MATH455 - Analysis 4 Abstract Metric, Topological Spaces; Functional Analysis.

Based on lectures from Winter 2025 by Prof. Jessica Lin. Notes by Louis Meunier

Contents

1	Abstract Metric and Topological Spaces	2
	1.1 Review of Metric Spaces	2
	1.2 Compactness, Separability	3
	1.3 Arzelà-Ascoli	5
	Abstract Metric and Topological Spaces 1.1 Review of Metric Spaces 1.2 Compactness, Separability 1.3 Arzelà-Ascoli 1.4 Baire Category Theorem 1.4.1 Applications of Baire Category Theorem 1.5 Topological Spaces 1.6 Separation, Countability, Separability 1.7 Continuity and Compactness 1.8 Connected Topological Spaces 1.9 Urysohn's Lemma and Urysohn's Metrization Theorem	8
	1.4.1 Applications of Baire Category Theorem	9
	1.5 Topological Spaces	10
	1.6 Separation, Countability, Separability	12
	1.7 Continuity and Compactness	14
	1.8 Connected Topological Spaces	16
	1.9 Urysohn's Lemma and Urysohn's Metrization Theorem	17
	1.10 Stone-Weierstrass Theorem	20
2	Functional Analysis	23
	2.1 Introduction to Linear Operators	23
	1.9 Urysohn's Lemma and Urysohn's Metrization Theorem 1.10 Stone-Weierstrass Theorem Functional Analysis 2.1 Introduction to Linear Operators 2.2 Finite versus Infinite Dimensional	25
	2.3 Open Mapping and Closed Graph Theorems	27
	2.4 Uniform Boundedness Principle	

$\S 1$ Abstract Metric and Topological Spaces

§1.1 Review of Metric Spaces

Throughout fix *X* a nonempty set.

 \hookrightarrow **Definition 1.1** (Metric): $\rho: X \times X \to \mathbb{R}$ is called a *metric*, and thus (X, ρ) a *metric space*, if for all $x, y, z \in X$,

- $\rho(x,y) \geq 0$,
- $\rho(x,y) = 0 \Leftrightarrow x = y$,
- $\rho(x, y) = \rho(y, x)$, and
- $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

 \hookrightarrow Definition 1.2 (Norm): Let *X* a linear space. A function $\|\cdot\|: X \to [0, \infty)$ is called a *norm* if for all *u*, *v* ∈ *X* and *α* ∈ \mathbb{R} ,

- $\bullet \|u\| = 0 \Leftrightarrow u = 0,$
- $||u+v|| \le ||u|| + ||v||$, and
- $\bullet \|\alpha u\| = |\alpha| \|u\|.$

Remark 1.1: A norm induces a metric by $\rho(x, y) := ||x - y||$.

 \hookrightarrow Definition 1.3: Given two metrics ρ , σ on X, we say they are *equivalent* if \exists C > 0 such that $\frac{1}{C}\sigma(x,y) \le \rho(x,y) \le C\sigma(x,y)$ for every $x,y \in X$. A similar definition follows for equivalence of norms.

Given a metric space (X, ρ) , then, we have the notion of

- open balls $B(x,r) = \{ y \in X : \rho(x,y) < r \}$,
- open sets (subsets of X with the property that for every $x \in X$, there is a constant r > 0 such that $B(x,r) \subseteq X$), closed sets, closures, and
- convergence.

 \hookrightarrow Definition 1.4 (Convergence): $\{x_n\}\subseteq X$ converges to $x\in X$ if $\lim_{n\to\infty}\rho(x_n,x)=0$.

We have several (equivalent) notions, then, of continuity; via sequences, $\varepsilon - \delta$ definition, and by pullbacks (inverse images of open sets are open).

1.1 Review of Metric Spaces

 \hookrightarrow Definition 1.5 (Uniform Continuity): $f:(X,\rho)\to (Y,\sigma)$ uniformly continuous if f has a "modulus of continuity", i.e. there is a continuous function $\omega:[0,\infty)\to [0,\infty)$ such that $\sigma(f(x_1),f(x_2)) \le \omega(\rho(x_1,x_2))$

for every $x_1, x_2 \in X$.

Remark 1.2: For instance, we say f Lipschitz continuous if there is a constant C>0 such that $\omega(\cdot)=C(\cdot)$. Let $\alpha\in(0,1)$. We say f α -Holder continuous if $\omega(\cdot)=C(\cdot)^{\alpha}$ for some constant C.

 \hookrightarrow **Definition 1.6** (Completeness): We say (X, ρ) *complete* if every cauchy sequence in (X, ρ) converges to a point in X.

Remark 1.3: If (X, ρ) complete and $E \subseteq X$, then (E, ρ) is complete iff E closed in X.

§1.2 Compactness, Separability

 \hookrightarrow **Definition 1.7** (Open Cover, Compactness): $\{X_{\lambda}\}_{\lambda \in \Lambda} \subseteq 2^{X}$, where X_{λ} open in X and Λ an arbitrary index set, an *open cover* of X if for every $x \in X$, $\exists \lambda \in \Lambda$ such that $x \in X_{\lambda}$.

X is *compact* if every open cover of X admits a compact subcover. We say $E \subseteq X$ compact if (E, ρ) compact.

Definition 1.8 (Totally Bounded, ε-nets): (X, ρ) totally bounded if $\forall \varepsilon > 0$, there is a finite cover of X of balls of radius ε . If $E \subseteq X$, an ε-net of E is a collection $\{B(x_i, \varepsilon)\}_{i=1}^N$ such that $E \subseteq \bigcup_{i=1}^N B(x_i, \varepsilon)$ and $x_i \in X$ (note that x_i need not be in E).

 \hookrightarrow **Definition 1.9** (Sequentially Compact): (X, ρ) *sequentially compact* if every sequence in X has a convergent subsequence whose limit is in X.

 \hookrightarrow **Definition 1.10** (Relatively / Pre-Compact): $E \subseteq X$ relatively compact if \overline{E} compact.

\hookrightarrow Theorem 1.1: TFAE:

- 1. *X* complete and totally bounded;
- 2. *X* compact;
- 3. *X* sequentially compact.

Remark 1.4: $E \subseteq X$ relatively compact if every sequence in E has a convergent subsequence.

Let $f:(X,\rho)\to (Y,\sigma)$ continuous with (X,ρ) compact. Then,

- f(X) compact in Y;
- if $Y = \mathbb{R}$, the max and min of f over X are achieved;
- *f* is uniformly continuous.

Let $C(X) := \{f : X \to \mathbb{R} \mid f \text{ continuous}\}$ and $\|f\|_{\infty} := \max_{x \in X} |f(x)|$ the sup (max, in this case) norm. Then,

 \hookrightarrow Theorem 1.2: Let (X, ρ) compact. Then, $(C(X), \|\cdot\|_{\infty})$ is complete.

PROOF. Let $\{f_n\}\subseteq C(X)$ Cauchy with respect to $\|\cdot\|_\infty$. Then, there exists a subsequence $\{f_{n_k}\}$ such that for each $k\geq 1$, $\|f_{n_{k+1}}-f_{n_k}\|_\infty\leq 2^{-k}$ (to construct this subsequence, let $n_1\geq 1$ be such that $\|f_n-f_{n_1}\|_\infty<\frac{1}{2}$ for all $n\geq n_1$, which exists since $\{f_n\}$ Cauchy. Then, for each $k\geq 1$, define inductively n_{k+1} such that $n_{k+1}>n_k$ and $\|f_n-f_{n_{k+1}}\|_\infty<\frac{1}{2^{k+1}}$ for each $n\geq n_{k+1}$. Then, for any $k\geq 1$, $\|f_{n_{k+1}}-f_{n_k}\|_\infty<2^{-k}$, since $n_{k+1}>n_k$.).

Let $j \in \mathbb{N}$. Then, for any $k \geq 1$,

$$\|f_{n_{k+j}} - f_{n_k}\|_{\infty} \leq \sum_{\ell=k}^{k+j-1} \|f_{n_{\ell+1}} - f_{n_{\ell}}\|_{\infty} \leq \sum_{\ell} 2^{-\ell}$$

and hence for each $x \in X$, with $c_k \coloneqq f_{n_k}(x)$,

$$|c_{k+j}-c_k| \leq \sum_{\ell=k}^{\infty} 2^{-\ell}.$$

The RHS is the tail of a converging series, and thus $|c_{k+j}-c_k|\to 0$ as $k\to\infty$ i.e. $\{c_k\}$ a Cauchy sequence, in \mathbb{R} . $(\mathbb{R},|\cdot|)$ complete, so $\lim_{k\to\infty}c_k=:f(x)$ exists for each $x\in X$. So, for each $x\in X$, we find

$$|f_{n_k}(x)-f(x)|\leq \sum_{\ell=k}^\infty 2^{-\ell},$$

and since the RHS is independent of x, we may pass to the sup norm, and find

$$\|f_{n_k}-f\|_\infty \leq \sum_{\ell=k}^\infty 2^{-\ell},$$

with the RHS $\to 0$ as $k \to \infty$. Hence, $f_{n_k} \to f$ in C(X) as $k \to \infty$. In other words, we have uniform convergence of $\left\{f_{n_k}\right\}$. Each $\left\{f_{n_k}\right\}$ continuous, and thus f also continuous, and thus $f \in C(X)$.

It remains to show convergence along the whole sequence. Suppose otherwise. Then, there is some $\alpha>0$ and a subsequence $\left\{f_{n_j}\right\}\subseteq \{f_n\}$ such that $\|f_{n_j}-f\|_\infty>$

 $\alpha > 0$ for every $j \ge 1$. Then, let k be sufficiently large such that $||f - f_{n_k}||_{\infty} \le \frac{\alpha}{2}$. Then, for every $j \ge 1$ and k sufficiently large,

$$\begin{split} \|f_{n_j}-f_{n_k}\|_{\infty} &\geq \|f_{n_j}-f\|_{\infty} - \|f-f_{n_k}\|_{\infty} \\ &> \alpha - \frac{\alpha}{2} > 0, \end{split}$$

which contradicts the Cauchy-ness of $\{f_n\}$, completing the proof.

Definition 1.11 (Density/Separability): A set $D \subseteq X$ is called *dense* in X if for every nonempty open subset $A \subseteq X$, $D \cap A \neq \emptyset$. We say X *separable* if there is a countable dense subset of X.

Remark 1.5: If *A* dense in *X*, then $\overline{A} = X$.

 \hookrightarrow **Proposition 1.1**: If *X* compact, *X* separable.

PROOF. Since X compact, it is totally bounded. So, for $n \in \mathbb{N}$, there is some K_n and $\{x_i\} \subseteq X$ such that $X \subseteq \bigcup_{i=1}^{K_n} B\big(x_i, \frac{1}{n}\big)$. Then, $D = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{K_n} \{x_i\}$ countable and dense in X.

§1.3 Arzelà-Ascoli

The goal in this section is to find conditions for a sequence of functions $\{f_n\} \subseteq C(X)$ to be precompact, namely, to have a uniformly convergent subsequence.

Corollary 1.1: Any Cauchy sequence converges if it has a convergent subsequence.

PROOF. Let $\{x_n\}$ be a Cauchy sequence in a metric space (X,ρ) with convergent subsequence $\big\{x_{n_k}\big\}$ which converges to some $x\in X$. Fix $\varepsilon>0$. Let $N\geq 1$ be such that if $m,n\geq N$, $\rho(x_n,x_m)<\frac{\varepsilon}{2}$. Let $K\geq 1$ be such that if $k\geq K$, $\rho\big(x_{n_k},x\big)<\frac{\varepsilon}{2}$. Let $n,n_k\geq \max\{N,K\}$, then

$$\rho(x,x_n) \leq \rho \Big(x,x_{n_k}\Big) + \rho \Big(x_{n_k},x_n\Big) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definition 1.12 (Equicontinuous): A family $\mathcal{F} \subseteq C(X)$ is called *equicontinuous* at $x \in X$ if $\forall \varepsilon > 0$ there exists a $\delta = \delta(x, \varepsilon) > 0$ such that if $\rho(x, x') < \delta$ then $|f(x) - f(x')| < \varepsilon$ for every $f \in \mathcal{F}$.

