北京航空航天大学 2012-2013 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

	班号	学号	姓名	成绩
--	----	----	----	----

题 号	_	 =	四	五.	六	七	总分
成绩							
阅卷人							
校对人							

- 一、 求解下面问题(每小题6分,满分48分)
- 1. 设 f(x,y) 为一连续函数,求极限 $\lim_{r\to 0^+} \frac{1}{r^2} \iint_{x^2+y^2 \le r^2} f(x,y) dx dy$.
- 2. 改变累次积分的积分顺序:

$$\int_{-6}^{2} dx \int_{\frac{x^{2}}{4}-1}^{2-x} f(x,y) dy$$

3. 计 算 二 重 积 分
$$\iint_D \sin \sqrt{x^2 + y^2} dx dy$$
 , 其 中 积 分 区 域 为
$$D = \{(x,y) | \pi^2 \le x^2 + y^2 \le 4\pi^2 \}.$$

4. 计算三重积分 $\iint_V (y^{2012}x+1)dxdydz$,其中 V 由 $z = \sqrt{4-x^2-y^2}$ 与 $3z = x^2+y^2$ 所成的立体.

5. 计算积分
$$I = \int_{\Gamma} (x^2 + 2z) ds$$
, 其中曲线**T**为 $\begin{cases} x^2 + y^2 + z^2 = a^2, \\ x + y + z = 0. \end{cases}$ (利用对称性)

6. 计算第一型曲面积分 $\iint_{\Sigma} (x+y+z)dS$, 其中 Σ 为球面 $x^2+y^2+z^2=a^2$ 上 $z \ge h \ (0 < h < a)$ 的部分. (可利用对称性)

7. 证明向量场

$$\overrightarrow{F} = (yz(2x + y + z), xz(x + 2y + z), xy(x + y + 2z))$$

是有势场,并求其势函数.

8. 设曲面 $\sum x + y + z = 1$ $(x, y, z \ge 0)$, 已知连续函数 f(x, y, z) 满足 $f(x, y, z) = (x + y + z)^3 + \iint_{\Sigma} f(x, y, z) dS,$

求f(x,y,z).

二、(10 分)(直接计算,不能用 Gauss 公式)

计算 $\iint_S (z^2 + x) dy dz + y dz dx - z dx dy$, 其中 S 是旋转抛物面 $z = \frac{1}{2} (x^2 + y^2)$ 介于平面 z = 0 及 z = 2 之间的部分的下侧。

三、(12分)(利用 Green 公式)

计算 $\oint_L \frac{xdy-ydx}{b^2x^2+a^2y^2}$, $(a>0,\ b>0)$ 其中 L 为一条无重点, 分段光滑且不经过原点

的连续闭曲线, L 的方向为逆时针方向.

四 、(10 分) (利用 Gauss 公式) 计算 $\iint_S yz \ dydz + (x^2 + z^2)y \ dzdx + xy \ dxdy$, 其中 S 为曲面 $4-y=x^2+z^2 \ (y>0)$ 的外侧.

五、 $(10\, f)$ (利用 Stokes 公式) 计算 $\int_{\Gamma} 2ydx + 3xdy - z^2dz$, 其中 Γ 是球面 $x^2 + y^2 + z^2 = 9$ 的上半部分 S (取外侧)的 边界曲线,从Z 轴正向看逆时针方向.

六、(10分)证明 Green 第一公式:

其中L为封闭光滑曲线,D为L围成的区域。这里假设u有连续的二阶偏导数, \vec{n} 为 L外法线单位向量,上式曲线积分为逆时针方向。

七、附加题(10分) 已知函数 f(x) 为 $(0,+\infty)$ 上的连续函数,且满足方程

$$f(t) = e^{4\pi t^2} + \iint_{x^2+y^2 \le 4t^2} f(\frac{1}{2}\sqrt{x^2+y^2}) dx dy$$
, $\vec{x} f(x)$ 的表达式.

北京航空航天大学 2013-2014 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班号	学 号	姓名	成绩
グエ フ <u></u>	ナ フ <u></u>	XL11	及沙

题 号	_	 三	四	五.	六	七	总分
成绩							
阅卷人							
校对人							

一、 求解下面问题(每小题6分,满分48分)

1. 设u(x,y,z)为连续函数, 是以 $M(x_0,y_0,z_0)$ 为中心,半径为R的球面,求极限 $\lim_{R\to 0^+} \frac{1}{4\pi R^2} \iint\limits_{\Sigma} u(x,y,z) dS.$

2. 计算
$$\iint_{D} x^{2}e^{-y^{2}}dxdy$$
, 其中 D 是由 $x = 0$, $y = 1$ 及 $y = x$ 所围成的区域.

3. 已知椭圆型区域 $D = \{(x,y) | \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}$. 利用广义极坐标变换计算积分 $I = \iint_D (b^2 x^2 + a^2 y^2) dx d.$

4. 求曲面 Σ: $z = x^2 + y^2$ (0 ≤ z ≤ 2)的面积.

5. 计算三重积分
$$\iiint_V [(\cos y)^{2012}x + 3] dx dy dz$$
, 其中 由 $z = 1$ 与 $z = \sqrt{x^2 + y^2}$ 所成的立.

6. 计算第一型曲面积分 $\iint_{\Sigma} (x+y+z)^2 dS$, 其中 为上半球面 $x^2+y^2+z^2=a^2$ $(z \ge 0)$, 其中 a > 0 . (可利用对称性)

7. 计算曲线积分 $\int_{\Gamma} z \, ds$, 其中 Γ 为圆锥螺线 $x = t \cos t$, $y = t \sin t$, z = t, $t \in [0,2\pi]$.

二、(本题 10 分) 求方程 $y'' + 3y' - 4y = xe^{2x}$ 的通解.

三、(本题 10 分) 设曲线积分 $I = \int_L \frac{(x+2y)dx + (ax+y)dy}{x^2+y^2}$ 在区域 D 内与路径无关,

- (1) 写出满足题设的区域D的条件,并求常数a;
- (2) 设曲线 L 为从点 A(1,0) 沿上半平面到点 B(2,0) 的一段弧,求曲线积分 I.

四、(本题 12分)(利用 Green 公式)

计算 $\oint_L \frac{xdy - ydx}{4x^2 + 9y^2}$, 其中 是以(1,1) 为中心, 4 为半径的圆周, 取顺时针方向.

