- 1 \rightarrow Qual è la definizione di azione sinistra? \rightarrow Dato un gruppo G e un insieme X definisco azione di X su G un'applicazione $A:G\times X\rightarrow X$ che soddisfa:
 - 1. $A(e, x) = x \ \forall x \in X$
 - 2. $A(g, A(h, x)) = A(gh, x) \ \forall g, h \in G, \ \forall x \in X$

Dico che G AGISCE SU $X, G \cap X$

- 3 \rightarrow Fornisci un esempio di azione su uno spazio vettoriale $V \rightarrow \dot{\mathbf{E}}$ sufficiente prendere $A: G \times V \rightarrow V: (f, v) \mapsto f(v)$
- 3.01 \rightarrow Illustra come S_X agisce su $X \rightarrow$ L'azione è $g \cdot x := g(x)$
- $4 \rightarrow$ Enuncia il lemma di caratterizzazione delle azioni di gruppo come morfismi nel gruppo simmetrico \rightarrow Data un'azione $A: G \times X \rightarrow X: (g, x) \mapsto g \cdot x$, posso definire un morfismo $\alpha: G \rightarrow S_X$ ponendo $\alpha(g)$ la funzione $X \rightarrow X: x \mapsto A(g, x)$. (Cioè quindi $\alpha(g)(x) := A(g, x)$) (da dimostrare che α è ben definita).

Viceversa, dato $\alpha: G \to S_X$ morfismo, posso definire un'azione A come segue: $A(g,x) := \alpha(g)(x)$ (da dimostrare che è un'azione)

- 5 \rightarrow Qual è la definizione di insieme G-invariante? \rightarrow Se $G \curvearrowright X$, un sottoinsieme $Y \subseteq X$ è invariante quando $g \cdot y = y \ \forall y \in Y$
- 6 \rightarrow Quali invarianti puoi trovare per SO(3) $\curvearrowright \mathbb{R}^3$? \rightarrow Le sfere sono G-invarianti
- $7\rightarrow$ Come si comportano i sottogruppi di un gruppo che agisce su un insieme? \rightarrow Agiscono anche loro sullo stesso inseme con la restrizione dell'azione
- 8 \rightarrow Qual è la definizione di G-ORBITA di $x \in X$? $\rightarrow \dot{E}$ $Gx = \{g \cdot x \forall g \in G\}$
- 9 \rightarrow La collezione delle orbite di un'azione come si rapporta all'insieme su cui agisce l'azione? \rightarrow Data $G \curvearrowright X$, le sue orbite formano una partizione di X
- $10 \rightarrow$ Essere in nella sessa orbita è c1:: una relazione d'equivalenza \rightarrow clz
- 11 \rightarrow Qual è la definizione di X/G? $\rightarrow X/G := X/\sim$, con \sim relazione di equivalenza su X di appartenenza alla stessa orbita.
- 12 \rightarrow Qual è la definizione di STABILIZZATORE di $x \in X$? \rightarrow È $G_x := \{g \in G \mid g \cdot x = x\}$
- 13 \rightarrow Come sono in relazione gli stabilizzatori di due elementi sulla stessa orbita? \rightarrow Se x e y sono sulla stessa orbita, allora G_x e G_y sono coniugati.
