Table of Contents

- Motivation & Trends in HPC
- Mathematical Modeling
- Numerical Methods used in HPSC
 - Automatic Differentiation
 - Systems of Differential Equations: ODEs & PDEs
 - Solving Optimization Problems
 - Solving Nonlinear Equations
 - Basic Linear Algebra, Eigenvalues and Eigenvectors
 - Chaotic systems
- HPSC Program Development/Enhancement: from Prototype to Production
- Visualization, Debugging, Profiling, Performance Analysis & Optimization

153

152

Nonlinear Equation Example

• The problem $f(x) = -e^{-x} + 2x = 0$

• The solution: x = 0.351734

Nonlinear equations

• Find the roots of the system of equations:

$$f: \mathbb{R}^n \to \mathbb{R}^n$$
, $f(x) = 0$

- Numerical methods find an approximate solution point $x^* \in \Re^n$
- If n > 1, we have the system of equations:

$$\begin{cases} f_1(x_1,...,x_n) = 0 \\ f_2(x_1,...,x_n) = 0 \\ ... \\ f_n(x_1,...,x_n) = 0 \end{cases}$$

• We have a linear system of equations, if f(x) = Ax - b where A is a matrix and b is a vector in \Re^n

154

155

Finding the solution

 Solving a system of equations is much harder than solving a single equation!

- Numerical methods are iterative:
 - Given a starting point x^1 we compute $x^{k+1} = x^k + s^k$, k = 1,2,...
- A good starting point is essential for speedy convergence: x¹ should be near the solution x*

Guidelines for solving the problem

- Find an area containing the root
- The better the initial guess is the faster the convergence
- Select a suitable solution method depending on the problem type:
 - Real or complex problem
 - One or several equations
 - State of nonlinearity
- When candidate solution has been found:
 - Verify it

156

157

Solution methods for one equation

- If the derivative is easy to compute:
 - Newton's method is efficient
 - A good initial guess also helps
- If the derivative is not available
 - Brent/Dekker method is robust and fast
- Polynomial equations have special solution algorithms
- Solution methods are available in the NAG and IMSL commercial libraries

Solution methods for systems of equations

158

- If the derivatives are easy to compute and you have a good initial guess:
 - Newton's method is efficient
- When the derivatives are not available:
 - Quasi-Newton methods are good choices
- It is also possible to use methods for nonlinear least squares problems:

$$f(x) = 0 \to \min_{x} \sum_{i} f_{i}(x)^{2}$$

 However, the solutions of the minimization problem may not solve the system of equations

158

159

Newton's method for one equation

 Newton's method can be derived from the Taylor expansion of function f(x):

$$f(x+d) \approx f(x) + f'(x)d + \frac{f''(x)}{2}d^2 + \dots$$

- Newton's method:
 - 1. Guess an initial solution x_1

- If $f'(x_k) = 0$ for some k, the method **fails**
- If $f'(x^*) = 0$ the method is **not efficient**

Newton's method for systems of equations

160

- The problem: f(x) = 0
- Guess an initial solution $x^1 \in \Re^n$
- Solve the linear equations $J(x^k)s_N^k = -f(x^k)$

$$x^{k+1} = x^k + s_N^k$$

with $J(x^k)$ is the Jacobian of the function f, and s_N^k is the Newton step

- The iteration converges quadratically near the solution
 - May fail if the initial guess is poor
- The Jacobian matrix is expensive to compute

160

161

Software for nonlinear equations

- Mathematica and Matlab offer routines for solving simple nonlinear equations
 - Not too many variables
 - Too much nonlinearity
- IMSL and NAG subroutine libraries offer reliable routines for Fortran & C programmers
- The Netlib archive (http://www.netlib.org) contains source code for solution routines

Table of Contents

- Motivation & Trends in HPC
- Mathematical Modeling
- Numerical Methods used in HPSC
 - Systems of Differential Equations: ODEs & PDEs
 - Automatic Differentiation
 - Solving Optimization Problems
 - Solving Nonlinear Equations
 - Basic Linear Algebra, Eigenvalues and Eigenvectors
 - Chaotic systems
- HPSC Program Development/Enhancement: from Prototype to Production
- Visualization, Debugging, Profiling, Performance Analysis & Optimization

163

162

Vectors and Matrices

- Classical definition
 - A vector is a quantity with **magnitude** and **direction**
 - Example: force, speed, etc
- For us it is enough to view vectors as collections of numbers
 - The population in every country could be divided into age brackets
- Vectors are usually denoted by bold letters, and their elements are given with a subscript $x = (x_1,...,x_n)$
- Similarly matrices are simply two dimensional arrays of numbers

