FCC TEST REPORT Report No.: EMC-FCC-R0099

5.9 RF Exposure

5.9.1 Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

Elimics for Maximum 1 elimissive Exposure. He exposure is euleurated.					
Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time	
	Strength [V/m]	Strength [A/m]	$[mW/cm^2]$	[minute]	
Limits for General Population / Uncontrolled Exposure					
0.3 ~ 1.34	614	1.63	*(100)	30	
1.34 ~ 30	824 /f	2.19/f	$*(180/f^2)$	30	
30 ~ 300	27.5	0.073	0.2	30	
300 ~ 1500	/	/	f/1500	30	
1500 ~ 15000	/	/	1.0	30	

f=frequency in MHz, *= plane-wave equivalent power density

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$
 $\Longrightarrow R = \sqrt{PG/4\pi S}$

S=power density [mW/cm²]

P=Power input to antenna [mW]

G=Power gain of the antenna in the direction of interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna [cm]

EUT: Maximum peak output power = 2.92 [mW](= 4.65 dBm) Antenna gain=0.28 (= -5.5 [dBi])				
100 mW, at 20 cm from an antenna 6[dBi]	$S = PG/4\pi R^2 = 100 \times 3.98 / (4 \times \pi \times 400)$ = 0.079 2 [mW/cm ²] < 1.0 [mW/cm ²]			
2.92 mW, at 20 cm from an antenna -5.5 [dBi]	$S = PG/4\pi R^2 = 0.000 \ 16 \ [mW/cm^2] < 1.0 \ [mW/cm^2]$			
2.92 mW, at 2.5 cm from an antenna -5.5 [dBi]	$S = PG/4\pi R^2 = 0.010 \ 47 \ [mW/cm^2] < 1.0 \ [mW/cm^2]$			

5.9.2 RF Exposure Compliance Issue

The information should be included in the user's manual:

This appliance and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter. A minimum separation distance of 20 cm must be maintained between the antenna and the person for this appliance to satisfy the RF exposure requirements.