กลุ่ม(เช้า-บ่าย) รหัส		ชั้นปีที่ห้อ		วันเดือนปี/
				์ศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ คโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
<u>การทดลองที่ 4</u>	1 Inducto	or & Storage fund	ction (rev.05)	
2. เพื่อศึ	้กษา คุณสมบั	หณะของรีเลย์ (Rela มัติของอินดักเตอร์ (I Storage function	nductor) หรือ คอย	ยล์(coil) หรือ ขดลวด
อุปกรณ์เพิ่มเติม ไม่มี	<u>1</u>			
<u>วัสดูเพิ่มเติม</u>				

1. ไม่มี

กลุ่ม(เช้า-บ่าย)	กลุ่มที่	ชั้นปีที่ห้	٥٩ <u></u>	วันเดือนปี _	/	/	
รหัส	ชื่อ		รหัส	ชื่อ			

การทดลองที่ 4.1 การทดลอง การตรวจสอบรีเลย์

<u>ทฤษฎี</u>

รีเลย์ (relay) คือ อุปกรณ์อิเล็กทรอนิกส์ที่ทำหน้าที่เป็นสวิตซ์ตัด-ต่อวงจร โดยใช้แม่เหล็กไฟฟ้า และการที่จะให้มันทำงานก็ต้องจ่ายไฟให้มัน ตามที่กำหนด เพราะเมื่อจ่ายไฟให้กับตัวรีเลย์ มันจะทำให้หน้าสัมผัสติดกัน กลายเป็นวงจรปิด และตรงข้ามทันทีที่ไม่ได้จ่ายไฟให้มัน มันก็จะ กลายเป็นวงจรเปิด ไฟที่เราใช้ป้อนให้กับตัวรีเลย์ก็จะเป็นไฟที่มาจาก เพาเวอร์ฯ ของเครื่องเรา ดังนั้นทันทีที่เปิดเครื่อง ก็จะทำให้รีเลย์ทำงาน ขั้นตอนการทดลอง

1) สังเกตุและเติมคำตอบให้สมบูรณ์ (Visual Inspection) (ดูเอกสารแนบท้ายประกอ	อบ หน้า 8-9)
--	--------------

ยี่ห้อ(brand) ของ รีเลย์คือ

PART Number คือ

แรงดันของขดลวดที่แนะนำคือ VDC

หน้าสัมผัสรับ แรงดัน / กระแส ได้ VAC / A.

หรือ VAC / A.

เป็นรีเลย์ประเภทไหน (High Power หรือ High Sensitivity)

กลุ่ม(เช้า-บ่าย)	กลุ่มที่	ชั้นปีที่ห้อง		วันเดือนปี .	/	_/
รหัส	ชื่อ		รหัส	ชื่อ		

2) ใช้ DMM (Digital Multimeter, UNI-T)วัดค่าความต้านทานระหว่างจุดต่าง ๆ ของรีเลย์ บันทึกผล

ไฟบวก(สายสีแดง)	1	2	3 C	4 NC	5 NO
	L1	L2	Common	Normal	Normal
ไฟลบ (สายสีดำ)				close	open
1	X				
2		X			
3			X		
4				Х	
5					Х

ตารางที่ 1 ความต้านทาน ระหว่างขาต่าง ๆ ของรีเลย์

- 4) ป้อนไฟ 0 VDC และ 12 VDC เข้าที่ขา 1 และขา 2 ของรีเลย์ ดังรูปที่ 1 วัดความต้านทานระหว่างขาของรีเลย์ตามตาราง

ความต่างศักย์	ความต้านทาน	ความต้านทาน
ระหว่าง	ระหว่าง	ระหว่าง
ขา 1 และ 2	ขา 3 และ ขา 4 (NC)	ขา 3 และ ขา 5 (NO)
0 VDC		
9 VDC		

ตารางที่ 2 ความสัมพันธ์ของ ขา 3, 4 และ 5 เมื่อมีการป้อนไฟ

5) ต่อวงจรดังรูป ตั้งค่า Vs 12 Vdc , Resistor = 100 Ω วัดโวลเตจที่ตกคร่อม Resistor(V_R) และ Inductor(Vcoil) คำนวณค่ากระแส ลงตาราง

กลุ่ม(เช้า-บ่าย)	กลุ่มที่	ชั้นปีที่ห้อง		วันเดือนปี	/	/	′
รหัส	ชื่อ		รหัส	ชื่อ			

Vs	V _R (V _{DC})	$i_R = V_R/100 \text{ (A)}$	Vcoil (V _{DC})	$i_L = V_L/R_L (A)$
12 Vdc				

6) ต่อวงจรดังรูป R=10k Ω ปรับความถี่ Vs เป็น 1 Hz.

