Solutions to Homework 3

Math 55B

1. Give an example of a differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) is not continuous.

An example is the function $f(x) := x^2 \sin(1/x)$ for $x \neq 0$, and 0, for x = 0. That this function is differentiable at 0 must be justified; it follows from $|f(x)| = O(x^2)$ as $x \to 0$ that f is differentiable at 0 with f'(0) = 0. At $x \neq 0$, the derivative is $f'(x) = 2x \sin(1/x) - \cos(1/x)$. Thus f'(x) is not continuous at 0: $\cos(1/x)$ does not have a limit as $x \to 0$.

2. Let \mathcal{F} be the smallest collection of functions $f:[0,1] \to \mathbb{R}$ that contains C[0,1] and is closed under pointwise limits. Prove that the characteristic function the set $[0,1] \cap \mathbb{Q}$ is in \mathcal{F} .

Solution 1. The question asks to write the function defined by g(x) = 1 for $x \in [0,1] \cap \mathbb{Q}$ and g(x) = 0 for $x \in [0,1] - \mathbb{Q}$ as a pointwise limit of a sequence of continuous functions. Noting that $q \in \mathbb{Q}$ if and only if $n!q \in \mathbb{Z}$ for $n \gg 0$, and that $\lim_{m \to \infty} \cos^{2m}(\pi x) = 1$, if $x \in \mathbb{Z}$, and 0, if $x \notin \mathbb{Z}$, it follows that, pointwise,

$$g(x) = \lim_{n \to \infty} \lim_{m \to \infty} \cos^{2m}(n!x).$$

Solution 2. (Alex) For each $q \in [0,1]$, the characteristic function χ_q of $\{q\}$ is the pointwise limit $\lim_{k\to\infty} \left(1-(x-q)^2\right)^k$, and is therefore in \mathcal{F} . Thus the characteristic function of every countable subset $(q_n) \subset [0,1]$, being the pointwise limit $\lim_{n\to\infty} \sum_{i=1}^n \chi_{q_i}$, is in \mathcal{F} .

3. Let (X,d) be a metric space, and let S denote the set of Cauchy sequences $s = (x_i)$ in X. Prove that the limit $\overline{d}(s,s') := \lim_{i \to \infty} d(x_i,x_i')$ exists for all $s,s' \in S$, and defines a pseudometric on S. Let \overline{X} be the quotient of S by the equivalence relation $s \sim s'$ iff $\overline{d}(s,s') = 0$; then \overline{d} descends to a metric on \overline{X} . Prove that $(\overline{X},\overline{d})$ is a complete metric space, and define a natural isometry $\pi: X \to \overline{X}$ whose image $\pi(X)$ is dense.

To say that the limit $\lim_{i\to\infty} d(x_i, x_i')$ exists is to say that the sequence $(d(x_i, x_i'))_i$ of real numbers is Cauchy. As s, s' are Cauchy, for any $\varepsilon > 0$

there exists an integer $N(\varepsilon)$ such that $i, j > N(\varepsilon)$ implies $d(x_i, x_j) < \varepsilon/2$ and $d(x_i', x_j') < \varepsilon/2$. Then the triangle inequality gives $d(x_i, x_i') - d(x_j, x_j') \le d(x_i, x_j) + d(x_i', x_j') < \varepsilon$ for $i, j > N(\varepsilon)$, and this shows that $\left(d(x_i, x_i')\right)_i$ is Cauchy, as required. By definition, the \bar{d} is a symmetric function $S \times S \to \mathbb{R}_{\geq 0}$; the triangle inequality for \bar{d} follows from the triangle inequality for d upon noting that limits preserve nonstrict inequalities: for any convergent sequence (A_i) of nonnegative real numbers, $\lim_i A_i \geq 0$. Thus \bar{d} descends to a metric on \overline{X} .

