Probability theory II Facts

Taeyoung Chang

Textbook : Rick Durrett \ulcorner Probability : Theory and Examples \lrcorner 5th edition

Last Update : November 9, 2021

Contents

1	Conditional Expectation	2
2	Martingales	6

1 Conditional Expectation

- Projection Thm for Hilbert Space
 - If E is a Hilbert space and $M \subset E$ is closed and convex, then for any $y \in E$, \exists a unique $w \in M$ s.t. $||y w|| = d(y, M) := \inf\{||y v|| : v \in M\}$. Denote it as $w = proj_M y$ i.e. w is a projection of y onto M.
 - If E is a Hilbert space and $M \subset E$ is a closed vector subspace, then for any $y \in E$,
 - i. \exists a unique decomposition y = w + v with $w = proj_M y \in M$ and $v \in M^{\perp}$
 - ii. For $w \in M$, $w = proj_M y \Leftrightarrow \langle y w, z \rangle = 0 \quad \forall z \in M$
- * $\mathcal{L}^2 := \{ \text{ Random Variable } X : E(X^2) = \int X^2 dP < \infty \}$
- $\sqrt{\text{ If } X \in \mathcal{L}^2 \text{ then } E|X|} < \infty$ i.e. every element of \mathcal{L}^2 is integrable.
 - \bigstar Trick : $|X| \le X^2 + \frac{1}{4}$
- $\sqrt{\mathcal{L}^2}$ is a vector space
 - \bigstar Trick: inequality $(aX + bY)^2 \le 2(a^2X^2 + b^2Y^2)$
- \mathcal{L}^2 is a Hilbert space with inner product $\langle X, Y \rangle = E(XY)$
 - ★ Trick: Cauchy seq. having a subseq. converging to a point converges to the point.
- Lemma for proving \mathcal{L}^2 is a complete normed space.
 - If $\{X_n\} \subset_{seq} \mathcal{L}^2$ and $||X_n X_{n+1}|| \le 2^{-n} \quad \forall n \in \mathbb{N} \text{ then } \exists X \in \mathcal{L}^2 \text{ s.t. } X_n \to X \quad a.s. \text{ and } ||X_n X|| \to 0 \text{ i.e. } X_n \to X \text{ in } \mathcal{L}^2.$
 - \bigstar Lemma : If a random variable Z satisfies $Z \geq 0$ and $E(Z) < \infty$ then $Z < \infty$ a.s.
- * For $X \in \mathcal{L}^2$, $\mathcal{L}^2(X) := \{g(X) \mid g : \mathbb{R} \to \mathbb{R} \text{ is a Borel function, } E[(g(X))^2] < \infty\}$
- $\sqrt{\text{ For } X \in \mathcal{L}^2}$, $\mathcal{L}^2(X)$ is a vector subspace of \mathcal{L}^2 .
- For $X \in \mathcal{L}^2$, $\mathcal{L}^2(X)$ is a closed vector subspace of \mathcal{L}^2 so that $\mathcal{L}^2(X)$ is also a Hilbert space.
- * Geometric definition for conditional expectation
 - For $X, Y \in \mathcal{L}^2$, define $E[Y|X] = Proj_{\mathcal{L}^2(X)}Y$
 - $-E[Y|X] = g(X) \ a.s.$ for some Borel function g
 - $||Y E[Y|X]|| = \min_{h(X) \in \mathcal{L}^2(X)} ||Y h(X)||$ i.e. $E[(Y - E[Y|X])^2] \le E[(Y - h(X))^2] \quad \forall \ h(X) \in \mathcal{L}^2$
 - For $g(X) \in \mathcal{L}^2(X)$, $g(X) = E[Y|X] \Leftrightarrow \langle Y g(X), h(X) \rangle = 0 \quad \forall \ h(X) \in \mathcal{L}^2$ $\Leftrightarrow E[(Y - g(X))h(X)] = 0 \quad \forall \ h(X) \in \mathcal{L}^2$
- Elementary properties of conditional expectation from geometric definition
 - If $X, Y, Z \in \mathcal{L}^2$ then the followings are true.
 - i. $E[c|X] = c \ a.s. \quad \forall \ c \in \mathbb{R}$
 - ii. $E[\alpha Y + \beta Z | X] = \alpha E[Y | X] + \beta E[Z | X] \quad \forall \alpha, \beta \in \mathbb{R}$
 - iii. E[Y|X] = E[Y] if X and Y are independent.

- iv. E[g(X)Y|X] = g(X)E[Y|X] if g satisfies $g(X) \in \mathcal{L}^2(X)$ and $\sup_x |g(x)| < \infty$
- v. E[E[Y|X]] = E[Y]
- $\sqrt{\ }$ In fact, the additional assumption about boundedness of g in (iv) is not necessary. We will see later.
- Extending the definition from \mathcal{L}^2 to all integrable functions

$$E[\{Y - E[Y|X]\}I(X \in A)] = 0 \quad \forall A \in \mathcal{B}(\mathbb{R}) \quad \because I(X \in A) \in \mathcal{L}^{2}(X)$$

$$\int_{(X \in A)} Y \, dP = \int_{(X \in A)} E[Y|X] \, dP \quad \forall A \in \mathcal{B}(\mathbb{R})$$

