SUP MPSI3 Corrigé DS06 03 mars 2023

EXERCICE 1 : Structure de la matière :

 $(\approx 32 pts)$

I – Etude de l'élément sodium :

(D'après Centrale Supelec TSI 2022)

 $(\approx 10 pts)$

Q1. $^{23}_{11}Na$ comprend 11 protons et donc 11 électrons, ainsi que 23 – 11 = 12 neutrons.

♣ Na appartient à la <u>3e période</u> du tableau périodique, il aura donc un configuration de valence en 3..

Et il se trouve dans la <u>1ère colonne ou 1er groupe</u> du tableau, donc c'est un 1er <u>élément du bloc s.</u>

Sa configuration externe (ou de valence) est donc Na : $3s^1$.

D'où son schéma de Lewis:

Na

Le sodium fait donc partie de la famille des alcalins.

Ces métaux sont <u>extrêmement réducteurs</u>, <u>très réactifs avec l'eau</u> et forment en réagissant avec celle-ci des solutions basiques.

Q2. Le sodium va avoir tendance à <u>perdre l'électron célibataire de la $3^{\text{ème}}$ couche</u> pour atteindre la <u>configuration électronique du gaz rare qui le précède</u> (le néon) en formant $\underline{Na^+}$.

II - Etude structurale de l'oxygène et l'ozone :

(D'après Centrale Supelec PSI 2022)

 $(\approx 22 pts)$

Q3. L'oxygène est situé dans la 2^{ème} période et est le 4^{ème} élément du bloc p (ou dans la 16^e colonne). Sa configuration électronique externe dans son état fondamental s'écrit donc :

2s²2p⁴ électrons de valence

L'atome d'oxygène possède donc <u>6 électrons de valence</u>. Son schéma de Lewis est :

Q4. Les isotopes d'un élément chimique donné possèdent <u>le même nombre de protons</u> (et d'électrons, bien sûr) mais <u>diffèrent par leur nombre de neutrons</u>.

Le noyau des isotopes de l'oxygène contient :

 $\begin{cases} {}^{16}0: 8 \text{ protons et } \textbf{8 neutrons} \\ {}^{17}0: 8 \text{ protons et } \textbf{9 neutrons} \\ {}^{18}0: 8 \text{ protons et } \textbf{10 neutrons} \end{cases}$

Ce sont les électrons de valence, seuls, qui déterminent les propriétés chimiques d'un atome.

Ces trois isotopes ont 6 électrons de valence : ils ont donc les mêmes propriétés chimiques.

Q5. On note \overline{M} la masse molaire moyenne de l'oxygène et M_{16} , M_{17} et M_{18} les masses molaires respectives des isotopes 16 0, 17 0 et 18 0. On peut écrire, en introduisant les fractions massiques x_{16} , x_{17} et x_{18} :

Soit :
$$\begin{cases} \overline{M} = x_{16}M_{16} + x_{17}M_{17} + x_{18}M_{18} \\ x_{16} + x_{17} + x_{18} = 1 \end{cases}$$

$$\text{Soit : } \begin{cases} \overline{M} = x_{16}M_{16} + x_{17}M_{17} + x_{18}M_{18} \\ x_{18} = 1 - x_{16} - x_{17} \end{cases} \text{ ou encore : } \begin{cases} \overline{M} = x_{16}M_{16} + x_{17}M_{17} + (1 - x_{16} - x_{17})M_{18} \\ x_{18} = 1 - x_{16} - x_{17} \end{cases}$$

$$\text{D'où : } \begin{cases} x_{16}M_{16} - x_{16}M_{18} = \overline{M} - x_{17}M_{17} - M_{18} + x_{17}M_{18} \\ x_{18} = 1 - x_{16} - x_{17} \end{cases}$$

On en déduit :

$$\begin{cases} x_{16} = \frac{M_{18} + x_{17}(M_{17} - M_{18}) - \overline{M}}{M_{18} - M_{16}} \\ x_{18} = 1 - x_{16} - x_{17} \end{cases}$$

Comme on connaît $x_{17} = 0.037 \%$, d'où :

$$x_{18} = 1 - x_{16} - x_{17}$$

$$x_{16} = \frac{17,99916 + 0,00037(+16,99914 - 17,99916) - 15,9994}{17,99916 - 15,99491}$$

$$x_{18} = 1 - 0,99758 - 0,00037$$

On obtient : $x_{16} = 0,99758 = 99,758 \%$ et $x_{18} = 0,00205 = 0,205 \%$.

