

FRAMELESS MOTORS AND GEARMOT COMBINING SERVO AND GEARING TECHNOLOGIES

Frameless Motor & Gearmotors

Frameless

142 Frameless Kit Motor

Gearmotors

GM Servo Gearmotors

DX Servo Wheel

Pancake Gearmotor

Frameless & Gearmotors: Application Solutions

Stealth Gearmotors for Office Automation

APPLICATION CHALLENGE

A manufacturer of pressure form-folder/sealers, Bri-Lin, had a desire to develop a new product to replace their current table top model. The current model is typically used in the production of W2, wage, and wducation wrade report forms. The success of their new model was dependent on a number of design criteria required for an office setting inclusive of size, quiet operation with little to no maintenance. On the mechanical side, the requirements for speed control and constant torque was a must, but the critical objective of the new model would be a major productivity improvement over the 5,000 to 7,000 forms per hour offered by their present model.

Design Change Criteria:

- Existing machine frame width must be maintained as these models are designed for desktop use utilizing 8½ x 11 inch sheets. To maintain registration and speed control a DC servo is required. A brushless motor would be preferred for low maintenance and a "no dust" environment. This frame size does not accommodate an in-line or right-angle gearbox even if the cost could allow it.
- A gearmotors option would meet the speed/torque and size requirements, but the cable cost and connector size would be an issue.
- Cut the one-month delivery cycle of complete machine in half by utilizing a JIT component supplier with less than two-week lead times.

APPLICATION CHALLENGE

The customer manufactures an auger-filler machine that uses a fluted screw to volumetrically fill a container. The standard framed servomotor was mounted to the screw using a mechanical coupling device, gearbox and timing belt, but this proved unable to provide the performance required in a space-efficient package. When engineers were looking to improve their machine design, the issues they faced were:

Large package size

The motor, together with all the mechanical coupling and reduction devices, took up a lot of space on the machine.

Overtorque and Runout

The timing belts used in this application created a condition of overtorque and runout, which caused the auger screw to rub the side of the funnel.

Reduced System Reliability

These mechanical devices created reliability issues, causing down time and tolerance problems.

APPLICATION CHALLENGE

A major US manufacturer of vehicles was developing a new car powered by electric motors. Since the car had no gas-powered engine to drive the power-assist steering, alternate methods were required. Mechanical gearing was ruled out due to space requirements and standard electric motors would drain the batteries of the vehicle to quickly. The company had a problem and needed a unique, cost-effective solution. The opportunity was as follows:

Reduced Package Size

The unit needed to provide the torque with an effective weight-to-space ratio

Rugged Design

The motor had to operate in stringent "under the hood" conditions

Parker Bayside SOLUTION

GM90-D1A2F Brushless Servo Gearmotors with 10:1 ratio, with flying leads option.

- The Parker Bayside solution provided a cost-effective package of less than 8 inch overall length with a speed/ torque capability that offered a 4 X productivity improvement, raising rates of production to 20,000 forms/hour. The incremental cost was nearly zero with reduced noise and need for routine maintenance. The one-piece gearmotors design with the rotor, sun gear and motor magnets attached reduces the need for multiple seals and bearings. The resulting package of the helical planetary brushless DC gearmotors was a small, quiet, powerful machine that runs clean and cool. The IP65 and stainless steel output shaft also lends itself to wet applications.
- Plans are now underway for the next generation; a 30,000 forms/hour unit on the drawing board utilizing Parker Bayside's next step up in gearmotors frame size, based on the success of the tested 20,000/hour Forms Folder/Sealer.
- ▶ This solution can be used in a variety of applications including:
 - 1. Packaging Industry 2. Printing/Graphics Industry 3. Medical/Pharmaceutical 4. Office Automation

Parker Bayside SOLUTION

(1) Frameless Brushless Motor

- The design problems were solved using a frameless kit motor integrated into the auger drive assembly. This allowed the manufacturer to build a single-shaft system eliminating the problems that existed before. Fewer parts were needed in the design, eliminating the couplings and bearings in the auger assembly. This increased reliability, allowing for higher speeds, accuracy and stiffness.
- Without couplings, timing belts and gearboxes, the customer was able to create a much more compact design.
- ▶ Due to increased reliability, down-time no longer becomes a critical issue for users.
- This solution can be used in packaging applications in the following industries:
 - 1. Consumer products 2.Food Processing 3. Medical/Pharmaceutical

Parker Bayside SOLUTION

- (1) Custom-designed brushless steering pump motor.
- Parker Bayside engineering collaborated with the auto maker and its pump manufacturer and presented various options. The final solution was a custom-designed, high-efficiency motor directly driving the pump. The front mounting flange mated to the pump surface and formed the back end housing of the pump. A zer-porousity surface was therefore required for proper sealing. The housing was designed from an extrusion to minimize cost and maximize yield and was formed to plug into a unique low-profile drive/controller design. The stator was custom designed to operate at its highest efficiency point on a 48 volt DC bus.
- ▶ The solution was designed using (FEMA) "Failure effect mode analysis" methodology and put into manufacturing in record time.
- ▶ The efficiency of the motor assisted in providing maximum battery life for the vehicle.
- lacktriangle The motor was brushless and therefore required no maintenance.
- ▶ The motor was designed to configurable for standard gas vehicles.

Frameless Kit Motor overview

- The frameless motor allows for direct integration with a mechanical transmission device, eliminating parts that add size, complexity, response and settling time.
- The design engineer is not constrained to the mounting interface and shaft dimensions of a typical framed motor.
- The frameless motor offering comes in a wide range of sizes ranging from 32mm to 254mm in diameter providing a continuous torque from 0.04 Nm to 58 Nm (see below).
- Custom frame sizes are available for OEM applications.

Traditional Coupled Motor

Integrated Frameless Kit Motor

Frameless Kit Motor Torque Range

_	Stack Range		Continuous		Peak	
Frame			Torque		Torque	
Size	(mm)	(in)	(Nm)	(oz-in)	(Nm)	(oz-in)
K032	6.35 to 50.8	0.25 to 2.00	0.044 to 0.22	6.3 to 31.1	0.095 to 0.654	13.5 to 93.4
K044	6.35 to 50.8	0.25 to 2.00	0.119 to 0.607	17 to 86	0.357 to 1.820	50 to 258
K064	6.35 to 50.8	0.25 to 2.00	0.31 to 2.16	44.3 to 308	0.93 to 6.47	133 to 924
K089	6.35 to 50.8	0.25 to 2.00	1.307 to 4.291	186.7 to 613	3.92 to 12.87	560 to 1,839
K375	6.35 to 50.8	0.25 to 2.00	1.715 to 4.935	245 to 705	5.14 to 14.82	734 to 2,117
K127	12.7 to 50.8	0.50 to 2.00	3.94 to 11.75	563 to 1,678	11.83 to 35.24	1,690 to 5,034
K500	12.7 to 50.8	0.50 to 2.00	3.05 to 9.44	435 to 1,349	9.14 to 28.32	1,306 to 4,046
K178	12.7 to 50.8	0.50 to 2.00	10.12 to 30.7	1,445 to 4,386	16.18 to 49.12	2,312 to 7,017
K700	12.7 to 50.8	0.50 to 2.00	5.05 to 17.52	722 to 2,503	8.09 to 28.03	1,155 to 4,004
K254	12.7 to 50.8	0.50 to 2.00	18.78 to 58.35	2,683 to 8,336	30.04 to 93.37	4,292 to 13,338

Build Your Own High-Performance Motor

The frameless kit motors are ideal solutions for machine designs that require high performance in small spaces. The kit motors approach allows for direct integration with a mechanical-transmission device, eliminating parts that add size and complexity. The use of frameless kit motors results in a smaller, more reliable motor package.

When to Use:

- A significant cost savings
- Reduced mechanical complexity
- Greater design flexibility
- High performance in a compact package
- Improved dynamic response and settling
- Minimum motor size per application space
- Low cogging for smooth operation
- Low inertia for high acceleration

Applications:

- Automotive
- ▶ Machine tool
- ▶ Material handling
- ▶ Packaging

What goes into our Frameless Kit Motors...

Our direct drive brushless kit motors consist of three components:

- The stator and winding
- ▶ The rotor with high energy product neodymium magnets
- ▶ Hall sensor device for motor commutation

What comes out of our Frameless Kit Motors...

- ▶ High Torque from 0.06 Nm (0.5 in lb) to 9.7 Nm (85.6 in lb)
- ▶ High Speeds up to 50,000 RPM
- Superior Performance high stiffness and better response
- High Reliability no mechanical transmission devices (couplings, flanges)
- ▶ Compact Design minimizes product size
- Low Cogging unique magnetic circuit design decreases cogging

Pre-installed Integral Commutation Board

with Hall effects is prealigned for easy assembly. Motor and feedback as integrated unit.

2 Rare Earth Magnets

provide high-flux in a small volume, high resistance to thermal demagnetizing.

3 Rotor Assembly

for easy mounting directly on the drive shaft with or without keyway.

4 | Machined Grooves

to securely lock magnets to rotor and ensures optimized radial location.

Class H Insulation

for high-temperature operation (up to 155°C) meeting UL approved requirements.

6 High-Density Copper Winding

for low thermal resistance and consistent performance across all motors.

7 Minimized End Turns

to maximize performance. Formed to minimize motor size.

Skewed Laminations

with odd slot counts reduce cogging for precise rotary motion with drastically reduced torque ripple even at low speeds.

9 Optimized Slot Fill

8

for maximum torque-to-size ratio; hand inserted to obtain highest slot fill possible maximizing ampere-turns.

