Предположим обратное, то есть то, что одно решение $\Phi(t)$ устойчиво, но какое-то другое $\Psi(t)$ неустойчиво. Это значит, что для некоторого $\varepsilon>0$ и любого $\delta>0$ существует другое ненулевое решение $X_{\delta}(t)$ и такое $t_1=t_1(\delta)>t_0$, что $\left|\Psi(t_0)-X_{\delta}(t_0)\right|<\delta$, но $\left|\Psi(t_1)-X_{\delta}(t_1)\right|\geqslant \varepsilon$.

Система уравнений линейная, значит всякое её решение можно выразить в виде $C_1f_1(t)+C_2f_2(t)+\ldots+C_nf_n(t)+g(t)$, где g(t) – частное решение неоднородной системы; $f_i(t)$, $1 \le i \le n$ – это столбцы, составляющие фундаментальную систему решений. В ней любую функцию можно умножить на ненулевой скаляр и полученная ФСР всё равно останется корректной.

Подберём фундаментальную систему решений надлежащим образом. Возьмём любую ФСР и t_0 такое, чтобы векторы $f_1(t_0),\ldots,f_n(t_0)$ были линейно независимы (то есть матрица A, составленная из этих векторов-столбцов, имела $\det A \neq 0$). Далее, для положительного числа $\varepsilon_{\Phi} = \frac{\varepsilon}{n}$ подберём такое $\gamma > 0$, что для любого решения X(t) из $\left|\Phi(t_0) - X(t_0)\right| < \gamma$ следует $\left|\Phi(t) - X(t)\right| < \frac{\varepsilon}{n}$ для всех $t \geqslant t_0$. Наконец, в выбранной ФСР умножим каждую функцию на такие ненулевые скаляры, чтобы выполнялись $\left|f_k(t_0) - \Phi(t_0)\right| < \gamma, 1 \leqslant k \leqslant n$. Из этого следуют неравенства $\left|f_k(t) - \Phi(t)\right| < \frac{\varepsilon}{n}$, а линейная независимость векторов $f_1(t_0),\ldots,f_n(t_0)$ не нарушается, так как умножение столбцов матрицы A приведёт к умножению её определителя на ненулевые числа. Полученный набор функций положим новой ФСР. Стоит обратить особое внимание на тот факт, что построение ФСР указанным образом никак не зависит ни от δ , ни от $t_1 = t_1(\delta)$.

В терминах подобранной выше ФСР распишем

$$\Psi(t) = A_1 f_1(t) + \dots + A_n f_n(t) + g(t) \qquad X_{\delta}(t) = B_1 f_1(t) + \dots + B_n f_n(t) + g(t)$$

$$\Psi(t) - X_{\delta}(t) = \Delta_1 f_1(t) + \dots + \Delta_n f_n(t) \qquad \Delta_k = A_k - B_k$$

Разность $\Psi(t_0) - X_{\delta}(t_0)$ можно представить в следующей форме:

$$\begin{pmatrix} \Delta_1 f_{11}(t_0) + \ldots + \Delta_1 f_{1n}(t_0) \\ \ldots \\ \Delta_1 f_{n1}(t_0) + \ldots + \Delta_n f_{nn}(t_0) \end{pmatrix} = \begin{pmatrix} f_{11}(t_0) & \ldots & f_{1n}(t_0) \\ \ldots & \ldots & \ldots \\ f_{n1}(t_0) & \ldots & f_{nn}(t_0) \end{pmatrix} \times \begin{pmatrix} \Delta_1 \\ \ldots \\ \Delta_n \end{pmatrix} = F(t_0) \times \Delta,$$

где за $F_{n\times n}(t)$ обозначена матрица, составленная по столбцам из выбранной ФСР; $\Delta_{n\times 1}$ – столбец разностей произвольных постоянных. Матрица $F(t_0)$ фиксирована, при этом ещё и невырождена. Следовательно, справедливы представления

$$\Psi(t_0) - X_{\delta}(t_0) = F(t_0) \times \Delta \qquad \Delta = (F(t_0))^{-1} \times (\Psi(t_0) - X_{\delta}(t_0)).$$

За норму квадратной матрицы далее обозначена норма Фробениуса $\|A\|_F$. По свойству согласованности этой нормы со спектральной нормой $\|x\|_2$

$$\begin{split} |\Delta| &= \|\Delta\|_2 = \sqrt{\Delta_1^2 + \ldots + \Delta_n^2} = \left| \left(F(t_0) \right)^{-1} \times \left(\Psi(t_0) - X_\delta(t_0) \right) \right| \leq \\ &\leq \left\| \left(F(t_0) \right)^{-1} \right\|_F \cdot \left| \left(\Psi(t_0) - X_\delta(t_0) \right) \right| < \left\| \left(F(t_0) \right)^{-1} \right\|_F \cdot \delta. \end{split}$$

Обозначим также $M_{\delta} = \max_{1 \le k \le n} |\Delta_k| > 0$. Выше показано, что

$$M_{\delta} \leq \sqrt{\Delta_1^2 + \ldots + \Delta_n^2} < \left\| \left(F(t_0) \right)^{-1} \right\|_F \cdot \delta.$$

Например, если рассмотреть

$$\delta = \frac{\varepsilon}{\varepsilon + n |\Phi(t_1)|} \Big(\Big\| \big(F(t_0) \big)^{-1} \Big\|_F \Big)^{-1}, \text{ то получим } M_\delta < \frac{\varepsilon}{\varepsilon + n |\Phi(t_1)|}.$$

С одной стороны, из $|\Psi(t_1) - X(t_1)| \ge \varepsilon$ вытекает

$$\begin{split} \varepsilon &\leq \left| \Psi(t_{1}) - X(t_{1}) \right| = \left| \Delta_{1} f_{1}(t_{1}) + \ldots + \Delta_{n} f_{n}(t_{n}) \right| \leq \left| \Delta_{1} f_{1}(t_{1}) \right| + \ldots + \left| \Delta_{n} f_{n}(t_{n}) \right| \leq \\ &\leq M_{\delta} \left(\left| f_{1}(t_{1}) \right| + \ldots + \left| f_{n}(t_{1}) \right| \right) = \\ &= M_{\delta} \left(\left| f_{1}(t_{1}) - \Phi(t_{1}) + \Phi(t_{1}) \right| + \ldots + \left| f_{n}(t_{1}) - \Phi(t_{1}) + \Phi(t_{1}) \right| \right) \leq \\ &\leq M_{\delta} \left(\left| f_{1}(t_{1}) - \Phi(t_{1}) \right| + \ldots + \left| f_{n}(t_{1}) - \Phi(t_{1}) \right| + n \left| \Phi(t_{1}) \right| \right), \end{split}$$

а тогда

$$\left|f_1(t_1) - \Phi(t_1)\right| + \ldots + \left|f_n(t_1) - \Phi(t_1)\right| \geqslant \frac{\varepsilon}{M_\delta} - n\left|\Phi(t_1)\right| > \frac{\varepsilon}{\left(\frac{\varepsilon}{\varepsilon + n\left|\Phi(t_1)\right|}\right)} - n\left|\Phi(t_1)\right| = \varepsilon.$$

С другой стороны, для всех $t \geqslant t_0$ имеем $\left| f_1(t) - \Phi(t) \right| + \ldots + \left| f_n(t) - \Phi(t) \right| < \frac{\varepsilon}{n} \cdot n = \varepsilon$. В частности, подстановка в последнее неравенство $t = t_1$ даёт противоречие, которое доказывает теорему.