test-notebook

August 30, 2019

```
In [1]: from reaktoro import *
In [2]: db = Database('supcrt98.xml')
In [3]: editor = ChemicalEditor(db)
        editor.addAqueousPhaseWithElements('H O Na Cl C')
        editor.addGaseousPhase(['CO2(g)'])
Out[3]: <reaktoro.PyReaktoro.GaseousPhase at 0x7f4e05f61a40>
In [4]: # Step 4: Construct the chemical system
        system = ChemicalSystem(editor)
        print(system)
                         Gaseous
CO(aq)
                         CO2(g)
CO2(aq)
CO3--
C1-
C10-
C102-
C103-
C104-
H+
H2(aq)
H20(1)
H2O2(aq)
HCO3-
HCl(aq)
HClO(aq)
HC102(aq)
H02-
Na+
NaCl(aq)
NaOH(aq)
```

02(aq)

OH-

	:=====================================		
Index	Species	Element	Phase
0	CO(aq)	С	Aqueous
1	CO2(aq)	Cl	Gaseous
2	CO3	Н	
3	C1-	Na	
4	C10-	0	
5	C102-	Z	
6	C103-		
7	C104-		
8	H+		
9	H2(aq)		
10	H2O(1)		
11	H2O2(aq)		
12	HCO3-		
13	HCl(aq)		
14	HClO(aq)		
15	HC102(aq)		
16	HO2-		
17	Na+		
18	NaCl(aq)		
19	NaOH(aq)		
20	02(aq)		
21	OH-		
22	CO2(g)		

```
In [5]: # Step 5: Define the chemical equilibrium problem
    problem = EquilibriumProblem(system)
    problem.setTemperature(60, 'celsius')
    problem.setPressure(100, 'bar')
    problem.add('H2O', 1.0, 'kg')
    problem.add('NaCl', 1.0, 'mol')
    problem.add('CO2', 10.0, 'mol')
```

Out[5]: <reaktoro.PyReaktoro.EquilibriumProblem at 0x7f4e046374c8>

Temperature [K]	Temperature [C]	Pressure [Pa]	Pressure [bar]		
333.15	 60	1e+07	100		

			=======================================
Element	Amount [mol]		
C	10	 0.793515	9.20648
Cl	1	1	0
Н	111.017	111.017	0
Na	1	1	0
0	75.5084	57.0955	18.413
Z	-1.32419e-16	-1.32419e-16	0
	Amount [mol]	Mole Fraction [mol/mol]	Activity Coefficien
CO(aq)	3.69283e-22	6.34245e-24	1
CO2(aq)	0.792322	0.0136082	1.22245
CO3	5.69557e-10	9.78218e-12	0.154986
C1-	0.922008	0.0158355	0.651298
C10-	1.60807e-21	2.76188e-23	0.651298
C102-	2.33254e-22	4.00615e-24	0.651298
C103-	1.89895e-22	3.26146e-24	0.651298
C104-	1.39505e-22	2.39601e-24	0.641334
H+	0.00112022	1.92398e-05	0.634012
H2(aq)	4.31297e-22	7.40755e-24	1
H2O(1)	55.5072	0.95334	1.0167
H2O2(aq)	1.23781e-21	2.12595e-23	1
HCO3-	0.00119326	2.04942e-05	0.642544
HCl(aq)	7.30368e-05	1.25441e-06	1
HClO(aq)	3.89083e-20	6.68253e-22	1
HC102(aq)	2.20932e-22	3.79452e-24	1
HO2-	4.0167e-22	6.89871e-24	0.651298
Na+	0.922081	0.0158368	0.642503
NaCl(aq)	0.077919	0.00133826	1
NaOH(aq)	5.19433e-11	8.92129e-13	1
02(aq)	7.76627e-20	1.33386e-21	1
OH-	2.01562e-10	3.46184e-12	0.678583
CO2(g)	9.20648	1	0.657945
Phase	Amount [mol]	Stability	Stability Index [-]
Aqueous	58.224	stable	9.64327e-17
Gaseous	9.20648	stable	-4.71727e-22
Ionic Strength [molal]	рН	pE	Reduction Potential
0.923222	3.14859	11.3578	0.750799

```
In [7]: # Step 8: Print the amounts of some aqueous speciesk
        print('Amount of CO2(aq):', state.speciesAmount('CO2(aq)'))
        print('Amount of HCO3- :', state.speciesAmount('HCO3-'))
        print('Amount of CO3-- :', state.speciesAmount('CO3--'))
                                :', state.speciesAmount('Na+'))
        print('Amount of Na+
Amount of CO2(aq): 0.7923219201161625
Amount of HCO3- : 0.0011932550486751456
Amount of CO3-- : 5.695573946910143e-10
Amount of Na+ : 0.9220810121731402
In [8]: import sys
        from __future__ import print_function
        print('hi, stderr', file=sys.stderr)
hi, stderr
   e^{i\pi} + 1 = 0
                                     e^x = \sum_{i=0}^{\infty} \frac{1}{i!} x^i
In [9]: print('Amount of C in aqueous phase:', state.elementAmountInPhase('C', 'Aqueous'))
        print('Amount of C in gaseous phase:', state.elementAmountInPhase('C', 'Gaseous'))
Amount of C in aqueous phase: 0.7935151757343951
Amount of C in gaseous phase: 9.206484824265605
   Code block:
print "Hello World"
def f(x):
    """a docstring"""
   return x**2
if (i=0; i<n; i++) {</pre>
  printf("hello %d\n", i);
 x += 4;
   Heading 1
```

