Rigid-Body Dynamics Project

Rigid-Body Spring Pendulum

November 13, 2018

By:

Jeffrey Chen Thorne Wolfenbarger Trey Dufrene

Submitted to:
Dr. Mark Sensmeier
In Partial Fulfillment of the Requirements of ES204 Dynamics - Fall 2018

College of Engineering Embry-Riddle Aeronautical University Prescott, AZ

Contents

1	Conceptualize the Problem
	1.1 Constants and Assumptions
2	Free Body Diagram
3	Coordinate Frame
4	Sum of Forces
5	Knowns and Unknowns
6	Constraints
7	Solve for the Equations of Motion
8	Solve the Equations of Motion
9	Does it Make Sense?
	9.1 Units
	9.2 Magnitude
10	Appendix
	10.1 Attributions
	10.2 Analytical Solution
	10.3 Numerical Solution
	List of Figures
1 2	Meow
3	Meow

1 Conceptualize the Problem

The pendulumn system consists of two rigid bars attached at their ends by a linear spring.

1.1 Constants and Assumptions

Constants: Assumptions:

Bar Mass: m = 0.25 kg No Losses

Bar Length: L = 0.5m Released from Rest

Gravity: $g = 9.81 \frac{m}{s^2}$ Slender Bars

Linear Spring: Rigid-Body Dynamics

Spring Coefficient: k = 25 N/m Planar

Unstretched Length: L

We are asked to determine the following:

- 1. The 6 Equations / 6 Unknowns for the system to solve for the Equations of Motion.
- 2. Integrate the Equations of Motion using various initial conditions.

(a)
$$\theta_o = \pi/12 \ rad$$
, $\phi_o = \pi/12 \ rad$

(b)
$$\theta_o = -\pi/12 \ rad, \quad \phi_o = \pi/12 \ rad$$

(c)
$$\theta_o = \pi/36 \ rad$$
, $\phi_o = \pi/12 \ rad$

- 3. Linearize the Equations of Motion assuming small angular positions and velocities (i.e. small angle approximation $\sin(x) \approx x$, $\cos(x) \approx 1$)
 - Determine the A matrix below.

$$\begin{bmatrix} \ddot{\theta} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \theta \\ \phi \end{bmatrix}$$

- 4. Find the natural frequencies of the system and their respective eigenvectors using the eigenvalues and eigenvectors of [A].
- 5. Using information from (5), solve for the analytical solution to the linearized Equations of Motion and plot them for the initial conditions defined in (2).

1

2 Free Body Diagram

 F_s : Force onto bar by the spring

mg: Mass · gravity, weight of each bar

G: Center of gravity of each bar

 θ , ϕ : Angle of bar relative to vertical

 A_n , C_n : Reaction forces in the normal

direction

 A_t, C_t : Reaction forces in the tangential

direction

Acceleration Diagram

 α : $\ddot{\theta}$, $\ddot{\phi}$ respectively

3 Coordinate Frame

 $\hat{e_n}$: $[-\sin(\theta)\hat{i} + \cos(\theta)\hat{j}]$ $\hat{e_t}$: $[\cos(\theta)\hat{i} + \sin(\theta)\hat{j}]$

4 Sum of Forces

Using a normal tangential coordinate system we produce the following force equations

$$\sum F_n = ml\dot{\theta}^2 = F_{sn} + A_n - mg\cos\theta \tag{1}$$

Sum of Normal Forces on the left bar (Theta)

$$\sum F_t = ml\dot{\theta} = F_{sn} + A_t - mg\sin\theta \tag{2}$$

Sum of Tangential Forces on the left bar (Theta)

$$\sum F_n = ml\dot{\phi}^2 = F_{sn} + C_n - mg\cos\phi \tag{3}$$

Sum of Normal Forces on the right bar (Phi)

$$\sum F_t = ml\dot{\phi} = F_{sn} + C_t - mg\sin\phi \tag{4}$$

Sum of Tangential Forces on the right bar (Phi)

We also product the following moment equations

$$\sum M_A = -\left(\frac{l}{2}mg\sin\theta + F_{st}l\right) = \frac{1}{3}ml^2\dot{\theta}$$
 (5)

Sum of Moments about A (Theta)

$$\sum M_C = -\left(\frac{l}{2}mg\sin\phi + F_{st}l\right) = \frac{1}{3}ml^2\dot{\phi} \tag{6}$$

Sum of Moments about C (Phi)

Where:

- θ : Position of the left bar.
- ϕ : Position of the right bar.
- $\dot{\theta}$: Angular velocity of the left bar.
- θ : Angular acceleration of the left bar.
- $\dot{\phi}$: Angular velocity of the right bar.
- ϕ : Angular acceleration of the right bar.
- A: Reaction force in the normal or tangential direction at the top of the left bar.
- C: Reaction force in the normal or tangential direction at the top of the right bar.
- F_s : Force due to the spring in either the normal or tangential direction.
- m, L, g: Are constants; mass, length of each bar, and gravity, respectively.

5 Knowns and Unknowns

Knowns: Unknowns:

Mass: m = 0.25 kg Reaction Forces: A_n, A_t

String Length: L = 0.5 m C_n, C_t

Gravity: $q = 9.81^{m/s^2}$ Angular Accelerations: $\ddot{\theta}$, $\ddot{\phi}$

Linear Spring:

Spring Coefficient: k = 25 N/m

Unstretched Length: L

State Variables:

Angular Position: θ , ϕ Angular Velocity: $\dot{\theta}$, $\dot{\phi}$

6 Constraints

No constraint equations were needed to find a solution to the system.

7 Solve for the Equations of Motion

The equations of motion for this system are (from Eqs. (1-6))

$$gm\sin\theta - 2kL\cos\theta - 2kL\sin\phi - \theta + \frac{2kL^2\cos\theta}{\sqrt{L^2(\sin\phi - \sin\theta + 1)^2 + L^2(\cos\phi - \cos\theta)}} + \frac{2kL^2\sin\phi - \theta}{\sqrt{L^2(\sin\phi - \sin\theta)^2 + L^2(\cos\phi - \cos\theta)^2 + L^2(\cos\phi - \cos\theta)^2}}$$

$$\ddot{\theta} = -3 - \frac{2Lm}{2Lm}$$

$$gm\sin\phi - 2kL\cos\phi - 2kL\sin\phi - \theta + \frac{2kL^2\cos\phi}{\sqrt{L^2(\sin\phi - \sin\theta + 1)^2 + L^2(\cos\phi - \cos\theta)}} + \frac{2kL^2\sin\phi - \theta}{\sqrt{L^2(\sin\phi - \sin\theta)^2 + L^2(\cos\phi - \cos\theta)^2 + L^2(\cos\phi - \cos\theta)^2}}$$

$$\ddot{\phi} = -3 - \frac{2Lm}{2Lm}$$

Figure 1: Meow.

Figure 2: Meow.

Figure 3: Meow.

8 Solve the Equations of Motion

- 9 Does it Make Sense?
 - 9.1 Units
 - 9.2 Magnitude
 - 10 Appendix
 - 10.1 Attributions

Jeffrey Chen Thorne Wolfenbarger Trey Dufrene Joint Effort

- 10.2 Analytical Solution
- 10.3 Numerical Solution