五 、
$$(10 \, eta)$$
 (利用 Gauss 公式)
计算 $\iint_\Sigma (x^2+z^2) \mathrm{d}y \mathrm{d}z + (y^2+x^2) \mathrm{d}z \mathrm{d}x + (z^2+y^2) \mathrm{d}x \mathrm{d}y$,其中 是曲面 $z=\sqrt{1-x^2-y^2}$,取上侧.

六、(10分) (利用 Stokes 公式)

计算 $\oint_{\Gamma} y dx + (z - \cos x) dy + (x + e^z) dz$, 其中 是 $\begin{cases} x^2 + y^2 + z^2 = R^2, \\ x + y + z = 0. \end{cases}$ 为逆时针方向.

七、附加题(本题10分)

设 是分片光滑的闭曲面, 上的单位外法向量 \vec{n} 的方向余弦为 $\cos \alpha$, $\cos \beta$, $\cos \gamma$,分别证明对于以下两种情形,

- (1) P,Q,R在 $ar\Omega$ 上具有二阶连续偏导数, Ω 为 所围的立体;
- (2) P,Q,R在 上具有一阶连续偏导数.

都成立 $I = \iint\limits_{\Sigma} \begin{vmatrix} c \circ s\alpha & c \not \beta s & \varphi \circ s \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS = 0.$

北京航空航天大学 2014-2015 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

イト 口	.W. 🗖	1.1 →	一 ひ 7.士	
がた	学号	71生 22.	50.25	
班号	丁 フ	姓名	成绩	

题 号	_	11	111	四	五	六	七	总分
成绩								
阅卷人								
校对人								

2015年07月10日

选择(每小题4分,共20分)

- 1. 向量场 $\vec{F} = (x z, x^3 + yz, -3xy^2)$ 的旋度为 (
- A. $(-6xy y, 3y^2 1, 3x^2)$; B. $(-6xy y, 3y^2 + 1, 3x^2)$;
- C. $(-6xy + y, 3y^2 1, -3x^2)$; D. $(-6xy y, 3y^2 1, 3x^2 + 1)$.
- 2. 己知 f(x, y, z) 为连续函数,则极限 $\lim_{r \to 0^+} \frac{1}{\pi r^3} \iiint_{x^2 + y^2 + z^2 < r^2} f(x, y, z) dx dy dz = ($

- A. f(0,0,0); B. $\frac{4}{3}f(0,0,0)$; C. 4f(0,0,0); D. $\frac{3}{4}f(0,0,0)$.
- 3. 改变积分次序: $\int_0^1 dy \int_{1-\sqrt{1-y^2}}^{2-y} f(x,y) dx = ($
- A. $\int_{0}^{1} dx \int_{0}^{\sqrt{2x-x^2}} f(x,y)dy + \int_{0}^{2} dx \int_{0}^{2-x} f(x,y)dy$;
- B. $\int_0^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy;$
- C. $\int_0^1 dx \int_0^{\sqrt{2x-x^2}} f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy;$
- D. $\int_{0}^{1} dx \int_{0}^{\sqrt{2x-x^{2}}} f(x,y) dy + \int_{0}^{2} dx \int_{1}^{2-x} f(x,y) dy.$
- 己知 $I_1 = \iint (x+y) dx dy$, $I_2 = \iint \ln(x+y) dx dy$, $I_3 = \iint [\ln(x+y)]^2 dx dy$ 其中D是三角形闭区域,三顶点各为(1,0),(1,1),(2,0),则大小顺序为(
- $\text{A.} \quad I_1 > I_2 > I_3 \; ; \qquad \quad \text{B.} \quad I_1 > I_3 > I_2 \; ; \qquad \quad \text{C.} \quad I_2 > I_1 > I_3 \; ; \qquad \quad \quad \text{D.} \quad I_3 > I_2 > I_1 \; .$

- 5. 设L是上半平面(y > 0)有向分段光滑曲线,如果积分 $\int_{L} \frac{(x+ay)dx+ydy}{x^2+y^2}$ 与路 径无关,则a的值为(
- A. -1;
- B. 0;
- C. 1;
- D. 2.

二、计算(每小题5分,满分30分)

1. 已知椭圆型区域 $D = \{(x,y) \stackrel{x^2}{\cancel{4}} + {}^2y \le 1 \}$ 利用广义极坐标变换计算积分 $I = \iint_D (x^2 + 4y^2) dx dy.$

2. 计算曲面积分 $\iint_{\Sigma} z dS$, 其中曲面 Σ 为锥面 $z = 1 - \sqrt{x^2 + y^2}$ $(0 \le z \le 1)$.

3. 利用对称性计算三重积分 $\iint_{\Omega} [(xy^3\cos z - x^3e^{-z^2}) + 5] dxdydz$, 其中 是上半球面 $x^2 + y^2 + z^2 = 4(z \ge 0)$ 和旋转抛物面 $x^2 + y^2 = 3z$ 所围成的区域.

4. 计算第一型曲面积分 $\iint_{\Sigma} [(2x^2+y^2)+3xyz]dS$,其中 Σ 为球面 $x^2+y^2+z^2=a^2$,其中 a>0 . (可利用对称性)

Σ

5. 计算第一型曲线积分 $\int_{\Gamma} xyz \ ds$, 其中 $\Gamma: x = \cos t$, $y = \sin t$, z = t, $0 \le t \le 2\pi$.

6. 计算第二型曲面积分 $\iint_{\Sigma} z^2 dy dz + dz dx - y^2 dx dy$,其中 Σ 为 $z = x^2 + y^2$ 介于平面 z = 0, z = 4之间的部分,取下侧。

 Ξ (1)、(本题 8 分) 求方程 $y'' - 2y' - 3y = e^{-x}$ 的通解.

- Ξ (2)、(本题 10 分) 已知 $I = \int_{\Gamma} (y+z)dx + (z+x)dy + (x+y)dz$,
 - (1) 证明曲线积分I 与路径无关;
 - (2) 设曲线 Γ 为从点 到点 的有向曲线,求曲线积分I.

四、(本题 12分)(利用 Green 公式)

计算 $\int_L \frac{ydx - xdy}{x^2 + y^2}$, 其中 是上半椭圆: $\frac{(x-1)^2}{9} + y^2 = 1 \ (y \ge 0)$, 方向为逆时针方向.

五 、(10分) (利用 Gauss 公式)

计算
$$\iint_{\Sigma} (x-y) dy dz + (y-z) dz dx + (z-x) dx d$$
,其中 是锥面 $z = \sqrt{x^2 + y^2}$ 介于

z=0, z=h(h>0)之间的部分,取下侧.

