Elméleti számítástudomány

- lényege
 - számítási folyamat hardverfüggetlen vizsgálata
 - o megoldhatóság vizsgálata
 - számítási bonyolultság vizsgálata

Fogalmak

- halmaz:rendezetlen gyűjtemény
- függvény, reláció: leképezés egy halmazból egy másikba
- ábécé: Szimbólumok (betűk) véges halmaza.
- szó: Egy ábécé betűiből álló véges sorozat.
- nyelv: Adott ábécé feletti szavak véges vagy végtelen halmaza.

Véges automata: véges állapotszám, matematikai alapok

- részei: Q: állapotok, Σ (szigma) :bemeneti ábécé, q₀ ∈ Q: kezdőállapot, A: végállapotok, δ: állapotátmenet függvény
- [fogalom] kiterjesztett állapotátmenet függvény: Nem egy betű, hanem egy szó által okozott állapotátmenetet ír le. Jele: δ* ("delta csillag").
- Az M=(Q, Σ , q₀, A, δ) véges automata elfogadja az x szót, ha δ *(q₀, x) \in A. Az M által elfogadott nyelv: L(M) = { x \in Σ * | δ *(q₀, x) \in A }.
- véges automata állapotszáma
 - [definíció] Megkülönböztethetőség egy L nyelvre nézve: Az x és y szavak L-megkülönböztethetőek, ha létezik olyan z szó, hogy (xz ∈ L és yx ∉ L) vagy (xz ∉ L és yx ∈ L).
 - [tétel] Automata minimális állapotszáma: Ha L=L(M) valamilyen M automata esetén, és L-ben van n páronként egymástól L-megkülönböztethető szó, akkor M-nek legalább n állapota van.
 - Egy ábécé feletti L nyelvet ekvivalencia osztályokra oszthatunk Lmegkülönböztethetőség alapján, az L nyelvet elfogadó véges automatának annyi állapotra van szüksége, mint az L szerinti megkülönböztethetőség ekvivalencia osztályainak száma.
- [tétel] Véges automatával nem elfogadható nyelvek: Ha egy L nyelvben végtelen sok páronként L-megkülönböztethető szó van, akkor L≠L(M) semmilyen M véges automata esetén.
- Pumpálási lemma: ha egy véges automata által elfogadott szó elég hosszú, akkor az automata kénytelen legalább egy állapotot többször felvenni. Formálisan: Ha az $L \subseteq \Sigma^*$ nyelvet elfogadja az $M=(Q, \Sigma, q_0, A, \delta)$ véges automata és n = |Q|, akkor minden olyan $x \in L$ szó, amely $|x| \ge n$, felírható x = uvw alakban, ahol
 - 1. $|uv| \le n$
 - 2. $|\mathbf{v}| > 0$
 - 3. minden $i \ge 0$ -ra $uv^i w \in L$

Ha egy nyelv nem teljesíti a pumpálási lemma feltételeit, akkor nem lehet véges automatával elfogadni. A pumpálási lemma feltételeinek teljesülése **nem elégséges** feltétele a nyelvet elfogadó véges automata létezésének.

Reguláris nyelvek, reguláris kifejezések

- [definíció] Reguláris nyelv olyan nyelv, amely leírható reguláris kifejezésekkel.
- jelölésbeli különbségek (nyelv → kifejezés)
 - {} → ()
 - U → +
 - , → +

Nemdeterminisztikus véges automaták: olyan véges automaták, melyek egyszerre több állapotot is felvehetnek, vagy van bennük üresszó átmenet

- [definíció] Legyen M=(Q, Σ , q₀, A, δ) nemdeterminisztikus véges automata. Legyen S \subseteq Q és jelölje E(S) a következőt: S \subseteq E(S) és minden q \in E(S)-re δ (q, λ) \subseteq E(S). E(S) \subseteq Q az az állapothalmaz, amikbe S állapotaiból λ átmenetek mentén el lehet jutni.
- A nemdeterminisztikus automata által elfogadott L(M) nyelv a következő: L(M)={ $w \in \Sigma^*$ | $\delta^*(q_0, w) \cap A \neq \emptyset$ }
- nemdeterminisztikusság kiküszöbölésére algoritmus: az egyszerre felvett állapotok különböző halmazait egy állapotként vesszük

