Formal Verification of Neuro-symbolic Multi-agent Systems

Panagiotis Kouvaros

Verification of Autonomous Systems Group Department of Computing, Imperial College London, UK

August 23, 2023

Al in the Last Decade

- Rapid progress in diverse domains (natural language processing, computer vision, autonomous vehicles)
- Mainly driven by deep learning (increased computational power, big data, improved statistical methods)
- Vast potential in revolutionising society
- Lack of interpretability and fragility to input perturbations hinders adoption in safety-critical applications
- Need for verification and neuro-symbolic approaches towards more transparent and trustworthy AI

Formal Verification of Al

• Formal verification problem

$$\mathcal{S} \vDash \varphi$$
 ?

- S is a multi-agent system comprising symbolic, neural or neuro-symbolic agents
- ullet φ is a specification expressing **temporal-epistemic**, **strategic** or **robustness** properties of agents

Verification of Unbounded Multi-agent Systems

Unbounded Multi-agent Systems

- Multi-agent systems composed of an arbitrary number of homogeneous agents
- As in multi-party negotiation protocols and auctions, voting protocols, swarm robotics
- Traditional techniques target verification for systems composed of a *known* number of agents.
- Need for methods for establishing properties of protocols irrespective of the number of agents in the system

Parameterised Verification

- Parameterised Interleaved Interpreted Systems: a parameterised semantical structure, where the parameter is the number of agents in the system
- IACTLK: an indexed version of the temporal-epistemic logic ACTLK that allows for quantifying over the agents
 - Connectedness property: ∀i: AGAFconnected(i) ("every robot is infinitely often close to another robot")
- Parameterised model checking problem:

Input: A PIIS ${\mathcal S}$ and an IACTLK formula φ Output:

- Yes if $\forall n \in \mathbb{N} : \mathcal{S}(n) \vDash \varphi$.
- No otherwise
- The parameterised model checking problem for PIIS is in general undecidable

Cutoffs

• A natural number $c \in \mathbb{N}$ is said to be a **cutoff** for a PIIS $\mathcal S$ and a formula φ if

$$\forall n \in [1, c] : \mathcal{S}(c) \vDash \varphi \iff \forall n \ge 1 : \mathcal{S}(n) \vDash \varphi$$

- If a cutoff exists, then the PMCP can be solved by checking all the concrete systems up to the cutoff
- The existence and computability of cutoffs depends on the synchronisation primitives endowing the agents

Synchronisations and Cutoffs in PIIS

- Fully synchronous semantics always admit cutoffs (identification procedure in exponential time)
- Asynchronous semantics with broadcast communication primitives always admit cutoffs (identification procedure in linear time)
- Asynchronous semantics with broadcast and agent-environment communication primitives admit cutoffs under the condition that the environment can never block pairwise synchronisations for the system of one agent only (identification procedure in exponential time)
- Same condition holds for **multi-role systems** with pairwise communication between agents of different roles

Fault-tolerance

- Adverse functioning behaviour of some of the agents in the system
 - Could a faulty robot break a flying formation?
- Combined with fault-injection techniques parameterised verification can be used to establish the robustness of a UMAS to faults
- Additionally, adaptations of the labelling algorithm for CTLK can be used to compute the maximum ratio of faulty to non-faulty agents that the system can tolerate with respect to a specification

MCMAS-P

 Traditional verification can verify the Alpha swarm aggregation algorithm only up to 7 robots, whereas MCMMAS-P establishes the correctness of the protocol for any number of agents.

Verification of Neural Networks

Fragility of Neural Networks

• Imperceptible perturbations to the inputs often cause networks to miss-classify

Formal Verification Problem

 Aims to establish whether neural networks behave as intended in regions of the input space:

$$\forall x \in \mathcal{X}: f(x) \in \mathcal{Y},$$

where ${\it f}$ is a network, ${\mathcal X}$ is a set of inputs and ${\mathcal Y}$ is a set of outputs of the network

- Reachability and local robustness properties are instantiated from from above
- \bullet Robustness against certain input perturbations denoting ${\mathcal X}$ is particularly important in assuring safe behaviour in the operation domain

ReLU Networks

$$y(x) = \max(0, x)$$

- ReLU is piecewise-linear
- When x ≥ 0 the node is said to be in the active state and outputs x
- When *x* < 0 the node is said to be in the **inactive state** and outputs 0

