EEE4113F Literature Review

Prepared by:

Karan Abraham Lundi Mabasa Mpilo Nxasana Michael Van Staden

Prepared for:

EEE4113F

Department of Electrical Engineering University of Cape Town

Declaration

- 1. I know that plagiarism is wrong. Plagiarism is to use another's work and pretend that it is one's own.
- 2. I have used the IEEE convention for citation and referencing. Each contribution to, and quotation in, this report from the work(s) of other people has been attributed, and has been cited and referenced.
- 3. This report is my own work.
- 4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as their own work or part thereof.

All	May 11, 2024
Karan Abraham	Date
LIMABASA	May 11, 2024
Lundi Mabasa	Date

Mpilo Nxasana

May 11, 2024

Date

May 11, 2024

Michael Van Staden Date

Contents

Li	st of	Figures	vi				
\mathbf{A}	bbre	viations	vii				
1	Intr	roduction	1				
	1.1	Background	1				
		1.1.1 Problem Statment	1				
	1.2	Objectives	1				
	1.3	System Requirements	1				
	1.4	Scope & Limitations	1				
	1.5	Report Outline	1				
2	Pro	oblem Analysis	2				
	2.1	Design School Activities	2				
3	Lite	Literature Review					
	3.1	Introduction	3				
	3.2	The Importance of Monitoring Avian Weight Changes	3				
	3.3	Current Weighing Methods	3				
		3.3.1 Spring Scales	4				
		3.3.2 Electronic Scales	4				
		3.3.3 Perching Scales	4				
	3.4	Data Transmission and User Interface	4				
	3.5	Power supply	5				
		3.5.1 Wall Power	6				
		3.5.2 Energy Harvesting	6				
		3.5.3 Limitations	6				
	3.6	Challenges and Considerations	6				
		3.6.1 Size and Species	6				
		3.6.2 Environmental Conditions	6				
		3.6.3 Material Considerations	7				
		3.6.4 Ethical Considerations	7				
	3.7	Conclusion	8				
4	Sen	asing Subsystem (NXSMPI001)	9				
	4.1	Introduction	9				
	4.2	Requirements Analysis	9				
	13	Design Process	0				

		4.3.1	Microcontroller Unit (MCU)	9
		4.3.2	Weight Sensor	10
		4.3.3	Sensor Amplifier	11
		4.3.4	Analogue to Digital Converter (ADC)	14
5	\mathbf{Use}	r Inte	rface	16
	5.1	Introd	uction	16
	5.2	Requi	rements	16
		5.2.1	User Requirements	16
		5.2.2	Functional Requirements	16
	5.3	Design	Process	16
		5.3.1	Sending readings	17
		5.3.2	Graphical User Interface	17
		5.3.3	Saving data	17
	5.4	Imple	mentation	17
		5.4.1	Arduino	17
		5.4.2	Mobile app	17
	5.5	Accep	tance Test Procedure	17
		5.5.1	Unit Testing	18
		5.5.2	User Acceptance Testing	18
	5.6	Concl	usion	18
6	Con	clusio	ns	19
7	Rec	omme	ndations	20
Bi	bliog	graphy		21

List of Figures

3.1	Overall Performance of each Protocol [1]	5
4.1	Circuit Schematic of Instrumentation Amplifier	11
4.2	Circuit Schematic of Low Pass Filter	12
4.3	Input and Output Waveform of Filter	13
4.4	Input and Output Waveform of the Final Filter	13
4.5	Schematic of Split Supply Circuit	13
4.6	Circuit Schematic of the ADS1115	15

Abbreviations

Introduction

Philosophers have hitherto only interpreted the world in various ways; the point is to change it.

-Karl Marx

1.1 Background

1.1.1 Problem Statment

Sally, a researcher at the FitzPatrick Institute, needs a way to weigh the red-winged starlings without startling them, because interestingly, they record their weight manually using a kitchen scale.

