Lab 5: Real-time Inference of Deep Learning models on Edge Device

1. Why is it recommended to use a virtual environment named dlonedge for this lab?

Answer:

Because installing specialized libraries like **PyTorch**, **torchvision**, and **OpenCV** in a separate environment avoids version conflicts with other projects. It also ensures that any system-wide library updates or changes do not break the lab setup.

2. Which Python libraries are installed to enable deep learning and image processing on the Raspberry Pi?

Answer:

- torch, torchvision, and torchaudio (for PyTorch-based deep learning)
- opency-python (for video capture and image processing)
- numpy (for efficient numerical operations and array handling)

3. What is MobileNetV2, and why might it be chosen for edge device deployment?

Answer:

MobileNetV2 is a **lightweight convolutional neural network** designed for resource-constrained environments. It uses **depthwise separable convolutions** to reduce the number of parameters and computational load, making it well-suited for real-time inference on edge devices like the Raspberry Pi.

4. How does the sample code measure and report frames per second (FPS)?

Answer:

The code increments a frame_count every time a frame is processed. It then checks the elapsed time (e.g., using time.time()) to compute:

ini

Copy

fps = frame_count / (now - last_logged)

It prints the FPS every second, resetting frame_count and last_logged for the next interval.

5. What is quantization in deep learning, and why is it useful on a Raspberry Pi?

Answer:

Quantization reduces the precision of model parameters and activations (e.g., from 32-bit floats to 8-bit integers). This lowers **memory usage**, speeds up **inference**, and makes models more efficient on hardware with limited computational resources, such as the Raspberry Pi.

6. In the sample code, how do you switch between a floating-point MobileNetV2 and a quantized MobileNetV2?

Answer:

By toggling the boolean variable:

python

Copy

quantize = True

If quantize is set to True, the code loads a quantized MobileNetV2 via:

python

Copy

models.quantization.mobilenet_v2(pretrained=True, quantize=True)

Otherwise, it loads the standard floating-point version.

7. What is the purpose of setting:

python

Copy

torch.backends.quantized.engine = 'qnnpack'

when using quantized models?

Answer:

It specifies the **quantization engine** to be used by PyTorch. **QNNPACK** is optimized for mobile/edge devices and can provide faster integer arithmetic performance on CPUs lacking advanced vector instructions (like AVX2 or NEON).

8. Why is the camera capture resolution set to 224×224 and FPS set to 36 in the sample code?

Answer:

MobileNetV2 typically expects 224×224 input images, so capturing at that resolution avoids additional resizing overhead. The code requests 36 FPS to ensure enough frames are available, aiming for a final **effective** 30 FPS after pre-processing and inference overhead.

9. What happens when you uncomment lines 57-61 in the sample code (the softmax block)?

Answer:

It prints the **top 10 class predictions** from the model in real time. The code enumerates the model's output, applies softmax(dim=0), sorts by confidence scores, and displays the percentage and label for the top 10 categories.

10. What are the two main quantization approaches discussed in the lab, and how do they differ?

Answer:

- 1. Post-Training Quantization (PTQ):
 - o Converts a **fully trained** floating-point model to an 8-bit quantized model.
 - Straightforward to apply but can cause an accuracy drop if the model is sensitive to reduced precision.
- 2. Quantization-Aware Training (QAT):
 - Introduces "fake quantization" operators during training, letting the model learn to be robust under quantized conditions.
 - More complex but typically preserves higher accuracy than PTQ.

11. How does quantization typically improve the model's performance on the Raspberry Pi?

Answer:

By using **int8** arithmetic instead of **float32**, the model requires fewer bits for storage and fewer CPU cycles per operation. This often yields:

Reduced memory footprint (model size).

- Increased throughput (more inferences per second).
- Lower power consumption.

12. What trade-offs might you encounter when applying quantization to a model?

Answer:

- **Accuracy Loss:** The reduced precision can cause minor to moderate drops in accuracy, depending on the model.
- **Compatibility Issues:** Not all layers or operations are supported by quantized kernels, potentially limiting which models can be quantized.
- Retraining Needs: QAT requires additional training resources and time, though it
 often yields better accuracy than PTQ.

13. Why might you see a large performance jump from ~5-6 FPS to nearly 30 FPS after enabling quantization?

Answer:

The quantized model runs significantly faster because integer operations are cheaper than floating-point operations on the Raspberry Pi's CPU. The model also requires less memory bandwidth, further reducing bottlenecks and enabling near-real-time inference.

14. What is the advantage of setting with torch.no_grad(): when performing inference?

Answer:

It disables the gradient-tracking mechanism, which is only needed for training. This saves memory and speeds up computations during inference, as PyTorch does not store intermediate gradients.

15. How could you further optimize real-time inference beyond quantization?

Answer:

- Model Pruning: Remove redundant weights or entire filters.
- Neural Architecture Search: Find a smaller architecture well-suited for the task.