To show that $(\overline{X}, \overline{d})$ is complete, note that any subsequence of a Cauchy sequence $s \in S$ is equivalent to s, i.e. descends to the same element of \overline{X} . Call a Cauchy sequence $s=(x_i)$ fast if $d(x_i,x_i)<2^{-\min(i,j)}$ for all i, j. Every Cauchy sequence has a fast Cauchy subsequence, and a Cauchy sequence has a limit iff some Cauchy subsequence has a limit; hence, in showing completeness of $(\overline{X}, \overline{d})$, it suffices to show that every fast Cauchy sequence $(s_i)_i$ of fast Cachy sequences $s_i := (x_{i,j})$ on X has a limit. We simply check that the diagonal sequence $x_i := x_{i,i}$ is a limit; this means verifying that the assumptions $d(x_{i,j}, x_{i,j'}) < 2^{-\min(j,j')}$ and $\lim_{j\to\infty} d(x_{i,j}, x_{i',j}) < 2^{-\min(i,i')}$ imply the conclusion $\lim_{i,j\to\infty} d(x_{i,j}, x_{j,j}) =$ 0. Fix i, j; we are given that there exists a $k > \max(i, j)$ such that $d(x_{i,k},x_{j,k}) < 2^{-\min(i,j)}$. By the triangle inequality, $d(x_{i,j},x_{j,j}) \le d(x_{i,j},x_{i,k}) +$ $d(x_{i,k}, x_{j,k}) + d(x_{j,k}, x_{j,j}) < 2^{-j} + 2^{-\min(i,j)} + 2^{-j} \le 3 \cdot 2^{-\min(i,j)};$ since this bound approaches 0 as $i, j \to \infty$, the conclusion follows: the diagonal sequence $(x_{j,j})_j$ is a limit of the Cauchy sequence $((x_{i,j})_j)_i$. This proves completeness of $(\overline{X}, \overline{d})$.

Finally, there is the natural map $\pi: X \to \overline{X}$ sending $x \in X$ to the class of $(x, x, \ldots, x, \ldots) \in S$; this map clearly satisfies $\bar{d}(\pi(x), \pi(y)) = d(x, y)$, meaning that it is an isometry. The image $\pi(X)$ is dense, since, by the definition of a Cauchy sequence $s = (x_i), \bar{d}(s, \pi(x_i)) \to 0$ as $i \to \infty$.

4. Let $X := \ell^1(\mathbb{N})$ be the vector space of all sequences $a : \mathbb{N} \to \mathbb{R}$ such that $\|a\|_1 := \sum_i |a_i| < \infty$. Prove that the metric $d(a,b) := \|a-b\|_1$ makes X into a complete metric space. Prove that the closed unit ball $\overline{B}(0,1)$ in X is not compact. Prove that for every $b \in X$, the set $K(b) := \{a \in \ell^1(\mathbb{N}) \mid |a_i| \le |b_i| \text{ for all } i\}$ is compact.

Note that the topology induced by the norm $\|\cdot\|_1$ on $\ell^1(\mathbb{N})$ has the following characterizing property: a sequence $(a^{(i)})_i$ in $\ell^1(\mathbb{N})$ converges to $a \in \ell^1(\mathbb{N})$ if and only if $\sum_{j\geq N} |a_j^{(i)}| \longrightarrow_{i,N\to\infty} 0$ and $a_j^{(i)} \longrightarrow_{i\to\infty} a_j$ for each j. Since $\ell^1(\mathbb{N})$ is a vector space, this suffices to be verified for a=0; and the forward

implication is obvious, so what needs to be verified is that the assumptions $\sum_{j\geq N}|a_j^{(i)}|\longrightarrow_{i,N\to\infty}0$ and $a_j^{(i)}\to_{i\to\infty}0$ for each j imply the conclusion $\|a^{(i)}\|_1\to_{i\to\infty}0$. The required conclusion $\|a^{(i)}\|_1\to 0$ is simply equivalent to $\sum_{j=1}^N|a_j^{(i)}|\to 0$ for each N; by passing to a subsequence of the indexing ordered set $(i)=\mathbb{N}$, we may assume that $|a_j^{(i)}|<2^{-i-j}$ for $j=1,\ldots,N$ and all i, which in turn yields $\sum_{j=1}^N|a_j^{(i)}|<\sum_{j=1}^N2^{-i-j}<2^{-i}\sum_{j=1}^\infty2^{-j}=2^{-i}$, hence the conclusion.

Completeness of $\ell^1(\mathbb{N})$ is a consequence of this and of the completeness of \mathbb{R} , as follows. For any Cauchy sequence $(a^{(i)})_i$ in $\ell^1(\mathbb{N})$, each coordinate sequence $(a^{(i)})_i$ is Cauchy in \mathbb{R} , and thus has a limit a_j ; moreover, since $(a^{(i)})_i$ is Cauchy, the condition $\sum_{j\geq N} |a_j^{(i)}| \longrightarrow_{N\to\infty} 0$, $\|a^{(i)}-a^{(i')}\|_1 \longrightarrow_{i,i'\to\infty} 0$, and the triangle inequality. It remains to show that the sequence $a:=(a_j)_j$ is in $\ell^1(\mathbb{N})$, i.e. that $\sum_j |a_j| < \infty$. If not, there exists an N such that $\sum_{j=1}^N |a_j| > 2 \sup_i \|a^{(i)}\|_1$ (notice that the supremum is finite, because $(a^{(i)})_i$ is Cauchy and hence $(\|a^{(i)}\|_1)_i$ is Cauchy). Let $M:=\sup_i \|a^{(i)}\|_i$, and consider a large enough $i_0=i_0(N)$ for which $|a_j-a_j^{(i_0)}| < M/N$ for $1\leq j\leq N$. Combining these N inequalities with $\sum_{j=1}^n |a_j| > 2M$, the triangle inequality implies $\|a^{(i_0)}\| \geq \sum_{j=1}^N |a_j^{(i_0)}| > M$, which is absurd. Hence, $a\in \ell^1(\mathbb{N})$, proving completeness.

