(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 12 décembre 2002 (12.12.2002)

PCT

(10) Numéro de publication internationale WO 02/098865 A2

(51) Classification internationale des brevets⁷:

C07D 243/02

(21) Numéro de la demande internationale :

PCT/FR02/01952

- (22) Date de dépôt international: 7 juin 2002 (07.06.2002)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 01/07458 7 juin 2001 (07.06.2001) FR
- (71) Déposant (pour tous les États désignés sauf US): NEURO3D [FR/FR]; 12, allée Nathan Katz, F-68100 Mulhouse (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): BOUR-GUIGNON, Jean-Jacques [FR/FR]; 14, rue du Bruhly, F-67150 Hipsheim (FR). LAGOUGE, Yan [FR/FR]; 16, cité Spach, F-67000 Strasbourg (FR). LUGNIER, Claire [FR/FR]; 37, rue d'Ypres, F-67000 Strasbourg (FR). KLOTZ, Eveline [FR/FR]; 12, rue de la Bruche, F-67190 Mutzig (FR). MACHER, Jean-Paul [FR/FR]; 16, rue de l'Eglise, F-68500 Bergholtz-Zell (FR). RABOISSON, Pierre [FR/FR]; 36, rue de la Chênaie, F-67201 Eckbolsheim (FR). SCHULTZ, Dominique [FR/FR]; 7, rue des Roseaux, F-67400 Illkirch (FR).

- (74) Mandataires: TEZIER HERMAN, Béatrice etc.; Becker et Associes, 35, rue des Mathurins, F-75008 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Déclaration en vertu de la règle 4.17 :

— relative à la qualité d'inventeur (règle 4.17.iv)) pour US seulement

Publiée:

 sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: CYCLIC NUCLEOTIDE PHOSPHODIESTERASE INHIBITORS, PREPARATION AND USES THEREOF

(54) Titre: INHIBITEURS DES PHOSPHODIESTERASES DES NUCLEOTIDES CYCLIQUES, PREPARATION ET UTILI-SATIONS DE CES INHIBITEURS

- (57) Abstract: The invention concerns novel benzodiazepinone derivatives and their uses in therapy particularly for treating pathologies involving the activity of a phosphodiesterase of cyclic nucleotides. The invention also concerns methods for preparing them and novel synthesis intermediates. The inventive compounds more particularly correspond to general formula (I).
- (57) Abrégé: L'invention concerne de nouveaux dérivés de type benzodiazépinones et leurs applications dans le domaine thérapeutique tout particulièrement pour le traitement de pathologies impliquant l'activité d'une phosphodiestérase de nucléotides

cycliques. Elle concerne également des procédés pour leur préparation et de nouveaux intermédiaires de synthèse. Les composés de l'invention répondent plus particulièrement à la formule générale (I):

1

Inhibiteurs des phosphodiestérases des nucléotides cycliques, préparation et utilisations de ces inhibiteurs

L'invention concerne de nouveaux dérivés de benzodiazépinones et leurs applications dans le domaine thérapeutique tout particulièrement pour le traitement de pathologies impliquant l'activité d'une phosphodiestérase de nucléotides cycliques. Elle concerne également des procédés pour leur préparation et de nouveaux intermédiaires de synthèse.

Les composés dont la synthèse est décrite dans la présente invention sont nouveaux et présentent des propriétés pharmacologiques très intéressantes : ce sont des inhibiteurs des phosphodiestérases des nucléotides cycliques et tout particulièrement de l'AMPc-phosphodiestérase de type 4 (PDE4), et à ce titre, ils présentent des applications thérapeutiques très intéressantes.

Les fonctions de la plupart des tissus sont modulées par des substances endogènes (hormones, transmetteurs, etc.) ou exogènes. Certaines de ces substances voient leur effet biologique relayé au niveau intracellulaire par des effecteurs enzymatiques, comme l'adénylate cyclase ou la guanylate cyclase. La stimulation de ces enzymes entraîne une élévation des taux intracellulaires d'AMP cyclique (AMPc) ou de GMP cyclique (GMPc), seconds messagers impliqués dans la régulation de nombreuses activités cellulaires. Ces nucléotides cycliques sont dégradés par une famille d'enzymes, les phosphodiestérases (PDE), divisée en au moins 7 groupes. L'un d'entre eux, la PDE4, est présente dans de très nombreux tissus (cœur, cerveau, muscle lisse vasculaire ou trachéobronchique, etc...) et hydrolyse spécifiquement l'AMP cyclique.

Les inhibiteurs de PDE4, en ralentissant la dégradation de l'AMP cyclique, augmentent ou maintiennent le taux d'AMPc dans les cellules, et trouvent leur application en particulier dans le traitement de maladies inflammatoires ou de pathologies de la musculature lisse trachéobronchique, en associant à la fois un effet anti-inflammatoire à une relaxation du muscle lisse.

30

5

10

15

20

25

La demanderesse a maintenant mis en évidence les effets inhibiteurs de phosphodiestérases de nucléotides cycliques de certaines benzodiazépines ou benzodiazépinones, notamment inhibiteurs de la PDE4. L'invention décrit également de

nouveaux composés présentant une puissante activité inhibitrice de la PDE4, et possèdant préférentiellement un excellent profil de sélectivité vis-à-vis des autres isoformes de PDE, notamment une action faible sur la PDE3. En outre, les composés préférés selon l'invention possèdent des propriétés anti-inflammatoires pouvant être utilisées à ce titre pour traiter des désordres du système nerveux central ou périphérique, et sont avantageusement dénués d'effets hypotenseurs ou émétiques.

L'invention a plus particulièrement pour objet des composés de formule générale (I)

10 dans laquelle:

. soit X représente un groupe NR₄ et Y représente un groupe CR₆R₆', R₄, R₆ et R₆' étant tels que définis ci-après,

15 . soit X représente un groupe CR₄R₄' et Y représente un groupe NR₆, R₄, R₄' et R₆ étant tels que définis ci-après,

. Z représente un atome d'oxygène ou de soufre.

20 . R₁ est un groupe (C₁-C₁₂) alkyle, (C₃-C₆) cycloalkyle, (C₆-C₁₈) aryle, (C₆-C₁₈) aryle, (C₁-C₁₂) alkyle, (C₁-C₁₂) alkyle, (C₁-C₁₈) aryle, un hétérocycle en (C₅-C₁₈), aromatique ou non, comportant 1 à 3 hétéroatomes, ou un groupe OR₂, SR₂ ou NR₂R₃ dans lequel (i) R₂ et R₃, indépendamment l'un de l'autre, sont choisis parmi un atome d'hydrogène, un groupe (C₁-C₆) alkyle, (C₃-C₆) cycloalkyle, (C₆-C₁₂) aryle, ou un hétérocycle en (C₅-C₁₂), aromatique ou non, comportant 1 à 3 hétéroatomes ou, (ii) R₂ et R₃ forment ensemble une chaîne hydrocarbonée linéaire ou ramifiée ayant de 2 à 6 atomes de carbone, comportant éventuellement une ou plusieurs doubles liaisons et/ou éventuellement interrompue par un atome d'oxygène, de soufre ou d'azote;

3

. R₄ et R₄', identiques ou différents, représentent un groupe (C₃-C₆) cycloalkyle, (C₆-C₁₈) aryle non substitué, (C₆-C₁₈)aryl(C₁-C₄)alkyle, (C₁-C₁₂)alkyl(C₆-C₁₈)aryle ou un hétérocycle en (C₅-C₁₈), aromatique ou non, comportant 1 à 3 hétéroatomes, et, lorsque X est le groupe CR₄R₄', R₄ et R₄', identiques ou différents, sont également choisis parmi l'atome d'hydrogène et un groupe (C₁-C₁₂) alkyle, (C₆-C₁₈) aryle, (C₂-C₆) alkényle, (C₂-C₆) alkynyle, NO₂, CF₃, CN, NR'R'', SR', OR', COOR', CONR'R'' ou NHCOR'R'', R' et R'', indépendamment l'un de l'autre, étant choisis parmi l'atome d'hydrogène, un groupe (C₁-C₆) alkyle, (C₁-C₆) alkoxy, (C₃-C₆) cycloalkyle, (C₆-C₁₂) aryle, et un hétérocycle en (C₅-C₁₂), aromatique ou non, comportant 1 à 3 hétéroatomes ;

10

5

. R_6 et R_6 ', identiques ou différents, sont choisis parmi l'atome d'hydrogène, un groupe (C_1-C_6) alkyle, (C_6-C_{18}) aryle, (C_6-C_{18}) aryle, (C_1-C_4) alkyle, (C_1-C_{12}) alkyl (C_6-C_{18}) aryle, de préférence un groupe phényle, benzyle et un groupe (C_1-C_6) alkylphényle;

15

. R₇ et R₈, indépendamment l'un de l'autre, sont choisis parmi l'atome d'hydrogène, un groupe (C₁-C₁₂) alkyle et un groupe OR₂, R₂ étant tel que défini ci-avant, avec la condition que R₇ et R₈ ne représentent pas simultanément un atome d'hydrogène, ou R₇ et R₈ forment ensemble une chaîne hydrocarbonée linéaire ou ramifiée ayant de 2 à 6 atomes de carbone, comportant éventuellement une ou plusieurs doubles liaisons et/ou éventuellement interrompue par un atome d'oxygène, de soufre ou d'azote

20

25

les groupes alkyle, alkényle, alkynyle, alkylaryle, aralkyle, cycloalkyle, aryle, phényle, hétérocycle et la chaîne hydrocarbonée définie ci-dessus étant éventuellement substitués par un ou plusieurs substituants, identiques ou différents, choisis de préférence parmi un atome d'halogène et un groupe (C_1-C_{12}) alkyle, (C_6-C_{18}) aryle, (C_2-C_6) alkényle, (C_2-C_6) alkynyle, hétérocycle, OH, =O, NO₂, NR'R'', CN, CF₃, COR', COOR', (C_1-C_6) alkoxy, $(di)(C_1-C_6)$ alkylamino, NHCOR' et CONR'R'', dans lesquels R' et R'' sont tels que définis ci-avant,

ainsi que leurs sels.

30

L'invention concerne également des compositions pharmaceutiques comprenant un ou plusieurs composés de formule générale (I) telle que définie ci-avant, et un véhicule ou un excipient acceptable sur le plan pharmaceutique.

4

L'invention concerne également l'utilisation des composés de formule générale (I) telle que définie ci-avant pour la préparation d'une composition pharmaceutique destinée à l'inhibition d'une phosphodiestérase des nucléotides cycliques, notamment de la phosphodiestérase 4 (PDE4). L'invention concerne plus particulièrement l'utilisation des composés ci-dessus pour le traitement des pathologies impliquant une dérégulation des taux intracellulaires d'AMP cyclique.

5

10

15

20

25

30

Selon l'invention, le terme "alkyle" désigne un radical hydrocarboné linéaire ou ramifié ayant avantageusement de 1 à 12 atomes de carbone, tel que méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, *tert*-butyle, pentyle, néopentyle, n-hexyle, n-décyle, n-dodécyle, etc. Les groupes en C₁-C₄ sont préférés. Les groupes alkyles peuvent être substitués par un groupe aryle tel que défini ci-après, auquel cas on parle de groupe arylalkyle. Des exemples de groupes arylalkyle sont notamment benzyle et phénétyle.

Le terme « cycloalkyle » désigne un système hydrocarboné cyclique, pouvant comprendre avantageusement de 3-6 atomes de carbone et être mono- ou poly-cyclique. On peut citer notamment les groupes cyclopropyle et cyclohexyle. Les groupes « aryle » sont des systèmes hydrocarbonés aromatiques mono-, bi- ou tri-cycliques, préférentiellement des systèmes hydrocarbonés aromatiques monocycliques ou bi-cycliques ayant de 6 à 18 atomes de carbone, encore plus préférentiellement 6 atomes de carbone. On peut citer par exemple les groupes phényle, naphtyle et bi-phényle.

Les groupes « hétérocycles » désignent des systèmes hydrocarbonés aromatiques ou non comprenant un ou plusieurs hétéroatomes cycliques. Il s'agit préférentiellement de systèmes hydrocarbonés cycliques comportant de 5 à 18 atomes de carbone et 1 ou plusieurs hétéroatomes cycliques, notamment de 1 à 3 ou à 4 hétéroatomes cycliques choisis parmi N, O ou S. Parmi les groupes hétérocycliques aromatiques (hétéroaryles) préférés, on peut citer notamment les groupes thiényle, benzothiényle, benzofuryle, naphtyle, pyridyle, pyrimidinyle, pyridazinyl, isoquinoléinyle, morpholino, thiazolyle, furyle, pyranyle, pyrrolyle, 2*H*-pyrrolyle, imidazolyle, benzymidazolyle, pyrazolyle, isothiazolyle, isoxazolyle et indolyle. Parmi les groupes hétérocycliques non-aromatiques préférés, on peut citer notamment les groupes pipéridinyle et pyrrolidinyle.

Les groupes aryles et hétérocycles peuvent être substitués par un radical OH, un groupe alkyle, alkényle ou alkynyle. Dans le cas d'un aryle ou d'un hétérocycle substitué par un groupe alkyle, on parle de groupe alkylaryle ou alkylhétérocycle. Des

10

15

20

25

30

PCT/FR02/01952

exemples de groupes alkylaryle sont notamment tolyle, mésythyle et xylyle. Dans le cas, d'un aryle ou d'un hétérocycle substitué par un groupe alkényle on parle de groupe alkénylaryle ou alkénylhétérocycle. Des exemples de groupes alkénylaryle sont notamment le groupe cinnamyle. Dans le cas d'un aryle ou d'un hétérocycle substitué par un groupe alkynyle, on parle de groupe alkynylaryle ou alkynylhétérocycle.

5

Les groupes aryles et hétérocycles peuvent également être substitués par un groupe choisi indépendamment parmi les groupes aryle ou hétérocycle, eux même éventuellement substitués par un ou plusieurs substituants choisis de préférence parmi un atome d'halogène ou un groupe NO₂, CN, CF₃, OR', COR', COR', alkoxy, NHCOR' et CONR'R'', R' et R'' étant tels que définis ci-avant.

Des exemples de groupes aryles et hétérocycles substitués par un groupe aryle ou hétérocycle sont notamment les groupes benzothiényle, benzofuryle, furylphényle, benzyloxynaphtyle, pyridylphényle, phénylphényle et thiénylphényle. Comme indiqué, les groupes ci-dessus peuvent être substitués. On peut citer à cet égard les groupes phényle substitués par un groupe phényle lui-même substitué par un atome d'halogène, un groupe NO₂, CF₃, méthoxy ou méthyle.

Les groupes « alkényles » sont des radicaux hydrocarbonés linéaires ou ramifiés comportant une ou plusieurs double-liaisons, comme par exemple le groupe allyle. Ils comportent avantageusement de 2 à 6 atomes de carbone et, préférentiellement, 1 ou 2 double-liaisons. Les groupes alkényles peuvent être substitués par un groupe aryle tel que défini ci-avant, auquel cas on parle de groupe arylalkényle.

Les groupes « alkynyles » sont des radicaux hydrocarbonés linéaires ou ramifiés comportant une ou plusieurs triple-liaisons, comme par exemple le groupe 3-(benzyloxy)prop-1-ynyle, phényléthynyle, prop-2-ynyle et tert-butyl-prop-2-ynylcarbamate. Ils comportent avantageusement de 2 à 6 atomes de carbone et, préférentiellement, 1 ou 2 double-liaisons. Les groupes alkynyles peuvent être substitués par un groupe aryle tel que défini ci-avant, auquel cas on parle de groupe arylalkynyle.

Les groupes « alkoxy » correspondent aux groupes alkyle et cycloalkyle définis ci-dessus reliés au noyau par l'intermédiaire d'une liaison -O- (éther). On préfère tout particulièrement les groupes méthoxy ou éthoxy.

Par « halogène », on entend un atome de fluor, de chlore, de brome ou d'iode. Par « hétéroatome », on entend un atome choisi parmi O, N et S. L'invention a tout particulièrement pour objet des composés de formule générale (I) ci-avant dans laquelle X est le groupe CR₄R₄' et Y est un groupe NR₆. De tels composés sont représentés par la formule (II) ci-après :

5

$$R_{6}$$
 R_{7}
 R_{8}
 R_{1}
 R_{4}
 R_{4}
 R_{4}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 R_{7}
 R_{7}
 R_{8}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{5

dans laquelle R₁, R₄, R₆, R₇ et R₈ sont tels que définis ci-dessus. De tels composés possèdent des propriétés d'inhibition particulièrement prononcée et préférentielle de la phosphodiestérase 4.

10

L'invention a également pour objet particulier des composés de formule générale (I) ci-avant dans laquelle X est le groupe NR_4 et Y est le groupe CR_6R_6 . De tels composés sont représentés par la formule (III) ci-après :

15

dans laquelle R₁, R₄, R₆, R₆, R₇ et R₈ sont tels que définis ci-dessus. De tels composés possèdent des propriétés d'inhibition particulièrement prononcée et préférentielle de la phosphodiestérase 4.

- 20 Des composés particuliers au sens de l'invention sont ceux dans lesquels :
 - Z est l'atome d'oxygène et/ou
 - R₇ et R₈, indépendamment l'un de l'autre, représentent un groupe OR₂ dans lequel R₂ est un groupe (C₁-C₆) alkyle, de préférence un groupe éthyle ou méthyle, et/ou

10

20

- R₇ représente un atome d'hydrogène et R₈ représente un atome d'halogène ou inversement, et/ou
- R₇ et R₈ représentent tous deux un groupe éthoxy ou méthoxy, et/ou
- R₆ et R₆', identiques ou différents, représentent l'atome d'hydrogène ou un groupe (C₁-C₆) alkyle, et/ou
- R₆ représente l'atome d'hydrogène ou un groupe (C₁-C₆) alkyle et R₆' est l'atome d'hydrogène, et/ou
- X est le groupe CR₄R₄' dans lequel R₄ et R₄', identiques ou différents, représentent un groupe (C₁-C₁₂) alkyle ou (C₆-C₁₈)aryl(C₁-C₄)alkyle, éventuellement substitué par un ou plusieurs substituants, identiques ou différents, choisis parmi un atome d'halogène et un groupe OH, =O, NO₂, NH₂, CN, CF₃, COR', COOR', (C₁-C₆)alkoxy, (di)(C₁-C₆)alkylamino, NHCOR' et CONR'R'', dans lesquels R' et R'' sont tels que définis ci-avant, et/ou
- R₄' est l'atome d'hydrogène, et/ou
 - X est le groupe CR₄R₄' dans lequel R₄ représente un groupe (C₁-C₁₂) alkyle ou (C₆-C₁₈)aryl(C₁-C₄)alkyle, plus particulièrement benzyle, éventuellement substitué par un ou plusieurs substituants, identiques ou différents, choisis parmi un atome d'halogène et un groupe OH, =O, NO₂, NH₂, CN, CF₃, COR', COOR', (C₁-C₆)alkoxy, (di)(C₁-C₆)alkylamino, NHCOR' et CONR'R'', dans lesquels R' et R'' sont tels que définis ci-avant, et R₄' est l'atome d'hydrogène, et/ou
 - X est le groupe CR₄R₄, dans lequel R₄ et R₄, sont un atome d'hydrogène, et/ou
- R₁ est un groupe (C₆-C₁₈) aryle, plus particulièrement phényle, (C₆-C₁₈)aryl(C₁-C₄)alkyle, plus particulièrement benzyle, (C₁-C₁₂)alkyl(C₆-C₁₈)aryle ou un hétérocycle en (C₅-C₁₈), aromatique ou non, comportant 1 à 3 hétéroatomes, éventuellement substitué.
- 30 Une famille de composés particulière est représentée par les composés de formule générale (II) telle que définie ci-avant dans laquelle R₄ et R₄' représentent l'atome d'hydrogène.

10

15

20

25

30

Une famille de composés particulière est représentée par les composés de formule générale (II) telle que définie ci-avant dans laquelle R₇ et R₈ forment ensemble une chaîne hydrocarbonée, comme par exemple la chaîne –O-CH₂-CH₂-O-.

Une autre famille comprend les composés de formule générale (I) dans laquelle X est le groupe CR_4R_4 ', Y est le groupe NR_6 , Z est l'atome d'oxygène, R_7 et R_8 représentent, indépendamment l'un de l'autre, un groupe OR_2 dans lequel R_2 est un groupe (C_1-C_6) alkyle, R_6 représente l'atome d'hydrogène ou un groupe (C_1-C_6) alkyle et R_4 et R_4 ' représentent l'atome d'hydrogène.

Une autre famille comprend les composés de formule générale (I) dans laquelle X est le groupe CR_4R_4 ', Y est le groupe NR_6 , Z est l'atome d'oxygène, R_7 représente un atome d'hydrogène et R_8 représente un atome d'halogène ou inversement.

Une autre famille comprend les composés de formule générale (I) dans laquelle X est le groupe NR₄, Y est le groupe CR₆R₆, Z est l'atome d'oxygène, R₇ et R₈ représentent, indépendamment l'un de l'autre, un groupe OR₂ dans lequel R₂ est un groupe (C₁-C₆) alkyle, R₆ et R'₆, identiques ou différents, représentent l'atome d'hydrogène ou un groupe (C₁-C₆) alkyle et R₄ représente un groupe (C₁-C₁₂) alkyle ou (C₆-C₁₈)aryl(C₁-C₄)alkyle, éventuellement substitué par un ou plusieurs substituants, identiques ou différents, choisis parmi un atome d'halogène et un groupe OH, =O, NO₂, NH₂, CN, CF₃, COR', COOR', (C₁-C₆)alkoxy, (di)(C₁-C₆)alkylamino, NHCOR' et CONR'R'', dans lesquels R' et R'' sont tels que définis ci-avant.

Une autre famille comprend les composés de formule générale (I) dans laquelle X est le groupe CR_4R_4 ', Y est le groupe NR_6 , Z est l'atome d'oxygène, R_7 représente un atome d'hydrogène et R_8 représente un radical OR_2 dans lequel R_2 est un groupe (C_1 - C_6) alkyle.

De manière préférée, dans les composés de formule générale (I), (II) et (III) selon l'invention et dans les familles particulières mentionnées ci-avant, les groupes R₇ et R₈ représentent, indépendamment l'un de l'autre, un groupe méthoxy ou éthoxy, plus préférentiellement, ils représentent tous deux un groupe méthoxy ou éthoxy.

De manière préférée, dans les composés de formule générale (I), (II) et (III) selon l'invention et dans les familles particulières mentionnées ci-avant, les groupes R₆ et R₆', égaux ou différents, représentent un atome d'hydrogène ou un groupe méthyle, éthyle ou n-propyle. Selon une variante particulièrement avantageuse, dans les composés de formule générale (I), (II) et (III) selon l'invention et dans les familles particulières

WO 02/098865

PCT/FR02/01952

mentionnées ci-avant, le groupe R_6 représente un atome d'hydrogène ou un groupe méthyle, éthyle ou n-propyle et le groupe R_6 ' est un atome d'hydrogène. Selon une autre variante particulièrement avantageuse, dans les composés de formule générale (I), (II) et (III) selon l'invention et dans les familles particulières mentionnées ci-avant, les groupes R_6 et R_6 ', égaux ou différents, représentent un groupe méthyle ou éthyle.

9

A titre d'exemples préférés, dans les composés de formule générale (I), (II) et (III) selon l'invention et dans les familles particulières mentionnées ci-avant, R₄' est l'atome d'hydrogène et, lorsque R₄ n'est pas un atome d'hydrogène, R₄ représente plus préférentiellement un groupe méthyle, éthyle, n-propyle, n-dodécyle ou benzyle.

10

15

20

25

30

5

Comme indiqué, dans les composés de formule générale (I), (II) et (III) selon l'invention et dans les familles particulières mentionnées ci-avant, R₁ représente avantageusement un groupe (C₆-C₁₈) aryle, (C₆-C₁₈) aryl(C₁-C₄) alkyle, (C₁-C₁₂) alkyl(C₆-C₁₈) aryle ou un hétérocycle en (C₅-C₁₈), aromatique ou non, comportant 1 à 3 hétéroatomes, ledit groupe ou hétérocycle étant éventuellement substitué.

Selon une première variante de l'invention, R₁ est un groupe phényle, notamment un phényle substitué, de préférence un groupe phényle substitué par :

- (a) un ou plusieurs atomes d'halogène, en particulier de chlore, de brome ou d'iode, de préférence de chlore, ou
- (b) un ou plusieurs groupes OR', en particulier méthoxy ou éthoxy, ou
 - (c) un groupe COR', en particulier acétyle, ou
 - (d) un groupe trifluorométhyle, ou
 - (e) un groupe alkyle ou alkynyle, par exemple heptinyle, ou
- (f) un groupe aryle ou hétérocycle, notamment un groupe phényle, furyle, pyridyle ou thiényle, ledit aryle ou hétérocycle étant lui-même éventuellement substitué par un ou plusieurs groupes choisis de préférence parmi les groupes (a)-(e).

Selon une autre variante particulière de l'invention, R₁ est un hétérocycle aromatique, notamment napthyle, thiényle, furyle, indolyle ou pyridyle, éventuellement substitué par un ou plusieurs groupes choisis de préférence parmi les groupes (a)-(f) cidessus. Selon une variante spécifique, R₁ est un groupe napthyle éventuellement substitué par un ou plusieurs groupes choisis parmi les groupes (a)-(f) ci-dessus.

Selon une autre variante particulière de l'invention, R₁ est un hétérocycle nonaromatique, notamment pipéridinyle ou isoquinoléinyle, éventuellement substitué par un ou plusieurs groupes choisis de préférence parmi les groupes (a)-(f) ci-dessus.

Des exemples spécifiques de groupes R₁ particulièrement avantageux pour la mise en œuvre de l'invention sont les groupes 4-chlorophényle, 3,4-dichlorophényle, 2-naphthyle, 2-benzo[b]thiényle, 4-(2-furyl)phényle, 3-pyridyl et 3-trifluorométhylphényle.

- 10 Les composés tout particulièrement préférés sont les suivants :
 - 7,8-diméthoxy-1-(2-naphthyl)-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 1-(4-chlorophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 1-(2-benzo[b]thiényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-benzodiazépin -4-
- 15 one.
 - 1-[4-(2-furyl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-méthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one.
 - 1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-éthyl-3-méthyl-3,5-dihydro-4H-2,3-
- 20 benzodiazépin-4-one.
 - 1-(4-chlorophényl)-7,8-diéthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 5-(4-chlorophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.

D'autres composés particuliers au sens de l'invention sont les composés suivants :

- 25
- 7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3,5-dihydro-4H-2,3-benzodiazépin-4-one.
- 1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-*n*-propyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 30 7,8-diméthoxy-3-méthyl-1-(1-naphthyl)-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 3-benzyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin -4-one.
 - 3-dodécyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.

- 7,8-diméthoxy-3-(12-méthoxy-12-oxododécyl)-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 3-éthyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 7,8-diméthoxy-1-phényl-3-n-propyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one.
- 5 1-(4-iodophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one. 7,8-diméthoxy-1-[4-(2-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 7,8-diméthoxy-1-[4-(3-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 10 1-[4-(3-acétylphényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 7,8-diméthoxy-3-méthyl-1[4-(3-pyridyl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 1-[4-(4-acétylphényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-
- 15 benzodiazépin-4-one.
 - 1-[4-(3-acétamidophényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - $1-(4-bromoph\'{e}nyl)-7, 8-dim\'{e}thoxy-3-m\'{e}thyl-3, 5-dihydro-4\textit{H}-2, 3-benzodiaz\'{e}pin-4-one.$
 - 7,8-diméthoxy-1-[4-(4-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4H-2,3-
- 20 benzodiazépin-4-one.
 - 1-[4-[3-(trifluorométhyl)phényl]phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 7,8-diméthoxy-3-méthyl-1-[4-(2-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 7,8-diméthoxy-3-méthyl-1-[4-(3-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 7,8-diméthoxy-3-méthyl-1-[4-(4-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 1-[4-(4-chlorophényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-
- 30 benzodiazépin-4-one.
 - 7,8-diméthoxy-3-méthyl-1-[4-(2-thiényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.

- 1-{4-[3,5-bis-(trifluorométhyl)phényl}-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 1-[4-(heptyn-1-yl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one.
- 7,8-diméthoxy-3-méthyl-1-[4-(3-nitrophényl)phényl]-3,5-dihydro-4H-2,3-5 benzodiazépin-4-one.
 - 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-éthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-méthyl-5-n-propyl-3,5-dihydro-4H-2,3benzodiazépin-4-one.
- 10 3,5-dibenzyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 7,8-diméthoxy-1-phényl-3-(3-hydroxypropyl)-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
 - 7,8-diméthoxy-1-méthyl-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 7,8-diméthoxy-5-(3,4-diméthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 5-(2-benzo[b]thiényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.
- 5-(2-benzo[b]furyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one. 15
 - 5-(2-furyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 5-(4-acétylphényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 7,8-diméthoxy-1-méthyl-5-(2-thiényl)-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 7,8-diméthoxy-5-(3-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.
- 7,8-diméthoxy-5-(2-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one. 20
 - 5-(5-indolyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 5-(6-benzyloxy-2-naphthyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2one.
 - 7,8-diméthoxy-5-(6-méthoxy-2-naphthyl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-
- 25 one.
 - 5-(2-indolyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 7,8-diméthoxy-1-méthyl-5-(pipéridin-1-yl)-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 7,8-diméthoxy-1-méthyl-5-(2-méthylphényl)-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 7,8-diméthoxy-5-(4-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.
- 5-(1,1'-biphényl-3-yl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-30 one
 - 5-(4-bromophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one

8-bromo-5-(4-bromophényl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
7-iodo-5-[3-(trifluorométhyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
7-méthoxy-5-[3-(trifluorométhyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one

- 5 1-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 7,8-diméthoxy-5-phényl-1-propyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 7,8-diéthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one éthyl (7,8-diéthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-1-yl)acétate 10-phényl-2,3,6,8-tétrahydro-7H-[1,4] dioxino [2,3-h][1,4]benzodiazépin-7-one 1-benzyl-7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 7,8-diéthoxy-3-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 3-benzyl-7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 1-éthyl-7,8-dihydroxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 5-(3-bromophényl)-7,8-diméthoxy-1-méthyl,3-dihydro-2H-1,4-benzodiazépin-2-one
 5-(3-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 5-(3-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one 5-{4-[3-(benzyloxy)prop-1-ynyl]phényl}-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - tert-butyl 3-[4-(1-éthyl-7,8-diméthoxy-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-5-yl)phenyl]prop-2-ynylcarbamate
- 5-(1,1'-biphényl-4-yl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one 3-(4-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 1-éthyl-7,8-diméthoxy-5-[4-(phényléthynyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 30 3-allyl-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one l-éthyl-7,8-diméthoxy-5-phényl-3-prop-2-ynyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one

- 1-éthyl-7,8-diméthoxy-5-[4-(2-phényléthyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- éthyl (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)acétate
- 5 1-éthyl-7,8-diméthoxy-5-[3-(phényléthynyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 5-(2-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)acetonitrile
- 3-(2-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-(4-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-[(3-bromophényl)(hydroxy)méthyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-
- 15 1,4-benzodiazépin-2-one
 - 3-(3-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-(1,1'-biphényl-4-ylméthyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 3-(1-benzyl-4-hydroxypipéridin-4-yl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-(4-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 25 yl)méthyl]benzonitrile
 - 3-benzyl-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 1-éthyl-7,8-diméthoxy-3-(2-méthoxybenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - $3-[(1-\acute{e}thyl-7,8-dim\acute{e}thoxy-2-oxo-5-ph\acute{e}nyl-2,3-dihydro-1H-1,4-benzodiaz\acute{e}pin-3-dihydro-1H-1,4-ben$
- 30 yl)méthyl]benzamide
 - 3-[3-(aminométhyl)benzyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one

15

- 3-(1,1'-biphényl-3-ylméthyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 3-benzyl-7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 2-(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 5 yl)acétamide
 - 3-(2-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 1-éthyl-7,8-diméthoxy-3-(2-méthylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 8-éthoxy-7-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 1-éthyl-7,8-diméthoxy-5-phényl-3-[3-(trifluorométhyl) benzyl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one 1-éthyl-7,8-diméthoxy-3-(3-méthoxybenzyl)-5-phényl-1,3-dihydro-2H-1,4-
- 15 benzodiazépin-2-one
 - 1-éthyl-7,8-diméthoxy-3-(4-méthylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-[1,2-bis(4-bromophényl)éthyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile
 - 2-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile
 - 3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 25 yl)méthyl]benzamide

benzodiazépin-2-one

- 8-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 8-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-5-(4-fluorophényl)-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 7,8-diméthoxy-1-méthyl-5-(4-pyridyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 7,8-diméthoxy-1-méthyl-5-(3, 5 bis trifluorométhylphényl)-1,3-dihydro-2H-1,4-

- 7,8-diméthoxy-5-(4-N,N-diméthylaminophényl)-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-1-méthyl-5-[(E)-2-phényléthènyl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 5 7,8-diméthoxy-1-méthyl-5-(2-phényléthynyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one 7,8-diméthoxy-1-méthyl-5-(N-tetrahydro-1,2,3,4-isoquinolyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-3-isobutyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-3-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 7,8-diméthoxy-3-(1H-imidazol-4-ylméthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-3-(1H-indol-3-ylméthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-3-(2-méthylthioéthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - (S) 3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - (S)-3-benzyl-7,8-diméthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-méthyl-5-(2-phényléthyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 20 (S)-butylcarbamate de (7,8-diméthoxy-5-phényl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl
 - (S)-3-(4-aminobutyl)-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - (S)-N-[4-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)butyl]acétamide
- 25 (S)-Bis trifluoroacetate de N-[4-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)butyl]guanidinium
 - 7,8-diméthoxy-1-éthyl-3-(2-nitrobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-(3,5-dibromobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-
- 30 benzodiazépin-2-one
 - 7,8-diméthoxy-3-(diphénylhydroxyméthyl)-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one

- 7,8-diméthoxy-1-éthyl-3-(E-3-phénylpropèn-2yl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-1-éthyl-3-(2-aminobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-1-(2-hydroxyéthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 3-(2-cyanobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - N-[2-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl]acétamide
- 3-(2-aminométhylbenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - [(7,8-diméthoxy-1-éthyl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benz-2-yl]carboxamide
 - N-[2-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 15 yl)benzyl]méthylacétamide
 - 7,8-diméthoxy-3,5-diphényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 3-(2,4-dichlorobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-
 - benzodiazépin-2-one
 3-(2,5-dichlorobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-
- 20 benzodiazépin-2-one
 - 3,5-diphényl-8-éthoxy-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 3-benzyl-8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 3-benzyl-8-éthoxy-1-éthyl-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-
 - one

25 3,5-diphényl-8-éthoxy-1-éthyl-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one 5-phényl-7-éthoxy-8-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one

Les composés de l'invention peuvent être sous forme de sels, notamment de sels d'addition basiques ou acides, préférentiellement compatibles avec un usage pharmaceutique. Parmi les acides pharmaceutiquement acceptables, on peut citer, à titre non limitatif, les acides chlorhydrique, bromhydrique, sulfurique, phosphorique, acétique, trifluoroacétique, lactique, pyruvique, malonique, succinique, glutarique, fumarique, tartrique, maléique, citrique, ascorbique, méthane ou éthanesulfonique,

camphorique, etc. Parmi les bases pharmaceutiquement acceptables, on peut citer à titre non limitatif, l'hydroxyde de sodium, l'hydroxyde de potassium, la triéthylamine, la *tert*-butylamine, etc.