- 1.2 Objectives
- 1.3 System Requirements
- 1.4 Scope & Limitations
- 1.5 Report Outline

Problem Analysis

2.1 Design School Activities

Literature Review

3.1 Introduction

Weight is an important metric for evaluating the overall health, behavior and ecology of a bird in ornithological research. However obtaining this weight data presents several challenges due to their size, fragility and often rapid movements. This literature aims to explore and evaluate the different techniques and technologies researchers employ to obtain weight data, the different ways this data could be transmitted and recorded, and the types of devices needed to power such a system. This literature review will also consider the challenges described above and, other environmental and ethical factors that must be taken into account when weighing birds in the wild.

3.2 The Importance of Monitoring Avian Weight Changes

According to Clark, "Weight summarizes the total biomass of an individual and is probably the most convenient standard of energetic comparisons." [2], which emphasizes how valuable the weight data of an individual bird can be. Baldwin and Kendeigh state that "The weight of birds and the variations and fluctuations of these weights furnish criteria of considerable importance in the understanding of the physiological and ecological reactions of the bird as a living organism [3], which further establishes how important the tracking of an individual bird's weight data can be. Both of these statements cement how valuable weight data can be for ornithologists studying individual birds.

Clark goes on to say, "Weights have been used in analyses of the factors that influence differences in species diversity between communities." [2]. They also state that "Weights and census data have often been combined to calculate the total biomass of a particular species or group of species in an area". These statements add that weight data could also be invaluable for the analysis of an entire community of birds as opposed to just monitoring individuals.

3.3 Current Weighing Methods

This section examines the different methods and tools used to obtain weight data in ornithological research today.

3.3.1 Spring Scales

Spring scales measure weight based on the extension of a spring when a force (the weight of the bird) is applied. Their main advantage, as described by Manolis [4], is that they are "relatively inexpensive and sufficiently portable to suffice for short-term field project[s]". However, within the same study, the scale was only accurate to within 0,5g and when smaller birds can weigh less than 50g, spring scales may lack the precision for such research applications.

3.3.2 Electronic Scales

Electronic scales utilize load cells or strain gauges to convert the weight of the bird into an electronic signal, which can then be displayed on a digital screen. These scales offer precise measurements as shown by Carpenter et al. [5], where they were able to improve the precision of their measurements from 0,05g to 0,01g, by simply replacing their spring scales with electronic ones. Another advantage over spring scales, is that they do not have to be recalibrated after moving [5] and they tend to come with features such as taring functions to account for the weight of the housing holding the bird.

3.3.3 Perching Scales

Perching scales integrate a weighing platform into an artificial perch or nest. In Poole and Shoukimas' [6] study, birds landing on perch would deflect a transducer (a metal beam with 4 strain gauges bonded to it), thus generating an electronic signal. Reid et al. [7] used artificial nests rigged with a load cell in much the same way. In both studies, these electronic signals would then be recorded via some kind of electronic storage medium. This meant the birds could be weighed remotely, which minimizes stress and reduces the risk of injury, making perching scales particularly useful for long-term monitoring studies or behavioural observations. However, for such long-term studies, researchers would need to keep track of a large number of birds, which would also result in a large amount of data that needs to be stored.

Manolis [4] provides a solution to these issues by urging other researchers to make use of telemetry. One such technology is Radio Frequency Identification (RFID) which enables researchers to track individual birds and record their weight automatically. Wang et al. [8] made use of RFID by attaching two transponders to each bird, which would be detected by antennas placed under the perches. When a tagged bird interacts with the RFID reader, its unique identifier and weight are recorded electronically, making the data much easier to organise. It also reduces the volume of data created as the weight is only taken when the birds are on top of the perch. This allows researchers to collect data on a larger scale but this data need not be stored locally.

3.4 Data Transmission and User Interface

The method that the FitzPatrick Institute currently have for reading the bird weight is having one of the researchers go up to the scale and read off the screen. They then record the weight into *Cybertracker* [9], a mobile app that creates an Excel spreadsheet for them to analyze later. This highlights a need for a way to access that data remotely; or perhaps, a way to send that data directly to the Cybertracker app.

