Correction des coordonnées

Eric Marcon

Vincyane Badouard

12 décembre 2024

Résumé

Repositionnement des arbres du projet Alt.

1 Problème à traiter

Les petits arbres de 9 hectares de la parcelle 16 de Paracou sont localisés sur le terrain dans des quadrats de 10m sur 10m, eux-mêmes regroupés dans des sous-parcelles d'un hectare dont la position des sommets (nommés B.1 à B.13) est connue très précisément grâce à un relevé de géomètre.

```
library("tidyverse")
# Paracou 16 shapefile
library("terra")
library("sf")
vect("data/Plot16.shp") %>%
  st_as_sf() -> paracou_16
# Surveyor's points
library("readxl")
read_xlsx("data/plots.xlsx", sheet = "surveyor") %>%
 as.data.frame() -> surveyor
 st_as_sf(coords = c("x_utm","y_utm")) %>%
st_set_crs(crs(paracou_16)) -> surveyor.sf
library("ggspatial")
ggplot() +
 geom_sf(data = st_cast(paracou_16)) +
  geom_sf_text(data = surveyor.sf, aes(label = point), col = "red") +
  ggtitle("Paracou P16 9ha - Surveyor's points") +
  annotation_scale(location = "br") +
  annotation_north_arrow(
    pad_y = unit(1, "cm"),
    style = north_arrow_nautical()
```


Les sous-parcelles (« subplots ») sont définies par leurs quatre coins (hautgauche, haut-droit, bas-droit, et bas-gauche qui est l'origine du repère local) et numérotées.

```
read_xlsx("data/plots.xlsx", sheet = "subplots") %>%
  as.data.frame() -> subplots
# Example
subplots[1:3, ]
     subplot up_left up_right down_right down_left
## 1
         13
                 B.5
                          B.4
                                     B.7
## 2
                 B.4
                          в.3
                                     B.8
          14
                                                B.7
## 3
                 В.3
                                     B.1
                                                B.8
          15
```

Les quadrats de 10m sont marqués par des piquets. Leur position est approximative (la progression et les mesures d'angle et de distance en sous-bois sont difficiles) mais les distances entre chaque piquet et ses voisins ont été remesurées précisément au laser.

Enfin, les arbres ont été positionnés dans les quadrats à partir de leur distance aux bords, avec une certaine incertitude.

L'objectif est de replacer le plus précisément possible les arbres dans les sous-parcelles pour obtenir leurs coordonnées dans le référentiel standard local, UTM zone 26N.

2 Méthode

Dans un premier temps, les quadrats seront repositionnés à l'intérieur des sous-parcelles, les arbres seront ensuite repositionnés dans chaque quadrat. Pour

cela:

- 1. Les coordonnées des sous-parcelles doivent être transformées en coordonnées locales, dont l'origine est le coin inférieur gauche de chacune d'elles.
- 2. Les quadrats doivent être repositionnés dans chaque sous-parcelle, sur la base des hypothèses suivantes :
 - les limites basse et gauche des sous-parcelles parcourues sur le terrain pour y placer les quadrats sont rectilignes,
 - elles ne sont pas forcément orthogonales : l'angle précis de la base du repère est donné par les mesures du géomètre,
 - les distances mesurées au laser sont exactes, ce qui permet de calculer de proche en proche la position des points constituant les quadrats par triangulation, à partir de l'origine du repère de la sous-parcelle.
- 3. les points obtenus sont replacés dans les limites précises de chaque sousparcelle par interpolation,
- 4. enfin, les arbres sont repositionnés dans les limites précises de chaque quadrat par interpolation.

3 Coordonnées locales des sous-parcelles

Les sous-parcelles doivent être projetées dans leur système de coordonnées locales : le point en bas à gauche est l'origine du repère.

Le passage des coordonnées locales aux coordonnées UTM est un changement de base (selon les coordonnées des vecteurs unitaires en UTM) suivie d'une translation (selon la position du point d'origine de la sous-parcelle).