L'invention a également pour objet une composition comprenant un composé tel que défini ci-dessus et un véhicule ou un excipient acceptable sur le plan pharmaceutique.

5

10

15

20

25

30

Les composés ou compositions selon l'invention peuvent être administrés de différentes manières et sous différentes formes. Ainsi, ils peuvent être administrés de manière systémique, par voie orale, par inhalation ou par injection, comme par exemple par voie intraveineuse, intra-musculaire, sous-cutanée, trans-dermique, intra-artérielle, etc., les voies intraveineuse, intra-musculaire, sous-cutanée, orale et par inhalation étant préférées. Pour les injections, les composés sont généralement conditionnés sous forme de suspensions liquides, qui peuvent être injectées au moyen de seringues ou de perfusions, par exemple. A cet égard, les composés sont généralement dissous dans des solutions salines, physiologiques, isotoniques, tamponnées, etc., compatibles avec un usage pharmaceutique et connues de l'homme du métier. Ainsi, les compositions peuvent contenir un ou plusieurs agents ou véhicules choisis parmi les dispersants, solubilisants, stabilisants, conservateurs, etc. Des agents ou véhicules utilisables dans des formulations liquides et/ou injectables sont notamment la méthylcellulose, l'hydroxyméthylcellulose, la carboxyméthylcellulose, le polysorbate 80, le mannitol, la gélatine, le lactose, des huiles végétales, l'acacia, etc.

Les composés peuvent également être administrés sous forme de gels, huiles, comprimés, suppositoires, poudres, gélules, capsules, aérosols, etc., éventuellement au moyen de formes galéniques ou de dispositifs assurant une libération prolongée et/ou retardée. Pour ce type de formulation, on utilise avantageusement un agent tel que la cellulose, des carbonates ou des amidons.

Il est entendu que le débit et/ou la dose injectée peuvent être adaptés par l'homme du métier en fonction du patient, de la pathologie concernée, du mode d'administration, etc. Typiquement, les composés sont administrés à des doses pouvant varier entre 0.1 μg et 100 mg/kg de poids corporel, plus généralement de 0,01 à 10 mg/kg, typiquement entre 0,1 et 10 mg/kg. En outre, des injections répétées peuvent être

10

15

20

25

30

réalisées, le cas échéant. D'autre part, pour des traitements chroniques, des systèmes retard ou prolongés peuvent être avantageux.

Les composés selon l'invention peuvent agir sur différentes phosphodiestérases des nucléotides cycliques, notamment la PDE4, et peuvent également présenter une action sur certains sous-types de PDE. Ainsi, quatre sous-types de la PDE4 ont été mis en évidence, désignés PDE4A-D. Les composés de l'invention peuvent présenter des effets biologiques particuliers selon le sous-type de PDE4 affecté. Ainsi, les composés de l'invention peuvent être des inhibiteurs (sélectifs) de PDE-4A, de PDE-4B, de PDE-4C et/ou de PDE-4D. Des composés de l'invention inhibiteurs de PDE-4B sont particulièrement intéressants pour le traitement de la composante inflammatoire de la dépression, de désordres psychiatriques ou de l'obésité, par exemple.

Les composés selon l'invention inhibiteurs de PDE4 sont particulièrement intéressants dans le traitement de pathologies concernant l'inflammation et la relaxation bronchique, et plus particulièrement dans l'asthme et les bronchopathies chroniques obstructives, mais également dans d'autres affections comme les rhinites, le syndrôme de détresse respiratoire aiguë, les allergies, les désordres cutanés, tels que les dermatites, le psoriasis, l'arthrite rhumatoïde, les maladies autoimmunes, les scléroses multiples (notamment la sclérose en plaques), les dyskinésies, les glomérulonéphrites, l'ostéoarthrite, le cancer, le choc septique, le sida ou l'obésité.

Les composés de l'invention sont également particulièrement intéressants pour le traitement de pathologies inflammatoires du système nerveux central, telles que plus spécifiquement pour le traitement d'une pathologie inflammatoire choisie parmi la dépression, la schizophrénie, le désordre bipolaire, les désordres de défaut d'attention, la fibromyalgie, l'épilepsie, la maladie d'Alzheimer, la maladie de Parkinson, la sclérose latérale amyotrophique, la sclérose multiple et la démence des corps de Lewy (« Lewy body dementia »).

L'invention est également utilisable pour le traitement de pathologies inflammatoires telles que la maladie de Crohn.

Un objet particulier de l'invention réside donc dans l'utilisation des composés tels que décrits ci-avant pour la préparation d'un médicament destiné au traitement de

10

15

20

désordres inflammatoires du système nerveux, notamment central, de nature chronique ou aiguë.

Un objet plus particulier réside dans l'utilisation des composés tels que décrits ciavant pour la préparation d'un médicament destiné au traitement de pathologies inflammatoires du système nerveux central (e.g., neuro-inflammation).

Au sens de l'invention, le terme traitement désigne aussi bien un traitement préventif que curatif, qui peut être utilisé seul ou en combinaison avec d'autres agents ou traitements. En outre, il peut s'agir d'un traitement de troubles chroniques ou aiguës.

La présente invention a également pour objet l'utilisation des composés décrits comme agent anti-inflammatoire, par exemple pour le traitement de l'ostéoporose ou de l'arthrite rhumatoïde.

Les composés préférés de l'invention possèdent avantageusement une puissante activité inhibitrice d'un ou plusieurs sous-types de la PDE4. Les composés préférés de l'invention présentent en outre un profil de sélectivité avantageux, notamment une activité faible vis-à-vis de la PDE3.

Les composés de l'invention peuvent être préparés à partir de produits du commerce, en mettant en œuvre une combinaison de réactions chimiques connues de l'homme du métier.

Les figures 1 et 2 représentent des schémas réactionnels de synthèse des composés de formule (I).

A cet égard, selon un premier procédé, les composés de formule générale (III) selon l'invention dans lesquels Z est un atome d'oxygène peuvent être obtenus à partir d'un composé de formule (VI)

$$\begin{array}{c|c} R_{6}I_{1} & R_{6} & O \\ \hline R_{7} & N-H \\ \hline R_{8} & N \end{array}$$

$$(VI)$$

dans laquelle R₁ R₆, R_{6'}, R₇ et R₈ sont tels que définis ci-avant par réaction avec un halogénure d'alkyle en présence de carbonate de potassium à température ambiante. De préférence, la réaction est réalisée dans un solvant aprotique polaire, par exemple le DMF.

5

Les composés de formule générale (VI) peuvent être préparés par un procédé comprenant les étapes suivantes :

a) réaction d'un composé de formule générale (IV)

10

dans laquelle R₆, R₆, R₇ et R₈ sont tels que définis précédemment, avec un composé comprenant un groupe acyle de formule R₁CO pour obtenir un composé de formule (V)

O OMe
$$R_7 \longrightarrow R_6$$

$$R_8 \longrightarrow R_1$$

$$R_1 \qquad (V)$$

dans laquelle R_1 , R_6 , R_6 , R_7 et R_8 sont tels que définis précédemment ;

15

b) réaction du composé de formule (V) avec l'hydrazine pour obtenir un composé de formule (VI) dans laquelle R₁, R₆, R₆, R₇ et R₈ sont tels que définis précédemment.

20

L'agent d'acylation de l'étape a) est de préférence un halogénure d'acyle, notamment un chlorure d'acyle. La réaction est avantageusement effectuée en présence d'un acide de Lewis tel que SnCl₄, dans un solvant inerte à température ambiante. On peut citer comme solvants les hydrocarbures et leurs dérivés halogénés, par exemple le CHCl₃. En fin de réaction, le produit obtenu est repris dans un alcool, par exemple le méthanol et la réaction est poursuivie à température ambiante.

25

L'étape b) est effectuée avantageusement en présence d'hydrate d'hydrazine, par exemple dans un alcool, à une température comprise entre 100 et 150 °C de préférence

10

15

20

25

aux alentours de 150°C sous tube scellé pendant une durée comprise entre 3 et 10 heures, de préférence d'environ 3 heures, et poursuivie en présence d'un acide, par exemple de l'acide acétique au reflux de l'éthanol pendant une durée de 20 à 60 minutes.

Les composés de formule générale (III) selon l'invention peuvent également être obtenus directement à partir d'un composé de formule générale (V) telle que définie ci-avant, par réaction en présence d'une hydrazine substituée, par exemple de méthylhydrazine. Cette réaction est effectuée avantageusement dans un alcool, par exemple l'éthanol, à une température comprise entre 100 et 150 °C de préférence aux alentours de 150°C, sous tube scellé pendant une durée comprise entre 3 et 10 heures, de préférence d'environ 3 heures, et poursuivie en présence d'un acide, par exemple de l'acide acétique au reflux de l'éthanol pendant une durée de 20 à 60 minutes.

Selon un autre mode de mise en œuvre, les composés de formule générale (III) selon l'invention dans laquelle Z est un atome d'oxygène peuvent être préparés à partir d'un composé de formule générale (XIV)

$$R_{7}$$
 R_{8}
 R_{8}
 R_{6}
 R_{7}
 R_{8}
 R_{8

dans laquelle R₄ R₆, R₆, R₇ et R₈ sont tels que définis ci-avant et G est un groupement activateur tel qu'un halogène (par exemple Cl ou Br) ou un groupement O-triflate, par une réaction de couplage au Palladium en présence d'acide ou d'ester boronique, d'alcyn-1-yle ou d'organométalliques tels que les organozinciques ou les organostannanes. Lorsque G est un atome d'halogène, le composé (III) peut également être préparé par une réaction de substitution en présence d'un agent nucléophile, tel qu'une amine par exemple, dans l'EtOH.

Les composés de formule générale (XIV) peuvent être obtenus par un procédé comprenant :

. La réaction d'un composé de formule générale (VII) telle que représentée sur la figure 1 dans laquelle R₆, R₆, R₇ et R₈ sont tels que définis ci-avant en présence de

10

15

20

25

30

paraformaldéhyde, de préférence par chauffage en milieu acide, pour donner un composé de formule générale (VIII) telle que représentée sur la figure 1;

. La réaction du composé de formule générale (VIII) en présence de KMnO₄, suivie d'un chauffage dans un alcool, pour donner un composé de formule générale (IX) telle que représentée sur la figure 1 dans laquelle R₆, R_{6'}, R₇ et R₈ sont tels que définis ci-avant;

Le chauffage à reflux du composé de formule générale (IX) dans le chlorure d'acétyle pour donner un composé de formule générale (X) telle que représentée sur la figure 1 dans laquelle R₆, R₆, R₇ et R₈ sont tels que définis ci-avant;

. La réaction du composé de formule générale (X) en présence d'hydrate d'hydrazine, de préférence dans l'éthanol, pour donner un composé de formule générale (XI) telle que représentée sur la figure 1 dans laquelle R₆, R₆, R₇ et R₈ sont tels que définis ci-avant;

. La réaction du composé de formule générale (XI) en présence d'AcOH à une température comprise entre 50 et 150°C pour donner un composé de formule générale (XII) telle que représentée sur la figure 1 dans laquelle R₆, R_{6'}, R₇ et R₈ sont tels que définis ci-avant;

. La réaction du composé de formule générale (XII) en présence de carbonate de potassium et d'iodure de méthyle, de préférence à température ambiante dans un solvant de type DMF, pour donner un composé de formule générale (XIII) telle que représentée sur la figure 1 dans laquelle R₄, R₆, R₆, R₇ et R₈ sont tels que définis ci-avant; et

. La réaction du composé de formule générale (XIII) en présence de diméthylaniline et de d'oxyhalogénure de phosphore (par exemple POCl₃ ou POBr₃), à une température comprise entre 80 et 150°C, de préférence en milieu CHCl₃ anhydre, pour donner un composé de formule générale (XIV) telle que représentée sur la figure 1 dans laquelle R₄, R₆, R₆, R₇, R₈ et G sont tels que définis ci-avant ; ou

. La réaction du composé de formule générale (XIII) avec l'anhydride triflique en présence d'une base, par exemple le n-BuLi dans un solvant aprotique organique anhydre, pour donner un composé de formule générale (XIV) telle que représentée sur la figure 1 dans laquelle R₄, R₆, R₆, R₇ et R₈ sont tels que définis ci-avant et G est un groupe triflate.

Les composés de formule (III) dans laquelle Z est un atome de soufre sont obtenus à partir des composés de formule (III) dans laquelle Z est un atome d'oxygène par réaction avec le réactif de Lawesson dans le toluène à reflux.

Les composés de formule générale (II) selon l'invention dans laquelle Z est un atome d'oxygène peuvent être préparés à partir d'un composé de formule générale (XVIII):

$$R_7$$
 R_8
 R_8
 R_6
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8

dans laquelle R₄, R₄, R₆, R₇, R₈ et G sont tels que définis ci-avant, par réaction avec un composé acide du groupe R₁ en présence d'un catalyseur au Palladium, telle que représentée sur la figure 2. La réaction est réalisée avantageusement dans un solvant de type DMF à une température comprise entre 80 et 150 °C.

Les composés de formule générale (XVIII) peuvent être obtenus par un procédé tel que représenté sur la figure 2 et comprenant :

. réaction d'un composé de formule générale (XV) dans laquelle R_7 et R_8 sont tels que définis ci-avant :

20

15

en présence d'un halogénure d'alkyle, de préférence dans un solvant de type DMF en présence de NaH, pour former un composé de formule générale (XVI) dans laquelle R_6 R_7 et R_8 sont tels que définis ci-avant,

10

. chauffage au reflux du composé de formule générale (XVI) en présence de chlorhydrate d'ester d'α-aminoacide et de pyridine, suivi d'une cyclisation en milieu acide, par exemple en présence d'acide acétique, à une température comprise de préférence entre 100 et 150°C, pour former un composé de formule générale (XVII) dans laquelle R₄, R₄, R₆, R₇ et R₈ sont tels que définis ci-avant,

$$R_{7}$$
 R_{8}
 N
 N
 R_{4}
 $R_{4'}$
 $R_{8'}$
 $R_{8'}$
 $R_{8'}$
 $R_{8'}$
 $R_{8'}$

réaction du composé de formule générale (XVII) en présence de diméthylaniline (ou de diméthylaminopyridine) et de d'oxyhalogénure de phosphore (de préférence POCl₃ ou POBr₃), de préférence à une température comprise entre 80 et 150°C en milieu CHCl₃ anhydre et en tube scellé, pour former un composé de formule générale (XVIII) dans laquelle R₄, R₄, R₆, R₇ et R₈ sont tels que définis ci-avant et G = Cl ou Br.

Les composés de formule (II) dans laquelle Z est un atome de soufre peuvent être obtenus à partir des composés de formule (II) dans laquelle Z est un atome d'oxygène par réaction avec le réactif de Lawesson dans le toluène à reflux.

Les composés de formule générale (II) selon l'invention dans laquelle Z est un atome d'oxygène peuvent aussi être préparés à partir d'un composé de formule générale (XXII):

dans laquelle R₁, R₄, R₇, R₈, sont tels que définis ci-avant, par réaction avec un halogénure d'alkyle, de préférence dans un solvant de type DMF ou THF en présence d'une base, de type NaH ou K₂CO₃, de préférence à température ambiante (18-25°C).

5

15

20

Les composés de formule générale (XXII) peuvent être obtenus par un procédé comprenant :

. réaction d'un composé de formule générale (XIX) dans laquelle R_7 et R_8 sont R_7 tels que définis ci-avant :

en présence d'hydrogène et d'un catalyseur au palladium dans le méthanol pour former un composé de formule générale (XX) dans laquelle R₇et R₈ sont tels que définis ciavant,

chauffage au reflux du composé de formule générale (XX) en présence d'acides de Lewis, de type BCl₃, AlCl₃, et d'un nitrile de formule générale R₁-CN, dans un solvant halogénés (C₂H₄Cl₂, CHCl₃), pour former un composé de formule générale (XXI) dans laquelle R₁, R₇, R₈, sont tels que définis ci-avant,

10

15

20

. Chauffage au reflux du composé de formule générale (XXI), en présence de chlorhydrate d'ester d'α amino-acide substitué ou non sur le carbone α et qui peut être sous forme de mélange racémique ou d'énantiomère pure, et de pyridine à une température comprise entre 100-150°C pour former un composé de formule générale (XXII) dans laquelle R₁, R₄, R₇, R₈ sont tels que définis ci-avant (les molécules XXI et XXII ont étés obtenues suivant le mode opératoire décrit dans la référence : Yves Pascal, Charles R. Andrianjara, Eric Auclair, Nadine Avenel, Bernadette Bertin, Alain Calvet, Fredéric Féru, Sophie Lardon, Indres Moodley, Malika Ouagued, Adrian Payne, Marie Pierre Pruniaux, and Corinne Szilagyi, *Bioorganic and Medicinal Chemistry Letters*, 2000, 10, 35-38).

L'invention est illustrée par les exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs. Les shémas 1 et 2 illustrent des voies de synthèses de composés de l'invention.

EXEMPLE 1: SYNTHESE DES COMPOSES DE FORMULE III SELON L'INVENTION SELON UNE PREMIERE VOIE

1.1. Synthèse des intermédiaires de formule V

Les composés suivants ont été synthétisés :

25

- 4,5-diméthoxy-2-(1-naphthoyl)phényl acétate de méthyle Vaa.
- 2-(2-benzo[b]thiénylcarbonyl)-4,5-diméthoxyphényl acétate de méthyle Vab.
- 2-benzoyl-4,5-diméthoxyphényl acétate de méthyle Vac.
- 2-(4-iodobenzoyl)-4,5-diméthoxyphényl acétate de méthyle Vad.
- 30 2-(4-bromobenzoyl)-4,5-diméthoxyphényl acétate de méthyle Vae.
 - 2-(2-benzo[b]thiénylcarbonyl)-4,5-diéthoxyphényl acétate d'éthyle Vaf.
 - 2-[2-(2-benzo[b]thiénylcarbonyl)-4,5-diéthoxyphényl]valérate d'éthyle Vag.
 - 2-[2-(2-benzo[b]thiényl)carbonyl]-4,5-diéthoxyphényl]butyrate d'éthyle Vah.

2-[2-(2-benzo[b]thiénylcarbonyl)-4,5-diméthoxyphényl]-2,2-diméthyl acétate de méthyle Vai.

4,5-diméthoxy-2-(1-naphthoyl)phényl acétate de méthyle Vaa.

5

20

Ajouter à 0°C et sous atmosphère inerte à une solution de 315 mg (1,5 mmole) de 3,4-diméthoxyphényl acétate de méthyle dans 5 mL de CHCl₃ anhydre, 452 μL (3 mmoles) de chlorure de 1-naphthoyle. Ajouter au goutte à goutte 351 μL de SnCl₄. Laisser revenir à température ambiante. Après 6 heures à température ambiante, évaporer à sec. Ajouter 10 mL de MeOH. Laisser sous agitation à température ambiante pendant 30 minutes. Evaporer à sec. Ajouter 7 mL d'H₂O glacée. Laisser cristalliser à 0°C pendant 1 heure. Filtrer. Laver 2 fois avec 1 mL d'H₂O. Rdt : 37 %. Le produit est utilisé tel quel pour la suite des réactions.

15 2-(2-benzo[b]thiénylcarbonyl)-4,5-diméthoxyphényl acétate de méthyle Vab.

En remplaçant dans l'exemple Vaa le chlorure de 1-naphthoyle par le chlorure de 2-benzo[b]thiophène carbonyle on obtient de la même manière le produit titre. Rdt: 58%.

¹H-RMN (200 MHz, CDCl₃): δ 3,63 (s, 3H, OCH₃), 3,88 (s, 2H, CH₂), 3,91 (s, 3H, OCH₃), 4,02 (s, 3H, OCH₃), 6,92 (s, 1H Ar), 7,26 (s, 1H Ar), 7,41-7,54 (m, 2H Ar), 7,81 (s, 1H Ar), 7,88-7,98 (m, 2H Ar).

2-benzoyl-4,5-diméthoxyphényl acétate de méthyle Vac.

25 En remplaçant dans l'exemple Vaa le chlorure de 1-naphthoyle par le chlorure de benzoyle on obtient de la même manière le produit titre. Rdt : 85%.

2-(4-iodobenzoyl)-4,5-diméthoxyphényl acétate de méthyle Vad.

En remplaçant dans l'exemple Vaa le chlorure de 1-naphthoyle par le chlorure de 4iodobenzoyle on obtient de la même manière le produit titre. Rdt : 67%.

2-(4-bromobenzoyl)-4,5-diméthoxyphényl acétate de méthyle Vae.

En remplaçant dans l'exemple Vaa le chlorure de 1-naphthoyle par le chlorure de 4-bromobenzoyle on obtient de la même manière le produit titre. Rdt: 10%. ¹H-RMN (300 MHz, CDCl₃): δ 3,62 (s, 3H, CH₃), 3,80 (s, 3H, CH₃), 3,85 (s, 2H, CH₂), 3,97 (s, 3H, CH₃), 6,85 (s, 1H Ar), 6,90 (s, 1H Ar), 7,60-7,69 (m, 4H Ar).

2-(2-benzo[b]thiénylcarbonyl)-4,5-diéthoxyphényl acétate d'éthyle Vaf.

En remplaçant dans l'exemple Vab le 3,4-diméthoxyphényl acétate de méthyle par le 3,4-diéthoxyphényl acétate d'éthyle on obtient de la même manière le produit titre. Rdt: 71%. ¹H-RMN (200 MHz, CDCl₃): δ 1,12 (t, J = 7,1, 3H, CH₃), 1,41-1,55 (m, 6H, 2 x CH₃), 3,60 (s, 2H, CH₂CO), 4,00-4,26 (m, 6H, 3 x CH₂), 6,89 (s, 1H Ar), 7,24 (s, 1H Ar), 7,41-7,53 (m, 2H Ar), 7,77 (s, 1H Ar), 7,85-7,94 (m, 2H Ar).

15 2-[2-(2-benzo[b]thiénylcarbonyl)-4,5-diéthoxyphényl]valérate d'éthyle Vag.

En remplaçant dans l'exemple Vab le 3,4-diméthoxyphényl acétate de méthyle par le 2-(3,4-diéthoxyphényl)valérate d'éthyle on obtient de la même manière le produit titre. Rdt : 61 %.

20

25

5

2-[2-(2-benzo[b]thiényl)carbonyl]-4,5-diéthoxyphényl] butyrate d'éthyle Vah.

En remplaçant dans l'exemple Vab le 3,4-diméthoxyphényl acétate de méthyle par le 2-(3,4-diéthoxyphényl)butyrate d'éthyle on obtient de la même manière le produit titre. Rdt : 46 %.

2-[2-(2-benzo[b]thiénylcarbonyl)-4,5-diméthoxyphényl]-2,2-diméthyl acétate de méthyle Vai.

En remplaçant dans l'exemple Vab le 3,4-diméthoxyphényl acétate de méthyle par le 2-(3,4-diméthoxyphényl)-2,2-diméthyl acétate de méthyle on obtient de la même manière le produit titre. Rdt: 43%.

1.2. Synthèse des produits de formule VI

5 Les composés suivants ont été synthétisés :

7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIaa.

1-(2-benzo[b]thiényl)-7,8-diéthoxy-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIab.

1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-n-propyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one

10 VIac.

1-(benzo[b]thiényl)-7,8-diéthoxy-5-éthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIad.

1-(2-benzo[b]thiényl)-7,8-diméthoxy-5,5-diméthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIae.

15

30

7,8-diméthoxy-1-phényl-3,5-dihydro-4H-2,3-benzodiazépin-4-one VIaa.

Chauffer en tube scellé à 150°c pendant 3 h, 500 mg (1,59 mmole) de 2-benzoyl-4,520 diméthoxyphényl acétate de méthyle Vac, 2 mL d'hydrate d'hydrazine et 12 mL
d'EtOH. Laisser revenir à température ambiante. Ajouter 10 mL d'AcOH. Chauffer à
reflux durant 25 minutes. Evaporer à sec. Ajouter 60 mL d'H₂O glacée. Laisser
cristalliser à 0°C pendant 5 minutes. Filtrer et laver 2 fois avec 5 mL d'H₂O, 2 fois avec
3 mL d'EtOH et 2 fois avec 5 mL de pentane. Recristalliser dans EtOH/Et₂O. Rdt: 82%.
25 lH-RMN (300 MHz, CDCl₃): δ 3,51 (s, 2H, CH₂), 3,72 (s, 3H, OCH₃), 3,97 (s, 3H,
OCH₃), 6,67 (s, 1H Ar), 6,86 (s, 1H Ar), 7,43-7,48 (m, 3H Ar), 7,62-7,65 (m, 2H Ar),
8,66 (s large, 1H échangeable, NH).

1-(2-benzo[b]thiényl)-7,8-diéthoxy-3,5-dihydro-4H-2,3-benzodiazépin-4-one VIab.

En remplaçant dans l'exemple VIaa le 2-benzoyl-4,5-diméthoxyphényl acétate de méthyle Vac par le 2-(2-benzo[b]thiénylcarbonyl)-4,5-diéthoxyphényl acétate d'éthyle Vaf, on obtient de la même manière le produit titre. Rdt : 47%. ¹H-RMN (200 MHz,

CDCl₃): δ 1,46 (t, J = 7,1, 3H, CH₃), 1,56 (t, J = 7,1, 3H, CH₃), 3,53 (s, 2H, CH₂CO), 4,07 (q, J = 6,92, 2H, CH₂), 4,23 (q, J = 6,92, 2H, CH₂), 6,89 (s, 1H Ar), 7,17 (s, 1H Ar), 7,39-7,48 (m, 3H Ar), 7,75-7,92 (m, 2H Ar), 8,40 (s, 1 échangeable, NH).

5 1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-*n*-propyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIac.

En remplaçant dans l'exemple VIaa le 2-benzoyl-4,5-diméthoxyphényl acétate de méthyle Vac par le 2-[2-(2-benzo[b]thiénylcarbonyl)-4,5-diéthoxyphényl]valérate d'éthyle Vag, on obtient de la même manière le produit titre. 0,84-1,58 (m, 11H, 3 x CH₃ et CH₂), 1,84-2,40 (m, 2H, CHCH₂), 3,09-3,16 (m, 1H, CH), 4,03-4,25 (m, 4H, 2 x CH₂), 6,77-6,84 (m, 1H Ar), 7,14 (s, 1H Ar), 7,34-7,46 (m, 3H Ar), 7,72-7,90 (m, 2H Ar), 8,46-8,54 (m, 1H échangeable, NH).

1-(benzo[b]thiényl)-7,8-diéthoxy-5-éthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIad.

En remplaçant dans l'exemple **VIaa** le 2-benzoyl-4,5-diméthoxyphényl acétate de méthyle **Vac** par le 2-[2-(2-benzo[b]thiényl)carbonyl]-4,5-diéthoxyphényl] butyrate d'éthyle 2h, on obtient de la même manière le produit titre. Rdt : 23%. 1 H-RMN (300 MHz, CDCl₃) : δ 1,11 (t, J = 6,21, 3H, CH₃), 1,40-1,46 (m, 3H, CH₃), 1,53 (t, J = 7,92, 3H, CH₃), 1,96-2,43 (m, 2H, CH₂), 3,02-3,07 (t, J = 6,01, 1H, 5-H), 4,04-4,24 (m, 4H, 2 x CH₂), 6,83 (s, 1H Ar), 7,15 (s, 1H Ar), 7,35-7,90 (m, 5H Ar), 8,39 (s, 1H échangeable, NH).

25

20

10

1-(2-benzo[b]thiényl)-7,8-diméthoxy-5,5-diméthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIae.

En remplaçant dans l'exemple VIaa le 2-benzoyl-4,5-diméthoxyphényl acétate de méthyle Vac par le 2-[2-(2-benzo[b]thiénylcarbonyl)-4,5-diméthoxyphényl]-2,2-diméthyl acétate de méthyle Vai, on obtient de la même manière le produit titre. Rdt: 7%. ¹H-RMN (300 MHz, CDCl₃): δ 1,36 (s, 3H, 5-CH₃), 1,79 (s, 3H, 5-CH₃), 3,83 (s,

3H, OCH₃), 4,00 (s, 3H, OCH₃), 7,03 (s, 1H Ar), 7,17 (s, 1H Ar), 7,35-7,44 (m, 3H Ar), 7,73-7,89 (m, 2H Ar), 8,39 (s, 1H échangeable, NH).

32

5 1.3. Synthèse des produits de formule III

Les composés suivants ont été synthétisés :

- 7,8-diméthoxy-3-méthyl-1-(1-naphthyl)-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIaa.
- 10 1-(2-benzo[b]thiényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin -4-one IIIab.
 - 3-benzyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIac.
 - 3-dodécyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIad.
 - 7,8-diméthoxy-3-(12-méthoxy-12-oxododécyl)-1-phényl-3,5-dihydro-4H-2,3-
- 15 benzodiazépin-4-one IIIae.
 - 7,8-diméthoxy-1-phényl-3-*n*-propyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaf. 3-éthyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIag. 1-(4-iodophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIah.
- 7,8-diméthoxy-1-[4-(2-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIai.
 - 7,8-diméthoxy-1-[4-(3-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaj
 - 1-[4-(3-acétylphényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-
- 25 benzodiazépin-4-one IIIak.
 - 1-[4-(4-acétylphényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIal.
 - 1-[4-(3-acétamidophényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIam.
- 30 1-(4-bromophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIan.
 - 7,8-diméthoxy-1-[4-(4-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIao.

- 1-[4-[3-(trifluorométhyl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIap.
- 7,8-diméthoxy-3-méthyl-1-[4-(2-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaq.
- 5 7,8-diméthoxy-3-méthyl-1-[4-(3-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIar.
 - 7,8-diméthoxy-3-méthyl-1-[4-(4-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIas.
 - 1-[4-(4-chlorophényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-
- 10 benzodiazépin-4-one IIIat.
 - 7,8-diméthoxy-3-méthyl-1-[4-(2-thiényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIau.
 - 1-[4-(2-furyl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIav.
- 1-{4-[3,5-bis-(trifluorométhyl)phényl]phényl}-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaw.
 - 1-[4-(heptyn-1-yl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIax.
 - 7,8-diméthoxy-3-méthyl-1-[4-(3-nitrophényl)phényl]-3,5-dihydro-4H-2,3-
- 20 benzodiazépin-4-one IIIay.
 - 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-éthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaz.
 - 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-méthyl-3,5-dihydro-4<math>H-2,3-benzodiazépin-4-one IIIba.
- 25 1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-éthyl-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIbb.
 - 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-méthyl-5-*n*-propyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIbc.
 - 3,5-dibenzyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIbd.
- 7,8-diméthoxy-1-phényl-3-(3-hydroxypropyl)-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIbe.

10

15

20

25

30

7,8-diméthoxy-3-méthyl-1-(1-naphthyl)-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIaa.

