NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1972 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 7.5 dB$ $@V_{CC} = 13.5V, P_{O} = 14W, f = 175MHz$
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-220 package similar is combinient for mounting.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_0 = 18W, f = 175MHz.

APPLICATION

10 to 14 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
V _{EBO}	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
łc	Collector current		3.5	Α
Pc	· Collector dissipation	Ta = 25°C	1.5	w
		T _C = 25°C	25	w
Tj	Junction temperature		175	*C
Tstg	Storage temperature		-55 to 175	•c
Rth-a	-	Junction to ambient	100	.°C/W
Rth-c	Thermal resistance	Junction to case	6	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Test conditions			Limits	
		rest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	. 17			V
'сво	Collector cutoff current	V _{CB} =25V, I _E =0			1000	μА
EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			500	μА
hfE	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	-
Po	Output power	V _{CC} =13.5V, P _{in} =2.5W, f=175MHz	14	15		w
η_{C}	Collector efficiency		60	70		%

Note. *Pulse test, P_W=150µs, duty=5%.
Above parameters, ratings, limits and conditions are subject to change

NPN EPITAXIAL PLANAR TYPE

TEST CIRCUIT

100pF, 2200pF, 0.01μF, 10μF in parallel

All coil are made from 1.5mm] silver plated copper wire

D: Inner diameter of coil

T: Turn number of coil

P: Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS.

BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. **COLLECTOR CURRENT**

COLLECTOR CURRENT Ic (A)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. **COLLECTOR TO BASE VOLTAGE**

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)