

现代检测技术实验报告

学院: 电信学部自动化学院

班级: 自动化 71

姓名: 任泽华 吴燚

学号: 2171411498 2174213797

指导老师: 刘瑞玲

2019 年 11 月 14 日

目录

实验一 金属箔式应变片——电子秤实验

实验二 霍尔传感器转速测量实验

实验三 光电传感器转速测量实验

实验四 E型热电偶测温实验

实验五 电涡流传感器的位移特性实验

实验一 金属箔式应变片——电子秤实验

一、实验目的

了解金属箔式应变片的应变效应,直流全桥工作原理和性能,了解电路的定标。

二、实验仪器

应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V 电源、万用表(自备)。

三、实验原理

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述 电阻应变效应的关系式为

$$\frac{\Delta R}{R} = k \cdot \varepsilon \tag{1-1}$$

式(1-1)中, $\frac{\Delta R}{R}$ 为电阻丝电阻相对变化,k为应变灵敏系数, $\varepsilon=\frac{\Delta l}{l}$ 为电阻丝长度相对变化。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感组件。如图 1-1 所示,将四个金属箔应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。

图 1-1 双孔悬臂梁式称重传感器结构图

全桥测量电路中,将受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,如图 1-2。**注意 R_1/R_2/R_3/R_4需要用插线接入电桥。**

当应变片初始值相等,变化量也相等时,其桥路输出为

$$Uo = E \cdot \frac{\Delta R}{R}$$
 (1-2)

式(1-2)中E为电桥电源电压, $\frac{\Delta R}{R}$ 为电阻丝电阻相对变化。

式(1-2)表明,全桥输出灵敏度比半桥提高了一倍,非线性误差得到进一步改善。

图 1-2 全桥面板接线图

电子称实验原理同全桥测量原理,通过调节放大电路对电桥输出的放大倍数,使电路输出电压值为质量的对应值,电压量纲(V)改为质量量纲(g),即成一台比较原始的电子称。

四、实验内容与步骤

- 1、将应变传感器上的各应变片分别接到应变传感器模块左上方的 R1、R2、R3、R4 上,可用万用表测量判别,R1=R2=R3=R4=350 Ω 。
- 2、差动放大器调零。从主控台接入 $\pm 15V$ 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端 Ui 短接并与地短接,输出端 Uo₂ 接数显电压表(选择 2V 档)。将电位器 Rw3 调到增益最大位置(顺时针转到底),调节电位器 Rw4 使电压表显示为 0V。关闭主控台电源。
- 3、按图 1-2 接线,将受力相反(一片受拉,一片受压)的两对应变片分别接入电桥的邻边。
- 4、加托盘后电桥调零。电桥输出接到差动放大器的输入端 Ui, 检查接线无误后, 合上主控台电源开关, 预热五分钟, 调节 Rw1 使电压表显示为零。
- 5、将 10 只砝码 (共 200g) 置于传感器的托盘上,调节电位器 Rw3 (满量程时的增益),使数显电压表显示为 0.200V (2V 档测量)。
- 6、拿去托盘上所有砝码,观察数显电压表是否显示为 0.000V,若不为零,再次将加托盘后电桥调零(调节电位器 Rw1 使电压表显示为 0V)。
 - 7、重复 5、6 步骤, 直到精确为止, 把电压量纲 V 改为质量量纲 Kg 即可以称重。
- 8、将砝码依次放到托盘上并读取相应的数显表值,直到 200g 砝码加完,记下实验结果,填入表 1-1。
- 9、去除砝码,托盘上加一个未知的重物(不要超过1Kg),记录电压表的读数。根据实验数据,求出重物的质量。
- 10*(选做)保持 Rw3、Rw4 不变,使用电阻 R6、R7 和受力相反(一片受拉,一片受压)的两只应变片,按双臂电桥接线,按步骤 4 进行加托盘后电桥调零。将砝码依次放到托盘上并读取相应的数显表值,直到 200g 砝码加完,记下实验结果,填入表 1-1。比较双臂电桥与全桥的输出结果。
 - 11、实验结束后,关闭实验台电源,整理好实验设备。

表 1-1 电压-质量记录表

质量(g)	20	40	60	80	100	120	140	160	180	200
电压(V)	0.021	0.040	0.059	0.079	0.099	0.118	0.141	0.158	0.178	0.199

五、实验报告

1、根据实验所得数据计算系统灵敏度 $S=\Delta U/\Delta W$ (ΔU 输出电压变化量, ΔW 质量变化量);

