Semestrální	zkouška	ISS 1	opravný term	in 24 1 2017	skunina R
Semestrann	zkouska	199, 1	opravny term	111, 44 .1.4017,	, skupina D

Login: Příjmení a jméno: Podpis: (čitelně!)

Příklad 1 Nakreslete periodický signál se spojitým časem se základní kruhovou frekvencí $\omega_1 = 100\pi \text{ rad/s}$ a koeficienty Fourierovy řady: $c_1 = 5e^{j\frac{\pi}{2}}, \quad c_{-1} = 5e^{-j\frac{\pi}{2}}, \quad c_{10} = 0.5, \quad c_{-10} = 0.5$

Příklad 2 Signál se spojitým časem je posunutý Diracův impuls $x(t) = \delta(t-4)$. Nakreslete jeho spektrální funkci (průběh modulu i argumentu).

Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem:
$$y(t) = x_1(t) \star x_2(t)$$
. $x_1(t) = \begin{cases} 1 & \text{pro } 0 \leq t \leq 2 \\ 0 & \text{jinde} \end{cases}$ $x_2(t) = \begin{cases} -1 & \text{pro } 0 \leq t \leq 1 \\ 0 & \text{jinde} \end{cases}$

Označte prosím pečlivě hodnoty na obou osách.

Příklad 4 Hodnota spektrální funkce signálu x(t) na kruhové frekvenci $\omega = 45\pi \text{ rad/s je } X(j45\pi) = 1+j$. Určete, jaká bude hodnota spektrální funkce $Y(j45\pi)$ pro signál vzniklý zpožděním: y(t) = x(t-0.5)

 $Y(j45\pi) = \dots$

 $\mathbf{P\check{r}\acute{k}lad}$ 5 Vzorkovací frekvence je $F_s=16$ kHz. Vstupní signál je cosinusovka na frekvenci 7 kHz. Tento signál je ideálně vzorkován a ideálně rekontruován. Není použit anti-aliasingový filtr. Určete typ (např. cosinusovka, pravoúhlý, stejnosměrný, ...) a frekvenci signálu na výstupu.

Příklad 7 Systém se spojitým časem má stejnou přenosovou funkci, jako v příkladu 6, tedy $H(s) = \frac{s}{s+1}$. Určete hodnotu jeho kmitočtové charakteristiky $H(j\omega)$ na zadané kruhové frekvenci. Nezpomeňte na to, že se bude pravděpodobně jednat o komplexní číslo. Stačí počítat na jednu platnou cifru. Pokud vyjde jedna složka komplexního čísla podstatně menší než ta druhá, zanedbejte ji.

$$H(j1000\pi) = \dots$$

Příklad 8 Do kvantizéru vstupují vzorky x[n]. Kvantizér se ale zasekl a pro všechny vstupní vzorky produkuje tu samou výstupní hodnotu: nulu. $x_q[n] = 0$. Určete poměr signálu k šumu (SNR) v deciBellech (dB) takového kvantizéru.

Příklad 9 Vypočtěte a do tabulky zapište kruhovou konvoluci dvou signálů s diskrétním časem o délce N=4:

n	0	1	2	3
$x_1[n]$	4	3	1	2
$x_2[n]$	1	-1	0	0
$x_1[n] \otimes x_2[n]$				

Příklad 10 Dokažte, že Fourierova transformace s diskrétním časem (DTFT) je periodická s periodou 2π rad, tedy že $\tilde{X}(e^{j\omega}) = \tilde{X}(e^{j(\omega+k2\pi)})$, kde k je libovolné celé číslo.

Příklad 11 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: $x[n]{=}4\,$ 2 3 4 5 0 0 0.

Vypočtěte zadaný koeficient jeho diskrétní Fourierovy transformace (DFT) X[k].

$$X[4] = \dots$$

Příklad 12 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: x[n]=1 –1 0 0 0 0 0 0. Známe hodnotu koeficientu jeho diskrétní Fourierovy transformace (DFT): X[2]=1+j. Určete hodnotu koeficientu DFT Y[2] signálu y[n], který je kruhově posunutou verzí signálu x[n]: y[n]=-1 0 0 0 0 0 1.

$$Y[2] = \dots$$

Příklad 13 Diskrétní signál x[n] má délku N vzorků, N je sudé. Ukládáme pouze hodnoty $X[0] \dots X[\frac{N}{2}]$. Kolik na to potřebujeme proměnných typu float, když na uložení jednoho reálného čísla je potřeba jeden float a na uložení jednoho komplexního čísla dva floaty?

Příklad 14 Přenosová funkce číslicového filtru je $H(z) = \frac{1}{1+1.6z^{-1}+0.64z^{-2}}$. Určete, zda je filtr stabilní, a vysvětlete proč.

Příklad 15 Na obrázku je průběh modulu frekvenční charakteristiky číslicového filtru pro normované kruhové frekvence $\omega \in [0, \pi]$ rad. Nakreslete přibližné rozložení nulových bodů a pólů tohoto filtru.

Příklad 16 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

ω	1	2	3	4	5	6	7	8	9	10
$\xi_{\omega}[7]$	67.1	-120.7	71.7	163.0	48.8	103.4	72.6	-30.3	29.3	-78.7

Proveďte souborový odhad funkce hustoty rozdělení pravděpodobnosti p(x,7) a nakreslete ji.

Příklad 17 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: x[n]=1 2 3 4 5 0 0 0.

Proveďte nevychýlený odhad zadaného korelačního koeficientu R[k].

$$R[3] = \dots$$

Příklad 18 Na Ω = 4000 realizacích náhodného procesu byla naměřena tabulka (sdružený histogram) hodnot mezi časy n_1 a n_2 . Spočítejte korelační koeficient $R[n_1, n_2]$. Pomůcka: Jako reprezentativní hodnoty x_1 a x_2 při numerickém výpočtu integrálu $R[n_1, n_2] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 p(x_1, x_2, n_1, n_2) dx_1 dx_2$ použijte středy intervalů v tabulce.

intervaly	intervaly x_2						
x_1	[-4, -2]	[-2, 0]	[0, 2]	[2, 4]			
[2, 4]	0	0	0	0			
[0, 2]	0	1000	0	0			
[-2, 0]	0	0	1000	0			
[-4, -2]	0	0	0	2000			

 $R[n_1, n_2] = \dots$

Příklad 19 Jaké musí být vzorky náhodného signálu, abychom ho mohli považovat za bílý šum?

Příklad 20 Spektrální hustota výkonu náhodného signálu má na normované kruhové frekvenci $\omega = 0.2\pi$ rad hodnotu $G_x(e^{j0.2\pi}) = 5$. Signál prochází číslicovým filtrem, který má na této frekvenci hodnotu frekvenční charakteristiky $H(e^{j0.2\pi}) = \sqrt{2}e^{-j\frac{\pi}{4}}$.

Určete spektrální hustotu výkonu výstupního signálu na téže frekvenci.

$$G_y(e^{j0.2\pi}) = \dots$$