

Instruction Manual optoNCDT 1402

ILD1402-5	ILD1402-250V7
ILD1402-10	ILD1402-600
ILD1402-20	ILD1402-5SC
ILD1402-50	ILD1402-10SC
ILD1402-100	ILD1402-20SC
ILD1402-200	ILD1402-50SC

ILD1402-100SC ILD1402-200SC ILD1402-250SC ILD1402-600SC Intelligent laser optical displacement measurement

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Strasse 15

D-94496 Ortenburg

Tel. 08542/168-0 Fax 08542/168-90 e-mail info@micro-epsilon.de www.micro-epsilon.com

Certified acc. to DIN EN ISO 9001: 2008 Software-V1.003

Contents

1.	Safety	7
1.1	Symbóls Used	7
1.2	Warnings	7
1.3	CE Compliance	8
1.4	Proper Use	
1.5	Proper Environment	8
2.	Laser Class	9
3.	Functional Principle, Technical Data	- 11
3.1	Functional Principle, Technical Data	11 11
3.2	Functions	11
3.2.1	Fitting the Measurement Range	
3.2.2	Exposure Control	12
3.2.3	Peak Select	
3.2.4	Trigger, Time-based Measurement Value Output	
3.2.5	Error Behavior	
3.2.6	Averaging	12
3.2.7	Sensor Emulation (Compatibility)	12
3.2.8	Command Compatibility	12
3.2.9	Video Signal	13
3.2.10	Programmable Search Threshold	13
3.3	Technical Data ILD 1402-x	14
3.4	Technical Data ILD 1402-xSC	16
3.5	Control and Indicator Elements ILD 1402-x	18
4.	Delivery	19
4.1	Scope of Delivery	
4.2	Storage	19
_		
5.	Installation and Mounting	20
5.1	Sensor Mounting ILD 1402-x	20
5.2 5.3	Sensor Mounting ILD 1402-xSC	
5.3 5.3.1	Pin Assignment ILD 1402-x Switching off the Laser	22
5.3.1	Input for Analog Scaling and Triggering.	∠ა 23
0.0.2	input for Analog Scaling and Inggering	20

5.3.3	Error Output	
5.4	Pin Assignment ILD 1402-xSC	25
5.5	Pin Assignment for RS422 Interface	26
6.	Operation	27
6.1	Getting Ready for Operation	
6.2	Output Scaling	28
6.2.1	Output Scaling via the "Select" Key	30
6.2.2	Output Scaling via the Hardware Input, "Teach in"	31
6.3	Average	32
6.3.1	Averaging Number N	32
6.3.2	Moving Average (Default Setting)	32
6.3.3 6.4	MedianMeasurement Rate and Output Rate	33
6.5	Timing	აა
6.6	Triggering on ILD 1402-x	
0.0	Higgering on ILD 1402-x	
7.	Measurement Value Output	37
7.1	Current Output	37
7.2	Digital Value Output	
7.2.1	Data Protocol ILD1401	
7.2.2	Data Protocol ILD1402	
7.3	Digital Error Codes	39
8.	Serial Interface RS422	40
8.1	Interface Parameter	
8.2	Data Format for Measurement Values and Error Codes	41
8.2.1	Binary Format	41
8.2.2	ASCIÍ Format	42
8.2.3	Request the Data Protocol	42
8.3	Data Protocol ILD1401	43
8.3.1	Setup of the Commands	43
8.3.2	Overview of Commands	
8.3.3	Reading the Sensor Parameters	
8.3.4	Reading the Software Version	
8.3.5	Average On/Off	
8.3.6 8.3.7	Digital or Analog Data Output	
6.3. <i>1</i> 8.3.8	Reset Sensor	
0.0.0	1 10301 001 1301	

8.3.9	Changing Data Protocol	49
8.4	Data Protocol ILD1402	50
8.4.1	Setup of the Commands	50
8.4.2	Overview	
8.4.3	Reading the Sensor Parameters	52
8.4.4	Reading the Sensor Settings	
8.4.5	Average Type and Average Number	
8.4.6	Stopping the Measurement Value Output	58
8.4.7	Starting the Measurement Value Output	50
8.4.8	Digital or Analog Data Output	59
8.4.9	Digital or Analog Data Output	60
8.4.10	Set Output Time	61
8.4.11	Error Output (Analog output)	62
8.4.12	Set Baud Rate	63
8.4.13	Set Measurement Rate	
8.4.14	Input for Scaling and Trigger	
8.4.15	Peak Detection with Video Signal	65
8.4.16	Search Threshold	66
8.4.17	Switching off the Laser (External)	67
8.4.18	Change Data Format	
8.4.19	Key Lock	69
8.4.20	Reset Sensor	70
8.4.21	Set Default Setting	71
8.4.22	Save Settings in RAM or FLASH	72
8.4.23	Scaling Values for the Analog Output	73
8.4.24	Reset Scaling Values for the Analog Output	73
8.4.25	Reset Scaling Values for the Analog Output	74
8.4.26	Request Data Protocol	75
_		
9.	Instructions for Operating	76
9.1	Reflection Factor of the Target Surface	76
9.2	Error Influences	
9.2.1	Light from other Sources	
9.2.2	Color Differences	
9.2.3	Temperature Influences	
9.2.4	Mechanical Vibrations	
9.2.5	Movement Blurs	
9.2.6	Surface Roughness	
9.2.7	Angle Influences	77

9.3 9.4	Optimizing the Measuring AccuracyCleaning the Protective Glasses	. 78 . 79
10.	Default Setting	79
11.	ILD1402 Tool	80
12.	Software Support with MEDAQLib	81
13.	Warranty	82
14.	Service, Repair	82
15.	Decommissioning, Disposal	82
16. 16.1 16.2	Free Space for Optics	83 .83 .84
17.	Available Cables	85

1. Safety

Knowledge of the operating instructions is a prerequisite for sensor operation.

1.1 Symbols Used

The following symbols are used in this instruction manual:

A CAUTION

Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.

NOTICE

Indicates a situation which, if not avoided, may lead to property damage.

 \rightarrow

Indicates an user action.

i

Indicates an user tip.

1.2 Warnings

Avoid unnecessary laser exposure to the human body

- Turn off the sensor for cleaning and maintenance.
- Turn off the sensor for system maintenance and repair if the sensor is integrated into a system.

Caution - use of controls or adjustments or performance of procedures other than those specified may cause harm.

Connect the power supply and the display/output device in accordance with the safety regulations for electrical equipment.

> Danger of injury, damage to or destruction of the sensor

The power supply may not exceed the specified limits.

> Danger of injury, damage to or destruction of the sensor

NOTICE

Avoid shock and vibration to the sensor. Damage to or destruction of the sensor

Avoid continuous exposure to fluids.

> Damage to or destruction of the sensor

Avoid contact with aggressive materials (washing agent, penetrating liquids or similar).

> Damage to or destruction of the sensor

1.3 CE Compliance

The following applies to the optoNCDT1402: EMC regulation 2004/108/EC

Products which carry the CE mark satisfy the requirements of the EMC regulation 2004/108/EC 'Electromagnetic Compatibility' and the European standards (EN) listed therein. The EC declaration of conformity is kept available according to EC regulation, article 10 by the authorities responsible at

MICRO-EPSILON Messtechnik GmbH & Co. KG Königbacher Straße 15 D-94496 Ortenburg

The sensor is in compliance with the following standards

- EN 61 326-1: 2006-10

- DIN EN 55011: 2007-11 (Group 1, class B)

- EN 61000-6-2: 2006-03

The sensor fulfills the specification of the EMC requirements, if the instructions in the operating manual are followed.

1.4 Proper Use

- The series optoNCDT1402 measuring system is designed for use in industrial areas.
- It is used
 - for measuring displacement, distance, position and thickness
 - for in-process quality control and dimensional testing
- The measuring system may only be operated within the limits specified in the technical data, see Chap. 3.3.
- The sensor should only be used in such a way that in case of malfunctions or failure personnel or machinery are not endanged.
- Additional precautions for safety and damage prevention must be taken for safety-related applications.

1.5 Proper Environment

- Protection class sensor: IP 67 (IP 69K ¹ for ILD1402SC)
- Optical surfaces are excluded from protection class. Contamination of the lenses leads to impairment or

1) Temperature of the cleaning agent temporarily 80 °C

failure of the function.

Operating temperature: 0 to +50 °C (+32 to +122 °F)
 Storage temperature: -20 to +70 °C (-4 to +158 °F)
 Humidity: 5 - 95 % (no condensation)

- Pressure: atmospheric pressure

EMC: According to EN 61 326-1: 2006-10

DIN EN 55011: 2007-11 (Group 1, class B)

EN 61000-6-2: 2006-03

The protection class is limited to water (no penetrating liquids or similar)!

2. Laser Class

The sensors operate with a semiconductor laser with a wavelength of 670 nm (visible/red). The laser emits a permanent beam. The maximum optical power is ≤ 1 mW. The sensors are classified for Laser Class 2 (II).

The laser warning labels for Germany have already been applied. Those for other non German-speaking countries an IEC standard lable is included in delivery and the versions applicable to the user's country must be applied before the equipment is used for the first time.

Attach the following warning labels on the sensor housing front side:

LASER RADIATION
Do not stare into the beam
CLASS 2 LASER PRODUCT
IEC 60825-1: 2007
P≤1mW; λ=670 nm

THIS PRODUCT COMPLIES WITH FDA REGULATIONS 21CFR 1040.10 AND 1040.11

IEC label Only for USA

If both warning labels are disguised in operation mode the user must add additional warning labels.

A CAUTION

Do not look directly into the laser beam! Possible injury of the eyes. Close your eyes or turn away promptly if laser radiation strikes your eyes. During operation of the sensor the pertinent regulations acc. to EN 60825-1 on "radiation safety of laser equipment" must be fully observed at all times. The sensor complies with all applicable laws for the manufacturer of laser devices.

Fig. 1 True reproduction of the sensor with its actual location of the warning labels Laser operation is indicated by LED.

Although the laser output is low looking directly into the laser beam must be avoided. Due to the visible light beam eye protection is ensured by the natural blink reflex.

The housing of the optical sensors optoNCDT1402 may only be opened by the manufacturer, see Chap. 14.. For repair and service purposes the sensors must always be sent to the manufacturer.

3. Functional Principle, Technical Data

3.1 Functional Principle

The sensor uses the principle of optical triangulation, i.e. a visible, modulated point of light is projected onto the target surface.

The diffuse element of the reflection of the light spot is imaged by a receiver optical element positioned at a certain angle to the optical axis of the laser beam onto a high-sensitivity resolution element (CCD), in dependency on distance.

The controller calculates the measured value from the CCD-array. An internal closed-loop control enables the sensor to measure against different surfaces.

A LED on the sensor indicates:

- In range
- Out of Range (upper and lower range values), poor target (unfit or no object)
- Mid range

Fig. 2 Definiton of terms, output signal

SMR = Start of measuring range | MR = Midrange | EMR = End of measuring range

3.2 Functions

3.2.1 Fitting the Measurement Range

The analog measuring range can be reduced with aid of the "Teach" function, see Chap. 6.2. This enables you to scale only a part of the measuring range to the full scale current output. Thus the resolution of analog evaluation systems like displays or PLCs will be used better.

3.2.2 Exposure Control

Dark or shining objects to be measured may require a longer exposure time. However, the controller is not capable of providing exposure which is any longer than permitted by the measurement rate. For a longer exposure time, therefore, the measurement rate of the sensor has to be reduced, see Chap. 6.4, by command.

3.2.3 Peak Select

For measurements on mirroring or transparent surfaces like glass plates or plastic layers spurious reflections from the front or rear side can be suppressed by command, see Chap. 8.4.15.

