# Ocular disease mechanisms elucidated by genetics of human fetal retinal pigment epithelium gene expression

Lab Journal Theme<br/>07 - Gene Expression Analysis

Lisa Hu
414264
Bio-Informatica
Hanzehogeschool Groningen, ILST
Marcel Kempenaar
8 March 2022

# Contents

| 1 | Loading the data                                                                  | 2        |
|---|-----------------------------------------------------------------------------------|----------|
|   | Exploratory Data Analysis 2.1 Data sample                                         |          |
| 3 | Normalization                                                                     | 7        |
|   | Discovering Differentially Expressed Genes (DEGs) 4.1 Using Bioconductor Packages | <b>9</b> |

### 1 Loading the data

For decompressing the data, run the code chunks in the Rmd file that deem fit for your situation:

- If you downloaded the data from the official site: Decompress the data and run the Rscript data\_loading.R.
- ullet If you want to use the dataset delivered with the project: Run the  ${\tt decompress-dataset}$  code chunk.

```
#' Decompress the complete dataset
#' Use this chunk if you did not download the data from the site and want to use
#' the delivered gzipped dataset

## Set the count.file variable to the full path of the gene file
count.file <- ""
system(paste("gzip -d", count.file))</pre>
```

After decompressing the data, the data can be read:

```
## Read the dataset
dataset <- read.table("./gene_count.txt", sep = "\t", header = TRUE)
## Set rownames of the dataset to first column
row.names(dataset) <- dataset$Gene
## Remove the Gene column
dataset <- dataset[-1]

## Indices for dataset
glucose.data <- seq(1, 48, 2)
galactose.data <- seq(2, 49, 2)
groups <- factor(rep(1:2, times=24), labels = c("Glucose", "Galactose"))

## Colors for the two sample groups (red = galactose, blue = glucose)
group.cols <- hue_pal()(2)</pre>
```

# 2 Exploratory Data Analysis

## 2.1 Data sample

pander(dataset[0:5, 0:4], split.tables = 64)

Table 1: Table continues below

|                          | X1_glucose | X1_galactose |
|--------------------------|------------|--------------|
| **alignment_not_unique** | 0          | 0            |
| **ambiguous**            | 73052      | 71663        |
| $**$ no_feature**        | 6143654    | 3901459      |
| $**$ not_aligned**       | 0          | 0            |
| $**$ too_low_aQual**     | 0          | 0            |

|                          | $X2$ _glucose | $X2$ _galactose |
|--------------------------|---------------|-----------------|
| **alignment_not_unique** | 0             | 0               |
| **ambiguous**            | 90130         | 114748          |
| $**$ no_feature**        | 4560099       | 10675855        |
| $**$ not_aligned**       | 0             | 0               |
| **too_low_aQual**        | 0             | 0               |

pander(summary(dataset[,0:6]), split.tables = 64)

Table 3: Table continues below

| X1_glucose      | $X1$ _galactose | X2_glucose      |
|-----------------|-----------------|-----------------|
| Min. : 0        | Min. : 0        | Min. : 0        |
| 1st Qu.: 0      | 1st Qu.: 0      | 1st Qu.: 0      |
| Median: 0       | Median: 0       | Median: 0       |
| Mean: 719       | Mean: 549       | Mean:750        |
| 3rd Qu.: 60     | 3rd Qu.: 44     | 3rd Qu.: 63     |
| Max. $:6143654$ | Max. $:3901459$ | Max. $:4560099$ |

| $X2$ _galactose  | X3_glucose      | $X3$ _galactose |
|------------------|-----------------|-----------------|
| Min. : 0         | Min. : 0        | Min. : 0        |
| 1st Qu.: 0       | 1st Qu.: 0      | 1st Qu.: 0      |
| Median: 1        | Median: 0       | Median: 0       |
| Mean: 1147       | Mean : 622      | Mean: 679       |
| 3rd Qu.: 99      | 3rd Qu.: 47     | 3rd Qu.: 54     |
| Max. $:10675855$ | Max. $:5017129$ | Max. $:5650847$ |
|                  |                 |                 |

