Dimensionality reduction

Machine Learning and Deep Learning

Matteo Boschini, Lorenzo Bonicelli, Aniello Panariello, Emanuele Frascaroli November 15th, 2022

University of Modena and Reggio Emilia

Agenda

Principal Component Analysis

Eigenfaces

Principal Component Analysis

- Linear dimensionality reduction model
 - Subspace projection is linear
 - Reconstruction is linear
- Projects data in a new space subject to:
 - the direction exhibiting highest variance in feature space is projected on the first axis, the one exhibiting the second highest variance on the second axis, and so on.
 - axis of the new space are orthogonal (covariance is zero).

PCA: algorithm

- Arrange your data in a $n \times d$ matrix X, where n is the number of samples and d • Compute the mean μ (d-dimensional vector) of all samples
- Compute convariance matrix

$$\Sigma = (X - \mu)^T (X - \mu)$$

- Pick the first m eigenvectors of Σ (ordered by decreasing eigenvalues), where m is the dimensionality you want your data to be projected to
- Arrange such eigenvectors in a $d \times m$ matrix E• Compute the projected samples as $P = X \cdot E$ (Projectors) Pdim $= (n \cdot d)(d \times E)$
- You can compute the reconstruction as $\tilde{X} = P \cdot E^T$ (decrease) Xqm = (wxx/(qxm) = wxm (& meosmosome)

PCA: plotting components

PCA: projecting and reconstructing (2D)

PCA: projecting and reconstructing (1D)

Eigenfaces

Eigenfaces

Famous algorithm for face recognition. Training is as simple as:

 load faces and annotations from the Olivetti dataset (datasets.get_faces_dataset takes care of loading and flattening images)

• Select a number of principal components and fit a PCA on training faces

Eigenfaces

To classify a test image:

- Project the image in the reduced spaces built in the training phase
- Perform **nearest neighbor classification**:
 - Roughly speaking, choose the class of the nearest training example (in the reduced space)

Eigenfaces: a magic trick to compute eigenvectors

Each Olivetti image is $1\underline{12} \times 92$. Once flattened, is a vector of $\underline{10304}$ pixels:

- The convariance matrix is $10304 \times 10304 \sim 1000$
- Computing eigenvectors and eigenvalues is a pain
- Instead, compute the covariance matrix of transposed X:

Ince matrix of transposed
$$X$$
:
$$\Sigma = (X - \mu)(X - \mu)^T \quad \text{(which is the property of the proper$$

• Once selected the principal components \tilde{E} of this weirdo space, you can compute the original eigenvectors just like:

$$E = X^T \cdot \tilde{E}$$

• Normalize the retrieved eigenvectors to have unit lenght:

$$E_i \leftarrow \frac{E_i}{\sqrt{\lambda_i}}$$
 $i = 1, 2, ..., m$

Perché autovalori Ei sono normalizzati rispetto la radice del corrispettivo autovalore. Pertichè Ei /sqrt(Gamma_i) é sempre <0 e <1 ?

where λ_i is the eigenvalue corresponding to the eigenvector E_i

Eigenfaces: some plots

Mean face:

• Eigenvectors:

Eigenfaces: face space

Eigenfaces: how many dimensions?