3.2.4 Trigger, Time-based Measurement Value Output

Single measurements can be output via the trigger input. You can also output the measurements in a programmable timing period, see Chap. 8.4.10.

3.2.5 Error Behavior

The sensor may replace or hold up to 99 consecutive errors by the last valid value. In addition, all error values at the analog output can be replaced by the last valid value.

Details about the behaviour of the analog output, see Chap. 8.4.11.

3.2.6 Averaging

The sensor enables an averaging of the measured values with the median or moving average, before they are output. This does not reduce the measurement rate.

3.2.7 Sensor Emulation (Compatibility)

For a replacement or retrofitting, the ILD1402 can also be operated in the configuration of the previous type ILD1401. This reduces the data word width of 14 to 12 bit and the functions of the ILD1401 are usable only.

3.2.8 Command Compatibility

The sensor ILD1402 uses the same commands (Stop, Info, etc.) for the same functions as the type ILD1700. This means that existing programs of the ILD1700 can be easily adapted.

More informations, see Chap. 8.4.2.

3.2.9 Video Signal

The sensor can use different peaks in the CCD array for displacement measuring.

This function is auxiliary, if the sensor measures against glass or transparent targets, see Chap. 8.4.15 also.

Fig. 3 Video signal

3.2.10 Programmable Search Threshold

The sensor can use different thresholds to detect a valid peak in the CCD array for displacement measuring.

Parameters, see Chap. 8.4.16 (for parameter setting):

- lower than standard
- Standard
- higher than standard
- highest
- Changing the threshold from factory default (standard) may influence linearity and resolution.

3.3 Technical Data ILD 1402-x

Model	ILD	1402-5	1402-10	1402-20	1402-50	1402-100	1402-200	1402-250VT	1402-600	
Measurement range	mm	5	10	20	50	100	200	250	600	
Start of range	mm	20	20	30	45	50	60	100	200	
Midrange	mm	22.5	25	40	70	100	160	225	500	
End of range	mm	25	30	50	95	150	260	350	800	
Lincority	μm	5 9	5 18	7 36	12 90	20180	40 360	50 1200	120 3000	
Linearity				≤ 0.18	3 % FSO			≤ 0.5 °	% FSO	
	Averaged over 64 values	0.6	1	2	5	10	13	32	80	
Resolution	dynamic, μm	1 3	2 5	5 10	6 25	12 50	13 100	32 300	80 600	
	1.5 kHz		0.02 0.05 % FSO							
	digital	14 bit								
Measurement rate, pro	grammable:	1.5 kHz; 1 kHz; 750 Hz; 375 Hz; 50 Hz								
Light source		Semiconductor laser 1 mW, 670 nm (red)								
Laser class		Class 2 (II) acc. to DIN EN 60825-1: 2007								
	SMR, µm	110	110	210	1100	1400	2300	5000	2,6 x 5 mm	
Spot diameter	MR, μm	380	650	530	110	130	2200	5000	2,6 x 5 mm	
	EMR, μm	650	1200	830	1100	1400	2100	5000	2,6 x 5 mm	
Protection class		IP 67								
Vibration		15 g / 10 Hz 1 kHz 20 g / 10 Hz 1 kHz								
Shock		15 g / 6 ms (IEC 60068-2-29)								
Weight, without cable		approx. 83 g approx. 130 g							. 130 g	
Temperature stability		0.03 % FSO/°C 0.08 % FSO/°C								
Operation temperature		0 50 °C								
Storage temperature					-20 °	C 70 °C				

Model	ILD	1402-5	1402-10	1402-20	1402-50	1402-100	1402-200	1402-250VT	1402-600
Measurement value	analog			4 20 ı	mA (1 5 V w	ith cable PC	1402-3/U) or		
output	digital		RS422						
Supply			11 30 VDC, typical 24 VDC / 50 mA						
Controller			integral signal processor						
Electromagnetic					EN 61 32	26-1: 2006-10			
Electromagnetic compatibility (EMC)				DIN E	EN 55011: 200	7-11 (Group 1	, class B)		
					EN 61000)-6-2: 2006-03			

The specified data apply to a white, diffuse reflecting surface (Reference: Ceramic).

FSO = Full Scale Output

 $\mathsf{SMR} = \mathsf{Start} \ \mathsf{of} \ \mathsf{measuring} \ \mathsf{range} \qquad \qquad \mathsf{MMR} = \mathsf{Midrange} \qquad \qquad \mathsf{EMR} = \mathsf{End} \ \mathsf{of} \ \mathsf{measuring} \ \mathsf{range}$

ILD1402-250VT: 20 g, especially shock and vibration-resistant design for use on motor vehicles

3.4 Technical Data ILD 1402-xSC

Model	ILD	1402-5SC	1402-10SC	1402-20SC	1402-50SC	1402-100SC	1402-200SC	1402-250SC	1402-600SC	
Measuring range	mm	5	10	20	50	100	200	250	600	
Start of measuring range	mm	20	20	30	45	50	60	100	200	
Midrange	mm	22.5	25	40	70	100	160	225	500	
End of measuring range	mm	25	30	50	95	150	260	350	800	
Linearity	μ m	5 9	5 18	7 36	12 90	20 180	40 360	50 1200	120 3000	
Linearity	% FSO				≤ 0.18			≤ (0.5	
	averaged with	0.6 μm	1 <i>µ</i> m	2 μm	5 μm	10 <i>μ</i> m	13 <i>µ</i> m	32 <i>μ</i> m	80 μm	
Resolution 1)	averaging factor 64	0.01% d.M.								
	dynamic 1.5 kHz	1 3 μm	2 5 μm	5 10 μm	6 25 μm	12 50 μm	13 100 μm	32 300 μm	80 600 μm	
		0.02 0.05 % FSO 0.02 0.12 % FSO								
Measuring rate, progra	1.5 kHz; 1 kHz; 750 Hz; 375 Hz; 50 Hz									
Exposure rate, prograr	mmable	0.6 ms; 1 ms; 1.3 ms; 2.6 ms; 20 ms								
Light source		Semiconductor laser < 1 mW, 670 nm (red)								
Laser safety class		Class 2 IEC 60825-1: 2001-11								
	MBA, μ m	110	110	210	1100	1400	2300	5000	2.6 x 5 mm	
Spot diameter	MBM, μ m	380	650	530	110	130	2200	5000	2.6 x 5 mm	
	MBE, μ m	650	1200	830	1100	1400	2100	5000	2.6 x 5 mm	
Protection class		IP 69 K								
Vibration				15 g / 10) Hz1 kHz			20 g / 10 F	lz 1 kHz	
Shock					15 g / 6 ms	(IEC 60068-2-	29)			

Model	ILD	1402-5SC	1402-10SC	1402-20C	1402-50SC	1402-100SC	1402-200SC	1402-250SC	1402-600SC	
Weight (without cable)				арр	rox. 173 g			180) g	
Temperature stability	FSO/°C		0.0	%						
Operation temperature)				0 .	+50 °C				
Storage temperature		-20 +70 °C								
Outro	analog		420 mA (15 V with cable PC 1402-3/U); free scalable within the normal range							
Output	digital		RS422 / 14 bit							
Control I/O		1x open collector output (switching output, switch, error); 1x input (trigger)								
Power supply					1130 VD0	C, 24 VDC / 50	mA			
Controller					Integrated	signal process	sor			
Software		Free setup and aquisition tool + SDK (software development kit)								
	EN 61 326-1: 2006-10									
Electromagnetic comp	atibility (EMC)	DIN EN 55011: 2007-11 (Group 1, class B)								
	EN 61000-6-2: 2006-03									

FSO = Full scale output All specifications apply for a diffusely reflecting matt white ceramic target

¹⁾ Resolution digital output 14 bit

SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range

3.5 Control and Indicator Elements ILD 1402-x

LED State	Color	Sel
Measuring object within measurement range	green	
Midrange	yellow	6
Error - e.g. poor target or out of range	red	
Laser turned off	off	\

The touch key "select" is used to scale the sensor ¹. By factory default this key is only active for the first 5 minutes after the power up. After that it will be automatically locked. Via the software tool the auto lock feature can be disabled. With the select key you spread the analog output over a part of the nominal measuring range.

¹⁾ The sensor ILD 1402-xSC is fitted without a touch key. The scaling of the sensor measuring range is exclusively effected by software via the RS422 interface.

4. Delivery

4.1 Scope of Delivery

- 1 Sensor optoNCDT1402
- 1 Assembly instructions
- 5 Sealing screws for connector
- 1 CD with driver and demo program

Optional accessory, packed separately:

- 1 PC1402-x/l high flex interface und supply cable for current output, one end of the cable has a molded M12 female connector, the other end has free leads with ferrules.
- 1 PC1402-x/U high flex interface und supply cable for voltage output (250 Ohm load, U out = 1 ... 5 V), one end of the cable has a molded M12 female connector, the other end has free leads with ferrules.

A full list of all available cables, see Chap. 17..

Check for completeness and shipping damage immediately after unpacking. In case of damage or missing parts, please contact the manufacturer or supplier.

4.2 Storage

Storage temperature: -20 up to +70 °C (-4 to +158 °F) Humidity: 5 - 95 % (no condensation)

5. Installation and Mounting

The sensor is an optical sensor for measurements with micrometer accuracy.

Make sure it is handled carefully when installing and operating.

5.1 Sensor Mounting ILD 1402-x

- Mount the sensor via 2 screws M4.
- Mount the sensor in such a way that the laser beam is directed perpendicularly onto the surface of the target. In case of misalignment it is possible that the measurement results will not always be accurate, see Chap. 9.. also.

Minimum bending radius PC1402-x

- once: 39 mm
- continuous: 78 mm

Rotate the connector:

- Loosen the 4 screws M2 and rotate the male connector.
- Fasten the male connector. Use new sealing screws M2. Connector is sealed (IP 67) waiting 12 hours.

Fig. 4 Dimensional drawing ILD1402-x, dimensions in mm (inches), not to scale

5.2 Sensor Mounting ILD 1402-xSC

Mount the sensor via 2 screws M4.

Mount the sensor in such a way that the laser beam is directed perpendicularly onto the surface of the target. In case of misalignment it is possible that the measurement results will not always be accurate, see Chap. 9. also.

Minimum bending radius PC1402-xSC

- once: 39 mm - continuous: 78 mm

Fig. 5 Dimensions ILD1402-xSC, dimensions in mm (inches), not to scale

5.3 Pin Assignment ILD 1402-x

Pin	Description		Color code PC1402-x/I	Specification
3	RS422 Rx+	Carial innut	green	Internally terminated with 100 Ohm
4	RS422 Rx-	Serial input	yellow	Internally terminated with 120 Ohm
5	RS422 Tx+	Carial autaut	grey	Terminate externally with 120 Ohm
6	RS422 Tx-	Serial output	pink	Terminate externally with 120 Orim
7	+U _B	+U _B		11 30 VDC, typical 24 VDC / 50 mA
8	Laser off		black	Laser is active, if pin 8 is connected with GND
9	Teach in	Switch input	violet	Connected to GND for at least 30 ms
10	Error	Switch output	brown	Open-Collector (NPN), I _{max} = 100 mA, U _{max} = 30 VDC, short circuit proof, turn off the power supply to reset the short circuit protection
11	I _{OUT}	4 20 mA	white	R_{Load} = 250 Ω results U_{OUT} 1 5 V with U_{B} > 11 V R_{Load} = 500 Ω results U_{OUT} 1 10 V with U_{B} > 17 V
12	GND		blue	Supply and signal ground
1/2	n.c.			

The shield of the cable is connected with the housing of the connector. The supply and output cable PC1402-x/I is a high flex cable.

One end of the cable has a molded M12 female connector, the other end has free leads with ferrules.

(9 1) (8 (9 0) 2) (7 (1) 3) (6 (5 4)

Fig. 6 Pin side male cable connector

5.3.1 Switching off the Laser

Connect pin 8 with pin 12 to switch on the laser.

