

Movie Plots

Movie Recommender System

Genre Classification

Plot Topic Modeling

Prepared by:

Sarah Alabdulwahab & Asma Althakafi

OBJECTIVE

- Find the degree of similarity between movie plots
- Classify the movie genres based on their plots
- Apply topic modeling on the plot of each movie to differentiate between them based on their genre

DATA COLLECTION

Initially, the dataset contained 45,466 movies and 24 features

PRE-PROCESSING & CLEANING

English Movies

100+ Words per Plot

Fill Null Values

Merge Keywords with Plots

Named Entity Recognition Stemming & Lemmatization

DATASET

The dataset contains **3,133 movies** and **5 features**

Title Plot Genres

Keywords IMDB Plot

DATASET

The dataset contains **3,133 movies** and **4 features**

Title

Clean Plot

Genres

WORD CLOUD

ACTION

DRAMA

WORD CLOUD

SCI-FI

HORROR

METHODS

Recommender System

Classification

Topic Modeling

EXPERIMENTS

Count Vectorizer

- Original Plots
- Clean Plots

TF-IDF

- Original Plots
- Clean Plots

CONTENT-BASED RECOMMENDER SYSTEM

The best result: clean plot with CountVectorizer

The movie you chose is Twelve Monkeys

- Genres: Science-Fiction, Thriller, Mystery

Title	Similarity Score	Genres
Carriers	26%	Action, Drama, Horror, Science-Fiction, Thriller
Solos	23%	Horror, Thriller, Science-Fiction , Foreign
Day of the Dead 2: Contagium	22%	Horror, Science-Fiction

Classification using Multinomial Naive Bayes

Multilabel Classification

- With All Genres
- With Most Common Genres

Single Label Classification

- With All Genres
- With Most Common Genres

MULTILABEL CLASSIFICATION

The best result: clean plot with CountVectorizer

	Accuracy	F1 Score
All Genres	22.6%	46.2%
Most Common Genres	30.9%	55.4%

SINGLE LABEL CLASSIFICATION

The best result: Original plot with CountVectorizer

	Accuracy	F1 Score
All Genres	48.1%	40.5%
Most Common Genres	48.8%	43.3%

TOPIC MODELING

LATENT SEMANTIC ANALYSIS (LSA)

LATENT DIRICHLET ALLOCATION (LDA)

19 Genres -> 19 Topics

LATENT SEMANTIC ANALYSIS (LSA)

The best result: **Original plot with CountVectorizer**

Examples of Result:

Topic 3

war, world, ii, army, men, british, group, german, based, story

Topic 4

life, new, world, york, city, lives, journey, love, work, husband

LATENT DIRICHLET ALLOCATION (LDA)

The best result: **Original plot with CountVectorizer**

Now we will see the visualization

CONCLUSION

- Unfortunately, results were not satisfying
- Need more data to add to the plot to improve the results
- Future work: Try BERT

THANK YOU