龙岩、三明地区部分高中校协作

2024-2025 学年第一学期十月份月考联考

高三化学试题

命题人、审核人: 龙岩一中高三化学备课组

(考试时间: 75 分钟 总分: 100 分)

可能用到的相对原子质量: Li-7 N-14 0-16 Al-27 P-31 Ca-40 Fe-56 Zr-91

第 [卷 (选择题, 共 48 分)

- 一、选择题。(本大题共 10 小题,每小题 4 分,共 40 分。在每小题列出的四个选项中,只有一项是最符合题目要求的。)
- 1. 先秦时期的《考工记》最早记载了我国古代精炼蚕丝工艺。"以涚水(草木灰水)沤(长时间浸泡)其丝,七日……"可除去蚕丝中的丝胶等杂质。下列说法正确的是
 - A. 草木灰经水浸、分液得到涚水
- B. 涚水的主要溶质是草酸钾

C. 丝胶在碱性溶液中易水解

D. 蚕丝纤维与棉纤维主要成分相同

2. 下列化学用语表述正确的是

A. SO,的VSEPR模型:

F.
Na⁺[F: B:F]⁻

B. NaBF₄ 的电子式:

C. HCl 分子中 σ 键的电子云轮廓图:

- 3. AlN 是一种半导体材料,一种制备原理是: $\mathrm{Al_2O_3} + \mathrm{N_2} + \mathrm{3C}$ ______ 2AlN + 3CO 。设 N_A

为阿伏加德罗常数的值。下列叙述不正确的是

- A. 41g AlN 的分子数为 N_{Δ}
- B. 标准状况下, 11.2LN_2 含 π 键数目为 N_{A}
- C. 生成 1molCO,转移电子数目为 2 $N_{\rm A}$
- D. $0.1 \text{mol Al}_2 \text{O}_3$ 溶于足量盐酸,所得溶液中 Al^{3+} 数目小于 $0.2 N_{\text{A}}$

- 4. 下列离子方程式不正确的是
 - A. 用 FeS 除去废水中的 Hg²⁺: FeS +Hg²⁺=Fe²⁺ +HgS
 - B. 用惰性电极电解饱和食盐水: 2Cl⁻+2H₂O ====Cl₂↑+H₂↑+2OH⁻
 - C. 向 H_2^{18} O 中投入 Na_2O_2 固体: $2H_2^{18}O + 2Na_2O_2 = 4Na^+ + 4OH^- + ^{18}O_2$ 个
 - D. 向氨水中加入少量氯化银: 2NH₃·H₂O+AgCl ← [Ag(NH₃)₂] + Cl + 2H₂O
- 5. $X \times Y$ 为第三周期元素,Y 的最高正价与最低负价的代数和为 6,二者可形成化合物 $[XY_4]^+[XY_6]^-$ 。下列说法不正确的是
 - A. 原子半径: X>Y
 - B. 氧化物对应水化物酸性: Y>X
 - C. 同周期中第一电离能小于 X 的元素有 5 种
 - D. [XY₄]+为正四面体结构, [XY₆]-为正八面体结构
- 6. 《本草纲目》记载的中药连钱草具有散瘀消肿、清热解毒等作用,其有效成分之一的结构 如图所示,下列有关该化合物的说法不正确的是
 - A. 分子中碳原子的杂化方式有 2 种
 - B. 能发生取代反应、消去反应、氧化反应
 - C. 苯环上的一氯代物为7种
 - D. 1mol 该化合物最多 8molH₂与发生反应
- 7. NaClO 溶液具有漂白能力,已知 25°C时, K_a (HClO)= 4.0×10^{-8} 。下列说法不正确的是
 - A. 0.01mol/L NaClO 溶液中, $c(ClO^-)<0.01$ mol· L^-
 - B. NaClO 溶液长期露置在空气中,会释放出 O₂,漂白能力减弱
 - C. NaClO 溶液中通入过量SO₂,反应的离子方程式为SO₂+ClO +H₂O=HSO₃+HClO
 - D. 25°C, pH=7.0 的 NaClO 和 HClO 的混合溶液中, c(HClO)>c(ClO)
- 8. 下列实验操作、现象及结论均正确且相对应的是

