AED3

Segunda prova - 03 de maio de 2017

NOME: Gabriel Luciano Gomes

1) Tanto as árvores B+ e quanto as tabelas *hash* dinâmicas são excelentes estruturas de dados para uso como índices. Explique quando devemos usar cada uma delas. (5 pontos)

A nívore B+ deve ser usado em uma pesquiea sequencial, pas os índices estás organizados em lógico binária, possuindo uma rápide movimentação ra estrutura. Por outro lado, a tabela hosh é uma ohma estrutura poro pesquisas aleabrios, pois possui uma função de localização do indice que pode ser encontrado, com pouco mais de 1 veriticação

0

5,0

2) Insira a chave 2 na seguinte árvore B+ de ordem 5:

(2,5 pontos)

C 25

10

4) Acrescente a chave 38, que aponta para um registro no endereço 194 do arquivo de dados, à tabela *hash* extensível abaixo. Para tanto, considere a seguinte função *hash*: (5 pontos)

 $h(k) = k \mod 2^p$ em que p é o número de bits (profundidade) usado no diretório.

	p = 2		posiçã	io	profund.	n	chave	end.	chave	end.	chave	end.
00	0		w≯	0	p'=2	3	8	217	20	567	92	996
01	1	-	-	1	p'=2	2	1	305	65	697		
10	2	-/-	/→	2	p'=2	32	18	372	42	115	94	278
11	3	1	W	3	p'=2	1	35	603				
100	0 /		1	4	P'=3	2	38	194	94	278		
101	1 21 1				-					-		

94 %3 = 6

(

5,0

Crie a árvore de Huffman para o texto ALARAPUCAL PEGOUL ALARARA. Escreva o código binário de cada uma das letras do texto e diga quantos bits serão necessários para armazenar todo o texto. Considere os espaços (L) como caracteres válidos e normais. (5 pontos) C=11100-15bits 6) Apresente a saída do algoritmo de compressão LZW para o texto A Considere que o alfabeto contém todos os 26 caracteres do alfabeto, além do espaço em branco (\Box), e nenhum símbolo a mais. (5 pontos) Α SALDA В Q AP PU C D S Ε F U AL G Н W Υ J Z K UL L LIAL ALL LIAR RAR N