|     | Formula                                                                    | Exemplul                                                                                                                                                  |
|-----|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | $(u^n)' = n \cdot u^{n-1} \cdot u'$                                        | $((\sin x)^5)' = 5 \cdot (\sin x)^4 \cdot (\sin x)' = 5 \cdot (\sin x)^4 \cdot \cos x$                                                                    |
| 2.  | $(u^2)' = 2 \cdot u \cdot u'$                                              | $(\ln^2 x)' = 2 \cdot \ln x \cdot (\ln x)' = 2 \cdot \ln x \cdot \frac{1}{x} = \frac{2 \ln x}{x}$                                                         |
| 3.  | $\left(\frac{1}{u}\right)' = -\frac{1}{u^2} \cdot u'$                      | $\left(\frac{1}{x^2+1}\right)' = -\frac{1}{(x^2+1)^2} \cdot (x^2+1)' = -\frac{2x}{(x^2+1)^2}$                                                             |
| 4.  | $\left(\sqrt{u}\right)' = \frac{1}{2\sqrt{u}} \cdot u'$                    | $\left(\sqrt{x^2 + a^2}\right)' = \frac{1}{2\sqrt{x^2 + a^2}} \cdot (x^2 + a^2)' = \frac{x}{\sqrt{x^2 + a^2}}$                                            |
| 5.  | $\left(\sqrt[n]{u}\right)' = \frac{1}{n \cdot \sqrt[n]{u^{n-1}}} \cdot u'$ | $\left(\sqrt[5]{2x-3}\right)' = \frac{1}{5 \cdot \sqrt[5]{(2x-3)^4}} \cdot (2x-3)' = \frac{2}{5 \cdot \sqrt[5]{(2x-3)^4}}$                                |
| 6.  | $(e^u)' = e^u \cdot u'$                                                    | $(e^{arctgx})' = e^{arctgx} \cdot (arctgx)' = e^{arctgx} \cdot \frac{1}{x^2 + 1}$                                                                         |
| 7.  | $(a^u)' = a^u \cdot \ln a \cdot u'$                                        | $(3^{\sqrt{x}})' = 3^{\sqrt{x}} \cdot \ln 3 \cdot (\sqrt{x})' = 3^{\sqrt{x}} \cdot \ln 3 \cdot \frac{1}{2\sqrt{x}}$                                       |
| 8.  | $(\ln u)' = \frac{1}{u} \cdot u'$                                          | $(\ln(\ln x))' = \frac{1}{\ln x} \cdot (\ln x)' = \frac{1}{\ln x} \cdot \frac{1}{x} = \frac{1}{x \ln x}$                                                  |
| 9.  | $(\log_a u)' = \frac{1}{u \cdot \ln a} \cdot u'$                           | $(\log_2(x^2 - x))' = \frac{1}{(x^2 - x) \cdot \ln 2} \cdot (x^2 - x)' = \frac{2x - 1}{\ln 2 \cdot (x^2 - x)}$                                            |
| 10. | $(\sin u)' = \cos u \cdot u'$                                              | $(\sin e^x)' = \cos e^x \cdot (e^x)' = e^x \cdot \cos e^x$                                                                                                |
| 11. | $(\cos u)' = -\sin u \cdot u'$                                             | $(\cos(\sin x))' = -\sin(\sin x) \cdot (\sin x)' = -\sin(\sin x) \cdot \cos x$                                                                            |
| 12. | $(tg\ u)' = \frac{1}{cos^2 u} \cdot u'$                                    | $\left(tg\left(x^2+1\right)\right)' = \frac{1}{\cos^2(x^2+1)} \cdot (x^2+1)' = \frac{2x}{\cos^2(x^2+1)}$                                                  |
| 13. | $(ctg\ u)' = -\frac{1}{\sin^2 u} \cdot u'$                                 | $\left(\operatorname{ctg}\sqrt{x}\right)' = -\frac{1}{\sin^2\sqrt{x}} \cdot \left(\sqrt{x}\right)' = -\frac{1}{\sin^2\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}$ |
| 14. | $(\arcsin u)' = \frac{1}{\sqrt{1 - u^2}} \cdot u'$                         | $(\arcsin x^2)' = \frac{1}{\sqrt{1 - (x^2)^2}} \cdot (x^2)' = \frac{2x}{\sqrt{1 - x^4}}$                                                                  |
| 15. | $(arctg  u)' = \frac{1}{u^2 + 1} \cdot u'$                                 | $\left(arctg(x+1)\right)' = \frac{1}{(x+1)^2 + 1} \cdot (x+1)' = \frac{1}{(x+1)^2 + 1}$                                                                   |
| 16. | $(\arccos u)' = -\frac{1}{\sqrt{1 - u^2}} \cdot u'$                        | $(\arccos e^x)' = -\frac{1}{\sqrt{1 - (e^x)^2}} \cdot (e^x)' = -\frac{e^x}{\sqrt{1 - e^{2x}}}$                                                            |
| 17. | $(arcctg\ u)' = -\frac{1}{u^2 + 1} \cdot u'$                               | $(arcctg \ x^3)' = -\frac{1}{(x^3)^2 + 1} \cdot (x^3)' = -\frac{3x^2}{x^6 + 1}$                                                                           |