MILP Compilation

• The verification problem is recast into a MILP program

$$\begin{aligned} & \underset{\boldsymbol{x}^{(0)}, \dots, \boldsymbol{x}^{(L)}}{\min} & \boldsymbol{c}^T \boldsymbol{x}^{(L)} + \boldsymbol{c}_0 \\ & \text{subject to } & \boldsymbol{x}^{(0)} \in \mathcal{X}, \text{ for a set of perturbations } \mathcal{X} \\ & \boldsymbol{z}^{(i)} = \boldsymbol{W}^{(i)} \boldsymbol{x}^{(i-1)} + \boldsymbol{b}^{(i)}, \\ & \boldsymbol{x}_j^{(i)} \geq \boldsymbol{z}_j^{(i)}, \ \boldsymbol{x}_j^{(i)} \leq \boldsymbol{z}_j^{(i)} - \boldsymbol{I}_i^{(j)} \cdot (1 - \boldsymbol{\delta}_j^{(i)}), \\ & \boldsymbol{x}_j^{(i)} \leq \boldsymbol{u}_i^{(j)} \cdot \boldsymbol{\delta}_j^{(i)}, \ \boldsymbol{x}_j^{(i)} \geq 0, \ \boldsymbol{\delta}_j^{(i)} \in \{0, 1\} \end{aligned}$$

- The verification problem is satisfied iff its MILP encoding has no feasible solution
- Any feasible solution corresponds to an input violating the robustness of the network
- Perfomance greatly depends on the tightness of the pre-activation bounds and the number of binary variables encoding the ReLU non-linerarities

Improved Scalability

- Symbolic interval propagation enables fast, gpu-accelerated symbolic derivation of tights bounds through linear relaxations of the ReLU nodes
 - The bounds can be further tightned by acounting for intra-layer dependencies, instead of simply relying on local over- approximation areas, when choosing a relaxation
- Dependency analysis exploits relations whereby the operational states of the ReLUs for a set of inputs is connected by logical implication
 - Using MILP cuts
 - Using branching heuristics

Venus

- Open-source neural network verification tool
- Extensive support for various types of layers and architectures present in applications
- Advances in symbolic bound propagation, dependency analysis and input domain splitting
- From checking networks of thoundands of nodes in 2019 it has progressed to the verification of networks of millions of nodes in 2023

Runway Detection

- **Challenge:** Key point prediction robustness: Is the key point prediction robust against input perturbations?
- Models: U-Nets with approximately 2 million non-linear nodes
- **Input perturbations**: white noise in (segments of) the input and photometric changes, including brightness and contrast changes

Runway Detection — Analysis Summary

- The models are robust with respect to minor perturbations but still brittle to realistic alterations of the input
- The models are more susceptible to some variabilities (brightness) than others (contrast)

Verification of Neuro-symbolic Multi-agent Systems

- Agents are equipped with a neural perception unit and a symbolic controller
- A neuro-symbolic agent is a tuple (L_a, obs_a, Act_a, prot_a, tr_a), where
 - L_a = Prv_a × Per_a is a set of local states comprising tuples of private states and percepts
 - obs_a : $L_a \times L_E \rightarrow Per_a$ is an observation function implemented by a neural network
 - Acta is a nonempty finite set of actions
 - prot_a: $L_a \rightarrow 2^{Act_a} \setminus \emptyset$ is a local protocol function
 - $tr_a: L_a \times Act_1 \times \cdots \times Act_K \times Act_E \rightarrow Prv_a$ is a local transition function

- Agents are equipped with a neural perception unit and a symbolic controller
- A neuro-symbolic agent is a tuple (L_a, obs_a, Act_a, prot_a, tr_a), where
 - L_a = Prv_a × Per_a is a set of local states comprising tuples of private states and percepts
 - obs_a : $L_a \times L_E \rightarrow Per_a$ is an observation function implemented by a neural network
 - Acta is a nonempty finite set of actions
 - prot_a: $L_a \rightarrow 2^{Act_a} \setminus \emptyset$ is a local protocol function
 - $tr_a: L_a \times Act_1 \times \cdots \times Act_K \times Act_E \rightarrow Prv_a$ is a local transition function

- Agents are equipped with a neural perception unit and a symbolic controller
- A neuro-symbolic agent is a tuple (L_a, obs_a, Act_a, prot_a, tr_a), where
 - L_a = Prv_a × Per_a is a set of local states comprising tuples of private states and percepts
 - obs_a : $L_a \times L_E \rightarrow Per_a$ is an observation function implemented by a neural network
 - Acta is a nonempty finite set of actions
 - prot_a: $L_a \rightarrow 2^{Act_a} \setminus \emptyset$ is a local protocol function
 - tr_a : $L_a \times Act_1 \times \cdots \times Act_K \times Act_E \rightarrow Prv_a$ is a local transition function

