MIPI DSI 协议介绍

一、MIPI

MIPI(移动行业处理器接口)是 Mobile Industry Processor Interface 的缩写。MIPI(移动行业处理器接口)是 MIPI 联盟发起的为移动应用处理器制定的开放标准。

已经完成和正在计划中的规范如下:

工作组	规范名称
Camera工作组	MIPI Camera Serial Interface 1.0 specification Camera Serial Interface 2 v1.0 (CSI-2)
Device Descriptor Block工作组	暂无
DigRF工作组	DigRF BASEBAND/RF DIGITAL INTERFACE SPECIFICATION Version 1.12
Display工作组	DBI-2 DPI-2 DSI DCS
高速同步接口工作组	• HSI 1.0
接口管理框架工作组	智元 http://blog.csdp.pet/shep924
低速多点连接工作组	• SLIMbus
NAND软件工作组	暂无
物理层工作组	D-PHY M-PHY
软件工作组	暂无
系統电源管理工作组	• SPMI
检测与调试工作组	暂无
统一协议工作组	UniPro 1 point-to-point PIE

二、MIPI 联盟的 MIPI DSI 规范

- 1、名词解释
- DCS (DisplayCommandSet): DCS 是一个标准化的命令集,用于命令模式的显示模组。
- DSI, CSI (DisplaySerialInterface, CameraSerialInterface
 - DSI 定义了一个位于处理器和显示模组之间的高速串行接口。
 - CSI 定义了一个位于处理器和摄像模组之间的高速串行接口。
- D-PHY: 提供 DSI 和 CSI 的物理层定义
- 2、DSI 分层结构

DSI 分四层,对应 D-PHY、DSI、DCS 规范、分层结构图如下:

- PHY 定义了传输媒介,输入/输出电路和和时钟和信号机制。
- Lane Management 层:发送和收集数据流到每条 lane。
- Low Level Protocol 层: 定义了如何组帧和解析以及错误检测等。
- Application 层: 描述高层编码和解析数据流。

- 3、Command 和 Video 模式
- DSI 兼容的外设支持 Command 或 Video 操作模式, 用哪个模式由外设的构架决定
- Command 模式是指采用发送命令和数据到具有显示缓存的控制器。主机通过命令间接的控制外设。Command 模式采用双向接口
- Video 模式是指从主机传输到外设采用时实象素流。这种模式只能以高速传输。为减少复杂性和节约成本,只采用 Video 模式的系统可能只有一个单向数据路径

三、D-PHY介绍

- 1、 D-PHY 描述了一同步、高速、低功耗、低代价的 PHY。
- •一个 PHY 配置包括
- 一个时钟 lane
- · 一个或多个数据 lane
- •两个 Lane 的 PHY 配置如下图

- 三个主要的 lane 的类型
 - 单向时钟 Lane
 - 单向数据 Lane
 - 双向数据 Lane
- D-PHY 的传输模式
 - 低功耗 (Low-Power) 信号模式 (用于控制): 10MHz (max)
 - 高速(High-Speed)信号模式(用于高速数据传输): 80Mbps ~ 1Gbps/Lane
- D-PHY 低层协议规定最小数据单位是一个字节
 - 发送数据时必须低位在前, 高位在后.
- D-PHY 适用于移动应用
 - DSI:显示串行接口
 - 一个时钟 lane, 一个或多个数据 lane
 - CSI: 摄像串行接口
- 2、Lane 模块
- PHY 由 D-PHY(Lane 模块)组成
- D-PHY 可能包含:
 - •低功耗发送器(LP-TX)
 - ·低功耗接收器(LP-RX)
 - 高速发送器(HS-TX)
 - 高速接收器 (HS-RX)

- •低功耗竞争检测器(LP-CD)
- 三个主要 lane 类型
 - 单向时钟 Lane
 - Master: HS-TX, LP-TX
 - Slave: HS-RX, LP-RX
 - 单向数据 Lane
 - Master: HS-TX, LP-TX
 - Slave: HS-RX, LP-RX
 - 双向数据 Lane
 - Master, Slave: HS-TX, LP-TX, HS-RX, LP-RX, LP-CD
- 3、Lane 状态和电压
- Lane 状态
 - LP-00, LP-01, LP-10, LP-11 (单端)
 - HS-0, HS-1 (差分)
- Lane 电压(典型)
 - LP: 0-1.2V
 - HS: 100-300mV (200mV)
- 4、操作模式
- 数据 Lane 的三种操作模式
 - Escape mode, High-Speed(Burst) mode, Control mode
- •从控制模式的停止状态开始的可能事件有:
 - Escape mode request (LP-11→LP-10→LP-00→LP-01→LP-00)
 - High-Speed mode request (LP-11 \rightarrow LP-01 \rightarrow LP-00)
 - Turnaround request (LP-11→LP-10→LP-00→LP-10→LP-00)
- Escape mode 是数据 Lane 在 LP 状态下的一种特殊操作
 - •在这种模式下,可以进入一些额外的功能: LPDT, ULPS, Trigger
 - •数据 Lane 进入 Escape mode 模式通过 LP-11→LP-10→LP-00→LP-01→LP-00
 - •一旦进入 Escape mode 模式,发送端必须发送 1 个 8-bit 的命令来响应请求的动作
 - Escape mode 使用 Spaced-One-Hot Encoding
- •超低功耗状态(Ultra-Low Power State)
 - •这个状态下, lines 处于空状态 (LP-00)
- 时钟 Lane 的超低功耗状态
 - •时钟 Lane 通过 LP-11→LP-10→LP-00 进入 ULPS 状态
 - •通过 LP-10 → TWAKEUP →LP-11 退出这种状态,最小 TWAKEUP 时间为 1ms
- 高速数据传输
 - •发送高速串行数据的行为称为高速数据传输或触发(burst)
 - •全部 Lanes 门同步开始,结束的时间可能不同。
 - •时钟应该处于高速模式
- 各模操作式下的传输过程

