RAJALAKSHMIENGINEERING

COLLEGE RAJALAKSHMI NAGAR, THANDALAM – 602 105

CS23332DATABASEMANAGEMENT SYSTEMSLAB

Laboratory Record Notebook

Name :J.VIJAYANAND
Year / Branch / Section :2 nd year AIML-C
UNIVERSITY REGISTER NO: 2116231501181.
College Roll No.:231501181
Semester:3 rd semester
Academic Year :2024-2025

CS23332DATABASEMANAGEMENTSYSTEMS

NAME	J.VIJAYANAND
ROLLNO	231501181
DEPT	AIML
SEC	"C"

Ex.No.: 1	CREATION OF BASE TABLE
	AND DML
Date:	OPERATIONS

1. Create MY_EMPLOYEE table with the following structure

NAME	NULL?	ТҮРЕ
ID	Not null	Number(4)
Last_name		Varchar(25)
First_name		Varchar(25)
Userid		Varchar(25)
Salary		Number(9,2)

CREATE TABLE MY_EMPLOYEE (ID NUMBER(4) NOT NULL, Last_name VARCHAR2(25), First_name VARCHAR2(25), Userid VARCHAR2(25), Salary NUMBER(9, 2));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
MY_EMPLOYEE	<u>ID</u>	NUMBER		4	0	-	-	-	
	LAST_NAME	VARCHAR2	25	-	11. -	-	/	0. 5	.=
	FIRST_NAME	VARCHAR2	25	-	6	-	/	-	-
	USERID	VARCHAR2	25	5 <u>4</u> 7	-	-	/		-
	SALARY	NUMBER	-	9	2	-	/	-	-

2. Add the first and second rows data to MY_EMPLOYEE table from the following sample data.

ID	Last_name	First_name	Userid	salary
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860
3	Biri	Ben	bbiri	1100
4	Newman	Chad	Cnewman	750
5	Ropebur	Audrey	aropebur	1550

Begin

INSERT INTO MY_EMPLOYEE VALUES (1, 'Patel', 'Ralph', 'rpatel', 895); INSERT INTO MY_EMPLOYEE VALUES (2, 'Dancs', 'Betty', 'bdancs', 860); End;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860

3. Display the table with values.

Select * from My_Employee;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860

4. Populate the next two rows of data from the sample data. Concatenate the first letter of the first name with the first seven characters of the last name to produce Userid.

Begin

INSERT INTO MY_EMPLOYEE (ID, Last_name, First_name, Userid, Salary) VALUES (3, 'Biri', 'Ben', SUBSTR('Biri', 1, 1) || SUBSTR('Biri', 1, 7), 1100); INSERT INTO MY_EMPLOYEE (ID, Last_name, First_name, Userid, Salary) VALUES (4, 'Newman', 'Chad', SUBSTR('Newman', 1, 1) || SUBSTR('Newman', 1, 7), 750); End;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860
3	Biri	Ben	BBiri	1100
4	Newman	Chad	NNewman	750

Delete Betty dancs from MY _EMPLOYEE table. DELETE FROM MY _EMPLOYEE
 WHERE Last_name = 'Dancs';

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
3	Biri	Ben	BBiri	1100

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
3	Biri	Ben	BBiri	1100
4	Newman	Chad	NNewman	750

6. Empty the fourth row of the emp table.

DELETE FROM MY_EMPLOYEE WHERE ID = 4;

7. Make the data additions permanent.

COMMIT;		
G 25		

Statement processed.

- 0.01 seconds
- 8. Change the last name of employee 3 to Drexler.

UPDATE MY_EMPLOYEE SET Last_name = 'Drexler' WHERE ID = 3;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
3	Drexler	Ben	BBiri	1100

9. Change the salary to 1000 for all the employees with a salary less than 900.

UPDATE MY_EMPLOYEE SET Salary = 1000 WHERE Salary < 900;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	1000
3	Drexler	Ben	BBiri	1100

Ex.No.: 2	DATA MANIPULATIONS
Date:	

Create the following tables with the given structure.

EMPLOYEES TABLE

NAME	NULL?	ТҮРЕ
Employee_id	Not null	Number(6)
First_Name		Varchar(20)
Last_Name	Not null	Varchar(25)
Email	Not null	Varchar(25)
Phone_Number		Varchar(20)

Hire_date	Not null	Date	
Job_id	Not null	Varchar(10)	
Salary		Number(8,2)	
Commission_pct		Number(2,2)	
Manager_id		Number(6)	
Department_id		Number(4)	

Find
(a) out the employee id, names, salaries of all the employees

SELECT Employee_id, First_name, Last_name, Salary FROM EMPLOYEES;

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY
101	John	Doe	6000
102	Jane	Smith	4500
103	Mike	Johnson	7200
104	Emily	Davis	5000
105	Robert	Miller	6200
106	Sophia	Wilson	5600
107	Daniel	Brown	5800
108	Lisa	Taylor	4600
109	Kevin	Anderson	7100
110	Rachel	Thomas	5300

(b) List out the employees who works under manager 100

SELECT Employee_id, First_name, Last_name FROM EMPLOYEES WHERE Manager_id = 100;

EMPLOYEE_ID	FIRST_NAME	LAST_NAME
101	John	Doe

Find

(c) the names of the employees who have a salary greater than or equal to 4800

SELECT First_name, Last_name FROM EMPLOYEES WHERE Salary >= 4800;

FIRST_NAME	LAST_NAME
John	Doe
Mike	Johnson
Emily	Davis
Robert	Miller
Sophia	Wilson
Daniel	Brown
Kevin	Anderson
Rachel	Thomas

(d) List out the employees whose last name is _AUSTIN'

SELECT Employee_id, First_name, Last_name FROM EMPLOYEES WHERE Last_name = 'AUSTIN';

EMPLOYEE_ID	FIRST_NAME	LAST_NAME
109	Kevin	AUSTIN

Find

(e) the names of the employees who works in departments 60,70 and 80

SELECT First_name, Last_name FROM EMPLOYEES WHERE Department_id IN (60, 70, 80);

FIRST_NAME	LAST_NAME
John	Doe
Jane	Smith
Mike	Johnson
Emily	Davis
Robert	Miller
Sophia	Wilson
Daniel	Brown
Lisa	Taylor
Kevin	AUSTIN
Rachel	Thomas

(f) Display the unique Manager_Id.

