Exact results on electronic wavefunctions of 2D quasicrystals

Nicolas Macé¹, Anuradha Jagannathan¹, Pavel Kalugin¹, Rémy Mosseri², Frédéric Piéchon¹

¹Laboratoire de Physique des Solides, *Université Paris-Saclay* ²LPTMC, *Université Pierre et Marie Curie*

June 20, 2017

GROUNDSTATE OF THE AMMANN-BEENKER TILING

Hamiltonian:

$$\hat{H} = -t \sum_{\langle m,n \rangle} |m\rangle \langle n|$$

Quasiperiodicity encoded in adjacency and on-site potentials

2/8

A patch of the Ammann-Beenker tiling **Fractal** states described by **height** functions?

$$\psi(m) = C(m)e^{\kappa h(m)}$$

Nicolas Macé 24 septembre 2017

000000

LOOKING FOR ARROWS

Like Fibonacci, Ammann-Beenker has a substitution rule:

 \rightarrow scale invariance.

Height requires a field of arrows:

- irrotational
- invariant under substitution

Ammann-Beenker \rightarrow notched tiles...

...exactly what we need!

Height field:

$$h(m) = \sum_{0 \to m} \text{arrows}$$

Properties of the height field

The height field on a small patch of the tiling.

Height along a line, shown in blue on the tiling.

Partition function : $Z_L(\beta) \underset{L\to\infty}{\sim} L^{\omega(\beta)}$ ightarrow slow growth : $h_{\mathrm{typ}}(L) \sim \sqrt{\log L}$ \rightarrow states $\psi(m) = e^{\kappa h(m)}$ fractal

Nicolas Macé 24 septembre 2017

GROUNDSTATE

$$\hat{H} = -t \sum_{\langle m,n \rangle} |m\rangle \langle n|$$

Conjecture [Kalugin, Katz 14]:

$$\psi_{\text{groundstate}}(m) = C(m)e^{\kappa h(m)}$$

C(m): local function:

$e^{\kappa h(m)}$: non-local function:

Nicolas Macé

Testing the conjecture

Cut-and-project:

Sites close in internal space have a very similar local environment.

 \rightarrow internal space useful to test the local nature of C

PERTURBING THE HAMILTONIAN

Adding an on-site potential:

$$\hat{H} = -t \sum_{\langle m,n \rangle} |m\rangle \langle n| + \sum_{m} V_{m} |m\rangle \langle m|$$

Laplacian-like [Sire, Bellissard 90]:

$$V_m = V_{Z_m}$$

 $\rightarrow \psi(m) = C(m)e^{\kappa h(m)}$

Prefactor κ as a function of V.

An "arbitrary" potential:

 $V_m = V$ if m has 3 neighbors, else $V_m = 0$.

$$\rightarrow \psi(m) = C(m)e^{\kappa h(m)}$$

 e^{κ} as a function of V.

Conclusions

Tight-binding models on a 2D quasiperiodic tiling

- Height field $h(m) \rightarrow \psi_{\text{groundstate}}(m) = C(m)e^{\kappa h(m)}$
- Slow height growth $(h(L) \sim \sqrt{\log L}) \rightarrow \text{critical}$, **fractal** state
- Robust under symmetry-preserving on-site perturbations
- Same conclusions for the 10-fold symmetric Penrose tiling.

Nicolas Macé 24 septembre 2017

GENERAL CONCLUSION

Nicolas Macé