EN1060 Signals and Systems: Introduction

Ranga Rodrigo ranga@uom.lk

Department of Electronic and Telecommunication Engineering, The University of Moratuwa, Sri Lanka

December 15, 2020

Section 1

Introduction to Signals and Systems

Outline

Introduction to Signals and Systems Introduction Systems

Introduction to the Course

• Signals and systems find many application in communications, automatic control, and form the basis for signal processing, machine vision, and pattern recognition.

Introduction to the Course

- Signals and systems find many application in communications, automatic control, and form the basis for signal processing, machine vision, and pattern recognition.
- Electrical signals (voltages and currents in circuits, electromagnetic communication signals), acoustic signals, image and video signals, and biological signals are all example of signals that we encounter.

Introduction to the Course

- Signals and systems find many application in communications, automatic control, and form the basis for signal processing, machine vision, and pattern recognition.
- Electrical signals (voltages and currents in circuits, electromagnetic communication signals), acoustic signals, image and video signals, and biological signals are all example of signals that we encounter.
- They are functions of independent variables and carry information.

• We define a system as a mathematical relationship between an input signal and an output signal.

- We define a system as a mathematical relationship between an input signal and an output signal.
- We can use systems to analyze and modify signals.

- We define a system as a mathematical relationship between an input signal and an output signal.
- We can use systems to analyze and modify signals.
- Signals and systems have brought about revolutionary changes.

- We define a system as a mathematical relationship between an input signal and an output signal.
- We can use systems to analyze and modify signals.
- Signals and systems have brought about revolutionary changes.
- In this course we will study the fundamentals of signals and systems.

- We define a system as a mathematical relationship between an input signal and an output signal.
- We can use systems to analyze and modify signals.
- Signals and systems have brought about revolutionary changes.
- In this course we will study the fundamentals of signals and systems.
- Types of signals in continuous time and discrete time, linear time-invariant (LTI) systems, Fourier analysis, sampling, Laplace transform, z-transform, and stability of systems are the core components of the course.

After completing this course you will be able to do the following:

• Differentiate between continuous-time, discrete-time, and digital signals, and techniques applicable to the analysis of each type.

- Differentiate between continuous-time, discrete-time, and digital signals, and techniques applicable to the analysis of each type.
- Apply appropriate theoretical principles to characterize the behavior of linear time-invariant (LTI) Systems.

- Differentiate between continuous-time, discrete-time, and digital signals, and techniques applicable to the analysis of each type.
- Apply appropriate theoretical principles to characterize the behavior of linear time-invariant (LTI) Systems.
- Use Fourier techniques to understand frequency-domain characteristics of signals.

- Differentiate between continuous-time, discrete-time, and digital signals, and techniques applicable to the analysis of each type.
- Apply appropriate theoretical principles to characterize the behavior of linear time-invariant (LTI) Systems.
- Use Fourier techniques to understand frequency-domain characteristics of signals.
- Use appropriate theoretical principles for sampling and reconstruction of analog signals.

- Differentiate between continuous-time, discrete-time, and digital signals, and techniques applicable to the analysis of each type.
- Apply appropriate theoretical principles to characterize the behavior of linear time-invariant (LTI) Systems.
- Use Fourier techniques to understand frequency-domain characteristics of signals.
- Use appropriate theoretical principles for sampling and reconstruction of analog signals.
- Use the Laplace transform and the *z*-transform to treat a class of signals and systems broader than what Fourier techniques can handle.

• In this course we study signals and systems that process these signals.

- In this course we study signals and systems that process these signals.
- Categories of signals:

- In this course we study signals and systems that process these signals.
- Categories of signals:
 - Continuous-time signals: independent variable is continuous, x(t)

- In this course we study signals and systems that process these signals.
- Categories of signals:
 - Continuous-time signals: independent variable is continuous, x(t)
 - lacktriangle Discrete-time signals:independent variable is an integer, x[n]

- In this course we study signals and systems that process these signals.
- Categories of signals:
 - ightharpoonup Continuous-time signals: independent variable is continuous, x(t)
 - ightharpoonup Discrete-time signals:independent variable is an integer, x[n]
- There are some very strong similarities and also some very important differences between discrete-time signals and systems and continuous-time signals and systems.

Continuous-Time Signals x(t)

- The independent variable is continuous.
- E.g., sound pressure at a microphone as a function of time (one-dimensional signal).
- E.g., image brightness as a function of two spatial variables (two-dimensional signal).
- For convenience, we refer to the independent variable as time.

A function of a continuous variable A speech signal: a continuous-time, one-dimensional signal

f(x, y)

y

An image on a film: a continuous-time, two-dimensional signal

Discrete-Time Signals x[n]

- Function of an integer variable.
- Takes on values at integer values of the argument of x[n].

Figure: DT Signal

Digital Signals

- What is a digital signal?
 - A quantized discrete-time signal. I.e., x[n, m]. The signal can take only a value from a finite set of values.
- What is a digital image?
 - A two-dimensional, quantized, discrete-time signal.
 - ► A 600×800 image: $n \in [0, 599]$, $m \in [0, 799]$, $x[n, m] \in [0, 255]$. 8-bit image.

Outline

Introduction to Signals and Systems
Introduction
Systems

• A system processes signals.

- A system processes signals.
- Examples of systems:

- A system processes signals.
- Examples of systems:
 - ► Dynamics of an aircraft.

- A system processes signals.
- Examples of systems:
 - ► Dynamics of an aircraft.
 - An algorithm for analyzing financial and economic factors to predict bond prices.

- A system processes signals.
- Examples of systems:
 - Dynamics of an aircraft.
 - An algorithm for analyzing financial and economic factors to predict bond prices.
 - ► An algorithm for post-flight analysis of a space launch.

- A system processes signals.
- Examples of systems:
 - Dynamics of an aircraft.
 - An algorithm for analyzing financial and economic factors to predict bond prices.
 - ► An algorithm for post-flight analysis of a space launch.
 - An edge detection algorithm for medical images.

- A system processes signals.
- Examples of systems:
 - Dynamics of an aircraft.
 - ► An algorithm for analyzing financial and economic factors to predict bond prices.
 - ► An algorithm for post-flight analysis of a space launch.
 - An edge detection algorithm for medical images.

- A system processes signals.
- Examples of systems:
 - ► Dynamics of an aircraft.
 - An algorithm for analyzing financial and economic factors to predict bond prices.
 - An algorithm for post-flight analysis of a space launch.
 - An edge detection algorithm for medical images.

Types of Systems

Figure: System types.

This course is focused on the class of linear, time-invariant (LTI) systems.

Systems Interconnections

- To build more complex systems by interconnecting simpler subsystems.
- To modify the response of a system.
- E.g.: amplifier design, stabilizing unstable systems.

Signal-Flow (Block) Diagrams

Figure: System interconnections.

Domains

Figure: Domains.

Domains

Figure: Square wave: time and frequency domains.