Fundamental field	Symmetries	Decomposition into SO(3) irrep(s)	Source
' αβχ	Symmetry[3, $\Gamma^{\bullet 1 \bullet 2 \bullet 3}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \eta_{\alpha\chi} \Gamma_{1^{-}\beta}^{\#1} + \frac{1}{2} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#1} + \frac{4}{3} \Gamma_{2^{-}\beta\chi\alpha}^{\#1} + \frac{1}{2} \Gamma_{2^{-}\alpha\beta\chi}^{\#2} + \frac{1}{2} \Gamma_{2^{-}\alpha\chi\beta}^{\#2} + \Gamma_{3^{-}\alpha\beta\chi}^{\#1} + \frac{1}{3} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#6} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{1^{-}\beta}^{\#6} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#6} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#4} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#4} + \Gamma_{1^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{1}{9} \eta_{\beta\chi} \Gamma_{0^{+}}^{\#3} \eta_{\alpha} + \frac{1}{3} \Gamma_{2^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{2}{3} \Gamma_{2^{+}\beta\chi}^{\#3} \eta_{\alpha} + \frac{2}{9} \eta_{\beta\chi} \Gamma_{0^{+}}^{\#4} \eta_{\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{0^{+}}^{\#4} \eta_{\beta} - \Gamma_{1^{+}\alpha\chi}^{\#4} \eta_{\beta} + \frac{1}{3} \Gamma_{1^{-}\alpha\chi}^{\#3} \eta_{\beta} + \frac{1}{9} \eta_{\alpha\chi} \Gamma_{0^{+}\eta}^{\#3} \eta_{\beta} - \frac{1}{2} \Gamma_{1^{+}\alpha\chi}^{\#3} \eta_{\beta} + \frac{1}{3} \Gamma_{2^{+}\alpha\chi}^{\#3} \eta_{\beta} - \frac{1}{3} \Gamma_{2^{+}\alpha\chi}^{\#3} \eta_{\beta} - \frac{1}{3} \Gamma_{1^{-}\chi}^{\#3} \eta_{\alpha} \eta_{\beta} - \frac{1}{3} \Gamma_{1^{-}\alpha}^{\#3} \eta_{\alpha} \eta_{\beta} - \frac{1}{3} \Gamma_{1^$	$\Delta_{lphaeta\chi}$
SO(3) irrep	Symmetries	Expansion in terms of the fundamental field	Source SO(3) irrep
Γ ₀ ^{#1}	Symmetry[0, $\Gamma_{0}^{#1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \Gamma_{\alpha}^{\alpha \beta} n_{\beta} + \frac{1}{2} \Gamma_{\alpha}^{\alpha \beta} n_{\beta}$ $-\alpha \beta \gamma$	Δ ₀ ^{#1}
Γ ^{#2}		$\Gamma^{\alpha\beta\chi} n_{\alpha} n_{\beta} n_{\chi}$	Δ ₀ ^{#2}
Γ ₀ ^{#3} -#4		$\Gamma^{\alpha\beta}_{\beta} n_{\alpha} + \Gamma^{\alpha\beta}_{\alpha} n_{\beta} + \Gamma^{\alpha\beta}_{\alpha} n_{\beta} - 3 \Gamma^{\alpha\beta\chi} n_{\alpha} n_{\beta} n_{\chi}$	Δ ₀ ^{#3}
Γ ₀ ^{#4} -#1	Symmetry[0, $\Gamma_{0}^{\#4}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\beta} n_{\alpha} - \frac{1}{2} \Gamma^{\alpha}_{\alpha}^{\beta} n_{\beta} - \frac{1}{2} \Gamma^{\alpha\beta}_{\alpha} n_{\beta}$ $= -\alpha\beta x \cdot \delta$	Δ#4 0+
Γ ₀ ^{#1}	Symmetry[0, $\Gamma_{0^-}^{\#1}$, {}, StrongGenSet[{}, GenSet[]]] Symmetry[2, $\Gamma_{1^+}^{\#1} \bullet 1 \bullet 2$, { $\bullet 1 \rightarrow -a$, $\bullet 2 \rightarrow -b$ },	$\epsilon \eta_{\alpha\beta\chi\delta} \Gamma^{\alpha\beta\chi} n^{\delta}$	$\Delta_0^{#1}$
$\Gamma_{1}^{\sharp 1}{}_{\alpha\beta}$	StrongGenSet[$\{1, 2\}$, GenSet[$-(1,2)$]]	$\frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta}^{\ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\beta}^{\ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#1}{}_{lphaeta}$
$\Gamma^{\#2}_{1^+ \alpha\beta}$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$\frac{1}{2} \Gamma^{\chi}_{\alpha\beta} n_{\chi} - \frac{1}{2} \Gamma^{\chi}_{\beta\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\chi}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$
$\Gamma^{\#3}_{1}^{+}{}_{lphaeta}$	Symmetry[2, $\Gamma_{1}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \Gamma_{\alpha\beta}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\beta}^{\ X\delta} n_{\gamma} n_{\gamma} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\beta}^{\ X\delta} n_{\gamma} n_{\gamma} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\beta$	$\Delta_{1}^{#3}{}_{lphaeta}$
