51,	,30
Na ⁺ (p-p; ∞ H ₂ O)	,9
NaH (κ) -56,44 -33,6 40	0,0
NaAlO ₂ (κ) $-1133,03$ $-1069,20$ 70,	.29
Na ₃ AlF ₆ (κ) $-3309,54$ $-3158,53$ 283	,49
NaBr (κ) -361,2 -349,1 86,	,94
$NaC_2H_3O_2(\kappa)$ -710,40 -608,96 123	,10

	Продолжение таол. 11.2.			
Вещество и состояние	$\Delta { m H^o}_{ m oбp., 298,15}$ кДж/моль	$\Delta { m G^o}_{ m oбp.,\ 298,15}$ кДж/моль	S ⁰ , 298,15 Дж/(моль·К)	
NaCl (κ)	-411,41	-384,4	72,13	
NaF (κ)	-572,8	-542,6	51,17	
NaI (κ)	-288,06	-284,84	98,6	
NaNO ₃ (κ)	-466,70	-365,97	116,50	
NaOH (κ)	-495,93	-379,8	64,43	
NaOH (p-p; 20 H ₂ O)	-470,53	-	-	
NaOH (p-p; 50 H ₂ O)	-470,17	-	-	
NaOH (p-p; 100 H ₂ O)	-469,98	-	-	
NaOH (p-p; 1000 H ₂ O)	-470,10	-	-	
NaOH (p-p; ∞ H ₂ O)	-470,45	-419,44	48,0	
Na ₂ B ₄ O ₇ (к)	-3289	-3094	189,5	
NaHCO ₃ (ĸ)	-949,08	-851,1	101,3	
Na ₂ CO ₃ (κ)	-1129,43	-1045,7	135,0	
Na ₂ CO ₃ ·10H ₂ O (κ)	-4077	-3906	2172	
Na ₃ PO ₄ (к)	-1924,64	-1811,31	224,68	
NaH ₂ PO ₄ (к)	-1544,90	-1394,24	127,57	
Na ₂ HPO ₄ (к)	-1754,86	-1615,25	150,60	
Na ₂ S (κ)	-374,47	-358,13	79,50	
Na ₂ SO ₃ (к)	-1095,0	-1006,7	146,02	
Na ₂ SO ₄ (κ)	-1389,5	-1271,7	149,62	
Na ₂ SO ₄ ·10H ₂ O (κ)	-4329,6	-3648,9	591,87	
Na ₂ S ₂ O ₃ (κ)	-1117,13	-1043	225	
Na ₂ SiF ₆ (κ)	-2849,72	-2696,29	214,64	
Na ₂ SiF ₆ (κ)	-2849,72	-2696,29	214,64	
Na ₂ SiO ₃ (κ)	-1561,43	-1467,50	113,76	
Na ₄ SiO ₄ (κ)	-2106,64	-1976,07	195,81	
Na ₂ O (κ)	-414,84	-376,1	75,3	
Na ₂ O ₂ (к)	-512,5	-449,0	94,6	
Ni (ĸ)	0	0	29,9	
Ni^{2+} (p-p; ∞ H ₂ O)	-53,1	-45,6	-126	
$Ni(NH_3)_6^{2+}$ (p-p; ∞ H ₂ O, гип. недис)	-638	-253	356	
Ni(OH) ₂ (ĸ)	-543,5	-458,4	80	
Ni(OH) ₃ (к)	-670,3	-540,0	96	
NiO (κ)	-239,74	-211,60	37,99	
NiCl ₂ (κ)	-304,18	-258,03	98,07	
NiSO ₄ (к)	-873,49	-763,76	103,85	
NiS (κ)	-79,50	-76,87	52,97	
Ο (Γ)	249,2	231,8	160,94	
$O_2(\Gamma)$	0	0	205,04	

