TP/QCM - Évaluation des connaissances en mathématiques informatiques

Instructions générales :

- Durée : 2 heures.
- · Répondez directement sur le sujet. Montrez vos calculs pour les exercices.

Livrables

- Adrsse mail : milodigitalcreations@gmail.com
- Object + Nom du fichier : B271-LILMTP-EVCO-NOMPRENOM

1. Questions sur le binaire et l'hexadécimal (10 points)

Rappel de cours :

- Système binaire : Base 2, utilise uniquement les chiffres 0 et 1. Chaque chiffre représente une puissance de 2.
- Système hexadécimal : Base 16, utilise les chiffres 0 à 9 et les lettres A à F (A = 10, F = 15). Utile pour représenter des données binaires de manière compacte (4 bits = 1 caractère hexadécimal).
- Conversions :
 - Décimal → Binaire : Diviser par 2 et noter les restes jusqu'à obtenir 0.
 - \circ Binaire \rightarrow Hexadécimal : Regrouper les bits par paquets de 4 (en partant de la droite).

1.1 Conversion binaire ↔ **décimal** (3 points)

- 1. Convertir les nombres suivants en binaire :
 - (45), (99), (128).
- 2. Convertir les nombres binaires suivants en décimal :
 - (110101), (10001101), (11100000).

1.2 Conversion binaire ↔ **hexadécimal** (3 points)

- 1. Convertir les nombres binaires suivants en hexadécimal :
 - (11011011), (10101010), (11111111).
- 2. Convertir les nombres hexadécimaux suivants en binaire :
 - (3A), (FF), (7D).

1.3 Opérations en binaire (4 points) Effectuez les calculs suivants :

- 1. (1101 + 1011)
- 2. (11101 1101)
- 3. (101 \times 11)

2. Questions sur les masques IPv4 (10 points)

- Adresse IPv4 : Composée de 4 octets, notée en décimal séparée par des points (ex. 192.168.1.1).
- Masque réseau : Détermine la partie réseau et la partie hôte d'une adresse IP.
 - (/n) représente le nombre de bits utilisés pour le réseau.
 - Exemple : (/24) correspond à un masque (255.255.255.0).

- **Subnetting** : Découpe un réseau principal en sous-réseaux plus petits pour mieux organiser un réseau ou économiser des adresses IP.
- 2.1 Calcul d'un masque réseau* (4 points)
 Pour un réseau avec l'adresse 192.168.10.0/24 :
- 1. Combien d'adresses sont disponibles ?
- 2. Quelle est l'adresse de diffusion ?

2.2 Classe d'adresse (2 points)

Indiquez la classe des adresses suivantes :

- 1. (172.16.0.1)
- 2. (10.0.0.5)

2.3 Subnetting (Sous-réseaux) (4 points)

Pour le réseau **192.168.1.0/24**, découpez le réseau en **4 sous-réseaux**. Donnez pour chaque sous-réseau :

- 1. L'adresse du sous-réseau.
- 2. L'adresse de diffusion.

3. Logique booléenne et circuits logiques (10 points)

Rappel de cours :

- Logique booléenne : Utilise des valeurs vraies (1) ou fausses (0) et des opérateurs comme ET (AND), OU (OR), NON (NOT), OU Exclusif (XOR).
- **Circuits logiques** : Combinent des portes logiques pour réaliser des fonctions spécifiques (exemple : additionneur, comparateur).
- **Applications** : Utilisées dans les processeurs, systèmes de contrôle, et électronique.
- 3.1 Table de vérité* (3 points)
 Complétez la table de vérité pour (F = (A { AND } B) { OR } ({NOT } A)) :

Α	В	NOT A	A AND B	F
0	0	1	0	1
0	1	1	0	1
1	0	0	0	0
1	1	0	1	1

3.2 Circuit logique (3 points)

Dessinez un circuit correspondant à l'équation (F = (A $\{$ XOR $\}$ B) $\{$ AND $\}$ C). Expliquez votre logique.

3.3 Application pratique (4 points)

Un système de sécurité doit s'activer si :

- Une porte est ouverte **OU** une fenêtre est ouverte.
- Mais le système est désactivé si un code correct est entré.

Créez une expression logique et sa table de vérité pour modéliser ce système.

4. Encodage ASCII (5 points)

Rappel de cours :

- ASCII : American Standard Code for Information Interchange. Associe un nombre à chaque caractère (exemple : A = 65, a = 97).
- Base 10 et binaire : Chaque code ASCII peut être représenté en décimal ou converti en binaire.
- Applications : Utilisé pour les communications entre machines et le stockage de texte.
- 4.1 Conversion texte → ASCII* (2 points)
 Encodez le mot "INFO" en ASCII (en base 10 et en binaire).

4.2 Décryptage ASCII (3 points)

Le message suivant est codé en ASCII (base 10) : (72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100).