That the closed unit ball $\overline{B}(0,1)$ is not compact follows from the existence of the infinite discrete set $\{(\delta_{ij})_i \mid i\} \subset \overline{B}(0,1)$ consisting of the vertices of the unit cube.

Finally, the compactness of each cube $K(b) = \prod_{i=1}^{\infty} [-b_i, b_i]$ follows from the compactness of the closed intervals $[-b_i, b_i]$ by a usual diagonalization argument. Note that, by the first paragraph above, the induced topology on K(b) is simply the topology of pointwise convergence (for a sequence $(a^{(i)})_i$ in K(b), the condition $\sum_{j\geq N} |a_j^{(i)}| \longrightarrow_{i,N\to\infty} 0$ is automatic, since each $\sum_{j\geq N} |a_j^{(i)}|$ is dominated by $\sum_{j\geq N} |b_j|$). We need to show that every countably infinite subset $\{(a^{(i)})_i \mid i \in \mathbb{N}\} \subset K(b)$ has a limit point in K(b). The sequence $(a_1^{(i)})_i$ of points of the compact interval $[-b_1, b_1]$ has a convergent subsequence, say indexed by $I_1 \subset \mathbb{N}$; let a_1 be the limit of this subsequence. The sequence $(a_2^{(i)})_{i\in I_1}$ of points on the compact interval $[-b_2, b_2]$ has a convergent subsequence, say indexed by $I_2 \subset I_1$; let a_2 be the limit of this subsequence. Continuing, we obtain a sequence

 $a = (a_j)_j \in K(b)$ and a nested sequence $\mathbb{N} \supset I_1 \supset I_2 \supset \cdots$ of infinite sets such that, for each $j \in \mathbb{N}$, the sequence $(a_j^{(i)})_{i \in I_j}$ is convergent to a_j . Then $a \in K(b)$ is a limit point of $\{a^{(i)} \mid i \in \mathbb{N}\}.$

Remark. For showing compactness of K(b), some of you verified instead that K(b) is closed and totally bounded; using the sequential definition of compactness, though, is more technically convenient here, and the simple diagonalization argument of this proof is very standard and conceptual. Also, noting that $K(b) = \prod_{i=1}^{\infty} [-b_i, b_i]$ with the topology of pointwise convergence, the compactness part of this question hints at a very important theorem in point set topology, due to **Tychonoff**. In a special case, the above proof works *verbatim*: let (X_i) be a countable collection of compact metric spaces, and suppose that the set $\prod_i X_i$ is given a metric for which the convergent sequences are exactly the pointwise convergent ones (such a metric always exists; for example, if B_i is a bound for the metric d_i on X_i , such is the metric $d(x,y) := \sum_i B_i^{-1} |x_i - y_i| 2^{-i}$. Then the metric space $(\prod_i X_i, d)$ is compact.

5. Let X = B[0,1] denote the vector space of bounded functions $f:[0,1] \to \mathbb{R}$. Is there a metric d on X such that $d(f_n, f) \to 0$ iff $f_n \to f$ pointwise.

There is no such metric; one reason is that the indexing set [0, 1] (note that its topology is not used!) is too large: let us show that, for an arbitrary set S, the topology of pointwise convergence on the set \mathbb{R}^{S}_{b} of bounded maps $S \to \mathbb{R}$ is metrizable if and only if S is at most countable; in particular, it is not metrizable for S = [0, 1]. Suppose there exists a metric d on this set that induces the topology of pointwise convergence. For $q \in S$, let $\chi_q \in \mathbb{R}^S_b$ be the characteristic function of $\{q\}$, or the elementary function supported at q: this is the function taking value 1 at x = q and 0 at all $x \neq q$. Every sequence of distinct elements of the set $\{\chi_q \mid q \in S\}$ converges pointwise to the zero function $0 \in \mathbb{R}_{b}^{S}$; hence, for each $n = 1, 2, 3, \ldots$, the set $S_n := \{q \in S \mid d(\chi_q, 0) > 1/n\}$ is finite. Since $d(\chi_q, 0) > 0$ for all $q \in S$ and hence $S = \bigcup_n S_n$ is a countable union of finite sets, it follows that S is at most countable, as claimed. Finally, let us note that when S is at most countable, the topology of pointwise convergence is metrizable: this follows upon noting that the metric $d(x,y) := \sum_i |x_i - y_i| 2^{-i}$ on the set $\mathbb{R}_{b}^{\mathbb{N}}$ induces the topology of pointwise convergence (on $\mathbb{R}^{\mathbb{N}}$, it is also know as the **product topology** induced from the topologies of each factor of \mathbb{R}).

