UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELETRÔNICA EEL7013 – Laboratório de Transdutores

AULA 04 - CONDICIONAMENTO DE SINAL II

Seguidor de tensão, Somador e Subtrator

1. Pinagem

2. Aplicações

Com a utilização de amplificadores operacionais pode-se efetuar as operações aritméticas de **soma** ou **subtração**.

O seguidor de tensão é utilizado nos circuitos como um *buffer*, que faz uma cópia da tensão de entrada na saída. O seguidor de tensão possui impedância de entrada muito elevada, possibilitando, por conseguinte, que a fonte de sinal de tensão não "perceba" a presença do *buffer*. O *buffer* é um importante elemento para a conexão entre circuitos de níveis de impedância muito diferentes (casamento de impedâncias) e pode fornecer maior corrente aos circuitos.

Uma analogia para entender o casamento de impedâncias pode ser feita entre circuitos elétricos com impedâncias diferentes ou canos com diâmetros diferentes, ver Figura 1. A Figura 1 ilustra o problema de ligar circuitos (ou canos) com diferentes impedâncias. Canos com diâmetros maiores apresentam baixa resistência, canos com diâmetros menores têm alta impedância.

A quantidade de água que está deixando o cano grosso deve ser idêntica à quantidade que o cano de destino está absorvendo - essa é a analogia da água com o casamento de impedância elétrica.

Ao ligar diretamente um ao outro, problemas ocorrerão.

Quando a agua flui da esquerda para a direita, o cano menor sofrerá com pressão excessiva. Agua também poderá retornar e gerar turbulencia na região da conexão.

Quando a agua flui na direção inversa, a pressão cai subitamente ao passar para o cano mais grosso e a agua chegará ao seu destino sem pressão ou pode nem chegar de forma útil.

Figura 1. Analogia entre diâmetro de canos e circuitos elétrico para entender casamento de impedâncias.

2.1 Seguidor de tensão

O sinal de saída (Vo) é igual ao sinal de entrada (Vi) com um ganho Vo/Vi igual a 1.

2.2 Somador

Somador Inversor:

$$V_o = -R_f \left(\frac{V_{i1}}{R_{i1}} + \frac{V_{i2}}{R_{i2}} + \dots + \frac{V_{in}}{R_{in}} \right)$$

Somador Não-inversor:

Exemplo:

Ganho:
$$G_V = \left(1 + \frac{R_F}{R_i}\right) = \left(1 + \frac{30k}{10k}\right) = 4V/V$$

$$V + = \left\{ \left[V_1 \frac{R_2}{R_1 + R_2}\right] + \left[V_2 \frac{R_1}{R_2 + R_1}\right] \right\}$$

$$V + = \left(\frac{0.5 \times 10}{2 + 10}\right) + \left(\frac{-1 \times 2}{2 + 10}\right) = 0.417 - 0.167 = 0.584V$$

$$V_o = \left(1 + \frac{30k}{10k}\right) \times V + = 2.335V$$

2.3 Subtrator

Este circuito é semelhante ao somador, contudo é utilizado para subtrair dois sinais V_1 e V_2 .

3. Parte Experimental

3.1 Somador utilizando Ampop.

a) Monte o circuito da figura abaixo;

Meça Vs, conclua sobre o ganho e defasagem.

Obs. Coloque as ponteiras do osciloscópio em V1 e Vs.

b) Refaça o experimento substituindo o segmento 1 por :

c) Refaça o experimento substituindo o segmento 1 por :

3.2 Subtrator utilizando ampop.

- a) Observe a saída V_S com tensão de offset de 6 V no gerador de sinais;
- b) Colocar o pino de –VCC (pino 11 do TL084 ou pino 4 do LM741) em terra e observe. O que ocorre?
- c) Introduza um capacitor de 180 nF em série com o gerador de sinais. Medir os níveis CC no nó comum ao capacitor e ao resistor de entrada, na entrada inversora e na saída.

4. FOLHA DE DAD	OS (entregar es	ta foina para o profes	sor ao final da aula)
Equipe	Aula:	Data:	//
Nome:			
Nome:			
4.1 Somador			
	(Ganho	Defasagem
Circuito a)			
Circuito b)			
Circuito c)			
Desenhe a tensão de entrada e saída		O que ocorre se co	olocar o pino de –VCC
Escala de amplitude:		em terra?	
Escala de tempo:			