

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta037

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

În sistemul cartezian de coordonate Oxyz se consideră punctele O(0,0,0), A(0,0,2), B(3,0,0), C(3,4,0).

- (4p) a) Să se calculeze aria triunghiului OBC.
- (4p) b) Să se calculeze volumul tetraedrului *OABC*.
- (4p) c) Să se determine semnul expresiei $E = \cos 1 \frac{\sqrt{2}}{2}$.
- (4p) d) Să se determine lungimea ipotenuzei într-un triunghi dreptunghic cu catetele de lungime 5 și 12.
- (2p) e) Să se determine ecuația tangentei la parabola $y^2 = 4x$ în punctul A(1, 2).
- (2p) f) Să se rezolve în mulțimea numerelor complexe ecuația $z^2 = -1$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se rezolve ecuația $2 \cdot \log_9^2 x \log_9 x 1 = 0$, x > 0.
- (3p) b) Să se calculeze $\frac{C_7^3}{C_7^4}$.
- (3p) c) Dacă $x_1, x_2, x_3 \in \mathbb{C}$ sunt rădăcinile ecuației $x^3 x^2 + 3x 3 = 0$ să se calculeze expresia: $(x_1 + 1)^2 + (x_2 + 1)^2 + (x_3 + 1)^2$.
- (3p) d) Să se afle probabilitatea ca un element $\hat{x} \in \mathbb{Z}_4$, să fie o soluție a ecuației $\hat{2}\hat{x}^2 + \hat{2}\hat{x} = \hat{0}$.
- (3p) e) Se consideră propoziția: $Z_3 \subset Z_4$.

Să se stabilească valoarea de adevăr a acestei propoziții, justificând răspunsul.

- 2. Se consideră funcția $f: \mathbf{R} \{-1\} \rightarrow \mathbf{R}$, $f(x) = \frac{x^3}{x+1}$.
- (3p) a) Să se calculeze f(0).
- (3p) b) Să se calculeze f'(x), $x \in \mathbb{R} \{-1\}$.
- (3p) c) Să se rezolve ecuația f'(x) = 0.
- (3p) d) Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{x^2}$.
- (3p) e) Să se calculeze $\int_{0}^{1} f'(x) dx$.

SUBIECTUL III (20p)

Pentru $n \in \mathbf{Z}$, se consideră matricea $A(n) = \begin{pmatrix} 2^n & 0 & 2^n \\ 0 & 0 & 0 \\ 2^n & 0 & 2^n \end{pmatrix}$ și mulțimea $G = \{A(k) \mid k \in \mathbf{Z} \}.$

(4p) a) Să se demonstreze că
$$\forall n, p \in \mathbb{Z}, A(n) \cdot A(p) = A(n+p+1).$$

(4p) b) Să se demonstreze că
$$\forall k \in \mathbb{N}^*, \forall t \in \mathbb{Z}, (A(t))^k = A(k \cdot t + k - 1).$$

(4p) c) Să se calculeze
$$(A(0))^{2007}$$
.

(2p) d) Să se verifice că
$$A(-1) \cdot A(k) = A(k) \cdot A(-1) = A(k), \forall k \in \mathbb{Z}$$
.

(2p) e) Să se demonstreze că toate matricele din mulțimea
$$G$$
 au determinantul egal cu 0 și rangul egal cu 1 .

(2p) f) Să se demonstreze că
$$(G, \cdot)$$
 este grup comutativ.

(2p) g) Dacă mulțimea
$$N \neq \{A(-1)\}$$
 este un subgrup al grupului (G, \cdot) , să se demonstreze că N are cel puțin 2007 elemente.

SUBIECTUL IV (20p)

Se consideră funcțiile $f:(0,\infty)\to \mathbf{R}$, $f(x)=\ln x$, $g,h:[1,\infty)\to \mathbf{R}$, $g(x)=\ln x-\frac{x-1}{\sqrt{x}}$, $h(x)=\ln x-\frac{2(x-1)}{x+1}$.

(4p) a) Să se demonstreze că
$$\forall x \ge 1$$
, $g'(x) = -\frac{(\sqrt{x}-1)^2}{2x\sqrt{x}}$ și $h'(x) = \frac{(x-1)^2}{x(x+1)^2}$.

(4p) b) Să se demonstreze că
$$\forall x \ge 1, g(x) \le 0 \le h(x)$$

(4p) c) Pentru
$$t > 1$$
, aplicând teorema lui *Lagrange* funcției f pe intervalul $[1, t]$, să se demonstreze că există $c(t) \in (1, t)$ astfel încât $\frac{1}{c(t)} = \frac{\ln t}{t - 1}$.

(2p) d) Pentru
$$t > 1$$
, să se demonstreze că $\frac{2(t-1)}{t+1} < \ln t < \frac{t-1}{\sqrt{t}}$.

(2p) e) Pentru
$$t > 1$$
, să se demonstreze că $\sqrt{t} < c(t) < \frac{t+1}{2}$.

(2p) f) Să se demonstreze că nu există un polinom
$$P \in \mathbf{R}[X]$$
 astfel încât $c(x) = P(x), \forall x > 1.$

(2p) g) Să se demonstreze că
$$1.7 < \int_{\frac{3}{2}}^{2} \frac{t^2 - 1}{\ln t} dt < 1.9$$
.