

EECE5698 Parallel Processing for Data Analytics

Lecture 9: Regression and Statistical Learning

Road Map: What have We Learned So far?

Coming up:

Statistics & Machine Learning

Regression, Classification Regularization, Cross Validation

Convex Optimization

Descent Methods
Gradient Descent
Newton Method

Parallel Processing

map reduce reduceByKey join ...

Regression

- lacksquare Prediction: If $x=\frac{1.2m}{70K}\frac{1.2m}{20ys}$ then $y=\frac{1}{2}$
- ☐ Correlation: If Weight 1

then $y \uparrow \uparrow$

Regression: Terminology

- \square $x_i \in \mathbb{R}^d$: features, independent variables, covariates, inputs,...
- \square $y_i \in \mathbb{R}$: label, dependent variable, outcome, response, output,...

Regression: Noiseless Setting

$$y_i = f(x_i),$$

Regression: Noisy setting

where ε_i are independent and identically distributed (i.i.d), and

$$\mathbb{E}[\varepsilon_i] = 0 \qquad \mathbb{E}[\varepsilon_i^2] = \sigma^2 < \infty$$

Note: This implies that $y_i, i = 1, \ldots, n$, are **independent** random variables,

where

$$\mathbb{E}[y_i] = f(x_i)$$

$$\mathbb{E}[y_i] = f(x_i)$$
 $\operatorname{Var}[y_i] = \mathbb{E}\left[\left(y_i - \mathbb{E}[y_i]\right)^2\right] = \sigma^2$

Regression vs. Classification

 $oldsymbol{\square}$ Standard regression: $y_i \in \mathbb{R}$

Regression vs. Classification

- $lue{}$ Standard regression: $y_i \in \mathbb{R}$
- \Box Classification: y_i are **discrete/categorical**, e.g.:
 - \Box $y_i \in \{-1, +1\}$ (binary)
 - $y_i \in \{\text{red}, \text{blue}, \text{green}\}$

How would you solve this problem?

...you need to start making some assumptions on f!

Example 1

Example 2

Example 2

Assumption: Continuity!

DASSUMPTION: Function $f: \mathbb{R}^d \to \mathbb{R}$ is continuous

If
$$\lim_{k\to\infty} x_k = x$$
 then $\lim_{k\to\infty} f(x_k) = f(x)$

 $oldsymbol{\square}$ Values of f at points near x tell you something about f(x)!

K-Nearest Neighbor

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

where $N_k(x)$ is the set of the k nearest neighbors of x

K-Nearest Neighbor

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

where $N_k(x)$ is the set of the k nearest neighbors of x

K-Nearest Neighbor

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

where $N_k(x)$ is the set of the k nearest neighbors of x

- $\square |N_k(x)| = k$
- lacksquare For all $i \in N_k(x)$ and $j \notin N_k(x)$

$$||x - x_i|| \le ||x - x_j||$$

How big should k be?

How big should k be?

How big should k be?

$$y_i=f(x_i)+arepsilon_i, \qquad i=1,\dots,n.$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$.

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

$$\mathbb{E}\left[\left(y-\hat{f}(x)\right)^{2}\right] = \mathbb{E}\left[\left(y-\mathbb{E}[y]\right)^{2}\right] + \left(\mathbb{E}[y]-\mathbb{E}[\hat{f}(x)]\right)^{2} + \mathbb{E}\left[\left(\mathbb{E}[\hat{f}(x)]-\hat{f}(x)\right)^{2}\right]$$

$$y_i=f(x_i)+arepsilon_i, \qquad i=1,\dots,n.$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$.

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

$$\mathbb{E}\left[\left(y-\hat{f}(x)\right)^{2}\right] = \mathbb{E}\left[\left(y-\mathbb{E}[y]\right)^{2}\right] + \left(\mathbb{E}[y]-\mathbb{E}[\hat{f}(x)]\right)^{2} + \mathbb{E}\left[\left(\mathbb{E}[\hat{f}(x)]-\hat{f}(x)\right)^{2}\right]$$
 inherent noise

$$y_i=f(x_i)+arepsilon_i, \qquad i=1,\dots,n.$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$.

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

$$\mathbb{E}\left[\left(y-\hat{f}(x)\right)^2\right] = \mathbb{E}\left[\left(y-\mathbb{E}[y]\right)^2\right] + \left(\mathbb{E}[y]-\mathbb{E}[\hat{f}(x)]\right)^2 + \mathbb{E}\left[\left(\mathbb{E}[\hat{f}(x)]-\hat{f}(x)\right)^2\right]$$
 estimator bias

$$y_i=f(x_i)+arepsilon_i, \qquad i=1,\ldots,n.$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$.

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

$$\mathbb{E}\left[\left(y-\hat{f}(x)\right)^2\right] = \mathbb{E}\left[\left(y-\mathbb{E}[y]\right)^2\right] + \left(\mathbb{E}[y]-\mathbb{E}[\hat{f}(x)]\right)^2 + \mathbb{E}\left[\left(\mathbb{E}[\hat{f}(x)]-\hat{f}(x)\right)^2\right]$$
 estimator variance

$$y_i=f(x_i)+arepsilon_i, \qquad i=1,\ldots,n.$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$.

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

$$\mathbb{E}\left[\left(y-\hat{f}(x)\right)^{2}\right] = \mathbb{E}\left[\left(y-\mathbb{E}[y]\right)^{2}\right] + \left(\mathbb{E}[y]-\mathbb{E}[\hat{f}(x)]\right)^{2} + \mathbb{E}\left[\left(\mathbb{E}[\hat{f}(x)]-\hat{f}(x)\right)^{2}\right]$$

$$= \sigma^{2} + \left(f(x)-\frac{1}{k}\sum_{i\in N_{k}(x)}f(x_{i})\right)^{2} + \frac{\sigma^{2}}{k}$$

$$\mathsf{EPE:} \ \mathbb{E}\left[\left(y-\hat{f}(x)\right)^2\right] \quad = \quad \quad \sigma^2 \quad \quad + \quad \left(f(x)-\frac{1}{k}\sum_{i\in N_k(x)}f(x_i)\right)^2 \quad + \quad \quad \frac{\sigma^2}{k}$$

estimator bias

estimator variance

$$\mathsf{EPE:} \ \mathbb{E}\left[\left(y-\hat{f}(x)\right)^2\right] \quad = \quad \quad \sigma^2 \quad \quad + \quad \left(f(x)-\frac{1}{k}\sum_{i\in N_k(x)}f(x_i)\right)^2 \quad + \quad \quad \frac{\sigma^2}{k}$$

estimator bias

estimator variance

kNN for Classification

- □ Labels in discrete set *C*
- Majority vote:

$$\hat{f}(x) = \underset{c \in C}{\operatorname{arg\,max}} \left| \{ i \in N_k(x) : y_i = c \} \right|$$

15-NN

kNN for Classification

- ☐ Labels in discrete set *C*
- ☐ Majority vote:

$$\hat{f}(x) = \underset{c \in C}{\operatorname{arg\,max}} \left| \{ i \in N_k(x) : y_i = c \} \right|$$

1-NN

Why k-NN?

- ☐ Almost no statistical assumption other than continuity (though smoothness helps)
- □ Very simple to code!
- ☐ Works well in many cases!

Implementation via Map-Reduce

Implementation in Practice

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

- ☐ Use specifically designed **data structure** for nearest-neighbor queries
 - □Cover trees
 - □ Locality Sensitive Hashing
- □Cost per query:

$$O(k \cdot \operatorname{poly} \log(n))$$

Why **not** k-NN?