- 14 \rightarrow Qual è la definizione di azione transitiva? $\rightarrow G \curvearrowright X$ è TRANSITIVA quando $\forall x,y \in X \; \exists g \in G: \; g \cdot x = y \; (\text{cioè ho un'unica orbita}, \; Gx = X)$
- $15 \rightarrow SO(3) \curvearrowright S^2$ è c1::transitiva \rightarrow clz
- 16 \rightarrow Qual è la definizione di spazio omogeneo? \rightarrow Data $G \curvearrowright X$ azione, se è transitiva dico che X è uno SPAZIO OMOGENEO per G
- 17 \rightarrow Esibisci un'azione di un gruppo sul quoziente per un sottogruppo \rightarrow In generale: se $H \leq G, X := G/H$ ho che $G \curvearrowright G/H : g \cdot aH := gaH$
- 18 Qual è la definizione di un G-INSIEME? è un insieme X su cui agisce G
- 19 \rightarrow G/H è sempre c1:: omogeneo \rightarrow clz
- 20 Chi è lo stabilizzatore di un $x \in G/H$? È in generale un coniugato di H
- 21 \rightarrow Qual è la definizione di funzione equivariante? \rightarrow È una $f: X \rightarrow Y$ due G-insiemi t.c. $f(g \cdot x) = g \cdot f(x)$

- 22 \rightarrow Quando due insiemi sono ISOMORFI come G-insiemi? \rightarrow Quando esiste una funzione biunivoca ed equivariante tra loro
- 23 \rightarrow Enuncia il lemma di caratterizzazione degli spazi omogenei $\rightarrow G \curvearrowright X$ transitiva, preso $x_0 \in X$ e posto $H := G_{x_0}$ allora $X \cong G/H$ come G-insieme
- 24 \rightarrow La classe dei G-insiemi è una \rightarrow Categoria, G-insiemi con Obj(G -ins.) = $\{X \text{ insiemi con una fissata } G\text{-azione}\}$ e $\forall X, Y G\text{-ins.}$: Mor $(X, Y) = \{f : X \rightarrow Y \text{ equivarianti}\}$
- 25 \rightarrow Enuncia che relazione collega lo stabilizzatore di un elemento con la sua orbita \rightarrow $Gx \cong G/G_x$ come G-ins.
- 26 \rightarrow Qual è la definizione di punto fisso di un'azione? \rightarrow se $G \curvearrowright X$, un PUNTO FISSO dell'azione è un $x \in X$ t.c $g \cdot x = x \forall g \in G$
- 27 $\rightarrow x$ è un punto fisso \Leftrightarrow c1:: $G_x = G \rightarrow \text{clz}$
- 28 \rightarrow Qual è la definizione di azione fedele? \rightarrow Posto $\alpha: G \rightarrow S_X$ il morfismo associato a $G \curvearrowright X$, dico che l'azione è FEDELE quando α è iniettivo
- 29 \rightarrow Data un'azione $\alpha: G \rightarrow S_X$ generica, costruisci un'azione fedele. \rightarrow Dato che α è un morfismo, $\exists ! \beta: G/\operatorname{Ker}(\alpha) \rightarrow S_X$ iniettivo, che induce quindi un'azione fedele.
- 30 \rightarrow Enuncia una caratterizzazione di azione fedele \rightarrow $G \land X$ è fedele $\Leftrightarrow \forall g \in G \land e \exists x \in X : g \cdot x \neq x$
- 31 \rightarrow È $GL(V) \curvearrowright \mathbb{P}(V)$ effettiva? \rightarrow No perché $f := x \rightarrow \lambda x$ è t.c. $f \neq id_V$ e $\alpha(f) = id_V$
- 32 \rightarrow Se $G \curvearrowright X$ qual è la definizione di punto io di un $g \in G$? $\rightarrow G \curvearrowright X$, dico che $x \in X$ è PUNTO FISSO di $g \in G$ quando $g \cdot x = x$.
- 33 \rightarrow Qual è la definizione di azione libera? $\rightarrow G \curvearrowright X$ è LIBERA quando $\forall g \in G, g \neq e$ vale che g non ha punti fissi
- 34 Enuncia una caratterizzazione di azione fedele $G \curvearrowright X$ è LIBERA $\Leftrightarrow \forall g \in G \setminus e, \forall x \in X: g \cdot x \neq x$
- 35 \rightarrow Qual è la definizione di sistema di rappresentanti? \rightarrow X insieme, \sim relazione di equivalenza su X, dico SISTEMA DI RAPPRESENTANTI un insieme $S \subseteq X$ t.c. $\pi_{|S|} : S \rightarrow X/\sim$ (proiezione canonica) è biettiva.
