EECS 203: Discrete Mathematics Winter 2024

Discussion 6 Notes

1 Definitions

- Modular Equivalence Definition:
- Modular Addition, Subtraction, Multiplication Properties:
- Remainder Mod
- Function $f: A \to B$:
- Domain:
- Codomain:
- Range:
- Onto:
- One-to-One:
- Bijection:
- Function Inverse f^{-1} :
- Function Composition $f \circ g$:
- Adding and Multiplying Functions:

1. The Mod Operator

Evaluate these quantities:

- a) $-17 \mod 2$
- b) 144 mod 7
- c) $-101 \mod 13$
- d) 199 mod 19

2. Working in Mod

Find the integer a such that

- (a) $a \equiv -15 \pmod{27}$ and $-26 \le a \le 0$
- (b) $a \equiv 24 \pmod{31}$ and $-15 \le a \le 15$
- (c) $a \equiv 99 \pmod{41}$ and $100 \le a \le 140$

3. Arithmetic within a Mod

Suppose that a and b are integers, $a \equiv 11 \pmod{19}$, and $b \equiv 3 \pmod{19}$. Find the integer c with $0 \le c \le 18$ such that

- a) $c \equiv 13a \pmod{19}$.
- b) $c \equiv a b \pmod{19}$.
- c) $c \equiv 2a^2 + 3b^2 \pmod{19}$.
- d) $c \equiv a^3 + 4b^3 \pmod{19}$.

4. Arithmetic in Different Mods *

Suppose that $x \equiv 2 \pmod{8}$ and $y \equiv 5 \pmod{12}$. For each of the following, compute the value or explain why it can't be computed.

Hint: Recall that if $a \equiv b \pmod{m}$ then there exists an integer k such that a = b + mk.

- (a) $3y \mod 6$
- (b) $(x-y) \mod 4$
- (c) $xy \mod 24$

5. Fast Modular Exponentiation \star

Find $a \equiv 5^{20} \pmod{27}$ such that $0 \le a \le 26$. In other words, find $5^{20} \pmod{27}$.

6. Extra Practice with Fast Modular Exponentiation

Find each of the following.

- a) $9^1 \mod 7$
- b) $9^2 \mod 7$
- c) $9^9 \mod 7$
- d) $9^{90} \mod 7$

7. One-to-One and Onto

Give an explicit formula for a function from the set of integers to the set of positive integers $f: \mathbb{Z} \to \mathbb{Z}^+$ that is:

- a) one-to-one, but not onto
- b) onto, but not one-to-one
- c) one-to-one and onto
- d) neither one-to-one nor onto

8. Bijections

Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} . Briefly discuss why or why not. If it is bijective, state the inverse function.

- (a) f(x) = 2x + 1
- (b) $f(x) = x^2 + 1$
- (c) $f(x) = x^3$
- (d) $f(x) = (x^2 + 1)/(x^2 + 2)$
- (e) $f(x) = x^2 + x^3$

9. One-to-One and Onto Proofs

Prove or disprove the following.

- a) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = \frac{1}{x^2+1}$ is onto
- b) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = |3x+1|$ is one-to-one
- c) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = ax + b$ where $a \neq 0$, is a bijection.

10. Function Composition

Consider the following two functions:

- $f: \mathbb{Z} \to \mathbb{Q}, \ f(x) = \frac{x+1}{3}$
- $g: \mathbb{Z}^+ \to \mathbb{Z}^+, \ g(x) = \frac{x(x+1)}{2}$

For each function, find it if it exists. If it does not, explain why.

- a) $f \circ g$
- b) $g \circ f$
- c) f^{-1}
- d) g^{-1}