第8章数字系统设计基础

Design of Digital Systems

§8.1 概述

数字系统,是指交互式的以离散形式表示的具有存储、传输、处理信息能力的逻辑子系统的集合物。

数字系统 □□□□▷ 模块 子系统

每个子系统

控制器

数据处理器

关系:

状态变量

结果作为状态变量反馈给控制器

§8.2 算法状态机 — ASM 图表 Algorithmic State Machine

ASM: 数字系统控制过程的算法流程图

与通常算法流程图不同,ASM图表示了准确的时间序列

特点:

- 1. 操作是按时间序列进行的
- 2. 操作取决于某一判断 (外输入及反馈信号)

§ 8.2.1 ASM 符号

1. 状态框 (rectangle)

在T1 (代码 001) 状态下, 输出 Z = 0, 下一个 CLK 到来, 数据处 理器进行操作 A+1。

 $A \leftarrow A+1$

状态框内的操作为无条件操作。是此状态下将要实现的操作,将在下一个CLK到来时执行。

寄存器传输语言

Register Transfer Languages (RTL)

$$R \leftarrow SR$$
 (R shift right)
 $A \leftarrow 0$ (A clear)
 $F \leftarrow 1$ (F set 1)

2. 判断框 (prism 菱形) 条件 T1 \ **T0** ↓ <u>T0</u> MN 0Ф X XY **T2 T5 T2 T3 T1 T3 T1 T2** 2 输出 3 输出 4 输出

控制器根据判断框内容(条件)决定下一个 CLK 到时 状态转换

3. 条件框 (ellipse 椭圆)

条件框内的操作为条件操作 它的入口只能接判断框的分支

例1 分析下面 ASM图

在T₁状态下(001),

输出:START

若输入 E = 1,

下一个 CLK 到来

R 复位 (清0),

否则 R 保持,

新状态为 T₂ (010)

§ 8.2.2 ASM块

规则: 每个ASM 块必须包含只能包含一个状态框, 以及与之相连的判定框和条件框。

划分 ASM 块的意义:

一个ASM块定义数字系统的一个时序,即一个 ASM块内的操作在一个*CLK*周期完成。

T₀ 状态下,下一个 *CLK* 到来:

数据处理器

控制器

$$A \leftarrow A + 1$$

与下面

三个操

作中的

一个同

时完成

$$A \leftarrow A+1$$

(无条件操作)

R←0

(条件操作)

若
$$E=0, F=0,$$

$$E = 0, F = 1,$$

状态 $T_0 \rightarrow T_3$

$$T_0 \rightarrow T_1$$

$$T_0 \rightarrow T_2$$

一个ASM块中的不同器件在一个CLK内各自完成各自的操作(同一器件不能同时做两件事)

E, F:已知外输入不是 T_0 完成后的第二步,是同时判断并操作。 T_0 是在前一个CLK 时形成的。

现态 T_0 与状态框内的操作不是在同一个CLK内

ASM~状态图的关系

ASM → 状态图

	ASM	状态图	
状态转换	\checkmark	\checkmark	相同
转换条件	$\sqrt{}$		
数据处理器操作	$\sqrt{}$	X	
描述	系统	控制器	∤} 相异 │

例 1

需要几个 CLK?

3 CLKs

每个ASM块一个CLK实现

1st CLK: 实现 T₀

$$2^{\text{nd}} CLK : R \leftarrow SR$$
,

若
$$X = 1$$
, $T_0 \rightarrow T_2$

$$3^{rd} CLK : A \leftarrow 0$$

$$T_2 \rightarrow T_3$$

例2纠错

(1)

错:

条件框的入口只能接判断框

换成:

在两个 CLK 操作

错:

在一个CLK 周期内A操作两次(一个ASM)

将一个操作移 到另一个框内

§ 8.2.3 ASM图表的建立

例 1

在 T_0 状态下,若控制输入X和Y分别等于0和1,系统实现条件操作:寄存器R左移,并转移到状态 T_1 ,试画出其ASM图。

ASM:

例 2 一个数字系统在T₁状 态下,若启动信号S=0,保 持 T_1 状态不变; 若S=1, 则 完成条件操作: $A \leftarrow N1$, $B \leftarrow N2$,状态由 $T_1 \rightarrow T_2$ 。在 T,状态下,下一个CLK到, 完成无条件操作 $B \leftarrow B - 1$. P右移,状态由 $T_2 \rightarrow T_3$; 若 M=1, 状态由 $T_2 \rightarrow T_4 \rightarrow T_1$ 。 画出该数字系统的ASM图。