$$\int_{B} Y \, dP = \int_{B} E[Y|X] \, dP \quad \forall B \in \sigma(X)$$

- $-E[Y|X] \in \sigma(X)$ and $\int_B Y \, dP = \int_B E[Y|X] \, dP \quad \forall \ B \in \sigma(X)$. Such r.v. is unique in the sense that if any r.v. Z satisfies $Z \in \sigma(X)$ and $\int_B Y \, dP = \int_B Z \, dP \quad \forall \ B \in \sigma(X)$ then $Z = E[Y|X] \ a.s.$ provided $E[Y] < \infty$
- From the theory on \mathcal{L}^2 space, we get geometric understanding about conditional expectation. But now, from the equation above, we can guess that definition for conditional expectation may be extended to all integrable random variables.
- Proof for the uniqueness mentioned above
 - $-(\Omega, \mathcal{F}, P)$: a prob. space. $Y \in \mathcal{F}$ and $E|Y| < \infty$. $\mathcal{G} \subset \mathcal{F}$ is a sub σ -field. If X is a random variable satisfying (a) $X \in \mathcal{G}$ (b) $\int_A Y dP = \int_A X dP \quad \forall A \in \mathcal{G}$ then
 - i. X is integrable
 - ii. Such X is unique in the sense that if there is another X' then X = X' a.s.
 - ★ Trick: For any r.v. Z, $(Z > 0) = \bigcup_{\varepsilon > 0} (Z \ge \varepsilon) = \bigcup_{n \in \mathbb{N}} (Z > \frac{1}{n})$
 - ★ Lemma : For any \mathcal{F} -measurable and integrable X and Y, if $\int_A X dP = \int_A Y dP \quad \forall A \in \mathcal{F}$ then X = Y a.s.
- Radon-Nikodym Thm
 - If μ, ν are σ -finite measures on (Ω, \mathcal{F}) and $\nu \ll \mu$ ($\mu(A) = 0 \Rightarrow \nu(A) = 0 \quad \forall A \in \mathcal{F}$) then \exists a \mathcal{F} -measurable nonnegative function g s.t. $\nu(A) = \int_A g \, d\mu \quad \forall A \in \mathcal{F}$. The function g is unique in the sense that if h is another such function then $g = h \ \mu a.e.$
- * Definition of conditional expectation
 - $-(\Omega, \mathcal{F}_0, P)$: a prob. space. $\mathcal{F} \subset \mathcal{F}_0$: a sub σ -field. X is a random variable s.t. $X \geq 0, X \in \mathcal{F}_0$ and $E|X| < \infty$. Then \exists a unique r.v. Y s.t. $Y \geq 0, Y \in \mathcal{F}$ and $\int_A X \, dP = \int_A Y \, dP \quad \forall A \in \mathcal{F}$. Such Y is unique in the sense that if another Y' exists then Y = Y' a.s.
 - $-Y = E[X|\mathcal{F}]$ is said to be conditional expectation of X given \mathcal{F}
 - ★ Applying Radon Nikodym thm to measures $P|_{\mathcal{F}}$ and Q on (Ω, \mathcal{F}) where Q is defined by $Q(A) = \int_A X dP \quad \forall A \in \mathcal{F}$. Note that $Q \ll P|_{\mathcal{F}}$ and Q is a finite measure.
 - We can extend the definition to general integrable r.v. X $Y = E[X|\mathcal{F}]$ is a unique random variable s.t. $Y \in \mathcal{F}$ and $\int_A X dP = \int_A Y dP \quad \forall A \in \mathcal{F}$. $E[X|\mathcal{F}]$ is also integrable and the uniqueness is in the sense of a.s. equivalence relation. $Y = E[X|\mathcal{F}]$ can be derived by $Y = Y_1 Y_2$ where $Y_1 = E[X^+|\mathcal{F}]$ and $Y_2 = E[X^-|\mathcal{F}]$

- * Conditional expectation given a random variable
 - -X: integrable r.v. For a random variable Y, define $E[X|Y] := E[X|\sigma(Y)]$
 - \sqrt{Y} need not be integrable.
 - $\sqrt{\text{Since } E[X|Y] \in \sigma(Y), E[X|Y] = g(Y) \text{ for some Borel function } g. \text{ This coincides with the definition of conditional expectation in } \mathcal{L}^2 \text{ space.}$
- * Conditional probability
 - For $A \in \mathcal{F}_0$ and a sub σ -field $\mathcal{F} \subset \mathcal{F}_0$, define $P(A|\mathcal{F}) := E[I_A|\mathcal{F}]$
 - For $A, B \in \mathcal{F}_0$, define $P(A|B) = P(A \cap B)/P(B)$
- Elementary properties of conditional expectation
 - $-(\Omega, \mathcal{F}_0, P)$: a prob. space. $\mathcal{F} \subset \mathcal{F}_0$: a sub σ -field. X, Y: integrable random variables
 - i. $E[c|\mathcal{F}] = c$
 - ii. $E[\psi(X)|X] = \psi(X)$ given $E[\psi(X)] < \infty$
 - iii. If \mathcal{F} is a trivial σ -field i.e. $\mathcal{F} = \{\Omega, \phi\}$ then $E[X|\mathcal{F}] = E[X]$
 - iv. $\Omega = \bigcup_{i=1}^{\infty} \Omega_i$ is a partition of Ω with $\Omega_i \in \mathcal{F}_0$ and $P(\Omega_i) > 0 \quad \forall i \in \mathbb{N}$ $\mathcal{F} = \sigma\{\Omega_1, \Omega_2, \dots\} = \{\bigcup_{j \in \kappa} \Omega_j : \kappa \subset \mathbb{N}\} \quad (\mathcal{F} \text{ is a } \sigma\text{-field}).$ Then we have

$$E[X|\mathcal{F}] = \sum_{i=1}^{\infty} a_i I_{\Omega_i} \quad with \quad a_i = \frac{E[XI_{\Omega_i}]}{P(\Omega_i)}$$

- $\sqrt{\text{For } A \in \mathcal{F}_0, \ P(A|\mathcal{F})} = P(A|\Omega_i)I_{\Omega_i}$
- ★ Lemma: If $Z \in \mathcal{F}$ for such \mathcal{F} , then we can write $Y = \sum_{i=1}^{\infty} c_i I_{\Omega_i}$ where $c_i \in \mathbb{R}$
- v. $E[aX + bY | \mathcal{F}] = aE[X | \mathcal{F}] + bE[Y | \mathcal{F}] \quad \forall a, b \in \mathbb{R}$
- vi. $X \ge 0 \Rightarrow E[X|\mathcal{F}] \ge 0$ a.s.
 - ★ Lemma: If Z > 0 on A with P(A) > 0 then $\int_A Z dP > 0$
- vii. $X \le Y \Rightarrow E[X|\mathcal{F}] \le E[Y|\mathcal{F}]$ a.s.
- viii. $\left| E[X|\mathcal{F}] \right| \le E[|X||\mathcal{F}]$
 - $\square |X| \le M \text{ for some } M > 0 \Rightarrow |E[X|\mathcal{F}]| \le M \text{ a.s.}$
- ix. $E[|X||\mathcal{F}] = 0 \Rightarrow X = 0$ a.s.
- $x. E[E[X|\mathcal{F}]] = E[X]$
- X,Y: integrable r.v's where $X \perp\!\!\!\perp Y$. $\psi: \mathbb{R}^2 \to \mathbb{R}$ Borel measurable s.t. $E|\psi(X,Y)| < \infty$ Define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = E[\psi(x,Y)] \quad \forall x \in \mathbb{R}$. Then $E[\psi(X,Y)|X] = g(X)$
 - $\sqrt{g(x)} = E[\psi(x,Y)] = \int \psi(x,Y) dP = \int_{\mathbb{R}} \psi(x,y) dP Y^{-1}(y) = \int_{\mathbb{R}} \psi_x(y) d\mu_Y(y) \quad \forall x \in \mathbb{R}$ By Fubini thm in real analysis course, it is shown that g is Borel measurable & integrable.
- Conditional expectation and convergence
 - $-(\Omega, \mathcal{F}_0, P)$: a probability space. $\mathcal{F} \subset \mathcal{F}_0$: a sub σ -field
 - i. (MCT) If $X_n \geq 0$ and $X_n \nearrow X$ a.s. with $E(X) < \infty$ then $E[X_n | \mathcal{F}] \nearrow E[X | \mathcal{F}]$ a.s.
 - \square If $Y_n \searrow Y$ a.s. with $E|Y_1|$, $E|Y| < \infty$ then $E[Y_n|\mathcal{F}] \searrow E[Y|\mathcal{F}]$ a.s.
 - ii. (DCT) If $|X_n| \leq Y$, $E(Y) < \infty$ and $X_n \to X$ a.s. then $E[X_n|\mathcal{F}] \to E[X|\mathcal{F}]$ a.s.

- iii. (Fatou's lemma) If $X_n \geq 0$ and $X_n \to X$ a.s. with $E(X_n) < \infty$, $E(X) < \infty$ then $E[X|\mathcal{F}] \leq \liminf E[X_n|\mathcal{F}]$
- iv. (Continuity from below) $\{B_n\} \subset_{seq} \mathcal{F}_0$ s.t. $B_n \subset B_{n+1} \quad \forall n \in \mathbb{N}. \quad B := \bigcup_n B_n$ Then $P(B_n|\mathcal{F}) \nearrow P(B|\mathcal{F})$
- v. (Countable additivity) If $\{C_n\} \subset_{seq} \mathcal{F}_0$ is mutually disjoint then $P(\bigcup_n C_n | \mathcal{F}) = \sum_n P(C_n | \mathcal{F})$
- Essential inequalities
 - i. (Markov) $P(|X| \ge c |\mathcal{F}|) \le \frac{1}{c} E[|X||\mathcal{F}] \quad \forall c > 0$
 - ii. (Jensen) If $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(E[X|\mathcal{F}]) \leq E[\phi(X)|\mathcal{F}]$ a.s.
 - ★ Trick: For each $x \in \mathbb{R}$ and convex function $\phi : \mathbb{R} \to \mathbb{R}$, we have $\phi(x) = \sup\{ax + b : (a, b) \in S\}$ where $S = \{(a, b) \in \mathbb{R}^2 : ax + b \le \phi(x) \ \forall \ x \in \mathbb{R}\}$
 - iii. (Cauchy-Schwarz) For $X, Y \in \mathcal{L}^2$, we have $E^2[XY|\mathcal{F}] \leq E[X^2|\mathcal{F}]E[Y^2|\mathcal{F}]$ a.s.
- Smoothing property of conditional expectation
 - i. If $X \in \mathcal{F}$, $E|Y| < \infty$, and $E|XY| < \infty$ then $E[XY|\mathcal{F}] = XE[Y|\mathcal{F}]$ a.s. $\sqrt{E|X|} < \infty$ assumption is not required.
 - \square If $X \in \mathcal{F}$ and $E[X] < \infty$ then $E[X|\mathcal{F}] = X$ a.s.
 - ii. If $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_0$ are sub σ -fields and $E|X| < \infty$ then
 - (a) $E[E(X|\mathcal{F}_1)|\mathcal{F}_2] = E[X|\mathcal{F}_1]$
 - (b) $E[E(X|\mathcal{F}_2)|\mathcal{F}_1] = E[X|\mathcal{F}_1]$
 - ★ Lemma : If $\mathcal{F}_1 \subset \mathcal{F}_2$ then $Y \in \mathcal{F}_1 \Rightarrow Y \in \mathcal{F}_2$
 - $\sqrt{}$ In short, "the smaller wins". In view of information, it is similar to projection onto vector subspaces $S_1 \subset S_2 \subset S$ where $Proj_{S_1}Proj_{S_2} = Proj_{S_2}Proj_{S_1} = Proj_{S_1}$
- Def. of conditional expectation by Radon-Nikodym derivative agrees with def. in \mathcal{L}^2 space.
 - If $E(X^2) < \infty$ then for $\mathcal{C} = \{Y : Y \in \mathcal{F}, E(Y^2) < \infty\},$ $E[\{X - E[X|\mathcal{F}]\}^2] = \inf_{Y \in \mathcal{C}} E[\{X - Y\}^2] \text{ and } E[X|\mathcal{F}] = \arg\min_{Y \in \mathcal{C}} E[\{X - Y\}^2]$
 - \bigstar Lemma : If $X \in \mathcal{L}^2$ then $E[X|\mathcal{F}] \in \mathcal{L}^2$
- * Independence of a random variable and a σ -field
 - A random variable X and a σ -field \mathcal{F} are said to be independent if $\sigma(X)$ and \mathcal{F} are independent
- If an integrable random variable X and a σ -field \mathcal{F} are independent then $E[X|\mathcal{F}] = E[X]$
- \square Two extreme cases of conditional expectations w.r.t information
 - Perfect information : If $X \in \mathcal{F}$ then $E[X|\mathcal{F}] = X$
 - No information : If $X \perp \!\!\!\perp \mathcal{F}$ then $E[X|\mathcal{F}] = E[X]$
- * Conditional variance

$$Var(X|\mathcal{F}) := E[\{X - E[X|\mathcal{F}]\}^2|\mathcal{F}] = E[X^2|\mathcal{F}] - E^2[X|\mathcal{F}]$$

