

Direct numerical simulation of controlled turbulent duct flows

Steffen Straub | 6. November 2015

ABSCHLUSSVORTRAG

Department of Mechanics Königlich Technische Hochschule Schweden

- Einleitung
- 2 Methoden
- 3 Validierung
- 4 Ergebnisse
 - gemittelte Statistiken
 - Sekundärströmung
 - Reibungsminderung
- 5 Zusammenfassung & Ausblick

- Einleitung
- 2 Methoden
- 3 Validierung
- 4 Ergebnisse
 - gemittelte Statistiken
 - Sekundärströmung
 - Reibungsminderung
- 5 Zusammenfassung & Ausblick

- Einleitung
- 2 Methoden
- 3 Validierung
- 4 Ergebnisse
 - gemittelte Statistiken
 - Sekundärströmung
 - Reibungsminderung
- 5 Zusammenfassung & Ausblick

- Einleitung
- 2 Methoden
- 3 Validierung
- 4 Ergebnisse
 - gemittelte Statistiken
 - Sekundärströmung
 - Reibungsminderung
- 5 Zusammenfassung & Ausblick

S. Straub - DNS of controlled turb. duct flows

- Einleitung
- 2 Methoden
- Validierung
- 4 Ergebnisse
 - gemittelte Statistiken
 - Sekundärströmung
 - Reibungsminderung
- 5 Zusammenfassung & Ausblick

S. Straub - DNS of controlled turb. duct flows

Quelle: ecodaily.org Quelle: nasa.gov

- turbulente Reibungsminderung
- Effizienz steigern:

Quelle: ecodaily.org Quelle: nasa.gov

- turbulente Reibungsminderung
 - Effizienz steigern:
 - Kosten J
 - I Imwelt

Quelle: ecodaily.org Quelle: nasa.gov

- turbulente Reibungsminderung

Quelle: ecodaily.org Quelle: nasa.gov

- turbulente Reibungsminderung
- Effizienz steigern:
 - Kosten ↓
 - Umwelt

Quelle: ecodaily.org Quelle: nasa.gov

- turbulente Reibungsminderung
- Effizienz steigern:
 - Kosten ↓
 - Umwelt

$$DR:=rac{C_{f,0}-C_{f,c}}{C_{f,0}}$$

Harmonisch oszillierende Wände

$$DR := \frac{C_{f,0} - C_{f,c}}{C_{f,0}}$$

Harmonisch oszillierende Wände

- + hohe Reibungsminderung
- + einfache Technik
- + einfach zu implementieren
- + viele numerische und experimentelle Untersuchungen

$$DR := rac{C_{f,0} - C_{f,c}}{C_{f,0}}$$

Harmonisch oszillierende Wände

- + hohe Reibungsminderung
- + einfache Technik
- + einfach zu implementieren

S. Straub - DNS of controlled turb. duct flows

+ viele numerische und experimentelle Untersuchungen

$$DR := rac{C_{f,0} - C_{f,c}}{C_{f,0}}$$

Harmonisch oszillierende Wände

- + hohe Reibungsminderung
- + einfache Technik
- + einfach zu implementieren
- + viele numerische und experimentelle Untersuchungen

$$DR := \frac{C_{f,0} - C_{f,c}}{C_{f,0}}$$

Harmonisch oszillierende Wände

- + hohe Reibungsminderung
- + einfache Technik
- + einfach zu implementieren
- + viele numerische und experimentelle Untersuchungen

Channel - Duct

- Gemittelte Größen sind abhängig von spannweitiger Koordinate z
 - Seitenverhälnis
 - Sekundärströmung

Channel – Duct

Channel – Duct

- Gemittelte Größen sind abhängig von spannweitiger Koordinate z

Channel - Duct

Spezielle Eigenschaften des Ducts

S. Straub - DNS of controlled turb. duct flows

- Gemittelte Größen sind abhängig von spannweitiger Koordinate z
- Seitenverhälnis
- Sekundärströmung

Channel – Duct

- Gemittelte Größen sind abhängig von spannweitiger Koordinate z
- Seitenverhälnis
- Sekundärströmung

Sekundärströmung

Gessner and Jones (1965)

Gavrilakis (1992)

Problemstellung

Diskrepanz: Experiment – Simulation!

6. November 2015

Problemstellung

Diskrepanz: Experiment - Simulation!