$\Gamma_{1}^{#1}{}_{\alpha}$	Symmetry[1, $\Gamma_1^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$-\frac{1}{2} \Gamma^{\beta}_{\alpha\beta} + \frac{1}{2} \Gamma^{\beta}_{\beta\alpha} - \frac{1}{2} \Gamma^{\beta}_{\beta}^{\chi} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\beta\chi}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi} - \frac{1}{2} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	Δ#1 α
$\Gamma_{1}^{#2}\alpha$	Symmetry[1, $\Gamma_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		Δ#2 α
Γ ₁ ^{*3} α	Symmetry[1, $\Gamma_1^{\#3} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - 3 \Gamma^{\beta\chi\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	Δ#3 α
$\Gamma_{1}^{#4}\alpha$	Symmetry[1, $\Gamma_1^{\#4} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\Gamma_{\alpha\beta}^{\beta} + \Gamma_{\alpha\beta}^{\beta} + \Gamma_{\beta\alpha}^{\beta} - \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} - \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\gamma} - \Gamma_{\alpha}^{\beta\chi} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\beta\chi} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\beta\chi} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\beta\chi} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n$	Δ#4 α
Γ ₁ ⁵ α	Symmetry[1, $\Gamma_1^{\#_5 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}^{-\frac{1}{2}} \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}^{-\frac{1}{2}} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	Δ#5 α
Γ ₁ ⁻⁶ α	Symmetry[1, $\Gamma_1^{\#_6 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\Gamma_{\alpha\beta}^{\beta} - \frac{1}{2} \Gamma_{\alpha\beta}^{\beta} - \frac{1}{2} \Gamma_{\beta\alpha}^{\beta} - \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} + \frac{1}{2} \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}$	Δ#6 α
$\Gamma^{\#1}_{2^+ \alpha\beta}$	Symmetry[2, $\Gamma_{2^{+}}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$-\frac{1}{4} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{4} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ \ X} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\ \ X} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{6} \Gamma_{\chi}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{X \delta} n_{\chi} n_{\delta} - \frac{1}{4} $	$\Delta_{2}^{\#1}{}_{lphaeta}$
Γ ^{#2} ₂ ⁺ αβ	Symmetry[2, $\Gamma_{2^+}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$\frac{1}{2} \Gamma_{\alpha\beta}^{} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{} n_{\chi} + \frac{1}{2}$	$\Delta_{2}^{\#2}{}_{lphaeta}$
Γ ^{#3} ₂ + αβ	Symmetry[2, $\Gamma_{2^{+}}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$-\frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\alpha}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{3} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{3} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^$	$\Delta_{2}^{\#3}{}_{lphaeta}$
Γ ^{#1} ₂ αβχ	Symmetry[3, $\Gamma_2^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{8} \Gamma_{\alpha\beta\chi} + \frac{1}{8} \Gamma_{\alpha\chi\beta} + \frac{1}{8} \Gamma_{\beta\alpha\chi} - \frac{1}{8} \Gamma_{\beta\chi\alpha} + \frac{1}{4} \Gamma_{\chi\alpha\beta} - \frac{1}{4} \Gamma_{\chi\beta\alpha} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha\delta} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\beta\delta} + \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\delta\alpha} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\beta} - \frac{3}{16} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{1}{8} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma_{\chi\alpha\beta}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma_{\chi\alpha\beta}^{\delta} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma_{\chi\alpha\beta}^{\delta} n_{\beta} n_{\delta} - \frac{1}{8} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma_{\alpha\alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{\delta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{\delta} n_{\gamma} n_{\delta} - \frac{1}{8} \Gamma_{\alpha\gamma}^{\delta} n_{\gamma} n_{\delta} - \frac{1}{8} \Gamma_{\alpha\beta}^{\delta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{\delta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{\delta} n_{\gamma} n_{\delta} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta\epsilon} n_{\alpha} n_{\gamma} n_{\delta} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} - \frac{3}{16} \Gamma_{\alpha\gamma}^{\delta} n_{\gamma} n_{\gamma} n_{\delta} - \frac{3}{16} \Gamma_{\alpha\gamma}^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma_{\alpha\gamma}^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma_{\alpha\gamma}^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma_{\alpha\gamma}^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\epsilon} - \frac{3}{16} \Gamma_{\alpha\gamma}^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma_{\alpha\gamma}^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma_{\alpha\gamma}^{\delta\epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\gamma} $	$\Delta_2^{\#1}{}_{lphaeta\chi}$
Γ ^{#2} _{αβχ}	Symmetry[3, $\Gamma_2^{\#2} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{3} \Gamma_{\alpha\beta\chi} + \frac{1}{3} \Gamma_{\alpha\chi\beta} - \frac{1}{3} \eta_{\beta\chi} \Gamma_{\alpha}^{\ \delta} - \frac{1}{3} \Gamma_{\beta\alpha\chi} - \frac{1}{3} \Gamma_{\beta\chi\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\beta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} - \frac{1}{3} \Gamma_{\beta\alpha\chi}^{\ \delta} - \frac{1}{3} \Gamma_{\alpha\lambda}^{\ \delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{3} \Gamma_{\alpha\delta}^{\ \delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{3} \Gamma_{\alpha\delta}^{\ \delta} \eta_{\alpha} \eta_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\ \delta} \eta_{\alpha} \eta_{\chi} - \frac{1}{6} \Gamma_{\delta\alpha}^{\ \delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} \eta_{\alpha} \eta_{\delta} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} \eta_{\alpha} \eta_{\delta} - \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} \eta_{\alpha} \eta_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} \eta_{\beta} \eta_$	$\Delta_2^{\#2}{}_{lphaeta\chi}$
$\Gamma_{3}^{#1}$ $_{\alpha\beta\chi}$	Symmetry[3, Γ ^{#1•1•2•3} , {•1 → -a, •2 → -b, •3 → -c}, StrongGenSet[{1, 2, 3}, GenSet[(1,2), (2,3)]]]	$\frac{1}{6} \Gamma_{\alpha\beta\chi} + \frac{1}{6} \Gamma_{\alpha\chi\beta} - \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha}^{\delta} + \frac{1}{6} \Gamma_{\beta\alpha\chi} + \frac{1}{6} \Gamma_{\beta\alpha\chi} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\lambda}^{\delta} - \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\gamma} \Gamma_{\beta\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\lambda}^{\delta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\lambda}^{\delta} - \frac{1}{15} \eta_{\alpha\gamma} \Gamma_{\beta\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\gamma} \Gamma_{\beta\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\gamma} \Gamma_{\beta\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\gamma} \Gamma_{\beta\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\gamma} \Gamma_{\alpha\beta}^{\delta} - \frac{1}{15} \Gamma_{\alpha\beta}^{\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma_{\lambda}^{\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma_{\beta\beta}^{\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma_{\beta\beta}^{\delta} \eta_{\alpha} \eta_{\gamma} + \frac{1}{15} \Gamma_{\alpha\beta}^{\delta} \eta_{\alpha} \eta_{\gamma} + \frac{1}{1$	$\Delta_3^{\#1}{}_{lphaeta\chi}$