Reusing a Pretrained Language Model on Languages with Limited Corpora for Unsupervised NMT

Alexandra Chronopoulou, Dario Stojanovski, Alexander Fraser

Center for Information and Language Processing

Introduction

INTRODUCTION

- Neural Machine Translation (NMT): works well provided abundant parallel data
- \cdot Monolingual data (usually) easier to get o unsupervised NMT
- XLM (Lample & Conneau, 2019) pretrains a masked language model (LM) simultaneously on 2 languages
- The LM is transferred to an encoder-decoder NMT model and is trained in an unsupervised way
- · Mostly evaluated on high-resource language pairs (En-Fr, En-De)

INTRODUCTION

- UNMT between a high-resource and low-resource language that are not related is **ineffective** (Guzman et al., 2019)
- Transferring a pretrained model to a new model in NMT requires a shared vocabulary (Nguyen & Chiang, 2017)

INTRODUCTION

- UNMT between a high-resource and low-resource language that are not related is **ineffective** (Guzman et al., 2019)
- Transferring a pretrained model to a new model in NMT requires a shared vocabulary (Nguyen & Chiang, 2017)

How can we translate accurately and efficiently between a high-monolingual-resource (HMR) and a low-monolingual-resource (LMR) language?

Proposed Approach

We propose REused-LM (RE-LM), which consists of the following steps:

- We train a monolingual LM (on an HMR language) or use a publicly available pretrained LM (A)
- · We fine-tune it on both LMR, HMR (B)
- We use it to initialize a UNMT system for LMR↔HMR (C)
- To permit fine-tuning to the new language, we introduce a novel vocabulary extension method
- We experiment with adapters (Houlsby et al., 2019) for faster fine-tuning

Vocabulary Extension

 To train a monolingual LM, we split HMR data using BPEs (Sennrich et al., 2016) learned on the same data (BPE_{HMR})

Vocabulary Extension

To fine-tune the LM to an unseen language LMR, we could split the LMR data with the BPE_{HMR} tokens

→ Poor results, heavy segmentation of LMR corpus

Instead, we propose a vocabulary extension method, illustrated with the following example

Fine-tuning step

- The vocabulary extension method permits fine-tuning a pretrained monolingual LM to the two languages of interest
- We use the fine-tuned LM to initialize an encoder-decoder NMT model

Experiments

EXPERIMENTS - UNSUPERVISED NMT

Datasets

Synthetic setup

 English-German (En-De): 8M En and 0.05/0.5/1M De sentences from NewsCrawl

Real-world setup

• English-Macedonian (En-Mk), English-Albanian (En-Sq): 68M En sentences from NewsCrawl, 2.4M Mk and 4M Sq from CommonCrawl

EXPERIMENTS - UNSUPERVISED NMT

HMR-LMR language pair size of LMR language	En-De 0.05M		En-De 0.5M		En-De 1M		En-Mk 2.4M		En-Sq 4M	
	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	←	\rightarrow	\leftarrow	\rightarrow
random	3.9	4.9	3.4	2.6	4.2	4.1	3.5	3.0	6.6	5.6
XLM	8.1	6.4	19.8	16.0	21.7	18.1	12.2	12.8	16.3	18.8
RE-LM	10.7	7.5	22.6	19.0	24.3	21.9	22.0	21.1	27.6	28.1

RE-LM contributions

- ✓ More than +8.3 BLEU points in real-world setup
- ✓ Consistent improvement across all language pairs
- √ Computationally efficient

EXPERIMENTS - UNSUPERVISED NMT

HMR-LMR language pair size of LMR language		En-De 0.05M		En-De 0.5M		En-De 1M		En-Mk 2.4M		En-Sq 4M	
	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	←	\rightarrow	\leftarrow	\rightarrow	
random	3.9	4.9	3.4	2.6	4.2	4.1	3.5	3.0	6.6	5.6	
XLM	8.1	6.4	19.8	16.0	21.7	18.1	12.2	12.8	16.3	18.8	
RE-LM	10.7	7.5	22.6	19.0	24.3	21.9	22.0	21.1	27.6	28.1	

Synthetic vs Real-world setup.

RE-LM is more effective in <u>real-world setup</u> because:

- XLM overfits the low-resource language in imbalanced data scenarios (En-Mk, En-Sq)
- For En-De, we use NewsCrawl, whereas for Mk, Sq we use CC. RE-LM more robust to noisy data

Analysis

ANALYSIS - ADAPTERS AND DIFFERENT FINE-TUNING SCHEMES

- We insert adapters to the pretrained LM, freeze the model (except for embedding layer) and fine-tune it on the LMR language only
- · We transfer the LM & train the UNMT model

