

BASES DE DATOS AVANZADAS

Domingo 24 de abril, 2022

Actividad N°2.

Iván Cáceres, Sebastián Cornejo, Tobías Guerrero, Marcelo Muñoz

Profesor Juan Ricardo Giadach

$\mathbf{\acute{I}ndice}$

Introducción.		
Características del entorno de trabajo	2	
Eliminación de Indice	2	
Recuperación de datos Creación tabla veintemil	3 3 4	
Análisis de tiempos obtenidos.	5	
Cálculos de parámetros de acceso	5	
Cálculo tiempo de respuesta	6	
Conclusión	6	

Introducción

Una vez finalizada la actividad 1, la cual está relacionada a la creación de tablas en una base de datos, se procede con la siguiente; esta se centra en otra de las operaciones fundamentales, el recuperar los datos solicitados.

Características del entorno de trabajo

Este trabajo se realiza en un computador con las siguientes características (Software/Hardware):

Elemento	Valor	Elemento	Valor
Nombre del SO	Microsoft Windows 10 Pro	Descripción	Unidad de disco
Versión	10.0.19044 Compilación 19044	Fabricante	(Unidades de disco estándar)
Descripción adicional del SO	No disponible	Modelo	SAMSUNG MZVLB512HAJQ-000H1
Fabricante del SO	Microsoft Corporation	Bytes/sector	512
Nombre del sistema	DESKTOP-BTF3JK5	Medio cargado	Sí
Fabricante del sistema	HP	Tipo de medio	Fixed hard disk
Modelo del sistema	HP EliteBook 830 G5	Particiones	3
Tipo de sistema	x64-based PC	Bus SCSI	0
SKU del sistema	5FV92EC#ABM	Unidades lógicas SCSI	0
Procesador	Intel(R) Core(TM) i5-8350U CPU @ 1.70GHz, 1896 Mhz, 4 procesadores princi	Puerto SCSI	0
Versión y fecha de BIOS	HP Q78 Ver. 01.19.00, 13-01-2022	Id. de destino SCSI	0
Versión de SMBIOS	3.1	Sectores/pista	63
Versión de controladora integr	4.109	Tamaño	
Modo de BIOS	UEFI		476,94 GB (512.105.932.800 bytes)
Fabricante de la placa base	HP	Nº total de cilindros	62.260
Producto placa base	83B3	Nº total de sectores	1.000.206.900
Versión de la placa base	KBC Version 04.6D.00	Nº total de pistas	15.876.300
Rol de plataforma	Móvil	Pistas/cilindro	255
Estado de arranque seguro	Activado	Partición	Disco #0, partición #0
Configuración de PCR7	Se necesita elevación de privilegios para ver	Tamaño de partición	260,00 MB (272.629.760 bytes)
Directorio de Windows	C:\WINDOWS	Desplazamiento inicial de parti	1.048.576 bytes
Directorio del sistema	C:\WINDOWS\system32	Partición	Disco #0, partición #1
Dispositivo de arranque	\Device\HarddiskVolume1	Tamaño de partición	475,76 GB (510.847.352.832 bytes)
Configuración regional	México		
Capa de abstracción de hardw	Versión = "10.0.19041.1566"	Desplazamiento inicial de parti	290.455.552 bytes
Nombre de usuario	DESKTOP-BTF3JK5\ vaaaaaaan	Partición	Disco #0, partición #2
Zona horaria	Hora est. Sudamérica Pacífico	Tamaño de partición	922,00 MB (966.787.072 bytes)
Memoria física instalada (RAM)	16,0 GB	Desplazamiento inicial de parti	511.137.808.384 bytes

Figura 1: Datos del sistema.

Figura 2: Especificaciones del disco.

Cabe destacar que la unidad de almacenamiento que se utiliza es del tipo ssd M.2, por lo que los resultados esperados son de un tiempo reducido en comparación a una unidad hdd.

Eliminación de Indice

En este punto se pide deshacer el índice creado para la tabla personas1 en la actividad anterior, para esto se realiza la instrucción "DROP INDEX indice;" donde 'indice' es el nombre otorgado a este en la primera actividad.

