Big Data Data Modeling

BY TED MALASKA

High Level Overview

- Day 1
 - Defining a basic foundation of Data Modeling
 - Fundamentals of Big Data Systems
 - Digging into Big Data Systems
 - Define the Use Case
 - Starting with Relational

High Level Overview

- Day 2
 - Try de-normalization
 - Try Nested Tables
 - Try Bucketed and Sorted
 - Try NoSQL
 - Try Time Series Metric
 - Try Time Series Entity
 - Try Lucene Indexing
 - Try Graph
 - What are we seeing?
 - Final Thoughts

Section 1 Defining a basic foundation of Data Modeling

- Thinking in objects/tables
- Access Patterns
- Mutation Patterns
- Use cases
- Transactions

Thinking about Object/Tables

- 1. Lets start off easy
 - 1. Use Case: We are a Netflix type company and we have a log of movies watch that looks something like this.

User ID	Age	Account Start Date	Category Of User	Movie Watched	Movie Category	Start Time	Events List
Bob	42	12/12/2012	Basic	Die Hard	Action	5/4/2016 12:00	Play 0, pause at 15, FF at 40 to 55, E at 90
Kat	31	12/12/2012	Platum	Beauty and the Beast	Family	5/4/2016 12:00	Play 0, pause at 15, FF at 40 to 55, E at 90

Thinking about Object/Tables

1. To make this into object we need to do some separation

Thinking about Object/Tables

1. Why was this successful

- 1. We could CRUD object records in isolation
- 2. We could do joins to get any answer we needed
- 3. We could mutate table definitions in isolation
- 4. We could apply transaction across tables
- 5. We have indexing and fourn keys

Access Patterns

- 1. Get movies watched and when
- Get distinct movies watched
- 3. Get number of movies watched by age
- 4. Get the most skipped over seens???
- 5. Get most skipped over seen on first time watched

Transitions

1. ???

Parent Child

Single Parent Child

Dimensional Table / Star Schema

• Many to Many

Single Many to Many

- Fact Table Types
 - Transaction
 - Snapshot
 - Accumulating Snapshot

Transaction Fact Table

Key	Time	Value
Α	2	102
Α	1	101
В	3	103
В	2	102
В	1	101
С	2	102
С	1	101
D	1	101

Snapshot Fact Table

Key	Time	Value
Α	2	102
В	3	103
С	2	102
D	1	101

Accumulating Fact Table

Key	Time	Value
Α	2	203
В	3	306
С	2	203
D	1	101

Defining a basic foundation of Data Modeling Summery

- Somewhere after 2010 things changed
- Single Node database moved to expensive appliances
- The domain for data increase in volume and in speed
- The internet happened

Defining a basic foundation of Data Modeling Summery

- The cost of scans grow
- The cost of joins grow

Summary & Q/A

Foundations of Big Data

- Software vs hardware
- Partition or Sharding
- Replication and Failure
- MapReduce
- Mutability and Immutability
- Locking
- CAP theorem
- Masters and Headless
- Transactions

Big venders and their black boxes

- It was a great time to be a vender
 - Open source was untrusted and unproven but for some out liars
 - To get speed you needed special hardware
 - It was the area of SANS, GreenPlums, Netezzas, NetApp, EMC, Oracle, and IMB
 - Then came alone google

What did Google do

- They built large distributed systems that where expected to fail
 - Running on cheap hardware
 - Relying on software to handle recovery
 - Then they did the unthinkable. They gave the ideas away for free.
 - Google File System & MapReduce Papers where released

Then it just continues

- The down was open
 - More white papers
 - More open source projects
- Projects like
 - Hadoop
 - MapReduce
 - Hive
 - Cassandra
 - HBase
 - Kudu
 - Kafka
 - MongoDB
 - Spark
 - Impala
 - Presto
 - OpenTSDB/KairosDB

Why so many projects

- As data gets big data gets heavy
- Solutions get more specialized to given use cases

What do they share (Failure)

- Failure is a given
- Replication is built in with Software

What do they share (Partitioning)

