Problem 2

- Answer the following questions regarding transmission line circuits. Voltage and current are expressed by complex notation, the angular frequency is ω , and the imaginary unit is j. The circuits are in a stationary state.
- (1) Fig. 1 shows the equivalent circuit of a lossless transmission line with an inductance per unit length of L and a capacitance per unit length of C.
 - Find the complex impedances of the inductor and the capacitor in the small area enclosed by the dotted line between the position x and x + dx.
 - (1-ii) The current and the voltage at the position x are I and V, respectively. The current and the voltage at the position x + dx are I + dI and V + dV, respectively. Write down two first-order differential equations with respect to x, which hold between I and V. The equations should include ω .
 - (1-iii) Write down the second-order differential equations with respect to x for I and V, respectively.
 - (1-iv) The general solutions of the second-order differential equations in Question (1-iii) are written as follows:

$$V = Ae^{-\gamma x} + Be^{\gamma x} \tag{i}$$

$$V = Ae^{-\gamma x} + Be^{\gamma x}$$

$$I = \frac{Ae^{-\gamma x}}{Z_0} - \frac{Be^{\gamma x}}{Z_0},$$
(i)
(ii)

where A and B are constants. Express γ and Z_0 using ω , L, and C

- (2) The transmission line is terminated by a resistance Z_R at x = l as shown in Fig. 2. The current through and the voltage across the resistor are I_R and V_R , respectively. β is defined as $\omega \sqrt{LC}$.
 - The first term and the second term of both Eq. (i) and Eq. (ii) represent a forward wave and a reflected wave, respectively. Find the relationship between Z_R and Z_0 , when B becomes zero and thus no reflection occurs at x = l.
 - When an input voltage is V_S and an input current is I_S at the input terminal x = 0, the complex impedance of the transmission line seen from the input is $Z_S = V_S/I_S$. Express Z_S in the form as shown below. You may use $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

$$Z_{\rm S} = Z_0 \frac{\Box + \Box \tanh(\Box)}{\Box + \Box \tanh(\Box)}$$

II. Answer the following questions regarding a circuit with an N-type MOS transistor.

A voltage between the gate and source of the transistor is $V_{\rm GS}$. The transistor has a threshold voltage $V_{\rm TH}$, a drain current $I_{\rm D}$, and a transconductance $g_{\rm m}$. For several values of $V_{\rm GS}$, DC drain voltage – drain current characteristics are shown in Fig. 3. The drain voltage at the inflection point is $V_{\rm GS} - V_{\rm TH}$ and the drain current at the point is proportional to $(V_{\rm GS} - V_{\rm TH})^2$. A small-signal equivalent circuit of the transistor is represented by Fig. 4.

(1) Express $g_{\rm m}$ by using $V_{\rm GS}$, $I_{\rm D}$, and $V_{\rm TH}$ when the transistor operates in the saturation region.

A voltage-amplifier circuit that consists of a transistor M, resistors, and capacitors as shown in Fig. 5. The supply voltage is $V_{\rm DD}$. Small-signal input and output voltages are $v_{\rm in}$ and $v_{\rm out}$, and their Laplace transforms are $V_{\rm in}(s)$ and $V_{\rm out}(s)$, respectively. Here, s is a variable of the Laplace transform.

- (2) A drain current I_D flows through M when the supply voltage V_{DD} is applied. Then, find the maximum value of R_L when M operates in the saturation region, by using V_{DD} , V_{TH} , and I_D .
- (3) When M operates in the saturation region, draw a small-signal equivalent circuit of the circuit in Fig. 5.
- (4) When M operates in the saturation region, find a transfer function $\frac{V_{\text{out}}(s)}{V_{\text{in}}(s)}$
- (5) Draw a Bode diagram of the transfer function in Question (4) with respect to the amplitude and the phase. Here, C_1R is sufficiently larger than C_2R_L .
- (6) Find the angular frequency where the amplitude of the transfer function in Question (4) becomes unity at sufficiently high frequency.