Performance Specifications (six step/trapezoidal commutation)

Frame Size	Sta Len	ick gth	Torq	nuous ue ⁽¹⁾	Тоі	eak rque	Mo Cons K _r	tant	Core Loss	Ine	otor rtia m	Electrical Time Constant	Thermal Resistance		/ eight Vm
	(mm)	(in)	(Nm)	(oz in)	(Nm)	(oz in)	(Nm /√W)	(oz in /√W)	W @1kRPM	(gm cm sec²)		(msec)	(^O C / W)	(kg)	(oz)
K032025	6.35	0.25	0.044	6.3	0.095	13.5	0.009	1.25	0.03	0.0016	0.000022	0.21	3.44	0.042	1.5
K032050	12.7	0.5	0.08	11.4	0.188	27	0.016	2	0.06	0.0032	0.000045	0.35	3.44	0.068	2.4
K032075	19.05	0.75	0.11	15.7	0.281	40	0.022	3	0.09	0.0048	0.000067	0.44	3.44	0.096	3.4
K032100	25.4	1	0.136	19.4	0.375	54	0.027	4	0.12	0.0064	0.000089	0.5	3.44	0.122	4.3
K032150	38.1	1.5	0.181	25.8	0.544	77.7	0.036	5.15	0.18	0.0096	0.000134	0.6	3.44	0.173	6.1
K032200	50.8	2	0.22	31.1	0.654	93.4	0.044	6.25	0.24	0.013	0.000178	0.66	3.44	0.26	9.2
K032300	76.2	3	0.33	46.5	0.99	139.5	0.054	7.56	0.36	0.0192	0.000268	0.7	3.44	0.36	12.8
K044025	6.35	0.25	0.119	17	0.357	50	0.02	3	0.11	0.0072	0.0001	0.39	2.36	0.085	3
K044050	12.7	0.5	0.214	30.6	0.642	90	0.035	5	0.24	0.014	0.0002	0.62	2.36	0.133	5
K044075	19.05	0.75	0.297	42.4	0.891	127	0.049	7	0.37	0.022	0.0003	0.76	2.36	0.200	7
K044100	25.4	1	0.364	52	1.092	156	0.06	9	0.49	0.03	0.00041	0.89	2.36	0.224	8
K044150	38.1	1.5	0.501	71	1.510	213	80.0	11.4	0.74	0.044	0.00061	1.05	2.36	0.311	11
K044200	50.8	2	0.607	86	1.820	258	0.097	13.8	1.11	0.06	0.00082	1.12	2.36	0.399	14.1
K044300	76.2	3	0.96	136.0	2.88	408	0.13	18.3	1.48	0.088	0.00122	1.3	2.36	0.549	19.4
K064025	6.35	0.25	0.31	44.3	0.93	133	0.048	6.88	0.37	0.046	0.00064	0.59	1.68	0.142	5
K064050	12.7	0.5	0.62	89	1.87	267	0.087	12.48	0.78	0.092	0.00128	0.98	1.68	0.286	10.1
K064075	19.05	0.75	0.85	121.7	2.56	365	0.122	17.44	1.19	0.138	0.00192	1.26	1.68	0.427	15.1
K064100	25.4	1	1.08	154	3.23	462	0.15	21.44	1.6	0.184	0.00256	1.47	1.68	0.572	20.2
K064150	38.1	1.5	1.46	209	4.39	627	0.204	29.12	2.37	0.276	0.00384	1.77	1.68	0.846	30.2
K064200	50.8	2	2.16	308	6.47	924	0.244	34.88	3.23	0.369	0.00512	1.97	1.68	1.129	40.3
K064300	76.2	3	2.91	410	8.73	1,230	0.33	46.6	4.74	0.552	0.00768	2.6	1.68	1.701	60.5
K089050	12.7	0.5	1.307	186.7	3.92	560	0.164	23.36	2.14	0.38	0.00528	1.26	1.02	0.498	17.6
K089075	19.05	0.75	1.96	280	5.88	840	0.235	33.6	3.35	0.576	0.008	1.64	1.02	0.747	26.4
K089100	25.4	1	2.618	374	7.84	1,120	0.283	40.64	4.42	0.792	0.0011	1.92	1.02	0.996	35.2
K089150	38.1	1.5	3.92	560	11.76	1,680	0.381	54.4	6.7	1.15	0.016	2.33	1.02	1.494	52.8
K089200	50.8	2	4.291	613	12.87	1,839	0.466	66.56	8.95	1.51	0.021	2.6	1.02	1.992	70.4
K089300	76.2	3	7.13	1,004	21.4	3,012	0.631	88.9	13.4	2.30	0.032	2.9	1.02	3.00	105.6

^{(1) =} Housed in a motor frame.

Frame Size		ack ngth	Contin Torqu	e ⁽¹⁾	Tor	eak rque	Cor	lotor nstant	Core Loss	Ine		Electrical Time Constant	Thermal Resistance		ight
			T _C	;	1	Г _р		K _m	P _C	J _t	n	T _C		W	/m
	(mm)	(in)	(Nm)	(oz in)	(Nm)	(oz in)	(Nm /√W)	(oz in /√W)	W@1kRPM	(gm cm sec²)	(oz in sec ²)	(msec)	(OC / W)	(kg)	(oz)
K375050	12.7	0.5	1.715	245	5.14	734	0.153	21.8	1.2	0.324	0.0045	1.45	1.02	0.611	21.6
K375075	19.05	0.75	2.401	343	7.19	1,027	0.213	30.4	1.8	0.497	0.0069	1.9	1.02	0.917	32.4
K375100	25.4	1	3.003	429	9	1,286	0.267	38.1	2.4	0.655	0.0091	2.24	1.02	1.095	38.7
K375150	38.1	1.5	4.025	575	12.6	1,723	0.357	51	3.6	1.01	0.014	2.68	1.02	1.554	54.9
K375200	50.8	2	4.935	705	14.82	2,117	0.438	62.6	4.8	1.30	0.018	3.03	1.02	2.02	71.1
K375300	76.2	3	6.69	942	20.1	2,826	0.592	83.4	7.2	2.02	0.028	3.5	1.02	2.94	103.5
K127050	12.7	0.5	3.94	563	11.83	1,690	0.29	41.4	4.7	1.15	0.016	2.38	0.7	1.087	38.4
K127100	25.4	1	6.98	997	21.04	3,006	0.513	73.3	9.6	2.38	0.033	3.7	0.7	1.766	62.4
K127150	38.1	1.5	9.56	1,365	28.66	4,094	0.702	100.3	14.5	3.53	0.049	4.6	0.7	2.355	83.2
K127200	50.8	2	11.75	1,678	35.24	5,034	0.864	123.4	19.4	4.75	0.066	5.23	0.7	2.99	105.6
K127300	76.2	3	16.1	2,263	48.3	6,789	1.18	166.1	29.0	7.06	0.098	6.1	0.7	3.65	147.2
K500050	12.7	0.5	3.05	435	9.14	1,306	0.224	32	1.6	1.15	0.016	2.6	0.7	1.087	38.4
K500100	25.4	1	5.49	784	16.46	2,352	0.403	57.6	3	2.30	0.032	4.5	0.7	1.766	62.4
K500150	38.1	1.5	7.92	1,131	23.76	3,394	0.582	83.2	4.8	3.46	0.048	6	0.7	2.355	83.2
K500200	50.8	2	9.44	1,349	28.32	4,046	0.694	99.2	6.4	4.61	0.064	6.4	0.7	2.988	105.6
K500300	76.2	3	15.4	2,170	46.2	6,510	1.13	159.3	8.6	6.92	0.096	8.0	0.7	4.18	147.2
K178050	12.7	0.5	10.12	1,445	16.18	2,312	0.627	89.6	9.1	4.75	0.066	4.16	0.5	2.4	84.8
K178100	25.4	1	18.06	2,580	28.89	4,127	1.12	160	18.7	9.36	0.13	6.54	0.5	3.71	131.2
K178150	38.1	1.5	24.75	3,535	39.59	5,655	1.534	219	14.4	14.4	0.2	8.15	0.5	4.98	176
K178200	50.8	2	30.7	4,386	49.12	7,017	1.904	272	18.7	18.7	0.26	9.31	0.5	6.34	224
K178300	76.2	3	43.1	6,078	69.0	9,724	2.68	377	28.8	28.8	0.4	12.2	0.5	8.90	313.6
K700050	12.7	0.5	5.05	722	8.09	1,155	0.314	44.8	7.70	7.7	0.107	2.9	0.4	2.4	84.8
K700100	25.4	1	9.57	1,367	15.32	2,188	0.594	84.8	15.4	15.4	0.214	5	0.4	3.71	131.2
K700150	38.1	1.5	13.55	1,935	21.67	3,096	0.84	120	23.2	23.2	0.322	6.8	0.4	4.98	176
K700200	50.8	2	17.52	2,503	28.03	4,004	1.086	155.2	30.9	31	0.429	8.5	0.4	6.34	224
K700300	76.2	3	27.5	3,876	44.0	6,200	1.53	215	46.4	46.4	0.644	10.7	0.4	8.91	313.6
K254050	12.7	0.5	18.78	2,683	30.04	4,292	1.043	149	17.9	17.9	0.248	6.05	0.4	4.48	158.4
K254100	25.4	1	33.92	4,846	54.27	7,753	1.883	269	35.5	35.5	0.493	9.63	0.4	6.79	240
K254150	38.1	1.5	46.84	6,692	74.95	10,707	2.597	371	53.1	53.1	0.738	12.5	0.4	9.056	320
K254200	50.8	2	58.35	8,336	93.37	13,338	3.234	462	71.0	71	0.986	14.7	0.4	11.32	400
K254300	76.2	3	80.9	11,400	129.4	18,240	4.49	632	106.2	106	1.478	18.0	0.4	15.9	560

