```
In [59]: import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         import pandas_datareader as web
         import datetime as dt
         from sklearn.preprocessing import MinMaxScaler
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense, Dropout, LSTM
         stock1 = pd.read_csv('/Users/ashiyabhandari/Desktop/apple_stock.csv', index
In [60]:
         stock = stock.loc['2020-01-01':]
         stock.head()
Out[60]:
                      Adj Close
                                   Close
                                              High
                                                                           Volume
                                                         Low
                                                                  Open
         2020-01-02 72.796043 75.087502 75.150002 73.797501 74.059998 135480400
         2020-01-03 72.088303 74.357498 75.144997 74.125000 74.287498 146322800
         2020-01-06 72.662712 74.949997 74.989998 73.187500 73.447502 118387200
          2020-01-07 72.320969 74.597504 75.224998 74.370003 74.959999 108872000
         2020-01-08 73.484375 75.797501
                                          76.110001 74.290001 74.290001 132079200
In [61]:
         plt.title("Close Price of Apple from 2020 to 2024", size = 11)
         plt.plot(stock['Close'])
         plt.xlabel("Date", size = 10)
         plt.ylabel("Closing Price", size = 10)
```

plt.show()


```
In [62]: #creating min max scaler
         scaler = MinMaxScaler(feature_range=(0,1))
         #fit the scaler to stock dataset, convert it into numpy using .values and th
         scaled_data = scaler.fit_transform(stock['Close'].values.reshape(-1,1))
In [63]: #number of days you want the prediction for to see what the price is going t
         #advise to not have only few days because model will only gather few informa
         days prediction = 60
         train_size = int(len(scaled_data) * 0.8)
         #first 80% for training
         train_data = scaled_data[:train_size]
         #20% for testing
         test_data = scaled_data[train_size:]
         x_{train} = []
         y_{train} = []
         x_{test} = []
         y_test = []
```

```
#loops from the position of scaled_data starting from days_prediction
for x in range(days_prediction, len(train_data)):
    #creating a set of past data points that will be used to make prediction
   #collects the past data and adds it to the list, x-train. This helps mod
   x_train.append(train_data[x - days_prediction: x])
    #y takes the value for today's price. (what we want to predict for today
    y train.append(train data[x, 0])
for x in range(days_prediction, len(test_data)):
    x_test.append(test_data[x - days_prediction:x])
    y_test.append(test_data[x, 0])
#conversiting list to arrays as machine learning language mostly work with n
x_{train} = np.array(x_{train})
y train = np.array(y train)
x_test = np.array(x_test)
y_test = np.array(y_test)
#using np.reshape() function to change the shape of x_train which is require
#ex: if you had 100 samples and each sample used 5 past days,
#the reshaped x_{train} would have the shape (100, 5, 1).
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
```

Build a Model

```
In [65]: model = Sequential()
    #more layers you add more sophisticated
    model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1
    #drops at 20% randomly during training to prevent the model from memorizing
    model.add(Dropout(0.2))
    model.add(LSTM(units=50, return_sequences=True))
    model.add(Dropout(0.2))
    #return_sequence = False by default, learns from all the previous layers
    model.add(LSTM(units=50))
    model.add(Dropout(0.2))

#outputs the final stock price prediction
    model.add(Dense(units=1))
In [66]: #Compiling the model. Need to specify optimizer, loss function, and any metr
    model.compile(optimizer='adam', loss='mean_squared_error')
```

```
#train the model on training data.
 #model is going to see 32 batch at the same time.
 model.fit(x_train, y_train, epochs=50, batch_size=32)
 #make prediction
 predicted_prices = model.predict(x_test)
 #reverse the scaling to get the actual values
 predicted_prices = scaler.inverse_transform(predicted_prices)
 actual_prices = scaler.inverse_transform(y_test.reshape(-1, 1)) # Convert a
Epoch 1/50
                         — 2s 30ms/step - loss: 0.0902
30/30 —
Epoch 2/50
30/30 —
                          - 1s 31ms/step - loss: 0.0051
Epoch 3/50
30/30 -
                          - 1s 31ms/step - loss: 0.0035
Epoch 4/50
30/30 -
                          - 1s 32ms/step - loss: 0.0031
Epoch 5/50
30/30 —
                          - 1s 30ms/step - loss: 0.0036
Epoch 6/50
                          - 1s 30ms/step - loss: 0.0031
30/30 -
Epoch 7/50
30/30 —
                          - 1s 30ms/step - loss: 0.0029
Epoch 8/50
                          - 1s 45ms/step - loss: 0.0025
30/30 —
Epoch 9/50
30/30 -
                          1s 47ms/step - loss: 0.0028
Epoch 10/50
30/30 -
                          1s 31ms/step - loss: 0.0029
Epoch 11/50
30/30 -
                          • 1s 31ms/step - loss: 0.0026
Epoch 12/50
30/30 ——
                          - 1s 33ms/step - loss: 0.0025
Epoch 13/50
30/30 -
                          - 1s 33ms/step - loss: 0.0028
Epoch 14/50
30/30 —
                          - 1s 48ms/step - loss: 0.0022
Epoch 15/50
30/30 —
                          - 1s 34ms/step - loss: 0.0024
Epoch 16/50
30/30 -
                          • 1s 44ms/step - loss: 0.0020
Epoch 17/50
30/30 -
                          - 1s 34ms/step - loss: 0.0025
Epoch 18/50
30/30 -
                          • 1s 32ms/step - loss: 0.0024
```