六、(10分) (利用 Stokes 公式)

计算 $\oint_{\Gamma} (y+x)dx + (z-\sin y)dy + 2xdz$, 其中 为柱面 $x^2 + y^2 = 1$ 与平面 x+y+z=1的 交线,从z轴正向看 为顺时针方向.

七、附加题(本题10分)

已知平面区域 $D = \{(x,y) | 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D 的正向边界,试证明:

(1)

(2)
$$\oint_L xe^{\sin y} dy - ye^{-\sin x} dx \ge \frac{5}{2}\pi^2.$$

北京航空航天大学 2015-2016 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班号	学号			姓名			対 绩		
		任课	教师		_考场				
题 号			三	四	五.	六	七	八	总分
成绩									
阅卷人									
校对人									

2016年06月24日

选择题(每小题4分,共20分)

- 1. 已知f(x,y,z)为 R^3 上连续函数, Σ_r 表示球面 $x^2+y^2+z^2=r^2$,则极限 $\lim_{r\to 0^+} \frac{1}{\pi r^2} \oint_{\Sigma_r} f(x, y, z) dS = \langle (x, y, z) \rangle dS = \langle$

- A. f(0,0,0); B. $\frac{4}{3}f(0,0,0)$; C. 4f(0,0,0); D. $\frac{3}{4}f(0,0,0)$.
- 2. 改变积分次序: $\int_{1}^{2} dy \int_{y}^{y^{2}} f(x,y) dx = ($
- A. $\int_{1}^{2} dx \int_{x}^{x^{2}} f(x,y) dy + \int_{2}^{4} dx \int_{x}^{4} f(x,y) dy$;
- B. $\int_{1}^{2} dx \int_{\sqrt{x}}^{x} f(x, y) dy + \int_{2}^{4} dx \int_{\sqrt{x}}^{2} f(x, y) dy$;
- C. $\int_{1}^{2} dx \int_{\sqrt{x}}^{2} f(x,y) dy + \int_{2}^{4} dx \int_{\sqrt{x}}^{x} f(x,y) dy$;
- D. $\int_0^2 dx \int_{\sqrt{x}}^x f(x, y) dy + \int_2^4 dx \int_{\sqrt{x}}^2 f(x, y) dy$.
- 3. 设 $D = \{(x,y) | r \le |x| + |y| \le 1\}$ (其中0 < r < 1), 记 $I = \iint_D \ln(x^2 + y^2) \, dx dy$, 则I的值(
- A. 大于 0;
- B. 小于 0;
- C. 等于 0;
- D. 与r有关,无法判断符号.
- 4. 设L是平面上的有向分段光滑曲线,如果积分 $\int_L (x^4 + 4xy^a)dx + (6x^{a-1}y^2 4xy^a)dx$ $5y^4$)dy与路径无关,则a的值为()
- A. -1;
- B. 0;
- C. 1;
- D. 3.
- 5. 设函数f在矩形 $I = [a,b] \times [c,d]$ 上有连续的二阶偏导数,则积分 $\iint_{I} \frac{\partial^{2} f}{\partial x \partial y} dx dy = 0$
- A. f(b,d) + f(a,c) f(a,d) f(b,c); B. f(b,d) + f(a,c) + f(a,d) + f(b,c);
- C. f(b,d) f(a,c) + f(a,d) f(b,c); D. f(a,d) + f(b,c) f(b,d) f(a,c).

- 二、计算题(每小题6分,满分30分)
- 1. 使用极坐标换元计算二重积分 $I=\iint_{D} sin(x^{2}+y^{2})dxdy$,其中区域 $D=\{(x,y)|1\leq x^{2}+y^{2}\leq 2\}.$

2. 计算三重积分 $I = \iiint_V (x^2 \sqrt{x^2 + y^2} + x^{2016} \sin(xy)) dx dy dz$, 其中区域V 是锥面 $z = \sqrt{x^2 + y^2}$ 与平面z = 1所围的有界闭区域. (提示: 使用对称性简化运算)

3. 计算第一型曲线积分 $I=\int_{\Gamma}zds$,其中 $\Gamma:x=t\cos t,y=t\sin t,z=t\ (0\leq t\leq 1)$ 为 圆锥螺线的一段.

4. 计算第二型曲线积分 $I=\int_{\Gamma}zdx+xdy+ydz$,其中 Γ 为曲线: $x=t,y=t^2,z=t^3,t\in[0,1]$,方向是参数t增加的方向.

5. 计算第一型曲面积分 $I = \iint_S (z + y \cos(xy)) dS$,其中S为球面 $x^2 + y^2 + z^2 = a^2$ 被柱面 $x^2 + y^2 = ax$ 所截下来的上半部分(a > 0). (提示:使用对称性简化计算)

三、(本题 10 分) 计算第二型曲面积分 $\iint_{\Sigma} (y^2 f(x,y,z) + x) dy dz - xy f(x,y,z) dz dx + 2 dx dy$,其中f(x,y,z)为连续函数, Σ 为曲面 $x^2 + y^2 + z = 1$ 在第一卦限的部分,指向上侧.

四、(本题 10 分) 验证 $(\frac{y}{x} + \frac{2x}{y})dx + (\ln x - \frac{x^2}{y^2})dy, (x > 0, y > 0)$ 为某个二元函数

的全微分,求出函数u(x,y),并计算积分 $\int_{(1,1)}^{(2,3)} (\frac{y}{x} + \frac{2x}{y}) dx + (\ln x - \frac{x^2}{y^2}) dy$.

五、(本题 10 分)利用 Green 公式计算 $\int_L \frac{(x-y)dx+(x+4y)dy}{x^2+4y^2}$, 其中 为单位圆 $x^2+y^2=1$, 取逆时针方向.

六、(本题 10 分)利用 Gauss 公式计算 $\iint_{\Sigma} (y^2-z) dy dz + (z^2-x) dz dx + (x^2-y) dx dy$,其中 Σ 是抛物面 $z=x^2+y^2$ 介于 z=0, z=R(R>0) 之间的部分,取下侧.

七、(本题 10 分) 用 Stokes 公式计算 $\oint_{\Gamma} (y-z)dx + (x-y)dz$, 其中 Γ 是从(a,0,0) 经 (0,a,0) 和(0,0,a) 回到(a,0,0) 的三角形边界(a>0).

