

Технологии формирования межотраслевого и межгосударственного единого информационного пространства

Лекция 7.НТИ. Обзор НЕТов. Сквозные технологии.

к.э.н., доцент Исабекова О.А.

МАРИНЕТ

Сегментация рынка «Маринет»

Применение современных технологий для создания новых типов судов, морской техники и морских сооружений для обеспечения новых потребностей в морском транспорте и освоении ресурсов океана

МАРИНЕТ

Целевые показатели рынка «Маринет»

Наименование целевого показателя	Ед. изм.	2018 г. (факт)	2025 г. (прогноз)
Объем экспорта продукции компаний рынка	млрд руб.	_	50
Количество российских компаний на мировом рынке	ед.	4	30
Доля российских компаний на мировом рынке цифровой навигации	%	_	12
Количество реализуемых проектов внедрения по направлению возобновляемых источников энергии океана	ед.	1	5
Количество реализуемых прорывных проектов на стадии ОКР по направлению инновационного судостроения	ед.	2	5
Количество учреждений высшего и профессионального образования, осуществляющих подготовку кадров по перспективным профессиям рынка	ед.	4	10

МАРИНЕТ

Барьеры для развития рынка «Маринет» в РФ

Нормативные барьеры

- Несоответствие нормативно-правовой базы, регулирующей отрасль «Маринет», международным нормам, в т. ч. в отношении использования геоинформационных данных, безэкипажного судоходства, подводной робототехники;
- Отсутствие системы стимулов для опережающего внедрения новых технологий и инноваций в морской отрасли.

Технологические барьеры

 Значительная зависимость от зарубежных поставок комплектующих и оборудования (доля импортных комплектующих в стоимости объектов составляет 35–75 %) в связи с введением санкционных мер – угроза для строительства в РФ отдельных типов судов и морской техники.

Инфраструктурные барьеры

 Отсутствие инфраструктуры и сервисов для обеспечения эффективного доступа к гидрографической, метеорологической и навигационной информации, в т. ч. на основе спутниковых данных, средств удаленного мониторинга, платформ для мультиагентского взаимодействия участников отрасли.

Кадровые барьеры

 Недостаточная квалификация кадров и отсутствие специализации по некоторым направлениям развития отрасли (технологии безэкипажного судовождения, новые материалы судостроения, гибридные схемы питания двигателя, интеллектуальные системы управления водным транспортом).

МАРИНЕТ

Динамика развития рынка «Маринет» в мире

МАРИНЕТ

Проекты в сфере безэкипажного судовождения

Страна	Компания	Проект
Япония	Japan Marine Science Inc, MTI Co., Ltd., IKOUS Corporation; Bemac Corporation, SKY Perfect JSAT Corporation	DFFAS (разработка автономного судна) ¹²⁴
США	Leidos, Austal USA при поддержке военно-морских сил США совместно с оборонным агентством DARPA	БЭНК Sea Hunter (разработка безэкипажного судна)
	Huntington Ingalls Inc., Lockheed Martin Corp, Gibbs & Cox Inc	Создание крупных беспилотных надводных судов класса LUSV (с 2020 г.) ¹²⁵
Великобритания	Rolls-Royce	Экспериментальный модульный БЭНК126
Россия	«Кронштадт Технологии» при поддержке PBK	В 2020 г. завершен первый этап создания технологической платформы для разработки технологий безэкипажного судовождения методом компьютерного моделирования в виртуальной среде. Подписано соглашение между разработчиком и судоходной компанией «Морспецсервис» об оснащении серии из десяти грузопассажирских судов системами автономного судовождения

МАРИНЕТ

В РФ вектор развития направления «Маринет» совпадает с мировыми тенденциями:

- за счет объединения крупных компаний в единую корпорацию выделяются специализированные ниши судостроения;
- цифровизация и компьютеризация отрасли морского транспорта позволяют напрямую обмениваться данными и взаимодействовать компьютерным системам судов, портов, судоходных компаний, регуляторов, логистических компаний;
- разрабатываются технологии безэкипажного судовождения;
- развиваются подводные и робототехнические технологии для освоения ландшафта мирового океана и использования его ресурсов.

НЕЙРОНЕТ

Прогнозируемые объемы глобального и российского рынка нейротехнологий

Сегмент	Глобальный объем рынка (прогноз на 2035 г.), млн долл.	Российский объем рынка (прогноз на 2035 г.), млн долл.
Нейрообразование	22 877	569
Нейроразвлечения и спорт	158 384	3960
Нейрофарма	619 392	15 485
Нейромедтехника	267 390	6688
Нейрокоммуникации и маркетинг	1 085 244	27 131
Нейроассистенты	5 629 244	140 748
Всего:	7 783 217	194 581

НЕЙРОНЕТ

Сегментация рынка «Нейронет»

Нейроассистенты

Развитие технологии понимания естественного языка, глубокого машинного обучения, персональных электронных ассистентов

Нейромедтехника

Развитие нейропротезирования органов чувств, разработка технических средств реабилитации для инвалидов, средств роботерапии с биологической обратной связью, мультимодальных, интерактивных, адаптивных нейроинтерфейсов для массового потребителя с увеличением объема передаваемой информации

