Defining O-notation (recap) COMS20010 2020, Video lecture 1-3

John Lapinskas, University of Bristol

Intuition: As input sizes get large, asymptotic growth rate matters more than constant factors. Also, constant factors are implementation-dependent. So we focus on growth rate.

John Lapinskas Video 1-3 2/8

• f(n) "grows no faster than" g(n), ignoring constant factors.

• f(n) "grows no faster than" g(n), ignoring constant factors.

- f(n) "grows no faster than" g(n), ignoring constant factors.
- There exists C > 0 such that f(n) "grows no faster than" $C \cdot g(n)$.

• There exists C > 0 such that f(n) "grows no faster than" $C \cdot g(n)$.

• There exists C > 0 such that f(n) "grows no faster than" $C \cdot g(n)$.

- There exists C > 0 such that f(n) "grows no faster than" $C \cdot g(n)$.
- There exists C > 0 such that $f(n) \le C \cdot g(n)$ whenever n is sufficiently large.

• There exists C > 0 such that $f(n) \le C \cdot g(n)$ whenever n is sufficiently large.

• There exists C > 0 such that $f(n) \le C \cdot g(n)$ whenever n is sufficiently large.

- There exists C > 0 such that $f(n) \le C \cdot g(n)$ whenever n is sufficiently large.
- There exist C, $n_0 > 0$ such that $f(n) \le C \cdot g(n)$ whenever $n \ge n_0$.

There exist $C, n_0 > 0$ such that $f(n) \leq C \cdot g(n)$ whenever $n \geq n_0$.

This rigorous definition is "just" a more precise version of our intuition.

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \leq C \cdot g(n)$

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \leq C \cdot g(n)$
$f(n) \in o(g(n))$	$\forall C \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \leq C \cdot g(n)$
$f(n) \in o(g(n))$	$\forall C : \exists n_0 : \forall n \geq n_0 : f(n) \leq C \cdot g(n)$
$f(n) \in \omega(g(n))$	$\forall c \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$

Example 1: Prove $n^2 - 5n + 12 \in \Theta(n^2)$ directly from the definition.

Example 1: Prove $n^2 - 5n + 12 \in \Theta(n^2)$ directly from the definition.

Remember the definition: proving $n^2 - 5n + 12 \in \Theta(n^2)$ means proving there exist c, C and n_0 such that $cn^2 \le n^2 - 5n + 12 \le Cn^2$ for all $n \ge n_0$.

Example 1: Prove $n^2 - 5n + 12 \in \Theta(n^2)$ directly from the definition.

Remember the definition: proving $n^2 - 5n + 12 \in \Theta(n^2)$ means proving there exist c, C and n_0 such that $cn^2 \le n^2 - 5n + 12 \le Cn^2$ for all $n \ge n_0$.

We expect $n^2 - 5n + 12 \approx n^2$ for large n, so we could e.g. set c = 1/2 and C = 2 and solve the quadratic.

Example 1: Prove $n^2 - 5n + 12 \in \Theta(n^2)$ directly from the definition.

Remember the definition: proving $n^2 - 5n + 12 \in \Theta(n^2)$ means proving there exist c, C and n_0 such that $cn^2 \le n^2 - 5n + 12 \le Cn^2$ for all $n \ge n_0$.

We expect $n^2 - 5n + 12 \approx n^2$ for large n, so we could e.g. set c = 1/2 and C = 2 and solve the quadratic. But let's be lazy! No need to optimise. We have

$$n^{2} - 5n + 12 \le n^{2} + 12 = n^{2} \left(1 + \frac{12}{n^{2}}\right),$$

$$n^{2} - 5n + 12 \ge n^{2} - 5n = n^{2} \left(1 - \frac{5}{n}\right).$$

Example 1: Prove $n^2 - 5n + 12 \in \Theta(n^2)$ directly from the definition.

Remember the definition: proving $n^2 - 5n + 12 \in \Theta(n^2)$ means proving there exist c, C and n_0 such that $cn^2 \le n^2 - 5n + 12 \le Cn^2$ for all $n \ge n_0$.

