Analisi Ammortizzata

Jocelyne Elias

https://www.unibo.it/sitoweb/jocelyne.elias

Moreno Marzolla

https://www.moreno.marzolla.name/

Dipartimento di Informatica—Scienza e Ingegneria (DISI) Università di Bologna Copyright © Alberto Montresor, Università di Trento, Italy http://cricca.disi.unitn.it/montresor/teaching/asd/
Copyright © 2021 Moreno Marzolla, Università di Bologna, Italy https://www.moreno.marzolla.name/teaching/ASD/

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Introduzione

Analisi ammortizzata

 Si considera il tempo richiesto nel caso peggiore per eseguire una sequenza di operazioni

Sequenza

- Operazioni costose e meno costose
- Se le operazioni più costose sono poco frequenti, allora il loro costo può essere compensato ("ammortizzato") da quelle meno costose

Importante differenza

- Analisi ammortizzata:
 - deterministica, su operazioni multiple (una sequenza di operazioni), caso pessimo
- Analisi del caso medio:
 - basata su probabilità, su singola operazione

Metodi per l'analisi ammortizzata

Metodo dell'aggregazione

- Si calcola la complessità O(f(n)) per eseguire n operazioni in sequenza nel caso pessimo
- Il costo ammortizzato di una singola operazione è O(f(n)/n)
- Metodo degli accantonamenti (o del contabile)
 - Alle operazioni vengono assegnati costi ammortizzati che possono essere maggiori/minori del loro costo effettivo
 - Si deve dimostrare che la somma dei costi ammortizzati è un <u>limite superiore</u> al costo effettivo
- Metodo del potenziale
 - Lo stato del sistema viene descritto tramite differenze di potenziale (non lo vediamo)

Esempio 1: Pila con multipop()

- Una pila con le solite operazioni...
 - push (x) aggiunge x in cima alla pila
 - pop () rimuove l'elemento che sta in cima alla pila
 - top () restituisce l'elemento in cima alla pila senza rimuoverlo
 - isEmpty () true se la pila è vuota, false altrimenti
- ...più una nuova operazione multipop (k) che
 - o rimuove i k elementi in cima,
 - o svuota la pila se contiene meno di k elementi

```
algoritmo multipop(integer k)
  while (not isEmpty()) and (k > 0) do
      pop()
      k \in k - 1
  endwhile
```

Esempio 1: analisi grossolana

- Se la pila contiene m elementi il ciclo while è iterato min(m, k) volte e quindi multipop (k) ha complessità O(min(m, k))
- Consideriamo una sequenza di n operazioni eseguite a partire dalla pila vuota
 - mix di push (), pop (), multipop ()
- L'operazione più costosa multipop () richiede tempo
 O(n) nel caso pessimo
- Moltiplicando per n otteniamo il limite superiore O(n²)
 per il costo della sequenza di n operazioni
 - da cui il costo ammortizzato sarebbe $O(n^2 / n) = O(n)$

Metodo dell'aggregazione

- Considerazioni per un'analisi più accurata
 - Un elemento può essere tolto solo dopo essere stato inserito
 - Quindi il numero totale di pop () (comprese quelle nella multipop ()) non può superare il numero totale di push ()
 - Quindi il <u>numero totale</u> di **pop ()** è sicuramente <u>minore di n</u>
- Nota (importante per il metodo di aggregazione)
 - Questa proprietà è vera per qualunque sequenza di qualunque lunghezza n
 - In altre parole, stiamo considerando il caso pessimo

Metodo dell'aggregazione

- Metodo dell'aggregazione
 - Costo per eseguire i pop () all'interno di tutte le multipop (): minore di n, quindi O(n)
 - Costo per eseguire le altre operazioni (*push*, *top*, *isEmpty*, ...), qualunque esse siano: O(n)
 - Costo totale: O(n) + O(n) = O(n)
- Costo ammortizzato:
 - O(n) / n = O(1)

