Neighboring-Optimal Control via Linear-Quadratic Feedback

Robert Stengel Optimal Control and Estimation, MAE 546 Princeton University, 2015

- Linearization of nonlinear dynamic models
 - Nominal trajectory
 - Perturbations about the nominal trajectory
 - Linear, time-invariant dynamic models
 - Examples
- Linear, time-varying feedback control
- Discrete-time and sampled-data linear dynamic models
- Dynamic programming approach to optimal sampled-data control (supplement)

1

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only.

http://www.princeton.edu/~stengel/MAE546.html http://www.princeton.edu/~stengel/OptConEst.html

Neighboring Trajectories

Nominal (or reference) trajectory and control history

$$\left\{\mathbf{x}_{N}(t),\mathbf{u}_{N}(t),\mathbf{w}_{N}(t)\right\}$$
 for t in $\left[t_{o},t_{f}\right]$

x: dynamic state u:control input w: disturbance input

- Trajectory perturbed by
 - Small initial condition variation
 - Small control variation
 - Small disturbance variation

$$\begin{aligned} \left\{ \mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t) \right\} & \text{for } t \text{ in } [t_o, t_f] \\ &= \left\{ \mathbf{x}_N(t) + \Delta \mathbf{x}(t), \mathbf{u}_N(t) + \Delta \mathbf{u}(t), \mathbf{w}_N(t) + \Delta \mathbf{w}(t) \right\} \end{aligned}$$

Same Dynamic Equations

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t)], \quad \mathbf{x}_{N}(t_{o}) \text{ given}$$

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t)], \quad \mathbf{x}(t_{o}) \text{ given}$$

 Neighboring-trajectory dynamic model is the same as the nominal dynamic model

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t]$$

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}_{N}(t) + \Delta \dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}_{N}(t) + \Delta \mathbf{x}(t), \mathbf{u}_{N}(t) + \Delta \mathbf{u}(t), \mathbf{w}_{N}(t) + \Delta \mathbf{w}(t), t]$$

Approximate Neighboring
Trajectory as a Linear Perturbation
to the Nominal Trajectory

 Nominal nonlinear dynamic equation plus linear perturbation equation

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}_{N}(t) + \Delta \dot{\mathbf{x}}(t) \approx$$

$$\mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t] + \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Delta \mathbf{x}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Delta \mathbf{u}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \Delta \mathbf{w}(t),$$

$$\mathbf{x}(t_{o}) = \mathbf{x}_{N}(t_{o}) + \Delta \mathbf{x}(t_{o}) \text{ given}$$

4

3

Linearized Equation Approximates Perturbation Dynamics

Solve for the nominal and perturbation trajectories separately

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t], \quad \mathbf{x}_{N}(t_{o}) \text{ given}$$

$$\Delta \dot{\mathbf{x}}(t) \approx \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(t) \Delta \mathbf{x}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(t) \Delta \mathbf{u}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{w}}(t) \Delta \mathbf{w}(t), \quad \Delta \mathbf{x}(t_o) \text{ given}$$

 Jacobian matrices of the linear model are evaluated along the nominal trajectory

$$\left| \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} \triangleq \mathbf{F}(t) \quad ; \quad \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} \triangleq \mathbf{G}(t) \quad ; \quad \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} \triangleq \mathbf{L}(t)$$

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t) + \mathbf{L}(t)\Delta \mathbf{w}(t), \quad \Delta \mathbf{x}(t_o) \text{ given}$$

5

Linearization Examples

Cubic Springs

Force is a nonlinear function of deflection

Stiffening Cubic Spring Example

2nd-order nonlinear dynamic model

$$\dot{x}_1(t) = f_1[\mathbf{x}(t)] = x_2(t)$$

$$\dot{x}_2(t) = f_2[\mathbf{x}(t)] = -10x_1(t) - 10x_1^3(t) - x_2(t)$$

Integrate equations to produce nominal path

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} \rightarrow \int_0^{t_f} \begin{bmatrix} f_{1_N} [\mathbf{x}(t)] \\ f_{2_N} [\mathbf{x}(t)] \end{bmatrix} dt \rightarrow \begin{bmatrix} x_{1_N}(t) \\ x_{2_N}(t) \end{bmatrix} in \ [0, t_f]$$

Evaluate partial derivatives of the Jacobian matrices

$$\begin{vmatrix}
\frac{\partial f_1}{\partial x_1} = 0; & \frac{\partial f_1}{\partial x_2} = 1 \\
\frac{\partial f_2}{\partial x_1} = -10 - 30x_{1_N}^2(t); & \frac{\partial f_2}{\partial x_2} = -1
\end{vmatrix}$$

$$\begin{vmatrix}
\frac{\partial f_1}{\partial u} = 0; & \frac{\partial f_1}{\partial w} = 0 \\
\frac{\partial f_2}{\partial u} = 0; & \frac{\partial f_2}{\partial w} = 0
\end{vmatrix}$$

$$\frac{\partial f_1}{\partial u} = 0; \quad \frac{\partial f_1}{\partial w} = 0 \\
\frac{\partial f_2}{\partial u} = 0; \quad \frac{\partial f_2}{\partial w} = 0$$

8

Nominal and Perturbation Dynamic Equations

Nonlinear Equation

$$\dot{x}_{1_N}(t) = x_{2_N}(t)$$

$$\dot{x}_{2_N}(t) = -10x_{1_N}(t) - 10x_{1_N}^{3}(t) - x_{2_N}(t)$$

Local Linearization of Nonlinear Model

$$\begin{bmatrix} \Delta \dot{x}_1(t) \\ \Delta \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\left(10 + 30x_{1_N}^2(t)\right) & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1(t) \\ \Delta x_2(t) \end{bmatrix}$$

Initial Conditions for Nonlinear and Linear Models

$$\begin{bmatrix} x_{1_N}(0) \\ x_{2_N}(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \end{bmatrix}; \qquad \begin{bmatrix} \Delta x_1(0) \\ \Delta x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

9

Comparison of Approximate and Exact Solutions

Euler-Lagrange Equations for Minimizing Variational Cost Function

11

Expand Optimal Control Function

Expand optimized cost function to second degree

$$\begin{split} &J\left\{\left[\mathbf{x}*(t_{o})+\Delta\mathbf{x}(t_{o})\right],\left[\mathbf{x}*(t_{f})+\Delta\mathbf{x}(t_{f})\right]\right\} \simeq \\ &J*\left[\mathbf{x}*(t_{o}),\mathbf{x}*(t_{f})\right]+\Delta J\left[\Delta\mathbf{x}(t_{o}),\Delta\mathbf{x}(t_{f})\right]+\Delta^{2}J\left[\Delta\mathbf{x}(t_{o}),\Delta\mathbf{x}(t_{f})\right] \end{split}$$

$$= J * \left[\mathbf{x} * (t_o), \mathbf{x} * (t_f) \right] + \Delta^2 J \left[\Delta \mathbf{x}(t_o), \Delta \mathbf{x}(t_f) \right]$$
 because **First Variation**, $\Delta J \left[\Delta \mathbf{x}(t_o), \Delta \mathbf{x}(t_f) \right] = 0$

Nominal optimized cost, plus nonlinear dynamic constraint

$$J * [\mathbf{x} * (t_o), \mathbf{x} * (t_f)] = \phi [\mathbf{x} * (t_f)] + \int_{t_o}^{t_f} L[\mathbf{x} * (t), \mathbf{u} * (t)] dt$$
subject to nonlinear dynamic equation
$$\dot{\mathbf{x}} * (t) = \mathbf{f} [\mathbf{x} * (t), \mathbf{u} * (t)], \mathbf{x} (t_o) = \mathbf{x}_o$$

2nd Variation of the Cost Function

Objective: Given optimal nominal solution, minimize 2ndvariational cost subject to linear dynamic constraint

$$\min_{\Delta \mathbf{u}} \Delta^{2} J = \frac{1}{2} \Delta \mathbf{x}^{T}(t_{f}) \phi_{\mathbf{x}\mathbf{x}}(t_{f}) \Delta \mathbf{x}(t_{f}) + \frac{1}{2} \begin{cases} \int_{t_{o}}^{t_{f}} \left[\Delta \mathbf{x}^{T}(t) & \Delta \mathbf{u}^{T}(t) \right] & \left[L_{\mathbf{x}\mathbf{x}}(t) & L_{\mathbf{x}\mathbf{u}}(t) \\ L_{\mathbf{u}\mathbf{x}}(t) & L_{\mathbf{u}\mathbf{u}}(t) \right] & \Delta \mathbf{u}(t) \end{cases} dt \right\}$$

subject to perturbation dynamics

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t), \Delta \mathbf{x}(t_o) = \Delta \mathbf{x}_o$$