There are many communication protocols for transmitting data from a microprocessor. In a comparative performance study by Eridani et al., three protocols were compared: Bluetooth, Wi-Fi direct, and ESP-NOW ('a new protocol that allows multiple devices to communicate with each other without the use of Wi-Fi, with low power consumption' [1]). Five metrics were used in the tests: maximum range, transmission speed, latency, power usage, and signal resistance to obstructions [1]. A brief summary of the performance of each protocol is shown below in Figure 3.1.

Overall Performance —ESP-NOW —BT —WiFI Maximum Range 5 Signal Resistance Power Usage Latency

Figure 3.1: Overall Performance of each Protocol [1]

ESP-NOW performs best in range and latency; Bluetooth in power usage; and Wi-Fi in transmission speed. Since the scale must be portable, it is important to keep power usage to a minimum. A more quantitative graph of power usage of each technology is shown below in figure ??.

Bluetooth has the best power efficiency and seems to provide sufficient range and speed. However, connecting the system to the user's phone requires effort on the user end, and perhaps expertise that the user may not have. In this case, connecting the system to the internet may be a better option (that is if an internet connection is available, i.e. if *eduroam* is in range).

Budoyo and Andriana used the internet when designing a prototype of a digital scale to measure the weight of onions. [10]. They interfaced the microcontroller (an ATMega2560) to the internet using an ESP8266 Wi-Fi module. The weight data is sent to a website where it is stored in a database. A database is useful in creating an Excel spreadsheet with many fields which is the end product that the client requires.

3.5 Power supply

Traditional weighing scales have relied on either battery or electric power sources for operation. Battery-powered scales utilize internal batteries, commonly alkaline or lithium-ion, to supply the necessary electrical power. This section will discuss the different types of power supplies available for bird scales

and the power limitations on what type of power source the final design can use.

3.5.1 Wall Power

For indoor scales, which are in a fixed to one spot, the electric-type scales are directly connected to a power source via a cord, typically drawing from AC power provided by a wall outlet. These type of scales are used in laboratories and residential environments.

3.5.2 Energy Harvesting

One other method researchers use in low powered bird scales is Energy Harvesting. Energy Harvesting is used to extend the lifespan of the scale and sensing devices, however the process is not always effective [11]. An example of energy harvesting would be using wind or solar as a power source to the scale device. This concept is useful in situations where the scale is left in the field for data capture, and only accessed after a prolonged period of time. It is worth noting that low-power weighing scales are an existing topic, where in some cases there are scales and sensors that are able to take measurements, read and communicate the data in real time [12].

3.5.3 Limitations

The reliance on electrical power poses serious constraints, particularly in terms of mobility. This limitation becomes pronounced in specialized applications such as bird weighing scales, especially for very mobile birds such as the starlings. A better solution is to use a rechargeable battery source, such as the alkaline batteries mentioned above. Environmental conditions also pose a risk to the battery lifespan. Solar panels can pose collision risks for birds, particularly if the panels are highly reflective. Some birds may collide with solar panels while flying, leading to injury or mortality.

3.6 Challenges and Considerations

While modern weighing methods offer significant advantages in terms of accuracy, convenience, and animal welfare, researchers must consider several factors when selecting the most appropriate technique for their study.

3.6.1 Size and Species

The size and behaviour of the target bird species may influence the suitability of different weighing methods. Some birds may become skittish around researchers which would make measurements unreliable. In Manolis' case [4], they had to use binoculars to take readings of the scale from afar; an inconvenience that is entirely removed from the solutions presented by Poole and Shoukimas [6] and Reid et al. [7]. Smaller birds may require scales with higher precision, while larger species may benefit from perching scale systems capable of handling multiple subjects simultaneously.

3.6.2 Environmental Conditions

Field studies often expose equipment to challenging environmental conditions. For example, Manolis [4] had to keep swaying to a minimum to get accurate readings, hence spring scales would not be

suitable in windy conditions. Rain can seriously damage electronic components so it was important for Reid et al. [7] to house the amplifier unit in "a small water-resistant case with a sealed connection to the data logger cable". Researchers must choose weighing methods that are robust and reliable under these circumstances, with weather-resistant features where necessary.