We expect $n^2 - 5n + 12 \approx n^2$ for large n, so we could e.g. set c = 1/2 and C = 2 and solve the quadratic. But let's be lazy! No need to optimise. We have

$$n^{2} - 5n + 12 \le n^{2} + 12 = n^{2} \left(1 + \frac{12}{n^{2}}\right),$$

$$n^{2} - 5n + 12 \ge n^{2} - 5n = n^{2} \left(1 - \frac{5}{n}\right).$$

Looking at it like this, it's much easier to see that

$$n^2 - 5n + 12 \le 13n^2$$
 for all $n \ge 1$, $n^2 - 5n + 12 \ge n^2/2$ for all $n \ge 10$ (so $\frac{5}{n} \le \frac{1}{2}$).

John Lapinskas Video 1-3 5/8

Example 1: Prove $n^2 - 5n + 12 \in \Theta(n^2)$ directly from the definition.

Remember the definition: proving $n^2 - 5n + 12 \in \Theta(n^2)$ means proving there exist c, C and n_0 such that $cn^2 \le n^2 - 5n + 12 \le Cn^2$ for all $n \ge n_0$.

We expect $n^2-5n+12\approx n^2$ for large n, so we could e.g. set c=1/2 and C=2 and solve the quadratic. But let's be lazy! No need to optimise. We have

$$n^{2} - 5n + 12 \le n^{2} + 12 = n^{2} \left(1 + \frac{12}{n^{2}}\right),$$

$$n^{2} - 5n + 12 \ge n^{2} - 5n = n^{2} \left(1 - \frac{5}{n}\right).$$

Looking at it like this, it's much easier to see that

$$n^2 - 5n + 12 \le 13n^2$$
 for all $n \ge 1$,
 $n^2 - 5n + 12 \ge n^2/2$ for all $n \ge 10$ (so $\frac{5}{n} \le \frac{1}{2}$).

So we prove $n^2 - 5n + 12 \in \Theta(n^2)$ by taking $c = \frac{1}{2}$, C = 13, and $n_0 = 10$.

John Lapinskas Video 1-3 5/8

Example 2: Prove $n! \in \omega(2^n)$ directly from the definition.

Example 2: Prove $n! \in \omega(2^n)$ directly from the definition.

Remember the definition: proving $n! \in \omega(2^n)$ means proving that for all c > 0, there exists n_0 such that for all $n \ge n_0$, $n! \ge c \cdot 2^n$.

Example 2: Prove $n! \in \omega(2^n)$ directly from the definition.

Remember the definition: proving $n! \in \omega(2^n)$ means proving that for all c > 0, there exists n_0 such that for all $n \ge n_0$, $n! \ge c \cdot 2^n$.

So we're given a constant c, and we need to show $n! \ge c \cdot 2^n$ when n is sufficiently large. Remember we have

$$n! = \underbrace{n \cdot (n-1) \cdot \dots \cdot 1}_{n \text{ terms}}, \qquad 2^n = \underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{n \text{ terms}}.$$

So we have a lot of wiggle room to bound things term-by-term.

Example 2: Prove $n! \in \omega(2^n)$ directly from the definition.

Remember the definition: proving $n! \in \omega(2^n)$ means proving that for all c > 0, there exists n_0 such that for all $n \ge n_0$, $n! \ge c \cdot 2^n$.

So we're given a constant c, and we need to show $n! \ge c \cdot 2^n$ when n is sufficiently large. Remember we have

$$n! = \underbrace{n \cdot (n-1) \cdot \dots \cdot 1}_{n \text{ terms}}, \qquad 2^n = \underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{n \text{ terms}}.$$

So we have a lot of wiggle room to bound things term-by-term.

Let's use the fact that $n! \ge 4^{n-3} = 2^n \cdot 2^{n-6}$.

Example 2: Prove $n! \in \omega(2^n)$ directly from the definition.

Remember the definition: proving $n! \in \omega(2^n)$ means proving that for all c > 0, there exists n_0 such that for all $n \ge n_0$, $n! \ge c \cdot 2^n$.

