Regla de la Cadena, Derivación Implícita y Razones de Cambio Relacionadas

R.M

Escuela de Matemáticas Facultad de Ciencias UASD

5 de octubre de 2025

- La Regla de la Cadena
- Derivación Implícita
- Razones de Cambio Relacionadas
- Bibliografía

- La Regla de la Cadena
- Derivación Implícita
- ® Razones de Cambio Relacionadas
- Bibliografí

Función Compuesta

La Regla de la Cadena 000000000000

Definición (Función Compuesta)

Sean f y q dos funciones tales que el rango de q está contenido en el dominio de f. La composición **de** f **con** g, denotada por $f \circ g$, es la función definida por:

$$(f \circ g)(x) = f(g(x))$$

El dominio de $f \circ g$ es el conjunto de todos los valores x en el dominio de g tales que g(x) está en el dominio de f.

Función Compuesta

La Regla de la Cadena 0000000000000

Definición (Función Compuesta)

Sean f y q dos funciones tales que el rango de q está contenido en el dominio de f. La composición **de** f **con** g, denotada por $f \circ g$, es la función definida por:

$$(f \circ g)(x) = f(g(x))$$

El dominio de $f \circ g$ es el conjunto de todos los valores x en el dominio de g tales que g(x) está en el dominio de f.

Ejemplo

Si $f(x) = x^2$ y $g(x) = \sin x$, entonces:

•
$$(f \circ g)(x) = f(g(x)) = f(\sin x) = (\sin x)^2 = \sin^2 x$$

4 / 39

La Regla de la Cadena 0000000000000

Definición (Función Compuesta)

Sean f y q dos funciones tales que el rango de q está contenido en el dominio de f. La composición **de** f **con** g, denotada por $f \circ g$, es la función definida por:

$$(f \circ g)(x) = f(g(x))$$

El dominio de $f \circ g$ es el conjunto de todos los valores x en el dominio de g tales que g(x) está en el dominio de f.

Ejemplo

Si $f(x) = x^2$ y $g(x) = \sin x$, entonces:

- $(f \circ q)(x) = f(q(x)) = f(\sin x) = (\sin x)^2 = \sin^2 x$
- $(g \circ f)(x) = g(f(x)) = g(x^2) = \sin(x^2)$

Función Compuesta

La Regla de la Cadena 0000000000000

Definición (Función Compuesta)

Sean f y q dos funciones tales que el rango de q está contenido en el dominio de f. La composición **de** f **con** g, denotada por $f \circ g$, es la función definida por:

$$(f \circ g)(x) = f(g(x))$$

El dominio de $f \circ g$ es el conjunto de todos los valores x en el dominio de g tales que g(x) está en el dominio de f.

Eiemplo

Si $f(x) = x^2$ y $g(x) = \sin x$, entonces:

- $(f \circ g)(x) = f(g(x)) = f(\sin x) = (\sin x)^2 = \sin^2 x$
- $(g \circ f)(x) = g(f(x)) = g(x^2) = \sin(x^2)$

Nota: En general, $f \circ g \neq g \circ f$.

Teorema de la Regla de la Cadena

La Regla de la Cadena 000000000000

Teorema (Regla de la Cadena)

Si q es derivable en x y f es derivable en g(x), entonces la función compuesta F(x) = f(g(x)) es derivable en x, y su derivada está dada por:

$$F'(x) = f'(g(x)) \cdot g'(x)$$

O equivalentemente, en notación de Leibniz, si y = f(u) y u = g(x), entonces:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Teorema de la Regla de la Cadena

Teorema (Regla de la Cadena)

Si g es derivable en x y f es derivable en g(x), entonces la función compuesta F(x) = f(g(x)) es derivable en x, y su derivada está dada por:

$$F'(x) = f'(g(x)) \cdot g'(x)$$

O equivalentemente, en notación de Leibniz, si y=f(u) y u=g(x), entonces:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Interpretación

La derivada de una función compuesta es el producto de la derivada de la función externa (evaluada en la función interna) por la derivada de la función interna.

Demostración de la Regla de la Cadena

Demostración

La Regla de la Cadena 000000000000

Sea h(x) = f(g(x)). Usando la forma alternativa de la derivada, es necesario demostrar que, para x = c,

$$h'(c) = f'(g(c))g'(c)$$

Demostración de la Regla de la Cadena

Demostración

La Regla de la Cadena

Sea h(x) = f(g(x)). Usando la forma alternativa de la derivada, es necesario demostrar que, para x = c,

$$h'(c) = f'(g(c))g'(c)$$

Un aspecto importante en esta demostración es el comportamiento de g cuando x tiende a c. Se presentan dificultades cuando existen valores de x, distintos de c, tales que g(x)=g(c).

Demostración de la Regla de la Cadena

Demostración

La Regla de la Cadena 000000000000

Sea h(x) = f(g(x)). Usando la forma alternativa de la derivada, es necesario demostrar que, para x = c,

$$h'(c) = f'(g(c))g'(c)$$

Un aspecto importante en esta demostración es el comportamiento de g cuando x tiende a c. Se presentan dificultades cuando existen valores de x, distintos de c, tales que g(x) = g(c). Supóngase que $g(x) \neq g(c)$ para valores de x distintos de c. Obsérvese que, como q es derivable, también es continua, por lo que $g(x) \to g(c)$ cuando $x \to c$.

Demostración (Continuación)

Entonces:

$$h'(c) = \lim_{x \to c} \frac{h(x) - h(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(g(x)) - f(g(c))}{x - c}$$

$$= \lim_{x \to c} \left[\frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \cdot \frac{g(x) - g(c)}{x - c} \right], \quad g(x) \neq g(c)$$

$$= \left[\lim_{x \to c} \frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \right] \left[\lim_{x \to c} \frac{g(x) - g(c)}{x - c} \right]$$

$$= f'(g(c))g'(c)$$

La Regla de la Cadena Ejemplo 1

Ejemplo

Calcular la derivada de $y = (3x^2 - 5x + 1)^3$.

