We Claim:

28

29

30

Compounds having the structure of Formula I: 1 2 3 4 5 6 8 Formula I 9 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, 10 enantiomers, diastereomers or N-oxides wherein 11 1) when X is oxygen in Formula I: 12 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; 13 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR' 14 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl); 15 aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR' (wherein R' is as defined above, but also including hydroxy); C(=0)NR_xR_v 17 18 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆ 19 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, 20 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or $(CH_2)_m$ - $C(=O)R_3$ 21 22 [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted 23 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 24 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 25 ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered 26 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 27 from the group consisting of N, O and S wherein the ring can be attached to

 $(CH_2)_m C(=0)$ through C) and wherein the substituents of R_3 can be one or more

of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,

aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,

WO 2005/051931

64

optionally substituted amino (wherein the substituents are selected from C₁-C₆ 31 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 32 $C(=0)NR_5R_6$ (wherein R_5 and R_6 are independently selected from hydrogen, 33 alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted 34 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 35 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 36 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 37 heterocyclylalkyl]; 38 R₂ is selected from: cyano; heteroaryl; heterocyclyl; or (CH₂)_nNHCOR₇ (wherein n 39 40 represents an integer 1 to 6 and R₇ can represent hydrogen, alkyl, alkenyl, alkynyl, 41 (un)saturated, cycloalkyl, alkoxy, aryloxy, aryl, aralkyl, heteroaryl, heterocyclyl, (CH₂)₁₋₄OR' wherein R' is the same as defined above, or NR_xR_y wherein R_x and R_y are the 42 43 same as defined above); R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 44 45 R_x and R_y are the same as defined above; X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 46 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 47 48 Y is selected from: an oxygen atom; a sulphur atom; or NR (wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) 49 cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or 50 51 (heterocyclyl)alkyl); Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 52 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 53 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 54 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 55 56 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 *5*7 heteroatoms selected from N, O or S; and 2) when X is NR₈ or S wherein R₈ is hydrogen, lower alkyl (C_1 - C_6) or aryl: 58 R₁, R₄, X₁, X₂, Y, Y₁ and Y₂ are the same as defined above; 59

R₂ is selected from: (CH)_nNHCOR₇ (wherein n represents an integer 1 to 6 and R₇ is the

61 same as defined above),

with the provisio that when R_2 is heterocyclyl, R_1 can not be $(CH_2)_{1-4}OR'$, $C(=O)NR_xR_y$ or

63 $(CH_2)_m$ -C(=O)R₃.

1

2. A compound having the structure of Formula XXXIV,

Formula XXXIV

8 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

9 enantiomers, diastereomers or N-oxides

10 wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

16 (wherein R' is as defined above, but also including hydroxy); C(=0)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

20 $(CH_2)_m$ - $C(=O)R_3$

19

21

22

23

24

25

26

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to (CH₂)_mC(=O) through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to

(CH₂)_mC(=O) through C) and wherein the substituents of R₃ can be one or more 27 28 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 29 30 optionally substituted amino (wherein the substituents are selected from C₁-C₆ alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 31 32 C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 33 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 34 35 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 36 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 37 heterocyclylalkyl]; 38 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 39 R_x and R_y are the same as defined above; X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 40 41 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 42 Y is selected from: an oxygen atom; a sulphur atom; or NR 43 (wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or 44 45 (heterocyclyl)alkyl); 46 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 47 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 48 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 49 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring 50 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 51 heteroatoms selected from N, O or S; and 52 R₁₉ represents -CONHNH₂, or -c=N-o-c-R', wherein R' is the same as defined for Formula I. 53

3. The compound of claim 1 having the structure of Formula XXXII,

Y₂
A
Y-X₂
R₄
B
N
R₁₅
X₃
R₁
R₁
Formula XXXII

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, enantiomers, diastereomers or N-oxides wherein

64 wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'
(wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_mC(=0)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,

