ЛАБОРАТОРНАЯ РАБОТА № 6

Идентификация кинетических параметров при математическом моделировании химических превращений

Пример

Необходимо определить кинетические параметры изменения концентрации каждого компонента в течение 1 часа с шагом 0.1. Концентрация [C_9H_{20}] в начальный момент времени 1 моль/л, концентрации остальных компонентов равны нулю. Построить зависимость C(t) для каждого компонента.

Схема химических превращений:

Выражения для скоростей химических реакций по закону действующих масс:

$$r_1 = k_1 \cdot [C_9 H_{20}]$$

 $r_2 = k_2 \cdot [C_9 H_{18}]$

Система дифференциальных уравнений для описания изменения концентрации каждого компонента по времени:

$$\begin{cases} \frac{d[C_9H_{20}]}{dt} = -r_1\\ \frac{d[C_9H_{18}]}{dt} = r_1 - r_2\\ \frac{d[C_9H_{16}]}{dt} = r_2\\ \frac{d[H_2]}{dt} = r_1 + r_2 \end{cases}$$

Для представления кинетических уравнений, описывающих химические превращения компонентов удобно использовать стехиометрическую матрицу. Данная матрица представляет собой таблицу, в которой строки — это номера реакций, а столбцы — имена компонентов, участвующих в рассматриваемой схеме реакций. Компонент является реагентом в реакции r_1 , то в соответствующую ячейку записывается его стехиометрический коэффициент со знаком «минус», в том случае, если компонент является продуктом, то в соответствующую ячейку записывается его стехиометрический коэффициент для данной реакции со знаком «плюс». Если компонент не участвует в какой-либо реакции, то в соответствующую ячейку записывается значение 0.

Стехиометрическая матрица для рассматриваемой схемы реакций:

Реакция	C_9H_{20}	C_9H_{18}	C_9H_{16}	H_2
r_1	-1	1	0	1
r_2	0	-1	1	1

Для решения обратной кинетической задачи необходимы данные по изменению концентрации компонентов, участвующих в схеме химических реакций, с течением времени. Рассматриваемая задача сводится к минимизации функции:

$$F = \frac{1}{n} \sum_{i=1}^{n} (c_i - c_{i,pacq})^2$$

где c_i - значения концентрации компонентов из исходных данных; $c_{i,\mathrm{pac}^{\mathrm{u}}}$ - расчетные значения концентрации компонентов; n - количество значений в таблице с исходными данными (число строк \times число столбцов).

Концентрация компонентов, моль/л представлена ниже:

-				
Время, ч	C_9H_{20}	C_9H_{18}	C ₉ H ₁₆	H_2
0.1	0.8353	0.1563	0.0084	0.1732
0.2	0.6977	0.2715	0.0308	0.3331
0.3	0.5827	0.3540	0.0633	0.4805
0.4	0.4868	0.4104	0.1028	0.6161
0.5	0.4066	0.4463	0.1471	0.7405
0.6	0.3396	0.4662	0.1942	0.8546
0.7	0.2837	0.4736	0.2427	0.9591
0.8	0.2369	0.4716	0.2915	1.0545
0.9	0.1979	0.4625	0.3396	1.1417
1.0	0.1653	0.4481	0.3866	1.2213

Решение

1. Создадим текстовый файл, содержащий данные по изменению концентрации компонентов-участников рассматриваемых химических превращений во времени. Пусть это будет файл с именем data.txt. Сохраним данный файл в папке с нашим проектом.

≡ data	a.txt				
1	Время, ч	C9H20	C9H18	C9H16	H2
2	0.1 0.8353	0.1563	0.0084	0.1732	
3	0.2 0.6977	0.2715	0.0308	0.3331	
4	0.3 0.5827	0.3540	0.0633	0.4805	
5	0.4 0.4868	0.4104	0.1028	0.6161	
6	0.5 0.4066	0.4463	0.1471	0.7405	
7	0.6 0.3396	0.4662	0.1942	0.8546	
8	0.7 0.2837	0.4736	0.2427	0.9591	
9	0.8 0.2369	0.4716	0.2915	1.0545	
10	0.9 0.1979	0.4625	0.3396	1.1417	
11	1.0 0.1653	0.4481	0.3866	1.2213	
12					

Рисунок 1 – Файл, содержащий исходные данные по изменению концентрации каждого компонента во времени (data.txt)

Данные из этого файла будут считаны в последствии при помощи функции numpy.loadtxt().

- 2. Реализуем модуль kinetic.py (сохраним его как отдельный файл в папке с проектом), содержащий функцию kinetic_scheme(), которая необходима для расчета правых частей системы дифференциальных уравнений концентрации компонентов по времени. Листинг данного модуля представлен в Приложении 1.
- 3. Реализуем модуль main.py, в котором будут происходить все основные расчеты. Модуль main.py будет содержать следующие функции:
 - obj_func() целевая функция, подлежащая минимизации;
 - calculate_kinetic_constants() функция для расчета констант скоростей реакций при помощи метода Нелдера-Мида;
 - draw_plot() функция для построения графика изменения концентраций химических веществ от времени протекания реакций по исходным данным и результатам расчета.

