

Patent No. 10806-198

CERTIFICATE OF MAILING

I hereby certify that this paper is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Mail Stop Missing Parts; Commissioner for Patents; P.O. Box 1450; Alexandria, VA 22313-1450 on Dec - 1, 2003.

Hansen Tessender

PATENT

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

Applicant: Birger Hjertman : Paper No.

Serial No.: 10/613,286 : Group Art Unit:

Filing Date: July 3, 2003 : Examiner:

For: **Jet Injector and Method for Its Operation and Production**

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

Mail Stop Missing Parts
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

The present application claims priority under 35 U.S.C. §119 of Swedish Application No. 0202063-4 filed July 3, 2002. A certified copy of the priority application is enclosed. The priority application is in the English language.

Respectfully submitted,

Holly D. Kozlowski, Reg. No. 30,468
Dinsmore & Shohl LLP
1900 Chemed Center
255 East Fifth Street
Cincinnati, Ohio 45202
(513) 977-8568

01221

PRV

PATENT- OCH REGISTRERINGSVERKET

Patentavdelningen

**Intyg
Certificat**

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

(71) *Sökande* **Pharmacia AB, Stockholm SE**
Applicant (s)

(21) *Patentansökningsnummer* **0202063-4**
Patent application number

(86) *Ingivningsdatum* **2002-07-03**
Date of filing

Stockholm, 2003-06-30

*För Patent- och registreringsverket
For the Patent- and Registration Office*

Kerstin Gerdén
Kerstin Gerdén

*Avgift
Fee* **170:-**

JET INJECTOR AND METHOD FOR ITS OPERATION AND PRODUCTION

Present invention is directed to a jet injector for injecting a liquid medical drug through the skin of a person to be treated comprising a housing to be
5 pressurized and holding said medical drug and which is defined by an enclosing periphery wall and a bottom wall having an internal surface facing the interior of the housing and an opposite external surface, the bottom wall has at least one through passage extending between said
10 internal and external surfaces and through which, when the injector is used, said medical drug is expelled from the housing and transformed into a thin jet stream penetrating the skin of said person. The invention is also directed to a method for operating such an injector.
15 This invention is also directed to a method for producing a jet injector for injecting a liquid medical drug through the skin of a person to be treated comprising a housing to be pressurized and holding said medical drug and which is defined by an enclosing
20 periphery wall and a bottom wall having at least one through passage.

Existing needleless jet injectors for injection of a liquid medical drug creates a jet stream penetrating the skin of a person to be treated by the inherent force of
25 said stream. Those injectors generally include a high pressure housing having one or more openings for an exit jet stream. Said opening or openings are quite narrow, typically in the order of some tenth of a millimetre. Such openings are very difficult to produce with close
30 tolerances, both rationally and reproducibly, eg by injection moulding of plastic material. Besides, it is difficult to produce openings having such a design and smoothness that the exit jet stream will be coherent and

accurately confined to achieve best possible skin penetration effect.

PCT application WO 01/05454 is directed to a needleless syringe comprising an injector with nested elements, the inner elements of which having a number of small channels formed on their periphery surfaces for conducting a medical drug from a pressurized chamber, through said number of channels and to the skin of a patient so that a plurality of drug streams penetrate the skin. The mouth of each channel is in contact with the skin and the drug streams are injected directly into the skin, ie without any gaps therebetween. The fineness of said drug streams are determined by the size of the channels and the section area of the channels has a minimal dimension. If the dimension is too small the flow resistance in the channels will be too high and reduces the flow rate of the drug jeopardizing the desired penetration effect.

It is an object of present invention to provide a jet injector having the capacity to create a jet stream with adjustable fineness and at the same time accurate flow rate to achieve a desired penetration effect.

It is an other object of present invention to provide a method for inexpensive, reliable and easy manufacturing of a jet injector.

A further object of present invention is to provide a jet injector having an outlet which not will be contaminated by the skin of a person during injection.

These and other objects of present invention have been fulfilled by a jet injector according to the first paragraph of this description, characterized in that said passage includes a flow confining restriction to develop a high pressure in the medical drug expelled from the housing, in that a body is connected to said passage, said body is tapering in a direction away from the passage and terminates in a point, and in that said body has a periphery surface receiving the expelled medical

drug and guiding it towards said point to create a coherent jet stream emerging from said point.

