# CRET: Cross-Modal Retrieval Transformer for Efficient Text-Video Retrieval

Authors: Kaixiang Ji, Jiajia Liu, Weixiang Kong, Liheng Zhong, Jian Wang, Jingdong Chen, Wei Chu

Siwen Tu and Shupei Li

Leiden Institute of Advanced Computer Science April 11, 2023



- Motivation
- 2 Methodololgy

- **3** Experiments
- 4 Critical Review

### **Motivation**

Unimodal information retrieval task.



• Multimodal information retrieval task, e.g. text-to-video retrieval.



otivation Methodology Experiments Critical Review Appendix

#### EDB method versus MDB method



- (a) EDB and MDB methods mainly differ at whether explicit embeddings of text/video are generated.
- EDB method: Inferior performance due to the lack of feature alignment.
- MDB method: Low efficiency due to the exhaustive scan over the entire database.

## Overview of the CRET model



## Two main contributions: CCM & GEES

#### Cross-modal correspondence modeling (CCM)

Utilize the multi-head self-attention mechanism.

$$\mathbf{Z}_{c,j} = \operatorname{softmax}\left(\frac{(Q_cW_j^Q)(EW_j^K)^T}{\sqrt{d_k}}\right)(EW_j^V)$$

- Share weights between two decoders.
- Put more importance on features that are close to the query center.

#### Gaussian estimation of embedding space (GEES)

- Traditional NCE loss: A trade-off between accuracy and computing costs.
- Introduce the multivariate Gaussian distribution assumption.
- Enhance the optimization efficiency of SGD.

# **Experiments**

• Datasets: MSRVTT, LSMDC, MSVD, DiDeMo.

• Metrics: R@K, MdR.

• Results:

MSRVTT

|                           | Weight I<br>Visual | nitialization<br>Textual | E2E | Туре | R@1↑ | R@5↑ | R@10↑ | MdR↓ |
|---------------------------|--------------------|--------------------------|-----|------|------|------|-------|------|
| MIL-NCE [36]              | K+H                | G+H                      | ✓   | EDB  | 9.9  | 24.0 | 32.4  | 29.5 |
| JSFusion [54]             | I                  | N.A.                     | ✓   | MDB  | 10.2 | 31.2 | 43.2  | 13.0 |
| HT [38]                   | I                  | G                        | ✓   | EDB  | 12.4 | 36.0 | 52.0  | 10.0 |
| HT [38]                   | I+H                | G+H                      | ✓   | EDB  | 14.9 | 40.2 | 52.8  | 9.0  |
| ActBERT [59]              | I+H                | B+H                      |     | MDB  | 16.3 | 42.8 | 56.9  | 10.0 |
| HiT(appearance-only) [30] | I+H                | B+H                      | ✓   | EDB  | 18.2 | 41.9 | 55.5  | 5.0  |
| TACo(R-152) [53]          | I+H                | B+H                      | ✓   | MDB  | 18.9 | 46.2 | 58.8  | 7.0  |
| UniVL(FT-Joint) [33]      | K+H                | B+H                      |     | EDB  | 20.6 | 49.1 | 62.9  | 6.0  |
| UniVL(FT-Align) [33]      | K+H                | B+H                      |     | MDB  | 21.2 | 49.6 | 63.1  | 6.0  |
| ClipBERT [28]             | I+C+V              | C+V                      | ✓   | MDB  | 22.0 | 46.8 | 59.9  | 6.0  |
| Ours                      | I                  | В                        | ✓   | EDB  | 23.9 | 50.8 | 63.4  | 5.0  |

# **Experiments**

- Results:
  - LSMDC

|               | E2E      | Type | R@1↑ | R@5↑ | R@10↑ | MdR↓ |
|---------------|----------|------|------|------|-------|------|
| CT-SAN [55]   | <b>/</b> | MDB  | 5.1  | 16.3 | 25.2  | 46.0 |
| HT [38]       | ✓        | EDB  | 5.8  | 18.8 | 28.4  | 45.0 |
| HT* [38]      | ✓        | EDB  | 7.1  | 19.6 | 27.9  | 40.0 |
| NoiseE* [1]   |          | EDB  | 6.4  | 19.8 | 28.4  | 39.0 |
| JSFusion [54] | ✓        | MDB  | 9.1  | 21.2 | 34.1  | 36.0 |
| Ours          | /        | EDB  | 10.0 | 24.9 | 33.4  | 34.0 |

