Inhaltsverzeichnis

1	Noı	rm und Skalarprodukt			
	1.1	Norm			
	1.2	Skalarprodukt			
		1.2.1 Vom Skalarprodukt induzierte Norm			
		1.2.2 Cauchy-Schwarzche Ungleichung			
2	Symmetrische, positiv definite Matrix				
	2.1	Cholesky-Zerlegung $A = GG^t$			
	2.2	[?] diagonal dominant und alle $a_{ii} \geq 0 \dots \dots \dots$			
	2.3	Eigenwerte			
	2.4	Eigenvektor			
3	Matrixnormen				
	3.1	Natürliche Matrixnorm			
	3.2	Verträglichkeit			
	3.3	Zeilensummennorm			
	3.4	Spaltensummennorm			
	3.5	Spektralnorm			
4	Spektralradius, Konditionszahl einer Matrix				
	4.1	Spektralradius φ			
	4.2	Konditionszahl einer Matrix A			
	4.3	Sonderfall symmetrisch, positiv definite Matrix			
5	Ähnlichkeitstransformation, Invarianz der Eigenwerte				
	5.1	Reduktionsmethoden			
6	\mathbf{Gle}	itkommazahlen			
	6.1	Gleitkommazahl (normalisiert)			
	6.2	Gleitkommagitter			
	6.3	Maschienengenauigkeit eps			
	6.4	Rundungsfehler			
7	Darstellung des Interpolationsfehlers				
	7.1	Fehler I			
	7.2	Fehler II			
8	Konditionierung einer numerischen Aufgabe, Konditionszah-				
	len				
		numerische Aufgabe			

	8.2	Konditionszahl (relativ)	10
9		pilität eines Algorithmus	11
	9.1	stabiler Algorithmus	11
10	Aus	löschung	12
11	Hor	ner-Schema*	13
	11.1	Code	13
		Auswertung	
12	Inte	rpolation und Approximation	14
	12.1	$Grundproblem \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	14
	12.2	Aufgabenstellung	14
	12.3	Interpolation	14
		Approximation	
13	Lagi	ransche Interpolationsaufgabe	15
	13.1	Aufgabe	15
		Eindeutigkeit + Existenz	
	13.3	Lagransche Basispolynome	15
	13.4	Eigenschaften	15
	13.5	Lagransche Darstellung	15
14	New	tonsche Basispolynome, dividierte Differenzen	16
	14.1	Newton-Polynome	16
		14.1.1 Auswertung	16
		14.1.2 Vorteil	16
		Newtonsche Darstellung	
		Dividierte Differenzen*	
15	Nev	illsche Darstellung	17
	15 1	Schome	17

1 Norm und Skalarprodukt

1.1 Norm

Definitheit: $||x|| = 0 \Rightarrow x = 0$ absolute Homogenität: $||\alpha x|| = |\alpha| * ||x||$ Dreiecksungleichung: $||x + y|| \le ||x|| + ||y||$

1.2 Skalarprodukt

$$\begin{aligned} \mathbf{j}\mathbf{x} + \mathbf{y}, \, \mathbf{z} & \boldsymbol{\xi} = \mathbf{j}\mathbf{x}, \, \mathbf{z} & \boldsymbol{\xi} + \mathbf{j}\mathbf{y}, \, \mathbf{z} \\ \mathbf{j}\mathbf{x}, \, \mathbf{y} + \mathbf{z} & \boldsymbol{\xi} = \mathbf{j}\mathbf{x}, \, \mathbf{y} & \boldsymbol{\xi} + \mathbf{j}\mathbf{x}, \, \mathbf{z} \\ \mathbf{TODO: Klammer} \\ & < \lambda x, \, y >= \lambda < x, \, y > \\ & < x, \, \lambda y >= \lambda < x, \, y > \\ & \mathbf{j}\mathbf{x}, \, \mathbf{y} & \boldsymbol{\xi} = \mathbf{j}\mathbf{y}, \, \mathbf{x} \\ & < x, \, x > \geq 0 \\ & < x, \, x > = 0 \Rightarrow x = 0 \end{aligned}$$

