Aula 9 - Redes Sem Fio: Conceitos e Camada Física

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula...

- Vimos um exemplo de rede nível 2 complexa: Data Center.
 - Alto grau de interconectividade.
 - Cria loops físicos propositais.
 - Objetivo: múltiplos caminhos, redundância, confiabilidade.
- Vimos um exemplo do funcionamento (quase) completo da pilha TCP/IP.
 - Envolvendo HTTP, TCP, IP, ARP, UDP, DHCP, ...

Capítulo 6: Motivação, Contexto e Objetivos

- Número de linhas de celular já é maior que o de linhas de telefones fixos (6 para 1 no Brasil!).
- Número de dispositivos sem fio conectados à Internet é equivalente ao de dispositivos cabeados.
 - Laptops, tablets, celulares prometem conectividade ubíqua à Internet.
- Dois desafios importantes (embora diferentes):
 - redes sem fio: comunicação através de enlaces sem fio.
 - mobilidade: suporte a usuários que mudam seu ponto de conexão com a rede.

Agenda

- Introdução.
- Redes Sem Fio.
 - Características dos enlaces sem fio.
 - CDMA.
 - Redes locais IEEE 802.11 ("Wi-Fi").
 - Acesso à Internet via Rede Celular.
 - Arquiteturas.
 - Padrões (e.g., GSM).

Mobilidade

- Princípios: Endereçamento e Roteamento para Usuários Móveis.
- IP Móvel.
- Suporte à Mobilidade em Redes Celular.
- Mobilidade e Protocolos de Camadas Superiores.
- Sumário.

Introdução

Elementos de uma Rede Sem Fio (I)

Elementos de uma Rede Sem Fio (II)

- Hosts sem fio.
 - Laptops, smartphones.
 - Rodam aplicações.
 - Podem ser estacionários (nãomóveis) ou móveis.
 - Sem fio não é sinônimo de mobilidade!

Elementos de uma Rede Sem Fio (III)

- Estação base.
 - Tipicamente conectadas a redes cabeadas.
 - Relay responsável por enviar pacotes entre rede cabeada e hosts sem fio na sua "área".
 - *e.g.*, torres de celular, pontos de acesso 802.11.

Elementos de uma Rede Sem Fio (IV)

- Enlace sem fio.
 - Tipicamente, conectam hosts sem fio à estação base.
 - Também podem ser usadas como enlaces do backbone.
 - Protocolo de acesso múltiplo coordena uso do enlace.
 - Distâncias variadas, múltiplas taxas de transmissão.

Características de Enlaces em Algumas Tecnologias Sem Fio

Rede Infraestruturada vs. Sem Infraestrutura (I)

• Rede Infraestruturada:

- Estação base interconecta hosts sem fio à rede cabeada.
- **Handoff:** cliente muda de estação base.

Rede Infraestruturada vs. Sem Infraestrutura (II)

• Rede Sem Infraestrutura:

- Sem estações base.
- Nós podem transmitir diretamente para outros nós dentro da sua área de cobertura.
- Nós se organizam em uma rede: por exemplo, podem rotear pacotes entre eles.
- Muitas vezes chamadas de ad hoc.

Taxonomia de Redes Sem Fio

	Um Salto	Múltiplos Saltos
Infraestruturada	Host se conecta a estação base (Wi-Fi,	Host pode precisar usar vários relays
	WiMax, celular), que se conecta a uma	para se conectar a uma rede maior: rede
	rede maior.	mesh (ou malha); WDS, em redes Wi-Fi.
Nam introdetriitiiro		Sem estação base, sem conexão a outras
	Sem estação base, sem conexão a outras	redes. Hosts podem precisar usar vários
	redes (Bluetooth, redes ad hoc).	relays para alcançar outros nós: VANETs,
		MANETs.

Alguns Conceitos de Camada Física

Alguns Conceitos de Camada Física: Objetivos

- Camada física **não** é um dos focos da nossa disciplina.
- Não veremos detalhes técnicos sobre o funcionamento desta camada.
- Mas...
 - Discutiremos de forma bastante breve como transmissões ocorrem/podem ocorrer.
 - Veremos alguns exemplos simplificados.
- Objetivo: estabelecer de forma intuitiva alguns conceitos/propriedades da camada física.

(Breve) Introdução à Camada Física: Conceitos e Exemplo

Camada física:

 Define como a informação é representada em um canal de comunicação.

• Transmissor:

- Manipula características do meio físico de transmissão.
 - e.g., potencial elétrico, amplitude de uma onda acústica.

• Receptor:

 Observa as características e suas variações.

- Exemplo simples: comunicação através de lanternas.
 - Duas pessoas a certa distância.
 - Muito longe para se ouvirem.
 - Mas possuem lanternas.
 - Cada um é capaz de ver o brilho da lanterna do outro.
 - Pode-se arbitrar um código:

(Breve) Introdução à Camada Física: Mensagens Complexas

• Ainda usando o exemplo das lanternas:

- Transmitir bits individuais é simples.
- Mas como transmitir mensagens complexas (mais de 1 bit)?
- Simples:
 - Como sequência de bits.
 - A cada novo bit, alteramos o estado da lanterna.
- E quanto a bits iguais em sucessão?
 - Arbitramos uma duração para cada bit.
 - Tempo em que a lanterna é mantida em um estado para representar bit.
 - Exemplo (duração de 1 segundo): lanterna acessa por 6 segundos ⇒ 6 bits 1.