Einleitung

Methoden

6. November 2015

DNS einer kontrollierten turbulenten Strömung im <u>Duct</u> mit einem *neuen* Tool: Nek5000

- Sekundärströmung
- Reibungsminderung

DNS einer kontrollierten turbulenten Strömung im <u>Duct</u> mit einem *neuen* Tool: Nek5000

Fokus der Untersuchung

Sekundärströmung

Reibungsminderung

DNS einer kontrollierten turbulenten Strömung im <u>Duct</u> mit einem *neuen* Tool: Nek5000

- Sekundärströmung
- Reibungsminderung

DNS einer kontrollierten turbulenten Strömung im Duct mit einem neuen Tool: Nek5000

- Sekundärströmung

DNS einer kontrollierten turbulenten Strömung im <u>Duct</u> mit einem *neuen* Tool: Nek5000

- Sekundärströmung
- Reibungsminderung

Spectral element method (SEM)

Einleitung S. Straub - DNS of controlled turb. duct flows

Methoden

Validierung

6. November 2015

Zus. & Aus.

Spectral element method (SEM)

- Herleitung: Methode der gewichteten Residuen (Galerkin Methode)
 - Grundgleichungen in Integralform

Spectral element method (SEM)

- Herleitung: Methode der gewichteten Residuen (Galerkin Methode)
 - Grundgleichungen in Integralform
- Basisfunktionen: Lagrange Interpolationspolynome h\u00f6herer Ordnung (GLL) je Element

S. Straub - DNS of controlled turb. duct flows

6. November 2015

Spectral element method (SEM)

- Herleitung: Methode der gewichteten Residuen (Galerkin Methode)
 - Grundgleichungen in Integralform
- Basisfunktionen: Lagrange Interpolationspolynome h\u00f6herer Ordnung (GLL) je Element

Einleitung

	FEM	SEM	pseudo spectral method
Ansatzfunktionen	lokal	lokal	global

	FEM	SEM	pseudo spectral method
Ansatzfunktionen	lokal	lokal	global
Konvergenz	algebraisch	spektral	spektral

	FEM	SEM	pseudo spectral method
Ansatzfunktionen	lokal	lokal	global
Konvergenz	algebraisch	spektral	spektral

+ SEM vereint Vielseitigkeit der FEM mit hoher Konvergenzrate der Spektralmethoden!

Numerische Methoden

	FEM	SEM	pseudo spectral method
Ansatzfunktionen	lokal	lokal	global
Konvergenz	algebraisch	spektral	spektral

- + SEM vereint Vielseitigkeit der FEM mit hoher Konvergenzrate der Spektralmethoden!
- 10 20 mal langsamer als pseudo spectral method (Ohlsson et al., 2011)

Einleitung

Validierung: unkontrolliert

Validierung: unkontrolliert

Einleitung Methoden

OOO

S. Straub – DNS of controlled turb. duct flows

Validierung ●○ Ergebnisse 00000000 Zus. & Aus.

Validierung: kontrolliert

Validierung: kontrolliert

gemittelte Statistiken:U

Einleitung

Einleitung

Methoden

Einleitung

Methoden

Einleitung

Methoden

gemittelte Statistiken: V und W

gemittelte Statistiken: V und W

Einleitung

OOOOO

S. Straub – DNS of controlled turb. duct flows

Validierung 00 Ergebnisse

•••••••

6. November 2015

Zus. & Aus.

gemittelte Statistiken: $\langle u_{rms} \rangle$ und $\langle u'v' \rangle$

Einleitung

gemittelte Statistiken: $\langle u_{rms} \rangle$ und $\langle u'v' \rangle$

Sekundärströmung

Kinetische Energie der Sekundärströmung

$$K := \frac{1}{2}(V^2 + W^2)$$

Sekundärströmung: d:0 und d:4.5

S. Straub - DNS of controlled turb. duct flows

Sekundärströmung: d:0 und d:4.5

ooooo ooo S. Straub – DNS of controlled turb. duct flows

Validierung oo Ergebnisse

OOOOOO

6. November 2015

Zus. & Aus.

Sekundärströmung: d:12 und p:4.5

Sekundärströmung: d:12 und p:4.5

Einleitung

OOOOO

S. Straub – DNS of controlled turb. duct flows

Validierung 00 Ergebnisse

○○○○●○○○

6. November 2015

Zus. & Aus.

6. November 2015

S. Straub - DNS of controlled turb. duct flows

Zusammenfassung

Was wurde untersucht?