MANAGER_ID
100
102
101
104
105
103

Find SELECT DISTINCT Manager_id FROM EMPLOYEES;

Create an Emp table with the following fields: (EmpNo, EmpName, Job,Basic, DA, HRA,PF, GrossPay, NetPay) (Calculate DA as 30% of Basic and HRA as 40% of Basic)

(a) Insert Five Records and calculate GrossPay and NetPay.

```
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (1, 'John Doe', 'Manager', 50000, 0.30 * 50000, -- DA as 30% of Basic
 0.40 * 50000, -- HRA as 40% of Basic, 0.12 * 50000, -- PF as 12% of Basic
50000 + (0.30 * 50000) + (0.40 * 50000), -- GrossPay (50000 + (0.30 * 50000) + (0.40 * 50000)
50000)) - (0.12 * 50000) -- NetPay
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (2, 'Jane Smith', 'Clerk', 30000, 0.30 * 30000, 0.40 * 30000,
    0.12 * 30000.
    30000 + (0.30 * 30000) + (0.40 * 30000),
    (30000 + (0.30 * 30000) + (0.40 * 30000)) - (0.12 * 30000)
    );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (3, 'Mike Johnson', 'Salesman', 40000,
    0.30 * 40000,
    0.40 * 40000,
    0.12 * 40000,
    40000 + (0.30 * 40000) + (0.40 * 40000),
    (40000 + (0.30 * 40000) + (0.40 * 40000)) - (0.12 * 40000)
    );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (4, 'Emily Davis', 'Accountant', 35000,
    0.30 * 35000,
    0.40 * 35000,
    0.12 * 35000,
    35000 + (0.30 * 35000) + (0.40 * 35000),
    (35000 + (0.30 * 35000) + (0.40 * 35000)) - (0.12 * 35000)
    );
```

INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay) VALUES (5, 'Robert Miller', 'Clerk', 25000,

```
0.30 * 25000,

0.40 * 25000,

0.12 * 25000,

25000 + (0.30 * 25000) + (0.40 * 25000),

(25000 + (0.30 * 25000) + (0.40 * 25000)) - (0.12 * 25000));
```

EMPNO	EMPNAME	JOB	BASIC	DA	HRA	PF	GROSSPAY	NETPAY
1	John Doe	Manager	50000	15000	20000	6000	85000	79000
2	Jane Smith	Clerk	30000	9000	12000	3600	51000	47400
3	Mike Johnson	Salesman	40000	12000	16000	4800	68000	63200
4	Emily Davis	Accountant	35000	10500	14000	4200	59500	55300
5	Robert Miller	Clerk	25000	7500	10000	3000	42500	39500

(b) Display the employees whose Basic is lowest in each department.

SELECT EmpNo, EmpName, Job, Basic FROM EMP E1 WHERE Basic = (SELECT MIN(Basic) FROM EMP E2 WHERE E2.Job = E1.Job);

EMPNO	EMPNAME	JOB	BASIC
1	John Doe	Manager	50000
3	Mike Johnson	Salesman	40000
4	Emily Davis	Accountant	35000
5	Robert Miller	Clerk	25000

(c) If Net Pay is less than 50000, display employee number, name and net pay

SELECT EmpNo, EmpName, NetPay FROM EMP WHERE NetPay < 50000;

EMPNO	EMPNAME	NETPAY
2	Jane Smith	47400
5	Robert Miller	39500

DEPARTMENT TABLE

NAME	NULL?	ТҮРЕ
------	-------	------

Dept_id	Not null	Number(6)
Dept_name	Not null	Varchar(20)
Manager_id		Number(6)
Location_id		Number(4)
JOB_GRADE TABLE		
NAME	NULL?	ТҮРЕ
Grade_level		Varchar(2)
Lowest_sal		Number
Highest_sal		Number
LOCATION TABLE		
NAME	NULL?	ТҮРЕ
Location_id	Not null	Number(4)
St_addr		Varchar(40)
Postal_code		Varchar(12)
City	Not null	Varchar(30)
State_province		Varchar(25)
Country_id		Char(2)

^{1.} Create the DEPT table based on the DEPARTMENT following the table instance chart below. Confirm that the table is created.

Column name	ID	NAME
Key Type		
Nulls/Unique		
FK table		
FK column		
Data Type	Number	Varchar2
Length	7	25

CREATE TABLE DEPT (Dept_id NUMBER(6) NOT NULL, Dept_name VARCHAR2(20) NOT NULL, Manager_id NUMBER(6), Location_id NUMBER(4), CONSTRAINT my_dept_id_pk PRIMARY KEY (Dept_id));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
DEPT	DEPT_ID	NUMBER	12	6	0	1	=	1	_
	DEPT_NAME	VARCHAR2	20	_	(<u>A</u>	-	22	<u>-</u>	_
	MANAGER_ID	NUMBER	-	6	0	-	~	-	÷
	LOCATION_ID	NUMBER	u re s	4	0	-	/	.7	

2. Create the EMP table based on the following instance chart. Confirm that the table is created.

Column name	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Кеу Туре				
Nulls/Unique				
FK table				
FK column				

Data Type	Number	Varchar2	Varchar2	Number
Length	7	25	25	7

CREATE TABLE EMP (EmpNo NUMBER(7) PRIMARY KEY,Last_name VARCHAR2(25) NOT NULL,First_name VARCHAR2(25),Dept_id NUMBER(7),

CONSTRAINT my_emp_dept_id_fk FOREIGN KEY (Dept_id) REFERENCES DEPT(Dept_id));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
<u>EMP</u>	EMPNO	NUMBER	-	7	0	1	V.=	2	<u>-</u>
	LAST_NAME	VARCHAR2	25	-	_	4	11 <u>-</u>	<u>=</u>	<u>-</u>
	FIRST_NAME	VARCHAR2	25	-	•	-	~	=	-
	DEPT_ID	NUMBER		7	0	, -	/	•	7:
								1	- 4

3. Modify the EMP table to allow for longer employee last names. Confirm the modification.(Hint: Increase the size to 50)

ALTER TABLE EMP MODIFY (Last name VARCHAR2(50));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	EMPNO	NUMBER	N_	7	0	1	2	12	2
	LAST_NAME	VARCHAR2	50	-2	2	12	<u>"</u>	112	-
	FIRST_NAME	VARCHAR2	25	\ -		-	/	-	-
	DEPT_ID	NUMBER		7	0	-	/	1.	-

4. Create the EMPLOYEES2 table based on the structure of EMPLOYEES table. Include Only the Employee_id, First_name, Last_name, Salary and Dept_id coloumns. Name the columns Id, First_name, Last_name, salary and Dept_id respectively.

CREATE TABLE EMPLOYEES2 (Id NUMBER(6) PRIMARY KEY,First_name VARCHAR2(20),Last_name VARCHAR2(25), Salary NUMBER(8,2),Dept_id NUMBER(4));

				` //:					
Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMPLOYEES2	<u>ID</u>	NUMBER	-	6	0	1	-	-	_
	FIRST_NAME	VARCHAR2	20	-	-	-	/	-	-
	LAST_NAME	VARCHAR2	25		-	-	/	-	-
	SALARY	NUMBER	<u>_</u>	8	2	<u> </u>	~	_	<u>.</u>
	DEPT_ID	NUMBER	-	4	0	¥	~	-	-

5. Drop the EMP Table

DROP TABLE EMP;

Table dropped.

6. Rename the EMPLOYEES2 table as EMP.

ALTER TABLE EMPLOYEES2 RENAME TO EMP;

Table altered.

