Instytut Techniki Lotniczej i Mechaniki Stosowanej Zakład Podstaw Konstrukcji

Projekt ramienia robota PKR1

Maciej Jędrzejewski 29 stycznia 2025

Spis treści

1	$\mathbf{W}\mathbf{p}$	rowadzenie i założenia koncepcyjne	3
2	Spis	s elementów	4
3	\Pr	zeprowadzone obliczenia	5
	3.1	Dobór śruby pociągowej, łożyska oraz silnika	5
	3.2	Obliczenia wytrzymałościowe łożysk	9
		3.2.1 Łożyska GE 12 TXGR	
		3.2.2 Łożyska 32303	
		3.2.3 Łożyska FK15-C5	
	3.3	Obliczenia wytrzymałościowe wału przy podstawie	
	3.4	Obliczenia wytrzymałościowe w sprzegle	
		3.4.1 Śruby w obudowie	
		3.4.2 Śruby w sprzęgle	
		3.4.3 Kołki	
	3.5	Obliczenia wytrzymałościowe śrub w ramieniu	
4	Pod	lsumowanie	21

1 Wprowadzenie i założenia koncepcyjne

Celem niniejszego projektu było stworzenie ramienia robota zdolnego podnosić przedmiot o określonym ciężarze z określonym przyśpieszeniem kątowym w przegubie przy podstawie. Jako napęd użyto mechanizmu śrubowo-tocznego. Niżej przedstawiono zakładany schemat ramienia:

Rysunek 1: Założenia co do wstępnej geometrii

Projekt ograniczał się do zaprojektowania systemu przenoszenia napędu na ramię połączone w dolnej części z podstawą. Co ważne, projekt nie obejmował, natomiast, modelowania części ramienia po lewej stronie schematu. W niniejszej tabeli przedstawiono założenia co do ramienia:

$L_1 [mm]$	680
$L_2 [mm]$	$0,80*L_1$
$a_1 [mm]$	$0,40*L_1$
$a_2 [mm]$	$0,30*L_2$
G[N]	100
$Q_2[N]$	95
$Q_1[N]$	$\frac{Q_2}{0,90}$
$J_2 [kgm^2]$	1.05
$J_1 [kgm^2]$	$\frac{J_2}{0,80}$
α [°]	70
φ_{min} [°]	25
φ_{max} [°]	95
$\ddot{\varphi}_{\max} \left[\frac{rad}{s^2} \right]$	5,01

2 Spis elementów

Niżej przedstawiono spis elementów wykorzystanych w finalnym projekcie.

Nazwa elementu	Norma/numer katalogowy*	Materiał**	ilość
Łożysko SKF	GE 12 TXGR		4
Łożysko SKF	32303		2
Podstawa z łożyskiem FK15 HIWIN	18-000448		1
Śruba pociągowa HIWIN	R20-10K3-FSCDIN-550-620-0,052D		1
Silnik HIWIN	EM1-C-M-75-2-B-F-0-D		1
Nakrętka łożyskowa KM3	PN-82/M86478-A2		2
Podkładka zębata MB3	PN-82/M86482-A2		2
Nakrętka M14	M14 DIN 934-A5		4
Podkładka sprężynująca M14	M14 PN 82008-A4		4
Podkładka okrągła M14	M14 DIN125-A2		4
Śruba M14x125	M14x125 DIN 931-25CrMo4		4
Nakrętka M6	M6 DIN 934-A5		4
Podkładka sprężynująca M6	M6 PN 82008-A4		20
Podkładka okrągła M6	M6 DIN125-A2		20
Śruba M6x20	M6x20 DIN 933-25CrMo4		8
Śruba M6x25	M6x25 DIN 933-25CrMo4	_	8
Śruba M6x30	M6x30 DIN 933-25CrMo4	_	8
Nakrętka M5	M5 DIN 934-A5		8
Podkładka sprężynująca M5	M5 PN 82008-A4	_	22
Podkładka okrągła M5	M5 DIN125-A2		36
Śruba M5x20	M5x20 DIN 931-25CrMo4		10
Śruba M5x30	M5x30 DIN 931-25CrMo4	_	8
Śruba M5x20	M5x20 DIN 933-25CrMo4		20
Podstawa do silnika	MJ.02.01.19	EN AW-2024	2
Obudowa	MJ.02.01.20	EN AW-2024	1
Pokrywka od obudowy	MJ.02.01.21	EN AW-2024	1
Pokrywka od łącznika	MJ.02.01.22	EN AW-2024	1
Sprzęgło od śruby	MJ.02.01.18	42CrMo4	1
Tarcza sprzęgła	MJ.02.01.17	42CrMo4	1
Sprzęgło od silnika	MJ.02.01.16	42CrMo4	1
Kołek wciskowy	MJ.02.01.15	Stal S1100QL	1
Wał	MJ.02.01.14	42CrMo4	1
Uszczelka	MJ.02.01.13	A2	2
Wpust pryzmatyczny	MJ.02.01.12	S1100QL	1

