(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 25. März 2004 (25.03.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/025183 A2

(51) Internationale Patentklassifikation7:

F24C

- PCT/EP2003/009222 (21) Internationales Aktenzeichen:
- (22) Internationales Anmeldedatum:

20. August 2003 (20.08.2003)

(25) Einreichungssprache:

Deutsch

- (26) Veröffentlichungssprache:
- Deutsch
- (30) Angaben zur Priorität:
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

2. September 2002 (02.09.2002)

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BERENBRINK, Peter [DE/DE]; Schlägelstr. 53, 46045 Oberhausen (DE). BLOMEYER, Malte [DE/DE]; Gracht 163 A, 45472 Mülheim (DE). KREBS, Werner [DE/DE]; 21, 45481 Mülheim (DE). Elly-Heuss-Knapp-Str. PRADE, Bernd [DE/DE]; Natland 7, 45478 Mülheim (DE). STREB, Holger [DE/DE]; Volmerswerther Str. 283, 40221 Düsseldorf (DE).
- (74) Gemeinsamer Vertreter: SIEMENS AKTIENGE-SELLSCHAFT; Postfach 22 16 34, 80506 München (DE).
- (81) Bestimmungsstaaten (national): CN, JP, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

[Fortsetzung auf der nächsten Seite]

(54) Title: BURNER

02019530.1

(54) Bezeichnung: BRENNER

restricted by said instabilities. In an inventive burner (1), the combustible (7) has a concentration distribution, whereby the concentration of the combustible (7) reduces in a radial direction (55) from the interior to the exterior.

[Fortsetzung auf der nächsten Seite]

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Brenner nach dem Stand der Technik weisen in bestimmten Betriebsbereichen Verbrennungsinstabilitäten auf. Durch diese Instabilitäten ist der Betriebsbereich von Brennern begrenzt. Bei einem erfindungsgemäßen Brenner (1) weist der Brennstoff (7) eine Konzentrationsverteilung auf, wobei die Konzentration des Brennstoffes (7) in radialer Richtung (55) von innen nach außen abnimmt.

Brenner

Die Erfindung betrifft einen Brenner gemäß dem Oberbegriff des Anspruchs 1 und 2.

Der Betriebsbereich von Brennern mit Vormischungen,
insbesondere in Gasturbinen, wird durch selbsterregte
Flammenschwingungen begrenzt.
Solche Verbrennungsinstabilitäten können aktiv,
beispielsweise durch Erhöhung der Leistung der Pilotflamme,
oder passiv, beispielsweise durch Resonatoren, unterdrückt
werden.

Es ist daher Aufgabe der Erfindung, einen Brenner aufzuzeigen, bei dem auf einfache Art und Weise ein stabiler Bereich für die Verbrennung erweitert wird.

Die Aufgabe wird gelöst durch einen Brenner gemäß Anspruch 1 und 2.

25 Weitere vorteilhafte Ausgestaltungen des Brenners sind in den Unteransprüchen aufgelistet.

Es zeigen Figur 1 einen Brenner, Figur 2 einen vergrößerten Ausschnitt aus Figur 1, Figur 3 eine Drallschaufel für einen erfindungsgemäß ausgebildeten Brenner, Figur 4 eine Drallschaufel für einen erfindungsgemäß ausgebildeten Brenner,

- Figur 5 Geschwindigkeitsvektoren eines strömenden Brennstoffs Luft-Gasgemisches, und
- Figur 6 einen Schnitt entlang der Linie VI-VI der Figur 2.

Figur 1 zeigt einen Brenner 1, insbesondere einen

Vormischbrenner 1, insbesondere für eine Gasturbine.

Der Brenner 1 weist eine Brennerlängsachse 46 auf. Längs der Brennerlängsachse 46 ist mittig beispielsweise ein Diffusions- oder Pilotbrenner 43 angeordnet. Im Vormischbetrieb wird der Pilotbrenner 43 zur Unterstützung des Brenners 1 betrieben.

An einem radialen Ende 49 des Diffusionsbrenners 43 wird über einen bspw. zur Längsachse 46 ringförmigen Kanal 13 (Fig. 6) Brennstoff 7 und/oder Luft 4 einer Vormischstrecke 10

- und/oder einem Brennraum 19 zugeführt. Anstatt Luft kann auch Sauerstoff oder ein anderes Gas zugeführt werden, das mit dem Brennstoff 7 ein brennbares Brennstoff-Gasgemisch ergibt. Beispielsweise wird zuerst Luft 4 dem Kanal 13 und dann der Brennstoff 7 zugeführt.
- Die Luft 4 strömt im Kanal 13 bspw. zumindest an einer Drallschaufel 16 vorbei, wobei die Drallschaufel 16 bspw. Brennstoff 7 dem Kanal 13 zuführt.

