LISTING OF CLAIMS

Claims 1-10 (Canceled)

Claim 11 (Currently Amended): A compound of the formula (I)

$$R_{g}$$

$$R_{g}$$

$$R_{b}$$

$$R_{c}$$

$$R_{c}$$

$$R_{d}$$

wherein

n denotes the number 1, 2, 3, 4 or 5,

m denotes the number 2 or 3,

X denotes a carbon-carbon bond, an oxygen atom, a methylene, ethylene, imino or N (C₁-alkyl) imino group,

 R_a denotes a phenyl group or <u>a monocyclic</u> heteroaryl group substituted by the groups R_1 and R_2 , wherein

 R_1 denotes a hydrogen, fluorine, chlorine or bromine atom, a C_{1-3} -alkyl group wherein the hydrogen atoms of the alkyl are optionally wholly or partly replaced by fluorine atoms, a hydroxy group, a C_{1-4} -alkoxy group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a phenoxy,

heteroaryloxy, phenyl- $C_{1\cdot3}$ -alkoxy, earboxy, $C_{1\cdot3}$ -alkoxyearbonyl, aminocarbonyl, $C_{1\cdot3}$ -alkylaminocarbonyl, N,N-di- $(C_{1\cdot3}$ -alkyl) aminocarbonyl, nitro $\frac{1}{2}$ or amino, $C_{1\cdot3}$ -alkylamino, di- $(C_{1\cdot3}$ -alkyl) amino, phenyl $C_{1\cdot3}$ -alkylamino, N- $(C_{1\cdot3}$ -alkyl) phenyl $C_{1\cdot3}$ -alkylamino, $C_{1\cdot3}$ -alkylamino or N- $(C_{1\cdot3}$ -alkyl) $C_{1\cdot3}$ -alkylearbonylamino $C_{1\cdot3}$ -alkylsulphonylamino or N- $(C_{1\cdot3}$ -alkyl) $C_{1\cdot3}$ -alkylsulphonylamino group, wherein the abovementioned phenyl of the phenoxy or heteroaryl moieties of the group R_1 -are is optionally substituted by one to five fluorine, chlorine or methoxy bromine atoms, a $C_{1\cdot3}$ -alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a hydroxy group, or a $C_{1\cdot4}$ -alkoxy group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholly or partly replaced by fluorine atoms are optionally wholl or partly replaced by fluorine atoms are optionally wholl or partly replaced by fluorine atoms are optionally wholl or partly replaced by fluorine atoms are optionally wholl or partly replaced by fluorine atoms are optionally or partly replaced by fluorine atoms are optionally or partly replaced by fluorine atoms are optionally or partly replaced

R₂ denotes a hydrogen, fluorine, chlorine or bromine atom, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or a C₁₋₄-alkoxy group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or

R₁-and-R₂-together represent a methylenedioxy group,

or R_a denotes a monocyclic heteroaryl or phenyl group which is substituted in each case by a phenyl or monocyclic heteroaryl group, while the abovementioned phenyl groups and heteroaryl groups are optionally in each case substituted by a fluorine, chlorine or bromine atom, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, by a hydroxy, C₁₋₃-alkoxy, carboxy, C₁₋₃-alkoxycarbonyl, aminocarbonyl, C₁₋₃-alkylaminocarbonyl or N,N-di-(C₁₋₃-alkyl) aminocarbonyl group,

R_b and R_c independently of one another denote a hydrogen atom or a C₁₋₃-alkyl group and

 R_f and R_g , which are identical or different, denote denotes hydrogen atom atoms, C_{1-6} -alkyl groups-wherein the hydrogen atoms of the alkyl are optionally wholly or partly

replaced by fluorine atoms, $C_{3.7}$ cycloalkyl groups, phenyl, heteroaryl, phenyl- $C_{1.3}$ -alkyl or heteroaryl- $C_{1.3}$ -alkyl groups, while wherein the abovementioned phenyl groups and heteroaryl groups are is optionally in each case be substituted by one to three fluorine; chlorine or bromine atoms, by one to three $C_{1.3}$ -alkyl groups wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, by one to three hydroxy groups, one to three or $C_{1.3}$ -alkoxy groups wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or by a carboxy, $C_{1.3}$ -alkoxycarbonyl, aminocarbonyl, $C_{1.3}$ -alkylaminocarbonyl, $C_{1.3}$ -alkylaminocarbonyl

R_f and R_g together with the nitrogen atom between them denote a 3- to 7-membered cycloalkyleneimino-group, while the methylene group in the 4 position of a 6- or 7-membered cycloalkyleneimino group is optionally replaced by an oxygen or sulphur atom, by a sulphinyl, sulphonyl, imino or N-(C₁₋₃-alkyl) imino group,

wherein the tricyclic group in the abovementioned formula I are mono or disubstituted by fluorine or chlorine atoms, by methyl or methoxy groups and the substituents are identical or different,

and wherein the abovementioned heteroaryl groups in this claim are 6-membered heteroaryl groups containing one, two or three nitrogen atoms, or 5-membered heteroaryl groups containing one to four heteroatoms selected from nitrogen, oxygen and sulphur, while hydrogen atoms bound to nitrogen is optionally replaced by C_{1,2}-alkyl groups,

R_g is hydrogen;

or

the enantiomeres, diastereomers isomers or the salts thereof.