Tabela 1: Spis części

^{*} Podano zgodnie z rysunkiem złożeniowym.

^{**} Materiału nie podano, jeśli określa go norma bądź producent. Materiały podano obok norm, tak jak na rysunku złożeniowym załączonym do sprawozdania.

Nazwa elementu	Norma/numer katalogowy*	Materiał**	ilość
Tuleja	MJ.02.01.11	EN AW-2024	4
Tuleja	MJ.02.01.10	EN AW-2024	2
Tuleja	MJ.02.01.09	EN AW-2024	2
Kołek w sprzęgle	MJ.02.01.08	Stal S235JR	4
Kołek	MJ.02.01.07	EN AW-2024	4
Tuleja	MJ.02.01.06	EN AW-2024	4
Pokrywka do podstawy	MJ.02.01.05	EN AW-2024	2
Podstawa	MJ.02.01.04	EN AW-2024	2
Łącznik	MJ.02.01.03	EN AW-2024	1
Łącznik ramienia	MJ.02.01.02	EN AW-2024	2
Ramię	MJ.02.01.01	EN AW-2024	1

Tabela 2: Spis części c.d.

3 Przeprowadzone obliczenia

3.1 Dobór śruby pociągowej, łożyska oraz silnika

Na początku należało stworzyć wstępny schemat kinematyczny całego mechanizmu. W tym celu stworzono szkic w programie NX. Zamieszczono go poniżej. Dodatkowo, liniami przerywanymi dodano, w celu wykrycia kolizji między elementami przy różnych wartościach kąta φ , linie przerywane symbolizujące oczekiwane gabaryty śruby i głównej części ramienia. Ostatecznie dobrano takie gabaryty, aby wykluczyć uderzenie o siebie śruby i ramienia.

Rysunek 2: Szkic stworzony w programie NX

Aby wyliczyć moment jaki ma generować silnik należało najpierw wyliczyć siłę S jaką przenosi śruba. Wyznaczono ją z równania dynamiki dla ramienia.

Rysunek 3: Schemat sił działających na ramię robota

W prosty sposób można wyliczyć wartość siły S.

$$a = 270mm \quad b = 140mm \quad r_h = 380mm \quad h = 200mm$$

$$\Omega = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad R = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{bmatrix}$$

$$\vec{G}^{(0)} = [0; -G]^T \quad \vec{Q_1}^{(1)} = [0; -Q_1]^T \quad \vec{Q_2}^{(1)} = [0; -Q_2]^T$$

$$\vec{r_B}^{(0)} = [-a; b]^T \quad \vec{r_s}^{(1)} = [r_h; h]^T \quad \vec{r_G}^{(2)} = [L_2; 0]^T;$$

$$\vec{r_{c1}}^{(0)} = [a_1 \cos \varphi; a_1 \sin \varphi]^T \quad \vec{r_s}^{(0)} = R_1^0(\varphi) \vec{r_s}^{(1)} = [r_{sx}; r_{sy}]^T$$

$$\vec{r_{c2}}^{(0)} = R_1^0(\varphi) (L_1^1 + R_2^1(-(90^\circ + (90^\circ + \alpha))) \vec{r_G}^{(2)})$$

$$m_1 = \frac{Q_1}{g} \quad m_2 = \frac{Q_2}{g}$$

$$J_{10} = J_1 + m_1 a_1^2$$
 $J_{20} = J_2 + m_2 a_2^2$ $J_{G0} = \frac{G}{g} |\vec{r_G}^{(0)}|^2$ $J_0 = J_{10} + J_{20} + J_{G0}$

Podstawiając dane do równania $J\ddot{\varphi}=M$ otrzymano poniższą równość. Moment liczono względem punktu podstawy ramienia.

