Package 'ITNr'

March 31, 2023

Type Package

Title Analysis of the International Trade Network					
Version 0.7.0					
Author Matthew Smith					
Maintainer Matthew Smith <matt_smith.90@hotmail.co.uk></matt_smith.90@hotmail.co.uk>					
Description Functions to clean and process international trade data into an international trade network (ITN) are provided. It then provides a set a functions to undertake analysis and plots of the ITN (extract the backbone, centrality, blockmodels, clustering). Examining the key players in the ITN and regional trade patterns.					
Depends R (\geq 2.15.1), network					
License GPL-3					
Encoding UTF-8					
Imports stats,circlize,graphics,RColorBrewer,xergm.common, reshape2,maps,blockmodeling,igraph,utils,dplyr,plyr, cowplot,ggplot2,GGally,fastmatch,intergraph, sna,tnet,WDI,networkDynamic					
LazyData true					
RoxygenNote 7.2.1					
NeedsCompilation no					
Repository CRAN					
Date/Publication 2023-03-31 14:10:11 UTC					
R topics documented:					
abs_diff_mat 2 cap_lat_lon 3 Comtradrclean 3 core_periphery_weighted 4 ei_group 5 ei_ind 5 ei_network 6					

2 abs_diff_mat

	ELEnet16	7
	ELEnetList	7
	get.backbone	8
	isEmpty	9
	ITNadjust	9
	ITNblock_plot	10
	ITNblock_se	11
	ITNcentrality	12
	ITNcentrality_binary	12
	ITNcluster	13
	ITNcorr	14
	ITNdegdist	14
	ITNdynamic	15
	ITNhistdegdist	16
	ITNimvex	17
	ITNplotset	17
	ITNproperties	18
	ITNproperties_base	19
	ITN_make_plot	20
	ITN_map_plot	20
	make_trade_network	21
	mixing_matrix_igraph	22
	plot_degree_distribution	22
	receiver_mat	23
	region_circle_plot	24
	reorder_df	24
	round_df	25
	sender_mat	26
	WITSclean	26
Index		27

Description

This takes a dataframe of node attributes and convert one into a absolute difference matrix

Usage

```
abs_diff_mat(DF, attrname)
```

Arguments

DF	Dataframe of node attribute
attrname	names of the attribute from the dataframe to create the matrix for.

cap_lat_lon 3

Value

Absolute difference matrix

cap_lat_lon cap_lat_lon

Description

Dataframe of capital city latitude and longitude coordinates

Usage

cap_lat_lon

Comtradr data clean Comtradr data clean

Description

This function takes (import) trade data downloaded from comtrade - potentially using the comtradr package, cleans it and transforms it into a network. Adding a number of country level attributes to nodes in the network, including: regional partition, GDP, GDP per capita, GDP growth and FDI. However, it is important to note the limits of using comtradr to construct a network. Firstly when downloading the data with comtradr, you must specify reporters and partners – yet you cannot put "all" for both – only for either reporters or partners. Then for the other you are limited to a character vector of country names, length five or fewer. Therefore, this will not give you a full network. However, this function can be applied to trade data downloaded from UN Comtrade (download csv and read into R as a dataframe), or any other trade data. You just make sure it has the following column names: reporter_iso, partner_iso, trade_value_usd and year. Some dataformats may have different names. Also - it is important to note that this function is for import data.

Usage

Comtradrclean(DF, YEAR, threshold, cutoff)

Arguments

DF Dataframe of trade data downloaded (potentially using the comtradr package)

YEAR Year

threshold Apply a threshold - TRUE, Extract the backbone - FALSE cutoff Threshold - cutoff level, Backbone - significance level

Value

International Trade Network - igraph object

core_periphery_weighted

Core-Periphery for Weighted Networks

Description

This function implements rich club core-periphery algorithm (Ma & Mondragón, 2015) to identify members of the core and periphery in weighted networks

Usage

```
core_periphery_weighted(gs, type)
```

Arguments

gs International Trade Network - igraph object. Note for networks not produced us-

ing ITNr there needs to be a vertex attribute "name" and edge attribute "weight"

type directed/undirected

Value

List - 1.)igraph object with core-periphery results added as a node attribute. 2.) Dataframe of core-periphery results.

