Podstawy Elektrotechniki 2

lista 5

1. Obliczyć gęstość prądu upływu, gęstość strat mocy oraz całkowite straty mocy w kondensatorze płaskim, dwuwarstwowym o danych: ε_{r1} =3, ε_{r2} =6, ρ_1 =10⁸ Ω m, ρ_2 =0,510⁸ Ω m, d_1 = d_2 = 3 mm, s=50 cm², U=1,2kV

2. Wyznaczyć pojemność, prąd upływu i traconą moc w odcinku jednożyłowego kabla koncentrycznego o długości l = 1 km, pracującego przy napięciu U = 5 kV.

Dane : $\gamma = 5 \ 10^{-9} \ Sm^{-1}$, $r_1 = 10 \ mm$, $r_2 = 27,3 \ mm$, $\epsilon_r = 3,5$.

3. Przez elektrodę w kształcie półkuli wpływa do ziemi prąd I = 100 A. Obliczyć oporność przejścia; gęstość prądu i napięcie krokowe w odległości : 1 m, 2m, 3m, 5m i 10m. Dane: $r_0 = 2.5$ cm, $\rho = 10\Omega$ m.

4. Wyznaczyć rezystancję elementu przedstawionego na rys., jeżeli prąd dopływa od strony A, B i C. Dane: $r = 10^{-6} \Omega m$, $r_1 = 2 cm$, $r_2 = 5 cm$, h = 10 cm.

5. Obliczyć oporność powierzchniową izolatora wsporczego w kształcie stożka ściętego (rys.).

Dane: $\rho_{\Box} = 10^8 \Omega$, $r_1 = 5 \text{ cm}$, $r_2 = 8 \text{ cm}$, h = 10 cm.

6. Przez przewód miedziany ($\gamma = 56 \text{ m}\Omega^{-1}\text{mm}^{-2}$) o średnicy 2 mm płynie prąd 10 A. Obliczyć moc cieplną wydzieloną w przewodzie o długości 1 m w przypadku gdy: a) pole prądowe jest jednorodne i b) gęstość prądu opisana jest zależnością $j = a r^k$, gdzie k = 0.25; 0,5; 1 i 2 .