

DATA ANALYSIS PROJECT

BY - SUBROTO DUTTA

KEY OBJECTIVES

Conduct necessary data preparation steps and optimize the dataset for further analysis.

02 Analyze top tracks and popular artists within the dataset.

Conduct regression analysis on different audio features.

Investigate trends in music production and track length over the years.

Perform genre analysis to determine influence on song characteristics

and popularity trends. Summarize key findings highlighting the most significant patterns and conclusions from the data.

WORKFLOW MAP

DATA PREPARATION

Cleaning, formatting, and getting data ready for analysis

DATA

Initiating an overview and gaining insights from data

EXPLORATION

DATA

VISUALIZATION

Visualizing insights through visuals and graphs

ANALYTICAL SUMMARY

Summarizing key findings and insights from the analysis

REMOVING NULL VALUES


```
1 # Checking null values in each column.
In [4]:
          2 tracks.isnull().sum()
Out[4]: id
                             71
         name
         popularity
        duration ms
         explicit
         artists
         id artists
        year
        danceability
         energy
         key
         loudness
        mode
         speechiness
         acousticness
         instrumentalness
        liveness
        valence
         tempo
        time signature
         dtype: int64
```

```
1 #Droping null values
          2 tracks.dropna(inplace = True)
          4 # Checking null values after droping all null rows
          5 tracks.isnull().sum()
Out[5]: id
        name
        popularity
        duration ms
        explicit
        artists
        id artists
        year
        danceability
        energy
        key
        loudness
        mode
        speechiness
        acousticness
        instrumentalness
        liveness
        valence
        tempo
        time_signature
        dtype: int64
```


DATASET OPTIMIZATION


```
# Creating a duration column to show duration in seconds using apply method and lambda function tracks['duration'] = tracks['duration_ms'].apply(lambda x : round(x/1000))

# Pulling the new duration column tracks['duration'].head(10)

127
1 98
2 182
3 177
4 163
5 179
6 134
7 161
8 310
9 181
Name: duration, dtype: int64
```

Removed unnecessary columns from the dataset to streamline the dataset and shift focus to relevant features for analysis.

Created new **duration** column by converting the values from milliseconds to seconds using the lambda function, allowing the data for more straightforward comparisons and visualizations of track lengths in subsequent analytical tasks.

02

DATA

EXPLORATION

POPULARITY ANALYSIS

TOP POPULAR TRACKS

1 # Using sort values and head method using populrity as the base to extract top 10 popular songs 2 tracks[['name', 'artists', 'popularity']].sort values('popularity', ascending = False).head(10).reset index(drop = True) name artists popularity 0 Peaches (feat. Daniel Caesar & Giveon) ['Justin Bieber', 'Daniel Caesar', 'Giveon'] 100 99 drivers license ['Olivia Rodrigo'] Astronaut In The Ocean ['Masked Wolf'] 98 97 telepatía ['Kali Uchis'] Save Your Tears ['The Weeknd'] 97 Leave The Door Open ['Bruno Mars', 'Anderson . Paak', 'Silk Sonic'] 96 Blinding Lights ['The Weeknd'] 96 The Business ['Tiësto'] 95 ['Los Legendarios', 'Wisin', 'Jhay Cortez'] 94 Bandido ['Myke Towers', 'Juhn'] 94

TOP POPULAR ARTISTS

```
# Using pivot table method to calculate mean popularity of each artist
   artists_plty = tracks[['artists','popularity']].pivot_table(index = 'artists',values = 'popularity', aggfunc= 'mean')
   # Sorting values and indexing to find out top 10 popular artists
   artists_plty.sort_values('popularity', ascending = False).reset_index()[:10]
                                    artists popularity
                                               94.0
0 ['Riton', 'Nightcrawlers', 'Mufasa & Hypeman',...
       ['Los Legendarios', 'Wisin', 'Jhay Cortez']
                                                94.0
                    ['Bad Bunny', 'ROSALÍA']
                                               93.0
                                               92.0
                      ['Travis Scott', 'HVME']
      ['Rochy RD', 'Myke Towers', 'Nicki Nicole']
               ['MEDUZA', 'Dermot Kennedy']
         ['Nathan Evans', '220 KID', 'Billen Ted']
                  ['Bad Bunny', 'Jhay Cortez']
                                               91.0
                                                90.0
                      ['Saweetie', 'Doja Cat']
            ['Maroon 5', 'Megan Thee Stallion']
```