References

Ma A, Mondragón RJ (2015) Rich-Cores in Networks. PLoS ONE 10(3): e0119678. https://doi.org/10.1371/journal.pone.01

```
require(igraph)
##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(50,0.05,directed = TRUE)

##Add edge weights
E(ITN)$weight<-runif(ecount(ITN), 0, 1)

##Add vertex names
V(ITN)$name<-1:vcount(ITN)

##Implement core-periphery algorithm
ITNcp<-core_periphery_weighted(ITN,"directed")</pre>
```

ei_group 5

ei_group

Group level E-I Index

Description

This function calculates the E-I Index (External-internal) at the group/attribute level

Usage

```
ei_group(gs, attrname)
```

Arguments

gs igraph object attrname Attribute name

Value

Group level results dataframe

Examples

```
require(igraph)
##Create random network (igraph object)
gs<-erdos.renyi.game(75,0.05,directed = TRUE)

##Add vertex names
V(gs)$name<-1:vcount(gs)

## Add an attribute
V(gs)$letters<- rep(LETTERS[1:5],15)

##Calculate the Group E-I Results
EI_GROUP_DATAFRAME<-ei_group(gs,"letters")</pre>
```

ei_ind

Individual/Node level E-I Index

Description

This function calculates the E-I Index (External-internal) at the individual/node level

Usage

```
ei_ind(gs, attrname)
```

ei_network

Arguments

gs igraph object attrname Attribute name

Value

Group level results dataframe

Examples

```
require(igraph)
##Create random network (igraph object)
gs<-erdos.renyi.game(30,0.05,directed = TRUE)

##Add vertex names
V(gs)$name<-1:vcount(gs)

## Add an attribute
V(gs)$letters<- rep(LETTERS[1:5],6)

##Calculate the Individual E-I Results
EI_IND_DATAFRAME<-ei_ind(gs,"letters")</pre>
```

ei_network

Network level E-I Index

Description

This function calculates the E-I Index (External-internal) at the network level

Usage

```
ei_network(gs, attrname)
```

Arguments

gs igraph object attrname Attribute name

Value

Group level results dataframe

ELEnet16 7

Examples

```
require(igraph)
##Create random network (igraph object)
gs<-erdos.renyi.game(75,0.05,directed = TRUE)

##Add vertex names
V(gs)$name<-1:vcount(gs)

## Add an attribute
V(gs)$letters<- rep(LETTERS[1:5],15)

##Calculate the Group E-I Results
EI_NETWORK<-ei_network(gs,"letters")</pre>
```

ELEnet16

Electrical Automotive Goods 2016 Network

Description

Electrical Automotive Goods 2016 Network. Electrical automotive goods category as defined by Amighini & Gogoni (2014)

Usage

ELEnet16

References

Amighini, A. and Gorgoni, S. (2014) The International Reorganisation of Auto Production, The World Economy, 37(7), pp. 923–952.

ELEnetList

List of Electrical Automotive Goods Networks (2006-2016)

Description

List of Electrical Automotive Goods Networks for 2006 - 2016. Electrical automotive goods category as defined by Amighini & Gogoni (2014)

Usage

ELEnetList

References

Amighini, A. and Gorgoni, S. (2014) The International Reorganisation of Auto Production, The World Economy, 37(7), pp. 923–952. (list of igraph objects)

get.backbone

get.backbone get.	backbone
-------------------	----------

Description

This function extracts the backbone of a network

Usage

```
get.backbone(G, alpha, directed = TRUE)
```

Arguments

G igraph networkalpha Significance leveldirected Default is TRUE

Value

Backbone of the network

References

Serrano, M. Á., Boguñá, M. and Vespignani, A. (2009) Extracting the multiscale backbone of complex weighted networks, Proceedings of the National Academy of Sciences, 106(16), pp. 6483–6488.

```
require(igraph)

##Create a random (directed) network
gs<-erdos.renyi.game(50,0.2,directed = TRUE)

##Add edge weights to the network
E(gs)$weight<-runif(ecount(gs), 0, 1)

##Extract backbone at 0.05 significance level
backbone<-get.backbone(gs,0.1)</pre>
```

isEmpty 9

isEmpty

isEmpty

Description

This function check whether data is numeric(0) and give returns an NA if this is true and the value of the data otherwise.

