CS47100: Introduction to AI

Spring 2025

Assignment 1

NAME HERE Date: September 22, 2025

Problem 1 (a)

- (i) (LWSN, 0) \rightarrow (DSAI, 1) \rightarrow (HAAS, 1) \rightarrow (PHYS, 1) \rightarrow (PHYS, 2) \rightarrow (PMU, 2) (LWSN, 0) \rightarrow (PHYS, 1) \rightarrow (PMU, 2)
- (ii) (LWSN, 0) \rightarrow (DSAI, 1) \rightarrow (STEW, 2) \rightarrow (ARMS, 3) \rightarrow (PMU, 4) (LWSN, 0) \rightarrow (DSAI, 1) \rightarrow (STEW, 2) \rightarrow (ARMS, 3) \rightarrow (PMU, 4)
- (iii) (LWSN, 0) \rightarrow (HAAS, 2) \rightarrow (DSAI, 3) \rightarrow (PHYS, 5) \rightarrow (PHYS, 5) \rightarrow (STEW, 6) \rightarrow (WALC, 7) \rightarrow (ARMS, 8) \rightarrow (PHYS, 9) \rightarrow (PMU, 11) (LWSN, 0) \rightarrow (PHYS, 5) \rightarrow (PMU, 11)
- (iv) (LWSN, 7) \rightarrow (PHYS, 3) \rightarrow (PMU, 0) (LWSN, 7) \rightarrow (PHYS, 3) \rightarrow (PMU, 0)
- (v) (LWSN, 7) \rightarrow (HAAS, 15) \rightarrow (PHYS, 15) \rightarrow (DSAI, 18) \rightarrow (PHYS, 21) \rightarrow (PMU, 21) (LWSN, 0) \rightarrow (PHYS, 15) \rightarrow (PMU, 21)

Problem 1 (b)

- (i) A* may fail to find an optimal solution when a negative edge is present in the graph. In this particular case, A* will not find the optimal solution, and furthermore (STEW) will not be expanded.
- (ii) The optimal solution is: LWSN \to DSAI \to STEW \to PMU However, A * will return the same as part (v) in problem 1a.

Problem 2 (a)

Suppose that a heuristic h(n) is consistent.

Pick any node n and call it n_0

So, assume we have the following: start = $n_0 \rightarrow n_1 \rightarrow ... \rightarrow n_k = \text{goal}$

So, h(n) is consitent $\Rightarrow h(n_i) \leq c(n_i \rightarrow n_{i+1}) + h(n_{i+1})$, where $c(n_i \rightarrow n_{i+1})$ is the cost from n_i to

So,
$$h(n_0) \le c(n_0 \to n_1) + h(n_1)$$
 and $h(n_1) \le c(n_1 \to n_2) + h(n_2)$

Then,
$$h(n_0) \le c(n_0 \to n_1) + c(n_1 \to n_2) + h(n_2)$$

Similarly we know,
$$h(n_0) \le c(n_0 \to n_1) + c(n_1 \to n_2) + \dots + c(n_{k-2} \to n_{k-1}) + h(n_{k-1})$$

And,
$$h(n_{k-1}) \le c(n_{k-1} \to n_k) + h(n_k)$$

Then,
$$h(n_0) \le c(n_0 \to n_1) + c(n_1 \to n_2) + \dots + c(n_{k-2} \to n_{k-1}) + c(n_{k-1} \to n_k) + h(n_k)$$

 n_k is a goal state so by defintion, $h(n_k) = 0$

So,
$$h(n_0) \le c(n_0 \to n_1) + c(n_1 \to n_2) + \dots + c(n_{k-2} \to n_{k-1}) + c(n_{k-1} \to n_k)$$

And,
$$c(n_0 \to n_1) + c(n_1 \to n_2) + \cdots + c(n_{k-2} \to n_{k-1}) + c(n_{k-1} \to n_k)$$
Is the true cost!

So, $h(n_0) \le h^*(n)$ and $h(n_0) \ge 0$ by definition.

Thus, h(n) must be admissible

Problem 2 (b)

It fails consistency because $h(n) \leq c(n \to n') + h(n') \Rightarrow 1 \leq -1 + 1$ Ouch!

But it is admissible because,

$$0 \le h(n) \le h^*(n)$$

$$0 \leq 1 \leq 3$$

and
$$0 \le h(n') \le h^*(n)$$

$$0 \leq 1 \leq 4$$