Stats Yr2 Chapter 3: Distribution-N

Binomial Approximation

Approximating a Binomial Distribution

The graph shows the probability function for different Binomial Distributions. Which one resembles another distribution and what distribution does it resemble?

When p is close to 0.5, and n is fairly large, it resembles a normal distribution. The p=0.5 results in the distribution being symmetrical. e.g. For a fair coin toss with 10 throws, we're just as likely to get 1 Head out fo 10 as we are 1 Tail.

Approximating a Binomial Distribution

If we're going to use a normal distribution to approximate a Binomial distribution, it makes sense that we set the mean and standard deviation of the normal distribution to match that of the original binomial distribution:

$$\mu = np$$

$$\sigma = \sqrt{np(1-p)}$$

 \mathscr{N} If n is large and p close to 0.5, then the binomial distribution $X \sim B(n, p)$ can be approximated by the normal distribution $N(\mu, \sigma^2)$ where

$$\mu = np$$

$$\sigma = \sqrt{np(1-p)}$$

Quickfire Questions:

$$X \sim B(10,0.2) \rightarrow Y \sim N(2,1.6)$$

$$X \sim B(20,0.5) \rightarrow Y \sim N(10,5)$$

$$X \sim B(6, 0.3) \rightarrow Y \sim N(1.8, 1.26)$$

We tend to use the letter Y to represent the normal distribution approximation of the distribution X.

Why use a normal approximation?

- Tables for the binomial distribution only goes up to n = 50 and your calculator will reject large values of n.
- The formula for P(X=x) makes use a factorials. Factorials of large numbers cannot be computed efficiently. Type in 65! for example; your calculator will hesitate! Now imagine how many factorials would be required if you wanted to find $P(X \le 65)$. \oplus

Continuity Corrections

One problem is that the outcomes of a binomial distribution (i.e. number of successes) are **discrete** whereas the Normal distribution is **continuous**.

We apply something called a **continuity correction** to approximate a discrete distribution using a continuous one.

The random variable X represents the time to finish a race in hours. We're interested in knowing the probability Alice took 6 hours to the nearest hour. How would you represent this time on a number line given hours is discrete? And what about if hours was now considered to be continuous (as Y)?

We can't just find P(Y=6) when Y is continuous, because the probability is effectively 0. But P(5.5 < Y < 6.5) would seem a sensible interval to use because any time between 5.5 and 6.5 would have rounded to 6 hours were it discrete.

Continuity Corrections

If X is a discrete variable, and Y is its continuous equivalent, how would you represent $P(X \ge 5)$ for Y?

Examples

Discrete

Continuous

$P(X \le 7)$
P(X < 10)
P(X > 9)
$P(1 \le X \le 10)$
P(3 < X < 6)
$P(3 \le X < 6)$
$P(3 < X \le 6)$
P(X=3)

?
?
?
?
?
?
?
?

- A continuity correction is approximating a discrete range using a continuous one.
- 1. If > or <, convert to \geq , \leq first.
- 2. Enlarge the range (at each end) by 0.5.

Examples

Discrete

Continuous

$$P(X \le 7)$$

 $P(X < 10)$
 $P(X > 9)$
 $P(1 \le X \le 10)$
 $P(3 < X < 6)$
 $P(3 \le X < 6)$

$$≈ P(Y ≤ 7.5)
= P(X ≤ 9) ≈ P(Y ≤ 9.5)
= P(X ≥ 10) ≈ P(Y ≥ 9.5)
≈ P(0.5 ≤ Y ≤ 10.5)
= P(4 ≤ X ≤ 5) ≈ P(3.5 ≤ Y ≤ 5.5)
≈ P(2.5 ≤ Y ≤ 5.5)
≈ P(3.5 ≤ X ≤ 6.5)$$

$$P(3 < X \le 6)$$

$$P(X = 3)$$

$$\approx P(2.5 \le X \le 3.5)$$

- A continuity correction is approximating a discrete range using a continuous one.
- 1. If > or <, convert to \ge , \le first.
- 2. Enlarge the range (at each end) by 0.5.

Full Example

[Textbook - Edited] For a particular type of flower bulbs, 55% will produce yellow flowers. A random sample of 80 bulbs is planted.

- (a) Calculate the actual probability that there are exactly 50 flowers.
- (b) Use a normal approximation to find a estimate that there are exactly 50 flowers.
- (c) Hence determine the percentage error of the normal approximation for 50 flowers.

Full Example

[Textbook - Edited] For a particular type of flower bulbs, 55% will produce yellow flowers. A random sample of 80 bulbs is planted.

- (a) Calculate the actual probability that there are exactly 50 flowers.
- (b) Use a normal approximation to find a estimate that there are exactly 50 flowers.
- (c) Hence determine the percentage error of the normal approximation for 50 flowers.

a
$$X \sim B(80, 0.55)$$

$$P(X = 50) = {80 \choose 50} \times 0.55^{50} \times 0.45^{30} = 0.0365$$

b
$$Y \sim N(44, 19.8)$$

 $P(X = 50) \approx P(49.5 < Y < 50.5)$
 $= 0.9280 - 0.8918 = 0.0362 (4dp)$

Percentage error:
$$\frac{0.0365 - 0.0362}{0.0365} \times 100 = 0.82\%$$

Test Your Understanding

Edexcel S2 Jan 2004 Q3

The discrete random variable X is distributed B(n, p).

