Tarefa: implementação de convolução e correlação

Disciplina: Análise e Reconhecimento de Formas - MAC5749 / IME-USP

Professor: Roberto Marcondes Cesar Jr.

1 Implementação

O código está disponível no arquivo **exercicio1.py** e foi implementado em linguagem Python. Para o cálculo das operações de convolução e correlação foi utilizada a biblioteca científica *Numpy*. Já para a construção dos gráficos das funções, foi utilizada a biblioteca *Matplotlib*.

2 Gráficos

2.1 Definições

Figura 1: gráfico da função h(t)

Figura 2: gráfico da função rampa $g_1(t)$

Figura 3: gráfico da função platô $g_2(t)$

Figura 4: gráfico da função pulso $g_3(t)$

Figura 5: gráfico da função seno $g_4(t)$

2.2 Operações de convolução

40

Figura 6: gráfico de $(h\ast g_1)(t)$

Figura 7: gráfico de $(g_1 * h)(t)$

Figura 8: gráfico de $(h*g_2)(t)$

Figura 9: gráfico de $(g_2 * h)(t)$

Figura 10: gráfico de $(h\ast g_3)(t)$

Figura 11: gráfico de $(g_3\ast h)(t)$

Figura 12: gráfico de $(h\ast g_4)(t)$

Figura 13: gráfico de $(g_4 * h)(t)$

2.3 Operações de correlação

Figura 14: gráfico de $(h\circ g_1)(t)$

Figura 15: gráfico de $(g_1\circ h)(t)$

Figura 16: gráfico de $(h\circ g_2)(t)$

Figura 17: gráfico de $(g_2\circ h)(t)$

Figura 18: gráfico de $(h \circ g_3)(t)$

Figura 19: gráfico de $(g_3\circ h)(t)$

Figura 20: gráfico de $(h\circ g_4)(t)$

Figura 21: gráfico de $(g_4\circ h)(t)$

3 Interpretação

3.1 Resultados da convolução

Um primeiro fato que pode ser depreendido dos gráficos gerados é que o sinal resultante de uma convolução é invariante à ordem com que os sinais de entrada convoluem.

No caso da convolução de h com g_1 , podemos observar que a interação de $g_1(\tau - t)$ com os dois pulsos no início de h tende a formar um sinal semelhante à entrada g_1 , conforme o valor de τ é incrementado, dado que a rampa é invertida na convolução. No entanto, a reprodução não é perfeita, uma vez que os pulsos estão muito próximos, provocando interferência no resultado. Em relação à interação de g_1 com o platô, podemos ver um sinal resultante simétrico, como esperado. Já quanto à rampa presente em h, notamos que no casamento com g_1 o sinal resultante é máximo. Em relação à interação com o seno presente em h, os trechos semelhantes são atenuados pela participação de valores negativos em h.

Na convolução entre h e g_2 , notamos que a reflexão de g_2 não é relevante para o resultado, dado que o sinal é simétrico. Percebemos ainda que a interação de g_2 com os pulsos de h produz uma "escada", uma vez que ambos contribuem simultaneamente por um determinado intervalo no sinal resultante. Como esperado, o pico máximo ocorre no encaixe de g_2 com o platô de h, enquanto o seno fica bastante atenuado pela presença concomitante de valores positivos e negativos nos trechos cobertos por g_2 .

No caso de h com g_3 , o resultado é consistente com a teoria. Como g_3 se comporta quase como um δ de Dirac, decorre que o sinal resultante é o próprio h, pois tudo o que está sendo feito na prática é multiplicar cada ponto da função por uma unidade.

Por fim, na convolução entre h e g_4 , percebemos o efeito atenuador da interação de um sinal periódico com sinais não periódicos. Novamente, o ponto máximo da convolução se dá quando há um casamento entre g_4 e o seno contido em h.

3.2 Resultados da correlação

Na correlação, ao contrário da convolução, não há comutatividade. No entanto, como os valores de g_i e h são reais, vale que $(g_i \circ h)(\tau) = (h \circ g_i)(-\tau)$, o que pode ser observado nos gráficos gerados. Além disso, na correlação o sinal deslocado por τ não é invertido como na convolução, o que implica uma aparente inversão de direção no sinal resultante.

Assim, em comparação com a convolução, as correlações entre os sinais g_i com h não apresentam nenhuma outra característica particular além das já mencionadas. Talvez a única exceção seja a correlação entre g_1 e h. Nesse caso, além de observarmos o efeito de "mudança de direção" na interação da rampa com os pulsos de h, o fato de g_1 não ter o sinal invertido na correlação faz com que o casamento entre g_1 e a rampa contida em h gere uma forma distinta em comparação com a convolução, isto é, um pico simétrico.