Remark 1.6: \mathcal{F} equicontinuous at x iff every $f \in \mathcal{F}$ share the same modulus of continuity.

1.3 Arzelà-Ascoli 5

 \hookrightarrow **Definition 1.13** (Pointwise/uniformly bounded): $\{f_n\}$ pointwise bounded if $\forall x \in X$, $\exists M(x) > 0$ such that $|f_n(x)| \leq M(x) \ \forall n$, and uniformly bounded if such an M exists independent of x.

 \hookrightarrow Lemma 1.1 (Arzelà-Ascoli Lemma): Let X separable and let $\{f_n\}\subseteq C(X)$ be pointwise bounded and equicontinuous. Then, there is a subsequence $\{f_{n_k}\}$ and a function f which converges pointwise to f on all of X.

PROOF. Let $D=\left\{x_j\right\}_{j=1}^\infty\subseteq X$ be a countable dense subset of X. Since $\{f_n\}$ p.w. bounded, $\{f_n(x_1)\}$ as a sequence of real numbers is bounded and so by the Bolzano-Weierstrass (BW) Theorem there is a convergent subsequence $\left\{f_{n(1,k)}(x_1)\right\}_k$ that converges to some $a_1\in\mathbb{R}$. Consider now $\left\{f_{n(1,k)}(x_2)\right\}_k$, which is again a bounded sequence of \mathbb{R} and so has a convergent subsequence, call it $\left\{f_{n(2,k)}(x_2)\right\}_k$ which converges to some $a_2\in\mathbb{R}$. Note that $\left\{f_{n(2,k)}\right\}\subseteq\left\{f_{n(1,k)}\right\}$, so also $f_{n(2,k)}(x_1)\to a_1$ as $k\to\infty$. We can repeat this procedure, producing a sequence of real numbers $\{a_\ell\}$, and for each $j\in\mathbb{N}$ a subsequence $\left\{f_{n(j,k)}\right\}_k\subseteq\{f_n\}$ such that $f_{n(j,k)}(x_\ell)\to a_\ell$ for each $1\le\ell\le j$. Define then

$$f: D \to \mathbb{R}, f(x_j) := a_j.$$

Consider now

$$f_{n_k} \coloneqq f_{n(k,k)}, k \ge 1,$$

the "diagonal sequence", and remark that $f_{n_k}(x_j) \to a_j = f(x_j)$ as $k \to \infty$ for every $j \ge 1$. Hence, $\left\{f_{n_k}\right\}_k$ converges to f on D, pointwise.

We claim now that $\left\{f_{n_k}\right\}$ converges on all of X to some function $f:X\to\mathbb{R}$, pointwise. Put $g_k:=f_{n_k}$ for notational convenience. Fix $x_0\in X$, $\varepsilon>0$, and let $\delta>0$ be such that if $x\in X$ such that $\rho(x,x_0)<\delta$, $|g_k(x)-g_k(x_0)|<\frac{\varepsilon}{3}$ for every $k\geq 1$, which exists by equicontinuity. Since D dense in X, there is some $x_j\in D$ such that $\rho(x_j,x_0)<\delta$. Then, since $g_k(x_j)\to f(x_j)$ (pointwise), $\left\{g_k(x_j)\right\}_k$ is Cauchy and so there is some $K\geq 1$ such that for every $k,\ell\geq K$, $|g_\ell(x_j)-g_k(x_j)|<\frac{\varepsilon}{3}$. And hence, for every $k,\ell\geq K$,

$$|g_k(x_0) - g_\ell(x_0)| \leq |g_k(x_0) - g_k\big(x_j\big)| + |g_k\big(x_j\big) - g_\ell\big(x_j\big)| + |g_\ell\big(x_j\big) - g_\ell(x_0)| < \varepsilon,$$

so namely $\{g_k(x_0)\}_k$ Cauchy as a sequence in \mathbb{R} . Since \mathbb{R} complete, then $\{g_k(x_0)\}_k$ also converges, to, say, $f(x_0) \in \mathbb{R}$. Since x_0 was arbitrary, this means there is some function $f: X \to \mathbb{R}$ such that $g_k \to f$ pointwise on X as we aimed to show.

1.3 Arzelà-Ascoli 6

 \hookrightarrow **Definition 1.14** (Uniformly Equicontinuous): $\mathcal{F} \subseteq C(X)$ is said to be uniformly equicontinuous if for every $\varepsilon < 0$, there exists a $\delta > 0$ such that $\forall \, x,y \in X$ with $\rho(x,y) < \delta$, $|f(x) - f(y)| < \varepsilon$ for every $f \in \mathcal{F}$. That is, every function in \mathcal{F} has the same modulus of continuity.

→ **Proposition 1.2** (Sufficient Conditions for Uniform Equicontinuity):

- 1. $\mathcal{F} \subseteq C(X)$ uniformly Lipschitz
- 2. $\mathcal{F} \subseteq C(X) \cap C^1(X)$ has a uniform L^{∞} bound on the first derivative
- 3. $\mathcal{F} \subseteq C(X)$ uniformly Holder continuous
- 4. (X, ρ) compact and \mathcal{F} equicontinuous

→Theorem 1.3 (Arzelà-Ascoli): Let (X, ρ) a compact metric space and $\{f_n\} \subseteq C(X)$ be a uniformly bounded and (uniformly) equicontinuous family of functions. Then, $\{f_n\}$ is precompact in C(X), i.e. there exists $\{f_{n_k}\} \subseteq \{f_n\}$ such that f_{n_k} is uniformly convergent on X.

PROOF. Since (X, ρ) compact it is separable and so by the lemma there is a subsequence $\{f_{n_k}\}$ that converges pointwise on X. Denote by $g_k \coloneqq f_{n_k}$ for notational convenience.

We claim $\{g_k\}$ uniformly Cauchy. Let $\varepsilon>0$. By uniform equicontinuity, there is a $\delta>0$ such that $\rho(x,y)<\delta\Rightarrow |g_k(x)-g_k(y)|<\frac{\varepsilon}{3}$. Since X compact it is totally bounded so there exists $\{x_i\}_{i=1}^N$ such that $X\subseteq\bigcup_{i=1}^N B(x_i,\delta)$. For every $1\le i\le N$, $\{g_k(x_i)\}$ converges by the lemma hence is Cauchy in \mathbb{R} . So, there exists a K_i such that for every $k,\ell\ge K_i$ $|g_k(x_i)-g_\ell(x_i)|\le \frac{\varepsilon}{3}$. Let $K:=\max\{K_i\}$. Then for every $\ell,k\le K$, $|g_k(x_i)-g_\ell(x_i)|\le \frac{\varepsilon}{3}$ for every i=1,...,N. So, for all $x\in X$, there is some x_i such that $\rho(x,x_i)<\delta$, and so for every $k,\ell\ge K$,

$$\begin{split} |g_k(x) - g_\ell(x)| &\leq |g_k(x) - g_k(x_i)| \\ &+ |g_k(x_i) - g_\ell(x_i)| \\ &+ |g_\ell(x_i) - g_\ell(x)| < \varepsilon, \end{split}$$

the first and last follow by the equicontinuity and the second from the lemma. This holds for every x and thus $\|g_k-g_\ell\|_\infty<\varepsilon$, so $\{g_k\}$ Cauchy in C(X). But C(X) complete so converges in the space.

Remark 1.7: If $K \subseteq X$ a compact set, then K bounded and closed.

→Theorem 1.4: Let (X, ρ) compact and $\mathcal{F} \subseteq C(X)$. Then, \mathcal{F} a compact subspace of C(X) iff \mathcal{F} closed, uniformly bounded, and (uniformly) equicontinuous.

1.3 Arzelà-Ascoli 7

PROOF. (\Leftarrow) Let $\{f_n\}\subseteq \mathcal{F}$. By Arzelà-Ascoli Theorem, there exists a subsequence $\left\{f_{n_k}\right\}$ that converges uniformly to some $f\in C(X)$. Since \mathcal{F} closed, $f\in \mathcal{F}$ and so \mathcal{F} sequentially compact hence compact.

 (\Rightarrow) $\mathcal F$ compact so closed and bounded in C(X). To prove equicontinuous, we argue by contradiction. Suppose otherwise, that $\mathcal F$ not-equicontinuous at some $x\in X$. Then, there is some $\varepsilon_0>0$ and $\{f_n\}\subseteq \mathcal F$ and $\{x_n\}\subseteq X$ such that $|f_n(x_n)-f_n(x)|\geq \varepsilon_0$ while $\rho(x,x_n)<\frac{1}{n}$. Since $\{f_n\}$ bounded and $\mathcal F$ compact, there is a subsequence $\left\{f_{n_k}\right\}$ that converges to f uniformly. Let K be such that $\forall\, k\geq K$, $\|f_{n_k}-f\|_\infty \leq \frac{\varepsilon_0}{3}$. Then,

$$\begin{split} |f\Big(x_{n_k}\Big) - f \mid &\geq |\ |f\Big(x_{n_k}\Big) - f_{n_k}\Big(x_{n_k}\Big)| - |f_{n_k}\Big(x_{n_k}\Big) - f_{n_k}(x)| - |f_{n_k}(x) - f(x)|\ | \\ &\geq \frac{\varepsilon_0}{3}, \end{split}$$

while $\rho(x_{n_k}, x) \leq \frac{1}{n_k}$, so f cannot be continuous at x, a contradiction.

§1.4 Baire Category Theorem

We'll say a set $E \subseteq X$ hollow if int $E = \emptyset$, or equivalently if E^c dense in X.

- \hookrightarrow Theorem 1.5 (Baire Category Theorem): Let X be a complete metric space.
 - (a) Let $\{F_n\}$ a collection of closed hollow sets. Then, $\bigcup_{n=1}^{\infty} F_n$ also hollow.
 - (b) Let $\{\mathcal{O}_n\}$ a collection of open dense sets. Then, $\bigcap_{n=1}^\infty \mathcal{O}_n$ also dense.

Proof. Notice that $(a) \Leftrightarrow (b)$ by taking complements. We prove (b).

Put $G := \bigcap_{n=1}^{\infty} \mathcal{O}_n$. Fix $x \in X$ and r > 0, then to show density of G is to show $G \cap B(x,r) \neq \emptyset$.

Since \mathcal{O}_1 dense, then $\mathcal{O}_1\cap B(x,r)$ nonempty and in particular open. So, let $x_1\in X$ and $r_1<\frac{1}{2}$ such that $\overline{B}(x,r_1)\subseteq B(x,2r_1)\subseteq \mathcal{O}_1\cap B(x,r)$.

Similarly, since \mathcal{O}_2 dense, $\mathcal{O}_2 \cap B(x_1,r_1)$ open and nonempty so there exists $x_2 \in X$ and $r_2 < 2^{-2}$ such that $\overline{B}(x_2,r_2) \subseteq \mathcal{O}_2 \cap B(x_1,r_1)$.

Repeat in this manner to find $x_n \in X$ with $r_n < 2^{-n}$ such that $\overline{B}(x_n, r_n) \subseteq \mathcal{O}_n \cap B(x_{n-1}, r_{n-1})$ for any $n \in \mathbb{N}$. This creates a sequence of sets

$$\overline{B}(x_1,r_1)\supseteq \overline{B}(x_2,r_2)\supseteq \cdots,$$

with $r_n \to 0$. Hence, the sequence of points $\{x_n\}$ Cauchy and since X complete, $x_j \to x_0 \in X$, so in particular

$$\{x_0\} = \bigcap_{n=1}^{\infty} \overline{B}(x_n, r_n),$$

hence $x_0 \in \mathcal{O}_n$ for every n and thus $G \cap B(x,r)$ nonempty.

 \hookrightarrow Corollary 1.2: Let X complete and $\{F_n\}$ a sequence of closed sets in X. If $X = \bigcup_{n \geq 1} F_n$, there is some n_0 such that $\operatorname{int}(F_{n_0}) \neq \emptyset$.

PROOF. If not, violates BCT since *X* is not hollow in itself.

 \hookrightarrow Corollary 1.3: Let X complete and $\{F_n\}$ a sequence of closed sets in X. Then, $\bigcup_{n=1}^{\infty} \partial F_n$ hollow.

PROOF. We claim $\operatorname{int}(\partial F_n)=\varnothing$. Suppose not, then there exists some $B(x_0,r)\subseteq\partial F_n$. Then $x_0\in\partial F_n$ but $B(x_0,r)\cap F_n^c=\varnothing$, a contradiction. So, since ∂F_n closed and $\partial F_n\cap B(x_0,r)=\varnothing$ for every such ball, by BCT $\bigcup_{n=1}^\infty\partial F_n$ must be hollow.

1.4.1 Applications of Baire Category Theorem

→Theorem 1.6: Let $\mathcal{F} \subset C(X)$ where X complete. Suppose \mathcal{F} pointwise bounded. Then, there exists a nonempty, open set $\mathcal{O} \subseteq X$ such that \mathcal{F} uniformly bounded on \mathcal{O} .

Proof. Let

$$\begin{split} E_n &:= \{x \in X : |f(x)| \leq n \, \forall \, f \in \mathcal{F}\} \\ &= \bigcap_{f \in \mathcal{F}} \underbrace{\{x : |f(x)| \leq n\}}_{\text{closed}}. \end{split}$$

Since $\mathcal F$ pointwise bounded, for every $x\in X$ there is some $M_x>0$ such that $|f(x)|\leq M_x$ for every $f\in \mathcal F$. Hence, for every $n\in \mathbb N$ such that $n\geq M_x$, $x\in E_n$ and thus $X=\bigcup_{n=1}^\infty E_n$.

 E_n closed and hence by the previous corollaries there is some n_0 such that $\operatorname{int} \left(E_{n_0} \right) \neq \varnothing$ and hence there is some r > 0 and $x_0 \in X$ such that $B(x_0, r) \subseteq E_{n_0}$. Then, for every $x \in B(x_0, r)$, $|f(x)| \leq n_0$ for every $f \in \mathcal{F}$, which gives our desired nonempty open set upon which \mathcal{F} uniformly bounded.

→Theorem 1.7: Let X complete, and $\{f_n\} \subseteq C(X)$ such that $f_n \to f$ pointwise on X. Then, there exists a dense subset $D \subseteq X$ such that $\{f_n\}$ equicontinuous on D and f continuous on D.

Proof. For $m, n \in \mathbb{N}$, let

$$\begin{split} E(m,n) &\coloneqq \left\{ x \in X : |f_j(x) - f_k(x)| \leq \frac{1}{m} \, \forall \, j,k \geq n \right\} \\ &= \bigcap_{j,k \geq n} \left\{ x : |f_j(x) - f_k(x)| \leq \frac{1}{m} \right\}. \end{split}$$

The union of the boundaries of these sets are hollow, hence $D\coloneqq \left(\bigcup_{m,n\geq 1}\partial E(m,n)\right)^c$ is dense. Then, if $x\in D\cap E(m,n)$, then $x\in \left(\partial E(m,n)\right)^c$ implies $x\in \mathrm{int}(E(m,n))$.

We claim $\{f_n\}$ equicontinuous on D. Let $x_0 \in D$ and $\varepsilon > 0$. Let $\frac{1}{m} \leq \frac{\varepsilon}{4}$. Then, since $\{f_n(x_0)\}$ convergent it is therefore Cauchy (in \mathbb{R}). Hence, there is some N such that

 $|f_j(x_0)-f_k(x_0)|\leq \frac{1}{m}$ for every $j,k\geq N$, so $x_0\in D\cap E(m,N)$ hence $x_0\in {\rm int}(E(m,N)).$

Let $B(x_0,r)\subseteq E(m,N).$ Since f_N continuous at x_0 there is some $\delta>0$ such that $\delta< r$ and

$$|f_N(x)-f_N(x_0)|<\frac{1}{m}\,\forall\,x\in B(x_0,\delta),$$

and hence

$$\begin{split} |f_j(x)-f_j(x_0)| &\leq |f_j(x)-f_N(x)| + |f_N(x)-f_N(x_0)| + |f_N(x_0)-f_j(x_0)| \\ &\leq \frac{3}{m} \leq \frac{3}{4}\varepsilon, \end{split}$$

for every $x \in B(x_0, \delta)$ and $j \ge N$, where the first, last bounds come from Cauchy and the middle from continuity of f_N . Hence, we've show $\{f_n\}$ equicontinuous at x_0 since δ was independent of f.

In particular, this also gives for every $x \in B(x_0, \delta)$ the limit

$$\frac{3}{4}\varepsilon>\lim_{j\to\infty}\lvert f_j(x)-f_j(x_0)\rvert=\lvert f(x)-f(x_0)\rvert,$$

so f continuous on D.

§1.5 Topological Spaces

Throughout, assume $X \neq \emptyset$.

 \hookrightarrow **Definition 1.15** (Topology): Let $X \neq \emptyset$. A *topology* \mathcal{T} on X is a collection of subsets of X, called *open sets*, such that

- $X, \emptyset \in \mathcal{T}$;
- If $\{E_n\}\subseteq\mathcal{T}$, $\bigcap_{n=1}^N E_n\in\mathcal{T}$ (closed under *finite* intersections);
- If $\{E_n\} \subseteq \mathcal{T}$, $\bigcup_n E_n \in \mathcal{T}$ (closed under arbitrary unions).

If $x \in X$, a set $E \in \mathcal{T}$ containing x is called a neighborhood of x.

 \hookrightarrow **Proposition 1.3**: $E \subseteq X$ open \Leftrightarrow for every $x \in E$, there is a neighborhood of x contained in E.

PROOF. \Rightarrow is trivial by taking the neighborhood to be E itself. \Leftarrow follows from the fact that, if for each x we let \mathcal{U}_x a neighborhood of x contained in E, then

$$E = \bigcup_{x \in E} \mathcal{U}_x,$$

so *E* open being a union of open sets.

1.5 Topological Spaces 10

Example 1.1: Every metric space induces a natural topology given by open sets under the metric. The *discrete topology* is given by $\mathcal{T} = 2^X$ (and is actually induced by the discrete metric), and is the largest topology. The *trivial topology* $\{\emptyset, X\}$ is the smallest. The *relative topology* defined on a subset $Y \subseteq X$ is given by $\mathcal{T}_Y := \{E \cap Y : E \in \mathcal{T}\}$.

 \hookrightarrow **Definition 1.16** (Base): Given a topological space (X,\mathcal{T}) , let $x\in X$. A collection \mathcal{B}_x of neighborhoods of x is called a *base* of \mathcal{T} at x if for every neighborhood \mathcal{U} of x, there is a set $B\in\mathcal{B}_x$ such that $B\subseteq\mathcal{U}$.

We say a collection \mathcal{B} a base for all of \mathcal{T} if for every $x \in X$, there is a base for $x, \mathcal{B}_x \subseteq \mathcal{B}$.

 \hookrightarrow **Proposition 1.4**: If (X, \mathcal{T}) a topological space, then $\mathcal{B} \subseteq \mathcal{T}$ a base for $\mathcal{T} \Leftrightarrow$ every nonempty open set $\mathcal{U} \in \mathcal{T}$ can be written as a union of elements of \mathcal{B} .

Proof. \Rightarrow If $\mathcal U$ open, then for $x \in \mathcal U$ there is some basis element B_x contained in $\mathcal U$. So in particular $\mathcal U = \bigcup_{x \in \mathcal U} B_x$.

 \Leftarrow Let $x \in \mathcal{U}$ and $\mathcal{B}_x \coloneqq \{B \in \mathcal{B} \mid x \in B\}$. Then, for every neighborhood of x, there is some B in \mathcal{B}_x such that $B \subseteq \mathcal{U}$ so \mathcal{B}_x a base for \mathcal{T} at x.

Remark 1.8: A base \mathcal{B} defines a unique topology, $\{\emptyset, \cup \mathcal{B}_x\}$.

 \hookrightarrow **Proposition 1.5**: $\mathcal{B} \subseteq 2^X$ a base for a topology on $X \Leftrightarrow$

- $X = \bigcup_{B \in \mathcal{B}} B$
- If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there is a $B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$.

PROOF. (\Rightarrow) If \mathcal{B} a base, then X open so $X=\cup_B B$. If $B_1,B_2\in\mathcal{B}$, then $B_1\cap B_2$ open so there must exist some $B\subseteq B_1\cap B_2$ in \mathcal{B} .

(**⇐**) Let

$$\mathcal{T} = \{\mathcal{U} \mid \forall \, x \in \mathcal{U}, \exists \, B \in \mathcal{B} \text{ with } x \in B \subseteq \mathcal{U}\}.$$

One can show this a topology on X with \mathcal{B} as a base.

 \hookrightarrow **Definition 1.17**: If $\mathcal{T}_1 \subsetneq \mathcal{T}_2$, we say \mathcal{T}_1 weaker/coarser and \mathcal{T}_2 stronger/finer.

Given a subset $S \subseteq 2^X$, define

to be the topology *generated* by S.

 $\mathcal{T}(S) = \bigcap$ all topologies containing S = unique weakest topology containing S

1.5 Topological Spaces 11

 \hookrightarrow Proposition 1.6: If $S \subseteq 2^X$,

$$\mathcal{T}(S) = \big \lfloor \ \big | \{ \text{finite intersections of elts of } S \}.$$

We call S a "subbase" for $\mathcal{T}(S)$ (namely, we allow finite intersections of elements in S to serve as a base for $\mathcal{T}(S)$).

PROOF. Let $\mathcal{B} := \{X, \text{finite intersections of elements of } S\}$. We claim this a base for $\mathcal{T}(S)$.

Definition 1.18 (Point of closure/accumulation point): If $E \subseteq X, x \in X$, x is called a *point* of closure if $\forall \mathcal{U}_x, \mathcal{U}_x \cap E \neq \emptyset$. The collection of all such sets is called the *closure* of E, denote \overline{E} . We say E closed if $E = \overline{E}$.

\hookrightarrow **Proposition 1.7**: Let $E \subseteq X$, then

- \overline{E} closed,
- \overline{E} is the smallest closed set containing E,
- E open $\Leftrightarrow E^c$ closed.

§1.6 Separation, Countability, Separability

 \hookrightarrow **Definition 1.19**: A neighborhood of a set $K \subseteq X$ is any open set containing K.

- \hookrightarrow **Definition 1.20** (Notions of Separation): We say (X, \mathcal{T}) :
- Tychonoff Separable if $\forall x,y \in X, \exists \mathcal{U}_x, \mathcal{U}_y$ such that $y \notin \mathcal{U}_x, x \notin \mathcal{U}_y$
- *Hausdorff Separable* if $\forall \, x,y \in X$ can be separated by two disjoint open sets i.e. $\exists \, \mathcal{U}_x \cap \mathcal{U}_y = \varnothing$
- Normal if Tychonoff and in addition any 2 disjoint closed sets can be separated by disjoint neighborhoods.

Remark 1.9: Metric space \subseteq normal space \subseteq Hausdorff space \subseteq Tychonoff space.

