Theorem 1.8. Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach lattice E . Assume that

- a) there exists $w \in \mathbb{R}$ such that $||T(t)|| \le e^{wt}$ for all $t \ge 0$;
- b) there exists a core D $_{O}$ of A such that f \in D $_{O}$ implies $\mid f \mid$ \in D $_{O}$.

If the restriction of A to $^{\rm D}_{\rm O}$ satisfies the positive minimum principle, then the semigroup is positive.

<u>Remark</u>. Elementary examples show that neither a) nor b) hold for generators of positive semigroups, in general.

The proof of Theorem 1.8 is based on the following proposition.

<u>Proposition</u> 1.9. Let A be a densely defined dissipative operator which possesses a core D such that $f \in D$ implies $|f| \in D$. If the restriction of A to D satisfies the positive minimum principle (P), then A is dispersive.

<u>Proof.</u> By A-II, Prop. 2.9, it is enough to show that $A_0 := A \mid D_0$ is dispersive.

Let $f \in D_O$ and $\phi \in dN^+(f)$. Then $\phi \in E_+$, $\|\phi\| \le 1$ and $\langle f, \phi \rangle = \|f^+\|$. Hence, $\langle f^-, \phi \rangle = \langle f^-, \phi \rangle + \langle f, \phi \rangle - \|f^+\| = \langle f^+, \phi \rangle - \|f^+\| \le 0$. Thus $\langle f^-, \phi \rangle = 0$. Consequently, $\langle f^+, \phi \rangle = \langle f, \phi \rangle = \|f^+\|$; and so $\phi \in dN(f^+)$. Since A is dissipative it follows that $\langle Af^+, \phi \rangle \le 0$. Moreover, since A satisfies (P) we have $\langle Af^-, \phi \rangle \ge 0$. So we finally obtain, $\langle Af, \phi \rangle = \langle Af^+, \phi \rangle - \langle Af^-, \phi \rangle \le 0$.

<u>Proof of Theorem 1.8.</u> The operator A - w satisfies (P) as well. So it follows from Proposition 1.9 that A - w is dispersive. Consequently, the semigroup $(e^{-wt}T(t))_{t\geq 0}$, which is generated by A - w, is positive. Thus $(T(t))_{t\geq 0}$ is positive as well.

Next we give a reformulation of the positive minimum principle. For $0 < u \in E_+$ we denote by E_u the principal ideal generated by u. If $g \in E_+$, then $g \in \overline{E_u}$ if and only if $\lim_{n \to \infty} \|u - nu \cdot g\| = 0$.

<u>Lemma</u> 1.10. An operator A on E satisfies (P) if and only if (1.8) $(Au)^- \in \overline{E}_{11}$ for all $u \in D(A)_+ := D(A) \cap E_+$.