IYSE 6420 Fall 2020 Homework1

Xiao Nan

GT Account: nxiao30 GT ID: 903472104

1. Circuit

a) Find the probability that the circuit is operational during time interval T.

S: circuit is operational

H1: E6 is working H2: E6 is not working

Element	E1	E2	E3	E4	E5	E6	E7
Works (p)	0.5	0.7	0.3	0.4	0.9	0.5	0.7
Fails (q)	0.5	0.3	0.7	0.6	0.1	0.5	0.3

Hypotheses H1:

P(S|H1) =
$$(1-q1q5) (1-q2q3q4q7)$$

= $(1-0.5 \times 0.1) \times (1-0.3 \times 0.7 \times 0.6 \times 0.3)$
= 0.91409

Hypotheses H2:

P(S|H2) =
$$1 - (1 - p1 \times (1 - q2q3q4)) \times (1 - p5 \times p7)$$

= $1 - (1 - 0.5 \times (1 - 0.3 \times 0.7 \times 0.6)) \times (1 - 0.5 \times 0.7)$
= 0.63405

By total probability,

$$P(S) = P(S|H1) \times P(H1) + P(S|H2) \times P(H2)$$

= 0.91409 \times 0.5 + 0.63405 \times 0.5
= 0.77407

b) If the circuit was found operational at the time T, what is the probability that the element E6 was operational.

$$P(H1|S)$$
 = $P(S|H1) \times P(H1) / P(S)$
= $0.91409 \times 0.5 / 0.77407$
= 0.59

2. Two Batches

What is the probability that the second product, randomly selected from the same batch, is found non-conforming?

H1: product is selected from 1st batch H2: product is selected from 2nd batch

Batches	Prob. Item Conforming	Prob. Selected
1 st batch	1.0	0.5
2 nd batch	0.9	0.5

A: product is conforming

$$P(A) = P(A|H1) P(H1) + P(A|H2) P(H2)$$

= 1.0 x 0.5 + 0.9 x 0.5
= 0.95

$$P(H1|A) = P(A|H1) \times P(H1) / P(A)$$

= 1.0 x 0.5 / 0.95
= 0.526

The probability that the product is from 1st batch: 0.526

$$P(H2|A) = P(A|H2) \times P(H2) / P(A)$$

= 0.9 x 0.5 / 0.95
= 0.474

The probability that the product is from 2nd batch: 0.474

Probability of the next product from same batch is non-conforming:

$$P(^A) = P(H1|A) \times P(A|H1) + P(H2|A) \times P(A|H2)$$

= 0.526 x 1.0 + 0.474 x 0.9
= 0.9526

3. Machine

a) What is the probability that the machine will fail? Evaluate this probability for p = 0.4.

Machine	M1	M2	M3	M4
Work	р	р	р	1/2
Fail	q = (1-p)	q = (1-p)	q = (1-p)	1/2

H1: No machine works

P(H1) =
$$q \times q \times q / 2 = q^3 / 2$$

= $0.6^3 / 2$
= 0.108

H2: Only one machine works

Mi: Only Mi works

P(H2) = P(M1) + P(M2) + P(M3) + P(M4)
= p x q² / 2 x 3 + q³ / 2
= 0.4 x
$$0.6^2$$
 / 2 x 3 + 0.6^3 / 2
= 0.324

H0: the machine will fail

$$P(H0) = P(H1) + P(H2) = 0.432$$

b) If the machine failed, what is the probability that the component which fails with probability 1/2 actually failed.

P(M4 failed | H0) =
$$1 - P(M4 | H0)$$

= $1 - P(H0 | M4) \times P(M4) / P(H0)$
= $1 - 1 \times q^3 / 2 / 0.432$

If q = 1-p = 0.6, then
P(M4 failed | H0) =
$$1 - (0.6^3 / 2 / 0.432)$$

= 0.75