## Create A Project In VOTT-Part 3 and 4

| Date          | 19/8/2022                                        |
|---------------|--------------------------------------------------|
| Team ID       | PNT2022TMID28486                                 |
| Project Name  | AI-based localization and classification of skin |
|               | disease with erythema                            |
| Maximum Marks | Marks                                            |

After labeled enough images pressed \*\*CRTL+E\*\* to export the project. Now we can see the folder called [`vott-csv-export`](/Data/Source\_Images/Training\_Images/vott-csv-export) in the [`Training\_Images`](/Data/Source\_Images/Training\_Images) directory. Within that folder, we can see a `\*.csv` file called [`Annotations-export.csv`](/Data/Source\_Images/Training\_Images/vott-csv-export/Annotations-export.csv) which contains file names and bounding box coordinates.







As a final step, convert the VoTT csv format to the YOLOv3 format. To do so, run the conversion script from within the ['yolo\_structure/1\_Image\_Annotation'] folder.

To run file open anaconda prompt navigate to yolostructure/1\_Image\_Annotation and run Convert\_to\_YOLO\_format.py

The script generates two output files: [`data\_train.txt`](/Data/Source\_Images/Training\_Images/vott-csv-export/data\_train.txt) located in the

['yolo\_structure/Data/Source\_Images/Training\_Images/vott-csv-export'](/Data/Source\_Images/Training\_Images/vott-csv-export) folder and ['data\_classes.txt'](/Data/Model\_Weights/data\_classes.txt) located in the ['yolo\_structure/Data/Model\_Weights'](/Data/Model\_Weights/) folder.

To list available command line options run `python Convert\_to\_YOLO\_format.py -h`.