- HAI403I: Algorithme 3, le retour -

Cours 2 : Algorithmes gloutons

L2 informatique Université de Montpellier

Les méthodes gloutonnes

- ► En un mot, faire à chaque étape le choix possible qui semble le meilleur.
 - Parfois, ça marche et on obtient des bons algos...
- On voit dans ce chapitre des algorithmes gloutons simples et dont on peut prouver l'optimalité (d'autres sont plus 'célèbres' mais plus sophistiqués : l'algorithme de Kruskal, l'algorithme de compression de Huffman, voir Cours 3...).

1. Exemple 1 : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

1. Exemple 1 : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

Entrée un ensemble C de cours $C_i = (d_i, f_i)$ [début, fin], $i = 1, \ldots, n$

Deux cours C_i et C_j sont dits *compatibles* si $[d_i, f_i] \cap [d_j, f_j] = \emptyset$

Entrée un ensemble C de cours $C_i = (d_i, f_i)$ [début, fin], $i = 1, \ldots, n$

Deux cours C_i et C_j sont dits *compatibles* si $[d_i, f_i] \cap [d_j, f_j] = \emptyset$

Sortie un ensemble ordonné maximal de cours $(C_{i_1}, \ldots, C_{i_k})$ tels que pour tout j < k, $f_{i_j} \le d_{i_{j+1}} \leadsto$ cours compatibles

modifié d'après Algorithms de J. Erickson

Entrée un ensemble C de cours $C_i = (d_i, f_i)$ [début, fin], $i = 1, \ldots, n$

Deux cours C_i et C_j sont dits *compatibles* si $[d_i, f_i] \cap [d_j, f_j] = \emptyset$

Sortie un ensemble ordonné maximal de cours $(C_{i_1}, \ldots, C_{i_k})$ tels que pour tout j < k, $f_{i_j} \le d_{i_{j+1}} \leadsto$ cours compatibles

modifié d'après Algorithms de J. Erickson

Entrée un ensemble C de cours $C_i = (d_i, f_i)$ [début, fin], $i = 1, \ldots, n$

Deux cours C_i et C_j sont dits *compatibles* si $[d_i, f_i] \cap [d_j, f_j] = \emptyset$

Sortie un ensemble ordonné maximal de cours $(C_{i_1}, \ldots, C_{i_k})$ tels que pour tout j < k, $f_{i_j} \le d_{i_{j+1}} \leadsto$ cours compatibles

modifié d'après Algorithms de J. Erickson

► Tri des cours par dates de fin croissantes

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit le plus tôt

Algorithme glouton

Algorithme glouton

```
Algorithme: CHOIXCOURSGLOUTON(C)
Trier C en fonction des fins
I \leftarrow \{C[1]\}
                                                     // Cours choisis
f \leftarrow Fin(C[1]) // Fin du dernier cours choisi
pour i = 2 \grave{a} n faire
    si D \not\in BUT(C[i]) \ge f alors
     I \leftarrow I \cup \{C[i]\}f \leftarrow \mathsf{FIN}(C[i])
retourner 1
```

Question

Quelle est la complexité de CHOIX COURS GLOUTON?

Algorithme glouton

```
Algorithme: CHOIXCOURSGLOUTON(C)
Trier C en fonction des fins
I \leftarrow \{C[1]\}
                                                      // Cours choisis
f \leftarrow \mathsf{FIN}(C[1]) // Fin du dernier cours choisi
pour i = 2 \grave{a} n faire
    si D \not\in BUT(C[i]) \ge f alors
       I \leftarrow I \cup \{C[i]\}f \leftarrow \mathsf{FIN}(C[i])
retourner 1
```

Question

```
Quelle est la complexité de CHOIXCOURSGLOUTON?
C'est le tri le plus coûteux (voir cours 4...) \rightsquigarrow O(n \log n)
```

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

▶ Notons $C = (C_1, ..., C_n)$ les cours triés par dates de fin \nearrow .

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

- ▶ Notons $C = (C_1, ..., C_n)$ les cours triés par dates de fin \nearrow .
- ▶ Petit Lemme : il existe une solution optimale contenant C₁

En effet, soit $\mathcal{B} = (C_{i_1}, C_{i_2}, \dots, C_{i_k})$ une solution optimale.

