Lecture Notes for

Neural Networks and Machine Learning

Adaptive, Self-supervised, Multi-modal, & Multi-task Learning

Logistics and Agenda

- Logistics
 - Newest Lab uses multi-task / multi-modal learning
- Agenda
 - Adaptive Learning (last time)
 - Self-Supervised Learning (last time)
 - Paper Presentation: X-vectors (today)
 - Multi-modal/task Learning (today)
 - Techniques
 - Applications and domains
- Next Time:
 - Paper Presentation: Multi-task Methods in Chemistry

Consistency Loss

I'm from Canada, but live in the States now.

It took me a while to get used to writing boolean variables with an "Is" prefix, instead of the "Eh" suffix that Canadians use when programming.

For example:

MyObj.IsVisible

MyObj.VisibleEh

 $\underbrace{\text{cross entropy}}_{\mathbf{w}} \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{x})} + \lambda \underbrace{\mathbf{E}_{\mathbf{x} \in U}}_{\mathbf{E}_{\hat{\mathbf{x}} \leftarrow q(\hat{\mathbf{x}} \mid \mathbf{x})}} \left[\mathscr{D}_{\mathit{KL}} \left(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |\, p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}}) \right) \right] }_{\mathbf{no} \; \mathsf{back} \; \mathsf{prop}}$

Neural Network approximates $p(y|\mathbf{x})$ by \mathbf{w} Use labeled data to minimize network

Sample new \mathbf{x} from unlabeled pool with function q function q is augmentation procedure Minimize cross entropy of two models

Get accustomed to this notation

Update Model with Back-propagation along these paths

Unsupervised Data Augmentation (UDA) for Consistency Training, Xie et al., Neurlps 2019

Figure 2: Augmented examples using back-translation and RandAugment.

Augmentation (# Sup examples)	Sup (50k)	Semi-Sup (4k)
Crop & flip	5.36	16.17
Cutout	4.42	6.42
RandAugment	4.23	5.29

Table 1: Error rates on CIFAR-10.

Augmentation (# Sup examples)	Sup (650k)	Semi-sup (2.5k)
Х	38.36	50.80
Switchout	37.24	43.38
Back-translation	36.71	41.35

Table 2: Error rate on Yelp-5.

(a) CIFAR-10

Unsupervised Data Augmentation (UDA) for Consistency Training, Xie et al., Neurlps 2019

(b) SVHN

Method	Model	# Param	CIFAR-10 (4k)	SVHN (1k)
Π-Model (Laine & Aila, 2016)	Conv-Large	3.1M	12.36 ± 0.31	4.82 ± 0.17
Mean Teacher (Tarvainen & Valpola, 2017)	Conv-Large	3.1M	12.31 ± 0.28	3.95 ± 0.19
VAT + EntMin (Miyato et al., 2018)	Conv-Large	3.1M	10.55 ± 0.05	3.86 ± 0.11
SNTG (Luo et al., 2018)	Conv-Large	3.1M	10.93 ± 0.14	3.86 ± 0.27
VAdD (Park et al., 2018)	Conv-Large	3.1M	11.32 ± 0.11	4.16 ± 0.08
Fast-SWA (Athiwaratkun et al., 2018)	Conv-Large	3.1M	9.05	-
ICT (Verma et al., 2019)	Conv-Large	3.1M	7.29 ± 0.02	3.89 ± 0.04
Pseudo-Label (Lee, 2013)	WRN-28-2	1.5M	16.21 ± 0.11	7.62 ± 0.29
LGA + VAT (Jackson & Schulman, 2019)	WRN-28-2	1.5M	12.06 ± 0.19	6.58 ± 0.36
mixmixup (Hataya & Nakayama, 2019)	WRN-28-2	1.5M	10	-
ICT (Verma et al., 2019)	WRN-28-2	1.5M	7.66 ± 0.17	3.53 ± 0.07
MixMatch (Berthelot et al., 2019)	WRN-28-2	1.5M	6.24 ± 0.06	2.89 ± 0.06

Methods	SSL	10%	100%
ResNet-50 w. RandAugment	×	55.09 / 77.26 58.84 / 80.56	77.28 / 93.73 78.43 / 94.37
UDA (RandAugment)	1	68.78 / 88.80	79.05 / 94.49

Table 5: Top-1 / top-5 accuracy on ImageNet with 10% and 100% of the labeled set. We use image size 224 and 331 for the 10% and 100% experiments respectively.