(1) = Housed in a motor frame. Typically an aluminum cylinder with 6.35mm (0.250in) thick walls, K375, K127 and K500 mounted to a 305mm x 305mm x 12.5mm (12in x 12in x 0.5in) aluminum plate. K178, K700 and K254 mounted to a 406mm x 406mm x 12.5mm (16in x 16in x 16

Pole Count: K127 & K375 are 12 K700 & K500 are 8 K178 & K254 are 18

Dimensions

Stator Outline

	А		ı	3	C	;		D	ı	E		F
Frame	0.0).		Turns .D.	End T		I.	D.	End ⁻ Len		Comm Len	
Size	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
K032	31.78	1.251	27.94	1.1	16.51	0.65	15.06	0.593	6.4	0.25	14.5	0.57
1.002	31.75	1.25					14.8	0.583				
K044	44.48	1.751	40.64	1.6	26.16	1.03	22.35	0.88	7.9	0.31	16.5	0.65
1.0 1 1	44.42	1.749					22.09	0.87				
K064	63.52	2.501	60.7	2.39	38.1	1.5	35.18	1.385	9.65	0.38	17.5	0.69
1004	63.47	2.499					34.92	1.375				
K089	88.92	3.501	85.8	3.38	54.6	2.15	53.47	2.105	9.91	0.39	17.5	0.69
1,000	88.87	3.499					53.21	2.095				
K375	95.28	3.751	88.9	3.5	53.32	2.06	50.93	2.005	12.7	0.5	19.5	0.77
1.070	95.22	3.749					50.67	1.995				
K127	127.02	5.001	122.17	4.81	74.17	2.92	72.49	2.854	12.7	0.5	19.5	0.77
11127	126.97	4.999					72.23	2.844				
K500	127.05	5.002	115.32	4.54	70.6	2.78	68.2	2.685	20.5	0.81	30.5	1.2
11000	126.95	4.998					67.94	2.675				
K178	177.88	7.003	172.72	6.8	111.51	4.39	110.64	4.355	20.3	0.8	*	
	177.72	6.997					110.38	4.345				
K700	177.88	7.003	158.24	6.23	117.6	4.63	115.19	4.535	18.8	0.74	*	
117.00	177.72	6.997					114.93	4.525				
K254	254.07	10.003	253.26	9.971	165.1	6.5	157.61	6.205	19.6	0.77	*	
1007	253.92	9.997					157.35	6.195				

^{*}integral commutation not available

Rotor Outline

		G		Н		I	к
Frame	Roto	r O.D.	Roto	or I.D.		ion Magnet ngth	Rotor Length
Size	(mm)	(in)	(mm)	(in)	(mm)	(in)	
Kooo	13.94	0.549	7.62	0.3	13.21	0.52	without Commutation:
K032	13.89	0.547	7.59	0.299			K = Stack Length + 0.76mm (0.030in)
V044	21.23	0.836	13.97	0.55	14.73	0.58	
K044	21.18	0.834	13.94	0.549			with Commutation:
VOC4	34.04	1.34	23.52	0.926	16.51	0.65	K = Stack Length + I + 0.76mm (0.030in)
K064	33.98	1.338	23.49	0.925			
1/000	51.84	2.041	40.64	1.6	16.71	0.66	
K089	51.79	2.039	40.61	1.599			
V07F	49.28	1.94	38.1	1.5	19.56	0.77	
K375	49.15	1.935	38.07	1.499			
V407	71.15	2.801	58.42	2.3	19.56	0.77	
K127	71.09	2.799	58.39	2.299			
WEOO.	66.54	2.62	50.83	2.001	28.52	1.12	
K500	66.5	2.618	50.8	2			
	109.2	4.292	95.76	3.77	*		
K178	108.9	4.29	95.73	3.769			
	113.54	4.47	95.25	3.75	*		
K700	113.49	4.468	95	3.74			
	156.16	6.148	140.46	5.53	*		
K254	156.11	6.146	140.44	5.529			

^{*}integral commutation not available

Frameless Motor Series

Winding Selection

The selection of a particular frame size and winding for an application is dependent on:

Volume (diameter and length) requirement Power (torque and speed) requirement Voltage and current available or required

The first two items are dependent on the load and performance specifications of the application. They result in the selection of a particular frame size (032 through 254) and stack length.

The winding to be used will then be determined by voltage and current available or required.

Voltage: The bus voltage and maximum speed will

approximately determine the required voltage

constant (K_E).

Current: The maximum load and acceleration will determine

the amount of current required, determined by the torque constant $(\mbox{\rm K}_{\mbox{\scriptsize T}})$ associated with the selected

voltage constant.

Example: Assume a requirement of 1,000 RPM at 50 oz in

If a motor with a particular winding having $K_E=18.24\ V/1,000\ RPM$ and $K_T=24.62\ oz\ in/amp$ is chosen, it will now require a voltage (BEMF) of 18 volts and current of 2 amp.

NOTE: K_E and K_T are directly proportional to each other.

Increasing K_E will also increase K_T ; Decreasing K_E

will also decrease K_T.

The result is that as the voltage requirement changes,

the current requirement changes inversely.

Parker Bayside has a range of **27** windings available for each frame size and stack length, providing for virtually any practical combination of voltage and current required for your application.

The following pages show just a small representative sample of speed/torque curves for each of the 10 frame sizes available.

For the 044, 064, 089 and 127 frame sizes, the speed/torque curves are for stators that are used in the standard BM / GM motor products.

They make a good starting point for determining your specific application requirements and working with Parker Bayside application engineers to choose the proper motor size and power.

The following table lists the range of K_{E} and K_{T} available for each of the 10 frame sizes.

Detailed information for all these windings can be found on the web site: www.baysidemotion.com or www.parkermotion.com

Frame	Stack	Range	K _E Ra	ange	K _T Ra	ange
Size	(mm)	(in)	(V/1,000 RPM)	(V/rad/sec)	(Nm/amp)	(oz in/amp)
K032	6.35 to 50.8	0.25 to 2.00	0.14 to 65.52	0.0013 to 0.625	0.0013 to 0.625	0.18 to 88.45
K044	6.35 to 50.8	0.25 to 2.00	0.28 to 126.3	0.0027 to 1.2	0.0027 to 1.2	0.38 to 170.6
K064	6.35 to 50.8	0.25 to 2.00	0.66 to 291.8	0.0063 to 2.78	0.0063 to 2.78	0.89 to 394
K089	6.35 to 50.8	0.25 to 2.00	1.35 to 605	0.013 to 5.77	0.013 to 5.77	1.83 to 817
K375	6.35 to 50.8	0.25 to 2.00	1.27 to 566	0.012 to 5.40	0.012 to 5.40	1.71 to 765
K127	12.7 to 50.8	0.50 to 2.00	3.73 to 827	0.036 to 7.88	0.036 to 7.88	5.04 to 1116
K500	12.7 to 50.8	0.50 to 2.00	3.38 to 714	0.032 to 6.81	0.032 to 6.81	4.56 to 964
K178	12.7 to 50.8	0.50 to 2.00	8.26 to 1716	0.079 to 16.4	0.079 to 16.4	11.18 to 2,323
K700	12.7 to 50.8	0.50 to 2.00	4.14 to 872	0.039 to 8.31	0.039 to 8.31	5.59 to 1,177
K254	12.7 to 50.8	0.50 to 2.00	11.44 to 2,537	0.109 to 24.2	0.109 to 24.2	15.5 to 3,425

NOTE: Longer stacks and special windings are available. Call 1-800-305-4555

K032150-7Y

K044150-FY

$$\begin{split} \text{K}_{\text{T}} &= \textbf{0.28 Nm / amp} \text{ (39.6 oz-in / amp)} & \text{R}_{\text{T-T}} &= 11.8 \ \Omega & \text{I}_{\text{cont}} &= 2 \text{ amp} \\ \text{K}_{\text{E}} &= \textbf{0.28 v / rad / sec} \text{ (29.3 V / kRPM)} & \text{L}_{\text{T-T}} &= 12.5 \text{ mH} & \text{I}_{\text{peak}} &= 6 \text{ amp} \\ \text{E}_{\text{BUS}} &= 160 \text{ Vdc} \end{split}$$

K044300-8Y

Torque

10 20 30 40 50 60 70 80 (oz in)

$$\begin{split} R_{\text{T-T}} &= 4.8 \; \Omega \qquad \quad I_{\text{cont}} = 3 \; \text{amp} \\ L_{\text{T-T}} &= 6.2 \; \text{mH} \qquad I_{\text{peak}} = 9 \; \text{amp} \end{split}$$

 $I_{peak} = 9 \text{ amp}$ $E_{BUS} = 160 \text{ Vdc}$

K064150-8Y

 $K_T = 0.33 \text{ Nm / amp} (46.1 \text{ oz-in / amp})$ $K_F = 0.33 \text{ v / rad / sec} (34.1 \text{ V / kRPM})$

 $R_{T-T} = 2.5 \Omega$ $L_{T-T} = 4.5 \text{ mH}$ $I_{cont} = 6 \text{ amp}$ $I_{peak} = 18 \text{ amp}$ $E_{BUS} = 160 \text{ Vdc}$

K064300-6Y

 $K_T = 0.42 \text{ Nm / amp} (59.9 \text{ oz-in / amp})$ $K_F = 0.42 \text{ v / rad / sec} (44.3 \text{ V / kRPM})$ $R_{T-T} = 1.6 \Omega$ $L_{T-T} = 3.8 \text{ mH}$

1200

1400 (oz in)

