MINGHAO YUE

Steward Observatory, the University of Arizona 933 N. Cherry Avenue, Tucson, AZ 85721

Email: yuemh@email.arizona.edu Phone: (+1)5203082854

EDUCATION

Steward Observatory, the University of Arizona

2016 – 2022 (expected)

Ph. D. in Astronomy and Astrophysics (Advisor: Prof. Xiaohui Fan)

Thesis title: A Survey for High-Redshift Gravitationally Lensed Quasars (expected)

School of Physics, Peking University Bachelor of Science, Major: Astronomy 2012 - 2016

RESEARCH INTERESTS

- Surveys for high-redshift quasars
- Strong gravitational lensing
- AGN and quasar physics, especially their evolution and environment

SKILLS AND EXPERIENCE

Observational Experiences

- Optical / Near-Infrared Imaging: Bok/90Prime (>30 nights), LBT/LUCI, Magellan-Clay/LDSS3, HST/ACS, HST/WFC3
- Optical / Near-Infrared Spectroscopy: Magellan-Clay/LDSS3 (>20 nights), MMT/Redchannel (>10 nights), Magellan-Baade/FIRE, LBT/LUCI, MMT/Binospec, Gemini/NIFS, VATT/VATTSpec (14 nights)
- Sub-mm interferometer: ALMA

Data Analysis and Modeling

- Imaging, long-slit spectra, IFU, interferometric analyses
- Lens modeling for imaging and interferometer data

SELECTED APPROVED PROPOSALS AS PI

HST-GO-16460 (Cycle 28): Confirming a Gravitationally Lensed Quasar Candidate at z=5.07

HST-GO-16507 (Cycle 28): Identifying a Gravitationally Lensed Quasar or A Close Quasar Pair at z=5.66

ALMA-2021.1.01052.S (Cycle 8 2021): Confirming a close quasar pair or a gravitationally lensed quasar at z=5.66

Gemini GN-2019B-FT-110: Confirming a lensed quasar candidate at z=5.06

SELECTED TALKS

ESO Thirty Minutes Talk

03/28/2019

Title: Quasars have fewer companions than normal galaxies

Steward Early Career Scientist Talk

04/05/2021

Title: Gravitationally Lensed Quasars at High Redshift

SAZERAC2 Conference

06/17/2021

Title: ALMA Observations of the Sub-kpc Structure of the Host Galaxy of a z=6.5 Lensed Quasar

LSST AGN Science Collaboration Meeting

07/14/2021

Title: Survey for High-Redshift Gravitationally Lensed Quasars in the LSST Era

TEACHING

Teaching Assistant, ASTR201 (Cosmology)	Fall 2018
Teaching Assistant, ASTR170B1 (The Physical Universe)	Spring 2021

SERVICE AND COMMUNITY CONNECTION

Host of Steward Observatory Science Coffee	2019-Present
Referee of MNRAS	2020-Present
Proposal Reviewer for Gemini	2019-Present
Proposal Reviewer for HST and ALMA	2021-Present
Member, LSST AGN Science Collaboration	2021-Present
Member, LSST Strong Lensing Science Collaboration	2021-Present

PUBLICATIONS

Publications as the First Author (6 in total)

6. Revisiting the Lensed Fraction of High-Redshift Quasars.

Yue, M., Fan, X., Yang, J. et al. Submitted to ApJL.

5. A Mock Catalog of Gravitationally Lensed Quasars for the LSST Survey.

Yue, M., Fan, X., Yang, J. et al. Submitted to AJ.

4. A Candidate Kiloparsec-scale Quasar Pair at z=5.66.

Yue, M., Fan, X., Yang, J. et al. Submitted to ApJL.

3. ALMA Observations of the Sub-kpc Structure of the Host Galaxy of a z=6.5 Lensed Quasar: A Rotationally-Supported Hyper-Starburst System at the Epoch of Reionization.

Yue, M., Yang, J., Fan, X., et al. 2021, ApJ, 917, 99. doi:10.3847/1538-4357/ac0af4

2. Quasars Have Fewer Close Companions than Normal Galaxies.

Yue, M., Fan, X., Schindler, J.-T. et al. 2019, ApJ, 883, 141. doi:10.3847/1538-4357/ab3db2

1. The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Host Galaxies at z < 0.8 from Image Decomposition.

Yue, M., Jiang, L., Shen, Y., et al. 2018, ApJ, 863, 21. doi:10.3847/1538-4357/aacf04

Referred Publications as a Co-Author (20 in total)