3.1 Rotation

La matrice de changement de base (des coordonnées locales aux coordonnées UTM) est constituée des coordonnées des vecteurs unitaires de la nouvelle base dans le repère de l'ancienne.

la fonction local2utm() retourne cette matrice pour la sous-parcelle choisie.

```
local2utm <- function(subplot, surveyor, subplots) {
    # Find the points
    is_the_supbplot <- subplots$subplot == subplot
    is_origin <- (surveyor$point == subplots[is_the_supbplot, "down_right"])
    is_down_right <- (surveyor$point == subplots[is_the_supbplot, "down_right"])
    is_up_left <- (surveyor$point == subplots[is_the_supbplot, "up_left"])

# X-axis vector

i_dx_utm <- surveyor[is_down_right, "x_utm"] - surveyor[is_origin, "x_utm"]
    i_dy_utm <- surveyor[is_down_right, "y_utm"] - surveyor[is_origin, "y_utm"]
    i_length <- sqrt(i_dx_utm^2 + i_dy_utm^2)

# Unit vector

i <- c(i_dx_utm, i_dy_utm) / i_length

# Y-axis vector

j_dx_utm <- surveyor[is_up_left, "x_utm"] - surveyor[is_origin, "x_utm"]
    j_dy_utm <- surveyor[is_up_left, "y_utm"] - surveyor[is_origin, "y_utm"]
    j_length <- sqrt(j_dx_utm^2 + j_dy_utm^2)

# Unit vector

j <- c(j_dx_utm, j_dy_utm) / j_length</pre>
```

Le passage des coordonnées UTM aux coordonnées locales utilise la matrice inverse :

```
# local coordinates of subplot 13, expected to be (100, 0)
local2utm(13, surveyor, subplots) %>%
# UTM to local
solve() %*%
# UTM vector X
c(
    surveyor[surveyor$point == "B.7", "x_utm"] -
        surveyor[surveyor$point == "B.6", "x_utm"],
    surveyor[surveyor$point == "B.7", "y_utm"] -
        surveyor[surveyor$point == "B.6", "y_utm"]
)
```

[,1] ## i 1.000892e+02 ## j 3.136823e-15

3.2 Coordonnées locales

Les coordonnées locales des sommets des sous-parcelles sont calculées :

```
# Get the UTM coordinates of the points
subplots %>%
  # add coordinates of point up_left
  left_join(surveyor, by = join_by("up_left" == "point")) %>%
  # delete the altitude
  select(-z_utm) %>%
  # rename the columns according to the chosen point
  rename(up_left_x_utm = x_utm, up_left_y_utm = y_utm) %>%
  # repeat all three steps for up_right
  left_join(surveyor, by = join_by("up_right" == "point")) %>%
  select(-z_utm) %>%
  rename(up_right_x_utm = x_utm, up_right_y_utm = y_utm) %>%
  # repeat all three steps for down_right
left_join(surveyor, by = join_by("down_right" == "point")) %>%
  select(-z_utm) %>%
  rename(down_right_x_utm = x_utm, down_right_y_utm = y_utm) %>%
  # repeat all three steps for down_left
  left_join(surveyor, by = join_by("down_left" == "point")) %>%
  select(-z_utm) %>%
  rename(down_left_x_utm = x_utm, down_left_y_utm = y_utm) ->
  subplots
# Prepare the columns
subplots %>%
  mutate(
    # Local coordinates before interpolation
   up_left_x_field = NA, up_left_y_field = NA,
up_right_x_field = NA, up_right_y_field = NA,
down_right_x_field = NA, down_right_y_field = NA,
```

```
down_left_x_field = NA, down_left_y_field = NA
  ) -> subplots
# Get the coordinates
for (i in seq_len(nrow(subplots))) {
  subplot <- subplots$subplot[i]</pre>
  # Transition matrix
  utm2local <- solve(local2utm(subplot, surveyor, subplots))</pre>
  # Relative UTM coordinates
  # substract the coordinates of the origin to that of all points
  # to get relative coordinates
  # do.call transforms the obtained list into a vector
  do.call('c', subplots[i, 6:13] - rep(subplots[i, 12:13], 4)) %>%
    # Make a matrix, columns are realtive \bar{X} and Y
    matrix(nrow = 4, ncol = 2, byrow = TRUE) -> utm_relative
  # Multiply by the transition matrix
  utm2local %*% t(utm_relative) %>%
    # Make a vector and save it into subplots
    as.vector() ->
    subplots[i, 14:21]
```

L'orthogonalité entre abscisse et ordonnée des sous-parcelles est vérifiée par la nullité du produit scalaire des vecteurs constitués par les bordures bas et gauche des sous-parcelles.

```
## 1 subplot scalar_product

## 1 13 3.144020e-13

## 2 14 -3.414544e-13

## 3 15 4.726148e-13

## 4 18 8.368951e-15

## 5 19 3.707301e-13

## 6 20 3.469311e-13

## 7 23 5.171196e-14

## 8 24 -5.759519e-13

## 9 25 -1.905517e-13
```

Le dataframe subplots contient maintenant les coordonnées des sousparcelles en UTM (up_left_x_utm et 7 autres) et dans le repère de terrain (up_left_x_field et 7 autres), qui sont proches de 0 ou 100.