34

PCT/FR02/01952

Chauffer en tube scellé à 150°C pendant 3 h, 150 mg (0,41 mmole) de 4,5-diméthoxy-2-(1-naphthoyl)phényl acétate de méthyle Vaa, 200 μL de méthylhydrazine et 12 mL d'EtOH. Laisser revenir à température ambiante. Ajouter 1 mL d'AcOH. Chauffer à reflux durant 25 minutes. Evaporer à sec. Ajouter 5 mL d'H₂O glacée. Laisser cristalliser à 0°C pendant 5 minutes. Filtrer et laver 2 fois avec 1 mL d'H₂O, 2 fois avec 0,5 mL d'EtOH et 2 fois avec 3 mL de pentane. Recristalliser dans EtOH/Et₂O. Rdt: 31%. ¹H-RMN (200 MHz, CDCl₃): δ 3,53 (s, 3H, CH₃), 3,57 (s, 3H, CH₃), 3,72 (s, 2H, CH₂), 4,00 (s, 3H, CH₃), 6,41 (s, 1H Ar), 6,95 (s, 1H Ar), 7,40-7,65 (m, 4H Ar), 7,78-7,82 (m, 1H Ar), 7,92-8,03 (m, 2H Ar).

1-(2-benzo[b]thiényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin - 4-one IIIab.

En remplaçant dans l'exemple III aa le 4,5-diméthoxy-2-(1-naphthoyl)phényl acétate de méthyle Vaa par le 2-(2-benzo[b]thiénylcarbonyl)-4,5-diméthoxyphényl acétate de méthyle Vab on obtient de la même manière le produit titre. Rdt: 69%. F: 112-115 °C. ¹H-RMN (200 MHz, CDCl₃): δ 3,44 (s, 3H, CH₃), 3,52 (s, 2H, CH₂), 3,86 (s, 3H, CH₃), 3,99 (s, 3H, CH₃), 6,89 (s, 1H Ar), 7,13 (s, 1H Ar), 7,37-7,44 (m, 3H Ar), 7,74-7,89 (m, 2H Ar).

3-benzyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIac.

Ajouter à une solution de 7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIaa (100 mg, 0,34 mmole) dans le DMF (5 ml), sous atmosphère inerte, NaH dans l'huile (12 mg, 0,30 mmole). Ajouter ensuite goutte à goutte le bromure de benzyle (40 μl, 0,34 mmole). Après 2 h à température ambiante, évaporer le DMF. Reprendre le résidu dans CH₂Cl₂, laver 2 fois à l'eau. Sécher les phases organiques sur Na₂SO₄. Purifier par chromatographie sur colonne de gel de silice (AcOEt/Hexane : 4/1). Rdt : 71%. F: 114-116°C. ¹H-RMN (200 MHz, CDCl₃) : δ 3,53-3,64 (m, 2H, CH₂), 3,73 (s,

15

20

25

30

PCT/FR02/01952

3H, OCH₃), 4,00 (s, 3H, OCH₃), 4,93-5,32 (d, 2H, NCH₂Ph), 6,63 (s, 1H, Ar), 6,92 (s, 1H, Ar), 7,20-7,59 (m, 10H, Ar).

3-n-dodécyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIad.

En remplaçant dans l'exemple III ac, le bromure de benzyle par le bromure de n-dodécyle, on obtient de la même manière le produit titre sous forme d'une huile incolore. Rdt: 46%. ¹H-RMN (200 MHz, CDCl₃): δ 0.88 (t, J = 4,5, 3H, CH₃), 1,25 (m, 18H, 9 x CH₂), 1,65 (m, 2H, NCH₂CH₂), 3,43 (m, 2H, NCH₂), 3,73 (s, 3H, OCH₃), 3,80 (large s, 2H, CH₂), 3,97 (s, 3H, OCH₃), 6,67 (s, 1H, Ar), 6,88 (s, 1H, Ar), 7,44 (m, 3H, Ar), 7,66 (m, 2H, Ar).

7,8-diméthoxy-3-(12-méthoxy-12-oxododécyl)-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIae.

En remplaçant dans l'exemple **IIIac**, le bromure de benzyle par le 12-bromododécanoate de méthyle, on obtient de la même manière le produit titre sous forme d'une huile incolore. Rdt: 99. ¹H-RMN (300 MHz, CDCl₃): δ 1,20 (m, 14H, 7 x C**H**₂), 1,56-1,64 (m, 4H, 2 x C**H**₂), 2,27 (t, J = 7,1, C**H**₂COO), 3,47 (large m, 2H, NC**H**₂), 3,64 (s, 3H, COOC**H**₃), 3,70 (s, 3H, OC**H**₃), 3,75 (large s, 2H, C**H**₂), 3,94 (s, 3H, OC**H**₃), 6,65 (s, 1H, A**r**), 6,86 (s, 1H, A**r**), 7,42 (m, 3H, A**r**), 7,64 (m, 2H, A**r**).

7,8-diméthoxy-1-phényl-3-n-propyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIaf.

Ajouter au goutte à goutte et sous atmosphère inerte à une solution de 200 mg (0,675 mmole) de 7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIaa et de 121 mg (0,878 mmole) de K₂CO₃ en solution dans 5 mL de DMF, 400 μL d'iodopropane. Après 72 h à température ambiante, ajouter 30 mL d'H₂O et extraire 3 fois avec 30 mL d'Et₂O. Sécher les fractions organiques sur Na₂SO₄. Purifier par chromatographie (AcOEt 1/Hexane 1). Rdt: 72%. F: 48-52°C. ¹H-RMN (300 MHz, CDCl₃): δ 0,83 (t, J = 7,34, 3H, CH₃), 1,65-1,72 (m, 2H, CH₂CH₃), 2,85-3,62 (m, 4H,

10

20

25

30

CH₂CH₂CH₃ + 5-CH₂), 3,74 (s, 3H, OCH₃), 3,98 (s, 3H, OCH₃), 6,67 (s, 1H Ar), 6,89 (s, 1H Ar), 7,43-7,47 (m, 3H Ar), 7,65-7,68 (m, 2H Ar).

3-éthyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIag

En remplaçant dans l'exemple III af l'iodopropane par l'iodoéthane, on obtient de la même manière le produit titre. Rdt : 84%. F : 123-126°C. 1 H-RMN (200 MHz, CDCl₃) : δ 1,29 (t, J = 7,08, 3H, CH₃), 3,25-3,70 (m, 5H, 5-CH₂ + OCH₃), 2,90-4,00 (m, 5H, CH₂CH₃ + OCH₃), 6,71 (s, 1H Ar), 6,91 (s, 1H Ar), 7,46-7,51 (m, 3H Ar), 7,68-7,71 (m, 2H Ar).

1-(4-iodophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIah.

En remplaçant dans l'exemple **Maa** le 4,5-diméthoxy-2-(1-naphthoyl)phényl acétate de méthyle **Vaa** par le 2-(4-iodobenzoyl)-4,5-diméthoxyphényl acétate de méthyle **Vad** on obtient de la même manière le produit titre. Rdt : 32%. F : 158-160 °C. ¹H-RMN (200 MHz, CDCl₃) : δ 3,40-3,48 (s, 5H, CH₃ + CH₂), 3,75 (s, 3H, CH₃), 3,97 (s, 3H, CH₃), 6,64 (s, 1H Ar), 6,87 (s, 1H Ar), 7,59 (système AB, Δδ = 0,38, J_{AB} = 8,80, 4H Ar),.

7,8-diméthoxy-1-[4-(2-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIai.

Chauffer à 90 °C pendant 12 h et sous atmosphère inerte un mélange de 100 mg (0,229 mmole) de 1-(4-iodophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIah, 38 mg (0,25 mmole) d'acide 2-méthoxybenzène boronique, 215 μL d'une solution de Na₂CO₃ 2M, 25 mg (0,020 mmole) de *tétrakis*(triphénylphosphine) Pd (0) et 250 μL d'EtOH dans 5 mL de toluène dégazé. Laisser revenir à température ambiante. Ajouter 80 mL d'H₂O et extraire 3 fois avec 50 mL d'Et₂O. Sécher les fractions organiques sur Na₂SO₄. Purifier par chromatographie (AcOEt). Recristalliser dans Et₂O / pentane. On obtient 70 mg de produit titre sous forme de cristaux incolores. Rdt: 73%. F: 185-186°C. ¹H-RMN (CDCl₃, 300MHz): δ

37

3,40-3,51 (m, 5H, CH₂ + CH₃), 3,78 (s, 3H, CH₃), 3,85 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,80 (s, 1H Ar), 6,89 (s, 1H Ar), 7,04-7,73 (m, 8H Ar).

7,8-diméthoxy-1-[4-(3-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaj.

En remplaçant dans l'exemple **HIai** l'acide 2-méthoxybenzène boronique par l'acide 3-méthoxybenzène boronique on obtient de la même manière le produit titre. Rdt : 68%. F : 92-99°C. ¹H-RMN (CDCl₃, 300MHz) : δ 3,41-3,50 (m, 5H, C**H**₂ + C**H**₃), 3,76 (s, 3H, C**H**₃), 3,89 (s, 3H, C**H**₃), 4,12 (s, 3H, C**H**₃), 6,75 (s, 1**H** A**r**), 6,89 (s, 1**H** A**r**), 6,94-7,75 (m, 8**H** A**r**).

1-[4-(3-acétylphényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIak.

15

20

10

5

En remplaçant dans l'exemple III ai l'acide 2-méthoxybenzène boronique par l'acide 3-acétylbenzène boronique on obtient de la même manière le produit titre. Rdt: 76%. F: 147-149°C. ¹H-RMN (CDCl₃, 300MHz): δ 2,69 (s, 3H, CH₃CO), 3,43-3,53 (m, 5H, CH₂ + CH₃), 3,77 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,73 (s, 1H Ar), 6,90 (s, 1H Ar), 7,59-8,27 (m, 8H Ar).

1-[4-(4-acétylphényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIal.

En remplaçant dans l'exemple **III ai** l'acide 2-méthoxybenzène boronique par l'acide 4-acétylbenzène boronique on obtient de la même manière le produit titre. Rdt : 68%. F : 199-201 °C. ¹H-RMN (CDCl₃, 300MHz) : δ 2,67 (s, 3H, CH₃CO), 3,43-3,54 (m, 5H, CH₂ + CH₃), 3,76 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,73 (s, 1H Ar), 6,90 (s, 1H Ar), 7,70-7,80 (m, 6H Ar), 8,06-8,09 (m, 2H Ar).

30

1-[4-(3-acétamidophényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIam.

5

25

En remplaçant dans l'exemple **HIai** l'acide 2-méthoxybenzène boronique par l'acide 4-acétamidobenzène boronique on obtient de la même manière le produit titre. Rdt : 61%. F : 244-246 °C. ¹H-RMN (CDCl₃, 300MHz) : δ 2,23 (s, 3H, CH₃CO), 3,43-3,53 (m, 5H, CH₂ + CH₃), 3,76 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,73 (s, 1H Ar), 6,89 (s, 1H Ar), 7,40-7,74 (m, 8H Ar), 7,90 (s large, 1H échangeable, NH).

1-(4-bromophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIan.

En remplaçant dans l'exemple IIIah le 2-(4-iodobenzoyl)-4,5-diméthoxyphényl acétate de méthyle Vad par le 2-(4-bromobenzoyl)-4,5-diméthoxyphényl acétate de méthyle Vae on obtient de la même manière le produit titre. Rdt: 37%. F: 145-147 °C. ¹H-RMN (300 MHz, CDCl₃): δ 3,40-3,49 (s, 5H, CH₃ + CH₂), 3,75 (s, 3H, CH₃), 3,97 (s, 3H, CH₃), 6,64 (s, 1H Ar), 6,87 (s, 1H Ar), 7,56 (système AB, Δδ = 0,16, J_{AB} = 8,30, 4H
Ar).

7,8-diméthoxy-1-[4-(4-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIao.

20 En remplaçant dans l'exemple III ai l'acide 2-méthoxybenzène boronique par l'acide 4-méthoxybenzène boronique on obtient de la même manière le produit titre. Rdt : 81%. F : 222-224 °C. ¹H-RMN (CDCl₃, 300MHz) : δ 3,41-3,50 (m, 5H, CH₂ + CH₃), 3,76 (s, 3H, CH₃), 3,88 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,75 (s, 1H Ar), 6,89 (s, 1H Ar), 7,37 (système AB, Δδ = 0,67, J_{AB} = 8,7, 4H Ar), 7,59-7,65 (m, 4H Ar).

1-[4-[3-(trifluorométhyl)phényl]phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIap.

En remplaçant dans l'exemple III ai l'acide 2-méthoxybenzène boronique par l'acide 3-30 trifluorométhylbenzène boronique on obtient de la même manière le produit titre. Rdt : 72%. F: 100-103 °C. ¹H-RMN (CDCl₃, 300MHz): δ 3,43-3,53 (m, 5H, CH₂ + CH₃), 3,76 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,73 (s, 1H Ar), 6,90 (s, 1H Ar), 7,52-7,89 (m, 8H Ar). 7,8-diméthoxy-3-méthyl-1-[4-(2-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaq.

5 En remplaçant dans l'exemple IIIai l'acide 2-méthoxybenzène boronique par l'acide 2-méthylbenzène boronique on obtient de la même manière le produit titre. Rdt: 84%. F: 184-186 °C. ¹H-RMN (CDCl₃, 300MHz): δ 2,31 (s, 3H, PhCH₃), 3,40-3,51 (m, 5H, CH₂ + CH₃), 3,78 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,78 (s, 1H Ar), 6,89 (s, 1H Ar), 7,28-7,73 (m, 8H Ar).

10

25

30

7,8-diméthoxy-3-méthyl-1-[4-(3-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIar.

En remplaçant dans l'exemple III ai l'acide 2-méthoxybenzène boronique par l'acide 3méthylbenzène boronique on obtient de la même manière le produit titre. Rdt : 81%. F : 154-156 °C. ¹H-RMN (CDCl₃, 300MHz) : δ 2,45 (s, 3H, PhCH₃), 3,40-3,51 (m, 5H, CH₂ + CH₃), 3,76 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,75 (s, 1H Ar), 6,89 (s, 1H Ar), 7,20-7,75 (m, 8H Ar).

7,8-diméthoxy-3-méthyl-1-[4-(4-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIas.

En remplaçant dans l'exemple IIIai l'acide 2-méthoxybenzène boronique par l'acide 4-méthylbenzène boronique on obtient de la même manière le produit titre. Rdt : 84%. F : 191-192 °C. ¹H-RMN (CDCl₃, 300MHz) : δ 2,42 (s, 3H, PhCH₃), 3,40-3,51 (m, 5H, CH₂ + CH₃), 3,76 (s, 3H, CH₃), 3,98 (s, 3H, CH₃), 6,75 (s, 1H Ar), 6,89 (s, 1H Ar), 7,28-7,74 (m, 8H Ar).

1-[4-(4-chlorophényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIat.

En remplaçant dans l'exemple **Mai** l'acide 2-méthoxybenzène boronique par l'acide 4-chlorobenzène boronique on obtient de la même manière le produit titre. Rdt : 44%. F :

25

30

191-193 °C. ¹H-RMN (CDCl₃, 200MHz): δ 3,41-3,52 (m, 5H, CH₂ + CH₃), 3,75 (s, 3H, OCH₃), 3,98 (s, 3H, OCH₃), 6,73 (s, 1H Ar), 6,89 (s, 1H Ar), 7,24-7,72 (m, 8H Ar).

7,8-diméthoxy-3-méthyl-1-[4-(2-thiényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-5 4-one IIIau.

En remplaçant dans l'exemple III ai l'acide 2-méthoxybenzène boronique par l'acide 2-thiophène boronique on obtient de la même manière le produit titre. Rdt : 41%. F : 147-149°C.

1-[4-(2-furyl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one III av.

En remplaçant dans l'exemple **Πai** l'acide 2-méthoxybenzène boronique par l'acide 2furane boronique on obtient de la même manière le produit titre. Rdt: 89%. F: 178-179 °C. ¹H-RMN (CDCl₃, 300MHz): δ 3,40-3,51 (m, 5H, C**H**₂ + C**H**₃), 3,74 (s, 3H, C**H**₃), 3,97 (s, 3H, C**H**₃), 6,51-6,53 (m, 1**H** A**r**), 6,70 (s, 1**H** A**r**), 6,76-6,78 (m, 1**H** A**r**), 6,88 (s, 1**H** A**r**), 7,52-7,75 (m, 5**H** A**r**).

20 1-{4-[3,5-bis-(trifluorométhyl)phényl]phényl}-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaw.

En remplaçant dans l'exemple IIIai l'acide 2-méthoxybenzène boronique par l'acide 3,5-bis(trifluorométhyl)benzène boronique on obtient de la même manière le produit titre. Rdt: 32%. F: 192-194 °C. ¹H-RMN (300MHz, CDCl₃): δ 3,40-3,51 (m, 5H, CH₂ + CH₃), 3,76 (s, 3H, OCH₃), 3,98 (s, 3H, OCH₃), 6,70 (s, 1H Ar), 6,90 (s, 1H Ar), 7,67-8,06 (m, 7H Ar).

1-[4-(heptyn-1-yl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIax.

Laisser pendant 3 heures sous agitation à température ambiante et sous atmosphère inerte un mélange de 1-(4-iodophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIah, 12 mg de CuI, 7 mg de PdCl₂, 23 mg de PPh₃, 2 mL de TEA, 4 mL d'heptyne, dans 12 mL de CH₃CN. Evaporer à sec et purifier par chromatographie sur silice (AcOEt 1/Hex 1). Recristalliser dans EtOH/pentane. Rdt: 16%. F: 110-112 °C. 1 H-RMN (300MHz, CDCl₃): δ 0,94 (t, J = 7,2, 3H, CH₃), 1,36-1,64 (m, 8H, 4 x CH₂), 2,44 (t, J = 7,2, 2H, C=CCH₂), 3,43 (s, 3H, NCH₃), 3,72 (s, 3H, OCH₃), 3,96 (s, 3H, OCH₃), 6,64 (s, 1H Ar), 6,86 (s, 1H Ar), 7,43-7,60 (m, 4H Ar).

7,8-diméthoxy-3-méthyl-1-[4-(3-nitrophényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIay.

En remplaçant dans l'exemple IIIai l'acide 2-méthoxybenzène boronique par l'acide 3-nitrophényl boronique on obtient de la même manière le produit titre. Rdt: 89%. F: 211-213 °C. ¹H-RMN (CDCl₃, 200MHz): δ 3,50-3,56 (m, 5H, CH₂ + CH₃), 3,80 (s, 3H, CH₃), 4,02 (s, 3H, CH₃), 6,75 (s, 1H Ar), 6,93 (s, 1H Ar), 7,65-8,56 (m, 8H Ar).

1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-éthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIaz.

20

25

15

5

En remplaçant dans l'exemple IIIag le 7,8-diméthoxy-1-phényl-3,5-dihydro-4H-2,3-benzodiazépin-4-one VIaa par le 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3,5-dihydro-4H-2,3-benzodiazépin-4-one VIab, on obtient de la même manière le produit titre. Rdt : 72 %. F : 100-103 °C. 1 H-RMN (200 MHz, CDCl₃) : δ 1,26 (t, J = 7,1, 3H, CH₃), 1,44 (t, J = 7,0, 3H, CH₃), 1,52 (t, J = 7,1, 3H, CH₃), 3,29-3,56 (m, 2H, 5-CH₂), 3,85-4,25 (m, 6H, 3 x CH₂CH₃), 6,87 (s, 1H Ar), 7,15 (s, 1H Ar), 7,32-7,44 (m, 3H Ar), 7,71-7,89 (m, 2H Ar).

1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-30 one IIIba.

20

25

30

En remplaçant dans l'exemple III az l'iodure d'éthyle par l'iodure de méthyle, on obtient de la même manière le produit titre. Rdt : 65 %. F : 157-160 °C. 1 H-RMN (200 MHz, CDCl₃) : δ 1,43 (t, J = 7,0, 3H, CH₃), 1,52 (t, J = 7,2, 3H, CH₃), 3,38-3,58 (m, 5H, CH₃) + 5-CH₂), 4,05 (q, J = 7,2, 2H, CH₂CH₃), 4,19 (q, J = 7,0, 2H, CH₂CH₃), 6,87 (s, 1H Ar), 7,13 (s, 1H Ar), 7,35-7,44 (m, 3H Ar), 7,71-7,89 (m, 2H Ar).

1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-éthyl-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIbb.

En remplaçant dans l'exemple IIIba la 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3,5-dihydro-4H-2,3-benzodiazépin-4-one VIab par la 1-(benzo[b]thiényl)-7,8-diéthoxy-5-éthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one VIad, on obtient de la même manière le produit titre. Rdt: 70 %. F: 79-81 °C. ¹H-RMN (200 MHz, CDCl₃): δ 1,07 (t, J = 7,2, 3H, CH₃), 1,42 (t, J = 7,0, 3H, CH₃), 1,52 (t, J = 7,0, 3H, CH₃), 1,92-2,47 (m, 2H, 5-CH₂CH₃), 2,96-3,04 (m, 1H, 5-H), 3,45 (s, 3H, 3-CH₃), 3,99-4,25 (m, 4H, 3 x OCH₂CH₃), 6,83 (s, 1H Ar), 7,13 (s, 1H Ar), 7,35-7,44 (m, 3H Ar), 7,72-7,90 (m, 2H Ar).

1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-méthyl-5-n-propyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIbc.

En remplaçant dans l'exemple IIIba la 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIab par la 1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-*n*-propyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIac, on obtient de la même manière le produit titre. Rdt: 34 %. F: 61-63 °C. ¹H-RMN (200 MHz, CDCl₃): δ 1,01 (t, J = 7,34, 3H, (CH₂)₂CH₃), 1,39-4,55 (m, 8H, CH₂CH₂CH₃ + 2 x OCH₂CH₃), 1,75-2,42 (m, 2H, CH₂CH₂CH₃), 3,04-3,11 (m, 1H, 5-H), 3,45 (s, 3H, 3-CH₃), 3,99-4,23 (m, 4H, 2 x OCH₂CH₃), 6,83 (s, 1H Ar), 7,12 (s, 1H Ar), 7,35-7,44 (m, 3H Ar), 7,72-7,89 (m, 2H Ar).

3,5-dibenzyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4H-2,3-benzodiazépin-4-one IIIbd.

A une solution de 7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one VIaa (200 mg, 0,67 mmole) dans le DMF (10 ml), sous atmosphère inerte, rajouter NaH dans l'huile (50 mg, 1,25 mmole). Ajouter ensuite goutte à goutte le bromure de benzyle (150 μl, 1,26 mmole). Après 2 h à température ambiante, évaporer le DMF. Reprendre le résidu dans CH₂Cl₂, laver 2 fois à l'eau. Sécher les phases organiques sur Na₂SO₄. Purifier par chromatographie sur colonne de gel de silice (AcOEt/Hexane : 4/1). Rdt : 79%. ¹H-RMN (200 MHz, CDCl₃) : δ 3,35-3,56 (m, 2H, CH₂Ph), 3,70 (s, 3H, OCH₃), 3,80 (m, 1H, CH), 3,97 (s, 3H, OCH₃), 4,87 (d, J = 10,2, 1H, NCHPh), 5,30 (d, J = 10,2, 1H, NCHPh), 6,61 (s, 1H, Ar), 6,93 (s, 1H, Ar), 7,06-7,42 (m, 13H, Ar), 7,59 (d, J = 4,8, 2H, Ar). SM : 477 (M + H), 500 (M + H + Na).

7,8-diméthoxy-1-phényl-3-(3-hydroxypropyl)-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one IIIbe.

En remplaçant dans l'exemple IIIac, le bromure de benzyle par le bromure de propan-1ol, on obtient de la même manière le produit titre. Rdt: 44%. ¹H-RMN (200 MHz, CDCl₃): δ 1,88 (large m, 2H, CH₂), 3,21 (large s, 1H, OH), 3,44 (large m, 4H, NCH₂ et CH₂O), 3,72 (s, 3H, OCH₃), 3,97 (s, 3H, OCH₃), 4,06 (m, 2H, CH₂), 6,66 (s, 1H, Ar), 6,88 (s, 1H, Ar), 7,44 (m, 3H, Ar), 7,64 (m, 2H, Ar).

20

5

10

EXEMPLE 2: SYNTHESE DES COMPOSES DE FORMULE III SELON L'INVENTION SELON UNE DEUXIEME VOIE

2.1. Synthèse de la 6,7-diméthoxyisochroman-3-one, VIII.

25

30

Chauffer à 120 °C pendant 1 heure un mélange de 19,6 g (100 mmoles) d'acide 3,4-diméthoxyphényl acétique (VII), 7,4 g (246 mmoles) de paraformaldéhyde et 20 mL d'HCl concentré dans 100 mL d'AcOH. Evaporer à sec. Ajouter 100 mL d'H₂O, et extraire 3 fois avec 200 mL de CH₂Cl₂. Laver les phases organiques avec 50 mL de NaHCO₃ 0,5 N et les sécher sur Na₂SO₄. Evaporer à sec. Laisser cristalliser 2 heures dans 50 mL d'Et₂O. Filtrer et laver 2 fois avec 10 mL d'Et₂O et 2 fois avec 20 mL de pentane. Rdt: 83 %. F: 106-108°C. ¹H-RMN (300 MHz, CDCl₃): δ 3,64 (s, 2H, CH₂),

44

3,89 (s, 3H, OCH₃), 3,90 (s, 3H, OCH₃), 5,26 (s, 2H, CH₂), 6,71 (s, 1H Ar), 6,75 (s, 1H Ar).

2.2. Synthèse de l'acide 4,5-diméthoxyhomophthalique, IX.

5

10

20

25

Ajouter au goutte à goutte à une solution de 10,4 g (50 mmoles) de 6,7-diméthoxy-3-isochromanone VIII dans 55mL de KOH à 10%, 800 mL d'une solution KMnO₄ à 10%. Laisser 10 heures sous agitation à température ambiante. Ajouter 20 mL d'EtOH et chauffer à 70 °C pendant 20 minutes. Concentrer le milieu réactionnel au deux tiers. Acidifier à pH 2-3 (contrôle au papier pH) avec de l'HCl concentré. Laisser cristalliser à 0°C pendant 1 heure. Filtrer et laver 2 fois avec 10 mL d'H₂O. Rdt: 78 %. ¹H-RMN (300 MHz, CDCl₃): δ 3,93 (s, 2H, CH₃), 3,96 (s, 3H, OCH₃), 4,01 (s, 2H, CH₂), 6,74 (s, 1H Ar), 7,66 (s, 1H Ar).

15 2.3. Synthèse des 6,7-diméthoxyisochroman-1,3-diones, X.

Chauffer à reflux 3,6 g (15 mmoles) d'acide 4,5-diméthoxyhomophthalique IX, dans 30 mL de chlorure d'acétyle. Ajouter 40 mL d'Et₂O. Filtrer et laver 2 fois avec 3 mL d'Et₂O puis 2 fois 10 mL de pentane. Rdt : 82 %. Le produit est utilisé tel quel pour la suite des réactions.

2.4. Synthèse de l'acide 2-(2-hydrazino-2-oxoéthyl)-4,5-diméthoxy benzoique, XI

Ajouter à une solution de 810 μL d'hydrate d'hydrazine dans 15 mL d'EtOH, 3 g (13,5 mmoles) de 6,7-diméthoxyisochroman-1,3-diones X. Laisser sous agitation 15 minutes à température ambiante. Filtrer le précipité. Laver 2 fois avec 5 mL d'EtOH et 2 fois avec 10 mL d'Et₂O. Rdt : 96 %. ¹H-RMN (300 MHz, DMSO-D₆) : δ 3,69 (s, 2H, CH₂), 3,73 (s, 3H, OCH₃), 3,75 (s, 3H, OCH₃), 6,55 (s large, 2 H échangeables, NH), 6,76 (s, 1H Ar), 7,34 (s, 1H Ar).

30

2.5. Synthèse de la 7,8-diméthoxy-1,2,3,4-tétrahydro-5*H*-2,3-benzodiazépine-1,4-dione, XII.

Ajouter à 15 mL d'AcOH à 100 °C, 1,5 g (5,9 mmoles) d'acide 2-(2-hydrazino-2-oxoéthyl)-4,5-diméthoxy benzoique XI. Après 5 minutes à 100 °C, refroidire dans un bain de glace. Filtrer et laver 2 fois avec 1 mL d'AcOH, 2 fois avec 2 mL d'H₂O, 2 fois avec 10 mL d'Et₂O. Rdt: 78 %. ¹H-RMN (300 MHz, DMSO-D₆): δ 3,76 (s, 3H, OCH₃), 3,78 (s, 3H, OCH₃), 3,88 (s, 2H, CH₂), 6,97 (s, 1H Ar), 7,40 (s, 1H Ar), 9,85 (s, 1H échangeable, 2-NH), 12,4 (s, 1H échangeable, 3-NH).

5

10

25

30

45

2.6. Synthèse de la 7,8-diméthoxy-3-méthyl-1,2,3,4-tétrahydro-5*H*-2,3-benzodiazépine-1,4-diones, XIII.

Laisser sous agitation à température ambiante un mélange de 200 mg (0,85 mmole) de 7,8-diméthoxy-1,2,3,4-tétrahydro-5*H*-2,3-benzodiazépine-1,4-dione **XII**, 130 mg (0,93 mmole) de K₂CO₃ et 58 μL (0,93 mmole) d'iodure de méthyle dans 3 mL de DMF anhydre. Après 24 heures, ajouter 40 mL d'H₂O. Filtrer le précipité et le laver 1 fois avec 1 mL d'H₂O, 2 fois avec 3 mL de MeOH et 2 fois avec 5 mL d'Et₂O. Rdt: 87%. ¹H-RMN (300 MHz, DMSO-D₆): δ 3,77 (s, 3H, OCH₃), 3,78 (s, 3H, OCH₃), 3,80 (s, 3H, OCH₃), 3,84 (s, 2H, CH₂), 7,00 (s, 1H **Ar**), 7,38 (s, 1H **Ar**), 9,87 (s, 1H échangeable, N**H**).

20 2.7. Synthèse de la 1-chloro-7,8-diméthoxy-3-méthyl-3,5-dihydro-5*H*-2,3-benzodiazépin-4-one, XIVaa.

Chauffer en tube scellé pendant 1 heure à 115°C une solution de 100 mg (0,40 mmole) de 7,8-diméthoxy-3-méthyl-1,2,3,4-tétrahydro-5*H*-2,3-benzodiazépine-1,4-diones **XIII**, 250 μL de diméthylaniline, 600 μL de POCl₃, dans 10 mL de CHCl₃ anhydre. Laisser revenir à température ambiante. Ajouter à –20°C, 3 g de silice, 15 mL de CH₂Cl₂ et 3 mL de triéthylamine. Evaporer à sec. Purifier par chromatographie (AcOEt). Triturer dans 1 mL d'Et₂O. Filtrer et laver 2 fois avec 2 mL de pentane. Rdt : 88%. ¹H-RMN (CDCl₃, 200MHz) : δ 3,68 (s, 3H, 3-CH₃), 3,79 (s, 3H, OCH₃), 3,80 (s, 3H, OCH₃), 4,47 (s, 2H, CH₂), 7,03 (s, 1H Ar), 7,44 (s, 1H Ar).

2.8. Synthèse de la 1-bromo-7,8-diméthoxy-3-méthyl-3,5-dihydro-5*H*-2,3-benzodiazépin-4-one, XIVab.

En remplaçant dans l'exemple XIVaa le POCl₃ par le POBr₃, on obtient de la même manière le produit titre. Rdt: 48%. ¹H-RMN (CDCl₃, 200MHz): δ 3,84 (s, 3H, 3-CH₃), 3,91 (s, 3H, OCH₃), 3,96 (s, 3H, OCH₃), 4,61 (s, 2H, CH₂), 6,80 (s, 1H Ar), 7,58 (s, 1H Ar).

EXEMPLE 3 : SYNTHESE DES COMPOSES DE FORMULE GENERALE II SELON L'INVENTION SELON UNE PREMIERE VOIE

10

5

3.1. Synthèse des Intermédiaires de formule XVIII.

6,7-diméthoxy-1-méthyl-1,2-dihydro-4H-3,1-benzoxazine-2,4-dione, XVI.

Ajouter sous atmosphère inerte à une solution de 500 mg (3,06 mmoles) de 6,7-diméthoxy-1,2-dihydro-4*H*-3,1-benzoxazine-2,4-dione (XV), dans 6 mL de DMF anhydre 134 mg (3,37 mmoles) de NaH à 60% dans l'huile. Après 10 min à température ambiante, ajouter au goutte à goutte 219 μL (3,52 mmoles) de MeI. Laisser 3 heures à température ambiante. Ajouter 40 mL d'un mélange eau-glace. Filtrer le précipité et laver 2 fois avec 1 mL d'EtOH et 3 mL d'Et₂O. On obtient 320 mg de produit titre sous forme d'une poudre blanche. Rdt: 59%. ¹H-RMN (CDCl₃, 300MHz): δ 3,31 (s, 3H, 1-CH₃), 3,82 (s, 3H, OCH₃), 3,96 (s, 3H, OCH₃), 6,85 (s, 1H Ar), 7,32 (s, 1H Ar).

7,8-diméthoxy-1-méthyl-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione, XVIIaa.

25

30

Chauffer à reflux pendant 6 heures un mélange de 320 mg (1,35 mmole) de 6,7-diméthoxy-1-méthyl-1,2-dihydro-4*H*-3,1-benzoxazine-2,4-dione (XVI), 452 mg (3,24 mmoles) de chlorhydrate de glycinate de méthyle dans 4 mL de pyridine. Ajouter 3 mL d'AcOH et chauffer à 130°C pendant 12 heures. Evaporer à sec. Ajouter 10 mL d'un mélange H₂O/glace. Laisser cristalliser pendant 30 minutes à 0°C. Filtrer et laver 2 fois avec 2 mL d'H₂O, 2 fois avec 1 mL d'EtOH et 2 fois avec 5 mL d'Et₂O. Recristalliser dans l'EtOH. On obtient 240 mg de produit titre sous forme de cristaux incolores. Rdt: 71%. F: 260-263°C. ¹H-RMN (CDCl₃, 300MHz): δ 3,42 (s, 3H, NCH₃), 3,75-3,92 (m,

2H, CH₂), 3,98 (s, 6H, 2 x OCH₃), 6,39 (sl, 1H échangeable, NH), 6,69 (s, 1H Ar), 7,37 (s, 1H Ar).

7,8-diméthoxy-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione, XVIIab.

5

10

15

20

25

En remplaçant dans l'exemple (XVIIaa) le 6,7-diméthoxy-1-méthyl-1,2-dihydro-4H-3,1-benzoxazine-2,4-dione (XVI) par 6,7-diméthoxy-1,2-dihydro-4H-3,1-benzoxazine-2,4-dione (XV) on obtient de la même manière le produit titre. Rdt : 54%. ¹H-RMN (DMSO, 300MHz) : δ 3,55 (d, J = 5,3, 2H, CH₂), 3,77 (s, 6H, 2xOCH₃), 6,16 (s, 1H Ar), 6,67 (s, 1H Ar), 8,34 (t, J= 5,3, 1H, NH), 10,07 (s, 1H, NH).

7,8-diméthoxy-1-n-propyl-3,4-dihydro-1H-1,4-benzodiazépine-2,5-dione, XVIIac.

Ajouter sous atmosphère inerte à une solution de 723 mg (3,06 mmoles) de 7,8-diméthoxy-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione (XVIIab), dans 6 mL de DMF anhydre 134 mg (3,37 mmoles) de NaH à 60% dans l'huile. Après 10 min à température ambiante, ajouter au goutte à goutte 328 μL (3,37 mmoles) de *n*-PrI. Laisser 3 heures à température ambiante. Ajouter 40 mL d'un mélange eau-glace. Filtrer le précipité et laver 2 fois avec 1 mL d'EtOH et 3 mL d'Et₂O. On obtient 320 mg de produit titre sous forme d'une poudre blanche. Rdt : 65%. ¹H-RMN (DMSO, 200MHz) : δ 0,66-0,73 (m, 3H, CH₂CH₃), 1,27-1,39 (m, 2H, CH₂CH₃), 3,30-4,22 (m, 10H, CH₂+CH₂+2 x OCH₃), 6,97 (s, 1H Ar), 7,13 (s, 1H Ar), 8,56 (s, 1H, NH).

1-benzyl-7,8-diméthoxy-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione, XVIIad.

En remplaçant dans l'exemple (XVIIac) le n-Pr-I par le Bn-Br on obtient de la même manière le produit titre. Rdt : 45%. ¹H-RMN (DMSO, 200MHz) : δ 3,53-3,77 (m, 8H, CH₂+2xOCH₃), 4,90-5,36 (m, 2H, CH₂), 6,98-7,29 (m, 7H Ar), 8,61 (t, J=5,6, 1H, NH).

30 7,8-diméthoxy-1,3-diméthyl-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione, XVIIae.

En remplaçant dans l'exemple (XVIIaa) le chlorhydrate de glycinate de méthyle par le chlorhydrate d'alaninate de méthyle on obtient de la même manière le produit titre. Rdt :

45%. ${}^{1}\text{H-RMN}$ (CDCl₃, 200MHz) : δ 1,47 (d, J = 6,6, 3H, 3-CH₃), 3,40 (s, 3H, 1-CH₃), 3,92-3,97 (m, 7H, 3-CH + 2xOCH₃), 6,13 (d, J = 4,9, 1H échangeable, NH), 6,66 (s, 1H Ar), 7,33 (s, 1H Ar).

5 5-chloro-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one (XVIIIaa).

Chauffer en tube scellé pendant ¾ d'heure à 125°C une solution de 100 mg (0,40 mmole) de 7,8-diméthoxy-1-méthyl-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione (XVIIaa), 280 μL de diméthylaniline, 800 μL de POCl₃, dans 10 mL de CHCl₃ anhydre.

10 Laisser revenir à température ambiante. Ajouter 3 g de silice et 5 mL de CH₂Cl₂. Ajouter à 0°C, 1 mL de triéthylamine. Evaporer à sec. Purifier par chromatographie (AcOEt 1/Hexane 1 puis, AcOEt). Triturer dans 1 mL d'Et₂O. Filtrer et laver 2 fois avec 2 mL de pentane. On obtient 93 mg de produit titre sous forme d'une poudre blanche. Rdt: 87%.

1 H-RMN (CDCl₃, 200MHz): δ 3,42 (s, 3H, NCH₃), 3,77 (s large, 1H de CH₂), 3,99 (s, 3H, OCH₃), 4,00 (s, 3H, OCH₃), 4,65 (s large, 1H de CH₂), 6,71 (s, 1H Ar), 7,22 (s, 1H Ar).

5-chloro-7,8-diméthoxy-1,3-diméthyl-1,3-dihydro-1,4-benzodiazépin-2-one, XVIIIab.

20

25

En remplaçant dans l'exemple (XVIIIaa) la 7,8-diméthoxy-1-méthyl-3,4-dihydro-1H-1,4-benzodiazépine-2,5-dione (XVIIaa) par la 7,8-diméthoxy-1,3-diméthyl-3,4-dihydro-1H-1,4-benzodiazépine-2,5-dione (XVIIae) on obtient de la même manière le produit titre. Rdt: 78%. ¹H-RMN (CDCl₃, 200MHz): δ 1,67 (d, J = 6,6, 3H, 3-CH₃), 3,44 (s, 3H, 1-CH₃), 3,68 (q, J = 6,6, 1H, 3-CH), 3,98 (s, 3H, OCH₃), 3,99 (s, 3H, OCH₃), 6,70 (s, 1H Ar), 7,21 (s, 1H Ar).

1-benzyl-5-chloro-7,8-diméthoxy-1,3-dihydro-1,4-benzodiazépine-2-one, XVIIIac.

En remplaçant dans l'exemple (XVIIIaa) la 7,8-diméthoxy-1-méthyl-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione (XVIIIaa) par la 1-benzyl-7,8-diméthoxy-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione (XVIIIad), on obtient de la même manière le produit titre.

Rdt: 53%. 1 H-RMN (CDCl₃, 200MHz): δ 3,70-3,96 (m, 7H, CH + 2xOCH₃), 4,65-4,78 (m, 1H CH), 5,09-5,12 (m, 2H, CH₂), 6,70 (s, 1H Ar), 7,15-7,39 (m, 6H Ar).

5-chloro-7,8-diméthoxy-1-n-propyl-1,3-dihydro-1,4-benzodiazépin-2-one, XVIIIad.

En remplaçant dans l'exemple (XVIIIaa) le 7,8-diméthoxy-1-méthyl-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione (XVIIaa) par le 7,8-diméthoxy-1-*n*-propyl-3,4-dihydro-1*H*-1,4-benzodiazépine-2,5-dione (XVIIac), on obtient de la même manière le produit titre. Rdt: 34%. ¹H-RMN (CDCl₃, 200MHz): δ 0,81-0,89 (m, 3H, CH₂CH₃), 1,46-1,61 (m, 2H, CH₂CH₃), 3,50-3,74 (m, 2H, 2xCH), 3,98 (s, 6H, 2xOCH₃), 4,22-4,66 (m, 2H, 2xCH), 6,77 (s, 1H Ar), 7,30 (s, 1H Ar).

3.2. Synthèse des Produits de Formule (II)

15 Les composés suivants ont été synthétisés :

5

10

- 7,8-diméthoxy-1-méthyl-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one IIaa.
 7,8-diméthoxy-5-(3,4-diméthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIab
- 5-(2-benzo[b]thiényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one Hac
 - 7,8-diméthoxy-5-(4-fluorophényl)-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIad
 - 7,8-diméthoxy-1-méthyl-5-(4-pyridyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIae
- 25 7,8-diméthoxy-1-méthyl-5-(3, 5 bis trifluorométhylphényl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIaf
 - 5-(2-benzo[b]furyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIag
 - 5-(2-furyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIah
 - 5-(4-acétylphényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIai
- 30 7,8-diméthoxy-5-(4-N,N-diméthylaminophényl)-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIaj.
 - 7,8-diméthoxy-1-méthyl-5-(2-thiényl)-1,3-dihydro-1,4-benzodiazépin-2-one IIak 7,8-diméthoxy-5-(3-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIal

- 7,8-diméthoxy-5-(2-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIam
- 5-(5-indolyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIan
- 5-(6-benzyloxy-2-naphthyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-
- 5 one IIao

25

- 7,8-diméthoxy-5-(6-méthoxy-2-naphthyl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIap
- 5-(2-indolyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIaq
- 7,8-diméthoxy-1-méthyl-5-(pipéridin-1-yl)-1,3-dihydro-1,4-benzodiazépin-2-one IIar
- 7,8-diméthoxy-1-méthyl-5-[(E)-2-phényléthènyl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIas.
 - 7,8-diméthoxy-5-(3-hydroxyméthylphényl)-1-méthyl-3-propyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIat.
 - 7,8-diméthoxy-1-méthyl-5-(2-méthylphényl)-1,3-dihydro-1,4-benzodiazépin-2-one IIau.
- 7,8-diméthoxy-1-méthyl-5-(N-tetrahydro-1,2,3,4-isoquinolyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIav.
 - 7,8-diméthoxy-5-(4-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIaw.
 - 5-(3-bromophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIax.
 - 5-(1,1'-biphényl-3-yl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one Ilay
 - 7,8-diméthoxy-1-méthyl-5-(2-phényléthyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIaz.

7,8-diméthoxy-1-méthyl-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one Haa.

Chauffer à 115°C pendant 12 h et sous atmosphère inerte un mélange de 200 mg (0,74 mmole) de 5-chloro-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one XVIIIaa, 109 mg (0,89 mmole) d'acide benzène boronique, 182 mg (0,86 mmole) de K₃PO₄, 23 mg (0,020 mmole) de tétrakis(triphénylphosphine) Pd (0) dans 5 mL de DMF. Laisser revenir à température ambiante. Ajouter 80 mL d'H₂O et extraire 3 fois avec 50 mL d'Et₂O. Sécher les fractions organiques sur Na₂SO₄. Purifier par

5

15

30

chromatographie (AcOEt). Recristalliser dans EtOH. On obtient 122 mg de produit titre sous forme de cristaux incolores. Rdt: 53%. F: 109-112°C. 1 H-RMN (CDCl₃, 200MHz): δ 3,40 (s, 3H, NCH₃), 3,75 (s, 3H, OCH₃), 3,98 (s, 3H, OCH₃), 4,30 (système AB, $\Delta\delta$ = 1,00, J_{AB} = 10,2, 2H, CH₂), 6,71 (s, 1H Ar), 6,78 (s, 1H Ar), 7,35-7,47 (m, 3H Ar), 7,64-7,68 (m, 2H Ar).

7,8-diméthoxy-5-(3,4-diméthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one Hab.

10 En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide 3,4-diméthoxybenzène boronique on obtient de la même manière le produit titre. Rdt : 82%. F: 130-133°C. ¹H-RMN (CDCl₃, 200MHz) : δ 3,40 (s, 3H, NC**H**₃), 3,43 (s, 3H, OC**H**₃), 3,94 (s, 6H, 2 x OC**H**₃), 3,98 (s, 3H, OC**H**₃), 4,27 (système AB, Δδ = 0,98, J_{AB} = 10,8, 2H, C**H**₂), 6,78-6,85 (m, 3**H** A**r**), 7,04-7,09 (m, 1**H** A**r**), 7,42-7,43 (m, 1**H** A**r**).

5-(2-benzo[b]thiényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one Hac.

En remplaçant dans l'exemple Πaa l'acide benzène boronique par l'acide benzo[b]thiophène-2-boronique on obtient de la même manière le produit titre. Rdt: 83%. F: 136-138°C. ¹H-RMN (CDCl₃, 200MHz): δ 3,40 (s, 3H, NCH₃), 3,88 (s, 3H, OCH₃), 4,00 (s, 3H, OCH₃), 4,32 (système AB, Δδ = 0,93, J_{AB} = 10,7, 2H, CH₂), 6,80 (s, 1H Ar), 7,15 (s, 1H Ar), 7,31-7,42 (m, 3H Ar), 7,69-7,89 (m, 2H Ar).

7,8-diméthoxy-5-(4-fluorophényl)-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one Had

En remplaçant dans l'exemple Haa l'acide benzène boronique par l'acide 4-fluorobenzène boronique on obtient de la même manière le produit titre. Rdt : 20%. F : 201-202°C. ¹H-RMN (DMSO, 300MHz) : δ 3,30 (s, 3H, NCH₃), 3,63 (s, 3H, OCH₃), 3,89 (s, 3H, OCH₃), 4,11 (système AB, $\Delta\delta$ = 0,79, J_{AB} = 10,6, 2H, CH₂), 6,67 (s, 1H Ar), 7,08 (s, 1H Ar), 7,08-7,66 (m, 4H Ar).

15

25

7,8-diméthoxy-1-méthyl-5-(4-pyridyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIae

En remplaçant dans l'exemple **Πaa** l'acide benzène boronique par l'acide (pyrid-4-yl))-4,4,5,5-tetraméthyl-1,3-dioxolaborolane on obtient de la même manière le produit titre.

Rdt: 25%. F: 170-172°C. ¹H-RMN (DMSO, 200MHz): δ 3,34 (s, 3H, NCH₃), 3,68 (s, 3H, OCH₃), 3,93 (s, 3H, OCH₃), 4,25 (système AB, Δδ = 0,81, J_{AB} = 10,5, 2H, CH₂), 6,73 (s, 1H Ar), 7,58 (d, 2H Ar, J = 6,1), 8,72 (d, 2H Ar, J = 5,9).

7,8-diméthoxy-1-méthyl-5-(3, 5 bis trifluorométhylphényl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one Haf.

En remplaçant dans l'exemple Haa l'acide benzène boronique par l'acide 3, 5 bis trifluorométhylbenzène boronique on obtient de la même manière le produit titre. Rdt: 20 %. F: 180-182°C. ¹H-RMN (CDCl₃, 300MHz): δ 3,44 (s, 3H, NCH₃), 3,76-3,88 (m, 4H, 1HCH₂ + OCH₃), 4,02 (s, 3H, OCH₃), 4,89 (m, 1HCH₂), 6,61 (s, 1H Ar), 6,84 (s, 1H Ar), 7,98 (s, 1H Ar), 8,19 (s, 2H Ar).

5-(2-benzo[b]furyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one 20 Hag.

En remplaçant dans l'exemple Haa l'acide benzène boronique par l'acide 2-benzo[b] furane boronique on obtient de la même manière le produit titre. Rdt : 70%. F : 139-141°C. ¹H-RMN (CDCl₃, 300MHz) : δ 3,40 (s, 3H, NCH₃), 3,89 (s, 3H, OCH₃), 4,00 (s, 3H, OCH₃), 4,41 (système AB, $\Delta\delta$ = 1,03, J_{AB} = 10,3, 2H, CH₂), 6,80 (s, 1H Ar), 7,08 (s, 1H Ar), 7,14-7,65 (m, 5H Ar).

5-(2-furyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIah.

30 En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide 2-furane boronique on obtient de la même manière le produit titre. Rdt: 43%. F: 172-173°C. ¹H-RMN (CDCl₃, 200MHz): δ 3,38 (s, 3H, NCH₃), 3,88 (s, 3H, OCH₃), 3,98 (s, 3H,

10

15

20

30

53

PCT/FR02/01952

OCH₃), 4,28 (système AB, $\Delta\delta$ = 0,98, J_{AB} = 10,5, 2H, CH₂), 6,50-6,54 (m, 1H Ar), 6,74-6,77 (m, 2H Ar), 7,07 (s, 1H Ar), 7,59-7,61 (m, 1H Ar).

5-(4-acétylphényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one 5 IIai.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide 4-acétylbenzène boronique on obtient de la même manière le produit titre. Rdt : 49%. F : 175-176°C. ¹H-RMN (CDCl₃, 200MHz) : δ 2,63 (s, 3H, CH₃CO), 3,42 (s, 3H, NCH₃), 3,75 (s, 3H, OCH₃), 4,00 (s, 3H, OCH₃), 4,30 (système AB, $\Delta\delta$ = 1,03, J_{AB} = 10,3, 2H, CH₂), 6,64 (s, 1H Ar), 6,80 (s, 1H Ar), 7,86 (système AB, $\Delta\delta$ = 0,23, J_{AB} = 8,08, 4H Ar).

7,8-diméthoxy-5-(4-N,N-diméthylaminophényl)-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIaj.

En remplaçant dans l'exemple Π aa l'acide benzène boronique par l'acide 4-N,N-diméthylaminobenzène boronique on obtient de la même manière le produit titre. Rdt : 10%. F: >290°C. ¹H-RMN (CDCl₃, 200MHz): δ 3,02 (s, 6H, NCH₃), 3,38 (s, 3H, NCH₃), 3,74-3,78 (m, 4H, 1HCH₂ + OCH₃), 3,97 (s, 3H, OCH₃), 4,67-4,71 (m, 1HCH₂), 6,66-6,81 (m, 4H Ar), 7,54-7,64 (m, 2H Ar). Masse: (M+H)⁺= 354,23.

7,8-diméthoxy-1-méthyl-5-(2-thiényl)-1,3-dihydro-1,4-benzodiazépin-2-one IIak.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide 2-thiophène boronique on obtient de la même manière le produit titre. Rdt : 66%. F : 180-182°C. ¹H-RMN (CDCl₃, 200MHz) : δ 3,38 (s, 3H, NCH₃), 3,87 (s, 3H, OCH₃), 3,99 (s, 3H, OCH₃), 4,24 (système AB, Δδ = 0,91, J_{AB} = 10,8, 2H, CH₂), 6,77 (s, 1H Ar), 7,05-7,49 (m, 4H Ar).

7,8-diméthoxy-5-(3-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIal.

15

30

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide 3-méthoxybenzène boronique on obtient de la même manière le produit titre. Rdt : 38%. F : 99-102°C. ¹H-RMN (CDCl₃, 200MHz) : δ 3,40 (s, 3H, NCH₃), 3,77 (s, 3H, OCH₃), 3,86 (s, 3H, OCH₃), 3,99 (s, 3H, OCH₃), 4,31 (système AB, $\Delta\delta$ = 0,98, J_{AB} = 10,7, 2H, CH₂), 6,73 (s, 1H Ar), 6,78 (s, 1H Ar), 6,99-7,35 (m, 4H Ar).

7,8-diméthoxy-5-(2-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one Ham.

En remplaçant dans l'exemple Haa l'acide benzène boronique par l'acide 2-méthoxybenzène boronique on obtient de la même manière le produit titre. Rdt : 54%. F : 153-154°C. ¹H-RMN (CDCl₃, 200MHz) : δ 3,43 (s, 3H, NCH₃), 3,57 (s, 3H, OCH₃), 3,68 (s, 3H, OCH₃), 3,96 (s, 3H, OCH₃), 4,31 (système AB, Δδ = 0,99, J_{AB} = 10,7, 2H, CH₂), 6,53 (s, 1H Ar), 6,75 (s, 1H Ar), 6,86-7,51 (m, 4H Ar).

5-(5-indolyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIan.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide (1-tert-butyloxycarbonylindole)-5-boronique on obtient de la même manière le produit titre.

Rdt: 21%. F: 148-151°C. ¹H-RMN (CDCl₃, 300MHz): δ 3,40 (s, 3H, NCH₃), 3,92 (s, 3H, OCH₃), 4,00 (s, 3H, OCH₃), 4,32 (système AB, Δδ = 0,85, J_{AB} = 10,9, 2H, CH₂), 6,75 (s, 1H Ar), 6,80 (s, 1H Ar), 7,10-7,76 (m, 5H Ar), 9,50 (s large, 1H échangeable, NH).

25 5-(6-benzyloxy-2-naphthyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one Πao.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide (6-benzyloxynaphthalène-2-boronique on obtient de la même manière le produit titre. Rdt: 18%. F: 143-146°C. ¹H-RMN (CDCl₃, 300MHz): δ 3,43 (s, 3H, NCH₃), 3,72 (s, 3H, OCH₃), 4,01 (s, 3H, OCH₃), 4,34 (système AB, Δδ = 0,98, J_{AB} = 10,6, 2H, CH₂), 5,21 (s, 2H, CH₂), 6,78 (s, 1H Ar), 6,82 (s, 1H Ar), 7,33-8,02 (m, 11H Ar).

7,8-diméthoxy-5-(6-méthoxy-2-naphthyl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one Пар.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide (6-méthoxynaphthalène-2-boronique on obtient de la même manière le produit titre. Rdt : 40%. F : 193-194°C. ¹H-RMN (CDCl₃, 300MHz) : δ 3,43 (s, 3H, NCH₃), 3,72 (s, 3H, OCH₃), 3,95 (s, 3H, OCH₃), 4,01 (s, 3H, OCH₃), 4,34 (système AB, $\Delta\delta$ = 0,98, J_{AB} = 10,6, 2H, CH₂), 6,79 (s, 1H Ar), 6,82 (s, 1H Ar), 7,16-8,00 (m, 6H Ar).

5-(2-indolyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one IIaq.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide (1-tert-butyloxycarbonylindole)-2-boronique on obtient de la même manière le produit titre. Rdt: 21%. F: 146-148°C. ¹H-RMN (CDCl₃, 200MHz): δ 3,39 (s, 3H, NCH₃), 3,89 (s, 3H, OCH₃), 4,00 (s, 3H, OCH₃), 4,31 (système AB, Δδ = 0,87, J_{AB} = 10,8, 2H, CH₂), 6,75 (s, 1**H** A**r**), 6,79 (s, 1**H** A**r**), 7,12-7,65 (m, 5**H** A**r**).

7,8-diméthoxy-1-méthyl-5-(pipéridin-1-yl)-1,3-dihydro-1,4-benzodiazépin-2-one Har

20

25

5

Chauffer à 110°C en tube scellé, un mélange de 100 mg (0,37 mmole) de 5-chloro-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one XVIIIaa et de 300 μ l (3 mmole) de pipéridine dans 10 mL d'EtOH pendant 48 heures. Evaporer à sec et purifier par chromatographie sur silice (CH₂Cl₂ 50/ AcOEt 40/ EtOH 10). Triturer dans l'hexane, filtrer, sécher. On obtient 70mg d'une poudre beige. Rdt : 60%. F = 125-127°C. ¹H-RMN (200MHz, DMSO) : δ 1,63-1,70 (m, δ H, 3 x CH₂), 3,20-3,23 (m, δ H, 2 x CH₂), 3,37 (s, 3H, NCH₃), 3,91 (système AB, δ E 0,71, δ B = 11,5, 2H, 3-CH₂), 3,94 (s, 3H, OCH₃), 6,73 (s, 1H Ar), 6,99 (s, 1H Ar).

7,8-diméthoxy-1-méthyl-5-[(Ε)-2-phényléthènyl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one Πas.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide (E)-2-phényléthènyl boronique on obtient de la même manière le produit titre. Rdt : 20%. ¹H-RMN (CDCl₃, 300MHz) : δ 3,38 (s, 3H, NCH₃), 3,76 (s, 3H, OCH₃), 3,98 (s, 3H, OCH₃), 4,26 (système AB, $\Delta\delta$ = 0,93, J_{AB} = 10,6, 2H, CH₂), 6,77 (s, 1H Ar), 7,00 (s, 1H, =CHPh), 7,12 (s, 2H, =CH + 1H Ar) 7,34-751 (m, 5H Ar). Masse : (M+H)⁺ = 337,21.

7,8-diméthoxy-1-méthyl-5-(2-phényléthynyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one Ilat.

10

15

5

Ajouter sous atmosphère inerte à une solution de 240mg (0,89 mmole) 5-chloro-7, 8-diméthoxy-1-méthyl-1, 3-dihydro-1, 4-benzodiazépin-2-one XVIIIaa dans 7 ml de CH₃CN, 17 mg (0,1 mmole) de PdCl₂, 30 mg (0,16 mmole) de CuI. Laisser 5 min sous agitation, puis ajouter 68 mg (0,23 mmole) de PPh₃, 185 μl de Net₃ et 150. μl de phénylacétylène. Chauffer le mélange à 55°C pendant 3h. Evaporer à sec et purifier par chromatographie sur silice (AcOEt 1/ Hexane 1, puis AcOEt). Recristalliser dans l'EtOH. Rdt: 45%. ¹H-RMN (DMSO, 200MHz): δ 3,33 (s, 3H, NCH₃), 3,70-3,91 (m, 7H, 1HCH₂ + 2OCH₃), 4,50-5,60 (m, 1HCH₂), 7,06 (s, 1H Ar), 7,32 (s, 1H Ar), 7,48-768 (m, 5H Ar). Masse: (M+H)⁺ = 335,16.

20

7,8-diméthoxy-1-méthyl-5-(2-méthylphényl)-1,3-dihydro-1,4-benzodiazépin-2-one, IIau.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide 2-25 méthylbenzène boronique on obtient de la même manière le produit titre. Rdt : 30%. F : 139-141°C. ¹H-RMN (CDCl₃, 300MHz) : δ 1,99 (s, 3H, CH₃), 3,44 (s, 3H, NCH₃), 3,66 (s, 3H, OCH₃), 3,98 (s, 3H, OCH₃), 4,31 (système AB, Δδ = 0,99, J_{AB} = 10,3, 2H, CH₂), 6,46 (s, 1**H Ar**), 6,77 (s, 1**H Ar**), 7,15-7,41 (m, 4**H Ar**).

30 7,8-diméthoxy-1-méthyl-5-(N-tetrahydro-1,2,3,4-isoquinolyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one Hav.

57

En remplaçant dans l'exemple **Har** la pipéridine par la tetrahydro-1,2,3,4-isoquinoléine on obtient de la même manière le produit titre. Rdt: 35%. F: 154-157°C. ¹H-RMN (DMSO, 300MHz): δ 2,70-3,10 (m, 2H, CH₂), 3,23 (s, 3H, NCH₃), 3,41-3,54 (m, 3H, 1CH₂ + 1HCH₂), 3,78 (s, 3H, OCH₃), 3,88(s, 3H, OCH₃), 3,98 - 4,01 (m, 1HCH₂), 4,33 - 4,44 (m, 2H, CH₂), 6,97 (s, 1H Ar), 7,02 (s, 1H Ar), 7,15 (s, 4H Ar). Masse: (M + H)⁺ = 366,19.

7,8-diméthoxy-5-(4-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one, IIaw.

5

15

25

30

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide 4-méthoxybenzène boronique on obtient de la même manière le produit titre. Rdt : 30%. F : 163-165°C. ¹H-RMN (CDCl₃, 200MHz) : δ 3,39 (s, 3H, NCH₃), 3,76 (s, 3H, OCH₃), 3,86 (s, 3H, OCH₃), 3,98 (s, 3H, OCH₃), 4,25 (système AB, $\Delta\delta$ = 0,98, J_{AB} = 10,5, 2H, CH₂), 6,74-6,93 (m, 4H Ar), 7,59 (s, 1H Ar), 7,63 (s, 1H Ar).

5-(3-bromophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2one IIax.

En remplaçant dans l'exemple **Haa** l'acide benzène boronique par l'acide 3-bromobenzène boronique on obtient de la même manière le produit titre. Rdt : 38%. ¹H-RMN (DMSO, 200MHz) : δ 3,33 (s, 3H, NCH₃), 3,66 (s, 3H, OCH₃), 3,92 (s, 3H, OCH₃), 4,23 (système AB, $\Delta\delta$ = 0,98, J_{AB} = 10, 2H, CH₂), 6,72 (s, 1H Ar), 7,12 (s, 1H Ar), 7,37-7,80 (m, 4H Ar).

5-(1,1'-biphényl-3-yl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one Hay.

Chauffer à 115°C pendant 12 h et sous atmosphère inerte un mélange de 100 mg (0,26 mmole) de 5-(3-bromophenyl)-7,8-dimethoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one **Hax**, 38 mg (0,31 mmole) d'acide benzène boronique, 63 mg (0,30 mmole) de K₃PO₄, 9 mg (0,020 mmole) de tétrakis(triphénylphosphine) Pd (0) dans 1

mL de DMF. Laisser revenir à température ambiante. Ajouter 80 mL d'H₂O et extraire 3 fois avec 50 mL d'Et₂O. Sécher les fractions organiques sur Na₂SO₄. Purifier par chromatographie (AcOEt 1/Hex 1). Recristalliser dans EtOH. On obtient 13 mg de produit titre sous forme de cristaux incolores. Rdt: 13%. F: 127°C. ¹H-RMN (CDCl₃, 200MHz): δ 3,42 (s, 3H, NCH₃), 3,77 (s, 3H, OCH₃), 4,00 (s, 3H, OCH₃), 4,34 (système AB, $\Delta\delta$ = 1,00, J_{AB} = 10,5, 2H, CH₂), 6,78 (s, 1H Ar), 6,80 (s, 1H Ar), 7,39-7,90 (m, 9H Ar).

7,8-diméthoxy-1-méthyl-5-(2-phényléthyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIaz.

Laisser sous agitation un mélange de 80 mg (0,24 mmole) de 7,8-diméthoxy-1-méthyl-5-(2-phényléthynyl)-1,3-dihydro-1,4-benzodiazépin-2-one 132 ,15mg de Pd/C à 10% en poids dans 5 ml de MeOH et 5ml deCH2Cl2 sous 70 psi d'H2 pendant 48h. Filtrer la suspension sur célite, rincer 3X10 ml de MeOH. Evaporer à sec et purifier par chromatographie sur silice (AcOEt 1/ Hexane 1, puis AcOEt). Rdt : 5%. F : 112-115°C. 1H-RMN (CDCl3, 300MHz) : δ 2,95-3,07 (m, 4H, CH2CH2), 3,28 (s, 3H, NCH3), 3,87 (s, 3H, OCH3), 3,93 (s, 3H, OCH3), 4,10 (système AB, $\Delta\delta$ = 0,96, JAB = 10,2, 2H, CH2), 6,67 (s, 1H Ar), 6,78 (s, 1H Ar), 7,15-7,25 (m, 5H Ar). Masse : (M + H)+ = 339,15

EXEMPLE 4 : SYNTHESE DES COMPOSES DE FORMULE GENERALE II SELON L'INVENTION SELON UNE DEUXIEME VOIE

25

20

10

15

4.1. Synthèse des Intermédiaires.

30 2-éthoxy-1-méthoxy-4-nitrobenzène XIXaa.

Ajouter sous atmosphère inerte, à 0°C, une solution de 10 g (59 mmoles) de 2-éthoxy-5-nitrophénol dissout dans 125 mL de DMF, sur une solution de 2,6 g (65 mmoles) de

NaH à 60% dans l'huile dissout dans 125 mL de DMF. Après 30 minutes à température ambiante, ajouter au goutte à goutte 5,2 mL (65 mmoles) de EtI à 0°C. Laisser 12 heures à température ambiante. Ajouter 1,5 L d'un mélange eau-glace. Filtrer le précipité et laver 3 fois avec 100 mL d'eau puis 1 fois avec 100 mL de pentane. On obtient 9,8 g de produit titre sous forme d'une poudre blanche. Rdt : 93%. ¹H-RMN (CDCl3, 300MHz) : δ 1,52 (t, 3H, -CH₃), 3,98 (s, 3H, OCH₃), 4,20 (q, 2H, OCH₂), 6,91 (d, 1H Ar), 7,75 (d, 1H Ar), 7,91 (dd, 1H Ar).

1,2-diéthoxy-4-nitrobenzène XIXab.

10

15

5

Ajouter sous atmosphère inerte, à 0°C, une solution de 20 g (0,13 moles) de 4-nitrobenzène-1,2-diol dissout dans 150 mL de DMF, sur une solution de 11,35 g (0,28 moles) de NaH à 60% dans l'huile dissout dans 150 mL de DMF. Après 30 minutes à température ambiante, ajouter au goutte à goutte 5,2 mL (65 mmoles) de EtI à 0°C. Laisser 12 heures à température ambiante. Ajouter 2 L d'un mélange eau-glace. Filtrer le précipité et laver 3 fois avec 100 mL d'eau puis 1 fois avec 100 mL de pentane. On obtient 20,4 g de produit titre sous forme d'une poudre blanche. Rdt : 76%. ¹H-RMN (CDCl3, 300MHz) : δ 1,47-1,53 (m, 6H, 2 fois -CH₃), 4,14-4,20 (m, 4H, 2 fois OCH₂), 6,88 (d, 1H Ar), 7,74 (d, 1H Ar), 7,89 (dd, 1H Ar).

20

25

3-éthoxy-4-méthoxyaniline XXaa.

Laisser sous pression d'hydrogène (Patm) pendant 12h, 5 g de 2-éthoxy-1-méthoxy-4-nitrobenzène (XIXaa), 500 mg de palladium à 10% sur charbon (10% en poids de produit à réduire), dans 200 mL de méthanol. Filtrer sur cellite, rincer plusieurs fois au méthanol. Evaporer à sec. Reprendre à l'éther et évaporer. On obtient 3,28 g de produit titre sous forme d'une poudre blanche rosée. Rdt: 79%. ¹H-RMN (CDCl₃, 300MHz): δ 1,46 (t, 3H, -CH₃), 3,33 (s, 2H échangeable, -NH₂), 3,81 (s, 3H, OCH₃), 4,05 (q, 2H, OCH₂), 6,22(d, 1H Ar), 6,28 (dd, 1H Ar), 6,71 (d, 1H Ar).

30

3,4-diéthoxyaniline XXab.

En remplaçant dans l'exemple XXaa le 2-éthoxy-1-méthoxy-4-nitrobenzène (XIXaa) par le 1,2-diéthoxy-4-nitrobènzene (XIXab) on obtient de la même manière le produit titre. Rdt: 80%. H-RMN (CDCl₃, 300MHz): δ 1,36-1,46 (m, 6H, 2 fois -CH₃), 3,44 (s, 2H échangeable, -NH₂), 3,97-4,07 (m, 4H, 2 fois OCH₂), 6,19 (dd, 1H Ar), 6,23 (d, 1H Ar), 6,73 (d, 1H Ar).

(2-amino-4,5-diméthoxyphényl)(phényl)méthanone XXIaa.

Ajouter, à 0°C et sous atmosphère inerte, à une solution de 35 mL de tribromure de bore
(1M/CH₂Cl₂, 35,8 mmol), 5 g de 3,4-diméthoxyaniline (32,6 mmol) dissout dans 30 mL de dichloroéthane, 6,7 mL de benzonitrile (65,2 mmol), et 4,79 g d'AlCl₃ (35,8 mmol). Agiter 30 minutes à température ambiante. Evaporer le dichlorométhane. Chauffer à reflux 12h. Laisser refroidir. Additionner 35 mL d'HCl 1M à 0°C, agiter à 75°C pendant une heure. Additionner 150 mL d'eau, et extraire par 3 fois 200 mL de CH₂Cl₂.
Sécher les fractions organiques sur Na₂SO₄. Purifier par chromatographie (AcOEt 1/Hexane 2). On obtient 6,1 g de produit titre sous forme d'une poudre jaune. Rdt: 73%. ¹H-RMN (CDCl₃, 300MHz): δ 3,66 (s, 3H, -OCH₃), 3,92 (s, 3H, -OCH₃), 6,22 (s, 2H échangeable + 1H, 1H Ar + -NH₂), 6,95 (s, 1H Ar), 7,46-7,51 (m, 3H Ar), 7,61-7,64 (m, 2H Ar).

20

25

5

(2-amino-4-bromophényl)(4-bromophényl)méthanone XXIab.

En remplaçant dans l'exemple XXIaa la 3,4-diméthoxyaniline par la 3-bromoaniline, et le benzonitrile par le 4 bromobenzonitrile, on obtient de la même manière le produit titre. Rdt : 17%. ¹H-RMN (CDCl₃, 200MHz) : 6,18 (s, 2H échangeable, -NH₂), 6,76 (dd, 1H Ar), 6,97 (d, 1H Ar), 7,30 (t, 1H Ar), 7,61 (système AB, $\Delta\delta$ = 0,13, J_{AB} = 8,3, 4H Ar).

30 (2-amino-5-iodophényl)[3-(trifluorométhyl)phényl]méthanone XXIac.

En remplaçant dans l'exemple XXIaa la 3,4-diméthoxyaniline par la 4-iodoaniline, et le benzonitrile par le 3-trifluorométhyl-benzonitrile, on obtient de la même manière le

produit titre. Rdt: 10%. ¹H-RMN (DMSO, 300MHz): δ 6,41 (d, 2**H Ar**), 6,74 (m, 1**H Ar**), 7,06 (d, 1**H Ar**), 7,26-7,38 (m, 2**H Ar**), 7,55-7,58 (m, 1**H Ar**).

2-amino-3-bromo-4,5-diméthoxybenzophénone,XXIad

5

10

Ajouter goutte à goutte et à 0°C à une solution de 900mg (3,5 mmole) de (2-amino-4,5-diméthoxyphényl)(phényl)méthanone (**XXIaa**), dans 60 ml de DMSO, 15g d'HBr à 40% en poids dans l'eau. Chauffer à 60°C pendant 24h. Ajouter 400 ml d'H₂O et extraire avec 4 X 200 ml d'AcOEt; sécher sur MgSO₄, évaporer l'AcOEt et purifier par chromatographie sur silice (AcOEt 1 / Hex 4). Rdt: 65%. ¹H-RMN (CDCl₃, 300MHz): δ 3,67 (s, 3H, OCH₃), 3,97 (s, 3H, OCH₃), 6,59 (s, 2H, NH₂), 7,06 (s, 1H Ar), 7,47-7,65 (m, 5H Ar). Masse: (M + H)⁺ = 335,98 + 337,98.

(2-amino-5-méthoxyphényl)[3-(trifluorométhyl)phényl]méthanone XXIae.

15

En remplaçant dans l'exemple XXIaa la 3,4-dimethoxyaniline par la 4-méthoxyaniline, et le benzonitrile par le 3-trifluorométhyl-benzonitrile, on obtient de la même manière le produit titre. Rdt: 23%. ¹H-RMN (CDCl₃, 200MHz): δ 3,70 (s, 3H, OCH₃), 6,18-6,24 (m, 2H Ar), 6,35 (s, 2H échangeable, -NH₂), 7,35-7,81 (m, 6H Ar).

20

25

(2-amino-4,5-diméthoxyphényl)(4-bromophényl)méthanone XXIaf.

En remplaçant dans l'exemple XXIaa le benzonitrile par le 4-bromobenzonitrile, on obtient de la même manière le produit titre. Rdt : 82%. 1 H-RMN (CDCl₃, 300MHz) : δ 3,67 (s, 3H, -OCH₃), 3,91 (s, 3H, -OCH₃), 6,20 (s, 2H échangeable + 1H, 1H Ar + -NH₂), 6,86 (s, 1H Ar), 7,55 (système AB, $\Delta\delta$ = 0,10, J_{AB} = 8,7, 4H Ar).

(2-amino-4,5-diéthoxyphényl)(phényl)méthanone XXIag.

30 En remplaçant dans l'exemple XXIaa la 3,4-diméthoxyaniline par la 3,4-diéthoxyaniline (XXab). Purifier par chromatographie (AcOEt 1/ Hexane 4), on obtient de la même manière le produit titre. Rdt: 35%. ¹H-RMN (CDCl₃, 300MHz): δ 1,32 (t, 3H, -CH₃),

15

30

1,48 (t, 3H, -CH₃), 3,85 (q, 2H, OCH₂), 4,10 (q, 2H, OCH₂), 6,19 (s, 1H Ar), 6,23 (s, 2H échangeable, -NH₂), 6,99 (s, 1H Ar), 7,42-7,62 (m, 5H Ar).

(7-amino-2,3-dihydro-1,4-benzodioxin-6-yl)(phényl)méthanone XXIah.

En remplaçant dans l'exemple XXIaa la 3,4-diméthoxyaniline par la 2,3-dihydro-1,4-benzodioxin-6-amine on obtient de la même manière le produit titre. Rdt : 49%. Le produit est utilisé tel quel.

10 (2-amino-4,5-diméthoxyphényl)(3-bromophényl)méthanone XXIai.

En remplaçant dans l'exemple XXIaa le benzonitrile par le 3-bromobenzonitrile, on obtient de la même manière le produit titre. Rdt: 32%. ¹H-RMN (CDCl₃, 300MHz): δ 3,70 (s, 3H, -OCH₃), 3,95 (s, 3H, -OCH₃), 6,23 (s, 1H Ar), 6,28 (s, 2H échangeable, -NH₂), 6,88 (s, 1H Ar), 7,32 (s, 1H Ar), 7,40 (s, 1H Ar), 7,53-7,59 (m, 1H Ar), 7,63-7,69 (m, 1H Ar), 7,78-7,80 (m, 1H Ar).

(2-amino-4,5-diméthoxyphényl)(2-bromophényl)méthanone XXIaj.

En remplaçant dans l'exemple XXIaa le benzonitrile par le 2-bromobenzonitrile, on obtient de la même manière le produit titre. Rdt: 30%. ¹H-RMN (CDCl₃, 200MHz): δ 3,60 (s, 3H, -OCH₃), 3,92 (s, 3H, -OCH₃), 6,20 (s, 1H Ar), 6,51 (s, 2H échangeable, -NH₂), 6,57 (s, 1H Ar), 7,29-7,42 (m, 3H Ar), 6,64-7,69 (m, 1H Ar).

25 (2-amino-4-éthoxy-5-méthoxyphényl)(phényl)méthanone XXIak.

En remplaçant dans l'exemple XXIaa la 3,4-diméthoxyaniline par la 3-éthoxy-4-méthoxyaniline (XXaa). Purifier par chromatographie (AcOEt 1/ Hexane 4), on obtient de la même manière le produit titre. Rdt: 53%. ¹H-RMN (CDCl₃, 300MHz): δ 1,52 (t, 3H, -CH₃), 3,66 (s, 3H, OCH₃), 4,13 (q, 2H, OCH₂), 6,19(s, 2H échangeable, -NH₂), 6,20 (s, 1H Ar) 6,95 (s, 1H Ar), 7,43-7,64 (m, 5H Ar).

(2-amino-4-méthoxyphényl)(phényl)méthanone XXIal.

10

20

30

En remplaçant dans l'exemple XXIaa la 3,4-diméthoxyaniline par la 3-méthoxyaniline. Purifier par chromatographie (AcOEt 1/ Hexane 3), on obtient de la même manière le produit titre. Rdt: 68%. ¹H-RMN (CDCl₃, 300MHz): δ 3,82 (s, 3H, OCH₃), 6,15-6,20 (m, 2H Ar), 6,37 (s, 2H échangeable, -NH₂), 7,38-7,65 (m, 6H Ar).

(2-amino-5-méthoxyphényl)(phényl)méthanone XXIam.

En remplaçant dans l'exemple XXIaa la 3,4-diméthoxyaniline par la 4-méthoxyaniline. Purifier par chromatographie (AcOEt 1/ Hexane 3), on obtient de la même manière le produit titre. Rdt: 43%. ¹H-RMN (CDCl₃, 300MHz): δ 3,66 (s, 3H, OCH₃), 5,72 (s, 2H échangeable, -NH₂), 6,73 (d, 1H Ar), 6,96-7,02 (m, 2H Ar), 7,44-7,54 (m, 3H Ar), 7,67-7,70 (m, 2H Ar).

15 (2-amino-5- hydroxy-4-méthoxyphényl)(phényl)méthanone XXIan.

Ajouter goutte à goutte à 400mg (1,55)mmole) de (2-amino-4,5diméthoxyphényl)(phényl)méthanone (XXIaa), 2,1 ml d'HBr à 40% en poids dans l'eau. Chauffer à 95°C pendant 12h. Ajouter à 0°C de l'ammoniaque jusqu'à PH = 8, 9. Ajouter 100 ml d'H₂O et extraire avec 3 X 100 ml de CH₂Cl₂. Sécher sur MgSO₄. évaporer le CH₂Cl₂ et purifier par chromatographie sur silice (AcOEt 1 / Hex 4 puis 1 / 1). Rdt : 45%. 1 H-RMN (CDCl₃, 200MHz) : δ 3,92 (s, 3H, OCH₃), 6,20 (s, 1H Ar), 7,00 (s, 1H Ar), 7,42-7,61 (m, 5H Ar).

25 (2-amino-5-éthoxy-4-méthoxyphényl)(phényl)méthanone XXIao.

Ajouter, à 0°C et sous atmosphère inerte, à une solution de 300 mg (1,23 mmole) de (2-amino-5- hydroxy-4-méthoxyphényl)(phényl)méthanone (**XXIan**). dans 5 ml de DMF, 50 mg (1,25 mmole) de NaH à 60% dans l'huile. Laisser sous agitation à température ambiante pendant 1h. Ajouter goutte à goutte à 0°C, 210 mg (1,35 mmole) d'iodure d'éthyle. Laisser sous agitation à température ambiante pendant la nuit. Ajouter 50 ml d'H₂O et extraire avec 3 X 50 ml d'AcOEt; sécher sur MgSO₄, évaporer l'AcOEt et purifier par chromatographie sur silice (AcOEt 1 / Hex 1). Rdt: 85%. ¹H-RMN (CDCl₃.

300MHz): δ 1,26–1,36 (m, 3H, OCH₂CH₃), 3,81-3,87 (m, 2H, OCH₂CH₃), 3,90 (s, 3H, OCH₃), 6,20 (s, 1H Ar), 6,96 (s, 1H Ar), 7,42-7,61 (m, 4H Ar).

5

WO 02/098865

4.2. Synthèse des Produits de formule XXII

Les composés suivants ont été synthétisés :

- 7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaa 8-bromo-5-(4-bromophényl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIab 7-iodo-5-[3-(trifluorométhyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIac 7,8-diméthoxy-3-isobutyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIad. 7-méthoxy-5-[3-(trifluorométhyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- XXIIae
 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaf
 7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIag
 10-phényl-2,3,6,8-tétrahydro-7H-[1,4] dioxino [2,3-h][1,4]benzodiazépin-7-one XXIIah

7,8-diéthoxy-3-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIai

- 3-benzyl-7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaj 5-(3-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIak 5-(2-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIal 8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIam 8-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIan
- 7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIao 3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIap. 7,8-diméthoxy-3-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaq. 7,8-diméthoxy-3-(1H-imidazol-4-ylméthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIar.
- 7,8-diméthoxy-3-(1H-indol-3-ylméthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIas.
 7,8-diméthoxy-3-(2-méthylthioéthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIat.

- (S) 3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIau.
- (S)-butylcarbamate de (7,8-diméthoxy-5-phényl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl XXIIav.
- (S)-3-(4-aminobutyl)-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaw
- (S)-N-[4-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)butyl]acétamide XXIIax.
- (S)-Bis trifluoroacetate de N-[4-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)butyl]guanidinium XXIIay
- 7,8-diméthoxy-3,5-diphényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaz 3,5-diphényl-8-éthoxy-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIba. 3-benzyl-8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIbb.
 - 5-phényl-7-éthoxy -8-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIbc

7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaa.

Chauffer à reflux pendant 36 h et sous atmosphère inerte un mélange de 4,5 g (17,6 mmole) de (2-amino-4,5-diméthoxyphényl)(phényl)méthanone (XXIaa), 5 g (36
20 mmole) de glycinate d'éthyle.HCl, et 30 ml de pyridine anhydre. Ajouter quatres fractions 2,5 g (18 mmol) de glycinate d'éthyle.HCl, toutes les six heures. Laisser revenir à température ambiante. Evaporer à sec. Verser 200 ml d'eau. Extraire par 3 fois 300 ml de dichlorométhane. Sécher les fractions organiques sur Na₂SO₄ Purifier par chromatographie (AcOEt 3/Hexane 1/ 3% triéthylamine). Recristalliser dans EtOH/EtO₂.
25 On obtient 2.2 g de produit titre sous forme de cristaux incolores. Rdt: 43%. F:248-250 °C. ¹H-RMN (CDCl₃, 200MHz): δ 3,71 (s, 3H, OCH₃), 3,95 (s, 3H, OCH₃), 4,31 (s, 2H, CH₂), 6,64 (s, 1H Ar), 6,70 (s, 1H Ar), 7,27-7,59 (m, 5H Ar), 9,40 (s, 1H échangeable, -NH).

30

5

15

15

25

En remplaçant dans l'exemple XXIIaa la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-4-bromophényl)(4-bromophényl) méthanone (XXIab), on obtient de la même manière le produit titre. Rdt: 3%. F: 299 °C. ¹H-RMN (DMSO, 200MHz): δ 4,18 (s, 2H, CH₂), 7,21 (d, 1H Ar), 7,35-7.46 (m, 5H Ar), 7,63-7,68 (m, 2H Ar), 10,65 (s, 1H échangeable, -NH).

7-iodo-5-[3-(trifluorométhyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIac.

En remplaçant dans l'exemple XXIIaa la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-5-iodophényl)[3-(trifluorométhyl)phényl] méthanone (XXIac), on obtient de la même manière le produit titre. Rdt: 5%. F: 209°C. ¹H-RMN (CDCl₃, 200MHz): δ 4,36 (s, 2H, CH₂), 6,92 (d, 1H Ar), 7,51-7.59 (m, 2H Ar), 7,76-7.89 (m, 4H Ar), 8,30 (s, 1H échangeable, -NH).

7,8-diméthoxy-3-isobutyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIad.

En remplaçant dans l'exemple **XXIIaa** le chlorhydrate du glycinate d'éthyle par le chlorhydrate du leucinate d'éthyle on obtient de la même manière le produit titre. Rdt: 30%. F: 198-201°C. ¹H-RMN (CDCl₃, 300MHz): δ 0,85-0,87 (m, 3H, CH₃), 1,03-1,05 (m, 3H, CH₃), 1,94-2,05 (m, 2H, CH₂), 2,3-2,4 (m, 1HCH₂), 3,62-3,68 (m, 1HCH₂), 3,74 (s, 3H, OCH₃), 3,96 (s, 3H, OCH₃), 6,63 (s, 1H Ar), 6,73 (s, 1H Ar), 7,37-7,58 (m, 5H Ar), 9,04 (s, 1H, NH).

7-méthoxy-5-[3-(trifluorométhyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIae.

En remplaçant dans l'exemple XXIIaa la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-5-méthoxyphényl)[3-(trifluorométhyl) phényl]méthanone (XXIae), on obtient de la même manière le produit titre. Rdt: 75%. F: 197-199°C. ¹H-RMN (DMSO, 300MHz): δ 3,68 (s, 3H, OCH₃), 4,16 (s, 2H, CH₂), 6,74 (s, 1H Ar), 7,23 (s, 1H Ar), 7,68-7,90 (m, 4H Ar), 10,41 (s, 1H échangeable, -NH).

5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXII af.

En remplaçant dans l'exemple XXIIaa la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-4,5-diméthoxyphényl)(4-bromophényl) méthanone (XXIaf), on obtient de la même manière le produit titre. Rdt : 43%. Rdt : 73%. 1 H-RMN (CDCl₃, 200MHz) : δ 3,74 (s, 3H, OCH₃), 3,96 (s, 3H, OCH₃), 4,30 (s, 2H, CH₂), 6,78 (s, 1H Ar), 6,80 (s, 1H Ar), 7,50 (système AB, $\Delta\delta$ = 0,08, J_{AB} = 8,3, 4H Ar), 8,75 (s, 1H échangeable, -NH).

10

15

5

7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIag.

En remplaçant dans l'exemple XXIIaa, la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-4,5-diéthoxyphényl)(phényl)méthanone (XXIag), on obtient de la même manière le produit titre. Rdt: 60%. F: 233-236°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,39 (t, 3H, CH₃), 1,54 (t, 3H, CH₃), 3,94 (q, 2H, OCH₂), 4,18 (q, 2H, OCH₂), 4,35 (s, 2H, CH₂), 6,66 (s, 1H Ar), 6,74 (s, 1H Ar), 7,36-7,63 (m, 5H Ar), 9,51 (s, 1H échangeable, -NH).

20 10-phényl-2,3,6,8-tétrahydro-7H-[1,4] dioxino [2,3-h][1,4]benzodiazépin-7-one XXПаh.

En remplaçant dans l'exemple XXIIaa, la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par (7-amino-2,3-dihydro-1,4-benzodioxin-6-yl)(phényl) méthanone (XXIah), on obtient de la même manière le produit titre. Rdt : 15%. F: 263-265°C. ¹H-RMN (CDCl₃, 200MHz): δ 4,21-4,49 (m, 6H, -OCH₂CH₂O- + CH₂), 6,64 (s, 1H Ar), 6,80 (s, 1H Ar), 7,32-7,58(m, 5H Ar), 8,37 (s, 1H échangeable, -NH).

7,8-diéthoxy-3-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIai.

30

25

En remplaçant dans l'exemple XXIIaa, la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-4,5-diéthoxyphényl)(phényl)méthanone (XXIag), ainsi que le glycinate d'éthyle.HCl par l'analilate de méthyl.HCl, on obtient de la même

68

manière le produit titre. Rdt: 13%. F:195-198 °C. ¹H-RMN (CDCl₃, 200MHz): δ 1,39 (t, 3H, CH₃), 1,54 (t, 3H, CH₃), 1,77 (d, 3H, CH₃), 3,80 (q, 1H, CH), 3,94 (q, 2H, OCH₂), 4,18 (q, 2H, OCH₂), 6,64 (s, 1H Ar), 6,75 (s, 1H Ar), 7,36-7,63 (m, 5H Ar), 9,10 (s, 1H échangeable, -NH).

5

3-benzyl-7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaj.

En remplaçant dans l'exemple XXIIaa, la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-4,5-diéthoxyphényl)(phényl)méthanone (XXIag), ainsi que le glycinate d'éthyle.HCl par le phénylanalilate de méthyl.HCl, on obtient de la même manière le produit titre. Rdt: 19%. F: 110-112 °C. ¹H-RMN (CDCl₃, 200MHz): δ 1,38 (t, 3H, CH₃), 1,55 (t, 3H, CH₃), 3,61-3,66 (m, 2H, CH₂), 3,82-3,98 (m, 3H, CH + OCH₂), 4,18 (q, 2H, OCH₂), 6,64 (s, 1H Ar), 6,75 (s, 1H Ar), 7,25-7,57 (m, 10H Ar), 8,65 (s, 1H échangeable, -NH).

15

20

10

5-(3-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIak.

En remplaçant dans l'exemple XXIIaa la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-4,5-diméthoxyphényl)(3-bromophényl) méthanone (XXIai), on obtient de la même manière le produit titre. Rdt: 72%. F: 256-258 °C. ¹H-RMN (DMSO, 300MHz): δ 3,61 (s, 3H, OCH₃), 3,82 (s, 3H, OCH₃), 4,10 (s, 2H, CH₂), 6,69 (s, 1H Ar), 6,83 (s, 1H Ar), 7,37-7,45 (m, 2H Ar), 7,67-7,73 (m, 2H Ar), 10,34 (s, 1H échangeable, -NH).

25

30

5-(2-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIal.

En remplaçant dans l'exemple XXIIaa la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-4,5-diméthoxyphényl)(2-bromophényl) méthanone (XXIaj), on obtient de la même manière le produit titre. Rdt: 27%. F: 280-281 °C. ¹H-RMN (DMSO, 300MHz): δ 3,49 (s, 3H, OCH₃), 3,81 (s, 3H, OCH₃), 4,12 (s, 2H, CH₂), 6,33 (s, 1H Ar), 6,80 (s, 1H Ar), 7,36-7,42 (m, 1H Ar), 7,49-7,51 (m, 2H Ar), 7,63-7,65 (m, 1H Ar), 10,43 (s, 1H échangeable, -NH).

9

8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIam.

En remplaçant dans l'exemple XXIIaa, la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-4-éthoxy-5-méthoxyphényl)(phényl) méthanone (XXIak), on obtient de la même manière le produit titre. Rdt: 60%. ¹H-RMN (CDCl₃, 300MHz): δ 1,54 (t, 3H, CH₃), 3,73 (s, 3H, OCH₃), 4,17 (q, 2H, OCH₂), 4,33 (s, 2H, CH₂), 6,58 (s, 1H Ar), 6,73 (s, 1H Ar), 7,40-7,47 (m, 3H Ar), 7,58-7,61 (m, 3H Ar), 8,47 (s, 1H échangeable, -NH).

10

15

5

8-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIan.

En remplaçant dans l'exemple XXII aa la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXII aa) par la (2-amino-4-méthoxyphényl)(phényl)méthanone (XXII al), on obtient de la même manière le produit titre. Rdt: 48%. F: 174-176°C. ¹H-RMN (CDCl₃, 200MHz): δ 3,87 (s, 3H, OCH₃), 4,32 (s, 2H, CH₂), 6,63-6,72 (m, 2H Ar), 7,20-7,56 (m, 6H Ar), 9,33 (s, 1H échangeable, -NH).

7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIao.

20

25

En remplaçant dans l'exemple XXIIaa la (2-amino-4,5-diméthoxyphényl)(phényl) méthanone (XXIaa) par la (2-amino-5-méthoxyphényl)(phényl)méthanone (XXIam), on obtient de la même manière le produit titre. Rdt: 32%. F: 220-222°C. ¹H-RMN (CDCl₃, 200MHz): δ 3,72 (s, 3H, OCH₃), 4,32 (s, 2H, CH₂), 6,78 (m, 1H Ar), 7,01 (m, 2H Ar), 7,33-7,48 (m, 3H Ar), 7,56-7,60 (m, 2H Ar), 8,86 (s, 1H échangeable, -NH).

3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIap

En remplaçant dans l'exemple XXIIaa le chlorhydrate du glycinate d'éthyle par le chlorhydrate du phénylalalinate d'éthyle on obtient de la même manière le produit titre. Rdt: 55%. F: 216-218°C. ¹H-RMN (DMSO, 200MHz): δ 3,37-3,49 (m, 2H, CH₂), 3,58-3,71 (m, 4H, 1CH + OCH₃), 3,84 (s, 3H, OCH₃), 6,65 (s, 1H Ar), 6,82 (s, 1H Ar), 7,22-7,48 (m, 10H Ar), 10,40 (s, 1H, NH).

5

25

7,8-diméthoxy-3-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaq

En remplaçant dans l'exemple **XXII** aa le chlorhydrate du glycinate d'éthyle par le chlorhydrate de l'alalinate d'éthyle on obtient de la même manière le produit titre. Rdt : 50%. F: 247-248°C. ¹H-RMN (DMSO, 200MHz): δ 1,52-1,55 (m, 3H, CH₃), 3,62-3,65 (m, 4H, 1CH + OCH₃), 3,85 (s, 3H, OCH₃), 6,70 (s, 1H Ar), 6,82 (s, 1H Ar), 7,43-7,56 (m, 10H Ar), 10,30 (s, 1H, NH). Masse: (M + H)⁺ = 311,12.

7,8-diméthoxy-3-(1H-imidazol-4-ylméthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIar.

En remplaçant dans l'exemple XXIIaa le chlorhydrate du glycinate d'éthyle par le dichlorhydrate de l'histidinate d'éthyle on obtient de la même manière le produit titre.

Rdt: 5%. F: 195°C, dégradation. ¹H-RMN (DMSO, 200MHz): δ 3,30-3,35 (m, 2H, CH₂), 3,62 (s, 3H, OCH₃), 3,70-3,76 (m, 1H, CH), 3,85 (s, 3H, OCH₃), 6,70 (s, 1H Ar), 6,82 (s, 1H Ar), 6,90 (s, 1H Imidazole), 7,47-7,53 (m, 5H Ar), 7,70 (s, 1H Imidazole), 10,37 (s, 1H, NH), 12,40 (s large, 1H, NH). Masse: (M + H)⁺ = 377,15.

7,8-diméthoxy-3-(1H-indol-3-ylméthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIas.

En remplaçant dans l'exemple XXIIaa le chlorhydrate du glycinate d'éthyle par le dichlorhydrate du tryptophanate d'éthyle on obtient de la même manière le produit titre. Rdt: 10%. F: 180-185°C. 1 H-RMN (DMSO, 200MHz): δ 3,44-3,57 (m, 5H, 1CH₂ + OCH₃), 3,83 (s, 3H, OCH₃), 4,35-4,41 (m, 1H, CH), 6,64 (s, 1H Ar), 6,80 (s, 1H Ar), 6,97-7,07 (m, 2H Ar), 7,21-7,63 (m, 7H Ar), 10,37 (s, 1H, NH), 10,83 (s, 1H, NH Indole). Masse: $(M + H)^{+} = 426,19$.

7,8-diméthoxy-3-(2-méthylthioéthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIat.

5

10

15

En remplaçant dans l'exemple XXIIaa le chlorhydrate du glycinate d'éthyle par le chlorhydrate du méthionate d'éthyle on obtient de la même manière le produit titre. Rdt : 15%. F : 126-128°C. 1 H-RMN (DMSO, 300MHz) : δ 2,04 (s, 3H, SCH₃), 2,49-2,51 (m, 2H, SCH₂), 2,59-2,72 (m, 2H, CH₂), 3,57-3,62 (m, 4H, 1CH + OCH₃), 3,83 (s, 3H, OCH₃), 6,68 (s, 1H Ar), 6,81 (s, 1H Ar), 7,42-7,54 (m, 5H Ar), 10,37 (s, 1H, NH). Masse : $(M + H)^{+} = 371,12$.

(S)-3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIau.

En remplaçant dans l'exemple XXIIaa le chlorhydrate du glycinate d'éthyle par le chlorhydrate du L-phénylalalinate d'éthyle on obtient de la même manière le produit titre. Rdt: 50%. 1 H-RMN (DMSO, 200MHz): δ 3,28-3,45 (m, 2H, CH₂), 3,55-3,68 (m, 4H, 1CH + OCH₃), 3,80 (s, 3H, OCH₃), 6,61 (s, 1H Ar), 6,78 (s, 1H Ar), 7,15-7,43 (m, 10H Ar), 10,34 (s, 1H, NH). Masse: $(M + H)^{+} = 387,14$.

- (S)-butylcarbamate de (7,8-diméthoxy-5-phényl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl XXIIav.
- En remplaçant dans l'exemple **XXIIaa** le chlorhydrate du glycinate d'éthyle par le chlorhydrate du 377 lysine Z on obtient de la même manière le produit titre. Rdt : 20%. F : 95-98°C. ¹H-RMN (DMSO, 300MHz) : δ 1,26-1,44 (m, 4H, 2CH₂), 1,95-1,97 (m, 2H, CH₂), 2,95-3,03 (m, 2H, CH₂), 3,31-3,35 (m, H, CH), 3,55 (s, 3H, OCH₃), 3,81 (s, 3H, OCH₃), 4,95 (s, 2H, CH₂), 6,62 (s, 1H Ar), 6,77 (s, 1H Ar), 7,20-7,29 (m, 6H, 1NH + 5H Ar), 7,39-7,47 (m, 5H Ar), 10,29 (s, 1H, NH). Masse : (M + H)⁺ = 502,25.
 - (S)-3-(4-aminobutyl)-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIaw.
- Laisser sous agitation un mélange de 60 mg (0,12 mmole) de (S)-butylcarbamate de (7,8-diméthoxy-5-phényl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl (XXIIav), 6 mg de Pd/C à 10% en poids dans 10 ml de MeOH sous atmosphère d'H₂ à température et pression ambiante pendant 24h. Filtrer la suspension sur célite, rincer

avec 3X10 ml de MeOH. Evaporer à sec et purifier par chromatographie sur silice (AcOEt puis AcOEt 5/ CH₂Cl₂ 4/ EtOH 1). Rdt : 68%. ¹H-RMN (DMSO, 200MHz) : δ 1,55-1,63 (m, 4H, 2CH₂), 1,98-2,09 (m, 2H, CH₂), 2,75-2,81 (m, 2H, CH₂), 3,60 (s, 3H, OCH₃), 3,69-3,74 (m, H, CH), 3,84 (s, 3H, OCH₃), 6,67 (s, 1H Ar), 6,82 (s, 1H Ar), 7,41-7,53 (m, 5H Ar), 8,26 (s large, 2H, NH₂), 10,37 (s, 1H, NH). Masse : (M + H)⁺ = 368,21.

(S)-N-[4-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)butyl]acétamide XXIIax.

10

Ajouter à une solution de 20 mg (0,054 mmole) de (S)-3-(4-aminobutyl)-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIaw), 11 mg (0,135 mmole) de pyridine dans 2 ml de CH_2Cl_2 , 6,5 mg (0,065mmole) d'anhydride acétique goutte à goutte. Laisser sous agitation 24h. Evaporer à sec et purifier par chromatographie sur silice (AcOEt puis AcOEt 5/ CH_2Cl_2 4/ EtOH 1). Rdt: 98%. F: 82-84°C. ¹H-RMN (CDCl₃, 300MHz): δ 1,45-1,66 (m, 4H, 2CH₂), 1,97 (s, 3H, COCH₃), 2,22-2,27 (m, 2H, CH₂), 3,25-3,35 (m, 2H, CH₂), 3,53-3,57 (m, H, CH), 3,75 (s, 3H, OCH₃), 3,96 (s, 3H, OCH₃), 5,76 (s large, 1H, AcNH), 6,57 (s, 1H Ar), 6,74 (s, 1H Ar), 7,39-7,58 (m, 5H Ar),), 8,07 (s, 1H, NH). Masse: $(M + H)^+ = 410,21$.

20

15

(S)-Bis trifluoroacetate de N-[4-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)butyl]guanidinium XXII ay.

