<u>Trabajo Práctico Nº 2:</u> Sistema de Numeración en Punto Flotante.

Ejercicio 1.

Considerando el sistema de Punto Flotante cuya mantisa es fraccionaria, con 6 bits, está expresada en BSS (en el inciso a) o BCS (en el inciso b) y su exponente en BCS con 4 bits, escribir el significado de las siguientes cadenas de bits (mantisa a la izquierda):

Cadena	(a) Mantisa en BSS	(b) Mantisa en BCS
	$010111 * 2^{0110} = (2^{-2} +$	$0.10111 * 2^{0110} = (2^{-1} +$
010111 0110	$2^{-4} + 2^{-5} + 2^{-6}$) * $2^6 = 2^4$	$2^{-3} + 2^{-4} + 2^{-5}$) * $2^6 = 2^5$
	$+2^2+2+1=23$	$+2^3+2^2+2=46$
000001.0000	$0000001 * 2^{0000} = 2^{-6} *$	$0.000001 * 2^{0000} = 2^{-5} *$
000001 0000	$2^{0} = \frac{1}{64} * 1 = \frac{1}{64}$ $000011 * 2^{1001} = (2^{-5} + 4)^{-1}$	$2^{0} = \frac{1}{32} * 1 = \frac{1}{32}$ $0 \ 00011 * 2^{1001} = (2^{-4} + 1)^{-4}$
	$000011 * 2^{1001} = (2^{-5} +$	$0\ 00011 * 2^{1001} = (2^{-4} +$
000011 1001	$(2^{-6}) * 2^{-1} = 2^{-6} + 2^{-7} =$	$(2^{-5}) * 2^{-1} = 2^{-5} + 2^{-6} =$
	$\frac{\frac{1}{128}(2+1) = \frac{3}{128}}{1111111 * 2^{1111} = (1-2^{-6})}$	$\frac{\frac{1}{64}(2+1) = \frac{3}{64}}{111111111111111111111111111111111$
	$1111111 * 2^{1111} = (1 - 2^{-6})$	$1\ 111111 * 2^{1111} = (1 - 2^{-5})$
111111 1111	$*2^{-7}=2^{-7}-2^{-13}=\frac{1}{8192}$	$*2^{-7}=2^{-7}-2^{-12}=\frac{1}{4096}$
	$(64+1) = \frac{65}{8192}$	$(32+1) = \frac{33}{4096}$ $0\ 00000 * 2^{0000} = 0 * 2^{0} =$
000000 0000	$000000 * 2^{0000} = 0 * 2^{0} = 0$	$0\ 000000 * 2^{0000} = 0 * 2^{0} =$
000000 0000	* 1= 0	0 * 1= 0
000000 1111	$000000 * 2^{1111} = 0 * 2^{-7} =$	$0.00000 * 2^{1111} = 0 * 2^{-7} =$
000000 1111	0	0
111111 0000	$1111111 * 2^{0000} = (1 - 2^{-6})$	1 11111 * 2 ⁰⁰⁰⁰ = -(1 -
111111 0000	$*2^0 = (1 - \frac{1}{64}) * 1 = \frac{63}{64}$	$(2^{-5}) * 2^{0} = (1 - \frac{1}{32}) * 1 = \frac{31}{32}$
100000 0000	$100000 * 2^{0000} = 2^{-1} *$	$1\ 00000 * 2^{0000} = -2^{-1} *$
100000 0000	$2^0 = \frac{1}{2} * 1 = \frac{1}{2}$	$2^{0} = \frac{-1}{2} * 1 = \frac{-1}{2}$ $0 \ 00001 * 2^{1111} = 2^{-5} *$
000001.1111	$000001 * 2^{1111} = 2^{-6} *$	$0.00001 * 2^{1111} = 2^{-5} *$
000001 1111	$2^{-7} = 2^{-13} = \frac{1}{8192}$	$2^{-7} = 2^{-12} = \frac{1}{4096}$

Ejercicio 2.

Dado un sistema de Punto Flotante cuya mantisa es fraccionaria, está expresada en BCS con 5 bits y su exponente en BSS con 3 bits, interpretar las siguientes cadenas considerando que la mantisa está sin normalizar, normalizada o normalizada con bit implícito Identificar aquellas cadenas que no pueden ser interpretadas y mencionar por qué.