4 Position des quadrats

4.1 Fonction de triangulation

On connaît la position des points à gauche (x_{left}, y_{left}) et en dessous (x_{down}, y_{down}) du point à placer (à l'intersection des deux cercles), ainsi que les distances entre eux et le point à placer : d_{left} et d_{down} . Par construction de l'algorithme, le point à placer est situé au dessus et à droite des points précédents.

Par le théorème de Pythagore, on connaît :

• la distance entre les points de gauche et du bas :

$$d = \sqrt{(x_{left} - x_{down})^2 + (y_{left} - y_{down})^2},$$

 $\bullet\,$ et deux équations reliant a et h

$$a^2 + h^2 = d_{left}^2, (1)$$

$$(d-a)^2 + h^2 = d_{down}^2. (2)$$

La première équation du système permet d'isoler \boldsymbol{h} :

$$h^2 = d_{left}^2 - a^2.$$

En substituant h^2 dans la deuxième équation

$$(d-a)^2 + d_{left}^2 - a^2 = d_{down}^2,$$

d'où

$$a = \frac{d^2 + d_{left}^2 - d_{down}^2}{2d}$$

 et

$$h = \sqrt{d_{left}^2 - a^2}.$$

Les distances entre les points précédents et le point suivant sont calculées en projetant a et h sur les axes du repère. Pour cela, l'angle α est calculé :

$$\alpha = \arctan \frac{x_{down} - x_{left}}{y_{left} - y_{down}}.$$

Il reste à projeter :

$$d_{left} = x_a + x_h$$

$$= a \sin \alpha + h \cos \alpha$$
(3)

et

$$d_{down} = y_a + y_h$$

= $(d-a)\sin(\frac{\pi}{2} - \alpha) + h\sin\alpha$. (4)

La fonction next_point() calcule les coordonnées du point suivant :

```
# Triangulation
next_point <- function(</pre>
    x_{left},
    y_left,
    x_down,
    y_down,
    d_left,
    d_down) {
  # distance left-down
  d_{\text{squared}} \leftarrow (x_{\text{left}} - x_{\text{down}})^2 + (y_{\text{left}} - y_{\text{down}})^2
  d <- sqrt(d_squared)</pre>
  # distance left-height
  a <- (d_squared + d_left^2 - d_down^2) / 2 / d
  h <- sqrt(d_left^2 - a^2)
  alpha <- atan((x_down - x_left) / (y_left - y_down))</pre>
  # next point
  d_left_a <- a * sin(alpha)
  d_left_h <- h * cos(alpha)
d_down_a <- (d - a) * sin(pi / 2 - alpha)
d_down_h <- h * sin(alpha)
  return(c(d_left_a + d_left_h, d_down_a + d_left_h))
```

Test de la fonction :

```
# Test the function
x_left <- 0
y_left <- 10
x_down <- 10
y_down <- 0
d_left <- 11
d_down <- 10
next_point(x_left, y_left, x_down, y_down, d_left, d_down)</pre>
```

[1] 10.999886 9.949886

4.2 Placement des quadrats

Le tableau des mesures contient trois colonnes pour décrire la position des angles des quadrats : plot pour l'hectare, point_x et point_y pour le numéro du point, de (0,0) pour le coin inférieur gauche à (10,10) pour le coin supérieur droit

Pour chaque point, la distance à son voisin de gauche (y identique) et du bas (x identique), mesurées sur le terrain, sont dans les colonnes d_left et d_down. Le code suivant :

• lit le tableau des mesures et prépare deux colonnes supplémentaires, x et y, pour y placer les coordonnées à calculer,

```
# data
read_xlsx("data/plots.xlsx", sheet = "quadrats") %>%
# Add columns for the correct coordinates
mutate(x = 0, y = 0) -> quadrats
```

