Ingénieur en instrumentation

« Apprentissage supervisé »

Anissa MOKRAOUI

Laboratoire de Traitement et Transport de l'Information (L2TI, UR 3043) Bâtiment E, bureau 211

E-mail: anissa.mokraoui@univ-paris13.fr

Tel: 01 49 40 40 60

1

Entrainement d'un modèle

TD-TP1: Entrainement d'un modèle

Principe de la validation croisée (cross validation)

■ Jeu de données limité peut dégrader la qualité de estimateur :

Risque moyen : $R_{emp}(f, \nu)$

Jeu de doni	ıées	
Données d'entrainemen	Données de test	
Apprendre le model	Validation	

Validation

Validation

Validation

- Solution : adopter une validation croisée
 - Les données d'entrainement sont divisées en ${\it K}$ segments identiques
 - Les ${\it K}$ 1 segments sont réservés pour apprendre le modèle (f^k)
 - Un segment (ν^k) est réservé pour la validation du modèle

Inconvénient: Le coût de l'entrainement peut être élevé sur le plan calculatoire (K modèles)

Validation

 $R_{emp}\left(f^{1}, \nu^{1}\right)$

 $R_{emp}\left(f^2, v^2\right)$

 $R_{emp}\left(f^3, v^3\right)$

 $R_{emp}\left(f^4, v^4\right)$

Jeu de données (dataset)?

Base de données (dataset) fictive sur les ressources humaines qui n'est pas sous format numérique :

Name	Gender	Degree	Postcode	Age	Annual salary
Aditya	M	MSc	W21BG	36	89563
Bob	M	PhD	EC1A1BA	47	123543
Chloé	F	BEcon	SW1A1BH	26	23989
Daisuke	M	BSc	SE207AT	68	138769
Elisabeth	F	MBA	SE10AA	33	113888

Même base de données (dataset) fictive convertie en format numérique :

Gender ID	Degree	Latitude	Longitude	Age	Annual Salary
		(in degrees)	(in degrees)		(in thousands)
-1	2	51.5073	0.1290	36	89.563
-1	3	51.5074	0.1275	47	123.543
+1	1	51.5071	0.1278	26	23.989
-1	1	51.5075	0.1281	68	138.769
+1	2	51.5074	0.1278	33	113.888

Ь

Notations

 x_n : vecteur de dimension D (attributs ou features de l'exemple (ou observation) n) avec $n=1,\ldots,N$ où N représente le nombre d'exemple de la base d'entrainement

 y_n : étiquette ou label de l'observation n

La base de données est représentée par les paires $\left\{\left(\underline{x}_1,y_1\right),...,\left(\underline{x}_n,y_n\right),...,\left(\underline{x}_Ny_N\right)\right\}$ On pose $\underline{x}=\{x_1,...,x_n,...,x_N\}$ avec $\underline{X}\in\mathbb{R}^{N\times D}$ (représentation vectorielle)

Exemple: (*D*=*5* : Gender, Degree, Latitude, Longitude, Age) ; **5** labels

5 exemple (<i>N</i> =5)		Gender ID	Degree	Latitude (in degrees)	Longitude (in degrees)	Age	Annual Salary (in thousands)	
,	$\underline{x_1}$	-1	2	51.5073	0.1290	36	89.563	y_1
	$\underline{x_2}$	-1	3	51.5074	0.1275	47	123.543	$\boldsymbol{y_2}$
	$\underline{x_3}$	+1	1	51.5071	0.1278	26	23.989	y_3
	$\underline{x_4}$	-1	1	51.5075	0.1281	68	138.769	$\boldsymbol{y_4}$
	$\underline{x_5}$	+1	2	51.5074	0.1278	33	113.888	y_5

Apprendre un modèle à partir d'un jeu de données (ou dataset)

Objectif: Construire une fonction prédictive (connue sous le nom de prédicteur)

Hypothèses: On suppose que la sortie est un scalaire (réel)

Données connues (attributs, labels) : $\{(x_1, y_1), ..., (x_n, y_n), ..., (x_N, y_N)\}$

Définition : Un prédicteur est une fonction, notée f(.), qui lorsqu'on lui donne en entrée un exemple particulier (vecteur d'attributs), produit une sortie (label).