答:

$$S = \frac{\Delta U}{\Delta W} = \frac{0.199 - 0.021}{200 - 20} = 0.000989$$

2、计算电桥的非线性误差 δ_{fl} = $\Delta m/y_{FS} \times 100\%$ 。

式中 Δm 为输出值(多次测量时为平均值)与拟合直线的最大偏差; y_{FS} 为满量程(200g)输出平均值。

答: MATLAB 拟合:

$$U = 0.00099W + 0.00027$$

$$\delta_{f1} = \frac{\Delta m}{y_{FS}} * 100\% = \frac{0.141 - 0.13887}{0.200} * 100\% = 1.065\%$$

3、全桥测量中,当两组对边(R1、R3 为对边)电阻值 R 相同时,即 R1=R3,R2=R4,而 $R1 \neq R2$ 时,是否可以组成全桥?

答:不可以构成全桥,

$$\mathbf{R}_1^*\mathbf{R}_3 \neq \mathbf{R}_2^*\mathbf{R}_4$$

六、注意事项

实验所采用的弹性体为双孔悬臂梁式称重传感器,量程为1kg,最大超程量为120%。 因此,加在传感器上的压力不应过大,以免造成应变传感器的损坏!

实验二 霍尔传感器转速测量实验

一、实验目的

了解霍尔组件的应用——测量转速。

二、实验仪器

霍尔传感器、可调直流电源、转动源、频率/转速表。

三、实验原理

利用霍尔效应表达式: $U_H = K_H IB$,当被测圆盘上装上 N 只磁性体时,转盘每转一周磁场变化 N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。

四、实验内容与步骤

1、如图 1-3、霍尔传感器已安装于传感器支架上、且霍尔组件正对着转盘上的磁钢。

图 1-3

- 2、将+5V 电源接到三源板上"霍尔"输出的电源端,"霍尔"输出接到频率/转速表(切换 到测转速位置)。
- 3、打开实验台电源,选择不同电源+4V、+6V、+8V、+10V、12V(±6)、16V(±8)、20V(±10)、24V驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值,填入表 1-2。也可用示波器观测霍尔元件输出的脉冲波形。

+4V 电压(V) +6V +8V +10V 12V 16V 20V 24V 转速(rpm) 254 703 1090 1460 1840 2685 3371 4030

表 1-2 电压-转速记录表

五、实验报告

1、分析霍尔组件产生脉冲的原理。

答:利用霍尔效应表达式:U_H = K_HIB, 当被测圆盘上装上 N 只磁性体时, 磁体靠近霍尔元件时, 磁感应强度 B 增大, 远离时减小, 霍尔电压形成脉冲。

2、根据记录的驱动电压和转速,作 V-RPM 曲线。

答:如下图:

实验三 光电传感器转速测量实验

一、实验目的

了解光电转速传感器测量转速的原理及方法。

二、实验仪器

转动源、光电传感器、直流稳压电源、频率/转速表、示波器

三、实验原理

光电式转速传感器有反射型和透射型二种,本实验装置是透射型的,传感器端部有发光管和光电池,发光管发出的光源通过转盘上的孔透射到光电管上,并转换成电信号,由于转盘上有等间距的6个透射孔,转动时将获得与转速及透射孔数有关的脉冲,将电脉计数处理即可得到转速值。

四、实验内容与步骤

- 1、光电传感器已安装在转动源上,如图 1-4 所示。+5V 电源接到三源板"光电"输出的电源端,光电输出接到频率/转速表的"f/n"。
- 2、打开实验台电源开关,用不同的电源驱动转动源转动,记录不同驱动电压对应的转速,填入表 1-3,同时可通过示波器观察光电传感器的输出波形。

表 1-3 电压-转速记录表

电压(V)	+4V	+6V	+8V	+10V	12V	16V	20V	24V
转速(rpm)	245	747	1165	1561	1950	2751	3409	4038

五、实验报告

根据测得的驱动电压和转速,作V-RPM曲线。并与霍尔传感器测得的曲线比较。

答:如下图

比较:

相同驱动电压下,霍尔传感器和光电传感器在转速测量值上有些许误差,但差距不大,测量精度和误差都很接近。且总体上,转速与驱动电压呈线性关系。

实验四 E 型热电偶测温实验

一、实验目的

了解 E 型热电偶的特性与应用

二、实验仪器

智能调节仪、PT100、E型热电偶、温度源、温度传感器实验模块。

三、实验原理

热电偶是一种使用最多的温度传感器,它的原理是基于 1821 年发现的塞贝克效应,即两种不同的导体或半导体 A 或 B 组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为 T,另一端温度为 T_0 ,则回路中就有电流产生,如图 1-5(a),即回路中存在电动势,该电动势被称为热电势。

