Title of My Paper

Aeiau Zzzz 1 Bauiu C. Yyyy 1

Abstract

Describe **briefly** the computational problem you tackled, the approach you explored, the analyses you performed, and the results you obtained. Point out advantages of your approach compared to prior approaches (if any).

1. Introduction

Problem before solution: Begin by describing a (computational) **problem** and why the problem is **important**. If previous research has explored plausible solutions to solve the problem, then point out how these approaches may be lacking. Then briefly **motivate** why a new approach (the approach you explore in this paper) is worth exploring. Don't go into too much detail yet how it works – that will be left for Section 3).

1.1. Research contributions

Describe clearly and concisely what your paper **uniquely** contributes to the research community, i.e., that has never been done before.

2. Related Work

Describe previous approaches (in somewhat greater detail than the introduction) to tackling the problem. Pick any citation style you prefer and use it consistently (here's a random citation (Mitchell, 1980)). Explain how previous work may be lacking in certain ways, and use your critical review of prior work to further motivate your research.

3. Proposed Method

Describe the computational approach – based obviously on neural networks – that you took to tackle the problem.

CS525 Special Topics Course Final Project, Worcester Polytechnic Institute. Copyright 2017 by the author(s).

4. Experiment

Describe the computational experiments you conducted to validate the approach you took.

5. Results

Describe the results of the experiments, including their immediate implications (e.g., "the result suggests that technique A performs better than technique B"). If your work is purely theoretical, then this section (as well as the previous section) might be replaced with mathematical proofs.

6. Discussion

Describe limitations of your work as well as furtherranging implications (e.g., "our work suggests that doing XYZ in general may be a useful approach to...").

7. Conclusions and Future Work

Briefly summarize the key findings your paper and point out interesting directions for future inquiry.

References

Mitchell, T. M. The need for biases in learning generalizations. Technical report, Computer Science Department, Rutgers University, New Brunswick, MA, 1980.

¹Worcester Polytechnic Institute. Correspondence to: Cieua Vvvvv <c.vvvvv@wpi.edu>.