Bhattacharyya distance for hurdle gamma distributions

Stefano Mezzini

2023-02-02

For discrete variables with PMFs $P(\mathcal{X})$ and $Q(\mathcal{X})$ over the common domain \mathcal{X} , the Bhattacharyya distance is

$$D_B = -\log\left(\sum_{x \in \mathcal{X}} \sqrt{P(x) \ Q(x)}\right).$$

For continuous variables with PDFs $P(\mathcal{X})$ and $Q(\mathcal{X})$ over the common domain \mathcal{X} , the Bhattacharyya distance is

$$D_B = -\log\left(\int_{\mathcal{X}} \sqrt{P(x) \ Q(x)} \ dx\right).$$

We can approximate it using a sum over a finite set $\mathcal{X}' \in \mathcal{X}$ with finite sampling intervals dx:

$$D_B = -\log\left(\sum_{x \in \mathcal{X}'} \sqrt{P(x) \ Q(x)} \ dx\right),\,$$

provided the size of \mathcal{X}' is sufficiently large to ensure a reasonably stable and accurate estimate.

Given two random variables following **Bernoulli distributions** with success probabilities p_1 and p_2 , the Bhattacharyya distance is

$$D_B = -\log \left(\sum_{x \in \{0,1\}} \sqrt{P(x) \ Q(x)} \right) = -\log \left(\sqrt{(1-p_1)(1-p_2)} + \sqrt{p_1 \ p_2} \right).$$

Given two random variables following **hurdle gamma distributions** with probabilities of success p_1 and p_2 , shapes k_1 and k_2 , and scales θ_1 and θ_2 , the approximate Bhattacharyya distance is

$$D_B \approx -\log \left(\sum_{x \in \mathcal{X}'} \sqrt{P(x) \ Q(x)} \right) = -\log \left(\sqrt{(1-p_1)(1-p_2)} + \sum_{x \in \mathcal{X}'-\{0\}} \sqrt{(p_1 \ P_{\Gamma}(x)) \ (p_2 \ Q_{\Gamma}(x))} \right)$$