- 36 \rightarrow Enuncia l'equazione delle orbite $\rightarrow X, G$ finiti, $G \curvearrowright X$, sia $S = x_1, ..., x_k$ un sistema di rappresentanti per la relazione "essere nella stessa orbita", allora $\#X = \sum_{i=1}^k \#G/\#G_{x_i}$
- 37 Enuncia cosa è l'azione per traslazione È l'azione $G \curvearrowright G: g \cdot x := gx$
- 38 \rightarrow Enuncia qual è l'azione per moltiplicazione a destra. \rightarrow È l'azione $G \curvearrowright G : g \cdot x := xg^{-1}$
- 39 \rightarrow Qual è la definizione di azione destra? \rightarrow È una funzione $X \times G \rightarrow X : (x, g) \mapsto x \cdot g$ che verifica $x \cdot e = x$; $(x \cdot g_1) \cdot g_2 = x \cdot (g_1 g_2)$
- 40 \rightarrow Come posso passare da un'azione destra ad un'azione sinistra (o viceversa?) \rightarrow Se $B: X \times G \rightarrow X$ è un'azione destra, allora $A: G \times X \rightarrow X: A(g,x) := B(x,g^{-1})$ è un'azione sinistra
- 41 \rightarrow Enuncia qual è l'azione di $G \curvearrowright G$ per coniugio \rightarrow È l'azione $G \curvearrowright G: g \cdot x := gxg^{-1}$

- 42 \rightarrow Qual è la definizione di automorfismo interno? \rightarrow È un morfismo della forma: dato inn_q: $G \rightarrow G: x \mapsto gxg^{-1}$ per un certo $g \in G$
- 43 \rightarrow Qual è il morfismo associato all'azione $G \curvearrowright G$ per coniugio? \rightarrow È $\alpha: G \rightarrow S_G: \alpha(g) = \text{inn}_g$
- 44 \rightarrow È l'azione per coniugio $G \curvearrowright G$ libera? \rightarrow No: $\operatorname{inn}_g(e) = e \forall g, e \text{ è un punto fisso}$ dell'azione
- 45 \rightarrow Qual è la definizione di X^G se $G \cap X$? $\rightarrow X^G := \text{Fix}_G(X) := \{x \in X \mid \forall g : g \cdot x = x\}$
- $46 \rightarrow \text{Se } G \curvearrowright G$ per coniugio, chi è $\text{Fix}_G(G)$? $\rightarrow \text{Fix}_G(G) = Z(G)$ il centro di G
- 47 \rightarrow Se $G \curvearrowright G$ per coniugio, chi è G_x ? $\rightarrow G_x = Z_G(x)$ il centralizzante di x
- 48 \rightarrow Enuncia l'EQUAZIONE DELLE CLASSI \rightarrow È $|G| = |Z(G)| + \sum_{i=1}^{m} [G: Z_G(x_i)]$ se $x_1, ..., x_k$ è un sistema di rappresentanti della relazione delle orbite, con $x_1, ..., x_m \notin Z(G)$
- 49 Qual è la definizione di p-gruppo? È un gruppo G con $o(G) = p^{\alpha}$, p primo e $\alpha \in \mathbb{N}^{>0}$
- 50 \rightarrow Com'è il centralizzante di un p gruppo? \rightarrow È banale, $Z(G) = \{1\}$
- 51 \rightarrow Puoi estendere un'azione su un insieme al suo insieme delle parti? \rightarrow Sì, è facile vedere che se $G \curvearrowright X$, allora si ha anche che $G \curvearrowright \mathcal{P}(X)$: $g \cdot E := \{g \cdot x \mid x \in E\} (= \alpha(g)(E))$
