332:345 - Linear Systems & Signals - Fall 2016 - S. J. Orfanidis

f(t)	F(s)	$z = e^{sT}, F(z) = \sum_{n=0}^{\infty} f(nT)e^{-snT} = \sum_{n=0}^{\infty} f(nT)z^{-n}$
u(t)	$\frac{1}{s}$	$\frac{1}{1-z^{-1}}$
tu(t)	$\frac{1}{s^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
$t^2u(t)$	$\frac{2}{s^3}$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$\frac{1}{1-z^{-1}e^{-aT}}$
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	$\frac{Te^{-aT}z^{-1}}{(1-z^{-1}e^{-aT})^2}$
$t^2e^{-at}u(t)$	$\frac{2}{(s+a)^3}$	$\frac{T^2e^{-aT}z^{-1}(1+z^{-1}e^{-aT})}{(1-z^{-1}e^{-aT})^2}$
$\frac{1}{a}(1-e^{-at})u(t)$	$\frac{1}{s(s+a)}$	$\frac{(1 - e^{-aT})z^{-1}}{a(1 - z^{-1})(1 - z^{-1}e^{-aT})}$
$tu(t) - \frac{1}{a}(1 - e^{-at})u(t)$	$\frac{a}{s^2(s+a)}$	$\frac{z^{-1}(aT + e^{-aT} - 1) + z^{-2}(1 - e^{-aT} - aTe^{-aT})}{a(1 - z^{-1})^2(1 - z^{-1}e^{-aT})}$
$e^{-at}u(t)-e^{-bt}u(t)$	$\frac{b-a}{(s+a)(s+b)}$	$\frac{(e^{-aT} - e^{-bT})z^{-1}}{(1 - z^{-1}e^{-aT})(1 - z^{-1}e^{-bT})}$
$e^{-at}e^{j\omega_0t}u(t)$	$\frac{1}{s+a-j\omega_0}$	$\frac{1}{1-z^{-1}e^{-aT}e^{j\omega_0T}}$
$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\frac{z^{-1}e^{-aT}\sin(\omega_0 T)}{1 - 2z^{-1}e^{-aT}\cos(\omega_0 T) + z^{-2}e^{-2aT}}$
$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\frac{1 - z^{-1}e^{-aT}\cos(\omega_0 T)}{1 - 2z^{-1}e^{-aT}\cos(\omega_0 T) + z^{-2}e^{-2aT}}$

Laplace transform properties

<i>f</i> (<i>n</i>)	F(z)	$f(t-t_0)$	$e^{-st_0}F(s)$	delay
$\delta(n-D)$	z^{-D}	$e^{-at}f(t)$	F(s+a)	modulation
		$\dot{f}(t)$	$sF(s)-f(0^-)$	t-differentiation
<i>u</i> (<i>n</i>)	$\frac{1}{1-z^{-1}}$	$\ddot{f}(t)$	$s^2F(s) - sf(0^-) - \dot{f}(0^-)$	<i>t</i> -differentiation
()	Z^{-1}	<i>tf</i> (<i>t</i>)	$-\frac{dF(s)}{ds}$	s-differentiation
nu(n)	$\overline{(1-z^{-1})^2}$	$f(0^{+})$	$\lim_{s\to\infty} sF(s) , \lim_{z\to\infty} F(z)$	initial value
	$z^{-1}(1+z^{-1})$	$f(\infty)$	$\lim_{s \to 0} sF(s) , \lim_{z \to 1} (1 - z^{-1})F(z)$	final value
$n^2u(n)$	(1 1)2		3 0 2 1	
n²u(n)	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$		Z-transform properties	
$a^{n}u(n)$ $a^{n}u(n)$	1	f(n-D)		delay
	$\frac{1}{(1-az^{-1})^3}$	• •	Z-transform properties	
	1	• ` `	Z-transform properties $z^{-D}F(z)$	delay

Padé approximations of a delay:

$$e^{-\tau s} \approx \frac{1 - \tau s/2}{1 + \tau s/2}$$

$$e^{-\tau s} \approx \frac{1 - \tau s/2 + \tau^2 s^2/12}{1 + \tau s/2 + \tau^2 s^2/12}$$

$$e^{-\tau s} \approx \frac{1 - \tau s/2 + \tau^2 s^2/10 - \tau^3 s^3/120}{1 + \tau s/2 + \tau^2 s^2/10 + \tau^3 s^3/120}$$

Hermite interpolation formula:

$$\begin{split} &P(t_1) = a_1, \quad \dot{P}(t_1) = b_1 \\ &P(t_2) = a_2, \quad \dot{P}(t_2) = b_2 \\ &T = t_2 - t_1 \\ &P(t) = \left(\frac{t - t_2}{T}\right)^2 \left[a_1 + (Tb_1 + 2a_1)\left(\frac{t - t_1}{T}\right)\right] + \left(\frac{t - t_1}{T}\right)^2 \left[a_2 + (Tb_2 - 2a_2)\left(\frac{t - t_2}{T}\right)\right] \end{split}$$