Optimizing Candidate Selection Using Recruitment Data

Data Science Capstone Three Project Hector Sanchez

Problem Statement and Context

Problem:

- Hiring high quality candidates can be difficult and extremely time consuming for Hiring/Operations Managers
- Recruitment Teams would benefit from having a predictive model that can determine which candidates are most likely to be hired based on their profiles.
- The goal of this project is to build a predictive model that can accurately classify a candidate's likelihood of being hired.

Stakeholders:

Hiring Managers, Operations Managers, Talent Acquisition Teams, Human Resources.

Success Metrics:

 Evaluation metrics such as Accuracy, Precision, Recall, and F1-Score will be used to ensure that the model accurately predicts hireable candidates while minimizing false positive (hiring unsuitable candidates).

Dataset Description

Objective:

 This Dataset contains essential recruiting information which can be used to predict hiring outcomes

Dataset Overview

- Source: <u>Predicting Hiring Decisions in Recruitment Data</u>
- Key Features Included:
 - Demographic: Age, Gender, DistanceFromCompany
 - Qualifications: EducationLevel, SkillScore, PersaonalityScore, InterviewScore
 - Experience: ExperienceYears, PreviousCompaniesWorked
 - Target: HiringDecision

Data Wrangling and Preprocessing

Data Cleaning

Verified the absence of missing values or duplicates

Preprocessing:

- One-hot encoded categorical RecruitmentStrategy
- Applied code mapping to RecruitmentStrategy after one-hot encoding
- Applied code mapping to Gender and EducationLevel to improve interpretability

Exploratory Data Analysis

Key Visualizations and Insights

- Features such as Strategy_Aggressive, InterviewScore, PersonalityScore, and SkillScore have a positive correlation with HiringDecision
- Recruiters should place an emphasis on evaluating candidates performance in interview/personality/skill metrics.
- Aggressive recruitment strategies demonstrates the highest success
 - Conservative strategies could be useful for senior/niche roles.

Correlation Matrix

- Positively Correlated:
 Strategy Aggressive
- Slightly Postively Correlated:

 EducationLevel_Master's,
 EducationLevel_PhD,
 InterviewScore, SkillScore,
 PersonalityScore, ExperienceYears
- Negatively Correlated:
 Strategy_Moderate,
 Strategy_Conservative,
 EducationLevel Bachelor's Type 2

Modeling Approach

Selected Models

- Logistic Regression:
 - Baseline Model
- Random Forest Classifier
 - Versatile Model that handles both categorical/numerical features
- Support Vector Classifier
 - Flexible Model that reduces overfitting

Hyperparameter Tuning

- GridSearchCV to optimize Random Forest
- RandomSearchCV to optimize Support Vector Classifier

Random Forest showed the most balanced performance metrics

Model Evaluation Metric

Comparison Table

 Random Forest provides the highest Accuracy (0.923) and F1-Score (0.861) which makes it the most balanced choice

Comparison of Model Evaluation Metrics				
Model	Accuracy	Precision	Recall	F1-Score
Logistic Regression	0.913	0.839	0.859	0.849
Best Random	0.923	0.887	0.835	0.861
Forest			s*1	
Best Support Vector Classifier	0.907	0.835	0.835	0.835

Results and Recommendations

- Apply model to Applicant Tracking Systems to help recruiters sceen candidates
- Focus recruitment efforts on candidate's scoring with interview/personality/skill metrics
- Adjust Canddidate selection criteria based on the role and a candidate's level of education
- Begin efforts for employee retention by considering candidate's commutes

Future Work

Next Steps:

- Collect more data to expand the dataset and account for shifts in hiring trends
- Wrok on incorporating features such as TrainingCapabilites or RemoteWork to provide a more comprehensive snapshot of current hiring trends
- Consider performing a cost analysis to measure the financial impact of hiring unsuitable candidates (false positives)
- Explore more Advanced models by implementing ensemble methods or neural networks
- Gather feedback from stakeholders to determine utility and usability of the model

Conclusion

In this analysis we

- Identified key features that influence hiring decisions
- Built 3 predictive models to help in the recruitment process
- Random Forest was the most balanced and suitable model for predicting hiring decisions

Closing Note

 Utilizing data to help streamline the recruitment process proves to be useful for the long term success of organizations that seek to build strong/effective teams

Thank You!