CLAIMS:

1. A device for generating radiation by means of excimer discharge, equipped with an at least partly UV-transparent discharge vessel (1), the discharge space (2) of which is filled with a gas filling, with means for igniting and maintaining an excimer discharge (4, 5) in the discharge space, and with a coating (3) comprising a light-emitting compound of the following composition:

 $(Ca_{1-x-2y}Sr_x)Li_2Si_{1-z}Ge_zO_4:Ln_yM_y,$ wherein Ln is a cation selected from the group Ce^{3+} , Pr^{3+} , Sm^{3+} , Eu^{3+} , Gd^{3+} , Tb^{3+} , Dy^{3+} , Er^{3+} , Tm^{3+} and Yb^{3+} , and M is a cation selected from the group Na^+ , K^+ and Rb^+ , with $0 \le x \le 0.1$, $0.001 \le y \le 0.2$ and $0 \le z \le 1$.

2. A device as claimed in claim 1, characterized in that the coating (3) is equipped with a light-emitting compound of the following composition:

$$Ca_{1-2y}Li_2SiO_4:Pr_yNa_y \text{ with } 0.001 \le y \le 0.2.$$

15

10

5

- 3. A use of a device as claimed in claim 1 or 2 for disinfection purposes.
- 4. A use of a device as claimed in claim 1 or 2 for disinfecting water, air, or surfaces.

20

5. A light-emitting compound of the following composition:

(Ca_{1-x-2y}Sr_x)Li₂Si_{1-z}Ge_zO₄:Ln_yM_y,

wherein Ln is a cation selected from the group Ce^{3+} , Pr^{3+} , Sm^{3+} , Eu^{3+} , Gd^{3+} , Tb^{3+} , Dy^{3+} , Er^{3+} , Tm^{3+} and Yb^{3+} ,

and M is a cation selected from the group Na^+ , K^+ and Rb^+ , with $0 \le x \le 0.1$, $0.001 \le y \le 0.2$ and $0 \le z \le 1$.

6. A light-emitting compound of the following composition: $Ca_{1-2y}Li_2SiO_4:Pr_yNa_y$ with $0.001 \le y \le 0.2$.