## Integrale nedefinite

| 1  | $\int 1 \ dx = \int dx = x + \mathcal{C}$                                                 |                                                                                                                        |
|----|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 2  | $\int x^n  dx = \frac{x^{n+1}}{n+1} + \mathcal{C}$                                        | $\int u^n(x) \cdot u'(x) dx = \frac{u^{n+1}(x)}{n+1} + C$                                                              |
| 3  | $\int e^x dx = e^x + \mathcal{C}$                                                         | $\int e^{u(x)} \cdot u'(x) dx = e^{u(x)} + C$                                                                          |
| 4  | $\int a^x dx = \frac{a^x}{\ln a} + \mathcal{C}$                                           | $\int a^{u(x)} \cdot u'(x) dx = \frac{a^{u(x)}}{\ln a} + C$                                                            |
| 5  | $\int \frac{1}{x} dx = \ln x + \mathcal{C}$                                               | $\int \frac{1}{u(x)} \cdot u'(x)  dx = \ln u(x) + \mathcal{C}$                                                         |
| 6  | $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left  \frac{x - a}{x + a} \right  + C$   | $\int \frac{1}{u^2(x) - a^2} \cdot u'(x) dx = \frac{1}{2a} \ln \left  \frac{u(x) - a}{u(x) + a} \right  + \mathcal{C}$ |
| 7  | $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$          | $\int \frac{1}{u^2(x) + a^2} \cdot u'(x) dx = \frac{1}{a} \operatorname{arctg} \frac{u(x)}{a} + C$                     |
| 8  | $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left x + \sqrt{x^2 - a^2}\right  + \mathcal{C}$ | $\int \frac{1}{\sqrt{u^2(x) - a^2}} \cdot u'(x) dx = \ln \left  u(x) + \sqrt{u^2(x) - a^2} \right  + \mathcal{C}$      |
| 9  | $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right) + \mathcal{C}$ | $\int \frac{1}{\sqrt{u^2(x) + a^2}} \cdot u'(x) dx = \ln\left(u(x) + \sqrt{u^2(x) + a^2}\right) + \mathcal{C}$         |
| 10 | $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$                            | $\int \frac{1}{\sqrt{a^2 - u^2(x)}} \cdot u'(x) dx = \arcsin \frac{u(x)}{a} + C$                                       |
| 11 | $\int \sin x  dx = -\cos x + \mathcal{C}$                                                 | $\int \sin u(x) \cdot u'(x)  dx = -\cos u(x) + \mathcal{C}$                                                            |
| 12 | $\int \cos x \ dx = \sin x + \mathcal{C}$                                                 | $\int \cos u(x) \cdot u'(x) dx = \sin u(x) + C$                                                                        |
| 13 | $\int \operatorname{tg} x  dx = -\ln \cos x  + \mathcal{C}$                               | $\int \operatorname{tg} u(x) \cdot u'(x)  dx = -\ln \cos u(x)  + \mathcal{C}$                                          |
| 14 | $\int \operatorname{ctg} x  dx = \ln \sin x  + \mathcal{C}$                               | $\int \operatorname{ctg} u(x) \cdot u'(x)  dx = \ln \sin u(x)  + C$                                                    |
| 15 | $\int \frac{1}{\sin^2 x} dx = -\cot x + C$                                                | $\int \frac{1}{\sin^2 u(x)} \cdot u'(x) dx = -\operatorname{ctg} u(x) + \mathcal{C}$                                   |
| 16 | $\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + \mathcal{C}$                          | $\int \frac{1}{\cos^2 u(x)} \cdot u'(x)  dx = \operatorname{tg} u(x) + \mathcal{C}$                                    |

