Statistique (MA101) Cours 2 ENSTA 1ère année

Christine Keribin

christine.keribin@math.u-psud.fr

Laboratoire de Mathématiques Université Paris-Sud

2017-2018

Statistique (MA101) Cours 2

Christine Keribin

Propriétés asymptotiques

Consistance

Construction d'estimateurs

Moments EMV

- **Données** observées : $x = (x_1, \dots, x_n)$.
- Modèle : x est une réalisation de $X = (X_1, \dots, X_n)$, n variables aléatoires dont on modélise la loi.
- ▶ Un *n*-échantillon *X* est i.i.d. ssi
 - \hookrightarrow les X_i sont indépendantes
 - \rightarrow les X_i ont la même loi marginale \mathbb{P} La loi de l'échantillon est la loi produit $\mathbb{P}^{\otimes n}$

$$X_i \sim \mathbb{P}; \quad X_1, \ldots, X_n \sim \mathbb{P}^{\otimes n}$$

- ▶ Modèle paramétrique : \mathbb{P} appartient à une famille de lois $\mathcal{P} = \{\mathbb{P}_{\theta}, \theta \in \Theta\}$ paramétrée par un paramètre θ de dimension finie
- ▶ Estimateur de $\nu_n(\theta)$, variable aléatoire $\widehat{\nu}(X)$ définie à partir de l'échantillon.
 - Propriétés : biais, variance, risque

Sommaire

Statistique (MA101) Cours 2

Christine Keribin

Propriétés asymptotiques

Consistance Loi asymptotique

Construction d'estimateurs

Moments EMV

Propriétés asymptotiques Consistance Loi asymptotique

Construction d'estimateurs Moments EMV

Rappels Convergence (cours de probabilité)

Soit X_n une suite de v.a. et X une v.a.. On étudie son comportement quand $n \to \infty$

 $X_n \xrightarrow{\mathcal{L}} X$: la suite (X_n) converge en loi vers la v.a. X si $\mathbb{P}(X_n < x) \to \mathbb{P}(X < x)$

pour tout x où la fct de répartition de X est continue.

► $X_n \xrightarrow{\mathcal{P}} X$: La suite X_n converge en probabilité vers la v.a. X si

$$\forall \varepsilon, \lim_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0$$

 $X_n \xrightarrow{\rho.s.} X$: la suite X_n converge presque sûrement vers la v.a. X si

$$\mathbb{P}(\lim_{n\to\infty}|X_n-X|=0)=1$$

► $X_n \xrightarrow{L^2} X$: La suite X_n converge en moyenne quadratique vers la v.a. X si $\mathbb{E}[(X_n - X)^2] \to 0$

- ightharpoonup cvg ps \Rightarrow cvg en proba \Rightarrow cvg en loi
- ightharpoonup cvg L2 \Rightarrow cvg en proba
- ▶ Soit c une constante réelle. $X_n \xrightarrow{\mathcal{L}} c \Leftrightarrow X_n \xrightarrow{\mathcal{P}} c$

Lemme (Lemme de Slutsky)

Si $X_n \xrightarrow{\mathcal{L}} X$ et $Y_n \xrightarrow{\mathcal{L}} c$ où c est une constante, alors $(X_n, Y_n) \xrightarrow{\mathcal{L}} (X, c)$. En appliquant cette convergence jointe à une fonction continue de (x, y), on a en particulier

(i)
$$X_n + Y_n \xrightarrow{\mathcal{L}} X + c$$

(ii)
$$X_n Y_n \xrightarrow{\mathcal{L}} cX$$

(iii)
$$X_n/Y_n \xrightarrow{\mathcal{L}} X/c$$

Loi asymptotique

Moments MV

Soit l'estimateur $\widehat{\nu}_n$ de $\nu(\theta)$

 $\widehat{\nu}_n$ est consistant ssi $\widehat{\nu}_n$ tend en probabilité vers $\nu(\theta)$ quand $n \to \infty$:

$$\forall \theta \in \Theta, \forall \epsilon, \lim_{n \to \infty} \mathbb{P}_{\theta}(|\widehat{\nu}_n - \nu| > \epsilon) = 0$$