Generatív grammatika

- felépítés: G(N, Σ, S, P), ahol N a nemterminális ábécé, Σ a terminális ábécé S ∈ N kezdőszimbólum, és P a helyettesítési szabályok
- L(G) a G által generált nyelv/szavak halmaza
- [definíció] levezetés fogalma formális alakban: Legyen G(N, Σ, S, P). Ekkor egy u szó közvetlenül levezethető egy v szóból, ha
 - \circ $\mathbf{v} = \mathbf{v}_1 \alpha \mathbf{v}_2$
 - \circ $u = v_1 \beta v_2$
 - ∘ létezik $\alpha \rightarrow \beta \in P$ szabály

Ennek jelölése: v => u

Szavak egy w_1 , w_2 , w_n sorozatára azt mondjuk, hogy w_n levezethető w_1 -ből, ha $w_1 => w_2 => \dots => w_n$. Ennek jelölése: $w_1 => *w_n$.

- Egy G(N, Σ , S, P) grammatika generálja a w szót, ha S =>* w
- Egy G(N, Σ , S, P) grammatika által generált nyelv az L(G) = { w $\in \Sigma^* \mid S = >^* w$ }
- Egy G(N, Σ, S, P) akkor környezetfüggetlen, ha P minden szabálya A → B alakú, ahol A ∈ N és B ∈ { N ∪ Σ }*
- reguláris nyelveket generáló grammatikák
 - ∘ állapotátmenet \iff átírási szabály: T \rightarrow x \rightarrow U \iff T \rightarrow xU
 - generálás abbahagyása törlő szabállyal (pl.: B → bA | aS | λ) vagy terminálissal (pl.: A → bA | aB | a)
 - [definíció] reguláris grammatika: Egy G(N, Σ , S, P) környezetfüggetlen grammatika reguláris, ha a szabályok alakja A \rightarrow aB, A \rightarrow λ , vagy A \rightarrow a, ahol A, B \in N és a \in Σ .
 - ° reguláris grammatika <=> automata konverzió: Egy $G(N, \Sigma, S, P)$ átalakítható az $M=(Q, T, q_0, \delta, F)$ véges automatává a következőképpen:
 - legyen N=Q
 - legyen q₀ a kezdőszimbólum
 - $q_i \rightarrow aq_i <=> \delta(q_i, a) = q_i$
 - $q_i \rightarrow a \le \delta(q_i, a) = q$, ahol $q \in F$
 - \bullet $q_i \rightarrow \lambda \iff q_i \in F$
 - [tétel] $L \subset \Sigma^*$ reguláris akkor és csak akkor, ha L=L(G), ahol G reguláris grammatika.

Környezetfüggetlen grammatika

- levezetések
 - két levezetés lényegesen különbözik, ha a hozzájuk tartozó levezetési fák különböznek
 - [definíció] egyértelműség: Egy grammatika nem egyértelmű, ha van olyan szó, aminek több lényegesen különböző levezetése is van.
- Grammatika egyszerűsítése
 - törlőszabályok kiszedése
 - láncszabályok kiszedése
- pumpálási lemma
 - [definíció] Ha L környezetfüggetlen, akkor létezik p (S levezetési fájában van olyan út, amely a gyökértől a levélig hosszabb, mint a nemterminálisok száma a nyelvtanban), hogy ha $S \in L$ és |S| > p, akkor S felírható S=uvxyz alakban, hogy
 - 1. $uv^i x y^i z \in L$ minden $i \ge 0$ -ra
 - 2. |vy| > 0
 - 3. $|vxy| \le p$

Veremautomata

- véges automata veremmemóriával
- környezetfüggetlen grammatikákat képes leírni
- M=(Q, T, Γ , q_0 , Z_0 , δ , F): Q állapothalmaz, T bemeneti ábécé, Γ veremábécé, q_0 kezdőállapot, Z_0 kezdeti veremtartalom, δ állapotátmenet reláció, F \subseteq Q végállapot halmaz
- készítés környezetfüggetlen grammatikából: $G(N, T, S, P) \rightarrow M(\{q_0, q_1, q_2\}, T, N \cup T \cup \{Z_0\}, q_0, \delta, \{q_2\})$ $\delta(q_0, \lambda, Z_0) = \{(q_1, SZ_0)\}$ $\delta(q_1, \lambda, [nemterminális]) = \{(q_1, [nemterminális 1. szabálya]), (q_1, [nemterminális 2. szabálya]), ...}$ $<math>\delta(q_1, [terminális], [terminális]) = \{(q_1, \lambda)\}$ $\delta(q_1, \lambda, Z_0) = \{(q_2, \lambda)\}$
- ha L környezetfüggetlen, akkor van olyan M veremautomata, hogy L=L(M)
- determinisztikus akkor, ha minden δ átmenet legfeljebb egy elemű