- Hardware Acceleration: Use specialized accelerators (e.g., Google Coral TPU, NVIDIA Jetson) if available.
- **Batching or Pipeline Optimizations:** Minimize overheads between capturing frames, pre-processing, and model execution.

16. What is the purpose of the optional exercises, such as running a quantized large language model on Raspberry Pi?

Answer:

They encourage exploration of more **complex models** and advanced quantization techniques. By testing large language models or bigger CNNs, participants can see how quantization drastically impacts performance, memory usage, and how the Raspberry Pi handles heavier tasks.

17. What is the difference between static quantization and dynamic quantization in PyTorch?

Answer:

• Static Quantization:

- Applies quantization parameters (scale and zero-point) that are
 calibrated ahead of inference time, often using representative data.
- o Both weights and activations are quantized.
- Typically yields better performance on smaller devices but requires a calibration step.

• Dynamic Quantization:

- Quantizes weights ahead of time but calculates activations' scale/zeropoint on the fly (i.e., dynamically) during inference.
- Commonly used for models with large fully connected layers (like LLMs), especially for text.
- Easier to apply but may not provide as large a speedup as static quantization.

18. Why might setting cap.set(cv2.CAP_PROP_FPS, 36) not always guarantee a true 36 FPS in real-world scenarios?

Answer:

Because cv2.CAP_PROP_FPS is a **request** to the camera driver rather than a hard mandate. The actual achievable FPS depends on factors like:

- Camera hardware capabilities.
- The CPU load from **preprocessing** and **model inference**.
- Operating system scheduling and other resource constraints.
 In practice, if the system cannot process frames fast enough, the real FPS will be lower than 36.

19. How can you measure memory usage of your PyTorch model on the Raspberry Pi?

Answer:

- Use torch.cuda.memory_allocated() or torch.cuda.memory_reserved() if you have a GPU (though typically not on a standard Pi).
- For CPU usage, you can rely on **system-level tools** like htop, free -h, or psutil in Python.
- You can also measure the size of the model's state dict (.pth file) on disk, which indicates the approximate memory usage for weights.

20. Why is preprocess = transforms.Compose([...]) essential before passing frames to the MobileNetV2 model?

Answer:

Because the model expects **normalized** tensors in a specific shape (e.g., [Batch, Channels, Height, Width]). The transforms:

- Convert the frame from NumPy arrays (H×W×C) to PyTorch tensors (C×H×W).
- Normalize pixel intensities based on the model's training mean and standard deviation.
- Ensure consistent input format that matches the pretrained model's expectations.

21. If you enable quantization but see no improvement in FPS, what might be the reasons?

Answer:

- The CPU architecture or OS might lack optimized integer operations or QNNPACK support.
- The overhead of capturing and preprocessing frames could be the **bottleneck**, rather than the model's computation.
- The model might contain layers that are not fully quantized or supported by the backend, limiting speedup.
- You may need to re-calibrate or re-train the model for better quantization support.

22. In the sample code, what does softmax(dim=0) do in the top-10 predictions block?

Answer:

It converts raw model outputs (logits) into **probability-like scores** across the output dimension (dim=0). Each index in the output vector represents a class, and after softmax, their values sum to 1. Sorting these probabilities lets you see which classes the model thinks are most likely.

23. Can you use GPUs or hardware accelerators for quantized models on the Raspberry Pi?

Answer:

- By default, the standard Raspberry Pi does **not** have a dedicated GPU for general-purpose computations (only a VideoCore for video).
- However, you can attach external accelerators (e.g., Google Coral TPU, Intel Movidius NCS) that support quantized operations.
- PyTorch on Raspberry Pi typically uses the CPU unless you have a specialized board like the NVIDIA Jetson (which is a different platform).

24. What might cause accuracy drops when switching from a floating-point model to a quantized model?

Answer:

- Reduced **numerical precision** (8-bit vs. 32-bit) can introduce rounding errors, especially for layers sensitive to small changes in weights or activations.
- Certain operations or layers may be more prone to quantization-induced saturation or clamping.
- If **calibration** or **fake quantization** steps are insufficient, the model might not adapt well to the reduced range.

25. Beyond quantization, name two other methods to optimize a PyTorch model for edge deployment.

Answer:

- 1. **Model Pruning:** Remove unnecessary connections or entire filters, lowering model size and compute cost.
- 2. **Knowledge Distillation:** Train a smaller "student" model to mimic the outputs of a larger "teacher" model, preserving accuracy in a lighter architecture.

26. How can you confirm that PyTorch is indeed using the quantized model during inference?

Answer:

- Inspect the model layers: a quantized model typically shows **quantized** modules (e.g., QuantizedConv2d) instead of standard Conv2d.
- Print or log the model architecture.
- Check the PyTorch quantization engine setting (qnnpack or fbgemm) and verify it's recognized at runtime.
- Observe the significantly **reduced** model size and higher FPS if everything is configured correctly.