Math 69: Logic Winter '23

Homework assigned February 06, 2023

Prof. Marcia Groszek Student: Amittai Siavava

Problem 8.

Let \mathcal{L} be a language for first-order logic, including the equality symbol (and any number of other symbols), and \mathcal{L}^* be \mathcal{L} without the equality symbol, but with an additional 2-place predicate symbol E. For any formula α of \mathcal{L} , define α^* to be the formula of \mathcal{L}^* obtained from α by replacing every occurrence of = with E. If Σ is a set of formulas of \mathcal{L} , define

$$\Sigma^* = \left\{ a^* \mid a \in \Sigma \right\}.$$

- (a) This is a short answer problem. For which logical axiom groups is it true that α is a logical axiom in that group if and only if α^* is a logical axiom in that group?
- (b) This is a short answer problem.

Which, if any, of the following are true?

- (i) If $\alpha_1, \alpha_2, \dots, \alpha_n$ is a deduction from Σ in the language \mathcal{L} then $\alpha_1^*, \alpha_2^*, \dots, \alpha_n^*$ is a deduction from Σ^* in the language \mathcal{L}^*
- (ii) If $\alpha_1^*, \alpha_2^*, \dots, \alpha_n^*$ is a deduction from Σ^* in the language \mathcal{L}^* then $\alpha_1, \alpha_2, \dots, \alpha_n$ is a deduction from Σ in the language \mathcal{L}
- (c) Show that if Σ is a consistent set of formulas in \mathcal{L} then Σ^* is a consistent set of formulas in \mathcal{L}^* .

You may use your answers in (a) and (b).

Hint: Recall that Σ is inconsistent if there is some α such that $\Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$.

(d) Show by example that it is possible for Σ to be inconsistent but Σ^* to be consistent.

Amittai, S Math 69: Logic

Problem 9.