#### **Unsupervised ML - Assignment:**

# Can we cluster NBA player performance to match clusters of Advanced Statistical Output?

#### **Objective**

The purpose of this report, and overall study, is to experiment, checking to see if it is possible to cluster NBA Player performance using John Hollinger's NBA individual advanced statistics (2002-03 to 2017-18 seasons). To measure performance or 'accuracy' of the clustering algorithm, its results will be compared to a 'truth source' which will be based on quartiles of Estimated Wins Added (EWA) per season in the statistics. Based on raw numbers, player EWA will be grouped into 4 different classes, basically representing quartiles and we will see if the clusters that player performance are separated into do a good job of agreeing with the EWA classifications.

A possible business implementation of this model could be for individual performance measurement and improvement – zoning in, using advanced statistics, to see what could make more valuable players similar to one another, and directing training and improvement.

#### The Data

The data used for the analysis is taken from a Kaggle dataset, that are processed (using Pandas) and then merged. It is a singe csv file that summarizes John Hollinger's advanced NBA statistics from the 2002 - 03 to the 2017 - 18 seasons. The data set is already cleaned, containing no zero, N/A etc data and contains 5404 row entries. Column entries include:

- o Rank: that player's PER rank for that given season
- ts%: True Shooting Percentage what a player's shooting percentage would be if we accounted for free throws and 3-pointers. True Shooting Percentage = Total points / [(FGA + (0.44 x FTA)]
- o ast: Assist Ratio the percentage of a player's possessions that ends in an assist. Assist Ratio = (Assists x 100) divided by [(FGA + (FTA x 0.44) + Assists + Turnovers]
- o to: Turnover Ratio the percentage of a player's possessions that end in a turnover. Turnover Ratio = (Turnover x 100) divided by [(FGA + (FTA x 0.44) + Assists + Turnovers]
- usg Usage Rate the number of possessions a player uses per 40 minutes. Usage Rate = {[FGA + (FT Att. x 0.44) + (Ast x 0.33) + TO] x 40 x League Pace} divided by (Minutes x Team Pace)
- o orr: Offensive rebound rate
- o drr: Defensive rebound rate
- rebr: Rebound Rate the percentage of missed shots that a player rebounds. Rebound Rate = (100 x (Rebounds x Team Minutes)) divided by [Player Minutes x (Team Rebounds + Opponent Rebounds)]
- per: Player Efficiency Rating is the overall rating of a player's per-minute statistical production. The league average is 15.00 every season.
- va: Value Added the estimated number of points a player adds to a team's season total above what a 'replacement player' (for instance, the 12th man on the roster) would produce. Value Added = ([Minutes \* (PER - PRL)] / 67). PRL (Position Replacement Level)

- = 11.5 for power forwards, 11.0 for point guards, 10.6 for centers, 10.5 for shooting guards and small forwards
- ewa: Estimated Wins Added Value Added divided by 30, giving the estimated number of wins a player adds to a team's season total above what a 'replacement player' would produce.

Outlier data was removed for analysis, but only on the low end of games played (gp) – we reoved rows referencing season where gp was below the first quartile – 1.5\*IQR, as we did not want the effects of long term injury and short term (ie: 10 day) contracts to affect the analysis.

Given that the features per, va, and ewa are quite similar in that they describe a player's contribution, the va and per features were dropped for the analysis to avoid any effects of multicollinearity. Estimated Wins Added (EWA) was used as the sole summary statistic in the analysis – to note, it could have been either of the 3 (PER, VA, EWA), EWA was chosen for its simplicity and built-in scaling (EWA is a scaled down version of VA, which is calculated from PER). Additionally, to avoid the pitfalls of multicollinearity, orr and drr were removed, with rebounding rate used as the sole measure of rebounding performance.