Q6. Schéma de Lewis du dioxygène :

$$\overline{0} = \overline{0}$$

Q7. Si la molécule d'ozone était cyclique, elle présenterait un centre de symétrie et ne serait donc <u>pas polaire</u>. De plus, aucun excès et aucun défaut de charge n'apparaît, ce qui confirmerait son caractère apolaire.

Q8. Les deux formes mésomères de la molécule d'ozone sont les suivantes :

$$\left\{ \overline{\underline{o}} = \underline{\underline{o}} - \underline{\underline{o}} | \leftarrow |\underline{\underline{o}} - \underline{\underline{o}} = \overline{\underline{o}} \right\}$$

La molécule est donc du <u>type AX_2E_1 </u> (deux liaisons assimilées à des liaisons simples et un doublet non-liant sur l'atome central). La méthode VSEPR donne donc une <u>molécule coudée</u>, avec un <u>angle d'environ 120°.</u>

EXERCICE 2 : Généralités sur une molécule de monoxyde de carbone :

 $(\approx 60 pts)$

I – Etude structurale:

(D'après Banque PT 2013)

Q1 – Le carbone est situé dans la 2^{ème} période et est le 2^{ème} élément du bloc p (ou dans la 14^e colonne). Sa configuration électronique externe dans son état fondamental s'écrit donc :

2s²2p² électrons de valence

L'atome d'oxygène possède donc <u>4 électrons de valence</u>. Son schéma de Lewis est

♣ Pour obtenir un carbone tétravalent, il faut imaginer un réarrangement en 2s¹ 2p³

Q2 - On trouve le carbone 12 ; 13 et 14 : ${}^{12}_{6}C$; ${}^{13}_{6}C$ et ${}^{14}_{6}C$.

 ${f Q3}$ – Représentation possible de Lewis pour la molécule de monoxyde de carbone :

Q4 - L'électronégativité augmente de la gauche vers la droite sur une ligne. Donc $\chi(C) < \chi(O)$. La charge partielle devrait donc <u>être négative sur l'oxygène et positive</u> sur le carbone, ce qui <u>n'est pas en accord</u> avec les électronégativités des éléments.

Q5 - Le moment dipolaire, orienté du pôle négatif vers le pôle positif, est représenté de la façon ci-contre en tenant compte de la structure de Lewis de Q3.

L'expression littérale du module du moment dipolaire $\vec{\mu}$ est donnée par : $||\vec{\mu}|| = e d$;

Son unité est le **Debye** (**D**).

Q6 – Les molécules de monoxyde de carbone et d'eau H₂O sont **polaires**.

Les <u>trois types d'interactions de van der Walls (Keesom, Debye et London)</u> sont donc présentes. Cependant, les interactions intermoléculaires les plus importantes sont des <u>liaisons hydrogènes</u> entre les hydrogènes de H₂O et le doublet non liant des oxygènes de CO.

II - Etude mécanique :

Q7 - βx doit être sans dimension; Donc β est homogène à l'inverse d'une longueur; Soit : β en m⁻¹.

Q8 – On nous donne : $E_P(x) = E_0 \left[1 - e^{-\beta(x-x_0)} \right]^2$;

Les positions d'équilibre sont telles que : $\frac{dE_P}{dx} = \mathbf{0}$.

 $\frac{dE_P}{dx} = 2E_0 \left(1 - e^{-\beta(x - x_0)} \right) \left(+\beta e^{-\beta(x - x_0)} \right), \text{ car de la forme : } (u^2)' = 2 u u'$ $\text{avec } u = 1 - e^{-\beta(x - x_0)} \text{ et } u' = \beta e^{-\beta(x - x_0)}$

Ainsi : $\frac{dE_P}{dx} = 0$ pour $x - x_0 = 0$; la seconde parenthèse ne s'annulant jamais.

Ainsi $x = x_0$ est position d'équilibre.

Pour étudier les stabilités, on étudie le signe de $\left(\frac{d^2E_P}{dx^2}\right)_{x_0}$

Or $\frac{d^2 E_P}{dx^2} = 2E_0 \beta e^{-\beta(x-x_0)} \beta e^{-\beta(x-x_0)} + 2E_0 \left(1 - e^{-\beta(x-x_0)}\right) \left(-\beta^2 e^{-\beta(x-x_0)}\right)$, car de la forme : (uv)'

Ou encore : $\frac{d^2 E_P}{dx^2} = 2E_0 \beta^2 e^{-2\beta(x-x_0)} - 2E_0 \beta^2 \left(1 - e^{-\beta(x-x_0)}\right) e^{-\beta(x-x_0)};$

Ainsi en évaluant cette expression en $x = x_0$:

 $\left(\frac{d^2 E_P}{dx^2}\right)_{x_0} = 2E_0\beta^2 > 0$. Donc $x = x_0$ est position d'équilibre stable.