- Partitioning is a given
- Many types of partitioning
 - Hash Mod
 - Round Robin
 - Lazy Round Robin
 - Range
 - Centrally Managed

What do they share (Partitioning)

- Partitioning is a given
- Many types of partitioning
 - Hash Mod
 - Skew is possible so pick your key wisely
 - May be a victim Broadcast overload
 - Round Robin
 - No Skew
 - None deterministic access pattern
 - May be a victim Broadcast overload
 - Lazy Round Robin
 - No Skew
 - None deterministic access pattern
 - Range
 - Skew is very possible
 - May be a victim Broadcast overload
 - Centrally Managed
 - No Skew
 - Single point of contention

What do they share (Mutability)

- Mutability is Bad
 - Require seeks
 - Require fixed length storage
 - Require additional locking
- Immutability is Good
 - Straight writes
 - Less to no locking
- Mutability through Immutability
 - Think about logs
 - Think about a Relation Time Series Table or WAL

What do they share (Mutability)

Key	Time	Value
Α	1	101
В	1	101
С	1	101
D	1	101
E	1	101
F	1	101
G	1	101

Кеу	Time	Value
Α	2	102
D	2	102
F	2	102
F	3	103
Н	3	103

Key	Time	Value
Α	2	102
В	1	101
С	1	101
D	2	102
E	1	101
F	3	103
G	1	101
Н	3	103

What do they share (Headless or Head)

- Heads or Leaders
 - Easier to implement things that demand consistence
 - There is a switching cost to head failures
- Headless
 - No switching cost
 - Normally like to an eventually consistent model

What do they share (Head Types)

Master and a HA

Leader Election

What do they share (Headless)

What do they share (CAP theorem)

What do they share (CAP theorem)

What do they share (CAP theorem)

- Cheating the CAP Theorem
 - Cassandra is a good model
 - Where they expand the definition of failure with variable consistence
 - CAP still holds but ...

What do they share (Transactions)

- It is hard to make a single record change Transactions would be harder and costly
 - Locks suck
- Most part Transaction are not in Big Data system
 - Other then the lowest unit of mutation
 - Files
 - Records
- Different design patterns in Big Data to replace traditional multi row transaction

Why we are going to Dig Deep

- Is this class about Data Modeling or Storage Systems and Execution Systems
- Understand is required for Data Modeling
 - Before RDBMS system where mostly alike
 - There where difference but those differences where incremental not evolutionary

About to Dive in

- What aspects do we need to be thinking about as we look into these different solutions
 - Storage Structure
 - Mutation Patterns
 - Access Patterns
 - Cost/Storage of storage
 - Cost of access

Summary & Q/A

Hadoop Distributed File System

- Component break down
- System fundamentals
- File Formats
- Mutation Patterns
- Access Patterns
- Cost considerations

Basic of GFS => HDFS

- NameNode
 - Metadata of all the files/blocks
 - Which data node they are assigned too
 - Replication management
- Data Nodes
 - Metadata for each block location on disk

Basic of GFS => HDFS

Write Path

- A. Ask Name Node for Location to Write
- B. Write to DataNode with NN Instructions
- C. DataNode does replication
- D. Confirms file is persisted to client

Basic of GFS => HDFS

- File are immutable
- File can be of any type
- Files are block up into Blocks (128MB -> 1GB)
 - Metadata cost is at the Block not the data size
- File may be splittable or may not be when reading

Splitting a File

- Able to Split
 - Text
 - Seq
 - Arvo
 - Parquet
 - ORC
- Not able to Split
 - GZip file
 - Variable row length copybook files

Compressing a File

- Able to Split
 - Text
 - Seq
 - Arvo
 - Parquet
 - ORC
- Not able to Split
 - GZip file
 - Variable row length copybook files

Compressing a File

	No Metadata	Metadata
Block	Sequence Files	Avro
Columnar	RC	Parquet/ORC

Compressing Styles and Entropy

Compressing Styles and Entropy

Compressing Styles and Entropy

- Pros Block
 - Less memory to read and write
- Pros Column
 - More memory to read and write
 - About 20% to 40% more compression
 - Able to select which columns to read