	Продолжение таол. 11.2.1			
Вещество и состояние	ΔH ^o _{обр., 298,15} кДж/моль	$\Delta G^{ m o}_{ m oбp.,\ 298,15}$ кДж/моль	S ⁰ , 298,15 Дж/(моль·К)	
О ₃ (г)	142,2	162,7	238,8	
OH- (r)	-134,5	-129,4	171,4	
OH⁻ (p-p; ∞ H ₂ O)	-230,04	-157,32	-10,9	
H ₂ O (к)	-291,85	-	39,33	
H ₂ O (Γ)	-241,82	-228,61	188,72	
Н ₂ О (ж)	-285,83	-237,25	70,08	
H ₂ O ₂ (ж)	-187,78	-120,38	109,5	
$H_2O_2(\Gamma)$	-135,88	-105,74	234,41	
H ₂ O ₂ (p-p; 1 H ₂ O)	-189,87	-	-	
P (r)	316,5	280,1	163,08	
Р (к, белый)	0	0	41,09	
Р (к, красный)	-17,4	-11,9	22,8	
PCl ₃ (Γ)	-279,5	-260,45	311,71	
PCl ₃ (ж)	-311,7	-274,49	218,49	
PCl ₅ (κ)	-445,89	-318,36	170,80	
$PCl_5(\Gamma)$	-366,9	-297,1	364,4	
Р ₂ О ₃ (ж)	-1097	-1023	142	
P ₂ O ₅ (к)	-1507,2	-1371,7	140,3	
Р ₄ О ₆ (к)	-1640	-	-	
P ₄ O ₁₀ (κ)	-2984,03	-2698	228,86	
Ρ ₄ Ο ₁₀ (Γ)	-2894,49	-2657,46	394,55	
PH ₃ (Γ)	5,4	13,4	210,2	
HPO_3^{2-} (p-p; ∞ H_2O)	-969,01	-811,70	16,81	
$H_2PO_3^-$ (p-p; ∞ H_2O)	-969,43	-830,81	79,50	
PO_4^{3-} (p-p; ∞ H ₂ O)	-1272	-1012,6	-221	
HPO ₄ ²⁻ (р-р; ∞ H ₂ O, гип. недис.)	-1286,2	-1083,2	-34	
H_2PO_4 (p-p; ∞ H_2O , гип. недис.)	-1289,9	-1124,3	91,6	
H_3PO_4 (p-p; ∞ H_2O , гип. недис.)	-1281,8	-1136,5	160	
H_3PO_4 (p-p; ∞ H_2O)	-1272	-1012,6	221	
H ₃ PO ₄ (κ)	-1279,05	-1119,20	110,50	
Н ₃ РО ₄ (ж)	-1266,90	-1134,00	200,83	
Pb (κ)	0	0	64,8	
Pb^{2+} (p-p; ∞ H ₂ O)	-0,9	-24,4	-13	
PbCl ₂ (κ)	-359,82	-314,56	135,98	
PbCl ₂ (Γ)	-173,64	-182,02	315,89	
PbBr ₂ (κ)	-282,42	-265,94	161,75	
PbI ₂ (к)	-175,23	-173,56	175,35	
PbCO ₃ (κ)	-699,56	-625,87	130,96	
$Pb(NO_3)_2(\kappa)$	-451,7	-256,9	218	

	Продолжение таол. 11.2.1			
Вещество и состояние	$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	ΔG ^o _{обр., 298,15} кДж/моль	S ^o , _{298,15} Дж/(моль·К)	
Pb(NO ₃) ₂ (p-p; 100 H ₂ O)	-425,2	-	-	
Pb(NO ₃) ₂ (p-p; 1000 H ₂ O)	-417,6	-	-	
Pb(NO ₃) ₂ (p-p; ∞ H ₂ O)	-415,7	-247,6	307	
РьО (к, желт.)	-217,61	-188,20	68,70	
РьО (к, красн.)	-219,3	-189,10	66,1	
PbO ₂ (κ)	-276,6	-218	71,9	
Pb ₃ O ₄ (к)	-723,41	-606,17	211,29	
PbS (κ)	-100	-99	91,2	
PbS (г)	122,34	76,25	251,33	
PbSO ₄ (ĸ)	-920,48	-813,67	148,57	
Pt (k)	0	0	41,55	
$PtCl_6^{2-}$ (p-p; ∞ H ₂ O)	-669,44	-485,31	223,43	
$PtCl_4^{2-}$ (p-p; ∞ H ₂ O)	-500,82	-354,01	125,64	
PtCl ₂ (κ)	-106,69	-93,35	219,79	
PtCl ₄ (K)	-229,28	-163,80	267,88	
Ra (к)	0	0	71,2	
Ra^{2+} (p-p; ∞ H ₂ O)	-529,69	-555,99	28,87	
Rb (г)	80,9	53,1	169,98	
Rb (к)	0	0	76,73	
Rb^+ (p-p; ∞ H ₂ O)	-251,04	-283,5	120,5	
RbBr (κ)	-394,6	-381,8	110,0	
RbCl (κ)	-435,2	-407,4	95,2	
RbF (κ)	-555,8	-525,9	77,8	
RbI (κ)	-331,9	-327,1	118,8	
RbOH (κ)	-418,7	-373,3	92	
Rb ₂ SO ₄ (к)	-1437,1	-1318,4	197,5	
S (к, монокл.)	0,377	0,188	32,6	
S (к, ромб.)	0	0	31,9	
S (r)	278,81	238,31	167,75	
S^{2-} (p-p; ∞ H ₂ O)	32,6	85,4	-15	
$HS^{-}(p-p; \infty H_2O)$	-17,57	12,15	62,76	
$SOCl_2(\Gamma)$	-212,8	-198,0	307,94	
SO ₂ (Γ)	-296,90	-300,21	248,07	
SO_2Cl_2 (Γ)	-363,2	-318,9	311,3	
SO ₂ Cl ₂ (ж)	-394,13	-321,49	216,31	
SO ₃ (Γ)	-395,8	-371,2	256,7	
SO ₃ (ж)	-439,0	-	-	
SO_3^{2-} (p-p; ∞ H ₂ O)	-641,0	-486,8	-47,3	
HSO_3^- (p-p; ∞ H ₂ O)	-627,98	-527,32	132,38	