3.6.3 Material Considerations

An important consideration that our design would need to fulfill is that it is safe for use on birds. Given that they will be in direct contact with the scale, toxicity is a primary concern when considering the materials used to construct the scale.

In the design of an electronic scale, artificial materials such as plastics are an attractive option due to their naturally weatherproof properties. However, caution must be exercised when considering specific materials. Artificial materials such as polytetrafluoroethylene (PTFE) are a common source for airborne toxicity in avians [13]. However, in a paper by Kroshefsky [14] this material is only cause for toxicity concern when exposed under high temperatures. This is because PTFE begins to decompose in air at around 200°C. Even if the scale is place outdoors, the ambient temperature will be well under this temperature limit, making this material a viable choice in the housing.

Heavy metal poisoning is another important concern when it comes to our choice of materials. The most common occurrences of which come from the ingestion of lead [15]. When lead is ingested, it can be absorbed in the gastrointestinal tract and then taken up by soft tissues and eventually bone [15]. The paper by C. Pollock includes a list of common sources of lead in household items, the most notable of which is solder. Thus some kind of insulation is required around soldered circuitry to avoid any trace amounts of lead affecting the birds.

3.6.4 Ethical Considerations

Ethical guidelines emphasize the importance of minimizing stress and harm to the animals being studied. As such researchers should prioritize methods that avoid the need to handle the birds, as this will minimize the risk of injury to the researchers and the birds. This means that the red-winged starlings will need to be lured such that their weight measurements can be taken. This can be achieved using the many perching scale solutions described earlier, but for more traditional weighing methods, Manolis [7] provides a solution. In their study they used sunflower seeds to entice the birds to land on the scale, and since red-winged starlings tend to scavenge for food, this will prove useful for this application as well.

An automatic feeder device could be implemented as a way to streamline this process. However, researchers have found that the introduction of automated feeders tend to reduce species variety in a given area [16]. Automated feeders are also highly inconsistent with seasonal change, which would result in it being a highly inconsistent form of luring birds [16]. The introduction of an automated feeding strategy would have a noticeable effect on the ecological and weight cycles of local birds, especially those that would be studied.

3.7 Conclusion

Based on the reviewed literature, it can be seen that accessing data remotely is very much feasible using accessible technology such as Wi-Fi. The importance of gathering weight data was established and how it would be of benefit to ornithologists was explored. Various challenges and considerations have been presented in the reviewed literature and the importance thereof will be taken into account going forward.

Sensing Subsystem (NXSMPI001)

4.1 Introduction

The aim of this subsystem is to translate the force from the bird's weight on the scale into a digital reading. It involves designing and constructing the circuitry needed to change the weight into a analogue voltage, developing the algorithms in the micro-controller unit (MCU) used to process this signal and change it into a weight reading of the bird. Another component to this subsystem is to have accurate timekeeping so the weight data is timestamped.

4.2 Requirements Analysis

User Requirement	Specification	Specification no.
	Description	
Portable	The final circuitry must	SS1
	be able to fit in a box	
	that is $100 \times 100 \times 50 \text{mm}$.	
Long battery life	The final circuitry	SS2
	should consume less	
	thor 20m 1	

Table 4.1: Non-functional Specifications of the Sensing Subsystem

4.3 Design Process

4.3.1 Microcontroller Unit (MCU)

The Arduino was chosen as its Integrated Development Environment (IDE) has ample support and libraries which will make interfacing with all different modules simple and straightforward. Within the Arduino family the Arduino Nano was initially chosen as it was one of the cheapest Arduino and it came in a small form factor. However, the User Interface subsystem required a WiFi or Bluetooth module so the Arduino Nano 33 IoT was chosen instead. Although BLE and BLE Sense also meet these requirements, they come with additional sensors that are unnecessary. All the Arduino chips also come with several low power modes that can be leveraged to reduce power consumption.

