

## INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Nombre Mora Ayala José Antonio



### Actividad 4. Utilización del Canal Parar y esperar

Instrucciones: Descargar este archivo de Word, editar el encabezado con tu nombre empezando por apellido. A computadora poner los datos y el resultado en los recuadros correspondientes.

Desarrollar los problemas a mano y escanear tus procedimientos (Incluir todos tus escaneos al final de este documento)

1.- Calcule la utilización de una LAN que une a dos computadoras con un cable coaxial de 500 mts. Para transmitir tramas de 1500 bytes (ethernet) a 10Mbps.

| DATOS                     | FÓRMULAS                                                                                   | RESULTADO |
|---------------------------|--------------------------------------------------------------------------------------------|-----------|
|                           | d                                                                                          |           |
|                           | t                                                                                          |           |
| $t_{prop} =$              | $V_{prop} - V_{prop}$                                                                      | U= 99.58% |
| $t_{trama} =$             |                                                                                            |           |
| $Tama\~no = 1500 \ bytes$ | 500m                                                                                       |           |
| _                         | $=\frac{300m}{m}=2.5us$                                                                    |           |
| = (1500bytes)(8)          | $2x10^{8}\frac{m}{}$                                                                       |           |
| $= 12,000 \ bits$         | $= \frac{500m}{2x10^8 \frac{m}{s}} = 2.5us$                                                |           |
| $V_{prop} = 2x10^8$       | $t_{trama} = \frac{tam}{V_{trans}}$                                                        |           |
| d = 500m                  | $V_{trans}$                                                                                |           |
|                           |                                                                                            |           |
| $V_{trans} = 10x10^6$     | 12.000 hits                                                                                |           |
|                           | $= \frac{12,000 \ bits}{10x10^6 \frac{bits}{s}} = 1.2 \ ms$                                |           |
|                           | $10x10^6 \frac{\text{bits}}{}$                                                             |           |
|                           | S                                                                                          |           |
|                           |                                                                                            |           |
|                           | $U = \frac{1}{1+2a} \times 100$                                                            |           |
|                           | 1+ 2a                                                                                      |           |
|                           | $=\frac{1}{2}$ $r100 = 9958\%$                                                             |           |
|                           | $= \frac{1}{1 + 2(2.08x10^{-3})} x100 = 99.58\%$                                           |           |
|                           | , ,                                                                                        |           |
|                           | tprop                                                                                      |           |
|                           | $a = \frac{tprop}{ttrama}$                                                                 |           |
|                           |                                                                                            |           |
|                           | 25 118                                                                                     |           |
|                           | $= \frac{2.5 \ us}{1.2 \ ms} = 2.08 \times 10^{-3}$                                        |           |
|                           | 1.2 ms                                                                                     |           |
|                           |                                                                                            |           |
|                           | $vprop egin{cases} 2x10^8 & medios \ guíados \ 3x10^8 \ medios \ no \ guíados \end{cases}$ |           |
|                           | $vprop$ $\begin{cases} vprop \\ 3x10^8 \\ madios no aviados \end{cases}$                   |           |
|                           | (3x10 meatos no galados                                                                    |           |
|                           |                                                                                            |           |
|                           |                                                                                            |           |

2.-Calcule la utilización de un enlace satelital que emplea un satélite geoestacionario para transmitir tramas de 100 bytes con un módem de 64kbps.

\*Notal. El receptor no es el satélite, sino la estación terrestre a la que van dirigidos los datos.

M. en C. Nidia A. Cortez Duarte



# INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Nombre Mora Ayala José Antonio



## Actividad 4. Utilización del Canal Parar y esperar

\*Nota2. Satélite geoestacionario orbita a 36,000km

| DATOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FÓRMULAS                                                                                   | RESULTADO |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|
| $t_{prop} = t_{trama} = T_{ama} = T$ | $t_{prop} = \frac{d}{V_{prop}}$                                                            | U= 2.53%  |
| Tamaño = 100 bytes<br>= $(100bytes)(8) = 800 bits$<br>$V_{prop} = 3x10^8$<br>$d = 72,000 km = 72x10^6 m$<br>$V_{trans} = 64x10^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= \frac{72x10^6 m}{3x10^9 \frac{m}{s}} = 240ms$ $t_{trama} = \frac{tam}{V_{trans}}$       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= \frac{800 \ bits}{64x10^3 \frac{bits}{s}} = 12.5 \ ms$                                  |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $U = \frac{1}{1+2a} \times 100$ $= \frac{1}{1+2(19.2)} \times 100 = 2.53\%$                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $a = \frac{tprop}{ttrama}$                                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=\frac{240 \ ms}{12.5 \ ms}=19.2$                                                         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $vprop egin{cases} 2x10^8 & medios \ guíados \ 3x10^8 \ medios \ no \ guíados \end{cases}$ |           |

Calcule la utilización de una línea telefónica de 5000km que emplean dos computadoras para transmitir tramas Ethernet (1500) con un modém de 64kbps

| DATOS                                                  | FÓRMULAS                          | RESULTADO |
|--------------------------------------------------------|-----------------------------------|-----------|
|                                                        | $t - \frac{d}{dt}$                |           |
| $t_{prop} =$                                           | $t_{prop} = \frac{1}{V_{prop}}$   | U= 78.94  |
| $t_{trama} =$                                          |                                   |           |
| $Tama\~no = 1500 \ bytes$                              | $5x10^6m$                         |           |
| = (1500 bytes)(8)                                      | $=\frac{3x^2}{2x^2} = 2.5ms$      |           |
| $= 12000 \ bits$                                       | S                                 |           |
| $V_{prop} = 2x10^8$                                    | $\frac{1}{t}$ $\frac{tam}{t}$     |           |
| $d = 5000  km \stackrel{\text{LO}}{=} 5 \times 10^6 m$ | $t_{trama} = \frac{1}{V_{trans}}$ |           |

M. en C. Nidia A. Cortez Duarte



#### INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Nombre Mora Ayala José Antonio



### Actividad 4. Utilización del Canal Parar y esperar

$$V_{trans} = 64x10^{3} \frac{\text{bits}}{\text{s}}$$

$$= \frac{12,000 \text{ bits}}{64x10^{3} \frac{\text{bits}}{\text{s}}} = 187.5 \text{ ms}$$

$$U = \frac{1}{1+2a} \times 100$$

$$= \frac{1}{1+2(133.33x10^{-3})} \times 100 = 78.94\%$$

$$a = \frac{tprop}{ttrama}$$

$$= \frac{2.5 \text{ ms}}{187.5 \text{ ms}} = 133.33x10^{-3}$$

$$vprop \begin{cases} 2x10^{8} & medios \ guíados \\ 3x10^{8} & medios \ no \ guíados \end{cases}$$

Nota: Los procedimientos deben realizarse a mano, debes escanear tus notas e incluirlas como imagen al final de este archivo.

Trabajos sin procedimientos a mano valen 0 puntos.

Al finalizar guarda un sólo archivo como PDF para subirlo a Classroom.

