Universidade Federal do Ceará

Departamento de Estatística e Matemática Aplicada

Prof.: Juvêncio S. Nobre

CC290 - Modelos de Regressão I - 2022.2

Lista de exercícios (de boas vindas) # 0: Revisão de teoria das matrizes,

probabilidade e inferência

Distribuição: 17/08/2022

Entrega: \aleph_1

Parte 1: Teoria das Matrizes

1. Considere $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ um vetor de dimensão $n \times 1$. Podemos definir a norma do vetor \mathbf{x} por

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\top}\mathbf{x}} = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Mostre que:

i) $\|\mathbf{x}\| \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$.

ii) $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$.

iii) $||c\mathbf{x}|| = |c| ||\mathbf{x}||$.

iv) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

2. Considere \mathbf{x} e \mathbf{y} dois vetores reais de dimensão $n \times 1$. Prove a designal dade de Cauchy-Scharwz:

$$(\mathbf{x}^{\top}\mathbf{y})^2 \leq (\mathbf{x}^{\top}\mathbf{x})(\mathbf{y}^{\top}\mathbf{y}).$$

Em que ocasiões a igualdade é válida?

Sugestão: Use o fato de que $\|\mathbf{x} + \lambda \mathbf{y}\| \ge 0, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \lambda \in \mathbb{R}$.

3. O traço de uma matriz quadrada \mathbf{A} de ordem n, denotado por $\text{tr}(\mathbf{A})$, é definido como a soma dos elementos da diagonal principal de \mathbf{A} , isto é,

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}.$$

Considere **A** e **B** duas matrizes quadradas de ordem n e **C** e **D** duas matrizes de ordens $m \times n$ e $n \times m$, respectivamente. Mostre que:

- i) $\operatorname{tr}(\mathbf{A}^{\top}) = \operatorname{tr}(\mathbf{A}).$
- ii) $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B}).$
- iii) $\operatorname{tr}(\mathbf{CD}) = \operatorname{tr}(\mathbf{DC}).$
- iv) $\operatorname{tr}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{tr}(\mathbf{A}\mathbf{A}^{\top}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$.
- v) Considerando \mathbf{x} um vetor de dimensão $n \times 1$, mostre que $\|\mathbf{x}\|^2 = \operatorname{tr}(\mathbf{x}\mathbf{x}^\top)$.
- 4. Faça um resumo sobre:
 - i) Decomposição espectral.
 - ii) Decomposição de Cholesky.
 - iii) Decomposição em valor singular (decomposição SVD).
 - iv) Decomposição de Schur.

Adicionamente, mostre que as decomposições espectral, de Cholesky e SVD são casos particulares da decomposição de Schur. Apresente os comandos no R (com exemplos), para obter tais decomposições.

5. Considere **A** uma matriz quadrada de ordem n cujos respectivos auto-valores são dados por $\lambda_1, \ldots, \lambda_n$. Prove que

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i \ \mathrm{e} \ |\mathbf{A}| = \prod_{i=1}^{n} \lambda_i.$$

Sugestão: Utilize a decomposição de Schur da matriz A.

- **6.** Uma matriz quadrada $\bf A$ é dita ser *idempotente* se $\bf A^2=\bf A$. Considere $\bf A$ uma matriz idempotente. Mostre que:
 - i) $|\mathbf{A}| = 0$ ou 1.
 - ii) Os autovalores de A são iguais a zero ou 1.
 - iii) $\mathbf{I}_n \mathbf{A}$ é idempotente e $\mathbf{A}(\mathbf{I}_n \mathbf{A}) = (\mathbf{I}_n \mathbf{A})\mathbf{A} = \mathbf{0}_n$, em que \mathbf{I}_n e $\mathbf{0}_n$ representam, respectivamente a matriz identidade de ordem n e a matriz quadrada de ordem n com todos elementos iguais a zero.

- iv) Prove que:
 - a) $posto(\mathbf{A}) = tr(\mathbf{A})$.
 - b) Se posto(\mathbf{A}) = n, então $\mathbf{A} = \mathbf{I}_n$.

Sugestão: Utilize a decomposição de Schur da matriz A.

- 7. Mostre que se $\mathbf{A}^{\top}\mathbf{A} = \mathbf{A}$, então \mathbf{A} é simétrica e idempotente.
- 8. Considere \mathbf{A} e \mathbf{B} duas matrizes de ordens $n \times m$ e $p \times q$, respectivamente. O produto de Kronecker entre as matrizes \mathbf{A} e \mathbf{B} , denotado por $\mathbf{A} \otimes \mathbf{B}$, é dado pela seguinte matriz de ordem $np \times mq$:

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}\mathbf{B} & a_{n2}\mathbf{B} & \cdots & a_{nm}\mathbf{B} \end{pmatrix}.$$

Mostre que (assuma que as ordens das matrizes são tais que as operações sejam bem definidas):

- i) $(a\mathbf{A}) \otimes (b\mathbf{B}) = ab(\mathbf{A} \otimes \mathbf{B})$, para quaisquer escalares a, b.
- ii) $(\mathbf{A} + \mathbf{C}) \otimes \mathbf{B} = \mathbf{A} \otimes \mathbf{B} + \mathbf{C} \otimes \mathbf{B}$.
- iii) $(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C})$
- iv) $(\mathbf{A} \otimes \mathbf{B})^{\top} = \mathbf{A}^{\top} \otimes \mathbf{B}^{\top}$.
- $v) (A \otimes B)(C \otimes D) = AC \otimes BD.$
- vi) Para matrizes quadradas $\mathbf{A} \in \mathbf{B}$: $tr(\mathbf{A} \otimes \mathbf{B}) = tr(\mathbf{A})tr(\mathbf{B})$.
- vii) Se \mathbf{A} e \mathbf{B} são duas matrizes quadradas de ordens n e m, respectivamente, mostre que $|\mathbf{A} \otimes \mathbf{B}| = |\mathbf{A}|^m |\mathbf{B}|^n$.
- 9. A soma direta de matrizes \mathbf{A}_i , com dimensão $(n_i \times m_i)$, $i = 1, \ldots, n$ é a matriz $(\sum_{i=1}^n n_i \times \sum_{i=1}^n m_i)$ definida por:

$$igoplus_{i=1}^n \mathbf{A}_i = \left(egin{array}{cccc} \mathbf{A}_1 & \mathbf{0} & \dots & \mathbf{0} \ \mathbf{0} & \mathbf{A}_2 & \dots & \mathbf{0} \ dots & dots & dots & dots \ \mathbf{0} & \mathbf{0} & \dots & \mathbf{A}_n \end{array}
ight).$$

Mostre que:

i) $\operatorname{tr}(\mathbf{A} \bigoplus \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$, com \mathbf{A} e \mathbf{B} representando matrizes quadradas de mesma dimensão.

ii)
$$\left(\bigoplus_{i=1}^{n} \mathbf{A}_{i}\right) \left(\bigoplus_{i=1}^{n} \mathbf{B}_{i}\right) = \bigoplus_{i=1}^{n} \mathbf{A}_{i} \mathbf{B}_{i}$$
, com $\mathbf{A}_{i} \in \mathbf{B}_{i}$ representando matrizes de mesma dimensão.

iii)
$$\mathbf{I}_k \otimes \mathbf{A} = \bigoplus_{i=1}^k \mathbf{A}$$
.

iv)
$$|\mathbf{A} \bigoplus \mathbf{B}| = |\mathbf{A}||\mathbf{B}|.$$

10. A operação de vetorização de uma matriz $\mathbf{A} = (\mathbf{a}_1 \dots \mathbf{a}_n)$, denotada por $\text{vec}(\mathbf{A})$, consiste em "empilhar" seus elementos na forma de um vetor

$$\operatorname{vec}(\mathbf{A}) = (\mathbf{a}_1^\top, \dots, \mathbf{a}_n^\top)^\top.$$

Para uma matriz simétrica A, o operador vech(A) consiste em empilhar todos os elementos distintos de A em um vetor.

