Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b86123af

$$4x + 2y = 86$$

A. $3x + 5y = 166$

$$4x + 3y = 86$$
B. $2x + 5y = 166$

C.
$$4x+2y=166$$

3x+5y=86

$$4x + 3y = 166$$

D. $2x + 5y = 86$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b86123af

$$4x + 2y = 86$$

A. $3x + 5y = 166$

$$4x + 3y = 86$$
B. $2x + 5y = 166$

C.
$$4x+2y=166$$

3x+5y=86

$$4x + 3y = 166$$

D. $2x + 5y = 86$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b86123af

$$4x + 2y = 86$$

A. $3x + 5y = 166$

$$4x + 3y = 86$$
B. $2x + 5y = 166$

C.
$$4x+2y=166$$

3x+5y=86

$$4x + 3y = 166$$

D. $2x + 5y = 86$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b86123af

$$4x + 2y = 86$$

A. $3x + 5y = 166$

$$4x + 3y = 86$$
B. $2x + 5y = 166$

C.
$$4x+2y=166$$

3x+5y=86

$$4x + 3y = 166$$

D. $2x + 5y = 86$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b86123af

$$4x + 2y = 86$$

A. $3x + 5y = 166$

$$4x + 3y = 86$$
B. $2x + 5y = 166$

C.
$$4x+2y=166$$

3x+5y=86

$$4x + 3y = 166$$

D. $2x + 5y = 86$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 608eeb6e

$$5x = 15$$
$$-4x + y = -2$$

- A. -17
- B. **—13**
- C. **13**
- D. **17**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 608eeb6e

$$5x = 15$$
$$-4x + y = -2$$

- A. -17
- B. **—13**
- C. **13**
- D. **17**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 608eeb6e

$$5x = 15$$
$$-4x + y = -2$$

- A. -17
- B. **—13**
- C. **13**
- D. **17**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 608eeb6e

$$5x = 15$$
$$-4x + y = -2$$

- A. -17
- B. **—13**
- C. **13**
- D. **17**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 608eeb6e

$$5x = 15$$
$$-4x + y = -2$$

- A. -17
- B. **—13**
- C. **13**
- D. **17**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 84664a7c

A.
$$h = 8s + 15$$

B.
$$h = 15s + \frac{335}{8}$$

c.
$$h = 8s + \frac{335}{15}$$

D.
$$h = 15s + 8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 84664a7c

A.
$$h = 8s + 15$$

B.
$$h = 15s + \frac{335}{8}$$

c.
$$h = 8s + \frac{335}{15}$$

D.
$$h = 15s + 8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 84664a7c

A.
$$h = 8s + 15$$

B.
$$h = 15s + \frac{335}{8}$$

$$h = 8s + \frac{335}{15}$$

D.
$$h = 15s + 8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 84664a7c

A.
$$h = 8s + 15$$

B.
$$h = 15s + \frac{335}{8}$$

$$h = 8s + \frac{335}{15}$$

D.
$$h = 15s + 8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 84664a7c

A.
$$h = 8s + 15$$

B.
$$h = 15s + \frac{335}{8}$$

$$h = 8s + \frac{335}{15}$$

D.
$$h = 15s + 8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b0fc3166

- A. (0,3)
- B. (1,3)
- C.(2,3)
- D. (3,3)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b0fc3166

- A. (0,3)
- B. (1,3)
- C.(2,3)
- D. (3,3)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b0fc3166

- A. (0,3)
- B. (1,3)
- C.(2,3)
- D. (3,3)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b0fc3166

- A. (0,3)
- B. (1,3)
- C.(2,3)
- D. (3,3)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: b0fc3166

- A. (0,3)
- B. (1,3)
- C.(2,3)
- D. (3,3)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9b886541

- A. **-1**
- B. **5**
- C. **13**
- D. **23**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9b886541

- A. **-1**
- B. **5**
- C. **13**
- D. **23**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9b886541

- A. **-1**
- B. **5**
- C. **13**
- D. **23**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9b886541

- A. **-1**
- B. **5**
- C. **13**
- D. **23**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9b886541

- A. **-1**
- B. **5**
- C. **13**
- D. **23**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7fac16fb

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7fac16fb

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7fac16fb

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7fac16fb

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7fac16fb

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 06fc1726

- A. $\frac{4}{3}$
- B. $\frac{7}{3}$
- C. 3
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 06fc1726

- A. $\frac{4}{3}$
- B. $\frac{7}{3}$
- C. 3
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 06fc1726

- A. $\frac{4}{3}$
- B. $\frac{7}{3}$
- C. 3
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 06fc1726

- A. $\frac{4}{3}$
- B. $\frac{7}{3}$
- C. 3
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 06fc1726

- A. $\frac{4}{3}$
- B. $\frac{7}{3}$
- C. 3
- D. 9

Question ID 0eae6be1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 0eae6be1

The number y is 84 less than the number x. Which equation represents the relationship between x and y?

