Algorithmic Foundations 2

Section 10 - Relations

Dr. Gethin Norman

School of Computing Science University of Glasgow

Relations - Introduction

Relationships may exist between elements of a set or different sets

- the set of activities and the resources to perform the activities
- BA flight numbers and take off times or departure/arrival airport
- students and subjects
- resources and costs of using them
- the set of lecturers and the set of teaching times
- the set of pairs of compatible values
- people and people that they know

– ...

Binary relation - Definition

Let A and B be sets

A binary relation R is a subset of $A \times B$

- recall $A \times B$ is the Cartesian product of A and B
- i.e. R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$
- put another way R is a subset of $\{(a,b) \mid a \in A \land b \in B\}$
- we say "a is related to b by R" if (a,b) is in the relation R
- and often write aRb for $(a,b) \in R$

Can represent a relation as a digraph

- vertices are the elements of A and B $(V=A\cup B)$
- edges are the elements of the relation R (E=R)
- directed graph since ordered pairs
- notice that we can have loops (not a simple graph)

Binary relations - Example

Students: Alex, Bea, Cath, Don, Eddie, Fiona

Subjects: 1Q, 1P, AF2

Let R be the relation of students who passed subjects

- order between pairs is insignificant as R is a set
- order within pairs is significant as a set of ordered pairs

notice this is not a function e.g. Alex related to 1Q and AF2

but functions are relations (can be expressed as a set of ordered pairs of domain and co-domain elements)

Relations - Representation

We can represent a relation as a directed graph

Suppose R is a binary relation over $A \times B$

then we can represent R as a directed graph $G=(A \cup B, E)$ where

- $(a,b) \in E$ if and only if $(a,b) \in R$
- notice that we can have loops (not a simple graph)

Example

```
-A=\{a,b,c\}
```

$$-B=\{b,c,d,e\}$$

$$- R=\{(a,b),(a,e),(b,d),(c,c),(c,d)\}$$

Relation – Divisibility

A = $\{1,2,3,4\}$ R is the relation "a divides b" defined over A×A R = $\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

N-ary relations

We can have a relation between n sets, i.e. a set of ordered n-tuples A relation between the sets A_1 , A_2 ,..., A_n is a subset of $A_1 \times A_2 \times ... \times A_n$ — i.e. an element of the relation is of the form $(a_1, a_2, ..., a_n)$

Terminology

```
n=1, a unary relation (singletons)
e.g. consider a predicate P(x): A → {true, false}
R = { x | x∈A ∧ P(x)=true }
n=2, a binary relation (pairs)
n=3, a ternary relation (triples)
...
n=..., an n-ary relation (n-tuples)
```

Binary relations - Properties

A binary relation R is...

- reflexive: if $a \in A$, then $(a,a) \in R$
 - $\forall a \in A. (a,a) \in R$
 - · i.e. every element is related to itself
- symmetric: if (a,b), then $(b,a) \in R$
 - $\forall a \in A. \ \forall b \in A. \ ((a,b) \in R \rightarrow (b,a) \in R)$
 - · i.e. a is related to b if and only if b is related to a
- anti-symmetric: if $(a,b) \in R$ and $a \neq b$ then $(b,a) \notin R$
 - $\forall a \in A. \ \forall b \in A. \ ((a,b) \in R \land (a \neq b) \rightarrow (b,a) \notin R)$
 - · i.e. if a is related to b and distinct, then b is not related to a
- transitive: if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$
 - $\forall a \in A. \ \forall b \in A. \ \forall c \in A. \ (\ ((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R)$
 - · i.e. if a is related to b and b related to c, then a is related to c

Binary relations - Properties

A relation R over A×A is called an equivalence relation if it is reflexive, symmetric and transitive

elements related by an equivalence relation are said to be equivalent

Example: Let R be a relation on the set of people, such that $(x,y) \in \mathbb{R}$ if x and y are the same age in years

- R is reflexive: you are the same age as yourself
- R is symmetric: if x is same age as y, then y is same age as x
- R is transitive: if x is the same age as y and y is the same age as z, then x is the same age as z

Combining relations - Using set operations

Assuming two relations R_1 and R_2 over $A \times B$

- then each is a subset of $A \times B$
- can therefore combine R_1 and R_2 using set theoretic operations
- e.g. union, intersection, set difference

Composing relations

Analogous to the composition of functions

Let R be a relation over $A \times B$ and S be a relation over $B \times C$

Composition of R and S (denoted $S \circ R$) is the relation over $A \times C$ such that $(a,c) \in S \circ R$ if and only if there exists $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$

Composing relations – Example

Let R be a relation on people such that (a,b) is "a is a sibling of b" Let S be a relation on people such that (a,b) is "a is a parent of b"

What is SoR?

- by definition $(a,c) \in S \circ R$ if there exists b such that $(a,b) \in R$ and $(b,c) \in S \circ R$ i.e. $(a,c) \in S \circ R$ if there is a b which has a as a sibling and is c's parent
- therefore (a,c)∈S∘R is "a is an aunt/uncle of c"

Composing relations – Example

Let R be a relation on people such that (a,b) is "a is a sibling of b" Let S be a relation on people such that (a,b) is "a is a parent of b"

What is SoS?

