Вопрос 43. Поверхности второго порядка. Канонические уравнения поверхностей второго порядка (эллиптический цилиндр, гиперболический цилиндр, параболический цилиндр).

<u>Цилиндрической поверхностью (цилиндром)</u> называется поверхность, которую описывает прямая (называемая *образующей*), перемещенная параллельно самой себе вдоль некоторой кривой (называемой *направляющей*).

Цилиндры называют по виду направляющей: <u>эллиптический, параболический,</u> <u>гиперболический.</u>

1. Эллиптический цилиндр:

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ — каноническое уравнение эллиптического цилиндра.

2. Параболический цилиндр:

 $y^2 = 2px$ — каноническое уравнение параболического цилиндра.

3. Гиперболический цилиндр:

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ — каноническое уравнение эллиптического цилиндра.

Вариации: распадающиеся поверхности.

- 1) Уравнение поверхности имеет перед *цифрой* знак "-" ($y^2 = -2px$ или $\frac{x^2}{a^2} \pm \frac{y^2}{b^2} = -1$) **мнимое** уравнение поверхности (в то время как приведенные выше канонические уравнения называются **действительными**).
- 2) При $x^2 = a^2$ или $y^2 = b^2$ пара параллельных плоскостей.
- 3) При $x^2 = -a^2$ или $y^2 = -b^2$ пара мнимых параллельных плоскостей.
- 4) При $x^2 = 0$ или $y^2 = 0$ пара совпадающих плоскостей.
- 5) При $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$ пары пересекающихся плоскостей
- 6) При $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ пары мнимых пересекающихся плоскостей