Redes de Computadores

Prof. Daniel Ludovico Guidoni

guidoni@ufop.edu.br

Redes de Computadores

Capítulo 4: Camada de rede

Introdução

A Camada de Rede

- Transporta segmentos da estação remetente à receptora
- No lado remetente, encapsula segmentos dentro de datagramas
- No lado receptor, entrega os segmentos para a camada de transporte
- Protocolos da camada de rede em todos os sistemas finais e roteadores
- Roteadores examinam campos de cabeçalho de todos os datagramas IP que passam por eles

Funções da camada de rede

- Repasse: move pacotes de uma entrada do roteador para uma saída apropriada
- Roteamento: determina a rota a ser seguida pelos pacotes da fonte até o destino
 - Algoritmos de roteamento

Funções da camada de rede

- Cada roteador possui uma tabela de repasse
- O roteador examina o cabeçalho do pacote que está chegando e utiliza esse valor para indexar a tabela de repasse
- O resultado da tabela de repasse indica a interface de saída que o pacote deve ser repassado

 Modificações na tabela de repasse são realizadas pelos algoritmos de roteamento

Tabela de repasse e algoritmo de roteamento

Modelos de serviços

- Entrega garantida
- Entrega garantida com atraso limitado
- Entrega de pacotes na ordem
- Largura de banda mínima garantias
- Jitter máximo garantido (tempo entre duas trasnsmissões e recepções)

• ...

Modelo de serviço da camada de rede da Internet

Melhor esforço

Redes de Computadores

Capítulo 4: A camada de rede

O que há dentro de um roteador

Roteadores

Roteadores

- Executam algoritmos/protocolos de roteamento (RIP, OSPF, BGP)
- Repassam datadragas do enlace de entrada para o enlace de saída utilizando a tabela de repasse

Arquitetura de roteadores

Tabelas de repasse são calculadas e enviadas para as portas de entrada

Funções das portas de entrada

- meta: completar processamento da porta de entrada na 'velocidade da linha
- filas: se datagramas chegam mais rápido que taxa de re-envio para elemento de comutação

Repasse com base no destino

Faixa de endereços de destino	Interface de enlace	
11001000 00010111 00010000 00000000 até 11001000 00010111 00010111 11111111	0	
11001000 00010111 00010111 111111111111		
até 11001000 00010111 00011000 11111111	1	
11001000 00010111 00011001 00000000 até	2	
11001000 00010111 00011111 11111111		
senão	3	

Utilização do prefixo mais longo

Concordância do prefixo	Interface do enlace	
11001000 00010111 00010*** ******	0	
11001000 00010111 00011000 ******	1	
11001000 00010111 00011*** ******	2	
senão	3	

Destino: 11001000 00010111 00010110 10100001

Destino: 11001000 00010111 00011000 10101010

qual interface?

Elemento de comutação

- Transfere pacotes do buffer de entrada para o buffer de saída apropriado
- Taxa de comutação: taxa na qual os pacotes podem ser transferidos das entradas para as saídas:
 - frequentemente medida como múltiplo das taxas das linhas de entrada/saída
 - N entradas: desejável taxa de comutação N vezes a taxa da linha.

Técnicas de comutação

Comutação por memória

Roteadores da primeira geração:

- computadores tradicionais com comutação controlada diretamente pela CPU
- pacote copiado para a memória do sistema
- velocidade limitada pela largura de banda da memória (2 travessias do barramento por datagrama)

Comutação por um barramento

- Datagrama da memória da porta de entrada para a memória da porta de saída via um barramento compartilhado
- Disputa (contenção) pelo barramento: taxa de comutação limitada pela largura de banda do barramento
- Cisco 6500 usa barramento de 32 Gbps: velocidade suficiente para roteadores de acesso e corporativos.

Comutação por rede de interconexão

- Supera limitações de banda dos barramentos
- Redes Banyan, outras redes de interconexão desenvolvidas inicialmente para interligar processadores num sistema multiprocessador
- Projeto avançado: fragmentar datagrama em células de tamanho fixo, comutar células através da matriz de comutação.
- Cisco 12000: comuta 60 Gbps pela rede de interconexão.

