

ENGINEERING MATHEMATICS

Numerical Methods

Numerical Integration & Solution of Differential equation DPP - 03 Solution

Consider an ordinary differential equation $\frac{dx}{dt} = 4t + 4$ If $x = x_0$, at t = 0, the increment in x calculated using Runge-Kutta fourth order multi-step method with a step size of $\Delta t = 0.2$ is

$$x = x_0$$

$$X_1 = X_0 + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

$$K_1 = h f(t_0, x_0) = 0.2 f(0, x_0) = 0.2(4x0+4) = 0.8$$

$$K_2 = h f(t_0 + \frac{h}{2}, x_0 + \frac{k_2}{2}) = 0.2 f(0.1, x_0 + 0.4) = 0.2(4 \times 0.1 + 4)$$

$$= 0.88$$

$$K_3 = A f(t_0 + \frac{1}{2}, x_0 + \frac{K_2}{2}) = 0.2 f(0.1, x_0 + 0.44)$$

= 0.2 (4x0.1+4) = 0.88

$$K_4 = h f(t_0 + h, x_0 + K_3) = 0.2 f(0.2, x_0 + 0.88)$$

= 0.2 (4x0.2+4) = 0.96

$$X_1 = X_0 + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

Increment =
$$x_1 - x_0 = \frac{1}{6} (0.8 + 2x0.88 + 2x0.88 + 0.96)$$

 $\Delta x = 0.88$

The ordinary differential equation $\frac{dx}{dt} = -3x + 2$, with x(0) = 1 is to be solved using the forward Euler method. The largest time step that can be used to solve the equation without making the numerical solution unstable is $\frac{2}{3}$.

$$X_{n+1} = X_n + h f(t_n, x_n)$$

 $= X_n + h (-3x_n + 2)$
 $X_{n+1} = (1-3h) \times_n + 2h$
For method
 $11-3h < 1$
 $-1 < 1-3h < 1$
 $-2 < -3h < 0$

$$\frac{2}{3} > h > 0$$

$$\therefore Max. Value = \frac{2}{3}$$

Consider the aquation $\frac{du}{dt} = 3t^2 + 1$ with u = 0 at t = 0. This is numerically

solved by using the forward Euler method with a step size, $\Delta t = 2$.

The absolute error in the solution at the end of the first-time step is _____

Euler method;
$$U_1 = U_0 + h f(t_0, U_0)$$

 $= 0 + 2(3t_0^2 + 1) = 0 + 2(3 \times 0^2 + 1) = 2$
Now for exact value, $\int \frac{du}{dt} = \int 3t^2 + 1$
 $u = [t^3 + t]_0^2 = 2^3 + 2 = 10$
Absolute error = $10 - 2 = 8$

Pw

Match the problem type Group-I with the numerical method in Group-2

	Group-I	Group-II			
(P)	System of linear algebraic equations	(i)	Newton-Raphson		
(Q)	Non-linear algebraic equations	(ii)	Gauss-seidel		
(R)	Ordinary differential equations	(iii)	Simphson's Rule		
(S)	Numerical integrations	(iv)	Runge-Kutta		

Choose the correct set of combinations.

Consider a differential equation $\frac{dy(x)}{dx} - y(x) = x$ with the initial condition y(0) = 0. Using Euler's first order method with a step size of 0.1, the value of y(0.3) is

$$y_1 = y_0 + h f(x_0, y_0)$$

= 0+0.1(0+0)=0

$$Y_2 = y_1 + hf(x_1,y_1)$$

= 0 + 0.1 (x₁+y₁) = 0 + 0.1 (0.1+0)
= 0.01

$$y_3 = y_2 + h f(x_2, y_2)$$

= 0.01+0.1 (x2+42) = 0.01+0.1 (0.2+0.01) = 0.031

Match the CORRECT pairs

	Numerical integration Scheme	Order of Fitting Polynomial		
P.	Simpson's 3/8 Rule	1.	First	
Q.	Trapezoidal Rule		Second	
R.	Simpson's 1/3 Rule	3.	Third	

$$P - 2$$
, $Q - 1$, $R - 3$

$$P - 3$$
, $Q - 2$, $R - 1$

$$P - 1$$
, $Q - 2$, $R - 3$

The values of function f(x) at 5 discrete points are given below. Using Trapezoidal rule with step size of 0.1 the value of $\int_0^4 f(x)dx$ is _____.

		7			
X	0	0.1	0.2	0.3	0.4
f(x)	0 y ₀	10 yı	40 ٧٤	90 y ₃	160 y

$$\int_{0}^{4} f(x) dx = \frac{1}{2} \left\{ (y_{0} + y_{4}) + 2(y_{1} + y_{2} + y_{3}) \right\}$$

$$= \frac{0.1}{2} \left\{ (0 + 160) + 2(10 + 40 + 90) \right\}$$

$$= 22$$

The estimate of $\int_{0.5}^{1.5} \frac{dx}{x}$ obtained using Simpson's rule with three-point function

evaluation exceeds the exact value by

$$\int_{0.5}^{1.5} \frac{1}{x} dx$$

$$A = 0.5$$

$\int_{0}^{1.5} f(x)$	$dx = \frac{h}{3}$	y0+4y1	+ 42}
0.5	= <u>0.5</u>	{ 2+4x1	+ 2 }

$$\int_{x}^{1.5} \pm dx = [\log x]_{0.5}^{1.5} = 1.0986$$
 It exceeds by 0.012

$$f(x)$$
 2 | 1.5 | $f(x)$ 2 | $f(x)$ 3 | $f(x)$ 4 | $f(x)$ 6 | $f(x)$ 6 | $f(x)$ 6 | $f(x)$ 7 | $f(x$

A calculator has an accuracy up to 8 digits after decimal. The value of $\int_0^{2\pi} \sin x \, dx$ when evaluated using this calculator by trapezoidal method with 8 equal intervals, to 5 significant digits is

_	
A.	0.00000

R	1	0	0	1	0
Ь	1.	U	0	U	U

^		_	_		_	_
C	0.	.0	0	5	0	U

D	0	.0	0	0	2	5
			•	٠		_

					-			-	
X	Ó	X	X	<u>3</u> x	*	<u>5⊼</u> 4	3x	7 x	2⊼
t (x)	0	1	١	イン	٥	-12	- 1	-₹	0

$$\int_{0}^{2\pi} \sin x \, dx = \frac{\pi}{2} \left\{ (0+0) + 2 \left(\frac{1}{2} + 1 + \frac{1}{2} + 0 - \frac{1}{2} - \frac{1}{2} \right) \right\}$$

$$= 0.00000$$

Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Simpson's $\frac{3}{8}$ rule and

$$\int_{1+x^{2}}^{6} dx = \frac{3x!}{8} \left\{ \left(1 + \frac{1}{37} \right) + 2x0.1 + 3 \left(0.5 + 0.2 + \frac{1}{17} + \frac{1}{26} \right) \right\}$$

Thank you

Seldiers!

