Particle Image Velocity

Table of Contents

	. I
Import image data	. 1
Set image processing values	1
Filtering for I1	
Filterring for I2	
Interrogation window calculation	
Alternate interrogation window calculation	
Print values	
Particle number calculation	13
Velocity calculation	
Vector field graphing	

clc
clear
close all

Import image data

```
I1=imread('00020359.bmp');
I2=imread('00020360.bmp');
I3=imread('00020361.bmp');
I4=imread('00020362.bmp');
```

Set image processing values

```
thresholdRatio=0.5; % Particles above this ratio*maximum intensity
  will remain
r1 = 1; % Circle recognition radii
r2 = 3;
```

Filtering for I1

```
imshow(I1)
title('Original I1')
foreground1 = backgroundFilter(I1,'I1');
maximumIntensity1 = max(max(foreground1));
threshold1 = maximumIntensity1*thresholdRatio;
filtered1 = thresholdFilter(foreground1, threshold1,'I1');
I1f = filtered1;
```


Filterring for I2

```
figure
imshow(I2)
title('Original I2')
foreground2 = backgroundFilter(I2,'I2');
maximumIntensity2 = max(max(foreground2));
threshold2 = maximumIntensity2*thresholdRatio;
filtered2 = thresholdFilter(foreground2, threshold2,'I2');
I2f = filtered2;
```


Interrogation window calculation

[iwLength1,meanParticleSize1,numParticles1] =
windowCalcCircle(I1f,r1,r2,1);

Warning: You just called IMFINDCIRCLES with very small radius value(s).

Algorithm accuracy is limited for radius values less than or equal to 5.

Alternate interrogation window calculation

[iwLength, meanParticleSize, numParticles] = windowCalcObject(I1f,1);

Print values

```
maximumIntensity1
meanParticleSize
iwLength

maximumIntensity1 =
   uint8
   255

meanParticleSize =
   2.4948

iwLength =
```

32

Particle number calculation

```
ii=1;
jj=1;
[sx,sy] = size(I1f);
for i=0:iwLength:sx-iwLength
    for j=0:iwLength:sy-iwLength
        crop1=imcrop(I1f,[i,j,iwLength,iwLength]);
        %[empty,empty,numParticlesMatrix1(ii,jj)] =
 windowCalcCircle(crop1,r1,r2,0);
        [empty,empty,numParticlesMatrix1(ii,jj)] =
 windowCalcObject(crop1,0);
        jj = jj+1;
    end
    jj=1;
    ii = ii+1;
end
densityMesh(numParticlesMatrix1)
```


Velocity calculation

```
ii=1;
jj=1;
for i=0:iwLength:sx-iwLength
    for j=0:iwLength:sy-iwLength
       y = j+1;
       Y = y+iwLength-1;
       x = i+1;
        X = x+iwLength-1;
        szy = y:Y;
        szx = x:X;
       nimg1 = I1-mean(mean(I1));
       nSec1 = nimg1(szx,szy);
       nimg2 = I2-mean(mean(I2));
        szx2 = x-iwLength*2:x+5*iwLength;
        szy2 = y-iwLength*2:y+5*iwLength;
        szx2 = szx2(szx2>0 & szx2<=size(I1,1));
        szy2 = szy2(szy2>0 \& szy2<=size(I1,2));
       nSec2 = nimg2(szx2,szy2);
        if isequal(nSec1,zeros(size(nSec1,1),size(nSec1,2)))...
                isequal(nSec2,zeros(size(nSec2,1),size(nSec2,2)))
```

```
shifty(ii,jj)=0;
            shiftx(ii,jj)=0;
       else
            crr = normxcorr2(nSec1,nSec2);
            [ssr,snd] = max(crr(:));
            [ij,ji] = ind2sub(size(crr),snd);
            shifty(ii,jj)=ij-x-size(nSec1,1)+1+szx2(1)-1;
            shiftx(ii,jj)=ji-y-size(nSec1,2)+1+szy2(1)-1;
       end
        if ii==ceil((sx-iwLength)/iwLength)/2 && jj==ceil((sy-
iwLength)/iwLength)/2
            figure
            mesh(crr)
            title('Center interrogation window correlation plane')
        end
        jj = jj+1;
   end
    jj=1;
    ii = ii+1;
end
```

Number of particles per interrogation window

Vector field graphing

```
figure
quiver(shiftx,shifty,'AutoScaleFactor',3)
set(gca,'View',[0 270])
xlabel('rows')
ylabel('columns')
title('Vector field')
```


Published with MATLAB® R2020b						

```
function [foreground] = backgroundFilter(I, name)
background = imopen(I,strel('square',7));
figure
imshow(background)
title(join(['Foreground ' name]))
foreground=I-background;
figure
imshow(foreground)
title(join(['Background ' name]))

Not enough input arguments.

Error in backgroundFilter (line 3)
background = imopen(I,strel('square',7));
```

```
function [filtered] = thresholdFilter(I, threshold, name)

Itemp=I>threshold;
filtered = uint8(int16(I).*int16(Itemp));
figure
imshow(filtered)

title(join(['Filtered ' name]))

Not enough input arguments.

Error in thresholdFilter (line 3)
Itemp=I>threshold;
```

```
function [iwLength,meanParticleSize,numParticles] =
 windowCalcCircle(I,r1,r2,print)
[centers,radii] = imfindcircles(I,
[r1,r2],'ObjectPolarity','bright','Sensitivity',1);
meanParticleSize = (pi*(mean(radii))^2);
[sx,sy] = size(I);
[np1,np2] = size(centers);
numParticles = np1*np2;
particleDensity = numParticles/(sx*sy);
iwArea = 10/particleDensity;
iwLength = round(sqrt(iwArea));
if print == 1
    figure
    imshow(I)
    viscircles(centers, radii);
    title('Identified circles shown in red circles')
end
Not enough input arguments.
Error in windowCalcCircle (line 4)
[centers,radii] = imfindcircles(I,
[r1,r2],'ObjectPolarity','bright','Sensitivity',1);
```

```
function [iwLength,meanParticleSize,numParticles] =
 windowCalcObject(I,print)
objects = bwconncomp(I,8);
labeled = labelmatrix(objects);
numParticles = objects.NumObjects;
meanParticleSize = nnz(labeled)/numParticles;
[sx,sy] = size(I);
particleDensity = numParticles/(sx*sy);
iwArea = 10/particleDensity;
iwLength = round(sqrt(iwArea));
if print == 1
    figure
    RGB = label2rgb(labeled, 'spring', 'c', 'shuffle');
  %,'spring','c','shuffle'
    imshow(RGB)
    title('Particles shown in multiple colors.')
end
Not enough input arguments.
Error in windowCalcObject (line 3)
objects = bwconncomp(I,8);
```