A method for producing a jet injector according to present invention and stated in the second paragraph of 5 the preamble is characterized by by the steps:

(i) providing a mould for injection moulding of said periphery wall and bottom wall and a through aperture in said bottom wall;

10 (ii) machining portions of the wall of the mould forming an interior surface of said bottom wall and/or said aperture of the bottom wall such that recesses are created in the wall of the mould, eg by milling, cutting, engraving, spark machining or etching;

15 (iii) injection moulding, whereby protrusious are formed on said interior surface and/or on a wall of said aperture;

20 (iv) providing a mould for injection moulding of an insert having an essentially cone-shaped body intended to be received in said aperture and having a periphery surface essentially congruent to said wall of the aperture;

25 (v) in addition to or instead of step (ii) machining portions of the wall of the mould forming said periphery surface such that recesses are created in the wall of the mould, eg by milling, cutting, engraving, spark machining or etching;

(vi) injection moulding, whereby protrusious are formed on said periphery surface; and

30 (vii) positioning said essentially cone-shaped body into said aperture by inserting said insert into said housing, its point first, so that said protrusious contact an opposite surface or wall, thereby creating a passage designed as a substantially ringshaped gap between said aperture and said body.

35 An alternative method for manufacturing a jet injector according to the invention and the second paragraph is characeterized by following steps:

- (i) providing a mould for injection moulding of said periphery wall and bottom wall and a through aperture in said bottom wall;
- (ii) injection moulding,
- 5 (iii) machining a wall of said formed aperture such that grooves are created in said wall, eg by milling, cutting, engraving or etching, said grooves extending from an internal surface of said bottom wall to its external surface;
- 10 (iv) providing a mould for injection moulding of an insert having an essentially cone-shaped body intended to be received in said aperture and having a periphery surface essentially congruent to said wall of the aperture;
- 15 (v) in addition to or instead of step (iii) machining said periphery surface such that grooves extending from an internal surface of said bottom wall to its external surface when said insert is positioned into said aperture according to step (vi);
- 20 (vi) positioning said essentially cone-shaped body into said aperture by inserting said insert into said housing, its point first, so that said periphery surface of the cone-shaped body contacts said wall of the aperture creating a passage designed as a number of tube-
- 25 like flutes between said aperture and said body.

Further developments of present invention are stated in the subclaims.

Preferred embodiments of the invention are illustrated below with reference to the accompanying drawings, in which:

Fig. 1 is a fragmentary, longitudinal section view of a jet injector according to one embodiment of present invention;

Fig. 2 is a perspective view of an insert arranged to be inserted in a housing of jet injector according to Fig. 1;

Fig. 3 is a cross section view along line A-A;

Fig. 4 is an enlarged view of a portion of the insert and a surrounding wall portion according to the embodiment of Fig. 1 and 2 illustrating the flow of an expelled medical drug, whereby the gap between these portions is exaggerated for clarity reasons;

Fig. 5 is a view similar to that of Fig. 3 and showing a second embodiment of the invention;

Fig. 6 is a fragmentary, longitudinal section view of the embodiment in Fig. 5;

Fig. 7 is a view similar to that of Fig. 1 showing a third embodiment of the invention;

Fig. 8 is an enlarged detail view of a part of the wall portion according to the embodiment in Fig. 7;

Fig. 9 is a view similar to that of Fig. 3 and showing a fourth embodiment of present invention;

Fig. 10 is an enlarged detail view of a part of the insert according to a fifth embodiment of the invention;

Fig. 11 is a view similar to that of Fig. 3 schematically depicting a sixth embodiment of present invention;

Fig. 12 in a view similar to that of Fig. 1 illustrates a seventh embodiment of the invention; and

Fig. 13 in a view similar to that of Fig. 2 illustrates an eighth embodiment of the invention.

Present invention concerns a jet injector for delivering a liquid medical drug or preparation to a person to be treated by creating or forming a jet stream of the liquid drug, which jet stream has an accurate fineness and force to penetrate the skin of said person and enter his body.