Conditional variance is defined for $X \in \mathcal{L}^2$

2 Martingales

- * Definition needed for martingales
 - Given a probability space (Ω, \mathcal{F}, P) , increasing sequence of sub σ -fields $\{\mathcal{F}_n\}_{n=0}^{\infty}$ is called a filtration.
 - A random sequence $\{X_n\}_{n=0}^{\infty}$ is said to be adapted to $\{\mathcal{F}_n\}$ if $X_n \in \mathcal{F}_n \quad \forall n \in \mathbb{N} \cup \{0\}$
- * Definition of martingale and their cousins
 - $-\{X_n\}_{n=0}^{\infty}$: a random sequence. $\{\mathcal{F}_n\}_{n=0}^{\infty}$: a filtration. Assume $E|X_n| < \infty \quad \forall n \in \mathbb{N} \cup \{0\}$ and $\{X_n\}$ is adapted to $\{\mathcal{F}_n\}$. Then $\{X_n\}$ is said to be a martingale (w.r.t $\{\mathcal{F}_n\}$) if $E[X_{n+1}|\mathcal{F}_n] = X_n \quad \forall n \in \mathbb{N} \cup \{0\}$
 - $\{X_n\}$ is said to be a submartingale (w.r.t $\{\mathcal{F}_n\}$) if $E[X_{n+1}|\mathcal{F}_n] \geq X_n \quad \forall n \in \mathbb{N} \cup \{0\}$
 - $\{X_n\}$ is said to be a supermartingale (w.r.t $\{\mathcal{F}_n\}$) if $E[X_{n+1}|\mathcal{F}_n] \leq X_n \quad \forall n \in \mathbb{N} \cup \{0\}$
 - √ These are abbreviated to 'mtg', 'submtg', 'supermtg' respectively.
- Examples of martingales
 - i. $\{\xi_n\}_n$ i.i.d with $E(\xi_1) = 0$. $X_0 = 0$. $X_n = \xi_1 + \cdots + \xi_n$ and $\mathcal{F}_0 = \{\phi, \Omega\}$. $\mathcal{F}_n = \sigma(\xi_1, \cdots, \xi_n)$. Then $\{X_n\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$
 - \bigstar Trick : E[Z] is finite $\Leftrightarrow Z$ is integrable. (: the definition of expectation)
 - ii. Adding assumption $Var(\xi_1) = \sigma^2 < \infty$ to i. above. Then $\{X_n - n\sigma^2\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$
 - iii. $\{\varepsilon_n\}_n$ i.i.d $\sim (0,1)$. $X_0 = 0$. $X_{n+1} = X_n + h(X_n)\varepsilon_{n+1}$ with $h: \mathbb{R} \to \mathbb{R}$ Borel function s.t. $E|h(X_n)| < \infty \quad \forall n \in \mathbb{N} \cup \{0\} \text{ and } \mathcal{F}_0 = \{\phi, \Omega\} \text{ . } \mathcal{F}_n = \sigma(\varepsilon_1, \cdots, \varepsilon_n)$ Then $\{X_n\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$
 - iv. $\{\varepsilon_n\}_n$ i.i.d $\sim (0,1)$. $Y_0 = 0$. $Y_{n+1} = \phi(Y_n)\varepsilon_{n+1}$ with $\phi(y) = w + \alpha y^2$ (w > 0, $0 \le \alpha < 1$) and $E[\phi(Y_n)] < \infty \quad \forall n \in \mathbb{N}$. and $\mathcal{F}_0 = \{\phi, \Omega\}$. $\mathcal{F}_n = \sigma(\varepsilon_1, \dots, \varepsilon_n)$. Let $X_0 = 0$. $X_n = Y_1 + \dots + Y_n$. Then $\{X_n\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$
 - $\sqrt{\text{Such }\{Y_n\}}$ is called as ARCH (autoregressive conditional heteroskedasticity) process
- Elementary facts about Martingales
 - Every martingale is a submartingale and a supermartingale
 - If $\{X_n\}$ is a submartingale then $\{-X_n\}$ is a supermartingale
 - $\sqrt{}$ We develop theory about martingales often assuming submartingale since every martingale is submartingale and every supermartingale is negative version of submartingale
 - If $\{X_n\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$ then $E[X_n|\mathcal{F}_m]=X_m$ whenever $n\geq m$
 - If $\{X_n\}$ is a submartingale w.r.t $\{\mathcal{F}_n\}$ then $E[X_n|\mathcal{F}_m] \geq X_m$ whenever $n \geq m$
 - If $\{X_n\}$ is a supermartingale w.r.t $\{\mathcal{F}_n\}$ then $E[X_n|\mathcal{F}_m] \leq X_m$ whenever $n \geq m$
 - If $\{X_n\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$ then $\{E[X_n]\}$ is constant.
 - If $\{X_n\}$ is a submartingale w.r.t $\{\mathcal{F}_n\}$ then $\{E[X_n]\}$ is increasing.
 - If $\{X_n\}$ is a supermartingale w.r.t $\{\mathcal{F}_n\}$ then $\{E[X_n]\}$ is decreasing.

- Convex transformation of martingale
 - If $\{X_n\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$ and $\phi: \mathbb{R} \to \mathbb{R}$ is a convex function s.t. $E|\phi(X_n)| < \infty \quad \forall n \in \mathbb{N} \text{ then } \{\phi(X_n)\} \text{ is a submartingale w.r.t } \{\mathcal{F}_n\}$
 - If $\{X_n\}$ is a submartingale w.r.t $\{\mathcal{F}_n\}$ and $\phi: \mathbb{R} \to \mathbb{R}$ is a convex and increasing function s.t. $E[\phi(X_n)] < \infty \quad \forall n \in \mathbb{N} \text{ then } \{\phi(X_n)\} \text{ is a submartingale w.r.t } \{\mathcal{F}_n\}$
 - If $\{X_n\}$ is a supermartingale w.r.t $\{\mathcal{F}_n\}$ and $\phi: \mathbb{R} \to \mathbb{R}$ is a concave and increasing function s.t. $E[\phi(X_n)] < \infty \quad \forall n \in \mathbb{N} \text{ then } \{\phi(X_n)\} \text{ is a supermartingale w.r.t } \{\mathcal{F}_n\}$
 - (Ex) If $\{X_n\}$ is a martingale and $E[|X_n|^p] < \infty$ for some $p \ge 1$, then $\{|X_n|^p\}$ is a submartingale
 - (Ex) If $\{X_n\}$ is a submartingale then for any $a \in \mathbb{R}$, $\{(X_n a)^+\}$ is a submartingale
 - (Ex) If $\{X_n\}$ is a supermartingale then for any $a \in \mathbb{R}$, $\{X_n \wedge a\}$ is a supermartingale
 - (Ex) If $\{X_n\}$ is a submartingale then $\{X_n^+\}$ is a submartingale and $\{X_n^-\}$ is a supermartingale
- * Predicatable sequence and a process using it
 - For a filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$, a random sequence $\{H_n\}_{n=1}^{\infty}$ is said to be a predicatable sequence (w.r.t $\{\mathcal{F}_n\}$) if $H_n \in \mathcal{F}_{n-1} \quad \forall n \in \mathbb{N}$
 - \sqrt{A} letter H stands for a 'height'
 - Suppose $\{X_n\}$ is adapted to $\{\mathcal{F}_n\}$. For a predicatable sequence $\{H_n\}$ (w.r.t $\{\mathcal{F}_n\}$), we define a process $\{(H \cdot X)_n\}$ by

$$(H \cdot X)_n = \sum_{m=1}^n H_m(X_m - X_{m-1})$$

- $\sqrt{\text{ Note that }\{(H\cdot X)_n\}}$ is adapted to $\{\mathcal{F}_n\}$
- $\sqrt{}$ The definition above can be extended from $\{(H\cdot X)_n\}_{n\in\mathbb{N}}$ to $\{(H\cdot X)_n\}_{n\in\mathbb{N}\cup\{0\}}$ with additionally defining $(H \cdot X)_0 = 0$. Obviously $(H \cdot X)_0 \in \mathcal{F}_0$. For the following theorems using this process, we can regard it as $\{(H \cdot X)_n\}_{n \in \mathbb{N} \cup \{0\}}$
- Elementary facts about martingale transform with predicatable sequence
 - Let $\{X_n\}_{n=0}^{\infty}$ and $\{H_n\}_{n=1}^{\infty}$ be a random sequence and $\{H_n\}$ is a predicatable sequence w.r.t. a filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$. Assume $E|X_nH_n|<\infty$, $E|X_{n-1}H_n|<\infty$ $\forall\,n\in\mathbb{N}$
 - i. If $\{X_n\}$ is a martingale (w.r.t $\{\mathcal{F}_n\}$) then $\{(H \cdot X)_n\}$ is also a martingale
 - ii. If $\{X_n\}$ is a submartingale (w.r.t $\{\mathcal{F}_n\}$) and $H_n \geq 0$ then $\{(H \cdot X)_n\}$ is also a submartingale
 - iii. If $\{X_n\}$ is a supermartingale (w.r.t $\{\mathcal{F}_n\}$) and $H_n \geq 0$ then $\{(H \cdot X)_n\}$ is also a supermartingale
 - $\sqrt{\text{The condition "}E|X_nH_n|}<\infty$, $E|X_{n-1}H_n|<\infty$ $\forall n\in\mathbb{N}$ " can be replaced with "For each $n \in \mathbb{N}$, H_n is bounded".
- * Stopping time
 - A (extended) random variable N taking values of $\mathbb{N} \cup \{0, \infty\}$ is said to be a stopping time (w.r.t a filtration $\{\mathcal{F}_n\}$) if an event $(N=n) \in \mathcal{F}_n \quad \forall n \in \mathbb{N}$

$$(N \le n) = \bigcup_{j=0}^{n} (N = j) \in \mathcal{F}_n \qquad (N > n) = (N \le n)^C \in \mathcal{F}_n$$
$$(N < n) = \bigcup_{j=0}^{n-1} (N = j) \in \mathcal{F}_{n-1} \qquad (N \ge n) = (N < n)^C \in \mathcal{F}_{n-1}$$

$$(N < n) = \bigcup_{j=0}^{n-1} (N = j) \in \mathcal{F}_{n-1}$$
 $(N \ge n) = (N < n)^C \in \mathcal{F}_{n-1}$

- $-(N \ge n)$ is a \mathcal{F}_{n-1} -measurable event. $I(N \ge n)$ is \mathcal{F}_{n-1} -measurable random variable. Hence, $\{I(N \ge n)\}_n$ is a predictable sequence given N is a stopping time.
- Martingale stopped by stopping time
 - Let $\{X_n\}$ be a random sequence adapted to $\{\mathcal{F}_n\}$. Let N be a stopping time w.r.t $\{\mathcal{F}_n\}$ and put $H_n = I(N \ge n) \quad \forall n \in \mathbb{N}$. Then $(H \cdot X)_n = X_{N \wedge n} X_0$.
 - The process $\{X_{N\wedge n}\}_n$ is said to be a martingale stopped by stopping time N, provided $\{X_n\}$ is a martingale.
 - ★ If $\{X_n\}$ and $\{Y_n\}$ are martingales (w.r.t. $\{\mathcal{F}_n\}$) then $\{X_n + Y_n\}$ is also a martingale. The same holds for submartingales and supermartingales too.
 - If $\{X_n\}$ is a martingale and N is a stopping time then $\{X_{N \wedge n}\}$ is martingale.
 - If $\{X_n\}$ is a submartingale and N is a stopping time then $\{X_{N\wedge n}\}$ is submartingale.
 - If $\{X_n\}$ is a supermartingale and N is a stopping time then $\{X_{N \wedge n}\}$ is supermartingale.
- Stopping time and Upcrossing
 - Suppose $\{X_n\}_{n=0}^{\infty}$ is a submartingale w.r.t $\{\mathcal{F}_n\}$. Let a < b. Define N_j 's as below:

$$N_{1} = \inf\{m \geq 0 : X_{m} \leq a\}$$

$$N_{2} = \inf\{m > N_{1} : X_{m} \geq b\}$$

$$N_{3} = \inf\{m > N_{2} : X_{m} \leq a\}$$

$$\vdots$$

$$N_{4} = \inf\{m > N_{3} : X_{m} \geq b\}$$

$$\vdots$$

$$\vdots$$

$$N_{2k-1} = \inf\{m > N_{2k-2} : X_{m} \leq a\}$$

$$\vdots$$

$$N_{2k} = \inf\{m > N_{2k-1} : X_{m} \geq b\}$$

$$\vdots$$

- Every N_j for $j \in \mathbb{N}$ is stopping time w.r.t $\{\mathcal{F}_n\}$. $N_1 < N_2 < N_3 \cdots$ provided all N_j 's are finite. (It is possible that $N_j = \infty$ provided it has a form of $\inf(\phi)$)
- 'Upcrossing' is a case where the submartingale $\{X_n\}$ crosses from below a to above b.
- $-\mathcal{U}_n := \sup\{k : N_{2k} \leq n\}$ is the number of upcommings completed by time n
- Upcrossing inequality
 - Suppose $\{X_n\}$ is a submartingale w.r.t $\{\mathcal{F}_n\}$. If stopping time N_j and the number of upcrossings \mathcal{U}_n are defined as above then

$$(b-a)E[\mathcal{U}_n] \le E[(X_n-a)^+] - E[(X_0-a)^+]$$

- Submartingale convergence theorem
 - If $\{X_n\}$ is a submartingale w.r.t $\{\mathcal{F}_n\}$ with $\sup_n E(X_n^+) < \infty$ then $X_n \to X$ a.s. for some integrable random variable X
 - \bigstar Trick: If $X_n \to X$ a.s. then $X_n^+ \to X^+$ a.s. and $X_n^- \to X^-$ a.s.
 - \bigstar Lemma: If the number of upcrossings of [a,b] by submartingale $\{X_n\}$ is finite for any $a,b\in\mathbb{Q}$, then $\lim_n X_n$ exists. i.e. X_n converges to some r.v. almost surely.
 - \square If $\{X_n\}$ is a nonnegative supermartingale w.r.t $\{\mathcal{F}_n\}$ then $X_n \to X$ a.s. for some integrable random variable X s.t. $E(X) \leq E(X_0)$
- Example of martingale which converges almost surely but not in L^1
 - $\{\xi_n\}_n$ i.i.d with $P(\xi_1 = 1) = P(\xi_1 = -1) = 1/2$. Let $S_0 = 1$, $S_n = S_{n-1} + \xi_n$ and $\mathcal{F}_0 = \{\phi, \Omega\}$, $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$. Then $\{S_n\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$ Let $N = \inf\{n \in \mathbb{N} : S_n = 0\}$. Then N is a stopping time.

 $X_n := S_{N \wedge n}$ so that $X_n = S_n$ if n < N and $X_n = 0$ if $n \ge N$. $\{X_n\}$ is a nonnegative integer valued martingale w.r.t $\{\mathcal{F}_n\}$. $X_n \to 0$ a.s. but $X_n \to 0$ in \mathcal{L}^1 .

