Machine Learning

(機器學習)

Lecture 07: Combatting Overfitting

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 07: Combatting Overfitting

- What is Overfitting?
- The Role of Noise and Data Size
- Deterministic Noise
- Dealing with Overfitting
- Regularized Hypothesis Set
- Weight Decay Regularization
- Regularization and VC Theory
- General Regularizers

Bad Generalization

- regression for $x \in \mathbb{R}$ with N = 5examples
- target f(x) = 2nd order polynomial
- label $y_n = f(x_n) + \text{very small noise}$
- linear regression in \mathcal{Z} -space + Φ = 4th order polynomial
- unique solution passing all examples

$$\Rightarrow E_{\text{in}}(g) = 0$$

 $\Rightarrow E_{\text{in}}(g) = 0$ • $E_{\text{out}}(g)$ huge E_{in} , $E_{\text{out}} \neq \%$

bad generalization: low E_{in} , high E_{out}

Bad Generalization and Overfitting

take $d_{VC} = 1126$ for learning: bad generalization

很大的数字

• switch from $d_{VC} = d_{VC}^*$ to $d_{VC} = 1126$: overfitting

- $E_{\text{in}}\downarrow$, $E_{\text{out}}\uparrow \leftarrow \text{overfitting}$ • switch from $d_{\text{VC}}=d_{\text{VC}}^*$ to $d_{\text{VC}}=1$:

bad generalization: low E_{in} , high E_{out} ; overfitting: lower $E_{\rm in}$, higher $E_{\rm out}$

Cause of Overfitting: A Driving Analogy

learning	driving
overfit mode comuse excessive d_{VC}	pentry 太大 commit a car accident
use excessive d_{VC}	'drive too fast'
noise	料量太小 bumpy road
limited data size N	limited observations about road condition

next: how does <u>noise</u> & <u>data size</u> affect overfitting?

Questions?

Case Study (1/2)

Case Study (2/2)

overfitting from g_2 to g_{10} ? both yes!

Irony of Two Learners

- x
- learner Overfit: pick $g_{10} \in \mathcal{H}_{10}$
- learner Restrict: pick $g_2 \in \mathcal{H}_2$
- when both know that target = 10th
 - —R 'gives up' ability to fit

移学生做的比较好.

but R wins in E_{out} a lot! philosophy: concession for advantage? :-)

Learning Curves Revisited

- \mathcal{H}_{10} : lower $\overline{E_{\text{out}}}$ when $N \to \infty$, but much larger generalization error for small N
- gray area : O overfits! (Ein ↓, Eout ↑)

R always wins in $\overline{E_{\text{out}}}$ if N small!

The 'No Noise' Case 沒有noise 社 好是做不好?

 \boldsymbol{x}

- learner Overfit: pick $g_{10} \in \mathcal{H}_{10}$
- learner Restrict: pick $g_2 \in \mathcal{H}_2$
- when both know that there is no noise —R still wins

is there really **no noise?** Taget \$\frac{1}{2} \tag{target complexity'} acts like noise

Questions?

A Detailed Experiment

$$y = f(x) + \epsilon$$

$$\sim Gaussian\left(\sum_{q=0}^{Q_f} \alpha_q x^q, \sigma^2\right)$$
noise level

- Gaussian iid noise ϵ with leve σ^2
- some 'uniform' distribution on f(x)
 with complexity level Q 禁水方的 target function
- data size N

25Qg 对overfit 印影响

goal: 'overfit level' for different (N, σ^2) and (N, Q_f) ?

The Overfit Measure

- $g_2 \in \mathcal{H}_2$
- $g_{10} \in \mathcal{H}_{10}$
- $E_{in}(g_{10}) \le E_{in}(g_2)$ for sure

overfit measure $E_{out}(g_{10}) - E_{out}(g_2)$

Make Deterministic Noise Make The Results

Deterministic Noise

Impact of Noise and Data Size

 data size N↓ overfit 1 four reasons of serious overfitting: deterministic noise ↑ overfit 1 overfit 1 excessive power ↑ overfit 1

15/41

overfitting 'easily' happens

Deterministic Noise * **Larget function 太複雜跟 noise 沒噎 2樣.

