CS 217 – Algorithm Design and Analysis

Shanghai Jiaotong University, Fall 2019

Handed out on Thursday, 2019-09-26 First submission and questions due on Monday, 2019-09-30 You will receive feedback from the TA. Final submission due on Thursday, 2019-10-10

3 Minimum Spanning Trees

Throughout this assignment, let G be a weighted graph, i.e., G = (V, E, w) with $w : E \to \mathbb{R}^+$. For $c \in \mathbb{R}$ and a weighted graph G = (V, E, w), let $G_c := (V, \{e \in E \mid w(e) \leq c\})$. That is, G_c is the subgraph of G consisting of all edges of weight at most C.

Exercise 1 Let T be a minimum spanning tree of G, and let $c \in \mathbb{R}$. Show that T_c and G_c have exactly the same connected components. (That is, two vertices $u, v \in V$ are connected in T_c if and only if they are connected in G_c). You are encouraged to draw pictures to illustrate your proof!

Proof: In other words, we need to prove the following statements are equivalent, given $v_1, v_2 \in V$

 \exists path $e_1, \ldots, e_n \in E$, the path connects $v_1, v_2,$ and $w(e_i) \leq c$ (*).

 $\exists \text{ path } e_1, \dots, e_n \in E(T), \text{ the path connects } v_1, v_2, \text{ and } w(e_i) \leq c \quad (**).$

Notice that $(**) \implies (*)$ is obvious. We only need to prove $(*) \implies (**)$. The path connects v_1, v_2 in T is unique, otherwise there are cycles.

Let the unique path connects $v_1 = u_1, \ldots, u_t = v_2$. And assume $\exists j, 1 \leq j < t$ such that

$$w\left(e(u_j,u_{j+1})\right) > c.$$

we remove the edge $e(u_j, u_{j+1})$ from T, and get 2 sets of vertices A, B. A, B are connected respectively. We prove that $\exists e \in E$ that connects A, B plus $w(e) \leq c$. This is obvious from (*). Hence it leads that T is not a MST, a contradiction.

Exercise 2 For a weighted graph G, let $m_c(G) := |\{e \in E(G) \mid w(e) \leq c\}|$, i.e., the number of edges of weight at most c (so G_c has $m_c(G)$ edges). Let T, T' be two minimum spanning trees of G. Show that $m_c(T) = m_c(T')$.

Proof: Let the edge set of T_c be

$$E(T_c) = \{e_1, e_2, \dots, e_r\}.$$

We know that $E(T_c)$ forms several connected components $A_1, A_2, \ldots, A_t \subset V$. And from the last exercise we know that A_1, A_2, \ldots, A_t are also connected components in T'. And we can assert the connected components in T' are exactly these A_i , otherwise apply the conclusion from last exercise, we can derive more components for T. And specifically, those components must be trees. Hence

$$m_c(T) = \sum_{i=1}^{t} (|A_i| - 1) = m_c(T').$$

Exercise 3 Suppose G is connected, and no two edges of G have the same weight. Show that G has exactly one minimum spanning tree!

Proof: Otherwise consider 2 minimum spanning tree T_1, T_2 , let

$$E(T_1) = \{a_1, a_2, \dots, a_r\}.$$

in which $a_i < a_{i+1}$, and similarly

$$E(T_2) = \{b_1, b_2, \dots, b_s\}.$$

Let j be the minimum such that $a_j \neq b_j$. We can assert j exists since T_1, T_2 are different.

W.L.O.G let $a_j < b_j$, it leads that

$$m_{a_j}(T_1) = j \neq j - 1 = m_{a_j}(T_2).$$

Which contradicts with Exercise 2.

A *multigraph* is a graph that can have multiple edges, called "parallel edges". Without defining it formally, we illustrate it:

All other definitions, like connected components and spanning trees are the same as for normal (simple) graphs. However, when two spanning trees use different parallel edges, we consider them different:

The same multigraph with two different spanning trees.

Exercise 4 How many spanning trees does the above multigraph on 7 vertices have? Justify your answer!

Proof: Since the edge in the middle must be chosen. We only need to consider the spanning tree in 2 subgraphs. \Box

Exercise 5 Suppose you have a polynomial-time algorithm that, given a multigraph H, computes the number of spanning trees of H. Using this algorithm as a subroutine, design a polynomial-time algorithm that, given a weighted graph G, computes the number of minimum spanning trees of G.

Proof: \Box