Maximum Entropy Klassifikator; Klassifikation mit Scikit-Learn

Benjamin Roth

Centrum für Informations- und Sprachverarbeitung Ludwig-Maximilian-Universität München beroth@cis.uni-muenchen.de

Classification

- We learned about Naive-Bayes and Perceptron.
- What other common classification methods are there?
- How to use them in Scikit-Learn?

MaxEnt Model (Theory)

Introduction to Maximum Entropy (MaxEnt) Model

- Generative models like Naive Bayes classifiers place the probabilities over both observed data and the class $\Rightarrow P(c, d)$
- Discriminative models take the data as given and put the probability over the hidden class $\Rightarrow P(c|d)$
 - Maximum entropy model
 - Support Vector Machine (SVM)

Introduction to MaxEnt Model

- Discriminative models work better than generative models in many tasks
- Word sense disambiguation, Klein and Manning 2002
 - Classify the sense of a word depending on the context
 - Exactly the same features
 - ► Naive Bayes: 73.6% accuracy
 - ► MaxEnt: 76.1% accuracy
- Text classification on Reuter dataset, Zhang and Oles, 2001
 - Features are words in documents and class
 - ▶ Naive Bayes: 77.0% F-score
 - ► MaxEnt: 86.4% F-score
 - Emphasizes the importance of regularization ("smoothing" for discriminative models)

What is the Maximum Entropy Model?

- ... a linear regression model turned into a probability distribution P(class|features).
- First: predict score z_i for each outcome i
 - Multiply each feature value with corresponding weight
 - ▶ Scores can be \in] $-\infty,\infty$ [
 - Outcomes depend on task, e.g. {ham,spam} or {Noun, Verb, Adj, ...} or {positive, negative, neutral}
- Then: Rescale and normalize
 - Probability must be positive for all outcomes
 - Probabilities for outcomes must sum up to 1
 - ▶ ⇒ exponentiate and normalize z
- Learning the feature weights: maximize probability of training set (maximum likelihood estimation)
- Other names:
 - logistic regression, logit-model, log-linear model

Linear Regression

• Linear function:

$$\hat{y} = \boldsymbol{w}^T \boldsymbol{x} = \sum_{i=1}^n w_i x_i$$

• Parameter vector $\mathbf{w} \in \mathbb{R}^n$ Weight w_j decides if value of feature x_j increases or decreases prediction \hat{y} .

Linear Regression

- Example: Levitt and Dubner (2005) showed that the words used in real estate ads can be used to predict housing price
- ullet "fantastic", "cute" or "charming" \Rightarrow lower price
- "maple", "granite" \Rightarrow higher price
- $price = w_0 + w_1 \cdot Num_Adjectives + w_2 \cdot Mortgage_Rate + w3 \cdot Num_Unsold_Houses$
- Would w₁ be positive or negative?

Back to MaxEnt

- In the maximum entropy model we want to use regression for classification.
- If you have *k* classes to predict, use regression to predict one score for each class.
- How many feature weights?
- How to write multiplication of design matrix with feature weights?

Back to MaxEnt

- How many feature weights?
 There is one weight for each combination of all features with all classes.
- How to write multiplication of design matrix with feature weights? If there are n instances, m features and k classes, then the design matrix \boldsymbol{X} is $n \times m$ and the weight matrix \boldsymbol{W} is often set to be $k \times m$. The matrix containing all scores for all instances is $\boldsymbol{Z} = \boldsymbol{X} \boldsymbol{W}^T$

Score prediction for one instance

- k classes and m features
- m-dimensional feature vector for one instance: x
- Weight matrix W has shape $k \times m$

•

$$\boldsymbol{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_k \end{bmatrix} = \boldsymbol{W} \boldsymbol{x}$$

(i.e. z has one component for each output class)

Probability distribution from scores

 Given the scores of an instance, we can get the probability distribution over all output classes.

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} P(Y = 1 | \mathbf{x}, \mathbf{W}) \\ P(Y = 2 | \mathbf{x}, \mathbf{W}) \\ \vdots \\ P(Y = k | \mathbf{x}, \mathbf{W}) \end{bmatrix}$$

• Use exp to rescale the scores, and normalize.

$$\mathbf{y} = \begin{bmatrix} \frac{\exp(z_1)}{\sum_i \exp(z_i)} \\ \frac{\exp(z_2)}{\sum_i \exp(z_i)} \\ \vdots \\ \frac{\exp(z_k)}{\sum_i \exp(z_i)} \end{bmatrix}$$

Regularization (avoiding overfitting)

- The classifier can model the training data too closely.
- \bullet E.g. giving always probabilities of ~ 0 or ~ 1 to match the training labels.
- \Rightarrow the classifier will then fail to generalize on unseen data.
- Which scores correspond to those extreme probabilities?
- Which weights yield such scores?

Regularization (avoiding overfitting)

- The classifier can model the training data too closely.
- ullet E.g. giving always probabilities of ~ 0 or ~ 1 to match the training labels.
- ⇒ the classifier will then fail to generalize on unseen data.
- Which scores correspond to those extreme probabilities?
 Positive or negative scores with large absolute value.
- Which weights yield such scores?
 Positive or negative weights with large absolute value.
- Solution: Penalize large values in W
 - ▶ L1-regularization: add sum of absolute values of elements in **W** to optimization objective.
 - \Rightarrow Results in sparse feature matrices (most entries are 0)
 - ► L2-regularization: add sum of squares of elements in **W** to optimization objective.
 - \Rightarrow Results in dense feature matrices (most entries are \neq 0)

Remarks on learning the optimal weights

- Evaluate what probability the model would give the correct labels in the training data.
- Find values of W to optimize that probability
- MaxEnt is a convex problem, but does not have a closed-form solution.
- The field of convex optimization offers a range of algorithms to solve such problems. Typical algorithms iteratively compute and use the gradient (=derivatives of likelihood with respect to weights).

Using the MaxEnt Model

MaxEnt Model in Scikit-Learn

- Hyper-parameters for learning:
 - penalty: 11 or 12
 - C: inverse of regularization strength
 - ▶ solver, ...
 - etc
- Input for learning:
 - $\textbf{\textit{X}}$: design matrix (shape: num_instances \times features) $\textbf{\textit{y}}$: label (vector with num_instances integer elements, indicating the correct class 0,1,...)
- To analyse features you can look at the weights

```
from sklearn import linear_model
#(X, y) = (features matrix, labels)
maxent = linear_model.LogisticRegression(penalty='12', C=1.0))
maxent.fit(X_train, y_train)
print maxent.coef_
# That is a matrix with the shape (n_classes, n_features)
```

Prediction and Evaluation

```
from sklearn.metrics import accuracy_score
# Predicts vector with (integer) labels.
y_predicted = maxent.predict(X_dev)
dev_acc = accuracy_score(y_dev, y_predicted)
# Probability distribution over all possible classes
# Shape: (n_instances, n_classes)
y_probs = maxent.predict_proba(X_dev)
```

... computing the F-scores for all classes:

```
>>> from sklearn.metrics import f1_score

>>> y_true = [0, 1, 2, 0, 1, 2]

>>> y_pred = [0, 2, 1, 0, 0, 1]

>>> f1_score(y_true, y_pred, average=None)

array([ 0.8,  0. ,  0. ])
```

Using Scikit-learn Maxent for paraphrase detection

- How to get X and y?
- Hyper-parameters to optimize?

Summary: Maximum Entropy model

- One of the most common classification models
- linear regression + scaling + normalization
- Can be interpreted as probabilities
- Easy to use in Sciki-learn