Compress Codec

- Snappy
- Lzo
- Gzip
- Default
- BZip2
- Others ..
- Always be skeptical

Compress Codec

- Snappy: 2x-3x : Fast Read, Fast Write
- Lzo: 2x-3x: Fast Read, Fast Write
- Gzip: ~8x: ~Fast Read, Normal Write
- Default : ~8x: ~Fast Read, Normal Write
- BZip2 : ~10x ~Fast Read, Slow Write
- Others ...
- Always be skeptical
 - All data compresses differently
 - Use your own data

Other Compression Considerations

• If you are reading remotely compression is even more important

Small Files Problem

- Metadata load on the NameNode and DataNode
- Read Speed Reduction
 - Smaller files = more seeks, less compression, shorter scans, and more metadata for the execution layer
- Ideally aim for 128MB to 1GB of compress file sizes

Introducing the Hive Metastore

- Hive Metastore
 - Add a table like metadata layer over a file system, block store, NoSql, or other
 - Allows for SQL access
 - Allows for greater security options
 - Allows for external metadata
 - Allows for partitioning

Typical Hive Table

- ParantFolder
 - TableFolder
 - Date=20171212
 - DataFiles
 - DataFiles
 - Date=20171211
 - DataFiles
 - DataFiles

Access Patterns

- Partitioning
- Filter push down
- Indexing should be consider poor
- Ideal for large scans

Query Considerations

- Data is normally big so
 - Partition respectively to access patterns
 - Join with care
 - Consider sampling or local testing before experimenting
- Data is files
 - Latency to accessibility it high seconds, minutes or more.

Mutation Patterns

- File is written once and can not be mutated
 - Fine for append or snapshot use cases
- Mutation will require a compaction

Compaction Recap

Key	Time	Value
Α	1	101
В	1	101
С	1	101
D	1	101
E	1	101
F	1	101
G	1	101

Key	Time	Value
А	2	102
D	2	102
F	2	102
F	3	103
Н	3	103

Key	Time	Value
Α	2	102
В	1	101
С	1	101
D	2	102
Е	1	101
F	3	103
G	1	101
Н	3	103

Mutation Patterns

- File is written once and can not be mutated
 - Fine for append or snapshot use cases
- Mutation will require a compaction
 - Normally a Shuffle is required
 - Else bucketing and sorting

Cost Considerations

- HDFS is really cheap comparably
- Can run on spinning drives
- Data can be compacted very tight with minimal read speed draw backs

Summary & Q/A

NoSQLs

- Component break down (HBase and Cassandra)
- System fundamentals
- Mutation Patterns
- Access Patterns
- Cost considerations

What is a NoSQL

- It's not NO SQL
- It's not a Database
- Think of it more then a
 - HashMap
 - Log
 - Bucketed and Ordered

HashMap

- There is a Key and a Value
- It is really fast to grab a key/value
- It is really fast to add a key/value
- Iteration is also possible

Log with Compactions

- When new record come in they don't rewrite the old
- They compact in

Key	Time	Value			
Α	1	101	Key	Time	Value
В	1	101	Α	2	102
С	1	101	D	2	102
D	1	101	F	2	102
Е	1	101	F	3	103
F	1	101	Н	3	103
G	1	101			

Key	Time	Value
А	2	102
В	1	101
С	1	101
D	2	102
Е	1	101
F	3	103
G	1	101
Н	3	103

Log with Compactions

- Write Path
 - Get Local for Record (Cached)
 - First live in Memstore
 - Sorting & batching
 - Flush to New Hfile
 - Later Hfiles will be compacted

Ordered

- All Records Columns are ordered
- Ordering allows for simpler indexing
- Ordering allows for simpler compactions
- We will also use this ordering
 - Windowing
 - Time series
 - Local scaning

Bucketing or Partitions

- HBase
 - Out of the Box:
 - Range
 - Desired:
 - Salt for Bucketed HashMod
- Cassandra
 - Out of the Box:
 - HashMod
 - Bucketed HashMod