If you open this connection

- the laser switches off,
- the error output switches on,
- the "State" LED switches off.

Fig. 7 Circuit for laser off, analog scaling and trigger input

5.3.2 Input for Analog Scaling and Triggering

If pin 9, see Fig. 7, is selected as input to scale the analog output in the sensor configuration, see Chap. 8.4.14, and if pin 9 is connected with pin 12 more than 2 sec, the scaling of the analog output starts, see Chap. 6.2. The minimum pulse duration is 30 ms, see Fig. 14.

This external input can be configured as a trigger input to output the measurements also. If pin 9 is connected with pin 12 measurements are output at the serial or analog output. The maximum trigger frequency is 500 Hz.

Trigger conditions:

Wiring connect with ground, e.g. a relay or open-collector (NPN)
---	---

5.3.3 Error Output

The error message is generated by:

- no measuring object or measuring object beyond measuring range
- poor target (reflectivity to small, transparent or mirroring object) or laser off

U_{CE max.} = 30 VDC No error: T locked Error: T conductive

The error output is low-active and short circuit proof.

Fig. 8 External wiring for the error output

With a user defined output scaling, see Chap. 6.2, you can use the hysteresis-free error output as a programmable limit switch.

5.4 Pin Assignment ILD 1402-xSC

Pin	Description		Color code PC1402SC-x/I PC1402SC/90-x/I	Specification	
1	I _{OUT}	4 20 mA	white	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	
2	Error	Switch output	brown	Open-Collector (NPN), I $_{\rm max} = 100$ mA, U $_{\rm max} = 30$ VDC, short circuit proof, Turn off the power supply to reset the short circuit protection.	
3	RS422 Rx+	Serial	green	Internally terminated with 100 Ohm	
4	RS422 Rx-	input	yellow	Internally terminated with 120 Ohm.	
5	RS422 Tx+	Serial	grey	Terminate externally with 120 Ohm	
6	RS422 Tx-	output	pink	Terminate externally with 120 Ohm.	
7	GND		blue	Supply and signal ground	
8	+U _B		red	11 30 VDC, typ. 24 VDC / 50 mA	
-	Twisted scre	ening	black		

The laser is active in the sensor, if the power supply at the sensor is on.

The shield of the cable is connected with the housing of the connector. The supply and output cable PC1402-x/l is a high flex cable.

One end of the cable has a molded M12 8-pole female connector, the other end has free leads with ferrules.

Fig. 9 Pin side male sensor connector

Error Output

The error message is generated by:

- no measuring object or measuring object beyond measuring range
- poor target (reflectivity to small, transparent or mirroring object) or laser off

U_{CE max.} = 30 VDC No error: T locked Error: T conductive

The error output is low-active and short circuit proof.

Fig. 10 External wiring for the error output

With a user defined output scaling, see Chap. 6.2, you can use the hysteresis-free error output as a programmable limit switch.

5.5 Pin Assignment for RS422 Interface

The lines have to be crossed for the connection between sensor and PC.

Sensor	Terminal (USB converter)	Colors PC1402-x/I	
Tx+ (Pin 5)	Rx+ (Pin 3)	grey	
Tx - (Pin 6)	Rx - (Pin 4)	pink	
Rx+ (Pin 3)	Tx+ (Pin 2)	green	
Rx - (Pin 4)	Tx - (Pin 1)	yellow	
GND (Pin 12)	GND (Pin 5)	blue	

 $oldsymbol{1}$ Disconnect or connect the D-sub connection between RS422 and USB converter when the sensor is disconnected from power supply only.

6. Operation

6.1 Getting Ready for Operation

Install and assemble the optoNCDT1402 in accordance with the instructions set out, see Chap. 5.1 and connect it with the indicator or monitoring unit and the power supply, having full regard to the connection instructions set out, see Chap. 5.3.

The laser diode in the sensor ILD 1402-x can only be activated if

- the input "Laser on/off" (Pin 9) or
- the black wire in the PC1402 sensor cable

is connected to GND.

The laser diode in the sensor ILD 1402-XSC is activated automatically with applying the operating voltage.

Once the operating voltage has been switched on the sensor runs through an initialization sequence. The sensor ILD 1402-x indicates this by the momentary activation of the "State" LED. If initialization has been finished, the sensor transmits the info string once in ASCII format via the serial interface independent of the selected interface. The initialization including the info string transmission takes up to 5 seconds. Within this period, the sensor neither executes nor replies commands.

To be able to produce reproducible measurements the sensor typically requires a start-up time of 15 minutes.

Once this has elapsed the sensor will be in measurement mode and, in accordance with the factory settings, only the "State" LED on ILD 1402-x sensor is illuminated.

If the "State" LED on the sensor ILD 1402-x is off, this means that

- either there is no operating voltage or
- the laser has been switched off.

Operating Voltage

- Nominal value: 24 VDC (11 ... 30 V, max. 50 mA).
- Use the power supply unit for measurement instruments only, and not for drive units or similar sources of pulse interference at the same time.

Switch on the power supply unit, if wiring is done.

6.2 Output Scaling

The "teaching" scales the analog output (4 to 20 mA) for a part of the measuring range. This allows you to optimize the resolution for the analog measurement range. Only the current and error output will be affected by the 2 point calibration. Therefore you define a new start and end for the measurement range. This "teaching" procedure can be performed live via the select key or via pin 9 of the connector.

With a user defined output scaling you can use the error output, see Chap. 5.3.3, as a programmable limit switch.

Output scaling
with the sensor
ILD1402-xxxSC is
only possible via the serial interface.

Fig. 11 Reverse user defined characteristic

The minimum distance of the teach values 1/2 to one other is 10 % of the measurement range.

The teaching process requires a valid measuring signal. The teaching process is terminated at "no target", "target not evaluated", "to close to the sensor" - beyond SMR" or "to far from the sensor - beyond EMR".

6.2.1 Output Scaling via the "Select" Key

Fig. 12 Timing for the output scaling

The scaling is also available via the software tool.

Fig. 13 Timing for the reset of the output scaling

The output scaling with ILD1402SC is only possible via the serial interface.

6.2.2 Output Scaling via the Hardware Input, "Teach in"

Fig. 14 Timing for the output scaling

The scaling is also available via the software tool.

Fig. 15 Timing for the reset of the output scaling

The output scaling with ILD1402SC is only possible via the serial interface.

6.3 Average

The optoNCDT1402 is supplied ex factory with the default setting "moving averaging, number of averaging N = 1" (no averaging activated).

Implemented averaging methods in the sensor:

- Moving average
- Median

The purpose of averaging is to:

- Improve the resolution
- Eliminate signal spikes
- "Smooth out" the signal.

Averaging has no effect on linearity. A combination of the two averaging methods is not possible.

6.3.1 Averaging Number N

In every measurement cycle (at a measurement rate of 1.5 kHz every 0.66 ms) the internal average is calculated anew. The averaging number N indicates the number of consecutive measurement values to be averaged in the sensor before the measurement values are to be issued.

Averaging does not affect the measurement rate or data rates in digital measurement value output.

6.3.2 Moving Average (Default Setting)

The selected number N of successive measurement values (window width) is used to generate the moving average value M on the basis of the following formula:

$$M_{gl} = \frac{\displaystyle\sum_{k=1}^{N} MW \ (k)}{N} \qquad \qquad \begin{array}{l} MW = \mbox{Measuring value}, \\ N = \mbox{Averaging number}, \\ k = \mbox{Running index} \\ M_{gl} = \mbox{Averaging value respectively output value} \end{array}$$

Mode:

Each new measurement value is added and the first (oldest) measurement value from the averaging process (from the window) taken out again. This results in short transient recovery times for jumps in measurement values.

Example: N = 4

... 0,
$$1, \underbrace{2, 2, 1, 3}_{\downarrow}$$
 ... $1, 2, \underbrace{2, 1, 3, 4}_{\downarrow}$ Measurement values
$$\frac{2, 2, 1, 3}{4} = M_{gl} (n) \qquad \qquad \frac{2, 1, 3, 4}{4} = M_{gl} (n+1) \qquad \text{Output}$$

The moving average in the optoNCDT1402 can only be generated for up to a maximum of 128 values.

6.3.3 Median

The median is generated from a pre-selected number of measurement values. To do so, the incoming measurement values (3, 5, 7 or 9 measurement values) are resorted again after every measurement. The average value is then given as the median. In generating the median in the controller, 3, 5, 7 or 9 measurement values are taken into account, i.e. there is never a median of 1. This permits individual interference pulses to be repressed, but the measurement value curve is not smoothed to any great extent.

Example: Average from five measurement values

... 0 1
$$_{[2\ 4\ 5\ 1\ 3]}$$
 \rightarrow Sorted measurement values: 1 2 $\boxed{3}$ 4 5 Median $_{(n)}$ = 3 ... 1 2 $_{[4\ 5\ 1\ 3\ 5]}$ \rightarrow Sorted measurement values: 1 3 $\boxed{4}$ 5 5 Median $_{(n+1)}$ = 4

6.4 Measurement Rate and Output Rate

The measurement rate defines the number of measurements performed by the sensor per second. The measurement rate may be 1.5 kHz, 1.0 kHz, 750 Hz, 375 Hz or 50 Hz. Details of how to change the measurement rate, see Chap. 8.4.13.

The output rate gives the actual number of measurement values at the sensor output per second. The maximum output rate can never exceed the measurement rate.

Recommendations:

- Use a high measurement rate for light colored and matt objects to be measured.
- Use a low measurement rate for dark or shiny objects to be measured (e.g. surfaces covered in black lacquer), for better measurement results.

Output	Maximum output rate		
Current	Measurement rate		
RS422	Output rate ≤ Measurement rate; Dependent on the transmission rate (baud rate) and data format (ASCII code).		

The sensor continues to measure internally but holds back the output until the last measurement value has been issued in full. The next measurement value is the last valid value, with other values between being lost.

Fig. 16 Output rates for the output types

Calculation of the output rate using the RS422 serial interface:

Abbreviations used:

n = Partial factor

int = Integral part of ()

b = Byte/measurement value (binary format b=2,

ASCII b=6)

MR = Measurement rate [Hz]

BR = Baud rate [Baud]

n = int (b * 10 * MR / BR) + 1

Example:

Measurement rate = 750 Hz, ASCII-Format (b=6), Baud rate = 115200 Baud

--> n = int (0.39) + 1 = 1

--> Output rate = 750 Hz / 1 = 750 Hz.

6.5 Timing

The controller operates internally with real time cycles in a pipeline mode:

- 1. Exposure: Charging the image detector in the receiver (measurement).
- 2. Reading: Reading out of the imaging device and converting into digital data.
- 3. Computation: Measurement computation.
- 4. Controlling.

The output through the analog and digital interface starts with the beginning of every new cycle. The analog value and digital switch outputs are updated immediately and the digital output starts with the start bit.

Each cycle takes $666 \mu s$ at a measuring rate of 1.5 kHz. The measured value N is available after each cycle with a constant lag of four cycles in respect to the real time event. The delay between the input reaction and the signal output is therefore 2 up to 2.7 ms. The processing of the cycles occurs sequentially in time and parallel in space (pipelining, see Fig. 17). This guarantees a true constant real time data stream.

Cycle		1.		2.	3.	4.	5.	6.	
Time	max. 5 s	666 μs		1322 μs	1998 μs	2664 μs	3330 μs	3996 μs	
		Exposure N		Reading N	Computation N	Controlling N	Output N		
				Exposure N+1	Reading N+1	Computation N+1	Controlling N+1	Output N+1	
	Initialisation including the				Exposure N+2	Reading N+2	Computation N+2	Controlling N+2	
	output of the info string	First exposure after power up of the sensor			Exposure N+3	Reading N+3	Computation N+3		
							Exposure N+4	Reading N+4	

Fig. 17 Sensor timing at a measurement rate of 1.5 kHz

The sensor needs time until measuring values are available according to the set averaging number N.

