h e q and this leaves us with two possibilities to consider Let d = d,h , d' = d,h such that (d,d;) = 1. Obviously (3) Let d,d' be as in the hypothesis and let (d,d') = h each integral power of x. unit i.e. x a and obviouely the same procedure holds for (x, d,) + 1 in Rp a contradiction implying that x, is a valuation domain x_1, d_1 are non units in R_{p_2} and so x, d, ∈ P, . Further since R is an HCF domain and R, is a P_1, P_2, \dots, P_r Suppose that $x_i \in P_s$, then since $q \subset P_s$; is a unit, for if not x, is a member of at least one of $d_1h = d \in q$; $d_1 \in q$. Now $(x_1, d_1) = 1$ and we claim that x_1 Since x & q, h & q (" h x), further since q is a prime and (x,d) = h i.e. $x = x_1h$, $d = d_1h$ where $(x_1,d_1) = 1$.

(d) one of d, d; is in q. p \$ 12, tb (B)

In case (a) holds digi h by (2) above and so d dis

0 = n dn a is a prime ideal properly contained in for all m, $d^m|d$, in R. But then R being a valuation domain dm/d'. Suppose on the contrary that dm d' for each m, then that d' | d" we first prove that there exists an m such that d d'. To show that there exists a positive integer r such and d'|d2. And in case (b) holds; 'if d' is in q then

p ≱ s .p ∋ d li rol) p ≱ d bns 1 = (d,s) nədt 'ibd = 'b Let $(d^{IL}, d^{I}) = d^{II}$ (n greater than m) such that $d^{II} = ad^{II}$; there exists a positive integer m such that dm/d'. Now if we and this result contradicts our assumption we infer that d', but since we assumed that q is the minimal prime of d' d'R \subseteq Q \subsetneq QR i.e. Q' = Q \cap R contains the minimal prime of dR (cf Theorem 17.1 (3) page 187 [11]) that is