1. Hudisti convergența seriilor:

a)
$$\sum_{n=1}^{\infty} \frac{\sinh(nx)}{2^n}$$
, $x \in \mathbb{R}$.

$$\frac{\text{Yol}}{\text{In}} : \chi_n = \frac{\text{sin}(n\chi)}{2^n} + \text{nep}^*$$

$$|\chi_n| = \frac{|\text{Nin}(n\chi)|}{2^n} \leq \frac{1}{2^n} + \text{MEH}^*.$$

Fie yn= 1/2 + nEH*

$$\sum_{n=1}^{\infty} y_n = \sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n \text{ Conv. (Mie glom., } q = \frac{1}{2}\right).$$

Conform brit, de comp. cu ineg, aven cà $\sum_{n=1}^{\infty} |x_n|$ este conv. Deci $\sum_{n=1}^{\infty} x_n$ este absolut conv.

Din umare Etn este conv. (+xeR). [

$$by \sum_{n=1}^{\infty} \frac{\ln n}{n^3}.$$

Yol:
$$x_n = \frac{\ln n}{n^3} + n \in A^*$$

Aven lnn/lnti) < n + n = P*

Deci
$$\frac{\ln n}{n^3} < \frac{2}{n^3} = \frac{1}{n^2} + n \in \mathbb{N}^*$$
.

The $4 = \frac{1}{n^2} + n \in \mathbb{N}^*$.

 $2 = \frac{1}{n^2} + n \in \mathbb{N}^*$.

 $2 = \frac{1}{n^2} + n \in \mathbb{N}^*$.

Southern but, all some, suring over the source.

 $2 = \frac{1}{n^2} + n = \frac{1}{n^2} +$

 $= (-1)^n \lim_{n \to \infty} \left(\frac{\pi}{\sqrt{n^2 + 1} + n} \right) + n \in \mathbb{N}^*$

Deci arctg 1 > arctgo=0 +nEH*.

Hadar xn>0 + ne H*.

$$\lim_{x\to 0} \frac{\arctan x}{x} = 1 \Rightarrow \lim_{n\to\infty} \frac{\arctan \frac{1}{n(n+1)}}{\arctan n(n+1)} = 1.$$

Fie yn= 1 xn +neH*

 $\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{\left(\arctan\frac{1}{n(n+1)}\right)x^n}{\frac{1}{n(n+1)}x^n}=1\in(0,\infty).$

bonform brit, de comp. cu limita aven ca $\sum_{n=1}^{\infty} x_n \sim \sum_{n=1}^{\infty} y_n$.

 $\sum_{N=1}^{\infty} y_N = \sum_{N=1}^{\infty} \frac{1}{N(N+1)} x^N, \quad x>0.$

 $\lim_{n\to\infty} \frac{y_{n+1}}{y_n} = \lim_{n\to\infty} \frac{\frac{1}{n+1}n+2}{\frac{1}{n+1} \cdot x^n} = \pm.$

Of. bit. rap. ovem: 1) Doca X<1 (i.l. XE(0,1)), otunci = yn e conv.

$$\sum_{n=1}^{\infty} y_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} cov. (vezi bus 2). D$$

a)
$$f_n: [q_1] \rightarrow \mathbb{R}, f_n(x) = x^n (1-x^n) + n \in \mathbb{N}^*$$

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} x^n (1-x^n) = 0 \Rightarrow f_n \xrightarrow[n\to\infty]{\Lambda} f_1 \text{ under}$$

$$|f_n(x) - f(x)| = |f_n(x) - o| = |f_n(x) - f(x)| = |f_n(x) - f($$

$$= \underset{\mathsf{X} \in [0,1]}{\mathsf{M}} \times \underset{\mathsf{X} \in [0,1]}{\mathsf{M}} \times \underset{\mathsf{X} \in [0,1]}{\mathsf{M}} = \frac{1}{2} \cdot \left(1 - \frac{1}{2}\right) = \frac{1}{2} \cdot$$

Jel .: B. s.

