LAB 10: 1-BIT FULL ADDER

1. Goals

- Know how to use basic logic gates.
- Build an Exclusive OR (XOR) using NAND and OR gates.
- Build a 1-bit full adder using NAND, OR and XOR gates.

2. Exercises

Exercise 1. Build a XOR gate using AND, OR and NOT gates. The symbol and truth table of a XOR gate are shown in Figure 1.

Figure 1. Symbol (a) and truth table (b) of XOR.

Requirements:

- Test all ICs and equipment.
- Assemble a XOR gate on a breadboard using IC 74LS00 (AND), 74LS32(OR), 74LS04 (NOT), resistors, LEDs, and buttons (or switches).
- Supply 5V/GND power to the circuit.
- Use a function generator and an oscilloscope to define the circuit's activities, i.e., checking circuit's output for all input states.
- Write comments on the experimental results.

Exercise 2. Build a 1-bit full adder using basic logic gates. Figure 2 shows the block diagram of a 1-bit full adder:

- 3 1-bit inputs: A, B, *C_{in}*
- 2 1-bit output: S, *C*_{out}

From the truth table, the Boolean expressions of the SUM and CARRY outputs are:

- $S = A \oplus B \oplus C_{in}$
- $C_{out} = A.B + (C_{in}.(A \oplus B))$

Requirements:

- Test all ICs and equipment.
- Assemble a full adder on a breadboard using the given ICs (74LS00, 74LS32, and 74LS86), resistors, LEDs, and buttons (or switches).
- Supply 5V/GND power to the circuit.
- Use a function generator and an oscilloscope to define the circuit's activities, i.e., checking circuit's output for all input states.
- Write comments on the experimental results.

A	В	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
(b)				

Figure 2. Block diagram (a), truth table (b) and logic diagram (c) of 1-bit FA.

Components and devices needed for the lab:

Components and Devices	Description	Amount
74LS (or HC) 08/32/04/86	AND/OR/NOT/XOR	2/2/1/1
Resistor	330 Ω/10 kΩ	Few
LED	2V-2.5V, 20mA	5
Switch or Button	3-pin/4-pin	3
Power Supply	Aditeg PS-3030DD	1
Breadboard	1	
Connecting Wires	Few	
Multimeter/function generator/	1/1/1	

Datasheet of 74LS08 here.

 A
 B
 A AND B

 0
 0
 0

 0
 1
 0

 1
 0
 0

 1
 1
 1

74LS08 Pinout

Datasheet of 74LS32 here.

 A
 B
 A OR B

 0
 0
 0

 0
 1
 1

 1
 0
 1

 1
 1
 1

74LS32 Pinout

Datasheet of 74LS86 here.

74LS86 Pinout

A	В	A xor B
0	0	0
0	1	1
1	0	1
1	1	0

Datasheet of 74LS04 <u>here</u>.

74LS04 Pinout

A	$ar{A}$
0	0
0	1
1	1
1	0

