Petriho sítě

PES 2007/2008

Prof. RNDr. Milan Češka, CSc.

ceska@fit.vutbr.cz

Doc. Ing. Tomáš Vojnar, Ph.D.

vojnar@fit.vutbr.cz

Sazba: Ing. Petr Novosad, Doc. Ing. Tomáš Vojnar, Ph.D.

(verze 06.04.2010)

FIT, VUT v Brně, Božetěchova 2, CZ-612 66 Brno

P/T Petriho sítě

1. Základní pojmy

- **Definice 1:** Šestici $N = (P, T, F, W, K, M_0)$ nazýváme P/T Petriho sítí (Place/Transition Petri Net), jestliže:
 - 1. (P, T, F) je konečná síť
 - 2. $W: F \to \mathbb{N} \setminus \{0\}$ je ohodnocení hran grafu určující kladnou *váhu* každé hrany sítě
 - 3. $K: P \to \mathbb{N} \cup \{\omega\}$ je zobrazení určující *kapacitu* každého místa
 - 4. $M_0: P \to \mathbb{N} \cup \{\omega\}$ je *počáteční značení* míst Petriho sítě takové, že $\forall p \in P: M_0(p) \leq K(p)$

Poznámka:

- \mathbb{N} je množina $\mathbb{N} = \{0, 1, 2, ...\}$
- ω značí *supremum* množiny $\mathbb N$ s vlastnostmi:
 - 1. $\forall n \in \mathbb{N} : n < \omega$
 - 2. $\forall m \in \mathbb{N} \cup \{\omega\} : m + \omega = \omega + m = \omega m = \omega$
- Petriho sítí budeme dále rozumět P/T Petriho síť

- **Definice 2:** (*Evoluční pravidla Petriho sítí*) Nechť $N = (P, T, F, W, K, M_0)$ je Petriho síť.
 - 1. Zobrazení $M:P\to\mathbb{N}\cup\{\omega\}$ se nazývá *značení* (marking) Petriho sítě N, jestliže $\forall p\in P\colon M(p)\leq K(p)$
 - 2. Nechť M je značení Petriho sítě N. Přechod $t \in T$ je proveditelný (enabled) při značení M (stručněji M-proveditelný), jestliže

$$\forall p \in {}^{\bullet}t \colon M(p) \ge W(p, t)$$
$$\forall p \in t^{\bullet} \colon M(p) \le K(p) - W(t, p)$$

Definice 2. (pokračování)

3. Je-li $t \in T$ M-proveditelný, pak jeho *provedením* získáme *následné značení* M' ke značení M, které je definováno takto:

$$\forall p \in P \colon M'(p) = \begin{cases} M(p) - W(p,t) & \text{je-li } p \in {}^{\bullet}t \setminus t^{\bullet} \\ M(p) + W(t,p) & \text{je-li } p \in t^{\bullet} \setminus {}^{\bullet}t \\ M(p) - W(p,t) + W(t,p) & \text{je-li } p \in {}^{\bullet}t \cap t^{\bullet} \\ M(p) & \text{jinak} \end{cases}$$

Provedení přechodu t (transition firing) ze značení M do značení M' zapisujeme symbolicky:

$$M[t\rangle M'$$

Definice 2. (pokračování)

- 4. Označme $|M\rangle$ nejmenší množinu různých značení Petriho sítě N, pro kterou platí:
 - (a) $M \in [M\rangle$
 - (b) Je-li $M_1 \in [M]$ a pro nějaké $t \in T$ platí $M_1[t]M_2$, pak $M_2 \in [M]$.

Množina [M] se nazývá *množinou dosažitelných značení* (reachability set) *ze značení* M.

Množina $|M_0\rangle$ se nazývá *množinou dosažitelných značení sítě* N.

* Příklad 1: Uvažujme následující Petriho síť:

$$|M_0\rangle=\{M_0,M_1,M_2,M_3\}$$
, kde $M_0=(1,0,0,1)$

$$M_1 = (0, 1, 1, 0)$$

 $M_2 = (1, 0, 1, 0)$

$$M_3 = (0, 1, 0, 1)$$

2. Stavový prostor a přechodová funkce Petriho sítě

 \clubsuit Množina $|M_0\rangle$ reprezentuje *stavový prostor Petriho sítě*. Mohou nastat dva případy:

$$\lfloor M_0
angle \quad \left\{ egin{array}{ll} {
m je konečn\'a mno\'aina} \\ {
m je spo\'cetn\'a nekone\'cn\'a mno\'aina} \end{array}
ight.$$

