Joins

Ruirui Zhang, Tejashree Ladhake

The database we'll use

Joins

A JOIN combines rows from multiple tables

Based on a condition you specifies, which is always related columns

Syntax:

SELECT column1, columns2 FROM source JOIN target

ON source_col= target_col / USING(col)

Inner Join

INNER JOINS return all rows from multiple tables where the join condition is met.

INNER JOIN

Question: Find all the employees with department.

Syntax:

SELECT * **FROM** employee1 **JOIN** department **ON** employee1.DepartmentID = department.DepartmentID;

Left Join

LEFT JOINS returns all rows from the LEFT-hand table specified in the ON condition and **only** those rows from the other table where join condition is met.

LEFT JOIN

Question: Find all department for each employee.

(Some employees do not have any department, but we want to see them anyway)

Syntax:

SELECT * **FROM** employee1 **LEFT JOIN** department **ON** employee1.DepartmentID = department.DepartmentID;

Left Join

LEFT JOINS returns all rows from the LEFT-hand table specified in the ON condition and **only** those rows from the other table where join condition is met.

LEFT JOIN

Question: Who do not have any department?

Syntax:

SELECT * **FROM** employee1 **LEFT JOIN** department **ON** employee1.DepartmentID = department.DepartmentID WHERE employee1. DepartmentID IS NULL;

Right Join

RIGHT JOIN

RIGHT JOINS returns all rows from the RIGHT-hand table specified in the ON condition and **only** those rows from the other table where join condition is met.

Right and left outer joins are functionally equivalent. Neither provides any functionality that the other does not, so right and left outer joins may replace each other as long as the table order is switched.

Question: Find all department for each employee..

Syntax:

SELECT * **FROM** department **RIGHT JOIN** employee1 **ON** employee1.DepartmentID = department.DepartmentID;

Full Join

Conceptually, a **full join** combines the effect of applying both left and right joins

FULL JOIN

Question: Show all employees (Even those without department)

and all department (Even those without employee).

Syntax:

SELECT *

FROM department FULL JOIN employee1

ON employee1.DepartmentID = department.DepartmentID;

SELECT*

FROM department LEFT JOIN employee1

ON employee1.DepartmentID = department.DepartmentID

UNION

SELECT *

FROM department RIGHT JOIN employee1

ON employee1.DepartmentID =
department.DepartmentID;

Cross Join

CROSS JOIN returns the Cartesian Product of rows from tables in the join.

Question: Find all possible combinations of employees and departments.

Syntax:

SELECT * **FROM** employee1 **CROSS JOIN** department;

Natural Join

NATURAL JOIN implicitly compare all columns in both tables that have the same column-names in the joined tables

Question: Find the employees those have department assigned.

Syntax:

SELECT * **FROM** employee1 **NATURAL JOIN** department;