

Laboratorio de redes

Proyecto de redes y servicios Programación de dispositivos del plano de datos con P4

Clemente Barreto Pestana
cbarretp@ull.edu.es
Profesor Asociado

Área de Ingeniería Telemática Departamento de Ingeniería Industrial Escuela Superior de Ingeniería y Tecnología

Índice

- Introducción
- Entregables
- Evaluación
- Cronograma

Introducción (De la guía docente):

- El <u>bloque II</u> se cubre con el desarrollo de un proyecto en grupo, cuya memoria se deberá presentar en inglés y que se deberá exponer ante los compañeros y defender.
- El bloque II trata del diseño avanzado de redes y proyecto de redes:
 - Simuladores de red.
 - Protocolos de comunicaciones
 - Estudio avanzado de protocolos y dispositivos de los niveles 1 a 4.
 - Desarrollo de un proyecto en el ámbito de las redes.

Descripción (I)

Se propone el desarrollo de un proyecto sobre el diseño e implementación avanzada de protocolos y dispositivos de los niveles 1 a 4:

- Las redes definidas por software (Software Defined Networks o SDN).
- Programación de los dispositivos del plano de datos con el lenguaje P4.

Descripción (II)

El objeto del proyecto es implementar (en GNS3) un dispositivo del plano de datos capaz de realizar un NAT básico. Tecnologías que usaremos:

- Lenguaje de programación: <u>P4</u> (Programming Protocol-independent Packet Processors).
- Conmutador software programable: <u>BMv2</u>.

Redes definidas por software

Conmutador del plano de datos

Programación del plano de datos

Estandarización de arquitectura y lenguaje

Domain	Year	Processing Unit	Main Language/s
General computing	1971	Central Processing Unit (CPU)	C, Java, Phyton, etc.
Signal processing	1979	Digital Signal Processor (DSP)	Matlab
Graphics	1994	Graphics Processing Unit (GPU)	Open Computing Language
Machine learning	2015	Tensor Processing Unit (TPU)	Tensor Flow
Computer networks	2016	Protocol Independent Switch Architecture (PISA)	P4

Programación del plano de datos

P4 Program


```
control ingress () {
     table routing {
         key = { hdr.ipv4.dstAddr : lpm; }
          actions = { drop; route; }
          size = 2048;
      apply {
         routing.apply();
```

Evaluación (De la guía docente):

• 9. Sistema de evaluación y calificación

 Bloque II - Práctica proyecto (PP) (25%):
 Calificación del proyecto obtenida en una escala de 0 a 10.

Criterios:

- Adecuación a lo solicitado.
- Funcionalidad de la configuración.
- Nivel de conocimientos adquiridos.
- Aplicabilidad y viabilidad de la solución propuesta
- o Capacidad de <u>trabajo en grupo</u>.
- Concreción en la redacción.
- Expresión oral y presentación.

Entregables (I)

Los 10 ptos del proyecto se repartirán así:

- Memoria (6 ptos)
 - o Documento (<u>en inglés</u>).
 - Evidencias realización laboratorios y explicación de resultados (1 pto).
 - Análisis/diseño, implementación y pruebas de las mejoras propuestas (5 ptos).
- Cronograma (1 pto)
 - Diagrama Gantt.
 - EDT y reparto de horas entre miembros del equipo con tareas, personas y horas.

Entregables (II)

- Presentación (3 ptos): 15 minutos
 - Explicación + defensa (en español).
 - Análisis/diseño, implementación y pruebas de las mejoras propuestas (2 ptos).
 - Propuesta, detalle y justificación de otras mejoras (1 pto).

Vinculación a itinerario IC

Competencias:

- a. C31 Capacidad de **diseñar y construir** sistemas digitales, incluyendo computadores, sistemas basados en microprocesador y **sistemas de comunicaciones**.
- b. C34 Capacidad de **diseñar e implementar software** de sistema y de **comunicaciones**.
- c. C38 Capacidad para **diseñar, desplegar, administrar** y gestionar redes de computadores

• Resultados de aprendizaje:

- a. Demostrar conocimientos prácticos para diseñar y analizar protocolos y dispositivos de red que abarquen las capas de la 1 hasta la 4 del modelo OSI.
- b. Demostrar la destreza necesaria para llevar a cabo las configuraciones necesarias para desplegar y mantener una infraestructura de red.
- c. Demostrar capacidad para **desarrollar un proyecto** en el ámbito de las redes.

