Изображения

Семинар DMIA 2016 Гущин Александр

Selective phase of the Data Science Game 2016

Welcome to the online phase of the Data Science Game 2016!

For this phase, you will be given a dataset of satellite images of roofs. You will have to predict the orientation of the roofs into 4 different categories.

For instance:

Category 1: North-South orientation

Category 2: East-West orientation

Category 3: Flat roof

Category 4: Other

Аугментация изображений с помощью поворотов: Цель - увеличение размера выборки

- 1. Картинка класса 1 переходит в класс 2 и наоборот
- 2. Картинки из класса 3 и 4 остаются в том же классе

Аугментация ответов: Цель - улучшение ответов на тесте

- . Усреднение вероятностей принадлежать 3 классу для всех поворотов картинки (аналогично 4)
- 2. Вероятность_принадлежать_классу_1 == 1 вероятность_для_повернутой_картинки_принадлеж ать_классу_2

State Farm Distracted Driver Detection

The 10 classes to predict are:

- c0: safe driving
- c1: texting right
- c2: talking on the phone right
- c3: texting left
- c4: talking on the phone left
- c5: operating the radio
- c6: drinking
- c7: reaching behind
- c8: hair and makeup
- c9: talking to passenger

Другие аугментации

Другие аугментации

Что делать, если изображений в обучающей выборке мало? Можно файнтюнить (дообучать) уже натренированные сети

The architecture of LeNet5

Finetuning

Часто лучше всего заменить последний слой

each conv includes 3 convolutional layers

Необязательно переобучать сеть даже для картинок другого размера

Сверточные слои

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Инструмент: Keras

Плюсы:

- 1. легко установить через рір
- 2. легко разобраться и запустить

Минусы:

- 1. Почти нет предобученных моделей
- 2. нужно устанавливать драйвера для видеокарты самому

Удобно использовать, чтобы учить сети с нуля

```
42
    model = Sequential()
    model.add(Convolution2D(32, 3, 3, border_mode='same',
46
                             input_shape=X_train.shape[1:]))
    model.add(Activation('relu'))
    model.add(Convolution2D(32, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Convolution2D(64, 3, 3, border mode='same'))
    model.add(Activation('relu'))
    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    # let's train the model using SGD + momentum (how original).
    sqd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy',
                   optimizer=sqd,
                  metrics=['accuracy'])
```

Инструмент: Caffe

Написан на С++, препроцессинг и обучение запускается из консоли

Плюсы:

- 1. много предобученных сетей
- 2. есть Nvidia Digits
- 3. одной командой можно поставить драйвера для видеокарты + caffe + digits (на linux)

Минусы:

- 1. нужно заморачиваться с файлами архитектуры сети
- 2. (иногда) с упаковкой картинок в db, с подсчётом средней картинки

Удобно использовать, чтобы файнтюнить предобученные сетки или извлекать дескрипторы

Nvidia DIGITS

Аугментации

Аугментации можно делать "на лету"

- 1. B Nvidia Digits добавить слой, предобрабатывающий данный (на питоне) https://github.com/NVIDIA/DIGITS/tree/master/examples/python-layer
- 2. В Keras делать модификации прямо в коде

Ссылки

Гайд для начинающих по сверточным сетям https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Classifying plankton with deep neural networks http://benanne.github.io/2015/03/17/plankton.html

Стартовый пример для caffe - файнтюнинг и извлечение дескрипторов https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb

Стартовый пример для keras - Cifar-10: https://github.com/fchollet/keras/blob/master/examples/cifar10_cnn.py

Nvidia DIGITS https://github.com/NVIDIA/DIGITS

Caffe model Zoo https://github.com/BVLC/caffe/wiki/Model-Zoo

State Farm Distracted Driver Detection https://habrahabr.ru/post/307078/
https://www.kaggle.com/c/state-farm-distracted-driver-detection/forums/t/22666/10th-place-solution