6.6 Triggering on ILD 1402-x

The ILD1402 measurement output is controllable through an external signal on the trigger input. Therefore the external input "Teach in" must be configured for triggering, see Chap. 8.4.14. This can be done with the "ILD1402 Tool" ("Configuration" > "General Settings" > "Digital Input: trigger acquisition") also.

Basics, procedure:

- The sensor measures and calculates also, if no trigger pulses are pending.
- The data output starts with a falling edge of the trigger signal.
- Sensor outputs the measurement value with a delay T_τ of 1.4 up to 2 ms.
- A new trigger pulse can be sent.

t_N Non-pulse period t₁ Pulse interval T_T Delay time

 $T_{\rm T}=1.4\ldots 2$ ms true for a measurement rate of 1.5 kHz and a baud rate of 115.200 Baud

Maximum trigger rate: appr. 500 Hz

Fig. 18 Timing

You get a digital measurement value on the output for each trigger signal, see Chap. 8.4.8, see Chap. 8.4.9 (data output). The analog output is actualized with any trigger signal, if you use the analog output.

An averaging of the measuring values has no effect on the delay time T_T. Consider certainly, that the controller needs time for the averaging, until measuring values are available according to the set averaging number N.

7. Measurement Value Output

The optoNCDT1402 can issue the measurement values either via the analog output or the RS422 serial interface. The two different types of output cannot be used concurrently. When using the cable PC1402-x / U, the voltage output is 1 ... 5 V, see Chap. 5.3.

7.1 Current Output

Max. range 4 mA ... 20 mA

Output amplification $\triangle I_{OUT}$ 16 mA = 100 % Measuring range

Error value: 3.75 mA ($\pm 10 \mu$ A)

Fig. 19 Current signal output

Calculation of measurement value x in mm from analog current

Reference value SMR

$$x [mm] = (I_{OUT} - 4 mA) * \frac{MR [mm]}{16 [mA]}$$

Reference value MMR:

$$x [mm] = (I_{OUT} - 4 mA)* \frac{MR [mm]}{16 [mA]} - MR/2$$

Example: Measuring range = 10 mm, I_{OUT} = 12 mA; Result: x = 5 mm or x = 0 mm

7.2 Digital Value Output

7.2.1 Data Protocol ILD1401

The digital measurement values are issued as unsigned digital values (raw values).

Digital value	Used for
0 39	SMR back-up
40 4055	Measurement range
4056 4095	EMR back-up

Calculation of a measurement value in mm from digital output:

Reference value Start of Measuring Range:

$$x [mm] = (digital_{OUT} * \frac{1.02}{4096} - 0.01) * MR [mm]$$

Reference value Midrange

$$x [mm] = (digital_{OUT} * \frac{1.02}{4096} - 0.51) * MR [mm]$$

Example: MR = 10 mm, digital value = 2048, measurement value = 5 mm or 0 mm

Note: A digital value can be calculated from a measurement value (millimeter) as follows:

digital _{OUT} =
$$\left[\frac{x \text{ [mm]}}{\text{MR [mm]}} + 0.01 \right] * \frac{4096}{1.02}$$

7.2.2 Data Protocol ILD1402

The digital measurement values are issued as unsigned digital values (raw values).

Digital value	Used for
0 16367	Value range
0 160	SMR back-up (1 %)
161 16207	Measurement range

Digital value	Used for
16208 16367	EMR back-up (1 %)
16370 16383	Error codes

Calculation of a measurement value in mm from digital output:

Reference value Start of Measuring Range:

$$x \text{ [mm]} = (\text{digital }_{\text{OUT}} * \frac{1.02}{16368} - 0.01) * \text{MR [mm]}$$
 $x \text{ [mr]}$

 $x [mm] = (digital_{OUT} * \frac{1.02}{16368} - 0.51) * MR [mm]$

Reference value Midrange

Example: MR = 10 mm, digital value = 2048, measurement value = 5 mm or 0 mm

Note: A digital value can be calculated from a measurement value (millimeter) as follows:

digital _{OUT} =
$$\left[\frac{x \text{ [mm]}}{\text{MR [mm]}} + 0.01\right] * \frac{16368}{1.02}$$

7.3 Digital Error Codes

Digital error codes are issued in the same way as measurement values.

Value range for error codes: 16370 ... 16384 (digital OUT)

- 16370 no object detected
- 16372 too close to the sensor
- 16374 too far from the sensor
- 16376 target can not be evaluated
- 16380 target moves towards the sensor
- 16382 target moves away from sensor

8. Serial Interface RS422

Fig. 20 System structure to operate the interface card IF2008

	Pin	Signal	Signal	Pin	
Sensor 1	3	Rx + (Input)	Sensor 1/3 TxD+	2	
12-pol.	4	Rx - (Input)	Sensor 1/3 TxD -	1	
connector	5	Tx + (Output)	Sensor 1/3 RxD+	4	
	6	Tx - (Output)	Sensor 1/3 RxD -	3	
			0 V supply	5	
When using	g 3 se	ensors apply	Sensor 1/3 TRG+	6	IF2008,
the optiona	al ava	ilable Y- adapter	Sensor 1/3 TRG -	7	X1 und X2,
cable IF20	08-Y.		Sensor 2/4 TRG+	8	15-pol.
			Sensor 2/4 TRG -	9	Sub-D
	7	24 V	+24 V supply 1	10	
	3	Rx +	Sensor 2/4 TxD+	12	
Sensor 2	4	Rx -	Sensor 2/4 TxD -	11	
12-pol.	5	Tx +	Sensor 2/4 RxD+	14	
	6	Tx -	Sensor 2/4 RxD -	13	
	12	GND	GND	15	

Fig. 21 Pin assignment PC1402-x/IF2008 and IF2008

Required cables and program routines

IF2008
 RS422 interface card, for 1 to 4 laser-optic sensors from the ILD1402 series and 2 encoders, including MEDAQlib

programming interface.

- PC1402-x/IF2008 Power supply and output cable, x = length with 3, 6 or 8 m.

Alternatively, data can be transferred with the demo software (ILD1402 Tool) and a RS422 converter to USB, see Chap. 11..

8.1 Interface Parameter

The optoNCDT1402 comes with a RS422 serial interface to enable the sensor to be operated from a standard computer and measurement values and error codes to be transferred.

The sensor can operate with two different data protocols:

- Data protocol ILD1401
- Data protocol ILD1402

Default settings	Data protocol ILD1401	Data protocol ILD1402			
Baud rate	38400	115200			
Parity	none				
Data bits	3	3			
Start/stop bit	1				

8.2 Data Format for Measurement Values and Error Codes

8.2.1 Binary Format

The data word is comprised of two consecutive bytes (H-byte/L-byte). One flag bit in each byte differentiates a high from a low byte.

ı	Start	1	7 Bit MSB	Ston	Start	n	7 Bit LSB	Ston	1
_	Otart		1 DIL IVIOD	l Otob	Julian			Otop	-1

Conversion of the binary data format:

For conversion purposes the high and low bytes must be identified on the basis of the first bit (flag bit), the flag bits deleted and the remaining 2 x 7 bits compiled into 14 bit data word.

Reception:

H-Byte	1	D13	D12	D11	D10	D9	D8	D7
L-Byte	0	D6	D5	D4	D3	D2	D1	D0

Result of conversion

0	0	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

If the sensor operates with the ILD1401 data protocol, the measurement value is a 12 bit word, e.g. the bits D12 and D13 are 0.

Replies with a length of 4 Bytes must be swapped according to the following rule:

Reception: 0 1 2 3 4 5 6 7 Conversion: 3 2 1 0 7 6 5 4 This rule does not apply to values.

8.2.2 ASCII Format

Output of 5 characters (digits) in ASCII code for the digital value + 1 tag "CR" (= 0x0D), i.e. a total of 6 characters. Digital values with just 3 or 4 digits are preceded by blank characters.

Example: Digital value 2099

Transfer: " 2099" (preceded by 1 blank character) "CR"

ASCII code (Hex.)	0x20	0x32	0x30	0x39	0x39	0x0D
Characters	SP	2	0	9	9	CR

ASCII characters can be easily shown using a terminal program.

8.2.3 Request the Data Protocol

PC transmits "---R".

Sensor replies

"---14Cl1" Sensor operates with the ILD1401 data protocol or

"---14Cl2" Sensor operates with the ILD1402 data protocol.

8.3 Data Protocol ILD1401

8.3.1 Setup of the Commands

The commands for the sensor are transmitted in full duplex mode. Each instruction has a head, the ID, the command, the quantity and data if required (parameter, if quantity > 0).

The head contains 4 bytes to identify a connection towards the sensor. The ID consists of 2 bytes, the command and quantity) consists of 1 byte. The complete string (without parameter) has a length of 8 bytes. The quantity is a equivalent of the subsequent bytes.

Each complete command is returned by the sensor. The answer contains the 2 ID bytes (equivalent to the transmitted ID), the modified command byte, the quantity and response informations. The modified command byte = command OR masked with 0x80 hex if the command was transmitted successful. If an error happens the modified command byte = command OR masked with 0xC0 hex. In the case of an error the quantity is 1 and contains the error code.

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9
	He	ead		11)	Command	Quantity	Parameter

Fig. 22 Set-up of a command in the transmitter

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
	ID	Command OR masked with 0x80 hex	Quantity	Parameter

Fig. 23 Set-up of a command in the receiver, error-free transmitted

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
	ID	Command OR masked with 0xC0 hex	Quantity = 1	Error code

Fig. 24 Set-up of a command in the receiver, faulty transmission

Error code

Description	Bytes	Value
Command error	1	2
Faulty number of parameters	1	3
Time out	1	4

8.3.2 Overview of Commands

Information commands		
0x0900	VERSION	Shows the software version
0x0C00	INFO	Shows the sensor data
Filter		
0x1001	MEDIAN	Median filter over 3 values, on/off
Measurement value output		
0x0E01	OUTPUTCHANNEL	Output analog / digital
Error output (analog output)		
0x0F01	SAVELASTMV	Behavior of the analog output in case of er-
		rors
Reset		
0x0100	BOOT	Reboots the sensor
Switch data protocol ILD1401 / ILD14	102	
0x1100	SET_CIMODE_1402	Sensor operates with data protocol ILD1402

8.3.3 Reading the Sensor Parameters

Name: INFO

Description: Supplies the info string.

Format

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9
"+"	"+"	"+"	0x0D	"I"	"L"	0x0C	0x00	none

Reply

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0x8C	Quantity 1	Info string

Byte 1	Byte 2	Byte 3	Byte 4
"I"	"L"	0x8C	0x89

Info is a readable ASCII string

Article 4120154

Option 000

Series 1234570

MR 50

SoftVer 1.001

Date 09/01/23

Out Channel analog

Anlog Error error value

Filter off

Command error-free

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0xCC	0x01	Error code

Faulty command

1) Number of bytes depends on the content of the response.

8.3.4 Reading the Software Version

Name: VERSION

Description: The sensor transmitts the software version.

Format

Byte	1 Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9
"+"	"+"	"+"	0x0D	"I"	"L"	0x09	0x00	none

Reply

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0x89	Quantity	Info string

Command error-free

Byte 1	Byte 2	Byte 3	Byte 4			
"I"	"L"	0x89	0x07			
Version is a readable ASCII string: 1.001						

Faulty command

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0xC9	0x01	Error code

8.3.5 Average On/Off

Name: MEDIAN

Description: Switches between "Averaging on" and "Averaging off". The median is generated from a preset number of measurement values. Here the inputted measurement values (3 measurement values) are resorted after each measurement. The average value is then outputted as the median. When the median is generated in the controller only 3 measurement values are taken into account, i.e. a 0 median is not possible. This means that individual interference pulses can be suppressed. The measurement value curve is not smoothed to a great extent.

