CSC321 Lecture 12: Image Classification

Object recognition

- 주어진 이미지에 어떤 object category가 있는지 알아내는 것
- 어려운 점:
 - 사물마다 위치, 크기, 모양, 생김새 등이 다름
 - 겹치는 부분(occlusion), 빛, 변화 등
- 활용 분야: 이미지 검색, object detection (어떤 사물이 나타나는 모든 곳 탐지, e.g., 자율주행 자동차가 행인이나 정지 표시 발견하는 것)

Recognition datasets

- 머신러닝 시스템을 훈련, 테스트 하기 위해서는 데이터셋이 필요함 -> 데이터셋의 디자인 중요!
 - 데이터셋 고려사항: 어떤 카테고리를 포함할건지? 어디에서 이미지를 가져올건지? 몇 장의 이미지를 수집할건지? 어떻게 이미지를 정규화(전처리) 할건지?

Image classification

- Conv nets(=Convolutional Neural Networks)는 이미지 분류 방법 중 하나임 -> 지난 5년 동안 가장 성공적이었음
- 지난 20년동안 가장 큰 업적: 1) 큰 데이터셋 (디지털 카메라, 인터넷), 2) 빠른 컴퓨터 (GPU는 CPU보다 훈련 속도가 30배 정도 빠름) ⇒ 그 결과 점점 큰 신경망을 피팅할 수 있게 됨

MNIST dataset

- 손글씨 숫자 데이터셋
 - 카테고리: 10개 숫자 카테고리(0~9)
 - 소스: 봉투에 적힌 손글씨 우편번호 스캔본
 - 크기: 트레이닝 60000장, 테스트 10000장 & grayscale & 28x28 크기
 - 정규화: 이미지 내 가운데 위치 고정, 일정한 크기로 조정
 - 숫자 인식이 어떤 이미지 처리 파이프라인의 한 부분이라는 가정
- 1998년 LeNet(LeCun et al.,) 개발 -> 98.9%의 테스트 정확도로 숫자 분류
 - 수표에 적힌 숫자를 자동으로 읽는 시스템 개발 가능해짐
- 잘 만들어짐!

Caltech101

- 2003년 수집된 object recognition 데이터셋
 - 카테고리: 101개 사물 카테고리
 - 선정방식: 사전의 랜덤 페이지를 펼쳐서 이미지와 연관된 명사 고름
 - 소스: Google 이미지 검색에서 후보자 물색 후 직접 이미지 선정
 - 이미지 수: 카테고리당 대체로 40~800장의 이미지 보유 -> 총 9146장 이미지
 - 얼굴같이 보편적이고 인기있는 카테고리의 이미지 수가 더 많은 경향
 - 정규화: 300 pixels 넓이로 크기 조정(300x200), 방향성을 가진 사물은 같은 방향을 향하도록 조정(e.g., 비행기, 오토바이), 세로로 된 사물은 회전 (알고리즘이 세로로 된 사물을 활용할 수 없어서; e.g., 빌딩)

- 데이터셋의 단점 (**Caltech101만 사용한 논문은 학술지 게재 거절)
 - 데이터가 지나치게 깔끔함
 - 실제 상황에서의 사물과 다름
 - 한정된 사물 카테고리 수
 - 몇몇 카테고리의 이미지 수가 너무 적음
 - e.g., 31장
 - 이미지 보정에 의한 일그러짐, artifact
 - => 각 카테고리의 평균 이미지를 보면, 그 이미지가 실제로 마주하는 사물을 대표하기 어려움을 알 수 있음

ImageNet

• 사물 인식 데이터셋 (2009) -> 사물 인식 분야 발전에 큰 역할을 함

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 데이터셋
- 데이터 설명

- 카테고리: WordNet 데이터베이스에서 착안
 - 2010년 기준 22000개
 - ILSVRC에 1000개 카테고리 사용
 - 구체적임 -> e.g., 강아지 몇백 종류
- o 크기: 120만개 full-size 이미지 (ILSVRC)
- 소스: 검색 엔진, 사람 레이블링
- 정규화: 없음 & 대회 참가자들이 원하는대로 전처리 가능
- 이미지 & 사물 카테고리가 여러 방면으로 다름

• 파일 사이즈: MNIST (60MB) vs. ImageNet (50GB)

Conv Net 크기

- 네트워크 사이즈 재는 법
 - unit 갯수 -> 훈련 중간에 활성화 내용들이 메모리에 저장되어야 하기 때문 (e.g., backprop)
 - weight 갯수 -> weight들이 메모리에 저장되기 때문 & 파라미터 갯수가 오버피팅 정도를 결정
 - o connection 갯수 -> connection마다 3 이상의 계산이 이뤄짐 (1번 forward pass, 2번 backward pass)
- Fully connected layer가 M개의 input units와 N개의 output units가 있다면 -> MN connections, MN weights 생성
 - 0 예시:

	fully connected layer	convolution layer
# output units	WHI	WHI
# weights	W^2 H^2 I J	K^2 I J
# connections	W^2 H^2 I J	WHK^2IJ

- 중요 포인트
 - 대부분의 unit과 connection은 convolutional layer에 있음
 - 대부분의 weight는 fully connected layer에 있음
- 만약 레이어를 크게 만들 경우 리소스 한계에 부딪힐 수 있음 계산 시간, 메모리
- 1998년 이후 conv net의 크기는 아주아주 커짐

LeNet (1998)

- MNIST 데이터에 활용
- 구조

Sizes of layers in LeNet:

Layer	Type	# units	# connections	# weights
C1	convolution	4704	117,600	150
S2	pooling	1176	4704	0
C3	convolution	1600	240,000	2400
S4	pooling	400	1600	0
F5	fully connected	120	48,000	48,000
F6	fully connected	84	10,080	10,080
output	fully connected	10	840	840

Conv net 크기 비교

	LeNet (1989)	LeNet (1998)	AlexNet (2012)
classification task	digits	digits	objects
categories	10	10	1,000
image size	16×16	28×28	$256 \times 256 \times 3$
training examples	7,291	60,000	1.2 million
units	1,256	8,084	658,000
parameters	9,760	60,000	60 million
connections	65,000	344,000	652 million
total operations	11 billion	412 billion	200 quadrillion (est.)

AlexNet (2012)

• 8개 weight layers, 16.4% top-5 error (i.e., 네트워크가 카테고리를 맞추려면 5번 시도)

• ReLu, weight decay, 데이터 증식, SGD with momentum, dropout 사용

GoogLeNet (2014)

- 22 weight layers
- fully convolutional -> fully connected layers 없음
- convolution들이 작은 convolutions들로 쪼개짐
- ImageNet에서 6.6% 테스트 에러