1.2.1 Vom Skalarprodukt induzierte Norm

$$||x|| = \sqrt{\langle x, x \rangle}$$

1.2.2 Cauchy-Schwarzche Ungleichung

$$|\langle x, y \rangle| \le ||x|| * ||y||$$

2 Symmetrische, positiv definite Matrix

TODO: Matrizen insbesonders: Diagonalmatrizen, Einheitsmatrizen positiv definit: $x^t A x > 0$ (beliebige Matrix) alle EW \downarrow 0 (symmetrische Matrix) alle Haupt[TODO: ?] \downarrow 0 (symetrische Matrix) TODO: Matrix \Rightarrow 3 Hauptminoren[?] = det(a), det(TODO: Matrix), det(TODO: Matrix)

2.1 Cholesky-Zerlegung $A = GG^t$

G unter der Matrix, invertierbar (symmetrische Matrix)

2.2 [?] diagonaldominant und alle $a_{ii} \geq 0$

(symmetrische Matrix)

2.3 Eigenwerte

$$det(\lambda En - A) = 0$$

2.4 Eigenvektor

$$f(v) = \lambda v$$

3 Matrixnormen

3.1 Natürliche Matrixnorm

$$\begin{split} ||A||_{\infty} &:= \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \max_{||x||=1} ||Ax||_{\infty} \\ ||A|| &= 0 \, \Rightarrow \, A \, = \, 0, ||\lambda A|| = \, |\lambda| * ||A||, ||A \, + \, B|| \leq \, ||A|| + ||B||, ||A \, * \, B|| \leq ||A|| * ||B|| \end{split}$$

3.2 Verträglichkeit

 $||Ax|| \le ||A|| * ||x||$

3.3 Zeilensummennorm

= natürliche Matrixnorm $||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$ $A = TODO: Matrix||A||_{\infty} = \max|1|+|-2|+|-3|, |2|+|3|+|-1| = \max6, 6 = 6$

3.4 Spaltensummennorm

$$\begin{split} ||A||_1 &:= \max_{x \neq 0} \frac{||Ax||_1}{||x||_1} = \max_{||x||_1 = 1} ||Ax||_1 = \max_{j = 1, \dots, n} \sum_{i = 1}^m |a_{ij}| \\ A &= TODO: Matrix ||A||_1 = \max |1| + |2|, |-2| + |3|, |-3| + |-1| = \max 3, 5, 4 = 5 \\ &||A^t||_1 = ||A||_\infty \end{split}$$

3.5 Spektralnorm

$$\begin{split} ||A||_2 &:= \max_{||x||_2 = 1} ||Ax||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \max_{||x||_2 = 1} < Ax, Ax > = \max_{||x||_2 = 1} < A^t Ax, x > = \max \sqrt{|\lambda|}, \lambda * EW von A^t A \\ A &= TODO : Matrix, A^t A = TODO : Matrix det(\mu E_n - A^t A) = 0 \Leftrightarrow \\ \mu_{1,2} &= 16, 1 \\ ||A||_2 &= \sqrt{\max(\mu_1, \mu_2)} = \sqrt{\mu_1} = \sqrt{16} = 4 \end{split}$$

4 Spektralradius, Konditionszahl einer Matrix

4.1 Spektralradius φ

 $\varphi(A) = \max: 1 \leq i \leq n |\lambda_i(A)| = spr(A)$ der betragsmäßig größte Eigenwert von A

 $||A|| \ge |\lambda|$ (für jede Matrixnorm, die mit einer Vektornorm verträglich ist)

