Exercise 3: High Dimensional Data

Éric Marty

May 23, 2022

Complete Exercise 3a and either 3b or 3c.

Exercise 3a

Folloiwing is the state diagram for an SEIR model with balanced birth and death. μ is the birth and death rate, indicating zero population change. β is the transmission rate, σ is the progression rate from exposed to infected, and γ is the recovery rate.

 \mathcal{R}_0 for this model can be estimated as:

$$\mathcal{R}_0 = \frac{\beta \sigma}{(\mu + \gamma)(\mu + \sigma)},$$

where $mu \ll gamma$ and σ is of the order of γ .

Your task is to design a plot to explore variation in \mathcal{R}_0 across and range of γ and σ .

Step 1:

Begin by fixing μ and β and preparing a grid of γ and σ . (You can use expand.grid() for this.) Calculate \mathcal{R}_0 for all values of the grid.

Transform your data into a matrix of R_0 values, with rows = levels of gamma, and columns = levels of mu.

```
library(tidyverse)
# Example with fixed beta, fixed mu, and grid of gamma and sigma
beta <- .2
mu <- .01
gamma <- seq(.15,.3,length.out=10)</pre>
sigma <- seq(.1,.2,length.out=10)</pre>
results <- expand.grid(gamma = gamma, sigma = sigma)
# Calculate R 0
# Note: In tidyverse, use all_of(varname) to refer to an object outside the dataframe.
# Use varname to refer to column of the dataframe.
results <- results %>%
 mutate(RO = all_of(beta) * sigma / ((all_of(mu) + gamma)*(all_of(mu) + sigma)))
# Prepare a matrix
results.wide <- results %>%
  pivot_wider(names_from = sigma, values_from = R0)
results.matrix <- results.wide %>%
  select(c(-gamma)) %>%
  as.matrix()
dimnames(results.matrix) <- list(gamma = results.wide$gamma,</pre>
                                  sigma = colnames(results.matrix))
```

Step 2:

Visualize.

A matrix of smoothly changing values can be visualized as a "level plot" (with values mapped to colors), or as a "contour plot" (with contours drawn at set intervals), or both.

A level plot can be made with the lattice::levelplot() or graphics::filled.contour. Both functions can add contours to the level plot.

Questions to consider:

How fine of a grid do you need? What should the bounds be?

What kind of color scale would be appropriate to represent \mathcal{R}_0 ? (Think carefully about what \mathcal{R}_0 represents, the critical value(s), boundaries, etc.)

Does a log scale make sense for the independent variables?

Does a log scale make sense for the dependet variable (\mathcal{R}_0)? If so, how would you construct a log color scale?

Exercise 3b

 \mathcal{R}_0 for a model with both environmental and direct transmission can be estimated as

$$\mathcal{R}_0 = \frac{\beta}{(\mu + \gamma)} + \frac{\beta_v \omega}{\rho(\mu + \gamma)},$$

where β is the basic transmission rate, β_v is the environmental transmission rate, ω is ? , and ρ is ? .

How can you use the level plot approach to explore \mathcal{R}_0 across this parameter space?

Can you imagine alternate ways to visualize \mathcal{R}_0 across this parameter space? Sketch your ideas on paper.

 $\mu=0.01,\,\beta=0.2,\,\beta_v=0.2,\,\rho=0.1,\,\omega=0.1$

Excercise 3c

For a simple COVID model with asymptomatic transmission

$$\mathcal{R}_0 = \frac{\kappa\beta}{\gamma_A} + \frac{(1-\kappa)\beta}{\gamma}$$