가축생장관리 서비스참조모델 소개

정보통신산업진 형원 김 재 욱 수석

2015.5.12

CONTENTS

개요

현황분석

비즈니스 참조모델(BRM)

기술 참조모델(TRM)

시험결과

1. 개요- ARP 및 시험규격 개발

현황분석, 시험분석 및 사용자 협의회를 통해 응용분야별 유망 서비스 참조모델 (BRM/TRM) 도출 및 산업 내 요구되는 주요 기술기준(안) 마련

조사분석

- 표준/특허/규격 등 조사
- 시장 및 도입현황 조사
- 현장확인 및 니즈 분석

시험분석

- 적용기기/시료 수집
- 성능/표준 시험분석
- 요구사항 연계 검토

ARP 및 규격개발

- 기준 BRM 및 TRM 도출
- 개발/도입 가이드 마련
- 시험항목 및 절차 마련
- 기술기준(안) 제시

사용자 협의회

- (구성) 응용분야별 공급/수요기업 및 관련 기관/협회 전문가로 구성
- (목적) 시장ㆍ기술동향 공유, 산업 현장의 애로/요구사항 등 의견수렴을 통해, ARPㆍ시험규격의 전문성 및 활용도 제고

가축생장관리	실내위치 측 위	사회약자보호	스마트방범	스마트홈제어
축산물품질평가원 듕 10 개사	SK텔레콤 등 11개사	한국보건복지정보개발원 등 11개사	전원주택 라이프 듕 11 개사	카이언스 등 14개사

2. 현황분석 - 가축생장관리시스템 구축[안]

(추진범위) 가축의 출생·사육·출하·도축까지 스마트 가축생장관리 서비스 참조모델 및 기술기준 개발

시험환경 구축 계획

· UHF RFID 귀표 태그의 인식 감도 및 방향성 시험 환경 구축

· RFID 귀표 기반 이력관리 및 센서 기반 실시간 생장관리 실증환경 구축

2. 현황분석 - 국내 가축이력관리 시스템

- 구제역, 광우병 발생으로 인한 소비자들의 식품위생 및 안전성에 대한 관심 증가.
- loT기술 기반 식품(축산) 안전체계의 구축과 유통 투명성 확보.
 - * 가축생장관리 서비스는 먹거리의 위생 · 안전에 문제가 발생할 경우 신속한 대처를 위한 안전체계의 기반
 - * 2004년 4만두의 한우 대상 서비스로 시작, 2007년 [소 및 쇠고기 이력추적에 관한 법률] 제정ㆍ공표
 - * IoT 기술기준 제시로 관련제품 품질향상과 농림부 [RHD기반 소고기이력제 고도화 사업] 성공적 추진

소고기 이력제 추진현황

사육/도축/포장처리/판매단계에 적용 중

→ 운영기관수: (10~12년) 시 · 군별 위탁기관 145개소 지정 운영

→ 대상사육두수: (10~13년) 도축장 21, 기공장 24, 판대장 93개소 21.4만투

돼지고기 이력제 추진현황 사육/도축/포장처리/판매단계에 적용 준비중

- → 시범시업 : 12년 시범시업 참여 브렌드 및 영농조합 16개소 선정
- → 12년 10월 사육 및 유통단계 시행
- → 14년 말 전면시행

2. 현황분석 – 축산업 현황분석 및 도입 필요성

축산업 현황조사 및 분석을 통한 주요 이슈, 시사점 및 RFID 도입 필요성 도출

축산업

• 시장현황 (국내) 육류소비증가에 따른 가축시장 확대

(해외) 92년 이후 연평균 1.1 % 성장 추세

주요이슈

시장개방(FTA)에 따른 선진화된 이력추적 및 가축방역 체계 정립요구

> 농림축산식품부 '가축 및 이력관리에 관한 법률 시행' (' 14년 12월)

기존의 바코드 및 LF 이력관리시스템의 기술적 문제점 발생

RFID 도입 필요성

[경재/산업 측면]

시장개방(FTA) 상황에서 질병 발생시 이력추적에 기반한 방역시스템으로 피해 최소화

[공익 측면]

구제역 등 각종 질병발생에 대비한 국민 안심먹거리 체계 구축

[축산농가]

