Modifying Turing Machines

COMPSCI 3331

Outline

- Modifying TMs: restricted tapes, workspaces.
- Alternate Model: Type-0 Grammars.
- Church-Turing thesis.
- Nondeterministic TMs.

Modifying TMs

The power of TMs is not affected by minor changes in the TM model. For example:

- We can insist that the TM is a one-way infinite tape (i.e., has a starting point).
- ▶ We can allow the TM to have several tapes (work space).
- Nondeterminism is also OK.

One-way Infinite Tape

From Two-way to One-way Infinite Tape

IDEA: Replace tape alphabet Γ with Γ^2 . Continue writing symbols on the left-infinite part (as necessary) of the tape underneath the right-infinite part.

Multiple Tape TMs

- Input is always on the first tape.
- All other tapes are initially blank.

Action of a Multitape TM

At each step of a multitape TM:

- ► The state is updated.
- On each tape, the currently scanned symbol can be rewritten and the tape head moved (left, right or stationary).
- ► The tape heads can move independently: one head can move right, another left, etc.

Multitape TM Example

$$L = \{a^n b^{\lfloor \sqrt{n} \rfloor} : n \geq 1\} = \{ab, aab, aaab, aaaabb, \ldots\}.$$

Multitape TM to single-tape TM

IDEA: Simulate a *k*-tape TM by a single-tape TM with 2*k* 'tracks'.

_													
		▼											
		a	a	b	С	a	d			b	a	С	tape 1
				▼									
		b	b	a	d	d	d	•		a	d	d	tape 2
								•		▼			
		a	a	b	b	С	С	•		d	d	e	tape 3
	:	:	:	፧	:	:	:			:	:	:	
					▼			•					
		b	С	с	с	a	d			b	a	a	tape k

- ▶ To simulate one step of the k-tape TM takes O(m) time, where m is the length of the tape.
- Why? have to find each of the heads and simulate its action for one step.

Related Models

Even some models that are not TMs are equivalent to TMs:

- type-0 grammars.
- λ-calculus.

Type-0 Grammars

A type-0 grammar is a 4-tuple $G = (V, \Sigma, P, S)$ where

- V is a finite set of non-terminals.
- Σ is a finite alphabet.
- S is a distinguished start symbol.
- P is a finite set of productions of the form

$$\alpha \rightarrow \beta$$

where $\alpha, \beta \in (V \cup \Sigma)^*$ and $\alpha \neq \varepsilon$.

A word $w \in \Sigma^*$ is generated by G iff $S \Rightarrow^* w$.

Type-0 Grammars

Example (Hopcroft and Ullman 1979, p. 220):

$$S \rightarrow ACaB \ aD \rightarrow Da$$

 $Ca \rightarrow aaC \ AD \rightarrow AC$
 $CB \rightarrow DB \ aE \rightarrow Ea$
 $CB \rightarrow E \ AE \rightarrow \varepsilon$
 $L(G) = \{a^{2^n} : n \ge 1\}.$

Thm. The class of languages generated by type-0 grammars are exactly the class of languages recognized by TMs.

Church-Turing Thesis

- The Church-Turing thesis states that the TMs capture our notion of what is computable.
- Any of the models we prove are equivalent to TMs are also considered universal models of computation.
- Church proposed another universal model of computation: λ-calculus.

Computers and TMs

Simulating a TM on a computer:

- Encode states of the TM as strings.
- Create a lookup table of the transition of the TM.
- Simulate the transitions directly.

Simulating a computer with a TM:

The TM simulates machine code execution: it stores all the information we need to execute this code (PC, registers, separate tapes for code, memory, stack, etc.)

TMs are **deterministic** by nature. We can also define nondeterministic TMs. In this case, $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R,S\}}$.

- ► $\delta(q, \alpha) = \{(q_1, \beta_1, D_1), \dots, (q_n, \beta_n, D_n)\}$ for some $n \ge 0$.
- We can choose any transition to apply. We accept if there is any accepting path.

Thm. Let M be a nondeterministic TM. Then there exists a deterministic TM M' which accepts the same language.

Proof. Our TM M' performs a breadth-first search of all possible paths that M' could go down.

- ▶ We store a list of IDs of M on tape 1 of M'.
- ightharpoonup We will use other tapes of M' to update the list of IDs.
- ► Initially, tape 1 contains the start ID: q₀x, where x is the input word.
- ▶ We then process each ID w_1qw_2 on tape 1 in turn.
- ▶ If $w_1qw_2 \vdash_M w'_1q'w'_2$, then we add $w'_1q'w'_2$ to tape 1 of M'.

- ▶ If M' finds an accepting ID of M on tape 1, then M' accepts.
- ▶ In this way, M' only accepts words that M accepts.
- ▶ If *M* accepts, then *M'* will eventually find the accepting path.
- This is because each ID can only have a finite number of IDs that can come after it. (2^{3|Q||Γ|})

Where to from here?

- We know how TMs function.
- We know that many different models that are equivalent to TMs.
- How can we describe the languages that can be accepted by a TM?