10. Inference about the Box-Cox transformation

Suppose one observes the positive values $y_1, ..., y_n$ that exhibit some right-skewness. Box and Cox (1964) suggested using the power transformation

$$w_i = \frac{y_i^{\lambda} - 1}{\lambda}, i, = 1, ..., n,$$

such that $w_1, ..., w_n$ represent a random sample from a normal distribution with mean μ and standard deviation σ . Suppose that the vector of parameters (λ, μ, σ) is assigned the noninformative prior proportional to $1/\sigma$. Then the posterior density of θ is given, up to a proportionality constant, by

$$g(\theta|y) \propto \frac{1}{\sigma} \prod_{i=1}^{n} \left[\phi\left(\frac{y_i^{\lambda} - 1}{\lambda}; \mu, \sigma\right) y_i^{\lambda - 1} \right].$$

Assignment Project Exam Help https://eduassistpro.github.io/ Add WeChat edu_assist_pro

翻译:

关于博克斯-考克斯变换的推断

假设我们观察了正值 y_1, \cdots, y_n ,它们表现出一些右倾性。博克斯和考克斯(1964)建议使用幂变换

$$w_i = \frac{y_i^{\lambda} - 1}{\lambda}, i = 1, \dots, n,$$

其中 $^{w_1,\cdots,w_n}$ 代表一个服从均值为 $^\mu$,方差为 $^\sigma$ 的正态分布随机样本。假设参数向量 $^{(\lambda,\,\mu,\,\sigma)}$ 服从无信息先验分布正比于 $^{1/\sigma}$ 。已知 $^\theta$ 的后验密度

$$g(\theta|y) \propto \frac{1}{\sigma} \prod_{i=1}^n \left[\phi\left(\frac{y_i^{\lambda}-1}{\lambda}; \mu, \sigma\right) y_i^{\lambda-1} \right].$$

假设这个转化模型适用于对多发性骨髓瘤的研究,患者的存活时间如下:

13 52 6 40 10 7 66 10 10 14 16 4 65 5 11 10 15 5 76 56 88 24 51 4 40 8 18 5 16 50 40 1 36 5 10 91 18 1 18 6 1 23 15 18 12 12 17 3

- (a) 写一个R函数来计算 (λ, μ, σ) 的后验分布的对数。
- (b) 使用 laplace 此命令

Assignment Project Exam Help https://eduassistpro.github.io/ Add WeChat edu_assist_pro