Séance 05:

Euler: Ouvre-portail

1. Mise en situation

C.F. sujet.

2. But de l'étude

C.F. sujet.

3. Données de l'étude

C.F. sujet.

4. Travail demandé

1. Ecrire une fonction qui prend en argument la vitesse de rotation du bras moteur wm un vecteur \mathbb{T}_m contenant des valeurs de $\theta_m(t)$ et qui renvoie des vecteurs \mathbb{A} , \mathbb{B} , \mathbb{A}_p , \mathbb{B}_p et \mathbb{C}_p contenant $A(\theta_m)$, $B(\theta_m)$, $\dot{A}(\theta_m)$, $\dot{B}(\theta_m)$ et $\dot{C}(\theta_m)$.

Je commence par renommer les fonctions \cos et \sin :

```
1 # Fonctions circulaires
2 def cos(a):
3    return np.cos(a)
4
5
6 def sin(a):
7    return np.sin(a)
```

Ensuite, comme à mon habitude, je crée un dossier ressources dans lequel je crée le fichier data.py:

```
1 a = 100 * 10 ** (-3)

2 b = 260 * 10 ** (-3)

3 c = 20 * 10 ** (-3)

4 d = 324.22 * 10 ** (-3)

5 1 = 280 * 10 ** (-3)
```

J'importe tout ce dont j'ai besoin au début de mon fichier :

```
1 # Imports
2 import numpy as np
3 import matplotlib.pylab as plt
4
5 # Donnees
6 from ressources.Data import *
```

Puis je calcule les données demandés :

```
1 def motorSpeed(wm, Tm):
2    A = 2 * (a * d - b * c - d * 1 * cos(Tm) - c * 1 * sin(Tm))
3    B = 2 * (-a * c - b * d - d * 1 * sin(Tm) + c * 1 * cos(Tm))
4    C = a**2 + b**2 + c**2 + d**2 + 2 * 1 * (b * sin(Tm) - a * cos(Tm))
5    Ap = 2 * 1 * wm * (d * sin(Tm) - c * cos(Tm))
6    Bp = 2 * 1 * wm * (- d * cos(Tm) - c * sin(Tm))
7    Cp = 2 * 1 * wm * (a * sin(Tm) + b * cos(Tm))
8
9    return (A, B, C, Ap, Bp, Cp)
```

2. En utilisant la fonction précédente, écrire une fonction qui prend en argument la vitesse de rotation du bras du moteur \mathbb{R} , l'angle de rotation maximal \mathbb{R} du bras du moteur, le nombre \mathbb{R} de points désirés et qui renvoie deux vecteurs, l'un, \mathbb{R} contenant les valeurs de $\theta_m(t)$ et l'autre, \mathbb{R} , contenant les valeurs de $\dot{\theta}_v(t)$.

D'abord, pour alléger la fonction demandée, je crée une fontion $\lceil T_{pv} \rceil$ qui calcule $\dot{\theta}_v$:

```
1 def Tpv(Tm, Tv, wm):
2    A, B, C, Ap, Bp, Cp = temporalData(wm, Tm)
3    return (Ap * cos(Tv) + Bp * sin(Tv) + Cp) / (A * sin(Tv) - B * cos(Tv))
```

Puis je calcule les deux vecteurs demandés :

```
1 def angle(wm, Tmmax, N):
2    _Tm = np.linspace(0, Tmmax, N)
3    h = Tmmax / (wm * N)
4    _Tpv = [Tpv(0, 0, wm)]
5    _Tv = [0]
6    for i in range(1, N):
7     _Tv.append(_Tv[i-1] + _Tpv[i-1] * h)
8     _Tpv.append(Tpv(_Tm[i-1], _Tv[i-1], wm))
9    return (_Tm, _Tpv)
```

3. Tester cette fonction pour une valeur de ω_m de $0,1rad.s^{-1}$, et un nombre de point par défaut N=1000. Faire afficher le graphe de $\dot{\theta}_v$ en fonction de θ_m et comparer avec les valeurs obtenues expérimentalement :

$$\left\{ \begin{array}{ll} \dot{\theta}_{v_{maxi}} &=& 0,088 rad.s^{-1} \\ \theta_{m} &=& 0,46 rad \end{array} \right.$$

Je crée la petite fonction de conversion de dergé vers radian :

```
1 def degTorad(deg):
2 return deg * np.pi / 180
```

Puis j'applique le script :

```
1 # On calcule les coordonnees
2 G, H = angle(0.1, degTorad(118.2), 1000)
3
4 # On cherche le maximum pour le comparer aux valeurs exp.
5 i = H.index(max(H))
6
7 # On trace tout ca
8 plt.plot(G, H)
9 plt.xlabel("$\\theta_m$")
10 plt.ylabel('$\\dot{\\theta}_v$')
11 plt.plot(G[i], H[i], 'rx', label=f'({G[i]:.3f}, {H[i]:.3f})')
12 plt.legend()
13 plt.show()
```

Et j'obtiens:

$$\left\{ \begin{array}{ccc} \dot{\theta}_{v_{maxi}} & \simeq & \text{0.086} \ rad.s^{-1} \\ \theta_{m} & \simeq & \text{0.477} \ rad \end{array} \right.$$

ce qui est proche des valeurs expérimentales.

4. En utilisant les fonctions précédentes et en faisant évoluer ω_m sur l'intervalle [0.1,0.3] par pas de 0.01, écrire le programme principal qui permet de trouver la valeur maximale de ω_m vérifiant le critère du cachier des charges (vitesse maximale autorisée par la norme pour le point le plus rapide du portail : $0.25m.s^{-1}$). Rappel : $|V_{D,3/0}| = OD.|\dot{\theta}_v|$.

On veut la valeur $|\dot{\theta}_v|$ maximale, tout en respectant $|V_{D,3/0}| \leq 0.25 m.s^{-1}$. On rajoute la valeur maximale de L = OD, de $V_{D,3/0} = 0.25 m.s^{-1}$ et de $\theta_{m_maxi} = 118.2^{\circ}$ dans le fichier ressources/Data.py

```
1 L = 2.2
2 Tmmax = 118.2 * np.pi / 180
3 Vmax = 0.25
```

Fonction principale:

```
1 def getMaxSpeed(borneMin, borneMax, pas, N):
2     Vd, wm = 0, borneMin
3
4     # Pour sauvegarder les anciennes valeurs
5     Vd_o, wm_o = 0, borneMin
6
7     while (Vd < Vmax and wm <= borneMax):
8
9     # On sauvegarde les anciennes valeurs
10     # Sinon on fait un tour de trop
11     Vd_o, wm_o = Vd, wm
12
13     TpvMax = abs(max(angle(wm, Tmmax, N)[1]))
14     Vd = L * TpvMax
15     wm += pas
16
17     return (Vd_o, wm_o)</pre>
```

Et, en exécutant :

```
1 print(getMaxSpeed(0.1, 0.3, 0.01, 1000))
```

On obtient :

$$\left\{ \begin{array}{lll} \dot{\theta}_{v_{maxi}} & = & \texttt{0.14} \ rad.s^{-1} \\ V_{D,3/0} & = & \texttt{0.247} \ m.s^{-1} \end{array} \right.$$