Fix XE [O,1]

lim
$$f_n(x) = \lim_{n \to \infty} \left[\left(\left(1 - x \right) \right]^n = 0 = 0$$
 for $\frac{1}{n + \infty} f_n \text{ under } f_n(x) = 0$.

Lim $f_n(x) = \lim_{n \to \infty} \left[\left(\left(1 - x \right) \right]^n = 0 = 0 \right]$ for $\frac{1}{n + \infty} f_n \text{ under } f_n(x) = 0$.

 $| f_n(x) - f(x) | = | f_n(x) - o | = | f_n(x) - o | = | f_n(x) - f_n(x) | f_n(x)$

Fix
$$g: [0]_{-} R_1 g(x) = x(1-x) = x - x^2$$
.
 $g'(x) = 1-2x + x \in [0,1]$.
 $g'(x) = 0 \Rightarrow x = \frac{1}{2}$.
 $x = \frac{1}{2}$.

the
$$\text{Alli} \left[\left(1-x \right) \right]^n = \left(\frac{1}{4} \right)^n \xrightarrow{N \to \infty} 0.$$

3. Fix $A \subset \mathbb{R}$ or multime marginità si $f: A \to \mathbb{R}$ o functie a. \mathcal{I} . $f + (\pm n)_m \subset A$, $(\pm n)_m$ sir bauchy, aven cà $(f(\pm n))_m$ sir bauchy. Iratati sa f este funcție uniform continuă.

Joh.: Pr. prin abrund så f nu este uniform continuä. f function uniform continua \Rightarrow $+ \approx >0$, $\exists \int_{\xi} >0$ or x. $+ \approx , y \in A$ cu proprietation sà $|\approx -y| < \int_{\xi}$, over $|\approx -f(y)| < \epsilon$.

f nu este functie uniform continuà (=) $\exists \ \varepsilon_0 > 0$ a.i. $\forall 5 >$

Dui $f \in S > 0$ a.s. $f \in A$ $f \in A$, $f \in A$ $f \in A$

Notam $x_1 = x_n + y_n = y_n$.

therefore, $\exists \ \varepsilon_0 > 0$ a.c. $\forall n \in \mathbb{N}^*, \ \exists \ \forall n, \ \forall n \in \mathbb{N}$ cu proviotatea sa $|x_n - y_n| < \frac{1}{n}$, $|f(x_n) - f(y_n)| \ge \varepsilon_0$. Itseem $\lim_{n \to \infty} (x_n - y_n) = 0$.

(xn)n CA + (xn)n marginit.

bonforn Lemei lui besaro $\exists (x_{n_k})_k \subset (x_n)_n \in \Omega$. (In) convergent. them lim (the Yng)=0 si (the) & conv. Die (4mg) pe conv. je lim yng= lim xng. bonsideram simb $(z_1)_{1,21}$ definit outfil: $z_1 = x_{n_1}, z_2 = y_{n_1}, z_3 = x_{n_2}, z_4 = y_{n_2}, \dots$ them in lim = lim the lim you ER, deci (Zp) peter ju convergent. Prin urmare (Zp), este sir bouchy. bonform ipsterei avem så (f(zp)), este sie bouchy. Dar + pEH*, p impar, aven |flzp-flzp+1) > Eo, contradictie.
Thin umale f este uniform continua.

4. Studiate uniform continuitatea functiei f:[0,1]-R, $f(x) = \ell^{\frac{1}{x}}$.

Yol: Aven så f ette uniform continuà dacà je numeri daca, $\forall (x_n)_n \subset (0,1], \forall (y_n)_n \subset (9,1]$ en proprietatea sa lim (xn-yn)=0, aven ca $\lim_{n\to\infty} (f(x_n) - f(y_n)) = 0.$

fru ett uniform continua (=) $\exists (x_n)_n \subset (0,1],$ $\exists (y_n)_n \subset (0,1] \text{ a.t. } \lim_{n\to\infty} (x_n-y_n)=0 \text{ sign}$ lim (f(xn)-f(yn)) +0,

