THE COMBINATORIAL PART OF THE COHOMOLOGY OF A SINGULAR VARIETY

DONU ARAPURA, PARSA BAKHTARY, AND JAROSŁAW WŁODARCZYK

ABSTRACT. We study the first step of the weight filtration on the cohomology of a proper complex algebraic variety, which we call the combinatorial part. We obtain a natural upper bound on its size, which gives rather strong information about the topology of rational singularities.

Given a possibly reducible complex algebraic variety X, we define the *combinatorial part* of the compactly supported cohomology to a subspace $KH_c^i(X) \subseteq H_c^i(X,\mathbb{Z})$ characterized by the following axioms:

- (K1) These subspaces are preserved by proper pullbacks.
- (K2) If X is smooth and complete, $KH_c^0(X) = H_c^0(X)$ and $KH_c^i(X) = 0$ for i > 0.
- (K3) If $U \subseteq X$ is an open immersion and Z = X U, then the standard exact sequence

$$\dots H_c^{i-1}(Z) \to H_c^i(U) \to H_c^i(X) \to \dots$$

restricts to an exact sequence

$$\dots KH_c^{i-1}(Z) \to KH_c^i(U) \to KH_c^i(X) \to \dots$$

The proof of uniqueness, when X is complete, given below is a simple induction. Existence will follow by identifying $KH_c^i(X)$ with the first step of the weight filtration $W_0H_c^i(X)$ of Deligne [D] and Gillet-Soulé [GS]. It will be both convenient and necessary to review the basic construction which gives a method for calculating this in terms of the underlying combinatorics of a simplicial resolution. In simple cases, such as when X has simple normal crossing singularities, this can be made quite explicit. We note that in this paper varieties are reduced schemes of finite type over \mathbb{C} . We can extend this an arbitrary complex scheme of finite type X, by defining $KH_c^i(X) = KH_c^i(X_{red})$.

Work of Stepanov [S] and the second author [B] suggested a certain natural bound on the dimension of the combinatorial part of cohomology of the exceptional divisor of a singularity. The main purpose of this note is to verify this in a refined form. Given a proper map of varieties $f: X \to Y$, we show that $\dim KH^i(f^{-1}(y))$ is bounded above by $\dim(R^if_*\mathcal{O}_X)_y \otimes \mathcal{O}_y/m_y$. In particular, in accordance with a conjecture of Stepanov, the first space vanishes for a resolution of a rational singularity.

1. Uniqueness for complete varieties

As a warm up, we prove the uniqueness statement for complete varieties. For this it is convenient to replace (K3) by (K3') below.

First and third author partially supported by NSF.

Lemma 1.1. Assume that KH_c^i satisfies the axioms (K1)-(K3). Given a complete variety X with closed set S and a desingularization $f: \tilde{X} \to X$ which is an isomorphism over X - S. Let $E = f^{-1}(S)$.

(K3') Then there is an exact sequence

$$\ldots \to KH^{i-1}(E) \to KH^i(X) \to KH^i(\tilde{X}) \oplus KH^i(S) \to \ldots$$

Proof. This follows from diagram chase on

Remark 1.2. In general, by the same argument we get a sequence

$$\ldots \to KH_c^{i-1}(E) \to KH_c^i(X) \to KH_c^i(\tilde{X}) \oplus KH_c^i(S) \to \ldots$$

Lemma 1.3. Assume that KH^i satisfies the axioms (K1), (K2) and (K3'). Given a complete variety X with a closed set S and a desingularization $f: \tilde{X} \to X$ which is an isomorphism over X - S. Let $\tilde{S} \to S$ be a desingularization of S and $F = \tilde{S} \times_X \tilde{X}$. Then there is an exact sequence

$$\dots \to KH^{i-1}(F) \to KH^i(X) \to KH^i(\tilde{X}) \oplus KH^i(\tilde{S}) \to \dots$$

Proof. Consider the diagram

where the maps labelled p are projections, γ is the graph of the composition $\tilde{S} \to S \to X$, and $\tilde{F} = \tilde{S} \times_{X \times \tilde{S}} (\tilde{X} \times \tilde{S})$. The lefthand square containing f and id_s is easily seen to be Cartesian. Therefore f gives an isomorphism $\tilde{F} \cong F$. Thus from the previous lemma, we obtain an exact sequence

$$\ldots \to KH^{i-1}(F) \to KH^i(X \times S) \to KH^i(\tilde{X} \times S) \oplus KH^i(\tilde{S}) \to \ldots$$

Choose base points $s_1, \ldots s_N$ in each connected component of S, Define $\sigma = \frac{1}{N} \sum_{i} (id \times s_i) * : H^i(X \times S) \to H^i(X)$. This gives a left inverse to p^* . Then

a diagram chase using

shows that the bottom row is exact.