$$J\ddot{\varphi} = (\Omega \vec{r_s}^{(0)})^T \vec{S}^{(0)} + (\Omega \vec{r_{c1}}^{(0)})^T \vec{Q_1}^{(0)} + (\Omega \vec{r_{c2}}^{(0)})^T \vec{Q_2}^{(0)} + (\Omega \vec{r_G}^{(0)})^T \vec{G}^{(0)}$$

gdzie wcześniej nieoznaczone wielkości są równe:

$$\vec{S}^{(0)} = S * [\cos \gamma; \sin \gamma]^T \quad \vec{Q_1}^{(0)} = [0; -Q_1]^T \quad \vec{Q_2}^{(0)} = [0; -Q_2]^T \quad \vec{G}^{(0)} = [0; -G]^T;$$

z powyższego równania można było wyliczyć wartość S jaką ma przenosić śruba dla poszczególnych kątów φ , czego wynikiem są poniższe dwa wykresy:

Rysunek 4: Wykres siły S na śrubie - przeciwnie do ruchu wskazówek zegara

Rysunek 5: Wykres siły S na śrubie - zgodnie z ruchem wskazówek zegara

Należy zaznaczyć, że żądane przyśpieszenie kątowe musiało być do osiągnięcia w obu kierunkach obrotu. Z tego powodu, należało sprawdzić oba przypadki. Aby zapewnić pewien zapas bezpieczeństwa, sprawdzone zostały kąty od 20° do 100°. Największa siła S została osiągnięta przy skrajnym położeniu podczas ruchu w kierunku przeciwnym do wskazówek zegara, co zaznaczono na wykresie. Jej wartość wyniosła:

$$S_{max} \approx 990, 4N$$

Kolejnym celem było wybranie śruby pociągowej. Należało wybrać długość śruby gwarantującą pełny zakres ruchu. Zdecydowano się na poniższe rozwiązanie:

Producent	HIWIN
Numer katalogowy	R20-10K3-FSCDIN-550-620-0,052D
długość całkowita L [mm]	620
długość gwintu L_M [mm]	550
Średnica gwintu d [mm]	20
Skok gwintu l [mm]	10

Do śruby dobrano także podstawę z łożyskiem FK15 od tego samego producenta.

Producent	HIWIN
Numer katalogowy	18-000448
Osiowa nośność dynamiczna C_{dyn_axial} [N]	6 900
Osiowa nośność statyczna C_{0_axial} [N]	10 000
Dopuszczalna prędkość obrotowa [1/min]	19 000

Należało sprawdzić warunki wyboczenia dla śruby. Producent podał następujący schemat sprawdzenia warunków na wyboczenie:

4.5.5 Obciążenie przy wyboczeniu

Rysunek 6: źródło: HIWIN - klasyfikacja standardowych mechanizmów śrubowo-tocznych

W tym wypadku występuje najmniej korzystny przypadek, czyli para typu łożysko stałe - łożysko przesuwne. Dane jakie należało wstawić do wzoru na F_k są następujące:

$$f_k = 0,0625$$
 $d_r = 16,6mm$ $L_t = 586,3mm$

Wartość L_t zmierzono na złożeniu CAD dla najmniej korzystnego przypadku, czyli gdy odległość między łożyskami jest największa. Podstawiając dane do równań otrzymujemy:

$$F_k = 5621, 9N$$
 $F_p = 2810, 9N$

Finalnie należało sprawdzić warunek bezpieczeństwa dla maksymalnej wartości siły S:

$$k * S_{Tn} < F_n$$

Podstawiając dane:

$$k * S_{Tp} = 1,5 * 1276.4N = 1914.6N < F_p$$

Wniosek: Warunki bezpieczeństwa w przypadku bezpieczeństwa zostały spełnione.

Następnie należało wyznaczyć moment generowany przez silnik. Skorzystano w tym celu ze wzoru podanego przez firmę HIWIN. W obliczeniach skorzystano z najmniej korzystnej wartości sprawności podanej przez producenta, czyli $\eta_1=0.85$. Obliczenia zamieszczono poniżej.

$$T_A = \frac{S_{max}l}{2000\pi n_1} = 1,854Nm$$

Na podstawie żądanej siły wybrano silnik z oferty firmy HIWIN, którego najbardziej interesujące parametry przedstawiono poniżej. Kryterium doboru była wartość momentu znamionowego T_c , która musiała być większa od momentu T_a .