Cost weighting matrices expressed as

$$\begin{aligned} \mathbf{P}(t_f) &\triangleq \phi_{\mathbf{x}\mathbf{x}}(t_f) = \frac{\partial^2 \phi}{\partial \mathbf{x}^2}(t_f) \\ &\begin{bmatrix} \mathbf{Q}(t) & \mathbf{M}(t) \\ \mathbf{M}^T(t) & \mathbf{R}(t) \end{bmatrix} &\triangleq \begin{bmatrix} L_{\mathbf{x}\mathbf{x}}(t) & L_{\mathbf{x}\mathbf{u}}(t) \\ L_{\mathbf{u}\mathbf{x}}(t) & L_{\mathbf{u}\mathbf{u}}(t) \end{bmatrix} & \dim[\mathbf{P}(t_f)] = \dim[\mathbf{G}(t_f)] \\ &\dim[\mathbf{R}(t)] = m \times m \\ &\dim[\mathbf{M}(t)] = n \times m \end{aligned}$$

$$\dim [\mathbf{P}(t_f)] = \dim [\mathbf{Q}(t)] = n \times n$$
$$\dim [\mathbf{R}(t)] = m \times m$$
$$\dim [\mathbf{M}(t)] = n \times m$$

13

2nd Variational Hamiltonian

Variational cost function

$$\Delta^{2} J = \frac{1}{2} \Delta \mathbf{x}^{T}(t_{f}) \mathbf{P}(t_{f}) \Delta \mathbf{x}(t_{f}) + \frac{1}{2} \begin{cases} \int_{t_{o}}^{t_{f}} \left[\Delta \mathbf{x}^{T}(t) & \Delta \mathbf{u}^{T}(t) \right] & \mathbf{Q}(t) & \mathbf{M}(t) \\ \mathbf{M}^{T}(t) & \mathbf{R}(t) & \Delta \mathbf{u}(t) \end{cases} dt$$

$$= \frac{1}{2} \Delta \mathbf{x}^{T}(t_{f}) \mathbf{P}(t_{f}) \Delta \mathbf{x}(t_{f}) + \frac{1}{2} \left\{ \int_{t_{o}}^{t_{f}} \left[\Delta \mathbf{x}^{T}(t) \mathbf{Q}(t) \Delta \mathbf{x}(t) + 2 \Delta \mathbf{x}^{T}(t) \mathbf{M}(t) \Delta \mathbf{u}(t) + \Delta \mathbf{u}^{T}(t) \mathbf{R}(t) \Delta \mathbf{u}(t) \right] dt \right\}$$

Variational Lagrangian plus adjoined dynamic constraint

$$H[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \lambda(t)] = L[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t)] + \Delta \lambda^{T}(t)\mathbf{f}[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t)]$$

$$= \frac{1}{2}[\Delta \mathbf{x}^{T}(t)\mathbf{Q}(t)\Delta \mathbf{x}(t) + 2\Delta \mathbf{x}^{T}(t)\mathbf{M}(t)\Delta \mathbf{u}(t) + \Delta \mathbf{u}^{T}(t)\mathbf{R}(t)\Delta \mathbf{u}(t)]$$

$$+ \Delta \lambda^{T}(t)[\mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t)]$$

14

2nd Variational Euler-Lagrange Equations

Terminal condition, solution for adjoint vector, and optimality condition

$$\Delta \lambda (t_f) = \phi_{\mathbf{x}\mathbf{x}}(t_f) \Delta \mathbf{x}(t_f) = \mathbf{P}(t_f) \Delta \mathbf{x}(t_f)$$

$$\Delta \dot{\boldsymbol{\lambda}}(t) = -\left\{\frac{\partial H\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \boldsymbol{\lambda}(t)\right]}{\partial \Delta \mathbf{x}}\right\}^{T} = -\mathbf{Q}(t)\Delta \mathbf{x}(t) - \mathbf{M}(t)\Delta \mathbf{u}(t) - \mathbf{F}^{T}(t)\Delta \boldsymbol{\lambda}(t)$$

$$\left\{ \frac{\partial H \left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \lambda(t) \right]}{\partial \Delta \mathbf{u}} \right\}^{T} = \mathbf{M}^{T}(t) \Delta \mathbf{x}(t) + \mathbf{R}(t) \Delta \mathbf{u}(t) - \mathbf{G}^{T}(t) \Delta \lambda(t) = \mathbf{0}$$

15

Two-Point Boundary-Value Problem

State Equation

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t)$$

$$\Delta \mathbf{x}(t_o) = \Delta \mathbf{x}_o$$

Adjoint Vector Equation

$$\Delta \dot{\boldsymbol{\lambda}}(t) = -\mathbf{Q}(t)\Delta \mathbf{x}(t) - \mathbf{M}(t)\Delta \mathbf{u}(t) - \mathbf{F}^{T}(t)\Delta \boldsymbol{\lambda}(t)$$

$$\Delta \lambda (t_f) = \mathbf{P}(t_f) \Delta \mathbf{x}(t_f)$$

Use Control Law to Solve the Two- Point Boundary-Value Problem

From
$$H_u = 0$$

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) \Delta \mathbf{x}(t) + \mathbf{G}^{T}(t) \Delta \lambda(t) \right]$$

Control law that feeds back state and adjoint vectors

Substitute for control in system and adjoint equations

$$\begin{bmatrix} \Delta \dot{\mathbf{x}}(t) \\ \Delta \dot{\boldsymbol{\lambda}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t) \\ \mathbf{C}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} - \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix}^{T} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \boldsymbol{\lambda}(t) \end{bmatrix}$$

Adjoint relationship at end point

$$\begin{bmatrix} \Delta \mathbf{x}(t_o) \\ \Delta \boldsymbol{\lambda}(t_f) \end{bmatrix} = \begin{bmatrix} \Delta \mathbf{x}_o \\ \mathbf{P}_f \Delta \mathbf{x}_f \end{bmatrix}$$
Perturbation state vector Perturbation adjoint vector

17

Use Control Law to Solve the Two-Point Boundary-Value Problem

Assume the adjoint relationship between state and control applies over the entire interval

$$\Delta \lambda(t) = \mathbf{P}(t) \Delta \mathbf{x}(t)$$

Control law feeds back state alone

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) \Delta \mathbf{x}(t) + \mathbf{G}^{T}(t) \mathbf{P}(t) \Delta \mathbf{x}(t) \right]$$

$$= -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) + \mathbf{G}^{T}(t) \mathbf{P}(t) \right] \Delta \mathbf{x}(t)$$

$$\triangleq -\mathbf{C}(t) \Delta \mathbf{x}(t)$$

$$\stackrel{\text{dim}(\mathbf{C}) = m \times n}{\text{dim}(\mathbf{C}) = m \times n}$$

Linear-Quadratic (LQ) Optimal Control Gain Matrix

$$\Delta \mathbf{u}(t) = -\mathbf{C}(t)\Delta \mathbf{x}(t)$$

Optimal feedback gain matrix

$$\mathbf{C}(t) = \mathbf{R}^{-1}(t) \left[\mathbf{G}^{T}(t) \mathbf{P}(t) + \mathbf{M}^{T}(t) \right]$$

- · Properties of feedback gain matrix
 - Full state feedback (m x n)
 - Time-varying matrix
- · R, G, and M given
 - · Control weighting matrix, R
 - · State-control weighting matrix, M
 - · Control effect matrix, G
- P(t) remains to be determined

19

Solution for the Adjoining Matrix, P(t)

Time-derivative of adjoint vector

$$\Delta \dot{\boldsymbol{\lambda}}(t) = \dot{\mathbf{P}}(t) \Delta \mathbf{x}(t) + \mathbf{P}(t) \Delta \dot{\mathbf{x}}(t)$$

Rearrange

$$|\dot{\mathbf{P}}(t)\Delta\mathbf{x}(t) = \Delta\dot{\lambda}(t) - \mathbf{P}(t)\Delta\dot{\mathbf{x}}(t)$$

Recall coupled state/adjoint equation

$$\begin{bmatrix} \Delta \dot{\mathbf{x}}(t) \\ \Delta \dot{\boldsymbol{\lambda}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} -\mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t) \\ \mathbf{C}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} -\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix}^{T} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \boldsymbol{\lambda}(t) \end{bmatrix}$$

Substitute in adjoint matrix equation

$$\dot{\mathbf{P}}(t)\Delta\mathbf{x}(t) = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\Delta\mathbf{x}(t) - \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]^{T}\Delta\lambda(t)$$
$$-\mathbf{P}(t)\left\{\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\Delta\mathbf{x}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\Delta\lambda(t)\right\}$$

Solution for the Adjoining Matrix, P(t)

Substitute for adjoint vector

$$\Delta \lambda(t) = \mathbf{P}(t) \Delta \mathbf{x}(t)$$

$$\dot{\mathbf{P}}(t)\Delta\mathbf{x}(t) = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\Delta\mathbf{x}(t)$$

$$-\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]^{T}\mathbf{P}(t)\Delta\mathbf{x}(t)$$

$$-\mathbf{P}(t)\left\{\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\Delta\mathbf{x}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\mathbf{P}(t)\Delta\mathbf{x}(t)\right\}$$

... and eliminate state vector

21

Matrix Riccati Equation for P(t)

The result is a nonlinear, ordinary differential equation for P(t), with terminal boundary conditions

$$\dot{\mathbf{P}}(t) = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right] - \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right]^{T} \mathbf{P}(t)$$

$$-\mathbf{P}(t) \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right] + \mathbf{P}(t)\mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\mathbf{P}(t)$$

$$\mathbf{P}(t_{f}) = \phi_{\mathbf{xx}}(t_{f})$$

Time-varying or time-invariant?