 $I_{cont} = 7 \text{ amp}$ $I_{peak} = 21 \text{ amp}$

 $\dot{E}_{BUS} = 160 \text{ Vdc}$

5 4 4 3 3 2 2 1 Continuous intermittent 0 0 1 2 3 4 5 6 7 8 9 10 (Nm)

600

800

Torque

1000

400

200

K375150-6Y

 $K_T = 0.41 \text{ Nm / amp} (57.92 \text{ oz-in / amp})$ $K_F = 0.41 \text{ v / rad / sec} (47.82 \text{ V / kRPM})$

 $R_{T-T} = 1.21 \Omega$ $L_{T-T} = 3.45 \text{ mH}$ $I_{cont} = 10 \text{ amp}$ $I_{peak} = 30 \text{ amp}$

 $E_{BUS} = 160 \text{ Vdc}$

Speed (KRPM)

Speed (KRPM)

2

0

continuous

10 20

K089150-6Y

$$\begin{split} & \text{K}_{\text{T}} = \textbf{0.43 Nm / amp} \text{ (61.6 oz-in / amp)} & \text{R}_{\text{T-T}} = 1.2 \ \Omega & \text{I}_{\text{cont}} = 11 \text{ amp} \\ & \text{K}_{\text{E}} = \textbf{0.43 v / rad / sec} \text{ (45.6 V / kRPM)} & \text{L}_{\text{T-T}} = 2.9 \text{ mH} & \text{I}_{\text{peak}} = 33 \text{ amp} \end{split}$$

K089300-4Y

$$\begin{split} & \text{K}_{\text{T}} = \textbf{0.54 Nm / amp} \; (75.8 \; \text{oz-in / amp}) & \text{R}_{\text{T-T}} = 0.73 \; \Omega & \text{I}_{\text{cont}} = 15 \; \text{amp} \\ & \text{K}_{\text{E}} = \textbf{0.54 v / rad / sec} \; (56.1 \; \text{V / kRPM}) & \text{L}_{\text{T-T}} = 2.2 \; \text{mH} & \text{I}_{\text{peak}} = 45 \; \text{amp} \end{split}$$

K127250-4Y

K127500-3Y

Torque

mH I_{peak} = 72 amp E_{BUS} = 300 Vdc

K500150-5Y

$$\begin{split} \text{K}_{\text{T}} &= \textbf{0.45 Nm / amp} \text{ } (63.78 \text{ oz-in / amp}) & \text{R}_{\text{T-T}} &= 0.49 \text{ } \Omega & \text{I}_{\text{cont}} &= 18 \text{ amp} \\ \text{K}_{\text{E}} &= \textbf{0.45 v / rad / sec} \text{ } (47.19 \text{ V / kRPM}) & \text{L}_{\text{T-T}} &= 2.72 \text{ mH} & \text{I}_{\text{peak}} &= 53 \text{ amp} \\ & \text{E}_{\text{RIS}} &= 300 \text{ Vdc} \end{split}$$

K178150-5Y

40

6k

5k

Torque

60

70 (Nm)

10k (oz in)

$$\begin{split} \text{K}_{T} &= \textbf{0.93 Nm / amp} \text{ (}130.5 \text{ oz-in / amp)} & \quad \text{R}_{T-T} &= 0.37 \ \Omega \\ \text{K}_{E} &= \textbf{0.93 v / rad / sec} \text{ (}96.2 \text{ V / kRPM)} & \quad \text{L}_{T-T} &= 2.95 \text{ mH} \\ \text{E}_{BUS} &= 300 \text{ Vdc} \end{split}$$

K700150-7Y

 $K_T = \textbf{0.78 Nm / amp}$ (110.35 oz-in / amp) $R_{T-T} = 0.84~\Omega$ $K_F = 0.78 \text{ v / rad / sec} (81.71 \text{ V / kRPM})$ $L_{T-T} = 5.79 \text{ mH}$

 $I_{cont} = 18 \text{ amp}$ $I_{peak} = 28 \text{ amp}$ $E_{RIIS} = 300 \text{ Vdc}$

MOUNTING FRAMELESS MOTOR INTO ASSEMBLY

This section outlines a number of methods that can be used to mount the stator and rotor assemblies in the product.

Which method to be used will largely depend on the product design, performance requirements (torque, velocity, temperature, etc.) and the manufacturing capabilities of the user.

Dimensioned drawings for all the kits are shown in the catalog pages.

STATOR

The stator will be typically be mounted into a cylindrically shaped hole in the product (see Figure 9). It is recommended that a banking step be incorporated at the bottom of the hole to assure accurate and repeatable location of the stator.

Alternately, a non-ferrous "plug" could be used to provide a banking surface, which can be removed once the stator is fixed in place.

Figure 9 shows two methods for holding the stator in position: either with adhesive for a permanent assembly or with set screws for a removable assembly.

In designing the housing, be sure to provide a means for the stator lead wires (three) and the commutation Hall sensor PCB wires (five) to extend outside of the housing without interfering with the rotor / shaft assembly.

For volume production, a jig should be fabricated that will assure that the stator is located in the same position for each assembly. The yellow dot on the stator provides an index point for accomplishing this. This will eliminate the need to perform mechanical commutation alignment at final assembly.

Rotor

Except for the smaller motors (K032 and K044), the ID of the rotor will usually be larger than the shaft diameter.

An adapter sleeve will be required to allow mounting of the rotor to the shaft (see Figure 9).

K254150-5Y

 $K_T =$ 1.42 Nm / amp (199.7 oz-in / amp) $R_{T-T} = 0.78~\Omega$ $K_F = 1.42 \text{ v / rad / sec} (147.6 \text{ V / kRPM})$ $L_{T-T} = 3.6 \text{ mH}$

 $I_{cont} = 34 \text{ amp}$ $I_{peak} = 54 \text{ amp}$

 $E_{RIIS} = 300 \text{ Vdc}$

The rotor / sleeve assembly must be positioned on the shaft such that the magnets are located in line with the stator assembly laminations. If the version in which the commutation PCB assembly is bonded to the end turns is being used, the commutation magnets must be located in proper proximity to the Hall sensors on the PCB. Figure 9 shows two methods for holding the rotor / sleeve on the shaft, either with adhesive or by using a spring pin and retaining ring.

When using the adhesive method, a shoulder should be provided on the shaft to properly locate the rotor/sleeve assembly.

When using the spring pin/retaining ring method, a slot must be provided in the sleeve that will engage the spring pin in the shaft, thus properly locating the rotor / sleeve assembly. During assembly, be sure that the pin and slot are fully engaged.

Note: The following adhesives are recommended for rotor and stator assembly (see Figure 9)

> Loctite #325 Activator \$7074 Loctite #609

Assembly

Stator Assembly:

Assemble stator in housing or sleeve (aluminum recommended) with the following locational clearances:

- Diameter to 127mm (5in) 0.025mm (0.001in) to 0.127mm (0.005in) diametrical clearance.
- Diameter over 127mm (5in) 0.05mm (0.002in) to 0.254mm (0.010in) diametrical clearance.

Do not force stator in position. This may damage or deform stator.

Permanent Assembly:

Secure stator with adhesive, Loctite #325 with activator #7074 or equivalent

Removable Assembly:

Secure with cup point screws or setscrews thru housing into stator steel laminations only. Use a minimum of three (3) screws equally spaced about stator O.D. Tighten evenly. Do not over torque screws. This may damage or deform stator.

Spring Pin / Retaining Ring Method

Shoulder / Adhesive Method

Figure 9

Rotor Assembly:

Assemble rotor to shaft with a locational clearance fit of 0.013mm (0.0005in) to 0.038mm (0.0015in) diametrical clearance.

Shoulder / Adhesive Method:

Fabricate shaft with shoulder. Secure rotor assembly and sleeve with adhesive. Loctite#609 or equivalent.

Spring Pin / Retaining Ring Method:

Fabricate a sleeve (steel or aluminum) with anti rotation spring pin groove. Fabricate shaft to accept retaining ring and spring pin. Permanently bond to rotor assembly.

Final Assembly:

Rotor magnets to be in line with stator laminations and concentric to stator lamination I.D. within 0.127mm (0.005in) MAX.

Caution:

Rotor assembly magnets are powerful and fragile! Do not place near magnetically sensitive material

Do not place near other ferromagnetic materials such as iron, steel and nickel alloys. Strong uncontrolled attraction may damage magnets on contact.

Improper assembly of rotor into stator can cause serious injury and or damage to equipment.

When assembling the rotor into the stator, high radial forces will be experienced, which can cause the magnets to "crash" into the stator and be damaged and / or cause bodily injury!

The following precautions should be taken:

- Wrap the rotor with a thin (0.005in thick) Mylar sleeve which will fill the air gap between the rotor and stator during assembly and can be easily removed when assembly is complete.
- Support the rotor and stator assemblies in a fixturing arrangement which will prevent radial motion while the two assemblies are being mated.

Example:

- Hold the rotor / shaft / product assembly in a machine tool vise on the base of an arbor press.
- Fasten the stator assembly to the vertical moving member of the arbor press, away from the stator.
- 3. Slowly lower the stator assembly around the rotor / shaft / product assembly.
- 4. Tighten all fasteners to complete assembly.
- 5. Remove Mylar shim and check for rotational clearance.

Specifications are subject to change without notice.

