计算机网络 自主评测 (5)

学号	L1703 00901
姓名	與玩

要求: 在下面各个问题的空白处填入最合适的答案(每空1分)(得分: _____

- 2. 某网络如下图所示,路由器 R1 通过接口 E1、E2 分别连接局域网 1、局域网 2,通过接口 L0 连接路由器 R2,并通过路由器 R2 连接域名服务器与互联网。R1 的 L0 接口的 IP 地址是 202.118.2.1; R2 的 L0 接口的 IP 地址是 202.118.2.2, L1 接口的 IP 地址是 130.11.120.1, E0 接口的 IP 地址是 202.118.3.1; 域名服务器的 IP 地址是 202.118.3.2。

R1 和 R2 的路由表结构为:

目的网络 IP 地址 子网掩码 下一跳 IP 地址 接口

请回答下列问题。

(1) 将 IP 地址空间 202.118.1.0/25 划分为 2 个子网,分别分配给局域网 1、局域网 2,每个局域网需分配的 IP 地址数不少于 60 个。请给出子网划分结果。

【答】

试 题: 计算机网络	学号: L170300901	姓名:	户完于允	
子网 2: 子网地址: (18 1.64	_), 子网掩码:(_	255. 255. 255. 192),
广播地址: (202 8	1.0/25	_),可分配地址	数: (),
可分配地址范围。(22/18/15) (202.118.1.126	,

(2) 请给出 R1 的路由表,使其明确包括到局域网 1 的路由、局域网 2 的路由、域名服务器的 主机路由和互联网的路由。

【答】

目的网络 IP 地址	子网掩码	下一跳 IP 地址	接口
202. [18,]. U	255.255.255 192	_	EI
202.118.1.64	255 255 255 /92		E2
202-118.3.2	255, 255, 255, 255	202.118.2.2	20
0.0.0.0	0.0.0.0	202.118.2.2	10

(3)请采用路由聚合技术,给出 R2 到局域网 1 和局域网 2 的路由。

【答】

目的网络IP地址	子网掩码	下一跳 IP 地址	接口
202.118.0	255 255 255 12 8	202.118.2.1	1.0

3.	如果将 IP 网络	络 111.112.11	0.0/23	划分为 5	个子网,	则可能划分出	的最小	、子网的子	网掩码是
(_	255 - 255 - 25	5.224),	该最小子	网的可分配	配 IP 地址数是	(30)。

计算机网络 自主评测 (6)

学号	2170300901
姓名	卢克王允

要求:根据每题要求解答问题。(得分:_____

1. 假设 Internet 的 2 个自治系统构成的网络如题下图所示,自治系统 AS1 由路由器 R1 连接 2 个子网构成;自治系统 AS2 由路由器 R2、R3 互联并连接 3 个子网构成。各子网地址、R2 的接口名、R1 与 R3 的部分接口 IP 地址如题下图所示。

请回答下列问题。

(1) 假设路由表结构如下表所示。请利用路由聚合技术,给出 R2 的路由表,要求包括到达题图中所有子网的路由,且路由表中的路由项尽可能少。

目的网络 下一跳 接口

- (2) 若 R2 收到一个目的 IP 地址为 194.17.20.200 的 IP 分组, R2 会通过哪个接口转发该分组?
- (3)R1与R2之间利用哪个路由协议交换路由信息?该路由协议的报文被封装到哪个协议的分组中进行传输?

日的网络 | 下一比 | 寸量 | 153.14.3.2 | So | 194.17.20 0 / 23 | 194.17.24 2 | SI | 194.17.20 0 / 23 | 194.17.24 2 | Eo.

- (a) 按工户分组的目的工户地址194.79.20.200 与 194.79.20.0/23和194.79.20.128/25 两个显图由表现均四面已 R2将通过E0于每口转发放工户分组
- (3) RI与R2之间利用 BGP4 (BGP) 交换路由信息 BGP4的报文被封装到 TCP 协议股份进行编

2. 如图所示网络拓扑,所有路由器均采用距离矢量路由算法计算到达两个子网的路由。假设在 所有路由器均已收敛的状态下,R3 突然检测到子网 192.168.2.0/23 不可到达,则经过两轮距离 矢量的交换之后,R1 所维护的距离矢量是什么?请给出计算过程及结果。(注:到达子网的度 量采用跳步数)

192.168.1.0/24	R		R3	192.168.2.0/23
收敛状态下	各路由智	8的距离失	量为	
目的网络	RI	R2	R 3	
192.168.1.0/24	1	2	3	
192. 168. 2.0/23	3	2	1	
当R3检测到3P	J 192.168.	20/23 不	可到去石	、各路由器的链矢量为
自的网络	RI	k2	þ3	
192.168.1.0/24	1	2	3	
192. [18.2.0/23	3	2	3	
交换一次距离发量后	各路由器	的遊离行	4	
的网络	RI	R2	R3	
192.168.10/24	1	2	3	
192.168.20/23	3	4	3	
第二次交换 距离失	军,各里	8 世界的距离 1	是为: 1 R3 3	
192.168.2.0/23 RI所维护距离失量	与括自身的	华里海缉以及	级 双最新	第2页 (共2页)

计算机网络 自主评测 (7)