- Agents are equipped with a neural perception unit and a symbolic controller
- A neuro-symbolic agent is a tuple (L_a, obs_a, Act_a, prot_a, tr_a), where
 - L_a = Prv_a × Per_a is a set of local states comprising tuples of private states and percepts
 - obs_a : $L_a \times L_E \rightarrow Per_a$ is an observation function implemented by a neural network
 - Acta is a nonempty finite set of actions
 - prot_a: $L_a \rightarrow 2^{Act_a} \setminus \emptyset$ is a local protocol function
 - $tr_a: L_a \times Act_1 \times \cdots \times Act_K \times Act_E \rightarrow Prv_a$ is a local transition function

- Agents are equipped with a neural perception unit and a symbolic controller
- A neuro-symbolic agent is a tuple (L_a, obs_a, Act_a, prot_a, tr_a), where
 - L_a = Prv_a × Per_a is a set of local states comprising tuples of private states and percepts
 - obs_a: L_a × L_E → Per_a is an observation function implemented by a neural network
 - Acta is a nonempty finite set of actions
 - prot_a: $L_a \rightarrow 2^{Act_a} \setminus \emptyset$ is a local protocol function
 - $tr_a: L_a \times Act_1 \times \cdots \times Act_K \times Act_E \rightarrow Prv_a$ is a local transition function

- Agents are equipped with a neural perception unit and a symbolic controller
- A neuro-symbolic agent is a tuple (L_a, obs_a, Act_a, prot_a, tr_a), where
 - L_a = Prv_a × Per_a is a set of local states comprising tuples of private states and percepts
 - obs_a: L_a × L_E → Per_a is an observation function implemented by a neural network
 - Act_a is a nonempty finite set of actions
 - prot_a: $L_a \rightarrow 2^{Act_a} \setminus \emptyset$ is a local protocol function
 - $tr_a: L_a \times Act_1 \times \cdots \times Act_K \times Act_E \rightarrow Prv_a$ is a local transition function
- **Environments** are similarly defined (but no percepts)
- Neuro-symbolic MAS compose neuro-symbolic agents with the environment for a set I of initial states

Formal Verification of NMAS

- Verification problem: Given a NMAS ${\cal S}$ and a logic formula φ , check whether every initial state in ${\cal S}$ satisfies φ
- Verification of NMAS against unbounded reachability properties (i.e., the system eventually reaches an unsafe state) is undecidable
- Bounded fragment of ATL* (alternating-time temporal logic):

$$\varphi ::= \frac{\alpha}{\alpha} | \varphi \vee \varphi | \varphi \wedge \varphi | \langle \langle \Gamma \rangle \rangle X^k \varphi, | [[\Gamma]]^k \varphi$$

$$\alpha ::= c_1(1) + \dots + c_m(m) \text{ op } c$$

where α is a linear inequality over the outputs of the network and Γ is a subset of agents.

- $\langle\!\langle ag \rangle\!\rangle X^k$ (safe): "agent ag has a strategy to enter a safe configuration after k steps irrespective of what the intruder does."

MILP Encodings

- The verification problem is recast to a MILP feasibility problem
- Monolithic encoding
 - $S \vDash \varphi$ iff $\pi_{S, \neg \varphi \land \varphi_I}$ is infeasible
 - Single (exponentially large) program $\pi_{\mathcal{S}, \neg \varphi \wedge \varphi_I}$

$$\begin{aligned} \pi_{\mathcal{S}, l}(x) &= \mathcal{V}(l, x) \\ \pi_{\mathcal{S}, \varphi_1, \psi_2}(x) &= (\delta = 1) \Rightarrow \pi_{\mathcal{S}, \varphi_1}(x) \cup (\delta = 0) \Rightarrow \pi_{\mathcal{S}, \varphi_2}(x) \\ \pi_{\mathcal{S}, \varphi_1, \psi_2}(x) &= \pi_{\mathcal{S}, \varphi_1}(x) \cup \pi_{\mathcal{S}, \varphi_2}(x) \\ \pi_{\mathcal{S}, \varphi_1, \psi_2}(x) &= \bigcup_{i=1}^{|Ind_{\tau}|} (\delta_i = 1) \Rightarrow \prod_{j=1}^{|Ind_{\tau}|} C_{\Sigma_{t}^{i} \cup \Sigma_{j}^{j}}(x, y_j) \\ \bigcup_{j=1}^{|Ind_{\tau}|} C_{\Sigma_{t}^{i} \cup \Sigma_{j}^{j}}(x, y_j) \\ \bigcup_{j=1}^{|Ind_{\tau}|} C_{\Sigma_{t}^{i} \cup \Sigma_{j}^{j}}(x, y_j) \\ \bigcup_{j=1}^{|Ind_{\tau}|} \delta_i = 1 \cup \bigcup_{j=1}^{|Ind_{\tau}|} \pi_{\mathcal{S}, \varphi}(y_j) \end{aligned} \end{aligned}$$
 where the binary variables
$$\delta_i, \delta_i, \delta_j, \text{ the state variables} \\ y_j, y_i, \text{ and all auxiliary variables} \\ \pi_{\mathcal{S}, [\Gamma]X\varphi}(x) = \bigcup_{j=1}^{|Ind_{\tau}|} (\delta_{ij} = 1) \Rightarrow C_{\Sigma_{1}^{i} \cup \Sigma_{j}^{j}}(x, y_j) \cup \sum_{j=1}^{|Ind_{\tau}|} \delta_{ij} = 1 \cup \pi_{\mathcal{S}, \varphi}(y_i)$$