... the curse of dimensionality

Curse of Dimensionality

- $\hfill \square$ Suppose that d=1 , and that you have a dataset of n -samples, where $x_i \in [0,1], \quad i=1,\ldots,n.$
- $lue{}$ Suppose that points are distributed u.a.r. over [0,1]:

Curse of Dimensionality

As you increase the number of samples $\,n\,$, k-NN becomes less biased!

If you increase k slowly enough with n, e.g., $k = \log n$, $k = \sqrt{n}$ both bias and variance will go to zero!

Eliminating Bias & Variance as k Increases with n

Let
$$k = \sqrt{n}$$
.

Then, for all
$$i \in N_k(x)$$
, $|x_i - x| \lesssim \frac{k}{n} = \frac{1}{\sqrt{n}} \to 0$ as $n \to \infty$.

Hence, for all $i \in N_k(x)$, $x_i \to x$, so by continuity $\hat{f}(x) \to f(x)$, so bias $(\hat{f}(x) - f(x))^2 \to 0$ as $n \to \infty$.

On the other hand, as $k=\sqrt{n}$, variance $\frac{\sigma^2}{k} \to 0$ as $n \to \infty$.

 \Box What if d=2 ?

$$x_i \in [0,1]^2, \quad i = 1, \dots, n.$$

$$\Box$$
 What if $d=3$?

$$x_i \in [0,1]^3, \quad i = 1, \dots, n.$$

 $lue{}$ For arbitrary d

$$x_i \in [0,1]^d, \quad i = 1, \dots, n.$$

$$n = 100, d = 100$$

$$\frac{1}{\sqrt[d]{n}} \approx 0.954992586021436$$

- ☐ Extremely low density
- ☐ Points are lie on opposite boundaries!

□ Curse of Dimensionality: To maintain an unbiased estimate with k-NN, the size of the dataset needs to grow exponentially with the dimension size!!!

Summary

- lacktriangledown To regress f from data, we *need* to make *some* assumption on f ...
- ☐ The assumption of *continuity* led us to k-NN...
- □ k-NN suffers from curse of dimensionality...
- □ Now what?

Add more assumptions!!!!

Regression

$$y_i = f(x_i) + \varepsilon_i, \qquad i = 1, \dots, n.$$

where ε_i are independent and identically distributed (i.i.d), and

$$\mathbb{E}[\varepsilon_i] = 0 \qquad \mathbb{E}[\varepsilon_i^2] = \sigma^2 < \infty$$

Linear Regression

$$y_i \approx f(x_i) = \beta^{\top} x_i = \sum_{k=1}^d \beta_k x_{ik}$$

Assumption: There exists $\beta \in \mathbb{R}^d$ such that:

$$y_i = \langle \beta, x_i \rangle + \varepsilon_i, \quad i = 1, \dots, n$$

where ε_i are i.i.d., $\mathbb{E}[\varepsilon_i] = 0$, $\mathbb{E}[\varepsilon_i^2] = \sigma^2 < \infty$

Affine Can Be Written as Linear

Affine Can Be Written as Linear

$$f(x_i)=eta^ op x_i+eta_0$$
 , where $eta\in\mathbb{R}^d$, $eta_0\in\mathbb{R}$
$$={eta'}^ op x_i', \qquad ext{where } eta'=(eta,eta_0)\in\mathbb{R}^{d+1}$$

$$x_i'=(x_i,1.0)\in\mathbb{R}^{d+1}$$

Operations that Preserve Linearity

- lacksquare Affine in \mathbb{R}^d is linear in \mathbb{R}^{d+1}
- ☐ Linear transforms on features (i.e., rescaling):
 - E.g., from kilograms to pounds
- □ Affine transforms in features (i.e., rescaling and shifting):
 - E.g., from F° to C°.

Binary Features

Binary Features

$$\mathbb{E}[y - y'] = \beta^{\top} x - \beta^{\top} x' = 0.5$$

Categorial Features: Binarization

Categories (cities) = k

Categorial Features: Binarization

Categories (cities) = k

- Categorical features are very common: locations, genes, words in document
- ☐ Binarization leads to feature vectors that are **sparse**: most elements are 0!

