Lab10: Codificar el 3-coloreado de grafos en instancias de SAT

1. Explicación de la codificación

El problema de colorear un grafo con tres colores consiste en decidir si los nodos del grafo pueden colorearse empleando 3 colores de manera que dos nodos adyacentes no tengan el mismo color. La codificación del problema de la 3-coloración para el grafo siguiente como una instancia del problema SAT se explica a continuación.

- Supongamos que disponemos de los colores $\{r, g, b\}$ (rojo, verde y azul). El conjunto de variables proposicionales es:

$$\{x_{0,r}, x_{0,v}, x_{0,a}, x_{1,r}, x_{1,v}, x_{1,a}, x_{2,r}, x_{2,v}, x_{2,a}, x_{3,r}, x_{3,v}, x_{3,a}\}$$

Una variable $x_{i,j}$ se evalúa a True si, y sólo si, el nodo i tiene asignado el color j.

- La instancia SAT está formada por las siguientes cláusulas: Un conjunto de cláusulas que expresan que cada nodo tiene asignado un único color. Para ello, primero se añaden unas cláusulas expresando que cada nodo tiene asignado al menos un color:

$$(x_{0,r} \lor x_{0,g} \lor x_{0,b}) \land (x_{1,r} \lor x_{1,g} \lor x_{1,b}) \land (x_{2,r} \lor x_{2,g} \lor x_{2,b}) \land (x_{3,r} \lor x_{3,g} \lor x_{3,b})$$

y, luego, se añaden las cláusulas expresando que cada nodo tiene asignado a lo sumo un color. Es importante tener en cuenta que $\neg(x_{0,r} \land x_{0,g})$ es equivalente a escribir $(\neg x_{0,r} \lor \neg x_{0,g})$.

$$(\neg x_{0,r} \lor \neg x_{0,g}) \land (\neg x_{0,r} \lor \neg x_{0,b}) \land (\neg x_{0,g} \lor \neg x_{0,b}) \land$$

$$(\neg x_{1,r} \lor \neg x_{1,g}) \land (\neg x_{1,r} \lor \neg x_{1,b}) \land (\neg x_{1,g} \lor \neg x_{1,b}) \land$$

$$(\neg x_{2,r} \lor \neg x_{2,g}) \land (\neg x_{2,r} \lor \neg x_{2,b}) \land (\neg x_{2,g} \lor \neg x_{2,b}) \land$$

$$(\neg x_{3,r} \lor \neg x_{3,g}) \land (\neg x_{3,r} \lor \neg x_{3,b}) \land (\neg x_{3,g} \lor \neg x_{3,b})$$

Finalmente, se añade otro conjunto de cláusulas expresando que nodos adyacentes tienen asignados colores diferentes.

$$(\neg x_{0,r} \lor \neg x_{1,r}) \land (\neg x_{0,g} \lor \neg x_{1,g}) \land (\neg x_{0,b} \lor \neg x_{1,b}) \land$$

$$(\neg x_{0,r} \lor \neg x_{2,r}) \land (\neg x_{0,g} \lor \neg x_{2,g}) \land (\neg x_{0,b} \lor \neg x_{2,b}) \land$$

$$(\neg x_{1,r} \lor \neg x_{2,r}) \land (\neg x_{1,g} \lor \neg x_{2,g}) \land (\neg x_{1,b} \lor \neg x_{2,b}) \land$$

$$(\neg x_{1,r} \lor \neg x_{3,r}) \land (\neg x_{1,g} \lor \neg x_{3,g}) \land (\neg x_{1,b} \lor \neg x_{3,b})$$

Observa que, a partir de una interpretación que satisface la fórmula, se puede generar una coloración válida: si la variable $x_{i,j}$ tiene asignado el valor True, se asigna el color j al nodo i.

2. Tarea a realizar

Debes implementar la función reduce_3colorable_to_SAT que dado un grafo no dirigido devuelve la lista de cláusulas que codifica el problema del 3-coloreado en formato DIMACS (para minisat). En el fichero Lab10_3colorableToSAT.py dispones de la función list2dimacs que ya está implementada. Esta función escribe en un fichero la lista devuelta por reduce_3colorable_to_SAT.

ATENCIÓN:

- La lista que devuelve tu función debe estar en formato DIMACS. Por tanto la primera sublista debe ser: ["p", "cnf", num_vars, num_clauses] donde num_vars es el número de variables de tu fórmula y num_clauses el número de cláusulas. Además las sublistas siguientes tienen que acabar con un 0.
- Si el grafo tiene m nodos, el número de variables será $3 \times m$, de forma que la variable i corresponderá al nodo (i-1)/3. Si el valor (i-1)/3 = 0 el color es r. Si el valor (i-1)/3 = 1 el color es g. Si el valor (i-1)/3 = 2 el color es g. Si guiendo con el ejemplo, la variable 7 será exactamente $x_{2,r}$.

3. Solución al problema 3-coloreado usando minisat y plots de grafos

Para obtener una solución al problema del 3-coloreado, una vez terminada la función reduce_3colorable_to_SAT, la ejecución del programa generará seis ficheros. Cada fichero será una entrada para minisat.

La fórmula del fichero g1.txt corresponde con el grafo de nuestro ejemplo y es satisfactible. Puedes obtener una asignación a las variables que la haga cierta si escribes: minisat g1.txt asig-1.txt, se creará un fichero asig-1.txt con la siguiente respuesta: [1,-2,-3,-4,-5,6,-7,8,-9,10,11,-12]. Significará que las únicas variables con asignación True son la 1, 6, 8, y 11. Es decir, $x_{0,r}$, $x_{1,b}$, $x_{2,g}$, $x_{3,g}$. Para facilitar la visualización, el método visualizeGXGraph, que se invoca desde los test, llama directamente a minisat y, cuando la entrada es satisfactible, crea una imagen con el grafo coloreado.

4. Solución al problema 3-coloreado usando tu 3SAT-solver

Puedes probar tu SAT-solver usando los seis ficheros generados al ejecutar el programa que contiene la función reduce_3colorable_to_SAT. Recuerda la función list_minisat2list_our_sat. Esta función, dado un fichero en formato DIMACS, devuelve una tupla (t1, t2) donde t1 = número de variables y t2 = fórmula en nuestro formato. Para usarla hemos dejado el fichero tools.py, desde donde se importa la función.

5. Entrega

Una tabla con los tiempos que tarda tu SAT_solver en calcular la respuesta para esos seis ficheros.