Stealth® GM Gearmotor Series: An Integrated Solution

4 Frame Sizes									
GM60	GM23								
GM90	GM34								
GM115	GM42								
GM142	GM56								

Ra	Ratios											
5:1	25:1											
7:1	30:1											
10:1	50.1											
20:1	100:1											

Stealth®GM Gearmotors Series: Output Shaft Load Rating

GM60/GM23

Formulas to calculate radial load (P_{rx}) at any distance "X" from the gearhead mounting surface.

$$P_{rx} = (P_r)(54mm) / (41mm + X)$$

 $P_{rx} = (P_r)(2.13in) / (1.61in + X)$

GM90/GM34

 $\begin{aligned} P_{rx} &= (P_r) (\textbf{73mm}) \; / \; (\textbf{52mm} + X) \\ P_{rx} &= (P_r) (2.87 \text{in}) \; / \; (2.05 \text{in} + X) \end{aligned}$

GM115/GM42

 $P_{rx} = (P_r)(89mm) / (63mm + X)$ $P_{rx} = (P_r)(3.5in) / (2.48in + X)$

An Integrated Step Forward

Parker Bayside's Stealth® Gearmotors represent the first time a brushless servo motor and a helical planetary gearhead have been integrated into a single product. Previously, engineers needing a gear drive with servo motor were forced to purchase the gearhead and motor separately. Parker Bayside manufactures precision gearheads and gearmotors under one roof.

Stealth® Gearmotors combine both mechanical and electronic parts into a compact, powerful package. The motor magnets are attached directly to the input gearshaft, eliminating the extra couplings, shafts and bearings required when the two components are separate. Eliminating these extra parts means that Stealth gearmotors are more reliable, have higher performance and cost less than traditional motor/gearhead assemblies.

When to Use:

- High torque in compact package
- Reduce mechanical complexity
- Cost reduction

Applications:

- Automotive
- Machine tool
- Material handling
- Medical
- Packaging
- Paper converting
- ▶ Robotics
- Semiconductor

- Large Output Bearings for high radial loads
- Pf65 Protection
 with Viton seals, DIN-type connectors, O-rings and
 an anodized aluminum alloy housing for use in
 harsh environments
- 3 High-Density Copper Windings and Rare-Earth Magnets

provides maximum torque and efficiency

4 Skewed Laminations with Odd Slot Counts

reduce cogging

- **5** Duplex Angular Contact Bearing for optimum motor assembly stiffness
- Modular Encoders, Resolvers and Brakes

offered standard without increasing package size

Two Winding Options, Single or Double Stack Motors and Multiple Gear Ratios

for a wide range of torques and speeds

8 Single-Piece Construction

of rotor and sun gear guarantees alignment for smooth operation

- Motor, Gearhead and Encoder in one compact package eliminates extra parts,
- improving reliability and performance
- Stealth® Helical Planetary Output provides high torques, low backlash and quiet, reliable performance
- Innovative Thermal Design runs 20% cooler than a separate motor/gearhead assembly
- Stainless Steel Output Shaft won't rust in corrosive environments

Motor and Gearhead All In One

Single Stack - 160 volt

Single Stack - 300 volt

5:1

7:1

10:1

Double Stack - 160 volt

Double Stack - 300 volt

Performance Specifications (six step/trapezoidal commutation)

Mechanical Specifications

Frame Size	Stack Length	Wei withou	•	Maximur Loa		Torsi Stiffr		Standard Backlash	Low Backlash
		(kg) (lb)		(N)	(lb)	(Nm/arc min)	(in lb/arc min)	(arc min)	(arc min)
GM060	Single	2.1	4.7	1,300	292	6	53	15	10
GM060	Double	2.8 6.2		1,300	292	6	53	15	10

^{*} Measured at 2% of rated torque

Single Stack Specifications

Frame Size	Ratio	Max. Speed ⁽¹⁾ T _C		Stall ue ⁽¹⁾	Torq	eak Jue ⁽¹⁾ O Vdc	Winding C:160 Vdc K _{EL-L}	Voltage Constant ⁽¹⁾⁽³⁾ K _{TL-L}	Consta	Torque Constant ⁽¹⁾⁽³⁾ L _{L-L}		Cold Resistance I _C	Cont. Current I _P	Peak Current	Inerti	a ⁽²⁾
		(RPM)	(Nm)	(in lb)	(Nm)	(in lb)		(V/kRPM)	(Nm/amp)	(in lb/amp)	(mH)	(ohms)	(amps)	(amps)	(gm cm sec ²)	(lb in sec ²)
GM060	5:1	1,100	3.1	27.5	9.3	82.5	С	146.5	1.40	12.5	12.5	11.8	2	7	0.23	0.00019
GM060	5:1	1,000	3.1	27.5	9.3	82.5	D	296.5	2.85	25.0	51.2	48.3	1	3	0.23	0.00019
GM060	7:1	780	4.3	38.5	13.0	115.5	С	205.1	1.96	17.5	12.5	11.8	2	7	0.19	0.00016
GM060	7:1	720	4.3	38.5	13.0	115.5	D	415.1	3.99	35.0	51.2	48.3	1	3	0.19	0.00016
GM060	10:1	540	6.2	55.0	18.6	165.0	С	293.0	2.80	25.0	12.5	11.8	2	7	0.19	0.00016
GM060	10:1	500	6.2	55.0	18.6	165.0	D	593.0	5.70	50.0	51.2	48.3	1	3	0.19	0.00016

Double Stack Specifications

Frame Size	Ratio	Max. Speed ⁽¹⁾ T _C		Stall ue ⁽¹⁾	Torq	eak Jue ⁽¹⁾ O Vdc	Winding C:160 Vdc K _{EL-L}	Voltage Constant ⁽¹⁾⁽³⁾ K _{TL-L}	Tord Consta	nt ⁽¹⁾⁽³⁾	Induct	Cold Resistance I _C	Cont. Current I _P	Peak Current	Inerti	a ⁽²⁾
		(RPM)	(Nm)	(in lb)	(Nm)	(in lb)		(V/kRPM)	(Nm/amp)	(in lb/amp)	(mH)	(ohms)	(amps)	(amps)	(gm cm sec ²)	(lb in sec ²)
GM060	5:1	1,100	5.1	45.0	15.2	135.0	С	146.5	1.40	12.5	6.2	4.8	4	11	0.29	0.00025
GM060	5:1	1,000	5.1	45.0	15.2	135.0	D	293.0	2.80	25.0	25	19	2	5	0.29	0.00025
GM060	7:1	780	7.1	63.0	21.3	189.0	С	205.6	1.96	17.5	6.2	4.8	4	11	0.25	0.00022
GM060	7:1	720	7.1	63.0	21.3	189.0	D	410.2	3.92	35.0	25	19	2	5	0.25	0.00022
GM060	10:1	540	10.1	90.0	30.4	270.0	С	293.0	2.80	25.0	6.2	4.8	4	11	0.25	0.00022
GM060	10:1	500	10.1	90.0	30.4	270.0	D	586.0	5.60	50.0	25	19	2	5	0.25	0.00022

Note: Pole Count for GM060 is 6

Thermal Resistance for GM060 is 1.5 $^{\rm O}$ C/W

Stator winding thermal resistance (winding to ambient) is for the unit, mounted to a 254mm x 12.7mm (10in x 10in x 0.5in) aluminum plate.

- (1) These specifications refer to the output of the GM assembly.
 - When programming a digital amplifier for use with a GM assembly, these specifications must be adjusted by the ratio to create actual motor performance
- (2) Inertia = Motor Rotor + Gear Selection. External Inertia must be divided by the square of the ratio.
- (3) Peak of sine wave

Specification are subject to change without notice

Single Stack - 160 volt

Single Stack - 300 volt

5:1

7:1

10:1

Double Stack - 160 volt

Double Stack - 300 volt

Performance Specifications (six step/trapezoidal commutation)

Mechanical Specifications

Frame Size	Stack Length	Wei without	•	Maximur Lo		Torsio Stiffn		Standard Backlash	Low Backlash
		(kg) (lb)		(N)	(lb)	(Nm/arc min)	(in lb/arc min)	(arc min)	(arc min)
GM090	Single	6.0	13.2	2,600	584	11	87	15	10
GM090	Double	7.4 16.3		2,600 584		11 87		15	10

^{*} Measured at 2% of rated torque

Single Stack Specifications

Frame Size	Ratio	Max. Speed ⁽¹⁾ T _C		Stall ue ⁽¹⁾	Torq	eak Jue ⁽¹⁾ O Vdc	Winding C:160 Vdc K _{EL-L}	Voltage Constant ⁽¹⁾⁽³⁾ K _{TL-L}	Tore Consta	nt ⁽¹⁾⁽³⁾	Induct	Cold Resistance I _C	Cont. Current I _P	Peak Current	Inerti	a ⁽²⁾
		(RPM)	(Nm)	(in lb)	(Nm)	(in lb)		(V/kRPM)	(Nm/amp)	(in lb/amp)	(mH)	(ohms)	(amps)	(amps)	(gm cm sec ²)	(lb in sec ²)
GM090	5:1	900	8.7	77.0	26.0	231.0	С	170.5	1.65	14.5	4.5	2.5	5	16	1.16	0.00100
GM090	5:1	870	8.7	77.0	26.0	231.0	D	341.0	3.25	29.0	18.1	10.1	3	8	1.16	0.00100
GM090	7:1	670	12.0	107.0	36.1	321.0	С	238.7	2.31	20.3	4.5	2.5	5	16	0.94	0.00081
GM090	7:1	620	12.0	107.0	36.1	321.0	D	477.9	4.55	40.6	18.1	10.1	3	8	0.94	0.00081
GM090	10:1	450	17.2	153.0	51.7	459.0	С	341.0	3.30	29.0	4.5	2.5	5	16	0.94	0.00081
GM090	10:1	430	17.2	153.0	51.7	459.0	D	682.0	6.50	58.0	18.1	10.1	3	8	0.94	0.00081

