Seminář 1: Očekávání v ekonomii JEB010 Makroekonomie II

Institut ekonomických studií Fakulta sociálních věd Univerzita Karlova

jeb010makro2@seznam.cz

Anna Umlaufová

Organizace a hodnocení seminářů

- Semináře
 - Úterý 17:00, 206 a online
- Výuka probíhá s pomocí Moodle
- Registrace do kurzu: JEB010 Makroekonomie II
- Komunikace: emailem na jeb010makro2@seznam.cz
- Dotazy k seminářům: emailem na anna.umlaufova@cnb.cz
- Maximální počet bodů z předmětu: 100

Domácí úkol	max. 10 bodů
Kvízy	max. 10 bodů
Midterm	max. 40 bodů
Final	max. 40 bodů

Předběžný harmonogram

Téma	Přednáška	Seminář
Očekávání v ekonomii	út 20.2.	20.2. a 22.2.
Modely agregátní nabídky	út 27.2.	27.2. a 29.2.
Teorie RBC	út 5.3.	5.3. a 7.3.
Teorie RBC	út 12.3.	12.3. a 14.3.
Nová keynesiánská teorie	út 19.3.	19.3. a 21.3.
Model DAS-DAD	út 26.3.	
Inflace	út 2.4.	2.4. a 4.4.
Midterm	út 9.4.	
Nezaměstnanost	út 16.4.	16.4. a 18.4.
Spotřeba	út 23.4.	23.4. a 25.4.
Investice, Solow model	út 30.4.	30.4. a 2.5.
Hospodářská politika	út 7.5.	
Final (předtermín)	čt 16.5.	

Domácí úkol

- deadline na konci dubna
- max. 10 bodů
- odevzdání emailem

Kvízy

- na vybraných seminářích (pravděpodobně 15.3. a 19.4. podle času)
- max. 5 bodů / kvíz
- příprava na midterm a final

Adaptivní očekávání + permanentní poptávkový šok

Předpokládejme, že očekávání ohledně budoucích cen jsou adaptivní a jsou tvořena podle $p_t^{e(t-1)} = p_{t-1} + \Theta\left(p_{t-1}^{e(t-2)} - p_{t-1}\right)$, kde $\Theta \in (0;1)$ je faktor učení.

Až do okamžiku t-t je rovnovážná cena konstantní, rovná p. V okamžiku t nastává poptávkový šok a rovnovážná cena vzroste o ϵ . Šok je trvalý (perzistentní), a cena proto na této úrovni zůstane i nadále.

- 1. Jaká je očekávaná cena pro období t vzhledem k informacím dostupným v období t-1? (tj. jaká je $p_t^{e(t-1)}$?)
- 2. Jaká je očekávaná cena pro období t+1 vzhledem k informacím dostupným v období t? (tj. jaká je $p_{t+1}^{e(t)}$?)
- 3. Jaká je očekávaná cena pro $t \to \infty$?
- Jaká musí být hodnota Θ, aby se očekávání ihned dostala do nové rovnováhy? (tj. jaké je Θ*?)

Adaptivní očekávání + permanentní poptávkový šok

1.
$$p_t^{e(t-1)} = p$$

2. $p_{t+1}^{e(t)} = p + (1 - \Theta) \cdot \epsilon$
3. $p_{t+n}^{e(t+n-1)} = p + (1 - \Theta^n) \cdot \epsilon$
4. $\Theta^* = 0$

Adaptivní očekávání + dočasný poptávkový šok

Řeště otázky 1.-4. pro případ, že poptávkový šok v období t z předchozího příkladu má pouze dočasný charakter.

- 1. Jaká je očekávaná cena pro období t vzhledem k informacím dostupným v období t-1? (tj. jaká je $p_t^{e(t-1)}$?)
- 2. Jaká je očekávaná cena pro období t+1 vzhledem k informacím dostupným v období t? (tj. jaká je $p_{t+1}^{e(t)}$?)
- 3. Jaká je očekávaná cena pro $t \to \infty$?
- Jaká musí být hodnota Θ, aby se očekávání ihned dostala do nové rovnováhy? (tj. jaké je Θ*?)

Adaptivní očekávání + permanentní poptávkový šok

1.
$$p_t^{e(t-1)} = p$$

2. $p_{t+1}^{e(t)} = p + (1 - \Theta) \cdot \epsilon$
3. $p_{t+n}^{e(t+n-1)} = p$
4. $\Theta^* = 1$

Učení se z chyby jako speciální případ adaptivních očekávání

Ukažte, že výraz pro adaptivní očekávání s faktorem učení

$$p_t^{e(t-1)} = p_{t-1} + \Theta \; (p_{t-1}^{e(t-2)} - p_{t-1})$$
 , kde $\Theta \in (0;1),$

je speciálním případem obecné formy tvorby očekávání

$$p_t^{e(t-1)} = \sum_{i=1}^{\infty} p_{t-i} w_i$$
, kde $\sum_{i=1}^{\infty} w_i \le 1$

Najděte řadu koeficientů $(w_i)_{i=1}^{\infty}$, pro které jsou obě formulace ekvivalentní.

Učení se z chyby jako speciální případ adaptivních očekávání

$$p_t^{e(t-1)} = (1 - \Theta) \cdot \sum \Theta^{i-1} \cdot p_{t-i}$$

$$kde \sum w_i = (1 - \Theta) \cdot \sum \Theta^{i-1}$$