Alegen $\pm m = \frac{1}{\ln(n+1)}$ is $y_n = \frac{1}{\ln n} + n \in \mathbb{N}$, $n \ge 3$.

there $\lim_{n \to \infty} (\pm n - y_n) = 0$ is $\lim_{n \to \infty} (\int_{-\infty}^{\infty} (-1 + y_n) - \int_{-\infty}^{\infty} (-1 + y_n) = 1$ $= \lim_{n \to \infty} (e^{\ln(n+1)} - e^{\ln n}) = \lim_{n \to \infty} (\pi + 1 - \pi) = 1 \neq 0$.

Dei f nu este uniform continuère. D 5. Itudiați uniform continuitatea funcției f: (91)->R, Yel: Aven lim $f(x) = \lim_{x \to 0} e^{-\frac{1}{x}} = 0$. $x \to 0$ $x \to 0$ $x \to 0$ Function $\widetilde{f}: [0,1] \to \mathbb{R}, \ \widetilde{f}(x) = \int_{0}^{1-\frac{1}{x}} (x \in [0,1]) \text{ exter continue}$ \frac{1}{3} = f. Deci f este uniform continuà. a 6. Stadiati uniform continuitatea functiei f: [0,0) > R, Id: Alegem In= 3 In(n+1) si yn= 3 Inn + nEH*. Aven lim (xn-yn)=lim (3 Iln(n+1) - Ilnn) = $= \lim_{n \to \infty} \left(\frac{\ln(n+1) - \ln n}{3(\ln(n+1))^2 + 3(\ln(n+1)) \ln n} + 3(\ln n)^2 \right) =$ $a^{3}/b^{3} = (a-b)(a^{2}+ab+b^{2})$

$$=\lim_{N\to\infty}\frac{2\ln\left(\frac{m+1}{n}\right)}{3\ln\left(\frac{m+1}{n}\right)^{2}+3\ln\left(\frac{m+1}{n}\right)\ln n}+3\ln n^{2}}=0$$

$$\lim_{N\to\infty}\left(\ln\left(\frac{m+1}{n}\right)\right)-\lim_{N\to\infty}\left(\ln\left(\frac{m+1}{n}\right)\right)=0$$

$$\lim_{n\to\infty} \left(f(x_n) - f(y_n) \right) = \lim_{n\to\infty} \left(e^{\ln(n+1)} - e^{\ln n} \right) =$$

$$=\lim_{n\to\infty} (x+1-n) = 1+0.$$

Deci f nu este uniform continuà. I

7. Determinați multimea de convergență pentru ulmă-troule serii de putri: a) $\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 2^n}{(n+1)^2 \sqrt{3^n}} \cdot (x+2)^n$

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 2^{n!}}{(n+1)^2 \sqrt{2^n}} \cdot (x+2)^n$$

Seria de petteri devine $\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 2^n}{(n+1)^2 \sqrt{3^n}} y^n$

$$a_{n} = \frac{(-1)^{n} \cdot 2^{n}}{(n+1)^{2} \sqrt{3^{n}}} + n \in \mathbb{N}.$$

$$\lim_{N\to\infty} \frac{|a_{N+1}|}{|a_{n}|} = \lim_{N\to\infty} \frac{|(-1)^{n+1} \cdot 2^{n+1}|}{|(n+2)^{2} \sqrt{3^{n+1}}|} = \lim_{N\to\infty} \frac{|a_{N+1}|}{|(-1)^{n} \cdot 2^{n+1}|} = \lim_{N\to\infty} \frac{|a_{N+1}|}{|a_{N+1}|} = \lim_{$$

$$= \lim_{N \to \infty} \left(\frac{2^{n+1}}{(n+2)^2} \sqrt{3^{n+1}} \cdot \frac{(n+1)^2 \cdot \sqrt{3^n}}{\sqrt{3}} \right) = \lim_{N \to \infty} \frac{2(n+1)^2}{\sqrt{3}(n+2)^2} = \frac{2}{\sqrt{3}}.$$