On considère des fonctions linéaires : $f\colon \mathbb{R}^D o \mathbb{R}$

 $f(x) = \theta^T x + \theta_0$ avec θ^T , θ_0 sont des paramètres inconnus

Soit θ^* le « bon « paramètre tel que :

$$f(x_n, \theta^*) \approx y_n \quad \forall \ n = 1, ..., N$$

On note, le label prédit :

$$\widehat{\mathbf{y}}_n = f(\mathbf{x}_n, \boldsymbol{\theta}^*)$$

Exemples – Modèles

L'apprentissage du modèle consiste à calculer les coefficients (a, b, c des exemples) qui minimisent les erreurs de prédiction sur un jeu de données.

Fonctions coûts (pertes) pour le calcul des coefficients

On considère y_n le label associé aux attributs x_n

On note \hat{y}_n la prédiction du label y_n

On mesure l'erreur commise sur la prédiction particulière de y_n par la fonction : $\ell(y_n, \hat{y}_n)$

Mesure des erreurs engendrées par le modèle :

Objectif: Chercher le vecteur de paramètres θ^* qui minimise l'erreur moyenne commise sur l'ensemble des N données d'apprentissage $\mathcal{M} = \{(x_1, y_1), \dots, (x_n, y_n), \dots, (x_N, y_N)\}$

Minimisation du risque moyen empirique :

$$R_{emp}(f,X,y) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, \widehat{y}_n)$$

avec: $\mathbf{X} := [x_1, ..., x_n, ..., x_N]^T \in \mathbb{R}^{N \times D}$

 $\mathbf{y}\text{:=}[y_1, \dots, y_n, \dots, y_N]^T \in \mathbb{R}^N$

Apprentissage supervisé: Régression linéaire

On pose :
$$\underline{x}_n = \begin{bmatrix} 1, x_n^{(1)}, \dots, x_n^{(D)} \end{bmatrix}^T$$
 et $\underline{\boldsymbol{\theta}} = [\underline{\boldsymbol{\theta}}_0, \underline{\boldsymbol{\theta}}_1, \dots, \underline{\boldsymbol{\theta}}_n, \dots, \underline{\boldsymbol{\theta}}_N]^T$

Le prédicteur linéaire s'écrit :

$$f(x_n, \theta) = \theta^T x_n$$
 ou encore $f(x_n, \theta) = \theta_0 + \sum_{d=1}^D \theta_d x_n^{(d)}$ où θ est le vecteur à estimer

Régression linéaire basée sur la méthode des moindres carrés :

Le problème d'optimisation se traduit par :

$$\min_{\theta \in \mathbb{R}^D} \frac{1}{N} \sum_{n=1}^{N} (y_n - \theta^T x_n)^2$$

équivalent à (forme matricielle) : $\min_{m{ heta} \in \mathbb{R}^D} \frac{1}{N} \|y - X m{ heta}\|^2$

1

Algorithme du gradient descendant

Régularisation pour réduire le sur-apprentissage

Problème : Le modèle de régression linéaire est sensible aux valeurs aberrantes (outliers) des données d'apprentissage.

Des configurations complexes génèrent une situation de sur-apprentissage (overfitting), notamment lorsque :

 $R_{emp}\left(f,X_{train},y_{train}
ight)$ sous-estime le risque moyen attendu $R_{true}\left(f
ight)$

ou

$$R_{emp}(f, X_{test}, y_{test}) > R_{emp}(f, X_{train}, y_{train})$$

Solution : Utiliser une méthode de régularisation pour pénaliser les valeurs trop grandes des paramètres θ :

$$\min_{ heta \in \mathbb{R}^D} rac{1}{N} \|y - X heta\|^2 + \lambda \| heta\|^2$$
 où λ est le paramètre de régularisation

15

Formulation du problème

On considère les données d'apprentissage : $\mathcal{X} \coloneqq \{x_1, \dots, x_n, \dots, x_N\}$ avec $x_n \in \mathbb{R}^D$

$$\mathcal{M} := \left\{ \left(x_1, y_1\right), \dots, \left(x_n, y_n\right), \dots, \left(x_N, y_N\right) \right\} \qquad \mathcal{Y} := \left\{y_1, \dots, y_n, \dots, y_N\right\} \text{ avec } y_n \in \mathbb{R} \text{ et } n = 1, \dots, N$$