Numeric Features May Be Categorical!!!!!

Mon: 1

Tue: 2

. . .

Sun: 7

Rule of thumb: if 2 does not mean "2 times" 1, treat it as categorical

Least Squares Estimator (LSE)

$$y_i \approx f(x_i) = \beta^{\top} x_i = \sum_{k=1}^d \beta_k x_{ik}$$

Least Squares Estimator (LSE)

Reason #1: If Noise is Gaussian, LSE is an MLE!

$$y_i=eta^{ op}x_i+arepsilon_i,\quad i=1,\ldots,n$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$

 $oldsymbol{\square}$ Suppose, in addition, that $arepsilon_i \sim N(0,\sigma^2)$

Then, the negative log-likelihood of the labels is:

$$-\log(P(y|\beta, X)) = -\log\left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-(y_i - \beta^{\top} x_i)^2/2\sigma^2}\right)$$
$$= \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + C$$

Reason #1: If Noise is Gaussian, LSE is an MLE!

$$y_i=eta^ op x_i+arepsilon_i,\quad i=1,\dots,n$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$

☐ Suppose, in addition, that

What if
$$\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$
 ?

Then, LSE is a Maximum Likelihood Estimator:

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2 = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} - \log (P(y|\beta, X))$$
$$= \underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} P(y|\beta, X)$$

Additional Properties of LSE

$$y_i = \beta^T x_i + \varepsilon_i, \quad i = 1, \dots, n$$

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2$$

$$= (X^T X)^{-1} X^T y$$

- $oldsymbol{\square}$ Expectation: $\mathbb{E}[\hat{\beta}] = \beta$, i.e., LSE is **unbiased**.
- \square Covariance: $\operatorname{Cov}(\hat{\beta}) = \mathbb{E}[\hat{\beta} \beta)(\hat{\beta} \beta)^{\top}] = \sigma^2(X^{\top}X)^{-1} \succeq 0$
- $f \square$ Estimator (and covariance) is **undefined** if $\operatorname{rank}(X) < d$!

Expected Prediction Error (EPE):

$$y_i = \beta^{\top} x_i + \varepsilon_i, \quad i = 1, \dots, n$$

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2$$

$$= (X^T X)^{-1} X^T y$$

Estimate: $\hat{y}_0 = \hat{\beta}^\top x_0$

Expected Prediction Error:

$$x_0=$$
 $y_0=1.8$ $y_0=1.$

$$\mathbb{E}[(y_0 - \hat{y}_0)^2] = \mathbb{E}[(y_0 - \beta^\top x_0)^2] + \mathbb{E}[(\beta^\top x_0 - \hat{\beta}^\top x_0)^2]$$

$$= \sigma^2 + x_0^\top \mathbb{E}[(\beta - \hat{\beta})(\beta - \hat{\beta})^\top] x_0$$

$$= \sigma^2 + x_0^\top \mathsf{Cov}(\hat{\beta}) x_0$$

inherent noise variance in direction x_0

A Few Observations on Covariance

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\arg\min} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2$$

$$\mathsf{Cov}(\hat{\beta}) = \mathbb{E}[\hat{\beta} - \beta)(\hat{\beta} - \beta)^{\top}] = \sigma^2(X^{\top}X)^{-1} \succeq 0$$

EPE:
$$\mathbb{E}[(y_0 - \hat{y}_0)^2] = \sigma^2 + x_0^{\top} \text{Cov}(\hat{\beta}) x_0$$

- ☐ 1-dimension: covariance = variance
- $oxedsymbol{\Box}$ Variance in a specific direction: $\operatorname{Var}[\langle \hat{eta}, x \rangle] = x^T \operatorname{Cov}(\hat{eta}) x \geq 0$
- $f \Box$ Eigenvalues of ${\tt Cov}(\hat{eta})$ summarize variability in all directions.