Нейроразвлечения и спорт

Развитие брейнфитнеса, игр с использованием нейрогаджетов, нейроразвивающих игр

Нейрообразование

Развитие нейроинтерфейсов и технологий виртуальной и дополненной реальности в обучении, образовательные программы для усиления памяти и анализа использования ресурсов мозга

Нейрокоммуникации и маркетинг

Развитие технологий нейромаркетинга, прогнозирование массовых и индивидуальных поведенческих эффектов на основе нейрои биометрических данных, системы поддержки принятия решений, технологии выявления ближайших эмоционально окрашенных локаций для формирования ресурсных состояний, технологии оптимизации процессов организма во время коллективной деятельности

Нейрофарма

Развитие генной и клеточной терапии и коррекции; ранняя диагностика, лечение и предотвращение нейродегенеративных заболеваний; усиление когнитивных способностей здоровых людей

НЕЙРОНЕТ

Барьеры развития рынка «Нейронет»

Законодательные и административные барьеры

 Не отрегулировано обеспечение минимального необходимого объема норм для вывода на рынок новых продуктов

Технологические барьеры

• Отставание при разработке продуктов рыночных сегментов «Нейронет»

Кадровые барьеры

Недостаток квалифицированных кадров

Рыночные барьеры

• Отсутствие спроса на отечественные разработки

НЕЙРОНЕТ

Прогноз развития структуры рынка нейротехнологий США, 2017–2035 гг

ФУДНЕТ

FoodNet – еда, помноженная на технологии

Крупнейший рынок потребительской продукции в мире

Открытый для интеграции новых наукоемких технологий: от роботизации и IT до биотехнологий

Стимулирующий рост экономики и обеспечивающий высокое качество жизни населения

Технологии, способные радикально повысить доступность и качество питания

3,5 TPJHS

Размер глобального рынка FoodNet к 2035 году 20+

Сегментов рынка без устоявшихся стандартов для лидеров из России

Предмет работы рынка: формирование глобально конкурентоспособной российской «пищевой индустрии 4.0» - новых производственных, логистических и сбытовых решений, основанных на цифровизации, сетевых рыночных моделях, кастомизации продуктов и услуг, биотехнологиях и ресурсоэффективности

Какие факторы способствуют развитию рынка FoodNet

Изменение структуры занятости населения, нарастающая урбанизация

+20% населения городов к 2050 году средний возраст сельских жителей в развитых странах >58 лет

Прирост населения, рост продолжительности жизни

+30% населения к 2050 году +40% людей в возрасте старше 60 лет

Истощение ресурсной базы, переход к экономике замкнутого цикла

Потеря min 30% от объема произведенных продуктов еще до потребления

Повышение доходов и рост среднего класса в развивающихся странах

+5,2% ежегодного прироста экономики в развивающихся странах, +1,6% – в развитых странах до 2050 года

Геополитические и экономические риски изза глобальных климатических изменений, ужесточение экологической повестки

Появление налогов на «углеродный» след

На что опираться в развитии промышленности для рынка FoodNet

Bid Data, машинное обучение, искусственный интеллект

Расширение вычислительных возможностей машин, выполнение функций человеческого интеллекта, накопление больших данных, новые идеи и прогнозы

Применение для рынка FoodNet:

- Точное содержание питательных веществ в пище под конкретного конечного потребителя
- Оздоровление и улучшение состояния почвы
- Точное обнаружение вредителей и болезней
- Рост эффективности и безопасности первичного производства продукции
- Оптимизация цепочки поставок и розничной торговли

Блокчейн

Повышение прозрачности и валидации информации, простота обнаружения попыток взлома, защита прав собственности, рост эффективности за счет отказа от посредников и обеспечение беспрепятственных и автоматизированных транзакций между миллиардами устройств через Интернет вещей [IoT]

Применение для рынка FoodNet:

- Финансовые технологии, надежные цифровые идентификаторы, прозрачные цепочки поставок
- Безопасные и быстрые контракты и транзакции между отдельными лицами, компаниями, регуляторами

На что опираться в развитии промышленности для рынка FoodNet

Геокосмические технологии

Сбор и анализ данных из конкретных мест, позиционирование GPS, ГЛОНАСС, ГИС (географические системы) и RS (дистанционное зондирование)

- Точное зондирование
- Картрирование местности

Гиперконнективность

Появление сетей 5G, снижение стоимости устройств и подключение все большего количества людей и устройств к сети и услугам

- Интернет вещей (IoT), облачные и пространственные технологии, спутники и карты
- Новые точные данные для повышения эффективности агротехнологий и улучшения качества персонализированного питания

На что опираться в развитии промышленности для рынка FoodNet

Новые материалы

Материалы с новыми свойствами: биодеградация, способность к многоразовому рециклингу и др.

