

Deep Learning (for Computer Vision)

Arjun Jain

Computer Vision: Visualizing and Understanding ConvNets

Q: can we find an image that maximizes some class score?

55

96

11

224

Input Image (RGB)

Stride of

$$\arg\max_{I} |S_c(I)| - \lambda ||I||_2^2$$

13

256

Max

Pooling

13

3

384

13

384

Q: can we find an image that maximizes some class score?

Max

Pooling

3

256

27

Max

Pooling

1. feed in zeros.

zero image

2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image

1. feed in zeros.

zero image

- 2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image
- 3. do a small "image update"
- 4. forward the image through the network.
- 5. go back to 2.

$$\arg\max_{I} S_c(I) - \lambda ||I||_2^2$$

score for class c (before Softmax)

1. Find images that maximizesome class score:

1. Find images that maximizesome class score:

Yosinksi proposed a different form of regularizing the image

$$\arg\max_{I} S_c(I) - \lambda ||I||_2^2$$

More explicit scheme:

Repeat:

- Update the image **x** with gradient from some unit of interest
- Blur x a bit
- Take any pixel with small norm to zero (to encourage sparsity)

Optimization to Image

http://yosinski.com/deepvis

YouTube video

https://www.youtube.com/watch?v=AgkflQ4lGaM
(4min)

Source: [Understanding Neural Networks Through Deep Visualization, Yosinski et al., 2015]

Optimization to Image

Source: [Understanding Neural Networks Through Deep Visualization, Yosinski et al., 2015]

We can in fact do this for arbitrary neurons along the ConvNet

Repeat:

- 1. Forward an image
- 2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest
- 3. Backprop to image
- 4. Do an "image update"

Optimization to Image

Optimization to Image

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Optimization to Image

We can pose an optimization over the input image to maximize any class score.

That seems useful.

Question: Can we use this to "fool" ConvNets?

spoiler alert: yeah

Optimization to Image

Source: [Intriguing properties of neural networks, Szegedy et al., 2013]

>99.6% confidences

Source: [Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Nguyen, Yosinski, Clune, 2014]

>99.6% confidences

Source: [Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Nguyen, Yosinski, Clune, 2014]

These kinds of results were around even before ConvNets...

Identical HOG represention

Thank you!