1 Aufbau und Durchführung

Für den Versuch stand ein RC-Glied, ein Oszillator, ein Millivoltmeter und ein digitales Zweikanaloszilloskop zu Verfügung.

1.1 Messaufgaben

- 1. Bestimmung der Zeitkonstante λ des gegebenen RC-Gliedes durch Beobachtung des Auf- oder Entladevorganges des Kondensators
- 2. Messung der Amplitude der Kondensatorspannung U_C unter einer sinusförmigen Eingangsspannung U_{sig} in Abhängigkeit der Frequenz ω
- 3. Messung der Phasenverschiebung $\delta\phi$ zwischen Generatorspannung U_{sig} und Kondensatorspannung U_C in Abhängigkeit der Frequenz ω
- 4. Veranschaulichung des RC-Gliedes als Integrierglied, wenn $\omega \gg \frac{1}{RC}$

1.2 Durchführung

Für die Bestimmung der Zeitkonstante λ (Aufg. 1) wurde das RC-Glied an eine Rechteckspannung U_{sig} angeschlossen. Mit Hilfe des Oszilloskopes wurden dann Messwerte der Kondensatorspannung U_C zu verschiedenen Zeitpunkten t aufgenommen. t wurde dabei so gewählt, dass alle Werte auf der Kurve eines Auf- bzw. Entladevorganges lagen, um daraus später die Zeitkonstante λ zu ermitteln. Abbildung ?? und ?? zeigen den Versuchsaufbau und einen Screenshot des Oszilloskopes.

Abbildung 1: Ohmscher Widerstand Kondensator

Um die sperrende Eigenschaft des RC-Gliedes für große Frequenzen ω zu prüfen, haben wir nun die Kondensatorspannung U_C mit einem Millivoltmeter gemessen. Der Funktionsgenerator wurde auf eine Sinusspannung eingestellt und die Frequenz ω von 25 Hz bis 5 kHz variiert. Abbildung ?? zeigt den neuen Versuchsaufbau.

Abbildung 2: Versuchsaufbau für Amplitudenmessung an zwei Kondensatorplatten