Algebraic operations with vectors and matrices

164

- Addition and subtraction are defined element-wise for both vectors and matrices
- For multiplication there are several possibilities:
 - The following is known as the inner product / dot product

$$a \cdot b = (a_1, \dots, a_n) \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix} = \sum_{j=1}^n a_j b_j$$

- The length of a vector is given by $\sqrt{a \cdot a}$
- Two matrices A and B can be multiplied only if their sizes are compatible

G

164

Algebraic operations with vectors and matrices (2)

- The number of columns in A must equal the number of rows in B
- If their product matrix is called ${\bf C}$, the elements of ${\bf C}$ are computed as $c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$
- If the size of A is p x n and the size of B is n x q, C will be
 of size p x q
- This definition of multiplication between matrices makes writing systems of linear equations very easy
- New ways of solving systems of linear equations efficiently is one of the most intensive fields in numerical analysis
- There are specialized solvers for almost any special type of system of equations

Algebraic operations with vectors and matrices (3)

166

- For matrices, multiplication is **not commutative**,
 - It is not true in general that AB = BA for arbitrary A & B
- If A is a square matrix and there is another matrix B for which AB = BA = I
 - I is the identity matrix
 - A is **invertible** and B is the **inverse** of A, denoted by $B = A^{-1}$
 - If A is invertible, the solution of the linear system of equations Ax = y is $x = A^{-1}y$
- The division operation for matrices is defined as multiplication with an inverse
 - There is a difference between $A^{-1}B \neq BA^{-1}$
- For square matrices one can define
 - The trace
 - The determinant

166

Methods for Solving Linear Equations

- Direct Methods
 - Gaussian elimination
 - More efficient versions are based on various decompositions (e.g., A = LU or A = LDU)
 - The unknowns are solved one at a time
 - The process must be finished in order to have some realistic value for every unknown
 - Accurate in principle may be too slow for very large systems
 - Often demands lots of memory

Methods for Solving Linear Equations (2)

168

• Iterative Methods

$$X_{k+1} = GX_k$$

- Basic idea: guess some solution and improve it gradually
- Some methods: Gauss-Seidel, SOR, Conjugate Gradient (CG), GMRES, ...
- Simple methods may be made faster by using preconditioners
- All unknowns are solved simultaneously little by little
 - It is possible to interrupt the solution process whenever sufficient accuracy is achieved
 - In principle, to have an accurate solution a large number of iterations is needed
 - In practice, the iterations can converge remarkably fast
 - Efficient memory usage

G

169

168

Linear Transformations

• In one dimension, a linear transformation A means simply multiplication with a constant:

$$y = A(x) = Ax = ax$$

• In two dimensions, a linear transformation is a function $A: \Re^2 \Rightarrow \Re^2$ which is linear with respect to both arguments:

$$y_1 = a_{11}x_1 + a_{12}x_2$$

$$y_2 = a_{21}x_1 + a_{22}x_2$$

• In matrix notation y = Ax

Linear Transformations (2)

- Geometrically a linear transformation:
 - Stretches or shrinks distances between points
 - Rotates points about the origin
 - Flips the orientation from a right handed system to a left handed system
- In higher dimensions definition is analogous & the action is viewed similarly through geometry
- The norm of a linear transformation tells what is the maximum factor by which a linear transformation can stretch a vector

170

171

Eigenvalues and Eigenvectors

- In general, a linear transformation rotates a given point about the origin
- It may happen that the points lying on some particular lines remain on these lines
 - They may move farther from or closer to the origin
- This can be expressed as $Ax = \lambda x$
- Where λ tells how much is the change in distance with respect to the origin
 - $-\left|\lambda\right|<1$ means the points moves closer and it is called an eigenvalue of A
 - The corresponding vector x which determines the neutral direction is called an eigenvector

Eigenvalues and Eigenvectors (2)

- A square matrix of size n x n can have at most n different eigenvalues and eigenvectors
- If the eigenvectors form an n-dimensional basis the matrix is said to be diagonalizable
 - Any vector in \Re^n can be expressed as a linear combination of the eigenvectors
- In low-dimensional cases the eigenvalues can be calculated by hand but usually numerical methods are the only way to find them
- If $Ax = \lambda x \Rightarrow (A \lambda I)x = 0$ and this has a non-trivial solution $(\neq 0)$ only if $\det(A \lambda I) \neq 0$