Q9 - $E_P(x) = E_0 \left[1 - e^{-\beta(x - x_0)} \right]^2$: $\lim_{x \to 0} E_P(x) \sim E_0 e^{2\beta x_0} \to +\infty$, car $\beta x_0 \gg 1$.

Donc asymptote verticale d'équation x = 0.

Donc asymptote horizontale d'équation $y = E_0$.

Coordonnées de l'extrémum (minimum) :

On a vu que: $\frac{dE_P}{dx} = 0$ pour $\underline{x} = x_0$ alors $\underline{E}_P(x_0) = 0$;

Q10 – $E_m = E_C + E_P$ avec $E_C \ge 0$; Donc : $E_m \ge E_P$ à chaque instant.

- Arr Si $0 < E_m < E_0$: Domaine de variation de x borné: L'atome d'oxygène oscille entre deux positions extrêmes. On parle d'état lié.
- ♣ E₀ représente donc l'énergie qu'il faut fournir à la molécule pour que les atomes puissent s'éloigner à l'infini, c'est donc l'énergie de dissociation de la molécule.

Q11 – Pour étudier le mouvement autour de la position d'équilibre, il faut faire un développement de Taylor

de l'énergie potentielle autour de
$$x_0$$
: $E_P(x) \approx E_P(x_0) + (x - x_0) \left(\frac{dE_P}{dx}\right)_{x_0} + \frac{1}{2}(x - x_0)^2 \left(\frac{d^2E_P}{dx^2}\right)_{x_0} = 0$ (équilibre).

Or
$$E_P(x_0) = 0$$
 et $\left(\frac{d^2 E_P}{dx^2}\right)_{x_0} = 2E_0\beta^2$; Donc : $E_P(x) \approx \frac{1}{2} 2E_0\beta^2(x - x_0)^2$; Soit : $E_P(x) \approx E_0\beta^2(x - x_0)^2$;

♣ De plus : $E_C(\dot{x}) = \frac{1}{2} m_2 \dot{x}^2$;

 $E_m = \frac{1}{2} m_2 \dot{x}^2 + E_0 \beta^2 (x - x_0)^2$;

Le système est conservatif car aucune force dissipative n'est mentionnée par l'énoncé, donc d'après le théorème de la puissance mécanique,

 $E_m = \text{cste ou encore } \frac{dE_m}{dt} = \mathbf{0}.$ $\text{Or } \frac{dE_m}{dt} = m_2 \dot{x} \ddot{x} + 2E_0 \beta^2 (x - x_0) \dot{x} = 0 \text{ ; Posons } X = x - x_0 \text{ alors } \dot{X} = \dot{x} \text{ et } \ddot{X} = \ddot{x}.$ $\text{L'équation précédente devient donc } \mathbf{m}_2 \ddot{X} + 2E_0 \beta^2 X = \mathbf{0}, \text{ car } \dot{X} \neq 0 \text{ , puisqu'il y a mvt (non tjs nul)}.$

De la forme : $\ddot{X} + \omega_0^2 X = 0$ avec $\omega_0 = \sqrt{\frac{2E_0\beta^2}{\underline{m_2}}}$: <u>pulsation propre du mouvement</u> de l'atome d'oxygène ;

Et
$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{2E_0\beta^2}{m_2}}$$
: fréquence des petites oscillations autour de la position d'équilibre x_0 .

Q12 – On sait que $\vec{F} = -\overrightarrow{grad}(E_P) = -\frac{dE_P}{dx} \overrightarrow{u_x}$ car comme le système est unidirectionnel, $\frac{\partial E_P}{\partial x} = \frac{dE_P}{dx}$.

Donc : $F_x = -\frac{dE_P}{dx}$; On trouve ainsi le signe de F_x à partir du signe de la dérivée de E_P . D'après le graphe :

- Arr Si $x < x_0$, alors $\frac{dE_P}{dx} < 0$ et $F_x > 0$: Force dans le même sens que l'axe Ox qui a tendance à ramener l'atome d'oxygène dans sa position d'équilibre.
- $Arr Si x > x_0$, alors $\frac{dE_P}{dx} > 0$ et $F_x < 0$: Force dans le sens contraire à l'axe Ox qui a tendance à ramener l'atome d'oxygène dans sa position d'équilibre.

