Two Robots

You have a warehouse with \$M\$ containers filled with an infinite number of candies. The containers are arranged in a single row, equally spaced to be \$1\$ meter apart. You also have \$2\$ robots that can pick up \$1\$ piece of candy and transport it between any two containers.

The robots take instructions in the form of *queries* consisting of two integers, \$M_a\$ and \$M_b\$, respectively. To execute a query, a robot travels to container \$M_a\$, picks up \$1\$ candy, transports it to container \$M_b\$, and then stops at \$M_b\$ until it receives another query.

Calculate the *minimum total distance* the robots must travel to execute \$N\$ queries *in order*.

Note: You choose which robot executes each query.

Input Format

The first line contains a single integer, T (the number of test cases); each of the T test cases is described over N+1 lines.

The first line of a test case has two space-separated integers, \$M\$ (the number of containers) and \$N\$ (the number of queries).

The N subsequent lines each contain two space-separated integers, M_a and M_b , respectively; each line N_i describes the i^{th} query.

Constraints

- \$1 \le T \le 50\$
- \$1 < M \le 1000\$
- \$1 \le N \le 1000\$
- \$1 \le a, b \le M\$
- \$M_a \ne M_b\$

Output Format

On a new line for each test case, print an integer denoting the *minimum total distance* that the robots must travel to execute the queries in order.

Sample Input

3	
5 4	
15	
3 2	
4 1	
2 4	
4 2	
12	
4 3	
10 3	
2 4	
5 4	
9 8	

Sample Output

Explanation

In this explanation, we refer to the two robots as \$R_1\$ and \$R_2\$, each container \$i\$ as \$M_i\$, and the total distance traveled for each query \$j\$ as \$D_j\$.

Note: For the first query a robot executes, there is no travel distance. For each subsequent query that robot executes, it must travel from the location where it completed its last query.

Test Case 0:

The minimum distance traveled is \$11\$:

- Robot: \$R_1\$\$M_1 \rightarrow M_5\$\$D_0 = | \ 1-5 \ |=4\$ meters.
- Robot: \$R_2\$\$M_3 \rightarrow M_2\$\$D 1 = | \ 3-2 \ |=1\$ meter.
- Robot: \$R_1\$
 \$M_5 \rightarrow M_4 \rightarrow M_1\$
 \$D 2 = | \ 5-4 \ | + | \ 4-1 \ | = 1 + 3 = 4\$ meters.
- Robot: \$R_2\$
 \$M_2 \rightarrow M_2 \rightarrow M_4\$
 \$D 3 = | \ 2-2 \ | + | \ 2-4 \ | = 0 + 2 = 2\$ meters.

Sum the distances traveled ($D_0 + D_1 + D_2 + D_3 = 4 + 1 + 4 + 2 = 11$) and print the result on a new line.

Test Case 1:

- Robot: \$R_1\$\$M_1 \rightarrow M_2\$\$D_0 = | \ 1-2 \ |=1\$ meters.
- Robot: \$R_2\$\$M_4 \rightarrow M_3\$\$D_1 = | \ 4-3 \ | = 1\$ meters.

Sum the distances traveled ($D_0 + D_1 = 1 + 1 = 2$) and print the result on a new line.

Test Case 2:

- Robot: \$R_1\$
 \$M_2 \rightarrow M_4\$
 \$D_0 = | \ 2-4 \ |=2\$ meters.
- Robot: \$R_1\$
 \$M_4 \rightarrow M_5 \rightarrow M_4\$
 \$D_1 = | \ 4-5 \ | + | \ 5-4 \ | = 1 + 1 = 2\$ meters.
- Robot: \$R_2\$\$M_9 \rightarrow M_8\$\$D_2 = | \ 9-8 \ |=1\$ meters.

Sum the distances traveled ($D_0 + D_1 + D_2 = 2 + 2 + 1 = 5$) and print the result on a new line.