Introduction to Electrical Engineering

Aakash Jog

2014-15

Contents

1	Lec	Lecturer Information														
2	Rec	Required Reading														
Ι	Ba	Basic Definitions and Laws														
1	Bas	Basic Definitions														
2	Kir 2.1 2.2															
3	Cor 3.1 3.2	Resistors	6 6 7 8 8 9													
4	4.1 4.2 4.3 4.4 4.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 11 11 12													
	4.6	Ramp Function	13													

17	Daullet Danstin													1.	1
4.7	Doublet Function													- 14	Ŧ

1 Lecturer Information

Prof. Moshe Tur

Office: Wolfson 413 Telephone: 03-640-8125 E-mail: tur@post.tau.ac.il

2 Required Reading

C.A. Desoer and E.S. Kuh: $Basic\ Circuit\ Theory,\ Mc-Graw-Hill,\ International\ Edition.$

Part I

Basic Definitions and Laws

1 Basic Definitions

Definition 1 (Electrical circuit). A collection of interconnected components.

Definition 2 (Lumped component). An electrical component whose dimensions are very very small compared to the wavelength of the electromagnetic waves passing through it is called a lumped component.

Definition 3 (One port device). An electrical component with two terminals is called a one port device.

Definition 4 (Nodes and branches). In the figure, all the black dots are called nodes. The parts of the circuit between two nodes are called branches.

2 Kirchoff's Laws

2.1 Kirchoff's Current Law

The sum of all currents entering or exiting a node is zero.

$$i_1 + i_3 - i_4 = 0$$

2.2 Kirchoff's Voltage Law

The sum of all branch voltages along a closed loop is zero.

$$v_1 - v_4 - v_5 = 0$$
$$v_2 + v_3 + v_4 = 0$$
$$v_1 + v_2 + v_3 - v_5 = 0$$

3 Components

3.1 Resistors

Definition 5 (Resistor). A two terminal component is called a resistor if the voltage across it at any given time t is a function of the current at the same time t.

3.1.1 Linear Time Independent Resistor

$$v(t) = R \cdot i(t)$$

$$i(t) = G \cdot v(t)$$

R is called the resistance and G is called the conductance.

3.1.2 Non-linear Resistors (Diodes)

$$i(t) = I_s \left(e^{\frac{q \cdot v(t)}{kT}} - 1 \right)$$

 I_s = reverse current

k =Boltzman constant

T = absolute temperature

q =electronic change

$$\frac{kT}{q}=0.026(\text{ at }300\text{K})$$

3.2 Independent Sources

3.2.1 Voltage Sources

Definition 6 (Voltage source). A two terminal component is called a voltage source if the voltage on its terminals is independent of the current through it.

3.2.2 Current Sources

Definition 7 (Current source). A two terminal component is called a current source if it can supply a current $i_s(t)$ independent of the voltage across its terminals.

3.2.3 Real Batteries

$$0 = -V_0 + v_R + v$$
$$v = V_0 - v_R$$
$$\therefore v = V_0 - R_s i$$

4 Waveforms

4.1 DC (Constant Function)

4.2 Sinusoidal Wave

4.3 Step Function

$$u(t) = \begin{cases} 0 & ; & t < 0 \\ \frac{1}{2} & ; & t = \tau \\ 1 & ; & t > \tau \end{cases}$$

4.4 Rectangular Pulse

$$P_{\Delta}(t) = \frac{u(t) - u(t - \Delta)}{\Delta}$$

$$P_{\Delta}(t) = \begin{cases} 0 & ; \quad t < 0 \\ \frac{1}{\Delta} & ; \quad t = 0 \\ 1 & ; \quad t > 0 \end{cases}$$

4.5 Dirac δ function

$$\delta(t) = \lim_{\Delta \to 0} P_{\Delta}(t)$$

$$S(\Delta) = \int_{-\infty}^{\infty} P_{\Delta}(t) f(t) dt$$

As
$$\Delta \to 0$$
,

$$S(\Delta) = \int_{-\infty}^{\infty} P_{\Delta}(t) f(0) dt$$
$$= f(0) \int_{-\infty}^{\infty} P_{0}(t) dt$$
$$= f(0)$$

$$\delta(t) = \begin{cases} 0 & ; \quad t \neq 0 \\ \infty & ; \quad t = 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t)f(t) dt = f(0)$$

$$\int_{-\infty}^{\infty} \delta(t - \tau)f(t) dt = f(\tau)$$

$$\int_{-\infty}^{\infty} \delta(t - \tau) f(t) \, \mathrm{d}t = f(\tau)$$

$$\int_{-\infty}^{\infty} \delta(at) f(t) dt = \frac{1}{|a|} \delta(t)$$

Ramp Function 4.6

$$r(t) = tu(t)$$

4.7 Doublet Function

$$\delta'(t) = \frac{\mathrm{d}\delta(t)}{\mathrm{d}t}$$

$$\int_{-\infty}^{t} u(t') dt' = r(t)$$

$$\frac{d}{dt} r(t) = u(t)$$

$$u(t) = \int_{-\infty}^{t} \delta(t') dt$$

$$r(t) \stackrel{\frac{\mathrm{d}}{\mathrm{d}t}}{\underset{f_{-\infty}^{t}}{\overleftarrow{d}t}} u(t) \stackrel{\frac{\mathrm{d}}{\mathrm{d}t}}{\underset{f_{-\infty}^{t}}{\overleftarrow{d}t}} \delta(t) \stackrel{\frac{\mathrm{d}}{\mathrm{d}t}}{\underset{f_{-\infty}^{t}}{\overleftarrow{d}t}} \delta'(t)$$

Exercise 1.

Express the following wave as a sum of standard waveforms.

Solution 1.

$$f(t) = u(t-1) + u(t-2)$$

Exercise 2.

Express the following wave as a sum of standard waveforms.

Solution 2.

$$f(t) = r(t) + r(t-1)$$