機器學習期末專題報告

題目:Listen and Translate

組員:電信碩一 黄釋平 R06942082 (Retrival model)

電信碩一 陳建榜 R06942020 (Sequence to Sequence)

電信博一 彭正安 D06942013 (data proccessing)

1. Preprocessing/Feature Engineering

● 音訊檔(train.data)

共有 45036 筆資料,每筆資料的每個瞬間都是 39 維的向量,但由於每筆音訊長度不相同,我們必須先對其做 padding 到 246 筆,缺少的在後面補上 np.zeros(39),最後資料 shape = (45036, 246, 39)。

● 翻譯檔(train.caption)

我們分別使用 Seq2seq 和 Retrival model 來進行,詳細的 model 在下段會介紹,而這兩種模型對中文轉向量的方式不同,但同樣都有做padding 使句子長度都為 13。

在 Seq2seq, 我們建立一個 one-hot 的中文字典, 共有 2391 個字, 每個中文字以長度 2391 的向量代表,其中只有一個值是 1,即代表那個字,最後資料 shape = (45036,15,2391)。

在 Retrival model, 我們使用 gensim.word2vec 加上以 wiki 資料做好的字典 model, 將字轉成長度 300 的向量,並做 normalization, 不在字典中的字則補 np.zeros(300)。在訓練時要製造三個錯誤選項,我們以隨機方式取其他行句子作為選項,並且對四個選項 shuffle,讓機器自己學該如何選,最後資料 shape = (45036, 4, 15, 300)

這樣訓練出來的 model,雖然在 validation 有相當好的表現,但實際 測試上傳準確率卻非常低,剛開始相當不明白,我們將訓練資料的隨機 選項都故意挑相同長度的再進行測試,結果準確率下降非常多,才發現 是句子長度問題。

因此,我們又把生成三個錯誤選項的 function 加上「同長度」的規則,使每個選項像 test.csv 一樣,句子都一樣長,詳細 trainning 狀況會在第三段描述。

● 測試檔(test.data, test.csv)

test.data 是音訊檔,同樣必須做 padding 至 246 筆,缺少的補上 np.zeros(39),最後 shape = (2000, 246, 39)。

test.csv 每行有四個選項,在 Seq2seq 中以 one-hot 字典轉成向量,在 Retrival model 則用 gensim.word2vec 轉,處理方式同 train.caption。

2. Model Description

- Sequence to Sequence (Seq2Seq)
 - I. 原理

Voice data 是聲音檔轉成向量表示,藉此能拿來做運算,一串聲音向量進入 Encoder 後,全部跑完輸出 LSTM state,這個 state 就是代表這段聲音的意義,直接指定給 Decoder 當作 initial state。假設 sequence 是這段聲音的翻譯,input_sequence 則要在 sequence 前面補上開頭符號(BOS)輸入給 Decoder,target_sequence 要在結尾補上結束符號(EOS)作為 Decoder 的目標輸出。

也就是說,Decoder 要學到的是,在給定的 Initial state(代表情境、意義)之下,不斷預測下一個字,直到出現 EOS 代表句子完畢;同時,Encorder 必需要能生成含有正確情報的 LSTM state,提供給 Decoder 做預測,所以這兩者是相輔相成的。

II. 程式流程

Retrival model

I. 原理

Information Retrieval 原先應用在圖書館系統,使用各種方式將圖書 資料的 feature 擷取出來,用來做檢索跟比對。其中一種叫做 vector model,將查詢條件與書目分別 encode 為同長度的向量,並比對相似 度(dot,cos...),便可知道兩者的相關性。

此法亦可應用在我們的期末專題中,因為是選擇最相關的選項,可以將聲音與選項 encode 後做比對,相似度最高的即為答案。但在訓練時,由於給定的 train.caption 只有正確的翻譯,所以我們要刻意製造錯誤選項,將正確的 label 標為 1、錯誤的標為 0。

II. 程式流程

3. Experiments and Discussion

Sequence to Sequence (Seq2Seq)