Sejam A, B matrizes de mesma dimensão e a e b vetores de ordens $n \times 1$ e $m \times 1$, respectivamente. Prove as seguintes propriedades:

- i) $\operatorname{vec}(\mathbf{a}^{\top}) = \operatorname{vec}(\mathbf{a}).$
- ii) $\operatorname{vec}(\mathbf{a}\mathbf{b}^{\top}) = \mathbf{b} \otimes \mathbf{a}$.
- iii) $\operatorname{tr}(\mathbf{A}^{\top}\mathbf{B}) = \operatorname{vec}(\mathbf{A})^{\top}\operatorname{vec}(\mathbf{B}).$
- iv) Considere **A** uma matriz simétrica 3×3 , com elementos a_{11}, \dots, a_{33} . Obtenha $\text{vec}(\mathbf{A})$ e $\text{vech}(\mathbf{A})$.
- 11. Considere **A** uma matriz simétrica de ordem n. A norma de Frobenius (também denotada por norma de Hilbert-Schmidt) da matriz **A**, denotada por $\|\mathbf{A}\|_F$, é definida por

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}.$$

Mostre que

$$\|\mathbf{A}\|_F = \|\operatorname{vec}(\mathbf{A})\| = \sqrt{\operatorname{tr}(\mathbf{A}^{\top}\mathbf{A})}.$$

- 12. Considere \mathbf{A} e \mathbf{B} duas matrizes simétricas de ordem n e c um escalar. Mostre que:
 - i) $\|\mathbf{A}\|_F \geq 0, \forall \mathbf{A} \in \mathcal{M}_{\mathbb{R}}(n,n) := \mathcal{M}_{\mathbb{R}}(n).$
 - ii) $\|\mathbf{A}\|_F = 0 \Leftrightarrow \mathbf{A} = \mathbf{0}$.
 - iii) $||c\mathbf{A}||_F = |c| ||\mathbf{A}||_F$.
 - iv) $\|\mathbf{A} + \mathbf{B}\|_F \le \|\mathbf{A}\|_F + \|\mathbf{B}\|_F, \forall \mathbf{A}, \mathbf{B} \in \mathcal{M}_{\mathbb{R}}(n).$
- **13.** Considere **A** uma matriz quadrada de ordem n. A matriz **A** é dita ser positiva (não-negativa) definida, denotada por $\mathbf{A} \succ (\succeq)0$, se

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > (\geq) 0, \ \forall \mathbf{x} \neq \mathbf{0}.$$

Considere X uma matriz $n \times p$ $(n \le p)$ de posto completo. Mostre que

- i) $\mathbf{X}^{\top}\mathbf{X}$ é simétrica.
- ii) $\mathbf{X}^{\top}\mathbf{X}$ é positiva definida.
- iii) Usando o fato de que uma matriz é positiva definida, se e somente se, todos seus autovalores são positivos, mostre que $\mathbf{X}^{\top}\mathbf{X}$ é inversível.
- iv) $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ é simétrica e idempotente.
- v) $\mathbf{I}_n \mathbf{H}$ é simétrica e idempotente.
- vi) posto($\mathbf{I}_n \mathbf{H}$) = n p.
- 14. Considere a matriz

$$\mathbf{A} = \left(\begin{array}{cc} X & 1 \\ 1 & X \end{array} \right).$$

- i) Considerando X um escalar, determine para quais valores de X a matriz \mathbf{A} é positiva definida.
- ii) Se $X \sim \mathcal{U}(-2,2)$, calcule a probabilidade da matriz **A** ser positiva definida.
- iii) Repita o item ii), considerando que $X \sim \mathcal{N}(0, 1)$.

15. Considere $f(\mathbf{X}): \mathbb{R}^{m \times n} \to \mathbb{R}$ uma função real de uma matriz $\mathbf{X} = (x_{ij})$ de dimensão $n \times m$. A derivada de f com respeito a \mathbf{X} é definida como sendo a matriz $n \times m$ de derivadas $\partial f/\partial x_{ij}$, i.e.,

$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} := \begin{pmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \frac{\partial f(\mathbf{X})}{\partial x_{21}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{1m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{n1}} & \frac{\partial f(\mathbf{X})}{\partial x_{n2}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{nm}} \end{pmatrix}.$$

Considere $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ e $\mathbf{a} = (a_1, \dots, a_n)^{\top}$ vetores reais de dimensão $n \times 1$ e \mathbf{A} uma matriz quadrada de ordem n. Prove que

$$\begin{split} \frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} &= \frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a} \\ \frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} &= (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x} \\ \frac{\partial \exp(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} &= -\exp\left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right) \mathbf{A} \mathbf{x} \text{, se } \mathbf{A} \text{ \'e sim\'etrica.} \end{split}$$

16. Considere a função

$$g(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} \mathbf{V}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}),$$

em que \mathbf{y} e $\boldsymbol{\beta}$ são vetores de dimensões $n \times 1$ e $p \times 1$ (n > p), respectivamente, \mathbf{X} uma matriz de dimensão $n \times p$ de posto completo e \mathbf{V} uma matriz simétrica de ordem n positiva definida funcionalmente independente de $\boldsymbol{\beta}$. Obtenha:

- i) $\frac{\partial g(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}$.
- ii) $\frac{\partial^2 g(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\top}}$.
- 17. Mostre que a matriz $\mathbf{I}_n \mathbf{J}_n/n$ é simétrica, idempotente e não-negativa definida.
- 18. Faça um resumo sobre matriz de projeção.
- **19.** Considere **X** uma matriz $n \times p$ $(n \le p)$ de posto completo e considere a matriz de **projeção** $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ com elementos denotados por h_{ij} , $i, j \in \{1, ..., n\}$. Mostre que para $i = 1, \dots, n$:

i)
$$h_{ii} = h_{ii}^2 + \sum_{j \neq i} h_{ij}^2$$
.

ii)
$$0 \le h_{ii} \le 1$$
.

20. Considere a matriz X definida por

$$\mathbf{X}^{\top} = \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{array} \right)$$

e a matriz de projeção H definida na questão anterior.

- i) Que condição deve ser satisfeita para que a matriz X seja de posto completo?
- ii) Obtenha algebricamente o valor de h_{ij} , $i, j = 1, \dots, n$.
- iii) Com base no item ii), mostre que $n^{-1} \le h_{ii} \le 1, i = 1, \dots, n$
- **21.** Considere $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ um vetor de n observações. Mostre que a média amostral e a variância amostral podem escritas na seguinte forma matricial:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \mathbf{1}_n^{\top} \mathbf{x}$$

$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} (\mathbf{x} - \mathbf{1}_n \bar{x})^{\top} (\mathbf{x} - \mathbf{1}_n \bar{x})$$

$$= \frac{1}{n-1} \mathbf{x}^{\top} (\mathbf{I}_n - \mathbf{J}_n) \mathbf{x},$$

em que $\mathbf{1}_n$ representa um vetor de dimensão $n \times 1$ com todos elementos iguais a 1 e $\mathbf{J}_n = \mathbf{1}_n \mathbf{1}_n^{\top}$.

- 22. Mostre que a variância amostral pode ser reescrita como uma forma quadrática (Questão #21).
- 23. Mostre que a covariância amostral pode ser reescrita como uma forma bilinear.
- 24. Faça um resumo sobre o método dos multiplicadores de Lagrange.
- 25. Apresente dois exemplos de aplicação do método dos multiplicadores de Lagrange.

Sugestões de referências:

- 1. Aggarwal, C.C. (2020). Linear Algebra and Optimization for Machine Learning. New York: Springer.
- 2. Banerjee, S. and Roy, A. (2014). *Linear Algebra and Matrix Analysis for Statistics*. Boca Raton: CRC Press.
- 3. Gentle, J.A. (2017). Matrix Algebra: Theory, Computations and Applications in Statistics, 2nd edition. New York: Springer.

- 4. Harville, D.A. (2000). Matrix Algebra from Statistician's Perspective. New York: Springer.
- 5. Harville, D.A. (2018). Linear Models and the Relevant Distributions and Matrix Algebra. Boca Raton: CRC Press.
- 6. Magnus, J.R. and Neudecker, H. (1999). *Matrix Differential Calculus with Applications in Statistics and Econometrics*, 2nd Edition. New York: John Wiley & Sons.
- 7. Puntanen, S., Styan, G.P.H. and Isotalo, J. (2011). *Matrix Tricks for Linear Statistical Models: Our Personal Top Twenty*. New York: Springer.
- 8. Rao, C.R. and Rao, M.B. (1998). Matrix Algebra and Its Applications to Statistics and Econometrics. New York: World Scientific.
- 9. Schott, J.R. (2017). *Matrix Analysis for Statistics*, 3rd edition. New York: John Wiley & Sons.
- 10. Searle, S.R. and Khuri, A. I. (2017). *Matrix Algebra Useful for Statistics*, 2nd edition. New York: John Wiley & Sons.

Parte 2: Probabilidade e Inferência

- **26.** Considere X_1 e X_2 V.A's independentes. Encontre a distribuição condicional de $X_1|X_1+X_2=y$, quando:
 - i) $X_i \sim P(\lambda_i), i = 1, 2;$
 - ii) $X_i \sim B(n_i, p), i = 1, 2;$
- **27.** Usando o resultado da questão anterior e as propriedades da esperança e variância condicional, determine $\mathbb{E}[X_1]$ e $\text{Var}[X_1]$.
- 28. Um mineiro está preso numa mina contendo 3 portas. A porta 1 o conduz à saída após 2 horas de caminhada. A porta 2 o conduz a um túnel que o retorna ao mesmo lugar da mina após 3 horas. A porta 3 o conduz a um túnel que o retorna ao mesmo lugar após 5 horas. Se o mineiro escolhe qualquer porta aleatoriamente todas as vezes, qual é o tempo esperado que ele vai levar para sair da mina? Calcule a variância desse tempo de saída.

