Final Model(?)

Edward J. Lee

2025-04-05

Usual Data Cleaning

```
library(NHANES) # NHANES dataset
library(dplyr) # Data wrangling
library(ggplot2) # Visualization
library(car)
              # Multicollinearity check (VIF)
library(ggResidpanel) # Advanced diagnostic plots
library(knitr) #for kable
library(gridExtra) #for scatterplot matrix
# if you don't have it installed, do install_packages("NHANES")
data("NHANES")
nrow(NHANES) #10,000 observations
## [1] 10000
# remove babies (ages 0-3)
nhanes_filtered <- NHANES %>% filter(Age > 20,
                                     Height > 0,
                                     Weight > 0,
                                     BPDia1 > 10,
                                     BPDia2 > 10,
                                     BPDia3 > 10,
                                     BPDiaAve > 10,
                                     BPSys1 > 10,
                                     BPSys2 > 10,
                                     BPSys3 > 10,
                                     BPSysAve > 10,
                                     TotChol > 0)
nrow(nhanes_filtered) #7094 observations
## [1] 5989
# remove NA entries and only select columns of interest
nhanes_data <- nhanes_filtered %>%
  dplyr::select(Height, Age, Weight, BPSysAve, BPDiaAve,
                TotChol, SmokeNow, PhysActiveDays) %>%
  na.omit()
# categorical predictors
nhanes_data$SmokeNow <- as.factor(nhanes_data$SmokeNow)</pre>
```

Box-Cox Transformation and Polynomial Term


```
pb.lambda <- pb.b$x[which.max(pb.b$y)]

pb.log_product <- sum(log(pb_data$TotChol))
pb.geo_mean <- exp(pb.log_product/n)

pb.TotChol <- pb.geo_mean^(1-pb.lambda)*(pb_data$TotChol^pb.lambda - 1)/pb.lambda</pre>
```

```
p.BXCX.frame <- pb_data %>%
  dplyr::select(-TotChol) %>%
  mutate(pb.TotChol = pb.TotChol)
p.BXCX.model <- lm(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve +
                         BPDiaAve + SmokeNow + PhysActiveDays,
                        data = p.BXCX.frame)
summary(p.BXCX.model)
##
## Call:
## lm(formula = pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve +
##
       BPDiaAve + SmokeNow + PhysActiveDays, data = p.BXCX.frame)
##
## Residuals:
      Min
               1Q Median
                               3Q
##
## -4.5764 -0.6158 -0.0084 0.6574 3.8416
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                 4.6682540 0.6104391 7.647 4.01e-14 ***
## (Intercept)
                 0.0993535 0.0112143 8.860 < 2e-16 ***
## Age
                 -0.0009453 0.0001135 -8.331 < 2e-16 ***
## pb.Age2
## Weight
                 -0.0006614 0.0016858 -0.392 0.69487
                 -0.0087700 0.0033509 -2.617 0.00897 **
## Height
## BPSysAve
                  0.0057045 0.0019803 2.881 0.00404 **
## BPDiaAve
                  0.0128515 0.0028416
                                        4.523 6.67e-06 ***
## SmokeNowYes
                  0.0127777 0.0596913 0.214 0.83053
## PhysActiveDays -0.0128377 0.0154387 -0.832 0.40583
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9849 on 1280 degrees of freedom
## Multiple R-squared: 0.1264, Adjusted R-squared: 0.121
## F-statistic: 23.15 on 8 and 1280 DF, p-value: < 2.2e-16
#FITTED AND RESIDUAL VALUES FROM TRANSFORMED
pb.fitted <- fitted(p.BXCX.model)</pre>
pb.residuals <- resid(p.BXCX.model)</pre>
#DATA FRAME FOR PLOTTING
pb.plot_data <- data.frame(pb.fitted = pb.fitted, pb.residuals = pb.residuals)</pre>
#PAIRWISE PLOTS OF ORIGINAL MODEL
pairs(~pb.TotChol+Age+pb.Age2+Weight+Height+
       BPSysAve+BPDiaAve+SmokeNow+PhysActiveDays,
      data = p.BXCX.frame,
     main = "Pairwise ScatterPlots of Transformed Polynomial Model",
      col = "blue")
```

