Name:	
Klasse/Jahrgang:	

Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung

BHS

19. September 2023

Angewandte Mathematik

HTL 1

Hinweise zur Aufgabenbearbeitung

Sehr geehrte Kandidatin! Sehr geehrter Kandidat! Das vorliegende Aufgabenheft enthält Teil-A-Aufgaben und Teil-B-Aufgaben mit jeweils unterschiedlich vielen Teilaufgaben. Die Teilaufgaben sind unabhängig voneinander bearbeitbar. Ihnen stehen 270 Minuten an Arbeitszeit zur Verfügung. Verwenden Sie für die Bearbeitung ausschließlich dieses Aufgabenheft und das Ihnen zur Verfügung gestellte Arbeitspapier. Schreiben Sie Ihren Namen und Ihren Jahrgang bzw. Ihre Klasse in die dafür vorgesehenen Felder auf dem Deckblatt des Aufgabenhefts sowie Ihren Namen und die fortlaufende Seitenzahl auf jedes verwendete Blatt Arbeitspapier. Geben Sie bei der Beantwortung jeder Handlungsanweisung deren Bezeichnung (z. B.: 3d1) auf dem Arbeitspapier an.

In die Beurteilung wird alles einbezogen, was nicht durchgestrichen ist.

Die Verwendung der vom zuständigen Regierungsmitglied für die Klausurarbeit freigegebenen Formelsammlung für die SRDP in Angewandter Mathematik ist erlaubt. Weiters ist die Verwendung von elektronischen Hilfsmitteln (z. B. grafikfähiger Taschenrechner oder andere entsprechende Technologie) erlaubt, sofern keine Kommunikationsmöglichkeit (z. B. via Internet, Intranet, Bluetooth, Mobilfunknetzwerke etc.) gegeben ist und der Zugriff auf Eigendateien im elektronischen Hilfsmittel nicht möglich ist.

Eine Erläuterung der Antwortformate liegt im Prüfungsraum zur Durchsicht auf.

Handreichung für die Bearbeitung

- Bei Aufgaben mit offenem Antwortformat ist jede Berechnung mit einem nachvollziehbaren Rechenansatz bzw. mit einer nachvollziehbaren Dokumentation des Technologieeinsatzes (die verwendeten Ausgangsparameter und die verwendete Technologiefunktion müssen angegeben werden) durchzuführen.
- Lösungen müssen jedenfalls eindeutig als solche erkennbar sein.

- Lösungen müssen jedenfalls mit zugehörigen Einheiten angegeben werden, wenn dazu in der Handlungsanweisung explizit aufgefordert wird.

Für die Bearbeitung wird empfohlen:

- selbst gewählte Variablen zu erklären und gegebenenfalls mit den zugehörigen Einheiten anzugeben,
- frühzeitiges Runden zu vermeiden,
- Diagramme oder Skizzen zu beschriften.

So ändern Sie Ihre Antwort bei Aufgaben zum Ankreuzen:

- 1. Übermalen Sie das Kästchen mit der nicht mehr gültigen Antwort.
- 2. Kreuzen Sie dann das gewünschte Kästchen an.

Hier wurde zuerst die Antwort "5 + 5 = 9" gewählt und dann auf "2 + 2 = 4" geändert.

1 + 1 = 3	
2 + 2 = 4	X
3 + 3 = 5	
4 + 4 = 4	
5 + 5 = 9	

Beurteilungsschlüssel

erreichte Punkte	Note
44-48 Punkte	Sehr gut
38-43 Punkte	Gut
31-37 Punkte	Befriedigend
23-30 Punkte	Genügend
0-22 Punkte	Nicht genügend

So wählen Sie eine bereits übermalte Antwort:

- 1. Übermalen Sie das Kästchen mit der nicht mehr gültigen Antwort.
- 2. Kreisen Sie das gewünschte übermalte Kästchen

Hier wurde zuerst die Antwort "2 + 2 = 4" übermalt und dann wieder gewählt.

1 + 1 = 3	
2 + 2 = 4	
3 + 3 = 5	
4 + 4 = 4	
5 + 5 = 9	

Lern-App

In einer bestimmten Lern-App gibt es Übungen zu verschiedenen Themen.

a) Jede Übung besteht aus mehreren Aufgaben.

Die Wahrscheinlichkeit, dass eine zufällig ausgewählte Übung Multiple-Choice-Aufgaben enthält, beträgt 78 %.

Für ein bestimmtes Arbeitspaket werden 25 Übungen zufällig ausgewählt.