Theorem 1.4. There is at most one collection of subspaces $KH^i(X) \subseteq H^i(X,\mathbb{Z})$, with X complete, satisfying axioms (K1), (K2) and (K3').

Proof. We prove this by induction on i. First we check that $KH^0(X) = H^0(X)$. We can assume that X is connected. If $p \in X$, then

$$H^0(X) = H^0(p) = KH^0(p) = KH^0(X)$$

by the axioms.

By lemma 1.3, there is an exact sequence

$$KH^{i-1}(F)\to KH^i(X)\to KH^i(\tilde{X})\oplus KH^i(\tilde{S})=0$$
 So $KH^i(X)=im[KH^{i-1}(F)\to H^i(X)].$ $\hfill\Box$

2. Simplicial resolutions

The general construction is based on simplicial resolutions. We start by recalling some standard material [D, GNPP, PS]. A simplicial object in a category is a diagram

$$\dots X_2 \Longrightarrow X_1 \Longrightarrow X_0$$

with n face maps $\delta_i: X_n \to X_{n-1}$ satisfying the standard relation $\delta_i \delta_j = \delta_{j-1} \delta_i$ for i < j; this would be more accurately called a "strict simplicial" or "semisimplicial" object since we do not insist on degeneracy maps going backwards. The basic example of a simplicial set, i.e. simplicial object in the category of sets, is given by taking X_n to be the set of n-simplices of a simplicial complex on an ordered set of vertices. Let Δ^n be the standard n-simplex with faces $\delta_i': \Delta^{n-1} \to \Delta^n$. Given a simplicial set or more generally a simplicial topological space, we can glue the $X_n \times \Delta^n$ together by identifying $(\delta_i x, y) \sim (x, \delta_i' y)$. This leads to a topological space $|X_{\bullet}|$ called the geometric realization, which generalizes the usual construction of the topological space associated a simplicial complex.

Given a simplicial space, filtering $|X_{\bullet}|$ by skeleta $\bigcup_{n\leq N}X_n\times\Delta^n/\sim$ yields the spectral sequence

(1)
$$E_1^{pq} = H^q(X_p, A) \Rightarrow H^{p+q}(|X_{\bullet}|, A)$$

for any abelian group A. It is convenient to extend this. A simplicial sheaf on X_{\bullet} is a collection of sheaves \mathcal{F}_n on X_n with "coface" maps $\delta_i^* \mathcal{F}_{n-1} \to \mathcal{F}_n$ satisfying the face relations. For example, the constant sheaves $\mathbb{Z}_{X_{\bullet}}$ with identities for coface maps forms a simplicial sheaf. If X_{\bullet} is a simplicial object in the category of complex manifolds, then $\Omega_{X_{\bullet}}^i$ with the obvious maps, forms a simplicial sheaf. We can define cohomology by setting

$$H^i(X_{\bullet}, \mathcal{F}_{\bullet}) = Ext^i(\mathbb{Z}_{X_{\bullet}}, \mathcal{F}_{\bullet})$$

This generalizes sheaf cohomology in the usual sense, and it can be extended to the case where $\mathcal{F}_{\bullet}^{\bullet}$ is a bounded below complex of simplicial sheaves by using a hyper Ext. When $\mathcal{F} = A$ is constant, this coincides with $H^{i}(|X_{\bullet}|, A)$. But in general the meaning is more elusive. There is a spectral sequence

(2)
$$E_1^{pq}(\mathcal{F}_{\bullet}^{\bullet}) = H^q(X_p, \mathcal{F}_p^{\bullet}) \Rightarrow H^{p+q}(X_{\bullet}, \mathcal{F}_{\bullet}^{\bullet})$$

generalizing (1). Filtering \mathcal{F}^{\bullet} by the "stupid filtration" $\mathcal{F}^{\geq n}_{\bullet}$ yields a different spectral sequence

(3)
$${}'E_1^{pq} = H^q(X_{\bullet}, \mathcal{F}_{\bullet}^p) \Rightarrow H^{p+q}(X_{\bullet}, \mathcal{F}_{\bullet}^{\bullet})$$

Theorem 2.1 (Deligne). If X_{\bullet} is a simplicial object in the category of compact Kähler manifolds and holomorphic maps. The spectral sequence (1) degenerates at E_2 when $A = \mathbb{Q}$.