八、附加题(本题 10 分)设P(x,y)和Q(x,y)在全平面上有连续偏导数,而且对任意点 (x_0,y_0) 为中心,以任意正数r为半径的上半圆 $C: x = x_0 + r cos \theta, y = y_0 + r sin \theta$ (0 $\leq \theta \leq \pi$)恒有

$$\int_C P(x,y)dx + Q(x,y)dy = 0.$$

求证: $P(x,y) \equiv 0, \frac{\partial Q}{\partial x} \equiv 0.$ (提示: 做辅助曲线然后使用格林公式)

北京航空航天大学 2016-2017 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷

学 号				姓名			成绩		
仁	壬课教师_			_ 班次_	班次 考场				
	题 号	_		三	四	五.	六	七	总分
	成绩								
	阅卷人								
	校对人								

2017年06月26日

一、 选单项择题(每小题 4 分, 共 20 分)

1. $i gl_1 = \iint_D \sin(\sqrt{x^2 + y^2}) dx dy$, $I_2 = \iint_D \sin(x^2 + y^2) dx dy$,

A.
$$I_1 > I_2 > I_3$$
; B. $I_3 > I_2 > I_1$; C. $I_2 > I_1 > I_3$; D. $I_3 > I_1 > I_2$.

2. 设 V_r 表示球体 $x^2 + y^2 + z^2 \le r^2$,则极限

$$\lim_{r \to 0} \frac{1}{r^3} \iiint_V \cos(x^2 + y^2 + z^2) dx dy dz = ($$
).

- A. 0 B. $\frac{5}{3}\pi$ C. $\frac{4}{3}\pi$

3. 设曲线 Γ 为圆周 $\begin{cases} x^2 + y^2 + z^2 = a^2, \\ x + y + z = 0. \end{cases}$ 则曲线积分 $\int_{\Gamma} (x + y^2) ds = (x + y + z + z) ds = (x + y + z + z) ds$

- A. $\frac{2\pi a^2}{3}$. B. $\frac{4\pi a^2}{3}$. C. $\frac{2\pi a^3}{3}$. D. $\frac{4\pi a^3}{3}$.

4. 给定曲面Σ: |x| + |y| + |z| = 1,已知其在第一卦限内的面积为 $\frac{\sqrt{3}}{2}$, 则曲面积分 \oint_{Σ} (|x|+y) dS=()

- A. $\frac{2}{3}\sqrt{3}$; B. $\frac{4}{3}\sqrt{3}$; C. $\frac{8}{3}\sqrt{3}$; D. $\frac{16}{3}\sqrt{3}$.

5. 设f(x)为连续函数, $F(z) = \int_1^z dy \int_v^z f(x) dx$,则F'(z) = ()

- A. f(z); B. f(z)z; C. f(z)(1-z); D. f(z)(z-1).

二、计算题(每空6分,满分30分)

1. 计算二重积分 $\iint_{D} \frac{1+x+y}{1+x^2+y^2} dxdy$, 其中 $D = \{(x,y)|x^2+y^2 \le 1\}$.

2. 计算三重积分 $\iint_V (x+y)^2 dxdydz$,其中 \mathbf{V} 由 $x^2+y^2=z^2$ 与平面 z=1 所围成的立体.

3. 计算第一型曲线积分 $\oint_L x^{2017}y$ ds,其中L为单位圆周.

4. 设 L 为椭圆 $x^2+2y^2=2$ 的上半部分逆时针,计算第二型曲线积分 $I=\int_L x dy-y dx.$

5. 计算第一型曲面积分 $\iint_{\Sigma} (x^2+y^2) dS$,其中 Σ 为锥面 $z=\sqrt{x^2+y^2}$ 介于 z=0 与 z=1 之间的部分.

三、(本题 8 分) 设Σ是平面x - 2y + z = 1在第四卦限内的部分,方向取与z轴正向夹角为锐角,求

$$\iint\limits_{\Sigma} [f(x,y,z) + x] \mathrm{d}y \mathrm{d}z + [f(x,y,z) + y] \mathrm{d}z \mathrm{d}x + [f(x,y,z) + z] \mathrm{d}x \mathrm{d}y$$

四、(本题 8 分) (利用 Green 公式) 设 L 为上半圆周 $x^2 + y^2 = 9$,方 向为逆时针方向,求 $\int_L (2xy - 2y) dx + (x^2 - 4x) dy$ 的值.

五、(本题 10分) (利用 Gauss 公式) 计算

$$\iint\limits_{S} y^2 z \ dydz + 3(x^2 + z^2)y \ dzdx + x^2 y \ dxdy,$$

其中S为曲面 $4-y=x^2+z^2$ (y>0)的外侧.

六、(本题 14分) (利用 Stokes 公式) 计算

$$\oint_{\Gamma} (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz,$$

其中 为上半球面 $x^2 + y^2 + z^2 = 2 Rx(z \ge 0 R > 1)$ 与圆柱面 $x^2 + y^2 = 2x$ 的交线,从z轴正向看 为逆时针方向.

七、(附加题,本题10分)若在右半平面内,

曲线积分 $\int_{\mathbb{L}} \frac{\varphi(y)dx + xdy}{x^2 + y^2}$ 与路径无关,其中 $\varphi(y)$ 连续可导.

- (1) 求函数 $\varphi(y)$ 的表达式.
- (2) 对(1) 中的φ(y), 求满足全微分

$$du(x,y) = \frac{\varphi(y)}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$
且 的函数

A

北京航空航天大学 2017-2018 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班 号	学号	姓名
任课教师	考场	成绩

题 号	_	 111	四	五.	六	七	总分
成绩							
阅卷人							
校对人							

2018年06月28日

一、选择题(每小题4分,共20分)

1. 设 $D = \{(x,y) | (x-1)^2 + (y-1)^2 = 2\}$, 则 $\iint_{\Sigma} f(x,y) dx dy$ 在 极 坐 标 系 下 为

A. $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2(\sin\theta + \cos\theta)} f(r\cos\theta, r\sin\theta) r dr \quad \text{B.} \quad \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} f(r\cos\theta + 1, r\sin\theta + 1) dr$

C. $\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} d\theta \int_{0}^{2(\sin\theta + \cos\theta)} f(r\cos\theta, r\sin\theta) r dr \quad \text{D.} \quad \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} d\theta \int_{0}^{2\sqrt{2}} f(r\cos\theta, r\sin\theta) r dr$

2. 积分 $\int_L xy^2 dx + y\varphi(x) dy$ 与路径无关, 其中 φ 有连续导数, $\varphi(0) = 0$. 则 $\varphi(x) = 0$

A. x^2 B. $x^2 + C$; C. $2x^2$; D. 0.

3. Σ 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (a,b,c>0),取外侧. Σ_1 为右半椭球面. 则