### 2.2 Plots for insight

### Glucose



### Galactose



## **Density plot**



```
layout(matrix(c(1,1,1,2,2,2), nrow = 6, ncol = 1, byrow = T))
## Barplot of first half of the data
x1 <- barplot(colSums(dataset[1:24] / 1e6), main = "Sequencing depth sample 1-12",
              xlab = "Sample", ylab = expression("Sequencing depth (x10"^6*")"),
              ylim = c(0, 70), las = 2, col = group.cols, xaxt = 'n')
text(x = x1, y = colSums(dataset[1:24]/1e6),
     label = round(colSums(dataset[1:24]/ 1e6),0), pos = 3)
axis(1, at = x1, labels = rep(1:12, each = 2), tick = FALSE, cex = 0.6)
legend("topright", c("Glucose", "Galactose"), col = group.cols, pch = 19)
## Rest of the data
x2 <- barplot(colSums(dataset[25:48] / 1e6), main = "Sequencing depth sample 13-24",
              xlab = "Sample", ylab = expression("Sequencing depth (x10"^6*")"),
              ylim = c(0, 60), las = 2, col = group.cols, xaxt = 'n')
text(x = x2, y = colSums(dataset[25:48]/1e6),
     label = round(colSums(dataset[25:48]/ 1e6), 0), pos = 3)
axis(1, at = x1, labels = rep(13:24, each = 2), tick = FALSE, cex = 0.6)
```

#### Sequencing depth sample 1-12



### Sequencing depth sample 13-24



### 3 Normalization



```
dds <- assay(ddsMat)
poisd <- PoissonDistance(t(dds), type="deseq")
## Extract matrix with distances
poisDistMatrix <- as.matrix(poisd$dd)
## Calculate MDS for X- and Y- coordinates
mdsPoisData <- data.frame(cmdscale(poisDistMatrix))</pre>
```

## Multi Dimensional Scaling



# 4 Discovering Differentially Expressed Genes (DEGs)

## 4.1 Using Bioconductor Packages

```
design <- model.matrix(~ groups)
design</pre>
```

| ##             | (Intercept) | groupsGalactose |
|----------------|-------------|-----------------|
| ## 1           | 1           | 0               |
| ## 2           | 1           | 1               |
| ## 3           | 1           | 0               |
| ## 4           | 1           | 1               |
| ## 5           | 1           | 0               |
| ## 6           | 1           | 1               |
| ## 7           | 1           | 0               |
| ## 8           | 1           | 1               |
| ## 9           | 1           | 0               |
| ## 10          | 1           | 1               |
| ## 11          | 1           | 0               |
| ## 12<br>## 13 | 1<br>1      | 1               |
| ## 13<br>## 14 | 1           | 1               |
| ## 15          | 1           | 0               |
| ## 16          | 1           | 1               |
| ## 17          | 1           | 0               |
| ## 18          | 1           | 1               |
| ## 19          | 1           | 0               |
| ## 20          | 1           | 1               |
| ## 21          | 1           | 0               |
| ## 22          | 1           | 1               |
| ## 23          | 1           | 0               |
| ## 24          | 1           | 1               |
| ## 25          | 1           | 0               |
| ## 26<br>## 27 | 1<br>1      | 1               |
| ## 28          | 1           | 1               |
| ## 29          | 1           | 0               |
| ## 30          | 1           | 1               |
| ## 31          | 1           | 0               |
| ## 32          | 1           | 1               |
| ## 33          | 1           | 0               |
| ## 34          | 1           | 1               |
| ## 35          | 1           | 0               |
| ## 36          | 1           | 1               |
| ## 37          | 1           | 0               |
| ## 38          | 1<br>1      | 1               |
| ## 39<br>## 40 | 1           | 1               |
| ## 40          | 1           | 0               |
| ## 42          | 1           | 1               |
| ## 43          | 1           | 0               |
| ## 44          | 1           | 1               |
| ## 45          | 1           | 0               |
| ## 46          | 1           | 1               |
|                |             |                 |