A.
$$y=x+84$$

B.
$$y=rac{1}{84}x$$

C.
$$y=84x$$

D.
$$y=x-84$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 0eae6be1

A.
$$y=x+84$$

B.
$$y=rac{1}{84}x$$

C.
$$y=84x$$

D.
$$y=x-84$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 0eae6be1

A.
$$y=x+84$$

B.
$$y=rac{1}{84}x$$

C.
$$y=84x$$

D.
$$y=x-84$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 0eae6be1

A.
$$y=x+84$$

B.
$$y=rac{1}{84}x$$

C.
$$y=84x$$

D.
$$y=x-84$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 0eae6be1

A.
$$y=x+84$$

B.
$$y=rac{1}{84}x$$

C.
$$y=84x$$

D.
$$y=x-84$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 2c121b25

A.
$$0.3x + 0.7y \ge 400$$

B.
$$0.7x + 0.3y \le 400$$

C.
$$\frac{x}{3} + \frac{y}{7} \le 400$$

D.
$$30x + 70y \ge 400$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 2c121b25

A.
$$0.3x + 0.7y \ge 400$$

B.
$$0.7x + 0.3y \le 400$$

C.
$$\frac{x}{3} + \frac{y}{7} \le 400$$

D.
$$30x + 70y \ge 400$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 2c121b25

A.
$$0.3x + 0.7y \ge 400$$

B.
$$0.7x + 0.3y \le 400$$

C.
$$\frac{x}{3} + \frac{y}{7} \le 400$$

D.
$$30x + 70y \ge 400$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 2c121b25

A.
$$0.3x + 0.7y \ge 400$$

B.
$$0.7x + 0.3y \le 400$$

C.
$$\frac{x}{3} + \frac{y}{7} \le 400$$

D.
$$30x + 70y \ge 400$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 2c121b25

A.
$$0.3x + 0.7y \ge 400$$

B.
$$0.7x + 0.3y \le 400$$

C.
$$\frac{x}{3} + \frac{y}{7} \le 400$$

D.
$$30x + 70y \ge 400$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 4d8ccb96

A.
$$0.96x + 0.02y = (0.04)(24)$$

B.
$$0.02x + 0.96y = (0.04)(24)$$

C.
$$0.96x + 0.02y = 24$$

D.
$$0.02x + 0.96y = 24$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 4d8ccb96

A.
$$0.96x + 0.02y = (0.04)(24)$$

B.
$$0.02x + 0.96y = (0.04)(24)$$

C.
$$0.96x + 0.02y = 24$$

D.
$$0.02x + 0.96y = 24$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 4d8ccb96

A.
$$0.96x + 0.02y = (0.04)(24)$$

B.
$$0.02x + 0.96y = (0.04)(24)$$

C.
$$0.96x + 0.02y = 24$$

D.
$$0.02x + 0.96y = 24$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 4d8ccb96

A.
$$0.96x + 0.02y = (0.04)(24)$$

B.
$$0.02x + 0.96y = (0.04)(24)$$

C.
$$0.96x + 0.02y = 24$$

D.
$$0.02x + 0.96y = 24$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 4d8ccb96

A.
$$0.96x + 0.02y = (0.04)(24)$$

B.
$$0.02x + 0.96y = (0.04)(24)$$

C.
$$0.96x + 0.02y = 24$$

D.
$$0.02x + 0.96y = 24$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b23bba4c

3a + 4b = 25

- A. 3
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b23bba4c

3a + 4b = 25

- A. 3
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b23bba4c

3a + 4b = 25

- A. 3
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b23bba4c

3a + 4b = 25

- A. 3
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b23bba4c

3a + 4b = 25

- A. 3
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: dba8d38a

$$s + p = 250$$

A.
$$5s + 12p = 2,300$$

$$s + p = 250$$

B.
$$12s + 5p = 2,300$$

5s +
$$12p = 250$$

c. $s + p = 2,300$

$$12s + 5p = 250$$

$$s + p = 2,300$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: dba8d38a

$$s + p = 250$$

A.
$$5s + 12p = 2,300$$

$$s + p = 250$$

B.
$$12s + 5p = 2,300$$

5s +
$$12p = 250$$

c. $s + p = 2,300$

$$12s + 5p = 250$$

$$s + p = 2,300$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: dba8d38a

$$s + p = 250$$

A.
$$5s + 12p = 2,300$$

$$s + p = 250$$

B.
$$12s + 5p = 2,300$$

5s +
$$12p = 250$$

c. $s + p = 2,300$

$$12s + 5p = 250$$

$$s + p = 2,300$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: dba8d38a

$$s + p = 250$$

A.
$$5s + 12p = 2,300$$

$$s + p = 250$$

B.
$$12s + 5p = 2,300$$

5s +
$$12p = 250$$

c. $s + p = 2,300$

$$12s + 5p = 250$$

$$s + p = 2,300$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: dba8d38a

$$s + p = 250$$

A.
$$5s + 12p = 2,300$$

$$s + p = 250$$

B.
$$12s + 5p = 2,300$$

5s +
$$12p = 250$$

c. $s + p = 2,300$

$$12s + 5p = 250$$

$$s + p = 2,300$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 87322577

$$x + y = 75$$

- A. The number of minutes spent running each day
- B. The number of minutes spent biking each day
- C. The total number of minutes spent running and biking each day
- D. The number of minutes spent biking for each minute spent running

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 87322577

$$x + y = 75$$

- A. The number of minutes spent running each day
- B. The number of minutes spent biking each day
- C. The total number of minutes spent running and biking each day
- D. The number of minutes spent biking for each minute spent running

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 87322577

$$x + y = 75$$

- A. The number of minutes spent running each day
- B. The number of minutes spent biking each day
- C. The total number of minutes spent running and biking each day
- D. The number of minutes spent biking for each minute spent running

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 87322577

$$x + y = 75$$

- A. The number of minutes spent running each day
- B. The number of minutes spent biking each day
- C. The total number of minutes spent running and biking each day
- D. The number of minutes spent biking for each minute spent running

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 87322577

$$x + y = 75$$

- A. The number of minutes spent running each day
- B. The number of minutes spent biking each day
- C. The total number of minutes spent running and biking each day
- D. The number of minutes spent biking for each minute spent running

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: bf36c815

The function g is defined by g(x) = -x + 8.

- A. -8
- B. 0
- C. 4
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: bf36c815

The function g is defined by g(x) = -x + 8.

- A. -8
- B. 0
- C. 4
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: bf36c815

The function g is defined by g(x) = -x + 8.

- A. -8
- B. 0
- C. 4
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: bf36c815

The function g is defined by g(x) = -x + 8.

- A. -8
- B. 0
- C. 4
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: bf36c815

The function g is defined by g(x) = -x + 8.

- A. -8
- B. 0
- C. 4
- D. 8

Question ID c6b151d4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: c6b151d4

A total of 364 paper straws of equal length were used to construct two types of polygons: triangles and rectangles. The triangles and rectangles were constructed so that no two polygons had a common side. The equation 3x + 4y = 364 represents this situation, where x is the number of triangles constructed and y is the number of rectangles constructed. What is the best interpretation of (x, y) = (24, 73) in this context?

