Advanced Theory of Statistics

Lectured by Wang Miao

LATEXed by Chengxin Gong

2022年10月13日

目录

1	Pro	obability Theory
	1.1	Measure space, measurable function, and integration
	1.2	Integration theory and Radon-Nikodym derivative
	1.3	Densities, moments, inequalities, and generating functions
	1.4	Conditional expectation and independence
	1.5	Convergence modes and relationships
	1.6	Uniform integrability and weak convergence
	1.7	Convergence of transformations and law of large numbers
	1.8	The law of large numbers and central limit theorem
2	Fun	ndamentals of Statistics
	2.1	Models, data, statistics, and sampling distributions
	2.2	Sufficiency and minimal sufficiency
	2.3	Completeness
	2.4	Statistical decision
	2.5	Statistical inference

1 Probability Theory

1.1 Measure space, measurable function, and integration

Definition 1: A collection of subsets of Ω, \mathscr{F} , is a σ -field (or σ -algebra) if (i) The empty set $\emptyset \in \mathscr{F}$; (ii) If $A \in \mathscr{F}$, then the complement $A^c \in \mathscr{F}$; (iii) If $A_i \in \mathscr{F}, i = 1, 2, \dots$, then their union $\cup A_i \in \mathscr{F}$. (Ω, \mathscr{F}) is a measurable space if \mathscr{F} is a σ -field on Ω .

Example 1: $\mathscr{C} = \text{a collection of subsets of interest. } \sigma(\mathscr{C}) = \text{the smallest } \sigma\text{-field containing }\mathscr{C}$ (the σ -field generated by \mathscr{C}). $\sigma(\mathscr{C}) = \mathscr{C}$ if \mathscr{C} itself is a σ -field. $\sigma(\{A\}) = \{\emptyset, A, A^c, \Omega\}$.

Example 2 (Borel σ -field): \mathbb{R}^k : the k-dimensional Euclidean space ($\mathbb{R}^1 = \mathbb{R}$ is the real line). \mathscr{O} = all open sets, \mathscr{C} = all closed sets. $\mathscr{B}^k = \sigma(\mathscr{O}) = \sigma(\mathscr{C})$: the Borel σ -field on \mathbb{R}^k . $C \in \mathscr{B}^k, \mathscr{B}_C = \{C \cap B : B \in \mathscr{B}^k\}$ is the Borel σ -field on C.

Definition 2: Let (Ω, \mathscr{F}) be a measurable space. A set function ν defined on \mathscr{F} is a measure if (i) $0 \le \nu(A) \le \infty$ for any $A \in \mathscr{F}$; (ii) $\nu(\emptyset) = 0$; (iii) If $A_i \in \mathscr{F}, i = 1, 2, \dots$, and A_i 's are disjoint, i.e. $A_i \cap A_j = \emptyset$ for any $i \ne j$, then $\nu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \nu(A_i)$. $(\Omega, \mathscr{F}, \nu)$ is a measure if ν is a measure on \mathscr{F} in (Ω, \mathscr{F}) .

Convention 1: For any $x \in \mathbb{R}$, $\infty + x = \infty$, $x\infty = \infty$ if x > 0, $x\infty = -\infty$ if x < 0. $0\infty = 0$, $\infty + \infty = \infty$, $\infty^a = \infty$ for any a > 0. $\infty - \infty$ or ∞/∞ is not defined.

Example 3 (Important examples of measures): (a) Let $x \in \Omega$ be a fixed point and $\delta_x(A) = \begin{cases} c & x \in A \\ & \text{o.} \end{cases}$. This is called a point mass at x. (b) Let $\mathscr{F} =$ all subsets of Ω and $\nu(A) =$ the number $0 \quad x \notin A$

of elements in $A \in \mathscr{F}$ ($\nu(A) = \infty$ if A contains infinitely many elements). Then ν is a measure on \mathscr{F} and is called the counting measure. (c) There is a unique measure m on $(\mathbb{R}, \mathscr{B})$, that satisfies m([a,b]) = b-a for every finite interval $[a,b], -\infty < a \le b < \infty$. This is called the Lebesgue measure.