$$R = \frac{1}{2} = \frac{\sqrt{3}}{2}.$$
The Boundtimes de conveyants a mici de puterior $\sum_{N=0}^{\infty} \frac{(-1)^N 2^N}{(n+1)^2 \sqrt{3^n}} \sqrt{3^n}.$
Then $\left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right) \subset \mathcal{B} \subset \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right].$
Using the properties of the puterior derive $\sum_{N=0}^{\infty} \frac{(-1)^N 2^N}{(n+1)^2 \sqrt{3^n}}.$

$$\sum_{N=0}^{\infty} \frac{(-1)^N 2^N}{(n+1)^2 \sqrt{3^n}}.$$

$$\left(\frac{\sqrt{3}}{2} \right)^N = \sum_{N=0}^{\infty} \frac{(-1)^N 2^N}{(n+1)^2 \sqrt{3^n}}.$$

 $= \sum_{n=0}^{\infty} (-1)^n \frac{1}{(n+1)^2} \text{ convergentà (brit. lui deibniz)}$ Dei $\frac{\sqrt{3}}{3} \in B$.

Daca y=- \(\frac{13}{2}\), seria de puteri devine

$$\sum_{N=0}^{\infty} \frac{(-1)^{n} 2^{N}}{(n+1)^{2} \sqrt{3}^{n}} \cdot \left(-\frac{\sqrt{3}}{2}\right)^{n} = \sum_{N=0}^{\infty} \frac{(-1)^{n} 2^{N}}{(n+1)^{2} \sqrt{3}^{n}} \cdot \frac{\sqrt{3}^{n}}{(n+1)^{2} \sqrt{3}^{n}} \cdot \frac{\sqrt{3}^{n}}{(n+1)^{2} \sqrt{3}^{n}} = \sum_{N=0}^{\infty} \frac{(-1)^{n} 2^{N}}{(n+1)^{2} \sqrt{3}^{n}} \cdot \frac{\sqrt{3}^{n}}{(n+1)^{2} \sqrt{3}^{n}} \cdot \frac{\sqrt{3}^{n}}{(n+1)^{2} \sqrt{3}^{n}} = \sum_{N=0}^{\infty} \frac{(-1)^{n} 2^{N}}{(n+1)^{2} \sqrt{3}^{n}} \cdot \frac{\sqrt{3}^{n}}{(n+1)^{2} \sqrt{3}^{n}} \cdot \frac{\sqrt{3}^{n}}{$$

Fie
$$x_m = \frac{1}{(n+1)^2} + n \in H$$
 is $y_m = \frac{1}{n^2} + n \in H^*$.

from In< yn +neH*

$$\sum_{n=1}^{\infty} y_n = \sum_{n=1}^{\infty} \frac{1}{n^2} conn. (Mie arm, gen., d=2).$$

St. bit. de comp. en ineg. aven cà ∑ In e conv. Deci ∑ In e conv.

Agadar -
$$\frac{\sqrt{3}}{2}$$
 EB.

Din Mmare B= [- \frac{13}{2}, \frac{13}{2}].

Fie A multimea de sons. a striei de puteri $\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 2^n}{(n+1)^2 \sqrt{3^n}}$, $(x+2)^n$.

$$-\frac{\sqrt{3}}{2} \le y \le \frac{\sqrt{3}}{2} | -2 (=) -\frac{\sqrt{3}}{2} - 2 \le x \le \frac{\sqrt{3}}{2} - 2 (=)$$

$$(=) \frac{-\sqrt{3}-4}{2} \le \chi \le \frac{\sqrt{3}-4}{2}.$$

$$\text{Deci} \quad A = \left[\frac{-\sqrt{3}-4}{2}, \frac{\sqrt{3}-4}{2}\right].$$

$$\text{Deci} \quad A = \left[\frac{-\sqrt{3}-4}{2}, \frac{\sqrt{3}-4}{2}\right].$$

$$\text{Deci} \quad A = \left[\frac{-\sqrt{3}-4}{2}, \frac{\sqrt{3}-4}{2}\right].$$

$$\text{Deci} \quad A = \left[\frac{1}{\sqrt{3}n}, \frac{\sqrt{n+2}}{\sqrt{n+2}}\right].$$

$$\text{Suppose the problem of the proble$$

Fie B multimea de conv. a seriei de juteri

\[\frac{2}{3\tau \tau_{n+2}} y^n. \]

