

# Computer Architecture ----A Quantitative Approach

陈文智

浙江大学计算机学院 chenwz@z ju. edu. cn

## Topics in Chapter 1

- 1.1 Introduction
- 1.2 Classes of computers
- 1.3 Defining computer architecture and What's the task of computer design?
- 1.4 Trends in Technology
- 1.5 Trends in power in Integrated circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting and summarizing Perf.
- 1.9 Quantitative Principles of computer Design
- 1.10 Putting it altogether

## History of the Computer

- Original:
  - Big Fishes Eating Little Fishes



## Computer Food Chain



## Computer Food Chain





**NOW** 

## Incredible performance improvement



#### Conclusion

- Technological improvements more steady than progress in computer architecture
- After RISC emergence, computer design emphasized both architectural innovation and efficient use of technology improvements.
  - CA plays an important role in performance Improvement
- Little ILP left to exploit due to power dissipation
  - Faster uniprocessor => multiple processor on chip
  - ILP => TLP and DLP
  - Implicitly, compiler and hardware => Explicitly, programmer

### Process ability → New Applications



1975 1980 1985 1990 1995 2000

## Why Such Change in 60 years?

#### • Two reasons:

- Advances in the technology used to build computers
  - IC
  - Storage device(including RAM and DISK)
  - Peripheral device
- Innovation in computer design
  - Simple → complex → most complex → simple → complex → most complex
  - Sometimes rapid, sometimes slow
  - Many technology have been washed out

## Four Decades of microprocessor

- The Decade of the 1970's "Microprocessors"
  - Programmable Controller
  - Single-Chip Microprocessors
  - Personal Computers (PC)
- The Decade of the 1980's "Quantitative Architecture"
  - Instruction Pipelining
  - Fast Cache Memories
  - Compiler Considerations
  - Workstations
- The Decade of the 1990's "Instruction-Level Parallelism"
  - Superscalar Processors
  - Speculative Microarchitectures
  - Aggressive Code Scheduling
  - Low-Cost Desktop Supercomputing
- The Decade of the 2000's "Thread-level/Data-level parallelism"

## Forces on Computer Architecture



Computer architecture has been at the **core** of such technological development and is still on a forward move

## **Topics in Chapter**

- 1.1 Introduction
- 1.2 Classes of computers
- 1.3 Defining computer architecture and What's the task of computer design?
- 1.4 Trends in Technology
- 1.5 Trends in power in Integrated circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting and summarizing Perf.
- 1.9 Quantitative Principles of computer Design
- 1.10 Putting it altogether

## Classes of computers

## •Flynn's Taxonomy: A classification of computer architectures based on the number of streams of instructions and data



- SISD (Single Instruction Single Data)
  - Uniprocessors
- MISD (Multiple Instruction Single Data)
  - ???
- SIMD (Single Instruction Multiple Data)
  - Examples: Illiac-IV, CM-2
    - » Simple programming model
    - » Low overhead
    - » Flexibility
    - » All custom
- MIMD (Multiple Instruction Multiple Data)
  - Examples: SPARCCenter, T3D
    - » Flexible
    - » Use off-the-shelf micros

#### SISD

- A serial (non-parallel) computer
- Single instruction: only one instruction stream is being acted on by the CPU during any one clock cycle
- Single data: only one data stream is being used as input during any one clock cycle
- Deterministic execution
- This is the oldest and until recently, the most prevalent form of computer
- Examples: most PCs, single CPU workstations and mainframes





#### SIMD

- A type of parallel computer
- Single instruction: All processing units execute the same instruction at any given clock cycle
- Multiple data: Each processing unit can operate on a different data element
- This type of machine typically has an instruction dispatcher, a very high-bandwidth internal network, and a very large array of very small-capacity instruction units.
- Best suited for specialized problems characterized by a high degree of regularity, such as image processing.
- Synchronous (lockstep) and deterministic execution
- Two varieties:
  - Processor Arrays: Connection Machine CM-2, Maspar MP-1, MP-2
  - Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2, Hitachi S820

## SIMD



#### MISD

- A single data stream is fed into multiple processing units.
- Each processing unit operates on the data independently via independent instruction streams.
- Few actual examples of this class of parallel computer have ever existed. One is the experimental Carnegie-Mellon C.mmp computer (1971).
- Some conceivable uses might be:
  - multiple frequency filters operating on a single signal stream
  - multiple cryptography algorithms attempting to crack a single coded message.

