Quality Match

Bicycle Project Crowd Evaluation

By: Shiwali Kathpal

Contents

Getting to know data

Data

Image Distribution

General Analysis

Time Analysis

Classification

Image Classification

Examples of images

Accuracy comparison

Accuracy-Agreement

Future Scope of work

Effective Metric Formula

Automated classification

Feedback channels

Introduction to data

Question: "Do you see a bicycle?"

♦ Number of tasks: 9087

Number of Annotators: 22

Each task annotated: 10 times

Distribution of Images across Annotators

Overall Annotation Results

Total annotations

Accuracy vs Speed

Image Classification

Image Classification

Sr. No.	Number of errors	Image category
1.	0	quite easy
2.	1-3	easy
3.	4-6	highly disagreeable
4.	7-9	difficult
5.	10	very difficult

Image Classification

Examples of Images Category wise

Quite Easy (errors = 0)

Reference Output : True

Reference Output : False

Very Difficult (errors = 10)

Reference Output : False

Reference Output : True

Easy (errors= 1-3)

Highly
Disagreeable
(errors = 4-6)

Reference Output : True

Reference Output :

Reference Output:

True

Reference Output : False

Reference Output:

False

Reference Output : True

Focus Categories

Metric Formulation

Time Taken by Annotators

Comparison of Overall accuracy and accuracy in focus categories

Agreement of annotaators

Weighted accuracy & Agreement Distribution

Combined Score

(W1*Accuracy) + (W2*Agreement) + (W3*(1/time))

W1+W2+W3

Results

Good annotators

Sr. No.	Annotator
1.	Annotator_19
2.	Annotator_14
3.	Annotator_01

Bad annotaators

Sr. No.	Annotator
1.	Annotator_08
2.	Annotator_10
3.	Annotator_04

Clustering results

annotator_num	labels
01	Good
02	Bad
03	Good
04	Bad
05	Good
06	Bad
07	Good
08	Bad
09	Good
10	Bad
11	Good
12	Bad
13	Good
14	Good
15	Good
16	Good
17	Good
18	Good
19	Good
20	Good
21	Good
22	Good

Summary

- 91000 annotations by 22 annotators.
- Filtered duplicate data.
- Filtered further using Image classification.
- Combined score (accuracy, agreement and time).

Conclusion

- Effective Image Classification
- Combined metric of weighted accuracy and level of agreement
- Image scrutiny
- Take on time

Limitations

- Limited information about the image properties.
- Less data where errors were made.

Further Scope of work

- Better image classification.
- Optimization of metric formula.
- Improved prototype.
- Regular learning for annotators.
- Annotations by GPT-4.

Thank You

Code Overview

Extract

Transform

Load

- Json parser

- Merger
- Entities extractor
- Data filter
- Metric Builder
- Clustering

CSV