#### Clear["Global`\*"]

#### 1 - 10 Data representations

Represent the data by a stem-and-leaf plot, a histogram, and a boxplot:

1. Length of nails [mm] 19, 21, 19, 20, 19, 20, 21, 20

```
ln = {19, 21, 19, 20, 19, 20, 21, 20}
{19, 21, 19, 20, 19, 20, 21, 20}
```

bwc = BoxWhiskerChart[ $\{ln\}$ , FrameLabel  $\rightarrow$  Automatic, GridLines  $\rightarrow$  Automatic, ImageSize  $\rightarrow$  200]



his = Histogram[ $\{ln\}$ , FrameLabel  $\rightarrow$  Automatic, GridLines  $\rightarrow$  Automatic, ImageSize  $\rightarrow$  200]



Needs["StatisticalPlots`"]

StemLeafPlot[ln]

| Stem | Leaves |
|------|--------|
| 1    | 999    |
| 2    | 00011  |

Stem units: 10

3. Systolic blood pressure of 15 female patients of ages 20-22 156, 158, 154, 133, 141, 130, 144, 137, 151, 146, 156, 138, 138, 149, 139

```
sbp = {156, 158, 154, 133, 141, 130,
    144, 137, 151, 146, 156, 138, 138, 149, 139}
{156, 158, 154, 133, 141, 130, 144, 137, 151, 146, 156, 138, 138, 149, 139}
```

bwc = BoxWhiskerChart[{sbp}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



his = Histogram[{sbp}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



StemLeafPlot[sbp]

| Stem | Leaves |
|------|--------|
|      |        |

1 334444445555666

Stem units: 100

# 5. Weight of filled bags [g] in an automatic filling 203, 199, 198, 201, 200, 201, 201

 $wb = \{203, 199, 198, 201, 200, 201, 201\}$ {203, 199, 198, 201, 200, 201, 201}

bwc = BoxWhiskerChart[{wb}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



his = Histogram[{wb}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



#### StemLeafPlot[wb]

| Stem | Leaves  |
|------|---------|
| 2    | 0000000 |

Stem units: 100

# 7. Release time [sec] of a relay

1.3, 1.2, 1.4, 1.5, 1.3, 1.3, 1.4, 1.1, 1.5, 1.4, 1.6, 1.3, 1.5, 1.1, 1.4, 1.2, 1.3, 1.5, 1.4, 1.4

bwc = BoxWhiskerChart[{rt}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



his = Histogram[{rt}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



### StemLeafPlot[rt]

#### Stem | Leaves

1 11223333344444455556

Stem units: 1

9. Efficiency [%] of seven Voith Francis turbines of runner diameter 2.3 m under a head range of 185 m

91.8, 89.1, 89.9, 92.5, 90.7, 91.2, 91.0

eff = {91.8, 89.1, 89.9, 92.5, 90.7, 91.2, 91.0} {91.8, 89.1, 89.9, 92.5, 90.7, 91.2, 91.}

bwc = BoxWhiskerChart[{eff}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



his = Histogram[{eff}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



#### StemLeafPlot[eff]

| Stem | Leaves |
|------|--------|
| 8    | 9      |
| 9    | 011122 |

Stem units: 10

10. -0.51, 0.12, -0.47, 0.95, 0.25, -0.18, -0.54

 $nn = \{-0.51, 0.12, -0.47, 0.95, 0.25, -0.18, -0.54\}$  $\{-0.51, 0.12, -0.47, 0.95, 0.25, -0.18, -0.54\}$ 

bwc = BoxWhiskerChart[{nn}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



his = Histogram[{nn}, FrameLabel → Automatic, GridLines → Automatic, ImageSize → 200]



#### StemLeafPlot[nn]

| Stem | Leaves |  |
|------|--------|--|
| -5   | 41     |  |
| -4   | 7      |  |
| -1   | 8      |  |
| 1    | 2      |  |
| 2    | 5      |  |
| 9    | 5      |  |

Stem units:  $\frac{1}{10}$ 

# 11 - 16 Average and spread

Find the mean and compare it with the median. Find the standard deviation and compare it with the interquartile range.

# 11. For the data in problem 1.

Grid[N[{{"Mean", "Median", "Standard Deviation", "Interquartile Range"}, {Mean[ln], Median[ln], StandardDeviation[ln], InterquartileRange[ln]}}], Frame → All]

| Mean   | Median | Standard Deviation | Interquartile Range |
|--------|--------|--------------------|---------------------|
| 19.875 | 20.    | 0.834523           | 1.5                 |

# 13. For the medical data in problem 3.

Grid[N[{{"Mean", "Median", "Standard Deviation", "Interquartile Range"}, {Mean[sbp], Median[sbp], StandardDeviation[sbp], InterquartileRange[sbp]}}], Frame → All]

| Mean    | Median | Standard Deviation | Interquartile Range |
|---------|--------|--------------------|---------------------|
| 144.667 | 144.   | 8.97351            | 15.25               |

# 15. For the release times in problem 7.

Grid[N[{{"Mean", "Median", "Standard Deviation", "Interquartile Range"}, {Mean[rt], Median[rt], StandardDeviation[rt], InterquartileRange[rt]}}], Frame → All]

| Mean  | Median | Standard Deviation | Interquartile Range |
|-------|--------|--------------------|---------------------|
| 1.355 | 1.4    | 0.135627           | 0.15                |

17. Outlier, reduced data. Calculate s for the data 4, 1, 3, 10, 2. Then reduce the data by deleting the outlier and calculate s. Comment.

```
Grid[N[{{"Standard Deviation", "Stand Dev w/o Outlier"},
   {StandardDeviation[{4, 1, 3, 10, 2}],
    StandardDeviation[\{4, 1, 3, 2\}]\}], Frame \rightarrow All]
```

| Standard Deviation | Stand Dev w/o Outlier |
|--------------------|-----------------------|
| 3.53553            | 1.29099               |