# 2.1.5

**Claim:** The group form by  $\mathbb{Z}_4$  under addition  $C_4$  and the group form by the symmetries of rectangle under the composition of symmetries  $K_4$  are not isomorphic.

**Proof:** The multiplication tables of each group are as the following:

| +   | [0] | [1] | [2] | [3] |
|-----|-----|-----|-----|-----|
| [0] | [0] | [1] | [2] | [3] |
| [1] | [1] | [2] | [3] | [0] |
| [2] | [2] | [3] | [0] | [1] |
| [3] | [3] | [0] | [1] | [2] |

Table 1: Multiplication Table of  $C_4$ 

|       | e     | $r_1$ | $r_2$ | $r_3$ |
|-------|-------|-------|-------|-------|
| e     | e     | $r_1$ | $r_2$ | $r_3$ |
| $r_1$ | $r_1$ | e     | $r_3$ | $r_2$ |
| $r_2$ | $r_2$ | $r_3$ | e     | $r_1$ |
| $r_3$ | $r_3$ | $r_2$ | $r_1$ | e     |

Table 2: Multiplication Table of  $K_4$ 

And their Cayley graphs can show the differences more clearly.



Figure 1: Cayley Graph of  $C_4$ 



Figure 2: Cayley Graph of  $K_4$ 

So we can conclude that The group form by  $\mathbb{Z}_4$  under addition  $C_4$  and the group form by the symmetries of rectangle under the composition of symmetries  $K_4$  are not isomorphic.

## 2.1.15

**Claim:** The following mathematical statements are equivalent for a group G:

- 1. G is abelian
- 2.  $\forall a, b \in G, (ab)^{-1} = a^{-1}b^{-1}$
- 3.  $\forall a, b \in G, aba^{-1}b^{-1} = e$
- 4.  $\forall a, b \in G, (ab)^2 = a^2b^2$
- 5.  $\forall a, b \in G, n \in \mathbb{N}, (ab)^n = a^n b^n$

**Proof:** To prove all those statements are equivalent, we can prove that  $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$ . So we can prove them separately.

 $1 \Rightarrow 2$ : Since G is an abelian group, so  $\forall a, b \in G, ab = ba$ . Then since  $(ab)^{-1} = b^{-1}a^{-1}$  and  $b^{-1}a^{-1} = a^{-1}b^{-1}$ , so  $(ab)^{-1} = a^{-1}b^{-1}$  is proved.

$$2 \Rightarrow 3$$
:  $aba^{-1}b^{-1} = ab(a^{-1}b^{-1}) = (ab)(ab)^{-1} = e$ .

$$3 \Rightarrow 4$$
:  $(ab)^2 = (ab)(ab)$ . Since  $aba^{-1}b^{-1} = e$ ,  $aba^{-1}b^{-1}ba = ba \Leftrightarrow ab = ba$ , so  $(ab)(ab) = (ab)(ba) = a(bb)a = ab^2a = aab^2 = a^2b^2$ .

$$4 \Rightarrow 5 \text{: Since } (ab)^2 = a^2b^2, (ab)^2(ab)^{-1} = a^2b^2(ab)^{-1} \Leftrightarrow ab = a^2b^2b^{-1}a^{-1} = a^2ba^{-1} \Leftrightarrow a^{-1}aba = a^{-1}a^2ba^{-1}a \Leftrightarrow ba = ab.$$

Then we can use mathematical induction to prove this statement.

Base case: when n = 1, ab = ab is obvious.

Suppose that when n = k, we have  $(ab)^k = a^k b^k$ , then if n = k + 1,  $(ab)^{k+1} = (ab)^k \cdot (ab) = a^k b^k (ab) = a^k b^k (ba) = a^k (b^k b) a = a^k b^{k+1} a = a^k ab^{k+1} = a^{k+1} b^{k+1}$ .

