COMP90051 Statistical Machine Learning

Semester 2, 2016

Lecturer: Trevor Cohn

24. Hidden Markov Models & message passing

Looking back...

- Representation of joint distributions
- Conditional/marginal independence
 - Directed vs undirected
- Probabilistic inference
 - Computing other distributions from joint
- Statistical inference
 - Learn parameters from (missing) data
- Today: putting these all into practice...

Hidden Markov Models

Model of choice for sequential data. A form of clustering (or dimensionality reduction) for discrete time series.

The HMM (and Kalman Filter)

- Sequential observed outputs from hidden state
 - * states take discrete values (i.e., clusters)
 - * assumes discrete time steps 1, 2, ..., T

- The Kalman filter same with continuous Gaussian r.v.'s
 - * i.e., dimensionality reduction, but with temporal dynamic

HMM Applications

 NLP – part of speech tagging: given words in sentence, infer hidden parts of speech

"I love Machine Learning" \rightarrow noun, verb, noun, noun

Speech recognition: given waveform, determine phonemes

- Biological sequences: classification, search, alignment
- Computer vision: identify who's walking in video, tracking

Formulation

- Formulated as directed PGM
 - * therefore joint expressed as

$$P(\mathbf{o}, \mathbf{q}) = P(q_1)P(o_1|q_1)\prod_{i=2}^{I} P(q_i|q_{i-1})P(o_i|q_i)$$

- * bold variables are shorthand for vector of T values
- Parameters (for homogenous HMM)

$$\begin{array}{ll} A = \{a_{ij}\} & \text{transition probability matrix; } \forall i: \sum_{j} a_{ij} = 1 \\ B = \{b_i(o_k)\} & \text{output probability matrix; } \forall i: \sum_{k} b_i(o_k) = 1 \\ \Pi = \{\pi_i\} & \text{the initial state distribution; } \sum_{i} \pi_i = 1 \end{array}$$

Independence

- Graph encodes independence btw RVs
 - * conditional independence:

$$o_i \perp o_{\setminus i} \mid q_i$$

- * state q_i must encode all sequential context
- Markov blanket is local
 - for o_i blanket is q_i
 - * for q_i blanket is {o_i, q_{i-1}, q_{i+1}}

all other o's excluding i

Fundamental HMM Tasks

HMM Task	PGM Task
Evaluation. Given an HMM μ and observation sequence o , determine likelihood $\Pr(o \mu)$	Probabilistic inference
Decoding. Given an HMM μ and observation sequence o , determine most probable hidden state sequence q	MAP point estimate
Learning. Given an observation sequence o and set of states, learn parameters A, B, Π	Statistical inference

"Evaluation" a.k.a. marginalisation

Compute prob. of observations o by summing out q

$$P(\mathbf{o}|\mu) = \sum_{\mathbf{q}} P(\mathbf{o}, \mathbf{q}|\mu)$$

$$= \sum_{q_1} \sum_{q_2} \dots \sum_{q_T} P(q_1) P(o_1|q_1) P(q_2|q_1) P(o_2|q_2) \dots P(q_T|q_{T-1}) P(o_T|q_T)$$

Make this more efficient by moving the sums

$$P(\mathbf{o}|\mu) = \sum_{q_1} P(q_1)P(o_1|q_1) \sum_{q_2} P(q_2|q_1)P(o_2|q_2) \dots \sum_{q_T} P(q_T|q_{T-1})P(o_T|q_T)$$

Deja vu? Maybe we could do var. elimation...

Elimination = Backward Algorithm

$$P(\mathbf{o}|\mu) = \sum_{q_1} P(q_1)P(o_1|q_1) \sum_{q_2} P(q_2|q_1)P(o_2|q_2) \dots \sum_{q_T} P(q_T|q_{T-1})P(o_T|q_T)$$

Eliminate q_T

 $m_{T\to T-1}(q_{T-1})$

...

Eliminate q_2

"Eliminate" q_1

$$m_{2\rightarrow 1}(q_1)$$

$$P(\mathbf{o}|\mu) = \sum_{q_1} P(q_1)P(o_1|q_1)m_{2\to 1}(q_1)$$

 $m_{1\to 2}(q_2)$

Elimination = Forward Algorithm

$$P(\mathbf{o}|\mu) = \sum_{q_T} P(o_T|q_T) \sum_{q_{T-1}} P(q_T|q_{T-1}) P(o_T|q_T) \dots \sum_{q_1} P(q_2|q_1) P(q_1) P(o_1|q_1)$$

Eliminate q_1

...