Pairwise ScatterPlots of Transformed Polynomial Model

Residual Plots

Residuals vs Fitted Values (BXCX and Poly)

Normal Q-Q Plot (BXCX and Poly)

Residuals vs Age (BXCX and Poly)

Residuals vs Weight (BXCX and Poly)

Residuals vs Height (BXCX and Poly)

Residuals vs BPSysAve (BXCX and Poly)

Residuals vs BPDiasAve (BXCX and Poly)


```
#RESIDUALS VS SmokeNow (BOXPLOT)
res_smoke_plot <- ggplot(
    p.BXCX.frame, aes(x = as.factor(SmokeNow), y = pb.residuals)) +
    geom_boxplot(fill = "lightblue", color = "darkblue", alpha = 0.7) +
    geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
    theme_minimal() +
    ggtitle("Residuals vs Current Smoker (BXCX and Poly)") +
    xlab("Currently Smokes") +
    ylab("Residuals") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))
    print(res_smoke_plot)</pre>
```

Residuals vs Current Smoker (BXCX and Poly)

Currently Smokes

```
#RESIDUALS VS PhysActiveDays (BOXPLOT)
res_active_plot <- ggplot(
   p.BXCX.frame,
   aes(x = as.factor(PhysActiveDays), y = pb.residuals)) +
   geom_boxplot(fill = "lightblue", color = "darkblue", alpha = 0.7) +
   geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
   theme_minimal() +
   ggtitle("Residuals vs Physically Active Days") +
   xlab("Days in a Week of Physical Activity") +
   ylab("Residuals") +
   theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))
   print(res_active_plot)</pre>
```


Standardized Residual Histogram

Standardized Residuals

```
leverage <- hatvalues(p.BXCX.model)</pre>
##LEVERAGE POINTS
p <- 8
high_lev \leftarrow 2*(p+1)/n
leverage_points <- p.BXCX.frame[leverage > high_lev,]
leverage_points <- leverage_points %>%
  mutate(row = row.names(leverage_points))
#FINDING OUTLIERS
st.residuals <- rstandard(p.BXCX.model)</pre>
outlier_points <- p.BXCX.frame[abs(st.residuals) > 4,]
#COOKS DISTANCE
cooks_value <- cooks.distance(p.BXCX.model)</pre>
f_{value} \leftarrow qf(0.50, 8, 1280)
cooks_points <- p.BXCX.frame[cooks_value > f_value,]
#DFFITS
dffits\_cutoff \leftarrow 2*(sqrt((p+1)/n))
dffits_value = dffits(p.BXCX.model)
dffits_points <- p.BXCX.frame[(abs(dffits_value) > dffits_cutoff),]
```

```
dffits_points <- dffits_points %>%
  mutate(row = row.names(dffits_points))
#DFBETAS
dfbetas_cutoff <- 2/sqrt(n)</pre>
dfbeta_frame <- as.data.frame(dfbetas(p.BXCX.model))</pre>
dfbeta_points <- round(dfbeta_frame[apply(</pre>
  abs(dfbeta_frame)>dfbetas_cutoff,1,any),],4)
dfbeta_points <- dfbeta_points %>%
  mutate(row = row.names(dfbeta_points))
#Problematic observations
influential_points <- c(728,823)
p.BXCX.frame[influential_points, ]
      Height Age Weight BPSysAve BPDiaAve SmokeNow PhysActiveDays pb.Age2
## 728 160.9 72 108.0
                                        52
                                                Yes
                                                                 5
                                                                      5184
                              132
## 823 180.3 36
                   64.8
                                        62
                                                Yes
                                                                 6
                                                                      1296
                              117
##
       pb.TotChol
## 728
          3.65555
## 823
         10.63743
clean.frame <- p.BXCX.frame %>%
dplyr::filter(!row_number() %in% influential_points)
clean_model <- lm(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve +</pre>
   BPDiaAve + SmokeNow + PhysActiveDays, data = clean.frame)
summary(clean_model)
##
## Call:
## lm(formula = pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve +
       BPDiaAve + SmokeNow + PhysActiveDays, data = clean.frame)
##
## Residuals:
      Min
                1Q Median
                                3Q
                                       Max
## -4.5691 -0.6185 0.0030 0.6555 3.1272
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  4.828e+00 6.056e-01 7.973 3.40e-15 ***
## Age
                  9.839e-02 1.111e-02
                                        8.855 < 2e-16 ***
## pb.Age2
                  -9.317e-04 1.124e-04 -8.287 2.91e-16 ***
## Weight
                  -3.742e-05 1.675e-03 -0.022 0.98218
## Height
                 -9.841e-03 3.326e-03 -2.959 0.00315 **
## BPSysAve
                  5.646e-03 1.962e-03
                                         2.878 0.00407 **
                  1.275e-02 2.818e-03
## BPDiaAve
                                         4.523 6.67e-06 ***
## SmokeNowYes
                  1.781e-02 5.923e-02
                                         0.301 0.76375
## PhysActiveDays -1.413e-02 1.531e-02 -0.923 0.35604
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.9757 on 1278 degrees of freedom
## Multiple R-squared: 0.129, Adjusted R-squared: 0.1236
## F-statistic: 23.66 on 8 and 1278 DF, p-value: < 2.2e-16</pre>
```