- 52 \rightarrow Come puoi far agire un gruppo G sull'insieme dei suoi sottogruppi? \rightarrow Sapendo che $G \curvearrowright \mathcal{P}(G)$ per coniugio, ho che $\mathcal{S}(G) := \{\text{sottogruppi di}G\}$ è un insieme invariante. Allora posso restringere l'azione sopra $g \cdot H := gHg^{-1}$
- 53 \rightarrow Presa l'azione $G \curvearrowright S(G)$ per coniugio, e $H \in S(G)$, chi è G_H ? \rightarrow È il NORMALIZZANTE di H in G
- 54 \rightarrow Presa l'azione $G \curvearrowright S(G)$ per coniugio dai una caratterizzazione dell'orbita di $H < G \rightarrow GH = \{\text{coniugati di } H\}, |GH| = |G|/|G_H| = \#\text{CONIUGATI DI } H = |G|/N_G(H)$
- 55 \rightarrow che relazione c'è tra un sottogruppo H < G e il suo normalizzante? $\rightarrow H \triangleleft N_G(H)$ e $H \triangleleft G \Leftrightarrow N_G(H) = G$
- 56 \rightarrow Come puoi descrivere euristicamente il normalizzante di un sottogruppo H < G? \rightarrow È il "più grande sottogruppo di G in cui H è normale", cioè se H' < G, $H \subseteq H', H \triangleleft H' \Rightarrow H' \subseteq N_G(H)$
- 57 \rightarrow Che rapporto c'è tra il centro di un elemento $x \in G$ ed il normalizzante del suo gruppo generato? \rightarrow Vale in generale $Z_G(x) \subseteq N_G(\langle x \rangle)$, non vale in generale l'uguaglianza
- 58→ Enuncia il teorema di Cayley nel contesto delle azioni → Ogni gruppo ha un'azione fedele su un qualche insieme
- 59 \rightarrow Esibisci un Gruppo che non possiede sottogruppi di un determinato ordine che divide l'ordine del gruppo $\rightarrow G = A_4$ nonn possiede sottogruppi di ordine 6
- 60 \rightarrow Qual è l'ordine di un generico elemento di un gruppo ciclico? \rightarrow Se $G = \langle g \rangle$, o(G) = n, allora $o(g^s) = \frac{n}{(n,s)}$

- 61 \rightarrow Quanti generatori ha un gruppo ciclico $G = \langle g \rangle$ $o(G) = n? \rightarrow$ Sono tanti quanto i naturali $\leq n$ che non dividono n, cioè $\varphi(n)$
- 62 \rightarrow Caratterizza i sottogruppi di ordine d|n di un gruppo ciclico $G \rightarrow$ Sono gli H < G t.c. $H = \langle g^{n/d} \rangle$, questo esiste ed unico $\Leftrightarrow d|n$
- 63 \rightarrow Enuncia la FORMULA DI GAUSS $\rightarrow \sum_{d:d|n} \varphi(d) = n$
- 64 \rightarrow Dai una condizione sui sottogruppi di un gruppo G sufficiente affinché esso sia ciclico $\rightarrow G$ gruppo, o(G) = n, se $\forall d | n$ esiste al più un sottogruppo di ordine d, allora G è ciclico
- 65 \rightarrow Dai la definizione di G^d e una condizione su di ess affinché il gruppo G sia ciclico $\rightarrow G^d = \{x \in G \mid x^d = 1\}$. Se $\forall d \mid n : |G^d| \leq d \Rightarrow G$ è ciclico.
