

Aspectos do suporte (base) nas instâncias

- Os exemplos de treino são "memorizados" tal como estão
 - não se constrói um modelo à-priori do conjunto de treino
 - ... "lasy" learning", i.e., só classifica quando surge uma nova instância!
- Recorre-se à noção de "função de distância"
 - usada para determinar a distância entre duas quaisquer instâncias
- Para classificar uma nova instância (e.g., y)
 - escolhe-se a classe do(s) exemplo(s) de treino mais próximo(s) (de y)
- ... algumas possíveis "função de distância"
 - Euclidiana (só domínios numéricos)
 - Manhattan (só domínios numéricos)
 - Hamming (domínios numéricos e nominais)
 - Quadrada (mesmo que Euclidiana mas sem cálculo da raiz quadrada)
 - **–** ...

... as funções de distância

- Sejam duas instâncias A e B com atributos
 - respectivamente $a_1, a_2, ..., a_n e b_1, b_2, ..., b_n$
- Distância **Euclidiana**: $(\Sigma_{i=1,n} (a_i b_i)^2)^{\frac{1}{2}}$
 - i.e,, distância "em linha recta entre dois pontos"
 - para comparar distâncias não é calcular a raiz quadrada
 - ... variações incluem potências maiores que 2; aumentar potência aumenta influência das maiores diferenças (à custa das menores)
- Distância de **Manhattan**: $\Sigma_{i=1..n} | a_i b_i |$
 - i.e., distância "em blocos entre dois pontos"
- Distância de **Hamming**: $\Sigma_{i=1..n}$ h(a_i , b_i), onde h(x, y) $\begin{cases} 0, \text{ se } x = y \\ 1, \text{ se } x \neq y \end{cases}$

- i.e., número de posições em que A e B diferem entre si

vermelha, amarela azul

Implemente, e.g., em Python, estas três funções de distância

As funções de distância (uma implementação em Python) -

```
def distance euclidean ( exampleA, exampleB ):
   import math
   assert len( exampleA ) == len( exampleB )
   return math.sqrt( sum( ( itemA - itemB ) **2 \
      for (itemA, itemB) in zip(exampleA, exampleB))
def distance manhattan ( exampleA, exampleB ):
   assert len( exampleA ) == len( exampleB )
   return sum ( abs ( itemA - itemB ) \
      for (itemA, itemB) in zip(exampleA, exampleB))
def distance hamming( exampleA, exampleB ):
   assert len( exampleA ) == len( exampleB )
   return sum ( itemA != itemB \
      for ( itemA, itemB ) in zip( exampleA, exampleB ) )
```

zip(arg1, arg2, ...) returns a list of tuples, where the i-th tuple contains the i-th
element from each argument

```
Exemplo:
zip([11, "aaa", 33, 5], [33, "xx", 33, 5])
> [(11, 33), ('aaa', 'xx'), (33, 33), (5, 5)]
```

```
distance_hamming( \
    [11, "aaa", 33, 5], \
    [33, "xx", 33, 5] )
    > 2
```

Normalizar os valores

- Os valores dos domínios dos vários atributos têm diferentes escalas
 - pelo que ao usar uma função de distância é usual normalizar
 - ... para que o cálculo de distância não seja influenciado pela escala
- ... é usual normalizar os valores no intervalo [0 .. 1] calculando
 - calculando $v_i = (a_i min a_i) / (max a_i min a_i)$
 - onde a_i é o valor real do atributo i e min e max são, respectivamente, o valor mínimo e máximo do atributo i no conjunto de treino
- ... a formulação assume que os atributos têm domínios numéricos
 - primeiro normalizam-se os valores de cada atributo dos exemplos
 - e depois pode calcular-se a distância entre quaisquer dois exemplos
- No caso de atributos com domínio nominal não existe normalização
 - considera-se a distância de Hamming (distância 1 se valores diferentes)
 - ... pelo que só se usam os valores 1 e 0 (logo não é preciso normalizar)

Lidar com a distância envolvendo valores omissos

- A abordagem segue a ideia de se "assumir a diferença máxima"
 - entre um valor omisso e qualquer outro valor
 - i.e., a ausência de informação origina distância máxima entre atributos
- Ao comparar 2 valores de atributos <u>nominais</u> temos,
 - se pelo menos um é omisso então a distância é 1 (normalizado)
 - ... notar que é também 1 quando ambos são omissos
 - só quando ambos são iguais e não omissos a distância será 0 (zero)
- Ao comparar 2 valores, a e b, de atributos <u>numéricos</u> temos,
 - se ambos forem omissos então a distância é 1
 - se só 1 é omisso, e.g., a_i é omisso, então a distância é max(b_i, 1 b_i)
 - ... ou seja, se só 1 é omisso a distância é tão grande quanto possível

Um exemplo (abstracto)

Conjunto de treino

Instância	Χ	Υ	Conceito
1	6	8	-
2	2	6	+
3	5	6	-
4	3	5	+
5	4	2	-
6	2	1	+

No conjunto de treino qual a instância mais próxima de a_1 =4, a_2 =4? Considere a distância de Manhattan.

