Mahindra École Centrale, Hyderabad

ES 211 (Numerical Methods), Problem Sheet-V

Tutorial problems

- 1. Prove the uniqueness of Cholesky decomposition.
- 2. Find a sufficient condition on the convergence of Thomas algorithm to solve a tri-diagonal matrix.
- 3. Using the definition of induced matrix norm, prove that

(a)
$$||A||_1 = \sup_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$
 (Maximum of column sum).

(b)
$$||A||_{\infty} = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
 (Maximum of row sum).

- 4. (a) Find the relation between $||A||_2$ and $||A||_F$. (b) Prove that K(Q) = 1 with respect to l_2 norm, if Q is an orthogonal matrix.
- 5. Determine the condition number of (a) The Hilbert matrix, $H_3 = \frac{1}{i+j-1}, i, j = 1, 2, 3$. (b) The Vandermonde matrix $V_3 = \begin{bmatrix} 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \\ 1 & 4 & 4^2 \end{bmatrix}$.
- 6. Let $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and A is non-singular. Consider the system of equations Ax = b. If there are perturbations in A and b. Then prove that

$$\frac{\|x - \hat{x}\|}{\|x\|} \le \left\lceil \frac{K(A)}{1 - \frac{K(A)\|\delta A\|}{\|A\|}} \right\rceil \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|} \right), \text{ if } \|\delta A\| \|A^{-1}\| < 1.$$

- 7. Find the effect of a disturbance $[\epsilon_1, \epsilon_2]^T$ on right hand side of the system of equations Ax = b, where $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$, $b = [5, \ 0]^T$, if $|\epsilon_1|, |\epsilon_2| \le 10^{-4}$.
- 8. Let $A(\alpha) = \begin{bmatrix} 0.1\alpha & 0.1\alpha \\ 1.0 & 1.5 \end{bmatrix}$. Using maximum norm determine $\alpha \in \mathbb{R}$ such that $K(A(\alpha))$ is minimized.
- Develop a method to find an estimate of K(A), without evaluating A^{-1} . Then find an approximate value of K(A) when $A = \begin{bmatrix} 100 & -200 \\ -200 & 401 \end{bmatrix}$.

1

- Prove that no eigenvalue of a matrix A exceeds the norm of a matrix, i.e., $||A|| \ge \rho(A)$. Then show that $K(A) \ge \frac{\lambda_{max}}{\lambda_{min}}$. Also find an lower bound of K(A) when $A = \begin{bmatrix} 100 & -200 \\ -200 & 401 \end{bmatrix}$.
- 11. Let $A \in \mathbb{R}^{n \times n}$, then prove that $\lim_{m \to \infty} A^m = \mathbf{0}$ (zero matrix), if ||A|| < 1, or iff $\rho(A) < 1$.
- 12. If $A \in \mathbb{R}^{n \times n}$ is invertible such that ||A|| < 1, then I A is invertible, and the series $I + A + A^2 + \dots$ converges to $(I A)^{-1}$, if $\lim_{m \to \infty} A^m = 0$.
- 13. If $A, B \in \mathbb{R}^{n \times n}$ are invertible matrices such that ||I AB|| < 1, then prove that A and B are invertible. Further, $A^{-1} = B \sum_{k=0}^{\infty} (I AB)^k$ and $B^{-1} = \sum_{k=0}^{\infty} (I AB)^k A$.
- 14. Prove that the necessary and sufficient condition for the convergence of an iterative method of the form $\mathbf{x}^{(k+1)} = \mathbf{H}\mathbf{x}^{(k)} + \mathbf{c}, k = 0, 1, 2, 3, \dots$ is that the eigenvalues of the iteration matrix satisfy $|\lambda_i(\mathbf{H})| < 1, i = 1, 2, 3, \dots, n$.
- 15. Let $a \in \mathbb{R}$, consider Ax = b, where $A = \begin{bmatrix} 1 & a \\ -a & 1 \end{bmatrix}$, $b = [b_1, b_2]^T$. For which values of a, the Jacobi and Gauss-Seidel methods converge.

Problems for MATLAB

- 1. Solve the system of equations $3x_1 + 20x_2 x_3 = -18$, $2x_1 3x_2 + 20x_3 = 25$, $20x_1 + x_2 2x_3 = 17$ using Gauss-Jacobi and Gauss-seidel methods.
- 2. Write a MATLAB code to find the inverse of A (Look at tutorial problem 13).