- •进入 Escape 模式的过程: LP-11→LP-10→LP-00→LP-01→LP-00→Entry Code → LPD (10MHz)
 - •退出 Escape 模式的过程: LP-10→LP-11
 - •进入高速模式的过程: LP-11→LP-01→LP-00→SoT(00011101) → HSD (80Mbps ~ 1Gbps)
 - •退出高速模式的过程: EoT→LP-11
 - •控制模式 BTA 传输过程: LP-11→LP-10→LP-00→LP-10→LP-00
 - •控制模式 BTA 接收过程: LP-00→LP-10→LP-11
 - 状态转换关系图

四、DSI介绍

- 1、DSI 是一种 Lane 可扩展的接口, 1个时钟 Lane/1-4 个数据 Lane
- DSI 兼容的外设支持 1 个或 2 个基本的操作模式:
 - Command Mode (类似于 MPU 接口)
 - Video Mode (类似于 RGB 接口) 必须用高速模式传输数据,支持3种格式的数据传输

- Non-Burst 同步脉冲模式♣
- Non-Burst 同步事件模式♣
- Burst 模式♣
- 传输模式:
 - 高速信号模式(High-Speed signaling mode)
- 低功耗信号模式(Low-Power signaling mode) 只使用数据 lane 0(时钟是由 DP,DN 异或而来)。
- 帧类型
 - 短帧: 4 bytes (固定)
 - 长帧: 6~65541 bytes (可变)
- 两个数据 Lane 高速传输示例

2、短帧结构

- 帧头部 (4 个字节)
 - 数据标识(DI) 1 个字节
 - 帧数据-2个字节 (长度固定为2个字节)
 - 错误检测(ECC) 1 个字节
- 帧大小
 - 长度固定为 4 个字节
- 3、长帧结构

- 帧头部 (4 个字节)
 - 数据标识(DI) 1 个字节
 - 数据计数-2个字节 (数据填充的个数)
 - 错误检测(ECC) 1 个字节
- •数据填充(0~65535 字节)
 - 长度=WC*字节
- 帧尾: 校验和 (2 个字节)
- 帧大小:
 - 4 + (0~65535) + 2 = 6 ~ 65541 字节

4、帧数据类型

Data Type,		Description	Packet	DCS	VD	GN
(hex)	(binary)	- Description	Size	DC3	PKT	PKT
01h	00 0001	Sync Event, V Sync Start	Short		0	
11h	01 0001	Sync Event, V Sync End	Short		0	
21h	10 0001	Sync Event, H Sync Start	Short		0	
31h	11 0001	Sync Event, H Sync End	Short		0	
08h	00 1000	End of Transmission Packet	Short	0	0	0
02h	00 0010	Color Mode (CM) Off Command	Short		0	
12h	01 0010	Color Mode (CM) On Command	Short		0	
22h	10 0010	Shut Down Peripheral Command	Short		0	
32h	11 0010	Turn On Peripheral Command	Short		0	
03h	00 0011	Generic Short WRITE, no parameters	Short			NOP
13h	01 0011	Generic Short WRITE, 1 parameter	Short			0
23h	10 0011	Generic Short WRITE, 2 parameters	Short			0
04h	00 0100	Generic READ, no parameters	Short			NOP
14h	01 0100	Generic READ, 1 parameter	Short			0
24h	10 0100	Generic READ, 2 parameters	Short			0
05h	00 0101	DCS WRITE, no parameters	Short	0	0	0
15h	01 0101	DCS WRITE, 1 parameter	Short	0	0	0
06h	00 0110	DCS READ, no parameters	Short	0	0	0
37h	11 0111	Set Maximum Return Packet Size	Short	0	0	0
09h	00 1001	Null Packet, no data	Long	0	0	0
19h	01 1001	Blanking Packet, no data	Long		0	
29h	10 1001	Generic Long Write	Long			0
39h	11 1001	DCS Long Write/write_LUT Command Packet	Long	0	0	0
0Eh	00_1110	Packet Pixel Stream, 16bit RGB 5-6-5 Format	Long		0	
		(Support for 1 and 2 data lanes mode)				
1Eh	01_1110	Packet Pixel Stream, 18bit RGB 6-6-6 Format	Long		0	
		(Support for 1 and 2 data lanes mode)				
2Eh	10_1110	Packet Pixel Stream, 18bit RGB Loosely 6-6-6	Long		0	
		Format (Support for 1 and 2 data lanes mode)				
3Eh	11 1110	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	Long		0	
		(Support for 1, 2 and 3 data lanes mode)				
x0h&Fh,	xx 0000	DO NOT USE				
	xx 1111	All unspecified codes are reserved				