 Die Drallschaufeln 16 sind bspw. ringförmig, insbesondere äquidistant, um die Brennerlängsachse 46 angeordnet (Fig. 6).
- 25 Die Luft 4 und der Brennstoff 7 vermischen sich in der Vormischstrecke 10, die gestrichelt angedeutet ist.

Es kann aber auch zuerst der Brennstoff 7 und dann die Luft 4 in dem Kanal 13 zugeführt werden.

Figur 2 zeigt das radiale Ende 49 des Diffusions-/Pilotbrenners 43 mit dem ringförmigen Kanal 13. Der Brennstoff 7 wird über zumindest zwei Brennstoffdüsen 31 dem Kanal 13 zugeführt und strömt dort in einer

5 Strömungsrichtung 88. Vorzugsweise erfolgt die Brennstoffzuführung über Brennstoffdüsen 31, die in der Drallschaufel 16 angeordnet sind.

Der Brennstoff 7 kann auch über andere Verteilungseinheiten dem Kanal 13 zugeführt werden.

Die Verbrennungsinstabilitäten entstehen durch eine Verteilung der Brennstoffkonzentration 58 nach dem Stand der Technik. In radialer Richtung 55, d.h. senkrecht zur einer Längsachse 46 ist die Konzentration des Brennstoffes ungefähr gleich groß.

Durch eine erfindungsgemäße Verteilung 52 für die Brennstoffkonzentration, die in radialer Richtung 55 zu zumindest einem Zeitpunkt während des Betriebes des Brenners 1 nicht konstant ist, werden die Stärke der Verbrennungsschwingungen reduziert.

Somit kann der Betriebsbereich für den Brenner 1 erweitert werden.

Die Brennstoffkonzentration verändert sich bspw. in radialer Richtung 55 gesehen ausgehend von der Mitte, d.h. von der Brennerlängsachse 46, nach außen, insbesondere nimmt die Brennstoffkonzentration bspw. linear ab oder zu. Es kann auch eine nichtlineare Ab- oder Zunahme vorliegen.

Figur 3 zeigt eine Drallschaufel 16, mit der dies realisiert werden kann.

Der Betriebsbereich kann auch erweitert werden, wenn ein Abströmwinkel α eines Mediums, d.h. der Winkel zwischen

35 resultierender Geschwindigkeit und Umfangsgeschwindigkeit
(Fig. 5), bspw. des Luft- 4 /Brennstoff- 7 Gemisches, eine ähnliche Verteilung wie die Konzentration des Brennstoffes 7

aufweist, d.h. von der Brennerlängsachse 46 aus gesehen, nimmt der Abströmwinkel α bspw. in einer radialen Richtung 55 von einem maximalen Wert zu einem minimalen Wert ab oder umgekehrt. Dies geschieht bspw. durch eine Verwindung der Drallschaufel 16 wie in Figur 4 beschrieben.

Der Abströmwinkel α ist auch der Winkel zwischen der Strömungsrichtung des im Kanal strömenden Mediums (Luft, Sauerstoff, Brennstoff, Gemische davon) und einer Ebene, deren Normale die Brennerlängsachse 46 ist.

10

5

Es kann auch gleichzeitig die Verteilung 52 der Brennstoffkonzentration und des Abströmwinkels α miteinander kombiniert werden, um den Betriebsbereich des Brenners 1 zu erweitern und verbessern.

15 .

Figur 3 zeigt eine Drallschaufel 16 für einen erfindungsgemäßen Brenner 1.

Die Drallschaufel 16 weist eine Anströmkante 67 und eine 20 Abströmkante 70 auf. Im Kanal 13 strömt das Medium in Strömungsrichtung 88 zuerst an der Anströmkante 67 und dann an der Abströmkante 70 vorbei.

Im Bereich der Anströmkante 67 ist ein Kern 73 vorhanden, in dem eine Zufuhr 64 für Brennstoff 7 vorhanden ist. Die Zufuhr

25 64 ist beispielsweise ein Sackloch. In radialer Richtung 55 gesehen, parallel zur Abströmkante 70, sind in der Zufuhr 64 Löcher vorhanden, die die Brennstoffdüsen 31 darstellen. Durch diese Brennstoffdüsen 31 gelangt der Brennstoff 7 in den Kanal 13. Die Durchmesser der Löcher der Brennstoffdüsen

30 31 der im Brenner eingebauten Drallschaufel 1 verändern sich in radialer Richtung 55 entsprechend der Konzentrationsverteilung 52 und nimmt bspw. in radialer Richtung 55 von innen nach aussen gesehen ab.

Das Medium, das an der Drallschaufel 16 vorbeiströmt, erfährt

35 einen Abströmwinkel α .

Figur 4 zeigt eine weitere Drallschaufel 16 für einen erfindungsgemäßen Brenner 1.