Szintaktikai elemzés és parsing

- felülről lefelé
 - LL(1) nyelvek
 - LL(k) nyelvek
- lentről felfelé
 - Adott egy G(N, T, S, P) grammatika. Legyen M=(Q, T, T \cup N \cup { Z_0 }, q_0 , Z_0 , δ , q_2) ahol Q= { q_0 , q_2 , q_2 } és $\delta(q_0, x, X) = (q_0, xX)$ minden B $\rightarrow \alpha$ szabályhoz legyen egy lépéssorozat: $(q_0, w, \alpha^R) => \dots => (q_0, w, B)$ végül: $\delta(q_0, \lambda, S) = (q_0, \lambda)$, $\delta(q_1, \lambda, Z_0) = (q_2, Z_0)$ $(q_0, \lambda, B) \in \delta(q_0, \lambda, \alpha^R)$
 - LR(k) grammatikák
 - megengedett veremtartalmat felismerő véges automata konstruálása
 - LR elemek

Turing gépek

- $T(Q, \Sigma, \Gamma, q_0, \delta)$, ahol Q állapothalmaz, Σ bemeneti ábécé, Γ szalagábécé, $\Sigma \subseteq \Gamma$, $q_0 \in \Gamma$ kezdőállapot, δ állapotátmenet halmaz $(Q \times (\Gamma \cup \{\Delta\}) \rightarrow (Q \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\})$
- konfiguráció: állapot, szalag tartalma, fej helye
- a T turing gép által elfogadott nyelv L(T)
- nem fogad el egy $w \in \Sigma^*$ szót, ha nem áll meg, vagy nem elfogadó állapotban áll meg
- egy Turing gép lehet k szalagos: Γ^k van Γ helyett az állapot átmenetben
- univerzális Turing gép
 - egy olyan Turing gép, amely minden más Turing gép működését szimulálni tudja
 - \circ T_{n}
 - $^{\circ}$ minden m állapotátmenetet (δ(p, a) = (q, b, D)) az e(m) = s(p)1s(a)1s(q)1s(b)1s(D)1 string kódolja
 - minden s(x)-et egy {0} feletti szó kódol
 - ∘ minden z=z1z2z3z4z5... stringet, ahol Zi ∈ S, az e(z)=1s(z1)1s(z2)1...s(zk)1 string kódol
- programozható, általános célú számítási modell, matematikailag precíz → alkalmas az algoritmusok formális leírására → Church-Turing tézis: ha egy probléma megoldható mechanikus eljárássorozattal, akkor van Turing-gép, ami képes megoldani. Ha egy problémát nem lehet Turing-géppel megoldani, akkor nincs rá algoritmus.
 - A Turing-gép eldöntendő problémák megoldására alkalmas
 - pl. van Turing-gép annak eldöntésére, hogy egy szám prím-e, így az algoritmikusan megoldható probléma
 - a problémát akkor döntötte el a Turing-gép, ha az minden bemenetre megáll IGEN vagy NEM válasszal → egy probléma algoritmikusan megoldható, ha a hozzá tartozó nyelv rekurzív
 - egy rekurzívan felsorolható nyelv nem megoldható algoritmukusan

Rekurzív és rekurzívan felsorolható nyelvek

- [definíció] rekurzívan felsorolható nyelv: Egy L nyelv rekurzívan felsorolható, ha van olyan
 T turing gép, hogy L = L(T), vagyis a turing gép elfogadja a nyelvet.
- [definíció] rekurzív nyelv: Egy L nyelv rekurzív, ha van olyan T turing gép, hogy L = L(T), vagyis a turing gép elfogadja a nyelvet, és a turing gép minden bemenetre megáll.
- Ha van ilyen T turing gép, akkor azt mondjuk, T eldönti L-et.