질병예방관리, 번식관리, 체중관리 서비스에 기반한 농가 소득증대 기대

3. 비즈니스 참조모델(BRM) - 가축생장관리

농림축산식품부의 "축산물 이력제"와 연계, 축산 농가의 가축생장관리 세부 프로세스별 RFID 적용방안 및 도입효과 제시

농림축산식품부의 "소 및 쇠고기 이력관리 시스템"과 연계

- (중량관리) 우영기를 이용한 월
 1회 체중관리로 개체의 발육상
 태 점검 및 육질 관리
- (식사·식수관리) 개체에 대한 음식 및 식수섭취 횟수를 모니 터링(질병감염 여부 판단)
- (치료관리) 백신접종 정보 및 예 방이력 정보 관리
- (번식관리) 관리개체의 발정일, 인공수정일, 임신 여부 관리로 출산을 증가

4. 기술 참조모델(TRM) - 전체 프로세스

세부 프로세스(개체관리-우방관리-우영기관리)별 주요 RFID 기기의 설치조건 및 요구 성능 등 기술기준 제시

세부 프로세스별 주요 RFID 기기 기술기준

• 귀표태그 성능

- 인식거리(비유전율 30 이상의 매질에 부착하여 3 미터 이상)
- 방향성(각 방향(θ , φ)에서 인 식거리 1.5 m 이상되는 방향 이 전체방향의 50 % 이상(@ 920 MHz))

• 귀표태그 신뢰성

- 고온시험, 저온시험, 온도변화, 고온고습, 인장강도, 비틀림
- → 시험 후 100% 정상작동 보장

• 고정형 및 휴대형 리더

• 인식거리(비유전율 30 이상의 매질에 부착하여 3 미터 이상)

4. 기술 참조모델(TRM) - 시험규격

RFID 기기 요구사항

RFID 기반 가축생장관리 세부 프로세스별 요구사항

- 개체관리
 - (RFID 귀표태그) 인식거리 5m 이상,
 각 방향(θ,φ)에서 인식거리 3 m이상
 되는 방향이 전체방향의 50 % 이상
 (@ 920 MHz)
 - (휴대형리더) 인식거리 5 m 이상, 복수인식률 10/초 이상
- 우방관리
 - (고정형리더) 인식거리 3 m 이상,
 복수인식성능 10개/초 이상,
 안테나 포트 4개 이상
- 우영기관리
 - (고정형리더) 인식거리 3 m 이상, 복수인식성능 1개/초 이상, 안테나 포트 2개 이상

시험규격

세부 프로세스별 RFID 기기 시험규격

시엄기기	시험항목	측정조건 및 판정기준
태그	인식 거리	 최대인식거리 3.0 m 이상 측정조건 부착매질 : 비유전율 30 이상의 고체 RF 출력 : 30 dBm Antenna Gain : 6 dBi
	방향성	· 인식거리 1.5 m 이상 되는 방향이 전체방향의 50 % 이상(@920 MHz)
고정형 리더	인식 거리	· 3.0 m 이상 · 측정조건 - 부착매질 : 비유전율 30 이상의 고체 - RF 출력 : 30 dBm - Antenna Gain : 6 dBi
휴대형 리더	인식 거리	· 3.0 m 이상 · 측정조건 - 부착매질 : 비유전율 30 이상의 고체 - RF 출력 : 30 dBm - Antenna Gain : 0 dBi

4. 기술 참조모델(TRM) - 시험환경 (모사환경)

귀표태그 시험

- 실즁시험 시료
 - ▶ 귀표태그 10종(미국, 중국, 한국)시험

- 가축관리용 귀표태그 시험 환경
 - ▶ 방향별 성늉, 태그감도 분석
 - ▶ 고유전율 제품 부착에 의한 감쇠량 분석

리더시험 시험

- 가축관리용 리더시험 부착 매질
 - ▶ 유전율에 따라 9종의 부착매질 선정
 - ▶ 각 매질에서의 인식거리 측정

- 축사관리 실증 모사 환경 구축
 - ▶ 태그 10종, 리더(고정3종, 휴대3종)시험

4. 기술 참조모델(TRM) - 시험환경 (실증환경)

우방

■ 우방용 고정형 리더 시험환경

- 안테나
 - ▶ 사료 섭취구 및 식수 섭취구에 설치

우영기

■ 우영기용 리더시험 환경

4. 기술 참조모델(TRM) - 시험결과(귀표태그)

