#### **SOLVING COMPLEX DATABASE QUESTIONS**

# **QUESTIONS:**

In not less than 10 pages with relevant examples each explain the following.

- 1. Cardinality
- 2. Entity, entity type and entity set
- 3. Schema
- 4. DBMS
- 5. RDBMS
- 6. Normalization
- 7. DDL, DML, DCL
- 8. Field, record, tuple and table
- 9. E-R model
- 10. Attributes and relations
- 11. Database transaction

#### 1. CARDINALITY

Cardinality refers to the uniqueness of data values contained in a particular column of a database table. There are 3 types of cardinality: high-cardinality, normal-cardinality, and low-cardinality.

It can simply be referred to as how each table links to another which could be one-to-one, one-to-many or many-to-many.

# 2 (a). ENTITY

An entity in relation to data modeling can be seen as a real world object with an independent existence which can be differentiated from other objects.

In relation to RDBMS, a particular record is called an entity, e.g., a student ID or a customer name is an entity.

# 2 (b). ENTITY TYPE

Entity refers to the category a particular entity belongs to.

There are 2 entity types which are *Tangible* and *Intangible* entity types with explanations below:

**Tangible Entity Type:** Tangible entity are real world things that exist physically and example of such are car, person, table, phone etc.

**Intangible Entity Type:** Intangible entity type are those entities that exists logically and have no physical existence, an example include: bank account.

**Example:** A table name students in a university database can be seen as an entity type.

# 2 (c). ENTITY SET

Entity set refers to a collection or set of all entities of a particular entity type at any point in time. The type of all the entities should be the same.

**Example:** The collection of all the data in a student table in the university database is an entity set.

### 3. SCHEMA

Schema in relation to database refers to how data is organized or constructed within a relational database.

This is inclusive of logical constrains such as table names, field, data types and the relationship between these entities.

### 4. DBMS

**DBMS** stands for database management system and these refer to the software system used to store, retrieve and query data.

**DBMS** can simply be seen as the user interface that allows users to create, read, update and delete data in a database.

**Example:** Some known examples of **DBMS** include MySQL, PostgreSQL, Oracle, Microsoft access, sql server etc.

## 5. RDBMS

**RDBMS** stands for relational database management system and this refers to the technology used to create, update, administer and interact with a relational database and **examples** of such includes Oracle, MySQL, Microsoft SQL server, IBM DB2 etc.

## 6. NORMALIZATION

Normalization in relation to data modeling refers to the organization of related data in a table which helps eliminate reduncy and increases data integrity in relational database.

An example of relational database normalization can be seen in the table below.

## **Customers Table**

| customerid | customername    | country        |
|------------|-----------------|----------------|
| 1          | Alex Jones      | United Kingdom |
| 2          | John Doe        | USA            |
| 3          | Maria Rodriguez | Spain          |

# **Orders Table**

| customersid | orderid | orderdate  |
|-------------|---------|------------|
| 2           | 4       | 2022-24-06 |
| 4           | 9       | 2022-23-06 |

The relationship can be seen in the customersid field which is known as normalization in relational database.

# 7. DDL, DML, DCL

**DDL** stands for data definition language and it refers to the standard of commands used to define data structures and modify data and example includes: "CREATE", "DROP", "ALTER"

**DDM** stands for data manipulation language which refers to a subset of commands used in the manipulation of data in a relational database and examples include: "INSERT" "UPDATE" "DELETE"

**DCL** stands for data control language and this refers to commands used to control access (authorize) to data stored in a database and examples include: "GRANT", "REVOKE", "COMMIT"

# 8. FIELD, RECORD, TUPLE, TABLE

## **FIELD**

A field is an element in which one piece of information is store and example include: the name of a student under the studentname column in a students table.

### **RECORD**

A record can be seen as a group of fields within a table that are relevant to a specific entity.

#### **TUPLE**

A tuple is simply a row contained in a table in the table space.

### **TABLE**

Table in relation to relational database is a collection of data, organized in terms of rows and columns.

**Example:** A customers table that contains information such as first and last names, gender, e-mail addresses of the customers.

### 9. E-R MODEL

**ER** stands for entity relation and this describes the structure of a database with the help of a diagram, which is known as Entity Relationship Diagram (ER Diagram).

The diagram below is an entity relationship diagram which is an ER model.



### 10. ATTRIBUTES AND RELATIONS

#### **ATTRIBUTES**

Attributes are the properties which describe an entity in a relational database and a perfect example for that is a column in an entity table.

### **RELATIONS**

Relations are the established associations between two or more tables in a relational database.

# 11. DATABASE TRANSACTION

A transaction is a set of database read and write operations where either all or none of the operations succeed and a perfect example of that is a bank transfer transaction.