Применение для рынка FoodNet:

- Биополимеры
- Решения в области капсулирования
- Альтернативы химическим пестицидам

Автоматизация и роботизация

Датчики и сенсоры, обеспечение работы в тяжелых условиях, повышение эффективности, мобильные источники энергии

Применение для рынка FoodNet:

- Решение проблемы нехватки рабочей силы в с/х
- Дроны-наблюдатели за урожаем
- Автономная сельскохозяйственная техника и манипуляторы для сортировки
- Сенсоры для мониторинга здоровья человека и животных

3D-принтинг

Повышение ценности продукта за счет роста эффективности процесса проектирования, в т.ч. за счет сокращения отходов, времени и затрат на производство

Применение для рынка FoodNet:

- Автоматизированное приготовление пищи
- Возможность создания персонализированных блюд и использование данных технологий для массового производства еды

На что опираться в развитии промышленности для рынка FoodNet

Активизация эмоций, потребительских чувств и переживаний

Применение для рынка FoodNet:

- Повышение уровня знаний и осведомленности о продуктах и технологиях
- Новые инструменты маркетинга, работы и развлечений
- Рост эмпатии потребителя

Геномные и постгеномные технологии

Методы исследования и редактирования генома, клеточные технологии, синтетическая биология

Применение для рынка FoodNet:

- Генетически модифицированные микроорганизмы, штаммы бактерий-продуцентов пищевых ингредиентов
- Высокопродуктивные сортабиофабрики с возможностью персонализации питания, дополнительными функциональными свойствами и потенциалом улавливания CO₂

Промышленные биотехнологии

Методы культивирования организмов, в т.ч. водорослей, бактерий и др., методы экстракции

Применение для рынка FoodNet:

- Культивирование клеток, в т.ч. клеток «мяса»
- Технологии управления водными ресурсами и почвой
- Биотехнологии переработки традиционного с/х сырья и отходов производства

Вызовы рынка ФУДНЕТ для России

Необходимость технологической трансформации консервативных секторов экономики

Создать отечественные платформы сбора, хранения и обработки цифровых данных по всей цепочке создания продукции: от данных генетического материала семян и животных, с/х почв до персональных медицинских данных потребителей

Создать российские технологии по всей цепочке создания продукции: от генетического материала до упаковки готового продукта

Качество жизни населения

Производить продукцию с гарантированно высоким качеством и обеспечить сбалансированные рационы питания

Продовольственная безопасность

Освоить технологии 6-го технологического уклада: цифровые, агро- и промышленные биотехнологии

Трансформировать системы, в т.ч. управленческие, в агро-, пищевом, логистическом секторах и перейти к платформам Индустрии 4.0

Долгосрочная конкурентоспособность и опережающее технологическое развитие российских агро-, пищевого и смежных секторов экономики

Развить технологии, снижающие углеродный след, для обеспечения конкурентоспособности на экспортных рынках

Направления развития рынка до 2035 года

	Альтернативные источники сырья и пищи	«Умное» и высоко- продуктивное сельское хозяйство	«Умные» цепи поставок	Персонализиро- ванное и специа- лизированное питание	Биологизирован- ное и органиче- ское сельское хозяйство
2022 г.	Новые кормовые и пищевые ингре- диенты на основе растительного белка	Сервисы точного земледелия на основе обра- ботки данных (агро- экологических карт, экономических,		«Умные» устрой- ства для экспресс- определения микронутриент- ного статуса	Базы данных и цифровые сервисы для органического хозяйства Новые биологи-
2023 г.	1 10 1	логистических данных)	Решения по		ческие средства защиты растений
	микроводорослей, ингредиенты из аквакультуры		обеспечению прозрачности цепочки поставок		

Направления развития рынка до 2035 года

		•		• • • • • • • • • • • • • • • • • • • •	
	Альтернативные источники сырья и пищи	«Умное» и высоко- продуктивное сельское хозяйство	«Умные» цепи поставок	Персонализиро- ванное и специа- лизированное питание	Биологизирован- ное и органиче- ское сельское хозяйство
2024 г.	Продукты из насекомых	Дистанционное определение болезней, вредите- лей и их уничто- жение	«Умная» этикетка		Районированные породы животных и сорта растений
2025 г.	Современные пищевые биоком-позиты, в т. ч. полученные с применением промбиотехнологий	Новые высокопро- дуктивные сорта с/х культур	Роботизированные ОРЦ	Цифровая плат- форма персона- лизированного питания	
2026 г.		Полное цифровое описание техцепочек в с/х	Масштабирование магазинов без продавцов		Коробочные решения в области производства и переработки органической продукции
2027 г.			Новые упаковоч- ные материалы	Смарт-биодетокс персональная микробиота	Новые биологиче- ские ветеринарные и профилактиче- ские препараты
2028 г.	Готовые продукты на основе «клеточ- ного мяса»	С/х культуры для терапевтического питания при раз- личных заболева- ниях		Домашний кастомизиро- ванный пищевой принтер	
		Технологические карты сити-фер- мерства		Модульные конвейеры для производства персонализиро- ванного питания	

https://nti2035.ru/

Направления развития рынка до 2035 года

	Transpassionis passinis ponna do 2000 reda					
	Альтернативные источники сырья и пищи	«Умное» и высоко- продуктивное сельское хозяйство	«Умные» цепи поставок	Персонализиро- ванное и специа- лизированное питание	Биологизирован- ное и органиче- ское сельское хозяйство	
2024 г.	Продукты из насекомых	Дистанционное определение болезней, вредите- лей и их уничто- жение	«Умная» этикетка		Районированные породы животных и сорта растений	
2030 г.			Роботизированная логистика на дальние рассто- яния			
2032 г.		Локальное управ- ление микрокли- матом				
2033 г.				Продукты с персо- нализированными вкусами		
2034 г.			Полная роботиза- ция и доверитель- ная доставка еды			
2035 г.		C/х культуры и быстрорастущий лес с эффектами carbon capturing			Биологические агенты и средства защиты от неблагоприятных факторов в усло- виях городской среды	