29. (Soma aleatória de variáveis aleatórias) Considere $\{X_n\}_{n\geq 1}$ uma sequencia de variáveis aleatórias iid e N uma variável aleatória discreta não-negativa, independente de X_i , $\forall i\in\mathbb{N}$. Defina $S_N:=\sum_{i=1}^N X_i$. Mostre que

$$\mathbb{E}[S_N] = \mathbb{E}[N]\mathbb{E}[X_1] \text{ e } \operatorname{Var}[S_N] = \operatorname{Var}[X_1]\mathbb{E}[N] + (\mathbb{E}[X_1])^2 \operatorname{Var}[N].$$

- **30.** Considere X_1, \ldots, X_n variáveis aleatórias definidas em um mesmo espaço de probabilidades e $Cov(\cdot, \cdot)$ o operador covariância. Prove que:
 - i) $Cov(X_i, X_i) = Var[X_i].$
 - ii) $Cov(X_i, X_i) = Cov(X_i, X_i)$.
 - iii) $Cov(aX_i, bX_j) = abCov(X_i, X_j)$, para quaisquer constantes $a \in b$.
 - iv) Para qualquer constante a, $Cov(X_i, a) = 0$.
 - v) $Cov(X_1, X_3 + X_4) = Cov(X_1, X_3) + Cov(X_1, X_4).$
 - vi) $Cov(X_1 + X_2, X_3 + X_4) = Cov(X_1, X_3) + Cov(X_1, X_4) + Cov(X_2, X_3) + Cov(X_2, X_4)$.
- vii) $Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2).$

viii)
$$\operatorname{Cov}\left(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{n} b_j Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \operatorname{Cov}(X_i, Y_j).$$

- **31.** Exiba um vetor aleatório discreto (X_1, X_2) tal que:
 - i) $Cov(X_1, X_2) = 2022$.
 - ii) $Cov(X_1, X_2) = 2022$, com a restrição de que de X_i só assuma dois valores (com probabilidade positiva), i = 1, 2.
- **32.** Seja $\mathbf{X} = (X_1, X_2, X_3)$ um vetor aleatório cujas componentes são iids com distribuição $\mathcal{N}(\mu, \sigma^2)$. Defina $\mathbf{Y} = (Y_1, Y_2)$ em que $Y_1 := X_2 X_1$ e $Y_2 := X_3 X_1$. Determinar a covariância e o coeficiente de correlação das componentes de \mathbf{Y} .
- **33.** Forneça um exemplo de um vetor aleatório absolutamente contínuo bivariado com componentes dependentes e não correlacionadas.
- 34. Forneça um exemplo em que correlação nula implica independência.

35. Considere um vetor aleatório $\mathbf{X}=(X_1,X_2)$ cuja respectiva função geradora de momentos é dada por

$$M_{\mathbf{X}}(\mathbf{t}) = \left(1 - \sum_{i=1}^{2} p_i + \sum_{i=1}^{2} p_i e^{t_i}\right)^n.$$

- i) Identifique as marginais de X_1 e X_2 .
- ii) Usando $M_{\mathbf{X}}(\mathbf{t}),\,M_{X_1}(t_1)$ e $M_{X_2}(t_2),$ discuta a independência das componentes de $\mathbf{X}.$
- iii) Calcule ρ_{12} e o interprete.
- **36.** Considere um vetor aleatório $\mathbf{X}=(X_1,X_2)$ cuja respectiva função geradora de momentos é dada por

$$M_{\mathbf{X}}(\mathbf{t}) = \exp\left\{\mu_1 t_1 + \mu_2 t_2 + \frac{1}{2} \left(\sigma_1^2 t_1^2 + \sigma_2^2 t_2^2 + 2\rho \sigma_1 \sigma_2 t_1 t_2\right)\right\},$$

com $\mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 \in \mathbb{R}^+ \text{ e } \rho \in (-1, 1).$

- i) Identifique as marginais de X_1 e X_2 .
- ii) Usando $M_{\mathbf{X}}(\mathbf{t}),\,M_{X_1}(t_1)$ e $M_{X_2}(t_2),\,$ discuta a independência das componentes de $\mathbf{X}.$
- iii) Forneça uma condição necessária e suficiente para garantir a independência das componentes de \mathbf{X} .
- iv) Calcule $\rho_{12} := \operatorname{Corr}(X_1, X_2)$ e o interprete.
- 37. Considere $\mathbf{X} = (X_1, X_2)$ um vetor aleatório absolutamente contínuo com densidade dada por

$$f_{(X_1,X_2)}(x_1,x_2) = \frac{1}{2}x_1x_2\mathbb{1}_{(0,2)}(x_1)\mathbb{1}_{(0,x_1)}(x_2).$$

- i) Encontre as marginais de X_1 e X_2 .
- ii) As variáveis X_1 e X_2 são independentes?
- ii) Determine $Cov(X_1, X_2)$.
- **38.** Considere $U \sim \mathcal{U}(0,1)$ e $Z \sim \exp(1)$, independentes. Mostre que

$$X = \sqrt{2Z}\cos(2\pi U)$$

$$Y = \sqrt{2Z}\operatorname{sen}(2\pi U),$$

são iid com distribuição $\mathcal{N}(0,1)$.

- **39.** Considere $\mathbf{X}=(X_1,X_2)\sim \mathcal{N}_2(0,0,1,1,1/2)$. Encontre a distribuição conjunta de $Y_1:=X_1+X_2$ e $Y_2=X_1-X_2$.
- **40.** Seja $\mathbf{X} = (X_1, X_2) \sim \mathcal{N}_2(3, 1, 16, 25, 6/10)$. Determinar:
 - i) $\mathbb{P}(3 \le X_2 \le 8)$.
 - ii) $\mathbb{P}(3 \le X_2 \le 8 | X_1 = 7)$.
 - iii) $\mathbb{P}(-3 < X_1 < 3)$.
 - iv) $\mathbb{P}(-3 \le X_1 \le 3 | X_2 = -4)$.
 - v) Obtenha as distribuições condicionais de X_2 dado X_1 e de X_1 dado X_2 .
 - vi) Obtenha a distribuição conjunta de $Y_1 = 2X_1 X_2$ e $Y_2 = -X_1 + 3X_2$.
- 41. Considere $\mathbf{X} \sim \mathcal{N}_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
 - i) Mostre que $f_{\mathbf{X}}(\mathbf{x})$ é uma legítima fdp.
 - ii) Usando $f_{\mathbf{X}}(\mathbf{x})$, determine as distribuições marginais.
 - iii) Obtenha as distribuições condicionais.
 - iv) Prove que $\rho = \operatorname{Corr}(X_1, X_2) = 0$ é uma condição necessária e suficiente para garantir a independência das componentes de \mathbf{X} .
 - v) Encontre $M_{\mathbf{X}}(\mathbf{t}), \forall \mathbf{t} \in \mathbb{R}^2$.
- **42.** Usando um software de sua preferência, plote a função densidade de probabilidade e a respectiva curva de nível (mapa de contorno) da $\mathcal{N}_2(0,0,1,1,\rho)$, para $\rho=0,\pm0.1,\pm0.5,\pm0.9$. Interprete os gráficos.
- **43.** Apresente as 3 definições equivalentes da distribuição normal multivariada (sem a necessidade da fdp) e suas propriedades apresentadas de forma matricial.
- **44.** Faça um breve ensaio sobre distribuição *t*-Student multivariada e suas propriedades apresentadas de forma matricial.

- **45.** Usando um software de sua preferência, plote a função densidade de probabilidade e a respectiva curva de nível (mapa de contorno) da $t_{\nu}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, para $\boldsymbol{\mu} = \mathbf{0}, \ \boldsymbol{\Sigma} = \rho \mathbf{I}_2, \ \rho = 0, \pm 0.1, \pm 0.5, \pm 0.9$ e $\nu = 1, 2, 10, 30$ e 100. Interprete os gráficos.
- **46.** Apresente um resumo sobre:
 - i) Distribuições χ^2 e F não centrais.
 - ii) Distribuições de formas lineares e quadráticas (sob suposição de normalidade).
- 47.(Família de localização/posição) Seja $\mathcal{F}_{\theta} = \{f(\cdot;\theta), \theta \in \mathbb{R}\}$ uma família de densidades. O parâmetro θ é definido ser um parâmetro de localização/posição se e somente se a densidade $f(x;\theta)$ poder ser escrita da forma $f(x;\theta) = g(x-\theta)$, com g uma função conhecida, denominada de função geradora. Adicionalmente, diz-se que a densidade $f(\cdot;\theta)$ (ou a V.A. associada) é um membro da família de localização. Mostre que as seguintes V.A's pertencem à família de localização, identificando o parâmetro de localização e a respectiva função geradora:
 - i) $X \sim \mathcal{N}(\mu, \sigma^2)$, com σ conhecido.
 - ii) $X \sim \text{Cauchy}(\mu, \sigma)$, com σ conhecido, i.e.,

$$f_X(x) = \frac{\sigma}{\pi \left[\sigma^2 + (x - \mu)^2\right]} \mathbb{1}_{\mathbb{R}}(x).$$

iii) $X \sim t_k(\mu, \sigma)$, com $k \in \sigma$ conhecidos, i.e.,

$$f_X(x) = \frac{1}{\sqrt{k}B(1/2, k/2)\sigma} \left(1 + \frac{\left(\frac{x-\mu}{\sigma}\right)^2}{k}\right)^{-(k+1)/2} \mathbb{1}_{\mathbb{R}}(x).$$

iv) $X \sim \text{Laplace}(\mu, \sigma)$, com σ conhecido, i.e.,

$$f_X(x) = \frac{1}{2\sigma} e^{-\frac{|x-\mu|}{\sigma}} \mathbb{1}_{\mathbb{R}}(x).$$

48.(Família de escala) Seja $\mathcal{F}_{\theta} = \{f(\cdot;\theta), \theta \in \mathbb{R}\}$ uma família de densidades. O parâmetro θ é definido ser um parâmetro de escala se e somente se a densidade $f(x;\theta)$ poder ser escrita da forma $f(x;\theta) = \theta^{-1}g(x/\theta)$, com g uma função conhecida, denominada de função geradora. Adicionalmente, diz-se que a densidade $f(\cdot;\theta)$ (ou a V.A. associada) é um membro da família de escala. Mostre que as seguintes V.A's pertencem à família de escala, identificando o parâmetro de escala e a respectiva função geradora:

- i) $X \sim \mathcal{U}(-\theta, \theta)$.
- ii) $X \sim \exp(\lambda)$.
- iii) $X \sim \mathcal{N}(\mu, \sigma^2)$, com μ conhecido.
- iv) $X \sim t_k(\mu, \sigma)$, com k e μ conhecidos.
- v) $X \sim \text{Laplace}(\mu, \sigma)$, com μ conhecido.