Esempio 2: contatore binario

- Contatore binario
 - Array A[0..k-1] di bit
 - La rappresentazione binaria di x ha il bit meno significativo in A[0] e quello più significativo in A[k - 1]

$$x = \sum_{i=0}^{k-1} 2^i \times A[i]$$

 Supponiamo che A venga usato per contare a partire da x = 0 usando l'operazione di incremento

```
algoritmo incrementa(A[0..k-1])
    i \leftarrow 0
    while i < k and A[i] = 1 do
        A[i] \leftarrow 0
        i \leftarrow i + 1
    endwhile
    if i < k then
        A[i] \leftarrow 1
endif
```

Esempio 2: funzionamento

X	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Costo	Totale
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	1	1
2	0	0	0	0	1	0	2	3
3	0	0	0	0	1	1	1	4
4	0	0	0	1	0	0	3	7
5	0	0	0	1	0	1	1	8
6	0	0	0	1	1	0	2	10
7	0	0	0	1	1	1	1	11
8	0	0	1	0	0	0	4	15
9	0	0	1	0	0	1	1	16
10	0	0	1	0	1	0	2	18
11	0	0	1	0	1	1	1	19
12	0	0	1	1	0	0	3	22
13	0	0	1	1	0	1	1	23
14	0	0	1	1	1	0	2	25
15	0	0	1	1	1	1	1	26
16	0	1	0	0	0	0	5	31

Esempio 2

- Analisi "grossolana"
 - Una singola operazione di incremento richiede tempo O(k) nel caso pessimo (per un qualche k)
 - Limite superiore O(nk) per una sequenza di n incrementi
- Considerazioni per un'analisi più accurata
 - Il tempo necessario ad eseguire l'intera sequenza è proporzionale al numero di bit che vengono modificati
 - Quanti bit vengono modificati complessivamente?

```
algoritmo incrementa(A[0..k-1])
    i \leftarrow 0
    while i < k and A[i] = 1 do
        A[i] \leftarrow 0
        i \leftarrow i + 1
    endwhile
    if i < k then
        A[i] \leftarrow 1
endif
```

Esempio 2: funzionamento

X	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Costo	Totale
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	1	1
2	0	0	0	0	1	0	2	3
3	0	0	0	0	1	1	1	4
4	0	0	0	1	0	0	3	7
5	0	0	0	1	0	1	1	8
6	0	0	0	1	1	0	2	10
7	0	0	0	1	1	1	1	11
8	0	0	1	0	0	0	4	15
9	0	0	1	0	0	1	1	16
10	0	0	1	0	1	0	2	18
11	0	0	1	0	1	1	1	19
12	0	0	1	1	0	0	3	22
13	0	0	1	1	0	1	1	23
14	0	0	1	1	1	0	2	25
15	0	0	1	1	1	1	1	26
16	0	1	0	0	0	0	5	31

Esempio 2 Metodo dell'aggregazione

- Dalla simulazione si vede che:
 - A[0] viene modificato ad ogni incremento del contatore,
 - A[1] viene modificato ogni due incrementi,
 - A[2] ogni 4 incrementi....
 - A[i] viene modificato ogni 2ⁱ incrementi
- Su una sequenza di n operazioni, A[i] viene modificato n/2ⁱ volte
- Quindi:
 - Costo aggregato: $\sum_{i=0}^{k-1} \frac{n}{2^i} < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n$
 - Costo ammortizzato: 2n / n = 2 = O(1)

Metodo degli accantonamenti o del contabile

- Si assegna un costo ammortizzato ad ognuna delle operazioni possibili
 - Nel metodo dell'aggregazione abbiamo calcolato un costo ammortizzato costante (O(1))
- Il costo ammortizzato può essere diverso dal costo effettivo
 - Le operazioni meno costose vengono caricate di un costo aggiuntivo detto credito
 - costo ammortizzato = costo effettivo + credito prodotto
 - I crediti accumulati saranno usati per pagare le operazioni più costose
 - costo ammortizzato = costo effettivo credito consumato

Come assegnare costi ammortizzati?