On suppose que les données observées sont bruitées : $y_n = f(x_n) + \varepsilon$ $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ On adopte une approche probabiliste :

$$p(\boldsymbol{\mathcal{Y}}|\boldsymbol{\mathcal{X}},\boldsymbol{\theta}) = p(\boldsymbol{\mathcal{Y}}_1,\ldots,\boldsymbol{\mathcal{Y}}_N|\boldsymbol{\mathcal{X}}_1,\ldots,\boldsymbol{\mathcal{X}}_N,\boldsymbol{\theta}) \quad \text{avec} \quad \boldsymbol{\theta} = [\boldsymbol{\theta}_0,\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_n,\ldots,\boldsymbol{\theta}_N]^T$$

$$= \prod_{n=1}^{N} p(y_n | x_n, \theta) = \prod_{n=1}^{N} \mathcal{N}(y_n | x_n^T \theta, \sigma^2)$$

Estimation au sens du maximun de vraisemblance

(Maximun Likelihood (ML))

On cherche la solution optimale au sens du ML : $\theta_{ML} = \arg\max_{\theta} p(\mathcal{Y}|\mathcal{X}, \theta)$

On cherche à minimiser le Log de la vraissemblance :

$$-\log p(\boldsymbol{y}|\boldsymbol{\mathcal{X}},\boldsymbol{\theta}) = -\log \prod_{n=1}^{N} p(\boldsymbol{y}_{n}|\boldsymbol{x}_{n},\boldsymbol{\theta}) = -\sum_{n=1}^{N} \log p(\boldsymbol{y}_{n}|\boldsymbol{x}_{n},\boldsymbol{\theta})$$

 $\log p(\boldsymbol{y}|\boldsymbol{\mathcal{X}},\boldsymbol{\theta}) = -\frac{1}{2\sigma^2} \big(\boldsymbol{y}_n - \boldsymbol{x}_n^T \boldsymbol{\theta} \big)^2 + const \quad \text{où } const \ \text{ regroupe les termes indépendants de } \boldsymbol{\theta}$

Puisque le bruit est supposé Gaussien additif : $\mathcal{L}(\theta) \coloneqq \frac{1}{2\sigma^2} (y_n - x_n^T \theta)^2$

$$\mathcal{L}(\boldsymbol{\theta}) \coloneqq \frac{1}{2\sigma^2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) = \frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}\|^2$$

avec $X := [x_1, ..., x_N]^T \in \mathbb{R}^{N \times D}$ et $y := [y_1, ..., y_N]^T \in \mathbb{R}^N$ données d'apprentissage.

17

Calculons $\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\boldsymbol{\theta}}$ pour déduire $\boldsymbol{\theta}_{ML}=?$

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\boldsymbol{\theta}} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \left(\frac{1}{2\sigma^2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \right) = \frac{1}{2\sigma^2} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} (\boldsymbol{y}^T \boldsymbol{y} - 2\boldsymbol{y}^T \boldsymbol{X}\boldsymbol{\theta} + \boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{X}\boldsymbol{\theta})$$

$$= \frac{1}{\sigma^2} \left(- \mathbf{y}^T \mathbf{X} + \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X} \right) \in \mathbb{R}^{1 \times D}$$

Annulons $\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}oldsymbol{ heta}}$ pour déduire $oldsymbol{ heta}_{ML}$:

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\boldsymbol{\theta}} = \frac{1}{\sigma^2} \left(-\boldsymbol{y}^T \boldsymbol{X} + \boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{X} \right) = \boldsymbol{0}^T ?$$

$$\boldsymbol{\theta}_{ML}^T \boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{y}^T \boldsymbol{X}$$

$$\boldsymbol{\theta}_{ML}^T = \boldsymbol{y}^T \boldsymbol{X} \big(\boldsymbol{X}^T \boldsymbol{X} \big)^{-1}$$

$$\boldsymbol{\theta}_{ML} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Remarque: X^TX est inversible si X^TX est définie positive (c'est-à-dire le rang(X) = D).

Ajustement par des fonctions non-linéaires

Soit ϕ une transformation non-linéaire des entrées $x: \phi: \mathbb{R}^D \to \mathbb{R}^K$ et $\phi_k: \mathbb{R}^D \to \mathbb{R}$ la k-ème composante du vecteur des attributs ϕ . Le model de régression linéaire est donné par :

$$y = \phi(x)^T \theta + \varepsilon = \sum_{k=0}^{K-1} \theta_k \phi_k(x) + \varepsilon$$

Remarque : Les paramètres du model θ_k apparaissent de manière linéaire.

