QUASI MONTE CARLO SIMULATION APPROACH TO PATH-DEPENDENT OPTIONS PRICING

Farid Gassoumov Hamed Helali Mohsen Selseleh Ali Selseleh

Department of Mathematics and Statistics, York University

OBJECTIVES

- To analyze and compare various Quasi Monte Carlo techniques for simulating path-dependent options pricing.
- For Asian options in particular, Regular Monte Carlo simulations were tested versus Quasi Monte Carlo simulations using Sobol and Halton sequences.

Introduction

- To value a path-dependent option, the whole underlying asset path is required to be considered. The simulation need to generate a sequence of underlying price at each time instant.
- Low-discrepancy sequences offer the highest probability that the value of every single asset price will be simulated in the sequence.
- High dimensional problems with a large number of time instances can not be efficiently solved by PDE or Lattice methods. $d = \frac{T}{\Delta t}$ Where T is the time interval between current price and price at maturity.
- QMS involve simulating asset prices on a fine grid (where Δt determines how fine it it) by utilizing a low discrepancy sequence that fills the grid more uniformly than uncorrelated pseudo random points.
- QMS Avoids clustering by repelling each point from each other as far as possible in a hyper-cube.

HALTON SEQUENCE

A low discreptancy sequence where:

$$n = (...d_4d_3d_2d_1d_0)_b$$

where b is a prime number. For an m dimensional sequence:

$$n = \sum_{k=0}^{m} d_k b^k$$

The n^{th} number in Halton sequence with base b is: $n = \sum_{k=0}^{m} d_k b^{-(k+1)}$

ARITHMETIC AVERAGE PRICE FOR ASIAN OPTION - HALTON.

Figure 1:QMC convergence within CI bounds: Halton

Figure 2:Testing estimation accuracy vs exact value for Halton sequence.

SOBOL SEQUENCE

Let $\{n_k\}_{k\in\mathbb{N}}$ be a representation in base 2 of any integer n. Then the n^{th} element S_n is defined as:

$$S_n = (\sum_{k=1}^{\infty} n_k \frac{V_k}{2^k}) \mod 1$$

Each Sobol sequence is based of a polynomial with coefficients equal either 0 or 1.

ARITHMETIC AVERAGE PRICE FOR ASIAN OPTION - SOBOL.

Figure 3:QMC convergence within CI for Sobol sequence.

Figure 4:Testing estimation accuracy vs exact value for Sobol sequence.

MC METHOD FOR ASIAN OPTION:

Figure 5:MC convergence within CI

Figure 6:Testing estimation accuracy vs exact value.

Simulation Method	Estimated Price at largest sample	Convergence sample size	CI length at largest sample
Ordinary MC	\$12.38	3380	0.417
QMC - Sobol	\$11.84	1130	0.240
QMC - Halton	\$12.27	3000	0.39

Figure 7: Table of final results

REFERENCES

- [1] Chuma Nwozo and Sunday Fadugba.
- Monte carlo method for pricing some path dependent options.
- IJAM. International Journal of Applied Mathematics, 25, 01 2012.
- [2] Jay Yeung.

Path-dependent options pricing: A quasi monte carlo simulation approach with matlab.

SSRN Electronic Journal, 07 2010.