		Продолж	снис табл. 11.2.1
Вещество и состояние	$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	$\Delta { m G^o}_{ m oбp.,\ 298,15}$ кДж/моль	S ^o , _{298,15} Дж/(моль·К)
SO ₄ ²⁻ (p-p; ∞ H ₂ O)	-911,0	-745,7	18,0
HSO ₄ ⁻ (р-р; ∞ H ₂ O, гип.недисс)	-889,2	-757,0	129
$S_2O_3^{2-}$ (p-p; ∞ H ₂ O)	-665	-516,7	3,7
H ₂ S (Γ)	-20,9	-33,8	205,69
$H_2S_2(\Gamma)$	15,3	-4,5	260,7
H ₂ SO ₄ (ж)	-814,2	-690,3	156,9
H ₂ SO ₄ (p-p; 20 H ₂ O)	-885,2	-	-
H ₂ SO ₄ (p-p; 50 H ₂ O)	-887,2	-	-
H ₂ SO ₄ (p-p; 100 H ₂ O)	-887,8	-	-
H ₂ SO ₄ (p-p; 1000 H ₂ O)	-892,5	-	-
H_2SO_4 (p-p; ∞ H_2O)	-911,0	-745,7	18,0
Sb (κ)	0	0	45,7
SbCl ₃ (к)	-381,16	-322,45	183,26
SbCl ₃ (Γ)	-312,0	-299,5	338,5
SbCl ₅ (Γ)	-388,8	-328,7	402
SbCl ₅ (ж)	-437,2	-345,4	295
SbH ₃ (Γ)	145,1	147,6	233,0
Sb ₂ O ₃ (κ)	-715,46	-636,06	132,63
$Sb_2O_5(\kappa)$	-1007,51	-864,74	125,10
$\mathrm{Sb_4O_6}\left(\kappa\right)$	-1417,12	-1263,10	282,00
Sb ₂ S ₃ (черн.)	-157,74	-156,08	181,59
Se (κ)	0	0	42,13
Se (стекл.)	5,4	2,66	51,5
SeO_3^{2-} (p-p; ∞ H ₂ O)	-507,5	-363,6	-2,5
SeO_4^{2-} (p-p; ∞ H ₂ O)	-599,6	-444,5	62,7
H ₂ Se (г)	33	19,7	218,8
Si (ĸ)	0	0	18,82
SiC (κ)	-63	-60	16,61
SiCl ₄ (Γ)	-657,5	-617,6	331,0
SiCl ₄ (ж)	-687,8	-620,75	239,7
SiF ₄ (Γ)	-1614,94	-1572,66	282,38
SiH ₄ (Γ)	34,73	57,18	204,56
SiF_6^{2-} (p-p; ∞ H ₂ O)	-2397	-2209	127
SiO_2 (к, α -кварц)	-910,94	-856,67	41,84
SiO_2 (к, α -кристобалит)	-908,3	-854,2	42,68
SiO ₂ (κ, α -тридимит)	-905,4	-851,6	43,51
SiO ₂ (стекл.)	-903,49	-850,71	46,86
Sn (к, белое)	0	0	51,5