WO 2005/051931

PCT/IB2004/003893

84	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
85	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
86	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
87	alkyl, C ₃₋₆ alkenyl, C ₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted
88	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
89	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
90	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
91	heterocyclylalkyl];
92	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR _x R _y wherein
93	R _x and R _y are the same as defined above;
94	Y is selected from: an oxygen atom; a sulphur atom; or NR
95	(wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated)
96	cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or
97	(heterocyclyl)alkyl);
98	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
99	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
100	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
101	as defined above, or further, Y ₁ and X ₂ , X ₁ and Y ₂ , X ₁ and X ₂ may together form a ring
102	fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
103	heteroatoms selected from N, O or S;
104	X ₁ represents alkyl;
105	X ₂ represents alkyl, cycloalkyl or aralkyl;
106	X ₃ , X ₄ , X ₅ and X ₆ independently represent C, CH, CH ₂ , CO, CS, NH, N, O, S; R ₁₅ ,
107	R ₁₆ , and R ₁₇ independently represent no atom, alkyl, COCH ₃ , COOC ₂ H ₅ , NH ₂ ,
108	NH-cyclopropyl, CN, SH; and
109	represents an optional single bond.

4. The compound of claim 1 having the structure of Formula XXIII,

2
3
4
5
6
7
8
9
Formula XXXIII

10 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

11 enantiomers, diastereomers or N-oxides wherein

12 wherein

1

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

21 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

22 $(CH_2)_m$ - $C(=O)R_3$

23

24

25

26

27

28

29

30

31

[wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_mC(=0)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,

70

32 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 33 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 34 C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 35 36 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 37 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 38 heterocyclylalkyl]; 39 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 40 R_x and R_y are the same as defined above; 41 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 42 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 43 Y is selected from: an oxygen atom; a sulphur atom; or NR 44 45 (wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) 46 cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or 47 (heterocyclyl)alkyl); Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 48 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 49 50 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 51 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 52 53 heteroatoms selected from N, O or S; 54 X₇ represents O or S; and 55 R₁₈ represents hydrogen, alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl. **5**. The compound of claim 1 wherein R₂ is cyano. 1

- 1 6. The compound of claim 1 wherein R₂ is (CH₂)_nNHCOR₇, n represents an integer 1
- 2 to 6; and R₇ can represent hydrogen, alkyl, alkenyl, alkynyl, (un)saturated, cycloalkyl,
- alkoxy, aryloxy, aryl, aralkyl, heteroaryl, heterocyclyl, (CH₂)₁₋₄OR' wherein R' is the same
- 4 as defined above, or NR_xR_y (wherein R_x and R_y can be independently selected from

- 5 hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl,
- 6 heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl).
- 1 7. The compound of claim 1 wherein R₂ is 6-membered heteroaryl.
- 1 8. A pharmaceutical composition comprising a therapeutically effective amount of a
- 2 compound of claim 1, together with at least one pharmaceutically acceptable
- 3 carrier, excipient or diluent.
- 1 9. A method for treating, preventing, inhibiting or suppressing an inflammatory
- 2 condition or disease in a patient, comprising administering to the said patient a
- 3 therapeutically effective amount of a compound of claim 1.
- 1 10. A method for treating, preventing, inhibiting or suppressing an inflammatory
- 2 condition or disease in a patient, comprising administering to the said patient a
- therapeutically effective amount of a pharmaceutical composition of claim 8.
- 1 11. A method for the treatment, prevention, inhibition or suppression of AIDS, asthma,
- arthritis, bronchitis, chronic obstructive pulmonary disease (COPD), psoriasis,
- allergic rhinitis, shock, atopic dermatitis, crohn's disease, adult respiratory distress
- 4 syndrome (ARDS), eosinophilic granuloma, allergic conjunctivitis, osteoarthritis,
- 5 ulcerative colitis and other inflammatory diseases in a patient comprising
- administering to said patient a therapeutically effective amount of a compound of
- 7 claim 1.
- 1 12. A method for the treatment, prevention, inhibition or suppression of AIDS, asthma,
- arthritis, bronchitis, chronic obstructive pulmonary disease (COPD), psoriasis,
- allergic rhinitis, shock, atopic dermatitis, crohn's disease, adult respiratory distress
- 4 syndrome (ARDS), eosinophilic granuloma, allergic conjunctivitis, osteoarthritis,
- 5 ulcerative colitis and other inflammatory diseases in a patient comprising
- administering to said patient a therapeutically effective amount of a pharmaceutical
- 7 composition of claim 8.

