

NPLink-Mote-SDK developer manual

本文档适用于使用 NPLink-Mote-SDK 进行应用开发的研发人员, 以及 NPLink 的测试人员。

修订历史记录

日期	版本号	说明
2015.11.03	V0.0.1	创建文档
2015.12.20	V0.0.2	根据最新的 SDK 修改文档
2016.01.30	V0.0.3	增加 ADR 配置参数、增加发送失败消
		息
2016.03.26	V0.0.4	增加低功耗设置、工作模式设置 API;
		增加 MAC 的参数设置。
2016.05.31	V0.0.5	增加支持发送功率及FSK相关参数设
		置。
2016.06.28	V0.0.6	增加支持 433、470、868、915 频段数
		据包的收发。
2016.07.10	V0.0.7	增加支持 490 频段数据包的收发。
2016.07.26	V0.0.8	增加并优化通过API进行多个channel
		的设置。
2016.07.27	V0.0.9	增加支持通过编译器宏进行数据收发
		频段及八个默认信道的设置。

目 录

1	相关	术语	4
		框架	
3	快速	使用指南	9
	3.1	编译器宏定义	9
	3.2	数据收发	9
4	OSAL	J	11
5	数据	收发及参数 API	12
	5.1	参数设置及获取 API	12
	5.2	APP 数据收发 API	21

1 相关术语

API Application Programming Interface

OSAL Operating System (OS) Abstraction Layer

LoRaWAN Long Range Wireless Area Network

MAC Medium Access Control

OTAA Over-the-air Activation

ABP Activation by Personalization

RO Read Only

RW Read and Write

2 代码框架

NPLink-Mote-SDK 的整体代码体系结构如图 2.1 所示,整体可分为 3 层,分别为:

第 1 层:硬件层,主要包括外设 IO 的驱动、STM32L051 的驱动库文件、以及通信芯片 SX1276/79 的驱动。

第 2 层: OSAL 及 MAC 层,实现了 OSAL 的管理及 MAC 的核心代码, MAC 以 lib 的形式提供服务。

第3层:应用层,包括了自带的APP task及用户可自定义的业务逻辑 task。

图 2.1 NPLink-Mote-SDK 的代码体系结构

NPLink-Mote-SDK 整个工程包含 5 个主模块,主模块下包含若干个功能函数,具体描述如下:

模块名	包含函数	作用及功能
startup	startup_stm32l051xx.s	设置初始堆栈指针(SP);
		初始程序计数器 (PC) 为复位向量,并在执
		行 main 函数前初始化系统时钟;
		设置向量表入口为异常事件的入口地址;
hal/drivers	system_stm32l0xx.c	STM3210xx 微控制器专用系统文件
	stm32l0xx_hal.c	STM3210xx 芯片标准外设库驱动源文件
	stm32l0xx_hal_adc_ex.c	

r	T	
	stm32l0xx_hal_cortex.c	
	stm32l0xx_hal_gpio.c	
	stm32l0xx_hal_pwr.c	
	stm32l0xx_hal_pwr_ex.c	
	stm32l0xx_hal_rcc.c	
	stm32l0xx_hal_rcc_ex.c	
	stm32l0xx_hal_spi.c	
	stm32l0xx_hal_tim.c	
	stm32l0xx_hal_tim_ex.c	
	stm32l0xx_hal_uart.c	
	stm32l0xx_hal_uart_ex.c	
	stm32l0xx_hal_usart.c	
	stm32l0xx_hal_dma.c	
	stm32l0xx_hal_dac.c	
hal/board	spi_board.c	包含 SPI1 通信功能的初始化、应用及读写
		的实现,主要用于 MCU 与 SX1276/9 之间
		的通信
	oled_board.c	用于模块自带 oled 液晶显示屏的初始化以
		及字符串显示的实现
	led_board.c	LED 驱动程序
	key_board.c	按键驱动程序
	gpio_board.c.	IO 外部中断的分配及中断处理函数的实现,
		主要用于 MCU 与 SX 芯片的 IO 中断处理
	rtc_board.c	STM32l0xx 的 RTC 实现,当系统以低功耗
		方式运行时,系统需要依赖 RTC 进行定时
		和唤醒。
	uart_board.c	STM32l0xx 的串口 1 实现。

