Business Case: Target

PART 1 -

Time period for which the data is given-

select min(data_period) as first_day,max(data_period) as last_day from

(select distinct extract(date from order_purchase_timestamp) as data_period from `jan23-scalersql.Target.orders` order by data_period);

Cities and States of customers ordered during the given period-

select c.customer_id,c.customer_city,c.customer_state,extract(date from o.order_purchase_timestamp) as order _date

from `jan23-scalersql.Target.customers` as c join `jan23-scalersql.Target.orders` as o on c.customer_id=o.customer_id order by order_date;

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS	EXECUTION GRAPH	PREVIEW	
Row	customer_id	le	customer_city	le	customer_s	state	order_date	11
1	08c5351a6aca1c	:1589a38f244	boa vista		RR		2016-09-04	
2	683c54fc24d40e	e9f8a6fc179f	passo fundo		RS		2016-09-05	
3	622e13439d6b5a	a0b486c4356	sao jose dos car	npos	SP		2016-09-13	
4	86dc2ffce2dfff33	36de2f386a78	sao joaquim da l	parra	SP		2016-09-15	
5	b106b360fe2ef88	849fbbd056f7	sao paulo		SP		2016-10-02	
6	7ec40b22510fdb	ea1b08921dd	panambi		RS		2016-10-03	
7	7812fcebfc5e806	55d31e1bb5f0	taubate		SP		2016-10-03	
8	dc607dc98d6a11	d5d04d9f2a7	ipatinga		MG		2016-10-03	
9	355077684019f7	f60a031656b	sao paulo		SP		2016-10-03	
10	b8cf418e97ae79	5672d326288	hortolandia		SP		2016-10-03	

PART 2 –

Is there a growing trend on e-commerce in Brazil?

```
select count(order_id) number_of_orders_per_year,purchase_year from (select order_id, extract(year from order_purchase_timestamp) as purchase_year from `jan23-scalersql.Target.orders` where order_status = "delivered") group by purchase_year order by purchase_year;
```

Quer	Query results								
JOB IN	IFORMATION	RESULTS	JSON						
Row	number_of_orde	ers_per_year	purchase_year						
1		267	2016						
2		43428	2017						
3		52783	2018						

Yes, there is a growing trend on e-commerce in Brazil. On doing year by year analysis of 'orders successfully delivered' it can be seen that there is a significant growth of orders from 2016 into 2017 and while maintaining the 2017 orders there is again growth in 2018. Yes, some seasonality peak is also being noticed between months November to March, mainly in Winter season.

Can we see some seasonality with peaks at specific months?

```
select count(order_id) number_of_orders_per_month,purchase_months,purchase_year from (select order_id, extract(MONTH from order_purchase_timestamp) as purchase_months, extract(year from order _purchase_timestamp) as purchase_year from `jan23-scalersql.Target.orders` where order_status = "delivered") group by purchase_months,purchase_year order by purchase_year,purchase_months;
```

Query results									
JOB IN	IFORMATION	RESULTS J	SON EXECUTIO						
Row 11	number_of_orders 4193	purchase_months_/_8	purchase_year 2017						
12	4150	9	2017						
13	4478	10	2017						
14	7289	11	2017						
15	5513	12	2017						
16	7069	1	2018						
17	6555	2	2018						
18	7003	3	2018						
19	6798	4	2018						
20	6749	5	2018						

What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

select count(order_id) number_of_orders,purchase_hour from

(select order_id, extract(hour from order_purchase_timestamp) as purchase_hour from `jan23-scalersql.Target.orders`)

group by purchase_hour

order by purchase_hour;

Quer	Query results				y results		
JOB IN	IFORMATION	RESULTS	J	JOB IN	IFORMATION	RESULTS	J
Row //	number_of_orders 1231	purchase_hour7		Row /	number_of_orders	purchase_hour_	
9	2967	8		14	6518	13	
10	4785	9		15	6569	14	
11	6177	10		16	6454	15	
12	6578	11		17	6675	16	
13	5995	12		18	6150	17	
14	6518	13		19	5769	18	
15	6569	14		20	5982	19	
16	6454	15		21	6193	20	
17	6675	16		22	6217	21	
18	6150	17		23	5816	22	
19	5769	18		24	4123	23	

There is not a lot to separate from the number of orders placed in the working hours (i.e 0900 hrs to 2200 hrs). Although there is a big rise in orders from around 0800-0900 hrs in the morning till 1600 hrs in the afternoon then there is a little decline but it again picks up at 1900 hrs and continues

growing till 2200 hrs in the night. Therefore, dawn and mid night are the times when Brazilians' buy least.