 \hookrightarrow **Proposition 1.8**: Tychonoff $\Leftrightarrow \forall x \in X, \{x\} \text{ closed.}$

PROOF. For every $x \in X$,

$$\begin{split} \{x\} \text{ closed} &\Leftrightarrow \{x\}^c \text{ open} \\ &\Leftrightarrow \forall \, y \in \{x\}^c, \exists \, \mathcal{U}_y \subseteq \{x\}^c \\ &\Leftrightarrow \forall \, y \neq x, \exists \, \mathcal{U}_y \text{ s.t. } x \notin \mathcal{U}_y, \end{split}$$

and since this holds for every x, X Tychonoff.

→ Proposition 1.9: Every metric space normal.

 \hookrightarrow **Proposition 1.10**: Let X Tychonoff. Then X normal $\Leftrightarrow \forall F \subseteq X$ closed and neighborhood \mathcal{U} of F, there exists an open set \mathcal{O} such that

$$F \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}$$
.

This is called the "nested neighborhood property" of normal spaces.

PROOF. (\Rightarrow) Let F closed and $\mathcal U$ a neighborhood of F. Then, F and $\mathcal U^c$ closed disjoint sets so by normality there exists $\mathcal O, \mathcal V$ disjoint open neighborhoods of $F, \mathcal U^c$ respectively. So, $\mathcal O \subseteq \mathcal V^c$ hence $\overline{\mathcal O} \subseteq \overline{\mathcal V}^c$ and thus

$$F \subset \mathcal{O} \subset \overline{\mathcal{O}} \subset \mathcal{V}^c \subset \mathcal{U}.$$

(\Leftarrow) Let A,B be disjoint closed sets. Then, B^c open and moreover $A\subseteq B^c$. Hence, there exists some open set \mathcal{O} such that $A\subseteq \mathcal{O}\subseteq \overline{\mathcal{O}}\subseteq B^c$, and thus $B\subseteq \overline{\mathcal{O}}^c$. Then, \mathcal{O} and $\overline{\mathcal{O}}^c$ are disjoint open neighborhoods of A,B respectively so X normal.

 \hookrightarrow **Definition 1.21** (Separable): A space *X* is called *separable* if it contains a countable dense subset.

- \hookrightarrow **Definition 1.22** (1st, 2nd Countable): A topological space (X, \mathcal{T}) is called
- 1st countable if there is a countable base at each point
- 2nd countable if there is a countable base for all of \mathcal{T} .
- **Example 1.2**: Every metric space is first countable.

→Proposition 1.11: Every 2nd countable space is separable.

Definition 1.23 (Convergence): Let $\{x_n\}$ ⊆ X. Then, we say $x_n \to x$ in \mathcal{T} if for every neighborhood \mathcal{U}_x , there exists an N such that $\forall n \geq N, x_n \in \mathcal{U}_x$.

Remark 1.10: In general spaces, such a limit may not be unique. For instance, under the trivial topology, the only nonempty neighborhood is the whole space, so every sequence converges to every point in the space.

 \hookrightarrow **Proposition 1.12**: Let (X, \mathcal{T}) be Hausdorff. Then, all limits are unique.

PROOF. Suppose otherwise, that $x_n \to \text{both } x$ and y. If $x \neq y$, then since X Hausdorff there are disjoint neighborhoods $\mathcal{U}_x, \mathcal{U}_y$ containing x, y. But then x_n cannot be on both \mathcal{U}_x and \mathcal{U}_y for sufficiently large n, contradiction.

 \hookrightarrow Proposition 1.13: Let X be 1st countable and $E \subseteq X$. Then, $x \in \overline{E} \Leftrightarrow$ there exists $\{x_j\} \subseteq E$ such that $x_j \to x$.

PROOF. (\Rightarrow) Let $\mathcal{B}_x = \left\{B_j\right\}$ be a base for X at $x \in \overline{E}$. Wlog, $B_j \supseteq B_{j+1}$ for every $j \ge 1$ (by replacing with intersections, etc if necessary). Hence, $B_j \cap E \neq \emptyset$ for every j. Let $x_j \in B_j \cap E$, then by the nesting property $x_j \to x$ in \mathcal{T} .

 (\Leftarrow) Suppose otherwise, that $x \notin \overline{E}$. Let $\{x_j\} \in E_j$. Then, \overline{E}^c open, and contains x. Then, \overline{E}^c a neighborhood of x but does not contain any x_j so $x_j \not\to x$.

§1.7 Continuity and Compactness

Definition 1.24: Let $(X, \mathcal{T}), (Y, \mathcal{S})$ be two topological spaces. Then, a function $f: X \to Y$ is said to be continuous at x_0 if for every neighborhood \mathcal{O} of $f(x_0)$ there exists a neighborhood $\mathcal{U}(x_0)$ such that $f(\mathcal{U}) \subseteq \mathcal{O}$. We say f continuous on X if it is continuous at every point in X.

→Proposition 1.14: f continuous $\Leftrightarrow \forall \mathcal{O}$ open in Y, $f^{-1}(\mathcal{O})$ open in X.

 \hookrightarrow **Definition 1.25** (Weak Topology): Consider $\mathcal{F} \coloneqq \{f_{\lambda}: X \to X_{\lambda}\}_{\lambda \in \Lambda}$ where X, X_{λ} topological spaces. Then, let

$$S := \{ f_{\lambda}^{-1}(\mathcal{O}_{\lambda}) \mid f_{\lambda} \in \mathcal{F}, \mathcal{O}_{\lambda} \in X_{\lambda} \} \subseteq X.$$

We say that the topology $\mathcal{T}(S)$ generated by S is the *weak topology* for X induced by the family \mathcal{F} .

 \hookrightarrow **Proposition 1.15**: The weak topology is the weakest topology in which each f_{λ} continuous on X.

Example 1.3: The key example of the weak topology is given by the product topology. Consider $\{X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of topological spaces. We can defined a "natural" topology on the product $X := \prod_{\lambda \in \Lambda} X_{\lambda}$ by consider the weak topology induced by the family of projection maps, namely, if $\pi_{\lambda} : X \to X_{\lambda}$ a coordinate-wise projection and $\mathcal{F} = \{\pi_{\lambda} : \lambda \in \Lambda\}$, then we say the weak topology induced by \mathcal{F} is the *product topology* on X. In particular, a base for this topology is given, by previous discussions,

$$\mathcal{B} = \left\{ \bigcap_{j=1}^n \pi_{\lambda_j}^{-1} \big(\mathcal{O}_j \big) \right\} = \left\{ \prod_{\lambda \in \Lambda} \mathcal{U}_{\lambda} : \mathcal{U}_{\lambda} \text{ open and all by finitely many } U_{\lambda'} s = X_{\lambda} \right\}.$$

 \hookrightarrow **Definition 1.26** (Compactness): A space *X* is said to be *compact* if every open cover of *X* admits a finite subcover.

\hookrightarrow Proposition 1.16:

- Closed subsets of compact spaces are compact
- X compact \Leftrightarrow if $\{F_k\} \subseteq X$ -nested and closed, $\bigcap_{k=1}^{\infty} F_k \neq \emptyset$.
- Continuous images of compact sets are compact
- Continuous real-valued functions on a compact topological space achieve their min, max.

 \hookrightarrow **Proposition 1.17**: Let K compact be contained in a Hausdorff space X. Then, K closed in X.

PROOF. We show K^c open. Let $y \in K^c$. Then for every $x \in K$, there exists disjoint open sets $\mathcal{U}_{xy}, \mathcal{O}_{xy}$ containing y, x respectively. Then, it follows that $\left\{\mathcal{O}_{xy}\right\}_{x \in K}$ an open cover of K, and since K compact there must exist some finite subcover, $K \subseteq \bigcup_{i=1}^N \mathcal{O}_{x_iy}$. Let $E := \bigcap_{i=1}^N \mathcal{U}_{x_iy}$. Then, E is an open neighborhood of y with $E \cap \mathcal{O}_{x_iy} = \emptyset$ for every i = 1, ...N. Thus, $E \subseteq \bigcap_{i=1}^N \mathcal{O}_{x_iy}^c = \left(\bigcup_{i=1}^N \mathcal{O}_{x_iy}\right)^c \subseteq K^c$ so since y was arbitrary K^c open.

 \hookrightarrow **Definition 1.27** (Sequential Compactness): We say (X, \mathcal{T}) sequentially compact if every sequence in X has a converging subsequence with limit contained in X.

 \hookrightarrow **Proposition 1.18**: Let (X, \mathcal{T}) second countable. Then, X compact \Leftrightarrow sequentially compact.

PROOF. (\Rightarrow) Let $\{x_k\}\subseteq X$ and put $F_n:=\overline{\{x_k\mid k\geq n\}}$. Then, $\{F_n\}$ defines a sequence of closed and nested subsets of X and, since X compact, $\bigcap_{n=1}^\infty F_n$ nonempty. Let x_0 in this intersection. Since X 2nd and so in particular 1st countable, let $\{B_j\}$ a (wlog nested) countable base at x_0 . $x_0\in F_n$ for every $n\geq 1$ so each B_j must intersect some

 F_n . Let n_j be an index such that $x_{n_j} \in B_j$. Then, if $\mathcal U$ a neighborhood of x_0 , there exists some N such that $B_j \subseteq \mathcal U$ for every $j \geq N$ and thus $\left\{x_{n_j}\right\} \subseteq B_N \subseteq \mathcal U$, so $x_{n_j} \to x_0$ in X.

 $(\Leftarrow) \text{ Remark that since } X \text{ second countable, every open cover of } X \text{ certainly has a countable subcover by intersecting a given cover with our countable basis. So, assume we have a countable cover <math>X \subseteq \bigcup_{n=1}^\infty \mathcal{O}_n$ and suppose towards a contradiction that no finite subcover exists. Then, for every $n \geq 1$, there exists some $m(n) \geq n$ such that $\mathcal{O}_{m(n)} \setminus \bigcup_{i=1}^n \mathcal{O}_i \neq \varnothing$. Let x_n in this set for every $n \geq 1$. Since X sequentially compact, there exists a convergent subsequence $\left\{x_{n_k}\right\} \subseteq \left\{x_n\right\}$ such that $x_{n_k} \to x_0$ in X, so there exists some \mathcal{O}_N such that $x_0 \in \mathcal{O}_N$. But by construction, $x_{n_k} \notin \mathcal{O}_N$ if $n_k \geq N$, and we have a contradiction.

\hookrightarrow **Theorem 1.8**: If *X* compact and Hausdorff, *X* normal.

PROOF. We show that any closed set F and any point $x \notin F$ can be separated by disjoint open sets. Then, the proof in the more general case follows.

For each $y \in X$, X is Hausdorff so there exists disjoint open neighborhoods \mathcal{O}_{xy} and \mathcal{U}_{xy} of x,y respectively. Then, $\left\{\mathcal{U}_{xy} \mid y \in F\right\}$ defines an open cover of F. Since F closed and thus, being a subset of a compact space, compact, there exists a finite subcover $F \subseteq \bigcup_{i=1}^N \mathcal{U}_{xy_i}$. Put $\mathcal{N} := \bigcap_{i=1}^N \mathcal{O}_{xy_i}$. This is an open set containing x, with $\mathcal{N} \cap \bigcup_{i=1}^N \mathcal{U}_{xy_i} = \varnothing$ hence F and x separated by $\mathcal{N}, \bigcup_{i=1}^N \mathcal{U}_{xy_i}$.

§1.8 Connected Topological Spaces

 \hookrightarrow **Definition 1.28** (Separate): 2 non-empty sets $\mathcal{O}_1, \mathcal{O}_2$ separate X if $\mathcal{O}_1, \mathcal{O}_2$ disjoint and $X = \mathcal{O}_1 \cup \mathcal{O}_2$.

 \rightarrow **Definition 1.29** (Connected): We say *X* connected if it cannot be separated.

Remark 1.11: Note that if X can be separated, then $\mathcal{O}_1, \mathcal{O}_2$ are closed as well as open, being complements of each other.

 \hookrightarrow Proposition 1.19: Let $f: X \to Y$ continuous. Then, if X connected, so is f(X).

