Писмени дио испита 2.2.2023.

1. Пројектовати коло са Слике 2 тако да напон на дрејну буде $0.1~\rm{V}$. Која је отпорност између дрејна и сорса у том случају? Познато је: $V_{tn}=1~\rm{V}$, $k_n=0.5~\rm{mA/V^2}$, $V_{DD}=5~\rm{V}$.

2. За коло на Слици 3 изразити V_{out} у зависности од V_I и V_2 . Коју функцију обавља ово коло?

- 3. Извршити синтезу логичке функције $f = (A \oplus B) \cdot (C \oplus D)$
- 4. Пројектовати D/A конвертор са 5 улаза тако да напон кванта износи \pm 0.3125 V. Одредити напон пуне скале и напон Vout за улаз ABCDE = 10111. На располагању су отпорници и један операциони појачавач.

Писмени дио испита 16.2.2023.

1. За коло на Слици 1 одредити I и V. Диоде су идеалне. Познато је $R_I=10~{\rm k}\Omega$ и $R_2=5~{\rm k}\Omega$.

$$V_{DD} = +10 V$$
 R_2
 R_2
 R_1
 $V_{CC} = -10 V$
 R_1
 R_1
 V_{CMKA} R_2

2. За коло на Слици 2 наћи потенцијал V_6 и струју I_5 . Напон $V_{BE}=0.7$ V, а струјно појачање β је довољно велико да се струја базе може занемарити у односу на остале струје у колу. Познато је $R_I=15$ k Ω , $R_B=10$ k Ω и $R_E=5$ k Ω .

V_{DD} = +10 V

Слика 2

V_{CC} = -10 V

- Пројектовати А/Д конвертор са 4 битска излаза. Одредити кодне ријечи које се добијају на излазу (на примјер: K₁K₂K₃K₄) када се улазни напон мијења од 0 до V_{REF}. Колику резолуцију има овај конвертор? Одредити напоне V_∞ при којима се мијења излазна кодна ријеч. На располагању су 4 операциона појачавача (компаратора) и отпорници.
- 4. Нацртати блок шему меморије RAM типа капацитета $512k \times 16$ ако су на располагању меморијске компоненте $16k \times 16$ и деколери 3/8.

Писмени дио испита 10.5.2023.

1. За коло на Слици 1 скицирати таласни облик излазног напона v_{σ} уколико су диоле D_1 и D_2 идеалне, а улазни напон v_{ℓ} се мијења по синусном закону са фреквенцијом 1 kHz и амплитудом 10 V. Колике су максимална позитивна и минимална негативна вриједност излазног напона? Познато је: R=1 k Ω .

Слика 1

2. За коло на Слици 2 одредити опште изразе за струје кроз отпорнике R_{CI} и R_{C2} . Сматрати да транзистори имају идентичне параметре β и V_{BE} , као и да су познате вриједности свих елемената у колу (отпорници и напајање).

Слика 2

- 3. За логичко коло приказано на Слици 3 одредити:
 - а) логичку функцију кола (образложити рјешење)
 - б). $R_{\rm C}$ тако да транзистори буду у засићењу када су укључени са фактором дубине засићења $F_{\rm S}=3$

Познато је: $\beta_{mm}=20,\ V_{CES}=0.2\ \text{V},\ V_{BES}=0.8\ \text{V},\ V_D=0.6\ \text{V},\ V_{BE}=0.7\ \text{V},\ R_I=R_2=4.8\ k\Omega$

 За дату шему (Слика 4) потебно је одредити начин повезивања наведених логичких кола. На располагању је произвољан број кола и један бафер из серије 74НСТ00. Познато је:

CD4000: V_{Ollmin} = 4.95 V; V_{Olmax} = 0.05 V; I_{Ollmax} = 400 μA; I_{Olmax} = 400 μA; I_{Olmax} = 400 μA; I_{Olmax} = 16 mA; TTL: V_{Ollmin} = 2.4 V; V_{Olmax} = 0.4 V; V_{Illmin} = 2 V; V_{Ilmax} = 0.8 V; I_{Ollmax} = 400 μA; I_{Olmax} = 16 mA; I_{Illmax} = 40 μA; I_{Illmax} = 1.6 mA 74HC00: V_{Illmin} = 3.5 V; V_{Illmax} = 1 V; I_{Illmax} = 1 μA; I_{Illmax} = 1 μA 74HCT00: : V_{Ollmin} = 4.3 V; V_{Olmax} = 0.3 V; V_{Illmin} = 2 V; V_{Illmax} = 0.8 V; I_{Olmax} = 24 mA; I_{Olmax} = 24 mA; I_{Illmax} = 1 μA; I_{Illmax} = 1 μA

Писмени дио испита 22.6.2023.