| Proprietăți ale funcțiilor trigonometrice                            |                                                                                                                                                    |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Mărginirea                                                           |                                                                                                                                                    |  |  |  |
| $-1 \le \sin x \le 1, \forall x \in \mathbb{R}$                      | $-1 \le \cos x \le 1, \forall x \in \mathbb{R}$                                                                                                    |  |  |  |
| Paritatea                                                            |                                                                                                                                                    |  |  |  |
| $\sin(-x) = -\sin x$                                                 | $tg\left(-x\right) = -tgx$                                                                                                                         |  |  |  |
| $\cos(-x) = \cos x$                                                  | $ctg\left(-x\right) = -ctgx$                                                                                                                       |  |  |  |
| Observație! cos este funcției pară, sin, tg, ctg funcții impare      |                                                                                                                                                    |  |  |  |
| Periodicitatea                                                       |                                                                                                                                                    |  |  |  |
| $\sin(x+2k\pi) = \sin x, \forall x \in \mathbb{R}, k \in \mathbb{Z}$ | $\operatorname{tg}(x+k\pi) = \operatorname{tg} x, \forall x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \mathbb{Z}\pi\right), k \in \mathbb{Z}$ |  |  |  |
| $\cos(x+2k\pi)=\cos x,\forall x\in\mathbb{R},k\in\mathbb{Z}$         | $\operatorname{ctg}(x+k\pi)=\operatorname{ctg} x$ , $\forall x\in\mathbb{R}\setminus(\mathbb{Z}\pi), k\in\mathbb{Z}$                               |  |  |  |

| Formule trigonometrice                              |                                             |  |  |  |
|-----------------------------------------------------|---------------------------------------------|--|--|--|
| Formula fundamentală a trigonometriei               |                                             |  |  |  |
| $\sin^2 x + \cos^2 x = 1, \forall x \in \mathbb{R}$ |                                             |  |  |  |
| $\sin(90^{\circ} - x) = \cos x$                     | $\sin(180^{\circ} - x) = \sin x$            |  |  |  |
| $\cos(90^{\circ} - x) = \sin x$                     | $\cos(180^{\circ} - x) = -\cos x$           |  |  |  |
| $\sin(a+b) = \sin a \cos b + \cos a \sin b$         | $\sin(a-b) = \sin a \cos b - \cos a \sin b$ |  |  |  |
| $\cos(a+b) = \cos a \cos b - \sin a \sin b$         | $\cos(a-b) = \cos a \cos b + \sin a \sin b$ |  |  |  |
| $\sin 2x = 2\sin x \cos x$                          | $\cos 2x = \cos^2 x - \sin^2 x$             |  |  |  |
| $\cos 2x = 2\cos^2 x - 1$                           | $\cos 2x = 1 - 2\sin^2 x$                   |  |  |  |
| $tg \ x = \frac{\sin x}{\cos x}$                    | $ctg \ x = \frac{\cos x}{\sin x}$           |  |  |  |

| $tg(a+b) = \frac{tg \ a + tg \ b}{1 - tga \ tgb}$              | $tg(a-b) = \frac{tg \ a - tg \ b}{1 + tga \ tgb}$               |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| $tg \ 2x = \frac{2tgx}{1 - tg^2x}$                             | $tg \ \frac{x}{2} = \frac{\sin x}{1 + \cos x}$                  |  |  |  |
| $\sin x = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}}$          | $\cos x = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}}$    |  |  |  |
| Transformarea unor sume în produs                              |                                                                 |  |  |  |
| $\sin a + \sin b = 2\sin\frac{a+b}{2} \cdot \cos\frac{a-b}{2}$ | $\cos a + \cos b = 2\cos\frac{a+b}{2} \cdot \cos\frac{a-b}{2}$  |  |  |  |
| $\sin a - \sin b = 2\sin\frac{a-b}{2} \cdot \cos\frac{a+b}{2}$ | $\cos a - \cos b = -2\sin\frac{a+b}{2} \cdot \sin\frac{a-b}{2}$ |  |  |  |