Double Stack Specifications

Frame Size	Ratio	Max. Speed ⁽¹⁾ T _C		Stall ue ⁽¹⁾	Torq	eak Jue ⁽¹⁾ O Vdc	Winding C:160 Vdc K _{EL-L}	Voltage Constant ⁽¹⁾⁽³⁾ K _{TL-L}	Tord Consta L _L	nt ⁽¹⁾⁽³⁾	Induct	Cold Resistance I _C	Cont. Current I _P	Peak Current	Inerti	a ⁽²⁾
		(RPM)	(Nm)	(in lb)	(Nm)	(in lb)		(V/kRPM)	(Nm/amp)	(in lb/amp)	(mH)	(ohms)	(amps)	(amps)	(gm cm sec ²)	(lb in sec ²)
GM090	5:1	720	14.0	124.0	41.9	372.0	С	221.5	2.10	18.5	3.8	1.6	7	20	1.31	0.00113
GM090	5:1	700	14.0	124.0	41.9	372.0	D	426.0	4.05	36.0	14.1	6.3	3	10	1.31	0.00113
GM090	7:1	500	19.5	173.0	58.4	519.0	С	310.1	2.94	25.9	3.8	1.6	7	20	1.10	0.00094
GM090	7:1	500	19.5	173.0	58.4	519.0	D	596.4	5.67	50.4	14.1	6.3	3	10	1.10	0.00094
GM090	10:1	360	27.8	247.0	83.4	741.0	С	443.0	4.20	37.0	3.8	1.6	7	20	1.10	0.00094
GM090	10:1	350	27.8	247.0	83.4	741.0	D	852.0	8.10	72.0	14.1	6.3	3	10	1.10	0.00094

Note: Pole Count for GM090 is 8

Thermal Resistance for GM090 is 1.2 ^oC/W

Stator winding thermal resistance (winding to ambient) is for the unit, mounted to a $254 \text{mm} \times 254 \text{mm} \times 12.7 \text{mm}$ ($10 \text{in} \times 10 \text{in} \times 0.5 \text{in}$) aluminum plate.

Specification are subject to change without notice

⁽¹⁾ These specifications refer to the output of the GM assembly.

When programming a digital amplifier for use with a GM assembly, these specifications must be adjusted by the ratio to create actual motor performance

⁽²⁾ Inertia = Motor Rotor + Gear Selection. External Inertia must be divided by the square of the ratio.

⁽³⁾ Peak of sine wave

Single Stack - 160 volt

Single Stack - 300 volt

5:1

7:1

10:1

Double Stack - 160 volt

Double Stack - 300 volt

Performance Specifications (six step / trapezoidal commutation)

Mechanical Specifications

Frame Size	Stack Length	Wei withou	•	Maximur Lo		Torsi Stiffr		Standard Backlash	Low Backlash
		(kg)	(lb)	(N)	(lb)	(Nm/arc min)	(in lb/arc min)	(arc min)	(arc min)
GM115	Single	8.4	18.5	3,900	876	20	177	15	10
GM115	Double	10.6	23.4	3,900	876	20	177	15	10

^{*} Measured at 2% of rated torque

Single Stack Specifications

Frame Size	Ratio	Max. Speed ⁽¹⁾ T _C	Cont. Torqi T		Torq	ak jue ⁽¹⁾ O Vdc	Winding C:160 Vdc K _{EL-L}	Voltage Constant ⁽¹⁾⁽³⁾ K _{TL-L}	Tor Consta	nt ⁽¹⁾⁽³⁾	Induct	Cold Resistance I _C	Cont. Current I _P	Peak Current	Inerti	
		(RPM)	(Nm)	(in lb)	(Nm)	(in lb)		(V/kRPM)	(Nm/amp)	(in lb/amp)	(mH)	(ohms)	(amps)	(amps)	(gm cm sec ²)	(lb in sec ²)
GM115	5:1	700	18.2	162	54.7	486	С	228.0	2.15	19.5	2.9	1.2	8	25	4.33	0.00375
GM115	5:1	680	18.2	162	54.7	486	D	438.0	4.15	37.0	10.7	4.7	4	13	4.33	0.00375
GM115	7:1	500	25.4	227	76.6	681	С	319.2	3.01	27.3	2.9	1.2	8	25	3.54	0.00306
GM115	7:1	480	25.4	227	76.6	681	D	613.2	5.81	51.8	10.7	4.7	4	13	3.54	0.00306
GM115	10:1	350	36.5	324	109.4	972	С	456.0	4.30	39.0	2.9	1.2	8	25	3.54	0.00306
GM115	10:1	340	36.5	324	109.4	972	D	876.0	8.30	74.0	10.7	4.7	4	13	3.54	0.00306

Double Stack Specifications

Frame Size	Ratio	Max. Speed ⁽¹⁾ T _C	ı	Stall ue (1) P (in lb)	Torq	eak ue ⁽¹⁾ 0 Vdc (in lb)	Winding C:160 Vdc K _{EL-L}	Voltage Constant ⁽¹⁾⁽³⁾ K _{TL-L} (V/kRPM)	Tord Consta L _L (Nm/amp)	I nt⁽¹⁾⁽³⁾ -L	Induct R _{L-L} (mH)	Cold Resistance I _C	Cont. Current I _P (amps)	Peak Current	Inerti	(lb in sec ²)
		(NEIVI)	(MIII)	(III ID)	(IVIII)	(III ID)		(V/KNFIVI)	(Mili/allip)	(III ID/aIIIP)	(11111)	(UIIIIS)	(allips)	(allips)	(gill cill sec)	(ID III SEC)
GM115	5:1	570	30.1	267	90.2	801	С	280.5	2.70	23.5	2.2	0.73	11	34	6.28	0.00544
GM115	5:1	650	30.1	267	90.2	801	D	455.5	4.35	38.5	5.8	1.9	7	21	6.28	0.0054
GM115	7:1	400	42.0	373	125.9	1,119	С	392.7	3.78	32.9	2.2	0.73	11	34	5.50	0.00475
GM115	7:1	470	42.0	373	125.9	1,119	D	637.7	6.09	53.9	5.8	1.9	7	21	5.50	0.00475
GM115	10:1	280	60.0	533	179.9	1,599	С	561.0	5.40	47.0	2.2	0.73	11	34	5.50	0.00475
GM115	10:1	320	60.0	533	179.9	1,599	D	911.0	8.70	77.0	5.8	1.9	7	21	5.50	0.00475

Note: Pole Count for GM115 is 12

Thermal Resistance for GM115 is 0.95 $^{
m O}$ C/W

Stator winding thermal resistance (winding to ambient) is for the unit, mounted to a 254mm x 254mm x 12.7mm (10in x 10in x 0.5in) aluminum plate.

Specification are subject to change without notice

⁽¹⁾ These specifications refer to the output of the GM assembly.

When programming a digital amplifier for use with a GM assembly, these specifications must be adjusted by the ratio to create actual motor performance

⁽²⁾ Inertia = Motor Rotor + Gear Selection. External Inertia must be divided by the square of the ratio.

⁽³⁾ Peak of sine wave

Dimensions

METRIC SIZES

	1	١	E	3	(3	С)	E		F	•	G	ì	ı	Н	,	J
Frame Size	Squ Flar			olt ole		olt iameter	Pil Diam		Pi Thi		Shou Diam		Shou Hei		l	ising neter		aft neter
	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
GM060	60	2.36	5.5	0.22	70	2.756	50	1.969	2.5	0.1	23	0.91	1.0	0.04	80	3.15	16	0.63
GM090	90	3.54	6.5	0.26	100	3.94	80	3.15	3.0	0.12	36	1.42	1.0	0.04	116	4.57	20	0.79
GM115	115	4.53	8.5	0.33	130	5.12	110	4.33	3.5	0.14	36	1.42	1.5	0.6	152	5.95	24	0.94

	K		ı	-	ı	И	N	ı	F	•	(j	F	R	;	S	-	Γ
Frame Size	Sh: Len			From End	Key Len	way igth	Key Hei		Key Wid			nge ick	Rec Len		He	ight		nector ation
	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
GM060	25.0	0.98	3	0.118	16	0.630	18.0	0.709	5	0.20	13	0.51	50.0	1.969	117	4.60	37	1.457
GM090	40.0	1.57	5	0.20	28	1.10	22.5	0.886	6	0.24	17	0.67	54.5	2.15	147	5.79	39	1.535
GM115	50.0	1.97	7	0.28	32	1.26	27.0	1.063	8	0.32	20	0.79	55.5	2.18	175	6.89	46	1.811

NEMA SIZES

	ı	3	C	;	ı	D	,	J	ı	K	ı	И	ı	N	F	•
Frame Size		olt ole	Bo Cire		l	lot neter	Outpu Dian	t Shaft neter		t Shaft ngth	Key Len			way ight	Key Wid	way dth
	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
GM023	0.195	5.0	2.625	66.7	1.500	38.1	0.375	9.5	1.000	25.4	0.750 flat	19.1 flat	0.015 flat	0.4 flat	_	_
GM034	0.218	5.5	3.875	98.4	2.875	73.0	0.500	12.7	1.250	31.8	1.063	27.0	0.072	1.8	0.125	3.2
GM042	0.281	7.1	4.950	125.7	2.187	55.5	0.625	15.9	1.500	38.1	1.130	28.7	0.108	2.7	0.188	4.8

