Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторной работе №1 "Интервальный анализ"

Выполнили студент группы 5030102/10201: Скворцов Владимир Сергеевич

Преподаватель: Баженов Александр Николаевич

 ${
m Cahkt-} \Pi$ етербург 2024

Содержание

1	Постановка задачи			
2	Необходимая теория 2.1 Интервальная арифметика	2		
	2.1 Интервальная арифметика	3		
3	Реализаця	3		
	3.1 Алгоритм поиска минимального α	3		
	3.2 Результаты вычислений	4		
	3.3 Итоговые результаты	4		
	3.3 Итоговые результаты	4		
	3.5 Скорость сходимости	5		
4	Обсуждение			
5	Выводы			

1 Постановка задачи

Дана ИСЛАУ

$$Ax = b, \ x = (x_1, x_2)$$

с матрицей

$$midA = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Пусть матрица радиусов для A имеет вид

$$radA = \alpha \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Необходимо:

- Найти диапазон значений α , при которых $0 \in \det A$;
- Для минимального значения радиуса матричных элементов $\min \alpha$ найти точечную матрицу A':

$$\det A' = 0.$$

2 Необходимая теория

Интервалом вещественной оси [a,b], называется множество всех чисел, расположенных между заданными числами a и b включая их самих, т.е.

$$[a,b] \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}. \tag{1}$$

При этом a и b называются концами интервала.

2.1 Интервальная арифметика

Развернутые формулы основных арифметических операций для интервалов:

1. Сложение

$$\mathbf{x} + \mathbf{y} = \left[\underline{\mathbf{x}} + \mathbf{y}, \ \overline{\mathbf{x}} + \overline{\mathbf{y}} \right], \tag{2}$$

2. Вычитание

$$\mathbf{x} - \mathbf{y} = \left[\underline{\mathbf{x}} - \overline{\mathbf{y}}, \ \overline{\mathbf{x}} - \mathbf{y} \right], \tag{3}$$

3. Умножение

$$\mathbf{x} \cdot \mathbf{y} = \left[\min \{ \underline{\mathbf{x}} \ \mathbf{y}, \underline{\mathbf{x}} \ \overline{\mathbf{y}}, \overline{\mathbf{x}} \ \mathbf{y}, \overline{\mathbf{x}} \ \overline{\mathbf{y}} \}, \ \max \{ \underline{\mathbf{x}} \ \mathbf{y}, \underline{\mathbf{x}} \ \overline{\mathbf{y}}, \overline{\mathbf{x}} \ \mathbf{y}, \overline{\mathbf{x}} \ \overline{\mathbf{y}} \} \right], \tag{4}$$

4. Деление

$$\mathbf{x}/\mathbf{y} = \mathbf{x} \cdot \left[1/\overline{\mathbf{y}}, \ 1/\mathbf{y}\right], \ 0 \notin \mathbf{y}.$$
 (5)

Формулы для характеристик интервала:

1. Средняя точка

$$\operatorname{mid} \mathbf{x} = \frac{1}{2} (\underline{\mathbf{x}} + \overline{\mathbf{x}}). \tag{6}$$

2. Ширина

$$\text{wid } \mathbf{x} = \overline{\mathbf{x}} - \underline{\mathbf{x}}.\tag{7}$$

3. Радиус

$$rad \mathbf{x} = \frac{1}{2}(\overline{\mathbf{x}} - \underline{\mathbf{x}}). \tag{8}$$

2.2 Определитель матрицы

3 Реализаця

Лабораторная работа выполнена на языке программирования Python. В ходе работы были также использованы библиотеки numpy и matplotlib.

 ${\it Cc}$ ьдка на GitHub peпозиторий: https://github.com/vladimir-skvortsov/spbstu-interval-anylysis

3.1 Алгоритм поиска минимального α

В ходе выполнения работы было найдено минимальное значение параметра α , при котором определитель интервальной матрицы A включает ноль $(0 \in \det A)$.

Для нахождения минимального значения α использовался итеративный метод с переменным шагом:

1. Начальный этап:

- Стартовое значение: $\alpha_0 = 1$.
- ullet На каждой итерации значение $lpha_k$ увеличивается по формуле:

$$\alpha_{k+1} = e^{a_k}$$

• Процесс продолжается, пока $0 \notin \det A$.

