CS722/822: Machine Learning

Instructor: Jiangwen Sun Computer Science Department

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge two clusters or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Let each data point be a cluster
 - 2. Compute the proximity matrix
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

 Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Proximity Matrix

Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

The question is "How do we update the proximity matrix?"

p2

р1

p12

C4

?

p10

p11

p9

	p1	p2	р3	p4	p 5	<u>.</u>
p1						
p2						
р3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
рЗ						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	p 5	<u>.</u> .
p1						
p2						
рЗ						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> </u>
p1						
p2						
p2 p3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p 5	<u>.</u>
p1						
p2						
рЗ						
р4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	I 1	12	13	1 4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Can handle non-elliptical shapes

Original Points

Two Clusters

Limitations of MIN

Sensitive to noise and outliers

Original Points

Two Clusters

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

	I 1	12	13	 4	1 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Less susceptible to noise and outliers

Limitations of MAX

Tends to break large clusters

Biased towards globular clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{p_{i} \in Cluster_{i}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{i}|}$$

Need to use average connectivity for scalability since total

proximity favors large clusters

_		12			
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters
 - Biased towards globular clusters
 - Breaking large clusters

MST: Divisive Hierarchical Clustering

- Build MST (Minimum Spanning Tree)
 - Start with a tree that consists of any point
 - In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not

u

MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.

- O(N³) time in many cases
 - There are N steps and at each step the size,
 N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N))
 time for some approaches

Summary

- Discussed hierarchical clustering, particularly the bottom-up approaches
- Different ways to calculate intra-cluster distance/similarity for hierarchical clustering