Proposition 1 (Properties of measures): Let $(\Omega, \mathscr{F}, \nu)$ be a measure space. (1) Monotonicity: If $A \subset B$, then $\nu(A) \subset \nu(B)$. (2) Subadditivity: For any sequence $A_1, A_2, \cdots, \nu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \nu(A_i)$. (3) Continuity: If $A_1 \subset A_2 \subset A_3 \subset \cdots$ (or $A_1 \supset A_2 \supset A_3 \supset \cdots$ and $\nu(A_1) < \infty$), then $\nu(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} \nu(A_n)$ where $\lim_{n\to\infty} AA_n = \bigcup_{i=1}^{\infty} A_i$ (or $= \bigcap_{i=1}^{\infty} A_i$).

Definition 3: Let P be a probability measure on $(\mathbb{R}, \mathcal{B})$. The cumulative distribution function (c.d.f.) of P is defined to be $F(x) = P((-infty, x]), x \in \mathbb{R}$.

Proposition 2 (Properties of c.d.f.'s): (i) Let F be a c.d.f. on \mathbb{R} . (a) $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$; (b) $F(\infty) = \lim_{x \to \infty} F(x) = 1$; (c) F is nondecreasing, i.e. $F(x) \leq F(y)$ if $x \leq y$; (d) F is right continuous, i.e. $\lim_{y \to x+0} F(y) = F(x)$. (ii) Suppose a real-valued function F on \mathbb{R} satisfies (a)-(d) in part (i). Then F is the c.d.f. of a unique probability measure on $(\mathbb{R}, \mathcal{B})$.

Definition 4 (Product space): $\mathscr{I} = \{1, \cdots, k\}$, k is finite or ∞ . $\Gamma_i, i \in \mathscr{I}$, are some sets. $\prod_{i \in \mathscr{I}} \Gamma_i = \Gamma_1 \times \cdots \times \Gamma_k = \{(a_1, \cdots, a_k) : a_i \in \Gamma_i, i \in \mathscr{I}\}$. Let $(\Omega_i, \mathscr{F}_i), i \in \mathscr{I}$ be measurable spaces. $\sigma(\prod_{i \in \mathscr{I}} \mathscr{F}_i)$ is called the product σ -field on the product space $\prod_{i \in \mathscr{I}} \Omega_i$. $(\prod_{i \in \mathscr{I}} \Omega_i, \sigma(\prod_{i \in \mathscr{I}} \mathscr{F}_i))$ is denoted by $\prod_{i \in \mathscr{I}} (\Omega_i, \mathscr{F}_i)$.

Definition 5 (σ -finite): A measure ν on (Ω, \mathscr{F}) is said to be σ -finite iff there exists a sequence $\{A_1, A_2, \dots\}$ such that $\cup A_i = \Omega$ and $\nu(A_i) < \infty$ for all i. Any finite measure is clearly σ -finite. The Lebesgue measure on \mathscr{F} is σ -finite.

Proposition 3 (Product measure theorem): Let $(\Omega_i, \mathscr{F}_i, \nu_i)$, $i = 1, \dots, k$, be measure spaces with σ -finite measures. There exists a unique σ -finite measure on σ -field $\sigma(\mathscr{F}_1 \times \dots \times \mathscr{F}_k)$, called the product measure and denoted by $\nu_1 \times \dots \times \nu_k$, such that $\nu_1 \times \dots \times \nu_k (A_1 \times \dots \times A_k) = \nu_1(A_1) \dots \nu_k(A_k)$ for all $A_i \in \mathscr{F}_i$, $i = 1, \dots, k$.

Definition 6 (Measurable function): Let (Ω, \mathscr{F}) and (Λ, \mathscr{G}) be measurable spaces. Let f be a function from Ω to Λ . f is called a measurable function from (Ω, \mathscr{F}) to (Λ, \mathscr{G}) iff $f^{-1}(\mathscr{G}) \subset \mathscr{F}$.