Usage

```
isEmpty(x)
```

Arguments

Х

Data

Value

NA or the data

ITNadjust

Adjust ITN

Description

This function adjusts ITN matrices so they are the same size

Usage

```
ITNadjust(MATlist, j)
```

Arguments

MATlist A list of ITN matrices

j Element of matrix list to compare with others

Value

Matrix

10 ITNblock_plot

Examples

```
##Create a list of random matrices (of different sizes)
##Labels - letters of alphabet (can represent actor names)
mat1<- matrix(round(runif(10*10)), 10, 10)</pre>
rownames(mat1)<-LETTERS[1:10]</pre>
colnames(mat1)<-LETTERS[1:10]</pre>
mat2<- matrix(round(runif(10*10)), 10, 10)</pre>
rownames(mat2)<-LETTERS[10:19]</pre>
colnames(mat2)<-LETTERS[10:19]</pre>
mat3<- matrix(round(runif(12*12)), 12, 12)</pre>
rownames(mat3)<-LETTERS[15:26]</pre>
colnames(mat3)<-LETTERS[15:26]</pre>
##Create matrix list
MATlist<-list(mat1, mat2, mat3)
##Adjust matrix 1 so that it has additional rows/actors not
##in the original matrix
mat1adjust<-ITNadjust(MATlist,1)</pre>
```

ITNblock_plot

ITN Blockmodel Plot

Description

This function calculates block membership for the ITN and then plots the network, with node colour according to block membership.

Usage

```
ITNblock_plot(gs, LABEL)
```

Arguments

gs International Trade Network - igraph object
LABEL Should labels be present - TRUE/FALSE

Value

Network Plot - nodes coloured based on block membership

ITNblock_se

Examples

```
require(igraph)
require(sna)
require(intergraph)

##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(75,0.05,directed = TRUE)

##Add edge weights
E(ITN)$\text{weight}<-runif(ecount(ITN), 0, 1)

##Blockmodel plot
block_plot<-ITNblock_plot(ITN,FALSE)</pre>
```

ITNblock_se

ITN Blockmodel & Structural Equivalence

Description

This function calculates block membership for ITN and structural equivalence between countries

Usage

```
ITNblock_se(gs)
```

Arguments

gs

International Trade Network - igraph object

Value

List object containing block membership and structural equivalence matrix results

```
require(igraph)
require(sna)
require(intergraph)

##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(50,0.05,directed = TRUE)

##Add edge weights
E(ITN)$weight<-runif(ecount(ITN), 0, 1)

##Blockmodel & structural equivalence analysis
blockse<-ITNblock_se(ITN)</pre>
```

ITNcentrality

ITN Centrality

Description

This function calculates a number of centrality metrics for the weighted International Trade Network (ITN)

Usage

```
ITNcentrality(gs)
```

Arguments

gs

International Trade Network - igraph object

Value

Table of centrality results (dataframe)

Examples

```
require(igraph)
##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(75,0.05,directed = TRUE)

##Add edge weights
E(ITN)$weight<-runif(ecount(ITN), 0, 1)

##Add vertex names
V(ITN)$name<-1:vcount(ITN)

##Calculate the centrality measures
ITNCENT<-ITNcentrality(ITN)</pre>
```

ITNcentrality_binary ITN Centrality for binary networks

Description

This function calculates a number of centrality metrics for the binary International Trade Network (ITN)

Usage

```
ITNcentrality_binary(gs)
```

ITNcluster 13

Arguments

gs

International Trade Network - binary igraph object

Value

Table of centrality results (dataframe)

Examples

```
require(igraph)
##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(75,0.05,directed = TRUE)

##Add vertex names
V(ITN)$name<-1:vcount(ITN)

##Calculate the centrality measures
ITNCENT<-ITNcentrality_binary(ITN)</pre>
```

ITNcluster

ITN Cluster

Description

This function calculates cluster membership for ITN

Usage

```
ITNcluster(gs)
```

Arguments

gs

International Trade Network - igraph object (with region attribute)

Value

Cluster object containing various cluster membership results

```
##Load ITN
data(ELEnet16)

##Cluster Analysis
CLU<-ITNcluster(ELEnet16)</pre>
```

