01 | What is Data Science

Ivan Corneillet

Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Describe the components of a successful learning environment
- Define what is data science and who data scientists are; define the data science workflow
- Setup your development environment and practice the different workflows we will use in this course

Setting You Up for Success

Meet Your Team

Ivan Corneillet, Lead Instructor

• TBD, Associate Instructor

Matt Jones, Course Producer

Course Logistics

- Lead Instructor
 - Ivan Corneillet
- Associate Instructor
 - TBD
- Course Producer
 - Matt Jones
- Class
 - August 29 November 2, Tuesdays and Thursdays,
 6:30PM 9:30PM
 - Classroom 4

- Slack
 - https://ds-sf-38.slack.com
- GitHub
 - https://github.com/ga-students/DS-SF-38
- Exit Tickets
 - http://tiny.cc/ds-sf-38

What skills will I learn in this class?

What is Data Science (session 1)	Research Design (session 1)	Python (session 2)	pandas (session 3)	Databases and Scrapping (session 4)	Exploratory Data Analysis (session 5)
k-Nearest Neighbors (session 6)	Model Fit (session 6)	Data Wrangling and Exploratory Data Analysis Challenge (session 7)	Linear Regression (sessions 8–10)	Regularization (session 11)	Logistic Regression (session 12)
Machine Learning Modeling Challenge (session 13)	Trees (session 14)	Review (session 16)	Machine Learning Modeling Challenge, Take 2 (session 17)	Natural Language Processing (session 18)	Time Series (session 19)

Top algorithms and methods used by data scientists

(http://www.kdnuggets.com/2016/09/poll-algorithms-used-data-scientists.html)

Gladwell's 10,000 Hour Rule

(http://www.wisdomgroup.com/blog/10000-hours-of-practice)

- "Greatness requires enormous time"
 - It takes roughly ten thousand hours of practice to achieve mastery in a field

How will I apply and reinforce these new skills?

Assignments (ungraded)	Take-home assignments				
Unit Project (graded)	Research Design (session 5)	Exploratory Data Analysis (session 9)	Machine Learning Modeling and Executive Summary (session 14)		
Challenges (ungraded)	Data Wrangling and Exploratory Data Analysis (session 7)	Machine Learning Modeling (session 13)	Machine Learning Modeling (session 17)		
Final Project (graded)	Lightning Pitch (session 10)	Research Design, Exploratory Data Analysis, and Intermediate Presentation (session 15)	Machine Learning Modeling and Final Presentation (session 20)		

Typical Class

- Pre-readings (usually optional)
- Objectives
- Announcements
- Previous class review

- Series alternating
 - between:
 - Lectures
 - (deck, whiteboard, codealongs, and demos)
 - Activities
 - (cold-calling, individual and group exercises, and codealongs)

- Class review
- Exit tickets
- Post-readings (usually optional)

What is Data Science? Who are Data Scientists?

Harvard Business Review | "Data Scientists: The Sexiest Job of the 21st Century" (2012)

(https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

Source: Harvard Business Review

Wired | "The End of Code" | "Soon We Won't Program Computers. We'll Train Them Like Dogs" (2016)

(http://www.wired.com/2016/05/the-end-of-code)

Source: Wired

Data science is everywhere

♥ FiveThirtyEight

UBER

Common questions asked in data science

How much? How many?

- What will the temperature be next Tuesday?
- What will my fourth quarter sales in France be?
- How many kilowatts will be demanded from my wind farm 30 minutes from now?
- How many new followers will I get next week?

Regression

- Predict a continuous outcome
 - ► *k*-Nearest Neighbors
 - Linear Regression
 - Trees

Common questions asked in data science (cont.)

Is this A, B or C?

- Will this customer default on their loan?
- Is this an image of a man, a cat, or a dog?
- Will this customer click on the advertisement?
- Which team will win the championship?
- Is this mole malignant or benign?

Classification

- Predict a discrete outcome
 - ► *k*-Nearest Neighbors
 - Logistic Regression
 - Trees

Common questions asked in data science (cont.)

How is this Data Organized?

- What are the different types of coffee drinkers?
- Which viewers like the same kind of movies?
- What kinds of car models does GM produce?
- Are there common clusters of cable channels that customers tend to purchase together?
- What is a natural way to break these documents into five topics?

Clustering

What are the "categories" within the data?

Data science involves a variety of skillsets

Data scientists in ≤140 characters

Wired's "Soon We Won't Program Computers. We'll Train Them Like Dogs" (2016) (cont.)

Behaviorism/Behavioral Psychology

- Brain as a black box
 - Stimulus and response, feedback and reinforcements
 - "ring bell, dog salivates"

Cognitive Psychology

- Brain more like a computer
 - Thoughts as programs
 - Absorb, process, and act upon information

Wired's "Soon We Won't Program Computers. We'll Train Them Like Dogs" (2016) (cont.)

Machine Learning

- Humans train computers
 - Keep showing cats to a computer and eventually it will *learn* to recognize
 cats (https://www.wired.com/2012/06/google-x-neural-network)
 - No symbols, no rules; instead an unparsable machine learning

Traditional Programming

- Humans write code (as explicit step-bystep-instructions) for computers to follow
 - Rule-based determinism
 - "Write enough rules and eventually, we'd create a system sophisticated enough to understand the world"
 - For years, Google Search relied mostly on these human-written rules (https://www.wired.com/2016/02/ai-is-changing-the-technology-behind-google-searches)

Wired's "Soon We Won't Program Computers. We'll Train Them Like Dogs" (2016) (cont.)

Age of Entanglement

Outside-in view of how machine work

"Code doesn't just determine behavior,behavior also determine code"

Age of Enlightenment

Inside-out view of how machine work

• "First, we write the code, then the machine expresses it"

In this course we will model the stimuli as a matrix X (the **feature matrix**); the response is modelled as a vector y (the **response vector**). We will use these key data structures as inputs to our machine learning algorithms

Feature Matrix X **Response Vector** *y* Stimulus/feedback *Response/reinforcements* "ring bell" "dog salivates" col0 col1 col2 col3 col row0 row0 row1 row1 row2 row2 row3 row3

Data Science Workflow

Data Science Workflow

(a.k.a., Cross-Industry Standard Process for Data Mining, or CRISP-DM)

Some resources to follow along the class (or afterwards...) (will reference either <u>pre-class reading</u> and/or <u>post-class reading</u> materials; optional; not required for the course)

 Data Science for Business (by Provost and Fawcett) (<u>link</u>) (General Assembly holds several copies in its library)

An Introduction to Statistical Learning: with Applications in R (by James et al.)

(e-book available free-of-charge here)

For a more advanced treatment of these topics, check out The Elements of Statistical Learning: Data Mining, Inference, and Prediction (by Hastie et al.). (e-book also available free-of-charge here)

Slides © 2017 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission