Machine Learning and Failure Prediction in Hard Disk Drives

HEPiX, October 2015

Dr. Amit Chattopadhyay

Director of Technology

Advanced Reliability Engineering

Western Digital, San Jose

Acknowledgement:

Work done in collaboration with Sourav Chatterjee at Western Digital, San Jose

What is Machine Learning

- Algorithms that:
 - Improve their performance P
 - At some task T
 - With Experience E

- Will this hard drive fail?
- Training data: provides <u>Experience</u>
 - Reliability Test
- **<u>Performance</u>**: how many mistakes does it make?

A simple task, can you identify the object?

Task T: Can you identify this object?

- Experience E:
 - Training Examples

- Performance:
 - How many does it get right?
 - Other measures possible

- Often not simple manually coded Attributes
- Compare to explicit if (four language) algorithm:

Typical Workflow

Testing

Where is machine learning used?

Recommendation Engines

A Spam filter

Self driving Cars

Smart machines such as NEST thermostat

A more sophisticated example: Self driving car

- Can learn much harder tasks
- Not limited by simple parametric attribute based decisions
- Training
 - Images from windshield camera
 - Labels: driver action
- Feature: each pixel
- Lesson: Sophisticated algorithms can often solve problems better than human beings

Kinds of Machine Learning problems

Kinds of Machine Learning problems

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

Classification Problems

nonlinear decision boundary

- Functional approximation
- Define a function such that it divides positive and negatives
 - Linear: Easier and more robust (eg. Naïve Bayes, Logistic Regression)
 - Non Linear: Harder (eg. Support Vector Machine, Neural Network)

Issues in categorization

- Can we generalize?
 - May show very good accuracy with training data
 - However not so much with test data
- Think polynomial regression example
 - Model complexity: Order of polynomial

Confusion matrix and ROC curves

	P' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Confusion Matrix

- 98 positives 2 negatives
- 98% accuracy not meaningful
- Does it predict true negatives?

ROC curves

- Tradeoff between false positive and true positives
- How many false positives are we willing to accept?

Let us demonstrate with 1 specific example on product A

- Every week we produce a large number of drives of this product (several 10s of 1000s)
- Sample some (200-300) drives from a 50,000 lot and run a stress test (ORT: Ongoing Reliability Test)

Problem statement –

- ORT shows an 'excursion' for 3 weeks of production
- The entire production lot during this time gets 'stop ship'ped
- Sitting on a large inventory of several \$M that needs action

What can we do?

<u>Traditional solution</u> – based on tribal knowledge/engineering insight

- Define "good" and "bad" explicitly, based on specific limit checks (If A < ... and B>..., then good)
- Run reliability tests on 300 "good" drives → to convince ourselves these are good
- Lose 6 weeks that is the duration of the reliability test
- Trust that the rest of "good" drives will behave this way
- Ship and make \$

Machine Learning solution-

- Use Supervised Machine Learning on ORT data
- Supervisor: ORT failure rate
 - Pass test :"good" drive
 - Fail test: "bad" drive
- Allow the algorithm to decide and build a predictive model of failure rate

Key benefit: Predict the failure rate without having to run the test !!

How is this done?

	Do a	50-50 split on the ORT population, into "Training" and "Test"	
_	Eacl to C	n drive goes through detailed characterization (about 2000 variables) before getting RT.	
*	On the "Training" population:		
		Use a classifier (χ^2 , Boosted forest,) to choose the top 20-25 features from this variable list.	
		Build a Logistic Regression model. We can use others as needed (SVM, Neural Nets, Naïve Bayes etc)	
		Calculate the failure probability of each drive	
		Based on failure probabilities, generate a 'health hierarchy'/grading system of drives before they get shipped	
*	Vali	date the model we just built on the "Test" set – it already has ORT data; how does	

the calculated failure probabilities match up

Failure Rate: sensitivity to key features chosen by the classifier

Model building on the 1st 50% (training set)

- ☐ These drives actually ran the test, so we can see how this holds up against real data
- ☐ If the learning was ideal, the blue line
 - would be the perfect classifier
 - Have all passers to the left, and all failures to the right

Model validation on the 2nd 50% ('test' set)

Then -

- Green dotted line: average actual Failure rate of this population
- This is all we had before An average failure rate that looked bad

Now -

- Lot more insight. 10x spread in failure rates
- Grades 1-4: pretty good drives;
 Grades 8-10: quite bad

Measures of success – ROC curve and TTF chart

- ☐ For this analysis, area under ROC curve ~ 85%-87%
- ☐ Algorithm making the right business call > 8 times out of 10.

Problem statement -

- ORT shows an 'excursion' for 3 weeks of production
- The entire production lot during this time gets 'stop ship'ped
- Sitting on a large inventory of several \$M that needs action
- ☐ Now we can use this algorithm on the entire production and calculate Failure Rate of each drive
- ☐ Appropriate business actions taken accordingly

Summary

☐ Drive Failure Prediction using Initial (Factory) conditions has always been tricky. ☐ Conventional methods do not have a high success rate — mostly under-predict ☐ Machine Learning allows us to approach the problem in a different way ■ Still early, with continuous progress being made. ☐ This analytical technique, coupled with periodic in-field

measurements, can provide a robust framework for fleet

management.

Thank you!

