This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) A compound of formula I:

wherein A is

 R^3 , R^4 , R^5 and R^6 are each, independently, H, halogen, NO_2 ,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_{1-10} -alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C₁₋₁₀- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

2

 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or

 $C_{5\mbox{\scriptsize -}12}\,$ hetaryl, optionally substituted by $C_{1\mbox{\scriptsize -}10}\,$ alkyl $\,$ or $C_{1\mbox{\scriptsize -}10}\,$ alkoxy,

and either

one of R³, R⁴, R⁵ and R⁶ is -M-L¹; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, , halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl; C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; NR^1R^1 ; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; -CN; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$;

in which

 R^1 is H or C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl and R^2 is C_{1-10} -alkyl, optionally substituted by halogen, up to perhaloalkyl,

 $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen,

 C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 – C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl;

M is -CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

 L^1 is phenyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃, NO₂ or,

$$-$$

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂,

pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, -OH, -SCH₃ or NO₂,

or

benzothiazole, optionally substituted by, C_{1-10} alkyl C_{1-10} alkoxy, halogen, OH, -SCH₃ or NO₂ or a pharmaceutically acceptable salt thereof.

- 2. (Original) A compound according to claim 1, having a pKa greater than 10.
- 3. (Previously Presented) A compound according to claim 1, wherein

 R^3 is H, halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl; R^4 is H, halogen or NO_2 ;

 R^5 is H, halogen or C_{1-10} - alkyl;

R⁶ is H, C₁₋₁₀- alkoxy, thiophene, pyrole or methyl substituted pyrole,

R^{3'} is H, halogen, C₄₋₁₀-alkyl, or CF₃ and

R^{6'} is H, halogen, CH₃, CF₃ or -OCH₃.

4. (Previously Presented) A compound according to claim 1, wherein

 $R^{3'}$ is C_{4-10} -alkyl, Cl, F or CF_3 ;

 $R^{4'}$ is H, Cl or F;

 $R^{5'}$ is H, Cl, F or C_{4-10} -alkyl; and

 $R^{6'}$ is H or OCH₃.

- 5. (Previously Presented) A compound according to claim 4, wherein R³ or R⁵ is t-butyl.
- 6. (Previously Presented) A compound according to claim 1, wherein M is $-CH_2$ -, $N(CH_3)$ or -NHC(O)-.
- 7. (Previously Presented) A compound according to claim 6, wherein L¹ is phenyl or pyridyl.
 - 8. (Previously Presented) A compound according to claim 1, wherein M is -O-.
- 9. (Previously Presented) A compound according to claim 8, wherein L¹ is phenyl, pyridyl, pyridone or benzothiazole.
 - 10. (Previously Presented) A compound according to claim 1, wherein M is -S-.
- 11. (Previously Presented) A compound according to claim 10, wherein L¹ is phenyl or pyridyl.

5

12. (Original) A compound of the formula

- 13. (Original) A pharmaceutical composition comprising a compound of claim 1, and a physiologically acceptable carrier.
- 14. (Original) A pharmaceutical composition comprising a compound of claim 12, and a physiologically acceptable carrier.
- 15. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II:

or a pharmaceutically acceptable salt thereof wherein

A is

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and $^{\circ}$ W_n, wherein n is 0-3 and each W is independently selected from the group consisting of $^{\circ}$ CN, $^{\circ}$ CO₂R⁷, $^{\circ}$ C(O)NR⁷R⁷,

-C(O)-R⁷, -NO₂, -OR⁷, - SR⁷, - NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₇-C₂₄ alkaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₃-C₁₃ heteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-

6

C₁₀ alkyl, or C₁-C₁₀ alkoxy; substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀ alkenyl, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₄-C₂₃ alkheteroaryl and -M-L¹;

wherein if W is a substituted group which does not contain aryl or hetaryl moieties, it is substituted by one or more substituents independently selected from the group consisting of – CN, $-CO_2R^7$, $-C(O)R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NR^7R^7$, NO_2 , $-NR^7C(O)R^7$, $-NR^7C(O)OR^7$ and halogen up to per-halo;

wherein each R⁷ is independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to perhalosubstituted C₁-C₁₀ alkyl, up to per-halo substituted C₂-C₁₀ alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ hetaryl,

wherein Q M is - O-, -S-, -N(R⁷)-, -(CH₂)-m, -C(O)-, -CH(OH)-, -(CH₂)mO-, -NR⁷C(O) NR⁷R⁷-, -NR⁷C(O)-, -C(O)NR⁷-, -(CH₂)mS-, -(CH₂)mN(R⁷)-, -O(CH₂)m-, -CHX^a, -CX^a₂-, -S-(CH₂)m- and -N(R⁷)(CH₂)m-,

m = 1-3, and X^a is halogen; and

 L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} , wherein $_{n1}$ is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷,

 $-C(O)NR^7R^7, -C(O)-NR^7, -NO_2, -OR^7, -SR^7, -NR^7R^7, -NR^7C(O)OR^7, -C(O)R^7, -NR^7R^7, -N$

-NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, -CO₂R⁷,

 $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NO_2$, $-NR^7R^7$, $-NR^7C(O)R^7$ and $-NR^7C(O)OR^7$,

wherein $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are each independently H, halogen, C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 – C_{10} alkoxy, optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl.

16. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula IIa:

IIa

wherein A is

 R^3 , R^4 , R^5 and R^6 are each independently H, halogen, NO_2 ,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_{1-10} -alkoxy, optionally substituted by halogen up to perhaloalkoxy,

 C_{1-10} - alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or

 $C_{5\text{-}12}$ hetaryl, optionally substituted by $C_{1\text{-}10}$ alkyl or $C_{1\text{-}10}$ alkoxy,

and either

one of
$$R^3$$
, R^4 , R^5 and R^6 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5- 12 atoms, optionally substituted by C_{1-10} -alkyl, halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl; C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -alkaryl, halogen; -NR $^1R^1$; -NO $_2$; -CF $_3$;-COOR 1 ; -NHCOR 1 ; -CN; -CONR $^1R^1$; -SO $_2R^2$; -SOR 2 ; -SR 2 ;

in which

R¹ is H or C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhalo and

 R^2 is C_{1-10} -alkyl, optionally substituted by halogen,

 $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen,

 C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 – C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or

two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl, halogen up to perhalo;

M is -CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

 L^1 is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodiaxane, benzopyridine or benzothiazole, each optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃, NO₂ or, where Y is phenyl, by

or a pharmaceutically acceptable salt thereof.

17. (Previously Presented) A method according to claim 16, wherein R^3 is halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

 R^5 is H, halogen or C_{1-10} - alkyl;

 R^6 is H, C_{1-10} - alkoxy, thiophene, pyrole or methylsubstituted pyrole

R3' is H, halogen, C4-10-alkyl, or CF3 and

R⁶' is H, halogen, CH₃, CF₃ or OCH₃.

- 18. (Previously Presented) A method according to claim 16, wherein M is - CH_2 -,-S-, - $N(CH_3)$ or -NHC(O)- and L^1 is phenyl or pyridyl.
- 19. (Previously Presented) A method according to claim 16, wherein M is -O- and L¹ is phenyl, pyridone, pyrimidine, pyridyl or benzothiazole.

Please add the following claims:

20. (New) A compound of formula I:

wherein A is

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂,

 $C_{1\text{--}10}$ - alkyl, optionally substituted by halogen up to perhaloalkyl, $C_{1\text{--}10}$ -alkoxy, optionally substituted by halogen up to perhaloalkoxy, pyridinyl, optionally substituted by $C_{1\text{--}10}$ alkyl or $C_{1\text{--}10}$ alkoxy, and one of R^3 , R^4 , R^5 and R^6 is $-M\text{--}L^1$;

 $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen,

 C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 – C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl;

 $R^{3'}$ is H, halogen, C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl, C_1 - C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy

M is $-CH_2$ -, -S-, $-N(CH_3)$ -, -NHC(O)- $-CH_2$ -S-, -S- $-CH_2$ -, -C(O)-, or -O-; and L¹ is phenyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$, NO_2 or,

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃, or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, OH, one C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂,

or

benzothiazole, optionally substituted by, C_{1-10} alkyl C_{1-10} alkoxy, halogen, OH, -SCH₃ or NO₂ or a pharmaceutically acceptable salt thereof.

21. (New) A compound of formula I:

wherein A is

wherein

 R^3 is H, halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

 R^5 is H, halogen or C_{1-10} - alkyl;

 R^6 is H, C_{1-10} - alkoxy, thiophene, pyrole or methyl substituted pyrole,

 R^{3^\prime} is H, Cl, F , C4-10-alkyl, or CF3 and

 $R^{4'}$ is H, Cl or F;

 $R^{5'}$ is H, Cl, F or $C_{4\text{--}10}$ -alkyl; and

R^{6'} is H, halogen, CH₃, CF₃ or -OCH₃.

and one of R^3 , R^4 , R^5 and R^6 is -M- L^1 ; wherein

M is $-CH_2$ -, -S-, $-N(CH_3)$ -, -NHC(O)- $-CH_2$ -S-, -S- $-CH_2$ -, -C(O)-, or -O-; and

 L^1 is phenyl, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃, NO₂ or,

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂, or

benzothiazole, optionally substituted by, C_{1-10} alkyl C_{1-10} alkoxy, halogen, -SCH₃ or NO₂ or a pharmaceutically acceptable salt thereof.

- 22. (New) A compound according to claim 21, wherein R³ or R⁵ is t-butyl.
- 23. (New) A compound according to claim 21, wherein M is $-CH_{2}$, $-N(CH_{3})$ or -NHC(O)-.
 - 24. (New) A compound according to claim 21, wherein L¹ is phenyl or pyridyl.

- 25. (New) A compound according to claim 21, wherein M is -S-.
- 26. (New) A compound according to claim 26, wherein L¹ is phenyl or pyridyl.