Paper Presentation: X-Vectors and SincNet Fusion

Speaker Recognition using SincNet and X-Vector Fusion

Mayank Tripathi, Divyanshu Singh, and Seba Susan ^(⊠)[0000-0002-6709-6591]

Department of Information Technology
Delhi Technological University, Delhi 110042, India
{mayank_bt2k16,divyanshu_bt2k16}@dtu.ac.in, seba_406@yahoo.in

Multi-modal Review

Multi-modal == Multiple Data Sources

- Modal comes from the "sensor fusion" definition from Lahat, Adali, and Jutten (2015) for deep learning
- Using the Keras functional API, this is extremely easy to implement
 - ... and we have used it since CS7324!
- But now let's take a deeper dive and ask:
 - What are the different types of modalities that we might try?
 - Is there a more optimal way to merge information?
 - When? Early, Intermediate, and late fusion

Early and Late Stage Fusion

- **Early Fusion:** Merge sensor layers early in the process
- Assumption: there is some data redundancy, but modes are conditionally independent
- Problem: architecture parameter explosion
 - Need dimensionality reduction
 - Output

 Model

 Data Fusion

 Cata Fusion

 PCA

 PCA

 PCA

 Modality 1

 Modality 2

 Modality K

- Late Fusion: Merge sensor layers right before flattening
- Use Decision Fusion on outputs
- Assumption: little redundancy or conditional independence—just an ensemble architecture
- Problem: just separate classifiers, limited interplay

Ramamchandran and Taylor, 2017

Intermediate Fusion

- Merge sensor layers in soft way
- Assumption: some features interplay and others do not
- Problem: how to optimally tie layers together?

- 1. Stacked Auto-Encoders [Ding and Tao, 2015]
- 2. Early fuse layers that are correlated [Neverova et al. 2016]
- 3. Fully train each modality merge based on criterion of similarity in activations [Lu and Xu 2018]

Ramamchandran and Taylor, 2017

Multi-modal Merging

- Still an open research problem
- How to develop merging techniques that
 - Can handle exponentially many pairs of modalities
 - Automatically merge meaningful modes
 - Discard poor pairings
 - Selectively merge early or late (or dynamically)

Most current methods are still ad-hoc

https://arxiv.org/pdf/1709.01220.pdf

Neural Architecture Search for Mode Fusion

Pérez-Rúa, Juan-Manuel, Valentin Vielzeuf, Stéphane Pateux, Moez Baccouche, and Frédéric Jurie. "Mfas: Multimodal fusion architecture search." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6966-6975. 2019.

Approaches with Deep Learning

- Latent Space Transfer (universality)
 - From another domain, map to a similar latent space for the same task
 - Useful for unifying data based upon a new input mode when old mode is well understood
 - for example, biometric data
 - I have never seen a research paper on this...

Multi-Task Models

Multi-task learning overview

- For deep networks, simple idea: share parameters in early layers
- Used shared parameters as feature extractors

Train separate, unique layers for each task

Multi-task Learning Parameter Sharing

Task N

Pool Losses Over Multiple Batches From Multiple Tasks, Update via BackProp

Pool Losses
Over Multiple Batches
From Multiple Tasks,
Add Intra-Network
Similarity Loss
Update via BackProp

£ 1

Network N

Multi-task Optimization

Multi-Label per Input

Measure Loss for each label simultaneously Back propagate everything at one for a given batch

Multi-task Optimization

Single Task Label per Input

Next Time

- Multi-task demonstrations with various datasets
- Paper Presentations

Lecture Notes for

Neural Networks and Machine Learning

Multi-Modal and Multi-Task

Next Time:

Demo

Reading: Papers