Referring first to Fig. 1-3 an jet injector according to present invention generally comprises a housing or reservoir 1 holding a medical drug 2 to be dispensed, when pressurized in an arbitrary way known by a man skilled in the art, eg by means of a piston device (not shown). The housing 1 is defined by an enclosing periphery wall 3, an unillustrated top portion (not part

of the invention) and a bottom wall 4. The bottom wall 4 has an internal surface 5 facing the interior of the housing 1 and an opposite external surface 6. A through passage 7 (cf Fig. 4) is provided in the bottom wall 4 extending between said internal and external surfaces 5 and 6, resp., and when using the injector said medical drug 2 is expelled from the housing 1. Preferably, the through passage 7 is a gap between a through hole or aperture 8 (cf Fig. 5) and an insert 9 placed inside the aperture 8. In the illustrated embodiment there is a single aperture centrally positioned on a symmetry axis 11 of said housing 1 and the aperture 8 has a truncated cone-shaped configuration converging in a direction away from the housing 1 and is defined by a wall 12. The insert 9 has an essentially cone-shaped body 10 and is arranged to be inserted into the housing such that a portion 13 of said essentially cone-shaped body 10, the periphery surface 39 of which is generally congruent to the aperture wall 12, is received in the aperture 8. Said body 10 tapers in a direction away from the passage 7 and terminates in a sharp point or tip 14 at a distance from the bottom wall 4 outside the housing and positioned on said symmetry axis 11. It is preferred that the tip is sharp although it is also possible to have it slightly truncated for edge release of the liquid. Since both the through passage 7 and the body 10 have substantially cone-shaped outer surfaces the width of the passage can easily be adjusted by relative axial displacement or positioning between these parts.

Said through passage or gap 7 between the aperture wall 12 and said portion 13 of the essentially cone-shaped body 10 serves as a flow confining restriction to develop a high pressure in the medical drug expelled from said housing 1, when using the jet injector. The remaining portion 15 of the essentially cone-shaped body, ie the portion between its portion 13 opposite the aperture wall 12 and its point 14, has a periphery

surface 40 receiving or catching the medical drug flowing from the passage 7 and guiding it towards said point 14 to create or form a coherent, thin jet stream emerging from the point 14. At least an area including the point 5 14 of said body 10 has a concave periphery surface, or concave periphery line when seen in cross-section through the axis, and preferably all of the periphery surface of said body portion 15 between the external surface 6 of the bottom wall 4 and the point 14 is concave, cf Fig. 4.

10 This figure illustrates schematically the flow of said expelled drug. A stream or substreams 16 of a medical drug pressurized in said passage 7 flow(-s) along the periphery surface 40 of said portion 15 attracted to said surface by the so called Coanda effect. When approaching 15 said point 14 the substreams coalescence or are focused before reaching the point 14 creating a substantially homogeneous flow 17 arriving to the point 14 and forming a coherent, thin jet stream 18 emerging from said point 14. The fineness of said jet stream is related to said 20 flow confining restriction, ie the pressure of the stream(-s) 16. The curvature of the concave surface or line can vary somewhat. In order to have a coherent stream it is preferred that the surface is designed so as to give a decreasing angle between the converging streams 25 towards the tip and preferably an almost parallel or substantially parallel flow at the very tip, e.g. by letting the tangential lines of the surface close to the tip substantially coincide. The converging concave lines of the cross-section can for example be segments of a 30 circle but it is preferred that the curvature changes towards to tip, which can be obtained if instead the lines are shaped as segments of an oval, parabolic or hyperbolic curve or intermediates therbetween. Preferably the segments are mirror images with respect to the axis 35 11, preferably also arranged to give a decreasing curvature towards the tip and most preferably placed so

as to give the abovesaid substantially parallel lines at the tip.

Referring again to Fig. 1 a positioning element 19 protrudes from said bottom wall 4 and preferably but not mandatory terminates at a level beyond or at said point 14 of the essentially cone-shaped body 10. A position beyond the tip may serve to keep a distance between the tip and the target surface, e.g. to let the stream form before hitting the target, whereas a position at or behind the tip may serve to allow the tip to contact the target surface, e.g. to act as a short needle for severing the target tissue and reduce the penetrating requirements on the liquid jet. The positioning element 19 is intended to be placed on the skin of the person to be treated when injecting the medical drug. As depicted in this figure the periphery wall 3, the bottom wall 4 and the positioning element 19 of the jet injector are made in one piece of resin, preferably polycarbonate resin, ie by injection moulding. The relatively large aperture 8 in the bottom wall 4 is rather easy to manufacture with accurate tolerances, either during said moulding or afterwards by machining, compared to the small borings in the art for transferring a medical drug.