So what about SQL

- Well SQL could totally work
 - CQL for cassandra
 - Hive and SparkSQL on Hbase
- Why is it not the best idea
 - Built more for point look ups
 - Scans are not as fast as parquet
 - However the mutability may be more important then speed
 - Partitioning is not simple
 - It must be put into the key

What about Kudu

- Very much like it's older siblings, but at the same time different
- It about trade offs
 - Giving up
 - some write speed
 - some point get speed
 - Data flexibility
 - Some ordering
 - Getting
 - Better compression
 - Better scan speeds

Let's Talk about CAP for a Minute

- Strong Consistence
 - HBase & Kudu
- Variable Consistence
 - Cassandra

HBase Model

- Region Server owns range splits
- Region Server 1 fails
- Master needs to figure that out
- Master needs to assign new Region Server to own splits
- Region Server 2 has to get organized
- Region Server 2 is read to server reads and writes

Cassandra Model

Cassandra Model

Cassandra Model (Common Models)

Race Conditions

- Almost no locking
- It all depends on the time value
- Time value can be time or custom
- Time can be set by the client or by cluster

Key	Time	Value
Α	2	102
В	1	101
С	1	101
D	2	102
Е	1	101
F	3	103
G	1	101
Н	3	103

Summary & Q/A

Block Stores

- Component break down
- System fundamentals
- Mutation Patterns
- Access Patterns
- Cost considerations

Block Store (Like and not like HDFS)

- Like a HDFS
 - Contains files
 - Break up large files
- Not like a HDFS
 - Not really a file system and is more Key value like a NoSQL
 - Doesn't have any metadata limit problem
 - Traversing Folder directories is more work
 - There is no rename, only copy and delete
 - Eventually consist issues with listing files
 - (seen with things like MR and Spark)
 - Can be mostly addressed with EMRFS

Block Store (Many Ideas Continue)

- Because it is like a File System
 - Almost everything you learned from HDFS stores true
 - Hive works the same
 - Files and file formats are the same

Block Store (Thinking Remote)

- Unlike HDFS the storage is always remote
 - Not on the same nodes as the execution
- Which allow you to save money in the cloud
 - Execution nodes are expensive vs storage only
- Network will be used to Read and Write
 - In fact you are normally throttled well before the network limit of your node
- You will want the highest rates of compression possible
 - To save money on storage
 - To read and write faster

Block Store (Read/Write Options)

- API
- HDFS File System API
- Hive
- Spark/Impala/Presto
- Cmd

Summary & Q/A

Lucene Indexed

- Component break down
- System fundamentals
- Mutation Patterns
- Access Patterns
- Cost considerations

Lucene Indexing

- Reverse Indexing
- That is normally severed through systems like
 - Solr
 - Elastic Search

Lucene Indexing (What is a reverse index?)

Simple text example

OOC 1 THE CAT IN THE HAT

DOC 2

THE CAT RUN FROM THE DOG

Lucene Indexing (What is a reverse index?)

Simple text example

Lucene Indexing (What is a reverse index?)

INDEXES	DOC1	DOC2
THE	*	*
CAT	*	*
IN	*	
НАТ	*	
RUN		*
FROM		*
DOG		*

Lucene Indexing (Storage Cost)

- We are storing all the document
- We are storing all the indexes of every key and every document

Lucene Indexing (Features)

- We don't have enough time in this whole class
 - Ordering logic
 - NGrams
 - Weights
 - Text Indexing
 - Translations
 - Facets *

Lucene Indexing (Facets)

- Facets are a side effect of out wonderful indexes
- It allows us to counts all the document that below to given indexes to produce
 - Grouped Counts
 - Charts and Graphs (kibana or Banana)
- People will also call this access pattern cubing a dataset

Lucene Indexing (Kibana & Banana)