продолжение таол				
Вещество и состояние	$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	$\Delta { m G^o}_{ m oбp.,\ 298,15}$ кДж/моль	S ^o , 298,15 Дж/(моль·К)	
Sn (κ, cepoe)	-2,092	0,126	44,1	
Sn^{2+} (p-p; ∞ H ₂ O)	-10,5	-27,2	-22,7	
SnCl ₂ (K)	-331,01	-288,40	131,80	
SnCl ₂ (p-p; ∞ H ₂ O)	-344,7	-289,7	90,3	
SnCl ₄ (ж)	-528,86	-457,74	258,99	
SnCl ₄ (Γ)	-489,11	-449,55	364,84	
SnO (κ)	-285,98	-256,88	56,48	
SnO (Γ)	20,85	-2,39	232,01	
$SnO_2(\kappa)$	-580,8	-519,9	52,30	
SnH ₄ (Γ)	162,8	187,8	228,7	
Sr (κ)	0	0	55,7	
Sr^{2+} (p-p; ∞ H ₂ O)	-551,5	-563,9	-33	
Sr(NO ₃) ₂ (к)	-984,1	-785,0	194,6	
SrO (κ)	-590,5	-559,8	55,2	
Sr(OH) ₂ (κ)	-965	-876	94	
SrSO ₄ (κ)	-1459,0	-1346,9	121,81	
Те (к)	0	0	49,5	
TeO ₂ (κ)	-321,7	-264,6	59	
TeCl ₄ (ĸ)	-323,84	-236,00	200,83	
TeF ₆ (Γ)	-1369,00	-1273,11	335,89	
H ₂ Te (Γ)	99,7	85,2	228,8	
Th (κ)	0	0	53,39	
$ThO_2(\kappa)$	-1226,75	-1169,15	65,23	
Ті (к)	0	0	30,63	
TiCl ₂ (κ)	-516	-467	87	
TiCl ₃ (κ)	-720	-653	140	
TiCl ₄ (ж)	-804	-737	252,40	
TiCl ₄ (Γ)	-763,16	-726,85	354,80	
ТіО2 (к, рутил)	-943,9	-888,6	50,33	
ТіО ₂ (к, анатаз)	-933,03	-877,65	49,92	
Tl (κ)	0	0	64,18	
TlCl (κ)	-204,18	-184,98	111,29	
TlCl (r)	-68,41	-92,38	256,06	
$Tl_2O(\kappa)$	-167,36	-138,57	134,31	
$Tl^{-}(p-p; \infty H_2O)$	5,52	-32,43	126,20	
Tl^{3+} (p-p; ∞ H ₂ O)	201,25	214,76	-176,92	
U (κ)	0	0	50,2	
UCl ₃ (к)	-867	-800	159,1	
UO ₂ Cl ₂ (к)	-1243,5	-1145,8	150,5	

Окончание табл. П.2.1

	ATTO	A. C 10	C 0
Вещество и состояние	$\Delta { m H^o}_{ m oбp.,298,15}$ кДж/моль	$\Delta { m G^o}_{ m oбp.,~298,15}$ кДж/моль	Ѕ ^о , _{298,15} Дж/(моль·К)
UO ₂ F ₂ (к)	-1637,20	-1541,06	135,56
UO ₂ (κ)	-1085,0	-1031,9	77,03
UO ₂ (NO ₃) ₂ (κ)	-1348	-1031, <i>y</i> -1114,76	-276,33
	0	0	28,9
V(K)			<u> </u>
VCl ₂ (K)	-461 591.2	-415 511.0	97,1
VCl ₃ (K)	-581,2	-511,9	131,0
$V_2O_5(\kappa)$	-1552	-1421	131,0
W (ĸ)	0	0	32,7
WCl ₆ (K)	-598,3	-469,0	230
WO ₂ (κ)	-589,5	-533,7	50,5
WO ₃ (κ)	-842,7	-763,8	75,90
WO_4^{2-} (p-p; ∞ H ₂ O)	-1073,2	-931,4	97,5
$WS_2(K)$	-200,4	-192,8	71
Zn (κ)	0	0	41,63
Zn^{2+} (p-p; ∞ H ₂ O)	-153,64	-147,16	-110,62
$ZnCl_{2}(\kappa)$	-415,1	-369,4	111,5
$ZnCl_{2}(\Gamma)$	-265,68	-269,24	276,56
ZnCO ₃ (κ)	-812,53	-730,66	80,33
ZnCl ₂ (p-p; 20 H ₂ O)	-462,7	-	-
ZnCl ₂ (p-p; 50 H ₂ O)	-471,2	-	-
ZnCl ₂ (p-p; 100 H ₂ O)	-477,6	-	-
ZnCl ₂ (p-p; 1000 H ₂ O)	-485,1	-	-
ZnCl $_2$ (p-p; ∞ H $_2$ O)	-487,8	-409,7	-
$Zn(NH_3)_4^{2+}$ (p-p; ∞ H ₂ O, гип. недис)	-537,0	-304,6	298
$Zn(CN)_4^{2-}$ (p-p; ∞ H ₂ O, гип. недис.)	-332,1	-427,2	259,3
ZnO (κ)	-350,6	-320,7	43,51
$Zn(OH)_2(\kappa)$	-645,43	-555,92	77,0
Zn(OH)4 ²⁻ (p-p; ∞ H ₂ O, гип. недис.)	-	-860,8	-
ZnS (κ)	-205,4	-200,7	57,7
ZnSO ₄ (κ)	-981,4	-870,12	110,54
Zr (ĸ)	0	0	38,99
ZrCl ₄ (k)	-979,8	-889,3	181
ZrCl ₄ (Γ)	-869,31	-834,50	368,19
Zr(OH) ₄ (ĸ)	-1661	-	-
ZrO ₂ (κ)	-1100,6	-1042,8	50,4
` '	,	<u> </u>	<u> </u>