Avem (-1,1) CBC[-1,1]. Studiem doca -1EB si 1EB. Daca y=-1, seria de peteri devine $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \sqrt[4]{n+2}} \cdot (-1)^n =$ $= \sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{\sqrt[3]{n} \sqrt[4]{n+2}} \cos w, \quad (\text{but, lui Leibniz}).$ Daca y=1, seria de jutiri alevine = 1 3 m trois. 1 = $=\sum_{m=1}^{\infty}\frac{1}{3m}\sqrt{m+2}.$ Fie xm= 1 + MEH*. Fre ym= 1 + neH*. them $\lim_{n\to\infty} \frac{\pm n}{\sqrt[3]{n}} = \lim_{n\to\infty} \frac{\frac{1}{\sqrt[3]{n}} + \frac{1}{\sqrt{n}}}{\frac{1}{\sqrt[3]{n}} + \frac{1}{\sqrt{n}}} =$ $=\lim_{n\to\infty}\left(\frac{1}{3\pi\sqrt{n+2}}\cdot\frac{3\pi\sqrt{n}}{1}\right)=\lim_{n\to\infty}\sqrt{\frac{n}{n+2}}=1\in(0,\infty).$

bonform brit de comp. en limita ovem ca $\sum_{m=1}^{\infty} x_m \sim \sum_{m=1}^{\infty} y_m.$ $\sum_{N=1}^{2} y_{N} = \sum_{N=1}^{2} \frac{1}{\sqrt{3} \cdot \sqrt{4}} = \sum_{N=1}^{2} \frac{1}{\sqrt{3} \cdot \sqrt{4}}$ $= \sum_{n=1}^{\infty} \frac{1}{n^{\frac{7}{12}}} \text{ divergenta (serie arm.gen., } \lambda = \frac{7}{12})$ Dui 5 2n div. Aradar 1&B. From unale b = [-1, 1).

Fie A multimea de conv. a seriei de puteri din munt.

 $-1 \le y \le 1/+2 \le -1+2 \le x \le 1+2 \le 1 \le x \le 3$.

Deci A = [1,3]. D

$$=\underbrace{(x^{4}y^{2})}_{1} : \underbrace{(x^{16} + y^{8})}_{1} =)$$

$$\Rightarrow \underbrace{\frac{1}{12}}_{12} \ge \underbrace{\frac{x^{16} + y^{8}}{x^{16} + y^{8}}}_{1}$$

Deci f este continuà în (0,0).

b) Fie
$$(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$$
.

$$\frac{\partial f(x,y)}{\partial x} = \frac{5 x^4 y^2 \sqrt{x^6 + y^8} - x^5 y^2}{x^{16} + y^8} \cdot \frac{1}{2\sqrt{x^{16} + y^8}} \cdot \frac{16x^{15}}{x^{16} + y^8}$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{2 \times y}{2 \times y} \sqrt{\chi^{16} + y^{8}} - \chi^{5} y^{2} \cdot \frac{1}{2 \sqrt{\chi^{16} + y^{8}}} \cdot 8y^{4}}{\chi^{16} + y^{8}}$$

$$= \lim_{t\to 0} \frac{f(t_{10}) - f(0,0)}{t} = \lim_{t\to 0} \frac{0-0}{t} = 0.$$

$$=\lim_{t\to 0}\frac{f(0,t)-f(0,0)}{t}=\lim_{t\to 0}\frac{0-0}{t}=0.$$

2)
$$\frac{3f}{9x}$$
, $\frac{3f}{9y}$ continue be $\mathbb{R}^2 \setminus \{10,00\}$ $\frac{1}{10,00}$.