La Regla de la Cadena 0000000000000 Ejemplo 1

Ejemplo

Calcular la derivada de $y = (3x^2 - 5x + 1)^3$.

Solución: Identificamos $u = 3x^2 - 5x + 1$ y $y = u^3$.

Calcular la derivada de $y = (3x^2 - 5x + 1)^3$.

Solución: Identificamos $u = 3x^2 - 5x + 1$ y $y = u^3$.

Aplicando la regla de la cadena:

$$\begin{aligned} \frac{dy}{dx} &= \frac{dy}{du} \cdot \frac{du}{dx} \\ &= 3u^2 \cdot (6x - 5) \\ &= 3(3x^2 - 5x + 1)^2 \cdot (6x - 5) \end{aligned}$$

La Regla de la Cadena

Ejemplo

Calcular la derivada de $y = (3x^2 - 5x + 1)^3$.

Solución: Identificamos $u = 3x^2 - 5x + 1$ y $y = u^3$.

Aplicando la regla de la cadena:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= 3u^2 \cdot (6x - 5)$$
$$= 3(3x^2 - 5x + 1)^2 \cdot (6x - 5)$$

Respuesta

$$\frac{dy}{dx} = 3(3x^2 - 5x + 1)^2(6x - 5)$$

La Regla de la Cadena Ejemplo 2

Ejemplo

Calcular la derivada de $y = \sqrt{4x^2 + 7x - 3}$.

La Regla de la Cadena

Ejemplo

Calcular la derivada de $y = \sqrt{4x^2 + 7x - 3}$.

Solución: Reescribimos $y = (4x^2 + 7x - 3)^{1/2}$.

Sea $u = 4x^2 + 7x - 3$, entonces $y = u^{1/2}$.

La Regla de la Cadena

Ejemplo

Calcular la derivada de $y = \sqrt{4x^2 + 7x - 3}$.

Solución: Reescribimos $y = (4x^2 + 7x - 3)^{1/2}$.

Sea $u = 4x^2 + 7x - 3$, entonces $y = u^{1/2}$.

Aplicando la regla de la cadena:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= \frac{1}{2}u^{-1/2} \cdot (8x+7)$$
$$= \frac{8x+7}{2\sqrt{4x^2+7x-3}}$$

Ejemplo

Calcular la derivada de $y = \sqrt{4x^2 + 7x - 3}$.

Solución: Reescribimos $y = (4x^2 + 7x - 3)^{1/2}$.

Sea $u = 4x^2 + 7x - 3$, entonces $y = u^{1/2}$.

Aplicando la regla de la cadena:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= \frac{1}{2}u^{-1/2} \cdot (8x+7)$$
$$= \frac{8x+7}{2\sqrt{4x^2+7x-3}}$$

Respuesta

$$\frac{dy}{dx} = \frac{8x + 7}{2\sqrt{4x^2 + 7x - 3}}$$

La Regla de la Cadena Ejemplo 3

Ejemplo

Calcular la derivada de $y = \sin(5x^2 - 3x)$.

La Regla de la Cadena Ejemplo 3

Ejemplo

Calcular la derivada de $y = \sin(5x^2 - 3x)$.

Solución: Sea $u = 5x^2 - 3x$, entonces $y = \sin u$.

La Regla de la Cadena 0000000000000 Ejemplo 3

Ejemplo

Calcular la derivada de $y = \sin(5x^2 - 3x)$.

Solución: Sea $u = 5x^2 - 3x$, entonces $y = \sin u$.

Aplicando la regla de la cadena:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= \cos u \cdot (10x - 3)$$
$$= \cos(5x^2 - 3x) \cdot (10x - 3)$$

Calcular la derivada de $y = \sin(5x^2 - 3x)$.

Solución: Sea $u = 5x^2 - 3x$, entonces $y = \sin u$.

Aplicando la regla de la cadena:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= \cos u \cdot (10x - 3)$$
$$= \cos(5x^2 - 3x) \cdot (10x - 3)$$

Respuesta

$$\frac{dy}{dx} = (10x - 3)\cos(5x^2 - 3x)$$

La Regla de la Cadena Ejemplo 4

Ejemplo

Calcular la derivada de $y = \cos^3(2x) = [\cos(2x)]^3$.

La Regla de la Cadena

Ejemplo

Calcular la derivada de $y = \cos^3(2x) = [\cos(2x)]^3$.

Solución: Aquí aplicamos la regla de la cadena dos veces.

Sea $u = \cos(2x)$, entonces $y = u^3$.

0000000000000 Eiemplo 4

La Regla de la Cadena

Ejemplo

Calcular la derivada de $y = \cos^3(2x) = [\cos(2x)]^3$.

Solución: Aquí aplicamos la regla de la cadena dos veces.

Sea $u = \cos(2x)$, entonces $y = u^3$.

$$\frac{dy}{dx} = 3u^2 \cdot \frac{du}{dx}$$

$$= 3[\cos(2x)]^2 \cdot \frac{d}{dx}[\cos(2x)]$$

$$= 3\cos^2(2x) \cdot [-\sin(2x)] \cdot 2$$

$$= -6\cos^2(2x)\sin(2x)$$

Ejemplo

Calcular la derivada de $y = \cos^3(2x) = [\cos(2x)]^3$.

Solución: Aquí aplicamos la regla de la cadena dos veces.

Sea $u = \cos(2x)$, entonces $y = u^3$.

$$\frac{dy}{dx} = 3u^2 \cdot \frac{du}{dx}$$

$$= 3[\cos(2x)]^2 \cdot \frac{d}{dx}[\cos(2x)]$$

$$= 3\cos^2(2x) \cdot [-\sin(2x)] \cdot 2$$

$$= -6\cos^2(2x)\sin(2x)$$

Respuesta

$$\frac{dy}{dx} = -6\cos^2(2x)\sin(2x)$$

La Regla de la Cadena Ejemplo 5

Ejemplo

Calcular la derivada de $y = \tan(\sqrt{x^2 + 1})$.