A. $\iint_{\Sigma} y dS = 2 \iint_{\Sigma_{1}} y dS;$ B. $\iint_{\Sigma} y dz dx = 2 \iint_{\Sigma_{1}} y dz dx;$ C. $\iint_{\Sigma} y^{2} dz dx = 2 \iint_{\Sigma} y^{2} dz dx;$ D. $\iint_{\Sigma} y dz dx = 0.$

4. Σ为球面 $x^2+y^2+z^2=1$, 取外侧. Σ_1 为上半球面; Σ_2 为下半球面; Σ_3 为 xOy 平 面上的圆盘 $x^2 + y^2 \le 1$,取上侧. $\Gamma 为 xOy$ 平面上的圆周 $x^2 + y^2 = 1$,从z轴正向来看 为逆时针方向. 则与 $\hat{\mathbf{N}}_{\Gamma}$ xydx + yzdy + zxdz **不相等**的为(

A. $-\iint_{\Sigma} y dy dz + z dz dx + x dx dy$; B. $-\iint_{\Sigma} y dy dz + z dz dx + x dx dy$;

C. $\iint_{\Sigma} y dy dz + z dz dx + x dx dy;$ D. $-\iint_{\Sigma_{2}} y dy dz + z dz dx + x dx dy.$

5. 设u(x,y,z)为连续函数, Σ 是以 $M(x_0,y_0,z_0)$ 为中心,半径为R的球面,极限 $\lim_{R \to 0^+} \frac{1}{4\pi R^2} \iint_{\Sigma} u(x, y, z) dS = ($

A. $u(x_0, y_0, z_0)$; B. u(0, 0, 0); C. $\frac{4u(x_0, y_0, z_0)}{3}$; D. $\frac{u(x_0, y_0, z_0)}{2}$.

二、计算题(每小题5分,满分30分)

1.. 设向量场 $\vec{F}(x,y,z)=(2x,-4y,8z)$, 求此向量场的旋度.

2. 计算
$$\int_0^1 dx \int_x^1 x \sin(y^3) dy$$

3. 计算
$$\iint_{\Omega} (z+2x+3y) dx dy dz$$
 , 其中 $\Omega = \{(x,y,z) \mid x^2+y^2+z^2 \leq 2z\}$.

4. 计算 $\int_{L}^{\infty} (\frac{3}{10}x^2 + \frac{2}{5}y^2)ds$,其中L为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, l是椭圆的周长.

5. 计算 $\int_L 2xydx + x^2dy$, 其中 L 为有向折线 OAB. 这里 O(0,0), A(1,0), B(1,1).

6. 设 Σ 是圆柱面 $x^2 + y^2 = 1$ ($0 \le z \le 1$), 计算 $\iint_{\Sigma} \sqrt{1 - x^2} dS$

A

三、(10 分) 计算第二型曲面积分
$$\iint_\Sigma \cos x dy dz + \sqrt{1-y^2}\,dz dx + z dx dy$$
 ,其中 Σ 为 上 半球面 $z=\sqrt{1-x^2-y^2}$,取上侧.

四、(10分)(利用 Green 公式)

计算 $\sqrt[3]{L} \frac{xdy - ydx}{2x^2 + 3v^2}$, 其中 L 是以(1,1) 为中心, 4 为半径的圆周, 取逆时针方向.

五、(10分) (利用 Gauss 公式)

计算
$$\iint_{\Sigma} x(z-2y+1)dydz + y(x-z+2)dzdx + z(2y-x-1)dxdy$$
, 其中 Σ 是曲面

$$z = \sqrt{x^2 + y^2} (0 \le z \le 1)$$
, 取下侧.

七、(10分)确定函数f(x),g(x)满足f(0) = 0,g(0) = 1,且使得下面曲线积分与路

径无关:
$$\int_{L} \left[\frac{g(x)}{2} y^2 - 4f(x)y \right] dx + \left[f(x)y + g(x) \right] dy + z dz.$$

A

北京航空航天大学 2018-2019 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班 号	学号	姓名
任课教师	考场	成绩

题号	_	1 1	=	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

2019年06月24日

一、选择题(每小题4分,共20分)

1. 将 $\int_0^2 dx \int_0^{\sqrt{3}x} f(\sqrt{x^2 + y^2}) dy$ 化为极坐标下的二次积分为(

A.
$$\int_0^{\frac{\pi}{3}} d\theta \int_0^{\frac{2}{\cos\theta}} f(r) dr$$

B.
$$\int_0^{\frac{\pi}{3}} d\theta \int_0^{\frac{2}{\cos\theta}} f(r) r dr$$

C.
$$\int_0^{2\pi} d\theta \int_0^{\frac{2}{\cos\theta}} f(r) r dr$$

D.
$$\int_0^{\frac{\pi}{3}} d\theta \int_0^{\frac{2}{\sin \theta}} f(r) dr$$

2. 下列论断中正确的是()

A. $\int_{0}^{1} dx \int_{0}^{x} f(x, y) dy = \int_{0}^{1} dy \int_{0}^{y} f(x, y) dx$, 其中f(x, y)是连续函数;

B. $\iint\limits_{x^2+y^2+z^2\leq a^2} f(x^2+y^2+z^2) dv = \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^a f(r^2) r^2 \sin\varphi dr, 其中f(t)$ 是连续函数;

C. 有界闭区域D由分段光滑的闭曲线L围成, P(x,y),Q(x,y)在D上有一阶连续的

偏导数,则 $\oint_L P(x,y)dy + Q(x,y)dx = \iint_D (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dxdy;$

D. 若空间有界区域 V 关于 xOy 平面对称,函数 f(x,y,z)在V上连续,且 $f(x,y,-z)=f(x,y,z), 则 \iiint\limits_V f(x,y,z) dx dy dz = 0.$

3. 设 f(x,y)连续, $L = \{(x,y) | (x-1)^2 + (y-1)^2 = R^2 \}$,则 $\lim_{R \to 0^+} \frac{\int_L f(x,y) ds}{2\pi R} = ($).

A.
$$f(0,0)$$
;

B. 2f(0,0);

C.
$$f(1,1)$$
;

D. 2f(1,1).

4. 设 $F(x) = \int_0^{2\pi} d\theta \int_0^x f(t)dt$,其中 f(t) 为连续函数,则 F'(x) = ().

A. f(x);

B. $\pi f(x)$;

c. $2\pi f(x)$;

D. 0.

5. 设 Σ 为球面 $x^2 + y^2 + z^2 = 1$, 则 $\iint_{\Sigma} (x^2 + y^2) dS = ($).

