Scopri l'OOP in Java

Terzo incontro, 22/01/2025

Scopri l'OOP in Java

Lezione 3, 22/01/2025

- Classi dell'API di Java, uso delle classi più comuni
 - Random
 - Rectangle
- Dall'ADT alla classe Java, attributi, metodi
 - Punto
 - Palloncino
- Documentare il codice Java con javadoc
 - https://www.spacecoding.it/javadoc-documentazione-delcodice-java/

Classe Random - uno sguardo alla documentazione API

java.util

Class Random

java.lang.Object
 java.util.Random

All Implemented Interfaces:
Serializable

Direct Known Subclasses:
SecureRandom, ThreadLocalRandom

Constructors

Constructors

Constructors

Constructors

Constructor and Description

Random()

Creates a new random number generator.

Random(long seed)

Creates a new random number generator using a single long seed.

boolean	nextBoolean() Returns the next pseudorandom, uniformly distributed boolean value from this random number generator's sequence.
void	nextBytes(byte[] bytes) Generates random bytes and places them into a user-supplied byte array.
double	<pre>nextDouble() Returns the next pseudorandom, uniformly distributed double value between 0.0 and 1.0 from this random number generator's sequence.</pre>
float	nextFloat() Returns the next pseudorandom, uniformly distributed float value between 0.0 and 1.0 from this random number generator's sequence.
double	nextGaussian() Returns the next pseudorandom, Gaussian ("normally") distributed double value with mean 0.0 and standard deviation 1.0 from this random number generator's sequence.
int	nextInt() Returns the next pseudorandom, uniformly distributed int value from this random number generator's sequence.
int	<pre>nextInt(int bound) Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.</pre>
long	nextLong() Returns the next pseudorandom, uniformly distributed long value from this random number generator's sequence.

Classe Random

```
import java.util.Random;
public class RandomTester{
    public static void main(String[] args){
        Random r1 = new Random();
        System.out.println(r1.hashCode());
        System.out.println(r1.toString());

        // estrazione di un valore intero (reale, booleano, ...) casuale int numeroCasuale=r1.nextInt();
        System.out.println(numeroCasuale);

        // estrazione di un secondo nuemro casuale
        System.out.println(r1.nextInt());
}
```

Considera l'esempio in figura: a tuo parere, quali sono i valori possibili per il numero casuale estratto? Perché?

Attività: cercare nella documentazione API i metodi della classe Random per:

- Estrarre un numero casuale intero compreso tra -5 e +5
- Estrarre 5 valori booleani
- Estrarre 10 numeri reali compresi tra 0.0 e 1.0
- Simulare il gioco del lancio di un dado:
 - la vittoria c'è se al lancio si ottiene il numero 6
 - se dopo 5 lanci non è mai uscito il 6, la partita è persa.

Scopri le classi Rectangle e Point

Consultare la documentazione API (package java.awt) e, scegliendo i metodi corretti, svolgere le seguenti attività.

- Realizzare l'UML della classe (sintesi)
- Realizzare una classe tester, per:
 - √ Istanziare un oggetto Rectangle
 - ✓ Istanziare tre oggetti Rectangle, i cui vertici in alto a sinistra corrispondano a:
 - le coordinate (0,0), con base e altezza 0
 - un oggetto Point(10,20), con base e altezza 0
 - il punto di coordinate x=5 y=5, con base 15 e altezza 5
 - √ Scegliere uno degli oggetti Rectangle con dimensione 0 e aumentarne base e altezza, con valori a scelta
 - ✓ Scegliere due degli oggetti Rectangle e restituire il rettangolo risultante dalla loro / Rectangle 1 intersezione

✓ Dopo ciascuna azione eseguita, per ogni oggetto sopracitato, visualizzarne lo stato.

Progettare e implementare classi ADT

Esempio l'ADT Punto

Realizzare l'ADT che descrive un Punto.

Le **caratteristiche** (=attributi) di un punto P(x,y) sono le sue coordinate (x, y), cioè i valori sull'asse delle ascisse (x) e delle ordinate (y) di un piano cartesiano.

L'ADT Punto deve comprendere le seguenti funzionalità (=metodi):

- (a) confronto del punto con un secondo punto, per determinare se sono uguali (due punti P1 e P2 sono uguali se x1=x2 e y1=y2)
- (b) calcolo della distanza **d** del punto rispetto ad un altro punto:

(c) data l'equazione di una retta y=mx+q, cioè fissati il coefficiente m e il termine noto q, verificare se il punto appartiene a quella retta. Ecco alcuni suggerimenti:

- Il punto A non appartiene alla retta, e lo si può verificare calcolando mx_A+q e constatando che y_A≠mx_A+q
- Invece il punto B appartiene alla retta, infatti y_B=mx_B+q

Realizzare:

- il diagramma UML dell'ADT Punto, con gli attributi, il metodo costruttore, i metodi (a) distanza, (b) uguale e (c) appartiene descritti sopra e il metodo to String;
- 2) la classe Java Punto, derivata dall'UML, implementando attributi e metodi;
- 3) una classe di collaudo con le istruzioni per:
 - a. istanziare due oggetti punto P1(2,1) e P2(3,2)
 - b. calcolare e visualizzare la distanza tra il punto P1 e il punto P2
 - c. verificare se un punto (P1 o P2) appartiene alla retta y=2x-4, visualizzando un opportuno messaggio
 - d. verificare se il punto P2 sia uguale al punto P1, visualizzando un opportuno messaggio.

Progettare e implementare classi ADT

Scrivere il diagramma di classe ed implementare le classi Java per il seguente caso

Palloncino

Si vuole realizzare un programma che controlla un pallone gonfiabile e il processo di riempimento, nel senso che un pallone possiede una capienza massima, superata la quale, il pallone scoppia; inoltre si vogliono calcolare anche la misura del raggio e la misura dell'area della superficie del pallone, una volta gonfiato.

Alla fine si desidera sapere quanti palloni sono stati gonfiati.

Realizzare la classe **Palloncino** con attributi

- · la capacità massima del pallone
- il volume del pallone, una volta gonfiato
- la numerosità dei palloni.

Completare la classe con i commenti javadoc.

Realizzare la classe di collaudo *PalloncinoTester*, che istanza alcuni palloncini e ne verifica i metodi.

