Working with Spanning Tree Algorithms

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Three Common Graph Problems

Establishing precedence

Getting from point A to point B

Covering all nodes in a graph

Three Common Graph Problems

Establishing precedence

Topological sort

Getting from point A to point B

Shortest path algorithms

Covering all nodes in a graph

Minimum spanning tree algorithms

Three Common Graph Operations

Topological sort

Computation graphs in neural networks

Shortest path

Deliveries from warehouses to customers

Minimum spanning tree

Planning railway lines

Three Common Graph Operations

Topological sort

Computation graphs in neural networks

Shortest path

Deliveries from warehouses to customers Minimum spanning tree

Planning railway lines

Overview

Spanning tree algorithms seek to find the shortest way to cover all nodes

Such algorithms are used when start and end nodes do not matter

Prim's algorithm works for connected graphs

Kruskal's algorithm works even for disconnected graphs

Graph (V,E)

A set of vertices (V) and edges (E)

An Undirected Graph

 $V = \{A, B, C, D, E, F, G, H\}$

Tree

A connected graph with no cycles

Connected Graph with no Cycle

Such a graph is called a tree

Forest: Set of Disjoint Trees

Trees are great for depicting

hierarchical relationships

Forest: Set of Disjoint Trees

Removing F - G divides the original graph into two disjoint graphs

Such a set of disjoint trees is called a forest

Spanning Tree of a Graph

Any tree that includes all of the vertices of the graph

(Given a graph with N vertices, any spanning tree has N-1 edges)

An Undirected Graph

 $V = \{A, B, C, D, E, F, G, H\}$

A Spanning Tree

Eliminating edges A - B, A - D, E - G yields a spanning tree

Another Spanning Tree of Graph

Eliminating edges A - C, A - B, B - F yields a different spanning tree

Not a Spanning Tree

This is not a spanning tree, because A - B - D - A forms a cycle

Not a Spanning Tree

This is not a spanning tree, because node H is not included in the tree

Minimum Spanning Tree of a Graph

Spanning tree with the lowest weight

Two Minimum Spanning Tree Algorithms

Prim's Algorithm

Works with connected graphs

Kruskal's Algorithm

Works even with disconnected graphs

Two Minimum Spanning Tree Algorithms

Prim's Algorithm

Works with connected graphs

Kruskal's Algorithm

Works even with disconnected graphs

Prim's algorithm is a **greedy** algorithm to find a minimal spanning tree for a **weighted** undirected graph

Start anywhere, pick a node at random

Start anywhere, pick a node at random

Find the lowest weight edge out of that node

Lowest weighted edge connecting an unvisited node

Add that edge to the result

Now find the lowest weight edge out of either node

Now find the lowest weight edge out of either node

Lowest weighted edge connecting an unvisited node

Once again, find lowest weight edge out of result set

Once again, find lowest weight edge out of result set

Note that the edge B - E does not even count

(E has already been visited)

Once again, find lowest weight edge out of result set

Add that edge to result set

All vertices in spanning tree, stop

Minimum spanning tree found

Sum weights of edges in result set = 11

Prim's algorithm finds a local optimum minimal spanning tree - it is a greedy algorithm

Algorithm considers edges in contiguous order

Benefit: Intermediate result is a tree as well

Drawback: Does not work for disconnected graphs

Implementation heavily drawn from Dijkstra's algorithm

Distance table, but with edge weight as the distance

Requires priority queue to find edge with least cost

Queue Data Structure Running Time

Binary Heap

O(E In(V))

Array

 $O(E + V^2)$

Demo

Implement Prim's algorithm for a minimal spanning tree

A Sample Undirected Graph

Minimal Spanning Tree Starting at Node 1

Minimal Spanning Tree Starting at Node 3

Two Minimum Spanning Tree Algorithms

Prim's Algorithm

Works with connected graphs

Kruskal's Algorithm

Works even with disconnected graphs

Two Minimum Spanning Tree Algorithms

Prim's Algorithm

Works with connected graphs

Kruskal's Algorithm

Works even with disconnected graphs

Kruskal's algorithm is a **greedy** algorithm to find a minimal spanning tree for a **weighted undirected** graph