- ▶ Si $C_{i_1} = C_1$, on est content...
- ▶ Sinon, par défintion de C_1 , on a $f_1 \leq f_{i_1}$ et $(\mathcal{B} \setminus C_{i_1}) \cup C_1$ est aussi une solution optimale, contenant C_1 cette fois.

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

- ▶ Notons $C = (C_1, ..., C_n)$ les cours triés par dates de fin \nearrow .
- ▶ Petit Lemme : il existe une solution optimale contenant C_1

En effet, soit $\mathcal{B} = (C_{i_1}, C_{i_2}, \dots, C_{i_k})$ une solution optimale.

- ightharpoonup Si $C_{i_1} = C_1$, on est content...
- ▶ Sinon, par défintion de C_1 , on a $f_1 \le f_{i_1}$ et $(\mathcal{B} \setminus C_{i_1}) \cup C_1$ est aussi une solution optimale, contenant C_1 cette fois.
- ►

 CHOIXCOURSGLOUTON fait le premier bon choix!

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

Notons maintenant C_1 les cours *compatibles avec* C_1 , triés par dates de fin croissantes (c'est-à-dire les cours dont la date de début est $\geq f_1$). On note $C_1 = \{C_{j_1}, C_{j_2}, \ldots, C_{j_{n_1}}\}$.

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

- Notons maintenant C_1 les cours *compatibles avec* C_1 , triés par dates de fin croissantes (c'est-à-dire les cours dont la date de début est $\geq f_1$). On note $C_1 = \{C_{j_1}, C_{j_2}, \ldots, C_{j_{n_1}}\}$.
- ▶ Moyen Lemme : il existe une solution optimale formée de C₁ et d'une solution optimale du problème sur C₁
 - En effet, soit $\mathcal{B} = (C_1, C_{i_2}, \dots, C_{i_k})$ une solution optimale du problème contenant C_1 (ça existe par le petit lemme).
 - ▶ Si $(C_{i_2}, \ldots, C_{i_k})$ n'est pas une solution optimale pour C_1 , alors il existerait une meilleure solution $(C_{l_2}, \ldots, C_{l_{k+1}})$ sur C_1 .

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

- Notons maintenant C_1 les cours *compatibles avec* C_1 , triés par dates de fin croissantes (c'est-à-dire les cours dont la date de début est $\geq f_1$). On note $C_1 = \{C_{j_1}, C_{j_2}, \ldots, C_{j_{n_1}}\}$.
- ▶ Moyen Lemme : il existe une solution optimale formée de C₁ et d'une solution optimale du problème sur C₁

En effet, soit $\mathcal{B} = (C_1, C_{i_2}, \dots, C_{i_k})$ une solution optimale du problème contenant C_1 (ça existe par le petit lemme).

Mais $(C_{l_2}, \ldots, C_{l_{k+1}})$ sont tous compatible avec C_1 , et $(C_1, C_{l_2}, \ldots, C_{l_{k+1}})$ serait une meilleure solution que $\mathcal B$ au problème de départ, ce qui est exclu!

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

- Notons maintenant C₁ les cours compatibles avec C₁, triés par dates de fin croissantes (c'est-à-dire les cours dont la date de début est ≥ f₁). On note C₁ = {C_{j1}, C_{j2},..., C_{jn₁}}.
- Moyen Lemme : il existe une solution optimale formée de C₁ et d'une solution optimale du problème sur C₁
- ▶ Du coup, par le Petit Lemme, comme il existe une solution optimale de C_1 commençant par C_{j_1} , il existe une solution optimale du problème de départ commençant par (C_1, C_{j_1}) .

 ∴ CHOIX COURS GLOUTON fait aussi un second bon choix!

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

▶ On peut mettre en place la récurrence : $\mathcal{P}_s = 'Si$ on note $(C_{p_1}(=C_1), C_{p_2}, \ldots, C_{p_s})$ les s premiers choix de cours de CHOIXCOURSGLOUTON et \mathcal{C}_s les cours compatibles avec tous ces cours là, alors il existe une solution au problème initial formée de $(C_{p_1}, C_{p_2}, \ldots, C_{p_s})$ et d'une solution optimale sur \mathcal{C}_s .'

