1 Matrix Basics and Linear Systems

From Treil (2017).

Chapter 1

- 10/4: **1.2.** Which of the following sets (with natural addition and multiplication by a scalar) are vector spaces? Justify your answer.
 - a) The set of all continuous functions on the interval [0,1].
 - b) The set of all non-negative functions on the interval [0,1].
 - c) The set of all polynomials of degree exactly n.
 - d) The set of all symmetric $n \times n$ matrices, i.e., the set of matrices $A = \{a_{j,k}\}_{j,k=1}^n$ such that $A^T = A$.
 - **1.3.** True or false:
 - a) Every vector space contains a zero vector.
 - b) A vector space can have more than one zero vector.
 - c) An $m \times n$ matrix has m rows and n columns.
 - d) If f and g are polynomials of degree n, then f + g is also a polynomial of degree n.
 - e) If f and g are polynomials of degree at most n, then f+g is also a polynomial of degree at most n.
 - **2.2.** True or false:
 - a) Any set containing a zero vector is linearly dependent.
 - b) A basis must contain **0**.
 - c) Subsets of linearly dependent sets are linearly dependent.
 - d) Subsets of linearly independent sets are linearly independent.
 - e) If $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}$, then all scalars α_k are zero.
 - **2.5.** Let a system of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ be linearly independent but not generating. Show that it is possible to find a vector \mathbf{v}_{r+1} such that the system $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ is linearly independent. (Hint: Take for \mathbf{v}_{r+1} any vector that cannot be represented as a linear combination $\sum_{k=1}^r \alpha_k \mathbf{v}_k$ and show that the system $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ is linearly independent.)
 - **2.6.** Is it possible that vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, but the vectors $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2, \mathbf{w}_2 = \mathbf{v}_2 + \mathbf{v}_3, \mathbf{w}_3 = \mathbf{v}_3 + \mathbf{v}_1$ are linearly independent?
 - **3.3.** For each linear transformation below, find its matrix.
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x,y)^T = (x+2y,2x-5y,7y)^T$.
 - b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3, x_4)^T = (x_1 + x_2 + x_3 + x_4, x_2 x_4, x_1 + 3x_2 + 6x_4)^T$.
 - c) $T: \mathbb{P}_n \to \mathbb{P}_n$ defined by Tf(t) = f'(t) (find the matrix with respect to the standard basis $1, t, t^2, \ldots, t^n$).
 - d) $T: \mathbb{P}_n \to \mathbb{P}_n$ defined by Tf(t) = 2f(t) + 3f'(t) 4f''(t) (again with respect to the standard basis $1, t, t^2, \ldots, t^n$).
 - **3.6.** The set \mathbb{C} of complex numbers can be canonically identified with the space \mathbb{R}^2 by treating each $z = x + iy \in \mathbb{C}$ as a column $(x, y)^T \in \mathbb{R}^2$.
 - a) Treating \mathbb{C} as a complex vector space, show that the multiplication by $\alpha = a + ib \in \mathbb{C}$ is a linear transformation in \mathbb{C} . What is its matrix?

b) Treating \mathbb{C} as the real vector space \mathbb{R}^2 , show that the multiplication by $\alpha = a + ib$ defines a linear transformation there. What is its matrix?

- c) Define T(x+iy) = 2x y + i(x-3y). Show that this transformation is not a linear transformation in the complex vector space \mathbb{C} , but if we treat \mathbb{C} as the real vector space \mathbb{R}^2 , then it is a linear transformation there (i.e., that T is a real linear but not a complex linear transformation). Find the matrix of the real linear transformation T.
- **5.3.** Multiply two rotation matrices T_{α} and T_{β} (it is a rare case when the multiplication is commutative, i.e., $T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}$, so the order is not essential). Deduce formulas for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$ from here.
- **5.5.** Find linear transformations $A, B : \mathbb{R}^2 \to \mathbb{R}^2$ such that $AB = \mathbf{0}$ but $BA \neq \mathbf{0}$.
- **5.8.** Find the matrix of the reflection through the line y = -2x/3. Perform all the multiplications.
- **6.3.** Find all left inverses of the column $(1,2,3)^T$.
- **6.6.** Suppose the product AB is invertible. Show that A is right invertible and B is left invertible. (Hint: You can just write formulas for right and left inverses.)
- **6.8.** Let A be an $n \times n$ matrix. Prove that if $A^2 = \mathbf{0}$, then A is not invertible.
- **6.10.** Write matrices of the linear transformations T_1 and T_2 in \mathbb{F}^5 , defined as follows: T_1 interchanges the coordinates x_2 and x_4 of the vector \mathbf{x} , and T_2 just adds to the coordinate x_2 the quantity a times the coordinate x_4 , and does not change other coordinates, i.e.,

$$T_{1} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{4} \\ x_{3} \\ x_{2} \\ x_{5} \end{pmatrix} \qquad T_{2} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} + ax_{4} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix}$$

where a is some fixed number. Show that T_1 and T_2 are invertible transformations, and write the matrices of the inverses. (Hint: It may be simpler, if you first describe the inverse transformation, and then find its matrix, rather than trying to guess [or compute] the inverses of the matrices T_1, T_2 .)