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>ID</u>	NUMBER	(=)	6	0	1	:(≝)	-	7-2
	FIRST_NAME	VARCHAR2	20	(=)	-	-	~	198	-
	LAST_NAME	VARCHAR2	25	-	- 120 - 120	-	/	-	-
	SALARY	NUMBER	/2	8	2	-	/	1/2	-
	DEPT_ID	NUMBER	-	4	0	-	/	-	-

7. Add a comment on DEPT and EMP tables. Confirm the modification by describing the table.

COMMENT ON TABLE DEPT IS 'This table contains department information.'; COMMENT ON TABLE EMP IS 'This table contains employee information.';

TABLE_NAME	TABLE_TYPE	COMMENTS
DEPT	TABLE	This table contains department information.
EMP	TABLE	This table contains employee information.
DEMO_CUSTOMERS	TABLE	(.
MY_EMPLOYEE	TABLE	
APEX\$_ACL	TABLE	(-
STUDENTS	TABLE	
APEX\$_WS_TAGS	TABLE	(-
APEX\$_WS_WEBPG_SECTIONS	TABLE	(-
APEX\$_WS_LINKS	TABLE	(.
MANAGER	TABLE	(- ,

8. Drop the First_name column from the EMP table and confirm it.

ALTER TABLE EMP DROP COLUMN First_name;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>ID</u>	NUMBER	-	6	0	1		_	2
	LAST_NAME	VARCHAR2	25	N=0	-	-	/	7	-
	SALARY	NUMBER	-	8	2	1 	/	=	-
	DEPT_ID	NUMBER	-	4	0	-	/	ä	112

Ex.No.: 3	WRITING BASIC SQL SELECT STATEMENTS
Date:	

Find the Solution for the following:

True OR False

1. The following statement executes successfully.

Identify the Errors

SELECT employee_id, last_name sal*12 ANNUAL SALARY FROM employees;

False -> Corrected Query and Output

Select employee_id,last_name,salary*12 AS "Annual Salary" from Employees;

EMPLOYEE_ID	LAST_NAME	Annual Salary
101	Doe	72000
102	Smith	54000
103	Johnson	86400
104	Davis	60000
105	Miller	74400
106	Wilson	67200
107	Brown	69600
108	Taylor	55200
109	AUSTIN	85200
110	Thomas	63600

2. Show the structure of departments the table. Select all the data from it.

DESC department;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
DEPARTMENT	DEPT_ID	NUMBER	t=t	6	0	-	-	:-	// -
	DEPT_NAME	VARCHAR2	20	-	Į.	-	-	X#	/ *
	MANAGER_ID	NUMBER	-	6	0	75K	~	875	9 55
	LOCATION_ID	NUMBER	14	4	0		~		62

Select * from Department;

DEPT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
10	Admin	101	1000
20	Marketing	102	1001
30	Purchasing	103	1002
40	HR	104	1003
50	IT	105	1004
60	Sales	106	1005
70	Customer Service	107	1006
80	Accounting	108	1007
90	R&D	109	1008
100	Legal	110	1009

3. Create a query to display the last name, job code, hire date, and employee number for each employee, with employee number appearing first.

SELECT employee_id, last_name, job_id, hire_date FROM employees;

EMPLOYEE_ID	LAST_NAME	JOB_ID	HIRE_DATE
101	Doe	IT_PROG	01/15/2020
102	Smith	HR_REP	02/20/2019
103	Johnson	SA_MAN	05/30/2021
104	Davis	AC_ACCOUNT	10/10/2020
105	Miller	MK_MAN	07/25/2018
106	Wilson	SA_REP	03/12/2022
107	Brown	IT_PROG	11/05/2017
108	Taylor	HR_REP	12/15/2019
109	AUSTIN	AC_MGR	08/22/2021
110	Thomas	MK_REP	04/01/2020

Provide an alias STARTDATE for the hire date.

4. SELECT employee_id, last_name, job_id, hire_date AS STARTDATE FROM employees;

EMPLOYEE_ID	LAST_NAME	JOB_ID	STARTDATE
101	Doe	IT_PROG	01/15/2020
102	Smith	HR_REP	02/20/2019
103	Johnson	SA_MAN	05/30/2021
104	Davis	AC_ACCOUNT	10/10/2020
105	Miller	MK_MAN	07/25/2018
106	Wilson	SA_REP	03/12/2022
107	Brown	IT_PROG	11/05/2017
108	Taylor	HR_REP	12/15/2019
109	AUSTIN	AC_MGR	08/22/2021
110	Thomas	MK_REP	04/01/2020

5. Create a query to display unique job codes from the employee table.

SELECT DISTINCT job_id FROM employees;

	JOB_ID
IT_	PROG
AC.	_ACCOUNT
AC.	_MGR
SA	_MAN
MK	_MAN
SA	REP
MK	_REP
HR	REP

6. Display the last name concatenated with the job ID , separated by a comma and space, and name the column EMPLOYEE and TITLE.

SELECT last_name | | ', ' | job_id AS "EMPLOYEE and TITLE" FROM employees;

EN	IPLOYEE and TITLE
Do	e, IT_PROG
Sm	nith, HR_REP
Jol	nnson, SA_MAN
Da	vis, AC_ACCOUNT
Mil	ler, MK_MAN
Wil	son, SA_REP
Bro	own, IT_PROG
Tay	/lor, HR_REP
AU	STIN, AC_MGR
The	omas, MK_REP

7. Create a query to display all the data from the employees table. Separate each column by a comma. Name the column THE_OUTPUT.

SELECT employee_id \parallel ', ' \parallel last_name \parallel ', ' \parallel job_id \parallel ', ' \parallel hire_date AS THE_OUTPUT FROM employees;

	THE_OUTPUT
101,	Doe, IT_PROG, 01/15/2020
102,	Smith, HR_REP, 02/20/2019
103,	Johnson, SA_MAN, 05/30/2021
104,	Davis, AC_ACCOUNT, 10/10/2020
105,	Miller, MK_MAN, 07/25/2018
106,	Wilson, SA_REP, 03/12/2022
107,	Brown, IT_PROG, 11/05/2017
108,	Taylor, HR_REP, 12/15/2019
109,	AUSTIN, AC_MGR, 08/22/2021
110,	Thomas, MK REP, 04/01/2020

Ex.No.: 4		WORKING WITH CONSTRAINTS
Date:		

1. Add a table-level PRIMARY KEY constraint to the EMP table on the ID column. The constraint should be named at creation. Name the constraint my_emp_id_pk.

CREATE TABLE EMP (EmpNo NUMBER(7) PRIMARY KEY, Last_name VARCHAR2(25) NOT NULL,First_name VARCHAR2(25));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>ID</u>	NUMBER	-	6	0	1	-	->	-
	LAST_NAME	VARCHAR2	25		-1	» -	/	-8	-
	SALARY	NUMBER		8	2	-	~	-	-

2. Create a PRIMAY KEY constraint to the DEPT table using the ID colum. The constraint should be named at creation. Name the constraint my dept id pk.

CREATE TABLE DEPT (Dept_id NUMBER(6) NOT NULL,Dept_name VARCHAR2(20) NOT NULL,Manager_id NUMBER(6), Location_id NUMBER(4),CONSTRAINT my_dept_id_pk PRIMARY KEY (Dept_id));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
DEPT	DEPT_ID	NUMBER	-	6	0	1	-	_	-
	DEPT_NAME	VARCHAR2	20	12	-	<u>:</u>	(=)	-	-
	MANAGER_ID	NUMBER	-	6	0	:=	/	-	-
	LOCATION_ID	NUMBER	-	4	0	-	/	-	-

3. Add a column DEPT_ID to the EMP table. Add a foreign key reference on the EMP table that ensures that the employee is not assigned to nonexistent department. Name the constraint my emp dept id fk.

