Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет ПИиКТ

«Тестирование программного обеспечения»

Лабораторная работа №1

Вариант №33116

Выполнил: Окладников Константин Константинович Группа: Р33111 Преподаватель: Харитонова Анастасия Евгеньевна

Санкт-Петербург 2021 г.

Задание

С помощью программного пакета Apache JMeter провести нагрузочное и стресс-тестирование веб-приложения в соответствии с вариантом задания.

В ходе нагрузочного тестирования необходимо протестировать 3 конфигурации аппаратного обеспечения и выбрать среди них наиболее дешёвую, удовлетворяющую требованиям по максимальному времени отклика приложения при заданной нагрузке (в соответствии с вариантом).

В ходе стресс-тестирования необходимо определить, при какой нагрузке выбранная на предыдущем шаге конфигурация перестаёт удовлетворять требованиями по максимальному времени отклика. Для этого необходимо построить график зависимости времени отклика приложения от нагрузки.

Параметры тестируемого веб-приложения

- URL первой конфигурации (\$ 5600) http://aqua:8080?token=468634550&user=2044827373&conf=1;
- URL второй конфигурации (\$ 9700) http://aqua:8080?token=468634550&user=2044827373&conf=2;
- URL третьей конфигурации (\$ 12700) http://aqua:8080?token=468634550&user=2044827373&conf=3;
- Максимальное количество параллельных пользователей 13;
- Средняя нагрузка, формируемая одним пользователем 20 запр. в мин.;
- Максимально допустимое время обработки запроса 470 мс.

Выполнение

Ссылка на репозиторий

https://github.com/Ko4eBHuK/tpo_lab4_JMeter

Нагрузочное тестирование

Конфигурация Jmeter

- Tread Group
 - Максимальное количество параллельных пользователей Number of threads (users) — 13
 - о Период запуска пользователей Ramp-up period (seconds) 0
 - о Количество итераций Infinity
- HTTP Request
 - o Protocol http
 - Server name or IP localhost, был проброшен порт на удалённый сервер с приложением
 - o Port Number 9999
- Constant Throughput Timer Target throughput = 20
- Duration Assertion Duration in milliseconds = 470

Графики работы приложения

Конфигурация 1

Конфигурация 2

Конфигурация 3

Выводы по выбранной конфигурации

При тестировании конфигураций прошла проверки только третья, самая дорогая конфигурация. У первой конфигурации было 100% превышение времени обработки запроса. В случае со второй конфигурацией 14,38% запросов обрабатывались дольше требуемого. Третья конфигурация справилась с обработкой запросов в установленные временные рамки при 100% случаев. Исходя из всего вышеперечисленного, есть только один вариант удовлетворяющей требования конфигурации — это третья конфигурация за 12 700 долларов.

Стресс-тестирование

Для проведения стресс-тестирования был построен следующий план

Количество запросов в минуту увеличивается на 13.

Результаты стресс-тестирования представлены на рисунке ниже:

При количестве запросов в минуту от 91, время обработки запросов начинает выходить за ограничение в 470 миллисекунд. 12,31% запросов превышает поставленное требование, а максимальное время обработки составляет 486 миллисекунд, что не намного больше, но уже неприемлемо.

График изменения времени отклика от нагрузки для выбранной конфигурации, полученный в ходе стресс-тестирования системы представлен ниже:

Вывод

В ходе выполнения данной лабораторной работы я провел нагрузочное тестирование веб-приложения при различных конфигурациях аппаратного обеспечения. Успешно прошла тестирование только одна конфигурация, самая дорогая.

Проведение стресс-тестирования позволило определить при какой нагрузке веб-приложение с данным аппаратным обеспечением перестает удовлетворять требованиям.

Нагрузочное- и стресс-тестирование являются очень важными видами тестирования производительности приложений, т. к. они позволяют оценить, как работает приложение при заданной и превышаемой нагрузках.