Remark 2.2. The theorem follows from a more general result in [D, 8.1.9]. However the argument is very complicated. Fortunately, as pointed out in [DGMS], this special case follows easily from the $\partial \bar{\partial}$ -lemma. Here we give a more complete argument.

Proof. It is enough to prove this after tensoring with \mathbb{C} . We can realize the spectral sequence as coming from the double $(E^{\bullet}(X_{\bullet}), d, \pm \delta)$, where (E^{\bullet}, d) is the C^{∞} de Rham complex, and δ is the combinatorial differential. (We are mostly going to ignore sign issues since they are not relevant here.) In fact this is a triple complex, since each $E^{\bullet}(-)$ is the total complex of the double complex $(E^{\bullet \bullet}(-), \partial, \bar{\partial})$.

Given a class $[\alpha] \in H^i(X_j)$ lying in the kernel of δ , we have $\delta \alpha = d\beta$ for some $\beta \in E^{i-1}(X_{j+1})$ Then $d_2([\alpha])$ is represented by $\delta \beta \in E^{i-1}(X_{j+2})$. We will show this vanishes in cohomology. The ambiguity in the choice of β will turn out to be the key point.

By the Hodge decomposition, we can assume that α is pure of type (p,q). Therefore $\delta\alpha$ is also pure of this type. We can now apply the $\partial\bar{\partial}$ -lemma [GH, p 149] to write $\alpha = \partial\bar{\partial}\gamma$ where $\gamma \in E^{p-1,q-1}(X_{j+1})$. This means we have two choices for β . Taking $\beta = \bar{\partial}\gamma$ shows that $d_2([\alpha])$ is represented by a form of pure type (p-1,q). On the other hand, taking $\beta = -\partial\gamma$ shows that this class is of type (p,q-1). Thus $d_2([\alpha]) \in H^{p-1,q} \cap H^{p,q-1} = 0$.

By what we just proved $\delta \alpha = d\beta$, $\delta \beta = d\eta$, and $\delta \eta$ represents $d_3([\alpha])$. It should be clear that one can kill this and higher differentials in the exact same way.

Corollary 2.3. With the same assumptions as the theorem, the spectral sequence (2) degenerates at E_2 when $\mathcal{F} = \mathcal{O}_{X_{\bullet}}$.

(This fixes an incorrect proof in [S, 2.4].)

Proof. By the Hodge theorem, the spectral sequence for $\mathcal{F} = \mathcal{O}_{X_{\bullet}}$ is a direct summand of the spectral sequence for $\mathcal{F} = \mathbb{C}$.

Theorem 2.4 (Deligne). Given any (possibly reducible) variety X, there exists a smooth simplicial variety X_{\bullet} , which we call a simplicial resolution, with proper morphisms $\pi_{\bullet}: X_{\bullet} \to X$ (commuting with face maps) inducing a homotopy equivalence between $|X_{\bullet}|$ and X. Given a morphism $f: X \to Y$ there exists simplicial resolutions X_{\bullet}, Y_{\bullet} and a morphism $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ compatible with f.

The theorem is a consequence of resolution of singularities. Proofs can be found in [D, GNPP, PS]. Note that the original construction of Deligne results in a necessarily infinite diagram, whereas the method of Guillen et. al yields a fairly economical resolution. Here are some examples.

Example 2.5. Suppose that X is an analytic space, whose irreducible components X^i are compact Kähler, and suppose that their intersections $X^{ij\cdots} = X^i \cap X^j \dots$ are all smooth. This includes the case of a divisor with simple normal crossings. Then an explicit simplicial resolution is given by taking X_i to be the disjoint union of (i+1)-fold intersection of components of X. The face map δ_k is given by inclusions

$$X^{i_1...i_n} \subset X^{i_i...\hat{i}_k...i_n} (i_1 < ... < i_k)$$

Remark 2.6. The above construction makes perfect sense for general X, and it yields a (generally singular) simplicial variety X_{\bullet} with $|X_{\bullet}|$ homotopic to X. X_{\bullet} will always be dominated by a simplicial resolution.

Example 2.7. Following the method of [GNPP] we can construct a simplicial resolution of a variety X with isolated singularities as follows. Let $f: \tilde{X} \to X$ be a resolution of singularities such that the exceptional divisor $E = \cup E^i$ is a divisor with simple normal crossings. Write $E^{ij} = E^i \cap E^j$ and $E_n = \coprod E^{i_0 \dots i_n}$. Let $S_0 \subset X$ be set of singular points, $S_1 \subseteq S_0$ be the set of images of $\cup E^{ij}$ and so on. Then the simplicial resolution is given by

$$\dots E_1 \sqcup S_2 \Longrightarrow E_0 \sqcup S_1 \Longrightarrow \tilde{X} \sqcup S_0$$

where the face maps are given by inclusions $S_i \to S_{i-1}$ on the second component. On the first component δ_k is given by

$$\begin{cases} E^{i_1...i_n} \subset E^{i_i...\hat{i}_k...i_n} & \text{if } k \leq n \\ f: E^{i_1...i_n} \to S_{n-1} & \text{if } k = n+1 \end{cases}$$

Given a simplicial resolution, the spectral sequence (1) will then converge to $H^*(X, A)$. More generally for any sheaf, there is an isomorphism

$$H^i(X,\mathcal{F}) \cong H^i(X_{\bullet}, \pi_{\bullet}^*\mathcal{F})$$

for any sheaf $\mathcal F$ on X. The last property goes by the name of cohomological descent. Given a closed subvariety $\iota:Z\subset X$, there exists simplicial resolutions $Z_\bullet\to Z$, $X_\bullet\to X$ and a morphism $\iota_\bullet:Z_\bullet\to X_\bullet$ covering ι . Then there is a new smooth simplicial variety $cone(\iota_\bullet)$ ([D, §6.3], [GNPP, IV §1.7]) whose geometric realization is homotopy equivalent to X/Z. So that the spectral sequence (1) converges to $H_c^*(X-Z,A)$. Although simplicial resolutions are far from unique, the filtration on $H_c^*(X-Z,A)$ is the weight filtration W [GS], and this is canonically determined by X-Z alone. When $A=\mathbb Q$, this part of the datum of the canonical mixed structure.

Let X be a proper variety with a possibly empty closed set Z. Let U = X - Z. Choose a simplicial resolution $C_{\bullet} = Cone(Z_{\bullet} \to X_{\bullet})$ as above. By convention W is an increasing filtration indexed so that

$$W_q H_c^{p+q}(U)/W_{q-1} = E_{\infty}^{pq} \ (\cong E_2^{pq} \text{ over } \mathbb{Q})$$

In particular, $W_{-1} = 0$. The part of interest W_0 , can be computed as follows. We can form a simplicial set by applying the connected component functor π_0 to C_{\bullet} .

This simplicial set $|\pi_0(C_{\bullet})|$ is called the dual complex or nerve of the simplicial resolution. We have

$$W_0H_c^i(U,\mathbb{Q}) \cong H^i(\ldots \to H^0(C_p,\mathbb{Q}) \to H^0(C_{p+1},\mathbb{Q})\ldots) \cong H^i(|\pi_0(C_{\bullet})|,\mathbb{Q})$$

For integer coefficients, $W_0H^i(U,\mathbb{Z}) = \pi^*H^i(|\pi_0(C_{\bullet})|,\mathbb{Z})$ where $\pi: C_{\bullet} \to \pi_0(C_{\bullet})$ is the constant map on components. So that this piece of the filtration is determined by the underlying combinatorial information encoded by the dual complex.

Theorem 2.8. There is a collection of subspaces $KH_c^i(X) \subseteq H_c^i(X, \mathbb{Z})$ satisfying axioms (K1)-(K3) given in the introduction. Moreover, it is uniquely characterized by axioms.

Proof. For existence, we note that $KH_c^i(X) = W_0H_c^i(X)$ satisfies these axioms by [GS, §3.1]. (For rational coefficients, this goes back to [D].)

So it remains to check uniqueness. We already checked this when X is complete. The nonsingular case follows from this. If X is nonsingular, we can choose a nonsingular compactification \bar{X} . Then from the axioms, we get $KH_c^i(X) = im[KH^{i-1}(\bar{X}-X)]$. Then the general case now follows from the main theorem of [GN] together with remark 1.2.

From the formula $K = W_0$, we can deduce further properties.

