Twierdzenie 1 (Minkowskiego) Niech A, B będą wypukłymi zbiorami w \mathbb{R}^L oraz $A \cap B = \emptyset$. Wtedy istnieje $p \in \mathbb{R}^L$, $p \neq 0$ i liczba $z \in \mathbb{R}$ taka, że $p \cdot x \geq z \geq p \cdot y$ dla każdego $x \in A, y \in B$.

Rozpatrzmy problem maksymalizacyjny $\max_{x \in X} f(x)$ pod warunkami $g_k(x) \leq w_k$ dla każdego $k = 1, \ldots, K$. Powiemy, że $x \in X$ jest dostępne dla problemu maksymalizacyjnego, jeżeli $g_k(x) \leq w_k$ dla każdego $k = 1, \ldots, K$.

Twierdzenie 2 (Kuhn-Tucker) Niech $X \subset \mathbb{R}^N$ będzie zbiorem wypukłym, $f: X \to (-\infty, \infty)$ wklęsta oraz $g_k: X \to (-\infty, \infty)$ wypukła. Niech x^* będzie dostępne dla problemu maksymalizacyjnego oraz istnieją nieujemne liczby $\lambda_1, \ldots, \lambda_K$ takie, że:

- 1. dla każdego k $\lambda_k = 0$ gdy $g_k(x^*) < w_k$,
- 2. x^* rozwiązuje problem: $\max_{x \in X} [f(x) \sum_{k=1}^K \lambda_k g_k(x)],$

 $wtedy \ x^* \ rozwiązuje \ problem \ maksymalizacyjny.$

Niech x^* rozwiązuje problem maksymalizacyjny oraz istnieje $\underline{x} \in X$ taki, że $g_k(\underline{x}) < w_k$ dla każdego k. Wtedy istnieją nieujemne liczby $\lambda_1, \ldots, \lambda_k$ takie, że zachodzą warunki 1 i 2.

Twierdzenie 3 (Brouwera) Niech $A \subset \mathbb{R}^L$ będzie niepustym, zwartym, wypukłym zbiorem a funkcja $f: A \to A$ ciągła. Wtedy istnieje $x^* \in A$ taki, że $x^* = f(x^*)$.

Twierdzenie 4 (O lokalnej odwracalności funkcji różniczkowalnej) Niech $f: U \to \mathbb{R}^L$, $gdzie U \in \mathbb{R}^n$ jest otwarty, będzie ciągle różniczkowalne na kuli $B_r(x_0) \subset U$ oraz $det f'(x_0) \neq 0$. Wtedy istnieje otoczenie $O = B_{\epsilon}(x_0)$ $(\epsilon < r)$, że funkcja $f|_O: O \to V$, (gdzie f(O) = V) jest odwracalna.

Definicja 1 (Odwzorowanie półciągłe z góry) Odwzorowanie $f: A \Rightarrow Y$, gdzie $A \subset \mathbb{R}^L$, a $Y \subset \mathbb{R}^K$ jest domknięty nazywamy półciągłym z góry, jeżeli ma domknięty graf oraz obrazy zwartych zbiorów są ograniczone.

Definicja 2 (Odwzorowanie półciągłe z dołu) Odwzorowanie $f: A \Rightarrow Y$, gdzie $A \subset \mathbb{R}^L$, a $Y \subset \mathbb{R}^K$ jest zwarty nazywamy półciągłym z dołu, jeżeli dla każdego ciągu (elementów A) $x_m \to x \in A$ i każdego $y \in f(x)$, istnieje ciąg $y_m \to y$ oraz liczba M taka, że $y_m \in f(x_m)$ dla m > M.

Twierdzenie 5 (Twierdzenie Berga o maksimum) Niech $f: Y \to \mathbb{R}$ będzie ciągła, a odwzorowanie $\Gamma: X \rightrightarrows Y$ ciągłe¹. Jeżeli $\Gamma(x) \neq \emptyset$ wtedy funkcja $M(x) = \max\{f(y): y \in \Gamma(x)\}$ jest ciągła na X, a odwzorowanie $\Phi(x) = \{y \in \Gamma(x): f(y) = M(x)\}$ jest półciągłe z góry.

¹Tz. jednocześnie półciągłe z góry i półciągłe z dołu.

Twierdzenie 6 (Kakutaniego) Niech $A \subset \mathbb{R}^L$ będzie niepustym, zwartym, wypukłym zbiorem a odwzorowanie $f:A \rightrightarrows A$ półciagłe z góry. Jeżeli zbiór f(x) jest niepusty i wypukły dla każdego $x \in A$, wtedy istnieje $x^* \in A$ taki, że $x^* \in f(x^*)$.

Twierdzenie 7 (Shapleya-Folkmana) Niech $x \in con(\sum_{i=1}^{I} A_i)$, $gdzie(\forall i)A_i \subset \mathbb{R}^L$. Wtedy istnieje $(a_i)_{i=1}^{I}$, $\dot{z}e$ $x = \sum_{i=1}^{I} a_i$, a $tak\dot{z}e$ $(\forall i)a_i \in con(A_i)$ oraz $a_i \in A_i$ dla każdej poza L wartościami i.