Asuman Aydın

21502604

CS 202, Fall 2018

Homework #2 - Binary Search Trees

Question 1:

A- In Order: 3-5*8/4^1+7 Pre Order: /-3*58+^417 Post Order: 358*-4/^7+/

C- In Order: WRAKLCO

B-

The final tree after all insertions.

Deletion of 59:

Question 3:

INSERTION	ERTION
-----------	--------

Tree Size	Time Elapsed
1500	193
3000	<u>460</u>
4500	<u>633</u>
6000	<u>818</u>
<u>7500</u>	<u>1013</u>
9000	1288
10500	<u>1513</u>
12000	<u>1765</u>
13500	<u>1987</u>

DELETION	
Tree Size	Time Elapsed
1500	<u>314</u>
3000	<u>592</u>
4500	<u>819</u>
6000	1050
<u>7500</u>	1300
9000	<u>1549</u>
10500	<u>1812</u>
12000	<u>1996</u>
13500	<u>2277</u>
15000	<u>2513</u>

ELAPSED TIME vs SIZE OF ARRAY

ANALYSIS:

- Theoretically, the time complexity depends on the height and for the worst case height would be same with the number of nodes. However, for this assignment, we insert random numbers and delete even more random numbers so for the theoretical calculation I took the height of every insertion. So it became in same portion of time elapsed in deletion.
- For the insertion of sorted array numbers, it does not matter whether it is ascending or descending order. It would go all the nodes with same number of height so it would hit the worst case which is O(n) where n is number of nodes.