烧录器

使用说明

Version 5.5 2022年1月

磐芯电子

目录

目	[录	2
1	概述	3
2.	界面说明	4
	2.1 软件界面说明	4
	2.2 硬件界面说明	5
3	操作说明	7
	3.1 连接烧录器	7
	3.1.1 连接	7
	3.1.2 连接完成	7
	3.2 打开烧录文件	8
	3.2.1 打开 Hex 文件	8
	3.2.2 打开未加密 ZCW 文件	8
	3.2.3 打开文件加密 ZCW 文件	9
	3.3 设置芯片配置字	9
	3.4 设置滚码	10
	3.5 设置芯片 OS 配置	12
	3.6 设置烧录选项	13
	3.7 设置文件加密选项	14
	3.8 下载代码	
	3.9 手工烧录	
	3.9.1 放置芯片	16
	3.9.2 烧录操作 PASS	
	3.9.3 烧录操作 FAIL	
	3.10 机台烧录	
	3.11 其他功能	
	3.11.1 缓冲区	
	3.11.2 代码 ID	
	3.11.3 芯片校验和	25
4	固件升级	26
5	错误说明	31
6	修正记录	33

1 概述

磐芯电子烧录器是磐芯电子有限公司为其自主设计的内嵌 Memory 的产品进行烧录而设计。烧录工具包括上位机软件(PM)及烧录器硬件(Burner)两部分。主要功能如下:

■ 文件输入:

- 支持 HEX 格式和 ZCW 格式
- 兼容以前版本 ZCW 文件

■ 文件保存:

- 读入为 HEX 文件或读入 ZCW 文件后有修改,点击下载时会提示重新存档
- 缓冲区内〈另存为〉可以保存为其他名称的 ZCW 文件

■ 代码信息显示:

- 未文件加密代码 LCD 界面显示芯片型号、校验和、已烧录数量
- 文件加密代码 LCD 界面显示芯片型号、校验和、允许烧录数量

■ 烧录:

- 可通过手动烧录按键对芯片进行烧录
- 可通过机台连接接口连接自动烧录机台烧录
- 可通过蜂鸣器判断烧录是否成功

■ 文件加密:

- 可对烧录代码进行加密
- 加密的烧录代码可限制烧录数量
- 加密的烧录代码可指定烧录器

■ 支持的芯片:

● 对应新版免驱烧录器(FLASH/MTP/OTP 通用)

注意:烧录器 1.0 使用的硬件版本为 V:5.x,烧录器 2.0 硬件版本为 V1.x,软件版本为官网最新 ZCPM。

2.界面说明

2.1 软件界面说明

PM 软件包为免安装软件包,拷贝到电脑上即可使用。

(注:请确认软件包放置目录路径、Hex 文件名及 ZCW 文件名中不包含""(空格)、"("、")"或其他特殊字符及全角字符,如软件无法使用,请将目录路径、Hex 文件名及 ZCW 文件修改为只使用英文字母及数字后再使用。)

2.2 硬件界面说明

3 操作说明

3.1 连接烧录器

3.1.1 连接

烧录器通过 USB 线免驱连接 PC。

3.1.2 连接完成

执行 ZCPM.exe,如果烧录器连接正确,则设备名称处显示所连接烧录器的固件版本号,消息框显示所连接烧录器的 ID 号。

请注意不允许同时打开多个 ZCPM.exe 进程,否则软件可能出现运行异常。

3.2 打开烧录文件

3.2.1 打开 Hex 文件

1)点击<选择文件>,选择要下载的Hex文件。

2) 芯片名称处选择待烧录的芯片型号。选择芯片型号后,所有配置信息(包括芯片配置字)重置,需要重新设置。

3.2.2 打开未加密 ZCW 文件

1)点击<选择文件>,选择要下载的 ZCW 文件。

2) 芯片名称已锁定,无法更改。

3.2.3 打开文件加密 ZCW 文件

1)点击<选择文件>,选择要下载的 ZCW 文件。

- 2) 芯片名称已锁定,无法更改。
- 3) 可看到允许编程个数及指定烧录器 ID 的设置, 但无法更改。

3.3 设置芯片配置字

1) 点击<配置字>,选择相应配置选项,点击<确定>确认退出。

2)配置字如有修改,校验和的值也会发生变化。<芯片代码加密>使能后,芯片内程序将无法被读取。

3.4 设置滚码

- 1) 滚码地址: 〈1 地址〉为地址低位,〈2 地址〉为地址高位; 当需要设置 16 位长度滚码,选择 1 地址; 当需要设置 32 位长度滚码,选择 2 地址;
- 2) 滚码初值: 还没有开始烧录时滚码的值;
- 3) 滚码步长:每烧录一次,原来的滚码值加上步长就是新的滚码值。
- 4) 如需使用滚动码,先在程序中对相应地址进行处理,通过指令可以写入滚码值,详细请参考滚码范例 ORG 0x01F1 ;//把滚码的地址预存一个数据,防止ROM空间被其他程序占 用