Általános alakú grammatikák:

- nem csak egy nemterminális szerepelhet a szabályok bal oldalán, és lehet ott terminális is, de nem lehet csak terminális
- Turing géppel elfogadható nyelvekkel egyezik meg

Fogalmak

- Nvelv lezártja (iteráltja): Legven L egy nvelv. L $* := \bigcup (i=0 \rightarrow \infty) L^i$
- Reguláris nyelvek az elemi nyelvek (∅, { ε }, { a } (a ∈ U [U az univerzális ábécé])) és az ezekből véges számú unióval, konkatenációval, és lezárással előálló nyelvek.
- Az X ábécé feletti reguláris kifejezések az elemi reguláris kifejezések Ø, ε, a (a ∈ X), és ha R₁ és R₂ reguláris kifejezések, akkor (R₁ ∪ R₂), (R₁R₂), és R₁* is. Reguláris kifejezések az X feletti reguláris kifejezések X=U esetén.
- Rekurzívan felsorolható nyelv: Az L nyelv rekurzívan felsorolható ←⇒ ha létezik A algoritmus, mely az elemeit (és csak azokat) felsorolja az outputjára.
- Rekurzív nyelv: Az L nyelv rekurzív, ha ←⇒ létezik olyan A eldöntő algoritmus, melynek inputjára egy tetszőleges u szót helyezve eldönti, benne van-e az L nyelvben (mindig terminál, igen a válasz, ha u eleme az L nyelvnek, és nem a válasz ellenkező esetben).
- Generatív nyelvtan (grammatika): A G(N, T, S, P) négyest nyelvtannak nevezzük, ahol T a terminális, N a nyelvtani (nemterminális) jelek egymástól diszjunkt ábécéje, P (produkciós) szabályoknak egy véges halmaza, ahol minden p ∈ P szabály a → b alakú, a, b ∈ (T ∪ N)* és »a« tartalmaz legalább egy nyelvtani jelet, továbbá S ∈ N , melyet kezdőszimbólumnak nevezünk.
- Nyelvtan által generált nyelv: A G(N, T, S, P) nyelvtan által generált nyelv L(G) minden u szava u ∈ T* és minden u szó levezethető S-ből.
- Veremautomata: Egy V=(Q, T, Σ, q₀, Z₀, δ, F) 7-es, ahol Q az állapothalmaz, T a bemenő ábécé, Σ a veremábécé, q₀ ∈ Q a kezdőállapot, Z₀ ∈ Σ a kezdő veremtartalom, δ állapotátmenet függvény, F ∈ Q pedig a végállapotok halmaza. Egy véges automata veremmemóriával.
- Konfiguráció: Konfigurációnak nevezzük azoknak az adatoknak az összességét, melyektől a gép elkövetkezendő működése függ.
- Levezetés: $\alpha \rightarrow_G \rightarrow \beta$, vagyis α -ból közvetlenül levezethető β , ha létezik olyan γ_1 , γ_2 , és (p → q) ∈ (T ∪ N)*, hogy $\alpha = \gamma_1 p \gamma_2$ és $\beta = \gamma_1 q \gamma_2$. $\alpha \rightarrow_G * \rightarrow \beta$, vagyis α -ból levezethető β , ha létezik olyan γ_1 , γ_2 , ..., γ_k sorozat, hogy $\alpha = \gamma_1$, $\beta = \gamma_k$, és minden γ_i , γ_{i+1} párosra $\gamma_i \rightarrow_G \rightarrow \gamma_{i+1}$.
- Turing-gép: egy olyan (elméleti) gép, mely egy vagy több végtelen hosszú szalagon dolgozik, a szalagról olvas, állapotot vált, ír a szalagra, és mozgatja az író-olvasó fejét a szalagon jobbra-balra. Alakja: T=(Q, Σ, Γ, δ, q₀, B, F), ahol Q az állapothalmaz, Σ ∈ Γ a bemeneti ábécé, Γ a szalag szimbólumai, δ állapotátmenet fv., mely (Q × Γ) → (Q × Γ × {L, R, S}) alakú, q₀ ∈ Q kezdőállapot, B az "üres" szimbólum a szalagon, F ⊆ Q pedig az elfogadó állapotok halmaza.