选项	实验操作	现象	结论	
A	向 KI 溶液中持续滴加氯水	溶液先由无色变为棕 黄色,一段时间后褪色	氯水可以氧化I ₂	
В	用玻璃棒蘸取某溶液在火焰上灼烧	火焰呈黄色	该溶液中含有钠元素	
C	将灼热的木炭颗粒加到浓硝酸中	出现红棕色气体 木炭还原了HNG		
D	向淀粉溶液中滴加稀硫酸,水浴加热 一段时间后加入银氨溶液	无银镜生成	淀粉未发生水解	

9. 以某电厂的粉煤灰(主要含 SiO_2 、 Al_2O_3 和 CaO 等)为原料提铝的工艺流程如图 1。其中 "沉铝"时,体系中三种物质的溶解度曲线如图 2 所示。下列说法不正确的是

10. 苯甲酸是一种重要的化工原料。以苯乙酮为原料,以 KI 为电解质,利用电化学方法合成 苯甲酸的原理(部分)如图。下列说法正确的是

图 2

- A. KI 是该反应的催化剂
- B. 反应一段时间后溶液 pH 增大
- C. 阴极生成 1 mol 气体, 理论上可制备 0.5 mol 苯甲酸

第Ⅱ卷(非选择题)

二、非选择题。(本大题共4题, 共60分。)

- 11. (12分)研究氮及其化合物的性质具有重要意义。回答下列问题:
- NH_3 $\xrightarrow{Cr_2O_3/\triangle}$ (X) $\xrightarrow{@}$ (Y) $\xrightarrow{@}$ HNO_3 (1) 工业上用 NH_3 制备 HNO_3 的一种路线为: 写出第①步的化学方程式:
- (2) SCR(选择性催化还原)技术能有效降低柴油发动机中氮氧化物的排放,写出 SCR 催化反应器中用 NH3 还原 NO2 的化学方程式:
- (3)一种新型人工固氮的原理如图。①②③反应中属于非氧化还原反应的是_____(填编号)。假设每一步均完全转化,每生成0.4mol NH_3 ,最终生成 O_2 _____L(标准状况下)。

- (4)工业废水中氮的主要存在形态是 NO_3^- 、 NH_3 、 NH_4^+ ,还原法和氧化法是去除废水中氮的重要方法。
- ①还原法:控制其他条件相同,去除pH=1的某含氮废水(废水中总氮 $\approx 10 mg \cdot L^{-1}$)中的 NO_3^- ,图 1 为只加过量 Na_2SO_3 时废水中含氮微粒的浓度随时间变化的图像,图 2 为同时加过量 Fe 粉与 Na_2SO_3 时废水中含氮微粒的浓度随时间变化的图像。

分析上述图像,图 2 中 20~60min 内发生主要反应的离子方程式为

②氧化法:利用 NaClO 将水体中氨氮氧化为 N_2 。研究发现,控制其他条件相同,当废水 pH 为 $1.25 \sim 2.75$ 范围内,氨氮去除率随 pH 降低而升高,原因可能是

12. (14分)一种药物合成的中间体H是有机盐,其合成路线如下图所示。

回答下列问题:

(1)A的名称	,E的官能团名和	尔。
		*

- (2) A→B反应所需试剂和条件为 _____。
- (3)C→D的反应类型为。
- (4)D→E的反应方程式为_____。
- (5)根据G→H的原理,分析D与苯甲酸无法直接反应制得E的原因是____。
- (6)C的同分异构体中,同时满足下列条件的共有_____种。
 - a. 含有碳碳叁键 b. 含有苯环

其中核磁共振氢谱显示5组峰,且峰面积比为2:2:1:1:1的同分异构体结构简式为

·_____o

13. (18 分) 锆被称为原子时代的头号金属。一种以氧氯化锆(主要含 $ZrOCl_2$,还含有少量Fe、Cr、Hf等元素)为原料生产金属锆的工艺流程如下:

已知:①"酸溶"后溶液中各金属元素的存在形式为: ZrO^{2+} 、 HfO^{2+} 、 Fe^{3+} 、 Cr^{3+} ;

②25°CFJ, $K_{\rm sp} \Big[{\rm Fe} \big({\rm OH} \big)_3 \Big] = 4.0 \times 10^{-38} \,, \ K_{\rm b} \big({\rm NH}_3 \cdot {\rm H}_2 {\rm O} \big) = 1.8 \times 10^{-5} \,;$

物质	ZrCl ₄	FeCl ₃	CrCl ₃	FeCl ₂	CrCl ₂
沸点/℃	331	315	1300	700	1150

回答下列问题:

(1) Fe³⁺的离子结构示意图______

锆的价电子排布式为 4d²5s², 则锆在元素周期表中的位置为

(2)"萃取"时,锆元素可与萃取剂形成多种络合物,写出生成^{Zr(NO₃)}₂Cl₂·2TBP 的 离子方程式:

 $c(NH_4)$

- (3) "沉淀"后, 测得"废液"中 $c(Fe^{3+})=4.0\times10^{-23} mol \cdot L^{-1}$, 则该"废液"中 $c(NH_3\cdot H_2O)$ 为_____。
- (4) "沸腾氯化"时, ZrO_2 等氧化物转化为 $ZrCl_4$ 等氯化物,同时生成一种还原性气体。当消耗 11.2L(标况下) Cl_2 时,产生的还原性气体的物质的量为_____。
- (5)"还原"的主要目的是。
- (6)某种掺杂 CaO 的 ZrO2 晶胞如图所示。
 - ①晶体中 Zr 填充在 O 形成的_____空隙中。

o Zr

• O

• Ca

③如图所示结构(oZr ● O oCa)与上述晶胞结构不一致的是____(填标号)。

14. (16 分)磷酸亚铁锂(LiFePO₄)可作为锂离子电池的正极材料,通过 H₃PO₄、LiOH 和 (NH₄)₂Fe(SO₄)₂溶液发生共沉淀反应,将所得沉淀干燥、高温成型而制得。实验室制备 LiFePO₄的方法如下:

步骤 I:将 LiOH(强碱)加入煮沸过的蒸馏水配成溶液。

步骤 II: 在氮气的氛围中将 (NH₄)₂Fe(SO₄)₂溶液与 H₃PO₄、LiOH 溶液中的一种混合,加入仪器 A 中。

步骤 III: 在搅拌下通过滴液漏斗缓慢滴加剩余的另一种溶液,充分反应后,过滤、洗涤、干燥,得到粗产品。

已知: LiFePO₄、FePO₄难溶于水和碱,可溶于酸。

- (1) 装置图中仪器 A 的名称是。
- (2) 滴液漏斗中盛放的溶液是 (填化学式)。
- (3) 通入 N_2 的目的是
- (4) 共沉淀反应得到 LiFePO₄ 和 NH₄HSO₄, 该反应的离子方程式为_____。 (已知: Ka(HSO₄)=1.0×10⁻²)
- - ②利用其还原性, 防止Fe(II)被氧化。
- (6) 检验产品中是否混有 Fe³⁺的操作是。
- (7) 用 $0.100 \text{ mol} \cdot L^{-1}$ 酸性 $K_2Cr_2O_7$ 溶液滴定 Fe^{2+} ,测定产品中 $LiFePO_4$ 的纯度。涉及步骤如下:
 - a. 用分析天平称量 8.000 g 样品放入烧杯
 - b. 用移液管量取 25.00 mL 样品溶液置于锥形瓶
 - c. 用 100 mL 容量瓶配制一定体积的样品溶液
 - d. 加稀硫酸溶解样品
 - e. 用 K₂Cr₂O₇ 标准溶液,滴定至溶液由浅绿色变为蓝紫色
 - f. 滴加 2~3 滴二苯胺磺酸钠作指示剂
 - g. 重复滴定 3 次, 平均消耗 K₂Cr₂O₇ 溶液 20.00 mL
 - ①上述步骤的正确顺序为: a-()-()-()-()-g
- ②产品的纯度为 (保留三位有效数字)。