AIX-MARSEILLE UNIVERSITÉ

MÉMOIRE DE MASTER

Computational modelling of visual object localization in the magnocellular pathway

Auteur: Superviseur:

Pierre Albigès Emmanuel Daucé

Une thèse présentée à

ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ

en vue de l'obtention du diplôme de

Master de Neurosciences, spécialité Intégratives et Cognitives

et réalisée au sein de

Institut de Neurosciences des Systèmes

Durant la période : 04/12/2017 - 02/03/2018

"Wolves have no Kings"

Robin Hobb

AIX-MARSEILLE UNIVERSITÉ

Abstract

Faculté des Sciences, département de Biologie Master de Neurosciences

Master de Neurosciences, spécialité Intégratives et Cognitives

Computational modelling of visual object localization in the magnocellular pathway

by Pierre Albigès

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

The acknowledgments and the	people to thank s	o here, don't forge	et to include your	project advisor
The delate wied filterite dita the	people to titulity	o ricie, diori tronge	to to interduce your	project da visor

Contents

1	Intr	oduction	1
	1.1	Vision naturelle	1
	1.2	Vision artificielle	3
2	Mat	ériel et méthodes	5
	2.1	Support physique	5
	2.2	Support numérique	5
	2.3	Modèle POMDP	5
	2.4	Régression linéaire multivariée	5
Bi	bliog	graphy	7
A	Frec	quently Asked Questions	9
	A.1	How do I change the colors of links?	9

1 Introduction

1.1 Vision naturelle

Tous les êtres vivants utilisent la vision à un degré ou à un autre, et pour de nombreuses espèces -y compris la notre- elle est même la modalité perceptive principale.

Chez les vertébrés la vision débute à la surface de la rétine, où les cellules photovoltaïques (cônes et bâtonnets) réalisent la transduction des signaux lumineux qui les atteignent en signaux électriques, transmissibles à la suite du réseau nerveux.

Les cônes et les bâtonnets sont différenciées par un certain nombre de caractéristiques, notamment leur sensibilité aux longueurs d'ondes lumineuses et leur distribution au sein de la rétine. Ces différences permettent à notre rétine de rester fonctionnelle dans de nombreuses situations, y compris lorsque la luminance est très faible (le seuil absolu de la rétine humaine correspondant à 70 photons) et lui permet donc de nous fournir des informations pertinentes dans un large champs de contextes.

Le champs visuel peut être divisé en vision centrale et vision périphérique. La vision centrale (environ 2°) est soutenue par la région rétinienne appelée fovea, comprenant uniquement des cônes. On y observe l'acuité visuelle la plus importante (la région présente les champs récépteurs les plus petits de la rétine). Cette acuité visuelle diminue avec l'excentricité par rapport à la fovéa (autrement dit, les champs récépteurs visuels grandissent avec cette excentricité).

La vision périphérique comprends donc majoritairement des bâtonnets, une faible acuité et une perception des couleurs très faible (voir nulle). Elle est par contre très sensible à des variations de luminance et de fréquence spatiale (donc aux mouvements ; Werner and Chalupa, 2014).

Lors de l'exploration de son environnement visuel, un agent va en conséquence détecter des stimuli dans sa vision périphérique et réaliser des saccades oculaires (mouvements brefs (20-60ms) des globes oculaires réalisés grâce aux muscles oculomoteurs les encadrant) afin de placer l'image d'une cible (ou

sa position prédite dans l'espace) au niveau de la fovéa, permettant ainsi de traiter les informations en provenant avec la plus grande précision possible.

L'activité rétinienne est transmise le long des voies nerveuses visuelles jusqu'au cortex visuel, où sera réalisé la majorité du traitement des informatiques qu'elle supporte.

Entre la rétine et le cortex existe un certain nombre d'étapes, mais tout au long de ces voies, la distribution rétinienne de l'information (la rétinotopie) est conservée.

FIGURE 1.1: Schéma des voies visuelles humaines, de la rétine jusqu'au cortex visuel primaire (adapté de Hofer S. et al., 2010 via Wikimedia Commons [CC BY 3.0])

Dans leurs travaux de 1962 et 1977, Hubel et Wiesel émettent l'hypothèse des courants visuels, qui définit trois voies visuelles naissant dans le **corps genouillé latéral** (LGN, où sont présents les corps des types cellulaires donnant leur nom aux voies) et le projetant sur le **cortex visuel primaire** (V1) : **magnocellulaire** (M), **parvocellulaire** (P) et **koniocellulaire** (K). Chacune supporte le transport d'informations visuelles présentant des caractéristiques distinctes.

L'activité des cellules M ne distingue les couleurs et est sensible à des différences fines de luminance, de contraste et de fréquence spatiale. Ces caractèristiques semblent lier la voie M au traitement de la luminance et des mouvements (Werner and Chalupa, 2014).

