

Introducción al Modelado DataVault 2.0

Fundamentos del modelado de datos moderno

Rubén Hermoso Díez

Agenda

- ¿Qué es Data Vault?
- Componentes básicos
- Caso práctico
- Buenas prácticas
- Mini test de repaso

¿Por qué no siempre es suficiente con Kimball?

- Difícil adaptación a cambios frecuentes
- No se registran todas las versiones del dato
- Costoso mantener trazabilidad completa

Cliente

ID Cliente	Nombre Cliente	Email	Dirección
1	Juan Pérez	juan@example.com	Calle Falsa 123
2	María Gómez	maria@example.com	Calle Real 456

Pedido

ID Pedido	ID Cliente	Fecha	Monto
1001	1	2025-05-01	250
1002	2	2025-05-02	400

Diferencias enfoque Kimball y DataVault

Aspecto	Kimball	Data Vault
Enfoque	Modelo dimensional (Hechos y Dimensiones), ideal para BI.	Modelo basado en historificación y trazabilidad (Hubs, Links, Satellites).
Flexibilidad ante cambios	Limitada, adecuado para datos estables.	Alta flexibilidad, adecuado para datos cambiantes.
Manejo de datos históricos	No conserva historial completo (solo datos actuales).	Preserva el historial completo de los datos.
Implementación	Fácil de implementar y entender.	Más complejo, requiere mayor esfuerzo de diseño y automatización.
Consultas y rendimiento	Alto rendimiento en consultas por su simplicidad.	Consultas más lentas debido a la reconstrucción del historial.
Mantenimiento	Bajo costo de mantenimiento en entornos estables.	Mayor costo de mantenimiento debido a la gestión de cambios y datos históricos.
Trazabilidad	Limitada, no permite auditoría completa de los cambios.	Alta trazabilidad y permite auditorías completas de los datos.
Adecuación	Ideal para entornos estables con datos poco cambiantes.	Ideal para entornos dinámicos y grandes volúmenes de datos cambiantes.
Automatización	No diseñado para automatización desde el inicio.	Diseñado para automatización, escalabilidad y facilidad de mantenimiento.

Qué es Data Vault

- Método de modelado orientado a la historificación y trazabilidad
- Separa claves, relaciones y atributos
- Pensado para grandes volúmenes y automatización

Comparativa de enfoques

Modelo	Enfoque	Ventaja clave
Kimball	Negocio	Sencillez y rendimiento
Inmon	Corporativo	Integración centralizada
Data Vault	Auditabilidad	Cambios y trazabilidad

Filosofía de Data Vault

- Lo que no cambia: business keys (Hubs)
- Lo que cambia: atributos (Satellites)
- Relaciones (Links) separadas para flexibilidad

Componentes básicos

- Hubs: claves únicas de negocio
- Links: relaciones entre Hubs
- Satellites: información contextual e histórica

Hub

- Clave de negocio única (ej. ID Cliente)
- Los registros insertados no cambian con el tiempo
- Se crea un Hub por cada entidad principal involucrada en el proceso de negocio a modelar

IDCliente

HubPedido

IDPedido	FechaCarga	Fuente
1001	2025-01-01	Sistema A
1002	2025-01-02	Sistema B
1003	2025-01-03	Sistema A

Link

- Une dos o más Hubs
- Representa relaciones (ej. Pedido relaciona Cliente y Producto)
- También tiene clave única

LinkCliente-Pedido

IDPedidoCliente	IDCliente	IDPedido	FechaCarga	Fuente
1	1	1001	2025-01-01	Sistema A
2	2	1002	2025-01-02	Sistema B
3	3	1003	2025-01-03	Sistema A

Satelite

- Almacena atributos que cambian
- Siempre vinculado a un Hub o Link
- Incluye fecha de carga y fuente

SatCliente

IDCliente	Nombre	Email	FechaCarga	Fuente
1	Juan Pérez	juan.perez@email.com	2025-01-01	Sistema A
2	Ana Gómez	ana.gomez@email.com	2025-01-02	Sistema B
3	Pedro Díaz	pedro.diaz@email.com	2025-01-03	Sistema A

SatPedido

IDPedido	Cantidad	FechaEntrega	FechaCarga	Fuente
1001	2	2025-01-10	2025-01-01	Sistema A
1002	5	2025-01-15	2025-01-02	Sistema B
1003	3	2025-01-12	2025-01-03	Sistema A

¿Y si el Hub Cambia?

- El **registro anterior** no se elimina. Se mantiene en el Satellite con la fecha de carga que tenía originalmente
- Mantenemos un histórico de cambios

HubCliente

IDCliente	FechaCarga	Fuente
1	2025-01-01	Sistema A
2	2025-01-02	Sistema B
3	2025-01-03	Sistema A

IDCIIente	Nombre	Email	recnaCarga	ruente
1	Juan Pérez	juan.perez@email.com	2025-01-01	Sistema A
2	Ana Gómez	ana.gomez@email.com	2025-01-02	Sistema B
3	Pedro Díaz	pedro.diaz@email.com	2025-01-03	Sistema A
1	Juan García	juan.garcia@email.com	2025-02-01	Sistema A

Componentes básicos

- Hubs: claves únicas de negocio
- Links: relaciones entre Hubs
- Satellites: información contextual e histórica

Ejemplo: caso práctico Empresarial

- Hub = DNI de una persona
- Link = Registra cómo esa persona se **relaciona** con otras entidades
- Satelite = Detalles personales que cambian (dirección, empleo)

Buenas practicas

- Usar hash keys para identificar registros
- Siempre incluir fecha de carga y fuente
- Diseñar para automatización desde el inicio

Herramientas

- WhereScape, dbt, Talend, Azure Data Factory
- Diseñadas para generar y mantener modelos Data Vault

CASO PRACTICO

Caso práctico Datos de Ventas

Una empresa de logística necesita modelar sus datos bajo el estándar Data Vault 2.0. A partir de las siguientes tablas operacionales:

- Cliente (ID, nombre, email)
- Producto (ID, nombre, categoría)
- Pedido (ID, fecha, cliente, producto, cantidad)

Identificación de Hubs

- HubCliente → ID Cliente
- HubProducto → ID Producto
- HubPedido → ID Pedido (opcional)

HubProducto

HubPedido

Identificación de Links

• LinkPedido une Cliente, Producto y Pedido

Diseño de Satelites

- SatCliente → nombre, email
- SatProducto → nombre, categoría
- SatPedido → fecha, cantidad

Buenas practicas

- Usar hash keys para identificar registros
- Siempre incluir fecha de carga y fuente
- Diseñar para automatización desde el inicio

Estoy preparado para el examen si...

Conozco los tres componentes de Data Vault: Hubs, Links y Satelites.
Sé qué hace cada componente:
☐ Hubs: Claves de negocio únicas.
☐ Links: Relaciones entre Hubs.
☐ Satelites: Información histórica y atributos cambiantes.
Entiendo cómo Data Vault maneja los cambios en los datos: Cada cambio se
registra sin sobrescribir los datos anteriores.
Sé por qué Data Vault es más adecuado para entornos de datos cambiantes
Permite la trazabilidad y la flexibilidad frente a los cambios frecuentes.
Entiendo la diferencia clave entre Data Vault y Kimball: Data Vault es más
escalable y mantiene el historial completo de los datos.

Fundación iberCaja ——