Figura 3: Eliminación Indice

Recuperación de datos

→ Creación tabla veintemil

Primero para crear la tabla se usa "CREATE TABLE veintemil(rut nume-ric(10));"

```
bddavz=# CREATE TABLE veintemil(rut numeric(10));
CREATE TABLE
```

Figura 4: Creación tabla veintemil

A continuación para realizar la inserción se ocupa el siguiente comando: "COPY veintemil(rut) from 'C:/Varios/U/5TO SEMESTRE/BDDAVZ/veintemil';"

```
bddavz=# COPY veintemil(rut) FROM 'C:/Varios/U/5TO SEMESTRE/BDDAVZ/veintemil';
COPY 20000
Duración: 84,536 ms
```

Figura 5: Inserción de datos a tabla veintemil

\rightarrow Consulta para personas1

Para obtener el nombre y dirección de las 20.000 personas de la tabla veintemil que se buscan en personas1, se realiza la siguiente instrucción, la cual no entrega los datos en la consola, sino que los copia directamente en un archivo.csv.

Comando: "COPY (select p.nombre, p.direccion from personas1 as p, veintemil as v where p.rut=v.rut) to 'C:/Varios/U/5TO SEMESTRE/BDDAVZ/resultado.csv' (format CSV);"

Este proceso se repite 2 veces más para tener mayor consistencia en los datos obtenidos, cabe destacar que entre cada intento se reinicia el dispositivo para liberar la memoria de manera que esta no influya en los resultados.

Prueba 1

```
oddavz=# COPY (select p.nombre, p.direccion from personas1 as p, veintemil as v where p.rut=v.rut) to 'C:/Varios/U/510 SEMESTRE/BODAVZ/resultado.csv' (format CSV);
COPY 20000
Duración: 9810,274 ms (00:89,810)
```

Figura 6: Comando primera prueba

Prueba 2

```
bddavz=# COPY (select p.nombre, p.direccion from personas1 as p, veintemil as v where p.rut=v.rut) to 'C:/Varios/U/STO SEMESTRE/BDDAVZ/resultado.csv' (format CSV)
COPY 20000
Duración: 12392,611 ms (80:12,393)
```

Figura 7: Comando segunda prueba

Prueba 3

ddavz=# COPY (select p.nombre, p.direccion from personas1 as p, veintemil as v where p.rut=v.rut) to 'C:/Varios/U/5TO SEMESTRE/80DAVZ/resultado.csv' (format CSV); OPY 20000 uración: 8756,715 ms (00:08,757)

Figura 8: Comando tercera prueba

Archivo .csv con las 20.000 filas entregadas por la consulta anterior.

Figura 9: Filas archivo .csv en un txt

\rightarrow Consulta para personas2

Se realiza casi la misma consulta cambiando la tabla utilizada por personas2: "COPY (select p.nombre, p.direccion from personas2 as p, veintemil as v where p.rut=v.rut) to 'C:/Varios/U/5TO SEMESTRE/BDDAVZ/resultado2.csv' (format CSV);".

Este proceso se repite 2 veces más, para tener mayor consistencia en los datos obtenidos, cabe destacar que entre cada intento se reinicia el dispositivo para liberar la memoria, de manera que esta no influya en los resultados.

Obteniendo:

Prueba 1

```
oddavz=# COPY (select p.nombre, p.direccion from personas2 as p, veintemil as v where p.rut=v.rut) to 'C:/Varios/U/5TO SEMESTRE/BDDAVZ/resultado2.csv' (format CSV);
COPY 20000
Luración: 2900,684 ms (00:02,981)
```

Figura 10: Comando primera prueba

Prueba 2

bddavz=# COPY (select p.nombre, p.direccion from personas2 as p, veintemil as v where p.rut=v.rut) to 'C:/Varios/U/5TO SEMESTRE/BODAVZ/resultado2.csv' (format CSV); COPY 20000 Duración: 5126,833 ms (00:05,127)

Figura 11: Comando segunda prueba

Prueba 3

oddavz=# COPY (select p.nombre, p.direccion from personas2 as p, weintemil as v where p.rut=v.rut) to 'C:/Varios/U/5TO SEMESTRE/BDDAVZ/resultado2.csv' (format CSV); COPY 20000 Duración: 4362,492 ms (00:04,362)

Figura 12: Comando tercera prueba

Archivo .csv con las 20.000 filas entregadas por la consulta anterior.

