

Konversi Bilangan Biner, Oktal dan Hexadesimal

Pertemuan 3

Sub-CPMK

 Mahasiswa dapat melakukan konversi antar bilangan biner, oktal dan hexadesimal (C3, A3)

Materi

- Konversi Antar Bilangan Biner dan Oktal
- Konversi Antar Bilangan Biner dan Hexadesimal
- Konversi Antar Bilangan Oktal dan Hexadesimal

1.

Konversi Antar Bilangan Biner dan Oktal

Bilangan Biner ke Bilangan Oktal

- Bilangan oktal dapat dicari dari bilangan biner dengan mengelompokan setiap tiga digit bilangan biner dari kanan (LSB). Kekurangan digit pada MSB diisi dengan 0, kemudian cari nilai oktal setiap bagian
- Contoh: konversi 1011110₍₂₎

1011110₍₂₎ adalah 136₍₈₎

Konversi Bilangan Oktal ke Biner

- Konversi dari oktal ke biner dapat dilakukan langsung dengan mensubtitusi setiap digit bilangan oktal ke 3 bit bilangan biner.
- Contoh:

$$157_{(8)} = ?_{(2)}$$
 $1_{(8)} = 001_{(2)}$
 $5_{(8)} = 101_{(2)}$
 $7_{(8)} = 111_{(2)}$
Jadi $157_{(8)} = 001$ 101 $111_{(2)} = 1$ 101 $111_{(2)}$

Tabel konversi biner ke oktal

- Hanya diperlukan 8 baris tabel konversi bilangan oktal ke biner, dimana setiap baris hanya memerlukan 3 bit biner.
- Perhatikan pengulangan mulai dari LSB, setiap baris bergantian 0 dan 1, sehingga setiap barisnya tersusun 0, 1, 0, 1, 0, 1, 0, 1
- Pada bit ke 1 pergantian 0 dan 1 dilakukan untuk setiap dua baris 0, 0, 1, 1, 0, 0, 1, 1
- Pada MSB tidak ada pengulangan, 4 baris pertama diisi 0,0,0,0; 4 baris berikutnya diisi 1,1,1,1

	oktal		
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
, 1	1	1	7
MSB		LSB	

2.

Konversi Antar Bilangan Biner dan Hexadesimal

- Bilangan hexadesimal dapat dicari dari bilangan biner dengan mengelompokan setiap 4 digit bilangan biner dari kanan (LSB). Kekurangan digit pada MSB diisi dengan 0, kemudian cari nilai hexadesimal setiap bagian
- Contoh: konversi 1011110₍₂₎

 $1011110_{(2)}$ adalah $5E_{(16)}$

 Konversi dari hexadesimal ke biner dapat dilakukan langsung dengan mensubtitusi setiap digit bilangan hexadesimal ke 4 bit bilangan biner.

Contoh:

$$6A57_{(16)} = ?_{(2)}$$
 $6_{(16)} = 0110_{(2)}$
 $A_{(16)} = 1010_{(2)}$
 $5_{(16)} = 0101_{(2)}$
 $7_{(16)} = 0111_{(2)}$
Jadi $6A57_{(16)} = 0110 \ 1010 \ 0101 \ 0111_{(2)}$

- Hanya diperlukan 16 baris tabel konversi bilangan oktal ke biner, dimana setiap baris hanya memerlukan 4 bit biner.
- Perhatikan pengulangan mulai dari LSB, setiap baris bergantian 0 dan 1, sehingga setiap barisnya tersusun 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
- Pada bit ke 1 pergantian 0 dan 1 dilakukan untuk setiap dua baris 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
- Pada bit ke 2 pergantian 0 dan 1 dilakukan untuk setiap empat baris 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1
- Pada MSB tidak ada pengulangan, 4 baris pertama diisi 0, 0, 0, 0, 0, 0, 0, 0; 4 baris berikutnya diisi 1, 1, 1, 1, 1, 1, 1

	biner			hexa		
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	2		
0	0	1	1	3		
0	1	0	0	4		
0	1	0	1	5		
0	1	1	0	6		
0	1	1	1	7		
1	0	0	0	8		
1	0	0	1	9		
1	0	1	0	Α		
1	0	1	1	В		
1	1	0	0	С		
1	1	0	1	D		
1	1	1	0	E		
1	1	1	1	F		
MSB		LSB				

3.