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

- ▶ On peut mettre en place la récurrence : $\mathcal{P}_s = 'Si$ on note $(C_{p_1}(=C_1), C_{p_2}, \ldots, C_{p_s})$ les s premiers choix de cours de CHOIXCOURSGLOUTON et \mathcal{C}_s les cours compatibles avec tous ces cours là, alors il existe une solution au problème initial formée de $(C_{p_1}, C_{p_2}, \ldots, C_{p_s})$ et d'une solution optimale sur \mathcal{C}_s .'
- $ightharpoonup \mathcal{P}_1$ vraie par le Moyen lemme.

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

- ▶ On peut mettre en place la récurrence : $\mathcal{P}_s = 'Si$ on note $(C_{p_1}(=C_1), C_{p_2}, \ldots, C_{p_s})$ les s premiers choix de cours de CHOIXCOURSGLOUTON et \mathcal{C}_s les cours compatibles avec tous ces cours là, alors il existe une solution au problème initial formée de $(C_{p_1}, C_{p_2}, \ldots, C_{p_s})$ et d'une solution optimale sur \mathcal{C}_s .'
- ▶ Si \mathcal{P}_s vraie, alors par le Moyen Lemme, il existe une solution opt. sur \mathcal{C}_s formée du premier cours $C_{p_{s+1}}$ de \mathcal{C}_s et d'une solution opt. sur les cours de \mathcal{C}_s compatibles avec $C_{p_{s+1}}$. Et \mathcal{P}_{s+1} est vraie!

Théorème

CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c-à-d qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

- ▶ On peut mettre en place la récurrence : $\mathcal{P}_s = 'Si$ on note $(C_{p_1}(=C_1), C_{p_2}, \ldots, C_{p_s})$ les s premiers choix de cours de CHOIXCOURSGLOUTON et \mathcal{C}_s les cours compatibles avec tous ces cours là, alors il existe une solution au problème initial formée de $(C_{p_1}, C_{p_2}, \ldots, C_{p_s})$ et d'une solution optimale sur \mathcal{C}_s .'
- ►

 CHOIXCOURSGLOUTON renvoie une solution optimale au problème!

1. Exemple 1 : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Exemple du choix de cours

- Optimum local : cours qui minimise les incompatibilités
- Optimum global : maximum de cours compatibles

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Exemple du choix de cours

- Optimum local : cours qui minimise les incompatibilités
- Optimum global : maximum de cours compatibles

Remarques

- Construction pas-à-pas d'une solution
- Algorithmes simples à concevoir... mais pas toujours parfaits!
- Nésolution exacte, approximation, heuristique

Concevoir des algorithmes gloutons

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - ► Recommencer sur le sous-problème restant

Concevoir des algorithmes gloutons

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - ► Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.

Concevoir des algorithmes gloutons

Tri par durées croissantes $\{[11,14],[7,12],[13,19]\}$

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.

Concevoir des algorithmes gloutons

Tri par durées croissantes $\{[11,14],[7,12],[13,19]\}$

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.
- 3. Démontrer que l'algorithme est correct
 - ▶ Il existe une solution optimale contenant le choix local
 - Choix local + glouton pour le reste → solution optimale

Concevoir des algorithmes gloutons

Tri par durées croissantes $\{[11,14],[7,12],[13,19]\}$

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - ▶ Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.
- 3. Démontrer que l'algorithme est correct
 - ▶ Il existe une solution optimale contenant le choix local
 - Choix local + glouton pour le reste → solution optimale
- 4. Étudier la complexité de l'algorithme

Algorithme glouton générique

Problème générique

- Entrée Un ensemble fini X, avec une valeur v_x pour tout $x \in X$ Une propriété $\mathcal P$ que doivent vérifier les sous-ensembles de X qui sont solutions. De tels sous-ensembles sont dits acceptables
 - Hyp. $\mathcal P$ est monotone vers le bas : Si $A\subseteq X$ vérifie $\mathcal P$ et $B\subseteq A$ alors B vérifie $\mathcal P$
- Sortie Un sous-ensemble A de X acceptable et qui maximise/minimise $v_A = \sum_{x \in A} v_x$ parmi tous les sous-ensembles acceptables

