Definition 1. Monoidal comonad

A monoidal comonad on some monoidal category C is a triple $\langle \mathcal{F}, \epsilon, \delta \rangle$, where \mathcal{F} is a monoidal endofunctor and $\epsilon : \mathcal{F} \Rightarrow Id_{\mathcal{C}}$ (counit) and $\epsilon : \mathcal{F} \Rightarrow \mathcal{F}^2$ (comultiplication), such that the following diagrams commute:

ϕ

Definition 2. Biclosed monoidal category

Let C be a monoidal category. Biclosed monoidal category is a monoidal category with the following additional data:

- 1. Bifunctors $_ \circ _ , _ \multimap _ : \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C};$
- 2. Natural isomorphism $\mathbf{curry}_{A,B,C} : Hom(A \otimes B, C) \cong (B, A \multimap C);$
- 3. Natural isomorphism $\mathbf{curry}'_{A,B,C} : Hom(A \otimes B, C) \cong (A, C \multimap B);$
- 4. For each $A, B \in Ob_{\mathcal{C}}$, there are exist arrows $ev_{A,B} : A \otimes (A \Rightarrow B) \to B$ and $ev_{A,B}' : (B \Leftarrow A) \otimes A \to B$, such that for all $f : A \otimes C \to B$:
 - (a) $\Lambda_l \circ (id_A \otimes \mathbf{curry}(f)) = f;$
 - (b) $\Lambda_r \circ (\mathbf{curry}'(f) \otimes id_A) = f$

Definition 3. Let F be endofunctor and $A \in Ob\mathcal{C}$, then a coalgebra of F is a tuple $\langle A, \theta \rangle$, where $\theta : A \to FA$.

Given coalgebras $\langle A, \theta \rangle$ and $\langle A, \psi \rangle$, a homomorphism is a morphism $f: A \to B$, s.t. the diagram below commutes:

that is, $Ff \circ \theta = \psi \circ f$

Definition 4. Subexponential model structure

Let $\Sigma = \langle I, \leq, W, C, E \rangle$ be a subexponential signature and \mathcal{C} be a biclosed monoidal category, then a subexponential model structure is $\langle \mathcal{C}, \{\mathcal{F}_s\}_{s\in I} \rangle$ with the following additional data:

- for all $s \in I$, \mathcal{F}_s is a monoidal comonad;
- if $s \in W$, then for all $A \in Ob(\mathcal{C})$, there exists a morphism $w_{As} : F_s A \to 1$;
- if $s \in C$, then for all $A \in Ob(C)$, there exists morphisms $w_{Al} : F_sA \otimes A \otimes F_sA \to F_sA \otimes B$ and $w_{Ar}: F_sA \otimes A \otimes F_sA \to B \otimes F_sA$;
- if $s \in E$, then for all $A \in Ob(\mathcal{C})$, there is an isomorpism, $e_A : F_sA \otimes B \cong B \otimes F_sA$;
- if $s_1 \in W$, $s_2 \in I$ and $s_1 \leq s_2$, then there is a morphism $w_{As_2} : F_{s_2}A \to \mathbb{1}$ for all $A \in Ob(\mathcal{C})$ and ditto for E and C;
- Let $\bigotimes_{s\in J,i=0}^n F_s A$, where $J\subset I$, and $s'\in I$, s.t. $s\geq s'$ for all $s\in I'$; Then there exists morphism a morphism $\theta_{\bigotimes_{s\in J,i=1}^n F_{sj}A_i}:\bigotimes_{s\in J,i=0}^n F_s A\to F_{s'}(\bigotimes_{s\in J,i=0}^n F_s A)$, such that $\langle \bigotimes_{s \in L_i=1}^n F_{sj} A_i, \theta_{\bigotimes_{s \in L_i=1}^n F_{sj} A_i} \rangle$ is a coalgebra on F_s .

