

PROPOSTA DE TESTE N.º 2

MATEMÁTICA A - 10.º ANO - DEZEMBRO DE 2015

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Considere as proposições:

$$p: \frac{\sqrt{12}}{\sqrt{54} - \sqrt{6}} = \frac{\sqrt{2}}{2} \qquad \qquad e \qquad \qquad q: \ \forall x \in \mathbb{R}, \ x < 1 \Rightarrow x^2 < 1$$

Qual é, respectivamente, o valor lógico das proposições p e q?

- **2.** Sejam *A*, *B* e *C* os conjuntos definidos por:

$$A = \left\{ x \in \mathbb{R} : x^2 \ge 2x \right\}, \qquad B = \left\{ x \in \mathbb{R} : |x| > 2 \right\} \qquad \mathbf{e} \qquad C = \left\{ x \in \mathbb{Z}^+ : x^2 (x - 1) - \frac{x^3}{2} = 0 \right\}$$

O conjunto $\left(A \cap \overline{B}\right) \backslash C$ pode ser definido por:

A
$$[-2,0[$$
 B $[-2,0[\cup\{2\}$ **C** $[-2,0]$ **D** $[-2,0]\cup\{2\}$

3. Na figura está representado o rectângulo $\begin{bmatrix} ABCD \end{bmatrix}$ e cinco circunferências de área 4 no seu interior. Como a figura sugere, as circunferências têm o mesmo raio e algumas são tangentes entre si e tangentes aos lados do rectângulo.

Qual é o perímetro do rectângulo [ABCD]?

A
$$\frac{2\sqrt{\pi}}{\pi} (4 + \sqrt{3})$$
 B $\frac{4\sqrt{\pi}}{\pi} (4 + \sqrt{3})$ **C** $\frac{2\sqrt{\pi}}{\pi} (8 + \sqrt{3})$ **D** $\frac{4\sqrt{\pi}}{\pi} (8 + \sqrt{3})$

4. Sejam *x* e *y* dois números reais positivos distintos.

A expressão $\frac{\sqrt[3]{x\sqrt{y}}}{y\sqrt{x^3}} \times \left(xy^2\right)^{\frac{2}{3}}$ é equivalente a:

$$\mathbf{A} \quad \frac{\sqrt[3]{x^2 y}}{x}$$

$$\frac{\sqrt[3]{xy^2}}{y}$$

*Exercício Extra 1: Sejam x e y dois números reais e n um número natural maior que 1. Determine n de modo que $\frac{\sqrt[n]{x\sqrt{y}}}{\sqrt{y}\sqrt[3]{x}} = \frac{1}{\sqrt[3]{y}}$

5. Sejam A e B dois polinómios.

Sabe-se que:

- o grau do polinómio $A \times B$ é 7
- o grau do polinómio Q, quociente da divisão inteira de A por B, é 3

Qual é o grau do polinómio $(A \times B^3)^2$?

6. Seja P o polinómio cujo quociente e o resto da divisão inteira por $1-2x^2$ é x-k, com $k \in \mathbb{R}$.

Quais são os valores de k de modo que P seja divisível por 2x - k?

B
$$k = -4 \lor k = 0 \lor k = 4$$

C
$$k = -2 \lor k = 2$$

$$D k = -2 \lor k = 0 \lor k = 2$$

GRUPO II - ITENS DE RESPOSTA ABERTA

- **1.** Sejam p, q e r três proposições e considere a proposição $a: (p \land q) \lor ((p \land \neg q) \land (p \Rightarrow \neg q \land p))$.
 - **1.1.** Suponha que a proposição $(r \Rightarrow p \land q) \lor (r \land \neg q)$ é falsa.

Quais são os valores lógicos das proposições p, q, r e a?

1.2. Usando as propriedades das operações lógicas, mostre que as proposições a e p são equivalentes.

2. Considere as seguintes condições:

$$a(x): x^2 - 10x + 24 = 0$$

$$b(x)$$
: x é um múltiplo de 72

$$c(x)$$
: $x \in par$

2.1. Classifique, justificando, as seguintes condições:

a)
$$a(x) \Rightarrow c(x)$$
, em \mathbb{N} .

b)
$$b(x) \Leftrightarrow c(x)$$
, em \mathbb{N} .

c)
$$(x^4+1<0) \wedge a(x)$$
, em \mathbb{R} .

2.2. Considere os conjuntos *S*, *A* e *C* definidos por:

$$S = \left\{ x \in \mathbb{R}_0^+ : \sqrt[5]{2x} < 2 \right\}, \qquad A = \left\{ x \in S : a(x) \right\}$$

$$A = \{ x \in S : a(x) \}$$

$$C = \{ x \in S : c(x) \}$$

Defina em extensão o conjunto $C \setminus A$.

2.3. Considere a proposição $p: \forall x \in \mathbb{N}, \sim c(x) \Rightarrow \sim b(x)$.

- a) Sem utilizar o símbolo ~, escreva a negação da proposição p.
- b) Escreva em linguagem simbólica e em linguagem corrente a contra-recíproca da proposição p.
- c) Utilizando a contra-recíproca, mostre que a proposição p é verdadeira.
- 3. Na figura está representado o paralelepípedo [ABCDEFGH] e ao lado a face [ABCD].