- A. If **24** triangles were constructed, then **73** rectangles were constructed.
- B. If **24** triangles were constructed, then **73** paper straws were used.
- C. If **73** triangles were constructed, then **24** rectangles were constructed.
- D. If **73** triangles were constructed, then **24** paper straws were used.

Question ID c6b151d4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: c6b151d4

A total of 364 paper straws of equal length were used to construct two types of polygons: triangles and rectangles. The triangles and rectangles were constructed so that no two polygons had a common side. The equation 3x + 4y = 364 represents this situation, where x is the number of triangles constructed and y is the number of rectangles constructed. What is the best interpretation of (x, y) = (24, 73) in this context?

- A. If **24** triangles were constructed, then **73** rectangles were constructed.
- B. If **24** triangles were constructed, then **73** paper straws were used.
- C. If **73** triangles were constructed, then **24** rectangles were constructed.
- D. If **73** triangles were constructed, then **24** paper straws were used.

Question ID c6b151d4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: c6b151d4

A total of 364 paper straws of equal length were used to construct two types of polygons: triangles and rectangles. The triangles and rectangles were constructed so that no two polygons had a common side. The equation 3x + 4y = 364 represents this situation, where x is the number of triangles constructed and y is the number of rectangles constructed. What is the best interpretation of (x, y) = (24, 73) in this context?

- A. If **24** triangles were constructed, then **73** rectangles were constructed.
- B. If **24** triangles were constructed, then **73** paper straws were used.
- C. If **73** triangles were constructed, then **24** rectangles were constructed.
- D. If **73** triangles were constructed, then **24** paper straws were used.

Question ID c6b151d4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: c6b151d4

A total of 364 paper straws of equal length were used to construct two types of polygons: triangles and rectangles. The triangles and rectangles were constructed so that no two polygons had a common side. The equation 3x + 4y = 364 represents this situation, where x is the number of triangles constructed and y is the number of rectangles constructed. What is the best interpretation of (x, y) = (24, 73) in this context?

- A. If **24** triangles were constructed, then **73** rectangles were constructed.
- B. If **24** triangles were constructed, then **73** paper straws were used.
- C. If **73** triangles were constructed, then **24** rectangles were constructed.
- D. If **73** triangles were constructed, then **24** paper straws were used.

Question ID c6b151d4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: c6b151d4

A total of 364 paper straws of equal length were used to construct two types of polygons: triangles and rectangles. The triangles and rectangles were constructed so that no two polygons had a common side. The equation 3x + 4y = 364 represents this situation, where x is the number of triangles constructed and y is the number of rectangles constructed. What is the best interpretation of (x, y) = (24, 73) in this context?

- A. If **24** triangles were constructed, then **73** rectangles were constructed.
- B. If **24** triangles were constructed, then **73** paper straws were used.
- C. If **73** triangles were constructed, then **24** rectangles were constructed.
- D. If **73** triangles were constructed, then **24** paper straws were used.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8c98c834

- A. 1
- B. 3
- C. 10
- D. 30

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8c98c834

- A. 1
- B. 3
- C. 10
- D. 30

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8c98c834

- A. 1
- B. 3
- C. 10
- D. 30

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8c98c834

- A. 1
- B. 3
- C. 10
- D. 30

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8c98c834

- A. 1
- B. 3
- C. 10
- D. 30

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 563407e5

- A. 165
- B. 205
- C. 245
- D. 285

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 563407e5

- A. 165
- B. 205
- C. 245
- D. 285

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 563407e5

- A. 165
- B. 205
- C. 245
- D. 285

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 563407e5

- A. 165
- B. 205
- C. 245
- D. 285

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 563407e5

- A. 165
- B. 205
- C. 245
- D. 285

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3f5375d9

The line graphed in the *xy*-plane below models the total cost, in dollars, for a cab ride, *y*, in a certain city during nonpeak hours based on the number of miles traveled, *x*.

- A. \$2.00
- B. \$2.60
- C. \$3.00
- D. \$5.00

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3f5375d9

The line graphed in the *xy*-plane below models the total cost, in dollars, for a cab ride, *y*, in a certain city during nonpeak hours based on the number of miles traveled, *x*.

- A. \$2.00
- B. \$2.60
- C. \$3.00
- D. \$5.00

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3f5375d9

The line graphed in the *xy*-plane below models the total cost, in dollars, for a cab ride, *y*, in a certain city during nonpeak hours based on the number of miles traveled, *x*.

- A. \$2.00
- B. \$2.60
- C. \$3.00
- D. \$5.00

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3f5375d9

The line graphed in the *xy*-plane below models the total cost, in dollars, for a cab ride, *y*, in a certain city during nonpeak hours based on the number of miles traveled, *x*.

- A. \$2.00
- B. \$2.60
- C. \$3.00
- D. \$5.00

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3f5375d9

The line graphed in the *xy*-plane below models the total cost, in dollars, for a cab ride, *y*, in a certain city during nonpeak hours based on the number of miles traveled, *x*.

- A. \$2.00
- B. \$2.60
- C. \$3.00
- D. \$5.00

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear equations in two variables

ID: b2845d88

A.
$$y = -\frac{1}{4}x - 1$$

B.
$$y = -x - 4$$

$$y = -x - \frac{1}{4}$$

D.
$$y = -4x - 1$$

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear equations in two variables

ID: b2845d88

A.
$$y = -\frac{1}{4}x - 1$$

B.
$$y = -x - 4$$

$$y = -x - \frac{1}{4}$$

D.
$$y = -4x - 1$$

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear equations in two variables

ID: b2845d88

A.
$$y = -\frac{1}{4}x - 1$$

B.
$$y = -x - 4$$

$$y = -x - \frac{1}{4}$$

D.
$$y = -4x - 1$$

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear equations in two variables

ID: b2845d88

A.
$$y = -\frac{1}{4}x - 1$$

B.
$$y = -x - 4$$

$$y = -x - \frac{1}{4}$$

D.
$$y = -4x - 1$$

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear equations in two variables

