1.3 CC2530 Day-3 定时器/计数应用

1.3 CC2530 Day-3 定时器/计数应用

```
1.3.1 定时器基础概念
```

1.3.2 定时器相关寄存器汇总

1-T1CCxL 定时器1 最大计数值低8 位

2-T1CCxH 定时器1 最大计数值高8 位

3-T1CCTLx 定时器1 通道x 捕获/比较控制寄存器(0,1,2通道用法都一样)

4-T1IE 定时器1的中断开关

5-EA 总中断

6-T1CTL定时器1控制寄存器

7-T1STAT 定时器1状态寄存器

1.3.1 定时器基础概念

定时器/计数器,最基本的工作原理就是进行计数,不管是定时器还是计数器,他们本质都是计数器.

它们有两种信号:

内部时钟信号:周期性时钟脉冲信号,稳定

外部输入信号: 非周期性时钟脉冲信号, 比较随机

工作原理: 当计数值达到设定要求,能够像内核提出中断请求,从而实现定时或计数的目的;

CC2530总共有5个计数器,分别是:

- 定时器 1:16位定时器 功能最全,优先选择,5个独立通道,三种工作模式
- 定时器 2:16位定时器 为CSMA-CA算法提供定时,用户一般不使用
- 定时器 3 /定时器 4:8位定时器 2个独立通道,四种工作模式,
- **睡眠定时器**: 24位正计数定时器 运行在32Khz的时钟频率 主要用于设置系统进入与退出睡眠模式的 周期

定时器 1 有三种计数模式

自由工作模式

模模式

正计数/倒计数模式

```
1  //T1定时器用法如下
2  void Init_Timer1()
3  {
4  //设置比较/捕获值
```

```
T1CCOL = 0xD4; //设置T1定时器低位
5
     T1CC0H = 0x30; //设置T1定时器高位
6
7
8
    //功能选择
9
     T1CCTL0 |= 0x04; //T1定时器模模式需要打开通道0的比较模式,否则无法进入中断
10
     //设置中断源 使能中断
11
     T1IE = 1; //使定时器 1中断使能
12
    EA = 1;
                   //打开总中断
13
14
15
     //启动计时器
     T1CTL = 0x0E; //选择计时器时钟的分频与工作模式
16
17 }
18
  //中断函数
19
  #pragma vector = T1_VECTOR
20
21 __interrupt void Service_Timer()
22 {
23 //程序代码
24 }
```

1.3.2 定时器相关寄存器汇总

1-T1CCxL 定时器1 最大计数值低8 位

【29】T1CCxL 定时器 1 通道 x 最大计数值低 8 位寄存器

位	,	位名称	复位值	操作	描述
7:0	7:0 T1CCx[7:0]		0x00	R/W	定时器1通道0到通道4捕获/比较值的低8位字节。
设计参考 使用 1		使用 16MHz	2 系统时钟	的 128 分	频作为定时器1的计数信号,定时0.1秒的最大计数值。
T1CCOL =		0xD4;	//先写 T	T1CCO 寄存器的低 8 位	
T1C		T1CCOH =	0x30;	//后写]	「1CCO 寄存器的高 8 位
	在程序设计的时候,		十的时候,	要注意:	先写低8位寄存器,再写高8位寄存器。

2-T1CCxH 定时器1 最大计数值高8 位

【28】T1CCxH 定时器 1 通道 x 最大计数值高 8 位寄存器

位	位名称	复位值	操作	描述
7:0	T1CCx[15:8]	0x00	R/W	定时器1通道0到通道4捕获/比较值的高8位字节。

3-T1CCTLx 定时器1 通道x 捕获/比较控制寄存器(0,1,2通道用法都一样)

【33】T1CCTL0 定时器 1 通道 0 捕获/比较控制寄存器

位	位名称	复位值	操作	描述			
7	RFIRQ	0	R/W	当设置时,使用 RF 中断捕获,而不是常规捕获输入。			
6 IM		1	R/W	通道0中断屏蔽。			
				0:禁止通道0中断。 1:使能通道0中断。			
5:3 CMP[2:0]		000	R/W	通道0比较模式选择。			
				当 定时器的值等于 T1CCO 中的比较值,选择操作输出。			
				000: 在比较设置输出。			
				001: 在比较清除输出。			
				010: 在比较切换输出。			
				011: 在向上比较设置输出,在0清除。			
				100:在向上比较清除输出,在0设置。			
				101: TI 通道 0 没有使用。			
				110: TI 通道 0 没有使用。			
				111: 初始化输出引脚, CMP[2:0]不变。			
2	MODE	0	R/W	定时器1通道0的模式选择。			
				0: 捕获模式。 1: 比较模式。			
1:0	CAP[1:0]	00	R/W	通道 0 捕获模式选择。			
				00: 未捕获。			
				10: 下降沿捕获。			
设计参	多考 将定时器]	Ⅰ通道0的	模式选择	为比较模式			
	T1CCTL0	T1CCTL0 = 0x04; //模模式定时,需开启通道 0 的比较模式,否则无法进入中断					

4-T1IE 定时器1 的中断开关

1	T1IE	0	R/W	定时器1中断使能。	
				0: 中断禁止。	1: 中断使能。

5-EA 总中断

7	EA	0	RO	中断系统使能控制位,即:总中断。
				0: 禁止所有中断。

6-T1CTL定时器1控制寄存器

【32】T1CTL 定时器 1 控制寄存器

位	位名称	复位值	操作	描述
7:4		0000	RO	未使用, 读为 0。
3:2	DIV[1:0]	00	R/W	定时器1时钟分频设置。
				00: 1 分频。
				10: 32 分频。
1:0	MODE[1:0]	00	R/W	定时器1工作模式。
				00: 暂停运行。
				10: 模模式。

设计参考

选择系统时钟的 128 分频作为定时器的时钟源,工作模式为模模式。

T1CTL = 0x0e;

// 推荐对整个字节一次性赋值,00001110

注意: 一旦设置了定时器1的工作模式,该定时器就立刻开始定时计数工作了。

7-T1STAT 定时器1状态寄存器

【34】T1STAT 定时器1状态寄存器

位	位名称	复位值	操作	描述
7:6		00	RO	未使用, 读为 0。
5 OVFIF 0 R/WO		R/WO	定时器 1 计数器溢出 中断标志。	
				当计数器在自由运行模式或模模式下,达到最终计数值时设
				置,写1没有影响。
4	CH4IF	0	R/W0	定时器1通道4的中断标志。当通道4中断条件发生时设置,
				写1没有影响。
3	CH31F	0	R/WO	定时器1通道3的中断标志。当通道3中断条件发生时设置,
				写1没有影响。
2	CH2IF	0	R/W0	定时器1通道2的中断标志。当通道2中断条件发生时设置,
				写1没有影响。
1	CH11F	0	R/WO	定时器1通道1的中断标志。当通道1中断条件发生时设置,
				写1没有影响。
0	CH01F	0	R/WO	定时器1通道0的中断标志。当通道0中断条件发生时设置,
				写1没有影响。