Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Самостоятельная работа №1

по дисциплине «Сети и телекоммуникации»

 Выполнил:
 Яровой В. Д

 Группа:
 3530904/00104

Проверил: Медведев Б. М.

Содержание

1 Постановка задачи	1
2 Сбор даных	3
2.1 Измерение мощности сигнала	3
2.2 Расстояния до базовых станций	
2.3 Скоростные измерения	
З Обработка результатов	
3.1 Расчет ожидаемой мощности сигнала	
3.2 Определение вероятности нахождения телефона в зоне уверенного приема	
3.3 Обработка скорости	
3.4 Обработка задержки	

1 Постановка задачи

- Подготовка к работе
 - 1. Установить программное обеспечение Network Cell Info Lite.
 - 2. Изучить руководство пользователя.

• Порядок выполнения работы

При помощи программы Network Cell Info Lite для каждого режима работы сети 2G, 3G, 4G и WiFi выполнить следующие измерения по пунктам 1-4 Переключение режима работы сети осуществляется в настройках телефона, например, Настройки/SIM-карты и мобильные сети/SIM-карта (для которой выбирается режим)/Предпочтительный тип сети/Только 2G или Предпочтительно 3G или Предпочтительно 4G. Изменить режим работы можно также через меню программы Network Cell Info Lite: Настройки/Общие/Настройки системной сети.

- 1. Измерить мощность принимаемого сигнала (RSRP для 4G или RSSI для 3G, 2G, WiFi) в 3 местах (в пределах помещения или в диапазоне 10 метров на улице). Программа Network Cell Info Lite, начиная с версии v.6.1.32, имеет большой интервал усреднения 10 секунд при измерении мощности сигнала. Записывать результаты измерения нужно после завершения интервала усреднения.
- 2. Записать результаты оценки статистики подключения к сети между 2G, 3G, 4G для контроля включения соответствующего режима работы сети. После переключения режима 2G, 3G, 4G нужно нажать кнопку Сброс на вкладке Статистика. Проверить установку нужного режима и отсутствие переключения режима работы под управлением базовой станции сети: 100% подключения должно соответствовать выбранному режиму работы.
- 3. Измерить расстояние до базовой станции по карте. Определить местоположение базовой станции и телефона на вкладке Карта. Измерить расстояние можно, например, при помощи Яндекс карты.
- 4. Измерить скорость передачи данных, задержку (ping) и вариацию задержки (jitter) для одного места измерения мощности сигнала 5 раз с интервалом 2 минуты. При включении WiFi в телефоне программа Network Cell Info Lite автоматически переключает измерение скорости передачи на эту сеть.

• Обработка результатов

- 1. Рассчитать ожидаемую мощность сигнала по применимым моделям для 2G, 3G, 4G при следующих параметрах:
 - Частота сигнала определяется как середина используемого в эксперименте диапазона частот Downlink.
 - Мощность передатчика базовой станции сотовой сети 43 дБм.
 - Коэффициент усиления антенны базовой станции 15 дБ, сотового телефона 0 дБ.
 - При отсутствии возможности оценить высоту установки антенны базовой станции использовать типовое значение для макросоты или микросоты.
- 2. Рассчитать ожидаемую мощность сигнала для WiFi при следующих параметрах:
 - Мощность передатчика точки доступа WiFi 20 дБм.
 - Коэффициент усиления антенны точки доступа и WiFi телефона 0 дБ.
- 3. Сравнить результаты расчета мощности сигнала на входе приемника с измерениями.
- 4. Определить вероятность нахождения телефона в зоне уверенного приема при условии:
 - измеренные значения мощности сигнала являются средними значениями случайной величины с нормальным законом распределения и стандартным отклонением, определенным в моделях для 2G, 3G, 4G;
 - мощность сигнала на входе приемника должна быть больше 100 дБм типового значения чувствительности приёмника, при котором достигается вероятность приема кадра без ошибки не менее 90%.

- 5. Определить среднюю скорость передачи и диапазон изменения скорости для всех режимов работы. Сравнить с максимальной достижимой скоростью передачи и с типовыми значениями из табл. 1.9.
- 6. Определить среднюю задержку (ping) передачи и диапазон изменения задержки для всех режимов работы. Сравнить с типовыми значениями из табл. 1.10. Рассчитать задержку сигнала в радиолинии и определить долю этой величины в общей задержке передачи кадров.