EXERCICE 3: Etude d'une descente de toboggan aquatique :

(D'après banque PT 2022) (\approx 35 pts)

Q1. On nous donne : $r(\theta) = R$ et $z(\theta) = \gamma \theta$ et h corresopnd à la <u>variation d'altitude lors d'un tour</u>, donc pour $\theta = 2\pi$; Ainsi, $h = 2\pi \gamma$.

Q2.
$$\overrightarrow{OM} = \overrightarrow{Om} + \overrightarrow{mM} = R \overrightarrow{u_r} + z \overrightarrow{u_z}$$
; Soit : $\overrightarrow{OM} = R \overrightarrow{u_r} + \gamma \theta \overrightarrow{u_z}$.
Alors $\overrightarrow{v} = \frac{d \overrightarrow{OM}}{dt} = R \frac{d \overrightarrow{u_r}}{dt} + \gamma \dot{\theta} \overrightarrow{u_z}$; Soit : $\overrightarrow{v} = R \dot{\theta} \overrightarrow{u_\theta} + \gamma \dot{\theta} \overrightarrow{u_z}$.

Q3. <u>Référentiel</u> : Terrestre supposé galiléen.

Base de projection cylindrique : fournie.

Système : L'enfant de masse *m*.

Forces et énergies potentielles: Poids: $\vec{P} = m\vec{g} = mg \ \vec{u_z}$ et $E_{pP} = -mgz + cste$, car Oz est un axe descedt. **Réaction du support** : $\vec{R} \perp support$, donc elle ne travaille pas et $E_{pR} = cste$

Alors, $E_m = E_c + E_{p tot} = \frac{1}{2} m v^2 + E_{pP} + cste = \frac{1}{2} m v^2 - mgz + cste$.

Or, d'après Q2, $v^2 = \dot{\theta}^2 (R^2 + \gamma^2)$ et on garde z dans E_{pP} .

D'où:
$$E_m = \frac{1}{2}m\dot{\theta}^2(R^2 + \gamma^2) - mg z + cste$$

Mais, on ne veut garder que z et \dot{z} dans l'expression de E_m . Il faut donc supprimer $\dot{\theta}: \dot{\theta} = \frac{\dot{z}}{x}$.

Alors
$$E_m = \frac{1}{2}m\frac{\dot{z}^2}{\gamma^2}(R^2 + \gamma^2) - mg z + cste$$
; Ainsi, $E_m = \frac{1}{2}m\dot{z}^2\left(\frac{R^2}{\gamma^2} + 1\right) - mgz + cste$.

De la forme : $E_m = \frac{1}{2}A\dot{z}^2 - Bz + cste$ avec $A = m\left(\frac{R^2}{\gamma^2} + 1\right)$ et $B = mg$.

Q4. L'enfant partant de l'altitude z = 0 avec une vitesse nulle, son énergie mécanique est nulle.

Les frottements étant négligés, celle-ci se conserve : Le <u>système est conservatif : $E_m = cste$.</u>

En sortie de toboggan
$$(z = 3h)$$
, on a donc $E_m = 0 = \frac{1}{2}m v_S^2 - mg3h$

On en déduit
$$v_S^2 = 6gh$$
 et $v_S = \sqrt{6gh}$

Q5. On cherche l'équation différentielle du mouvement, à partir de l'énergie mécanique :

Le <u>système est conservatif</u>, d'après le théorème de la puissance mécanique, $\frac{dE_m}{dt} = 0$.

Avec
$$E_m = \frac{1}{2} A \dot{z}^2 - B z$$
; Il vient : $\frac{d E_m}{dt} = A \dot{z} \ddot{z} - B \dot{z} = 0$; Soit : $\dot{z} (A \ddot{z} - B) = 0$

Or
$$\dot{z} \neq 0$$
 à chaque instant car il y a mouvement, ainsi : $\ddot{z} = \frac{B}{A} = cste$.

En prenant une primitive, il vient : $\dot{z} = \frac{B}{A}t + cste1$.

CI, A
$$t=0$$
, l'anneau est lâché sans vitesse initiale, donc $\dot{z}(0)=0=cste1$; Soit : $\dot{z}=\frac{B}{A}t$.
Nouvelle primitive : $z(t)=\frac{1}{2}\frac{B}{A}t^2+cste2$. CI, A $t=0$, $z(0)=0=cste2$. Soit : $z(t)=\frac{1}{2}\frac{B}{A}t^2$.