... o exemplo abstracto (detalhe dos cálculos)

Atenção: normalizar também, com os mínimos e máximos do conjunto de treino, o exemplo a classificar (se não normalizar estará sempre mais perto dos exemplos na "fronteira" do conjunto de treino)

1	i- <i>m</i>	in`)/(ma	x-m	nin)
I١			/' \	ma	A 11	,

Instância	Χ	Υ	Conceito
1	6	8	-
2	2	6	+
3	5	6	-
4	თ	5	+
5	4	2	-
6	2	1	+

X _{norm}	Y _{norm}
1,00	1,00
0,00	0,71
0,75	0,71
0,25	0,57
0,50	0,14
0,00	0,00

[a _{1norm} -X _{morm}]	a _{2norm} -X _{morm}	Σ
0,50	0,57	1,07
0,50	0,29	0,79
0,25	0,29	0,54
0,25	0,14	0,39
0,00	0,29	0,29
0,50	0,43	0,93

ordem	Conceito
6°	-
4º	+
3°	-
2°	+
1°	-
5°	+

max 6 8 min 2 1

No conjunto de treino a instância 5 é a mais próxima de a_1 =4, a_2 =4

Então, a que classe pertencerá o exemplo a_1 =4, a_2 =4?

Classificação do exemplo "olhando para os vizinhos"-

Então, a que classe pertencerá o exemplo a_1 =4, a_2 =4?

ordem	Conceito
6°	-
4º	+
3°	-
2°	+
1°	-
5°	+

Classificar pela "regra da maioria" usando os "K vizinhos mais próximos"

Como procurar vizinhos (próximos) de modo eficiente?

- Para procurar os vizinhos mais próximos de uma qualquer instância
 - podemos calcular a distância a cada um dos exemplos
 - ... e escolher a menor dessas distâncias
- Calcular distância a todos os exemplos tem complexidade temporal
 - linear no número de exemplos
 - i.e., tempo aumenta proporcionalmente com o número de exemplos
- Para acelerar a procura pode
 - organizar-se o conjunto de treino numa estrutura do tipo árvore
- ... a KD-Treee é uma árvore binária adequada para representar
 - pontos num espaço de dimensão K (daí o KD "K Dimensional" space)
 - ... i.e., K é o número de atributos de cada ponto

KD-Tree – características da estrutura em árvore

- Uma KD-Tree (árvore KD) é uma árvore binária
 - i.e., cada nó tem no máximo dois descendentes
 - ... sub-árvore da esquerda e sub-árvore da direita
- Cada nó representa um <u>exemplo</u> e uma <u>dimensão</u> (ou eixo, direcção)
 - esquerda: exemplos com valores menor ou igual nessa dimensão
 - direita: exemplos com valores maiores nessa dimensão
 - ... organização idêntica à da árvore de pesquisa binária
- Para construir a árvore é preciso escolher, para cada nó,
 - o exemplo que esse nó irá representar, e
 - a dimensão pela qual se separam as sub-árvores (esquerda e direita)

... estratégias – escolher dimensão e exemplo em cada nó

- Para escolher a dimensão (ou eixo) uma estratégia "pesada"
 - calcular a variância dos dados em cada eixo (dimensão) individualmente
 - e escolher o eixo (dimensão) com maior variância
- ... escolher dimensão (ou eixo) uma estratégia "mais leve"
 - "rodar" nos atributos de acordo com a profundidade (depth) do nó
 - i.e., "resto da divisão inteira da profundidade pelo número de atributos"
- Para seleccionar o valor (e exemplo) considerar a mediana
 - ordenar os exemplo pela dimensão escolhida
 - escolher o ponto (mediana) que separa a metade inferior da superior
 - ... pode originar partições do tipo "rectângulo fino e comprido"
- ... ou calcular a média e seleccionar o exemplo mais próximo
 - implica mais cálculo (é "mais pesado") do que na mediana
 - ... mas pode originar partições mais "quadradas" do que as da mediana