1) Berechnen Sie den Erwartungswert für die Anzahl derjenigen Übungen dieses Arbeitspakets, die <u>keine Multiple-Choice-Aufgaben enthalten. [0/1 P.]</u>

Für ein anderes Arbeitspaket werden 5 Übungen zufällig ausgewählt.

2) Ordnen Sie den beiden Ereignissen jeweils die zugehörige Wahrscheinlichkeit aus A bis D zu. [0/1 P.]

Mindestens 1 der 5 Übungen enthält Multiple- Choice-Aufgaben.	
Keine der 5 Übungen enthält Multiple-Choice- Aufgaben.	

А	1 – 0,78 ⁵
В	1 – 0,22 ⁵
С	$(1-0,22)^5$
D	(1 – 0,78) ⁵

b) Daniela und Esma üben mit dieser Lern-App. Ihre täglichen Lernzeiten sind jeweils annähernd normalverteilt.

Der Erwartungswert von Danielas täglicher Lernzeit beträgt 35 min. Die zugehörige Standardabweichung beträgt 10 min.

1) Berechnen Sie die Wahrscheinlichkeit, dass Danielas tägliche Lernzeit mindestens 30 min beträgt. [0/1 P.]

Die Standardabweichung von Esmas täglicher Lernzeit ist kleiner als jene von Danielas täglicher Lernzeit.

In der nachstehenden Abbildung sind die Graphen der Dichtefunktionen für Danielas und Esmas tägliche Lernzeiten dargestellt.

- 2) Tragen Sie in der obigen Abbildung die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein. [0/1 P.]
- c) In einem bestimmten Lernkapitel stehen 25 Übungen zur Verfügung. Bei genau 2 dieser Übungen kommen Lückentexte vor.

Laura wählt nacheinander 4 verschiedene Übungen aus diesem Lernkapitel zufällig aus.

1) Berechnen Sie die Wahrscheinlichkeit, dass in keiner dieser 4 Übungen Lückentexte vorkommen. [0/1 P.]

San Francisco

a) In San Francisco wurden viele Straßen geradlinig und rechtwinkelig zueinander gebaut. Dabei wurde keine Rücksicht auf Steigungen genommen.

Ein 88 m langer Abschnitt der Lombard Street verlief früher geradlinig bergauf. Die Steigung dieser Straße war in diesem Abschnitt annähernd konstant (siehe nebenstehende nicht maßstabgetreue Abbildung).

1) Berechnen Sie den Steigungswinkel α für diesen Abschnitt.

[0/1 P.]

Nach einem Umbau gibt es in diesem Abschnitt einige Kurven. Dadurch beträgt der annähernd konstante Steigungswinkel nur mehr rund 9,1°.

- 2) Überprüfen Sie nachweislich, ob in diesem Abschnitt die Steigung in Prozent durch den Umbau halbiert wurde. [0/1 P.]
- b) Die Lombard Street verläuft in einem bestimmten Abschnitt in engen Kurven.

Aleksandar zeichnet mit einem Navigationsgerät seine Geschwindigkeit beim Fahren auf diesem Abschnitt auf. In der nachstehenden Abbildung ist das zugehörige Geschwindigkeit-Zeit-Diagramm für ein bestimmtes Zeitintervall dargestellt.

1) Kennzeichnen Sie in der obigen Abbildung die Länge desjenigen Weges, den Aleksandar bis zum Erreichen seiner maximalen Geschwindigkeit zurückgelegt hat. [0/1 P.]

- c) Die Golden Gate Bridge in San Francisco ist eine Hängebrücke. Der Verlauf der Stahlseile zwischen den 230 m hohen Stützen kann näherungsweise durch den Graphen der quadratischen Funktion *f* beschrieben werden.
 - 1) Ordnen Sie den beiden Abbildungen jeweils die zutreffende Aussage aus A bis D zu.

[0/1 P.]

А	f'(640) = 0
В	f'(640) = 230
С	f(-640) = f(640)
D	f(-640) = 0

Die in der nachstehenden Abbildung mit h bezeichnete Höhe ist die Durchfahrtshöhe für Schiffe.

2) Stellen Sie mithilfe von α eine Formel zur Berechnung von h (in m) auf.

h =______ [0/1 P.]

d) Die Golden Gate Bridge in San Francisco wird von 2 Stahlseilen mit kreisförmigem Querschnitt getragen. Die Stahlseile werden dabei modellhaft als zylinderförmig angenommen.