Exemple: Régression polynomiale (polynômes de degré inférieur ou égal à K-1):

$$\phi(x) = \begin{bmatrix} \phi_0(x) \\ \phi_1(x) \\ \vdots \\ \phi_{K-1}(x) \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \\ \vdots \\ x^{K-1} \end{bmatrix} \in \mathbb{R}^K$$

19

Cherchons à estimer les paramètres heta du model au sens du maximum de vraisemblance :

Soit $x_n \in \mathbb{R}^D$ et $y \in \mathbb{R}$ avec n=1,...,N. La matrice des attributs est donnée par :

$$\mathbf{\Phi} \coloneqq \begin{bmatrix} \boldsymbol{\phi}(x_1)^T \\ \boldsymbol{\phi}(x_2)^T \\ \vdots \\ \boldsymbol{\phi}(x_N)^T \end{bmatrix} = \begin{bmatrix} \phi_0(x_1) & \cdots & \phi_{K-1}(x_1) \\ \phi_0(x_2) & \cdots & \phi_{K-1}(x_2) \\ \vdots & & \vdots \\ \phi_0(x_N) & & \phi_{K-1}(x_N) \end{bmatrix} \in \mathbb{R}^{N \times K}$$

Avec $\Phi_{ij} = \phi_j(x_i)$ où $\phi_j : \mathbb{R}^D \to \mathbb{R}$ Exemple : Polynôme du second ordre, la matrice des attributs est donnée par : $\Phi := \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_2 & x_2^2 \end{bmatrix}$

On cherche à minimiser le Log de la vraisemblance :

$$\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = -\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{\Phi}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{\Phi}\boldsymbol{\theta}) + const$$

On obtient:

$$\boldsymbol{\theta}_{ML} = \left(\boldsymbol{\Phi}^T \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

Remarque: $\Phi^T \Phi$ est inversible ssi rang $(\Phi) = K$

Calculons la variance du bruit au sens du maximum de la vraisemblance :

$$-\log p(y|X,\theta,\sigma^2) = -\log \prod_{n=1}^{N} p(y_n | \phi(x_n), \theta, \sigma^2) = -\sum_{n=1}^{N} \log p(y_n | \phi(x_n), \theta, \sigma^2)$$

$$-\log p(y|X,\theta,\sigma^2) = -\sum_{n=1}^{N} \log \mathcal{N}(y_n | \phi^T(x_n)\theta, \sigma^2)$$

$$= -\sum_{n=1}^{N} \left(-\frac{1}{2} \log(2\pi) - \frac{1}{2} \log \sigma^2 - \frac{1}{2\sigma^2} (y_n - \phi^T(x_n)\theta)^2 \right)$$

$$= -\frac{N}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - \phi^T(x_n)\theta)^2 + \text{const}$$

On pose : $s \coloneqq \sum_{n=1}^{N} (y_n - \phi^T(x_n)\theta)^2$, on calcule la dérivée du Log de la vraisemblance par rapport à σ :

$$\frac{\operatorname{dlog} \boldsymbol{p}(\boldsymbol{\mathcal{Y}} | \boldsymbol{\mathcal{X}}, \boldsymbol{\theta}, \boldsymbol{\sigma}^2)}{\operatorname{d} \boldsymbol{\sigma}} = \frac{N}{2\sigma^2} + \frac{1}{4\sigma^4} \mathbf{s} = \mathbf{0}$$

On obtient :

$$\sigma_{ML}^2 = \frac{s}{N} = \frac{1}{N} \sum_{n=1}^{N} (y_n - \phi^T(x_n)\theta)^2$$

Comparaison des erreurs sur le jeu de données (d'apprentissage et de test)

■ Qualité de l'estimateur (Root Mean Square Error) :

$$\mathsf{RMSE} = \sqrt{\frac{1}{N} \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta} \|^2} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{y}_n - \boldsymbol{\phi}^T (\boldsymbol{x}_n) \boldsymbol{\theta})^2} \qquad \overset{\text{GS}}{\underset{N}{\text{SS}}} \qquad \overset{\text{GS}}{\underset{N}{\text{SS}}}$$

23

Estimation au sens du Maximun A Posteriori (MAP)