1. Traduisez ce message en texte.

5. Compression Huffman (5 points)

Rappel de cours :

- **Principe** : Les caractères les plus fréquents sont codés avec moins de bits pour réduire la taille des données.
- Arbre de Huffman : Construit en regroupant les deux plus petites fréquences de manière récursive.
- Applications : Compression de fichiers (ex. ZIP) et transmission efficace de données.
- 5.1 Construction de l'arbre* (3 points)

 Pour les fréquences des lettres suivantes, construisez l'arbre de Huffman :
- (A = 5), (B = 2), (C = 1), (D = 1), (E = 3).

5.2 Compression d'un mot (2 points)

Utilisez l'arbre pour encoder le mot "ABE". Donnez le résultat en binaire.

6. Questions rapides (QCM) (10 points)

Rappel:

Chaque question du QCM est basée sur des concepts abordés dans les sections précédentes. Révisez rapidement les bases si nécessaire. Répondez par **vrai** ou **faux** (1 point par question).

- 1. En binaire, $(1111_2 = 15_{10})$.
- 2. Une adresse IPv4 a toujours 32 bits.
- 3. Le code ASCII pour la lettre "A" est (41) en hexadécimal.
- 4. (1010 + 1010 = 10000) en binaire.
- 5. Un circuit XOR renvoie 1 uniquement si les deux entrées sont identiques.
- 6. Une adresse (192.168.1.0/24) permet 254 hôtes.
- 7. Huffman permet de compresser des données en les rendant illisibles.
- 8. En cryptographie, la clé publique est toujours secrète.
- 9. Un masque réseau divise les adresses en sous-réseaux.
- 10. La conversion binaire de (45) est (101110_2).

7. Algorithmie : Compréhension et Application (10 points)

- **Algorithmie** : Méthode pour résoudre un problème de manière logique et structurée.
 - Boucles : Pour automatiser des tâches répétitives.
 - Conditions : Permettent de prendre des décisions basées sur des critères.
 - **Pseudo-code** : Langage intermédiaire pour décrire les étapes d'un programme.
- 7.1 Analyse d'un algorithme* (4 points) Voici un pseudo-code d'un algorithme simple :

```
Début

Initialiser somme ← 0

Pour i allant de 1 à 10 Faire

somme ← somme + i

FinPour

Afficher somme

Fin
```

- 1. Que fait cet algorithme ? Expliquez en une phrase. (1 point)
- 2. Calculez la valeur finale de la variable somme après exécution. (1 point)
- Adaptez cet algorithme pour calculer la somme des nombres pairs uniquement. (2 points)

7.2 Écrire un algorithme (6 points)

Écrivez un algorithme en pseudo-code pour résoudre les problèmes suivants :

- Trouver le plus grand nombre parmi 3 nombres donnés par l'utilisateur. (3 points)
- Vérifier si un nombre donné est un nombre parfait (un nombre est parfait si la somme de ses diviseurs propres est égale à lui-même, par exemple 6 : (1 + 2 + 3 = 6)). (3 points)

7.3 Nouvel exercice : Tri d'un tableau (4 points)

Écrivez un algorithme en pseudo-code pour trier un tableau de nombres dans l'ordre croissant.

```
Exemple d'entrée : ([5, 2, 8, 3, 1])
```

Exemple de sortie : ([1, 2, 3, 5, 8]). Vous pouvez utiliser un algorithme simple comme le tri par sélection ou le tri par insertion.

8. Principe de fonction en développement (10 points)

- Fonction : Bloc de code réutilisable qui prend des paramètres et retourne un résultat.
- **Récursivité** : Une fonction qui s'appelle elle-même pour résoudre un problème plus petit (exemple : factorielle).
- Bonnes pratiques : Ajouter des validations pour éviter les erreurs (exemple : vérifier les entrées).
- 8.1 Comprendre une fonction* (5 points)
 Voici une fonction en Python :

```
def factorielle(n):
   if n == 0:
```

```
return 1
else:
    return n * factorielle(n - 1)
```

- 1. Que fait cette fonction ? (1 point)
- 2. Quelle est la valeur de l'appel factorielle(5) ? (2 points)
- 3. Ajoutez une vérification pour que la fonction renvoie un message d'erreur si l'utilisateur passe un nombre négatif. (2 points)

8.2 Écrire vos propres fonctions (5 points)

- 1. Écrivez une fonction qui prend un tableau de nombres en entrée et renvoie le plus grand élément. (2 points)
- 2. Écrivez une fonction qui prend une chaîne de caractères en entrée et renvoie cette chaîne en inversant les majuscules et minuscules (exemple : "HeLLo" devient "hEllo"). (3 points)

9. Questions en expression libre (10 points)

Rappel de cours :

- Système binaire : Fondamental car les ordinateurs travaillent avec des états électriques (0 et 1).
- Masques IPv4 : Indispensables pour organiser et isoler les réseaux.
- Logique booléenne : Au cœur des circuits électroniques et des systèmes numériques.
- 9.1 Questions sur les principes abordés* (6 points)
- 1. Expliquez en quelques phrases pourquoi le système binaire est utilisé en informatique. (2 points)
- 2. À quoi servent les masques IPv4 dans un réseau ? (2 points)
- 3. Pourquoi la logique booléenne est-elle importante dans la conception des circuits électroniques ? (2 points)