ФУДНЕТ

НАПРАВЛЕНИЯ ПЕРСПЕКТИВНОГО РАЗВИТИЯ «ФУДНЕТ»

- альтернативные источники сырья;
- «умное» сельское хозяйство;
- «умная» логистика (от оптимизации цепочек поставок до последней мили и дарксторов);
- персонализированное питание;
- биологизированное сельское хозяйство.

БАРЬЕРЫ ДЛЯ РАЗВИТИЯ РЫНКА В РФ

Нормативные барьеры

- отсутствие программно-целевых инструментов поддержки развития агро- и промышленных биотехнологий;
- ограничения промышленного применения ГМ-микроорганизмов;
- ограничения использования беспилотных летательных аппаратов (БПЛА), датчиков, доступа к геоснимкам высокого разрешения;
- отсутствие стандартов рынка: пакета агротехнологий и продуктов для органического хозяйства, продуктов из альтернативных источников сырья и др.;
- необходимость актуализации справочников ОКВЭД, ОКПД, ТН ВЭД для продукции и технологий рынка «Фуднет»;
- дискриминационный подход в разработке нормативных документов при выпуске в оборот продуктов из альтернативных источников сырья.

Технологические барьеры

- зависимость от импортных технологий;
- отсутствие отечественной современной ингредиентной базы;
- высокая стоимость решений в области автоматизации и роботизации и др.

Кадровые барьеры

- отсутствие мотивации у высококвалифицированных специалистов к работе в сельской местности;
- отсутствие пула специалистов с мультидисциплинарными знаниями в сельском хозяйстве, ИТ, логистике, биотехнологиях и персонализированном питании;
- устаревшие программы образования биологов, технологов (в т. ч. в области производства продуктов питания), логистов, экономистов и др.

Инфраструктурные барьеры

 отсутствие полноценной лабораторной базы для проведения исследований и разработки новых видов сельскохозяйственной и пищевой продукции.

ФУДНЕТ

Оценка мирового объема направлений рынка «Фуднет» в 2020 г. и к 2035 г., млрд долл.

ЭДУНЕТ (EduNet)

Концепция:

EduNet – это рынок продуктов и сервисов, которые вовлекают и увлекают человека в развитие и реализацию своего потенциала

Предмет:

Вовлеченность и увлеченность человека в развитии и реализации своего потенциала

Ключевые векторы для развития рынка

- Технологии и методологии, повышающие вовлеченность человека в процесс обучения и развития (включая персонализацию, нативные интеграции в сервисы, удовлетворяющие другие потребности людей, а также искусственный интеллект)
- Построение процессов на данных
- Коллаборация и интеграция. **Пространство** для развития и реализации потенциала (избыточность выбора, опережающий контент, доверительное взаимодействие)

7 критериев рынка НТИ

Предприниматели-лидерь Какие технологические предприниматели и частные инвесторы готовы развивать новый рынок, чтобы стать глобальными лидерами? БФ «Вклад в будущее», Яндекс, Skyeng, Академия Росатома, MyBuddy.ai, Skillfolio, Impulse-Niery; vrconcept.net, Mel-science,

Научно-технологические заделы

Благодаря каким технологическим и научным наработкам (заделам) в России есть конкуретные преимущества для опережающего развития?

Анализ цифрового следа

Психологические, педагогические, управленческие методики и подходы в сфере развития человека

Технологические пакеты

Какое технологические пакеты необходимо разработать или собрать для реализации цепочек?

доступные многофункциональные гаджеты

доступные сервисы для анализа BigData

развитые сервисы цифровой безопасности

AI помощники

Геймификация

Симуляторы и тренажеры

Цепочки создания ценностКакини свойствами обладают новые

Какини свойствами обладают новы цепочки создания ценности для конечного пользователя?

Человекцентричность Коллаборация и интеграция (сетецентричность).

Доступность и открытость Вариативность, гибкость (большой выбор)

Адаптивность, рефлексивность (быстро корректируются под

пользователя и общество) Децентрализация,

минимизация посредничества (Peer2Peer, сообщества)

Ориентация на экологию человека + ценность для общества

Ключевые потребности

Какие ключевые потребности людей т.ч. безопасности) закрывают продукты и сервисы рынка?

Wellbeing (включая доход и безопасность)

Развитие Реализация компетенций / способностей

Геополитические и

общественные заделы

Кружковое движение

Rukami,

GeekBrains,

TalentTech.

HeadHunter.

MindFormat,

HRCODE,

lvy.ai,

Благодаря каким геополитическом, социальным или культурным обстоятельствам в России есть конкуретные преимущества для опережающего развития?

Активное использование технологий (Интернет, гаджеты, соцсети)

Сообщества в сфере образования (ученики, учителя, окружение)

Гос. поддержка цифровизации, цифровые «песочницы»

Стандарты и протоколы

Какие [международные] технологические стандарты и протоколы необходимо разработать (или существенно трансформировать) для масштабирования и обеспечения устойчивости рынка?