STATISTICAL INSIGHTS

DESCRIPTIVE STATISTICS

1 # Using Describe and Transpose function to display descriptive statistics for the dataset

2 tracks.describe().transpose()

	count	mean	std	min	25%	50%	75%	max
popularity	586601.0	27.573212	18.369417	0.0	13.0000	27.000000	41.00000	100.000
explicit	586601.0	0.044091	0.205298	0.0	0.0000	0.000000	0.00000	1.000
year	586601.0	1988.571729	22.826243	1900.0	1974.0000	1992.000000	2007.00000	2021.000
danceability	586601.0	0.563612	0.166101	0.0	0.4530	0.577000	0.68600	0.991
energy	586601.0	0.542071	0.251910	0.0	0.3430	0.549000	0.74800	1.000
loudness	586601.0	-10.205789	5.089422	-60.0	-12.8910	-9.242000	-6.48100	5.376
speechiness	586601.0	0.104870	0.179902	0.0	0.0340	0.044300	0.07630	0.971
acousticness	586601.0	0.449803	0.348812	0.0	0.0969	0.422000	0.78400	0.996
nstrumentalness	586601.0	0.113425	0.266843	0.0	0.0000	0.000024	0.00955	1.000
liveness	586601.0	0.213933	0.184328	0.0	0.0983	0.139000	0.27800	1.000
valence	586601.0	0.552306	0.257673	0.0	0.3460	0.564000	0.76900	1.000
tempo	586601.0	118.467930	29.762942	0.0	95.6060	117.387000	136.32400	246.381
duration	586601.0	230.054333	126.532822	3.0	175.0000	215.000000	264.00000	5621.000

CORRELATIONAL DATASET

1	# Creating a corr	elational dataset	using corr	function through	pearson corr	relation method

2 corr_tracks = tracks.drop(['year', 'name', 'artists'], axis = 1).corr('pearson')

3 corr_trac

	popularity	explicit	danceability	energy	loudness	speechiness	acousticness	instrumentalness	liveness	valence	tempo	durati
popularity	1.000000	0.211749	0.186878	0.302178	0.327001	-0.047415	-0.370723	-0.236403	-0.048735	0.004558	0.071223	0.0276
explicit	0.211749	1.000000	0.150216	0.123060	0.134598	0.102251	-0.149001	-0.067510	-0.013113	-0.016551	0.005723	-0.0167
danceability	0.186878	0.150216	1.000000	0.241464	0.251394	0.199291	-0.242838	-0.225831	-0.106175	0.528136	-0.040896	-0.1204
energy	0.302178	0.123060	0.241464	1.000000	0.764744	-0.053560	-0.715366	-0.195727	0.124636	0.372224	0.230006	0.0247
loudness	0.327001	0.134598	0.251394	0.764744	1.000000	-0.167140	-0.519423	-0.329255	0.029509	0.275416	0.189252	0.0003
speechiness	-0.047415	0.102251	0.199291	-0.053560	-0.167140	1.000000	0.069121	-0.102425	0.207062	0.046481	-0.086950	-0.1257
acousticness	-0.370723	-0.149001	-0.242838	-0.715366	-0.519423	0.069121	1.000000	0.204312	-0.004742	-0.180878	-0.195117	-0.0643
nstrumentalness	-0.236403	-0.067510	-0.225831	-0.195727	-0.329255	-0.102425	0.204312	1.000000	-0.038836	-0.175195	-0.055380	0.0693
liveness	-0.048735	-0.013113	-0.106175	0.124636	0.029509	0.207062	-0.004742	-0.038836	1.000000	-0.000052	-0.014923	0.0021
valence	0.004558	-0.016551	0.528136	0.372224	0.275416	0.046481	-0.180878	-0.175195	-0.000052	1.000000	0.135198	-0.1632
tempo	0.071223	0.005723	-0.040896	0.230006	0.189252	-0.086950	-0.195117	-0.055380	-0.014923	0.135198	1.000000	-0.0012
duration	0.027640	-0.016748	-0.120408	0.024785	0.000322	-0.125782	-0.064395	0.069321	0.002140	-0.163231	-0.001248	1.0000

