Coupling effects in Mixed analog-digital ICs

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Switching Noise

Output without logic switching

Output with logic switching

Noise coupling through the substrate

Outline

- Circuit noise generation
- Circuit noise coupling
 - Power supply pinning
 - Substrate coupling
 - Circuit placement
- Rejection of circuit noise
 - PSRR

Circuit Noise Generation

Class AB Input structures

Over 50 x

Halonen, CICC

Current Mode Logic

Current Mode Logic

ECL alike CMOS Logic

Allstot, CICC

Symmetrical OTA's

Outline

- Circuit noise generation
- Circuit noise coupling
 - Power supply pinning
 - Substrate coupling
 - Circuit placement
- Rejection of circuit noise
 - PSRR

Power Supply Pinning

Supply line bounce (1)

Supply line bounce (2)

Pinning Strategy

Supply routing for mixed-signal IC

Clean analog ground

Ref. Nauta, ACD, Huijsing etal, Kluwer 1999, p.165

Model of parasitics of chip in package

Ref. Verghese, ACD, Huijsing etal, Kluwer 1999, p.246

Pin connections to A & D

Rules for pin connections

- The analog and the digital power supply are separated
- The analog ground and the power supply are connected to the outside world with multiple bondwires
- The respective power supplies' bondpads are placed closely to each other to prevent ground loops
- Integrated decoupling capacitors are provided for both the analog and the digital power supplies
- All biasing voltages are internally decoupled to the correct power supply
- The optical input is differential with a dedicated ground bondwire
- The input bondwire is far from the noisy output and power supplies
- A large substrate contact provides a good connection with the heavily doped bulk
- All analog transistors are closely surrounded by substrate contacts that are biased with the analog ground
- All digital transistors are closely surrounded by a guard-ring that is biased with a dedicated clean voltage
- The analog and the digital circuits are separated by a distance that corresponds to approximately 4 times the epi-layer thickness
- A supplemental guard-ring biased with a dedicated voltage is provided between the analog and the digital subcircuits.

Noise reduction techniques

- At noise sources side
 - Reduce substrate noise generated by the cells, Switching activity reduction techniques
 - Switching activity spreading techniques
- At noise receiver part
 - Design techniques (fully differential design, etc ...)
 - Layout techniques (fully differential implem. ...)
 - Separate, and multiple, supply bonding pads
 - Guard ring close to the transistors
 - Buried layers under the transistors
 - On chip decoupling capacitances

Measurement set-up for MAD ADC

On-chip decoupling

Resonant frequency decoupling

Tune LC circuit on the clock frequency!

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

Outline

- Circuit noise generation
- Circuit noise coupling
 - Power supply pinning
 - Substrate coupling
 - Circuit placement
- Rejection of circuit noise
 - PSRR

Substrate Type Influence

Heavily doped substrate with epi – layer

Distance between

p+ islands >

4 x epilayer thickness

=> coupling independent of distance

Lightly doped substrate (high resistivity)

Substrate Coupling

Ref.Su , JSSC April 1993, pp.420-430

Distance?

Low-n well breaks the surface channel

Ref.Clement, ACD Kluwer 1999, p.189; @Simplex

Separate Bondpads

Process parameters for low coupling

Ref.Clement, ACD Kluwer 1999, p.189; @Simplex

Different Bondpads for Guard Rings

Coupling on SOI substrates

Outline

- Circuit noise generation
- Circuit noise coupling
 - Power supply pinning
 - Substrate coupling
 - Circuit placement
- Rejection of circuit noise
 - PSRR

Switching noise measurements: model

Switching noise measurements: preamplifier

Input = Substrate 3V, 32 mA GBW ≈ 500 MHz

Low CMRR because substrate effects

Switching noise measurements: coupling data

Caused by 7-stage Ringoscillator: 800 MHz

Switching noise measurements: bonding

Generation of substrate noise in SoC

Badaroglu, etal. JSSC July 2003, pp.1250-1260

Substrate model

Mitra, JSSC March 1995, pp.269-278

Placement: iso-noise curves

Expt.	Constraint (V)	Normalized		Time
		Area	WireLength	(min)
1	-	1	1	4
2	$V_n(A) \le 0.6$	1	2.33	139
3	$V_n(A) \le 0.1$	1.1	1.166	200

Mitra, JSSC March 1995, pp.269-278

Outline

- Circuit noise generation
- Circuit noise coupling
 - Power supply pinning
 - Substrate coupling
 - Circuit placement
- Rejection of circuit noise
 - PSRR

PSRR: definitions

Example of PSRR

PSRR_{DD} of Simple CMOS OTA - 1

PSRR_{DD} of Simple CMOS OTA - 2

PSRR_{SS} of Simple CMOS OTA - 3

Miller CMOS OTA - PSRRDD

Miller CMOS OTA - PSRRDD

Miller CMOS OTA - PSRRss

Miller CMOS OTA - PSRRss

Improving the Miller CMOS OTA

Improving the Miller CMOS OTA

Miller CMOS OTA - PSRRss

Symmetrical CMOS OTA - PSRRss

Differential- versus Single-Ended circuits

Makie-Fukuda, JSSC, Febr.95, 87-92

Differential vs Single-Ended data

Conclusions

- Reduce circuit noise generation
 - Use linear circuits
 - Current mode logic
 - Avoid class AB amplifiers
- Reduce substrate coupling
 - Use different power supplies for A, D, G and S
 - Reduce drain areas
 - Guard rings close to A with dedicated pin: high-R substr.
 - Buried layers under A : low-R substrate
 - Use decoupling capacitances on A
 - **■** Create distance: high-R substrate
- Improve PSRR by use of differential circuits : matching !!

Outline

- Circuit noise generation
- Circuit noise coupling
 - Power supply pinning
 - Substrate coupling
 - Circuit placement
- Rejection of circuit noise
 - PSRR