

LG Advanced Data Scientists Program Deep Learning

[5: Artificial Neural Networks]

Prof. Sungroh Yoon

Electrical & Computer Engineering | Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 21:30 on February 24, 2020)

Outline

Introduction

Multilayer Perceptrons

Representations
Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm
Backward Phase (Output Layer)
Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Readings

- Deep Learning by Goodfellow, Bengio, and Courville
 - ► Chapter 6: Deep Feedforward Networks
- Neural Networks and Learning Machines (3rd edition) by Haykin
 - ▶ Chapters 1–4
- Pattern Recognition and Machine Learning by Bishop
 - Chapter 5: Neural Networks
- Elements of Statistical Learning by Hastie, Tibshirani, and Friedman
 - Chapter 11: Neural Networks

Outline

Introduction

Multilayer Perceptrons

Representations
Network Architectures

Training Multilayer Perceptrons

Backward Phase (Output Layer) Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Neuron

 electrically excitable cell that processes and transmits information through electrical and chemical signals

source: http://en.wikipedia.org/wiki/Neuron

Recall: linear models

based on "signal" s:

$$s = \sum_{i=0}^{d} w_i x_i$$

Artificial neural networks (ANNs)

- computational models inspired by brain
 - capable of machine learning and pattern recognition
 - popular until early 90's; popularity diminished in late 90's
 - renaissance: deep learning, AlphaGo, ...
- traditionally most studied model: feedforward neural network
 - comprises multiple layers of logistic regression models
 - ▶ also known as _____ (MLP)

- multilayer perceptron: misnomer
 - network of multiple logistic models (continuous nonlinearity)
 rather than multiple perceptrons (discontinuous nonlinearity)
- central idea
 - extract linear combinations of inputs as derived features
 - then model the target as nonlinear function of these features

Outline

Introduction

Multilayer Perceptrons

Representations

Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm

Backward Phase (Output Layer)

Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Models of a neuron

- three basic elements
 - 1. synapses (with weights)
 - 2. adder (input vector \rightarrow scalar)
 - 3. _____ function (possibly nonlinear)

• model of a neuron:

• alternative representation (w_0 for bias b):

• simplified representations:

Human neuron vs ANN neuron

Figure 1: (a) human neuron (b) artificial neuron (c) biological synapse (d) ANN synapse

source: Maltarollo (2013)

Activation function

ullet function σ that defines output of neuron in terms of signal s

$$\sigma(s) = s \, \to \text{linear}$$

$$\operatorname{sigmoid} \, \sigma(s) \, \to \, \underline{\hspace{1cm}} \text{nonlinear}$$

$$\sigma(s) = \operatorname{sign}(s) \, \to \, \text{discontinuous nonlinear}$$

- ullet simplifying assumption: all neurons use identical σ function
 - ▶ e.g. logistic sigmoid

$$\sigma(s) = \frac{1}{1 + e^{-s}}$$

- let $x_1, x_2 \in \{0, 1\}$ and assume σ is logistic sigmoid
 - ▶ how to model $y = x_1 \land x_2$ (logical and) by neural net?

x_1	x_2	$h(\mathbf{x})$
0	0	$\sigma(-30) \approx$
0	1	$\sigma(-10) \approx$
1	0	$\sigma(-10) \approx$
1	1	$\sigma(10) \approx$

$$h(\mathbf{x}) = \sigma(-30 + 20x_1 + 20x_2)$$

- let $x_1, x_2 \in \{0, 1\}$ and assume σ is logistic sigmoid
 - ▶ how to model $y = x_1 \lor x_2$ (logical or) by neural net?

$\overline{x_1}$	x_2	$h(\mathbf{x})$	
0	0	$\sigma(-10) \approx 0$	
0	1	$\sigma(10) \approx 1$	
1	0	$\sigma(10) \approx 1$	
1	1	$\sigma(30) \approx 1$	

$$h(\mathbf{x}) = \sigma(-10 + 20x_1 + 20x_2)$$

- let $x_1, x_2 \in \{0, 1\}$ and assume σ is logistic sigmoid
 - ▶ how to model $y = \neg x_1$ (logical not) by neural net?

x_1	$h(\mathbf{x})$
0	$\sigma(10) \approx 1$
1	$\sigma(-10) \approx 0$

$$h(\mathbf{x}) = \sigma(10 - 20x_1)$$

Rectifier activation

• rectifier: an activation function defined as

$$\sigma(s) = \max(0, s)$$

- softplus
 - a smooth approximation

$$\sigma(s) = \ln(1 + e^s)$$

$$\sigma'(s) = \frac{e^s}{1 + e^s} = \underbrace{\frac{1}{1 + e^{-s}}}_{\substack{\text{logistic} \\ \text{function}}}$$

- why rectifier?
 - arguably more _____ plausible than logistic sigmoid (cortical neurons: rarely in their maximum saturation regime)

ReLU (rectified linear unit)

- a unit employing the rectifier
 - very popular in deep neural nets
- ReLU advantages
 - allows _____ propagation of activations and gradients: only a small number of units have non-zero values
 - Nair and Hinton (2010): "unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors."
 - better for handling the _____ gradient problem: constant gradient propagation (more on this later)

Leaky ReLU

- limitation of ReLU
 - ▶ ReLU units can be fragile during training and can "die"
 - ▶ half of the operation regime is zero
- leaky ReLU: an attempt to fix the "dying ReLU" problem

$$\sigma(s) = \begin{cases} s & \text{if } s > 0\\ \alpha s & \text{otherwise} \end{cases}$$

 \bullet α : ____ constant (e.g. 0.01)

Maxout

- generalization of (leaky) ReLU (Goodfellow, 2013)
 - can be used as a universal approximator

Outline

Introduction

Multilayer Perceptrons

Representations

Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm

Backward Phase (Output Layer)

Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Single-layer feedforward network

- "layered"
 - input layer (of sources)
 - output layer (of neurons)

- " "
 - ▶ (function) signal direction: input → output
 - not vice versa

Multilayer feedforward network (multilayer perceptron)

- one or more _____ layers of neurons
 - not directly seen from either input or output

nonlinear classification by multilayer perceptron

(a) nonlinear boundary needed

(b) simplified (XNOR)

$$(x_1)$$
 $+20$

+20

$$\begin{array}{c|c}
\hline
1 & -10 \\
\hline
x_1 & +20 \\
\hline
x_2 & +20 \\
\end{array}$$

• modeling $y = x_1$ XNOR x_2

x_1	x_2	σ_1	σ_2	$h(\mathbf{x})$
0	0	0	1	
0	1	0	0	
1	0	0	0	
1	1	1	0	

Types of signals in neural networks

- 1. _____ signals: forward propagation
 - input signal comes in at input
 - propagates forward through network, and
 - emerges at output
- 2. ____ signals: back(ward) propagation
 - originates at an output neuron, and
 - propagates backward

Computations at hidden/output layer

- each hidden/output neuron performs two types of computations:
- 1. function signal appearing at neuron output
 - continuous nonlinear function of input and synaptic weights
- 2. estimate of gradient vector needed for back pass
 - lacktriangleright gradients of error surface with respect to $\qquad :
 abla \mathcal{E}(\mathbf{w})$

Softmax function (aka normalized exponential)

- generalization of the logistic function
 - final layer of a network for multi-class classification
- definition: given a K-dimensional vector $\mathbf{h} = (h_1, h_2, \dots, h_K)$
 - softmax function $\sigma : \mathbb{R}^K \mapsto \mathbb{R}^K$ s.t.

$$\sigma(\mathbf{h})_j = \frac{e^{h_j}}{\sum_{k=1}^K e^{h_k}}$$
 for $j = 1, ..., K$ (1)

- components of vector $\sigma(\mathbf{h})$
 - sum to one and are all strictly between zero and one
 - \Rightarrow represent a probability distribution

Function of hidden neurons

- play critical role in operation of multilayer perceptron
 - each layer corresponds to "distributed representation"
- hidden neurons act as detectors
 - as learning goes on, they gradually "discover" salient features characterizing training data
 - they do so by performing nonlinear transformation on input data into new space called feature space

- (b) learned input-to-hidden weights

source: Duda, Hart, and Stork (2001)

- 64-2-3 network for classifying 3 characters
 - ▶ 64-dim inputs
 - 2 hidden units
 - 3 output units
- learned i-to-h weights
 - describe feature groupings useful for classification

Recurrent neural networks (RNN)

- have feedback loop(s)
 - fully recurrent
 - long short-term memory (LSTM) nets
 - gated recurrent unit (GRU) nets

Outline

Introduction

Multilayer Perceptrons

Representations
Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm
Backward Phase (Output Layer)
Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Recall: types of signals in neural networks

- 1. _____ signals: forward propagation
 - input signal comes in at input
 - propagates forward through network, and
 - emerges at output
- 2. ____ signals: back(ward) propagation
 - originates at an output neuron, and
 - propagates backward

Training by forward/backward propagation

Assumptions and notations

- feedforward neural network with single hidden-layer
 - for the sake of simplicity in explanation
 - but there is no loss of generality
- d-H-K neural network
 - d-dimensional input
 - H units in hidden layer
 - K output signals

- notations
 - ightharpoonup input: $\mathbf{x} = (x_1, \dots, x_i, \dots, x_d) \in \mathbb{R}^d$
 - ightharpoonup hidden: $\mathbf{z} = (z_1, \dots, z_j, \dots, z_H) \in \mathbb{R}^H$
 - output: $\mathbf{h} = (h_1, \dots, h_k, \dots, h_K) \in \mathbb{R}^K$
- ullet synaptic weights: $\mathbf{w} = \{w_{ji}, w_{kj}\}$
 - ▶ input-hidden weights: w_{ji} $(1 \le i \le d, 1 \le j \le H)$
 - ▶ hidden-output weights: w_{kj} $(1 \le j \le H, 1 \le k \le K)$

Activations of hidden/output units

• hidden unit:

$$z_j(\mathbf{x}) = \sigma\left(\sum_{i=0}^d w_{ji} x_i\right)$$

output unit:

$$h_k(\mathbf{x}) = \sigma \left(\sum_{j=0}^H w_{kj} z_j \right)$$
$$= \sigma \left(\sum_{j=0}^H w_{kj} \sigma \left(\sum_{i=0}^d w_{ji} \mathbf{x}_i \right) \right)$$

Error measures

e_k: error signal on k-th output

$$\underbrace{e_k}_{ ext{error}} \triangleq \underbrace{h_k}_{ ext{NN output}} - \underbrace{y_k}_{ ext{correct label}}$$

• \mathcal{E}_n : error energy on example $(\mathbf{x}_n, y_n) \leftarrow$ sum of squared errors

$$\mathcal{E}_{\mathbf{n}} = \frac{1}{2} \sum_{k=1}^{K} e_{k,\mathbf{n}}^2$$

• $\mathcal{E}_{\mathcal{D}}$: mean-squared error on data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

$$\mathcal{E}_{\mathcal{D}} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{n} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{k=1}^{K} e_{k,n}^{2}$$

Dependence of per-sample error $\mathcal{E}_n(\mathbf{w})$

1. error \mathcal{E}_n depends on _______ n

$$\mathcal{E}_{\mathbf{n}} = \frac{1}{2} \sum_{k=1}^{K} e_{k,\mathbf{n}}^2 = \frac{1}{2} \sum_{k=1}^{K} (h_{k,\mathbf{n}} - y_{k,\mathbf{n}})^2 = \frac{1}{2} ||\mathbf{h}_{\mathbf{n}} - \mathbf{y}_{\mathbf{n}}||^2$$
 (2)

$$= \frac{1}{2} \sum_{k=1}^{K} e_k^2 = \frac{1}{2} \sum_{k=1}^{K} (h_k - y_k)^2 = \frac{1}{2} ||\mathbf{h} - \mathbf{y}||^2$$
 (3)

▶ (2) \rightarrow (3): for the sake of simplicity, we sometimes omit n

2. error \mathcal{E}_n depends on **all** weights $\mathbf{w} = \{w_{ji}, w_{kj}\}$

$$\mathcal{E}_n = \mathcal{E}_n(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^K (h_k - y_k)^2$$
$$= \frac{1}{2} \sum_{k=1}^K \left(\sigma \left(\sum_{j=0}^H w_{kj} \ \sigma \left(\sum_{i=0}^d w_{ji} x_i \right) \right) - y_k \right)^2$$

 \Rightarrow lots of _____

Learning objective

ullet find ${f w}$ that minimizes training error ${\cal E}_{\cal D}$

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_n(\mathbf{w})$$

- training neural network: non-trivial
 - neural network model is over-
 - optimization is non-convex

Selecting optimization method for neural networks

- neural network model typically has many parameters
 - ⇒ often need very large training data sets
 - ▶ second-order techniques (e.g. Newton's method) are usually fast but not attractive here (\cdot : Hessian of $\mathcal E$ can be very large)
 - ⇒ first-order online methods (e.g. stochastic gradient descent) are commonly used
- iterative optimization: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla \mathcal{E}(\mathbf{w})$
- key component: evaluating
 - can be used directly for sequential (online) optimization
 - lacktriangle can be accumulated over ${\cal D}$ for batch optimization

Outline

Introduction

Multilayer Perceptrons

Representations
Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm

Backward Phase (Output Layer) Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Back-propagation algorithm

- aka
 - lacktriangle popular method to evaluate $abla \mathcal{E}(\mathbf{w})$ for multilayer perceptrons
 - means 'back propagation of errors'
- popular method for training multilayer perceptrons
 - ▶ landmark in neural networks (mid-1980s): "computationally efficient method for training multilayer perceptrons"
- training proceeds in two phases

1. forward phase

- apply input x and forward propagate through network
- find activations of all hidden and output units

2. backward phase

- successive adjustments to synaptic weights
- easy for output layer; challenging for _____ layers

Credit assignment problem

- for output layer
 - explicit '_____' (correct output y_k) exists for h_k
 - error signal can be evaluated directly: $e_k = h_k y_k$
 - ▶ it is straightforward to find how output (thus error) depends on hidden-to-output weights
 - \Rightarrow hidden-to-output 'sensitivity' $\dfrac{\partial \mathcal{E}}{\partial w_{kj}}$: easy to evaluate

- for hidden layer
 - no explicit teacher to tell what hidden unit's output should be
 - this is called credit assignment problem
 - \Rightarrow input-to-hidden sensitivity $\frac{\partial \mathcal{E}}{\partial w_{ii}}$: difficult to evaluate
- power of back-propagation
 - ▶ it allows us to calculate effective error for each hidden unit
 - thus we can derive learning rule for weights

Outline

Introduction

Multilayer Perceptrons

Representations
Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm

Backward Phase (Output Layer)

Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Sensitivity factor and delta error (output layer)

sensitivity factor

$$\frac{\partial \mathcal{E}}{\partial w_{kj}}$$
 (4)

determines direction of search in weight space for weight w_{kj}

• "delta error"

$$\delta_k = \frac{\partial \mathcal{E}}{\partial s_k} \tag{5}$$

describes how \mathcal{E} changes with unit's activation s_k

Output layer: explicit error signal $e_k = h_k - y_k$

sensitivity factor

$$\frac{\partial \mathcal{E}}{\partial w_{kj}} = \frac{\partial \mathcal{E}}{\partial s_k} \frac{\partial s_k}{\partial w_{kj}} = \frac{\partial \mathcal{E}}{\partial s_k} \cdot \frac{\partial}{\partial w_{kj}} \left(\sum_{j=1}^H w_{kj} z_j \right) = \delta_k \cdot z_j$$

ullet delta error δ_k

$$\delta_{k} \triangleq \frac{\partial \mathcal{E}}{\partial s_{k}} = \frac{\partial \mathcal{E}}{\partial e_{k}} \frac{\partial e_{k}}{\partial h_{k}} \frac{\partial h_{k}}{\partial s_{k}}$$

$$= \underbrace{\frac{\partial}{\partial e_{k}} \left(\frac{1}{2} \sum_{k=1}^{K} e_{k}^{2}\right)}_{=e_{k}} \cdot \underbrace{\frac{\partial}{\partial h_{k}} \left(h_{k} - y_{k}\right)}_{=1} \cdot \underbrace{\frac{\partial}{\partial s_{k}} \left(\sigma(s_{k})\right)}_{=\sigma'(s_{k})}$$

$$= e_{k} \cdot \sigma'(s_{k})$$

• weight update rule: $w_{kj} \leftarrow w_{kj} + \Delta w_{kj}$

$$\Delta w_{kj} = -\eta \frac{\partial \mathcal{E}}{\partial w_{kj}} =$$

Remarks

we have derived 'delta rule' for multilayer perceptron:

- Widrow-Hoff learning rule (aka LMS rule)
 - special case of back-propagation algorithm
 - uses identity activation func: $\sigma(s) = s \Rightarrow \delta_k = e_k \sigma'(s_k) = e_k$
 - weight update: $\Delta w_{kj} = -\eta \cdot e_k \cdot z_j$

Summary: output layer

Outline

Introduction

Multilayer Perceptrons

Representations
Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm
Backward Phase (Output Layer)

Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Sensitivity factor and delta error (hidden layer)

sensitivity factor

$$\frac{\partial \mathcal{E}}{\partial w_{ji}}$$
 (6)

determines direction of search in weight space for weight w_{ji}

delta error

$$\delta_j = \frac{\partial \mathcal{E}}{\partial s_j} \tag{7}$$

describes how \mathcal{E} changes with unit's activation s_i

Hidden layer: no explicit error signal

delta error:

$$\delta_{j} \triangleq \frac{\partial \mathcal{E}}{\partial s_{j}} = \frac{\partial \mathcal{E}}{\partial z_{j}} \frac{\partial z_{j}}{\partial s_{j}} = \frac{\partial}{\partial z_{j}} \left(\frac{1}{2} \sum_{k=1}^{K} e_{k}^{2} \right) \cdot \frac{\partial}{\partial s_{j}} \left(\sigma(s_{j}) \right)$$

$$= \left(\sum_{k=1}^{K} e_{k} \frac{\partial e_{k}}{\partial z_{j}} \right) \cdot \sigma'(s_{j})$$

$$= \sigma'(s_{j}) \sum_{k=1}^{K} e_{k} \frac{\partial e_{k}}{\partial s_{k}} \frac{\partial s_{k}}{\partial z_{j}}$$

$$= \sigma'(s_{j}) \sum_{k=1}^{K} e_{k} \frac{\partial(\sigma(s_{k}) - y_{k})}{\partial s_{k}} \frac{\partial}{\partial z_{j}} \left(\sum_{j=0}^{H} w_{kj} z_{j} \right)$$

$$= \sigma'(s_{j}) \sum_{k=1}^{K} \underbrace{e_{k} \sigma'(s_{k})}_{=\delta_{k}} w_{kj}$$

$$= \sigma'(s_{j}) \sum_{k=1}^{K} \delta_{k} w_{kj}$$

$$x_{i} \underbrace{o_{k} \sum_{j=0}^{K} \delta_{k} w_{kj}}_{=\delta_{k}} \delta_{k}$$

$$\delta_{j} \underbrace{o_{k} \sum_{j=0}^{K} \delta_{k} w_{kj}}_{=\delta_{k}} \delta_{k}$$

• 'back propagation of errors'

sensitivity factor

$$\frac{\partial \mathcal{E}}{\partial w_{ji}} = \frac{\partial \mathcal{E}}{\partial s_j} \frac{\partial s_j}{\partial w_{ji}} = \frac{\partial \mathcal{E}}{\partial s_j} \cdot \frac{\partial}{\partial w_{ji}} \left(\sum_{i=1}^d w_{ji} x_i \right) = \delta_j \cdot x_i$$

• delta error δ_i

$$\delta_j = \sigma'(s_j) \sum_{k=1}^K \delta_k w_{kj}$$

• weight update rule: $w_{ii} \leftarrow w_{ii} + \Delta w_{ii}$

Summary: hidden layer

Back-propagation algorithm

stochastic back propagation

- 1: initialize all weights $\{w_{ji}, w_{kj}\}$
- 2: repeat
- 3: pick $n \in \{1, 2, \dots, N\}$
- 4: forward: compute all
- 5: backward: compute all
- 6: update weights:

hidden(j)-to-output(k):
$$w_{kj} \leftarrow w_{kj} - \eta \cdot \delta_k \cdot z_j$$

input(i)-to-hidden(j): $w_{ii} \leftarrow w_{ii} - \eta \cdot \delta_j \cdot x_i$

