Limits

Limits

```
Large numbers and small numbers

What is a limit

Let $f$ have domain $R/\{2\}$

Let $f$ have domain $R$ and $f(2)$ is exist

Left-hand, right-hand, and two-sided limits

Limits at $\infty $ and $-\infty$

"vertical asymptote"

$f(x) = \sin(\frac{1}{x})$

The Sandwich Principle

proof

Proofs

$+ -$

$\times$ $\div$

$\infty$

2 Important Limits
```

Large numbers and small numbers

$$\lim_{x o\infty}f(x)=L$$

What is a limit

Let f have domain $R/\{2\}$

$$\lim_{x o 2}f(x)=1$$
 or $f(x) o 1$ as $x o 2$

Let f have domain R and f(2) is exist

Left-hand, right-hand, and two-sided limits

$$\lim_{x o 3^-}h(x)=1$$
 and $\lim_{x o 3^+}h(x)=-2$

$$\lim_{x\to 3}h(x)=?$$

The regular 2-sided limit at x=a exists **exactly when** both left-hand and right-hand limits at x=a exist and are equal to each other

Limits at ∞ and $-\infty$

"vertical asymptote"

$$f(x)=sin(rac{1}{x})$$

The Sandwich Principle

 $\forall x$ near a, we have $g(x) \leq f(x) \leq h(x)$, suppose that $\lim_{x \to a} g(x) = L$, $\lim_{x \to a} h(x) = L$, then we can conclude that $\lim_{x \to a} f(x) = L$

proof

Proofs

 $\lim_{x o a}f(x)=L$ and $\lim_{x o a}g(x)=M$

+-

 $\times \overset{{\scriptscriptstyle \bullet}}{{\scriptscriptstyle \bullet}}$

 ∞

2 Important Limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to\infty}(1+\tfrac{1}{n})^n=e$$