CS4495/6495 Introduction to Computer Vision

7C-L1 Bayes filters

Recall: Tracking with dynamics

Key idea: Given a model of expected motion, predict where objects will occur in next frame, even before seeing the image

Goals:

- Do less work looking for the object, restrict the search.
- Get improved estimates since measurement noise is tempered by smoothness, dynamics priors.

Recall: Tracking with dynamics

Key idea: Given a model of expected motion, predict where objects will occur in next frame, even before seeing the image

Assumption – continuous (modeled) motion patterns:

- Objects do not disappear and reappear in different places in the scene
- Camera is not moving instantly to new viewpoint
- Gradual change in pose between camera and scene

The Kalman filter

- A method for tracking *linear dynamical models* in *Gaussian noise* contexts (dynamics and measurements).
- Predicted/corrected state densities are Gaussian
 - You only need to maintain the mean and covariance
 - The calculations are easy (all the integrals can be done in closed form)

Propagation of Gaussian densities

Kalman filter pros and cons

- Pros
 - Simple updates, compact and efficient

- Cons
 - Unimodal distribution, only single hypothesis
 - Restricted class of motions defined by linear model
 - Extensions called "Extended Kalman Filtering"
- So what might we do if not Gaussian?

Some old(er) examples of tracking

Isard and Blake CONDENSATION tracking

Propagation of general densities

Before we go any further...

In particle filtering, the measurements are written as z_t and not as y_t

So we'll start seeing z's

Particle Filters: Basic Idea

Density is represented by both **where** the particles are and their **weight**.

 $p(x = x_0)$ is now probability of drawing an x with value (really close to) x_0 .

 \rightarrow set of *n* (weighted) particles X_t

Goal: $p(x_t \in X_t) \approx p(x_t | z_{\{1...t\}})$ with equality when $n \to \infty$

Bayes Filters: Framework Given

- 1. Prior probability of the system state p(x)
- 2. Action (dynamical system) model:

$$p(x_t|u_{t-1},x_{t-1})$$

Bayes Filters: Framework

- 3. Sensor model (likelihood) p(z|x)
- 4. Stream of observations z and action data u:

$$data_{t} = \{u_{1}, z_{2}, ..., u_{t-1}, z_{t}\}$$

Bayes Filters: Framework

Wanted

- Estimate of the state X at time t
- The posterior of the state is also called belief:

$$Bel(x_t) = P(x_t | u_1, z_2 ..., u_{t-1}, z_t)$$

Graphical Model Representation

Underlying Assumptions

- Static world
- Independent noise

$$p(z_{t} | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_{t} | x_{t})$$

$$p(x_{t} | x_{1:t-1}, z_{1:t-1}, u_{1:t}) = p(x_{t} | x_{t-1}, u_{t})$$

Bayes Rule reminder

prior before measurement $p(x \mid z) = \frac{p(z \mid x)p(x)}{p(z)}$ $= \eta p(z \mid x) p(x)$ $\propto p(z|x)p(x)$

z = observationu = actionx = state

$$Bel(x_t) = P(x_t \mid u_1, z_2, ..., u_{t-1}, z_t)$$
Bayes
$$= \eta \ P(z_t \mid x_t, u_1, z_2, ..., u_{t-1}) \ P(x_t \mid u_1, z_2, ..., u_{t-1})$$

z = observationu = actionx = state

$$Bel(x_t) = P(x_t | u_1, z_2 ..., u_{t-1}, z_t)$$

Bayes
$$= \eta P(z_t | x_t, u_1, z_2, ..., u_{t-1}) P(x_t | u_1, z_2, ..., u_{t-1})$$

Sensor Ind
$$= \eta P(z_t | x_t) P(x_t | u_1, z_2, ..., u_{t-1})$$

Sensor Ind
$$= \eta P(z_t | x_t) P(x_t | u_1, z_2, ..., u_{t-1})$$

z = observationu = actionx = state

Sensor Ind
$$= \eta P(z_t | x_t) P(x_t | u_1, z_2, ..., u_{t-1})$$

Total Probability =
$$\eta P(z_t \mid x_t) \int P(x_t \mid u_1, z_2, ..., u_{t-1}, x_{t-1}) \cdot Of "Prior"$$

$$P(x_{t-1} \mid u_1, z_2, ..., u_{t-1}) dx_{t-1}$$

Markov =
$$\eta P(z_t | x_t) \int P(x_t | u_{t-1}, x_{t-1}) P(x_{t-1} | u_1, z_2, ..., u_{t-1}) dx_{t-1}$$

Markov =
$$\eta P(z_t | x_t) \int P(x_t | u_{t-1}, x_{t-1}) P(x_{t-1} | u_1, z_2, ..., u_{t-1}) dx_{t-1}$$

$$\begin{aligned} \mathsf{Markov} &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) \ P(x_{t-1} \mid u_1, z_2, \dots, u_{t-1}) \ dx_{t-1} \\ Bel(x_t) &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1} \end{aligned}$$

prediction before taking measurement