A method for the preparation of compounds of Formula VII (a), 13. 1

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, 7

8 enantiomers, diastereomers or N-oxides, the method comprising:

reacting a compound of Formula II

with a compound of Formula X₂Z (wherein Z is halogen) to give a compound of Formula 15

16 III, wherein

9

X₁ and X₂ are independently selected from: alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl; 21

22 aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;

23 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR

wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 24

NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 25

as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring 26

fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 heteroatoms selected from N, O or S;

reacting the compound of Formula III with hydroxylamine hydrochloride to give a compound of Formula IV;

treating the compound of Formula IV with a compound of Formula V to give a compound of Formula VI

39
40
41
$$R_1$$
 R_2
 R_3
 R_4
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_7
 R

44 wherein

45

46

51

52

53

55

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

54 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

74

75

76

'77

78

79

80

81

82

83

84

85

 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to (CH₂)_mC(=0) through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_m C(=0)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C₁-C₆ alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl];

R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein R_x and R_y are the same as defined above;

and Rr represents [(CH₂)_nCN, COOH, COOCH₃, CHO or pyridyl, wherein n is 0 to 2)];

reacting the compound of Formula VI with hydroxylamine hydrochloride (when Rr is CN) to give a compound of Formula VII; and

$$X_2$$
 Y_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_5
 X_5

reacting the compound of Formula VII with a compound of Formula (R'CO)₂O to give the compound of Formula VII(a) (wherein R' can be hydrogen, alkyl, alkenyl,

- alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl).
 - 1 14. A method for the preparation of compounds of Formula IX,

- 7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 8 enantiomers, diastereomers or N-oxides, the method comprising:
- reacting a compound of Formula VI (when Rr is COOCH₃) with hydrazine hydrate to give a compounds of Formula VIII

18 wherein

- 19 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;
- substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,
- aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
- aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'
- (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y
- (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆
- alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
- 27 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

 $(CH_2)_m - C(=O)R_3$ 28 [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted 29 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 30 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 31 ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered 32 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 33 from the group consisting of N, O and S wherein the ring can be attached to 34 (CH₂)_mC(=O) through C) and wherein the substituents of R₃ can be one or more 35 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 36 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 37 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 38 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 39 C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 40 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 41 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 42 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 43 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 44 heterocyclylalkyl]; 45 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 46 Rx and Ry are the same as defined above; 47 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 48 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 49 Y is selected from: an oxygen atom; a sulphur atom; or NR 50 (wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) 51 cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or 52 (heterocyclyl)alkyl); 53 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 54 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 55 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 56 as defined above, or further, Y1 and X2, X1 and Y2, X1 and X2 may together form a ring 57

- 58 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
- heteroatoms selected from N, O or S; 59
- 60 reacting the compound of Formula VIII with a compound of Formula HC(OR₁₁)₃
- to give a compound of Formula IX (wherein R₁₁ represents alkyl from C₁ to C₃). 61
 - A method for the preparation of compounds of Formula X, 1 15.

- Formula X
- 7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- enantiomers, diastereomers or N-oxides, the method comprising: 8
- 9 reacting a compound of Formula VI (when Rr is CN)

$$\begin{array}{c} X_2 \\ Y_1 \\ Y_2 \\ R_1 \\ Y_2 \\ Y_2 \\ Y_3 \\ Y_4 \\ Y_4 \\ Y_5 \\ Y_6 \\ Y_7 \\ Y_8 \\ Y_8 \\ Y_9 \\$$

15 wherein

3

4

5

- 16 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;
- 17 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- 18 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,
- 19 aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
- 20 aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH2)1.4OR'
- 21 (wherein R' is as defined above, but also including hydroxy); C(=0)NR_xR_y
- 22 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆
- 23 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
- 24 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
- 25 $(CH_2)_m - C(=O)R_3$

78

26 [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 27 28 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 29 ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 30 31 from the group consisting of N, O and S wherein the ring can be attached to 32 $(CH_2)_mC(=0)$ through C) and wherein the substituents of R_3 can be one or more 33 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 34 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 35 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 36 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 37 38 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 39 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 40 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 41 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 42 heterocyclylalkyl]; R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 44 R_x and R_y are the same as defined above; 45 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 46 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 47 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 48 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 49 50 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring 51 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 **52** heteroatoms selected from N, O or S;

with sodium azide to give the compound of Formula X.