- **6.13.** Let A be an invertible symmetric $(A^T = A)$ matrix. Is the inverse of A symmetric? Justify.
- **7.3.** Let X be a subspace of a vector space V, and let $\mathbf{v} \in V$, $\mathbf{v} \notin X$. Prove that if $\mathbf{x} \in X$, then $\mathbf{x} + \mathbf{v} \notin X$.
- **7.4.** Let X and Y be subspaces of a vector space V. Using the previous exercise, show that $X \cup Y$ is a subspace if and only if $X \subset Y$ or $Y \subset X$.
- **7.5.** What is the smallest subspace of the space of 4×4 matrices which contains all upper triangular matrices $(a_{j,k} = 0 \text{ for all } j > k)$, and all symmetric matrices $(A = A^T)$? What is the largest subspace contained in both of those subspaces?

Chapter 2

- **3.4.** Do the polynomials $x^3 + 2x$, $x^2 + x + 1$, $x^3 + 5$ generate (span) \mathbb{P}_3 ? Justify your answer.
- **3.5.** Can 5 vectors in \mathbb{F}^4 be linearly independent? Justify your answer.
- **3.7.** Prove or disprove: If the columns of a square $(n \times n)$ matrix A are linearly independent, so are the rows of $A^3 = AAA$.
- **5.1.** True or false:
 - a) Every vector space that is generated by a finite set has a basis.

- b) Every vector space has a (finite) basis.
- c) A vector space cannot have more than one basis.
- d) If a vector space has a finite basis, then the number of vectors in every basis is the same.
- e) The dimension of \mathbb{P}_n is n.
- f) The dimension on $M_{m \times n}$ is m + n.
- g) If vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ generate (span) the vector space V, then every vector in V can be written as a linear combination of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in only one way.
- h) Every subspace of a finite-dimensional space is finite-dimensional.
- i) If V is a vector space having dimension n, then V has exactly one subspace of dimension 0 and exactly one subspace of dimension n.
- **5.2.** Prove that if V is a vector space having dimension n, then a system of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in V is linearly independent if and only if it spans V.
- **5.6.** Consider in the space \mathbb{R}^5 vectors $\mathbf{v}_1 = (2, -1, 1, 5, -3)^T$, $\mathbf{v}_2 = (3, -2, 0, 0, 0)^T$, $\mathbf{v}_3 = (1, 1, 50, -921, 0)^T$. (Hint: If you do part (b) first, you can do everything without any computations.)
 - a) Prove that these vectors are linearly independent.
 - b) Complete the system of vectors to a basis.

6.1. True or false:

- a) Any system of linear equations has at least one solution.
- b) Any system of linear equations has at most one solution.
- c) Any homogeneous system of linear equations has at least one solution.
- d) Any system of n linear equations in n unknowns has at least one solution.
- e) Any system of n linear equations in n unknowns has at most one solution.
- f) If the homogeneous system corresponding to a given system of linear equations has a solution, then the given system has a solution.
- g) If the coefficient matrix of a homogeneous system of n linear equations in n unknowns is invertible, then the system has no non-zero solutions.
- h) The solution set of any system of m equations in n unknowns is a subspace of \mathbb{R}^n .
- i) The solution set of any homogeneous system of m equations in n unknowns is a subspace of \mathbb{R}^n .

7.1. True or false:

- a) The rank of a matrix is equal to the number of its non-zero columns.
- b) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0.
- c) Elementary row operations preserve rank.
- d) Elementary column operations do not necessarily preserve rank.
- e) The rank of a matrix is equal to the maximum number of linearly independent columns in the matrix.
- f) The rank of a matrix is equal to the maximum number of linearly independent rows in the matrix.
- g) The rank of an $n \times n$ matrix is at most n.
- h) An $n \times n$ matrix having rank n is invertible.
- **7.4.** Prove that if $A: X \to Y$ and V is a subspace of X, then $\dim AV \le \operatorname{rank} A$. (AV here means the subspace V transformed by the transformation A, i.e., any vector in AV can be represented as $A\mathbf{v}$, $\mathbf{v} \in V$.) Deduce from here that $\operatorname{rank} AB \le \operatorname{rank} A$. (Remark: Here, one can use the fact that if $V \subset W$, then $\dim V \le \dim W$. Do you understand why it is true?)

7.6. Prove that if the product AB of two $n \times n$ matrices is invertible, then both A and B are invertible. Even if you know about determinants, do not use them (we did not cover them yet). (Hint: Use the previous 2 problems.)

- **7.9.** If A has the same four fundamental subspaces as B, does A = B?
- **7.14.** Is it possible for a real matrix A that Ran $A = \operatorname{Ker} A^T$? Is it possible for a complex A?
- **8.3.** Find the change of coordinates matrix that changes the coordinates in the basis 1, 1 + t in \mathbb{P}_1 to the coordinates in the basis 1 t, 2t.
- **8.6.** Are the matrices $\begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$ and $\begin{pmatrix} 0 & 2 \\ 4 & 2 \end{pmatrix}$ similar? Justify.