

Florian Meyer

Machine Learning in Engineering (MLE)

4 November 2020

TUHH

Motivation

- Wachsende Popularität drahtloser Netzwerke in industriellen Anwendungen
- Energie-, rechenzeit- und speicherbeschränkte Geräte
- ⇒ Viele ML-Algorithmen nicht geeignet

Verteilte Koordinationsprobleme (Beispiel)

Verteilte Koordinationsprobleme (Beispiel)

Zeitgleich gesendete Pakete kollidieren

Verteilte Koordinationsprobleme (Beispiel)

Bestärkendes Lernen (Reinforcement Learning)

- Lösung durch bestärkendes Lernen
- Jeder Knoten ...
 - ... probiert verschiedene Sendezeitpunkte aus
 - ... erhält Bestrafung falls Kollision
 - ... erhält Belohnung falls keine Kollision
- ⇒ Knoten lernen im Betrieb koordiniertes Senden

■ (Bsp.: Q-Learning, komprimierte NN, Entscheidungsbäume)