 \triangleright $\widehat{\nu}_n$ est fortement consistant ssi $\forall \theta \in \Theta$,

$$\mathbb{P}_{\theta}(\lim_{n\to\infty}|\widehat{\nu}_n-\nu|=0)=1$$

Consistance

Construction

Moments EMV

Théorème (Inégalité de Bienaymé-Tchebychev)

Soit T une v.a. telle que $\mathbb{E}(T^2) < +\infty$. Alors,

$$\forall t > 0, \ \mathbb{P}(\{|T - \mathbb{E}(T)| > t\}) \le \frac{\mathsf{Var}(T)}{t^2}$$

Rem : si le risque quadratique tend vers 0, alors l'estimateur est consistant

Théorème (Loi des grands nombres)

Soit X_1, \ldots, X_n un n-échantillon i.i.d. de loi \mathbb{P}_{θ} intégrable, d'espérance μ , la moyenne empirique \bar{X} satisfait les propriétés suivantes :

lacktriangle C'est un estimateur sans biais de μ :

$$B_{\theta}(\bar{X},\mu) = \mathbb{E}_{\theta}(\bar{X}) - \mu = 0$$

ightharpoonup Si \mathbb{P}_{θ} a une variance σ^2 finie, la variance de \bar{X} est

$$Var_{\theta}(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^{n} Var_{\theta}(X_i) = \frac{\sigma^2}{n},$$

et \bar{X} converge p.s., la suite \bar{X} est fortement consistante.

Consistance

Construction d'estimateurs
Moments

Théorème (Loi des grands nombres de Kolmogorov)

Soit X_1,\ldots,X_n un n-échantillon i.i.d. de loi \mathbb{P}_{θ} , tel que $\mathbb{E}(|g(X_1)|)$ soit fini. Alors l'estimateur $\widehat{\nu}_n$

$$\widehat{\nu}_n = \frac{1}{n} \sum_{i=1}^n g(X_i) \to \mathbb{E}_{\theta}[g(X_1)] = \nu(\theta) \text{ ps}$$

est fortement consistant pour estimer $\nu(\theta)$.

La LGN est le premier théorème fondamental en statistique

Ex : loi exponentielle d'espérance 0.5

Xb

Statistique (MA101) Cours 2

Christine Keribin

Propriétés asymptotiques

Consistance

Construction d'estimateurs
Moments
EMV

Outils pour montrer la convergence

Statistique (MA101) Cours 2

Christine Keribin

Propriétés asymptotiques

Consistance

Loi asymptotiqu
Construction
d'estimateurs
Moments

Proposition (Continuité pour la convergence)

Soit g une fonction continue.

Si $\widehat{\nu}$ est un estimateur (fortement) consistant de $\nu(\theta)$, alors $g(\widehat{\nu})$ est un estimateur (fortement) consistant de $g(\nu(\theta))$.

Théorème (de limite centrale)

Soit $\{X_n\}$ une suite de variables aléatoires i.i.d. admettant une espérance μ et une variance $\sigma^2>0$ finie. Alors, la suite des variables $W_n=\sqrt{n}(\bar{X}_n-\mu)$ converge en loi vers la v.a. $\mathcal{N}(0,\sigma^2)$ quand $n\to\infty$

$$\sqrt{n}(\bar{X}_n-\mu) \xrightarrow{\mathcal{L}} \mathcal{N}(0,\sigma^2)$$

Rem:

- ▶ On a aussi : $\sqrt{n}(\bar{X}_n \mu)/\sigma \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$
- ▶ TLC, TCL, CLT ...
- ▶ Lemme de l'application continue