As discussed above the insert 9 comprises an essentially cone-shaped body 10, the base 20 of which is positioned substantially at the level of said internal surface 5 of the bottom wall 4, when the injector is assembled, cf Fig. 4. However, and preferably, the insert 9 also comprises a head body 21, cf Figs. 1 and 2, arranged to be inserted in said housing 1 close to said bottom wall 4 and connected to said essentially cone-shaped body 10. Preferably the head body 21 and the essentially cone-shaped body 10 are made in one piece of resin, suitably polycarbonate plastic, ie by injection moulding. The head body 21 has a periphery surface 22 matching the inner surface 23 of said periphery wall 3, a bottom surface 24 having a configuration adapted to said

internal surface 5 of the bottom wall 4 and a number of flutes 25 formed in the head body 21 and connecting the interior of the housing 1 with said aperture 8, directly or indirectly as will be discussed below, said flutes 25 5 extending along the peripheral surface 22, the bottom surface 24 and terminating at said internal surface 5 inside the aperture area.

Referring especially to Fig. 3 said through passage 7 is a number of grooves 26 formed in said upper portion 10 13 of the essentially cone-shaped body 10 extending between the lower portion 15 of the body 10 and the ends of said flutes 25, thereby communicating the interior of the housing 1 with said portion 15 and ultimately with the jet stream forming point 14. Alternately or in 15 addition a number of grooves are formed in the aperture wall 12 extending from its internal surface 5 to its external surface 6, not shown. In this last mentioned case a key means (not shown but known to a man skilled in the art) is arranged to position the outlets of the 20 flutes 25 in register with the inlets of the grooves 26. Each flute 25 has a section area larger than that of a groove 26, said flutes 25 passing pressurized medical drug from the interior of the housing 1 into relevant ones of said grooves 26.

25 In another embodiment of present invention said passage 7 is configurated substantially like a ring-shaped gap instead of a plurality of grooves. According to this embodiment a number of spacing means are provided between said insert 9 and said bottom wall 4 and/or 30 between said insert 9 and said aperture wall 12, whereby a ring-shaped gap is formed between the periphery surface 39 of said essentially cone-shaped body and the aperture wall 12.

Referring first to Figs. 5 and 6 showing a cross 35 section view of the aperture perpendicular to said symmetry axis and a section view along said symmetry axis 11, resp., said spacing means are protrusions 27

projecting from the peripheral surface 39 of the upper portion 13 of said essentially cone-shaped body 10 engaging the wall 12 of said aperture 8. The protrusions 27 are at least three in number extending substantially 5 from the internal surface 5 to the external surface 6 of the wall 4, when the insert 9 is mounted. When pin-shaped the protrusions 27 are preferably arranged in pairs, cf Fig. 6. As an alternative or in addition the protrusions are provided on and projecting from the wall 12 of said 10 aperture 8 engaging said peripheral surface 39 of the upper portion 13 (cf Fig. 9). The protrusions 27 are bosses, pins, studs, ribs, ridges or the like integrated in the surface/wall from which they project. Fig. 7 depicts spacing means as protrusions provided between the 15 bottom surface 24 of said head body 21 and the internal surface 5 of said bottom wall 4. In this embodiment also said restriction is achieved as a ring-shaped gap between the aperture wall 12 and said periphery surface 39 of the essentially cone-shaped body 10. Fig. 8 illustrates, in 20 an enlarged scale, protrusions 27 projecting from said internal surface 5 of the bottom wall 4 and Fig. 9 illustrates, in a similar scale, protrusions 27 projecting from the bottom surface 24 of said head body 21. Fig. 10 depicts an alternative where protrusions 27 25 are integral with the head body 21 of the insert 9. The protrusions may otherwise be similar those mentioned in connection with Fig. 8 and 9.

Fig. 11 depicts schematically still another embodiment of present invention. Said cone-shaped body 30 10, and specially its upper portion 13, is manufactured with coarse tolerances and so is the aperture 8 creating gaps occurring between the periphery surface 39 of the upper portion 13 of said essentially cone-shaped body 10 and the surrounding wall 12 of said aperture 8. These 35 gaps 28 cooperate to constitute a passage 7 for transferring medical drug from said housing 1 to said jet stream forming portion 15 of the insert 9.

Referring now to Figs. 12 and 13 embodiments equipped with flexible walls are shown constituting a flow confining restriction passage, the magnitude of the restriction is related to the pressure in said housing 1.

