Air humidity calculation

http://www.cactus2000.de

Constants:

N_L	6.0221415-10 ²³	mol ⁻¹	Avogadro constant	NIST
R	8.31447215	J mol ⁻¹ K ⁻¹	Universal gas constant	NIST
M _{H2O}	18.01534	g mol ⁻¹	molar mass of water	
M_{dry}	28.9644	g mol ⁻¹	molar mass of dry air	

Variables:

C _{H2O}	g m-3	mass concentration of water
[H ₂ O]	cm ⁻³	molecular concentration of water
е	hPa	vapor pressure of water
Р	hPa	pressure
P _{H2O}	hPa	partial pressure of water
q	kg kg ⁻¹	specific humidity (mass mixing ratio in wet air)1
mmv	kg kg-1	mass mixing ratio in dry air ²
${\sf n}_{\sf air}$	mol m ⁻³	air density
RH	%	relative humidity
Т	С	temperature
T_D	С	dew point temperature
XH2O	-	mole fraction, volume mixing ratio of water ³

Vapor pressure of water:

$$\mathbf{e}\!=\!\mathbf{a}_0\!+\!T\!\cdot\!(\mathbf{a}_1\!+\!T\!\cdot\!(\mathbf{a}_2\!+\!T\!\cdot\!(\mathbf{a}_3\!+\!T\!\cdot\!(\mathbf{a}_4\!+\!T\!\cdot\!(\mathbf{a}_5\!+\!T\!\cdot\!\mathbf{a}_6)))))$$

from Lowe, P.R. and J.M. Ficke, 1974: The computation of saturation vapor pressure. Tech. Paper No. 4-74, Environmental Prediction Research Facility, Naval Postgraduate School, Monterey, CA, 27 pp.

	water	ice
\mathbf{a}_0	6.107799961	6.109177956
\mathbf{a}_1	4.436518521.10-1	5.034698970-10-1
\mathbf{a}_2	1.428945805-10-2	1.886013408-10-2
\mathbf{a}_3	2.650648471-10-4	4.176223716.10-4
\mathbf{a}_4	3.031240396-10-6	5.824720280-10-6
\mathbf{a}_5	2.034080948-10-8	4.838803174.10-8
\mathbf{a}_6	6.136820929-10-11	1.838826904.10-10

 $e = min (e_{water}, e_{ice})$,-50 $C \le T \le 100$ C

¹ multiply by 1000 to get 'g kg⁻¹'
2 multiply by 1000 to get 'g kg⁻¹'
3 multiply by 1000 to get 'per mille'

Other equations:

$$\text{Air density:} \quad n_{\text{air}} = \frac{P \cdot 100}{R \cdot (T + 273.15)}$$

Relative humidity:
$$RH = \frac{e(T_D)}{e(T)} \cdot 100 = \frac{P_{H2O}}{e(T)} \cdot 100$$

Volume mixing ratio:
$$x_{\rm H2O} {=} \frac{P_{\rm H2O}}{P}$$

Specific humidity:
$$q\!=\!\frac{x_{_{H2O}}\!\cdot\! M_{_{H2O}}}{x_{_{H2O}}\!\cdot\! M_{_{H2O}}\!+\! (1\!-\!x_{_{H2O}})\!\cdot\! M_{_{dry}}} \ \ \text{,} \ \ q\!=\!\frac{mmv}{1\!+\!mmv}$$

Mass mixing ratio:
$$mmv = \frac{q}{1-q}$$

Mass concentration:
$$c_{\text{H2O}} = x_{\text{H2O}} \cdot n_{\text{air}} \cdot M_{\text{H2O}}$$

$$\label{eq:molecular concentration: H2O} \text{Molecular concentration:} \quad [H_2O] = x_{\text{H2O}} \cdot n_{\text{air}} \cdot N_{\text{A}} \cdot 10^{-6}$$

Cactus2000:

The equations on this sheet are used in the Cactus2000 'Air humidity converter':

http://www.cactus2000.de/uk/unit/masshum.shtml (in English)

http://www.cactus2000.de/de/unit/masshum.shtml (auf deutsch)

http://www.cactus2000.de/fr/unit/masshum.shtml (en français)