Enfin, le temps de chute τ est tel que $z(\tau) = 3h$ (arrivée au sol).

Ainsi, il vient :
$$\frac{1}{2} \frac{B}{A} \tau^2 = 3h$$
 ; Soit : $\tau^2 = \frac{6hA}{B}$; D'où $\tau = \sqrt{\frac{6hA}{B}}$.

Q6. S'il y a une force de frottement, le système n'est plus conservatif et la force de frottement est tangente au

toboggan. Le théorème de la puissance cinétique conduit à :
$$\frac{d E_m}{dt} = P_{nc} = \overrightarrow{F} \cdot \overrightarrow{v} = -\|\overrightarrow{F}\| \|\overrightarrow{v}\| = -F \dot{z} \sqrt{\frac{R^2}{\gamma^2} + 1}$$

L'énergie perdue par l'enfant correspond à la valeur absolue du travail de la force de frottement.

$$\text{Or } |W_F| = \int_{t=0}^{t=\tau} |P_{nc}| \ dt = F \ \sqrt{\frac{R^2}{\gamma^2} + 1} \int_{t=0}^{t=\tau} \frac{dz}{dt} \ dt \ = F \ \sqrt{\frac{R^2}{\gamma^2} + 1} \ \int_{z=0}^{z=3h} dz \ .$$

D'où :
$$|W_F| = 3h F \sqrt{\frac{R^2}{\gamma^2} + 1}$$
, Il faut supprimer h ; D'après Q1, $h = 2\pi \gamma$. Soit : $|W_F| = 6\pi \gamma F \sqrt{\frac{R^2}{\gamma^2} + 1}$.

PROBLEME: Particule dans des champs \vec{E} et \vec{B} : (D'après ENAC) (\approx 77 pts)

Q1. Cas où B = 0, et $E = 10 \text{ V.m}^{-1}$ et $\vec{E} = E \vec{e}_{x}$.

Référentiel: Terrestre supposé galiléen.

Base de projection cartésienne : fournie.

Système : Particule de masse *m*.

<u>Force</u>: Poids négligeable.

Force de Lorentz électrique : $\vec{F} = q\vec{E} = q E \vec{e}_x$.

 $\underline{PFD} \grave{a} \underline{M} : \sum \vec{F} = m\vec{a} \quad \text{Donc } \vec{F} = q\vec{E} = m\vec{a} \qquad \text{avec } \vec{a} = \ddot{x}\vec{e}_x + \ddot{y}\vec{e}_y + \ddot{z}\vec{e}_z.$

Projetons sur les 3 axes : On obtient donc :

$$\begin{cases}
m\ddot{x} = qE \\
\ddot{y} = 0 \\
\ddot{z} = 0
\end{cases}
\text{ ou encore } \begin{cases}
\ddot{x} = \frac{qE}{m} \\
\ddot{y} = 0 \\
\ddot{z} = 0
\end{cases}$$

$$\dot{x} = \frac{qE}{m}t + cste \ 1$$
$$\dot{y} = cste \ 2$$

Projetons sur les 3 axes : On obtient donc :
$$\begin{bmatrix} m\ddot{x} = qE \\ \ddot{y} = 0 \\ \ddot{z} = 0 \end{bmatrix}$$
 ou encore
$$\begin{bmatrix} \ddot{x} = \frac{qE}{m} \\ \ddot{y} = 0 \\ \ddot{z} = 0 \end{bmatrix}$$
 Prenons une primitive, il vient :
$$\begin{bmatrix} \dot{x} = \frac{qE}{m}t + cste \ 1 \\ \dot{y} = cste \ 2 \\ \dot{z} = cste \ 3 \end{bmatrix}$$
 CI, A $t = 0$, $\overrightarrow{v_0} = V_0 \ \overrightarrow{e_z}$; D'où $cste \ 1 = cste \ 2 = 0$ et $cste \ 3 = V_0$
$$\begin{bmatrix} \dot{x} = \frac{qE}{m}t \\ \dot{y} = 0 \\ \dot{z} = V_0 \end{bmatrix}$$
 Et nouvelle primitive :
$$\begin{bmatrix} x = \frac{qE}{2m}t^2 + cste \ 4 \\ y = cste \ 5 \\ z = V_0t + cste \ 6 \end{bmatrix}$$

D'après le CI, la particule est en O, donc les 3 nouvelles constantes sont nulles. Donc $\begin{vmatrix} x = \frac{qx}{2m}t^2 & (1) \\ y = 0 & (2) \\ z = v_0t & (3) \end{vmatrix}$

$$\begin{vmatrix} x = \frac{qE}{2m}t^2 & (1) \\ y = 0 & (2) \\ z = V_0t & (3) \end{vmatrix}$$

Il nous faut l'équation de la trajectoire et non les équations horaires.