Characteristics of the Adjoining (Riccati) Matrix, P(t)

- $P(t_f)$ is symmetric, $n \times n$, and typically positive semidefinite
- Matrix Riccati equation is symmetric
- Therefore, P(t) is symmetric and positive semi-definite throughout
- Once P(t) has been determined, optimal feedback control gain matrix, C(t) can be calculated

23

Neighboring-Optimal (LQ) Feedback Control Law

Full state is fed back to all available controls

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) + \mathbf{G}^{T}(t) \mathbf{P}(t) \right] \Delta \mathbf{x}(t) = -\mathbf{C}(t) \Delta \mathbf{x}(t)$$

Nominal control history plus feedback correction

$$\mathbf{u}(t) = \mathbf{u} * (t) - \mathbf{C}(t) \Delta \mathbf{x}(t) = \mathbf{u} * (t) - \mathbf{C}(t) \left[\mathbf{x}(t) - \mathbf{x} * (t) \right]$$

24

Example of Neighboring-Optimal Control: Improved Infection Treatment via Feedback

25

50% Increased Initial Infection and Scalar Neighboring-Optimal Control (u_1)

Linear-Quadratic Control of Time-Invariant Systems

29

Time-Varying System with Linear- Quadratic (LQ) Feedback Control

Continuous-time linear dynamic system

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t)$$

LQ optimal control law

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) + \mathbf{G}^{T}(t) \mathbf{P}(t) \right] \Delta \mathbf{x}(t) \triangleq -\mathbf{C}(t) \Delta \mathbf{x}(t)$$

Linear dynamic system with LQ feedback control

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t)$$

$$= \mathbf{F}(t)\Delta\mathbf{x}(t) + \mathbf{G}(t) \left[-\mathbf{C}(t)\Delta\mathbf{x}(t) \right]$$
$$= \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{C}(t) \right] \Delta\mathbf{x}(t)$$

Time-Invariant Linear System with Linear-Quadratic (LQ) Feedback Control

LTI dynamic system

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$

Time-invariant cost function

$$\Delta^{2} J = \frac{1}{2} \Delta \mathbf{x}^{T}(t_{f}) \mathbf{P}(t_{f}) \Delta \mathbf{x}(t_{f}) + \frac{1}{2} \left\{ \int_{t_{o}}^{t_{f}} \left[\Delta \mathbf{x}^{T}(t) \ \Delta \mathbf{u}^{T}(t) \right] \left[\mathbf{Q} \ \mathbf{M} \ \mathbf{R} \right] \left[\Delta \mathbf{x}(t) \ \Delta \mathbf{u}(t) \right] \right\}$$

Riccati ordinary differential equation

$$\dot{\mathbf{P}}(t) = \left[-\mathbf{Q} + \mathbf{M} \mathbf{R}^{-1} \mathbf{M}^{T} \right] - \left[\mathbf{F} - \mathbf{G} \mathbf{R}^{-1} \mathbf{M}^{T} \right]^{T} \mathbf{P}(t) - \mathbf{P}(t) \left[\mathbf{F} - \mathbf{G} \mathbf{R}^{-1} \mathbf{M}^{T} \right]$$

$$+ \mathbf{P}(t) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{P}(t) , \quad \mathbf{P}(t_{f}) = \phi_{xx}(t_{f})$$

31

Linear, Time-Invariant (LTI) System with Time-Varying LQ Feedback Control

Control gain matrix varies over time

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1} \left[\mathbf{M}^T + \mathbf{G}^T \mathbf{P}(t) \right] \Delta \mathbf{x}(t) \triangleq -\mathbf{C}(t) \Delta \mathbf{x}(t)$$

Linear dynamic system with timevarying LQ feedback control

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \left[-\mathbf{C}(t) \Delta \mathbf{x}(t) \right]$$
$$= \left[\mathbf{F} - \mathbf{G} \mathbf{C}(t) \right] \Delta \mathbf{x}(t) = \mathbf{F}_{closed-loop} \left(t \right) \Delta \mathbf{x}(t)$$

Example: LQ Optimal Control of a First-Order System

$$\Delta^2 J = \frac{1}{2} p_f \Delta x^2(t_f) + \frac{1}{2} \int_{t_o}^{t_f} \left(q \Delta x^2 + (0) \Delta x \Delta u + r \Delta u^2 \right) dt$$

$$\Delta \dot{x} = f \Delta x + g \Delta u$$

$$\dot{p}(t) = -q - 2fp(t) + \frac{g^2 p^2(t)}{r}$$

$$p(t_f) = p_f$$

$$\Delta u = -r^{-1} [gp(t)] \Delta x(t)$$

$$= -\frac{gp(t)}{r} \Delta x$$

$$\Delta u = -r^{-1} [gp(t)] \Delta x(t)$$
$$= -\frac{gp(t)}{r} \Delta x$$

33

Example: LQ Optimal Control of a Stable First-Order System

$$f = -1; \quad g = 1$$

$$\Delta \dot{x} = -\Delta x + \Delta u; \quad x(0) = 1$$

$$q = r = 1$$

$$\dot{p}(t) = -1 + 2p(t) + p^{2}(t)$$

$$p(t_{f}) = 1$$

Control gain = p(t)

$$\Delta u = -p(t)\Delta x$$

$$\left| \Delta \dot{x} = - \left[1 + p(t) \right] \Delta x \right|$$

Example: LQ Optimal Control of an *Unstable* First-Order System

$$f = 1; g = 1$$

$$\Delta \dot{x} = \Delta x + \Delta u; \quad x(0) = 1$$

$$\dot{p}(t) = -1 - 2p(t) + p^{2}(t)$$

$$p(t_{f}) = 1$$

Control gain = p(t)

$$\Delta u = -p(t)\Delta x$$

$$\Delta \dot{x} = [1 - p(t)] \Delta x$$

35

Example: LQ Optimal Control, *Stable* First-Order System, "White-Noise" Disturbance

$$\Delta \dot{x} = -\Delta x + \Delta u + \Delta w; \quad x(0) = 0$$

$$\Delta u = -p(t)\Delta x \qquad \Delta \dot{x} = -[1+p(t)]\Delta x$$

$$\dot{p}(t) = -q + 2p(t) + p^{2}(t); \quad q = 1 \text{ or } 100$$

$$p(t_{f}) = 1$$

Example: LQ Optimal Control, *Stable* First-Order System, "White-Noise" Disturbance

$$\Delta \dot{x} = -\Delta x + \Delta u + \Delta w; \quad x(0) = 0$$

$$\Delta u = -p(t) \Delta x \quad \Delta \dot{x} = -[1+p(t)]\Delta x \quad p(t_f) = 1 \text{ or } 1000$$

$$p_f = 1 \quad Open-Loop Response \quad p_f = 1000$$

$$\Delta x_{open-loop}(t) \quad \Delta x_{open-loop}(t) \quad D(t) \quad D($$

37

Example: LQ Optimal Control, *Stable* First-Order System, "White-Noise" Disturbance

Discrete-Time and Sampled-Data Systems

39

Continuous-Time LTI System Model

Continuous-time ("analog") model is based on an ordinary differential equation

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) + \mathbf{L} \Delta \mathbf{w}(t)$$

$$\Delta \mathbf{x}(t_o) \ given$$

$$\Delta \mathbf{y}(t) = \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(t) + \mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}(t) + \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}(t)$$

Dynamic Process

Observation Process

40

Discrete-Time LTI System Model

Discrete-time ("digital") model is based on an ordinary <u>difference</u> equation

Digital Control Systems Use Sampled Data

Periodic sequence

$$\Delta x_k = \Delta x(t_k) = \Delta x(k\Delta t)$$

- Sampler is an analog-to-digital (A/D) converter
- Reconstructor is a digital-to-analog (D/A) converter

