Electric and Acoustic Communication

Zoology 306L – Ethology Lab TA: Nate Wehr

Acoustic Communication Acoustic Communication

- Animals create sounds that convey meaning to a targeted receiving animal
- The goal of communication is to change the receiver's behavior to benefit the sender
- Examples of sound production mechanisms:
 - Larynx of terrestrial mammals, syrinx of birds, or phonic lips of whales
 - Stridulating of hard or bony parts or appendages
 - Rapidly shaking muscles or striking body parts
- Common reasons for sound production:
 - Courtship
 - Parent/offspring/mate recognition
 - Solicitation or begging calls from offspring
 - Territory defense/aggression
 - Warning to or of predators

Understanding Sound

- What makes a sound?
 - The movement of a wave through a medium including gasses, liquids, and solids
- How is sound recorded?
 - Sound waves affect the internal mechanisms of a microphone, causing changes in electric potential across metal plates
 - Software writes the changes in electric potential as data points for storage
- What are common measurements of sound?
 - Pitch, loudness, duration, repetition
- What are common units of those measurements?
 - Pitch is measured in Hertz (Hz = cycles/sec); loudness is measured in decibels (dB); duration in milliseconds; frequency = 1/wavelength

Visualizing Sound Using "Audacity"

Waveforms

- Amplitude (loudness) over time
 - Shows the strength of a call as it happens
- Closer the peaks and troughs indicate higher pitch

Sonograms

- Frequency (pitch) over time
 - Shows different pitches and harmonics in the calls
- Brighter spots indicate louder pitches

Fourier Transformation

- Amplitude over frequency
 - Shows pitches' correspondence with power

What Can We Measure with "Audacity"?

• Examples:

- Duration
- Max Frequency
- Peak frequency
- Harmonics
- Pulse rate
- Inter-pulse interval
- Pulse amplitude

Electric Sensing

- Many different predators can use electric organs to sense prey
- A few animals can even generate electric shocks for predator evasion or capturing prey
- Weakly electric fishes can sense electric fields AND generate small electric fields of their own, but these are not strong enough to harm others
- These signals are used for communication and electrolocation (like echolocation, but using electrical signals)

Weakly Electric Fish

- Mormyrid and Gymnotiform fishes
- Two different lineages (not closely related)
- Electric organ near tail generates a dipole around the bodies, which fish can detect with electroreceptors around the head and body
- Gymnotiform fishes generate continuous sin waves
- Mormyrid fishes generate variable pulse trains

How Electric Fish "Feel" the World

- The electric field is always uniform when fish is in empty water
- Changes to the area around fish disrupt the electric field, such as:
 - Objects in the electric field
 - Other electric fish

Videos of Electric Fish

Remember: the fish aren't producing sound; they're producing electric pulses, which are fed into a speaker

Today's Activities

- First, we don't have electric fish; we'll be using the videos and waveforms provided in this presentation to study them
- Second, we'll record crickets in the lab
- Third, we'll go outside and record birds
- Fourth, we'll come inside and load the recordings to your computers
- Finally, we'll use "Audacity" to examine the recordings

Assignments

- Lab report: a 2-3 page report on how a sensory system (of your choice) works for a given animal lineage or species, how this system is used, and its adaptive value to the animal you chose; you must cite at least 3 scholarly sources
- In two weeks (4/20), you'll have an auditory quiz
 - Questions will ask you to identify animals based on audio playbacks, waveforms, and spectrograms; you may also be asked to draw rough sketches of spectrograms
 - The sound files and information you need to study can be found at:
 - < http://www.hawaii.edu/behavior/306/LabAcoustics/index.html >