1

Assignment 13

AVVARU BHARAT - EE20MTECH11008

Download the latex-tikz codes from

https://github.com/Bharat437/Matrix Theory/tree/master/Assignment13

1 Problem

(UGC,Dec 2018,77):

Define a real values function **B** on $\mathbb{R}^2 \times \mathbb{R}^2$ as follows. If $v = (x_1, x_2)$, $w = (y_1, y_2)$ belong to \mathbb{R}^2 define $\mathbf{B}(u, w) = x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$. Let $v_0 = (1, 0)$ and let $\mathbf{W} = \{v \in \mathbb{R}^2 : \mathbf{B}(v_0, v) = 0\}$. Then \mathbf{W}

- 1) is not a subspace of \mathbb{R}^2
- 2) equals $\{(0,0)\}$
- 3) is the y axis
- 4) is the line passing through (0,0) and (1,1)

2 EXPLANATION

Subspace	A non-empty subset W of V is a subspace of V if and only if for each pair of vectors α ,
	β in W and each scalar c in F the vector $c\alpha + \beta$ is again in W.

TABLE 1: Definitions and theorem used

3 Solution

Statement	Observations			
	$\mathbf{W} = \left\{ v \in \mathbb{R}^2 : \mathbf{B}(v_0, v) = 0 \right\} $ (3.0.1)	.)		
Given	$v_0 = (1,0) (3.0.2)$	2)		
	$\mathbf{B}(u, w) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 4x_2 y_2 \tag{3.0.3}$	3)		
	From (3.0.2) and (3.0.3), we will calculate $\mathbf{B}(v_0, v)$			
	$\mathbf{B}(v_0, v) = y_1 - y_2 \tag{3.0.4}$!)		
	$\mathbf{B}(v_0, v) = 0$ if and only if $y_1 = y_2$ Therefore, W consists points which have same x and y coordinates.			

TABLE 2: Observations

Option	Solution	True/False
1.	Now we will see whether W is a subspace or not.	
	Let $\alpha = (m, m)$ and $\beta = (n, n)$ be two pair of vectors in W where $\alpha, \beta \in \mathbb{R}^2$	
	and c be a scalar value in \mathbb{R} .	
	Now we will see whether the vector $c\alpha + \beta$ is in W or not.	

	Here	
	$c\alpha + \beta = (cm + n, cm + n) \tag{3.0.5}$	
	Now we will calculate $\mathbf{B}(v_0, c\alpha + \beta)$ using (3.0.4)	False
	$\implies \mathbf{B}(v_0, c\alpha + \beta) = (cm + n) - (cm + n) \tag{3.0.6}$	
	$\implies \mathbf{B}(v_0, c\alpha + \beta) = 0 \tag{3.0.7}$	
	From (3.0.7), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, W is a subspace of \mathbb{R}	
2.	From Table 2, we got W consists points which have same x and y coordinates. For example vector $\mathbf{u} = (1, 1) \in \mathbb{R}^2$, we will calculate $\mathbf{B}(v_0, u)$	
	$\Longrightarrow \mathbf{B}(v_0, u) = 1 - 1 = 0 \tag{3.0.8}$	False
	From (3.0.8), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$	
3.	Let us consider a point on y-axis, $p = (3,0)$ we will calculate $\mathbf{B}(v_0, p)$	
	$\implies \mathbf{B}(v_0, p) = 3 - 0 = 3$ (3.0.9)	False
	$\implies \mathbf{B}(v_0, p) \neq 0 \tag{3.0.10}$	Tuise
	From (3.0.10), we can say that vector $\mathbf{p} \notin \mathbf{W}$. Therefore, all points in \mathbf{W} are not on y-axis.	
4.	The direction vector \mathbf{m} and normal vector \mathbf{n} of the line through $\mathbf{M} = (0,0)$ and $\mathbf{N} = (1,1)$ is	
	$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{3.0.11}$	
	$\mathbf{n} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{m} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} $ (3.0.12)	
	$\implies \mathbf{n} = \begin{pmatrix} -1\\1 \end{pmatrix} \tag{3.0.13}$	
	The equation of line can be obtained as	True
	$\mathbf{n}^T(\mathbf{x} - \mathbf{M}) = 0 \tag{3.0.14}$	
	$\implies \left(-1 1\right) \left(\mathbf{x} - \begin{pmatrix} 0 \\ 0 \end{pmatrix}\right) = 0 \tag{3.0.15}$	
	$\implies \begin{pmatrix} -1 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{3.0.16}$	
	(3.0.16) is the equation of line. Therefore, We can say that the line passes through the points which is having same x and y coordinates. Therefore From Table 2, all points in W are on the line passing through M and N	

TABLE 3: Solution