Claim 12 (Currently amended): The compound according to claim 11, wherein

n denotes the number 3, 4 or 5,

m denotes the number 2 or 3,

X denotes a carbon carbon bond, an oxygen atom, a methylene, ethylene, imino or N (C₁₋₃-alkyl) imino group,

R_a denotes a phenyl group or heteroaryl group substituted by the groups R₁ and R₂, wherein

R₁-denotes a hydrogen, fluorine, chlorine or bromine atom, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a hydroxy group, a C₁₋₄-alkoxy group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a phenoxy, heteroaryloxy, phenyl-C₁₋₃-alkoxy, carboxy, C₁₋₃-alkoxycarbonyl, aminocarbonyl, C₁₋₃-alkylaminocarbonyl, N,N-di-(C₁₋₃-alkyl) aminocarbonyl, nitro, amino, C₁₋₃-alkylamino, di-(C₁₋₃-alkyl) amino, phenyl-C₁₋₃-alkyl amino, N-(C₁₋₃-alkyl) C₁₋₃-alkyl) phenyl-C₁₋₃-alkylamino, C₁₋₃-alkylamino or N-(C₁₋₃-alkyl) C₁₋₃-alkylcarbonylamino, C₁₋₃-alkylsulphonylamino or N-(C₁₋₃-alkyl) or heteroaryl moieties of the group R₁-are optionally substituted by one to five fluorine, chlorine or bromine atoms, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a hydroxy group, or a C₁₋₄-alkoxy group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, and

 R_2 denotes a hydrogen, fluorine, chlorine or bromine atom, a $C_{1,3}$ -alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or a $C_{1,4}$ -alkoxy-group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or

R₁ and R₂ together represent a methylenedioxy group,

or R_a denotes a monocyclic heteroaryl or phenyl group which is substituted in each case by a phenyl or monocyclic heteroaryl group, wherein the abovementioned phenyl groups and heteroaryl groups are optionally in each case be substituted by a fluorine, chlorine or bromine atom, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, by a hydroxy or C₁₋₃-alkoxy group,

R_b-and R_e independently of one another denote a hydrogen atom or a C₁₋₃-alkyl group and

 R_f and R_g , which are identical or different, denote hydrogen atoms, C_{1-6} -alkyl groups wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, C_{3-7} -cycloalkyl groups, phenyl, heteroaryl, phenyl C_{1-3} -alkyl or heteroaryl C_{1-3} -alkyl groups, wherein the abovementioned phenyl groups and heteroaryl groups are optionally in each case be substituted by one to three fluorine, chlorine or bromine atoms, by one to three C_{1-3} -alkyl groups wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, by one to three hydroxy groups, one to three C_{1-3} -alkoxy groups wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or by a carboxy, C_{1-3} -alkoxyearbonyl, aminocarbonyl, C_{1-3} -alkylaminocarbonyl, N_i di $(C_{1-3}$ -alkyl) amino group, or and

R_f and R_g together with the nitrogen atom between them denote a 3⁻ to 7-membered cycloalkyleneimino group, wherein the methylene group in the 4-position of a 6⁻ or 7-membered cycloalkyleneimino group is optionally replaced by an oxygen or sulphur atom, by a sulphinyl, sulphonyl, imino or N-(C_{1,3}-alkyl)-imino group.

Claim 13 (Currently amended): The compound according to claim 11, wherein n denotes the number 3, 4 or 5,

m denotes the number 2 or 3,

X denotes a carbon-carbon bond or an oxygen atom,

 R_a denotes a phenyl group or heteroaryl group substituted by the groups R_1 and R_2 ; wherein

R₁-denotes a hydrogen, fluorine, chlorine or bromine atom, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a hydroxy group, a C₁₋₄-alkoxy group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a phenoxy, heteroaryloxy, phenyl C₁₋₃-alkoxy, carboxy, C₁₋₃-alkoxycarbonyl, aminocarbonyl, C₁₋₃-alkylaminocarbonyl, N,N-di-(C₁₋₃-alkyl) aminocarbonyl, nitro, amino, C₁₋₃-alkylamino, di-(C₁₋₃-alkyl) amino, phenyl C₁₋₃-alkyl-amino, N-(C₁₋₃-alkyl) phenyl C₁₋₃-alkylamino, C₁₋₃-alkylcarbonylamino, N-(C₁₋₃-alkyl) C₁₋₃-alkylcarbonylamino, C₁₋₃-alkylsulphonylamino or N-(C₁₋₃-alkyl) C₁₋₃-alkylsulphonylamino group, wherein the abovementioned phenyl or heteroaryl moieties of the group R₁-are optionally substituted by one to five fluorine, chlorine or bromine atoms, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a hydroxy group, or a C₁₋₄-alkoxy group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, and

 R_2 -denotes a hydrogen, fluorine, chlorine or bromine atom, a C_{1-3} -alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or a C_{1-4} -alkoxy group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or