인식거리 시험결과

- 매질별 귀표태그 인식거리 측정환경
 - ▶ 측정방향: Elevation 0도, 90도
- 결과
- ▶ 비유전율이 1.5 이하인 Foam에서 가장 좋은 인식성능을 보임
- ▶ 비유전율이 2 ~ 5 사이에서는 매질에 따라 큰 차이를 보이지 않음
- ▶ 비유전율이 30 이상인 Phantom(Hand) 에서는 급격한 성능 저하현상이 나타남

매질	방향	태그1	태그2	태그3	태그4	태그5	태그6	태그7	태그8	태그9	태그10
Foam	0 도	0	0	4.1	3.1	2.7	4.9	4.2	5.8	6.4	5.7
ruaiii	90 도	0	0	5.6	2.8	2.1	3.8	4	1	2.7	5.4
Glass	0 도	0	0	3.3	2.6	1.3	2.4	1.9	6.5	6.1	4.6
Glass	90 도	0	0	3.4	2.2	1.1	2	1.9	1	2.8	3.5
Rubber	0 도	0	0	2.8	2.6	0	2.2	1.8	1.7	6.6	3.5
Kubbei	90 도	0	0	4.1	2.5	0	2.2	1.7	0	1.9	3.3
ardboard	0 도	0	0	3.9	2.8	2.9	3.9	3.3	5.9	6.9	5.4
aiuboaiu	90 도	0	0	5.6	2.9	2.2	3.5	3.4	1.2	2.4	5
FR4	0 도	- 0	-0	3.5	2.8	1.8	2.9	2.4	6.8	7.4	6.1
FR4 90 <u>5</u>	90 도	0	0	5	2.5	1.5	2.6	2.3	1.3	2.2	5.2
PVC	0 도	- 0	0	3.8	2.8	1.9	3.6	2.6	6.7	7.4	6.1
PVC	90 도	0	0	5.3	2.5	1.6	3.3	2.5	1.1	2.7	5.3
РОМ	0 도	- 0	0	3.7	2.6	1.7	3.4	2.4	6.6	7.3	5.8
POIVI	90 도	0	0	4.4	2.4	1.6	3.1	2.3	1	2.5	4.8
PTFE	0 도	- 0	-0	4.4	- 3	2.2	4.2	3	6.5	6.5	5.5
PIFE	90 도	- 0	- 0	5.5	2.8	2	3.5	- 3	1.1	3.3	- 5
hantom	0 도	0	0	1.4	1.4	1.3	1.5	0	1.3	2	3.1
(Hand)	90 도	0	0	0	1.1	- 0	1.1	0	1.3	0	1.3
3		,	,	6	민식거리	리(cm)					

방향성 시험결과

- 매질별 귀표태그 방향성 측정환경
 - ▶ 측정방향: Elevation 0도, 90도
 - ▶ 측정각도 : Azimuth 5도 단위로 측정
- 결과
- ▶ 특정 태그의 경우 Glass 와 Rubber 에서 급격한 성능저하 현상
- ▶ 인식거리와 유사하게 비유전율이 30 이상인 Phantom(Hand)에서는 급격한 성능 저하현상이 나타남

매질	방향	태그1	태그2	태그3	태그4	태그5	태그6	태그7	태그8	태그9	태그10
Foam	0 도	0	0	86	81	94	86	86	100	100	100
1 Gaill	90 도	0	0	100	100	100	100	100	58	100	100
Glass	0 도	0	0	92	75	67	39	65	100	100	88
Glass	90 도	0	0	100	100	22	100	100	86	100	100
Rubber	0 도	0	0	82	78	64	53	60	100	100	86
Rubbei	90 도	0	0	100	100	15	100	100	47	100	100
Cardboard	0 도	0	0	86	75	100	83	78	100	100	90
Carubbaru	90 도	0	0	100	100	100	100	100	100	100	100
FR4	0 도	0	0	85	75	100	58	72	100	100	86
1104	90 도	0	0	100	100	100	100	100	100	100	100
PVC	0 도	0	0	85	75	100	82	75	100	100	90
FVC	90 도	0	0	100	100	100	100	100	97	100	100
POM	0 도	0	0	82	75	100	76	72	100	100	90
I OIVI	90 도	0	0	100	100	100	100	100	92	100	100
PTFE	0 도	0	0	88	78	100	85	78	100	100	89
FIFE	90 도	0	0	100	100	100	100	100	71	100	100
Phantom	0 도	0	0	28	68	63	53	21	68	75	100
(Hand)	90 도	0	0	0	100	100	38	0	100	78	100

