

deeplearning.ai

Conditional Generation: Intuition

Outline

- Unconditional generation
- Conditional vs. unconditional generation

Conditional Generation

Conditional vs. Unconditional Generation

Conditional	Unconditional
Examples from the classes you want	Examples from random classes
Training dataset needs to be labeled	Training dataset doesn't need to be labeled

Summary

- Conditional generation requires labeled datasets
- Examples can be generated for the selected class

deeplearning.ai

Conditional Generation: Inputs

Outline

- How to tell the generator what type of example to produce
- Input representation for the discriminator

Generator Input

Randomness in the generation

Generator Input Output Noise vector Generator Husky Class (onehot) vector

Generator Input Output Noise vector Generator Husky Class (onehot) vector

Discriminator Input

Real image of some breed

other than Golden Retriever

Discriminator Input

Discriminator Input

We can feed the one hot vector (class) as channels. Other space efficient methods may also be used especially if there are lots of

Summary

- The class is passed to the generator as one-hot vectors
- The class is passed to the discriminator as one-hot matrices
- The size of the vector and the number of matrices represent the number of classes

deeplearning.ai

Controllable Generation

Outline

- What is controllable generation
- How it compares to conditional generation

Controllable Generation

Available from: https://arxiv.org/abs/1907.10786

Controllable Generation

Controlled Output

Controllable Generation

features on the output

Controlled

Controllable Generation vs. Conditional Generation

Controllable	Conditional
Examples with the features that you want	Examples from the classes you want
Training dataset doesn't need to be labeled	Training dataset needs to be labeled
Manipulate the z vector input	Append a class vector to the input

Summary

- Controllable generation lets you control the features of the generated outputs
- It does not need a labeled training dataset
- The input vector is tweaked to get different features on the output

deeplearning.ai

Vector Algebra in the *Z*-Space

Outline

- Interpolation in the Z-space
- Modifying the noise vector z to control desired features

Interpolation Using the Z-Space

How an image morphs into another

Interpolation Using the Z-Space

Z-Space with Noise Vectors

Identify the direction to control generation by hair color.

Z-Space and Controllable Generation

Z-Space and Controllable Generation

Summary

- To control output features, you need to find directions in the Z-space
- To modify your output, you move around in the Z-space

deeplearning.ai

Challenges with Controllable Generation

Outline

- Output feature correlation
- Z-space entanglement

Feature Correlation

Uncorrelated Features

Correlated Features

Z-Space Entanglement

Changing beard will end up changing other features.

It is not possible to control single output features

Summary

- When trying to control one feature, others that are correlated change
- Z-space entanglement makes controllability difficult, if not impossible
- Entanglement happens when z does not have enough dimensions

deeplearning.ai

Classifier Gradients

Outline

- How to use classifiers to find directions in the Z-space
- Requirements to use this method

Modify **just** the **noise vector** until the feature emerges

Summary

- Classifiers can be used to find directions in the Z-space
- To find directions, the updates are done just to the noise vector

deeplearning.ai

Disentanglement

Outline

- What a disentangled Z-space means
- Ways to encourage disentangled Z-spaces

Disentangled Z-Space

$$v_1=[\begin{tabular}{c} z_1 & z_2 \ v_1=[\begin{tabular}{c} 1, 2, 3, ... \end{tabular}]$$

Latent factors of variation

The noise vectors are of higher dimensions. For simplicity we are using 2 dimensional Z-space here.

Z-Space with Noise Vectors

To control 2 features, we need a noise vector with more than 2 dimensions. Hair color and hair length are disentagnled but others might not be...

Encourage Disentanglement: Supervision

Encourage Disentanglement: Loss Function

$$v_1 = [\begin{tabular}{ll} z_1 & z_2 & $L_{\rm new} = \begin{tabular}{ll} $L_{\rm original}$ + reg_d \\ $v_2 = [\begin{tabular}{ll} z_1 & z_2 & $J_{\rm original}$ + reg_d \\ $v_2 = [\begin{tabular}{ll} z_1 & z_2 & $J_{\rm original}$ & $J_{\rm origi$$

Output feature #1 Output feature #2

Summary

- Disentangled Z-spaces let you control individual features by corresponding z values directly to them
- There are supervised and unsupervised methods to achieve disentanglement

