Índex

- Lògica i fonamentació
- 2 Teoria de Conjunts
- Aritmètica
- Combinatòria
- Teoria de Grafs
 - Grafs dirigits
 - Planaritat Colorabilitat
 - Aspectes computacionals
 - Arbres no arrelats
 - Arbres arrelats

Teoria de Grafs Grafs dirigits

Grafs dirigits

Grafs dirigits (digrafs)

G = (V, A) digraf:

- V = V(G) vèrtexos.
- ▶ A = A(G) arcs: parells ordenats de vèrtexos.

Notacions:

- \bullet a = (u, v) = uv va de u a v
- ▶ u extrem inicial de a
- v extrem final de a
- u i e = uv son incidents
- ightharpoonup u és pare de (o adjacent cap a) v
- $\triangleright v$ és fill de (o adjacent des de) u

Graus

Donat $u \in V(G)$:

- $\Gamma_e(u)$: cjt. de pares de u
- ▶ $\Gamma_s(u)$: cjt. de fills de u
- $d_e(u)$: grau d'entrada de u, $|\Gamma_e(u)|$
- $d_s(u)$: grau de sortida de u, $|\Gamma_s(u)|$

Graf subjacent

Si G és digraf, el graf subjacent és el graf obtingut per "eliminar el sentit dels arcs":

$$E = \{ \{u, v\} \mid (u, v) \in A \}$$

Accessibilitat

- ► Els recorreguts/camins/circuits/cicles han de respectar el sentit
- ightharpoonup v accessible des de u si existeix recorregut $u\leadsto v$
- ightharpoonup v i u són mútuament accessibles si hi ha recorreguts $u \leadsto v$ i $v \leadsto u$

Teorema

La relació "ser mútuament accessibles" és d'equivalència

Teoria de Grafs Grafs dirigits

Graf condensat

El (di)graf condensat d'un digraf és el graf quocient per la relació d'accessibilitat mútua

Exemple

Connectivitat

G és:

- dèbilment connex si és connex el graf subjacent
- unilateralment connex si $\forall u, v \in V$, existeix $u \leadsto v$ o $v \leadsto u$
- fortament connex si $\forall u, v \in V$, existeix $u \leadsto v$ i $v \leadsto u$

Exemple

DAGs

Un DAG (Directed Acyclic Graph) és un graf dirigit sense cicles. Indueix ordre parcial: $u \ge v$ si existeix camí $u \leadsto v$

- ▶ Reflexiva: u u (longitud 0)
- ▶ Antisimètrica: Si $u \leadsto v$ i $v \leadsto u$, concatenant-los tenim $u \leadsto u$ i el cicle ha de ser d'un únic vèrtex
- ▶ Transitiva: Si $u \leadsto v$ i $v \leadsto w$, concatenant-los tenim $u \leadsto w$

Teorema

El graf condensat d'un digraf qualsevol és un DAG

Demostració

Si $[u_0], \ldots, [u_k] = [u_0]$ és cicle al condensat, hi ha v_i, w_i amb:

- $\triangleright v_i w_{i+1}$ és arc a original
- hi ha camíns $w_i \dots v_i$

Concatenant: $w_0 \dots v_0 w_1 \dots v_1 \dots w_k \dots v_k w_0$. Tots mútuament accessibles \Rightarrow únic node al graf condensat.

Teoria de Grafs Planaritat

Planaritat

Grafs planars

- Representació plana d'un graf: Representació del graf al pla (vèrtexos: punts; arestes: línies unint vèrtexos)
- Representació plana simple d'un graf: Representació del graf al pla on les arestes no es tallen
- Graf planar: Graf que admet una representació plana simple

Exemple

Cares

- ▶ Una representació plana divideix el pla en *cares* (F) limitades per les
- ▶ Hi ha una cara no fitada que s'ha de considerar

Exemple

El graf de la figura té |V|=5, |E|=8 i |F|=5:

Teorema d'Euler

Tot graf planar connex G compleix que |V| - |E| + |F| = 2

Demostració

Per inducció sobre |V|:

- Si |V|=1 (tot llaços): Començant amb el vèrtex sol (1 cara), cada llaç augmenta en 1 el nombre d'arestes i de cares, d'on |F|=|E|+1 i obtinc resultat.
- ▶ Si |V| > 1, sigui e aresta (no llaç) i G' = G/e. G' té: |V'| = |V| 1, |E'| = |E| 1 i |F'| = |F|. Per hip. inducció, 2 = |V'| |E'| + |F'| = |V| |E| + |F| = 2.