Producent	HIWIN
Numer katalogowy	EM1-C-M-75-2-B-F-0-D
Moment znamionowy T_c [Nm]	2.39
Moment szczytowy T_p [Nm]	8.36
Moc [W]	750
Znamionowa prędkość obrotowa n_N [1/min]	3 000
Maksymalna prędkość obrotowa n_{max} [1/min]	6 000

Należy tu podkreślić, że do obliczeń wytrzymałościowych użyto siły S wynikającej z maksymalnego momentu znamionowego. Siłę S wyliczono z przekształconego wzoru na moment generowany przez silnik.

$$S_{Tp} \approx 1276, 4N$$

3.2 Obliczenia wytrzymałościowe łożysk

W konstrukcji wykorzystano trzy typy łożysk:

- Łożyska ślizgowe promieniowe sferyczne GE 12 TXGR (producent SKF)
- Łożyska stożkowe jednorzędowe 32303 (producent SKF)
- Łożysko FK15 z podstawą (producent HIWIN)

W celu ułatwienia analizy wytrzymałościowej w przypadku wszystkich typów łożysk ograniczono się tylko do przypadku statyki.

3.2.1 Łożyska GE 12 TXGR

Parametry danych łożysk przedstawiono poniżej:

Producent	SKF
Nazwa produktu	GE 12 TXGR
Nośność dynamiczna C [kN]	30,0
Nośność statyczna C_0 [kN]	50,0

Łożyska GE 12 TXGR występują parami: przy obudowie silnika oraz przy zamocowaniu śruby do łącznika. W obu przypadkach pary te przenoszą siłę S i są obciążone tylko siłą poprzeczną. Siła przypadająca na jedno łożysko jest w takim wypadku równa:

$$P_0 = P_p = \frac{S_{Tp}}{2} = 638.2N$$
 $C_0 = 50kN$

$$P_0 < C_0$$

Ponieważ wypadkowa siła w łożyskach jest znacznie mniejsza (2 rzędy wielkości) od nośności statycznej łożyska, łożyska te będą w stanie wytrzymać zakładane obciążenia.

3.2.2 Łożyska 32303

Parametry danych łożysk przedstawiono poniżej:

Producent	SKF
Nazwa produktu	32303
Nośność dynamiczna C [kN]	42,8
Nośność statyczna C_0 [kN]	33,5
Prędkość wzorcowa [obr/min]	12 000
Prędkość graniczna [obr/min]	16 000
Kąt działania [°]	10,758
Współczynnik obliczeniowy	Y_0

Łożyska 32303 występują tylko przy podstawie i przenoszą one siłę reakcji \vec{R} . Także, aby wyliczyć wypadkową siłę przypadającą na łożysko, należało wpierw policzyć maksymalną wartość wspomnianej siły reakcji. Wyznaczono ją z równania statyki ramienia:

$$\vec{R} + \vec{G} + \vec{S} + \vec{Q_1} + \vec{Q_2} = \vec{0}$$

Poszczególne składowe wektora R wyniosły:

$$R_x = -S\cos\gamma \quad R_y = G - S\sin\gamma + Q_1 + Q_2$$

Tutaj należało również rozważyć ruch w dwóch kierunkach. Zależność wartości tej siły od kąta φ przedstawiono na dwóch poniższych wykresach:

Rysunek 7: Wykres siły reakcji R - siła od śruby działa w kierunku przeciwnym do silnika

Rysunek 8: Wykres siły reakcji R - siła od śruby działa w kierunku silnika

Z podanych wykresów można odczytać, że maksymalna wartość siły reakcji występuje przy sile S działającej w stronę silnika, a jej wartość wynosi:

$$R_{max} \approx 834, 5$$

Ponieważ w tym wypadku użyto łożyska stożkowego, można było spodziewać się wystąpienia siły osiowej wynikającej z naciągu wstępnego. Obliczono ją w następujący sposób.