Exemple: approx. loi Binomiale

Statistique (MA101) Cours 2

Christine Keribin

Exemple: loi exponentielle

n= 5

Statistique (MA101) Cours 2

Christine Keribin

asymptotiques
Consistance
Loi asymptotique

Construction
d'estimateurs
Moments
EMV

Eléments de preuve TCL

- ▶ On pose $Z_k = X_k \mu$ de fonction caract.
- $\varphi_z(t) = \mathbb{E}(e^{itZ_k})$:
- $W_n = \sum_{k=1}^n Z_k / \sqrt{n}$, les Z_k sont iid, donc

$$\varphi_{w_n}(t) = \left[\varphi_{z_1}\left(\frac{t}{\sqrt{n}}\right)\right]^n$$

Pour tt $x \in \mathbb{R}$, $\left| e^{ix} - 1 - ix + \frac{x^2}{2} \right| \le \min\left(\frac{|x|^3}{6}, x^2\right)$, d'où

$$e^{i\frac{t}{\sqrt{n}}Z_1} = 1 + i\frac{t}{\sqrt{n}}Z_1 - \frac{t^2}{2n}Z_1^2 + h_n(Z_1)$$

avec $|h_n(Z_1)| \leq \frac{t^2}{n} \min\left(\frac{t|Z_1|^3}{6\sqrt{n}}, Z_1^2\right) \leq \frac{t^2}{n} Z_1^2 \text{ donc } h_n(Z_1)$ intégrable et

$$\varphi_{y_1}\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{t^2\sigma^2}{2n} + \mathbb{E}[h_n(Z_1)]$$

où
$$\lim_{n\to\infty} n\mathbb{E}[h_n(Z_1)] = 0$$
 (cvg dominée)

▶ Pour *n* assez grand tel que $t^2\sigma^2/n < 1$, on a

$$\left|\varphi_{\mathbf{Z}_1}\left(\frac{t}{\sqrt{n}}\right)^n - \left(1 - \frac{t^2\sigma^2}{2n}\right)^n\right| \leq \sum_{k=1}^n \left|\varphi_{\mathbf{Z}_1}\left(\frac{t}{\sqrt{n}}\right) - 1 + \frac{t^2\sigma_{\text{Loi}}^2}{2n^{\text{Construction}}}\right| \\ = \sum_{k=$$

$$\left|\varphi_{z_1}\left(\frac{t}{\sqrt{n}}\right)^n - e^{-\frac{t^2\sigma^2}{2}}\right| \leq n|\mathbb{E}(h_n(Z_1)| + \left|\left(1 - \frac{t^2\sigma^2}{2n}\right)^n - e^{-\frac{t^2\sigma^2}{2}}\right|$$

- ▶ pour tt $t \in \mathbb{R}$

$$\lim_{n\to\infty}\varphi_{w_n}(t)=e^{-\frac{t^2\sigma^2}{2}}=\varphi_{\mathcal{N}(0,\sigma^2)}(t)$$

La loi de l'estimateur empirique de l'espérance d'une loi quelconque de moment d'ordre 2 fini peut être approximée par une loi gaussienne

$$ar{X} \overset{\mathsf{appr}}{\sim} \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

Exemple si $X \sim \mathcal{B}(\theta)$, si $n\theta > 5$ et $n(1 - \theta) > 5$

- $igwedge ar{X} \overset{\mathsf{appr}}{\sim} \mathcal{N}\left(heta, rac{ heta(1- heta)}{n}
 ight)$
- $ightharpoonup nar{X} \stackrel{appr}{\sim} \mathcal{N}(n heta, n heta(1- heta))$

Utilisation...