- 66 \rightarrow Dai delle condizioni sufficienti per trovare dei sottogruppi di un gruppo abeliano $\rightarrow G$ gruppo $abeliano, o(G) = n, d|n \Rightarrow \exists H \leq G : o(H) = d$
- 67 \rightarrow Cosa puoi dire dei sottogruppi di gruppi ciclici e abeliani? \rightarrow
 - 1. G abeliano $\Rightarrow \forall d | n \exists$ un sottogruppo di G di ordine n
 - 2. G ciclico $\Rightarrow \forall d | n \exists$ un sottogruppo di G di ordine n
- 68 \rightarrow Enuncia il teorema di Sylow \rightarrow Dato un gruppo finito G, posto $o(G) = p^{\alpha}m$, p primo, $p \nmid m$, allora
 - 1. \exists un p-sylow in G
 - 2. se $H \leq G$ è un p-sottogruppo $\Rightarrow H$ è contenuto in un p-sylow
 - 3. tutti i p-sylow sono coniugati
 - 4. Detto $n_p = \#\{p \text{sylow}\} \implies n_p = [G : N_G(P)], \text{ con } P \text{ un } p\text{-sylow}.$
 - 5. $n_p \equiv 1 \mod p \in n_p \mid n$
- 69 \rightarrow Enuncia il lemma che ti permette di trovare dei p-sylow di un sottogruppo $\rightarrow G$ gruppo finito, H sottogruppo e Pp-sylow $\Rightarrow \exists x \in G : xPx^{-1} \cap H$ è un p-sylow di H
- 70 \rightarrow Dati P, H < G, come può agire $P \times H$ su G? Di' chi è lo stabilizzatore di un elemento $\rightarrow P \times H \curvearrowright G$: $(a, h) \cdot x = axh^{-1}$, e inoltre $(P \times H)_x \cong (x^{-1}Px) \cap H$ tramite f: f(a, h) = h e $f^{-1}(h) = (x^{-1}Px, h)$
- 71 \rightarrow Enunciai il corollario del lemma sui p-sylow dei sottogruppi $\rightarrow H \leq G, G$ ha un p-sylow \Rightarrow anche H ha un p-sylow
- 72 \rightarrow Dai un'idea di quale sia la strategia per dimostrare il teorema di Sylow \rightarrow Eseguo due passi:
 - 1. trovo una classe di gruppi con un p-sylow banale, cioè $GL(n, F_p)$, p primo e $F_p = \mathbb{Z}/p$
 - 2. esibisco un morfismo iniettivo in $GL(n, F_p)$ per un qualsiasi gruppo finito
- 73 \rightarrow Qual è la cardinalità di $GL(n, F_p)$ con p primo e $F_p = \mathbb{Z}/p? \rightarrow \dot{E} \prod_{i=0}^{n-1} (p^n p^i)$
- 74 \rightarrow Enuncia una caratterizzazione dei gruppi di ordine un quadrato di un primo $\rightarrow G$ gruppo, $Z(G) \neq \{1\}$, $\#G = p^2$, p primo $\Rightarrow G \cong C_{p^2}$ oppure $G \cong C_p \times C_p$

- 75 \rightarrow Enuncia una condizione sufficiente su un gruppo affinché esso sia abeliano che va a guardare $G/Z(G) \rightarrow G$ finit. G/Z(G) ciclico $\Rightarrow G$ abeliano
- 76 \rightarrow Esibisci il morfismo iniettivo da $S_n \hookrightarrow GL(n, F_p) \rightarrow \dot{E}$ il morfismo che manda $\sigma \mapsto \varphi(\sigma) := (e_{\sigma(1)}|...|e_{\sigma(n)})$ cioè che manda un morfismo nella matrice identità con le colonne permutate.
- 77 \rightarrow Descrivi il funtore dalla categoria degli insiemi alla categoria degli spazi vettoriali su un campo fissato \rightarrow È una mappa della forma $\mathbf{Set} \xrightarrow{\alpha} \mathbf{Vec}(F) : \mathrm{Mor}_{\mathbf{Set}}(X,Y) = \{f : X \rightarrow Y\} \xrightarrow{\alpha} \{f^* : F^Y \rightarrow F^X\} = \mathrm{Mor}_{\mathbf{Set}}(\alpha(X), \alpha(Y)) : f \mapsto f^*, \text{ con } f^* : F^Y \rightarrow F^X : u \mapsto u \circ f$ È un funtore controvariante
- $78 \rightarrow$ Descrivi il processo di linearizzazione di un'azione \rightarrow ???