49.(Família de localização-escala) Seja $\mathcal{F}_{\theta} = \{f(\cdot; \theta_1, \theta_2), \theta_1 \in \mathbb{R}, \theta_2 > 0\}$ uma família de densidades. Os parâmetros θ_1 e θ_2 são definidos, respectivamente, parâmetros de localização e de escala se e somente se a densidade $f(x; \theta_1, \theta_2)$ poder ser escrita da forma $f(x; \theta) = \theta_2^{-1} g((x - \theta_1)/\theta_2)$, com g uma função conhecida, denominada de função geradora. Adicionalmente, diz-se que a densidade $f(\cdot; \theta_1, \theta_2)$ (ou a V.A. associada) é um membro da família de localização-escala. Mostre que as seguintes V.A's pertencem à família de localização-escala, identificando os parâmetros de localização e de escala, e a respectiva função geradora:

- i) $X \sim \mathcal{N}(\mu, \sigma^2)$.
- ii) $X \sim t_k(\mu, \sigma)$, com k conhecido.
- iii) $X \sim \text{Laplace}(\mu, \sigma)$.
- iv) $X \sim \text{Logística}(\mu, \sigma)$, i.e.,

$$f_X(x) = \frac{e^{-\left(\frac{x-\mu}{\sigma}\right)}}{\sigma \left\{1 + e^{-\left(\frac{x-\mu}{\sigma}\right)}\right\}^2} \mathbb{1}_{\mathbb{R}}(x)$$

50. (Distribuições simétricas) Considere X uma variável aleatória com suporte em \mathbb{R} , com parâmetro de localização $\mu \in \mathbb{R}$ e de escala $\phi > 0$. Dizemos que X pertence a família de distribuições simétricas, se sua densidade é escrita da seguinte forma

$$f_X(x) = \frac{1}{\sqrt{\phi}} g \left\{ \frac{(x-\mu)^2}{\phi} \right\} \mathbb{1}_{\mathbb{R}}(x),$$

para alguma função $g(\cdot)$ denominada função geradora de densidades, com g(u) > 0 se u > 0 e $\int_0^\infty u^{-1/2} g(u) d_u = 1$. Mostre que as seguintes V.A's pertencem à família de de distribuições simétricas, identificando o parâmetro de localização o de escala e a respectiva função geradora:

i)
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
.

- ii) $X \sim \text{Cauchy}(\mu, \sigma)$.
- iii) $X \sim t_k(\mu, \sigma)$, com k conhecido.
- iv) $X \sim \text{Logística}(\mu, \sigma)$.

Sugestão de leitura: Para maiores detalhes sobre esta classe de distribuições, bem como de aplicações em modelos de regressão veja: Cysneiros, F.J., Paula, G.A. e Galea, M. (2007). *Modelos simétricos aplicados*. ABE, 9ª Escola de Modelos de Regressão, Águas de São Pedro-SP, Brasil.

51.(Família exponencial) Considere X uma variável aleatória com suporte em $\mathcal{A} \subset \mathbb{R}$ funcionalmente independente de θ . Dizemos que X pertence a família exponencial unidimensional de parâmetro θ , denotada por $X \sim \text{FE}(\theta)$, se sua densidade é escrita da seguinte forma

$$f_X(x;\theta) = \exp\{\eta(\theta)T(x) - A(\theta)\}h(x)\mathbb{1}_{\mathcal{X}}(x),$$

em que \mathcal{X} não depende de θ e $\eta(\theta)$ e T(x) são funções contínuas não-triviais. Mostre que as seguintes variáveis aleatórias pertencem à família exponencial, identificando o parâmetro θ e as funções T(x), $A(\theta)$ e h(x):

- i) $X \sim B(p), 0$
- ii) $X \sim B(n, p)$ com $n \in \mathbb{N}$ conhecido e 0 .
- iii) $X \sim P(\lambda), \lambda > 0.$
- iv) $X \sim G(p), 0$
- v) $X \sim BN(r, p)$ com $n \in \mathbb{N}$ conhecido e 0 .
- vi) $X \sim \text{Logarítmica}(p) \text{ com } 0 , i.e., com respectiva função de probabilidade$

$$\mathbb{P}(X = x) = \frac{p^x}{-\log(1 - p)x} \mathbb{1}_{\{1, 2, \dots\}}(x).$$

- vii) $X \sim \Gamma(r, \lambda)$ com $r, \lambda > 0$, r conhecido.
- viii) $X \sim \mathcal{N}(\mu, 1)$ com $\mu \in \mathbb{R}$ e $\sigma > 0$ conhecido.
- ix) $X \sim \mathcal{N}(\mu, \sigma^2)$ com $\mu \in \mathbb{R}$ conhecido e $\sigma > 0$.
- x) $X \sim \beta(a,b)$ com um dos parâmetros conhecido.

xi) $X \sim \text{Weibull}(b, a)$, com a > 0 e b > 0 conhecido, i.e., com respectiva densidade

$$f_X(x) = abx^{b-1}e^{-ax^b}\mathbb{1}_{\mathbb{R}^+}(x).$$

xii) X possuindo distribuição secante hiperbólica generalizada de parâmetro $\theta > 0$, i.e., com respectiva densidade

$$f_X(x) = \frac{1}{2} \exp(\theta x + \ln \cos(\theta)) \cosh\left(\frac{\pi x}{2}\right) \mathbb{1}_{\mathbb{R}}(y).$$

52. Mostre que se $X \sim FE(\theta)$, então $\mathbb{E}[T(X)] = \frac{\partial A(\eta(\theta))}{\partial \eta(\theta)}$ e $Var[T(X)] = \frac{\partial^2 A(\eta(\theta))}{\partial^2 \eta(\theta)}$.

Sugestão: Usando o fato que $f_X(x;\theta)$ é uma legítima função densidade de probabilidade, i.e.:

$$\int_{\mathcal{A}} \exp\{\eta(\theta)T(x) + c(x)\}d_x = \exp\{A(\theta)\} = \exp\{A(\eta(\theta))\},$$

e use essa identidade para mostrar que a função geradora de momentos (sob condições de regularidade) de Y = T(X) é dada por

$$M_Y(t) = \exp\{A(\eta(\theta) + t) - A(\eta(\theta))\}.$$

53. Os dados abaixo referem-se a resistência à flexão (MPa) de 27 vigas de um tipo de concreto de alto desempenho obtidos pela utilização de superplásticos e determinados adesivos.

Tabel<u>a 1: Resistência à flexão (em MPa) de 27 vigas.</u>

5,9	7,2	7,3	6,3	8,1	6,8	7,0
7,6	6,8	6,5	7,0	6,3	7,9	9,0
8,2	8,7	7,8	9,7	7,4	7,7	9,7
7,8	7,7	11,6	11,3	11,8	10,7	

- i) Defina a variável de interesse (X).
- ii) Calcule uma estimativa pontual do valor médio (μ) da resistência para a população conceitual de todas as vigas fabricadas dessa forma e diga qual estimador você utilizou.
- iii) Calcule uma estimativa pontual do valor da resistência que separa as 50% mais fracas de todas as vigas 50% mais fortes $(\widetilde{\mu})$ e diga qual estimador você utilizou.

- iv) Calcule e interprete uma estimativa pontual do desvio-padrão da população σ . (Sugestão: $\sum_{i=1}^{27} x_i^2 = 1860, 94.$)
- v) Calcule uma estimativa pontual da proporção de todas as vigas cuja resistência à flexão exceda a 10 MPa.
- vi) Calcule uma estimativa pontual do coeficiente de variação σ/μ da população e diga qual estimador você utilizou.
- **54.** Os pesos das peças produzidas por uma máquina (produção de 5.000 peças/dia) seguem distribuição normal com uma média de 22g e desvio padrão de 1,25g. Foi coletada 50 amostras, de 16 peças cada uma.
 - i) Determine a média e o desvio padrão da distribuição das médias amostrais.
 - ii) Em quantas amostras pode-se esperar que a média se encontre entre 19,3 e 20,5g? e abaixo de 19g?
 - iii) Qual a probabilidade de encontrarmos uma peça escolhida dessa produção com dimensão entre 19,3g e 20,5g?
- **55.** Considere X uma variável aleatória com distribuição normal, com média 100 e desvio-padrão 10.
 - i) Qual a $\mathbb{P}(90 < X < 110)$?
 - ii) Se \overline{X} representar a média de uma amostra aleatória de 16 elementos retirados dessa população, calcule $\mathbb{P}(90 < \overline{X} < 110)$.
 - iii) Denotando a variância amostral por S_X^2 , calcule $\mathbb{E}[S_X^2]$.
 - iv) Represente, num único gráfico, as distribuições de X e \bar{X} .
 - v) Que tamanho deveria ter a amostra para que $\mathbb{P}(90 < \overline{X} < 110) = 0,95$?
- 56. Encontre a distribuição amostral da diferença de médias nas seguintes situações:
 - i) Populações normais com variâncias desconhecidas iguais e amostras independentes.
 - ii) Populações normais com variâncias desconhecidas diferentes e amostras independentes.