1 16. A method for the preparation of compounds of Formula XI,

- 6 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 7 enantiomers, diastereomers or N-oxides, the method comprising:
- 8 reacting a compound of Formula VII

9
$$X_2$$
 Y_1
 N_1
 N_2
 N_1
 N_2
 N_1
 N_2
 N_1
 N_2
 N_3
 N_4
 N_1
 N_4
 N_1
 N_4
 $N_$

14 wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

20 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

24 $(CH_2)_m$ -C(=O)R₃

25 [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

26 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the

80

28 ring can be attached to $(CH_2)_mC(=0)$ through N and R_0 can be a 4-12 membered 29 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 30 from the group consisting of N, O and S wherein the ring can be attached to 31 $(CH_2)_m C(=0)$ through C) and wherein the substituents of R_3 can be one or more 32 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 33 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 34 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 35 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 36 $C(=O)NR_5R_6$ (wherein R_5 and R_6 are independently selected from hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 37 38 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 39 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 40 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 41 heterocyclylalkyl]; 42 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein R_x and R_y are the same as defined above; 43 44 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 45 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 46 47 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 48 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 49 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring *5*0 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 51 heteroatoms selected from N, O or S;

with methyl chloroformate to give the compound of Formula XI.

9

17. A method for the preparation of compounds of Formula XII,

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

8 enantiomers, diastereomers or N-oxides, the method comprising:

reacting compounds of Formula VII

$$\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \end{array}$$

$$\begin{array}{c} X_2 \\ Y_1 \\ X_1 \end{array}$$

$$\begin{array}{c} X_2 \\ X_1 \end{array}$$

$$\begin{array}{c} X_1 \\ X_2 \end{array}$$

$$\begin{array}{c} X_2 \\ X_1 \end{array}$$

$$\begin{array}{c} X_1 \\ X_2 \end{array}$$

$$\begin{array}{c} X_2 \\ X_1 \end{array}$$

$$\begin{array}{c} X_1 \\ X_2 \end{array}$$

$$\begin{array}{c} X_2 \\ X_1 \end{array}$$

$$\begin{array}{c} X_1 \\ X_2 \end{array}$$

$$\begin{array}{c} X_2 \\ X_1 \end{array}$$

$$\begin{array}{c} X_1 \\ X_2 \end{array}$$

$$\begin{array}{c} X_2 \\ X_1 \end{array}$$

$$\begin{array}{c} X_1 \\ X_2 \end{array}$$

$$\begin{array}{c} X_2 \\ X_1 \end{array}$$

$$\begin{array}{c} X_1 \\ X_2 \end{array}$$

$$\begin{array}{c} X_2 \\ X_1 \end{array}$$

$$\begin{array}{c} X_1 \\ X_2 \end{array}$$

15 wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

21 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

25 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the

ring can be attached to (CH₂)_mC(=0) through N and R_q can be a 4-12 membered

30	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
31	from the group consisting of N, O and S wherein the ring can be attached to
32	(CH ₂) _m C(=O) through C) and wherein the substituents of R ₃ can be one or more
33	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
34	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
35	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
36	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
37	C(=0)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
38	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
39	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
40	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
41	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
42	heterocyclylalkyl];
43	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
44	R_x and R_y are the same as defined above;
45	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl;
46	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
47	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
48	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
49	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
50	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring
51	fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
52	heteroatoms selected from N, O or S;
53	with thiocarbonyl diimidazole and 1,8-diazabicyclo[5.4.0]undec-7-one to give the
54	compound of Formula XII.

18. A method for the preparation of compounds of Formula XIII,

8 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

9 enantiomers, diastereomers or N-oxides, the method comprising:

treating a compounds of Formula XII,

$$\begin{array}{c} X_2 \\ Y_1 \\ Y_2 \\ Y_2 \\ Y_2 \\ \hline \\ \end{array}$$

16 wherein

17 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

19 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

21 aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

22 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

25 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

26 $(CH_2)_m$ - $C(=O)R_3$

24

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

28 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the

ring can be attached to (CH₂)_mC(=O) through N and R_q can be a 4-12 membered

84

31 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to 32 (CH₂)_mC(=O) through C) and wherein the substituents of R₃ can be one or more 33 34 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 35 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 36 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 37 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 38 C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 39 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 40 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 41 42 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 43 heterocyclylalkyl]; 44 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 45 R_x and R_y are the same as defined above; 46 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 47 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 48 49 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 50 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 51 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 52 53 heteroatoms selected from N, O or S; with a compound of Formula R₁₁Z (wherein Z is halogen) to gives the compound 54 *55* of Formula XIII (wherein R_{11} is alkyl).

