StatsI — Exercise 4

- 1. (a) Let X be a random variable with mean μ and variance $\sigma^2 \in (0, \infty)$. Show that $P(|X \mu| > 2\sigma) \le 0.25$. What does this inequality tell us about the distribution of X?
 - (b) Let X_1, \dots, X_n be an IID sample from a population with mean μ and variance $\sigma^2 \in (0, \infty)$. Show that for any $\epsilon > 0$, $P(|\bar{X}_n \mu| > \epsilon \sigma) \leq \frac{1}{n\epsilon^2}$. Compare this bound with the approximation implied by the CLT when n is large.

Note. The conditions required for these inequalities are minimum.

- 2. Let X and Y be two r.v.s with positive and finite variances. The correlation coefficient of X and Y is defined as $\rho = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$. (If $\rho = 0$, X and Y are called uncorrelated or linearly independent.)
 - (a) Show that $|\rho| \leq 1$.
 - (b) If Y = aX + b for some constants $a \neq 0$ and b, show that $|\rho| = 1$.

Note. In fact $|\rho| = 1$ if and only if Y = aX + b for some constants $a \neq 0$ and b.

- 3. Let X_1, \dots, X_n be a sample from a distribution with mean μ and variance $\sigma^2 \in (0,1)$. Let $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$, where \bar{X}_n is the sample mean.
 - (a) Show that $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n X_n^2 \frac{n}{n-1} \bar{X}_n^2$.
 - (b) Using Slutsky's theorem, show that $S_n^2 \xrightarrow{P} \sigma^2$.
- 4. Construct a Monte Carlo method to estimate the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Find the standard error of your estimate. Implement your method in R.
- 5. Compute the following integrals by Monte Carlo simulation. Find the standard error of your estimates.
 - (a) $\int_{-2}^{3} \{x^3 + \log(1+x^2)\}/\{2 + \cos(x)\}dx$.
 - (b) $\int_0^\infty \sin\{x^3 + 1/\sqrt{x}\}e^{-x}dx$.
 - (c) $\int_{-\infty}^{\infty} \exp\{\sin(x) (x-2)^2\} dx$.
- 6. Conditionally on a compound index X, the exam marks of the ST888 course follow a normal distribution with mean 20+60X and variance $10/(1+X^2)$. The index X encapsulates the important factors related to teaching and learning and X has the PDF

$$f_X(x) \propto \begin{cases} \exp\{x + 1/(1 + \sqrt{x})\} & 0 < x < 1 \\ 0 & \text{otherwsie.} \end{cases}$$

Construct a Monte Carlo method to estimate the PDF of the exam marks, the mean and the standard error of the marks.

7. Here is a method called "Accept-Reject-Sampling" for drawing samples from distribution $f_Y(y) =$

 $\int f_{Y|X}(y|x)f_X(x)dx$, when one cannot directly sample from $f_X(\cdot)$.

Let $p(\cdot)$ be a PDF satisfying:

Exercise 4, Page 1, Statsl, Fall Semester 2018, School of Data Science, Fudan University

- (i) $f_X(x) \leq Mp(x)$ for all x, where M > 0 is a constant, and
- (ii) it is easy to sample from $p(\cdot)$.

Then a sample Y_1, \dots, Y_n from $f_Y(\cdot)$ is obtained by repeating the following composition n times:

Step 1. Generate X_i as follows:

- (i) Draw $X_0 \sim p(\cdot)$ and $U \sim U(0,1)$ independently, (ii) If $U \leq f_X(X_0)/\{Mp(X_0)\}$, take $X_i = X_0$; otherwise return to (i).

Step 2. Draw $Y_i \sim f_{Y|X}(\cdot|X_i)$.

Show that for any set A,

$$P\Big\{X_0\in A\Big|U\leq \frac{f_X(X_0)}{Mp(X_0)}\Big\}=\int_A f_X(x)dx.$$