两种不同导体或半导体的组合被称为热电偶。当回路断开时,在断开处 a/b 之间便有一电动势 E_{7} ,其极性和量值与回路中的热电势一致,如图 1-5(b),并规定在冷端,当电流由 A 流向 B 时,称 A 为正极,B 为负极。

实验表明,当 E_T 较小时,热电势 E_T 与温度差($T-T_0$)成正比,即 $E_T=S_{AB}$ ($T-T_0$) (1-3)

 S_{AB} 为塞贝克系数,又称为热电势率,它是热电偶的最重要的特征量,其符号和大小取决于热电极材料的相对特性。

热电偶工作的基本定律如下:

(1) 均质导体定律

由一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不能产生热电势。

(2) 中间导体定律

用两种金属导体 A,B 组成热电偶测量时,在测温回路中必须通过连接导线接入仪表测量温差电势 E_{AB} (T, T_{O}),而这些导体材料和热电偶导体 A,B 的材料往往并不相同。在这种引入了中间导体的情况下,回路中的温差电势是否发生变化呢?热电偶中间导体定律指出:在热电偶回路中,只要中间导体 C 两端温度相同,那么接入中间导体 C 对热电偶回路总热电势 E_{AB} (T, T_{O}) 没有影响。

(3) 中间温度定律

如图 1-6 所示,热电偶的两个结点温度为 T_1 , T_2 时,热电势为 E_{AB} (T_1 , T_2),两结点温度为 T_2 , T_3 时,热电势为 E_{AB} (T_2 , T_3),那么当两结点温度为 T_2 , T_3 时的热电势则为

$$E_{AB}$$
 (T_1 , T_2) + E_{AB} (T_2 , T_3) = E_{AB} (T_1 , T_3) (1-4) 式 (1-4) 就是中间温度定律的表达式。譬如: T_2 =100°C, T_2 =40°C, T_3 =0°C,则

$$E_{AB}$$
 (100, 40) $+E_{AB}$ (40, 0) $=E_{AB}$ (100, 0) (1-5)

图 1-6 中间温度定律

四、实验内容与步骤

- 1、利用 Pt100 温度控制调节仪将温度控制在 50°C, 在另一个温度传感器插孔中插入 E型热电偶温度传感器。
- 2、将±15V 直流稳压电源接入温度传感器实验模块中。温度传感器实验模块的输出 Uo2 接主控台直流电压表。
- 3、将温度传感器模块上差动放大器的输入端 Ui 短接,调节 Rw3 到最大位置,再调节 电位器 Rw4 使直流电压表显示为零。
- 4、拿掉短路线, 按图 1-7 接线, 并将 E 型热电偶的两根引线, 热端(红色)接 a, 冷端(绿色)接 b, 记下模块输出 Uo2 的电压值。

图 1-7

- 5、改变温度源的温度,每隔 5°C 记下 Uo2 的输出值,直到温度升至 120°C,并将实验 结果填入表 1-4。
- 6、将温度调节仪重新设定为 50°C, 并通过风扇降温, 在降温过程中每隔 5°C 记下 Uo2的输出值, 直到温度降至 50°C, 并将实验结果填入表 1-4。

五、数据记录

温度-电压记录表

温及毛压的水														
T (°C)	50	55	60	65	70	75	80	85	90	95	100			
U ₀₂ (V) 升温	0.050	0.061	0.072	0.083	0.094	0.105	0.116	0.127	0.138	0.149	0.160			
U∞ (V) 降温	0.047	0.056	0.067	0.077	0.087	0.098	0.108	0.119	0.129	0.140	0.150			

T (°C)	105	110	115	120				
U ₀₂ (V) 升温	0.170	0.181	0.191	0.200				
U ₀₂ (V) 降温	0.161	0.172	0.184	0.197				