Листинг данного модуля представлен в Приложении 2.

В результате расчета получены следующие значения констант:

$$k_1 = 1.79994932$$

 $k_2 = 1.03007677$

График изменения концентрации компонентов по времени (точками указаны экспериментальные значения, линиями – расчетные значения):

По результатам, представленным на рисунке, расчетные значения концентрации компонентов совпадают с экспериментальными, следовательно, константы скорости реакций были подобраны верно.

Задание

- 1. Составьте кинетическую модель в соответствии с представленной схемой превращений.
- 2. Решите полученную систему дифференциальных уравнений на заданном интервале по времени при заданных начальных концентрациях компонентов, участвующих в химических превращениях, при помощи функции scipy.integrate.solve_ivp().
- 3. Определите кинетические параметры химических превращений, используя метод Нелдера-Мида и генетический алгоритм на основе данных по наблюдаемым концентрациям химических веществ, участвующих в реакциях, при различном времени процесса.
- Постройте зависимости изменения концентраций химических веществ от времени протекания реакций по исходным данным и результатам расчета.

Вариант 1

Схема превращений:

$$C_{10}H_{22} = C_{10}H_{20} + H_2$$

 $C_{10}H_{20} = C_{10}H_{18} + H_2$

Начальные концентрации:

C ₁₀ H ₂₂	C ₁₀ H ₂₀	C ₁₀ H ₁₈	H ₂
1.0	0.0	0.0	0.0

Время процесса 1.0 сек.

Время, сек.	$C_{10}H_{22}$	$C_{10}H_{20}$	C ₁₀ H ₁₈	H_2
0.1	0.882497	0.112549	0.004954	0.122458
0.2	0.778800	0.202702	0.018498	0.239698
0.3	0.687290	0.273834	0.038876	0.351587
0.4	0.606523	0.328894	0.064583	0.458060
0.5	0.535250	0.370369	0.094381	0.559131
0.6	0.472363	0.400412	0.127225	0.654862
0.7	0.416866	0.420927	0.162207	0.745340
0.8	0.367882	0.433546	0.198571	0.830689
0.9	0.324655	0.439622	0.235723	0.911068
1.0	0.286508	0.440335	0.273157	0.986649

Вариант 2

Схема превращений:

$$C_{11}H_{24} = C_{11}H_{22} + H_2$$

 $C_{11}H_{22} = C_{11}H_{20} + H_2$

$ C_{11}H_{24} C_{11}H_{22} C_{11}H_{20} H_2$
--

0.8	0.1	0.1	0.0

Время процесса 1.0 сек.

Время, сек.	C ₁₁ H ₂₄	C ₁₁ H ₂₂	C ₁₁ H ₂₀	H ₂
0.1	0.720260	0.172199	0.107542	0.087282
0.2	0.648467	0.232803	0.118729	0.170262
0.3	0.583815	0.283238	0.132947	0.249132
0.4	0.525593	0.324735	0.149672	0.324079
0.5	0.473189	0.358338	0.168473	0.395285
0.6	0.426033	0.385012	0.188955	0.462922
0.7	0.383595	0.405651	0.210754	0.527158
0.8	0.345388	0.421070	0.233541	0.588153
0.9	0.310968	0.432005	0.257027	0.646059
1.0	0.279972	0.439030	0.280998	0.701026

Вариант 3

Схема превращений:

$$C_{12}H_{26} = C_{12}H_{24} + H_2$$

 $C_{12}H_{24} = C_{12}H_{22} + H_2$

Начальные концентрации:

$C_{12}H_{26}$	C ₁₂ H ₂₄	C ₁₂ H ₂₂	H_2
1.0	0.0	0.0	0.0

Время процесса 1.5 сек.

Время, сек.	C ₁₂ H ₂₆	C ₁₂ H ₂₄	C ₁₂ H ₂₂	H ₂
0.15	0.804527	0.180754	0.014719	0.210193
0.30	0.647262	0.300534	0.052204	0.404941
0.45	0.520733	0.374912	0.104355	0.583622
0.60	0.418956	0.415813	0.165231	0.746276
0.75	0.337032	0.432629	0.230339	0.893307
0.90	0.271153	0.432167	0.296680	1.025527
1.05	0.218183	0.419775	0.362042	1.143859
1.20	0.175526	0.399679	0.424795	1.249269
1.35	0.141217	0.374700	0.484083	1.342866
1.50	0.113622	0.347041	0.539336	1.425714

Вариант 4

Схема превращений:

$$\begin{split} C_{13}H_{28} &= C_{13}H_{26} + H_2 \\ C_{13}H_{26} &= C_{13}H_{24} + H_2 \end{split}$$

C40Hoo	CapHoo	C.aHa.	H _a
C ₁₃ i i ₂₈	C ₁₃ i i ₂₆	C ₁₃ i i ₂₄	1 12

- 4				
	1.0	0.0	0.0	0.0

Время процесса 2.0 сек.