4.2 Konditionszahl einer Matrix A

$$cond(A) = ||A|| {*} ||A^{-1}||$$

4.3 Sonderfall symmetrisch, positiv definite Matrix

$$cond(A) = \frac{\lambda_{max}}{\lambda_{min}}$$

Ähnlichkeitstransformation, Invarianz der 5 Eigenwerte

$$y = Ax$$

$$\bar{x} = Cx, \bar{y} = Cy \qquad (detC \neq 0), C \in GL$$

$$y = Ax \Rightarrow C^{-1}\bar{y} = AC^{-1}\bar{x} \Rightarrow \bar{y} = CAC^{-1}\bar{x} \Rightarrow \bar{y}\bar{A}\bar{x}$$

$$\bar{A} = CAC^{-1} \Rightarrow \bar{A} \sim A$$

$$\lambda EW, vEVzuA$$

$$\Rightarrow Av = C^{-1}\bar{A}Cv = \lambda v$$

 $\Rightarrow \bar{A}undA$ haben dieselben Eigenwerte, algebraisch und geometrische Vielfalten stimmen überein (Invarianz der Eigenwerte)

5.1 Reduktionsmethoden

A duch Ähnlichkeitstransformationen

$$A = A^{(0)} = T_1^{-1}A^{-1}T_1 = Q... = T_i^{-1}A^{(i)}T_i = ...$$

 $A=A^{(0)}=T_1^{-1}A^{-1}T_1=Q...=T_i^{-1}A^{(i)}T_i=...$ auf Form bringen, für welche EW und EV leicht zu berechnen sind (z.B. Jordan-Normalform)

6 Gleitkommazahlen, Gleitkommagitter, Maschienengenauigkeit, Rundungsfehler

6.1 Gleitkommazahl (normalisiert)

$$b \in \mathbb{N}, b \geq 2, x \in \mathbb{R}$$

$$x = \pm m * b^{\pm e}$$
Mantisse: $m = m_1 b^{-1} + m_2 b^{-2} + \ldots \in \mathbb{R}$
Exponent: $e = e_{s-1} b^{s-1} + \ldots + e_0 b^0 \in \mathbb{N}$
für $x \neq 0$ eindeutig

6.2 Gleitkommagitter

A = A(b¹, r², s³) größte Darstellbare Zahl:
$$(1 - b^{-r}) * b^{b^s-1}$$

 $(b = 10) : 0,314 * 10^1 = 3,14$
 $0,123 * 10^6 = 123.000$
Beispiel: konvertiere von Basis 8 zu Basis 10:
 $x = (0,5731 * 10^5)_8 \in A(8,5,1)$
 $x = (5 * 8^{-1} + 7 * 8^{-2} + 3 * 8^{-3} + 1 * 8^{-4}) * 8^5$
 $x = 5 * 8^4 + 7 * 8^3 + 3 * 8^2 + 1 * 8^1 = 24.264 * 10^0$

6.3 Maschienengenauigkeit eps

$$eps = \frac{1}{2}b^{-r+1}, IEEE : eps = \frac{1}{2} * 2^{-52} \approx 10^{-16}$$

6.4 Rundungsfehler

$$\begin{array}{l} absolut: |x-rd(x)| \leq \frac{1}{2}b^{-r}b^e \\ relativ: |\frac{x-rd(x)}{x}| \leq \frac{1}{2}b^{-r+1} = eps \end{array}$$

 $^{^{1}}$ Basis

²Mantissenlänge

³Exponentenlänge

7 Darstellung des Interpolationsfehlers

7.1 Fehler I

$$f \in C^{n+1}[a,b], \forall x \in [a,b] \exists \xi_x \in (\overline{x_0, ..., x_n, x})^4, s.d.$$
$$f(x) - p(x) = \frac{f^{(n+1)}(\xi x)}{(n+1)!} \prod_{j=0}^n (x - x_j)$$

