Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)"

(МГТУ им. Н.Э. Баумана)

Факультет "Фундаментальные науки" Кафедра "Высшая математика"

ОТЧЁТ по учебной практике за 1 семестр 2020—2021 гг.

Руководитель практики,		Кравченко О.В
ст. преп. кафедры ФН1	$(no\partial nuc_{\mathcal{b}})$	правченко О.Б
студент группы ФН1–11		Эрихман Д.Н.
	$(no\partial nuc arphi)$	

Москва, 2020 г.

Содержание

1	Цели и задачи практики	
	1 Цели	
	2 Задачи	
	3 Индивидуальное задание	
2	Отчёт	
3	Индивидуальное задание	
	В.1 Пределы и непрерывность	

1 Цели и задачи практики

1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

1.2 Задачи

- 1. Знакомство с программными средствами, необходимыми в будущей профессиональной деятельности.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски L^AT_FX.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе IATEX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе IATEX типовые расчёты по курсе математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.

2 Отчёт

Актуальность темы продиктована необходимостью владеть системой вёрстки I^AT_EXи средой вёрстки TeXStudio для отображения текста, формул и графиков. Полученные в ходе практики навыки могут быть применены при написании курсовых проектов и дипломной работы, а также в дальнейшей профессиональной деятельности. Ситема вёрстки I^AT_EXсодержит большое количество инструментов (пакетов), упрощающих отображение информации в различных сферах инженерной и научной деятельности.

3 Индивидуальное задание

3.1 Пределы и непрерывность.

Задача № 1.

Условие. Дана последовательность $a_n=\frac{2n+3}{n+5}$ и число c=2. Доказать, что $\lim_{x\to\infty}a_n=c$, а именно, для каждого $\varepsilon>0$ найти наименьшее натуральное число $N{=}N(\varepsilon)$ такое, что $|a_n-c|<\varepsilon$ для всех $n>N(\varepsilon)$. Заполнить таблицу:

ε	0,1	0,01	0,001
$N(\varepsilon)$			

Решение. Рассмотрим неравенство $a_n-c<\varepsilon,\,\forall\varepsilon>0,\,$ учитывая выражение для a_n и c из условия варианта, получим

$$\left|\frac{2n+3}{n+5}-2\right|<\varepsilon$$

Неравенство запишем в виде двойного неравенства и приведём выражение под знаком модуля к общему знаменателю, получим

$$-\varepsilon < \frac{7}{n+5} < \varepsilon$$

Заметим, что левое неравенство выполнено для любого номера $n \in \mathbb{N}$ поэтому, будем рассматривать правое неравенство

$$\frac{7}{n+5} < \varepsilon$$

Выполнив цепочку преобразований, перепишем неравенство относительно n, и, учитывая, что $n \in \mathbb{N},$ получим

$$n+5 > \frac{7}{\varepsilon},$$

$$n > \frac{7}{\varepsilon} - 5,$$

$$n > \frac{7-5\varepsilon}{\varepsilon},$$

$$N(\varepsilon) = \left[\frac{7-5\varepsilon}{\varepsilon}\right],$$

где [] – целая часть от числа. Заполним таблицу:

ε	0,1	0,01	0,001
$N(\varepsilon)$	65	695	6995

Проверка:

$$|a_{66} - c| = \frac{7}{71} < 0.1,$$
$$|a_{696} - c| = \frac{7}{701} < 0.01,$$
$$|a_{6996} - c| = \frac{7}{7001} < 0.001.$$

Задача № 2.

Условие. Вычислить пределы функций

(a):
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 - 4},$$
(6):
$$\lim_{x \to +\infty} \frac{\sqrt[3]{1 - x} + \sqrt{2x + x^2}}{x + \sqrt{x^7 + 3}},$$
(B):
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x + x^2} - 2}{x + x^2},$$

(B):
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x + x^2} - 2}{x + x^2},$$

(r):
$$\lim_{x\to 0} \left(\cos\sqrt[3]{x}\right)^{\frac{1}{x^2}},$$

(д):
$$\lim_{x \to \infty} \left(x^2 \log_5 \frac{x^2 + 6}{x^2 + 1} \right)^{\frac{x+5}{x}}$$
,

(e):
$$\lim_{\substack{x \to \frac{\pi}{2}}} \frac{\ln \sin x}{\sin^2 4x}.$$

Решение.