ALTER TABLE EMP ADD Dept_id NUMBER(6);
ALTER TABLE EMP ADD CONSTRAINT my_emp_dept_id_fk FOREIGN KEY
(Dept_id) REFERENCES DEPT (Dept_id);

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	EMPNO	NUMBER	7	7	0	1	=	. 	.=
	LAST_NAME	VARCHAR2	25	S.	-	· =	-	-	
	FIRST_NAME	VARCHAR2	25	-	-	·-	~	-	-
	DEPT_ID	NUMBER	-	6	0	-	/	-	-

4. Modify the EMP table. Add a COMMISSION column of NUMBER data type, precision 2, scale 2. Add a constraint to the commission column that ensures that a commission value is greater than zero.

ALTER TABLE EMP

ADD Commission NUMBER(8,2) CONSTRAINT commission_check CHECK (Commission > 0);

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	EMPNO	NUMBER		7	0	1	-	1	-
	LAST_NAME	VARCHAR2	25	(4)	2	X.	(=	-	-
	FIRST_NAME	VARCHAR2	25	3.5	-	X=X	/	-	ī
	DEPT_ID	NUMBER	(-	6	0	-	/	-	103 103
	COMMISSION	NUMBER	_	8	2	-	~	_	_

Ex.No.: 5	CREATING VIEWS
Date:	

1. Create a view called EMPLOYEE_VU based on the employee numbers, employee names and department numbers from the EMPLOYEES table. Change the heading for the employee name to EMPLOYEE.

CREATE VIEW EMPLOYEE_VU AS SELECT employee_id, last_name AS EMPLOYEE, department id FROM EMPLOYEES;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMPLOYEE_VU	EMPLOYEE_ID	NUMBER	-	6	0	C - C	-	-	-)
	EMPLOYEE	VARCHAR2	25	• 1	-	-	-	-	-
	DEPARTMENT_ID	NUMBER	÷	4	0	+	~	-	-

2. Display the contents of the EMPLOYEES_VU view. SELECT * FROM EMPLOYEE VU;

EMPLOYEE_ID	EMPLOYEE	DEPARTMENT_I
101	Doe	60
102	Smith	70
103	Johnson	80
104	Davis	60
105	Miller	70
106	Wilson	80
107	Brown	60
108	Taylor	70
109	AUSTIN	80
110	Thomas	60

3. Select the view name and text from the USER_VIEWS data dictionary views.

SELECT view_name, text FROM USER_VIEWS WHERE view_name = 'EMPLOYEE_VU';

VIEW_NAME	TEXT
EMPLOYEE_VU	SELECT employee_id, last_name AS EMPLOYEE, department_id FROM EMPLOYEES

4. Using your EMPLOYEES_VU view, enter a query to display all employees names and department.

SELECT EMPLOYEE, department_id FROM EMPLOYEE_VU;

EMPLOYEE	DEPARTMENT_
Doe	60
Smith	70
Johnson	80
Davis	60
Miller	70
Wilson	80
Brown	60
Taylor	70
AUSTIN	80
Thomas	60

5. Create a view named DEPT50 that contains the employee number, employee last names and department numbers for all employees in department 50.Label the view columns EMPNO, EMPLOYEE and DEPTNO. Do not allow an employee to be reassigned to another department through the view.

CREATE OR REPLACE VIEW DEPT50 (EMPNO, EMPLOYEE, DEPTNO) AS SELECT employee_id, last_name, department_id FROM EMPLOYEES
WHERE department_id = 50
WITH CHECK OPTION;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
DEPT50	<u>EMPNO</u>	NUMBER	-	6	0	-	-	.	e -
	EMPLOYEE	VARCHAR2	25	-		-	-		-
	DEPTNO	NUMBER	-	4	0	-	/	-	-

6. Display the structure and contents of the DEPT50 view.

SELECT * FROM DEPT50;

EMPNO	EMPLOYEE	DEPTN
101	Doe	50
103	Johnson	50
107	Brown	50
109	AUSTIN	50

7. Attempt to reassign Matos to department 80.

UPDATE DEPT50 SET DEPTNO = 80 WHERE EMPLOYEE = 'Matos';

ORA-01402: view WITH CHECK OPTION where-clause violation

8. Create a view called SALARY_VU based on the employee last names, department names, salaries, and salary grades for all employees. Use the Employees, DEPARTMENTS and JOB_GRADE tables. Label the column Employee, Department, salary, and Grade respectively.

CREATE VIEW SALARY_VU AS
SELECT e.last_name AS Employee,
d.department_name AS Department,
e.salary AS Salary,
j.grade_level AS Grade
FROM EMPLOYEES e

JOIN DEPARTMENTS d ON e.department_id = d.department_id JOIN JOB_GRADE j ON e.salary BETWEEN j.lowest_sal AND j.highest_sal;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
SALARY_VU	EMPLOYEE	VARCHAR2	25	-	: - :	-	-	-	
	DEPARTMENT	VARCHAR2	20	-	E-	*	-	-	
	SALARY	NUMBER	7	8	2	7	/	170	æ
	GRADE	VARCHAR2	2	-	6 7 4		~	₩ 7 3	ā

Ex.No.: 6		RESTRICTING AND SORTING DATA
Date:		

^{1.} Create a query to display the last name and salary of employees earning more than 12000.

SELECT last_name, salary FROM employees WHERE salary > 12000;

LAST_NAME	SALARY
Smith	12500
Davis	15000
Wilson	13500
Brown	16000

2. Create a query to display the employee last name and department number for employee number 176.

SELECT last name, department id FROM employees WHERE employee id = 176;

LAST_NAME	DEPARTMENT_ID
Smith	70

3. Create a query to display the last name and salary of employees whose salary is not in the range of 5000 and 12000. (hints: not between).

SELECT last_name, salary FROM employees WHERE salary NOT BETWEEN 5000 AND 12000;

LAST_NAME	SALARY
Smith	12500
Davis	15000
Wilson	13500
Brown	16000
Taylor	4600

4. Display the employee last name, job ID, and start date of employees hired between February 20,1998 and May 1,1998.order the query in ascending order by start date.(hints: between)

SELECT last_name, job_id, hire_date FROM employees WHERE hire_date BETWEEN '02-20-1998' AND '05-01-1998' ORDER BY hire_date ASC;

	LAST_NAME	JOB_ID	HIRE_DATE
ı	Johnson	SA_MAN	03/01/1998

5. Display the last name and department number of all employees in departments 20 and 50 in alphabetical order by name.(hints: in, orderby)

SELECT last_name, department_id FROM employees WHERE department_id IN (20, 50) ORDER BY last name ASC;

LAST_NAME	DEPARTMENT_ID
AUSTIN	50
Brown	50
Johnson	50
Matos	50

6. Display the last name and salary of all employees who earn between 5000 and 12000 and are in departments 20 and 50 in alphabetical order by name. Label the columns EMPLOYEE, MONTHLY SALARY respectively.(hints: between, in)

SELECT last_name AS "EMPLOYEE", salary AS "MONTHLY SALARY" FROM employees WHERE salary BETWEEN 5000 AND 12000 AND department_id IN (20, 50) ORDER BY last name ASC;

EMPLOYEE	MONTHLY SALARY
AUSTIN	7100
Johnson	7200
Matos	6000

7. Display the last name and hire date of every employee who was hired in 1994.(hints: like)

SELECT last name, hire date FROM employees WHERE hire date LIKE '%1994%';

LAST_NAME	HIRE_DATE
Matos	01/01/1994

8. Display the last name and job title of all employees who do not have a manager.(hints: is null)

SELECT last name, job id FROM employees WHERE manager id IS NULL;