- iii) Populações normais com variâncias desconhecidas diferentes e amostras dependentes.
- 57. Considere dois estimadores ($\hat{\theta}_1$ e $\hat{\theta}_2$) para um determinado parâmetro populacional θ . Para ajudar a escolher o *melhor*, simulou-se uma situação em que $\theta = 100$. Dessa população retiraram-se 1.000 amostras de dez unidades cada uma, e obtemos ambas as estimativas usando às dez unidades de cada amostra. Desse modo obtêm-se 1.000 estimativas baseadas em $\hat{\theta}_1$ e outras 1.000 estimativas baseadas em $\hat{\theta}_2$, cujos estudos descritivos estão resumidos abaixo. Qual dos dois estimadores você acha mais conveniente para estimar θ . Por quê?

	$\hat{ heta}_1$	$\hat{ heta}_2$
Média	102	100
Variância	5	10
Mediana	100	100
Moda	98	100

58. Um pesquisador está em dúvida sobre dois possíveis estimadores $\hat{\theta}_1$ e $\hat{\theta}_2$, para um parâmetro θ . Assim, ele decidiu usar simulação para uma situação hipotética, procurando encontrar pistas que o ajudassem a decidir qual o melhor estimador. Partindo de uma população fictícia, em que $\theta = 10$, ele retirou 1000 amostras de 20 elementos, e para cada amostra calculou o valor das duas estimativas. Em seguida, construiu a distribuição de frequências, segundo o quadro abaixo. Com base nesses resultados, escolha (justificando o motivo) qual dos dois estimadores deve ser preferível.

Classes	% de $\hat{\theta}_1$	% de $\hat{\theta}_2$
[5,7)	10	5
[7, 9)	20	30
[9, 11)	40	35
[11, 13)	20	25
[13, 15)	10	5

- **59.** Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da distribuição de uma variável aleatória $X \sim \mathcal{U}(0,\theta), \theta > 0$. Considere os estimadores $\hat{\theta}_1 = c_1 \overline{X}_n$ e $\hat{\theta}_2 = c_2 X_{(n)}$, em que $X_{(n)} := \max\{X_1, \cdots, X_n\}$.
 - i) Determine o espaço paramétrico referente ao modelo estatístico em questão.

- ii) Encontre c_1 e c_2 que tornam os estimadores não viciados.
- iii) Considere a seguinte amostra aleatória de tamanho 20: 3.59,3.13,3.30,0.30,1.54,0.40, 3.94,1.33,3.36,0.18,3.29,1.50,0.32,1.03,0.95,0.37,3.65,3.44,1.05,2.60. Baseado nos estimadores não viciados obtidos no item ii), obtenha as estimativas pontuais e dos seus respectivos erros-padrão.
- **60.** Para estimar a média μ de uma população, foram propostos dois estimadores não-viesados independentes $\hat{\mu}_1$ e $\hat{\mu}_2$, de tal sorte que $\text{Var}[\hat{\mu}_1] = \text{Var}[\hat{\mu}_2]/3$. Considere os seguintes estimadores ponderados de μ :
 - a) $T_1 = \frac{\hat{\mu}_1 + \hat{\mu}_2}{2}$.
 - b) $T_2 = \frac{4\hat{\mu}_1 + \hat{\mu}_2}{5}$.
 - c) $T_3 = \hat{\mu}_1$.
 - i) Quais estimadores são não-viesados?
 - ii) Dispor esses estimadores em ordem de eficiência.
 - iii) Considerando a consistência de que $\hat{\mu}_1$ e $\hat{\mu}_2$ são estimadores consistentes, mostre que os 3 estimadores acima também são.
- **61.** Considere $X \sim P(\theta)$ e $\phi(\theta) = \exp(-3\theta)$. Mostre que $T = (-2)^X$ é um estimador não viciado para $\phi(\theta)$. Ele é um **bom** estimador?
- **62.** Para estimar a média μ de uma população, foram propostos dois estimadores não-viesados $\hat{\mu}_{1n}$ e $\hat{\mu}_{2n}$, de tal sorte que $\text{Var}[\hat{\mu}_{1n}] = \text{Var}[\hat{\mu}_{2n}]/2$ e $\text{Cov}(\hat{\mu}_{1n}, \hat{\mu}_{2n}) = (2n)^{-1}$. Considerando que $\hat{\mu}_{2n}$ é um estimador consistente de μ .
 - i) Mostre que o estimador $\hat{\mu}_{1n}$ também é consistente para μ .
 - ii) Mostre que o estimador $T_n(\alpha) = \alpha \hat{\mu}_{1n} + (1 \alpha)\hat{\mu}_{2n}, \ \alpha \in (0, 1), \ \acute{\text{e}}$ consistente para μ .
 - iii) Determine o $\text{EQM}(T_n(\alpha))$ e desenhe o seu gráfico em função de α e encontre o valor de α que minimiza $\text{EQM}(T_n(\alpha))$.

63. Seja X_1, \ldots, X_n uma a.a. de uma variável aleatória a.c. que possui densidade simétrica em torno de μ . É possível mostrar que a distribuição assintótica da mediana amostral \tilde{X}_n é tal que

$$\tilde{X}_n \sim \mathcal{AN}\left(\mu, \frac{1}{4n\{f(\mu)\}^2}\right).$$
 (1)

- i) Compare $Var(\overline{X}_n)$ e $Var(\tilde{X}_n)$ quando a distribuição subjacente for a normal. Você esperava este resultado? Comente.
- ii) Quando a distribuição subjacente for a Cauchy, a média amostral será um **bom** estimador? Quanto vale a variância assintótica de \tilde{X}_n ?
- **64.** Através de um estudo de simulação, verifique a validade, variando o tamanho da amostra, do resultado (1) para as distribuições: Normal, Cauchy, t-Student (variando os g.l.) e Laplace.
- **65.** Considere $X_1, \ldots, X_n \overset{\text{iid}}{\sim} X$. Obtenha as distribuições assintóticas da média e mediana amostrais, quando:
 - i) $X \sim \mathcal{N}(\mu, \sigma^2)$.
 - ii) $X \sim t_k(\mu, \sigma)$, com k > 2 conhecido.
 - iii) $X \sim \text{Laplace}(\mu, \sigma)$.
 - iv) $X \sim \text{Log}(\text{stica}(\mu, \sigma))$.

Para cada um dos itens acima, discuta qual estimador deve ser preferível para estimar o parâmetro de localização.

- **66.** Sejam $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P(\theta)$. Sabemos que \overline{X}_n e S_n^2 são dois estimadores não viciados para θ . Encontre um outro estimador não viciado para θ que seja função de \overline{X}_n e S_n^2 simultaneamente.
- **67*.** Sejam $(X_1, Y_1) \dots, (X_n, Y_n)$ uma a.a. de uma distribuição normal bivariada com parâmetros $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ e ρ . Assuma que $\mu_1 = \mu_2 = \mu$ e considere a seguinte classe de estimadores

$$\hat{\mu}(\alpha) := \alpha \overline{X}_n + (1 - \alpha) \overline{Y}_n.$$

- i) O estimador $\hat{\mu}(\alpha)$ é consistente?
- ii) Determine o valor $\alpha = \alpha_0$ que minimiza a variância do estimador $\hat{\mu}(\alpha)$ e considere o estimador

$$\hat{\mu}(\alpha_0) := \alpha_0 \overline{X}_n + (1 - \alpha_0) \overline{Y}_n.$$

Mostre que se $\sigma_1 = \sigma_2$, o BLUE (melhor estimador linear não viciado) de μ é dado por

$$\hat{\mu} = \frac{\overline{X}_n + \overline{Y}_n}{2}.$$

- **68.** Sejam $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$. Mostre que o desvio-padrão amostral é um estimador **viciado** de σ . Note que é preciso **apenas** mostrar que $\mathbb{E}[S_n] \neq \sigma$, não importando o valor **exato**.
- **69.** Considere X_1, \dots, X_n uma a.a. da distribuição exponencial truncada à esquerda de θ

$$f_X(x) = e^{-(x-\theta)} \mathbb{1}_{[\theta,\infty)}(x).$$

Mostre que $X_{(1)} = \min\{X_1, \dots, X_n\}$ é um estimador consistente de θ .

