Оглавление

1	Про	остейш	ие модели роста популяции. Основные понятия динамических систем.	2							
	1.1	рейшие модели роста	2								
		1.1.1	Модель неограниченного роста популяции	2							
		1.1.2	Модель ограниченного роста	2							
	1.2	ные понятия	3								
		1.2.1	Итерации. Понятие о каскаде	•							
		1.2.2	Орбиты (траектории) динамических систем	;							
		1.2.3	Неподвижные точки и периодические орбиты	4							
2	Acı	Асимптотическое поведение орбит динамических систем. Существование орбит									
	более высокого периода.										
	2.1	Предс	жазание судьбы орбиты для данного отображения	ţ							
		2.1.1	Диаграмма Ламерея	(
2.2 Асимптотическое поведение											
	2.3	Перио	лические орбиты любых периолов	(

Глава 1

Простейшие модели роста популяции. Основные понятия динамических систем.

1.1 Простейшие модели роста

Пусть время дискретно, принимает целые значения и в момент времени n число особей популяции равно x_n , а закон изменения от n выражается уравнением:

$$x_{n+1} = f(x_n) \Leftrightarrow \overline{x} = f(x)$$

1.1.1 Модель неограниченного роста популяции

Пример 1.1 Томас Роберт Мальтус (1766 - 1839)

Пусть количество особей в некоторой популяции в следующем поколении прямо пропорционально количеству в текущем поколении:

$$x_{n+1} = \lambda x_n$$

 λ - постоянный коэффициент, определяющий темп роста.

При заданном начальном числе особей в популяции x_0 , легко найти:

$$x_1 = \lambda x_0, x_2 = \lambda x_1 = \lambda^2 x_0, \dots, x_n = \lambda x_{n-1} = \lambda^n x_0$$

Пусть $x_0 > 0$ тогда возможны три принципиально разных случая поведения системы:

- $\lambda>1$: $\lim_{n\to\infty}x_n=\infty$ взврывообразное увеличение числа особей
- $\lambda = 1$: $x_n = x_0 \text{постоянная популяция}$
- $0 < \lambda < 1$: $\lim_{n \to \infty} x_n = 0$ популяция вымирает

1.1.2 Модель ограниченного роста

Пример 1.2 Пьер Франсуа Ферхюльст (1804-1849)

Пусть число особей обладает максимальным значением M, таким что при его достижении в следующий момент времени наступает вымирание:

$$x_{n+1} = \lambda x_n (1 - \frac{x_n}{M})$$

M - параметр аннигиляции.

- $x_n \ll M$: происходит рост $x_{n+1} = \lambda x_n$
- $x_n \ge M$: если $x_{n+1} < 0$ или $x_{n+1} = 0$, то это трактуем как исчезновение.

Определение 1.1 Дискретное логистическое уравнение

Пусть $\frac{x_n}{M} = x'_n$, тогда уравнение перепишется в виде:

$$x_{n+1} = \lambda x_n (1 - x'_n), \quad x'_n \in [0, 1]$$

Модели Мальтуса и Ферхюльста наивные. В реальности есть множество внешних факторов: хищники, болезни, изменчивая доступность питания. Тем не менее они дают грубые оценки.

$$x_0 = 0.5, \ \lambda \in \{0.5, 1.5, 2, 3.2, 3.5, 3.9\}$$

n	0.5	1.5	2	3.2	3.5	3.9
1	0.125	0.375	0.5	0.8	0.875	0.5750
2	0.0547	0.352	0.5	0.512	0.3828	0.095
3	0.0258	0.342	0.5	0.799	0.8269	0.335
4	†	†	†	0.512	0.5009	0.869
5	†	†	†	0.799	†	†
20	$1.8 \cdot 10^{-7}$	0.333	0.5	0.512	0.5009	†

- $\lambda = 0.5$: вымирание
- $\lambda = 1.5$: орбита стабилизируется в окрестности точки 0.333
- $\lambda = 2$: неподвижная точка отображения
- $\lambda = 3.2$: траектория периода 2, колеблется между 0.799 и 0.512
- $\lambda = 3.5$: траектория периода 4
- $\lambda = 3.9$: нет закономерности, хаотическое поведение

1.2 Основные понятия

1.2.1 Итерации. Понятие о каскаде.

Определение 1.2 Дискретная динамическая система

Отображение $\overline{x}=f(x)$ задает дискретную динамическую систему $\{f^n\}$, где $n\in\mathbb{Z}$ если $\overline{x}=f(x)$ — взаимно однозначное.

$$\overline{x} = f^0(x)$$
 понимаем $\mathrm{Id}: \overline{x} = x$

если f взаимно однозначное, то под f^{-1} понимаем отображение, такое что $f(f^{-1}(x)) = x$

$$k>0: f^k(x)=f(f(\dots f(x))), \quad f^{-k}(x)=f^{-1}(f^{-1}(\dots f^{-1}(x)))$$

1.2.2 Орбиты (траектории) динамических систем

Всюду далее \mathbb{Z} , \mathbb{Z}_0^+ , \mathbb{Z}_0^- .