Definition 7 (Integration): (a) The integral of a nonnegative simple function ϕ w.r.t. ν is defined as $\int \phi d\nu = \sum_{i=1}^k a_i \nu(A_i)$. (b) Let f be a nonnegative Borel function and let \mathscr{S}_f be the collection of all nonnegative simple functions satisfying $\phi(\omega) \leq f(\omega)$ for any $\omega \in \Omega$. The integral of f w.r.t. ν is defined as $\int f d\nu = \sup\{\int \phi d\nu : \phi \in \mathscr{S}_f\}$ (Hence, for any Borel function $f \geq 0$, there exists as sequence of simple functions ϕ_1, ϕ_2, \cdots such that $0 \leq \phi_i \leq f$ for all i and $\lim_{n\to\infty} \int \phi_n d\nu = \int f d\nu$). (c) Let f be a Borel function, $f_+(\omega) = \max\{f(\omega), 0\}$ be the positive part of f, and $f_-(\omega) = \max\{-f(\omega), 0\}$ be the negative part of f. We say that $\int f d\nu$ exists if and only if at least one of $\int f_+ d\nu$ and $\int f_- d\nu$ is finite, in which case $\int f d\nu = \int f_+ d\nu - \int f_- d\nu$. (d) When both $\int f_+ d\nu$ and $\int f_- d\nu$ are finite, we say that f is integrable. Let f be a measurable set and f be its indicator function. The integral of f over f is defined as f and f and f and f are finite, we say that f is integrable. Let f be a measurable set and f be its indicator function. The integral of f over f is defined as f and f are f and f are finite, we say that f is defined as f and f are f and f are f are finite, we say that f is defined as f and f are f are finite, we say that f is defined as f and f are f are f and f are f are f are f and f are f and f are f are f and f are f and f are f are f and f are f are f and f are f are f are f and f and f are f and f are f and f are f are f are f are f and f are f are f are f are f and f are f and f are f are f are f and f are f are f and f are f are f and f are f and f are f are f are f and f are f are f are f are f are f are f and f are f are f and f

Example 4 (Extended set): For convenience, we define the integral of a measurable f from $(\Omega, \mathscr{F}, \nu)$ to $(\bar{\mathbb{R}}, \bar{\mathscr{B}})$, where $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, $\bar{\mathscr{B}} = \sigma(\mathscr{B} \cup \{\infty, -\infty\})$. Let $A_+ = \{f = \infty\}$ and $A_- = \{f = -\infty\}$. If $\nu(A_+) = 0$, we define $\int f_+ d\nu$ to be $\int I_{A_+^c} f_+ d\nu$; otherwise $\int f_+ d\nu = \infty$. $\int f_- d\nu$ is similarly defined. If at least one of $\int f_+ d\nu$ and $\int f_- d\nu$ is finite, then $\int f d\nu = \int f_+ d\nu - \int f_- d\nu$ is well defined.

1.2 Integration theory and Radon-Nikodym derivative

Proposition 1: $(\Omega, \mathscr{F}, \nu)$ be a measure space and f and g be Borel functions. (i) If $f \leq g$ a.e., then $\int f d\nu \leq \int g d\nu$, provided that the itegrals exist. (ii) If $f \geq 0$ a.e. and $\int f d\nu = 0$, then f = 0 a.e.

Theorem 1: Let f_1, f_2 , \cdot be a sequence of Borel functions on $(\Omega, \mathscr{F}, \nu)$. (i) Fatou's lemma: If $f_n \geq 0$, then $\int \liminf_n f_n d\nu \leq \liminf_n \int f_n d\nu$. (ii) Dominated convergence theorem: If $\lim_{n\to\infty} f_n = f$ a.e. and $|f_n| \leq g$ a.e. for integrable g, then $\int \lim_{n\to\infty} f_n d\nu = \lim_{n\to\infty} \int f_n d\nu$. (iii) Monotone convergence theorem: If $0 \leq f_1 \leq f_2 \leq \cdots$ and $\lim_{n\to\infty} f_n = f$ a.e., then $\int \lim_{n\to\infty} f_n d\nu = \lim_{n\to\infty} \int f_n d\nu$.

Example 1 (Interchange of differentiation and integration): Let $(\Omega, \mathscr{F}, \nu)$ be a measure space and, for any fixed $\theta \in \mathbb{R}$, let $f(\omega, \theta)$ be a Borel function on Ω . Suppose that $\partial f(\omega, \theta)/\partial \theta$ exists a.e. for $\theta \in (a, b) \subset \mathbb{R}$ and that $|\partial f(\omega, \theta)/\partial \theta| \leq g(\omega)$ a.e., where g is an integrable function on Ω . Then for each $\theta \in (a, b)$, $\partial f(\omega, \theta)/\partial \theta$ is integrable and, by Theorem 1(ii), $\frac{d}{d\theta} \int f(\omega, \theta) d\nu = \int \frac{\partial f(\omega, \theta)}{\partial \theta} d\nu$.

Theorem 2 (Change of variables): Let f be measurable from $(\Omega, \mathscr{F}, \nu)$ to (Λ, \mathscr{G}) and g be Borel on (Λ, \mathscr{G}) . Then $\int_{\Omega} g \circ f d\nu = \int_{\Lambda} g d(\nu \circ f^{-1})$, i.e., if either integral exists, then so does the other, and the two are the same.