Rysunek 9: Schemat wyznaczania siły naciągu wstępnego

Kąt $\gamma+\frac{\delta}{2}$ to tak zwany kąt działania. Zgodnie z dokumentacją producenta wynosi on:

$$\gamma + \frac{\delta}{2} = 10.758^{\circ}$$

Obliczenia wyglądały następująco:

$$P_p = \frac{R_{max}}{2} = 417.25N$$

$$\frac{P_w}{P_P} = \tan\left(\gamma + \frac{\delta}{2}\right) \quad P_w = P_p \tan\left(\gamma + \frac{\delta}{2}\right) = 75.23N$$

Aby wyliczyć siłę równoważną P_0 skorzystano ze sposobu podanego na stronie producenta.

$$P_0 = 0,5P_p + Y_0 P_w$$

$$P_0 < P_p \quad \rightarrow \quad P_0 = P_p$$

W przypadku omawianego łożyska otrzymano następujące wyniki:

$$P_p = 417.25N \quad P_w = 75.23N \quad P_0 = 0, \\ 5P_p + Y_0 \\ P_w = 291.37N \\ < P_0 \quad \rightarrow \quad P_0 = P_p = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 \\ > P_0 = P_0 = 417.25N \\ < P_0 = P_0 = P_0 = 417.25N \\ < P_0 = P$$

$$C_0 = 50kN \quad P_0 < C_0$$

Widać, że obciążenie równoważne jest ponad 100 razy mniejsze od wartości nośności statycznej, co gwarantuje, że omawiane łożyska wytrzymają zakładane obciążenia.

3.2.3 Łożyska FK15-C5

Parametry danych łożysk przedstawiono poniżej:

Producent	HIWIN
Numer katalogowy	18-000448
Osiowa nośność dynamiczna $C_{dynaxial}$ [N]	6 900
Osiowa nośność statyczna C_{0axial} [N]	10 000
Dopuszczalna prędkość obrotowa [1/min]	19 000

Łożysko to przenosi siłę tylko siłę S_{Tp} w postaci obciążenia osiowego. Należy sprawdzić warunek bezpieczeństwa:

$$k * S_{Tp} < C_{0axial}$$
 $k = 1, 5$

Po podstawieniu danych:

$$k * S_{Tp} = 1,5 * 1276,4N = 1914,6N$$
 $C_0 = 10000N$

Z rachunków wynika, że łożysko FK15 wytrzyma.

3.3 Obliczenia wytrzymałościowe wału przy podstawie

Należało wyznaczyć naprężenia zredukowane występujące w wale. Podstawą do tego było wcześniejsze wyliczenie maksymalnej wartości siły reakcji R. Niżej przedstawiono wykres momentu gnącego oraz siły tnącej wzdłuż wału. Należało tutaj przyłożyć siły reakcji w łożyskach w punktach o współrzędnych wynikających z konstrukcji zastosowanych łożysk.

Rysunek 10: Model obciążenia wału

Rysunek 11: Moment gnący w wale

Rysunek 12: Siła tnąca w wale

Zarówno moment gnący jak i siła tnąca są maksymalne w połowie wału (70.75mm od początku wału). Wynoszą one odpowiednio:

$$|M| = 22,77Nm$$
 $|T| = 417,25N$

W poniższej tabeli podano typ stali i jej parametry, z której wykonany ma być wał. Niżej podano również sposób obliczeń. Naprężenia zredukowane policzono zgodnie z hipotezą HMH.

Materiał	Stal 42CrMo4
R_e	700 MPa
V	0,3
E	$2,1*10^{5}MPa$

$$k = 1.5 \quad \sigma_{\text{red}} = \sqrt{\sigma^2 + 3\tau^2} \quad \sigma_{\text{red}} \cdot k < R_e$$
$$|M| \approx 22.77Nm \quad |T| = \approx 417.25N$$
$$\sigma = \frac{32M}{\pi d^3} \quad \tau = \frac{16T}{3\pi d^2} \quad I_y = \frac{\pi d^4}{64} \quad d = 17mm$$

Po podstawieniu danych otrzymano:

$$\sigma = 47,72MPa \quad \tau = 2,5MPa \quad \sigma_{red} = 47,74MPa \quad k*\sigma_{red} = 71,11MPa < 700MPa$$

Widać, że wał u podstawy ma spory zapas, jeśli chodzi o dopuszczalne naprężenia zredukowane.

3.4 Obliczenia wytrzymałościowe w sprzegle

3.4.1 Śruby w obudowie

Do połączenia obudowy sprzęgła z pokrywką zastosowano osiem śrub M6. Z kolei producent gwarantuje, że podstawa łożyska zamontowana za pomocą tylko czterech śrub M5 wytrzymana generowane na śrubie siły. Ponieważ ilość śrub jak i wymiar nominalny śruby w przypadku pokrywki jest większa, można zakładać, że śruby w omawianym połączeniu wytrzymają.