ID: b2845d88

A.
$$y = -\frac{1}{4}x - 1$$

B.
$$y = -x - 4$$

$$y = -x - \frac{1}{4}$$

D.
$$y = -4x - 1$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 6ac23de7

$$\frac{4x}{5} = 20$$

- A. 25
- B. 24
- C. 16
- D. 15

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 6ac23de7

$$\frac{4x}{5} = 20$$

- A. 25
- B. 24
- C. 16
- D. 15

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 6ac23de7

$$\frac{4x}{5} = 20$$

- A. 25
- B. 24
- C. 16
- D. 15

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 6ac23de7

$$\frac{4x}{5} = 20$$

- A. 25
- B. 24
- C. 16
- D. 15

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 6ac23de7

$$\frac{4x}{5} = 20$$

- A. 25
- B. 24
- C. 16
- D. 15

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7392dfc1

A.
$$2x + 4 = 6$$

B.
$$x+3=3$$

C.
$$3x + 2 = 4$$

D.
$$2x + 3 = 6$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7392dfc1

A.
$$2x + 4 = 6$$

B.
$$x+3=3$$

C.
$$3x + 2 = 4$$

D.
$$2x + 3 = 6$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7392dfc1

A.
$$2x + 4 = 6$$

B.
$$x+3=3$$

C.
$$3x + 2 = 4$$

D.
$$2x + 3 = 6$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7392dfc1

A.
$$2x + 4 = 6$$

B.
$$x+3=3$$

C.
$$3x + 2 = 4$$

D.
$$2x + 3 = 6$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7392dfc1

A.
$$2x + 4 = 6$$

B.
$$x+3=3$$

C.
$$3x + 2 = 4$$

D.
$$2x + 3 = 6$$

Question ID 93954cfa

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 93954cfa

One pound of grapes costs \$2. At this rate, how many dollars will *c* pounds of grapes cost?

- A. 2c
- B. 2 + c
- C. c
- D. 2

Question ID 93954cfa

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 93954cfa

One pound of grapes costs \$2. At this rate, how many dollars will *c* pounds of grapes cost?

- A. 2c
- B. 2 + c
- C. c
- D. 2

Question ID 93954cfa

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 93954cfa

One pound of grapes costs \$2. At this rate, how many dollars will *c* pounds of grapes cost?

- A. 2c
- B. 2 + c
- C. c
- D. 2

Question ID 93954cfa

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 93954cfa

One pound of grapes costs \$2. At this rate, how many dollars will *c* pounds of grapes cost?

- A. 2c
- B. 2 + c
- C. c
- D. 2

Question ID 93954cfa

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 93954cfa

One pound of grapes costs \$2. At this rate, how many dollars will *c* pounds of grapes cost?

- A. 2c
- B. 2 + c
- C. c
- D. 2

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 8abed0fb

$$y = 2x + 3$$
$$x = 1$$

- A. (1,2)
- в. **(1,5)**
- C. (2,3)
- D. (2,7)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 8abed0fb

$$y = 2x + 3$$
$$x = 1$$

- A. (1,2)
- в. **(1,5)**
- C. (2,3)
- D. (2,7)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 8abed0fb

$$y = 2x + 3$$
$$x = 1$$

- A. (1,2)
- в. **(1,5)**
- C. (2,3)
- D. (2,7)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 8abed0fb

$$y = 2x + 3$$
$$x = 1$$

- A. (1,2)
- в. **(1,5)**
- C. (2,3)
- D. (2,7)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 8abed0fb

$$y = 2x + 3$$
$$x = 1$$

- A. (1,2)
- в. **(1,5)**
- C. (2,3)
- D. (2,7)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: e1259a5a

A system of two linear equations is graphed in the xy-plane below.

- A. (3,9)
- B. (6,15)
- c. (8,10)
- D. (12,18)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: e1259a5a

A system of two linear equations is graphed in the xy-plane below.

- A. (3,9)
- B. (6,15)
- c. (8,10)
- D. (12,18)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: e1259a5a

A system of two linear equations is graphed in the xy-plane below.

- A. (3,9)
- B. (6,15)
- c. (8,10)
- D. (12,18)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: e1259a5a

A system of two linear equations is graphed in the xy-plane below.

- A. (3,9)
- B. (6,15)
- c. (8,10)
- D. (12,18)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: e1259a5a

A system of two linear equations is graphed in the xy-plane below.

- A. (3,9)
- B. (6,15)
- c. (8,10)
- D. (12,18)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3d04de9c

- $\mathsf{A.}\ 5$
- B. **20**
- C. **25**
- D. **30**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3d04de9c

- $\mathsf{A.}\ 5$
- B. **20**
- C. **25**
- D. **30**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3d04de9c

- $\mathsf{A.}\ 5$
- B. **20**
- C. **25**
- D. **30**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3d04de9c

- $\mathsf{A.}\ 5$
- B. **20**
- C. **25**
- D. **30**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3d04de9c

- $\mathsf{A.}\ 5$
- B. **20**
- C. **25**
- D. **30**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 60f71697

8x = 88

- A. 11
- B. **80**
- C. **96**
- $\mathsf{D.}\ 704$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 60f71697

8x = 88

- A. 11
- B. **80**
- C. **96**
- $\mathsf{D.}\ 704$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 60f71697

8x = 88

- A. 11
- B. **80**
- C. **96**
- $\mathsf{D.}\ 704$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 60f71697

8x = 88

- A. 11
- B. **80**
- C. **96**
- $\mathsf{D.}\ 704$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 60f71697

8x = 88

- A. 11
- B. **80**
- C. **96**
- $\mathsf{D.}\ 704$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: df32b09c

A.
$$90 - (85 + 78 + 98) \le 4G$$

B.
$$4G + 85 + 78 + 98 \ge 360$$

$$C. \frac{(G+85+78+98)}{4} \ge 90$$

$$D. \frac{(85+78+98)}{4} \ge 90-4G$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: df32b09c

A.
$$90 - (85 + 78 + 98) \le 4G$$

B.
$$4G + 85 + 78 + 98 \ge 360$$

$$C. \frac{(G+85+78+98)}{4} \ge 90$$

$$D. \frac{(85+78+98)}{4} \ge 90-4G$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: df32b09c