La Regla de la Cadena 00000000000000 Ejemplo 5

Ejemplo

Calcular la derivada de $y = \tan(\sqrt{x^2 + 1})$.

Solución: Sea $u = \sqrt{x^2 + 1} = (x^2 + 1)^{1/2}$, entonces $y = \tan u$.

La Regla de la Cadena

Ejemplo

Calcular la derivada de $y = \tan(\sqrt{x^2 + 1})$.

Solución: Sea $u = \sqrt{x^2 + 1} = (x^2 + 1)^{1/2}$, entonces $y = \tan u$.

Aplicando la regla de la cadena:

$$\frac{dy}{dx} = \sec^2 u \cdot \frac{du}{dx}$$

$$= \sec^2(\sqrt{x^2 + 1}) \cdot \frac{1}{2}(x^2 + 1)^{-1/2} \cdot 2x$$

$$= \sec^2(\sqrt{x^2 + 1}) \cdot \frac{x}{\sqrt{x^2 + 1}}$$

Ejemplo

Calcular la derivada de $y = \tan(\sqrt{x^2 + 1})$.

Solución: Sea $u = \sqrt{x^2 + 1} = (x^2 + 1)^{1/2}$, entonces $y = \tan u$.

Aplicando la regla de la cadena:

$$\frac{dy}{dx} = \sec^2 u \cdot \frac{du}{dx}$$

$$= \sec^2(\sqrt{x^2 + 1}) \cdot \frac{1}{2}(x^2 + 1)^{-1/2} \cdot 2x$$

$$= \sec^2(\sqrt{x^2 + 1}) \cdot \frac{x}{\sqrt{x^2 + 1}}$$

Respuesta

$$\frac{dy}{dx} = \frac{x \sec^2(\sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Ejemplo: Producto con Regla de la Cadena

Ejemplo

Calcular la derivada de $y = x^2 \sin(3x^2 + 1)$.

Ejemplo: Producto con Regla de la Cadena

Ejemplo

La Regla de la Cadena

Calcular la derivada de $y = x^2 \sin(3x^2 + 1)$.

Solución: Aplicamos la regla del producto y luego la regla de la cadena.

Sean $u = x^2$ y $v = \sin(3x^2 + 1)$.

Ejemplo: Producto con Regla de la Cadena

Ejemplo

La Regla de la Cadena 0000000000000

Calcular la derivada de $y = x^2 \sin(3x^2 + 1)$.

Solución: Aplicamos la regla del producto y luego la regla de la cadena.

Sean
$$u = x^2$$
 y $v = \sin(3x^2 + 1)$.

$$\frac{dy}{dx} = u'v + uv'$$

$$= 2x \cdot \sin(3x^2 + 1) + x^2 \cdot \frac{d}{dx} [\sin(3x^2 + 1)]$$

$$= 2x \sin(3x^2 + 1) + x^2 \cdot \cos(3x^2 + 1) \cdot 6x$$

$$= 2x \sin(3x^2 + 1) + 6x^3 \cos(3x^2 + 1)$$

Ejemplo: Producto con Regla de la Cadena

Ejemplo

Calcular la derivada de $y = x^2 \sin(3x^2 + 1)$.

Solución: Aplicamos la regla del producto y luego la regla de la cadena.

Sean $u = x^2$ y $v = \sin(3x^2 + 1)$.

$$\frac{dy}{dx} = u'v + uv'$$

$$= 2x \cdot \sin(3x^2 + 1) + x^2 \cdot \frac{d}{dx} [\sin(3x^2 + 1)]$$

$$= 2x \sin(3x^2 + 1) + x^2 \cdot \cos(3x^2 + 1) \cdot 6x$$

$$= 2x \sin(3x^2 + 1) + 6x^3 \cos(3x^2 + 1)$$

Respuesta

$$\frac{dy}{dx} = 2x\sin(3x^2 + 1) + 6x^3\cos(3x^2 + 1)$$

Ejemplo: Cociente con Regla de la Cadena

Ejemplo

$${\rm Calcular\; la\; derivada\; de}\; y = \frac{\cos(2x)}{(x^2+1)^3}.$$

Ejemplo: Cociente con Regla de la Cadena

Ejemplo

La Regla de la Cadena 000000000000

Calcular la derivada de
$$y = \frac{\cos(2x)}{(x^2+1)^3}$$
.

Solución: Aplicamos la regla del cociente y la regla de la cadena.

Sean
$$u = \cos(2x)$$
 y $v = (x^2 + 1)^3$.

Ejemplo: Cociente con Regla de la Cadena

Ejemplo

La Regla de la Cadena 000000000000

Calcular la derivada de
$$y = \frac{\cos(2x)}{(x^2+1)^3}$$
.

Solución: Aplicamos la regla del cociente y la regla de la cadena.

Sean
$$u = \cos(2x)$$
 y $v = (x^2 + 1)^3$.

$$\frac{dy}{dx} = \frac{u'v - uv'}{v^2}$$

$$= \frac{[-\sin(2x) \cdot 2](x^2 + 1)^3 - \cos(2x)[3(x^2 + 1)^2 \cdot 2x]}{[(x^2 + 1)^3]^2}$$

$$= \frac{-2\sin(2x)(x^2 + 1)^3 - 6x\cos(2x)(x^2 + 1)^2}{(x^2 + 1)^6}$$

Ejemplo: Cociente con Regla de la Cadena (continuación)

Simplificando, factorizamos $(x^2 + 1)^2$ en el numerador:

$$\frac{dy}{dx} = \frac{(x^2+1)^2[-2\sin(2x)(x^2+1) - 6x\cos(2x)]}{(x^2+1)^6}$$

$$= \frac{-2\sin(2x)(x^2+1) - 6x\cos(2x)}{(x^2+1)^4}$$

$$= \frac{-2[(x^2+1)\sin(2x) + 3x\cos(2x)]}{(x^2+1)^4}$$

Ejemplo: Cociente con Regla de la Cadena (continuación)