D'après l'équation (3), $t = \frac{z}{V_0}$; On remplace dans (1), il vient : $\mathbf{x} = \frac{qE}{2m} \left(\frac{z}{V_0}\right)^2$ L'écran est en $z_0 = 10$ cm, Soit $\mathbf{x}_e = \frac{qE z_0^2}{2m V_0^2}$. \underline{AN} : $x_e = \frac{-1,6.10^{-19} \times 10 \times 0,1^2}{2 \times 9,1.10^{-31} \times (500.10^3)^2}$; On obtient : $\mathbf{x}_e \approx -3.5$ cm.

Q2. Cas où E = 0, et $B = 10^{-5}$ T et $\vec{B} = B \vec{e}_{v}$.

2.a - Pour montrer que le mouvement est uniforme on calcule la puissance de la force magnétique :

$$\overrightarrow{F_m} = q \overrightarrow{v} \wedge \overrightarrow{B}$$

$$P = \overline{F_m}. \vec{v} = q(\vec{v} \wedge \vec{B}). \vec{v} = \underline{q(\vec{v} \wedge \vec{B})}. \vec{v}; \quad \text{Donc } \mathbf{P} = \mathbf{0}$$

Or
$$P = \frac{dE_C}{dt}$$
; Donc: $E_c = cste = \frac{1}{2}m v^2$; Conclusion: $\|\vec{v}\| = cste = V_0$.

Le champ magnétique dévie les particules mais ne modifie pas la norme de leur vitesse.

2.b - Référentiel : Terrestre supposé galiléen.

Base de projection cartésienne : fournie

Système : Particule de masse *m*.

Force: Poids négligeable.

Force de Lorentz magnétique : $\overrightarrow{F_m} = q \overrightarrow{v} \wedge \overrightarrow{B}$ $\underline{PFD \grave{a} M} : \sum \overrightarrow{F} = m \overrightarrow{a} \quad \text{Donc } \overrightarrow{F} = q \overrightarrow{v} \wedge \overrightarrow{B} = m \overrightarrow{a} \quad \text{avec } \overrightarrow{a} = \ddot{x} \overrightarrow{e}_x + \ddot{y} \overrightarrow{e}_y + \ddot{z} \overrightarrow{e}_z.$

Projetons sur les 3 axes : On obtient donc :

$$m\begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = q\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} \Lambda \begin{pmatrix} 0 \\ B \\ 0 \end{pmatrix} = qB\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} \Lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = qB\begin{pmatrix} -\dot{z} \\ 0 \\ \dot{x} \end{pmatrix}.$$

Avec
$$\omega = \frac{qB}{m}$$
, il vient : Il vient : $\begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = \omega \begin{pmatrix} -\dot{z} \\ 0 \\ \dot{x} \end{pmatrix}$; Ou encore : $\begin{vmatrix} \ddot{x} = -\omega \dot{z} & (1) \\ \ddot{y} = 0 & (2') \\ \ddot{z} = \omega \dot{x} & (3') \end{vmatrix}$

Il faut montrer que le mouvement est plan :

En exploitant (2'), il vient : $\ddot{y} = 0$ Soit $\dot{y} = v_v = cste = v_v(0) = 0$.

Soit y = cste = y(0) = 0.

Conclusion: La <u>trajectoire de la particule est plane, dans le plan (0, x, z), plan $\perp \vec{B}$.</u>

2.c – Résolution des équations couplées, parla méthode intégration/substitution. On a $\overrightarrow{v_0} = V_0 \ \overrightarrow{e}_z$.

On reprend les deux équations différentielles couplées (1') et (3'):

$$\ddot{z} = \omega \, \dot{x} \tag{3'}$$

On prend une primitive de (1'): $\dot{x} = -\omega z + cste$

CI: A t = 0,
$$z(0) = 0$$
 et $\dot{x}(0) = 0 = cste$.

D'où :
$$\dot{x} = -\omega z$$

En remplaçant (4) dans (3'), il vient :

$$\ddot{z} = \omega \, (-\omega z)$$

Soit : $\ddot{z} + \omega^2 z = 0$: Equation différentielle du second ordre sans terme en \dot{z} et avec second membre nul.

Les solutions sont de la forme : $z(t) = A\cos(\omega t) + B\sin(\omega t)$.