14 ITNdegdist

ITNcorr

ITN Correlation Plot

Description

This function plots the correlation between degree and strength scores

Usage

```
ITNcorr(gs)
```

Arguments

gs

International Trade Network - igraph object

Value

Correlation plot

Examples

```
require(igraph)

##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(75,0.05,directed = TRUE)

##Add edge weights
E(ITN)$weight<-runif(ecount(ITN), 0, 1)

##Plot correlation matrix between degree and strength scores.
corr_plot<-ITNcorr(ITN)</pre>
```

 ${\tt ITN} {\tt degdist}$

ITN Degree Distribution

Description

This function plots the ITN (probability) degree distribtuion

Usage

```
ITNdegdist(gs)
```

Arguments

gs

International Trade Network - igraph object

ITNdynamic 15

Value

Panel of ITN degree distribution plots

Examples

```
require(igraph)

##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(75,0.05,directed = TRUE)

##Plot degree distribution
deg_dist_plot<-ITNdegdist(ITN)</pre>
```

ITNdynamic

Dynamic ITN

Description

This function produces a dynamic network object for ITNs. It cleans and adjusts the individual networks, so they are the same size. This dynamic network object can then be used to create animations, mapping changes over time and to calculate temporal network statistics

Usage

```
ITNdynamic(NETlist)
```

Arguments

NETlist

A list of International Trade Networks (igraph objects)

Value

It returns the Dynamic Network Object

```
require(igraph)

##Create a set of random International Trade Networks (igraph objects)
##and add vertex names
ITN1<-erdos.renyi.game(75,0.05,directed = TRUE)
V(ITN1)$name<-1:vcount(ITN1)
ITN2<-erdos.renyi.game(100,0.01,directed = TRUE)
V(ITN2)$name<-1:vcount(ITN2)
ITN3<-erdos.renyi.game(55,0.1,directed = TRUE)
V(ITN3)$name<-1:vcount(ITN3)</pre>
```

16 ITNhistdegdist

```
##Create network list
NETlist<-list(ITN1,ITN2,ITN3)
##Create Dynamic Network Object
ITNdyn<-ITNdynamic(NETlist)</pre>
```

ITN hist deg dist

ITN Histogram Degree Distribution

Description

This function plots the histogram degree distribution for the ITN

Usage

```
ITNhistdegdist(gs)
```

Arguments

gs

International Trade Network - igraph object

Value

Panel of ITN histogram degree distribution plots

```
require(igraph)

##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(75,0.05,directed = TRUE)

##Add edge weights
E(ITN)$weight<-runif(ecount(ITN), 0, 1)

##Plot degree distribution histogram
hist_deg_dist<-ITNhistdegdist(ITN)</pre>
```

ITNimvex 17

ITNimvex

ITN - Exports vs Imports Plot

Description

The following function produces a plot showing imports (in degree) vs exports (out degree). This allows us to identify whether in the ITN, countries that export high levels also import high levels. The plot can be produced for either weighted or binary import and export ties.

Usage

```
ITNimvex(gs, weighted)
```

Arguments

gs International Trade Network - igraph object

weighted TRUE - plot import strength vs export strength. FALSE - Import count Vs export

count

Value

Imports Vs Exports Plot

Examples

```
require(igraph)

##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(75,0.05,directed = TRUE)

##Add edge weights
E(ITN)$weight<-runif(ecount(ITN), 0, 1)

##Plot binary import vs exports
imvex_plot<-ITNimvex(ITN,FALSE)</pre>
```

ITNplotset

ITN Plots

Description

This function creates a panel of four plots of the ITN for a quick inspection. These include plots: (i) highlighting clusters using the fast greedy algorithm.(ii)node colours for communities detected using the spinglass algorithm. (iii)nodes coloured by regional partition and (iv)with nodes coloured by regional partition and node size based on outdegree centrality.