Cadena	Sin normalizar	Normalizada	Normalizada con bit implícito
01000 111	$0 \ 1000 * 2^{111} = 2^{-1} * 2^7 = 2^6 = 64$	$0 \ 1000 * 2^{111} = 2^{-1} * 2^7 = 2^6 = 64$	$0 [1]1000 * 2^{111} = (2^{-1} + 2^{-2}) * 2^{7} = 2^{6} + 2^{5} = 64 + 32 = 96$
11000 011	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1000 * 2011 = - 2-1 * 23 = -22 = -4	1 [1]1000 * 2011 = - (2-1 + 2-2) * 23 = - (22 + 2) = -(4 + 2) = -6
00000 000	$0\ 0000 * 2^{000} = 0 * 2^{0} = 0 * 1 = 0$		$0 [1]0000 * 2^{000} = 2^{-1} * 2^{0} = 0,5 * 1 = 0,5$
11111 111	$ \begin{array}{c} 11111 * 2^{111} = -(1 \\ -2^{-4}) * 2^{7} = -(2^{7} - 2^{3}) = -(128 - 8) = - \\ 120 \end{array} $	$ 11111 * 2^{111} = -(1 - 2^{-4}) * 2^{7} = -(2^{7} - 2^{3}) = -(128 - 8) = - 120 $	$1 [1]1111 * 2^{111} = -$ $(1 - 2^{-5}) * 2^{7} = -$ $(2^{7} - 2^{2}) = -(128 - 2^{2}) = -(124 - 2^{2})$

Ejercicio 3.

Calcular rango y resolución en extremos inferior negativo, superior negativo, inferior positivo y superior positivo para los siguientes sistemas de representación en punto flotante:

Observar que:

- En las mantisas BSS, no se puede expresar números negativos, con lo que, aún con exponente negativo, expresaremos un número positivo por un factor de escala menor a 1, pero también positivo. Ejemplo: 2 * 2⁻⁴ = 0,125.
- Las mantisas fraccionarias suponen el punto al principio de la mantisa.
- Los exponentes negativos indican factores de escala menores a 1 que mejoran la resolución.
- Mantisa normalizada implica que empieza con 1, o sea mantisa mínima 0,1 para la fraccionaria, igual a 0,5 en decimal. Esto hace que no se pueda representar el 0.
- Mantisa normalizada con bit implícito, significa agregar un 1 al principio de la misma al interpretarla. Ejemplo: 00000 se interpreta 0,100000 o 0,5 en base 10.
- (a) Mantisa fraccionaria en BSS de 8 bits y exponente en BSS 4 bits.

```
Rango= [00000000 * 2^{0000}; 111111111 * 2^{1111}]
Rango= [0 * 2^{0}; (1 - 2^{-8}) * 2^{15}]
Rango= [0 * 1; (2^{15} - 2^{7})]
Rango= [0; 32640].
```

Resolución en el extremo inferior= $2^{-8} * 2^0 = 2^{-8} * 1 = 2^{-8} = \frac{1}{256}$. Resolución en el extremo superior= $2^{-8} * 2^{15} = 2^7 = 128$.

(b) Mantisa fraccionaria normalizada en BSS de 15 bits y exponente en CA1 10 bits.

Resolución en el extremo inferior= $2^{-15} * 2^{-511} = 2^{-526}$. Resolución en el extremo superior= $2^{-15} * 2^{511} = 2^{496}$.

(c) *Mantisa fraccionaria normalizada con bit implícito en BCS de 15 bits y exponente en Exceso 5 bits.*

Resolución en el extremo superior negativo / extremo inferior positivo= $2^{-15} * 2^{-16} = 2^{-31}$.

Resolución en el extremo inferior negativo / extremo superior positivo = $2^{-15} * 2^{15} = 1$.

(d) Mantisa fraccionaria normalizada con bit implícito en BCS de N bits y exponente en CA2 de M bits.