Konversi Antar Bilangan Oktal dan Hexadesimal

Oktal-Biner-Hexadesimal

- Jika diperhatikan, terdapat jembatan antara bilangan oktal dan bilangan hexadesimal.
- Tiap digit Bilangan oktal dapat direpresentasikan dengan 3 bit biner
- Tiap digit Bilangan hexadesimal dapat direpresentasikan dengan 4 bit biner

- Konversi Antar Bilangan Oktal dan Hexadesimal dapat dilakukan melalui bilangan biner.
- setiap 4 bit untuk setiap digit hexadesimal maupun 3 bit untuk setiap digit oktal disusun bilangan binernya
- setiap digit bilangan hexadesimal diambil 4 bit biner,
 sedangkan untuk setiap digit oktal diambil 3 bit binernya

Konversi Oktal ke Hexadesimal

Langkah-langkah:

- Konversi bilangan oktal ke bilangan biner dengan cara mensubtitusi tiap digit bilangan oktal dengan 3 bit bilangan biner
- Bilangan biner yang dihasilkan di bagi tiap 4 bit
- Untuk setiap 4 bit bilangan biner subtitusi menjadi bilangan hexadesimal

Contoh:

$$47_{(8)} = ?_{(16)}$$

$$4_{(8)} = 100_{(2)}$$

$$7_{(8)} = 111_{(2)}$$

$$47_{(8)} = 100 \ 111_{(2)}$$

$$100 \ 111_{(2)} = 0010 \ 0111_{(2)}$$

$$0010_{(2)} = 2_{(16)}$$

$$0111_{(2)} = 7_{(16)}$$

$$0010 \ 0111_{(2)} = 27_{(16)}$$

$$47_{(8)} = 27_{(16)}$$

Konversi oktal ke hexadesimal

Konversi Hexadesimal Keroktal

Langkah-langkah:

- Konversi bilangan hexadesimal ke bilangan biner dengan cara mensubtitusi tiap digit bilangan hexdesimal dengan 4 bit bilangan biner
- Bilangan biner yang dihasilkan di bagi tiap 3 bit
- Untuk setiap 3 bit bilangan biner subtitusi menjadi bilangan oktal

```
Contoh: 6B_{(16)} = ?_{(8)}
     6_{(16)} = 0110_{(2)}
     B_{(16)} = 1011_{(2)}
     6B_{(16)} = 0110 \ 1011_{(2)}
     0110\ 1011_{(2)} = 001\ 101\ 011_{(2)}
     001_{(2)} = 1_{(8)}
     101_{(2)} = 5_{(8)}
     011_{(2)} = 3_{(8)}
     001\ 101\ 011_{(2)} = 153_{(8)}
     6B_{(16)} = 153_{(8)}
```


Konversi hexadesimal ke oktal

Ringkasan

- Bilangan oktal dapat dicari dari bilangan biner dengan mengelompokan setiap tiga digit bilangan biner dari kanan (LSB). Kekurangan digit pada MSB diisi dengan 0, kemudian cari nilai oktal setiap bagian
- Konversi dari oktal ke biner dapat dilakukan langsung dengan mensubtitusi setiap digit bilangan oktal ke 3 bit bilangan biner.
- Bilangan hexadesimal dapat dicari dari bilangan biner dengan mengelompokan setiap 4 digit bilangan biner dari kanan (LSB). Kekurangan digit pada MSB diisi dengan 0, kemudian cari nilai hexadesimal setiap bagian
- Konversi dari hexadesimal ke biner dapat dilakukan langsung dengan mensubtitusi setiap digit bilangan hexadesimal ke 4 bit bilangan biner.

Ringkasan (lanjutan)

- Konversi Antar Bilangan Oktal dan Hexadesimal dapat dilakukan melalui bilangan biner.
- setiap 4 bit untuk setiap digit hexadesimal maupun 3 bit untuk setiap digit oktal disusun bilangan binernya
- setiap digit bilangan hexadesimal diambil 4 bit biner,
 sedangkan untuk setiap digit oktal diambil 3 bit binernya

Terimakasih

TUHAN Memberkati Anda

Teady Matius Surya Mulyana (tmulyana@bundamulia.ac.id)