Table 4.2: Functional Specifications for Sensing Subsystem

User Requirement	Specification	Specification no.
	Description	
The scale must measure	The weight sensor must	SS3
weights of up to 500g.	have a maximum	
	capacity greater than	
	750g (1.5 times safety	
	factor).	
	The sensor and amplifier	SS4
	must output a voltage	
	proportional to the	
	weight force applied up	
	to a weight of 500g.	
The scale measure weight	The ADC must be able	SS5
accurate to 0.1g.	to resolve voltage	
	changes from weight	
	changes that are less	
	than $0.1g$.	
	The ADC must have a	SS6
	gain and offset error less	
	than a voltage change	
	resulting from a change	
	in weight of 0.1g.	
The scale must have a	The microcontroller	SS7
tare function.	must have a digital	
tare ranction.	input pin to read the	
	users inputs from a push	
	button.	
	The microcontroller	SS8
	must subtract the	
	current weight from all	
	subsequent	
	measurements when the	
	voltage on the digital	
	pin receives an input.	
	There must be an LCD	SS9
	screen that outputs the	
	current weight to give	
	the user feedback.	

4.3.2 Weight Sensor

A strain gauge is an electrical component whose resistance changes when a force is applied to it. Strain gauges work on the principle that when the resistance of a conductor is proportional to its length, as shown in the equation below.

$$R = \rho \frac{L}{A}$$

One solution is to put a strain gauge in series with another resistance, then place the strain gauge on a beam. When the beam deflects under the bird's weight, the change in voltage across the strain gauge can be measured. The issue with this setup is that the change in resistance, and thus the subsequent

change in voltage, will be very small. This means a very high resolution ADC will be required to resolve these small changes in voltage. The resolution required could be reduced by amplifying the signal, however this would also amplify the DC offset introduced by the voltage divider, quickly saturating the output.

A better solution is a load cell which has 4 strain gauges in a Wheatstone configuration. This means that when the load cell has no load on it, the voltage will be zero, and when the device deflects, there will be a slight voltage difference between it's 2 output terminals. As discussed above, this output can be sent through an amplifier thus reducing the resolution required for the ADC. To meet the sensor specifications, a 1kg load cell will be used.

The specifications for one such load cell by HKD is shown in Table 4.3 below.

Rated Load	1kg
Rated Output	$1.0 \pm 0.15 \text{mV/V}$
Zero Output	$\pm 0.1 \mathrm{mV/V}$
Input Impedance	$1115 \pm 10\Omega$
Output Impedance	$1000 \pm 10\Omega$

Table 4.3: Table on load cell specifications

At the rated load, the output will be $0.001V_{cc}$, hence the amplifier needs a gain of 1000.

4.3.3 Sensor Amplifier

From Table 4.3, the output impedance of the load cell is quite significant, meaning there will need to be an input buffer between it and the amplifier to avoid loading. The instrumentation amplifier is thus ideal circuit for achieving this and it is shown in Figure 4.1 below.

Figure 4.1: Circuit Schematic of Instrumentation Amplifier

The circuit has three stages. The first stage has two input buffers which also amplify the input signal. The second is a differential amplifier which is a circuit whose output is proportional to the difference between the two inputs. The final stage is a low pass filter. The final output voltage is related to the input voltage by the expression below.

$$V_{out} = (V_2 - V_1) \left(1 + \frac{2(R_2 + R_3)}{R_1} \right) \left(\frac{R_9}{R_6} \right)$$

From the expression above, when the load cell is connected to the two input terminals, its output will be amplified by a factor of 994, which is close to the gain required. The amplifier have such a large gain presents two issues.

The first is that real op-amps have an input offset voltage. As the offsets from the input stage propagate through the circuit, they are amplified resulting in the output having a large bias and saturating for very small weights, hence the op-amps used were the TL071P. These are JFET op-amps meaning they have a very low input offset voltage, in this case, of 1mV. This is still large in comparison to the input, but they also come with two NULL pins which allows the input offset to be adjusted, and thus reduced to 0. The is the purpose of potentiometer RV1 in Figure 4.1. Another reason for choosing TL071P is that their minimum recommended supply voltage is 4.5V which means unlike other JFET op-amps they can operate at lower supply voltages. This advantageous since the scale will be battery powered so there will not be a large supply.

