The pandemic behind

The Pandemic

Social media response to Covid-19 breakthrough

Our Goals

Covid-19 and media influence

Finding relations between day by day
Covid-19 evolution and information flow

1

Social Network response - Reddit

Targeted analysis on how Covid-19 discussion evolved in a social network: Reddit

2

Journalism response

Regional analysis on how Covid-19 discussion evolved in journalism

Work progress

DATA COLLECTION

We collected data from Reddit, various news outlets and LaProtecioneCivile

DATA ANALYSIS

We developed for polarity detection models, topic models and predictive models

CONCLUSIONS

We tried to gain insight on how people generally reacted to the breakthrough

Our group

Negin Amininodoushan Marco Muscas Leonardo Placidi Stefano Rando Davide Zingaro

Let's get started!

Enjoy your ride!

Reddit Section 1: Sentiment Analysis on Reddit

Detecting polarity of comments on Reddit

Contents

SENTIMENT ANALYSIS

Classifying documents as either positive, negative or neutral

APPLICATION

Classifying Reddit italian comments concerning Covid-19

Sentiment Analysis

Classifying documents on the basis of polarity

What is Sentiment Analysis?

In sentiment analysis, or opinion mining, (SAOM), the goal is to discover people's opinions expressed in written language (text). Sentiment in term means "what one feels about something", "personal experience, one's own feeling", "an attitude toward something" or "an opinion"[4].

Models

A brief journey in SVM and Bayes classifiers.

Recap of SVM

SVM

Support Vector Machine

GOAL

Predict the sentiment of comments (classification)

TASK

Build an hyperplane or set of hyperplanes in high-dim space

REDUCTION

Dimensionality reduction methods

Bayes Classifiers

Gaussian Bernoulli Multinomial We tried many methods based on Bayes theory, more on this later!

BERT

Application

Scoring methods and model selection

Our Train Data comes from 3 sources:

Validation set ~200.

OUR MONSTER TEST SET!

#154656 of comments

AND THE BERT METHOD IS.... BEST

Project data

Reddit italian comments on Covid-19 specific threads

Data structure

FEBRUARY

MARCH

APRIL

Wednesday

26

"Eccetto grandi carenze di amuchina non mi pare tutto sto casino, la gente esce, lavora normalmente."

Saturday

14

"Domani si festeggia ufficialmente il funerale di tutte le partite Iva d'Italia."

TUESDAY

21

"Dite quello che volete, ma il silenzio della sera è una cosa bellissima e mi mancherà."

Reddit Section 2: Topic modeling of Reddit comments

Latent Dirichlet Allocation and evaluation methods

Contents

TOPIC MODELING

What is a Topic model and problem formalization

LDA

Method presentation: Latent Dirichlet Allocation

EVALUATION

How to measure efficiency of a Topic model

Topic Modeling

How to classify documents in an unsupervised setting

The main importance of topic modeling is to discover patterns of word-use and how to connect documents that share similar patterns.

-[1]

Main aspects of Topic Modeling

Formalization and assumptions

Our Problem - Find P(d,t)Bayesian statistics

Latent Dirichlet Allocation

A Bayesian hierarchical model for topic modeling

Recap of Bayesian statistics

MODEL

A model, depending on some parameters, is assumed

PRIOR PROBABILITY

Parameters of the model are treated as random themselves

HIERARCHICAL

More models can sequentially depend from one another

POSTERIOR PROBABILITY

Distribution of parameters is updated based on data

Latent Dirichlet Allocation

	DISTRIBUTION	PARAMETER	KNOWING
Choose number of words N	Poisson	η	-
Choose topics distribution $ heta$	Dirichlet	α	-
Then for every word			
Choose a topic z_n	Multinomial	heta	-
Choose a word w_n	Multinomial	eta	z_n

Steps

Application on Reddit comments

LDA applied to project dataset identified three trends

Categories found with LDA

68%

10%

22%

Evaluation

Measures of efficiency for Topic models

Problems

Can we trust LDA topics recognition?
How many topics should we try to detect?

Approaches

AUTOMATIC

Unsupervised evaluation. No human intervention or classification.

HUMAN-BASED

Supervised evaluation.

Different people
subjectively evaluate
effectiveness.

Automatic: Google titles matches [2]

Human-Based: Word intrusion [3]

TOTALE	Related - No votes
MORTI	Related - No votes
GIORNATA	Related - 4 votes
REGIONE	Related - 2 votes
CORONAVIRUS	Related - 1 vote
DEFIBRILLATORE	 Unrelated - 4 votes

Evaluation of the comments model

Number of topics selection and effectiveness evaluation

TITLES for choosing number of topics and model

	2	3	4	5	6	7
LDA	77.5	77.3	25.3		0	
Median	77.5	99	14		0	
R-LDA	77.5	77.3	25.3		0	
Median	77.5	99	14		0	