4. 기술 참조모델(TRM) - 시험결과(리더)

고정형 리더 시험결과

■ 고정형 리더 인식거리 측정환경

▶ 측정방향 : 정면(4W EIRP)▶ 부착매질 : Phantom hand

▶ 시험방법 : Phantom hand에 태그를 부 착하고 0.1 m에서 측정시작, 0.1 m씩 뒤로

이동하며 최대 인식거리 측정

■ 결과

▶ 3종의 리더간에는 인식성능의 큰 차이가 없으나, 태그간에는 큰 성능 차이가 발생

리더	태그1	태그2	태그3	태그4	태그5	태그6	태그7	태그8	태그9	태그10
XCODE-IU9003 (LS산전)	0.3	0.3	1.5	1.4	0.8	1.5	0.9	1.3	1.9	3.2
ALR-9900+ (Alientechnology)	0.3	0.3	1.3	1.2	1	1	0.8	1.3	1.9	2.8
Speedway Revolution (Impinj)	0.3	0.3	1.3	1.6	0.9	1.6	1.2	1.2	1.9	3

휴대형 리더 시험결과

■ 휴대형 리더 인식거리 측정환경

▶ 측정방향 : 정면(1W EIRP)▶ 부착매질 : Phantom hand

▶ 시험방법 : Phantom hand에 태그를 부

착하고 0.1 m에서 측정시작, 0.1 m씩 뒤로

이동하며 최대 인식거리 측정

■ 결과

▶ 3종의 리더간에 인식성능의 큰 차이가 발생하며, 태그 10종 간에도 차이가 발생

리더	태그1	태그2	태그3	태그4	태그5	태그6	태그7	태그8	태그9	태그10
DOTH-300U (디오텔)	0.2	0.2	0.7	0.7	0.5	0.9	0.5	0.6	0.8	1.5
AT-870 (ATID)	0.2	0.2	0.7	0.8	0.4	1	0.5	0.7	0.9	1.4
Swing-U (네톰)	0.2	0.2	1.2	1	0.9	1.2	0.8	0.5	1.1	1.9

4. 기술 참조모델(TRM) - 시험결과(실증시험 리더)

휴대용 리더를 통한 개체인식

1. Test reader: Swing-U

-인식범위: 2 ~ 7M (귀표위치 → 정방향)

> 전체(77)

No	개체번호	등록일
77	002085646094	15-01-20
76	002085646086	15-01-20
75	002085646109	15-01-20
74	002084443958	15-01-20

2. Test reader: TSL 1128

-인식범위: 2 ~ 5M (귀표위치 → 정방향)

3. 귀표의 방향별 인식거리 및 인식률 추가시험 진행 중..

4. 기술 참조모델(TRM) - 시험결과(리더)

고정용 리더를 통한 개체인식

SKT 🚥	S 4 S -	□ □ ♥ □ □	요전 11:50
10	20150120	002089070006	먹이통(2)
9	20150120	002089070006	물통(4)
8	20150120	002089070006	물통(4)
7	20150120	002089070006	물통(4)
6	20150120	002089070006	물통(4)
5	20150120	002089070006	먹이통(2)

- ※ 소가 사료 섭취를 위하여 머리를 급이구로 내밀면 RFID귀표를 인식하여 일별 인식횟수 Count
 - 인식범위내 인식률 : OK
 - 일별 Counting data 수집 및 분석 중..

4. 기술 참조모델(TRM) - 시험결과(리더)

우영기용 고정형리더 실증시험

DOM:					
NO	측정일	개체식별번호	중량	등록일	측정자
1	20150213	002085646094	550	20150213	farm01
7	20150213	002085646086	543	20150213	farm01
13	20150213	002085646109	520	20150213	farm01
19	20150213	002084443958	600	20150213	farm01
25	20150213	002084446997	578	20150213	farm01