A.
$$90 - (85 + 78 + 98) \le 4G$$

B.
$$4G + 85 + 78 + 98 \ge 360$$

$$C. \frac{(G+85+78+98)}{4} \ge 90$$

$$D. \frac{(85+78+98)}{4} \ge 90-4G$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: df32b09c

A.
$$90 - (85 + 78 + 98) \le 4G$$

B.
$$4G + 85 + 78 + 98 \ge 360$$

$$C. \frac{(G+85+78+98)}{4} \ge 90$$

$$D. \frac{(85+78+98)}{4} \ge 90-4G$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: df32b09c

A.
$$90 - (85 + 78 + 98) \le 4G$$

B.
$$4G + 85 + 78 + 98 \ge 360$$

$$C. \frac{(G+85+78+98)}{4} \ge 90$$

$$D. \frac{(85+78+98)}{4} \ge 90-4G$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 12983c1e

х	f(x)
1	5
3	13
5	21

Some values of the linear function *f* are shown in the table above.

A.
$$f(x) = 2x + 3$$

B.
$$f(x) = 3x + 2$$

C.
$$f(x) = 4x + 1$$

D.
$$f(x) = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 12983c1e

х	f(x)
1	5
3	13
5	21

Some values of the linear function *f* are shown in the table above.

A.
$$f(x) = 2x + 3$$

B.
$$f(x) = 3x + 2$$

C.
$$f(x) = 4x + 1$$

D.
$$f(x) = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 12983c1e

х	f(x)
1	5
3	13
5	21

Some values of the linear function *f* are shown in the table above.

A.
$$f(x) = 2x + 3$$

B.
$$f(x) = 3x + 2$$

C.
$$f(x) = 4x + 1$$

D.
$$f(x) = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 12983c1e

х	f(x)
1	5
3	13
5	21

Some values of the linear function *f* are shown in the table above.

A.
$$f(x) = 2x + 3$$

B.
$$f(x) = 3x + 2$$

C.
$$f(x) = 4x + 1$$

D.
$$f(x) = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 12983c1e

х	f(x)
1	5
3	13
5	21

Some values of the linear function *f* are shown in the table above.

A.
$$f(x) = 2x + 3$$

B.
$$f(x) = 3x + 2$$

C.
$$f(x) = 4x + 1$$

D.
$$f(x) = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8adf1335

A.
$$x + y = 201$$

B.
$$x - y = 201$$

C.
$$2x - y = 201$$

D.
$$y - x = 201$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8adf1335

A.
$$x + y = 201$$

B.
$$x - y = 201$$

C.
$$2x - y = 201$$

D.
$$y - x = 201$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8adf1335

A.
$$x + y = 201$$

B.
$$x - y = 201$$

C.
$$2x - y = 201$$

D.
$$y - x = 201$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8adf1335

A.
$$x + y = 201$$

B.
$$x - y = 201$$

C.
$$2x - y = 201$$

D.
$$y - x = 201$$

Question ID 8adf1335

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 8adf1335

A city's total expense budget for one year was *x* million dollars. The city budgeted *y* million dollars for departmental expenses and 201 million dollars for all other expenses. Which of the following represents the relationship between *x* and *y* in this context?

A.
$$x + y = 201$$

B.
$$x - y = 201$$

C.
$$2x - y = 201$$

D.
$$y - x = 201$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dd797fe2

$$4x + 3y = 24$$

- A. The total cost, in dollars, for all binders purchased
- B. The total cost, in dollars, for all notebooks purchased
- C. The total cost, in dollars, for all binders and notebooks purchased
- D. The difference in the total cost, in dollars, between the number of binders and notebooks purchased

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dd797fe2

$$4x + 3y = 24$$

- A. The total cost, in dollars, for all binders purchased
- B. The total cost, in dollars, for all notebooks purchased
- C. The total cost, in dollars, for all binders and notebooks purchased
- D. The difference in the total cost, in dollars, between the number of binders and notebooks purchased

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dd797fe2

$$4x + 3y = 24$$

- A. The total cost, in dollars, for all binders purchased
- B. The total cost, in dollars, for all notebooks purchased
- C. The total cost, in dollars, for all binders and notebooks purchased
- D. The difference in the total cost, in dollars, between the number of binders and notebooks purchased

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dd797fe2

$$4x + 3y = 24$$

- A. The total cost, in dollars, for all binders purchased
- B. The total cost, in dollars, for all notebooks purchased
- C. The total cost, in dollars, for all binders and notebooks purchased
- D. The difference in the total cost, in dollars, between the number of binders and notebooks purchased

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dd797fe2

$$4x + 3y = 24$$

- A. The total cost, in dollars, for all binders purchased
- B. The total cost, in dollars, for all notebooks purchased
- C. The total cost, in dollars, for all binders and notebooks purchased
- D. The difference in the total cost, in dollars, between the number of binders and notebooks purchased

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 550b352c

10 = 2x + 4

- A. None
- B. Exactly 1
- C. Exactly 3
- D. Infinitely many

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 550b352c

10 = 2x + 4

- A. None
- B. Exactly 1
- C. Exactly 3
- D. Infinitely many

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 550b352c

10 = 2x + 4

- A. None
- B. Exactly 1
- C. Exactly 3
- D. Infinitely many

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 550b352c

10 = 2x + 4

- A. None
- B. Exactly 1
- C. Exactly 3
- D. Infinitely many

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 550b352c

10 = 2x + 4

- A. None
- B. Exactly 1
- C. Exactly 3
- D. Infinitely many

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a396ed75

A.
$$m(x)=rac{x}{5.7}$$

B.
$$m(x)=x+5.7$$

C.
$$m(x)=x-5.7$$

D.
$$m(x)=5.7x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a396ed75

A.
$$m(x)=rac{x}{5.7}$$

B.
$$m(x)=x+5.7$$

C.
$$m(x)=x-5.7$$

D.
$$m(x)=5.7x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a396ed75

A.
$$m(x)=rac{x}{5.7}$$

B.
$$m(x)=x+5.7$$

C.
$$m(x)=x-5.7$$

D.
$$m(x)=5.7x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a396ed75

A.
$$m(x)=rac{x}{5.7}$$

B.
$$m(x)=x+5.7$$

C.
$$m(x)=x-5.7$$

D.
$$m(x)=5.7x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a396ed75

A.
$$m(x)=rac{x}{5.7}$$

B.
$$m(x)=x+5.7$$

C.
$$m(x)=x-5.7$$

D.
$$m(x)=5.7x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 87071893

$$x+40=95$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 87071893

$$x+40=95$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 87071893

$$x+40=95$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 87071893

$$x+40=95$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 87071893

$$x+40=95$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear equations in two variables		