• ajoute les coins inférieurs gauche (0, 0),

```
# Add points (0,0) to plots
for (subplot_number in unique(quadrats$subplot)) {
    quadrats %>%
        add_row(
        subplot = subplot_number,
        point_x = 0,
        point_y = 0,
        x = 0,
        y = 0
        ) -> quadrats
}
```

• trie les données et transforme le tibble en dataframe pour que les extractions futures, comme quadrats[i, "x"], soient des scalaires et non des tibbles.

```
# Sort so that the next point can rely on previous ones
quadrats %>%
  arrange(subplot, point_x, point_y) %>%
  as.data.frame() -> quadrats
```

• calcule les coordonnées des points situés sur les bords gauche et bas des hectares par simple cumul des distances mesurées depuis l'origine,

```
# Deal with edges: cumulative sum of distances from the origin
for (plot_number in unique(quadrats$subplot)) {
    is_left_edge <-
        quadrats$subplot == plot_number &
        quadrats$point_x == 0 &
        quadrats$point_y != 0
    quadrats[is_left_edge, "y"] <- cumsum(
        quadrats[is_left_edge, "d_down"]
)
    is_down_edge <-
        quadrats$subplot == plot_number &
        quadrats$point_x != 0 &
        quadrats$point_y == 0
    quadrats[is_down_edge, "x"] <- cumsum(
        quadrats[is_down_edge, "d_left"]
)
}</pre>
```

• calcule les coordonnées de tous les autres points par triangulation.

```
# Compute the positions of the points
for (i in seq_len(nrow(quadrats))) {
  # Ignore the edges
if (quadrats[i, "point_x"] != 0 & quadrats[i, "point_y"] != 0) {
    x_left = quadrats[
       quadrats$subplot == quadrats[i, "subplot"] &
         quadrats$point_x == max(quadrats[i, "point_x"] - 1, 0) &
         quadrats$point_y == quadrats[i, "point_y"],
    1
    y_left = quadrats[
      quadrats$subplot == quadrats[i, "subplot"] & quadrats$point_x == max(quadrats[i, "point_x"] - 1, 0) &
       quadrats$point_y == quadrats[i, "point_y"],
"y"
    x_down = quadrats[
      quadrats$subplot == quadrats[i, "subplot"] &
         quadrats$point_x == quadrats[i, "point_x"] &
         quadrats$point_y == max(quadrats[i, "point_y"] - 1, 0),
    ]
    y_down = quadrats[
       quadrats$subplot == quadrats[i, "subplot"] &
        quadrats$point_x == quadrats[i, "point_x"] &
quadrats$point_y == max(quadrats[i, "point_y"] - 1, 0),
    1
    quadrats[i, c("x", "y")] \leftarrow
      c(x_left, y_down) +
       next_point(
        x_left = x_left,
y_left = y_left,
         x_{down} = x_{down}
         y_down = y_down,
         d_left = quadrats[i, "d_left"],
         d_down = quadrats[i, "d_down"]
 }
```

Le dataframe quadrats contient maintenant la position des quadrats, en coordonnées locales (x et y, comprises entre 0 et 100) et UTM (x_utm et y_utm). Carte des quadrats, en coordonnées locales :

```
quadrats %>%
  ggplot(aes(x = x, y = y, color = as.factor(subplot))) +
  geom_point() +
  scale_color_discrete() +
  scale_x_continuous(breaks = (0:10) * 10) +
  scale_y_continuous(breaks = (0:10) * 10) +
  coord_fixed() +
  theme(axis.text.x = element_text(angle = 90)) +
  labs(color = "subplot") +
  facet_wrap(~ subplot, nrow = 2)
```


4.3 Interpolation

Les piquets des quadrats doivent être repositionnés pour que la forme de chaque sous-parcelle issue du terrain corresponde à sa forme réelle, issue des mesures du géomètre, qui n'est pas exactement un carré. Cette opération ne sert qu'à réconcilier les limites de la sous-parcelle sur le terrain (considérée comme un carré) et les données du géomètre.

Les coordonnées des points doivent être interpolées pour que la valeur maximale de l'abscisse, pour une ordonnée donnée, corresponde aux mesures du géomètre. Le raisonnement est le même pour les ordonnées.