The graph can be unconnected

Sort edges

Increasing order of weights

Can use priority queue

Find shortest edge

Not currently in result

Dequeue from priority queue

Stop

When N-1 edges in result

N = number of vertices in graph

Initialize empty result

Empty set of edges

At end will hold minimum spanning tree

Reject if cycle introduced

Else add to result set

This is a greedy step

Sort edges

Increasing order of weights

Can use priority queue

Edge	Weight

Priority Queue

Edge	Weight

Priority Queue

Edge	Weight
A - B	2

Priority Queue

Edge	Weight
A - B	2

Priority Queue

Edge	Weight
A - B	2
B - E	5

Priority Queue

Edge	Weight
A - B	2
B - E	5

Priority Queue

Edge	Weight
A - B	2
B - E	5
C - E	6

Priority Queue

Edge	Weight
A - B	2
B - E	5
C - E	6

Priority Queue

Edge	Weight
A - B	2
A - C	3
B - E	5
C - E	6

Priority Queue

Edge	Weight
A - B	2
A - C	3
B - E	5
C - E	6

Priority Queue

Edge	Weight
A - B	2
B - D	2
A - C	3
B - E	5
C - E	6

Priority Queue

Edge	Weight
A - B	2
B - D	2
A - C	3
B - E	5
C - E	6

Priority Queue

Edge	Weight
A - B	2
B - D	2
A - C	3
E - D	4
B - E	5
C - E	6

Priority Queue

Edge	Weight
A - B	2
B - D	2
A - C	3
E - D	4
B - E	5
C - E	6

Priority Queue

Sort edges

Increasing order of weights

Can use priority queue

Initialize empty result

Empty set of edges

At end will hold minimum spanning tree

Priority Queue

Edge	Weight
A - B	2
B - D	2
A - C	3
E - D	4
B - E	5
C - E	6

Result

Edge	Weight

Sort edges

Increasing order of weights

Can use priority queue

Find shortest edge

Not currently in result

Dequeue from priority queue

Initialize empty result

Empty set of edges

At end will hold minimum spanning tree

Edge	Weight
A - B	2
B - D	2
A - C	3
E - D	4
B - E	5
C - E	6

Result

Edge	Weight

Edge	Weight
A - B	2
B - D	2
A - C	3
E - D	4
B - E	5
C - E	6

Result

Edge	Weight

Edge	Weight
B - D	2
A - C	3
E - D	4
B - E	5
C - E	6

Result

Edge	Weight
A - B	2

Edge	Weight
B - D	2
A - C	3
E - D	4
B - E	5
C - E	6

Result

Edge	Weight
A - B	2

Edge	Weight
A - C	3
E - D	4
B - E	5
C - E	6

Result

Edge	Weight
A - B	2
B - D	2

Edge	Weight
A - C	3
E - D	4
B - E	5
C - E	6

Result

Edge	Weight
A - B	2
B - D	2

Priority Queue

Edge	Weight
E - D	4
B - E	5
C - E	6

Result

Edge	Weight
A - B	2
B - D	2
A - C	3

Priority Queue

Edge	Weight
E - D	4
B - E	5
C - E	6

Result

Edge	Weight
A - B	2
B - D	2
A - C	3

Edge	Weight
B - E	5
C - E	6

Result

Edge	Weight
A - B	2
B - D	2
A - C	3
D-E	4

Graph has 5 nodes, result has 4 edges

Sort edges

Increasing order of weights

Can use priority queue

Find shortest edge

Not currently in result

Dequeue from priority queue

Stop

When N-1 edges in result

N = number of vertices in graph

Initialize empty result

Empty set of edges

At end will hold minimum spanning tree

Reject if cycle introduced

Else add to result set

This is a greedy step

Edge	Weight
B - E	5
C - E	6

Result

Edge	Weight
A - B	2
B - D	2
A - C	3
D - E	4

Reject any edge in the minimal spanning tree which causes a cycle

Sort edges

Increasing order of weights

Can use priority queue

Find shortest edge

Not currently in result

Dequeue from priority queue

Stop

When N-1 edges in result

N = number of vertices in graph

Initialize empty result

Empty set of edges

At end will hold minimum spanning tree

Reject if cycle introduced

Else add to result set

This is a greedy step

Minimum spanning tree found, weight = 11

Algorithm does not consider edges in contiguous order

Benefit: Works for disconnected graphs too

Drawback: Intermediate result is not necessarily a tree

Sorting the edges dominates the running time

O(E In(E))

Demo

Implement Kruskal's algorithm for a minimal spanning tree

A Sample Undirected Graph

A Sample Undirected Graph

Summary

Spanning tree algorithms seek to find the shortest way to cover all nodes

Such algorithms are used when start and end nodes do not matter

Prim's algorithm works for connected graphs

Kruskal's algorithm works even for disconnected graphs