The second is that noise from the input will also be amplified as it propagates through circuit, making the final output difficult to measure. The low pass filter in the final stage addresses this. Since output is a DC voltage, ideally the cutoff frequency should be as low as possible to attenuate the most amount of noise, but this would have a negative impact on the rise time. A lower cutoff frequency would also require larger capacitors. The sample rate for final system will be 10Hz (discussed later). This equates to a period of 0.1s and ideally the output should settle within half that time. It takes 5 time constants for the output to settle to 99% of its final value. This means that 5RC = 0.05s or RC = 0.01s. If a $100k\Omega$ resistor is used then the capacitor would need 100nF. The filter also needs a steep roll-off to ensure a clean output, so a second stage can be added at the input, to make it a second order filter. The input stage of this filter needs to have much lower impedance than output stage to avoid loading, which would resulting in the filter having a larger cutoff frequency than was calculated. Using a $10k\Omega$ resistor, the capacitor needed would be 1uF. The equates to a cutoff frequency of 16Hz. It is difficult to know the exact rise time for higher order filters from calculation alone, as such, this filter was simulated in LTSpice. The circuit diagram is shown in Figure 4.2 below.

Figure 4.2: Circuit Schematic of Low Pass Filter

The input was set to a $1V_{pp}$ square wave with a frequency of 20Hz. Figure 4.3 below shows the input and output of the circuit.

Figure 4.3: Input and Output Waveform of Filter

From the waveform above it can be seen that the rise time is too large, as the output (in green) is barely settling in time for the next half-cycle. This can be rectified by halving the size of the capacitors to 470nF and 47nF, as seen in Figure 4.1. The new output is shown in Figure 4.4 below.

Figure 4.4: Input and Output Waveform of the Final Filter

As seen above, the filter now meets the speed requirements.

Since the instrumentation amplifier has op-amps, it needs 2 rail voltages, a positive and a negative. Unfortunately there is only a single supply, however this supply can be split in two with a simple op-amp circuit, as shown in Figure 4.5 below.

Figure 4.5: Schematic of Split Supply Circuit

If the new reference point is made to be 'Virtual GND', then two rail voltages equal to $\pm \frac{V_{cc}}{2}$ are obtained. This does mean that output of the amplifier will have an offset of $\frac{V_{cc}}{2}$, but this can be stepped down using a voltage divider as to not damage the input to the microcontroller. In testing, a 5V supply was initially used but this resulted in the op-amps saturating. In the early stages of the design process, the amplifier was tested using $\pm 3.3V$ and this worked fine so in the end a 6.6V supply

was chosen. This will be the supply voltage required from the Power Subsystem. The Arduino Nano 33 IoT has an operating voltage of 3.3V so the voltage divider must have a gain of 0.5.

Finally, because the output from the amplifier will no longer go directly to the microcontroller, an op-amp must be included in the low pass filter to buffer the input of the voltage divider. The new active low pass filter will be in a Sallen-Key configuration with $R = 100k\omega$ and C = 47nF as shown in Figure 4.1.

4.3.4 Analogue to Digital Converter (ADC)

Since the weight force on the load cell is proportional to output voltage out of the load cell, the change in weight is equal to the change voltage as shown in the equation below.

$$\frac{W_1}{W_2} = \frac{V_1}{V_2}$$

By substituting in the rated load, rated output and the minimum weight, the smallest change in the output can be determined.

$$\frac{0.1g}{1000g} = \frac{V_{min}}{0.5(994(3.3mV))}$$

$$V_{min} = 0.164mV$$

As such, 1 LSB (Least Significant Bit) of ADC must be less than 0.164mV. Since the supply voltage from the Arduino is 3.3V, an ADC with a minimum resolution of 15 bits is required. The Arduino only comes with a 12-bit ADC so an external module will be needed. The module that was chosen is the ADS1115 16 bit ADC its specification for this application are summarized in Table 4.4 below.