Word intrusion for assessing effectiveness

60%

Average rate of correct answers

83%

Questions which obtained most votes for correct answers

11

Participants

Reddit Section 3: Time analysis of Reddit comments trends

Evolution of topic and sentiment trends on comments over time

Reddit comments and total positive

Topic modeling results

Covid impact on life

English comments

Discussion on cases and numbers

Topic distribution over time

Sentiment analysis results

Positive comments

Negative comments

Neutral comments

Sentiments over time

References

- [1] Alghamdi, Alfaqi "A Survey of Topic Modeling in Text Mining" International Journal of Advanced Computer Science and Application 2015
- [2] Newman, Han Lau, Grieser, Baldwin "Automatic Evaluation of Topic Coherence" Association for Computer Linguistics 2009
- [3] Wang "Topic Modeling: A Complete Introductory Guide" ResearchGate 2017
- [4] Fundamentals of Sentiment Analysis and Its Applications Mohsen Farhadloo and Erik Rolland, ResearchGate 2016

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Topic Modeling for articles & predictive model

Contents:

- 1. Data collection:
 - a. Download of html pages
 - b. Creating the parsers for each news outlet website
 - c. Filling of missing data
- 2. Preprocessing of data:
 - a. Stemming, Removal of special characters from text
 - b. Removal of stop-words
- Classification:
 - a. Arbitrary keywords classifier
 - b. Latent Dirichlet Allocation
 - c. Non-negative matrix factorization
- 4. Plotting of classified data
- 5. Adding new features to the data
- 6. Creation of predictive model
- 7. Test and performance evaluation

1. Data Collection

a. Download of html pages

A first try....

Downloading from an **news indexing** site:

Pro:

Ease of access and download

Con:

- Missing articles
- Imbalance of available data
- Anti crawling

a. Download of html pages

The final solution...

Target the <u>individual</u> news outlets websites

b. Creating the parsers for each news outlet website

We had an URL for each article:

- 1. Individual parsers for each news outlet
- Parallelizing the requests and parsing for each news outlet

Note: We were careful not to overload the websites with requests

c. Filling of missing data

Each Parser created a CSV.

The CSVs were **merged**...

...Incomplete data was dropped

Result:

24584 articles

2. Preprocessing of Data

a. Stemming, Removal of special characters from text

Conversion to lower-case

Both title and content

Notizie → notiz

Stemming

Snowball Stemmer method for italian language

3. Classification

We chose between 3 possible models...

- **a.** Arbitrary keywords classifier
- Used as Reference Model...
- Matching arbitrary keywords

```
keywords = ['covid', 'coronavirus','covid 19']
```

a. Arbitrary keywords classifier

It was **not super great**...

...Too many **false positive** as more keywords were added

a. Arbitrary keywords classifier

The correlation value is **0.81**, p-value: **6,99*E-24**

- **b.** Latent Dirichlet Allocation
- We created a bag of words matrix using all content from each article
- 2. We then used the matrix to train the LDA classifier

The results were not useful...

b. Latent Dirichlet Allocation

Even for two clusters...

```
TOPIC 0:
['coronavirus', 'via', 'regione', 'lavoro', 'casa', 'emergenza', 'euro', 'polizia', 'attività', 'carabinieri']

TOPIC 1:
['numero', 'regione', 'pazienti', 'positivi', 'provincia', '19', 'covid', 'ospedale', 'casi', 'coronavirus']
```

We couldn't use these keywords, since some appeared in both. Classification was ambiguous.

Non-negative Matrix Factorization

C. Non-negative matrix factorization

For **Text Mining**:

Consider the **bag-of-words matrix representation...**

- 1. Row corresponds to a word
- 2. Column to a document

C. Non-negative matrix factorization

To perform...

- 1. Clustering
- 2. Dimensionality reduction

In combination con **TF-IDF scheme** on content data.

```
from sklearn.feature_extraction.text import TfidfVectorizer

tfidf_vect = TfidfVectorizer(max_df=0.8, min_df=2, stop_words= stop_words_italian)
doc_term_matrix = tfidf_vect.fit_transform((articles.title + articles.content).values)
```

C. Non-negative matrix factorization

We got very distinct cluster

```
TOPIC 0:
['euro', 'fuoco', 'militari', 'agenti', 'attività', 'donna', 'casa', 'via', 'polizia', 'carabinieri']

TOPIC 1:
['guariti', 'test', '19', 'tamponi', 'covid', 'provincia', 'coronavirus', 'pazienti', 'positivi', 'casi']
```

We got two clusters of keywords that were deeply different in respect to each other.

Region and Zones plots

Region and Zones plots

North of Italy...

C. Adding new features to the data, and creation of predictive model

Objective:

Predicting national data from articles

Raw text ('title', 'content' columns) by itself was not suitable^[3]...

C. Adding new features to the data, and creation of predictive model

We selected the most important terms that we obtained from the **NMF model**...

Using those **keywords** we did One hot encoding on the content of each article...

Grouping up by date, we got the total number of daily news where each term appeared.

C. Adding new features to the data, and creation of predictive model

We selected a **Random Forest model** to try to predict the 'nuovi_positivi' column from the **Protezione Civile data**...

'Totale_casi'

'Totale_positivi'

'Nuovi_positivi'

'Nuovi_tamponi'

References

- [1] Berry, Gillis and Glineur "Document Classification Using Nonnegative Matrix Factorization and Underapproximation" 2009
- [2] Okun "Non-negative matrix factorization and classifiers: experimental study" 2008
- [3] Caragea, Cornelia, Jian Wu, Kyle Williams, Das, Khabsa, Teregowda and Giles. "Automatic Identification of Research Articles from Crawled Documents." (2014).

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.