TENTAMEN I TILLÄMPAD MATEMATIK OCH STATISTIK FÖR IT-FORENSIK. DEL 1: MATEMATIK

$7.5~\mathrm{HP}$

27 oktober, 2011 kl. 14.30 - 18.30

Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG.

Hjälpmedel: Typgodkänd miniräknare samt formelsamling som medföljer tentamenstexten.

Kursansvarig: Eric Järpe, telefon 0702-822 844, 035-16 76 53.

Till uppgifterna skall *fullständiga lösningar* lämnas. Lösningarna ska vara *utförligt* redovisade! Varje lösning ska börja överst på nytt papper. Endast en lösning per blad. Lösningar kommer finnas på internet: http://dixon.hh.se/erja/teach → Matematik och statistik för IT-forensik.

1. Antag att
$$A=\{1,2,3\},\ B=\{2,4,6\},\ C=\{3,4,5\}$$
 där $\Omega=\{1,2,3,4,5,6,7,8\}$ och beräkna $(A\cup B^C)\cap C^C.$

- 2. Vad blir den principala resten vid heltalsdivision av 100 med 7? (3p)
- 3. Beräkna största gemensamma delare för talen 20 049 och 25 830. (3p)
- 4. Lös ekvationerna

(a)
$$\frac{2}{x-1} = 4$$
,

(b)
$$3x^3 - 2x^2 - 11x + 10 = 0,$$
 (3p)

(c)
$$\log_2(3 \cdot 8^{x^2}) + x \log_3 27 + \log_3 \sqrt{3} = \log_3 9^{2x + \frac{3}{8}} - \log_2 \frac{1}{2}$$
. (3p)

5. Beräkna min och max för funktionen

$$f(x) = e^{x(2x^2 - 3x - 36)} \quad d\mathring{a} \quad -4 \le x \le 4.$$
 (3p)

- 6. Vilken blir koefficienten framför x^{13} i utvecklingen av $(\frac{6}{x} \frac{x^2}{3})^{11}$? (3p)
- 7. Bestäm ett värde på talet A så att

(a)
$$2x^3 + 9x^2 - 3x + A$$
 blir jämnt delbart med $x - 1$. (3p)

(b)
$$x^5 + 2x^4 + Ax^3 + 4x - 2$$
 blir jämnt delbart med $x^2 - x + 2$. (4p)

Matematik

Definition 1 MÄNGDBETECKNINGAR

 \emptyset Tomma mängden Ω Hela utfallsrummet

 \cup Unionen \cap Snittet

^C Komplementet |A| Antalet element i A

Sats 1 Additionssatsen

För alla mängder A och B gäller att $|A \cup B| = |A| + |B| - |A \cap B|$.

Sats 2 DE MORGANS LAGAR

För alla mängder A och B gäller att $(A \cup B)^C = A^C \cap B^C$ och $(A \cap B)^C = A^C \cup B^C$.

Sats 3 EXPONENTLAGARNA

 $a^{b+c} = a^b a^c$, $a^{bc} = (a^b)^c = (a^c)^b$, $a^0 = 1$ och $a^1 = a$.

Sats 4 LOGARITMLAGARNA

 $\log_a(bc) \ = \ \log_a b + \log_a c, \quad \log_a(b^c) \ = \ c\log_a b, \quad \log_a a = 1 \quad och \quad \log_a 1 = 0.$

Sats 5 KVADRERINGSREGLERNA

 $(a+b)^2 = a^2 + 2ab + b^2$, $(a-b)^2 = a^2 - 2ab + b^2$ och $(a+b)(a-b) = a^2 - b^2$.

Sats 6 Andragradsekvationer

 $Om \ x^2 + px + q = 0 \ s\mathring{a} \ \ddot{a}r \ x = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}.$

Sats 7 FAKTORSATSEN

Varje polynom $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1} + x_n$ av grad n har n nollställen x_1, x_2, \ldots, x_n och kan faktoriseras mha dessa enligt $p(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$.

Sats 8 Sambandet mellan koefficienter och rationella rötter

Om ekvationen

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = 0$$

har en rationell rot x = p/q så måste a_0 vara mulitpel av p och a_n vara mulitpel av q.

Algoritm 1 DIVISIONSALGORITMEN

För alla heltal a och $b \neq 0$ finns det heltal k och r sådana att $0 \leq r \leq |b| - 1$ och

$$\frac{a}{b} = k + \frac{r}{b}$$

där talet k kallas kvot och talet r kallas (principal) rest.

Definition 2

Ett **primtal** är ett heltal som inte är jämnt delbart med något annat heltal andra än 1 och sig självt.

Algoritm 2 Eratosthenes såll

Antag att man vill generera alla primtal $\leq n$.