Portas de saídas

- Enfileiramento necessário quando datagramas chegam do elemento de comutação mais rapidamente do que a taxa de transmissão
- Escalonamento escolhe um dos datagramas enfileirados para transmissão

Filas nas portas de saída

Disputa pela porta de saída no tempo t

Um tempo de pacote mais tarde

- Usa buffers quando taxa de chegada através do comutador excede taxa de transmissão de saída
- Enfileiramento (retardo), e perdas devidas ao transbordo do buffer da porta de saída!

Redes de Computadores

Capítulo 4: A camada de rede

O protocolo da internet (IP)

A camada de rede da Internet

O formato do datagrama IP

Tipicamente um segmento TCP ou UDP

IP: Fragmentação e remontagem

- Cada enlace de rede tem MTU (max. transmission unit)
 - maior tamanho possível de quadro neste enlace
 - tipos diferentes de enlace têm MTUs diferentes
- datagrama IP muito grande é dividido ("fragmentado") dentro da rede
 - um datagrama vira vários datagramas
 - "remontado" apenas no destino final
 - bits do cabeçalho IP usados para identificar, ordenar fragmentos relacionados

IP: Fragmentação e remontagem

Exemplo

- Datagrama com 4000 bytes com identificador 777
- MTU de 1500 bytes

Fragmento	Bytes	ID	Deslocamento	Flag
1º fragmento	1.480 bytes no campo de dados do datagrama IP	identificação = 777	0 (o que significa que os dados devem ser inseridos a partir do byte 0)	1 (o que significa que há mais)
2º fragmento	1.480 bytes de dados	identificação = 777	185 (o que significa que os dados devem ser inseridos a partir do byte 1.480. Note que 185 x 8 = 1.480)	1 (o que significa que há mais)
3º fragmento	1.020 bytes de dados (= 3.980 -1.480 -1.480)	identificação = 777	370 (o que significa que os dados devem ser inseridos a partir do byte 2.960. Note que 370 x 8 = 2.960)	0 (o que significa que esse é o último fragmento)

Redes de Computadores

Capítulo 4: A camada de rede

O protocolo da internet (IP) continuação...

Endereçamento IP

- endereço IP: ident. de 32bits para interface de estação, roteador
- interface: conexão entre estação, roteador e enlace físico
 - roteador típico tem múltiplas interfaces
 - estação típica possui uma ou duas interfaces (ex.: Ethernet e Wi-fi)
 - endereços IP associados a cada interface

Endereçamento IP

 As interfaces são conectadas por roteadores ou switchs

Sub-redes

- endereço IP:
 - parte de rede (bits de mais alta ordem)
 - parte de estação (bits de mais baixa ordem)
- O que é uma subrede IP?
 - interfaces de dispositivos com a mesma parte de subrede nos seus endereços IP
 - podem alcançar um ao outro sem passar por um roteador intermediário

Rede composta por 3 sub-redes

Sub-redes

Quantas sub-redes existem na figura?

Quantas sub-redes existem na figura?

Endereçamento IP: CIDR

- CIDR: Classless Inter Domain Routing (Roteamento Interdomínio sem classes)
 - parte de rede do endereço de comprimento arbitrário
 - formato de endereço: a.b.c.d/x, onde x é o número de bits na parte de subrede do endereço

200.23.16.0/23

Endereço IP: como obter um?

codificado pelo administrador em um arquivo no sistema operacional

- DHCP: Dynamic Host Configuration Protocol:
 - obtém endereço dinamicamente de um servidor
 - "plug-and-play"

DHCP

- Objetivo: permitir que o hospedeiro obtenha dinamicamente seu endereço IP do servidor de rede quando se conectar à rede
 - pode renovar seu prazo no endereço utilizado
 - permite reutilização de endereços (só mantém endereço enquanto conectado e "ligado")
 - aceita usuários móveis que queiram se juntar à rede (mais adiante)
- Visão geral do DHCP:
 - host broadcasts "DHCP discover" msg [optional]
 - servidor DHCP responde com msg "DHCP offer" [opcional]
 - hospedeiro requer endereço IP: msg "DHCP request"
 - servidor DHCP envia endereço: msg "DHCP ack"