## MISD



#### MIMD

- Currently, the most common type of parallel computer. Most modern computers fall into this category.
- Multiple Instruction: every processor may be executing a different instruction stream
- Multiple Data: every processor may be working with a different data stream
- Execution can be synchronous or asynchronous, deterministic or nondeterministic
- Examples: most current supercomputers, networked parallel computer "grids" and multi-processor SMP computers - including some types of PCs.

### MIMD



#### Classification-market



## Effect of dramatic performance growth

- Enhanced the capability available to computer users.
- Microprocessor-based computers across the entire range of the computer design.
  - Minicomputer => servers using microprocessors
  - Mainframe => multiprocessors consisting of microprocessors
  - Supercomputer => multiprocessor collections

## Four computing markets

| Feature                             | Mobile                                                       | Desktop                    | Server                                                 | Embedded                                             |
|-------------------------------------|--------------------------------------------------------------|----------------------------|--------------------------------------------------------|------------------------------------------------------|
| Price of system                     | \$100-\$1000                                                 | \$300–\$2500               | \$5000<br>-\$5,000,000                                 | \$10<br>-\$100,000                                   |
| Price of microprocess or module     | \$10-\$100                                                   | \$50-\$500<br>per proc.    | \$200<br>-\$10,000<br>per proc.                        | \$0.01<br>-\$100<br>per proc.                        |
| Critical<br>system<br>design issues | Cost, energy,<br>media<br>performance,<br>responsivene<br>ss | Price-perf. Graphics perf. | Throughput,<br>availability,<br>scalability,<br>energy | Price, Power consumption, application-specific perf. |

## **Desktop Computing**

- The first, and still the largest market in dollar terms, is desktop computing.
- Requirement:
  - Optimized price-performance
- New challenges:
  - Web-centric, interactive application
  - How to evaluate performance?

#### Servers

- The role of servers to provide larger scale and more reliable file and computing services grew.
  - For servers, different characteristics are important. First, dependability is critical.
  - A second key feature of server systems is an emphasis on scalability.
  - Lastly, servers are designed for efficient throughput.

## Internet of Things/Embedded Computers

- Have the widest spread of processing power and cost.
  - 8-bit 16-bit 32-bit 64-bit
- Real time performance (soft & hard)
- Strict resource constraints
  - limited memory size, lower power consumption,...
- The use of processor cores together with application-specific circuitry.
  - DSP, mobile computing

#### Personal Mobile Device

- Share many of the characteristics of desktop computers.
  - Web-based and media-oriented
  - Ability to run third-party software (APPs)
    - major difference with embedded computers
- Energy efficiency
  - Battery powered, absence of a fan
- Low-cost
- Real-time performance requirement

#### Questions

- What we need to design for different computing markets?
- What a computer Architecture designer need to know?

## **Topics in Chapter**

- 1.1 Why take this course ?
- 1.2 Classes of computers in current computer market
- 1.3 Defining computer architecture and What's the task of computer design.
- 1.4 Trends in Technology
- 1.5 Trends in power in Integrated circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting and summarizing Perf.
- 1.9 Quantitative Principles of computer Design
- 1.10 Putting it altogether

## What computer architecture is all about

- What are the components of a computer?
- How to effectively put together the various components



## Original Concept of Computer architecture

- The attributes of a [computing] system as seen by the programmer, i.e.,
- The conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation.
  - Amdahl, Blaaw, and Brooks, 1964

