Week 9

Monday, December 2, 2019 1:14 AM

Week # 9 Assignment

Student: Wissam Eid #10702680 Date: 04/12/2019

Task 1:

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine:

Professor: Dr. Behzad Najafi

- 1- the absolute humidity
- 2- the wet-bulb temperature
- 3- the mass of water vapor in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

05:00 07:00 10:00 14:00 18:00 19:00 21								
	63	*	**	**	**	**	**	
	Cloud	PartlyCloud	LightCloud	PartlyCloud	Sun	Sun	Sun	
Temperatura effettiva	7°C	6°C	7°C	9°C	5°C	4°C	2°C	
Temperatura percepita	4°C	3°C	5°C	7°C	3°C	2°C	0°C	
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	
Umidità	79 %	81 %	75 %	63 %	74 %	75 %	82 %	
Pressione atmosferica	1023 hPa	1024 hPa	1025 hPa	1025 hPa	1026 hPa	1026 hPa	1027 hPa	
Intensità del vento	15 km/h	12 km/h	13 km/h	13 km/h	8 km/h	8 km/h	8 km/h	
Direzione del vento	←¬	\leftarrow	← ¬	←	\leftarrow	←	`>	
	E	E	Е	Е	E	Е	SE	
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %	
Punto di rugiada	3°C	3°C	3°C	2°C	1°C	0°C	-1°C	
Nuvole	90 %	54 %	34 %	47 %	3 %	3 %	6 %	
Nuvole basse	39 %	45 %	33 %	46 %	3 %	3 %	6 %	
	58 %	32 %	12 %	13 %	1 %	2 %	2 %	
Nuvole medie	30 /6							

Solving the exercice at 05:00 AM on Tuesday 03/12/2019

• The relative humidity: 79%

• Air total Pressure: 1023 hPa (102.3 Kpa)

• Temperature to be utilized: 7 C

Estimating Aula A approx. dimensions:

Length: 20 mWidth: 8 mHeight: 5 m

$$\phi = \frac{m_v}{m_g} \longrightarrow m_g$$
 the mass of water at sat condition

From Steam tables I can find the saturation pressure of water @ 7 C =1.001 kPa

Reference website: https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-d_599.html?vA=7 &units=C#

$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g} \longrightarrow P_g = P_{sat} 7 \, ^{\circ}C = 1.001 \, kPa$$

$$\phi = \frac{P_v}{P_g} \rightarrow P_V = \phi \times P_g = 0.79 * 1.001 = 0.79079 \ kPa$$

partial pressure of dry air: $P_a = P - P_v = 102.3 \text{ kPa} - 0.79079 \text{ kPa} = 101.51 \text{ kPa}$

Second, let's try to calculate the absoloute humidity:

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{0.79079}{101.51} = 0.00779 \frac{Kg_{vapour}}{kg_{dryAir}}$$

For ideal gases :
$$m = \frac{PV}{R_{Sp,T}}$$

So for air:
$$m_a = \frac{P_a V_a}{R_a T}$$
 $R_{sp.} = \frac{R_{global}}{M_{gas}} \longrightarrow You \ can \ also \ find \ them \ in Tables \ R_a = 0.287, R_v = 0.4615$

$$m_a = \frac{101.51 * (20 * 8 * 5)}{0.287 * (273 + 7)} = 1010.55 \, kg \, of \, dry \, air$$
$$m_v = \frac{0.79079 * (20 * 8 * 5)}{0.4615 * (273 + 7)} = 4.895 \, kg$$

The mass of water vapor in the air in ClassRoom A is 4.895 Kg.

From the psychometric chart above, we find that the wet bulb temperature is around 5.7 C

Task 2:

Utilize the same methodology we went through in the class:

Determine

- The sensible and latent load corresponding to internal gains
- The infiltration in a house
- The ventilation loads

With a

- good construction quality
- same geometry as that of the example which is located in Brindisi, Italy

							E	BRINDIS	il, Italy						WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	ating and h	lumidificat	ion Design C	onditions												
					Hum	nidification D	P/MCDB and	нρ			coldest mon	nomew a	R	Mews	/PCWD	1	
Coldest Heating DB		99.6%			-/wobb and	99%			0.4% 19				6% DB				
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1	
	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Deh	umidificatio	on, and Enth	alpy Design	n Condition	\$										
	Hottest	Hottest Month	_	.4%	Cooling DB/MCWB 4% 1% 2%				Evaporation WB/MCDB 0.4% 1% 2%						MCWS/PCWD to 0.4% DB		
	Month	DB Range	DB	MCWB	DB	MCWB	DB 29	MCWB	WB U.	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
1-7	_					ICDB and HF							v/MCDB			Hours	(-)
	-	0.4%		Denumidiik	1%	CDB and nr	<u> </u>	2%		0.4	1%	Enthalp 1		2	1%	8 to 4 &	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	Annual Desi	gn Conditio	ons													
				-													
				Extreme Max					n-Year Return Period Values of Ex n=5 years n=10 years n=20						0=50	vears	
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Considering the same house as the one located in Piacenza:

- Building height 2.5 m
- average construction quality
- located in Brindisi
- two occupants
- one bed room
- conditioned floor area 200 m2
- wall area 144 m²

> Calculating Internal gains:

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 136 + 440 + 44 = 620 W \\ \dot{Q}_{ig_{latent}} &= 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 20 + 44 + 24 = 88 W \end{split}$$

> Infiltration

Claculating the maximum flow rate of air:

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

For an good construction quality, the average leakage area is 1.4 cm2/m2

 $A_L = A_{es} A_{ul}$

where

 A_{es} = building exposed surface area, m²

 A_{ul} = unit leakage area, cm²/m² (from <u>Table 3</u>)

Exposed surface = Wall area +roof area

$$A_{PS} = 144 + 200 = 344 \, m^2$$

$$A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \ cm^2$$

$$Q_i = A_L IDF$$

where

 A_L = building effective leakage area (including flue) at reference pressure difference = 4 Pa, assuming discharge coefficient

IDF = infiltration driving force, $L/(s \cdot cm^2)$

Table 5 Typical IDF Values, L/(s·cm²)

Н,			ting De peratur	_		Cooling Design Temperature, °C					
m	-40	-30	-20	-10	0	10	30	35	40		
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040		
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043		
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049		
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055		
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061		
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068		
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074		

On the 1st row of the above table, we have the H: 2.5m height.

From the weather data for the city of BRINDISI, we note that:

- Heating DB is 4.1
- Cooling DB is 31.1

$$IDF_{heating} = 0.066 \frac{L}{s. cm^2}$$
$$IDF_{cooling} = 0.032 \frac{L}{s. cm^2}$$

Calculate the volume:

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF = 481.6 * 0.066 = 31.78 \frac{L}{s}$$

 $\dot{V}_{infiltration_{cooling}} = A_L \times IDF = 481.6 * 0.032 = 15.41 \frac{L}{s}$

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1)$$

where

 Q_v = required ventilation flow rate, L/s A_{cf} = building conditioned floor area, m² N_{br} = number of bedrooms (not less than 1)

$$\dot{V}_{ventilation} = 0.05\,A_{cf} + 3.5\,(N_{br} + 1) = 0.05*200+3.5*\,2 = 10+7=17\,$$
 L/S

$$\begin{split} \dot{V}_{inf-ventilation_{heating}} &= 31.78 + 17 = 48.78 \, L/s \\ \dot{V}_{inf-ventilation_{cooling}} &= 15.41 + 17 = 32.41 \, L/s \end{split}$$

> Ventilation Loads

From the past lessons:

- Cooling Temperature T cooling= 24 C
- Heating Temperature T heating= 20 C

For BRINDISI data weather tables:

$$\Delta$$
T cooling = 31.1 °C - 24 °C = 7.1 °C Δ T heating = 20 °C - (-4.1) °C = 24.1 °C

$$C_{sensible} = 1.23$$
, $C_{latent} = 3010$

(don't remember why we adopt these numbers or from where we got them C sensible and C latent, in the exercice solved in class)

$$\omega_{out} = 0.0132 \frac{kg_{water}}{kg_{dryAir}}$$
 (from cooling DB = 31.1°C)

$$\omega_{in} = 0.0093 \frac{kg_{water}}{kg_{dryAir}}$$
 (from cooling MCWB = 24.3 °C)

$$\Delta\omega_{=}0.0132 - 0.0093 = 0.0039 \frac{kg_{water}}{kg_{DryAir}}$$

$$\dot{Q}_{inf-ventilation_{cooling_{sensible}}} = C_{sensible} \dot{V} \Delta T_{Cooling} = 1.23 * 32.41 * 7.1 = 283.036 \, W$$

$$\dot{Q}_{inf-ventilation_{cooling_{latent}}} = C_{latent} \dot{V} \Delta \omega_{Cooling} = 3010 * 32.41 * 0.0039 = 380.46 W$$

$$\dot{Q}_{inf-ventilation_{heatingg_{sensible}}} = C_{sensible}\dot{V}\Delta T_{heating} = 1.23 * 48.78 * 24.1 = 1445.98\,W$$