Profs. Emanuel Estrada / Hélida Salles

Nome:	
N^{Q} matrícula:	Turma:

INSTRUÇÕES

- Trabalho avaliativo do segundo bimestre, referente ao conteúdo de regras de inferência
- Trabalho individual ou em dupla, a ser enviado pelo AVA FURG por todos integrantes da dupla.
- Caso seja detectado plágio nas respostas entre duplas distintas, todos discentes envolvidos receberão nota ZERO na avaliação.

Questão:	1	2	3	4	5	6	Total
Pontos:	10	5	10	10	5	10	50
Pontos extras:	0	0	0	0	0	0	0
Acertos:							

Regra de inferência	Tautologia	Nome	
$ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens	
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens	
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Silogismo Hipotético	
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Silogismo Disjuntivo	
$p \longrightarrow p \lor q$	$p \to (p \vee q)$	Adição	
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplificação	
$\begin{matrix} p \\ q \\ \therefore \overline{p \wedge q} \end{matrix}$	$((p) \land (q)) \to (p \land q)$	Conjunção	
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \therefore \overline{q \lor r} \end{array} $	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolução	

Regra de inferência	Nome	
$\forall x P(x)$	Instanciação	
$\therefore \overline{P(c)}$	Universal	
P(c) para um c arbitrário	Generalização	
$\therefore \overline{\forall x P(x)}$	Universal	
$\exists x P(x)$	Instanciação	
$\therefore \overline{P(c)}$ para algum elemento c	Existencial	
P(c) para algum elemento c	Generalização	
$\therefore \overline{\exists x P(x)}$	Existencial	

Tabela 1: Regras de inferência

Nome: Matemática Discreta

REGRAS DE INFERÊNCIA

1. Demonstre se os seguintes argumentos são válidos ou não. Você pode usar o método que desejar, mas se usar regras de inferência escreva o nome da regra aplicada.

- (a) Se o programa é eficiente, ele executará rapidamente: Ou o programa é eficiente ou ele tem um erro. No entanto, o programa não executa rapidamente. Portanto o programa tem um erro.
- (b) A colheita é boa, mas não há água suficiente. Se tivesse bastante água ou não tivesse bastante sol, então haveria água suficiente. Portanto, a colheita é boa e há bastante sol.
- 5 2. Se Daniel fala dinamarquês, então eu falo inglês ou alemão. Se eu não falo alemão nem inglês, então
 - A. Daniel não fala dinamarquês.
 - B. Eu não falo dinamarquês.
 - C. Daniel não fala inglês.
 - D. Daniel fala inglês.
 - E. Eu falo dinamarquês.
- [10] 3. Considere que as premissas a seguir são verdadeiras:

Premissa 1: Se hoje é sábado, então Mia vai à praia e Luiz vai assistir ao jogo de futebol.

Premissa 2: Se Mia vai à praia ou Mark vai trabalhar, então Alessandra faz o churrasco.

Premissa 3: Hoje, Luiz foi assistir ao jogo de futebol.

Premissa 4: Hoje, Alessandra não fez o churrasco.

É correto concluir (marque **duas** (2) opções que podemos afirmar):

- A. Hoje é sábado e...
- B. ... Mia foi à praia.
- C. ... Mark foi trabalhar.
- D. Hoje não é sábado e....
- E. ... Mark não foi trabalhar.
- 4. Mostre que o argumento a seguir é válido: "Todo microcomputador tem uma porta serial. Alguns microcomputadores têm porta paralela. Portanto alguns computadores têm ambas as portas serial e paralela". Usando:
 - $M(x): x \in \text{um microcomputador}.$

S(x): x tem porta serial.

P(x): x tem porta paralela

Nome: Matemática Discreta

5. Qual o erro do seguinte argumento? Seja H(x): x é feliz. Dada a premissa $\exists x H(x)$, concluímos que H(Laila). Portanto, Laila é feliz.

- 6. Para cada um desses argumentos, determine se o argumento está correto ou incorreto e explique o porquê.
 - a) Todos os alunos desta turma entendem lógica. Chico é um aluno desta turma. Portanto, Chico entende lógica.
 - b) Todo estudante de ciência da computação cursa matemática discreta. Tobias está cursando matemática discreta. Portanto, Tobias cursa ciência da computação.
 - c) Todos os papagaios gostam de frutas. Meu pássaro de estimação não é um papagaio. Portanto, meu pássaro de estimação não gosta de frutas.
 - d) Todo mundo que come granola todos os dias é saudável. Maya não é saudável. Portanto, Maya não come granola todos os dias.

Equivalências lógicas

Equivalências lógicas	Nome			
$p \wedge \mathbf{V} \equiv p$	Propriedade dos			
$pee\mathbf{F}\equiv p$	elementos neutros			
$p \lor \mathbf{V} \equiv \mathbf{V}$	Propriedade de			
$p \wedge \mathbf{F} \equiv \mathbf{F}$	dominação			
$p \wedge p \equiv p$	Propriedades			
$p \lor p \equiv p$	idempotentes			
$\neg(\neg p) \equiv p$	Propriedade da dupla negação			
$p\vee q\equiv q\vee p$	Propriedades			
$p \wedge q \equiv q \wedge p$	comutativas			
$(p \lor q) \lor r \equiv q \lor (p \lor r)$	Propriedades			
$(p \wedge q) \wedge r \equiv q \wedge (p \wedge r)$	associativas			
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Propriedades			
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	distributivas			
$\neg(p \lor q) \equiv \neg p \land \neg q$	Leis de			
$\neg(p \land q) \equiv \neg p \lor \neg q$	Morgan			
$p\vee (p\wedge q)\equiv p$	Propriedades de			
$p \wedge (p \vee q) \equiv p$	absorção			
$p \land \neg p \equiv \mathbf{F}$	Propriedades de			
$p ee eg p \equiv \mathbf{V}$	negação			

Equivalências com sentenças condicionais
$p \to q \equiv \neg p \lor q$
$p \to q \equiv \neg q \to \neg p$
$p \lor q \equiv \neg p \to q$
$p \land q \equiv \neg (p \to \neg q)$
$\neg(p \to q) \equiv p \land \neg q$
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$