(Exercise # 1.1) Q(1-6, 15-20) Date						
"DOMAIN & RANGE OF FUNCTIONS"						
+ In Exercise 1-6, Find The domain and range of						
each following			W.	ų v		
1) $f(x) = 1 + x^2$	Tokas	value inside The real value on value is non-neg	radical			
Sol, 1+x²]- linear		value is non-neg	gative.			
Domain = $(-\infty, \infty)$	1	- Tie function tall				
As we know The value	only for non-negative values x.					
is always non-negation is since the squ	tive, That are of	So, Domain = $[0, \infty)$				
- is since The squarry any quantity is non	- negative.	So, As we take non-negative values x. So,				
let \Rightarrow $y = f(x) = 1 + x$	2 Output		TX 20			
1 1 + (1)2		I	y = f(x) = 1 - Tx	Dulput		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2	1-12	- 0.41 0		
-2 1 + (-2) ¹	5	0 + 3	1-10 1-1+3	1 -0.73		
-1 1 + (-1)	2	+4 So,	1 - 1+4	-1		
80, x ² ≥ 0		100)	- Fi 40			
1+x²≥0+1 ⇒	1-1x = 1					
Range = [1, 00	So, [Range = $(-\infty, 1]$]					
$\leftarrow \rightarrow$	<>					
$2) f(x) = 1 - \sqrt{x}$	1	$(x) = \sqrt{5x + 1}$	10			
Sof, Function = 1-5	Sol =!	15n + 10				

Date

		Date
0	So, we are taking,	x-3-2 1 2 4 3
0	5x+10 ≥ 0 5x ≥-10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	x 2 - 16/9	$x \ge \frac{3}{2} + \frac{3}{2}$ $x \le \frac{3}{2} - \frac{3}{2}$
		x ≥ 3 x ≤ 0.
0	So, Domain = [-2, ∞)	30,
•	Let suppose;	Domain = (-0,0] U[3,0)
	x y=f(x)=T5x+10 Output	so, as The square root of any number
	-2 $\sqrt{5(-2)+10} = 0$	ber non-negative. So, The range will ber non-negative.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	let x y=g(x)=Tn=3x output
	$ \frac{1}{2} \int \frac{5(1)+10}{5(2)+10} = 175 $	-2 [(-2)-3(-2) 10
TO THE REAL PROPERTY.	\$0,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	$\left[\text{Range} = \left[0, \infty \right) \right]$	$ \begin{array}{c ccccc} 4 & (4)^2 - 3(4) & 2 \\ \hline 3 & (3)^2 - 3(3) & 0 \end{array} $
	4) $g(x) = \sqrt{x^2-3x}$	80,
-	let:	$\frac{ Ronge = [0, \infty) }{\longleftrightarrow}$
	χ²-3x 30	5) $f(t) = \frac{4}{3-t}$
8	using completing square	Sol, First we check that which values
	$x^2 - 3x + \left(\frac{3}{2}\right)^2 > \left(\frac{3}{2}\right)^2$	make it undefined.
	$\left(x-\frac{3}{2}\right)^{\frac{1}{2}} \geq \left(\frac{3}{2}\right)^{\frac{1}{2}}$	3-t=0 $[t=3]$
	1 2 1(2) xh - 7 = ()	So, The function will condefined.
	$\left(x-\frac{3}{2}\right) \geq \pm \frac{3}{2}$	Domain = 1R - {3} OR
	\$°,	Here: $(-\infty, 3) \cup (3, \infty)$ $\mathbb{R} = \text{Real Number}.$
1		

As we know , let ,	Ne will check which makes the	U
$\frac{4}{3-t} = y$	function undefined.	TO THE
4 = y(3-t)	$t^2 - 16 = 0$	U
$\frac{4}{y} = 3 - t$	$\sqrt{H^2} = \sqrt{16}$	U
	1t = 4 1	D.
$t = 3 - \frac{4}{y}$	No, the value +4 and -4 makes The function undefined.	-
t = 3y - 4	Domain = R - {-4,4}	
	$(-\omega, -4) \cup (-4, 4) \cup (4, \infty)$	()
$\frac{t}{y} = \frac{3y}{y} - \frac{4}{y}$	let: 2 2 12 16	-
t = 3 - 4	$\frac{2}{1^2 \cdot 16} = y \Rightarrow \frac{2}{y} = t - 16$	P
t = 3y - 4	$t^2 = \frac{2 + 16y}{y}$	6
o, in This case	$t = \sqrt{\frac{2}{9}} + 2$	8
in This case only zero make	So, Here only reson makes the	1
undefine. So,	Ifunction undefined. So, (3). Range = R - 303	
Range = 1R- 203	OR	
or	(-∞,0) ∪ (0,∞)	6
$(-\infty,0) \cup (0,\infty)$	Find The Domain & Graph The	
6) 44.2	functions in Exercise 15-20. 15) $f(x) = 5 - 2x$	I
6) $G(t) = \frac{2}{t^2 - 16}$	$f(x) = 5 - \partial x$ $Soli$	
58,	$\int (x) = 5 - 2x$	-
$G(t) = \frac{2}{t^2 - 16}$		1

	. SED	Date
0	As we this function is linear So,	Parabolic graph : (*) (#1
to	The graph will be linear/straight.	30, Domain = (-∞,∞)
0	So,	Using Quadratic Formula:
X	Domain = $(-\infty, \infty)$	$\chi = -b \pm \sqrt{b^2 + ac}$
0	let.	a=1, b=-2, c=+1
- g	x $y=f(x)=5-2x$ output	$\chi = +2 \pm \sqrt{(-2)^2 - 4(1)(-1)}$
0	0 5-2(0) 5	2(1)
	$\frac{1}{5-2(1)}$	
	2 5-2(2) 1	$X = \frac{2 \pm \sqrt{4+4}}{2}$
	-2 5-2(-2), 9	201
-	-3 5-2(-3) = 15:44 (9)	$\chi = -1 \pm \sqrt{2}$
	So, making set,	1et x y= f(x)=1-2x-x2 Output
	(0,5), (1,3), (2,1), (-2,9), (-3,11)	
(1)	Graphi	1 1-2(1)-(1)2 -2
		2 1-2(2)-(2)2 -7
J		$\begin{vmatrix} 4 & 1 - 2(-2) - (-2)^2 & 1 \\ -2 & \end{vmatrix}$
3		-1 1-2(-1) - (-1) 2
		Graph: (0,1), (1,-2), (2,-7), (2,1), (-1,2)
	-K	(8) a (v) a (8)
	g ~ \	
-3		
7	- \	
-		· · · · · · · · · · · · · · · · · · ·
ب	· · · · · · · · · · · · · · · · · · ·	-x
4	$f(x) = 1 - 2x - x^2$	/:
	Spf,	
	As This function is Quadratic	
	Function So, The graph is	- -y
-	6.00	\