1170300901 学号 姓名 斑锐

要求	: 在下面各个问题的空白处填入最合适的答案(每空 1 分)(得分:)
1.	若要实现 d 比特的差错检测,则编码集的 Hamming 距离 r 需要满足 (_ トンプナー); 若要
	实现 d 比特的差错纠正,则编码集的 Hamming 距离 r 需要满足 (_ トフ2d ナー)。
2.	若数据 D=101110, G=1001, 则采用 CRC 编码后的结果是 (/v loo)。
3.	典型的信道划分 MAC 协议有($FDMA$)、($TDMA$)、($WDMA$)和 ($CDMA$)等; 典型的随机访问 MAC 协议有($ALOHA$)、($SlotedAloHA$)、($CSMA/CI$)等; 典型的轮转 MAC 协议有($Polling$)和 ($CSMA/CI$)等; 典型的轮转 MAC 协议有($Polling$)和 ($Token Passing$)等。
4.	查询同一子网内另一主机 IP 地址对应的 MAC 地址的协议是(ARP),查询数据帧的目的 MAC 地址是($FF-FF-FF-FF-FF-FF-FF-FF-FF-FF-FF-FF-FF-$
5.	若不包含前导码,则以太网数据帧的最大帧长为($_{15/6}$ _) 字节,最小帧长为($_{64}$ _) 字节,数据域最少为($_{46}$ _) 字节、最大为($_{1500}$ _) 字节,以太网的 MTU 为($_{1500}$ _) 字节。
6.	在一个采用 CSMA/CD 协议的网络中,传输介质是一根完整的电缆,传输速率为 1 Gbps, 电
	缆中的信号传播速度是 200 000 km/s。若最小数据帧长度减少 800 比特,则最远的两个站点
	之间的距离至少需要(<u>此为80</u>)米。
7.	某局域网采用 CSMA/CD 协议实现介质访问控制,数据传输速率为 10 Mbps,主机甲和主机
	乙之间的距离为 2 km, 信号传播速度是 200 000 km/s。请回答下列问题,要求说明理由或写
	出计算过程。
	(1) 若主机甲和主机乙发送数据时发生冲突,则从开始发送数据时刻起,到两台主机均检测到冲突时刻止,最短需经过多长时间?最长需经过多长时间?(假设主机甲和主机乙发送数据过程中,其他主机不发送数据)
	【答】最短需经过的时间是(
	(2) 若网络不存在任何冲突与差错,主机甲总是以标准的最长以太网数据帧(1518字节)向主机乙 发送数据,主机乙每成功收到一个数据帧后立即向主机甲发送一个64字节的确认帧,主机甲收 到确认帧后方可发送下一个数据帧。此时主机甲的有效数据传输速率是多少?(不考虑以太网帧 的前导码)
	【答】主机甲的有效数据传输速率是(<u> 2000</u>) bps。
8.	以太网交换机进行转发决策时依据的数据帧地址是(<u>自约MAC地址</u> ,完成自学习依据的地址是(<u>in MAC地址</u>)。
9.	集线器(Hub)是(<u>物理</u>)层设备,不能分割冲突域和广播域;交换机是(<u>数据</u>)
	集线器(Hub)是(<u>物理</u>)层设备,不能分割冲突域和广播域;交换机是(<u>数据</u>)层设备,(<u>有</u>) 分割冲突域,(<u>不能</u>)分割广播域;路由器是(<u>网络</u>)层设备,(<u>有</u>) 分割冲突域和广播域;网桥的功能等价于(<u>方换机</u>)。
	73/00

计算机网络 自主评测 (8)

学号	1170300901
姓名	卢克王允

要求:在下面各个问题的空白处填入最合适的答案(每空1分)(得分:

- 1. 以太网交换机进行转发决策时依据的数据帧地址是(<u>目的/MAC工作工</u>,完成自学习依据的地址是(<u>氵原 MAC工作工</u>)。
- 2. 集线器(Hub)是(<u>物迁</u>)层设备,不能分割冲突域和广播域;交换机是(<u>本六居(建设</u>)层设备,(<u>,能</u>)分割冲突域,(<u>不能</u>)分割广播域;路由器是(<u>网络</u>)层设备,(<u>,能</u>)分割冲突域和广播域;网桥的功能等价于(<u>一</u>交换机)。
- 3. 某主机的 MAC 地址为 00-15-C5-C1-5E-28,IP 地址为 10.2.128.100(私有地址)。图 1 是网络拓扑,图 2 是该主机进行 Web 请求的 1 个以太网数据帧前 80 个字节的十六进制及 ASCII 码内容。

图 1 网络拓扑

0000 0010 0020 0030 0040	01 e 62 2 fa f	ef 11 20 04 50 1a	3b ff c4	40 00 00	00 50 00	80 e0 47	06 e2 45	ba 00 54	9d fa 20	0a 7b 2f	02 f9 72	80 f8 66	64 05 63	40 50 2e	aa 18 68	bP{P.)
10040	14 6	od bc	20	48	54	54	50	2+	31	2e	31	0d	0a	41	63	tml HTTP /1.1Ad	:

图 2 以太网数据帧(前 80 字节)

请参考图中的数据回答以下问题。

- (2) 该主机在构造图 2 的数据帧时,使用什么协议确定目的 MAC 地址? 封装该协议请求报文的以太网帧的目的 MAC 地址是什么?
- (3) 假设 HTTP/1.1 协议以持续的非流水线方式工作,一次请求-响应时间为 RTT, rfc.html 页面引用了 5 个 JPEG 小图像,则从发出图 2 中的 Web 请求开始到浏览器收到全部内容为止,需要多少个 RTT?
- (4) 该帧所封装的 IP 分组经过路由器 R 转发时, 需修改 IP 分组头中的哪些字段?