	time-board.c	STM32l0xx 的 TIMER 2 实现,当系统未以
		低功耗方式运行时,MAC 依赖 TIMER 2 进
		行延时。
	sx1276-board.c	定义与 SX1276 相连接的 IO 并初始化相应
		的中断,同时对 SX1276 Radio、天线等属性
		做相应的初始化
	timer.c	实现 MAC 层使用的定时器,用于延时操作,
		属于逻辑定时器,硬件使用RTC或TIMER 2
		定时器实现。
	delay.c	一个简单的 ms 级延时实现
	board.c	目标板通用功能的实现, 主要是对目标板电
		压进行检测。
	utilities.c	辅助函数的实现
hal/radio	sx1276.c	对 SX1276/9 芯片进行初始化、基本配置以
		及应用的、功能的实现
osal	osal.c	osal 操作标准函数的定义
	osal_memory.c	内存(堆)分配系统
	osal_mutex.c	Mutex 的创建及相应的操作
	osal_tick.c	SysTick_Configuration
	osal_timer.c	osal 定时器的相关操作,包含任务开启、
		轮寻、结束等操作 osal 定时器做出的相应
		处理
	osal_app.c	所有任务 ID 的分配及其任务的初始化
mac	LoraMac_osal.h	LoRaWAN MAC 任务头文件
	LoRaMacUsr.h	LoRaWAN MAC 用户接口头文件
	NPLink-Mote-Mac.lib	LoRa MAC 层实现的 lib 文件,是实现无线
		收发和协议的核心代码。
app	hal_osal.c	硬件抽象层任务,实现硬件的初始化及相

	关事件处理		
app_osal.c	应用层任务,可与 MAC 层实现数据的交		
	互		
stm32l0xx_hal_it.c	STM3210xx 芯片中断处理文件		
stm32l0xx_hal_msp.c	STM32l0xx 芯片外设驱动文件		
mian.c	主函数,工程入口点		

3 快速使用指南

3.1 编译器宏定义

NPLink-Mote-SDK 使用了几个编译器宏来开启/关闭一些功能,见下表:

宏名	作用
USE_LOW_POWER_MODE	低功耗开启或关闭,开启后,HAL 中的串口、LED、
	KEY、OLED 等外设将不会初始化,并会启用 RTC
	定时器来辅助休眠时长的定义。
USE_DEBUG	串口调试信息开启或关闭,开启后,将会通过 Mote
	的串口1输出辅助调试信息。

3.2 数据收发

图 3.1 NPLink-Mote-SDK 的 2 种 MAC 通信模式

NPLink-Mote-SDK 提供 2 种 MAC 通讯接入模式,即 LoRaWAN MAC (简称 LoRaMAC) 和 phyMAC, phyMAC 实现 Mote 到 Mote 的双向通信; LoRaMAC 实现 Mote 到网关再到 Server 的上下行通信,见图 3.1 所示。在这 2 种 MAC 工作模式下,物理层均提供 2 种调制方式:低速率的 LoRa 调制方式和高速率的 FSK 调制方式。

为了实现数据收发,应该遵循下述基本步骤进行开发:

4 OSAL

关于 OSAL 的 API 接口, 详见文档《NPLink OSAL API manual》的描述。

简单的说,当用户需要定义一个任务时,需撰写实现 2 个函数:初始化函数及事件处理函数,并将这 2 个函数添加到 OSAL 的相应位置即可(osal_app.c 中),示例如下:

```
void osalInitTasks( void )
{
  u8 taskID = 0;
  osal_memset( tasksEvents, 0, (sizeof( u16 ) * tasksCnt) );
  HardWare_Init(taskID++);
  LoRaMAC_Init(taskID++);
  APP Init(taskID++);
}

const pTaskEventHandlerFn tasksArr[] =
{
  HardWare_ProcessEvent,
  LoRaMAC_ProcessEvent,
  APP ProcessEvent,
}
```

注意:添加新的 task 后,初始化函数及事件处理函数,在以上 2 处的位置应该严格对应。如 APP_Init 和 APP_ProcessEvent 均位于最后(即第 3 个),由于HardWare 及 LoRaMAC 任务为基础任务,建议可将新的任务跟在它们后面。

5 数据收发及参数 API

在 APP 任务中,可调用 MAC 的服务器进行参数的设定以及进行数据的收发, 在数据收发之前,应进行相应的参数设定,如果未设定参数,则 MAC 层以默认 参数运行。