Default setting: Median off

Byte 9 = 0; Median off

Byte 9 = 1; Median on

Format	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9
	"+"	"+"	"+"	0x0D	"I"	"L"	0x10	0x01	Median ON/OFF

 Reply
 Byte 1
 Byte 2
 Byte 3
 Byte 4
 Byte 5

 "I"
 "L"
 0x90
 0x00
 none

Command error-free

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"["	"L"	0xD0	0x01	Error code

Faulty command

8.3.6 Digital or Analog Data Output

Name: OUTPUTCHANNEL

Description: Selects the output channel (analog / digital) for the sensor. If the digital output is selected the serial interface transmits measured values with a data rate of 1.5 kHz. If the analog output is selected the serial interface transmits the commands and the responses only.

Byte 9 = 0; analog

Byte 9 = 1; digital

Format Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

"+" "+" "+" 0x0D ",1" ",L" 0x0E 0x01 Channel

 Reply
 Byte 1
 Byte 2
 Byte 3
 Byte 4
 Byte 5

 "I"
 "L"
 0x8E
 0x00
 none

Command error-free

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0xCE	0x01	Error code

Faulty command

Default setting: analog output

output

"Error code", also 3.75 mA on the analog

8.3.7 Sensor Behavior in Error Case

Name: SAVELASTMV

Description: Switches between "Hold last value" and "Error code" of the analog output.

Format

:	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9
	"+"	"+"	"+"	0x0D	"I"	"L"	0x0F	0x01	Output type

Reply Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Command error-free

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0xCF	0x01	Error code

Faulty command

Output type

Description	Bytes	Value
Output type = "Hold last value" (in the case of an error the last valid measured value is shown on the analog output)	1	0
Output type = "Error code" (in the case of an error a value < 4 mA is output)	1	1

8.3.8 Reset Sensor

Name: BOOT

Description: The sensor makes a software reset. The default settings for output and filter are used.

- Current output: error code
- Median off

The response is sent before the reset is done.

Format

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9
"+"	"+"	"+"	0x0D	"I"	"L"	0x01	0x01	none

Reply

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
" "	"L"	0x81	0x00	none

Command error-free

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0xC1	0x01	Error code

Faulty command

8.3.9 Changing Data Protocol

Name: SET CIMODE 1402

Description: Switches the sensor into the ILD1402 data protocol. The sensor replies with the ILD1401 data protocol, after sending the reply the sensor switches to the mode and maintains a reset.

Format

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9
"+"	"+"	"+"	0x0D	"I"	"L"	0x11	0x01	none

Reply

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0x91	0x00	none

Command error-free

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
"I"	"L"	0xD1	0x01	Fehlercode

Faulty command

8.4 Data Protocol ILD1402

8.4.1 Setup of the Commands

The commands for the sensors are comprised of command data which are transmitted in full duplex mode. Each command packet is comprised of a whole number multiple of 32 bit words, see Fig. 25.

	31	24	23	16	15	8	7	0
1	Header							
2	ID							
3	Command (16 Bit) Package length (16 Bit)							
4		Data 1						
5								
6		Data (n)						

Contents						
Start word						
Sensor identifier,	Command header (2 words)					
e.g. "ILD1"						
Command code	Data word quantity n+2					
1 st Da	its worf (4 Bytes)					
n th Da	ta word (4 Bytes)					

Fig. 25 Structure of a command packet

Since most serial interfaces use an 8 bit data format, 4 consecutive bytes are combined into a 32 bit word. Each command packet has a header consisting of two 32 bit words followed by the command and, if required, other data as well. The top two bits (No. 31 and 30) are always "0" in the transmitted command.

8.4.2 Overview

Information co	mmand								
0x20490002	GET_INFO	Shows sensor data							
0x204A0002	GET_SETTINGS	Shows sensor settings							
Average									
0x207F0004	SET_AV	Sets average type and value							
Measurement v	/alue output								
0x20760002	DAT_OUT_OFF	Stops measurement value output							
0x20770002	DAT_OUT_ON	Permanent measurement value output							
0x20F40003	SET_OUTPUTMODE	Output mode							
0x20F50003	SET_OUTPUTTIME_MS	Output time in ms							
Switch output	settings								
0x20900003	SET_OUTPUT_CHANNEL	Output: current or RS422							
Speed									
0x20800003	SET_BAUDRATE	115.2 / 57.6 / 38.4 / 19.2 / 9.6 kBaud							
0x20850003	SET_SCANRATE	Measurement rate: 1.5 kHz; 1.0 kHz; 750 Hz; 375 Hz							
Error output (a	nalog output)								
0x20810003	SET_ANALOG_ERROR_HANDLER	Behavior of the analog output in the case of an error							
External input									
0x20F80003	SET_EXT_INPUT_MODE	Scaling, triggering							
Switching off the	ne laser (external)								
0x20870002	LASER_ON	Switches the laser on							
0x20860002	LASER_OFF	Switches the laser off							
Measurement v	alue data format								
0x20880003	ASCII_OUTPUT	Options: ASCII / Binary							
Key lock									
0x20600003	SET_KEYLOCK	Key enabled / locked / auto lock							
Reset									
0x20F10002	SET_DEFAULT	Reset to default factory settings							
0x20F00002	RESET_BOOT	Reboot the sensor							

Memory mode	1									
0x20F70003	SET_SAVE_SETTINGS_MODE	Volatile / nonvolatile								
Scaling values	S									
0x20F90004	SET_TEACH_VALUE	Sets T1 + T2 0 16368								
0x20FA0002	RESET_TEACH_VALUE	Sets T1 = 0 / T2 = 16368								
Search algorithm										
0x20FB0003	SET_PEAKSEARCHING	First peak, last peak, global maximum								
Threshold										
0x20FC0003	SET_THRESHOLD	Lower than standard, standard, higher than standard, highest								
Switch data pr	Switch data protocol									
0x20F20002	SET_CIMODE_1401	Sensor operates with ILD1401 data protocol								
0x2D2D2D52	GET_CI_MODE	Requests the command interpreter state of the sensor								

8.4.3 Reading the Sensor Parameters

Name: Get Info

Description: Supplies the info string. This shows all parameters currently stored in the sensor.

Format:

31	24	23	16	15	8	7	0	hex
"+"		"+"		"+"		0x0d ("CR")		0x2B2B2B0D
"["		,,,	"L"		"D"		1"	0x494C4431
0x	20	0x	49	0x	00	0x	02	0x20490002

Reply:

	31	24	23	16	15	8	7	0	hex
	"I" "L"			"I	D"	,,	1"	0x494C4431	
	0xA0 0x49		49	0x	00	0x	XX	0xA04900xx	
ŀ	- 07		0.						0270-3002

Info string is a readable ASCII character string:

ILD 1402: Standard A/N: 4120154

O/N: 000 S/N: 1234570

MR: 50

SoftVer: 1.001.796 BootVer: 1.001.16 Date: 09/01/23

Out Channel: analog | digital

Analog Error: last value | error value | error value after cycles xx //xx is 2 up to 99

Filter Type: moving average | median

Filter Number: xx //with moving average xx is 1 up to 128, with median xx is 7, 5, 7 or 9

Scanrate: xxHz //xx is 1500 Hz, 1000 Hz, 750 Hz, 375 Hz

type of digital output: binary | ascii

mode of analog/digital output: continuous | time | trigger

output time: xx //xx is time in ms¹ key status: unlock | lock | auto lock

mode of save setting: no save | save at each time mode of extern input: as teach in | as output trigger peak searching: global maximum | first peak | last peak

Teach value 1: xx //(xx is 1.0 up to 16368.0 Teach value 2: xx //xx is 1.0 up to 16368.0

	0x20	0x20	0x0D	0x0A	0x20200D0A
--	------	------	------	------	------------

= separates variants from each other

// = beginning of a comment

1) Output time is available only, if "mode of analog/digital output" is set to "time"

8.4.4 Reading the Sensor Settings

Name: Get Settings

Description: Supplies the current sensor settings. Swap the received bytes according, see Chap. 8.2.1.

These are as follows:

Output channel

- 0 = Current
- 1 = Digital

Teach value 1

0.0 ... 16368.0

e. g. float: 3027.426 = hexadecimal: 0x453d36d1

Teach value 2

0.0 ... 16368.0

e. g. float: 11068.851 = hexadecimal: 0x462cf367

Analog error handler

- 0 = hold last value
- 1 = error output
- 2...99 hold last value for 2...99 images respectively cycles

Average type

- 0 = moving average
- 1 = Median

Average value

- 1...128 moving average, if average type = 0
- 3, 5, 7, 9 Median, if average type = 1

Measurement rate

- -0 = 1500 Hz
- -1 = 1000 Hz
- -2 = 750 Hz
- -3 = 375 Hz
- -4 = 50 Hz

Baud rate

- -0 = 115200 Baud
- 1 = 57600 Baud
- -2 = 38400 Baud
- 3 = 19200 Baud
- 4 = 9600 Baud

Digital output type

- 0 = Binary
- 1 = ASCII

Analog, digital output mode

- 0 = continuously each measurement, depending on baud rate and the measuring frequency; delay = (Bit quantity / Baud rate) * measuring frequency [Hz] (if delay < 0, delay = delay +1) delay = number of cycles with no serial output
- 1 = time-based, see output time [ms]
- 2 = trigger controlled, see external input mode

Output time [ms]

1...65535

Key lock

- 0 = key enabled
- 1 = key locked
- 2 = automatic key lock after 5 min power is on

Save settings mode

- 0 = transmitted settings are stored in the RAM and are valid until power off
- 1 = transmitted settings are stored in the FLASH and are valid, even after power off/on

External input type

- 0 = external input is used for scaling
- 1 = external input is used as trigger input (trigger controlled output)

Peak searching

- 0 = peak with global maximum
- 1 = first peak, direction pixel 0 up to pixel 127, left to right
- 2 = last peak, direction pixel 0 up to pixel 127, left to right

Threshold

- 0 = lower than standard
- 1 = standard
- 2 = higher than standard
- 3 = highest

Measuring range [mm]

- XXX X = 1 ...65535
- Reserved 1
- Reserved 2
- Reserved 3
- Reserved 4

Format:

31	24	23	16	15	8	7	0	hex
"⊣	⊢"	"⊣	- "·	"⊣	- "·	0x0d (("CR")	0x2B2B2B0D
"	"	,,,	_"	,,[D "	"	1"	0x494C4431
0x	20	0x-	4A	0x	00	0x	02	0x204A0002

Reply:

31 ",I" 0xA0 0x00	24	"L Ox	-" 1A	"[7	0 1"	hex 0x494C4431
0xA0		0x4	1A			, ,	1"	0x494C4431
				0x				
0x00		0.4	A		00			0xA04A0017
0x00	0xA0 0x4A 0x00 0x17 Output channel 0x00 0x00 0x0X Teach value 1 0xXX 0xXX 0xXX Teach value 2 0xXX 0xXX 0xXX Analog error handler 0x00 0x00 0xXX Average type 0x00 0x00 0x0X Average value Average value							
I		00	0x00 0x0X				0x0000000X	
			Teach	value 1				
0xXX	" " " " " "	(X	0x	XX	0x)	XX	0xXXXXXXXX	
			Teach	value 2				
0xXX						0x)	XX	0xXXXXXXXX
		A	nalog err	or handle	r			
0x00		0x0	00	0x	00	0x)	XX	0x000000XX
			Averaç	je type				
0x00		0x0	00	0x	00	0x0	OX	0x0000000X
			Averag	e value				
0x00		0x0	00	0x	00	0x)	XX	0x000000XX
			Measure	ment rate				
0x00		0x0	00	0x	00	0x0	0X	0x0000000X
0x00						0x0	0X	0x0000000X
0x00						0x0	0X	0x0000000X
		Anal	og digital	output m	node			
0x00		0x0	00	0x	00	0x0	0X	0x0000000X
0x00		0x0			XX	0x)	XX	0x0000XXXX
			Key	lock				
0x00						0x0	0X	0x0000000X
	" " " " " " " " " "	ngs mode						
0x00						0x0	0X	0x0000000X
0x00		0x0	00	0x	XX	0x)	XX	0x0000XXXX

	Peak se	earching						
0x00	0x00	0x00	0x0X	0x0000000X				
	Thres	shold						
0x00	0x00	0x00	0x0X	0x0000000X				
	Measuri							
0x00	0x00	0xXX	0xXX	0x0000XXXX				
	Resei							
0x00	0x00	0x00	0x0X	0x00000000				
	Resei							
0x00	0x00	0xXX	0xXX	0x00000000				
	Resei							
0x00	0x00	0x00	0x0X	0x00000000				
	Resei							
0x00	0x00	0x00	0x0X	0x00000000				
	Last data word							
0x20	0x20	0x0D	0x0A	0x20200D0A				

8.4.5 Average Type and Average Number

Name: SET AV

Description: Sets the average type and the average number N.

