Fine tuning a VGG-16

Motivation

- There are ''famous'' network architectures like AlexNet, GoogLeNet, NetworkInNetwork, VGG, Inception, ResNet, FCN8, SegNet etc.
- because they are top performing in some task on some benchmark dataset like classification of ImageNet, ILSVRC-2012, semantic segmentation of Cityscapes etc.
- Authors have made them publicly available in the framework they used to develop (Keras, Tensorflow, Theano, Lassagne, Caffe... many!)
- What's available is not only the architecture and the source code creating it, but also the weights (layers parameters) after a long and careful training with a possibly huge dataset
- There's even something called a zoo: a repository of models and their weights, for instance in Caffe (go here (https://github.com/BVLC/caffe/wiki/Model-Zoo))
- Maybe someone has managed to translate one such model from one framework to yours (Tensorflow), or if not, there are tools to do it like <u>Caffe-to-Tensor</u> (https://github.com/ethereon/caffe-tensorflow)

What's fine tuning a network

You'll like to reuse one such model for

- · the same type of task, say, image classification, but
- on a **different type of images**: instead of ImageNet = 1.4M images of 1000 classes of objects, a dataset of images of cars where classes are make + model

Instead of start training the model from scratch, since the task is the same you want to perform **domain transfer**: adapt some of the net parameters to the new images.

Why?

- the original net is large ⇒ hard to train
- · already performs well on another difficult dataset
- filters of lower layers are probably ok
- · so we only want to adapt the upper conv layers or just the classifier layers

Fine tuning is taking the parameters of one network as the starting point and retrain (usually just some layers) with new images of a different domain.

VGG-16

VGG achieves 92.7% top-5 test accuracy in ImageNet. We'll retrain VGG-16 to classify cars.

<u>Here (https://github.com/machrisaa/tensorflow-vgg)</u> there's a Python class Vgg16 that instantiates the VGG-16 model and loads all the weights.

We'll change it to

- accept 112 × 112 × 3 images instead of 224 × 224 × 3
- · just load the first 5 convolutional layers
- and not the two fully-connected ones that perform the classification (7.7.512 = 25088 to 4096 + 4096 to 1000 classes = 120M params.)
- replace the fully connected layers by 2 smaller fully connected layers (4*4*512 to 512 + 512 to 41 classes = 4M params.)
- · train just these 2 new layers

```
import os
import sys
import numpy as np
import tensorflow as tf
VGG MEAN = [103.939, 116.779, 123.68]
class My Vgg16:
   def __init__(self, vgg16_npy_path=None):
        if vgg16_npy_path is None:
            path = sys.modules[self.__class__.__module__].__file__
            # print path
            path = os.path.abspath(os.path.join(path, os.pardir))
            # print path
            path = os.path.join(path, "vgg16.npy")
            print(path)
            vgg16_npy_path = path
        self.data dict = np.load(vgg16 npy path, encoding='latin1').item()
        print("npy file loaded")
   def max pool(self, bottom, name):
        return tf.nn.max pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                              padding='SAME', name=name)
   def _conv_layer(self, bottom, name):
        with tf.variable scope(name) as scope:
            filt = self.get conv filter(name)
            conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
            conv_biases = self.get_bias(name)
            bias = tf.nn.bias add(conv, conv biases)
            relu = tf.nn.relu(bias)
            return relu
   def get conv filter(self, name):
        return tf.Variable(self.data dict[name][0], name="filter")
        # use tf.constant() to prevent retraining it accidentally
   def get bias(self, name):
        return tf.Variable(self.data dict[name][1], name="biases")
        # use tf.constant() to prevent retraining it accidentally
   def build(self, rgb, train=False):
        rgb scaled = rgb * 255.0
        # Convert RGB to BGR
        red, green, blue = tf.split(3, 3, rgb_scaled)
        assert red.get_shape().as_list()[1:] == [112, 112, 1]
        assert green.get shape().as list()[1:] == [112, 112, 1]
        assert blue.get_shape().as_list()[1:] == [112, 112, 1]
```

```
bgr = tf.concat(3, [
            blue - VGG MEAN[0],
            green - VGG MEAN[1],
            red - VGG MEAN[2],
        assert bgr.get_shape().as_list()[1:] == [112, 112, 3]
        self.conv1 1 = self. conv layer(bgr, "conv1 1")
        self.conv1 2 = self. conv layer(self.conv1 1, "conv1 2")
        self.pool1 = self. max pool(self.conv1 2, 'pool1')
        self.conv2 1 = self. conv layer(self.pool1, "conv2 1")
        self.conv2 2 = self. conv layer(self.conv2 1, "conv2 2")
        self.pool2 = self. max pool(self.conv2 2, 'pool2')
        self.conv3 1 = self. conv layer(self.pool2, "conv3 1")
        self.conv3 2 = self. conv layer(self.conv3 1, "conv3 2")
        self.conv3 3 = self. conv layer(self.conv3 2, "conv3 3")
        self.pool3 = self. max pool(self.conv3 3, 'pool3')
        self.conv4 1 = self. conv layer(self.pool3, "conv4 1")
        self.conv4_2 = self._conv_layer(self.conv4_1, "conv4_2")
        self.conv4_3 = self._conv_layer(self.conv4_2, "conv4_3")
        self.pool4 = self._max_pool(self.conv4_3, 'pool4')
        self.conv5 1 = self. conv layer(self.pool4, "conv5 1")
        self.conv5 2 = self. conv layer(self.conv5 1, "conv5 2")
        self.conv5_3 = self._conv_layer(self.conv5_2, "conv5_3")
        self.pool5 = self._max_pool(self.conv5_3, 'pool5')
        shape pool5 = self.pool5.get shape().as list()[1:]
        assert 'pool5', shape pool5 == [4, 4, 512]
        ,, ,, ,,
        The new fully connected layers
        dim1 = np.prod(shape pool5) # 4*4*512 = 8192
        dim2 = 512
        n output = 41 # number of classes = car makes
        fc weights = {
            'wd1': tf.Variable(tf.random normal([dim1, dim2], stddev=0.1), name=
'wd1'),
            'wd2': tf.Variable(tf.random normal([dim2, n output], stddev=0.1), n
ame='wd2')
        fc biases
                  = {
            'bd1': tf.Variable(tf.random normal([dim2], stddev=0.1), name='bd1'
),
            'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1), name='b
d2')
        }
        x = tf.reshape(self.pool5, [-1, dim1], name="flat pool5")
        self.fc6 = tf.nn.bias add(tf.matmul(x, fc weights['wd1']), fc biases['bd
1'], name="fc6")
        self.relu6 = tf.nn.relu(self.fc6)
        if train:
            self.relu6 = tf.nn.dropout(self.relu6, 0.75)
        # the two outputs, logits is for training, probs for testing
        self.logits = tf.nn.bias_add(tf.matmul(self.relu6, fc_weights['wd2']), f
```

```
c_biases['bd2'], name="logits")
    self.probs = tf.nn.softmax(self.logits, name="probs")
```

