CLAIMS

What is claimed is:

1	1.	A magnetoresistive sensor comprising:
2		first and second magnetically free layers;
3	,	a magnetically pinned layer sandwiched between the first and second free layers,
4		said magnetically pinned layer being self pinned;
5		a first electrically insulating barrier layer sandwiched between said first
6		magnetically free layer and said pinned layer; and
7		a second electrically insulating barrier layer sandwiched between said second free
8		layer and said pinned layer.
1	2.	A magnetoresistive sensor as in claim 1 wherein said pinned layer is pinned by a
2	combi	ination of magnetostriction of the pinned layer and compressive stress within the
3	sensor	r.
1	3.	A magnetoresistive sensor as in claim 1 wherein said pinned layer comprises Co
2	and F	e, wherein the atomic percent of Fe is about 50%.
1	4.	A magnetoresistive sensor as in claim 1 wherein said pinned layer comprises
2	CoFe	with an atomic percent of Fe ranging from 20 to 60 percent

- 1 5. A magnetoresistive sensor as in claim 1 wherein said pinned layer comprises
- 2 CoFeV, with an atomic percent of Fe ranging from 20 to 60 percent and an atomic
- 3 percent of V ranging from 2 to 10 percent.

1

- 1 6. A magnetoresistive sensor as in claim 1 wherein said pinned layer comprises a
- 2 single ferromagnetic layer comprising Co and Fe.

1

- 1 7. A magnetoresistive sensor as in claim 1 wherein said pinned layer comprises a
- 2 single ferromagnetic layer comprising Co, Fe and V.
- 1 8. A magnetoresistive sensor as in claim 1 wherein said pinned layer comprises three
- 2 ferromagnetic layers separated by first and second non-magnetic coupling layers.
- 1 9. A magnetoresistive sensor as in claim 8, wherein said three ferromagnetic layers
- 2 comprise Co and Fe and wherein the atomic percent of Fe in each layer is 20 to 60
- 3 percent.
- 1 10. A magnetoresistive sensor as in claim 8, wherein said three ferromagnetic layers
- 2 comrpsis Co, Fe and V and wherein the percentage of Fe in each layer ranges from 20 to
- 3 60 percent and wherein the atomic percentage of V ranges from 2 to 10 percent.

- 1 11. A magnetoresistive sensor as in claim 1, wherein said pinned layer comprises first
- 2 two outer ferromagnetic layers and one inner ferromagnetic layers, the outer and inner
- 3 ferromagnetic layers comprising Co and Fe, said outer ferromagnetic layers having a
- 4 thickness of about 5 angstroms and said inner ferromagnetic layer having a thickness of
- 5 about 10 angstroms.
- 1 12. A magnetoresistive sensor as in claim 1, wherein said pinned layer comprises a
- 2 single layer of ferromagnetic material comprising Co and Fe and wherein said
- 3 single ferromagnetic layer has a thickness of 5 to 15 angstroms.
- 1 13. A magnetoresistive sensor as in claim 1, wherein said barrier layers comprise
- 2 Aluminum Oxide.
- 1 14. A magnetoresistive sensor as in claim 1, wherein said barrier layers comprise
- 2 magnesium oxide.
- 1 15. A magnetoresistive sensor as in claim 1, wherein at least one of said free layers
- 2 comprises CoFe.
- 1 16. A magnetoresistive sensor as in claim 1, wherein at least one of said free layers
- 2 comprises a layer of CoFe and a layer of NiFe, the CoFe layer being disposed
- 3 closer to the pinned layer than the NiFe layer.

I	17.	A magnetoresistive sensor as in claim 11, wherein said three ferromagnetic layer	
2	of said pinned layer are separated from one another by first and second non-magnetic		
3	coupling layers.		
1	18.	A mangetoresistive sensor as in claim 11, wherein said three ferromagnetic layers	
2		of said pinned layers are separated from on another by first and second non-	
3		magnetic coupling layers comprising Ru.	
1	19.	A magnetic data storage system, comprising:	
2		a motor;	
3		a magnetic disk rotatably connected with said motor;	
4		a suspension;	
5		a slider connected with said suspension for movement adjacent to said disk;	
6		a magnetoresistive sensor, connected with said suspension, said magnetoresistive	
7		sensor further comprising:	
8		first and second magnetically free layers;	
9		a magnetically pinned layer sandwiched between the first and second free	
10		layers, said magnetically pinned layer being self pinned;	
11		a first electrically insulating barrier layer sandwiched between said first	
12		magnetically free layer and said pinned layer; and	
13		a second electrically insulating barrier layer sandwiched between said	
14		second free layer and said pinned layer.	