

5. Un point M est mobile sur le cercle de diamètre AB = 2R et de centre O. M se projette sur AB en P. Le lieu du point symétrique de P par rapport à OM en coordonnées polaires de pôle O et d'axes AOB est :
1. $\rho = 2r \cos \theta$
 2. $\rho = r \sin \theta$
 3. $\rho = r \sin \theta/2$
 4. $\rho = \cos \theta/2$
 5. $\rho = r \cos 2\theta$

6. Le lieu des points dont le rapport des distances r à un point fixe et r' à une droite fixe $r/r' = 2$ est :

- | | | |
|-----------------|------------------|---------------|
| 1. une ellipse | 3. un cercle | 5. une droite |
| 2. une parabole | 4. une hyperbole | (MB. 79) |

7. Soient A(2 ; 0) et B(3 ; 0). Le lieu des points M tels que $2AM = BM$ a pour équation :

1. $x^2 + y^2 - 4x = 0$	3. $x^2 + y^2 + 8x - 56 = 0$	5. $x^2/16 + y^2/4 = 0$
2. $x^2 + y^2 - 16 = 0$	4. $x - 4 = 0$	(B. 79)

8. On donne le cercle de diamètre OA et la tangente t en A. On porte sur une sécante variable OMN la distance $OI = MN$. Le lieu des points I($\rho ; \theta$) admet l'équation :

1. $\rho = a \cos \theta$

2. $\rho = \sin \theta$

3. $\rho = \frac{a}{\cos \theta}$

4. $\rho = \frac{a \sin^2 \theta}{\cos \theta}$

5. $\rho = a/2$

www.ecoles-rdc.net

9. On donne le cercle de centre O et de rayon 2 et le point A(4 ; 0). Le lieu du point P telle que la distance PA soit égale à la longueur d'une tangente au cercle issue de P et limitée au point de contact, a pour équation :

1. $2x - 5 = 0$

3. $2x - 3 = 0$

5. $2x + 3 = 0$

2. $2x + 5 = 0$

4. $x - 3 = 0$

(B. 80)

10. On donne le triangle équilatéral de base A(-1 ; 0) ; B(1 ; 0) et de BC et de sommet C. Par le point M de AC, on trace MN ⊥ AB avec N ∈ BC. Le lieu du point I, intersection de AN et de BM a pour équation :

1. $x^2 + y^2/3 - 3 = 0$

3. $x^2 + y^2 - 1 = 0$

5. $x^2 - \frac{\sqrt{3}}{3}y = 0$

2. $x^2 + y^2/3 - 1 = 0$

4. $x^2 + y^2 - \frac{2\sqrt{3}}{3}y - 1 = 0$

(M. 80)