Реляционная модель данных. Часть 2

Дж.Ульман Основы систем баз данных Глава 4

Реляционное исчисление

• Реляционное исчисление на кортежах

• Реляционное исчисление на доменах

В основе лежат понятия математической логики – исчисление предикатов

Реляционное исчисление на кортежах

Выражения реляционного исчисления на кортежах имеют вид:

$$\{t \mid \varphi(t)\}$$

где t — переменная кортеж, а ϕ — формула, построенная из атомов и совокупности операторов

Атомы формул ф могут быть 3 типов

- 1. R(s), где R имя отношения, а s переменная-кортеж. Этот атом означает, что s есть кортеж в отношении R
- 2. $\mathbf{s}[i] \; \theta \; \mathbf{u}[j]$, где $\mathbf{s} \; \mathbf{u} \; \mathbf{u} \; \mathsf{являются} \; \mathsf{переменными-кортежами},$ а θ арифметический оператор сравнения (<, >, = и т.д.) Этот атом означает, что i – $\omega \check{u}$ компонент \mathbf{s} находится в отношении $\theta \; \mathsf{c} \; j$ – $\omega \mathsf{m}$ компонентом \mathbf{u}
- 3. $s[i] \theta \alpha$, где α константа

Реляционное исчисление на кортежах

- В выражениях РИК переменные-кортежи могут быть свободными или связанными.
- ◆ Переменная связана, если в формуле ей предшествует квантор ∃ или ♥.

Формулы

- 1. Каждый атом есть формула. Все вхождения переменныхкортежей в атоме являются свободными в этой формуле.
- 2. Если φ₁ и φ₂ формулы, то φ₁> φ₂, φ₁ ∨ φ₂, ¬ φ₁ также формулы. Переменные-кортежи являются свободными или связанными в построенных формулах точно так же какими он были в исходных формулах.
- 3. Если ϕ формула, то $\exists s (\phi)$ также формула
- 4. Если ϕ формула, то \forall s (ϕ) также формула
- 5. В формулах могут быть скобки
- 6. Ничто иное не является формулой

Реляционное исчисление на кортежах

• Выражение РИК есть выражение вида

$$\{t \mid \varphi(t)\},\$$

где t единственная переменная-кортеж в формуле ф.

Примеры выражений РИК для отношений

Если $\{t \mid R(t)\}$ — множество кортежей отношения R, а $\{t \mid S(t)\}$ — множество кортежей отношения S, то

- Объединение R U S выражается как { t | R (t) ∨ S (t) }
- Разность R \ S выражается как $\{ t \mid R(t) > \neg S(t) \}$

Ограничение реляционного исчисления

- Ранее определенное РИК может представлять бесконечные отношения.
- Пример { t | ¬R (t)}.
 Означает множество кортежей длины t , но не принадлежащих R .
 Так как НЕ ВОЗМОЖНО перечислить все такие кортежи (над каким доменом?) рассматривают безопасные выражения { t | φ (t) }.
- Для таких выражений можно продемонстрировать,
 что каждый компонент t, удовлетворяющий φ,
 принадлежит конечному множеству DOM (φ)

Ограничение реляционного исчисления

- DOM(φ) определяется как множество всех символов, которые либо явно упоминаются в φ, либо служат компонентами кортежей отношений упоминаемых в φ.
- Заметим, что DOM(φ) определяется не в зависимости от вида φ, а как функция фактических отношений, которые должны подставляться вместо переменных отношений в φ
- Так как все отношения конечны, то и DOM(φ) всегда конечно.

```
Пример Пусть \varphi (t) имеет вид t[1]=a \wedge R(t), где R(A,B) – бинарное отношение, тогда DOM(\varphi) есть унарное отношение {a} U \pi_{_{A}}(R) U \pi_{_{R}}(R)
```

Безопасные выражения РИК

Выражение РИК $\{t/\phi(t)\}$ называется безопасным если удовлетворяются следующие условия:

- 1. Всякий раз, когда t удовлетворяет ϕ , каждый компонент t есть элемент $DOM(\phi)$
- 2. Для любого подвыражения ϕ вида $\exists u(\omega(u))$ каждый компонент u принадлежит $DOM(\omega)$, если u удовлетворяет ω
- Если для любого подвыражения φ вида ∀u(ω(u)) каждый компонент u не принадлежит DOM(ω), то u удовлетворяет ω

Условия 2,3 позволяют устанавливать истинность формул вида $\exists u(\omega(u))$ или $\forall u(\omega(u))$, рассматривая только u, составленные из принадлежащих $DOM(\omega)$ символов

Примеры

- 1. Любая формула $\exists \ u(R(u) \lor ...)$ удовлетворяет условию 2
- 2. Любая формула ∀u (¬ R(u) ∨ ...) удовлетворяет условию 3

Безопасные выражения РИК

- Хотя условие 3 может показаться не интуитивным, заметим, что
 ∀u(ω(u)) логически эквивалента ¬∃u(¬ω(u))
- Последняя не является безопасной т. и т. т. когда существует некоторое u₀, для которого истинно ¬ω(u₀) и u₀ не принадлежит домену формулы ¬ω.
- Так как домены ω и ¬ω совпадают, то условие 3 устанавливает, что формула ∀u(ω(u)) безопасна, когда безопасна формула ¬∃u(¬ω (u))

<u>Теорема.</u> Если <u>Е</u> – выражение реляционной алгебры, то существует эквивалентное ему безопасное выражение в реляционном исчислении с переменными-кортежами.

Доказательство.

Индукция по числу вхождений операторов в Е.

<u>Базис.</u> Нуль операторов.

- Тогда E либо постоянное выражение $\{t_1, t_2, ..., t_n\}$, либо переменная R, обозначающая отношение.
- В последнем случае E эквивалентно $\{t \mid R(t)\}$, которое безопасно.
- В первом случае Е эквивалентно $\{t \mid t=t_1 \lor t=t_2 \lor \dots \lor t=t_n \}$, где $t=t_i$ краткая запись $t[1]=t_i[1]>t[2]=t_i[2]>\dots>t[n]=t_i[n]$

Индукция. Предположим, что E имеет не менее одного оператора и теорема истинна для выражений с числом вхождений операторов меньшим, чем в E.

Случай 1.
$$E = E_1 \cup E_2$$
.

Пусть \mathbf{E}_1 эквивалентно безопасному выражению $\{t|\psi_1(t)\}$

Пусть \mathbf{E}_2 эквивалентно безопасному выражению $\{t|\psi_2(t)\}$

Тогда для Е строим эквивалентное выражение

$$\{t|\psi_1(t) \vee \psi_2(t)\}.$$

Если t удовлетворяет $\psi_1(t) \vee \psi_2(t)$, то каждый компонент t принадлежит $DOM(\psi_1)$ или $DOM(\psi_2)$.

Так как $DOM(\psi_1(t) \lor \psi_2(t)) = DOM(\psi_1(t)) \cup DOM(\psi_2(t)),_1$ то Е эквивалентно безопасному выражению $\{t \mid \psi_1(t) \lor t\}$

Случай 2.
$$E = E_1 - E_2$$
.

Пусть E_1 эквивалентно безопасному выражению $\{t|\psi_1(t)\}$

Пусть E_2 эквивалентно безопасному выражению $\{t|\psi_2(t)\}$

Тогда для Е строим эквивалентное выражение

$$\{t | \psi_1(t) > \neg \psi_2(t)\}.$$

Так как DOM $(\psi_1(t) > \neg \psi_2(t)) = DOM(\psi_1(t)) U DOM(\psi_2(t)),$

то Е эквивалентно безопасному выражению

$$\{t | \psi_1(t) > \neg \psi_2(t)\}$$

```
<u>Случай 3</u>. E = E_1 \times E_2.
```

Пусть E_1 – отношение арности k и эквивалентно безопасному выражению $\{t|\psi_1(t)\}$

Пусть E_2 – отношение арности s и эквивалентно безопасному выражению $\{t|\psi_2(t)\}$

Тогда для Е эквивалентно выражению

$$\psi(t) = \{t^{(k+s)} | \exists u \exists v (\psi_1(u) > \psi_2(v) \& t[1] = u[1] \& \dots \& t[k] = u[k] \\ \& t[k+1] = v[1] \& \dots \& t[k+s] = v[s]) \}.$$

DOM $(\psi(t))$ =DOM $(\psi_1(t))$ U DOM $(\psi_2(t))$.