5 In the above illustrated and discussed embodiments the insert 9 is a solid and homogeneous body. However, and according to the embodiment of Fig. 12, said insert 9 is a hollow body confined by a pliable, elastic thin-walled shell 29. The head body 21 of the insert 9 has a
10 diameter smaller than the inner diameter of the housing 1 forming a ring-shaped chanal 30 therebetween. Preferably the bottom wall 24 of the head body 21 forms an angle with said symmetry axis 11 more acute than the angle between the internal surface 5 of said bottom wall 4 and
15 the symmetry axis to establish a flow path from the housing 1 to the aperture 8. When the medical drug in the housing is pressurized it flows into the space between the head body 21 and the bottom wall 4 causing the wall of said essentially cone-shaped body 10 to deflect
20 inwardly, in the direction of the arrows 31, said point 14 area serving as a pivot, such that a gap 32 is temporarily formed between the cone-shaped body 10 and said aperture wall 12 admitting a medical drug flow therebetween.

25 Fig. 13 shows a further embodiment of present invention working with flexible walls. The essential difference between this embodiment and the previous ones is that a central port of the bottom wall 4 is configurated like a truncated funnel or hopper instead of
30 plate having a converging aperture. A pliable elastic wall 33 formed as a truncated funnel and converging outwardly from said housing 1 is depending from the bottom wall 4 and is terminated in a bottom surface 34 forming a sharp edge in contact with the essentially cone-shaped body 10. The elastic wall 33 is integrated
35 with the bottom wall 4 and in its upper portion a number of blind grooves or recesses 36 are formed. As in the

above discussed embodiments, except the one in Fig. 12, a solid insert 9 with or without a head body 21 is to be positioned inside said wall 33. When pressurized, the medical drug in the housing 1 will flow into said grooves 5 36 causing the flexible wall 33 to deflect outwardly, in the direction of the arrows 37, the junction between the bottom wall 4 and said flexible wall 33 serving as a pivot. Thus, the lower portion of said wall 33 will be separated from the essentially cone-shaped body 10 10 temporarily forming a passage 7 therebetween letting the medical drug through.

Present invention is also directed to methods for producing a jet injector discussed above (excluding the embodiments of Figs. 11 and 12).

15 A method for producing, for example, a jet injector illustrated in Figs. 5-10 includes following steps.

(i) Manufacture a mould (not shown) for injection moulding of said periphery wall 3 and bottom wall 4 and a through aperture 8 in said bottom wall. To manufacture a 20 mould to produce a specified object is common knowledge for a man skilled in the art and is therefore not discussed further herein.

25 (ii) Machining portions of the wall of the mould forming an internal surface 5 of said bottom wall 4 and/or said aperture 8 of the bottom wall such that recesses are created in the wall of the mould, eg by milling, cutting, engraving, spark machining or etching. By machining it is possible to create very small (and larger) recesses having close tolerances.

30 (iii) Injection mould to form protrusions 27 on said internal surface 5 and/on the wall 12 of the aperture 8.

(iv) Manufacture a mould (not shown) for injection moulding of an insert 9 having an essentially cone-shaped body 10 intended to be received in said aperture 8 and 35 having a periphery surface 39 essentially congruent to said wall 12 of the aperture; cf step (i).

(v) In addition to or instead of step (ii) machine portions of the wall of the mould forming said periphery surface 39 such that recesses are created in the wall of the mould, eg by milling, cutting, engraving, spark 5 machining or etching.

(vi) Injection mould to form protrusions 27 on said periphery surface 39.

(vii) Remove the accordingly moulded housing 1 (and integrated positioning element 19) and insert 9 from 10 their moulds and place said essentially cone-shaped body 10 into said aperture 8 by inserting said insert 9 into the housing, its point 14 first, so that said protrusions 27 contact an opposite surface or wall (5,12,24,39), thereby creating a passage 7 designed as a substantially 15 ringshaped gap between said aperture 8 and said body 10.

Further, a method for producing a jet injector according to Figs. 1-3 comprises following steps.

(i) Manufacture a mould as in previous step (i).

(ii) Injection mould.

(iii) Machine the wall 12 of said formed aperture 8 such that grooves 26 are created in said wall, eg by 20 milling, cutting, engraving or etching, said grooves extending from an internal surface of said bottom wall to its external surface.

(iv) Manufacture a mould as in step (iv) of previous 25 method.

(v) In addition to or instead of step (iii) machine 30 said periphery surface 39 such that grooves 26 extend from the internal surface 5 of said bottom wall 4 to its external surface 6, when said insert 9 is positioned into said aperture 8 according to step (vi).

(vi) Position the essentially cone-shaped body 10 into said aperture 8 by inserting said insert 9 into said housing 1, its point 14 first, so that said periphery 35 surface 39 of the cone-shaped body 10 contacts said wall 12 of the aperture 8 creating a passage 7 designed as a number of tubelike flow pathes between said aperture and

said body. Each of said flow pathes is thus confined of a groove 26 and an opposite surface area of the aperture wall 12 or said periphery surface 39.