О персональных данных

Об использовании ИИ (авторство, меры свобод и т. д.)

Об использовании технологий в школе

О безбумажной легализации

Сквозное ПО

Какое программное обеспечение необходимо создать для реализации сетевых моделей?

Софт для распределенных данных

Софт для визуализации

Конструкторы контента

Сетевые бизнес-модели

Какие сетевые бизнес-модели реализуются в рынке? Чем обеспечивает экспоненциальный рост рынка?

«Начни пользоваться бесплатно»

Массовая кастомизация

Peer-to-Peer

Самообслуживание

Подписка

Сообщество (Привязывание клиентов)...

Из чего складывается оценка в \$100+ млрд емкости рынка?

Более 1 трлн. долл.

Источники

- 1. EdMarket
- 2. Global Al in Education Market
- HolonIQ

Схема рынка

EduTech и сквозные технологии

Машинное обучение и искусственный интеллект, BigData, мобильные технологии, VR и AR (дополненная и смешанная реальность), онлайн-технологии, нейротехнологии

FinNet, TechNet, NeuroNet, GameNet, HealthNet

Ключевые проекты

БАРЬЕРЫ ДЛЯ РАЗВИТИЯ РЫНКА В РФ

Технологические барьеры

- Отсутствие проверенных и достоверных моделей оценки потенциала человека;
- Отсутствие материально-технических условий обучения в цифровой среде;
- Отсутствие модели (принципов) доверия и требований к оператору (посреднику) хранения цифровых персональных данных;
- Отсутствие востребованности в доступных системах погружения и различных устройств (девайсов) для эффективного использования развивающей среды;
- Отсутствие общепризнанных и подтвержденных методик использования результатов работы нейроинтерфейсов.

Нормативные барьеры

- Отсутствие стандартизированных неинвазивных высокоточных интерфейсов;
- Неравенство образовательных онлайн-платформ и традиционных институтов.

Общественные барьеры

- Отсутствие длительного целеполагания при краткосрочном планировании, вследствие чего у людей не формируется мотивация для саморазвития и инвестирования в себя;
- Нет культуры и модели образовательного кредитования с отсроченным возвратом инвестиций;
- Отсутствие практики инвестирования в собственное развитие;
- Отсутствие апробированных, динамичных и актуальных моделей для мотивационного профиля.

Инфраструктурные барьеры

• Неравная степень доступности технологий – около трети россиян не имеет доступа к интернету или не использует его.

Кадровые барьеры

 Дефицит кадров – рост числа онлайн-сервисов в образовательной сфере опережает рост числа подготовленных преподавателей, методистов, продюсеров онлайн-курсов и менеджеров.

ЭДУНЕТ (EduNet)

Этапы развития

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

Искусственный интеллект — технологии создания систем, обеспечивающих самостоятельную обработку данных и принятие решений, в том числе в условиях неопределенности решения интеллектуальных и творческих задач.

В результате конкурсного отбора 2018 года Центр компетенций НТИ по направлению «Искусственный интеллект» был создан на базе Московского физико-технического института.

Деятельность Центра ведется с целью комплексного развития технологий «Искусственный интеллект» и осуществляется в рамках следующих групп мероприятий:

- Разработка и внедрение конкурентоспособных на мировых рынках решений и продуктов;
- Создание новой инфраструктуры исследований и разработок;
- Развитие системы подготовки кадров;
- Обеспечение правовой охраны и управление правами на результаты интеллектуальной деятельности, коммерциализация результатов НИОКР.

НТИ. Сквозные технологии

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

Центр реализует проекты НИОКР по 7 направлениям:

- Программные и технические средства для сильного машинного интеллекта;
- Разговорный искусственный интеллект;
- Распознавание и синтез речи;
- Экспертные, рекомендательные, информационно-аналитические системы, автоматизация проектирования и управления;
- Техническое зрение, обнаружение, распознавание, дешифрация, классификация изображений;
- Технологии искусственного интеллекта в робототехнике, умных машинах;
- Технологии искусственного интеллекта в энергетике, связи, городском хозяйстве и в других отраслях, «умный дом», «умный город», «умные» сети и системы.

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

НОВЫЕ ПРОИЗВОДСТВЕННЫЕ ТЕХНОЛОГИИ

Новые производственные технологии являются не только сквозными, но и базовыми для качественного роста большинства экономических отраслей. К новым производственным технологиям относят новые подходы, материалы, методы и процессы, которые используются для проектирования и производства глобально конкурентоспособных и востребованных на мировом рынке продуктов или изделий.

Центр компетенций НТИ по направлению «Новые производственные технологии» был создан по итогам конкурсного отбора в 2017 г. на базе Института передовых производственных технологий Санкт-Петербургского политехнического университета Петра Великого.

Центр компетенций «Новые производственные технологии» является одним из наиболее успешных, с крупнейшим проектным консорциумом. Кроме того, центр обеспечивает трансфер компетенций в другие организации посредством создания и развития зеркальных инжиниринговых центров.