172

73

Eigenvalues and Eigenvectors (3)

• Given $Ax = \begin{pmatrix} 4 & 3 \\ -2 & -1 \end{pmatrix} \Rightarrow \det(A - \lambda I)$

$$= (4 - \lambda)(-1 - \lambda) - (-2)(-3) = \lambda^2 - 3\lambda + 2$$

- The zeros of the right hand side of the last equation are $\lambda_1 = 1, \lambda_2 = 2$ eigenvalues for A
- The corresponding eigenvectors (1,-1) and (3,-2)
- Eigenvalues of a real symmetric matrix are real
- $tr(A) = \sum_{j} \lambda_{j}$
- $\det(A) = \prod_{i=1}^{n} \lambda_{i}$

Eigenvalues Example

• If $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \Rightarrow \lambda_1 = 1, \lambda_2 = 2$ & the eigenvectors $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Thus, any solution must be of the form

$$x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

$$= c_1 e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} c_1 e^t + c_2 e^{2t} \\ c_2 e^{2t} \end{pmatrix}$$

175

174

Eigenvalues vs. Equilibrium

- The equilibrium of the system x'(t) = Ax(t) at the origin is asymptotically stable if and only if for all eigenvalues of A the Re λ < 0
- If eigenvalues are real and positive small perturbations always drive the system away from the origin - source eq
- If eigenvalues are real and negative sink eq
- If the eigenvalues are real with different signs, the equilibrium is a saddle point
- If eigenvalues are complex numbers the solution curves act like spirals around the equilibrium

Linear algebra subroutine libraries

- A lot of work is done in the linear algebra part
- It is important that the linear algebra is done as effectively as possible
- BLAS (Basic Linear Algebra Subprograms)
 library contains routines for the basic tasks of linear algebra:
 - BLAS 1 routines: vector-vector operations
 - BLAS 2 routines: matrix-vector operations
 - BLAS 3 routines: matrix-matrix operations

176

177

Linear algebra subroutine libraries

- LAPACK (Linear Algebra PACKage) is a library for
 - Efficient algorithms and BLAS routines to solve systems of linear equations
 - Find eigenvalues
 - Solve least squares problems
- Both BLAS and LAPACK are optimized by the vendors for the specific computer architectures to provide the best performance
- BLAS and LAPACK are superior to user written routines except for small problems
- The cs.pub.ro cluster has installed the ATLAS BLAS
 MKL (BLAS/LAPACK/ScaLAPACK/FFT) libraries

Table of Contents

- Motivation & Trends in HPC
- Mathematical Modeling
- Numerical Methods used in HPSC
 - Automatic Differentiation
 - Systems of Differential Equations: ODEs & PDEs
 - Solving Optimization Problems
 - Solving Nonlinear Equations
 - Basic Linear Algebra, Eigenvalues and Eigenvectors
 - Chaotic systems
- HPSC Program Development/Enhancement: from Prototype to Production
- Visualization, Debugging, Profiling, Performance Analysis & Optimization

179

178

Terminology

- Chaos: a well-defined mathematical property of solutions of some nonlinear differential equations
 - Comparable with randomness
- Attractor: A set towards which the solutions eventually drift. Various types available:
 - A fixed point (equilibrium)
 - A limit cycle
 - Torus (doughnut)
 - Strange = 'none of the above three'
- **Bifurcation**: if the system splits into two branches
 - Usually happens when a control parameter reaches a critical value

How to recognize chaos?

- The difference between randomness and chaos is not always clear (sometimes a philosophical matter)
- Chaos in the context of dynamical systems means the superficially random behavior of a deterministic system
- If the laws governing the system are known
 - Future states of the system can be predicted for arbitrarily long time periods
 - If the present state is known arbitrarily accurately
- Purely random systems cannot be predicted

180

181

How to recognize chaos? (2)

- Signatures of chaos:
 - Patterns in power spectral analysis of time
 - Series
 - Structures in phase space (attractors, projections of attractors)
 - Fractal dimensions of phase space structures
 - Sensitivity to initial conditions (clear sign of chaos)
 - Controllability of time series
- None of these methods is absolutely foolproof

When to expect chaos?

