dt - - - 9

(c)
$$\vec{V}_{3} = \vec{8}$$
, $\vec{V}_{0} = \vec{8}\vec{0}$, $\vec{V}_{3} = \vec{3}$, where $\vec{O}\vec{P}^{\dagger} = \vec{8}\vec{C}$, $\vec{V}_{0} = \vec{3}\vec{C}$, where $\vec{O}\vec{P}^{\dagger} = \vec{8}\vec{C}$, $\vec{V}_{0} = \vec{3}\vec{C}$, where $\vec{O}\vec{P}^{\dagger} = \vec{8}\vec{C}$, $\vec{V}_{0} = \vec{3}\vec{C}$, $\vec{V}_{0} = \vec{N}$, $\vec{V}_{0} = \vec$

$$\hat{e}_{n} \rightarrow \text{unit vector in disection of } \frac{d\hat{e}_{t}}{ds}$$
 $\hat{e}_{t} \times \hat{e}_{n} = \hat{e}_{b} \rightarrow \text{binormal unit vector}$

b) $d\hat{e}_{t} = \frac{1}{s} \hat{e}_{n}$; $s \rightarrow \text{sadins of curvature}$.

e)
$$\vec{v} = \vec{s} \cdot \hat{e}_t$$
; $\vec{a} = \vec{s} \cdot \hat{e}_t + \vec{s}^2 \cdot \hat{e}_h$

$$\frac{1}{5} = \frac{|dx| \times |dx|}{|dx|}, \quad \text{where 5 is any}$$

$$\frac{|dx|^3}{|dx|^3}$$
parameter

9) When A and Pase both on the rigid body. tangential center petal acceleration