18 ITNproperties

Usage

```
ITNplotset(gs)
```

Arguments

gs

International Trade Network - igraph object

Value

Panel of ITN plots

Examples

```
##Load the network
data(ELEnet16)

##Plot set of network visualisations
ITNplotset(ELEnet16)
```

ITNproperties

ITN Properties

Description

This function calculates network level properties for the ITN. These include: -Size (number of nodes) -Density -Reciprocity -Diameter -Average path length -Average node strength -Average Degree -Betweenness Centralisation -Closeness Centralisation -Eigenvector Centralisation -Out Degree Centralisation -In Degree Centralisation -All Degree Centralisation -Clustering coefficent (transitivity) -Clustering Weighted -Region Homophily -Degree Assortativity

Usage

```
ITNproperties(gs, weighted)
```

Arguments

gs International Trade Network - igraph object

weighted TRUE-weighted, FALSE-binary

Value

Table of centrality results (dataframe)

ITNproperties_base 19

Examples

```
##Load the network
data(ELEnet16)

##Calculate the network properties
ITNPROP<-ITNproperties(ELEnet16,TRUE)</pre>
```

ITNproperties_base

ITN Properties Base

Description

This function calculates network level properties for the ITN. These include: -Size (number of nodes) -Density -Reciprocity -Diameter -Average path length -Average node strength -Average Degree -Betweenness Centralisation -Closeness Centralisation -Eigenvector Centralisation -Out Degree Centralisation -In Degree Centralisation -All Degree Centralisation -Clustering coefficient (transitivity) -Clustering Weighted -Degree Assortativity

Usage

```
ITNproperties_base(gs, weighted)
```

Arguments

gs International Trade Network - igraph object

weighted TRUE-weighted, FALSE-binary

Value

Table of centrality results (dataframe)

```
##Load the network
data(ELEnet16)

##Calculate the network properties
ITNPROP<-ITNproperties_base(ELEnet16,TRUE)</pre>
```

20 ITN_map_plot

ITN_make_plot

Single Clean ITN Plot

Description

This function plots a single/clean ITN

Usage

```
ITN_make_plot(gs, LABEL, REGION)
```

Arguments

gs International Trade Network - igraph object
LABEL Should labels be present - TRUE/FALSE

REGION Should nodes be coloured on the basis of region TRUE/FALSE

Value

Panel of ITN plots

Examples

```
##Load graph
data("ELEnet16")

##Otherwise download data from WITS and create an
##International Trade Network using WITSclean()

##Plot the network - No Label, colour by region
ITN_plot_example<-ITN_make_plot(ELEnet16,FALSE,TRUE)</pre>
```

ITN_map_plot

ITN plot on world map

Description

This function plots the international trade network on a world map

Usage

```
ITN_map_plot(gs)
```

make_trade_network 21

Arguments

gs

International Trade Network - igraph object

Value

Plot of the ITN on world map

Examples

```
require(maps)
##Load the ITN
data(ELEnet16)

## Plot ITN on map - node size based on outdegree
ITN_map_plot(ELEnet16)
```

make_trade_network

make_trade_network

Description

This function takes (import) trade data and cleans it and transforms it into a network. This function can be applied to trade data downloaded from UN Comtrade (download csv and read into R as a dataframe), or any other trade data. You just make sure it has the following column names: reporter_iso, partner_iso and edge_weight. Some dataformats may have different names. Also - it is important to note that this function is for import data.

Usage

```
make_trade_network(DF, threshold, cutoff)
```

Arguments

DF Dataframe of trade data downloaded (potentially using the comtradr package)

threshold Apply a threshold - TRUE, Extract the backbone - FALSE cutoff Threshold - cutoff level, Backbone - significance level

Value

International Trade Network - igraph object

Description

This function calculates the mixing matrix for an igraph object

Usage

```
mixing_matrix_igraph(gs, attrname)
```

Arguments

gs igraph object.

attrname Attribute name (vertex attribute)

Value

Mixing matrix

Examples

```
require(igraph)
##Create random International Trade Network (igraph object)
gs<-erdos.renyi.game(50,0.05,directed = TRUE)

##Add vertex attributes
V(gs)$LETTER<-rep(LETTERS[1:5],10)

##Add vertex names
V(gs)$name<-1:vcount(gs)

##Calculate mixing matrix
mixing_matrix<-mixing_matrix_igraph(gs,"LETTER")</pre>
```

```
plot_degree_distribution
```

