

MATH - 1

B4

DR. ADEL MORAD

Aims and Objectives:

- (1) Explain the concepts of volume of a solid.
- (2) Show how the volume of the solid can be generated.
- (3) Evaluate volumes of solid of revolution.
- (4) Introduce the concepts of length of curves.
- (5) Calculate length of curves.
- (6) Have a strong intuitive feeling for these important concepts.

Definition of a volume of solid of revolutions:

Definition:

Let f be continuous on [a, b]. The volume V of the solid of revolution generated by revolving the region bounded by the graphs of f, $\chi = a$, $\chi = b$ and the χ -axis is

$$V = \lim_{\|p\| \to 0} \sum_{i} \pi [f(w_i)]^2 \Delta x_i = \int_a^b \pi [f(x)]^2 dx$$

The requirement that $f(\chi) \ge 0$

for all χ in [a, b], was omitted in the definition.

Example 1:

If $f(x) = x^2+1$, find the volume of the solid generated by revolving the region under the graph of f from -1 to 1 about the x-axis.

Solution:

The solid is illustrated in the following figure included in the sketch is a typical rectangle and the disk that it generates. Since the radius of the disc that is $W_i^2 + 1$, its volume is $T(W_i^2 + 1)^2 \Delta X_i$ and

$$V = \lim_{\|p\| \to 0} \sum_{i} \pi (w_{i}^{2} + 1)^{2} \Delta x_{i}$$

$$= \int_{-1}^{1} \pi (x^{2} + 1)^{2} dx = \pi \int_{-1}^{1} (x^{4} + 2x^{2} + 1) dx$$

$$= \pi \left[\frac{1}{5} x^{5} + \frac{2}{3} x^{3} + x \right]_{-1}^{1}$$

$$= \pi \left[\left(\frac{1}{5} + \frac{2}{3} + 1 \right) - \left(-\frac{1}{5} - \frac{2}{3} - 1 \right) \right] = \frac{56}{15} \pi$$

Definition:

Let g be continuous [a, b]. The volume \mathcal{V} of t revolution generated by revolving the region bounded by the graphs of $\chi = g(y)$, y = c, y = d and the y-axis is

$$V = \lim_{\|p\| \to 0} \sum_{i} \pi [g(w_i)]^2 \Delta y_i = \int_{c}^{d} \pi [g(y)]^2 dy$$

Example 2:

The region bounded by the y-axis, the graph of $y = \chi^3$, y = 1 and y = 8 is revolved about the y-axis. Find the volume of the resulting solid.

Solution:

The solid is sketched together with a disc generated by a typical rectangle. Since we plan to integrate with respect to y, we solve the equation $y = \chi^3$ for χ in terms of y, obtaining $\chi = y^{1/3}$, and we let $\chi = g(y) = y^{1/3}$, then as shown in the figure, the radius of a typical disc is $g(w_i) = w_i^{1/3}$ and Its volume is $: (w_i^{1/3})^2 \Delta y_i$ applying the definition with $g(y) = y^{1/3}$ gives us

$$V = \lim_{\|\mathbf{y}\| \to 0} \sum_{i} \pi(w_{i}^{1/3})^{2} \Delta y_{i}$$

$$= \int_{1}^{8} \pi(y^{1/3})^{2} dy = \pi \int_{1}^{8} y^{2/3} dy$$

$$= \pi(\frac{3}{5})[y 5/3]_{1}^{8} = \frac{3}{5}\pi[8^{5/3} - 1] = \frac{93}{5}\pi$$

$$y = x^{3}$$

$$y = x^{3}$$

Example 3:

The region bounded by the graphs of the equations

$$x^{2} = y - 2, 2y - x - 2 = 0, x = 0, and x = 1$$

is revolved about the χ -axis. Find the volume of the resulting solid.

Solution:

The region and a typical rectangle are sketched. Then we wish to integrate with respect to χ we solve the first two equations for y in terms of χ , obtaining

$$y = x^2 + 2$$
 and $y = \frac{1}{2}x + 1$.

Since outer radius of the washer is $w_i^2 + 2$ and the inner radius is $1/2 w_i + 1$, its volume is $\pi[(w_i^2 + 2)^2 - (\frac{1}{2}w_i + 1)^2]\Delta x_i$.