DTAB:

DW 0x5678 ;//16位地址 DW 0x1234 ;//32位地址

5、M6R/M8R 系列通过 RDT 指令读取滚码值

例:设置32位长度滚码,滚码初值为12345678,滚码步长为5,

烧录之前 烧录 4 次后

计算过程如下:

第 0 次烧录 滚码值=滚码初值=12345678

第 1 次烧录 滚码值=第 0 次烧录的滚码值+步长=12345678+5=1234567D 第 2 次烧录 滚码值=第 1 次烧录的滚码值+步长=1234567D+5=12345682 第 3 次烧录 滚码值=第 2 次烧录的滚码值+步长=12345682+5=12345687 第 4 次烧录 滚码值=第 3 次烧录的滚码值+步长=12345687+5=1234568C

....

第 n 次烧录 滚码值=第 n-1 次烧录的滚码值+步长

3.5 设置芯片 OS 配置

OS 设置用于校验芯片封装脚位

1)点击<OS 设置>,点击<使能 OS 测试>,选择相应芯片管脚数,点击<确定>确认退出。

2)如果待烧录芯片有 NC 脚位或其他特殊脚位,则勾选取消相应脚位 OS 测试功能。 电源脚位和烧录用脚位不需要勾选取消。

3.6 设置烧录选项

1) 根据烧录需求,设置烧录选项。

- 2) 校验:校验芯片中烧录完成的代码与烧录器中的代码是否一致 单独勾选此项时,对未对存储区保护(配置字选择代码加密)的芯片,可再次确认其代码是否正确完整烧录。
- 3) 烧录: 烧录代码, 烧录过程中会对当前字节进行一次校验。
- 4) 查空:确认烧录器上待烧录芯片是否空片。 量产烧录时,不建议勾选查空选项。

3.7 设置文件加密选项

- 注: 烧录器 2.0 暂未开放此功能。
- 1) 如需设置文件加密, 勾选文件加密使能。

- 2) 允许编程个数内填入希望限制烧录的数量(10进制格式)
 - 输入范围为<2-999,999>
 - 输入值为0时,表示不限制烧录的数量
- 3) 烧录器 ID 内填入希望指定的烧录器 ID (16 进制格式)
 - 输入值为0时,表示不指定烧录器

3.8 下载代码

1) 点击<下载>,下载成功时消息框显示已正确下载。

2) 如果打开的是 Hex 文件或打开 ZCW 文件后设置有改动,会跳出窗口询问是否保存 ZCW 文件。

3) 如果下载的是文件未加密代码,烧录器 LCD 显示芯片型号、校验和及烧录完成数量为 0。

4) 如果下载的是文件加密代码,烧录器 LCD 显示芯片型号、校验和及允许烧录数量。 加密代码中的烧录器 ID 与硬件匹配时方可正常下载。

3.9 手工烧录

3.9.1 放置芯片

1) 将烧录器用 USB 线与电脑 USB 口或 5V USB 电源适配器 (输出电流 1A 以上) 连接

2)将芯片的电源脚位(VDD, GND, VPP)与烧录脚位(SDA, SCK, CLK)用跳线帽和对应信号连接。

在 40pin 芯片座的左右两边,各有 3 组 3x20 的插针,每组插针的左边一列和右边一列对应板上标示的信号,中间一列对应芯片座的左边或右边的 20 脚信号,根据不同芯片烧录脚所在位置,将对应脚与所需烧录信号用跳线横向相连。

下图为以 M8R512 为例所示的跳线放置方式

3.9.2 烧录操作 PASS

- 1) 按下烧录按键,烧录成功后,蜂鸣器响一声,PASS 灯亮。
- 2)下载成功时烧录器响一声,请确认显示校验和与软件界面上的是否一致。
- 3) 如果是文件未加密代码, 烧录器 LCD 会显示当前未掉电情况下已烧录成功的次数。

4) 下载不成功烧录器响三声,烧录器 LCD 显示相关错误信息,相关错误信息详见错误说明。

5) 如果是 ZCW 加密文件, 烧录器 LCD 会显示此代码剩余可烧录的次数。

烧录器记录此台烧录器已下载过的代码 ID 及对应的剩余允许烧录数量, 所以重复下载加密代码仍是按实际剩余允许烧录数量进行限制。

剩余允许烧录数量在值第一次在 N*16+1 时更新, 之后每 16 次更新一次。

例:设置烧录次数 100 次, (100-1) /16=6 余 3, 即烧录三次后内部进行第一次烧录次数更新, 之后每烧录 16 次更新一次, 超过 16 次重新上电恢复为上次更新次数。