System Response to Inputs and Initial Conditions

Solution of a linear dynamic model

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t) + \mathbf{L}(t)\Delta \mathbf{w}(t), \quad \Delta \mathbf{x}(t_o) \text{ given}$$

$$\Delta \mathbf{x}(t) = \Delta \mathbf{x}(t_o) + \int_{t_o}^{t} \left[\mathbf{F}(\tau)\Delta \mathbf{x}(\tau) + \mathbf{G}(\tau)\Delta \mathbf{u}(\tau) + \mathbf{L}(\tau)\Delta \mathbf{w}(\tau) \right] d\tau$$

- ... has two parts
 - Unforced (homogeneous) response to initial conditions
 - Forced response to control and disturbance inputs

43

Unforced Response to Initial Conditions

Neglecting forcing functions

$$\Delta \mathbf{x}(t) = \Delta \mathbf{x}(t_o) + \int_{t_o}^{t} \left[\mathbf{F}(\tau) \Delta \mathbf{x}(\tau) \right] d\tau = \mathbf{\Phi}(t, t_o) \Delta \mathbf{x}(t_o)$$

For a linear, time-varying (LTV) system, the state transition matrix propagates the state from t_o to t by a single multiplication

For a linear, time-invariant (LTI) system

$$\Delta \mathbf{x}(t) = \Delta \mathbf{x}(t_o) + \int_{t_o}^{t} \left[\mathbf{F} \Delta \mathbf{x}(\tau) \right] d\tau$$
$$= e^{\mathbf{F}(t-t_o)} \Delta \mathbf{x}(t_o) = \mathbf{\Phi}(t-t_o) \Delta \mathbf{x}(t_o)$$

State Transition Matrix is the Matrix Exponential

$$e^{\mathbf{F}(t-t_o)} = Matrix \ Exponential$$

$$= \mathbf{I} + \mathbf{F}(t-t_o) + \frac{1}{2!} \left[\mathbf{F}(t-t_o) \right]^2 + \frac{1}{3!} \left[\mathbf{F}(t-t_o) \right]^3 + \dots$$

$$= \mathbf{\Phi}(t-t_o) = State \ Transition \ Matrix$$

See pages 79-84 of *Optimal Control and Estimation* for a description of how the State Transition Matrix is calculated for an **LTV system**, i.e., if **F** is a function of time, **F**(*t*)

45

Initial-Condition Response via State Transition

Propagation of $\Delta \mathbf{x}(t_k)$ in LTI system

$$\Delta \mathbf{x}(t_1) = \mathbf{\Phi}(t_1 - t_o) \Delta \mathbf{x}(t_o)$$
$$\Delta \mathbf{x}(t_2) = \mathbf{\Phi}(t_2 - t_1) \Delta \mathbf{x}(t_1)$$
$$\Delta \mathbf{x}(t_3) = \mathbf{\Phi}(t_3 - t_2) \Delta \mathbf{x}(t_2)$$

State transition matrix is constant if $(t_k - t_{k-1}) = \delta t = \text{constant}$

$$\mathbf{\Phi} = \mathbf{I} + \mathbf{F}(\delta t) + \frac{1}{2!} \left[\mathbf{F}(\delta t) \right]^{2} + \frac{1}{3!} \left[\mathbf{F}(\delta t) \right]^{3} + \dots$$

$$\Delta \mathbf{x}(t_1) = \mathbf{\Phi}(\delta t) \Delta \mathbf{x}(t_o) = \mathbf{\Phi} \Delta \mathbf{x}(t_o)$$

$$\Delta \mathbf{x}(t_2) = \mathbf{\Phi} \Delta \mathbf{x}(t_1) = \mathbf{\Phi}^2 \Delta \mathbf{x}(t_o)$$

$$\Delta \mathbf{x}(t_3) = \mathbf{\Phi} \Delta \mathbf{x}(t_2) = \mathbf{\Phi}^3 \Delta \mathbf{x}(t_o)$$
...

Response to Inputs

Solution of the LTI model with piecewise-constant forcing functions

$$\Delta \mathbf{x}(t_k) = \Delta \mathbf{x}(t_{k-1}) + \int_{t_{k-1}}^{t_k} \left[\mathbf{F} \Delta \mathbf{x}(\tau) + \mathbf{G} \Delta \mathbf{u}(\tau) + \mathbf{L} \Delta \mathbf{w}(\tau) \right] d\tau$$

$$\Delta \mathbf{x}(t_{k}) = \mathbf{\Phi}(\delta t) \Delta \mathbf{x}(t_{k-1}) + \mathbf{\Phi}(\delta t) \int_{t_{k-1}}^{t_{k}} \left[e^{-\mathbf{F}(\tau - t_{k-1})} \right] d\tau \left[\mathbf{G} \Delta \mathbf{u}(t_{k-1}) + \mathbf{L} \Delta \mathbf{w}(t_{k-1}) \right]$$
$$= \mathbf{\Phi} \Delta \mathbf{x}(t_{k-1}) + \mathbf{\Gamma} \Delta \mathbf{u}(t_{k-1}) + \mathbf{\Lambda} \Delta \mathbf{w}(t_{k-1})$$

47

Discrete-Time LTI System Response to Step Input

Propagation of $\Delta \mathbf{x}(t_k)$ with constant $\boldsymbol{\Phi}$, $\boldsymbol{\Gamma}$, and $\boldsymbol{\Lambda}$

$$\Delta \mathbf{x}(t_1) = \mathbf{\Phi} \Delta \mathbf{x}(t_o) + \mathbf{\Gamma} \Delta \mathbf{u}(t_o) + \mathbf{\Lambda} \Delta \mathbf{w}(t_o)$$

$$\Delta \mathbf{x}(t_2) = \mathbf{\Phi} \Delta \mathbf{x}(t_1) + \mathbf{\Gamma} \Delta \mathbf{u}(t_1) + \mathbf{\Lambda} \Delta \mathbf{w}(t_1)$$

$$\Delta \mathbf{x}(t_3) = \mathbf{\Phi} \Delta \mathbf{x}(t_2) + \mathbf{\Gamma} \Delta \mathbf{u}(t_2) + \mathbf{\Lambda} \Delta \mathbf{w}(t_2)$$

$$\cdot \cdot \cdot$$

$$\mathbf{\Phi} = e^{\mathbf{F}\delta t}$$

$$\mathbf{\Gamma} = (e^{\mathbf{F}\delta t} - \mathbf{I})\mathbf{F}^{-1}\mathbf{G}$$

$$\mathbf{\Lambda} = (e^{\mathbf{F}\delta t} - \mathbf{I})\mathbf{F}^{-1}\mathbf{L}$$

Relationship Between Continuous-Time and Discrete-Time LTI Models

$$\mathbf{\Phi} = \mathbf{I} + \mathbf{F}(\delta t) + \frac{1}{2!} \left[\mathbf{F}(\delta t) \right]^2 + \frac{1}{3!} \left[\mathbf{F}(\delta t) \right]^3 + \dots$$

$$\mathbf{\Gamma} = \left(e^{\mathbf{F}\delta t} - \mathbf{I}\right)\mathbf{F}^{-1}\mathbf{G} = \left(\mathbf{I} + \frac{1}{2!}\left[\mathbf{F}(\delta t)\right] + \frac{1}{3!}\left[\mathbf{F}(\delta t)\right]^{2} + \dots\right)\mathbf{G}\delta t$$

$$\mathbf{\Lambda} = \left(e^{\mathbf{F}\delta t} - \mathbf{I}\right)\mathbf{F}^{-1}\mathbf{L} = \left(\mathbf{I} + \frac{1}{2!}\left[\mathbf{F}(\delta t)\right] + \frac{1}{3!}\left[\mathbf{F}(\delta t)\right]^{2} + \dots\right)\mathbf{L}\delta t$$

As time interval becomes very small, discrete-time model approaches continuous-time model

$$\begin{array}{c}
\Phi \longrightarrow_{\delta t \to 0} \longrightarrow (\mathbf{I} + \mathbf{F} \delta t) \\
\Gamma \longrightarrow_{\delta t \to 0} \longrightarrow \mathbf{G} \delta t \\
\Lambda \longrightarrow_{\delta t \to 0} \longrightarrow \mathbf{L} \delta t$$

49

Example: Equivalent Continuous-Time and Discrete-Time System Matrices

Continuous-time ("analog") system

$$\mathbf{F} = \begin{bmatrix} -1.2794 & -7.9856 \\ 1 & -1.2709 \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} -9.069 \\ 0 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} -7.9856 \\ -1.2709 \end{bmatrix}$$