- by definition $(a,c) \in S \circ S$ if there exists b such that $(a,b) \in S$ and $(b,c) \in S$ i.e. $(a,c) \in S \circ S$ if there is a b which has a as a parent and is c's parent
- therefore (a,c)∈S∘S is "a is an grandfather/grandmother of c"

Closures

If we have a relation R, then the closure of R with respect to some property P is given by the relation S where S is R union the minimum number of tuples that ensures property P holds

Property P could be reflexivity, symmetry or transitivity

Reflexive and symmetric closure

To obtain the reflexive closure we set $S = R \cup \Delta$

- where \triangle is the diagonal relation $\triangle = \{(a,a) \mid a \in A\}$
- this is the minimum we need to add to R to make it reflexive

What is the reflexive closure of less than "<" on the reals/integers?

– answer: less than or equal to "≤"

To obtain the symmetric closure we set $S = R \cup R^{-1}$

- where R^{-1} is the inverse of relation R, i.e. $R^{-1} = \{(b,a) \mid (a,b) \in R\}$
- this is the minimum we need to add to R to make it symmetric

What is the symmetric closure of less than "<" on the reals/integers?

— answer: not equal to "≠"

Transitive closure

Add minimum number of tuples to R to give a transitive relation S

- i.e. if $(a,b) \in S$ and $(b,c) \in S$, then $(a,c) \in S$

Example: flights between various cities

- set of elements: cities
- relation: (a,b)∈R if there is a flight between a and b
- suppose we define the relation S such that
 (a,b)∈S if there is a trip from a to b
 - · i.e. can flight from a to b allowing for transfers
- S is actually the transitive closure of R
- we have $(a,b) \in S$ if there is a path from a to b

Computing the transitive closure of R reduces to finding all (a,b) such that there is a path from a to b in the digraph representing R

Partial orders

A relation R over $S \times S$ is a partial order on S if it is

- reflexive
- anti-symmetric (if $(s,t) \in \mathbb{R}$ and $s \neq t$ then $(t,s) \notin \mathbb{R}$)
- transitive

Standard convention is to use

to represent partial orders

A set S with a partial order \sqsubseteq on S is called a partially ordered set or a poset and is denoted (S, \sqsubseteq)

it is a partial ordering because pairs of elements may be incomparable

Partial orders

A partially ordered set (S, \sqsubseteq) cannot have cycles

For example suppose (S, \sqsubseteq) has the cycle (s,t),(t,u),(u,s)

□ is reflexive, anti-symmetric and transitive, therefore

- since s⊑t and t⊑u consequently s⊑u (by transitivity)
- hence s≡u and u≡s which would mean ≡ is not anti-symmetric
- contradiction, therefore (S, ≡) does not have cycle (s,t), (t,u), (u,s)
- (this generalises to cycles of any length)

Example - Lexicographic ordering

Used for ordering sets constructed as

- products, strings and words (requires ordering on the original sets)

Example: if we have partially ordered sets (S_1, \sqsubseteq_1) and (S_2, \sqsubseteq_2) , then we

can construct the partially ordered set $(S_1 \times S_2, \sqsubseteq)$ where

- (s_1, s_2) \sqsubset (t_1, t_2) if $s_1 \sqsubset_1 t_1$ or $s_1 = t_1$ and $s_2 \sqsubset_2 t_2$

For more general product spaces...

- $(s_1, s_2, ..., s_n) = (t_1, t_2, ..., t_n)$ if $s_1 = t_1$ or there exists i>0 such that $s_j = t_j$ for all $j \le i$ and $s_{i+1} = t_{i+1}$

When strings are of different lengths

- $(s_1, s_2, ..., s_m) = (t_1, t_2, ..., t_n)$ if $(s_1, s_2, ..., s_t) = (t_1, t_2, ..., t_t)$ where t=min(m,n) or m < n and $(s_1, s_2, ..., s_m) = (t_1, t_2, ..., t_m)$
 - · i.e. first string is shorter and is a prefix of the second

Hasse diagram

A poset can be drawn as a digraph

- it has loops at nodes (reflexive)
- it has directed asymmetric edges
- it has transitive edges

Draw this removing all redundant information: a Hasse diagram

- remove all loops (x,x)
- remove all transitive edges (if (x,y) and (y,z), then remove (x,z))
- remove all directions (draw pointing upwards)

Hasse diagram

Consider $S=\{1,2,3,4,5,6,7,8,9,10,11,12\}$ and $\sqsubseteq = |$ - i.e. $s \mid t$ if s divides t

Hasse diagram

Draw Hasse diagram for $(\{0,1,2,3,4,5\},\leq)$

- consider its digraph
- remove loops
- remove transitive edges
- remove direction (point upwards)

Algorithmic Foundations 2, 2020

Minimal, maximal, greatest & least elements

Consider a partially ordered set (S, \sqsubseteq)

- s is a maximal element if ¬∃t∈S. (s \sqsubset t)
- s is a minimal element if $\neg \exists t \in S$. (t \sqsubset s)

Maximal elements are at the top of the Hasse diagram

Minimal elements are at the bottom of the Hasse diagram

Greatest/least elements may (or may not) exist

- s is the greatest element if $\forall t \in S$. (t $\sqsubseteq s$)
- s is the least element if \forall t∈S. (s \sqsubseteq t)

Minimal, maximal, greatest & least elements

A lattice is a partially ordered set such that every pair of elements has both a least upper bound (1ub) and greatest lower bound (g1b)

called the "join" (s∨t) and the "meet" (s∧t)

Examples

- $-(\mathbb{Z},\leq)$ is a lattice: $\max(s,t)$ and $\min(s,t)$ are the lub and glb of s and t
- $-(\mathbb{Z}^+,|)$ is a lattice: lcm(s,t) and gcd(s,t) are the lub and glb of s and t
- (P(S),⊆) is lattice: s∪t and s∩t are the lub and glb of s and t