$\Sigma(1670) \ 3/2^-$

$$I(J^P) = 1(\frac{3}{2}^-)$$
 Status: ***

For most results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters **111B** 1 (1982).

Results from production experiments are listed separately in the next entry.

Σ (1670) POLE POSITION **REAL PART** VALUE (MeV) DOCUMENT ID TECN COMMENT 1669^{+7}_{-7} ¹ KAMANO DPWA Multichannel 15 • • • We do not use the following data for averages, fits, limits, etc. • • • 1674 **ZHANG** 13A DPWA Multichannel ¹ From the preferred solution A in KAMANO 15. -2×IMAGINARY PART DOCUMENT ID VALUE (MeV) ¹ KAMANO DPWA Multichannel • • • We do not use the following data for averages, fits, limits, etc. • • • 54 **ZHANG** 13A DPWA Multichannel ¹From the preferred solution A in KAMANO 15. Σ (1670) POLE RESIDUES The normalized residue is the residue divided by $\Gamma_{nole}/2$. Normalized residue in $N\overline{K} \rightarrow \Sigma(1670) \rightarrow N\overline{K}$ PHASE (°) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • ¹ KAMANO -200.129 15 DPWA Multichannel ¹From the preferred solution A in KAMANO 15. Normalized residue in $N\overline{K} \rightarrow \Sigma(1670) \rightarrow \Sigma \pi$ MODULUS PHASE (°) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ KAMANO 15 DPWA Multichannel 0.249 ¹From the preferred solution A in KAMANO 15. Normalized residue in $N\overline{K} \rightarrow \Sigma(1670) \rightarrow \Lambda \pi$ DOCUMENT ID PHASE (°) TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • -7¹ KAMANO DPWA Multichannel 0.0818 15 ¹ From the preferred solution A in KAMANO 15. HTTP://PDG.LBL.GOV Created: 5/30/2017 17:20 Page 1

Normalized	I residue in $N\overline{K} \rightarrow$	$\Sigma(1670) \rightarrow \Sigma(1$	$1385)\pi$, 3	S-wave
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

0.228 167 ¹ KAMANO 15 DPWA Multichannel

Normalized residue in $N\overline{K} \to \Sigma(1670) \to \Sigma(1385)\pi$, *D*-wave

 MODULUS
 PHASE (°)
 DOCUMENT ID
 TECN
 COMMENT

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

0.0915 141 KAMANO 15 DPWA Multichannel

Σ(1670) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1665 to 1685 (≈ 1670) OUR ES	TIMATE			
1678 ± 2	ZHANG	13A	DPWA	Multichannel
1673 ± 1	GAO	12	DPWA	$\overline{K}N \rightarrow \Lambda\pi$
1665.1 ± 4.1	KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$
1682 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1679 ± 10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1670 ± 5	GOPAL	77	DPWA	$\overline{K}N$ multichannel
1670 ± 6	HEPP	76 B	DPWA	$K^- N \rightarrow \Sigma \pi$
1685 ± 20	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$
$1659 \begin{array}{c} +12 \\ -5 \end{array}$	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
1670 ± 2	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1667 or 1668	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel
1650	DEBELLEFON	76	IPWA	$K^- p \rightarrow \Lambda \pi^0$
1671 ± 3	PONTE	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$ (sol. 1)
1655 ± 2	PONTE	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$ (sol. 2)
$^{ m 1}$ The two MARTIN 77 values ar	e from a T-matrix	k pole	and froi	m a Breit-Wigner fit.

Σ (1670) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
40 to 80 (≈ 60) OUR ESTIMATE				
55 ± 4	ZHANG	13A	DPWA	Multichannel
$52 + 5 \\ - 2$	GAO	12	DPWA	$\overline{K}N \rightarrow \Lambda\pi$
65.0± 7.3	KOISO	85	DPWA	$K^-p \rightarrow \Sigma \pi$
79 ± 10	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
56 ±20	ALSTON	78	DPWA	$\overline{K} N \rightarrow \overline{K} N$
50 ± 5	GOPAL	77	DPWA	$\overline{K}N$ multichannel
56 ± 3	HEPP	76 B	DPWA	$K^- N \rightarrow \Sigma \pi$
85 ±25	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda \pi$
32 ± 11	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
79 ± 6	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$

HTTP://PDG.LBL.GOV

Page 2

Created: 5/30/2017 17:20

 $^{^{}m 1}$ From the preferred solution A in KAMANO 15.