The final data set, ready for analysis contained 5366 or the original 5404 rows of data — a very small trimming of low gp data

| [11]: |      | gp | mpg  | ts%   | ast  | to   | usg  | orr  | drr  | rebr | ewa  | player           | season  |
|-------|------|----|------|-------|------|------|------|------|------|------|------|------------------|---------|
|       | 0    | 75 | 39.4 | 0.564 | 15.0 | 7.1  | 32.6 | 5.0  | 14.6 | 9.5  | 15.1 | Tracy McGrady    | 2002-03 |
|       | 1    | 67 | 37.8 | 0.602 | 10.7 | 10.1 | 27.8 | 11.0 | 21.6 | 16.5 | 11.9 | Shaquille O'Neal | 2002-03 |
|       | 2    | 82 | 41.5 | 0.550 | 16.0 | 9.6  | 31.1 | 3.0  | 15.3 | 9.3  | 14.0 | Kobe Bryant      | 2002-03 |
|       | 3    | 82 | 40.5 | 0.553 | 20.4 | 9.4  | 25.0 | 9.0  | 28.5 | 18.8 | 12.4 | Kevin Garnett    | 2002-03 |
|       | 4    | 81 | 39.3 | 0.564 | 14.1 | 11.1 | 25.7 | 10.0 | 27.3 | 19.0 | 11.8 | Tim Duncan       | 2002-03 |
|       |      |    |      |       |      |      |      |      |      |      |      | ***              |         |
|       | 5399 | 69 | 14.2 | 0.417 | 8.4  | 11.0 | 9.1  | 4.6  | 13.9 | 9.1  | -2.5 | Josh Huestis     | 2017-18 |
|       | 5400 | 54 | 15.2 | 0.445 | 13.8 | 12.9 | 14.6 | 1.6  | 16.0 | 8.5  | -2.2 | Paul Zipser      | 2017-18 |
|       | 5401 | 48 | 10.9 | 0.439 | 11.5 | 15.0 | 16.2 | 2.8  | 12.0 | 7.4  | -1.4 | Abdel Nader      | 2017-18 |
|       | 5402 | 73 | 15.8 | 0.473 | 8.0  | 10.0 | 8.4  | 3.6  | 11.6 | 7.7  | -4.0 | Semi Ojeleye     | 2017-18 |
|       | 5403 | 52 | 12.3 | 0.507 | 11.2 | 9.3  | 25.5 | 0.0  | 0.0  | 0.0  | -3.3 | Sean Kilpatrick  | 2017-18 |

5366 rows × 12 columns

# **Exploratory Analysis**

The first thing done was to get a description of the data. Since all the data was numeric, it is nice to look at the mean, median and different quartiles of the data, to see how it is spread out. Note that, by virtue of the sport, the ewa data will tend towards lognormal distribution: that is, few players contribute many estimated wins above replacement (ewa) – most of the NBA player performance hovers around average – this can be seen from the plot below. The decision was made to not remove positive (high performing) outliers, as that will likely be a cluster in its own right

| [12]: | count |        | mean      | std       | min    | 25%    | 50%    | 75%    | max    |
|-------|-------|--------|-----------|-----------|--------|--------|--------|--------|--------|
|       | gp    | 5366.0 | 66.425084 | 13.592727 | 26.000 | 58.000 | 70.000 | 78.000 | 85.000 |
|       | mpg   | 5366.0 | 24.516735 | 7.965001  | 7.000  | 17.900 | 24.300 | 31.200 | 43.100 |
|       | ts%   | 5366.0 | 0.531927  | 0.047927  | 0.338  | 0.502  | 0.532  | 0.563  | 0.725  |
|       | ast   | 5366.0 | 16.008013 | 8.038026  | 1.200  | 10.000 | 14.100 | 20.600 | 48.700 |
|       | to    | 5366.0 | 11.137029 | 2.881643  | 2.000  | 9.200  | 10.900 | 12.700 | 29.600 |
|       | usg   | 5366.0 | 18.055535 | 4.736006  | 0.000  | 14.700 | 17.700 | 21.100 | 42.500 |
|       | orr   | 5366.0 | 5.372736  | 3.845806  | 0.000  | 2.000  | 4.000  | 8.100  | 22.000 |
|       | drr   | 5366.0 | 14.647372 | 5.811279  | 0.000  | 10.000 | 13.600 | 18.600 | 38.000 |
|       | rebr  | 5366.0 | 10.009896 | 4.529315  | 0.000  | 6.200  | 8.950  | 13.300 | 26.700 |
|       | ewa   | 5366.0 | 3.338595  | 4.623633  | -7.000 | 0.200  | 2.000  | 5.000  | 32.300 |



Next, the ewa was placed into classes, based on its value relative to the various quartiles:

- less than 25<sup>th</sup> percentile: Class 1
- greater than or equal to 25<sup>th</sup> percentile, less than 50<sup>th</sup> percentile (median): Class 2
- greater than or equal to 50<sup>th</sup> percentile (median), less than 75<sup>th</sup> percentile: Class 3
- greater than 75<sup>th</sup> percentile: class 4

| [13]: |      | gp | mpg  | ts%   | ast  | to   | usg  | orr  | drr  | rebr | ewa  | player           | season  | ewa class |
|-------|------|----|------|-------|------|------|------|------|------|------|------|------------------|---------|-----------|
|       | 0    | 75 | 39.4 | 0.564 | 15.0 | 7.1  | 32.6 | 5.0  | 14.6 | 9.5  | 15.1 | Tracy McGrady    | 2002-03 | 4         |
|       | 1    | 67 | 37.8 | 0.602 | 10.7 | 10.1 | 27.8 | 11.0 | 21.6 | 16.5 | 11.9 | Shaquille O'Neal | 2002-03 | 4         |
|       | 2    | 82 | 41.5 | 0.550 | 16.0 | 9.6  | 31.1 | 3.0  | 15.3 | 9.3  | 14.0 | Kobe Bryant      | 2002-03 | 4         |
|       | 3    | 82 | 40.5 | 0.553 | 20.4 | 9.4  | 25.0 | 9.0  | 28.5 | 18.8 | 12.4 | Kevin Garnett    | 2002-03 | 4         |
|       | 4    | 81 | 39.3 | 0.564 | 14.1 | 11.1 | 25.7 | 10.0 | 27.3 | 19.0 | 11.8 | Tim Duncan       | 2002-03 | 4         |
|       |      |    |      |       |      |      |      |      |      |      |      | ***              |         |           |
|       | 5399 | 69 | 14.2 | 0.417 | 8.4  | 11.0 | 9.1  | 4.6  | 13.9 | 9.1  | -2.5 | Josh Huestis     | 2017-18 | 1         |
|       | 5400 | 54 | 15.2 | 0.445 | 13.8 | 12.9 | 14.6 | 1.6  | 16.0 | 8.5  | -2.2 | Paul Zipser      | 2017-18 | 1         |
|       | 5401 | 48 | 10.9 | 0.439 | 11.5 | 15.0 | 16.2 | 2.8  | 12.0 | 7.4  | -1.4 | Abdel Nader      | 2017-18 | 1         |
|       | 5402 | 73 | 15.8 | 0.473 | 8.0  | 10.0 | 8.4  | 3.6  | 11.6 | 7.7  | -4.0 | Semi Ojeleye     | 2017-18 | 1         |
|       | 5403 | 52 | 12.3 | 0.507 | 11.2 | 9.3  | 25.5 | 0.0  | 0.0  | 0.0  | -3.3 | Sean Kilpatrick  | 2017-18 | 1         |

5366 rows × 13 columns

Binning the ewa data into classes helps even out the distribution of the data. As can be seen below, this did a great job of taking a dataset that is quite lognormally distributed and balancing out the data set.

```
[20]: # count on ordinal class feature (ewa class)
y = final_data[ycol]

# get a feature count
y_count = y.value_counts()
y_count_norm = y.value_counts(normalize = True)
print('Raw Counts: ', y_count)
print('Normalized: ', y_count_norm)

Raw Counts: 2 1417
4 1364
3 1338
1 1247
Name: ewa class, dtype: int64
Normalized: 2 0.264070
4 0.254193
3 0.249348
1 0.232389
Name: ewa class, dtype: float64
```

By binning/classifying data according to ewa quartiles we've been able to create a reasonably balanced data set from quite imbalanced ewa/performance data

Next, we looked at the distribution of each of the features:



As seen, some features are close to nomally distributed, while others are not. We will not apply a Boxcox transformation to noralize the data, but will use MinMaxScaling

Note that each feature is distributed differently. The only way to get these distributed close to normally would be through a Boxcox transformation. However, a Boxcox transformation requires values of each feature to be positive, which would take away a lot of data from the feature set. Baased on this, it was decided to not transform the data and to use Min-Max scaling (as opposed to Standard Scaling) when the dataset required feature scaling.

