Krzysztof Sołowiej

Raport z projektu

Wstęp

Celem projektu było zbadanie korelacji łączącej liczbę interwencji gdyńskiej straży pożarnej w latach 2015-2022 (93 obserwacje) ze średnią temperaturą oraz zbudowanie modelu predykcji.

Tabela 1. Nieprzetworzone dane pobrano z: otwartedane.gdynia.pl i wunderground.com.

	Data	Rok	Miesiąc	Łączna liczba interwencji	Średnia temperatura w C
0	2015-01-01	2015	01	212	1.08
1	2015-02-01	2015	02	142	0.86
2	2015-03-01	2015	03	186	4.44
3	2015-04-01	2015	04	187	7.03
4	2015-05-01	2015	05	208	11.09
•••					
88	2022-05-01	2022	05	205	11.33
89	2022-06-01	2022	06	230	16.80
90	2022-07-01	2022	07	224	17.68
91	2022-08-01	2022	08	269	20.06
92	2022-09-01	2022	09	210	11.61

Tabela 2. Typy danych

Data	datetime64[ns]
Rok	object
Miesiac	object
Łączna liczba interwencji	int64
Średnia temperatura w C	float64

Rys. 1. Bimodalny rozkład danych z kolumny "Średnia temperatura w C" odzwierciedlający istnienie dwóch, wyraźnie różnych pór roku.

Rys. 2. Prawostronnie skośny rozkład danych z kolumny "Łączna liczba interwencji", który sugeruje zastosowanie transformacji logarytmicznej.

Rozdział 1 - Usunięcie najbardziej wpływowej obserwacji

Aby zbudować dobry model, postanowiłem zidentyfikować i usunąć najbardziej wpływową obserwację. W tym celu użyłem funkcji służącej do obliczania odległości Cooka.

Tabela 3. Obserwacje wraz z obliczoną odległością Cooka (najwyższe wartości na początku).

	Data	Rok	Miesią c	Łączna liczba interwencji	Średnia temperatura w C	Odległość Cooka
84	2022-01-01	2022	01	433	1.34	4.822045e-01
63	2020-04-01	2020	04	400	7.38	9.653361e-02
62	2020-03-01	2020	03	360	3.53	9.003168e-02
55	2019-08-01	2019	08	135	18.71	8.574067e-02
54	2019-07-01	2019	07	148	16.40	4.432166e-02
•••						
21	2016-10-01	2016	10	205	7.13	6.896515e-05
45	2018-10-01	2018	10	244	10.02	4.777007e-05
9	2015-10-01	2015	10	180	7.15	4.263168e-05
58	2019-11-01	2019	11	141	4.83	1.736161e-05
3	2015-04-01	2015	04	187	7.03	6.960930e-08

W styczniu 2022 roku zaobserwowano wyjątkowo wysoką liczbę interwencji straży pożarnej w stosunku do średniej temperatury. W związku z tym, przy budowaniu modelu predykcji, postanowiłem nie brać tej obserwacji pod uwagę. Liczba obserwacji skurczyła się do 92.

Rys. 3. Wizualizacja regresji liniowej przed (zielona linia) i po (czerwona linia) usunięciu najbardziej wpływowej obserwacji (zaznaczonej na niebiesko).

Rozdział 2 - Przekształcenie zmiennej

Współczynnik korelacji obu (tzn. "Łączna liczba interwencji" i "Średnia temperatura w C") nieprzetworzonych zmiennych wynosił zaledwie 0,42, co nie wróżyło sukcesu w budowie modelu predykcji. Po przekształceniu logarytmicznym zmiennej "Łączna liczba interwencji", udało się poprawić współczynnik korelacji do poziomu 0,51 oraz zbliżyć dystrybucję zmiennej do rozkładu normalnego.

Rys. 4. Dystrybucje zmiennej "Łączna liczba interwencji" przed i po transformacji logarytmicznej.

Tabela 4. Przekształcenie logarytmiczne zmiennej "Łączna liczba interwencji".

	Łączna liczba interwencji	Łączna liczba interwencji po przekształceniu logarytmicznym
0	212	5.356586
1	142	4.955827
2	186	5.225747
3	187	5.231109
4	208	5.337538
•••		
88	205	5.323010
89	230	5.438079
90	224	5.411646
91	269	5.594711
92	210	5.347108

Rozdział 3 - Budowa modelu predykcji

Po przekształceniu danych zająłem się budowaniem modelu regresji liniowej, przekazując algorytmowi dane widoczne w Tabeli 4 (patrz wyżej).

Z uwagi na to, że model miał posłużyć do zbudowania aplikacji, która przyjmuje dane pochodzące od użytkownika, potraktowałem cały zbiór jako zbiór treningowy.

Tabela 5. Opis otrzymanego modelu

Współczynnik	Wartość
Współczynnik kierunkowy (slope)	0.01965732
Wyraz wolny (intercept)	5.212316949807735
RMSE	0.22

Tabela 6. Próba przewidzenia liczby interwencji straży pożarnej

	Średnia temperatura w C	Łączna liczba interwencji	Łączna liczba interwencji po przekształceniu logarytmicznym	Wyniki predykcji w postaci logarytmicznej	Wyniki predykcji w postaci wykładniczej
0	1.08	212	5.356586	5.233547	187.456508
1	0.86	142	4.955827	5.229222	186.647582
2	4.44	186	5.225747	5.299595	200.255784
3	7.03	187	5.231109	5.350508	210.715301
4	11.09	208	5.337538	5.430317	228.221506
•••					
88	11.33	205	5.323010	5.435034	229.300743
89	16.80	230	5.438079	5.542560	255.330809
90	17.68	224	5.411646	5.559858	259.786059
91	20.06	269	5.594711	5.606643	272.228795
92	11.61	210	5.347108	5.440538	230.566306

Rys. 5. Wizualizacja wytrenowanego modelu

Rys. 6. Wizualizacja wytrenowanego modelu ze zmienną w postaci wykładniczej

Wnioski końcowe

Wyżej opisany projekt jest jedynie pierwszą próbą eksploracji technik machine learningu i nie posiada żadnego praktycznego zastosowania (ze względu na niski współczynnik korelacji). Działający model można przetestować pod adresem:

http://krsolowiej.pythonanywhere.com/

Dziękuję za uwagę.