

Actividad 1

Elias Guerra Pensado A01737354 19 de Febrero del 2024

Fundamentación de Robótica Alfredo García Suárez

Cálculo de la Velocidad Lineal y Angular del Manipulador

En este reporte se explica el procedimiento para obtener los vectores de velocidad lineal y angular de un manipulador robótico con dos grados de libertad (GDL), basado en la configuración de la imagen proporcionada.

1. Modelo Cinemático del Manipulador

El sistema consiste en dos articulaciones rotacionales con coordenadas articulares q1 y q2, y longitudes de eslabón 11 y 12. Se establece la posición de cada articulación en función de los ángulos de giro y la longitud de los eslabones.

Para cada articulación, la posición del extremo del eslabón se expresa como:

$$P_1 = egin{bmatrix} l_1 \cos(q_1) \ l_1 \sin(q_1) \ 0 \end{bmatrix}, \quad P_2 = egin{bmatrix} l_1 \cos(q_1) + l_2 \cos(q_1 + q_2) \ l_1 \sin(q_1) + l_2 \sin(q_1 + q_2) \ 0 \end{bmatrix}$$

2. Cálculo del Jacobiano

Para determinar la velocidad del extremo del manipulador, se emplea el Jacobiano, que relaciona las velocidades articulares con la velocidad lineal y angular:

$$\dot{P}=J_v\dot{Q},\quad \omega=J_w\dot{Q}$$

El Jacobiano se obtiene de manera analítica considerando:

- Jacobiano lineal J_v: Se calcula derivando la posición del extremo respecto a cada coordenada articular.
- Jacobiano angular J_w: Para articulaciones rotacionales, cada columna de J_w corresponde a los ejes de rotación de cada articulación.

Las expresiones resultantes son:

$$J_v = egin{bmatrix} -l_1\sin(q_1) - l_2\sin(q_1+q_2) & -l_2\sin(q_1+q_2) \ l_1\cos(q_1) + l_2\cos(q_1+q_2) & l_2\cos(q_1+q_2) \ 0 & 0 \end{bmatrix}$$

$$J_w = egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 1 \end{bmatrix}$$

3. Cálculo de las Velocidades

Las velocidades del extremo del manipulador se obtienen mediante:

$$V=J_vegin{bmatrix} \dot{q}_1\ \dot{q}_2 \end{bmatrix},\quad W=J_wegin{bmatrix} \dot{q}_1\ \dot{q}_2 \end{bmatrix}$$

Donde V es la velocidad lineal y W la velocidad angular.

4. Conclusión

El análisis permite determinar de manera precisa las velocidades lineal y angular del extremo del manipulador en función de las velocidades articulares. Estos resultados son fundamentales para el control y análisis del comportamiento dinámico del sistema.