

Software Architecture Description for ${\bf Afet~Bilgi}$

Emre Geçit, Baran Yancı May 31, 2023

Contents

1	Inti	oduct	ion	4				
	1.1	Purpo	ose and Objectives	4				
	1.2	Scope		4				
	1.3	Stakel	holders and Concerns	5				
2	References							
3	Glo	ssary		6				
4	Arc	hitecti	ural Views	7				
	4.1	Conte	ext View	7				
		4.1.1	Stakeholders' Uses	7				
		4.1.2	Context Diagram	7				
		4.1.4	Interaction Scenarios	8				
		4.1.3	External Interfaces	8				
	4.2	Funct	ional View	8				
		4.2.1	Stakeholders' Uses	8				
		4.2.2	Component Diagram	9				
		4.2.3	Internal Interfaces	9				
		4.2.4	Interaction Patterns	9				
	4.3	Inforn	nation View	10				
		4.3.1	Stakeholders' Uses	10				
		4.3.2	Database Class Diagram	10				
		4.3.3	Operations on Data	10				
	4.4	Deplo	yment View	11				
		4.4.1	Stakeholders' Uses	11				
		4.4.2	Deployment Diagram	11				
	4.5	Design	n Rationale	11				
		4.5.1	Context View	11				
		4.5.2	Functional View	11				
		4.5.3	Information View	11				
		4.5.4	Deployment View	12				
5	Arc	hitecti	ural Views for Suggestions to Improve the Existing					
	System 12							
	5.1	Conte	ext View	12				
		5.1.1	Stakeholders' Uses	12				
		512	Context Diagram	13				

	5.1.3	External Interfaces	13
	5.1.4	Interaction Scenarios	13
5.2	Functional View		
	5.2.1	Stakeholders' Uses	14
	5.2.2	Component Diagram	14
	5.2.3	Internal Interfaces	14
	5.2.4	Interaction Patterns	15
5.3	Inforn	nation View	15
	5.3.1	Stakeholders' Uses	15
	5.3.2	Database Class Diagram	16
	5.3.3	Operations on Data	16
5.4	Deplo	yment View	16
	5.4.1	Stakeholders' Uses	16
	5.4.2	Deployment Diagram	17
5.5	Design	n Rationale	17
	5.5.1	Context View	17
	5.5.2	Functional View	17
	5.5.3	Information View	17
	5.5.4	Deployment View	17
\mathbf{List}	of Fi	igures	
1	Conte	ext Diagram	7
$\frac{1}{2}$		nal Interfaces	8

List of Tables

1 Introduction

1.1 Purpose and Objectives

The purpose of afetbilgi.com is to provide a centralized platform for users to access information about natural disasters and emergency response procedures. The website aims to be a reliable source of information that can help users prepare for, respond to, and recover from disasters.

1.2 Scope

The scope of afetbilgi.com includes the following:

- Provide up-to-date information about natural disasters, including their causes, impacts, and possible response procedures.
- Provide important phone numbers, or the locations of important places or services to the people affected by the earthquake.
- Provide information about donation centers; such as blood, stem cells, money and so on to the people who want to help the people affected by the earthquake.
- Offer people to create help points and share the locations of the help points, with the help of the system.

The scope of afetbilgi.com does not include the following:

- Providing direct and instant communication services during a disaster event (this is the responsibility of official emergency response organizations).
- Offering financial assistance or physical aid during a disaster event (this is the responsibility of the official relief organizations).

1.3 Stakeholders and Concerns

The stakeholders of afetbilgi.com include the following:

- Users: They are concerned with accessing accurate information about natural disasters, preparing for emergencies, and communicating with others during a disaster event.
- Emergency responders: They are concerned with having access to timely and accurate information about disaster events to respond effectively.
- Information providers: People who voluntarily provide information about the earthquake. They can reach out to the maintainers of the system to provide information.
- Maintainers / Developers: People who maintain and develop the system. They develop the software and maintain it by verifying new information and adding it to the system.

2 References

The following references were consulted during the development of this SAD:

- \bullet ISO/IEC/IEEE 42010:2011, Systems and software engineering Architecture description
- Rozanski, N., & Woods, E. (2011). Software systems architecture: working with stakeholders using viewpoints and perspectives. Addison-Wesley Professional.

3 Glossary

The following terms are used throughout this SAD and have the following meanings:

- **Disaster:** A sudden, catastrophic event that causes widespread damage or loss of life. Examples include earthquakes, hurricanes, floods, and wild-fires.
- Emergency responder: A person who is trained to respond to emergencies and provide assistance to those in need. Examples include police officers, firefighters, and paramedics.
- ISO/IEC/IEEE 42010: A standard for software architecture description that provides a framework for describing the architecture of a software-intensive system.
- Relief organization: An organization that provides aid and support to communities affected by disasters. Examples include the Red Cross and UNICEF.
- **Scope:** The boundaries of a project or system, including what is included and what is excluded from consideration.
- Stakeholder: A person or group who has an interest in the success of a project or system. Examples include users, customers, and investors.
- **Viewpoint:** A perspective on the architecture of a system that emphasizes certain aspects or concerns. Examples include functional, data, and deployment viewpoints.

4 Architectural Views

4.1 Context View

4.1.1 Stakeholders' Uses

There are four main stakeholders of the system: the users, emergency responders, information providers and the programmers. The users use this view to understand the general structure of their interaction with the system. The emergency responders use it to understand the general structure of the system to plan their response to the disaster. Information providers use it to supervise the processes their data goes through. Programmers use it to understand the general structure of the system to develop and maintain it.

