

University Institute of Engineering Academic Unit-1

Bachelor of Engineering (CSE, IT, CSE-IBM)

Computer Graphics using CAD Lab. (20MEP114)

Experiment No. 9 & 10

Prepared By: Paras Khullar

ORTHOGRAPHIC PROJECTIONS

ORTHOGRAPHIC PROJECTIONS

Course Outcome

СО	Title	Level
Numb	After completion of the course the students may be able to:	
er		
CO1	Sketch the different conventions and representations of	Remember
	engineering graphics on AutoCAD software.	& Understand
CO2	Explain the use of engineering drawing, compare and predict	Understand
	the geometrical details of common engineering objects.	
CO3	Classify, examine and draw the dimensioned figures	Understand
	expressing information about the shape and size of physical	
	objects	
CO4	Identify and express the geometrical features of a product	Understand
	on AutoCAD software.	
CO5	Draw orthographic views of computer components.	Understand

Image Source: http://cadmasters.guru/2d-to-3d-conversions/

Will be covered in this lecture

COURSE OBJECTIVES

Students may be able to

- understand the difference between 1st angle and 3rd angle projection.
- draw orthographic projections in 1st and 3rd angle projections
- identify the three dimensions of an object
- determine the views necessary to describe an object in multi-view drawing

Image Source: https://img-a.udemycdn.com/course/750x422/1925256_3592_5.jpg

Introduction

- Orthographic Projections:-
- Type of technical drawing in which different views of an object are projected on different reference planes
- Views are observed perpendicular to the different reference planes
- All the views are observed at right angles to each other.
- For example front view, top view and side views are drawn by observing perpendicular to each other.

Planes

There are two types of planes

- 1. Principal Planes:
 - Horizontal Plane
 - Vertical Plane
- 2. Auxiliary Planes:
 - Auxiliary Inclined Plane
 - Auxiliary Vertical Plane
 - Profile Plane

<u>Projections</u>

1st Angle Projection

- The object is assumed to be placed in 1st quadrant accordingly the projections are drawn
- Object is placed between the observer and plane of projection

Orthographic Projections in 1st quadrant

<u>Projections</u>

3rd Angle Projection

- The object is assumed to be placed in 3rd quadrant accordingly the projections are drawn
- Transparent plane of projection is placed between the object and observer

Orthographic Projections in 3rd quadrant

Projections

Symbol of 1st Angle Projection

Symbol of 3rd Angle Projection

Pictorial representation of 1st angle and 3rd angle projection

Orthographic Projections

Orthographic Projections

Orthographic Projections

Assessment Pattern

Sr. No.	Type of Assessment Task	Weightage of actual conduct	Frequency of task	Final Weightage in Internal Assessment (Prorated Marks)	Remarks
1.	Practical Worksheet (In Journal Category) and Class- room Learning	20 marks for each experiment	8-10 experiments	40 marks	Depending upon no. of experiments
2.	Mid-Term Test	20 marks	1 per semester	12 marks	At-least after the completion of 5 experiments.
3.	Discussion Forum/Short Digital Assignment/Journal to submit design/Portfolio	4 marks for each task	1 per semester	4 marks	
4.	Presentation*			Non Graded: Engagement Task	
5.	Attendance and BB Engagement Score			4 marks	End Semester

Applications

- Orthographic projections are used to see the front view, top view & side view of different parts of various machines.
- Applicable to see the detailed drawing of buildings.

Frequently Asked Questions

- What are symbols for 1st and 3rd angle projections?
- How can the views drawn in 1st and 3rd angle projection differentiated?
- What is the position of object, observer and plane of projection in 1st angle projection?
- Why are the views drawn on opposite sides in 1st angle projection?

Recommended Books

- Rhodes R.S, Cook L.B; Basic Engineering Drawing, Pitman Publishers,
- Rana and Shah; Engineering Drawing, Pearson Education India Publishers.
- Jolhe D.A; Engineering Drawing: With an Introduction to AutoCAD, Tata McGraw Hill
- Gill P.S; Engineering Drawing, S.K. Kataria and Sons Publications.
- Dhawan R. K; Engineering Drawing, S. Chand and Sons Publishers.

References

- Text book of engineering drawing by R.K.Dhawan
- Text book of engineering drawing by P.S.Gill
- Text book of engineering drawing by Dhanajay & Johle
- http://www.technicalauthoring.com/wiki/index.php/Illustrations: Orthographic drawings
- https://www.slideshare.net/kashyapshah11/orthographic-projection

For queries

Email: erparaskhullar@gmail.com