Pour éviter le sur-apprentissage possible du ML, on cherche les paramètres θ qui maximisent la probabilité a posteriori $p(\theta|\mathcal{X},\mathcal{Y})$:

■ Calculons θ_{MAP} :

Formule de Bayes $p(\theta|\mathcal{X},\mathcal{Y}) = \frac{p(\mathcal{Y}|\mathcal{X},\theta)p(\theta)}{p(\mathcal{Y}|\mathcal{X})}$ équivalent :

$$\log p(\theta|X,Y) = \log p(Y|X,\theta) + \log p(\theta) + \text{const}$$

$$\theta_{MAP} \in \arg\min_{\theta} \{-\log p(y|X, \theta) - \log p(\theta)\}$$

Pour atténuer l'impact des valeurs élevées des paramètres, une distribution de probabilité est imposée aux paramètres.

On choisit : $p(\theta) = \mathcal{N}(0, b^2 I)$

Dérivons par rapport à
$$\theta$$
:
$$-\frac{\mathrm{dlog}\, p(\theta|\mathcal{X},\mathcal{Y})}{\mathrm{d}\theta} = -\frac{\mathrm{dlog}\, p(\mathcal{Y}|\mathcal{X},\theta)}{\mathrm{d}\theta} - \frac{\mathrm{dlog}\, p(\theta)}{\mathrm{d}\theta}$$
$$-\log p(\theta|\mathcal{X},\mathcal{Y}) = \frac{1}{2\sigma^2}(y - \Phi\theta)^T(y - \Phi\theta) + \frac{1}{2b^2}\theta^T\theta + \mathrm{const}$$
$$-\frac{\mathrm{dlog}\, p(\theta|\mathcal{X},\mathcal{Y})}{\mathrm{d}\theta} = \frac{1}{\sigma^2}\Big(\theta^T\Phi^T\Phi - y^T\Phi\Big) + \frac{1}{b^2}\theta^T$$
$$-\frac{\mathrm{dlog}\, p(\theta|\mathcal{X},\mathcal{Y})}{\mathrm{d}\theta} = \frac{1}{\sigma^2}\Big(\theta^T\Phi^T\Phi - y^T\Phi\Big) + \frac{1}{b^2}\theta^T = 0^T$$
$$\theta^T\Big(\frac{1}{\sigma^2}\Phi^T\Phi + \frac{1}{b^2}I\Big) - \frac{1}{\sigma^2}y^T\Phi = 0^T$$
$$\theta^T\Big(\Phi^T\Phi + \frac{\sigma^2}{b^2}I\Big) = y^T\Phi$$

Estimation au sens du Maximun A Posteriori (MAP) et régularisation

Utiliser une méthode de régularisation pour pénaliser les valeurs trop grandes des paramètres θ :

$$\min_{\theta \in \mathbb{R}^D} rac{1}{N} \|y - \Phi \theta\|^2 + \lambda \|\theta\|^2$$
 où $\lambda \geq 0$ est le paramètre de régularisation

Avantages de la régression linéaire :

- L'apprentissage se résume à l'inversion d'une matrice construite à partir de données d'apprentissage
- Aucun algorithme numérique complexe n'intervient pour le calcul
- Calcul rapide de la prédiction
- **■** Modèle simple

Inconvénients de la régression linéaire :

- La relation que l'on souhaite mettre en évidence est-elle effectivement linaire ?
- Modèle sensible aux valeurs aberrantes des données d'apprentissage
- Le caractère du modèle linéaire néglige de fait toutes les interactions entre les variables prédictives

2

Classification linéaire

TD-TP2: Régression et classification

Définition du problème

Soit le jeu de données (supposé i.i.d, centré) : $\mathcal{X} := \{x_1, ..., x_n, ..., x_N\}$ avec $x_n \in \mathbb{R}^D$ et n = 1, ..., N.

On note S la matrice de covariance du jeu de données : $S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T$

On représente x_n par : $z_n = B^T x_n \in \mathbb{R}^M$ avec $B := [b_1 \dots b_M] \in \mathbb{R}^{D \times M}$ et M < D

où B est la matrice de projection (les colonnes sont orthonormées : $b_i^T b_j = 0$ ssi $i \neq j$ et $b_i^T b_i = 1$)

Objectif : On cherche un sous-espace \cup de dimension M tel que : $\cup \subseteq \mathbb{R}^D$ avec $\dim(\cup) = M < D$ sur lequel sont projetées les données, notées \widetilde{x}_n , de sorte à minimiser l'erreur entre x_n et \widetilde{x}_n .