4.1.2 Context Diagram

As shown in the diagram, users can access the website through a web browser or mobile device. They can view information about natural disasters, emergency response procedures, and other related content. Administrators have additional privileges and can manage user accounts, update content on the website, and monitor site analytics.

Third-party services are also used to provide additional functionality on the website. For example, a map API is used to display maps of affected areas and help users locate nearby emergency resources.

Overall, the Context Diagram provides a high-level overview of how afetbilgi.com interacts with its external environment and stakeholders. This information is useful for understanding the scope of the system and identifying potential risks or dependencies that may impact its operation.

Figure 2: External Interfaces

As it can be observed from the figure above, afetbilgi.com has multiple external interfaces. GitHub, Information Provider, Information Validator, Developer, Google Sheets, and AWS. The operations given in the diagram can be summarized as follows:

Operation	Description
	Data providers can register new pieces
registerInformation()	of information to the Google Sheets-hosted
	database.
push()	Collaborators can change the code
push()	hosted in GitHub servers.
pull()	Collaborators can fetch the latest version
pun()	of the source code hosted on GitHub servers.
clone()	Collaborators can download and work on the code.
commit()	Collaborators can submit their changes on the code.
parseData()	GitHub server parses the data stored on AWS.
generatePDF()	Automated scripts hosted on GitHub servers
generater Dr ()	generate PDF files based on the latest information.
validateData()	Automated scripts hosted on GitHub servers
vandateData()	validate the data stored on AWS.
storeData()	Automated scripts hosted on GitHub servers
storeData()	store the data on AWS.
sendData()	Automated scripts hosted on GitHub servers
selidData()	request data from AWS and AWS sends the data.
road()	Users can read the information
read()	stored on the Google Sheets.
wwite()	Users can write the information
write()	stored on the Google Sheets.

Table 1: Operations on External Interfaces

4.1.4 Interaction Scenarios

4.1.3 External Interfaces

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.2 Functional View

4.2.1 Stakeholders' Uses

There are four main stakeholders of the system: the users, emergency responders, information providers and the programmers. The users use this view to understand the capabilities and limitations of the system. The emergency responders use it to determine how the system can be used to respond to the disaster. Information providers use it to understand what procedures are used and how they operate on their data. Programmers use it to understand the capabilities and limitations of the system to develop and maintain it.

4.2.2 Component Diagram

4.2.3 Internal Interfaces

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.2.4 Interaction Patterns

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.3 Information View

4.3.1 Stakeholders' Uses

There are four main stakeholders of the system: the users, emergency responders, information providers and the programmers. The users use this view

to understand the data that is stored in the system. The emergency responders use it to understand the data that is stored in the system to plan their response to the disaster. Information providers use it to understand what data is stored in the system and how it is used. Programmers use it to understand the data that is stored in the system to develop and maintain it.

4.3.2 Database Class Diagram

4.3.3 Operations on Data

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.4 Deployment View

4.4.1 Stakeholders' Uses

There are four main stakeholders of the system: the users, emergency responders, information providers and the programmers. The users use this view to understand how the system is deployed and how it reacts to changes, in other words, how dynamic it is. The emergency responders use it to understand how the system is deployed and how it reacts to changes to plan their response to the disaster. Information providers use it to understand how the system is deployed

and how the data is processed and the changes are reflected. Programmers use it to understand how the system is deployed and how it reacts to changes to develop and maintain it.

4.4.2 Deployment Diagram

4.5 Design Rationale

4.5.1 Context View

The rationale behind the context view is to provide a high-level overview of how afetbilgi.com interacts with its external environment and stakeholders. This information is useful for understanding the scope of the system and identifying potential risks or dependencies that may impact its operation.

4.5.2 Functional View

The rationale behind the functional view is to provide a detailed description of the capabilities and limitations of the system. This information is useful for understanding how the system can be used to respond to the disaster.

4.5.3 Information View

The rationale behind the information view is to provide a detailed description of the data that is stored in the system. This information is useful for understanding what data is stored in the system and how it is used.

4.5.4 Deployment View

The rationale behind the deployment view is to provide a detailed description of how the system is deployed and how it reacts to changes. This information is useful for understanding how dynamic the system is.

5 Architectural Views for Suggestions to Improve the Existing System

5.1 Context View

5.1.1 Stakeholders' Uses

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.1.2 Context Diagram

5.1.3 External Interfaces

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Cura-

bitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.1.4 Interaction Scenarios

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.2 Functional View

5.2.1 Stakeholders' Uses

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Cura-

bitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.2.2 Component Diagram

5.2.3 Internal Interfaces

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.2.4 Interaction Patterns

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Cura-

bitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.3 Information View

5.3.1 Stakeholders' Uses

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.3.2 Database Class Diagram

5.3.3 Operations on Data

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean

faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.4 Deployment View

5.4.1 Stakeholders' Uses

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.4.2 Deployment Diagram

5.5 Design Rationale

5.5.1 Context View

The rationale behind the context view is to provide a high-level overview of how afetbilgi.com interacts with its external environment and stakeholders. This information is useful for understanding the scope of the system and identifying potential risks or dependencies that may impact its operation.

5.5.2 Functional View

The rationale behind the functional view is to provide a detailed description of the capabilities and limitations of the system. This information is useful for understanding how the system can be used to respond to the disaster.

5.5.3 Information View

The rationale behind the information view is to provide a detailed description of the data that is stored in the system. This information is useful for understanding what data is stored in the system and how it is used.

5.5.4 Deployment View

The rationale behind the deployment view is to provide a detailed description of how the system is deployed and how it reacts to changes. This information is useful for understanding how dynamic the system is.