9.2 Réflexions sur les applications (4 points)

- 1. Donnez un exemple concret où la compression Huffman pourrait être utilisée dans la vie quotidienne. (2 points)
- En quoi l'encodage ASCII est-il fondamental pour les échanges entre machines ?(2 points)

10. Fondamentaux de l'architecture hardware (12 points)

- Composants principaux :
 - CPU : Exécute les instructions.
 - RAM : Mémoire temporaire pour le stockage des données en cours d'utilisation.
 - Stockage : Conserve les données même lorsque l'ordinateur est éteint.
 - Carte mère : Connecte tous les composants.
 - Carte réseau : Permet les communications via Internet.
- Bus : Système de communication interne pour transmettre les données.
- **32/64 bits** : Indique la largeur des registres du processeur, influençant les performances et la gestion de la mémoire.

- 10.1 Questions théoriques (6 points)*
- 1. Quels sont les composants principaux d'un ordinateur ? Donnez une description rapide de leur rôle. (3 points)
 - Processeur (CPU)
 - Mémoire vive (RAM)
 - Stockage (HDD/SSD)
 - Carte mère
 - Carte réseau
- 2. Expliquez en une phrase ce qu'est un bus dans un ordinateur. (1 point)
- Quelle est la différence entre un processeur 32 bits et un processeur 64 bits ?
 (2 points)

10.2 Questions pratiques (6 points)

- Si un fichier texte contient 1 million de caractères, combien d'espace occupet-il sur un disque dur, sachant que chaque caractère est codé sur un octet ? (2 points)
- 2. Pourquoi la mémoire cache est-elle plus rapide que la RAM ? (2 points)
- 3. Un ordinateur dispose de 8 Go de RAM et un fichier de 10 Go doit être ouvert. Que se passe-t-il et comment le système gère-t-il cela ? (2 points)

11. Bases des échanges dans un réseau local et matériel réseau (10 points)

Rappel de cours :

- LAN (Local Area Network) : Réseau limité géographiquement, exemple : réseau domestique ou d'entreprise.
- Équipements réseaux :
 - Switch : Relie plusieurs appareils dans un réseau local.
 - Routeur : Connecte des réseaux différents et fournit l'accès Internet.
 - Point d'accès Wi-Fi : Fournit une connexion sans fil.
 - Câbles Ethernet : Transportent les données entre les équipements.
- Adresses IP : Identifient les appareils sur un réseau.

11.1 Questions théoriques (5 points)

1. Qu'est-ce qu'un réseau local (LAN) ? (1 point)

Définissez ce qu'est un réseau local et donnez un exemple d'utilisation courante.

2. Le rôle des équipements réseaux : (2 points)

Associez chaque équipement réseau à sa fonction :

- Switch
- Routeur
- Point d'accès Wi-Fi
- Câbles Ethernet

Options:

- a) Connecter des ordinateurs au réseau sans fil.
- b) Permettre la communication entre plusieurs réseaux.
- c) Transmettre des données entre plusieurs appareils sur un même réseau local.
- d) Transporter les données sous forme physique.

3. Masques de sous-réseau : (2 points)

- À quoi sert un masque de sous-réseau dans un réseau local ?
- Expliquez brièvement ce qu'implique un masque de sous-réseau (255.255.255.0).

11.2 Questions pratiques (5 points)

1. Adresses IP et sous-réseaux : (3 points)

Une entreprise possède le réseau (192.168.10.0/24).

- Combien d'appareils peuvent se connecter à ce réseau ?
- Donnez l'adresse de diffusion pour ce réseau.
- Donnez un exemple d'adresse IP valide pour une machine sur ce réseau.

2. Matériel réseau : (2 points)

Un administrateur veut connecter 20 ordinateurs dans un réseau local. Quels équipements réseau minimums (et combien) doit-il utiliser, et pourquoi ? Justifiez votre réponse.

11.3 Reflexion en expression libre (facultatif, bonus 2 points)

Pourquoi le protocole IP est-il indispensable dans un réseau ?

Expliquez en quelques phrases comment les ordinateurs d'un réseau se reconnaissent et échangent des données grâce aux adresses IP.

Barème final et Temps suggéré :

- Section 1 : 10 points (10 minutes).
- Section 2 : 10 points (10 minutes).
- Section 3 : 10 points (10 minutes).
- Section 4 : 5 points (5 minutes).
- Section 5 : 5 points (5 minutes).
- Section 6 : 10 points (5 minutes).
- Section 7 (Algorithmie) : 12 points (15 minutes).
- ullet Section 8 (Principe de fonction) : 10 points (15 minutes).
- Section 9 (Expression libre) : 10 points (15 minutes).
- Section 10 (Architecture hardware) : 12 points (15 minutes).
- Section 11 : 10 points (15 minutes)