Plot Degree Distribution

Description

This function plots degree distribution for any graph

Usage

```
plot_degree_distribution(graph, a)
```

receiver_mat 23

Arguments

```
graph igraph object
a mode - "in", "out", "all
```

Value

Panel of ITN degree distribution plots

Examples

```
require(igraph)
##Create random International Trade Network (igraph object)
ITN<-erdos.renyi.game(75,0.05,directed = TRUE)
##Plot out degree distribution
plot_degree_distribution(ITN,"in")</pre>
```

receiver_mat

 $receiver_mat$

Description

This takes a dataframe of node attributes and convert one into a matrix of receiver attributes

Usage

```
receiver_mat(DF, attrname)
```

Arguments

DF Dataframe of node attribute

attrname names of the attribute from the dataframe to create the matrix for.

Value

Receiver matrix

24 reorder_df

region_circle_plot

region_circle_plot

Description

This function creates a chord diagram/circle plot for levels of trade between regional partitions

Usage

```
region_circle_plot(gs)
```

Arguments

gs

igraph ITN object (with attributes added)

Value

Circle Plot

Examples

```
##Load graph
data("ELEnet16")

##Create region circle plot
region_circle_plot(ELEnet16)
```

reorder_df

reorder_df

Description

Reorders the rows of one dataframe according to another vector (id vector)

Usage

```
reorder_df(df, col_sort, reorder_data)
```

Arguments

df dataframe to reorder

col_sort column on which the rows will be reordered

reorder_data vector with the new order

round_df 25

Value

Reordered dataframe

Examples

```
df <- data.frame(a = letters[1:3],b = LETTERS[4:6],c = 7:9)
reorder_data<-c("c","a","b")
df_new<-reorder_df(df,"a",reorder_data)
df_new</pre>
```

round_df

round_df

Description

This function rounds the numeric variables in a dataframe containing numeric and non-numeric data

Usage

```
round_df(x, digits)
```

Arguments

x dataframedigits digits to round to

Value

Dataframe with rounded numbers

```
##Create dataframe
ID = c("a","b","c","d","e")
Value1 = c(3.445662,6.44566,8.75551,1.114522,1.5551)
Value2 = c(8.2,1.7,6.4,19.45459,10.34524)
df<-data.frame(ID,Value1,Value2)
##Round to 2 digits
rounddf<-round_df(df,2)</pre>
```

26 WITSclean

sender_mat	sender_mat

Description

This takes a dataframe of node attributes and convert one into a matrix of sender attributes

Usage

```
sender_mat(DF, attrname)
```

Arguments

DF Dataframe of node attribute

attrname names of the attribute from the dataframe to create the matrix for.

Value

Sender matrix

WITSclean	WITS data clean	

Description

This function takes (import) trade data downloaded from WITS, cleans it and transforms it into a network. Adding a number of country level attributes to nodes in the network, including: regional partition, GDP, GDP per capita, GDP growth and FDI.

Usage

```
WITSclean(CSVfile, YEAR, threshold, cutoff)
```

Arguments

CSVfile WITS csv file

YEAR Year

threshold Apply a threshold - TRUE, Extract the backbone - FALSE cutoff Threshold - cutoff level, Backbone - significance level

Value

International Trade Network - igraph object

Index

* datasets	receiver_mat, 23
<pre>cap_lat_lon, 3</pre>	region_circle_plot, 24
ELEnet16, 7	reorder_df, 24
ELEnetList, 7	round_df, 25
abs_diff_mat,2	$sender_mat, 26$
cap_lat_lon, 3	WITSclean, 26
Comtradrclean, 3	
core_periphery_weighted,4	
ei_group,5	
ei_ind,5	
ei_network,6	
ELEnet16, 7	
ELEnetList, 7	
get.backbone,8	
isEmpty,9	
ITN_make_plot, 20	
ITN_map_plot, 20	
ITNadjust, 9	
ITNblock_plot, 10	
ITNblock_se, 11	
ITNcentrality, 12	
ITNcentrality_binary, 12	
ITNcluster, 13	
ITNcorr, 14	
ITNdegdist, 14	
ITNdynamic, 15	
ITNhistdegdist, <mark>16</mark>	
ITNimvex, 17	
ITNplotset, 17	
ITNproperties, 18	
ITNproperties_base,19	
make_trade_network,21	
mixing_matrix_igraph,22	
nlot degree distribution 22	