

The texpower Package pdfslide Demo

Stephan Lehmke mailto:Stephan.Lehmke@cs.uni-dortmund.de

A list environment foo. bar.

A list environment

foo. bar.

baz.

Back

A list environment

foo. bar.

baz. qux.

3/6

Back

An aligned equation $\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \qquad (1)$ $= 1 + n + 2 + (n-1) + \dots \qquad (2)$ $= (1+n) + \dots + (1+n) \qquad (3)$

 $=\frac{(1+n)\cdot n}{2}$ $=\frac{(1+n)\cdot n}{2}$ (4) $\frac{1}{2}$ Back
Close

 $n \log n \ n \log n \ n^2 \ 2^n$

Back

 $n \log n \ n \log n \ n^2 \ 2^n$

 $n \log n \log n \quad n^2 \quad 2^n$

 $n \log n \ n \log n \ n^2 \ 2^n$ 0 0

 $n \log n n \log n n^2 2^n$ 2 0 0

Back Close

$$\begin{array}{c|cccc} n & \log n & n \log n & n^2 & 2^n \\ \hline 0 & -- & -- & 0 & 1 \\ 1 & 0 & 0 & 1 & 2 \\ 2 & & & & & & \end{array}$$

$$\begin{array}{c|ccccc} n & \log n & n \log n & n^2 & 2^n \\ \hline 0 & -- & -- & 0 & 1 \\ 1 & 0 & 0 & 1 & 2 \\ 2 & 1 & 2 & & & \\ \end{array}$$

$$\begin{array}{c|cccc} n & \log n & n \log n & n^2 & 2^n \\ \hline 0 & -- & -- & 0 & 1 \\ 1 & 0 & 0 & 1 & 2 \\ 2 & 1 & 2 & 4 & \\ \end{array}$$

$$\begin{array}{c|ccccc} n & \log n & n \log n & n^2 & 2^n \\ \hline 0 & -- & -- & 0 & 1 \\ 1 & 0 & 0 & 1 & 2 \\ 2 & 1 & 2 & 4 & 4 \\ 3 & & & & & & \end{array}$$

Back Close

n	$\log n$	$n \log n$	n^2	2^n
0			0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	

n	$\log n$	$n \log n$	n^2	2^n
0			0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16

n	$\log n$	$n \log n$	n^2	2^n
0			0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5				

n	$\log n$	$n \log n$	n^2	2^n
0			0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3			

A picture 6/6 φ $F_t = \varphi\left(x(t)\right)$ x(t)y(t)Back Close

A picture 6/6 δ φ Φ $G_t = \Phi\left(\varphi\left(x(t)\right)\right)$ $F_t = \varphi\left(x(t)\right)$ y(t)x(t)Back Close