

Библиотеки визуализации данных Matplotlib, Seaborn, Altair.

Библиотеки визуализации (Visualization Libraries)

Способность создавать легко понятные, но сложные графики жизненно важна для того, чтобы стать успешным специалистом по анализу данных. Создание визуализаций - отличный способ рассказать историю, лежащую в основе ваших данных. Визуализации выделяют взаимосвязи в данных и раскрывают информацию, видимую человеческому глазу, которую нельзя передать только числами и цифрами.

Визуализации можно создавать несколькими способами:

- Matplotlib
- Pandas (через Matplotlib)
- Seaborn
- Statistically-focused plotting methods
- Global preferences incorporated by Matplotlib
- Plotly, Plotly Express и др.

Scatter plots могут быть созданы из Pandas Series (Scatter plots can be created from Pandas Series)

Code

Scatter plots могут быть созданы из Pandas Series (Scatter plots can be created from Pandas Series)

Code

ls = '', marker='o')

Также можно добавить несколько слоев данных (Multiple layers of data can also be added)

Code

Также можно добавить несколько слоев данных (Multiple layers of data can also be added)

Code

Histograms with Matplotlib

Создание гистограмм (Histograms can be created from Pandas Series)

Code

Output

plt.hist(data.sepal_length, bins=25)

Histograms with Matplotlib

Histograms can be created from Pandas Series

Code

plt.hist(data.sepal_length, bins=25)

Hacтройка (Customizing) Matplotlib Plots

Каждую функцию графиков Matplotlib можно настроить (Every feature of Matplotlib plots can be customized)

Code

Использование статистических вычислений (Incorporating Statistical Calculations)

Статистические расчеты могут быть включены с помощью методов Pandas (Statistical calculations can be included with Pandas methods)

Code

Incorporating Statistical Calculations

Statistical calculations can be included with Pandas methods

Code

Statistical Plotting with Seaborn

Создание визуализаций совместного распределения и диаграмм рассеяния в seaborn (Joint distribution and scatter plots can be created)

Code

Statistical Plotting with Seaborn

Создание визуализаций совместного распределения и диаграмм рассеяния в seaborn (Joint distribution and scatter plots can be created)

Code

Output

import seaborn as sns

Statistical Plotting with Seaborn

Графики попарной корреляции всех переменных в Seaborn (Correlation plots of all variable pairs can also be mad with Seaborn)

Code

sns.pairplot(data, hue='species', size=3)

Altair

Altair - это библиотека Python, предназначенная для статистической визуализации. Оно носит декларативный характер

Как специалисту по анализу данным, Altair позволит вам сосредоточить свое время и больше усилий на ваших данных на их понимании, анализе и визуализации, а не на коде, необходимом для этого. Это означает, что вы можете определить данные и результат, который вы ожидаете увидеть (как должна выглядеть визуализация в конце), и Альтаир автоматически выполнит необходимые манипуляции за вас.

area		

Mark Name

bar

circle

image

line

rect

geoshape

mark_area()

mark bar()

mark line()

mark_rule()

Method

A bar plot. A scatter plot with filled circles.

A scatter plot with image

A filled area plot.

Description

mark_circle() A geographic shape mark_geoshape()

mark_image()

A line plot.

markers.

point mark_point()

A scatter plot with configurable point shapes.

mark_rect()

heatmaps A vertical or horizontal line

rule

spanning the axis.

mark_square() square

A scatter plot with filled squares. A scatter plot with points

A filled rectangle, used for

tick

text mark_text() represented by text. A vertical or horizontal tick mark. mark_tick()

редактор: @jarovco

Altair in Python: Data Visualizations

Визуализации данных в Python с помощью Altair

```
!pip install altair vega datasets
import pandas as pd
import altair as alt
# Importing the Vega Dataset
from vega datasets import data as vega data
movies df = pd.read json(vega data.movies.url)
# Checking the type of data that we get
print("movies df is of the type: ", type(movies df))
print("movies df: ",
movies df.shape
```

```
movies df is of the type: <class
'pandas.core.frame.DataFrame'>
movies df: (3201, 16)
```

Altair in Python: Data Visualizations

Визуализации данных в Python с помощью Altair

Code

```
alt.Chart(movies_2000).mark_
point().encode(
alt.X('Production_Budget'),
alt.Y('Worldwide Gross'))
```


Altair in Python: Data Visualizations

Визуализации данных в Python с помощью Altair

Code

```
alt.Chart(movies 2000).mark point
(filled=True).encode(
alt.X('Production Budget'),
alt.Y('Worldwide Gross'),
alt.Size('US Gross'),
alt.Color('Major Genre'),
alt.OpacityValue(0.7), tooltip =
[alt.Tooltip('Title'),
alt.Tooltip('Production Budget'),
alt. Tooltip ('Worldwide Gross'),
alt.Tooltip('US Gross') ]
).interactive()
```