DHCP: cliente-servidor

DHCP: interação cliente-servidor

Servidor DHCP:

223.1.2.5

Descoberta DHCP

Origem: 0.0.0.0, 68 Destino: 255.255.255.255.67

DHCPDISCOVER Internet: 0.0.0.0 ID transação: 654

Requisição DHCP

Origem: 0.0.0.0, 68 Destino: 255.255.255.255, 67

DHCPREQUEST Internet: 223.1.2.4 ID transação: 655

ID servidor DHCP: 223.1.2.5 Vida útil: 3600 s

Origem: 223.1.2.5,67

Destino: 255,255,255,255, 68

DHCPACK

Internet: 223.1.2.4 ID transação: 655

ID servidor DHCP: 223.1.2.5

Cliente recém-chegado

Oferta DHCP

Origem: 223.1.2.5,67

Destino: 255.255.255.255, 68

DHCPOFFER Internet: 223.1.2.4 ID transação: 654

ID servidor DHCP: 223.1.2.5

Vida útil: 3.600 s

ACK DHCP

Vida útil: 3,600 s

Tempo

Tempo

DHCP: mais do que "servir" IPs

- DHCP pode retornar mais do que apenas o endereço IP alocado na sub-rede:
 - endereço do roteador do primeiro salto para o cliente
 - nome e endereço IP do servidor DNS
 - máscara de rede (indicando parte de rede versus hospedeiro do endereço)

Endereçamento IP

- Como um provedor IP consegue um bloco de endereços?
 - ICANN: Internet Corporation for Assigned Names and Numbers (www.icann.org.br)
 - aloca endereços
 - gerencia DNS
 - aloca nomes de domínio, resolve disputas

Redes de Computadores

Capítulo 4: A camada de rede

O protocolo da Internet (IP) continuação....

- [1 byte].[1 byte].[1 byte]
 - 4 bytes ou 32 bits

- 1 byte pode representar de 0 a 255
- 1 byte pode representar de 00000000 a 11111111

- 0.0.0.0 a 255.255.255.255

• Pode assumir qualquer variação dentro dos limites estabelecidos

• 15.0.230.64

• 200.240.180.27

- Endereço de broadcast
 - 255.255.255.255

- Localhost
 - 127.0.0.1

- 200.23.7.0 define o endereço da rede e não é utilizado por nenhuma interface
- 200.23.7.255 define o endereço de broadcast dentro da subrede e também não é utilizado por nenhuma interface

- Redes privadas
 - 10.0.0.0 até 10.255.255.255
 - 172.16.0.0 até 172.31.255.255
 - 192.168.0.0 até 192.168.255.255

_

- Esses endereços não funcionam na Internet
 - Funcionam apenas em redes locais

Tradução de endereços na rede (NAT)

todos os datagramas saindo da rede local têm mesmo endereço IP NAT de origem: 138.76.29.7,

mas diferentes números de porta de origem

datagramas com origem ou destino nesta rede têm endereço 10.0.0/24 para origem/destino (como sempre)

Tradução de endereços na rede (NAT)

- NAT: Network Address Translation
- motivação: rede local usa apenas um endereço IP no que se refere ao mundo exterior:
 - intervalo de endereços não necessário pelo ISP
 - para a Internet: apenas um endereço IP para todos os dispositivos
 - pode mudar os endereços dos dispositivos na rede local sem notificar o mundo exterior
 - pode mudar de ISP sem alterar os endereços dos dispositivos na rede local
 - dispositivos dentro da rede local não precisam ser explicitamente endereçáveis ou visíveis pelo mundo exterior (uma questão de segurança)

Tradução de endereços na rede (NAT)

Implementação: roteador NAT deve:

- enviando datagramas: substituir (endereço IP de origem, # porta) de cada datagrama saindo por (endereço IP da NAT, novo # porta)
 - . . . clientes/servidores remotos responderão usando (endereço IP da NAT, novo # porta) como endereço de destino
- lembrar (na tabela de tradução NAT) de cada par de tradução (endereço IP de origem, # porta) para (endereço IP da NAT, novo # porta)
- recebendo datagramas: substituir (endereço IP da NAT, novo # porta) nos campos de destino de cada datagrama chegando por (endereço IP origem, # porta) correspondente, armazenado na tabela NAT