- 70. Considere a questão anterior. Determine um estimador não viciado de θ que seja função de $X_{(1)}$.
- 71. Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da distribuição $\mathcal{N}(0, \sigma^2)$. Seja $S_{n*}^2 := \sum_{i=1}^n X_i^2$. Considere os estimadores da forma:

$$\hat{\sigma}_c^2 := cS_{n*}^2.$$

- i) Determine o espaço paramétrico referente ao modelo estatístico em questão.
- ii) Mostre que $\frac{S_{n*}^2}{\sigma^2} \sim \chi_n^2$.
- iii) Encontre o $\mathrm{EQM}(\hat{\sigma}_c^2)$.
- iv) Encontre o valor de c que minimiza o EQM em iii).
- 72. Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da distribuição $\mathcal{N}(\mu, \sigma^2)$. Seja $S_n^2 := \sum_{i=1}^n (X_i \bar{X}_n)^2$, em que $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$. Considere os estimadores da forma:

$$\hat{\sigma}_c^2 := cS_n^2.$$

- i) Determine o espaço paramétrico referente ao modelo estatístico em questão.
- ii) Encontre o EQM $(\hat{\sigma}_c^2)$.
- iii) Encontre o valor de c que minimiza o EQM em ii).

- **73*.** Sejam Y_1, \ldots, Y_n variáveis aleatórias independentes, tais que $Y_i \sim \mathcal{N}(\alpha + \beta x_i, \sigma^2)$, em que os valores de x_i não são estocásticos, satisfazendo $\sum_{i=1}^n (x_i \bar{x}_n)^2 > 0$.
 - i) Mostre que

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}_n) Y_i}{\sum_{i=1}^{n} (x_i - \overline{x}_n)^2} \quad \text{e} \quad \hat{\alpha} = \overline{Y}_n - \hat{\beta} \overline{x}_n.$$

são estimadores não viciados de β e α , respectivamente.

ii) Mostre que $\hat{\alpha}$ pode ser reescrito como uma combinação linear das variáveis Y_i 's, i.e.

$$\hat{\alpha} = \sum_{i=1}^{n} c_i Y_i.$$

- iii) Sob a suposição de normalidade, encontre a distribuição conjunta dos estimadores.
- iv) Mostre que $\hat{\beta}(\hat{\alpha})$ é o BLUE de $\beta(\alpha)$.
- v) Forneça uma condição suficiente para que os estimadores $\hat{\alpha}$ e $\beta(\alpha)$ sejam consistentes.
- **74.** Considere $X_1, \ldots, X_n \overset{\text{iid}}{\sim} (\mu, \sigma^2)$. Mostre que

$$\hat{\mu} := \frac{2}{n(n+1)} \sum_{i=1}^{n} iX_i,$$

é um estimador não viciado e fracamente consistente de μ .

75. Seja $X_1, \ldots, X_n \overset{\text{iid}}{\sim} X$, em que

$$f_X(x) = e^{-(x-\theta)} \mathbb{1}_{(\theta,\infty)}(x).$$

Considere a classe dos estimadores

$$T_b(X_{(1)}) = X_{(1)} + b, b \in \mathbb{R}.$$

Mostre que o estimador que possui o menor EQM nesta classe é $T^* = X_{(1)} - 1/n$.

76. Considere que x_1, \ldots, x_n são valores fixos e que as observações de interesse y_1, \ldots, y_n seguem o seguinte modelo de regressão: $y_i = \beta_0 + \beta_1 x_i + e_i, i = 1, \ldots, n$ com e_1, \ldots, e_n representando uma amostra aleatória da distribuição $\mathcal{N}(0, \sigma^2)$. Determine o espaço paramétrico e vetor de estatísticas suficientes para os parâmetros do modelo, quando:

- i) σ é conhecido.
- ii) σ é desconhecido.

77. Seja $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} X$, com X representando uma variável aleatória com média μ e variância σ^2 .

- i) Mostre que $\mathbb{E}\left[\sum_{i=1}^n a_i X_i\right] = \mu$, para quaisquer conjunto de constantes $\{a_1,\dots,a_n\}$, satisfazendo $\sum_{i=1}^n a_i = 1$.
- ii) Se $\sum_{i=1}^n a_i = 1$, mostre que Var $\left[\sum_{i=1}^n a_i X_i\right]$ é minimizada quando $a_i = 1/n, i = 1, \dots, n$, i.e., \bar{X}_n é o ENVVUM de μ .

Sugestão: Mostre que $\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} (a_i - 1/n)^2 + 1/n$ quando $\sum_{i=1}^{n} a_i = 1$.

78. Sejam X_1, \ldots, X_n e Y_1, \ldots, Y_m variáveis aleatórias independentes com $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta, \sigma^2)$ e $Y_j \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$, $\theta, \lambda \in \mathbb{R}, \sigma, \tau > 0$. Encontre estatísticas suficientes minimais para os casos abaixo:

- i) Todos os parâmetros desconhecidos.
- ii) $\theta = \lambda$ e σ , τ são desconhecidos.
- iii) $\sigma = \tau$ e θ , λ são desconhecidos.
- iv) $\theta = \lambda$ e $\sigma = \tau$ são desconhecidos.

Em quais das situações acima a estatística encontrada também é completa?

79. Admita que $(X_1, Y_1), \dots (X_n, Y_n)$ são vetores aleatórios iid com distribuição normal bivariada com $\mathbb{E}[X_1] = \mathbb{E}[Y_1] = 0$, $\operatorname{Var}[X_1] = \operatorname{Var}[Y_1] = 1$ e $\operatorname{Cov}(X_1, Y_1) = \rho$.

- i) Encontre uma estatística suficiente minimal para o modelo.
- ii) Mostre que as estatísticas $T_1=\overline{X}_n$ e $T_2=\overline{Y}_n$ são ancilares, mas o vetor $(T_1,T_2)^{\top}$ não é.
- **80.** Considere $X_1, \ldots, X_n \overset{\text{aa}}{\sim} \mathcal{U}(0, \theta), \ \theta > 0$. Considere $X_{(n)} = \max\{X_1, \ldots, X_n\}$.
 - i) Dentre todos os estimadores da forma $aX_{(n)}$, com a representando uma constante que pode depender de n, determine o estimador que possui o menor EQM.

- ii) Encontre o ENVVUM de θ . Nesse caso, o ENVVUM de θ pode ser eficiente? Justifique.
- iii) Qual dos dois estimadores deve ser preferível? Justifique.
- **81.** Considere $X_1, \ldots, X_n \overset{\text{aa}}{\sim} X$, tal que $f_X(x) = \frac{2x}{\theta^2} \mathbb{1}_{(0,\theta)}(x)$, $\Theta = \mathbb{R}^+$.
 - i) Encontre uma estatística suficiente e completa para θ .
 - ii) Existe alguma função de θ para o qual existe um estimador não viciado cuja variância coincide com o LICR(θ)?
 - iii) Determine LICR(θ).

Sugestão: Verifique se as condições de regularidade são válidas para esse modelo.

- iv) Determine o ENVVUM de θ .
- 82. Considere $X_1, \ldots, X_n \overset{\text{aa}}{\sim} X$, com X representando uma variável aleatória qualquer. Considere que o interesse é estimar a função de distribuição de X em um ponto $x \in \mathbb{R}$, i.e., estimar $F_X(x)$. Mostre que
 - i) A função distribuição empírica, $\hat{F}_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbbm{1}(X_i \leq x)$ é tal que $\mathbb{E}[\hat{F}_n(x)] = F_X(x)$, $\forall x \in \mathbb{R}$.
 - ii) Assuma que a estatística $T(\mathbf{x}) = (X_{(1)}, \dots, X_{(n)})$ é suficiente e completa para o modelo em questão. Prove que $\hat{F}_n(x)$ é o ENVVUM de $F_X(x)$, \overline{X}_n é o ENVVUM de $\mu = \mathbb{E}[X]$ e S_X^2 é o ENVVUM de $\sigma^2 = \text{Var}[X]$.
- 83. Sejam $(X_1, Y_1), \ldots, (X_n, Y_n)$ uma amostra aleatória das distribuições consideradas a seguir. Encontre estatísticas suficientes não triviais para os parâmetros indicados.
 - i) $(X,Y) \sim \text{Trinomial}(n,p_1,p_2)$, i.e.,

$$\mathbb{P}(X=x,Y=y) = \binom{n}{x,y} p_1^x p_2^y (1-p_1-p_2)^{n-x-y} \mathbb{1}_{\{0,\dots,n\}}(x) \mathbb{1}_{\{0,\dots,n-x\}}(y),$$

 $n \in \mathbb{N}$ conhecido, $0 < p_1, p_2 < 1$ e $0 < p_1 + p_2 < 1$, em que $\binom{n}{x,y} = \frac{n!}{x!y!(n-x-y)!}$.

ii)
$$f(x, y/\boldsymbol{\theta}) = \frac{\beta^{\alpha+\gamma}}{\Gamma(\alpha)\Gamma(\gamma)} x^{\alpha-1} (y-x)^{\gamma-1} e^{-\beta y} \mathbb{1}(0 < x < y), \ \boldsymbol{\theta} = (\alpha, \beta, \gamma).$$

iii) $(X,Y) \sim \text{Dirichlet}(\alpha_1, \alpha_2, \alpha_3)$, i.e.,

$$f(x, y/\alpha_1, \alpha_2, \alpha_3) = \frac{\Gamma\left(\sum_{i=1}^3 \alpha_i\right)}{\prod_{i=1}^3 \Gamma(\alpha_i)} x^{\alpha_1 - 1} y^{\alpha_2 - 1} (1 - x - y)^{\alpha_3 - 1} \mathbb{1}_{(0,1)}(x) \mathbb{1}_{(0,1-x)}(y),$$

 $\alpha_i > 0, i = 1, 2, 3.$

iv) $(X,Y) \sim \mathcal{N}_2$, i.e.,

$$f(x,y/\theta) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho \left(\frac{x-\mu_1}{\sigma_1}\right) \right] \times \left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right] \right\} \mathbb{1}_{\mathbb{R}^2}(x,y),$$

em que $\boldsymbol{\theta} = (\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)^{\top}$.