Biel Cardona (UIB)

Curs 2011/12

10 / 44

eoria de Grafs Plar

Proposició (Cond. necessàries de planaritat)

Si G = (V, E) no té arestes dobles i és connex i planar:

- **①** 2|E| ≥ 3|F|
- **2** $3|V| |E| \ge 6$
- **3** G té vèrtex u amb $d(u) \le 5$
- **3** Si *G* sense 3-cicles, $|E| \le 2|V| 4$

Demostració

- Sumant arestes que limiten cada cara s'obté ≥ 3|F| i cadascuna s'ha comptat 2 cops
- 2 Anterior resultat i |V| |E| + |F| = 2
- 3 Anterior resultat i lema encaixades
- \bigcirc Com primer resultat, amb cares de ≥ 4 arestes

Rial Cardona (IIIR)

Matemàtic

Curs 2011/1

11 / 44

Teoria de Gra

 K_5 i $K_{3,3}$ no són planars

Exemples

- ▶ K_5 no compleix que $3|V| |E| \ge 6$
- ► $K_{3,3}$ no té 3-cicles i no compleix que $|E| \le 2|V| 4$

Importància de l'exemple

Els grafs K_5 i $K_{3,3}$ són blocs constituents de tot graf no planar

Homeomorfisme

- Subdivisió elemental:
 - Idea: Afegir vèrtex al mig d'una aresta
 - Formalment: Eliminar aresta uv, afegir vèrtex nou w i arestes uw i wv
- Grafs homeomorfs:
 - Idea: Desfent subdivisions elementals surt el mateix graf
 - Formalment: Es poden obtenir a partir d'un mateix tercer per subdivisions elementals

Exemple

Teorema de Kuratowski

Un graf connex és planar ssi no conté cap subgraf homeomorf a K_5 o $K_{3,3}$

Exemple

El graf de Petersen no és planar:

Colorabilitat

Curs 2011/12 14 / 44

Motivació

Com es pot colorar el mapa següent?

Vèrtexos: països. Arestes: Uneixen països amb frontera comú

Coloracions

Tenim G = (V, E) graf, $C = \{c_1, \dots, c_k\}$ colors.

- Coloració: Aplicació $f: V \rightarrow C$
- ► Coloració *pròpia*: Si $uv \in E$, $f(u) \neq f(v)$
- G és k-colorable si hi ha coloració pròpia amb k colors
- G té nombre cromàtic χ si és χ -colorable, però no $(\chi 1)$ -colorable

Exemples

- $\lambda(L_n) = 2 \ (n \ge 2)$
- $\lambda(K_n) = n \ (n \ge 2)$
- $\lambda(C_n) = 2 \text{ si } n \text{ parell}, \chi(C_n) = 3 \text{ si } n \text{ senar (i } n > 1)$

Biel Cardona (UIB)

Matemati

Curs 2011/12

16 / 44

Teoria de Graf

Colorabilita

Observació

▶ Per a tot n, hi ha grafs amb n vèrtexos i nombre cromàtic n (K_n)

Teorema dels 4 colors

Tot graf planar és 4-colorable

"Demostració"

- ▶ 1852: Guthrie ho observa i De Morgan ho conjectura
- <1960: Moltes demostracions / Molts errors</p>
- ▶ 1960-70: Heesch troba una manera computacional d'atacar-ho
- ▶ 1976: Appel i Haken ho demostren (1936 casos / 1000 h. CPU)

Biel Cardona (UIB)

Matemàt

Curs 2011/1

17 / 44

Polinomi cromàtic

Donat G, diguem $P_G(k) = \#\{k\text{-coloracions pròpies de } G\}$

Exemples

- $P_{L_n}(k) = k(k-1)^{n-1}$
- $P_{C_n}(k) = (k-1)^n + (-1)^n(k-1)$
- $P_{K_n}(k) = k(k-1)...(k-(n-1))$

Proposició

▶ Si G té per components connexos G_1, \ldots, G_m , aleshores

$$P_G(k) = P_{G_1}(k) \cdot \cdot \cdot P_{G_m}(k)$$

► Si *e* és una aresta de *G*,

$$P_G(k) = P_{G-e}(k) - P_{G/e}(k),$$

on G/e indica el graf resultant de contraure l'aresta e

Corol·lari

Per a tot graf G, $P_G(k)$ és un polinomi en k

Demostració (Corol·lari)