Transmissão de caractere ASCII.

Entrada a O1100001

Transmitir

Tempo = 0 ms

(Breve) Introdução à Camada Física: Trocando Lanternas por Circuitos

- Suponha agora que as duas pessoas não tenham mais lanternas.
- Ao invés disso, cada uma tem acesso a potas de um par de fios de cobre.
 - Transmissor tem ainda uma bateria e uma chave.
 - Receptor tem um voltímetro.

- Transmissor pode abrir e fechar o circuito.
- Dependendo do estado da chave, a leitura do voltímetro muda.
 - 0 ou tensão da bateria (aproximadamente).

(Breve) Introdução à Camada Física: Sinal no Tempo

- Suponha que o transmissor envie o caractere 'a'.
 - ASCII: 01100001.
- Receptor monitora continuamente a tensão:

(Breve) Introdução à Camada Física: Ondas Acústicas (I)

- Agora suponha que queremos transmitir dados através de sons.
- Para isso, usamos um piano.
- Como podemos codificar os dados?
 - Elegemos uma nota: por exemplo, um Lá central.
 - Tocamos por 1 segundo para representar o bit 1.
 - Um segundo sem som representa 0.

(Breve) Introdução à Camada Física: Ondas Acústicas (II)

- Outra possibilidade: elegemos duas notas, e.g:
 - Lá representa bit 1.
 - Dó representa bit 0.

Codificação do caractere 'a'

(Breve) Introdução à Camada Física: Taxa de Transmissão (I)

- Como podemos aumentar a taxa de transmissão?
 - i.e., reduzir o tempo para transmitir mesma quantidade de informação.
- Alguns caminhos: por exemplo, reduzir a duração do símbolo.
 - Com 300 ms, taxa de $\frac{1}{0.3} \approx 3.4$ b/s.
 - Com 150 ms, dobramos a taxa.
 - Com 75 ms, quadruplicamos a taxa.
- Mas há um custo:
 - À medida que reduzimos a duração do símbolo, aumentamos a dificuldade em "entender" a transmissão.
 - Exemplo para 150 ms •
 - Exemplo para 75 ms

(Breve) Introdução à Camada Física: Taxa de Transmissão (II)

- Caminho alternativo:
 - Usar mais "notas", e.g:
 - Dó $(261,6 \text{ Hz}) \Rightarrow 00.$
 - Ré# (311,1 Hz) ⇒ 01.
 - Fá# (370 Hz) \Rightarrow 10.
 - Lá (440 Hz) ⇒ 11.

- Dobramos o número de frequências usadas, dobramos a taxa de transmissão.
- Podemos continuar este processo, aumentando ainda mais a taxa.
- Mas, novamente, há um custo:
 - Quanto mais próximas duas frequências, mais difícil é diferenciá-las.

Resumo da Aula (I)...

- Conceitos básicos de redes sem fio:
 - Hosts sem fio não são necessariamente móveis.
 - Em geral, mobilidade ≠ sem fio.
 - Estação base: interconecta clientes sem fio em sua área de cobertura.
 - Também conecta estes clientes a uma **infraestrutura cabeada**.
 - Enlaces sem fio:
 - **Distâncias** variadas.
 - **Taxas** variadas.
 - Meio de transmissão tipicamente compartilhado.
 - Redes infraestruturadas vs. ad hoc.
 - Com ou sem estação base.

Resumo da Aula (II)...

- Conceitos Básicos de Camada Física:
 - Define como informação é representada em canal de comunicação.
 - Transmissor: altera algum parâmetro físico do meio.
 - Receptor: monitora o parâmetro, **interpretando seus valores**.
 - Exemplos de parâmetros:
 - Luminosidade, tensão elétrica, ondas sonoras, ...
 - Valores do parâmetro físico são chamados de símbolos.
 - Codificam um ou mais bits.
 - Quanto mais bits por símbolo, maior a taxa de transmissão, probabilidade de erro.
 - Símbolos têm duração.
 - Tempo pelo qual transmissor mantém parâmetro naquele valor.
 - Quanto menor a duração, maior a taxa de transmissão, probabilidade de erro.

Leituras e Exercícios Sugeridos

- Introdução e conceitos básicos.
 - Páginas 377 a 380 do Kurose (até Seção 6.1, inclusive).
 - Exercícios de fixação 1 e 2 do capítulo 6 do Kurose.
- Conceitos de camada física.
 - (Opcional) Para se aprofundar (um pouco), capítulo 2 do Tenenbaum.
 - Atividade sugerida:
 - <u>Baixe o código fonte</u> dos programas usados nas demonstrações e execute-os em casa.
 - Altere parâmetros e veja o que acontece.
 - Tente entender os compromissos entre taxa de transmissão e probabilidade de falha.

Próxima Aula...

- Continuamos estudando as redes sem fio.
 - Usaremos os conceitos de camada física vistos nesta aula para entender características dos enlaces sem fio.
 - Também conheceremos um outro método de acesso múltiplo: o CDMA.
 - Discutiremos os conceitos de WLAN e WPAN.
 - E os seus respectivos padrões, o IEEE 802.11 e o IEEE 802.15.