Термодинамические характеристики образования ($\Delta H^{o}_{oбp}$, $\Delta G^{o}_{oбp}$, кДж/моль) и стандартные энтропии (S^{o} , Дж/(моль·К)) веществ при 298,15 К Органические соединения

Углеводороды

Вещество и состояние	$\Delta \mathrm{H^o}_{\mathrm{ofp.,298,15}}$	$\Delta G^{ m o}_{ m ofp.,298,15}$	S ^o , 298,15
Вещество и состояние	кДж/моль	кДж/моль	Дж/(моль·К)
СН4 (г.) метан	-74,85	-50,85	186,27
C_2H_2 (г.) ацетилен	226,75	209,21	200,82
С ₂ H ₄ (г.) этилен	52,30	68,14	219,45
C_2H_6 (г.) этан	-84,67	-32,93	229,49
С ₃ Н ₄ (г.) пропадиен (аллен)	192,13	202,36	243,93
С ₃ H ₆ (г.) пропен	20,41	62,70	266,94
C_3H_6 (г.) циклопропан	53,30	104,38	237,44
С ₃ Н ₈ (г.) пропан	-103,85	-23,53	269,91
С ₄ H ₈ (г.) 1-бутен	-0,13	71,26	305,60
С ₄ H ₈ (г.) 2-бутен, <i>цис</i> -	-6,99	65,82	300,83
С ₄ H ₈ (г.) 2-бутен, <i>транс</i> -	-11,17	62,94	296,48
C_4H_8 (г.) 2-метилпропен	-16,90	58,07	293,59
C_4H_8 (г.) циклобутан	26,65	110,03	265,39
С ₄ H ₁₀ (г.) бутан	-126,15	-17,19	310,12
C_4H_{10} (г.) 2-метилпропан (изобутан)	-134,52	-20,95	294,64
C ₅ H ₁₀ (ж.) циклопентан	-105,97	36,22	204,40
C_5H_{10} (г.) циклопентан	-77,24	38,57	292,88
C_5H_{12} (г.) пентан	-173,33	-9,66	262,85
С ₅ H ₁₂ (г.) пентан	-146,44	-8,44	348,95
C_5H_{12} (ж.) 2-метилбутан (изопентан)	-179,28	-14,86	260,37
C_5H_{12} (г.) 2-метилбутан (изопентан)	-154,47	-14,87	343,59
С ₆ Н ₆ (ж.) бензол	49,03	124,38	173,26
С ₆ Н ₆ (г.) бензол	82,93	129,68	269,20
С ₆ Н ₁₂ циклогексан	-156,23	26,60	204,35
C_6H_{12} (г.) циклогексан	-123,14	31,70	298,24
С ₆ Н ₁₄ (ж.) гексан	-198,82	-4,41	296,02
С ₆ H ₁₄ (г.) гексан	-167,19	-0,32	388,40
С ₇ Н ₈ (ж.) толуол	12,01	113,77	220,96
С ₇ H ₈ (г.) толуол	50,00	122,03	320,66

Термодинамические характеристики образования ($\Delta H^o_{oбp}, \Delta G^o_{oбp},$ кДж/моль) и стандартные энтропии ($S^o,$ Дж/(моль·К)) веществ при 298,15 К