Cette différentiation en voies visuelles réalisant des traitements différents des stimuli est conservée au delà de V1, et l'on décrit alors deux courant nerveux : la **voie dorsale** (codant majoritairement pour des informations provenant de la voie M) et la **voie ventrale** (codant majoritairement pour des informations provenant de la voie P).

1.2. Vision artificielle

La voie ventrale communique ainsi principalement avec les aires cérébrales du lobe temporal, l'activité de son réseau étant primordiale pour la reconnaissance et l'identification des objets visuels. La voie dorsale quant à elle communique principalement avec les aires du lobe pariétal, l'activité de ce réseau étant primordiale pour le traitement des relations spatiales entre les objets visuels ainsi que pour le guidage attentionnel et physique vers eux (Werner and Chalupa, 2014).

Parmi ce réseau dorsal, on trouve l'aire intrapariétale latérale (LIP) et l'aire 7a, qui recoivent en partie des informations directement depuis V1 et V2 (contournant donc le traitement d'aires en amont, dont l'aire MT) codant pour des stimuli dans le champs visuel périphérique.

Plus spécifiquement, des travaux ont relié l'activité des neurones de l'aire LIP à la plannification des saccades oculaires et à la représentation spatiale des objets visuels.

1.2 Vision artificielle

La vision représentant notre modalité perceptive principale et les aire dévouées à traiter ses informations occupant une part significative de notre système nerveux central (environ 50% chez certains primates ; Zhaoping, 2014), l'étudier permet de mieux comprendre le fonctionnement général de notre système nerveux.

De nombreux domaines d'étude s'intéressent donc au fonctionnement du système visuel. Parmi eux, les neuromathématiques se basent sur les données expérimentales (anatomique, physiologique et comportementale) pour émettre des modèles mathématiques sur le fonctionnement d'une partie ou de l'ensemble de la modalité visuelle. Ces théories doivent être assez générales pour expliquer son activité dans l'ensemble des contextes observables, mais aussi assez précises pour pouvoir prédire son comportement (Zhaoping, 2014).

Ces modèles neuromathématiques ne sont pas une finalité en soi dans la compréhension du système. Ils peuvent permettre d'identifier dans les théories de son fonctionnement des défauts ou des points qui n'ont pas encore été compris et donc diriger les études expérimentales vers ces points (Zhaoping, 2014).

L'identification de ces points et la démonstration de ces théories peut passer par le domaine des neurosciences computationnelles, qui va appliquer ces modèles mathématiques dans des modélisations du système nerveux. Au delà, les neurosciences computationnelles permettent de résoudre des problèmes d'ingénierie (puissance de calcul disponible, vitesse de traitement, adaptabilité à l'environnement, ...) en s'inspirant des systèmes biologiques, très optimisés, et donc de créer des systèmes artificiels neuromimétiques plus performants et intégrables dans des systèmes embarqués ou des neuroprothèses.

Dans cette étude, nous avons tenté de créer un modèle simple de localisation de cible visuelle dans un champs rétinien (le modèle possède une vision centrale où son acuité est maximale et une vision périphérique dont l'acuité diminue avec son excentricité).

Le modèle est capable de détecter dans sa vision périphérique une cible visuelle aux caractéristiques simples (représentée par un stimulus provenant le base de données MNIST), de prédire précisémment sa position pour de réaliser une saccade oculaire afin de la placer dans sa fovea et alors de l'identifier avec une certitude élevée.

$$E = mc^2 (1.1)$$

If you don't want a particular equation numbered, use the unnumbered form:

$$[a^{2}=4]$$

2 Matériel et méthodes

2.1 Support physique

L'ensemble des modélisations ont été réalisés sur une ordinateur personnel hébergeant une machine virtuelle :

	ID	Système d'explotation	Processeur	Mémoire vive	Carte graphique
Machine physique	ASUS ROG G75VW	Windows 7 64-bit SP1	Intel Core I7-3610QM	8GB DDR3	NVIDIA GeForce GTX670M
			2,30GHz (8CPU)		
Machine virtuelle	VirtualBox v.5.2.6	Ubuntu 16.04	4 CPU, 90% des ressources	5298 Mo	Le support GPU n'a pas été utilisé
(ressources allouées)					

2.2 Support numérique

2.3 Modèle POMDP

2.4 Régression linéaire multivariée

Bibliography

Werner, John S. and Leo M. Chalupa, eds. (2014). *The new visual neurosciences*. MIT Press, p. 1675. ISBN: 9780262019163.

Zhaoping, Li (2014). *Understanding vision: theory, models and data*. Oxford Uni, p. 383. ISBN: 9780199564668.

A Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

```
\hypersetup{urlcolor=red}, or
\hypersetup{citecolor=green}, or
\hypersetup{allcolor=blue}.
```

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.