Chapter 8: Relational Algebra

Outline:

- Introduction
- Unary Relational Operations.
 - Select Operator (σ)
 - Project Operator (π)
 - Rename Operator (ρ)
 - Assignment Operator (←)
- Binary Relational Operations.
 - Set Operators
 - o Union Operator (\cup)
 - \circ Intersection Operator (\cap)
 - o Set Difference or Minus Operator (-)
 - Cartesian Product Operator (x)
 - Join Operator
 - Theta Join (\bowtie_{\square})
 - o Natural Join (⋈) or (*)
- Examples of Queries in Relational Algebra.

8.1 Introduction

Relational Query Languages

- Languages for describing queries on a relational database
- Structured Query Language (SQL)
 - o Declarative (Nonprocedural)
- Relational Algebra
 - o Intermediate language used within DBMS
 - Procedural
- Procedural: Relational expression specifies query by describing an algorithm (the sequence in which operators are applied) for determining the result of an expression
- Relational algebra is the basic set of operations for the relational model
- These operations enable a user to specify basic retrieval requests (or queries)
- The result of an operation is a new relation, which may have been formed from one or more input relations
 - This property makes the algebra "closed" (all objects in relational algebra are relations)
- The algebra operations thus produce new relations
 - o These can be further manipulated using operations of the same algebra
- A sequence of relational algebra operations forms a relational algebra expression
 - The result of a relational algebra expression is also a relation that represents the result of a database query (or retrieval request)
- The fundamental operations in the relational algebra are select, project, union, set difference, cartesian product, and rename.

The Role of Relational Algebra in a DBMS

8.2 Unary Relational Operations

Select Operator (σ)

• Select a subset of rows from a relation that satisfying a condition. Syntax:

 $\sigma_{condition}(R)$

- \circ The symbol σ (sigma) is used to denote the select operator.
- The selection condition is a Boolean expression specified on the attributes of relation R.
- $\sigma_{condition}(R)$ is equivalent to "Select * from R where <condition>;"
- Example: Consider the following relation r.

В C D X 1 8 X Y 5 7 Y Y 3 3 12 10

\(\sigma_{A=B}(r) = \text{Select * from r where A=B;} \)

A	В	С	D
X	X	1	8
Y	Y	3	3
Y	Y	12	10

 $^{\gamma}$. $\sigma_{D>5}(r)$ = Select * from r where D>5;

Α	В	C	D
X	X	1	8
X	Y	5	7
Y	Y	12	10

- We can combine several conditions into a larger condition by using the connectives $^{\land}$ (and), \Box (or), and \neg (not).
- Example:

 $\sigma_{A=B \land D>5}$ (r) = Select * from r where A=B and D>5;

A	В	С	D
X	X	1	8
Y	Y	12	10

• Example: Retrieve the Id, Name, Address of students who live in Amman.

Student

t	Id	Name	Address
	1108	Ali	Amman
	1453	Ahmad	Salt
	1002	Omar	Amman
	2603	Anas	Zarqa

 $\sigma_{address='Amman'}$ (Student) = Select * from Student where address='Amman';

Id		Name	Address
110	8	Ali	Amman
100	2	Omar	Amman

• Example: Retrieve the Id, Name, Address of student who's name is Ahmad or students who live in Amman.

 $\sigma_{name='Ahmad'} \square_{ddress='Amman'} (Student) =$

Select * from Student where name = 'Ahmad' or address = 'Amman';

Id	Name	Address
1108	Ali	Amman
1453	Ahmad	Salt
1002	Omar	Amman

• Select Operation Properties:

$$\sigma_{condition1}$$
 ($\sigma_{condition2}$ (R)) = $\sigma_{condition2}$ ($\sigma_{condition1}$ (R)) = $\sigma_{condition1^{\wedge} \ condition2}$ (R)

Project Operator (π)

- Selecting a subset of the attributes of a relation by specifying the name of the required attributes.
- The Project creates a vertical partitioning. Syntax:

$$\pi_{<\text{Attribute list>}}(R)$$

- The symbol π (pi) is used to denote the project operator.
- is the desired list of attributes from the attributes of relation R.
- o $\pi_{\langle Attribute \ list \rangle}(R)$ is equivalent to "Select Distinct Attribute_List from R;"
- The project operation removes any duplicate rows.
- Example: Consider the following relation r.