Studiem differentiabilitates bui f in $(0,0)$.

Ducă f an f in f

$$=\lim_{n\to\infty}\frac{1}{\sqrt{2}n^{3}\sqrt{n^{2}+1}}=\frac{1}{\sqrt{2}}\neq 0.$$
Acci lim $\frac{x^{5}y^{2}}{\sqrt{x^{16}+y^{3}}}\sqrt{x^{2}+y^{2}}\neq 0.$
Asadar of muldif. în $(0,0)$. If

10. Fix $f:(0,\infty)^{3}\to R$, $f(x,y,z)=xy^{2}z^{3}$. Determinațion punctule de autium bocal ale lui of su legatura $x+2y+3z=1$.

In $f: E=(0,\infty)^{3}$ multime develuia.

Fix $g: E\to R$, $g(x,y,z)=x+2y+3z-1$ si $f: A=\{(x,y,z)\in(0,\infty)^{3}\}$ $f(x,y,z)=\infty$.

If $f: A=\{(x,y,z)\in(0,\infty)^{3}\}$ $f(x,y,z)=\infty$.

 $\frac{\partial L}{\partial z} = 3 \times y^2 z^2$

$$\frac{\partial g}{\partial x} = 1$$

$$\frac{\partial g}{\partial x} = 2$$

$$\frac{\partial g}{\partial y} = 3$$

$$\frac{\partial g}{\partial z} = 3$$

Observam ca f si g sunt de clasa c1. rang $\left(\frac{\partial x}{\partial x}(x,y,z),\frac{\partial y}{\partial x}(x,y,z),\frac{\partial z}{\partial x}(x,y,z)\right) =$ = rang $(1 2 3) = 1 \forall (x,y,z) \in (0,\infty)^3$.

Fie L: (0,00)3-> R, L(x,y,z)=f(x,y,z)+ λg(x,y,z)= $= \pm y^2 + 3 + \lambda (\pm + 2y + 3 - 1).$

$$\frac{3(x^{1}A^{1}5)=0}{3\Gamma}=0$$

$$\frac{3\Gamma}{3\Gamma}=0$$

$$\frac{3}{3\Gamma}=0$$

$$\begin{cases} y^{2}z^{3} = -\lambda \\ + y^{2}z^{3} = -\lambda \\ + y^{2}z^{2} = -\lambda \\ + 2y + 3z = 1 \end{cases}$$

$$y^{2} = -\lambda = xy^{2} = y = x$$
, $y = x$, $y = x$. $y = x$. $y = x$. $y = x$. $y = x$.

$$x+2y+3z=1 \rightarrow x+2x+3x=1 \rightarrow 6x=1 \rightarrow x=\frac{1}{6}$$
.
 $x=y=z$

Dei
$$x=y=2=\frac{1}{6}$$
 is $\lambda=-\frac{1}{6^5}$.

Singurul junct stationer al lui f en legature g(x,y,z)=0 este $\left(\frac{1}{6},\frac{1}{6},\frac{1}{6}\right)$.

from L: (0,0)3-> R, L(x,y,t)= xy²z³-\frac{1}{65}(x+2y+32-1).

$$\frac{\partial^2 L}{\partial x^2} = 0 ; \frac{\partial^2 L}{\partial y^2} = 2xz^3; \frac{\partial^2 L}{\partial z^2} = 6xy^2z;$$

$$\frac{3\cancel{5}\cancel{7}}{\cancel{5}\cancel{7}} = \cancel{5}\cancel{7}\cancel{5}\cancel{7} = \cancel{5}\cancel{7}\cancel{7}\cancel{7} = \cancel{5}\cancel{7}\cancel{7}\cancel{7}\cancel{7} = \cancel{5}\cancel{7}\cancel{7}\cancel{7}\cancel{7}$$

$$\frac{3^{3}}{3^{5}} = 6 \times 10^{5} = \frac{353^{3}}{3^{5}} + (\times 10^{5}) = (0, \infty)^{3}$$