Rango negativo=
$$[-(1 - 2^{-N}) * 2^{2^{M-1}-1}; -2^{-1} * 2^{-2^{M-1}}].$$

Rango positivo= $[2^{-1} * 2^{-2^{M-1}}; (1 - 2^{-N}) * 2^{2^{M-1}-1}].$

Resolución en el extremo superior negativo / extremo inferior positivo= $2^{-N} * 2^{-2^{M-1}}$. Resolución en el extremo inferior negativo / extremo superior positivo= $2^{-N} * 2^{2^{M-1}-1}$.

Ejercicio 4.

Dado un sistema de Punto Flotante cuya mantisa es fraccionaria, está expresada en BCS con 10 bits y su exponente en CA2 con 5 bits, obtener la representación de los siguientes números, considerando que la mantisa está sin normalizar, normalizada o normalizada con bit implícito.

Cadena	Sin normalizar	Normalizada	Normalizada con bit implícito
0	0 000000000 * 2 ⁰⁰⁰⁰⁰		
	0 100000000 * 2 ⁰⁰⁰⁰¹ =		
1	$\begin{array}{c} 0.0100000000 * \\ 2^{00010} = \end{array}$	0 100000000 * 2 ⁰⁰⁰⁰¹	0 [1]000000000 * 2 ⁰⁰⁰⁰¹
	$0.0010000000 * 2^{00011} \dots$		
	0 100100000 * 2 ⁰⁰¹⁰⁰ =		
9	$\begin{array}{c} 0.0100100000 * \\ 2^{00101} = \end{array}$	$0\ 100100000$ * 2^{00100}	0 [1]001000000 * 2 ⁰⁰¹⁰⁰
	$\begin{array}{c} 0.001001000 * \\ 2^{00110} \dots \end{array}$		
	1 101000100 * 2 ⁰⁰⁰¹¹ =		
-5,0625	$\begin{array}{c c} 1 \ 010100010 * \\ 2^{00100} = \end{array}$	1 101000100 * 2 ⁰⁰⁰¹¹	1 [1]010001000 * 2 ⁰⁰⁰¹¹
	$\begin{array}{c} 1\ 001010001\ * \\ 2^{00101}\ \end{array}$		
34000,5			
	0 000001000 * 2 ⁰⁰⁰⁰⁰ =		
0,015625	$\begin{array}{c} 0.000010000 * \\ 2^{11111} = \end{array}$	$0\ 1000000000 * \\ 2^{11011}$	0 [1]000000000 * 2 ¹¹⁰¹¹
	$\begin{array}{c} 0\ 0001000000\ * \\ 2^{11110}\ \dots \end{array}$		
Número mánima	0.111111111111111111111111111111111111	0 111111111111111111111111111111111111	0 [1]1111111111 * 201111 = (1 - 2-10)
Número máximo	$2^{15} = 2^{15} - 2^6 = 32704$	$2^{15} = 2^{15} - 2^6 = 32704$	$ * 2^{15} = 2^{15} - 2^{5} = $ $ 32736 $
	1 1111111111 *	1 111111111 *	1 [1]111111111 *
Número mínimo	$2^{01111} = -(1 - 2^{-9})$	$2^{01111} = -(1 - 2^{-9})$	$2^{01111} = -(1 - 2^{-10})$
	* 2 ¹⁵ = -(2 ¹⁵ - 2 ⁶)=	1	, , ,
	-32704	-32704	-32736

Ejercicio 5.

Decir cómo influyen las siguientes variantes en el rango y resolución:

(a) Mantisa con signo y sin signo.

Mantisa con signo (supongo mantisa entera y exponente en BCS):

Rango=
$$[-(2^{M-1}-1)*2^{2^{E-1}-1};(2^{M-1}-1)*2^{2^{E-1}-1}].$$

Resolución en el extremo inferior= $2^0 * 2^{-(2^{E-1}-1)}$.

Resolución en el extremo superior= $2^0 * 2^{2^{E-1}-1}$.

Mantisa sin signo (supongo mantisa entera y exponente en BCS):

Rango=
$$[0; (2^M - 1) * 2^{2^{E-1}-1}].$$

Resolución en el extremo inferior= $2^0 * 2^{-(2^{E-1}-1)}$.

Resolución en el extremo superior= $2^0 * 2^{2^{E-1}-1}$.

(b) Exponente con signo y sin signo.