- Heading 2
- Heading 2.1
- Heading 2.2 2.2

literal asterisks literal asterisks

In []: #%load http://matplotlib.sourceforge.net/mpl_examples/pylab_examples/integral_demo.py
In [16]: import matplotlib
 import matplotlib.pyplot as plt
 import numpy as np

labels = ['G1', 'G2', 'G3', 'G4', 'G5']
 men_means = [20, 34, 30, 35, 27]
 women_means = [25, 32, 34, 20, 25]

x = np.arange(len(labels)) # the label locations
 width = 0.35 # the width of the bars

fig, ax = plt.subplots()
 rects1 = ax.bar(x - width/2, men_means, width, label='Men')

rects2 = ax.bar(x + width/2, women_means, width, label='Women')

```
\# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Scores')
ax.set_title('Scores by group and gender')
ax.set xticks(x)
ax.set_xticklabels(labels)
ax.legend()
def autolabel(rects):
    """Attach a text label above each bar in *rects*, displaying its height."""
    for rect in rects:
        height = rect.get_height()
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3), # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
fig.tight_layout()
plt.show()
```



```
In [17]: #!/usr/bin/env python
         # implement the example graphs/integral from pyx
         from pylab import *
         from matplotlib.patches import Polygon
         def func(x):
             return (x-3)*(x-5)*(x-7)+85
         ax = subplot(111)
         a, b = 2, 9 \# integral area
         x = arange(0, 10, 0.01)
         y = func(x)
         plot(x, y, linewidth=1)
         # make the shaded region
         ix = arange(a, b, 0.01)
         iy = func(ix)
         verts = [(a,0)] + list(zip(ix,iy)) + [(b,0)]
         poly = Polygon(verts, facecolor='0.8', edgecolor='k')
         ax.add_patch(poly)
         text(0.5 * (a + b), 30,
              r"$\int_a^b f(x)\mathrm{d}x$", horizontalalignment='center',
              fontsize=20)
         axis([0,10, 0, 180])
         figtext(0.9, 0.05, 'x')
         figtext(0.1, 0.9, 'y')
         ax.set_xticks((a,b))
         ax.set_xticklabels(('a','b'))
         ax.set_yticks([])
         show()
```

