Lung Cancer Segmentation

Deep Neural Networks Final Project

Salem AlAthari, Zehui Chen, Kat Desai, Manjit Singh

May 16, 2024

Research Statement

Comparative Analysis on Multiple
Methods to Identify and Segment Lung
Cancer Tumors

Agenda

- Dataset Overview
- Model 1: NN for per-pixel classification (semantic segmentation)
- Model 2 & 3: 2D convolution per slice instance segmentation
- Model 4: 3D convolution per voxel instance segmentation

Dataset

- The training set consisted of 708 CT images and the test set contained 264 CT images.
- Approximately 30 training lungs and 10 test lungs.
- This dataset is a fusion of original Kazakhstani local data from the Kazakh Research Institute of Oncology and Radiology

Dataset: Sample Images

Dataset: Distribution

262144 total pixels of dimensions 512x512

Dataset: Incorrect Data

Data represented is supposed be a contiguous slice but has changing locations.

Dataset: Confusing Data

Data represented is supposed be a contiguous slice but has varying size and shape.

Related Work

	BTCV n=30	ACDC n=200	LiTS n=131	BraTS n=1251		AMOS n=360
nnU-Net (org.) [21]	83.08	91.54	80.09	91.24	86.04	88.64
nnU-Net ResEnc M	83.31	91.99	80.75	91.26	86.79	88.77
nnU-Net ResEnc L	83.35	91.69	81.60	91.13	88.17	89.41
nnU-Net ResEnc XL	83.28	91.48	81.19	91.18	88.67	89.68
MedNeXt L k3 [31]	84.70	92.65 92.62	82.14	91.35	88.25	89.62
MedNeXt L k5 [31]	85.04		82.34	91.50	87.74	89.73
STU-Net S [20]	82.92	91.04	78.50	90.55	84.93	88.08
STU-Net B [20]	83.05	91.30	79.19	90.85	86.32	88.46
STU-Net L [20]	83.36	91.31	80.31	91.26	85.84	89.34
SwinUNETR [32]	78.89	91.29	76.50	90.68	81.27	83.81
SwinUNETRV2 [17]	80.85	92.01	77.85	90.74	84.14	86.24
nnFormer [41]	80.86	92.40	77.40	90.22	75.85	81.55
CoTr [37]	81.95	90.56	79.10	90.73	84.59	88.02
No-Mamba Base	83.69	91.89	80.57	91.26	85.98	89.04
U-Mamba Bot [26]	83.51	91.79	80.40	91.26	86.22	89.13
U-Mamba Enc [26]	82.41	91.22	80.27	90.91	86.34	88.38
A3DS SegResNet [1,28]	80.69	90.69	79.28	90.79	81.11	87.27
A3DS DiNTS [1,18]	78.18	82.97	69.05	87.75	65.28	82.35
A3DS SwinUNETR [1,32]	76.54	82.68	68.59	89.90	52.82	85.05

Past research in this field yields a Dice Score of 80-90%

Rows represent different models, Columns represent different datasets tested

Table 1. Benchmark results of prevalent 3D medical segmentation methods measured as DSC score [%].

Baseline Simple Model

• Simple UNet based model that was aimed to perform semantic segmentation (per pixel classification)

Sample Training Predictions

Sample Testing Predictions

2D Segmentation with MobileNetV2

Model Training - 100 epochs

- Batch size: 16
- Input size: [16, 1, 256, 256]
- Output size: [16, 1, 256, 256]
- Learning rate: 1e-4
- BCE + Dice Loss function
- Weight factor for loss function: 100

Model Training - 140 epochs

- Batch size: 16
- Input size: [16, 1, 256, 256]
- Output size: [16, 1, 256, 256]
- Learning rate: 1e-4
- BCE + Dice Loss function
- Weight factor for loss function: 1

Correct Predictions

False Prediction

False Prediction

2D Segmentation with FPN & ResNet34

Batch size: 16

Learn rate: 0.0001

Epochs: 100

Loss: Dice

Performance: Dice Score & Loss

Performance: Recall & Precision

Conv Layer 1 Activations

Ground Truth

Predictions: Easy

Ground truth

Prediction

Ground truth Prediction Predictions: Hard

3-D Segmentation UNET-R

Dataset after Normalization and Transformation

Initial Dimensions 512x512

Current Dimensions: 128x128x128 (input as 16 patches of 64x64x64)

Image Values Normalized between [0,1]

Loss Functions

- -5000 Epochs
- Batch Size 1 (18 3-D Images with randomized Rotations)
- -UNET-R (In: 16 (64x64x64) patches, Out: 1 channel)
- -DropOut
- -L2 Regularization weight decay = 10^{-4}
- -Learning rate = 10^-4
- -Choose Dice + CE since it had the highest score when ran for more epochs

DropOuts

- -DropOut 0.0
- -L2 Regularization weight decay = 10^{-4}
- -Learning Rate = 10^-3

Learning Rates

- -DropOut 0.5
- -L2 Regularization weight decay = 10^-4
- -Learning Rates = 10^-3 , 10^-4 , 10^-5

1-Channel Results

- Weight $Decay = 10^-5$
- DropOut = 0.5
- Weight tensor loss function ([100])
- 10,000 Epochs
- Outputs Discretized by 0.5 Threshold
- Highest Dice Mean Score around 0.15

2-Channel + One_Hot_Encoding Approach

- Learning Rate = 10^-4
- Weight Decay = 10^-5
- DropOut = 0.5
- Weight tensor loss function ([0.1, 0.9])
- 10,000 Epochs
- Outputs Discretized using Argmax and One Hot Encoding
- Highest Mean Dice Score around 0.25

UNET-R Segmentation Results

Training 3-D Image was compared with Label. Black is background, White is Lung Tumor

Model Comparison

Model	Test Set Dice Score
Baseline Model	0.1
UNet/MobileNetV2	0.45
FPN/ResNet34	0.89
UNet-R	0.25

Github Repo

