CS 5710 - Assignment 1 (22002) SUSHANT ASHISH

Question-10

Assume Class
$$A = [1, 2, 7, 10, 11]$$

Class $B = [3, 6, 6]$

$$dp$$
-train = [1, 2, 3, 6]
 $class$ -train = [A, A, B, B]

Points	Class
1	A
2	A
3	В
6	В
-6	B
7	A
10	A
11	A

Euc. Dist =
$$\sqrt{(\alpha - \alpha_i)^2}$$

dp_test[0]=6 =>

as there is only I feature

$\sqrt{(6-1)^2}$			
(1)	6-	1)2	
<i>⇒</i> ,		6-	$\sqrt{(6-1)^2}$ $\sqrt{25} =$

dp_test[0] dp_train | dist | class_train

6 | 1 | 5 | A

6 | 2 | 4 |
$$A \rightarrow K=3$$

6 | 3 | $B \rightarrow K=2$

6 | 6 | 0 | $A \rightarrow V=1$

Majority >> B .. Prediction = B

dp_test[1]=7

dp_test[i]	dp-toain	class_train	dist	Mgority=B
7 7 7	1 2 3 6	A B B	$ \begin{array}{c} 6 \\ 5 \Rightarrow k=3 \\ 4 \Rightarrow k=2 \\ 1 \Rightarrow k=1 \end{array} $: Pred = B

dp_test[2] = 10

do-test[2]	dp.toain	class_train	1 286	
10	1	A	9	May'ority=B
10	2	A	8 ⇒ k=3	Pred = B
10	3	B	7 ⇒ K=2	
10	6	(B/	4 => K=1	

dp_test[3]=11

dp_test[3]	dp-train	class_train	dist	
11	1	A	10	Majority=B
1)	2	A	9 > K=3	Majority=B
r_i	3	$\begin{pmatrix} B \\ B \end{pmatrix}$	$ \begin{pmatrix} 9 & \Rightarrow & k=3 \\ 8 & \Rightarrow & k=2 \\ 5 & \Rightarrow & k=1 \end{pmatrix} $	
11	6	B/ 1	5/ ⇒ K=1	

 $dp_best = [6, 7, 10, 11]$ $class_test = [B, A, A, A] \Rightarrow Actual Classification$ $pred_best = [B, B, B, B] \Rightarrow Predicted Output$

Part-2

Assuming A >> Positive
B >> Negative

Confusion Matrix

L

Actual

		Positive	Negatin
	P	TP	FP
red	7	FN	TN

In this case

Now, Accuracy =
$$\frac{TN + TP}{TN + TP + FN + FP} = \frac{1}{4} = 0.25$$

Sensitivity =
$$\frac{TP}{TP + FN} = \frac{0}{0} \Rightarrow Worst ease$$

is supresented
 $Worst ease$
is supresented
 $Worst ease$
 $Worst ease$

Specificity =
$$\frac{TN}{TN+FP} = \frac{1}{4} = 0.25$$