Algorithme glouton générique

Problème générique

- Entrée Un ensemble fini X, avec une valeur v_x pour tout $x \in X$ Une propriété $\mathcal P$ que doivent vérifier les sous-ensembles de X qui sont solutions. De tels sous-ensembles sont dits acceptables
 - Hyp. $\mathcal P$ est monotone vers le bas : Si $A\subseteq X$ vérifie $\mathcal P$ et $B\subseteq A$ alors B vérifie $\mathcal P$
- Sortie Un sous-ensemble A de X acceptable et qui maximise/minimise $v_A = \sum_{x \in A} v_x$ parmi tous les sous-ensembles acceptables

Exemple du choix de cours

- ▶ X : ensemble des cours, avec $v_x = 1$ pour tout x
- $ightharpoonup \mathcal{P}$: être compatible

Algorithme glouton générique

Problème générique

Entrée Un ensemble fini X, avec une valeur v_x pour tout $x \in X$ Une propriété $\mathcal P$ que doivent vérifier les sous-ensembles de X qui sont solutions. De tels sous-ensembles sont dits acceptables

Hyp. $\mathcal P$ est monotone vers le bas : Si $A\subseteq X$ vérifie $\mathcal P$ et $B\subseteq A$ alors B vérifie $\mathcal P$

Sortie Un sous-ensemble A de X acceptable et qui maximise/minimise $v_A = \sum_{x \in A} v_x$ parmi tous les sous-ensembles acceptables

Théorème des algorithmes gloutons

Théorème

Si pour toute instance X du problème avec la propriété \mathcal{P} , il existe une solution optimale S tq

- ▶ le premier élément x₀ de X, trié, appartienne à S
- ▶ $S \setminus x_0$ soit une solution optimale du problème sur $X \setminus x_0$ pour la propriété \mathcal{P}' où $A \subseteq X \setminus x_0$ vérifie \mathcal{P}' si $A \cup \{x_0\}$ vérifie \mathcal{P} .

Alors GLOUTONGÉNÉRIQUE est optimal.

Théorème des algorithmes gloutons

Théorème

Si pour toute instance X du problème avec la propriété \mathcal{P} , il existe une solution optimale S tq

- ▶ le premier élément x₀ de X, trié, appartienne à S
- ▶ $S \setminus x_0$ soit une solution optimale du problème sur $X \setminus x_0$ pour la propriété \mathcal{P}' où $A \subseteq X \setminus x_0$ vérifie \mathcal{P}' si $A \cup \{x_0\}$ vérifie \mathcal{P} .

Alors GLOUTONGÉNÉRIQUE est optimal.

Exemple du choix de cours

- ▶ X : ensemble des cours, avec $v_x = 1$ pour tout x
- $ightharpoonup \mathcal{P}$: être compatible
- ► Tri : dates de fin croissantes
- Preuve:
 - ▶ Il existe un ensemble de cours optimal contenant le 1er cours
 - ► En enlevant le 1^{er} cours, il reste un ensemble optimal pour les cours commençant après la fin du 1^{er} cours

Théorème des algorithmes gloutons

Théorème

Si pour toute instance X du problème avec la propriété \mathcal{P} , il existe une solution optimale S tq

- ▶ le premier élément x₀ de X, trié, appartienne à S
- ▶ $S \setminus x_0$ soit une solution optimale du problème sur $X \setminus x_0$ pour la propriété \mathcal{P}' où $A \subseteq X \setminus x_0$ vérifie \mathcal{P}' si $A \cup \{x_0\}$ vérifie \mathcal{P} .

Alors GLOUTONGÉNÉRIQUE est optimal.