29

Maximiser la variance

Rappelons que la variance est un indicateur de la dispersion des données.

Calculons la variance de la première composante de z_n :

$$V_1 = V[z_1] = \frac{1}{N} \sum_{n=1}^{N} z_{1n}^2 \quad \text{avec} \quad z_{1n} = b_1^T x_n$$

$$V_1 = V[z_1] = \frac{1}{N} \sum_{n=1}^{N} \left(b_1^T x_n \right)^2 = \frac{1}{N} \sum_{n=1}^{N} b_1^T x_n x_n^T b_1 = b_1^T \left(\frac{1}{N} \sum_{n=1}^{N} x_n x_n^T \right) b_1 = b_1^T S b_1$$

On cherche à maximiser : $\max_{b_1} b_1^T S b_1$ sous la contrainte $||b_1||^2 = 1$, qui se traduit par le problème d'optimisation à résoudre :

$$\mathcal{L}(\boldsymbol{b}_1, \boldsymbol{\lambda}) = \boldsymbol{b}_1^T \boldsymbol{S} \boldsymbol{b}_1 + \boldsymbol{\lambda}_1 (1 - \boldsymbol{b}_1^T \boldsymbol{b}_1)$$

On calcule la dérivée de \mathcal{L} par rapport à b_1 et λ :

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}b_1} = 2b_1^T S - 2\lambda_1 b_1^T = 0$$

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\lambda} = 1 - b_1^T b_1 = 0$$

$$b_1^T S = \lambda_1 b_1^T$$

$$b_1^T b_1 = 1$$

 b_1 est le vecteur propre et λ_1 est la valeur propre de la matrice de covariance S

Il s'agit de choisir le vecteur propre (appelé première composante principale) associé à la plus grande valeur propre

3

■ On cherche à diviser l'espace des entrées X en différentes région de décisions :

- ightharpoonup Chaque région de décision \mathcal{R}_k est associée à une classe \mathcal{C}_k
- \mathcal{R}_j \mathcal{R}_k
- ➤ Les frontières entre les régions sont des surfaces de décision
- Classification binaire :

- ightharpoonup La classe C_1 correspond à y=1
- **>** La classe C_2 correspond à y = 0 (ou y = -1
- Classification linéaire :
 - ➤ La surface de décision entre chaque paire de régions de décision est linéaire (c'est-à-dire un hyperplan (droite pour D=2))
- > Un problème est linéairement séparable si une surface linéaire permet de classer parfaitement

Fonction discriminante

- On souhaite apprendre une fonction discriminante qui prend en entrée X et donne sa classe en sortie
- Dans le cas binaire, on s'intéresse aux fonctions discriminantes qui :
 - 1. Calculent une transformation linéaire de l'entrée :

$$y(\mathbf{x}) = \mathbf{W}^T \mathbf{x} + \mathbf{w}_0$$

 w_0 représente le biais

W représente le vecteur des poids

- **2.** Retourner C_1 si $y(x) \ge 0$ ou retourne C_2 sinon
- On obtient différents algorithmes d'apprentissage (Biais et poids différents)

3

Visualisation et interprétation de la fonction discriminante

$$y > 0$$

$$y = 0$$

$$\mathcal{R}_{1}$$

$$y < 0$$

$$\mathcal{R}_{2}$$

$$w$$

$$x^{*}$$

$$x$$

$$r = \frac{y(x)}{\|W\|}$$

- Les points x^* sur la droite ont pour valeur $y(x^*) = 0$
- *W* est un vecteur perpendiculaire sur la droite (donne l'orientation de la séparation) :

$$y(x') = y(x^* + d)$$

= W^T(x* + d) + w₀ = W^Tx* + w₀ + W^T d
= W^T d = 0

- lacksquare w_0 permet le déplacement de la droite dans l'orientation de lacksquare
- Calcul de la marge (plus petite distance de x projeté sur la séparation) :

$$r=rac{y(x)}{||W||}$$
 (Pour la démonstration partir de ${
m x}=x_{\perp}+rrac{w}{||w||}$)

Séparabilité linéaire :

- L'hypothèse de séparabilité linéaire est raisonnable en haute dimensionnalité :
 - > Théorème : Soit D+1 entrées x_n , sous l'hypothèse que tous les sous-ensembles de D entrées doivent être linéairement indépendant, on peut toujours les séparer linéairement en deux classes quelque soit la valeur de la classe (y)
- Il est également possible d'utiliser une représentation $\Phi(x)$ non-linéaire.