(a):
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 - 4} = \lim_{x \to -2} \frac{(x+2)^2(x+1)}{(x-1)(x+2)^2} = \lim_{x \to -2} \frac{x+1}{x-1} = \frac{1}{3}$$

(б):

$$\lim_{x \to +\infty} \frac{\sqrt[3]{1-x} + \sqrt{2x+x^2}}{x + \sqrt{x^7+3}} = \lim_{x \to +\infty} \frac{\sqrt{2x+x^2}}{\sqrt{x^7+3}} = \lim_{x \to +\infty} \frac{x}{x^{3.5}} = \lim_{x \to +\infty} \frac{1}{x^{2.5}} = 0$$

(B):

$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x + x^2} - 2}{x + x^2} = \lim_{x \to 0} = \frac{2\sqrt[3]{1 + \frac{3x}{8} + \frac{x^2}{8}} - 2}{x + x^2} = \left[\frac{0}{0}\right] = \left|\sqrt[3]{1 + \frac{3x}{8} + \frac{x^2}{8}} \sim 1 + \frac{3x + x^2}{24}, x \to 0\right| = \lim_{x \to 0} \frac{2(1 + \frac{3x + x^2}{24}) - 2}{x} = \lim_{x \to 0} \frac{3x + x^2}{12x} = \lim_{x \to 0} (\frac{1}{4} + \frac{x}{12}) = \frac{1}{4}$$

 (Γ) :

$$\lim_{x \to 0} \left(\cos \sqrt[3]{x} \right)^{\frac{1}{x^2}} = \left| \cos \sqrt[3]{x} \sim 1 - \frac{\sqrt[3]{x^2}}{2}, x \to 0 \right| = \lim_{x \to 0} \left(1 - \frac{\sqrt[3]{x^2}}{2} \right)^{\frac{1}{x^2}} = \lim_{x \to 0} \left(1 - \frac{\sqrt[3]{x^2}}{2} \right)^{\frac{1}{x^2} * \frac{2}{\sqrt[3]{x^2}} * \frac{\sqrt[3]{x^2}}{2}} = \lim_{x \to 0} \left(e^{-\sqrt[3]{x^2}} \right)^{\frac{1}{x^2} * \frac{2}{\sqrt[3]{x^2}} * \frac{2}{\sqrt[3]{x^2}}} = \lim_{x \to 0} \left(e^{-\sqrt[3]{x^2}} \right)^{\frac{1}{x^2}} = \lim_{x \to 0} \left(e^{-\sqrt[3]{x^2}} \right)$$

(д):

$$\lim_{x \to \infty} \left(x^2 \log_5 \frac{x^2 + 6}{x^2 + 1} \right)^{\frac{x + 5}{x}} = \lim_{x \to \infty} \left(x^2 \log_5 \frac{(x^2 + 1) + 5}{x^2 + 1} \right)^1 = \lim_{x \to \infty} \left(x^2 \log_5 \left(1 + \frac{5}{x^2 + 1} \right) \right) = \lim_{x \to \infty} \left(1 + \frac{5}{x^2 + 1} \right) = \lim_{x \to \infty$$

(e):

$$\lim_{\substack{x \to \frac{\pi}{2}}} \frac{\ln(\sin x)}{\sin^2 4x} = \left| y = x - \frac{\pi}{2}, y \to 0 \right| = \lim_{\substack{y \to 0}} \frac{\ln\left(\sin\left(y + \frac{\pi}{2}\right)\right)}{\sin^2 4y} = \lim_{\substack{y \to 0}} \frac{\ln\left(\sin y * \cos\frac{\pi}{2} + \sin\frac{\pi}{2} * \cos y\right)}{\sin^2 4y} = \lim_{\substack{y \to 0}} \frac{\ln\left(\cos y\right)}{\sin^2 4y} = \lim_{\substack{y \to 0}} \frac{\ln\left(1 - \frac{y^2}{2}\right)}{16y^2} = \lim_{\substack{y \to 0}} \frac{-y^2}{16y^2} = \frac{-y^2}{32y^2} = -\frac{1}{32}$$

Задача № 3.