- 1. Gör en lista över alla heltal from 2 tom n.
- 2. Ringa in det första icke strukna eller inringade talet.
- 3. Stryk alla multipler av det senast inringade talet från resten av listan.
- 4. Om inte alla tal $\leq \sqrt{n}$ är inringade eller strukna, gå tillbaks till steg 2.
- 5. $D\mathring{a}$ alla tal som $\ddot{a}r \leq \sqrt{n}$ behandlats $\ddot{a}r$ de icke strukna talen primtalen.

Definition 3

Den största gemensamma delaren, gcd(a, b), för två heltal, a och b, är produkten av alla primtalsfaktorer som är gemensamma i a och b.

Definition 4

Heltalen a och b kallas relativt prima om gcd(a, b) = 1.

Definition 5

Låt a och b vara heltal. Det minsta tal, c, sådant att a = bc eller b = ac kallas **minsta gemensamma multipel** för a och b och betecknas lcm(a, b).

$$\mathbf{Sats} \ \mathbf{9} \ \mathrm{lcm}(a,b) \ = \ \frac{ab}{\gcd(a,b)} \quad \textit{f\"{o}r alla heltal a och b}.$$

Algoritm 3 Euklides algoritm

För att bestämma gcd(a,b), där a > b, bestäm r_1, r_2, r_3, \dots så att

$$\begin{cases} a = c_1b + r_1 & d\ddot{a}r \ 0 \le r_1 \le |b| - 1 \\ b = c_2r_1 + r_2 & d\ddot{a}r \ 0 \le r_2 \le r_1 - 1 \end{cases}$$

och fortsättningsvis

$$\begin{cases} r_1 &= c_3 r_2 + r_3 & d\ddot{a}r \ 0 \le r_3 \le r_2 - 1 \\ r_2 &= c_4 r_3 + r_4 & d\ddot{a}r \ 0 \le r_4 \le r_3 - 1 \\ \vdots &\vdots \\ r_{n-2} &= c_n r_{n-1} + r_n & d\ddot{a}r \ 0 \le r_n \le r_{n-1} - 1 \\ r_{n-1} &= c_n r_n + 0 & (d\ddot{a}r \ allts\mathring{a} \ r_{n+1} = 0) \end{cases}$$

Den första resten r_i som $\ddot{a}r = 0$ ($dvs \, r_{n+1}$ i förklaringen ovan) kallas den första försvinnande resten, den senaste resten innan den (r_n i förklaringen ovan) kallas den sista ickeförsvinnande resten. Och det $\ddot{a}r$ den sista icke-försvinnande resten som $\ddot{a}r \gcd(a,b)$.

Sats 10 Summeringsregler

$$\sum_{k=1}^{n} a b_k = a \sum_{k=1}^{n} b_k \quad och \quad \sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

Sats 11 Aritmetisk summa

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Sats 12 Geometrisk summa

$$\sum_{k=0}^{n} a^{k} = \frac{a^{n+1} - 1}{a - 1} \quad \text{för alla } a \neq 1$$

Definition 6

En funktion f är **injektiv** om det för alla $x_1 \neq x_2$ gäller att $f(x_1) \neq f(x_2)$.

Definition 7

En funktion kallas inversen till funktionen f och betecknas f^{-1} om $f^{-1}(f(x)) = x$ för alla x som f är definierad för.

Sats 13

En funktion har invers om och endast om funktionen är injektiv.

Sats 14 Deriveringsregler

Om f och g är funktioner av variabeln x och a en konstant så gäller

1.
$$\frac{d}{dx}(f+g) = \frac{df}{dx} + \frac{dg}{dx}$$

2.
$$\frac{d}{dx}(af) = a\frac{df}{dx}$$

$$3. \ \frac{d}{dx}(a) = 0$$

4.
$$\frac{d}{dx}(x^n) = nx^{n-1} \text{ om } n \neq 0$$

5.
$$\frac{d}{dx}(f \cdot g) = f\frac{dg}{dx} + g\frac{df}{dx}$$

6.
$$\frac{d}{dx}(e^f) = \frac{df}{dx} \cdot e^f$$

7.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

8. Kedjeregeln:
$$\frac{d}{dx}(f(g(x))) = \frac{dg}{dx}(x) \cdot \frac{df}{dx}(g(x))$$

Sats 15 Om f är en deriverbar funktion så gäller att

 $\frac{df}{dx}(x) < 0$ om och endast om f är avtagande genom x, $\frac{df}{dx}(x) > 0$ om och endast om f är växande genom x.

Sats 16 BINOMIALKOEFFICIENTER

Antalet sätt att välja k element bland n möjliga (utan återläggning och utan hänsyn till ordningen) är

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 $d\ddot{a}r$ $n! = \prod_{j=1}^{n} j$

Sats 17 BINOMIALSATSEN

För alla reella tal a och b och positiva heltal n är

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Matematisk statistik

Definition 8 Sannolikhet

Om ett experiment har m möjliga utfall varav g är gynnsamma för händelsen A, så är sannolikheten för A vilket betecknas P(A) = g/m.