Tradução de endereços ne rede

2: roteador NAT muda endereço de origem do datagrama de 10.0.0.1, 3345 para 138.76.29.7, 5001, atualiza tabela

endereço destino:

138.76.29.7, 5001

Tabela de tradução NAT			
Lado da WAN	Lado da LAN		
138.76.29.7, 5001	10.0.0.1, 3345		

1: hospedeiro 10.0.0.1, 3345 envia datagrama para 128.119.40.186, 80

de destino do datagrama de

138.76.29.7, 5001 para 10.0.0.1, 3345

Tradução de endereços na rede

- campo de número de porta de 16 bits:
 - 60.000 conexões simultâneas com um único endereço no lado da LAN!
- NAT é controverso:
 - roteadores só devem processar até a camada 3
 - viola argumento de fim a fim
 - a possibilidade de NAT deve ser levada em conta pelos projetistas da aplicação, p. e., aplicações P2P
- a falta de endereços deverá ser resolvida pelo IPv6

Problema de travessia do NAT

- cliente quer se conectar ao servidor com endereço 10.0.0.1
 - endereço do servidor 10.0.0.1 local à LAN (cliente não pode usá-lo como endereço destino)
 - apenas um endereço NAT visível externamente: 138.76.29.7
- solução 1: configure a NAT estaticamente para repassar as solicitações de conexão que chegam a determinada porta ao servidor
 - p. e., (123.76.29.7, porta 2500) sempre repassado para 10.0.0.1 porta 25000

Problema de travessia do NAT

- solução 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Permite que o hospedeiro com NAT:
 - descubrir endereço IP público (138.76.29.7)
 - incluir/remover mapeamentos de porta (com tempos de validade)
- automatizar configuração estática do mapa de porta NAT

Problema de travessia do NAT

- solução 3: repasse (usado no Skype)
 - cliente com NAT estabelece conexão com relay
 - cliente externo se conecta ao relay
 - reley liga pacotes entre duas conexões

ICMP: Internet Control Message Protocol

- usado por hospedeiros & roteadores para comunicar informações em nível de rede
 - relato de erro: hospedeiro, rede, porta, protocolo inalcançável
 - eco de solicitação/ resposta (usado por ping)
- camada de rede "acima" do IP:
 - msgs ICMP transportadas em datagramas IP
- mensagem ICMP: tipo, código mais primeiros 8 bytes do datagrama IP causando erro

Tipo	Cód,	Descrição
0	0	resposta de eco (ping)
3	0	rede de destino inalcançável
3	1	hosp. de destino inalcançável
3	2	protocolo de destino inalcançável
3	3	porta de destino inalcançável
3	6	rede de destino desconhecida
3	7	hosp. de destino desconhecido
4	0	redução da fonte (controle de
		congestionamento – não usado)
8	0	solicitação de eco (ping)
9	0	anúncio de rota
10	0	descoberta do roteador
11	0	TTL expirado
12	0	cabeçalho IP inválido

Redes de Computadores

Capítulo 4: A camada de rede

Algoritmos de roteamento

Roteamento e repasse

Abstração da rede como um grafo

Grafo: G = (N,E)

N = conjunto de roteadores = { u, v, w, x, y, z }

 $E = conjunto de enlaces = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Comentário: Abstração de grafo é útil em outros contextos de rede

Exemplo: P2P, onde N é conj. de pares e E é conj. de conexões TCP

Grafos, custos e caminhos

- c(x,x') = custo do enlace (x,x')
 - c(w,z) = 5
- custo poderia ser sempre 1, ou inversamente relacionado à largura ou inversamente relacionado ao congestionamento

Custo do caminho $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

Pergunta: Qual é o caminho de menor custo entre u e z?

algoritmo de roteamento: algoritmo que encontra o caminho de menor custo

Classificação de algoritmos de roteamento

Informação global ou descentralizada?

- global:
 - todos os roteadores têm topologia completa, informação de custo do enlace
 - algoritmos de "estado do enlace"
- descentralizada:
 - roteador conhece vizinhos conectados fisicamente, custos de enlace para vizinhos
 - processo de computação iterativo, troca de informações com vizinhos
 - algoritmos de "vetor de distância"

Classificação de algoritmos de roteamento

Estático ou dinâmico?

