Лабораторная работа №4

Модель гармонических колебаний

Якушевич Артём Юрьевич

Содержание

1	Целі	ь работы	5
2	Задание		6
	2.1	Построить график зависимости численности хищников от численности жертв и графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=8, y_0=30.\dots$	6
	2.2	Найти стационарное состояние системы	6
3	Выполнение лабораторной работы		
	3.1	Теоретическое введение	7
	3.2	Начальные условия	8
		Составление систем дифференциальных уравнений и их решения (рис. 3.2)	9
	3.4	Запишем массив хищников и жертв (рис. 3.3):	9
		Графики	9
4	Выв	оды	11

List of Tables

List of Figures

3.1	Коэффициенты	8
3.2	Вектор-функция для решения уравнений, начальные значения х и у	9
3.3	массив хищников и жертв	9
3.4	Зависимость х от у и стационарное состояние	9
3.5	Зависимость x(t) и y(t)	10

1 Цель работы

Построить простейшую модель взаимодействия двух видов типа «хищник-жертва» — модель Лотки-Вольтерры.

Найти стационарное состояние системы

2 Задание

- 2.1 Построить график зависимости численности хищников от численности жертв и графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=8, y_0=30.$
- 2.2 Найти стационарное состояние системы.

3 Выполнение лабораторной работы

3.1 Теоретическое введение

Модель взаимодействия Лотки-Вольтерры двух видов типа «хищник-жертва». Данная двувидовая модель основывается на следующих предположениях: 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории) 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса (по экспоненциальному закону), при этом число жертв увеличивается, а число хищников падает 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными 4. Эффект насыщения численности обеих популяций не учитывается 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \frac{\partial x}{\partial t} = ax(t) + bx(t)y(t) \\ \frac{\partial y}{\partial t} = -cy(t) - dx(t)y(t) \end{cases}$$

В этой модели x – число жертв, у - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние (положение равновесия, не зависящее от времени решения). Если начальное состояние будет другим, то это приведет к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в начальное состояние. Стационарное состояние системы будет в точке: $x_0 = \frac{c}{d}, y_0 = \frac{a}{b}$

Если начальные значения задать в стационарном состоянии $x(0)=x_0,y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0),y(0). Колебания совершаются в противофазе.

3.2 Начальные условия

1. Зададим коэффициенты (рис. 3.1)

Figure 3.1: Коэффициенты

3.3 Составление систем дифференциальных уравнений и их решения (рис. 3.2)

Figure 3.2: Вектор-функция для решения уравнений, начальные значения х и у

3.4 Запишем массив хищников и жертв (рис. 3.3):

Figure 3.3: массив хищников и жертв

3.5 Графики

Зависимость изменения численности хищников от изменения численности жертв с начальными значениями (рис. 3.4)

Figure 3.4: Зависимость х от у и стационарное состояние

Зависимость численности хщиников и жертв от времени с начальными данными (рис. 3.5)

Figure 3.5: Зависимость x(t) и y(t)

4 Выводы

Научился строить простейшую модель взаимодействия двух видов типа «хищникжертва» — модель Лотки-Вольтерры.

Построил график зависимости x от y и графики функций x(t),y(t) Нашёл стационарное состояние системы