PART 3 -

Get month on month orders by states

select count(t1.order_id) month_on_month_orders,t1.purchase_month,t1.customer_state from (select o.order_id,o.customer_id,c.customer_state, extract(month from o.order_purchase_timestamp) as purchas e_month from Target.orders as o join Target.customers as c on o.customer_id=c.customer_id order by purchase_month) as t1 group by t1.purchase_month,t1.customer_state order by t1.purchase_month;

Quer	Query results					Query results					
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET		
Row	month_on_mont	purchase_month	customer_state	h	Row /	month_on_mont	purchase_month	customer_state	h		
1	8	1	AC		26	3351	1	SP			
2	39	1	AL		27	19	1	TO			
3	12	1	AM		28	6	2	AC			
4	11	1	AP		29	39	2	AL			
5	264	1	BA		30	16	2	AM			
6	99	1	CE		31	4	2	AP			
7	151	1	DF		32	273	2	ВА			
8	159	1	ES		33	101	2	CE			
9	164	1	GO		34	196	2	DF			
10	66	1	MA		35	186	2	ES			

Distribution of customers across the states in Brazil

select count(customer_id) as customer_per_state,customer_state
from Target.customers
group by customer_state
order by customer_state;

Query results									
JOB IN	JOB INFORMATION RESULTS JSON EXE								
Row	customer_per_state	customer_s	state	1					
1	81	AC							
2	413	AL							
3	148	AM							
4	68	AP							
5	3380	BA							
6	1336	CE							
7	2140	DF							
8	2033	ES							
9	2020	GO							
10	747	MA							

The distribution of customers across Brazil states-wise is pretty uneven with top 3 states being SP, RJ & MG with 41746,12852 & 11635 number of customers respectively and lowest 3 states being RR, AP & AC with 46,61 & 81 no of customers respectively.

Customers per state

<u>PART 4</u> –

Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

select *, round(((cost_2018-cost_2017)/(cost_2017))*100) as percent_increase from

(select round(sum(case when purchase_year=2018 and purchase_month between 1 and 8 then payment_value end)) as cost_2018,

round(sum(case when purchase_year=2017 and purchase_month between 1 and 8 then payment_value end)) a s cost_2017

from

(select extract(month from o.order_purchase_timestamp) as purchase_month,extract(year from order_purchase_timestamp) as purchase_year,p.payment_value

from `jan23-scalersql.Target.orders` as o

join Target.payments as p

on o.order_id = p.order_id

order by purchase_year,purchase_month) as t1);

Query results								
JOB IN	FORMATION	RESULTS	JSON	EXI				
Row	cost_2018	cost_2017 //	percent_increase	6				
1	8694734.0	3669022.0	137.0					

Money movement through e-commerce has increased significantly and precisely by 137% from 2017 in 2018.

Mean & Sum of price and freight value by customer state

```
select round((sum(price)/count(price))) as price_mean,
round((sum(freight_value)/count(freight_value))) as freight_mean,round(sum(price)) as price_sum,round(sum(frei
ght_value)) as freight_sum,customer_state
from
  (select oi.price,oi.freight_value,c.customer_state
from `jan23-scalersql.Target.order_items` as oi
left join Target.orders as o
  on oi.order_id = o.order_id
left join `jan23-scalersql.Target.customers` as c
  on o.customer_id = c.customer_id
  order by c.customer_state) t1
group by t1.customer_state
order by t1.customer_state;
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXECU
Row	price_mean //	freight_mean	price_sum	freight_sum //	customer_state
1	174.0	40.0	15983.0	3687.0	AC
2	181.0	36.0	80315.0	15915.0	AL
3	135.0	33.0	22357.0	5479.0	AM
4	164.0	34.0	13474.0	2789.0	AP
5	135.0	26.0	511350.0	100157.0	BA
6	154.0	33.0	227255.0	48352.0	CE
7	126.0	21.0	302604.0	50625.0	DF
8	122.0	22.0	275037.0	49765.0	ES
9	126.0	23.0	294592.0	53115.0	GO
10	145.0	38.0	119648.0	31524.0	MA

The avg. price of product across different states ranges from 110 to 191 while the avg. freight value varies from 15 to 43.

PART 5 –

Calculate days between purchasing, delivering and estimated delivery

```
SELECT

t1.order_id,

DATE_DIFF(delivery_date,purchase_date,day) AS actual_delivery_days,

DATE_DIFF(estimated_delivery_date,purchase_date,day) AS estimated_delivery_days,

DATE_DIFF(estimated_delivery_date,delivery_date,day) AS days_betw_actual_estimated