- 84. Considere que x_1, \ldots, x_n são valores fixos e que as observações de interesse y_1, \ldots, y_n seguem o seguinte modelo de regressão: $y_i = \beta_0 + \beta_1 x_i + e_i, i = 1, \ldots, n$ com e_1, \ldots, e_n representando uma amostra aleatória da distribuição $\mathcal{N}(0, \sigma^2)$. Determine o espaço paramétrico e vetor de estatísticas suficientes minimais e completas para os parâmetros do modelo, quando:
 - i) σ é conhecido.
 - ii) σ é desconhecido.
- 85. Faça um resumo sobre o método dos momentos (MM) e o método de máxima verossimilhança (MV), evidenciando vantagens e desvantagens, além das principais propriedades. Por qual razão o EMV é o mais utilizado?
- **86.** Considere $X_1, \ldots, X_n \stackrel{\text{aa}}{\sim} \mathcal{N}(0, \theta), \ \theta \in \mathbb{R}^{++}$.
 - i) Calcule $I_F(\theta)$.
 - ii) Mostre que o EMV de θ é eficiente.
- 87. (Prova seleção IME-USP, 2016) Considere X uma v.a. a.c. com função densidade de probabilidade dada por

$$f_X(x|\theta) = \frac{\theta}{x^2} \mathbb{1}_{[\theta,\infty)}(x), \quad \theta > 0,$$

e assuma que $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} X$.

- i) Determine uma estatística suficiente minimal para θ .
- ii) Determine o EMM e EMV de θ .
- iii) Qual dos dois estimadores deve ser preferido? Justifique.
- iv) Existe alguma função de θ para o qual existe um estimador não viciado cuja variância coincide com o LICR ? Justifique sua resposta.
- 88. Considere X_1, \ldots, X_n uma a.a. da distribuição $\mathcal{N}(\mu, 1), \mu \geq 0$. Encontre o EMV de μ .
- **89.** Considere X_1, \ldots, X_n uma a.a. da distribuição $\mathcal{N}(\mu, \sigma^2)$.
 - i) Mostre que os parâmetros são ortogonais. O que isso facilita no processo de estimação?
 - ii) Determine a distribuição assintótica conjunta de $(\hat{\mu}, \hat{\sigma}^2)^{\top}$, com $\hat{\theta}$ representando o EMV de θ .
- **90.** Considere Y_1, \ldots, Y_n independentes, tais que $Y_i \sim \mathcal{N}(\beta x_i, \sigma^2)$, x_i conhecido.
 - i) Determine os EMV de β e σ^2 .
 - ii) Os parâmetros são ortogonais? Você esperaria esse resultado? Justifique.
 - ii) Determine a distribuição assintótica conjunta de $(\hat{\beta}, \hat{\sigma}^2)^{\top}$.
- 91*. Admita que $(X_1, Y_1), \dots (X_n, Y_n)$ são vetores aleatórios iid com distribuição normal bivariada com $\mathbb{E}[X_1] = \mathbb{E}[Y_1] = 0$, $\operatorname{Var}[X_1] = \operatorname{Var}[Y_1] = 1$ e $\operatorname{Cov}(X_1, Y_1) = \rho$.
 - i) Determine o EMM e o EMV de ρ .
 - ii) Repita o item i) considerando uma amostra de vetores aleatórios iid com distribuição normal bivariada de vetor de média μ e matriz de variância covariância Σ .

92. Defina:

i) Estatística, estimador, estimativa, estimação e parâmetro.

- ii) Faça uma comparação entre intervalo de confiança e teste de hipóteses, abordando os objetivos de cada técnica. Qual a grande vantagem de se fazer um teste de hipóteses com relação a construção de um IC?
- 93. Faça um breve resumo sobre:
 - i) O método da quantidade pivotal para obtenção de intervalos de confiança.
 - ii) A obtenção de intervalos de comprimento mínimo.
- **94.** Considere X_1, \ldots, X_n uma a.a. de uma densidade $f(\cdot)$. Mostre que se $f(\cdot)$ pertence a família de:
 - i) Localização, então $T=\overline{X}-\theta$ é uma quantidade pivotal.
 - ii) Escala, então $T = \overline{X}/\theta$ é uma quantidade pivotal.
 - iii) Localização (θ_1) e escala (θ_2) , então $T = (\overline{X} \theta_1)/\theta_2$ é uma quantidade pivotal.
- 95. Sejam X_1,\dots,X_n uma amostra aleatória da distribuição exponencial de média $\theta,\,\theta>0.$
 - i) Usando o fato de que $Y=2\theta^{-1}\sum_{i=1}^n X_i \sim \chi^2_{(2n)}$, construa um intervalo de confiança para θ com coeficiente de confiança $1-\alpha$ $(0<\alpha<1)$ baseado na quantidade pivotal Y.
 - ii) Mostre que

$$\left(\frac{\sqrt{n}\bar{X}_n}{\sqrt{n}+z_{1-\alpha/2}},\frac{\sqrt{n}\bar{X}_n}{\sqrt{n}-z_{1-\alpha/2}}\right),$$

é um intervalo de confiança assintótico para θ com coeficiente de confiança aproximadamente igual a $1-\alpha$ ($0<\alpha<1$). Aqui, $z_{1-\alpha/2}$ representa o quantil de ordem $1-\alpha/2$ da normal padrão, i.e., $z_{1-\alpha/2}=\Phi^{-1}(1-\alpha/2)$.

- **96.** Os dados abaixo referem-se as notas de uma amostra de 45 estudantes da *aprazível* disciplina de Inferência II no ano de 2017.
 - i) Faça uma análise descritiva dos dados.
 - ii) Construa um intervalo de confiança de 95% para a nota mediana da turma.

Tabela 2: Notas de Introdução à Estatística.

5,70	5.60	3 00	2.40	1.00	2.60	3 20	1,30	3.00	6.70
2,40	1,20	5,90	9,00	3,30	3,40	2,90	1,70	5,60	2,70
5,50	8,70	1,90	0,80	1,50	1,80	5,80	1,50	3,50	3,30
1,90	5,80	2,20	2,90	0,80	4,30	1,00	1,70	2,60	2,80
2,70	1,00	5,50	4,60	4,80					

- iii) Obtenha e desenhe o gráfico da função distribuição empírica das notas.
- iv) Construa um intervalo de confiança para a probabilidade do aluno não ser reprovado direto, *i.e.*, tenha nota maior ou igual a 4.
- v) Através do gráfico de quantis-quantis, verifique se é razoável supor normalidade (use a média
 e a variância amostral, como os verdadeiros parâmetros da distribuição normal).
- vi) Para responder os itens ii) e iv) você fez alguma suposição? Caso tenha feito, é razoável considerá-la verdadeira para o problema em questão? Discuta.
- 97. Considere $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, com $\sigma > 0$ conhecido. Encontre o **melhor** IC de nível (1α) usando o método da quantidade pivotal.
- 98. Repita o exercício anterior na situação em que σ é desconhecido.
- 99. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, com $\sigma > 0$ desconhecido. Encontre um IC para σ^2 de nível (1α) usando o método da quantidade pivotal quando:
 - i) μ é conhecido.
 - ii) μ é desconhecido.
- 100. Sejam $X_{i_1}, \ldots, X_{i_{n_i}}$ observações independentes de distribuições normais de médias μ_i e variância σ_i^2 , para $i = 1, 2, \mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 > 0$. Obtenha o intervalo de confiança de comprimento mínimo para $\mu_1 \mu_2$ com coeficiente de confiança confiança γ (0 < γ < 1) supondo que as variâncias são conhecidas.
- 101. Na questão anterior, considerando que as variâncias são desconhecidas, obtenha um intervalo de confiança para σ_1^2/σ_2^2 com coeficiente de confiança confiança γ (0 < γ < 1).