plots <- plot(p.BXCX.model)</pre>

Residuals vs Fitted

Fitted values
Im(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve + Smo .
Q-Q Residuals

Theoretical Quantiles Im(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve + Smo .

Im(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve + Smo .

Residuals vs Leverage

lm(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve + Smo .

Subset selection object

```
## Call: regsubsets.formula(pb.TotChol ~ ., data = clean.frame, nvmax = 8,
##
       nbest = 1, really.big = TRUE, method = "exhaustive")
## 8 Variables (and intercept)
##
                    Forced in Forced out
## Height
                        FALSE
                                    FALSE
## Age
                        FALSE
                                    FALSE
## Weight
                        FALSE
                                    FALSE
## BPSysAve
                        FALSE
                                    FALSE
## BPDiaAve
                        FALSE
                                    FALSE
## SmokeNowYes
                        FALSE
                                    FALSE
## PhysActiveDays
                        FALSE
                                    FALSE
                                    FALSE
## pb.Age2
                        FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
##
             Height Age Weight BPSysAve BPDiaAve SmokeNowYes PhysActiveDays pb.Age2
      (1)""
                     11 11 11 11
                                           "*"
                                                     11 11
## 1
      (1)""
                     "*" " "
                                 11 11
                                           11 11
                                                     11 11
                                                                   11 11
                                                                                   "*"
## 2
      (1)""
                                 11 11
                                           "*"
                                                                                   "*"
## 3
      (1)"*"
                                           "*"
                                                                                   "*"
## 4
                                 "*"
                                           "*"
## 5
      (1)"*"
                                                                                   "*"
                                 "*"
                                           "*"
                                                                                   "*"
## 6
      (1)"*"
## 7
      (1)"*"
                                 "*"
                                           "*"
                                                                   "*"
                                                                                   "*"
## 8 (1) "*"
                                 "*"
                                           "*"
                                                     "*"
                                                                   "*"
                                                                                   "*"
plot(best_subset,scale='adjr2')
   0.12 -
   0.12
   0.12 -
인 0.12 - 
8 0.12 -
   0.11
  0.087
  0.055
                       Height
                                       Weight
              (Intercept)
                               Age
                                                BPSysAve
                                                        BPDiaAve
                                                                SmokeNowYes
                                                                        PhysActiveDays
```

plot(best_subset,scale='bic');

plot(best_subset,scale='Cp')