ปรับ Vs = 5 Vpp (ดูจาก CH1)

ใช้ oscilloscope วัดค่า Voltage ที่ตกคร่อม Resistor (V_R) บันทึกผล ใช้ oscilloscope วัดค่า Voltage ที่ตกคร่อม Inductor (V_{coil}) บันทึกผล เปลี่ยนค่าความถี่ตามตาราง

No.	Vs	Frequency	V _R (Vpp)	V _{coil} (Vpp)	V _R by DMM	V _{coil} by DMM
					(Vrms, Vac)	(Vrms, Vac)
1	5 Vpp	1 Hz.				
2	5 Vpp	10 Hz.				
3	5 Vpp	100 Hz.				
4	5 Vpp	1 kHz.				
5	5 Vpp	10 kHz.				
6	5 Vpp	100 kHz.				

เมื่อป้อนความถี่สูงขึ้นให้แก่ Inductor ค่าความต้านทานจะเพิ่มขึ้นหรือลดลง

กลุ่ม(เช้า-บ่าย)	กลุ่มที่	ชั้นปีที่ห้อง		วันเดือนปี	/	/	′
รหัส	ชื่อ		รหัส	ชื่อ			

การทดลองที่ 4.2 การเปลี่ยนแปลง โวลเตจของ สวิทช์

<u>ขั้นตอนการทดลอง</u>

1) ต่อวงจรดังรูป Vs = 10 Vdc $R = 1 \text{ k}\Omega$

Vs ____ R

- 2) ตั้งค่า oscilloscope CH2=OFF
- 3) ตั้งค่า oscilloscope CH1 : Volt/div = 2 V/div , ปรับระดับ Ground ให้อยู่เส้นล่างสุดของหน้าจอ
- 4) ตั้งค่า Horizontal menu : Timebase = 100 nS/div
- 5) ตั้งค่า Trigger ของ oscilloscope : Mode = Edge, Source=CH1 , Slope=ขาขึ้น , Sweep = Single , Trigger level = 1V ปุ่ม start/stop จะเป็นสีแดง แสดงว่าขณะนี้ไม่ได้ทำการจับสัญญาณหรือ จับสัญญาณได้แล้ว ปุ่ม start/stop เป็นสีเขียวแสดงว่า รอการจับสัญญาณอยู่
- 6) วัด Voltage คร่อม R ด้วย CH1
- 7) กดปุ่ม run/stop ให้เป็นสีเขียว แล้วทำการเชื่อมต่อสวิทช์ (ปุ่ม start/stop จะกลายเป็นสีแดง) วาดรูปสัญญาณที่ได้ อาจะต้องทำ การทดลองหลายครั้ง เมื่อต้องการวัดใหม่ ต้องกดปุ่ม run/stop เพื่อเป็นการเริ่มใหม่ทุกครั้ง

		ŧ		CH1 =V /
		‡		= s/o
		1 ‡		
		1 1		Mode =
1.***	*******	······	111111111111111111111111111111111111111	Sweep =
		 		Trigger Level
		1 1		1
		+ 1		
		1		<u> </u>
ค่าสูงสุดที่อ่านไ	ได้จากออสซิสโลสโคป	คือV		
		y ที่ตั้งไว้คือVdc	4 9	
เพว.เรอะเว ผ.เ	สูงสุดพอานเต จงมาก	กว่า ค่าที่ power supply จ่าย	J 601	

กลุ่ม(เช้า-บ่าย)	กลุ่มที่	ชั้นปีที่ห้อง		วันเดือนปี	/_	/_	
รหัส	ชื่อ		รหัส	ชื่อ			

การทดลองที่ 4.3 วัดค่าการชาร์จของ capacitor

<u>ขั้นตอนการทดลอง</u>

- 1) ต่อวงจรดังรูป Vs = 12 Vdc $R = 1 \text{ k}\Omega$ $C = 100 \mu\text{F}$
- 2) ใช้ storage function เหมือน การทดลอง 4.2