5.1 参数设置及获取 API

NPLink-Mote-SDK 提供 APP 层面及 MAC 层相关的参数配置和获取 API,用户可通过这些 API 函数方便地对工作参数进行设定。

5.1.1 LoRaMac_setAppLayerParameter()

说明:此函数可设置一些 LoRaWAN MAC 的 APP 相关运行参数,支持的参数列表如表 5.1 所示。

注意事项:无。

原型: u8 LoRaMac_setAppLayerParameter(void* pdata_in, u32 parameterIDs); 参数:

void* pdata_in 指向参数的存储空间,应传入 LoRaMacAppPara_t 类型指针。

u32 parameterIDs 参数 ID 号,支持的 ID 号如表 5.1 所示,参数可采用 "按位"方式传入,即可以同时设定多个参数,当同时设定多个参数时,将设定的 ID 号"按位或"方式传入即可。

返回值:返回处理的状态,如表 5.2 所示。

表 5.1 NPLink-Mote LoRaWAN MAC 支持的 APP 参数 ID 号

参数名	参数值	默认值	读/写	含义
PARAMETER_DEV	1 << 0		RO	NPLink Mote 的设备地址
_ADDR				DevAddr(仅 LoRaMAC
				需要)
PARAMETER_DEV	1 << 1	0x00,0x00,0x00,0x00	RW	LoRaWAN DevEUI 值(仅

_EUI		,0x00,0x00,0x00,0x0		LoRaMAC 需要)
		0		
PARAMETER_APP	1 << 2	0x00,0x00,0x00,0x00	RW	LoRaWAN AppEUI 值(仅
_EUI		,0x00,0x00,0x00,0x0		LoRaMAC 需要)
		0		
PARAMETER_APP	1 << 3	0x2B,0x7E,0x15,0x1	RW	LoRaWAN AppKey,当使
_KEY		6,0x28,0xAE,0xD2,0		用 over-the-air activation
		xA6,0xAB,0xF7,0x1		时使用。(仅 LoRaMAC
		5,0x88,0x09,0xCF,0x		需要)
		4F,0x3C		
PARAMETER_NW	1 << 4	0x2B,0x7E,0x15,0x1	RW	LoRaWAN NwkSkey,当
K_SKEY		6,0x28,0xAE,0xD2,0		activation by
		xA6,0xAB,0xF7,0x1		personalization 时使用。
		5,0x88,0x09,0xCF,0x		(仅 LoRaMAC 需要)
		4F,0x3C		
PARAMETER_APP	1 << 5	0x2B,0x7E,0x15,0x1	RW	LoRaWAN AppSkey, 当
_SKEY		6,0x28,0xAE,0xD2,0		activation by
		xA6,0xAB,0xF7,0x1		personalization 时使用。
		5,0x88,0x09,0xCF,0x		(仅 LoRaMAC 需要)
		4F,0x3C		
PARAMETER_DEV	1 << 6	TX_POWER_14_DB	RW	设置无线包的发射功率
_TXPOWER		M		(支持参数见表 5.4)

- 注: 1) Mote 加入 (激活) LoRaWAN 网络有两种方式: OTAA (over-the-air activation)、ABP (activation by personalization)。
- 2)节点成功加入网络后,应该具有 3 个信息:设备地址(DevAddr)、应用 ID 号(AppEUI)、网络会话密钥(NwkSkey)、应用会话密钥(AppSkey)。
- 3) 当采用 ABP 方式加入网络时, DevAddr、NwkSkey、AppSkey 直接在 Mote中配置生成。

- 4)当采用 OTAA 加入网络时,Mote 使用 AppKey、AppEUI、DevEUI 三者信息构成请求包,通过命令向服务器请求 DevAddr、NwkSkey、AppSkey,服务器计算出三者后下发给 Mote。
 - 5) 当前只支持 ABP 方式加入。

表 5.2 MAC 支持的操作状态

状态	值	含义
LORAMAC_USR_SUCCESS	0	操作成功
LORAMAC_USR_INVALID_PARAMETER	1	不支持的参数
LORAMAC_USR_FAILURE	0xFF	操作失败

5.1.2 LoRaMac_getAppLayerParameter()

说明:此函数可获取一些 LoRaWAN MAC 的 APP 相关运行参数,支持的参数列表如表 5.1 所示。

注意事项:无。

原型: u8 LoRaMac_getAppLayerParameter(void* pdata_out, u32 parameterIDs);

