

UNIVERSITE DE CORSE Master informatique 1ère année **Parcours DFS et DE** 2025-2026

BD Partie 1 Bases de données relationnelles et Optimisation

Evelyne VITTORI vittori e@univ-corse.fr

Objectifs Partie 1 Bases de données et Optimisation

- Renforcer et enrichir ses connaissances dans la manipulation de bases de données relationnelles et les outils associés.
- Apprendre à optimiser les performances d'une Base de données et en particulier l'exécution des requêtes.
- Découvrir les outils de statistiques et d'optimisation fournis par un SGBD pour le « tuning SQL»

Mise en pratique sur le SGDB PostgreSQL

Pourquoi ce cours?

- Développeur « Full stack » : rôle multiple (concepteur/développeur/DBA)
- Data Engineer : Rôle fondamental de la gestion des données
- Sans être un spécialiste, vous devez acquérir des compétences dans l'optimisation de BD
- Trois niveaux de compétences à renforcer et/ou acquérir:
 - Modèle et données
 - Requêtes et Programmation
 - Outils et démarches d'optimisation (Indexation)

Préambule

- Commençons par quelques rappels pour se situer dans le contexte des BD en général
 - Notions fondamentales de l'univers BD
- Puis réfléchissons à l'optimisation
 - Qu'est-ce que l'optimisation?
 - Qui optimise? Quand? Comment?
- Comment allons-nous aborder cette problématique dans ce cours?
 - Plan du cours , TP

Les notions fondamentales de l'univers des bases de données

Les données sont partout et il faut les stocker!!

Tous les programmes ont besoin de conserver des données de manière persistante.

Pourquoi les fichiers ne suffisent pas?

Qu'est-ce qu'une base de données?

Programmes d'application

Un Réservoir unique de données structurées et partagées

Que proposent les Systèmes de Gestion de Bases de Données?

SGBD = ensemble d' outils pour

- La définition de la structure des données
- La mise à jour des données
- La recherche de données
- Le contrôle des données

Langages textuels
ou
Interfaces
graphiques

Pourquoi construire la Base de données avant de commencer à coder?

De mauvaises fondations peuvent conduire à l'effondrement !!

Pourquoi a-t-on besoin d'un modèle de données?

Pour savoir en quels termes décrire la structure des données:

Tables? Entités? Attributs? Champs?

Univers réel

Modèle de données

(ensemble de concepts + règles d'intégrité)

Ex: modèle relationnel

Schéma de données

Pourquoi utiliser plusieurs modèles de données?

L'indépendance Logique-Physique a fait le succès des SGBD relationnels.

Qu'est-ce que cela signifie?

Architecture Ansi/Sparc d'un SGBD

Développeurs d'application

Utilisateurs interactifs

Vue Vue Vue utilisateur utilisateur

Niveau EXTERNE

SCHEMA LOGIQUE

Niveau LOGIQUE

fichiers

ADMINISTRATEUR DBA

Niveau PHYSIQUE/ INTERNE

Quel est le rôle de l'administrateur ?

DBA: DataBase Admistrator

Que font les utilisateurs et qui sont-ils?

- •Mise à jour des données (à travers des vues)
- Consultation des données

DML
Data Manipulation Language

- Recherche à partir d'une interface: Formulaires, Web...
- Langages graphiques (QBE) (éventuellement)

- Développent des interfaces pour les utilisateurs interactifs
- Utilisent SQL intégré dans un langage de programmation

UTILISATEURS interactifs

PROGRAMMEURS d'application

De l'origine aux SGBDr

- Années 1960-1970 : SGBD Hiérarchiques (IMS)
 SGBD en Réseau (CODASYL, SOCRATE)
 - Structures très contraignantes
 - forte dépendance logique/physique

- Années 1980 aujourd'hui
 SGBD Relationnels
 - Vision tabulaire
 - Manipulation non-procédurale
 - Indépendance physique/logique