Ľ	A	В	C	D
	X	X	1	8
	X	Y	5	7
	Y	Y	3	3
	Y	Y	12	10

 $\pi_{A,B}(r)$ = Select Distinct A, B From r;

Α	В
X	X
X	Y
Y	Y

- Project operation properties:
 - \circ $\pi_{list1}(\pi_{list2}(r)) = \pi_{list1}(r)$, where list2 contains the attributes of list1
 - The number of rows in the result of projection $\pi_{list}(r)$ is always less or equal to the number of rows in r.
 - o If the list of attributes includes a key of r, the number of rows is equal to the number of rows in r.
- Composition of Relational Operations (Expression)
 - Relational algebra operations can be composed together into a relational algebra expression.
 - o Example:

 $\pi_B(\sigma_{C>=3}(r))$ = Select Distinct B From r Where C >= 3;

Assignment Operator (\leftarrow)

- We may want to apply several relational algebra operations one after other. Either
 we can write the operations as a single relational algebra expression by nesting
 the operations, or we can apply one operation at a time and create intermediate
 result relations. In the latter case, we must give names to the relations that hold
 the intermediate results.
- Example:

$$r1 \leftarrow \sigma_{C>=3}(r)$$

 $\pi_B(r1)$

Rename Operator (p)

- Allows us to refer to a relation by more than one name. Syntax:
 - ۱. ρ □ (□)

Returns the expression R under the name X

Υ. ρ 🗆 (🗆), ..., ...) (🗆)

If a relational-algebra expression R has arity n, then returns the result of expression R under the name X, and with the attributes renamed to $\square \square$, $\square \square$, ..., $\square \square$.

Ψ. ρ (□□, □□, ..,□□) (□)

Rename the attributes names without changing the relation name

8.3 Binary Relational Operations

Set Operators

- Relation is a set of tuples, so set operations should apply: \cap , \cup , (set difference)
- Result of combining two relations with a set operator is a relation (all its elements must be tuples having same structure).

\(\text{Union Operator} \((\cup) \)

- O The result of this operation, denoted by $R \cup S$, is a relation that includes all rows that are either in R or in S or in both R and S. Duplicate rows are eliminated.
- o Example:

- o For $R \cup S$ to be valid. (The two operands must be "type compatible")
 - 1. R, S must have the same arity (same number of attributes).
 - Y. The attribute domains must be compatible (example: 2nd column of R deals with the same type of values as does the 2nd column of S)
- R ∪ S is equivalent to "Select * From R Union Select * From S;"
- Example:

Tables:

Person (SSN, Name, Address, Hobby) **Professor** (Id, Name, Office, Phone)
are <u>not</u> union compatible.

But

 $\pi_{\textit{Name}}$ (Person) and $\pi_{\textit{Name}}$ (Professor) are union compatible so

 $\pi_{\textit{Name}}$ (Person) $\cup \pi_{\textit{Name}}$ (Professor) makes sense.

o Example:

A	В
X	1
X	2
Y	1

 \mathbf{S}

A	В
X	2
Y	3

 $r \cup s$ = Select * From r Union Select * from s;

A	В
X	1
X	2
Y	1
Y	3

Example: retrieve the SSNs of all employees who either work in department
 5 or directly supervise an employee who works in department

Employee SSN ENa	ime Sal	SuperSSN	DNo
------------------	---------	----------	-----

$$Dep5_Emps \leftarrow \sigma_{DNo=5} (Employee)$$

$$Result1 \leftarrow \pi_{SSN} (Dep5_Emps)$$

$$Result2 \leftarrow \pi_{SuperSSN} (Dep5_Emps)$$

$$Result \leftarrow Result1 \cup Result2$$

\checkmark . Intersection Operator (\cap)

- O The result of this operation, denoted by $R \cap S$, is a relation that includes all rows that are in both R and S. the two operands must be "type compatible".
- o Example:

- \circ R \cap S is equivalent to "Select * From R Intersect Select * From S;"
- o Example:

r	Α	В
	X	1
	X	2

Y 1

 \mathbf{S}

A	В
X	2
Y	3

 $r \cap s$ = Select * from r Intersect Select * from s;

A	В	
X	2	

r. Intersection Operator (-)

- O The result of this operation, denoted by R S, is a relation that includes all rows that are in R but not in S. the two operands must be "type compatible".
- o Example:

- o R S is equivalent to "Select * From R Minus Select * From S;"
- o Example:

A B X 1 X 2 Y 1

 \mathbf{S}

A	В
X	2
Y	3

r - s = Select * from r Minus Select * from s;

A	В
X	1
Y	1

s - r

A	В
Y	3

• Set Operators Properties:

o The union and the intersection are commutative operations

$$R \cup S = S \cup R$$
, and $R \cap S = S \cap R$

The union and the intersection are associative operations

$$R \cup (S \cup T) = (R \cup S) \cup T$$
, and $R \cap (S \cap T) = (R \cap S) \cap T$

o The set difference operation is not commutative operation

$$R - S \neq S - R$$

Cartesian (or Cross Product) Operator (X)