So we can conclude that  $\forall a, b \in G, n \in \mathbb{N}, (ab)^n = a^n b^n$ .

$$5 \Rightarrow 1$$
: Since  $\forall a, b \in G, n \in \mathbb{N}, (ab)^n = a^n b^n$ , let  $n = 2$ , then  $(ab)^2 = a^2 b^2$ . So  $(ab)^2 = a^2 b^2$ ,  $(ab)^2 (ab)^{-1} = a^2 b^2 (ab)^{-1} \Leftrightarrow ab = a^2 b^2 b^{-1} a^{-1} = a^2 b a^{-1} \Leftrightarrow a^{-1} aba = a^{-1} a^2 b a^{-1} a \Leftrightarrow ba = ab$ .

Thus, we can finally conclude that the mathematical statements above are equivalent for a group  $G.\blacksquare$ 

#### 2.2.2 Solution:



Figure 3: Subgroup Lattice of  $D_4$ 

### 2.2.7

Claim: If  $H_1, H_2, \dots, H_n$  are subgroups of G, then  $\bigcap_{\alpha} H_{\alpha}$  is s subgroup of G.

**Proof:** We can use induction to prove that  $\forall n \in \mathbb{N}$ , we have  $\bigcap_{\alpha} H_{\alpha}$  is

Base case, when n = 1, if  $H_1$  is a subgroup of G,  $\bigcap_{i=1}^1 H_i = H_1$  is a subgroup of G is obviously true.

Suppose that when n = k,  $\bigcap_{i=1}^k H_i$ . Then if n = k+1,  $\bigcap_{i=1}^{k+1} H_i =$  $(\bigcap_{i=1}^k H_i) \cap H_{k+1}$  while  $\bigcap_{i=1}^k H_i$  and  $H_{k+1}$  are both subgroups of G.

If  $\bigcap_{i=1}^k H_i \subseteq H_{k+1}$  or  $H_{k+1} \subseteq \bigcap_{i=1}^k H_i$ , then  $\bigcap_{i=1}^{k+1} H_i = H_{k+1}$  or  $\bigcap_{i=1}^k H_i$ . According to base case,  $\bigcap_{i=1}^{k+1} H_i = H_{k+1}$  is a subgroup of G.

If  $\bigcap_{i=1}^k H_i \nsubseteq H_{k+1}$  or  $H_{k+1} \nsubseteq \bigcap_{i=1}^k H_i$  and  $\bigcap_{i=1}^{k+1} H_i \neq \emptyset$ , since for all i,  $e \in H_i$ ,  $e \in \bigcap_{i=1}^{k+1} H_i$ . Take  $g \in \bigcap_{i=1}^{k+1} H_i$ , then for all i,  $g \in H_i$ . Since each  $H_i$  is a subgroup,  $g^{-1} \in H_i$  for each i, thus  $g^{-1} \in \bigcap_{i=1}^{k+1} H_i$ . Take  $g, h \in H$ . Then  $g, h \in H_i$  for every i, so  $gh \in H_i$  for every i. Thus  $gh \in H$ .

So we can conclude that If  $H_1, H_2, \dots, H_n$  are subgroups of G, then  $\bigcap_{\alpha} H_{\alpha}$  is s subgroup of  $G.\blacksquare$ 

## 2.2.24

Claim: If there's at least 3 elements of order 4, the group of order 20 cannot be cyclic. If there's exactly 2 element of order 4, the group of order 20 can be cyclic.

**Proof:** Suppose the group G of order 20 has at least 3 elements of order 4 is cyclic. That is to say that  $G \cong C_{20} \cong \mathbb{Z}_{20}$ . Since there're only 20 elements in  $\mathbb{Z}_{20}$ , we can check all elements if they are element of order 4.

By definition, if  $[i] \in \mathbb{Z}_{20}$  is an order 4 element, it is expected that  $(4 \cdot x)$  $\mod 20 = 0$  and for  $i = 1, 2, 3, (i \cdot x) \mod 20 \neq 0$ . Since it's tiring to calculate all 20 elements, so I wrote some code to do this for me as the following with Python 2.7.10(next page).

Figure 4: Python Code

As the code shows, there's only 2 elements of order 4 in  $C_{20}$ .

As a result, we proved that, if there's at least 3 elements of order 4, the group of order 20 cannot be cyclic. If there's exactly 2 element of order 4, the group of order 20 can be cyclic.■