LAST_NAME	JOB_ID
Austin	AC_MGR

9. Display the last name, salary, and commission for all employees who earn commissions. Sort data in descending order of salary and commissions.(hints: is not nul,orderby)

SELECT last_name, salary, commission_pct FROM employees WHERE commission_pct IS NOT NULL ORDER BY salary DESC, commission_pct DESC;

LAST_NAME	SALARY	COMMISSION_PCT
Wilson	13500	.1
Johnson	7200	.15
Thomas	5300	.08

10. Display the last name of all employees where the third letter of the name is a.(hints:like)

SELECT last name FROM employees WHERE last name LIKE ' a%';

11. Display the last name of all employees who have an a and an e in their last name.(hints: like)

SELECT last_name FROM employees WHERE last_name LIKE '%a%' AND last_name LIKE '%e%';

12. Display the last name and job and salary for all employees whose job is sales representative or stock clerk and whose salary is not equal to 2500 ,3500 or 7000.(hints:in,not in)

SELECT last_name, job_id, salary FROM employees WHERE job_id IN ('SA_REP', 'ST_CLERK') AND salary NOT IN (2500, 3500, 7000);

LAST_NAME	JOB_ID	SALARY
Wilson	SA_REP	13500

Ex.No.: 7	USING SET OPERATORS
Date:	

1. The HR department needs a list of department IDs for departments that do not contain the job ID ST CLERK. Use set operators to create this report.

SELECT department_id FROM departments MINUS SELECT department_id FROM employees WHERE job id = 'ST CLERK';

DEP	ARTMENT_ID
10	
20	
30	
40	
50	
80	
90	
100	

2. The HR department needs a list of countries that have no departments located in them. Display the country ID and the name of the countries. Use set operators to create this report.

SELECT country_id, country_name FROM countries MINUS SELECT country_id, country_name FROM departments;

CN	China	
BR	Brazil	

3. Produce a list of jobs for departments 10, 50, and 20, in that order. Display job ID and department ID using set operators.

SELECT job_id, department_id FROM employees WHERE department_id = 10 UNION

SELECT job_id, department_id FROM employees WHERE department_id = 50 UNION

SELECT job_id, department_id FROM employees WHERE department_id = 20;

JOB_ID	DEPARTMENT_ID
AC_ACCOUNT	20
AC_MGR	50
HR_REP	20
IT_PROG	10
IT_PROG	50
SA_MAN	50
ST_CLERK	10

4. Create a report that lists the employee IDs and job IDs of those employees who currently have a job title that is the same as their job title when they were initially hired by the company (that is, they changed jobs but have now gone back to doing their original job).

SELECT employee_id, job_id FROM employees INTERSECT

SELECT employee_id, job_id FROM job_history;

EMPLOYEE_ID	JOB_ID
201	IT_PROG
202	HR_REP
203	SA_REP
204	IT_PROG
205	HR_REP
206	SA_REP
207	IT_PROG
208	SA_REP
209	IT_PROG
210	HR_REP

- 5. The HR department needs a report with the following specifications:
- Last name and department ID of all the employees from the EMPLOYEES table, regardless of whether or not they belong to a department.
- Department ID and department name of all the departments from the DEPARTMENTS table, regardless of whether or not they have employees working in them Write a compound query to accomplish this.

SELECT last_name, department_id FROM employees

UNION SELECT department_name, department_id FROM departments;

•		
Andrea	10	
Austin	50	
Brown	=	
Clark	-	
Silva	2	
Smith	70	
Tanaka	-	
Taylor	20	
Thomas	60	
Wei	-	
Wilson	80	

Ex.No.: 8		WORKING WITH MULTIPLE TABLES
Date:		

^{1.} Write a query to display the last name, department number, and department name for all employees.

SELECT e.last_name, e.department_id, d.department_name FROM employees e JOIN departments d ON e.department_id = d.department_id;

LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
Miller	10	Admin
Andrea	10	Admin
Davis	20	ST_CLERK
Taylor	20	ST_CLERK
Matos	50	IT
Johnson	50	IT
Austin	50	IT
Thomas	60	ST_CLERK
Smith	70	Customer Service
Wilson	80	ST_CLERK

2. Create a unique listing of all jobs that are in department 80. Include the location of the department in the output.

SELECT DISTINCT e.job_id, d.location_id FROM employees e JOIN departments d ON e.department id = d.department id WHERE e.department id = 80;

JOB_ID	LOCATION_ID
SA_REP	1007

3. Write a query to display the employee last name, department name, location ID, and city of all employees who earn a commission

SELECT e.last_name, d.department_name, d.location_id, l.city FROM employees e JOIN departments d ON e.department_id = d.department_id JOIN locations l ON d.location_id = l.location_id WHERE e.commission_pct IS NOT NULL;

LAST_NAME	DEPARTMENT_NAME	LOCATION_ID	CITY
Johnson	IT	1004	London
Thomas	ST_CLERK	1005	Sydney
Wilson	ST_CLERK	1007	Dubai

4. Display the employee last name and department name for all employees who have an a(lowercase) in their last names. P

SELECT e.last_name, d.department_name FROM employees e JOIN departments d ON e.department id = d.department id WHERE e.last name LIKE '%a%';

LAST_NAME	DEPARTMENT_NAME
Matos	IT
Davis	ST_CLERK
Andrea	Admin
Taylor	ST_CLERK
Thomas	ST_CLERK

5. Write a query to display the last name, job, department number, and department name for all employees who work in Toronto.

SELECT e.last_name, e.job_id, e.department_id, d.department_name FROM employees e JOIN departments d ON e.department_id = d.department_id JOIN locations l ON d.location_id = l.location_id WHERE l.city = 'Toronto';

LAST_NAME	JOB_ID	DEPARTMENT_ID	DEPARTMENT_NAME
Andrea	IT_PROG	10	Admin
Miller	ST_CLERK	10	Admin

6. Display the employee last name and employee number along with their manager's last name and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, Respectively

SELECT e.last_name AS Employee, e.employee_id AS Emp#, m.last_name AS Manager, m.employee_id AS Mgr# FROM employees e LEFT JOIN employees m ON e.manager_id = m.employee_id;

EMPLOYEE	EMP#	MANAGER	MGR#
Andrea	107	Matos	101
Davis	104	Matos	101
Smith	176	Matos	101
Wilson	106	Johnson	103
Thomas	110	Miller	105
Silva	210	" <u>-</u>	_
Wei	209	_	-
Tanaka	208	-	_
Wilson	207	-	_
Miller	206	-	_

SELECT e.last_name, e.employee_id, m.last_name AS Manager FROM employees e LEFT JOIN employees m ON e.manager_id = m.employee_id ORDER BY e.employee_id;

^{7.} Modify lab4_6.sql to display all employees including King, who has no manager. Order the results by the employee number.