Per inducció sobre |V| i |E|

Demostració

- ▶ Si $G = G_1 \sqcup \cdots \sqcup G_m$, les k-coloracions de G estan en bijecció amb el producte cartesià de les k-coloracions dels G_i
- Sigui e = uv i considerem f una k-coloració de G e:
 - Si f(u) = f(v), f induix coloració pròpia de G/e (i viceversa)
 - ► Si $f(u) \neq f(v)$, f és coloració pròpia de G (i viceversa)

Per tant:

 $\{k\text{-col. prop. de }G-e\}=\{k\text{-col. prop. de }G/e\}\sqcup\{k\text{-col. prop. de }G\}$

$$P_{G-e}(k) = P_{G/e}(k) + P_G(k) \quad \Box$$

Exemple

 $P_{C_n}(k) = (k-1)^n + (-1)^n(k-1)$ ($n \ge 3$). Per inducció:

►
$$n = 3$$
: $C_3 = K_3 \implies P_{C_3}(k) = k(k-1)(k-2) = (k-1)^3 - (k-1)$

▶ $n-1 \implies n$: $G = C_n$, e qualsevol aresta:

$$G-e=L_n$$
, $G/e=C_{n-1}$

$$\begin{split} P_{C_n}(k) &= P_{L_n}(k) - P_{C_{n-1}}(k) \\ &= k(k-1)^{n-1} - (k-1)^{n-1} - (-1)^{n-1}(k-1) \\ &= (k-1)(k-1)^{n-1} + (-1)^n(k-1) \end{split}$$

Exemple

$$P_G(k) = P_{G-e}(k) - P_{G/e}(k) = (k-1)^4 + (k-1) - k(k-1)^2$$

= $k(k-1)(k-2)^2$

Biel Cardona (UIB)

Matemàtica

Curs 2011/12

22 / 44

Teoria d

eoria de Grafs Aspectes computacion

Aspectes computacionals

Objectiu

Representar i treballar computacionalment amb grafs

Rial Cardona (LIIR)

Matemàtica Di

Curs 2011/1

23 / 44

Representació: Diccionari de vèrtexos adjacents

Per a cada vèrtex, guardar la llista de vèrtexos adjacents a ell

Exemple

 $\begin{array}{c|cc} v & \mathcal{A}(v) \\ \hline 1 & 2,4 \\ 2 & 1,4,5 \\ 3 & 5 \\ 4 & 1,2 \\ 5 & 2,3 \\ \end{array}$

Biel Cardona (UIB)

Matemàtica Discre

Curs 2011

24 / 4

Representació: Matriu d'adjacència

Enumerar vèrtexos v_1, \ldots, v_n i construir matriu

$$A = (a_{i,j}),$$
 $a_{i,j} = \begin{cases} 1 & \text{si } v_i v_j \in E \\ 0 & \text{altrament.} \end{cases}$

Exemple

Proposició

Sigui $a_{i,j}^{(k)}$ l'entrada (i,j) de la matriu A^k . Aleshores $a_{i,j}^{(k)}$ és igual al nombre de recorreguts $v_i \leadsto v_j$ de longitud k

Demostració

- Cert per definició per a k = 1
- ▶ Per a k > 1: Per a cada $v_i, v_j \in V$, bijecció entre:

 - $\begin{array}{l} {\color{red} \blacktriangleright} \ \, \text{Camins} \ v_i \leadsto v_j \ \, \text{de long.} \ \, k \\ {\color{red} \blacktriangleright} \ \, \text{Parells} \ \, (v_i \leadsto v_l, v_l v_j \in E) \ \, \text{amb} \ \, u \leadsto w \ \, \text{de long.} \ \, k-1 \end{array}$

Per H.I., núm. camins: $\sum_{j} a_{i,l}^{(k-1)} a_{l,j}^{(1)} = a_{i,j}^{(k)}$

Observació

Amb grafs dirigits funciona igual

Representació: Matriu d'incidència (cas no dirigit)

Enumerar vèrtexos v_1, \ldots, v_n i arestes e_1, \ldots, e_m i construir matriu

$$B = (b_{i,j}),$$
 $a_{i,j} = \begin{cases} 1 & \text{si } v_i \text{ incident amb } e_j \\ 0 & \text{altrament.} \end{cases}$

