Universität Konstanz

Skriptum zur Vorlesung

Einführung in die Algebra

Private Mitschrift

gelesen von:

Prof. Dr. Markus Schweighofer

Wintersemester 2014/15 Stand vom 14. Dezember 2014

Inhaltsverzeichnis

1	Grup	pen	Ę
	1.1	Gruppen und Untergruppen	١

§ 1 Gruppen

§ 1.1 Gruppen und Untergruppen

1.1.1 Definition Eine Gruppe ist ein geordnetes Paar (G, \cdot) , wobei G eine Menge ist und $\cdot : G \times G \to G$ eine meist infix (und manchmal gar nicht) notierte Abbildung mit folgenden Eigenschaften ist:

- (A) $\forall a, b, c \in G : a(bc) = (ab)c$ "assoziativ"
- (N) $\exists e \in G \ \forall a \in G : ae = a = ea$ "neutrales Element"
- (I) $\forall a \in G \ \exists g \in G : ab = 1 = ba$ "inverse Elemente"

"·" heißt Gruppenmultiplikation oder Gruppenverknüpfung. Gilt zusätzlich

(K) $\forall a, b \in G : ab = ba$

so heißt (G, \cdot) abelsch oder kommutativ.

Anmerkung Sind $e, e' \in G$ neutral, so e = ee' = e'. Daher gibt es genau ein neutrales Element, für welches man oft "1" schreibt.

1.1.2 Bemerkung

(a) Sei (G, \cdot) eine Gruppe und $a \in G$. Seien b, b' invers zu a. Dann

$$b \stackrel{(N)}{=} b \cdot 1 \stackrel{(I)}{=} b(ab') \stackrel{(A)}{=} (ba)b' \stackrel{(I)}{=} 1 \cdot b \stackrel{(N)}{=} b'.$$

Daher gibt es zu jedem $a \in G$ genau ein inverses Element in G, welches wir mit a^{-1} bezeichnen.

- (b) (N) und (I) kann man wie folgt schreiben:
 - (N) $\forall a \in G : a1 = a = 1a$
 - (I) $\forall a \in G : aa^{-1} = 1 = a^{-1}a$

1 Gruppen

- (c) Oft: "Sei G eine Gruppe", statt: "Sei (G, \cdot) eine Gruppe."
- (d) Sei G eine Gruppe, $n \in \mathbb{N}_0$ und $a_1, ..., a_n \in G$. Dann definiert man $\prod_{i=1}^n a_i := a_1 \cdot ... \cdot a_n$ als 1 für n=0 und indem man $a_1 \cdot ... \cdot a_n$ sinnvoll mit Klammern versieht, sonst. Dies hängt nicht von der Wahl der Klammerung da, wie (A) für n=3 besagt. Für n>3 siehe $[\to LA \ 2.1.6]$ oder mache es als Übung per Induktion. Falls G additiv geschrieben ist, schreibt man $\sum_{i=1}^n a_i$, statt $\prod_{i=1}^n a_i$.
- (e) Sei G eine Gruppe, $n \in \mathbb{Z}$ und $a \in G$. Dann definiert man

$$a^n := \begin{cases} \prod_{i=1}^n a, & \text{für } n \ge 0, \\ \prod_{i=1}^n (a^{-1}), & \text{für } n \le 0. \end{cases}$$

Fall G additiv geschrieben ist, schreibt man na, statt a^n .

1.1.3 Definition Ist (G, \cdot) eine Gruppe, so nennt man $\#G \in \mathbb{N}_0 \cup \{\infty\}$ die Ordnung von (G, \cdot) .

1.1.4 Beispiel

(a) Für jede Menge M bildet die Menge $S_M := \{f \mid f : M \to M \text{ bijektiv}\}$ mit der durch $fg := f \circ g$ $(f, g \in S_M)$ gegebenen Multiplikation eine Gruppe. Man nennt sie die symmetrische Gruppe auf M. Das neutrale Element von S_M ist die Identität auf M und das zu einem $f \in S_M$ inverse Element ist die Umkehrfunktion von f, wodurch die Notation f^{-1} nicht zweideutig ist.

Für $n \in \mathbb{N}_0$ ist $S_n := S_{\{1,\dots,n\}}$ eine Gruppe der Ordnung $n! := \prod_{i=1}^n i$ "n Fakultät". Für $n \geq 3$ ist die nicht abelsch, dann die Transpositionen $\tau_{1,2}$ und $\tau_{2,3}$ konvertieren nicht, d.h. $\tau_{1,2}\tau_{2,3} \neq \tau_{2,3}\tau_{1,2}$. In der Tat: $(\tau_{1,2}\tau_{2,3})(1) = \tau_{1,2}(1) = 2$ und $(\tau_{2,3}\tau_{1,2})(1) = \tau_{2,3}(2) = 3$.

