CHAPTER 2: **BONDING AND PROPERTIES**

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Atomic Structure (Chemistry Review)

```
    atom – - electrons – 9.11 x 10<sup>-31</sup> kg
    protons and protons are protons are protons are protons are protons.
```

- atomic number = # of protons in nucleus of atom
 = # of electrons of neutral species
- A [=] atomic mass unit = amu = 1/12 mass of ¹²C

Atomic wt = wt of 6.023×10^{23} molecules or atoms 1 amu/atom = 1 g/mol

C 12.011 H 1.008 etc.

Average Atomic Weight (Mass)

$$\bar{A}_M = \sum_i f_{i_M} A_{i_M}$$

Cerium has four naturally occuring isotopes:

0.185% of ¹³⁶Ce, with atomic weight of 135.907 amu, 0.251% of ¹³⁸Ce, with atomic weight of 137.906 amu, 88.450% of ¹⁴⁰Ce, with atomic weight of 139.905 amu, and 11.114% of ¹⁴²Ce, with atomic weight of 141.909 amu. Calculate the average atomic weight of Ce.

$$\bar{A}_{M} = \frac{0.185}{100} (135.907) + \frac{0.251}{100} (137.906) + \frac{88.450}{100} (139.905) + \frac{11.114}{100} (141.909)$$

=140.115 amu

Idealized structure of an atom

Atoms have a dense, massive nucleus with neutral neutrons and positively charged protons. The number of protons in the nucleus determines the atomic number Z. The negatively-charged electrons are much lighter and orbit around the nucleus. Any given orbital can have two electrons, one with spin "up" and the other spin "down".

Atomic Structure

- Valence electrons determine all of the following properties
 - 1) Chemical
 - 2) Electrical
 - 3) Thermal
 - 4) Optical

Electronic Structure

- Electrons have wave-like and particle-like properties.
 - This means that electrons are in specific orbitals defined by a probability.
 - Each orbital at discrete energy level determined by quantum numbers.

Quantum

```
n = principal (energy level, shell)

I = subsidiary (orbitals, shape)

m_l = magnetic

m_s = spin
```

Designation

```
K, L, M, N, O (1, 2, 3, ...)

s, p, d, f (0, 1, 2, 3,..., n-1)

1, 3, 5, 7 (-1 to +1)

\frac{1}{2}, -\frac{1}{2}
```


Electron Energy States

Electrons...

- have discrete energy states: "quantized"
- tend to occupy lowest available energy state.

	4 <i>d</i> 4 <i>p</i>	N-shell $n = 4$
	3 <i>d</i>	
	4s	
Energy	3p 3s	 M-shell $n = 3$
	2p 2s	 L-shell $n = 2$
	1s	 K-shell $n = 1$

SURVEY OF ELEMENTS

Most elements: Electron configuration not stable.

<u>Element</u>	Atomic #	Electron configuration	
Hydrogen	1	1s ¹	
Helium	2	1s ² (stable)	
Lithium	3	1s ² 2s ¹	
Beryllium	4	1s ² 2s ²	
Boron	5	$1s^22s^22p^1$	
Carbon	6	1s ² 2s ² 2p ²	
•••		•••	
Neon	10	1s ² 2s ² 2p ⁶ (stable)	
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	
•••		•••	
Argon	18	$1s^2 2s^2 2p^6 3s^2 3p^6$ (stable)	
	•••	***	
Krypton	36	$1s^22s^22p^63s^23p^63d^{10}4s^24p^6$ (stable	

• Why? Valence (outer) shell usually not filled completely.

Electron Configurations

- Valence electrons those in unfilled shells
- Filled shells more stable
- Valence electrons are most available for bonding and tend to control the chemical properties
 - example: C (atomic number = 6)

$$1s^2$$
 $2s^2 2p^2$ valence electrons

Electronic Configurations

The Periodic Table

Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

Electronegativity

- Ranges from 0.7 to 4.0
- Large values: tendency to acquire electrons
 Small values: tendency to give up electrons

Smaller electronegativity

Larger electronegativity

Ionic bond – metal + nonmetal † † donates accepts electrons electrons

Dissimilar electronegativities

ex: MgO Mg
$$1s^2 2s^2 2p^6 3s^2$$
 O $1s^2 2s^2 2p^4$ [Ne] $3s^2$

$$Mg^{2+}$$
 1s² 2s² 2p⁶ [Ne]

$$O^{2-}$$
 1s² 2s² 2p⁶ [Ne]

Ionic Bonding

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

Ionic Bonding

- Energy minimum energy most stable
 - Energy balance of attractive and repulsive terms

Examples: Ionic Bonding

Predominant bonding in Ceramics

Metallic Bonding

Strong bonds

Non-directional

Electrical conductors
Heat conductors
Optically reflective

Can be quite ductile, depends on crystal structure, perfection

Covalent Bonding

- similar electronegativity : share electrons
- bonds determined by valence s & p orbitals dominate bonding
- Example: CH₄

C: has 4 valence e⁻, needs 4 more

H: has 1 valence e⁻, needs 1 more

Electronegativities are comparable.

$1 s + 3 p = 4 sp^3$ hybrid orbitals

methane (natural gas): tetrahedron

Tetrahedral carbons can be chiral

Left handed enantiomer

Right handed enantiomer

$1 s + 2 p = 3 sp^2$ hybrid orbitals

ethene or ethylene 1 sp²-sp² σ bond 1 p-p π bond

Benzene: alternating single, double bonds

 C_6H_6

Benzene Molecular formula

Planar Hexagon Bond Length 140 pm

Sigma Bonds sp² Hybridized orbitals

Benzene ring Simplified depiction

Primary Bonding

- Metallic Bond -- delocalized as electron cloud
- Ionic-Covalent Mixed Bonding

% ionic character =
$$\left(1 - e^{-\frac{(X_A - X_B)^2}{4}} \right) x (100\%)$$

where $X_A \& X_B$ are electronegativities

Ex: MgO
$$X_{Mg} = 1.3$$

 $X_{O} = 3.5$

% ionic character =
$$\left(1 - e^{-\frac{(3.5 - 1.3)^2}{4}}\right) x (100\%) = 70.2\%$$
 ionic

SECONDARY BONDING

Arises from interaction between dipoles

Fluctuating dipoles

Permanent dipoles-molecule induced

Summary: Bonding

Type Bond Energy Comments

Ionic Large! Nondirectional (ceramics)

Covalent Variable Directional

large-Diamond (semiconductors, ceramics

small-Bismuth polymer chains)

Metallic Variable

large-Tungsten

small-Mercury

Nondirectional (metals)

Secondary smallest Directional

inter-chain (polymer)

inter-molecular

Chapter 2 - 26

Properties From Bonding: T_m

• Bond length, r

Bond energy, E_o

• Melting Temperature, T_m

 T_m is larger if E_0 is larger.

Modulus (E) related to curvature at r_o

Properties From Bonding : α

• Coefficient of thermal expansion, α

coeff. thermal expansion $\frac{\Delta L}{\Delta L} = \alpha \left(T_2 - T_4 \right)$

• α ~ symmetry at r_o

 α is larger if E_0 is smaller.

Summary: Primary Bonds

Ceramics

(lonic & covalent bonding):

Large bond energy

large T_m large E small α

Metals

(Metallic bonding):

Variable bond energy

moderate T_m moderate Emoderate α

Polymers

(Covalent & Secondary):

Directional Properties

Secondary bonding dominates

small T_m small E large α