Exemple

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ \end{pmatrix}$$

Representació: Matriu d'incidència (cas dirigit)

Enumerar vèrtexos v_1, \ldots, v_n i arcs e_1, \ldots, e_m i construir matriu

$$B = (b_{i,j}), \qquad a_{i,j} = \begin{cases} 1 & \text{si } v_i \text{ v. inicial de } e_j \\ -1 & \text{si } v_i \text{ v. final de } e_j \\ 0 & \text{altrament.} \end{cases}$$

Exemple

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

→ 4回→ 4 = > 4 = > = = ·

Biel Cardona (UIB)

Matemàtica

Curs 2011/12

28 / 44

Teoria de Graf

Aspectes computacional

Teorema

G graf, A mat. d'adjacència, B matriu d'incidència, D matriu diagonal amb $d_i=d(v_i)$. Aleshores:

$$B\cdot B^t=A+D$$

Demostració

 $V = \{v_1, \ldots, v_n\}, E = \{e_1, \ldots, e_m\}.$

- ▶ Si $i \neq j$, $(B \cdot B^t)_{i,j} = \sum_k b_{i,k} b_{j,k}$. Cada sumand: 1 si $e_k = v_i v_j$; 0 altrament. La suma és $a_{i,j}$.
- ▶ Si i = j, $(B \cdot B^t)_{i,i} = \sum_k b_{i,k} b_{i,k}$. Cada sumand: 1 si e_k té extrem v_i ; 0 altrament. La suma és d_i .

Piol Cardona (IIIP

Matemàtic

Curs 2011/1

29 / 44

Algorismes sobre grafs

Els llenguatges d'alt nivell implementen:

- ► Grafs i digrafs com a tipus de dades
- Mètodes per introduir grafs
- Mètodes per a tractar grafs:
 - Accés a vèrtexos, arestes
 - Accés a veïns d'un vèrtex
 - · ..
- ► Algorismes específics

Algorisme de Dijkstra

Donat un graf (dirigit) amb pesos als arcs, trobar el camí de pes mínim entre un vèrtex donat i els altres (Demo)

```
Dades: Un graf G i un node origen u.
```

```
NoOpt := V;
```

per a tot node v diferent de u fer $\operatorname{dist}(v) := \infty$;

pred(v) := nodef;

dist(u) := 0;

fi

mentre NoOpt $\neq \emptyset$ fer

Sigui $v \in \text{NoOpt amb dist}(v)$ mínim;

NoOpt := NoOpt \ $\{v\}$;

per a tot node v' de NoOpt adjacent a v fer

 $\operatorname{si} \operatorname{dist}(v) + w(vv') < \operatorname{dist}(v')$ aleshores dist(v') = dist(v) + w(vv');

 $\operatorname{pred}(v') = v;$ fi

fi **Sortida**: Taula amb dist(v) i pred(v)

Biel Cardona (UIB)

Teoria de Grafs Arbres no arrelats

Arbres no arrelats

Arbres (no arrelats)

Un arbre és: graf connex acíclic

Exemple

Teoria de Grafs Arbres no arrelats

Proposició (caracteritzacions d'arbres)

En tot graf, són equivalents:

- lacksquare G és connex i acíclic.
- ${f 2}$ Tot parell de vèrtexos de ${\it G}$ està unit per un únic camí.
- 3 G és connex i, si el seu ordre és n, la seva mida és n-1.
- **③** G és connex, però G e és no connex per a tota aresta $e \in E(G)$.
- \bullet G és acíclic, però G + uv conté un cicle per a tot parell u, v de vèrtexos independents.

Demostració

- ▶ (1 \Rightarrow 2) El camí existeix per ser G connex. Si hi ha múltiples camins, obtenim cicle.
- (2 \Rightarrow 1) G és connex per l'existència de camins. Si hi ha cicles, obtenim múltiples camins.
- ▶ (1 \Rightarrow 3) Fem inducció sobre |V| = n. Per a n = 1 el resultat és trivial. Sigui G un graf connex acíclic amb n+1 vèrtexos, sigui e una aresta qualsevol i G/e el graf amb n vèrtexos obtingut per contracció de e. G/e és connex i acíclic; per hipòtesi d'inducció G/e té n-1 arestes, d'on G en té n.
- ▶ (3 \Rightarrow 1) Fem inducció sobre |V| = n. Per a n = 1 el resultat és trivial. Sigui G amb n+1 vèrtexos i n arestes, i sigui e una aresta qualsevol. G/e té n vèrtexos i n-1 arestes, d'on és connex i acíclic. Ara G és connex i acíclic (per ser-ho G/e).