1. За коло на Слици 1 одредити I и V. Диоде су идеалне. Познато је $R_I=10~{\rm k}\Omega$ и $R_2=5~{\rm k}\Omega$.

2. За коло на Слици 2 наћи потенцијал V_6 и струју I_5 . Напон $V_{BE}=0.7$ V, а струјно појачање β је довољно велико да се струја базе може занемарити у односу на остале струје у колу. Познато је $R_I=15$ k Ω , $R_B=10$ k Ω и $R_E=5$ k Ω .

Слика 2

- 3. За коло на Слици 3 одредити:
 - а) минималну и максималну вриједност отпорника R_I
 - б) минималну вриједност отпорника R_2 ако максимална дозвољена струја кроз диоду износи 1 mA

Познато је: $V_{DD}=5$ V, инвертор CMOS CD4069UB ($I_{IL}=I_{IH}=0$ mA, $V_{OH}=4.95$ V, $V_{OL}=0.5$ V, $I_{OL}=I_{OH}=0.6$ mA), $V_D=1$ V, максимална дозвољена дисипација по отпорнику $P_d=0.125$ W

4. Пројектовати D/A конвертор са 5 улаза тако да напон кванта износи \pm 0.3125 V. Одредити напон пуне скале и напон V_{OUT} за улаз ABCDE = 10111. На располагању су отпорници и један операциони појачавач.

Писмени дио испита 6.7.2023.

- 1. За коло на слици 1 одредити вриједности напона V_1 и струје I_1 за:
 - а) случај када је диода идеализована ($V_D = 0.7 \ {
 m V}$),
 - б) случај када је диода идеална.

Познато је: $R_1 = 10 \Omega$, $R_2 = 20 \Omega$, $R_3 = 20 \Omega$, $V_{DD} = 10 \text{ V}$.

- 2. У колу на слици 2 користи се идеалан операциони појачавач.
 - а) Одредити струје I_1 , I_2 , I_3 и напон V_X .
 - 6) Уколико се R_L мијења у опсету од $100~\Omega$ до $1~\mathrm{k}\Omega$, колика је промјена струје I_L и напона V_O .

Познато је: $R_1 = 10 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_3 = 100 \Omega$, $V_I = 1 \text{ V}$.

Слика 2

- 3. За логичко коло приказано на слици 3 одредити:
 - а) логичку функцију кола (образложити рјешење),
 - б) отпорност R_C тако да транзистор T_1 буде у засићењу када је укључен са фактором дубине засићења $F_S = 3$.

Познато је: $\beta_{\min} = 20$, $V_{CES} = 0.2$ V, $V_{BES} = 0.8$ V, $V_D = 0.6$ V, $V_{BE} = 0.7$ V, $R_1 = R_2 = R_3 = 4.8$ k Ω .

Слика 3

4. Пројектовати A/Д конвертор са 4 битска излаза. Одредити кодне ријечи које се добијају на излазу (на примјер: $K_1K_2K_3K_4$) када се улазни напон мијења од 0 до V_{REF} . Колику резолуцију има овај конвертор? Одредити напоне V_m при којима се мијења излазна кодна ријеч. На располагању су 4 операциона појачавача (компаратора) и отпорници.

Основи електронике и дигиталне технике Писмени дио испита

7.9.2023.

1. За коло на Слици 1 одредити област рада Зенер диоде, те минималну и максималну вриједност струје кроз ту диоду ако се вриједност напона V_{DD} креће од 8 V до 12 V. Познато је: V_Z = 5 V, $V_D = 0.65 \text{ V}, R_I = 500 \Omega$ и $R_2 = 1 \text{ k}\Omega$,

2. Наћи R_d тако да појачање A_v буде једнако -120 (v_o/v_l = -120). Операциони појачавач је идеалан, а познати су отпорници $R_I=1$ М Ω , $R_2=500$ k Ω и $R_3=100$ Ω .

