Теория вероятностей и математическая статистика. БПИ201. Домашнее задание №6

Автор: Сурова София, БПИ191 25 октября 2021

Замечание. Задачи взяты из задачника «Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами», А.И. Кибзун, Е.Р. Горяинова, А.В. Наумов, 2007.

стр.91, №20

$$\stackrel{\frown}{CB} X \sim \mathbf{R}(-1,1)$$
. Сравнить $P(\{X < EX\})$ и $P(\{X > EX\})$. Найти $P(\{|X - EX| < \sqrt{DX}\})$.

Решение

 $X \sim \mathbf{R}(-1,1)$ - равномерное распределение на отрезке [a,b] = [-1,1] с функцией распределения

$$F(x) = \begin{cases} 0, x < -1 \\ \frac{x-a}{b-a} = \frac{x+1}{2}, -1 \le x \le 1 \\ 1, x > 1 \end{cases} EX = \frac{b+a}{2} = 0, \ DX = \frac{(b-a)^2}{12} = \frac{1}{3}$$

1)
$$P({X < EX}) = P({X < 0}) = P({X > 0}) = P({X > EX})$$

2)
$$P(\{|X - EX| < \sqrt{DX}\}) = P(\{|X - 0| < \sqrt{1/3}\}) = P(\{-\sqrt{1/3} < X < \sqrt{1/3}\}) = F(\sqrt{1/3}) - F(-\sqrt{1/3}) = \frac{1 + \sqrt{1/3}}{2\sqrt{1/3}} - \frac{11 + \sqrt{1/3}}{2\sqrt{1/3}} = \frac{1}{\sqrt{3}}$$

Ответ:
$$P(\{X < EX\}) = P(\{X > EX\}), P(\{|X - EX| < \sqrt{DX}\}) = \frac{1}{\sqrt{3}}$$

стр.91, №22

$$\mathrm{CB}\ X \sim \mathbf{E}(1)$$
. Сравнить $P\{X < EX\}$ и $P\{X < DX\}$

Решение

 $\mathbf{E}(\lambda)$ - экспоненциальное распределение, $\lambda>0$

$$EX = \frac{1}{\lambda}, \quad DX = \frac{1}{\lambda^2}, \quad F(x) = \begin{cases} 0, x < 0 \\ 1 - e^{-\lambda x}, x \ge 0 \end{cases}$$

$$EX = DX = 1$$
, то есть $P\{X < EX\} = P\{X < DX\} = P\{X < 1\} = F(1) = 1 - e^{-x}$

Ответ: равны $1 - e^{-x}$

стр.93, №36

Время X безотказной работы станка имеет экспоненциальное распределение. Вероятность того, что станок не откажет за пять часов работы равна 0.60653. Найти $EX,\,DX,\,E(X^2)$

Решение

Пусть X - время безотказной работы станка, тогда $X \sim \mathbf{E}(\lambda)$.

$$P(\{X > 5\}) = 1 - P(\{X \le 5\}) = 1 - F(5) = 1 - (1 - e^{-5\lambda}) = e^{-5\lambda} = 0.60653 \Rightarrow \lambda = -\frac{\ln 0.60653}{5} = 0.1$$

$$EX = \frac{1}{\lambda} = \frac{1}{0.1} = 10$$

$$DX = \frac{1}{\lambda^2} = \frac{1}{0.1^2} = 100$$

$$E(X^2) = DX + (EX)^2 = 100 + 10^2 = 200$$

стр.93, №38

Найти p-квантиль распределения $\mathbf{R}(a,b)$

Решение

Квантилью уровня $p \ (0 называют <math>Q_p$ такое, что $F(Q_p) = p$.

Примечание. В некоторых случаях, когда F(x) имеет разрывы или не монотонна, $Q_p = min\{q: F(q) \ge p\}$

 $\mathbf{R}(a,b)$ - равномерное распределение

$$F(x) = \begin{cases} 0, x < a \\ \frac{x - a}{b - a}, x \in [a, b] \\ 1, x > b \end{cases}$$

$$F(Q_p) = \frac{Q_p - a}{b - a} = p \Rightarrow Q_p = p(b - a) + a$$

Ответ: $Q_p = p(b - a) + a$

стр.93, №46

Функция распределения СВ X имеет вид

$$F(x) = \begin{cases} 1 - e^{-2x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Найти $E[(X-4)(5-X)], P\{X \leq EX\}$ и D(3-2X)

Решение

Если вы поняли, что F(x) - функция распределения $\mathbf{E}(2)$, то вы огромные умнички!

Действительно,
$$X \sim \mathbf{E}(2)$$
, тогда

Действительно,
$$X\sim \mathbf{E}(2)$$
, тогда
$$1)\ E[(X-4)(5-X)]=E(5X-X^2-20+4X)=-E(X^2)+9EX-20$$

$$EX=\frac{1}{\lambda}=0.5$$

$$E(X^2) = DX + (EX)^2 = \frac{1}{\lambda^2} + 0.5^2 = 0.25 + 0.25 = 0.5$$

$$E[(X - 4)(5 - X)] = -E(X^2) + 9EX - 20 = -0.5 + 9 * 0.5 - 20 = -16$$

2)
$$P\{X \le EX\} = P\{X \le 0.5\} = F(0.5) = 1 - e^{-1}$$

3)
$$D(3-2X) = 4DX = 4*0.25 = 1$$

Ответ: -16, $1 - e^{-1}$, 1

Плотность вероятности $\operatorname{CB} X$ имеет вид

$$f(x) = \begin{cases} cx, x \in [0, 1] \\ 0, x \notin [0, 1] \end{cases}$$

Найти константу $c, EX, DX, P\{0.5 < X < 2\}$. Построить график функции распределения F(x). Найти квантиль уровня 1/9.