Theorem 3 (Fubini's theorem): Let ν_i be a σ -finite measure on $(\Omega_i, \mathscr{F}_i)$, i = 1, 2, and f be a Borel function on $\prod_{i=1}^2 (\Omega_i, \mathscr{F}_i)$ with $f \geq 0$ or $\int |f| d\nu_1 \times \nu_2 < \infty$. Then $g(\omega_2) = \int_{\Omega_1} f(\omega_1, \omega_2) d\nu_1$ exists a.e. ν_2 and defines a Borel function on Ω_2 whose integral w.r.t. ν_2 exists, and $\int_{\Omega \times \Omega} f(\omega_1, \omega_2) d\nu_1 \times \nu_2 = \int_{\Omega_2} [\int_{\Omega_1} f(\omega_1, \omega_2) d\nu_1] d\nu_2$.

Definition 1 (Absolutely continuous): Let λ and ν be two measures on a measurable space $(\Omega, \mathscr{F}, \nu)$. We say λ is absolutely continuous w.r.t. ν and write $\lambda << \nu$ iff $\nu(A) = 0$ implies $\lambda(A) = 0$.

Theorem 4 (Radon-Nikodym theorem): Let ν and λ be two measure on (Ω, \mathscr{F}) and ν be σ -finite. If $\lambda << \nu$, then there exists a nonnegative Borel function f on Ω such that $\lambda(A) = \int_A f d\nu, A \in \mathscr{F}$. Furthermore, f is unique a.e. ν , i.e. if $\lambda(A) = \int_A g d\nu$ for any $A \in \mathscr{F}$, then f = g a.e. ν .

Example 2: A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure. A necessary and sufficient condition for a c.d.f. F having a p.d.f. w.r.t. Lebesgue measure is that F is absolute continuous in the sense that for any $\epsilon > 0$, there exists a $\delta > 0$ such that for each finite collection of disjoint bounded open intervals (a_i, b_i) , $\sum (b_i - a_i) < \delta$ implies $\sum [F(b_i) - F(a_i)] < \epsilon$.

Proposition 2 (Calculus with Radon-Nikodym derivatives): Let ν be a σ -finite measure on a measure space (Ω, \mathcal{F}) . (i) If λ is a measure, $\lambda << \nu$, and $f \geq 0$, then $\int f d\lambda = \int f \frac{d\lambda}{d\nu} d\nu$. (ii) If $\lambda_i, i = 1, 2$, are measures and $\lambda_i << \nu$, then $\lambda_1 + \lambda_2 << \nu$ and $\frac{d(\lambda_1 + \lambda_2)}{d\nu} = \frac{d\lambda_1}{d\nu} + \frac{d\lambda_2}{d\nu}$ a.e. ν . (iii) If τ is a measure, λ is a σ -finite measure, and $\tau << \lambda << \nu$, then $\frac{d\tau}{d\nu} = \frac{d\tau}{d\lambda} \frac{d\lambda}{d\nu}$ a.e. ν . In particular, if $\lambda << \nu$ and $\nu << \lambda$ (in which case λ and ν are equivalent), then $\frac{d\lambda}{d\nu} = (\frac{d\nu}{d\lambda})^{-1}$ a.e. ν or λ . (iv) Let $(\Omega_i, \mathcal{F}_i, \nu_i)$ be a measure space and ν_i be σ -finite, i = 1, 2. Let λ_i be a σ -finite measure on (Ω, \mathcal{F}_i) and $\lambda_i << \nu_i, i = 1, 2$. Then $\lambda_1 \times \lambda_2 << \nu_1 \times \nu_2$ and $\frac{d(\lambda_1 \times \lambda_2)}{d(\nu_1 \times \nu_2)} (\omega_1, \omega_2) = \frac{d\lambda_1}{d\nu_1} (\omega_1) \frac{d\lambda_2}{d\nu_2} (\omega_2)$ a.e. $\nu_1 \times \nu_2$.

