生物图像处理与信息学

Biological Image Processing and Informatics

第四讲 Lecture 4

光学成像基础 (I)

Fundamentals of Light Microscopy (I)

Outline

- Contrast generation in microscopy
- Introduction to fluorescence microscopy
- Practical constraints in microscopy
- Basic metrics of a microscope

- Contrast generation in microscopy
- Introduction to fluorescence microscopy
- Practical constraints in microscopy
- Basic metrics of a microscope

Contrast Generation in Light Microscopy

- Two fundamental roles of any microscope
 - To provide adequate contrast
 - To provide adequate <u>resolution</u>.
- Contrast generation
 - Transmitted light illumination vs reflected light illumination
 - Bright-field vs dark-field
 - Phase contrast
 - Fluorescent micros

 (A) Bright-field
 (B) Phase
 (C) DIC
 (D) Dark-field
 (C) Dic (D) Dark-field
 (C) Dic (D) Dark-field

50 μm

Phase Contrast & DIC (I)

- Phase contrast is very useful in imaging transparent specimens, which do not change light magnitude.
- Contrast is generated due to the different refractive indices of the sample and the background.

The Nobel Prize in Physics 1953

Frits Zernike Prize share: 1/1

The Nobel Prize in Physics 1953 was awarded to Frits Zernike "for his demonstration of the phase contrast method, especially for his invention of the phase contrast microscope".

Phase Contrast & DIC (III)

Specimen Optical Path Difference and DIC Amplitude Profile

Phase

DIC

Why Color/Specificity is Important?

- Contrast generation in microscopy
- Introduction to fluorescence microscopy
- Practical constraints in microscopy
- Basic metrics of a microscope

Discovery of Green Fluorescence Protein

Jellyfish: Aequorea victoria

http://gfp.conncoll.edu/GFP-1.htm

The Nobel Prize in Chemistry 2008

Osamu Shimomura
Prize share: 1/3

Martin Chalfie
Prize share: 1/3

Photo: U. Montan Roger Y. Tsien Prize share: 1/3

The Nobel Prize in Chemistry 2008 was awarded jointly to Osamu Shimomura, Martin Chalfie and Roger Y. Tsien "for the discovery and development of the green fluorescent protein, GFP".

Labeling a Protein Using GFP

http://gfp.conncoll.edu/GFP-1.htm

Fluorescence Microscopy (I)

Fluorophore Absorption and Emission Profiles

Reflected Light vs Transmitted Light

http://micro.magnet.fsu.edu/primer/java/tirf/ix70/ix70java.html

Fluorescence Microscopy (III)

A Multicolor Image of a HeLa Cell

Excitation (nm): 800 (2 photon)		488	432	568	637
Emission (nm):	410-490	500-530	555-565	580-620	>660
Fluorophore:	Hoechst	GFP	QD565	ReAsH	Cy5
Targeting:	direct affinity	genetic	immuno	genetic	immuno
Target:	DNA	α-tubulin	giantin	β-actin	Cytochrome c
Structure:	nuclei	microtubules	golgi	stress fibers	mitochondria
				il and	4

Giepmans et al, *Science*, 312:217, 2006

Excitation & Emission Spectrum

- A fluorescent molecule can only absorb excitation light within a certain range of wavelengths (excitation spectrum).
- A fluorescent molecule can only emit light within a certain range of wavelengths (emission spectrum).
- Emission wavelengths are always longer due to internal energy loss.
- Emission spectrum is approximately a mirror image of excitation spectrum.

Fluorescence Microscopy Summary

- High specificity:
 - Chemical fluorophores
 - Fluorescent proteins
- High sensitivity: up to single molecules.

Useful References

- Lakowicz JR, *Principles of fluorescence spectroscopy*, Springer, 2006.
- Herman B, *Fluorescence microscopy*, 2nd ed., Taylor & Francis, 1998.