R₁ and R₂ together represent a methylenedioxy group,

or R_a denotes a monocyclic heteroaryl or phenyl group which is substituted in each case by a phenyl or monocyclic heteroaryl group, wherein the abovementioned phenyl groups and heteroaryl groups are optionally in each case be substituted by a fluorine, chlorine or bromine atom, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, by a hydroxy or C₁₋₃-alkoxy group,

R_b and R_c independently of one another denote a hydrogen atom or a methyl group and

 R_f denotes a hydrogen atom, a C_{1-6} -alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a C_{3-7} -cycloalkyl group, phenyl, heteroaryl, phenyl C_{1-3} -alkyl or heteroaryl C_{1-3} -alkyl group, while the abovementioned phenyl groups and heteroaryl groups are optionally in each case be substituted by one to three fluorine, chlorine or bromine atoms, by one to three C_{1-3} -alkyl groups wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, by one to three hydroxy groups, one to three C_{1-3} -alkoxy groups wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, or by a nitro or amino group, and

R_g denotes a hydrogen atom.

14(Currently amended): The compound according to claim 11, wherein

n denotes the number 4, m denotes the number $2 = \frac{1}{3}$

X denotes a carbon-carbon bond or an oxygen atom,

 R_a denotes a phenyl group or heteroaryl group substituted by the groups R_1 and R_2 , wherein

R₁-denotes a hydrogen, fluorine or chlorine atom, a C₁₋₃-alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a

C₁₋₄-alkoxy group, a phenoxy group, a phenyl-C₁₋₃-alkoxy or a nitro or amino group,

wherein the abovementioned phenyl moiety of the phenoxy group is optionally substituted by a chlorine atom or by a methoxy group,

- R₂ denotes a hydrogen atom, a chlorine atom or a C₄-C₄-alkoxy group,

or R_a denotes a monocyclic heteroaryl or phenyl group which is substituted in each case by a phenyl group,

 R_b and R_e independently of one another denote a hydrogen atom or a C_{1-3} -alkyl group and

 R_f denotes a C_1 - C_6 -alkyl group wherein the hydrogen atoms are optionally wholly or partly replaced by fluorine atoms, a phenyl- C_{1-3} -alkyl group, while the abovementioned phenyl group is optionally substituted in each case by a fluorine atom or by a C_1 - C_3 -alkoxy group, and

Re denotes a hydrogen atom.

Claim 15 (Currently amended): A compound chosen from

9-[4-(4-biphenyl-3-yl-piperazin-1-yl)-butyl]-9H-fluorene-9-carboxylic acid-(2,2,2-trifluoroethyl)-amide and

9-[4-(4-biphenyl-4-yl-piperazin-1-yl)-butyl]-9H-fluorene-9-carboxylic acid-(2,2,2-trifluoroethyl)-amide

or the enantiomeres, diastereomers isomers and or the salts thereof.

Claim 16(Previously added): A physiologically acceptable salt of the compound according to claim 11.

Claim 17(Previously added): A pharmaceutical composition comprising a pharmaceutically effective amount of a compound according to claim 11 with one or more pharmaceutically acceptable inert carriers and/or diluents.

Claim 18 (Canceled).

Claim 19 (Previously added): A method of treating a disease selected from hyperlipidaemias, atherosclerosis and the clinical sequela thereof, diabetes mellitus, adiposity and pancreatitis, said method comprising administering to a patient in need thereof a pharmaceutically effective amount of a compound according to claim 11.

Claim 20 (Currently amended): The method according to either of claims 18 or claim 19 wherein the compound according to claim 11 is combined with another lipid-lowering agent.

Claim 21(Currently amended): Process for preparing a compound of the formula (I) according to claim 4 11, comprising

a) reacting under suitable conditions a compound of formula

$$\begin{array}{c} R_b \\ N \\ R_a \end{array} , (II)$$

wherein

R_a, R_b and R_e are defined as in claims 1, with a compound of formula

$$R_f$$
 N—OC X , (III) Z_1

wherein

n, R_f, R_g and the tricyclic system are defined as in claims-1 and

Z₁ denotes a nucleofugic leaving group, or

b) reacting under suitable conditions a compound of formula

HO-OC
$$\times$$
 , (IV) R_b N $CH_2)_m$

wherein

the tricyclic system is defined as in claims 1, with an amine of formula

$$_{\rm H}$$
 $-_{\rm N}$ $\stackrel{R_{\rm f}}{\underset{R_{\rm g}}{\sim}}$, (V)

wherein

R_f and R_g are defined as in claims 1, or with the reactive derivatives thereof and

- c) optionally reducing under suitable conditions the product of a) or b) which contains a nitro group if desired into a corresponding amino compound and/or
- d) if R_f denotes a hydrogen atom alkylating under suitable conditions the product into a corresponding compound wherein R_f denotes a C_{1-3} -alkyl or phenyl- C_{1-3} -alkyl group, and/or
- e) cleaving under suitable conditions any protecting group using to protect reactive groups during the reactions and/or

resolving the product any of the product above into its stereoisomers and/or

converting any of the products above into the physiologically acceptable salts thereof.