Ghost in the Logs: Strategic Anonymization Without Losing Threat Context

This talk introduces a layered anonymization pipeline that preserves identity-linked behavioral signals critical for machine learning while minimizing re-identification risk. Below is a breakdown of the talk structure and a visual diagram of the end-to-end anonymization architecture.

1. The Anonymization Paradox in Cybersecurity

- Why privacy is often at odds with detection
- The risks of over-sanitization: destroying detection signals
- Real-world failures from naive hashing, token reuse, or excessive redaction

To overcome these issues, we propose a layered architecture that strategically anonymizes while retaining detection-critical signals.

2. Architecture Overview: A Layered, Behavior-Preserving Pipeline

- Raw AD Logs: Identity-rich, behavior-dense telemetry (user/device IDs, timestamps, location)
- Token Abstraction: Contextual tokenization (removal of direct identifiers, scoped tokens)
- Contextual Pseudonyms: Graph-aware pseudonyms to retain user-session-device relationships
- Behavioral Transformation: Retain sequence structure, switching patterns, rhythm
- Al-Compatible Output: Structured logs usable for LSTM, Transformer, and GNN-based threat models

Visual walkthrough of the full flowchart

This architecture was designed through a series of trade-off decisions—balancing signal fidelity with re-identification risk.

3. Key Design Decisions and Trade-offs

- What we chose to preserve (session flow, geo-behavior, switching dynamics)
- What we chose to abstract (PII, device identifiers, static tokens)
- Techniques to minimize re-identification risk while maintaining detection value

To validate these decisions, we modeled attacker capabilities and used metrics to measure how much behavioral signal was retained.

4. Evaluating Risk and Signal Retention

- Re-identification modeling: how we assess risk post-transformation
- Impact of anonymization on behavioral ML pipelines
- Empirical examples of detection signal degradation vs. preservation

Building and refining this system revealed practical challenges and design pivots along the way.

5. Lessons from Real-World Implementation

- Challenges working with live logs in an operational InfoSec pipeline
- Mistakes made and refined approaches (e.g., graph-preserving pseudonymization)
- Metrics used to evaluate anonymization quality and downstream ML performance

The result is a set of design patterns and actionable guidance security teams can follow.

6. Practical Recommendations for Security Teams

Privacy-preserving logging dos and don'ts

- Tailoring anonymization to use case (e.g., ML modeling vs. audit review)
- Templates and techniques teams can adopt

Finally, the demo provides a walk-through of this strategy in action.

7. Demo Walkthrough

- Visual simulation of the anonymization pipeline in action
- Before/after examples of log transformation and model compatibility
- How downstream anomaly detection (e.g., geo velocity or login drift) remains functional

This talk equips security and ML teams with a blueprint for preserving both privacy and detection.