भारतीय सूचना प्रौद्योगिकी संस्थान कोटा INDIAN INSTITUTE OF INFORMATION TECHNOLOGY KOTA

B.Tech. (ECE) End Term Examination, Even Semester 2023-24

Electromagnetic Theory (ECT208); Close Book

Marks: 40 (Weightage – 40%) Time: 120 minutes Date: May 16, 2024

- 1. What is volume current density? If the current density $J = (2\cos\theta \, \mathbf{a_r} + \sin\theta \, \mathbf{a_0})/r^3 \, A/m^2$, then calculate the current passing through a spherical shell of radius 10 cm. [2+6]
- 2. Two homogeneous isotropic dielectric materials have the boundary at z=0 plane. The dielectric constants $\varepsilon_{r1}=4$ for $z\geq 0$ and $\varepsilon_{r2}=3$ for $z\leq 0$. If the electric field $\mathbf{E}_1=(5\mathbf{a}_x-2\mathbf{a}_y+3\mathbf{a}_z)$ kV/m exists for $z\geq 0$ then find out the electric field \mathbf{E}_2 for $z\leq 0$. Also find out the angle of \mathbf{E}_1 and \mathbf{E}_2 with the interface.
- 3. A transmission line has the following per-unit-length parameters: $L = 0.5 \mu H/m$, C = 200 pF/m, R = 4.0 /m, and G = 0.02 S/m. Calculate the propagation constant and characteristic impedance of this line at 800 MHz. If the line is 30 cm long, what is the attenuation in dB?
- 4. Write down the Maxwell equation which is based on the Faraday's law of electromagnetic induction. Starting from Maxwell's equations, develop the wave equations in source free region.

 [2+6]
- A plane wave propagating in a lossless dielectric medium has an electric field given as E_x = E₀ cos(ωt - βz) a_x V/m with a frequency of 5.0 GHz and a wavelength in the material of 3.0 cm. Determine the propagation constant, phase velocity and permittivity of the medium.
 [2+2+4]

*** End ***