Время, сек.	C ₁₃ H ₂₈	C ₁₃ H ₂₆	C ₁₃ H ₂₄	H ₂
0.2	0.637629	0.343481	0.018890	0.381261
0.4	0.406558	0.529700	0.063742	0.657184
0.6	0.259169	0.618828	0.122003	0.862834
0.8	0.165332	0.648634	0.186034	1.020702
1.0	0.105361	0.643538	0.251101	1.145740
1.2	0.067244	0.618173	0.314583	1.247338
1.4	0.042878	0.582219	0.374904	1.332026
1.6	0.027350	0.541318	0.431333	1.403983
1.8	0.017465	0.498969	0.483566	1.466101
2.0	0.011137	0.457303	0.531560	1.520423

Вариант 5

Схема превращений:

$$C_9H_{16} + H_2 = C_9H_{18}$$

 $C_9H_{18} + H_2 = C_9H_{20}$

Начальные концентрации:

C ₉ H ₁₆	H_2	C ₉ H ₁₈	C_9H_{20}
1.0	1.0	0.0	0.0

Время процесса 1.0 сек.

Время, сек.	C ₉ H ₁₆	H ₂	C ₉ H ₁₈	C_9H_{20}
0.1	0.757713	0.723147	0.207721	0.034566
0.2	0.619292	0.529340	0.290756	0.089952
0.3	0.533877	0.393634	0.325880	0.140243
0.4	0.477364	0.296735	0.342007	0.180629
0.5	0.438801	0.226331	0.348730	0.212469
0.6	0.412341	0.174581	0.349898	0.237761
0.7	0.392521	0.135459	0.350417	0.257062
0.8	0.377492	0.105570	0.350587	0.271921
0.9	0.366246	0.082733	0.350240	0.283513
1.0	0.357668	0.065073	0.349736	0.292595

Вариант 6

Схема превращений:

$$C_{10}H_{18} + H_2 = C_{10}H_{20}$$

 $C_{10}H_{20} + H_2 = C_{10}H_{22}$

	1 1		
C ₁₀ H ₁₈	H_2	C ₁₀ H ₂₀	C ₁₀ H ₂₂

- 4				
	1.0	1.0	0.0	0.0

Время процесса 1.5 сек.

Время, сек.	C ₁₀ H ₁₈	H ₂	C ₁₀ H ₂₀	C ₁₀ H ₂₂
0.15	0.730661	0.695581	0.234258	0.035081
0.30	0.585666	0.496531	0.325199	0.089135
0.45	0.499750	0.362552	0.363052	0.137198
0.60	0.444211	0.269242	0.380820	0.174969
0.75	0.407159	0.202813	0.388494	0.204347
0.90	0.381326	0.154374	0.391722	0.226952
1.05	0.362391	0.118200	0.393419	0.244190
1.20	0.348597	0.091133	0.393940	0.257464
1.35	0.338337	0.070618	0.393943	0.267720
1.50	0.330515	0.054838	0.393808	0.275677

Вариант 7

Схема превращений:

$$C_{11}H_{20} + H_2 = C_{11}H_{22}$$

 $C_{11}H_{22} + H_2 = C_{11}H_{24}$

Начальные концентрации:

C ₁₁ H ₂₀	H_2	C ₁₁ H ₂₂	C ₁₁ H ₂₄
1.0	1.0	0.0	0.0

Время процесса 2.0 сек.

Время, сек.	C ₁₁ H ₂₀	H ₂	C ₁₁ H ₂₂	C ₁₁ H ₂₄
0.2	0.707130	0.679345	0.265086	0.027785
0.4	0.555274	0.484477	0.373928	0.070797
0.6	0.467018	0.357034	0.422998	0.109984
0.8	0.409909	0.268514	0.448696	0.141395
1.0	0.371596	0.205261	0.462068	0.166336
1.2	0.344525	0.158612	0.469563	0.185912
1.4	0.324783	0.123517	0.473951	0.201266
1.6	0.310291	0.096935	0.476354	0.213355
1.8	0.299320	0.076423	0.477782	0.222898
2.0	0.290881	0.060434	0.478672	0.230447

Вариант 8

Схема превращений:

$$C_{12}H_{22} + H_2 = C_{12}H_{24}$$

 $C_{12}H_{24} + H_2 = C_{12}H_{26}$

•	•		
C ₁₂ H ₂₂	H_2	C ₁₂ H ₂₄	C ₁₂ H ₂₆

1.0	1.0	0.0	0.0

Время процесса 5.0 сек.

