Análise Matemática I

Teste - 12 de Novembro de 2005 LEA, LEBM, LEFT, LMAC

1. Considere os subconjuntos de \mathbb{R}

$$A = \{x \in \mathbb{R} : x|x-1| \le 2\}$$
 $B = V_2(0)$

- a) Mostre que $A = [-\infty, 2]$.
- b) Determine, se existirem em \mathbb{R} ,

 $\sup A \cap (\mathbb{R} \setminus \mathbb{Q}), \ \max A \cap B, \ \inf A \cap B \cap (\mathbb{R} \setminus \mathbb{Q}), \ \min A^c \cap \mathbb{Q}.$

2. Diga se é verdadeira ou falsa cada uma das proposições seguintes:

$$(a) \{1, \frac{2}{3}\} \subset \{\frac{2}{3}, \{1\}\}$$

i)
$$\{ (b) \quad \{1, \frac{2}{3}\} \subset \{\frac{2}{3}, \{\frac{2}{3}, 1\} \}$$

(c)
$$\{1,(2,3)\}\subset\{1,(3,2)\}$$

$$\begin{cases} (e) & \exists y \in \mathbb{Q} \ \forall z \in \mathbb{R} \ y \in]z, z+1[\end{cases}$$

iii)
$$(f)$$
 $\exists a \in \mathbb{R}^+ \ \forall x \in \mathbb{R}^+ \ a \leq x$

iv)
$$(g)$$
 $\forall n \in \mathbb{N}^+ \left(\sqrt{2} + \frac{2}{n}\right) \in \mathbb{R} \setminus \mathbb{Q}$

(h)
$$\left\{x \in \mathbb{R} : \exists n \in \mathbb{N}^+ \ x = \sqrt{2} + \frac{2}{n}\right\}$$
 é numerável

$$\begin{cases} (h) & \left\{ x \in \mathbb{R} : \exists n \in \mathbb{N}^+ \ x = \sqrt{2} + \frac{2}{n} \right\} \text{ \'e numer\'avel} \\ (i) & \# \left\{ x \in \mathbb{R} : \exists n \in \mathbb{N}^+ \ x = \sqrt{2} + \frac{2}{n} \right\} = \#\mathbb{Q} \\ (j) & \# \left\{ x \in \mathbb{R} : \exists n \in \mathbb{N}^+ \ x = \sqrt{2} + \frac{2}{n} \right\} = \#(\mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

(j)
$$\#\left\{x \in \mathbb{R} : \exists n \in \mathbb{N}^+ \mid x = \sqrt{2} + \frac{2}{n}\right\} = \#(\mathbb{R} \setminus \mathbb{Q})$$

3. Considere as sucessões reais de termos gerais seguintes

$$\frac{(n+1)!}{n \cdot n!}$$
, $(-1)^n \sqrt[n]{n}$, $\frac{(2n+3)^6}{3\sqrt{n}n^5}$.

Diga, justificando abreviadamente as respostas, quais destas sucessões são:

i) convergentes; ii) limitadas; iii) de Cauchy.

Para cada uma delas indique o conjunto dos sublimites, em \mathbb{R} e em $\widetilde{\mathbb{R}}$.

- 4. a) Prove que $\forall n \in \mathbb{N}^+ \frac{2^n+1}{2^{n+1}} < 1$.
- b) Seja u_n a sucessão definida por

$$u_1 = 1 u_{n+1} = \frac{2^n + 1}{2^{n+1}} u_n$$

Prove que u_n é convergente e calcule o seu limite.

- 5. Sejam u_n, v_n, w_n sucessões de termos reais tais que $\forall n \in \mathbb{N}^+ \; \exists k \in \mathbb{N}^+ \; \exists l \in \mathbb{N}^+ \qquad u_k < v_n < w_l$
- a) Prove que se u_n e w_n são convergentes, então v_n é limitada.
- b) Suponha que $\lim u_n = \lim w_n$. Diga, justificando, se v_n é necessariamente convergente.