2022-2023 MP2I

11. Suites

Exercice 1. (c) Soit C > 0. Montrer que

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} / (n \ge N \Rightarrow |u_n| \le \varepsilon) \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N} / (n \ge N \Rightarrow |u_n| \le C\varepsilon).$$

Exercice 2. (m) Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{Z} . Montrer que la suite u est convergente si et seulement si elle est stationnaire (i.e. constante à partir d'un certain rang).

Exercice 3. (m) Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $\forall n, k \in \mathbb{N}^*$, $0 \le u_n \le \frac{k}{n} + \frac{1}{k}$. Montrer que $(u_n)_{n\in\mathbb{N}}$ tend vers 0.

Exercice 4. (m) Soit $(u_n)_{n\in\mathbb{N}} \in (\mathbb{R}_+^*)^{\mathbb{N}}$ telle que $\lim_{n\to+\infty} nu_n = 1$. Démontrer que $\lim_{n\to+\infty} u_n = 0$. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle décroissante à partir d'un certain rang? Le démontrer ou donner un contre exemple.

Exercice 5. (m) Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée telle que $\forall n\in\mathbb{N}^*$, $2u_n\leq u_{n-1}+u_{n+1}$. On pose pour $n\in\mathbb{N}$, $v_n=u_{n+1}-u_n$.

- 1) Montrer que $(v_n)_{n\in\mathbb{N}}$ est croissante et majorée par 0.
- 2) Montrer que $\lim_{n\to+\infty} v_n = 0$.

Exercice 6. (i) Soient u_n et v_n deux suites réelles que $0 \le u_n \le 1$, $0 \le v_n \le 1$ et que $u_n v_n \to 1$. Montrer que $u_n \to 1$ et $v_n \to 1$.

Exercice 7. © Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente telle que $(-1)^n u_n$ soit également convergente. Que peut-on dire de $\lim_{n\to+\infty} u_n$?

Exercice 8. (m) Montrer qu'une suite non majorée admet une suite extraite qui diverge vers $+\infty$.

Exercice 9. $(u_n)_{n\in\mathbb{N}}$ une suite telle que $(u_{2n}), (u_{2n+1})$ et (u_{3n}) convergent. Montrer que (u_n) converge.

Exercice 10. (i) Montrer qu'une suite périodique converge si et seulement si elle est constante.

Exercice 11. (i) Trouver une suite complexe $z_n = x_n + iy_n$ où $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ sont deux suites réelles qui admettent une sous suite convergente mais pas $(z_n)_{n \in \mathbb{N}}$.

Exercice 12. © Soient a_0 et b_0 deux réels fixés. On définit par récurrence les suites (a_n) et (b_n) par

$$a_{n+1} = \frac{2a_n + b_n}{3}$$
 et $b_{n+1} = \frac{a_n + 2b_n}{3}$

Montrer que ces deux suites sont adjacentes, puis, en calculant $a_n + b_n$, montrer qu'elles convergent vers $\frac{a_0 + b_0}{2}$.

Exercice 13. (m) Soient pour $n \in \mathbb{N}^*$, $a_n = \sum_{k=1}^n \frac{1}{n+k}$ et $b_n = \sum_{k=n}^{2n} \frac{1}{k}$. Montrer que (a_n) et (b_n) sont des suites adjacentes.

1

Exercice 14. (m) Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $\begin{cases} u_0=1, & \frac{2}{u_{n+1}}=\frac{1}{u_n}+\frac{1}{v_n}\\ v_0=2, & v_{n+1}=\frac{u_n+v_n}{2} \end{cases}$ sont rationnelles, adjacentes et que leur limite est $\sqrt{2}$.

Exercice 15. (m) On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ réelle est de Cauchy si :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ / \ n, p \ge N \Rightarrow |u_n - u_p| < \varepsilon.$$

- 1) Montrer qu'une suite convergente est de Cauchy.
- 2) Montrer qu'une suite de Cauchy est bornée.
- 3) Montrer qu'une suite de Cauchy est convergente.

Exercice 16. (i) Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée. On suppose que toutes les suites extraites de u qui convergent convergent vers une même limite l. Montrer que u elle-même converge vers l.

Exercice 17. (m) Soit $\alpha \notin \mathbb{Q}$ et $\left(\frac{p_n}{q_n}\right)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ tendant vers α où $p_n \in \mathbb{Z}$ et $q_n \in \mathbb{N}^*$.

- 1) On suppose par l'absurde que $(q_n)_{n\in\mathbb{N}^*}$ ne tend pas vers $+\infty$. Montrer qu'elle admet une sous-suite bornée, puis qu'elle admet une sous-suite qui converge.
- 2) Obtenir alors une absurdité. On pourra utiliser le résultat de l'exercice 2.

Exercice 18. (c) Déterminer l'expression des suites réelles suivantes :

- 1) Ordre 1.
 - a) $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = 3u_n 2$.
 - b) $u_1 = 3$ et $\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{1}{2}u_n + 3$
- 2) Ordre 2.
 - a) $u_0 = 0, u_1 = 1$ et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + u_n$.
 - b) $u_0 = 0, u_1 = 1$ et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} u_n$.
 - c) $u_1 = 3, u_2 = 8$ et $\forall n \in \mathbb{N}^*, u_{n+2} = 4u_{n+1} 4u_n$.

Exercice 19. (m) Soit $k \in \mathbb{R}_+$. On pose $u_0 = 2$, $u_1 = 1 + k$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + \left(k^2 - \frac{1}{4}\right)u_n$. Calculer u_n et déterminer sa limite en discutant suivant les valeurs de k.

Exercice 20. (i) Montrer que la suite $u_0 = 1$, $u_1 = 2$ et pour $n \ge 0$, $u_{n+2} = \sqrt{u_{n+1}u_n}$ est bien définie et la déterminer.

Exercice 21. © Étudier les suites définies par les relations de récurrence $u_{n+1} = f(u_n)$ dans les cas suivants :

- 1) $f(x) = \ln(1+x)$ et $u_0 \in \mathbb{R}_+$.
- 2) $f(x) = \arctan(x)$ et $u_0 \in \mathbb{R}$.
- 3) $f(x) = x^3 + \frac{3x}{4}$ et $u_0 \in \mathbb{R}_+$.
- 4) $f(x) = \sqrt{x} + \frac{x}{2}$ et $u_0 \in \mathbb{R}_+$.