Exponente con signo (supongo mantisa entera y en BCS):

Rango=
$$[-(2^{M-1}-1)*2^{2^{E-1}-1};(2^{M-1}-1)*2^{2^{E-1}-1}].$$

Resolución en el extremo inferior= $2^0 * 2^{-(2^{E-1}-1)}$.

Resolución en el extremo superior= $2^0 * 2^{2^{E-1}-1}$.

Exponente sin signo (supongo mantisa entera y en BCS):

Rango=
$$[-(2^{M-1} - 1) * 2^{2^{E}-1}; (2^{M-1} - 1) * 2^{2^{E}-1}].$$

Resolución en el extremo inferior= $2^0 * 2^0$.

Resolución en el extremo superior= $2^0 * 2^{2^E-1}$.

(c) Tamaño de mantisa.

Supongo mantisa entera en BCS y exponente en BCS:

Rango=
$$[-(2^{M-1}-1)*2^{2^{E-1}-1}; (2^{M-1}-1)*2^{2^{E-1}-1}].$$

Resolución en el extremo inferior= $2^0 * 2^{-(2^{E-1}-1)}$.

Resolución en el extremo superior= $2^0 * 2^{2^{E-1}-1}$.

(d) Tamaño de exponente.

Supongo mantisa entera en BCS y exponente en BCS:

Rango=
$$[-(2^{M-1}-1)*2^{2^{E-1}-1}; (2^{M-1}-1)*2^{2^{E-1}-1}].$$

Resolución en el extremo inferior= $2^0 * 2^{-(2^{E-1}-1)}$.

Resolución en el extremo superior= $2^0 * 2^{2^{E-1}-1}$.

(e) Mantisa fraccionaria, fraccionaria normalizada y fraccionaria normalizada con bit implícito.

Mantisa fraccionaria (supongo mantisa y exponente en BCS):

Rango=
$$[-(1 - 2^{-(M-1)}) * 2^{2^{E-1}-1}; (1 - 2^{-(M-1)}) * 2^{2^{E-1}-1}].$$

Resolución en el extremo inferior= $2^{-(M-1)} * 2^{-(2^{E-1}-1)}$.

Resolución en el extremo superior= $2^{-(M-1)} * 2^{2^{E-1}-1}$.

Mantisa fraccionaria normalizada (supongo mantisa y exponente en BCS):

Rango negativo=
$$[-(1 - 2^{-(M-1)}) * 2^{2^{E-1}-1}; -2^{-(M-1)} * 2^{-(2^{E-1}-1)}].$$

Rango positivo=
$$[2^{-(M-1)} * 2^{-(2^{E-1}-1)}] : (1 - 2^{-(M-1)}) * 2^{2^{E-1}-1}].$$

Resolución en el extremo superior negativo / extremo inferior positivo= $2^{-(M-1)} * 2^{-(2^{E-1}-1)}$

Resolución en el extremo inferior negativo / extremo superior positivo= $2^{-(M-1)} * 2^{2^{E-1}-1}$.

Mantisa fraccionaria normalizada con bit implícito (supongo mantisa y exponente en BCS):

Rango negativo=
$$[-(1 - 2^{-M}) * 2^{2^{E-1}-1}; -2^{-M} * 2^{-(2^{E-1}-1)}].$$

Rango positivo=
$$[2^{-M} * 2^{-(2^{E-1}-1)}; (1-2^{-M}) * 2^{2^{E-1}-1}].$$

Resolución en el extremo superior negativo / extremo inferior positivo= $2^{-M} * 2^{-(2^{E-1}-1)}$.

Resolución en el extremo inferior negativo / extremo superior positivo= $2^{-M} * 2^{2^{E-1}-1}$.

Ejercicio 6.

Efectuar las siguientes sumas para un sistema de punto flotante con mantisa en BSS de 8 bits y exponente en BCS de 8 bits. Observar que los factores de escala deben ser los mismos, sino se sumarían dos mantisas con pesos distintos (recordar que se puede correr los unos y sumar o restar este corrimiento al exponente para obtener una cadena equivalente).

(a) 00001111 00000011 + 00001000 00000010.