Кислородсодержащие соединения

Вещество и состояние	ΔH ^o _{oбp., 298,15} кДж/моль	ΔG ^o _{обр., 298,15} кДж/моль	S ^o , _{298,15} Дж/(моль·К)
СH ₂ O (г.) формальдегид	-115,90	-109,94	218,78
СН ₂ О ₂ (ж.) муравьиная кислота	-424,76	-361,74	128,95
СН ₂ О ₂ (г.) муравьиная кислота	-378,80	-351,51	248,77
СН ₄ О (ж.) метанол	-238,57	-166,27	126,78
СН ₄ О (г.) метанол	-201,00	-162,38	239,76
С2Н2О4 (кр.) щавелевая кислота	-829,94	-701,73	120,08
С2Н4О2 (ж.) уксусная кислота	-484,09	-389,36	159,83
С2Н4О2 (г.) уксусная кислота	-434,84	-376,68	282,50
C_2H_6O (ж.) этанол	-276,98	-174,15	160,67
C_2H_6O (г.) этанол	-234,80	-167,96	281,38
C_2H_6O (г.) диметиловый эфир	-184,05	-112,94	267,06
$C_2H_6O_2$ (ж.) этиленгликоль	-454,90	-323,49	167,32
$C_2H_6O_2$ (г.) этиленгликоль	-389,32	-304,49	323,55
С ₃ H ₆ O (ж.) ацетон	-248,11	-155,42	200,41
С ₃ H ₆ O (г.) ацетон	-217,57	-153,05	294,93
С ₃ Н ₈ О (ж.) 1-пропанол	-304,55	-170,70	192,88
С ₃ Н ₈ О (г.) 1-пропанол	-257,53	-163,01	324,80
изо-C ₃ H ₈ O (ж.) 2-пропанол	-318,70	-181,01	180,00
<i>изо</i> -С ₃ H ₈ O (г.) 2-пропанол	-272,59	-173,63	309,91
С ₃ H ₈ O ₃ (ж.) глицерин	-668,60	-477,07	204,47
С ₄ H ₁₀ O (ж.) бутанол	-325,56	-160,88	225,73
$C_4H_{10}O$ (г.) бутанол	-274,43	-150,73	363,17
$C_4H_{10}O$ (ж.) диэтиловый эфир	-279,49	-123,05	253,13
$C_4H_{10}O$ (г.) диэтиловый эфир	-252,21	-122,39	342,67
C ₅ H ₁₂ O (ж.) амиловый спирт	-357,94	-161,30	254,80
C ₅ H ₁₂ O (г.) амиловый спирт	-302,38	-149,79	402,54
С ₆ Н ₆ О (кр.) фенол	-164,85	-50,21	144,01
$C_7H_6O_2$ (кр.) бензойная кислота	-385,14	-245,24	167,57
С ₇ Н ₈ О (ж.) бензиловый спирт	-161,00	-27,40	216,70
$C_{12}H_{22}O_{11}$ (кр.) сахароза	-2222,12	-1544,70	360,2

