EE 236 Electronic Devices Lab Lab - 01

Anupam Rawat, 22b3982

 10^{th} August, 2024

Diode I/V characterization and Band Gap of Semiconductors

Figure 1: Circuit Diagram

1 Plot I_D v/s V_D for all five diodes

Figure 2: Blue diode characteristics

Figure 3: Green diode characteristics

Figure 4: Red diode characteristics

Figure 5: White diode characteristics

Figure 6: IN4007 diode characteristics

2 Plot $\log(I_D)$ v/s V_D for all the five diodes

Figure 7: Blue diode $\log(I_D$ v/s V_D characteristics

Figure 8: Green diode $\log(I_D \text{ v/s } V_D \text{ characteristics})$

Figure 9: White diode $\log(I_D \text{ v/s } V_D \text{ characteristics})$

Figure 10: Red diode $\log(I_D$ v/s V_D characteristics

Figure 11: IN4007 diode $\log(I_D)$ v/s V_D characteristics

Diode Name	n (ideality)	Is (sat curr, A)	Intercept	
Blue	8.4692	8.57 nA	-18.5742	
Green	5.7439	11.165 pA	-25.2182	
White	4.5878	0.421 pA	-28.4955	
Red	3.7236	13.45 pA	-25.0317	
IN4007	2.2164	41.06 nA	-17.0081	

 ${\bf Table\ 1:\ Diode\ Characteristics:\ Ideality\ Factor,\ Saturation\ Current,\ and\ Intercept}$

3 Calculate band gap E_g from emission wavelengths

Material	Lambda (nm)	Eg (eV)
Blue	455	2.7253
Green	530	2.3396
White	450	2.7556
Red	631.25	1.9644
IN4007	1127.28	1.0999

Table 2: Material, Wavelength, and Energy Gap

4 Plot V_{γ} v/s E_g

Material	V_{γ} (cut-in) 1mA	$V_{\gamma} \; ext{(cut-in) 5mA}$	$ m V_{\gamma} \; (cut\mbox{-in}) \; 0.05 mA$
Blue	1.74	2.93	0.63
Green	2.76	2.98	2.50
White	2.61	2.75	2.49
Red	1.80	1.91	1.60
IN4007	0.59	0.675	0.45

Table 3: Material and Cut-in Voltage (V_{γ}) at Different Current Levels

V_{γ} (cut-in) at Current	Correlation		
1mA	0.801		
5mA	0.952		
$0.05 \mathrm{mA}$	0.511		

Table 4: Correlation with V_{γ} at Different Current Levels

5 Tabulate E_g , I_s , $V_T H$, n_i and $N_{A,D}$

Material	Λ (nm)	$E_g(\mathbf{eV})$	η	Is (sat curr, A)	V_{γ} (1mA)	\mathbf{n}_i	$\mathbf{N}_{a,d}$
Blue	455	2.7253	8.4692	8.57e-9A	1.74	3.99E-4	1.36e11
Green	530	2.3396	5.7439	1.1165e-11A	2.76	6.65E-1	7.48e22
White	450	2.7556	4.5878	4.21e-13A	2.61	2.23E-4	1.40e18
Red	631.25	1.9644	3.7236	1.345e-11A	1.80	9.05E+2	9.78e17
IN4007	1127.28	1.0999	2.2164	4.106e-10A	0.59	1.50E+10	1.27e15

Table 5: Diode Characteristics Including V_{γ} (cut-in) Voltage at 1mA, Intrinsic Carrier Concentration, Acceptor Concentration, and Thickness

6 Applications of Diodes

6.1 Blue Diode (e.g., GaN-based Blue LED)

6.1.1 Applications:

- Display Technology: Used in RGB displays of TVs, Monitors, and Phones.
- Lighting: Used for high-intensity and energy-efficient light sources.
- Data Storage: Used in Blu-ray players for reading and writing data.

6.2 Green Diode (e.g., GaP-based Green LED)

6.2.1 Applications:

- Signage: Used in outdoor displays, traffic lights, and digital billboards.
- Biomedical Devices: Used in certain medical devices for signaling or optical sensing.

6.3 White Diode (e.g., Phosphor-converted White LED)

6.3.1 Applications:

- General Lighting: Widely used in residential and commercial lighting due to their energy efficiency and long lifespan.
- Automotive Lighting: Common in headlights, taillights, and interior lighting in vehicles.
- Consumer Electronics: Used in device backlighting, such as in phones, tablets, and laptop screens.

6.4 Red Diode (e.g., GaAs-based Red LED)

6.4.1 Applications:

- Signal Indicators: Red LEDs are used in electronic devices to indicate power, alarms, or status.
- Remote Controls: Common in infrared (IR) emitters for remote controls of TVs, air conditioners, etc.
- Low-Level Laser Therapy: Red laser diodes are used in therapeutic applications for pain relief and tissue healing.

6.5 IN4007 Diode (General-Purpose Rectifier Diode)

6.5.1 Applications:

- Power Supplies: Used in rectification circuits to convert AC to DC in power supplies for electronics.
- Reverse Voltage Protection: Protects circuits by blocking reverse voltage in electronic devices.
- *Voltage Clamping*: Used to clamp voltage spikes and protect sensitive components in circuits.

6.6 Conclusion:

Each diode type is chosen based on its specific electrical characteristics, such as forward voltage, current capacity, and switching speed, to suit the particular application.

7 Completion status

All experiments including readings and tabulation was completed in the lab.