参数:

void* pdata_out 指向参数的存储空间,应传入 LoRaMacAppPara_t 类型指针。

u32 parameterIDs 参数 ID 号,支持的 ID 号如表 5.1 所示,参数可采用 "按位"方式传入,即可以同时设定多个参数,当同时设定多个参数时,将设定的 ID 号"按位或"方式传入即可。

返回值:返回处理的状态,如表 5.2 所示。

5.1.3 LoRaMac_setMacLayerParameter()

说明:此函数可设置一些 LoRaWAN MAC 的 MAC/PHY 相关运行参数,支持的参数列表如表 5.3 所示。

注意事项:无。

原型: u8 LoRaMac_setMacLayerParameter(void* pdata_in, u32 parameterIDs); 参数:

void* pdata_in 指向参数的存储空间,应传入 LoRaMacMacPara_t 类型指针。

u32 parameterIDs 参数 ID 号,支持的 ID 号如表 5.3 所示,参数可采用 "按位"方式传入,即可以同时设定多个参数,当同时设定多个参数时,将设定的 ID 号"按位或"方式传入即可。

返回值:返回处理的状态,如表 5.2 所示。

表 5.3 NPLink-Mote LoRaWAN MAC 支持的 MAC/PHY 参数 ID 号

参数名	参数值	默认值	读/	含义
			写	
PARAMETER_BAND	1 << 0	{1,TX_POWER_14		LoRaWAN 使用的频点,当
S		_DBM, 0, 0}	RW	前支持 1 个频点。(仅 LoRa
				MAC 需要配置)
PARAMETER_CHAN	1 << 1	{779500000,{((DR		LoRaWAN 在频点上使用
NELS		_5<<4) DR_0)},0},	RW	的信道,当前支持最多 16
		{779700000,{((DR		个信道。默认设置了3个信
		_5<<4) DR_0)},0},		道。(仅 LoRa MAC 需要配
		{779900000,{((DR		置)
		_5<<4) DR_0)},0}		
PARAMETER_DATA	1 << 2	DR_7	RW	设置发送速率(仅 LoRa
RATE				MAC 需要配置)
PARAMETER_ADR_	1 << 3	TRUE	RW	ADR 使能或去使能(仅
SWITCH				LoRa MAC 需要配置)
PARAMETER_PHY_	1 << 4	779500000Hz	RW	PHY MAC 工作模式下的频
FREQUENCY				点(仅 phyMAC 需要配置)
PARAMETER_PHY_	1 << 5	12	RW	PHY MAC 工作模式下,

		I	ı	
SPREADING_FACTO				LORA 调制方式的扩频因子
R				(仅 phyMAC 需要配置)
PARAMETER_PHY_	1 << 6	LORA	RW	PHY MAC 工作模式下,调
MODULATION_MO				制方式的选择,可选 LORA
DE				调制或 FSK 调制。(仅
				phyMAC 需要配置)
PARAMETER_FSK_F	1 << 7	25000HZ	RW	设置 FSK 调制方式下的频
DEV				偏
PARAMETER_FSK_	1 << 8	50000bps	RW	设置 FSK 调制方式下的速
DATARATE				率
PARAMETER_FSK_B	1 << 9	50000HZ	RW	设置 FSK 调制方式下的接
ANDEIDTH				收带宽
PARAMETER_FSK_	1 << 10	83333HZ	RW	设置 FSK 调制方式下的
AFC_BANDWIDTH				AFC 带宽

频点的设定,采用结构体数组的形式,每个成员为一个频点数据结构体,每个频点参数的结构体定义如下:

```
typedef struct
{
    uint16_t DCycle; //频点占空比
    int8_t TxMaxPower; //最大发射功率
    uint64_t LastTxDoneTime;
    uint64_t TimeOff;
}PACKED Band_t;
示例: Band = { DutyCycle, TxMaxPower, LastTxDoneTime, TimeOff } = { 1 ,
TX_POWER_14_DBM, 0, 0 }
```

参数名	定义值	含义
	/C/\L	H / T

表 5.4 NPLink-Mote LoRaWAN MAC 支持的发射功率

TX_POWER_20_DBM	0	20dBm
TX_POWER_14_DBM	1	14dBm
TX_POWER_11_DBM	2	11dBm
TX_POWER_08_DBM	3	08dBm
TX_POWER_05_DBM	4	05dBm
TX_POWER_02_DBM	5	02dBm