Single Stack

Double Stack

Options	U	l	'	1	W	I	U		V	ı	W	ı
Opuois	Len	gth		Cover igth	Flar Offs		Leng	jth	Rear (Len		Flar Offs	
	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
GM060 Single Stack – Encoder or Resolver	178	7.01	70	2.76	121	4.76	219.2	8.63	70	2.76	162.2	6.39
GM060 Single Stack – Encoder or Resolver and Brake	203	7.99	95	3.74	143	5.63	244.2	9.61	95	3.74	184.2	7.25
GM060 Double Stack – Encoder or Resolver	216	8.5	70	2.76	159	6.26	257.2	10.13	70	2.76	200.2	7.88
GM060 Double Stack – Encoder or Resolver and Brake	241	9.46	95	3.74	181	7.12	282.2	11.11	95	3.74	222.2	8.75
GM090 Single Stack – Encoder or Resolver	202.3	7.96	83	3.27	143.3	5.64	259.3	10.21	83	3.27	200.3	7.89
GM090 Single Stack – Encoder or Resolver and Brake	230.3	9.07	111	4.37	171	6.73	287.3	11.31	111	4.37	228	8.98
GM090 Double Stack – Encoder or Resolver	240.4	9.46	83	3.27	181.4	7.14	297.4	11.71	83	3.27	238.4	9.39
GM090 Double Stack – Encoder or Resolver and Brake	268.4	10.57	111	4.37	209.1	8.23	325.4	12.81	111	4.37	266.1	10.48
GM115 Single Stack – Encoder or Resolver	207.2	8.16	70	2.76	147.3	5.8	276.2	10.87	70	2.76	216.3	8.52
GM115 Single Stack – Encoder or Resolver and Brake	240.2	9.46	103	4.06	170.3	6.7	309.2	12.17	103	4.06	239.3	10.02
GM115 Double Stack – Encoder or Resolver	245.3	9.66	70	2.76	185.4	7.3	314.3	12.37	70	2.76	254.4	2.14
GM115 Double Stack – Encoder or Resolver and Brake	278.3	10.96	103	4.06	208.4	8.2	347.3	13.67	103	4.06	277.4	10.92

Encoder Specifications (All GM Frame Sizes)

Resolution	2,000 LPR (8,000 LPR)
Electrical Input:	5 Vdc, 125 ma maximum (plus interface loads)
Encoder Output:	A, B, I, A, B, I
	Differential, TTL compatible
	Frequency Response 500 Khz

Resolver Specification (All Frame Sizes)

Frequency	Hz	5,000
Input Voltage	Vrms	4.0
Input Current	ma max.	23
Input Power	Watts nom.	0.045
Transformation Ratio	<u>+</u> 10%	0.50
Output voltage	Vrms	2.0
Sensitivity	mv / Deg	35

Brake Specification

Frame Size	Static Hold	ling Torque	Voltage	Current	Resistance	Inerti	a
	(Nm)	(in lb)	(V)	(amps)	(ohms)	(gm cm sec ²)	(oz in sec²)
GM060	0.33	3.0	24 Vdc	0.19	131	4.32 x 10 ⁻⁸	6.0 x 10 ⁻¹⁰
GM090	5.64	50	24 Vdc	0.30	65	4.32 x 10 ⁻⁸	6.0 x 10 ⁻¹⁰
GM115	5.64	50	24 Vdc	0.30	65	2.5 x 10 ⁻⁷	3.5 x 10 ⁻⁹

DIN Motor Power Connection

Pin Number	Function
1	U
4	V
3	W
2	Chassis Gnd.
Α	Thermistor +
В	Thermistor -
С	Brake +
D	Brake -
_	Shield

Motor Power Mating Connector

Manufacturer	Part Number	Description
Hypertac	LPNA08BFRKB170	Body
	020.232.2000	4 Pins Female 18-26 AWG
	020.090.1020	4 Pins Female 16-20 AWG

Power

Motor Power Cable

Part Number	Length	Used With
10963093-3000	3 meter	Flying Leads
10963093-8000	8 meter	Flying Leads

DIN Sensor Connector Details

	Fund	tion	Mating Cable
Pin Number	Encoder	Resolver	i-Drive Conn. Pin Number
1	A +	S1 (SIN+)	1
2	B +	S4 (COS+)	2
7	+5V	R2 (Ref+)	7
8	Shield	Shield	8
9	A -	S3 (SIN-)	9
10	В -	S2 (COS-)	10
15	Gnd	R1 (REF-)	15
12	Spare	Spare	_
5	I+	_	5
13	1 -	_	13
3	Hall 1 (S1)	_	_
11	Hall 2 (S2)	_	_
4	Hall 3 (S3)	_	_
16	Thermistor +	mistor + Thermistor + —	
17	Thermistor -	Thermistor -	_
6 & 14	No Connection	1	

Motor Sensor Mating Connector

Manufacturer	Part Number	Description
Hypertac	SPNA17HFRON	Body
	020.256.1020	17 Pins Female

Sensor

Mating Sensor Cable

Part Number	Length	Used With
10963123-3000	3 meter	Flying Leads
10963123-8000	8 meter	Flying Leads

Flying Leads from out of the Motor (All GM Frame Sizes)

Power

Function	Color Code
U	Red
V	Black
W	White
Ground	Green

Encoder

Function	Color Code
A-	White
A+	Brown
B-	Green
B+	Blue
l-	Yellow
l+	Orange
S2	Violet
S1	White / Brown
S3	White / Orange
+5V	Red
GND	Black
T1	White / Red
T2	White / Black

Timing Diagrams & How to Order

Motor Signal Timing (C/D winding) at motor connector

Encoder Timing

Specifications are subject to change without notice.

Servo Wheel Series: Compact Wheel Drives for Electric Vehicles

Servo Wheel Series: Design Features

The Servo Wheel[™] combines a brushless DC motor with planetary gears in a lightweight, aluminum housing to provide a compact solution for vehicle control. The Power Wheel's unique design makes system integration easy. You no longer have to purchase the motor, gearhead, wheel, electronics and

bracket from different sources. Parker Bayside does all of the work for you. From component sourcing to actual assembly, Parker Bayside engineers designed the Power Wheel with your application in mind.

All you have to do is bolt it up and go!

SINGLE-PIECE CONSTRUCTION MOTOR SHAFT

The first stage's planetary section sun gear is integrated into the single-piece construction motor shaft, to provide higher reliability in a compact package.

PLANETARY GEARS

The planetary input stage provides a first pass reduction that is capable of carrying high torques with high input speeds in a small package.

INTEGRATED OUTPUT STAGE

The second stage planetary's unique design uses two planets for higher efficiency. Built entirely into the wheel, it utilizes an otherwise wasted area to provide a compact, space-saving package. Two large diameter bearings support the weight, protecting the gears from shock loading and dramatically increasing the radial load carrying capacity of the wheels.

Compact Wheel Drives for Electric Vehicles

Parker Baysides NEW Servo Wheel[™] Drive System features state-of-the-art technology to provide motion for small, battery-powered, electric vehicles, including:

- Automated Cleaning Equipment
- ▶ Healthcare Equipment
- ► Robotic/Material Handling Equipment
- AGV's

Parker Bayside's Servo Wheel features:

BRUSHLESS DC MOTOR AMPLIFIERS designed for common motion profiles in battery powered vehicles to provide:

- ▶ 12, 24, 36 and 48 volt operation
- ▶ Current and temperature feedback control for safe, reliable operation
- Multiple input architectures for easy communication with higher-level controllers and navigation systems

PERMANENT MAGNET BRUSHLESS MOTORS to provide:

- ▶ High efficiency for longer run times between battery charges
- ▶ Greater power to size ratio for a compact package
- ▶ Integral hall sensors for motor TRAP commutation
- ▶ Long life and maintenance free-operation
- ▶ High input speeds in excess of 10,000 RPM
- ▶ No internal sparking safe in explosive environments
- ▶ Low EMI, eliminating the need for heavy shielding

PLANETARY GEARS to provide high torque-carrying capability in a small package.

The gears are built into the hub of the wheel, making the package compact and lightweight. This design also increases the radial load-carrying and shock loading capacity of the entire system.

Polyurethane tires are ideal for applications in hospitals, schools, and airports – any place requiring non-marking materials. This material is also ideal for high load carrying applications like material handling.

Servo Wheel Series

Performance Specifications

Tire Dian		152mm (6in)				203mm (8in)					
Spe Gear	ed Code Ratio		20			30	36	20	25	30	36
Motor Code	Power Cont. (W)										
1	400	Max Speed	Km/hr	5.5	4.4	3.6	3.0	7.3	5.8	4.9	4.0
			MPH	3.4	2.7	2.3	1.9	4.5	3.6	3.0	2.5
		Peak Torque	Nm	62	78	93	112	62	78	93	112
		Tour Torquo	in lb	551	689	827	992	551	689	827	992
		Continuous	Nm	21	26	31	37	21	26	31	37
		Torque	in lb	184	230	276	331	184	230	276	331
2	450	Max Speed	Km/hr	4.61	3.69	3.08	2.56	6.16	4.93	4.11	3.42
_	400	Max Speed	MPH	2.86	2.29	1.91	1.59	3.83	3.06	2.55	2.13
		Peak Torque	Nm	83	104	125	149	83	104	125	149
		roun rorquo	in lb	735	919	1,103	1,323	735	919	1,103	1,323
		Continuous	Nm	28	35	42	50	28	35	42	50
		Torque	in lb	245	306	368	441	245	306	368	441
3	1000	Max Speed	Km/hr	4.58	3.67	3.06	3.40	6.12	4.90	4.08	3.40
			MPH	2.85	2.28	1.90	2.11	3.80	3.04	2.53	2.11
		Peak Torque	Nm	197	247	296	355	1.97	247	296	355
		reak forque	in lb	1,748	2,184	2,621	3,146	1,748	2,184	2,621	3,145
		Continuous	Nm	66	82	99	118	66	82	99	118
		Torque	in lb	583	728	874	1,049	583	728	874	1,049
ALL TIPES		Load	kg		454			454			
ALL TIRES	· 	Capacity	lb		1,000				1,0	000	