Simplificando, factorizamos $(x^2 + 1)^2$ en el numerador:

$$\frac{dy}{dx} = \frac{(x^2+1)^2[-2\sin(2x)(x^2+1) - 6x\cos(2x)]}{(x^2+1)^6}$$

$$= \frac{-2\sin(2x)(x^2+1) - 6x\cos(2x)}{(x^2+1)^4}$$

$$= \frac{-2[(x^2+1)\sin(2x) + 3x\cos(2x)]}{(x^2+1)^4}$$

Respuesta

La Regla de la Cadena

$$\frac{dy}{dx} = \frac{-2[(x^2+1)\sin(2x) + 3x\cos(2x)]}{(x^2+1)^4}$$

Derivación Implícita

- La Regla de la Cadena
- Derivación Implícita
- Razones de Cambio Relacionadas
- Bibliografía

Funciones Explícitas vs. Funciones Implícitas

Función Explícita

Una función está en forma explícita cuando la variable dependiente está despejada en términos de la variable independiente:

$$y = f(x)$$

Ejemplos:
$$y = x^2 + 3x - 1$$
, $y = \sin x + \cos x$, $y = \sqrt{x^2 + 1}$

Funciones Explícitas vs. Funciones Implícitas

Función Explícita

Una función está en **forma explícita** cuando la variable dependiente está despejada en términos de la variable independiente:

$$y = f(x)$$

Ejemplos:
$$y = x^2 + 3x - 1$$
, $y = \sin x + \cos x$, $y = \sqrt{x^2 + 1}$

Función Implícita

Una función está en **forma implícita** cuando la relación entre las variables no está resuelta para ninguna de ellas, sino que está expresada mediante una ecuación:

$$F(x,y) = 0$$

Ejemplos:
$$x^2 + y^2 = 25$$
, $x^3 + y^3 = 6xy$, $e^y + xy = x^2$

Ejemplo

La ecuación $x^2 + y^2 = 25$ define implícitamente a y como función de x. Esta ecuación representa un círculo de radio 5 centrado en el origen.

Ejemplo

La ecuación $x^2 + y^2 = 25$ define implícitamente a y como función de x. Esta ecuación representa un círculo de radio 5 centrado en el origen.

Ejemplo

La ecuación $x^3 + y^3 - 3xy = 0$ (Folio de Descartes) define implícitamente una relación entre x y y.

Ejemplo

La ecuación $x^2 + y^2 = 25$ define implícitamente a y como función de x. Esta ecuación representa un círculo de radio 5 centrado en el origen.

Ejemplo

La ecuación $x^3 + y^3 - 3xy = 0$ (Folio de Descartes) define implícitamente una relación entre x y y.

Ejemplo

La ecuación $\sin(x+y) = xy^2 + 1$ define implícitamente a y como función de x, aunque es difícil o imposible despejar y explícitamente.

Ejemplo

La ecuación $x^2 + y^2 = 25$ define implícitamente a y como función de x. Esta ecuación representa un círculo de radio 5 centrado en el origen.

Ejemplo

La ecuación $x^3 + y^3 - 3xy = 0$ (Folio de Descartes) define implícitamente una relación entre x y y.

Ejemplo

La ecuación $\sin(x+y)=xy^2+1$ define implícitamente a y como función de x, aunque es difícil o imposible despejar y explícitamente.

Observación

En muchos casos, es difícil o imposible despejar y en términos de x. La derivación implícita nos permite encontrar $\frac{dy}{dx}$ sin necesidad de despejar.

18 / 39

Definición de Derivación Implícita

Definición (Derivación Implícita)

La derivación implícita es una técnica que permite calcular la derivada $\frac{dy}{dx}$ de una función definida implícitamente por una ecuación F(x,y)=0, sin necesidad de despejar y explícitamente en términos de x.

El procedimiento consiste en:

- Derivar ambos lados de la ecuación con respecto a x.
- Considerar que y es una función de x, por lo que al derivar términos que contienen y, se aplica la regla de la cadena.
- Despejar $\frac{dy}{dx}$ de la ecuación resultante.

Definición (Derivación Implícita)

La derivación implícita es una técnica que permite calcular la derivada $\frac{dy}{dx}$ de una función definida implícitamente por una ecuación F(x,y)=0, sin necesidad de despejar y explícitamente en términos de x.

El procedimiento consiste en:

- $lue{}$ Derivar ambos lados de la ecuación con respecto a x.
- ② Considerar que y es una función de x, por lo que al derivar términos que contienen y, se aplica la regla de la cadena.
- 🔞 Despejar $\frac{dy}{dx}$ de la ecuación resultante.

Recordatorio

Al derivar y^n con respecto a x: $\frac{d}{dx}[y^n] = ny^{n-1} \cdot \frac{dy}{dx}$

Derivación Implícita 0000000000

Ejemplo 1 de Derivación Implícita

Ejemplo

Hallar $\frac{dy}{dx}$ si $x^2 + y^2 = 25$.

Ejemplo 1 de Derivación Implícita

Ejemplo

Hallar $\frac{dy}{dx}$ si $x^2 + y^2 = 25$.

Solución: Derivamos ambos lados con respecto a *x*:

$$\frac{d}{dx}[x^2 + y^2] = \frac{d}{dx}[25]$$
$$\frac{d}{dx}[x^2] + \frac{d}{dx}[y^2] = 0$$
$$2x + 2y\frac{dy}{dx} = 0$$

Ejemplo

Hallar $\frac{dy}{dx}$ si $x^2 + y^2 = 25$.

Solución: Derivamos ambos lados con respecto a x:

$$\frac{d}{dx}[x^2 + y^2] = \frac{d}{dx}[25]$$
$$\frac{d}{dx}[x^2] + \frac{d}{dx}[y^2] = 0$$
$$2x + 2y\frac{dy}{dx} = 0$$

Despejamos $\frac{dy}{dx}$:

$$2y\frac{dy}{dx} = -2x \implies \frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}$$

Ejemplo 1 de Derivación Implícita

Ejemplo

Hallar $\frac{dy}{dx}$ si $x^2 + y^2 = 25$.