Leaders du marché actuel

Principaux SGBD relationnels

	BD petites à moyennes <1Go	BD moyennes à grandes Client/Serveur
SGBD propriétaires	Access (Microsoft)	OracleSQLServer (Microsoft)DB2 (IBM)SyBase
SGBD openSource	■OOBase	PostgreSQLMySQL (Oracle)

SGBD ORACLE

- Leader mondial des SGBD relationnels
- Société Oracle Corporation (1977)
- Dernière Version : Oracle Database 21c (2021)
- Version gratuite Oracle XE (Express Edition) (12c depuis 2019)
- Nombreux outils d'administration et de développement:
 - définition/manipulation des données
 - cohérence, confidentialité, intégrité
 - sauvegarde, restauration, concurrence

SGBD PostGreSQL

 Issu du projet PostGres de l'université de Berkiey (1986) faisant suite au SGBD pionnier INGRES

(1973)

- 1995 : 1^{ère} version de PostgreSQL
- Gratuit et Open source
- Supporte SQL avancé

Michael Stonebraker Professeur MIT

- Multiplateformes, Sécurité, performances
- Communauté très active

Notre choix cette année

Extensible: Autres types de données (JSON, ...)

Le post-relationnel

Les concurrents et extensions du relationnel

- SGBD Objets (90-99): une impasse!
 - développement des SGBD relationnels-objets

SGBD NoSQL

(BigTable, MongoDB, Dynamo,,...)

- BD géantes sur le Web
- Langage de requêtes spécifiques

Cours Partie 2

SGBDr et NoSQL: fonctionnalités complémentaires plutôt que concurrentes

Etat des lieux en 2025...

Comparaison de la popularité des SGDB du marché

Source: https://db-engines.com/en/ranking

424 systems in ranking, August 2025

	Rank		Score				
Aug 2025		Aug 2024	DBMS	Database Model	Aug 2025	Jul 2025	Aug 2024
1.	1.	1.	Oracle	Relational, Multi-model 🚺	1220.70	+3.64	-37.78
2.	2.	2.	MySQL	Relational, Multi-model 🚺	915.46	-25.26	-111.40
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🔃	754.15	-16.99	-61.02
4.	4.	4.	PostgreSQL	Relational, Multi-model 🚺	671.25	-9.63	+33.87
5.	5.	5.	MongoDB 🚹	Document, Multi-model 🚺	395.58	-8.25	-25.40
6.	6.	1 7.	Snowflake	Relational	178.90	+2.73	+42.93
7.	7.	↓ 6.	Redis	Key-value, Multi-model 🔃	147.19	-2.53	-5.52
8.	8.	1 9.	IBM Db2	Relational, Multi-model 🚺	127.31	-0.20	+4.30
9.	1 2.	1 5.	Databricks	Multi-model 🚺	115.82	+7.78	+31.36
10.	4 9.	4 8.	Elasticsearch	Multi-model 🚺	114.27	-4.56	-15.56
11.	↓ 10.	↓ 10.	SQLite	Relational	112.59	-2.84	+7.80
12.	4 11.	↓ 11.	Apache Cassandra	Wide column, Multi-model 🔃	108.51	-0.24	+11.51
13.	13.	1 4.	MariaDB 🚹	Relational, Multi-model 🚺	93.59	-1.85	+7.0262

Problématique de l'optimisation BD

Qu'est-ce que l'optimisation d'une base de données?

- Optimiser une base de données consiste à améliorer les performances de son fonctionnement:
 En particulier lors des
 - Interrogations, Mises à jour

- montées en charge
- Performance= rapidité mais aussi fiabilité
 - La problématique de l'optimisation consiste à améliorer les performances en assurant l'intégrité.

Qui sont les acteurs concernés?
Sur quoi peuvent-ils agir?
Quels sont les outils pour les aider?

Qui sont les acteurs concernés? Sur quoi peuvent-ils agir?