Entrainement de la fonction discriminante :

- Idéalement, on voudrait entrainer y(x) en minimisant le taux d'erreur de classification sur l'ensemble d'entrainement :
 - C'est un problème NP-difficile!
- D'autres alternatives ont été proposées pour résoudre ce problème
 - > Différents algorithmes d'apprentissage

2

Méthode des moindres carrés

- La classification est traitée comme un problème de régression :
 - ▶ Minimiser le coût quadratique des $(y(x) y)^2$
 - \triangleright Prédiction des y = -1, y = +1
 - **>** Si $y(x) \ge 0$ ou retourne C_1 sinon C_2
- La classification, avec plus de 2 classes, traitée comme un problème de régression à prédiction multiple :
 - Le label prédit est un vecteur binaire indiquant à quelle classe appartient l'entrée
 - ➤ Exemple : K = 5; le vecteur prédit $y = (0,1,0,0,0)^T$ (représentation one hot) indique que l'entrée appartient à C_2

Méthode d'analyse discriminante linéaire

■ En classification binaire, on chercher la projection $y(x) = W^T x$ telle que le seuil $y \ge -w_0$ sépare le plus d'entrées projetées possibles.

3

Classifieur k plus proches voisins (KNN: K Nearest Neighbours)

- Algorithme d'apprentissage le plus simple pour la classification
- **■** Principe : Etant donnée une entrée X_i
 - \triangleright Trouver les k entrées parmi les exemples d'apprentissage qui soient les plus proches de X_i
 - ➤ Faire voter chacune de ces entrées pour leurs classes associées y₁
 - > Retourner la classe majoritaire
- Le succès de cet algorithme dépend de :
 - > la quantité de données d'apprentissage
 - > la qualité de la mesure de distance (2 entrées similaires sont-elles de la même classe ?)
- Métrique utilisée en pratique (distance Euclidienne) :

$$d(X_1, X_2) = \sqrt{\sum_{k} (x_{1,k} - x_{2,k})^2}$$

Exemple: 3 plus proches voisins Pour la reconnaissance de caractères

- Reconnaissance d'un caractère manuscrit : un « e » ou « o » ?
- **Ensemble d'entrainement:**

100 exemples d'apprentissage par classe

Classe 'e' Classe 'o'

■ Prédiction de la classe associée à l'entrée « o » : vote majoritaire 3 plus proches voisins nouvelle entrée Les 3 distances les plus petites parmi **Bonne prédiction** tous les exemples d'entrainement

Classification basée sur les Support Vector Machine (SVM)

- Support Vector Machine (SVM) ou machine à vecteurs de support ou séparateurs à vaste marge sont des algorithmes de classification binaire non linéaire extrêmement puissants
- Les prédicteurs binaires sont de la forme : $f: \mathbb{R}^D \to \{+1, -1\}$
- Objectif : Optimisation de la fonction durant l'apprentissage :

Jeu de données d'apprentissage : $\{(x_1, y_1), ..., (x_n, y_n), ..., (x_N, y_N)\}$ avec $y_n \in \{-1, +1\}$

On cherche les paramètres du modèle qui engendrent la plus petite erreur de classification

Exemple: données (linéairement séparable) bidimensionnelles (vecteurs de dimension 2) représentées par $x_n^{(1)}$ et $x_n^{(2)}$; les symboles (croix et points) représentent les labels y_n

Comment trouver le classifieur linéaire (ou hyperplan, frontière) qui sépare les croix (orange) des points (bleu) (2 classes ou catégories)?