• • • We do not use the following data for averages, fits, limits, etc. • • •

46	or 46	¹ MARTIN	77	DPWA $\overline{K}N$ multichannel
80		DEBELLEFON	76	IPWA $K^- p \rightarrow \Lambda \pi^0$
44	± 11	PONTE	75	DPWA $K^- p \rightarrow \Lambda \pi^0$ (sol. 1)
76	± 5	PONTE	75	DPWA $K^- p \rightarrow \Lambda \pi^0$ (sol. 2)

 $^{^{}m 1}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

Σ (1670) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	7–13 %
Γ_2	$\Lambda\pi$	5–15 %
Γ_3	$\Sigma \pi$	30–60 %
Γ_4	$\Lambda\pi\pi$	
Γ_5	$\sum \pi \pi$	
Γ_6	$\Sigma(1385)\pi$	
Γ_7	$\Sigma(1385)\pi$, \emph{S} -wave	
Γ ₈	$\Sigma(1385)\pi$, <i>S</i> -wave	
Γ_9	$\Sigma(1385)\pi$, $ extit{D}$ -wave	
Γ ₁₀	$N\overline{K}^*(892)$, $S=1/2$, <i>D</i> -wave	
Γ_{11}	$N\overline{K}^*(892)$, $S=3/2$, S -wave	
Γ_{12}	$N\overline{K}^*(892)$, $S=3/2$, <i>D</i> -wave	
$\Gamma_{13}^{}$	$\Lambda(1405)\pi$	
Γ ₁₄	$\Lambda(1520)\pi$	

Σ (1670) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.07 to 0.13 OUR ESTIMATE					
0.062 ± 0.007	ZHANG	13A	DPWA	Multichannel	
0.10 ± 0.03	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$	
0.11 ± 0.03	ALSTON	78	DPWA	$\overline{K} N \rightarrow \overline{K} N$	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
0.121	¹ KAMANO	15	DPWA	Multichannel	
0.08 ± 0.03				See GOPAL 80	
0.07 or 0.07	² MARTIN	77	DPWA	$\overline{K}N$ multichanne	l
1 Alexander A. :	I/ A N / A N / O 1 F				

 $^{^{\}mathrm{1}}$ From the preferred solution A in KAMANO 15.

²The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

$\Gamma(\Lambda\pi)/\Gamma_{\text{total}}$				Γ_2/Γ
VALUE	DOCUMENT ID	TECN		
• • We do not use the following	_			
0.058		DPWA	Multichannel	
1 From the preferred solution $^{\prime}$	A in KAMANO 15.			
$\Gamma(oldsymbol{\Sigma}\pi)/\Gamma_{total}$				Γ_3/Γ
VALUE	DOCUMENT ID		COMMENT	
• • We do not use the following		, limits, e	etc. • • •	
0.465	¹ KAMANO 15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution $ ho$	A in KAMANO 15.			
$\Gamma(\Lambda\pi\pi)/\Gamma_{ ext{total}}$				Γ_4/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the following	ng data for averages, fits,	, limits, e	etc. • • •	
< 0.11	ARMENTEROS68E	HBC	$K^- p (\Gamma_1 = 0.09)$)
$\Gamma(\Sigma\pi\pi)/\Gamma_{total}$				Γ_5/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the following				_
< 0.14	¹ ARMENTEROS68E	НВС	K^-p , K^-d (Γ_1	=0.09)
1 Ratio only for $\Sigma 2\pi$ system in			` •	. ′
$\Gamma(oldsymbol{\Sigma}(1385)\pi$, <i>S</i> -wave $)/\Gamma_{ ext{tota}}$	_1			Г ₈ /Г
VALUE	<u>DOCUMENT ID</u>	TECN	COMMENT	. 6/ .
• • • We do not use the following				
0.309	¹ KAMANO 15		Multichannel	
$^{ m 1}$ From the preferred solution $^{ m 7}$	A in KAMANO 15.			
Γ(∇(1295)σ D ways) /Γ	_			٦/و٦
$\Gamma(\Sigma(1385)\pi, D\text{-wave})/\Gamma_{\text{tot}}$	DOCUMENT ID	TECN	COMMENT	19/1
• • We do not use the following				
0.044	$\frac{1}{1}$ KAMANO 15		Multichannel	
1 From the preferred solution $^{\prime}$		DI VIII	Watterlamer	
	_			- /-
$\Gamma(N\overline{K}^*(892), S=1/2, D-wa)$	Ve)/I total DOCUMENT ID	TECN	COMMENT	Γ ₁₀ /Γ
• • • We do not use the following				
0.001	¹ KAMANO 15		Multichannel	
1 From the preferred solution $^{\prime}$		<i>D.</i> 117.	Waterenamer	
— —	A III NAWANO 15.			
$\Gamma(NK^*(892), S=3/2, S-way$	ve)/F _{total} DOCUMENT ID	TECN	COMMENT	Γ ₁₁ /Γ
• • • We do not use the following	•		etc. • •	<u> </u>
0.002	¹ KAMANO 15		Multichannel	
$^{ m 1}$ From the preferred solution $^{ m 7}$	A in KAMANO 15.			
HTTP://PDG.LBL.GOV	Page 4	Creat	ed: 5/30/2017	17:20