Rysunek 13: Śruby w obudowie

3.4.2 Śruby w sprzęgle

Konstrukcja sprzęgła zapewnia brak przenoszenia momentu przez śruby, a same śruby służą tylko do połączenia ze sobą poszczególnych części sprzęgła. Biorąc ten fakt pod uwagę, nie trzeba było uwzględniać ich w obliczeniach wytrzymałościowych, ponieważ nie przenoszą one żadnych obciążeń poza naciągiem wstępnym.

3.4.3 Kołki

Moment, jaki ma przenieść sprzęgło, jest przenoszony przez 4 kołki o poniższych parametrach. Z równowagi momentu, łatwo można wyliczyć siłę jaką przyjmuje jeden kołek:

Materiał	Stal S235JR
R_e	235 MPa
V	0,3
E	$2,1*10^{5}MPa$
średnica przekroju d	5mm
promień umieszczenia kołków od osi sprzęgła r	23.75mm

$$4F * r = M \quad F = \frac{M}{4 * r} \approx 88.0N$$

Dla wyliczonej siły F policzono wykresy momentu gnącego i siły tnącej w pojedynczym kołku.

Rysunek 14: Model obciążenia kołku w sprzegle

Rysunek 15: Moment gnący w kołku

Rysunek 16: Siła tnąca w kołku

Zarówno moment gnący jak i siła tnąca są maksymalne w połowie kołka (9mm od początku łba kołka). Wynoszą one odpowiednio:

$$|M| = 0.26Nm$$
 $|T| = 44.00N$

Niżej podano sposób obliczeń. Naprężenia zredukowane policzono zgodnie z hipotezą HMH.

$$k = 1.5$$
 $R_e = 1100MPa$ $\sigma_{\text{red}} = \sqrt{\sigma^2 + 3\tau^2}$ $\sigma_{\text{red}} \cdot k < R_e$

$$\sigma = \frac{32M}{\pi d^3} \quad \tau = \frac{16T}{3\pi d^2} \quad I_y = \frac{\pi d^4}{64}$$

Po podstawieniu danych otrzymano:

$$\sigma = 21,14MPa$$
 $\tau = 2,99MPa$ $\sigma_{red} = 22,05MPa$ $k * \sigma_{red} = 33,07MPa < 235MPa$

Widać, że kołek ma spory zapas, jeśli chodzi o dopuszczalne naprężenia zredukowane. ępnie należało sprawdzić ścinanie kołków:

$$\tau = \frac{kF}{\frac{\pi d^2}{4} * m} < R_e$$

gdzie m=1, gdyż jest to liczba powierzchni ścinanych. Po podstawieniu danych otrzymano:

$$\tau = 6,72MPa < 235MPa$$

W tym wypadku też otrzymano spory zapas wytrzymałości.

3.5 Obliczenia wytrzymałościowe śrub w ramieniu

Do łącznika w ramieniu użyto 4 śrub M14. Pierwszym krokiem w sprawdzeniu wytrzymałości śrub było wyznaczenie wypadkowej siły przenoszącej przez śruby. Aby lepiej zobrazować siły

występujące w śrubach należy zapoznać się z poniższą grafiką. Poszczególnym śrubą przypisano też na niej odpowiednie numery.

Rysunek 17: Siły w śrubach

Każda wypadkowa siła przenoszona przez każdą ze śrub jest sumą dwóch składowych: siły S_1 pochodzącej od siły S oraz siły S_2 pochodzącej od momentu generowanego przez siłę S. Sposób obliczeń wyglądał następująco:

$$\beta = 90^{\circ} - \varphi$$

,
gdzie kąt β oznacza kąt pomiędzy poziomem, a łącznikiem ramienia i można wyznaczyć go z
 podobieństwa trójkątów, analizując cały schemat kinematyczny ramienia.

