2. 音声とは

- 2.1 音声の科学
- 2.2 どうやって声を作るか 一調音音声学
- 2.3 声の正体とは 一音響音声学
- 2.4 どうやって声を聴き取るか 一聴覚音声学

2.1 音声の科学

- ・音声とは
 - 人間がコミュニケーションのために、発声器官から発する音
- ・ 音声学の分類
 - 調音音声学

聴覚音声学

- 話し手が発声器官を用いて音声を発する仕組みを分析
- 音響音声学
 - 発せられた音声を物理的に分析
- 聴覚音声学
 - 聞き手が音声を聴取する仕組みを分析

- 発声器官の構造と機能
 - 肺
 - 空気を押し出す
 - 声帯
 - 開閉できる声門を持ち、 音源となる
 - 声道
 - 口や鼻で音素の違いを 作り出す

- ・ 音素の生成
 - 母音(a, i, u, e, o)
 - 声道の形を固定して共振周波数を特定

• 子音

• 声道を通る空気の流れを唇や舌の動きで妨げて作る音

調音法	調音点	両唇	歯歯茎	硬口蓋 歯茎	軟口蓋	声門
閉鎖音	無声	p	t		k	
	有声	ъ	d		g	
摩擦音	無声		S	S		h
	有声		z	3		
鼻音		m	n		ŋ	
弾音			r			
半母音		w		j	w	

- 音節とモーラ
 - 日本語の音節
 - 「母音」または「子音+母音」からなる音のまとまり
 - モーラ
 - 話すときの拍に相当
 - 基本的に1音節は1モーラ
 - ・撥音・促音・長音それぞれも1モーラになる

- ・ 音素の変形
 - 調音結合

図 2.8 「あおい」

「あおい」の発声における調音結合

・ 母音の無声化・長音化

2.3 声の正体とは 一音響音声学

- ・音とは何か
 - 空気の粗密波
 - 密度の周期的な変化を伴う波が膜を振動させ、その膜の振動を電気信号に変換するものがマイクロフォン
- ・ 音の周波数分析
 - 複雑な波は単純な波の重み付き和で表現できる
 - 周波数毎の重みの情報を取り出すのが周波数分析

$$s(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \underline{a_n} \cos(2\pi n f t + \theta_n)$$

2.3 声の正体とは 一音響音声学

- 音声とスペクトル
 - ・周波数分析の結果を、横軸:周波数、縦軸:パワー (重み)として表示したもの
 - ・共振周波数のピーク(フォルマント)の位置や、その時間的変化が音素を特定する情報になる

図 2.14 「あ」の

「あ」の波形のパワースペクトル(左)とその概形(右)

2.3 声の正体とは 一音響音声学

- ・スペクトログラム
 - 一定区間の音声信号を周波数分析し、時系列に表示 したもの

2.4 どうやって声を聴き取るか 一聴覚音声学

・聴覚器官の構造と機能

2.4 どうやって声を聴き取るか 一聴覚音声学

• 内耳での周波数分析のしくみ

図 2.18

音が脳へ伝わる仕組み

2.4 どうやって声を聴き取るか 一聴覚音声学

- ・ 人間の聴覚の特性
 - 可聴周波数域: 20~20,000Hz
 - ・低周波数域は分解能が細かく、高周波数域は分解能が粗い対数スケール(メルスケール)になっている
 - ・大きさの限界は、最小可聴音の約100万倍