Tracker GPS - LoRa

Plan

- 1 Introduction
- 2 Objectifs
- 3 Présentation générale
- 4 Diminution de la consommation
- 5 Augmentation de la portée
- 6 Balise plus compacte
- 7 Interface utilisateur
- 8 Test en extérieur
- 9 Conclusion

1 - Introduction

Poursuite du projet de la mineure IoT:

Localisation d'une balise GPS via LoRa

Performances atteintes:

- Consommation élevée
- Distance max : 400 mètres en intérieur

Services pour l'utilisateur :

- Connaître la position du chat en temps réel
- Retracer le parcours du chat

2 - Objectifs

Objectifs sur les performances:

- Diminution de la consommation
- Augmentation de la portée
- Balise plus compacte

Services pour l'utilisateur:

- Connaître la position du chat et la distance
- Connaître le niveau de batterie
- Activer la fonction « Recherche »

- Coordonnées GPS du chat
- Niveau de batterie

- Coordonnées GPS du chat
- Distance utilisateur chat
- Niveau de batterie
- Puissance reçue

- Coordonnées GPS de l'utilisateur
- Etat de la fonction « Recherche »

- Coordonnées GPS de l'utilisateur
- Etat de la fonction « Recherche »

- Temps de veille
- Etat de la fonction « Recherche »

- Coordonnées GPS de l'utilisateur
- Etat de la fonction « Recherche »

- Coordonnées GPS de l'utilisateur
- Etat de la fonction « Recherche »
- Coordonnées GPS du chat
- Distance utilisateur chat
- Niveau de batterie
- Puissance reçue

- Coordonnées GPS du chat
- Niveau de batterie
- Temps de veille
- Etat de la fonction « Recherche »

Facteurs influençant la consommation:

- Longueur des messages envoyés par la balise
- Temps hors veille des composants

Source d'énergie:

- Batterie
 - => Maximiser l'autonomie

Facteurs influençant la consommation:

- Longueur des messages envoyés par la balise
- Temps hors veille des composants

Longueur des messages:

- Réduction de la taille des messages envoyés par la balise pour diminuer le temps d'envoi

Temps de veille:

- Temps de veille fonction de la position du chat, de la vitesse du chat et de la fonction « Recherche »
 - Fonction « Recherche » : recevoir plus de données pour retrouver le chat

Facteurs influençant le temps de veille :

- **Position du chat :**Distance chat-utilisateur >
 Temps de veille
- Vitesse du chat :

 Vitesse du chat

 Temps de veille
- Niveau de la batterie :

 Niveau de la batterie >

 Temps de veille >

=> De 5s à 18min

Performance en autonomie:

- Sans source d'alimentation ni régulation définitive

Avant optimisation:

100 mWh / 5 min => 6h

Avec optimisation et temps de veille minimum : 25 mWh / 5 min => 22h

Avec optimisation et temps de veille maximum : 10 mWh / 5 min => 58h

- => Utilisation d'un panneau solaire pour augmenter l'autonomie ?
- ⇒ Optimisations encore possibles hors de l'IDE Arduino (fréquence du CPU, coprocesseur, etc…)

5 - Augmentation de la portée

Facteurs influençant la portée :

- Choix de l'antenne
- Spreading factor
- Bande passante

5 - Augmentation de la portée

Choix de l'antenne :

- Test de plusieurs antennes pour la balise et la station de base
- Choix des antennes offrant un gain maximal

Communication:

- Émission à puissance maximale (20dBm)
- Spreading factor de 12 (max)
- Bande passante de 125 kHz (min)
 - => Débit faible (300 bits/s)
 - => Portée max (10km en LOS théorique)
- Ajout d'un checksum aux messages

6 - Balise plus compacte

Facteurs influençant l'encombrement:

- Antenne
- Composants

Choix de l'antenne:

- La nouvelle antenne est plus petite.

Lopy4:

 Lopy4 remplacé par un module LoRa et un ESP32 plus compacts.

Circuit imprimé et boitier :

- Non réalisés

7 – Interface utilisateur

Dashboard ThingsBoard (open-source) hébergé sur un serveur AWS

Гable				Q
Timestamp \downarrow	latitude	longitude	power	distance
2019-01-08 17:27:28	48.12544	-1.62332	-58.00000	11.95161
2019-01-08 17:23:48	48.12557	-1.62320	-54.00000	11.93576
2019-01-08 17:22:57	48.12544	-1.62327	-51.00000	11.95043
2019-01-08 17:22:54	48.12549	-1.62315	-51.00000	11.94407
2019-01-08 16:55:58	48.12550	-1.62309	-61.00000	11.94218
2019-01-08 16:52:04	48.12530	-1.62321	-63.00000	11.96542
2019-01-08 16:51:28	48.12543	-1.62344	-66.00000	11.95389
2019-01-08 16:50:24	48.12548	-1.62328	-62.00000	11.94683
2019-01-08 16:49:18	48.12540	-1.62333	-67.00000	11.95575
2019-01-08 16:49:14	48.12550	-1.62338	-61.00000	11.94605
2019-01-08 16:49:11	48.12556	-1.62322	-61.00000	11.93718
2019-01-08 16:49:08	48.12555	-1.62312	-61.00000	11.93723

8 – Test en extérieur

Balise en déplacement

Station de base

8 – Test en extérieur

9 – Conclusion

- Permet de suivre la balise depuis n'importe quel accès à internet
- Précision de l'ordre du mètre en extérieur
- ♦ Portée limitée malgré des paramètres optimaux (400m en intérieur, 1300m en extérieur)
- Consommation réduite, mais encore importante (autonomie maximale de 2,5 jours)
- * Compacité améliorée via le choix des composants, mais pas encore utilisable
- Pas d'authentification de la balise

Merci de votre attention

