# Image Smoothing

김성영교수 금오공과대학교 컴퓨터공학과



- Image filtering
- Image smoothing

# Image filtering

Filtering has its roots in the use of the Fourier transform for **signal processing** 

## spatial filtering



## System

일련의 입력 신호를 처리하여 또 다른 일련의 출 력 신호를 만들어 내는 실체

선형시스템 vs. 비선형시스템 
$$f(ax_1[n] + bx_2[n]) = af(x_1[n]) + bf(x_2[n])$$

시불변시스템 vs. 시변시스템 
$$f(x[n-n_0]) \rightarrow y[n-n_0]$$

#### Filter

신호의 일부 성분을 제거하거나 일부 특성을 변경하기 위해 설계된 시스템의 한 종류 유한 임펄스 응답 (FIR) vs. 무한 임펄스 응답  $(I_y^{\text{ID}})_n^{\text{ID}} = x[n] * h[n]$   $= \sum_{k=-\infty}^{\infty} x[n-k]h[k] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$ 

# 예: 3점의 계산을 위한 FIR 필터

$$h[n] = \left[\frac{1}{2} \ \frac{1}{3} \ \frac{1}{6}\right]$$

$$y[0] = x[0-0]h[0] + x[0-1]h[1] + x[0-2]h[2]$$
$$= 3 \times \frac{1}{2} + 0 \times \frac{1}{3} + 0 \times \frac{1}{6}$$

| n    |   | -2  | -1  | 0   | 1 | 2 | 3 | 4       | 5 | 6   | 7 |   |
|------|---|-----|-----|-----|---|---|---|---------|---|-----|---|---|
| x[n] | 0 | 0   | 0   | 3   | 6 | 9 | 6 | 3       | 0 | 0   | 0 | 0 |
| h[n] |   | 1/6 | 1/3 | 1/2 |   |   |   |         |   |     |   |   |
| y[n] | 0 | 0   | 0   | 1/2 | 4 | 7 | 7 | 7/<br>2 | 2 | 1/2 | 0 | 0 |

$$h[n] = [1234]$$
  $x[n] = [001000]$ 

001000 001000 1 2 3 4 4 3 2 1 000001000 000001000 1 2 3 4 4 3 2 1 000001000 000001000 1 2 3 4 4 3 2 1 000001000 000001000 4 3 2 1 1 2 3 4

004321

Correlation

001234

Convolution

#### Convolution

마스크(mask), 필터(filter), 템플릿(template), 커널(kernel)

$$g(x,y) = h(x,y) * f(x,y) = \sum_{s=-a}^{a} \sum_{t=-a}^{b} h(s,t) f(x-s,y-t)$$

단,

$$a = (m-1) / 2$$

$$b = (n-1) / 2$$

입력 영상(f)의 크기:  $M \times N$ 

마스크(h)의 크기: $m \times n$ 

| а | b      | С |   |
|---|--------|---|---|
| d | е      | f | * |
| g | h      | i |   |
|   | h(x,y) | ) | • |

| r      | S | t |  |  |  |  |  |  |
|--------|---|---|--|--|--|--|--|--|
| u      | ٧ | w |  |  |  |  |  |  |
| Х      | у | Z |  |  |  |  |  |  |
| f(x,y) |   |   |  |  |  |  |  |  |



$$g = a \cdot z + b \cdot y + c \cdot x +$$

$$d \cdot w + e \cdot v + f \cdot u +$$

$$g \cdot t + h \cdot s + i \cdot r$$

#### Correlation

$$g(x,y) = h(x,y) \times f(x,y) = \sum_{s=-a}^{a} \sum_{t=-a}^{b} h(s,t) f(x+s,y+t)$$

| а | b      | С |   | r | S      | t |
|---|--------|---|---|---|--------|---|
| d | е      | f | X | u | V      | W |
| യ | h      | i |   | Х | у      | Z |
| j | h(x,y) | ) |   | f | f(x,y) |   |

$$g = a \cdot r + b \cdot s + c \cdot t + d \cdot u + e \cdot v + f \cdot w + g \cdot x + h \cdot y + i \cdot z$$

# 경계 처리



- ① 상수 값(예를 들어, o)을 덧붙임
- ② 경계에 있는 픽셀 값을 복사
- ③ 영상을 주기적인 신호로 해석하여 맞은 편 픽셀 값을 복사 (Wrap-around)
- ④ 모든 이웃 픽셀이 정의되는 위치에서 convolution 연산을 시작하고 출력 영상의 경계 영역의 값은 입력 영상의 값으로 복사

# Image smoothing

Used to give an image a softer or special effect or to eliminate noise

done by various types of mean, Gaussian and median filters

#### Mean filtering

$$\frac{1}{9} \left( v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8 + v_9 \right)$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{16} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Box filtering

| 10 | 10 | 10  | 10 | 10 | 10 | 10 | 10 |
|----|----|-----|----|----|----|----|----|
| 10 | 10 | 10  | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 100 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10  | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10  | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10  | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10  | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10  | 10 | 10 | 10 | 10 | 10 |



Mean filtering

| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
|----|----|----|----|----|----|----|----|
| 10 | 20 | 20 | 20 | 10 | 10 | 10 | 10 |
| 10 | 20 | 20 | 20 | 10 | 10 | 10 | 10 |
| 10 | 20 | 20 | 20 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |

Original image



3\*3 Mean filtering







7\*7

## Gaussian filtering

$$I'(x,y) = \sum_{s=-a}^{a} \sum_{t=-a}^{a} G(s,t)I(x+s,y+t)$$

$$G(s,t) = \frac{1}{2\pi\sigma^2} e^{-\frac{s^2 + t^2}{2\sigma^2}}$$

±2.5σ: 98.76%

 $\pm 3.0\sigma: >99\%$ 





# Gaussian theoretically has infinite support, but we need a filter of finite size

|                 | 1 | 4  | 7  | 4  | 1 |
|-----------------|---|----|----|----|---|
|                 | 4 | 16 | 26 | 16 | 4 |
| <u>1</u><br>273 | 7 | 26 | 41 | 26 | 7 |
|                 | 4 | 16 | 26 | 16 | 4 |
|                 | 1 | 4  | 7  | 4  | 1 |

Discrete approximation to Gaussian function with  $\sigma$ =1.0





σ=1



σ=2

# Median filtering

#### Nonlinear filter

Useful for removing salt-, pepper, or salt-and-paper noise



Original image





Mean Filtering Median Filtering

Original image





3\*3 Median filter

5\*5





7\*7

## 요약

- Image filtering
  - □ spatial filtering
  - □ with convolution, correlation
- Image smoothing
  - □ 영상을 부드럽게 변경하거나 노이즈를 제거
  - ☐ mean, Gaussian and media filters

#### Reference

- R. Gonzalez, R. Woods, Digital Image Processing (2nd Edition), Prentice Hall, 2002
- Scott E Umbaugh, Computer Imaging, CRC Press, 2005
- 김우생, **영상처리 및 패턴인식 배움터**, 생능, 2007