ID: 789975b7

A.
$$0.4x + 0.6y = 240$$

B.
$$0.6x + 0.4y = 240$$

C.
$$40x + 60y = 240$$

D.
$$60x + 40y = 240$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear equations in two variables		

ID: 789975b7

A.
$$0.4x + 0.6y = 240$$

B.
$$0.6x + 0.4y = 240$$

C.
$$40x + 60y = 240$$

D.
$$60x + 40y = 240$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear equations in two variables		

ID: 789975b7

A.
$$0.4x + 0.6y = 240$$

B.
$$0.6x + 0.4y = 240$$

C.
$$40x + 60y = 240$$

D.
$$60x + 40y = 240$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear equations in two variables		

ID: 789975b7

A.
$$0.4x + 0.6y = 240$$

B.
$$0.6x + 0.4y = 240$$

C.
$$40x + 60y = 240$$

D.
$$60x + 40y = 240$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear equations in two variables		

ID: 789975b7

A.
$$0.4x + 0.6y = 240$$

B.
$$0.6x + 0.4y = 240$$

C.
$$40x + 60y = 240$$

D.
$$60x + 40y = 240$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: cea27ab2

$$7x - 4y = -84$$

A.	$oldsymbol{x}$	0	4	8
	\boldsymbol{y}	21	28	35

В.	\boldsymbol{x}	0	4	8
	\boldsymbol{y}	35	28	21

C.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	0	4	8

D.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	8	4	0

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: cea27ab2

$$7x - 4y = -84$$

A.	$oldsymbol{x}$	0	4	8
	\boldsymbol{y}	21	28	35

В.	\boldsymbol{x}	0	4	8
	\boldsymbol{y}	35	28	21

C.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	0	4	8

D.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	8	4	0

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: cea27ab2

$$7x - 4y = -84$$

A.	$oldsymbol{x}$	0	4	8
	\boldsymbol{y}	21	28	35

В.	\boldsymbol{x}	0	4	8
	\boldsymbol{y}	35	28	21

C.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	0	4	8

D.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	8	4	0

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: cea27ab2

$$7x - 4y = -84$$

A.	$oldsymbol{x}$	0	4	8
	\boldsymbol{y}	21	28	35

В.	\boldsymbol{x}	0	4	8
	\boldsymbol{y}	35	28	21

C.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	0	4	8

D.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	8	4	0

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: cea27ab2

$$7x - 4y = -84$$

A.	$oldsymbol{x}$	0	4	8
	\boldsymbol{y}	21	28	35

В.	\boldsymbol{x}	0	4	8
	\boldsymbol{y}	35	28	21

C.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	0	4	8

D.	$oldsymbol{x}$	21	28	35
	$oldsymbol{y}$	8	4	0

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 2554b413

A.
$$y = 6x + 8$$

B.
$$y = 6x + 48$$

C.
$$y = 8x + 6$$

D.
$$y = 8x + 48$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 2554b413

A.
$$y = 6x + 8$$

B.
$$y = 6x + 48$$

C.
$$y = 8x + 6$$

D.
$$y = 8x + 48$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 2554b413

A.
$$y = 6x + 8$$

B.
$$y = 6x + 48$$

C.
$$y = 8x + 6$$

D.
$$y = 8x + 48$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 2554b413

A.
$$y = 6x + 8$$

B.
$$y = 6x + 48$$

C.
$$y = 8x + 6$$

D.
$$y = 8x + 48$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 2554b413

A.
$$y = 6x + 8$$

B.
$$y = 6x + 48$$

C.
$$y = 8x + 6$$

D.
$$y = 8x + 48$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: ed18c4f7

- A. 3n-2
- B. 3n + 2
- C. 2n-3
- D. 2n + 3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: ed18c4f7

- A. 3n-2
- B. 3n + 2
- C. 2n-3
- D. 2n + 3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: ed18c4f7

- A. 3n-2
- B. 3n + 2
- C. 2n-3
- D. 2n + 3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: ed18c4f7

- A. 3n-2
- B. 3n + 2
- C. 2n-3
- D. 2n + 3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: ed18c4f7

- A. 3n-2
- B. 3n + 2
- C. 2n-3
- D. 2n + 3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3462d850

Marisol drove 3 hours from City A to City B. The equation below estimates the distance *d*, in miles, Marisol traveled after driving for *t* hours.

d = 45t

- A. Marisol took 45 trips from City A to City B.
- B. The distance between City A and City B is 45 miles.
- C. Marisol drove at an average speed of about 45 miles per hour.
- D. It took Marisol 45 hours to drive from City A to City B.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3462d850

Marisol drove 3 hours from City A to City B. The equation below estimates the distance *d*, in miles, Marisol traveled after driving for *t* hours.

d = 45t

- A. Marisol took 45 trips from City A to City B.
- B. The distance between City A and City B is 45 miles.
- C. Marisol drove at an average speed of about 45 miles per hour.
- D. It took Marisol 45 hours to drive from City A to City B.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3462d850

Marisol drove 3 hours from City A to City B. The equation below estimates the distance *d*, in miles, Marisol traveled after driving for *t* hours.

d = 45t

- A. Marisol took 45 trips from City A to City B.
- B. The distance between City A and City B is 45 miles.
- C. Marisol drove at an average speed of about 45 miles per hour.
- D. It took Marisol 45 hours to drive from City A to City B.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3462d850

Marisol drove 3 hours from City A to City B. The equation below estimates the distance *d*, in miles, Marisol traveled after driving for *t* hours.

