

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 3

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος

1 Χρωματισμοί κορυφών και ακμών

1.6~ Έστω G γράφημα όπου $\Delta(G) \leq 3.$ Δείξτε ότι το G είναι 4-ακμοχρωματίσιμο.

Θα δείξουμε ότι γραμμικό γράφημα L(G) του G είναι 4 χρωματίσιμο.

Λήμμα 1. $A\nu K_4 \subseteq L(G)$ τότε $\Delta(G) \geq 4$.

Απόδειξη. Έστω e_1, e_2, e_3, e_4 οι αχμές του G που στο L(G) είναι κορυφές 4-κλίκας. Αυτό σημαίνει ότι κάθε ζεύγος e_i, e_j θα πρέπει να έχει κοινό άκρο.

Έστω $e_1=\{u,v\}$ και χωρίς βλάβη της γενικότητας έστω $e_2=\{u,w\}$. Αν η e_3 έχει κοινό άκρο με την e_1 την κορυφή v, τότε αναγκαστικά $e_3=\{v,w\}$ ώστε να έχει κοινό άκρο και με την e_3 . Σε αυτή την περίπτωση όμως η e_4 δεν μπορεί να έχει κοινό άκρο και με τις 3 προηγούμενες ακμές.

Άρα η e_3 έχει κοινό άκρο με την e_1 το u, δηλαδή $e_3 = \{u, x\}$ για κάποια κορυφή x (διαφορετική από τις $\{u, v, w\}$).

Τέλος, η e_4 θα πρέπει να έχει κοινό άκρο με όλες τις υπόλοιπες και αυτό μπορεί να συμβεί μόνο αν $e_4=\{u,y\}$ για κάποια νέα κορυφή y.

Συνεπώς
$$\Delta(G) \geq d(u) = 4$$
.

Εφόσον $\Delta(G) \leq 3$, από το Λήμμα 1 έχουμε ότι το L(G) δεν μπορεί να περιέχει το K_4 ως υπογράφημα άρα δεν μπορεί να το περιέχει και ως ελάσσον.

Από την εικασία του Handwinger για την περίπτωση k=4 (για το συγκεκριμένο k έχει αποδειχθεί ότι η εικασία ισχύει) έχουμε ότι $\chi(L(G))<4$ άρα μπορούμε να χρωματίσουμε τις ακμές του G με 4 (ή λιγότερα) χρώματα.

1.7 Δείξτε ότι υπάρχει c τέτοιο ώστε κάθε ένωση δύο επίπεδων γραφημάτων να έχει χρωματικό αριθμό το πολύ c.

Λήμμα 2.
$$A \nu G = G_1 \cup G_2$$
 τότε $\chi(G) \leq \chi(G_1) \cdot \chi(G_2)$.

Απόδειξη. Έστω $\chi(G_1)=k, \chi(G_2)=l$ και $\chi_{G_1}:V(G_1)\to [k], \chi_{G_2}:V(G_2)\to [l]$ οι συναρτήσεις χρωματισμού του καθενός.

Επεκτείνουμε τις παραπάνω συναρτήσεις ως εξής:

$$\overline{\chi_{G_i}}(u) = \left\{ egin{array}{ll} \chi_{G_i}(u) &, \ u \in V(G_i) \\ 1 &, \ \mbox{διαφορετικά} \end{array}
ight.$$

Ορίζουμε το σύνολο $S=\{(x,y)\mid x\in A,y\in B\}$ και χρωματίζουμε το G με χρώματα από το S ως εξής:

$$\chi_G(u) = (\overline{\chi_{G_1}}(u), \overline{\chi_{G_2}}(u))$$

Ο παραπάνω είναι έγχυρος χρωματισμός αφού αν $\chi_G(u)=\chi_G(v)$ τότε $\overline{\chi_{G_i}}(u)=\overline{\chi_{G_i}}(v)$ για i=1,2 επομένως $\{u,v\}\notin E(G_i)$ και έτσι $\{u,v\}\notin E(G)$.

Άρα
$$\chi(G) \leq |S| = \chi(G_1) \cdot \chi(G_2)$$
.

Από το θεώρημα των 4 χρωμάτων έχουμε ότι αν G_1, G_2 επίπεδα γραφήματα τότε $\chi(G_1), \chi(G_2) \le 4$ επομένως από το Λήμμα $2: \chi(G_1 \cup G_2) \le 16$.

2 Διαπεράσεις

2.1 (*) Για ποιά k και l το γράφημα $G_{k,l}=P_l^{[k]}$ είναι Χαμιλτονιανό;

Για k=1, κανένα από τα P_l με $l\geq 1$ δεν είναι Χαμιλτονιανό.

Για $k \geq 2,$ θα δείξουμε ότι για κάθε $l \geq 1$ το $P_l^{[k]}$ είναι Χαμιλτονιανό.

Παρατήρηση 3. Το $P_l^{[2]}=P_l\times P_l$ είναι ισόμορφο με την (l+1,l+1)-σχάρα η οποία είναι Χαμιλτονιανό γράφημα για κάθε $l\geq 1$ (διαπερνάμε όλες τις κορυφές της πρώτης στήλης από πάνω προς τα κάτω, της δεύτερης στήλης από κάτω προς τα πάνω κ.ο.κ.).

Λήμμα 4. Αν G είναι Χαμιλτονιανό τότε το $G \times P_k$ είναι επίσης Χαμιλτονιανό.

Aπόδειξη. Το γράφημα $G \times P_k$ είναι ουσιαστικά το G όπου κάθε κορυφή του έχει αντικατασταθεί από ένα μονοπάτι P_k (και έχουν προστεθεί οι κατάλληλες ακμές μεταξύ κορυφών των μονοπατιών).

Ας πάρουμε ένα κύκλο Hamilton του G:

$$u_1 \to \ldots \to u_n \to u_1$$

Αυτός μπορεί να μετασχηματιστεί απευθείας σε κύκλο Hamilton του $G \times P_k$ ως εξής:

$$(u_1^1 \to \ldots \to u_1^k) \to \ldots \to (u_n^1 \to \ldots \to u_n^k) \to u_1^1$$

όπου στο παραπάνω u_i^j είναι η j-οστή κορυφή του μονοπατιού το οποίο έχει αντικαταστήσει την κορυφή u_i του G στον $G\times P_k$.

Από το Λήμμα 4 και την Παρατήρηση 3 έχουμε επαγωγικά ότι για κάθε $k \geq 2$ το $P_l^{[k]}$ είναι Χαμιλτονιανό για οποιδήποτε $l \geq 1$.

- 3 Επίπεδα γραφήματα
- 4 Τέλεια γραφήματα
- 5 Μερικές διατάξεις
- 6 k-δέντρα
- 7 Άπειρα γραφήματα
- 8 Κανονικά γραφήματα και Ταιριάσματα
- 9 Διάφορα