

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS NÚCLEO DE EDUCAÇÃO A DISTÂNCIA PÓS-GRADUAÇÃO LATO SENSU EM CIÊNCIA DE DADOS E BIG DATA

ANÁLISE DESCRITIVA E PREDITIVA DOS PREÇOS DOS FUNDOS DE INVESTIMENTO IMOBILIÁRIO NO MERCADO FINANCEIRO - UTILIZANDO MACHINE LEARNING

ALUNO: ANTONIO AURELIANO DOS SANTOS NETO

Etapas de desenvolvimento do TCC

- 1. Identificação e definição do problema
- 2. Coleta de dados
- 3. Processamento/tratamento dos dados
- 4. Análise/exploração dos dados
- 5. Criação de modelo de ML
- 6. Apresentação dos resultados

Identificação e definição do problema – O que é fundo de investimento imobiliário?

O que é fundo de investimento imobiliário?

Fundo de investimento imobiliário ("FII") é uma comunhão de recursos destinados à aplicação em empreendimentos imobiliários. O FII é constituído sob a forma de um condomínio fechado, sendo dividido em cotas, que representam parcelas ideais do seu patrimônio.

Vantagens?

- Permite ao investidor aplicar em ativos relacionados ao mercado imobiliário sem, de fato, precisar comprar um imóvel.
- Não há a necessidade de desembolsar todo o valor normalmente exigido para investimento em um imóvel.
- Diversificação em diferentes tipos de ativos do mercado imobiliário (ex.: shopping centers, hotéis, residências etc.).
- As receitas geradas pelos imóveis ou ativos detidos pelo fundo são periodicamente distribuídas para os cotistas.
- Aumento nos preços dos imóveis do fundo gera aumento do patrimônio do fundo e, consequentemente, valorização do valor das suas cotas.
- Todo o conjunto de tarefas ligadas à administração de um imóvel fica a cargo dos profissionais responsáveis pelo fundo: busca dos imóveis, trâmites de compra e venda, procura de inquilinos, manutenção, impostos etc.

Identificação e definição do problema

Qual é o problema?

 Identificar o melhor modelo de previsão para os preços de fechamento dos fundos imobiliários no mercado de ações – utilizando machine learning.

Quem tem este problema?

 Trabalho de conclusão do curso de Ciência de dados e Big Data.

Por que este problema deve ser resolvido?

 Auxiliar novos investidores na aquisição de cotas de fundos de investimentos imobiliários no mercado brasileiro.

Como saberei que este problema foi resolvido?

 Avaliando qual o modelo teve o melhor desempenho nas previsões dos preços de fechamento dos fundos.

Coleta de dados, processamento e tratamento de dados

- Extração dos fundos de investimentos imobiliários do site fundexplorer, utilizando a técnica webscraping + python.
- Extração das informações das movimentações diária dos fundos imobiliários no mercado de ações brasileiro, utilizando API Yahoo finance. Período: 01/01/2019 a 30/06/2021.
- Extração das datas de pagamento de rendimentos de cada fundo no site status invest.
- Extração da série temporal para treinamento do modelo preditivo. Período: 02/01/2015 a 30/06/2021.

```
import yfinance as yf
#Importar lib para manipulação de datas
from datetime import datetime

#Transforma o codigo do fundo do Dataset Lista de FIIs fundexplorer e adiciona ".SA"
cod_fundos = df.cod + '.SA'

#Define o periodo das operacoes realizadas no mercado (B3)
dt_inicio = datetime(2019,1,1)
dt_fim = datetime(2021,6,30)
```


Ferramentas e bibliotecas utilizadas

Fundos por setor que pagaram dividendo regularmente no 1º sem. de 2021.

Uma das vantagens dos FIIs são os pagamento de dividendos/proventos.

Total de fundos	
Fundos que pagaram	Divid

Fundos por setor que realizaram pagamentos de					
forma regular, nos últimos 6 meses					
Setor	Qtd. Fundos	Total de fundos	% de		
Jetoi	pagadores	por setor	pagamento		
Residencial	2	7	28,57%		
Hotel	1	3	33,33%		
Shoppings	18	22	81,82%		
Lajes Corporativas	30	39	76,92%		
Outros	31	32	96,88%		
Titulos e Val. Mob	68	73	93,15%		
Hibridos	33	36	91,67%		
Logistica	20	20	100,00%		
Hospital	3	3	100,00%		

Ranking dos melhores fundos imobiliários utilizando os critérios abaixo:

- Setores ['Shoppings', 'Lajes Corporativas', 'Logística'] -> qtd_ativos >=
 4;
- P/VPA entre 85% e 120%;
- Vacância física deverá ser menor que 15%;
- A liquidez diária deverá ser maior que 20 mil;
- Fundos que pagaram dividendos todos os meses no 1º semestre de 2021. (Verificar a regularidade no pagamento);
- Selecionar os 2 melhores fundos de cada setor.

cod	setor	preco_atual
MXRF11	Híbrido	10.23
HSRE11	Híbrido	97.00
TRXF11	Outros	102.90
HCTR11	Outros	134.99
CPTS11	Títulos e Val. Mob.	99.70
KNIP11	Títulos e Val. Mob.	109.80
XPML11	Shoppings	102.35
VISC11	Shoppings	112.50
BTLG11	Logística	110.64
HGLG11	Logística	169.21
PVBI11	Lajes Corporativas	94.00
VINO11	Lajes Corporativas	60.20

Análise do fundo imobiliário HGLG11 – Preço de Fechamento

Histório de preços - HGLG11.SA - Setor: Logística

Análise do fundo imobiliário HGLG11 – Histórico de pagamento

Histórico de pagamento de dividendo por cota do fundo HGLG11.SA Setor: Logística

Criação do modelo de machine learning

Criação do modelo preditivo utilizando o FII HGLG11.SA.

Como já conhecemos a base e sabemos que a saída será o preço de fechamento, nosso modelo é classificado como **supervisionado**.

Período: 01/01/2015 a 30/06/2021 – Variável: Preço de fechamento

A previsão será de 90 dias a partir da ultima data da base de treinamento.

Modelos utilizados para a predição

- Modelo GRU (rede recorrente fechada)
- Modelo ARIMA (modelo autorregressivo)
- Modelo Prophet (modelo de regressão)

	ds	у
0	2015-01-02	109.099998
1	2015-01-05	111.000000
2	2015-01-06	110.000000
3	2015-01-07	109.000000
4	2015-01-08	108.500000
1598	2021-06-23	170.550003
1599	2021-06-24	171.000000
1600	2021-06-25	167.500000
1601	2021-06-28	165.500000
1602	2021-06-29	170.000000
000	0 1	

1603 rows × 2 columns

Avaliação dos resultados

• Diferença entre valor de teste x Previsões dos modelos

	VALOR_TESTE	PREVISAO_ARIMA	PREVISAO_PROPHET	PREVISAO_GRU	DIFF. ARIMA	DIFF. PROPHET	DIFF. GRU
ds							
2021-02-10	178.30	178.40	175.61	178.58	0.10	2.69	0.28
2021-02-11	178.51	178.34	175.81	178.32	0.17	2.70	0.19
2021-02-18	177.89	178.22	176.43	178.52	0.33	1.46	0.63
2021-02-19	178.00	178.11	176.77	177.86	0.11	1.23	0.14
2021-02-22	177.55	177.99	176.93	177.98	0.44	0.62	0.43
2021-06-23	170.55	169.72	174.13	170.56	0.83	3.58	0.01
2021-06-24	171.00	169.62	174.30	170.62	1.38	3.30	0.38
2021-06-25	167.50	169.53	174.55	171.16	2.03	7.05	3.66
2021-06-28	165.50	169.44	174.46	167.83	3.94	8.96	2.33
2021-06-29	170.00	169.35	174.37	165.88	0.65	4.37	4.12
90 rows × 7 co	olumns						

MÉTRICAS	ARIMA	PROPHET	GRU
MAE	1.78	3.67	1.1
MSE	4.66	20.82	2.17
RMSE	1.33	1.92	1.47
R2	61.0%	56.0%	82.0%

Pode-se observar, dos dados apresentados na Figura acima, que o modelo GRU apresentou, para o conjunto de teste, os menores erros (MAE, MSE e RMSE). No R2 (coeficiente de determinação) o valor do ficou 82%, ou seja, se ajusta melhor à amostra.

Conclusão

- Nos estudos realizados neste trabalho, os fundos dos setores de Hotéis, Shoppings e Lajes Corporativas foram os mais afetatos, reflexo do fechamento do comércio e medidas de restrição. Os fundos do setor Hospitalar tiveram destaque devido ao aumento de internações, exames e consultas relacionadas à Covid-19 e os fundos do setor de logística cresceu devido ao aumento nas encomendas realizadas nas lojas virtuais.
- O modelo de machine learning que conseguiu prever com melhor desempenho foi o GRU (Rede Recorrente Fechada), porém devese destacar a complexidade em prever preços no mercado de ações, pois envolve mais variáveis do que simplesmente o histórico dos preços, como por exemplo, a pandemia e/ou epidemia.

ARIMA

Obrigado!