Выражение $\psi(t)$ безопасно, так как t[i] ограничено значениями u[i], если $i \le k$, и значениями v[i], если $k < i \le k + s$

Случай 4.
$$E = \pi_{i1, i2, ..., ik} (E_1)$$
.

Пусть E_1 – отношение арности n и эквивалентно безопасному выражению $\{t|\psi_1(t)\}$

Тогда для Е эквивалентно выражению

$$\psi(t) = \{t^{(k)}| \ \exists \ \mathbf{u} \ (\ \psi_1(\mathbf{u}) \ \& \ t[1] = \mathbf{u}[i_I] \ \& \ \dots \ \& \ t[k] = \mathbf{u}[i_k] \) \ \},$$
 где $k \leq n$

DOM $(\psi(t))=DOM(\psi_1(t))$.

Выражение $\psi(t)$ безопасно, так как t[i] ограничено значениями $u[i_j]$, если $j \leq n$

Случай 5.
$$E = \mathbf{6}_{F}(E_{1})$$
.

Пусть E_1 – эквивалентно безопасному выражению $\{t|\psi_1(t)\}$

Тогда для Е эквивалентно выражению

$$\psi(t) = \{t | \psi_1(t) \& F' \},$$
где F' есть F , (1)

в которой каждый операнд обозначающий компонент i заменяется на t[i].

Можно DOM ($\psi(t)$) = DOM($\psi_1(t)$). Выражение (1) безопасно, так как каждый компонент t ограничивается символами, которые есть в DOM($\psi_1(t)$).

Реляционное исчисление на доменах

Выражения реляционного исчисления на доменах имеют вид:

$$\{ x_1, x_2, \ldots, x_k | \psi(x_1, x_2, \ldots, x_k) \}$$

а ψ — формула, построенная из атомов и совокупности операторов, а $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ переменные на доменах отношений, входящих в формулу

Атомы формул у могут быть

- 1. $R(x_1, x_2, ..., x_k)$, где R-k- арное отношение и каждое x_i есть константа или переменная на домене.
- 2. $\mathbf{x} \theta \mathbf{y}$, где x и y константы или переменные на доменах, а θ арифметический оператор сравнения (<, >, = и т.д.)
- $R(x_1, x_2, ..., x_k)$ означает, что значения x_i , которые являются переменными должны быть выбраны так, чтобы $x_1, x_2, ..., x_k$ был кортежем в отношении R

Реляционное исчисление на доменах

Выражение реляционного исчисления с переменными на доменах

$$\{\mathbf{x}_1,\,\mathbf{x}_2,\,\ldots,\,\mathbf{x}_k|\psi(\mathbf{x}_1,\,\mathbf{x}_2,\,\ldots,\,\mathbf{x}_k)\}$$
 является безопасным, когда

- 1. из истинности ψ ($\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$) следует, что \mathbf{x}_i принадлежит $\mathrm{DOM}(\psi)$
- 2. если $\exists u (\omega (u)) подформула \psi$, то из истинности $\omega(u)$ следует, что u принадлежит $DOM(\omega)$
- если ∀u (ω (u)) подформула ψ, то из истинности ¬ω(u) следует, что u принадлежит DOM(ω)

Редукция РИК к РИД

Для каждого выражения $\{t | \phi(t)\}$ РИК выражение РИД строится следующим образом.

Если t имеет арность k, то

- ♦введем k новых переменных на доменах t_1, t_2, \dots, t_k
- **⋄**и заменим $\{t | \varphi(t)\}$ на $\{t_1, t_2, \ldots, t_k | \varphi'(t_1, t_2, \ldots, t_k)\}$, где
- 2) ф есть ф, в которой
- 3) каждый атом R(t) заменен атомом $R(t_1, t_2, \dots, t_k)$,
- 4) каждое свободное вхождение t[i] переменной t_i