FROM (

SELECT

order_id,

EXTRACT(date

FROM
```

```
order_purchase_timestamp) AS purchase_date,
EXTRACT(date
FROM
order_delivered_customer_date) AS delivery_date,
EXTRACT(date
FROM
order_estimated_delivery_date) AS estimated_delivery_date
FROM
Target.orders
ORDER BY
purchase_date) t1
WHERE
purchase_date IS NOT NULL
AND delivery_date IS NOT NULL;
```

Query results

JOB IN	FORMATION RESULTS	JSON EXEC	CUTION DETAILS E	XECUTION GRAPH PREVIEW
Row	order_id	actual_delivery_days	estimated_delivery_days	days_betw_actual_estimated
1	bfbd0f9bdef84302105ad712db	55	19	-36
2	65d1e226dfaeb8cdc42f66542	36	53	17
3	be5bc2f0da14d8071e2d45451	24	35	11
4	ae8a60e4b03c5a4ba9ca0672c	31	59	28
5	cd3b8574c82b42fc8129f6d50	11	51	40
6	d207cc272675637bfed0062ed	28	51	23
7	a41c8759fbe7aab36ea07e038	31	57	26
8	ef1b29b591d31d57c0d733746	29	53	24
9	3b697a20d9e427646d925679	23	24	1
10	35d3a51724a47ef1d0b89911e	22	77	55

Usually, all the orders are delivered before the estimated delivery date. There are negligible number of times when delivery has happened after the estimated date.

Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

```
time_to_delivery = order_purchase_timestamp-order_delivered_customer_date

diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

SELECT

DATE DIFF(delivery date purchase data day) A6 time to delivery
```

```
DATE_DIFF(delivery_date,purchase_date,day) AS time_to_delivery,
DATE_DIFF(estimated_delivery_date,delivery_date,day) AS diff_estimated_delivery
FROM (
SELECT
EXTRACT(date
FROM
order_purchase_timestamp) AS purchase_date,
EXTRACT(date
FROM
order_delivered_customer_date) AS delivery_date,
EXTRACT(date
FROM
order_delivered_customer_date) AS delivery_date,
EXTRACT(date
FROM
order_estimated_delivery_date) AS estimated_delivery_date
```

```
FROM
Target.orders
ORDER BY
purchase_date)
WHERE
purchase_date IS NOT NULL
AND delivery_date IS NOT NULL
AND estimated_delivery_date IS NOT NULL;
```

Query results								
JOB IN	IFORMATION	RESULTS	JSON					
Row	time_to_delivery	diff_estimated_	delivery					
1	55		-36					
2	36		17					
3	24		11					
4	31		28					
5	11		40					
6	28		23					
7	31		26					
8	29		24					
9	23		1					
10	22		55					

Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT
 t1.customer_state,
 ROUND(AVG(freight_value)) AS mean_freight,
 ROUND(AVG(DATE_DIFF(t1.delivery_date,purchase_date,day))) AS avg_time_to_delivery,
 ROUND(AVG(DATE_DIFF(estimated_delivery_date,delivery_date,day))) AS avg_diff_estimated_delivery
FROM (
 SELECT
  customer_state,
  freight_value,
  EXTRACT(date
   order_purchase_timestamp) AS purchase_date,
  EXTRACT(date
  FROM
   order_delivered_customer_date) AS delivery_date,
  EXTRACT(date
  FROM
   order_estimated_delivery_date) AS estimated_delivery_date
 FROM
  Target.order_items AS oi
 JOIN
  Target.orders AS o
 ON
  oi.order_id = o.order_id
 JOIN
  Target.customers AS c
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row	customer_state	/,	mean_freight //	avg_time_to_delivery	avg_diff_estimated_delivery_
1	MT		28.0	18.0	15.0
2	MA		38.0	22.0	10.0
3	AL		36.0	24.0	9.0
4	SP		15.0	9.0	11.0
5	MG		21.0	12.0	13.0
6	PE		33.0	18.0	13.0
7	RJ		21.0	15.0	12.0
8	DF		21.0	13.0	12.0
9	RS		22.0	15.0	14.0
10	SE		37.0	21.0	10.0

Average time taken for the delivery of orders ranges from 9 to 28 days across different states in the country. And as observed in the 1st part of this question most orders are delivered before the estimated delivery date, the average difference between estimated and actual delivery date is positive and ranges from 9 to 21 days which means the orders are delivered between 9 to 21 days before the estimated date across states.

Sort the data to get the following:

Making a view named state_freights of the above code to perform sorting and limit.

