Introducción a Métodos Econométricos en R.

Professor: Horacio Larreguy

TA: Eduardo Zago

ITAM Investigación Aplicada 1 / Microeconometría Aplicada, 30/08/2023

GENERAL PERSPECTIVE

VARIABLES INSTRUMENTALES (IV)

VARIABLES INSTRUMENTALES

- Las variables instrumentales nor permiten resolver el problema de **endogeneidad** y **sesgo por variables omitidas**.
- Recordemos que si queremos ver el efecto de una variable Y en X, podemos tener que tanto Y esta correlacionada con X como X con Y.
- ▶ Además, podemos estar omitiendo variables relevantes (que no podemos controlas, por ser no observables, por ejemplo).
- ▶ Por lo tanto, recurrimos a un instrumento que este correlacionado fuertemente con la variable independiente endógena y que no este correlacionada con el error.

VARIABLES INSTRUMENTALES: 2SLS

- Conceptualmente, la estimación por variables instrumentales se puede interpretar como dos etapas independientes de mínimos cuadrados ordinarios:
 - 1. Primer etapa

$$X \sim Z\delta + \epsilon$$
,

donde X son los predictores endógenos, Z los potenciales instrumentos y ϵ el vector de errores. Dado la estimación de $\hat{\delta}$, podemos obtener $\hat{X} = Z\hat{\delta}$.

2. Segunda etapa

$$Y \sim \hat{X}\beta_{IV} + \mu$$

donde Y es la variable dependiente de interés y μ es el error.

2SLS EN R

- Para efectos ilustrativos en R, generamos datos de 3 variables: salarios, educación y educación de los padres.
- Obsérvese que la educación de los padres es función de la variable educación.

▶ Podemos fácilmente estimar el coeficiente de IV utilizando felm() y 2SLS.

2SLS EN R

► El coeficiente que obtenemos es el correcto, sin embargo los errores estandar estan mal.

IV: FORMA REDUCIDA

- Noten que en la práctica no podemos tomar los *predicted* values e incorporarlos en el second stage ya que los errores estandar estarían mal.
- Otro camino que podemos tomar, que de igual forma nos proporciona intuición muy valiosa, es estimar la forma reducida (reduced form).
- La ecuación es la siguiente:

$$Y \sim Z\gamma + \epsilon$$
,

IV: FORMA REDUCIDA

➤ Y podemos recuperar el coeficiente de IV con el siguiente cociente:

$$\beta_{IV} = \frac{\text{Est. Reduced form}}{\text{Est. First stage}}.$$

► En R:

```
fs <- felm(educacion ~ educacion_padres, data = datos_iv) # first stage
rf <- rf <- felm(salarios ~ educacion_padres) # reduced form
b_iv <- rf$coefficients[2]/fs$coefficients[2]
### [1] 4.028571</pre>
```

IV: FELM()

- ▶ Aunque pudimos obtener el coeficiente de IV correcto de dos formas diferentes, seguimos sin poder obtener los errores estandar correctos.
- ► En el caso del cociente, sacar el error estandar de una división de coeficientes se complica demasiado.
- ▶ Por lo tanto, lo que se hace siempre es utilizar paquetes y funciones ya establecidas que realizan la corrección a los errores estandar.
- Nosotros tenemos la suerte que felm() nos da la opción de estimar el IV de la siguiente forma:

IV: FELM()

▶ Observemos en una tabla todo lo que hemos hecho:

ESTIMACIÓN POR IV

	Dependent variable: Salarios			
	First Stage	Reduced Form	2SLS	IV (felm)
	(1)	(2)	(3)	(4)
Instrument	0.673*** (0.199)	2.712** (1.094)		
IV Estimate			4.029** (1.626)	
IV Estimate				4.029*** (0.921)
Observations	10	10	10	10
\mathbb{R}^2	0.589	0.434	0.434	0.818
Note:	*p<0.1; **p<0.05; ***p<0.01			

Relevancia del Instrumento

- Uno de los supuestos para obtener resultados causales de la estimación por variables instrumentales es que el instrumento debe ser relevante.
- Debe estar correlacionado fuertemente con la variable endógena.
- ▶ Para ver que el supuesto se cumple, necesitamos observar un F-Stat mayor a 10.
- Noten que este no es el F de la regresión, sino más bien, el F del test de significancia del instrumento en el First Stage.
- ► En R:

```
reg_iv[["stage1"]][["iv1fstat"]][["educacion"]][["F"]]
### [1] 11.46199
```

Efectos Fijos en IV

- ► La función felm() nos proporciona con los errores estandar correctos al estimar IV.
- Noten que la diferencia no es pequeña, no utilizar felm() nos puede llevar a concluir erróneamente (principalmente respecto a la significancia de nuestros efectos).
- ▶ Otra gran ventaja de usar felm(), en lugar de otros paquetes como ivreg(), es que nos permite agregar efectos fijos

Doble Instrumento y Doble Variable Endógena

- ► En algunos proyectos, necesitaran utilizar dos instrumentos para dos variables endógenas.
- La función felm igual nos permite hacer esto.
- Supongamos que quisiéramos instrumentar Q y W con Z_3 y Z_4 . Lo que haríamos entonces sería:

ightharpoonup Donde $X_1, ..., X_n$ son controles.