Ajouter à une solution 14 mg (0,04 mmole) de 1H-pyrazole-1-[N, N'-bis(ter25 butoxycarbonyl)carboxamide] dans 1ml de CH₃CN anhydre, 20 mg (0,054 mmole) de
(S)-3-(4-aminobutyl)-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
(XXIIaw). Laisser sous agitation 12h. Evaporer à sec et purifier par chromatographie sur
silice (AcOEt 1/ Hex 4). Ajouter 2 ml de TFA à 0°C et agiter 3h à température ambiante.
Evaporer le TFA, reprendre à l'AcOEt, enlever le surnageant, triturer dans l'Et₂O,
30 sécher. Rdt: 30%. Masse: (M + H)⁺ = 410,15.

7,8-diméthoxy-3,5-diphényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXII az.

En remplaçant dans l'exemple **XXIIaa** le chlorhydrate du glycinate d'éthyle par le chlorhydrate du phénylglycinate d'éthyle on obtient de la même manière le produit titre. Rdt: 55%. F: 202-204°C. ¹H-RMN (CDCl₃, 200MHz): δ 3,62-3,78 (m, 4H, CH + OCH₃), 3,93 (s, 3H, OCH₃), 6,61 (s, 1H Ar), 6,66 (s, 1H Ar), 7,24-7,50 (m, 10H Ar), 9,14 (s, 1H, NH).

5

10

15

3,5-diphényl-8-éthoxy-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIba.

remplacant l'exemple En dans XXIIaa la (2-amino-4.5diméthoxyphényl)(phényl)méthanone (XXIaa), par la (2-amino-4-éthoxy-5méthoxyphényl)(phényl)méthanone XXIak et le chlorhydrate du glycinate d'éthyle par le chlorhydrate du phénylglycinate d'éthyle on obtient de la même manière le produit titre. Rdt: 55%. F: 168-169°C. ¹H-RMN (DMSO, 200MHz): δ 1,38-1,42 (m, 3H, CH₃), 3,65 (s, 3H, OCH₃), 3,98-4,18 (m, 2H, CH₂), 4,76 (s, 1H, CH), 6,78 (s, 1H Ar), 6,88 (s, 1H Ar), 7,38-7,58 (m, 10H Ar), 10,49 (s, 1H, NH).

3-benzyl-8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIbb.

20 En remplaçant dans l'exemple XXIIaa (2-amino-4,5la diméthoxyphényl)(phényl)méthanone (XXIaa), (2-amino-4-éthoxy-5par la méthoxyphényl)(phényl)méthanone (XXIak), et le chlorhydrate du glycinate d'éthyle par le chlorhydrate du phénylalalinate d'éthyle on obtient de la même manière le produit titre. Rdt: 55%. F: 190-193°C. H-RMN (DMSO, 200MHz): δ 1,33-1,39 (m, 3H, 25 CH_3), 3,36-3,64 (m, 3H, $CH + CH_2Bn$), 3,73 (s, 3H, OCH_3), 3,95-4,10 (m, 2H, CH_2), 6,59 (s, 1**H** Ar), 6,77 (s, 1**H** Ar), 7,21-7,44 (m, 10**H** Ar), 10,36 (s, 1H, N**H**).

5-phényl-7-éthoxy -8-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one XXIIbc.

30 En remplaçant dans l'exemple XXIIaa la (2-amino-4,5-diméthoxyphényl)(phényl)méthanone (XXIaa), par la (2-amino-5-éthoxy-4-méthoxyphényl)(phényl)méthanone (XXIao), on obtient de la même manière le produit titre. Rdt: 45%. F: °C. ¹H-RMN (CDCl₃, 200MHz): δ 1,36-1,44 (m, 3H, CH₃), 3,88-

 $4,00 \text{ (m, 5H, OCH}_2 + \text{OCH}_3), 4,30-4,42 \text{ (m, 2H, CH}_2), 6,62 \text{ (s, 1H Ar), 6,73 (s, 1H Ar), 7,44-7,58 (m, 10H Ar), 8,88 (s, 1H, NH).}$

74

5 4.3. Synthèse des Produits de formule II

Les composés suivants ont été synthétisés :

- 10 5-(4-bromophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIba
 - 3-benzyl-8-éthoxy-1-éthyl-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one, IIbb
 - 1-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbc
- 15 1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbd
 - 7,8-diméthoxy-5-phényl-1-propyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbe
 - 7,8-diéthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbf
 - 7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbg
 - 7,8-diméthoxy-1-éthyl-3-(2-nitrobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-
- 20 one IIbh
 - éthyl (7,8-diéthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-1-yl)acétate IIbi
 - 1-benzyl-7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbj
 - 1-éthyl-7,8-dihydroxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbk
 - 5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbl
- 25 5-(3-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbm
 - 5-{4-[3-(benzyloxy)prop-1-ynyl]phényl}-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbn
 - tert-butyl 3-[4-(1-éthyl-7,8-diméthoxy-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-5-
- 30 yl)phényl]prop-2-ynylcarbamate Πbo
 - 5-(1,1'-biphényl-4-yl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbp
 - 3-(4-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbq

- 1-éthyl-7,8-diméthoxy-5-[4-(phényléthynyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbr
- 3-allyl-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbs
- 1-éthyl-7,8-diméthoxy-5-phényl-3-prop-2-ynyl-1,3-dihydro-2H-1,4-benzodiazépin-2-
- 5 one IIbt
 - 1-éthyl-7,8-diméthoxy-5-[4-(2-phényléthyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbu
 - éthyl (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)acétate IIbv
- 10 1-éthyl-7,8-diméthoxy-5-[3-(phényléthynyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbw
 - 3-(3,5-dibromobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbx
 - 7,8-diméthoxy-3-(diphénylhydroxyméthyl)-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-
- 15 benzodiazépin-2-one IIby
 - 7,8-diméthoxy-1-éthyl-3-(E-3-phénylpropèn-2yl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbz
 - 7,8-diméthoxy-1-éthyl-3-(2-aminobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIca
- 20 (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)acétonitrile IIcb
 - 3-(2-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcc
 - 3-(4-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-
- 25 2-one IIcd
 - 3-(2-cyanobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIce
 - N-[2-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl]acétamide IIcf
- 30 3-(2-aminométhylbenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcg
 - 3-[(3-bromophényl)(hydroxy)méthyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIch

76

- [(7,8-diméthoxy-1-éthyl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benz-2-yl]carboxamide IIci
- 3-(3-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcj
- 5 3-(1,1'-biphényl-4-ylméthyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIck
 - 3-(1-benzyl-4-hydroxypipéridin-4-yl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcl
 - N-[2-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 10 yl)benzyl]méthylacétamide IIcm
 - 3-(4-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcn
 - 3-(2,4-dichlorobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIco
- 3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile IIcp
 - 3-benzyl-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcq 1-éthyl-7,8-diméthoxy-3-(2-méthoxybenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcr
- 20 3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzamide IIcs
 - 3-[3-(aminométhyl)benzyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIct
 - 3-(1,1'-biphényl-3-ylméthyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-
- 25 benzodiazépin-2-one IIcu
 - 3-benzyl-7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcv 2-(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)acétamide IIcw
 - 7,8-diméthoxy-1-(2-hydroxyéthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 30 IIcx
 - 3-(2-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcy

- 1-éthyl-7,8-diméthoxy-3-(2-méthylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcz
- 8-éthoxy-7-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIda 1-éthyl-7,8-diméthoxy-5-phényl-3-[3-(trifluorométhyl)
- benzyl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdb
 1-éthyl-7,8-diméthoxy-3-(3-méthoxybenzyl)-5-phényl-1,3-dihydro-2H-1,4benzodiazépin-2-one IIdc
 - 1-éthyl-7,8-diméthoxy-3-(4-méthylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdd
- 3-[1,2-bis(4-bromophényl)éthyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIde
 - 3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile IIdf
 - 2-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 15 yl)méthyl]benzonitrile IIdg
 - 3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzamide IIdh
 - 3-(2,5-dichlorobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdi
- 20 (S)-3-benzyl-7,8-diméthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2one IIdj.
 - 3,5-diphényl-8-éthoxy-1-éthyl-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdk.
 - 7-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdl
- 25 8-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdm
 - 5-(4-bromophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIba.
- Ajouter sous atmosphère inerte à une solution de 100 mg (0,267 mmoles) de 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaf**), dans 2 mL de DMF anhydre, 48 mg (0,35 mmoles) de K₂CO₃. Après 30 min à température ambiante, ajouter au goutte à goutte 25 μL (0.4

mmoles) de MeI. Laisser 12 heures à température ambiante. Ajouter 30 mL d'eau. Extraire par 3 fois 30 ml d'EtO₂. Sécher les fractions organiques sur Na₂SO₄. Purifier par chromatographie (AcOEt 1/Hexane 1). Recristalliser dans EtO₂. On obtient 78 mg de produit titre sous forme d'une poudre blanche. Rdt: 73%. ¹H-RMN (CDCl₃, 200MHz): δ 3,40 (s, 3H, NCH₃), 3,75 (s, 3H, OCH₃), 3,99 (s, 3H, OCH₃), 4,29 (système AB, $\Delta\delta$ = 1,014, J_{AB} = 10,7, 2H, CH₂)6,65 (s, 1H Ar), 6,78 (s, 1H Ar), 7,54 (s, 4H Ar).

3-benzyl-8-éthoxy-1-éthyl-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbb

10

15

25

En remplaçant dans l'exemple **IIba** la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaf**), par la 3-benzyl-8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIbb**), et l'iodure de méthyl par l'iodure d'éthyl on obtient de la même manière le produit titre. Rdt: 65%. F: 228-230°C. ¹H-RMN (CDCl₃, 300MHz): δ 1,03-1,08 (m, 3H, NCH₂CH₃), 1,50-1,54 (m, 3H, OCH₂CH₃), 3,59-3,65 (m, 3H, 1HNCH₂ + CH₂Bn), 3,70 (s, 3H, OCH₃), 3,77-3,83 (m, 1H, 1CH), 4,12-4,18 (m, 2H, OCH₂), 4,30-4,41 (m, 1H, 1HNCH₂), 6,62 (s, 1H Ar), 6,79 (s, 1H Ar), 7,22-7,59 (m, 10H Ar).

20 1-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbc.

En remplaçant dans l'exemple IIba la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIaf), par la 7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIaa), et le MeI par le bromure de benzyle, on obtient de la même manière le produit titre. Rdt : 64 %. F : 148-149°C. 1 H-RMN (CDCl₃, 200MHz) : δ 3,67 (s, 3H, OCH₃), 3,83 (s, 3H, OCH₃), 4,38 (système AB, $\Delta\delta$ = 0,96, J_{AB} = 10,0 2H, CH₂), 5,15 (système AB, $\Delta\delta$ = 0,70, J_{AB} = 15,4, 2H, -NCH₂), 6,56 (s, 1H Ar), 6,81 (s, 1H Ar), 7,07-7,46 (m, 10H Ar).

30 1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbd.

En remplaçant dans l'exemple IIba la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIaf), par la 7,8-diméthoxy-5-phényl-1,3-dihydro-2H-

10

15

20

25

30

1,4-benzodiazépin-2-one (XXIIaa), et le MeI par le iodure d'éthyle, on obtient de la même manière le produit titre. Rdt : 62 %. F : 86-88°C. 1 H-RMN (CDCl₃, 200MHz) : δ 1,15 (t, 3H, CH₃), 3,80 (s, 3H, OCH₃), 4,01 (s, 3H, OCH₃), 4,03 (système AB, $\Delta\delta$ = 0,61, J_{AB} = 13,9, 2H, -NCH₂), 4,30 (système AB, $\Delta\delta$ = 1,00, J_{AB} = 9,98, 2H, CH₂), 6,71 (s, 1H Ar), 6,88 (s, 1H Ar), 7,40-7,69 (m, 5H Ar).

7,8-diméthoxy-5-phényl-1-propyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbe.

En remplaçant dans l'exemple **IIba** la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaf**), par la 7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaa**), et le MeI par le bromure de (n)-propyle, on obtient de la même manière le produit titre. Rdt: 33 %. F: 136-138°C. ¹H-RMN (CDCl₃, 200MHz): δ 0,75 (t, 3H, CH₃), 1,48 (m, 2H, CH₂), 3,75 (s, 3H, OCH₃), 3,97 (s, 3H, OCH₃), 3,94 (système AB, $\Delta\delta$ = 0,87 J_{AB} = 13,4, 2H, -NCH₂), 4,28 (système AB, $\Delta\delta$ = 0,97, J_{AB} = 10,26, 2H, CH₂), 6,68 (s, 1H Ar), 6,84 (s, 1H Ar), 7,40-7,66 (m, 5H Ar).

7,8-diéthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbf.

En remplaçant dans l'exemple **IIba** la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaf**), par la 7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIag**), on obtient de la même manière le produit titre. Rdt : 28 %. F : 116-118°C. 1 H-RMN (CDCl₃, 200MHz) : δ 1,40 (t, 3H, CH₃), 1,56 (t, 3H, CH₃), 3,42 (s, 3H, NCH₃), 3,97 (q, 2H, OCH₂), 4,21 (q, 2H, OCH₂), 4,33 (système AB, $\Delta\delta$ = 0,98 J_{AB} = 10,5, 2H, CH₂), 6,74 (s, 1H Ar), 6,81 (s, 1H Ar), 7,42-7,70 (m, 5H Ar).

7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbg.

En remplaçant dans l'exemple IIba la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIaf), par la 7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIag), et le MeI par le iodure d'éthyle, on obtient de la même manière le produit titre. Rdt: 59 %. F: 99-102°C. ¹H-RMN (CDCl₃, 300MHz): δ 1,11 (t, 3H, CH₃), 1,36 (t, 3H, CH₃), 1,53 (t, 3H, CH₃), 3,93 (q, 2H, OCH₂), 3,97

(système AB, $\Delta \delta = 0.67$, $J_{AB} = 14.0$, 2H, -NCH₂), 4,17 (q, 2H, OCH₂), 4,28 (système AB, $\Delta \delta = 0.96$ $J_{AB} = 10.0$, 2H, CH₂), 6.68 (s, 1H Ar), 6.84 (s, 1H Ar), 7.38-7.64 (m, 5H Ar).

5 7,8-diméthoxy-1-éthyl-3-(2-nitrobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbh.

10

15

25

30

Ajouter goutte à goutte à -78°C et sous atmosphère inerte, à une solution 920 μl (1,84 mmole) de LDA 2M / THF dans 5 ml de THF anhydre, une solution de 300 mg (0,92 mmole) de 1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (IIbd), dans 2 ml de THF. Laisser revenir à température ambiante pendant 30 min. Ajouter goutte à goutte à -30°C une solution de 220 mg (1,01 mmole) de bromure de 2-nitrobenzyl dans 2 ml de THF. Laisser sous agitation 12h à température ambiante. Ajouter 1 ml d'H₂O. Evaporer le THF. Purifier par chromatographie sur silice (AcOEt 1 / Hex 4, 1 / 1, puis AcOEt). Recristalliser dans EtOH / cHex.. Rdt : 35%. F : 158-160°C. ¹H-RMN (DMSO, 300MHz) : δ 0,87-0,91 (m, 3H, CH₃), 3,61-3,99 (m, 10H, NCH + CHCH₂ + 2OCH₃), 4,35-4,40 (m, 1H, NCH), 6,60 (s, 1H Ar), 6,82 (s, 1H Ar), 7,37-7,90 (m, 9H Ar). Masse : (M + H)⁺ = 460,88.

20 éthyl (7,8-diéthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-1-yl)acétate IIbi.

En remplaçant dans l'exemple IIba la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIaf), par la 7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIag), et le MeI par le bromoacétate d'éthyle, on obtient de la même manière le produit titre. Rdt: 55 %. F: 160-162°C. 1 H-RMN (CDCl₃, 200MHz): δ 1,21 (t, 3H, CH₃), 1,36 (t, 3H, CH₃), 1,50 (t, 3H, CH₃), 3,88-4,26 (m, 7H, 3 fois OCH₂ + 1H CH₂) 4,49 (système AB, $\Delta\delta$ = 0,17, J_{AB} = 17,4, 2H, -NCH₂), 4,80 (m, 1H CH₂), 6,71 (s, 1H Ar), 6,81 (s, 1H Ar), 7,27-7,69 (m, 5H Ar).

1-benzyl-7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbj.

81

En remplaçant dans l'exemple **Hba** la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaf**), par la 7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIag**), et le MeI par le bromure de benzyle, on obtient de la même manière le produit titre. Rdt : 32 %. F : 158-160°C. ¹H-RMN (CDCl₃, 300MHz) : δ 1,33 (t, 3H, CH₃), 1,40 (t, 3H, CH₃), 3,84-3,95 (m, 3H, OCH₂ + 1H CH₂) 4,04 (q, 2H OCH₂), 4,87 (m, 1H CH₂), 5,15 (système AB, Δδ = 0,74, J_{AB} = 15,4, 2H, -NCH₂), 6,58 (s, 1H Ar), 6,81 (s, 1H Ar), 7,07-7,46 (m, 10H Ar).

1-éthyl-7,8-dihydroxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbk.

10

15

20

5

Ajjoutter gouttes à gouttes, à 0°C et sous atmosphère inerte, 0.68 mL d'une solution à $1\text{M/CH}_2\text{Cl}_2$ de BBr₃ (0.68 mmols), sur 200 mg (0.62 mmols) de 7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**IIbg**) dans 5 mL de dichlorométhane. Agiter 12 heures à température ambiante. Quencher à 0°C avec du méthanol. Evaporer à sec. Triturer à nouveau, évaporer. Purifier par chromatographie (AcOEt). Recristalliser dans EtO_2 /pentane. On obtient 30 mg de produit titre sous forme d'une poudre jaune. Rdt : 16 %. F : 230-231°C. ¹H-RMN (DMSO, 200MHz) : δ 0,96 (t, 3H, CH₃), 3,80 (système AB, Δ δ = 0,54, J_{AB} = 13,7, 2H, -NCH₂), 4,05 (système AB, Δ δ = 0,72, J_{AB} = 10,0, 2H, CH₂), 6,52 (s, 1H Ar), 6,91 (s, 1H Ar), 7,42-7,55 (m, 5H Ar), 9-10,5 (bosse, 2H, 2 fois –OH).

5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbl.

En remplaçant dans l'exemple **IIba** le MeI par le iodoéthane, on obtient de la même manière le produit titre. Rdt : 76 %. F : 93-95°C. 1 H-RMN (CDCl₃, 200MHz) : δ 1,10 (s, 3H, C**H**₃), 3,78 (s, 3H, OC**H**₃), 3,97 (s, 3H, OC**H**₃), 3,98 (système AB, $\Delta \delta = 0,54$, J_{AB} = 14,2, 2H, -NC**H**₂), 4,25 (système AB, $\Delta \delta = 0,98$, J_{AB} = 10,3, 2H, C**H**₂), 6,63 (s, 1**H** A**r**), 6,84 (s, 1**H** A**r**), 7,53 (s, 4**H** A**r**).

30

5-(3-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one Пbm.

En remplaçant dans l'exemple IIba la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIaf), par la 5-(3-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIak), et le MeI par le iodure d'éthyle, on obtient de la même manière le produit titre. Rdt: 17 %. F: 122-126°C. 1 H-RMN (CDCl₃, 300MHz): δ 1,14 (s, 3H, CH₃), 3,79-3,85 (m, 4H, 1H CH₂ + OCH₃), 3,99 (système AB, $\Delta\delta$ = 0,62, J_{AB} = 13,9, 2H, -NCH₂), 4,04 (s, 3H, OCH₃), 4,78 (m, 1H, CH₂), 6,65 (s, 1H Ar), 6,86 (s, 1H Ar), 7,26-7,31 (m, 2H Ar), 7,52-7,62 (m, 2H Ar), 7,86 (s, 1H Ar).

5

15

20

25

30

5-{4-[3-(benzyloxy)prop-1-ynyl]phényl}-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one Πbn.

Agitter 12 heures, sous atmosphère inerte à 50°C, un mélange de 100 mg (0.27 mmols) de 5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (IIbl), 194mg de [(prop-2-ynyloxy)méthyl]benzène (1,3 mmols), 9,0 mg de CuI, 5,2 mg de PdCl₂, 18,0 mg de PPh₃, 0,5 mL de TEA, 2 mL de CH₃CN. Evaporer à sec et purifier par chromatographie sur silice (AcOEt 1/Hex 1). Recristalliser dans EtO₂/pentane. Rdt : 37%. F : 64-66°C. 1 H-RMN (CDCl₃, 300MHz) : δ 1,12 (s, 3H, CH₃), 3,72-3,83 (m, 4H, 1H CH₂ + OCH₃), 4,00 (système AB, $\Delta \delta = 0,63$, $J_{AB} = 13,5$, 2H, -NCH₂), 4,03 (s, 3H, OCH₃), 4,43 (s, 2H, OCH₂), 4,69 (m, 2H, \equiv C-CH₂), 4,77 (m, 1H, OCH₂), 6,65 (s, 1H Ar), 7,27-7,63 (m, 9H Ar).

tert-butyl 3-[4-(1-éthyl-7,8-diméthoxy-2-oxo-2,3-dihydro-1H-1,4-benzo diazépin-5-yl)phényl]prop-2-ynylcarbamate IIbo.

En remplaçant dans l'exemple **Hbn**, le [(prop-2-ynyloxy)méthyl]benzène par le tert-butyl-prop-2-ynylcarbamate, on obtient de la même manière le produit titre. Rdt : 47%. F : 95-97°C. 1 H-RMN (CDCl₃, 300MHz) : δ 1,10 (s, 3H, CH₃), 1,47 (m, 9H, CH₃), 3,72-3,78 (m, 4H, 1H CH₂ + OCH₃), 3,96 (s, 3H, OCH₃), 3,97 (système AB, $\Delta\delta$ = 0,64, J_{AB} = 13,5, 2H, -NCH₂), 4,16 (m, 2H, \equiv C-CH₂), 4,81 (m, 1H, OCH₂), 4,88 (s, 1H, -NH), 6,62 (s, 1H Ar), 6,84 (s, 1H Ar), 7,42-7,59 (m, 4H Ar).

5-(1,1'-biphényl-4-yl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2one IIbp.

Chauffer à 90 °C pendant 12 h et sous atmosphère inerte un mélange de 100 mg (0,27 5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4mmoles) фe benzodiazépin-2-one (IIbl), 35 mg (0,30 mmole) d'acide benzène boronique, 215 µL d'une solution de Na₂CO₃ 2M, 25 mg (0,020 mmole) de tétrakis (triphénylphosphine) Pd (0) et 250 µL d'EtOH dans 5 mL de toluène dégazé. Laisser revenir à température ambiante. Evaporer à sec. Purifier par chromatographie (AcOEt). Recristalliser dans Et₂O. On obtient 62 mg de produit titre sous forme de cristaux incolores. Rdt: 52%. F: 10 149-150°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,13 (s, 3H, CH₃), 3,78 (s, 3H, OCH₃), 3,95 (système AB, $\Delta \delta = 0.57$, $J_{AB} = 13.7$, 2H, -NCH₂), 3.98 (s, 3H, OCH₃), 4.29 (système AB, $\Delta \delta = 0.99 \text{ J}_{AB} = 10.0, 2\text{H}, \text{CH}_2$, 6.75 (s. 1 H Ar), 6.86 (s. 1 H Ar), 7.37-7.75 (m. 9 H Ar).

15

5

3-(4-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4benzodiazépin-2-one IIbq.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de 4chlorobenzyl, on obtient de la même manière le produit titre. Rdt: 22%. F: 78-81°C. 20 ¹H-RMN (CDCl₃, 300MHz): δ 1,07 (s, 3H, C**H**₃), 3,54 (s, 1H, C**H**), 3,56 (s, 2H, C**H**₂), 3,72 (s, 3H, OCH₃), 3,95 (s, 3H, OCH₃), 3,99 (système AB, $\Delta \delta = 0.75$, $J_{AB} = 13.7$, 2H, -NCH₂), 6,64 (s, 1H Ar), 6,81 (s, 1H Ar), 7,23-7,32 (m, 4H Ar), 7,39-7,45 (m, 3H Ar), 7,55-7,58 (m, 2H Ar).

25

1-éthyl-7,8-diméthoxy-5-[4-(phényléthynyl)phényl]-1,3-dihydro-2H-1,4benzodiazépin-2-one IIbr.

En remplaçant dans l'exemple IIbn le [(prop-2-ynyloxy)méthyl]benzène par le 30 phénylacétylène, on obtient de la même manière le produit titre. Rdt: 80%. F: 166-168°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,16 (s, 3H, CH₃), 3,79 (s, 3H, OCH₃), 4,01 (s, 3H, OCH₃), 4,02 (système AB, $\Delta \delta = 0.65$, $J_{AB} = 13.9$, 2H, -NCH₂), 4,32 (système AB,

WO 02/098865

5

10

20

25

30

84

PCT/FR02/01952

 $\Delta \delta = 0.98$, $J_{AB} = 10.5$, 2H, CH₂), 6.70 (s, 1H Ar), 6.88 (s, 1H Ar), 7.37-7.70 (m, 9H Ar).

3-allyl-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbs.

En remplaçant dans l'exemple **Πbh** le bromure de 2-nitrobenzyl par le bromure d'allyle, on obtient de la même manière le produit titre. Rdt: 46%. F: 176-179°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,11 (s, 3H, CH₃), 3,02-3,09 (m, 2H = CH₂), 3,60-3,73 (m, 2H, CH + 1H -NCH₂), 3,79 (s, 3H, OCH₃), 4,01 (s, 3H, OCH₃), 4,32-4,50 (m, 1H, -NCH₂), 5,08-5,25 (m, 2H, =C-CH₂), 5,94-6,14 (m, 1H, =CH), 6,73 (s, 1H Ar), 6,87 (s, 1H Ar), 7,42-7,49 (m, 3H Ar), 7,64-7,69 (m, 2H Ar).

1-éthyl-7,8-diméthoxy-5-phényl-3-prop-2-ynyl-1,3-dihydro-2H-1,4-benzodiazépin-15 2-one Пbt.

En remplaçant dans l'exemple **IIbh** le bromure de 2-nitrobenzyl par le bromure de propargyle, on obtient de la même manière le produit titre. Rdt : 22%. F : 161-163°C. 1 H-RMN (CDCl₃, 200MHz) : δ 1,07 (s, 3H, CH₃), 3,11-3,18 (m, 2H, -CH₂C=), 3,59-3,86 (m, 6H, OCH₃ + \equiv CH + 1H NCH₂ + CH), 3,97 (s, 3H, OCH₃), 4,35-4,42 (m, 1H, NCH₂), 6,71 (s, 1H Ar), 6,85 (s, 1H Ar), 7,39-7,42 (m, 3H Ar), 7,62-7,66 (m, 2H Ar).

1-éthyl-7,8-diméthoxy-5-[4-(2-phényléthyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one Hbu.

Laisser sous pression d'hydrogène (Patm) pendant 48h, 80 mg de 5-(1,1'-biphényl-4-yl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**Hbp**), 16 mg de palladium à 10% sur charbon (20% en poids de produit à réduire), dans 30 mL de méthanol et 1 mL de CH₂Cl₂. Filtrer sur cellite, rincer plusieurs fois au méthanol. Evaporer à sec. Purifier par chromatographie sur silice (AcOEt 1/ Hexane 1). Recristalliser à l'éther. On obtient 28 mg de produit titre sous forme d'une poudre blanche. Rdt: 35%. %. F: 148-150°C ¹H-RMN (CDCl₃, 200MHz): δ 1,27 (t, 3H, -CH₃), 3,00 (s, 4H, 2 fois -CH₂), 3,37-3,40 (m, 2H, CH₂), 3,45- 3,65 (m, 4H, -OCH₃ +

1H NCH₂), 3,92 (s, 3H, OCH₃), 4,21-4,48 (m, 1H, NCH₂), 6,22 (d, 1H Ar), 6,77 (d, 1H Ar), 7,19-7,39 (m, 9H Ar).

éthyl (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzo diazépin -3-yl)acétate IIbv.

En remplaçant dans l'exemple **Πbh** le bromure de 2-nitrobenzyl par le bromure d'acétate d'éthyle, on obtient de la même manière le produit titre. Rdt: 11%. F: 116-118°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,10 (s, 3H, CH₃), 1,32 (s, 3H, CH₃), 3,13-3,25 (m, 1H, -OCH₂), 3,43-3,56 (m, 1H, -OCH₂), 3,63-3,78 (m, 4H, OCH₃ + 1H NCH₂), 4,00 (s, 3H, OCH₃), 4,16-4,44 (m, 4H, CH + CH₂ + 1H NCH₂), 6,71 (s, 1H Ar), 6,90 (s, 1H Ar), 7,30-7,65 (m, 5H Ar).

1-éthyl-7,8-diméthoxy-5-[3-(phényléthynyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbw.

10

15

20

25

En remplaçant dans l'exemple **IIbn** le 5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**IIbl**), par le 5-(3-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**IIbm**), ainsi que le [(prop-2-ynyloxy)méthyl]benzène par le phénylacétylène, on obtient de la même manière le produit titre. Rdt: 33%. F: 100-102°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,13 (s, 3H, CH₃), 3,51-3,82 (m, 5H, 1H NCH₂ + 1H CH₂ + OCH₃), 3,97 (s, 3H, OCH₃), 4,24-4,34 (m, 1H, NCH₂), 4,74-4,80 (m, 1H, CH₂), 6,66 (s, 1H Ar), 6,84 (s, 1H Ar), 7,26-7,83 (m, 9H Ar).

3-(3,5-dibromobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbx

En remplaçant dans l'exemple **Πbh** le bromure 2-nitrobenzyl par le bromure 3,5-30 dibromobenzyl on obtient de la même manière le produit titre. Rdt: 30%. F: 178-179°C. ¹H-RMN (DMSO, 300MHz): δ 0,85-0,89 (m, 3H, CH₃), 3,28-3,36 (m, 2H, CHCH₂), 3,59 (s, 3H, OCH₃), 3,69-3,75 (m, 2H, NCH + CHCH₂), 4,20-4,27 (m, 1H,

WO 02/098865

10

15

20

25

30

NCH), 6,60 (s, 1H Ar), 7,13 (s, 1H Ar), 7,43-7,72 (m, 8H Ar). Masse: $(M + H)^+ = 573,05$.

7,8-diméthoxy-3-(diphénylhydroxyméthyl)-1-éthyl-5-phényl-1,3-dihydro-2H-1,4benzodiazépin-2-one IIby.

En remplaçant dans l'exemple **Hbh** le bromure 2-nitrobenzyl par la benzophénone on obtient de la même manière le produit titre. Rdt : 36%. F : 228-230°C. ¹H-RMN (CDCl₃, 300MHz) : δ 0,98-1,03 (m, 3H, CH₃), 3,74 (s, 3H, OCH₃), 4,00 (système AB, $\Delta\delta$ = 0,71, J_{AB} = 13,7, 2H, NCH₂), 4,03 (s, 3H, OCH₃), 4,57 (s, 1H, CHCOH), 6,41 (s, 1H, CHCOH), 6,66 (s, 1H Ar), 6,94 (s, 1H Ar), 7,27-7,51 (m, 15H Ar). Masse : (M + H)⁺ = 507,3.

7,8-diméthoxy-1-éthyl-3-(E-3-phénylpropèn-2yl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIbz.

En remplaçant dans l'exemple **Hbh** le bromure 2-nitrobenzyl par le 3-bromo-1-phénylprop-1-ène on obtient de la même manière le produit titre. Rdt : 37%. F : 162-164°C. ¹H-RMN (DMSO, 300MHz) : δ 0,86-0,91 (m, 3H, CH₃), 2,92-3,01 (m, 2H, CH₂CH=), 3,62 (s, 3H, OCH₃), 3,88 (s, 3H, OCH₃) 3,98 (système AB, $\Delta\delta$ = 0,55, J_{AB} = 13,6, 2H, NCH₂), 6,32-6,40(m, 1H, CH₂CH=), 6,50-6,56 (m, 1H, PhCH=), 6,66 (s, 1H Ar), 7,15 (s, 1H Ar), 7,16-7,60 (m, 10H Ar). Masse : (M+H)⁺ = 441,24.

7,8-diméthoxy-1-éthyl-3-(2-aminobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIca.

Laisser sous agitation un mélange de 80 mg (0,17 mmole) de 7,8-diméthoxy-1-éthyl-3-(2-nitrobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one **Hbh**, 10 mg de Pd/C à 10% en poids dans 15 ml de MeOH sous 65 psi d'H₂ à température ambiante pendant 2h. Filtrer la suspension sur célite, rincer avec 3X10 ml de MeOH. Evaporer à sec et purifier par chromatographie sur silice (AcOEt 1 / Hex 4, 1 / 2). Recristalliser dans l'EtOH. Rdt: 70%. F: dégradation à 280°C ¹H-RMN (DMSO, 300MHz): δ 0,86-0,90 (m, 3H, CH₃), 3,21-3,31 (m, 2H, CHCH₂), 3,59 (s, 3H, OCH₃), 3,69-3,76(m, 2H, NCH

+ CHCH₂), 3,88 (s, 3H, OCH₃), 4,22-4,30 (m, 1H, NCH), 6,46-6,51 (m, 1H Ar), 6,59-6,61 (m, 2H Ar), 6,85-6,88 (m, 1H Ar), 7,01-7,03 (m, 1H Ar), 7,41-7,53 (m, 5H Ar). Masse: $(M + H)^{+} = 430,22$.

5 (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)acétonitrile IIcb.