Opción 1:

```
00001111 00000011 +
00001000 00000010 =
00001111 00000011 +
00000100 00000011 =
```

 $00010011\ 00000011 = 19 * 2^3 = 19 * 8 = 152.$

Opción 2:

```
00001111 00000011 +
00001000 00000010 =
00011110 00000010 +
00001000 00000010 =
00100110 00000010= 38 * 2<sup>2</sup>= 38 * 4= 152.
```

(b) 01111111 00000000 + 111111100 10000001.

Opción 1:

11111100 10000001 =

```
01111111 00000000 +
111111100 100000001 =

01111111 000000000 +
01111110 000000000 =

111111101 000000000 = 253 * 2° = 253 * 1 = 253.

Opción 2:

01111111 000000000 +
```

 $11111110 \ 10000001 + 11111100 \ 10000001 =$

[1]1111101010000001 =

 $11111101\ 000000000 = 253 * 2^0 = 253 * 1 = 253.$

(c) 00000001 00000111 + 00011100 00000000.

Opción 1:

 $00000001\ 00000111 + 00011100\ 00000000 =$

 $10000000\ 00000000 + 00011100\ 00000000 =$

 $10011100\ 000000000 = 156 * 2^0 = 156 * 1 = 156.$

Opción 2:

 $00000001\ 00000111\ +\ 00011100\ 00000000 =$

 $00100000\ 00000010 + 00000111\ 00000010 =$

 $00100111\ 00000010 = 39 * 2^2 = 39 * 4 = 156.$

Ejercicio 7.

Suponiendo que los números que no son representables se aproximan al más próximo, obtener las representaciones o aproximaciones de los números 8.625, 0.4 y 2.5 en los sistemas.

Número	(a) Mantisa fraccionaria normalizada de 5 bits BSS y exponente de 4 bits CA2	(b) Mantisa fraccionaria normalizada de 10 bits BCS y exponente de 3 bits CA2
8,625	$10001 * 2^{0100} = 8,5$	$0\ 111111111111111111111111111111111111$
0,4	11010 * 2 ¹¹¹¹ = 0,40625	$0\ 110011010 * 2^{111} = 0,400390625$
2,5	$10100 * 2^{0010} = 2,5$	$0\ 101000000 * 2^{010} = 2,5$

Ejercicio 8.

Se define Error Absoluto y Error Relativo de un número x en un sistema de la siguiente forma: EA(x) = |x' - x| y $ER(x) = \frac{EA(x)}{x}$, donde x' es el número representable del sistema más próximo a x. Calcular los errores absolutos y relativos para los casos del ejercicio anterior.

Número	(a)		(b))
Numero	EA	ER	EA	ER
8,625	8,5 - 8,625 = 0,125	$\frac{0,125}{8,625} = 0,0145$	7,984375 – 8,625 = 0,640625	$\frac{0,640625}{8,625} = 0,0743$
0,4	0,40625	$\frac{0,00625}{0,4} = 0,015625$	0,400390625 - 0,4 = 0,000390625	$\frac{0,000390625}{0,4} = 0,0009765625$
2,5	2,5-2,5 =0	$\frac{0}{2.5} = 0$	2,5-2,5 =0	$\frac{0}{2.5} = 0$

Ejercicio 9.

Considerando que, en los procesos de truncamiento o redondeo, la elección se basa en la representación más cercana, estimar el Error Absoluto Máximo cometido en las representaciones del ejercicio 7. Recordar que la distancia entre 2 representaciones sucesivas se conoce como resolución (R), por lo que $EAmáx \leq \frac{R}{2}$.

Número	EAmáx en (a)	EAmáx en (b)
8,625	$2^{-1} * 2^{-5} * 2^4 = 2^{-2} = 0.25$	
0,4	$2^{-1} * 2^{-5} * 2^{-1} = 2^{-7} = 0,0078125$	$2^{-1} * 2^{-9} * 2^{-1} = 2^{-11} = 0,00048828125$
2,5	$2^{-1} * 2^{-5} * 2^2 = 2^{-4} = 0,0625$	$2^{-1} * 2^{-9} * 2^2 = 2^{-8} = 0,00390625$

Ejercicio 10.

Tomar un sistema de punto flotante cualquiera y dibujar la forma del gráfico de cada tipo de error en función del número que se quiere representar.

Supongo mantisa fraccionaria en BSS de 3 bits y exponente en BCS de 3 bits.