Finally, a correlation heatmap was built, to show the correlations between features and the correlations between the features



It appears that the following individual statistics have the highest correlation with ewa:

- mpg
- ts%
- ast
- to
- usg

The data was then split, using a 70/30 train test split, and scaled using the sklearn MinMaxScaler. The shape of the data sets were as follows (note that we will be using only the x (features) for the analysis, as

we will cluster, predict clusters on the test set, and then use the EWA class labels as a comparison to the analyzed clusters to see the clustering effectiveness):

```
[23]: from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.33, random_state = 42)

print('x_train: ', x_train.shape)
print('y_train: ', y_train.shape)
print('y_test: ', y_test.shape)

x_train: (3595, 7)
x_test: (1771, 7)
y_train: (3595,)
y_test: (1771,)
```

#### **Data Analysis**

Note that for all clustering algorithms, the following methodology was applied:

- prepare data
- determine the number of clusters
- build model and predict clusters on unseen data
- review the data associated with cluster labels and theme/classify the clusters
- add to the data frame
- measure accuracy by looking at cluster vs ewa classes, looking at the total similar vs total records

The exception was with density-based scanning (DBSCAN), which was admittedly the worst performing of the clustering algorithms. Only test data was used here, as DBSCAN couldn't be used to predict on unseen data.

# **K-Means Clustering**

The K-Means algorithm originally, to determine the best cluster number, was run on 1-20 clusters, with inertia used to determine a proper elbow using the elbow method. As per the following, it was difficult to determine this visually, as there as no clear elbow:



It was a little easier to determine numerically. Data was placed into a data frame, and the best number was picked when the rate of change of inertia slowed down. This could have been picked as 4 or 5 clusters – 4 was chosen to maintain symmetry with the EWA classes.

| [26]: |            | Inertia    | Change      |
|-------|------------|------------|-------------|
|       | N Clusters |            |             |
|       | 1          | 743.338858 | NaN         |
|       | 2          | 547.259074 | -196.079784 |
|       | 3          | 464.247616 | -83.011458  |
|       | 4          | 413.618217 | -50.629399  |
|       | 5          | 377.648837 | -35.969380  |
|       | 6          | 350.921349 | -26.727488  |
|       | 7          | 326.918598 | -24.002751  |
|       | 8          | 308.655867 | -18.262731  |
|       | 9          | 294.581712 | -14.074155  |
|       | 10         | 282.493296 | -12.088416  |
|       | 11         | 271.865859 | -10.627437  |
|       | 12         | 264.158497 | -7.707362   |
|       | 13         | 256.662934 | -7.495563   |
|       | 14         | 251.172931 | -5.490003   |
|       | 15         | 245.249268 | -5.923664   |
|       | 16         | 239.707935 | -5.541332   |
|       | 17         | 235.018779 | -4.689156   |
|       | 18         | 230.293405 | -4.725374   |
|       | 19         | 225.825295 | -4.468110   |
|       | 20         | 222.052265 | -3.773031   |
|       |            |            |             |

The cluster labels were then analyzed within the rest of the data to determine a theme. Since there were 4 clusters, the themes were kept consistent with that of the EWA classes and were:

- Star Player
- Starter Level
- Replacement Level
- Below Replacement Level

A snapshot of the data frame follows, which is filtered to compare only the test data set predictions. To get a measure of cluster performance, the number of instance of EWA Label being equal to Cluster Name – KM was evaluated. This turned out to be 0.43, or 43% - not terribly impressive:

| gı                          | p mj          | pg          | ts%              | ast           | to    | usg    | orr   | drr  | rebr | ewa  | player          | season  | ewa class | EWA Label         | Cluster Label - KM | Cluster Name - KM |
|-----------------------------|---------------|-------------|------------------|---------------|-------|--------|-------|------|------|------|-----------------|---------|-----------|-------------------|--------------------|-------------------|
| 1847 8                      | 0 28          | 8.7 (       | 0.530            | 12.5          | 7.4   | 19.1   | 5.3   | 14.1 | 9.6  | 3.4  | Aaron Gordon    | 2016-17 | 3         | Starter Level     | 0                  | Star Player       |
| 1414 5                      | 2 34          | 4.4 (       | 0.528            | 17.4          | 10.5  | 22.9   | 3.5   | 20.2 | 11.5 | 6.4  | Marc Gasol      | 2015-16 | 4         | Star Player       | 0                  | Star Player       |
| 2095 8                      | 1 34          | 4.0 (       | 0.565            | 22.2          | 14.4  | 14.6   | 5.3   | 13.8 | 9.6  | 4.1  | Boris Diaw      | 2008-09 | 3         | Starter Level     | 0                  | Star Player       |
| 1421 7                      | 8 32          | 2.9 (       | 0.540            | 9.9           | 11.2  | 21.0   | 6.0   | 15.7 | 10.9 | 4.3  | Al Harrington   | 2006-07 | 3         | Starter Level     | 0                  | Star Player       |
| 1644 7                      | 7 36          | 6.4 (       | 0.568            | 11.5          | 11.2  | 27.5   | 7.0   | 14.9 | 11.0 | 15.1 | Carmelo Anthony | 2007-08 | 4         | Star Player       | 0                  | Star Player       |
|                             |               |             |                  |               |       |        |       |      |      |      |                 |         |           |                   |                    |                   |
| 1492 7                      | 5 23          | 3.2 (       | 0.513            | 12.9          | 15.9  | 9.2    | 16.0  | 24.1 | 20.2 | 2.1  | Jeff Foster     | 2006-07 | 3         | Starter Level     | 3                  | Replacement Level |
| 1199 6                      | 5 15          | 5.7 (       | 0.491            | 26.3          | 12.5  | 17.0   | 3.0   | 14.7 | 8.7  | 0.7  | Toni Kukoc      | 2005-06 | 2         | Replacement Level | 1                  | Starter Level     |
| <b>329</b> 6                | 7 40          | 0.1 (       | 0.492            | 22.0          | 9.5   | 29.2   | 3.0   | 9.6  | 6.1  | 7.1  | Baron Davis     | 2003-04 | 4         | Star Player       | 0                  | Star Player       |
| 653 8                       | 1 37          | 7.0         | 0.554            | 11.2          | 9.9   | 23.3   | 12.0  | 18.4 | 15.4 | 7.9  | Elton Brand     | 2004-05 | 4         | Star Player       | 0                  | Star Player       |
| 805 7                       | 9 25          | 5.0 (       | 0.578            | 23.0          | 12.6  | 16.4   | 4.4   | 13.8 | 9.3  | 2.6  | Boris Diaw      | 2013-14 | 3         | Starter Level     | 1                  | Starter Level     |
| 771 row<br># accu<br># comp | ıracy<br>pare | lev<br>tota | vel me<br>il num | easur<br>mber | of ro | ows in | n df1 |      |      |      | the clustering  | _       |           | cing the players  | s into the same (  | clusters/buckets  |

# **Hierarchical Agglomerative Clustering**

Next, a Hierarchical Agglomerative Clustering algorithm was used. The decision was made to use 4 clusters (to keep things consistent) with Ward Linkage used, to minimize inertia between pairs. Predictions we're run and the cluster labels were placed into the same test data frame:

| [55]: |      | gp | mpg  | ts%   | ast  | to   | usg  | orr  | drr  | rebr | ewa  | player          | season  | ewa class | EWA Label         | Cluster Label - KM | Cluster Name - KM | Agglom Clusters |
|-------|------|----|------|-------|------|------|------|------|------|------|------|-----------------|---------|-----------|-------------------|--------------------|-------------------|-----------------|
|       | 4847 | 80 | 28.7 | 0.530 | 12.5 | 7.4  | 19.1 | 5.3  | 14.1 | 9.6  | 3.4  | Aaron Gordon    | 2016-17 | 3         | Starter Level     | 0                  | Star Player       | 1               |
|       | 4414 | 52 | 34.4 | 0.528 | 17.4 | 10.5 | 22.9 | 3.5  | 20.2 | 11.5 | 6.4  | Marc Gasol      | 2015-16 | 4         | Star Player       | 0                  | Star Player       | 3               |
|       | 2095 | 81 | 34.0 | 0.565 | 22.2 | 14.4 | 14.6 | 5.3  | 13.8 | 9.6  | 4.1  | Boris Diaw      | 2008-09 | 3         | Starter Level     | 0                  | Star Player       | 3               |
|       | 1421 | 78 | 32.9 | 0.540 | 9.9  | 11.2 | 21.0 | 6.0  | 15.7 | 10.9 | 4.3  | Al Harrington   | 2006-07 | 3         | Starter Level     | 0                  | Star Player       | 1               |
|       | 1644 | 77 | 36.4 | 0.568 | 11.5 | 11.2 | 27.5 | 7.0  | 14.9 | 11.0 | 15.1 | Carmelo Anthony | 2007-08 | 4         | Star Player       | 0                  | Star Player       | 3               |
|       |      |    |      |       |      |      |      |      |      |      |      |                 |         |           |                   |                    |                   |                 |
|       | 1492 | 75 | 23.2 | 0.513 | 12.9 | 15.9 | 9.2  | 16.0 | 24.1 | 20.2 | 2.1  | Jeff Foster     | 2006-07 | 3         | Starter Level     | 3                  | Replacement Level | 1               |
|       | 1199 | 65 | 15.7 | 0.491 | 26.3 | 12.5 | 17.0 | 3.0  | 14.7 | 8.7  | 0.7  | Toni Kukoc      | 2005-06 | 2         | Replacement Level | 1                  | Starter Level     | 2               |
|       | 329  | 67 | 40.1 | 0.492 | 22.0 | 9.5  | 29.2 | 3.0  | 9.6  | 6.1  | 7.1  | Baron Davis     | 2003-04 | 4         | Star Player       | 0                  | Star Player       | 3               |
|       | 653  | 81 | 37.0 | 0.554 | 11.2 | 9.9  | 23.3 | 12.0 | 18.4 | 15.4 | 7.9  | Elton Brand     | 2004-05 | 4         | Star Player       | 0                  | Star Player       | 3               |
|       | 3805 | 79 | 25.0 | 0.578 | 23.0 | 12.6 | 16.4 | 4.4  | 13.8 | 9.3  | 2.6  | Boris Diaw      | 2013-14 | 3         | Starter Level     | 1                  | Starter Level     | 1               |