- Ursache für Diskrepanz zwischen Experiment und numerischer Simulation?
- DNS einer turbulenten Strömung im Duct mit harmonisch bewegten Wänden

Was wurde gefunden?

- starke Interaktion zwischen Seitenwänden und Kontrolltechnik
- z.T. Auswirkungen bis in Ductmitte (hohes W_m^+
- stark verringerte Reibungsminderung im Duct

Was wurde untersucht?

- Ursache für Diskrepanz zwischen Experiment und numerischer Simulation?
- DNS einer turbulenten Strömung im Duct mit harmonisch bewegten Wänden

Was wurde gefunden?

Starke interaktion zwischen Seitenwanden und Kontrollte

z.T. Auswirkungen bis in Ductmitte (hohes $W_{\!\scriptscriptstyle f}$

stark verringerte Reibungsminderung im Duct

Was wurde untersucht?

- Ursache für Diskrepanz zwischen Experiment und numerischer Simulation?
- DNS einer turbulenten Strömung im Duct mit harmonisch bewegten Wänden

Was wurde gefunden?

Starke interaktion zwischen Seitenwanden und Kontrollte

z.T. Auswirkungen bis in Ductmitte (hohes $W_{\!\scriptscriptstyle f}$

stark verringerte Reibungsminderung im Duct

Was wurde untersucht?

- Ursache für Diskrepanz zwischen Experiment und numerischer Simulation?
- DNS einer turbulenten Strömung im Duct mit harmonisch bewegten Wänden

Was wurde gefunden?

- starke Interaktion zwischen Seitenwänden und Kontrolltechnik
- **z.T.** Auswirkungen bis in Ductmitte (hohes W_m^+
- stark verringerte Reibungsminderung im Duci

Was wurde untersucht?

- Ursache für Diskrepanz zwischen Experiment und numerischer Simulation?
- DNS einer turbulenten Strömung im Duct mit harmonisch bewegten Wänden

Was wurde gefunden?

- starke Interaktion zwischen Seitenwänden und Kontrolltechnik
- **z.T.** Auswirkungen bis in Ductmitte (hohes W_m^+)
- stark verringerte Reibungsminderung im Duci

Was wurde untersucht?

- Ursache für Diskrepanz zwischen Experiment und numerischer Simulation?
- DNS einer turbulenten Strömung im Duct mit harmonisch bewegten Wänden

Was wurde gefunden?

- starke Interaktion zwischen Seitenwänden und Kontrolltechnik
- **z.**T. Auswirkungen bis in Ductmitte (hohes W_m^+)
- stark verringerte Reibungsminderung im Duct

Sekundärströmung

- Strukturen werden verstärkt, verschoben
- zusätzliches Wirbelpaar wird generiert

Reibungsminderung

- lokal gute Übereinstimmung mit Channel (bei kleinem W⁺_m
- Verluste hauptsächlich an Seitenwänden, Ende der Kontrollfläche

Sekundärströmung

- Strukturen werden verstärkt, verschoben
- zusätzliches Wirbelpaar wird generiert

Reibungsminderung

- lacksquare lokal gute Übereinstimmung mit Channel (bei kleinem W_m^+)
- Verluste hauptsächlich an Seitenwänden, Ende der Kontrollfläche

Sekundärströmung

- Strukturen werden verstärkt, verschoben
- zusätzliches Wirbelpaar wird generiert

Reibungsminderung

- lacksquare lokal gute Übereinstimmung mit Channel (bei kleinem W_m^+)
- Verluste hauptsächlich an Seitenwänden, Ende der Kontrollfläche

Sekundärströmung

Strukturen werden verstärkt, verschoben

Methoden

zusätzliches Wirbelpaar wird generiert

Reibungsminderung

- lokal gute Übereinstimmung mit Channel (bei kleinem W_m^+)

Sekundärströmung

Strukturen werden verstärkt, verschoben

Methoden

zusätzliches Wirbelpaar wird generiert

Reibungsminderung

- lokal gute Übereinstimmung mit Channel (bei kleinem W_m^+)
- Verluste hauptsächlich an Seitenwänden, Ende der Kontrollfläche

November 2015

Sekundärströmung

Strukturen werden verstärkt, verschoben

Methoden

zusätzliches Wirbelpaar wird generiert

Reibungsminderung

- lokal gute Übereinstimmung mit Channel (bei kleinem W_m^+)
- Verluste hauptsächlich an Seitenwänden, Ende der Kontrollfläche