Условие.

- (a): Показать, что данные функции f(x) и g(x) являются бесконечно малыми или бесконечно большими при указанном стремлении аргумента.
- (б): Для каждой функции f(x) и g(x) записать главную часть (эквивалентную ей функцию) вида $C(x-x_0)^{\alpha}$ при $x\to x_0$ или Cx^{α} при $x\to \infty$, указать их порядки малости (роста).
- **(в):** Сравнить функции f(x) и g(x) при указанном стремлении.

№ варианта	функции $f(x)$ и $g(x)$	стремление
28	$f(x) = \sqrt{\frac{2+x}{2-x}}, \ g(x) = \frac{1}{3^x - 9}$	$x \rightarrow 2-$

Решение.

(a): Покажем, что f(x) и g(x) бесконечно большие функции.

$$f(x) = \lim_{x \to 2^{-}} \sqrt{\frac{2+x}{2-x}} = |y = 2-x, y \to 0| = \lim_{y \to 0} \sqrt{\frac{2+2-y}{2-2+y}} = \lim_{y \to 0} \sqrt{\frac{4-y}{y}} = \lim_{y \to 0} \sqrt{\frac{4}{y}-1} = \lim_{y \to 0} \frac{2}{\sqrt{y}} \sqrt{1-\frac{y}{4}} \sim \frac{2}{\sqrt{y}} * \left(1-\frac{y}{8}\right) = \lim_{x \to 2^{-}} \frac{2}{\sqrt{2-x}} * \left(1-\frac{2-x}{8}\right) = \infty$$

$$g(x) = \lim_{x \to 2^{-}} \frac{1}{3^{x} - 9} = \lim_{x \to 2^{-}} \frac{1}{9(3^{x-2} - 1)} = \lim_{x \to 2^{-}} \frac{1}{9(e^{(x-2)\ln 3} - 1)} =$$

$$= \left| e^{(x-2)\ln 3} - 1 \sim (x-2)\ln 3, (x-2) \to 0 \right| = \frac{1}{9\ln 3} * \lim_{x \to 2^{-}} \frac{1}{x-2} = -\infty$$

(б): Так как f(x) и g(x) бесконечно большие функции, то эквивалентными им будут функции вида $C(x-x_0)^{\alpha}$ при $x\to x_0$. Найдём эквивалентную для g(x) из условия

$$\lim_{x \to +\infty} \frac{g(x)}{(x - x_0)^{\alpha}} = C,$$

где C — некоторая константа. Рассмотрим предел

$$\lim_{x \to 2^{-}} \frac{g(x)}{(x-2)^{\alpha}} = \lim_{x \to 2^{-}} \frac{\frac{1}{9 \ln 3} * \frac{1}{x-2}}{(x-2)^{\alpha}} = \frac{1}{9 \ln 3} * \lim_{x \to 2^{-}} \frac{1}{(x-2)(x-2)^{a}}$$

при $\alpha=-1$ предел равен $\frac{1}{9 \ln 3}$, отсюда $C=\frac{1}{9 \ln 3}$ и

$$g(x) \sim \frac{1}{9 \ln 3} (x-2)^{-1} \sim -\frac{1}{9 \ln 3} (2-x)^{-1}$$
 при $x \to 2-$.

для f(x) все проще. При $x \to 2-$ функция f(x) эквивалентна функции $\frac{2}{\sqrt{2-x}}$, так как второй множитель стремиться к 1. Это и будет главной частью f(x)

$$f(x) \sim 2(x-2)^{-\frac{1}{2}}$$
 при $x \to 2-$

(в): для сравнения функций f(x) и g(x) рассмотрим предел их данном стремлении.

$$\lim_{x \to 2^{-}} \frac{f(x)}{g(x)} = \lim_{x \to 2^{-}} \frac{2(2-x)^{-\frac{1}{2}}}{-\frac{1}{9\ln 3}(2-x)^{-1}} = -18\ln 3 * \lim_{x \to 2^{-}} (2-x)^{\frac{1}{2}} = 0$$

отсюда g(x) есть бесконечно большая функция более высокого порядка, чем f(x).