Why LSE if Noise is Non-Gaussian?

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2$$
$$= (X^T X)^{-1} X^T y$$

- lacksquare An estimator \hat{eta} of eta is called **unbiased** if $\mathbb{E}[\hat{eta}] = eta$, for all $eta \in \mathbb{R}^d$.
- figspace An estimator \hat{eta} of eta is called **linear** if $\hat{eta} = D(X)y$

Gauss-Markov Theorem

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\arg \min} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2$$
$$= (X^T X)^{-1} X^T y$$

☐ Theorem: LSE is a Best Linear Unbiased Estimator (BLUE):

$$\operatorname{cov}(\hat{\beta}) \preceq \operatorname{cov}(\hat{\beta}')$$
 for any $\hat{\beta}'$ s.t. $\hat{\beta}' = D(X)y$ and $\mathbb{E}[\hat{\beta}] = \beta$

Proof

☐ Theorem: LSE is a Best Linear Unbiased Estimator (BLUE):

$$\operatorname{cov}(\hat{\beta}) \preceq \operatorname{cov}(\hat{\beta}')$$
 for any $\hat{\beta}'$ s.t. $\hat{\beta}' = D(X)y$ and $\mathbb{E}[\hat{\beta}] = \beta$

Let
$$\Delta = D - (X^{\top}X)^{-1}X^{\top}$$
. Then:

$$\mathbb{E}[\hat{\beta}'] = \mathbb{E}[Dy]$$

$$= \mathbb{E}\left[\left((X^{\top}X)^{-1}X^{\top} + \Delta\right)(X\beta + \varepsilon)\right]$$

$$= \left((X^{\top}X)^{-1}X^{\top} + \Delta\right)X\beta + \left((X^{\top}X)^{-1}X^{\top} + \Delta\right)\mathbb{E}[\varepsilon]$$

$$= \left((X^{\top}X)^{-1}X^{\top} + \Delta\right)X\beta$$

$$= (X^{\top}X)^{-1}X^{\top}X\beta + \Delta X\beta$$

$$= \beta + \Delta X\beta.$$

Hence, $\hat{\beta}'$ is unbiased iff $\Delta X = 0$.

Proof (continued)

Theorem: LSE is a Best Linear Unbiased Estimator (BLUE):

$$\operatorname{cov}(\hat{\beta}) \preceq \operatorname{cov}(\hat{\beta}')$$
 for any $\hat{\beta}'$ s.t. $\hat{\beta}' = D(X)y$ and $\mathbb{E}[\hat{\beta}] = \beta$

Let $\Delta = D - (X^{\top}X)^{-1}X^{\top}$. Then β' is unbiased iff $\Delta X = 0$.

$$\begin{split} \mathsf{Cov}(\hat{\beta}') &= \mathsf{Cov}(Dy) \\ &= D\mathsf{Cov}(y)D^T \\ &= \sigma^2 DD^\top \\ &= \sigma^2 \left((X^\top X)^{-1} X^\top + \Delta \right) \left(X(X^\top X)^{-1} + \Delta^\top \right) \\ &= \sigma^2 \left((X^\top X)^{-1} X^\top X(X^\top X)^{-1} + (X^\top X)^{-1} X^\top \Delta^\top + \Delta X(X^\top X)^{-1} + \Delta \Delta^\top \right) \\ &= \sigma^2 \left((X^\top X)^{-1} X^\top X(X^\top X)^{-1} + (X^\top X)^{-1} X^\top \Delta^\top + \Delta X(X^\top X)^{-1} + \Delta \Delta^\top \right) \\ &= \sigma^2 (X^\top X)^{-1} + \sigma^2 (X^\top X)^{-1} (\Delta X)^\top + \sigma^2 \Delta X(X^\top X)^{-1} + \sigma^2 \Delta \Delta^\top \\ &= \sigma^2 (X^\top X)^{-1} + \sigma^2 \Delta \Delta^\top \\ &= \mathsf{Cov}(\hat{\beta}) + \sigma^2 \Delta \Delta^\top \succeq \mathsf{Cov}(\hat{\beta}) \end{split}$$

