Wydział	Imię i nazwisko		Rok	Grupa	Zespół
	1. Paweł Szewo	zuk			
WFiIS	2. Ihnatsi Yermakovich		II	03	03
PRACOWNIA	Temat	Temat			
FIZYCZNA					
WFiIS AGH	Kondensatory				33
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
14.03.2022	21.03.2022				

Kondensatory

Ćwiczenie nr 33

Paweł Szewczuk

Ihnatsi Yermakovich

1	Cel ćwiczenia	2							
2	Wstęp teoretyczny 2.1 Kondensator płaski	2 2 3 3 3							
3	rzyrządy pomiarowe								
4	rzebieg ćwiczenia								
5		5 5 5							
6	$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
7	Wnjoski	a							

1 Cel ćwiczenia

Celem laboratorium był pomiar pojemności kondensatorów powietrznych i kondensatorów z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ϵ_0 i przenikalności względnych ϵ_r różnych materiałów.

2 Wstęp teoretyczny

2.1 Kondensator płaski

Kondensator jest zbudowany z dwóch przewodników między którymi znajduje się warstwa izolatora. Pojemność takiego kondensatora wyrażamy przez stosunek ładunku Q na jego okładce do napięcia U pomiędzy jego okładkami:

$$C = \frac{Q}{U} \tag{1}$$

Uproszczony wzór na pojemność C kondensatora jest przedstawiany jako stosunek iloczynu stałej elektrycznej ϵ_0 , przenikalności elektrycznej ϵ_r oraz powierzchni okładki S do odległości d między okładkami:

$$C = \frac{\varepsilon_0 \ \varepsilon_r \ S}{d} \tag{2}$$

W tym doświadczeniu nie możemy jednak bezpośrednio wykorzystać powyższego wzoru, ponieważ pomiędzy okładkami kondensatora, w trzech miejscach, znajdują się izolujące krążki, których przeni-kalność elektryczna ε_r jest znacznie większa od jedności, dlatego będziemy traktować kondensator jako połączenie równoległe dwóch kondensatorów - kondensatora z dielektrykiem i kondensatora próżniowego. Powierzchnia okładek kondensatora z dielektrykiem jest równa $3S_p$, gdzie S_p jest powierzchnią jednego krążka, więc powierzchnia kondensatora próżniowego wyniesie $S-3S_p$, korzystając ze wzoru (2) możemy stwierdzić, że całkowita pojemność kondensatora wynosi:

$$C = \frac{\varepsilon_0 \left(S - 3S_p \right)}{d} + \frac{\varepsilon_0 \varepsilon_r 3S_p}{d} \tag{3}$$

Przekształcając wzór możemy z niego wyliczyć stałą elektryczną ϵ_0 :

$$\varepsilon_0 = \frac{Cd}{S + 3(\varepsilon_r - 1)S_p} \tag{4}$$

Dodatkowo musimy uwzględnić pole rozproszone powodujące wzrost pojemności kondensatora, wykonamy więc serię pomiarów pojemności dla różnych odległości między okładkami d i narysujemy na ich podstawie wykres iloczynu Cd(d). Do wyznaczonych punktów na wykresie dopasujemy do funkcję trzeciego stopnia, gdzie wyraz stały a_0 wielomianu jest wartością ekstrapolowaną iloczynu $(Cd)_{extr}$ i tą wartość podstawiamy do wzoru (4):

$$\varepsilon_0 = \frac{(Cd)_{extr}}{S + 3(\varepsilon_r - 1)S_p} \tag{5}$$

Do ostatecznego wzoru musimy jeszcze wstawić pola powierzchni S oraz S_p :

$$S = \frac{\pi D^2}{4} \tag{6}$$

$$S = \frac{\pi D_p^2}{4} \tag{7}$$

gdzie:

 ${\cal D}$ - średnica okładki kondensatora

 D_p - średnica przekładki

Finalnie otrzymujemy:

$$\varepsilon_0 = \frac{4}{\pi} \frac{(Cd)_{extr}}{D^2 + 3 (\varepsilon - 1)D_p^2} \tag{8}$$

2.2 Prędkość światła

Chcemy dodatkowo na podstawie wyliczonego ϵ_0 wyznaczyć prędkość światła, skorzystamy więc ze wzoru:

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \tag{9}$$

Potrzebujemy teraz wyznaczyć wartość stałej magnetycznej μ_0 , która to jest stałą definiowaną. Rozważmy definicję ampera - jest to wartość prądu, który płynąc przez dwa nieskończone równoległe przewody odległe o a=1m wytwarza siłę $F=2\cdot 10^{-7}~N$ na odcinku l=1m przewodu. Wzór na oddziaływanie między przewodami:

$$F = \frac{\mu_0 I^2 l}{2\pi a} \tag{10}$$

Przekształcając wzór otrzymujemy:

$$\mu_0 = \frac{2F\pi a}{I^2 l} \tag{11}$$

Podstawiając dane z definicji otrzymujemy:

$$\mu_0 = \frac{2 \cdot 10^{-7} \cdot 2\pi \cdot 1}{1^2 \cdot 1} = 4 \cdot 10^{-7} \pi \left[\frac{Vs}{Am} \right] \approx 1,257 \cdot 10^{-6} \left[\frac{Vs}{Am} \right]$$
 (12)

2.3 Kondensator płaski z dielektrykiem

W kolejnej części doświadczenia będziemy wyznaczać przenikalność elektryczną niektórych dielektryków, wykorzystamy do tego przekształcony wzór (2):

$$\varepsilon_r = \frac{Cd}{\varepsilon_0 S} \tag{13}$$

2.4 Kondensator cylindryczny z dielektrykiem

Na koniec wyznaczymy przenikalność elektryczną dielektryka w kondensatorze cylindrycznym, wzór na pojemność takiego kondensatora:

$$C = \frac{2\pi\varepsilon_0\varepsilon_r l}{\ln(\frac{R}{\epsilon})} \tag{14}$$

gdzie R i r to odpowiednio promienie zewnętrznej oraz wewnętrznej okładki kondensatora, a l jest jego długością. Przekształcając powyższy wzór, aby wyznaczyć ε_r otrzymujemy:

$$\varepsilon_r = \frac{Cln(\frac{R}{r})}{2\pi\varepsilon_0 l} \tag{15}$$

3 Przyrządy pomiarowe

- Kondensator płaski(dwie okrągłe płaskie płyty aluminiowe, pomiędzy którymi są wkładane przekładki pleksiglasowe)
- Kondensator cylindryczny w postaci kabla koncentrycznego
- Miernik podatności LCR
- Miarka

• Płyty z rezokartu, plexi i drewna

Rysunek 1: Kondensator płaski z trzema słupkami z dielektryka

Rysunek 2: Kabel koncentryczny jako kondensator cylindryczny

4 Przebieg ćwiczenia

Na początku włączyliśmy miernik LCR, wyzerowaliśmy go i ustawiliśmy na zakres do 200~pF, tego zakresu używaliśmy we wszystkich doświadczeniach oprócz pomiaru pojemności kondensatora płaskiego z dielektrykiem w postaci płyty z rezokartu, wtedy potrzebowaliśmy zakresu do 2000~pF. Następnie zmierzyliśmy grubość trzech przekładek pleksiglasowych (d1,d2,d3) oraz ustawiliśmy je na dolnej okładce kondensatora, w taki sposób aby podtrzymywały górną okładkę, w ten sposób udało nam się uzyskać układ zbliżony do kondensatora powietrznego. Dalej podłączyliśmy miernik do kondensatora, odczytaliśmy wartość i wprowadziliśmy pomiary do tabeli 1. Podobne pomiary wykonaliśmy dla kondensatora z większą odległoscią między okładkami, dodając kolejne przekładki do obecnie znajdujących się w kondensatorze. Dodatkowo zmierzyliśmy także średnicę kondensatora i średnicę pojedyńczej przekładki używając linijki.

Następnie pomiędzy okładki kondensatora włożyliśmy płytę z rezokartu, zmierzyliśmy pojemność takiego kondensatora i wyniki zapisaliśmy w tabeli 2. Pomiar powtórzyliśmy dla płyt z plexi oraz drewna. Dla każdej z płyt wykonaliśmy pomiar jej grubości.

Ostatnim obiektem doświadczalnym był kondensator cylindryczny w postaci kabla koncentrycznego, zmierzyliśmy jego średnicę wewnętrzną, zewnętrzną, długość oraz jego pojemność.