PROOF. Suppose otherwise, that $f(X) = \mathcal{O}_1 \sqcup \mathcal{O}_2$ for nonempty, open, disjoint $\mathcal{O}_1, \mathcal{O}_2$. Then, $X = f^{-1}(\mathcal{O}_1) \sqcup f^{-1}(\mathcal{O}_2)$, and each of these inverse images remain nonempty and open in X, so this a contradiction to the connectedness of X.

Remark 1.12: On \mathbb{R} , $C \subseteq \mathbb{R}$ connected \Leftrightarrow an interval \Leftrightarrow convex.

 \hookrightarrow **Definition 1.30** (Intermediate Value Property): We say X has the intermediate value property (IVP) if $\forall f \in C(X)$, f(X) an interval.

 \hookrightarrow Proposition 1.20: *X* has IVP \Leftrightarrow *X* connected.

PROOF. (\Leftarrow) If X connected, f(X) connected in \mathbb{R} hence an interval.

 $(\Rightarrow) \text{ Suppose otherwise, that } X = \mathcal{O}_1 \sqcup \mathcal{O}_2. \text{ Then define the function } f: X \to \mathbb{R} \text{ by } x \mapsto \begin{cases} 1 \text{ if } x \in \mathcal{O}_2 \\ 0 \text{ if } x \in \mathcal{O}_1 \end{cases}. \text{ Then, for every } A \subseteq \mathbb{R},$

$$f^{-1}(A) = \begin{cases} \varnothing & \text{if } \{0,1\} \not\subseteq A \\ \mathcal{O}_1 & \text{if } 0 \in A \\ \mathcal{O}_2 & \text{if } 1 \in A \\ X & \text{if } \{0,1\} \subseteq A \end{cases},$$

which are all open sets, hence f continuous. But $f(X) = \{0,1\}$ which is not an interval, hence the IVP fails and so X must be connected.

Definition 1.31 (Arcwise/Path Connected): *X arc connected/path connected* if $\forall x, y \in X$, there exists a continuous function $f : [0,1] \rightarrow X$ such that f(0) = x, f(1) = y.

 \hookrightarrow Proposition 1.21: Arc connected \Rightarrow connected.

PROOF. Suppose otherwise, $X=\mathcal{O}_1\sqcup\mathcal{O}_2$. Let $x\in\mathcal{O}_1,y\in\mathcal{O}_2$ and define a continuous function $f:[0,1]\to X$ such that f(0)=x and f(1)=y. Then, $f^{-1}(\mathcal{O}_i)$ each open, nonempty and disjoint for i=1,2, but

$$f^{-1}(\mathcal{O}_1) \sqcup f^{-1}(\mathcal{O}_2) = [0,1],$$

a contradiction to the connectedness of [0, 1].

§1.9 Urysohn's Lemma and Urysohn's Metrization Theorem

We present the main lemma of this section first, but need more tools before proving it.

→Lemma 1.2 (Urysohn's): Let $A, B \subseteq X$ closed and disjoint subsets of a normal space X. Then, $\forall [a, b] \subseteq \mathbb{R}$, there exists a continuous function $f : [a, b] \to \mathbb{R}$ such that $f(X) \subseteq [a, b]$, $f|_A = a$ and $f|_B = b$.

Remark 1.13: We have a partial converse of this statement as well:

 \hookrightarrow Proposition 1.22: Let X Tychonoff and suppose X satisfies the properties of Urysohn's Lemma. Then, X normal.

PROOF. Let A,B be closed nonempty disjoint subsets. Let $f:X\to\mathbb{R}$ continuous such that $f|_A=0$, $f|_B=1$ and $0\leq f\leq 1$. Let I_1,I_2 be two disjoint open intervals in \mathbb{R} with $0\in I_1$ and $1\in I_2$. Then, $f^{-1}(I_1)$ open and contains A, and $f^{-1}(I_2)$ open and contains B. Moreover, $f^{-1}(I_1)\cap f^{-1}(I_2)=\varnothing$; hence, $f^{-1}(I_1),f^{-1}(I_2)$ disjoint open neighborhoods of A,B respectively, so indeed X normal.

 \hookrightarrow **Definition 1.32** (Normally Ascending): Let (X,\mathcal{T}) a topological space and $\Lambda \subseteq \mathbb{R}$. A collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is said to be *normally ascending* if $\forall \lambda_1, \lambda_2 \in \Lambda$,

$$\overline{\mathcal{O}_{\lambda_1}}\subseteq \mathcal{O}_{\lambda_2} \text{ if } \lambda_1<\lambda_2.$$

Lemma 1.3: Let $\Lambda \subseteq (a,b)$ a dense subset, and let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ a normally ascending collection of subsets of *X*. Let *f* : *X* → \mathbb{R} defined such that

$$f(x) = \begin{cases} b & \text{if } x \in \left(\bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}\right)^{c} \\ \inf\{\lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda}\} \text{ else} \end{cases}$$

Then, *f* continuous.

PROOF. We claim $f^{-1}(-\infty,c)$ and $f^{-1}(c,\infty)$ open for every $c\in\mathbb{R}$. Since such sets define a subbase for \mathbb{R} , it suffices to prove continuity on these sets. We show just the first for convenience. Notice that since $f(x)\in[a,b]$, if $c\in(a,b)$ then $f^{-1}(-\infty,c)=f^{-1}[a,c)$, so really it suffices to show that $f^{-1}[a,c)$ open to complete the proof.

Suppose $x \in f^{-1}([a,c])$ so $a \leq f(x) < c$. Let $\lambda \in \Lambda$ be such that $a < \lambda < f(x)$. Then, $x \notin \mathcal{O}_{\lambda}$. Let also $\lambda' \in \Lambda$ such that $f(x) < \lambda' < c$. By density of Λ , there exists a $\varepsilon > 0$ such that $f(x) + \varepsilon \in \Lambda$, so in particular

$$\overline{\mathcal{O}}_{f(x)+\varepsilon}\subseteq \mathcal{O}_{\lambda'}\Rightarrow x\in \mathcal{O}_{\lambda'},$$

by nesting. So, repeating this procedure, we find

$$f^{-1}([a,c)) \subseteq \bigcup_{a \le \lambda < \lambda' < c} \mathcal{O}_{\lambda'} \setminus \overline{\mathcal{O}}_{\lambda},$$

noticing the set on the right is open. By similar reasoning, the opposite inclusion holds and we have equality. Hence, f continuous.

Lemma 1.4: Let *X* normal, $F \subseteq X$ closed, and \mathcal{U} a neighborhood of *F*. Then, for any $(a,b) \subseteq \mathbb{R}$, there exists a dense subset $\Lambda \subseteq (a,b)$ and a normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ such that

$$F\subseteq\mathcal{O}_\lambda\subseteq\overline{\mathcal{O}}_\lambda\subseteq\mathcal{U},\qquad\forall\,\lambda\in\Lambda.$$

Remark 1.14: This is essentially a generalization of the nested neighborhood property, and indeed the proof essentially just uses this property repeatedly to construct the collection $\{\mathcal{O}_{\lambda}\}$.

PROOF. Without loss of generality, we assume (a,b)=(0,1), for the two intervals are homeomorphic, i.e. the function $f:(0,1)\to\mathbb{R}$, f(x):=a(1-x)+bx is continuous, invertible with continuous inverse and with f(0)=a, f(1)=b so a homeomorphism.

Let

$$\Lambda \coloneqq \left\{\frac{m}{2^n} \mid m,n \in \mathbb{N} \mid 1 \leq m \leq 2^{n-1}\right\} = \bigcup_{n \in \mathbb{N}} \underbrace{\left\{\frac{m}{2^n} \mid m \in \mathbb{N}, 1 \leq m \leq 2^{n-1}\right\}}_{=:\Lambda_n},$$

which is clearly dense in (0,1). We need now to define our normally ascending collection. We do so by defining on each Λ_1 and proceding inductively.

For Λ_1 , since X normal, let $\mathcal{O}_{1/2}$ be such that $F \subseteq \mathcal{O}_{1/2} \subseteq \overline{\mathcal{O}}_{1/2} \subseteq \mathcal{U}$, which exists by the nested neighborhood property.

For $\Lambda_2=\left\{\frac{1}{4},\frac{3}{4}\right\}$, we use the nested neighborhood property again, but first with F as the closed set and $\mathcal{O}_{1/2}$ an open neighborhood of it, and then with $\overline{\mathcal{O}}_{1/2}$ as the closed set and \mathcal{U} an open neighborhood of it. In this way, we find

$$\underbrace{F \subseteq \mathcal{O}_{1/4} \subseteq \overline{\mathcal{O}}_{1/4} \subseteq \mathcal{O}_{1/2}}_{\text{nested nbhd}} \subseteq \underbrace{\overline{\mathcal{O}}_{1/2} \subseteq \mathcal{O}_{3/4} \subseteq \overline{\mathcal{O}}_{3/4} \subseteq \mathcal{U}}_{\text{nested nbhd}}.$$

We repeat in this manner over all of Λ , in the end defining a normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$.

PROOF (Of Urysohn's Lemma, Lem. 1.2). Let F=A and $\mathcal{U}=B^c$ as in the previous lemma Lem. 1.4. Then, there is some dense subset $\Lambda\subseteq(a,b)$ and a normally ascending collection $\left\{\mathcal{O}_{\lambda}\right\}_{\lambda\in\Lambda}$ such that $A\subseteq\mathcal{O}_{\lambda}\subseteq\overline{\mathcal{O}}_{\lambda}\subseteq B^c$ for every $\lambda\in\Lambda$. Let f(x) as in the previous previous lemma, Lem. 1.3. Then, if $x\in B$, $B\subseteq\left(\bigcup_{\lambda\in\Lambda}\mathcal{O}_{\lambda}\right)^c$ and so f(x)=b. Otherwise if $x\in A$, then $x\in\bigcap_{\lambda\in\Lambda}\mathcal{O}_{\lambda}$ and thus $f(x)=\inf\{\lambda\in\Lambda\}=a$. By the first lemma, f continuous, so we are done.

 \hookrightarrow Theorem 1.9 (Urysohn's Metrization Theorem): Let X be a second countable topological space. Then, X is metrizable (that is, there exists a metric on X that induces the topology) if and only if X normal.

PROOF. (\Rightarrow) We have already showed, every metric space is normal.

 (\Leftarrow) Let $\{\mathcal{U}_n\}$ be a countable basis for \mathcal{T} and put

$$A\coloneqq \big\{(n,m)\in \mathbb{N}\times \mathbb{N}\ |\ \overline{\mathcal{U}}_n\subseteq \mathcal{U}_m\big\}.$$

By Urysohn's lemma, for each $(n,m)\in A$ there is some continuous function $f_{n,m}:X\to\mathbb{R}$ such that $f_{n,m}$ is 1 on \mathcal{U}_m^c and 0 on $\overline{\mathcal{U}}_n$ (these are disjoint closed sets). For $x,y\in X$, define

$$\rho(x,y) \coloneqq \sum_{(n,m) \in A} \frac{1}{2^{n+m}} \ |f_{n,m}(x) - f_{n,m}(y)|.$$

The absolute valued term is ≤ 2 , so this function will always be finite. Moreover, one can verify that it is indeed a metric on X. It remains to show that it induces the same topology; it suffices to compare bases of the two.