Epoch 19/50

30/30		1s	33ms/sten	_	loss:	0.0024
	20/50		33m3/ 3 ccp			010024
		1s	31ms/step	_	loss:	0.0021
Epoch	21/50					
30/30		1 s	33ms/step	-	loss:	0.0026
	22/50					
	22.450	1 s	31ms/step	-	loss:	0.0021
	23/50	1.	20== /=+==		1	0 0022
	24/50	15	39IIIS/S Lep	_	toss:	0.0022
	24/30	1s	32ms/sten	_	loss:	0.0022
	25/50		55, 5 15p			
		1 s	37ms/step	_	loss:	0.0020
•	26/50					
		1 s	32ms/step	-	loss:	0.0018
	27/50	_	24 / /		-	
	20./50	1s	31ms/step	_	loss:	0.0019
20/30	28/50	1 c	31mc/cten	_	1000	0 0017
	29/50	13	311113/3 CCP		1033.	0.0017
	23, 30	1s	32ms/step	_	loss:	0.0019
	30/50					
30/30		1 s	38ms/step	-	loss:	0.0016
	31/50	_			_	
	22 /50	1s	41ms/step	_	loss:	0.0016
20/30	32/50	1 c	36ms/sten	_	1000	0 0017
	33/50	13	3011137 3 CCP		(033.	0.0017
		1 s	46ms/step	_	loss:	0.0019
•	34/50					
		1 s	36ms/step	-	loss:	0.0018
	35/50	1.	25ma /a+an		1	0 0016
	36/50	15	35ms/step	_	toss:	0.0010
-		1s	34ms/sten	_	loss:	0.0016
	37/50		J			0100_0
	•	1 s	32ms/step	_	loss:	0.0016
•	38/50					
		1 s	33ms/step	-	loss:	0.0016
	39/50	1.	21 == /=+==		1	0 0016
	40/50	15	31ms/step	_	toss:	0.0010
•		1s	32ms/sten	_	loss:	0.0016
	41/50		, о сор			3.0010
		1 s	33ms/step	_	loss:	0.0017
	42/50					
	42.450	1 s	31ms/step	-	loss:	0.0016
	43/50	1 -	17mc/c+cc		1000:	0 0016
	44/50	TS	4/IIIS/STEP	_	1055:	סבטט. ט
Lhocii	77/JU					

```
30/30 -
                          - 1s 32ms/step - loss: 0.0016
Epoch 45/50
30/30 -
                           • 1s 32ms/step - loss: 0.0016
Epoch 46/50
                           • 1s 31ms/step - loss: 0.0016
30/30 -
Epoch 47/50
30/30 -
                           • 1s 34ms/step - loss: 0.0016
Epoch 48/50
30/30 -
                           • 1s 39ms/step - loss: 0.0014
Epoch 49/50
30/30 ---
                           1s 34ms/step - loss: 0.0014
Epoch 50/50
30/30 -
                           • 1s 32ms/step - loss: 0.0013
6/6 —

    0s 10ms/step
```

```
In [67]: plt.figure(figsize=(10, 5))
  plt.plot(actual_prices, color = 'green', label='Actual Prices')
  plt.plot(predicted_prices, color = 'blue', label='Predicted Prices')
  plt.title('Actual vs Predicted Prices')
  plt.xlabel('Time')
  plt.ylabel('Share Price')
  plt.legend()
  plt.show()
```



```
In [68]: print("Actual Price | Predicted Price")
print("-" * 30)

for x, y in zip(actual_prices.flatten(), predicted_prices.flatten()):
    print(f" { float(x):.3f} {float(y):.3f}")
```