5 Wyniki

5.1 Kondensator płaski - wyznaczenie ε_0

W poniższej tabeli są przedstawione wyniki pomiaru pojemności kondensatora w funkcji odległości elektrod:

Liczba przekładek	$d_1 [\mathrm{mm}]$	$d_2 [\mathrm{mm}]$	d_3 [mm]	$d = \frac{d_1 + d_2 + d_3}{3}$ [mm]	C [pF]	$\operatorname{Cd}\left[pF\cdot mm\right]$
1	3,825	3,825	3,825	3,825	118,2	452,115
2	7,660	7,660	7,700	7,673	62,5	479,583
3	10,620	10,630	10,600	10,617	47,1	500,045
4	14,440	14,480	14,450	14,457	36,1	521,886
5	17,270	17,455	17,320	17,348	31,1	539,533
6	21,130	21,290	21,110	21,177	27,6	584,476

Tablica 1: Pojemność kondensatora w funkcji odległości elektrod

Średnica kondensatora: D = 23,9 cm

Średnica przekładki: $D_p = 0,19 \text{ mm}$

5.2 Kondensator płaski z dielektrykami

Material	d [mm]	C [pF]	e_r
rezokart	3,03	1002,0	7,64
plexi	9,98	135,6	3,40
drewno	11,95	103,3	3,10

Tablica 2: Pojemność kondensatora z dielektrykiem

5.3 Kabel koncentryczny

Średnica zewnętrzna 2R = 1,70 mm

Średnica wewnętrzna 2r = 1,07 mm

Długość l $=70~\mathrm{cm}$

Pojemność kabla C = 47,2 pF

6 Opracowanie wyników

6.1 Stała elektryczna ε_0

Na podstawie tabblicy 1 sporządziliśmy wykres:

Rysunek 3: Zależność iloczynu $C \cdot d$ od d

Z równania dopasowanej funkcji 3 stopnia potrafimy wyciągnąć wartość $(C \cdot d)_{extr}$. Jest ona równa wyrazu wolnemu powyższej funkcji, czyli:

$$(C \cdot d)_{extr} = 404.1 \, (pF \cdot mm) = 404.1 \times 10^{-15} \, (F \cdot m) \tag{16}$$

Teraz obliczymy wartość ε_0 . Dla tego przyjmiemy, że wartość ε_r jest równa 2, 6 i skorzsytamy ze wzoru (8):

$$\varepsilon_0 = \frac{4}{\pi} \frac{(Cd)_{extr}}{D^2 + 3(\varepsilon_r - 1)D_p^2} = \frac{4}{\pi} \times \frac{404.1}{239 + 3(2.6 - 1)19^2} = 8,74227 \times 10^{-12} \left(\frac{F}{m}\right)$$
(17)

Otzymany wynik jest bliski tablicowej wartości: $8,85 \ (F/m)$.

6.2 Niepowność pomiaru stałej elektrycznej ε_0

Najpierw określimy niepewność pomiaru $(C \cdot d)_{extr}$ za pomocą programu MATLAB:

Rysunek 4: Zależność iloczynu $C \cdot d$ od d wraz z niepewnością pomiaru $u_{C \cdot d}$

Więc $u_{(Cd)_{extr}}$ wynosi:

$$u_{(Cd)_{extr}} = 3{,}743 (pF \cdot mm) = 3{,}743 \times 10^{-15} (F \cdot m)$$
 (18)

Ze względu na zastowanie mikrometru anałagowego z minimalną działką 0,01mm dla obliczenia wszystkich możemy wnioskować, że:

$$u_D = u_{D_p} = \frac{0.01 \times 10^{-3}}{\sqrt{3}} = 5.7735 \times 10^{-6} \ (m)$$
 (19)

Teraz korzystając z prawa przenoszenia potrafimy obliczyć u_{ε_0} :

$$u_{\varepsilon_0} = \frac{4}{\pi} \frac{1}{D^2 + 3(\varepsilon_r - 1)D_p^2} \times \sqrt{u_{(Cd)_{extr}}^2 + \frac{4(Cd)_{extr}^2 u_D^2}{(D^2 + 3(\varepsilon_r - 1)D_p^2)^2} \left[D^2 + (3(\varepsilon_r - 1)D_p)^2\right]}$$
(20)

A więc u_{ε_0} wynosi:

$$u_{\varepsilon_0} = 21,63393944 \times \sqrt{1,4 \times 10^{-29} + 6,2859 \times 10^{-33} \times 0,0654} = 8,0947976 \times 10^{-14} (F/m)$$
 (21)

