Relocalization of Camera in a 3D Map on Memory Restricted Devices

Deepti Hegde, Dikshit Hegde, Ramesh Ashok Tabib, Uma Mudenagudi

KLE Technological University

Seventh National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG) 22nd December 2019

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY

Introduction

Simultaneous Localisation and Mapping: (SLAM)

- Landmark based solutions
 - EKF with range measuring devices
- Raw data based solutions
 - Visual SLAM

Why is visual SLAM so popular?

- Image data enables the map to provide texture and visual information.
- High quality camera are becoming widely available at decreasing costs.

Visual SLAM on Low Memory Devices

- Many SLAM systems provide robust loop closing and relocalization capabilities but run on conventional computers and processors with high computational capability.
- Visual SLAM is often used for remote applications such as autonomous vehicles which rely on low memory processors for control and decision making.

We propose a system for memory and computationally efficient relocalization of a camera in a SLAM generated 3D map, capable of being run on low memory edge devices. Our main contribution is a lightweight system for camera pose estimation based on hierarchical cluster tree of ORB features.

Methodology

The proposed re-localization system is capable of being run on resource limited devices using a monocular camera rig. The process consists of 3 stages:

- Generation of a 3D map
- ② Creation of a visual word dictionary for captured video frames
- Image mapping and retrieval to obtain camera pose and trajectory

Figure 1: Overview of Methodology

Experimentation details

- We demonstrate the system on three standard datasets, EuRoC
 Machine Lab 1 and the TUM xyz videos.
- We analyse the memory footprint of our relocalization system when run on an ARM Cortex A53 processor with 2GB RAM by sampling memory used every 0.1 seconds.
- RAM usage and time taken for real time re-localization is analysed.
 Memory usage of the proposed method versus the complete ORB SLAM2 model running on the board are compared using smem memory profiler.

Results

Improved RAM usage as measured by RSS and PSS

Dataset	Average Distance Error (meters)	Average Angle Error (degrees)
EuRoC Machine Lab 1	0.67	1.0564
TUM fr1/xyz	0.42	1.3245
TUM fr2/xyz	0.65	1.892

Table 1: Table of average error of proposed relocalization system over 50 test

Thank You