MSVD

|                             | E2E | Type | R@1↑ | R@5↑ | R@10↑ | MdR↓ |
|-----------------------------|-----|------|------|------|-------|------|
| HT [38]                     | /   | EDB  | 13.0 | 37.4 | 52.4  | 10.0 |
| HT* [38]                    | ✓   | EDB  | 15.5 | 40.9 | 55.7  | 8.0  |
| NoiseE* [1]                 |     | EDB  | 20.3 | 49.0 | 63.3  | 6.0  |
| CLIP4Clip <sup>†</sup> [34] |     | EDB  | 46.2 | 76.1 | 84.6  | 2.0  |
| Ours                        | ✓   | EDB  | 49.0 | 87.0 | 95.0  | 2.0  |

# **Experiments**

- Results:
  - DiDeMo

|                            | E2E | Туре | R@1↑ | R@5↑ | R@10↑ | MdR↓ |
|----------------------------|-----|------|------|------|-------|------|
| S2VT [49]                  | /   | EDB  | 11.9 | 33.6 | -     | 13.0 |
| FSE [57]                   | ✓   | EDB  | 13.9 | 36.0 | -     | 11.0 |
| ClipBERT <sup>‡</sup> [28] | ✓   | MDB  | 20.4 | 48.0 | 60.8  | 6.0  |
| Ours                       | <   | EDB  | 21.2 | 50.3 | 63.5  | 6.0  |

- Ablation studies.
- Validation of Gaussian assumption.

otivation Methodololgy Experiments **Critical Review** Appendix

#### Critical review

- Readability and structure.
  - Illustrate CRET method clearly.
  - Satisfy requirements of the scientific paper.
- Reproducibility: Source code, the availability of data sets, experimental settings.
- Importance.
  - Theoretical contributions.
  - Practical applications.
- Strong points.
  - Algorithm efficiency.
  - Extensive ablation studies and hypothesis tests.
- Weak points.
  - Inaccessibility of source code.
  - Don't report the standard variance and the number of times of running each model.

## **Appendix: Details of GEES**

Vanilla NCF loss:

$$\mathcal{L}_{NCE} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{M} \sum_{j=1}^{M} -\log \left( \frac{\exp\left(\langle V_{ij}^{g}, T_{i}^{g} \rangle\right)}{\exp\left(\langle V_{ij}^{g}, T_{i}^{g} \rangle\right) + \sum_{(V^{g'}, T^{g'}) \in \Phi_{i}} \exp\left(\langle V^{g'}, T^{g'} \rangle\right)} \right)$$

Multivariate Gaussian distribution assumption:

$$v_i \sim \mathcal{N}\left(\mu_i, \sigma_i\right)$$

Derive the GEES and its upper bound:

$$\mathcal{L}_{GEES} = \frac{1}{N} \sum_{i=1}^{N} E_{v_i} \left[ -\log \left( \frac{\exp\left( < V_{ij}^g, T_i^g > \right)}{\exp\left( < V_{ij}^g, T_i^g > \right) + \sum_{(V^{g'}, T^{g'}) \in \Phi_i} \exp\left( < V^{g'}, T^{g'} > \right)} \right) \right]$$

$$\leq -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp\left( < T_i^g, \mu_i > + \frac{1}{2} < T_i^g, \sigma_i T_i^g > \right)}{\sum_{j=1}^{N} \exp\left( < T_i^g, \mu_i > + \frac{1}{2} < T_i^g, \sigma_i T_i^g > \right)} = \bar{\mathcal{L}}_{GEES}$$

otivation Methodology Experiments Critical Review **Appendix** 

# **Appendix: Strategies of training and inference**

Training:

$$\mathcal{L}_{CCM} = -\frac{1}{N} \sum_{i=1}^{N} -\log \left( \frac{\exp\left(\langle Z_i^v, Z_i^t \rangle\right)}{\exp\left(Z_i^v, Z_i^t\right) + \sum_{(Z^{v'}, Z^{t'}) \in \Psi_i} \exp\left(\langle Z^{v'}, Z^{t'} \rangle\right)} \right)$$

$$\mathcal{L}_{total} = \bar{\mathcal{L}}_{GEES} + \alpha \mathcal{L}_{CCM}$$

Inference:

$$S = S_g + \beta S_l$$

$$S_l = \cos(Z^v, Z^t)$$

$$S_g = \cos\left(\frac{1}{M} \sum_{j=1}^M V_{ij}^g, T_i^g\right)$$