LAST_NAME	EMPLOYEE_ID	MANAGER
Matos	101	-
Johnson	103	9
Davis	104	Matos
Miller	105	÷
Wilson	106	Johnson
Andrea	107	Matos
Taylor	108	÷
Austin	109	-
Thomas	110	Miller
Smith	176	Matos

8. Create a query that displays employee last names, department numbers, and all the employees who work in the same department as a given employee. Give each column an appropriate label

SELECT e1.last_name AS Employee, e2.last_name AS Colleague FROM employees e1 JOIN employees e2 ON e1.department_id = e2.department_id WHERE e1.employee_id = :employee_id;

EMPLOYEE	COLLEAGUE
Matos	Matos
Matos	Johnson
Matos	Austin

9. Show the structure of the JOB_GRADES table. Create a query that displays the name, job, department name, salary, and grade for all employees DESC job grades;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
JOB_GRADES	GRADE_LEVEL	VARCHAR2	2	-	-		~	a 7 33	-
	LOWEST_SAL	NUMBER	22	<u>-</u>	-	2	/	-	-
	HIGHEST_SAL	NUMBER	22	-	-	-	/	-0	-
	DEPTNO	NUMBER	22	-	-		~	-	-

SELECT e.last_name, e.job_id, d.department_name, e.salary, j.grade_level FROM employees e JOIN departments d ON e.department_id = d.department_id JOIN job_grades j ON e.salary BETWEEN j.lowest_sal AND j.highest_sal;

LAST_NAME	JOB_ID	DEPARTMENT_NAME	SALARY	GRADE_LEVEL
Davis	AC_ACCOUNT	ST_CLERK	15000	G2
Wilson	SA_REP	ST_CLERK	13500	G1
Smith	HR_REP	Customer Service	12500	F2
Johnson	SA_MAN	IT	7200	D1
Austin	AC_MGR	IT	7100	D1
Miller	ST_CLERK	Admin	6200	C2
Matos	IT_PROG	IT	6000	C1
Thomas	ST_CLERK	ST_CLERK	5300	C1
Taylor	HR_REP	ST_CLERK	4600	B2

SELECT last_name, hire_date FROM employees WHERE hire_date > (SELECT hire_date FROM employees WHERE last_name = 'Davies');

^{10.} Create a query to display the name and hire date of any employee hired after employee Davies.

LAST_NAME	HIRE_DATE
Smith	02/20/2019
Johnson	03/01/1998
Davis	01/01/1998
Miller	07/25/2018
Wilson	03/12/2022
Andrea	11/05/2017
Taylor	12/15/2019
Austin	08/22/2021
Thomas	04/01/2020
Doe	10/10/2015

11. Display the names and hire dates for all employees who were hired before their managers, along with their manager's names and hire dates. Label the columns Employee, Emp Hired, Manager, and Mgr Hired, respectively.

SELECT e.last_name AS Employee, e.hire_date AS Emp_Hired, m.last_name AS Manager, m.hire_date AS Mgr_Hired FROM employees e JOIN employees m ON e.manager_id = m.employee_id WHERE e.hire_date < m.hire_date;

EMPLOYEE	EMP_HIRED	MANAGER	MGR_HIRED
Smith	02/20/2019	Matos	01/01/1994
Davis	01/01/1998	Matos	01/01/1994
Andrea	11/05/2017	Matos	01/01/1994
Wilson	03/12/2022	Johnson	03/01/1998
Thomas	04/01/2020	Miller	07/25/2018

Ex.No.: 9	SUB QUERIES
Date:	

1. The HR department needs a query that prompts the user for an employee last name. The query then displays the last name and hire date of any employee in the same department as the employee whose name they supply (excluding that employee). For example, if the user enters Zlotkey, find all employees who work with Zlotkey (excluding Zlotkey).

SELECT e.last_name, e.hire_date FROM employees e JOIN employees e2 ON e.department_id = e2.department_id WHERE e2.last_name = :emp_name AND e.employee id != e2.employee id;

LAST_NAME	HIRE_DATE
Johnson	03/01/1998
Austin	08/22/2021

2. Create a report that displays the employee number, last name, and salary of all employees who earn more than the average salary. Sort the results in order of ascending salary.

SELECT employee_id, last_name, salary FROM employees WHERE salary > (SELECT AVG(salary) FROM employees) ORDER BY salary ASC;

EMPLOYEE_ID	LAST_NAME	SALARY
176	Smith	12500
106	Wilson	13500
104	Davis	15000
107	Andrea	16000

3. Write a query that displays the employee number and last name of all employees who work in a department with any employee whose last name contains a *u*. SELECT DISTINCT el.employee_id, el.last_name FROM employees el JOIN employees e2 ON el.department id = e2.department id WHERE e2.last_name LIKE '%u%';

EMPLOYEE_ID	LAST_NAME
101	Matos
103	Johnson
109	Austin

4. The HR department needs a report that displays the last name, department number, and job ID of all employees whose department location ID is 1700.

SELECT e.last_name, e.department_id, e.job_id FROM employees e JOIN departments d ON e.department id = d.department id WHERE d.location id = 1700;

LAST_NAME	DEPARTMENT_ID	JOB_ID
Miller	10	ST_CLERK
Andrea	10	IT_PROG

5. Create a report for HR that displays the last name and salary of every employee who reports to King.

SELECT e.last_name, e.salary FROM employees e JOIN employees m ON e.manager_id = m.employee_id WHERE m.last_name = 'King';

LAST_NAME	SALARY
Smith	12500
Davis	15000
Andrea	16000

6. Create a report for HR that displays the department number, last name, and job ID for every employee in the Executive department.

SELECT e.department_id, e.last_name, e.job_id FROM employees e JOIN departments d ON e.department id = d.department id WHERE d.department name = 'Executive';

DEPARTMENT_ID	LAST_NAME	JOB_ID
50	Matos	IT_PROG
50	Johnson	SA_MAN
50	Austin	AC_MGR

7. Modify the query 3 to display the employee number, last name, and salary of all employees who earn more than the average salary and who work in a department with any employee whose last name contains a u.

SELECT e1.employee_id, e1.last_name, e1.salary FROM employees e1

JOIN employees e2 ON e1.department_id = e2.department_id WHERE e2.last_name LIKE

'%u%' AND e1.salary > (SELECT AVG(salary) FROM employees);

EMPLOYEE_ID	LAST_NAME	SALARY
106	Wilson	13500
104	Davis	15000

Ex.No.: 10	AGGREGATING DATA USING GROUP FUNCTIONS
Date:	

Determine the validity of the following three statements. Circle either True or False.

1. Group functions work across many rows to produce one result per group. True/False

TRUE

2. Group functions include nulls in calculations. True/False

FALSE

3. The WHERE clause restricts rows prior to inclusion in a group calculation. True/False

TRUE

The HR department needs the following reports:

4. Find the highest, lowest, sum, and average salary of all employees. Label the columns Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole number

SELECT ROUND(MAX(salary)) AS "Maximum",ROUND(MIN(salary)) AS "Minimum", ROUND(SUM(salary)) AS "Sum", ROUND(AVG(salary)) AS "Average"FROM employees;

Maximum	Minimum	Sum	Average
16000	4600	158500	7925

5. Modify the above query to display the minimum, maximum, sum, and average salary for each job type.

SELECT job_id, ROUND(MAX(salary)) AS "Maximum", ROUND(MIN(salary)) AS "Minimum", ROUND(SUM(salary)) AS "Sum", ROUND(AVG(salary)) AS "Average" FROM employees GROUP BY job id;

JOB_ID	Maximum	Minimum	Sum	Average
IT_PROG	16000	6000	51600	8600
AC_ACCOUNT	15000	15000	15000	15000
AC_MGR	7100	7100	7100	7100
SA_MAN	7200	7200	7200	7200
SA_REP	13500	5500	30800	7700
HR_REP	12500	4600	35300	7060
ST_CLERK	6200	5300	11500	5750

6. Write a query to display the number of people with the same job. Generalize the query so that the user in the HR department is prompted for a job title.