Exemplo – construção da KD-Tree

Construir uma KD-Tree para a lista de exemplos:

[(6, 8), (2, 6), (5, 6), (3, 5), (4, 2), (2, 1)]

Para construir a KD-Tree utilizar as seguintes estratégias:

- "rodar" a dimensão de acordo com a profundidade da árvore
- seleccionar o exemplo que corresponde à mediana

... exemplo – a árvore KD

Construir uma KD-Tree para a lista de exemplos:

[(6, 8), (2, 6), (5, 6), (3, 5), (4, 2), (2, 1)]

d = depth mod número-atributos = 0 mod 2 = 0 [(2, 6), (2, 1), (3, 5), (4, 2), (5, 6), (6, 8)]

ordenar de acordo com dimensão,

d, e escolher a mediana

(4, 2) d=0 /(3, 5) d=1 /(2, 1) d=0 \(2, 6) d=0 \(6, 8) d=1 /(5, 6) d=0 \[]

Paulo Trigo Silva

E como usar a KD-Tree para procurar vizinhos próximos?

- Dado um novo exemplo percorrer a KD-Tree até uma folha
 - a folha não é necessariamente o vizinho mais próximo
 - mas é uma boa primeira aproximação
 - ... um melhor vizinho tem que estar a menor distância do que essa folha
 - ... no exemplo anterior é "estar no interior do círculo tracejado"
- Para ver se existe um melhor vizinho
 - verificar se o nó irmão tem um melhor vizinho
 - retroceder ao nó pai e verificar se é um melhor vizinho
 - verificar se o irmão do nó pai é melhor vizinho
 - se num novo caminho um nó é melhor vizinho ver as suas sub-árvores
 - ... neste percurso ir sempre guardando o melhor nó até ao momento

... procurar vizinhos

Qual o vizinho mais próximo de:

(3, 2)

?

O vizinho mais próximo é: (4, 2)

(que é avô de (2, 1))

Primeira aproximação: (2, 1)

distância =
$$(3-2)^2 + (2-1)^2 = 2$$

Há outro(s) mais próximo?

• análise do pai, (3, 5), e descendentes:

"valor na 2ª dimensão tem que ser superior a 5 logo distância a (3, 2) necessariamente superior a (5-2)² = 9 > 2; logo nem o pai nem nenhum dos seus outros descendentes pode ser mais próximo"

• análise do avô, $(\underline{4}, 2)$, e descendentes:

"valor na 1ª dimensão tem que ser superior a 4 logo distância a (3, 2) necessariamente superior a $(4-3)^2 = 1 < 2$; logo pode haver mais próximo"

• o **avô** tem *distância* =
$$(4-3)^2 + (2-2)^2 = 1$$

"qualquer descendente (ramo à direita) do avô tem valor na 1ª dimensão superior a 4 logo distância a (3, 2) superior a (4-3)² = 1; logo não há mais próximo"

Síntese – classificação com o algoritmo kNN

- Assume-se um conjunto de treino com instâncias da forma < x, f(x) >
 - onde x são valores de atributos e f(x) é o valor da classe de x
 - ... se a função f é discreta, então f: R^n → $V = \{v_1, ..., v_n\}$
 - ... se a função f é contínua, então f: Rⁿ → R
- Dada a instância, x_c, para classificar, pesquisar, no conjunto treino,
 - as K instâncias, x₁, x₂, ..., x_k, mais próximas de x_c
 - ... aqui pode usar-se KD-Tree para melhorar desempenho na pesquisa
- Para funções f <u>discretas</u>, após encontrar as K instâncias x₁, x₂, ..., x_k,
 - devolver $f(x_c) = arg \max_{v \in V} \#\{x_i : f(x_i) = v\}$ (ou seja, "regra de maioria")
 - i.e., $f(x_c) = arg \max_{v \in V} \sum_{i=1..K} \delta(f(x_i), v)$, com $\delta(a,b)=1$ se a=b, 0 c.c.
- Para funções f contínuas, após encontrar as K instâncias x₁, x₂, ..., x_k
 - devolver $f(x_c) = (\sum_{i=1}^{\infty} f(x_i)) / K$
 - ou seja, classifica como a média dos K exemplos mais próximos de x_c