6. Does the sequence of functions $f_n: [0,1] \to \mathbb{R}$ given by $f_n(x) = \sin(nx)$ contain a uniformly convergent subsequence?

No. Fixing m and letting $n \gg_m 0$ large and $x_0 := \pi/2n$, it suffices to note that $\sin(nx_0) - \sin(mx_0) = 1 - \sin(mx_0)$ can be arbitrarily close to 1, since $mx_0 \to_{n\to\infty} 0$.

Remark. It can be shown that $(\sin(nx))$ does not even have a *pointwise* covergent subsequence; but this is more difficult.

7. Let $\alpha > 0$ be rational. Without appeal to calculus, determine

$$\lim_{n\to\infty} (n+1)^{\alpha} - n^{\alpha}.$$

The limit is ∞ , for $\alpha > 1$; 1, for $\alpha = 1$; and 0, for $\alpha < 1$. To really prove this from first principles, we will have to go back to an "obvious" statement we proved in the beginning of the course as a consequence of the completeness axiom of the real numbers \mathbb{R} : for every $C \in \mathbb{R}$, there exists an $n \in \mathbb{Z}$ with n > C. (Recall the **proof**: this states that the subset $\mathbb{Z} \subset \mathbb{R}$ is unbounded. Assuming the contrary, the completeness of \mathbb{R} implies the existence of $M := \sup \mathbb{Z}$. But then $n \leq M$ for every $n \in \mathbb{Z}$ implies $n+1 \leq M$ for every $n \in \mathbb{Z}$, implying $n \leq M-1$ for every $n \in \mathbb{Z}$, giving the contradiction $M-1 \geq \sup \mathbb{Z} = M$). This basic property implies something that most of you assumed for obvious, namely that $\lim_{n\to\infty} n^{\beta} = \infty$ for $\beta \in \mathbb{Q}_{>0}$. Indeed, write $\beta = p/q$ with $p,q \in \mathbb{N}$ and let $B \in \mathbb{R}_{>0}$ be arbitrary. By the unboundedness of \mathbb{Z} in \mathbb{R} , there exists some $n_0 \in \mathbb{N}$ with $n_0 > B^q$. For $n \geq n_0$, multiplying the inequality $n \ge n_0$ with p-1 copies of the inequality $n \ge 1$, we conclude that $n^p > B^q$; this, for n, B > 0, is precisely equivalent to $n^{p/q} > B$; and since B > 0was arbitrary, this proves $n^{p/q} \to_{n \to \infty} \infty$.

Now, we may formally deduce the required limit as follows. We have $(n+1)^{\alpha}-n^{\alpha}=n^{\alpha}\Big(\big(1+\frac{1}{n}\big)^{\alpha}-1\Big);$ if $\alpha\geq 1$, then $(1+n^{-1})^{\alpha}=(1+n^{-1})^{\alpha-1}\cdot(1+n^{-1})\geq 1+n^{-1}$ (we have used the inequality $x^{\beta}>1$ for x>1 and $\beta\in\mathbb{Q}_{>0}$, which follows for $\beta\in\mathbb{N}$ by β times multiplying x>1, and in general from the equivalence "x>1 iff $x^m>1$ " for $m\in\mathbb{N}$) the factor in the brackets is $\geq n^{-1};$ hence, for $\alpha\geq 1,\ (n+1)^{\alpha}-n^{\alpha}\geq n^{\alpha-1},$ which is 1 if $\alpha=1$ and diverges to ∞ if $\alpha>1$, but the preceding paragraph. Likewise, for $\alpha<1,\ \alpha-1<0$ and $1+n^{-1}>1$ imply

 $(1+n^{-1})^{\alpha}=(1+n^{-1})^{\alpha-1}\cdot(1+n^{-1})<1+n^{-1},$ and the factor in the brackets is $< n^{-1};$ in that case, $(n+1)^{\alpha}-n^{\alpha}< n^{\alpha-1},$ which converges to 0 since $n^{1-\alpha}\to_{n\to\infty}\infty$, again by the preceding paragraph.

Remark. Alternatively, the second paragraph can be replaced by applying the identity $x^q - y^q = (x - y)(x^{q-1} + \dots + y^{q-1})$ to $x = (n + 1)^{\alpha}, y = n^{\alpha}, p/q = \alpha$ to obtain the more precise estimate $(n + 1)^{\alpha} - n^{\alpha} = \alpha n^{\alpha - 1} + o(n^{\alpha - 1})$.