The dataset

It's the same one we used in the Feeding and Queues section.

```
In [ ]:
```

```
from feeding_and_queues.dataset import Dataset
```

Run fine tuning

It seems that it's better to reduce the original learning rate, something like

- 1/10th for top layers
- 1/100 for intermediate layers

```
import numpy as np
import time
import platform
import matplotlib.pyplot as plt
from skimage.io import imread
import tensorflow as tf
from fine_tuning_vgg.my_vgg16 import My_Vgg16
from feeding and queues.dataset import Dataset
tf.reset_default_graph()
xs = tf.placeholder(tf.float32, [None, 112, 112, 3])
ys = tf.placeholder(tf.float32, [None])
# the VGG-16 weights are here: https://dl.dropboxusercontent.com/u/50333326/vgg1
# Based on this implementation https://github.com/ry/tensorflow-vgg16
if platform.node().upper()=='CVC220':
    vgg16 npy path = '/home/joans/Documents/recerca/tensorflow/implementacions/t
ensorflow vgg master/vgg16.npy'
elif platform.node().upper()=='CVC180':
    vgg16_npy_path = '/home/joans/Documents/classe_tf/notebooks/fine_tuning_vgg/
vgg16.npy'
else:
    raise Exception('Not ready to run on computer '+platform.node())
vgg = My Vgg16(vgg16 npy path=vgg16 npy path)
with tf.name_scope("my_vgg16"):
    vqq.build(xs)
print '\ntrainable variables'
for v in tf.trainable_variables():
    print v.name, v.get shape().as list()
We want to train only the weights and biases of the two
fully connected layers.
vars to optimize = [v for v in tf.trainable variables() \
    if v.name.startswith('my vgg16/wd') \
       or v.name.startswith('my_vgg16/bd')]
print '\nvariables to optimize'
for v in vars to optimize:
    print v.name, v.get shape().as list()
learning rate = 0.001/10.
loss = tf.reduce mean(
    tf.nn.sparse_softmax_cross_entropy_with_logits(vgg.logits, tf.to_int64(ys)))
optimizer = tf.train.AdamOptimizer(learning rate=learning rate)
minimize with list of variables to update
train_op = optimizer.minimize(loss, var_list=vars_to_optimize)
corr = tf.equal(tf.argmax(vgg.probs, 1), tf.to int64(ys)) # count corrects
```

```
accr = tf.reduce_mean(tf.cast(corr, tf.float32)) # accuracy
init = tf.global_variables_initializer()
ds = Dataset()
ds.new_height, ds.new_width = (112, 112)
batch_size = 10
num_epochs = 5
with tf.Session() as sess:
    sess.run(init)
    ds.epochs_completed
    while ds.epochs_completed < num_epochs:</pre>
        ds.epochs_completed
        batch xs, batch ys = ds.next batch(batch size)
        # compute average loss and accuracy for each batch
        _, batch_cost, batch_acc = sess.run([train_op, loss, accr],
                                             feed_dict={xs: batch_xs, ys: batch_y
s})
        print("cost: %.9f, acc %.9f" % (batch_cost, batch_acc))
```