- Ricordate che lo scopo è:
 - dimostrare che la somma dei costi ammortizzati \hat{c}_i è un limite superiore alla somma dei costi effettivi c_i :

$$\sum_{i=1}^n c_i \leq \sum_{i=1}^n \hat{c}_i$$

- Alcuni punti da ricordare
 - La dimostrazione deve essere valida per tutte le sequenze di input (caso pessimo)

Esempio 1 (multipop) Metodo degli accantonamenti

Costi effettivi c

push() 1 pop() 1 multipop() min(k,m)

Costi ammortizzati ĉ

Push()	2 (1+1) 0 (1-1) 0 (1-1)
Pop()	0 (1-1)
multipop()	0 (1-1)

- Costi ammortizzati:
 - push():
 - una unità per pagare il costo effettivo,
 - una unità come credito associato all'elemento inserito
 - pop(), multipop():
 - usa l'unità di costo associata all'elemento da estrarre
 - quindi hanno costo ammortizzato zero

Esempio 1 (multipop) Metodo degli accantonamenti

Dimostrazione:

- qualunque sia la sequenza, ad ogni pop () corrisponde una push ()
- L'operazione push () ha pagato un credito per se stessa, e un credito per la pop () che eliminerà quell'elemento
- il numero di elementi è non-negativo, quindi anche il credito è non-negativo
- Caso peggiore: facciamo solo push () => n push ()
 - il costo totale ammortizzato è 2*n = O(n)
- Costo ammortizzato per singola operazione: O(n/n) = O(1)

Esempio 2 (contatore binario) Metodo degli accantonamenti

- Costo effettivo dell'operazione increment(): d
 (dove d è il numero di bit che cambiano valore)
- Costo ammortizzato dell'operazione increment(): 2
 - 1 per cambio del bit da 0 a 1 (costo effettivo)
 - 1 per il futuro cambio dello stesso bit da 1 a 0
- Ne segue che:
 - in ogni istante, il credito è pari al numero di bit 1 attualmente presenti
- Costo totale ammortizzato: O(n)

Esempio 2 (contatore binario)

Esempio 2 (contatore binario)

Array dinamici

- Un esempio più utile:
 - Spesso non si conosce a priori quanta memoria serve per memorizzare un array (tabella hash, heap, stack, ecc.)
 - Si alloca una certa quantità di memoria, per poi accorgersi che non basta
- Soluzione
 - Si alloca un buffer maggiore, si ricopia il contenuto del vecchio buffer nel nuovo e si rilascia il vecchio buffer
- Esempi
 - java.util.Vector, java.util.ArrayList
- Vediamo un esempio con uno stack (pila)

Interfaccia Pila

```
public interface Pila {
   /**
    * Verifica se la pila è vuota.
    */
   public boolean isEmpty();
   /**
    * Aggiunge l'elemento in cima
    */
   public void push(Object e);
   /**
    * Restituisce l'elemento in cima
    */
   public Object top();
   /**
    * Cancella l'elemento in cima
    */
   public Object pop();
```

Implementare una pila tramite array

```
public class PilaArray implements Pila
{
    private Object[] S = new Object[1];
    private int n = 0;

    public boolean isEmpty() {
        return n == 0;
    }

    public void push(Object e) { ... }
    public Object top() { ... }
    public Object pop() { ... }
}
```

PilaArray: metodo top()

```
public Object top()
{
   if (this.isEmpty())
      throw new EccezioneStrutturaVuota("Pila vuota");
   return S[n - 1];
}
```

Costo: *O*(1)

PilaArray: metodo push ()

```
public void push(Object e)
{

If (n == S.length) {

   Object[] temp = new Object[2 * S.length];

   for (int i = 0; i < n; i++)

        temp[i] = S[i];

   S = temp;

}

Raddoppio!

S[n] = e;

   n = n + 1;
}</pre>
```

Costo:??? O(1)/O(n)

