Indian Institute of Technology Delhi Department of Computer Science and Engineering

CSL665

Introduction to Logic and Functional Programming

Major Exam

November 29, 2006

13:00-15:00

Maximum Marks: 100

Instructions: Write your name and entry number at the top of each sheet. Write your answers in the space provided. Use only a blue or black pen. Budget your time and space carefully.

Q0 (12 marks) Programming with lists in Prolog. Suppose we represent the polynomial $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ as a list $[a_0, a_1, a_2, \ldots, a_n]$ of its coefficients. Write a Prolog program addpoly(L1,L2,L3) for adding two polynomials, $a_0 + \ldots + a_nx^n$ represented as L1 and $b_0 + \ldots + b_mx^m$ represented as L2, returning the result as list L3. (Note m and n may not be equal). Example: addpoly([2,5,4],[3,5,7,1],L3) yields L3=[5,10,11,1].

Q1 (12 marks) **Programming with lists in ML.** Assuming we still represent polynomials as lists of integer co-efficients (as in Q0), write a **functional program** ddx in ML that takes a polynomial and returns the polynomial that is its first differential. For example ddx [2,5,3] returns [5,6]. Recall that

$$\frac{d}{dx}(a_0 + a_1x + a_2x^2 + \ldots + a_nx^n) = a_1 + 2.a_2x + \ldots + n.a_nx^{n-1}$$
 (* ddx: real list -> real list *)

fun ddx

Q2 (16 marks) . Suppose we have the following ML datatype for labelled binary trees:

datatype 'a bintree = Tip | Node of 'a * ('a bintree) * ('a bintree)

Assume the existence of a function min that takes a pair of integers and returns the lower of the two. Write a functional program (in ML) common that takes two int-labelled binary trees t_1 and t_2 and returns a labelled binary tree that is the "common part" of both t_1 and t_2 , with the nodes labelled by the minimum of the labels of both nodes. That is, for example if

common(t, tz) =

Ł1 =

* *

represents Node (a, -, -)

3 represents "Tip".

(* common: int bintree -> int bintree -> int bintree *)

fun common

common

Q3 (10+10 marks) **Derived Rules in ND** Consider the following inference rule (for first-order logic), where Γ and Δ are sets of formulas:

$$\frac{\Gamma \vdash \varphi \quad \Delta, \varphi \vdash \psi}{\Gamma \cup \Delta \vdash \psi}$$

(a) Show that the rule is sound in first-order logic.

(b) A rule is called "derived" if it can be expressed as a combination of previous rules. Show that the given rule can be derived using the rules of Natural Deduction. That is, given a ND proof π_1 of $\Gamma \vdash \varphi$ and a ND proof π_2 of $\Delta, \varphi \vdash \psi$, one can construct (by modification F1, and using other rules such as $(\supset E)$, a proof π' of $\Gamma \cup \Delta \vdash \psi$.

Q4 (15 marks) Polymorphic Type Checking in ML. Consider the following ML-like program that has type int (under no assumptions other than 3 has type int):

let
$$id = \lambda x.x$$
 in $((id \ id)\ 3)$ end

Give the type-checking proof tree to show that this expression has type int, showing in particular that id can be applied to itself, where the first copy has type (int \rightarrow int) \rightarrow (int \rightarrow int) and the second int \rightarrow int.

Name: Entry: 5