1 19. A method for the preparation of compounds of Formula XIV,

- 6 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 7 enantiomers, diastereomers or N-oxides, the method comprising:
- 8 reacting a compound of Formula VII

$$X_2$$
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_5
 X_5

9

10 wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

Formula VII

- substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,
- aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
- aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'
- (wherein R' is as defined above, but also including hydroxy); C(=0)NR_xR_y
- (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆
- alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
- heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
- 20 $(CH_2)_m$ -C(=O)R₃
- [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

86

R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 22 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 23 ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered 24 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 25 from the group consisting of N, O and S wherein the ring can be attached to 26 (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more 27 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 28 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 29 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 30 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 31 $C(=0)NR_5R_6$ (wherein R_5 and R_6 are independently selected from hydrogen, 32 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 33 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 34 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 35 36 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 37 heterocyclylalkyl]; R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 38 Rx and Rv are the same as defined above; 39 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 40 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 41 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 42 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 43 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 44 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring 45 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 46 47 heteroatoms selected from N, O or S; with thiocarbonyl diimidazole and boron trifluoride etherate to give the compound 48 49 of Formula XIV.

20. A method for the preparation of compounds of Formula XV,

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

9 enantiomers, diastereomers or N-oxides, the method comprising:

reacting compounds of Formula VII

$$X_2$$
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_3
 X_4
 X_5
 X_5

Formula VII

12 wherein

11

8

10

13 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

21 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

22 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

24 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the

88

ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered 26 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 27 from the group consisting of N, O and S wherein the ring can be attached to 28 (CH₂)_mC(=O) through C) and wherein the substituents of R₃ can be one or more 29 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 30 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 31 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 32 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 33 C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 34 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 35 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 36 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 37 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 38 heterocyclylalkyl]; 39. R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 40 R_x and R_y are the same as defined above; 41 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 42 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 43 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 44 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 45 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 46 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 47 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 48 heteroatoms selected from N, O or S; 49 with compounds of Formula (a) R₁₂COOH; (b) R₁₂COCl or (c) R₁₂COOC₂H₅ to 50 give the compound of Formula XV (wherein R₁₂ is alkyl, cycloalkyl, aryl, 51 heteroaryl or heterocyclyl). 52

21. A method for the preparation of compounds of Formula XX,

7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

8 enantiomers, diastereomers or N-oxides,

9 wherein

14

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

. 1

10 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

15 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

19 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C_1 - C_6 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, $C(=O)NR_5R_6$ (wherein R_5 and R_6 are independently selected from hydrogen,

alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 32 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 33 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 34 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 35 heterocyclylalkyl]; 36 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 37 R_x and R_y are the same as defined above; 38 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 39 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 40 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 41 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 42 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 43 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring 44 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 45 heteroatoms selected from N, O or S; and 46 47 R₁₂ is alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl; 48 the method comprising: reacting a compound of Formula IV with a compound of Formula XVI 49 50 -OH 51 52 $(CH_2)_{ri}$ 53 X_1 54 *5*5 Formula IV Formula XVI to give a compound of Formula XVII; 56 57 58 59 $X_{1 \setminus}$ \dot{R}_4 60

 Y_2

Formula XVII

treating the compound of Formula XVII with potassium phthalamide to give a compound of Formula XVIII;

 X_2 Y_1 X_2 X_1 X_2 X_1 X_2 X_1 X_2 X_3 X_4 X_4 X_4 X_4 X_5 X_6 X_7 X_8 X_8

treating the compound of Formula XVIII with a hydrazine hydrate to give a compound of Formula XIX; and

Formula XIX

treating the compound of Formula XIX with a compound of Formula $R_{12}COCl$ or $R_{12}COOH$ to give the compound of Formula XX.

22. A method for the preparation of compounds of Formula XXIII,

$$X_2$$
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_2
 X_2
 X_3
 X_4
 X_4
 X_4
 X_4
 X_5
 X_1
 X_2
 X_3
 X_4
 X_5
 X_1
 X_2
 X_3
 X_4
 X_5
 X_5

- 8 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 9 enantiomers, diastereomers or N-oxides,
- 10 wherein
- 11 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;
- substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

