Desarda Condenada

Descrida Coordonada com Otimezajas de Comprimon Lo do Pesso

Métodos de Gradiente

Falamos sobre miminitajas. Se estamos no ponto $x^{(p)}$ com $F(x^{(p)})$, antignadiente $-\nabla F(x^{(p)})$ permite chegar ao ponto $x^{(p+1)}$ com $F(x^{(p+1)}) < F(x^{(p)})$.

Pana qualquer metodo namerico:

$$\chi(p+1) = \chi(p) + (ape(p)), p=0,1,2,...$$
Para mosso caso (votor unitario

e(p) = - $\frac{\nabla F(x(p))}{|\nabla F(x(p))|}$ due caractoriza

 $|\nabla F(x|P)| = \left| \frac{1}{2} \left| \frac{\partial F(x(P))}{\partial x_{i}} \right|^{2}$

Tellus $\chi_{i}^{(p+1)} = \chi_{i}^{(p)} - q_{p} \frac{\partial F(\chi(p))}{\partial \chi_{i}}$ $\frac{\partial F(\chi(p))}{\partial \chi_{i}} = \frac{\partial F(\chi(p))}{\partial \chi_{i}}$

 $\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial$

$$F(x_{2}, \chi_{3}) = \frac{1}{110^{2}} \left[(65 - 3_{2} - \chi_{3})^{2} Q_{1} + (55 - 3_{2} - \chi_{3})^{2} Q_{2} + (30 - \chi_{1})^{2} Q_{1}^{3} + \chi_{2}^{2} Q_{1}^{4} + (5 - \chi_{3})^{2} Q_{1}^{5} + \chi_{3}^{2} Q_{1}^{6} \right]$$

$$+ (30 - \chi_{1})^{2} Q_{1}^{3} + \chi_{2}^{2} Q_{1}^{4} + (5 - \chi_{3})^{2} Q_{1}^{5} + \chi_{3}^{2} Q_{1}^{6} \right]$$

$$Teucos \qquad \chi_{1}^{(0)} = \chi_{3}^{(0)} = \emptyset \text{ Hvan}, \quad q_{p} = a = 5 \text{ Hvan}$$

$$\frac{\partial F(\chi_{1}, \chi_{3})}{\partial \chi_{2}} = \frac{1}{110^{2}} \left[-53 + 2\chi_{1} + Q_{1} G_{3} + Q_{1} G_{3} \right]$$

$$\frac{\partial F(\chi_{1}, \chi_{3})}{\partial \chi_{3}} = \frac{1}{110^{2}} \left[-40 + Q_{1} G_{3} + Q_{1} G_{3} \right]$$

$$\frac{\partial F(\chi_{2}^{(0)}, \chi_{3}^{(0)})}{\partial x_{2}} = \frac{1}{10^{2}} \left[-53 \right] = -0.00438$$

$$\frac{\partial F(\chi_{2}^{(0)}, \chi_{3}^{(0)})}{\partial x_{3}} = \frac{1}{10^{2}} \left[-40 \right] = -0.00321$$

$$\left[\frac{\partial F(\chi_{2}^{(0)}, \chi_{3}^{(0)})}{\partial x_{2}} \right]^{2} + \left[\frac{\partial F(\chi_{2}^{(0)}, \chi_{3}^{(0)})}{\partial x_{3}} \right]^{2} = 0.00548$$

$$2_{1}^{(4)} = 0 - 5 - \frac{-900438}{0,00548} = 4,00$$

$$\chi_3^{(1)} = 0-5 - \frac{900321}{900548} = 3.02$$

$$\frac{\partial F(\chi_{2}^{(1)}, \chi_{3}^{(4)})}{\partial \chi_{2}} = \frac{1}{110^{2}} \left[-53 + 2.4 + 0.6.3.02 \right] = -0.0057$$

$$\frac{\partial F(\chi_{2}^{(1)}, \chi_{3}^{(1)})}{\partial \chi_{3}} = \frac{1}{110^{2}} \left[-40 + 0.6.4 + 7.8.3.02 \right] = -0.00241$$

$$\left[\frac{\partial F(\lambda_{2}^{(4)}, \lambda_{3}^{(4)})}{\partial x_{2}}\right]^{2} + \left[\frac{\partial F(\lambda_{2}^{(4)}, \lambda_{3}^{(4)})}{\partial x_{3}^{2}}\right]^{2} = 0.00430$$

$$\chi_{2}^{(2)} = 4.00 - 5 \frac{-0.00357}{0.00430} = 8.15$$

$$\chi_{3}^{(2)} = 3.02 - 5 \frac{-0.00430}{0.00430} = 5.82$$

Métodos da segunda ordem permitem otimmos o comprimento do passo.

