$$A_{FS2} = (\mathcal{A}, \left\{ L'_g, L_d, L_t \right\})$$

$$L'_g = \left\{ w \in \Sigma^* | \forall u, v \in \Sigma^* \land uv = w : |u|_k \le |u|_g \right\}$$

Zeigen Sie, dass $L(A_{FS2})$ kontextfrei, aber nicht regulär ist.

0.1 $L(A_{FS2})$ ist nicht regulär

Proof. Mit Hilfe des verschärften Pumping Lemmas für reguläre Sprachen.

$$w' = (ksk)^n r (drt)^n dg^n a$$

Wir wählen $u=(ksk)^nr(drt)^nd$ und y=a. Nun lassen sich alle möglichen Zerlegungen zusammenfassen mit $w=g^r, vx=g^{n-r}, r>0$. Nun gilt für i=2 das $uvw^2xy=(ksk)^nr(drt)^ndg^{n+r}a$ und da $|uvw^2xy|_k=2n<2n+r=|uvw^2xy|_g$ ist uvw^2xy offensichtlich nicht in $L(A_{FS2})$, somit kann $L(A_{FS2})$ keine reguläre Sprache sein.

$0.2 \quad L(A_{FS2})$ ist kontextfrei

Proof. Wir geben einen Kellerautomaten A an für den gilt $L'_g = L(A)$. Daraus folgt dass L'_g kontextfrei ist. Wir wissen bereits dass L_d und L_t regulär sind. Und der Schnitt von kontextfreien Sprachen mit regulären Sprachen ist wieder kontextfrei somit ist $L(A_{FS2})$ auch kontextfrei.

$$A = (\{q_0\}, \{a, d, g, k, r, s, t\}, \{Z\}, q_0, S, \Delta, \{q_0\})$$

$$\Delta = \{(q_0, y, X, X, q_0), (q_0, k, X, ZX, q_0), (q_0, g, Z, \varepsilon, q_0) \}$$

$$|X \in \{S, Z\}, y \in \{a, d, r, s, t\}\}$$

Der Beweis das $L'_q = L(A)$ wurde hier ausgelassen.