Слика 2

3. За дату шему (Слика 3) потребно је одредити начин повезивања наведених логичких кола. На располагању је произвољан број кола и један бафер из серије 74HCT00. Познато је:

```
CD4000: V_{OHmin} = 4.95 \text{ V}; V_{OLmax} = 0.05 \text{ V}; I_{OHmax} = 400 \text{ }\mu\text{A}; I_{OLmax} = 400 \text{ }\mu\text{A} TTL: V_{OHmin} = 2.9 \text{ V}; V_{OLmax} = 0.4 \text{ V}; V_{IHmin} = 2 \text{ V}; V_{ILmax} = 0.8 \text{ V}; I_{OHmax} = 400 \text{ }\mu\text{A}; I_{OLmax} = 16 \text{ }\text{mA}; I_{IHmax} = 40 \text{ }\mu\text{A}; I_{ILmax} = 0.16 \text{ }\text{mA}; I_{ILmax} = 0.16 \text{ }\text{mA}; I_{ILmax} = 1 \text{ }\text{V}; I_{IHmax} = 1 \text{ }\text{V}; I_{IHmax} = 1 \text{ }\text{\muA}; I_{ILmax} = 1 \text{ }\text{\muA}; I_{ILmax} = 0.8 \text{ V}; I_{OHmax} = 2.8 \text{ V}; V_{OLmax} = 0.3 \text{ V}; V_{OLmax} = 0.3 \text{ V}; V_{ILmax} = 0.8 \text{ V}; I_{OHmax} = 2.8 \text{ V}; I_{OHmax} = 1 \text{ }\text{V}; I_{OLmax} = 1 \text{ }\text{V}; I_{OLmax} = 1 \text{ }\text{V}; I_{OLmax} = 2.8 \text{ mA}; I_{OLmax} = 2.8 \text{ mA}; I_{ILmax} = 1 \text{ }\text{V}; I_{OLmax} = 1 \text{ }\text{V}; I_{OLmax} = 2.8 \text{ mA}; I_{
```


 Нацртати блок шему меморије RAM типа капацитета 512k x 16 ако су на располагању меморијске компоненте 16k x 8 и декодери 3/8.

Основи електронике и дигиталне технике Писмени дио испита 21.9.2023.

1. За коло на Слици 1 наћи зависности струја кроз отпорник R_l и диоду D од улазног напона. Скицирати само зависност струје кроз диоду. Претпоставити идеализовани модел диоде.

2. За коло на Слици 2, одредити напонско појачање $A_v = v_o/v_i$. Операциони појачавач је идеалан, a $R_I = \alpha \cdot R$.

- 3. Извршити синтезу логичке функције $f = A + B + C \cdot (D \oplus E)$ коришћењем што мањег броја транзистора.
- 4. За коло на Слици 3 одредити:
 - а) минималну и максималну вриједност отпорника R_I
 - 6) минималну вриједност отпорника R_2 ако максимална дозвољена струја кроз диоду износи 1 mA

Познато је: $V_{DD}=5$ V, инвертор CMOS CD4069UB ($I_{IL}=I_{IH}=0$ mA, $V_{OH}=4.95$ V, $V_{OL}=0.5$ V, $I_{OL}=I_{OH}=0.6$ mA), $V_D=1$ V, максимална дозвољена дисипација по отпорнику $P_d=0.125$ W

Слика 3

Писмени дио испита 5.10.2023.

1. На Слици 1 дат је стабилизатор напона са Зенер диодом. Одредити струју диоде, струју оптерећења, као и излазну отпорност стабилизатора. Познато је: $V_Z=10$ V, $r_z=10$ Ω , $R_L=300$ Ω , $R_I=600$ Ω и $V_{DD}=40$ V.

2. Наћи све напоне и струје. Познато је: $V_{tn}=1$ V, $k_n=0.5$ mA/V², $V_{DD}=10$ V, $R_D=R_S=6$ k Ω , $R_I=R_2=10$ М Ω .

Слика 2

- 3. Извршити синтезу логичке функтије $f = \overline{A \cdot (B + \overline{C} \cdot \overline{D})}$. Транзисторе означити са М1, М2... а затим на улаз ловести АВСD=1101 и одредити стања гранзистора (он/оff) и излаз логичке функције.
- 4. За логичко коло приказано на Слици 3 одредити:
 - а) логичку функцију кола (образложити рјешење)
 - б) R_C тако да транзистор T_1 буде у засићењу када је укључен са фактором дубине засићења $F_8=3$

Познато је: $\beta_{min} = 20$, $V_{CES} = 0.2$ V, $V_{BES} = 0.8$ V, $V_D = 0.6$ V, $V_{BE} = 0.7$ V, $R_I = R_2 = R_3 = 4.8$ kΩ

Слика 3