六、实验报告

1、根据实验数据,作出 U_02-T 曲线,分析 E 型热电偶的温度特性曲线,计算其非线性误差。

答: \mathbf{U}_{o2} 取升温、降温时观测值的均值,用 MATLAB 做出散点图和拟合直线,可以看出,电压随温度的增长近似呈现线性变化。

拟合直线 U=0.002144T-0.0593

2、根据中间温度定律和 E 型热电偶分度表,用平均值计算出差动放大器的放大倍数 A。

答: $A = U_{02}/ Eab(T,Tn) = U_{02}/ (Eab(T,0)-Eab(Tn,0))$

查表: Eab(T,0)=1.131mv;

Т	50	55	60	65	70	75	80	85	90	95	10	10	11	11	12	均
											0	5	0	5	0	值
Uo2	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
	48	58	69	80	90	01	12	23	33	44	55	65	76	87	98	
	5	5	5	0	5	5	0	0	5	5	0	5	5	5	5	
Eab	3.0	3.3	3.6	4.0	4.3	4.6	4.9	5.3	5.6	5.9	6.3	6.6	6.9	7.3	7.6	
(Tn,0)	47	64	83	05	29	55	83	14	46	81	17	56	96	39	83	
Α																

实验三十一 电涡流传感器的位移特性实验

一、实验目的:

了解电涡流传感器测量位移的工作原理和特性。

二、实验仪器:

电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表、测微头。

三、实验原理:

通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗, 而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

四、实验内容与步骤

1. 按下图安装电涡流传感器。

图 31-1

2. 在测微头端部装上铁质金属圆盘,作为电涡流传感器的被测体。调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。

图 31-2

- 3. 传感器连接按图 31-2, 将电涡流传感器连接线接到模块上标有"~~~"的两端, 实验模块输出端 Uo 与数显单元输入端 Ui 相接。数显表量程切换开关选择电压 20V 档, 模块电源用连接导线从实验台接入+15V 电源。
- 4. 打开实验台电源,记下数显表读数,然后每隔 0. 2mm 读一个数,直到输出几乎不变为止。将结果列入下表 31-1。

X (mm)	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
U ₀ (V)	1.60	1.62	1.65	1. 70	1. 73	1.76	1. 78	1.80	1.82	1.84
X (mm)	2.0	2. 2	2. 4	2.6	2.8	3.0	3. 2	3. 4	3.6	3.8
U ₀ (V)	1.86	1.88	1.90	1.91	1. 92	1.93	1.94	1.95	1.96	1.97
X (mm)	4.0	4. 2	4. 4	4.6	4.8	5.0	5. 2	5. 4	5.6	5.8
U ₀ (V)	1.98	1.99	2.00	2. 01	2. 01	2.02	2.03	2.03	2.04	2.04
X (mm)	6.0	6. 2	6. 4	6.6	6.8	7.0	7. 2	7. 4	7. 6	7.8

U ₀ (V)	2.04	2.05	2.05	2.05	2.05	2.06	2.06	2.07	2.07	2.07
X (mm)	8.0	8. 2	8. 4	8.6						
U ₀ (V)	2.07	2.07	2.07	2.07						

表 31-1

五、实验报告

1.根据表 31-1 数据,画出 U-X 曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,并计算量程为 $1\,\text{mm}$ 、 $3\,\text{mm}$ 及 $5\,\text{mm}$ 时的灵敏度和线性度(可以用端点法或其它拟合直线)。

曲线在[2.2,5.2]范围内曲线近似为直线, 把该段曲线单独画出来:

拟合曲线为: U=0.04824*X+ 1.784, 可计算得:

- (1) 则系统灵敏度为 $S = \frac{\Delta U}{\Delta X} = 0.4824V / mm$
- (2) 线性度误差为:
- ①X=1mm 时,

$$U = 0.04824 \times 1 + 1.784 = 1.8322$$

 $\Delta m = U - 1.75 = 0.0822$

$$\mathbf{u}_{FS} = 0.15V$$

$$\delta_{\rm f} = \frac{\Delta m}{u_{FS}} \times 100\% = 54.8\%$$

②X=3mm 时

$$U = 0.04824 \times 3 + 1.784 = 1.9287$$

$$\Delta m = |U - 1.93| = 0.0013$$

$$\mathbf{u}_{FS} = 0.15V$$

$$\delta_{\rm f} = \frac{\Delta m}{u_{\rm FS}} \times 100\% = 0.85\%$$

③X=5mm 时

$$U = 0.04824 \times 5 + 1.784 = 2.0252$$

$$\Delta m = U - 2.02 = 0.0052$$

$$\mathbf{u}_{FS} = 0.15V$$

$$\delta_{\rm f} = \frac{\Delta m}{u_{FS}} \times 100\% = 3.47\%$$