A condition que les limites du bas et de gauche de la sous-parcelle soient orthogonales, la valeur maximale de l'abscisse x, qui dépend de y, est donnée par

$$x_{max} = x_{down,right} + y \times \frac{x_{up,right} - x_{down,right}}{y_{up,right} - y_{down,right}}.$$

De même,

$$y_{max} = y_{up,left} + x \times \frac{y_{up,right} - y_{up,left}}{x_{up,right} - x_{up,left}}.$$

Les coordonnées interpolées sont

$$x = x_0 \times \frac{x_{max}}{x_M}$$

 et

$$y = y_0 \times \frac{y_{max}}{y_M}$$

où (x_0, y_0) sont les coordonnées du point avant interpolation et x_M et y_M les valeurs maximales des mesures de terrain, théoriquement 100 mètres, mais connues plus précisément. Pour chaque piquet, x_M est l'abscisse du piquet le plus à droite de la rangée de même ordonnée, et de même pour y_M .

Application aux quadrats:

```
quadrats %>%
  # Rename raw x and y columns
  rename(x_0 = x, y_0 = y) %>%
  # Join the subplot coordinates
  left_join(subplots) %>%
  # Prepare columns
  mutate(x_M = NA, y_M = NA) \rightarrow quadrats
# Loop to calculate x_M and y_M (can't be vectorized)
for (i in seq_len(nrow(quadrats))) {
  is_in_subplot <- quadrats$subplot == quadrats[i, "subplot"]</pre>
  is_same_x <- quadrats$point_x == quadrats[i, "point_x"]
is_same_y <- quadrats$point_y == quadrats[i, "point_y"]</pre>
 quadrats[i, "x_M"] <- max(quadrats$x_0[is_in_subplot & is_same_y])
quadrats[i, "y_M"] <- max(quadrats$y_0[is_in_subplot & is_same_x])
# Interpolate
quadrats %>%
 mutate(
    x = x_0 * (
       down_right_x_field +
          y_0 * (up_right_x_field - down_right_x_field) /
(up_right_y_field - down_right_y_field)
       ) / x_M,
     y = y_0 * (
       up\_left\_y\_field +
          x_0 * (up_right_y_field - up_left_y_field) /
(up_right_x_field - up_left_x_field)
       ) / y_M,
  ) -> quadrats
```

Les coordonnées UTM des quadrats sont recalculées :

```
# Prepare the columns
quadrats$x_utm <- quadrats$y_utm <- NA
# Project quadrats to UTM
for (subplot in unique(quadrats$subplot)) {
    # Points of the subplot. Rows are x and y
    is_in_subplot <- quadrats$subplot == subplot
    xy_local <- as.matrix(quadrats[is_in_subplot, c("x", "y")])
    # Apply the rotation matrix and add the coordinates of the origin of the plot
    xy_utm <- t(local2utm(subplot, surveyor, subplots) %*% t(xy_local)) +
    quadrats[is_in_subplot, c("down_left_x_utm", "down_left_y_utm")]
# Save the coordinates
    quadrats[is_in_subplot, c("x_utm", "y_utm")] <- xy_utm
}
# Map
ggplot(quadrats, aes(x = x_utm, y = y_utm, color = as.factor(subplot))) +
    geom_point() +
    coord_fixed() +
    labs(color = "Subplot", x = "UTM x", y = "UTM y")</pre>
```


5 Position des arbres

Les coordonnées de terrain des arbres sont mesurées dans chaque quadrat (valeurs comprises théoriquement entre 0 et 10m).

```
read.csv2("data/trees.csv") %>%
  # Homogenize the column names
rename(
    subplot = "Subplot",
    point_x = "Quadra.nb.X",
    point_y = "Quadra.nb.Y",
    x_field = "Dist.X",
    y_field = "Dist.Y"
) %>%
    drop_na() ->
    trees
```

5.1 Projection dans le repère des quadrats réels

La position des arbres a été estimée relativement aux bords de chaque quadrat, en supposant que ce sont des carrés de 10m de côté. Leur forme réelle a été calculée à l'étape précédente. Les arbres doivent être projetés dans le repère de chacun des quadrats réels.