14	aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
15	aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH2)1-4OR'
16	(wherein R' is as defined above, but also including hydroxy); C(=O)NR _x R _y
17	(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6}
18	alkenyl, C ₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
19	heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
20	(CH2)m-C(=O)R3
21	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
22.	R _p or R _q (wherein R _p can be a 4-12 membered (un)saturated monocyclic or
23	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
24	ring can be attached to (CH ₂) _m C(=O) through N and R _q can be a 4-12 membered
25	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
26	from the group consisting of N, O and S wherein the ring can be attached to
27	(CH ₂) _m C(=0) through C) and wherein the substituents of R ₃ can be one or more
28	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
29	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
30	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
31	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
32	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
33	alkyl, C ₃₋₆ alkenyl, C ₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted
34	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
35	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
36	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
37	heterocyclylalkyl];
38	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR _x R _y wherein
39	R _x and R _y are the same as defined above;
40	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl;
41	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
42	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
43	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
44	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same

- as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring
- fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
- 47 heteroatoms selected from N, O or S; and
- 48 R₁₃ is alkyl, aryl or heteroaryl;
- 49 the method comprising
- reacting compounds of Formula XXI with hydroxylamine hydrochloride to give
- 51 compounds of Formula XXII,

54 Formula XXI Formula XXII

which on reaction with compounds of Formula VI (when Rr is COOH),

gives compounds of Formula XXIII.

1 23. A method for the preparation of compounds of Formula XXIV,

- 7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 8 enantiomers, diastereomers or N-oxides,
- 9 wherein

55

61

- 10 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;
- substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

13	aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
14	aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH2)1-4OR'
15	(wherein R' is as defined above, but also including hydroxy); C(=O)NR _x R _y
16	(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6}
17	alkenyl, C ₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
18	heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
19	$(CH_2)_m$ - $C(=O)R_3$
20	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
21	R _p or R _q (wherein R _p can be a 4-12 membered (un)saturated monocyclic or
22	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
23	ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered
24	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
25	from the group consisting of N, O and S wherein the ring can be attached to
26	(CH ₂) _m C(=O) through C) and wherein the substituents of R ₃ can be one or more
27	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
28	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
29	optionally substituted amino (wherein the substituents are selected from C1-C6
30	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
31	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
32	alkyl, C ₃₋₆ alkenyl, C ₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted
33	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
34	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
35	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
36	heterocyclylalkyl];
37	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
38	R _x and R _y are the same as defined above;
39	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl
40	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
41	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
42	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
43	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same

44 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring

fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3

46 heteroatoms selected from N, O or S;

47 the method comprising:

reacting a compound of Formula VI (when Rr is CN)

$$X_{2}$$
 X_{1}
 X_{2}
 X_{2}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{1}
 X_{2}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5

Formula VI with NH₂CH₂CH₂SH. HCl to give the compounds of Formula XXIV.

55 24. A method for the preparation of compounds of Formula XXV,

61 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

62 enantiomers, diastereomers or N-oxides,

63 wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy); C(=0)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

73 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

96

R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 75 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 76 ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered 77 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 78 from the group consisting of N, O and S wherein the ring can be attached to 79 (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more 80 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 81 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 82 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 83 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 84 C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 85 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 86 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 87 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 88 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 89 heterocyclylalkyl]; 90 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 91 Rx and Ry are the same as defined above; 92 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 93 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 94 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 95 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 96 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 97 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring 98 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 99 heteroatoms selected from N, O or S; 100

101

the method comprising:

reacting a Formula VI

$$X_2$$
 Y_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_2
 X_2
 X_2
Formula VI

103

104

105

1

(wherein Rr is COOH) with NH₂NHCSNHR₁₄ (wherein R₁₄ represents hydrogen, alkyl or cycloalkyl) to give the compound of Formula XXV.

25. A method for the preparation of compounds of Formula XXVII,

7

8

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

9 enantiomers, diastereomers or N-oxides,

10 wherein

11 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

12 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

16 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

20 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

98

bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 23 ring can be attached to (CH₂)_mC(=0) through N and R_q can be a 4-12 membered 24 25 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to 26 27 (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more 28 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 29 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 30 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 31 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 32 C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 33 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 34 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 35 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 36 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 37 heterocyclylalkyl]; 38 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 39 R_x and R_y are the same as defined above; X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 40 41 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 42 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 43 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 44 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 45 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 46 47 heteroatoms selected from N, O or S;