Time Series Example

Document ID	Hour of Day	User	State	Event
1	12	4201	MD	click
2	12	4202	VA	click
3	12	4203	VA	click
4	1	4201	MD	click
5	1	4202	VA	view
6	2	4204	CA	click
7	2	4205	VA	view
8	2	4201	MD	click

Document ID	Hour of Day	User	State	Event
1	12	4201	MD	click
2	12	4202	VA	click
3	12	4203	VA	click
4	1	4201	MD	click
5	1	4202	VA	view
6	2	4204	CA	click
7	2	4205	VA	view
8	2	4201	MD	click
9	2	4204	CA	click

State				
MD	1	4	8	
VA	2	3	5	7
CA	6	9		

User			
4201	1	4	8
4202	2	5	
4203	3		
4204	6	9	
4205	7		

Even t							
click	1	2	3	4	6	8	9
view	5	7					

- Events per hour
 - Simple array count

Hour of Day				
12	1	2	3	
1	4	5		
2	6	7	8	9

- Events per hour by State
 - Simple array count

Hour of Day				
12	1	2	3	
1	4	5		
2	6	7	8	9

State				
MD	1	4	8	
VA	2	3	5	7
CA	6	9		

Note the bucketing and ordered pattern

Hour of Day				
12	1	2	3	
1	4	5		
2	6	7	8	9

Hour of Day 2	State MD	State VA	State CA
6	1	2	6
7	4	3	9
8	8	5	
9		7	

State				
MD	1	4	8	
VA	2	3	5	7
CA	6	9		

Note the bucketing and ordered pattern

Hour of Day 2	State MD	State VA	State CA
6	1	2	6
7	4	3	9
8	8	5	
9		7	

Hour of Day 2	State MD	State VA	State CA
6	1	2	6
7	4	3	9
8	8	5	
9		7	

Note the bucketing and ordered pattern

Hour of Day 2	State MD	State VA	State CA
6	1	2	6
7	4	3	9
8	8	5	
9		7	

Hour of Day 2	State MD	State VA	State CA
6	1	2	6
7	4	3	9
8	8	5	
9		7	

Hour of Day 2	State MD	State VA	State CA
6	1	2	6
7	4	3	9
8	8	5	
9		7	

Partitioning

- SolR and Elastic Search partition the document o land on all nodes
- This means
 - You have the power of the cluster when querying
 - This mean you are accessing the cluster when querying

Writing Latency

- Lucene Indexing is more expensive then NoSQL work
- Think of it as micro batching
 - Larger batches ~= better throughput
- Compaction is also invalid
- Deletes impact storage and performance until they are compacted

Storage Cost

- TTL is your friend
- Think of Lucene based systems as great if
 - You dataset is manageable in size
 - You have a good TTL strategy
 - You have a boat load of money

Summary & Q/A

Kafka

- Component break down
- System fundamentals
- Mutation Patterns
- Access Patterns
- Cost considerations

Distributed Log

- Pub-sub vs distributed log
- One to one
- One to many

Basic Parts

View from the Producer

View from the Producer

Partitioning

- Round Robin
- Lazy Round Robin
- Custom
 - Good and Bad
 - Avoid Skew

View from the Consumer

View from the Consumer

Why are we talking about Pub-Sub?

- Query on a stream
 - Think about Spark Streaming (Structured Streaming)
 - SQL on the fly
- Compaction Queues
- Golden Path

Golden Path (ESB)

Summary & Q/A

Quick System Summery

Quick Review of System Types

Relational Refresher

- Data Models
 - One to one
 - Many to one
 - Many to many
 - Fact tables
 - Star schemas
- Access Patterns
- Mutation Patterns
- Transactions

Hadoop HDFS

- File System
- File Types and Strategies
- Access Patterns
- Read Patterns
- Hive

NoSQL

- HBase and Cassandra
- HashMaps
- Ordering
- Write Paths
- Read Paths
- Scan speeds
- Kudu

Block Store

- Looks like a file system but more like a NoSQL
- Remote vs local storage
- Compression is your friend
- Hive
- Consistence
- Metadata Management