- If R and S are two relations, $R \times S$ is the set of all concatenated rows $\langle x,y \rangle$, where x is a row in R and y is a row in S
 - o R and S need not be type compatible
- $R \times S$ is expensive to compute:
 - o Factor of two in the size of each row
 - Quadratic in the number of rows
- If R has n_R rows (denoted as $|R| = n_R$), and S has n_S rows, then R x S will have $n_R * n_S$ rows.
- R × S is equivalent to "Select * From R, S;"
 - o Example:

A	В
X	1
Y	2

S			
S	_ C	D	E
	X	10	E1
	Y	10	E1
	Y	20	E2
	Z	10	E2

 $r \times s = Select * from r,s;$

A	В	С	D	E
X	1	X	10	E1
X	1	Y	10	E1
X	1	Y	20	E2
X	1	Z	10	E2
Y	2	X	10	E1
Y	2	Y	10	E1
Y	2	Y	20	E2
Y	2	Z	10	E2

 $\sigma_{A=C}$ (r × s) = select * from r,s where A=C;

X	1	X	10	E1
Y	2	Y	10	E1
Y	2	Y	20	E2

- Generally, CROSS PRODUCT is not a meaningful operation
 - o Can become meaningful when followed by other operations
 - o Example (not meaningful):

Employee	<u>SSN</u>	FName	LName	Gender	SuperSSN	DNo	

Dependent ESSN Dependent_Name Gender BDate Relationship

Female_Emps $\leftarrow \sigma_{Gender='F'}(Employee)$

EmpNames $\leftarrow \pi_{\text{FNAME, LNAME, SSN}}$ (Female_Emps)

Emp_Dependents ← EmpNames x Dependent

- Emp_Dependents will contain every combination of EmpNames and Dependent
- o whether or not they are actually related
- o To keep only combinations where the Dependent is related to the Employee, we add a SELECT operation as follows

Actual_Deps $\leftarrow \sigma_{SSN=ESSN}(Emp_Dependents)$

Result $\leftarrow \pi_{\text{FNAME, LNAME, DEPENDENT_NAME}}$ (Actual_Deps)

- Result will now contain the name of female employees and their dependents
- Example: Display employees names for employees who work in accounting department

Department DNo DName Location

 π_{ENAME} ($\sigma_{\text{employee.dno=department.dno}}$ ($\sigma_{\text{dname='Accounting'}}$ (Employee × Department))) =

Select Ename from Employee, Department

where employee.dno = department.dno and dname = 'Accounting';

• Example: find the names of all customers who live on the same street and in the same city as smith

$$\pi$$
 CName (σ street = s \(^{\text{city}} = c\)

Customer ×
$$(\rho_{smith_add(s,c)} (\pi_{street, city} (\sigma_{CName = 'Smith'} (Customer))))) =$$

Prepared by: Randa Al_Dallah and Sawsan Abu_Taleb©2009

10

Select c1.CName from customer c1, customer c2 where c2.CName='Smith' and c1.city = c2.city and c1.street = c2.street;

• Example: find the largest account balance in the bank

$$\begin{array}{c|cccc} Account & \underline{AccNo} & Balance & Date \\ \hline & \pi_{Balance} \left(\ Account \ \right) - \\ & \pi_{Account,Balance} \left(\sigma_{account,balance} \left(\ Account \times \left(\rho_d \left(\ Account \ \right) \ \right) \ \right) \right) \end{array}$$

Join Operator

• The JOIN operation is used to combine related rows from two relations into a single row.

1. Theta Join Operator (⋈ □)

- The Theta-Join is a specialized product containing only pairs that match on a supplied condition called join-condition.
- A theta join of R and S is the expression

 $R \bowtie_{\square} S$ where \square is a conjunction of terms: A_i oper B_i in which A_i is an attribute of R; B_i is an attribute of S; and oper is one of =, <, >, $\geq \neq$, \leq .

- $R \bowtie_{\square} S = \sigma_{\square} (R \times S) = \text{Select * from } R, S \text{ where } \square;$
- o Example: **R**

A	В	С	D
a	1	X	4
b	2	у	5
С	4	Z	4
d	8	X	5
e	1	у	4

C			
S	E	F	G
	5	a	X
	4	b	у
	3	С	у
	2	a	X

$$\mathbf{R} \bowtie_{\mathbf{A} <> \mathbf{a}, \land \mathbf{D} < \mathbf{E}} \mathbf{S}$$

A	В	С	D	E	F	G
С	4	Z	4	5	a	X
e	1	у	4	5	a	X

 $R \bowtie_{B=E} S (Equi_Join)$

	A	В	С	D	E	F	G
	b	2	у	5	2	a	X
Γ	С	4	Z	4	4	b	y

o Example: Display the names of all employees who earn more than their managers.