信道的设定,采用结构体数组的形式,每个数组成员为一个信道参数,每个信道 参数的结构体定义如下:

```
typedef struct
{
    uint32_t Frequency; //频率(Hz)
    int8_t DrRangeValue; //数据速率范围(最大值 | 最小值)
    uint8_t Band; // 频点索引
}PACKED ChannelParams_t;
示例: Channel = { Frequency [Hz], { ((DrMax << 4) | DrMin) }, Band } = { 779500000, { ((DR_5 << 4) | DR_0) }, 0 }
定义一个信道,频率为 779500000,速率从 DR_0 到 DR_5,隶属频点索引 0。
```

表 5.5 NPLink-Mote LoRaWAN MAC 支持的发送速率

参数名	定义值	含义(扩频因子-带宽)
DR_0	0	SF12 - BW125
DR_1	1	SF11 - BW125
DR_2	2	SF10 - BW125
DR_3	3	SF9 - BW125
DR_4	4	SF8 - BW125
DR_5	5	SF7 - BW125
DR_6	6	SF7 - BW250

DR_7	7	FSK
------	---	-----

NPLink 通信模组目前支持 433、470、490、780、868 和 915 频段数据包的收发, 各频段频点设置推荐如下:

表 5.6 Mote 工作在不同频段的默认信道

频段	编译器宏定义	八个信道默认频点		
433	USE_BAND_433	433175000、433375000、433575000、433775000		
		434175000、434375000、434575000、434775000		
470	USE_BAND_470	470300000、470500000、470700000、470900000		
		471100000、471300000、471500000、471700000		
490	USE_BAND_490	490300000、490500000、490700000、490900000		
		491100000、491300000、491500000、491700000		
780	USE_BAND_780	779500000、779700000、779900000、780100000		
		786500000、786700000、786900000、787100000		
868	USE_BAND_868	868100000、868300000、868500000、868700000		
		869100000、869300000、869500000、869700000		
US915	USE_BAND_US915	902300000、902500000、902700000、902900000		
		907300000、907500000、907700000、907900000		
AU915	USE_BAND_AU915	915200000、915400000、915600000、915800000		
		916000000、916200000、916400000、916600000		

在使用 NPLink 通信模组的 FSK 调制时,各参数的设定应该遵循如下规则:

$$F_{DEV} + \frac{BR}{2} \le 250kHz$$

$$F_{DEV} + \frac{BR}{2} \le RxBW$$

$$0.5 \le \beta = \frac{2 \times F_{DEV}}{BR} \le 10$$

$BR < 2 \times RxBW$

其中:

RxBW: 接收带宽(Hz)

F_{DEV}: 频率偏移量(Hz)

BR: 数据速率(bps)

推荐的一些参数设定如表 5.7 和表 5.8 所示。

表 5.7Mote 与 GW 之间 FSK 通信的参数配置

	Mote TX 参数	Mote RX 参数		GWN	化参数
BR	Fdev	RxBW	AFCbandwidth	Fdev	RxBW
50K	25000	50000	83333	25000	0
100k	50000	100000	83333	50000	0
150k	50000	150000	166666	50000	0
200K	100000	200000	249999	100000	0

表 5.8 Mote 与 Mote 之间 FSK 通信的参数配置

	Mote TX 参数	Mote RX 参数	
BR	Fdev	RxBW	AFCbandwidth
50K	25000	50000	83333
100k	50000	100000	83333
150k	50000	150000	166666
250k	100000	250000	250000

5.1.4 LoRaMac_getMacLayerParameter()

说明:此函数可获取一些 LoRaWAN MAC 的 MAC/PHY 相关运行参数,支持的参数列表如表 4.3 所示。

注意事项:无。

原型: u8 LoRaMac_getMacLayerParameter(void* pdata_out, u32 parameterIDs);

参数:

void* pdata_out 指向参数的存储空间,应传入 LoRaMacMacPara_t 类型指针。

u32 parameterIDs 参数 ID 号,支持的 ID 号如表 4.3 所示,参数可采用 "按位"方式传入,即可以同时设定多个参数,当同时设定多个参数时,将设定的 ID 号"按位或"方式传入即可。

返回值:返回处理的状态,如表 4.2 所示。

5.1.5 LoRaMac_setMode()

说明:此函数用于设置 MAC 层工作模式。

注意事项:无。

原型: u8 LoRaMac_setMode(u8 mode);