- 102. Repita o Exercício 100 supondo agora que as variâncias são desconhecidas mas iguais, i.e. $\sigma_1^2 = \sigma_2^2 = \sigma^2$.
- **103.** Sejam X_1, \ldots, X_n observações independentes de distribuições exponenciais de médias $\alpha \beta^i, i = 1, \ldots, n$, respectivamente, $\alpha, \beta > 0$.
 - i) Mostre que $\frac{X_i}{\alpha\beta^i} \sim \exp(1)$.
 - ii) Supondo que β é conhecido, construa um intervalo de confiança para α com coeficiente de confiança confiança γ (0 < γ < 1).
- **104.** Sejam X_1, \ldots, X_n observações independentes de distribuições uniformes no intervalo $[0, \theta]$, em que $\theta > 0$.
 - i) Mostre que $\frac{X_{(n)}}{\theta}$ é uma quantidade pivotal.
 - ii) Mostre que

$$\left[\frac{X_{(n)}}{(1-\alpha/2)^{1/n}}, \frac{X_{(n)}}{(\alpha/2)^{1/n}}\right],$$

é um intervalo de confiança para θ com coeficiente de confiança $1-\alpha$ (0 < α < 1).

- iii) Encontre o IC ótimo para θ de nível (1α) usando o método da quantidade pivotal com base na estatística suficiente completa e minimal $X_{(n)}$.
- 105. Considere X uma única observação da densidade

$$f_X(x;\theta) = \theta x^{\theta-1} \mathbb{1}_{(0,1)}(x), \theta > 0.$$

- i) Determine uma quantidade pivotal e com base nela, determine um IC para θ com coeficiente de confiança 1α (0 < α < 1).
- ii) Considere $Y := -1/\ln X$. Mostre que (Y/2, Y) é um intervalo de confiança para θ . Determine o coeficiente de confiança associado a este intervalo.
- iii) Encontre o IC ótimo para θ de nível (1α) com base em Y.
- **106.** $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Cauchy}(\mu, 1)$. Encontre um IC para μ de nível (1α) :

- i) Baseado na distribuição exata de \overline{X}_n . Neste caso, encontre o intervalo de comprimento mínimo **exato**.
- ii) Baseado na distribuição assintótica do EMV de μ , encontrando o intervalo de comprimento mínimo assintótico.
- iii) Em que situação cada intervalo deve ser preferível ao outro? Por quê?
- iv) Realize um estudo de simulação para ajudar a responder a pergunta do item anterior.
- 107. Explique os erros tipo I e tipo II que podem ocorrer nas seguinte situações:
 - i) Um júri decide condenar ou não o réu.
 - ii) O juiz marcou penalidade máxima contra o time azul.
- 108. (Gráfico do poder do teste) Define-se como gráfico do poder do teste para um determinado teste de hipóteses, a curva que expressa o comportamento do poder (1β) em função das diversas hipóteses alternativas \mathcal{H}_1 , fixando-se o nível de significância α . Desenhe o gráfico do poder do teste para $\mathcal{H}_0: \mu = 10$ versus $\mathcal{H}_1: \mu \neq 10$, em que n = 9, $\sigma^2 = 4$ e $\alpha = 0,05$. Para simplificar, assuma normalidade da população e admita: 7,0; 7,5; 8,0; 8,5; 9,0; 9,5; 10,00; 10,5; 11,0; 11,5; 12,0; 12,5 e 13,0 como possíveis valores de μ .
- 109. Refaça a questão anterior, considerando diferentes tamanhos de amostras, por exemplo, n=20 e n=30. Desenhe as três curvas em um mesmo gráfico e comente.
- 110. Considere X_1, \ldots, X_n uma a.a. da distribuição Laplace $(\mu, 1)$. Obtenha o teste da razão de verossimilhanças generalizada para $\mathcal{H}_0: \mu = 0$ vs $\mathcal{H}_1: \mu \neq 0$ ao nível α . Estime empiricamente o tamanho e o poder do teste utilizando os valores $\mu = 0, \pm 0.2, \pm 0.4, \pm 0.6, \pm 0.8, \pm 1.2, \pm 1.4, \pm 1.6, \pm 1.8$. Plote a curva da função poder empírica. Considere n = 5, 10, 15, 20, 30 e 50 e discuta os resultados.
- 111. Considere que o interesse é testar a hipótese $\mathcal{H}_0: \mu = \mu_0$, com σ conhecido e sob suposição de normalidade. Mostre que a probabilidade do erro tipo II para um teste de nível α , para os diferentes tipos de hipóteses alternativas, são dadas por:

$$\begin{split} \textbf{Hip\'otese} & \textbf{Probabilidade do erro tipo II} \\ \mathcal{H}_1: \mu = \mu' > \mu_0 & \Phi\left(z_\alpha + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right) \\ \mathcal{H}_1: \mu = \mu' < \mu_0 & 1 - \Phi\left(-z_\alpha + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right) \\ \mathcal{H}_1: \mu = \mu' \neq \mu_0 & \Phi\left(z_{\alpha/2} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right) - \Phi\left(-z_{\alpha/2} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right), \end{split}$$

em que $\Phi(z) = \mathbb{P}(Z \leq z)$ e $z_{\alpha} = \Phi^{-1}(\alpha)$ representam, respectivamente, a função distribuição acumulada e o quantil de ordem $\alpha \in (0,1)$ da distribuição $\mathcal{N}(0,1)$. Adicionalmente, mostre que $\lim_{n\to\infty} \beta(\mu') = 0, \forall \mu' \neq \mu_0$. Você consegue explicar este resultado?

- 112. De forma análoga a questão anterior, encontre a probabilidade do erro tipo II, quando o interesse é testar $\mathcal{H}_0: \mu = \mu_0$, com σ desconhecido e sob suposição de normalidade. Deixe a resposta em termos da função distribuição acumulada da distribuição t com t graus de liberdade: $\Phi_k(\cdot)$.
- 113. (Determinação do tamanho da amostra) Em situações práticas é desejável controlar a probabilidade de se cometer ambos os tipos de erros. Fixado α , temos que a probabilidade de se cometer o erro tipo II é uma função decrescente do tamanho da amostra (Questões # 31 e # 32). Baseado no resultado que você obteve na Questão # 33, mostre que o tamanho da amostra para o qual um teste de nível α possui probabilidade tipo II igual a $\beta(\mu')$ (perceba que usamos o valor μ' especificado) é dado por

Hipótese Tamanho da amostra
$$\mathcal{H}_1: \mu = \mu' > \mu_0(\mu' < \mu_0)$$
 $n = \left\lfloor \left(\frac{\sigma(z_\alpha + z_\beta)}{\mu_0 - \mu'} \right)^2 \right\rfloor,$

em que |x|, representa o menor número inteiro maior ou igual a x.

114. Para investigar a influência do tipo de ensino (Particular e Público, referente ao ultimo ano do ensino médio) sobre a média no curso de Introdução à Estatística de recém-ingressos na UFC, obteve-se a seguinte amostra:

Tabela 3: Notas de 20 alunos no curso de Introdução à Estatística.

Particular	Público		
2,5	8,0		
7,8	4,2		
3,5	7,4		
8,3	4,0		
5,0	4,1		
3,9	5,6		
6,0	5,5		
10,0	6,0		
9,1	5,2		
2,5	3,3		

- i) Denotando as notas dos estudantes oriundos de escolas particulares (públicas) por x_1, \ldots, x_{10} (y_1, \cdots, y_{10}) obtenha \bar{x}, \bar{y}, s_x^2 e s_y^2 .
- ii) Calcule $\hat{\sigma}^2 = ((n_x 1)s_x^2 + (n_y 1)s_y^2)/(n_x + n_y 2)$, em que n_x e n_y , representam, respectivamente, o número de alunos na amostra oriundos de escolas particulas e públicas.
- iii) Recalcule $\bar{x}, \bar{y}, s_x^2, s_y^2$ e σ^2 , usando as formas matriciais apresentadas na Questão # 21.
- iv) Considerando válida as suposições de Normalidade, independência e igualdade de variâncias, utilize o teste t para verificar se existe evidência a favor da hipótese de que os alunos oriundos de escolas particulares apresentam um melhor desempenho na disciplina.
- 115. (Uso de simulação para avaliar um teste de hipóteses) As seguintes hipóteses sobre a média são consideradas $\mathcal{H}_0: \mu = 1$ vs $\mathcal{H}_1: \mu \neq 1$. Fixado um nível de significância α , o teste irá a rejeitar a hipótese nula $\alpha\%$ das vezes, quando esta for verdadeira. Para estimar α empiricamente, utilize o seguinte procedimento de simulação:
 - i) Gerar 10.000 amostras de tamanho 20 da distribuição $\mathcal{N}(1,2)$.
 - ii) Para cada amostra gerada determinar as estatísticas apropriadas para o teste e realizar o teste usando $\alpha = 0.05$. Determine se a hipótese nula é ou não rejeitada.

iii) Determinar a porcentagem de amostras em que a hipótese nula é rejeitada, digamos $\hat{\alpha}$) e comparamos com o verdadeiro valor α .

Você espera que $\hat{\alpha} = 0.05$? Justifique.

Adicionalmente, para avaliar a função poder do teste no ponto $\mu \neq 1$, você pode repetir o processo acima, trocando o item i) por

i') Gerar 10.000 amostras de tamanho 100 da distribuição $\mathcal{N}(\mu',2)$.

Estime empiricamente o poder do teste para $\mu = 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8$. Comente os resultados.

116. Estime empiricamente o nível de significância do teste de hipóteses $\mathcal{H}_0: \mu = 1$ vs $\mathcal{H}_1: \mu \neq 1$, quando você gera valores de uma distribuição χ_1^2 (média 1 e variância 2) e use o teste obtido sob normalidade. Comente os resultados.