$\Gamma(N\overline{K}^*(892), S=3/2, D-wave)$	/Γ _{total}			Γ ₁₂ /Γ
VALUE	DOCUMENT ID			
• • We do not use the following d		, fits,	limits, e	tc. • • •
0.001	KAMANO	15	DPWA	Multichannel
$^{\mathrm{1}}$ From the preferred solution A in	KAMANO 15.			
$\Gamma(\Lambda(1405)\pi)/\Gamma_{total}$				Γ ₁₃ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
< 0.06	ARMENTEROS	568E	HBC	$K^- p$, $K^- d$ ($\Gamma_1 = 0.09$)
$\Gamma(\Lambda(1405)\pi)/\Gamma(\Sigma(1385)\pi)$	DOCUMENT ID		TECN	Γ_{13}/Γ_{6}
VALUE	DOCUMENT ID			COMMENT
0.23 ± 0.08	BRUCKER	70	DBC	$K^- N \rightarrow \Sigma \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma (16)$				$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID			COMMENT
$+0.08 \pm 0.01$	ZHANG	13A	DPWA	Multichannel
$+0.081^{+0.002}_{-0.004}$	GAO	12	DPWA	$\overline{K}N \rightarrow \Lambda\pi$
$+0.17 \pm 0.03$	MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
$+0.13 \pm 0.02$	MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
$+0.10 \pm 0.02$	GOPAL	77	DPWA	$\overline{K}N$ multichannel
$+0.06 \pm 0.02$	BAILLON	75		$\overline{K}N \rightarrow \Lambda\pi$
$+0.09 \pm 0.02$	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
$+0.018{\pm}0.060$	DEVENISH	74 B		Fixed-t dispersion rel.
ullet $ullet$ We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
+0.08 or $+0.08$	MARTIN	77	DPWA	$\overline{K}N$ multichannel
+0.05	DEBELLEFON			$K^- p \rightarrow \Lambda \pi^0$
$+0.08 \pm 0.01$	PONTE			$K^- p \rightarrow \Lambda \pi^0$ (sol. 1)
$+0.17 \pm 0.01$	PONTE	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$ (sol. 2)
¹ Results are with and without an				D : 14/2
² The two MARTIN 77 values are	from a 1-matrix	pole	and from	n a Breit-Wigner fit.
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma (16)$ VALUE	70) $\rightarrow \Sigma \pi$ DOCUMENT ID		TECN	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
$+0.20\pm0.01$	ZHANG	131		Multichannel
$+0.20\pm0.01$ $+0.20\pm0.02$	KOISO	85		$K^- p \rightarrow \Sigma \pi$
$+0.20\pm0.02$ $+0.21\pm0.02$	GOPAL	77		$\overline{K}N$ multichannel
$+0.20\pm0.01$	HEPP			$K^- N \rightarrow \Sigma \pi$
$+0.20\pm0.01$ $+0.21\pm0.03$	KANE	70B		$K^- p \rightarrow \Sigma \pi$
◆ • We do not use the following d				•
	MARTIN	, 11t3, 77		$\overline{K}N$ multichannel

