问题 3.83 的详细解答

问题: 设 b 是素域 \mathbb{F}_p 中的非零元素。证明三项式 x^p-x-b 在 $\mathbb{F}_{p^n}[x]$ 中不可约当且仅当 n 不被 p 整除。

证明:

设 $f(x)=x^p-x-b$,其中 $b\in\mathbb{F}_p^*$ 。

1. 根的性质与分裂域:

- $\partial \alpha = f(x) = 0$ 的一个根,即 $\alpha^p \alpha b = 0$ 或 $\alpha^p = \alpha + b$.
- 应用 Frobenius 自同构 $\sigma: x \mapsto x^p$ 重复作用:

$$lpha^{p^2}=(lpha^p)^p=(lpha+b)^p=lpha^p+b^p=(lpha+b)+b=lpha+2b,$$

因为 $b \in \mathbb{F}_p$,有 $b^p = b$ 。一般地:

$$lpha^{p^k}=lpha+kb,\quad k=0,1,2,\ldots$$

• 因此, f(x) 的所有根为:

$$\alpha$$
, $\alpha + b$, $\alpha + 2b$, ..., $\alpha + (p-1)b$.

共有p个不同的根(因为 $b \neq 0$)。

• 所以 f(x) 的分裂域是 $\mathbb{F}_p(\alpha)$,且 α 在 \mathbb{F}_p 上的最小多项式次数为 $\deg(m_{\alpha,\mathbb{F}_p}) = [\mathbb{F}_p(\alpha): \mathbb{F}_p] = p$ (因为根集有 p 个元素,且无真子域包含 α)。

2. 在 \mathbb{F}_{p^n} 上的最小多项式:

• 考虑基域 \mathbb{F}_{p^n} 。lpha 在 \mathbb{F}_{p^n} 上的最小多项式 $m_{lpha,\mathbb{F}_{p^n}}(x)$ 是 f(x) 的不可约因子,其次数为:

$$\deg(m_{lpha,\mathbb{F}_{p^n}})=[\mathbb{F}_{p^n}(lpha):\mathbb{F}_{p^n}].$$

• 扩张次数计算:

$$[\mathbb{F}_{p^n}(lpha):\mathbb{F}_{p^n}]=rac{[\mathbb{F}_{p^n}(lpha):\mathbb{F}_p]}{[\mathbb{F}_{p^n}:\mathbb{F}_p]}=rac{[\mathbb{F}_p(lpha,\mathbb{F}_{p^n}):\mathbb{F}_p]}{n}.$$

由于 $\mathbb{F}_p(\alpha) \subseteq \mathbb{F}_{p^n}(\alpha)$ 且 $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^n}(\alpha)$,复合域 $\mathbb{F}_p(\alpha, \mathbb{F}_{p^n}) = \mathbb{F}_p(\alpha) \cdot \mathbb{F}_{p^n}$ 是 $\mathbb{F}_p(\alpha)$ 和 \mathbb{F}_{p^n} 的复合。

• 域扩张维度公式:

$$[\mathbb{F}_p(lpha)\cdot\mathbb{F}_{p^n}:\mathbb{F}_p]=rac{[\mathbb{F}_p(lpha):\mathbb{F}_p]\cdot[\mathbb{F}_{p^n}:\mathbb{F}_p]}{[\mathbb{F}_p(lpha)\cap\mathbb{F}_{p^n}:\mathbb{F}_p]}=rac{p\cdot n}{d},$$

其中 $d = [\mathbb{F}_p(\alpha) \cap \mathbb{F}_{p^n} : \mathbb{F}_p]$ 。

- 由于 $\mathbb{F}_p(\alpha)\cong\mathbb{F}_{p^p}$ 和 $\mathbb{F}_{p^n}\cong\mathbb{F}_{p^n}$,它们的交集 $\mathbb{F}_p(\alpha)\cap\mathbb{F}_{p^n}=\mathbb{F}_{p^d}$ 满足 $d=\gcd(p,n)$ 。 有限域 $\mathbb{F}_{p^a}\cap\mathbb{F}_{p^b}=\mathbb{F}_{p^{\gcd(a,b)}}$ 。
- 因此:

$$[\mathbb{F}_{p^n}(lpha):\mathbb{F}_{p^n}]=rac{p\cdot n/\gcd(p,n)}{n}=rac{p}{\gcd(p,n)}.$$

3. 不可约的充要条件:

• f(x) 在 $\mathbb{F}_{p^n}[x]$ 中不可约当且仅当它是 α 在 \mathbb{F}_{p^n} 上的最小多项式,即当:

$$\deg(m_{\alpha,\mathbb{F}_{p^n}})=p.$$

由上式,这等价于:

$$rac{p}{\gcd(p,n)} = p \iff \gcd(p,n) = 1 \iff p
mid n.$$

• 若 $p \mid n$, 则 $\gcd(p,n) = p$, 此时:

$$\deg(m_{\alpha,\mathbb{F}_{p^n}}) = \frac{p}{p} = 1,$$

故 f(x) 在 \mathbb{F}_{p^n} 中有根(可约)。

结论: $x^p - x - b$ 在 $\mathbb{F}_{p^n}[x]$ 中不可约当且仅当 $p \nmid n$ 。

证明完成

问题 3.84 的详细解答

问题: 证明形式为 $x^q-ax-b\in\mathbb{F}_q[x]$ (其中 $a\neq 1$) 的任意多项式在 \mathbb{F}_q 中有根。

证明:

设 $g(x)=x^q-ax-b\in \mathbb{F}_q[x]$,其中 $a,b\in \mathbb{F}_q$ 且 $a\neq 1$ 。

1. 利用 Frobenius 自同构:

- 在有限域 \mathbb{F}_q 中,Frobenius 自同构 $\sigma:x\mapsto x^q$ 满足 $\sigma(c)=c$ 对所有 $c\in\mathbb{F}_q$ 成立(即 $c^q=c$)。
- 因此,对任意 $c \in \mathbb{F}_q$,有:

$$g(c) = c^q - ac - b.$$

代入 $c^q = c$ 得:

$$g(c) = c - ac - b = (1 - a)c - b.$$

2. 解代数方程:

$$(1-a)c-b=0\iff (1-a)c=b.$$

- 由于 $a \neq 1$,有 $1-a \neq 0$ 。在域 \mathbb{F}_q 中,1-a 有乘法逆元 $(1-a)^{-1}$ 。
- 解出 c:

$$c = b \cdot (1 - a)^{-1}.$$

由于 $b \in \mathbb{F}_q$ 且 $(1-a)^{-1} \in \mathbb{F}_q$,故 $c \in \mathbb{F}_q$.

3. 验证根的存在性:

• 对 $c = b(1-a)^{-1}$,直接计算:

$$g(c) = c^q - ac - b = c - ac - b = (1-a)c - b = (1-a) \cdot \left(rac{b}{1-a}
ight) - b = b - b = 0.$$

• 因此 $c \in g(x) = 0$ 的一个根。

结论: 任意多项式 x^q-ax-b $(a \neq 1)$ 在 \mathbb{F}_q 中有根 $c=b(1-a)^{-1}$.

证明完成