Actu	ial	Price	Predicte	ed	Pι	ri	ce
		840	 1	 L71		14	0
1	.69.	650		L70			
		820		L69			
		580		L68			
		450		L68			
		670		L68			
		780		L67			
		040		L67			
		550		L68			
		690		L68			
		380		L70			
		000		L70			
		040		L71			
		000		L70			
		840		L69			
		900		L68			
		020		L67			
		890		L66			
		300		L66			
		500		L66			
		330		L66			
		300		L67			
		030		L68			
		380		L69			
		710		L70			
		400		L72			
		740 570		L75 L77			
		050		L77 L79			
		280		L79 L81			
		430		182			
		720		182 183			
		840		L83			
		870		L85			
_		040	_	L85			
		350		L86		_	
		900		L86			
		880	_	L87			_
		980		L87			
		990		L87			
		290		L87			
		290		L86			
		250		186			
		030		L86			
		350		L87			
	_	870		L87			
		480		189			
1	96.	890	1	L90	. (₃₆	7

193.120	191.147
207.150	191.896
	193.218
213.070	
214.240	195.601
212.490	198.897
216.670	202.460
214.290	206.027
209.680	208.996
207.490	210.693
	210.885
209.070	209.879
213.250	208.202
214.100	206.633
210.620	205.596
216.750	204.956
220.270	205.110
221.550	206.250
226.340	208.237
227.820	211.049
228.680	214.364
	217.743
227.570	221.072
230.540	223.567
234.400	
	225.205
234.820	226.320
228.880	227.057
224.180	227.008
224.310	225.881
223.960	223.957
225.010	221.651
218.540	219.475
217.490	217.270
217.960	215.144
218.240	213.341
218.800	212.055
222.080	211.401
218.360	211.600
219.860	212.237
209.270	213.167
207.230	213.376
209.820	212.570
213.310	211.145
216.240	209.740
217.530	208.899
221.270	208.850
221.720	209.785
224.720	211.498
226.050	213.830
225.890	216.472
226.510	218.992
ZZU - 310	Z10.99Z

226.400	221.090
224.530	222.551
226.840	223.159
227.180	223.169
228.030	222.804
226.490	222.319
229.790	221.738
229.000	221.408
222.770	221.333
220.850	220.978
222.380	220.142
220.820	219.059
220.910	217.832
220.110	216.659
222.660	215.642
222.770	215.075
222.500	215.012
216.320	215.353
216.790	215.476
220.690	215.275
228.870	215.096
228.200	215.686
226.470	217.007
227.370	218.652
226.370	220.340
227.520	221.722
227.790	222.718
233.000	223.309
226.210	223.940
226.780	224.122
225.670	223.860
226.800	223.176
221.690	222.322
225.770	221.088
229.540	219.944
229.040	219.395
227.550	219.480
231.300	219.961
233.850	220.933
231.780	222.419
232,150	224,009
235.000	225.443
236.480	226.767
235.860	228.007
230.760	229.023
230.570	229.315
231.410	228.866
233.400	227.938
233.670	,
	226 064
230.100	226.964 226.199

225.910	225.467
222.910	224.458
222.010	223.003
223.450	221.220
222.720	219.495
227.480	218.039
226.960	217.369
224.230	217.495
224.230	218.035
225.120	218.735
228.220	219.480
225.000	220.396
228.020	221.139
228.280	221.828
229.000	222.453
228.520	223.025
229.870	223.465
232.870	223.841
235.060	224.385
234.930	225.244
237.330	226.300
239.590	227.565
242.650	229.049
243.010	230.809
243.040	232.650
242.840	234.317
246.750	235.585
247.770	236.676
246.490	
	237.658
247.960	238.374
248.130	238.896
251.040	239.244
253.480	239.678
248.050	240.412
249.790	240.907
254.490	241.184
255.270	241.656
258.200	242.414
259.020	243.615
255.590	245.157
252.200	246.480
250.420	247.057
243.850	246.698
243.860	245.044

Prediction for Future Day

```
In [70]: model_inputs = scaled_data
```

```
real_data = model_inputs[len(model_inputs) - days_prediction : len(model_inputs)
real_data = np.array(real_data)
real_data = np.reshape(real_data, (1, real_data.shape[0], 1)) # Reshape for

prediction = model.predict(real_data)
prediction = scaler.inverse_transform(prediction)
print(f"Prediction: {prediction}")
```

1/1 _____ 0s 161ms/step

Prediction: [[242.4975]]