例3 用数字系统记录并显示车场内的存车数目,入口出口都有光电元件,每当有汽车进入车场时,光线有变化,信号Y 由 $1\rightarrow 0$;汽车离开车场时,出口信号Z 由 $1\rightarrow 0$;信号Y, Z 与时钟同步,记录车场车辆数目的数据处理器是一可逆计数器,画出该数字系统的ASM图表。

$$\mathcal{H}$$
 光电 λ , $Y = 1$ 无车进入 $Y = 0$ 有车进入 传感器 \mathcal{L} , $Z = 1$ 无车出 $Z = 0$ 有车出

设N: 车场内目前的车辆数

$$S:$$
开始信号 $\begin{cases} S=1 \text{ 开始} \\ S=0 \text{ 保持} \end{cases}$

ASM

A: 计数器

N: 车场内现有车辆数

操作 $A \leftarrow N$ 需要一个 CLK,需要一个状态框

F: 输出

$$Y=1$$
 无车入 $Y=0$ 有车入

出,
$$Z = 1$$
 无车出 $Z = 0$ 有车出

例4 设计一个数字系统,它有三个4位的寄存器X、Y、Z,并实现下列操作:

- (1)启动信号S 出现,将两个4 位二进制数 N_1 、 N_2 分别传送给寄存器 X、Y;
- (2) 如果 X > Y, 左移X, 结果送给Z;
- (3) 如果 X < Y, 右移X, 结果送给Z;
- (4) 如果 X = Y, 将 X 或 Y 送给 Z。

§ 8.3 数字系统设计

§ 8.3.1 数字系统设计步骤

- 1. 分析
- **2. ASM**
- 3. 设计控制器

状态转换

4. 设计数据处理器

条件操作和无条件操作

5. 电路

§ 8.3.2 数字系统设计举例

例 1 设计三种图案彩灯控制系统的控制器。三种图案彩灯依次循环亮,其中苹果形图案灯亮 16 s,香蕉形图案灯亮 12 s,葡萄形图案灯亮 9 s。

1. 分析

输入

计时信号

输出

灯亮

苹果形: A=1

香蕉形: B=1

葡萄形: G=1

定时启动 t = 1 计时开始 = 0 否

16 s: X=1

12 s : Y=1

9 s : Z = 1

逻辑高有效

2. 建立 ASM 图

3. 设计控制器

$$(X, Y, Z \rightarrow T_0, T_1, T_2)$$

方法1:

每个状态一个触发器

状态数 = FFs

选择 D-FF, $Q^{n+1} = D$

$$D_{i}$$
 D Q T_{i}

根据ASM图,各个状态的输入条件作为D-FF的控制输入方程。

任何时刻,只能存在一个状态 (=1),其它状态=0

3 状态, 3 D-FF, 输入 D, 输出 T_i

$$T_0=1$$
, $D_0=T_0\overline{X}+T_2Z$

$$T_1=1, D_1=T_0X+T_1\overline{Y}$$

$$T_2=1$$
, $D_2 = T_1Y + T_2\overline{Z}$

4. 电路

选择 3个 D-FF,

$$Q^{n+1} = D$$

输入D,输出Ti

$$T_0=1, D_0=T_0\overline{X}+T_2Z$$

$$T_1=1, D_1=T_0X+T_1\overline{Y}$$

$$T_2=1$$
, $D_2 = T_1Y + T_2\overline{Z}$

例 2 十字路口交通灯管理系统 (例 8.8)

在主干道 A 和小道 B 的十字交叉路口,设置 交通灯管理系统。小道 B 路口设有传感器 M,小道有车M=1,否则M=0。

主干道通车最短16s,超过16s,若小道有车 (M=1),主干道绿灯灭黄灯亮3s,然后红灯亮。小道绿灯(通车)最长时间16s,在16s内,只要小道无车 (M=0),小道由绿灯变黄灯(3s)后变红灯,主干道红灯变绿灯。16s和3s定时信号由加法计数器完成,时间到, =1,计数器清0,重新计时下一个定时时间。

1. 分析:

定时启动
$$t = 1$$
 计时开始 $= 0$ 否

$$Y = 1 \quad 16s$$
 组 $= 0$ 否 $Z = 1 \quad 3s$ 到 $= 0$ 否

输出: AG, AY, AR, BG, BY, BR = 1 亮

输入、输出均是高电平有效(=1)

系统需要几部分:

2. 建立 ASM图

3. 控制器设计 (用 M, Y, Z 得到: T_0, T_1, T_2, T_3)

方法2:用 MUX, D-FF, 译码器设计控制器

根据 ASM: 4 个状态 T₀, T₁, T₂, T₃

输出: 高电平有效 2-4 译码器

其入口接两个 D-FF 的出口 Q_1, Q_0

D-FF的入口各接一个4-1 MUX

4-1 MUX入口接M, Y, Z, 实现

M, Y, Z

 T_0, T_1, T_2, T_3

状态表,找到 Q_1^{n+1} , Q_0^{n+1} (即 D_1 , D_0) 与输入 M, Y, Z 的关系

从ASM**图**:

_					
1	状态 符号	现状态 $Q_1^n Q_0^n$	输入 Y Z M	新状态 Q_1^{n+1} Q_0^{n+1}	输出 T ₀ T ₁ T ₂ T ₃
	T_0	0 0	0 Φ Φ 1 Φ 0 1 Φ 1		1000
	T ₁	0 1	Φ 0 Φ Φ 1 Φ	$ Z \left\{ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right\} \overline{Z} $	0100
	T ₂	1 0	0 Ф 1 0 Ф 0 1 Ф Ф	$ \begin{array}{ccc} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array} \right\} \underbrace{Y + \overline{Y} \cdot \overline{M}}_{Y + \overline{M}} $	0010
	T_3	1 1	Φ 0 Φ Φ 1 Φ	$ \overline{Z} \left\{ \begin{array}{ccc} 1 & 1 \\ 0 & 0 \end{array} \right\} \overline{Z} $	0001

4-1MUX的输入即转换条件, 也就是 D-FF 的输入 变量方程, 用引入变量 K-map (VEM), 把 M, Y, Z 作 引入变量。

四个小格分别为4-1MUX的输入端变量

电路

$$T_0$$
 状态 $(T_0T_1T_2T_3 = 1000),$ $Q_1Q_0 = 00,$ 使 $A_1A_0 = 00,$ $(4-1选 D_0')$

$$D_1 = W_1 = 0, \quad D_0 = W_0 = MY$$

下一个 CLK 到来,

$$Q_1^{n+1} = D_1 = 0, \ Q_0^{n+1} = D_0 = MY$$

若
$$MY = 0$$
, 即 $\left\{ \begin{array}{l}$ 或支路无车 $\\$ 或 16 s 未到 $\end{array} \right\} \ \mathcal{Q}_1 \mathcal{Q}_0 = 00$, 保持 T_0

当 MY = 1 (支路有车, 16 s 到), $Q_1Q_0 = 01$, 输出新状态 T_1 (0100)

 T_1 状态 $(T_0T_1T_2T_3=0100),$ $Q_1Q_0=01,$ 使 $A_1A_0=01,$ $(4-1造 D_1')$

下一个 CLK 到来, $Q_1^{n+1} = D_1 = Z$, $Q_0^{n+1} = D_0 = \overline{Z}$

若 Z = 0,即黄灯3s未到, $\overline{Z} = 1$, $Q_1Q_0 = 01$,保持 T_1 若 Z = 1,即黄灯3s到, $\overline{Z} = 0$, $Q_1Q_0 = 10$,进入 T_2 状态 (0010)

4. 数据处理器设计

(1) 灯电路

$$AG = T_0$$

$$AY = T_1$$

$$AR = T_2 + T_3$$

状态	AG	AY	AR	BG	BY	BR
T_0	1	0	0	0	0	1
T_1	0	1	0	0	0	1
T_2	0	0	1	1	0	0
T_3	0	0	1	0	1	0

$$BG = T_2$$

$$BY = T_3$$

$$BR = T_0 + T_1$$

(2) 定时启动电路 (产生 t = 1)

定时启动: t=1 ASM: t=1 条件

$$t = T_0 YM + T_1 Z + T_2 Y + T_2 \overline{YM} + T_3 Z$$
$$= T_0 YM + (T_1 + T_3) Z + T_2 (Y + \overline{M})$$

(3) 计时电路 (产生Y,Z)

2个计数器 Y:16 s, Z:3 s

用74161实现: M-16 (Y) 和 M-3 (Z)

74161 驱动要求

控制信号	操作	驱动条件 CLR LD CNT CNP D, D, D, D	
下降沿 丁	Clear (清0)	О Ф Ф Ф Ф Ф Ф	
t	启动 (预置)	1 0 1 1 0 0 0 0	

下降沿
$$\overline{LD} = \overline{t}$$

$$D_3D_2D_1D_0 = 0000$$

$$ENT = ENP = 1$$

$$Q_3Q_2Q_1Q_0 = 1111$$

 $(CO = 1)$ HJ, $Y = 1$ (M-16)
 $Q_3Q_2Q_1Q_0 = 0010$ HJ,
 $Z = 1$ (M-3)

Y和 Z 输出 ASM 分析,什么状态下 计时16 s, 3 s (t=1)?

$$Y = (T_0 + T_2)CO = 1$$

即 T_0 或 T_2 状态下,CO = 1 ($Q_3Q_2Q_1Q_0 = 11111$), Y = 1

$$Z = (T_1 + T_3)Q_1 = 1$$

即 T_1 或 T_3 状态下, $Q_3Q_2Q_1Q_0 = 0010$, Z = 1

系统

- 注:① 整个系统用一个CLK 脉冲(控制器和计数器)
 - ② 整个系统用一个 \overline{CLR} (包括 $\overline{R_D}$) \ \

8.3 8.9 8.10