	Min	Typical	Max	Unit
Supply	2	-	5.5	V
Supply Voltage				
Data Rate	8	-	860	SPS
Offset error	-	± 3	-	LSB
Gain error	-	0.01	0.15	%

Table 4.4: Table on ADS1115 specifications

From Table 4.4, the offset error is equivalent to 0.151 mV which is less than V_{min} . The maximum gain error is quite large, translating to an offset of 4.95 mV at the last output code. Even under typical conditions the offset will be 0.33 mV. However this is not a big issue, as the scale only needs to be accurate over half the range and the gain error can be compensated for in software. The noise performance is also great as at low data rates, not a single bit of resolution is lost to quantization noise. The final reason this module was chosen is that most ADC come standalone in a SIOC package, but this one comes as a development board kit with headers allowing for easy soldering onto a Veroboard. The circuit diagram for this module is shown in Figure 4.6 below.

Figure 4.6: Circuit Schematic of the ADS1115

User Interface

5.1 Introduction

This chapter deals with the user interface of the system. The user interface is how the client will be able to make use of the system.

5.2 Requirements

5.2.1 User Requirements

- 1. Display weight data on app.
- 2. App must have interface for manual data.
- 3. Other data should be automated (time, location).
- 4. Data must be saved to a spreadsheet. It should have the following fields: FID, Date, Time, ID, Ring type, Sex, Mass, Day status, Day status, Day, Weekday, Term, Name, Weight Session, Location, Notes, People Count 1, People Count 2.

5.2.2 Functional Requirements

- 1. Establish connection between smart scale (Arduino) and phone (via Bluetooth or Wi-Fi)
- 2. The GUI should have a text box to input the bird's ID.
- 3. A CSV file needs to be created where the data will be written.

5.3 Design Process

This subsystem exists in two environments: the Arduino, and the mobile device. The Arduino needs to be programmed to send the weight readings to the mobile device. A mobile app needs to be developed to receive the weight readings. The app needs to provide a GUI that allows the user to input the bird's ID. The app should save the data to a spreadsheet for the user to view.

5.3.1 Sending readings

There are several technologies to transmit data such as: Wi-Fi, Bluetooth, and ESP-NOW. As discussed in the Literature Review, Bluetooth is ideal because it is the power efficient and its speed is sufficient because only several bytes of data (for the weight) are being transmitted. It was also discussed that internet has the advantage of ease of use for the user. However, internet access is not feasible as weighing sessions span outside of *eduroam* coverage. There are two types of Bluetooth: Bluetooth Classic and Bluetooth Low Energy (BLE). BLE is a newer technology that is even more power efficient than Bluetooth Classic; therefore, Bluetooth Low Energy was chosen.

BLE works differently to Bluetooth Classic. Bluetooth Classic is based on an asynchronous serial connection. BLE, on the other hand, works like a community bulletin board [?]. The peripheral device posts data for central devices to read [?]. This model is shown below in figure ??.

5.3.2 Graphical User Interface

The Graphical User Interface (GUI) is responsible for displaying the live reading coming from the Arduino, and allowing the user to capture that reading and input the bird ID. The GUI also needs a save button to save the data to a file, so that the user can view the data in a spreadsheet. The prototype of the GUI is shown below in figure ??.

5.3.3 Saving data

The spreadsheet should have the following fields: FID, Date, Time, ID, Ring type, Sex, Mass, Day status, Day status, Day (of week), Weekday, Term, Name, Weighing Session, Location, Notes, People Count 1, People Count 2.

FID - pk Date, Time, Day, Weekday, Weighing Session, Location - Kotlin ID, Day status, Name, Notes, People Count 1, People Count 2 - user Ring type, Sex - BirdID table Mass - Arduino Term - Terms table

5.4 Implementation

5.4.1 Arduino

A program was developed and uploaded to the Arduino. This program, send_data.ino, can be found under the send_data folder in the project repository.