A. $\frac{2\pi}{3}$;

B. $\frac{4\pi}{3}$;

C. 2π ;

D. $\frac{8\pi}{3}$.

二、计算题(每小题5分,满分30分)

1. 设数量场 $f(x, y, z) = x^2 + 2yz + xz$, 求 f 的梯度 gradf 以及向量场 gradf 的旋度.

2. 计算
$$\iint_{D} \frac{1}{1+x^2+y^2} dxdy$$
, 其中 $D: 1 \le x^2+y^2 \le 4$.

3. 计算
$$\iint_{\Omega} (x+y+z) dx dy dz$$
, 其中 $\Omega = \{(x,y,z) | \sqrt{x^2+y^2} \le z \le 1\}$.

A

4. 计算第一型曲线积分 $\int_L (x^2 + y^2 + z^2) ds$, 其中 $L: x = 3\cos t$, $y = 3\sin t$, z = 4t, $0 \le t \le 2\pi$.

5. 计算第二型曲线积分 $\int_L (x+y)dx + (y-x)dy$, 其中 L 为从 (2,0) 沿上半椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 到 (-2,0) 的曲线.

6. 设 Σ 是 平面 6x + 4y + 3z = 12, $x, y, z \ge 0$, 计算第一型曲面积分 $\iint_{\Sigma} \left(\frac{x}{2} + \frac{y}{3} + \frac{z}{4}\right) dS$.

三、(10 分) 计算第二型曲面积分 $\iint_\Sigma y^3 z^2 dy dz + (z+1) dx dy$, 其中 Σ 为 上半球面 $z = \sqrt{1-x^2-y^2} \ , \ \mathrm{NLM}.$

五、(10分) (利用 Gauss 公式)

计算
$$\iint\limits_S (y-z+x^2) dy dz + (z-x+y^2) dz dx + (x-y+z^2) dx dy$$
 , 其中 S 为锥面

$$z = \sqrt{x^2 + y^2}, 0 \le z \le 1$$
, 方向取下侧.

六、(10 分) 已知 $\int_L xy^2 dx + yf(x) dy$ 与路径无关,f(x) 具有连续导数,且 f(0) = 0,计算 $\int_{(0,0)}^{(2,2)} xy^2 dx + yf(x) dy$.

七、(10分) (利用 Stokes 公式)

计算 $\mathbf{N}(z-y)dx+(x-z)dy+(y-x)dz$, 其中 L 为 (1,0,0),(0,1,0),(0,0,1) 为顶点的三角形边界,从 x 轴正向看过去,方向取逆时针.

北京航空航天大学

2019-2020 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班 号	学号	
任课教师	考场	成绩

题号	1	1 1	111	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

一、 计算题 (20分)

1. 设区域
$$D = \{(x, y) \mid x^2 + y^2 \le 1\}$$
,求 $\iint_D \frac{1 + xy^2}{1 + x^2 + y^2} dxdy$.

2.
$$\mbox{$\stackrel{\circ}{\boxtimes}$} \Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}, \ \ \mbox{$\stackrel{\circ}{\Longrightarrow}$} \iiint_{\Omega} (x^2 + y^2) dx dy dz.$$

3. 计算
$$\int_L (2+x^2y) ds$$
,其中 L 为单位圆周 $x^2+y^2=1$ 的右半部分.

二, 计算题(15分)

- 1. 求函数 $f(x, y) = x^2 2xy + 3y^2 2x + 2y$ 的极值.
- 2. 设函数 $f(x) = 1 x^2 (0 \le x \le \pi)$,
- (1) 将函数f(x)展成余弦级数; (2) 求 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

三、(12分)

设
$$f(x,y) = \begin{cases} \frac{2x^3y}{x^4 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$$
 , 讨论: (1) $f(x,y)$ 在(0,0)点的连续性;

(2) $f_x(x,y), f_y(x,y)$ 在 (0,0) 点的连续性;(3) f(x,y)在(0,0)点的可微性.

四、证明题(10分)

证明函数
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$
 在 $(0,2\pi)$ 内可导.

五、(用 Green 公式计算 12 分)

已知L是第一象限中从点(0,0)沿圆周 $x^2+y^2=2x$ 到点(2,0),再沿 $x^2+y^2=4$ 到点(0,2)的曲线,计算曲线积分 $I=\int_L 3x^2y\mathrm{d}x+(x^3+x-2y)\mathrm{d}y.$

设曲面
$$\Sigma$$
是 $z = \sqrt{4 - x^2 - y^2}$ 的上侧,

六、(计算题 17分) (1) 利用Gauss公式计算 $\iint_{\Sigma} xy dy dz + x dz dx + x^2 dx dy$;

七、(计算题 17分)

- (1) 利用Stokes公式 计算 $\oint_{\Gamma} (y+x^2) dx + (z+y^2) dy + (2x+z^2) dz$, 其中 Γ 为平面 x+y+z=1 与柱面 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 的交线,从 z 轴正向看向 原点时 Γ 为顺时针方向.
- (2) 求曲线积分 $\int_L x dx y^2 dy z^2 dz$, 其中L为曲线 Γ 从 (2,0,-1) 到 (-2,0,3) 的一段.

A

北京航空航天大学

2020-2021 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班 号	学号_		7 1
任课教师		成绩	基

题	号	 1 1	111	四	五.	六	七	八	总分
成	绩								
阅卷	人								
校对。	人								

2021年06月25日

一、选择题(每小题4分,共20分)

1. 设 $\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$, 则 积 分 $I_1 = \iiint_{\cap} \frac{z \ln(x^2 + y^2 + z^2 + 1)}{x^2 + v^2 + z^2 + 1} dx dy dz$,

 $I_2 = \iiint_{\Omega} [\cos^4(x+y+z)+z^3] dx dy dz$, $I_3 = \iiint_{\Omega} [\ln(x^2+y^2+z^2) dx dy dz$ 之间的大小关系为

(A) $I_1 < I_2 < I_3$.

(B) $I_1 > I_2 > I_3$.

(C) $I_2 > I_1 > I_3$.

(D) $I_2 < I_1 < I_3$.

2. 设 $(x-\frac{a}{2})^2 + y^2 \le \frac{a^2}{4}$ 则 $\iint_{\Omega} f(x,y) dx dy$ 在极坐标系下为(

- (A) $\int_0^a dr \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(r\cos\theta, r\sin\theta) r d\theta.$ (B) $\int_0^a dr \int_{-\arccos\frac{r}{2}}^{\arccos\frac{r}{2}} f(r\cos\theta, r\sin\theta) r d\theta.$
- (C) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a} f(r\cos\theta, r\sin\theta) r dr.$ (D) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\sin\theta} f(r\cos\theta, r\sin\theta) dr.$

3. 曲面 $z=1-x^2-y^2$ 与坐标面所围成立体的体积为(

(A) $\frac{4\pi}{2}$.