Определение 1.3 Орбита (траектория)

Орбитой (траекторией) точки x динамической системы $\{f\}$ называется множество точек:

$$O(x) = \bigcup_{k \in \mathbb{Z}} f^k(x), \;\;$$
где f — взаимно однозначное

$$O(x) = \bigcup_{k \in \mathbb{Z}_0^+} f^k(x), \;\;$$
 если f — не взаимно однозначное

Определение 1.4 Полутраектории

Для взаимно однозначных f определим положительные и отрицательные полутраектории:

$$O^+(x) = \bigcup_{k \in \mathbb{Z}_0^+} f^k(x), \quad O^-(x) = \bigcup_{k \in \mathbb{Z}_0^-} f^k(x).$$

1.2.3 Неподвижные точки и периодические орбиты

Определение 1.5 Неподвижная точка

Точка x_0 называется неподвижной точкой системы $\{f\}$, если имеет место: $f(x_0) = x_0$.

Определение 1.6 Периодическая орбита

Точка x_0 называется периодической орбитой периода m>1, если $f^m(x_0)=x_0$ и выполнено:

$$f^k(x_0) \neq x_0, \ \forall k = 1, \dots, m-1.$$

Определение 1.7 Преднеподвижная (предпериодическая) точка

Точка, которая попадает в неподвижную (периодическую) точку после некоторого числа итераций называется временнонеподвижной (временнопериодической) или преднеподвижной (предпериодической).

Глава 2

Асимптотическое поведение орбит динамических систем. Существование орбит более высокого периода.

2.1 Предсказание судьбы орбиты для данного отображения

Иногда исследование эволюции всех орбит — легкая задача. Простейшим примером является модель неограниченного роста популяции, которая суть геометрическая прогрессия.

Пример 2.1

Рассмотрим отображение $\overline{x}=x^2$, легко предсказать судьбу траектории всех точек на оси x. Найдем неподвижные точки отображения:

$$x = x^2 \implies x = 0, x = 1$$

- орбита x = 0: 0, 0, 0, ...
- \bullet орбита x = 1: 1, 1, 1, . . .
- орбита x = -1: $-1, 1, 1, \ldots$ преднеподвижная точка

Рассмотрим судьбу орбит отображения $\overline{x} = x^2$ для $|x| < 1, x \neq 0$:

$$x, x^2, x^4, x^8, \ldots, x^{2^n}, \ldots$$

$$x_0 = \frac{1}{2}, x_1 = \frac{1}{4}, x_2 = \frac{1}{16}, \dots, x_n = \frac{1}{2^{2^n}}$$

Рассмотрим судьбу орбит отображения $\overline{x}=x^2$ для |x|>1:

$$x, x^2, x^4, x^8, \dots, x^{2^n}, \dots x_n \to \infty$$

Пример 2.2

Рассмотрим динамическую систему $\bar{x} = x^2 - 1$:

- $x=x^2-1 \implies x_{1,2}=\frac{1\pm\sqrt{5}}{2}$ две неподвижные точки
- имеется периодическая орбита x = 0 периода 2.
- предпериодическая точка $\sqrt{2}$, ее орбита: $\sqrt{2}$, 1, 0, -1, 0, ...

Упражнение 2.1

Найти еще несколько предпериодических орбит.

2.1.1 Диаграмма Ламерея

Удобным способом исследования орбит динамических систем является $\partial uarpamma$ Ламерея (итерационная диаграмма)

Алгоритм:

- \bullet строится график отображения (дискретной динамической системы) и биссектриса в 1 и 3 четвертях
- перемещаемся по некоторой "лестнице" (подробно в следующей лекции)

Рассмотрим отображение $\bar{x} = x^2 - 1$ и орбиту точки $x_0 = 0.5$:

```
x_0 = 0.5000
x_1 = 0.5^2 - 1 = -0.7500
x_2 = -0.4375
x_3 = -0.8086
\vdots
x_{20} = 0.0000
x_{21} = -1.0000
x_{22} = 0.0000
```

2.2 Асимптотическое поведение

 ${f Baжho}$, что орбита x=0.5 (любая непериодическая орбита) стремится асимптотически к периодическим орбитам, но за конечное число итерация в нее не приходит. А на численном счете сказываются ошибки округления.

Очень важный результат для конкретной динамической системы это строгое доказательство этого утверждения.

2.3 Периодические орбиты любых периодов

Отметим, что дискретная динамическая система может обладать периодическими орбитами любого периода. Например, отображение $\overline{x}=-\frac{3}{2}x^2+\frac{5}{2}x+1$ обладает периодическими орбитами всех периодов.

Один из **центральных вопросов** теории динамических систем — какова мощность множества периодических точек?

Утверждение 2.1 (А.Н. Шарковский, 1964)

Если непрерывное отображение интервала имеет периодические орбиты периода 3, то оно имеет периодические орбиты всех периодов больше 3