

Facultad de Ingeniería

Carrera de Ingeniería Electrónica Carrera de Telecomunicaciones y Redes Carrera de Ingeniería Mecatrónica

CURSO

Señales y Sistemas

TEMA

Diseño de Filtros

PROFESOR

Ing. Christian del Carpio Damián

DISEÑO DE FILTROS ANALÓGICOS

Las especificaciones de magnitud para el diseño de un filtro pasa bajas son:

Donde:

 A_p es el factor de atenuación en dB de la banda de paso A_S es el factor de atenuación en dB de la banda de rechazo ω_P es el margen de la banda de paso ω_S es el margen de la banda de rechazo

FILTRO BUTTERWORTH

FILTRO BUTTERWORTH

La función transferencia de un filtro Butterworth análogo de orden N es:

$$H(s) = \frac{\omega_c^N}{\prod_{i=1}^N (s - p_i)}$$

donde:

N es el orden del filtro (número de polos del filtro)

 ω_{C} es la frecuencia de corte

$$p_i = \omega_c e^{\frac{j\pi}{2}\left(1 + \frac{(2i-1)}{N}\right)}$$

Un polo **nunca** cae en el eje imaginario, y un polo cae en el eje real si N es impar, pero no para N par.

FILTRO BUTTERWORTH

Por ejemplo, si N=3

Un filtro causal y estable los polos se encuentran en la parte izquierda del plano S.

FILTRO BUTTERWORTH

Determinación del orden

$$N \ge \frac{\log_{10}(d^{-1})}{\log_{10}(k^{-1})}$$

$$k = \frac{\omega_p}{\omega_s^*}$$
 Parámetro de selectividad $d = \frac{\varepsilon}{\sqrt{\delta^{-2} - 1}}$ Parámetro de discriminante

Los valores de ε y δ se obtienen de:

$$A_{p} = 10\log_{10}(1+\epsilon^{2})$$
 $A_{s} = -10\log_{10}(\delta^{2})$

El valor de ω_c se debe encontrar en el rango de:

$$\omega_p \varepsilon^{-1/N} \le \omega_c \le \omega_s (\delta^{-2} - 1)^{-1/(2N)}$$

La función transferencia de un filtro **Chebychev tipo I** análogo de orden N es:

$$H(s) = \frac{C}{\prod_{i=1}^{N} (s - p_i)}$$

Donde:

$$p_{i} = -\omega_{p} \sinh(\phi) \sin\left(\frac{2i-1}{2N}\pi\right) + j\omega_{p} \cosh(\phi) \cos\left(\frac{2i-1}{2N}\pi\right)$$

$$\phi = \frac{1}{N} \ln \left(\frac{1 + \sqrt{1 + \varepsilon^2}}{\varepsilon} \right)$$

$$C = -\prod_{i=1}^{N} p_{i}, \qquad N \text{ impar}$$

$$C = \left(\sqrt{1 + \varepsilon^{2}}\right) \prod_{i=1}^{N} p_{i}, \qquad N \text{ par}$$

Determinación del orden

$$N \ge \frac{\cosh^{-1}(d^{-1})}{\cosh^{-1}(k^{-1})}$$

Donde:

$$A_p = 10 \log_{10} (1 + \varepsilon^2)$$

$$A_s = -10\log_{10}(\delta^2)$$

$$k = \frac{\omega_p}{\omega_s^*}$$

Parámetro de selectividad

$$d = \frac{\varepsilon}{\sqrt{\delta^{-2} - 1}}$$

 $d = \frac{\varepsilon}{\sqrt{\delta^{-2} - 1}}$ Parámetro de discriminante

La función transferencia de un filtro **Chebyshev tipo II** análogo de orden N es:

$$H(s) = \begin{cases} C \prod_{i=1}^{N} \frac{(s - q_i)}{(s - p_i)} & \text{N es par} \\ \frac{C}{(s - p_{(N+1)/2})} \prod_{\substack{i=1 \ i \neq (N+1)/2}}^{N} \frac{(s - q_i)}{(s - p_i)} & \text{N es impar} \end{cases}$$

Donde:

$$p_{i} = \frac{\omega_{s}}{\alpha_{i}^{2} + \beta_{i}^{2}} (\alpha_{i} - j\beta_{i}) \qquad q_{i} = j \frac{\omega_{s}}{\cos\left(\frac{2i - 1}{2N}\pi\right)}$$

Así mismo:

$$\alpha_{i} = -\sinh(\phi)\sin\left(\frac{2i-1}{2N}\pi\right)$$

$$\beta_{i} = -\omega_{p}\cosh(\phi)\cos\left(\frac{2i-1}{2N}\pi\right)$$

$$\phi = \frac{1}{N} \ln \left(\delta^{-1} + \sqrt{\delta^{-1} - 1} \right)$$

Donde

$$C = \prod_{i=1}^{N} \left(\frac{p_i}{q_i}\right)$$

$$N par$$

$$C = -p_{N+1/2} \prod_{\substack{i=1\\i\neq (N+1)/2}}^{N} \left(\frac{p_i}{q_i}\right), \quad N impar$$

La determinación del orden es igual que el Chebyshev tipo I

La localización de los polos en un filtro Chebyshev es,

Un filtro causal y estable los polos se encuentran en la parte izquierda del plano S.