Die Drallschaufel 16 ist bspw. bezüglich der Größe und Verteilung der Brennstoffdüsen 31 wie die Drallschaufel in Figur 3 ausgebildet.

Darüber hinaus kann das Schaufelblatt 61 um eine Windungsachse 76 noch gewunden sein.

Die Windungsachse 76 bildet mit der Strömungsrichtung 88 einen von null verschiedenen Schnittwinkel und liegt

10 insbesondere bei 90°.

Ein Gas oder ein Brennstoff-Luftgemisch, das an der Drallschaufel 16 von der Anströmkante 67 zur Abströmkante 70 strömt, erfährt in radialer Richtung 55 gesehen verschiedene Abströmwinkel α , d.h. an einem Ende der Drallschaufel 16 im

Bereich der Abströmkante 70 wird ein anderer Abströmwinkel α l erzeugt als an dem anderen Ende, einem Abströmwinkel α 2 (ungleich α 1), in Richtung einer Längsachse der Zufuhr 64 betrachtet. Insbesondere nimmt der Abströmwinkel α linear ab. Es kann auch eine nichtlineare Zu- oder Abnahme

20 vorliegen.

Diese Verteilung in radialer Richtung 55 des Abströmwinkels α unterdrückt ebenso Verbrennungsinstabilitäten, so dass der Betriebsbereich für den Brenner 1 erweitert wird.

25

Im Kanal 13 bildet das strömende Medium an der Drallschaufel 16 mit der Strömungsrichtung 88 in dem Kanal 13 den Abströmwinkel α .

Die Drallschaufel 16 kann sowohl verwunden sein als auch verschiedene Durchmesser für die Brennstoffdüsen aufweisen.

Figur 5 zeigt die Anordnung der verschiedenen Strömungsvektoren des in dem Kanal 13 strömenden Gases. Der Vektor 79 stellt die meridionale Geschwindigkeitskomponente dar. Der Vektor 82 stellt die Umfangsgeschwindigkeit dar, so dass sich eine resultierender Geschwindigkeitssektor 85

ergibt. Der Winkel zwischen der resultierenden Geschwindigkeit 85 und der Umfangsgeschwindigkeit 82 stellt den Abströmwinkel α dar. Der Winkel 90°- α ist der komplementäre Winkel.

5 Der Abströmwinkel α ist auch der Winkel zwischen der Strömungsrichtung des strömenden Mediums und einer Ebene, die senkrecht zur Brennerlängsachse 46 verläuft.

Patentansprüche

15

- Brenner (1),
 bei dem zumindest ein Brennstoff (7) zugeführt wird,
 der in einer Strömungsrichtung (88) strömt,
 wobei der Brennstoff (7) in einer Ebene senkrecht zur
 Strömungsrichtung (88) eine Konzentrationsverteilung (58)
 aufweist,
- die Konzentrationsverteilung (52) nicht konstant ist,
 um Verbrennungsinstabilitäten beim Betrieb des Brenners
 (1) zu vermeiden.
- Brenner (1),
 bei dem Luft und/oder Sauerstoff (4) zugeführt wird,
 das in einer Strömungsrichtung (88) strömt,
 wobei die Luft und/oder der Sauerstoff (4) in einer Ebene
 senkrecht zur Strömungsrichtung (88) eine Verteilung eines
 Abströmwinkels aufweist,
 - dadurch gekennzeichnet, dass
- die Verteilung des Abströmwinkels nicht konstant ist, um Verbrennungsinstabilitäten beim Betrieb des Brenners (1) zu vermeiden.
- 30 3. Brenner nach Anspruch 1 oder 2, dadurch gekennzeichnet,
- dass der Brenner (1) eine Brennerlängsachse (46) aufweist, dass der Brenner (1) eine zur Brennerlängsachse (46) 35 senkrecht angeordnete radiale Richtung (55) aufweist, und dass sich die Konzentrationsverteilung (52) des Brennstoffs (7) in der radialen Richtung (55) verändert.

4. Brenner nach Anspruch 3, dadurch gekennzeichnet,

5

dass der Brenner (1) eine Brennerlängsachse (46) aufweist, die den inneren Bereich des Brenners (1) darstellt, und dass die Konzentrationsverteilung (52) des Brennstoffs (7) von innen nach außen abnimmt.

10

- 5. Brenner nach Anspruch 1, dadurch gekennzeichnet,
- dass der Brennstoff (7) in einem Kanal (13) zuführbar ist, und dass Luft (4) und/oder Sauerstoff in den Kanal (13) zuführbar ist.