Rysunek 18: Kat β

Znając kąt β należało przeprowadzić resztę obliczeń:

$$S_M = S \sin (\gamma + \beta)$$
 $S_1 = \frac{S}{4}$ $S_2 = \frac{S_M * R}{4 * r}$ $r = 30\sqrt{2}mm$ $R = h$
$$S_{wyp} = \vec{S_1} + \vec{S_2}$$

Teoretycznie siła maksymalna wystąpiłaby, gdyby ramię robota było równoległe do osi śruby. Niestety wymiary projektowanej konstrukcji nie pozwalają na takie ułożenie. Z tego też powodu, wartość Siły wypadkowej S_{wyp} w każdej śrubie należało sprawdzić w całym zakresie ruchu ramienia. Po zsumowaniu wektorów $\vec{S_1}$ oraz $\vec{S_2}$ dla różnych kątów φ otrzymano:

Rysunek 19: Wypadkowe siły w śrubach

Dla obu kierunków ruchu wykresy te wyglądały tak samo. Można zauważyć, że największą siłę przyjmuje na siebie śruba nr 2. Sprawdzając jej wytrzymałość, gwarantujemy również, że pozostałe śruby wytrzymają generowane w nich naprężenia. W tej śrubie siła maksymalna wypadkowa wyniosła:

$$S_{max} = 733, 7N$$

Przełożyło się to na następujące wykresy momentu gnącego i siły tnącej:

Rysunek 20: Model obciążenia śrubie

Rysunek 21: Moment gnący w śrubie nr $2\,$

Rysunek 22: Siła tnąca w śrubie nr 2

20

Zarówno moment gnący jak i siła tnąca są maksymalne w połowie kołka (51mm od początku gwinta). Wynoszą one odpowiednio:

$$|M| = 27.87Nm$$
 $|T| = 649.23N$

W poniższej tabeli podano typ stali i jej parametry, z której wykonane mają być śruby. Niżej podano również sposób obliczeń. Naprężenia zredukowane policzono zgodnie z hipotezą HMH.

Materiał	Stal 25CrMo4
R_e	500 MPa
V	0,3
E	$2,1*10^{5}MPa$

$$k = 1.5$$
 $\sigma_{\rm red} = \sqrt{\sigma^2 + 3\tau^2}$ $\sigma_{\rm red} \cdot k < R_e$

$$\sigma = \frac{32M}{\pi d_3^3}$$
 $\tau = \frac{16T}{3\pi d_3^2}$ $I_y = \frac{\pi d_3^4}{64}$ $d_3 = 11,546mm$

Po podstawieniu danych otrzymano:

$$\sigma = 184, 44MPa \quad \tau = 8, 27MPa \quad \sigma_{red} = 185, 00MPa \quad k * \sigma_{red} = 277, 49MPa < 500MPa$$

Z powyższych obliczeń wynika, że wszystkie śruby wytrzymają.

4 Podsumowanie

Celem projektu było zaprojektowanie ramienia robota, które miało spełniać określone wymogi konstrukcyjne pod względem wytrzymałościowym oraz funkcjonalnym. W ramach realizacji zadania przeprowadzono szczegółowe obliczenia wytrzymałościowe dla głównych komponentów konstrukcji między innymi takich jak kołki przenoszące moment w sprzęgle oraz śruby w ramieniu robota.

Obliczenia wytrzymałościowe obejmowały np. analizę naprężeń w elementach konstrukcyjnych. Dla kołków łączących wykazano wystarczający zapas wytrzymałości, zarówno w kontekście naprężeń zredukowanych, jak i ścinania, a wyniki były zgodne z dopuszczalnymi wartościami wytrzymałości materiałów, z których zakłada się wykonanie komponentów konstrukcji. Podobnie, dla śrub zastosowanych w ramieniu, obliczenia wykazały, że wytrzymają one przewidywane obciążenia, co zostało potwierdzone przez przeprowadzone analizy momentów gnących i sił tnących.

Dodatkowo, w ramach analizy obciążenia ramienia robota, rozważono najgorszy przypadek pod kątem obciążenia przy wyboczeniu, gdzie warunki bezpieczeństwa zostały spełnione, co gwarantuje stabilność konstrukcji w różnych warunkach pracy.

Podsumowując, zaprojektowane ramię robota spełnia wymagania wytrzymałościowe i funkcjonalne, zapewniając bezpieczeństwo oraz odpowiednią efektywność działania przy zachowaniu odpowiednich marginesów wytrzymałościowych. Projektowanie uwzględniało wszystkie krytyczne aspekty konstrukcyjne, co pozwala na zastosowanie tej konstrukcji w praktyce.