Metodo del raddoppiamento/dimezzamento

PilaArray: metodo pop ()

```
public Object pop()
   if (this.isEmpty())
       throw new EccezioneStrutturaVuota("Pila vuota");
   n = n - 1;
                                                            Il numero di
   Object e = S[n];
                                                            elementi n è
   if (n > 1 \&\& n \le S.length / 4) {
                                                             inferiore o
       Object[] temp = new Object[S.length / 2];
                                                            uguale a un
       for (int i = 0; i < n; i++)
                                                            quarto della
           temp[i] = S[i];
                                                            capacità del
       S = temp;
                                                              vettore?
                                                                =>
   return e;
                                                              Dimezzo!
```

Costo: ??? O(1)/O(n)

Analisi delle operazioni push () e pop ()

Raddoppiamento/dimezzamento

Analisi delle operazioni push () e pop ()

- Nel <u>caso peggiore</u>, entrambe sono O(n)
- Nel <u>caso migliore</u>, entrambe sono O(1)
- Partendo dallo stack vuoto, quanto costano n push ()
 consecutive?

$$-1+2+4+...+n/2^i=O(n)$$

 Partendo da uno stack con n elementi, quanto costano n pop () consecutive?

$$- n/2 + n/4 + n/8 + ... + 2 + 1 = O(n)$$

Partendo dallo stack vuoto, quanto costano n push () consecutive?

Costo effettivo c_i di una operazione push():

$$c_i = \begin{cases} i & \exists k \in \mathbb{Z}_0^+ : i = 2^k + 1 \\ 1 & \text{altrimenti} \end{cases}$$

n	costo
1	1
2	$1 + 2^0 = 2$
3	$1 + 2^1 = 3$
4	1
5	$1 + 2^2 = 5$
6	1
7	1
8	1
9	$1 + 2^3 = 9$
10	1
11	1
12	1
13	1
14	1
15	1
16	1
17	$1 + 2^4 = 17$

Costo complessivo di n operazioni push():

$$T(n) = \sum_{i=1}^{n} c_i$$

$$= n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j$$

$$= n + 2^{\lfloor \log n \rfloor + 1} - 1$$

$$\leq n + 2^{\log n + 1} - 1$$

$$= n + 2n - 1 = O(n)$$

Costo Ammortizzato di una operazione push():

$$T(n)/n = \frac{O(n)}{n} = O(1)$$

 $2^{\log n+1} = 2*2^{\log n} =$ 2n perché il log è in base 2.

FINE

Analisi ammortizzata: il metodo dei crediti

- Associamo a ciascun elemento della struttura dati un numero di crediti
 - Un credito può essere utilizzato per eseguire O(1) operazioni elementari
- Quando creo un elemento la prima volta, "pago" un certo numero di crediti
- Userò quei crediti per pagare ulteriori operazioni su quell'elemento, in futuro

Analisi ammortizzata delle operazioni push () e pop ()

- L'inserimento di un elemento nello stack deposita 3 crediti sulla cella dell'array
- Quando devo raddoppiare
 - Sottraggo 2 crediti dalle celle nella seconda metà dell'array (prima del raddoppio);
 - Uso questi crediti per "pagare" la copia dei valori dall'array originale a quello "raddoppiato"
- Quando devo dimezzare
 - Sottraggo 1 credito dalle celle nel secondo quarto dell'array (prima del dimezzamento)
 - Uso questi crediti per "pagare" la copia

Analisi ammortizzata

Gli n/2 elementi presenti qui pagano 2 crediti ciascuno n Il nuovo elemento paga 3 crediti Raddoppio 2*n*

Analisi ammortizzata

Gli n/4 elementi che erano presenti qui pagano 1 credito ciascuno

Esempio (cont.)

Esempio (cont.)

Analisi ammortizzata: il metodo dei crediti

• Quindi:

 Nel caso peggiore, le operazioni possono avere costo O(n) se causano un raddoppio o un dimezzamento dell'array

Ma:

- Le operazioni "costose" sono rare e il loro costo può essere compensato da altre meno costose
- Il costo ammortizzato di push () e pop () su uno stack dinamico è O(1)