НТИ. Сквозные технологии

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

НОВЫЕ ПРОИЗВОДСТВЕННЫЕ ТЕХНОЛОГИИ

Деятельность центра компетенций сосредоточена на четырех основных направлениях:

цифровое проектирование и моделирование, цифровые двойники;

новые материалы;

аддитивные технологии;

Smart-Manufacturing-технологии и гибридные производственные технологии.

850+ высококвалифицированных сотрудников

250+ НИОКР проектов с 2018 г.

2,4 млрд₽ доход от основной деятельности

15 тысяч специалистов подготовлено

83 организации в Консорциуме

НТИ. Сквозные технологии

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

НОВЫЕ ПРОИЗВОДСТВЕННЫЕ ТЕХНОЛОГИИ

В результате разработок центра компетенций были получены продукты, успешно внедренные в производственные процессы компаний, а также самого инжинирингового центра СПбПУ:

- CML-EV™ платформа разработки электротранспорта;
- CML-Bench цифровая платформа по разработке и применению цифровых двойников;
- цифровые двойники высокотехнологичных изделий: газотурбинных двигателей, транспорта, промышленного оборудования;
- технологии производства изделий с управляемой структурой и физико-механическими свойствами.

Пример проекта

Центр НТИ «Новые производственные технологии» в партнерстве с Минобрнауки России и ПАО »Камаз» разработал «с нуля» первый в России электромобиль «Кама-1» на основе технологии цифровых двойников.

Разработка выполнена всего за 2 года.

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

НЕЙРОТЕХНОЛОГИИ, ТЕХНОЛОГИИ ВИРТУАЛЬНОЙ И ДОПОЛНЕННОЙ РЕАЛЬНОСТИ

Нейротехнологии, технологии виртуальной и дополненной реальностей — методы, инструменты и форматы представления информации, основанные на эффекте присутствия, искусственной и (или) дополненной реальности, производительности психических и мыслительных процессов.

В результате конкурсного отбора 2017 года Центр компетенций НТИ по направлению «Нейротехнологии, технологии виртуальной и дополненной реальности» был создан на базе Дальневосточного Федерального Университета. Деятельность центра направлена на развитие таких передовых технологий и направлений, как виртуальная и дополненная реальность, цифровое проектирование и моделирование, UI/UX интерфейсы для VR/AR, нейроинжениринг, нейросистемы и вычисления.

Технологии и проекты, разрабатываемые центром, способствуют созданию социальнотехнологической экосистемы применения нейротехнологий, технологий виртуальной и дополненной реальности.

Стратегической целью реализации программы центра является достижение мирового уровня отечественных разработок в области нейротехнологий, технологий виртуальной и дополненной реальности в приоритетных сферах деятельности и вывод результатов на мировой рынок.

НЕЙРОТЕХНОЛОГИИ, ТЕХНОЛОГИИ ВИРТУАЛЬНОЙ И ДОПОЛНЕННОЙ РЕАЛЬНОСТИ

организаций в Консорциуме

5 ключевых проектов

Центр реализует пять приоритетных и ключевых комплексных научно-исследовательских проектов:

- Реабилитационный программно-аппаратный комплекс с применением VR&AR и интерфейсов с двухсторонней связью и Клиническое исследование метода реабилитации с использованием виртуальной реальности и технологий с двухсторонней связью.
- Тренажер с применением технологий виртуальной реальности и методология для направленной хронической стимуляция спинного мозга (SCS) в реабилитации пациентов, перенесших осложненную спиномозговую травму.

НЕЙРОТЕХНОЛОГИИ, ТЕХНОЛОГИИ ВИРТУАЛЬНОЙ И ДОПОЛНЕННОЙ РЕАЛЬНОСТИ

Центр реализует пять приоритетных и ключевых комплексных научно-исследовательских проектов:

- Формирование «цифрового портрета» нейродегенеративных заболеваний с использованием систем захвата движения и интерфейсов двухсторонней связи;
- Послеоперационная реабилитация верхних конечностей с применением VR.
- Система оценки эффективности нейрохирургического вмешательства и реабилитации с использованием системы бесконтактного мониторинга позиционирования кисти. Комплекс образовательных тренажеров с использованием VR/AR для общего и среднего специального образования.

Пример проекта

Реабилитация двигательных и вестибулярных нарушения с использованием технологий виртуальной реальности на основе тактильной обратной связи – использование реабилитиционного программно-аппаратного комплекса снижает время функционального восстановления, а также время, проведенное в стационаре, не менее чем на 30 %.

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

ТЕХНОЛОГИИ ХРАНЕНИЯ И АНАЛИЗА БОЛЬШИХ ДАННЫХ

Технологии хранения и анализа больших данных — методы хранения, обработки и анализа больших объёмов неструктурированных данных 188. В результате конкурсного отбора 2018 года Центр компетенций НТИ по направлению «Технологии хранения и анализа больших данных» был создан на базе Московского государственного университета им. М.В. Ломоносова.