(a) Write down the value of p that will give the most accurate estimate when approximating the binomial distribution by a normal distribution.

(1)

(b) Give a reason to support your value.

(1)

(c) Given that n = 200 and p = 0.48, find $P(90 \le X < 105)$.

(7)

(a)	?
(b) (c)	?
(c)	
	?

Test Your Understanding

Edexcel S2 Jan 2004 Q3

The discrete random variable X is distributed B(n, p).

(a) Write down the value of p that will give the most accurate estimate when approximating the binomial distribution by a normal distribution.

(1)

(b) Give a reason to support your value. (1)

(c) Given that n = 200 and p = 0.48, find $P(90 \le X < 105)$. (7)

(a)
$$p = \frac{1}{2}$$
B1

(b) Binomial distribution is symmetrical
B1

(c) Since n is large and $p \approx 0.5$ then use normal approximation, Can be implied below M1

 $np = 96$ and $npq = 49.92$
P($90 \le X < 105$) $\approx P(89.5 \le Y \le 104.5)$ where $Y \sim N(96,49.92)$ ± 0.5 cc on both M1,
$$\approx P\left(\frac{89.5 - 96}{\sqrt{49.92}} \le Z \le \frac{104.5 - 96}{\sqrt{49.92}}\right)$$
Standardisation of both M1
$$\approx P(-0.92 \le Z \le 1.20)$$

$$\approx 0.7055 - 0.7070$$
awrt $-0.92 \& 1.20$ A1
$$\approx 0.7055 - 0.7070$$
4dp in range A1

(7)
(Total 9 Marks)

Exercise 3.6

Pearson Stats/Mechanics Year 2 Page 27-28

Homework Exercise

- 1 For each of the following binomial random variables, X:
 - i state, with reasons, whether X can be approximated by a normal distribution.
 - ii if appropriate, write down the normal approximation to X in the form $N(\mu, \sigma^2)$, giving the values of μ and σ .

a $X \sim B(120, 0.6)$

b $X \sim B(20, 0.5)$ **c** $X \sim B(250, 0.52)$

d $X \sim B(300, 0.85)$ **e** $X \sim B(400, 0.48)$ **f** $X \sim B(1000, 0.58)$

2 The random variable $X \sim B(150, 0.45)$. Use a suitable approximation to estimate:

a $P(X \le 60)$

b P(X > 75)

c $P(65 \le X \le 80)$

3 The random variable $X \sim B(200, 0.53)$. Use a suitable approximation to estimate:

a P(X < 90)

b $P(100 \le X < 110)$

c P(X = 105)

4 The random variable $X \sim B(100, 0.6)$. Use a suitable approximation to estimate:

a P(X > 58)

b $P(60 < X \le 72)$

c P(X = 70)

- 5 A fair coin is tossed 70 times. Use a suitable approximation to estimate the probability of obtaining more than 45 heads.
- 6 The probability of a roulette ball landing on red when the wheel is spun is $\frac{50}{101}$. On one day in a casino, the wheel is spun 1200 times. Estimate the probability that the ball lands on red in at least half of these spins.

Homework Exercise

7	 a Write down two conditions under which the normal distribution may be used approximation to the binomial distribution. A company sells orchids of which 45% produce pink flowers. 	l as an (2 marks)
	 A random sample of 20 orchids is taken and X produce pink flowers. b Find P(X = 10). A second random sample of 240 orchids is taken. 	(1 mark)
	 c Using a suitable approximation, find the probability that fewer than 110 orch produce pink flowers. d The probability that at least q orchids produce pink flowers is 0.2. Find q. 	(3 marks) (3 marks)
8	A drill bit manufacturer claims that 52% of its bits last longer than 40 hours. A random sample of 30 bits is taken and X last longer than 40 hours. a Find $P(X < 17)$. A second random sample of 600 drill bits is taken.	(1 mark)
	b Using a suitable approximation, find the probability that between 300 and 35 last longer than 40 hours.	60 bits (3 marks)
9	9 A particular breakfast cereal has prizes in 56% of the boxes. A random sample of 100 boxes is taken.	
	 a Find the exact value of the probability that exactly 55 boxes contain a prize. b Find the percentage error when using a normal approximation to calculate the 	(1 mark)
	probability that exactly 55 boxes contain prizes.	(4 marks)

Homework Answers

For Chapter 3, student answers may differ slightly from those shown here when calculators are used rather than table values.

```
a i Yes, n is large (> 50) and p is close to 0.5.
      ii X \sim N(72, 5.37^2)
   b i No, n is not large enough (< 50).
   c i Yes, n is large (> 50) and p is close to 0.5.
      ii X \sim N(130, 7.90^2)
   d i No, p is too far from 0.5.
   e i Yes, n is large (> 50) and p is close to 0.5.
      ii X \sim N(192, 9.99^2)
      i Yes, n is large (> 50) and p is close to 0.5.
      ii X \sim N(580, 15.6^2)
   a 0.1253
                     b 0.0946
                                       c 0.6723
   a 0.0097
                     b 0.5596
                                       c 0.0559
   a 0.6203
                     b 0.4540
                                       c 0.0102
5
   0.006
   0.3767
   a n large, p close to 0.5.
                                       b 0.1593
   c 0.5772
                     d 115
   a 0.6277
                     b 0.8457
9
   a 0.0786
                     b 0.26%
```