Eliminate q_{T-1}

"Eliminate" q_{τ}

$$m_{T-1 \to T}(q_T)$$

$$P(\mathbf{o}|\mu) = \sum_{q_1} P(o_T|q_T) m_{T-1 \to T}(q_T)$$

Forward-Backward

- Both algorithms are just variable elimination using different orderings
 - * $q_T ... q_1 \rightarrow backward algorithm$
 - * $q_1 \dots q_T \rightarrow$ forward algorithm
 - * both have time complexity $O(Tl^2)$ where l is the label set
- Can use either to compute P(o)
 - * but even better, can use the m values to compute marginals (and pairwise marginals over q_i , q_{i+1})

$$P(q_i|\mathbf{o}) = \frac{1}{P(\mathbf{o})} m_{i-1 \to i}(q_i) P(o_i|q_i) m_{i+1 \to i}(q_i)$$
 forward backward

Statistical Inference (Learning)

- Learn parameters μ = (A, B, π), given observation sequence \mathbf{o}
- Called "Baum Welch" algorithm which uses EM to approximate MLE, argmax_{μ} P($o \mid \mu$):
 - 1. initialise μ^1 , let i=1
 - 2. compute expected marginal distributions $P(q_t|\mathbf{o}, \boldsymbol{\mu}^i)$ for all t; and $P(q_{t-1}, q_t|\mathbf{o}, \boldsymbol{\mu}^i)$ for t=2..T
 - 3. fit model μ^{i+1} based on expectations
 - 4. repeat from step 2, with *i=i+1*
- Expectations computed using forward-backward

Message Passing

Sum-product algorithm for efficiently computing marginal distributions over trees. An extension of variable elimination algorithm.

Inference as message passing

- Each m can be considered as a message which summarises the effect of the rest of the graph on the current node marginal.
 - * Inference = passing messages between all nodes

Inference as message passing

- Messages vector valued, i.e., function of target label
- Messages defined recursively: left to right, or right to left

Sum-product algorithm

- Application of message passing to more general graphs
 - applies to chains, trees and poly-trees (directed PGMs with >1 parent)
 - * 'sum-product' derives from:
 - **product** = product of incoming messages
 - **sum** = summing out the effect of RV(s) *aka* elimination
- Algorithm supports other operations (semi-rings)
 - * e.g., max-product, swapping **sum** for **max**
 - * Viterbi algorithm is the max-product variant of the forward algorithm for HMMs, solves the argmax_a $P(q \mid o)$

Application to Directed PGMS

Factor graphs

$$f_1(CTL) = P(CTL)$$

 $f_2(CTL, GRL, FG) = P(GRL|CTL, FG)$

Factor graph for the HMM

Effect of observed nodes incorporated into unary factors

Sum-Product over Factor Graphs

- Two types of messages :
 - between factors and RVs; and between RVs and factors
 - summarise a complete sub-graph
- E.g.,

$$m_{f_2 \to GRL}(GRL) = \sum_{CTL} \sum_{FG} f_2(GRL, CTL, FG) m_{CTL \to f_2}(CTL) m_{FG \to f_2}(FG)$$

- Structure inference as "gather-and-distribute"
 - gather messages from leaves of tree towards root
 - * then propagate message back down from root to leaves

Undirected PGM analogue: CRFs

- Conditional Random Field: Same model applied to sequences
 - observed outputs are words, speech, amino acids etc
 - states are tags: part-of-speech, phone, alignment...
 - * shared inference algo., i.e., sum-product / max-product
- CRFs are discriminative, model P(q/o)
 - * versus HMMs which are generative, P(q,o)
 - undirected PGM more general and expressive

Summary

- HMMs as example PGMs
 - formulation as PGM
 - independence assumptions
 - probabilistic inference using forward-backward
 - * statistical inference using expectation maximisation
- Generalised inference method for U-PGMs
 - * sum-product & max-product
 - factor graphs