## Instruction Set Architecture (ISA)



#### ISA: the interface between hardware and software

- Purpose 1: (now irrelevant)
  - Re-use of fixed hardware resources
- Purpose 2:
  - Interface between developer and hardware
  - Contract from one chip generation and the next



#### **Evolution of Instruction Sets**

```
Single Accumulator (EDSAC 1950)
           Accumulator + Index Registers
                     (Manchester Mark I, IBM 700 series 1953)
            Separation of Programming Model
                     from Implementation
 High-level Language Based (B5000 1963)

Concept of a Family (IBM 360 1964)
            General Purpose Register Machines
Complex Instruction Sets
                               Load/Store Architecture
                                 (CDC 6600, Cray 1 1963-76)
 (Vax, Intel 432 1977-80)
                                 RISC
                         (Mips, Sparc, HP-PA, IBM RS6000, . . . 1987)
```

## Interface Design

- A good interface:
  - Lasts through many implementations (portability, compatibility)
  - Usable in many different scenarios (generality)
  - Provides convenient functionality to higher levels
  - Permits an efficient implementation at lower levels

### Seven dimensions of ISA

- Class
- Memory addressing
- Addressing modes
- Types and sizes of operands
- Operations
- Control flow instructions
- Encoding

## **Evolution of Computer Architecture Course**

- 1950s to 1960s:
  - Computer Arithmetic
- 1970s to mid 1980s:
  - Instruction Set Design, especially ISA appropriate for compilers
- 1990s:
  - Design of CPU, memory system, I/O system, Multiprocessors, Networks.
- 2010s:
  - Multicore, Self adapting systems? Self organizing structures?
  - Power-aware design, reconfigurable
- 2020s:
  - Heterogeneous accelerator, GPU, FPGA
  - Security design

## Computer Architecture

- Computer Architecture is the science and art of selecting and interconnecting hardware components to create computers that meet functional, performance and cost goals.
- It Covers:
  - Instruction Set design
  - Organization: high level of aspects of a computer's design
    - Memory, memory interconnect, internal CPU
  - Hardware: specifics of computer
    - Detailed logic design, packaging, cooling system, board displacement, power

# **Computer Architecture Topics**



Pipelining, Hazard Resolution, Superscalar, Reordering, Prediction, Speculation, Vector, Dynamic Compilation

Pipelining and Instruction Level Parallelism

# **Computer Architecture Topics**



Processor-Memory-Switch

Multiprocessors Networks and Interconnections Shared Memory, Message Passing, Data Parallelism

Topologies, Routing, Bandwidth, Latency, Reliability

### The Task of Computer Design 1

- Define the user requirement:
  - Functional requirement: Fig1.4
    - Application area
    - Level of software compatibility
    - OS requirements
    - Standards
  - Nonfunctional requirements:
    - Price/performance
    - Availability, scalability, throughput, ...
    - Power, size, memory, temperature, ...

## **Application Performance**

- 1996 1997
  - CPU performance improves by N = 400/200 = 2
  - program performance improves by N = 100/55 = 1.81
- 1997 1998
  - CPU performance factor of 2
  - program performance N = 55/32.5 = 1.7
- 1998 1999
  - CPU performance factor of 2
  - program performance N = 32.5 / 21.25 = 1.53
- 1999 2000
  - CPU Performance factor of 2
  - program performance N = 21.25 / 15.6 = 1.36



## Performance for Web Surfing

- Assume 50% CPU, 50% I/O
- 1996 1997
  - CPU performance improves by N = 400/200 = 2
  - Program performance improves by N = 100/75 = 1.33
- 1997 1998
  - CPU performance \*= 2
  - Program performance N = 75/62.5= 1.2
- 1998 1999
  - CPU performance \*= 2
  - Program performance N = 62.5/56.5 = 1.11