Figura 13: Filas archivo .csv en un txt

Análisis de tiempos obtenidos

	personas1	personas2
Prueba 1	9810,274 ms	2980,684 ms
Prueba 2	12392,611 ms	5126,833 ms
Prueba 3	8756,715 ms	4362,492 ms

Cuadro 1: Tiempos de ambas consultas.

Consulta	personas1	personas2
Tiempo promedio (ms)	10319,867	4156,669

Cuadro 2: Tiempo promedio de ambas consultas.

El tiempo de consulta para la tabla personas1 aproximadamente duplica el tiempo de consulta para la tabla personas2, esto es debido a que la tabla personas2 tiene la llave primaria en rut, lo cual significa que se crea un B-tree que permite una búsqueda por índice, esto es significativamente más rápido que una búsqueda secuencial. Esta ultima es la que se utiliza en la consulta para la tabla personas1.

Cálculos de parámetros de acceso

Parámetros a calcular: filas por bloque (fb) y orden del árbol (m), siendo T_1 el tiempo promedio de la consulta para la tabla personas1 y T_2 el promedio para la tabla personas2.

$$T_1 = \left(\frac{n}{fb}\right) * T_a$$

$$T_1 = \left(\frac{49875490}{fb}\right) * 1ms = 10319,867ms$$

$$\Rightarrow 49875490 = 10319,867 * fb$$

$$\Rightarrow fb = 4833$$

$$T_2 = (log_m N + X) * VecesQueSeRealiza * T_a$$

X tiene el valor de 1 porque rut es llave primaria por lo que no hay valores repetidos y se accede directamente al dato y se realiza 20000 veces porque busca cada rut de la tabla veintemil.

$$T_2 = (log_m 49875490) * 20000 * 1ms = 4156,669ms$$

 $\Rightarrow m = 1,09328 \rightarrow 2$

Cálculo tiempo de respuesta

A continuación se realiza el cálculo de los tiempos de respuesta teóricos para ambas consultas considerando que los parámetros filas por bloque y orden de árbol son 50 y 300 respectivamente.

$$T_1 = \left(\frac{n}{fb}\right) * T_a$$

$$T_1 = \left(\frac{49875490}{50}\right) * 1ms = 997509,8ms = 997,5098seg$$

$$T_2 = (log_m N + X) * VecesQueSeRealiza * T_a$$

X tiene el valor de 1 porque rut es llave primaria por lo que no hay valores repetidos y se accede directamente al dato y se realiza 20000 veces porque busca cada rut de la tabla veintemil.

$$T_2 = (log_{300}49875490 + 1) * 20000 * 1ms = 82151,88022ms = 82,151seg$$

	personas1	personas2
Teórico	997509,8 ms	82151,88 ms
Empírico	10319,867 ms	4156,669 ms

Cuadro 3: Comparación tiempos teóricos v/s experimentales.

Es posible observar que el tiempo de respuesta teórico y el empírico se diferencian bastante, esto probablemente ocurre por que el sistema de bases de datos optimiza automáticamente como hace las consultas y esto se refleja en un mejor tiempo empírico.

Conclusión

El presente trabajo se centra en una de las operaciones fundamentales de una base de datos, la cual es la recuperación o lectura. Esto se realiza mediante los ítem pedidos en esta tarea, la cual corresponde a la número 2 de la asignatura. Al realizarse se encuentran valores que no coinciden con los resultados esperados teóricamente, el órden del árbol esperado es de 300 y las filas por bloque de 50, no obstante, los resultados arrojan 2 y 4833 respectivamente, esto probablemente debido a que como se dijo antes, el sistema de bases de datos optimiza las consultas y como el cálculo teórico no contempla estas optimizaciones los resultados son distintos. Por otra parte se observa que el tiempo de la consulta 1 es algo más que el doble que el tiempo de la consulta 2, esto se debe a que el algoritmo de resolucion de la consulta 1 es una búsqueda secuencial mientras que el de la consulta 2 es una búsqueda por indíces, que para esta cantidad de datos, resulta mas eficiente la segunda. Comparando estos resultados con los tiempos de inserción en cada tabla para la tarea número 2 se puede notar que la inserción de datos relativamente masivos es mucho mas rápida en una tabla sin índice y sin llave primaria, en comparación a una que si tenga esto, mientras que en la búsqueda o recuperación de datos es lo contrario.