Ejercicio 11.

Detallar las características del estándar IEEE 754 para simple precisión y doble precisión.

Característica	Simple precisión	Doble precisión
Bits en signo	1	1
Bits en exponente	8	11
Bits en fracción	23	52
Total de bits	32	64
Exponente en exceso	127	1023
Rango de exponente	[-126; 127]	[-1022; 1023]
Rango de números	$[2^{-126}; 2^{128}]$	$[2^{-1022}; 2^{1024}]$

Ejercicio 12.

¿Qué valores están representados por las siguientes cadenas si responden al estándar IEEE 754?

(a)

(b)

```
\begin{array}{l} 1\ 11111110\ [1] 101000000000000000000000 = -2^{127}\ (2^0+2^{-1}+2^{-3}) \\ 1\ 11111110\ [1] 10100000000000000000000 = -2^{127}\ (1+0.5+0.125) \\ 1\ 11111110\ [1] 1010000000000000000000 = -1.625*2^{127}. \end{array}
```

(c)

```
\begin{array}{l} 0\ 000000000[1]\ 000000000000000000001 = 2^{-126} * 2^{-23} \\ 0\ 000000000[1]\ 0000000000000000000001 = 2^{-149}. \end{array}
```

(**d**)

```
\begin{array}{l} 0\ 000000000[1]\ 100110000000000000000000 = 2^{-126}\ (2^{-1} + 2^{-4} + 2^{-5}) \\ 0\ 00000000[1]\ 10011000000000000000000 = 2^{-127} + 2^{-130} + 2^{-131}. \end{array}
```

(e)

(f)

(g)

0 11111111 0000010000000000000000000 NaN.

(h)

(i)

(j)

(k)

Ejercicio 13.

Hallar la representación en simple precisión del estándar IEEE 754 de los siguientes números: 1, 13, 257, -40000, 0.0625.

Número	Simple precisión del estándar IEEE 754
1	0 01111111 [1]000000000000000000000000
13	0 10000010 [1]10100000000000000000000
257	0 10000111 [1]0000001000000000000000
-40000	1 10001110 [1]00111000100000000000000
0,0625	0 01111011

Ejercicio 14.

Calcular rango y resolución en extremos inferior negativo y superior positivo para los sistemas de simple precisión y doble precisión del estándar IEEE 754. ¿Cuál es el menor número positivo distinto de "0" que se puede representar?

Característica	Simple precisión	Doble precisión
Rango negativo	$\begin{bmatrix} -(2-2^{-23})*2^{127}; -2^{-23} \\ *2^{-126} \end{bmatrix}$	$\begin{bmatrix} -(2-2^{-52}) * 2^{1023}; -2^{-52} \\ * 2^{-1022} \end{bmatrix}$
Rango positivo	$[2^{-23} * 2^{-126}; (2 - 2^{-23}) * 2^{127}]$	$[2^{-52} * 2^{-1022}; (2 - 2^{-52}) * 2^{1023}]$
Resolución extremo inferior negativo	$2^{-23} * 2^{127}$	$2^{-52} * 2^{1023}$
Resolución extremo superior positivo	$2^{-23} * 2^{127}$	$2^{-52} * 2^{1023}$
Menor número positivo distinto de 0	2 ⁻¹²⁶ * 2 ⁻²³	$2^{-1022} * 2^{-52}$

Ejercicio 15.

Efectuar las siguientes sumas (las cadenas son representaciones en el estándar IEEE 754):

(b) 11111111 1010101010101010101010101010 + 111111100 100000011111000001101010.

```
11111111 [1]10101010101010101010101010 + \\ 111111100 [1]100000011111000001101010 = \\ NaN + \\ 2^{125}_{(10} * [1]100000011111000001101010 = \\ NaN.
```

Ejercicio 16.

En el estándar IEEE 754, ¿para qué sirve, cuando el exponente es 0 y la mantisa no es nula, que la mantisa no esté normalizada?

Cuando el exponente es 0 y la mantisa no es nula, que la mantisa no esté normalizada (desnormalizar) sirve para representar números por debajo de $2^{2^0-exceso}$ y para garantizar la menor brecha entre el menor número normalizado y el mayor número desnormalizado.