Lucene Based Systems

- What was a Lucene Index
- Facets
- Access patterns
- Write Patterns

Kafka

- Pub-Sub vs a Distributed log
- Producers
- Consumers
- Consumer groups
- Brokers
- Compaction queues

Summary & Q/A

Distributed Execution Engines

- Quick list of Engines
- What they are good for
- What they are limited at

In the beginning

- MapReduce
 - InputFormat
 - Splits/Record Reader
 - Mapper
 - Combiner
 - Shuffle
 - Reducer
 - OutputFormat

Outcome of MR

- Pros of MapReduce
 - Process Huge amounts of data
 - Read and write to anything
- Cons of MapReduce
 - Hard to code
 - Hard to chain
 - Hard to debug
 - Long startup times
 - Very IO heavy

Attempts to make it better

- SQL
 - Hive
- Coding Styles
 - Cascading
 - Pig
 - Crunch

Then can Spark

- Spark: Cluster Computing with Working Sets Paper 2010
- By Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica
- Addresses
 - Coding style
 - Chaining
 - Startup times
 - Debugging
 - · 10

It continues

- Impala
- Presto
- Flink
- Others...

DAG

Directed Acyclic Graph

Managing Your DAG

- Broadcast Join: Only if one side is small
- Coalesce: Only is you are down partitioning
- Partition Order: Only if you are ordering within a partition
- Bucketed and Ordered Join: Needs data to be prepped before read
- Shuffle
- Shuffle and Sort Join

SQL or Not

- Can you think of the SQL in less then 2 minutes?
- How painful are your joins?
- What level of concurrence are you expecting?

If not SQL then what?

- Spark code (java, scala, python)
- NoSQLs
- Lucene

Summary & Q/A

List out use cases we are going to solve for

Use Case Definition

Use Cases

- Data Retention
- Analytical SQL
- Charting
- State change
- Event Logs
- Deep Learning
- Graph querying

Data Retention

- Data Cost
- TTL

Analytical SQL

- Can I get access to the data with tools I know
- Can I get answers fast
- Can I support many queries

Charting

- Can I get easy pretty charts
- Can they support exploration
- Can they support lot of concurrent users and queries
- Role ups and aggregations

State Changes & Event Logs

• How do I get a user experience like Gmail or facebook with that level of scale

Deep Learning and Graphs

• How do I get my data in a format to I can learn from it

Starting with Relational

Build out our use cases in a relational model

Always Start Relational

- It is what people know
- It is how humans naturally see the world
- It is easy for mutations

We'll use the model we started with

When to start moving away from Relational

- When things get painful
 - Latency
 - SLA
 - Queries per second

Partitioning can help

- The Need: We will quickly see to use a Big Data solution and relational that partitioning is a given
- Flexible: However partition is not Flexible enough for everything

Look for big tables

Will this solve the following

- Get user movie count for a day
- Find a user's favorite movie category
- Find the most watched movie for user category

Will this solve the following

- Get user movie count for a day: One Big Shuffle
- Find a user's favorite movie category: ~Two Big Shuffles
- Find the most watched movie for user category: ~Two Big Shuffles

Summary & Q/A

Applying Denormalization & Nesting

• The attempt to reduce super large joins

Materialized Views Considerations

- Parent Child Relationship
 - De-normalized & Nested
- Many to Many Relationship
 - De-normalized & Nested

De-normalized

User_id	Age	St_dt	Catageory	Watch_id	Watch_st_dt	Watch_end_dt	Watch_movie_id
4201	42	12/12/12	Normal	101	12/13/12	12/13/12	201
4201	42	12/12/12	Normal	102	12/14/12	12/14/12	202
4201	42	12/12/12	Normal	103	12/15/12	12/15/12	203
4201	42	12/12/12	Normal	104	12/16/12	12/16/12	204
4202	64	12/1/15	Normal	105	12/13/16	12/13/12	201
4202	64	12/1/15	Normal	106	12/13/16	12/13/12	202

