

GammCor Code **Tutorial**

Kasia Pernal, Michal Hapka, Aleksandra Tucholska

April 20, 2023

Institute of Physics, TUL, Lodz (Poland)

- Install GammCor code
- 2 Run tests
- 3 Do exercises and discuss the results
 - SAPT (Quantum Package)
 - AC (MOLMPS)

INSTALLATION AT DRAGON

```
git clone https://github.com/pernalk/GAMMCOR.git cd GAMMCOR git checkout workshop2023 env FC=gfortran CXX=g++ CC=gcc cmake -S. -Bbuild -Cconfig_gnu cd build make -j 4 ctest -V
```

https://qchem.gitlab.io/gammcor-manual

$$E_{int}^{SAPT} = E_{elst}^{(1)} + E_{exch}^{(1)} + E_{ind}^{(2)} + E_{exch-ind}^{(2)} + E_{disp}^{(2)} + E_{exch-disp}^{(2)}$$

1 step

2 step

/trex workshop2023/SAPT

Table 1: Results of SAPT calculations for H₂-H₂ dimer. Energy units are microhartree.

	$E_{\mathrm{elst}}^{(1)}$	$E_{\mathrm{exch}}^{(1)}$	$E_{\mathrm{ind}}^{(2)}$	$E_{\text{exch-ind}}^{(2)}$	$E_{\mathrm{disp}}^{(2)}$	$E_{\text{exch-disp}}^{(2)}$	$E_{ m int}^{ m SAPT}$
R = 1.44 a.u.							
$_{ m HF}$	-62.29	89.96	-5.169	1.706	-154.2	6.911	-123.0
CISD	-52.70	88.98	-4.591	2.014	-151.5	6.111	-111.6
CAS(2,2)	-47.82	81.28	-4.030	1.637	-143.6	5.693	-106.8
CAS(2,8)	-52.61	88.43	-4.565	1.980	-151.7	6.094	-112.4
R = 7.20 a.u.							
$_{ m HF}$	-185.4	445.0	-39.72	26.29	-320.6	33.55	-40.89
CISD	-47.28	210.0	-8.408	6.044	-165.6	10.45	5.193
CAS(2,2)	-44.87	201.1	-7.994	5.465	-161.1	10.15	2.748
CAS(2,8)	-47.17	209.4	-8.388	5.992	-165.9	10.43	4.335

Figure 1: SAPT interaction energy curves for H_2 - H_2 . R denotes the covalent bond length in one the monomers.

Table 2: Results of SAPT(CISD)/aug-cc-pVDZ calculations for $He-H_2$ and $He-H_2$ * dimers. Energy unit is millihartree.

	$E_{ m elst}^{(1)}$	$E_{\mathrm{exch}}^{(1)}$	$E_{\mathrm{ind}}^{(2)}$	$E_{\text{exch-ind}}^{(2)}$	$E_{ m disp}^{(2)}$	$E_{\text{exch-disp}}^{(2)}$	$E_{ m int}^{ m SAPT}$
ground state							
$R=4.0~\mathrm{a.u.}$	-1.103	5.740	-0.375	0.395	-0.956	0.114	3.816
R = 6.6 a.u.	-0.004	0.029	-0.001	0.001	-0.050	0.001	-0.024
excited state							
$R=4.0~\mathrm{a.u.}$	-0.558	0.776	-1.080	0.099	-1.076	-0.003	-1.843
R = 6.6 a.u.	-0.026	-0.060	-0.036	-0.003	-0.204	-0.005	-0.334

Figure 2: He-H₂ in T-shaped geometry. R denotes the distance between the He atom and COM of the H₂ molecule.