As will be recognized by a man skilled in the art
5 the embodiment according to Fig. 13 is produced in a way similar to the last mentioned method regarding the grooves 36 (step v).

The insert 9 of the jet injector in Fig. 12 is preferably produced by blow moulding. A related gas inlet
10 (not shown) is provided in the upper (horizontal) wall of the shell 29. After having removed the insert from the mould said inlet is airtight sealed in a per se known appropriate way.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
701000
701001
701002
701003
701004
701005
701006
701007
701008
701009
701010
701011
701012
701013
701014
701015
701016
701017
701018
701019
701020
701021
701022
701023
701024
701025
701026
701027
701028
701029
701030
701031
701032
701033
701034
701035
701036
701037
701038
701039
701040
701041
701042
701043
701044
701045
701046
701047
701048
701049
701050
701051
701052
701053
701054
701055
701056
701057
701058
701059
701060
701061
701062
701063
701064
701065
701066
701067
701068
701069
701070
701071
701072
701073
701074
701075
701076
701077
701078
701079
701080
701081
701082
701083
701084
701085
701086
701087
701088
701089
701090
701091
701092
701093
701094
70109

CLAIMS

1. Jet injector for injecting a liquid medical drug through the skin of a person to be treated comprising a
5 housing (1) to be pressurized and holding said medical drug and which is defined by an enclosing periphery wall (3) and a bottom wall (4) having an internal surface (5) facing the interior of the housing and an opposite external surface (6), the bottom wall (4) has at least
10 one through passage (7) extending between said internal and external surfaces and through which, when the injector is used, said medical drug is expelled from the housing (1) and transformed into a thin jet stream (18) penetrating the skin of said person, characterized
15 in that said through passage (7) includes a flow confining restriction (12 and 39,28) to develop a high pressure in the medical drug expelled from the housing (1), in that a body (10) is connected to said passage (7), said body (10) is tapering in a direction away from
20 the passage (7) and terminates in a point (14), and in that said body (10) has a periphery surface (40) receiving the expelled medical drug and guiding it towards said point (14) to create a coherent jet stream emerging from said point (14).

25 2. Jet injector according to claim 1, wherein said bottom wall (4) has a through, truncated cone-shaped aperture (8) defined by a wall (12), wherein an insert (9) having an essentially cone-shaped body (10) is arranged to be inserted into said housing (1) such that a
30 portion (13) of said cone-shaped body (10), the periphery wall (39) of which is essentially congruent to said aperture wall (12), is received in said aperture (8) and wherein at least one passage (7) is established between said portion (13) of said cone-shaped body (10) and the aperture wall (12) through which the medical drug is
35 expelled from the housing (1), said drug then flows along said essentially cone-shaped body (10) to be delivered

from said point (14) of the cone-shaped body (10) as a coherent, thin jet stream (18).

3. Jet injector according to claim 1 or 2, wherein at least a part of a point (14) portion of said
5 essentially cone-shaped body (10) has a concave periphery surface (40).

4. Jet injector according to claim 2, wherein said periphery surface (40) of said essentially cone-shaped body (10), from its point (14) to said passage (7), is
10 concave.

5. Jet injector according to any of the preceding claims, wherein said essentially cone-shaped body (10) is terminated in a sharp point (14).

6. Jet injector according to any of the preceding
15 claims, wherein a positioning element (19) protrudes from said bottom wall (4) and terminates at a level beyond or at said point (14) of the essentially cone-shaped body (10), said positioning element (19) is intended to be placed on the skin of the person to be treated when
20 injecting the medical drug.

7. Jet injector according to claim 6, wherein said periphery wall (3), bottom wall (4) and positioning element (19) of the jet injector are made in one piece of resin, preferably polycarbonate plastic.

25 8. Jet injector according to any of the preceding claims, wherein said insert (9) is said essentially cone-shaped body (10), the base (20) of which is positioned at the level of said internal surface (5) of the bottom wall (4), when the injector is assembled.

30 9. Jet injector according to any of claims 1 to 8, wherein said insert (9) comprises a head body (21) arranged to be inserted in said housing (1) close to said bottom wall (4) and connected to said essentially cone-shaped body (10).

35 10. Jet injector according to claim 9, wherein said head body (21) and the essentially cone-shaped body (10)

are made in one piece of resin, preferably polycarbonate plastic.

