A turbine is used to reduce the gas pressure in a chamber (the "low pressure" region). A separate vacuum pump keeps the "high pressure" region at 7.6×10^{-3} torr. The turbine consists of a series of thin, diagonal, 5 mm blades moving at speed v_f (see sketch). Let $T = 300 \,\mathrm{K}$ everywhere.¹

- A. Show that the mean free path of the gas in the high pressure region is greater than the dimensions of the turbine blades (thus collisions between molecules can be ignored).
- B. Molecules in the high pressure region have a Maxwellian distribution,

$$\frac{dn_H}{dv_z} = \frac{n_H}{c\sqrt{2\pi}} e^{-v_z^2/2c^2},$$

where n_H is the molar density (mol m⁻³) of molecules and c is the thermal speed. Express the rate of molecules incident on a unit area of the turbine (mol m⁻² s⁻¹) from the high pressure region in the velocity range v_z to $v_z + dv_z$, in terms of the above variables.

- C. Let $v_f = 10^3 \,\text{m/s}$. Assume that all molecules with $v_z > v_f$ will "backstream" (cross over from the high to low pressure region), and calculate the total rate (mol m⁻² s⁻¹).
- D. Assume that *all* molecules incident on the turbine from the low pressure region

- (which has molar density n_L) pass "forward" through the turbine. Express this forward streaming rate in terms of n_L .
- E. In a steady state, the forward and backstreaming rates balance. Calculate the pressure (in torr) of the low pressure region.

 $^{^{1}}$ One mole of air at 300 K, 760 torr has a volume of \sim 22.4 liters and masses 0.029 kg.