Санкт-Петербургский национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Алгоритмы и структуры данных

Отчёт по лабораторной работе №7 (1322)

Преподаватель: Тропченко А. А.

Выполнил: Марухленко Д. С.

Группа: R3235

1. Цель работы

Решить задачу №1322 на платформе Timus Online Judge https://acm.timus.ru/problem.aspx?space=1&num=1322

2. <u>Задача</u>

Условие

Спецслужбы обнаружили действующего иностранного агента. Шпиона то есть. Установили наблюдение и выяснили, что каждую неделю он через Интернет посылает кому-то странные нечитаемые тексты. Чтобы выяснить, к какой информации получил доступ шпион, требуется расшифровать информацию. Сотрудники спецслужб проникли в квартиру разведчика, изучили шифрующее устройство и выяснили принцип его работы.

На вход устройства подается строка текста $S_1 = s_1 s_2 ... s_N$. Получив ее, устройство строит все циклические перестановки этой строки, то есть $S_2 = s_2 s_3 ... s_N s_1$, ..., $S_N = s_N s_1 s_2 ... s_{N-1}$. Затем множество строк S_1 , S_2 , ..., S_N сортируется лексикографически по возрастанию. И в этом порядке строчки выписываются в столбец, одна под другой. Получается таблица размером $N \times N$. В какой-то строке K этой таблицы находится исходное слово. Номер этой строки вместе с последним столбцом устройство и выдает на выход.

Например, если исходное слово S_1 = abracadabra, то таблица имеет такой вид:

- 1. $aabracadabr = S_{11}$
- 2. $abraabracad = S_8$
- 3. $abracadabra = S_1$
- 4. $acadabraabr = S_4$
- 5. $adabraabrac = S_6$
- 6. $braabracada = S_9$
- 7. $bracadabraa = S_2$
- 8. $cadabraabra = S_5$
- 9. dabraabraca = S_7
- 10. raabracadab = S_{10}
- 11. $racadabraab = S_3$

И результатом работы устройства является число 3 и строка rdarcaaaabb.

Это все, что известно про шифрующее устройство. А вот дешифрующего устройства не нашли. Но поскольку заведомо известно, что декодировать информацию можно (а иначе зачем же ее передавать?), Вам предложили помочь в борьбе с хищениями секретов и придумать алгоритм для дешифровки сообщений. А заодно и реализовать дешифратор.

Ограничение времени: 0.25 секунды

Ограничение памяти: 64 МБ

Исходные данные

В первой и второй строках находятся соответственно целое число и строка, возвращаемые шифратором. Длина строки и число не превосходят 100000. Строка содержит лишь следующие символы: а-z, A-Z, символ подчеркивания. Других символов в строке нет. Лексикографический порядок на множестве слов задается таким порядком символов:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz

Символы здесь выписаны в порядке возрастания.

Результат

Выведите декодированное сообщение в единственной строке.

Пример

Исходные данные	Результат
3	abracadabra
rdarcaaaabb	

3. Материалы работы

3.1. Объяснение алгоритма

Для решения задачи считаем строку посимвольно в массив структур, содержащих букву и порядковый номер считанной буквы. После этого отсортируем по алфавиту, сохраняя порядок повторяющихся букв функцией stable_sort. Полученная строка совпадает со строкой, полученной перестановками и сортировкой исходной строки (в примере S_{11}), а ряд индексов указывает на последовательность расстановки букв и место индекса следующей буквы. Таким образом, достаточно один раз пропустить структуру через цикл, чтобы получить исходное слово.

3.2. Код программы.

```
1. #include <algorithm>
2. #include <iostream>
3.
4. using namespace std;
5.
6. struct char i {
7.
       char c;
8.
        int index;
9. };
10.
11. bool sort char i (const char i a, const char i b) {return a.c < b.c;}
12.
13. int main() {
14.
     int n;
15.
       cin >> n;
       --n;
17.
      char c;
18. char_i s[100000];
19. int length = 0;
20. while (cin.get(c)) {
        if (length > 0 && (c == ' \ n' \ | \ c == ' \ r'))
22.
                 break;
```

```
23.
         else if (isspace(c))
24.
             continue;
         s[length] = \{c, length\};
26.
         ++length;
27.
28.
      stable_sort(s, s+length, sort_char_i);
29.
30.
31.
     int j = n;
     for (int i = 0; i < length; ++i, j = s[j].index)
32.
33.
      cout << s[j].c;
34.
     cout << endl;
35.
      return 0;
37.}
```

4. Результат выполнения и ссылка на репозиторий GitHub

задача: <u>шпион</u>

ID	Дата	Автор	Задача	Язык	Результат проверки	№ теста	Время работы	Выделено памяти
9259155	01:37:43 9 мар 2021	Daniil Marukhlenko	1322	G++ 9.2 x64	Accepted		0.015	1 564 КБ

https://github.com/japersik/algorithms_and_data_structures/

5. Вывод

Работа выполнена, задача решена с использованием сортировки структур.