11. Jet injector according to any of the preceding claims, wherein said bottom wall (4) is perforated by a
5 single aperture (8) centrally positioned on a symmetry axis (11) of said housing (1), said point (14) of the essentially cone-shaped body (10) being positioned on said symmetry axis (11) when assembled.

12. Jet injector according to any of claims 2-11,
10 wherein a number of spacing means (27) are provided between said insert (9) and said bottom wall (4) and/or between said insert (9) and said aperture wall (12), whereby a ring-shaped gap is formed between the periphery surface (39) of said essentially cone-shaped body (10)
15 and the aperture wall (12).

13. Jet injector according to claim 12, wherein said spacing means (27) are positioned between said internal surface (5) of the bottom wall (4) and an opposite surface (24) of said head body (21).

20 14. Jet injector according to claim 13, wherein said spacing means (27) are protrusions projecting from said internal surface (5) of the bottom wall (4) and/or from said surface (24) of the head body (21).

25 15. Jet injector according to claim 12, wherein said spacing means (27) are positioned between said periphery surface (39) of the essentially cone-shaped body (10) and said aperture wall (12).

30 16. Jet injector according to claim 15, wherein said spacing means (27) are protrusions projecting from said periphery surface (39) and/or said aperture wall (12).

17. Jet injector according to claims 14 and 16, wherein said spacing means (27) are bosses, pins, studs, ribs, ridges or the like integrated in the surface/wall (5,24;39,12) from which they project.

35 18. Jet injector according to any of claims 2-11, wherein said passage (7) is a number of grooves (26) formed in said aperture wall (12) and/or in said

periphery surface (39) of the essentially cone-shaped body (10).

19. Jet injector according to claim 18, wherein a number of flutes (25) are formed in a surface (22) of
5 said head body (21) facing said periphery wall (3) of the housing (1) and in its surface (24) facing said bottom wall (4), said flutes (25) having a section area larger than that of said grooves (26), said flutes (25) passing pressurized medical drug from the interior of said
10 housing (1) into relevant ones of said grooves (26).

20. Jet injector according to any of claims 2-11, wherein said insert (9) is a hollow body confined by a pliable, elastic thin-walled shell (29), said shell (29) being adapted to deflect when subjected to pressurized
15 medical drug such that a gap (32) is temporarily formed between the cone-shaped body (10) and said aperture wall (12) admitting a medical drug flow therebetween.

21. Jet injector according to any of claims 2-11, wherein a pliable, elastic wall (33) formed as a
20 truncated funnel is depending from said bottom wall (4) and constitutes said aperture (8), the upper part of said pliable wall (33) having a number of blind grooves (36) and being adapted to deflect when subjected to pressurized medical drug such that a gap is temporarily
25 formed between the cone-shaped body (10) and said pliable wall (33) admitting a medical drug flow therebetween.

22. Jet injector according to any of claims 2-11, wherein said essentially cone-shaped body (10) is solid and said body (10) and said aperture (8) is manufactured
30 with coarse tolerances, said passage (7) being formed by gaps (28) occurring between said periphery surface (39) of the body (10) and said aperture wall (12).

23. A method for producing a jet injector for injecting a liquid medical drug through the skin of a
35 person to be treated comprising a housing (1) to be pressurized and holding said medical drug and which is

defined by an enclosing periphery wall (3) and a bottom wall (4) having at least one through passage (7), characterized by following steps of:

- (i) providing a mould for injection moulding of said periphery wall (3) and bottom wall (4) and a through aperture (8) in said bottom wall (4);
 - 5 (ii) machining portions of the wall of the mould forming an internal surface (5) of said bottom wall (4) and/or said aperture (8) of the bottom wall (4) such that recesses are created in the wall of the mould, eg by milling, cutting, engraving, spark machining or etching;
 - 10 (iii) injection moulding, whereby protrusions (27) are formed on said internal surface (5) and/or on a wall (12) of said aperture (8);
 - 15 (iv) providing a mould for injection moulding of an insert (9) having an essentially cone-shaped body (10) intended to be received in said aperture (8) and having a periphery surface (39) essentially congruent to said wall (12) of the aperture (8);
 - 20 (v) in addition to or instead of step (ii) machining portions of the wall of the mould forming said periphery surface (39) such that recesses are created in the wall of the mould, eg by milling, cutting, engraving, spark machining or etching;
 - 25 (vi) injection moulding, whereby protrusions (27) are formed on said periphery surface (39); and
 - 30 (vii) positioning said essentially cone-shaped body (10) into said aperture (8) by inserting said insert (9) into said housing (1), its point (14) first, so that said protrusions (27) contact an opposite surface (39) or wall (12), thereby creating a passage (7) designed as a substantially ringshaped gap between said aperture wall (12) and said periphery surface (39) of the essentially cone-shaped body (10).
- 35 24. A method for producing a jet injector for injecting a liquid medical drug through the skin of a person to be treated comprising a housing (1) to be