Planificación temporal

- Esfuerzos por persona (Guía didáctica):
 20 h (pres) + 30h (autó) = 50 h/persona
- Desarrollo
 - En grupo.
 - Presencial (laboratorio) y autónomo (la mayor parte de la dedicación).
 - Horario habitual.
- Entregables: hasta <u>viernes 5/5</u> (a las 20h).
- **Defensas:** <u>semana 8/5</u> (en el laboratorio en el horario habitual).

Plan de trabajo

Primeras 2 semanas:

- Desarrollo inicial guiado (2 partes, una cada semana).
- Inicio desarrollo autónomo de mejoras.
- Inicio de preparación de entregables.

Siguientes 2 semanas:

- Fin de desarrollo autónomo de mejoras.
- Fin preparación de entregables.
- Subida de entregables en el aula virtual.

Última semana:

- Preparación presentación.
- Realizar presentación.

Cronograma

ABRIL SABADO **DOMINGO** Semanas de desarrollo 023 **MAYO** SALADO DOMINGO Envío de entregables Presentaciones

Semana 2. Uso en P4 de tablas match-action

Parser (DAG)

Programa P4 con tablas: router sencillo

```
header ethernet t {
  bit<48> dst addr;
  bit<48> src addr;
 bit<16> eth_type;
header ipv4 t {
 bit<4> version;
 bit<4> ihl;
 bit<8> diffserv;
}
parser parser_impl(packet_in pkt, out headers_t hdr) {
 /* Parser state machine to extract header fields */
}
```

```
action set next hop(bit<48> dst addr) {
  ethernet.dst addr = dst addr;
 ipv4.ttl = ipv4.ttl - 1;
table ipv4 routing table {
 key = {
      ipv4.dst addr : LPM; // longest-prefix match
 }
 actions = {
      set_next_hop();
      drop();
 size = 4096; // table entries
```

Plano de datos vs control

Simple router example

Data plane (P4) program

- Defines the format of the table
 - Match fields, actions, action data (parameters)
- Performs the lookup
- Executes the chosen action

Control plane

- Populates table entries with specific information
 - Based on configuration, automatic discovery, protocol calculations

10.0.1.1

Control plane populates table entries

Key	Action	Action Data
10.0.1.1/32	ipv4_forward	dstAddr=00:00:00:00:01:01 port=1
10.0.1.2/32	drop	
*,	NoAction	

Arquitectura de despliegue

Emulación del plano de control

simple_switch_CLI

Para añadir las entradas que hemos comentado debemos lanzar los siguientes comandos:

```
table_set_default ipv4_lpm drop
table_add MyIngress.ipv4_lpm MyIngress.ipv4_forward 10.0.0.0/24 => 00:00:00:00:00:00:01 0
table_add MyIngress.ipv4_lpm MyIngress.ipv4_forward 10.0.1.0/24 => 00:00:00:00:00:02 1
```

Para los dos últimos comandos, como ejemplo, las salidas serían:

Entry has been added with handle 0

RuntimeCmd: table_add MyIngress.ipv4_lpm MyIngress.ipv4_forward 10.0.1.0/24 => 00:00:00:00:00:00:02 1

Adding entry to 1pm match table MyIngress.ipv4_1pm

match key: LPM-0a:00:01:00/24 action: MyIngress.ipv4_forward runtime data: 00:00:00:00:00:00:00:01

Entry has been added with handle 1

Ejemplos de uso actual de P4 (I)

3 P4 and P4Runtime as a tool for fog computing

Ejemplos de uso actual de P4 (II)

Next-Generation SDN and Fog Computing

Figure 4 Local and remote control planes managing different match-action parts of a P4 pipeline.

