

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

Instituto de Ciencias Básicas e Ingeniería

Centro de Investigación en Tecnologías de Información y Sistemas

Licenciatura en Sistemas Computacionales 9º 2

Reporte de la Tarea # 1 "Simulación de procesos con variación de parámetros"

Inteligencia Artificial

Alumno: Adalberto Vargas Moreno

Resumen: En este trabajo se muestran los resultados de en ejemplo de aplicación del algoritmo C-Means difuso.

Catedrático: Dr. Virgilio López Morales

Algoritmo C-Means Difuso

1. Introducción

El presente algoritmo es similar a C-Meanas estándar sin embargo, es diferente debido a que a sus valores se les dá un rango de pertenencia (porcentual), esto es debido a su naturaleza de *lógica difusa*.

2. METODOLOGÍA DE DESARROLLO DE LA SOLUCIÓN.

SISTEMA 1. Se aplican las formulas y procedimiento del algoritmo como sigue:

Planteamiento del problema:

Posteriormente se inicializa la matriz U y se inicializa centride de manera aleatoria. Nuestra fusificación es de 2

$$C_1 = (1,7)$$

$$C_2 = (10,10)$$

$$C_3 = (10,10)$$

$$C_4 = (10,10)$$

$$C_5 = (10,10)$$

$$C_7 = (10,10)$$

$$C_8 = (10,10)$$

Se calcula el valor del centroide C1

$$C_{1} = \frac{\bigcup_{11}^{2} \cdot X_{1} + \bigcup_{12}^{2} \cdot X_{2} + \bigcup_{13}^{2} \cdot X_{3} + \bigcup_{14}^{2} \cdot X_{4} + \bigcup_{15}^{2} \cdot X_{5}}{\bigcup_{11}^{2} + \bigcup_{12}^{2} + \bigcup_{15}^{2} + \bigcup_{14}^{2} + \bigcup_{15}^{2}}$$

$$C_{1} = \frac{(0.4)^{2}(1.4) + (0.4)^{2}(2.6) + (0.6)^{2}(3.4) + (0.3)^{2}(6.10) + (0.4)^{2}(8.4)}{0.81 + 0.49 + 0.36 + 0.09 + 0.16}$$

$$C_{1} = \frac{(0.81, 3.24) + (0.48, 1.94) + (1.081144) + (0.54, 0.4) + (1.28, 1.44)}{0.81 + 0.49 + 0.36 + 0.09 + 0.16}$$

$$C_{1} = \frac{(4.69, 9.96)}{1.91} = (2.4555, 5.2147)$$

$$1.91$$

Se calcula el valor del centroide C2

$$(2^{2} - \frac{1}{2^{2} \cdot x_{1}} + \frac{1}{2^{2} \cdot x_{2}} + \frac{1}{2^{2} \cdot x_{3}} + \frac{1}{2^{2} \cdot x_{4}} + \frac{1}{2^{2} \cdot x_{5}}$$

$$- \frac{1}{2^{2} \cdot (x_{1}x_{1})^{2} + (x_{2}x_{1}^{2} + 1)^{2} \cdot (x_{1}x_{1}^{2} + 1)^{2} \cdot ($$

Cálculo de distancias

$$dij^{2} = d(1 \times j) = ((1 \times - \times j)^{2} + ((1 y - x j y))^{2}$$

$$dij = dii = ((1 y + x j x) - 1)^{2} + ((1 y + x j y))^{2} = 3.5940$$

$$dii = ((1 y + x j x) - 1)^{2} + ((1 y + x j x))^{2} = 0.8241$$

$$dii = ((1 y + x j x) - 3)^{2} + ((1 y + x j x))^{2} = 35.4626$$

$$dii = ((1 y + x j x) - 3)^{2} + ((1 y + x j x))^{2} = 35.4626$$

$$dii = ((1 y + x j x) - 3)^{2} + ((1 y + x j x))^{2} = 35.4626$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x j x))^{2} = 43.0700$$

$$dii = ((1 y + x j x))^{2} + ((1 y + x$$

Cálculo de valor objetivo

Se hace el cálculo de matriz U, se refrescan sus valores

Recalcula de U
$$\sum_{k=1}^{c} \left(\frac{dij}{dkj} \right)^{2/(m-1)}$$

Se calcula cada valor de la matriz U para los del centroide C1

$$U_{11} = \frac{\left(\frac{3.5940}{3.5940}\right)^{2} + \left(\frac{3.5940}{43.4304}\right)^{2}}{\left(\frac{0.8242}{0.8242}\right)^{2}} = 0.4983$$