- estático:
 - rotas mudam lentamente com o tempo
- dinâmico:
 - rotas mudam mais rapidamente
 - atualização periódica em resposta a mudanças no custo do enlace

Estado de enlace

Algoritmo de Dijkstra

- nova topologia, custos de enlace conhecidos de todos os nós
 - realizado por "broadcast de estado do enlace"
 - todos os nós têm a mesma informação
- calcula caminhos de menor custo de um nó ("origem") para todos os outros nós da rede
- iterativo: após k iterações, sabe caminho de menor custo para k destinos

Estado de enlace

notação:

- c(x,y): custo do enlace do nó x até y; = ∞ se não forem vizinhos diretos
- D(v): valor atual do custo do caminho da origem ao destino v
- p(v): nó predecessor ao longo do caminho da origem até v
- N': conjunto de nós cujo caminho de menor custo é definitivamente conhecido

Estado de enlace

Algoritmo de estado de enlace para o nó de origem *u*

```
Inicialização
       N' = \{u\}
3
      para todos os nós v
           se v for um vizinho de u
               então D(v) = c(u,v)
           senão D(v) = \infty
6
8
   Loop
9
       encontre w não em N' tal que D(w) é um mínimo
       adicione w a N'
10
       atualize D(v) para cada vizinho v de w e não em N':
11
12
               D(v) = \min(D(v), D(w) + C(w,v))
       /* o novo custo para v é o velho custo para v ou
13
14
           o custo do menor caminho conhecido para w mais o custo de w para v */
   até N'= N
```

Estado de enlace: exemplo

Algoritmo de estado de enlace para o nó de origem *u*

```
Inicialização
       N' = \{u\}
       para todos os nós v
           se v for um vizinho de u
              então D(v) = c(u,v)
           senão D(v) = \infty
   Loop
       encontre w não em N' tal que D(w) é um mínimo
10
       adicione w a N'
       atualize D(v) para cada vizinho v de w e não em N':
11
              D(v) = \min(D(v), D(w) + C(w,v))
12
       /* o novo custo para v é o velho custo para v ou
13
          o custo do menor caminho conhecido para w mais o custo de w para v */
14
15 até N'= N
```


c(x,y): custo do enlace do nó x até y; = ∞ se não forem vizinhos diretos

D(v): valor atual do custo do caminho da origem ao destino v

p(v): nó predecessor ao longo do caminho da origem até v

N': conjunto de nós cujo caminho de menor custo é definitivamente conhecido

Etapa	N'	D(v),p(v)	<i>D(w),p(w)</i>	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux	2,u	4,x		2,x	∞
2	иху	2,u	3,у			4,y
3	uxyv		3,y			4,y
4	uxyvw					4,y
5	uxyvwz					

Estado de enlace: exemplo

Destino	Enlace
V	(u, v)
W	(u, x)
X V	(u, x) (u, x)
Z	(u, x)

Caminho de menor custo

Redes de Computadores

Capítulo 4: A camada de rede

Algoritmos de roteamento continuação...

Algoritmos de vetor de distância

• Equação de Bellman-Ford (programação dinâmica)

d_x(y) : = custo do caminho de menor custo de x para y

• $d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$

onde min assume todos os vizinhos v de x

Algoritmos de vetor de distância

$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

equação B-F diz:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

nó que alcança mínimo é o próximo salto no caminho mais curto → tabela de repasse

Algoritmos de vetor de distância

- $D_x(y)$ = estimativa do menor custo de x para y
- nó x sabe custo de cada vizinho v: c(x,v)
- nó x mantém vetor de distância $D_x = [D_x(y): y \in N]$
- nó x também mantém vetor de distância de seus vizinhos
 - para cada vizinho v, x mantém $D_v = [D_v(y): y \in N]$

Algoritmo de vetor de distâncias

ideia básica:

- de tempos em tempos, cada nó envia sua própria estimativa de vetor de distância aos vizinhos
- assíncrono
- quando um nó x recebe nova estimativa DV do vizinho, ele atualiza seu próprio DV usando a equação de B-F:

$$D_x(y) \leftarrow min_v\{c(x,v) + D_v(y)\}$$
 para cada nó $y \in N$

• sob condições modestas, naturais, a estimativa $D_x(y)$ converge para o menor custo real $d_x(y)$

Algoritmo de vetor de distâncias

iterativo, assíncrono: cada iteração local causada por:

- mudança de custo do enlace local
- mensagem de atualização do DV do vizinho

distribuído:

- cada nó notifica os vizinhos apenas quando seu DV muda
- vivinhos, então, notificam seus vizinhos, se necessário

Algoritmo de vetor de distâncias (DV)

Tabela do nó x

	Custo até					
		Х	У	z		
	х	0	2	7		
De	у	00	00	œ		
	Z	00	00	∞	ĺ	
		'		- 1	١	

Tabela do nó y

		Custo até				
			Х	У	z	
	х		00	œ	00	
De	У	<	2	0	1	
	Z		00	œ	∞	

Tabela do nó z

 $D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$ para cada nó $y \in N$

Algoritmo de vetor de distâncias (DV)

Tabela do nó x

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}\$$

= $\min\{2+1, 7+0\} = 3$

Algoritmo de vetor de distâncias (DV)

Tabela do nó x

	Custo até	Custo até	Custo até
	x y z	x y z	x y z
х	0 2 7	x 0 2 3	x 0 2 3
е у	∞ ∞ ∞	⊕ y 2 0 1	y 2 0 1
z	∞ ∞ ∞	z 7 1 0	z 3 1 0
	'	[f ' \\	- † '

Tabela do nó y

		Custo	até	X	X	Cu	sto	até			Cu	sto	até
		х у	z	Λ	P	Х	У	Z	V	*	X	У	Z
	х	00 00	œ	V	х	0	2	7	V	Х	0	2	3
De	У	2 0	1	ı	У	2	0	1	Y,	Эγ	2	0	1
	Z	∞ ∞	00	Λ	z	7	1	0	Λ	z	3	1	0
		l	_ \		*	I			Λ	1	ı		

Tabela do nó z

		Cu	sto	até	L	Cu			Custo até			Custo até				
_		X	У	Z	1/	1	<u> </u>	Х	У	Z	/			Х	У	Z
	х	∞	œ	00	7		х	0	2	7	/		х	0	2	3
9	у	∞	œ	œ		De	у	2	0	1		De	у	2	0	1
_	z	7	1	0			z	3	1	0			z	3	1	0
		'						'								

Estado do enlace ou vetor de distâncias?

- Complexidade?
- Velocidade de convergência?
- Robustez?

Redes de Computadores

Capítulo 4: A camada de rede

Roteamento Hierárquico

Roteamento Hierárquico

Nosso estudo de roteamento até aqui – o ideal:

- todos os roteadores idênticos
- rede "achatada"
- ... não acontece na prática

escala: com 200 milhões de destinos:

- não pode armazenar todos os destinos nas tabelas de roteamento!
- troca de tabela de roteamento atolaria os enlaces!

autonomia administrativa

- Internet = rede de redes
- cada administrador de rede pode querer controlar o roteamento em sua própria rede

Roteamento Hierárquico

- Roteadores agregados em regiões, "sistemas autônomos" (AS)
- Roteadores no mesmo AS rodam o mesmo protocolo de roteamento
 - Protocolo de roteamento "intra-AS"
 - Roteadores em ASes diferentes podem executar protocolo de roteamento intra-AS diferente

roteador de borda

Enlace direto com roteador em outro AS

ASes interconectadas

- Tabela de repasse configurada por algoritmo de roteamento intra e inter-AS
 - intra-AS define entradas para destinos internos
 - inter-AS & intra-AS definem entradas para destinos externos

Redes de Computadores

Capítulo 4: A camada de rede

Roteamento na Internet

Roteamento intra-AS

- Também conhecido como Interior Gateway Protocols (IGP)
- Protocolos de roteamento intra-AS mais comuns:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (proprietário da Cisco)

RIP (Routing Information Protocol)