- Conception du schéma relationnel
 - Construire un schéma relationnel

«de qualité »

Normalisation ou dénormalisation étudiée et

Developpeur

Concepteur

choisie de manière raisonnée

Développement

 Concevoir des requêtes et procédures stockées qui évitent la pénalisation des performances
 «SQL Tuning »

Qui sont les acteurs concernés? Sur quoi peuvent-ils agir?

Administration de la BD

Rôle du DBA (Data Base Administrator)

Optimiser les performances de l'exécution des requêtes en agissant à deux niveaux:

- Modifier l'organisation physique de la BD :
 - Paramètres d'initialisation
 - Indexation et organisation du stockage physique
- Influencer le SGBD dans le choix des algorithmes d'exécution des requêtes

«Database Tuning »

«SQL Tuning»

Qui sont les acteurs concernés?

Le principal: LE SGBD lui même

 Tous les SGBD possèdent un optimiseur automatique intégré:

- Les optimiseurs d'ORACLE et de PostgreSQL sont de type CBO (Cost Based Optimizer)
 - Ils déterminent le meilleur algorithme d'exécution d'une requête en fonction des côuts associés

Quels outils pour aider l'optimisation?

- Le SGBD fournit des outils d'évaluation (plus ou moins élaborés!) qui permettent de guider l'optimisation:
 - Générateur des Plans d'exécution des requêtes
 - Outils statistiques portant sur les objets de la base de données
 - Nombre de tuples dans les tables
 - Temps d'exécution des requêtes

•

Démarche d'optimisation des requêtes

La démarche d'optimisation d'une requête est essentiellement empirique :

- Evaluer les performances de la requête
 - Analyse des plans d'exécution et des mesures statistiques
- Appliquer une ou plusieurs solutions techniques
 - Indexation et stockage physique des tables
- Evaluer l'amélioration

Bases de données et Optimisation Organisation du cours

Organisation du cours

 Trois niveaux de compétences à renforcer et/ou acquérir:

- Modèle et données
- Requêtes et Programmation
- Outils et démarches d'optimisation (Indexation)

Modèle et données

- 1. Maitriser les concepts du modèle relationnel
 - Principes de l'intégrité des données
- 2. Maîtriser la normalisation
 - Comprendre l'objectif du processus
 - Savoir l'appliquer

partie abordée en partie 2

- Savoir décider de ne pas normaliser
- 3. Savoir implémenter un schéma relationnel dans un SGBD en favorisant ses performances
 - Choix des types de données
 - Utilisation du DDL (SQL-Data Definition Language)
 - Contraintes (check)
 - Définition de triggers

Concilier
Performance et maintien de l'intégrité

Requêtage et programmation BD

- Maitriser le langage SQL DML (Data Manipulation Language)
 - Requêtes de mise à jour
 - Requêtes d'interrogation
- Savoir faire des choix pertinents lors de la définition des requêtes
 « Tuning SQL»
- 3. Savoir définir des procédures stockées
 - Langage procédural (PL/PGSL (PostgreSQL))
 - Existe aussi dans d'autres SGBDr :
 - ex: PL/SQL ORACLE, lang. procédural MySQL

Index et Outils d'optimisation

Prerequis:

Maîtriser les concepts relationnels et le langage SQL (DDL et DML)

- 1. Comprendre la notion d'index et son utilité
- 2. Savoir utiliser les outils d'optimisation du SGBD
 - Comprendre les plans d'exécution fournis par l'optimiseur algorithmes d'exécution d'une requête en particulier jointures
 - Outils Statistiques sur les tables et objets de la BD
- 3. Savoir influencer l'exécution des requêtes
 - Utiliser les outils pour identifier les index et structures physiques efficaces
 « Tuning SQL»
 - Savoir influencer l'optimiseur par des conseils (hints) (ORACLE uniquement)

