老师们,同学们,晚上好,我是布树辉老师毕设组的刘昭宏,接下来我来进行我的开题答辩

我的毕设题目为,集群无人机协同SLAM

集群无人机协同SLAM

Collaborative SLAM Functioned on Multi UAVs

答辩人: 刘昭宏 指导教师: 布树辉

CONTENTS

01

研究背景与现状

Research
Background and
Current Situation

03

关键技术说明

Key Technologies

02

研究内容与方法

Research Contents and Methods

04

论文进度安排

Schedule for Thesis Paper

研究背景与现状

Research Background and Current Situation

无人机集群

- 系统的可靠性,任务完成与否
- 任务执行效率,如时间
- 任务执行方式

同时定位与建图 (SLAM)

- 利用相机或激光雷达定位和建图
- 单平台SLAM效果受限
- 多平台协作SLAM的优势

研究现状-SLAM

Current Situation of SLAM

视觉SLAM

- 使用相机,造价较低
- 四大步骤: 里程计、优化、回环检测、建图
- ORB-SLAM方案
- 受光照影响大

激光SLAM

- 单线束激光雷达或多线束激光雷达
- 不受光照影响,但受天气影响,且造价昂贵

研究现状-多无人机SLAM

Current Situation of SLAM Used On UAVs

- 1 特点
- VINS-Fusion方案
- 双机共同建图
- 可变基线,视深可变

- 2 内核
- 跟踪进程
- 建图进程
- 优化进程

研究现状-多无人机SLAM

Current Situation of SLAM Used On UAVs

CCM-SLAM

- 一种多机器人协同SLAM方案
- 使用服务器+多终端设计
- 子端完成SLAM前端,传数据给服务器
- 服务器处理合并,向子端发指令

多机建图的拼合

- 主要根据关键帧判断是否重叠
- 仍然需要几何验证

研究内容与方法

Research Contents and Methods

本研究旨在实现一套能够在室内高精度环境或GPS拒止环境下使用视觉进行多机定位和大范围建图的多无人机协同SLAM的方案

- 在SLAM方面:掌握一些优秀的开源方案,做出一定的融合;有一套针对地图融合的方法
- 在仿真方面:在ROS的gazebo仿真平台中控制多个无人机协同完成同时定位与建图的任务
- 在真机方面:实现单机的视觉SLAM;在安全的前提下实现双机协同SLAM,得到场景地图

研究背景与现状 研究内容与方法 论文进度安排

- 视觉SLAM的特征点提取、匹配、后端; SLAM框架;
- CCM-SLAM协同机制
- VINS-Fusion中IMU与相机 数据融合

- ROS和PX4话题发布控制
- 更改定位方式,更改场景
- 使用摄像头,获取数据
- 单机和多机的SLAM,获得定位,构建地图

3 真机

- 通过MAVROS与地面站通信
- SLAM关键数据的传输
- 多无人机与地面站之间的数据传输机制
- 可变基线技术

研究背景与现状 研究内容与方法 论文进度安排

研究方法

Research Methods

研究背景与现状 研究内容与方法 论文进度安排

关键技术说明

Key Technologies

- 1 ROS和PX4的使用
 - ROS通过MAVROS发布和订阅话题的机制,能够与PX4通信
 - SLAM的实现需要借助ROS的功能包设计
- 2 多机协同框架和SLAM
 - 最终的场景地图必须经过各终端地图的拼合
 - 多机协作的框架规定了传输消息的类型
- 3 真机的操作
 - 最终的实验需要用真机完成
 - 完成图像的采集,需要了解真机如何与地面站通信

论文进度安排

Schedule of Thesis Paper

进度安排

周	进度
1/15-1/31	学习SLAM算法,了解其基本原理
1/31-2/14	跑通无人机上的SLAM代码,能够使用无人机建图
2/14-2/28	详细学习OpenCV的成员函数
3/01-3/21	研究掌握拼接地图的策略和方法
3/21-4/07	研究多机SLAM,并且引入地图拼接
4/07-5/01	整合代码,真机实验
5/01-6/01	论文撰写,准备答辩

THANKS