Discrete-time ("digital") system

$$\boldsymbol{\Phi} = \begin{bmatrix} 0.845 & -0.6936 \\ 0.0869 & 0.8457 \end{bmatrix}$$

$$\boldsymbol{\delta}t = 0.1s$$

$$\boldsymbol{\Gamma} = \begin{bmatrix} -0.8404 \\ -0.0414 \end{bmatrix}$$

$$\boldsymbol{\Lambda} = \begin{bmatrix} -0.6936 \\ -0.1543 \end{bmatrix}$$

$$\delta t = 0.5s$$
Time interval

has a large effect on the discrete-time matrices

$$\mathbf{\Phi} = \begin{bmatrix} 0.0823 & -1.4751 \\ 0.1847 & 0.0839 \end{bmatrix}$$

$$\mathbf{\Gamma} = \begin{bmatrix} -2.4923 \\ -0.6429 \end{bmatrix}$$

$$\mathbf{\Lambda} = \begin{bmatrix} -1.4751 \\ -0.9161 \end{bmatrix}$$

Sampled-Data Cost Function

<u>Sampled-Data Cost Function</u>: a Discrete-Time Cost Function that accounts for system response between sampling instants

$$\min_{\Delta \mathbf{u}(t)} \Delta^2 J = \frac{1}{2} \Delta \mathbf{x}^T(t_f) \mathbf{P}(t_f) \Delta \mathbf{x}(t_f) + \frac{1}{2} \left\{ \int_{t_o}^{t_f} \left[\Delta \mathbf{x}^T(t) \ \Delta \mathbf{u}^T(t) \right] \left[\mathbf{Q} \ \mathbf{M} \ \mathbf{R} \right] \left[\Delta \mathbf{x}(t) \ \Delta \mathbf{u}(t) \right] \right\}$$

Sum integrals over short time intervals, (t_k, t_{k+1})

$$\min_{\Delta \mathbf{u}(t)} \Delta^2 J = \frac{1}{2} \Delta \mathbf{x}_{k_f}^T \mathbf{P}_{k_f} \Delta \mathbf{x}_{k_f} + \frac{1}{2} \sum_{k=0}^{k_f-1} \left\{ \int_{t_k}^{t_{k+1}} \left[\Delta \mathbf{x}^T(t) \ \Delta \mathbf{u}^T(t) \right] \left[\begin{array}{cc} \mathbf{Q} & \mathbf{M} \\ \mathbf{M}^T & \mathbf{R} \end{array} \right] \left[\begin{array}{cc} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{array} \right] dt \right\}$$

Minimize subject to sampled-data dynamic constraint

$$\Delta \mathbf{x}(t_{k+1}) = \mathbf{\Phi}(\delta t) \Delta \mathbf{x}(t_k) + \Gamma(\delta t) \Delta \mathbf{u}(t_k)$$

51

Integrand of Sampled-Data Cost Function

Use dynamic equation ...

$$\Delta \mathbf{x}(t) = \mathbf{\Phi}(t, t_k) \Delta \mathbf{x}(t_k) + \mathbf{\Gamma}(t, t_k) \Delta \mathbf{u}(t_k)$$

$$\triangleq \mathbf{\Phi}(t, t_k) \Delta \mathbf{x}_k + \mathbf{\Gamma}(t, t_k) \Delta \mathbf{u}_k$$

...to express the <u>integrand</u> in the sampling interval, (t_k, t_{k+1})

$$\frac{1}{2} \sum_{k=0}^{k_f - 1} \left\{ \int_{t_k}^{t_{k+1}} \left[\Delta \mathbf{x}^T(t) \ \Delta \mathbf{u}^T(t) \right] \left[\begin{array}{cc} \mathbf{Q} & \mathbf{M} \\ \mathbf{M}^T & \mathbf{R} \end{array} \right] \left[\begin{array}{cc} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{array} \right] dt \right\}$$

Integrand of Sampled-Data Cost Function

$$\frac{1}{2} \sum_{k=0}^{k_f - 1} \left\{ \int_{t_k}^{t_{k+1}} \left[\Delta \mathbf{x}^T(t) \ \Delta \mathbf{u}^T(t) \right] \left[\begin{array}{cc} \mathbf{Q} & \mathbf{M} \\ \mathbf{M}^T & \mathbf{R} \end{array} \right] \left[\begin{array}{cc} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{array} \right] dt \right\}$$

Bring state and control out of integral

Assume control is constant in sampling interval

$$=\frac{1}{2}\sum_{k=0}^{k_f-1}\left\{\left[\begin{array}{ccc} \Delta\mathbf{x}_k^T & \Delta\mathbf{u}_k^T \end{array}\right]_{t_k}^{t_{k+1}}\left[\begin{array}{ccc} \mathbf{\Phi}^T(t,t_k)\mathbf{Q}\mathbf{\Phi}(t,t_k) & \mathbf{\Phi}^T(t,t_k)\left[\mathbf{Q}\mathbf{\Gamma}(t,t_k)+\mathbf{M}\right] \\ \left[\mathbf{Q}\mathbf{\Gamma}(t,t_k)+\mathbf{M}\right]^T\mathbf{\Phi}(t,t_k) & \left[\mathbf{R}+\mathbf{\Gamma}^T(t,t_k)\mathbf{M}+\mathbf{M}^T\mathbf{\Gamma}(t,t_k)+\mathbf{\Gamma}^T(t,t_k)\mathbf{Q}\mathbf{\Gamma}(t,t_k)\right] \end{array}\right]_k^{dt}\left[\begin{array}{ccc} \Delta\mathbf{x}_k \\ \Delta\mathbf{u}_k \end{array}\right]_k^{t_k}$$

Integration has been replaced by summation

$$= \frac{1}{2} \sum_{k=0}^{k_T - 1} \left\{ \begin{bmatrix} \Delta \mathbf{x}_k^T & \Delta \mathbf{u}_k^T \end{bmatrix} \begin{bmatrix} \hat{\mathbf{Q}} & \hat{\mathbf{M}} \\ \hat{\mathbf{M}}^T & \hat{\mathbf{R}} \end{bmatrix}_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \right\}$$

Berman, Gran, J. Aircraft, 1974

53

Sampled-Data Cost Function Weighting Matrices

Assume \mathbf{Q} , \mathbf{M} , and \mathbf{R} are **constant** in the integration interval

 $\Phi(t,t_k)$ and $\Gamma(t,t_k)$ vary in the integration interval

$$\hat{\mathbf{Q}} = \int_{t_k}^{t_{k+1}} \mathbf{\Phi}^T (t, t_k) \mathbf{Q} \mathbf{\Phi} (t, t_k) dt$$

$$\hat{\mathbf{M}} = \int_{t_k}^{t_{k+1}} \mathbf{\Phi}^T (t, t_k) [\mathbf{Q} \mathbf{\Gamma} (t, t_k) + \mathbf{M}] dt$$

$$\hat{\mathbf{R}} = \int_{t_k}^{t_{k+1}} [\mathbf{R} + \mathbf{\Gamma}^T (t, t_k) \mathbf{M} + \mathbf{M}^T \mathbf{\Gamma} (t, t_k) + \mathbf{\Gamma}^T (t, t_k) \mathbf{Q} \mathbf{\Gamma} (t, t_k)] dt$$

The integrand accounts for continuous-time variations of the LTI system <u>between sampling instants</u> ("Inter-sample ripple")

Evaluating Sampled-Data Weighting Matrices

 $\Phi(t,t_k)$ and $\Gamma(t,t_k)$ vary in the integration interval

Break interval into smaller intervals, and approximate as sum of short rectangular integration steps

$$\hat{\mathbf{Q}} = \int_{0}^{\Delta t} \mathbf{\Phi}^{T}(t,0) \mathbf{Q} \mathbf{\Phi}(t,0) dt$$

$$\simeq \sum_{k=1}^{100} \left[\mathbf{\Phi}^{T}(t_{k-1},0) \mathbf{Q} \mathbf{\Phi}(t_{k-1},0) \delta t \right], \quad \delta t = \Delta t/100, \quad t_{k} = k \delta t$$

$$\simeq \sum_{k=1}^{100} \left[e^{\mathbf{F}^{T} t_{k-1}} \mathbf{Q} e^{\mathbf{F} t_{k-1}} \delta t \right]$$

55

Evaluating Sampled-DataWeighting Matrices

$$\mathbf{\Gamma} = \left(e^{\mathbf{F}\delta t} - \mathbf{I}\right)\mathbf{F}^{-1}\mathbf{G} = \left(\mathbf{I} + \frac{1}{2!}\left[\mathbf{F}(\delta t)\right] + \frac{1}{3!}\left[\mathbf{F}(\delta t)\right]^{2} + \dots\right)\mathbf{G}\delta t$$