Let $x\in\mathcal{U}_m$. We wish to show there exists $B_\rho(x,\varepsilon)\subseteq\mathcal{U}_m$. $\{x\}$ is closed in X being normal, so there exists some n such that

$$\{x\}\subseteq \mathcal{U}_n\subseteq \overline{\mathcal{U}}_n\subseteq \mathcal{U}_m,$$

so $(n,m)\in A$ and so $f_{n,m}(x)=0.$ Let $arepsilon=rac{1}{2^{n+m}}.$ Then, if ho(x,y)<arepsilon, it must be

$$\begin{split} \frac{1}{2^{n+m}} &> \sum_{(n',m') \in A} \frac{1}{2^{n'+m'}} \ |f_{n',m'}(x) - f_{n',m'}(y)| \\ &\geq \frac{1}{2^{n+m}} \ |\underbrace{f_{n,m}(x)}_{=0} - f_{n,m}(y)| \\ &= \frac{1}{2^{n+m}} \ |f_{n,m}(y)|, \end{split}$$

so $|f_{n,m}(y)| < 1$ and thus $y \notin \mathcal{U}_m^c$ so $y \in \mathcal{U}_m$. It follow that $B_\rho(x,\varepsilon) \subseteq \mathcal{U}_m$, and so every open set in X is open with respect to the metric topology.

Conversely, if $B_{\rho}(x,\varepsilon)$ some open ball in the metric topology, then notice that $y\mapsto \rho(x,y)$ for fixed y a continuous function, and thus $(\rho(x,\cdot))^{-1}(-\varepsilon,\varepsilon)$ an open set in $\mathcal T$ containing x. But this set also just equal to $B_{\rho}(x,\varepsilon)$, hence $B_{\rho}(x,\varepsilon)$ open in $\mathcal T$. We conclude the two topologies are equal, completing the proof.

Remark 1.15: Recall metric \Rightarrow first countable hence not first countable \Rightarrow not metrizable.

§1.10 Stone-Weierstrass Theorem

We need to use the following theorem, which we'll prove later.

→Theorem 1.10 (Weierstrass Approximation Theorem): Let $f : [a, b] \to \mathbb{R}$ continuous. Then, for every $\varepsilon > 0$, there exists a polynomial p(x) such that $||f - p||_{\infty} < \varepsilon$.

Definition 1.33 (Algebra, Separation of Points): We call a subset A ⊆ C(X) an *algebra* if it is a linear subspace that is closed under multiplication (that is, $f, g \in A \Rightarrow f \cdot g \in A$).

We say \mathcal{A} separates points in X if for every $x, y \in X$, there exists an $f \in \mathcal{A}$ such that $f(x) \neq f(y)$.

→Theorem 1.11 (Stone-Weierstrass): Let X be a compact Hausdorff space. Suppose $\mathcal{A} \subseteq C(X)$ an algebra that separates points and contains constant functions. Then, \mathcal{A} dense in C(X).

We tacitly assume the conditions of the theorem in the following lemmas as as not to restate them.

Lemma 1.5: For every $F \subseteq X$ closed, and every $x_0 \in F^c$, there exists a neighborhood $\mathcal{U}(x_0)$ such that $F \cap \mathcal{U} = \emptyset$ and $\forall \varepsilon > 0$ there is some $h \in \mathcal{A}$ such that $h < \varepsilon$ on \mathcal{U} , $h > 1 - \varepsilon$ on F, and $0 \le h \le 1$ on X.

In particular, \mathcal{U} is *independent* of choice of ε .

PROOF. Our first claim is that for every $y \in F$, there is a $g_y \in \mathcal{L}$ such that $g_y(x_0) = 0$ and $g_y(y) > 0$, and moreover $0 \le g_y \le 1$. Since \mathcal{A} separates points, there is an $f \in \mathcal{A}$ such that $f(x_0) \ne f(y)$. Then, let

$$g_y(x) \coloneqq \left[\frac{f(x) - f(x_0)}{\|f - f(x)\|_\infty}\right]^2.$$

Then, every operation used in this new function keeps $g_y \in \mathcal{A}$. Moreover one readily verifies it satisfies the desired qualities. In particular since g_y continuous, there is a neighborhood \mathcal{O}_y such that $g_y|_{\mathcal{O}_y}>0$. Hence, we know that $F\subseteq\bigcup_{y\in F}\mathcal{O}_y$, but F closed and so compact, hence there exists a finite subcover i.e. some $n\geq 1$ and finite sequence $\{y_i\}_{i=1}^n$ such that $F\subseteq\bigcup_{i=1}^n\mathcal{O}_{y_i}$. Let for each y_i $g_{y_i}\in\mathcal{A}$ with the properties from above, and consider the "averaged" function

$$g(x) \coloneqq \frac{1}{n} \sum_{i=1}^{n} g_{y_i}(x) \in \mathcal{A}.$$

Then, $g(x_0)=0$, g>0 on F and $0\leq g\leq 1$ on all of X. Hence, there is some 1>c>0 such that $g\geq c$ on F, and since g continuous at x_0 there exists some $\mathcal{U}(x_0)$ such that $g<\frac{c}{2}$ on \mathcal{U} , with $\mathcal{U}\cap F=\varnothing$. So, $0\leq g|_{\mathcal{U}}<\frac{c}{2}$, and $1\geq g|_{F}\geq c$. To complete the proof, we need $\left(0,\frac{c}{2}\right)\leftrightarrow (0,\varepsilon)$ and $(c,1)\Leftrightarrow (1-\varepsilon,1)$. By the Weierstrass Approximation

1.10 Stone-Weierstrass Theorem

21

Theorem, there exists some polynomial p such that $p|_{[0,\frac{c}{2}]}<\varepsilon$ and $p|_{[c,1]}>1-\varepsilon$. Then if we let $h(x):=(p\circ g)(x)$, this is just a polynomial of g hence remains if $\mathcal A$, and we find

$$h|_{\mathcal{U}} < \varepsilon, \qquad h|_F > 1 - \varepsilon, \qquad 0 \le h \le 1.$$

→Lemma 1.6: For every disjoint closed set A, B and $\varepsilon > 0$, there exists $h \in \mathcal{A}$ such that $h|_A < \varepsilon$, $h|_B > 1 - \varepsilon$, and $0 \le h \le 1$ on X.

PROOF. Let F=B as in the last lemma. Let $x\in A$, then there exists $\mathcal{U}_x\cap B=\varnothing$ and for every $\varepsilon>0$, $h|_{\mathcal{U}_x}<\varepsilon$ and $h|_B>1-\varepsilon$ and $0\le h\le 1$. Then $A\subseteq\bigcup_{x\in A}\mathcal{U}_x$. Since A closed so compact, $A\subseteq\bigcup_{i=1}^N\mathcal{U}_{x_i}$. Let $\varepsilon_0<\varepsilon$ such that $\left(1-\frac{\varepsilon_0}{N}\right)^N>1-\varepsilon$. For each i, let $h_i\in\mathcal{A}$ such that $h_i|_{\mathcal{U}_{x_i}}<\frac{\varepsilon_0}{N}$, $h_i|_B>1-\frac{\varepsilon_0}{N}$ and $0\le h_i\le 1$. Then, put

$$h(x) = h_1(x) \cdot h_2(x) \cdots h_N(x) \in \mathcal{A}.$$

Then, $0 \leq h \leq 1$ and $h|_B > \left(1 - \frac{\varepsilon_0}{N}\right)^N > 1 - \varepsilon$. Then, for every $x \in A$, $x \in \mathcal{U}_{x_i}$ so $h_i(x) < \frac{\varepsilon_0}{N}$ and $h_i(x) \leq i$ so $h(x) < \frac{\varepsilon_0}{N}$ so $h|A < \frac{\varepsilon_0}{N} < \varepsilon$.

PROOF. (Of Stone-Weierstrass) WLOG, assume $f \in C(X)$, $0 \le f \le 1$, by replacing with

$$\tilde{f}(x) = \frac{f(x) + ||f||_{\infty}}{||f + ||f||_{\infty}||_{\infty}}$$

if necessary, since if there exists a $\tilde{g} \in \mathcal{A}$ such that $\|\tilde{f} - \tilde{g}\|_{\infty} < \varepsilon$, then using the properties of \mathcal{A} we can find some appropriate $g \in \mathcal{A}$ such that $\|f - g\|_{\infty} < \varepsilon$.

Fix $n \in \mathbb{N}$, and consider the set $\left\{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\right\}$, and let for $1 \le j \le n$

$$A_j \coloneqq \bigg\{ x \in X \mid f(x) \leq \frac{j-1}{n} \bigg\}, \qquad B_j \coloneqq \bigg\{ x \in X \mid f(x) \geq \frac{j}{n} \bigg\},$$

which are both closed and disjoint. By the lemma, there exists $g_j \in \mathcal{A}$ such that

$$|g_j|_{A_j} < \frac{1}{n}, \qquad g_j|_{B_j} > 1 - \frac{1}{n},$$

with $0 \le g_j \le 1$. Let then

$$g(x)\coloneqq \frac{1}{n}\sum_{j=1}^n g_j(x)\in \mathcal{A}.$$

We claim then $||f - g||_{\infty} \leq \frac{3}{n}$, which proves the claim by taking n sufficiently large.

Suppose $k \in [1, n]$. If $f(x) \leq \frac{k}{n}$, then

$$g_j(x) = \begin{cases} <\frac{1}{n} \text{ if } j-1 \geq k \\ <1 \text{ else} \end{cases},$$

so

$$g(x) = \frac{1}{n} \sum_{j=1}^n g_j(x) = \frac{1}{n} \left[\sum_{j=1}^k g_j(x) + \sum_{j=k+1}^n g_j(x) \right] \leq \frac{1}{n} \left[k + \frac{n-k}{n} \right] \leq \frac{k}{n} + \frac{n-k}{n^2} \leq \frac{k+1}{n}.$$

Similarly if $f(x) \geq \frac{k-1}{n}$, then

$$g_j(x) = \begin{cases} > 1 - \frac{1}{n} \text{ if } j \le k - 1, \\ \ge 0 \quad \text{else} \end{cases}$$

so

$$g(x) \geq \frac{1}{n} \sum_{i=1}^{k-1} \left(1 - \frac{1}{n}\right) \geq \frac{1}{n} (k-1) \left(1 - \frac{1}{n}\right) = \frac{k-1}{n} - \frac{k-1}{n^2} \geq \frac{k-2}{n}.$$

So, we've show that if $\frac{k-1}{n} \le f(x) \le \frac{k}{n}$, then $\frac{k-2}{n} \le g(x) \le \frac{k+1}{n}$, and so repeating this argument and applying triangle inequality we conclude $\|f - g\|_{\infty} \le \frac{3}{n}$.

 \hookrightarrow **Theorem 1.12** (Borsuk): X compact, Hausdorff and C(X) separable $\Leftrightarrow X$ is metrizable.

§2 Functional Analysis

Here, we will primarily work with a normed vector space (nvs). Moreover, we usually work in:

 \hookrightarrow **Definition 2.1** (Banach Space): A normed vector space $(X, \| \cdot \|)$ is a *Banach space* if it is complete as a metric space under the norm-induced metric.

§2.1 Introduction to Linear Operators

Definition 2.2 (Linear Operator, Operator Norm): Let X, Y be vector spaces. Then, a map $T: X \to Y$ is called *linear* if $\forall x, y \in X, \alpha, \beta \in \mathbb{R}, T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$.

If X, Y normed vector spaces, we say T is a bounded linear operator if T linear and the *operator norm*

$$\|T\| = \|T\|_{\mathcal{L}(X,Y)} = \sup_{\substack{x \in X, \\ \|x\|_X \leq 1}} \|Tx\|_Y < \infty$$

is finite. Then, we put

$$\mathcal{L}(X,Y) \coloneqq \{ \text{bounded linear operators } X \to Y \}.$$

→Theorem 2.1 (Bounded iff Continuous): If X,Y are nvs, $T \in \mathcal{L}(X,Y)$ iff and only if T is continuous, i.e. if $x_n \to x$ in X, then $Tx_n \to Tx$ in Y.

