Day4

This definition was in the pre-class reading A finite automaton (FA) is specified by $M = (Q, \Sigma, \delta, q_0, F)$. This 5-tuple is called the **formal definition** of the FA. The FA can also be represented by its state diagram: with nodes for the state, labelled edges specifying the transition function, and decorations on nodes denoting the start and accept states.

Finite set of states Q can be labelled by any collection of distinct names. Often we use default state labels $q0, q1, \ldots$

The alphabet Σ determines the possible inputs to the automaton. Each input to the automaton is a string over Σ , and the automaton "processes" the input one symbol (or character) at a time.

The transition function δ gives the next state of the automaton based on the current state of the machine and on the next input symbol.

The start state q_0 is an element of Q. Each computation of the machine starts at the start state.

The accept (final) states F form a subset of the states of the automaton, $F \subseteq Q$. These states are used to flag if the machine accepts or rejects an input string.

The computation of a machine on an input string is a sequence of states in the machine, starting with the start state, determined by transitions of the machine as it reads successive input symbols.

The finite automaton M accepts the given input string exactly when the computation of M on the input string ends in an accept state. M rejects the given input string exactly when the computation of M on the input string ends in a nonaccept state, that is, a state that is not in F.

The language of M, L(M), is defined as the set of all strings that are each accepted by the machine M. Each string that is rejected by M is not in L(M). The language of M is also called the language recognized by M.

What is finite about all finite automata? (Select all that apply)
\Box The size of the machine (number of states, number of arrows)
$\hfill\Box$ The length of each computation of the machine
\square The number of strings that are accepted by the machine

The formal definition of this FA is

Classify each string $a, aa, ab, ba, bb, \varepsilon$ as accepted by the FA or rejected by the FA.

Why are these the only two options?

The language recognized by this automaton is

The language recognized by this automaton is

The language recognized by this automaton is

Day5

Review: Formal definition of DFA: $M = (Q, \Sigma, \delta, q_0, F)$

• Finite set of states Q

• Start state q_0

• Alphabet Σ

• Accept (final) states F

• Transition function δ

Quick check: In the state diagram of M, how many outgoing arrows are there from each state?

Note: We'll see a new kind of finite automaton. It will be helpful to distinguish it from the machines we've been talking about so we'll use **Deterministic Finite Automaton** (DFA) to refer to the machines from Section 1.1.

 $M=(\{q0,q1,q2\},\{a,b\},\delta,q0,\{q0\})$ where δ is (rows labelled by states and columns labelled by symbols):

$$\begin{array}{c|cccc} \delta & a & b \\ \hline q0 & q1 & q1 \\ q1 & q2 & q2 \\ q2 & q0 & q0 \\ \end{array}$$

The state diagram for M is

Give two examples of strings that are accepted by M and two examples of strings that are rejected by M:

A regular expression describing $\mathcal{L}(M)$ is

A state diagram for a finite automaton recognizing

 $\{w \mid w \text{ is a string over } \{a,b\} \text{ whose length is not a multiple of } 3\}$

Extra example: Let n be an arbitrary positive integer. What is a formal definition for a finite automaton recognizing

 $\{w \mid w \text{ is a string over } \{0,1\} \text{ whose length is not a multiple of } n\}$?

Or: decompose the language to a simpler one that we already know how to recognize with a DFA or NFA.

Textbook Exercise 1.14: Suppose A is a language over an alphabet Σ . If there is a DFA M such that L(M) = A then there is another DFA, let's call it M', such that $L(M') = \overline{A}$, the complement of A, defined as $\{w \in \Sigma^* \mid w \notin A\}$.

Proof idea:

A useful bit of terminology: the **iterated transition function** of a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ is defined recursively by

$$\delta^{*}(\ (q,w)\) = \begin{cases} q & \text{if } q \in Q, w = \varepsilon \\ \delta(\ (q,a)\) & \text{if } q \in Q, \ w = a \in \Sigma \\ \delta(\ (\delta^{*}(\ (q,u)\),a)\) & \text{if } q \in Q, \ w = ua \ \text{where } u \in \Sigma^{*} \ \text{and } a \in \Sigma \end{cases}$$

Using this terminology, M accepts a string w over Σ if and only if $\delta^*(\ (q_0, w)\) \in F$.

Proof:

Day6

Nondeterministic finite automaton (Sipser Page 53) Given as $M = (Q, \Sigma, \delta, q_0, F)$

Finite set of states Q Can be labelled by any collection of distinct names. Default: $q0, q1, \ldots$

Alphabet Σ Each input to the automaton is a string over Σ .

Arrow labels Σ_{ε} $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}.$

Arrows in the state diagram are labelled either by symbols from Σ or by ε

Transition function $\delta = \delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ gives the **set of possible next states** for a transition

from the current state upon reading a symbol or spontaneously moving.

Start state q_0 Element of Q. Each computation of the machine starts at the start state.

Accept (final) states $F ext{ } F \subseteq Q$.

M accepts the input string $w \in \Sigma^*$ if and only if **there is** a computation of M on w that processes the whole string and ends in an accept state.

The formal definition of the NFA over $\{0,1\}$ given by this state diagram is:

The language over $\{0,1\}$ recognized by this NFA is:

Practice: Change the transition function to get a different NFA which accepts the empty string (and potentially other strings too).

The state diagram of an NFA over $\{a,b\}$ is:

The formal definition of this NFA is:

Proof of correctness would prove that $L(N) = A_1 \cup A_2$ by considering an arbitrary string accepted by N, tracing an accepting computation of N on it, and using that trace to prove the string is in at least one of A_1 , A_2 ; then, taking an arbitrary string in $A_1 \cup A_2$ and proving that it is accepted by N. Details left for extra practice.