

RELACIONES EN

 \Re^2

DEFINICIONES PREVIAS

PAR ORDENADO: Es un conjunto de dos elementos en el cual, cada elemento tiene un lugar fijo.

$$(a,b) = \{\{a\}, \{a,b\}\}$$

PROPIEDAD:

$$(a,b)=(c,d) \leftrightarrow a=c \land b=d$$

RELACIÓN BINARIA

Se denomina Relación Binaria entre los elementos de un conjunto A y los elementos de un conjunto B a todo subconjunto R del producto cartesiano A X B, esto es , una relación binaria R consiste en:

Un conjunto A (Conjunto de Partida)

Un conjunto B (Conjunto de Llegada)

Un enunciado abierto

RELACION BINARIA

Se denomina Relación Binaria entre los elementos de un conjunto A y los elementos de un conjunto B a todo subconjunto R del producto cartesiano A X B, esto es , una relación binaria R consiste en:

Un conjunto A (Conjunto de Partida) Un conjunto B (Conjunto de Llegada) Un enunciado abierto

$$R = \{(x, y) \in AxB / P(x, y) \subset AxB\}$$

$$R: A \rightarrow B \leftrightarrow R \subset AxB$$

RELACION BINARIA

DOMINIO DE UNA RELACIÓN: Se denomina dominio de una Relación "R" de A en B al conjunto de todas las primeras componentes de los pares ordenados de la relación.

$$Dom(R) = \{x \in A/\exists y \in B/(x, y) \in \Re\}$$
$$x \in Dom(R) \longleftrightarrow \exists y \in B/(x, y) \in \Re$$

RANGO DE UNA RELACIÓN: Se denomina rango de una relación R de A en B al conjunto de todas las segundas componentes de los pares ordenados de la relación.

$$Ran(R) = \{ y \in B / \exists x \in A / (x, y) \in \Re \}$$

 $y \in Ran(R) \longleftrightarrow \exists x \in A / (x, y) \in \Re$

GRÁFICAS DE RELACIONES DEFINIDAS POR ECUACIONES

A) RELACIONES DE LA FORMA:

$$R = \{(x, y) \in \Re^2 / ax + by + c = 0\}$$

$$R = \{(x, y) \in \Re^2 / y = ax^2 + bx + c\}$$

Tienen por gráficas una línea recta y una Parábola respectivamente.

CARACTERÍSTICAS DE UNA PARÁBOLA

SIMETRÍA: cada parábola es simétrica con respecto a una línea vertical llamada eje de simetría.

VÉRTICE: es el punto donde la parábola interfecta al eje de simetría.

La expresión $y = ax^2 + bx + c$ se puede expresar como $y = a(x-h)^2 + k$

Si a>0, la parábola se abre hacia arriba.

Si a<0, la parábola se abre hacia abajo.

LAS RELACIONES DE LA FORMA

$$R = \{(x, y) \in \Re^2 / x = ay^2 + by + c\}$$

$$R = \{(x, y) \in \Re^2 / x = a(y - k)^2 + h\}$$

Tienen por gráfico una parábola de eje horizontal.

Si a>0, la parábola se abre hacia la derecha.

Si a<0, la parábola se abre hacia la izquierda.

La parábola abre hacia la derecha

La parábola abre hacia la izquierda

Ejercicio 01: Trazar el grafico de la relación

Ejercicio 02: Trazar el grafico de la relación

Ejercicio 03: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 3x + 9y^2 - 18y + 4 = 0\}$$

Ejercicio 03: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 3x + 9y^2 - 18y + 4 > 0\}$$

Ejercicio 04: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / x = y^2 - 6y + 5\}$$

Ejercicio 05: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / x + 3y - 6 = 0, x \in [-2, 6]\}$$

Ejercicio 06: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 2x - 3y + 8 = 0, y \in \langle -2, 6] \}$$

B) RELACIONES DE LA FORMA:

$$R = \{(x, y) \in \Re^2 / x^2 + y^2 + Dx + Ey + F = 0\}$$

se puede escribir como $(x-h)^2 + (y-k)^2 = r^2$ que tienen por gráfica una circunferencia de radio r>0 y centro (h , k)