PROOF. If $T \in \mathcal{L}(X,Y)$,

$$\begin{split} \|Tx_n - Tx\|_Y &= \|T(x_n - x)\|_Y \\ &= \|x_n - x\|_X \cdot \|\frac{T(x_n - x)}{\|x_n - x\|_X}\|_Y \\ &\leq \underbrace{\|T\|}_{\leq \infty} \|x_n - x\|_X \to 0, \end{split}$$

hence T continuous. Conversely, if T continuous, then by linearity T0=0, so by continuity, there is some $\delta>0$ such that $\|Tx\|_Y<1$ if $\|x\|_X<\delta$. For $x\in X$ nonzero, let $\lambda=\frac{\delta}{\|x\|_X}$. Then, $\|\lambda x\|_X\leq\delta$ so $\|T(\lambda x)\|_Y<1$, i.e. $\frac{\|T(x)\|_Y\delta}{\|x\|_X}<1$. Hence,

$$||T|| = \sup_{x \in X: x \neq 0} \frac{||T(x)||_Y}{||x||_X} \le \frac{1}{\delta},$$

so $T \in \mathcal{L}(X,Y)$.

 \hookrightarrow **Proposition 2.1** (Properties of $\mathcal{L}(X,Y)$): If X,Y nvs, $\mathcal{L}(X,Y)$ a nvs, and if X,Y Banach, then so is $\mathcal{L}(X,Y)$.

PROOF. (a) For $T, S \in \mathcal{L}(X, Y)$, $\alpha, \beta \in \mathbb{R}$, and $x \in X$, then

$$\begin{split} \|(\alpha T + \beta S)(x)\|_Y & \leq |\alpha| \ \|Tx\|_Y + |\beta| \ \|Sx\|_Y \\ & \leq |\alpha| \ \|T\| \ \|x\|_X + |\beta| \ \|T\| \ \|x\|_X. \end{split}$$

Dividing both sides by ||x||, we find $||\alpha T + \beta S|| < \infty$. The same argument gives the triangle inequality on $||\cdot||$. Finally, T = 0 iff $||Tx||_Y = 0$ for every $x \in X$ iff ||T|| = 0.

(b) Let $\{T_n\} \subseteq \mathcal{L}(X,Y)$ be a Cauchy sequence. We have that

$$\|T_n x - T_m x\|_Y \leq \|T_n - T_m\| \ \|x\|_X,$$

so in particular the sequence $\{T_n(x)\}$ a Cauchy sequence in Y for any $x \in X$. Y complete so this sequence converges, say $T_n(x) \to y^*$ in Y. Let $T(x) \coloneqq y^*$ for each x. We claim that $T \in \mathcal{L}(X,Y)$ and that $T_n \to T$ in the operator norm. We check:

$$\begin{split} \alpha T(x_1) + \beta T(x_2) &= \lim_{n \to \infty} \alpha T_n(x_1) + \lim_{n \to \infty} \beta T_n(x_2) \\ &= \lim_{n \to \infty} [T_n(\alpha x_1) + T_n(\beta x_2)] \\ &= \lim_{n \to \infty} T_n(\alpha x_1 + \beta x_2) \\ &= T(\alpha x_1 + \beta x_2), \end{split}$$

so T linear.

Let now $\varepsilon > 0$ and N such that for every $n \ge N$ and $k \ge 1$ such that $\|T_n - T_{n+k}\| < \frac{\varepsilon}{2}$. Then,

$$\begin{split} \|T_n(x) - T_{n+k}(x)\|_Y &= \left\| \left(T_n - T_{n+k}\right)(x) \right\|_Y \\ &\leq \left\|T_n - T_{n+k}\right\| \left\|x\right\|_X \\ &< \frac{\varepsilon}{2} \|x\|_X. \end{split}$$

Letting $k \to \infty$, we find that

$$\|T_n(x)-T(x)\|_Y<\frac{\varepsilon}{2}\ \|x\|_X,$$

so normalizing both sides by $\|x\|_X$, we find $\|T_n - T\| < \frac{\varepsilon}{2}$, and we have convergence. \blacksquare

Definition 2.3 (Isomorphism): We say $T \in \mathcal{L}(X,Y)$ an *isomorphism* if T is bijective and $T^{-1} \in \mathcal{L}(Y,X)$. In this case we write $X \simeq Y$, and say X,Y isomorphic.

§2.2 Finite versus Infinite Dimensional

If X a nvs, then we can look for a basis β such that $\operatorname{span}(\beta) = X$. If $\beta = \{e_1, ..., e_n\}$ has no proper subset spanning X, then we say $\dim(X) = n$.

As we saw on homework, any two norms on a finite dimensional space are equivalent.

- **Corollary 2.1**: (a) Any two nvs of the same finite dimension are isomorphic.
- (b) Any finite dimensional space is complete, and so any finite dimensional subspace is closed.
 - (c) $\overline{B}(0,1)$ is compact in a finite dimensional space.

PROOF. (a) Let $(X, \|\cdot\|)$ have finite dimension n. Then, we claim $(X, \|\cdot\|) \simeq (\mathbb{R}^n, |\cdot|)$. Let $\{e_1, ..., e_n\}$ be a basis for X. Let $T: \mathbb{R}^n \to X$ given by

$$T(x) = \sum_{i=1}^{n} x_i e_i,$$

where $x=(x_1,...,x_n)\in\mathbb{R}^n$, which is clearly linear. Moreover,

$$Tx = 0 \Leftrightarrow \sum_{i=1}^{n} x_i e_i = 0 \Leftrightarrow x = 0,$$

so T injective, and so being linear between two spaces of the same dimension gives T surjective. It remains to check boundedness.

First, we claim $x\mapsto \|T(x)\|$ is a norm on \mathbb{R}^n . $\|T(x)\|=0 \Leftrightarrow x=0$ by the injectivity of T, and the properties $\|T(\lambda x)\|=|\lambda|\ \|Tx\|$ and $\|T(x+y)\|\leq \|Tx\|+\|Ty\|$ follow from linearity of T and the fact that $\|\cdot\|$ already a norm. Hence, $\|T(\cdot)\|$ a norm on \mathbb{R}^n and so equivalent to $|\cdot|$, i.e. there exists constants $C_1,C_2>0$ such that

$$C_1|x|\leq \|T(x)\|\leq C_2|x|,$$

for every $x \in X$. It follows that ||T|| (operator norm now) is bounded.

Letting T(x) = y, we find similarly

$$|C_{1'}||y|| \le |T^{-1}(y)| \le C_{2'} ||y||,$$

so $||T^{-1}||$ also bounded. Hence, we've shown any n-dimensional space is isomorphic to \mathbb{R}^n , so by transitivity of isomorphism any two n-dimensional spaces are isomorphic.

- (b) The property of completeness is preserved under isomorphism, so this follows from the previous statement since \mathbb{R}^n complete.
- (c) Consider $\overline{B}(0,1)\subseteq X$. Let T be an isomorphism $X\to\mathbb{R}^n$. Then, for $x\in\overline{B}(0,1)$, $\|Tx\|\leq \|T\|<\infty$, so $T\left(\overline{B}(0,1)\right)$ is a bounded subset of \mathbb{R}^n , and since T and its inverse continuous, $T\left(\overline{B}(0,1)\right)$ closed in \mathbb{R}^n . Hence, $T\left(\overline{B}(0,1)\right)$ closed and bounded hence compact in \mathbb{R}^n , so since T^{-1} continuous $T^{-1}\left(T\left(\overline{B}(0,1)\right)\right)=\overline{B}(0,1)$ also compact, in X.

 \hookrightarrow Theorem 2.2 (Riesz's): If X is an nvs, then $\overline{B}(0,1)$ is compact if and only if X if finite dimensional.

→Lemma 2.1 (Riesz's): Let $Y \subsetneq X$ be a closed nvs (and X a nvs). Then for every $\varepsilon > 0$, there exists $x_0 \in X$ with $||x_0|| = 1$ and such that

$$||x_0 - y||_X > \varepsilon \, \forall \, y \in Y.$$

PROOF. Fix $\varepsilon > 0$. Since $Y \subsetneq X$, let $x \in Y^c$. Y closed so Y^c open and hence there exists some r > 0 such that $B(x, r) \cap Y = \emptyset$. In other words,

$$\inf\{\|x - y'\| \mid y' \in Y\} > r > 0.$$

Let then $y' \in Y$ be such that

$$r < \|x - y_1\| < \varepsilon^{-1}r,$$

and take

$$x_0 \coloneqq \frac{x - y_1}{\|x - y_1\|_X}.$$

Then, x_0 a unit vector, and for every $y \in Y$,

$$\begin{split} x_0 - y &= \frac{x - y_1}{\|x - y_1\|} - y \\ &= \frac{1}{\|x - y_1\|} [x - y_1 - y \ \|x - y_1\|] \\ &= \frac{1}{\|x - y_1\|} [x - y'], \end{split}$$

where $y' = y_1 + y \|x - y_1\| \in Y$, since it is closed under vector addition. Hence

$$\|x_0-y\|=\frac{1}{\|x-y_1\|}\;\|x-y'\|>\frac{\varepsilon}{r}\;\|x-y'\|>\varepsilon,$$

for every $y \in Y$.

PROOF. (Of Thm. 2.2) (\Leftarrow) By the previous corollary.

 (\Rightarrow) Suppose X infinite dimensional. We will show $B := \overline{B}(0,1)$ not compact.

Claim: there exists $\{x_i\}_{i=1}^{\infty} \subseteq B$ such that $||x_i - x_j|| > \frac{1}{2}$ if $i \neq j$.

We proceed by induction. Let $x_1 \in B$. Suppose $\{x_1,...,x_n\} \subseteq B$ are such that $\|x_i - x_j\| > \frac{1}{2}$. Let $X_n = \mathrm{span}\{x_1,...,x_n\}$, so X_n finite dimensional hence $X_n \subseteq X$. By the previous lemma (taking $\varepsilon = \frac{1}{2}$) there is then some $x_{n+1} \in B$ such that $\|x_1 - x_{n+1}\| > \frac{1}{2}$ for every i = 1,...,n. We can thus inductively build such a sequence $\{x_i\}_{i=1}^{\infty}$. Then, every subsequence of this sequence cannot be Cauchy so B is not sequentially compact and thus B is not compact.

§2.3 Open Mapping and Closed Graph Theorems

Definition 2.4 (*T* open): If *X*, *Y* toplogical spaces and *T* : *X* → *Y* a linear operator, *T* is said to be *open* if for every $\mathcal{U} \subseteq X$ open, $T(\mathcal{U})$ open in *Y*.

In particular if X,Y are metric spaces (or nvs), then T is open iff the image of every open ball in X containes an open ball in Y, i.e. $\forall \, x \in X, r > 0$ there exists r' > 0 such that $T(B_X(x,r)) \supseteq B_Y(Tx,r')$. Moreover, by translating/scaling appropriately, it suffices to prove for x=0, r=1.

 \hookrightarrow Theorem 2.3 (Open Mapping Theorem): Let X,Y be Banach spaces and $T:X\to Y$ a bounded linear operator. If T is surjective, then T is open.

Proof. Its enough to show that there is some r>0 such that $T(B_X(0,1))\supseteq B_Y(0,r)$.

Claim: $\exists c > 0$ such that $\overline{T(B_X(0,1))} \supseteq B_Y(0,2c)$.

Put $E_n=n\cdot\overline{T(B_X(0,1))}$ for $n\in\mathbb{N}$. Since T surjective, $\bigcup_{n=1}^\infty E_n=Y$. Each E_n closed, so by the Baire Category Theorem there exists some index n_0 such that E_{n_0} has nonempty interior, i.e.

$$\operatorname{int}\!\left(\overline{T(B_X(0,1))}\right) \neq \varnothing,$$

where we drop the index by homogeneity. Pick then c>0 and $y_0\in Y$ such that $B_Y(y_0,4c)\subseteq \overline{T(B_X(0,1))}$. We claim then that $B_Y(-y_0,4c)\subseteq \overline{T(B_X(0,1))}$ as well. Indeed, if $B_Y(y_0,4c)\subseteq \overline{T(B_X(0,1))}$, then $\forall\, \tilde y\in Y$ with $\|y_0-\tilde y\|_Y<4c$, Then, $\|-y_0+\tilde y\|_Y<4c$ so $-\tilde y\in B_Y(-y_0,4c)$. But $\tilde y=\lim_{n\to\infty}T(x_n)$ and so $-\tilde y=\lim_{n\to\infty}T(-x_n)$. Since $\{-x_n\}\subseteq B_X(0,1)$, this implies $-\tilde y\in \overline{T(B_X(0,1))}$ hence the "subclaim" holds.