Nested

User_id	Age	St_dt	Catageory	Watch_id	Watch_st_dt	Watch_end_dt	Watch_movie_id
4201	42	12/12/12	Normal	101	12/13/12	12/13/12	201
				102	12/14/12	12/14/12	202
				103	12/15/12	12/15/12	203
				104	12/16/12	12/16/12	204
4202	64	12/1/15	Normal	105	12/13/16	12/13/12	201
				106	12/13/16	12/13/12	202

Nesting Example

```
•{"group": "A", "time": 5, "value": 3, "nested": [{"col1": 0.1, "col2": 0.2}, {"col1": 1.1, "col2": 1.2}]}
```

```
•{"group": "A", "time": 5, "value": 3, "nested": [
•{"col1": 0.1, "col2": 0.2},
•{"col1": 1.1, "col2": 1.2}
```

•]}

Spark Example

```
    val jsonDf = sparkSession.read.json(jsonPath)
    jsonDf.foreach(row => {
        println(row)
        })
```

- •row:[A,WrappedArray([0.1,0.2], [1.1,1.2]),5,3]
- •row:[B,WrappedArray([1.0,2.0], [1.0,2.0]),5,3]
- •row:[C,WrappedArray([1.0,2.0], [1.0,2.0]),5,3]

Running SQL

•jsonDf.createOrReplaceTempView("json_table")

```
•sparkSession.sqlContext.sql("select group, nested.col1 from json_table").collect()
.foreach(r => println("sql:" + r))
```

- •sql:[A,WrappedArray(0.1, 1.1)]
- •sql:[B,WrappedArray(1.0, 1.0)]
- •sql:[C,WrappedArray(1.0, 1.0)]

```
sparkSession.sqlContext.sql(
"select group, a.col1 from json LATERAL VIEW explode(nested) as a").collect()
  .foreach(r => println("sql:" + r))
•sql:[A,0.1]
•sql:[A,1.1]
•sql:[B,1.0]
•sql:[B,1.0]
•sql:[C,1.0]
•sql:[C,1.0]
```

Hive Table Example

```
Create table car_ownership (
 Person string,
Cars ARRAY < STRUCT <
         Title: STRING,
         Maker: STRING,
         Tires: ARRAY < STRUCT <
                   Size: String,
                   Pressure: String
         >>
 >>
```

Nested Options

- Structs
- Array of Structs
- Array of values

De-normalized vs Nested

Nested Pros

- Co-location
 - Faster to group by
 - Faster to window
 - Joins are free
 - Less data
 - Better compression
- Tables and Columns can be read with out penalty from one not read
- Great for limiting the effort are Cartesian Joins

Nested Cons

- Size limitation of parent row
- Adding child requires the re-write the whole parent record

Options for appending Nested

- It is all about the parent record
- We can add more then one Partition key for the parent
- In our use case
 - User & watch month or day

Storage and In Memory

- Also don't limit the idea of nested to just tables
- In Spark they can be used as in memory constructs to
 - conserve on networking
 - In memory cost

Summary & Q/A

Applying Bucket & Sorting And Complex Types

Build out our use cases in a relational model

What is meant by Bucketing and Sorting

- Partitioning on a Key
- Then sorting on that key + another field(s)
- Example
 - User_id + Watch Event Time

Example of Bucketed Sorted

What else could be use Bucketing and Sorting for

- Windowing
- Point retrieval

Bucketed & Sorted for Windowing

Bucketed Sorted in a NoSQL

Summary & Q/A

Build out our use cases in a relational model

Applying NoSQL

The Security to NoSQL

- It is all about the key and partitioning
 - Sorting
 - Partitioning
 - Access patterns are key
 - Limiting scans
- Co-locating everything you need

Time Series Databases

- OpenTSDB and KairosDB
 - Metric
 - Tags
 - Time
 - Value

Time Series Databases

- OpenTSDB and KairosDB
 - Metric = Hours of TV Watched per Area (Table Name)
 - Tags = Zip, State, TimeZone (Group by columns)
 - Time = Time Snapshot
 - Value = A number value