Ejercicio 01: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 4x^2 + 4y^2 - 16x + 4y - 47 = 0\}$$

$$4x^2 + 4y^2 - 16x + 4y - 47 = 0$$

Ejercicio 02: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 4x^2 + 4y^2 - 12x + 24y + 9 = 0\}$$

$$R = \{(x, y) \in \Re^2/4x^2 + 4y^2 - 12x + 24y + 9 > 0\}$$

 $R = \{(x, y) \in \Re^2/x^2 + (y - 1)^2 < 36 \land x^2 > y + 9 \}$

$$R = \{(x, y) \in \Re^2/4x^2 + 4y^2 - 12x + 24y + 9 < 0 \}$$

1°) Graficar la igualdad

$$4x^2 + 4y^2 - 12x + 24y + 9 = 0$$

?°) analizamos la desigualdad

$$R = \{(x, y) \in \Re^2/x^2 + (y - 1)^2 < 36 \land x^2 > y + 9 \}$$

$$R=\{(x,y)\in\Re^2, x^2+y^2+4x-2y-20\leq 0, x+y+2\leq 0\}$$

practica: ejercicio 04

B) RELACIONES DE LA FORMA:

$$R = \{(x, y) \in \Re^2 / Ax^2 + Cy^2 + Dx + Ey + F = 0\}$$

$$R = \{(x, y) \in \Re^2 / \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1\}$$

Tienen por gráfico una elipse, donde "a" es el semieje mayor, "b" es el semieje menor y (h,k) es el centro de la elipse.

Ejercicio 01: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 4x^2 + 9y^2 - 16x + 18y = 11\}$$

Ejercicio 02: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 9x^2 + 4y^2 + 18x - 32y \le -37\}$$

practica: ejercicio 05

$$R = \{(x, y) \in \Re^2 / 3x^2 + 4y^2 \ge 12\}$$

practica: ejercicio 06

B) RELACIONES DE LA FORMA:

$$R = \{(x, y) \in \Re^2 / Ax^2 + Cy^2 + Dx + Ey + F = 0\}$$

$$R = \left\{(x, y) \in \Re^2 / \frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\right\}$$

Tienen por gráfico una elipse, donde "a" es el semieje mayor, "b" es el semieje menor y (h,k) es el centro de la elipse.

Ejercicio 01: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 4x^2 + 9y^2 - 16x + 18y = 11\}$$

$$4x^{2} + 9y^{2} - 16x + 18y = 11$$

$$(4x^{2} - 16x) + (9y^{2} + 18y) = 11$$

$$4(x^{2} - 4x + 4 - 4) + 9(y^{2} + 2y + 1 - 1) = 11$$

$$4(x - 2)^{2} + 9(y + 1)^{2} = 36$$

$$\frac{(x - 2)^{2}}{9} + \frac{(y + 1)^{2}}{4} = 1$$

Elipse

Centro C(h,k) = (2, -1)semi eje mayor a= 3

Semi eje menor b = 2

Ejercicio 02: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 9x^2 + 4y^2 + 18x - 32y \le -37\}$$

1º) Graficamos la ecuacion

$$9x^{2} + 4y^{2} + 18x - 32y = -37$$

$$(9x^{2} + 18x) + (4y^{2} - 32y) = -37$$

$$9(x^{2} + 2x + 1 - 1) + 4(y^{2} - 8y + 16 - 16) = -37$$

$$9(x+1)^{2} + 4(y-4)^{2} = 36$$

$$\frac{(x+1)^{2}}{4} + \frac{(y-4)^{2}}{9} = 1$$

$$\frac{(y-4)^{2}}{9} + \frac{(x+1)^{2}}{4} = 1$$

2°) Desigualdad

$$P(0.0) \longrightarrow 0 \le -37$$

Ejercicio 06: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 3x^2 + 4y^2 \ge 12\}$$

1º) Graficamos la ecuacion

$$3x^{2} + 4y^{2} = 12$$

$$\frac{x^{2}}{4} + \frac{y^{2}}{3} = 1$$

Elipse

Centro (0,0)

semi eje mayor a= 2

Semi eje menor b =√3

2º) desigualdad

Ejercicio 06: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / 3x^2 + 4y^2 \ge 12\}$$