- if $f \notin \mathcal{H}$: something of f cannot be captured by \mathcal{H}
 - deterministic noise: difference between best $h^* \in \mathcal{H}$ and f
- acts like 'stochastic noise'—not new to CS: pseudo-random generator
- difference to stochastic noise:
 - depends on H
 - fixed for a given x

philosophy: when teaching a kid, perhaps better not to use examples from a complicated target function? :-)

Questions?

Driving Analogy Revisited

learning	driving
overfit	commit a car accident
use excessive d_{VC}	'drive too fast'
noise	bumpy road
limited data size N	limited observations about road condition
≱ start from simple model	
data cleaning/pruning 🕏	datuse more accurate road information
data hinting	exploit more road information
✓ regularization	put the brakes
validation	monitor the dashboard

all very **practical** techniques to combat overfitting

- if 'detect' the outlier 5 at the top by
 - too close to other o, or too far from other x
 - wrong by current classifier
 - ... eg. daytime -> nighttine
- possible action 1: correct the label (data cleaning)
- possible action 2: remove the example (data pruning)

possibly helps, but effect varies

- slightly shifted/rotated digits carry the same meaning
- possible action: add <u>virtual examples</u> by <u>shifting/rotating</u> the given digits (<u>data hinting</u>, <u>data augmentation</u>)

下是同了 distribution!?

possibly helps, but watch out

watch out

wirtual example not $\stackrel{iid}{\sim} P(x, y)!$

• idea: 'step back' from H10 to H2 高次走戶低次。 a regularization

name history: function approximation for ill-posed problems

how to step back?

Questions?

Stepping Back as Constraint

Q-th order polynomial transform for $x \in \mathbb{R}$:

$$\Phi_Q(x) = (1, x, x^2, \dots, x^Q)$$

+ linear regression, denote $\tilde{\mathbf{w}}$ by \mathbf{w}

hypothesis **w** in
$$\mathcal{H}_{10}$$
: $w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \ldots + w_{10} x^{10}$ hypothesis **w** in \mathcal{H}_2 : $w_0 + w_1 x + w_2 x^2$ that is, $\mathcal{H}_2 = \mathcal{H}_{10}$ AND constraint that $w_3 = w_4 = \ldots = w_{10} = 0$ step back = **constraint**

Regression with Constraint

$$\mathcal{H}_{10} \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1}
ight\}$$

regression with \mathcal{H}_{10} :

 $\min_{\mathbf{w}\in\mathbb{R}^{10+1}} E_{\mathsf{in}}(\mathbf{w})$

```
\mathcal{H}_2 \equiv \left\{ \begin{array}{l} \mathbf{w} \in \mathbb{R}^{10+1} \\ \text{while } w_3 = w_4 = \ldots = w_{10} = 0 \end{array} \right\} regression with \mathcal{H}_2: \min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w}) \\ \text{s.t.} \qquad w_3 = w_4 = \ldots = w_{10} = 0 \end{array}
```

```
step back = constrained optimization of E_{in} why don't you just use \mathbf{w} \in \mathbb{R}^{2+1}? :-)
```

$$\mathcal{H}_2 \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right\}$$
while $w_3 = \ldots = w_{10} = 0$

regression with \mathcal{H}_2 :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} \quad E_{in}(\mathbf{w})$$

s.t.
$$w_3 = \ldots = w_{10} = 0$$

$$\mathcal{H}_2' \equiv \left\{ \begin{array}{l} \mathbf{w} \in \mathbb{R}^{10+1} \\ \text{while} \geq 8 \text{ of } w_q = 0 \\ \text{regression with } \mathcal{H}_2' : \\ \\ \underset{\mathbf{w} \in \mathbb{R}^{10+1}}{\min} E_{\text{in}}(\mathbf{w}) \end{array} \right.$$