具体代码在 drivers/video/msm/Mipi_dsi.h 中

```
    /* dcs read/write */

2. #define DTYPE DCS WRITE
                                0x05
                                        /* short write, 0 parameter */
3. #define DTYPE_DCS_WRITE1
                                        /* short write, 1 parameter */
                                0x15
4. #define DTYPE_DCS_READ
                                0x06
                                        /* read */
5. #define DTYPE_DCS_LWRITE
                                0x39
                                        /* long write */
6.
7. /* generic read/write */
8. #define DTYPE_GEN_WRITE
                                0x03
                                        /* short write, 0 parameter */
9. #define DTYPE_GEN_WRITE1
                                0x13
                                        /* short write, 1 parameter */
10. #define DTYPE_GEN_WRITE2
                                0x23
                                        /* short write, 2 parameter */
11. #define DTYPE_GEN_LWRITE
                                0x29
                                        /* long write */
12. #define DTYPE_GEN_READ
                                        /* long read, 0 parameter */
                                0x04
13. #define DTYPE_GEN_READ1
                                0x14
                                        /* long read, 1 parameter */
14. #define DTYPE_GEN_READ2
                                        /* long read, 2 parameter */
                                0x24
15.
16. #define DTYPE_TEAR_ON
                                        /* set tear on */
                                0x35
17. #define DTYPE_MAX_PKTSIZE
                                0x37
                                        /* set max packet size */
18. #define DTYPE_NULL_PKT
                                0x09
                                        /* null packet, no data */
19. #define DTYPE_BLANK_PKT
                                        /* blankiing packet, no data */
                                0x19
                            0x02 /* color mode off */
21. #define DTYPE_CM_ON
                                0x12 /* color mode on */
22. #define DTYPE_CM_OFF
23. #define DTYPE PERIPHERAL OFF
24. #define DTYPE_PERIPHERAL_ON 0x32
25.
26. /*
27. * dcs response
28. */
29. #define DTYPE_ACK_ERR_RESP
                                    0x02
30. #define DTYPE_EOT_RESP
                                    0x08
                                            /* end of tx */
31. #define DTYPE_GEN_READ1_RESP
                                            /* 1 parameter, short */
                                    0x11
32. #define DTYPE_GEN_READ2_RESP
                                            /* 2 parameter, short */
                                    0x12
33. #define DTYPE_GEN_LREAD_RESP
                                    0x1a
34. #define DTYPE_DCS_LREAD_RESP
                                    0x1c
35. #define DTYPE_DCS_READ1_RESP
                                    0x21
                                            /* 1 parameter, short */
36. #define DTYPE_DCS_READ2_RESP
                                    0x22
                                            /* 2 parameter, short */
```

五、MIPI DSI 信号测量实例

1、MIPI DSI 在 Low Power 模式下的信号测量图

P1:LP11---10----00---10----00, this is a BTA request from HOST

P2:LP00---10---11, this is an ACK from SLAVE

P3:LP11---10----00---10----00, this is a BTA request from HOST

P4:LP00---10---11, this is an ACK from SLAVE

P5:LP11---10----00, enter Escape mode

P6:LP10--00--10--00--10--00--01--00--01--00--01--00--01--00--10--00,which is Spaced-One-Hot Encoding

So this data sequence means 11100001(highest bit),87H,means LPDT(low power data transfer)

P7,P8,P9,P10 should be data ,05H,11H,00H,36H respectively.

P11:LP10-11, means exit escape mode

- 2、MIPI的 D-PHY和 DSI的传输方式和操作模式
- D-PHY 和 DSI 的传输模式
 - 低功耗 (Low-Power) 信号模式 (用于控制): 10MHz (max)
 - 高速 (High-Speed) 信号模式 (用于高速数据传输): 80Mbps ~ 1Gbps/Lane
- D-PHY 的操作模式
 - Escape mode, High-Speed(Burst) mode, Control mode
- DSI 的操作模式
 - Command Mode (类似于 MPU 接口)
 - Video Mode (类似于 RGB 接口) 必须用高速模式传输数据
- 3、小结论
- 传输模式和操作模式是不同的概念
- Video Mode 操作模式下必须使用 High-Speed 的传输模式
- Command Mode 操作模式并没有规定使用 High-Speed 或 Low Power 的传输模式,或者说
- 即使外部 LCD 模组为 Video Mode,但通常在 LCD 模组初始化时还是使用 Command Mode 模式来读写寄存器,因为在低速下数据不容易出错并且容易测量。
- Video Mode 当然也可以用 High-Speed 的方式来发送指令, Command Mode 操作模式也可以使用 High-Speed, 只是没有必要这么做