

SBraille: A Novel Method of Reading Braille

Shayaan Chaudhary, Kazuya Erdos, Arnav Mankad, Karthik Seetharaman Advisor: Dr. Kevin Crowthers

Scan to View Supporting Docume

Graphical Abstract

Refreshable braille through vibration motors

Real-time braille display to read digital text

Background Information

12 Million

reading ability

people in the United States live with a visual impairment, out of which 1 million are completely blind (CDC, 2020).

145 Billion

dollars is the annual economic impact for adults with a major vision problem, such as complete blindness (CDC, 2020)

70 Percent

of survey respondents said that a loss of eyesight would have the greatest impact on daily activities (CDC, 2020)

Methodology

Creating vibrations using vibration motors and using rubber sheets/grommets to isolate the vibrations

Connecting vibration motors to Raspberry Pi to power specific motors at a time and produce Braille characters

Incorporating an opensource English-to-Braille translator with the Raspberry Pi

Creating and 3D printing a frame to house the motors, rubber, Raspberry Pi, and other wires to make it usable

Phrase 1

Blindness can correlate with a lower quality of life because an individual with a visual impairment has trouble reading digital text, especially since existing solutions are often inaccessible.

Prototype 1

Prototype 3

Recognition Accuracy with Different Reading Methods

Table 1: Accuracy of system using one fingertip, one full finger, two fingers, and the full hand

Trial#	Fingertip	One Finger	Two Fingers	Whole Hand
Trial 1	5%	15%	35%	65%
Trial 2	5%	20%	30%	70%
Trial 3	0%	20%	40%	65%

Phrase 2

The goal of this project is to design and implement a cost-effective refreshable braille display that can convert digital English text into vibrating braille characters in real time.

Prototype 2

Prototype 4

Determining the Right Braille Reading Method for Users

Table 2: Accuracy of system using two fingers, two fingertips, and the full hand

Trial #	Two Fingers	Two Fingertips	Whole Hand	
Trial 1	45%	85%	70%	
Trial 2	40%	95%	70%	
Trial 3 45%		100%	75%	

Requirements Matrix

#	Requirement Type	Requirement	Level (1, 2, or 3)	Vibrating Module
1	Functional	A program to convert English to Grade 1 Braille	1	Yes
2	Functional	A method of displaying / producing braille (physical, vibration)	1	Yes
3	Functional	A link between the program and braille (hardware and software)	1	Yes
4	Functional	Vibration Design: Discernible vibrations (user can tell which nodes are vibrating)	1	Yes
5	Physical	Standard formatting: 2x3 grid with varying spacing	1	Yes
6	Cost	Unit cost: \$100 / unit	1	Yes
7	Documentation	Documentation / manual written in a blind user-friendly form	1	Yes
8	User	User has a relatively keen sense of touch	1	Yes
9	User	User has access to compatible device (computer, tablet, etc.)		Maybe
10	Physical	Device weights under 2 pounds	1	Yes
11	Physical	Device fits on a standard tabletop	1	Yes
12	Cost	Unit cost: \$30 / unit	2	No
13	Functional	Device takes input from a keyboard	2	Yes
14	Functional	Device reads input from a text document	2	Yes
15	Functional	Device operates without an internet connection	2	Yes
16	Physical	hysical Device fits inside a square foot		Yes
17	Physical	All electronics are contained within device		Yes
18	Functional	Device reads data from formatted sources, converting to input		Yes
19	Functional	Device reads and translates non-dictionary words	3	No
20	Functional	Device takes digital input text wirelessly		No
21	Functional	Device scans input text from non-digital sources (paper, wall signs, etc.)		No
22	Functional	Device translates text into Grade 2 Braille	3	Yes

Conclusions

Pros:

- Vibrations are isolated
- Accurate input software

Cons:

- Bulky (pins are too far apart)
- Ideally should use screen reader instead of keyboard input

Next Steps

- Standardizing the size of all pins
- Increasing pin stability and vibration strength
- Incorporating transistors
- Running independently of keyboard
- Breadboard -> PCB
- Support of languages outside of English realm

References

Fast Facts of Common Eye Disorders / CDC. (2020, June 9). https://www.cdc.gov/visionhealth/basics/ced/fastfacts.htm

Gutknecht, K. S. (1980). OPTACON - A TOOL FOR INDEPENDENCE. *American Education Journal*, *16*(1), 8-13.

Refreshable Braille Displays | American Foundation for the Blind. (n.d.). Retrieved 4 April 2021, from https://www.afb.org/node/16207/refreshable-braille-displays

Rein, D. B., Wirth, K. E., Johnson, C. A., & Lee, P. P. (2007). Estimating quality-adjusted life year losses associated with visual field deficits using methodological approaches. *Ophthalmic Epidemiology*, *14*(4), 258–264. doi:10.1080/01658100701473267

The Braille Bookstore. (n.d.). Retrieved April 05, 2021, from http://www.braillebookstore.com/Braille-Bookstore