- Some conditions under which chaotic behavior can occur:
 - Nonlinear systems e.g. with strong feedback
 - -Time delays in continuous systems
 - Finite speed of information
 - Different age groups in population models
 - -Spatial discretization
 - -External forcing functions

183

182

Table of Contents

- Motivation & Trends in HPC
- Mathematical Modeling
- Numerical Methods used in HPSC
 - Automatic Differentiation
 - Systems of Differential Equations: ODEs & PDEs
 - Solving Optimization Problems
 - Solving Nonlinear Equations
 - Basic Linear Algebra, Eigenvalues and Eigenvectors
 - Chaotic systems
- HPSC Program Development/Enhancement: from Prototype to Production
- Visualization, Debugging, Profiling, Performance Analysis & Optimization

Program Development – Prototyping

- How to solve a computational problem?
 - Identify the problem
 - Formulate the problem as a mathematical model
 - Choose a suitable computational method for solving the model
 - -Implement the method with the right tools
 - -Check the results

184

85

Program Development - Prototyping (2)

- To understand the problem and the model – start with a simplified version
 - Easier to implement
 - Easier to test
 - Computations take less time
- Move gradually towards the complete model
- Balance the implementation and total computation time

Program Development - Prototyping (3)

- If the problem must be solved only once
 - Performance is probably not critical unless the problem is really big
 - Choose the easiest possible tool to minimize the implementation time
- If the problem needs to be solved repeatedly – various parameter values
 - More time can be spent optimizing the implementation & parallelizing it
 - Attention should be paid to performance

186

187

Tools and implementation

- One may use a tool for the prototype problem that is
 - Easy to use
 - Interactive
 - Less efficient
- Good candidates for prototyping
 - Matlab (numerical)
 - Mathematica or Maple (symbolic)
- The final implementation should be as efficient as possible

Tools and implementation (2)

- For final implementation and production runs the best choices are:
 - Compiled programming languages:
 - Fortran 77 & 90
 - C/C++
 - Subroutine libraries
 - NAG
 - IMSL
 - BLAS
 - LAPACK
 - Matlab (Toolboxes)

189

188

Case study: The Problem

- We consider chemical reactions in silicon carbide (SiC) production
- The reacting species may be gases, liquids, and solids
- The amounts of species may vary greatly
- We are looking for the equilibrium state
- The equilibrium state is the minimum of the Gibbs free energy under mass conservation constraints

Case study: Mathematical Model

- The Gibbs free energy **G** is given by $G = \sum_{i=1}^{N} n_i \mu_i$
- With
 - N is the number of species present
 - $-n_i$ is the molar amount of species i
 - $-\mu_i$ is the corresponding chemical potential
- The Gibbs free energy is minimized under the requirement that the amounts of basic elements must be conserved:
- Where $\sum_{i}^{N} a_{ki} n_{i} = b_{k}; \quad k = 1, 2, ..., M$
 - a_{ki} is the subscript of the k-th element in the molecular formula of species i
 - $b_{\scriptscriptstyle k}$ is the initial amount of element ${f k}$
 - M is the number of elements
- This is a constrained optimization problem

191

190

Case study: Simplified Version

- We consider ideal gases at constant pressure conditions
 - Then the chemical potentials μ_i can be expressed as:
 - With $\mu_i = \mu_i^0 + RT \log p_i$
 - μ_i^0 is the standard chemical potential of species **i**
 - p_i is the partial pressure
 - T is the temperature
 - R is the universal gas constant
 - For ideal gases the partial pressures are given by:

$$p_i = \frac{n_i}{n_t} p_t$$

- Where
 - p_t is the total pressure and
 - $n_t = \sum n_i$ is the total molar amount of the species

Case study: Simplified Version (2)

- We thus obtain $\mu_i = \mu_i^* + RT \log \frac{n_i}{n_i}$
- Where $\mu_i^* = \mu_i^0 + RT \log p_t$
- We consider only the most important reactants and ignore the ones with low concentrations
 - Decrease the number of unknowns
 - Solve the problem faster
 - · Check the results easier
 - Neglecting minor species to avoid numerical problems
- Tools for solving the simplified version
 - Matlab Optimization Toolbox
 - GAMS General Algebraic Modeling System

193

192

Case study: Complete Problem

- Include liquids and solids
 - Their chemical potentials require new equations
- Include all reactants
 - Increases the number of unknowns
- The low concentrations of minor species may cause numerical problems
 - Hand tuned solver may be needed: C/C++/Fortran + Numerical libraries
- Choose the suitable numerical methods
 - Method of projected gradient
 - Method of augmented Lagrangian
 - Sequential Quadratic Programming (SQP)