SELECT COUNT(*) AS "Number of People" FROM employees WHERE job_id = '&job_title';

7. Determine the number of managers without listing them. Label the column Number of Managers. *Hint: Use the MANAGER ID column to determine the number of managers*.

SELECT COUNT(DISTINCT manager_id) AS "Number of Managers"FROM employees WHERE manager_id IS NOT NULL;

8. Find the difference between the highest and lowest salaries. Label the column DIFFERENCE.

SELECT (MAX(salary) - MIN(salary)) AS "DIFFERENCE" FROM employees;

9. Create a report to display the manager number and the salary of the lowest-paid employee for that manager. Exclude anyone whose manager is not known. Exclude any groups where the minimum salary is \$6,000 or less. Sort the output in descending order of salary.

SELECT manager_id, MIN(salary) AS "Lowest Salary" FROM employees WHERE manager_id IS NOT NULL GROUP BY manager_id HAVING MIN(salary) > 6000 ORDER BY MIN(salary) DESC;

MANAGER_ID	Lowest Salary
103	13500
101	12500

10. Create a query to display the total number of employees and, of that total, the number of employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

SELECT

COUNT(*) AS "Total Employees",

SUM(CASE WHEN TO_CHAR(hire_date, 'YYYY') = '1995' THEN 1 ELSE 0 END) AS "Hired in 1995",

SUM(CASE WHEN TO_CHAR(hire_date, 'YYYY') = '1996' THEN 1 ELSE 0 END) AS "Hired in 1996",

SUM(CASE WHEN TO_CHAR(hire_date, 'YYYY') = '1997' THEN 1 ELSE 0 END) AS "Hired in 1997",

SUM(CASE WHEN TO_CHAR(hire_date, 'YYYY') = '1998' THEN 1 ELSE 0 END) AS "Hired in 1998" FROM employees;

Total Employees	Hired in 1995	Hired in 1996	Hired in 1997	Hired in 1998
20	1	1	2	3

11. Create a matrix query to display the job, the salary for that job based on department number, and the total salary for that job, for departments 20, 50, 80, and 90, giving each column an appropriate heading.

SELECT job_id,

SUM(CASE WHEN department_id = 20 THEN salary ELSE 0 END) AS "Dept 20",

SUM(CASE WHEN department_id = 50 THEN salary ELSE 0 END) AS "Dept 50",

SUM(CASE WHEN department_id = 80 THEN salary ELSE 0 END) AS "Dept 80",

SUM(CASE WHEN department_id = 90 THEN salary ELSE 0 END) AS "Dept 90", SUM(salary) AS "Total Salary"

FROM employees WHERE department id IN (20, 50, 80, 90) GROUP BY job id;

JOB_ID	Dept 20	Dept 50	Dept 80	Dept 90	Total Salary
IT_PROG	0	6000	0	0	6000
AC_ACCOUNT	15000	0	0	0	15000
AC_MGR	0	7100	0	0	7100
SA_MAN	0	7200	0	0	7200
SA_REP	0	0	13500	0	13500
HR_REP	4600	0	0	0	4600

12. Write a query to display each department's name, location, number of employees, and the average salary for all the employees in that department. Label the column name-Location, Number of people, and salary respectively. Round the average salary to two decimal places.

SELECT d.department_name AS "Department Name", l.city AS "Location", COUNT(e.employee_id) AS "Number of People", ROUND(AVG(e.salary), 2) AS "Average Salary" FROM employees e JOIN departments d ON e.department_id = d.department_id JOIN locations l ON d.location id = l.location id GROUP BY d.department name, l.city;

Department Name	Location	Number of People	Average Salary
IT	London	3	6766.67
ST_CLERK	Dubai	1	13500
ST_CLERK	Sydney	1	5300
Customer Service	Mumbai	1	12500
Admin	New York	2	11100
ST_CLERK	San Francisco	2	9800

Ex.No.: 11	PL SQL PROGRAMS
Date:	

PROGRAM 1

Write a PL/SQL block to calculate the incentive of an employee whose ID is 110.

declare
a
employees.employee_id%type;
b employees.salary%type; begin
Select salary into a from employees where employee_id =
110; b:=0.05*a; dbms_output.put_line('Salary after incentive:
' (a+b)); end;

Salary after incentive : 6300

Statement processed.

0.01 seconds

block to

PROGRAM 2

Write a PL/SQL show an invalid case-insensitive reference to a quoted and without quoted user-defined identifier.

```
declare non_quoted_variable varchar2(10) := 'Hi'; "quoted_variable" varchar2(10) := 'Hello'; begin dbms_output.put_line(NON_QUOTED_VARIA BLE); dbms_output.put_line("quoted_variable"); dbms_output.put_line("QUOTED_VARIABLE"); end;
```

Hi Hello

Statement processed.

ORA-06550: line 7, column 23:

PLS-00201: identifier 'QUOTED_VARIABLE' must be declared

ORA-06550: line 7, column 1: PL/SQL: Statement ignored

Write a PL/SQL block to

adjust the salary of the employee whose ID

122. Sample table: employees

```
declare old_salary
employees.salary%type;
new_salary
employees.salary%type; begin
new_salary:= :sal;
Select salary into old_salary from employees where employee_id = 122;
dbms_output.put_line('Before updation: '||old_salary);
Update employees set salary = salary + new_salary where employee_id = 122;
Select salary into new_salary from employees where employee_id = 122;
dbms_output.put_line('After updation: '||new_salary); end;
```

Before updation: 8000 After updation: 9000 Statement processed.

0.00 seconds

Write a PL/SQL block to PROGRAM 4

Write a PL/SQL create a procedure using the "IS [NOT] NULL Operator" and show AND operator returns TRUE if and only if both operands are TRUE.

TRUE FALSE NULL VALUES in arguments

Statement processed.

0.00 seconds

block to

```
Create or replace procedure proc1( a boolean, b boolean) IS
BEGIN

if(a is not null) and (b is not null) then

if(a = TRUE and b = TRUE) then

dbms_output.put_line('TRUE'); else

dbms_output.put_line('FALSE'); end if; else

dbms_output.put_line('NULL VALUES in arguments');

end if; end proc1;

BEGIN

proc1(TRUE,TRUE);

proc1(TRUE,FALSE);

proc1(NULL,NULL);

end;
```

describe the usage of LIKE operator including wildcard characters and escape character.

```
Name starts with "D"
Name contains "Dan" followed by one character
Name contains "Daniel_Andrea"
Statement processed.
```

Write a PL/SQL block to

```
Declare name varchar2(20); num number(3); Begin num := :n;
Select first_name into name from employees where employee_id=num; if name like 'D%' then dbms_output.put_line('Name starts with "D"'); end if; if name like 'Dan_el%' then dbms_output.put_line('Name contains "Dan" followed by one character'); end if; name := 'Daniel_Andrea'; if name like 'Daniel\_Andrea' escape '\' then dbms_output.put_line('Name contains "Daniel_Andrea'); end if; end;
```

PL/SQL PROGRAM 6

Write a program to arrange the number of two variable in such a way that the small number will store in num_small variable and large number will store in num_large variable.

```
declare a number(2); b
number(2);
num small
number(2); num_large
number(2);
begin a := :s; b := :1;
dbms output.put line('Value in a: '||a);
dbms output.put line('Value in b : '||b);
if a>b then num small := b;
num large :=
a; else
num small :=a;
num large :=b;
end if; dbms output.put line('Smaller number is
'||num small); dbms output.put line('Larger number is
'||num large); end;
```

```
Value in a : 10
Value in b : 5
Smaller number is 5
Larger number is 10
Statement processed.
```

0.00 seconds

procedure to calculate the incentive on a target achieved and display the message either the record updated or not.