En remplaçant l'exemple **IIbh** le bromure de 2-nitrobenzyl par le chlorure d'acétonitrile, on obtient de la même manière le produit titre mais avec une cinétique très lente. Rdt : 3%. F : 97-100°C. 1 H-RMN (CDCl₃, 200MHz) : δ 1,13 (s, 3H, CH₃), 3,12-3,46 (m, 2H, -CH₂-CN), 3,80 (s, 3H, OCH₃), 4,02 (s, 3H, OCH₃), 4,05 (système AB, $\Delta\delta$ = 0,68, J_{AB} = 13,9, 2H, -NCH₂), 6,75 (s, 1H Ar), 6,88 (s, 1H Ar), 7,45-7,50 (m, 3H Ar), 7,68-7,72 (m, 3H Ar).

15 IIbh

10

3-(2-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcc.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de 2-20 bromobenzyle, on obtient de la même manière le produit. Rdt : 27%. F : 102-104 °C. ¹H-RMN (CDCl₃, 300MHz) : δ 1,06 (s, 3H, CH₃), 3,52-3,82 (m, 6H, OCH₃ + 1H NCH₂ + CH + 1H -CH₂Ph), 3,92-4,05 (m, 4H, + 1H -CH₂Ph + OCH₃), 4,35-4,47 (m, 1H NCH₂), 6,63 (s, 1H Ar), 6,83 (s, 1H Ar), 7,05-7,11 (m, 1H Ar), 7,30-7,50 (m, 8H Ar).

25 3-(4-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one Hcd.

3-(2-cyanobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one Псе.

5 En remplaçant dans l'exemple **Hbh** le bromure 2-nitrobenzyl par le bromure 2-cyanobenzyl on obtient de la même manière le produit titre. Rdt: 45%. F: 154-156°C.

¹H-RMN (CDCl₃, 300MHz): δ 1,05-1,10 (m, 3H, CH₃), 3,59-3,97 (m, 10H, CHCH₂ + 2OCH₃ + 1HNCH₂), 4,34-4,41 (m, 1H, 1HNCH₂), 6,61 (s, 1H Ar), 6,83 (s, 1H Ar), 7,29-7,77 (m, 9H Ar). Masse: (M + H)⁺ = 440,23.

10

25

30

N-[2-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl]acétamide IIcf

Ajouter à une solution de 40 mg (0,09 mmole) de 7,8-diméthoxy-1-éthyl-3-(2aminobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one **Hca**, 18,4 mg (0,23 mmole) de pyridine dans 4 ml de CH₂Cl₂, 11,5 mg (0,11mmole) d'anhydride acétique goutte à goutte. Laisser sous agitation 24h. Evaporer à sec et purifier par chromatographie sur silice (AcOEt puis AcOEt 5/ CH₂Cl₂ 4/ EtOH 1). Rdt: 70%. F: 144-145°C. ¹H-RMN (CDCl₃, 300MHz): δ 0,89-0,96 (m, 3H, C**H**₃), 2,01 (s, 1H, COC**H**₃), 3,36-3,45 (m, 2H, CHC**H**₂), 3,61 (s, 3H, OC**H**₃), 3,73-3,84 (m, 2H, CHCH₂ + 1HNC**H**₂), 3,91 (s, 3H, OC**H**₃), 6,60 (s, 1**H** Ar), 7,07-7,61 (m, 10**H** Ar). Masse: (M + H)⁺ = 472,23.

3-(2-aminométhylbenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcg.

Laisser sous agitation un mélange de 100 mg (0,23 mmole) de 3-(2-cyanobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one **IIce**, 10 mg de Ni de Raney dans 5 ml de MeOH sous atmosphère d'H₂ à température et pression ambiante pendant 12h. Filtrer la suspension sur célite, rincer avec 3X10 ml de MeOH. Evaporer à sec et purifier par chromatographie sur silice (AcOEt 5 / CH₂Cl₂ 4 / EtOH 1, CH₂Cl₂ 4 / MeOH 1). Recristalliser dans 1'EtOH.. Rdt: 70%. F: 280°C dégradation. ¹H-RMN (CDCl₃, 300MHz): δ 0,98-1,02 (m, 3H, CH₃), 3,33-3,37 (m, 1H, 1H CHCH₂), 3,54-3,59

20

25

30

(m, 5H, OCH₃ + 1H NCH₂CH₃ + 1H CHCH₂), 3,79-3,84 m, 1H, CHCH₂), 3,89 (s, 3H, OCH₃), 4,25-4,32 (m, 3H, CH₂NH₂ + 1H NCH₂CH₃), 6,40 (s, 1H Ar), 6,78 (s, 1H Ar), 7,02-7,63 (m, 10H Ar).Masse: $(M + H)^+ = 444,22$

5 3-[(3-bromophényl)(hydroxy)méthyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIch.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de 3-bromobenzaldehyde, on obtient de la même manière le produit titre. Rdt : 41%. F : 85-86 °C. ¹H-RMN (DMSO, 200MHz) : δ 0,90 (s, 3H, CH₃), 3,34-3,65 (d, 1H, CH), 3,60 (s, 3H, OCH₃), 3,93 (s, 3H, OCH₃), 4,03 (système AB, $\Delta\delta$ = 0,58, J_{AB} = 14,4, 2H, -NCH₂), 5,54 (dd, 1H, -CH-Ph), 5,73 (d, 1H, -OH), 6,57 (s, 1H Ar), 7,22 (s, 1H Ar), 7,28-7,49 (m, 8H Ar), 7,66 (s, 1H Ar).

15 [(7,8-diméthoxy-1-éthyl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benz-2-yl]carboxamide IIci

Ajouter à une solution de 100 mg (0,23 mmole) 3-(2-cyanobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one **Hce** dans 2 ml d'EtOH, 80 μl d'H₂O_{2aq} à 10% en poids et goutte à goutte 90 μl de NaOH_{aq} 0,5 M. Ajouter 50 ml d'H₂O et extraire avec 3 X 50 ml d'AcOEt; sécher sur MgSO₄, évaporer l'AcOEt et purifier par chromatographie sur silice (AcOEt 1 / Hex 1 puis AcOEt). Recristalliser dans l'AcOEt. Rdt: 65%. F: 193-195°C. 1 H-RMN (CDCl₃, 300MHz): δ 1,10-1,15 (m, 3H, CH₃), 3,25-3,31 (m, 1H, 1H CHCH₂), 3,66-3,73 (m, 4H, OCH₃ + 1H NCH₂CH₃), 3,95-4,00 (s, 4H, OCH₃ + 1H CHCH₂), 4,19-4,28 (m, 1H, CHCH₂), 4,38-4,45 (m, 1H, 1H NCH₂CH₃), 4,74 (s large, 2H, CONH₂), 6,54 (s, 1**H Ar**), 6,88 (s, 1**H Ar**), 7,09-7,85 (m, 10**H Ar**). Masse: (M+H)⁺ = 458,23.

3-(3-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcj.

En remplaçant dans l'exemple **IIbh** le bromure de 2-nitrobenzyl par le bromure de 3-bromobenzyle, on obtient de la même manière le produit titre. Rdt : 56%. F : 140-142°C.

¹H-RMN (CDCl₃, 200MHz): δ 1,07 (s, 3H, CH₃), 3,52-3,77 (m, 7H, CH + -CH₂Ph + OCH₃ + 1H NCH₂), 3,96 (s, 3H, OCH₃), 4,32-4,43 (m, 1H NCH₂), 6,63 (s, 1H Ar), 6,82 (s, 1H Ar), 7,15-7,19 (m, 1H Ar), 7,26-7,45 (m, 5H Ar), 7,55-7,60 (m, 3H Ar).

5 3-(1,1'-biphényl-4-ylméthyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIck.

10

20

25

30

En remplaçant dans l'exemple **IIbp** 5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**IIbl**) par le 3-(4-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**IIcd**), on obtient de la même manière le produit titre. Rdt : 48% 1 H-RMN (CDCl₃, 300MHz) : δ 1,08 (s, 3H, CH₃), 3,61-3,87 (m, 7H, OCH₃ + CH + 1H NCH₂ + -CH₂Ph), 4,01 (s, 3H, OCH₃), 4,38-4,45 (m, 1H NCH₂), 6,66 (s, 1H Ar), 6,83 (s, 1H Ar), 7,33-7,63 (m, 14H Ar).

3-(1-benzyl-4-hydroxypipéridin-4-yl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one Πcl.

En remplaçant dans l'exemple **Πbh** le bromure de 2-nitrobenzyl par la 1-benzyl-pipéridin-4-one, on obtient de la même manière le produit titre. Rdt: 61%. F: 197-199°C. ¹H-RMN (CDCl₃, 300MHz): δ 1,07 (s, 3H, CH₃), 1,65-1,92 (m, 4H, 2 fois CH₂), 2,28-2,32 (m, 1H, CH), 2,54-2,68 (m, 4H, 2 fois CH₂), 3,35 (s, 1H CH₂-Ph), 3,57-3,72 (m, 2H, 1H CH₂-Ph + 1H -NCH₂), 3,77 (s, 3H, OCH₃), 3,99 (s, 3H, + OCH₃), 4,31-4,38 (m, 1H -NCH₂), 4,53 (s, 1H, -OH), 6,72 (s, 1H Ar), 7,86 (s, 1H Ar), 7,30-7,46 (m, 8H Ar), 7,66-7,68 (s, 1H Ar).

N-[2-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl]méthylacétamide IIcm

En remplaçant dans l'exemple **Hcf** le 7,8-diméthoxy-1-éthyl-3-(2-aminobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**Hca**) par le 7,8-diméthoxy-1-éthyl-3-(2-aminométhylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**Hcg**) on obtient de la même manière le produit titre. Rdt: 55%. F: 122-124°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,07-1,14 (m, 3H, CH₃), 1,49 (s, 1H, COCH₃), 3,41-3,80 (m, 6H, CHCH₂)

25

30

+ 1HNCH₂ + OCH₃), 3,89-3,98 (m, 4H, CHCH₂ + OCH₃), 4,34-4,45 (m, 1HNCH₂), 6,60 (s, 1H Ar), 4,55-4,57 (m, 2H, CH₂NHAc), 6,52 (s, 6,85 (s, 1H Ar), 7,18-8,45 (m, 9H Ar), 8,45 (m, 1H, NHAc).

5 3-(4-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcn.

15 3-(2,4-dichlorobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIco.

En remplaçant dans l'exemple **Hbh** le bromure 2-nitrobenzyl par le bromure 2,4-dichlorobenzyl on obtient de la même manière le produit titre. Rdt: 20%. F: 92-94°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,02-1,09 (m, 3H, CH₃), 3,60-3,72 (m, 6H, + OCH₃, 1HNCH₂), 3,82-3,89 (m, 1H, CHCH₂), 3,96 (s, 3H, OCH₃), 4,33-4,44 (m, 1H, 1HNCH₂), 6,62 (s, 1H Ar), 6,82 (s, 1H Ar), 7,26-7,59 (m, 9H Ar).

3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile IIcp.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le 3-bromométhyl benzonitrile, on obtient de la même manière le produit titre. Rdt : 33%. F : 95-97°C. ¹H-RMN (CDCl₃, 200MHz) : δ 1,10 (s, 3H, CH₃), 3,63 (d, 1H -CH₂Ph), 3,68-3,85 (m, 5H, 1H -CH₂Ph + CH + OCH₃), 3,99 (s, 3H, OCH₃), 4,01 (système AB, $\Delta\delta$ = 0,69, J_{AB} = 14,2, 2H, -NCH₂), 6,67 (s, 1H Ar), 6,86 (s, 1H Ar), 7,42-7,70 (m, 9H Ar).

15

25

30

3-benzyl-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcq.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de benzyle, on obtient de la même manière le produit titre. Rdt: 38%. F: 157-159°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,10 (s, 3H, CH₃), 3,61-3,86 (m, 7H, -CH₂Ph + 1H -NCH₂ + CH + OCH₃), 3,99 (s, 3H, OCH₃), 4,37-4,47 (m, 1H -NCH₂), 6,67 (s, 1H Ar), 6,84 (s, 1H Ar), 7,30-7,44 (m, 8H Ar), 7,60-7,64(m, 2H Ar).

10 1-éthyl-7,8-diméthoxy-3-(2-méthoxybenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcr.

En remplaçant dans l'exemple Hbh le bromure de 2-nitrobenzyl par le bromure de 2-méthoxybenzyle, on obtient de la même manière le produit titre. Rdt: 24%. F: 100-102°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,09 (s, 3H, CH₃), 3,50-3,92 (m, 10H, -CH₂Ph + 1H -NCH₂ + CH + 2 fois OCH₃), 3,99 (s, 3H, OCH₃), 4,39-4,49 (m, 1H -NCH₂), 6,66 (s, 1H Ar), 6,81-6,85 (m, 2H Ar), 6,95-7,02 (m, 1H Ar), 7,19-7,30 (m, 1H Ar), 7,39-7,59 (m, 6H Ar).

3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzamide IIcs.

A une solution de 40 mg (0,0.91 mmols) 3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile (**Hcp**) dans 1 mL d'éthanol, ajjoutter, sous atmosphère inerte, 27 μL (0.27 mmols) d'H₂O₂ à 30% en masse dans l'eau, 36 μL (0.018 mmols) de NaOH à 0,5M dans l'eau. Agitter 12h à reflux. Evaporer à sec. Reprendre dans un mélange de 25 mL H₂O/glace. Filtrer le solide, laver 2 fois avec 20 mL d'eau. Laver 1 fois avec 5mL d'éther On obtient 24 mg de produit titre sous forme d'une poudre blanche. Rdt : 59%. F : 111-113°C. ¹H-RMN (CDCl₃, 200MHz) : δ 1,10 (s, 3H, CH₃), 3,50-3,75 (m, 6H, 1H -CH₂Ph + 1H -NCH₂ + CH + OCH₃), 3,98-4,11 (m, 4H, 1H -CH₂Ph + OCH₃), 4,38-4,49 (m, 1H -NCH₂), 5,91 (m, 1H échangeable CO-NH₂), 6,26 (m, 1H échangeable CO-NH₂), 6,66 (s, 1H Ar), 6,85 (s, 1H Ar), 7,30-7,86 (m, 9H Ar).

3-[3-(aminométhyl)benzyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIct.

Laisser sous pression d'hydrogène (Patm) pendant 12h, 40 mg 3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl] benzonitrile (Πcp), 0,4mL d'ammoniaque à 30%, 4mL de méthanol, 1 pointe de spatule de Ni Raney. Filtrer sur cellite, rincer plusieurs fois au méthanol. Evaporer à sec. Reprendre avec 50 mL de dichlorométhane, laver 3 fois avec à 50mL de NH₃ 0,5M puis 2 fois à l'eau. Sécher la phase organique avec Na₂SO₄. Evaporer à sec. Recristalliser à l'ether. Filtrer. On obtient 40 mg de produit titre sous forme d'une poudre blanche. Rdt: 55%. F: 122-125°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,10 (s, 3H, CH₃), 1,30 (m, 2H échangeable -NH₂), 3,50-3,89 (m, 8H, 1H -CH₂Ph + 1H -NCH₂ + CH + CH₂-NH₂ + OCH₃), 3,98-4,11 (m, 4H, 1H -CH₂Ph + OCH₃), 4,37-4,47 (m, 1H -NCH₂), 6,67 (s, 1H Ar), 6,84 (s, 1H Ar), 7,20-7,64 (m, 9H Ar).

3-(1,1'-biphényl-3-ylméthyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcu.

En remplaçant dans l'exemple IIbp 5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (IIbl) par le 3-(3-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (IIcj), on obtient de la même manière le produit titre. Rdt: 33% F: 139-141°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,12 (s, 3H, CH₃), 3,50-3,89 (m, 7H, OCH₃ + CH + 1H NCH₂ + -CH₂Ph), 3,99 (s, 3H, OCH₃), 4,38-4,48 (m, 1H NCH₂), 6,67 (s, 1H Ar), 6,85 (s, 1H Ar), 7,43-7,68 (m, 14H Ar).

3-benzyl-7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcv.

30

En remplaçant dans l'exemple IIba la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIaf), par la 3-benzyl-7,8-diéthoxy-5-phényl-1,3-

dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaj**), et le MeI par le iodure d'éthyle, on obtient de la même manière le produit titre. Rdt : 36 %. F : 128-130°C. ¹H-RMN (CDCl₃, 200MHz) : δ 1,10 (t, 3H, CH₃), 1,40 (t, 3H, CH₃), 1,55 (t, 3H, CH₃), 3,66 (m, 3H, CH₂Ph +CH), 3,94 (q, 2H, -OCH₂), 4,15 (système AB, $\Delta\delta$ = 0,52, J_{AB} = 13,2, 2H, -NCH₂), 4,19 (q, 2H, -OCH₂), 6,67 (s, 1H Ar), 6,85 (s, 1H Ar), 7,33-7,63 (m, 10 H Ar).

2-(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)acétamide IIcw.

Agitter à 0°C et sous atmosphère inerte pendant 48h, 70 mg (0.17 mmols) d'éthyl (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzo diazépin -3-yl)acétate (IIbv) et 1,5 mL de méthanol saturé à 35 % molaires avec NH₃. Evaporer à sec. Purifier par chromatographie sur silice (dichlorométhane 9/ méthanol 1). Recristalliser à l'éther. On obtient 12 mg de produit titre sous forme d'une poudre blanche. Rdt : 17 %. F : 105-107°C. ¹H-RMN (CDCl₃, 300MHz) : δ 1,10 (t, 3H, CH₃), 3,02-3,09 (m, 1H -CH₂), 3,22-3,29 (m, 1H -CH₂), 3,75 (s, 1H, OCH₃), 3,98 (s, 1H, OCH₃), 4,01 (système AB, Δδ = 0,67, J_{AB} = 13,9, 2H, -NCH₂), 4,13 (t, 1H, CH), 5,52 (s, 1H échangeable NH₂), 6,43 (s, 1H échangeable NH₂), 6,67 (s, 1H Ar), 6,85 (s, 1H Ar), 7,38-7,47 (m, 3H Ar), 7,59-7,62 (m, 2H Ar).

20

25

30

5

7,8-diméthoxy-1-(2-hydroxyéthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcx.

Ajouter à 0°C et sous atmosphère inerte, à une solution de 150 mg (0,50 mmole) de 7,8-diméthoxy-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one XXIIaa dans 5 ml de DMF, 21mg (0,52 mmole) de NaH à 60% dans l'huile. Laisser sous agitation à température ambiante pendant 1h. Ajouter à 0°C, 53 mg (0,60 mmole) de carbonate d'éthylène. Laisser sous agitation à température ambiante pendant la nuit. Ajouter 50 ml d'H₂O et extraire avec 3 X 50 ml d'AcOEt; sécher sur MgSO₄, évaporer l'AcOEt et purifier par chromatographie sur silice (AcOEt 3 / Hex 1 puis AcOEt). Recristalliser dans CHCl₃ / cHex.. Rdt: 40%. F: 128-130°C. ¹H-RMN (DMSO, 300MHz): δ 3,36-3,52 (m, 2H, HOCH₂), 3;60 (s, 3H, OCH₃), 3,70-3,86 (m, 5H, NCH₂+ OCH₃), 4,11 (système AB, Δδ

95

= 0,77, J_{AB} = 9,96, 2H, CH_2), 4,77 (m, 1H, OH), 6,60 (s, 1H Ar), 7,39 (s, 1H Ar), 7,42-7,58 (m, 4H Ar). Masse: $(M + H)^+$ = 341,16.

3-(2-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcy.

5

10

15

20

25

30

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de 2-chlorobenzyle, on obtient de la même manière le produit titre. Rdt: 60%. F: 78-81°C. ¹H-RMN (CDCl₃, 300MHz): δ 1,09 (s, 3H, C**H**₃), 3,50-3,96(m, 6H, 1H -C**H**₂Ph + 1H -NC**H**₂ + C**H** + OC**H**₃), 3,90-3,98 (m, 3H, 1H -C**H**₂Ph + OC**H**₃), 4,38-4,44 (m, 1H -NC**H**₂), 6,63 (s, 1**H** A**r**), 6,83 (s, 1**H** A**r**), 7,16-7,65 (m, 9**H** A**r**).

1-éthyl-7,8-diméthoxy-3-(2-méthylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIcz.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de 2-méthylbenzyle, on obtient de la même manière le produit titre. Rdt: 55%. F: 73-75°C. ¹H-RMN (CDCl₃, 300MHz): δ 1,08 (s, 3H, CH₃), 2,40 (s, 3H, CH₃), 3,62-3,73(m, 6H, 1H -CH₂Ph + 1H -NCH₂ + CH + OCH₃), 3,83-3,86 (m, 1H -CH₂Ph),3,97 (s, 3H, CH₃), 4,38-4,45 (m, 1H -NCH₂), 6,64 (s, 1H Ar), 6,84 (s, 1H Ar), 7,14 (m, 3H Ar), 7,34-7,44 (m, 4H Ar).7,56-7,58 (m, 2H Ar).

8-éthoxy-7-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIda.

En remplaçant dans l'exemple 7,8-diméthoxy-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one (XXIIaa) par la 8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIam.), et le carbonate d'éthylène par le iodométhane, on obtient de la même manière le produit titre. Rdt : 69 %. F : 138-140°C. 1 H-RMN (CDCl₃, 200MHz) : δ 1,54 (t, 3H, CH₃), 3,38 (s, 3H, NCH₃), 3,74 (s, 3H, OCH₃), 4,18 (q, 2H, -OCH₂), 4,29 (système AB, $\Delta\delta$ = 0,98, J_{AB} = 10,5, 2H, -CH₂), 6,70 (s, 1H Ar), 6,77 (s, 1H Ar), 7,39-7,43 (m, 3H Ar), 7,63-7,68 (m, 3H Ar).

Ì

1-éthyl-7,8-diméthoxy-5-phényl-3-[3-(trifluorométhyl)benzyl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdb.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de 3-trifluorométhylbenzyle, on obtient de la même manière le produit titre. Rdt: 49%. F: 151-153°C. ¹H-RMN (CDCl₃, 300MHz): δ 1,09 (s, 3H, CH₃), 3,55-3,77 (m, 7H, -CH₂Ph + 1H -NCH₂ + CH + OCH₃), 3,96 (s, 3H, OCH₃), 4,32-4,44 (m, 1H -NCH₂), 6,63 (s, 1H Ar), 6,83 (s, 1H Ar), 7,37-7,48 (m, 5H Ar).7,55-7,58 (m, 3H Ar), 7,70 (s, 1H Ar).

10

5

1-éthyl-7,8-diméthoxy-3-(3-méthoxybenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdc.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de 3-méthoxybenzyle, on obtient de la même manière le produit titre. Rdt : 45%. F : 155-157°C. ¹H-RMN (CDCl₃, 300MHz) : δ 1,08 (s, 3H, C**H**₃), 3,56-3,60 (m, 2H, 1H -C**H**₂Ph + CH), 3,72 (s, 3H, NC**H**₃), 3,77-3,80 (m, 1H C**H**₂Ph), 3,95 (s, 3H, OC**H**₃), 4,00 (système AB, Δδ = 0,75, J_{AB} = 14,0, 2H, -NC**H**₂), 6,64 (s, 1**H** A**r**), 6,74-6,77 (m, 1**H** A**r**), 6,82 (s, 1**H** A**r**), 6,95-6,98 (m, 2**H** A**r**), 7,20 (t, 1**H** A**r**), 7,37-7,45 (m, 3**H** A**r**), 20 7,59-7,62 (m, 2**H** A**r**).

1-éthyl-7,8-diméthoxy-3-(4-méthylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one Hdd.

En remplaçant dans l'exemple **Hbh** le bromure de 2-nitrobenzyl par le bromure de 4-méthylbenzyle, on obtient de la même manière le produit titre. Rdt: 24%. F: 107-108°C. ¹H-RMN (CDCl₃, 300MHz): δ 1,07 (s, 3H, CH₃), 2,32 (s, 3H, CH₃), 3,54-3,58 (m, 2H, 1H -CH₂Ph + CH), 3,72 (s, 3H, OCH₃), 3,75-3,80 (m, 1H CH₂Ph), 3,95 (s, 3H, OCH₃), 3,96 (système AB, Δδ = 0,68, J_{AB} = 14,3, 2H, -NCH₂), 6,64 (s, 1H Ar), 6,81 (s, 1H Ar), 7,20 (système AB, Δδ = 0,17, J_{AB} = 7,8, 2H, -NCH₂), 7,37-7,45 (m, 3H Ar), 7,59-7,62 (m, 2H Ar).

25

30

3-[1,2-bis(4-bromophényl)éthyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIde.

Ce produit est obtenu en même temps que le 3-(4-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (IIcd). Isoler par chromatographie. 5 Rdt: 20%. F: 195-198°C. ¹H-RMN (DMSO, 300MHz): δ 0,89 (s, 3H, CH₃), 2,82 (m, 1H, CH-Ph), 3,16 (m, 1H, CH), 3,61 (s, 3H, OCH₃), 3,91 (système AB, $\Delta \delta = 0,15$, $J_{AB} =$ 10,2, 2H, -CH₂Ph), 3,93 (s, 3H, OCH₃), 3,96 (système AB, $\Delta \delta = 0,68$, $J_{AB} = 13,5$, 2H, - NCH_2), 6,61 (s, 1**H** Ar), 7,05 (système AB, $\Delta\delta = 0.16$, $J_{AB} = 7.9$, 4**H** Ar), 7,23-7,39 (m, 8H Ar), 7,57 (s, 3H Ar).

3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4benzodiazépin-3-yl)méthyl]benzonitrile IIdf.

En remplaçant dans l'exemple IIbh le 1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-15 1,4-benzodiazépin-2-one (IIbd), par le 8-éthoxy-7-méthoxy-1-méthyl-5-phényl-1,3dihydro-2H-1,4-benzodiazépin-2-one (IIda)., et le le bromure de 2-nitrobenzyl par le 3bromométhyl-benzonitrile, on obtient de la même manière le produit titre. Rdt: 35%. F: 148-150°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,53 (s, 3H, CH₃), 3,40 (s, 3H, NCH₃), 3,58-20 3,62 (m, 2H, 1H - CH₂Ph + CH), 3,72 (s, 3H, OCH₃), 3,75-3,80 (m, 1H CH₂Ph), 4,17 (q, 1H CH₂Ph),²H, CH₂), 6,66 (s, 1H Ar), 6,76 (s, 1H Ar), 7,35-7,67 (m, 9H Ar).

2-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4benzodiazépin-3-yl)méthyl]benzonitrile IIdg.

En remplaçant dans l'exemple IIbh le 1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (IIbd), par le 8-éthoxy-7-méthoxy-1-méthyl-5-phényl-1,3dihydro-2H-1,4-benzodiazépin-2-one (IIda)., et le le bromure de 2-nitrobenzyl par le 2bromométhyl-benzonitrile, on obtient de la même manière le produit titre. Rdt: 58%. F: 238-240°C. ¹H-RMN (CDCl₃, 200MHz): δ 1,53 (s, 3H, CH₃), 3,40 (s, 3H, NCH₃), 3,71 (s, 3H, OCH₃), 3,78-3,90 (m, 3H, -CH₂Ph + CH), 4,17 (q, 2H, CH₂), 6,64 (s, 1H Ar), 6,76 (s, 1H Ar), 7,31-7,78 (m, 9H Ar).

20

3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzamide IIdh.

En remplaçant dans l'exemple **IIcs** 3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile (**IIcp**) par le 3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile (**IIdf**), on obtient de la même manière le produit titre. Rdt : 86%. F : 199-201°C. ¹H-RMN (CDCl₃, 300MHz) : δ 1,52 (s, 3H, CH₃), 3,39 (s, 3H, NCH₃), 3,66-3,79 (m, 3H, -CH₂Ph + CH + OCH₃), 4,17 (q, 2H, CH₂), 5,84 (m, 1H échangeable -NH₂), 6,24 (m, 1H échangeable -NH₂), 6,64 (s, 1**H Ar**), 6,74 (s, 1**H Ar**), 7,26-7,83 (m, 9**H Ar**).

3-(2,5-dichlorobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdi

En remplaçant dans l'exemple **IIbh** le bromure 2-nitrobenzyl par le bromure 2,5-dichlorobenzyl on obtient de la même manière le produit titre. Rdt : 22%. F : 94-95°C. 1 H-RMN (CDCl₃, 300MHz) : δ 1,03-1,10 (m, 3H, CH₃), 3,64-3,82 (m, 7H, CHCH₂, OCH₃, 1HNCH₂), 3,96 (s, 3H, OCH₃), 4,35-4,45 (m, 1H, 1HNCH₂), 6,62 (s, 1H Ar), 6,83 (s, 1H Ar), 7,16-7,64 (m, 9H Ar).

(S)-3-benzyl-7,8-diméthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdj.

En remplaçant dans l'exemple **Hba** la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaf**), par la (S) 3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one (**XXIIau**), on obtient de la même manière le produit titre. Rdt: 55%. F: 104-106°C. ¹H-RMN (DMSO, 200MHz): δ 3,45 (s, 3H, NCH₃), 3,61-3,65 (m, 2H, CH₂), 3,75-3,84 (m, 4H, 1CH + OCH₃), 4,00 (s, 3H, OCH₃), 6,70 (s, 1H Ar), 6,79 (s, 1H Ar), 7,23-7,62 (m, 10H Ar). Masse: (M + H)⁺ = 401,15

3,5-diphényl-8-éthoxy-1-éthyl-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdk.

15

En remplaçant dans l'exemple **IIba** la la 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIaf**), par la 3,5-diphényl-8-éthoxy-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one (**XXIIba**), et l'iodure de méthyl par l'iodure d'éthyl on obtient de la même manière le produit titre. Rdt : 65%. F : 178-180 °C. 1 H-RMN (CDCl₃, 300MHz) : δ 1,06-1,11 (m, 3H, NCH₂CH₃), 1,55-1,59 (m, 3H, OCH₂CH₃), 3,77 (s, 3H, OCH₃), 4,19-4,26 (m, 2H, OCH₂), 4,01 (système AB, $\Delta\delta$ = 0,70, J_{AB} = 13,7, 2H, NCH₂), 6,77 (s, 1H Ar), 6,92 (s, 1H Ar), 7,35-7,74 (m, 10H Ar).

7-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdl.

En remplaçant dans l'exemple 7,8-diméthoxy-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one (XXIIaa) par la 7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIao), et le carbonate d'éthylène par le iodométhane, on obtient de la même manière le produit titre. Rdt : 55 %. F : 110-112°C. 1 H-RMN (CDCl₃, 300MHz) : δ 3,38 (s, 3H, NCH₃), 3,75 (s, 3H, OCH₃), 4,30 (système AB, $\Delta\delta$ = 1,00, J_{AB} = 10,6, 2H, -CH₂), 6,77-6,78 (m, 1H Ar), 7,09-7,14 (m, 1H Ar), 7,31 (s, 1H Ar), 7,38-7,46 (m, 3H Ar), 7,44-7,67 (m, 2H Ar).

20 8-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one IIdm.

En remplaçant dans l'exemple 7,8-diméthoxy-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one (XXIIaa) par la 7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one (XXIIan), et le carbonate d'éthylène par le iodométhane, on obtient de la même manière le produit titre. Rdt : 76 %. F : 114-116 °C. 1 H-RMN (CDCl₃, 300MHz) : δ 3,41 (s, 3H, NCH₃), 3,90 (s, 3H, OCH₃), 4,29 (système AB, $\Delta\delta$ = 0,99, J_{AB} = 10,6, 2H, -CH₂), 6,71-6,75 (m, 1H Ar), 6,81-6,82 (m, 1H Ar), 7,22-7,25 (m, 1H Ar), 7,36-7,42 (m, 3H Ar), 7,50-7,62 (m, 2H Ar).

30

25

EXEMPLE 5 : ACTIVITE PHARMACOLOGIQUE: INHIBITION DES PHOSPHODIESTERASES.

10

15

25

30

5.1. Isolement des phosphodiestérases du muscle lisse

Un segment de 3 g de média d'aorte bovine fragmenté à l'aide de ciseaux a été homogénéisé à l'aide d'un ultra-turrax puis d'un potter verre-verre dans 7 volumes/poids de tampon A contenant un cocktail d'inhibiteurs de protéases (20 mM Tris-HCl, 0,25 M saccharose, 2mM acétate de Mg, 1mM dithiothreitol, 5mM EGTA, 2000 U/ml aprotinine, 10 mg/l leupeptine et 10 mg/l d'inhibiteur trypsique de soja). L'homogénat a été centrifugé pendant 1h à 105000 g. Le surnageant a été déposé sur une colonne de DEAE-Sephacel (15 X 1,6 cm), pré-équilibrée avec le tampon B (tampon A dépourvu de saccharose, d'EGTA et d'inhibiteurs de protéases). La colonne a été lavée jusqu'à ce qu'aucune absorption ne puisse être détectée à 280 nm, puis éluée avec un gradient linéaire en NaCl (0-0,5M) dans le tampon B. Des fractions de 3ml ont été recueillies et les activités enzymatiques ont été déterminées suivant les conditions décrites ci-dessous pour localiser les différentes PDE1, PDE3, PDE4 et PDE5 qui ont été aliquotées et congélées à -80°C (Lugnier et col., Biochem. Phamacol., 35 (1986) 1746-1751). La PDE2 a été préparée en utilisant les mêmes techniques à partir des cellules endothéliales bovines (Lugnier et Schini, Biochem. Pharmacol. 1990, 39; 75-84).