Solución: Derivamos ambos lados con respecto a x:

$$\frac{d}{dx}[x^2 + y^2] = \frac{d}{dx}[25]$$
$$\frac{d}{dx}[x^2] + \frac{d}{dx}[y^2] = 0$$
$$2x + 2y\frac{dy}{dx} = 0$$

Despejamos $\frac{dy}{dx}$:

$$2y\frac{dy}{dx} = -2x \implies \frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}$$

Respuesta

$$\frac{dy}{dx} = -\frac{x}{y} \quad \text{para } y \neq 0$$

Ejemplo 2 de Derivación Implícita

Ejemplo

 $\text{Hallar } \frac{dy}{dx} \text{ si } x^3 + y^3 = 6xy.$

Ejemplo 2 de Derivación Implícita

Ejemplo

Hallar $\frac{dy}{dx}$ si $x^3 + y^3 = 6xy$.

Solución: Derivamos ambos lados con respecto a x:

$$\frac{d}{dx}[x^3 + y^3] = \frac{d}{dx}[6xy]$$
$$3x^2 + 3y^2 \frac{dy}{dx} = 6\left(x\frac{dy}{dx} + y \cdot 1\right)$$
$$3x^2 + 3y^2 \frac{dy}{dx} = 6x\frac{dy}{dx} + 6y$$

Ejemplo 2 de Derivación Implícita

Ejemplo

Hallar $\frac{dy}{dx}$ si $x^3 + y^3 = 6xy$.

Solución: Derivamos ambos lados con respecto a x:

$$\frac{d}{dx}[x^3 + y^3] = \frac{d}{dx}[6xy]$$
$$3x^2 + 3y^2 \frac{dy}{dx} = 6\left(x\frac{dy}{dx} + y \cdot 1\right)$$
$$3x^2 + 3y^2 \frac{dy}{dx} = 6x\frac{dy}{dx} + 6y$$

Agrupamos los términos con $\frac{dy}{dx}$:

$$3y^{2}\frac{dy}{dx} - 6x\frac{dy}{dx} = 6y - 3x^{2}$$
$$(3y^{2} - 6x)\frac{dy}{dx} = 6y - 3x^{2}$$

Despejamos $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{6y - 3x^2}{3y^2 - 6x} = \frac{3(2y - x^2)}{3(y^2 - 2x)} = \frac{2y - x^2}{y^2 - 2x}$$

Despejamos $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{6y - 3x^2}{3y^2 - 6x} = \frac{3(2y - x^2)}{3(y^2 - 2x)} = \frac{2y - x^2}{y^2 - 2x}$$

Respuesta

$$\frac{dy}{dx} = \frac{2y - x^2}{v^2 - 2x} \quad \text{para } y^2 \neq 2x$$

Ejemplo 3 de Derivación Implícita

Ejemplo

 $\operatorname{Hallar} \frac{dy}{dx} \operatorname{si} \sin(xy) + x^2 y = 1.$

Ejemplo 3 de Derivación Implícita

Ejemplo

Hallar $\frac{dy}{dx}$ si $\sin(xy) + x^2y = 1$.

Solución: Derivamos ambos lados con respecto a x:

$$\frac{d}{dx}[\sin(xy)] + \frac{d}{dx}[x^2y] = \frac{d}{dx}[1]$$

$$\cos(xy) \cdot \frac{d}{dx}[xy] + \left(x^2\frac{dy}{dx} + y \cdot 2x\right) = 0$$

$$\cos(xy) \cdot \left(x\frac{dy}{dx} + y\right) + x^2\frac{dy}{dx} + 2xy = 0$$

Ejemplo

Hallar $\frac{dy}{dx}$ si $\sin(xy) + x^2y = 1$.

Solución: Derivamos ambos lados con respecto a x:

$$\frac{d}{dx}[\sin(xy)] + \frac{d}{dx}[x^2y] = \frac{d}{dx}[1]$$

$$\cos(xy) \cdot \frac{d}{dx}[xy] + \left(x^2\frac{dy}{dx} + y \cdot 2x\right) = 0$$

$$\cos(xy) \cdot \left(x\frac{dy}{dx} + y\right) + x^2\frac{dy}{dx} + 2xy = 0$$

Expandimos y agrupamos:

$$x\cos(xy)\frac{dy}{dx} + y\cos(xy) + x^2\frac{dy}{dx} + 2xy = 0$$
$$[x\cos(xy) + x^2]\frac{dy}{dx} = -y\cos(xy) - 2xy$$

Ejemplo 3 de Derivación Implícita (continuación)

Despejamos $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{-y\cos(xy) - 2xy}{x\cos(xy) + x^2}$$
$$= \frac{-y[\cos(xy) + 2x]}{x[\cos(xy) + x]}$$

Ejemplo 3 de Derivación Implícita (continuación)

Despejamos $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{-y\cos(xy) - 2xy}{x\cos(xy) + x^2}$$
$$= \frac{-y[\cos(xy) + 2x]}{x[\cos(xy) + x]}$$

Respuesta

$$\frac{dy}{dx} = \frac{-y[\cos(xy) + 2x]}{x[\cos(xy) + x]} \quad \text{para } x[\cos(xy) + x] \neq 0$$

Resumen del Procedimiento

Para calcular $\frac{dy}{dx}$ de una ecuación implícita F(x,y)=0:

Derivar ambos lados de la ecuación con respecto a x.

Resumen del Procedimiento

- $oldsymbol{\bigcirc}$ Aplicar la regla de la cadena a los términos que contienen y, recordando que y es función de x:

$$\frac{d}{dx}[y^n] = ny^{n-1}\frac{dy}{dx}$$

Resumen del Procedimiento

Para calcular $\frac{dy}{dx}$ de una ecuación implícita F(x,y)=0:

- **Derivar** ambos lados de la ecuación con respecto a x.
- **Aplicar la regla de la cadena** a los términos que contienen y, recordando que y es función de x:

$$\frac{d}{dx}[y^n] = ny^{n-1}\frac{dy}{dx}$$

Agrupar todos los términos que contienen $\frac{dy}{dx}$ en un lado de la ecuación.