Définition

Si un estimateur $\widehat{\nu}_n$ de $\nu \in \mathbb{R}^p$ de variance $\text{Var}(\widehat{\nu}_n) = V_n$ a un comportement asymptotiquement normal si

$$V_n^{-1/2}(\widehat{\nu}_n - \nu) \xrightarrow{\mathcal{L}} \mathcal{N}_p(0, Id_p)$$

Si $nV_n \to V_0$ où $V_0 > 0$ est finie, on dit que la vitesse de l'estimateur est en \sqrt{n}

- Un estimateur est d'autant meilleur que sa vitesse de convergence est rapide et sa loi limite concentrée autour de 0.
- ► Il existe des estimateurs non asymptotiquement normaux

Proposition

Si $\nu(\theta)$ est une fonction différentiable de $\theta \in \mathbb{R}^p$ et $\widehat{\theta}$ un estimateur asympt. normal

$$V_n^{-1/2}(\widehat{\theta}-\theta) \xrightarrow{\mathcal{L}} \mathcal{N}_p(0, Id_p)$$

alors $\nu(\widehat{\theta})$ est un estimateur asympt. normal de $\nu(\theta)$

$$(D_{\nu}V_{n}D_{\nu}')^{-1/2}(\widehat{\nu}_{n}-\nu(\theta)) \xrightarrow{\mathcal{L}} \mathcal{N}_{p}(0,Id_{p})$$

avec
$$D_{\theta} = (\partial \nu(\theta)/\partial \theta_1 \dots \partial \nu(\theta)/\partial \theta_p)$$

Sommaire

Statistique (MA101) Cours 2

Christine Keribin

Propriétés asymptotiques

Consistance Loi asymptotique

Construction d'estimateurs
Moments

Propriétés asymptotiques
Consistance
Loi asymptotique

Construction d'estimateurs Moments EMV Soit $X_1, \ldots, X_n \sim \mathbb{P}_{\theta}$.

Les moments de \mathbb{P}_{θ} dépendent de θ . Moment d'ordre k :

$$\mathbb{E}(X_1^k)=m_k(\theta)$$

▶ On définit le moment empirique d'ordre *k*

$$\widehat{m}_k(\theta) = \frac{1}{n} \sum_{i=1}^n X_i^k$$

fortement consistant si $\mathbb{E}(|X^k|)$ existe.

▶ Un estimateur $\widehat{\theta}_n$ de θ obtenu par la méthode des moments est solution de

$$m_1(\widehat{\theta}) = \widehat{m}_1$$

 $\vdots : \vdots$
 $m_p(\widehat{\theta}) = \widehat{m}_p$

Extension:

Soit $X_1, \ldots, X_n \sim \mathbb{P}_{\theta}$ et $\nu(\theta) = \phi(m_1(\theta), \ldots, m_k(\theta))$ où $m_k(\theta) = \mathbb{E}_{\theta}(g_k(X_1))$.

Un estimateur des moments de $\nu(\theta)$ est

$$\widehat{\nu}_n = \phi\left(\frac{1}{n}\sum_{i=1}^n g_1(X_i), \ldots, \frac{1}{n}\sum_{i=1}^n g_k(X_i)\right)$$

On remplace les espérances par leur version empirique. Si $\mathbb{E}_{\theta}(|g_k(X_1)|)$ est fini pour tout k, et ϕ est continue, alors la méthode des moments est consistante.

FMV/

Cadre du modèle paramétrique dominé : les lois $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ admettent une densité $f_{\theta}(x)$ par rapport à une mesure commune ξ (mesure de Lebesgue, mesure de comptage)

$$\forall A \in \mathcal{A}, \ \mathbb{P}_{\theta}(A) = \int_{A} f_{\theta}(x) \ d\xi(x)$$

Définition

Dans un modèle paramétrique dominé, on appelle vraisemblance d'une réalisation $(x_1, ..., x_n)$ du n-échantillon, la fonction de θ :

$$\theta \mapsto L(\theta; x_1, \ldots, x_n) = f_{\theta}(x_1, \ldots, x_n)$$

Pour un échantillon i.i.d. : $L(\theta; x_1, ..., x_n) = \prod_{i=1}^n f_{\theta}(x_i)$

!: Vraisemblance \neq densité

Exemple : loi gaussienne, loi de Bernoulli

Exemple : loi de Bernoulli

Statistique (MA101) Cours 2

Christine Keribin

Propriétés asymptotiques Consistance Loi asymptotique Construction d'estimateurs Moments EMV

Densité (à gauche) et la vraisemblance (à droite)

FMV/

La valeur θ_1 de θ est plus vraisemblable que la valeur θ_2 , si $L(\theta_1; x) > L(\theta_2; x)$; graphe!