Время, сек.	C ₁₂ H ₂₂	H ₂	C ₁₂ H ₂₄	C ₁₂ H ₂₆
0.5	0.665873	0.654674	0.322928	0.011199
1.0	0.502873	0.473974	0.468228	0.028899
1.5	0.408112	0.362414	0.546190	0.045698
2.0	0.346932	0.286602	0.592738	0.060330
2.5	0.304690	0.231873	0.622494	0.072816
3.0	0.273961	0.190562	0.642640	0.083399
3.5	0.251084	0.158682	0.656514	0.092402
4.0	0.233349	0.133286	0.666589	0.100063
4.5	0.219334	0.112734	0.674066	0.106600
5.0	0.208110	0.095911	0.679690	0.112200

Вариант 9

Схема превращений:

$$C_{13}H_{24} + H_2 = C_{13}H_{26}$$

 $C_{13}H_{26} + H_2 = C_{13}H_{28}$

Начальные концентрации:

C ₁₃ H ₂₄	H_2	C ₁₃ H ₂₆	$C_{13}H_{28}$
1.0	1.0	0.0	0.0

Время процесса 7.0 сек.

Время, сек.	C ₁₃ H ₂₄	H ₂	C ₁₃ H ₂₆	C ₁₃ H ₂₈
0.7	0.563595	0.544649	0.417460	0.018946
1.4	0.399424	0.356326	0.557479	0.043098
2.1	0.315918	0.253029	0.621194	0.062889
2.8	0.266229	0.187820	0.655363	0.078409
3.5	0.234218	0.143610	0.675174	0.090608
4.2	0.212004	0.111767	0.687760	0.100236
4.9	0.196215	0.088312	0.695883	0.107903
5.6	0.184474	0.070426	0.701479	0.114047
6.3	0.175556	0.056560	0.705447	0.118997
7.0	0.168693	0.045691	0.708306	0.123001

Вариант 10

Схема превращений:

$$\begin{split} C_6H_6 + C_9H_{18} &= C_6H_5(C_9H_{19}) \\ C_6H_5(C_9H_{19}) + C_9H_{18} &= C_6H_5(C_9H_{19})_2 \end{split}$$

	•		
C ₆ H ₆	C ₉ H ₁₈	$C_6H_5(C_9H_{19})$	$C_6H_5(C_9H_{19})_2$

4.0	1 0	0.0	0.0
1 ()	1 ()	() ()	()()
1.0	1.0	0.0	0.0

Время процесса 1.0 сек.

Время, сек.	C_6H_6	C ₉ H ₁₈	$C_6H_5(C_9H_{19})$	$C_6H_5(C_9H_{19})_2$
0.1	0.763969	0.742402	0.214465	0.021567
0.2	0.623979	0.564771	0.316814	0.059208
0.3	0.534188	0.437880	0.369504	0.096308
0.4	0.473930	0.344740	0.396879	0.129191
0.5	0.430446	0.274286	0.413393	0.156160
0.6	0.398700	0.220262	0.422862	0.178438
0.7	0.375064	0.178274	0.428147	0.196790
8.0	0.356739	0.144984	0.431507	0.211755
0.9	0.342431	0.118421	0.433558	0.224010
1.0	0.331157	0.097082	0.434769	0.234075

Вариант 11

Схема превращений:

$$\begin{split} C_6H_6 + C_{10}H_{20} &= C_6H_5(C_{10}H_{21}) \\ C_6H_5(C_{10}H_{21}) + C_{10}H_{20} &= C_6H_5(C_{10}H_{21})_2 \end{split}$$

Начальные концентрации:

C_6H_6	$C_{10}H_{20}$	$C_6H_5(C_{10}H_{20})$	$C_6H_5(C_{10}H_{20})_2$
1.0	1.0	0.0	0.0

Время процесса 2.0 сек.

Время, сек.	C ₆ H ₆	C ₁₀ H ₂₀	$C_6H_5(C_{10}H_{20})$	$C_6H_5(C_{10}H_{20})_2$
0.2	0.644289	0.588384	0.299805	0.055905
0.4	0.493888	0.368957	0.381180	0.124931
0.6	0.416366	0.240995	0.408263	0.175371
8.0	0.372289	0.161929	0.417350	0.210360
1.0	0.344779	0.110496	0.420939	0.234282
1.2	0.327257	0.076464	0.421950	0.250793
1.4	0.315496	0.053212	0.422219	0.262284
1.6	0.307580	0.037289	0.422129	0.270291
1.8	0.302148	0.026243	0.421948	0.275904
2.0	0.298359	0.018495	0.421777	0.279864

Вариант 12

Схема превращений:

$$\begin{split} C_6H_6 + C_{11}H_{22} &= C_6H_5(C_{11}H_{23}) \\ C_6H_5(C_{11}H_{23}) + C_{11}H_{22} &= C_6H_5(C_{11}H_{23})_2 \end{split}$$

C_6H_6 $C_{11}H_{22}$	$C_6H_5(C_{11}H_{23})$	$C_6H_5(C_{11}H_{23})_2$
-------------------------	------------------------	--------------------------

4.0	1 0	0.0	0.0
1 ()	1 ()	() ()	()()
1.0	1.0	0.0	0.0

Время процесса 3.0 сек.