Für jedes dieser beiden Stahlseile ist auf einem Schild angegeben:

Durchmesser: 92,4 cm Länge: 2331,7 m

Dichte des verwendeten Stahls: $\varrho = 7,86 \text{ t/m}^3$

Masse: 11113 t

Die Masse m ist das Produkt aus Dichte ϱ und Volumen V, also $m = \varrho \cdot V$.

1) Zeigen Sie, dass sich aus den obigen Angaben für Durchmesser, Länge und Dichte <u>nicht</u> die angegebene Masse ergibt. [0/1 P.]

Tatsächlich besteht jedes der beiden Stahlseile aus 27572 dünnen Drähten, die jeweils eine Länge von 2331,7 m haben.

Die Gesamtlänge aller Drähte der 2 Stahlseile entspricht dem 11,77-fachen Umfang des Mondes. Der Mond wird dabei modellhaft als kugelförmig angenommen.

2) Berechnen Sie auf Basis dieser Angaben den Umfang des Mondes in km. [0/1 P.]

Pflanzenschutzmittel

Zum Schutz von Nutzpflanzen werden Pflanzenschutzmittel angewendet.

a) Die Anwendung von Pflanzenschutzmitteln erfolgt oft mithilfe von Düsen (siehe nachstehende nicht maßstabgetreue Abbildung).

1) Stellen Sie mithilfe von α und b eine Formel zur Berechnung der Höhe h auf.

h =_______ [0/1 P.]

Es gilt: $\alpha = 70^{\circ}$, c = 0.3 m

2) Berechnen Sie *h*. [0/1 P.]

b) Es wurden insgesamt 24 Proben von Marillen auf Rückstände von Pflanzenschutzmitteln hin untersucht (siehe nachstehende Tabelle).

Anzahl der festgestellten Pflanzen- schutzmittel pro Probe	Anzahl der Proben
1	4
2	10
3	3
4	2
5	2
6	3

1) Berechnen Sie das arithmetische Mittel der Anzahl der festgestellten Pflanzenschutzmittel pro Probe. [0/1 P.]

- c) Die zeitliche Entwicklung der Konzentration eines bestimmten Pflanzenschutzmittels im Boden kann näherungsweise durch die Funktion C beschrieben werden.
 - t ... Zeit nach dem Anwenden des Pflanzenschutzmittels in Tagen
 - C(t) ... Konzentration des Pflanzenschutzmittels im Boden zur Zeit t in mg/L
 - C'(t) ... momentane Änderungsrate der Konzentration des Pflanzenschutzmittels im Boden zur Zeit t in $\frac{mg}{L \cdot Tag}$

Die nachstehende Abbildung zeigt die momentane Änderungsrate der Konzentration dieses Pflanzenschutzmittels im Boden.

1) Veranschaulichen Sie $\int_0^2 C'(t) dt$ in der obigen Abbildung.

[0/1 P.]

Es gilt:
$$\int_0^2 C'(t) dt = -0.5 \text{ mg/L}$$

2) Interpretieren Sie das Ergebnis -0,5 mg/L im gegebenen Sachzusammenhang. [0/1 P.]

Raucherentwöhnung

- a) 10 Raucher führen unabhängig voneinander eine Entwöhnungskur durch. Die Wahrscheinlichkeit, dass die Entwöhnungskur erfolgreich ist, beträgt jeweils 60 %.
 - 1) Kreuzen Sie den zutreffenden Ausdruck zur Berechnung der Wahrscheinlichkeit für das Ereignis *E* an. [1 aus 5] [0/1 P.]

E... "bei genau 8 Rauchern ist die Entwöhnungskur erfolgreich"

$P(E) = {10 \choose 8} \cdot 0.6^2 \cdot 0.4^8$	
$P(E) = 1 - {10 \choose 8} \cdot 0.6^8 \cdot 0.4^2$	
$P(E) = {10 \choose 2} \cdot 0.6^2 \cdot 0.4^8$	
$P(E) = 1 - {10 \choose 8} \cdot 0.6^2 \cdot 0.4^8$	
$P(E) = {10 \choose 8} \cdot 0.6^8 \cdot 0.4^2$	

b) Durch das Rauchen von Zigaretten gelangt Nikotin in den Körper und wird dort abgebaut.