Criterios para Parar Cailculos Se o timmajos condicional ent | F(x(P+1)) - F(x(P)) | < & Malods locais = no consogue prover o futuro Usa motodos locais pera chosor no slobel.

Me todos de Gradiente com Rs

1. Me todo de projeção de gradiente.

Se no processo da solução do proflecia eau Rs, encontração o ponto $\chi^{(r+1)}$, que não perteuje à IZ ($\chi^{(r+1)} \neq IZ$), en +qo é possível achar o ponto $\chi^{(r+1)} \in IZ$;

7 (DHI) = Pr (x(P) - ap (x(P)) |), p=912,-

onde Fré a projejon na IZ.

Sove de sissipois (n+1)

Cradio-to no sabo sobre rostri çãos a vicaversa.

Metodos de Gradiente com l's 2. Mébodo de Gradiente Condicional problema de churresco Tres lojas de carue, Presos 12 16 14 RS/KJ Fla) = 12 Di, + 160, + 140/3 ¿ doic 20 0 < 01, <10 0 = 1/2 = 12 0 = 2/3 = 8 Corração $\lambda_1 + \lambda_2 + \lambda_3 = 25$ 3/= 10 F(2)=1622+1423 0= 2 = 12 0-2713 = 8 Dr + 23 =15 pertence à 23 = 8 260=7 x(b) E I podelios para qualquer pouto couster gradiente $\nabla F(x(b)) = \left(\frac{\partial F(x(b))}{\partial x_i}, \frac{\partial F(x(b))}{\partial x_i}, \frac{\partial F(x(b))}{\partial x_i}\right) = \left(\frac{\partial F(x(b))$ Temos FO huarrada

F(2) = 2F(2(0)) 21+ 2F(2(0)) 2+ + 2F(2(0)) 24

Essa to junto com Rs gena um problemen de propanager linear.

Resolvendo esse problema podemos obter uma soluzar Xo.

A soley as word x (pth) do problems of chicial of ondo of x (pth) x (

 $0 < a_p < 1$

Se ap=0, en tao

2 (pt1)= x(p)

Se ap=1, eater
supple supple

Exemplo: F(x)=900749x, + 901104x,2+0,01294x2+902244x,2+ + 0,00973 213 + 0,00797 23 - 7 chin 0=23 =1,2 7/2+X2+X3=18 O ponto inicial é 200, x, (6) 0, x, (6) 0, x, (6) = 97 VF(x)= [(0,00749+0,02268 N) € (0,01294+0,0448822). (200973+0,01594x3) 7 = (200) = [9020738 p.03538 902089] Te mos um problems de programas so lince f(a)=0,020738x+Q03588x+Q0208923-0 = 72 = 0,5 O = 23 = 12 DI, + XL + Xs = 18

2,00 = 0) Coordonades do um 2,00 = 0) vartico

Sabshiturus ug FO:

 $F(a_{i}) = 0.00749 \cdot 0.6 + 0.01104 \cdot 0.6^{2} + 0.00794(0.7 - 0.74) + 0.002244(0.7 - 0.74)^{2} + 0.00973(0.7 + 0.54) + 0.00797(0.7 + 0.74)^{2} =$

=0,02412647-90072469,+900760259,2

$$\frac{dF(a_i)}{da_i} = -0.007246 + 0.0152050 a_i = 0$$

$$a_i = \frac{0.007246}{0.0152050} = 0.4766$$

 $\chi_{s}^{(4)} = 0.6$ $\chi_{s}^{(4)} = 0.5 - 0.5$