Время, сек.	C ₆ H ₆	C ₁₁ H ₂₂	$C_6H_5(C_{11}H_{23})$	$C_6H_5(C_{11}H_{23})_2$
0.3	0.700735	0.664857	0.263386	0.035878
0.6	0.550138	0.461514	0.361238	0.088624
0.9	0.464910	0.330510	0.400690	0.134400
1.2	0.410900	0.241523	0.419723	0.169377
1.5	0.375600	0.179452	0.428252	0.196148
1.8	0.350991	0.134635	0.432653	0.216356
2.1	0.333537	0.101855	0.434781	0.231682
2.4	0.320982	0.077633	0.435668	0.243350
2.7	0.311626	0.059357	0.436105	0.252269
3.0	0.304640	0.045537	0.436256	0.259104

Вариант 13

Схема превращений:

$$C_{10}H_{22} = C_{10}H_{20} + H_2$$

 $C_{10}H_{20} = C_{10}H_{18} + H_2$

Начальные концентрации:

$C_{10}H_{22}$	$C_{10}H_{20}$	C ₁₀ H ₁₈	H_2
1.0	0.0	0.0	0.0

Время процесса 3.0 сек.

Время, сек.	$C_{10}H_{22}$	$C_{10}H_{20}$	$C_{10}H_{18}$	H_2
0.3	0.798512	0.196856	0.004631	0.206119
0.6	0.637629	0.345377	0.016993	0.379364
0.9	0.509125	0.455738	0.035136	0.526011
1.2	0.406554	0.535895	0.057551	0.650996
1.5	0.324666	0.592312	0.083021	0.758355
1.8	0.259172	0.630259	0.110569	0.851397
2.1	0.206936	0.653567	0.139498	0.932562
2.4	0.165324	0.665440	0.169236	1.003911
2.7	0.132049	0.668659	0.199291	1.067242
3.0	0.105444	0.665231	0.229326	1.123882

Вариант 14

Схема превращений:

$$C_{11}H_{24} = C_{11}H_{22} + H_2$$

 $C_{11}H_{22} = C_{11}H_{20} + H_2$

C ₁₁ H ₂₄	$C_{11}H_{22}$	C ₁₁ H ₂₀	H_2
0.8	0.1	0.1	0.0

Время процесса 4.0 сек.

Время, сек.	C ₁₁ H ₂₄	C ₁₁ H ₂₂	C ₁₁ H ₂₀	H ₂
0.4	0.592651	0.233285	0.174063	0.281412
8.0	0.439050	0.277354	0.283596	0.544545
1.2	0.325249	0.274252	0.400500	0.775251
1.6	0.240959	0.248230	0.510811	0.969852
2.0	0.178496	0.213638	0.607866	1.129369
2.4	0.132246	0.177654	0.690099	1.257853
2.8	0.097956	0.144498	0.757546	1.359590
3.2	0.072582	0.115378	0.812039	1.439457
3.6	0.053772	0.090998	0.855230	1.501459
4.0	0.039836	0.071047	0.889116	1.549280

Вариант 15

Схема превращений:

$$C_{12}H_{26} = C_{12}H_{24} + H_2$$

 $C_{12}H_{24} = C_{12}H_{22} + H_2$

Начальные концентрации:

$C_{12}H_{26}$	$C_{12}H_{24}$	$C_{12}H_{22}$	H_2
1.0	0.0	0.0	0.0

Время процесса 2.5 сек.

Время, сек.	C ₁₂ H ₂₆	C ₁₂ H ₂₄	C ₁₂ H ₂₂	H_2
0.25	0.769126	0.179279	0.051594	0.282468
0.50	0.591555	0.246087	0.162357	0.570802
0.75	0.454978	0.254623	0.290399	0.835421
1.00	0.349938	0.235179	0.414883	1.064945
1.25	0.269144	0.204706	0.526150	1.257006
1.50	0.207007	0.171754	0.621239	1.414232
1.75	0.159211	0.140799	0.699989	1.540778
2.00	0.122460	0.113448	0.764092	1.641632
2.25	0.094184	0.090438	0.815378	1.721194
2.50	0.072444	0.071441	0.856116	1.783672

Вариант 16

Схема превращений:

$$C_{13}H_{28} = C_{13}H_{26} + H_2$$

 $C_{13}H_{26} = C_{13}H_{24} + H_2$

C ₁₃ H ₂₈	$C_{13}H_{26}$	$C_{13}H_{24}$	H_2
1.0	0.0	0.0	0.0

Время процесса 3.0 сек.