- Algoritmo de vetor de distância
- Incluído na distribuição BSD-UNIX em 1982
- Métrica de distância: # de saltos (máx. = 15 saltos)

Destino	Saltos
u	1
V	2
W	2
X	3
У	3
Z	2

RIP (Routing Information Protocol)

- Vetores de distância: trocados entre vizinhos a cada 30s por meio de mensagem de resposta (também conhecida como anúncio)
- Cada anúncio: lista de até 25 sub-redes de destino dentro do AS

Tabela de roteamento do roteador D

Sub-rede de destino	Roteador seguinte	Número de saltos até o destino
W	А	2
у	В	2
Z	В	7
X	_	1

Tabela de roteamento do roteador D

Sub-rede de destino	Roteador seguinte	Número de saltos até o destino
W	A	2
у	В	2
Z	В	7
X	_	1

Anúncio recebido do roteador A

Sub-rede de destino	Roteador seguinte	Número de saltos até o destino
Z	С	4
W	_	1
X	_	1

Tabela de roteamento do roteador D

Sub-rede de destino	Roteador seguinte	Número de saltos até o destino
W	А	2
у	В	2
Z	В	7
Х	_	1

Anúncio recebido do roteador A

Sub-rede de destino	Roteador seguinte	Número de saltos até o destino
Z	С	4
W	_	1
X	_	1

Sub-rede de destino	Roteador seguinte	Número de saltos até o destino
W	А	2
у	В	2
Z	А	5

Nova tabela de roteamento do roteador D

OSPF (Open Shortest Path First)

- "open": publicamente disponível
- Usa algoritmo Link State (estado de enlace)
 - disseminação de pacote LS
 - mapa de topologia em cada nó
 - cálculo de rota usando algoritmo de Dijkstra
- Anúncio OSPF transporta uma entrada por roteador vizinho
- anúncios disseminados ao AS inteiro (com inundação)
 - transportados nas mensagens OSPF diretamente por IP (em vez de TCP ou UDP)

Recursos "avançados" do OSPF (não no RIP)

- segurança: todas as mensagens OSPF autenticadas (para impedir intrusão maliciosa)
- múltiplos caminhos de mesmo custo permitidos (apenas um caminho no RIP)
- para cada enlace, múltiplas métricas de custo para diferentes (p. e., custo de enlace de satélite definido "baixo" para melhor esforço; alto para tempo real)
- OSPF hierárquico em grandes domínios

OSPF hierárquico

Roteamento inter-AS da Internet: BGP

- BGP (Border Gateway Protocol): o padrão de fato
- BGP oferece a cada AS um meio de:
 - Obter informação de acessibilidade da sub-rede a partir de ASs vizinhos.
 - Propagar informação de acessibilidade a todos os roteadores internos ao AS.
 - Determinar rotas "boas" para sub-redes com base na informação e política de acessibilidade.
- Permite que a sub-rede anuncie sua existência ao resto da Internet: "Estou aqui"

Fundamentos do BGP

- Pares de roteadores (pares BGP) trocam informações de roteamento nas conexões TCP semi-permanentes: sessões BGP
 - sessões BGP não precisam corresponder a enlaces físicos

- Quando AS2 anuncia um prefixo para AS1:
 - AS2 promete que repassará datagramas para esse prefixo
 - AS2 pode agregar prefixos em seu anúncio

Fundamentos do BGP

Mensagens BGP

- Mensagens BGP trocadas usando TCP.
- Mensagens BGP:
 - OPEN: abre conexão TCP com par e autentica remetente
 - UPDATE: anuncia novo caminho (ou retira antigo)
 - KEEPALIVE: mantém conexão viva na ausência de UPDATES; também envia ACK para solicitação OPEN
 - NOTIFICATION: informa erros na msg anterior; também usada para fechar conexão

Por que roteamento intra e inter-AS diferente?

política:

- inter-AS: admin deseja controle sobre como seu tráfego é roteado, quem roteia através de sua rede
- intra-AS: único admin, de modo que nenhuma decisão política é necessária

escala:

 roteamento hierárquico salva tamanho de tabela, tráfego de atualização reduzido

desempenho:

- intra-AS: pode focalizar no desempenho
- inter-AS: política pode dominar sobre desempenho