

Kryptographie für CTFs

Eine Einführung

KITCTF

Einführung

"Cryptography is the practice and study of techniques for secure communication in the presence of third parties." Wikipedia

- Nicht Wissenschaftlich
 - Dafür Vorlesungen und Praktika aus "Kryptographie und Sicherheit"
- Die Grundlagen für CTF-Anfänger

Übersicht — Erste Dimension

Übersicht — Zweite Dimension

- Verschlüsselung
- Authentifizierung ("Echtheit")
- Hash-Funktionen
- Pseudozufallsgeneratoren
- Proof-of-Knowledge
- Commitments
- **-** . . .

Klassiker

Caesar-Chiffre

Jeder Buchstabe wird um festen Werk k verschoben

- Brechen durch ausprobieren oder durch Häufigkeitsanalysen einfach möglich
- Wird heutzutage immer noch verwendet (spiegel.de Paywall)
- Beispiel für Substitution

11/13/2018 Ferdinand Sauer - Kryptographie KITCTF

6

Klassiker

Vigenère-Chiffre

 Wähle Schlüsselwort und verschiebe jeden Buchstaben entsprechend dem Schlüsselbuchstaben

- Schlüssellänge bestimmen und dann Caesar-Chiffre für jede Schlüsselposition einzeln brechen
- Noch ein Beispiel für Substitution

Symmetrische Verschlüsselungen

Blockchiffren

- Verschlüsselt Blöcke fester Länge
- Betriebsmodus wird zur Verschlüsselung längerer Daten verwendet

Stromchiffren

- Pseudozufälliger Schlüsselstrom wird aus Schlüssel abgeleitet
- Schlüsselstrom wird mit Klartext kombiniert

Stromchiffren

Stromchiffren

RC4, SEAL, Salsa20, CryptMT, ...

Mögliche Angriffe:

Bekannter Klartext:

Aus einem bekannten Klartext *m* mit passendem Chiffrat *c* kann der Schlüsselstrom *K* rekonstruiert werden

$$K = m \oplus c$$

Key-Reuse:

Sind c_1 und c_2 mit dem gleichen Schlüssel verschlüsselt worden, dann kann man $m_1 \oplus m_2$ wie folgt berechnen.

$$c_1 \oplus c_2 = m_1 \oplus m_2$$

Blockchiffren

- DES, IDEA, RC5, AES, Blowfish, ...
- Block- und Schlüssellänge
- Padding: Erweitern der Nachricht auf Blocklänge
- Betriebsmodi
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Counter Mode (CTR)
 - ...

Electronic Code Book

- Verschlüssle jeden Block einzeln
- Probleme:
 - Dateneinfügen möglich
 - Deterministisch

Cipher Block Chaining

- Verschlüsseln: Enc(Block XOR dem vorigen Chiffrat-Block)
- Entschlüsseln: Dec(Chiffrat-Block) XOR vorigem Chiffrat-Block
- Initialisierungsvektor zufällig
- Probleme:
 - Verlust eines Chiffrat-Blocks führt zu Verlust 2er Klartextblöcke

11/13/2018

CBC Padding Oracle

- Padding: Klartext wird auf Blocklänge aufgefüllt.
- Bsp.: PKCS#7 x Byte fehlen zum vollen Block. Fülle jedes der Bytes mit dem Wert x.

	BLOCK #1							BLOCK #2								
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
Ex 1	F	I	G													
Ex 1 (Padded)	F	I	G	0x05	0x05	0x05	0x05	0x05								
Ex 2	В	A	N	A	N	A										
Ex 2 (Padded)	В	λ	N	λ	N	Α	0x02	0x02								
Ex 3	A	v	0	С	A	D	0									
Ex 3 (Padded)	λ	v	0	С	A	D	0	0x01								
Ex 4	P	L	A	N	T	A	I	N								
Ex 4 (Padded)	р	L	Α	N	т	A	I	N	0x08							
Ex 5	P	A	s	s	I	0	N	F	R	Ū	I	T				
Ex 5 (Padded)	р	λ	s	s	I	0	N	F	R	U	I	т	0x04	0x04	0x04	0x0

CBC Padding Oracle

Über Änderung am vorletzten Block lässt sich über das Paddingorakel der letzte Block komplett bestimmen

Asymmetrische Kryptosysteme

RSA

- Wähle zwei Primzahlen p und q
- Bestimme $N = p \cdot q$
- Bestimme $\phi(N) = (p-1) \cdot (q-1)$
- Wähle e so, dass $ggT(e,\phi(N)) = 1 \land 1 < e < \phi(N)$ gilt
- Bestimme d so, dass $e \cdot d \equiv 1 \pmod{\phi(N)}$ gilt. (<u>erweiterter euklidischer Algorithmus</u>)
- Öffentlicher Schlüssel: N, e
- Privater Schlüssel: d
- $\blacksquare ggT(a,b)$: Größter gemeinsamer Teiler von a und b
- $\phi(n) = |\{a \in \mathbb{N} | 1 \le a \le n \land ggT(a, n) = 1\}|$ Anzahl aller Zahlen, die zu n Teilerfremd sind. (<u>eulersche Funktion</u>)

RSA

Encryption:

$$c = m^e \mod N$$

Decryption:

 $c^d \mod N$

- $\iff m^{ed} \mod N$, mit dem <u>kleinen fermatschen Satz</u>
- $\iff m^{ed \bmod \phi(N)} \bmod N$
- $\iff m^1 \bmod N$

(Mit m < N)

Holomorphie:

 $c_1=m_1^e \mod N \mod c_2=m_2^e \mod N$, so gilt $c_1\cdot c_2=m_1^e\cdot m_2^e \mod N=(m_1\cdot m_2)^e \mod N$. Es gilt also $\operatorname{Enc}(m_1,pk)\cdot\operatorname{Enc}(m_2,pk)=\operatorname{Enc}(m_1\cdot m_2,pk)$

Angriffe auf RSA

Bedingung	Angriff	Komplexität
Keine	<u>Faktorisierung</u>	$\exp(\log(N)^{(1/3)}\log\log(N)^{(2/3)})$
Kleines d	Wiener's Attack	Polynomiell
$m < N^{(1/4)}$	Wurzel ziehen	Polynomiell
Senden der gleichen Nachricht an viele Empfänger mit selben	Håstad's broadcast attack	Polynomiell

Und viele mehr!

Danke

- Leonard Schönborn für die Folien
- Stefan fürs Organisieren der Folien

Aufgaben

- ctf.bplaced.net (Crypto 20 + Crypto 30)
- Picoctf.com
- cryptopals.com
- overthewire.org/wargames/krypton