Parameter:

- Average type

■ X = 0 --> Moving average

■ X = 1 --> Median

- Average number

■ XX = 1 ... 128 --> Moving average, if average type = moving average

■ XX = 3, 5, 7, 9 --> Median, if average type = Median

Default setting: moving average 1, thus no averaging

Format:	31	24	23	16	15	8	7	0	hex
	"+"		"+"		"+"		0x0d	("CR")	0x2B2B2B0D
	"!	"	"L"		"D"		,,	1"	0x494C4431
	0x20		0x7F		0x00		0x04		0x207F0004
	0x00		0x00		0x00		0x0X		0x0000000X
	0x	00	0x	00	0x	00	0x	XX	0x000000XX

Reply:

31	24	23	16	15	8	7	0	hex
"[" ,		,,,	"],,) "	,,	1"	0x494C4431
0xA0		0x7F		0x00		0x02		0xA07F0002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

8.4.6 Stopping the Measurement Value Output

Name: DAT OUT OFF

Description: Switches off the digital output for the measurement values. This has no effect on communication with the sensor via the digital interface. This command has a higher priority in trigger mode. The command is volatile. Therefore data out is on after power on.

Format:

:	31	24	23	16	15	8	7	0	hex
	"+"		"+"		"+"		0x0d	("CR")	0x2B2B2B0D
	"["		"L"		"D"		"1"		0x494C4431
	0x	20	0x	76	0x	00	0x	:02	0x20760002

Reply:

31	24	23	16	15	8	7	0	hex
,,,	"	,,	L"	",,	D"	,,	1"	0x494C4431
0x	A0	0x	76	0x	0x00		02	0xA0760002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

analog output

8.4.7 Starting the Measurement Value Output

Name: DAT_OUT_ON

Description: Switches on the digital data output for the measurement values. The output channel (output type) must also be set to the digital output, otherwise the measurement data cannot be received from the sensor.

Format:

31	1	24	23	16	15	8	7	0	hex
	"+	_"	"⊣	_ "	"-	-"	0x0d	("CR")	0x2B2B2B0D
	"l" "L"		,,["D"		1"	0x494C4431		
	0x	20	0x	77	0x	00	0x	02	0x20770002

Reply:

31	24	23	16	15	8	7	0	hex
,,	l"	,,,	L"	"[O"	,,	1"	0x494C4431
0x	A0	0x	77	0x	00	0x	02	0xA0770002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

8.4.8 Digital or Analog Data Output

Name: SET OUTPUT CHANNEL

Description: Sets the output type for the measurement values.

Parameter:

- X = 0 --> Analog output (4 ... 20 mA)

- X = 1 --> Digital output (RS422)

Format:

31	24	23	16	15	8	7	0	hex
"+	"+"		"+"		"+"		("CR")	0x2B2B2B0D
"!	"I" "L"		"["D"		1"	0x494C4431	
0x	20	0x	90	0x00		0x	03	0x20900003
0x	00	0x	00	0x	0x00		0X	0x0000000X

Rep	ly
-----	----

31	24	23	16	15	8	7	0	hex
" " "		L"	"D"		"1"		0x494C4431	
0x/	A0) 0x		0x00		0x02		0xA0900002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

8.4.9 Characteristics for Digital or Analog Data Output

Name: SET OUTPUTMODE

Description: Sets the output characteristics.

- X = 0 --> continuously each measurement, depending on baud rate and the measuring frequency;
 delay = (Bit quantity / Baud rate) * measuring frequency [Hz], if delay < 0, delay = delay +1)
 delay = number of cycles with no serial output
- X = 1 --> time-based, see Chap. 8.4.10.
- X = 2 --> trigger controlled, see Chap. 8.4.14.

Format:

:	31	24	23	16	15	8	7	0	hex
	,,+	-"	"+"		"+"		0x0d ("CR")		0x2B2B2B0D
	"I" "L"		"["D"		1"	0x494C4431		
	0x	20	0x	F4	0x	00	0x	:03	0x20F40003
	0x	00	0x	00	0x	00	0x	:0X	0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
,,,	I "	,,	L"	",,	D"	,,	1"	0x494C4431
0x	A0	0x	F4	0x	0x00		02	0xA0F40002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

Default setting: continuously

8.4.10 Set Output Time

Name: SET OUTPUTTIME MS

Description: Sets the output time for the analog or digital output value to be updated.

Will be applicable at time-based measurement value output, see Chap. 8.4.9.

Default setting: 500 ms

Parameter:

- XXXX = 1 ... 65535 [ms].

Format:

31	24	23	16	15	8	7	0	hex
"+" "+"		"+"		0x0d	("CR")	0x2B2B2B0D		
"l" "L"		"D"		"1"		0x494C4431		
0x	20	0xF5		0x00		0x	03	0x20F50003
0x	00	0x00		0x00		0x0X		0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
,,	"	,,,	L"	",	O"	,,	1"	0x494C4431
0x	A0	0x	F5	0x	00	0x	02	0xA0F50002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

error value

8.4.11 Error Output (Analog output)

Name: SET ANALOG ERROR HANDLER

Description: Hold or not hold last measurement value.

Parameter:

- X = 0 --> hold last measurement value

- X = 1 --> error value (3.75 mA)

- X = 2 ... 99 --> hold last measurement value for 2 ... 99 images respectively cycles

This command only affects the analog output. If set to X = 0, the last valid measurement value will continue to be issued if an error occurs (no object, invalid object, object outside the measurement range or laser turned off). If set to X = 1, an error signal will be generated for the current output that has an error value of 3.75 mA. If set to $X = 2 \dots 99$, the last valid measurement value will continue to be issued for X measuring cycles before an error signal is generated on the analog output.

Format:

					<u> </u>			
31	24	23	16	15	8	7	0	hex
"-	+"	"-	- "	"-	F"	0x0d ("CR")		0x2B2B2B0D
,,	l"	,,,	L"	"I	D"	"1"		0x494C4431
0x	20	0x	81	0x00		0x	03	0x20810003
0x	00	0x	00	0x	00	0x	0X	0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
,,	l "	,,,	L"	"I	D"	,,	1"	0x494C4431
0x	A0	0x	81	0x00		0x	:02	0xA0810002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

115200 Baud

8.4.12 Set Baud Rate

Name: SET_BAUDRATE

Description: Sets the transmission rate.

Parameter:

- X = 0 --> 115200

- X = 1 --> 57600

-X = 2 -> 38400

-X = 3 --> 19200

-X = 4 -> 9600

The sensor still sends the reply with the old baud rate and only switches to the new baud rate once the reply has been sent. The output rate reduces automatically when the baud rate is changed because individual measurement values are skipped.

Do not forget to change your programs baud rate.

Format:

31	24	23	16	15	8	7		0	hex
"	+ "	"-	_ "	"-	F"	0	x0d ("CR")	0x2B2B2B0D
,,	l"	"	_"	"[D"		"	1 "	0x494C4431
0x	20	0x	80	0x	00		0x	03	0x20800003
0x	00	0x	00	0x	00		0x0	OX	0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
,,,	66	,,	L"	"[D "	"	1"	0x494C4431
0x.	A0	0x	80	0x	00	0x	02	0xA0800002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

1500 Hz

8.4.13 Set Measurement Rate

Name: SET_SCANRATE

Beschreibung: Sets the measurement rate [Hz].

Parameter:

- X = 0 --> 1500 - X = 3 --> 375 - X = 1 --> 1000 - X = 4 --> 50

-X = 2 -> 750

Procedure: The sensor replies and then reboots. The string of the boot message contains "Cl140x", "CR" "LF" and the answer of "GET_INFO".

Format:

::	31	24	23	16	15	8	7		0	hex
	"+	- "	"-	- "	"-	F"		0x0d (("CR")	0x2B2B2B0D
	"I	"	,,,	L"	"D"			"1"		0x494C4431
	0x	20	0x	85	0x	00		0x	03	0x20850003
	0x	00	0x	00	0x	00		0x	0X	0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
,,,	l"	,,,	L"	"I	D "	"	1"	0x494C4431
0x	A0	0x	85	0x00		0x02		0xA0850002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

Scaling

8.4.14 Input for Scaling and Trigger

Name: SET EXT INPUT MODE

Description: Defines the function of the switching input "Teach in" (Pin 9 on the sensor connector).

Parameter:

- X = 0 --> external input operates as scaling input
- X = 1 --> external input operates as trigger controlled input for the data output

Format:

31	24	23		16	15	8	7		C	hex
"+"		"-	⊢"		"-	- "		0x0d (("CR")	0x2B2B2B0D
"I"		"L"			"D"			,,	1"	0x494C4431
0x20	20 0xF8			0x00			0x	03	0x20F80003	
0x00		0x	00		0x	00		0x	0X	0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
,,,	l "	,,,	_"	"I) "	"	1"	0x494C4431
0x.	A0	0x	F8	0x	00	0x	02	0xA0F80002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

8.4.15 Peak Detection with Video Signal

Name: SET PEAKSEARCHING

Specifies the search algorithm. Description:

Parameter:

- X = 0 --> peak with global maximum
- X = 1 --> first peak, direction pixel 0 up to pixel 127, left to right
- X = 2 --> last peak, direction pixel 0 up to pixel 127, left to right

Format:	31	24	23	16	15	8	7	0	hex
	"⊣	_ "	"+	_"	"-	- "	0x0d	("CR")	0x2B2B2B0D
	"	"	"l	_"	"I) "	"	1"	0x494C4431
	0x	20	0xl	-B	0x	00	0x	03	0x20FB0003
	0x	00	0x	00	0x	00	0x	0X	0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
	"I"	",	"	,,i	D"	"	1"	0x494C4431
	0xA0	0xl	FB	0x	00	0x	02	0xA0FB0002
	0x20	0x	20	0x	0D	0x	0A	0x20200D0A

A peak inside the video signal is limited by overrun and subsequent shortfall the threshold limit. Several valid peaks are evaluated when measuring glass. Measurements on metal surfaces can also produce multiple peaks. Determine the valid peaks in the software tool (video signal).

8.4.16 Search Threshold

Name: SET THRESHOLD

Description: Defines the characteristics of the search threshold.

Parameter:

- X = 0 --> lower than standard
- X = 1 --> Standard
- X = 2 --> higher than standard
- X = 3 --> highest
- Changing the threshold from factory default (standard) may influence linearity and resolution.
 - Modify the sensor only with specific materials as with semitransparent plastics and so educate the sensor recently.