1771 rows × 17 columns

Like the K-Means analysis, each cluster label was analyzed/themed, with the theme names matching those of the K-Means analysis. The Agglomerative Algorithm yielded different results, on the record level. However, its overall accuracy was the same:

### **Density Based Scanning (DBSCAN)**

The density-based scanning (DBSCAN) algorithm was run, with some differences from the previous 2 algorithms:

- First, since the DBSCAN algorithm can't be run to predict values on unseen data, it was run only of the test data set, to maintain size symmetry with the other analysis
- However, the train data set as used to determine the optimum value of epsilon, as seen below

The optimum value for epsilon for this dataset was determined by running a nearest neighbors analysis on the training data set (larger set). The results can be seen below – the optimum value for epsilon was chosen at the max point of curvature on the plot. In this case, it was a value of eps = 0.20

Then the DBSCAN algorithm was run with epsilon = 0.20. The num\_samples parameter was manually changed until 4 clusters were again generated (min\_samples = 4). Based on this, the DBSCAN algorithm yielded some very strange results — most of the data points are lumped together, likely a result of the relatively closeness of data points (remember the comment of most performance in the NBA being quite similar) — even the difference from Star to Replacement Level doesn't show up as a large difference in advanced statistics.

Once again, the clusters were themed, placed in a data frame, and compared. This time, cluster performance was poor, with essentially zero accuracy:



# **Key Findings**

As briefly mentioned during the review of each model, the algorithms do not do a great job of creating clusters that match the EWA classes that were created in the pre-processing step. I believe there are a couple of reasons for this:

- The ;'hard and set' clustering algorithms that measure distance from central points, seem to do a
  much better job of clustering player performance, although it certainly isn't all that good
- The performance of many players in the NBA is essentially interchangeable, and many of the statistical measures have tiny distance differences. This could potentially confuse a clustering algorithm. I believe this was especially evident when attempting to use DBSCAN
- Estimated Wins above Replacement (ewa) can be calculated by many means (we don't have
  access to the formula used to derive it from per). Again, another thing that can potentially throw
  off a clustering algorithm, especially when trying to compare it to something like an EWA Class.
- This sort of analysis again, may be better accomplished via counting statistics, rather than advanced (rate-based) statistics

For this reason, I'd say that attempting this sort of analysis, at least without access to additional data, is not recommended for player performance tuning/training etc.

#### **Further Analysis**

As described above, the analysis is quite complex, as there are several moving parts. The analysis shows a little insight, but in general does a poor job of comparing clusters based on advanced statistical outputs.

Some items that will likely do the most for adding insight would be:

- Performing the analysis based on counting stats, rather than advanced (rate based) stats
- Another clustering analysis, this time perhaps using a Principal Component Analysis for feature selection/elimination
- Cluster Performance: the original clusters were compared to an EWA class to get a loose determination of accuracy, or whether the cluster is good or not. Perhaps another measure of cluster effectiveness is required

Some challenges that may be encountered in trying to improve this analysis:

- Data volume: there is only so much data available in this space, and 5000 records may be too little to train something of this complexity
- Cluster performance: finding a better measure of performance in clustering
- The fac that this, in general, just may not be a good application