### **Computer Applications**

- Architects need to understand applications' behavior
  - We say we design general purpose processors, but we should also focus on specific sets of applications
  - Architecture can be tuned for applications
- Types of applications today
  - Scientific
    - Weather prediction, crash analysis, earthquake analysis, medical imaging, imaging of the earth (searching for oil)
  - Business
    - database, data mining, video
  - General purpose
    - Microsoft Word, Excel
  - Real-time
    - automated control systems,
  - Others: Games, Mobile

## Architectures are Tuned to Applications

- HP's: 1.5 MB cache for transaction processing
- Alpha: very fast FP for scientific
- StrongARM: embedded
- Intel MMX: multimedia
- Sony EE: graphics rendering
- Applications drive the design of the processor



# The Task of Computer Design 2

- Determine the important attributes of a new machine to maximize performance while staying with constrains, such as cost, power, availability, etc.
  - instruction set architecture design
  - functional organization
    - High level aspects of computer design, i.e. memory system, bus architecture and internal CPU design.
  - logic design (hardware)
  - implementation (hardware)

### Trend of Architecture

- Emerging issues
  - High Speed
  - Multi-issue (superscalar) / Multithreading / Multiprocessor
  - CPU Cores / Multiple cores
  - Embedded
  - IRAM
- Emerging applications
  - Digital media / Digital library
  - Toaster on the internet
  - Wireless everything
  - Star Trek communicator
  - Intelligent appliances & agents

# Computer Engineering Methodology



# Computer Design life cycle



# Summary: Task of computer design

- Considerations:
  - Functional and non functional requirements
  - Implementation complexity
    - Complex designs take longer to complete
    - Complex designs must provide higher performance to be competitive
  - Technology trends
    - Not only what's available today, but also what will be available when the system is ready to ship. (more on this later)
  - Trends in Power in IC
  - Trends in cost
- Arguments
  - Evaluate Existing Systems for Bottlenecks
- Quantitative Principles

## **Topics in Chapter**

- 1.1 Why take this course ?
- 1.2 Classes of computers in current computer market
- 1.3 Defining computer architecture and What's the task of computer design?
- 1.4 Trends in Technology
- 1.5 Trends in power in Integrated circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting and summarizing Perf.
- 1.9 Quantitative Principles of computer Design
- 1.10 Putting it altogether

## **Technology Trends**

#### Moore Law

 In 1965 he predicted that the number of components the industry would be able to place on a computer chip would double every year. In 1975, he updated his prediction to once every two years. It has become the guiding principle for the semiconductor industry to deliver ever-more-powerful chips while decreasing the cost of electronics.

**Gordon Moore** 



### **Technology Trends**

- Integrated circuit logic technology
  - Transistor Density: incr. 35% per year, (4x every 4 years)
  - Die size: 10%-20% per year
  - Transistor count per chip:40-55% per year
- Semiconductor DRAM
  - Capacity: 40% per year (2x every 2 years)
  - Memory speed: about 10% per year
- Magnetic Disk tech.
  - Density: 30% per year before 1990;60% per year in1990-1996
  - 100% per year in 1996-2004;30% per-year after 2004
  - capacity: about 60% per year
- Network bandwidth

$$10\text{Mb} \xrightarrow{} 100\text{Mb} \xrightarrow{} 1\text{Gb}$$

$$10 \text{ years} \qquad 5 \text{ years}$$

Designers often design for the next technology.

### Notes

- A rule of thumb
  - Cost decrease rate ~ density increase rate
- Technology thresholds
  - Technology improves continuously, an impact of this improvements can be in discrete leaps.