... refinamento – kNN com ponderação pelas distâncias

- Refinamento para pesar a contribuição de cada um dos K vizinhos
 - com base na sua distância ao ponto a classificar
- Considera-se, para cada vizinho, x_i, o peso, w_i, como sendo
 - uma função monótona decrescente com o aumento da distância
 - usando, por exemplo, a inversa da função de distância adoptada
 - i.e., $\mathbf{w_i} = 1 / distancia(\mathbf{x_c}, \mathbf{x_i})$
- Para funções f <u>discretas</u>, após encontrar as K instâncias x₁, x₂, ..., x_k,
 - devolver $f(x_c) = arg \max_{v \in V} \Sigma_{i=1..K} \mathbf{w_i} \times \delta(f(x_i), v)$
- Para funções f contínuas, após encontrar as K instâncias x₁, x₂, ..., x_k
 - devolver f(x_c) = ($\Sigma_{i=1..K}$ $\mathbf{w_i} \times$ f(x_i)) / ($\Sigma_{i=1..K}$ $\mathbf{w_i}$); i.e., média ponderada
- ... se vizinho coincidente com x_c (distancia(x_c,x_i)=0) fazer w_i máximo

Com que estrutura(s) implementar o kNN com KD-Tree?

- Uma estrutura que represente a noção de "nó de árvore"
 - com capacidade para armazenar dados
 - que tem uma lista de nós descendentes
 - e que sabe indicar se é, ou não, uma folha
- Um nó de uma KD-Tree especializa o anterior
 - pois adiciona a dimensão usada para separar o espaço
 - e apenas admite dois descendentes (KD-Tree é árvore binária)

Construir, e.g., em Python, aquelas duas estruturas.

... "nó de árvore" – em Python-

```
class TreeNode():
  def init (self, data, children):
     self. data = data
     # list with root node (TreeNode) of descending trees
     self. children = children
  def is leaf( self ):
     for item in self.children:
        if item <> None: return False
     return True
  @property
  def data ( self ): return self. data
  @data.setter
  def data( self, value ): self. data = value
  @property
  def children ( self ): return self.__children
```

... "nó de KD-Tree"—

```
class KDTreeNode( TreeNode ):
    def __init__( self, point, dimension, left, right ):
        TreeNode.__init__( self, point, [ left, right ] )
        self.__dimension = dimension

@property
    def dimension( self ): return self.__dimension

@property
    def point( self ): return self.data

@property
    def left( self ): return self.children[ 0 ]

@property
    def right( self ): return self.children[ 1 ]
```

O que é necessário para construir a KD-Tree?

- Uma estratégia para escolher, em cada passo, uma dimensão
 - a mais simples é "rodar" de acordo com a profundidade do nó
 - a mais "pesada" é calcular a dimensão de maior variância
- Uma estratégia para escolher o ponto de separação do conjunto
 - a mais simples é escolher a mediana
 - a mais "pesada" é escolher o ponto mais próximo da média
- Um algoritmo que, de modo recorrente, construa a árvore KD
 - aplicando as estratégias em cada passo
 - e terminando quando o conjunto em análise é vazio

Construir, e.g., em Python, aquelas estratégias e sua aplicação na construção da KD-tree.

Admita que point list contém uma lista de pontos e.g., [(6, 8), (2, 6), (5, 6)]

... estratégias para escolher dimensão e ponto separação

```
def choose_dimension_fromDepth( point_list, depth ):
    # choose dimension based on depth
    # (so that dimension cycles through all valid values)
    # assumes all points have the same dimension
    return depth % len( point_list[ 0 ] )
```

```
def choose_index_median( point_list ):
    # choose the index that corresponds to the median
    return len( point_list ) / 2
```

... e uma classe onde se vai registar essa informação e onde se vai implementar o método de construção da KD-Tree.

... construção (método build) da KD-Tree

```
def build( self, point list, depth ):
  if not point list: return None
  # choose the dimension to split the tree
  dimensionSplit = self.choose dimension( point list, depth )
  # "sort" modifies the list in-place (and returns None)
  # "key" is a function with a single argument;
  #the return is used for sorting
  point list.sort( key = lambda point: point[ dimensionSplit ] )
  # choose the (data) index that splits the data in two subtrees
  indexSplit = self.choose index( point list )
  # create node and
  # recursively construct subtrees
  node = KDTreeNode(
     point = point list[ indexSplit ],
     dimension = dimensionSplit,
     left = self. build( point list[ 0:indexSplit ], depth + 1 ),
     right = self. build( point list[ indexSplit+1: ], depth + 1 )
  return node
```

Como pesquisar na KD-Tree K vizinhos mais próximos?

