(https://twitter.com/mathweb_lesite)

(https://www.facebook.com/courspasquet)

>

(https://studio.youtube.com/channel/UCuwEQNaFyCYP41NPuTK3AYA)

(https://www.mathweb.fr/euclide/)

Connexion (https://www.mathweb.fr/euclide/connexion/)

Articles (https://www.mathweb.fr/euclide/tous-les-posts/) Mathématiques \checkmark $L\!\!T_E\!X$ \checkmark

Python ➤ Liens divers ➤ Contact (https://www.mathweb.fr/euclide/contact/)

Archimède, célèbre savant grec, a utilisé une astucieuse méthode afin d'encadrer le nombre pi (π) . Nous allons voir cette méthode et l'utiliser pour écrire un programme Python permettant d'obtenir un tel encadrement.

Principe Mathématique De La Méthode D'Archimède Pour Encadrer Pi

Introduction

Étant donné un cercle de centre O et de rayon R, on y inscrit un polygone régulier à n côtés. On construit alors un polygone à n côtés exinscrit à ce même cercle.

(https://www.mathweb.fr/euclide/wp-content/uploads/2020/08/archimede-pi-01.png)

Exemple avec n = 6

Nous savons que le périmètre d'un cercle est égal à πR^2 . Ainsi, en notant p_n le périmètre du polygone inscrit (rouge) et P_n celui du polygone exinscrit (vert), on a :

$$p_n\leqslant\pi\leqslant P_n$$
.

Il ne reste plus qu'à exprimer le périmètre des polygones...

Expression du périmètre du polygone inscrit

(https://www.mathweb.fr/euclide/wp-content/uploads/2020/08/archimede-pi-02-2.png)

Polygone inscrit pour n = 6

Le polygone inscrit peut être divisé en *n* triangles isocèles en O (dans l'illustration, en 6 triangles isocèles de sommet O). Notons alors:

 $lpha_n=rac{360}{n}$ l'angle (exprimé en degrés) au sommet principal des triangles isocèles;

 c_n la mesure des côtés opposés aux sommets principaux (côtés du polygone);

 h_n la hauteur issue d'un sommet principal.

La hauteur h_n coupe le triangle isocèle en deux triangles rectangles; l'angle en O mesure alors $\frac{\alpha_n}{2}=\frac{180}{n}$. On peut alors écrire:

$$\sin(lpha_n) = rac{rac{c_n}{2}}{R}$$

$$c_n = 2R\sin(lpha_n) = 2R\sinigg(rac{180}{n}igg).$$

En prenant R = 1 (par soucis de simplification), on obtient alors que le périmètre du polygone inscrit est :

$$\left| p_n = 2n \sin\!\left(rac{180}{n}
ight)
ight|$$

Expression du périmètre du polygone exinscrit

(https://www.mathweb.fr/euclide/wp-content/uploads/2020/08/archimede-pi-03.png)

Polygone exinscrit pour n = 6

Intuitivement, on peut penser que le polygone exinscrit est un agrandissement du polygone inscrit Pour avoir le rapport d'agrandissement, il faut regarder la hauteur en orange h_n et la prolon jusqu'au cercle: cela donne la hauteur d'un triangle isocèle découpé dans le polygone exinscr $\frac{1}{2}$

Or, cette dernière hauteur est égale au rayon du cercle. Donc pour nous, cette hauteur vaut 1. Le rapport d'agrandissement est donc égal à :

$$k_n=rac{1}{h_n}.$$

Or, dans le triangle rectangle que nous avons utilisé précédemment, on peut dire que:

$$\cos(lpha_n) = rac{h_n}{R} = h_n.$$

Par conséquent,

$$k_n = rac{1}{\cos(lpha_n)}.$$

Le périmètre du polygone exinscrit est donc:

$$P_n = k_n \times p_n$$

soit:

$$P_n = 2n\sin\!\left(rac{180}{n}
ight) imesrac{1}{\cos\!\left(rac{180}{n}
ight)}$$

que l'on peut aussi écrire:

$$oxed{P_n = 2n anigg(rac{180}{n}igg)}$$

Encadrement de pi

On peut alors déduire des calculs précédents que:

$$2n\sin\!\left(rac{180}{n}
ight)\leqslant 2\pi\leqslant 2n an\!\left(rac{180}{n}
ight)$$

En effet, le périmètre du cercle est $2\pi R=2\pi imes 1=2\pi.$

On peut simplifier par deux les membres de cet encadrement, ce qui donne :

$$\boxed{n\sin\!\left(\frac{180}{n}\right)\leqslant\pi\leqslant n\tan\!\left(\frac{180}{n}\right)}$$

Méthode D'Archimède Pour Encadrer Pi: Programme Python

```
from math import sin, tan, radians
2.
     def archimede(p):
3.
         a, b = 0, 1 # valeurs arbitraires
4.
         n = 6
5.
         while (b-a) > 10**(-p):
              a = n * sin( radians(180/n) )
7.
              b = n * tan(radians(180/n))
8.
              n = n + 1
9.
10.
         return a, b
11.
     print (archimede(10))
12.
```

La fonction *archimede* admet un entier pour argument: c'est la précision que l'on souhaite. Dans notre exemple, on veut un encadrement d'amplitude maximale 10^{-10} donc on appelle *archimede(10)*. Le retour est le suivant:

```
(3.1415926535564602, 3.1415926536564593)
```

Et n'oubliez pas que si vous avez des difficultés en maths, <u>je peux vous aider par webcam</u> (https://courspasquet.fr)!

Articles relatifs:

SIRET 441 673 258 RCS Bordeaux - Confidentialité (https://www.mathweb.fr/euclide/confidentialite/)

Confidentialité - Conditions