

Properties of Triangles Ex 15.2 Q20

Answer:

Consider \triangle ABD.

$$\angle BAD = \frac{100^{\circ}}{2}$$
 (: AD bisects $\angle A$)

$$\Rightarrow \angle BAD = 50^{\circ}$$

$$\angle ADB = 90^{\circ} \left(:: AD \perp BC \right)$$

We know that the sum of all three angles of a triangle is 180° . Thus,

$$\angle ABD + \angle BAD + \angle ADB = 180^{\circ}$$
 (Sum of angles of $\triangle ABD$)

Or

$$\angle ABD + 50^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\angle ABD = 180^{\circ} - 140^{\circ}$$

$$\angle ABD = 40^{\circ}$$

Properties of Triangles Ex 15.2 Q21

Answer:

We know that the sum of all three angles of a triangle is equal to 180°. Therefore, for the given \triangle ABC, we can say that:

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (Sum of angles of \triangle ABC)

$$\Rightarrow 50^{\circ} + 70^{\circ} + \angle C = 180^{\circ}$$

$$\angle C = 180^{\circ} - 120^{\circ}$$

$$\angle C = 60^{\circ}$$

$$\angle ACD = \angle BCD = \frac{\angle C}{2}$$
 (CD bisects $\angle C$ and meets AB in D.)

$$\Rightarrow \angle ACD = \angle BCD = \frac{60^{\circ}}{2} = 30^{\circ}$$

Using the same logic for the given \triangle ACD, we can say that:

$$\angle DAC + \angle ACD + \angle ADC = 180^{\circ}$$

$$\Rightarrow 50^{\circ} + 30^{\circ} + \angle ADC = 180^{\circ}$$

$$\angle ADC = 180^{\circ} - 80^{\circ}$$

$$\angle ADC = 100^{\circ}$$

If we use the same logic for the given \triangle BCD, we can say that:

$$\angle DBC + \angle BCD + \angle BDC = 180^{\circ}$$

$$\Rightarrow 70^{\circ} + 30^{\circ} + \angle BDC = 180^{\circ}$$

$$\angle BDC = 180^{\circ} - 100^{\circ}$$

$$\angle BDC = 80^{\circ}$$

Thus,

For
$$\triangle$$
 ADC: \angle A = 50°, \angle D = 100°, \angle C = 30°

For
$$\triangle BDC$$
: $\angle B = 70^{\circ}$, $\angle D = 80^{\circ}$, $\angle C = 30^{\circ}$

******* END ********