Okun's law and Multipliers

Prof. Ed Cho

Outline: Unit V, Section SF5

- Okun's Law
- II. Government Spending Multiplier
 - A. Simple version
 - B. Tax multiplier
- **III. Multiplier Complications**

Current Events

• "US Dollar rally finds new life under Trump," WSJ, 11-13-16

- Infrastructure spending 个 => G 个 => Y 个
- Strong economic data => Fed plans to raise r
 - If r \uparrow =>

– [NX decreases, US goods relatively more expensive]

Round Trip

ICE U.S. Dollar Index

105

Source: FactSet

O. Brief Review

- AD = C + I + G + NX
- Consumer confidence ↑ => C ↑
- Sticky-wage theory
 - E.g. Peanut butter factory with fixed wages in long-term contracts
- Sticky-price theory
 - E.g. seafood restaurants & Italian restaurants,
 each have varying degrees of menu costs

I. Okun's Law

Recall:

- Natural μ = NAIRU <=> Potential GDP
 - Frictional unemployment
 - Structural unemployment
- Business cycles => Cyclical unemployment
 - NBER dates booms/recessions
 - "2 consecutive quarters of declining GDP" Shishkin
- CEA 60s, Arthur Okun Chair
 - Okun's Law: Empirical relationship between Y and μ

Act GDP Growth – Pot GDP Growth %Δ Act GDP – %Δ Pot GDP

- 1. Okun's Law: Actual GDP must grow about 2.5% faster than potential GDP grows, for unemployment to fall by 1%, on average.
 - a. Slope = 1/2.5
- 2. Numerical examples:
 - a. $\%\Delta$ Pot GDP = 2.5%, $\%\Delta$ Act GDP = 2.5% => $\Delta\mu$ = 0%
 - b. $\%\Delta$ Pot GDP = 2.5%, $\%\Delta$ Act GDP = 5% => $\Delta\mu$ = -1%

- Actual GDP growth > Potential GDP growth (just barely) 04-7-12
 => μ decreases (just barely)
- When μ decreases by 1%, why does labor grow by more than 1%?
 - Implicit contracts: full-time workers now work more (μ no change)
 - Part-time workers convert to full-time workers (μ no change)
 - Discouraged workers rejoin the labor force (μ个)

"An easier jobs report for the Fed Okun's law," WSJ, 04-07-12

^{*}Earnings figures are only available through September for these sectors.

Source: Labor Department

II.A. Government Spending Multiplier

- Assumptions
 - $MPC = \alpha = 0.60$
 - Loops occur quickly
 - Ignore T and I for now (for simplicity)
- Suppose the government spends \$1, what happens to AE?
 - "Government spending program X will create new jobs... which in turn will stimulate additional spending.... Which will further create new jobs....," State of the Union Address 20YZ

AE = C + I + G + NX
$$\Leftrightarrow$$
 \triangle AE = \triangle C + \triangle I + \triangle G + \triangle NX
 \triangle AE = 1 + 0.60 + 0.60² + ... = 1/(1-0.6) = 1/(1-MPC) = 2.50
=> Gov spending multiplier = 1/(1-MPC) = 2.50

AD curve shift with multiplier effects [1 + 1.5]

Government Spending Multiplier

- Assumptions
 - $I = K_1$ [does not depend on r]
 - $T = K_2$ [does not depend on Y, or r]
 - $C = C_0 + \alpha(Y T) = C_0 + \alpha(Y_D)$ [does not depend on r] $C_0 = Fixed consumption, \alpha = MPC$

Simple version:

$$Y = C + I + G$$

$$Y = (C_0 + C_y(Y - T)) + I + G$$

$$(1 - C_y)Y = C_0 + I - C_yT + G$$

$$Y = \frac{C_0}{(1 - \alpha)} + \frac{1}{(1 - \alpha)}I - \frac{\alpha}{(1 - \alpha)}T + \frac{1}{(1 - \alpha)}G$$

$$Y = k + \frac{1}{(1 - \alpha)}I - \frac{\alpha}{(1 - \alpha)}T + \frac{1}{(1 - \alpha)}G$$

II.B. Tax multiplier

$$Y = k + \frac{1}{(1 - \alpha)}I - \frac{\alpha}{(1 - \alpha)}T + \frac{1}{(1 - \alpha)}G$$

Government spending multiplier

•
$$\frac{dy}{dG} = \frac{1}{(1-\alpha)} = 2.5$$
, if $\alpha = 0.60$

Tax multiplier

•
$$\frac{dy}{dT} = -\frac{\alpha}{(1-\alpha)} = -1.5$$
, if $\alpha = 0.60$

- Size of tax multiplier < Size of Gov multiplier
 - \$1 tax cut => Δ C = 0.60 +
 - \$1 Gov spending => Δ G = 1, Δ C = 0.60 +
- Investment multiplier

•
$$\frac{dy}{dI} = \frac{1}{(1-\alpha)} = 2.5$$
, if $\alpha = 0.60$

III. Multiplier Complications

- Interest-rate effect (see next graph)
 - Use money market or "building block" model
 - G ↑=> Y ↑=> M^D shifts out => i ↑ => r ↑ => $C \downarrow$, $I \downarrow$, $NX \downarrow$
 - Government spending \uparrow => Crowds out some C, I, NX
- Income effect
 - If Y \uparrow =>
 - C 个: Directly modeled
 - I 1: Demand for G&S spur investment
 => investment accelerator or "crowding in"
 - NX ↓: Y^{DOM} ↑ => IM ↑

AD curve: Interest-rate effect

Summary of increase in G

Components of AE	Interest-Rate Effect	Income Effect	Total Effect
C	↓	\uparrow Modeled (MPC = C_y)	↑
I	↓	\uparrow	^/↓
G	NC	NC	个 Assumed
NX	\downarrow	\downarrow	\
Total AE	↓	↑	↑