Christian cà L'este de clara C². Fie F(=1616): R3 -> R, $F\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)(N) =$ $= \mathcal{A}^2 L \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right) (\mathcal{U}).$ Haven $F\left(\frac{6}{16},\frac{16}{16},\frac{16}{16}\right) = \frac{3x^2}{3x^2} \left(\frac{6}{16},\frac{16}{16},\frac{16}{16}\right) dx^2 +$ $+\frac{3^{2}L}{3y^{2}}(\frac{1}{6},\frac{1}{6},\frac{1}{6})dy^{2}+\frac{3^{2}L}{32^{2}}(\frac{1}{6},\frac{1}{6},\frac{1}{6})dz^{2}+$ + 2 32 (\frac{1}{6} \frac{1}{ $+2\frac{3^{2}L}{3y32}\left(\frac{1}{6},\frac{1}{6},\frac{1}{6}\right)dydz = \frac{2}{64}dy^{2} + \frac{6}{64}dz^{2} +$ $+\frac{4}{64}dxdy+\frac{6}{64}dxdz+\frac{12}{64}dydz.$ Diferentiem legatura g(x,y,z) = 0 (i.e. x+2y+3z-1=0) m(x,y,z) is stinem 1.dx + 2 dy + 3dz = 0. In junctul (\frac{1}{6},\frac{1}{6},\frac{1}{6}) ultima relatie devine dx + 2dy + 3dz = 0.

$$\begin{array}{lll} & & & & & \\ & & & \\ & & & \\$$

Observan să $F(1,1,1)_{leg}(u) \leq 0$ $+MER^2$ si

 $B(\frac{5}{4}, \frac{3}{4}) = \frac{I'(\frac{5}{4})I'(\frac{3}{4})}{I'(\frac{5}{4} + \frac{3}{4})} = \frac{I'(\frac{5}{4})I'(\frac{3}{4})}{I'(2)}.$ $I'(\frac{5}{4}) = I'(1 + \frac{1}{4}) = \frac{1}{4}I'(\frac{1}{4}).$ $I'(\frac{5}{4})I'(\frac{3}{4}) = \frac{1}{4}I'(\frac{1}{4})I'(1 - \frac{1}{4}) = \frac{1}{4}. \frac{I'(\frac{5}{4})I'(\frac{3}{4})}{I'(\frac{5}{4})I'(\frac{3}{4})} = \frac{1}{4}. \frac{I'(\frac{5}{4})I'(\frac{3}{4})}{I'(\frac{5}{4})I'(\frac{5}{4})} = \frac{1}{4}. \frac{I'(\frac{5}{4})I'(\frac{5}{4})}{I'(\frac{5}{4})I'(\frac{5}{4})} = \frac{1}{4}. \frac{I'(\frac{5}{4})I'(\frac{5}{4})}{I'(\frac{5}{4})} = \frac{1}{4}. \frac{I'(\frac{5}{4})}{I'(\frac{5}{4})} = \frac{1}{4}. \frac{I'(\frac{5}{4})I'(\frac{$

$$= \frac{1}{4}, \frac{2\pi}{\sqrt{2}} = \frac{\pi}{2\sqrt{2}}.$$

$$8\left(\frac{5}{4}, \frac{3}{4}\right) = \frac{\frac{\pi}{2\sqrt{2}}}{1!} = \frac{\pi}{2\sqrt{2}}.$$

$$\int_{0}^{\frac{\pi}{2}} (\sin x)^{\frac{3}{2}} (\cos x)^{\frac{1}{2}} dx = \frac{1}{2} \cdot \frac{\pi}{2\sqrt{2}} = \frac{\pi}{4\sqrt{2}} = \frac{\pi\sqrt{2}}{8}. \square$$