7.2 Fehler II

$$\begin{split} f \in C^{n+1}[a,b], &\forall x \in [a,b] \ \backslash x_0, ..., x_n gilt: \\ f(x) - p(x) &= f[x_0, ..., x_n, x] \prod_{j=0}^n (x-x_j) \\ &\text{mit } f[x_i, ..., x_{i+k}] = y[x_i, ..., x_{i+k}] \\ &\text{und } f[x_0, ..., x_n, x] = \int_0^1 \int_0^{t_1} ... \int_0^{t_n} f^{n+1}(x_0 + t_1(x_1-x_0) + ... + t_n(x_n-x_{n-1}+t(x-x_n)) dt dt_n ... dt_1 \\ &\text{für } x_0 = x_1 = ... = x_n: \\ &f[x_0, ..., x_n] = \frac{1}{n!} f^{(n)}(x_0) \\ &\frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{j=0}^n (x-x_j) = f(x) - p(x) = f[x_0, ..., x_n, x] \prod_{j=0}^n (x-x_j) \\ &\Rightarrow f[x_0, ..., x_n, x] = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \end{split}$$

⁴kleinstes Intervall, das alle x'i enthällt

8 Konditionierung einer numerischen Aufgabe, Konditionszahlen k_{ij}

8.1 numerische Aufgabe

$$x_j \in \mathbb{R}mitf(x_1,...,x_m) \Rightarrow y_i = f_i(x_j)$$
 fehlerhafte Eingangsgrößen $x_i + \Delta y_i$ $|\Delta y_i|$ ist der absolute Fehler, $|\frac{\Delta y_i}{y_i}|$ ist der relative Fehler

8.2 Konditionszahl (relativ)

$$k_{ij}(x) = \frac{\partial f_i}{\partial x_i}(x) \frac{\Delta x_j}{x_j}$$

$$\frac{\Delta y_i}{y_i} = \sum_{j=1}^m k_{ij}(x) \frac{\Delta x_j}{x_j}$$

$$|k_{ij}(x)| >> 1 \Rightarrow \text{schlecht konditioniert}$$

$$|k_{ij}(x)| << 1 \Rightarrow \text{gut konditioniert, ohne Fehlerverstärkung}$$

$$|k_{ij}(x)| > 1 \Rightarrow \text{Fehlerverstärkung}$$

$$|k_{ij}(x)| < 1 \Rightarrow \text{Fehlerdämpfung}$$

9 Stabilität eines Algorithmus

9.1 stabiler Algorithmus

akkumulierte Fehler der Rechnung (Rundungsfehler, Auswertungsfehler, etc.) übersteigen den unvermeidbaren Problemfehler der Konditionierung der Aufgabe nicht. Aka Trotz Ungenauigkeiten bei den Eingabe Variablen erhalten wir fast sehr genaue Ergebnisse.

10 Auslöschung

Verlust von Genauigkeit bei der Subtraktion von Zahlen mit gleichem Vorzeichen

TODO: bei bedarf ein Beispiel

11 Horner-Schema*

$$p(x) = a_0 + x(\dots + x(a_{n-1} + a_n x)\dots)$$

11.1 Code

def horner(
$$Ac^5$$
, Ax^6 , n^7 , x^8): // 9
 $y = 0.0$
for i in reversed range(n):
$$y = y * (x - Ax[i]) + Ac[i]$$
return y

Immer Horner-Schema zur Auswertung von Polynomen verwenden.

11.2 Auswertung

TODO: subsection

⁵Vektor mit Koeffizienten

 $^{^6\}mathrm{St}$ ützstellen

⁷Anzahl der Stützstellen

 $^{^8} Auswertung spunkt$

⁹wobei Ac und Ax np Arrays sind, n ein int und x ein double

12 Interpolation und Approximation

12.1 Grundproblem

Darstellung und Auswertung von Funktionen

12.2 Aufgabenstellung

f(x) nur auf Diskreter Menge von Argumenten $x_0, ..., x_n$ bekannt und soll rekonstruiert werden

analytisch gegebene Funktion soll auf Reelwerte dargestellt werden, damit jederzeit Werte zu beliebigen ${\bf x}$ berechnet werden können.

