Chapitre I: Rappels et puissances de 10

I. Les nombres décimaux

Les nombres décimaux sont des nombres qui peuvent s'écrire avec une virgule. Ils permettent de représenter des quantités plus précises que les nombres entiers.

Exemple: 51,172

51 , 172

Partie Partie entière décimale

Propriété: Entre deux nombres décimaux, on peut toujours intercaler un nombre décimal.

Exemples:

0 < 0.5 < 1

0 < 0.45 < 0.5

0,45 < 0,455 < 0,5

Définition : Encadrer un nombre, c'est donner une valeur inférieure et une valeur supérieure.

Exemple : Un encadrement de 15,71 est 10 < 15,71 < 20

Exercice:

- 1. Intercalez un nombre
 - a. entre 1,5 et 2
 - b. entre 1,5 et 1,6
 - c. entre 1,5 et 1,51
- 2. Donnez un encadrement
 - a. de 13,5
 - b. de 1000
 - c. de 32,3

II. Multiplication et division par 10, 100, 1000

II.1 Multiplication

<u>Règle</u>: Multiplier par 10, 100 ou 1000 revient à déplacer la virgule vers la **droite** d'autant de rangs qu'il y a de zéros.

Exemples:

$$18,53 \times 10 = 185,3$$

 $18,53 \times 100 = 1853$
 $18,53 \times 1000 = 18530$

Exercice : Effectuez de tête, les calculs suivants :

- a. $5,806 \times 100$
- b. $4,15 \times 10000$
- c. $45,04 \times 10$
- d. 12×1000

II.2 Division

Règle : Diviser par 10, 100 ou 1000 revient à déplacer la virgule vers la **gauche** d'autant de rangs qu'il y a de zéros.

Exemples:

$$150.3 \div 10 = 15.03$$

 $1503 \div 100 = 15.03$
 $15030 \div 1000 = 15.03$

Exercice : Effectuez de tête, les calculs suivants :

- a. $7,41 \div 100$
- b. $80,547 \div 10$
- c. $3057,7 \div 1000$
- d. 8 ÷ 100 000

III. Puissances de 10

Une puissance de 10 est un nombre qui s'écrit avec un 1 (unique) suivi ou précédé d'un certain nombre de zéros (un, plusieurs ou aucun).

Exemples:

Les nombres suivants sont des puissances de 10:

- 1
- 1000
- 10 000 000
- 0,001
- 0,0000001

Les nombres suivants ne sont pas des puissances de 10:

- 101
- 1,4
- 0.04

Notation : Les puissances de 10 admettent des notations qui simplifient leur écriture.

On sépare cela en deux cas :

Cas 1: Si la puissance de 10 est supérieure ou égale à 1.

Dans ce cas, on compte le nombre de 0 dans la puissance de 10, puis on écrit ce nombre en haut à droite d'un 10.

Exemple:

1 000 s'écrit 10³ . Qui se lit : "Dix puissance trois".

<u>Cas 2</u>: Si la puissance de 10 est inférieure à 1.

Dans ce cas on compte aussi le nombre de 0 dans la puissance de 10, puis on écrit ce nombre en haut à droite d'un 10 en ajoutant un moins (-) devant la puissance.

Exemple:

0,01 s'écrit: 10^{-2} . Qui se lit: "Dix puissance moins deux ".

Remarques:

- Avec cette définition $10^0 = 1$.
- Pour les puissances négatives, on peut aussi les écrire sous la forme de fractions, par exemple $10^{-2} = \frac{1}{100}$ ou encore $10^{-4} = \frac{1}{10000}$. Le nombre de zéros est conservé.

Exercice: Écrivez les puissances de 10 suivantes avec la notation des puissances.

a. 10 000

c. 0,1

e. 100×1000

b. 0,001 d. 10 f. 0,0001 × 100

IV. Ecriture scientifique

L'écriture scientifique d'un nombre se compose d'un nombre décimal plus grand que 1 et strictement plus petit que 10, suivi du symbole × et d'une puissance de 10.

Exemples:

 3×10^4 et 6×10^{-5} sont les écritures scientifiques des nombres 30000 et 0,00006.

Cette écriture permet d'avoir une idée de la grandeur d'un nombre sans avoir à compter sa taille.

Exemples:

- Distance Terre-Lune $\approx 3.84 \times 10^5$ km
- Taille d'un atome $\approx 1 \times 10^{-10}$ m

Exercice: Donnez l'écriture scientifique des nombres suivants.

a. 105

c. 0,15

e. 3350,5

b. 0,0189

d. 150,02

f. 750,32

V. Liens entre les différentes opérations élémentaires

Les quatre opérations élémentaires des mathématiques sont : l'addition (+), la soustraction (-), la multiplication (\times) et la division (\div) .

V.1 L'addition et la soustraction

L'addition est l'opération inverse de la soustraction.

C'est-à-dire que, si on additionne puis on soustrait un même nombre, alors on revient au nombre de départ.

Exemple: Partons du nombre 12.

- On ajoute 5:12+5=17

- Puis on soustrait 5:17-5=12

On est bien revenu au nombre de départ.

V.2 L'addition et la multiplication

La multiplication par un nombre entier peut être construite à partir des additions.

Exemple : Partons de la multiplication 4×3

En réalité, vouloir calculer 4×3 est exactement la même chose que de calculer :

3 + 3 + 3 + 3 ou encore 4 + 4 + 4

Où le nombre 3 apparaît exactement 4 fois et le nombre 4 apparaît exactement 3 fois.

V.3 La multiplication et la division

La multiplication est l'opération inverse de la division.

C'est-à-dire, que si on multiplie puis on divise par un même nombre (différent de 0), alors on revient au nombre de départ.

Exemple : Partons du nombre 7.

- On multiplie par $3:3\times7=21$

- Puis on divise par $3:21\div3=7$

On est bien revenu au nombre de départ.