A Handbook of Statistical Analyses Using ${\sf R}$

Brian S. Everitt and Torsten Hothorn

CHAPTER 10

Analysing Longitudinal Data I: Computerised Delivery of Cognitive Behavioural Therapy—Beat the Blues

- 10.1 Introduction
- 10.2 Analysing Longitudinal Data
- 10.3 Analysis Using R

We shall fit both random intercept and random intercept and slope models to the data including the baseline BDI values (pre.bdi), treatment group, drug and length as fixed effect covariates. Linear mixed effects models are fitted in R by using the lmer function contained in the lme4 package (Bates and Sarkar, 2006, Pinheiro and Bates, 2000, Bates, 2005), but an essential first step is to rearrange the data from the 'wide form' in which they appear in the BtheB data frame into the 'long form' in which each separate repeated measurement and associated covariate values appear as a separate row in a data.frame. This rearrangement can be made using the following code:

R> subset(BtheB_long, subject %in% c("1", "2", "3"))

	drug	length	treatment	bdi.pre	subject	time	bdi
1.2m	No	>6m	TAU	29	1	2	2
2.2m	Yes	>6m	BtheB	32	2	2	16
3.2m	Yes	<6m	TAU	25	3	2	20
1.4m	No	>6m	TAU	29	1	4	2
2.4m	Yes	>6m	BtheB	32	2	4	24
3.4m	Yes	<6m	TAU	25	3	4	NA
1.6m	No	>6m	TAU	29	1	6	NA
2.6m	Yes	>6m	BtheB	32	2	6	17
3.6m	Yes	<6m	TAU	25	3	6	NA
1.8m	No	>6m	TAU	29	1	8	NA

```
R> data("BtheB", package = "HSAUR")
R> layout(matrix(1:2, nrow = 1))
R> ylim <- range(BtheB[,grep("bdi", names(BtheB))],</pre>
                  na.rm = TRUE)
R> tau <- subset(BtheB, treatment == "TAU")[,</pre>
       grep("bdi", names(BtheB))]
  boxplot(tau, main = "Treated as usual", ylab = "BDI",
           xlab = "Time (in months)", names = c(0, 2, 4, 6, 8),
           ylim = ylim)
+
R> btheb <- subset(BtheB, treatment == "BtheB")[,</pre>
+
       grep("bdi", names(BtheB))]
R> boxplot(btheb, main = "Beat the Blues", ylab = "BDI",
           xlab = "Time (in months)", names = c(0, 2, 4, 6, 8),
+
           ylim = ylim)
```

Treated as usual

Beat the Blues

Time (in months)

Figure 10.1 Boxplots for the repeated measures by treatment group for the BtheB data.

2.8m	Yes	>6m	BtheB	32	2	8	20
3.8m	Yes	<6m	TAU	25	3	8	NA

The resulting data.frame BtheB_long contains a number of missing values and in applying the lmer function these will be dropped. But notice it is only the missing values that are removed, not participants that have at least one missing value. All the available data is used in the model fitting process. The lmer function is used in a similar way to the lm function met in Chapter ??? with the addition of a random term to identify the source of the repeated

measurements, here subject. We can fit the two models (??) and (??) and test which is most appropriate using

```
R> library("lme4")
R> BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment + drug +</pre>
       length + (1 | subject), data = BtheB_long,
      method = "ML", na.action = na.omit)
R> BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment + drug +</pre>
       length + (time | subject), data = BtheB_long,
      method = "ML", na.action = na.omit)
R> anova(BtheB_lmer1, BtheB_lmer2)
Data: BtheB_long
Models:
BtheB_lmer1: bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject)
BtheB_lmer2: bdi ~ bdi.pre + time + treatment + drug + length + (time | subject)
          Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
BtheB_lmer1 8 1886.6 1915.7 -935.31
BtheB_lmer2 10 1889.8 1926.2 -934.90 0.8161
                                                         0.665
```

```
R> summary(BtheB_lmer1)
Linear mixed model fit by maximum likelihood
Formula: bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject)
  Data: BtheB_long
 AIC BIC logLik deviance REMLdev
1887 1916 -935.3 1871 1866
Random effects:
Groups Name
                     Variance Std.Dev.
                            6.9501
subject (Intercept) 48.304
                    25.128
Residual
                              5.0127
Number of obs: 280, groups: subject, 97
Fixed effects:
              Estimate Std. Error t value
(Intercept)
               5.94371
                         2.24911
                                   2.643
                                   8.225
                          0.07759
bdi.pre
               0.63819
time
              -0.71703
                          0.14605 -4.909
                          1.66365 -1.426
treatmentBtheB -2.37311
drugYes
              -2.79786
                          1.71990 -1.627
length>6m
              0.25639
                         1.63210
                                   0.157
Correlation of Fixed Effects:
           (Intr) bdi.pr time
                              trtmBB drugYs
bdi.pre
           -0.678
time
           -0.264 0.023
tretmntBthB -0.389 0.121 0.022
           -0.071 -0.237 -0.025 -0.323
drugYes
length>6m
          -0.238 -0.242 -0.043 0.002
                                        0.158
```

Figure 10.2 R output of the linear mixed-effects model fit for the BtheB data.

Bibliography

Bates, D. (2005), "Fitting linear mixed models in R," R News, 5, 27–30, URL http://CRAN.R-project.org/doc/Rnews/.

Bates, D. and Sarkar, D. (2006), *lme4: Linear Mixed-Effects Models Using S4 Classes*, URL http://CRAN.R-project.org, R package version 0.99875-8.

Pinheiro, J.~C. and Bates, D.~M. (2000), *Mixed-Effects Models in S and S-PLUS*, New York, USA: Springer.