CORRELATION HEATMAP

					Correlatio	n Heatma	p for audi	o features				
popularity	1					-0.047	-0.37	-0.24	-0.049	0.0046	0.071	0.028
explicit	0.21					0.1	-0.15	-0.068	-0.013	-0.017	0.0057	-0.017
danceability				0.24			-0.24	-0.23	-0.11		-0.041	-0.12
energy			0.24	1	0.76	-0.054	-0.72	-0.2				0.025
loudness				0.76		-0.17	-0.52	-0.33	0.03			0.00032
speechiness	-0.047	0.1		-0.054	-0.17	1	0.069	-0.1		0.046	-0.087	-0.13
acousticness	-0.37	-0.15	-0.24	-0.72	-0.52	0.069	1		-0.0047	-0.18	-0.2	-0.064
nstrumentainess	-0.24	-0.068	-0.23	-0.2	-0.33	-0.1	0.2	1	-0.039	-0.18	-0.055	0.069
liveness	-0.049	-0.013	-0.11		0.03		-0.0047	-0.039		-5.2e-05	-0.015	0.0021
valence	0.0046	-0.017				0.046	-0.18	-0.18	-5.2e-05	1		-0.16
tempo	0.071	0.0057	-0.041			-0.087	-0.2	-0.055	-0.015			-0.0012
duration	0.028	-0.017	-0.12	0.025	0.00032	-0.13	-0.064	0.069	0.0021	-0.16	-0.0012	- 1
	popularity	explicit	danceability	energy	oudness	speechiness	acousticness	instrumentalness	Iveness	valence	odway	duration

The heatmap reveals several key insights -

- Energy and loudness have a strong positive correlation, indicating louder songs tend to be more energetic.
- Acousticness has a strong negative correlation with energy and loudness, suggesting that more acoustic songs are generally less energetic and quieter.
- Popularity shows moderate positive correlations with energy and loudness.

REGGRESSION ANALYSIS

+

ACOUSTICNESS V/S **POPULARITY**

ENERGY V/S **DANCEABILITY**

TREND ANALYSIS

TRACK RELEASE BY YEAR

AVERAGE TRACK LENGTH OVER YEARS

TREND ANALYSIS

• +

AVERAGE SONG DURATION BY GENRE

TOP GENRE BY POPULARITY

KEY INSIGHTS

TREND ANALYSIS

- The **trend of music production** over the years reveals consistent growth, with a notable surge around 1960 and a recent peak, reflecting the music industry's response to technological advancements and cultural shifts impacting popularity of music across different genres.
- The shift towards **shorter song durations** reflects changes in
 consumption patterns, driven by
 shorter attention spans, which
 emphasize concise and engaging
 content to capture attention

02

CORRELATIONAL INSIGHTS

- A strong positive correlation exists between **energy and loudness**, suggesting that energetic songs are also louder. Additionally, a strong positive regression is observed between **energy and danceability**, highlighting their combined impact on song popularity.
- However, a negative correlation exists between **energy and acousticness**, therefore it's obvious that negative regression is derived between **popularity and acousticness**, thereby negatively affecting the popularity of the song.

03

GENRE ANALYSIS

- Analyzing different genres, **Pop** emerges as the most popular genre among the top five, followed closely by **Rap, Rock, Hip-Hop, and Dance** based on their respective average popularity ratings.
- Classical genre typically has the longest average durations due to its complex compositions. In contrast, Children's music is designed to be short and catchy for young audiences, resulting in significantly shorter durations.

I HANK YOU