Время, сек.	C ₁₃ H ₂₈	C ₁₃ H ₂₆	C ₁₃ H ₂₄	H ₂
0.3	0.509126	0.451887	0.038987	0.529861
0.6	0.259169	0.618828	0.122003	0.862834
0.9	0.132030	0.649323	0.218647	1.086618
1.2	0.067244	0.618173	0.314583	1.247338
1.5	0.034223	0.562150	0.403627	1.369403
1.8	0.017459	0.498976	0.483564	1.466105
2.1	0.008898	0.437094	0.554008	1.545111
2.4	0.004528	0.380008	0.615464	1.610936
2.7	0.002311	0.328919	0.668770	1.666460
3.0	0.001177	0.283976	0.714846	1.713669

Вариант 17

Схема превращений:

$$C_9H_{16} + H_2 = C_9H_{18}$$

 $C_9H_{18} + H_2 = C_9H_{20}$

Начальные концентрации:

	la ar-drava		
C ₉ H ₁₆	H ₂	C ₉ H ₁₈	C ₉ H ₂₀
1.0	1.0	0.0	0.0

Время процесса 2.0 сек.

Время, сек.	C ₉ H ₁₆	H_2	C ₉ H ₁₈	C_9H_{20}
0.2	0.74562	0.709008	0.217769	0.036612
0.4	0.604572	0.510872	0.301727	0.093701
0.6	0.519357	0.374886	0.336172	0.144471
0.8	0.463749	0.279241	0.351743	0.184508
1.0	0.426544	0.210768	0.35768	0.215776
1.2	0.400922	0.16085	0.359006	0.240072
1.4	0.381722	0.12338	0.359936	0.258342
1.6	0.36761	0.095208	0.359989	0.272402
1.8	0.35714	0.073883	0.359603	0.283257
2.0	0.349149	0.057464	0.359165	0.291686

Вариант 18

Схема превращений:

$$C_{10}H_{18} + H_2 = C_{10}H_{20}$$

 $C_{10}H_{20} + H_2 = C_{10}H_{22}$

C ₁₀ H ₁₈	H_2	$C_{10}H_{20}$	$C_{10}H_{22}$
1.0	1.0	0.0	0.0

Время процесса 3.5 сек.

Время, сек.	C ₁₀ H ₁₈	H ₂	C ₁₀ H ₂₀	C ₁₀ H ₂₂
0.35	0.669667	0.617725	0.278391	0.051942
0.70	0.519913	0.400333	0.360506	0.119581
1.05	0.439948	0.268614	0.388717	0.171334
1.40	0.393167	0.184867	0.398533	0.208300
1.75	0.363478	0.129197	0.402241	0.234281
2.10	0.343967	0.091363	0.403429	0.252604
2.45	0.330791	0.065162	0.403579	0.265629
2.80	0.321604	0.046650	0.403443	0.274954
3.15	0.315225	0.033609	0.403159	0.281616
3.50	0.310685	0.024261	0.402892	0.286423

Вариант 19

Схема превращений:

$$C_{11}H_{20} + H_2 = C_{11}H_{22}$$

 $C_{11}H_{22} + H_2 = C_{11}H_{24}$

Начальные концентрации:

•			
C ₁₁ H ₂₀	H_2	C ₁₁ H ₂₂	C ₁₁ H ₂₄
1.0	1.0	0.0	0.0

Время процесса 2.2 сек.

Время, сек.	C ₁₁ H ₂₀	H_2	C ₁₁ H ₂₂	C ₁₁ H ₂₄
0.22	0.661596	0.626595	0.303402	0.035001
0.44	0.505841	0.421978	0.410297	0.083862
0.66	0.420830	0.296421	0.454761	0.124409
0.88	0.369146	0.213868	0.475576	0.155278
1.10	0.335496	0.157024	0.486033	0.178471
1.32	0.312598	0.116731	0.491536	0.195866
1.54	0.296648	0.087674	0.494378	0.208974
1.76	0.285045	0.066157	0.496067	0.218888
1.98	0.276604	0.050204	0.496995	0.226401
2.20	0.270374	0.038260	0.497512	0.232114

Вариант 20

Схема превращений:

$$C_{12}H_{22} + H_2 = C_{12}H_{24}$$

 $C_{12}H_{24} + H_2 = C_{12}H_{26}$

C ₁₂ H ₂₂	H_2	$C_{12}H_{24}$	C ₁₂ H ₂₆
1.0	1.0	0.0	0.0

Время процесса 4.0 сек.

