EE330 Fall 2018 HW12 Solutions TA: Robert Buckley

Problem 1

Cascode amplifier, so gain is

$$A_v = -\left(\frac{g_{m1}}{g_{03}}\right) \cong -8000$$

Problem 2

$$A_V = -\left(\frac{g_{m1}}{g_{01}}\right)\frac{\beta}{2} \cong -400,000$$

Problem3

$$3 + A_v V_{in} = 3 + (1 * 10^{-6})(4 * 10^5) = 3.4V$$

This means it would be very difficult to get the system to be biased correctly.

Problem 4

a) Due to the current source, $V_{DrainQ} = V_{DD} - (10000 * I_{source})$ $V_{DrainQ} = 1.8 - (10000 * 0.0001) = 0.8V$

b)

The standard equation is – $g_m R_D$, but would be more appropriate to use – $g_m Z_D$. So,

$$\begin{split} Z_D &= \left(10k\Omega||\frac{Z_{C_L}}{10k\Omega + Z_{C_L}}\right) \\ Z_{C_L} &= \frac{1}{sC} \\ \frac{Z_{C_L}}{10k\Omega + Z_{C_L}} &= \frac{\left(\frac{1}{sC}\right)}{10k\Omega + \left(\frac{1}{sC}\right)} = \frac{1}{1+s*10k\Omega*1nF} \\ Z_D &= \left(10k\Omega||\frac{1}{1+s*10k\Omega*1nF}\right) = \frac{1}{\frac{1}{10k\Omega} + s*10k\Omega*1nF} \\ Z_D &= \frac{1}{\frac{1}{10k\Omega} + s*10k\Omega*1nF} = \frac{1000000}{s+10} \\ A_V &= -g_m\left(\frac{1000000}{s+10}\right) \end{split}$$

-3dB bandwidth would be at 10 Hz

Problem 5

The area of the resistor is $2\mu*30\mu=60\mu^2$ at $8566~aF/\mu m^2$ is 513.96fF.

This can be seen as in series with the $10k\Omega$ resistor, on the other side of V_{out} , creating a basic RC filter with

$$-3dB = \frac{1}{2\pi RC} = \frac{1}{2\pi (10k)(1.026p)} = 3.09 \text{M Hz}$$

Problem 6

High				OR			A ~B			Α			
_A	В	Out	Α	В	Out		Α	В	Out	Α	В	Out	
1	1	1	1	1	1		1	1	1	1	1	1	
1	0	1	1	0	1		1	0	1	1	0	1	
0	1	1	0	1	1		0	1	0	0	1	0	
0	0	1	0	0	0		0	0	1	0	0	0	
~A B				В			(AB) (~A~B)			AND			
_A	В	Out	_A	В	Out		Α	В	Out	A	В	Out	
1	1	1	1	1	1		1	1	1	1	1	1	
1	0	0	1	0	0		1	0	0	1	0	0	
0	1	1	0	1	1		0	1	0	0	1	0	
0	0	1	0	0	0		0	0	1	0	0	0	
NAND				XOR			~ <u>B</u>			A~B			
Α	В	Out	Α	В	Out		Α	В	Out	Α	В	Out	
1	1	0	1	1	0		1	1	0	1	1	0	
1	0	1	1	0	1		1	0	1	1	0	1	
0	1	1	0	1	1		0	1	0	0	1	0	
0	0	1	0	0	0		0	0	1	0	0	0	
~A				~AB			NOR				Low		
Α	В	Out	Α	В	Out		Α	В	Out	Α	В	Out	
1	1	0	1	1	0		1	1	0	1	1	0	
1	0	0	1	0	0		1	0	0	1	0	0	
0	1	1	0	1	1		0	1	0	0	1	0	
0	0	1	0	0	0		0	0	1	0	0	0	

The named ones are the most commonly used

EE330 Fall 2018 HW12 Solutions TA: Robert Buckley

Problem 7

Problem 8

Assume C_1 is large, and set VDD = 10V

$$I_C = \frac{V_{DD} - V_{outQ}}{R_L} = \beta_n I_B = 100 * \frac{V_{DD} - 0.6V}{R_B}$$
$$\frac{10V - 5V}{2k\Omega} = 100 * \frac{10V - 0.6V}{R_B}$$

$$R_B = 940 k\Omega$$

Image of design is on the right.

Problem 9

a)
$$I_{out} = \frac{A_{E1}}{A_{E0}}(I_{in}+I_{BS}) - I_{BO} = 8I_{BS} + 320 - 320 = 8I_{in}$$
 b) I used WolframAlpha

EE330 Fall 2018 HW12 Solutions TA: Robert Buckley

Problem 10

a.)
$$F = AB + CD\bar{E} + \bar{A}E$$

b.) Assign F = (A & B) | (C & D & $^{\sim}$ E) | ($^{\sim}$ A & E)

c.)
$$F = \overline{\overline{A}\overline{B}} + \overline{\overline{C}} + \overline{\overline{D}} + \overline{E} + \overline{A} + \overline{E}$$

e.) Just replace all NOR gates in above schematic with transistor level NOR gate $\,$

Problem 11