 $\sum \llbracket w_q \neq 0 \rrbracket \leq 3$

• more flexible than \mathcal{H}_2 : $\mathcal{H}_2 \subset \mathcal{H}_2'$

• less risky than \mathcal{H}_{10} :

$$\mathcal{H}_2' \subset \mathcal{H}_{10}$$

bad news for sparse hypothesis set \mathcal{H}_2' :

NP-hard to solve :-(

$$\mathcal{H}_2'$$
 $\equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right\}$ while ≥ 8 of $w_q = 0$

regression with \mathcal{H}'_2 :

Combatting Overfitting

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} \llbracket w_q \neq 0 \rrbracket \leq 3$$

$$\mathcal{H}(C) \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right.$$
 while $\|\mathbf{w}\|^2 \leq C$ regression with $\mathcal{H}(C)$:
$$\left(\begin{array}{c} \left(\mathbf{w} \mathbf{s} \right) & \left(\mathbf{s} \right) \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{s} \end{array} \right) \leq C$$
 with \mathbf{w}

- $\mathcal{H}(C)$: overlaps but not exactly the same as \mathcal{H}'_2
- soft and smooth structure over $C \ge 0$: $\mathcal{H}(0) \subset \mathcal{H}(1.126) \subset \ldots \subset \mathcal{H}(1126) \subset \ldots \subset \mathcal{H}(\infty) = \mathcal{H}_{10}$

regularized hypothesis $\mathbf{w}_{\mathsf{REG}}$; optimal solution from regularized hypothesis set $\mathcal{H}(C)$

Questions?

Matrix Form of Regularized Regression Problem

$$\min_{\mathbf{w} \in \mathbb{R}^{Q+1}} \quad E_{\mathsf{in}}(\mathbf{w}) = \frac{1}{N} \underbrace{\sum_{n=1}^{N} (\mathbf{w}^T \mathbf{z}_n - y_n)^2}_{(\underline{Z}\mathbf{w} - \mathbf{y})^T (\underline{Z}\mathbf{w} - \mathbf{y})} \leftarrow \mathsf{matrix} \quad \text{form}$$

s.t.
$$\sum_{q=0}^{Q} w_q^2 \leq C \iff \text{polarization for payments in } regression$$

- $\sum_{n} \dots = (Z\mathbf{w} \mathbf{y})^T (Z\mathbf{w} \mathbf{y}), \underline{\mathbf{remember? :-}}$ 15****

 15****

 15****

 15****

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15***

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**

 15**
- $\mathbf{w}^T \mathbf{w} \leq C$: feasible \mathbf{w} within a radius- \sqrt{C} hypersphere

how to solve constrained optimization problem?

The Lagrange Multiplier

$$\min_{\mathbf{w} \in \mathbb{R}^{Q+1}} E_{\text{in}}(\mathbf{w}) = \frac{1}{N} (Z\mathbf{w} - \mathbf{y})^T (Z\mathbf{w} - \mathbf{y}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq C$$

$$\text{decreasing direction: } -\nabla E_{\text{in}}(\mathbf{w}),$$

$$\text{remember? :-)}$$

$$\text{normal vector of } \mathbf{w}^T \mathbf{w} = C \text{: } \mathbf{w} \text{. normal vector } \mathbf{w}^T \mathbf{w} = C \text{: } \mathbf{w} \text{. normal vector } \mathbf{w}^T \mathbf{w} = C \text{: } \mathbf{w} \text{. normal vector } \mathbf{w}^T \mathbf{w} = C \text{: } \mathbf{w} \text{. normal vector } \mathbf{w}^T \mathbf{w} = C \text{: } \mathbf{w} \text{. normal vector } \mathbf{w}^T \mathbf{w} = C \text{: } \mathbf{w} \text{. normal vector } \mathbf{w}^T \mathbf{w} = C \text{: } \mathbf{w} \text{. } \mathbf{w} = C \text{: } \mathbf{w} = C \text{: } \mathbf{w} \text{. } \mathbf{w} = C \text{: } \mathbf{w} = C \text{: } \mathbf{w} \text{. } \mathbf{w} = C \text{: } \mathbf{w} = C$$