Teoria de Grafs Arbres no arrelat

Demostració

- ► (1 \Rightarrow 4) Suposem que G e és connex per a certa aresta e = uv. Un camí $u \leadsto v$ a G - e concatenat amb e dóna cicle. Contradicció.
- (4 \Rightarrow 1) Suposem que G té cicle, i sigui e aresta del cicle. El graf G eés connex. Contradicció.
- ► (1 \Rightarrow 5) Siguin u, v independents; considerem $u \leadsto v$ únic camí de ua v. Concatenant amb e = vu trobem cicle.
- Suposem G no connex, i u i v de components diferents. G + uv no pot contenir cicles si *G* no té cicles. Contradicció.

Boscos

Un bosc és un graf acíclic (components connexos són arbres)

Teoria de Grafs Arbres no arrelats

Arbres generadors

Un arbre generador d'un graf connex és subgraf generador (conté tots els vèrtexos) que és arbre.

Proposició

Tot graf connex té arbre generador

Demostració.

Comencem amb $W = \{u_0\}$ un vèrtex qualsevol i $F = \{\}$. T = (W, F) és un arbre.

Per a cada k = 2, ..., |V| fem:

- Escollim e = uv aresta unint vèrtex u de W amb vèrtex v de $V \setminus W$ (existeix per connexitat)
- $W := W \sqcup \{v\}, F := F \sqcup e, T := (W, F)$

Al final F és subgraf de G amb n vèrtexos i n-1 arestes.

Matemàtica Discreta

Arbres generadors minimals

- ▶ Un graf amb pesos a les arestes és un graf amb funció $w: E \to \mathbb{R}^+$.
- El pes d'un subgraf és la suma dels pesos de les arestes que conté.
- ▶ Un arbre generador minimal és un arbre generador de pes minimal.

Algoritme de Prim

Donat un graf amb pesos a les arestes, trobar un arbre generador minimal. (Demo)

Dades: Un graf G amb pesos a les arestes.

```
Sigui e = uv una aresta de G de pes minimal; V_1 := \{u, v\}; T := (V_1, \{e\});
per a k = 2, ..., |V| - 1 fer
    Sigui e_k = (u_k v_k) de pes mínimal t.q. u_k \in V_{k-1}, v_k \notin V_{k-1};
    Fem V_k := V_{k-1} \cup \{v_k\};
    Fem T := T + e_k;
```

fi Sortida: T

Teoria de Grafs Arbres arrelats

Arbres arrelats

Arbres arrelats

Un arbre arrelat és:

- Arbre amb node distingit (arrel)
- Digraf amb:
 - únic vèrtex r amb $d_e(r) = 0$
 - Per a tot $u \in V \exists ! \operatorname{\mathsf{cam}} i r \leadsto u$

Exemple

Teoria de Grafs Arbres arrelats

Notacions

- Si uv és arc: u és pare de v, v és fill de u
- Arrel: únic node sense pare
- Fulla: node sense fills
- Node interior: node amb pare (únic) i fills
- Node elemental: node amb únic fill
- Descendència de u: Nodes accessibles des de u
- lacktriangle Ascendència de u: Nodes des dels que es pot accedir a u

Teoria de Grafs Arbres arre

Arbres ordenats

Arbre on es fixa ordenació dels fills dels nodes interiors

Exemple

Arbres ordenats binaris

Tot node no fulla té dos fills distingibles (esq./dreta)

Biel Cardona (UIB) Matemàtica Discreta Curs 2011/12 41

Recompte d'arbres

Nombre d'arbres amb n fulles:

n	SNE	Bin.	Bin. Ord.
2	1	1	1
3	2	1	2
4	5	2	5
5	12	3	14
6	33	6	42
7	90	11	132
8	261	23	429
9	766	46	1430
10	2312	98	4862

► SNE: Sense nodes elementals

► Bin.: Binaris

▶ Bin. Ord.: Binaris ordenats

Curs 2011/12 44 / 44