

1 - Cathode

2 - Anode Back of Case - Cathode

APT30S20B(G) 2 APT30S20S(G) 2

200V 45A 200V 45A

*G Denotes RoHS Compliant, Pb Free Terminal Finish.

HIGH VOLTAGE SCHOTTKY DIODE

PRODUCT APPLICATIONS

PRODUCT FEATURES

PRODUCT BENEFITS

- Parallel Diode
 - -Switchmode Power Supply
 - -Inverters
- Free Wheeling Diode
 - -Motor Controllers
 - -Converters
- Snubber Diode
- Uninterruptible Power Supply (UPS)
- 48 Volt Output Rectifiers
- High Speed Rectifiers

- Ultrafast Recovery Times
- Soft Recovery Characteristics
- Popular TO-247 Package or Surface Mount D3PAK Package
- Low Forward Voltage
- High Blocking Voltage
- Low Leakage Current

- Low Losses
- Low Noise Switching
- Cooler Operation
- Higher Reliability Systems
- Increased System Power Density

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Characteristic / Test Conditions	APT30S20B_S(G)	UNIT	
V _R	Maximum D.C. Reverse Voltage		Volts	
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	200		
V _{RWM}	Maximum Working Peak Reverse Voltage			
I _F (AV)	Maximum Average Forward Current (T _C = 125°C, Duty Cycle = 0.5)	45		
I _F (RMS)	RMS Forward Current (Square wave, 50% duty)	121	Amps	
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3ms)	320		
T _J ,T _{STG}	Operating and StorageTemperature Range	-55 to 150	°C	
T_L	Lead Temperature Case for 10 Sec.	300		
E _{VAL}	Avalanche Energy (2A, 15mH)	30	mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol			MIN	TYP	MAX	UNIT
V _F		I _F = 30A		.80	.85	
		I _F = 60A		.91		Volts
		I _F = 30A, T _J = 125°C		.67		
I _{RM}	Maximum Reverse Leakage Current	$V_R = V_R$ Rated			0.5	mA
		$V_R = V_R$ Rated, $T_J = 125$ °C			15	
C _T	Junction Capacitance, V _R = 200V			150		pF

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
t _{rr}	Reverse Recovery Time	$I_F = 30A$, $di_F/dt = -200A/\mu s$ $V_R = 133V$, $T_C = 25^{\circ}C$	-	55		ns
Q _{rr}	Reverse Recovery Charge		-	190		nC
I _{RRM}	Maximum Reverse Recovery Current		-	6	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 30A$, $di_F/dt = -200A/\mu s$ $V_R = 133V$, $T_C = 125$ °C	-	100		ns
Q _{rr}	Reverse Recovery Charge		-	450		nC
I _{RRM}	Maximum Reverse Recovery Current		-	9	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 30A$, $di_F/dt = -700A/\mu s$ $V_R = 133V$, $T_C = 125$ °C	-	70		ns
Q _{rr}	Reverse Recovery Charge		-	960		nC
I _{RRM}	Maximum Reverse Recovery Current		-	24		Amps

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-Case Thermal Resistance			.58	°C/W
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance			40	
W _T	Package Weight		0.22		oz
			5.9		g
Torque	Maximum Mounting Torque			10	lb•in
				1.1	N•m

APT Reserves the right to change, without notice, the specifications and information contained herein.

FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL

TYPICAL PERFORMANCE CURVES

Figure 2. Forward Current vs. Forward Voltage

Figure 4. Reverse Recovery Charge vs. Current Rate of Change

Figure 6. Dynamic Parameters vs. Junction Temperature

Figure 8. Junction Capacitance vs. Reverse Voltage

APT30S20B_S(G)

Figure 3. Reverse Recovery Time vs. Current Rate of Change

Figure 5. Reverse Recovery Current vs. Current Rate of Change

Figure 7. Maximum Average Forward Current vs. CaseTemperature

0.25 I_{RRM}

6

Figure 9. Diode Test Circuit

- 1 I_F Forward Conduction Current
- 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
- 3 I_{RRM} Maximum Reverse Recovery Current.
- 4 t_{rr} Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25•I_{RRM} passes through zero.
- **5** Q_{rr} Area Under the Curve Defined by I_{RRM} and t_{rr}.

Figure 10, Diode Reverse Recovery Waveform and Definitions