Format:	31	24	23	16	15	8	7	0	hex
	"-	- "	"-	+"	"-	F"	0x0d	("CR")	0x2B2B2B0D
	,,,	"	,,	L"	"!	D"	,,	1"	0x494C4431
	0x	20	0x	FC	0x	00	0x	03	0x20FC0003
	0x	00	0x	:00	0x	00	0x	0X	0x0000000X
Reply:	31	24	23	16	15	8	7	0	hex
	,,,	66	,,	L"	",	D"	,,	1"	0x494C4431
	0x.	A0	0x	FC	0x	00	0x	02	0xA0FC0002
	0x	20	0x	20	0x	0D	0x	0A	0x20200D0A
			·						

8.4.17 Switching off the Laser (External)

Name: LASER OFF

Description: Switches off the laser. This command is volatile e.g. the laser is on after power on.

Format:	31		24	23	16	15	8	7	0	hex
	"+"		"	"+"		"-	-"	0x0d	("CR")	0x2B2B2B0D
	"["		,,	"L") "	,,	1"	0x494C4431	
		0x2	0	0x	86	0x	00	0x	02	0x20860002
Reply:	31		24	23	16	15	8	7	0	hex
	l"L"]	O"		1"	0x494C4431		

/ :	31	24	23	16	15	8	7	0	hex
	,,,	l "	",	"	"[D "	"	1"	0x494C4431
	0xA0		0x86		0x00		0x02		0xA0860002
	0x	20	0x	20	0x	OD.	0x	0A	0x20200D0A

The command LASER_OFF is volatile. This means that the laser is switched on again if the power supply was switched off or the sensor was rebooted by means of the RESET_BOOT command and pin 8 is connected with GND.

Name: LASER_ON

Description: Switches on the laser

Format:

31	24	23	16	15	8	7	0	hex
,,-	+ "	"-	-"	"-	⊢"	0x0d	("CR")	0x2B2B2B0D
,,	l"	,,,	L"	",,	D"	,,	1"	0x494C4431
0x	20	0x	87	0x	00	0x	02	0x20870002

Reply:

31	24	23	16	15	8	7	0	hex
,,	"	,,	L"	"[D"	"	1"	0x494C4431
0x	A0	0x	87	0x00		0x02		0xA0870002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

The command LASER_ON is effective only if pin 8 is connected with GND.

8.4.18 Change Data Format

Name: ASCII_OUTPUT

Description: Switches the data format for the measurement value output via the digital interface. The command replies will remain unaffected.

Parameter:

- X = 0 --> Binary output (2 Byte)

- X = 1 --> ASCII output (6 Byte)

Format:

31	24	23	16	15	8	7	0	hex
"+"		"+"		"+"		0x0d ("CR")		0x2B2B2B0D
" "		"L"		"D"		"1"		0x494C4431
0x	0x20		88	8 0x		0x	03	0x20880003
0x	00	0x	00	0x	00	0x	0X	0x0000000X

Default setting: Binary format

Reply:

31	24	23	16	15	8	7	0	hex
,,,	"	,,	L"],,	D "	"	1"	0x494C4431
0x.	A0	0x	88	0x	00	0x	02	0xA0880002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

8.4.19 Key Lock

Name: SET KEYLOCK

Description: Locks or enables the key "select". The set status is not volatile.

Parameter:

Default setting: key locked automatically after 5 min power

X = 0 --> enable keyX = 1 --> lock key

- X = 2 --> key locked automatically after 5 min power on

Format:

:	31	24	23	16	15	8	7		0	hex
	"+	-"	"-	_"	"⊣	F"	0x0)d (,	"CR")	0x2B2B2B0D
	"["		"L"		"D"		"1"		"	0x494C4431
	0x20		0x	0x60		0x00		0x03		0x20600003
	0x	00	0x	00	0x	00		0x0	X	0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
,,	l"	,,	_"	"	D "	"	1"	0x494C4431
0x	A0	0x	60	0x	00	0x	02	0xA0600002
0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

8.4.20 Reset Sensor

Name: RESET_BOOT

Description: Starts the sensor's initialization phase. Duration about 900 ms.

Procedure: The sensor replies and then re-boots. The string of the boot message contains "Cl140x", "CR" "LF" and the answer of "GET_INFO".

Format:

:	31	24	23	16	15	8	7	0	hex
	"⊣	+ "	"-	- "	"-	F"	0x0d (("CR")	0x2B2B2B0D
	"	l "	,,	L"	"I	D"	"	1"	0x494C4431
	0x	20	0x	F0	0x	00	0x	02	0x20F00002

Antwort:

:	31	24	23	16	15	8	7	0	hex
	"	l "	,,	L"	"I	D"	"	1"	0x494C4431
	0x	A0	0x	F0	0x	00	0x	02	0xA0F00002
	0x	20	0x	20	0x	0D	0x	0A	0x20200D0A

8.4.21 Set Default Setting

Name: SET_DEFAULT

Description: Resets the set parameters to the default settings (factory settings).

This concerns:

- Data protocol ILD1401

• Output channel: 0 --> analog output,

Analog error handler: 1 --> in the case of an error: 3.75 mA on the analog output,

• Filter: 0 = Median off,

- Data protocol ILD1402

• Output channel: 0 --> analog output,

■ Teach value 1 --> 0.0

■ Teach value 2 --> 16368.0

Analog error handler: 1 --> in the case of an error: 3.75 mA on the analog output,

Average type: 0 --> moving average,

Average value: 1 --> no averaging,

■ Measurement rate: 0 --> 1500 Hz,

■ Baud rate: 0 --> 115200 Baud,

■ Digital output type: 0 --> binary,

Analog digital output mode: 0 --> continuous,

■ Output time --> 500 ms,

• Key lock: 2 --> key locked automatically after 5 min power on,

Save settings mode: 1 --> transmitted new settings are stored in the FLASH,

External input type: 0 --> external input for scaling

Procedure: The sensor replies and then re-boots. The string of the boot message contains "Cl140x", "CR" "LF" and the answer of "GET INFO".

Format:

31	24	23	16	15	8	7	0	hex
"⊣	- "	",-	- "	"-	⊢"	0x0d	("CR")	0x2B2B2B0D
"I	"	"	L"	,,[O"	,,	1"	0x494C4431
0x	20	0x	F1	0x	00	0x	02	0x20F10002

Reply:

31	24	23	16	15	8	7	0	hex
,	,I"	"	L"	"I	D"	"	1"	0x494C4431
0)	(Α0	0x	F1	0x	00	0x	02	0xA0F10002
0:	< 20	0x	20	0x	0D	0x	0A	0x20200D0A

8.4.22 Save Settings in RAM or FLASH

Name: SET SAVE SETTINGS MODE

Description: Saves the transmitted settings into the RAM or the FLASH.

Parameter:

Default setting: Save in FLASH

- X = 0 --> transmitted new settings are stored in the RAM and valid until power off.
- X = 1 --> transmitted new settings are stored in the FLASH and are thus are generally valid.

Format:

31	24	23	16	15	8	7	0	hex
"+" "+"		"+"		0x0d ("CR")		0x2B2B2B0D		
"["		"L"		"D"		"1"		0x494C4431
0x20 0xF7		0x00		0x03		0x20F70002		
0x	00	0x	00	0x	00	0)	(0X	0x0000000X

Reply:

31	24	23	16	15	8	7	0	hex
,,	l"	"	L"	"I	D"	,,	1"	0x494C4431
0x	A0	0x	F7	0x	00	0x	(02	0xA0F70002
0x	20	0x	20	0x	0D	0x	(0A	0x20200D0A

Default setting:

Teach value 1: 0.0

Teach value 2: 16368.0

8.4.23 Scaling Values for the Analog Output

Name: SET_TEACH_VALUE

Description: Sets the scaling values.

Parameter:

Teach value 1, XXXXXXXX --> 0.0 up to 16368.0Teach value 2, XXXXXXXX --> 0.0 up to 16368.0

Format: 31

ĺ	31	24	23	16	15	8	7	0	hex
	"+"		"+"		"-	"+"		("CR")	0x2B2B2B0D
	"I"		"L"		"D"		,,	1"	0x494C4431
	0x20 0xF9		F9	0x00		0>	(04	0x20F90004	
	0xXX		0xXX		0xXX		0>	XX	0xXXXXXXXX
	0xXX		0xXX		0xXX		0xXX		0xXXXXXXX

Reply:

31	24	23	16	15	8	7	0	hex
,,,	l "	"L"		"D"		"1"		0x494C4431
0x.	0xA0 0xI		F9	9 0x00		0x02		0xA0F90002
0x20 0x20		0x0D		0x0A		0x20200D0A		

The minimum distance of the teach values 1/2 to one other is 10 % of the measurement range.

8.4.24 Reset Scaling Values for the Analog Output

Name: RESET_TEACH_VALUE

Description: Resets the scaling values.

Format:

31	24	23	16	15	8	7	0	hex
"+"		"+"		"+"		0x0d ("CR")		0x2B2B2B0D
"["		"L"		"D"		"1"		0x494C4431
0x20		0x	0xFA		0x00		02	0x20FA0002

Reply:

31	24	23	16	15	8	7	0	hex
,,	l "	"L"		"D"		"1"		0x494C4431
0x	0xA0 0xFA		FA	0x00		0x02		0xA0FA0002
0x20 0x20		0x0D		0x0A		0x20200D0A		

8.4.25 Changing Data Protocol

Name: SET CIMODE 1401

Description: Switches the sensor into the ILD1401 data protocol.

The sensor replies with the ILD1402 data protocol, after sending the reply the sensor switches the data protocol.

The following parameters can be changed in the ILD1401 data protocol:

- Digital or analog data output
- Behavior in case of an error
- Averaging

The other parameters remain fixed:

- Baud rate: 38400
- Measurement rate: 1000 Hz
- Type of digital output: binary
- Mode of analog/digital output: continuous
- Key status: auto lock
- Mode of save setting: save at each time
- Mode of external input: as teach in
- Teach value 1: 0.00 resp. taught value T1 remains
- Teach value 2: 16368.00 resp. taught value T2 remains

Format:

31	24	23	16	15	8	7	0	hex
"+"		"+"		"+"		0x0d ("CR")		0x2B2B2B0D
"["		"	"L" "		D" "		1"	0x494C4431
0x20 0xF2		0x00		0x02		0x20F20002		

Repl	y	:
------	---	---

31	24	23	16	15	8	7	0	hex
"["		"L"		"D"		"1"		0x494C4431
0xA0		0xF2		0x00		0x02		0xA0F20002
0x20		0x	20	0x0D		0x0A		0x20200D0A

8.4.26 Request Data Protocol

Name: GET CI MODE

Description: Requests the state of the sensors command interpreter.

Format:

31	24	23	16	15	8	7	0	hex
,,,-"		"-	"	".	"	"F	R "	0x2D2D2D52

Reply:

31	24	23	16	15	8	7	0	hex
"-"		,,	-"	,,	"-"		1"	0x2D2D2D31
"4"		"() "	,,,	"["		0X	0x3443490X

Options for X:

X = 1, the command interpreter of the sensor operates with the ILD1401 data protocol. Note: The sensor uses a different protocol!

X = 2, the command interpreter of the sensor operates with the ILD1402 data protocol.

9. Instructions for Operating

9.1 Reflection Factor of the Target Surface

In principle the sensor evaluates the diffuse part of the reflected laser light, see Fig. 26.

Fig. 26 Reflection factor of the target surface

A statement concerning a minimum reflectance is difficult to make, because even a small diffuse fraction can be evaluated from highly reflecting surfaces. This is done by determining the intensity of the diffuse reflection from the CCD array signal in real time and subsequent compensation for intensity fluctuations, see Chap. 3.2. Dark or shiny objects being measured, e.g. black rubber, may require longer exposure times. The exposure time is dependent on the measurement rate and can only be increased by reducing the sensor's measurement rate.