- 79 \rightarrow Qual è la definizione di *F*-ALGEBRA ? \rightarrow È un anello *A* che è anche un *F*-spazio vettoriale, con la stessa struttura additiva e t.c. $\forall a, b \in A \forall \lambda \in F : \lambda(ab) = a(\lambda b) = (\lambda a)b$
- 80 \rightarrow Esibisci una F-algebra facile \rightarrow Dati X insieme e F campo, F^X è un'F-algebra commutativa con unità $1: X \rightarrow F: x \mapsto 1 \in F$
- 81 Dato un p-gruppo, esibisci dei suoi sottogruppi $\#G = p^{\alpha}$, p primo $\Rightarrow \forall i = 0, ..., \alpha \exists H < G : \#H = p^i$
- 82 \rightarrow Enuncia il lemma che caratterizza il prodotto NH di due sottogruppi N, H < G, data la funzione $f: N \times H \rightarrow G, \ f(n,h) := nh \rightarrow$
 - 1. $\operatorname{Im}(f) = NH$
 - 2. $nh \in \text{Im}(f) \in f^{-1}(nh) = \{(nx, x^{-1}h) \mid x \in N \cap H\}$
 - 3. $|NH| = |N||H|/|N \cap H|$
 - 4. $N \triangleleft G \Rightarrow NH \triangleleft G$
 - 5. $N, H \triangleleft G \Rightarrow NH \triangleleft G$
 - 6. Se $N, H \triangleleft G \Rightarrow [N, H] \subseteq N \cap H$
 - 7. Se $H, N \triangleleft G, N \cap H = \{1\} \implies NG \cong N \times H$
- 83 \rightarrow Enuncia la proposizione sull'equivalenza tra il prodotto diretto interno ed esterno $\rightarrow H, G \lhd G, N \cap H = \{1\}, NH = G \Rightarrow N \cong N \times H.$ D'altro lato, se pongo $N \times H =: K$ ho: $\bar{N} := N \times \{1\} \lhd K$, $\bar{H} := \{1\} \times H \lhd K$ sono tali che $\bar{N} \cap \bar{H} = \{(1,1)\}eK = \bar{N}\bar{H}$
- 84 \rightarrow Enuncia il lemma di caratterizzazione del prodotto di un numero finito arbitrario di gruppi $\rightarrow G$ gruppo, $N_1, ..., N_k \triangleleft G$ tali che $N_i \cap (N_1 \cdot ... \cdot \hat{N}_i \cdot ... \cdot N_k) = \{1\} \Rightarrow f : N_i \times ... \times N_k \rightarrow N_1 \cdot ... \cdot N_k : (n_1, ..., n_k) \rightarrow n_1 \cdot ... \cdot n_k$ è un isomorfismo
- 85 \rightarrow Enuncia il teorema di Cauchy per gruppi \rightarrow G gruppo finito, p primo t.c. $p|o(G) \Rightarrow G$ contiene un elemento di ordine p
- 86 \rightarrow Enuncia il teorema di caratterizzazione dei gruppi con p-sylow unici $\rightarrow G$ gruppo finito, $o(G) = p_1^{\alpha_1}...p_k^{\alpha_k}$, p_i primi, se tutti i p-sylow sono unici \Rightarrow posti $P_1,...,P_k$ gli unici p-sylow ho che $G \cong P_1 \times ... \times P_k$
- 87 \rightarrow Cosa puoi dire su n_p se il p-sylow è normale? \rightarrow Ho che $P \triangleleft G \Leftrightarrow n_p = 1$
- $\bullet~88 \rightarrow$ Enuncia la proposizione di caratterizzazione dei gruppi con ordine un prodotto di

primi $\to G$ gruppo con $o(G) = pq, \, p, q$ primi, $p < q \in p \nmid q-1 \implies G \cong C_p \times C_q (\cong C_{pq})$

- $\bullet \ 89 \rightarrow$
- 90→
- \bullet 91 \rightarrow
- 92→
- 93→
- \bullet 94 \rightarrow
- $95 \rightarrow$
- \bullet 96 \rightarrow
- $\bullet \ 97{\rightarrow}$
- 98→
- \bullet 99 \rightarrow
- 100→