20 <u>5.2. Protocole de mesure des Activités phosphodiestérasiques</u>

L'activité de la phosphodiestérase des nucléotides cycliques a été déterminée à l'aide d'une méthode radioenzymatique en utilisant de l'AMP ou du GMP cyclique tritié (1µM) comme substrat (Lugnier et col., 1986). L'adénosine ou le guanosine monophosphate tritié formé par hydrolyse du nucléotide cyclique marqué a été, dans une seconde incubation avec une nucléotidase en excès, transformé en adénosine ou guanosine tritié. Le nucléoside formé a été séparé des nucléotides par chromatographie sur une résine échangeuse d'anions. La radioactivité du nucléoside a été déterminée par scintillation liquide. Les incubations enzymatiques ont été effectuées dans les conditions où il n'y a pas plus de 15% d'hydrolyse du substrat, chaque point étant en fait en double.

5.2.1. Détermination de l'inhibition de la PDE4.

101

La concentration de substance qui inhibe de 50% l'activité enzymatique (CI₅₀) à 1μM d'AMP cyclique a été calculée par régression non linéaire (Prism, GraphPad).

5.2.2. Sélectivité

5

Une évaluation de l'activité des composés a été effectuée sur d'autres isoformes de phosphodiestérases, notamment la PDE1 du muscle lisse vasculaire à l'état basal ou activé par la calmoduline, la PDE2 des cellules endothéliales vasculaires à l'état basal ou activé par le GMP cyclique, la PDE3 et la PDE5 du muscle lisse vasculaire.

10

Les résultats obtenus sont présentés dans le Tableau 4 ci-après, où les % représentent le % d'inhibition de l'activité enzymatique produit par $10~\mu moles$ de la molécule testée.

<u>Tableau 1</u> Composés de formule (III)

Produits	PDE4 CI ₅₀ (μM) ou pourcentage			
litoduits	d'inhibition à 10μM			
IIIaa	9,3			
IIIab	0,30			
IIIac	33%			
IIIad	3,9%			
IIIae	19%			
IIIaf	30%			
IIIag	36%			
IIIah	3,1			
IIIai	1,8			
IIIaj	2,7			
IIIak	1,8			
IIIal	2,4			
IIIam	1,7			
IIIan	1,8			
IIIao	1,7			
IIIap	1,9			
IIIaq	1,9			
IIIar	2,9			
IIIas	2,9			
IIIat	2,3			
IIIau	3,8			
IIIav	0,9			
IIIaw	16			
IIIax	7,8			
IIIba	6,9			
IIIbb	0,087			
IIIzc	0,72			

<u>Tableau 2</u> Composés de formule (XXII)

	PDE4 CI ₅₀ (µM) ou		
Produits	pourcentage d'inhibition à 10μM		
XXIIaa	25.8%		
XXIIab	10%		
XXIIac	35%		
XXIIad	14.9%		
XXIIae	21%		
XXIIaf	15		
XXIIag	0.95		
XXIIah	21.2%		
XXIIai	1.7		
XXIIaj	4.4		
XXIIak	13		
XXIIal	23.9%		
XXIIam	0.7		
XXIIan	12.1%		
XXIIao	11.5%		
XXIIap	36.10%		
XXIIaq	26.2%		
XXIIar	49.3%		
XXIIas	41.3%		
XXIIat	29%		
XXIIau	42.6%		
XXIIav	23%		
XXIIaw	4%		
XXIIax	6%		
XXIIay	19.6%		
XXIIaz	9.5		
XXIIba	6.7		
XXIIbb	15		
XXIIbc	10%		

Tableau 3

Composés de formule (II)

5

Produits	PDE4 CI ₅₀ (μM) ou pourcentage d'inhibition à 10μM	Produits	PDE4 CI ₅₀ (μM) ou pourcentage d'inhibition à 10μM	
IIab	38%	IIbu	12.4/18.7	
IIac	2.3	Πbv	44.4%	
IIad	23%	IIbw	46.1%	
IIae	3.4%	IIbx	18%	
IIaf	11.7%	IIby	8.2	
IIag	4.8	IIbz	42.3%	
IIah	36%	IIca	2.5	
IIai	39%	IIcb	28.5%	
IIaj	7.9%	IIcc	4.97	
IIak	16	IIcd	20.1%	
IIal	10	IIce	0.88/1.4	
IIam	20%	Ilcf	21%	
IIan	3.6	IIcg	6.7	
IIao	1.6	IIch	9.6	
IIap	18%	IIci	1.45	
IIaq	7.9	IIcj	3.76	
Har	0%	IIck	32.2%	
IIas	8.4	IIcl	4.3%	
IIat	3.9%	IIcm	1.9	
IIau	18.5%	Ilcn	45%	
IIav	15%	IIco	34.3%	
IIaw	10	Ilcp	9.2	
IIax	8,2	IIcq	7.4	
IIay	6.6	Ilcr	2.7	
IIaz	6.9%	IIcs	1.25	
IIba	17	IIct	18%	
IIbb	3.13	Ilcu	4.8	
IIbc	27.2%	Ilcv	3.1	
IIbd	34.3%	Ilcw	9.4%	
IIbe	34.7%	Псх	9.9%	
IIbf	0.86	IIcy	2.8	
IIbg	0.9/1.6	Ilcz	4.4	
IIbh	2.4	IIda	0.55 et 0.43	
IIbi	23.1%	IIdb	23	
IIbj	6.5	IIdc	5.1	
IIbk	14.2%	IIdd	31.5%	

Tableau 3 suite

Produits	PDE4 CI ₅₀ (μM) ou pourcentage d'inhibition à 10μM	Produits	PDE4 CI ₅₀ (μM) ou pourcentage d'inhibition à 10μM
IIbl	15	IIde	0%
IIbm	7.3	IIdf	1.5
IIbn	2.95	IIdg	1.1
IIbo	2.92	IIdh	0.52
IIbp	5.74	IIdi	8.15
IIbq	33.8%	IIdj	48:3%
IIbr	6.6/3.8	IIdk	1.1
IIbs	38.8%	IIdl	34.6%
IIbt	38.4%	IIdm	16%

5

<u>Tableau 4</u> Sélectivité

10

produits	CI ₅₀ (μM) ou pourcentage d'inhibition à 10μM				
	PDE1	PDE2	PDE3	PDE4	PDE5
IIIab	3,81	16	5,8	0,30	4,3
IIIav	49%	19	92%	0,9	40
IIIbb	14	25%	2,7	0,087	5,7
IIIzc	32%	24%	36%	0,72	38%
XXIIag	46%	17%	22%	0,95	35%
IIbg	47%	20%	40%	0,9	
XXIIai	55%	6%	55%	1,7	-
XXIIam	29%	36%	36%	0,7	35%
IIda	26%	7%	47%	0,5	14%

L'ensemble des composés testés montre une forte activité inhibitrice de PDE4.

Les molécules préférées selon l'invention présentent un excellent profil de puissance et

de sélectivité vis-à-vis de la phosphodiestérase 4, dans la mesure où ces composés
inhibent de manière plus faible les autres PDE, notamment la PDE3.

10

15

20

EXEMPLE 6: PROPRIETES ANTI-INFLAMMATOIRES DES COMPOSES DE L'INVENTION

Des composés selon l'invention ont été évalués pour leurs propriétés anti-inflammatoires sur des cellules mononucléées de sang veineux de donneurs sains (n=4), selon le protocole approuvé par le CCPPRB d'Alsace n° 1. Plus particulièrement, les cellules ont été incubées durant 24 heures (plaque de 24 puits) en présence de la molécule testée, après activation par du Lipopolysaccharide (LPS) de Salmonella Abortis Equi (5µg/ml) (Cf De Groote et al., Cytokine 4, 1992, 239). Après incubation, les concentrations de TNFα ont été mesurées dans les surnageants de culture par méthode ELISA (Antibody Solutions, Half Moon Bay, CA, USA).

Les résultats observés montrent une inhibition marquée de manière dose-dépendante de la production de TNF α et uniquement celui-ci (par rapport à l'IL1 β , IL6 et IL8 qui ne sont pas significativement diminuées) par les composés testés. A titre d'exemple, le composé IIIab et IIda à une concentration de 1 μ M inhibe à 100% la production de TNF α , alors qu'à cette même concentration, les taux de sécrétion l'IL1 β , IL6 et IL8 ne sont pas du tout modifiés.

D'autres composés retenus comme puissants inhibiteurs de la PDE 4 par exemple le IIdh, XXIIag sont aussi puissants comme anti TNFα, avec des CI₅₀ comprises entre 1 et 0,1 μm. Certains d'entre eux par exemple le XXIIag, sont capables d'inhiber la sécrétion de TNFα, mais aussi d'IL1β, et présentent un profil pharmacologique distinct des anti TNFα séléctifs.

REVENDICATIONS

1. Composés de formule générale (I)

$$R_7$$
 R_8
 R_1
 R_1
 R_1
 R_2
 R_3
 R_4
 R_1
 R_2

5 dans laquelle:

. soit X représente un groupe NR₄ et Y représente un groupe CR₆R₆', R₄, R₆ et R₆' étant tels que définis ci-après,

10 . soit X représente un groupe CR₄R₄' et Y représente un groupe NR₆, R₄, R₄' et R₆ étant tels que définis ci-après,

. Z représente un atome d'oxygène ou de soufre.

15 . R₁ est un groupe (C₁-C₁₂) alkyle, (C₃-C₆) cycloalkyle, (C₆-C₁₈) aryle, (C₆-C₁₈)aryl(C₁-C₄)alkyle, (C₁-C₁₂)alkyl(C₆-C₁₈)aryle, un hétérocycle en (C₅-C₁₈), aromatique ou non, comportant 1 à 3 hétéroatomes, ou un groupe OR₂, SR₂ ou NR₂R₃ dans lequel (i) R₂ et R₃, indépendamment l'un de l'autre, sont choisis parmi un atome d'hydrogène, un groupe (C₁-C₆) alkyle, (C₃-C₆) cycloalkyle, (C₆-C₁₂) aryle, ou un hétérocycle en (C₅-C₁₂), aromatique ou non, comportant 1 à 3 hétéroatomes ou, (ii) R₂ et R₃ forment ensemble une chaîne hydrocarbonée linéaire ou ramifiée ayant de 2 à 6 atomes de carbone, comportant éventuellement une ou plusieurs doubles liaisons et/ou éventuellement interrompue par un atome d'oxygène, de soufre ou d'azote;

25 . R₄ et R₄', identiques ou différents, représentent un groupe (C₃-C₆) cycloalkyle, (C₆-C₁₈) aryle non substitué, (C₆-C₁₈)aryl(C₁-C₄)alkyle, (C₁-C₁₂)alkyl(C₆-C₁₈)aryle ou un hétérocycle en (C₅-C₁₈), aromatique ou non, comportant 1 à 3 hétéroatomes, et, lorsque X est le groupe CR₄R₄', R₄ et R₄', identiques ou différents, sont également choisis parmi l'atome d'hydrogène et un groupe (C₁-C₁₂) alkyle, (C₆-C₁₈) aryle, (C₂-C₆) alkényle, (C₂-C₁₈)

C₆) alkynyle, NO₂, CF₃, CN, NR'R'', SR', OR', COOR', CONR'R'' ou NHCOR'R'', R' et R'', indépendamment l'un de l'autre, étant choisis parmi l'atome d'hydrogène, un groupe (C_1 - C_6) alkyle, (C_1 - C_6) alkoxy, (C_3 - C_6) cycloalkyle, (C_6 - C_{12}) aryle, et un hétérocycle en (C_5 - C_{12}), aromatique ou non, comportant 1 à 3 hétéroatomes;

5

,

- . R_6 et R_6 ', identiques ou différents, sont choisis parmi l'atome d'hydrogène, un groupe (C_1-C_6) alkyle, (C_6-C_{18}) aryle, (C_6-C_{18}) aryle, (C_1-C_4) alkyle, (C_1-C_{12}) alkyl (C_6-C_{18}) aryle, de préférence un groupe phényle, benzyle et un groupe (C_1-C_6) alkylphényle;
- 10 . R₇ et R₈, indépendamment l'un de l'autre, sont choisis parmi l'atome d'hydrogène, un groupe (C₁-C₁₂) alkyle et un groupe OR₂, R₂ étant tel que défini ci-avant, avec la condition que R₇ et R₈ ne représentent pas simultanément un atome d'hydrogène, ou R₇ et R₈ forment ensemble une chaîne hydrocarbonée linéaire ou ramifiée ayant de 2 à 6 atomes de carbone, comportant éventuellement une ou plusieurs doubles liaisons et/ou éventuellement interrompue par un atome d'oxygène, de soufre ou d'azote

les groupes alkyle, alkényle, alkynyle, alkylaryle, aralkyle, cycloalkyle, aryle, phényle, hétérocycle et la chaîne hydrocarbonée définie ci-dessus étant éventuellement substitués par un ou plusieurs substituants, identiques ou différents, choisis de préférence parmi un atome d'halogène et un groupe (C₁-C₁₂) alkyle, (C₆-C₁₈) aryle, (C₂-C₆) alkényle, (C₂-C₆) alkynyle, hétérocycle, OH, =O, NO₂, NR'R", CN, CF₃, COR', COOR', (C₁-C₆)alkoxy, (di)(C₁-C₆)alkylamino, NHCOR' et CONR'R", dans lesquels R' et R" sont tels que définis ci-avant,

ainsi que leurs sels.

25

- 2. Composés de formule générale (I) selon la revendication 1 dans laquelle X est le groupe $CR_4R_{4'}$ et Y est le groupe NR_6 .
- 30 3. Composés de formule générale (I) selon la revendication 1 dans laquelle X est le groupe NR₄ et Y est le groupe CR₆R₆.

- 4. Composés de formule générale (I) selon l'une des revendications 1 à 3 dans laquelle Z est l'atome d'oxygène.
- 5. Composés de formule générale (I) selon l'une quelconque des revendications précédentes dans laquelle R₇ et R₈, indépendamment l'un de l'autre, représentent un groupe OR₂ dans lequel R₂ est un groupe (C₁-C₆) alkyle, de préférence un groupe éthyle ou méthyle.
- 6. Composés de formule générale (I) selon l'une quelconque des revendications précédentes 1 à 4 dans laquelle R₇ représente un atome d'hydrogène et R₈ représente un atome d'halogène ou inversement

15

- 7. Composés de formule générale (I) selon la revendication 5, dans laquelle R₇ et R₈ représentent tous deux un groupe éthoxy ou méthoxy.
- 8. Composés de formule générale (I) selon l'une quelconque des revendications précédentes dans laquelle R_6 et $R_{6'}$, identiques ou différents, représentent l'atome d'hydrogène ou un groupe (C_1 - C_6) alkyle.
- 9. Composés de formule générale (I) selon l'une quelconque des revendications précédentes dans laquelle R₄ et R₄, identiques ou différents, représentent un groupe (C₁-C₁₂) alkyle ou (C₆-C₁₈)aryl(C₁-C₄)alkyle, éventuellement substitué par un ou plusieurs substituants, identiques ou différents, choisis parmi un atome d'halogène et un groupe OH, =O, NO₂, NH₂, CN, CF₃, COR', COOR', (C₁-C₆)alkoxy, (di)(C₁-C₆)alkylamino, NHCOR' et CONR'R'', dans lesquels R' et R'' sont tels que définis dans la revendication 1.
 - 10. Composés de formule générale (I) selon l'une quelconque des revendications 2 et 4 à 7 dans laquelle R₄ et R₄, représentent l'atome d'hydrogène.
 - 11. Composés de formule générale (I) selon la revendication 1, dans laquelle X est le groupe CR_4R_4 ', Y est le groupe NR_6 , Z est l'atome d'oxygène, R_7 et R_8 représentent, indépendamment l'un de l'autre, un groupe OR_2 dans lequel R_2 est un groupe (C_1-C_6)

5

10

25

.

alkyle, R₆ représente l'atome d'hydrogène ou un groupe (C₁-C₆) alkyle et R₄ et R₄' représentent l'atome d'hydrogène.

- 12. Composés de formule générale (I) selon la revendication 1, dans laquelle X est le groupe NR₄, Y est le groupe CR₆R₆, Z est l'atome d'oxygène, R₇ et R₈ représentent, indépendamment l'un de l'autre, un groupe OR₂ dans lequel R₂ est un groupe (C₁-C₆) alkyle, R₆ et R'₆, identiques ou différents, représentent l'atome d'hydrogène ou un groupe (C₁-C₆) alkyle et R₄ représente un groupe (C₁-C₁₂) alkyle ou (C₆-C₁₈)aryl(C₁-C₄)alkyle, éventuellement substitué par un ou plusieurs substituants, identiques ou différents, choisis parmi un atome d'halogène et un groupe OH, =O, NO₂, NH₂, CN, CF₃, COOR', (C₁-C₆)alkoxy, (di)(C₁-C₆)alkylamino, NHCOR' et CONR'R'', dans lesquels R' et R'' sont tels que définis dans la revendication 1.
- 13. Composés de formule générale (I) selon l'une quelconque des revendications précédentes dans laquelle R₁ est un groupe (C₆-C₁₈) aryle, (C₆-C₁₈)aryl(C₁-C₄)alkyle, (C₁-C₁₂)alkyl(C₆-C₁₈)aryle ou un hétérocycle en (C₅-C₁₈), aromatique ou non, comportant 1 à 3 hétéroatomes, ledit groupe ou hétérocycle étant éventuellement substitué.
- 20 14. Composés selon la revendication 13, caractérisés en ce que R₁ est un groupe phényle, notamment un phényle substitué, de préférence un groupe phényle substitué par :
 - (a) un ou plusieurs atomes d'halogène, en particulier de chlore, de brome ou d'iode, de préférence de chlore, ou
 - (b) un ou plusieurs groupes OR', en particulier méthoxy ou éthoxy, ou
 - (c) un groupe COR', en particulier acétyle, ou
 - (d) un groupe trifluorométhyle, ou
 - (e) un groupe alkyle ou alkynyle, par exemple heptinyle, ou
- (f) un groupe aryle ou hétérocycle, notamment un groupe phényle, furyle, pyridyle ou thiényle, ledit aryle ou hétérocycle étant lui-même éventuellement substitué par un ou plusieurs groupes choisis de préférence parmi les groupes (a)-(e).

15. Composés selon la revendication 13, caractérisés en ce que R₁ est un hétérocycle aromatique, notamment napthyle, thiényle, furyle, indolyle ou pyridyle, éventuellement substitué par un ou plusieurs groupes choisis parmi les groupes (a)-(f) définis dans la revendication 13.

- 16. Composés selon la revendication 13, caractérisés en ce que R₁ est un groupe 4-chlorophényle, 3,4-dichlorophényle, 2-naphthyle, 2-benzo[b]thiényle, 4-(2-furyl)phényle, 3-pyridyl ou 3-trifluorométhylphényle.
- 17. Composés selon la revendication 1 choisis parmi les composés suivants
 7,8-diméthoxy-1-(2-naphthyl)-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 1-(4-chlorophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 1-(2-benzo[b]thiényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin -4-one
- 1-[4-(2-furyl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one 1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-éthyl-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 1-(4-chlorophényl)-7,8-diéthoxy-3-méthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one.
- 5-(4-chlorophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one 7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one 1-(2-benzo[b]thiényl)-7,8-diéthoxy-5-*n*-propyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one 7,8-diméthoxy-3-méthyl-1-(1-naphthyl)-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 3-benzyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin -4-one 3-dodécyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one 7,8-diméthoxy-3-(12-méthoxy-12-oxododécyl)-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 3-éthyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
- 7,8-diméthoxy-1-phényl-3-*n*-propyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one 1-(4-iodophényl)-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one 7,8-diméthoxy-1-[4-(2-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one

- 7,8-diméthoxy-1-[4-(3-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
- 1-[4-(3-acétylphényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
- 5 7,8-diméthoxy-3-méthyl-1[4-(3-pyridyl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 1-[4-(4-acétylphényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 1-[4-(3-acétamidophényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-
- 10 benzodiazépin-4-one
 - $1\hbox{-}(4\hbox{-bromoph\'enyl})\hbox{-}7,8\hbox{-dim\'ethoxy-}3\hbox{-m\'ethyl-}3,5\hbox{-dihydro-}4\emph{H-}2,3\hbox{-benzodiaz\'epin-}4\hbox{-one}.$
 - 7,8-diméthoxy-1-[4-(4-méthoxyphényl)phényl]-3-méthyl-3,5-dihydro-4*H*-2,3-
 - benzodiazépin-4-one
 - 1-[4-[3-(trifluorométhyl)phényl]phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4H-2,3-
- 15 benzodiazépin-4-one
 - 7,8-diméthoxy-3-méthyl-1-[4-(2-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 7,8-diméthoxy-3-méthyl-1-[4-(3-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
- 7,8-diméthoxy-3-méthyl-1-[4-(4-méthylphényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 1-[4-(4-chlorophényl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 7,8-diméthoxy-3-méthyl-1-[4-(2-thiényl)phényl]-3,5-dihydro-4H-2,3-benzodiazépin-4-
- 25 one
 - 1-{4-[3,5-bis-(trifluorométhyl)phényl]phényl}-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 1-[4-(heptyn-1-yl)phényl]-7,8-diméthoxy-3-méthyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
- 30 7,8-diméthoxy-3-méthyl-1-[4-(3-nitrophényl)phényl]-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
 - 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-éthyl-3,5-dihydro-4H-2,3-benzodiazépin-4-one

(16

- 1-(2-benzo[b]thiényl)-7,8-diéthoxy-3-méthyl-5-*n*-propyl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one
- 3,5-dibenzyl-7,8-diméthoxy-1-phényl-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 7,8-diméthoxy-1-phényl-3-(3-hydroxypropyl)-3,5-dihydro-4*H*-2,3-benzodiazépin-4-one.
- 5 7,8-diméthoxy-1-méthyl-5-phényl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-5-(3,4-diméthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 5-(2-benzo[b]thiényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 5-(3-chlorophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 5-(2-benzo[b]furyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
- 5-(2-furyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 5-(4-acétylphényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-méthyl-5-(2-thiényl)-1,3-dihydro-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-5-(3-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-5-(2-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
- 15 5-(5-indolyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
- 5-(6-benzyloxy-2-naphthyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2
 - one
 - 7,8-diméthoxy-5-(6-méthoxy-2-naphthyl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
- One
- 5-(2-indolyl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-méthyl-5-(pipéridin-1-yl)-1,3-dihydro-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-méthyl-5-(2-méthylphényl)-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 7,8-diméthoxy-5-(4-méthoxyphényl)-1-méthyl-1,3-dihydro-1,4-benzodiazépin-2-one.
 - 5-(1,1'-biphényl-3-yl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-
- 25 one
 - 5-(4-bromophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 5-(4-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 8-bromo-5-(4-bromophényl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7-iodo-5-[3-(trifluorométhyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 30 7-méthoxy-5-[3-(trifluorométhyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 1-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one

- 1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-5-phényl-1-propyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diéthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 5 éthyl (7,8-diéthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-1-yl)acétate
 - 10-phényl-2,3,6,8-tétrahydro-7H-[1,4] dioxino [2,3-h][1,4]benzodiazépin-7-one
 - 1-benzyl-7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diéthoxy-3-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-benzyl-7,8-diéthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 10 1-éthyl-7,8-dihydroxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 5-(4-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 5-(3-bromophényl)-7,8-diméthoxy-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 5-(3-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 5-(3-bromophényl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 5-{4-[3-(benzyloxy)prop-1-ynyl]phényl}-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - tert-butyl 3-[4-(1-éthyl-7,8-diméthoxy-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-5-yl)phenyl]prop-2-ynylcarbamate
 - 5-(1,1'-biphényl-4-yl)-1-éthyl-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 20 3-(4-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 1-éthyl-7,8-diméthoxy-5-[4-(phényléthynyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-allyl-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 25 1-éthyl-7,8-diméthoxy-5-phényl-3-prop-2-ynyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 1-éthyl-7,8-diméthoxy-5-[4-(2-phényléthyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - éthyl (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 30 yl)acétate
 - 1-éthyl-7,8-diméthoxy-5-[3-(phényléthynyl)phényl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 5-(2-bromophényl)-7,8-diméthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one

. .

- (1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)acetonitrile
- 3-(2-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 5 3-(4-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-[(3-bromophényl)(hydroxy)méthyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-(3-bromobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-
- 10 2-one
 - 3-(1,1'-biphényl-4-ylméthyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-(1-benzyl-4-hydroxypipéridin-4-yl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 3-(4-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile
 - 3-benzyl-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 20 1-éthyl-7,8-diméthoxy-3-(2-méthoxybenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-[(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzamide
 - 3-[3-(aminométhyl)benzyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-
- 25 benzodiazépin-2-one
 - 3-(1,1'-biphényl-3-ylméthyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-benzyl-7,8-diéthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 2-(1-éthyl-7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 30 yl)acétamide
 - 3-(2-chlorobenzyl)-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one

- 1-éthyl-7,8-diméthoxy-3-(2-méthylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 8-éthoxy-7-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 5 1-éthyl-7,8-diméthoxy-5-phényl-3-[3-(trifluorométhyl)
 - benzyl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 1-éthyl-7,8-diméthoxy-3-(3-méthoxybenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 1-éthyl-7,8-diméthoxy-3-(4-méthylbenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-
- 10 2-one
 - 3-[1,2-bis(4-bromophényl)éthyl]-1-éthyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile
- 2-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzonitrile
 - 3-[(8-éthoxy-7-méthoxy-1-méthyl-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)méthyl]benzamide
 - 8-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 20 7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 8-méthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-5-(4-fluorophényl)-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-méthyl-5-(4-pyridyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 25
- 7,8-diméthoxy-1-méthyl-5-(3, 5 bis trifluorométhylphényl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-5-(4-N,N-diméthylaminophényl)-1-méthyl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 30 7,8-diméthoxy-1-méthyl-5-[(E)-2-phényléthènyl]-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-méthyl-5-(2-phényléthynyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one

- 7,8-diméthoxy-1-méthyl-5-(N-tetrahydro-1,2,3,4-isoquinolyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-3-isobutyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-3-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 7,8-diméthoxy-3-(1H-imidazol-4-ylméthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-3-(1H-indol-3-ylméthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 7,8-diméthoxy-3-(2-méthylthioéthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - (S) 3-benzyl-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - (S)-3-benzyl-7,8-diméthoxy-1-méthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-méthyl-5-(2-phényléthyl)-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 15 (S)-butylcarbamate de (7,8-diméthoxy-5-phényl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl
 - (S)-3-(4-aminobutyl)-7,8-diméthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - (S)-N-[4-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)butyl]acétamide
- 20 (S)-Bis trifluoroacetate de N-[4-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)butyl]guanidinium
 - 7,8-diméthoxy-1-éthyl-3-(2-nitrobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-(3,5-dibromobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-
- 25 benzodiazépin-2-one
 - 7,8-diméthoxy-3-(diphénylhydroxyméthyl)-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-éthyl-3-(E-3-phénylpropèn-2yl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 30 7,8-diméthoxy-1-éthyl-3-(2-aminobenzyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 7,8-diméthoxy-1-(2-hydroxyéthyl)-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one

Ì

- 3-(2-cyanobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- N-[2-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benzyl]acétamide
- 5 3-(2-aminométhylbenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - [(7,8-diméthoxy-1-éthyl-2-oxo-2,3-dihydro-1H-1,4-benzodiazépin-3-yl)benz-2-yl]carboxamide
 - N-[2-(7,8-diméthoxy-2-oxo-5-phényl-2,3-dihydro-1H-1,4-benzodiazépin-3-
- 10 yl)benzyl]méthylacétamide
 - 7,8-diméthoxy-3,5-diphényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 3-(2,4-dichlorobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - 3-(2,5-dichlorobenzyl)-7,8-diméthoxy-1-éthyl-5-phényl-1,3-dihydro-2H-1,4-
- 15 benzodiazépin-2-one
 - 3,5-diphényl-8-éthoxy-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one 3-benzyl-8-éthoxy-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one 3-benzyl-8-éthoxy-1-éthyl-7-méthoxy-5-phényl-1,3-dihydro-2H-1,4-benzodiazépin-2-one
- 3,5-diphényl-8-éthoxy-1-éthyl-7-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one 5-phényl-7-éthoxy -8-méthoxy-1,3-dihydro-2H-1,4-benzodiazépin-2-one
 - ainsi que leurs sels.

- 25 18. Composition comprenant un composé selon l'une des revendications 1 à 17 et un véhicule ou un excipient acceptable sur le plan pharmaceutique.
 - 19. Utilisation d'un composé selon l'une des revendications 1 à 17 pour la préparation d'un médicament destiné à l'inhibition d'une phosphodiestérase des nucléotides cycliques.

20. Utilisation d'un composé selon l'une des revendications 1 à 17 pour la préparation d'un médicament destiné au traitement d'une pathologie inflammatoire du système nerveux central.

- 5 21. Utilisation d'un composé selon l'une des revendications 1 à 17 pour la préparation d'un médicament destiné au traitement de la neuro-inflammation.
 - 22. Utilisation d'un composé selon l'une des revendications 1 à 17 pour la préparation d'un médicament destiné au traitement de la composante inflammatoire de la dépression.
 - 23. Utilisation d'un composé selon l'une des revendications 1 à 17 pour la préparation d'un médicament destiné au traitement de la composante inflammatoire de l'obésité.
- 24. Procédé de préparation d'un composé selon la revendication 3 dans lequel Z est un atome d'oxygène par réaction d'un composé de formule (VI)

$$\begin{array}{c|c}
R_{6} & R_{6} & O \\
R_{7} & R_{8} & N-H \\
\end{array}$$

$$\begin{array}{c|c}
R_{7} & N-H \\
\end{array}$$

$$\begin{array}{c|c}
R_{8} & (VI)
\end{array}$$

dans laquelle R₁, R₆, R₆, R₇ et R₈ sont tels que définis dans la revendication 1 avec un 20 halogénure d'alkyle en présence de carbonate de potassium à température ambiante.

- 25. Procédé selon la revendication 24, caractérisé en ce que le composé de formule générale (VI) est obtenu par un procédé comprenant les étapes suivantes :
 - a) réaction d'un composé de formule générale (IV)

10

1

20

dans laquelle R₆, R₆, R₇ et R₈ sont tels que définis dans la revendication 1, avec un composé comprenant un groupe acyle de formule R₁CO pour obtenir un composé de formule (V)

O OMe
$$R_7 \longrightarrow R_6$$

$$R_8 \longrightarrow R_6$$

$$R_1 \qquad (V)$$

dans laquelle R₁, R₆, R₆, R₇ et R₈ sont tels que définis précédemment ;

b) réaction du composé de formule (V) avec l'hydrazine pour obtenir un composé de formule (VI) dans laquelle R₁, R₆, R₆, R₇ et R₈ sont tels que définis précédemment.

- 26. Procédé de préparation d'un composé selon la revendication 3 dans lequel Z est un atome d'oxygène par réaction d'un composé de formule générale (V) telle que définie dans la revendication 25 en présence d'une hydrazine substituée, de préférence de méthylhydrazine.
- 27. Procédé de préparation d'un composé selon la revendication 3 dans lequel Z est un atome d'oxygène à partir d'un composé de formule générale (XIV)

$$\begin{array}{c|c}
R_{6} & R_{6} & C \\
R_{7} & R_{8} & R_{4} \\
R_{8} & G & (XIV)
\end{array}$$

dans laquelle R₄, R₆, R₆, R₇ et R₈ sont tels que définis dans la revendication 1, et G est un groupement activateur, tel qu'un halogène ou un groupement O-triflate, par une réaction de couplage au Palladium en présence d'acide ou d'ester boronique, d'alcyn-1-yle ou d'organométalliques tels que les organozinciques ou les organostannanes.

28. Procédé de préparation d'un composé selon la revendication 3 dans lequel Z est un atome de soufre comprenant la réaction d'un composé selon la revendication 3 dans lequel Z est un atome d'oxygène avec le réactif de Lawesson dans le toluène à reflux.

5 29. Procédé de préparation d'un composé selon la revendication 2 dans lequel Z est un atome d'oxygène par réaction d'un composé de formule générale (XVIII) :

$$R_{7}$$
 R_{8}
 R_{6}
 R_{6}
 R_{4}
 R_{4}
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{1}
 R_{1}
 R_{2}
 R_{3}

dans laquelle R₄, R₄, R₆, R₇ et R₈ sont tels que définis dans la revendication 1 et G est un groupement activateur tel qu'un halogène, avec un composé acide du groupe R1 en présence d'un catalyseur au Palladium.

30. Procédé de préparation d'un composé selon la revendication 2 dans lequel Z est un atome d'oxygène par réaction d'un composé de formule générale (XXII) :

$$R_7$$
 R_8
 R_1
 R_4
 R_4
 R_4
 R_4
 R_4

15

20

10

1

dans laquelle R₁, R₄, R₇ et R₈ sont tels que définis dans la revendication 1, avec un halogénure d'alkyle, de préférence dans un solvant, en présence d'une base et de préférence à température ambiante.

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ \hline \end{array} \begin{array}{c} R_{6} \\ R_{7} \\ \hline \end{array} \begin{array}{c} R_{6} \\ R_{7} \\ \hline \end{array} \begin{array}{c} R_{6} \\ R_{7} \\ \hline \end{array} \begin{array}{c} R_{7} \\ \hline$$

Figure 1

Figure 2