d = 45t

- A. Marisol took 45 trips from City A to City B.
- B. The distance between City A and City B is 45 miles.
- C. Marisol drove at an average speed of about 45 miles per hour.
- D. It took Marisol 45 hours to drive from City A to City B.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 3462d850

Marisol drove 3 hours from City A to City B. The equation below estimates the distance *d*, in miles, Marisol traveled after driving for *t* hours.

d = 45t

- A. Marisol took 45 trips from City A to City B.
- B. The distance between City A and City B is 45 miles.
- C. Marisol drove at an average speed of about 45 miles per hour.
- D. It took Marisol 45 hours to drive from City A to City B.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: d9d83c02

- A. **5**
- B. **0**
- C. **-15**
- D. **-20**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: d9d83c02

- A. **5**
- B. **0**
- C. **-15**
- D. **-20**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: d9d83c02

- A. **5**
- B. **0**
- C. **-15**
- D. **-20**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: d9d83c02

- A. **5**
- B. **0**
- C. **-15**
- D. **-20**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: d9d83c02

- A. **5**
- B. **0**
- C. **-15**
- D. **-20**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3c4ce699

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3c4ce699

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3c4ce699

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3c4ce699

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 3c4ce699

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 9d9fe1e6

- A. The estimated height, in cm, of the fluid at the start of the experiment
- B. The estimated height, in cm, of the fluid at the end of the experiment
- C. The estimated change in the height, in cm, of the fluid each day
- D. The estimated number of days for all the fluid to evaporate

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 9d9fe1e6

- A. The estimated height, in cm, of the fluid at the start of the experiment
- B. The estimated height, in cm, of the fluid at the end of the experiment
- C. The estimated change in the height, in cm, of the fluid each day
- D. The estimated number of days for all the fluid to evaporate

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 9d9fe1e6

- A. The estimated height, in cm, of the fluid at the start of the experiment
- B. The estimated height, in cm, of the fluid at the end of the experiment
- C. The estimated change in the height, in cm, of the fluid each day
- D. The estimated number of days for all the fluid to evaporate

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 9d9fe1e6

- A. The estimated height, in cm, of the fluid at the start of the experiment
- B. The estimated height, in cm, of the fluid at the end of the experiment
- C. The estimated change in the height, in cm, of the fluid each day
- D. The estimated number of days for all the fluid to evaporate

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 9d9fe1e6

- A. The estimated height, in cm, of the fluid at the start of the experiment
- B. The estimated height, in cm, of the fluid at the end of the experiment
- C. The estimated change in the height, in cm, of the fluid each day
- D. The estimated number of days for all the fluid to evaporate

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 255996a6

$$T = 1,000 + 18h$$

- A. 16
- B. 32
- C. 55
- D. 88

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 255996a6

$$T = 1,000 + 18h$$

- A. 16
- B. 32
- C. 55
- D. 88

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 255996a6

$$T = 1,000 + 18h$$

- A. 16
- B. 32
- C. 55
- D. 88

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 255996a6

$$T = 1,000 + 18h$$

- A. 16
- B. 32
- C. 55
- D. 88

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 255996a6

$$T = 1,000 + 18h$$

- A. 16
- B. 32
- C. 55
- D. 88

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a1696f3e

- A. 30
- B. 22
- c. 11
- D. -23

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a1696f3e

- A. 30
- B. 22
- c. 11
- D. -23

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a1696f3e

- A. 30
- B. 22
- c. 11
- D. -23

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a1696f3e

- A. 30
- B. 22
- c. 11
- D. -23

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a1696f3e

- A. 30
- B. 22
- c. 11
- D. -23

Question ID dfa45424

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dfa45424

Tony spends \$80 per month on public transportation. A 10-ride pass costs \$12.50, and a single-ride pass costs \$1.50. If g represents the number of 10-ride passes Tony buys in a month and t represents the number of single-ride passes Tony buys in a month, which of the following equations best represents the relationship between g and t?

A.
$$g + t = 80$$

B.
$$g+t=1.50+12.50$$

C.
$$1.50g + 12.50t = 80$$

D.
$$12.50g + 1.50t = 80$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dfa45424

A.
$$g + t = 80$$

B.
$$g+t=1.50+12.50$$

C.
$$1.50g + 12.50t = 80$$

D.
$$12.50g + 1.50t = 80$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dfa45424

A.
$$g + t = 80$$

B.
$$g+t=1.50+12.50$$

C.
$$1.50g + 12.50t = 80$$

D.
$$12.50g + 1.50t = 80$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dfa45424

A.
$$g + t = 80$$

B.
$$g+t=1.50+12.50$$

C.
$$1.50g + 12.50t = 80$$

D.
$$12.50g + 1.50t = 80$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: dfa45424

A.
$$g+t=80$$

B.
$$g+t=1.50+12.50$$

C.
$$1.50g + 12.50t = 80$$

D.
$$12.50g + 1.50t = 80$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 915463e0

Normal body temperature for an adult is between 97.8°F and 99°F, inclusive. If

- A. 96.7°F
- B. 97.6°F
- C. 97.9°F
- D. 99.7°F

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 915463e0

Normal body temperature for an adult is between 97.8°F and 99°F, inclusive. If

- A. 96.7°F
- B. 97.6°F
- C. 97.9°F
- D. 99.7°F

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 915463e0

Normal body temperature for an adult is between 97.8°F and 99°F, inclusive. If

- A. 96.7°F
- B. 97.6°F
- C. 97.9°F
- D. 99.7°F

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 915463e0

Normal body temperature for an adult is between 97.8°F and 99°F, inclusive. If

- A. 96.7°F
- B. 97.6°F
- C. 97.9°F
- D. 99.7°F

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 915463e0

Normal body temperature for an adult is between 97.8°F and 99°F, inclusive. If

- A. 96.7°F
- B. 97.6°F
- C. 97.9°F
- D. 99.7°F

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 89541f9b

Which of the following ordered pairs (x, y) satisfies

- 1. (1, 1)
- 2. (2, 5)
- 3. (3, 2)
- A. I only
- B. II only
- C. I and II only
- D. I and III only