2. Уточнение значения:

- Задаем точность $\varepsilon > 0$.
- Принимаем $a_0 = 0$ и $b_0 = \alpha_0$.
- Находим $\alpha_{k+1} = \frac{a_k + b_k}{2}$.
- Если $0 \in \det A$, то $b_{k+1} = \alpha_{k+1}$, иначе $a_{k+1} = \alpha_{k+1}$.
- Значение α уменьшается для уточнения:

$$\alpha = \alpha_0 - step_2 \times iter$$

- Процесс продолжается, пока $b-a>\varepsilon$.
- Если $b-a\leqslant \varepsilon$, возвращаем $\frac{a_k+b_k}{2}.$

3.2 Результаты вычислений

k	α_k	$\det A_k$
0	0.50000	[-1.90000, 2.10000]
1	0.25000	[-0.90000, 1.10000]
2	0.12500	[-0.40000, 0.60000]
3	0.06250	[-0.15000, 0.35000]
4	0.03125	[-0.02500, 0.22500]
÷	:	i:
14	0.02499	[0.00002, 0.19998]
15	0.02500	[-0.00004, 0.20004]
16	0.02500	[-0.00000, 0.20000]

Таблица 1: Итерационный процесс при шаге 10^{-5}

Итерационный процесс представлен в таблице 1. Из таблицы видно, что на 16-й итерации было найдено значение α при заданной точности:

$$\alpha_{min} = 0.025$$

3.3 Итоговые результаты

Минимальное значение параметра регуляризации:

$$\alpha_{min} = 0.025$$

При этом интервальная матрица A имеет следующий вид:

$$A = \begin{bmatrix} [1.025, \ 1.075] & [0.925, \ 0.975] \\ [0.975, \ 1.025] & [0.975, \ 1.025] \end{bmatrix}$$

Определитель данной матрицы составляет:

$$det(A) = [0.0, 0.2]$$

Диапазон значений α , при котором определитель интервальной матрицы A включает ноль, составляет:

$$\alpha \in [0.025, +\infty)$$

3.4 Нахождение точечной матрицы A'

Для найденного минимального значения α_{min} была определена точечная матрица A', принадлежащая интервальной матрице A, такая, что $\det A' = 0$.

Точечная матрица A' имеет вид:

$$A' = \begin{bmatrix} 1.025 & 0.975 \\ 1.025 & 0.975 \end{bmatrix}$$

Эта матрица является вырожденной, так как её строки линейно зависимы, и определитель равен нулю.

3.5 Скорость сходимости

Рис. 1: Зависимость значения α от номера итерации k

Рис. 2: Относительная погрешность δ от номера итерации k

Из графика 2 следует, что относительная погрешность уменьшается с темпом, близким к $\exp(-k)$.

4 Обсуждение

1. Физическая интерпретация

Матрица A' представляет собой матрицу, формируемую при минимальном значении радиуса матричных элементов δ . Это минимальное значение радиуса соответствует моменту, когда матрица A теряет свою обратимость, и $\det A'=0$. Следовательно, система уравнений становится вырожденной, что означает наличие бесконечного множества решений. В физическом смысле это указывает на то, что данные, полученные с двух ракурсов, недостаточны для точной реконструкции объекта, поскольку отсутствует информация для однозначного решения.

2. Чувствительность при минимальном радиусе

При минимальном радиусе матричных элементов формируется точечная матрица A', которая представляет собой границу множества возможных матриц A, описывающих интервал неопределенности. Система становится чувствительной к незначительным возмущениям в данных. Любое изменение исходных данных может существенно повлиять на результат реконструкции, что усложняет задачу томографии в условиях реальных данных с шумами.

3. Практические соображения

В практической томографии часто используется большее количество ракурсов, чем два, для улучшения условий задачи и предотвращения ситуации, когда detA'=0. В задачах с ограниченным числом ракурсов проблема вырожденности матрицы возникает часто, поэтому такие задачи требуют применения специальных методов, учитывающих неоднозначность.

5 Выводы

В ходе лабораторной работы была построена интервальная матрица A размером 2×2 следующего вида:

$$A = \begin{bmatrix} [1.05 - \alpha, 1.05 + \alpha] & [0.95 - \alpha, 0.95 + \alpha] \\ [1 - \alpha, 1 + \alpha] & [1 - \alpha, 1 + \alpha] \end{bmatrix}$$

Для данной матрицы был вычислен диапазон значений α , при которых определитель интервальной матрицы включает ноль, что соответствует состоянию вырождения матрицы. Минимальное значение $\alpha=0.025$ было установлено с использованием итерационного алгоритма с переменным шагом.

При этом было установлено, что при значении $\alpha=0.025$ интервальный определитель матрицы принимает значения в интервале [0.0,0.2], что включает ноль. Следовательно, это значение α является минимальным, при котором матрица A становится вырожденной.

Для минимального значения α была найдена точечная матрица A', принадлежащая интервальной матрице A, такая, что:

$$A' = \begin{bmatrix} 1.025 & 0.975 \\ 1.025 & 0.975 \end{bmatrix}$$

Эта матрица является вырожденной, поскольку её строки линейно зависимы, и её определитель равен нулю.

В общем случае, если матрица A представляет собой матрицу линейной регрессии, она может иметь размерность $2 \times N$ (где $N \ge 2$) и не быть квадратной. В таких случаях для анализа необходимо рассматривать всевозможные квадратные подматрицы и для каждой подбирать своё значение α , при котором эти матрицы будут неособенными (невырожденными). Затем, пересечение всех найденных матриц позволяет получить итоговую регуляризованную матрицу, которая удовлетворяет условиям задачи и может быть использована для дальнейшего анализа или вычислений.