4) เชื่อมต่อสวิทช์ บันทึกผล (ถ้าจะทำการวัดใหม่ ให้ทำการ discharge Capacitor ก่อน โดยการต่อ ตัวต้านทาน 10 Ω ระหว่าง ขาทั้ง สองของ คาปาซิเตอร์ จนกระทั่งค่าความต่างศักย์ระหว่างขาคาปาชิเตอร์เป็นศูนย์)

3) ปรับค่า menu ของ CH1 , Horizontal และ TRIGGER ให้เหมาะสม (นักศึกษาทดลองกำหนดเอง)

CH1 =V / div							
Timebase							
=s/div							
Trigger Mode =							
Sweep =							
Trigger Level							
=							

<u>คำถาม</u>

- 1) เวลา จาก $V_C = 0$ % ถึง $V_C = 50$ % คือ
- 2) เวลา จาก $V_C = 0$ % ถึง $V_C = 90$ % คือ
- 3) เวลา จาก $V_C = 0$ % ถึง $V_C = 100$ % คือ
- 4) เวลา จาก $V_C = 10 \%$ ถึง $V_C = 90\%$ คือ

กลุ่ม(เช้า-บ่าย) _	กลุ่มที่	ชั้นปีที่	_ห้อง	วันเ	ดือนปี	_/	/	
รหัส	ชื่อ		รหัส	ชื่อ				

C€ ATS0411191

ORDERING CODE 订购代码

CONTACT DATA 触点参数:

Contact Form	触点形式	1A/1B/1C
Contact Material	触点材料	Ag Alloy
Contact Ratings	触点负载	7A 250VAC/30VDC 10A 250VAC/30VDC 15A 120VAC
Max Switching Voltage	最大转换电压	250VAC/30VDC
Max Switching Current	最大转换电流	15A
Max Switching Power	最大转换功率	2770VA/240W
Initial Contact Resistance	接触电阻(首次)	50m Ω Max at6VDC 1A
Life Expectancy Electrical	电气寿命	100,000 Operations (rated load)
Life Expectancy Mechanical	机械寿命	10,000,000 Operations (no load)

GENERAL DATA 一般参数:

Insulation Resistance		绝缘阻值	100M \(\Omega\) min at500VDC		
Dielectric Strength Between Open Contacts		触点问耐压	750VAC 50-60HZ (1 minute)		
Dielectric Strength Between Contacts And Coil		触点与线圈间耐压	1500VAC 50-60HZ (1 minute)		
Operate Time		吸合时间	10ms max		
Release Time		释放时间	5ms max		
Ambient Temperature		环境温度	-40°Cto+85°C		
Shock Resistance	Malfunction	动作极限	10G		
市市	Destruction	破坏极限	100G		
Vibration Resistance		振动	10-55Hz,1.5mm double amplitude		
Ambient humidity		湿度	40-85% RH		
Weight		重量	Approx10g		
Safety Standard		安全标准	ULTUV CE CQC		

กลุ่ม(เช้า-บ่าย) _	กลุ่มที่	ชั้นปีที่ห้อง		วันเดือนปี	/	_/
รหัส	สื่อ		รหัส	สื่อ		

COIL DATA 线圈参数: (@20℃)

Rated Voltage 額定电压	Coil Resistance ♀(±10%) 线圈阻值		Max Operate Voltage 最大吸合电压	Min Release Voltage 最小释放电压	Max Applied Voltage 最大允许电压	
(VDC)	0.36W	0.45W	(VDC)	(VDC)	(VDC)	
3	25	20	2.25	0.15	3.9	
5	70	55	3.75	0.25	6.5	
6	100	80	4.5	0.3	7.8	
9	225	180	6.75	0.45	11.7	
12	400	320	9	0.6	15.6	
24	1600	1280	18	1.2	31.2	
48	6400±15%	5120±15%	36	2.4	62.4	

ORDERING CODE 订购代码

ปีการศึกษา 1/2560