- 7: until it is time to stop
- 8: return final weights $\{w_{ji}^*, w_{kj}^*\}$

Multiplication

• out = $in_1 \cdot in_2$

$$\begin{split} \frac{\partial \mathcal{E}}{\partial \mathsf{in}_1} &= \frac{\partial \mathcal{E}}{\partial \mathsf{out}} \cdot \frac{\partial \mathsf{out}}{\partial \mathsf{in}_1} \\ &= \underbrace{\frac{\partial \mathcal{E}}{\partial \mathsf{out}}}_{\substack{\mathsf{output} \\ \mathsf{optdent} \\ \mathsf{gradient}}} \cdot \underbrace{\frac{\mathsf{in}_2}{\mathsf{local}}}_{\substack{\mathsf{local} \\ \mathsf{gradient}}} \end{split}$$

$$\begin{split} \frac{\partial \mathcal{E}}{\partial \mathsf{in}_2} &= \frac{\partial \mathcal{E}}{\partial \mathsf{out}} \cdot \frac{\partial \mathsf{out}}{\partial \mathsf{in}_2} \\ &= \frac{\partial \mathcal{E}}{\partial \mathsf{out}} \cdot \mathsf{in}_1 \end{split}$$

Summation

$$ullet$$
 out $=\sum_i {
m in}_i$

forward

backprop

$$\operatorname{in}_{i}$$
 Σ out

• sum (forward) ⇔ fanout (backprop)

$$\begin{split} \frac{\partial \mathcal{E}}{\partial \mathsf{in}_i} &= \frac{\partial \mathcal{E}}{\partial \mathsf{out}} \cdot \frac{\partial \mathsf{out}}{\partial \mathsf{in}_i} \\ &= \underbrace{\frac{\partial \mathcal{E}}{\partial \mathsf{out}}}_{\substack{\mathsf{output} \\ \mathsf{gradient}}} \cdot \underbrace{\frac{1}{\mathsf{local}}}_{\substack{\mathsf{gradient}}} \\ &= \frac{\partial \mathcal{E}}{\partial \mathsf{out}} \end{split}$$

Outline

Introduction

Multilayer Perceptrons

Representations
Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm
Backward Phase (Output Layer)
Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Neural networks: powerful model

- universal approximators
 - ► GMM: universal *density* estimator (given enough Gaussians)
 - ► ANN: universal _____ estimator (given enough neurons)

- types of decision regions that can be formed
 - ▶ more layers → more "intelligent"

source: Lippmann (1987)

Inspiration from visual cortex

- human brain: at least 5–10 layers for visual processing
 - hierarchical model needed for human-level intelligence

source: Thorpe & Larochelle

Theoretical justification of deep learning

- DL can represent certain functions (exponentially) more compactly
- example: Boolean functions
 - ▶ a sort of feed-forward network (hidden units are logic gates)
 - any Boolean function can be represented by a two-layer circuit with an exponential number of hidden units
 - ▶ the same function can be represented by a _____ number of hidden units if we can adapt the number of layers

Huston, we have a problem

- training becomes significantly harder with more layers
- ANN history in a nutshell
 - ▶ breakthrough #1: backpropagation
 - ▶ doomed again: e.g. vanishing gradients, overfitting, runtime
 - ▶ breakthrough #2: _____ pretraining + fine-tuning
- to understand more of the story
 - ▶ let's first study MLP and backpropagation
 - and then learn recent advances in deep architectures later

The vanishing gradient problem

- errors 'vanish' with backpropagation
 - true for not only feed-forward but also recurrent neural nets

comparison

- ▶ logistic: suffers from the vanishing gradient problem
- tanh: better than logistic but the problem exists
- rectifier (ReLU): gradients do not vanish

Outline

Introduction

Multilayer Perceptrons

Representations
Network Architectures

Training Multilayer Perceptrons

Back-Propagation Algorithm
Backward Phase (Output Layer)
Backward Phase (Hidden Layer)

Deep Learning: Motivation

Summary

Summary

- artificial neural network: universal approximator of functions
 - neuron model: synapse (weights), adder, activation functions
 - conventional: feed-forward multilayer perceptrons (w/ backprop)
 - ▶ recent: RBM, AE, CNN, RNN, GAN and many other variants
- hidden layers act as feature detectors
 - lacktriangleright # hidden layers $\uparrow \Longrightarrow$ intelligence \uparrow but training difficulty \uparrow
 - practical solutions exist for effective training of deep neural networks
- two types of signals for training feed-forward multilayer perceptrons
 - 1. function signals: forward propagation
 - 2. error signals: backward propagation