Egyptian Calculations

1. Egytian Calculations (1)

Ancient Egytian Calculations

Use the following example to explain how the ancient Egyptian method of multiplying two numbers (in this case: 15.659) works.

Using the ancient Egyptian method, solve the division task 1219 : 23. The first and last line of the solution is already given below.

Using 180 : 27 as an example, explain why not all division tasks can be solved in this way, even if you allow unit fractions in the form $\frac{1}{2^n}$.

Notes: (not included in XML)

• This task has to be corrected manually, sorry!

2. Egytian Calculations (2)

Ancient Egytian Calculations

Use the following example to explain how the ancient Egyptian method of multiplying two numbers (in this case: 15.659) works.

Using the ancient Egyptian method, solve the division task 1007 : 19. The first and last line of the solution is already given below.

Using 180 : 27 as an example, explain why not all division tasks can be solved in this way, even if you allow unit fractions in the form $\frac{1}{2^n}$.

1

Notes: (not included in XML)

3. Egytian Calculations (3)

Ancient Egytian Calculations

Use the following example to explain how the ancient Egyptian method of multiplying two numbers (in this case: 15.659) works.

Using the ancient Egyptian method, solve the division task 1127 : 23. The first and last line of the solution is already given below.

Using 180 : 27 as an example, explain why not all division tasks can be solved in this way, even if you allow unit fractions in the form $\frac{1}{2^n}$.

Notes: (not included in XML)

• This task has to be corrected manually, sorry!

4. Egytian Calculations (4)

Ancient Egytian Calculations

Use the following example to explain how the ancient Egyptian method of multiplying two numbers (in this case: 15.659) works.

Using the ancient Egyptian method, solve the division task 1073 : 37. The first and last line of the solution is already given below.

Using 180 : 27 as an example, explain why not all division tasks can be solved in this way, even if you allow unit fractions in the form $\frac{1}{2^n}$.

2

Notes: (not included in XML)

5. Egytian Calculations (5)

Ancient Egytian Calculations

type=a>Use the following example to explain how the ancient Egyptian method of multiplying two numbers (in this case: $18 \cdot 479$) works.

Using the ancient Egyptian method, solve the division task 1219 : 23. The first and last line of the solution is already given below.

Vsing 180: 27 as an example, explain why not all division tasks can be solved in this way, even if you allow unit fractions in the form $\frac{1}{2^n}$.

Notes: (not included in XML)

• This task has to be corrected manually, sorry!

6. Egytian Calculations (6)

Ancient Egytian Calculations

Use the following example to explain how the ancient Egyptian method of multiplying two numbers (in this case: 18.479) works.

Using the ancient Egyptian method, solve the division task 1007: 19. The first and last line of the solution is already given below.

Using 180 : 27 as an example, explain why not all division tasks can be solved in this way, even if you allow unit fractions in the form $\frac{1}{2^n}$.

Notes: (not included in XML)

7. Egytian Calculations (7)

Ancient Egytian Calculations

Use the following example to explain how the ancient Egyptian method of multiplying two numbers (in this case: 18.479) works.

Using the ancient Egyptian method, solve the division task 1127 : 23. The first and last line of the solution is already given below.

Vsing 180: 27 as an example, explain why not all division tasks can be solved in this way, even if you allow unit fractions in the form $\frac{1}{2^n}$.

Notes: (not included in XML)

• This task has to be corrected manually, sorry!

8. Egytian Calculations (8)

Ancient Egytian Calculations

Use the following example to explain how the ancient Egyptian method of multiplying two numbers (in this case: 18.479) works.

Using the ancient Egyptian method, solve the division task 1073 : 37. The first and last line of the solution is already given below.

Using 180 : 27 as an example, explain why not all division tasks can be solved in this way, even if you allow unit fractions in the form $\frac{1}{2^n}$.

Notes: (not included in XML)