COMPUTER ENGINEERING DEPARTMENT

ASSIGNMENT NO-10

Sub: Theory of Computer Science

COURSE: T.E. Year: 2020-2021 Semester: V

DEPT: Computer Engineering

SUBJECT CODE: CSC504 DUE DATE: 27/11/2020

Roll No. 50 Name: Amey Thakur

Class: TE-Comps B Date of Submission: 25/11/2020

Tutorial 10

1. Discuss any real-life application based on FSM, PDA, TM, Grammar.

	•								
Q1 Discuss any	real lif	e a	pplicati	on b	sased	<u>01</u>	FSM	PDI	A, TM,
Grammar.			33	po?					
Ans:	· · · · · · · · · · · · · · · · · · ·			(0)		and the same			
Finite State	Machine (Fsm	1)	12 67				2	
- Finite aut	comata ci	re q	m 600	odels	for	Con	puren	100 21	th an
extremely	limited	amo	unt of	me	mory		7	.14	
- Whet car	a com	bater	do w	ith	such	a s	mall	memi	ory ?
Many use	eful thin	126	In fa	ct,	we :	intera	ct v	of the	sych
computers	all the	time	20	the	y lie	at	the	heart	of
various ele						21		100	300 B
- The conta	oller for	95	autom	atic	000	ร รีธ	on e	exam	iple of
such a d	levice Of	ten	found	at	Super	mark	et e	intran	ices and
exit of au	tomatic c	2000	swin	a 0	pen	when	sen	sing	that a
person is	er proach	โกด	Ana	utom	atic	door	has	a p	ad in
front to	aletect th	e o	se sence	ر م	f a	perso	m c	bout	to
walk thro	ough a	002(1)	an Ar	other	r pa	d / ?s	floc	ated	to
the rear	of the	9002	way	t 02	hat	the	Cont	roller	can
hold the	Jean as	e0	1009	enou	gh f	'or '	the	beeso	n to
pass all	the way	the	ough	and	opls:	02 C	tha	t the	-
door does	not ch	ike	Same	ne	stance	ling	behi	nd it	as it
opens.	, 1000 30	11/00/	50110	ali i	. o of	n fr	- 41	a wind	V I
- This confi	· · · · · · · ·		es fol	lows	• 5 1 6	8184	alt da	i - 3 F1 v	4
- This conti	garagion	15	(3,)01	10 0					
		1	-						
							-1		
	front		rear						
7	pord		pad						
		1							
						·			
	ch	or	7						
	-								

Top view of a	a automatic	door	•			
-10p 11100 01 d	i) Quematre	Ġ001				
- The controller is in either of two states:						
Open						
2 Closed						
- There are four possible input conditions:						
1) Front-(Person is standing on the pad in front of the						
	doorway).					
(11) Rear - (Person is standing on the pad to the near of						
the doorway)						
(11) Both - (People are standing on both pads).						
(V) Neither -	(V) Neither - (Noone is standing on either pad).					
Rear	Rear					
Both		Rear				
Neither & Front & Both						
(Closed) Open)						
Neither						
- State diag	ram for a	utomatic o	door cont	roller.		
	Neither	Front	Rear	Both		
Closed	Closed	Open	Closed	Closed		
Open	closed	Open	Open	Open		
)	1		

Push-Down Automata (PDA)
- These automata are like non-deterministic finite automata
but have an extra component called a stack.
- The stack provides additional memory beyond the finite
amount available in the control.
- The stack allows paushdown automata to recognize some
nonregular languages.
- Whenever your smartphone calculates calculates an authoretic
expression, it uses an implementation of the pushdown
automata to evaluate it.
- It verifies that the parentheses are balanced. In the
absence of parentheses it makes sure that the
multiplication operator has more precedence than the
addition or subtraction operator. All of it can be
summarized in three lines of grammar.
E -> E + T E - TO T -
T > T * F T / F F (1010)
$E \rightarrow \propto \lambda (E) -E$
- The above grammar belongs to a class of languages
called the Context Free Language The variables
E(Expression) T (Term) and F (Factor) produce more
complex expressions or Terminal symbols (Numbers)
in an arithmetic expression.
- The first rule is the starting point of any evaluation.
- The first rule is the starting point of any evaluation. Observe that the multiplication and division operations cannot
be evaluated unless the PDA emplementation sees TorE
This ensures the precedence of multiplication/division
over addition/ subtraction. Also observe that F produces
another E (expression) only if it is wrapped in
parentheses. This allows us to override the precedence
of multiplication and division operations using parenthesis

Example: The Balanced Parentheses Language
J
Consider Balanced (B) = { W & }), (] The parentheses
are balanced }.
- The following one state PDA Maccepts B.
- My uses its stack to count the number of left
$\bigcap \mathcal{L}/\mathcal{L}/\mathcal{L}$
donalt there of stack top
doesn't matter and a (is pushed to Stack.
3/2/6
V
If input is) and (is on stack top then
(is popped and nothing as prished to stack
$M = (R, \Sigma, \Gamma, \Lambda, S, A)$, where:
K= [s] The States
Z = § ()} The input alphabets
1 = 3 (9 The stack alphabet
$A = \{ z \}$
1 Contains:
$((s,(,\epsilon^*),(s,())$
((3,2),(),(2))
* 4 Important: This does not mean that the stack
is empty

Turing Machine (TM)
- A much more powerful model, first proposed by
Alan Turing in 1936, called Turing Machine.
- Similar to a finite automation but with an unlimited
and unrestricted memory, a turing machine is a
merch more accurate model of a general purpose
computer.
- A Turing machine can do enerything that a real
computer can do Nonetheless, leven a Turing machine
connot solve certain problems. In a very real sense
these problems are beyond the theoretical limits of
Computation
- Turing machine are not used in real life programming
It is a theoretical concept to define the notion of
Compréability
- · (A 2 A 1.5 A) - M
1) For solving any necursively enumerable problem
(1) For orderstanding complexity theory
(1) For implementation of Mennal Metworks
@ For implementation of Robotics applications.
1 For implementation of Arithmal Intelligence (AI)
((3,2),(**3,)-3)
Grammar ((2))
- Context Free Grammar are used in compilers and
in particular parving taking a string based
program and tiguring out what it means
- Typically, CFG are used to define the high level
Structure of a programming language.
Figuring out how a particular storing was derived talks us about its stoucture and meaning
talks us about its stoucture and meaning