Resumen del Procedimiento

- **Derivar** ambos lados de la ecuación con respecto a x.
- **Aplicar la regla de la cadena** a los términos que contienen y, recordando que y es función de x:

$$\frac{d}{dx}[y^n] = ny^{n-1}\frac{dy}{dx}$$

- **Agrupar** todos los términos que contienen $\frac{dy}{dx}$ en un lado de la ecuación.
- **Factorizar** $\frac{dy}{dx}$ como factor común.

Resumen del Procedimiento

- lacktriangle Derivar ambos lados de la ecuación con respecto a x.
- \bigcirc **Aplicar la regla de la cadena** a los términos que contienen y, recordando que y es función de x:

$$\frac{d}{dx}[y^n] = ny^{n-1}\frac{dy}{dx}$$

- **Agrupar** todos los términos que contienen $\frac{dy}{dx}$ en un lado de la ecuación.
- 4 Factorizar $\frac{dy}{dx}$ como factor común.
- **Despejar** $\frac{dy}{dx}$ dividiendo ambos lados por el coeficiente resultante.

Resumen del Procedimiento

- lacktriangle Derivar ambos lados de la ecuación con respecto a x.
- \odot **Aplicar la regla de la cadena** a los términos que contienen y, recordando que y es función de x:

$$\frac{d}{dx}[y^n] = ny^{n-1}\frac{dy}{dx}$$

- **Agrupar** todos los términos que contienen $\frac{dy}{dx}$ en un lado de la ecuación.
- 4 Factorizar $\frac{dy}{dx}$ como factor común.
- **Despejar** $\frac{dy}{dx}$ dividiendo ambos lados por el coeficiente resultante.
- 3 Simplificar la expresión obtenida, si es posible.

Razones de Cambio Relacionadas •00000000000

- Razones de Cambio Relacionadas

Concepto

Las **razones de cambio relacionadas** son problemas donde dos o más variables cambian con respecto al tiempo y están relacionadas mediante una ecuación. El objetivo es encontrar la razón de cambio de una variable conociendo la razón de cambio de otra(s).

Concepto

Las razones de cambio relacionadas son problemas donde dos o más variables cambian con respecto al tiempo y están relacionadas mediante una ecuación. El objetivo es encontrar la razón de cambio de una variable conociendo la razón de cambio de otra(s).

Método General

- Identificar las variables del problema y sus relaciones.
- Escribir una ecuación que relacione las variables.
- **Derivar implícitamente** con respecto al tiempo t.
- Sustituir los valores conocidos.
- Resolver para la razón de cambio desconocida.

Concepto

Las razones de cambio relacionadas son problemas donde dos o más variables cambian con respecto al tiempo y están relacionadas mediante una ecuación. El objetivo es encontrar la razón de cambio de una variable conociendo la razón de cambio de otra(s).

Método General

- Identificar las variables del problema y sus relaciones.
- Escribir una ecuación que relacione las variables.
- **Derivar implícitamente** con respecto al tiempo t.
- Sustituir los valores conocidos.
- Resolver para la razón de cambio desconocida.

Recordatorio

Al derivar con respecto a t, usamos $\frac{dx}{dt}$, $\frac{dy}{dt}$, etc., para representar las razones de cambio.

Ejemplo 1: Globo Esférico

Ejemplo

Un globo esférico se infla de modo que su radio aumenta a una razón de 2 cm/s. ¿A qué razón aumenta el volumen del globo cuando el radio es 5 cm?

Ejemplo 1: Globo Esférico

Ejemplo

Un globo esférico se infla de modo que su radio aumenta a una razón de 2 cm/s. ¿A qué razón aumenta el volumen del globo cuando el radio es 5 cm?

Solución:

Paso 1: Identificamos las variables: r (radio), V (volumen), t (tiempo).

Datos: $\frac{dr}{dt} = 2$ cm/s, r = 5 cm. Buscamos: $\frac{dV}{dt}$.

28 / 39

Ejemplo 1: Globo Esférico

Ejemplo

Un globo esférico se infla de modo que su radio aumenta a una razón de 2 cm/s. ¿A qué razón aumenta el volumen del globo cuando el radio es 5 cm?

Solución:

Paso 1: Identificamos las variables: r (radio), V (volumen), t (tiempo).

Datos: $\frac{dr}{dt} = 2$ cm/s, r = 5 cm. Buscamos: $\frac{dV}{dt}$.

Paso 2: Ecuación del volumen de una esfera: $V = \frac{4}{3}\pi r^3$.

Ejemplo

Un globo esférico se infla de modo que su radio aumenta a una razón de 2 cm/s. ¿A qué razón aumenta el volumen del globo cuando el radio es 5 cm?

Solución:

Paso 1: Identificamos las variables: r (radio), V (volumen), t (tiempo).

Datos: $\frac{dr}{dt} = 2$ cm/s, r = 5 cm. Buscamos: $\frac{dV}{dt}$.

Paso 2: Ecuación del volumen de una esfera: $V = \frac{4}{2}\pi r^3$.

Paso 3: Derivamos con respecto a *t*:

$$\frac{dV}{dt} = \frac{4}{3}\pi \cdot 3r^2 \cdot \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}$$

Figura 1: Globo esférico con radio r creciendo.

Ejemplo 1: Globo Esférico (continuación)

Paso 4: Sustituimos $r=5~{\rm cm}~{\rm y}~\frac{dr}{dt}=2~{\rm cm/s}$:

$$\frac{dV}{dt} = 4\pi(5)^2(2) = 4\pi \cdot 25 \cdot 2 = 200\pi \text{ cm}^3/\text{s}$$

Ejemplo 1: Globo Esférico (continuación)

Paso 4: Sustituimos $r=5~{\rm cm}~{\rm y}~\frac{dr}{dt}=2~{\rm cm/s}$:

$$\frac{dV}{dt} = 4\pi(5)^2(2) = 4\pi \cdot 25 \cdot 2 = 200\pi \text{ cm}^3/\text{s}$$

Respuesta

El volumen del globo aumenta a una razón de $200\pi \approx 628,32~{\rm cm^3/s}$ cuando el radio es 5 cm.