- Manter uma estrutura que "memorize" os melhores vizinhos
 - essa estrutura vai sendo actualizada enquanto se analisa a árvore
- Um algoritmo que, de modo recorrente, pesquise a árvore KD
 - dado o exemplo a classificar,
 - primeiro avança até uma folha (aproximação do vizinho mais próximo)
 - depois retrocede a avalia a necessidade de analisar outros ramos

Construir, e.g., em Python, aquela estrutura e sua aplicação na pesquisa da KD-tree.

... estrutura que memoriza "melhores vizinhos"-

```
class NearestNeighbours():
   def init (self, point query, k):
      self. __point_query = point_query
self. __k = k
self. __current_best = []
   def add ifBetter( self, point, distance function ):
      distance = distance function( point, self. point query )
      # run through current best, try to find appropriate place
      for i, e in enumerate ( self. current best ):
         # all neighbours found, this one is farther, so return
         if i == self. k: return
         if e[1] > \overline{\text{dis}}tance:
             self. current best.insert( i, ( point, distance ) )
             return
      # otherwise, append point and distance to the end
      self. current best.append( ( point, distance ) )
   @property
   def largest distance( self ):
      if self. k \ge len(self. current best):
         return self. current \overline{best}[-1][1]
      return self. \overline{current} be\overline{st}[ self. k - 1 ][ 1 ]
   @property
   def best k neighbours( self ):
      return T element[ 0 ] \
         for element in self. current best[ :self. k ] ]
```

... a classe que implementa a pesquisa kNN

Esta KNN assume que existe uma KD-tree para pesquisar

```
class KNN():
  def init (self, kdTree, distance_function=distance_euclidean):
      self. kdTree = kdTree
      self. distance function = distance function
      self.statistics = {}
   ** ** **
  point query = the point to search for k neighbours
  k = the number of neighbours to search for
   11 11 11
  def query( self, point query, k=1 ):
      if self. kdTree.root == None: result = []
      neighbours = NearestNeighbours( point query, k )
      self. search( self. kdTree.root, point query, k, \
                     best neighbours=neighbours )
      result = neighbours.best k neighbours
      return result
```

... de modo recorrente pesquisar a KD-Tree

```
def
      search ( self, node, point query, k, best neighbours ):
   if node == None: return
   if node.is leaf():
      best neighbours.add ifBetter ( node.point, self.distance function )
      return
   dimensionSplit = node.dimension
   # decide which subtree is the "near" and which is the "far"
   if point query[ dimensionSplit ] < node.point[ dimensionSplit ]:</pre>
      near subtree = node.left; far subtree = node.right
   else:
      near subtree = node.right; far subtree = node.left
   # until leaf found, recursively search through "near" subtree
   self. search ( near subtree, point query, k, best neighbours )
   # while unwinding the recursion, check if better than current best
   best neighbours.add ifBetter( node.point, self.distance function )
   # check for any points on the other side that can be better
   point component = [ node.point[ dimensionSplit ] ]
   point query component = [ point query[ dimensionSplit ] ]
   component distance = self.distance function( point component, \)
                                                point query component )
   # the case where we also traverse the "far" subtree subtree
   if component distance < best neighbours.largest distance:
      # until leaf found, recursively search through "far" subtree
      self. search (far subtree, point query, k, best neighbours)
   return
```

Exemplos de execução do algoritmo -

```
d = [ (6, 8), (2, 6), (5, 6), (3, 5), (4, 2), (2, 1) ]
point = (3, 2)

tree = KDTree( d )

tree.pprint()

knn = KNN( tree, distance_euclidean )
nearest = knn.query( point, k=2 )
print nearest
```

```
(4, 2) d=0

/(3, 5) d=1

/(2, 1) d=0

\(2, 6) d=0

\(6, 8) d=1

/(5, 6) d=0

\[]
```

point = (3, 2) [(4, 2), (2, 1)]

Exercício Considerar o código em b04 knn kdtree.py e alterar de modo a obter o seguinte resultado d = [(3, "d"), (4, "a"), (6, "g"), (2, "b"),(8.5, "e"), (3, "h"), (7, "e"), (5, "h")] point = (3, "b")tree = **KDTree**(d) tree.pprint() knn = KNN (tree, distance euclidean) nearest = knn.query (poin \overline{t} , k=2) print nearest -(5, 'h') d=0/(3, 'd') d=1/(4, 'a') d=0/(2, 'b') d=1kNN para instância: (3, b') com k = 211/ [(2, 'b'), (3, 'd')] Paulo Trigo Silva (3, 'h') d=0(8.5, 'e') d=1/(7, 'e') d=0(6, 'g') d=0

Algoritmos Baseados em Instâncias, 33