EE236: Experiment No. 11 Mobility of Charge Carriers in N-channel MOSFET and Temperature Dependence

Jatin Kumar, 22B3922

October 26, 2024

1 Lab Experiment

1.1 Characterizing the NMOS

 I_D was measured varying V_{GS} from 0 to 2.5V with a V_{DS} of 5V at 25°C. The voltage at which NMOS started conducting $V_T=0.89\,V$.

1.1.1 I-V Characteristics Calculation

V_{GS} (V)	$I_D (mA)$	I_D (A)	$\sqrt{I_D}$
0	0	0	0
0.67	0	0	0
0.85	0	0	0
0.89	0.001	0.000001	0.001
0.96	0.006	0.000006	0.00244949
1.02	0.022	0.000022	0.004690416
1.08	0.07	0.00007	0.0083666
1.3	1.256	0.001256	0.03544009
1.5	5.6	0.0056	0.074833148
1.67	10.93	0.01093	0.10454664
1.78	14.97	0.01497	0.122351951
2.01	24.9	0.0249	0.157797338

Table 1: Table of V_{GS} , I_D in mA and A, and $\sqrt{I_D}$

Figure 1: I_D vs V_{GS}

Figure 2: $\sqrt{I_D}$ vs V_{GS}

1.2 Mobility Extraction

1.2.1 Circuit Used

Figure 3: Circuit Used

 V_{DS} was fixed at 0.6V, and V_{GS} varied from 0.6 + V_T to 10V. I_D values were recorded across temperatures (30, 50, and 70°C). β was calculated using:

$$\beta = \frac{I_D}{V_{DS}(V_{GS} - V_T - 0.5V_{DS})}$$

1.2.2 Readings Obtained for 30° C

V_{GS} (V)	$I_D \text{ (mA)}$	I_D (A)	Beta
0	0	0	0
1.5	5.3	0.0053	0.028494624
1.68	10.64	0.01064	0.036190476
1.8	14.9	0.0149	0.040710383
2.14	23	0.023	0.040350877
2.41	25.4	0.0254	0.034699454
2.66	26	0.026	0.029478458
2.96	26.4	0.0264	0.024858757
3.12	26.6	0.0266	0.022970639
3.43	26.7	0.0267	0.019866071
3.77	27.3	0.0273	0.017635659
4.29	27.5	0.0275	0.014784946
5.04	27.6	0.0276	0.011948052
6.02	27.6	0.0276	0.00952381
7	27.5	0.0275	0.007888698
8	27.9	0.0279	0.006828194
9	28	0.028	0.005975245
10	28	0.028	0.005297011

Table 2: Data at 30°C for $V_{GS},\,I_D$ in mA and A, and Beta

1.2.3 Readings Obtained for 50° C

V_{GS} (V)	$I_D \text{ (mA)}$	I_D (A)	Beta
0	0	0	0
1.51	6.3	0.0063	0.06
1.75	13.7	0.0137	0.026550388
1.8	15.3	0.0153	0.028021978
2	21	0.021	0.031531532
2.25	24.6	0.0246	0.030147059
2.6	25.9	0.0259	0.025243665
2.84	26.2	0.0262	0.022393162
3.19	26.5	0.0265	0.019202899
3.4	26.6	0.0266	0.017662683
3.65	26.7	0.0267	0.016123188
3.7	26.7	0.0267	0.015836299
3.92	26.8	0.0268	0.014741474
4.08	26.8	0.0268	0.01400209
5	27	0.027	0.010948905
6.07	27.1	0.0271	0.008719434
7.06	27.1	0.0271	0.007320367
8	27.1	0.0271	0.006352555
9	27.1	0.0271	0.005569256
10	27.2	0.0272	0.004976217

Table 3: Data at 50°C for $V_{GS},\,I_D$ in mA and A, and Beta

1.2.4 Readings Obtained for 70° C

V_{GS} (V)	$I_D \text{ (mA)}$	I_D (A)	Beta
0	0	0	0
1.5	6.9	0.0069	0.06969697
1.7	12.6	0.0126	0.025925926
1.8	16.5	0.0165	0.03021978
1.94	19.4	0.0194	0.030793651
2.09	22.2	0.0222	0.030833333
2.26	23.9	0.0239	0.029075426
2.56	25	0.025	0.0249501
2.7	25.3	0.0253	0.023296501
2.95	25.6	0.0256	0.020711974
3.23	25.8	0.0258	0.018376068
3.52	25.9	0.0259	0.016413181
3.78	25.9	0.0259	0.014936563
4.03	26	0.026	0.013800425
5.04	26.2	0.0262	0.010522088
6.03	26.3	0.0263	0.008527886
7	26.4	0.0264	0.007201309
8	26.4	0.0264	0.006188467
9	26.4	0.0264	0.005425401
10.02	26.4	0.0264	0.004819277

Table 4: Data at 70°C for $V_{GS},\,I_D$ in mA and A, and Beta

1.2.5 Variation of β with Temperature and V_{GS}

Figure 4: Plot for Variation of β with Temperature

Figure 5: Plot for Variation of β with V_{GS}

1.3 Quantification of Temperature Dependence

From the plots and tables, we observe that β is approximately constant with respect to temperature at specific constant V_{GS}

Temperature (°C)	$V_{GS} = 1.8 \text{ V}$	$V_{GS} = 8 \text{ V}$
30	0.0407	0.00683
50	0.02802	0.00635
70	0.03022	0.00619