

Overview of Direct Sparse Linear Solvers for Power Grid Optimization Problems

Presenter: Leslie Cook
Midwestern State University

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Problem Statement

Solving large sparse linear systems of equations

$$Ax = b$$

- A is a known coefficient matrix with dimension n x n
- b is a known RHS vector with dimension n x 1
- x is an unknown solution vector with dimension n x 1

Factorize **A** into lower **L** and upper **U** triangulars, where

$$A = LU$$

Solving $x = A^{-1}b$ directly is too computationally expensive, so we solve by the substitutions,

- 1. Ly = b solve $y = L^{-1}b$
- 2. $Ux = y \text{ solve } x = U^{-1}y$

Problem Statement

If we know we have a symmetric sparsity pattern, we can exploit matrix symmetry to further reduce computational cost by factoring **A** as,

$$A = LDL^T$$

- **L** is the lower triangular
- **D** is the diagonal block
- L^T is the transpose of the lower triangular

Solve $LDL^Tx = b$ with the substitutions,

1.
$$Ly = b$$
 solve $y = L^{-1}b$

2.
$$DL^T x = y$$
 solve $x = (DL^T)^{-1} y = D^{-1} L y$

Problem Statement

The residual vector *r* is calculated to determine the accuracy of our solution, the closer to zero the better.

$$r = b - Ax$$

We then compute the norm of the residual vector \mathbf{r} and the norm of the RHS vector \mathbf{b} to obtain the relative residual \mathbf{R}_{rel} as a measure of how well our solution converges.

$$R_{rel} = ||r|| / ||b||$$

2-norm

$$||x||_2 = \sqrt{\sum |x_i|^2}$$

Test Cases

Linear systems extracted from AC power flow analysis for power grids of Texas, Western US, and Eastern US.

Grid Model	rows	columns	NNZ	NNZ un
Texas 2000-bus	55667	55667	173710	291743
Western US 10k-bus	238072	238072	723720	1209368
Eastern US 70k-bus	1640411	1640411	4991820	8343229

Testing Environments Oak Ridge Leadership Computing Facility

- Summit

21 cores and each node consists of 2x IBM POWER9TM CPUs and 6 NVIDIA Volta v100 GPUs

- Frontier

64 cores each node consists of 1x HPC and Al Optimized 3rd Gen AMD EPYC CPU and 4 Purpose Built AMD Instinct 250X GPUs

Sparse Linear Solver Packages

CPU

- HSL
 - MA57 (baseline)
- Trilinos Amesos2
 - o KLU2
 - ShyLUBasker

GPU

- cuSolver
 - KLU-GLU
 - KLU-RFwFGMRES
- rocSOLVER
 - rocSolver-KLU-RF

	Solver	MA 57	KLU2	ShyLU Basker	cuSolver KLU-GLU	cuSolver KLU-RF wGMRES	rocSolver KLU
	Exploits symmetry	Yes	No	No	No	No	No
	Primary algorithm	LDL [™]	LU	(I)LU	LU refact	LU refact	LU refact
	Follows with IR	Yes	No	Yes	Yes	Yes	Yes
	Norm eq used	INF-norm	2-norm	2-norm	INF-norm	INF-norm	INF-norm
	GPU accelerated	No	No	No	Yes	Yes	Yes
	compiler	gcc	gcc	gcc	nvcc	nvcc	hipcc
	Open source	No	Yes	Yes	No	No	No
44	¥OAK RIDGE						

Construct / refine Set solver options Workflow Start ParameterList of (setParameters()) solver options Create Solver of the desired type with create (), passing it A (and solve() invokes any of the preordering optionally X and B) or factorization steps not yet invoked, so these 3 stages are optional. Factor the matrix A Invoke numeric Invoke symbolic Invoke factorization factorization preordering Did you tell [no] the solver X and B vet? Call solver's setX and setB methods Choose next factorization [yes] with your X resp. B step depending on which state of the matrix A you decided to save. Call solve() to solve AX=B Solve more [no] [no] with different or with same Stop changed matrix? matrix? [yes] [yes] Call the solver's Call the solver's setA() method. setB() and setX() Indicate how much state (none, methods to change preordering, or symbolic X and B pointers, or factorization) you want to save. change B in place.