1º) Graficamos la ecuacion

$$3x^{2} + 4y^{2} = 12$$

$$\frac{x^{2}}{4} + \frac{y^{2}}{3} = 1$$

Elipse

Centro (0,0)

semi eje mayor a= 2

Semi eje menor b =√3

2º) desigualdad

B) RELACIONES DE LA FORMA:

$$R = \{(x, y) \in \Re^2 / Ax^2 - Cy^2 + Dx + Ey + F = 0\}$$

$$R = \{(x, y) \in \Re^2 / (x - h)^2 - \frac{(y - k)^2}{b^2} = 1\}$$

$$R = \{(x, y) \in \Re^2 / xy = \pm \frac{a^2}{2}\}$$

$$R = \{(x, y) \in \Re^2 / (x - h)(y - k) = \pm \frac{a^2}{2}\}$$

Tienen por gráfico una hipérbola donde "a" es el semieje transverso o real, "b" el semieje conjugado o imaginario y (h,k) el centro de la hipérbola.

Ejercicio 01: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / x^2 - 4y^2 + 2x + 24y - 51 = 0\}$$

$$(x^{2} + 2x + 1 - 1) - (4y^{2} - 24y) = 51$$

$$(x + 1)^{2} - 4(y^{2} - 6y + 9 - 9) = 51$$

$$(x + 1)^{2} - 4(y - 3)^{2} = 16$$

$$\frac{(x + 1)^{2}}{16} - \frac{(y - 3)^{2}}{4} = 1$$

Hiperbola C (-1, 3)

Semi eje real: a = 4

Semi eje imag b= 2

Dom (R) =
$$\left(-5 \right) \cup \left(3 \right)$$

Rang (R) = R

Ejercicio 07: Trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / x^2 - y^2 > 9\}$$

1°) Graficamos la ecuacion

$$x^{2} - y^{2} = 9$$

 $\frac{x^{2}}{9} - \frac{y^{2}}{9} = 1$

Hiperbola

Centro C(0,0)

Semi eje real a = 3

Semi eje imag. b= 3

2º) desigualdad

$$P(0,0) \longrightarrow 0 > 9$$

GRAFICAS DE RELACIONES CON VALOR ABSOLUTO

$$R = \left\{ (x, y) \in \Re^2 / y = |x| \longleftrightarrow y = \left\{ x, x \ge 0 \\ -x, x < 0 \right\} \right\}$$

$$Dom(f) = \Re$$

$$Ran(f) = [0, +\infty)$$

Cuyo gráfico es la unión de dos rectas y=x , y=-x

Ejercicio 01: trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2 / y = |x - 1| + x\}$$

Por definicion

$$/x-1/ = \begin{cases} x-1, & x \ge 1 \\ 1-x, & x < 1 \end{cases}$$

Para $x \ge 1$

$$y = x-1 + x$$

$$y = 2x - 1$$

Linea Recta

Para x < 1

$$y = 1-x+x$$

$$y = 1$$

Linea recta horizontal

Ejercicio 02: trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2/y = |x| + |3 - x|\}$$

Puntos criticos: x=0, x=3

Para < -
$$\infty$$
, 0>
y= -x + 3- x
y = -2x+3
Recta
x | 0 | -2
y | Para [0, 3>
y = x + 3-x
y = 3
Constante

Para [3, $^{+}$ \tilde{\omega} > y = x+ x-3
y = 2x-3
Recta
x | 3 | 5

Ejercicio 03: trazar el grafico de la relación

$$R = \{(x, y) \in \Re^2/y = |x^2 - 4|\}$$

Ejercicio 04: trazar el grafico de la relación $R = \left\{ (x, y) \in \Re^2 / y = \frac{|x - 3|}{3 - x} \right\}$

Ejercicio 03: trazar el grafico de la relación

$$R = \left\{ (x, y) \in \Re^2 / y = \frac{(x-2) + |x-1|}{|x-2| + (x-1)} \right\}$$

