TP 17: LA THERMODYNAMIQUE

I/ Comment varie l'énergie d'un corps en fonction de l'énergie reçue ?

A/ Comment varie la température d'une masse d'eau en fonction de l'énergie reçue ?

Matériel : On dispose :

- d'un calorimètre muni d'un thermoplongeur
- d'un thermomètre à affichage digital
- d'un joulemètre
- d'un générateur réglé à 12 V
- d'eau hooml

Un calorimètre est une enceinte fermée isolée du milieu extérieur.

Manipulation:

- Réaliser le montage en insérant un joulemètre dans le circuit reliant le générateur et le thermoplongeur (résistance 4Ω).

- Relever la température initiale ϑ_i en °C : $\theta_i = 29.8$ °C

- Mettre le générateur sous tension et déclencher le joulemètre.

- Toutes les 30 s, relever la température ϑ de l'eau et l'énergie Q (en J) reçue. Noter vos résultats dans le tableau ci-dessous.

Temps (s)	30	60	90	120	150	180	210	240	270
Energie reçue Q(J)	1248	2,4045	3,48	4,59	5,71	6,84	7,94	9,06	10,20
Température (°C)	29,3	30,0	30,1	30,3	30,5	30,7	30,8	31,1	31,9
Variation de température $\Delta\theta = \theta - \theta_i$ (°C)	0	0,1	0,2	0,4	0,6	0,8	0,9	1,2	20

Exploitation:

- Compléter la dernière ligne du tableau.
- Saisir les valeurs de Q et de $\Delta\theta$ sous REGRESSI. Tracer le graphe représentant Q en fonction de $\Delta\theta.$
 - Effectuer une modélisation. Imprimer le graphe et la modélisation.
- D'après les résultats précédents, peut-on dire que l'énergie reçue Q est proportionnelle à la variation de température $\Delta\theta$? Justifier votre réponse.

B/ Pour une même variation de température, l'énergie reçue dépend-elle de la masse d'eau ?

Matériel : On dispose du même matériel que pour le I/+ 1 balance et un bécher de 250 mL.

Manipulation : Le montage est le même !

- Vider le calorimètre de son eau.
- Peser le calorimètre vide (sans thermoplongeur ni thermomètre). Effectuer la tare.
- Verser 400 g (ou 500 g ou 600 g) d'eau dans le calorimètre.
- Refaire le montage de l'activité 1.
- Relever la température initiale : $\vartheta_i = 31$
- Mettre le générateur sous tension et déclencher le joulemètre.
- Relever l'énergie Q lorsque la température s'est élevée de 5°C.

- Noter le résultat dans le tableau ci-dessous et compléter les valeurs obtenues par les autres groupes pour des masses différentes.

Masse d'eau (g)	400	500	600
Energie Q reçue (J)	8,62.103	11,67.103	13,77.103
Rapport Q/m	2 1550	23340	22 250

Exp	loitation	

- Calculer dans chaque cas le rapport Q/m et compléter la dernière ligne du tableau.
- Peut-on dire que l'énergie reçue est proportionnelle à la masse d'eau m?

Conclusion : Quel type de relation existe-t-il entre l'énergie reçue par un corps, sa masse et la variation de température? On eno dédeuit. Q = m. DO

II/ Détermination de la capacité thermique massique d'un calorimètre par la méthode des mélanges

Matériel: On dispose:

- d'un calorimètre
- d'un thermomètre à affichage digital
- d'un bécher de 250 mL
- d'une balance
- d'un bec électrique
- d'eau distillée
- d'un gant antichaleur

Manipulation:

- Peser le calorimètre muni de ses accessoires (thermomètre + agitateur) $m_C = \dots \text{ for } 1 \text{ fo$

- Enlever le couvercle et les accessoires du calorimètre. Effectuer la tare avec le calorimètre vide. Y verser environ 250 mL d'eau. Relever la valeur de la masse d'eau.

$$m_1 = ... 259, \varsigma$$
.....

- Mesurer la température de l'eau introduite.

$$\theta_1 = 29, 36$$

- Peser le bécher vide et effectuer la tare. Y verser environ 250 mL d'eau. Déterminer par pesée la masse d'eau ainsi préparée.

- Chauffer l'eau du bécher jusqu'à une température ϑ_2 d'environ 50°C. Relever la température avant la manipulation suivante :

$$\theta_2 = \frac{96}{100}$$

- Verser rapidement l'eau chaude dans le calorimètre. Fermer le calorimètre et agiter. La température évolue rapidement vers une valeur d'équilibre. Relever cette température $\vartheta_{\rm f}$.

$$\theta_{\rm f} = 36.90$$

Exploitation

1- Calculer l'énergie échangée par l'eau froide : $Q_1 = m_1 \times c_{eau} \times (\theta_f - \theta_1)$

Données : $c_{eau} = 4180 \text{ J.kg}^{-1}.^{\circ}C^{-1}$

Quel est le signe de Q₁? L'eau froide gagne-t-elle ou perd-elle de l'énergie ?

2- Calculer l'énergie échangée par l'eau chaude : $Q_2 = m_2 \times c_{eau} \times (\theta_f - \theta_2)$

Quel est le signe de Q2? L'eau chaude gagne-t-elle ou perd-elle de l'énergie ?

3- Comparer Q_1 et $|Q_2|$.

La différence d'énergie est fournie au calorimètre.

Dans une enceinte isolée, la somme des énergies échangées est nulle.

4- En notant Q_c , l'énergie reçue par le calorimètre, écrire la relation entre Q_1 , Q_2 et Q_C .

5- En déduire la valeur de Qc.

6- Sachant que $Q_c = m_C \times c_{calo} \times (\theta_f - \theta_1)$ avec c_{calo} : capacité thermique massique du calorimètre, déterminer l'expression de c_{calo} puis sa valeur.

III/ Les échanges thermiques

Peser le vase du calorimètre en aluminium et noter la masse : m = 2.1 Relever la température extérieure initiale $T_{\text{exti}} : T_{\text{exti}} = ... 21$; $J_{\text{exti}} : T_{\text{exti}} : T_{\text{exti}} = ... 21$; $J_{\text{exti}} : T_{\text{exti}} : T_{\text{ex$

Chauffer environ 200 mL d'eau jusqu'à 50-60°C.

Placer cette eau dans un récipient métallique (le vase du calorimètre en aluminium), avec sonde de température.

Faire l'acquisition de la température en fonction du temps pendant 15 à 20 min. Relever la température extérieure finale $T_{\rm ext}$

Tracer et modéliser les courbes T(t) et ln (T-T_{ext}).

Calculer k à partir des données.

Commenter les résultat obtenus.

Données

1) L'évolution de la température T d'un système solide ou liquide non calorifugé, dont la puissance thermique perdue P_{th} est modélisée par la **loi de Newton** : $P_{th} = \alpha(T_{ext} - T)$ où T_{ext} est la température extérieure, α une constante, est donné par la fonction :

$$T(t) = (T_0 - T_{ext}) \cdot \exp(\frac{-\alpha}{k}t) + T_{ext}$$

2) On notera
$$T_{ext} = \frac{T_{exti} - T_{extf}}{2}$$

3)
$$k = m_{eau} c_{eau} + m_{récipient} c_{récipient}$$

4)
$$c_{eau} = 4185 \text{ J.kg}^{-1}.\text{K}^{-1}$$
 et $c_{aluminium} = 897 \text{ J.kg}^{-1}.\text{K}^{-1}$