Sats 18 Komplementsatsen

$$P(A^C) = 1 - P(A)$$

Sats 19 Additionssatsen

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Definition 9

En slumpvariabel, X, är en (vanligtvis numerisk) generalisering av ett experiment. Mha slumpvariabeln kan olika händelser formuleras som att X har vissa värden. En slumpvariabels utfallsrum, Ω_X , är mängden av de värden som slumpvariabeln kan anta.

Definition 10

A och B är **oberoende** händelser om $P(A \cap B) = P(A)P(B)$.

Två slumpvariabler, X och Y med utfallsrum Ω_X resp. Ω_Y , är **oberoende** om $P(X \in M_X, Y \in M_Y) = P(X \in M_X)P(Y \in M_Y)$ för alla M_X i Omega $_X$ och M_Y och Ω_Y .

Sats 20 BINOMIALFÖRDELNING

Om $X = Y_1 + Y_2 + ... + Y_n$ där $P(Y_k = 1) = p$ och $P(Y_k = 0) = 1 - p$ för alla k = 1, 2, ... n och variablerna $Y_1, Y_2, ..., Y_n$ är oberoende av varandra, så är $X \in Bin(n, p)$ (dvs X är binomialfördelad med n och p) vilket innebär att dess sannolikhetsfunktion är $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$, E(X) = np och V(X) = np(1 - p).

Sats 21 NORMALFÖRDELNING

Denna betecknas $N(\mu, \sigma^2)$ där μ är väntevärde och σ^2 är varians. Om $X \in N(0,1)$ kallas X standard normalfördelad, och dess fördelningsfunktion är $\Phi(x) = P(X \leq x)$. Om $X \in N(\mu, \sigma^2)$ så är $P(X \leq x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ för alla $x \in \mathbb{R}$.

Symmetri: $\Phi(-x) = 1 - \Phi(x)$ för alla $x \in \mathbb{R}$.

Sannolikheter: $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ för all $a < b \in \mathbb{R}$

Definition 11 Beskrivande statistik

Medelvärde: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Stickprovsvarians:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right)$$

Definition 12 Konfidensintervall

Antag X_1, X_2, \ldots, X_n är oberoende och normalfördelade $N(\mu, \sigma^2)$. Då gäller att ett $100(1-\alpha)\%$ konfidensintervall $f\ddot{o}r$

$$\mu \ddot{a}r \begin{cases} \bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}} & om \ \sigma^2 \ \ddot{a}r \ k\ddot{a}nd \\ \bar{x} \pm t_{\alpha/2} (n-1) \frac{s}{\sqrt{n}} & om \ \sigma^2 \ \ddot{a}r \ ok\ddot{a}nd \end{cases}$$

$$\sigma^2 \ddot{a}r \left(0 \ , \frac{(n-1)s^2}{\chi^2_{1-\alpha}(n-1)}\right)$$

$$\begin{array}{ll} \textbf{Definition 13} & \textbf{HYPOTESTEST} \\ Antag \ X_1, \dots, X_n \ \ddot{a}r \ ett \ stickprov \ p \ \ddot{a} \ X \in N(\mu, \sigma^2). \ F \ddot{o}r \ att \ testa \ hypotesen \\ \left\{ \begin{array}{ll} H_0 \ : \ \mu = \mu_0 \\ H_1 \ : \ \mu \in M_{\mu} \end{array} \right. & respektive \\ \left\{ \begin{array}{ll} H_0 \ : \ \sigma^2 = \sigma_0^2 \\ H_1 \ : \ \sigma^2 \in M_{\sigma} \end{array} \right. \end{array}$$

används teststatistikan U vid signifikansnivån α . Testregeln är

$$\left\{ \begin{array}{ll} F\ddot{o}rkasta\ H_0\ om\ A_{\alpha} \\ F\ddot{o}rkasta\ inte\ H_0\ om\ inte\ A_{\alpha} \end{array} \right.$$