Время, сек.	C ₁₂ H ₂₂	H ₂	C ₁₂ H ₂₄	C ₁₂ H ₂₆
0.4	0.717432	0.667358	0.232494	0.050074
0.8	0.573883	0.453738	0.305971	0.120146
1.2	0.492097	0.315587	0.331392	0.176510
1.6	0.441820	0.223638	0.339998	0.218182
2.0	0.410777	0.161311	0.339757	0.249466
2.4	0.388673	0.117277	0.339932	0.271396
2.8	0.373203	0.085929	0.339523	0.287274
3.2	0.362297	0.063390	0.338796	0.298907
3.6	0.354376	0.046883	0.338131	0.307493
4.0	0.348624	0.034786	0.337538	0.313838

Вариант 21

Схема превращений:

$$C_{13}H_{24} + H_2 = C_{13}H_{26}$$

 $C_{13}H_{26} + H_2 = C_{13}H_{28}$

Начальные концентрации:

C ₁₃ H ₂₄	H_2	$C_{13}H_{26}$	C ₁₃ H ₂₈
1.0	1.0	0.0	0.0

Время процесса 3.0 сек.

Время, сек.	$C_{13}H_{24}$	H_2	C ₁₃ H ₂₆	C ₁₃ H ₂₈
0.3	0.683586	0.650535	0.283362	0.033051
0.6	0.529644	0.448487	0.389199	0.081157
0.9	0.443570	0.320919	0.433780	0.122651
1.2	0.389621	0.234951	0.455710	0.154670
1.5	0.354340	0.175081	0.466401	0.179259
1.8	0.329748	0.131813	0.472317	0.197935
2.1	0.312437	0.100235	0.475360	0.212203
2.4	0.299854	0.076717	0.477010	0.223136
2.7	0.290481	0.058941	0.477980	0.231540
3.0	0.283471	0.045456	0.478513	0.238016

Вариант 22

Схема превращений:

$$\begin{split} C_6H_6 + C_9H_{18} &= C_6H_5(C_9H_{19}) \\ C_6H_5(C_9H_{19}) + C_9H_{18} &= C_6H_5(C_9H_{19})_2 \end{split}$$

C ₆ H ₆	C ₉ H ₁₈	$C_6H_5(C_9H_{19})$	$C_6H_5(C_9H_{19})_2$
1.0	1.0	0.0	0.0

Время процесса 2.2 сек.

Время, сек.	C_6H_6	C ₉ H ₁₈	$C_6H_5(C_9H_{19})$	$C_6H_5(C_9H_{19})_2$
0.22	0.657520	0.617898	0.302858	0.039622
0.44	0.502886	0.409475	0.403703	0.093411
0.66	0.419708	0.282886	0.443471	0.136821
0.88	0.369815	0.200738	0.461108	0.169077
1.10	0.337663	0.144882	0.469555	0.192781
1.32	0.316106	0.105897	0.473685	0.210209
1.54	0.301238	0.078151	0.475676	0.223087
1.76	0.290573	0.057922	0.476775	0.232652
1.98	0.282951	0.043194	0.477292	0.239757
2.20	0.277398	0.032336	0.477539	0.245063

Вариант 23

Схема превращений:

$$\begin{split} C_6H_6 + C_{10}H_{20} &= C_6H_5(C_{10}H_{21}) \\ C_6H_5(C_{10}H_{21}) + C_{10}H_{20} &= C_6H_5(C_{10}H_{21})_2 \end{split}$$

Начальные концентрации:

C_6H_6	C ₁₀ H ₂₀	$C_6H_5(C_{10}H_{20})$	$C_6H_5(C_{10}H_{20})_2$
1.0	1.0	0.0	0.0

Время процесса 1.5 сек.

Время, сек.	C ₆ H ₆	C ₁₀ H ₂₀	$C_6H_5(C_{10}H_{20})$	$C_6H_5(C_{10}H_{20})_2$
0.15	0.734116	0.703946	0.235714	0.030170
0.30	0.588501	0.510376	0.333374	0.078125
0.45	0.501080	0.378848	0.376688	0.122232
0.60	0.443979	0.286058	0.398100	0.157921
0.75	0.404962	0.218883	0.408960	0.186078
0.90	0.377622	0.169341	0.414096	0.208281
1.05	0.357377	0.131807	0.417054	0.225570
1.20	0.342363	0.103226	0.418500	0.239137
1.35	0.331123	0.081315	0.419070	0.249808
1.50	0.322459	0.064227	0.419310	0.258232

Листинг программного кода модуля kinetic.py

```
import numpy as np
from scipy.integrate import solve_ivp
def kinetic_scheme(
        time: float,
        c: np.ndarray,
        k: np.ndarray,
        stoich_matrix: np.ndarray
) -> np.ndarray:
    """Реализация расчета правых частей системы дифф. уравнений,
    описывающих изменение концентрации компонентов,
    участвующих в химических превращениях.
    Args:
        time (float): время из интервала, на котором наблюдается процесс
        c (np.ndarray): концентрации компонентов, [моль/л]
        k (np.ndarray): константы скорости реакций, входящих в схему
        stoich_matrix (np.ndarray): матрица стехиометрических коэффициентов
    Returns:
        np.ndarray: значения правых частей уравнений сис-мы дифф. ур-ний
    ....
    mask = stoich_matrix < 0 # Выбираем элементы с отрицательными стехим. коэфф-тами
    p = (c ** -(stoich_matrix * mask)).prod(axis=1) # Произвед. конц-ий реагентов
    reaction_rates = p * k # массив скоростей реакций
    right_parts = (
        (stoich_matrix.T * reaction_rates).sum(axis=1)
    return right_parts
if __name__ == '__main__':
    pass
```