# Perf. Trends: Bandwidth over latency

- Bandwidth/samount of value
   given time
- Latency/res time between the complet



# Performance milestones in microprocessor

| Microprocessor              | 16-bit<br>address/bus,<br>microcoded | 32-bit<br>address.bus,<br>microcoded | 5-stage<br>pipeline,<br>on-chip I & D<br>caches, FPU | 2-way<br>superscalar,<br>64-bit bus | Out-of-order<br>3-way<br>superscalar | Out-of-order<br>superpipelined,<br>on-chip 1.2<br>cache |
|-----------------------------|--------------------------------------|--------------------------------------|------------------------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------|
| Product                     | Intel 80286                          | Intel 80386                          | Intel 80486                                          | Intel Pentium                       | Intel Pentium Pro                    | Intel Pentium 4                                         |
| Year                        | 1982                                 | 1985                                 | 1989                                                 | 1993                                | 1997                                 | 2001                                                    |
| Die size (mm <sup>2</sup> ) | 47                                   | 43                                   | 81                                                   | 90                                  | 308                                  | 217                                                     |
| Transistors                 | 134,000                              | 275,000                              | 1,200,000                                            | 3,100,000                           | 5,500,000                            | 42,000,000                                              |
| Pins                        | 68                                   | 132                                  | 168                                                  | 273                                 | 387                                  | 423                                                     |
| Latency (clocks)            | 6                                    | 5                                    | 5                                                    | 5                                   | 10                                   | 22                                                      |
| Bus width (bits)            | 16                                   | 32                                   | 32                                                   | 64                                  | 64                                   | 64                                                      |
| Clock rate (MHz)            | 12.5                                 | 16                                   | 25                                                   | 66                                  | 200                                  | 1500                                                    |
| Bandwidth (MIPS)            | 2                                    | 6                                    | 25                                                   | 132                                 | 600                                  | 4500                                                    |
| Latency (ns)                | 320                                  | 313                                  | 200                                                  | 76                                  | 50                                   | 15                                                      |

# Challenges for IC Tecnology

- IC characteristic: feature size
  - 10 microns in 1971 → 0.18microns in 2001
  - $\rightarrow$  0.09 microns in 2006  $\rightarrow$  65nm
  - $\rightarrow$ 40nm  $\rightarrow$ 28nm  $\rightarrow$ 14nm  $\rightarrow$ 7nm  $\rightarrow$ 5nm...
  - Rule of thumb: transistor performance Improves linearly with decreasing feature size.
- IC density improvement is both opportunity and Challenge:
  - Signal delay for a wire increase in proportion to the product of its resistance and capacitance.
  - Major design limitation: signal delay

### Topics in Chapter

- 1.1 Why take this course ?
- 1.2 Classes of computers in current computer market
- 1.3 Defining computer architecture and What's the task of computer design?
- 1.4 Trends in Technology
- 1.5 Trends in power in Integrated circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting and summarizing Perf.
- 1.9 Quantitative Principles of computer Design
- 1.10 Putting it altogether

### **Trends in Power**

- Power also provide challenges as device scaled
  - First microprocessor: 1/10 watt
  - 2GHz Pentium 4: 135 watt
- Challenges:
  - Distributing the power
  - Removing the heat
  - Preventing hot spot



May 1986 @16 MHz core 275,000 1.5μ transistors ~1.2 SPECint2000 17 Years

200x

200x/11x

1000x

August 27, 2003 @3.2 GHz core 55 Million 0.13µ transistors 1249 SPECint2000



Performance scales with area\*\*.5





### Two concepts

- Dynamic power: power consumption in switching transistors.
  - Power dynamic = ½ \*Capacitive load \* Voltage2 \* Frequency switched
  - Energy dynamic = Capacitive load \* Voltage2
- Static power: power consumption when a transistor is off due to power leakage
  - Power static = current static \* Voltage

# Rule of Thumb

- 10% reduction of voltage yields:
  - 10% reduction in frequency
  - 30% reduction in power
  - Less than 10% reduction in performance

#### **Rule of Thumb**

| Voltage | Frequenc<br>v | Power | Performanc<br>e |
|---------|---------------|-------|-----------------|
| 1%      | 1%            | 3%    | 0.66%           |

## Dual core with voltage scaling

#### **RULE OF THUMB**





### Multiple cores deliver more performance per watt



# **THANK YOU**