(B) $\frac{\pi}{2}$.

 $(C) \pi$.

(D) $\frac{2\pi}{3}$.

4. 设 f(x,y) 为 连 续 函 数 , L 是 以 $M(x_0,y_0)$ 为 中 心 , 半 径 为 r 的 圆 周 , 极 限

 $\lim_{x \to 0^+} \frac{1}{r} \int_L f(x, y) ds = 0$

(A) $2\pi f(x_0, y_0)$

(B) f(0,0)

(C) $2\pi f(0,0)$

(D) $f(x_0, y_0)$

5. 抛物面 $2z = x^2 + y^2$ 位于平面 z = 2 下方的面积为().

(A) $\frac{2}{3}\pi(5\sqrt{5}+1)$.

(B) $\pi(5\sqrt{5}-1)$.

(C) $\frac{4}{3}\pi(5\sqrt{5}-1)$.

(D) $\frac{2}{3}\pi(5\sqrt{5}-1)$.

二、计算题(每小题5分,满分15分)

1. 设向量场 $F(x, y, z) = (xyz^2, z \sin y, x^2e^y)$, 求散度divF, 旋度rotF.

2.设 $D = \{(x,y) | 0 \le x, y \le 1\}$, f(x)连续且恒正, a,b是常数,计算 $\iint_{D} \frac{af(x) + bf(y)}{f(x) + f(y)} dx dy$.

3. 计算曲线积分 $\int_{L} (x+y^{2})ds \, \, \sharp \, \text{中}L \mathbb{H} \left\{ \begin{aligned} x^{2}+y^{2}+z^{2} &= R^{2} \\ x+y+z &= 0 \end{aligned} \right.$

三、计算题(每题 5 分,共 15 分) $1 \ \text{ 计算 } \iint_{\Omega} (2z+3xy^2) dx dy dz \, , \ \ \, 其中 \Omega \ \text{由曲面 } z=\sqrt{x^2+y^2} \ \text{与 } z=\sqrt{1-x^2-y^2} \ \text{所 } 围$ 成.

2. 计算积分 $I = \int_L (x^2 + y^2) dx + 2y dy$, 其中 L 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (y \ge 0)$ 上从点 A(a,0) 到 B(-a,0) 的一段弧.

3. $\iint_{\Sigma} z \, dS$,其中 Σ 是上半球面 $x^2 + y^2 + z^2 = a^2, z \ge 0$;

A

四、(10 分) 计算
$$\iint_{\Sigma} (3y-z) dy dz + (z-3x) dz dx + (x-y) dx dy$$
, 其中 Σ 为
$$z = \sqrt{x^2 + y^2}, 0 \le z \le b$$
, 的外侧.

五、(10 分) 设函数f(x),g(y)在R上具有一阶连续导数,且f(0) = 0,已知积分 $\int_{L} 2xydx + [f(x) + g(y)]dy$ 与路径无关,且对任意 t 恒有 $\int_{(0,0)}^{(t,1)} 2xydx + [f(x) + g(y)]dy = \int_{(0,0)}^{(1,t)} 2xydx + [f(x) + g(y)]dy$ 求 f(x),g(y).

六、(10分) 利用 Gauss 公式计算

$$\iint_{S} x(x-2y+x^{2}) \, dy \, dz + y(y-2z+y^{2}) \, dx \, dz + z(z-2x+z^{2}) \, dx \, dy.$$

其中 S 为上半球面 $z = \sqrt{a^2 - x^2 - y^2}$ 的上侧.

七 、(10分)利用 Stokes 公式计算

$$\int_{\Gamma} (5y - 2e^{x}) dx + (5z - 2y^{2}) dy + (5x + e^{2z}) dz$$

其中 Γ 是 $\begin{cases} x^2 + y^2 + z^2 = R^2, \\ x + y - z = 0. \end{cases}$ 从z轴正向看 Γ 为逆时针方向.

八、(10分) 利用 Green 公式

证明积分 $I = \oint_L \frac{e^x}{x^2 + y^2} [(x \sin y - y \cos y) dx + (x \cos y + y \sin y) dy] = 2\pi$,

其中L为任意包含原点在其内部的分段光滑闭曲线,L取逆时针方向.

A

北京航空航天大学

2021-2022 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班 号	学号	姓名
任课教师	考场	成绩

题 号	_	1 1	111	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

2022年06月24日

一、计算题(每小题6分,共30分)

- 1. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n}}{2n+1}$ 的收敛域及和函数.
- 2. 将 $f(x) = \frac{\pi}{4} \frac{x}{2}, x \in [0, \pi]$ 展开为正弦级数,设该级数的和函数为S(x), 求 $S(\frac{\pi}{2}), S(\pi)$.
- 3. 已知区域 $D: x^2 + y^2 \le 2$, 求 $f(x, y) = 3x^2 + 3y^2 2x^3$ 在D上的最大值和最小值.
- 4. 已知 $z = x^2 f(x + y, x y) + g(xy)$,其中f 具有二阶连续偏导数,g 具有二阶导数,计算 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial y \partial x}.$
- 5. 设f(u)具有连续导数, f(0) = 0, 区域 $\Omega: x^2 + y^2 + z^2 \le t^2$, 计算极限

$$I = \lim_{t \to 0^+} \frac{\iiint\limits_{\Omega} f(\sqrt{x^2 + y^2 + z^2}) dx dy dz}{\ln(1 + t^4)}.$$

二、(本题 10 分)

设
$$S(x) = \sum_{n=1}^{\infty} \sin \frac{n! x^n}{x^2 + n^n}$$
, 证明 $S(x)$ 在[-2,2]上连续.

三、(本题 12 分)

设
$$f(x,y) = \begin{cases} \frac{x-y}{x^2+y^2} \sin(x^2+y^2), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$
证明 $f(x,y)$ 在 $(0,0)$ 点可微,并求 $df(0,0)$.

四、(本题 12 分)

计算曲线积分 $\int_{L} \frac{(3x+y)dx - (x-3y)dy}{x^2 + y^2}$, 其中 L 是沿曲线 $y = \pi \cos \frac{x}{2}$ 从 $A(0,\pi)$ 到 $B(\pi,0)$ 的一段.

