Python quantum programming languages

John Scott, Oliver Thomas

Reference

Python quantum programming languages

John Scott, Oliver Thomas

Quantum Engineering CDT University of Bristol

September 17, 2018

Overview

John Scott, Oliver Thomas

References

- Python based quantum programming libraries
- We tried to program the common programs (e.g. Grover's algorithm, Shor's algorithm, etc.)
- We tried compiling a simple program for different hardware platforms (i.e. with gate restrictions, etc.)
- We've written a programming guide - under an internal review

```
# Do quantum stuff
qvm = QVMConnection()
qprog = Program()
# do X on q1, q3, q7
# remember HZH is X
qprog.inst(H(1), Z(1),
\rightarrow H(1))
qprog.inst(X(3))
qprog.inst(X(7))
# do measurement over
→ all 8 qubits
for i in range(0, 8):
    qprog.measure(i, i)
```

Short comparison

What is there

- Focussed on quantum circuits
- Apply gates to specific qubits
- Classical control in the same source code
- Python syntax is beginner friendly
- Simulators are available
- Hardware compilers are available

What is lacking

- Lack of support for custom unitaries
- Compilers are not highly developed
- Some languages target specific hardware
- Some simulators are cloud based and require accounts
- No real quantum programming contructs (e.g. quantum if etc.)

Long term programming languages

Python quantum programming languages

John Scott, Oliver Thomas

Reference

• Don't see Python being the long term quantum language

Types of

Python
quantum
programming
languages

John Scott, Oliver Thoma

Reference

Figure: Two source HOM dip

References

Python quantum programming languages

John Scott, Oliver Thomas

References