La función transferencia de un filtro Elíptico análogo de orden N es:

$$H(s) = \begin{cases} H_0 \prod_{i=1}^{N/2} \frac{(s^2 + a_i)}{(s^2 + b_i s + c_i)} & \text{N es par} \\ \frac{H_0}{(s+a)} \prod_{i=1}^{(N-1)/2} \frac{(s^2 + a_i)}{(s^2 + b_i s + c_i)} & \text{N es impar} \end{cases}$$

Donde:

$$H_0 = \begin{cases} \frac{1}{\sqrt{1+\varepsilon^2}} \prod_{i=1}^{N/2} \frac{c_i}{a_i} & \text{N es par} \\ a \prod_{i=1}^{(N-1)/2} \frac{c_i}{a_i} & \text{N es impar} \end{cases}$$

Así mismo se tiene

$$\beta = \frac{1}{2N} \ln \left(\frac{\sqrt{1 + \varepsilon^2} + 1}{\sqrt{1 + \varepsilon^2} - 1} \right) \qquad U = \sqrt{(1 + ka^2) \left(1 + \frac{a^2}{k} \right)}$$

$$a = \frac{2q^{1/4} \sum_{m=0}^{\infty} (-1)^m q^{m(m+1)} \sinh[(2m+1)\beta]}{1 + \sum_{m=1}^{\infty} (-1)^m q^{m^2} \cosh(2m\beta)}$$

$$\omega_{i} = \frac{2q^{1/4} \sum_{m=0}^{\infty} (-1)^{m} q^{m(m+1)} \sin[(2m+1)\pi \ell/N]}{1 + 2\sum_{m=1}^{\infty} (-1)^{m} q^{m^{2}} \cos(2m\pi \ell/N)} \qquad \ell = i, i = 1, 2, ..., \frac{N-1}{2} \qquad \text{si N es impar}$$

$$\ell = i, i = 1, 2, ..., \frac{N-1}{2} \qquad \text{si N es par}$$

$$V_i = \sqrt{(1 - k\omega_i^2) \left(1 - \frac{\omega_i^2}{k}\right)}$$

$$a_i = \frac{1}{\omega_i^2}$$

$$b_i = \frac{2aV_i}{1 + a^2 \omega_i^2}$$

$$c_i = \frac{\left(aV_i\right)^2 + \left(\omega_i U\right)^2}{\left(1 + a^2 \omega_i^2\right)^2}$$

Determinación del orden

$$N \ge \frac{\log_{10}(16/d^2)}{\log_{10}(1/q)}$$

Donde:

$$q = q_0 + 2q_0^5 + 15q_0^9 + 150q_0^{13}$$

$$q_0 = \frac{1}{2} \times \frac{1 - (1 - k^2)^{1/4}}{1 + (1 - k^2)^{1/4}}$$

$$A_p = 10 \log_{10} (1 + \varepsilon^2)$$

$$A_s = -10\log_{10}(\delta^2)$$

$$k = \frac{\omega_p}{\omega_s *}$$

$$d = \left(\frac{10^{0.1A_p} - 1}{10^{0.1As} - 1}\right)^{1/2}$$
 Parámetro de discriminante

ESCALADO DE FRECUENCIA

ESCALADO DE FRECUENCIA

A través de filtros pasa bajas cuya frecuencia de corte es $\omega_c=1$, se pueden obtener filtros con cualquier valor de ω_c , simplemente reemplazando s por s/ω_c

Ejemplo:

Se desea obtener un filtro Butterworth de segundo orden con $\omega_c = 100$

$$H(s) = \frac{1}{s^2 + 1.414213s + 1}$$

Filtro Butterworth con $\omega_c = 1$

$$H(s) = \frac{1}{\left(\frac{s}{100}\right)^2 + 1.414213\left(\frac{s}{100}\right) + 1}$$

$$H(s) = \frac{10^4}{s^2 + 141.4213s + 10^4}$$

Filtro Butterworth con $\omega_c = 100$

TRANSFORMACIÓN DE FRECUENCIA

TRANSFORMACION DE FRECUENCIA

Usando transformaciones en frecuencia se puede obtener la función transferencia de un filtro pasa altas, pasa banda o rechaza banda. Esto se logra a partir de un filtro pasa bajas básico (filtro prototipo).

El filtro prototipo puede ser Butterborth, Chebyshev, Elíptico, etc.

Lo primero que se tiene que realizar es el diseño del filtro pasa bajas prototipo con respuesta $H_p(s)$. Este debe tener $\omega_c=1$ y banda de rechazo ω_s *

El próximo paso es reemplazar s por la transformación adecuada T(s) y se obtiene el filtro pasa altas, pasa banda o rechaza banda deseado.