Les fonctions suivantes s'appliquent à chaque quadrat, défini par sa sousparcelle et son numéro d'ordre, le couple (point_x,point_y) qui va de (0, 0) à (9,9). La matrice de projection de chaque quadrat de ses coordonnées de terrain dans le repère du quadrat réel est calculée par la fonction ortho2real(). Ses arguments sont les coordonnées des coins du quadrats calculées précédemment, à l'exception du coin supérieur droit, inutile.

```
ortho2real <- function(x_ul, x_dr, x_dl, y_ul, y_dr, y_dl) {
    # Down edge
    i_dx <- x_dr - x_dl
    i_dy <- y_dr - y_dl
    i_length <- sqrt(i_dx^2 + i_dy^2)
    # Unit vector
    i <- c(i_dx, i_dy) / i_length
    # Left edge
    j_dx <- x_ul - x_dl
    j_dy <- y_ul - y_dl
    j_length <- sqrt(j_dx^2 + j_dy^2)
    # Unit vector
    j <- c(j_dx, j_dy) / j_length
    # Projection matrix
    return(cbind(i, j))
}</pre>
```

La projection du repère orthonormé au repère du quadrat réel utilise la matrice inverse.

5.2 Interpolation des arbres dans les quadrats

La méthode d'interpolation des coins des quadrats dans les sous-parcelles nécessitait que les axes du repère soient orthogonaux, ce qui n'est pas le cas des quadrats réels. La méthode est plus compliquée.

La valeur maximale de l'abscisse x, qui dépend de y, est donnée par

$$x_{max} = x_{down,right} + \left(y - y_{down,right}\right) \times \frac{x_{up,right} - x_{down,right}}{y_{up,right} - y_{down,right}}.$$

La valeur minimale de l'abscisse est plus simple parce que les coordonnnées du point bas gauche sont (0,0):

$$x_{min} = y \times \frac{x_{up,left}}{y_{up,left}}.$$

L'étendue des abscisses pour y donné est $x_{range} = x_{max} - x_{min}$. De même, l'étendue des ordonnées dépend de x et est donnée par

$$y_{max} = y_{up,left} + (x - y_{up,left}) \times \frac{y_{up,left} - y_{up,right}}{x_{up,left} - x_{up,right}}$$

et

$$y_{min} = x \times \frac{y_{down,right}}{x_{down,right}}.$$

Les coordonnées interpolées sont

$$x = x_{min} + (x_0 - x_{min}) \times \frac{x_{range}}{x_M}$$

 et

$$y = y_{min} + (y_0 - y_{min}) \times \frac{y_{range}}{y_M}$$

où (x_0, y_0) sont les coordonnées du point avant interpolation et x_M et y_M les valeurs maximales assumées pendant les mesures de terrain, ici 10 mètres.

La fonction trees_interpolated() interpole la position des arbres dans les limites de chaque quadrat. Elle projette les arbres dans le repère produit par ortho2real(). La position des arbres est alors interpolée.

```
trees_interpolated <- function(
    subplot,
    x_left,
    y_down,
    x_M,
    y_M,
    quadrats,
    trees_in_quadrat) {
    # Indicators to simplify the code later
    is_the_subplot <- quadrats$subplot == subplot
    is_left <- quadrats$point_x == x_left
    is_right <- quadrats$point_x == x_left + 1
    is_down <- quadrats$point_y == y_down
    is_up <- quadrats$point_y == y_down + 1
    # Corners of the quadrat
    x_ul <- quadrats[is_the_subplot & is_up & is_left, "x"]
    x_ur <- quadrats[is_the_subplot & is_up & is_right, "x"]
    x_dr <- quadrats[is_the_subplot & is_down & is_right, "x"]
    x_dl <- quadrats[is_the_subplot & is_down & is_left, "x"]</pre>
```

```
y_ul <- quadrats[is_the_subplot & is_up & is_left, "y"]</pre>
  y_ur <- quadrats[is_the_subplot & is_up & is_right, "y"]</pre>
  y_dr <- quadrats[is_the_subplot & is_down & is_right, "y"]
y_dl <- quadrats[is_the_subplot & is_down & is_left, "y"]
  # For interpolation, local coordinates, i.e. down left is (0, 0)
  x_ull <- x_ul - x_dl
  x_url <- x_ur - x_dl
  x_drl \leftarrow x_dr - x_dl
  y_ull <- y_ul - y_dl
  y_url <- y_ur - y_dl
y_drl <- y_dr - y_dl
  # Project the trees into the real quadrat coordinate system
  ortho2real(x_ul, x_dr, x_dl, y_ul, y_dr, y_dl) %*%
    t(as.matrix(trees_in_quadrat)) %%
# Transpose to have 2 columns rather than 2 rows
    t() %>%
     # Transform the matrix into a dataframe
    as.data.frame() %>%
    # Name the columns
    rename(x_0 = V1, y_0 = V2) %>%
     # Interpolate
    mutate(
      x_max = x_drl + (y_0 - y_drl) * (x_url - x_drl) / (y_url - y_drl),
       x_min = y_0 * cos(atan(x_ull / y_ull)) * (x_ull / y_ull),
       x = x_min + (x_0 - x_min) * (x_max - x_min) / (x_M),
       y_max = y_ull + (x_0 - x_url) * (y_ull - y_url) / (x_ull - x_url),
y_min = x_0 * cos(atan(y_drl / x_drl)) * (y_drl / x_drl),
         = y_min + (y_0 - y_min) * (y_max - y_min) / (y_M)
    ) %>%
    select(x, y) %>%
    return()
}
```