Решение

1) Плотность вероятности должна удовлетворять условию нормировки $\int_{-\infty}^{\infty} f(x) dx = 1$.

$$\int\limits_{-\infty}^{\infty}f(x)dx=\int\limits_{-\infty}^{0}0dx+\int\limits_{0}^{1}cxdx+\int\limits_{1}^{\infty}0dx=\frac{cx^{2}}{2}\Big|_{0}^{1}=\frac{c}{2}=1\Rightarrow c=2$$

2)
$$EX = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1} 2x^{2} dx = \frac{2x^{3}}{3} \Big|_{0}^{1} = \frac{2}{3}$$

3) $DX = \int\limits_{-\infty}^{\infty} (x-EX)^2 f(x) dx$, однако мы воспользуемся формулой $DX = E(X^2) - (EX)^2$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1} 2x^{3} dx = \frac{2x^{4}}{4} \Big|_{0}^{1} = \frac{1}{2}$$

$$DX = E(X^{2}) - (EX)^{2} = \frac{1}{2} - \frac{4}{9} = \frac{9}{18} - \frac{8}{18} = \frac{1}{18}$$

4) Для начала построим функцию распределения

$$x < 0 \ F(x) = \int_{-\infty}^{x} 0 dt = 0$$

$$x \in [0,1] \ F(x) = \int_{-\infty}^{0} 0 dt + \int_{0}^{x} 2t dt = \frac{2t^{2}}{2} \Big|_{0}^{x} = x^{2}$$

$$x > 1$$
 $F(x) = \int_{-\infty}^{0} 0dt + \int_{0}^{1} 2tdt + \int_{1}^{\infty} 0dt = \frac{2t^{2}}{2} \Big|_{0}^{1} = 1$

$$F(x) = \begin{cases} 0, x < 0 \\ x^2, x \in [0, 1] \\ 1, x > 1 \end{cases}$$

5)
$$P{0.5 < X < 2} = F(2) - F(0.5) = 1 - 0.25 = 0.75$$

6)
$$F(Q_{1/9}) = (Q_{1/9})^2 = \frac{1}{9} \Rightarrow Q_{1/9} = \frac{1}{3}$$

6) $F(Q_{1/9})=(Q_{1/9})^2=\frac{1}{9}\Rightarrow Q_{1/9}=\frac{1}{3}$ Математически уравнению $(Q_{1/9})^2=\frac{1}{9}$ удовлетворяет корень $Q_{1/9}=-\frac{1}{3},$ но $F(-\frac{1}{3})=0\neq\frac{1}{9}$

Ответ:
$$c = 2$$
, $EX = \frac{2}{3}$, $DX = \frac{1}{18}$, $P\{0.5 < X < 2\} = 0.75$, $Q_{1/9} = \frac{1}{3}$

стр.94, №48

Заданы две CB $X \sim R(0,1)$ и $Y \sim E(1)$. Сравнить вероятности того, что каждая из них не превышает по

$$F_X(x) = \begin{cases} 0, x < 0 \\ x, x \in [0, 1] \\ 1, x > 1 \end{cases} \qquad F_Y(x) = \begin{cases} 0, x < 0 \\ 1 - e^{-x}, x \ge 0 \end{cases}$$

$$\begin{split} &P(\{-2 \le X \le 2\}) = F_X(2) - F_X(-2) = 1 - 0 = 1 \\ &P(\{-2 \le Y \le 2\}) = F_Y(2) - F_Y(-2) = 1 - e^{-2} - 0 = 1 - e^{-2} \approx 0.8647 \\ &\Rightarrow P(\{-2 \le X \le 2\}) > P(\{-2 \le Y \le 2\}) \end{split}$$

Ответ:
$$P(\{-2 \le X \le 2\}) = 1 > 1 - e^{-2} = P(\{-2 \le Y \le 2\})$$

стр.94, №52

CB $X \sim R(-1,8)$. Найти точку, в которой функция распределения равна 1/3.

$$F_X(x) = \begin{cases} 0, x < -1 \\ \frac{x+1}{9}, x \in [-1, 8] \\ 1, x > 8 \end{cases}$$

Точка, в которой функция распределения равна 1/3 - квантиль уровня 1/3, то есть $F(Q_{1/3})=\frac{Q_{1/3}+1}{9}=\frac{1}{3}\Rightarrow Q_{1/3}=2$

$$F(Q_{1/3}) = \frac{Q_{1/3} + 1}{9} = \frac{1}{3} \Rightarrow Q_{1/3} = 2$$

Ответ: $Q_{1/3} = 2$

стр.94, №54

Найти p-квантиль экспоненциального закона распределения с параметром λ .

Решение

Напомню, что квантилью уровня $p \ (0 называют <math>Q_p$ такое, что $F(Q_p) = p$.

$$\begin{split} F(x) &= \begin{cases} 0, x < 0 \\ 1 - e^{-\lambda x}, x \geq 0 \end{cases} \\ F(Q_p) &= 1 - e^{-\lambda Q_p} = p \Rightarrow e^{-\lambda Q_p} = 1 - p \Rightarrow -\lambda Q_p = \ln(1-p) \Rightarrow Q_p = -\frac{\ln(1-p)}{\lambda} \end{split}$$
 Ответ: $Q_p = -\frac{\ln(1-p)}{\lambda}$