Write a PL/SQL

```
Create or replace procedure calc incen(emp id number,achievement number,target number)
AS
incentive number; rowcount
number; Begin if
achievement > target then
incentive:= achievement*0.2;
else incentive:=0; end if;
Update employees set salary = salary + incentive where employee_id =
emp id; rowcount:= SQL%ROWCOUNT; if rowcount>0 then
dbms output.put line('Record(s) updated'); else dbms output.put line('No
Record(s) updated'); end if; end;
Declare id number;
achievement number;
target number; Begin id
:= :emp id; achievement
:= :achieve; target :=
:target ;
calc incen(id,achievement,target);
end;
```

Record(s) updated

Statement processed.

PROGRAM 8

Write a procedure to calculate incentive achieved according to the specific sale limit.

```
Create or replace procedure calc incen(emp id number, sales number) AS
incentive number; rowcount number; Begin if sales < 1000 then
incentive:= 0; elsif sales > 1000 and
sales < 2000 then
incentive := sales * 0.2:
else incentive := sales
* 0.5;
end if;
Update employees set salary = salary + incentive where employee id =
emp id; rowcount:= SQL%ROWCOUNT; if rowcount>0 then
dbms output.put line('Record(s) updated'); else dbms output.put line('No
Record(s) updated'); end if; end;
Declare id
number: sales
number; sal
number;
Begin id :=
:emp id;
sales := :sale;
select salary into sal from employees where employee id = id;
dbms output.put line('Before incentive calculation: '||sal);
calc incen(id,sales);
select salary into sal from employees where employee id = id;
dbms output.put line('After incentive calculation: '||sal); end;
```

```
Before incentive calculation: 21000
Record(s) updated
After incentive calculation: 23500
```

Statement processed.

Write a PL/SQL program to

count number of employees in department 50 and check whether this department have any vacancies or not. There are 45 vacancies in this department.

declare emp_count
number; vacancy
number := 20; begin
Select count(*) into emp_count from employees where department_id = 10;
dbms_output.put_line('Total seats : '||vacancy); dbms_output.put_line('Number
of employees in Department 50 : '||emp_count); if emp_count>vacancy then
dbms_output.put_line('No vacancies available'); else
dbms_output.put_line('Available vacancies : '||(vacancy-emp_count)); end if;
end;

Total seats : 20

Number of employees in Department 50: 3

Available vacancies : 17

Statement processed.

Write a PL/SQL program to

Write a PL/SQL program to display the

count number of employees in a specific department and check whether this department have any vacancies or not. If any vacancies, how many vacancies are in that department.

Total seats : 10

Number of employees in Department : 2

Available vacancies : 8

Statement processed.

Write a PL/SQL program to

```
declare dept_id
number; emp_count
number; vacancy
number := 10;
begin
dept_id := :id;
Select count(*) into emp_count from employees where department_id = dept_id;
dbms_output.put_line('Total seats : '||vacancy); dbms_output.put_line('Number
of employees in Department : '||emp_count); if emp_count>vacancy then
dbms_output.put_line('No vacancies available'); else
dbms_output.put_line('Available vacancies : '||(vacancy-emp_count)); end if;
end;
```

Write a PL/SQL program to display the employee IDs, names, job titles, hire dates, and salaries of all employees.

employee id: 101 name: John job title: IT PROG hire date: 01-jan-1994 salary: 6020 employee id: 176 name: Jane job title: HR REP hire date: 20-feb-2019 salary: 12500 ----employee id: 103 name: Mike job title: SA MAN hire date: 01-mar-1998 salary: 7200 employee id: 104 name: Emily job title: AC ACCOUNT hire date: 01-jan-1998 salary: 15000 employee id: 105 name: Robert job title: ST CLERK hire date: 25-jul-2018 salary: 6200

Write a PL/SQL program to display the employee IDs, names, and department names of all employees.

```
begin for i in (select e.employee_id, e.first_name, e.job_id from employees e) loop dbms_output.put_line('employee id: ' || i.employee_id); dbms_output.put_line('name: ' || i.first_name); dbms_output.put_line('department name: ' || i.job_id); dbms_output.put_line('------'); end loop; end;
```

```
employee id: 101
name: John
department name: IT PROG
-----
employee id: 176
name: Jane
department name: HR REP
employee id: 103
name: Mike
department name: SA MAN
-----
employee id: 104
name: Emily
department name: AC_ACCOUNT
------
employee id: 105
name: Robert
department name: ST CLERK
```

PL/SQL program to display the PROGRAM 13

Write a

job IDs, titles, and minimum salaries of all jobs.

```
Begin
for i in (select job_id,job_title,min_salary from jobs)
loop
dbms_output.put_line('job id: ' || i.job_id);
dbms_output.put_line('job title: ' || i.job_title);
dbms_output.put_line('minimum salary: ' || i.min_salary);
dbms_output.put_line('-----'); end
loop; end;
```

```
job id: 101
job title: Software Engineer
minimum salary: 60000
job id: 102
job title: Data Analyst
minimum salary: 50000
job id: 103
job title: Project Manager
minimum salary: 70000
______
job id: 104
job title: HR Manager
minimum salary: 55000
_____
job id: 105
job title: Marketing Specialist
minimum salary: 45000
```

program to display the

PROGRAM 14

Write a PL/SQL

employee IDs, names, and job history start dates of all

employees.

```
Begin
```

for i in (select employee_id,employee_name,start_date from job_history) loop dbms_output.put_line('employee id: ' || i.employee_id); dbms_output.put_line('name: ' || i.employee_name); dbms_output.put_line('start date: ' || to_char(i.start_date, 'dd-mon-yyyy')); dbms_output.put_line('-----'); end loop; end;

```
employee id: 201
name: James
start date: 01-jan-2010
-----
employee id: 202
name: King
start date: 01-jan-2012
-----
employee id: 203
name: Smith
start date: 01-jan-2013
-----
employee id: 204
name: Steve
start date: 01-jan-2014
-----
employee id: 205
name: Robert
start date: 01-jan-2015
_____
```

Write a PL/SQL program to display the employee IDs, names, and job history end dates of all employees.

```
Begin
for i in (select employee_id,employee_name,end_date from job_history)
loop dbms_output.put_line('employee id: ' || i.employee_id);
dbms_output.put_line('name: ' || i.employee_name);
dbms_output.put_line('end date: ' || to_char(i.end_date, 'dd-mon-yyyy'));
dbms_output.put_line('------'); end loop; end;
```

```
employee id: 201
name: James
end date: 10-oct-2015
-----
employee id: 202
name: King
end date: 15-sep-2016
-----
employee id: 203
name: Smith
end date: 20-mar-2017
-----
employee id: 204
name: Steve
end date: 05-apr-2018
-----
employee id: 205
name: Robert
end date: 12-may-2019
```