Now, for any $\tilde{y} \in B_Y(0,4c)$, $\|\tilde{y}\| \le 4c$ so

$$\tilde{y} = y_0 \underbrace{-y_0 + \tilde{y}}_{\in B_Y(-y_0,4c)} = \underbrace{\tilde{y}_0 + \tilde{y}}_{}^{\in B(y_0,4c)} - y_0.$$

Therefore,

$$\begin{split} B_Y(0,4c) &= B_Y(y_0 - y_0, 4c) \\ &\subseteq B_Y(y_0, 4c) + B_Y(-y_0, 4c) \\ &\overline{T(B_X(0,1))} + \overline{T(B_X(0,1))} = 2\overline{T(B_X(0,1))}, \end{split}$$

(where summation of two sets is the vector addition of all the elements in the sets), hence $B_Y(0,2c) \subseteq \overline{T(B_X(0,1))}$.

We claim next that $T(B_X(0,1))\supseteq B_Y(0,c)$. Choose $y\in Y$ with $\|y\|_Y< c$. By the first claim, $B_Y(0,c)\subseteq \overline{T\big(B_X\big(0,\frac12\big)\big)}$, so for every $\varepsilon>0$ there is some $z\in X$ with $\|z\|_X<\frac12$ and $\|y-Tz\|_Y<\varepsilon$. Let $\varepsilon=\frac c2$ and $z_1\in X$ such that $\|z_1\|_X<\frac12$ and $\|y-Tz_1\|_Y<\frac c2$. But the first claim can also be written as $B_Y\big(0,\frac c2\big)\subseteq \overline{T\big(B_X\big(0,\frac14\big)\big)}$ so if $\varepsilon=\frac c4$, let $z_2\in X$ such that $\|z_2\|_X<\frac14$ and $\|(y-Tz_1)-Tz_2\|_Y<\frac c4$. Continuing in this manner we find that

$$B_Y\Big(0,\frac{c}{2^k}\Big)\subseteq \overline{T\bigg(B_X\bigg(0,\frac{1}{2^{k+1}}\bigg)\bigg)},$$

so exists $z_k \in X$ such that $\|z_k\|_X < \frac{1}{2^k}$ and $\|y - T(z_1 + \dots + z_k)\|_Y < \frac{c}{2^k}$. Let $x_n = z_1 + \dots + z_n \in X$. Then $\{x_n\}$ is Cauchy in X, since

$$\|x_n - x_m\|_X \le \sum_{k=m}^n \|z_k\|_X < \sum_{k=m}^n \frac{1}{2^k} \to 0.$$

Since X a Banach space, $x_n \to \overline{x}$ and in particular $\|\overline{x}\| \le \sum_{k=1}^\infty \|z_k\|_X < \sum_{k=1}^\infty \frac{1}{2^k} = 1$, so $\overline{x} \in B_X(0,1)$. Since T bounded it is continuous, so $Tx_n \to T\overline{x}$, so $y = T\overline{x}$ and thus $B_Y(0,c) \subseteq T(B(0,1))$.

 \hookrightarrow Corollary 2.2: Let X, Y Banach and $T: X \to Y$ be bounded, linear and bijective. Then, T^{-1} continuous.

⇔Corollary 2.3: Let $(X, \|\cdot\|_1), (X, \|\cdot\|_2)$ be Banach spaces. Suppose there exists c > 0 such that $\|x\|_2 \le C\|x\|_1$ for every $x \in X$. Then, $\|\cdot\|_1, \|\cdot\|_2$ are equivalent.

PROOF. Let *T* be the identity linear operator and use the previous corollary.

 \hookrightarrow **Definition 2.5** (*T* closed): If *X*, *Y* are nvs and *T* is linear, the *graph* of *T* is the set

$$G(T) = \{(x, Tx) \mid x \in X\} \subseteq X \times Y.$$

We then say *T* is *closed* if G(T) closed in $X \times Y$.

Remark 2.1: Since X, Y are nvs, they are metric spaces so first countable, hence closed \leftrightarrow contains all limit points.

In the product topology, a countable base for $X \times Y$ at (x, y) is given by

$$\left\{B_X\bigg(x,\frac{1}{n}\bigg)\times B\bigg(y,\frac{1}{m}\bigg)\right\}_{n,m\in\mathbb{N}}.$$

Then, G(T) closed iff G(T) contains all limit points. How can we put a norm on $X \times Y$ that generates this product topology? Let

$$||(x,y)||_1 := ||x||_X + ||y||_Y.$$

If $(x_n,y_n) \to (x,y)$ in the product topology, then since Π_1,Π_2 continuous maps, $(x_n,y_n) \to (x,y)$ in the $\|\cdot\|_1$ topology. On the other hand if $(x_n,y_n) \to (x,y)$ in the $\|\cdot\|_1$ norm, then

$$\|x_n-x\|_X \leq \|(x_n,y_n)-(x,y)\|_1,$$

hence since the RHS $\to 0$ so does the LHS and so $x_n \to x$ in $\|\cdot\|_X$; similar gives $y_n \to y$ in $\|\cdot\|_Y$. From here it follows that $(x_n,y_n) \to (x,y)$ in the product topology.

So, to prove G(T) closed, we just need to prove that if $x_n \to x$ in X and $Tx_n \to y$, then $y = Tx_n$.

→Theorem 2.4 (Closed Graph Theorem): Let X, Y be Banach spaces and $T: X \to Y$ linear. Then, T is continuous iff T is closed.

PROOF. (\Rightarrow) Immediate from the above remark.

(⇐) Consider the function

$$x \mapsto \|x\|_{\star} := \|x\|_{X} + \|Tx\|_{Y}.$$

So by the above, T closed implies $(X,\|\cdot\|_*)$ is complete, i.e. if $x_n\to x$ in $\|\cdot\|_*$ in X iff $x_n\to x$ in $\|\cdot\|_X$ and $Tx_n\to Tx$ in $\|\cdot\|_Y$. However, $\|\cdot\|_X\le \|\cdot\|_*$, hence since $\left(X,\|\cdot\|_X\right)$ and $\left(X,\|\cdot\|_*\right)$ are Banach spaces, by the corollary, there is some C>0 such that $\|\cdot\|_*\le C\|\cdot\|_Y$. So,

$$\|x\|_{X} + \|Tx\|_{Y} \le C\|x\|_{X},$$

so

$$\left\|Tx\right\|_{Y} \leq \left\|x\right\|_{X} + \left\|Tx\right\|_{Y} \leq C \|x\|_{X},$$

so T bounded and thus continuous.

Remark 2.2: The Closed Graph Theorem simplifies proving continuity of T. It tells us we can assume if $x_n \to x$, $\{Tx_n\}$ Cauchy so $\exists y$ such that $Tx_n \to y$ since Y is Banach. So, it suffices to check that y = Tx to check continuity; we don't need to check convergence of Tx_n .

§2.4 Uniform Boundedness Principle

Recall the following consequence of the Baire Category Theorem:

→Theorem 2.5: Let $\mathcal{F} \subseteq C(X)$ where (X, ρ) a complete metric space. Suppose \mathcal{F} pointwise bounded. Then, there exists a nonempty open set $\mathcal{O} \subseteq X$ such that there is some M > 0 such that $|f(x)| \leq M$ for every $x \in \mathcal{O}, f \in \mathcal{F}$.

This leads to the following result:

→Theorem 2.6 (Uniform Boundedness Principle): Let X a Banach space and Y a nvs. Consider $\mathcal{F} \subseteq \mathcal{L}(X,Y)$. Suppose \mathcal{F} is pointwise bounded, i.e. for every $x \in X$, there is some $M_x > 0$ such that

$$\|Tx\|_{_{Y}}\leq M_{x}, \forall\, T\in\mathcal{F}.$$

Then, \mathcal{F} is uniformly bounded, i.e. $\exists M > 0$ such that

$$||T||_V \leq M, \forall T \in \mathcal{F}.$$

Proof. For every $T \in \mathcal{F}$, let $f_T : X \to \mathbb{R}$ be given by

$$f_T(x) = ||Tx||_Y.$$

Since $T\in\mathcal{L}(X,Y)$, T is continuous, so $x_n\underset{X}{\to}x\Rightarrow Tx_n\underset{Y}{\to}Tx$, hence $\left\|Tx_n\right\|_Y\to \left\|Tx\right\|_Y$ so f_T continuous for each T i.e. $f_T\in C(X)$, so $\{f_T\}\subseteq C(X)$ pointwise bounded. So by the previous theorem, there is some ball $B(x_0,r)\subseteq X$ and some K>0 such that $\|Tx\|\le K$ for every $x\in B(x_0,r)$ and $T\in\mathcal{F}$. Thus, for every $x\in B(0,r)$,

$$\begin{split} \|Tx\| &= \|T(x-x_0+x_0)\| \\ &\leq \left\|T\underbrace{(x-x_0)}_{\in B(x_0,r)}\right\| + \|Tx_0\| \\ &\leq K+M_{x_0}, \qquad \forall \, x \in B(0,r), T \in \mathcal{F}. \end{split}$$

Thus, for every $x \in B(0,1)$,

$$\|Tx\| = \frac{1}{r} \left\| T\underbrace{(rx)}_{\in B(0,r)} \right\| \leq \frac{1}{r} \left(K + M_{x_0} \right) =: M,$$

so its clear $||T|| \leq M$ for every $T \in \mathcal{F}$.

→Theorem 2.7 (Banach-Saks-Steinhaus): Let X a Banach space and Y a nvs. Let $\{T_n\} \subseteq \mathcal{L}(X,Y)$. Suppose for every $x \in X$, $\lim_{n \to \infty} T_n(x)$ exists in Y. Then,

a. $\{T_n\}$ are uniformly bounded in $\mathcal{L}(X,Y)$;

b. For $T: X \to Y$ defined by

$$T(x)\coloneqq \lim_{n\to\infty}T_n(x),$$

we have $T \in \mathcal{L}(X, Y)$;

c. $\|T\| \le \liminf_{n \to \infty} \|T_n\|$ (lower semicontinuity result).

PROOF. (a) For every $x \in X$, $T_n(x) \to T(x)$ so $||Tx|| < \infty$ hence $\sup_n ||T_n x|| < \infty$. By uniform boundedness, then, we find $\sup_n ||T|| =: C < \infty$.

(b) T is linear (by linearity of T_n). By (a),

$$||T_n x|| \le C||x||,$$

for every n, x, so

$$||Tx|| \le C||x|| \ \forall \ x \in X,$$

so T bounded.

(c) We know

$$\|T_nx\|\leq \|T_n\|\|x\|\ \forall\ x\in X,$$

so

$$\frac{\|T_nx\|}{\|x\|} \le \|T_n\|,$$

so

$$\liminf_n \frac{\|T_nx\|}{\|x\|} = \frac{\|Tx\|}{\|x\|} \leq \liminf_n \|T_n\|,$$

so by "suping" both sides,

$$||T|| \le \liminf_n ||T_n||.$$

Remark 2.3:

- We do note have $T_n \to T$ in $\mathcal{L}(X,Y)$ i.e. with respect to the operator norm.
- If Y is a Banach space, then $\lim_{n\to\infty}T_n(x)$ exists in $Y\Leftrightarrow \{T_nx\}$ Cauchy in Y for every $x\in X$.

2.4 Uniform Boundedness Principle