Integrales 1 / 3

Integrales

2015-02-13 7:00

1 Definiciones

Definición

Dado $\gamma\colon [a,b]\to\mathbb{C}$, escribimos $\gamma(t)=x(t)+iy(t)$. Decimos que γ es continua (derivable) si x,y son funciones continuas (derivables) $[a,b]\to\mathbb{R}$. Si γ es continua, definimos

$$\int_a^b \gamma(t) dt = \int_a^b x(t) dt + \int_a^b y(t) dt.$$

Si γ es derivable, escribimos $\gamma'(t) = x'(t) + iy'(t)$. Si $U \subseteq \mathbb{C}$ es abierto y $\gamma([a,b]) \subseteq U$, decimos que γ es una curva en U.

Definición

Sean $U \subseteq \mathbb{C}$ abierto, $f: U \to \mathbb{C}$ una función y γ una curva en U. Definimos la integral de f sobre γ como:

$$\int_{\gamma} f \, dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) \, dt.$$