Implication problem: $Z \models \varphi$?

use attribute dosure to solve

$$| z | = AC \rightarrow E$$

$$C_{z}(AC) = ACF \qquad E \neq ACF$$

3)
$$\geq \stackrel{?}{\models} CD \rightarrow DE$$
 fes
 $C_{\geq}(CD) = CDFAE$

DECDFAE

Essential axioms

Reflexivity: If $Y \subseteq X$, then $X \to Y$

Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z

Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Other axioms

Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$

Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$

$$FD_{s} \begin{cases} D \rightarrow A \\ F \rightarrow B \\ DF \rightarrow E \\ B \rightarrow C \end{cases}$$

Find prime attributes & candidate keys of the schema Note: cannot derive D, F ABCDEF.

Y is a key of R with attributes ABCDEF if for any two taples titz of R $T_{\mathbf{x}}(t_1) = T_{\mathbf{x}}(t_2)$ $\Rightarrow t_1 = t_2$

Let R be a relation with set of attributes U and FDs F $X\subseteq U$ is a key for R if $F\models X\to U$

Equivalently, X is a key if $C_F(X) = U$ (why?)

Candidate keys

Keys X such that, for each $Y \subset X$, Y is not a key Intuitively, keys with a minimal set of attributes

Prime attribute: an attribute of a candidate key

Find prime attributes & candidate keys of the schema ABCDEF.

Note: cannot derive D.F. ABCDEF.

add one attribute at a time NodeX: Compute CF(X) Nodes are elements of 2^U (sets of attributes)
There is an edge from X to Y if Y ⊂ X
Repeat until G is empty:
Find a node X without children
if C_F(X) = U:
ck := ck ∪ {X}
Delete X and all its ancestors from G
else:
Delete X from G

$$FD_{s} \begin{cases} D \rightarrow A \\ F \rightarrow B \end{cases}$$

$$E = \begin{cases} D \rightarrow A \\ F \rightarrow B \end{cases}$$

$$DF \rightarrow E \\ B \rightarrow C \end{cases}$$

Find prime attributes & DF candidate keys of the schema ABCDEF. Note: cannot derive D, F

=> every key must contain

Dand F

C= (DF) = DFABEC

=> DF is a key so candidate key

add one attribute at a time Node X: Compute CF(X)

- ck := Ø
- G := DAG of the powerset 2^U of U
 - Nodes are elements of 2^U (sets of attributes)
 - There is an edge from X to Y if Y ⊂ X
- Repeat until G is empty:

Find a node X without children if $C_F(X) = U$:

$$\mathsf{ck} := \mathsf{ck} \ \cup \{X\}$$

Delete X and all its ancestors from G else:

Delete X from G

$$U = ABCDEF$$

$$U =$$

Let R be a relation with set of attributes U and FDs F

Equivalently, X is a key if $C_F(X) = U$ (why?)

Candidate keys

Keys X such that, for each $Y \subset X$, Y is not a key Intuitively, keys with a minimal set of attributes

Prime attribute: an attribute of a candidate key

A relation with FDs F is in BCNF if for every $X \to Y$ in F

- $ightharpoonup Y \subseteq X$ (the FD is trivial), or
- X is a key

$\mathsf{IND}_{oldsymbol{s}}$

```
Let R,S,T be relations on attributes ABC

Given the following INDs.

\Xi = \begin{cases}
R[AB] \subseteq S[BC] \\
S[BC] \subseteq T[CA]
\end{cases}

determine which of the following INDs are implied.

Compute the closure \Xi^{+} of \Xi:

\Xi^{+} = \Xi \cup \text{ all derived INDs} \\
\text{including trivial INDs} \\
\text{R[X]} \subseteq R[X] \\
\text{(1) R[AB]} \subseteq S[BC] \\
\text{(2) S[BC]} \subseteq T[CA] \\
\text{(3) R[A]} \subseteq S[B] \\
\text{(4) R[B]} \subseteq S[B] \\
\text{(5) S[C]} \subseteq T[A]

Proposition of R[X] \subseteq R[X] = R[X] \subseteq R[X] = R[X] \subseteq R[X] = R[X] =
```