48

the method comprising:

reacting a compound of Formula VI 49 50 51 52 53 54 Formula VI 55 56 (wherein Rr is CHO) with hydroxylamine hydrochloride to give a compound of Formula XXVI; and 57 58 59 60 NOH X_{1} 61 62 Formula XXVI 63 64 reacting the compound of Formula XXVI with methacrylonitrile to give the 65 compound of Formula XXVII. A method for the preparation of compounds of Formula XXIX, 26. 2 3 4 X_{1} 5 C_2H_5 6 Formula XXIX 7 8 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, 9 enantiomers, diastereomers or N-oxides, wherein 10 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; 11 12 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR' 13 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

12	aryl; aralkyl; neteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH ₂) ₁₋₄ OR
16	(wherein R' is as defined above, but also including hydroxy); C(=O)NR _x R _y
17	(wherein R _x and R _y can be independently selected from hydrogen, alkyl, C ₃₋₆
18	alkenyl, C ₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
19	heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
20	(CH2)m-C(=O)R3
21	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
22	R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or
23	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
24	ring can be attached to (CH ₂) _m C(=O) through N and R _q can be a 4-12 membered
25	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
26	from the group consisting of N, O and S wherein the ring can be attached to
27	(CH ₂) _m C(=0) through C) and wherein the substituents of R ₃ can be one or more
28	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
29	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
30	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
31	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether
32	C(=0)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
33	alkyl, C ₃₋₆ alkenyl, C ₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted
4	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
5	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
6	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
7	heterocyclylalkyl];
8	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
9	R _x and R _y are the same as defined above;
0	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl;
1	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
2	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
3	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
4	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
5	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring

fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3

47 heteroatoms selected from N, O or S;

48 the method comprising:

reacting a compound of Formula VIII

$$X_2$$
 Y_1
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_4

55

56

with ethylmethylketone to give a compound of Formula XXVIII; and

57
$$X_{2}$$

$$Y_{1}$$

$$0$$

$$R_{1}$$

$$0$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{7}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{7}$$

$$X_{7}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{7}$$

$$X_{7}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{7}$$

$$X$$

62

64

1

treating the compound of Formula XXVIII with acetic anhydride to give the compound of Formula XXIX.

27. A process for the preparation of compounds of Formula XXX,

7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

8 enantiomers, diastereomers or N-oxides,

9 wherein

10 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

13	aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
14	aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH2)1-4OR'
15	(wherein R' is as defined above, but also including hydroxy); C(=O)NR _x R _y
16	(wherein R _x and R _y can be independently selected from hydrogen, alkyl, C ₃₋₆
17	alkenyl, C ₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
18	heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
19	(CH2)m-C(=O)R3
20	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
21	R _p or R _q (wherein R _p can be a 4-12 membered (un)saturated monocyclic or
22	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
23	ring can be attached to (CH ₂) _m C(=O) through N and R _q can be a 4-12 membered
24	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
25	from the group consisting of N, O and S wherein the ring can be attached to
26	(CH ₂) _m C(=O) through C) and wherein the substituents of R ₃ can be one or more
27	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
28	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
29	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
30	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
31	C(=0)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
32	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
33	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
34	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
35	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
36	heterocyclylalkyl];
37	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
38	R_x and R_y are the same as defined above;
39	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl;
40	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
41	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
42	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
43	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same

as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring

fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3

46 heteroatoms selected from N, O or S;

the method comprising reacting a compound of Formula VIII

$$X_2$$
 Y_1
 N_1
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_5
 X_6
 X_7
 X_7
 X_7
 X_8
 X_8

Formula VIII

48

49

1

2

3

4

47

with carbon disulphide to give the compound of Formula XXX.

28. A method for the preparation of compounds of Formula XXXI,

$$X_2$$
 Y_1
 X_1
 X_2
 Y_1
 X_2
 X_1
 X_2
 X_3
 X_4
 X_4
 X_4
 X_5
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8

7

8

0

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

9 enantiomers, diastereomers or N-oxides,

10 wherein

11 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

20 $(CH_2)_m - C(=O)R_3$ 21 [wherein m is an integer in the rangé of 0-2 and R₃ can be optionally substituted 22 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 23 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 24 ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered 25 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 26 from the group consisting of N, O and S wherein the ring can be attached to 27 (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more 28 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 29 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 30 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 31 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 32 C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 33 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 34 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 35 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 36 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 37 heterocyclylalkyl]; 38 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein R_x and R_y are the same as defined above; 39 40 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 41 42 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 43 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 44 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 45 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 46 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 47 heteroatoms selected from N, O or S; 48 the method comprising:

105

with hydrazine hydrate to give the compounds of Formula XXXI.