Russell's Paradox

Russell's Paradox:

- Assume $R \triangleq \{ X \mid X \notin X \}$ is a set
- This is a hypothetic set (don't try to think of examples)
- Two cases (by Law of Excluded Middle):
 - R ∈ R
 - By definition of R : R ∉ R
 - Contradiction!
 - R ∉ R
 - By definition of $R : R \in R$
 - Contradiction!
 - Either way, there is a contradiction
- · Therefore, our main assumption was wrong
- R is not a set

 $R \triangleq \{ \ X \mid X \notin X \ \}$ is **not** well defined. When defining a set, you should only allow selection from a set $\{ \ x \in A \mid \dots \ \}$