Стандартные электродные потенциалы

Окисленная форма/ Восстановленная форма	<i>E</i> °, B	Окисленная форма/Восстановленная форма	E°, B
Li ⁺ /Li	-3,05	[Au(CN) ₂] ⁻ /Au, CN ⁻	-0,76
N ₂ /NH ₂ OH	-3,04	Zn ²⁺ /Zn	-0,76
Rb ⁺ /Rb	-2,93	SO ₄ ²⁻ /S	-0,75
K ⁺ /K	-2,92	N ₂ /NH ₃ ·H ₂ O	-0,74
Ba ²⁺ /Ba	-2,90	FeO(OH)/Fe(OH) ₂	-0,67
Ca ²⁺ /Ca	-2,86	SO ₄ ²⁻ /S ²⁻	-0,67
Na ⁺ /Na	-2,71	SO ₃ ²⁻ /S	-0,66
Mg(OH) ₂ /Mg	-2,69	SO ₃ ²⁻ /S ₂ O ₃ ²⁻	-0,58
[Be(OH) ₄] ²⁻ /Be	-2,52	CO ₂ /H ₂ C ₂ O ₄	-0,47
Mg ²⁺ /Mg	-2,37	NO ₂ ⁻ /NO	-0,45
[Al(OH) ₄] ⁻ /Al	-2,34	S/S ²⁻	-0,44
H ₂ , Ca ²⁺ /CaH ₂	-2,16	Fe ²⁺ /Fe	-0,44
Sc ³⁺ /Sc	-2,08	[Ag(CN) ₂] ⁻ /Ag, CN ⁻	-0,43
N ₂ /NH ₃ OH ⁺	-1,87	H ⁺ /H ₂	-0,42
Be ²⁺ /Be	-1,85	Cr ³⁺ /Cr ²⁺	-0,41
Al ³⁺ /Al	-1,70	Cd ²⁺ /Cd	-0,40
SO ₄ ²⁻ /SO ₂	-1,50	H ₃ PO ₄ /H(PH ₂ O ₂)	-0,39
Al(OH) ₃ /Al	-1,49	Bi(OH) ₃ /Bi	-0,38
[Zn(OH) ₄] ²⁻ /Zn	-1,26	H ₃ PO ₄ /P	-0,38
Cr(OH) ₃ /Cr(OH) ₂	-1,18	Cu ₂ O/Cu	-0,37
N ₂ /N ₂ H ₄ ·H ₂ O	-1,12	Co ²⁺ /Co	-0,28
[Zn(NH ₃) ₄] ²⁺ /Zn, NH ₃	-1,03	N ₂ /N ₂ H ₅ ⁺	-0,23
[Sn(OH) ₆] ²⁻ /[Sn(OH) ₃] ⁻	-0,96	Ni ²⁺ /Ni	-0,23
SO ₄ ²⁻ /SO ₃ ²⁻	-0,93	[SnCl ₃] ⁻ /Sn, Cl ⁻	-0,20
[Sn(OH) ₃] ⁻ /Sn	-0,90	CrO ₄ ²⁻ /[Cr(OH) ₆] ³⁻	-0,17
H ₂ O/H ₂	-0,83	Sn ²⁺ /Sn	-0,14

Окисленная форма/ Восстановленная форма	E°, B	Окисленная форма/ Восстановленная форма	<i>E</i> °, B
O ₂ /H ₂ O ₂	-0,13	SO ₄ ²⁻ /H ₂ S	+0,31
Pb ²⁺ /Pb	-0,13	Bi ³⁺ /Bi	+0,32
[Cu(NH ₃) ₂] ⁺ / Cu, NH ₃	-0,12	SO ₄ ²⁻ , Fe ³⁺ /FeS	+0,33
NO ₃ ⁻ /NH ₃ ·H ₂ O	-0,12	Cu ²⁺ /Cu	+0,34
SnO ₂ /Sn	-0,12	SO ₄ ²⁻ /S	+0,35
SO ₄ ²⁻ /SO ₃ ²⁻	-0,10	NaBiO ₃ /Bi(OH) ₃ , Na ⁺	+0,37
O ₂ /HO ₂ ⁻	-0,08	SO ₂ /S ₂ O ₃ ²⁻	+0,39
[Cu(NH ₃) ₄] ²⁺ /Cu, NH ₃	-0,07	SO ₄ ²⁻ , Cu ²⁺ /CuS	+0,42
[HgI ₄] ²⁻ /Hg, I ⁻	-0,04	BrO ⁻ /Br ₂	+0,43
H ⁺ /H ₂	0,00	SO ₂ /S	+0,45
NO ₃ ⁻ /NO ₂ ⁻	+0,01	Cu ₂ O/Cu	+0,47
S ₄ O ₆ ²⁻ /S ₂ O ₃ ²⁻	+0,02	HSO ₃ ⁻ /S	+0,48
S/H ₂ S	+0,14	ClO ⁻ /Cl ₂	+0,48
[SnCl ₆] ²⁻ /[SnCl ₃] ⁻	+0,14	ClO ₃ ⁻ /ClO ⁻	+0,48
SO ₄ ²⁻ /S ²⁻	+0,15	ClO ₃ ⁻ /Cl ₂	+0,48
Sn ⁴⁺ /Sn ²⁺	+0,15	Cu ²⁺ , Cl ⁻ /[CuCl ₂] ⁻	+0,49
SO ₄ ²⁻ /SO ₂	+0,16	S ₂ O ₃ ²⁻ /S	+0,51
NO ₂ ⁻ /N ₂ O	+0,16	BrO ₃ ⁻ /Br ₂	+0,52
MnO(OH)/Mn(OH) ₂	+0,17	$[I(I)_2]^-/I^-$	+0,54
CH ₃ CHO/C ₂ H ₅ OH	+0,19	I ₂ /I ⁻	+0,54
CoO(OH)/Co(OH) ₂	+0,19	Cu ²⁺ , Cl ⁻ /CuCl	+0,55
PbO ₂ /[Pb(OH) ₃] ⁻	+0,19	MnO ₄ ⁻ /MnO ₄ ²⁻	+0,56
At ₂ /At ⁻	+0,20	SO ₃ ²⁻ /S	+0,58
IO_3^-/I_2	+0,20	MnO ₄ ⁻ /MnO ₂	+0,59
Cu ²⁺ /Cu ₂ O	+0,21	Cu ²⁺ , Br ⁻ /CuBr	+0,66
IO ₃ ⁻ /I ⁻	+0,25	HgCl ₂ /Hg ₂ Cl ₂ , Cl ⁻	+0,66
Hg ₂ Cl ₂ /Hg, Cl ⁻	+0,27	Cu ²⁺ , I ⁻ /[CuI ₂] ⁻	+0,69
N ₂ /NH ₄ ⁺	+0,27	O ₂ /H ₂ O ₂	+0,69
SO ₄ ²⁻ /S ₂ O ₃ ²⁻	+0,28	Fe ³⁺ /Fe ²⁺	+0,77

