Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon Code
Summary
Idea
Reading list for next week

Testing Interleaved Linear Codes

Testing Interleaved Linear Codes

Testing Linear Constraints over Interleaved Reed-Solomon Codes Testing Quadratic Constraints over Interleaved Reed-Solomon Cod Summary Idea Reading list for next week

Testing Interleaved Linear Codes

DEFINITION 4.2 (INTERLEAVED CODE). Let $L \subset \mathbb{F}^n$ be an [n, k, d] linear code over \mathbb{F} . We let L^m denote the [n, mk, d] (interleaved) code over \mathbb{F}^m whose codewords are all $m \times n$ matrices U such that every row U_i of U satisfies $U_i \in L$. For $U \in L^m$ and $j \in [n]$, we denote by U[j] the jth symbol (column) of U.

Idea Reading list for next week

Testing Interleaved Linear Codes

- Oracle: A purported L^m -codeword U. Depending on the context, we may view U either as a matrix in $\mathbb{F}^{m\times n}$ in which each row U_i is a purported L-codeword, or as a sequence of n symbols $(U[1],\ldots,U[n]),U[j]\in\mathbb{F}^m.$
- Interactive testing:
 - (1) V picks a random linear combinations $r \in \mathbb{F}^m$ and sends rto P.
 - (2) \mathcal{P} responds with $w = r^T U \in \mathbb{F}^n$.
 - (3) V queries a set $Q \subset [n]$ of t random symbols $U[j], j \in Q$.
 - (4) V accepts iff $w \in L$ and w is consistent with U_O and r. That is, for every $j \in Q$ we have $\sum_{i=1}^{m} r_i \cdot U_{i,j} = w_i$.

The following lemma follows directly from the linearity of *L*.

LEMMA 4.1. If $U \in L^m$ and \mathcal{P} is honest, then \mathcal{V} always accepts.

Testing Interleaved Linear Codes

Reading list for next week

Testing Linear Constraints over Interleaved Reed-Solomon Codes Testing Quadratic Constraints over Interleaved Reed-Solomon Code Summary Idea

Testing Interleaved Linear Codes

Theorem 4.4. Suppose Conjecture 4.1 holds. Let e be a positive integer such that e < d/3. Suppose $d(U^*, L^m) > e$. Then, for any malicious $\mathcal P$ strategy, the oracle U^* is rejected by $\mathcal V$ except with $\leq (1-e/n)^t + d/|\mathbb F|$ probability.

Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon Code
Summary
Idea
Reading list for next week

Testing Linear Constraints over Interleaved Reed-Solomon Codes

Test-Linear-Constraints-IRS

DEFINITION 4.5 (ENCODED MESSAGE). Let $L = RS_{\mathbb{F},n,k,\eta}$ be an RS code and $\zeta = (\zeta_1,\ldots,\zeta_\ell)$ be a sequence of distinct elements of \mathbb{F} for $\ell \leq k$. For $u \in L$ we define the message $Dec_{\zeta}(u)$ to be $(p_u(\zeta_1),\ldots,p_u(\zeta_\ell))$, where p_u is the polynomial (of degree < k) corresponding to u. For $U \in L^m$ with rows $u^1,\ldots,u^m \in L$, we let $Dec_{\zeta}(U)$ be the length- $m\ell$ vector $x = (x_{11},\ldots,x_{1\ell},\ldots,x_{m1},\ldots,x_{m\ell})$ such that $(x_{i1},\ldots,x_{i\ell}) = Dec_{\zeta}(u^i)$ for $i \in [m]$. Finally, when ζ is clear from the context, we say that U encodes x if $x = Dec_{\zeta}(U)$.

Testing Quadratic Constraints over Interleaved Reed-Solomon Code Summary Idea

Reading list for next week

Test-Linear-Constraints-IRS

Test-Linear-Constraints-IRS(\mathbb{F} , $L = RS_{\mathbb{F}, n, k, \eta}$, $m, t, \zeta, A, b; U$)

- Oracle: A purported L^m -codeword U that should encode a message $x \in \mathbb{F}^{m\ell}$ satisfying Ax = b.
- Interactive testing:
 - (1) \mathcal{V} picks a random vector $r \in \mathbb{F}^{m\ell}$ and sends r to \mathcal{P} .
 - (2) \mathcal{V} and \mathcal{P} compute

$$r^T A = (r_{11}, \ldots, r_{1\ell}, \ldots, r_{m1}, \ldots, r_{m\ell})$$

and, for $i \in [m]$, let $r_i(\cdot)$ be the unique polynomial of degree $< \ell$ such that $r_i(\zeta_c) = r_{ic}$ for every $c \in [\ell]$.

