

Measures of Central Tendency: The Median

 In an ordered array, the median is the "middle" number (50% above, 50% below)

Not affected by extreme values

Measures of Central Tendency: Locating the Median

The location of the median when the values are in numerical order (smallest to largest):

Median position =
$$\frac{n+1}{2}$$
 position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers

Note that $\frac{n+1}{2}$ is not the *value* of the median, only the *position* of the median in the ranked data

Median for Grouped Data

Formula for Median is given by

$$Median = L + \frac{(n/2) - m}{f} \times c$$

Where

L =Lower limit of the median class

 $n = Total number of observations = \sum f(x)$

m = Cumulative frequency preceding the median class

f = Frequency of the median class

c = Class interval of the median class

Find the median for the following continuous frequency distribution:

Class Frequency 0-1

1-2

2-3

3-4

4-5

5-6

B

Cont'd...

iency	Cumulative	
-	Frequency	
1	1	
4	5	
8	13	
7	20	
3	23	
2	25	
25		
	1 4 8	

L -Lower limit of the median class

n - Total number of observations

m - Cumulative frequency preceding the median class

f = Frequency of the median class

c = Class interval of the median class

Substituting in the formula the relevant values,

Median
$$L + \frac{(n/2) - m}{f} \times c$$
 we have Median $= 2 + \frac{(25/2) - 5}{8} \times 1$

B

= 2.9375

Example

Class	Class interval		Cum f
0	49.99	78	78
50	99.09	123	201
100	149.99	187	388
150	199 99	82	
200	249.99	51	
250	299.99	47	
300	349.99	13	
350	399.99	9	
400	449.99	6	
450	499.99	4	
		600	

-

- L -Lower limit of the median class-
- n Fotal number of observations
- m Cumulative frequency preceding the median class
- f Frequency of the median class
- c = Class interval of the median class

$$L + \frac{(n/2) - m}{\epsilon} \times c$$

$$= 126.47$$

Measures of Central Tendency: The Mode

- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical (nominal) data
- There may be no mode
- There may be several modes

-

Mode for Grouped Data

$$Mode = \frac{L + \frac{d_1}{d_1 + d_2} \times c}{d_1 + d_2}$$

Where L =Lower limit of the modal class

$$\mathbf{d}_{1} = \mathbf{f}_{1} - \mathbf{f}_{0}$$

$$\mathbf{d}_2 = \mathbf{f}_1 - \mathbf{f}_2$$

- Frequency of the modal class
- Frequency preceding the modal class
- f = Frequency succeeding the modal class. C = Class Interval of the modal class

Advantages and Disadvantages

Advantages:

Not affected extreme values

Can be computed in case of open class, if median is not in open class

Can be computed in case categorical variable

DisAd: Arraying of the data is time consuming.

To estimate population parameter, mean is easier.

Solution

Class	Frequency	
0-1	1	
1-2	4	
2-3	8	
3-4	7	
4-5	3	
5-6	2	
Total	25	

$$Mode = L + \frac{d_1}{d_1 + d_2} \times c$$

$$L = 2 \mathbf{d_1} = \mathbf{f_1} - \mathbf{f_0} = 8 - 4 = 4$$

$$\mathbf{d_2} = \mathbf{f_1} - \mathbf{f_2} = 8 - 7 = 1$$

$$C = 1 \quad \text{Hence Mode} = 2 + \frac{4}{5} \times 1$$
$$= 2.8$$

Measures of Central Tendency: Review Example

House Prices:

\$2,000,000

\$ 500,000

\$ 300,000

\$ 100,000

\$ 100,000

Sum \$ 3,000,000

• Mean: (\$3,000,000/5)

= \$600,000

3

• Median: middle value of ranked

data

= \$300,000

Mode: most frequent value

= \$100,000

Measures of Variation: Why The Range Can Be Misleading

Ignores the way in which data are distributed

Sensitive to outliers

Range =
$$5 - 1 = 4$$

Range =
$$120 - 1 = 119$$

Measures of Variation: The Range

- Simplest measure of variation
- Difference between the largest and the smallest values:

Range =
$$X_{largest} - X_{smallest}$$

Example:

Interfractile range Median is 0.5 fractile.

First third	Second third	Last third
863		1138
	1698	
903		1204
	1745	
957	\	1354
	1802	
1041	/	1624
1	1883	\.
7	123	2/3
	1/3	fractile
- 1	ractile	Hactife

If we divide data in??????? deciles, quartile and percentile

Low variation: more points close to the mean High variation: more points far from the mean

So, measure the distance to the mean

- Average (approximately) of squared deviations of values from the mean
 - Sample variance:

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

Where \overline{X} = arithmetic mean

n = sample size

 $X_i = i^{th}$ value of the variable X

Suppose we draw n independent observations from a population with mean μ and variance σ^2 .

Usually unknown Usually

The sample mean \bar{x} estimates the population mean μ .

The sample variance s^2 estimates the population variance σ^2 .

Ideally we would estimate σ^2 with:

$$\frac{\sum (x_i - \mu)^2}{n}$$

This is the average squared distance from the true mean

Problem: μ is unknown!

We could try:

$$\frac{\sum (x_i - \bar{x})^2}{n}$$

Tends to underestimate σ^2

$$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1}$$

On average, this estimator equals the population variance σ^2 .