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 89541f9b

Which of the following ordered pairs (x, y) satisfies

- 1. (1, 1)
- 2. (2, 5)
- 3. (3, 2)
- A. I only
- B. II only
- C. I and II only
- D. I and III only

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 89541f9b

Which of the following ordered pairs (x, y) satisfies

- 1. (1, 1)
- 2. (2, 5)
- 3. (3, 2)
- A. I only
- B. II only
- C. I and II only
- D. I and III only

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 89541f9b

Which of the following ordered pairs (x, y) satisfies

- 1. (1, 1)
- 2. (2, 5)
- 3. (3, 2)
- A. I only
- B. II only
- C. I and II only
- D. I and III only

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 89541f9b

Which of the following ordered pairs (x, y) satisfies

- 1. (1, 1)
- 2. (2, 5)
- 3. (3, 2)
- A. I only
- B. II only
- C. I and II only
- D. I and III only

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ee031767

A.
$$b+g=881$$

$$26b + 35g = 881$$
B. $b + g = 28$

$$26g + 35b = 28$$
c. $b + g = 881$

$$26g + 35b = 881$$
D. $b+g=28$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ee031767

A.
$$b+g=881$$

$$26b + 35g = 881$$
B. $b + g = 28$

$$26g + 35b = 28$$
c. $b + g = 881$

$$26g + 35b = 881$$
D. $b+g=28$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ee031767

A.
$$b+g=881$$

$$26b + 35g = 881$$
B. $b + g = 28$

$$26g + 35b = 28$$
c. $b + g = 881$

$$26g + 35b = 881$$
D. $b+g=28$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ee031767

A.
$$b+g=881$$

$$26b + 35g = 881$$
B. $b + g = 28$

$$26g + 35b = 28$$
c. $b + g = 881$

$$26g + 35b = 881$$
D. $b+g=28$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ee031767

A.
$$b+g=881$$

$$26b + 35g = 881$$
B. $b + g = 28$

$$26g + 35b = 28$$
c. $b + g = 881$

$$26g + 35b = 881$$
D. $b+g=28$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 84d0d07e

A.
$$15s + 25p \le 120$$

B.
$$15s + 25p \ge 120$$

C.
$$25s + 15p \le 120$$

D.
$$25s + 15p \ge 120$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 84d0d07e

A.
$$15s + 25p \le 120$$

B.
$$15s + 25p \ge 120$$

C.
$$25s + 15p \le 120$$

D.
$$25s + 15p \ge 120$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 84d0d07e

A.
$$15s + 25p \le 120$$

B.
$$15s + 25p \ge 120$$

C.
$$25s + 15p \le 120$$

D.
$$25s + 15p \ge 120$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 84d0d07e

A.
$$15s + 25p \le 120$$

B.
$$15s + 25p \ge 120$$

C.
$$25s + 15p \le 120$$

D.
$$25s + 15p \ge 120$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 84d0d07e

A.
$$15s + 25p \le 120$$

B.
$$15s + 25p \ge 120$$

C.
$$25s + 15p \le 120$$

D.
$$25s + 15p \ge 120$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a987ae4

If
$$\frac{2n}{5} = 10$$
, what is the

- A. 24
- B. 49
- C. 50
- D. 99

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a987ae4

If
$$\frac{2n}{5} = 10$$
, what is the

- A. 24
- B. 49
- C. 50
- D. 99

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a987ae4

If
$$\frac{2n}{5} = 10$$
, what is the

- A. 24
- B. 49
- C. 50
- D. 99

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a987ae4

If
$$\frac{2n}{5} = 10$$
, what is the

- A. 24
- B. 49
- C. 50
- D. 99

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a987ae4

If
$$\frac{2n}{5} = 10$$
, what is the

- A. 24
- B. 49
- C. 50
- D. 99

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b2de69bd

х	у
1	5
2	7
3	9
4	11

A.
$$y = 2x + 3$$

B.
$$y = 3x - 2$$

C.
$$y = 4x - 1$$

D.
$$y = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b2de69bd

х	у
1	5
2	7
3	9
4	11

A.
$$y = 2x + 3$$

B.
$$y = 3x - 2$$

C.
$$y = 4x - 1$$

D.
$$y = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b2de69bd

х	у
1	5
2	7
3	9
4	11

A.
$$y = 2x + 3$$

B.
$$y = 3x - 2$$

C.
$$y = 4x - 1$$

D.
$$y = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b2de69bd

х	у
1	5
2	7
3	9
4	11

A.
$$y = 2x + 3$$

B.
$$y = 3x - 2$$

C.
$$y = 4x - 1$$

D.
$$y = 5x$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: b2de69bd

х	у
1	5
2	7
3	9
4	11

A.
$$y = 2x + 3$$

B.
$$y = 3x - 2$$

C.
$$y = 4x - 1$$

D.
$$y = 5x$$

Question ID e0d2e21a

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: e0d2e21a

Note: Figures not drawn to scale.

For the triangles shown, triangle ABC is dilated by a scale factor of ${\bf 3}$ to obtain triangle XYZ, where ${\bf d}={\bf 16}$. What is the measure, in degrees, of angle X?

- A. **20**
- B. **57**
- C. **60**
- D. **63**

Question ID d683a9cc

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

The figure shows the lengths, in centimeters (cm), of the edges of a right rectangular prism. The volume V of a right rectangular prism is ℓwh , where ℓ is

the length of the prism, w is the width of the prism, and h is the height of the prism. What is the volume, in cubic centimeters, of the prism?

- A. 36
- B. 24
- C. 12
- D. 11

Question ID 145337bc

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Right triangles and trigonometry	

ID: 145337bc

In the triangle shown, what is the value of x?

- A. **24**
- B. **45**
- C.48
- D. **69**

Question ID 36200a38

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: 36200a38

In the figure above, two sides of a triangle are extended. What is the value of x?

- A. 110
- B. 120
- C. 130
- D. 140

Question ID a490003a

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: a490003a

The width of a rectangle is 7 centimeters. The length of the rectangle is 40 centimeters longer than the width. What is the area, in square centimeters, of this rectangle?

- A. **7**
- B. **14**
- C. **54**
- D. **329**