BASIC CIRCUITS AND MEMORY

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Bernhard Kainz (with thanks to N. Dulay and E.

Edwards)

b.kainz@imperial.ac.uk

Digital Circuits

Basic Circuits

Half Adder Assignment Project Exam Help

Full Adder https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Latches

Adders

- A digital circuit that performs addition of numbers
- Not only used in the method girtum to the parts of the pro sed to calculate addresses, table https://eduassistpro.githylb.in/

Add WeChat edu_assist_pro

Most common adders operate umbers

Consider adding two 1-bit binary numbers together:

Ass	signment	Project	Exam He	elp ₁
+	httne://	eduassi s	toro aith	th io/
	πιρο.//	cuudooio	tpro.gitir	

Add WeChat edu_assist_pro

Input – 2 separate lines

Consider adding two 1-bit binary numbers together:

Ass	signment	Project	Exam Ho	elp ₁
+	https://	a du a a a i a	toro dith	1
	nups.//	eduassis	tpro.gitri	ub.ip/

Add WeChat edu_assist_pro

- Input 2 separate lines
- Output two bits how do we represent this?
 - Use two separate lines (Sum and Cárry)

- Can we now draw the circuit?
 - · What do we Anseignment Partie ect Exam Help
 - One each for suhttps://eduassistpro.github.io/

Add WeChat edu_assist_pro

Recall

	0	0	1	1
Ass	signment	Project	Exam He	elp 1
				10

https://eduassistpro.github.io/

Truth Table

А	Add W	eChat ec	lu_assist	_ <mark>Pro</mark> Carry
0	0	0	0	0
0	1	1	1	0
1	0	1	1	0
1	1	2	0	1

Selecting Gates

Sum	Carry		XOR	And
₀ Ass	signment	Project Exa	m Help	0
1	h4400.//		1	0
1	าแps.//	eduassistpro	i.gittµub.i	0/ 0
0	Add W	eChat edu_a	assist pr	o 1

- Hence, we can build the expressions as:
 - Sum = $A \oplus B$
 - Carry = A B

Circuit

```
A Assignment Project Exam Help

https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Carry

B
```

Is this Correct?

A more concise and better version ©

```
Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
```

Carry

Full Adder

- Half-adders have a major limitation
 - Cannot accept a carry bit from a previous stage → they cannot be chained together to add multi-bit numbers Assignment Project Exam Help
- Full-adders can https://eduassistpro.github.io/
 - Third bit is the carry-in bit WeChat edu_assist_pro
- Can be cascaded to produce adders of any number of bits by daisy-chaining the carry of one output to the input of the next

Full Adder

```
Assignment Project Exam Help

https://eduassistpro.github.io/
Add WeChat edu_assist_pro
```

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = (A \cdot B) + C_{in} \cdot (A \oplus B))$$

Full Adder

Conceptually

Ripple-Carry Adder

- Consists of several full adders connected in a series so that the carry must propagate through every full adder before the addition is completed Exam Help
- Require the lea https://eduassistpro.gitlanbaiders, but they are the slowest WeChat edu_assist_pro
 - Carry-Lookahead Adder (homework)

Ripple-Carry Adder

• The following diagram shows a four-bit adder, which adds the numbers A and B, as well as a carry input, together to produce S and the carry putput Exam Help

Gates

- Building blocks for combinatorial circuits
 - · Output dependsigningentipentipentier Help
- All gates can behttps://eduassistpro.gitlouRogiates

Add WeChat edu_assist_pro

- What if we would like to store
 - Use a feedback mechanism where the output values depend indirectly, on themselves

- Building blocks to sequential circuits
- · Can be built Assing matent Project Exam Help
- Able to rememb

 https://eduassistpro.github.io/
 - Add WeChat edu_assist_pro
- Useful web-page
 - http://www.play-hookey.com/digital/sequential/

- SR-latch
 - S = Set
 - R = Reset Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

• S = 0, R = 0

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

0

- Value of Q does not change → value is 'remembered'
 - Sometimes called the *latch* state

• S = 1, R = 0

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

1

Set the value of Q

• S = 0, R = 0

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

0

Value of Q stays the same – it 'remembers' ☺

• S = 0, R = 1

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

0

- Reset the value of Q to 0
- S = 1, R = 1 leads to undefined state

• SR-Latch: Truth table

Ass i gnn	nen t Pro	ject Exa	m Help	
0		_		
₀ http	s://edu	assistpro	.github.	io/
1 A de	1 WeCh	at edu_a	eeiet n	ro
1	1		οσίσι_μ	

Flip-Flops

 Latches are asynchronous → output changes very soon after the input changes

Assignment Project Exam Help

- Most computers
 - Outputs of all th https://eduassistpro.github.jo/rhythm of a global.clock.signal Add WeChat edu_assist_pro
- A flip-flop is a synchronous version of the latch

Memory

- Useful variation on the SR latch circuit is the Data latch, or D latch
- · Constructed to ingether inverted Sampulles the R input signal
 - Allows for a singlhttps://eduassistpro.giabแหน่อเดร inverted

Add WeChat edu_assist_pro

Memory

- Two basic types of memory
- Static RAM ASSignment Project Exam Help
 - Bit-cell is a latch
 - Fast, not very dehttps://eduassistpro.gfth@implement)
 - Primarily used in
 - Consumes less perchat WeChat edu_assist_pro
- Dynamic RAM (DRAM)
 - Bit-cell is a transistor and capacitor (which leaks information)
 - Storage has to be periodically refreshed
 - Primarily used in main memory
 - Cheaper than SRAM

Memory

- Memories hold binary values
 - · Data (e.g. Integers neelst Phorecter Exam Help
 - CPU Instructionshttps://eduassistpro.github.io/
 - Memory Addresses de We Chat edu_assistionso
- Contents remain unchanged unless overwritten with a new binary value
 - Some of them *lose* the content when power is turned off (volatile memory)

Memory – Examples

- CPU, Registers, Caches L1, L2 [L3]
- Mainboard Assignment Project Exam Help
 - RAM (Random
 - Caches https://eduassistpro.github.io/
 - I/O Registers & Buffers WeChat edu_assist_pro
 - Video-card Memory
- Storage Devices
 - Hard Disks, CDs, DVDs, Tapes, Memory Sticks, Flashcards

Computer Architecture

3 Types of Memory

Capacity

CPU Main Memory

Assignment Project Exam Help

Registers < 2 KB

https://eduassistpro.github@io/#

Add WeChat edu_assist_pro 1 KB = 2¹⁰ bytes

RAM

Storage **Device**

Hard Disk 250 GB to 2 TB+ 1 MB = 2^{20} bytes

1 GB = 2^{30} bytes

 $1TB = 2^{40}$ bytes

Speed (Access Time)

CPU Main Memory

Assignment Project Exam Help

Registers < 1 nanosecs

https://eduassistpro.githubnio/es

Add WeChat edu_assist_pro

Storage Device

Hard Disk 5 - 10 millisecs

milli = 10^{-3} micro = 10^{-6} nano = 10^{-9}

Volatility

Assignment Project Exam Help
Registers
Contents Lost https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Storage Device

Hard Disk
Contents Not Lost

Summary