五、(本题 12 分)

应用
$$Gauss$$
公式计算 $\iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$,其中 Σ 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$,取外侧.

六、(本题 12 分)

应用Stokes公式计算曲线积分 $\oint_{\Gamma}(y^2-z)dx+(z-x^2)dy+(x+2y)dz$,其中 Γ 为柱面 $\frac{x^2}{4}+y^2=1$ 与平面x+y+z=2的交线,从z轴正向看去为顺时针方向.

七、(本题 12 分)

已知 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^p}$ 绝对收敛, $\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \ln(1 + \frac{1}{n^p})$ 条件收敛,试讨论p的取值范围.

北京航空航天大学

2022-2023 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班 号	_学号	_姓名
任课教师	考场	_成绩

题号	_	1	11	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

2023年06月15日

选择题(每小题4分,满分20分)

- 1. 设 $D: x^2 + y^2 \le ay (a > 0), f(x, y)$ 是D上的连续函数, $\iint f(x, y) dx dy = (a > 0)$
 - (A) $\int_0^a dr \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(r\cos\theta, r\sin\theta) r d\theta$ (B) $\int_0^{\pi} d\theta \int_0^{a\sin\theta} f(r\cos\theta, r\sin\theta) r dr$
 - (C) $\int_0^a dr \int_{-\arccos\frac{r}{a}}^{\arccos\frac{r}{a}} f(r\cos\theta, r\sin\theta)rd\theta$ (D) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^{a\sin\theta} f(r\cos\theta, r\sin\theta)rdr$
- 2. 设 $c = 8xi + 2yj z\vec{k}$, 数量场 $h(x, y, z) = \ln(x^2 + y^2 + z^2)$, 则div(hc) = (
 - (A) $\frac{8x^2 + 2y^2 z^2}{x^2 + y^2 + z^2}$

- (B) $\frac{8x^2 + 2y^2 z^2}{x^2 + y^2 + z^2} + 9\ln(x^2 + y^2 + z^2)$
- (C) $\frac{16x^2 + 4y^2 2z^2}{x^2 + y^2 + z^2}$
- (D) $\frac{16x^2 + 4y^2 2z^2}{x^2 + y^2 + z^2} + 9\ln(x^2 + y^2 + z^2)$
- 3.设曲线积分 $\int_L xf(y)dx + x^2ydy$ 与路径无关,其中 f 具有一阶连续的导数,且 $f(0) = 0, \text{ } \iint_{(0,0)}^{(1,2)} x f(y) dx + x^2 y dy = ($).
- (B) 2 (C) -4 (D) 4
- 4.已知球面 $x^2 + y^2 + z^2 = 1$, Σ是上半球面, Σ₁是Σ位于第一卦限的部分, 则 ().

- (A) $\iint_{\Sigma} x \, dS = 4 \iint_{\Sigma_{1}} x \, dS$ (B) $\iint_{\Sigma} y \, dS = 4 \iint_{\Sigma_{1}} x \, dS$ (C) $\iint_{\Sigma} z \, dS = 4 \iint_{\Sigma_{1}} x \, dS$ (D) $\iint_{\Sigma} xyz \, dS = 4 \iint_{\Sigma_{1}} xyz \, dS$
- 5. 设Σ为上半球面 $z = \sqrt{1 x^2 y^2}$, 取上侧, 则以下结论**错误**的是 (
 - (A) $\iint_{\Sigma} x^2 dy dz = 0$ (B) $\iint_{\Sigma} y^2 dy dz = 0$ (C) $\iint_{\Sigma} x dy dz = 0$ (D) $\iint_{\Sigma} y dy dz = 0$

二、 计算题(每小题6分,满分30分)

1. 设定义在全空间 R^3 上的数量值函数f(x,y,z)具有二阶连续偏导数, 求 $rot(grad\ f)$.

2. 计算 $\iint_D (x^2 + y^2 - x) dxdy$,其中D是由直线y = x, y = 2x和y = 2所围成的有界闭区域.

3. 计算∭ $\frac{\cos\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}$ dxdydz,其中 Ω : $\pi^2 \le x^2+y^2+z^2 \le 4\pi^2$.

4. 计算
$$\int_{L} (x^2 + y^2) ds$$
, 其中 L 是曲线 $\begin{cases} x = a(\cos\theta + \theta\sin\theta) \\ y = a(\sin\theta - \theta\cos\theta) \end{cases}$, $0 \le \theta \le \pi$, 常数 $a > 0$.

5. 计算
$$\iint_{\Sigma} [4x^2 + 5y^2 - \sin(xz^2)] dS$$
,其中Σ是球面 $x^2 + y^2 + z^2 = 1$.

三、(10分)

计算第二型曲面积分

$$I = \iint_{\Sigma} [g(x, y, z) + x] dydz + [2g(x, y, z) + y] dzdx + [g(x, y, z) + z] dxdy,$$

其中g(x,y,z)为连续函数, Σ为平面x-2y+3z=4在第四卦限部分的上侧.

四、(10分)(利用 Green 公式)

计算曲线积分
$$I = \int_L \frac{4x - y}{4x^2 + y^2} dx + \frac{x + y}{4x^2 + y^2} dy$$
,其中 $L: x^2 + y^2 = 2$,顺时针方向.

五、(10分) (利用 Gauss 公式)

计算
$$\iint_{\Sigma} \frac{x dy dz + (y-2) dz dx + (z+2) dx dy}{r^3}$$
,其中 $r = \sqrt{x^2 + (y-2)^2 + (z+2)^2}$,

Σ为长方体 $V = \{(x, y, z): |x| \le 1, |y| \le 3, |z| \le 3\}$ 的表面,并取外侧.

六 、(10分) (利用 Stokes 公式)

计算曲线积分 $\int (2e^x + y^2 - z^2) dx + (y^2 + z^2 - x^2) dy + (x^2 - y^2 + 4 \ln z^2) dz$,

其中Γ是平面 $x+y+z=\frac{3}{2}$ 截立方体: $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ 的表面所得截痕,

从x轴的正向看向原点时取逆时针方向.

七、(10分)设 ρ , ψ 有连续导数,曲线积分

 $I = \int_{L} 2[x\varphi(y) + \psi(y)] dx + [x^{2}\psi(y) - 2x\varphi(y)] dy$ 与路径无关,

(1)当 $\varphi(0) = 0, \psi(0) = 1$ 时,求 $\varphi(y), \psi(y)$;

(2)设 L 是从 O(0,0)到 $N(\pi,\frac{\pi}{2})$ 的分段光滑曲线,计算 I .