Übungen zur Linearen Algebra I

Wintersemester 2016/17

Universität Heidelberg Mathematisches Institut Dr. D. Vogel

Dr. M. Witte

Blatt 9

Abgabetermin: Donnerstag, 22.12.2016, 9.30 Uhr

Aufgabe 1. (Basis von Unterraum und Komplement) Sei

$$W := \text{Lin}\left(\left((1, 2, 3, 4, 5), (1, 1, 1, 1, 1), (1, -1, 2, 1, 8), (1, 0, 2, 0, 3), (2, 1, 3, 1, 4)\right)\right) \subseteq \mathbb{R}^5.$$

Bestimmen Sie eine Basis von W sowie eine Basis eines Komplements von W in \mathbb{R}^5 und geben Sie die Dimension von W und des Komplements an.

Aufgabe 2. (Lineare Abbildungen) Sei K ein Körper. Zeigen Sie, dass die folgenden Abbildungen K-linear sind:

- (a) die Spurabbildung Sp: $M(n \times n; K) \to K$, $(a_{i,j}) \mapsto \sum_{i=1}^n a_{i,i}$ für $n \in \mathbb{N}$,
- (b) für jede Abbildung von Mengen $f: I \to J$ die Abbildung $f^*: Abb(J, K) \to Abb(I, K)$, $\phi \mapsto \phi \circ f$,

Aufgabe 3. (Invarianz des Rangs unter der $\mathrm{GL}(m,K)$ -Wirkung) Sei K ein Körper, $\ell, m, n \in \mathbb{N}$, A eine $\ell \times m$ -Matrix und B eine $m \times n$ -Matrix mit Einträgen aus K. Zeigen Sie:

- (a) $K^m \to K^n$, $v \mapsto vB$ ist eine lineare Abbildung.
- (b) Der Zeilenrang von AB ist kleiner oder gleich dem Zeilenrang von A. Ist m=n und $B \in GL(m, K)$, so ist der Zeilenrang von A gleich dem Zeilenrang von AB. Tipp: Verwenden Sie den Basisauswahlsatz (Folgerung 9.4) und Bemerkung 12.3.(e).
- (c) Der Spaltenrang von AB ist kleiner oder gleich dem Spaltenrang von B. Ist $\ell = m$ und $A \in GL(m, K)$, so ist der Spaltenrang von B gleich dem Spaltenrang von AB.
- (d) Ist $\ell = m$ und $A \in GL(m, K)$, so ist der Zeilen- und Spaltenrang von A gleich m.

Aufgabe 4. (Komplementäre Unterräume und idempotente Abbildungen) Sei V ein K-Vektorraum und U, U' zwei komplementäre Untervektorräume von V (d. h. $V = U \oplus U'$). Zeigen Sie:

- (a) Es gibt genau einen K-linearen Endomorphismus $\pi:V\to V$ mit $\pi(u)=u$ für $u\in U$ und $\pi(u)=0$ für $u\in U'$.
- (b) Die Abbildung $\pi: V \to V$ aus (a) ist idempotent, d. h. $\pi \circ \pi = \pi$.

Zusatzaufgabe 5. (Der von einer Menge frei erzeugte Vektorraum) Sei K ein Körper und I eine Menge. Wir setzen

$$K^{(I)} := \{ a \in Abb(I, K) \mid a(i) = 0 \text{ für fast alle } i \in I \}.$$

Der Vektorraum (vgl. Blatt 6, Aufgabe 3.(c)) $K^{(I)}$ heißt der von I frei erzeugte Vektorraum. Zeigen Sie:

(a) Für $j \in I$ sei

$$e_j \colon I \to K, \qquad i \mapsto \begin{cases} 1 & \text{falls } i = j, \\ 0 & \text{sonst.} \end{cases}$$

Dann ist $(e_j)_{j\in I}$ eine Basis von $K^{(I)}$. Sie heißt kanonische Basis.

(b) Für jeden K-Vektorraum V und für jede Abbildung von Mengen $\phi \colon I \to V$ existiert genau eine K-lineare Abbildung $\bar{\phi} \colon K^{(I)} \to V$ mit $\phi(j) = \bar{\phi}(e_j)$ für alle $j \in I$.

Bemerkung: Ein Element $a \in K^{(I)}$ schreibt man gewöhnlich als Familie $(a_i)_{i \in I}$ von Elementen in K, wobei $a_i := a(i)$ gesetzt wird. Es gilt dann $a_i = 0$ für fast alle $i \in I$.