#### Team Raspberry - Image Classification

Kristian Wahlroos IIkka Vähämaa Sean Lang

December 15, 2017

#### Overview

- Methods
- 2 Parametrization
- 3 Final System
- 4 Results

# Methods Data representation

- Treat every image as a 3D-tensor (RGB)
  - Repeat the value of grayscale images three times
  - Colorized are handled as the original tensors
- Original data has 14 labels, we used 15
  - Extra one for the unclassified images
  - One-hot encoded labels

# Methods Data processing

- Read images in batches of size 2000
  - Helps to avoid filling the RAM
- Normalize the pixel values between [0.0, 1.0]
- For every batch augmenting the data
  - Provided by Keras
  - Centerify, shear, zoom, rotate and flip
  - To get more variation and samples from classes with few labels

#### Methods Class weights 1/2

• Classes are very unbalanced



Figure: Class distribution

#### Methods Class weights 2/2

- We tackled this problem by custom weights per class
  - Giving them at training phase

#### Class weight function

$$S(c_i; \lambda) = \ln\left(\lambda \frac{\sum_c |c|}{|c_i|}\right)$$

$$W(c_i; \lambda) = \max(S(c_i; \lambda), 1)$$

#### Methods Network topology

- One network that outputs 15 classes
- Four convolution layers all followed by max pooling
  - Filters 16, 32, 32, 64
  - Kernel size 3x3
  - Max pool size 2x2
  - ReLU as activation function
- After pooling flattening via dropout to dense layer with sigmoid activation
  - Dropout value: 0.4
- Very simple network

### Methods Loss function 1/2

- Categorical crossentropy wouldn't work as one image can be in many classes
- Binary crossentropy was suggested in many forum posts
  - Still not viable solution when there are many overlapping categories
  - Loss is too forgiving for giving 0 labels

#### Methods Loss function 2/2

- Solution: "custom" loss function BP-MLL\*
  - Actually taken directly from the paper [1]<sup>†</sup>
  - Designed for multi-label problems
  - Implementation for Keras can be found from internet
  - Punishes more from just giving 0 labels

$$E = \sum_{i=1}^{m} \frac{1}{|Y_i| |\bar{Y}_i|} \sum_{(k,l) \in Y_i \times \bar{Y}_i} \exp(-(c_k^i - c_l^i))$$

<sup>\*</sup>Backpropagation for Multilabel Learning

<sup>&</sup>lt;sup>†</sup>[1] Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization, 2006

#### Methods Validation

- Per batch, 10% of the data is randomly selected
- This subset is left out from the training phase
- Validated against in the final step
- With F1-score, we also inspected
  - Binary accuracy
  - Categorical accuracy
  - Hamming loss
  - Micro averaged precision score

#### Parametrization

#### **Tweaks**

- "Default"
- 2 Increased deeply-connected layers
- 3 Adagrad optimizer
- 4 Nadam optimizer
- 6 More convolutions
- 6 Even more convolutions
- Reverse convolution triangle
- 8 Learning Rate Adjustments
  - 1r=0.0005
  - 2 lr=0.000333
  - 3 lr=0.002
  - 4 lr=0.005
- Activation Functions
  - 1 Leaky ReLU ( $\alpha = 0.3$ )
    - 2 tanh

# Parametrization Results

| Model n. | F1    | $HL^\ddagger$ |
|----------|-------|---------------|
| 1        | 0.462 | 0.125         |
| 2        | 0.452 | 0.128         |
| 3        | 0.459 | 0.125         |
| 4        | 0.469 | 0.123         |
| 5        | 0.462 | 0.124         |
| 6        | 0.462 | 0.126         |
| 7        | 0.463 | 0.125         |
| 8.1      | 0.464 | 0.124         |
| 8.2      | 0.457 | 0.126         |
| 8.3      | 0.465 | 0.124         |
| 8.4      | 0.457 | 0.125         |
| 9.1      | 0.083 | 0.796         |
| 9.2      | 0.378 | 0.184         |

<sup>&</sup>lt;sup>‡</sup>Hamming Loss

#### Parametrization **Training**



(c) More Convolutional Layers (6)



### Final System

#### Hyper-parameters of the final system

- Same as described in Methods section
- 2 epochs per batch
- BP-MLL Loss
- RMSprop optimizer (learning rate of 0.002 [twice default])

# Results Accuracy and Loss



Figure: Final Model (trained over 250 epochs)

15 label F1: 0.46714 label F1: 0.499

• Hamming loss: 0.123

### Results Sample Output

```
0 0 0 0 0 0 0 0 0 1 0 0 0 0
      0 0
          0 0 0
                0
                  1 0 0
        0
          0
            0
              0
                0
                     0
                       0
      0 0
          0 0 0
                0
                  1 0
                       0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 1 0 0 0 0
      0 0
          0 0 0
                0
                  1 0
                       0 0 0
      0 0
          0 \ 0 \ 0
                0
                  1 0
                       0 0 0
      0
                0
        0
          0
            0
              0
                  1 0
                       0
     0 0
                0
                  1 0
          0 \ 0 \ 0
```

. . .

### Results Confusion Matrix



Always predicts same result for each label on every picture