- If $\{X_n\}_{n\in\mathbb{N}\cup\{0\}}$ is a negative submartingale w.r.t $\{\mathcal{F}_n\}_{n\in\mathbb{N}\cup\{0\}}$ then so is $\{X_n\}_{n\in\mathbb{N}\cup\{0,\infty\}}$ w.r.t $\{\mathcal{F}_n\}_{n\in\mathbb{N}\cup\{0,\infty\}}$ where $X_\infty=\lim_n X_n$ and $\mathcal{F}_\infty=\sigma\left(\bigcup_{n=0}^\infty \mathcal{F}_n\right)$
 - If $\{X_n\}_{n\in\mathbb{N}}$ is a martingale w.r.t $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ and $X_n\to X_\infty$ a.s. then $X_\infty\in\mathcal{F}_\infty=\sigma(\bigcup_n\mathcal{F}_n)$
- Doob's decomposition
 - Any submartingale $\{X_n\}$ can be written as $X_n = M_n + A_n$ where $\{M_n\}$ is a martingale and $\{A_n\}$ is a predictable increasing sequence with $A_0 = 0$. Also, this expression is unique in the sense that if $X_n = M'_n + A'_n$ is another expression then $M_n = M'_n$ and $A_n = A'_n$ a.s.
 - $\sqrt{\text{The exact form of } M_n, A_n \text{ for given } X_n \text{ is } A_n = A_{n-1} + E[X_n | \mathcal{F}_{n-1}] X_{n-1} \quad \forall n \in \mathbb{N}}$ and $M_n = X_n - A_n \quad \forall n \in \mathbb{N} \cup \{0\} \text{ (Since } A_0 = 0, A_n = \sum_{k=1}^n (E[X_k | \mathcal{F}_{k-1}] - X_{k-1}) \text{)}}$
- Martingales with bounded increments either converge or oscillate between ∞ and $-\infty$
 - Let $\{X_n\}$ be a martingale with $|X_n X_{n-1}| \le M < \infty$ $\forall n \in \mathbb{N}$ for some M > 0. Define disjoint subsets $C, D \subset \Omega$ by

$$C = (\lim_{n} X_n \text{ exists and } -\infty < \lim_{n} X_n < \infty)$$

 $D = (\lim \sup_{n} X_n = \infty \text{ and } \lim \inf_{n} X_n = -\infty)$

Then $P(C \cup D) = 1$

- \bigstar Define " $X_n \to X$ a.s. on B" for measurable set B as $P((X_n \to X) \cap B) = P(B)$
- \bigstar Trick: $X_n \to X$ a.s. on $B \Rightarrow X_n \to X$ a.s. on A whenever $A \subset B$
- Conditional Borel-Cantelli second lemma
 - Let $\{\mathcal{F}_n\}_{n\in\mathbb{N}\cup\{0\}}$ be a filtration with $\mathcal{F}_0=\{\phi,\Omega\}$. If $A_n\in\mathcal{F}_n\quad\forall\,n\in\mathbb{N}$ then

$$(A_n \ i.o.) = \left(\sum_{n=1}^{\infty} P(A_n | \mathcal{F}_{n-1}) = \infty\right) \ a.s.$$

★ Define "A = B a.s." for measurable sets A and B by $P(A\Delta B) = 0$ where $A\Delta B$ denotes the symmetric difference of two sets.

 $\star \sum_{k=1}^{n} I_{A_k}$ is a submartingale whose martingale component of Doob's decomposition

$$\sum_{k=1}^{n} I_{A_k} - \sum_{k=1}^{n} \left(E \left[\sum_{j=1}^{k} I_{A_j} | \mathcal{F}_{k-1} \right] - \sum_{j=1}^{k-1} I_{A_j} \right) = \sum_{k=1}^{n} I_{A_k} - \sum_{k=1}^{n} P(A_k | \mathcal{F}_{k-1})$$

and this is the martingale we exploit in the proof of conditional B-C 2nd lemma

- \bigstar Trick: $(A_n i.o.) = (\sum_{n=1}^{\infty} I_{A_n} = \infty)$
- $\sqrt{\text{Given }\{A_n\}}$ is independent, by setting $\mathcal{F}_n = \sigma(A_1, \dots, A_n)$, conditional Borel-Cantelli second lemma implies original Borel-Cantelli second lemma which is given by

$$\sum_{n} P(A_n) = \infty \implies P(A_n \ i.o.) = 1$$

- * Branching process (Galton-Watson process)
 - Let $\{\xi_i^n\}_{i\in\mathbb{N}, n\in\mathbb{N}}$ be i.i.d nonnegative integer-valued random variables. Define a Galton-Watson process $\{Z_n\}_{n\in\mathbb{N}\cup\{0\}}$ as below:

$$Z_0 = 1$$

$$Z_{n+1} = \begin{cases} \xi_1^{n+1} + \dots + \xi_{Z_n}^{n+1} = \sum_{j=1}^{Z_n} \xi_j^{n+1} & \text{if } Z_n > 0\\ 0 & \text{if } Z_n = 0 \end{cases}$$

- $\sqrt{}$ The idea behind the definitions is that Z_n is the population in the *n*-th generation and each member of the *n*-th generation gives birth independently to an identically distributed number of offspring.
- $-P(\xi_1^1=k) \quad \forall \ k \in \mathbb{N} \cup \{0\}$ is called the offspring distribution. $\mu = E(\xi_1^1)$ is the expected number of offspring per individual.
- Properties of the branching process
 - Let $\mathcal{F}_n = \sigma(\{\xi_i^m : i \in \mathbb{N}, 1 \le m \le n\}) \quad \forall n \in \mathbb{N} , \ \mathcal{F}_0 = \{\phi, \Omega\} \ .$ If $\mu = E(\xi_1^1) \in (0, \infty)$ then $\{Z_n/\mu^n\}$ is a martingale w.r.t $\{\mathcal{F}_n\}$ and $E(Z_n) = \mu^n \quad \forall n \in \mathbb{N}$
 - If $\mu = E(\xi_1^1) \in (0,1)$ then $Z_n = 0$ for large enough n's a.s. i.e. the species goes extinct.
- Inequality for bounded stopping time
 - If $\{X_n\}$ is a submartingale and N is a stopping time with $P(N \leq K) = 1$ for some $K \in \mathbb{N}$ then

$$E(X_0) \le E(X_N) \le E(X_K)$$

- $\sqrt{\text{Since }\{X_n\}}$ is a submartingale, $E(X_0) \leq E(X_j) \leq E(X_K)$ whenever $0 \leq j \leq K$. This thm tells us that similar inequality still holds true when the index is random.
- Doob's inequality
 - Let $\{X_n\}_{n\in\mathbb{N}\cup\{0\}}$ be a submartingale. Take $n\in\mathbb{N}$ and define $\overline{X}_n=\max_{0\leq m\leq n}X_m$. Let $\lambda>0$ and define an event $A=(\overline{X}_n\geq\lambda)$. Then the inequality below holds true.

