Overborrowing and Systemic Externalities in the Business Cycle - Javier Bianchi (AER 2011)

Carlos Rondón Moreno

June 26, 2025

Motivation

- Periods of sustained increases in borrowing are often followed by a devastating disruption in financial markets
 - * Great Depression, 1929
 - * Tequila Crisis, 1994
 - * Asian Tigers Crisis, 1999
 - * Argentinean Crisis, 2002
 - * Great Recession, 2008
- Research Question:
 - * Why does the private sector becomes exposed to the dire consequences of financial crises?
 - * What is the appropriate policy response to reduce these vulnerabilities?

Introduction The Model The Social Planner Quantitative Analysis

#2

Contribution

- DSGE model in SOE with financial constraints.
 - * Credit constraint limits the amount of borrowing to a multiple of total income.
 - * Constraint is occasionally binding.

Contribution

- DSGE model in SOE with financial constraints.
 - * Credit constraint limits the amount of borrowing to a multiple of total income.
 - * Constraint is occasionally binding.
- Quantitative analysis to evaluate the macroeconomic and welfare effects of macroprudential policy

Policy intervention motivated by an externality

Theoretical Model

Household Problem

- Two-sector small open endowment economy (tradable and non-tradable sectors)
- ► Collateral constraint: Borrowing \leq than share κ of Y_t
- Incomplete credit markets
- Exogenous and constant interest rate

Household Problem

$$\max_{\{C_t^T, C_t^N, B_{t+1}\}} \mathbb{E}_{o}\left\{\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\sigma}}{1-\sigma}\right\}$$

where

$$C_{t} = \left(\omega\left(C_{t}^{T}\right)^{\frac{\eta-1}{\eta}} + (1-\omega)\left(C_{t}^{N}\right)^{\frac{\eta-1}{\eta}}\right)^{\frac{1}{\eta-1}}$$

Subject to

$$B_{t+1} + C_t^T + p_t C_t^N \ge Y_t^T + p_t Y_t^N + (1+r)B_t$$

$$B_{t+1} \ge -\kappa \left(Y_t^T + p_t Y_t^N \right)$$

Household Problem: FOC

Let Λ_t and μ_t be the multipliers associated with budget and collateral constraints. The first-order conditions are:

► Euler equation for bonds:

$$\Lambda_{t}\left[1-\frac{\mu_{t}}{\mu_{t}}\right] = \beta(1+r)\mathbb{E}_{t}^{j}\Lambda_{t+1}$$

Marginal utility of tradable and nontradable consumption:

$$p_{t} = \frac{1 - \omega}{\omega} \left(\frac{C_{t}^{N}}{C_{t}^{T}} \right)^{-\left(\frac{1}{\eta}\right)}$$

Budget and collateral constraint:

$$B_{t+1} + C_t^T + p_t C_t^N = Y_t^T + \frac{p_t}{r} Y_t^N + (1+r)B_t$$
$$B_{t+1} \ge -\kappa \left(Y_t^T + \frac{p_t}{r} Y_t^N \right)$$

Household Problem: FOC

Let Λ_t and μ_t be the multipliers associated with budget and collateral constraints. The first-order conditions are:

► Euler equation for bonds:

$$\Lambda_{t}\left[1-\frac{\mu_{t}}{\mu_{t}}\right] = \beta(1+r)\mathbb{E}_{t}^{j}\Lambda_{t+1}$$

Marginal utility of tradable and nontradable consumption:

$$p_{t} = \frac{1 - \omega}{\omega} \left(\frac{C_{t}^{N}}{C_{t}^{T}} \right)^{-\left(\frac{1}{\eta}\right)}$$

Budget and collateral constraint:

$$B_{t+1} + C_t^T + p_t C_t^N = Y_t^T + p_t Y_t^N + (1+r)B_t$$

$$B_{t+1} \ge -\kappa \left(Y_t^T + p_t Y_t^N\right)$$
 Notice something weird here?