Définition de l'hyperplan

■ Objectif: Division de l'espace en deux parties par un hyperplan défini par:

$$f: \mathbb{R}^D \to \mathbb{R}$$

 $x \to f(x) := \langle w, x \rangle + b \text{ avec } x \in \mathbb{R}^D, x \in \mathbb{R}^D \text{ et } b \in \mathbb{R}$

L'hyperplan vérifie alors : $\{x \in \mathbb{R}^D : f(x) = 0\}$

w est le vecteur normal (direction du vecteur) de l'hyperplan

b est le point support (ou biais)

43

Entrainement du classifier SVM

- Objectif de l'entrainement d'un SVM est de trouver un hyperplan séparateur entre les deux catégories (c'est-à-dire les paramètres ((w, b)) de l'hyperplan)
- Les exemples associés aux labels positifs, c'est-à-dire appartenant à un côté (positif) de l'hyperplan, satisfont : $\langle w, x \rangle + b \ge 0$ lorsque $y_n = +1$
- Les exemples associés aux labels négatifs, c'est-à-dire appartenant à l'autre côté (négatif) de l'hyperplan, satisfont : $\langle w, x \rangle + b \le 0$ lorsque $y_n = -1$
- Les deux conditions se résument par : $y_n(\langle w, x_n \rangle + b) \ge 0$ Exemple : Une infinité de classifiers linéaires possibles (droites) permettant de séparer les croix (orange) des points (bleu)

L'entrainement a pour but de trouver un vecteur de poids w et un biais b tels que, pour tout x_n de label y_n appartenant aux données d'entraînement, $y_n(\langle w, x_n \rangle + b) \ge 0$.

Comment trouver l'hyperplan unique?

Objectif: On cherche les paramètres w et b de l'hyperplan qui maximisent la « marge » entre les exemples positifs et négatifs. La « marge » étant la distance qui sépare l'hyperplan aux exemples les plus proches du jeu de données.

Hypothèses: On suppose que le jeu de données est linéairement séparable.

Soit l'hyperplan défini par l'équation $\langle w,x\rangle+b$. On considère un exemple x_a du jeu de

donnés. On suppose que l'exemple x_a vérifie $\langle w, x_a \rangle + b > 0$

On note x_a' la projection orthogonale de x_a sur l'hyperplan.

L'exemple x_a est déduit : $x_a = x'_a + r \frac{w}{||w||}$

Si x_a est l'exemple le plus proche de l'hyperplan, dans ce cas la distance $\,r\,$ représente la « marge »

lacktriangle Cherchons à maximiser la distance r (ou marge en s'assurant que les exemples sont selon les labels associés en dessus/dessous l'hyperplan):

Maximisation de la marge : $\max_{w,b,r} r$ sous les contraintes $y_n(\langle w,x_n\rangle + b) \ge r$, $\|w\| = 1$, r > 0

Normalisation et résolution du problème

Hypothèses: On suppose que le jeu de données est linéairement séparable.

Soit l'hyperplan défini par l'équation $\langle w, x \rangle + b$.

On considère un exemple x_a (vecteur support) du jeu de donnés, le point le plus proche de l'hyperplan, qui vérifie $\langle w, x_a \rangle + b = 1$ (normalisation)

■ Calculons la « marge » SVM :

On note x_a' la projection orthogonale de x_a sur l'hyperplan : $\langle w, x_a' \rangle + b = 0$

$$\left\langle w, x_a - r \frac{w}{\|w\|} \right\rangle + b = 0$$
 équivalent à $\langle w, x_a \rangle + b - r \frac{\langle w, w \rangle}{\|w\|} = 0$

On obtiens: $r = \frac{1}{\|w\|}$

 $\max_{w,b,} \frac{1}{\|w\|} \text{ sous les contraintes } y_n(\langle w, x_n \rangle + \ b) \geq 1 \text{ avec } n = 1, \dots, N$

Reformulation: $\min_{w,b,} \frac{1}{2} \|w\|^2$ sous les contraintes $y_n(\langle w, x_n \rangle + b) \ge 1$ avec n = 1, ..., N

Avantages de la classification SVM:

- Elle permet de traiter des problèmes avec un très grand nombre de dimension
- Elle traite des problèmes de classification non linéaire complexes
- Les SVM constituent une alternance aux systèmes de neurones car ils répondent aux mêmes problèmes de classification non linéaire tout en étant beaucoup plus simples à entrainer.

Inconvénients de la classification SVM:

- Le choix de la fonction noyau K est délicat et possède un caractère un peu mystérieux qui ne peut être étayé que par l'expérience
- Bien que l'algorithme puisse être entrainé avec des ensembles de données de plusieurs dizaines de milliers d'observations, il n'est malheureusement pas scalable.
- Elle est moins performante que les forets aléatoires.

4/