 $\hat{\mathbf{Q}}, \hat{\mathbf{M}}$, and $\hat{\mathbf{R}}$ evaluated just once for LTI system

$$\hat{\mathbf{M}} = \int_{0}^{\Delta t} \mathbf{\Phi}^{T}(t,0) \left[\mathbf{Q} \mathbf{\Gamma}(t,0) + \mathbf{M} \right] dt$$

$$\simeq \sum_{k=1}^{100} \left\{ \left[e^{\mathbf{F}^{T} t_{k-1}} \mathbf{Q} \left(\mathbf{I} + \frac{1}{2!} \left[\mathbf{F} t_{k-1} \right] + \frac{1}{3!} \left[\mathbf{F} t_{k-1} \right]^{2} + ... \right) \mathbf{G} t_{k-1} \right] + \mathbf{M} \right\} \delta t$$

$$\hat{\mathbf{R}} \simeq \sum_{k=1}^{100} \left[\mathbf{R} + \mathbf{\Gamma}^{T}(t_{k-1}) \mathbf{M} + \mathbf{M}^{T} \mathbf{\Gamma}(t_{k-1}) + \mathbf{\Gamma}^{T}(t_{k-1}) \mathbf{Q} \mathbf{\Gamma}(t_{k-1}) \right] \delta t$$

Sampled-Data Cost Function Weighting <u>Always</u> Includes State-Control Weighting

$$\hat{\mathbf{M}} = \int_{t_k}^{t_{k+1}} \mathbf{\Phi}^T(t, t_k) [\mathbf{Q}\mathbf{\Gamma}(t, t_k) + \mathbf{M}] dt$$

$$= \int_{t_k}^{t_{k+1}} \mathbf{\Phi}^T(t, t_k) \mathbf{Q}\mathbf{\Gamma}(t, t_k) dt \text{ even if } \mathbf{M} = \mathbf{0}$$

Sampled-Data Lagrangian

$$L_k = \frac{1}{2} \left[\Delta \mathbf{x}_k^T \hat{\mathbf{Q}} \Delta \mathbf{x}_k + 2 \Delta \mathbf{x}_k^T \hat{\mathbf{M}} \Delta \mathbf{u}_k + \Delta \mathbf{u}_k^T \hat{\mathbf{R}} \Delta \mathbf{u}_k \right]$$

57

Dynamic Programming Approach to Sampled-Data Optimal Control

Discrete-Time Hamilton-Jacobi-Bellman Equation

Value Function at to

$$V(t_o) = \varphi_{k_f} + \sum_{k=0}^{k_f - 1} L_k$$

$$V(t_o) = \varphi_{k_f} + \sum_{k=0}^{k_f - 1} L_k$$

$$V(t_o) = \varphi_{k_f} + \sum_{k=0}^{k_f - 1} L_k$$

$$= -\min_{\Delta \mathbf{u}_k} H_k, \quad V * \left[\Delta \mathbf{x}_{k_f} * \right] = given$$
subject to
$$\Delta \mathbf{x}_{k+1} = \mathbf{\Phi} \Delta \mathbf{x}_k + \mathbf{\Gamma} \Delta \mathbf{u}_k$$

- Begin at terminal point with optimal value function
- Working backward, add minimum value function increment (Bellman's Principle of Optimality)

... optimal policy ... whatever the initial state and initial decision ...remaining decisions must constitute an optimal policy with regard to the current state

59

Sampled-Data Cost Function Contains Terminal and Summation Costs

Integral cost has been replaced by a summation cost Terminal cost is the same

$$= \min_{\Delta u_k} J_{sampled}$$

$$= \min_{\Delta u_k} \left\{ \frac{1}{2} \Delta \mathbf{x}_{k_f}^T \mathbf{P}_{k_f} \Delta \mathbf{x}_{k_f} + \frac{1}{2} \sum_{k=0}^{k_f-1} \left\{ \begin{bmatrix} \Delta \mathbf{x}_k^T & \Delta \mathbf{u}_k^T \end{bmatrix} \begin{bmatrix} \hat{\mathbf{Q}} & \hat{\mathbf{M}} \\ \hat{\mathbf{M}}^T & \hat{\mathbf{R}} \end{bmatrix}_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \right\}$$

subject to
$$\Delta \mathbf{x}_{k+1} = \mathbf{\Phi} \Delta \mathbf{x}_k + \mathbf{\Gamma} \Delta \mathbf{u}_k$$

Dynamic Programming Approach to Sampled-Data LQ Control

Quadratic Value Function at t_a

$$V(t_o) = \frac{1}{2} \Delta \mathbf{x}_{k_f}^T \mathbf{P}_{k_f} \Delta \mathbf{x}_{k_f} + \frac{1}{2} \sum_{k=0}^{k_f-1} \left\{ \begin{bmatrix} \Delta \mathbf{x}_k^T & \Delta \mathbf{u}_k^T \end{bmatrix} \begin{bmatrix} \hat{\mathbf{Q}} & \hat{\mathbf{M}} \\ \hat{\mathbf{M}}^T & \hat{\mathbf{R}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \right\}$$

Discrete HJB equation

$$\begin{aligned} V_{k}* &= -\min_{\Delta \mathbf{u}_{k}} \left\{ \frac{1}{2} \left[\Delta \mathbf{x}_{k} *^{T} \hat{\mathbf{Q}} \Delta \mathbf{x}_{k} * + 2\Delta \mathbf{x}_{k} *^{T} \hat{\mathbf{M}} \Delta \mathbf{u}_{k} + \Delta \mathbf{u}_{k}^{T} \hat{\mathbf{R}} \Delta \mathbf{u}_{k} \right] + V_{k+1} * \right\} \\ &= -\min_{\Delta \mathbf{u}_{k}} H_{k}, \quad V* \left[\Delta \mathbf{x}_{k_{f}} * \right] = \Delta \mathbf{x}_{k_{f}} *^{T} \mathbf{P}_{k_{f}} \Delta \mathbf{x}_{k_{f}} *^{T} \\ &\text{subject to } \Delta \mathbf{x}_{k+1} = \mathbf{\Phi} \Delta \mathbf{x}_{k} + \mathbf{\Gamma} \Delta \mathbf{u}_{k} \end{aligned}$$

61

Optimality Condition

Assume value function takes a quadratic form

$$V_k = \frac{1}{2} \Delta \mathbf{x}_k^T \mathbf{P}_k \Delta \mathbf{x}_k; \quad V_{k+1} = \frac{1}{2} \Delta \mathbf{x}_{k+1}^T \mathbf{P}_{k+1} \Delta \mathbf{x}_{k+1}$$

Optimality condition

$$\frac{\partial H_k}{\partial \Delta \mathbf{u}_k} = \left[\Delta \mathbf{x}_k^T \hat{\mathbf{M}} + \Delta \mathbf{u}_k^T \hat{\mathbf{R}} \right] + \frac{\partial V_{k+1}}{\partial \Delta \mathbf{u}_k} = \mathbf{0}$$

where
$$\frac{\frac{\partial V_{k+1}}{\partial \Delta \mathbf{u}_{k}}}{\frac{\partial \Delta \mathbf{u}_{k}}{\partial \Delta \mathbf{u}_{k}}} = \frac{\partial \left[\frac{1}{2} \Delta \mathbf{x}_{k+1}^{T} \mathbf{P}_{k+1} \Delta \mathbf{x}_{k+1}\right]}{\partial \Delta \mathbf{u}_{k}} = \left[\mathbf{\Phi} \Delta \mathbf{x}_{k} + \mathbf{\Gamma} \Delta \mathbf{u}_{k}\right]^{T} \mathbf{P}_{k+1} \mathbf{\Gamma}$$

$$\left[\Delta \mathbf{x}_{k}^{T} \hat{\mathbf{M}} + \Delta \mathbf{u}_{k}^{T} \hat{\mathbf{R}}\right] + \left[\Delta \mathbf{x}_{k}^{T} \mathbf{\Phi}^{T} + \Delta \mathbf{u}_{k}^{T} \mathbf{\Gamma}^{T}\right] \mathbf{P}_{k+1} \mathbf{\Gamma} = \mathbf{0}$$

Minimizing Value of Control

$$\frac{\partial H_k}{\partial \Delta \mathbf{u}_k} = \Delta \mathbf{x}_k^T \left[\hat{\mathbf{M}} + \mathbf{\Phi}^T \mathbf{P}_{k+1} \mathbf{\Gamma} \right] + \Delta \mathbf{u}_k^T \left[\hat{\mathbf{R}} + \mathbf{\Gamma}^T \mathbf{P}_{k+1} \mathbf{\Gamma} \right] = \mathbf{0}$$

$$\Delta \mathbf{u}_{k} = -\left[\hat{\mathbf{R}} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Gamma}\right]^{-1} \left[\hat{\mathbf{M}}^{T} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Phi}\right] \Delta \mathbf{x}_{k} \triangleq -\mathbf{C}_{k} \Delta \mathbf{x}_{k}$$