November 2015

Sekundärströmung

- Strukturen werden verstärkt, verschoben
- zusätzliches Wirbelpaar wird generiert

Reibungsminderung

- lokal gute Übereinstimmung mit Channel (bei kleinem W_m^+)
- Verluste hauptsächlich an Seitenwänden, Ende der Kontrollfläche

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds—Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

S. Straub - DNS of controlled turb, duct flows

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds-Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

S. Straub - DNS of controlled turb, duct flows

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds-Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

S. Straub - DNS of controlled turb, duct flows

25/26

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds-Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

S. Straub - DNS of controlled turb, duct flows

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds-Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds-Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

S. Straub - DNS of controlled turb, duct flows

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds-Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds-Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds—Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

- Woher kommt Peak in Wandschubspannung?
 - → Verändere Übergang bewegt unbewegt
- Erzeugte Wirbel auch durch Reynolds-Spannungen induzierte?
 - → Untersuche laminaren Fall
- Auswirkung des Seitenverhältnis?
 - → Wähle größeres Seitenverhältnis
- Auswirkungen auf Reibungsminderung, falls kontrollierte Fläche auch in Hauptströmungsrichtung limitiert?
 - → Verändere Setup
- Vorhersage von Reibungsminderung für gegebene kontrollierte Fläche und Seitenverhältnis?
 - → Leite Modell aus Ergebnissen ab

The End!

- S. Gavrilakis. Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. Journal of Fluid Mechanics, 244:101–129, 1992.
- F. Gessner and J. B. Jones. On some aspects of fully-developed turbulent flow in rectangular channels. Journal of Fluid Mechanics, 23:689–713, 1965.
- J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177:133–166, 1987.
- J. Ohlsson, P. Schlatter, C. Mavriplis, and D. Henningson. The spectral-element and pseudo-spectral methods: A comparative study. In J. S. Hesthaven and E. M. Rønquist, editors, Spectral and High Order Methods for Partial Differential Equations, volume 76 of Lecture Notes in Computational Science and Engineering, pages 459–467. Springer

Einleitung

Methoden

Grundgleichungen

Navier-Stokes Gleichungen

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\rho \left(\frac{\partial u_j}{\partial t} + u_i \frac{\partial u_j}{\partial x_i} \right) = -\frac{\partial p}{\partial x_j} + \mu \frac{\partial^2 u_j}{\partial x_i^2}$$
 (2)

RANS Gleichungen: $u_i = U_i + u'_i$

$$\frac{\partial U_i}{\partial x_i} = 0 \tag{3}$$

$$\rho\left(\frac{\partial U_j}{\partial t} + U_i \frac{\partial U_j}{\partial x_i}\right) = -\frac{\partial P}{\partial x_j} + \mu \frac{\partial^2 U_j}{\partial x_i^2} - \rho \frac{\partial}{\partial x_i} \langle u_i' u_j' \rangle. \tag{4}$$

Grundgleichungen

Navier-Stokes Gleichungen

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\rho\left(\frac{\partial u_j}{\partial t} + u_i \frac{\partial u_j}{\partial x_i}\right) = -\frac{\partial p}{\partial x_i} + \mu \frac{\partial^2 u_j}{\partial x_i^2}$$
 (2)

RANS Gleichungen: $u_j = U_j + u'_j$

$$\frac{\partial U_i}{\partial x_i} = 0 \tag{3}$$

$$\rho\left(\frac{\partial U_j}{\partial t} + U_i \frac{\partial U_j}{\partial x_i}\right) = -\frac{\partial P}{\partial x_i} + \mu \frac{\partial^2 U_j}{\partial x_i^2} - \rho \frac{\partial}{\partial x_i} \langle u_i' u_j' \rangle. \tag{4}$$

Validierung: Tabelle

Tabelle: Unkontrollierter Kanal

	c:0	Kim et al. (1987)
Re _b	2800	≈ 2800
$Re_ au$	179.3	≈ 180
Re_c	3266	pprox 3300
U_c/U_b	1.16	1.16
C_f	$8.20 \cdot 10^{-3}$	$8.18 \cdot 10^{-3}$

Validierung: unkontrolliert

Validierung: kontrolliert

Validierung: kontrolliert

Validierung: kontrolliert

gemittelte Statistiken: v_{rms} und u'w'