Corollary 2.9.
$$KH_c^i(X \times Y) = \bigoplus_{j+k=i} KH_c^j(X) \otimes KH_c^k(Y)$$

Proof. [GS, thm 3]. \Box

Corollary 2.10. Let $\pi: \tilde{X} \to X$ be a resolution of a complete variety such that the exceptional divisor E has normal crossings. Let $S = \pi(E) \subset X$. Then $\dim KH^i(X)$ is the (i-1)st Betti number b_{i-1} of the dual complex of E when $i > 2\dim(S) + 1$. If S is nonsingular, then this holds for i > 1. When $i = 2\dim(S) + 1$, $\dim KH^i(X) = b_{i-1}$ minus the number of irreducible components of S of maximum dimension.

Proof. This follows from lemma 1.1, the identification of $KH^i(E) = W_0H^i(E)$ and the above remarks.

When X is a divisor with simple normal crossings, $KH_c^i(X)$ is the cohomology of the dual complex. As remarked earlier 2.6, we can use a construction to a build a simplicial variety canonically attached to X, for any X. If we apply π_0 to this simplicial variety, we get a simplicial set Σ_X canonically attached to X, that we will call the nerve or dual complex. There is a canonical map $H^i(|\Sigma_X|, \mathbb{Q}) \to H^i(X, \mathbb{Q})$ coming from the spectral sequence (1) associated to this simplicial variety. From the discussion in 2.5 and 2.6, we can see that:

Lemma 2.11. If X is complete, the image $H^i(|\Sigma_X|, \mathbb{Q}) \to H^i(X, \mathbb{Q})$ lies in $KH^i(X, \mathbb{Q})$. If X satisfies the assumptions of example 2.5, then these subspaces coincide.

3. Bounds on the combinatorial part

Suppose that X is a complete variety. Then in addition to the weight filtration $H^i(X,\mathbb{C})$ carries a second filtration, called the Hodge filtration induced on the abutment $H^i(X,\Omega_{X_{\bullet}}^{\bullet})\cong H^i(X,\mathbb{C})$ of the spectral sequence (3) for $\Omega_{X_{\bullet}}^{\bullet}$. By convention F is decreasing. We have $F^0=H^i(X,\mathbb{C})$ and

$$F^0H^i(X,\mathbb{C})/F^1 \cong H^i(X_{\bullet},\mathcal{O}_{X_{\bullet}})$$

W induces the same filtration on the right as the one coming from (2). In particular,

$$W_0Gr_F^0H^i(X,\mathbb{C}) = H^i(\ldots \to H^0(X_p,\mathcal{O}) \to H^0(X_{p+1},\mathcal{O})\ldots)$$

$$\cong H^i(|\pi_0(X_\bullet)|,\mathbb{C}) \cong W_0H^i(X,\mathbb{C})$$

This means that Hodge filtrations becomes trivial on $W_0H^i(X)$. So that this is a vector space and nothing more.

Theorem 3.1.

- (a) If X is a complete variety, then there is an inclusion $KH^i(X,\mathbb{C}) \hookrightarrow H^i(X,\mathcal{O}_X)$.
- (b) If $f: X \to Y$ a proper morphism of varieties, then there is an inclusion $KH^i(f^{-1}(y), \mathbb{C}) \hookrightarrow (R^i f_* \mathcal{O}_X)_y \otimes \mathcal{O}_y/m_y$ for each $y \in Y$.

Proof. The canonical map κ factors

Thus

$$W_0H^i(X,\mathbb{C}) \subseteq Gr_F^0H^i(X,\mathbb{C}) = im[H^i(X,\mathbb{C}) \to H^i(X,\mathcal{O}_X)]$$

which implies (a).

For (b), let X_y be the reduced fibre over y, and $X_y^{(n)}$ the fibre with its nth infinitesimal structure. From (a), we have a natural inclusion $s: W_0H^i(X_y, \mathbb{C}) \hookrightarrow H^i(X_y, \mathcal{O}_{X_y})$. After choosing a simplicial resolution of the fibre $f_{\bullet}: \mathcal{X}_{\bullet} \to X_y$, s can be identified with the composition

$$E_2^{i0}(\mathbb{C}) \to E_2^{i0}(\mathcal{O}_{X_{\bullet}}) \to H^i(X_y, \mathcal{O}_{X_y})$$

where the first map is induced by the natural map $\mathbb{C} \to \mathcal{O}$, and the last map is the edge homomorphism. Applying the same construction to the simplicial sheaf $f_{\bullet}^*\mathcal{O}_{X_{\cdot}^{(n)}}$ yields a map s_n fitting into a commutative diagram