Must find \mathbf{P}_k in $(0, k_f)$

Use definitions of V^* and Δu in HJB equation

63

Solution for P_k

$$V_k = \frac{1}{2} \Delta \mathbf{x}_k^T \mathbf{P}_k \Delta \mathbf{x}_k; \quad V_{k+1} = \frac{1}{2} \Delta \mathbf{x}_{k+1}^T \mathbf{P}_{k+1} \Delta \mathbf{x}_{k+1}$$

$$\Delta \mathbf{u}_{k} = -\left[\hat{\mathbf{R}} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Gamma}\right]^{-1} \left[\hat{\mathbf{M}}^{T} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Phi}\right] \Delta \mathbf{x}_{k} \triangleq -\mathbf{C}_{k} \Delta \mathbf{x}_{k}$$

Substitute for V_k, V_{k+1} , and $\Delta \mathbf{u}_k$ in discrete-time HJB equation

$$\frac{1}{2} \Delta \mathbf{x}_{k}^{T} \mathbf{P}_{k} \Delta \mathbf{x}_{k} = -\min_{\Delta \mathbf{u}_{k}} \left\{ \frac{1}{2} \left[\Delta \mathbf{x}_{k}^{T} \hat{\mathbf{Q}} \Delta \mathbf{x}_{k}^{T} + 2 \Delta \mathbf{x}_{k}^{T} \hat{\mathbf{M}} \left(-\mathbf{C}_{k} \Delta \mathbf{x}_{k} \right) + \left(-\mathbf{C}_{k} \Delta \mathbf{x}_{k} \right)^{T} \hat{\mathbf{R}} \left(-\mathbf{C}_{k} \Delta \mathbf{x}_{k} \right) + \Delta \mathbf{x}_{k+1}^{T} \mathbf{P}_{k+1} \Delta \mathbf{x}_{k+1} \right] \right\}$$

Rearrange and cancel $\Delta \mathbf{x}_k$ on both sides of the equation to yield the discrete-time Riccati equation

$$\mathbf{P}_{k} = \hat{\mathbf{Q}} + \mathbf{\Phi}^{T} \mathbf{P}_{k+1} \mathbf{\Phi} - \left[\hat{\mathbf{M}}^{T} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Phi} \right]^{T} \left[\hat{\mathbf{R}} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Gamma} \right]^{-1} \left[\hat{\mathbf{M}}^{T} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Phi} \right]$$

$$\mathbf{P}_{k_{f}} \text{ given}$$

$$64$$

Discrete-Time System with Linear-Quadratic Feedback Control

Dynamic System

$$\Delta \mathbf{x}_{k+1} = \mathbf{\Phi} \Delta \mathbf{x}_k + \mathbf{\Gamma} \Delta \mathbf{u}_k$$

Control law

$$\Delta \mathbf{u}_{k} = -\left[\hat{\mathbf{R}} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Gamma}\right]^{-1} \left[\hat{\mathbf{M}}^{T} + \mathbf{\Gamma}^{T} \mathbf{P}_{k+1} \mathbf{\Phi}\right] \Delta \mathbf{x}_{k} \triangleq -\mathbf{C}_{k} \Delta \mathbf{x}_{k}$$

Dynamic system with LQ feedback control

$$\Delta \mathbf{x}_{k+1} = \mathbf{\Phi} \Delta \mathbf{x}_k + \mathbf{\Gamma} \Delta \mathbf{u}_k$$
$$= \mathbf{\Phi} \Delta \mathbf{x}_k + \mathbf{\Gamma} \left(-\mathbf{C}_k \Delta \mathbf{x} \right)_k$$
$$= \left(\mathbf{\Phi} - \mathbf{\Gamma} \mathbf{C}_k \right) \Delta \mathbf{x}_k$$

65

Example: 1st-Order System with LQ Feedback Control

1st-order discrete-time dynamic system

$$\Delta x_{k+1} = \phi \Delta x_k + \gamma \Delta u_k$$

LQ optimal control law

$$\Delta u_k = -\frac{m + \phi \gamma p_{k+1}}{r + \gamma^2 p_{k+1}} \Delta x_k \triangleq -c_k \Delta x_k$$

$$p_k = q + \phi^2 p_{k+1} - \frac{\left(m + \phi \gamma p_{k+1}\right)^2}{r + \gamma^2 p_{k+1}}, \quad p_{k_f} \text{ given}$$

Dynamic system with LQ feedback control

$$\Delta x_{k+1} = \phi \Delta x_k + \gamma \Delta u_k$$

$$= \phi \Delta x_k + \gamma \left(-c_k \Delta x \right)_k$$

$$= \left(\phi - \gamma c_k \right) \Delta x_k$$

66

Next Time: Dynamic System Stability

Reading
OCE: Section 2.5

67

SUPPLEMENTAL MATERIAL

Example: Separate Solutions for Nominal and Perturbation Trajectories

Original nonlinear equation describes nominal dynamics

$$\begin{vmatrix} \dot{\mathbf{x}}_{N} = \begin{bmatrix} \dot{x}_{1_{N}} \\ \dot{x}_{2_{N}} \\ \dot{x}_{3_{N}} \end{bmatrix} = \begin{bmatrix} x_{2_{N}} + dw_{1_{N}} \\ a_{2}(x_{3_{N}} - x_{2_{N}}) + a_{1}(x_{3_{N}} - x_{1_{N}})^{2} + b_{1}u_{1_{N}} + b_{2}u_{2_{N}} \\ c_{2}x_{3_{N}}^{3} + c_{1}(x_{1_{N}} + x_{2_{N}}) + b_{3}x_{1_{N}}u_{1_{N}} \end{bmatrix}, \begin{bmatrix} x_{1_{N}} \\ x_{2_{N}} \\ x_{3_{N}} \end{bmatrix} \text{ given}$$

Linear, time-varying equation describes perturbation dynamics

$$\begin{bmatrix} \Delta \dot{x}_{1} \\ \Delta \dot{x}_{2} \\ \Delta \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -2a_{1}(x_{3_{N}} - x_{1_{N}}) & -a_{2} & a_{2} + 2a_{1}(x_{3_{N}} - x_{1_{N}}) \\ (c_{1} + b_{3}u_{1_{N}}) & c_{1} & 3c_{2}x_{3_{N}}^{2} \end{bmatrix} \begin{bmatrix} \Delta x_{1} \\ \Delta x_{2} \\ \Delta x_{3} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ b_{1} & b_{2} \\ b_{3}x_{1_{N}} & 0 \end{bmatrix} \begin{bmatrix} \Delta u_{1} \\ \Delta u_{2} \end{bmatrix} + \begin{bmatrix} d \\ 0 \\ 0 \\ 0 \end{bmatrix} \Delta w_{1}; \begin{bmatrix} \Delta x_{1}(t_{o}) \\ \Delta x_{2}(t_{o}) \\ \Delta x_{3}(t_{o}) \end{bmatrix} \text{ given }$$

Multivariable LQ Optimal Control with Cross Weighting, M, = 0

No state/control coupling in cost function

$$\Delta^{2}J = \frac{1}{2}\Delta\mathbf{x}^{T}(t_{f})\mathbf{P}(t_{f})\Delta\mathbf{x}(t_{f}) \quad \Delta\dot{\mathbf{x}}(t) = \mathbf{F}\Delta\mathbf{x}(t) + \mathbf{G}\Delta\mathbf{u}(t)$$

$$+ \frac{1}{2} \begin{cases} \int_{t_{o}}^{t_{f}} \left[\Delta\mathbf{x}^{T}(t) \ \Delta\mathbf{u}^{T}(t) \right] \begin{bmatrix} \mathbf{Q} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{R} \end{bmatrix} \begin{bmatrix} \Delta\mathbf{x}(t) \\ \Delta\mathbf{u}(t) \end{bmatrix} dt \\ \Delta\mathbf{u}(t) \end{bmatrix} dt$$

$$\dot{\mathbf{P}}(t) = [-\mathbf{Q}] - [\mathbf{F}]^{T} \mathbf{P}(t) - \mathbf{P}(t)[\mathbf{F}] + \mathbf{P}(t)\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{T}\mathbf{P}(t)$$

$$\mathbf{P}(t_{f}) = \mathbf{P}_{f}$$

$$\Delta\mathbf{u}(t) = -\mathbf{R}^{-1} [\mathbf{G}^{T}\mathbf{P}(t)] \Delta\mathbf{x}(t)$$