Preuve par récurrence sur |X|

- ▶ Si |X| = 0, la solution optimale est \emptyset
- ▶ Soit X une entrée avec |X| > 0. Par hyp. de récurrence, GLOUTONGÉNÉRIQUE trouve une solution optimale S' sur $X \setminus \{x_0\}$ avec la propriété \mathcal{P}' . Donc $S' \cup \{x_0\}$ est optimale sur X avec la propriété \mathcal{P} , sinon on obtient une contradiction... ■

En pratique

- ▶ Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule

En pratique

- Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule
- Dans ce cours : étude de plusieurs exemples
 - utilisation du théorème pour faciliter les preuves

En pratique

- Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule
- Dans ce cours : étude de plusieurs exemples
 - utilisation du théorème pour faciliter les preuves

Objectifs:

- Savoir tenter une stratégie gloutonne
- Savoir détecter si elle marche ou non
- Savoir l'analyser (validité et complexité)

1. Exemple 1 : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

Problème du sac-à-dos

SàD: $24 \in 9 kg$ 13kg $15 \in 8 kg$ $23 \in 10 \in 10 kg$

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui rentrent dans le sac $(\sum_i t_i \leq T)$ et qui maximise la valeur totale $(V = \sum_i v_i)$

Problème du sac-à-dos

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui rentrent dans le sac $(\sum_i t_i \leq T)$ et qui maximise la valeur totale $(V = \sum_i v_i)$

- Problème célèbre car utile
 - en théorie
 - en pratique
 - en cryptographie
- ▶ Difficile (NP-difficile → module de Complexité)

Problème du sac-à-dos

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui rentrent dans le sac $(\sum_i t_i \leq T)$ et qui maximise la valeur totale $(V = \sum_i v_i)$

- Problème célèbre car utile
 - en théorie
 - en pratique
 - en cryptographie
- ▶ Difficile (NP-difficile → module de Complexité)

Problème du sac-à-dos fractionnaire

Objets *fractionnables* : on peut n'en prendre qu'une partie

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0,1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- ▶ la valeur totale est maximale : $V = \sum_i x_i v_i$

Problème du sac-à-dos fractionnaire

Objets *fractionnables* : on peut n'en prendre qu'une partie

SàD: $24 \in 9 kg$ 13 kg $15 \in 8 kg$ $16 \in 10 kg$

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0,1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- ▶ la valeur totale est maximale : $V = \sum_i x_i v_i$
- Problème simplifié!
- Approche pour résoudre le sac-à-dos

Problème du sac-à-dos fractionnaire

Objets *fractionnables* : on peut n'en prendre qu'une partie

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0,1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- ▶ la valeur totale est maximale : $V = \sum_i x_i v_i$
- Problème simplifié!
- Approche pour résoudre le sac-à-dos

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport quantité - prix

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport quantité - prix

```
Algorithme: SADFRACGLOUTON(O, T)
Trier les objets O_i = (t_i, v_i) par v_i/t_i décroissant
R \leftarrow T // Reste libre dans le sac-à-dos
pour i = 1 à n (dans l'ordre du tri) faire
    si t_i \leq R alors
   x_i \leftarrow 1
R \leftarrow R - t_i
    sinon
    \begin{array}{c|c} x_i \leftarrow R/t_i \\ R \leftarrow 0 \end{array}
retourner (x_1, \ldots, x_n)
```

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport quantité - prix

```
Algorithme: SADFRACGLOUTON(O, T)
Trier les objets O_i = (t_i, v_i) par v_i/t_i décroissant
R \leftarrow T // Reste libre dans le sac-à-dos
pour i = 1 à n (dans l'ordre du tri) faire
    si t_i \leq R alors
     x_i \leftarrow 1
R \leftarrow R - t_i
    sinon
      \begin{array}{c} x_i \leftarrow R/t_i \\ R \leftarrow 0 \end{array}
retourner (x_1, \ldots, x_n)
```

Lemme

La complexité de SÀDFRACGLOUTON est $O(n \log n)$.

Validité de l'algorithme

Lemme

Soit $O = \{(t_1, v_1), \ldots, (t_n, v_n)\}$ un ensemble d'objets et T une taille de sac-à-dos, où $v_1/t_1 \geq v_2/t_2 \geq \cdots \geq v_n/t_n$. Alors il existe une solution optimale (x_1, \ldots, x_n) sur l'entrée (O, T) telle que

 (x_2, \ldots, x_n) est solution optimale sur l'entrée $\{(t_2, v_2), \ldots, (t_n, v_n)\}$ et $T - t_1$

Preuve: voir TD...

→ Optimalité de SàDFRACGLOUTON d'après le théorème des algorithmes gloutons!