ТЕХНОЛОГИИ ХРАНЕНИЯ И АНАЛИЗА БОЛЬШИХ ДАННЫХ

Стратегическими целями деятельности центра являются:

- Разработка новых технологий хранения и анализа больших данных мирового и отечественного уровня, востребованных на высокотехнологичных рынках НТИ, и формирование на основе прорывных результатов, получаемых в ходе фундаментальных исследований центра, научнотехнического задела для создания перспективных технологий больших данных.
- Разработка образовательной платформы с целью реализации образовательных программ по направлению больших и сверхбольших данных и стимулирования роста числа специалистов в соответствующей сфере.
- Разработка методов для осуществления предиктивной аналитики.
- Развитие системы автоматического поиска уязвимостей в веб-приложениях.

ТЕХНОЛОГИИ ХРАНЕНИЯ И АНАЛИЗА БОЛЬШИХ ДАННЫХ

Стратегическими целями деятельности центра являются:

- Создание инфраструктуры с целью формирования эффективной вычислительной базы для решения существующих и новых прикладных задач центра.
- Создание широких возможностей для объединения и координации российских исследователей и разработчиков в области технологий хранения и анализа больших данных, формирования национальной сети таких специалистов.
- Разработка решений для преодоления ряда актуальных для общества и государства вызовов, связанных с проблематикой хранения и анализа больших данных.
- Обеспечение взаимосвязи проводимых научных исследований и разработок в области больших данных.

ТЕХНОЛОГИИ ХРАНЕНИЯ И АНАЛИЗА БОЛЬШИХ ДАННЫХ

Центр реализует восемь приоритетных и ключевых комплексных научно-исследовательских проектов:

- •«Предиктивная аналитика технических систем»;
- •«Система автоматического поиска уязвимостей в веб-приложениях»;
- •«Математические основы интеллектуального анализа больших данных»;
- •«Облачные технологии обработки и интерпретации медицинских диагностических изображений на основе применения средств анализа больших данных»;
- •«Средства интеллектуального анализа больших массивов текстов»;
- •«Новые подходы к проектированию систем считывания для технологии трехмерной оптической памяти с многоуровневым кодированием»;
- •«Мониторинг и стандартизация развития и использования технологий хранения и анализа больших данных в цифровой экономике Российской Федерации»;
- •«Интеллектуальный анализ больших данных в задачах экологии и охраны окружающей среды».

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

ТЕХНОЛОГИИ ХРАНЕНИЯ И АНАЛИЗА БОЛЬШИХ ДАННЫХ

Пример проекта

Средства интеллектуального анализа больших массивов текстов: проект нацелен на разработку эффективных алгоритмов лингвистического анализа информации на русском и английском языках. На основе алгоритмов создан сервис по предварительной обработке текстов на 100 ведущих мировых языках, на которых публикуются научные произведения.

ТЕХНОЛОГИИ РАСПРЕДЕЛЕННЫХ РЕЕСТРОВ

Технология распределенного реестра представляет собой новый подход к созданию баз данных, ключевой особенностью которого является отсутствие единого центра управления. Технология блокчейн позволяет записывать и хранить информацию в сети, которая одновременно является децентрализованной (данные хранятся на нескольких серверах) и распределенной (каждый узел составляет и записывает обновления реестра независимо от других узлов).

Центр технологий распределенных реестров Санкт-Петербургского государственного университета (СПбГУ) создан в 2018 году по результатам конкурса на получение гранта на государственную поддержку создания «сквозной» технологии распределенных реестров.

В рамках деятельности Центра предлагается реализовать комплексный подход, основанный на создании экосистемы распределенных реестров и направленный на практическое применение технологий. Центр является ведущей методологической и экспертной межвузовской площадкой по формированию и развитию экосистемы технологии блокчейн.

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

ТЕХНОЛОГИИ РАСПРЕДЕЛЕННЫХ РЕЕСТРОВ

Направления деятельности центра:

Разработка программных продуктов на блокчейн.

Образование в сфере блокчейн.

Анализ регуляторных барьеров.

Сертификация и оценка блокчейн-проектов.

>35 высококвалифицированных сотрудников

24 организацив в Консорциуме

7 ключевых проектов

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

ТЕХНОЛОГИИ РАСПРЕДЕЛЕННЫХ РЕЕСТРОВ

Ключевые проекты:

- Платформа электронного документооборота.
- Система онлайн-голосований.
- Система управления интеллектуальной собственности.
- Обеспечение информационной безопасности систем.
- Интеллектуальная система контроля транспортировки грузов.
- Оптимизация взаимодействия между финансовыми учреждениями.
- Учет передаваемых объемов электроэнергии и автоматизации платежей.

Пример проекта

«КриптоВече» – блокчейн-система для проведения безопасных тайных и открытых онлайн-голосований. Система позволяет проводить дистанционные голосования и записывать результаты в распределенный реестр, обеспечивая автоматический подсчет голосов, безопасность и конфиденциальность. Используется для ученых советов вузов, публичных слушаний и голосований акционеров компаний.

ТЕХНОЛОГИИ БЕСПРОВОДНОЙ СВЯЗИ И «ИНТЕРНЕТА ВЕЩЕЙ»

Сквозные технологии беспроводной связи и интернета вещей включают в себя проекты развития беспроводных сетей, мобильную связь поколений 5G и 6G, сбор и обработку промышленных данных, комплексные проекты в области индустриального интернета вещей. Для развития данного направления в России в 2018 г. был создан Центр компетенций Национальной технологической инициативы по направлению «Технологии беспроводной связи и интернета вещей» на базе Сколтеха (Сколковского института науки и технологий).