9.2 Error Influences

9.2.1 Light from other Sources

Thanks to their integrated optical interference filters the optoNCDT1402 sensors offer outstanding performance in suppressing light from other sources. However, this does not preclude the possibility of interference from other light sources if the objects being measured are shiny and if lower measurement frequencies are selected. Should this be the case it is recommended that suitable shields be used to screen the other light sources. This applies in particular to measurement work performed in close proximity to welding equipment.

9.2.2 Color Differences

Because of intensity compensation, color difference of targets affect the measuring result only slightly. However, such color differences are often combined with different penetration depths of the laser light into the material. Different penetration depths then result in apparent changes of the measuring spot size. Therefore color differences in combination with changes of penetration depth may lead to measuring errors.

9.2.3 Temperature Influences

When the sensor is commissioned a warm-up time of at least 20 minutes is required to achieve uniform temperature distribution in the sensor. If measurement is performed in the micron accuracy range, the effect of temperature fluctuations on the sensor holder must be considered. Due to the damping effect of the heat capacity of the sensor sudden temperature changes are only measured with delay.

9.2.4 Mechanical Vibrations

If the sensor should be used for resolutions in the μ m range, special care must be taken to ensure stable and vibration-free mounting of sensor and target.

9.2.5 Movement Blurs

If the objects being measured are fast moving and the measurement rate is low it is possible that movement blurs may result. Always select a high measurement rate for high-speed operations, therefore, in order to prevent errors.

9.2.6 Surface Roughness

In case of traversing measurements a surface roughness of 5 μ m and more leads to an apparent distance change (also-called surface noise). However, they can be dampened by averaging, see Chap. 6.3.

9.2.7 Angle Influences

Tilt angles of the target both around the X and the Y axes of less than 5 ° only have a disturbing effect with surfaces which are highly reflecting. Tilt angles between 5 ° and 15 ° lead to an apparent distance change of approx. 0.12 ... 0.2 % of the measuring range, see Fig. 27. Tilt angles between 15 ° and 30 ° lead to an apparent distance change of approx. 0.5 % of the measuring range. These influences must be considered especially when scanning structured surfaces. In principle the angle behavior in triangulation also depends on the reflectivity of the target.

Fig. 27 Measurement errors through tilting with diffuse reflection

9.3 Optimizing the Measuring Accuracy

In case of rolled or polished metals that are moved past the sensor the sensor plane must be arranged in the direction of the rolling or grinding marks. The same arrangement must be used for color strips, see Fig. 28.

Fig. 28 Sensor arrangement in case of ground or striped surfaces

In case of bore holes, blind holes, and edges in the surface of moving targets the sensor must be arranged in such a way that the edges do not obscure the laser spot, see Fig. 29.

Fig. 29 Sensor arrangement for holes and ridges

9.4 Cleaning the Protective Glasses

Clean the protective glass with high-percentage alcohol (propanol or optics cleaner) and a lint-free lens cleaning paper or an optics cleaning cloth (from the optics or photo shop).

The surface is damaged if a dry cloth is used for cleaning.

10. Default Setting

- Data protocol ILD1402, Binary format
- Current output with error value (3.75 mA)
- Measuring rate: 1.5 kHz
- Interface: 115.2 kBaud, binary format (no ASCII)
- Moving average avg =1 (no averaging)
- Teach value 1: 0.0
- Teach value 2: 16368.0
- External input for scaling 1
- Continuous measurement output
- Output time: 500 ms,
- Key lock after 5 min power on 1
- Settings saved into FLASH
- Measuring range:
 - 100 % FSO: I = 20 mA, digital 16207
 - 0 % FSO: I = 4 mA, digital 161
- Maximum output (101 % FSO):
 20.16 mA / digital 16367

Minimum output (-1 % FSO):
 3.84 mA / digital 0

Set sensor on default settings: 2

- Switch off the sensors power supply.
- Keep the key "Select" pressed.
- Switch on the sensors power supply.

LED on sensor flashes green.

Press the key "Select" again.

LED flashes green three times, approx. 1 Hz. During this time the factory parameters are set. Then the sensor reboots.

- 1) Only with sensor ILD 1402-x
- 2) Restoring the factory setting with ILD 1402-xSC is only possible via the serial interface.

11. ILD1402 Tool

The ILD1402 Tool is an application to configure the ILD1402 sensor. In addition it supports a 1 channel data acquisition. It is for demonstration purposes only.

System requirements:

- Windows 2000/Windows XP or Windows Vista
- Pentium III, 256 MB RAM
- Install the PC based program. Use the corresponding setup.exe supplied from the attached CD.
- Follow the advices during the installation.

You will find the actual drivers respectively program routines under:

www.micro-epsilon.com/link/opto/1402

 This program part is evidence of acquisition, calculation and data storage of ILD1402. You will find further details in the online help.

Disconnect or connect the D-sub connection between RS422 and USB converter when the sensor is disconnected from power supply only.

12. Software Support with MEDAQLib

The Micro-Epsilon Data Acquisition Library offers you a high level interface library to access optoNCDT laser sensors from your Windows application in combination with

- RS422/USB converter (optional accessory) and a suitable PC1402-3/D-SUB/9pol cable or
- PC1402-3/USB cable or
- IF2008 PCI interface card and PC1402-3/IF2008 cable

into an existing or a customized PC software.

You need no knowledge about the sensor protocol to communicate with the individual sensors. The individual commands and parameters for the sensor to be addressed will be set with abstract functions. MEDAQLib translates the abstract functions in comprehensible instructions for the sensor.

MEDAQLib

- is a DLL/LIB usable for C, C++, VB, Delphi and many other Windows programming languages,
- supports functions to talk to the sensor
- hides the details on how to talk to the communication interface (RS232,RS422,USB,TCP)
- hides the details of the sensor protocoll
- converts the incoming data to "expected data values"
- provides a consistent programming interface for all Micro-Epsilon sensors
- provides many programming examples many different programming languages
- the interface is documented in a large *.pdf file

You will find the latest MEDAQLib version at:

www.micro-epsilon.com/link/software/medaqlib

13. Warranty

All components of the device have been checked and tested for perfect function in the factory. In the unlikely event that errors should occur despite our thorough quality control, this should be reported immediately to MICRO-EPSILON.

The warranty period lasts 12 months following the day of shipment. Defective parts, except wear parts, will be repaired or replaced free of charge within this period if you return the device free of cost to MICRO-EPSILON. This warranty does not apply to damage resulting from abuse of the equipment and devices, from forceful handling or installation of the devices or from repair or modifications performed by third parties.

No other claims, except as warranted, are accepted. The terms of the purchasing contract apply in full. MICRO-EPSILON will specifically not be responsible for eventual consequential damages. MICRO-EPSILON always strives to supply the customers with the finest and most advanced equipment. Development and refinement is therefore performed continuously and the right to design changes without prior notice is accordingly reserved. For translations in other languages, the data and statements in the German language operation manual are to be taken as authoritative.

14. Service, Repair

In the event of a defect on the sensor or sensor cable, the parts concerned must be sent back for repair or replacement. The opening of the sensor is only subjected to the manufacturer. In the case of faults the cause of which is not clearly identifiable, the whole measuring system must be sent back to

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Straße 15 94496 Ortenburg

Tel. 08542/168-0 Fax 08542/168-90 e-mail info@micro-epsilon.de www.micro-epsilon.com

15. Decommissioning, Disposal

Disconnect the power supply and output cable on the sensor.

The optoNCDT1402 is produced according to the directive 2002/95/EC ("RoHS"). The disposal is done according to the legal regulations (see directive 2002/96/EC).

16. Free Space for Optics

16.1 ILD 1402-x

MR

5 (0.20)

10

(0.40)

Dimensions in mm (inches), not to scale

SMR

20

(0.79)

20

(0.79)

α

33.5°

33.5°

φ

35.5°

32.9°

ε

37.1 °

32.4°

20 30 31.2° 27.9° 25.8° (0.79)(1.18)50 45 19.6° 25.1° 16.9° (2.00)(1.77)100 50 23.1° 14.4° 11.3° (2.00)(3.94)200 60 20.1° 9.4° 6.8 ° (7.87)(2.36)250VT 100 5.5° 14.7° 7.6° (9.84)(3.94)600 200 40.4 33.4 9.5° 4.2 ° 2.9° (1.59)(23.6)(7.87)(1.31)

SMR = Start of measuring range

16.2 ILD 1402-xSC

Dimensions in mm (inches), not to scale

MR	SMR	α	φ	ε	Α	В
5	20.0	33.5	35.5	37.1	18.9	13.2
10	20.0	33.5	32.9	32.4	19,1	13.2
20	30.0	31.2	27.9	25,8	24.2	18.2
50	45.0	25.1	19.6	16.9	28.9	21.1
100	50,0	23.1	14.4	11.3	30.1	21.3
200	60.0	20.1	9.4	6.8	30.8	22.0
250	100.0	14.7	7.6	5.5	33.9	26.2
600	200.0	9.7	4.3	3	41.6	33.7

MR = Measuring range

SMR = Start of measuring range

17. Available Cables

All cables are high flex and can be used in cabel drag chains.

Туре	Cable length	Characteristics
PC1402- 3/I, PC1402-6/I, PC1402-8/I	3 m 6 m 8 m	Interface und supply cable for current output, one end of the cable has a molded M12 female connector, the other end has free leads with ferrules.
PC1402-3/U, PC1402-6/U, PC1402-8/U	3 m 6 m 8 m	Interface und supply cable for voltage output (250 Ohm load, $U_{\text{out}}=1\dots5$ V), one end of the cable has a molded M12 female connector, the other end has free leads with ferrules.
PC1402-3/USB, PC1402-6/USB	3 m 6 m	With integrated RS422 / USB - converter, one end of the cable has a molded M12 female connector, the other end an USB connector for PC; power supply unit for 100 240 VAC included; Software for easy sensor commissioning.
PC1402-3/USB/IND	3 m	Power and output cable, one end of the cable has a molded M12 female connector, the other end a 9 pol D-SUB for RS422/USB converter and open leads; a RS422/USB converter is not enclosed.
		Disconnect or connect the D-sub connection between RS422 and USB converter when the sensor is disconnected from power supply only.
PC1402-3/CSP, PC1402-8/CSP, PC1402-10/CSP	3 m 8 m 10 m	Connecting cable with straight connector on both sides to connect an ILD1402 sensor to a CSP2008.
PC1402-3/IF2008, PC1402-6/IF2008, PC1402-8/IF2008	3 m 6 m 8 m	Connecting cable, one end of the cable has a molded M12 female connector, the other end a D-SUB to connect an ILD1402 sensor to an IF2008 PCI interface card.
PC1401/1402-0.2	0.2 m	Patch cable, 12 pol to 7 pol.

PC1402SC-3/I PC1402SC-8/I PC1402SC-10/I	3 m 8 m 10 m	Interface and supply cable IP 96K for sensor type ILD1402- xxxSC, output 4-20 mA; 8 pol male connector (cable jack) on sensor side, open ends on other side, cable carriers suitable, particular wiring
PC1402SC/90-3/I	3 m	Interface and supply cable for sensor type ILD1402-xxxSC, output 4-20 mA; 8 pol male connector (cable jack) on sensor side 90 °, IP 69K, open ends on other side, cable carriers suitable, particular wiring
PC1402SC-12/IF2008	12 m	Interface und supply cable for sensor type ILD1402-xxxSC with 8 pol male connector, connection cable to 4 channel interface card IF2008, power supply via interface card

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 \cdot 94496 Ortenburg / Deutschland Tel. +49 (0) 8542 / 168-0 \cdot Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de \cdot www.micro-epsilon.com

X9751202-A081100HDR