2 Сбор даных

2.1 Измерение мощности сигнала

Все три места для измерений были выбранны внутри помещения

	Мощность							
Поколение	стандарт	тип	Место 1	Место 2	Место 3			
2G	EDGE	RSII	$-63~\mathrm{dBm}$	$-59~\mathrm{dBm}$	$-65~\mathrm{dBm}$			
3G	HSPA+	RSII	−81 dBm	$-83~\mathrm{dBm}$	$-78~\mathrm{dBm}$			
4G	LTE+	RSRP	$-81~\mathrm{dBm}$	$-94~\mathrm{dBm}$	$-89~\mathrm{dBm}$			
			Место 1	Место 2	Место 3			
WiFi	WiFi6	RSII	-53 dBm	$-85~\mathrm{dBm}$	−61 dBm			

Для контроля включения соответствующего режима сети, была проверена установка нужного режима и отсутствие переключения режима работы под управлением базовой станции сети (должно было соответствовать 100%).

2.2 Расстояния до базовых станций

Расстояние было измеренно в Яндекс картах

Поколение	Место 1	Место 2	Место 3
2 G	40.7 m	42.9 m	41 m
3 G	40.7 m	42.9 m	41 m
4G	40.7 m	42.9 m	41 m

2.3 Скоростные измерения

В качесте места для измерения скорости было выбранно место $N\!\!\!_{2}1$

		Измер	ение 1	Измер	ение 2	Измер	ение 3	Измер	ение 4	Измерение 5	
	Upload	57.2	Kb/s	57.3	Kb/s	52.7	Kb/s	57.3	Kb/s	57.2	Kb/s
2G	Download	130.3	Kb/s	132.8	Kb/s	101.3	Kb/s	120.2	Kb/s	131.1	Kb/s
2 G	Ping	183	ms	197	ms	394	ms	234	ms	194	ms
	Jitter	15	ms	100	ms	521	ms	22	ms	85	ms
	Upload	1.1	Mb/s	2.6	Mb/s	1.8	Mb/s	3.5	Mb/s	2.7	Mb/s
3 G	Download	1.8	Mb/s	1.6	Mb/s	4.4	Mb/s	5.5	Mb/s	5.1	Mb/s
3G	Ping	32	ms	35	ms	28	ms	31	ms	29	ms
	Jitter	9	ms	10	ms	47	ms	8	ms	8	ms
	Upload	40.0	Mb/s	47.6	Mb/s	33.0	Mb/s	50.6	Mb/s	32.9	Mb/s
4G	Download	25.9	Mb/s	55.3	Mb/s	99.2	Mb/s	81.3	Mb/s	74.4	Mb/s
4G	Ping	47	ms	47	ms	57	ms	43	ms	44	ms
	Jitter	9	ms	9	ms	17	ms	7	ms	7	ms

3 Обработка результатов

3.1 Расчет ожидаемой мощности сигнала

$$P_r = P_t - PL(d)$$
, dBm

Модели для вычисления затухания:

• 2G

Формула для расчета затухания сигнала в условиях города записывается следующим образом

$$\begin{split} PL(d) &= 46.3 + 33.9 \lg(f_c) - 13.82 \lg(h_{te}) - a(h_{re}) + \\ &+ (44.9 - 6.55 \lg(h_{te})) \lg(d) + C_m \text{ , Db} \end{split}$$

 $a(h_{re})$ – корректирующий фактор для эффективной высоты мобильной антенны, который является функцией величины зоны обслуживания.

Для крупных городов:

$$a(h_{re}) = 3.2 \; (\lg(11.75 \ h_{re}))^2 - 4.97 \; , \, \mathrm{Db}$$
 $C_m = 3 \; , \, \mathrm{Db}$

• 3G

Модель потерь на трассе внутри помещения (в логарифмическом масштабе, дБ) представлена в следующей упрощенной форме, которая получена из модели COST внутри помещения:

$$PL(d) = 37 + 30 \lg(d) + 18.3 \ n \left(\frac{n+2}{n+1} - 0.46 \right)$$
, Db

Где:

- 1. d расстояние между передатчиком и приемником (м),
- 2. п количество этажей на пути.