$$\lambda P(A) \le E[X_n I_A] \le E[X_n^+ I_A] \le E[X_n^+]$$

 \square Let $\{X_n\}_{n\in\mathbb{N}\cup\{0\}}$ be a supermartingale. Take $n\in\mathbb{N}$ and define $\overline{X}_n=\max_{0\leq m\leq n}X_m$. Let $\lambda>0$ and define an event $A=(\overline{X}_n\geq\lambda)$. Then the inequality below holds true.

$$\lambda P(A) \le E[X_0] - E[X_n I_{A^C}] \le E[X_0] + E[X_n^-]$$

- $\sqrt{\text{ Note that } P(A) \text{ involves } \max_{0 \leq m \leq n} \text{ term while } E[X_n^+] \text{ or } E[X_n^-] \text{ only depends on } n}$
- Doob's L^p maximal inequality
 - If $\{X_n\}_{n \in \mathbb{N} \cup \{0\}}$ is a nonnegative submartingale, then for $1 and <math>\overline{X}_n = \max_{0 \le m \le n} X_m$, the inequality belows holds true.

$$E(\overline{X}_n^p) \le \left(\frac{p}{p-1}\right)^p E[X_n^p]$$

- \bigstar Lemma: If $X \geq 0$ then $E(X) = \int_0^\infty P(X > t) dt$
- L^p convergence thm
 - If $\{X_n\}$ is a martingale with $\sup_n E|X_n|^p < \infty$ for some p > 1 then $X_n \to X$ a.s. and $X_n \to X$ in L^p for some integrable r.v. X
 - $\sqrt{ }$ For a martingale convergence thm, the condition was $\sup_n E(X_n^+) < \infty$
 - \bigstar Trick: $a, b \in \mathbb{R}$ and $p \ge 1 \Rightarrow |a+b|^p \le 2^p(|a|^p + |b|^p)$
- * σ -field generated by a stopping time
 - Let τ be a stopping time w.r.t. a filtration $\{\mathcal{F}_n\}$. Then we define \mathcal{F}_{τ} as the following:

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap (\tau = n) \in \mathcal{F}_n \quad \forall n \in \mathbb{N} \}$$

- $\sqrt{\text{ Note that } \mathcal{F}_{\tau} \text{ is indeed a } \sigma\text{-field.}}$
- $\sqrt{\tau}$ is \mathcal{F}_{τ} -measurable
- $\sqrt{\text{ If } \{X_n\}}$ is adapted to $\{\mathcal{F}_n\}$ then X_{τ} is \mathcal{F}_{τ} -measurable
- Bounded optional stopping thm
 - Let $\{X_n\}$ be a submartingale. Let σ and τ be two bounded stopping times s.t. $\sigma \leq \tau \leq B$ a.s. for some $B \in \mathbb{N}$. Then $E[X_\tau | \mathcal{F}_\sigma] \geq X_\sigma$ a.s.
 - $\sqrt{X_{\tau}} = \sum_{n=0}^{B} X_n I(\tau = n)$ is well-defined and integrable.
 - $\sqrt{}$ By defining property of submartingale, $E[X_m|\mathcal{F}_n] \geq X_n \quad \forall \ m \geq n$. The thm tells us that this property is preserved even when indices are stopping times if they are bounded.
 - \star Trick: For a random variable X and a σ -field \mathcal{F} ,
 - i. $(X \le a) \in \mathcal{F} \quad \forall \ a \in \mathbb{R} \Rightarrow (X \in A) \in \mathcal{F} \quad \forall \ A \in \mathcal{B}(\mathbb{R})$
 - ii. For $S \in \mathcal{F}$, $(X \leq a) \cap S \in \mathcal{F} \quad \forall \ a \in \mathbb{R} \Rightarrow (X \in A) \cap S \in \mathcal{F} \quad \forall \ A \in \mathcal{B}(\mathbb{R})$
 - \bigstar Lemma: For any \mathcal{F} -measurable and integrable X and Y,
 - i. If $\int_A X dP = \int_A Y dP \quad \forall A \in \mathcal{F} \text{ then } X = Y \text{ a.s.}$
 - ii. If $\int_A X dP \le \int_A Y dP \quad \forall A \in \mathcal{F}$ then $X \le Y$ a.s.
 - ★ Lemma : $\{X_n\}$ is a submartingale w.r.t $\{\mathcal{F}_n\} \Rightarrow \int_A X_n \, dP \leq \int_A X_{n+1} \, dP \quad \forall A \in \mathcal{F}_n$
- * Uniform integrability
 - A collection of r.v.'s $\{X_t : t \in T\}$ is said to be uniformly integrable if

$$\lim_{a \to \infty} \sup_{t \in T} \int_{|X_t| > a} |X_t| dP = \lim_{a \to \infty} \sup_{t \in T} E|X_t|I(|X_t| \ge a) = 0$$

- $\sqrt{\text{ Denote it as } \{X_t\}_{t\in T} \ u.i.}$
- \sqrt{A} uniformly integrable family is well-controlled in the sense that if $\{X_t\}_{t\in T}$ u.i. then $\exists M>0$ s.t. $\sup_{t\in T} E|X_t|\leq M+1<\infty$
- $\sqrt{||f||}\{X_t\}_{t\in T}$ is uniformly integrable then each X_t is integrable .
- If $\{X_t\}_{t\in T}$ is dominated by a nonnegative integrable r.v. X i.e. $|X_t| \leq X$ a.s. $\forall t \in T$ then $\{X_t\}_{t\in T}$ is uniformly integrable.
 - \bigstar Lemma: If X is integrable then $\int_{|X|\geq a} |X|\,dP = E|X|I(|X|\geq a) \to 0$ as $a\to\infty$
- Equivalent condition for uniform integrability
 - $-\{X_t\}_{t\in T}$ is uniformly integrable iff both of two conditions below are satisfied.
 - i. $\sup_{t} E|X_{t}| < \infty$
 - ii. $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \sup_t \int_A |X_t| dP < \varepsilon \text{ whenever } A \in \mathcal{F} \text{ and } P(A) < \delta$
- Elementary properties of uniform integrable family
 - If $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ are both uniformly integrable then $\{X_n+Y_n\}_{n\in\mathbb{N}}$ u.i.
 - If $|X_n| \leq |Y_n| \quad \forall n \in \mathbb{N}$ and $\{Y_n\}_{n \in \mathbb{N}}$ is uniformly integrable then $\{X_n\}_{n \in \mathbb{N}}$ u.i.
- Vitali's lemma
 - For $p \geq 1$, if $\{X_n\} \subset L^p$ and $X_n \stackrel{P}{\to} X$ then the followings are equivalent.
 - i. $\{X_n^p\}_{n\in\mathbb{N}}$ is uniformly integrable.
 - ii. $X \in L^p$ and $X_n \to X$ in L^p
 - iii. $E|X_n|^p \to E|X|^p < \infty$
 - \bigstar Lemma: For a r.v. Z, continuity set $\{z \in \mathbb{R} : P(Z=z)=0\}$ is dense in \mathbb{R}
- If $\{X_n\}_{n\in\mathbb{N}}$ is uniformly integrable and $X_n \stackrel{D}{\to} X$ then $E|X_n| \to E|X|$ and $E(X_n) \to E(X)$
 - \bigstar Lemma : If $Y_n \to Y$ in L^1 then $E|Y_n| \to E|Y|$ and $E(Y_n) \to E(Y)$
- * Regular martingale and closable martingale
 - Let $\{X_n\}_{n\in\mathbb{N}\cup\{0\}}$ be a martingale.
 - i. $\{X_n\}$ is said to be regular if $\exists X \in L^1$ s.t. $X_n = E[X|\mathcal{F}_n]$ a.s. $\forall n \in \mathbb{N}$
 - ii. $\{X_n\}$ is said to be closable if $\exists X_\infty \in L^1$ s.t. $X_n \to X_\infty$ a.s., $X_\infty \in \mathcal{F}_\infty$ where $\mathcal{F}_\infty = \sigma(\bigcup_n \mathcal{F}_n)$ and $E[X_\infty | \mathcal{F}_n] = X_n \quad \forall n \in \mathbb{N}$ so that $\{X_n\}_{n \in \mathbb{N} \cup \{0,\infty\}}$ is a martingale w.r.t $\{\mathcal{F}_n\}_{n \in \mathbb{N} \cup \{0,\infty\}}$
 - $\sqrt{\text{Every closable martingale is regular.}}$
- For a martingale $\{X_n\}_{n\in\mathbb{N}}$, the followings are equivalent.
 - i. $\{X_n\}$ is regular.
 - ii. $\{X_n\}$ is uniformly integrable and converges a.s.
 - iii. $\{X_n\}$ converges in L^1
 - iv. $\{X_n\}$ is closable.
- \square For a martingale $\{X_n\}_{n\in\mathbb{N}}$ w.r.t $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$