Definition 5. Let $\langle \mathcal{C}, \{\mathcal{F}_s\}_{s\in I} \rangle$ be a subexponential model structure for subexponential signature $\Sigma = \langle I, \leq, W, C, E \rangle$. Let $v: Tp \to Ob(\mathcal{C})$ be a valuation map. Then the interpretation function [.] is defined as follows:

- (1) [1] = 1
- $\begin{array}{ll}
 (2) & \llbracket A \backslash B \rrbracket = \llbracket A \rrbracket \multimap \llbracket B \rrbracket \\
 (3) & \llbracket A / B \rrbracket = \llbracket A \rrbracket \multimap \llbracket B \rrbracket
 \end{array}$
- $(4) \quad \llbracket A \bullet B \rrbracket = \llbracket A \rrbracket \otimes \llbracket B \rrbracket$
- (5) $[\![!_s A]\!] = F_s [\![A]\!]$

Theorem 1. The following statements are equivalent:

- $SMLC_{\Sigma} + (cut) \vdash \Gamma \Rightarrow A$
- $SMLC_{\Sigma} \vdash \Gamma \Rightarrow A$
- $\exists f, f : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$

Proof.

- $(1) \Rightarrow (2)$: cut elimination.
- $(2) \Rightarrow (3)$: Soundness:

$$id_A:A\to A$$

$$\frac{f:\Gamma\to A \qquad g:\Delta\otimes B\otimes\Theta\to C}{g\circ (id_\Delta\otimes (ev_{A,B_l}\circ (f\otimes id_{A\multimap B}))\otimes id_\Theta):\Delta\otimes (\Gamma\otimes A\multimap B)\otimes\Theta\to C}$$

$$\frac{f:A\otimes\Pi\to B}{\Lambda_l(f):\Pi\to A\multimap B}$$

$$\frac{f:\Gamma\to A \qquad g:\Delta\otimes B\otimes\Theta\to C}{g\circ (id_\Delta\otimes (ev_{A,B_I}\circ (id_{B\circ\!-A}\otimes f))\otimes id_\Theta):\Delta\otimes (B\circ\!-A\otimes\Gamma)\otimes\Theta\to C}$$

$$\frac{f:\Pi \otimes A \to B}{\Lambda_r(f):\Pi \to B \circ - A}$$

$$\frac{f:\Gamma \otimes A \otimes B \otimes \Delta \to C}{f\circ (\alpha_{\Gamma,A,B} \otimes id_{\Delta}):\Gamma \otimes (A \otimes B) \otimes \Delta \to C}$$

$$\frac{f:\Gamma \to A}{f\otimes g:\Gamma \otimes \Delta \to A \otimes B}$$

$$\frac{f:\Gamma \to A}{f\circ (id_{\Gamma} \otimes \pi_i id_{\Delta}):\Gamma \otimes (A_1 \times A_2) \otimes \Delta \to B}$$

$$\frac{f:\Gamma \to A}{f\circ (id_{\Gamma} \otimes \pi_i id_{\Delta}):\Gamma \otimes (A_1 \times A_2) \otimes \Delta \to B}$$

$$\frac{f:\Gamma \to A}{\langle f,g \rangle:\Gamma \to A \times B}$$

$$\frac{f:\Gamma \to A}{\langle f,g \rangle:\Gamma \to A \times B}$$

$$\frac{f:\Gamma \otimes A \otimes \Delta \to C}{id_{\Gamma} \otimes [f,g] \otimes id_{\Delta}:\Gamma \otimes (A+B) \otimes \Delta \to C}$$

$$\frac{id_1:1 \to 1}{id_1:1 \to 1}$$

$$\frac{f:\Gamma \otimes \Delta \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \otimes \Delta \to B}{f\circ (id_{\Gamma} \otimes \delta_s^A \otimes id_{\Delta}):\Gamma \otimes F_{s_n} A_n \to B}$$

$$\frac{f:\Gamma_{s_1} A_1 \otimes \cdots \otimes F_{s_n} A_n \to B}{F_s(f):F_s(F_{s_1} A_1 \otimes \cdots \otimes F_{s_n} A_n) \to F_s B}$$

$$\overline{F_s(f)} \circ \theta_{\otimes_{s=J,i=1}^n F_{s_j} A_i:F_{s_1} A_1 \otimes \cdots \otimes F_{s_n} A_n \to F_s B}$$

$$\frac{f:\Gamma \otimes \Delta \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes \Delta \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes id_{\Delta}):(\Gamma \otimes 1) \otimes \Delta \to A}$$

$$\frac{f:\Gamma \otimes A \to A}{f\circ (\rho_{\Gamma} \otimes$$

• Completeness:

Definition 6.

1 Concrete model