Ejemplo 2: Escalera Deslizándose

Ejemplo

Una escalera de 10 m de largo está apoyada contra una pared. Si el extremo inferior se aleja de la pared a 1 m/s, ¿qué tan rápido desciende el extremo superior cuando este está a 6 m del suelo?

Ejemplo 2: Escalera Deslizándose

Ejemplo

Una escalera de 10 m de largo está apoyada contra una pared. Si el extremo inferior se aleja de la pared a 1 m/s, ¿qué tan rápido desciende el extremo superior cuando este está a 6 m del suelo?

Solución:

Paso 1: Sea x la distancia del extremo inferior a la pared, y la altura del extremo superior.

Datos: $\frac{dx}{dt} = 1$ m/s, y = 6 m, longitud de la escalera = 10 m. Buscamos: $\frac{dy}{dt}$.

Ejemplo 2: Escalera Deslizándose

Ejemplo

Una escalera de 10 m de largo está apoyada contra una pared. Si el extremo inferior se aleja de la pared a 1 m/s, ¿qué tan rápido desciende el extremo superior cuando este está a 6 m del suelo?

Solución:

Paso 1: Sea x la distancia del extremo inferior a la pared, y la altura del extremo superior.

Datos: $\frac{dx}{dt} = 1$ m/s, y = 6 m, longitud de la escalera = 10 m. Buscamos: $\frac{dy}{dt}$.

Paso 2: Por el teorema de Pitágoras: $x^2 + y^2 = 100$.

Cuando y = 6: $x^2 + 36 = 100 \implies x^2 = 64 \implies x = 8$ m.

Ejemplo 2: Escalera Deslizándose

Ejemplo

Una escalera de 10 m de largo está apoyada contra una pared. Si el extremo inferior se aleja de la pared a 1 m/s, ¿qué tan rápido desciende el extremo superior cuando este está a 6 m del suelo?

Solución:

Paso 1: Sea x la distancia del extremo inferior a la pared, y la altura del extremo superior.

Datos: $\frac{dx}{dt} = 1$ m/s, y = 6 m, longitud de la escalera = 10 m. Buscamos: $\frac{dy}{dt}$.

Paso 2: Por el teorema de Pitágoras: $x^2 + y^2 = 100$.

Cuando
$$y = 6$$
: $x^2 + 36 = 100 \implies x^2 = 64 \implies x = 8 \text{ m}$.

Paso 3: Derivamos con respecto a t:

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

Ejemplo 2: Escalera Deslizándose (continuación)

Paso 4: Sustituimos x=8 m, y=6 m, $\frac{dx}{dt}=1$ m/s:

$$2(8)(1) + 2(6)\frac{dy}{dt} = 0$$

$$16 + 12\frac{dy}{dt} = 0$$

$$\frac{dy}{dt} = -\frac{16}{12} = -\frac{4}{3} \text{ m/s}$$

Ejemplo 2: Escalera Deslizándose (continuación)

Paso 4: Sustituimos x=8 m, y=6 m, $\frac{dx}{dt}=1$ m/s:

$$2(8)(1) + 2(6)\frac{dy}{dt} = 0$$

$$16 + 12\frac{dy}{dt} = 0$$

$$\frac{dy}{dt} = -\frac{16}{12} = -\frac{4}{3} \text{ m/s}$$

Respuesta

El extremo superior desciende a una razón de $\frac{4}{3}\approx 1{,}33$ m/s (el signo negativo indica que y está disminuyendo).

Ejemplo 3: Cono Llenándose de Agua

Ejemplo

Se vierte agua en un tanque cónico invertido a razón de 10 m³/min. Si el tanque tiene 12 m de altura y el radio de la base es 4 m, ¿qué tan rápido sube el nivel del agua cuando esta tiene 6 m de profundidad?

Ejemplo 3: Cono Llenándose de Agua

Ejemplo

Se vierte agua en un tanque cónico invertido a razón de 10 m³/min. Si el tanque tiene 12 m de altura y el radio de la base es 4 m, ¿qué tan rápido sube el nivel del agua cuando esta tiene 6 m de profundidad?

Solución:

Paso 1: Sea h la profundidad del agua, r el radio de la superficie del agua, V el volumen.

Datos: $\frac{dV}{dt}=10~\mathrm{m^3/min},~h=6~\mathrm{m}.$ Buscamos: $\frac{dh}{dt}.$

Ejemplo 3: Cono Llenándose de Agua

Ejemplo

Se vierte agua en un tanque cónico invertido a razón de 10 m³/min. Si el tanque tiene 12 m de altura y el radio de la base es 4 m, ¿qué tan rápido sube el nivel del agua cuando esta tiene 6 m de profundidad?

Solución:

Paso 1: Sea h la profundidad del agua, r el radio de la superficie del agua, V el volumen.

Datos: $\frac{dV}{dt} = 10 \text{ m}^3/\text{min}, h = 6 \text{ m}.$ Buscamos: $\frac{dh}{dt}$.

Paso 2: Volumen del cono: $V = \frac{1}{2}\pi r^2 h$.

Por semejanza de triángulos: $\frac{r}{h} = \frac{4}{12} = \frac{1}{3}$, luego $r = \frac{h}{3}$.

