Advanced Algorithms Ex.2

Deadline: June 27

1 Tightness of Analysis

Metric TSP

Consider the following instance for the Metric TSP problem:

- Construct a graph G = (V, E, w) which is a path of n = 2k+1 vertices with edge weight 1 (i.e., for each $1 \le i < n : (v_i, v_{i+1}) \in E$ and $w(v_i, v_{i+1}) = 1$).
- For an $\varepsilon > 0$, augment G by adding edges with weights $1 + \varepsilon$ connecting vertices two steps apart (i.e., for each $1 \le i < n-1 : (v_i, v_{i+2}) \in E$ and $w(v_i, v_{i+2}) = 1 + \varepsilon$).
- Let G' = (V, E) with metric d defined by shortest paths among each pair of vertices over G, i.e., $d(u, v) = \delta_G(u, v)$.
- 1. Show and compare the results of the two algorithms we discussed in class ("twice MST" and Christofides's) to the optimal solution's cost.
- 2. Describe a function f(n) such that if $\varepsilon = f(n)$, then the analysis of Christofides's algorithm becomes tight as n grows.

Set Cover Problem

Consider the greedy algorithm described in class for the Set Cover problem, and show a family of instances (example for general n) such that the analysis is tight (the size of the greedy solution is $\Omega(|OPT| \cdot \log n)$.

Hint: Design an instance where $|\mathrm{OPT}|=2$ and the greedy always pick other sets than OPT

2 Approximations Algorithms & FPTAS

Bin Packing

Consider the following algorithm. Given an item, pack it in the last opened bin, if impossible, open a new bin. Denote the result of this scheme by ALG, and show that $|ALG| < 2 \cdot |OPT| - 1$.

Show that the analysis is tight.

One more Bin Packing for Dessert

Recall the rounding process we used in the bin-packing algorithm in class, for the case of items of size at least δ (where we created groups $G_1, \ldots, G_{\lceil \frac{n}{L} \rceil}$, deleted G_1 and made all the items in group G_i to equal the maximum). For input U, we created rounded input U' and proved $|OPT(U')| \leq |OPT(U)| \leq |OPT(U')| + k$.

Suppose that instead we use a rounding process somewhat similar to the one used in the Knapsack problem for creating new instance U': Specifically, for each item $u \in U$, round the weight w_u to the nearest multiple of $\frac{\delta}{k}$ (for some parameter k that will be determined later). That is, for $u \in U$ with $w_u \in (\frac{i-1}{k}\delta, \frac{i}{k}\delta]$, create an item $u' \in U'$ with new weight of $\frac{i}{k}\delta$.

- 1. Prove $|OPT(U)| \leq |OPT(U')|$.
- 2. What is the best upper bound you can prove on |OPT(U')| (and what k will you choose)?

Can you use it to get $1 + \Theta(\varepsilon)$ approximation for |OPT(U)|?

an alternative version for the question:

Recall the Bin-packing problem where all the items are of weight at least δ . Consider the following rounding algorithm: given

a set of items U, construct a new problem on a set of items U', where for every $u \in U$, we add an item u' to U' by rounding up to the closest multiple of $\frac{\delta}{k}. \text{ That it if } w_u \in (\frac{i-1}{k} \cdot \delta, \frac{i}{k} \cdot \delta],$ then we set $w_{u'} = \frac{i}{k} \cdot \delta$.

- 1. Prove that $|\operatorname{Opt}(U)| \leq |\operatorname{Opt}(U')|$.
- 2. Prove the best upper bound you can on |Opt(U')|. Specifically, show that $|\operatorname{Opt}(U')| \le t \cdot |\operatorname{Opt}(U)| + O(1)$ for t as small as you can (you can choose k).

Can you get arbitrarily good approximation? Specifically, can you prove that for every $\varepsilon > 0$, there is a choice of k such that

$$|\operatorname{Opt}(U')| \le (1+\varepsilon) \cdot |\operatorname{Opt}(U)| + O(1)$$
?