- Compositional encoding
 - $S \vDash \varphi$ iff every program in $\Pi_{S, \neg \varphi \land \varphi_I}$ is infeasible
 - Set of (smaller) program with parallelisable infeasibility checks

$$\begin{array}{c|c} \Pi_{\mathcal{S},l}(\boldsymbol{x}) = \{[\mathcal{V}(l,\boldsymbol{x})]\}, & \Pi_{\mathcal{S},(\Gamma)\backslash \mathcal{X}\varphi}(\boldsymbol{x}) = \bigcup_{i=1}^{|Ind_{\Gamma}|} \left(\sum_{j=1}^{|Ind_{\Gamma}|} \left\{\left[C_{\Sigma_{1}^{i}\cup\Sigma_{T}^{j}}(\boldsymbol{x},\boldsymbol{y}_{j})\right]\right\} \times \Pi_{\mathcal{S},\varphi}(\boldsymbol{y}_{j})\right), \\ \Pi_{\mathcal{S},\varphi_{1}\wedge\varphi_{2}}(\boldsymbol{x}) = \Pi_{\mathcal{S},\varphi_{1}}(\boldsymbol{x}) \cup \Pi_{\mathcal{S},\varphi_{2}}(\boldsymbol{x}), & \Pi_{\mathcal{S},[\Gamma]\backslash \mathcal{X}\varphi}(\boldsymbol{x}) = \sum_{i=1}^{|Ind_{\Gamma}|} \left(\frac{|Ind_{\Gamma}|}{|Ind_{\Gamma}|} \left\{\left[C_{\Sigma_{1}^{i}\cup\Sigma_{T}^{j}}(\boldsymbol{x},\boldsymbol{y}_{i})\right]\right\}\right) \times \Pi_{\mathcal{S},\varphi}(\boldsymbol{y}_{i}). \end{array}$$

Two-agent Aircraft Collision Avoidance

- Two agents, ownship and intruder, each equipped with a collision avoidance system producing vertical climbrate advisories to the pilot (perception unit).
- Given an advisory, the pilot chooses the acceleration from an appropriate interval (action selection unit).
- The goal is to avoid a near mid-air collision (NMAC): when the ownship and intruder are separated by less than 100ft vertically and 500ft horizontally.

h: Vertical separation (ft).

 \dot{h}_{own} : Ownship vertical climbrate (ft/s).

 $\dot{h}_{\rm int}$: Intruder vertical climbrate (ft/s).

au: Time to loss of horizontal separation (s).

ad_{own}: Previous advisory

issued to the ownship. ad_{int} : Previous advisory

issued to the intruder.

Two-agent Aircraft Collision Avoidance

• $\varphi = \langle \langle ag \rangle \rangle X^k(\text{safe})$ (the ownship has a strategy to enter a safe configuration after k time steps)

•
$$I = [h_I - 2, h_I + 2] \times \{-5.0\} \times \{5.0\} \times \{25\} \times \{COC\} \times \{COC\}$$

	Parallel			Monolithic		
h_I	95	100	105	95	100	105
$arphi^1$	2.636s	2.698s	3.042s	0.253s	0.212s	83.93s
φ^2	9.602s	17.66s	24.04s	84.45s	47.65s	_
φ^3	414.1s	384.7s	393.9s	-	-	-

Conclusions and Future Work

- Significant progress in the formal verification for AI
- Scalability remains an issue
- Focus mostly on a limited repertoire of specifications
- Robust training and neuro-symbolic learning
- Verification for unbounded systems of neuro-symbolic agents