```
create view Target.state_freights as
SELECT
t1.customer_state,
 ROUND(AVG(freight_value)) AS mean_freight,
 ROUND(AVG(DATE_DIFF(t1.delivery_date,purchase_date,day))) AS avg_time_to_delivery,
 ROUND(AVG(DATE_DIFF(estimated_delivery_date,delivery_date,day))) AS avg_diff_estimated_delivery
FROM (
 SELECT
  customer_state,
  freight_value,
  EXTRACT(date FROM order_purchase_timestamp) AS purchase_date,
  EXTRACT(date FROM order_delivered_customer_date) AS delivery_date,
  EXTRACT(date FROM order_estimated_delivery_date) AS estimated_delivery_date
 FROM
  Target.order_items AS oi
 JOIN
  Target.orders AS o
 ON oi.order_id = o.order_id
 JOIN
  Target.customers AS c
  o.customer_id=c.customer_id) AS t1
```

GROUP BY

t1.customer_state;

Now performing the required sorting.

• Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

select * from Target.state_freights
order by mean_freight
limit 5;

Query results **RESULTS JSON EXECUTIO** JOB INFORMATION **EXECUTION DETAILS** mean_freight avg_time_to_delivery avg_diff_estimated_delivery, Row customer_state 1 SP 15.0 9.0 11.0 2 DF 13.0 12.0 21.0 3 RJ 21.0 15.0 12.0 4 SC 21.0 15.0 12.0 5 PR 21.0 12.0 13.0

Top 5 states with lowest average freight value.

select * from Target.state_freights
order by mean_freight desc
limit 5;

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE
Row	customer_state	le	mean_freight //	avg_time_to_deli	avg_diff_estimat
1	PB		43.0	21.0	13.0
2	RR		43.0	28.0	18.0
3	RO		41.0	20.0	20.0
4	AC		40.0	21.0	21.0
5	PI		39.0	19.0	12.0

Top 5 states with highest average freight value.

• Top 5 states with highest/lowest average time to delivery.

select * from Target.state_freights
order by avg_time_to_delivery asc
limit 5;

Query results

JOB IN	IFORMATION	RESULTS .	JSON EXECUTION	ON DETAILS EXECUTIO
Row	customer_state	mean_freight	avg_time_to_delivery	avg_diff_estimated_delivery
1	SP	15.0	9.0	11.0
2	MG	21.0	12.0	13.0
3	PR	21.0	12.0	13.0
4	DF	21.0	13.0	12.0
5	SC	21.0	15.0	12.0

Top 5 states with lowest average time to delivery

select * from Target.state_freights
order by avg_time_to_delivery desc
limit 5;

Query results						
JOB IN	IFORMATION R	ESULTS J	SON EXECUTION	ON DETAILS EXECUTION		
Row	customer_state	mean_freight //	avg_time_to_delivery	avg_diff_estimated_delivery		
1	AP	34.0	28.0	18.0		
2	RR	43.0	28.0	18.0		
3	AM	33.0	26.0	20.0		
4	AL	36.0	24.0	9.0		
5	PA	36.0	24.0	14.0		

Top 5 states with highest average time to delivery.

• Top 5 states where delivery is really fast/ not so fast compared to estimated date

select * from Target.state_freights
order by avg_diff_estimated_delivery desc
limit 5;

Query results							
JOB IN	IFORMATION	RE	SULTS J	SON	EXECUTIO	N DETAILS	EXECUTIO
Row	customer_state	/,	mean_freight	avg_t	ime_to_delivery	avg_diff_esti	mated_delivery
1	AC		40.0		21.0		21.0
2	AM		33.0		26.0		20.0
3	RO		41.0		20.0		20.0
4	RR		43.0		28.0		18.0
5	AP		34.0		28.0		18.0

Top 5 states with fastest delivery.

```
select * from Target.state_freights
order by avg_diff_estimated_delivery
limit 5;
```

Query results					
JOB IN	IFORMATION	RESULT	S JSON	EXECUTION DE	TAILS EXECUTION GF
Row	customer_state	le	mean_freight //	avg_time_to_delivery	avg_diff_estimated_delivery
1	AL		36.0	24.0	9.0
2	SE		37.0	21.0	10.0
3	MA		38.0	22.0	10.0
4	SP		15.0	9.0	11.0
5	BA		26.0	19.0	11.0

Top 5 states with slowest delivery

PART 6 -

Month over Month count of orders for different payment types

```
select Months,count(payment_type) no_of_orders,payment_type from (select extract(month from order_purchase_timestamp) as Months, payment_type from Target.orders as o join Target.payments as p on o.order_id=p.order_id) group by Months,payment_type order by Months;
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET
Row	Months	no_of_orders	payment_type	le
1	1	6103	credit_card	
2	1	1715	UPI	
3	1	477	voucher	
4	1	118	debit_card	
5	2	1723	UPI	
6	2	6609	credit_card	
7	2	424	voucher	
8	2	82	debit_card	
9	3	7707	credit_card	
10	3	1942	UPI	

The most used payment method is credit card then UPIs then vouchers and the least used is debit cards.

Count of orders based on the no. of payment installments

select count(order_id) as no_of_orders,payment_installments from `jan23-scalersql.Target.payments` group by payment_installments;

Query results

JOB IN	IFORMATION	RESULTS JS
Row	no_of_orders	payment_installments
1	2	0
2	52546	1
3	12413	2
4	10461	3
5	7098	4
6	5239	5
7	3920	6
8	1626	7
9	4268	8
10	644	9