参数:

u8 mode MAC 层的工作模式,MODE_LORAMAC -- LORA MAC 方式工作,MODE_PHY -- phy MAC 方式工作。

返回值:返回处理的状态,如表 4.2 所示。

5.1.6 LoRaMac setlowPowerMode()

说明:此函数用于设置 radio 部分低功耗,使能后, radio 部分将关闭晶振,并进入 sleep 状态。

注意事项:无。

原型: void LoRaMac setlowPowerMode(u8 enable);

参数:

u8 enable 用于设置低功耗使能与否,TRUE -- 使能低功耗,FALSE -- 去使能低功耗。

返回值:无。

5.2 APP 数据收发 API

在收发数据之前,需要先通过 LoRaMac_setMode 函数进行工作模式的选择 (LORA MAC 或 PHY MAC),并事先设定好在当前工作模式下的工作参数。 对于 LORA MAC 工作模式,Mote 的参数应该跟 GWM 一致;对于 PHY MAC 工作模式,两个 Mote 应该设置成一样的参数,才能进行数据收发。

5.2.1 发送无线数据

在 NPLink-Mote-SDK 中,收发无线数据通过 OSAL 的消息进行,当有数据 需要发送时,通过给 LoRaMAC TASK 发送一个消息,示例如下:

```
pMsgSend = (loraMAC_msg_t*)osal_msg_allocate(18);
      if(pMsgSend != NULL)
      {
          osal_memset(pMsgSend,0,17);
          pMsgSend->msgID = TXREQUEST; //消息类型
          pMsgSend->msgLen = 16;//数据长度
          for(u8 dataCount = 0; dataCount < 16; dataCount++)
          {
             pMsgSend->msgData[dataCount] = dataCount;
          }
          osal_msg_send(LoraMAC_taskID,(u8*)pMsgSend); // 向 LoRaWAN
MAC 任务发送消息,LoRaWAN MAC 将发送此数据包
      }
   在 LoRaWAN MACAPP 之间传递的消息结构体定义如下:
   typedef struct loraMAC_msg
      uint8 msgID;//消息 ID 号
```


uint8 msgLen;//消息 msgData 的长度 int8_t msgRxRssi;//接收数据包的信号强度 int8_t msgRxSnr;//接收数据包的信噪比 uint16 frame_no;//发送 or 接收数据的序列号 int8_t tx_packet_status;//发送数据包的状态 uint8 reserve;//预留 uint8 msgData[70];//消息体 payload,最大为 70 字节 }loraMAC_msg_t;

5.2.2 接收无线数据

在 NPLink-Mote-SDK 中,通过系统消息的方式来通告数据的接收及处理的 反馈(如加入网络、无线包发送完成等),每种"回发的消息"均具有一个唯一的"消息类型"号。目前,支持的消息类型号如下表 5.9 所示。

表 5.9 NPLink-Mote LoRaWAN MAC 支持的消息类型列表

消息类型定义	定义值	含义
TXDONE	1	发送完成
RXDONE	2	接收完成
TXREQUEST	3	发送请求
TXERR_STATUS	4	发送失败

代码示例如下:

```
if(events & SYS_EVENT_MSG) //系统消息
{//循环接收消息
while(NULL!=(pMsgRecieve=(loraMAC_msg_t*)osal_msg_receive(APP_taskID)))
{ //pMsgRecieve[0]为消息类型
    switch(pMsgRecieve->msgID)
    {
        //发送完成
```



```
case TXDONE:
//进行处理,延时继续发送
osal_start_timerEx(APP_taskID,APP_PERIOD_SEND, 5000);
 break;
//接收完成
case RXDONE:
 memset( Rx_buf,0,32);
 sprintf( Rx_buf,"RXLEN:%d",pMsgRecieve->msgLen);
  OLED_ShowString( 0,16, (u8*)Rx_buf,16 );
  for(u8 dataCount = 0; dataCount < pMsgRecieve->msgLen; dataCount++)
  {
    sprintf(pRx_buf,"DATA:%d",pMsgRecieve->msgData[dataCount]);
     pRx_buf += 7;
   }
  OLED_ShowString( 0,32, (u8*)Rx_buf,16 );
  OLED_Refresh_Gram();
  break;
   default://未知的消息类型,不处理
    break;
   }
  osal_msg_deallocate((u8*)pMsgRecieve); //释放消息空间
   }
  return (events ^ SYS_EVENT_MSG);
  }
```

注意:目前,LoRaWAN MAC 任务只支持向 APP_taskID 发送"回发的消息"。