Die zeitliche Entwicklung der Nikotinmenge im Körper kann durch die Funktion N beschrieben werden.

$$N(t) = N_0 \cdot a^t$$

t ... Zeit seit dem Konsum der letzten Zigarette in h

N(t) ... Nikotinmenge im Körper zur Zeit t in mg

 N_0 , a ... positive Parameter

Für eine bestimmte Person gilt:

Unmittelbar nach dem Konsum der letzten Zigarette (t = 0) befinden sich 20 mg Nikotin im Körper.

2 h später befinden sich noch 9,5 mg Nikotin im Körper.

1) Ermitteln Sie den Parameter a.

[0/1 P.]

2) Berechnen Sie die Halbwertszeit für den Abbau von Nikotin bei dieser Person.

c) In einer Studie wurde der Nichtraucheranteil einer Personengruppe untersucht. Zu Beginn der Beobachtung betrug der Nichtraucheranteil dieser Personengruppe 45,6 %. 10 Jahre später betrug der Nichtraucheranteil dieser Personengruppe 51,3 %. Der Nichtraucheranteil kann in Abhängigkeit von der Zeit näherungsweise durch die lineare

$$f(t) = k \cdot t + d$$

- $t \dots$ Zeit in Jahren mit t = 0 für den Beginn der Beobachtung
- f(t) ... Nichtraucheranteil zur Zeit t in %

Funktion f beschrieben werden.

1) Ermitteln Sie die Parameter k und d.

k = _	% pro Jahr		
d = _	%	I	[0/1 P.]

Burgernomics

Das Konzept, anhand der Preise von Hamburgern wirtschaftliche Entwicklungen zu beschreiben, wird *Burgernomics* genannt.

a) Um die Kaufkraft verschiedener Währungen zu vergleichen, kann man den sogenannten Big-Mac-Index verwenden.

Dazu wandelt man den Preis für einen Big Mac in der Landeswährung mit dem aktuellen Wechselkurs in US-Dollar um. Danach ermittelt man die prozentuelle Abweichung vom Preis für einen Big Mac in den USA.

In der nachstehenden Tabelle ist der jeweilige Preis für einen Big Mac im Juli 2018 in den USA und in Chile angegeben.

Zu diesem Zeitpunkt galt: 1 US-Dollar = 652 Pesos

Land	Preis für einen Big Mac in der Landeswährung
USA	5,51 US-Dollar
Chile	2.640 Pesos

1) Berechnen Sie, um wie viel Prozent der Preis für einen Big Mac in Chile niedriger als jener in den USA war. [0/1 P.]

In der Schweiz war der Preis für einen Big Mac im Juli 2018 um 18,8 % höher als in den USA.

Zu diesem Zeitpunkt galt: 1 US-Dollar = 0,99224 Schweizer Franken

2) Berechnen Sie den Preis für einen Big Mac in der Schweiz im Juli 2018 in Schweizer Franken. [0/1 P.]

b) Der Preis für einen Big Mac kann auch zur Beobachtung der Inflation im jeweiligen Land verwendet werden.

Jahr	Preis für einen Big Mac in US-Dollar
1990	2,20
2000	2,51
2010	3,73

Die zeitliche Entwicklung des Preises für einen Big Mac in den USA kann näherungsweise durch die Funktion p beschrieben werden.

$$p(t) = a \cdot t^2 + b \cdot t + c$$

 $t \dots$ Zeit in Jahren mit t = 0 für das Jahr 1990

p(t) ... Preis für einen Big Mac zur Zeit t in US-Dollar

1) Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten der Funktion p.

[0/1 P.]

2) Interpretieren Sie das Ergebnis der nachstehenden Berechnung im gegebenen Sachzusammenhang.

$$p(30) = 5,86$$
 [0/1 P.]

3) Kreuzen Sie denjenigen Ausdruck an, mit dem die mittlere Änderungsrate des Preises für einen Big Mac für jedes Zeitintervall [0; n] berechnet werden kann. [1 aus 5] [0/1 P.]

<u>p(n)</u> n	
$\frac{p(n)-p(0)}{p(0)}$	
$\frac{p(n)-p(0)}{p(n)}$	
$\frac{p(n)-p(0)}{n}$	
<u>p(n)</u> p(0)	

Aufgabe 6 (Teil B)

Bremsvorgänge

Der Bremsweg ist die Länge des zurückgelegten Weges vom Beginn des Bremsvorgangs bis zum Stillstand.

a) Die lineare Funktion *v* beschreibt für einen PKW die Geschwindigkeit bei einem Bremsvorgang in Abhängigkeit von der Zeit *t* (siehe nachstehende Abbildung).

Der PKW kommt zur Zeit t_1 zum Stillstand. Der Bremsweg beträgt 35 m.