So we're given a constant c, and we need to show $n! \ge c \cdot 2^n$ when n is sufficiently large. Remember we have

$$n! = \underbrace{n \cdot (n-1) \cdot \dots \cdot 1}_{n \text{ terms}}, \qquad 2^n = \underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{n \text{ terms}}.$$

So we have a lot of wiggle room to bound things term-by-term.

Let's use the fact that $n! \ge 4^{n-3} = 2^n \cdot 2^{n-6}$.

Thus $n! \ge c \cdot 2^n$ whenever $2^{n-6} \ge c$, i.e. whenever $n \ge \log c + 6$.

Example 2: Prove $n! \in \omega(2^n)$ directly from the definition.

Remember the definition: proving $n! \in \omega(2^n)$ means proving that for all c > 0, there exists n_0 such that for all $n \ge n_0$, $n! \ge c \cdot 2^n$.

So we're given a constant c, and we need to show $n! \ge c \cdot 2^n$ when n is sufficiently large. Remember we have

$$n! = \underbrace{n \cdot (n-1) \cdot \dots \cdot 1}_{n \text{ terms}}, \qquad 2^n = \underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{n \text{ terms}}.$$

So we have a lot of wiggle room to bound things term-by-term.

Let's use the fact that $n! \ge 4^{n-3} = 2^n \cdot 2^{n-6}$.

Thus $n! \ge c \cdot 2^n$ whenever $2^{n-6} \ge c$, i.e. whenever $n \ge \log c + 6$.

So we prove $n! = \omega(2^n)$ by taking $n_0 \ge \log c + 6$.

Multi-variable O-notation

We will often need O-notation for functions of more than one variable.

For example, an algorithm running on an n-vertex m-edge graph will often have running time depending on both m and n.

What does it mean to say that e.g. $f(m, n) \in O(mn)$ or $f(m, n) \in O(m^2 \log n)$?

Multi-variable O-notation

We will often need O-notation for functions of more than one variable.

For example, an algorithm running on an n-vertex m-edge graph will often have running time depending on both m and n.

What does it mean to say that e.g. $f(m, n) \in O(mn)$ or $f(m, n) \in \Theta(m^2 \log n)$?

The only difference is that instead of requiring n to be sufficiently large, we require **all** variables to be sufficiently large.

For example, $f(m, n) \in O(g(m, n))$ when there exist C, m_0 and n_0 such that $f(m, n) \leq C \cdot mn$ whenever $m \geq m_0$ and $n \geq n_0$.

Multi-variable O-notation

We will often need O-notation for functions of more than one variable.

For example, an algorithm running on an n-vertex m-edge graph will often have running time depending on both m and n.

What does it mean to say that e.g. $f(m, n) \in O(mn)$ or $f(m, n) \in \Theta(m^2 \log n)$?

The only difference is that instead of requiring n to be sufficiently large, we require **all** variables to be sufficiently large.

For example, $f(m, n) \in O(g(m, n))$ when there exist C, m_0 and n_0 such that $f(m, n) \leq C \cdot mn$ whenever $m \geq m_0$ and $n \geq n_0$.

All the useful properties of single-variable O-notation (see next video!) carry over to multi-variable O-notation, so e.g. if $f(m,n) \in O(g(m,n))$ and $f(m,n) \in O(g(m,n))$ then we still have $f(m,n) \in \Theta(g(m,n))$.

An important clarification (added after recording)

O-notation can behave strangely with negative functions.

But we only care about O-notation for running times, which are positive!

So whenever you are asked to prove something general about O-notation in this course, you can assume the functions involved are non-negative.

But logarithms get used to bound running times all the time, and e.g. $n \log(n/100)$ is negative for small n. Since it's positive for large n, we'd still like to be able to say e.g. $n \log(n/100) \in \Theta(n \log n)$.

So the formal requirement is that the functions involved are **eventually non-negative** — that is, before we can say $f(n) \in O(g(n))$ or similar, we require that $f(n), g(n) \ge 0$ for all sufficiently large n.

Any fact that holds about O-notation for non-negative functions will also hold for eventually non-negative functions, by taking n_0 large enough that "eventually non-negative" becomes "non-negative".