- 20. Probing Early Super-massive Black Hole Growth and Quasar Evolution with Near-infrared Spectroscopy of 37 Reionization-era Quasars at 6.3 < z <= 7.64
- Yang, J., Wang, F., Fan, X., et al. 2021, accepted by ApJ. arXiv:2109.13942
- 19. A Luminous Quasar at Redshift 7.642.
- Wang, F., Yang, J., Fan, X., et al. 2021, ApJL, 907, L1. doi:10.3847/2041-8213/abd8c6
- 18. A Closer Look at Two of the Most Luminous Quasars in the Universe.
- Schindler, J.-T., Fan, X., Novak, M., et al. 2021, ApJ, 906, 12. doi:10.3847/1538-4357/abc554
- 17. Measurements of the $z \sim 6$ Intergalactic Medium Optical Depth and Transmission Spikes Using a New z > 6.3 Quasar Sample.
- Yang, J., Wang, F., Fan, X., et al. 2020, ApJ, 904, 26. doi:10.3847/1538-4357/abbc1b
- 16. Pōniuā'ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole.
- Yang, J., Wang, F., Fan, X., et al. 2020, ApJL, 897, L14. doi:10.3847/2041-8213/ab9c26
- 15. A Significantly Neutral Intergalactic Medium Around the Luminous z = 7 Quasar J0252-0503. Wang, F., Davies, F. B., Yang, J., et al. 2020, ApJ, 896, 23. doi:10.3847/1538-4357/ab8c45
- 14. Exploring Reionization-era Quasars. III. Discovery of 16 Quasars at $6.4 \lesssim z \lesssim 6.9$ with DESI Legacy Imaging Surveys and the UKIRT Hemisphere Survey and Quasar Luminosity Function at $z \sim 6.7$.
- Wang, F., Yang, J., Fan, X., et al. 2019, ApJ, 884, 30. doi:10.3847/1538-4357/ab2be5
- 13. Far-infrared Properties of the Bright, Gravitationally Lensed Quasar J0439+1634 at z=6.5. Yang, J., Venemans, B., Wang, F., et al. 2019, ApJ, 880, 153. doi:10.3847/1538-4357/ab2a02
- 12. The Extremely Luminous Quasar Survey in the Pan-STARRS 1 Footprint (PS-ELQS). Schindler, J.-T., Fan, X., Huang, Y.-H., et al. 2019, ApJS, 243, 5. doi:10.3847/1538-4365/ab20d0
- 11. Spatially Resolved Interstellar Medium and Highly Excited Dense Molecular Gas in the Most Luminous Quasar at z = 6.327.
- Wang, F., Wang, R., Fan, X., et al. 2019, ApJ, 880, 2. doi:10.3847/1538-4357/ab2717
- 10. Exploring Reionization-era Quasars. IV. Discovery of Six New $z \gtrsim 6.5$ Quasars with DES, VHS, and unWISE Photometry.
- Yang, J., Wang, F., Fan, X., et al. 2019, AJ, 157, 236. doi:10.3847/1538-3881/ab1be1
- 9. The Extremely Luminous Quasar Survey in the Sloan Digital Sky Survey Footprint. III. The South Galactic Cap Sample and the Quasar Luminosity Function at Cosmic Noon.
- Schindler, J.-T., Fan, X., McGreer, I. D., et al. 2019, ApJ, 871, 258. doi:10.3847/1538-4357/aaf86c
- 8. Filling in the Quasar Redshift Gap at $z \sim 5.5$. II. A Complete Survey of Luminous Quasars in the Post-reionization Universe.
- Yang, J., Wang, F., Fan, X., et al. 2019, ApJ, 871, 199. doi:10.3847/1538-4357/aaf858
- 7. The Third Data Release of the Beijing-Arizona Sky Survey.
- Zou, H., Zhou, X., Fan, X., et al. 2019, ApJS, 245, 4. doi:10.3847/1538-4365/ab48e8
- 6. The Discovery of a Gravitationally Lensed Quasar at z = 6.51.
- Fan, X., Wang, F., Yang, J., et al. 2019, ApJL, 870, L11. doi:10.3847/2041-8213/aaeffe

- 5. The Discovery of a Luminous Broad Absorption Line Quasar at a Redshift of 7.02. Wang, F., Yang, J., Fan, X., et al. 2018, ApJL, 869, L9. doi:10.3847/2041-8213/aaf1d2
- 4. The First Data Release of the Beijing-Arizona Sky Survey.
 Zou, H., Zhang, T., Zhou, Z., et al. 2017, AJ, 153, 276. doi:10.3847/1538-3881/aa72d9
- 3. Discovery of 16 New $z \sim 5.5$ Quasars: Filling in the Redshift Gap of Quasar Color Selection. Yang, J., Fan, X., Wu, X.-B., et al. 2017, AJ, 153, 184. doi:10.3847/1538-3881/aa6577
- 2. A Survey of Luminous High-redshift Quasars with SDSS and WISE. II. the Bright End of the Quasar Luminosity Function at $z \approx 5$.
- Yang, J., Wang, F., Wu, X.-B., et al. 2016, ApJ, 829, 33. doi:10.3847/0004-637X/829/1/33
- 1. A Survey of Luminous High-redshift Quasars with SDSS and WISE. I. Target Selection and Optical Spectroscopy.
- Wang, F., Wu, X.-B., Fan, X., et al. 2016, ApJ, 819, 24. doi:10.3847/0004-637X/819/1/24