Sabe-se que:

- P pertence ao lado [AB] tal que $\overline{BP} = 1$ e Q pertence ao lado [BC] tal que $\overline{BQ} = 2$
- ullet AQ é um arco de circunferência centrado em P e CP é um arco de circunferência centrado em Q
- A área da face [BCGF] é igual a $15 + 6\sqrt{5}$

Qual a área total do prisma [ABCDEFGH]? Apresente o resultado na forma $a+b\sqrt{c}$, com $a,b,c\in\mathbb{R}^+$.

4. Seja
$$A = \frac{\sqrt[3]{2\sqrt{12}}}{\sqrt[3]{4}}$$

- **4.1.** Mostre que $A = \sqrt[6]{3}$. A é solução da equação $x^{18} x^{12} x^6 = 15$?
- **4.2.** Usando as propriedades do radicais e a definição de potência de expoente racional, mostre que $A^4 + \frac{24}{A^2} = 3^{\frac{8}{3}}$.

*Exercícios Extra 2: Considere o número real A do exercício 4.

- a) Determine o conjunto solução da equação $(Ax)^2 + \sqrt[6]{6561}x^2 = 1$. Apresente as soluções com denominador racional.
- **b)** Racionalize $\frac{A^2}{\sqrt[3]{6}-A^2}$
- c) Mostre que $\sqrt{7+4A^3} + \sqrt{28-10\sqrt{3}}$ é um número natural.
- **5.** Considere o polinómio *P*, definido por $P(x) = -6x^4 11x^3 + 23x^2 + 32x 20$.
 - **5.1.** Usando a regra de Ruffini, determine o quociente e o resto da divisão inteira de P por 2x-3.
 - **5.2.** Verifica que -2 é raiz de P e determine a sua multiplicidade.
 - **5.3.** Decomponha *P* num produto de polinómios irredutíveis.
 - **5.4.** Resolva a inequação $P(x) \ge 0$

*Exercício Extra 3: Seja B um polinómio tais que o resto da divisão inteira de B por x-1 é 6 e o resto da divisão inteira de p por x+3 é -2.

- a) Qual é o resto da divisão inteira de P por $x^2 + 2x 3$.
- **b)** Considere que $B(x) = bx^3 + (2b+a)x^2 + (2a-b)x + a$, com $a,b \in \mathbb{R}$. Mostre que a = b = 1.
- c) Utilizando a regra de Ruffini, determine o resto da divisão inteira de B por $x^2 16$

6. Considere os polinómios *A*, *B* e *C* definidos por:

$$A(x) = 2x + 1,$$

$$B(x) = -x + 2$$

е

$$C(x) = x^4 + 4x^3 - 15x - 18$$

Na figura está representado um paralelepípedo [ABCDEFGH].

Sabe-se que:

•
$$\overline{AB} = A(x)$$

•
$$\overline{BC} = (A(x))^2 + B(x)$$

•
$$\overline{CG} = Q(x)$$
, onde $Q(x)$ é o quociente da divisão inteira de C por $x^2 + 3x + 3$

6.1. Seja P o polinómio que dá o volume do paralelepípedo em função de x, com x > 2.

Determine a expressão analítica do polinómio *P*, apresentando-a na forma reduzida e ordenada.

6.2. Seja D um polinómio de grau 3 tais que $D(x) \ge 0 \Leftrightarrow x \le -4$.

Determine o conjunto solução da inequação $C(x) \times D(x) < 0$. Sugestão: o polinómio C é divisível por $x^2 + 3x + 3$.

*Exercício Extra 4: Considere o polinómio C do exercício 6. Determine o conjunto solução da inequação $C(x) \le x^4 + x - 18$.

FIM

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

- С
- 3.
- **E.E.1** n = 3
- D

GRUPO II - ITENS DE RESPOSTA ABERTA

1.1. *F*, *V*, *V*, *F*

- a) Universal
- 2.1. b) Possível não universal
- 2.1. c) Impossível
- {0,2,8,10,12,14}

- a) $\exists x \in \mathbb{N} : x \in \text{impar} \land x \in \text{multiplo de } 72$
- b) $\forall x \in \mathbb{N}, b(x) \Rightarrow c(x) \Leftrightarrow \forall x \in \mathbb{N}, x \text{ \'e m\'ultiplo de } 72 \Rightarrow x \text{ \'e par }$; Por exemplo: "Todo o número natural m\'ultiplo de 72 \(\Delta \) par."
- $74 + 24\sqrt{5}$
- **4.1.** Sim

E.E.2 a)
$$\left\{-\frac{\sqrt[6]{243}}{6}, \frac{\sqrt[6]{243}}{6}\right\}$$
 b) $\sqrt[3]{4} + \sqrt[3]{2} + 1$

b)
$$\sqrt[3]{4} + \sqrt[3]{2} + 1$$

5.1. Quociente:
$$-3x^3 - 10x^2 - \frac{7x}{2} + \frac{43}{4}$$
; resto: $\frac{49}{4}$

5.3.
$$P(x) = -6\left(x - \frac{1}{2}\right)\left(x - \frac{5}{3}\right)(x + 2)^2$$

5.4.
$$\left[\frac{1}{2}, \frac{5}{3}\right] \cup \{-2\}$$

E.E.3 a)
$$2x + 4$$

b)
$$17x + 49$$

6.1.
$$P(x) = 8x^5 + 18x^4 - 29x^3 - 48x^2 - 51x - 18$$

6.2.
$$]-4,-3[\,\cup\,]2,+\infty[$$

E.E.4
$$]\infty,-2]\cup[0,2]$$