CI: A
$$t = 0$$
, $z(0) = 0 = A$ Donc: $A = 0$;

On dérive :
$$\dot{z}(t) = B\omega \cos(\omega t)$$

CI : A
$$t = 0, \dot{z}(0) = V_0 = B \omega$$
 Donc : $B = \frac{V_0}{\omega}$

Ainsi :
$$\mathbf{z}(t) = \frac{V_0}{\omega} \sin(\omega t)$$
.

Même méthode pour trouver x(t): On prend une primitive de (3'), puis on remplace (1').

Ou bien on reprend (4): $\dot{x} = -\omega z$ et on remplace z(t) par son expression:

$$\dot{x} = -\omega \frac{V_0}{\omega} \sin(\omega t) = -V_0 \sin(\omega t)$$

Ainsi :
$$\dot{x} = -V_0 \sin(\omega t)$$
.

On prend une primitive :
$$x(t) = \frac{v_0}{\omega}\cos(\omega t) + cste$$
;

CI: A t = 0,
$$x(0) = 0 = cste + \frac{w}{\omega}$$
; Soit: $cste = -\frac{v_0}{\omega}$; D'où: $x(t) = \frac{v_0}{\omega}(\cos(\omega t) - 1)$

Ainsi :
$$x(t) = \frac{v_0}{\omega} (\cos(\omega t) - 1)$$
$$z(t) = \frac{v_0}{\omega} \sin(\omega t) .$$

2.d – D'après les équations précédentes, $\cos(\omega t) = \frac{\omega}{V_c} x + 1$ et $\sin(\omega t) = \frac{\omega}{V_c} z$

Comme
$$cos^2(\omega t) + sin^2(\omega t) = 1$$
, il vient : $\left(\frac{\omega}{v_0}x + 1\right)^2 + \left(\frac{\omega}{v_0}z\right)^2 = 1$

Ou encore en multipliant de chaque côté par
$$\frac{v_0}{\omega}$$
, il vient : $\left(x + \frac{v_0}{\omega}\right)^2 + z^2 = \left(\frac{v_0}{\omega}\right)^2$.

La trajectoire est donc un <u>cercle de centre $C\left(-\frac{V_0}{\omega}>0;0;0\right)$ et de rayon $R_0=\left|\frac{V_0}{\omega}\right|=-\frac{V_0}{\omega}$;</u>

Mais $\omega < 0$, car q < 0.

On a donc :
$$R_0 = \frac{V_0 m}{|q| B}$$
; \underline{AN} : $R_0 = \frac{500.10^3 \times 9, 1.10^{-31}}{1,6.10^{-19} \times 10^{-5}}$; On obtient : $\underline{R_0 \approx 28 \text{ cm}}$.

2.e – Le dessin n'est pas à l'échelle.

Sur l'écran,
$$x = x_m$$
 et $z = z_0$ et $R_0 = \left| \frac{V_0}{\omega} \right| = -\frac{V_0}{\omega}$

Il vient : $(x_m - R_0)^2 + z_0^2 = R_0^2$

Soit:
$$(x_m - R_0)^2 = R_0^2 - z_0^2$$

Soit:
$$(x_m - R_0)^2 = R_0^2 - z_0^2$$

D'où: $x_m - R_0 = \pm \sqrt{R_0^2 - z_0^2}$; Et $x_m = R_0 \pm \sqrt{R_0^2 - z_0^2}$.

 $AN : x_{m1} \approx 54$ cm et $x_{m2} \approx 1,8$ cm.

Mais il faut que $x_m < R_0$; Donc $x_m \approx 1.8$ cm.

Q3. On nous donne $E = 1 \text{ kV.m}^{-1}$

Le mouvement est rectiligne et uniforme si la particule est pseudo-isolée, donc si les forces de Lorentz électrique et magnétique se compensent (alors $\overrightarrow{acc} = \overrightarrow{0}$). Soit $qE = q V_0 B \sin(\frac{\pi}{2})$;

Ou encore : $B = \frac{E}{V_0} AN : B = \frac{10^3}{500.10^3}$. On obtient $B = 2.10^{-3} T = 2 mT$.

Q4. Cas où *E* et *B* sont non nuls.

4.a - Il faut reprendre les équations vues en Q2b, en ajoutant la force électrique de Lorentz : $\vec{F} = q\vec{E} = q E \vec{e}_x$. Forces: Poids négligeable.

