МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРНІВЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ЮРІЯ ФЕДЬКОВИЧА

Навчально-науковий інститут фізико-технічних та комп'ютерних наук Кафедра комп'ютерних наук

3BIT

про виконання лабораторної роботи № 5
з дисципліни
« Прикладна інтелектуальна обробка сигналів та зображень »
на тему: « Стиснення зображень »

Виконав студент 5-го курсу 544 групи Веренчук О. В.

Мета роботи: Метою даної лабораторної роботи ϵ набуття знань про існуючи методи стиснення зображень та ознайомитися з основними з них.

Хід роботи

1. Завантаження зображень

Було завантажено декілька кольорових та чорно-білих зображень із бібліотеки MATLAB. Зображення обрано таким чином, щоб вони містили як великі, так і дрібні деталі для оцінки ефектів перетворення та квантування.

```
I1 = imread('autumn.tif');
I2 = imread('cameraman.tif');
```

2. Перетворення в чорно-білий формат

Кольорові зображення було перетворено у відтінки сірого з використанням функції *rgb2gray*.

```
I1G = im2double(rgb2gray(I1));
I2G = im2double(I2);
figure;
subplot(2,2,1), imshow(I1), title('Image 1 (autumn)');
subplot(2,2,2), imshow(I1G), title('Image 1 (autumn gray)');
subplot(2,2,3), imshow(I2G), title('Image 2 (cameraman)');
truesize;
```

Image 1 (autumn)

Image 1 (autumn gray)

3. Дискретне косинусне перетворення (ДКП)

Для кожного зображення було обчислено ДКП за допомогою функції dct2. Результати візуалізовано з логарифмічним

масштабуванням для кращої видимості коефіцієнтів.

```
J1 = dct2(I1G);
J2 = dct2(I2G);
figure;
subplot(1,2,1), imshow(J1), title('Image 1 DCT');
subplot(1,2,2), imshow(J2), title('Image 2 DCT');
truesize;
```


4. Відновлення зображення за допомогою IDCT

Використовуючи функцію *idct2*, зображення були успішно відновлені з ДКП-спектра.

```
I1_recovery = idct2(J1);
I2_recovery = idct2(J2);

figure;
subplot(1,2,1), imshow(I1_recovery,[0 255]), title('recovery Image 1');
subplot(1,2,2), imshow(I2_recovery,[0 255]), title('recovery Image 2');
truesize;
```

recovery Image 1

5. Квантування коефіцієнтів ДКП

Квантування виконувалося за формулою: J = N * round(B/N); Це означає, що кожен коефіцієнт ДКП заокруглюється до найближчого кратного N. Чим більший крок N, тим вища ступінь стискання, але тим більша втрата якості.

```
N = 5; % крок квантування

J1q_5 = N * round(J1 / N);

J2q_5 = N * round(J2 / N);

N = 30; % крок квантування

J1q_30 = N * round(J1 / N);

J2q_30 = N * round(J2 / N);
```

6. Візуалізація спектрів після квантування

Застосовано логарифмічне масштабування для порівняння спектрів після квантування:

7. Відновлення зображень після квантування

Чим більший крок квантування, тим гірша якість відновленого зображення (розмиття, втрата деталей).

```
I1q_5_recovery = idct2(J1q_5);
I2q_5_recovery = idct2(J2q_5);
I1q_30_recovery = idct2(J1q_30);
I2q_30_recovery = idct2(J2q_30);
```

recovery Image 1 quantization₅ DCT

recovery Image 2 quantization₅ DCT

recovery Image 1 quantization₃0 DCT

recovery Image 2 quantization₃0 DCT

8. Мета квантування коефіцієнтів ДКП

Квантування коефіцієнтів ДКП зменшує розмір даних, відкидає менш важливі високочастотні компоненти та покращує ефективність кодування, забезпечуючи компроміс між якістю та стисненням зображення.

9. Альтернативне квантування вихідного зображення

Квантування вихідного зображення може зменшити розмір даних, але воно менш ефективне, ніж квантування коефіцієнтів ДКП, оскільки не враховує особливості людського сприйняття деталей.

```
n = 5;
I1q_5 = round(double(I1)/n)*n;
I2q_5 = round(double(I2)/n)*n;
n = 30;
I1q_30 = round(double(I1)/n)*n;
I2q_30 = round(double(I2)/n)*n;
n = 100;
I1q_100 = round(double(I1)/n)*n;
I2q_100 = round(double(I2)/n)*n;
```

recovery Image 2 quantization₅

recovery Image 1 quantizations

recovery Image 2 quantization₃0

recovery Image 1 quantization₃0

recovery Image 2 quantization₁00

recovery Image 1 quantization₁00

10. Недоліки методу

Стиснення зображень через ДКП і квантування може спричинити втрати якості, блокові артефакти, неефективність для складних або хаотичних зображень, зниження деталізації та труднощі з повторним редагуванням.

Висновки

Метод ДКП у поєднанні з квантуванням дозволяє ефективно стискати зображення з контрольованими втратами. Найкращі результати досягаються при квантуванні у частотній області.