Hours of TV Watched per Area

Zip	State	TimeZone	Time Snapshot	Hours of TV Watch
20878	MD	EST	1:00	101
20878	MD	EST	2:00	50

How is KairosDB stored on Disk

- KairosDB
 - Table 1: Filter down the metric and tags
 - Table 2: Get the values

- Filter Down Table
 - Partitioned by Mertic
 - Sorted by Metric and Tags

Metric	Tags
TvHourPerArea	State=MD,Zip=20878
TvHourPerArea	State=MD,Zip=20879
TvHourPerArea	State=MD,Zip=20878
TvHourPerArea	State=CA,Zip=91628
XHoursOfSleepPerArea	State=MD,Zip=20878
XHoursOfSleepPerArea	State=MD,Zip=20878

Give Metric "TvHourPerArea" and Tag State=MD

	Metric	Tags	
	TvHourPerArea	State= MD ,Zip=20878	
	TvHourPerArea	State= MD ,Zip=20879	Fag all row with MD
Scan over TvHourPerArea	TvHourPerArea	State= MD ,Zip=20878	
	TvHourPerArea	State=CA,Zip=91628	
	XHoursOfSleepPerArea	State=MD,Zip=20878	
	XHoursOfSleepPerArea	State=MD,Zip=20878	

Second Table hold the time value data

Metric+Tags Key	Time Value Columns in Order
TvHourPerArea:State=MD,Zip=20878	[Time,Value] [Time,Value] [Time,Value]
TvHourPerArea:State=MD,Zip=20879	[Time,Value] [Time,Value] [Time,Value]
TvHourPerArea:State=MD,Zip=20878	[Time,Value] [Time,Value] [Time,Value]
TvHourPerArea:State=CA,Zip=91628	[Time,Value] [Time,Value] [Time,Value]
XHoursOfSleepPerArea:State=MD,Zip=20878	[Time,Value] [Time,Value] [Time,Value]
XHoursOfSleepPerArea:State=MD,Zip=20878	[Time,Value] [Time,Value] [Time,Value]

Second Table hold the time value data

	Metric+Tags Key	Time Value Columns in Order
,	TvHourPerArea:State=MD,Zip=20878	[Time,Value] [Time,Value] [Time,Value]
•	TvHourPerArea:State=MD,Zip=20879	[Time,Value] [Time,Value] [Time,Value]
•	TvHourPerArea:State=MD,Zip=20878	[Time,Value] [Time,Value] [Time,Value]
	TvHourPerArea:State=CA,Zip=91628	[Time,Value] [Time,Value] [Time,Value]
	XHoursOfSleepPerArea:State=MD,Zip=20878	[Time,Value] [Time,Value] [Time,Value]
	XHoursOfSleepPerArea:State=MD,Zip=20878	[Time,Value] [Time,Value] [Time,Value]

Time Value & On the Fly Role Ups

- Time interval
- On Fetch the KairosDB server can do role ups of values
 - Request: Metric, Tag Pairs, Time Range, and desired intervals

Why Time Series on NoSQL

- Low cost of Storage
- Fast to get data
- Fast and easy rule ups
- Fast to aggregate up to the 10ks of values

Role Ups to long running queries

- If desired you can role up a metric tag combo by querying and rewriting under a different metric name
- Example minutes to 10 minutes for queries last years

Beyond ~10k

- At some point this model of aggregating on query doesn't work
- Which calls for Aggregation on write
 - This is a great case for something like Spark streaming
 - In a non-lambda way

Normal Lamdba

Spark Streaming + Internal State

With State

Appling to Profiles

- Putting a profile in a single row
 - Protecting you from transactions
 - Rows can be long but also contain complex types
- And keeping a partitioned sorted event log
 - Allowing for super fast paging

Versioning

- Be able to see record values of past changes
- This is totally configurable
- Consider having version stored in different table that primary access table
 - If past versions is not part of your normal access pattern

Summary & Q/A

Applying Cubing with Lucene

Build out our use cases in a relational model

Summary & Q/A

Thinking about Graph

Build out our use cases in a relational model

Summary & Q/A