First-Order LQ Example Code

```
First-Order LQ Example
Rob Stengel
2/23/2011
clear
global tp p q tw w
                                                      function xdot =
                                                                          First(t,x)
                                                                  global tp p tw w
xo = 0; to = 0;
                                                                  w+
                                                                              interp1(tw,w,t,'nearest');
tspanx = [to tf];
tw = [0:0.01:
                                                                  xdot
                                                                               -x + wt;
            [0:0.01:101:
for k
          1:length(tw)
                                                      function pdot = FirstRiccati(t,p)
    w(k)
            = randn(1);
                                                                  global q
pdot =
and
                                                                              -q + 2*p + p^2;
            ode15s('First',tspanx,xo);
[tx,x] =
           0; q
[tf to];
                    q
                                                      function xdot = FirstCL(tc,xc);
tspanp =
                                                                  global tp p tw w
            ode15s('FirstRiccati',tspanp,pf);
ode15s('FirstCL',tspanx,xo);
                                                                          = interp1(tw,w,tc,'nearest');
                                                                  wt
[tc,xc] =
                                                                          = interp1(tp,p,tc);
= -(1 + pt)*xc + wt;
            interp1(tp,p,tc).*xc;
figure
subplot(4,1,1)
plot(tx,x),grid,xlabel('Time'),ylabel('x-open-loop')
subplot(4,1,2)
plot(tp,p,'r'),grid,xlabel('Time'),ylabel('p')
subplot(4,1,3)
plot(tc,u),grid, xlabel('Time'),ylabel('u')
subplot(4,1,4)
plot(tc,xc,'r',tx,x,'b'),grid,xlabel('Time'),ylabel('x- closed-loop')
```

71

Nominal- and Neighboring-Optimal Control of the Dynamic Model

Nonlinear System with Neighboring-Optimal Feedback Control

Nonlinear dynamic system

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)]$$

Neighboring-optimal control law

$$\mathbf{u}(t) = \mathbf{u} * (t) - \mathbf{C}(t)\Delta \mathbf{x}(t) = \mathbf{u} * (t) - \mathbf{C}(t)[\mathbf{x}(t) - \mathbf{x} * (t)]$$

Nonlinear dynamic system with neighboringoptimal feedback control

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left\{ \mathbf{x}(t), \left[\mathbf{u} * (t) - \mathbf{C}(t) \left[\mathbf{x}(t) - \mathbf{x} * (t) \right] \right] \right\}$$

73

Development of Neighboring-Optimal Therapy

· Expand dynamic equation to first degree

$$\mathbf{x}(t) = \mathbf{x} * (t) + \Delta \mathbf{x}(t)$$
$$\mathbf{u}(t) = \mathbf{u} * (t) + \Delta \mathbf{u}(t)$$

- Compute nominal optimal control history using original nonlinear dynamic model
- Compute optimal perturbation control using locally linearized dynamic model
- Sum the two for neighboring-optimal control of the dynamic system

$$\mathbf{u}(t) = \mathbf{u}_{opt}(t)$$

$$\Delta \mathbf{u}(t) = -\mathbf{C}(t) \left[\mathbf{x}(t) - \mathbf{x}_{opt}(t) \right]$$
$$\mathbf{u}(t) = \mathbf{u}_{opt}(t) + \Delta \mathbf{u}(t)$$

Continuous-Time LQ Optimization via Dynamic Programming

75

Dynamic Programming Approach to ContinuousTime LQ Control

Value Function at t_o

$$V(t_o) = \frac{1}{2} \Delta \mathbf{x}^T (t_f) \mathbf{P}(t_f)_f \Delta \mathbf{x}(t_f)$$

$$+ \frac{1}{2} \begin{cases} \int_{t_o}^{t_f} \left[\Delta \mathbf{x}^T (t) & \Delta \mathbf{u}^T (t) \\ M^T (t) & \mathbf{R}(t) \end{cases} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{bmatrix} dt \end{cases}$$

Value Function at t₁

$$V(t_1) = \frac{1}{2} \Delta \mathbf{x}^T(t_f) \mathbf{P}(t_f) \Delta \mathbf{x}(t_f)$$

$$-\frac{1}{2} \begin{cases} \int_{t_f}^{t_1} \left[\Delta \mathbf{x}^T(t) & \Delta \mathbf{u}^T(t) \end{bmatrix} \begin{bmatrix} \mathbf{Q}(t) & \mathbf{M}(t) \\ \mathbf{M}^T(t) & \mathbf{R}(t) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{bmatrix} dt \end{cases}$$

Dynamic Programming Approach to LQ Control

Time Derivative of Value Function

$$\frac{\partial V^* \left[\Delta \mathbf{x}^*(t_1) \right]}{\partial t} =$$

$$- \min_{\Delta \mathbf{u}} \left\{ \frac{1}{2} \left[\Delta \mathbf{x}^{*T}(t_1) \mathbf{Q}(t_1) \Delta \mathbf{x}^*(t_1) + 2 \Delta \mathbf{x}^{*T}(t_1) \mathbf{M}(t_1) \Delta \mathbf{u}(t_1) + \Delta \mathbf{u}^T(t_1) \mathbf{R}(t_1) \Delta \mathbf{u}(t_1) \right] + \frac{\partial V^* \left[\Delta \mathbf{x}^*(t_1) \right]}{\partial \Delta \mathbf{x}} \left[\mathbf{F}(t_1) \Delta \mathbf{x}^*(t_1) + \mathbf{G}(t_1) \Delta \mathbf{u}(t_1) \right] \right\}$$

77

Dynamic Programming Approach to LQ Control

Hamiltonian

$$H\left[\Delta \mathbf{x}^*, \Delta \mathbf{u}, \frac{\partial V^*}{\partial \Delta \mathbf{x}}\right] \triangleq \frac{1}{2} \left[\Delta \mathbf{x}^{*T} \mathbf{Q} \Delta \mathbf{x}^* + 2\Delta \mathbf{x}^{*T} \mathbf{M} \Delta \mathbf{u} + \Delta \mathbf{u}^T \mathbf{R} \Delta \mathbf{u}\right] + \frac{\partial V^* \left[\Delta \mathbf{x}^*\right]}{\partial \Delta \mathbf{x}} \left[\mathbf{F} \Delta \mathbf{x}^* + \mathbf{G} \Delta \mathbf{u}\right]$$

HJB Equation

$$\begin{aligned} &\frac{\partial V * \left[\Delta \mathbf{x} * \right]}{\partial t} = -\min_{\Delta \mathbf{u}} H \left[\Delta \mathbf{x}^*, \Delta \mathbf{u}, \frac{\partial V *}{\partial \Delta \mathbf{x}} \right], \\ &V * \left[\Delta \mathbf{x}(t_f) \right] = \Delta \mathbf{x}^{*T} (t_f) \mathbf{P}(t_f) \Delta \mathbf{x}^{*T} (t_f) \end{aligned}$$

Plausible Form for the Value Function

Quadratic Function of State Perturbation

$$V * [\Delta \mathbf{x} * (t)] = \Delta \mathbf{x} *^{T} (t) \mathbf{P}(t) \Delta \mathbf{x} *^{T} (t)$$

Time Derivative of the Value Function

$$\frac{\partial V^*}{\partial t} = -\frac{1}{2} \left[\Delta \mathbf{x}^{*T} (t_1) \dot{\mathbf{P}}(t_1) \Delta \mathbf{x}^*(t_1) \right]$$

Gradient of the Value Function with respect to the state

$$\frac{\partial V^*}{\partial \Delta \mathbf{x}} = \Delta \mathbf{x}^{*T} (t) \mathbf{P}(t)$$

79

Optimal Control Law and HJB Equation

Optimal control law

$$\frac{\partial H}{\partial \mathbf{u}} = \Delta \mathbf{x}^T \mathbf{M} + \Delta \mathbf{u}^T \mathbf{R} + \Delta \mathbf{x}^T \mathbf{P} \mathbf{G} = \mathbf{0}$$
$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1} \left(\mathbf{G}^T \mathbf{P} + \mathbf{M}^T \right) \Delta \mathbf{x}(t)$$

Incorporate Value Function Model in HJB equation

$$\Delta \mathbf{x}^{T} \dot{\mathbf{P}} \Delta \mathbf{x} =$$

$$\Delta \mathbf{x}^{T} \left\{ \left[-\mathbf{Q} + \mathbf{M} \mathbf{R}^{-1} \mathbf{M}^{T} \right] - \left[\mathbf{F} - \mathbf{G} \mathbf{R}^{-1} \mathbf{M}^{T} \right]^{T} \mathbf{P} - \mathbf{P} \left[\mathbf{F} - \mathbf{G} \mathbf{R}^{-1} \mathbf{M}^{T} \right] + \mathbf{P} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{P} \right\} \Delta \mathbf{x}$$

 $\Delta \mathbf{x}(t)$ can be cancelled on left and right

Matrix Riccati Equation

$$\dot{\mathbf{P}}(t) = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right]$$

$$-\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right]^{T} \mathbf{P}(t)$$

$$-\mathbf{P}(t) \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right]$$

$$+\mathbf{P}(t)\mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\mathbf{P}(t)$$

$$\mathbf{P}(t_{f}) = \phi_{\mathbf{xx}}(t_{f})$$

81