5.4.2 Mobile app

The mobile app was developed using Android Studio IDE was used with the Kotlin programming language. The app is targeted for Android devices.

5.5 Acceptance Test Procedure

Testing was done on a Samsung S9 phone running Android 10.

- 5.5.1 Unit Testing
- 5.5.2 User Acceptance Testing
- 5.6 Conclusion

Conclusions

The same rule holds for us now, of course: we choose our next world through what we learn in this one. Learn nothing, and the next world is the same as this one.

 $-Richard\ Bach,\ Jonathan\ Livingston\ Seagull$

The purpose of this project was to...

This report began with...

The literature review was followed in Chapter...

The bulk of the work for this project followed next, in Chapter...

In Chapter...

Finally, Chapter... attempted to...

In summary, the project achieved the goals that were set out, by designing and demonstrating...

Recommendations

It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced.

—Abraham Lincoln

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Bibliography

- [1] D. Eridani, A. F. Rochim, and F. N. Cesara, "Comparative performance study of esp-now, wifi, bluetooth protocols based on range, transmission speed, latency, energy usage and barrier resistance," in 2021 international seminar on application for technology of information and communication (iSemantic). IEEE, 2021, pp. 322–328.
- [2] G. A. C. Jr., "Body weights of birds: A review," The Condor, pp. 193–202.
- [3] S. C. K. S. Prentiss Baldwin, "Variations in the weights of birds," The Auk.
- [4] T. Manoils and A. Manolis, "A simple technique for weighing birds at feeders without recapture," North American Bird Bander, vol. 6, no. 3, p. 4, 2024.
- [5] F. L. Carpenter, D. C. Paton, and M. A. Hixon, "Weight gain and adjustment of feeding territory size in migrant hummingbirds," *Proceedings of the National Academy of Sciences*, vol. 80, no. 23, pp. 7259–7263, 1983.
- [6] A. Poole, "A scale for weighing birds at habitual perches," Journal of Field Ornithology, vol. 53, no. 4, pp. 409–414, 1982.
- [7] K. Reid, G. M. Liddle, P. A. Prince, and J. P. Croxall, "Measurement of chick provisioning in antarctic prions pachyptila desolata using an automated weighing system," *Journal of Avian Biology*, pp. 127–134, 1999.
- [8] K. Wang, K. Liu, H. Xin, L. Chai, Y. Wang, T. Fei, J. Oliveira, J. Pan, and Y. Ying, "An rfid-based automated individual perching monitoring system for group-housed poultry," *Transactions of the ASABE*, vol. 62, no. 3, pp. 695–704, 2019.
- [9] CyberTracker. Cybertracker wiki. [Online]. Available: https://cybertrackerwiki.org/getting-started/
- [10] Y. Budoyo and A. D. Andriana, "The digital weight scale of iot system using load cell sensor in ud. pangrukti tani," *Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)*.
- [11] L. Meile, A. Ulrich, and M. Magno, "Wireless power transmission powering miniaturized low power iot devices: A revie," in 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), June 2019, pp. 312–317.
- [12] J. Paek, J. Hicks, S. Coe, and R. Govindan, "Image-based environmental monitoring sensor application using an embedded wireless sensor network," Sensors, vol. 14, no. 9, pp. 15981–16002, 2014. [Online]. Available: https://www.mdpi.com/1424-8220/14/9/15981
- [13] T. L. Lightfoot, "Pet bird toxicity and related environmental concerns," Veterinary Clinics of North America: Exotic Animal Practice, pp. 229–259, 2008.

- [14] R. D. Kroshefsky, "Teflon poisoning: How dangerous is your cooking to your birds?" *AFA Watchbird Magazine*, pp. 30–33, 1980.
- [15] C. P. Cynthia Chow, "Heavy metal poisoning in birds," pp. 1–9, 2009.
- [16] J. R. B. K. P. M. C. S. Josie A. Galbraith, Darryl N. Jones, "Urban bird feeders dominated by a few species and individuals," *Frontiers in Ecology and Evolution*.