Week 3 (Cont.) Word Sense Disambiguation (WSD)

Nhung Nguyen slides courtesy of NaCTeM

Recap

- Two approaches were introduced for learning word embeddings
 - o count-based, and
 - prediction-based
- A very brief introduction to neural networks, and how they are used to learn word embeddings
- word2vec

Word senses

- We assumed each word has one meaning / sense
- In fact, a word can have several senses

```
mouse<sup>1</sup>: .... a mouse controlling a computer system in 1968.
```

mouse²: a quiet animal like a mouse

bank¹: ...a bank can hold the investments in a custodial account ...

bank²: ...as agriculture burgeons on the east bank, the river ...

- How to define word senses? WordNet
- How to predict word senses? Knowledge-based and supervised learning-based methods

WordNet: A Database of Lexical Relations

The noun "bass" has 8 senses in WordNet.

- 1. bass¹ (the lowest part of the musical range)
- 2. bass², bass part¹ (the lowest part in polyphonic music)
- 3. bass³, basso¹ (an adult male singer with the lowest voice)
- 4. sea bass¹, bass⁴ (the lean flesh of a saltwater fish of the family Serranidae)
- 5. freshwater bass¹, bass⁵ (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- 6. bass⁶, bass voice¹, basso² (the lowest adult male singing voice)
- 7. bass⁷ (the member with the lowest range of a family of musical instruments)
- 8. bass⁸ (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

WordNet (cont.) - supersenses

Category	Example	Category	Example	Category	Example
ACT	service	GROUP	place	PLANT	tree
ANIMAL	dog	LOCATION	area	POSSESSION	price
ARTIFACT	car	MOTIVE	reason	PROCESS	process
ATTRIBUTE	quality	NATURAL EVENT	experience	QUANTITY	amount
BODY	hair	NATURAL OBJECT	flower	RELATION	portion
COGNITION	way	OTHER	stuff	SHAPE	square
COMMUNICATION	review	PERSON	people	STATE	pain
FEELING	discomfort	PHENOMENON	result	SUBSTANCE	oil
FOOD	food			TIME	day

WordNet (cont.) - sense relations

Also Called	Definition	Example
Superordinate	From concepts to superordinates	$breakfast^1 \rightarrow meal^1$
Subordinate	From concepts to subtypes	$meal^1 ightarrow lunch^1$
Instance	From instances to their concepts	$Austen^1 \rightarrow author^1$
Has-Instance	From concepts to their instances	$composer^1 \rightarrow Bach^1$
Has-Part	From wholes to parts	$table^2 ightarrow leg^3$
Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
	Semantic opposition between lemmas	$leader^1 \iff follower^1$
	Lemmas w/same morphological root	$destruction^1 \iff destre$
	Superordinate Subordinate Instance Has-Instance Has-Part Part-Of	Superordinate From concepts to superordinates Subordinate From concepts to subtypes Instance From instances to their concepts Has-Instance From concepts to their instances Has-Part From wholes to parts Part-Of From parts to wholes Semantic opposition between lemmas

Figure 19.3	Some of	the noun	relations	in	WordNet.
--------------------	---------	----------	-----------	----	----------

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From events to subordinate event	$walk^1 \rightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$snore^1 ightarrow sleep^1$
Antonym	Semantic opposition between lemmas	$increase^1 \iff decrease^1$
Figure 19.4	Some verb relations in WordNet	

6

WordNet (cont.) - view as a graph

Approaches to WSD

Task definition

- Input:
 - Word in a context
 - A fixed inventory of potential word senses
- Output:
 - The correct word sense in context
- Two main types:
 - Lexical sample task
 - All-words tasks: similar to part-of-speech tagging

Lesk algorithm (Lesk, 1986): WSD baseline

- Intuition: choose the sense whose dictionary gloss or definition shares the most words with the target word's neighborhood
- Formalisation
 - Target word: w
 - Context words of w: w_i
 - Lexicon definition of senses: D(.)
 - Set of senses of a word: S(.)

Lesk algorithm (Cont.)

• The rule:

$$s_{optimised} = argmax_{s_k \in S(w)}(sim(D(s_k), igcup_{w_i \in C} igcup_{s_i \in S(w_i)} D(s_i)))$$

Possible similarity measures

$$egin{align} sim(X,Y) &= 2rac{|X\cap Y|}{|X|+|Y|} \ sim(X,Y) &= 2rac{|X\cap Y|}{|X\bigcup Y|} \ sim(X,Y) &= 2rac{|X\cap Y|}{\sqrt{|X||Y|}} \ sim(X,Y) &= |X\cap Y| \ \end{array}$$

Example

Input sentence: Waves were hitting the steep bank.

Senses for bank:

- 1. sloping land (especially the slope beside a body of water)
- 2. a financial institution that accepts deposits and moves the money into lending activities
- 3. a building in which the business of banking transacted

Context definitions:

- wave one of a series of ridges that moves across the surface of a liquid (especially across a large body of water)
- hit hit against; come into sudden contact with
- steep of a slope; set at a high angle

$$sim_1 = |body, water, slope| = 3, $sim_2 = |moves| = 1, sim_3 = |\varnothing| = 0$$$

Lesk algorithm (Cont.)

Pros:

- Simple to implement
- No training data needed

Cons:

- not all words have definitions in WordNet,
- need to deal with ambiguous context words,
- poor performance.

Supervised learning: all-word WSD

SemCor corpus (<u>https://www.kaggle.com/nltkdata/semcor-corpus</u>)

Feature-based WSD

- Using SVM with several features
 - Part-of-speech tags
 - Collocation features of words and *n*-grams
 - Weighted average of word embeddings (of all words in a window)

Summary

- WordNet is a large database of lexical relations for English
- WSD is the task of determining the correct sense of a word in context.
- SemCor is the largest corpus with WordNet-labeled senses
- Lesk algorithm, a WSD baseline, is a knowledge-based approach
- Feature-based algorithms using parts of speech and embeddings of words in the context of the target word work well.