 $^{
m 1}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K}$	DOCUMENT IL				(Γ ₁ Γ ₇) ^½ /Γ
$+0.11\pm0.03$	PREVOST	74	DPWA	$K^- N \rightarrow$	Σ (1385) π
• • • We do not use the	following data for averag	ges, fits	, limits, e	etc. • • •	
0.17 ± 0.02	¹ SIMS	68	DBC	$K^- N \rightarrow$	$\Lambda\pi\pi$
$^{ m 1}$ SIMS 68 uses only cr	oss-section data. Result ι	used as	upper lir	nit only.	
$\Gamma_i\Gamma_f/\Gamma_{ ext{total}}^2$ in $N\overline{K}$ $ o$					$\Gamma_1\Gamma_{13}/\Gamma^2$
VALUE	DOCUMENT IL)	TECN	COMMENT	
0.007 ± 0.002	¹ BRUCKER	70	DBC	$K^- N \rightarrow$	$\Sigma \pi \pi$
	following data for average	ges, fits	, limits, e	etc. • • •	
• • • We do not use the					
• • • We do not use the <0.03	BERLEY	69	HBC	K [−] p 0.6-	-0.82 GeV/ <i>c</i>
		69	HBC	K [−] p 0.6-	-0.82 GeV/c
< 0.03	BERLEY π cross-section bump is	due on		resonan	,

 $\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\overline{K} \rightarrow \Sigma(1670) \rightarrow \Lambda(1520)\pi}{\frac{DOCUMENT \ ID}{1 \ CAMERON} \frac{TECN}{77} \frac{COMMENT}{P\text{-wave decay}}$

Σ (1670) REFERENCES

KAMANO	15	PR C92 025205	H. Kamano et al.	(ANL, OSAK)
ZHANG	13A	PR C88 035205	H. Zhang <i>et al.</i>	(KSU)
GAO	12	PR C86 025201	P. Gao, J. Shi, B.S. Zou	(BHEP, BEIJT)
Also		NP A867 41	P. Gao, B.S. Zou, A. Sibirtsev	(BHEP, BEIJT+)
KOISO	85	NP A433 619	H. Koiso et al.	`(TOKY, MASA)
PDG	82	PL 111B 1	M. Roos et al.	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	` (RHEL) IJP
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
Also		PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
MORRIS	78	PR D17 55	W.A. Morris et al.	(FSU) IJP
CAMERON	77	NP B131 399	W. Cameron et al.	(RHEL, LOIC) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G	
Also		NP B126 266	B.R. Martin, M.K. Pidcock	` (LOUC)
Also		NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
DEBELLEFON	76	NP B109 129	A. de Bellefon, A. Berthon	(CDEF) IJP
HEPP	76B	PL 65B 487	V. Hepp et al.	(CERN, HEIDH, MPIM) IJP
BAILLON	75	NP B94 39	P.H. Baillon, P.J. Litchfield	(CERN, RHEL) IJP
PONTE	75	PR D12 2597	R.A. Ponte et al.	(MASA, TENN, UCR) IJP
VANHORN	75	NP B87 145	A.J. van Horn	(LBL) IJP
Also		NP B87 157	A.J. van Horn	(LBL) IJP
DEVENISH	74B	NP B81 330	R.C.E. Devenish, C.D. Froggatt,	B.R. Martin (DESY+)
KANE	74	LBL-2452	D.F. Kane	` (LBL)́ IJP
PREVOST	74	NP B69 246	J. Prevost <i>et al.</i>	(SACL, CERN, ĤEID)
BRUCKER	70	Duke Conf. 155	E.B. Brucker et al.	(FSU) I
Hyperon R	esonan	ces, 1970		,
BERLEY	69	PL 30B 430	D. Berley et al.	(BNL)
ARMENTEROS	68E	PL 28B 521	R. Armenteros et al.	(CERN, HEID, ŠACL) I
SIMS	68	PRL 21 1413	W.H. Sims et al.	(ÈSU, TUFTS, BRAN)

Created: 5/30/2017 17:20

 $^{^{1}}$ The CAMERON 77 upper limit on $\emph{F}\text{-wave}$ decay is 0.03.