$$U_{12} = \frac{\left(\frac{0.8242}{0.8242}\right)^{2} + \left(\frac{0.8242}{21.3449}\right)^{2}}{\left(\frac{1.3320}{1.3320}\right)^{2}} = 0.99601$$

$$U_{13} = \frac{\left(\frac{1.3320}{1.3320}\right)^{2} + \left(\frac{1.3320}{18.2188}\right)^{2}}{\left(\frac{1.3320}{1.3320}\right)^{2}} = 0.99601$$

$$\frac{35.4626}{35.4626}^{2} + \left(\frac{35.4628}{2.4626}\right)^{2} = 0.0048$$

$$\frac{35.4626}{35.4626}^{2} + \left(\frac{35.4628}{2.4626}\right)^{2} = 0.0048$$

$$\frac{45.0700}{45.0700}^{2} + \left(\frac{45.0700}{41.6158}\right)^{2}$$

Se calculan los valores de U para los valores con centroide C2

Nuevos valores de matriz U

Se recualcula el centroide C1

Calcub de centraides viella
$$\frac{1}{2}$$
 (1,4) + (0.9985)²(216) + (0.4960)²(3,4) + (0.0048)²(6,10) + (0.004)⁴(8,9)
0.2483 + 0.997 + 0.9920 + 0.00002 + 0.0001

C₁ = (0.2483,0.9431) + (1.9946,3968) + (0.0001,0.0001) + (0.0008,0.0009)

2.23742

C₁ = $\frac{5.2192}{2.1374}$ (0.9492) = (2.3317,4.8915)

Se recalcula el valor del centroide C2

$$(2 - (0.0005)^{2}(1,4)+(0.0005)^{2}(2,6)+(0.0040)^{2}(3,4)+(0.945)^{2}(6,0)+(0.4896)^{2}(8,9)$$

$$0.00004+0.000002+0.00001+0.9904+0.9793$$

$$(2 - (0.00004,0.0001)+(0.000004,0.00001)+(0.00003,0.00004)+(5.9424,9.994)+(7.8344,88131)$$

$$1.969752$$

$$(2 - (13.7772,18.7176)$$

$$1.9697$$

$$(6.9946,9.5028)$$

Se hace un cálculo de coste (nuestro valor objetivo)

Colors de coste

$$d_{11} = (2.3317 - 1)^{2} - (48915 - 4)^{2} = 0.4813$$

$$d_{12} = (2.3327 - 2)^{2} - (4.8915 - 6)^{2} = -11181$$

$$d_{13} = (2.3327 - 3)^{2} - (4.8915 - 4)^{2} = .0.3495$$

$$d_{13} = (2.3327 - 6)^{2} - (4.8915 - 10)^{2} = -12.6417$$

$$d_{14} = (2.3327 - 6)^{2} - (4.8915 - 9)^{2} = 15.1385$$

$$d_{15} = (2.3321 - 8)^{2} - (4.8915 - 9)^{2} = 15.1385$$

$$d_{15} = (2.3321 - 8)^{2} - (4.8028 - 4)^{2} = 2.664$$

$$d_{21} = (6.9946 - 2)^{2} - (9.5028 - 4)^{2} = -14.3239$$

$$d_{23} = (6.9946 - 3)^{2} - (9.5028 - 4)^{2} = -14.3239$$

$$d_{24} = (6.9946 - 6)^{2} - (9.5028 - 9)^{2} = 0.7580$$

$$d_{25} = (6.9946 - 8)^{2} - (9.5028 - 9)^{2} = 0.7580$$

$$d_{25} = (6.9946 - 8)^{2} - (9.5028 - 9)^{2} = 0.7580$$

Se tabulan los resultados de las coorenadas y los grupos los que pertenecen (por ser difuso hay pertenencia para ambos grupos, pero en diferentes niveles)

	perference a.	
Kenn Hogai	Centrolaes	Centrolde 2
Outos:	04493	0.0065
	X, (1,41) 0.9485	0.6015
	X3 (3,4) 0.4960	0.0040
14.	X4 (6,10) 0.0048	09482
	xs (8,9) 0.0104	0.9896

3. Ejemplo de aplicación.

a) El algoritmo por su naturaleza puede ser empleado en la clasifiación de objetos de los que se necesite algo más que un si o un no; esto es otorgar rangos, por ejemplo el caso pertenencia de una membresía

Figura 4. Grado de pertenencia de plaguicida para C = 00,8 Ug/l.

• • • •

4. Conclusiones generales.

Como se pudo ver C-Means difuso nos puede optimizar resultados, además de clasificar elementos de una forma más flexible y no binaria, A diferencia de C-Means estándar, éste algoritmo es ligeramente más laborioso.

Referencias

1) Notas de clase.