pressurized and holding said medical drug and which is defined by an enclosing periphery wall (3) and a bottom wall (4) having at least one through passage (7), characterized by following steps of:

- 5 (i) providing a mould for injection moulding of said periphery wall (3) and bottom wall (4) and a through aperture (8) in said bottom wall (4);
 - (ii) injection moulding,
 - (iii) machining a wall (12) of said formed aperture (8) such that grooves (26) are created in said wall (12), eg by milling, cutting, engraving or etching, said grooves extending from an internal surface (5) of said bottom wall (4) to its external surface (6);
 - (iv) providing a mould for injection moulding of an insert (9) having an essentially cone-shaped body (10) intended to be received in said aperture (8) and having a periphery surface (39) essentially congruent to said wall (12) of the aperture (8);
 - (v) in addition to or instead of step (iii) machining said periphery surface (39) such that grooves (26) extend from an internal surface (5) of said bottom wall (4) to its external surface (6), when said insert (9) is positioned into said aperture (8) according to step (vi);
 - 20 (vi) positioning said essentially cone-shaped body (10) into said aperture (8) by inserting said insert (9) into said housing (1), its point (14) first, so that said periphery surface (39) of the cone-shaped body (10) contacts said wall (12) of the aperture (8) creating a passage (7) designed as a number of tube-like flow pathes between said aperture (8) and said body (10).
- 25 25. A method for forming a thin jet stream (18) of a liquid medical drug for injection into a target by means of a jet injector comprising a housing (1) to be pressurized and holding said medical drug and which is defined by an enclosing periphery wall (3) and a bottom wall (4) having an internal surface (5) facing the

- interior of the housing and an opposite external surface (6), the bottom wall has at least one through passage (7) extending between said internal and external surfaces and through which, when the jet injector is used, said
5 medical drug is expelled from the housing, characterized by following steps of:
- (i) pressurizing said housing (1) to expel said medical drug from the housing (1) and through said passage (7);
 - 10 (ii) restricting the flow of said medical drug from said housing (1) to develop a high pressure in the medical drug flowing from said passage (7);
 - (iii) guiding the outflowing medical drug to an essentially cone-shaped body (10) provided on said jet
15 injector and connected to said passage (7), said body (10) is tapering in a direction away from the passage (7) and terminates in a point (14);
 - (iv) causing the expelled medical drug to flow (16) along a periphery surface (40) of said body (10) towards
20 its point (14);
 - (v) focusing, at said point (14), the expelled medical drug into a homogeneous flow (17); and
 - (vi) forming a coherent jet stream (18) emerging from said point (14).

ABSTRACT

A jet injector comprising a housing (1) to be pressurized and holding a medical drug and which is defined by an enclosing periphery wall (3) and a bottom wall (4) having an internal surface (5) facing the interior of the housing (1) and an opposite external surface (6). The bottom wall (4) has a through, truncated cone-shaped aperture (8) extending between said internal (5) and external (6) surfaces and through which said medical drug is expelled from the housing (1) and transformed into a thin jet stream (18) penetrating the skin of said person to be treated. An insert (9) having an essentially cone-shaped body (10) is arranged to be inserted into said housing (1) such that a portion (13) of said cone-shaped body (10), the periphery wall (39) of which is essentially congruent to the wall (12) of said aperture (8), is received in said aperture (8). At least one passage (7) is established between said portion (13) of said cone-shaped body (10) and the aperture wall (12) through which the medical drug is expelled from the housing (1). The drug then flows along said essentially cone-shaped body (10) to be delivered from the point (14) of the cone-shaped body (10) as a coherent, thin jet stream (18).

30

Elected for publication: Fig. 1

35

1/5

Fig. 1

Fig. 2

2/5

Fig. 3

Fig. 4

Fig. 5

3/5

Fig. 6

Fig. 7

Fig. 8

4/5

Fig. 9

Fig. 10

Fig. 11

5/5

Fig. 12

Fig. 13