eti

May 7, 2018

outline

team

data

model

tasks

team

Kuan Yu kuanyu@uni-potsdam.de

Maya Angelova maya.angelova@protonmail.com

Philipp Schoneville schoneville@uni-potsdam.de

wikipedia datasets¹

aligned normal vs simple wikipedia content

version 1.0

with train, tune, test splits

version 2.0

- no splits
- updated
- more data

version 2.0 document-aligned

▶ 32 documents empty in normal or simple

simple

	min	max	mean
sent	1	916	8.46
word	0	10486	153.50
char	1	53497	806.37

normal

	min	max	mean
sent	1	1938	64.52
word	0	32026	1638.02
char	1	185194	8995.47

version 2.0 sentence-aligned

▶ 167,689 aligned sentence pairs

simple

	min	max	mean
word	1	192	22.86
char	17	2613	122.08

normal

	min	max	mean
word	1	236	25.55
char	17	2404	139.55

version 2.0 sentence-aligned

	normal	simple
#word	4284135	3832824
#word-type	162491	147078
#non-hapax	78494	71029
#char-type	133	134

▶ unique char [in sentence 152,563 did not unnormalized to -LRB- due to tokenization error

character-level modelling: byte-net²

- more robust
 - ► no UNKNOWN
 - no special treatment for numbers
 - may learn morphology
- no tokenizer required
- easier applicable to other languages

²https://arxiv.org/abs/1610.10099

attention: transformer-net³

- vs recurrent
 - faster training
 - no information bottleneck
- vs convolution
 - no limited input field

³https://arxiv.org/abs/1706.03762

concept art: the category of languages L

- $i, j, k \in \mathbb{N}$
- ▶ an object $L_i \in L$ is a language
- lacktriangle an arrow t^i_j translates $L_i
 ightarrow L_j$, preserving discourse
- the composition $t_k^j t_j^i = t_k^i$ is an indirect translation

concept art: the category of a language L_i

- \triangleright $j, k, m, n \in \mathbb{N}$
- $ightharpoonup S_0$ is the set of all possible worlds
- ▶ an object $S_j \in S = \mathbb{P}S_0$ is an information state
- ▶ an arrow $e_m: S_j \rightarrow S_k$ is an expression (proposition or utterance) which alters the information state
- the composition $e_n e_m = e_{mn}$, a concatenation of expressions, conducts discourse

concept art: the category of a language L_i

- ▶ the empty expression *e*⁰ adds no information to the discourse
- lacktriangle the intensional interpretation of e_1 is \mathcal{S}_1 , and e_2 \mathcal{S}_2
- ▶ logically, e_2 implies e_1
- a gibberish leads any information state to the empty state, in which case the discourse must backtrack in order to proceed
- every state has one outgoing arrow corresponding to each expression (totality)

concept art: the monoid of a language E_i

- $ightharpoonup L_i$ is a category with totality (left), which is a monoid (right)
- ▶ its composition is the concatenation of expressions
- its identity is the empty expression
- \blacktriangleright it is the free monoid generated by the alphabet A_i of L_i
- ▶ namely the free monoid $E_i = A_i^*$

concept art: the free functor $A \rightarrow E$

category A $E = \operatorname{free} A$ objects charsets monoids arrows functions monoid homomorphisms

concept art: eti

- ▶ the encoder functor interpret empirically identifies expressions in E_i as paths in L_i
- ▶ the decoder functor express reconstructs expressions from paths of discourse in L_i
- our model, the monoid homomorphism $\operatorname{eti}_k^j: E_j \to E_k$ is given by the composition express t_j^i interpret

preparation

- ▶ unnormalized -LRB- -RRB- -RCB- -LCB-
- ▶ investigate and fix encoding error \x92
- train, tune, test splits

baselines

- run byte-net and transformer-net
- evaluate BLEU scores
 - bad measure but commonly used
 - consider ideas from other teams

modelling

exploration: CRF decoding

- ▶ instead of beam search
- use CRF log likelihood as loss
- how to fix sequence lengths?
 - consider the approach in conv-seq2seq⁴

⁴https://arxiv.org/abs/1705.03122

exploration: generative pretraining

- pretrain the encoder on the normal data, or
- pretrain the decoder on the simple data