先將音訊檔讀進來後,每一筆長度 pad 成一樣,也就是每一筆音訊檔的 shape 為 (246, 39)。 另外在 train.caption 的部分,我們先利用 gensim.models.Word2Vec 套件將文檔中出現過的中文字記錄下來,得到共2391個不同的字,之後將每一個在 train.caption 檔案裏頭的句子以 one-hot encoding 的方式將每個文字都以一個(2391,)的向量表示。另外,若是句子長度小於最大句子長度時,將在其後補上全為 0 的(2391,)向量,直到長度 與最大句子長度相同。

在實際 model 架構中,encdoer 及 decoder 各為一層的 LSTM cell,其中有兩個 training 參數:latent_dim、go_backward。而在 encoder 的輸出部分,我們取出其最後的 state 並將其直接指定給 decoder 當作 initial_state。而在 decoder 的輸出部分,我們用一層 Dense Layer 作為輸出,並且為了配合我們使用得 one-hot encoding 方式,我們採用'softmax'作為 activation function。架構可參照下圖。

T			
Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	(None, None, 39)	0	
input_2 (InputLayer)	(None, None, 2391)	0	
lstm_1 (LSTM)	[(None, 256), (None,	303104	input_1[0][0]
lstm_2 (LSTM)	[(None, None, 256),	2711552	input_2[0][0] lstm_1[0][1] lstm_1[0][2]
dense_1 (Dense)	(None, None, 2391)	614487	1stm_2[0][0]

在預測的部分,對於測試音訊一樣將其讀進來後 pad 成與原訓練用的音訊檔長度相同,將其作為 encoder model 的 input 做 predict 可得到此音訊檔的[state_h, state_c],再將此 state 搭配起始向量["BOS"] 餵入 decoder model 中,讓其不斷產出新的字元以及[state_h, state_c],將新的輸出再次作為 input 餵入 decoder model,直到產生終止字元["EOS"]或是句子長度超過最大句子長度。最後使用在訓練時訓練好的 Word2Vec model 來做相似度的判斷,如下:(可參照實際的程式碼)

- I. 將 decode 出來的 sentence 與相對應的四個選項取出
- II. 將每個屬於 decode sentence 的字元與選項句子中的字元算 similarity,並累加。
- III. 將上一步驟中得到的數值除以每個選項的句子長度,因此可以得到 sentence 對於四個選項的平均相似度。
- IV. 選擇相似度大的作為預測的答案。

訓練過程:

首先在 training 過程中,有調整的參數如下:

- I. Latent dim: 128 \cdot 256
- II. Go backwards: True · False
- III. Optimizers: rmsprop \ sgd \ adam
- IV. Kernel regularizer: 12

在最初我們先以 Latent_dim=256 的 LSTM 作為主架構,並沒有加上 regularizer 及 go backwards 等參數。得到的結果如下。

可發現 train_loss 雖然持續下降,但 val_loss 在到達 1.6 左右時便收斂,有 overfitting 的情況產生。因此我想知道是那些原因造成此種情形。首先測試是否為參數過多導致 overfitting,所以藉由將 Latent_dim 降至 128 調整了參數多寡,並重新訓練得到下圖。

發現 val_loss 不降反升,因此轉而考慮使用 regularizer 並搭配較大的 learning rate,卻發現此時的 train_loss 與 val_loss 皆上升,上傳 kaggle 之後得到的分數也不如最初版本。所以我回歸到沒有加任何參數、latent_dim為 128 的 model,嘗試使用 go_backwards 方法來訓練,原因在於 voice data padding 的部分我們會在不足長度的資料補上 0 向量,而使用 go_backwards 方法可先把 0 向量的部分讀完後再進行訓練。但 val_loss 與 loss 皆跟原本 model 相同。

而在 optimizer 選擇方面,在每一種模型中皆嘗試過 rmsprop、adam、sgd,發現 rmsprop 可使得 loss 降得較低,而 kaggle 的分數也較其餘兩者高出一些,因此最後的結果都是使用 rmsprop 作為 optimizer。

Retrival model

剛開始嘗試生成三個錯誤選項,含正確的共有四個。音訊和選項都先經過 LSTM(256)-Dense(128)-Batchnormalization()-Activation('linear') 轉成 128 維的向量,音訊向量再分別和選項向量做 dot,輸出四個值,最後接Activation('softmax'),代表要輸出四個選項的為答案的機率,在預測時就選擇機率最高的做為答案,以下是訓練的情形:

看到 45.093%實在欣喜若狂,但實際測試上傳竟只有 22.8%,與預期 差異非常大。經過不斷測試,我們發現是句長問題,test.csv 中的選項都 是相同句長,我們在生成錯誤選項時並無這規定,將 trainning set 生成 為相同句長選項後代回 model 測試,果然 Accurancy 下降非常多。 我們猜想可能機器學到直接以語音長度和選項長度來做判斷,並沒學到語意,因此在之後都以相同句長的選項來做訓練,並將 validation set 與 trainning set 完全隔離(在隨機生成選項時,不會選到彼此的),以下是以相同架構重新訓練的結果:

Validation accurancy (val_acc)卡在 32.529%無法上去, Training accurancy (train_acc)卻可以到將近 1,很明顯 overfitting,因此我們在音訊、選項的 LSTM 後都加上 dropout(0.25),再試一次:

val_acc 上升至 37.162%,上傳結果 **37.3%**,相當符合預期。但是,之後 無論如何調整 LSTM、Dense、Dropout、Activation,或將 dot 換成數層的 DNN,都沒能改進。

於是我們決定改另一種方式,每次只輸入一個句子,輸出就是「對」的 機率(0~1),在訓練時每個聲音檔只給一次正確、一次錯誤選項,預測時一 樣用 argmax 來判斷哪個機率最高做為答案,其餘架構都不變。注意這種 方式 acc 會從 0.5 左右開始,因為一筆聲音只對應兩筆資料,實際訓練結 果如下:

在第二圈時達到 59.17%,而後不會上升了,我們大膽的以這個結果 predict 上傳,得到 41.8%,相當意外。而一樣觀察到後面有 overfitting 的 現象,試著加上 Dropout(0.6),但無法上升,懷疑抽取過多,而後又調成 Dropout(0.25),結果稍稍上升:

val_acc 上升至 62.5%,但上傳卻只有 41.5%,甚至不如上個 model。我們懷疑是 initial state 不太好,所以重新訓練一次,並將 trainning data 量增加 500 筆,訓練的結果:

val acc 能達到 64.366%,上傳為 44.3%,是目前的最佳紀錄。

Retrival model 總整理

model	Best epoch	train_acc	val_acc	kaggle
4 options (different length)	8	43.39%	45.09%	22.80%
4 options (same length) + dot →DNN	8	34.94%	27.99%	不值得浪費
4 options (same length)	10	59.92%	32.53%	32.90%
4 options (same length) + dropout(0.25)	17	50.93%	37.16%	37.30%
1 option (same length)	2	61.73%	59.17%	41.80%
1 option (same length) + dropout(0.25)	14	64.84%	62.50%	41.50%
1 option (same length) + dropout(0.25) with more 500 training data	20	70.89%	64.36%	44.30%

以上 LSTM 皆為 256、Dence 皆為 128,有試著調整過這兩個參數,但沒有好成果,在此不附上。

Discussion

Q:為何讓模型直接輸出四個選項各為答案的機率,表現會不如讓模型只預測單一輸入是答案的機率,手動預測四次後再比較?

> ANS

我們剛開始認為,也許這樣更能在模型中學到好的結果,但是在四個選項的模型中,選項的神經網路都是共用的,並不是一個選項對應一組LSTM,照理說兩種模型訓練效果應該要完全一樣。

其中唯一的差別,就在於我們餵的資料,後者只假一正確一錯誤,前者 因為 LSTM 共用,相當於會拿到 25%要輸出「1」和 75%要輸出「0」的 資料,或許因此「1」的選項較難上升。舉例來說,如果讓四筆資料都輸 出 0, loss 也會下降很多,機器就以為學好了,實際上會學錯方向。

我們也有觀察到,四個選項的模型最高的機率的確沒有很顯著,例如 [25% 26% 19% 30%],而一次只預測一個的則就比較明顯,例如[30% 45% 25% 61%]。

因此,我們認為關鍵點就在於訓練資料的平不平均。越是不平均的資料, 越難 fitting 出好 validation 的結果,較容易開始 overfitting。