A 3-player game theoretic model of a choice between two queueing systems with strategic managerial decision making

Michalis Panayides

THIS.

Supervisors:

Dr. Vince Knight, Prof. Paul Harper

Queues - Custom network of queues

Queues - Custom network of queues

Parameters:

 \blacktriangleright λ_1 : Arrival rate of type 1 individuals

 \triangleright λ_2 : Arrival rate of type 2 individuals

 \blacktriangleright μ : Service rate

C: Number of servers

► T: Threshold

Steady state probabilities - Generator matrix

Steady state probabilities - Generator matrix (Q)

$$\pi = \begin{bmatrix} \pi_{(0,0)} & \pi_{(0,1)} & \pi_{(0,2)} & \dots & \pi_{(2,3)} & \pi_{(2,4)} \end{bmatrix}, \qquad \sum \pi_{(u,v)} = 1$$

 $\frac{d\pi}{dt} = \pi Q = 0$

Game - Definition

Game - Players and objectives

Game - Players and objectives

Performance Measures - Blocking time

$$B = \frac{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)} \ b(u,v)}{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)}}$$

Performance Measures - Proportion within time

$$P(W < t) = \frac{\lambda_1 P_{L_1'}}{\lambda_2 P_{L_2'} + \lambda_1 P_{L_1'}} P(W^{(1)} < t) + \frac{\lambda_2 P_{L_2'}}{\lambda_2 P_{L_2'} + \lambda_1 P_{L_1'}} P(W^{(2)} < t)$$

$$P(W^{(1)} < t) = \frac{\sum_{(u,v) \in S_A^{(1)}} P(W_{(u,v)}^{(1)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(1)}} \pi_{u,v}}$$

$$P(W^{(2)} < t) = \frac{\sum_{(u,v) \in S_A^{(2)}} P(W_{(u,v)}^{(2)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(2)}} \pi_{u,v}}$$

Game - Players and objectives

Game - Strategies

 $p_A, p_B \in [0, 1]$ $p_A + p_B = 1$

$$T_A \in [1, N_A]$$

 $T_B \in [1, N_B]$

Game - Formulation

Game - Payoff matrices

$$A = \begin{pmatrix} U_{1,1}^A & U_{1,2}^A & \dots & U_{1,N_B}^A \\ U_{2,1}^A & U_{2,2}^A & \dots & U_{2,N_B}^A \\ \vdots & \vdots & \ddots & \vdots \\ U_{N_A,1}^A & U_{N_A,2}^A & \dots & U_{N_A,N_B}^A \end{pmatrix}, \quad B = \begin{pmatrix} U_{1,1}^B & U_{1,2}^B & \dots & U_{1,N_B}^B \\ U_{2,1}^B & U_{2,2}^B & \dots & U_{2,N_B}^B \\ \vdots & \vdots & \ddots & \vdots \\ U_{N_A,1}^B & U_{N_A,2}^B & \dots & U_{N_A,N_B}^B \end{pmatrix}$$

$$R = \begin{pmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,N_B} \\ p_{2,1} & p_{2,2} & \dots & p_{2,N_B} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N_A,1} & p_{N_A,2} & \dots & p_{N_A,N_B} \end{pmatrix}$$

Ambulance's Decision

$$R = \begin{pmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,N_B} \\ p_{2,1} & p_{2,2} & \dots & p_{2,N_B} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N_A,1} & p_{N_A,2} & \dots & p_{N_A,N_B} \end{pmatrix}$$

Ambulance's Decision

$$T_A = 3$$
 $T_B = 2$
 $\rightarrow \begin{pmatrix} - & - & - & - \\ - & - & - & - \\ - & x & - & - \\ - & - & - & - \end{pmatrix}$
 $\rightarrow B_A(p_A) = B_B(1 - p_A)$

Hospitals' Decision

$$A = \begin{pmatrix} U_{1,1}^A & U_{1,2}^A & \dots & U_{1,N_B}^A \\ U_{2,1}^A & U_{2,2}^A & \dots & U_{2,N_B}^A \\ \vdots & \vdots & \ddots & \vdots \\ U_{N_A,1}^A & U_{N_A,2}^A & \dots & U_{N_A,N_B}^A \end{pmatrix}, \quad B = \begin{pmatrix} U_{1,1}^B & U_{1,2}^B & \dots & U_{1,N_B}^B \\ U_{2,1}^B & U_{2,2}^B & \dots & U_{2,N_B}^B \\ \vdots & \vdots & \ddots & \vdots \\ U_{N_A,1}^B & U_{N_A,2}^B & \dots & U_{N_A,N_B}^B \end{pmatrix}$$

$$U_{T_A, T_B}^{(i)} = 1 - \left[(P(X^{(i)} < t) - 0.95)^2 \right]$$

Nash Equilibrium

$$R = \begin{pmatrix} 0.5 & 0.1 & 0 & 0 \\ 0.9 & 0.5 & 0.2 & 0 \\ 1 & 0.8 & 0.5 & 0.3 \\ 1 & 1 & 0.7 & 0.5 \end{pmatrix}$$

$$A = \begin{pmatrix} 0.99998394 & 0.99998394 & 0.99998394 & 0.99998394 \\ 0.99998955 & 0.99998848 & 0.99998649 & 0.9999845 \\ 0.99999952 & 0.9999987 & 0.99999596 & 0.99999199 \\ 0.99994372 & 0.99995113 & 0.99998603 & 0.99999911 \end{pmatrix}$$

$$B = \begin{pmatrix} 0.99998394 & 0.99998955 & 0.99999952 & 0.99994372 \\ 0.99998394 & 0.99998848 & 0.9999987 & 0.99995113 \\ 0.99998394 & 0.99998649 & 0.99999596 & 0.99998603 \\ 0.99998394 & 0.9999845 & 0.99999199 & 0.99999911 \end{pmatrix}$$

Nash Equilibria:
$$(0, 0, 0.4, 0.6)$$
 $(0, 0, 0.4, 0.6)$

Asymmetric Replicator Dynamics

$$\frac{dx}{dt_i} = x_i((f_x)_i - \phi_x), \quad \text{for all } i$$

$$\frac{dy}{dt_i} = y_i((f_y)_i - \phi_y), \quad \text{for all } i$$

Inefficiency measure

$$PoA = \frac{\max_{s \in E} Cost(s)}{\min_{s \in S} Cost(S)}$$

Inefficiency measure

$$PoA = \frac{\max_{s \in E} Cost(s)}{\min_{s \in S} Cost(S)}$$

$$PoA_A(s_r) = \frac{Cost(s_r)}{\min_{s \in S} Cost(S)}, \qquad PoA_B(s_c) = \frac{Cost(s_c)}{\min_{s \in S} Cost(S)}$$

Learning algorithms - Asymmetric replicator dynamics

Inefficiencies can be learned and emerge naturally

Learning algorithms - Asymmetric replicator dynamics

Targeted incontinication of

Targeted incentivisation of behaviours can help escape

learned inefficiencies

Thank you!

"Inefficiencies can be learned and emerge naturally"

"Targeted incentivisation of behaviours can help escape learned inefficiencies"

\$ pip install ambulance_game
https://github.com/11michalis11/AmbulanceDecisionGame

PanayidesM@cardiff.ac.uk

☑ @Michalis_Pan

© @11michalis11