3.9.3 烧录操作 FAIL

1) 当烧录器烧录芯片操作失败后,蜂鸣器响三声,FAIL 灯亮。

3.10 机台烧录

烧录信号	有效电平	烧录器接口
GND	GND	PIN1
+5V	+5V	PIN2
BUSY	"H"	PIN3
FAIL	"L"	PIN4
PASS	"L"	PIN5
START	"H"	PIN6

烧录操作 PASS 时信号波形

卢氏电子和金创图的机台模式可以直接对应众成微的选项,具体参考如下。

其他机台若有疑问可联系技术支持咨询。

3.11 其他功能

3.11.1 缓冲区

1) 软件界面点击<缓冲区>, 可显示当前代码的相关内容。

- 2) CheckSum(ROM)显示的是 ROM 区域的校验和值,对于因加密选项或烧录选项不同而使完整校验和(ZCW)不同的文件,可用来判断 ROM 区域的内容是否相同。
 - 3)点击<另存为>,可将内容导出存储为任意文件名的 ZCW 文件。

3.11.2 代码 ID

- 1) 加密过的 ZCW 文件拥有一个独立的 32 位代码 ID
- 2) 烧录器通过 USB 连接 PC 后,在软件界面点击〈上传代码 ID〉,可在消息框中获取当前烧录器中的代码 ID。

3.11.3 芯片校验和

- 1) 烧录器用 USB 线与电脑连接
- 2) 下载任意一个与要读取芯片相同型号的代码文件到烧录器。
- 3) 软件界面点击〈芯片校验和〉,消息框中会显示芯片中存放的校验和的值。

4 固件升级

烧录器 1.0:

- 1) 将烧录器与电脑用数据线连接好
- 2) 打开 ZC TOOL 文件夹下的 bin 文件夹

3)运行该文件夹下的 DFU.exe

4)运行成功后会弹出如图所示的一个对话框

5) 在弹出的对话框中点击<Load>按钮,选择升级要用的固件

6) 完成上述步骤后,请确认所选文件的路径是否是存放更新固件的路径,以及确定 VID: 0x0C00 和 PID: 0x0311 是否正确

7) 点击<Upgrade>按钮,在弹出的对话框中选择 <是>按钮

8) 当进度条显示 100%时,将会弹出一对话框,表示已经更新完成

烧录器 2.0:

- 1) 将烧录器与电脑用数据线连接好
- 3) 打开 ZC TOOL V1.0.5 文件夹下的 bin 文件夹

3)运行该文件夹下的 MassesChip Upgrade_V1.0.exe

4)运行成功后会弹出如图所示的一个对话框

5) 在弹出的对话框中点击打开固件按钮,选择升级要用的固件

6) 确认升级固件、等待升级完成

5 错误说明

错	误序号	调试信息1	调试信息 2	错误说明	排查
		FFF1	FFBC	芯片 VDD 检测错误	IC 开、短路,电源、地 连接
		00xx	FFBC	管脚开短路测试错误	OS 设置,烧录线连接
	Err01	XXXX	FFFF	产品 ID 检测错误	烧录线连接
		FFFF	800C	芯片为测试	部分产品芯片未进行 FT 测试
	Err22	数据	地址	芯片不空	
	Err03	频率值	校准值	IRC 校准错误	
Fail Dia		XXXX	FFEA	烧录器基准电压错误	烧录器未校准
Fail Bin	Err13	XXXX	FFEB	接触电阻测试	GND 接触电阻过大
		A0xx	A0xx	CP 和 FT 校准偏差较大	
		XXXX	800D	校准值写入错误	
	ErrEE	xxxx	EEEE	特殊测试(主要是合 封)	特殊 Pattern
	Err04	数据	地址	某地址写入错误	
		FFFF	800D	内部基准校准值错误	未经过 FT 测试
	Err05	数据	地址	校验错误	
	Err23	XXXX	FFFA	静态电流[0.3-2uA]	所有端口输出 0
	EIIZS	xxxx	FFFB	静态电流[0.3-2uA]	说有端口输出1
	P:xxxx	校准电压	校准值	包含参考测试时 PASS 显示	
PassBin		校准频率	校准值	不包含参考测试时 PASS 显示	
Power	XXXX	xxxx	Xxxx	关键电压检测	USB 供电电压,USB 线
Err	[6.2,6.8]	[4.4,5.2]	[4.3,5.2]		
LII	系统 6.5V	PowerIn	系统 5V		

6 修正记录

版本	日期	描述
Ver3.00	2015-6-1	烧录器升版
Ver3.01	2016-9-1	新增部分烧录器使用说明
Ver5.1	2018-9-18	烧录器升版
Ver5.2	2019-6-18	勘误以及增加报错说明
Ver5.3	2019-7-31	增加固件升级的使用说明
Ver5.4_000	2019-8-1	勘误
Ver5.5	2022-1-5	勘误以及增加新烧录器使用说明机台烧录使用说明