Окончание табл. П.3

Окисленная форма/Восстановленная форма	E°, B	Окисленная форма/Восстановленная форма	<i>E</i> °, B
NO ₃ ⁻ /NO ₂	+0,77	Cr ₂ O ₇ ²⁻ /Cr ³⁺	+1,33
NiO(OH)/Ni(OH) ₂	+0,78	Cl ₂ /Cl ⁻	+1,36
Ag ⁺ /Ag	+0,80	Co ³⁺ /Co ²⁺	+1,38
Hg ²⁺ /Hg	+0,85	Au ³⁺ /Au	+1,42
Cu ²⁺ , I ⁻ /CuI	+0,86	PbO ₂ /Pb ²⁺	+1,46
NO ₃ ⁻ /NH ₄ ⁺	+0,88	ClO ₃ ⁻ /Cl ₂	+1,47
HO ₂ ⁻ /OH ⁻	+0,88	BrO ₃ ⁻ /Br ₂	+1,51
NO ₃ ⁻ /HNO ₂	+0,93	MnO_4 $-/Mn^{2+}$	+1,53
H ₂ O ₂ /OH ⁻	+0,94	HBrO/Br ₂	+1,57
NO ₃ ⁻ /NO	+0,96	HClO/Cl ₂	+1,63
Br ₂ /Br ⁻	+1,07	MnO ₄ ⁻ /MnO ₂	+1,73
IO_3^-/I^-	+1,08	H ₂ O ₂ /H ₂ O	+1,76
Cu ²⁺ , CN ⁻ /[Cu(CN) ₂] ⁻	+1,11	NaBiO ₃ /Bi ³⁺ , Na ⁺	+1,81
ClO ₄ ⁻ /ClO ₃ ⁻	+1,19	S ₂ O ₆ (O ₂) ²⁻ /SO ₄ ²⁻	+1,96
IO_3^-/I_2	+1,19	ClO ⁻ /Cl ₂	+2,14
NO ₂ ⁻ /NO	+1,20	$(Pb_2{}^{II}Pb^{IV})O_4/Pb^{2+}$	+2,16
Na ₂ O ₂ /OH ⁻ , Na ⁺	+1,20	NiO(OH)/Ni ²⁺	+2,25
O ₂ /H ₂ O	+1,23	Na ₂ O ₂ /H ₂ O, Na ⁺	+2,86
MnO ₂ /Mn ²⁺	+1,24	F ₂ /F ⁻	+2,87
Tl ³⁺ /Tl ⁺	+1,28	F ₂ /HF	+3,02

Учебное издание

АРТЕМКИНА Ирина Михайловна АРТЕМКИНА Юлия Михайловна ДУПАЛ Алексей Ярославович КОЖЕВНИКОВА Светлана Валерьевна СВИРИДЕНКОВА Наталья Васильевна СОЛОВЬЕВ Сергей Николаевич ЩЕРБАКОВ Владимир Васильевич

ИНДИВИДУАЛЬНАЯ ДОМАШНЯЯ РАБОТА ПО ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ В ПРИМЕРАХ И ЗАДАЧАХ

Редактор Е. В. Копасова

Подписано в печать 22.07.2022 г. Формат 60×84 1/16 Усл. печ. л. 8,4. Уч.-изд. л. 7,5. Тираж 100 экз. Заказ

Российский химико-технологический университет имени Д. И. Менделеева Издательский центр.

Адрес университета и издательского центра: 125047 Москва, Миусская пл., 9.