1) Ermitteln Sie t_1 . [0/1 P.]

b) Für die Berechnung des Bremswegs eines Fahrzeugs gilt modellhaft die nachstehende Formel.

$$S_{\rm B} = \frac{V_0^2}{2 \cdot a}$$

s_B ... Bremsweg bis zum Stillstand in m

 v_0 ... Geschwindigkeit zu Beginn des Bremsvorgangs in m/s

a ... Bremsverzögerung in m/s²

1) Ordnen Sie den beiden Satzanfängen jeweils die richtige Fortsetzung aus A bis D zu.

Eine Verdoppelung von v_0 bewirkt	
Eine Halbierung von <i>a</i> bewirkt	

А	eine Zunahme von $s_{\rm B}$ auf mehr als das Doppelte.
В	eine Zunahme von $s_{\rm B}$ auf genau das Doppelte.
С	eine Abnahme von $s_{\rm B}$ auf genau die Hälfte.
D	eine Abnahme von $s_{\rm B}$ auf weniger als die Hälfte.

c) Die Funktion *v* beschreibt die Geschwindigkeit eines Fahrzeugs in Abhängigkeit von der Zeit *t* (siehe nachstehende Abbildung).

Für den Zeitpunkt t_2 im Intervall [0; t_1] gilt: $\frac{v(t_1)-v(0)}{t_1}=v'(t_2)$

- 1) Veranschaulichen Sie in der obigen Abbildung, wie man t_2 näherungsweise grafisch ermitteln kann. [0/1 P.]
- d) Ein Fahrzeug wird bis zum Stillstand abgebremst. Die Geschwindigkeit dieses Fahrzeugs während dieses Bremsvorgangs kann durch die Funktion *v* beschrieben werden.

$$v(t) = 30 \cdot e^{-0.28 \cdot t} - 2$$
 mit $t \ge 0$

 $t \dots$ Zeit in s mit t = 0 für den Beginn des Bremsvorgangs

- v(t) ... Geschwindigkeit zur Zeit t in m/s
- 1) Berechnen Sie den Bremsweg.

- e) In der nachstehenden Abbildung sind das Geschwindigkeit-Zeit-Diagramm für einen bestimmten Bewegungsvorgang sowie das zugehörige Weg-Zeit-Diagramm für das Zeitintervall [0; 2] dargestellt.
 - t ... Zeit in s
 - v(t) ... Geschwindigkeit zur Zeit t in m/s
 - s(t) ... zurückgelegter Weg zur Zeit t in m

1) Stellen Sie mithilfe von d eine Formel zur Berechnung von c auf.

C = [0/1 P.]

2) Skizzieren Sie in der obigen Abbildung den Graphen von s im Zeitintervall [2; 4]. [0/1 P.]

Aufgabe 7 (Teil B)

Schreibtischlampen

a) Eine bestimmte Schreibtischlampe besteht aus 3 beweglichen, geraden Armen (siehe nachstehende Abbildungen).

Bildquelle: https://www.lampenwelt.at/paul-neuhaus-q-hannes-led-tischleuchte.html [06.12.2019].

- 1) Zeichnen Sie in der obigen Abbildung den Vektor $\vec{a} + \vec{b} + \vec{c}$ als Pfeil ausgehend vom Punkt P ein. [0/1 P.]
- 2) Stellen Sie mithilfe von \vec{b} und \vec{c} eine Formel zur Berechnung des Winkels α auf.

$$\alpha = [0/1 P.]$$

Es gilt:
$$\vec{a} = \begin{pmatrix} 10 \\ 47 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 25 \\ -10 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 13 \\ 3 \end{pmatrix}$

3) Berechnen Sie die Länge des Vektors \overrightarrow{PQ} . [0/1 P.]

b) In der nachstehenden Abbildung ist eine andere Schreibtischlampe modellhaft dargestellt.

1) Stellen Sie mithilfe von α und β eine Formel zur Berechnung des Winkels γ auf.

$$\gamma = [0/1 P]$$

Es gilt: a = 36 cm, b = 30 cm und $\beta = 100^{\circ}$

2) Berechnen Sie die Streckenlänge \overline{AL} .

[0/1 P.]