$$W_0H^i(X,\mathbb{C}) \xrightarrow{s} H^i(X_y,\mathcal{O}_{X_y})$$

$$H^i(X_y,\mathcal{O}_{X_y^{(n)}})$$

Furthermore, these maps are compatible, thus they pass to map s_{∞} to the limit. Together with the formal functions theorem [H, III 11.1], this yields a commutative diagram

$$W_0H^i(X,\mathbb{C}) \xrightarrow{s} H^i(X_y,\mathcal{O}_{X_y})$$

$$\downarrow^{s_\infty} \qquad \qquad \downarrow^{s_\infty} \qquad \qquad \downarrow^{s}$$

$$\varprojlim H^i(X_y,\mathcal{O}_{X_y^{(n)}}) \xrightarrow{\sim} (R^if_*\mathcal{O}_X)_y \xrightarrow{\sim} (R^if_*\mathcal{O}_X)_y \otimes \mathcal{O}_y/m_y$$

Since s is injective, the map labeled s' is injective as well.

Remark 3.2. In item (a), we actually proved the sharper statement

$$W_0H^i(X,\mathbb{C}) \hookrightarrow Gr_F^0H^i(X,\mathbb{C}) = im[H^i(X,\mathbb{C}) \to H^i(X,\mathcal{O}_X)]$$

For certain classes of singularities called Du Bois singularities [PS, §7.3.3], which include rational singularities [K], $Gr_F^0H^i(X,\mathbb{C}) = H^i(X,\mathcal{O}_X)$. But this is not true in general.

Corollary 3.3. Suppose that $f: X \to Y$ is a resolution of singularities.

- (1) If Y has rational singularities then $W_0H^i(f^{-1}(y),\mathbb{C})=0$ for i>0.
- (2) If Y has isolated normal Cohen-Macaulay singularities, $W_0H^i(f^{-1}(y),\mathbb{C}) = 0$ for $0 < i < \dim Y 1$

Proof. The first statement is an immediate consequence of the theorem. The second follows from the well known fact given below. We sketch the proof for lack of a suitable reference.

Proposition 3.4. If $f: X \to Y$ is a resolution of a variety with isolated normal Cohen-Macaulay singularities, then $R^i f_* \mathcal{O}_X = 0$ for $0 < i < \dim Y - 1$

Sketch. We can assume that Y is projective. By the Kawamata-Viehweg vanishing theorem $[\mathrm{Ka},\,\mathrm{V}]$

(4)
$$H^{i}(X, f^{*}L^{-1}) = 0, \quad i < \dim Y = n,$$

where L is ample. Replace L by L^N , with $N \gg 0$. Then by Serre vanishing and Serre duality (we use the CM hypothesis here)

(5)
$$H^{i}(Y, L^{-1}) = H^{n-i}(Y, \omega_{Y} \otimes L) = 0, \quad i < n.$$

The Leray spectral sequence together with (4) and (5) imply

$$H^0(R^i f_* \mathcal{O}_X \otimes L^{-1}) = 0, \quad i < n - 1$$

Since the sheaves $R^i f_* \mathcal{O}_X$ have zero dimensional support, the proposition follows.

References

- [B] P. Bakhtary, On the cohomology of a simple normal crossings divisor, preprint
- [D] P. Deligne, Théorie de Hodge II, III, Inst. Hautes tudes Sci. Publ. Math 40, 44 (1971,1974)
- [DGMS] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975)
- [GS] H. Gillet, C. Soulé, Descent, motives and K-theory, Crelles J. 478, (1996)
- [GH] P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley (1978)
- [GNPP] F. Guillen, V. Navarro Aznar, P. Pascual Gainza, F. Puerta, Hyperrésolutions cubiques et descent cohomologique, LNM 1335, Springer-Verlag (1988)
- [GN] F. Guillen, V. Navarro Aznar, Un Critére d'extension des foncteurs définis sur les schémas lisses Publ. Math. Inst. Hautes tudes Sci. No. 95 (2002)
- [H] R. Hartshorne, Algebraic Geometry, Springer-Verlag (1977)
- [Ka] Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem. Math. Ann 261 (1982)
- [K] S. Kovacs, Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink. Compositio 118 (1999)
- [PS] C. Peters, J. Steenbrink, Mixed Hodge structures, Springer-Verlag (2008)
- [S] D. Stepanov, A note on rational and hypersurface singularities, Proc. AMS 136 (2008)
- [V] E. Viehweg, Vanishing theorems. J. Reine Angew. Math. 335 (1982)

THE COMBINATORIAL PART OF THE COHOMOLOGY OF A SINGULAR VARIETY 9

Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.