Exercise set #4

Release:

Thursday, 31 October 2024

Discussion: Wednesday, 6 November 2024

You do not have to hand in your solutions to the exercises and they will **not** be graded. However, there will be four short tests during the semester. You need to reach $\geq 50\%$ of the total points in order to be admitted to the final exam (Klausur). The tests are held at the start of a lecture (room 2522.U1.74) at the following dates:

Test 1: Thursday, 31 October 2024, 10:30-10:45 Test 2: Thursday, 21 November 2024, 10:30-10:45 Test 3: Thursday, 5 December 2024, 10:30-10:45

Test 4: Thursday, 9 January 2025, 10:30-10:45

Please ask questions in the RocketChat

The exercises are discussed every Wednesday, 14:30-16:00 in room 2512.02.33.

1. Monte Carlo prediction

(a) In Monte Carlo prediction the value function is estimated with the average return of collected episodes. Given an observed state s_t and return g_t , there are multiple ways to calculate the new value estimate:

(i)
$$N_{k+1}(s_t) = N_k(s_t) + 1$$

 $G_{k+1}(s_t) = G_k(s_t) + g_t$
 $V_{k+1}(s_t) = G_{k+1}(s_t)/N_{k+1}(s_t)$
with $N_0(s_t) = 0, G_0(s_t) = 0, V_0(s_t) = 0$

(ii)
$$N_{k+1}(s_t) = N_k(s_t) + 1$$

 $W_{k+1}(s_t) = W_k(s_t) + \frac{1}{N_{k+1}(s_t)}(g_t - W_k(s_t))$
with $N_0(s_t) = 0, W_0(s_t) = 0$

Show that both approaches are equivalent, i.e., show by induction for all $k \geq 0$

$$V_k(s_t) = W_k(s_t).$$

Answer:

Base case, k = 0:

$$V_0(s_t) = 0 = W_0(s_t)$$

Induction step, $k \to k + 1$:

Exercises by Stefan Harmeling, used with permission

(we already know that $V_k(s_t) = W_k(s_t)$)

$$V_{k+1}(s_t) = G_{k+1}(s_t)/N_{k+1}(s_t)$$

$$= (G_k(s_t) + g_t)/N_{k+1}(s_t)$$

$$= (G_k(s_t)/N_k(s_t) \cdot N_k(s_t) + g_t)/N_{k+1}(s_t)$$

$$= (V_k(s_t)N_k(s_t) + g_t)/N_{k+1}(s_t)$$

$$= (W_k(s_t)N_k(s_t) + g_t)/N_{k+1}(s_t)$$

$$= (W_k(s_t)(N_{k+1}(s_t) - 1) + g_t)/N_{k+1}(s_t)$$

$$= (W_k(s_t)N_{k+1}(s_t) - W_k(s_t) + g_t)/N_{k+1}(s_t)$$

$$= W_k(s_t) + \frac{1}{N_{k+1}(s_t)}(g_t - W_k(s_t))$$

$$= W_{k+1}(s_t)$$

(b) Implement Monte Carlo prediction for tic-tac-toe with random moves. Follow the instructions in the Jupyter notebook monte-carlo-prediction.ipynb. What is the probability that the first player wins? Which initial action has the highest chance of winning?

2. Monte Carlo control

Implement Monte Carlo control and apply it to the Maze environment from the lecture. Follow the instructions in the Jupyter notebook monte-carlo-control.ipynb.