Task 3 – Network Packet Sniffing and Analysis

Objective:

Capture and analyze network traffic to demonstrate broadcast and unicast behavior, HTTP/HTTPS communication, and associated network-level security risks.

Tools & Setup:

- Wireshark (Windows)
- Interface: Active Ethernet/Wi-Fi interface
- Filters Applied:
 - o arp → ARP broadcast requests
 - o eth.dst == ff:ff:ff:ff:ff:ff → broadcast packets
 - !eth.dst == ff:ff:ff:ff:ff:ff → unicast packets
 - http.request → HTTP traffic
 - o tls / tcp.port == 443 → HTTPS traffic
- Environment: Lab machine, connected to local network; VPN disabled to observe unencrypted traffic.

PoC Procedure & Observations:

- 1. Broadcast Traffic ARP Request
 - Action: Triggered ARP broadcast packets by running the arp command in Windows while capturing in Wireshark.
 - o Captured Packet:

Frame 20180: 42 bytes

Src MAC/IP: ac:74:b1:XX:XX:XX / 192.168.1.6
Dst MAC/IP: FF:FF:FF:FF:FF:FF / 192.168.1.255

Protocol: ARP Request

- Analysis:
 - Broadcast packet sent to all devices on LAN.
 - Demonstrates network discovery at Layer 2.
 - VAPT Relevance: Potential for reconnaissance and ARP spoofing attacks.

2. Unicast Traffic – HTTP Request

Captured Packet:

Frame 19193: 361 bytes

Src MAC/IP: ac:74:b1:XX:XX:XX / 192.168.1.6
Dst MAC/IP: 24:de:8a:3d:8b:e1 / 34.107.221.82

Protocol: TCP / HTTP GET /canonical.html

Analysis:

- Sent to a specific server (unicast).
- HTTP headers and URL are unencrypted.
- VAPT Relevance: Demonstrates data exposure risks on unencrypted channels.

3. Encrypted Traffic – HTTPS / TLS

Captured Packet:

Protocol: TLS 1.3 handshake Src/Dst IPs visible; payload encrypted

Analysis:

- o Content is encrypted; only metadata visible.
- VAPT Relevance: Shows protection against eavesdropping and MITM attacks.

Key VAPT Insights:

- 1. Broadcast packets reveal active hosts and MAC addresses (network mapping).
- 2. HTTP unicast packets show plaintext data exposure.
- 3. TLS/HTTPS protects sensitive information.
- 4. Hands-on exercise reinforces Layer 2/3 traffic, network discovery, and capture techniques.

Conclusion:

This PoC demonstrates practical packet sniffing and analysis using Wireshark, highlighting broadcast vs unicast traffic, HTTP exposure, and TLS protection. Provides a clear understanding of network-level risks and the importance of securing communication channels for VAPT exercises.

tcpdump Observations (Linux, eth0)

Command Used:

sudo tcpdump -i eth0 -vv -n -c 20

```
He man (int) — [-]

Hey man (int) — (i
```

Analysis:

- **UDP traffic:** Multicast traffic on the network.
- TCP traffic: Unicast communication with external servers.
- ARP traffic: Broadcast request and reply showing LAN discovery.

Practical Takeaways

- 1. Wireshark is excellent for learning, visualizing, and documenting PoC traffic.
- 2. tcpdump is excellent for real-time CLI captures, automation, and remote network analysis.
- 3. Both tools are complementary: you can **capture with tcpdump and analyze with Wireshark**, which is a common VAPT workflow.