La fonction est appliquée à chaque quadrat :

```
# Prepare columns
trees[, c("x_quadrat", "y_quadrat")] <- NA</pre>
x_M <- y_M <- 10
# Loop in the subplots
for (subplot in unique(quadrats$subplot)) {
  # Loop in the quadrats
  for (x_left in 0:9) {
    for (y_down in 0:9) {
      # Which trees?
      is_in_quadrat <- trees$subplot == subplot &</pre>
        trees$point_x == x_left & trees$point_y == y_down
      # Compute the interpolated tree coordinates
      trees[is_in_quadrat, c("x_quadrat", "y_quadrat")] <- trees_interpolated(</pre>
        subplot,
        x_left,
        y_down,
        x_M,
        у_М,
        quadrats,
        trees[is_in_quadrat, c("x_field", "y_field")]
   }
 }
```

Les coordonnées des arbres sont relatives aux quadrats à ce stade. Il reste à les calculer dans le repère de chaque sous-parcelle.

```
trees %>%
left_join(
```

```
quadrats %>%
    # Get the coordinates of the origin of the quadrats and
    # the coordinates of the corners of the quadrats
    select(subplot, point_x, point_y, down_left_x_utm, down_left_y_utm, x, y),
    by = c("subplot", "point_x", "point_y")
) %>%
# Coordinates of the trees in the quadrat coordinates
mutate(x = x_quadrat + x, y = y_quadrat + y) -> trees
```

Des cartes locales peuvent être produites, par exemple pour les quadrats du coin du bas à droite de la sous-parcelle 13:

```
the_subplot <- 13 x_min <- 70
x_max <- 100
y_min <- 0
y_max <- 40
trees %>%
  filter(
    subplot == the_subplot &
point_x %in% (x_min %/% 10):((x_max - 1) %/% 10) &
point_y %in% (y_min %/% 10):((y_max - 1) %/% 10)
  ) %>%
  mutate(quadrat = 10 * point_x + point_y) %>%
  ggplot() +
     geom_point(aes(x = x, y = y, color = as.factor(quadrat))) +
     geom_point(
       data = quadrats %>%
filter(
            subplot == the_subplot &
            point_x %in% (x_min %/% 10):(x_max %/% 10) &
           point_y %in% (y_min %/% 10):(y_max %/% 10)
         ),
       aes(x = x, y = y)
     ) +
     coord_fixed() +
     labs(color = "Quadrat")
```


5.3 Coordonnées UTM

Finalement, les arbres doivent être projetés dans le repère UTM.

```
# Prepare the columns
trees$x_utm <- trees$y_utm <- NA
# Project quadrats to UTM
for (subplot in unique(trees$subplot)) {
 is_in_subplot <- trees$subplot == subplot
 #Points of the subplot. Rows are x and y
xy_local <- t(as.matrix(trees[is_in_subplot, c("x", "y")]))
  # Apply the rotation matrix.
  # UTM coordinates are relative to the origin of the subplot
 # Save the coordinates
  trees[is_in_subplot, c("x_utm", "y_utm")] <- xy_utm</pre>
# Add the origins of the subplots
trees %>%
  mutate(
    x_utm = x_utm + down_left_x_utm,
 y_utm = y_utm + down_left_x_utm,
y_utm = y_utm + down_left_y_utm
) -> trees
ggplot(trees, aes(x = x_utm, y = y_utm, color = as.factor(subplot))) +
geom_point(size = 0.3) +
 coord_fixed() +
labs(color = "Subplot", x = "UTM x", y = "UTM y")
```


Les coordonnées corrigées des arbres sont dans les colonnes $\tt x$ et y (repère local, valeurs comprises entre 0 et 100) et $\tt x_utm$ et y_utm.