REGRESSION MODEL CAR PRICE PREDICTION WEB APP

Steven L Truong

Friday, 16/04/2021

Predicted y

INTRODUCTION

❖ MOTIVATION:

- Buy and sell used cars is always a big decision.
- Create the tools to predict the as closest car's price as possible.

INTRODUCTION

❖ MOTIVATION:

- Buy and sell used cars is always a big decision.
- Create the tools to predict the as closest car's price as possible.

❖ OBJECTIVES:

- Build predictive models using data gathered from the internet.
- Conclude the best model ready for production.

INTRODUCTION

❖ MOTIVATION:

- Buy and sell used cars is always a big decision.
- Create the tools to predict the as closest car's price as possible.

❖ OBJECTIVES:

- Build predictive models using data gathered from the internet.
- Conclude the best model ready for production.

❖ GOALS:

Write the web app and deploy the model to the cloud.

PEPE SPE #CCC).gort1 .gom(-moz-be

//display:block;list-style:none;

Allock: line-height:27px;pedd

*opacity:1; *top:-2px; *left:-5px;

❖ Data source: Scrape from cars.com

❖ Data source:

Scrape from cars.com

❖ Tools:

- BeautifulSoup, Numpy and Pandas
- Matplotlib and Seaborn
- Scikit-learn and XGBoost
- Streamlit and Heroku

block; positi

Data Scraping and Preparation

• Use BeaufulSoup to scrape data from cars.com

splay:inline-bl

block; position: abs

Clean the data to be ready for EDA

Data Scraping and Preparation

- Use BeaufulSoup to scrape data from cars.com
- Clean the data to be ready for EDA

Exploratory Analysis

- Exploratory Data Analysis
- Look at the features' correlations for insights before modeling.

block; position: a

Data Scraping and Preparation

- Use BeaufulSoup to scrape data from cars.com
- Clean the data to be ready for EDA

Exploratory Analysis

- Exploratory Data Analysis
- Look at the features' correlations for insights before modeling.

block; position:

Modeling

- Build baseline models.
- Cross validation and choose the final model.

Or we could say "cars cleaning"

Or we could say "cars cleaning"

- 187,168 raw data points were scraped.
- Clean data set has 122,351 rows and 18 columns

EDA

- Price is positively correlated with Model Year and negatively correlated with Mileage.
- Slightly positively correlated with num_ent_features.
- Not so much for the rest of the features.

EDA

- Price is positively correlated with Model Year.
- There are outliers all over the place.
- Generally speaking, the newer the more expensive car.

Pre features engineered.

Pre features engineered.

- Linear Regression Model:
 - R^2 for test set: 0.290

- Polynomial Regression Model:
 - R^2 for test set: 0.474

Linear Regression Model:

• R^2 for test set: 0.290

- Polynomial Regression Model:
 - R^2 for test set: 0.474

Pre features engineered.

- Random Forest Regressor:
 - R^2 for test set: 0.577

- Gradient Boosted Regressor:
 - R² for test set: 0.605

- Extreme Gradient Boosting (XGBoost):
 - R² for test set: 0.729

Pre features engineered.

- Linear Regression Model:
 - R² for test set: 0.290

- Polynomial Regression Model:
 - R^2 for test set: 0.474

In general, they all underfit

- Random Forest Regressor:
 - R^2 for test set: 0.577

- Gradient Boosted Regressor:
 - R^2 for test set: 0.605

- Extreme Gradient Boosting (XGBoost):
 - R² for test set: 0.729

Work with categorical features!

Work with categorical features!

Intuitively, car's brand (make) determines the product's price, so let's work on that.

Work with categorical features!

- Linear Regression Model:
 - R^2 for test set: 0.505

- Polynomial Regression Model:
 - R^2 for test set: 0.695

- Extreme Gradient Boosting (XGBoost):
 - R^2 for test set: 0.870

Work with categorical features!