Antistatic Tires

Code	R	Polyurethane Black Smooth
	S	Polyurethane Black x Thread

Operating Voltages

Code	K
Volts	24

Brake

Code	0	None
	3	50 in-lb

Dimensions

Model Number	Motor	without E	* Brake	В	1	C	;	D		E		ı	F
		(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
	150	158.75	6.25	104.1	4.1	20.3	0.8	25.4	1.0	165.1	6.5	87.9	3.46
DX6	300	175.26	6.90	104.1	4.1	20.3	0.8	25.4	1.0	165.1	6.5	87.9	3.46
	746	191.77	7.55	104.1	4.1	20.3	0.8	25.4	1.0	165.1	6.5	87.9	3.46
	150	158.75	6.25	104.1	4.1	45.7	1.8	50.8	2.0	218.4	8.6	116.8	4.60
DX8	300	175.26	6.90	104.1	4.1	45.7	1.8	50.8	2.0	218.4	8.6	116.8	4.60
	746	191.77	7.55	104.1	4.1	45.7	1.8	50.8	2.0	218.4	8.6	116.8	4.60

Model Number	Motor Power	G		Н	l	ı	 	J	ı	K		ı	<u></u>
		(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
	150	65.0	2.559	2.54	0.1	152.4	6.0	101.1	3.98	6.86	0.27	50.8	2.0
DX6	300	65.0	2.559	2.54	0.1	152.4	6.0	101.1	3.98	6.86	0.27	50.8	2.0
	746	65.0	2.559	2.54	0.1	152.4	6.0	101.1	3.98	6.86	0.27	50.8	2.0
	150	65.0	2.559	2.54	0.1	203.2	8.0	101.1	3.98	6.86	0.27	50.8	2.0
DX8	300	65.0	2.559	2.54	0.1	203.2	8.0	101.1	3.98	6.86	0.27	50.8	2.0
	746	65.0	2.559	2.54	0.1	203.2	8.0	101.1	3.98	6.86	0.27	50.8	2.0

Model Number	Motor	М		N	l	C)	Р		O	1	ı	3
Number	lower	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
	150	118.6	4.67	101.1	3.98	88.9	3.5	7.94	5.16	25.4	1.0	47.98	1.889
DX6	300	118.6	4.67	101.1	3.98	88.9	3.5	7.94	5.16	25.4	1.0	47.98	1.889
	746	118.6	4.67	101.1	3.98	100	3.94	7.94	5.16	25.4	1.0	47.98	1.889
	150	118.6	4.67	101.1	3.98	88.9	3.5	7.94	5.16	25.4	1.0	47.98	1.889
DX8	300	118.6	4.67	101.1	3.98	88.9	3.5	7.94	5.16	25.4	1.0	47.98	1.889
	746	118.6	4.67	101.1	3.98	100	3.94	7.94	5.16	25.4	1.0	47.98	1.889

 $[\]ensuremath{^{\star}}$ Consult factory for increased length with encoder and on brake option.

5 Step Procedure

Motor Code Selection

Based on the application requirement, select the appropriate motor power from the second column in the "Performance Specifications" table. The number to the left of it in the first column is the motor code.

2 Speed Code Selection

Find the intersection of the column with the selected tire diameter and the row with the motor code to give you the available speed ranges. From the four given speeds (in mph), select the one that meets your application needs. Proceed to the top of that column to find the speed code just under the tire diameter you have selected in step 1.

3 Voltage Code Selection

From the "Operating Voltages" table, select the correct voltage code based on the power supply available for the application.

4 Tire Composition Code Selection

Servo Wheels $^{\text{TM}}$ are available for a wide variety of applications. Some require a smooth ride or high load carrying capacity, or a combination of both. From the tire composition table, select the appropriate material for your application. The letter in the first column is the tire composition code.

5 Compose part number based on the codes selected

Specifications are subject to change without notice.

WHEEL DRIVE SERIES 55 DIGITAL SERVO AMPLIFIER High Current Control

FEATURES

- High-performance DSP-based servo controls motor force or torque. Control of velocity or position using the motor's Hall of encoder signals is an option.
- Controls brush-type, brushless-trapezoidal and brushless-sinusoidal motors.
- User inputs motor parameters, voltage, peak and continuous current limit into Windows-based setup software. Setup software automatically downloads the algorithm for a 2kHz current loop bandwidth via RS-232 communications.
- Proprietary PWM software controlled switching scheme yields ultra-low ripple at low current levels, zero crossover distortion, and minimizes EMI in noise sensitive applications
- Differential amplifiers accept a single +/- 10V analog current command for trapezoidal brushless and brush type motors.
- Optional inputs allow digital commands through the RS-232 or Serial Peripheral Interface.
- 3 Output current ranges and scale factors available.
- Optically isolated digital inputs for Enable/Reset, Brake, and +_ Travel Limits.
- Motor current monitor output, and optically isolated digital outputs provide controller fault indication.
 Configurator program provides drive status and fault history via RS-232 link.
- Fault protection makes this drive virtually indestructible.
- Operates from one low-cost 24 48 VDC unregulated power supply or battery.

PRODUCT DESCRIPTION

This digital servo amplifier provides DSP-based digital closed-loop, four-quadrant PWM control of force or torque of permanent magnet, linear or rotary, brush or brushless DC motors. Our PWM current control algorithm, current sensing method, and advanced switching scheme yields performance comparable to a linear servo amplifier.

This digital drive will reduce expensive motor drive stocking requirements because it will control brush-type, brushless-trapezoidal and brushless-sinusoidal motors.

Setup is easy. The operating configuration – motor type, motor parameters, operating voltage, peak and continuous current limits and system parameters for velocity or position control are all input by the user to a PC-based setup program that automatically downloads the information, with the computed algorithm, into the flash memory of the drive via an RS-232 port. The drive can be reconfigured at any time by running the setup-program.

Specifications

BMG	P/N 11564028	11564030
INPUT POWER BUS	24 to 48 VDC	24 to 48 VDC
CONT. OUTPUT POWER (Max.)	450 watts ¹	1350 watts ¹
CONT. OUTPUT CURRENT	10 amps ¹	30 amps ¹
PEAK OUTPUT CURRENT	20 amps ¹ (1 sec typ.)	60 amps ¹
SCALE FACTOR (A/V)	2	6
VOLTAGE @ CONT. OUTPUT CURRENT	Input Bus Voltage - ³ Volts Typical	Input Bus Voltage -3 Volts Typical
Max HEAT SINK TEMPERATURE	Disables if > 70 °C	Disables if > 70 °C
Current LOOP BANDWIDTH	2 kHZ Typical	2 kHZ Typical
SWITCHING FREQUENCY	40kHZ	40kHZ
MINIMUM LOAD INDUCTANCE	100 UH	100 UH
WEIGHT	25 OZ	25 OZ

OPERATING CONTROL SIGNALS and INDICATORS

Input analog control signal	+_ 10 Volts
Digital Input Commands	Rs-232, SPI
Peak Current limit	Software adjustable
Continuous Current limit	Software adjustable
Drive Enable/Reset	5V logic, optically isolated
(+) Travel Limit	5V logic, optically isolated
(-) Travel Limit	5V logic, optically isolated
Brake	5V logic, optically isolated
Fault and/or Brake status	5V logic, optically isolated
Drive Enabled indicator	Green LED
Brake indicator	Red LED
Fault indicator	Red LED
Digital Hall Effect Sensors	3 channels,+5 Volts,Gnd

NOTES: 1. Depends on ambient operating temperature and heat sink.

For the >10 amperes continuous output, we recommend forced convection cooling with a minimum airflow of 100 CFM. Consult factory for assistance.

Digital Servo Amplifier Mounting Dimensions

Pancake Gearmotor: Compact Brushless DC Gearmotor

Pancake Gearmotor Series: Design Features

The Pancake Gearmotor combines a brushless DC motor with precision gearing in a lightweight, aluminum housing to provide a compact solution. This unique design makes system integration easy. You no longer have to purchase the motor, gearhead, and electronics bracket from different sources.

Parker Bayside does all of the work for you. From component sourcing to actual assembly, Parker Bayside engineers designed the Pancake Gearmotor with your application in mind.

SINGLE INTEGRATED PACKAGE

- · Environmentally sealed
- · Available with brake and encoder add-ons
- Rugged aluminum alloy housing
- · Durable anodized finish
- · Customized mounting to fit any application

Brushless DC Motor

- · Maintenance-free brushless design
- Low EMI
- Greater power-to-size factor than brush DC motors
- · Built-in position and velocity sensing

COMPACT GEAR REDUCTION

- · Wide range of gear ratios
- Ideal for low-speed applications
- · Precision ball bearings throughout
- · Reduces load inertia for maximum performance

Dimensions

Flying leads

Color Coding					
Black	GND				
Red	Vref				
Green	Sensor C				
Blue	Sensor B				
Yellow	Sensor A				
White	Phase C				
Brown	Phase A				
Orange	Phase B				

Mechanical Specifications

Model	Weight	Radial Load	Axial Load	Backlash
	(kg) / (lb)	(N) / (lb)	(N) / (lb)	(arc min)
GM50	2.3 / 5	223 / 50	45 / 10	30

Performance Specifications

Model	Ratio	Max Speed) (RPM	Torque (Nm)/(in-lbs)	Voltage (volts DC)	Current (amps)
GM50-152	152.51:1	27	19.8/175	12/24	4.6/2.3
GM50-100	100.65:1	40	18.1/160	12/24	6.4/3.2
GM50-043	42.47:1	93	7.9/70	12/24	6.4/3.2
GM50-011	10.51:1	364	2.0/18	12/24	6.3/3.2

Specifications are subject to change without notice.