Taking the limits of the sum of such volumes gives us

$$V = \int_0^1 \pi [(x^2 + 2)^2 - (\frac{1}{2}x + 1)^2] dx$$

$$= \pi \int_0^1 (x^4 + \frac{15}{4}x^2 - x + 3) dx$$

$$= \pi [\frac{1}{5}x^5 + \frac{5}{4}x^3 - \frac{1}{2}x^2 + 3x]_0^1 = \frac{79\pi}{20}$$

Arc Length:

To solve certain problem in the sciences it is essential to consider the length of the graph of a function.

For example, if a projectile moves along a parabolic course, we may wish to determine the distance it travels during a specified interval of time. Similarly, it may be necessary to find the length of a twisted piece of wire. We could simply straighten it and find the linear length with a ruler (or by mean of the distance formula). As we shall see, the key

If the norm $\|\mathcal{P}\|$ of the partition \mathcal{P} of [a, b] is small, then the distance between $Q_{i\cdot i}(x_{i\cdot 1},f(x_{i\cdot 1}))_{f(x_{i\cdot 1})}$ and $Q_i(x_{i\cdot j},f(x_{i\cdot j}))$ for each i is very small and we $f(x_i)$ expect the length $L_p = \sum_{i=1}^n d(Q_{i\cdot 1},Q_i)$ to be an approximation to the length of arc between \mathcal{A} and \mathcal{B} . This gives us a clue to suitable definition of arc length.

Specifically, we shall consider the limit of the sum \mathcal{L}_p as $\|\mathcal{P}\| \to o$ to formulate this concept precisely, and at the same time arrive at a formula for calculating arc length. By the distance formula

$$d(Q_{i-1},Q_i) = \sqrt{(x_i - x_{i-1})^2 + [f(x_i) - f(x_{i-1})]^2}$$

Applying the mean value theorem

$$f(x_i) - f(x_{i-1}) = f'(w_i)(x_i - x_{i-1})$$

where w_i is an open interval (χ_{i-1}, χ_i) . Substituting this into the preceding formula and letting $\Delta \chi_i = \chi_i - \chi_{i-1}$, we obtain

$$d(Q_{i-1},Q_i) = \sqrt{(x_i - x_{i-1})^2 + [f(x_i) - f(x_{i-1})]^2}$$

$$d(Q_{i-1}, Q_i) = \sqrt{(\Delta x_i)^2 + [f'(w_i)\Delta x_i)]^2}$$
$$= \sqrt{1 + [f'(w_i)]^2} \Delta x_i$$

Consequently,
$$L_P = \sum_{i=1}^n \sqrt{1 + [f'(w_i)]^2} \Delta x_i = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$

Definition:

Let the function f be smooth on a closed interval [a, b]. The arc length of the graph of f from $\mathcal{A}(a, f(a))$ and $\mathcal{B}(b, f(b))$ is given by

$$L_a^b = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$

Example 4:

If $f(x) = 3x^{2/3} - 10$, find the arc length of the graph of f from the point

$$A$$
 (8, 2) to B (27, 17).

Solution:

The graph *f* is sketched in the opposite figure, then

$$L_a^b = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$

$$L_8^{27} = \int_8^{27} \sqrt{1 + (\frac{2}{x^{1/3}})^2} dx = \int_8^{27} \sqrt{1 + \frac{4}{x^{2/3}}} dx$$
$$= \int_8^{27} \frac{\sqrt{x^{2/3} + 4}}{x^{2/3}} dx$$

To evaluate this integral, use integration by substitution

$$L_8^{27} = \int_8^{27} \frac{\sqrt{x^{2/3} + 4}}{x^{2/3}} dx$$

let
$$u = x^{2/3} + 4$$
 and $du = \frac{2}{3}x^{-1/3}dx$

Then
$$L_8^{27} = \frac{3}{2} \int_8^{27} \sqrt{x^{2/3} + 4} \left(\frac{2}{3x^{1/3}}\right) dx$$

If
$$\chi = 8$$
 then $u = (8)^{2/3} + 4 = 8$,

whereas if
$$\chi = 27$$
 then $\mu = (27)^{2/3} + 4 = 13$

Making substitution and changing the limits of

integration

$$L_8^{27} = \frac{3}{2} \int_8^{13} \sqrt{u} du = u^{3/2} \Big]_8^{13} = 13^{3/2} - 8^{3/2} \approx 24.2$$