Employee <u>ID</u> Ename Salary MgrId

Manager ID MName Salary

 π_{EName} (Employee $\bowtie_{MgrId=Manager.Id\ AND\ Employee.Salary>Manager.Salary}$ Manager)

Y. Natural Join Operator (⋈)

- o Special case of Equi_Join.
- Natural join requires that the two join attributes, or each pair of corresponding join attributes, have the same name in both relations. If this is not the case, a renaming operation is applied first.
- o Natural join removes duplicate attributes.
- o $r \bowtie s = \pi_{Attribute_List} (\sigma_{Join_Condition} (r \times s))$ where

 $Attribute_List = attributes (r) \cup attributes (s)$

(duplicates are eliminated) and Join-Condition has the form:

$$A_1 = A_1 \text{ AND } \dots \text{ AND } A_n = A_n$$

where $\{A_1 ... A_n\} = attributes(r) \cap attributes(s)$

Note: let r(R) and s(S) be relations without any attributes in common; that
is.

 $R \cap S = \square$. Then $r \bowtie s = r \times s$.

o Example: **R**

A	В	С	D
a	1	X	4
b	2	у	5
С	4	Z	4
d	8	X	5
е	1	у	4

 E
 F
 G

 5
 a
 x

 4
 b
 y

 3
 c
 y

 2
 a
 x

 $\mathbf{R} \bowtie \rho_{(B, F, G)}(\mathbf{S}) = \text{Select R.*}, F, G \text{ from R, S where B=E;}$

A	В	С	D	F	G
b	2	у	5	a	X
С	4	Z	4	b	у

o Example: R

A	В	С	D
X	1	X	a
у	2	Z	a
Z	4	у	b
Х	1	Z	a
W	2	у	b

C			
S	В	D	E
	1	a	X
	3	a	у
	1	a	Z
	2	b	W
	3	b	e

 $\mathbb{R} \bowtie S = \pi_{R.A, R.B, R.C, R.D, S.E} (\sigma_{R.B = S.B \land R.D = S.D} (\mathbb{R} \times S))$

A	В	С	D	E
X	1	X	a	X
X	1	X	a	Z
X	1	Z	a	X
X	1	Z	a	Z
W	2	у	b	W

Complete Set of Relational Operations

• The set of operations including π (Projection), σ (Selection), – (Difference), ρ (Rename), (Union) and × (Cartesian Product) is called a complete set, because any other relational algebra expression can be expressed by combination of these five operations.

$$\circ R \cap S = (R \cup S) - ((R - S) \cup (S - R))$$

$$\circ R \cap S = R - (R - S)$$

$$\circ \quad R \bowtie_{Condition} S = \sigma_{Condition} (R \times S)$$

Examples of Queries in Relational Algebra

Prepared by: Randa Al_Dallah and Sawsan Abu_Taleb©2009

13

8.4 Examples of Queries in Relational Algebra

Banking Example:

Branch (branch name, branch city)

Customer (<u>customer_name</u>, customer_city, customer_street)

Account (account_number, branch_name, balance)

Loan (<u>loan_number</u>, branch_name, amount)

Depositor (<u>customer_name</u>, <u>account_number</u>)

Borrower (customer_name, loan_number)

Q1: Find all loans of over \$1200.

Q2: Find the loan number for each loan of an amount greater than \$1200.

Q3: Find the names of all customers who have a loan, an account, or both from the bank.

Q4: Find the names of all customers who have a loan and an account at bank.

Q5: Find the names of all customers who have a loan at the Perryridge branch.

Q6: Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.

Q7: Find the names of all branches with customers who have an account in the bank and who live in Harrison.

Q8: Find all customers who have an account from at least the "Downtown" and the "uptown" branches.

Company Example:

Employee (fname, minit, lname, <u>SSN</u>, address, sex, salary, superSSN, DNo)

Department (Dname, <u>Dnumber</u>, MGRSSN, MGRStartDate)

Dept_Locations (<u>DNumber, DLocation</u>)

Project (PName, <u>PNumber</u>, PLocation, DNum)

Works_On (ESSN, PNo, Hours)

Dependent (ESSN, Dependent_Name, Sex, BDate, Relationship)

Q1: Retrieve the name and address of all employees who work for the 'Research' department.

Q2: for every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birthdate.

Q3: make a list of project numbers for projects that involve an employee whose last name is 'smith', either as a worker or as a manager of the department that controls the project.

Q4: Retrieve the names of employees who have no dependents.

Q5: List the names of managers who have at least one dependent.

Prepared by: Randa Al_Dallah and Sawsan Abu_Taleb©2009

15