Лабораторная работа №2

Задача о погоне

Горяйнова Алёна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Построение модели	7 9
5	подставим в точное решение угол, под которым движется лодка браконьеров для нахождения точки пересечения	12
6	точка пересечения лодки и катера для 2 случая	13
7	Выводы	14
Сп	исок литературы	15

Список иллюстраций

4.1	Траекория движения катера в 1 случае	10
4.2	Траекория движения катера и лодки	10
4.3	Траекория движения катера во 2 случае	11

1 Цель работы

Построить математическую модель для выбора правильной стратегии при решении примера задаче о погоне.

2 Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 15,5 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,5 раза больше скорости браконьерской лодки.

- 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Найти точку пересечения траектории катера и лодки

3 Теоретическое введение

Кривая погони — кривая, представляющая собой решение задачи о «погоне», которая ставится следующим образом. Пусть точка А равномерно движется по некоторой заданной кривой. Требуется найти траекторию равномерного движения точки Р такую, что касательная, проведённая к траектории в любой момент движения, проходила бы через соответствующее этому моменту положение точки А [wiki:bash?].

4 Выполнение лабораторной работы

Запишем уравнение описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).

Принимем за $t_0=0$, $x_0=0$ – место нахождения лодки браконьеров в момент обнаружения, $x_{k0}=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров x_{k0} ($\theta=x_{k0}=0$), а полярная ось r проходит через точку нахождения катера береговой охраны.

Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстояниих от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{k-x}{4.5v}$ (во втором случае $\frac{k+x}{4.5v}$). Так как время одно и то

же, то эти величины одинаковы. Тогда неизвестное расстояниех можно найти из следующего уравнения:

$$\dfrac{x}{v}=\dfrac{k-x}{4.5v}$$
 – в первом случае $\dfrac{x}{v}=\dfrac{k+x}{4.5v}$ – во втором

Отсюда мы найдем два значения $x_1=\frac{11.4}{5,5}$ и $x_2=\frac{11.4}{3,5}$, задачу будем решать для двух случаев.

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и - v_τ тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = v$.

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\dfrac{d\theta}{dt}$ на радиус $r, r\dfrac{d\theta}{dt}$. Получаем:

$$v_{\tau} = \sqrt{20.25v^2 - v^2} = \sqrt{19.25}v$$

Из чего можно вывести:

$$r\frac{d\theta}{dt} = \sqrt{19.25}v$$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = \sqrt{19.25}v \end{cases}$$

С начальными условиями для первого случая:

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{15.5}{5.5} \end{cases} \tag{1}$$

Или для второго:

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{15.5}{3.5} \end{cases}$$
 (2)

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{19.25}}$$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

4.1 Построение модели

В результате получаем такой рисунок (рис. 4.1):

Рис. 4.1: Траекория движения катера в 1 случае

В результате получаем такой рисунок (рис. 4.2):

Рис. 4.2: Траекория движения катера и лодки

Теперь перейдем к решению в случае 2.

В результате получаем такой рисунок (рис. ??):

В результате получаем такой рисунок (рис. 4.3):

Рис. 4.3: Траекория движения катера во 2 случае

y2(x)=(114exp((10x/sqrt(1581))+(10*pi/sqrt(1581))))/(31)

5 подставим в точное решение угол, под которым движется лодка браконьеров для нахождения точки пересечения

y2(fi-pi)

6 точка пересечения лодки и катера для2 случая

6.651143558300665 "'

7 Выводы

В процессе выполнения данной лабораторной работы я построила математическую модель для выбора правильной стратегии при решении примера задаче о погоне.

Список литературы