ME 335A

Finite Element Analysis

Instructor: Adrian Lew Problems Set #4

Due Wednesday, May 10, 2023

Constructing Some FE Spaces (35)

Consider a mesh of Lagrange P_k -elements (see Example 1.65 in the notes) with $n_{\rm el} = 3$ elements of equal length in the interval [0,3]. Elements are numbered consecutively from 1 to $n_{\rm el}$ from left to rigth (from 0 to 3).

1. Let k=3. For the following local-to-global maps, state the dimension of the finite element space, and plot each one of the basis functions.

(a) (5)

$$\mathsf{LG} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

(b) (5)

$$\mathsf{LG} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 4 \\ 5 & 6 & 6 \end{bmatrix}$$

- 2. For each one of the following finite elements, write the local-to-global map so that the basis functions are continuous and have minimal support (each basis function should be zero in the maximum number of elements).
 - (a) (5) For P_3 -elements.
 - (b) (5) For P_4 -elements.
- 3. (5) Plot the basis functions that are non-zero in the second element for each of the cases in part 2 of this problem.
- 4. (5) For a problem with periodic boundary conditions of the form u(0) = u(3), it is convenient to build a finite element space in which all functions in the space satisfy this periodicity constraint. If k = 1, write the required local-to-global map. What is the dimension of the finite element space?

5. (5) Let $f(x) = \sin(nx)$. Plot f, $\mathcal{I}f$ and $f - \mathcal{I}f$ when all elements in the mesh are P_3 -elements, for n = 2, 4, 6.

(Manual) Assembly (80)

Consider the domain $\Omega = [1, 7]$, and the convection-diffusion problem: Find $u: \Omega \to \mathbb{R}$ such that

$$-\varepsilon u_{,xx} + cu_{,x} = f \qquad x \in \mathring{\Omega}, \tag{1a}$$

$$-\varepsilon u_{,x}\left(7\right) = h,\tag{1b}$$

$$u(1) = g, (1c)$$

where $\mathring{\Omega} = (1,7)$ indicates the *interior* of the set Ω , $c \in \mathbb{R}$ is the convection velocity, $\varepsilon > 0$ is the diffusion coefficient, $h, g \in \mathbb{R}$ are boundary conditions, and $f : \Omega \to \mathbb{R}$ is a source. We would like to construct a finite element approximation of the solution of this problem.

- 1. (10) Find a variational equation according to the recipe in the notes, and identify natural and essential boundary conditions.
- 2. (5) Consider the nodes 1 to 7 with positions $\{1, 2, 4, 7, 1.5, 3, 5.5\}$, respectively; see figure. These nodes form P_2 elements 1,2, and 3, whose domains are $\Omega^1 = [1, 2]$, $\Omega^2 = [2, 4]$, $\Omega^3 = [4, 7]$. Using the node number as the index of global degree of freedom, write down the local-to-global map LG to build a space of continuous basis functions.

- 3. (5) Plot the global basis functions N_3 , N_6 , and N_4 .
- 4. (5) Let \mathcal{P}^2 denote the element space for element 2. Find a function $v_h \in \mathcal{P}^2$ that attains the value 1.5 at node 2, -1.5 at node 6, and 3 at node 3. Express it as a linear combination of shape functions in the element, and as an explicit function of x.
- 5. (5) Let W_h be the finite element space of continuous functions over the given mesh. Find a function $v_h \in W_h$ that is equal to 2 on odd nodes, and to 3 on even nodes. Express it in terms of the global basis functions $\{N_A\}_{A=1,\ldots,7}$.
- 6. (10) State the finite element method for this problem using the variational equation obtained in part 1, identifying the spaces \mathcal{V}_h and \mathcal{S}_h , and a basis for \mathcal{V}_h . Identify active and constrained indices and $\overline{u}_h \in \mathcal{S}_h$.
- 7. In the following, assume that f(x) = x, h = -20, $\varepsilon = 1$, c = 1, g = 2.
 - (a) (10) Compute the element matrices of the three elements.
 - (b) (10) Compute the element load vectors for the three elements. Do not forget the natural boundary condition.
 - (c) (10) Assemble the stiffness matrix and the load vector.

(d) (10) Find the finite element solution, and plot it. If you want to compare, the exact solution of this problem is

$$u(x) = -12e^{-6} + 12e^{x-7} + \frac{1}{2}(1+x)^{2}.$$