Листинг программного кода модуля main.py

```
import numpy as np
from scipy.optimize import minimize
from scipy.integrate import solve ivp
import matplotlib.pyplot as plt
from typing import Callable
from kinetic import kinetic_scheme
def obj_func(
        k: np.ndarray,
        c: np.ndarray,
        kinetic_scheme: Callable,
        time: np.ndarray,
        c0: np.ndarray,
        st_matrix: np.ndarray
) -> float:
    """Целевая функция, подлежащая минимизации.
    Args:
        k (np.ndarray): Константы скоростей реакций
        kinetic_scheme (Callable): Функция для расчета правых частей дифф. ур-ний
        с (np.ndarray): Матрица конц-ий компонентов из исх. данных, [моль/л]
        time (np.ndarray): Значения времени, которым соответствуют концентрации с
        с0 (np.ndarray): Начальные концентрации компонентов, [моль/л]
    Returns:
        float: средняя квадратичная ошибка
    solution = solve ivp(
        fun=kinetic_scheme,
        t_span=(0, time[-1]),
        y0=c0,
        dense_output=True,
        args=(k, st_matrix)
    c_calc = solution.sol(time)
    n = c.size
    return ((c - c_calc[:, 1:].T) ** 2).sum() / n
def calculate_kinetic_constants(
        k0: np.ndarray,
        c: np.ndarray,
        kinetic_scheme: Callable,
        time: np.ndarray,
        c0: np.ndarray,
```

```
st_matrix: np.ndarray
) -> np.ndarray:
    """Функция для расчета констант скоростей реакций с использованием
   метода Нелдера-Мида.
   Args:
        k0 (np.ndarray): Начальное приближение для констант скоростей
        c (np.ndarray): Матрица конц-ий компонентов из исх. данных, [моль/л]
        kinetic_scheme (Callable): Функция для расчета правых частей дифф. ур-ний
        time (np.ndarray): Значения времени, которым соответствуют концентрации с
        с0 (np.ndarray): Начальные концентрации компонентов, [моль/л]
        st_matrix (np.ndarray): Матрица стехиометрических коэффициентов
    Returns:
        np.ndarray: расчетные значения констант скоростей реакций
    .....
    res = minimize(
        fun=obj_func,
        x0=k0,
        method='Nelder-Mead',
        args=(
            С,
            kinetic_scheme,
            time,
            с0,
            st matrix
        )
    )
    return res.x
def draw_plot(
        t: np.ndarray,
        c: np.ndarray,
        c_calc: np.ndarray,
        labels: list[str]
) -> None:
    """Функция для построения графика изменения концентраций
    химических веществ от времени протекания реакций
    по исходным данным и результатам расчета.
    Создает объект рисунка в формате pdf в папке с проектом.
    Args:
        t (np.ndarray): Значения времени, которым соответствуют концентрации с0 + с
        c (np.ndarray): Экспериментальные значения концентрации компонентов (точки)
        c_calc (np.ndarray): Расчетные значения концентрации компонентов (линии)
        labels (list[str]): Подписи к легенде на графике
   fig, ax = plt.subplots()
    for i, _ in enumerate(c):
```

```
ax.scatter(t, c[i], label=labels[i])
        ax.plot(t, c_calc[i], label=labels[i])
    ax.set_xlabel('Время, ч')
    ax.set_ylabel('Концентрация, моль/л')
    plt.legend(ncol=4)
    plt.tight_layout()
    plt.savefig('plot.pdf')
if __name__ == '__main__':
    k0 = np.array([.5, .5])
    c = np.loadtxt('data.txt', skiprows=1, usecols=range(1, 5))
    c0 = np.array([1, 0, 0, 0])
    t0, tf, h = .0, 1., .1
    time = np.arange(t0, tf+h, h)
    st_matrix = np.array(
        [
            [-1, 1, 0, 1],
            [0, -1, 1, 1]
        ]
    )
    k = calculate_kinetic_constants(
        k0, c, kinetic_scheme, time, c0, st_matrix)
    print(k)
    c calc = solve ivp(
        kinetic scheme,
        t_span=(t0, tf),
        t_eval=time,
        y0=c0,
        args=(k, st_matrix)
    ).y
    draw_plot(
        time,
        np.vstack([c0.reshape(1, -1), c]).T,
        c_calc,
        [r'$C_9H_{20}$', r'$C_9H_{18}$', r'$C_9H_{16}$', r'$H_2$']
    )
```