Obliczymy niepewność rozszerzoną ze współczynnikiem k=3:

$$U_{\varepsilon_0} = 2,428439 \times 10^{-13} \left(F/m \right) \tag{22}$$

Ostatecznie zapiszemy:

$$\varepsilon_0 = (8,74 \pm 0,25) \times 10^{-12} (F/m)$$
 (23)

Przyjmując wartość tabelaryczną $\varepsilon_0=8,85\times 10^{-12}F/m$ łatwo zauważyć, że otrzymany przez nas wynik w granicach obliczonej niepewności jest zgodny z wartością tabelaryczną.

6.3 Wyznaczenie prędkości światła c

Dla wyznaczenia prędkości światła c zastosujemy wzór (9) i wartość μ_0 z równania (12):

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = \frac{1}{\sqrt{1,256 \times 10^{-6} \cdot 8,742 \times 10^{-12}}} = 301.786.479, 8\left(\frac{m}{s}\right)$$
 (24)

Nie jest ta wartość zbyt daleka od wartości tablicowej: $c = 299792458 \, m/s$.

6.4 Wyznaczenie względnej przenikalności elektrycznej ε_r

We wszystkich poniższych podpunktach skorzystamy ze wzoru (13). Tutaj go zdublujemy:

$$\varepsilon_r = \frac{Cd}{\varepsilon_0 S} \tag{25}$$

6.4.1 Przenikalność elektryczna drewna

Wyznaczymy względą przenikalność elektryczną drewna następująco:

$$\varepsilon_r = \frac{103, 3 \times 10^{-12} \cdot 11, 95 \times 10^{-3} \cdot 4}{8, 74 \times 10^{-12} \cdot \pi \cdot (23, 9 \times 10^{-2})} = 3, 148$$
 (26)

Zgodnie z wartościami tablicowymi, wartość ε_r mieści się od 2 do 9, nasz pomiar jest w tym przedziale.

6.4.2 Przenikalność elektryczna plexi

Wyznaczymy względą przenikalność elektryczną plexi następująco:

$$\varepsilon_r = \frac{135, 6 \times 10^{-12} \cdot 9,98 \times 10^{-3} \cdot 4}{8,74 \times 10^{-12} \cdot \pi \cdot (23,9 \times 10^{-2})} = 3,451$$
 (27)

Z tablic wynika, że wartość ε_r jest równa 3,5, nasz pomiar jest bardzo bliski wartości referencyjnej.

6.4.3 Przenikalność elektryczna rezokartu

Wyznaczymy względą przenikalność elektryczną rezokartu następująco:

$$\varepsilon_r = \frac{1002 \times 10^{-12} \cdot 3,03 \times 10^{-3} \cdot 4}{8,74 \times 10^{-12} \cdot \pi \cdot (23,9 \times 10^{-2})} = 7,743$$
(28)

Znaleziono, że wartość ε_r jest około 7. Nasz pomiar nie jest zbyt daleki od wartości referencyjnej.

6.5 Wyznaczanie przenikalności względnej ε_r dielektryka w kablu koncentrycznym

W celu wyznaczenia ε_r zastosujemy wzór (15):

$$\varepsilon_r = \frac{C \ln\left(\frac{R}{r}\right)}{2\pi\varepsilon_0 l} = \frac{47, 2 \times 10^{-12} \ln\left(\frac{1,7}{1,07}\right)}{2 \cdot 8, 74 \times 10^{-12} \cdot 70 \times 10^{-2} \pi} = 0,568$$
 (29)

Biorąc pod uwagę, że otrzymana wartość jest mniejsz od 1, można wnioskować, że pomiar został obdarzony błędem grubym i wynik jest niereprezentatywnny.

7 Wnioski

- \bullet Wyznaczona wartość ϵ_0 jest bardzo bliska wartości tablicowej, co pokazuje słuszność zastosowania poprawek do wzoru, które negują wpływ niedoskonałego zestawu doświadczalnego i uproszczenia pierwotnego wzoru.
- Wyznaczenie wartości elektromagnetycznych próżni wymaga tylko stałej $\epsilon_0.$
- Umieszczenie dielektryka między okładkami kondensatora płaskiego może znacznie wpłynąć na wzrost jego pojemności.