- if ¬∇E_{in}(w) and w not parallel: can decrease E_{in}(w) without violating the constraint *投ったn(w)中重於 W 的
- at optimal solution w_{REG},
 - $-\nabla E_{\text{in}}(\mathbf{W}_{\text{REG}}) \propto \mathbf{W}_{\text{REG}} + \mathbf{W}_{\text{REG}}$

want: find Lagrange multiplier $\lambda > 0$ and \mathbf{w}_{REG} such that $\nabla E_{in}(\mathbf{w}_{REG}) + \frac{2\lambda}{N} \mathbf{w}_{REG} = \mathbf{0}$

Augmented Error

• if oracle tells you $\lambda > 0$, then

solving
$$\frac{\nabla E_{\text{in}}(\mathbf{w}_{\text{REG}}) + \frac{20}{N} \frac{?}{\mathbf{w}_{\text{REG}}} = \mathbf{0}$$

$$\frac{2}{N} \left(\mathbf{Z}^T \mathbf{Z} \mathbf{w}_{\text{REG}} - \mathbf{Z}^T \mathbf{y} \right) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$

• optimal solution:

(北簡
$$\chi>0$$
 刷 Inverse 存生 $\mathbf{W}_{REG} \leftarrow (\mathbf{Z}^T\mathbf{Z} + \lambda \mathbf{I})^{-1}\mathbf{Z}^T\mathbf{y}$ $(1+\lambda)^{-1}\mathcal{Y} = \mathcal{W}$

-called ridge regression in Statistics

linear regression 的距階級

minimizing unconstrained E_{aug} effectively minimizes some C-constrained E_{in}

Augmented Error

• if oracle tells you $\lambda > 0$, then

solving
$$\nabla E_{\text{in}}(\mathbf{w}_{\text{REG}}) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$
equivalent to minimizing
$$E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w}$$
equivalent to minimizing
$$E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w}$$
larization with augmented error instead of constrained E_{in}

regularization with <u>augmented error</u> instead of constrained <u>E_{in}</u>

重接解
$$E_{aug}(w)$$

WREG \leftarrow argmin $E_{aug}(w)$ for given $\lambda > 0$ or $\lambda = 0$ \Rightarrow 美名constant

W *但要先態定入

minimizing unconstrained E_{auq} effectively minimizes some C-constrained Ein

 $\lambda = 1$

overfitting

philosophy: a little regularization goes a long way!

call ' $+\frac{\lambda}{N}\underline{\mathbf{w}^T\mathbf{w}}$ ' weight-decay regularization: larger $\lambda \leftarrow \mathcal{I}$ \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} ⇔ prefer shorter w ← effectively smaller C —go with 'any' transform + linear model

Questions?

Regularization and VC Theory

Regularization by Constrained-Minimizing Ein

 $\min_{\mathbf{w}} E_{in}(\mathbf{w}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq C$

VC Guarantee of Constrained-Minimizing E_{in}

$$E_{\text{out}}(\mathbf{w}) \leq E_{\text{in}}(\mathbf{w}) + \underline{\Omega(\mathcal{H}(C))}$$

① C equivalent to some (x) 经定C等床线入

Regularization by Minimizing E_{auq}

$$\min_{\mathbf{w}} E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

minimizing E_{aug} : indirectly getting VC 是不会去类它的

guarantee without confining to $\mathcal{H}(C)$

Another View of Augmented Error

complexity penalty

Augmented Error

$$E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w}$$

VC Bound

$$E_{\text{out}}(\mathbf{w}) \leq E_{\text{in}}(\mathbf{w}) + \Omega(\mathcal{H})$$