Weiters gilt: $\alpha = 110^{\circ}$

3) Berechnen Sie die Höhe h.

c) Ein Betrieb stellt Schreibtischlampen her. Die zugehörige Gesamtkostenfunktion *K* ist eine Polynomfunktion 3. Grades (siehe nachstehende Abbildung).

x ... Produktionsmenge in ME

K(x) ... Gesamtkosten bei der Produktionsmenge x in GE

Die Stelle $x_{\scriptscriptstyle B}$ ist die Gewinnschwelle, die Stelle $x_{\scriptscriptstyle P}$ ist die Kostenkehre.

1) Ordnen Sie den beiden Stellen x_B und x_P jeweils die zutreffende Aussage aus A bis D zu. [0/1 P.]

X _B	
X_P	

А	K'(x) > 0 und $K''(x) < 0$
В	K'(x) > 0 und $K''(x) = 0$
С	K'(x) > 0 und $K''(x) > 0$
D	K'(x) < 0 und $K''(x) > 0$

Die Schreibtischlampen werden zu einem fixen Preis pro ME verkauft.

2) Zeichnen Sie in der obigen Abbildung den Graphen der zugehörigen Erlösfunktion E ein. [0/1 P.]

Aufgabe 8 (Teil B)

Reiseverhalten

Im Rahmen verschiedener Studien wurde das Reiseverhalten von Reisenden untersucht.

a) Eine Studie über die durchschnittliche Dauer von Urlaubsreisen, im Folgenden kurz *Reiseduuer* genannt, lieferte die in der nachstehenden Tabelle angegebenen Ergebnisse.

Jahr	1999	2003	2007	2011	2015
Reisedauer in diesem Jahr in Tagen	16,1	14,4	13,3	13	12,1

Die zeitliche Entwicklung der Reisedauer soll näherungsweise durch die lineare Funktion g beschrieben werden.

 $t \dots$ Zeit in Jahren mit t = 0 für das Jahr 1999

g(t) ... Reisedauer im Jahr t in Tagen

1) Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion g auf.

[0/1 P.]

In der nachstehenden Abbildung sind die Tabellenwerte als Punkte eingezeichnet.

2) Zeichnen Sie in der obigen Abbildung den Graphen von g ein.

[0/1 P.]

3) Argumentieren Sie mithilfe des Korrelationskoeffizienten, dass g ein geeignetes Modell zur Beschreibung der Reisedauer ist. [0/1 P.]

Für das Jahr 2019 wurde eine tatsächliche Reisedauer von 12,3 Tagen ermittelt.

4) Ermitteln Sie den Betrag des absoluten Fehlers, der entsteht, wenn anstelle der tatsächlichen Reisedauer für das Jahr 2019 der Funktionswert für das Jahr 2019 verwendet wird.

b) In einer anderen Studie wird untersucht, ob das Reiseziel im Inland (Inlandsreise) oder im Ausland (Auslandsreise) liegt.

Der prozentuelle Anteil der Inlandsreisen an der Gesamtzahl aller Reisen im jeweiligen Jahr kann durch die Funktion *f* beschrieben werden.

$$f(t) = a \cdot e^{-\lambda \cdot t} + b$$

 $t \dots$ Zeit in Jahren mit t = 0 für das Jahr 1954

f(t) ... Anteil der Inlandsreisen im Jahr t in %

 $a, b, \lambda \dots$ Parameter

In der nachstehenden Abbildung ist der Graph der Funktion f dargestellt.

1) Geben Sie die Parameter a und b an.

a =

$$b = [0/1 P.]$$

2) Ermitteln Sie mithilfe des eingezeichneten Punktes P den Parameter λ . [0/1 P.]

Die Gesamtzahl aller Reisen setzt sich aus der Anzahl der Inlandsreisen und der Anzahl der Auslandsreisen zusammen.

Der prozentuelle Anteil der Auslandsreisen an der Gesamtzahl aller Reisen im jeweiligen Jahr kann durch die Funktion *h* beschrieben werden.

3) Skizzieren Sie in der obigen Abbildung den Graphen der Funktion h. [0/1 P.]

c) Die Anzahl der Busreisenden bei einer bestimmten Reise kann als normalverteilt mit der Standardabweichung σ angenommen werden. Mithilfe einer Zufallsstichprobe vom Umfang n mit dem Stichprobenmittelwert \bar{x} wurde der nachstehende zweiseitige Vertrauensbereich für den Erwartungswert dieser Normalverteilung ermittelt.

$$\bar{x} \pm 2.5 \cdot \frac{\sigma}{\sqrt{n}} = [40; 50]$$

1) Ordnen Sie den beiden Größen jeweils den richtigen Wert aus A bis D zu.

σ	
n	

А	16
В	4
С	6
D	9