- (b) Für jeden Vektorraum V ist die Menge $\operatorname{Aut}(V) := \{f \mid f : V \to V \text{ linear und bijektiv}\}$ mit der Hintereinanderschaltung als Multiplikation eine Gruppe.
- (c) Ist R ein kommutativer Ring (z. B. $R = \mathbb{Z}$), so ist $GL_n(R) := \{A \in R^{n \times n} \mid A \text{ invertierbar}\} = \{A \in R^{n \times n} \mid \det A \in R^{\times}\}$ eine Gruppe.

1.1.5 Proposition Sei G eine Gruppe und $a, b \in G$.

(a)
$$ab = 1 \iff a = b^{-1} \iff b = a^{-1}$$

(b)
$$(a^{-1})^{-1} = a$$

(c)
$$(ab)^{-1} = b^{-1}a^{-1}$$

Beweis:

- (a) Gilt ab = 1, so $a \stackrel{(N)}{=} a1 \stackrel{(I)}{=} a(bb^{-1}) \stackrel{(A)}{=} (ab)b^{-1} = 1b \stackrel{(N)}{=} b^{-1}$. Gilt $a = b^{-1}$, so $b \stackrel{(N)}{=} 1b \stackrel{(I)}{=} (a^{-1}a)b \stackrel{(A)}{=} a^{-1}(ab) = a^{-1}(b^{-1}b) \stackrel{(I)}{=} a^{-1}1 \stackrel{(N)}{=} a^{-1}$. Gilt $b = a^{-1}$, so ab = 1.
- (b) Aus $aa^{-1} \stackrel{(I)}{=} 1$ folgt mit (a) $(a^{-1})^{-1} = a$.
- (c) Aus $(ab)(b^{-1}a^{-1}) \stackrel{(A)}{=} a(b(b^{-1}a^{-1})) \stackrel{(A)}{=} a((bb^{-1})a^{-1}) \stackrel{(I)}{=} a(1a^{-1}) \stackrel{(N)}{=} aa^{-1} \stackrel{(I)}{=} 1$ folgt mit (a) $(ab)^{-1} = b^{-1}a^{-1}$.
- **1.1.6 Definition** Seien (G, \cdot_G) und (H, \cdot_H) Gruppen. Dann heißt (H, \cdot_H) eine Untergruppe von (G, \cdot_G) , wenn $H \subseteq G$ und $\forall a, b \in H : a \cdot_H b = a \cdot_G b$.
- **1.1.7 Proposition** Sei $(G, \cdot_G$ eine Gruppe und H eine Menge. Dann ist H genau dann Trägermenge einer Untergruppe von (G, \cdot_g) , wenn $H \subseteq G$, $1_S \in H$, $\forall a, b \in H : a \cdot_S b \in H$ und $\forall a \in H : a^{-1} \in H$.

In diesem Fall gibt es genau eine Abbildung $\cdot_H: H \times H \to H$ derart, dass (H, \cdot_H) eine Untergruppe von (G, \cdot_G) ist. Es gilt dann $1_H = 1_G$, $\forall a, b \in H: a \cdot_H b = a \cdot_G b$ und $a^{-1} = a^{-1}$ (je in G und H gebildet).

Beweis: Klar oder vgl. LA § 2. □

1.1.8 Bemerkung

- (a) Ist (H, \cdot_H) Untergruppe von (G, \cdot_G) , so schreibt man meist \cdot statt \cdot_H . Oft erwähnt man \cdot_H gar nicht mehr und schreibt einfach "H ist Untergruppe von G" oder $H \leq G$.
- (b) Untergruppen abelscher Gruppen sind abelsch.

1.1.9 Beispiel

(a) Für $n \in \mathbb{N}_0$ ist $A_n := \{ \sigma \in S_n \mid \operatorname{sgn} \sigma = 1 \}$ eine Untergruppe von S_n , die man alternierende Gruppe nennt. $[\to \operatorname{LA} \S 9.1]$

Literaturverzeichnis

- [1] Bosch, Siegfried: Algebra -. 5. überarb. Aufl. Berlin, Heidelberg : Springer, 2004. ISBN 978-3-540-40388-3
- [2] Jacobson, Nathan: Basic Algebra I Second Edition. Second Edition. Courier Corporation, 2012. ISBN 978-0-486-13522-9
- [3] Jantzen, Jens C. ; Schwermer, Joachim: Algebra -. 2. Aufl. Berlin Heidelberg New York : Springer-Verlag, 2014. ISBN 978–3–642–40533–4

Index

```
Automorphismus
Vektorraum-, 6

Fakultät, 6

Gruppe, 5
abelsche, 5
alternierende, 7
General Linear, 6
kommutative, 5
Multiplikation, 5
symmetrische, 6
Untergruppe, 7
Verknüpfung, 5

Ordnung, 6

Trägermenge, 7
```