Деятельность Центра направлена на содействие российским коммерческим и государственным компаниям в преодолении технологических барьеров и создании конкурентоспособных продуктов и услуг для мирового рынка в области технологий интернета вещей и беспроводной связи, прежде всего сотовой связи следующих поколений (5G и 6G), индустриального интернета вещей (IIoT) и обработки промышленных данных.

В рамках центра организован Консорциум, куда входят уже 11 университетов и научно- исследовательских центров, а также почти 50 представителей индустрии: от небольших стартапов до крупнейших госкорпораций. Открыто два региональных представительства ЦК НТИ — в Томске (на базе ТУСУРа) и в Санкт-Петербурге (на базе ГУАПа).

ТЕХНОЛОГИИ БЕСПРОВОДНОЙ СВЯЗИ И «ИНТЕРНЕТА ВЕЩЕЙ»

Силами ЦК НТИ, членов консорциума и компаний-партнёров консорциума создаются решения и продукты для таких перспективных рынков НТИ как Энерджинет, Автонет, Аэронет, Технет, Хэлснет, Фуднет и др.

Стратегическая цель реализации программы Центра — обеспечение всесторонней поддержки в области беспроводной связи и «Интернета вещей» для российских компаний в целях достижения лидерства на глобальных рынках, в первую очередь, определенных как перспективные рынки НТИ к 2022 году.

100+ высококвалифицированных сотрудников

50+ организаций в Консорциуме

20+ проектов

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

ТЕХНОЛОГИИ БЕСПРОВОДНОЙ СВЯЗИ И «ИНТЕРНЕТА ВЕЩЕЙ»

Ключевыми направлениями центра являются:

- Беспроводные технологии и мобильные сети связи.
- Обработка промышленных данных.
- Автономные платформы для IIoT.

Основные продукты центра:

- Разработка и тестирование решений для 5G.
- Разработки 6G.
- Платформа обработки промышленных данных.
- Открытый протокол OpenUNB для автономных решений в IoT

ТЕХНОЛОГИИ МАШИННОГО ОБУЧЕНИЯ И КОГНИТИВНЫЕ ТЕХНОЛОГИИ

Машинное обучение и когнитивные технологии — совокупность методов и средств создания систем, способных обучаться, способствовать принятию решения, обеспечивать развитие интеллектуальных способностей человека при работе с творческими задачами в условиях неопределенности и неполноты информации. Когнитивные технологии универсальны: они применимы абсолютно на всех рынках НТИ, так как являются драйвером развития современной информатики. Они предназначены для решения интеллектуальных и творческих задач, имеющих прикладное значение в различных областях науки, промышленности, бизнеса и социальной сферы.

Национальный центр когнитивных разработок был организован в 2018 году в рамках реализации проекта «Национальная технологическая инициатива» по направлению «Технологии машинного обучения и когнитивные технологии» на базе Университета ИТМО. Центр формирует отечественную экосистему разработки и внедрения когнитивных технологий и машинного обучения. Он ориентирован на создание систем усиленного интеллекта, способных помогать человеку принимать решения в сложных ситуациях, при этом самообучаясь и развиваясь вместе с ним.

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

ТЕХНОЛОГИИ МАШИННОГО ОБУЧЕНИЯ И КОГНИТИВНЫЕ ТЕХНОЛОГИИ

Целью национального центра когнитивных разработок на период до 2022 г. является приобретение устойчивого лидерства на рынках отраслевых систем и технологий интеллектуальной поддержки принятия решений. Это обеспечивается за счёт создания уникальной экосистемы поддержки жизненного цикла перспективных продуктов и услуг на основе машинного обучения и когнитивных технологий, а также связанных с ними технологий больших данных, компьютерного моделирования и виртуальной реальности.

21 организация в Консорциуме 16 ключевых проектов

ОБЗОР СКВОЗНЫХ ТЕХНОЛОГИЙ

ТЕХНОЛОГИИ МАШИННОГО ОБУЧЕНИЯ И КОГНИТИВНЫЕ ТЕХНОЛОГИИ

Продуктами центра являются:

- •Цифровая платформа для создания интеллектуальных объектов на основе больших данных.
- •Цифровая платформа экосистемы цифровой личности.
- •Цифровая платформа интеллектуальных технологий для смешанной реальности.
- •Цифровая платформа для развития умных городов.

Пример проекта

Центр разработал уникальную информационную технологию мирового уровня, а также реализующую ее линейку программных продуктов для создания и эксплуатации персональных цифровых ассистентов (аватаров) различного назначения, способных развиваться и обучаться в сообществе своих пользователей. Отличительные особенности этой технологии состоят в а). индивидуальном ценностно-ориентированном подходе к управлению логикой аватара, б). реализации процесса обучения через механизм социальной рефлексии, что позволяет достичь ускорения на два порядка по сравнению с существующими технологиями обучения ассистентов. Технология внедрена в Университете ИТМО¹⁹⁷; ведутся работы по ее адаптации к задачам НR, финансовых услуг, маркетинга и развлечений.

Технологии формирования межотраслевого и межгосударственного единого информационного пространства