Übungsblatt 14 zur Kommutativen Algebra

Aufgabe 1. (2) Ein Gegenbeispiel zu einer Verstärkung des Krullschen Satzes Finde einen noetherschen Ring zusammen mit einem Ideal $\mathfrak{a} \neq (1)$ mit $\bigcap_{n=0}^{\infty} \mathfrak{a}^n \neq (0)$.

Aufgabe 2. (m+2+2) Endlichkeitsaussagen mit dem Kind aller Korrespondenzsätze Sei \mathfrak{p} ein Primideal eines Rings A. Sei $k(\mathfrak{p}) := A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ der Restklassenkörper bei \mathfrak{p} . Sei B eine endliche A-Algebra.

- a) Zeige, dass die Primideale \mathfrak{q} von B mit $A \cap \mathfrak{q} = \mathfrak{p}$ in kanonischer Eins-zu-Eins-Korrespondenz zu den Primidealen von $B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}} \cong B \otimes_A k(\mathfrak{p})$ stehen.
- b) Zeige, dass B nur endlich viele Primideale besitzt, falls A ein Körper ist.
- c) Zeige, dass es nur endlich viele Primideale $\mathfrak q$ wie in a) gibt.

Aufgabe 3. (2+2+m) Dimension des Polynomrings im nicht-noetherschen Fall Sei A ein Ring.

- a) Zeige: $\dim A[X] \ge 1 + \dim A$.
- b) Sei $\mathfrak p$ ein Primideal von A. Die Primideale $\mathfrak q$ von A[X] mit $A \cap \mathfrak q = \mathfrak p$ stehen in Eins-zu-Eins-Korrespondenz zu den Primidealen eines gewissens Rings. Welchem? Welche Dimension hat dieser?
- c) Zeige: $\dim A[X] \leq 1 + 2 \dim A$.

Aufgabe 4. (3) Beispiele für Poincarésche Reihe und Hilbertsches Polynom Berechne die Poincarésche Reihe und das Hilbertsche Polynom des gewichteten K[X,Y]-Moduls $K[X,Y]/(X^2,XY)$ bezüglich $\lambda=\dim_K$.

Aufgabe 5. (1) Dualität zwischen symmetrischer und äußerer Algebra Sei K ein Körper. Sei $S = K[X_1, ..., X_n]$ und sei E die zugehörige äußere Algebra der antikommutativen Polynome, wo $X_iX_i = 0$ und $X_iX_j = -X_jX_i$ gilt. Sei $\lambda = \dim_K$. Zeige: $\lambda(S,t) \cdot \lambda(E,-t) = 1$.

Aufgabe 6. (0) Rationale Binomialkoeffizienten

Wir setzen $\binom{x}{k} := x(x-1)\cdots(x-k+1)/k! \in \mathbb{Q}$ für rationale Zahlen x und natürliche Zahlen k. Solche Binomialkoeffizienten kommen in Taylor-Entwicklungen vieler wichtiger Funktionen vor.

- a) Zeige: Genau dann kommt im gekürzten Nenner einer rationalen Zahl a/b nicht der Primfaktor p vor, wenn es eine p-adische Ganzzahl u mit bu=a gibt.
- b) Verwende die Dichtheit von $\mathbb Z$ in $\mathbb Z_p$ und die Stetigkeit von Polynomen über $\mathbb Z_p,$ um zu folgern: Im gekürzten Nenner eines rationalen Binomialkoeffizienten $\binom{x}{k}$ können nur solche Primfaktoren vorkommen, die auch im gekürzten Nenner von x vorkommen.