Ejemplo 3: Cono Llenándose de Agua (continuación)

Sustituimos $r = \frac{h}{3}$ en la fórmula del volumen:

$$V = \frac{1}{3}\pi \left(\frac{h}{3}\right)^2 h = \frac{1}{3}\pi \cdot \frac{h^2}{9} \cdot h = \frac{\pi h^3}{27}$$

Ejemplo 3: Cono Llenándose de Agua (continuación)

Sustituimos $r = \frac{h}{3}$ en la fórmula del volumen:

$$V = \frac{1}{3}\pi \left(\frac{h}{3}\right)^2 h = \frac{1}{3}\pi \cdot \frac{h^2}{9} \cdot h = \frac{\pi h^3}{27}$$

Paso 3: Derivamos con respecto a *t*:

$$\frac{dV}{dt} = \frac{\pi}{27} \cdot 3h^2 \cdot \frac{dh}{dt} = \frac{\pi h^2}{9} \frac{dh}{dt}$$

Ejemplo 3: Cono Llenándose de Agua (continuación)

Sustituimos $r = \frac{h}{3}$ en la fórmula del volumen:

$$V = \frac{1}{3}\pi \left(\frac{h}{3}\right)^2 h = \frac{1}{3}\pi \cdot \frac{h^2}{9} \cdot h = \frac{\pi h^3}{27}$$

Paso 3: Derivamos con respecto a t:

$$\frac{dV}{dt} = \frac{\pi}{27} \cdot 3h^2 \cdot \frac{dh}{dt} = \frac{\pi h^2}{9} \frac{dh}{dt}$$

Paso 4: Sustituimos $\frac{dV}{dt} = 10 \text{ m}^3/\text{min y } h = 6 \text{ m}$:

$$10 = \frac{\pi(6)^2}{9} \frac{dh}{dt} = \frac{36\pi}{9} \frac{dh}{dt} = 4\pi \frac{dh}{dt}$$
$$\frac{dh}{dt} = \frac{10}{4\pi} = \frac{5}{2\pi} \text{ m/min}$$

Ejemplo 3: Cono Llenándose de Agua (respuesta)

Respuesta

El nivel del agua sube a una razón de $\frac{5}{2\pi} \approx 0.796$ m/min cuando la profundidad es 6 m.

Ejemplo 4: Dos Autos en Movimiento

Ejemplo

Dos carreteras se intersectan en ángulo recto. El auto A viaja hacia el norte a 80 km/h y el auto B viaja hacia el este a 60 km/h. A las 12:00 h, el auto A está a 30 km al sur de la intersección y el auto B está a 40 km al oeste. ¿A qué razón cambia la distancia entre los autos a las 12:30 h?

Ejemplo 4: Dos Autos en Movimiento

Ejemplo

Dos carreteras se intersectan en ángulo recto. El auto A viaja hacia el norte a 80 km/h y el auto B viaja hacia el este a 60 km/h. A las 12:00 h, el auto A está a 30 km al sur de la intersección y el auto B está a 40 km al oeste. ¿A qué razón cambia la distancia entre los autos a las 12:30 h?

Solución:

Paso 1: Sea x la distancia del auto B a la intersección, y la distancia del auto A a la intersección, z la distancia entre los autos.

Datos: $\frac{dx}{dt} = -60$ km/h (negativo porque se acerca), $\frac{dy}{dt} = -80$ km/h.

A las 12:00: $x_0 = 40$ km, $y_0 = 30$ km.

A las 12:30 (media hora después): x = 40 - 60(0.5) = 10 km, y = 30 - 80(0.5) = -10 km (al norte).

Ejemplo 4: Dos Autos en Movimiento (continuación)

Paso 2: Por el teorema de Pitágoras: $z^2 = x^2 + y^2$.

Paso 2: Por el teorema de Pitágoras:
$$z^2 = x^2 + y^2$$
. A las 12:30: $z^2 = 10^2 + 10^2 = 100 + 100 = 200$, luego $z = \sqrt{200} = 10\sqrt{2}$ km.

Razones de Cambio Relacionadas 00000000000

Ejemplo 4: Dos Autos en Movimiento (continuación)

Paso 2: Por el teorema de Pitágoras: $z^2 = x^2 + y^2$.

A las 12:30: $z^2 = 10^2 + 10^2 = 100 + 100 = 200$, luego $z = \sqrt{200} = 10\sqrt{2}$ km.

Paso 3: Derivamos con respecto a t:

$$2z\frac{dz}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}$$

$$\frac{dz}{dt} = \frac{x\frac{dx}{dt} + y\frac{dy}{dt}}{z}$$

Ejemplo 4: Dos Autos en Movimiento (continuación)

Paso 2: Por el teorema de Pitágoras: $z^2 = x^2 + y^2$.

A las 12:30: $z^2 = 10^2 + 10^2 = 100 + 100 = 200$, luego $z = \sqrt{200} = 10\sqrt{2}$ km.

Paso 3: Derivamos con respecto a t:

$$2z\frac{dz}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}$$
$$\frac{dz}{dt} = \frac{x\frac{dx}{dt} + y\frac{dy}{dt}}{z}$$

Paso 4: Sustituimos los valores a las 12:30:

$$\frac{dz}{dt} = \frac{10(-60) + 10(-80)}{10\sqrt{2}} = \frac{-600 - 800}{10\sqrt{2}} = \frac{-1400}{10\sqrt{2}} = \frac{-140}{\sqrt{2}} = -70\sqrt{2} \text{ km/h}$$

Ejemplo 4: Dos Autos en Movimiento (respuesta)

Respuesta

La distancia entre los autos está disminuyendo a una razón de $70\sqrt{2}\approx 98,99$ km/h a las 12:30 h.

- Bibliografía

Bibliografía

- [1] Stewart, J. (2012). Cálculo de una Variable: Trascendentes Tempranas. 7ª edición. Cengage Learning.
- [2] Larson, R., & Edwards, B. (2016). Cálculo Esencial. 2ª edición. Cengage Learning.
- Thomas, G. B., Weir, M. D., Hass, J., & Giordano, F. R. (2014). Cálculo: Una Variable. 13ª edición. Pearson Education.
- [4] Purcell, E. J., Varberg, D., & Rigdon, S. E. (2007). Cálculo. 9ª edición. Pearson Educación.
- [5] Leithold, L. (1998). El Cálculo. 7ª edición. Oxford University Press.