PSAF- Feuille d'exercices 3

Exercice 1. (Espérance conditionnelle)

Dans cet exercice X et Y sont deux v.a. définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ espace de probabilités, et \mathcal{H} est une sous-tribu de \mathcal{F} . On suppose toujours que $\mathbb{E}|X| < \infty$. On se propose de montrer trois propriétés simples de l'espérance conditionnelle.

1) Supposons que X est \mathcal{H} -mesurable. Montrer que

$$\mathbb{E}[X|\mathcal{H}] = X$$
 p.s.

2) Supposons que Y est \mathcal{H} -mesurable et bornée. Montrer que

$$\mathbb{E}[YX|\mathcal{H}] = Y\mathbb{E}[X|\mathcal{H}]$$
 p.s.

 ${\bf NB}$: la condition 2) du théorème-définition 2.2.1 du cours peut être remplacée de façon équivalente par

2') $\forall Z$ v.a. \mathcal{H} -mesurable et bornée, $\mathbb{E}[Z\mathbb{E}[X|\mathcal{H}]] = \mathbb{E}[ZX]$.

Supposons maintenant que Y est \mathcal{H} -mesurable mais non bornée (mais telle que $\mathbb{E}|XY|<\infty$). Montrer qu'on a le même résultat.

3) Supposons que X est indépendante de \mathcal{H} (i.e. $\forall A \in \mathcal{H}$ alors $\mathbf{1}_A$ est indépendante de X). Montrer que

$$\mathbb{E}[X|\mathcal{H}] = \mathbb{E}[X]$$
 p.s.

Exercice 2.

Soit X définie sur $(\Omega, \mathcal{F}, \mathbb{P})$ avec $\mathbb{E}|X| < \infty$, et \mathcal{H} une sous-tribu de \mathcal{F} .

- 1) Montrer que $\mathbb{E}(X|\mathcal{H})$ est intégrable.
- 2) Montrer que si $X \ge 0$ p.s. alors $\mathbb{E}(X|\mathcal{H}) \ge 0$ p.s. (monotonie de l'espérance conditionnelle).

Exercice 3.

On se propose de résoudre l'exercice 2.1.1 du cours.

On en rappelle le contexte: X et Y sont deux variables aléatoires discrètes, à valeurs respectivement dans E et E' dénombrables. On suppose pour simplifier le raisonnement et pour fixer les idées que E' est équipé de la tribu $\mathcal{E}' = \mathcal{P}(E')$. On a $\mathbb{E}(X|Y)$ définie par $\mathbb{E}(X|Y) = \varphi(Y)$ où

$$\varphi(y):=\mathbb{E}(X|\{Y=y\})=\frac{\mathbb{E}[X\mathbf{1}_{\{Y=y\}}]}{\mathbb{P}(Y=y)},\ y\in E',$$

(on ne note pas $\mathbb{E}(X|Y=y)$ pour bien faire la différence avec la nouvelle notion d'espérance conditionnelle; mais ces quantités vont être les mêmes !). On veut montrer que

- i) La v.a. $\mathbb{E}(X|Y)$ est $\sigma(Y)$ -mesurable.
- ii) Pour tout A dans $\sigma(Y)$ on a $\mathbb{E}\big[\mathbf{1}_A\mathbb{E}(X|Y)\big] = \mathbb{E}\big[\mathbf{1}_A\,X\big].$

Exercice 4.

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités et \mathcal{G} une sous-tribu de \mathcal{F} . Montrer la formule de Bayes : pour tout $G \in \mathcal{G}$

$$\mathbb{P}(G|A) = \frac{\int_G \mathbb{P}(A|\mathcal{G}) \ d\mathbb{P}}{\int_{\Omega} \mathbb{P}(A|\mathcal{G}) \ d\mathbb{P}} \ .$$

Exercice 5.

Montrer le Lemme de Fatou : Soit X_1, X_2, \dots une suite de v.a. non négatives alors

$$\mathbb{E}(\liminf X_n | \mathcal{F}) \leq \liminf \mathbb{E}(X_n | \mathcal{F}) \ p.s.$$