	нмк-ьмк language pair size of ьмк language		En-De En-De 0.05M 0.5M		En-De 1M		En-Mk 2.4M		En-Sq 4M		
		\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	←	\rightarrow	\leftarrow	\rightarrow
	ft on LMR	9.4	7.3	20.4	16.8	20.6	17.8	2.7	2.4	4.7	4.7
LM	ft on LMR & HMR (RE-LM)	10.7	7.5	22.6	19.0	24.3	21.9	22.0	21.1	27.6	28.1
	+ adapters ft on LMR (adapter RE-LM)	9.8	7.5	21.3	18.3	23.7	20.0	21.6	19.0	30.2	29.4

Synthetic setup

• En-De: adapter RE-LM almost equivalent to RE-LM

Real-world setup

- En-Sq: adapter RE-LM outperforms RE-LM. Fine-tuning on both langs hinders pretrained knowledge
- En-Mk: comparable results to RE-LM

ANALYSIS - ADAPTERS AND DIFFERENT FINE-TUNING SCHEMES

	нмк-LMR language pair size of LMR language		En-De En-De 0.05M 0.5M			En-De 1M			En-Mk 2.4M		En-Sq 4M	
		\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	←	\rightarrow	\leftarrow	\rightarrow	
	ft on LMR	9.4	7.3	20.4	16.8	20.6	17.8	2.7	2.4	4.7	4.7	
LM	ft on LMR & HMR (RE-LM)	10.7	7.5	22.6	19.0	24.3	21.9	22.0	21.1	27.6	28.1	
	+ adapters ft on LMR (adapter RE-LM)	9.8	7.5	21.3	18.3	23.7	20.0	21.6	19.0	30.2	29.4	

Fine-tuning **only** on LMR is problematic, catastrophic forgetting (Goodfellow et al., 2014) might occur

Adapter RE-LM provides comparable results and is more parameter-efficient

ANALYSIS - VOCABULARY EXTENSION

Is it necessary to extend the vocabulary?

BPE _{joint}		-De 5M		-Mk 4M	En-Sq 4M		
merges	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	
-	8.1	8.0	6.1	6.4	7.2	7.6	
8K	8.3	10.2	14.3	17.3	18.1	16.4	
16K	8.7	14.6	14.9	20.2	27.1	25.5	
32K	<u>22.6</u>	<u>19.0</u>	<u>22.0</u>	<u>21.1</u>	<u>27.6</u>	28.1	

- Without vocab extension, poor results (row 1)
- This is expected, as e.g. Mk uses Cyrillic alphabet
- As for Sq, De, they use the same alphabet but many of their words do not appear in En, so extending the vocab is crucial
- When extending the vocab (rows 2-4), the model benefits from a larger number of merges

Conclusions

CONCLUSIONS

- RE-LM fine-tunes a pretrained monolingual LM to a low-resource language and is used to initialize an encoder-decoder NMT model, that is then trained for UNMT
- · RE-LM outperforms a strong baseline in UNMT
- In the future, we want to apply RE-LM to languages with corpora from diverse domains & more distant language pairs

CONCLUSIONS

Source code:

github.com/alexandra-chron/relm_unmt

Thank you!

BONUS SLIDES

- Each adapter consists of a linear down-projection db, followed by a non-linearity (RELU) and an up-projection bd. The bottleneck inner dimension b is set to 256, without tuning. The module is wrapped with a residual connection
- We add an adapter after each feed-forward and self-attention layer of the encoder Transformer
- Different from Houlsby et al., (2019), Bapna and Firat, (2019), we also freeze the layer norm parameters, without introducing new ones
- The adapter is language-specific during fine-tuning
- During NMT, it is used in both language directions

BONUS SLIDES

BPE _{hmr}	Pro_gram_et e fes_ti_val_it p_ë_r_f_shi_j_n_ë nj_ë rang t_ë g_jer_ë v_ep_rim_tar_ish
BPEjoin	Progra_met e fe_s_ti_val_it përfshijnë një rang të gjerë veprimtari_sh

BPE _{hmr}	S_ie hab_en ein ein_z_ig_arti_ges Pro_j_ek_t real_is_ier_t
BPEjoint	Sie haben ein einzig_artiges Projekt realisiert

Segmentation of Sq, De and Mk using BPE $_{HMR}$ or BPE $_{joint}$ tokens. Using BPE $_{HMR}$ tokens results in heavily split words.

BONUS SLIDES

Training details of the two *pretraining* methods:

- The monolingual LM pretraining required 1 week, 8 GPUs and had 137M parameters.
- The XLM pretraining required 1 week, in 8 GPUs. The total number of trainable parameters is 138M.

Our approach also requires an *LM fine-tuning* step. Training details are shown in the following Table under RE-LM *ft* column.

	2	XLM		RE-LM		adapt	er RE-LM	random	
	UNMT	sup NMT	ft	UNMT	sup NMT	ft	UNMT	UNMT	sup NMT
params	223M	223M	156M	258M	258M	88M	270M	258M	258M
runtime	48h	10h	60h	72h	10h	44h	20h	18h	15h

Table 1: Parameters and training runtimes used for each experiment. We note that each of the experiments ran on a single GPU.