Force de Lorentz magnétique : $\overrightarrow{F_m} = q \overrightarrow{v} \wedge \overrightarrow{B}$

Force de Lorentz électrique : $\vec{F} = q\vec{E} = q E \vec{e}_x$

 $\underline{PFD} \grave{a} \underline{M} : \sum \vec{F} = m\vec{a} \quad \text{Donc } q \ \vec{v} \land \vec{B} + q\vec{E} = m\vec{a} \quad \text{avec } \vec{a} = \ddot{x}\vec{e}_x + \ddot{y}\vec{e}_y + \ddot{z}\vec{e}_z.$

Projetons sur les 3 axes : On obtient donc :

$$m\begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = q\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} \Lambda \begin{pmatrix} 0 \\ B \\ 0 \end{pmatrix} + q\begin{pmatrix} E \\ 0 \\ 0 \end{pmatrix} = qB\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} \Lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + q\begin{pmatrix} E \\ 0 \\ 0 \end{pmatrix} = qB\begin{pmatrix} -\dot{z} \\ 0 \\ \dot{x} \end{pmatrix} + q\begin{pmatrix} E \\ 0 \\ 0 \end{pmatrix}.$$

Avec $\omega = \frac{qB}{m}$, il vient : Il vient : $\begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = \omega \begin{pmatrix} -\dot{z} \\ 0 \\ \dot{x} \end{pmatrix} + \frac{q}{m} \begin{pmatrix} E \\ 0 \\ 0 \end{pmatrix}$; Ou encore $\ddot{x} = -\omega \dot{z} + \frac{q}{m} E$ (5)

Il faut découpler les équations (5) et (7) pour obtenir la forme proposée : $\frac{d^2x}{dt^2} + \omega^2x = a$.

On prend une primitive de (7) : $\dot{z} = \omega x + cste$

CI: A
$$t = 0$$
, $x(0) = 0$ et $\dot{z}(0) = V_0 = cste$.

D'où :
$$\dot{\mathbf{z}} = \boldsymbol{\omega} \, \mathbf{x} + V_0$$
 (8)

CI: A t = 0,
$$x(0)$$
 = 0 et $\dot{z}(0) = V_0 = cste$. D'où: $\dot{z} = \omega x + V_0$ (8);
En remplaçant (8) dans (5), il vient: $\ddot{x} = -\omega (\omega x + V_0) + \frac{q}{m}E$ Soit: $\ddot{x} + \omega^2 x = \frac{q}{m}E - \omega V_0$:

Soit:
$$\ddot{x} + \omega^2 x = \frac{q}{m} E - \omega V_0$$

Par identification avec
$$\frac{d^2x}{dt^2} + \omega^2 x = a$$
, on obtient $\mathbf{a} = \frac{q}{m}\mathbf{E} - \omega \mathbf{V_0}$. Or $\omega = \frac{qB}{m}$, ainsi $\mathbf{a} = \frac{q}{m}(\mathbf{E} - \mathbf{B}\mathbf{V_0})$.

4.b – Dans le cas où $B = \frac{2E}{V_0}$, alors $a = -\frac{qE}{m}$. L'équation précédente devient donc : $\ddot{x} + \omega^2 x = -\frac{qE}{m}$.

Solution homogène : $x_h(t) = \alpha \cos(\omega t) + \beta \sin(\omega t)$

Solution particulière constante : $x_P = -\frac{qE}{m\omega^2} = -\frac{qE}{m} \times \frac{m^2}{q^2B^2}$; Soit : $x_P = -\frac{mE}{qB^2}$.

Solution générale: $x(t) = x_h(t) + x_P = \alpha \cos(\omega t) + \beta \sin(\omega t) - \frac{mE}{\alpha B^2}$

1^{ère} CI, à
$$t = 0$$
, $x(0) = 0$; Soit: $\alpha - \frac{mE}{qB^2} = 0$; D'où $\alpha = \frac{mE}{qB^2}$.

De plus, on dérive, $\dot{x}(t) = -\alpha \omega \sin(\omega t) + \beta \omega \cos(\omega t) + 0$.

 $2^{\text{ème}} \text{ CI}$: $\hat{\mathbf{a}} t = 0, \dot{x}(0) = 0$, donc $\beta \omega = 0$; Soit $\boldsymbol{\beta} = \mathbf{0}$.

Conclusion:
$$x(t) = \frac{mE}{qB^2}\cos(\omega t) - \frac{mE}{qB^2}$$
; Ainsi: $x(t) = \frac{mE}{qB^2}(\cos(\omega t) - 1) = \frac{E}{B\omega}(\cos(\omega t) - 1)$