Tasked with building a testbench for Amesos2 solvers in the ORNL Linear-Solver-Testing GitLab repository

Workflow

Parameters

KLU2	ShyLUBasker		
Equilibrate before solve	Set num threads (64)		
Is contiguous	Use pivot		
	Replace tiny pivot		
	Use metis		

Workflow

X is set to randomized values

setA(A, Amesos2::SYMBFACT)
reuse symbolic factorization

Total Computation Time - Texas Grid

Figure 1. Total runtimes for the Texas (2000-bus) test case. ShyLUBasker performed significantly worse on Summit compared to Frontier and KLU2 performs better than ShyLUBasker. MA57 is much better on Frontier than Summit for the Texas grid test case. CUDA cuSolvers perform the best overall.

Relative Residuals - Texas Grid

Figure 2. Relative residuals for the Texas (2000-bus) matrix market files. Data points for rocSolver and cuSolver KLU-GLU at index 2 were omitted where the solution failed to converge. ShyLUBasker and rocSolver have very poor accuracy, while MA57 and cuSolver KLU-GLU are the most stable for the Texas grid test case.

Total Computation Time - Western US Grid

Relative Residuals - Western US Grid

Figure 4. Relative residuals for the Western US (10k-bus) matrix market files. A data point for rocSolver at index 12 was omitted where the solution failed to converge. MA57 is the the most stable, while ShyLUBasker and rocSolver have very poor accuracy for the Western US grid.

Total Computation Time - Eastern US Grid

Figure 5. Total runtimes for the Eastern US (70k-bus) matrix market files. KLU2 performs significantly worse that all other solvers for the Eastern US test case and rocSolver performs better than MA57 on Summit.

Relative Residuals - Eastern US Grid

Figure 6. Relative residuals for the Eastern US (70k-bus) matrix market files. MA57 is the most stable, while ShyLUBasker and rocSolver is the least accurate overall for handling Eastern US test cases. Data points for rocSolver and cuSolver KLU-GLU at index 16 were omitted where the solution failed to converge.

Results and Discussion

- CUDA GPU linear solvers significantly outperform CPU based solvers for all test cases provided.
- RocSolver performed closely to the MA57 "gold standard" CPU benchmark, some stability issues observed.
- Amesos2 ShyLUBasker solver performance scales well with the number of threads, however, we observed serious stability issues for some test cases.
- Amesos2 KLU2 solver has limited parameters to adjust compared to vanilla KLU,
 e.g. it did not support COLAMD ordering.

This report has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the work for publication, acknowledges that the US government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the submitted manuscript version of this work, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/doe-public-access-plan).

Questions?

ACKNOWLEDGMENTS

A special thank you to ORNL mentor Slaven Peles and to Kasia Swirydowicz of PNNL for the help and guidance throughout the GRSI program. Thank you Nicholson for answering all of my srun jsrun, and profiling questions and Maksud for quick access to his machine and installing the cuDSS packages. Thank you to the Exascale Computing Project team for additional support and great teamwork.

ORNL is managed by UT-Battelle LLC for the US Department of Energy

References

Świrydowicz, K., Koukpaizan, N., Abhyankar, S., & Peleš, S. (2023). Towards efficient alternating current optimal power flow analysis on graphical processing units. 2023 XXIX International Conference on Information, Communication and Automation Technologies (ICAT). 10.1109/icat57854.2023.10171317

Świrydowicz, K., Darve, E., Jones, W., Maack, J., Regev, S., Saunders, M. A., Thomas, S. J., & S. (2022). Linear solvers for power grid optimization problems: A review of GPU-accelerated linear solvers. Parallel Computing, 111, 102870. 10.1016/j.parco.2021.102870

Bavier, Eric & Hoemmen, Mark & Rajamanickam, Siva & Thornquist, Heidi. (2012). Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems. Scientific Programming. 20.241-255. 10.1155/2012/243875.

Rajamanickam, Siva. KLU2 Direct Linear Solver Package. Computer software. https://www.osti.gov//servlets/purl/1253280. Vers. 00. USDOE. 4 Jan. 2012. Web.

KLU2 header