- Contrast generation in microscopy
- A more detailed introduction to fluorescence
- Practical constraints in microscopy
- Basic metrics of a microscope

Practical Constraints in Microscopy

Photobleaching

- Fluorophores gradually lose their ability of light emission.
- This results in a sustained decrease in image intensity.

Phototoxicity

- Constant illumination generates free radicals that cause cell death.
- This places a fundamental limit on how many frame of images can be collected.

http://micro.magnet.fsu.edu/primer/java/fluorescence/photobleaching/index.html

- Contrast generation in microscopy
- A more detailed introduction to fluorescence
- Practical constraints in microscopy
- Basic metrics of a microscope

Microscope as a Linear System

A light microscope can be considered as a linear system.

http://micro.magnet.fsu.edu/primer/java/imageformation/airydiskformation/index.html

A Microscope as a Linear System

- A light microscope can be considered as a linear system.
- A linear system satisfies the following two conditions
 - Homogeneity
 - Additivity

Homogeneity

$$x(t) \to y(t)$$

$$\downarrow$$

$$\cdot x(t) \to k \cdot y(t)$$

$$k \cdot x(t) \rightarrow k \cdot y(t)$$

Additivity

$$x_{1}(t) \rightarrow y_{1}(t)$$

$$x_{2}(t) \rightarrow y_{2}(t)$$

$$\downarrow \downarrow$$

$$x_{1}(t) + x_{2}(t) \rightarrow y_{1}(t) + y_{2}(t)$$

How to Characterize a Linear System

- A linear system can be characterized by
 - Impulse response
 - Frequency response
- Impulse response of a microscope: point spread function

$$I(x,y) = O(x,y) \otimes psf(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} O(u,v) \cdot psf(x-u,y-v) du dv$$

Frequency response of a microscope: optical transfer function

$$F\{I(x,y)\} = F\{O(x,y)\} \cdot F\{psf(x,y)\} = F\{O(x,y)\} \cdot OTF(\cdot)$$

Airy Disk

- Airy (after George Biddell Airy) disk is the diffraction pattern of a point feature under a circular aperture.
- It has the following form

$$y = \left[\frac{2J_1(x)}{x}\right]^2$$

 $J_1(x)$ is a Bessel function of the first kind.

Detailed derivation is given in

Born & Wolf, Principles of Optics, 7th ed., pp. 439-441.

Microscope Image Formation (I)

 Microscope image formation can be modeled as a convolution with the PSF.

$$I(x,y) = O(x,y) \otimes psf(x,y)$$

$$F\{I(x,y)\} = F\{O(x,y)\} \cdot F\{psf(x,y)\}$$

http://micro.magnet.fsu.edu/primer/java/mtf/airydisksize/index.html

Microscope Image Formation (II)

- The impulse response of the microscope is called its point spread function (PSF).
- The transfer function of a microscope is called its optical transfer function (OTF).
- The PSF has the shape of an Airy Disk.

Numerical Aperture

 Numerical aperture (NA) determines microscope resolution and light collection power.

$$NA=n\cdot\sin\mu$$

n: refractive index of the medium between the lens and the specimen

 μ : half of the angular aperture

Different Definition of Light Microscopy Resolution Limit (Demo)

Rayleigh limit

$$D = \frac{0.61\lambda}{NA}$$

Sparrow limit

$$D = \frac{0.47\lambda}{NA}$$

https://micro.magnet.fsu.edu/primer/java/microscopy/airydiscs/index.html

Summary: High Resolution Microscopy

- Size of cellular features are typically on the scale of a micron or smaller.
- To resolve such features require
 - Shorter wavelength (electron microscopy)
 - High numerical aperture (resolution)
 - High magnification (spatial sampling)

$$D = \frac{0.61\lambda}{NA}$$

Widefield vs Confocal Microscopy

http://www.olympusfluoview.com/theory/confocalintro.html

Summary of Different Illumination Configurations

https://involv3d.org/principles/

Questions?