- regularizer w^Tw
 : complexity of a single hypothesis
- generalization price $\Omega(\mathcal{H})$: complexity of a hypothesis set
- if $\frac{1}{N}\Omega(\mathbf{w})$ 'represents' $\Omega(\mathcal{H})$ well, 上海為 Eng是等式,但是成分等式 E_{aug} is a better proxy of E_{out} than E_{in}

代理人

minimizing E_{aug} :

(heuristically) operating with the better proxy; (technically) enjoying flexibility of whole \mathcal{H}

Effective VC Dimension

$$\min_{\mathbf{w} \in \mathbb{R}^{\tilde{q}+1}} E_{\text{aug}}(\mathbf{w}) = \underline{E}_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \Omega(\mathbf{w})$$

- model complexity? $\leftarrow \cancel{\cancel{200}}$ $d_{VC}(\mathcal{H}) = \tilde{d} + 1$, because $\{\mathbf{w}\}$ 'all considered' during minimization
- $\{\mathbf{w}\}$ 'actually needed' $(\mathcal{H}(C))$ with some C equivalent to λ
- $d_{VC}(\mathcal{H}(C))$:

 effective VC dimension $d_{EFF}(\mathcal{H}, \mathcal{A})$ of Contains

事数 VC dimansian. min Eaug

explanation of regularization: $d_{\text{VC}}(\mathcal{H})$ large, while $d_{\text{EFF}}(\mathcal{H}, \frac{\mathcal{A}}{\mathcal{A}})$ small if $\frac{\mathcal{A}}{\mathcal{A}}$ regularized

Questions?

General Regularizers $\Omega(\mathbf{w})$

want: constraint in the direction of target function

- target-dependent: some properties of target, if known
 - symmetry regularizer: ∑ [q is odd] w_q ← 好稱: 試奇数次方項変小
- plausible: direction towards <u>smoother</u> or <u>simpler</u>
 stochastic/deterministic noise both <u>non-smooth</u>
 - sparsity (L1) regularizer: $\sum |w_q|$ (next slide)
- friendly: easy to optimize
 - weight-decay (L2) regularizer: $\sum w_q^2 \leftarrow \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$
- bad? :-): no worries, guard by λ

augmented error = $\underline{\text{error }}$ + $\underline{\text{regularizer }}$ Ω regularizer: $\underline{\text{target-dependent}}$, $\underline{\text{plausible}}$, or friendly

Clomain knowledge

L2 and L1 Regularizer

$$\Omega(\mathbf{w}) = \sum\nolimits_{q=0}^{Q} w_q^2 = \|\mathbf{w}\|_2^2$$

- convex, differentiable everywhere
- easy to optimize

L1 Regularizer

$$\Omega(\mathbf{w}) = \sum\nolimits_{q=0}^{Q} |w_q| = \|\mathbf{w}\|_1$$

- convex not differentiable everywhere 大部的 weight 都是于
- sparsity in solution

L1 useful if needing sparse solution 当計

The Optimal λ

- noise unknown—important to make proper choices

how to choose?
stay tuned for the next lecture! :-)

Questions?

Summary

1 How Can Machines Learn?

Lecture 06: Beyond Basic Linear Models

2 How Can Machines Learn Better?

Lecture 07: Combatting Overfitting

- What is Overfitting?
- lower E_{in} but higher E_{out}
- The Role of Noise and Data Size overfitting 'easily' happens!
- Deterministic Noise
 - what ${\mathcal H}$ cannot capture acts like noise
- Dealing with Overfitting
- data cleaning/pruning/hinting & regularization
- Regularized Hypothesis Set
 - original \mathcal{H} + constraint
- Weight Decay Regularization
 - add $\frac{\lambda}{N}$ w^Tw in E_{aug}
- Regularization and VC Theory
 - regularization decreases d_{EFF}
- General Regularizers
 target-dependent, [plausible], or [friendly]
- next: choosing from the so-many models/parameters