SEPTEMBER 16, 2008

The Probability of Runs of K Consecutive Heads in N Coin Tosses

Problem

What's the probability that at least one run of k consecutive heads occurs in n coin tosses?

Method One

Definitions:

 $R{k, n}$

The fact that at least one run of k consecutive heads occurs in n coin tosses.

~E

The fact that event E does not occur.

A&B

The fact that event A and event B occur simultaneously.

P(E)

The number of permutations that cause event E to occur.

H(k, n)

The number of head-or-tail permutations for n coins that contain at

least one run of k consecutive heads; the same as $P(R\{k, n\})$.

Theorem: $P(A\&B) + P(A\&\sim B) = P(A)$

Analysis:

- If n = k, $R\{k, n\}$ occurs in exactly one case, so H(k, n) = 1.
- If n < k, $R\{k, n\}$ is impossible, so H(k, n) = 0.
- Otherwise(n > k), H(k, n) permutations can be divided into two groups: $R\{k, n-1\}$ and $\sim R\{k, n-1\}$.
 - 1. $R\{k, n-1\}$ $R\{k, n\}$ follows necessarily. There are 2H(k, n-1)permutations of this kind.
 - 2. $\sim R\{k, n-1\}$ $R\{k, n\}$ occurs only if the last k-1 of the first n-1 toss are all heads and the nth toss is head. Then the kth last toss of the first n-1 tosses must be tail, otherwise the last k of the first n-1 tosses are all heads, which contradicts $\sim R\{k, n-1\}$. Hence, the last k+1 tosses are fixed as $[T, H, H, \cdots, H]$.

Define S as the fact that the last k+1 tosses of n tosses are $[T, H, H, \cdots, H]$. The condition now becomes $\sim R\{k, n-1\}\&S$, which is equivalent to $\sim R\{k, n-k-1\}\&S$. Thus the permutation number is:

$$P(\sim R\{k, n - k - 1\} \& S)$$
= $P(S) - P(R\{k, n - k - 1\} \& S)$
= $2^{n-k-1} - H(k, n - k - 1)$.

Thus,

- $H(k, n) = 2H(k, n 1) + 2^{n-k-1} H(k, n k 1)$, for n > k;
- H(k, n) = 1, for n = k;
- H(k, n) = 0, for n < k.

Method Two

A cool method using probability distribution vector and probability distribution transition matrix. The original post is in Chinese. I am trying to translate it into English below. The author even proved the property used in Method Three along the line; however, this part is beyond my knowledge.

The states during the process of coin tossing is defined as follows:

- $S_t(0 \le t < k)$: no runs of k consecutive heads have occurred, and t heads have accumulated in the last run.
- S_k : at least one run of k consecutive heads has occurred.

Lemmas:

- The initial state is S_0 .
- If current state is $S_t(0 \le t < k)$, next state has equal opportunity, i.e., $\frac{1}{2}$, to be S_{t+1} or S_0 .
- Once state becomes S_k , it will never change again.

Definition:

 d_i

The probability distribution vector after the ith toss is a column vector of length k+1, whose hth element is the probability that current

state is S_{h-1} .

Initially, $d_0 = [1, 0, 0, \dots, 0]^T$; $d_{i+1} = M \times d_i$, wherein M is the probability distribution transition matrix.

M can be reduced from lemmas above:

$$M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0 & \cdots & 0 & 0\\ 0 & \frac{1}{2} & 0 & \cdots & 0 & 0\\ 0 & 0 & \frac{1}{2} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & 0 & 0\\ 0 & 0 & 0 & \cdots & \frac{1}{2} & 1 \end{bmatrix}$$

Thus, the last element of d_n is the probability desired, denoted as P:

$$P = [0, 0, \dots, 0, 1] \times d_n = [0, 0, \dots, 0, 1] \times M^n \times d_0.$$

Method Three

Use the fact "the probability that no runs of k consecutive tails will occur in n coin tosses is given by $F_{n+2}^{(k)}/2^n$, where $F_l^{(k)}$ is a Fibonacci k-step number" from Wolfram MathWorld.

math Tweet

Powered by Letterpress.