TRANSFORMACION DE FRECUENCIA

Filtro	Reemplazar	en el filtro prototipo s por T(s)
Pasa Altas	$T(s) = \frac{\omega_p}{s}$	$\omega_s^* = \omega_p / \omega_s$
Pasa Banda	$T(s) = \frac{s^2 + \omega_{p1}\omega_{p2}}{(\omega_{p2} - \omega_{p1})s}$	$\omega_s^* = \min \left(\frac{\omega_{p1}\omega_{p2} - (\omega_{s1})^2}{\omega_{s1}(\omega_{p2} - \omega_{p1})}, \frac{(\omega_{s2})^2 - \omega_{p1}\omega_{p2}}{\omega_{s2}(\omega_{p2} - \omega_{p1})} \right)$
Rechaza Banda	$T(s) = \frac{(\omega_{p2} - \omega_{p1})s}{s^2 + \omega_{p1}\omega_{p2}}$	$\omega_{s}^{*} = \min \left(\frac{(\omega_{p2} - \omega_{p1})\omega_{s1}}{\omega_{p1}\omega_{p2} - (\omega_{s1})^{2}}, \frac{(\omega_{p2} - \omega_{p1})\omega_{s2}}{(\omega_{s2})^{2} - \omega_{p1}\omega_{p2}} \right)$

- ω_p Frecuencia de paso deseada
- *ω*_s Frecuencia de rechazo deseada
- ω_{p1} Frecuencia de paso inferior deseada
- ω_{p2} Frecuencia de paso superior deseada
- ω_{s1} Frecuencia de rechazo inferior deseada
- ω_{s2} Frecuencia de rechazo superior deseada

 ω_s^* Frecuencia de rechazo del filtro pasa bajas prototipo

TRANSFORMACION DE FRECUENCIA

Ejemplo:

Se desea diseñar un filtro Chebyshev pasa altas con $\omega_p = 165$, $\omega_s = 100$

Entonces el filtro prototipo pasa bajas debe tener las siguientes especificaciones: $\omega_p = 1$, $\omega_s * = 165/100 = 1.65$

La función transferencia de dicho filtro es:

$$H_p(s) = \frac{0.3269}{s^3 + 0.7378s^2 + 1.0222s + 0.3269}$$

Por lo tanto, reemplazando la trasformación correspondiente, se tiene:

$$H(s) = \frac{0.3269}{\left(\frac{165}{s}\right)^3 + 0.7378\left(\frac{165}{s}\right)^2 + 1.0222\left(\frac{165}{s}\right) + 0.3269}$$

$$H(s) = \frac{s^3}{s^3 + 515.94s^2 + 61445.75s + 13742005}$$

FUNCIONES DE FILTROS EN MATLAB

Filtro Butterworth

[BA] = butter(orden, frecuencia de corte, 's')

Filtro Chebychev

[BA] = chebyl(orden, rizado(dB), frecuencia de corte, 's')

FUNCIONES DE FILTROS EN MATLAB

Ejemplo

$$[BA] = butter(2, 2*pi*100, 's')$$

Genera un filtro pasa bajas continuo Butterworth de orden 2 con frecuencia de corte 100Hz

FUNCIONES DE FILTROS EN MATLAB

Ejemplo

$$[BA] = cheby1(2,2,2*pi*100, 's')$$

Genera un filtro pasa bajas continuo Chebychev de orden 2 con frecuencia de corte 100Hz y rizado de 2dB

FUNCIONES DE MATLAB

Instrucción	Significado	
impulse(sys)	Calcula y grafica la respuesta al impulso del sistema sys	
step	Calcula y grafica la respuesta al escalón del sistema sys	
lsim(sys,u,t)	Simula y grafica la respuesta del modelo LTI sys para entradas arbitrarias, siendo t el tiempo muestral, y u los valores de entrada	
tf(n,d)	Crea una funcion transferencia a partir delos coeficientes n y d	
pzmap	Grafica el diagrama de polos y ceros	
y=wavread('a')	Lee un archivo wav especificado (a) y lo almacena en la variable 'y'	
[H w]=freqs(n,d)	Calcula la respuesta en frecuencia de un sistema analógico. Siendo 'n' y 'd' los coeficientes del los polinomios del numerador y denominador de su funcion trasnferencia respectivamente . Genera 200 puntos de frecuencia por defecto.	
A=spacelog(a,b,c)	Genera un vector fila de 'c' puntos equiespaciados logartimicamente entre 10^a y 10^b decadas.	
syms a	Declara la variable 'a' como un objeto simbolico	
	28	

FUNCIONES DE MATLAB

Instrucción	Significado
[N D]=numden(sys)	Obtiene el numerador "N" y el denominador "D" de la expresión simbolica "sys"
sym2poly(P)	Devuelve un vector fila que contiene los coeficientes del polinomio simbolico "P"
sysr=minreal(sys)	cancela pares de polo-cero para sistemas LTI representados mediante su función de transferencia o mediante un modelo ZPK. El sistema "sysr" obtenido tiene orden mínimo y las mismas características en respuesta que el sistema original.
subs(sys,a,n)	Reemplaza la variable "a" por la variable n" en la expresión simbolica "sys"