• 4G

Для случая отсутствия прямой видимости расчет затухания сигнала в 3D-UMa учитывает характеристики городской среды:

$$\begin{split} PL_{3D-UMa-NLOS} &= 161.04 - 7.1 \lg(W) + 7.5 \lg(h) - \left(24.37 - 3.7 \left(\frac{h}{h_{BS}}\right)^2\right) \\ \lg(h_{Bs}) + (43.42 - 3.1 \lg(h_{BS})) (\lg(d_{3D}) - 3) + 20 \lg(f_c) - \\ &- \left(3.2 \; (\lg(17.625))^2 - 4.97\right) - 0.6 \; (h_{UT} - 1.5) \; , \, \text{Db} \end{split}$$

где расстояние d_{3D} измеряется в метрах, частота сигнала f_c – в ГГц, h – средняя высота зданий в диапазоне $5 \mathrm{m} < h < 50 \mathrm{m}$, типовое значение $h = 20 \mathrm{m}$, W – ширина улицы в диапазоне $5 \mathrm{m} < W < 50 \mathrm{m}$, типовое значение W 20 м, типовое значение $h_{BS} = 25 \mathrm{m}$ и $10 \mathrm{m} < h_{BS} < 150 \mathrm{m}$, $1.5~\mathrm{m} \le h_{UT} \le 22.5~\mathrm{m}$,

Полученные мощности и сравнение с измеренными значениями:

	Место 1				Место 2				Место 3			
	Экспе	римент	Расчет	Экспо	еримент	Pa	счет	Экспо	еримент	Pa	счет	
2G	-63	dBm	– dBm	-59	dBm	_	dBm	-65	dBm	_	dBm	
3 G	-81	dBm	– dBm	-83	dBm	_	dBm	-78	dBm	_	dBm	
4G	-81	dBm	- dBm	-94	dBm	_	dBm	-89	dBm	_	dBm	
WiFi	-53	dBm	– dBm	-85	dBm	_	dBm	-61	dBm	_	dBm	

Сравним результаты расчета мощности сигнала на входе приемника с измерениями.

3.2 Определение вероятности нахождения телефона в зоне уверенного приема

Стандартное отклонение 12дБ, так как замеры были сделаны внутри помещения.

- 2G
- 3G
- 4G

3.3 Обработка скорости

Выпишем скорости загрузок из эксперементов

		1	- 2	2	3	3		4		5
2G	0.13	Mbs	0.13	Mbs	0.10	Mbs	0.12	Mbs	0.13	Mbs
3 G	1.8	Mbs	1.6	Mbs	4.4	Mbs	5.5	Mbs	5.1	Mbs
4G	25.9	Mbs	55.3	Mbs	99.2	Mbs	81.3	Mbs	74.4	Mbs

Определим среднюю скорость передачи и диапазон изменения скорости для всех режимов работы. Также приведем типовые значения

	Диапазон			няя ость			Типовое значение		
2G	0.10 - 0.13	Mbs	0.122	Mbs	0.3	Mbs	0.1	Mbs	
3 G	1.6 - 5.5	Mbs	3.68	Mbs	21	Mbs	4	Mbs	
4G	25.9 - 99.2	Mbs	67.22	Mbs	300	Mbs	30	Mbs	

Итого:

- 2G соответствует типовому значению
- 3G соответствует типовому значению
- 4G превосходит типовое значение, возможной причиной может быть небольшое расстояние между устройством и базовой станцией $(40.7\ m)$

3.4 Обработка задержки

Выпишем задержки загрузок из эксперементов

	1		2)	3	}	4	ļ	5	,
2G	183	ms	197	ms	394	ms	234	ms	194	ms
3G	32	ms	35	ms	28	ms	31	ms	29	ms
4G	47	ms	47	ms	57	ms	43	ms	44	ms

Определим среднюю задержку передачи и диапазон изменения задержки для всех режимов работы.

	Диапазо	•		Типовое значение		
2G	183 - 394	ms	240.4	ms	500	ms
3 G	28 - 35	ms	31	ms	100	ms
4G	43 - 57	ms	47.6	ms	50	ms

Итого:

- 2G меньше типового значения
- 3G меньше типового значения
- 4G меньше типового значения

Рассчитаем задержку сигнала в радиолинии, как расстояние до вышки связи, разделённое на скорость света:

ФОРМУЛА!!!!!

	Расст	ояние	Задержка в радиолин				
2G	40.7	m	0.00013	ms			
3G	40.7	m	0.00013	ms			
4G	40.7	m	0.00013	ms			

Если сравнить это с задержкой (ping), которую рассчитала программа, то увидим, что доля задержки сигнала в радиолинии невелика по сравнению с задержками в технических системах сотового оператора. Основная задержка в маршрутизаторах, обратных шлюзах, которые содержатся в технических средствах сотового оператора.