- Linear Regression Model:
 - R^2 for test set: 0.505

- Polynomial Regression Model:
 - R^2 for test set: 0.695

- Extreme Gradient Boosting (XGBoost):
 - R² for test set: 0.870

We have better results, can we improve our performance?

Work with categorical features!

Let's dummify the entire dataset!

L1/L2 Regularization

K-Fold Cross-Validation!

- Linear Regression Model:
 - R² for test set: 0.869
 - RMSE = 4787.90
- Lasso Model:
 - R² for test set: 0.866

- Extreme Gradient Boosting (XGBoost):
 - R^2 for test set: 0.920
 - RMSE = 3749.5
- Ridge Model:
 - R^2 for test set: 0.865

2017 Chevrolet Camaro 2SS

44,953 Mileage, Gasoline engine

City MPG 16 – Highway MPG 25

RWD - Engine 6.2L V8 - 8 speed Manual

Linear Regression Model predicts

\$35,235

Extreme Gradient Boosting (XGBoost) predicts

\$35,089

2017 Chevrolet Camaro 2SS

44,953 Mileage, Gasoline engine

City MPG 16 – Highway MPG 25

RWD - Engine 6.2L V8 - 8 speed Manual

Linear Regression Model predicts

Extreme Gradient Boosting (XGBoost) predicts

\$35,235

True value

\$38,395

\$35,893

2018 INFINITY Q60 3.0t LUXE

18, 719 Mileage, Gasoline engine

City MPG 19 – Highway MPG 27

AWD - Engine 3.0 V6 - 7 speed Automatic

Linear Regression Model predicts

\$37,604

Extreme Gradient Boosting (XGBoost) predicts

\$35,689

2018 INFINITY Q60 3.0t LUXE

18, 719 Mileage, Gasoline engine

City MPG 19 – Highway MPG 27

AWD - Engine 3.0 V6 - 7 speed Automatic

Linear Regression Model predicts

\$37,604

Extreme Gradient Boosting (XGBoost) predicts

\$35,689

True value

\$32,500

CONCLUSION

• Linear Regression Model:

- R² for test set: 0.869
- RMSE = 4787.90
- Lasso Model:
 - R² for test set: 0.866

L1/L2 Regularization

K-Fold Cross-Validation!

- Extreme Gradient Boosting (XGBoost):
 - R^2 for test set: 0.920
 - RMSE = 3749.5
- Ridge Model:
 - R² for test set: 0.865

RESIDUALS

- Linear Regression Model:
 - R^2 for train set: 0.871
 - R^2 for validation set: 869
 - RMSE = 4787.90

RESIDUALS

- Extreme Gradient Boosting (XGBoost):
 - R^2 for train set: 0.932
 - R^2 for validation set: 0.920
 - RMSE = 3749.5

ResidualsPlot(ax=<AxesSubplot:title={'center':'Residuals for XGBRegressor Mocc'\

FEATURE IMPORTANCE

- Extreme Gradient Boosting (XGBoost):
 - R^2 for train set: 0.932
 - R^2 for validation set: 0.920
 - RMSE = 3749.5

RECAP

RECAP

Linear Model

0.290 1 cat feature

0.505

L1/L2/5-Fold CV

All cat features

0.869

RECAP

WHAT'S NEXT?

Orignal question?

BUILD THE INTERACTIVE WEB APP AND DEPLOY IT TO THE CLOUD!

BUILD THE INTERACTIVE WEB APP AND DEPLOY IT TO THE CLOUD!

https://car-predictor-regression.herokuapp.com/

BUILD THE INTERACTIVE WEB APP AND DEPLOY IT TO THE CLOUD!

https://car-predictor-regression.herokuapp.com/

THANK YOU

STEVEN L TRUONG

https://github.com/luongtruong77

tqluong77@gmail.com

QUESTIONS?

APPENDIX

APPENDIX

Prediction Error Plot

Documentation on how to use streamlit to build the interactive app: https://streamlit.io/