ECE 143 - Group 18

Analysis of Power Consumption of a city in Morocco

Group Members: 1. Atefeh Mollabagher 2. Calvin Nguyen 3. Enzo Han 4. Zibo Chen 5. Junda Qiu

Motivation and Objective

- Technology has been evolving rapidly, and power consumption becomes a focus of research
- Students are encouraged to apply their technical learning from courses to solve some real world problems
- Analysis provides a valid proof how potential factors are associated with the power consumption.

Methodology

 Related to power consumption of three different distribution networks of Tetouan city

 To ensure the accuracy of data, analyze and check to remove/correct missing data and erroneous data

 Used Numpy and Matlibplot to create visualizations of data.

 Analyze the data features and build a predictor for real-world applications.

Dataset

Description: This dataset is related to power consumption of three different distribution networks of Tetouan city which is located in north Morocco.

Features: 6

Instances: 52417

Dataset Characteristics: Multivariate, Time-Series

Feature Type: Real Integer

Subject Area: Social Science

Data Extraction

Missing value handling:

Replace the missing values in each column with the mean of that column.

Outlier processing:

Delete data higher than Q3+1.5*IQR (Interquartile Range) and lower than Q1-1.5*IQR, where Q3 and Q1 represent the First and Third Quartile of the column data. IQR = Q3 - Q1.

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Conclusion

- From slides 7, 8, 13 we came to the conclusion that there is a high correlation between temperature and power zones
- From slides 6,9 we came to the conclusion that there is a high correlation between time (day and month) and power zones
- Our visual plots also support the metrics we see from the correlation matrix
- From these analysis we can use the features of temperature and time to build a predictor
- While these features are relevant to this dataset, additional features can further improve a predictive model in other locations around the world

Predictive Model Plan

General Plan:

- Randomize and split the dataset to create training data
- Model will be based on features: temperature, hour of the day
- Use a regression model to generate power consumption prediction
- Final predictor model would be able to predict power consumption given: month and hour of day

Improvements:

- After creating a predictor, we would check accuracy with the actual average from the dataset
- Determine the margin of error
- Determine if addition of other features would improve accuracy of prediction

Thank You!