Optimisation et Bases de données

Déroulement indicatif des séances

Cours	Thèmes	TPCours	Projet
CH1 – Modèle et données : définition et manipulation	 Révision concepts BD Implémentation Et Mises à jour Vues Privilèges Transactions 		Parties 1 - 2 - 3
CH2 – Requêtes Interrogation	•Algèbre relationnelle et optimisation •Requêtes SQL complexes Questions et exercices		Partie 4
CH3 – Programmation BD	Procédures stockéesTriggers	corrigés en séance	Partie 5
CH4 - Optimisation	IndexPrincipes tuning SQLOutils d'optimisation		Partie 3

Projet Conception Assistée et optimisation Modéliser l'écosystème de la recherche

Travail à faire

Travail en groupe de 2 à 3 étudiants

Créer une base de données à partir d'un cahier des charges indicatif, y insérer des données fictives de manière automatique et mettre en pratique les notions abordées dans le cadre du cours

Objectifs

- Tester les possibilités des outils d'IA générative pour faciliter et optimiser la phase de conception, en adoptant une posture critique.
- Générer automatiquement des données fictives et réalistes par définition de scripts python (bibliothèque Faker).
- Gestion Sécurisée des Accès par définition de rôles, vues et privilèges pertinents
- Tester les outils d'optimisation de postGreSQL pour la création de requêtes complexes
- Acquérir des compétences en PL-SQL (triggers et procédures stockées)

Projet Conception Assistée et optimisation

Modéliser l'écosystème de la recherche

BD avec minimum 7 tables

Cahier des charges indicatif (minimal) Solution originale

- Institutions : Université, organisme de recherche, partenaire privé), adresse.
- Laboratoires (UMR): identifiant, nom, rattachement institutionnel.
- Projets de recherche structurants : identifiant, titre, description, discipline, ...
- Contrats de financement : type (ANR, H2020, Région...), financeur, intitulé, montant, durée, date de début et de fin.
- Chercheurs : identité, ..., discipline, laboratoire de rattachement. A titre de simplification on supposera qu'un chercheur n'est impliqué que dans un seul projet structurant.
- Publications : On stocke dans la base de données, les métadonnées de ces publications uniquement (titre, auteurs, taille, DOI, date, ...).
- Un jeu de données est un ensemble de données (dataset) associées à un contrat de recherche (résultats de recherche). On stocke ici uniquement les descriptifs de ces jeux de données : les Métadonnées des jeux de données.
- Plan de Gestion des Données (DMP) : . Le DMP décrit la manière dont les données issues des projets financés par un contrat seront produites, documentées, partagées et archivées. Dans la base de données, on conservera pour chaque contrat : le statut du DMP (brouillon, soumis, validé), la date de validation, un lien vers le document complet (stocké sur un support externe).
- Les jeux de données financés par un contrat ne peuvent être officiellement déposés que si le DMP associé au contrat est validé

Projet Conception Assistée et optimisation Modéliser l'écosystème de la recherche

Critères d'évaluation

- originalité de la solution proposée et justification des choix
- qualité du schéma défini par rapport aux besoins précisés
- analyse critique de l'aide apportée par les outils d'IA générative
- pertinence des rôles, vues et privilèges
- maitrise des solutions proposées et compréhension des choix de l'optimiseur pour les requêtes
- qualité et pertinence des procédures stockées et des triggers

Documents à rendre

- Scripts SQL et Python
- Rapport synthétique contenant :
 - Description détaillée de la conception de la base.
 - Méthodologie pour l'utilisation des IA génératives et Python Faker.
 - Comparaison des requêtes complexes avec captures d'écran des outils de diagnostic

Projet Conception Assistée et optimisation Modéliser l'écosystème de la recherche

Soutenances 12 novembre

- Présentation orale finale de 20 minutes décrivant la démarche et les résultats obtenus :

- Schéma, données, vues, requetes, procédures, triggers
- Démonstration
- Proposition d'une méthodologie sur l'utilisation d'IA génératives

Définition des groupes le 23 septembre