20

. 30

- 6. Brenner nach Anspruch 2, dadurch gekennzeichnet,
- dass die Luft und/oder Sauerstoff (4) in einem Kanal (13)

 zuführbar ist, und
 dass Brennstoff (7) in den Kanal (13) zuführbar ist.
 - 7. Brenner nach Anspruch 1 oder 2, dadurch gekennzeichnet,

dass der Brenner (1) eine Brennerlängsachse (46) aufweist, dass der Brennstoff (7) oder die Luft oder der Sauerstoff (4) einem Kanal (13) zuführbar ist, und

dass der Kanal (13) ringförmig um die Brennerlängsachse (46) ausgebildet ist.

- 8. Brenner nach Anspruch 1 oder 2, dadurch gekennzeichnet,
- dass der Brenner (1) eine Brennerlängsachse (46) aufweist,
 dass der Brenner (1) eine zur Brennerlängsachse (46)
 senkrecht angeordnete radiale Richtung (55) aufweist,
 dass der Brenner (1) einen Kanal (13) aufweist,
 in dem ein Medium strömt, und
 dass das strömende Medium einen Abströmwinkel (α)
 zwischen seiner Strömungsrichtung und einer Ebene
 senkrecht zur Brennerlängsachse (46) aufweist,
 der sich in radialer Richtung (55) verändert.
- 9. Brenner nach Anspruch 8, dadurch gekennzeichnet,

dass der Brenner (1) eine Brennerlängsachse (46) aufweist,
die den inneren Bereich des Brenners (1) darstellt, und
20 dass der Abströmwinkel (α) in radialer Richtung (55) von
innen nach aussen abnimmt.

- 10. Brenner nach Anspruch 5 oder 6,
 25 dadurch gekennzeichnet, dass
 in dem Kanal (13) ein Brennstoff-Gasgemisch strömt.
- 30 11. Brenner nach Anspruch 1 oder 2,
 dadurch gekennzeichnet, dass
 der Brenner (1) ein Gasturbinenbrenner ist.

- 12. Brenner nach Anspruch 1 oder 2,
 d a d u r c h g e k e n n z e i c h n e t, dass
 5

 der Brenner (1) einen Diffusions- oder Pilotbrenner (43)
 aufweist.
- 10 13. Brenner nach Anspruch 1 oder 2,
 d a d u r c h g e k e n n z e i c h n e t, dass
 der Brenner (1) ein Vormischbrenner ist.
- dass der Brenner (1) einen Kanal (13) aufweist, und
 dass in dem Kanal (13) zumindest eine Drallschaufel (16)
 angeordnet ist.
- 15. Brenner nach Anspruch 14,
 25 dadurch gekennzeichnet, dass

 der Brennstoff (7) über zumindest eine Brennstoffdüse (31)
 in der Drallschaufel (16) in den Kanal (13) zuführbar ist.
- 30 16. Brenner nach Anspruch 15, dadurch gekennzeichnet,

dass die Drallschaufel (16) Brennstoffdüsen (31) aufweist, deren Durchmesser unterschiedlich ist,

so dass die Konzentrationsverteilung (52) des Brennstoffs (7) nicht konstant ist.

- 17. Brenner nach Anspruch 16, dadurch gekennzeichnet,
- dass der Brenner (1) eine Brennerlängsachse (46) aufweist, die den inneren Bereich des Brenners (1) darstellt, dass der Brenner (1) eine zur Brennerlängsachse (46) senkrecht angeordnete radiale Richtung (55) aufweist, und dass der Durchmesser der Brennstoffdüsen (31) der eingebauten Drallschaufel (16) in der radialen Richtung (55) von innen nach aussen abnimmt.
- 15 18. Brenner (1) nach Anspruch 1 oder 2,
 dadurch gekennzeichnet, dass

der Brenner (1) zumindest eine Drallschaufel (16) aufweist,

wobei die Drallschaufel (16) ein Schaufelblatt (61)
aufweist,
das um eine Windungsachse (76) verwunden ist,
so dass das in der Strömungsrichtung (88) an der
Drallschaufel (16) vorbeiströmende Gas längs einer Kante
des Schaufelblatts (61),
die mit der Strömungsrichtung (88) einen von null
verschiedenen Schnittwinkel aufweist,

verschiedene Abströmwinkel (α) aufweist.

30

- 19. Brenner (1) nach Anspruch 18, dadurch gekennzeichnet,
- dass der Brenner (1) eine Brennerlängsachse (46) aufweist, die den inneren Bereich des Brenners (1) darstellt, dass der Brenner (1) eine zur Brennerlängsachse (46) senkrecht angeordnete radiale Richtung (55) aufweist, dass der Abströmwinkel (α) eines an einer Drallschaufel (16) vorbeiströmenden Gases in radialer Richtung (55) an der Drallschaufel (16) verschiedene Abströmwinkel (α) aufweist, wobei der Abströmwinkel (α) in radialer Richtung (55) von innen nach außen abnimmt.

15

PCT/EP2003/009222

PCT/EP2003/009222

WO 2004/025183

PCT/EP2003/009222