The Model #8

Endowments

- ► Households receive stochastic endowments of tradable, Y_t^T , and non-tradable, Y_t^N , income
- ► Endowment shocks are the only source of uncertainty in this model

Equilibrium

A decentralized competitive equilibrium is given by a set of allocations C_t^T , C_t^N , B_{t+1} , a vector of beliefs \mathcal{B}_t , and a pair of prices r, p_t , such that households maximize their utility, all the constraints are satisfied, and the market for bonds and goods clear

- Market clearing condition:

$$C_t^N = Y_t^N$$

- Equilibrium price:

$$p_t = \frac{1 - \omega}{\omega} \left(\frac{C_t^T}{Y_t^N} \right)^{\frac{1}{\eta}}$$

-Borrowing Constraint:

$$B_{t+1} \ge -\kappa \left(Y_t^T + \frac{1 - \omega}{\omega} \left(\frac{C_t^T}{Y_t^N} \right)^{\frac{1}{\eta}} Y_t^N \right)$$

10

The Social Planner

Constrained Social Planner

$$\begin{split} &V(\mathcal{B}_t, B_t, Y_t) = \max_{C_t, B_{t+1}} U(C_t(C_t^T, Y_t^N)) + \beta \mathbb{E}_t \left[V(\mathcal{B}_{t+1}, B_{t+1}, Y_{t+1}) \right] \\ &\text{Subject to} \\ &B_{t+1} = B_t (1+r) + Y_t^T - C_t^T \\ &B_{t+1} \geq -\kappa \left(1 + \frac{1-\omega}{\omega} \left(\frac{Y_t^N}{C_t^T} \right)^{-\frac{1}{\eta}} \left(\frac{Y_t^N}{Y_t^T} \right) \right) \end{split}$$

Introduction The Model The Social Planner Quantitative Analysis

12

Constrained Social Planner: FOC

$$\begin{split} \lambda_t^{sp} \left[1 - \mu_t^{sp} \Psi_t \right] &= u_T(t) \\ \lambda_t^{sp} \left[1 - \mu_t^{sp} \Psi_t \right] &= \beta (1 + r) E_t \lambda_{t+1}^{sp} \\ \mu_t^{sp} &\geq 0 \\ \mu_t^{sp} (b_{t+1} + \kappa ((\frac{1 - \omega}{\omega}) (\frac{c_t^T}{y_t^N})^{\eta + 1} y^N + y^T)) &= 0 \end{split}$$

where
$$\Psi_t \equiv \begin{bmatrix} \frac{\partial BC_t}{\partial C_t^T} \\ \frac{\partial C_t^T}{\partial C_t^T} \end{bmatrix} = \kappa (\frac{\rho_t^N c_t^N}{c_t^T}) (1 + \eta) > 0$$

How does the Borrowing constraint change when I change C^{T} ?

Decentralized Equilibrium vs. Constrained Efficient S.P

The Social Planner valuates wealth according to:

$$\lambda_t^{sp} \left[1 - \mu_t^{sp} \Psi_t \right] = u_T(t)$$

While households:

$$\Lambda_t \left[1 - \mu_t \right] = u_T(t)$$

Since HH's cannot internalize the equilibrium effects of their consumption behavior over the B.C, they undervalue wealth.

Decentralized Equilibrium vs. Constrained Efficient S.P

The Social Planner valuates wealth according to:

$$\lambda_t^{sp} \left[1 - \mu_t^{sp} \Psi_t \right] = u_T(t)$$

While households:

$$\Lambda_t \left[1 - \frac{\mu_t}{\mu_t} \right] = \beta (1 + r) \mathbb{E}_t^j \Lambda_{t+1}$$

Since HH's cannot internalize the equilibrium effects of their consumption behavior over the B.C, they undervalue wealth.

Innefficient Allocations

Suppose the constraint is not binding, i.e. $\mu_t = 0$. The Euler equation in the decentralized equilibrium is:

$$\Lambda_t = \beta(1+r)\mathbb{E}_t^j\Lambda_{t+1}$$

While for the social planner:

$$\lambda_t^{sp} = \beta(1+r) \mathbb{E} \left[u_T(t+1) / \left[1 - \mu_{t+1}^{sp} \Psi_{t+1} \right] \right]$$

If the constraint is expected to bind in the future, the decentrilized equilibrium is not constrained efficient.

Innefficient Allocations

Suppose the constraint is not binding, i.e. $\mu_t = 0$. The Euler equation in the decentralized equilibrium is:

$$\Lambda_t = \boldsymbol{\beta}(1+r)\mathbb{E}_t^j\Lambda_{t+1}$$

While for the social planner:

$$\lambda_t^{sp} = \beta(1+r) \mathbb{E} \left[u_T(t+1) / \left[1 - \mu_{t+1}^{sp} \Psi_{t+1} \right] \right]$$

If the constraint is expected to bind in the future, the decentrilized equilibrium is not constrained efficient.

Quantitative Analysis

18