Definice 3. Nechť $N=(P,T,F,W,K,M_0)$ je Petriho síť a $[M_0\rangle$ její množina dosažitelných značení. *Přechodovou funkcí Petriho sítě* N nazveme funkci δ :

$$\delta \colon [M_0 \rangle \times T \to [M_0 \rangle$$
, pro kterou $\forall t \in T \colon \ \forall M, M' \in [M_0 \rangle \colon \ \delta(M, t) = M' \stackrel{def.}{\Longleftrightarrow} M[t \rangle M'$

❖ Přechodová funkce δ může být zobecněna na posloupnost přechodů:

$$\delta: [M_0\rangle \times T^* \to [M_0\rangle$$

takto:

$$\delta(M,t au)=\delta(\delta(M,t), au),\, au\in T^*$$
 $\delta(M,arepsilon)=M$, kde $arepsilon$ je prázdný symbol

- * Řetězec $\tau \in T^+$ nazveme *výpočetní posloupností* Petriho sítě, je-li $\delta(M_0, \tau)$ definována (+ případné další podmínky).
- ❖ Jazyk Petriho sítě = množina výpočetních posloupností Petriho sítě.

* Příklad 2: Uvažme Petriho síť z příkladu 1 a její množinu dosažitelných značení:

$$[M_0
angle=\{M_0,M_1,M_2,M_3\}$$
, kde $M_0=(1,0,0,1)$ $M_1=(0,1,1,0)$ $M_2=(1,0,1,0)$ $M_3=(0,1,0,1)$

Odpovídající přechodová funkce specifikovaná grafem vypadá takto:

Množina výpočetních posloupností dané Petriho sítě pak může být charakterizována regulárním výrazem:

$$(t_2(t_3t_1+t_1t_3))^*$$

Každý neprázdný prefix řetězce specifikovaného tímto výrazem tvoří výpočetní posloupnost.

3. Komplementace Petriho sítě

❖ **Definice 4.** Petriho síť $N = (P, T, F, W, K, M_0)$ se nazývá *bezkontaktní* (contact free), jestliže pro všechna $M \in [M_0)$ a všechny $t \in T$ platí:

jestliže $\forall p \in {}^{\bullet}\!t \colon M(p) \geq W(p,t)$ (tj. t je M-proveditelný), pak $\forall p \in t^{\bullet} \colon M(p) \leq K(p) - W(t,p)$

* Věta 1. Každá Petriho síť může být převedena na bezkontaktní Petriho síť.

Důkaz: Petriho síť $N=(P,T,F,W,K,M_0)$ převedeme na bezkontaktní Petriho síť $N'=(P',T,F',W',K',M_0')$ transformací, kdy přidáme "komplementární místa" a hrany takto:

Popis transformace:

- 1. $\forall p \in P$, pro která $K(p) \neq \omega$, vytvoř $p' \in P'$
- 2. $\forall < t, p >$, resp. $< p, t > \in F$ vytvoř < p', t >, resp. $< t, p' > \in F'$
- 3. Polož $M'_0(p') = K(p) M_0(p)$
- 4. Polož $W'(p',t)=W(t,p) \ \wedge \ W'(t,p')=W(p,t)$

Zřejmě platí: $\forall M \in [M_0\rangle : M(p) + M(p') = K(p)$

4. Maticová reprezentace Petriho sítě

- **Definice 5.** Nechť $N = (P, T, F, W, K, M_0)$ je Petriho síť.
 - Tokovou nebo incidenční matici (flow/incidence matrix) Petriho sítě N nazveme matici

$$\underline{F} \colon P \times T \to \mathbb{N} \times \mathbb{N}$$

jejíž prvky $\underline{F}(p,t)$ jsou pro všechna $p \in P$ a $t \in T$ definovány takto:

$$\left| \underline{F}(p,t) = <\overline{W}(p,t), \overline{W}(t,p)> \text{, kde } \overline{W}(x,y) = \begin{cases} W(x,y) & \text{pro } (x,y) \in F \\ 0 & \text{jinak} \end{cases} \right|$$

Definice 5. (pokračování)

Maticí změn (change matrix) Petriho sítě N nazveme "složenou matici"

$$\underline{N} \colon P \times T \to \mathbb{Z}$$

jejíž prvky $\underline{N}(p,t)$ jsou pro všechna $p \in P$ a $t \in T$ definovány takto:

$$\underline{N}(p,t) = \overline{W}(t,p) - \overline{W}(p,t)$$

Poznámka:

- Matice <u>N</u> se často jednoduše nazývá maticí Petriho sítě.
- Dále označme $\forall t \in T$ funkci (vektor) $\underline{t} \colon P \to \mathbb{Z}$ tak, že $\forall p \in P \colon \underline{t}(p) = \underline{N}(p,t)$

❖ Příklad 3:

Například $\underline{t}_1 = (0, -1, -1, 0)$