- If $X_n \to X$ in L^1 then $X_n \to X$ a.s. and $X_n = E[X|\mathcal{F}_n] \quad \forall n \in \mathbb{N}$
- If $\{X_n\}$ is uniformly integrable then $X_n \to X$ a.s. for some integrable r.v. X and $X_n = E[X|\mathcal{F}_n] \quad \forall n \in \mathbb{N}$
- If $X_n = E[X|\mathcal{F}_n]$ for some integrable r.v. X then $\{X_n\}$ is uniformly integrable and \exists integrable r.v. $X_\infty \in \mathcal{F}_\infty$ s.t. $E[X_\infty|\mathcal{F}_n] = X_n \quad \forall n \in \mathbb{N} \text{ and } X_n \to X_\infty \quad a.s.$ and in L^1 .
- Levy's thm
 - If $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ is a filtration and $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$ then for an integrable r.v. X, $E[X|\mathcal{F}_n] \to E[X|\mathcal{F}_{\infty}]$ a.s. and in L^1 .
- Conditional DCT (generalized version)
 - Let $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ be a filtration and $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$. If $X_n \to X$ a.s. and $|X_n| \leq Z$ for some integrable r.v. Z, then $E[X_n|\mathcal{F}_n] \to E[X|\mathcal{F}_{\infty}]$ a.s.

* Potential

- A nonnegative supermartingale $\{X_n\}$ is said to be potential if $E(X_n) \to 0$
- $\sqrt{\text{ If }\{X_n\}}$ is potential then $\{X_n\}$ is uniformly integrable and $X_n \to 0$ a.s.
- Riesz decomposition
 - Let $\{X_n\}$ be a uniformly integrable nonnegative supermartingale. Then we can express X_n as $X_n = M_n + V_n$ where $\{M_n\}$ is uniformly integrable martingale and $\{V_n\}$ is potential. Furthermore, such decomposition is unique.
- If $\{X_n\}$ is uniformly integrable submartingale, then for any stopping time N, stopped process $\{X_{N \wedge n}\}$ is also uniformly integrable submartingale.
 - \bigstar Lemma: If $X_n \to X$ a.s. then $X_n^+ \to X^+$ a.s. and $X_n^- \to X^-$ a.s.
- Inequality for unbounded stopping time
 - If $\{X_n\}$ is uniformly integrable submartingale then for any stopping time N, we have $E(X_0) \leq E(X_N) \leq E(X_\infty)$ where $X_n \to X_\infty$ a.s.
- Optional stopping thm
 - If $L \leq M$ are stopping times and $\{X_n\}$ is uniformly integrable submartingale then $E[X_L] \leq E[X_M]$ and $X_L \leq E[X_M|\mathcal{F}_L]$ a.s.
- Suppose $\{X_n\}$ is a submartingale and $E[|X_{n+1} X_n||\mathcal{F}_n] \leq B$ a.s. $\forall n \in \mathbb{N}$. If N is a stopping time with $E(N) < \infty$ then $\{X_{N \wedge n}\}$ is uniformly integrable and $E(X_0) \leq E(X_N)$
 - \sqrt{N} Note that $E(N) < \infty$ condition implies that N is almost surely finite.
 - \bigstar Lemma : $E|X| < \infty \Leftrightarrow \sum_{n} P(|X| \ge n) < \infty$
- If $\{X_n\}$ is a nonnegative supermartingale and N is a stopping time then $E(X_0) \geq E(X_N)$
- Comment for X_N with stopping time N and (sub)martingale $\{X_n\}$

$$-X_N = \sum_{n=0}^{\infty} X_n I(N=n)$$

- Note that N can take value of $N=\infty$. Thus, for X_N to make sense, N should be almost surely bounded or X_∞ is well-defined.
- If X_{∞} is well-defined such that $X_n \to X_{\infty}$ a.s. then $X_{N \wedge n} \to X_N$ a.s.
- How can we figure out integrability of X_N ?
 - i. If N is bounded a.s.
 - $N \leq K$ a.s. for some $K \in \mathbb{N}$. Hence $E|X_N| \leq \sum_{n=0}^K E|X_n| < \infty$
 - ii. If $\{X_n\}$ is uniformly integrable submartingale
 - $X_n \to X_\infty$ $a.s. \Rightarrow X_{N \wedge n} \to X_N$ a.s. Since $\{X_{N \wedge n}\}$ is also uniformly integrable submartingale, by Vitali lemma, $X_N \in L^1$ i.e. X_N is integrable.
 - iii. If $\{X_n\}$ is nonengative supermartingale
 - $X_n \to X_\infty$ $a.s. \Rightarrow X_{N \wedge n} \to X_N$ a.s. By inequality for bounded stopping time, $E[X_{N \wedge n}] \leq E[X_0]$ and using Fatou's lemma, we have $0 \leq E[X_N] \leq E[X_0] < \infty$