Adafruit GFX Matrix 16 X 48 LED 전광판

저 전력 / 고 휘도 LED 전광판 (Arduino Based)

Main H/W Develop 심성운

Main S/W Develop 권보승

Interface Management 강병근

Controller Management 이 호준

Power H/W Develop 최윤석

프로젝트 목표

[수행완료]

- [1차] Adafruit (제조사) 의 16 x 16 Flexible 16x16 NeoPixel LED Matrix 를 이용하여 전광판 완성
- [2차] 제조사가 기본 제공하는 8 x 8 GFX Library 를 이용하여 전 광판에 문자 출력 및 Flow Effect 출력

[미구현]

• [3차] 8 x 8 환경의 GFX Library 를 16 x 16 사양으로 재구현 하고, 256 pixel 에 맞는 Full-Size 한글 Font 출력

하드웨어 소개

[메인 하드웨어]

- WS2812 내장 컨트롤러가 탑재 된 Flexible LED Matrix * 3
- -> 접을 순 없지만 구부릴 수 있고 얇으며 추가적인 컨트롤러 없이 연결된 다른 LED Matrix 에 신호를 전달할 수 있다.
- Arduino Mega 2560 Micro-Controller (Based On Atmega2560)
- -> 초기 Atmega 128 (Arduino Uno) 사양이었으나, Uno 보드가 마이크로 컨트롤러에 ox1FF 를 초과하는 신호를 전달하는 경우 2MB 의 메모리 상한 문제로 강제 인터럽트가 발생되는 문제가 있어 고 사양 제품군인 메가 2560 보드로 변경

[전기회로/전원부 하드웨어]

- AC 220V to DC 5V~12V Voltage Converter / Power Supply
- -> 초기 USB Serial 로 부터 전원을 공급받아 5V 2.1A 출력을 할 수 있는 초 소형 전압 컨버터를 장착했으나 접지 불량으로 예상되는 불분명한 사유로 인해 파손되어 고가형 변압기로 변경

[기타제작재료]

- 포맥스 보드
- 거치대

제품 동작 방식

S/W 구현

- <Adafruit_GFX> / <Adafruit_NeoPixel> Function Library 사용
- 이 라이브러리는 8 x 8 Adafruit LED Matrix 를 대상으로 GitHub에서 Arduino 개발자들이 제공하는 것 으로 4배의 해상력을 가진 16 x 16 Matrix 에서는 동일하게 적용이 불가능하다

매트릭스 동작을 위한 사전 정의(Define) / 초기화 세팅 함수 Adafruit_NeoMatrix(X Array, Y Array, I/O, Function A + + Fucntion Z)

Adafruit_NeoMatrix(48, 16, PIN, NEO_MATRIX_TOP + NEO_MATRIX_LEFT + NEO_MATRIX_COLUMNS + NEO_MATRIX_ZIGZAG + NEO_MATRIX_PROGRESSIVE + NEO_GRB + NEO_KHZ800)

출력의 시작 좌표, 매트릭스의 LED 수, 처리 순서, 출력되는 포트, 속도, 출력할 색상에 대한 선 정의가 가능 하다. 글자를 출력할때와 색상 출력 때의 선언문이 달라진다.

매트릭스 출력 선언 함수	Matrix.begin()	지정된 우선순위에 따라 출력
매트릭스 밝기 선언 함수	Matrix.setBrightness(level)	밝기 단계 선언
출력 좌표 선언 함수	Matrix.setCursor((matrix.width), y)	출력이 시작될 위치 설정
LED Color 선언 함수	Matrix.Color(R_level,G_level,B_level)	해당하는 pixel 의 RGB 값 설정
LED ON 함수	Matrix.drawPixel(0, Address, color)	LED가 ON될 포인트 및 색 반환

이하의 LED 출력을 위한 잡다한 설정은 **다중 for 문을 이용**하여 각 Pixel 마다 갖는 color 값이 서로 달라지게끔 할 수 있다. 이 경우 matrix.drawPixel(**0**, adress, 255 - RGB*3/((**i+i**)%255)) 등으로 시간단위로 달라지는 값을 color 로 줘야 한다

• 8 x 8 사이즈에 해당하는 기초적인 문자 출력은 주어지는 라이브 러리를 통해 행할 수 있으나 LED Flow 출력은 다음과 같은 함수 들을 이용하여 직접 작업해야 되었다.

완성된 실제 제품

LED Matrix 에서 글자 출력


```
void textmatrix2() {
matrix.fillScreen(0);
 matrix.setCursor(x, 4);
 matrix.print(F("---DONG SEOUL UNIVERSITY---"));
 if(--x < -145)
   x = matrix.width();
    phase=2;
    pass++;
 matrix.show();
 delay(30);
 if(pass >= 7) pass = 0;
   matrix.setTextColor(colors[pass]);
```

초등학생도 할 수 있다는 Hello World 뽑아 놓고 만만하게 생각했으나 여기서 문제 발생 !

GFX Library 에서 기본 제공하는 영어 출력 함수와, NEO_MATRIX_ZIGZAG 를 통해 영어로된 문자열은 print 값을 주고 각 문자가 Flow (16개의 Pixel 배열이 0.3초마다시프트연산을통해 다음배열 포인터로넘어간다) 될 시간을 정의해 두는 것으로 큰 문제없이 출력이 가능했다!

근데 ... Matrix 동작 특성이 있어 한글 출력이 안된다!!!!

Array[o] =시작점의 주소 o x oo, 마지막 주소 oxoF Array[1]=시작점 주소 ox1F, 마지막 주소 ox1o = 프로그래밍적 어려움 발생

최종 완성된 제품의 문제점

- 이 결과물은 9월 진행된 1차 캡스톤 대회 출품 시의 사양으로 최종 목적이었던 '한글 출력'부분이 완성되지 못했다.
- 이는 두가지 문제를 가지고 있는데 초기 GFX Library 로 설계 되어있는 8 x 8 Array 와 16 x 16 Array 의 LED 출력 순서 차이와, 그로인한 Font 설계의 어려움에 서 기인한다.
- AVR_GCC 컴파일러는 한글 String 을 변수나 배열 데이터로 변환할 수 없기에 출력할 한글 자체를 256 pixel Array 로 선 처리 해야 된다.

