

UNIVERSIDADE FEDERAL DE OURO PRETO DEPARTAMENTO DE COMPUTAÇÃO

PLANO DE ENSINO

Nome do Componente Curricula	r em português:		Código:			
Inteligência Artificial			BCC740			
Nome do Componente Curricula	r em inglês:					
None						
Nome e sigla do departamento:			Unidade acadêmica:			
Departamento de Computação (DECOM)			ICEB			
Nome do docente:						
Rodrigo César Pedrosa Silva						
Carga horária semestral:	Carga horária semanal teórica:	Carga h	orária semanal prática:			
60 horas	4 horas/aula	0 hor	0 horas/aula			
Data de aprovação na assembleia departamental:						
29/08/2025						
Ementa:						
Introdução.						
Resolução de Problemas.						
Sistemas baseados em Conhecimento:						
Representação do Conhecimento (ênfase em Lógica Nebulosa),						
Automatização do Raciocínio,						
Controladores inteligentes.						
Aprendizagem Automática (ênfase em Redes Neurais).						
Percepção.						
Planejamento.						
Aplicações.						

Conteúdo Programático:

- 1. Introdução
- 2. Resolução de Problemas
 - 2.1. Pesquisa como construção da solução
 - 2.1.1. Espaço de estados
 - 2.1.2. Decomposição de Problemas
 - 2.1.3. Métodos de busca
 - 2.2. Pesquisa em espaço de soluções
 - 2.3. Subida de encosta ("Hill-climbing")
 - 2.4. Têmpera simulada ("Simulated Annealing")
 - 2.5. Métodos evolutivos: algoritmo genético
- 3. Sistemas Baseados em Conhecimento
 - 3.1. Representação do Conhecimento
 - 3.1.1. Lógica convencional
 - 3.1.2. Lógica Nebulosa ("Fuzzy Logic")

- 3.1.3. Regras
- 3.2. Controladores Baseados em Conhecimento
- 4. Aprendizagem Automática
 - 4.1. Aprendizagem Simbólica
 - 4.2. Redes Neurais Artificiais
- 5. Percepção
 - 5.1. Sensores
 - 5.2. Processamento: Digitalização, Extração de informações, Interpretação
- 6. Planejamento

Objetivos:

Ao final do curso o aluno deverá:

- · ter uma visão abrangente da área de IA (Inteligência Artificial);
- · dominar os principais pontos da IA clássica;
- · conhecer razoavelmente bem alguns tópicos avançados em IA, os quais sejam interessantes para a área de automação e controle;
- · ter a capacidade de aplicar técnicas de IA para resolver problemas práticos em automação e controle.

Metodologia:

Projetos práticos: Implementação de vários algoritmos e técnicas de inteligência artificial.

Provas: Conjunto de perguntas para medir do aluno em relação à teoria e às implementações realizadas pelos alunos. Realizado sob demanda do professor.

Leituras recomendadas: Leitura de textos técnicos com a finalidade de proporcionar ao discente a oportunidade de consulta e desenvolvimento de sua capacidade de análise, síntese e crítica de uma bibliografia específica.

Observações: A principal linguagem de programação deste curso será a linguagem Python. O código fonte dos trabalhos práticos será submetido pelo GitHub. O aluno precisará ter acesso à internet e um computador (desktop ou laptop).

Atividades avaliativas:

Tanto os projetos práticos quanto a parte teórica da disciplina serão avaliados com base nas provas. A nota final será calculada da seguinte forma:

4 Provas (P1, P2, P3, P4) de 10 pontos

Nota Final = $(0.1 \times P1 + 0.2 \times P2 + 0.2 \times P3 + 0.5 \times P4)$

Exame Especial: Os alunos que tiverem pelo menos 75% de frequência (mínimo para aprovação) e média inferior a seis pontos poderão fazer o Exame Especial ou o Exame Especial Parcial. Estes exames serão provas únicas, individuais.

Cronograma:

•		
Semanas	Conteúdo	
1 e 2	Busca em espaços de estados	
3 e 4	Busca em espaços de estados (Prova 1 (P1) - 27/10)	
5 e 6	Problemas de Satisfação de Restrições	
7 e 8	Problemas de Satisfação de Restrições (Prova 2 (P2) - 24/11)	

9 e 10 Sistemas Baseados em Conhecimento	
11 e 12 Aprendizado de Máquina (Prova 3 (P3) - 17/12)	
13 e 14 Aprendizado de Máquina	
15 e 16 Aprendizado de Máquina (Prova 4 (P4) - 09/02)	
17 Vista de Provas	
18 Exame Especial (02/03)	

Bibliografia Básica:

- RUSSELL, S.J.; Norvig, P. Inteligência Artificial. 2ª edição, Campus, 2004.
- NASCIMENTO Jr., C.L.; YONEYAMA, T. Inteligência Artificial em Controle e Automação. Ed. Edgard Blücher, São Paulo, 2000.

Bibliografia Complementar:

- LUGER, G.F. Inteligência Artificial : estruturas e estratégias para a resolução de problemas complexos. Tradução de Paulo Martins Engel. Bookman, 2004.
- MITCHELL, T. Machine Learning, McGraw-Hill, 1997. ISBN: 978-0070428072
- BARR, A.; COHEN, P.R.; FEINGENBAUM, E.A. The Handbook of Artificial Inteligence. vol. I, II, III e IV. Addison-Wesley, 1989. ISBN: 0201118157
- BRATKO, I. Prolog: Programming for Artificial Inteligence, Addison-Wesley, 3a. edição, 2000.
 ISBN: 978-0201403756
- RICH, E.; KNIGHT, K. Artificial Intelligence, McGraw-Hill, 2a. edição, 1990. ISBN: 978-0070522633