2017-12-12

- Let $\{q_1,\ldots,q_n\}$ be orthonormal basis. $\forall b\in\mathbb{R}^n$, $\exists x=(x_1,\ldots,x_n)\in\mathbb{R}^n$, $b=x_1q_1+\ldots+x_nq_n$.
 - Let $Q = [q_1, ..., q_n]$. Then, $x = Q^{-1}b = Q^{T}b$.
 - The coefficients $x_i = q_i^{\mathsf{T}} b$. Hence, $b = (q_1^{\mathsf{T}} b)q_1 + \ldots + (q_n^{\mathsf{T}} b)q_n$.
 - $(q_i^{\mathsf{T}}b)q_i$ is the projection of b onto q_i .
- Let $Q_{m \times n}$ (m > n) be a matrix with orthogonal columns. $Q^{\top}Q = I_{n \times n}$. Q^{\top} is the left inverse of Q.
- Proposition: Let $Q_{m \times n}$ (m > n) be a matrix with orthogonal columns. The least square solution to the normal equation Qx = b is $\tilde{x} = Q^{T}b$. The projection matrix $P = QQ^{T}$.
- Norm (length) of a vector $x \in \mathbb{R}^n$: $||x||_1 = \sum |x_i|$. $||x||_2 = \sqrt{\sum x_i^2}$. $||x||_{\infty} = \max |x_i|$.
- Theorem: Let V be an inner product space and $S = \{x_1, \dots, x_n\}$ be an orthogonal set of nonzero vectors. If $y = \sum a_i x_i$, then $a_i = \frac{\langle x_i, y \rangle}{\langle x_i, x_i \rangle}$
- Let $\{y_1, y_2\}$ be a linearly independent set. What is the orthogonal set $\{x_1, x_2\}$ that spans the same space as $\{y_1, y_2\}$? $x_1 = y_1$. $x_2 = y_2 - \frac{\langle y_1, y_2 \rangle}{\langle y_1, y_1 \rangle} y_1 = (I - \frac{y_1 y_1^{\mathsf{T}}}{v_1^{\mathsf{T}} v_1^{\mathsf{T}}}) y_2$.
- Gram-Schmidt orthogonalization process: Let V be an inner product space and $S = \{y_1, \dots, y_n\}$ be a linearly independent set of nonzero vectors. The orthogonal set $S' = \{x_1, \dots, x_n\}$ that spans the same space as $S: x_1 = y_1 \cdot x_i = y_i - \sum_{k=1}^{i-1} \frac{\langle x_k, y_i \rangle}{\langle x_k, x_k \rangle} x_k$.
- Theorem: Every $A_{m \times n}$ w/ linearly independent columns can be factored into $A = Q_{m \times n} R_{n \times n}$. The columns of Q are orthonormal and R is an invertible upper triangular matrix. When m = n and all matrices are square, Q is orthogonal.
 - \circ Let a_1, \ldots, a_n be the columns of A.
 - By Gram-Schmidt orthogonalization process, we can construct orthonormal vectors q_1, \ldots, q_n s.t. for i = 1, ..., n, span $\{q_1, ..., q_i\} = \text{span}\{a_1, ..., a_i\}$.
 - For i = 1, ..., n, let $q'_i = a_i \sum_{k=1}^{i-1} (q_k^{\mathsf{T}} a_i) q_k$, and $q_i = \frac{q'_i}{\|q'_i\|}$.
 - $a_i = (q_1^\top a_i)q_i + \ldots + (q_{i-1}^\top a_i)q_{i-1} + ||q_i'||q_i$, which is linear combination of q_1, \ldots, q_i .
 - Hence, $A = QR = [q_1, \dots, q_n] \begin{bmatrix} ||q'_1|| & \dots & ||q_1^T a_n|| \\ 0 & \ddots & \vdots \\ 0 & 0 & ||q'_n|| \end{bmatrix}$
- An inconsistent system Ax = b, where A has linearly independent columns, can be transformed into a consistent one. $Ax = b \rightarrow A^{\mathsf{T}} A \tilde{x} = A^{\mathsf{T}} b \rightarrow R^{\mathsf{T}} R \tilde{x} = R^{\mathsf{T}} Q^{\mathsf{T}} b \rightarrow R \tilde{x}$
- Let $x = r\cos\theta$, $y = r\sin\theta$, z = z. Then, $\begin{bmatrix} dx \\ dy \\ dz \end{bmatrix} = \begin{bmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} dr \\ d\theta \\ dz \end{bmatrix}$. Hence, $dV = dxdydz = \begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix} drd\theta dz = rdrd\theta dz$.

$$dV = dxdydz = \begin{vmatrix} \cos \theta & -r\sin \theta & 0\\ \sin \theta & r\cos \theta & 0\\ 0 & 0 & 1 \end{vmatrix} drd\theta dz = rdrd\theta dz.$$