1) Consider the following MIPS code sequence
lw \$t2, 40(\$t5) add \$t5, \$t2, \$t8 sub \$t3, \$t2, \$t5 sw \$t3, 20(\$t5)
a) Assuming no forwarding, identify all pipeline hazards between pairs of instructions
h) Assuming no forwarding insert stalls as needed to eversome these hazards. How
b) Assuming no forwarding, insert stalls as needed to overcome these hazards. How many clock cycles are needed to finish these instructions?
c) Assuming we use forwarding, insert stalls as needed to overcome these hazards.
How many clock cycles are needed to finish executing these instructions?

2) Draw the 2-bit branch prediction FSM. Then, given the 2-bit branch prediction method, with the initial state of N*, and the following set of branches, Describe the set of branch predictions

N, N, T, T, N, N, T, N, N

3) Draw the 2-bit branch prediction FSM. Then, given the following branch addresses and branches, show the final state of a k=3 correlating prediction model

Τ	10001101
Τ	10001101
T	10001000
N	10001111
N	10001000
T	10001101
T	10001000
T	10001000
Т	10001000