

Einführung in die Stochastik für Informatiker Wintersemester 22/23

Übungsblatt 8

Aufgabe 1 (8 Punkte)

Es seien X_1, X_2, \ldots reelle Zufallsvariablen mit $\mathbb{E}(X_i) = \mu$ und $\mathbb{V}(X_i) = \sigma^2$ für alle $i \in \mathbb{N}$. Weiter existiere ein $k \in \mathbb{N}$, sodass die Zufallsvariablen X_i und X_j unkorreliert sind, falls $|i - j| \ge k$ erfüllt ist. Wir wollen zeigen, dass dann für jedes $\epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| \ge \epsilon \right) = 0$$

gilt.

a) Zeigen Sie zunächst mit der Ungleichung von Cauchy-Schwarz, dass

$$\mathbb{V}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \leq \frac{1}{n}(\sigma^{2} + 2(k-1)\sigma^{2}).$$

b) Folgern Sie daraus mit der Tschebyschev-Ungleichung obige Behauptung.

Aufgabe 2 (12 Punkte)

Sei X eine Zufallsvariable mit Dichte

$$f(x) = \frac{1}{2\pi} \mathbf{1}_{[0,2\pi]}(x).$$

Wir sagen dann, dass X gleichverteilt auf dem Intervall $[0, 2\pi]$ ist.

- a) Bestimmen Sie die Verteilungsfunktion von X.
- b) Berechnen Sie $\mathbb{E}(X^n)$ für $n \in \mathbb{N}$ und $\mathbb{V}(X)$.
- c) Berechnen Sie $\mathbb{V}(\cos(X))$.
- d) Bestimmen Sie die Dichte der Zufallsvariablen sin(X).

Besprechung in der Übung am Freitag, den 13. Januar 2023, 8:30 Uhr in Raum 66/E33