

UNIVERSIDADE DE AVEIRO

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

Teste Teórico 2 - 29 de Junho de 2020, PARTE II - Datapath

NOME: TOMÁS MANUEL FERNANDES PÊGAS LIMA CANDEIAS **№ Mec.**: 89123

Duração: 1h00m

Notas:

- 1. Justifique todas as respostas.
- 2. Marque as alterações com cores diferentes.
- 3) A Figura II.1 representa uma implementação básica do datapath do MIPS.

Figura II.1 - Datapath single-cycle

a) Adicione à Figura <i>Arithmetic</i>).	a II.1 o que falta para	que o <i>datapath</i> sup	orte a execução da i	nstrução sra (<i>Shif</i>	t Right
b) Assinale todos os	s caminhos e sinais ac	tivos durante a exec	cução da instrução.		

c) Acrescente à Tabela de Verdade da **Tabela II.1** o valor das entradas e saída $ALUControl_{2:0}$ relativas à instrução **sra**. O valor do $FunCode_{5:0}$ de **sra** é igual a 3. (Sugestão: Use uma das combinações disponíveis para não ter de aumentar o número de bits de saída).

ALUOp _{1:0}	Funct _{5:0}	ALUControl 2:0
00	XXXXXX	010 (Add)
01	XXXXXX	110 (Subtract)
10	100000 (add)	010 (Add)
10	100010 (sub)	110 (Subtract)
10	100100 (and)	000 (And)
10	100101 (or)	001 (Or)
10	101010 (slt)	111 (Slt)

Tabela II.1 - Descodificador da ALU

d) Sendo o $FunCode_{5:0}$ de **sra** igual a 3, preencha todos os campos de bits da **Tabela II.2**, para a instrução "**sra** \$t1, \$t0,25"; o número dos registos \$t0 e \$t1 é igual a 8 e 9, respetivamente.

31:26	25:21	20:16	15:11	10:6	5:0

Tabela II.2 - Instrução sra rd, rt, shamt

4) A **Figura II.2** representa uma implementação melhorada do *datapath* do MIPS, com suporte para a execução das instruções "jal label" e "jr rs".

Figura II.2 - Datapath single-cycle com Jal e Jr

A instrução "jalr rs" é uma instrução do tipo-R que junta a funcionalidade das instruções **jal** e **jr**. Isto é, executa um 'salto' para o endereço especificado no registo **rs** (como a instrução jr) e guarda no registo **\$ra** o endereço de retorno (como a instrução jal). O formato da instrução está indicado na **Tabela II.3**.

31:26	25:21 (rs)	20:16 (rt)	15:11 (rd)	10:6	5:0
0	rs	00000	11111	00000	001001

Tabela II.3 - Instrução jalr rs

Para que o *datapath* suporte esta instrução, a Unidade de Controlo deve gerar um sinal de controlo, **jalr**, possibilitando o armazenamento, no Banco de Registos, do valor do endereço de retorno (**PC4**) no registo **\$ra** (31).

a) Admitindo que a Unidade de Control gera o sinal jalr, modifique o datapath da Figura II.2, por forma a que suporte adicionalmente a execução da instrução "jalr rs". Assinale essa modificação na figura.

Introdução à Arquitetura de Computadores, Ano Letivo - 2019/20

b) Indique na Tabela II.4, o valor dos sinais de controlo para os códigos de função das instruções jr e jalr.

ALUOp _{1:0}	Funct _{5:0}	ALUControl _{2:0}	jr	jalr
00	XXXXXX	010 (Add)	0	0
01	XXXXXX	110 (Subtract)	0	0
10	100000 (add)	010 (Add)	0	0
10	100010 (sub)	110 (Subtract)	0	0
10			0	0
10	001000 (jr)			
10	001001 (jalr)			

Tabela II.4 - Descodificador da ALU com suporte para 'jr' e 'jalr'

Introdução à Arquitetura de Computadores, Ano Letivo - 2019/20

5/6

5) A **Figura II.3** representa uma implementação do *datapath multicyle* e a **Figura II.4** o diagrama de estados parcial do controlador respetivo.

Figura II.3 - Datapath multicycle

a) Modifique o datapath da Figura II.3 para suportar a execução da instrução xori. Indique os cam	inhos
ativos e o valor dos sinais de controlo relevantes durante a execução. Explique por palavras as a	ações
envolvidas na sequência de estados.	

b) Indique, na Tabela II.5, as alterações necessárias.

ALUOp _{1:0}	Funct _{5:0}	ALUControl _{2:0}
00	XXXXXX	010 (Add)
01	XXXXXX	110 (Subtract)
10	100000 (add)	010 (Add)
10	100010 (sub)	110 (Subtract)
10	100101 (or)	001 (Or)
10	100110 (xor)	100 (Xor)
10	101010 (slt)	111 (Slt)

Tabela II.5 - Descodificador da ALU

c) No diagrama de estados da **Figura II.4** preencha os estados **S9 e S10** com os valores dos sinais de seleção dos *multiplexers* e de *enable*. Use o descodificador da ALU da **Tabela II.5**.

Figura II.4 - Diagrama de Estados do Controlador Principal