Définition (EMV)

On appelle estimation du maximum de vraisemblance, une valeur $\widehat{\theta}_n$ maximisant la vraisemblance

$$\widehat{\theta}_n \in \operatorname{Arg} \max_{\theta \in \Theta} L(\theta; x).$$

 $\widehat{\theta}_n = t(x_1, \dots, x_n)$ est une fonction des données, ce qui induit la statistique $t(X_1, \dots, X_n)$ que l'on note (abusivement) avec la même notation : $\widehat{\theta}_n = t(X_1, \dots, X_n)$ est appelé Estimateur du Maximum de Vraisemblance

Exemple : loi gaussienne, loi de Bernoulli

Remarque : quand l'échantillon est i.i.d. on utilise plutôt la log-vraisemblance

$$\ell_n(\theta; x) = \log L(\theta; x) = \sum_{i=1}^n \log f_{\theta}(x_i)$$

Propriétés

- ▶ Si $\theta \to \ell_n(\theta; x)$ est une fonction continue et que Θ est compact, l'existence de l'EMV est garantie.
- \triangleright Si la vraisemblance est dérivable en θ ,
 - → soit l'EMV annule le gradient,
 - \hookrightarrow soit il est situé sur le bord de Θ

Si le domaine de définition de f_{θ} ne dépend pas de θ , et si la vraisemblance est deux fois dérivable :

► Chercher $\widehat{\theta}_n$ annulant les équations de vraisemblance (ou équations normales ou équations du score)

$$U_n(\widehat{\theta}_n) := \nabla \ell_n(\widehat{\theta}_n; x) = \left(\frac{\partial}{\partial \theta_k} \ell_n(\widehat{\theta}_n; x)\right)_{k=1, \dots, dim(\theta)} = 0,$$

Vérifier que $\widehat{\theta}_n$ est bien un maximum : $H_n(\theta) = \nabla^2 \ell_n(\theta; x)$ est définie négative autour de $\widehat{\theta}_n$.

Exemple : loi gaussienne, loi de Bernoulli

Dans le cas où le calcul analytique de l'EMV est impossible → schéma numérique, par ex. Newton-Raphson :

- ▶ Initialiser $\theta^{(0)}$
- ▶ Itérer jusqu'à converge ou à un nombre de pas fixés
 - \hookrightarrow Linéarisation de U_n au point courant $(\theta^{(m)}, U_n(\theta^{(m)}))$

$$0 = U_n(\theta^{(m)}) + H_n(\theta^{(m)})(\theta^{(m+1)} - \theta^{(m)})$$

 \hookrightarrow si $H_n(\theta^{(m)})$ est inversible

$$\theta^{(m+1)} = \theta^{(m)} - [H_n(\theta^{(m)})]^{-1} U_n(\theta^{(m)})$$

Attention, il peut y avoir des maxima locaux

FMV/

Propriété

Soit $X_1, \ldots, X_n \sim \mathbb{P}_{\theta}$. Sous des conditions de régularité du modèle, l'EMV $\widehat{\theta}_n$ de θ est consistant et asymptotiquement normal.

Il est donc asymptotiquement sans biais mais peut être biaisé à distance finie

Nous démontrerons ces propriétés au cas par cas en 1A, à suivre dans le cours de 2A!

Remarque : Quand l'échantillon est i.i.d. on utilise plutôt la log-vraisemblance

$$\ell_n(\theta; x) = \log L(\theta; x) = \sum_{i=1}^n \log f_{\theta}(x_i)$$