Einfach konstruierte Funktionen in Klassen P:

```
Polynome: p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n rationale Funktion: r(x) = \frac{a_0 + a_1x + \dots + a_nx^n}{b_0 + b_1x + \dots + b_mx^m} trigonometrische Funktion: t(x) = \frac{1}{2}a_0 + \sum_{k=1}^n (a_k\cos(kx) + b_k\sin(kx)) Exponentialsummen: e(x) = \sum_{k=1}^n a_k exp(b_kx)
```

12.3 Interpolation

Zuordnung von $g \in P$ zu f durch Fixieren von Funktionswerten $g(x_i) = y_i = f(x_i), i = 0, ..., n$

12.4 Approximation

$$g \in P$$
 beste Darstellung, z.B.
$$\max_{a \le x \le b} |f(x) - g(x)| minimal \\ (\int_a^b |f(x) - g(x)|^2 dx)^{\frac{1}{2}} minimal$$

Lagransche Interpolationsaufgabe 13

Aufgabe 13.1

Finde zu n + 1 verschiedene Stützstellen/Knoten $x_0, ..., x_n \in \mathbb{R}undWErteny_0, ..., y_n \in$ $\mathbb{R}einPolynomp \in P_nmitp(x_i) = y_i$

Eindeutigkeit + Existenz 13.2

Die Lagransche Interpolationsaufgabe ist eindeutig lösbar TODO: bei bedarf Beweis rein kopieren den Ich nicht verstanden hab

Lagransche Basispolynome

$$L_i^{(n)}(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} \in P_n, i = 0, ..., n$$

Eigenschaften 13.4

ortogonal: es gilt $L_i^{(n)}(x_k) = d_{ik} = \text{TODO}$: split over 2 lines 1, i = k 0, sonst bilden Basis von P_n haben Grad n

Lagransche Darstellung 13.5

 $p(x)=\sum_{i=0}^ny_iL_i^{(n)}(x)\in P_n$ mit $p(x_j)=y_j$ Nachteil: Bei Hinzunahme von (x_{n+1},y_{n+1}) ändert sich das Basispolynom

TODO: Beispiel

14 Newtonsche Basispolynome, dividierte Differenzen

14.1 Newton-Polynome

$$N_0(x) = 1, N_i(x) = \prod_{j=0}^{i-1} (x - x_j) \text{ mit } p(x) = \sum_{i=0}^{n} a_i N_i(x)$$

14.1.1 Auswertung

$$y_0 = p(x_0) = a_0$$

$$y_1 = p(x_1) = a_0 + a_1 * (x_1 - x_0)$$

$$\vdots$$

$$y_n = p(x_n) = a_0 + a_1(x_1 - x_0) + \dots + a_n(x_n - x_0) * \dots * (x_n - x_{n-1})$$

14.1.2 Vorteil

Bei Hinzunahme von (x_{n+1}, y_{n+1}) muss nur eine neue Rechnung durchgeführt werden, und nicht das gesamte Polynom neu berechnet werden TODO: Beispiel

14.2 Newtonsche Darstellung(stabile Variante)

$$p(x) = \sum_{i=0}^{n} y[x_0, ..., x_i] N_i(x)$$

14.3 Dividierte Differenzen*

$$y[x_i,...,x_{k+1}] = \frac{y[x_{i+1},...,x_{k+1}] - y[x_i,...,x_{i+k-1}]}{x_{i+k} - x_i} \text{ mit } \mathbf{k} = 1, \, ..., \, \mathbf{j} \text{ und } \mathbf{i} = \mathbf{k} - \mathbf{j}$$
 für beliebige [?] $\sigma:0,...,n \to 0,...,n$ gilt $y[\tilde{x_0},...,\tilde{x_n}] = y[x_0,...,x_n]$

15 Nevillsche Darstellung

$$p_{jj}(x) = y_j j = 0, ..., n k = 1, ..., j i = k - j$$

$$p_{i,i+k}(x) = p_{i,i+k-1}(x) + (x - x_i) \frac{p_{i+1,i+k}(x) - p_{i,i+k-1}(x)}{x_{i+k} - x_i}$$

15.1 Schema