Implications

☐ Theorem: LSE is a Best Linear Unbiased Estimator (BLUE):

$$\operatorname{cov}(\hat{\beta}) \preceq \operatorname{cov}(\hat{\beta}')$$
 for any $\hat{\beta}'$ s.t. $\hat{\beta}' = D(X)y$ and $\mathbb{E}[\hat{\beta}] = \beta$

EPE:
$$\mathbb{E}[(y_0 - \hat{y}_0)^2] = \sigma^2 + x_0^{\top} \text{Cov}(\hat{\beta}) x_0$$

In other words, LSE achieves the smallest EPE among all unbiased linear estimators, in all possible directions!

What Happened to the Curse?

What Happened to the Curse?

EPE:
$$\mathbb{E}[(y_0 - \hat{y}_0)^2] = \sigma^2 + x_0^\top \mathsf{Cov}(\hat{\beta}) x_0 = \sigma^2 + \sigma^2 x_0^\top (X^\top X)^{-1} x_0$$

Suppose that $x_i \in \mathbb{R}^d, i = 0, 1, \dots, n$, are sampled from some distribution with mean 0 and covariance Σ .

$$\mathbb{E}[x] = 0, \mathbb{E}[xx^{\top}] = \Sigma$$

Then,

$$\frac{1}{n}X^{\top}X = \frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}^{\top}
ightarrow \Sigma$$
 w.p. 1

by the law of large numbers.

Hence:

$$\begin{split} \mathbb{E}[\mathbf{EPE}] &= \sigma^2 + \sigma^2 \mathbb{E} \left[x_0^\top \left(X^\top X \right)^{-1} x_0 \right] \\ &= \sigma^2 + \sigma^2 \mathbb{E} \left[\operatorname{trace} \left(\left(X^\top X \right)^{-1} x_0 x_0^\top \right) \right] \\ &= \sigma^2 + \sigma^2 \frac{1}{n} \mathbb{E} \left[\operatorname{trace} \left(\left(\frac{1}{n} X^\top X \right)^{-1} x_0 x_0^\top \right) \right] \\ &\approx \sigma^2 + \sigma^2 \frac{1}{n} \mathbb{E} \left[\operatorname{trace} \left(\Sigma^{-1} x_0 x_0^\top \right) \right] \\ &= \sigma^2 + \sigma^2 \frac{1}{n} \operatorname{trace} (\Sigma^{-1} \mathbb{E}[x_0^- x_0^\top]) \\ &= \sigma^2 + \sigma^2 \frac{1}{n} \operatorname{trace} (\Sigma^{-1} \Sigma) \\ &= \sigma^2 + \sigma^2 \frac{d}{n} \end{split}$$

What Happened to the Curse?

EPE:
$$\mathbb{E}[(y_0 - \hat{y}_0)^2] = \sigma^2 + x_0^\top \mathsf{Cov}(\hat{\beta}) x_0 = \sigma^2 + \sigma^2 x_0^\top (X^\top X)^{-1} x_0$$

Suppose that $x_i \in \mathbb{R}^d, i = 0, 1, \dots, n$, are sampled from some distribution with mean 0 and covariance Σ .

$$\mathbb{E}[x] = 0, \mathbb{E}[xx^{\top}] = \Sigma$$

Then,

$$\frac{1}{n}X^{\top}X = \frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}^{\top}
ightarrow \Sigma$$
 w.p. 1

by the law of large numbers.

Number of samples:
$$n \geq \frac{d\sigma^2}{\epsilon}$$

$$\mathbb{E}[\mathrm{EPE}] \approx \sigma^2 + \sigma^2 \frac{d}{n}$$

$$k-NN: n \ge \left(\frac{1}{\epsilon}\right)^d$$

Another Way of Seeing This...