θ	H_0	H_1	u	A_{α}
μ		$\mu < \mu_0$		$u < -\lambda_{\alpha}$
$(\sigma^2 \ k\ddot{a}nt)$	$\mu = \mu_0$	$\mu > \mu_0$	$\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$	$u > \lambda_{\alpha}$
		$\mu \neq \mu_0$		$\{ u >\lambda_{\alpha/2}\}$
μ		$\mu < \mu_0$	_	$u < -t_{\alpha}(n-1)$
$(\sigma^2 \ ok\ddot{a}nt)$	$\mu = \mu_0$	$\mu > \mu_0$	$\frac{\bar{x}-\mu_0}{s/\sqrt{n}}$	$u > t_{\alpha}(n-1)$
		$\mu \neq \mu_0$		$ \{ u >t_{\alpha/2}(n-1)\} $
		$\sigma^2 < \sigma_0^2$	_	$u < \chi_{1-\alpha}^2(n-1)$
σ^2	$\sigma^2 = \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\frac{(n-1)s^2}{\sigma_0^2}$	$u > \chi_{\alpha}^2(n-1)$
		2 / 2		$u < \chi^2_{1-\alpha/2}(n-1)$
		$\sigma^2 \neq \sigma_0^2$		$\begin{array}{c c} eller \\ u > \chi^2_{\alpha/2}(n-1) \end{array}$
				-1 -1 -1 -1 -1 -1 -1 -1

Normalfördelningsvärden

 $\Phi(x)$

Tabell över värden på $\Phi(x) = P(X \le x)$ där $X \in N(0,1)$. För x < 0 utnyttja relationen $\Phi(x) = 1 - \Phi(-x)$.

x	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	0 -		0 -	0 -			0 -		0 -	
x	+0.0	+0.1	+0.2	+0.3	+0.4	+0.5	+0.6	+0.7	+0.8	+0.9
3	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Normal-percentiler:

Några värden på λ_{α} sådana att $P(X > \lambda_{\alpha}) = \alpha$ där $X \in N(0, 1)$

α	λ_{lpha}	α	λ_{lpha}
0.1	1.281552	0.005	2.575829
0.05	1.644854	0.001	3.090232
0.025	1.959964	0.0005	3.290527
0.01	2.326348	0.0001	3.719016

t-percentiler

Tabell över värden på $t_{\alpha}(df)$.

df	α 0.25	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.0000	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567	318.3088
2	0.8165	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248	22.3271
3	0.7649	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409	10.2145
4	0.7407	1.5332	2.1318	2.7764	2.9986	3.7470	4.6041	7.1732
5	0.7267	1.4759	2.0150	2.5706	2.7565	3.3649	4.0322	5.8934
6	0.7176	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074	5.2076
7	0.7111	1.4149	1.8946	2.3646	2.5168	2.9980	3.4995	4.7853
8	0.7064	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554	4.5008
9	0.7027	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498	4.2968
10	0.6998	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693	4.1437
12	0.6955	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545	3.9296
14	0.6924	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768	3.7874
17	0.6892	1.3334	1.7396	2.1098	2.2238	2.5669	2.8982	3.6458
20	0.6870	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453	3.5518
25	0.6844	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.4502
30	0.6828	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500	3.3852
50	0.6794	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778	3.2614
100	0.6770	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259	3.1737

χ^2 -percentiler

Tabell över värden på $\chi^2_{\alpha}(df)$.

df	α 0.999	0.995	0.99	0.95	0.05	0.01	0.005	0.001
$\frac{a_j}{1}$	0.0000	0.0000	0.0002	0.0039	3.8415	6.6349	7.8794	10.8276
2	0.0020	0.0100	0.0201	0.1026	5.9915	9.2103	10.5966	13.8155
3	0.0243	0.0717	0.1148	0.3518	7.8147	11.3449	12.8382	16.2662
4	0.0908	0.2070	0.2971	0.7107	9.4877	13.2767	14.8603	18.4668
5	0.2102	0.4117	0.5543	1.1455	11.0705	15.0863	16.7496	20.5150
6	0.3811	0.6757	0.8721	1.6354	12.5916	16.8119	18.5476	22.4577
7	0.5985	0.9893	1.2390	2.1673	14.0671	18.4753	20.2777	24.3219
8	0.8571	1.3444	1.6465	2.7326	15.5073	20.0902	21.9550	26.1245
9	1.1519	1.7349	2.0879	3.3251	16.9190	21.6660	23.5894	27.8772
10	1.4787	2.1559	2.5582	3.9403	18.3070	23.2093	25.1882	29.5883
12	2.2142	3.0738	3.5706	5.2260	21.0261	26.2170	28.2995	32.9095
14	3.0407	4.0747	4.6604	6.5706	23.6848	29.1412	31.3193	36.1233
17	4.4161	5.6972	6.4078	8.6718	27.5871	33.4087	35.7185	40.7902
20	5.9210	7.4338	8.2604	10.8508	31.4104	37.5662	39.9968	45.3147
25	8.6493	10.5197	11.5240	14.6114	37.6525	44.3141	46.9279	52.6197
30	11.5880	13.7867	14.9535	18.4927	43.7730	50.8922	53.6720	59.7031
50	24.6739	27.9907	29.7067	34.7643	67.5048	76.1539	79.4900	86.6608
100	61.9179	67.3276	70.0649	77.9295	124.342	135.807	140.169	149.449