AIC <- step(clean_model, direction="both")

```
## Start: AIC=-54.33
## pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve +
##
       SmokeNow + PhysActiveDays
##
##
                    Df Sum of Sq
                                     RSS
                                             AIC
## - Weight
                           0.000 1216.7 -56.334
                     1
                           0.086 1216.8 -56.244
## - SmokeNow
                     1
## - PhysActiveDays
                           0.811 1217.5 -55.476
                    1
## <none>
                                  1216.7 -54.335
## - BPSysAve
                           7.884 1224.5 -48.022
                     1
```

```
1
## - Height
                        8.333 1225.0 -47.550
                    1 19.475 1236.1 -35.897
## - BPDiaAve
## - pb.Age2
                    1
                      65.377 1282.0 11.028
## - Age
                      74.647 1291.3 20.300
                    1
##
## Step: AIC=-56.33
## pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve + BPDiaAve + SmokeNow +
      PhysActiveDays
##
##
                   Df Sum of Sq
                                  RSS
                                          AIC
## - SmokeNow
                      0.088 1216.8 -58.241
                   1
## - PhysActiveDays 1
                         0.811 1217.5 -57.476
## <none>
                               1216.7 -56.334
## + Weight
                    1
                        0.000 1216.7 -54.335
## - BPSysAve
                        7.936 1224.6 -49.967
                    1
## - Height
                    1
                      10.536 1227.2 -47.237
## - BPDiaAve
                      19.546 1236.2 -37.823
                    1
## - pb.Age2
                    1 65.904 1282.6 9.557
## - Age
                    1 75.216 1291.9 18.868
##
## Step: AIC=-58.24
## pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve + BPDiaAve + PhysActiveDays
##
                   Df Sum of Sq
##
                                  RSS
                                          AIC
## - PhysActiveDays 1
                         0.811 1217.6 -59.384
## <none>
                               1216.8 -58.241
## + SmokeNow
                    1
                         0.088 1216.7 -56.334
## + Weight
                         0.003 1216.8 -56.244
                   1
## - BPSysAve
                        8.071 1224.8 -51.731
                   1
## - Height
                    1 10.615 1227.4 -49.062
                    1 19.459 1236.2 -39.821
## - BPDiaAve
                      66.037 1282.8 7.779
## - pb.Age2
                    1
## - Age
                    1 75.131 1291.9 16.872
##
## Step: AIC=-59.38
## pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve + BPDiaAve
##
##
                   Df Sum of Sq
                                 RSS
                                          AIC
## <none>
                               1217.6 -59.384
## + PhysActiveDays 1
                         0.811 1216.8 -58.241
## + SmokeNow 1
                         0.088 1217.5 -57.476
## + Weight
                         0.000 1217.6 -57.384
                    1
## - BPSysAve
                   1
                         7.982 1225.5 -52.974
## - Height
                    1 10.444 1228.0 -50.391
## - BPDiaAve
                    1 19.562 1237.1 -40.870
                    1 65.411 1283.0 5.965
## - pb.Age2
## - Age
                    1
                        74.398 1292.0 14.949
summary(AIC)
##
## Call:
## lm(formula = pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve +
##
      BPDiaAve, data = clean.frame)
##
```

```
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -4.5880 -0.6170 -0.0140 0.6438 3.1057
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.8098341 0.5741846 8.377 < 2e-16 ***
              0.0974977 0.0110200 8.847 < 2e-16 ***
## Age
## pb.Age2
              -0.0009263 0.0001117 -8.296 2.70e-16 ***
## Height
              ## BPSysAve
              0.0056469 0.0019487 2.898 0.003821 **
              0.0127101 0.0028016 4.537 6.25e-06 ***
## BPDiaAve
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9749 on 1281 degrees of freedom
## Multiple R-squared: 0.1284, Adjusted R-squared: 0.125
## F-statistic: 37.73 on 5 and 1281 DF, p-value: < 2.2e-16
#PREDICTION ACCURACY
set.seed(123)
train_index <- sample(1:nrow(clean.frame), 0.7 * nrow(clean.frame))</pre>
train_data <- clean.frame[train_index, ]</pre>
test_data <- clean.frame[-train_index, ]</pre>
validation_model <- lm(pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve + BPDiaAve,
                       data = train data)
predictions <- predict(validation_model, newdata = test_data)</pre>
# Compare predictions to actual
mean((predictions - test_data$pb.TotChol)^2) # MSE
## [1] 0.9542581
sqrt(mean((predictions - test_data$pb.TotChol)^2)) # RMSE
## [1] 0.9768613
library(caret)
#K-Fold (10-Fold)
train_control <- trainControl(method = "cv", number = 10)</pre>
cv_model <- train(</pre>
 pb.TotChol ~ ., data = clean.frame,
 method = "lm",
 trControl = train_control
print(cv_model)
## Linear Regression
##
## 1287 samples
##
      8 predictor
## No pre-processing
```

```
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1158, 1159, 1158, 1158, 1158, 1159, ...
## Resampling results:
##
## RMSE Rsquared MAE
## 0.9770068 0.1348559 0.771403
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
```