1. Exemple 1 : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 100 m
- ▶ toutes les maisons doivent être couvertes

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 100 m
- ▶ toutes les maisons doivent être couvertes

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 100 m
- ▶ toutes les maisons doivent être couvertes

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k$. log n antennes

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k$. log n antennes

- Notons n_t le nbr de maisons non-couvertes après l'étape t.
 - $ightharpoonup n_0 = n$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k$. log n antennes

- Notons n_t le nbr de maisons non-couvertes après l'étape t.
 - $ightharpoonup n_0 = n$
 - Dans la solution optimale, k antennes couvrent toutes les maisons, et en particulier les n_t maisons non-couvertes après l'étape t
 - ▶ Il existe donc un emplacement qui va permettre de couvrir au moins $\frac{n_t}{k}$ maisons non-couvertes.

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k$. log n antennes

- ▶ Notons *n_t* le nbr de maisons *non-couvertes* après l'étape *t*.
 - $ightharpoonup n_0 = n$
 - Dans la solution optimale, k antennes couvrent toutes les maisons, et en particulier les n_t maisons non-couvertes après l'étape t
 - ▶ Il existe donc un emplacement qui va permettre de couvrir au moins $\frac{n_t}{l}$ maisons non-couvertes.
 - On a: $n_{t+1} \le n_t \frac{n_t}{k} = (1 \frac{1}{k}).n_t$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k$. log n antennes

- Notons n_t le nbr de maisons non-couvertes après l'étape t.
- ▶ En résumé : $n_0 = n$ et pour tout $t \ge 0$ on a $n_{t+1} \le (1 \frac{1}{k}).n_t$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k$. log n antennes

- Notons n_t le nbr de maisons non-couvertes après l'étape t.
- ▶ En résumé : $n_0 = n$ et pour tout $t \ge 0$ on a $n_{t+1} \le (1 \frac{1}{k}).n_t$
- Comme pour x>0 on a $1-x\leq 2^{-x}$, on obtient $n_{t+1}\leq 2^{-\frac{1}{k}}.n_t$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k$. log n antennes

- Notons n_t le nbr de maisons non-couvertes après l'étape t.
- ▶ En résumé : $n_0 = n$ et pour tout $t \ge 0$ on a $n_{t+1} \le (1 \frac{1}{k}).n_t$
- ► Comme pour x > 0 on a $1 x \le 2^{-x}$, on obtient $n_{t+1} \le 2^{-\frac{1}{k}}.n_t$
- ▶ D'où, $n_t \le 2^{-\frac{1}{k}}.n_{t-1} \le 2^{-\frac{2}{k}}.n_{t-2} \le \cdots \le 2^{-\frac{t}{k}}.n_0 = 2^{-\frac{t}{k}}.n$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : exercice de TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k \cdot \log n$ antennes

- Notons n_t le nbr de maisons non-couvertes après l'étape t.
- ▶ En résumé : $n_0 = n$ et pour tout $t \ge 0$ on a $n_{t+1} \le (1 \frac{1}{k}).n_t$
- Comme pour x > 0 on a $1 x \le 2^{-x}$, on obtient $n_{t+1} \le 2^{-\frac{1}{k}} \cdot n_t$
- ▶ D'où, $n_t \le 2^{-\frac{1}{k}}.n_{t-1} \le 2^{-\frac{2}{k}}.n_{t-2} \le \cdots \le 2^{-\frac{t}{k}}.n_0 = 2^{-\frac{t}{k}}.n$
- On est sûr d'avoir couvert toutes les maisons dès que $2^{-\frac{t}{k}}$, n < 1, c-à-d, t > k. $\log n$

Conclusion

Bilan

Pourquoi des algorithmes gloutons?

- ► Algorithmes souvent simples et rapides...
- ... parfois optimaux
- ... parfois avec de bonnes propriétés
- ... parfois qui marchent en pratique
- ... parfois parfaitement inutiles!

Bilan

Pourquoi des algorithmes gloutons?

- Algorithmes souvent simples et rapides...
- ... parfois optimaux
- ... parfois avec de bonnes propriétés
- ... parfois qui marchent en pratique
- ... parfois parfaitement inutiles!

Comment les utiliser?

- 1. Chercher un choix glouton
- 2. Démontrer que c'est un bon choix (en théorie ou pratique)
- 3. Étudier la complexité obtenue