WEEK 6

EER DIAGRAMS – MAPPING THE EER DIAGRAM TO RELATIONAL TABLES

CS3319

1

STUDENT OBJECTIVES

- Upon completion of this video, you should be able to:
 - Given an EER diagram, convert it to relational tables using one of the four rules.

MAPPING EER DIAGRAMS TO RELATIONS:

In Lecture 2, we introduced 7 steps to convert an ER diagram to a relational database, now we add Step 8:

Step 8: Convert each specialization with m subclasses $\{S_1, S_2, ..., S_m\}$ and (generalized) superclass C, where the attributes of C are $\{k, a_1, ..., a_n\}$ and k is the (primary) key, into relations schemes using one of the four following options:

Option 8A Multiple relations – superclass and subclasses: Create a relation L for C (superclass) with attributes = $\{k, a_1, \ldots, a_n\}$ and primary key = k. Create a relation L_i for each subclass S_i , $1 \le i \le m$, with the attributes of $L_i = \{k\}$ U {attributes of S_i }, and primary key of $L_i = k$.

Option 8C Single relation with one type attribute: Create a single relation L with attributes $\{k, a_1, ..., a_n\}$ U $\{attributes of S_1\}$ U ... U $\{attributes of S_m\}$ and primary $\{key = k\}$.

This option is for *disjoint* subclasses, with a discriminating attribute or category, and has the potential for generating a large number of null values.

BDate

Option 8D Single relation with multiple type attributes: Create a single relation L with attributes $\{k, a_1, ..., a_n\}$ U $\{attributes of S_1\}$ U ... U $\{attributes of S_m\}$ U $\{t_1, t_2, ..., t_m\}$ with primary key k.

This option is for *overlapping* subclasses, and each t_i , $1 \le i \le m$, is a Boolean attribute indication whether this tuple belongs to subclass S_i .

Part								
<u>PartNo</u>	Descrip	Mflag	DrawingNo	BatchNo	ManufDate	Pflag	Supplier_Name	ListPrice
111	Screw	True	6758	A3	2/2/2018	False	Null	Null
222	Hammer	False	Null	Null	Null	Null	Rona	45.00
333	Drill	True	8765	A7	1/1/2018	True	Home Hardware	129.00

7

ANOTHER EXAMPLE:

- City Hall is trying to classify it's buildings for taxing purposes.
 - Every building has an address and a unique building code and the owners name.
 - A building must be either a private residence or business, but it cannot be both.
 - For a private residences, city hall wants to also keep track of the number of bedrooms and number of bathrooms.
 - For a business, they want to keep track of the number of exits, size of the property, and the number of parking spots.

QUESTION: Draw an EER diagram to reflect this example:

Map your EER diagram to relational table(s):

BusinessBuilding

<u>BuildingCode</u>	OwnerName	Address	Size	NumOfParkingSpots	NumOfExits
---------------------	-----------	---------	------	--------------------------	------------

PrivateResidence

BuildingCode	OwnerName	Address	NumOfBedrooms	NumOfBathrooms

10/15/2023