- (3) P sends the k + ℓ − 1 coefficients of the polynomial defined by q(•) = ∑_{i=1}^m r_i(•) · p_i(•), where p_i is the polynomial of degree < k corresponding to row i of U.</p>
- (4) \mathcal{V} queries a set $Q \subset [n]$ of t random symbols $U[j], j \in Q$.
- (5) V accepts if the following conditions hold:
 - (a) $\sum_{c \in [\ell]} q(\zeta_c) = \sum_{i \in [m], c \in [\ell]} r_{ic} b_{ic}$.
 - (b) For every $j \in Q$, $\sum_{i=1}^{m} r_i(\eta_j) \cdot U_{i,j} = q(\eta_j)$.

Test-Linear-Constraints-IRS

LEMMA 4.6. Let e be a positive integer such that e < d/2. Suppose that a (badly formed) oracle U^* is e-close to a codeword $U \in L^m$ encoding $x \in \mathbb{F}^{m\ell}$ such that $Ax \neq b$. Then, for any malicious \mathcal{P} strategy, U^* is rejected by V except with at most $((e+k+\ell)/n)^t+1/|\mathbb{F}|$ probability.

Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon Code
Summary
Idea
Reading list for next week

Testing Quadratic Constraints over Interleaved Reed-Solomon Codes

Testing Quadratic Constraints over Interleaved Reed-Solomon Codes

We want to check $x\odot y+a\odot z=b$ for some known $a,b\in\mathbb{F}^{m\ell}$, where \odot denotes pointwise product. Letting $L=\mathrm{RS}_{\mathbb{E},n,k,\eta},\,U_a=\mathrm{Enc}(a)$ and $U_b=\mathrm{Enc}(b)$, this reduces to checking that $U^x\odot U^y+U^a\odot U^z-U^b$ encodes the all- 0 message $0^{m\ell}$

Idea Reading list for next week

Testing Quadratic Constraints over Interleaved Reed-Solomon Codes

 $\textbf{Test-Quadratic-Constraints-IRS}(\mathbb{F}, L = \mathsf{RS}_{\mathbb{F},n,k,\eta}, m, t, \zeta, a, b; U^x, U^y, U^z)$

- Oracle: Purported L^m-codewords U^x, U^y, U^z that should encode messages x, y, z ∈ F^{mℓ} satisfying x ⊙ y + a ⊙ z = b.
- Interactive testing:
 - Let U^a = Enc_ζ(a) and U^b = Enc_ζ(b).
 - (2) V picks a random linear combinations r ∈ F^m and sends r to P.
 - (3) P sends the 2k − 1 coefficients of the polynomial p₀ defined₁ by p₀(*) = ∑_{i=1}^m r_i·p_i(*), where p_i(*) = p_i^π(*), p_i^p(*) + p_i^p(*) + p_i^p(*) = p_i^π(*) + p_i^p(*) = p_i^π(*) + p_i^π(*) = q_i + p_i^π, p_i^p, p_i^π are the polynomials of degree < k corresponding to row i of Ux, Uy, Ux, and p_iⁿ, p_i^k are the polynomials of degree < ℓ corresponding to row i of Ux = q_i + q_i +
 - (4) V picks a random index set Q ⊂ [n] of size t, and queries U^x[j], U^y[j], U^z[j], j ∈ Q.
 - (5) V accepts if the following conditions hold:
 - (a) p₀(ζ_c) = 0 for every c ∈ [ℓ].
 - (b) For every $j \in Q$, it holds that

$$\sum_{i=1}^{m} r_{i} \cdot \left[U_{i,j}^{x} \cdot U_{i,j}^{y} + U_{i,j}^{a} \cdot U_{i,j}^{z} - U_{i,j}^{b} \right] = p_{0}(\eta_{j}).$$

Testing Quadratic Constraints over Interleaved Reed-Solomon Codes

Suppose U^x, U^y, U^z encode $x, ^1y, z$ such that $x \odot y + a \odot z \neq b$. Then, for any malicious $\mathcal P$ strategy, (U^{x*}, U^{y*}, U^{z*}) is rejected by $\mathcal V$ except with at most $1/|\mathbb F| + ((e+2k)/n)^t$ probability.

Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon Cod
Summary
Idea
Reading list for next week

Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon CodSummary
Idea
Reading list for next week

Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon CodSummary
Idea
Reading list for next week

Verifier

Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon Cod
Summary
Idea

Idea

Reading list for next week

if we arrange the wire values on a 3-dimension matrix say $(a \times b \times c)$ which again their multiplication should be larger than the size of the circuit, say $(a \times b \times c) > 3C$, then we can have $a = b = c = C^{1/3}$ or we can play with them to achieve the best. This might allow us to have smaller value for $O(b + \kappa a)$, say $O(b' + \kappa a')$ which $a' := O(C^{1/3})$.

Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon Code
Summary
Idea
Reading list for next week

now the point is that the prover cannot encode each row of the matrix with a standard RS code, as we have three dimensions ... to cope with this issue I was interested to think about 2-dimension RS codes

Testing Interleaved Linear Codes
Testing Linear Constraints over Interleaved Reed-Solomon Codes
Testing Quadratic Constraints over Interleaved Reed-Solomon CodSummary
Idea
Reading list for next week

Reading list for next week

- Two-dimensional generalized Reed-Solomon codes
- Ligero++