1.3 Densities, moments, inequalities, and generating functions

Example 1: Let X be a random variable on (Ω, \mathscr{F}, P) whose c.d.f. F_X has a Lebesgue p.d.f. f_X and $F_X(c) < 1$, where c is a fixed constant. Let $Y = \min\{X, c\}$. Note that $Y^{-1}((-\infty, X]) = \Omega$ if $x \ge c$ and $Y^{-1}((-\infty, x]) = X^{-1}((-\infty, x])$ if x < c. Hence Y is a random variable and the c.d.f. of Y is $F_Y(x) = \begin{cases} 1 & x \ge c \\ F_X(x) & x < c \end{cases}$. This c.d.f. is discontinuous at c, since $F_X(c) < 1$. Thus, it does not have a Lebesgue p.d.f. It is not discrete either. Does P_Y , the probability measure corresponding

not have a Lebesgue p.d.f. It is not discrete either. Does P_Y , the probability measure corresponding to F_y , have a p.d.f. w.r.t. some measure? Consider the point mass probability measure on $(\mathbb{R}, \mathcal{B})$:

$$\delta_c(A) = \begin{cases} 1 & c \in A \\ 0 & c \notin A \end{cases}, A \in \mathcal{B}. \text{ Then } P_Y << m + \delta_c, \text{ and the p.d.f. of } P_Y \text{ is } f_Y(x) = \frac{dP_Y}{d(m + \delta_c)}(x) = \\ \begin{cases} 0 & x > c \\ 1 - F_X(c) & x = c \end{cases}. \text{ To show this, it suffices to show that } \int_{(-\infty, x]} f_Y(t) d(m + \delta_c) = P_Y((-\infty, x]) \\ f_Y(x) & x < c \end{cases}$$

Proposition 1 (Transformation): Let X be a random k-vector with a Lebesgue p.d.f. f_X and let Y = g(X), where g is a Borel function from $(\mathbb{R}^k, \mathscr{B}^k)$ to $(\mathbb{R}^k, \mathscr{B}^l)$. Let A_1, \dots, A_m be disjoint sets in \mathscr{B}^k such that $\mathscr{R}^k - (A_1 \cup \dots \cup A_m)$ has Lebesgue measure 0 and g on A_j is one-to-one with a nonvanishing Jacobian, i.e., the determinant $\operatorname{Det}(\partial g(x)/\partial x) \neq 0$ on $A_j, j = 1, \dots, m$. Then Y has the following Lebesgue p.d.f.: $f_Y(x) = \sum_{j=1}^m |\operatorname{Det}(\partial h_j(x)/\partial x)| f_X(h_j(x))$, where h_j is the inverse function of g on $A_j, j = 1, \dots, m$.

Example 2 (F-distribution): Let X_1 and X_2 be independent random variables having the chi-

square distributions $\chi^2_{n_1}$ and $\chi^2_{n_2}$, respectively. One can show that the p.d.f. of $Y = (X_1/n_1)/(X_2/n_2)$ is the p.d.f. of the F-distribution F_{n_1,n_2} .

Example 3 (t-distribution): Let U_1 be a random variable having the standard normal distribution N(0,1) and U_2 a random variable having the chi-square distribution χ_n^2 . One can show that if U_1 and U_2 are independent, then the distribution of $T = U_1/\sqrt{U_2/n}$ is the t-distribution t_n .

Example 4 (Noncentral chi-square distribution): Let X_1, \dots, X_n be independent random variables and $X_i \sim N(\mu_i, \sigma^2)$. The distribution of $Y = (X_1^2 + \dots + X_n^2)/\sigma^2$ is called the noncentral chi-square distribution and denoted by $\chi_n^2(\delta)$, where $\delta = (\mu_1^2 + \dots + \mu_n^2)/\sigma^2$ is the noncentrality parameter. If Y_1, \dots, Y_k are independent random variables and Y_i has the noncentral independent chi-square distribution $\chi_{n_i}^2(\delta_i), i = 1, \dots, k$, then $Y = Y_1 + \dots + Y_k$ has the noncentral chi-square distribution $\chi_{n_1+\dots+n_k}^2(\delta_1+\dots+\delta_k)$.

Definition 1 (Moments): If $\mathbb{E}X^k$ is finite, where k is a positive integer, $\mathbb{E}X^k$ is called the k-th moment of X or P_X . If $\mathbb{E}|X|^a < \infty$ for some real number a, $\mathbb{E}|X|^a$ is called the a-th absolute moment of X or P_X . If $\mu = \mathbb{E}X$, $\mathbb{E}(X-\mu)^k$ is called the k-th central moment of X or P_X . Var $(X) = \mathbb{E}(X-\mathbb{E}X)^2$ is called the variance of X or P_X . For random matrix $M = (M_{ij})$, $\mathbb{E}M = (\mathbb{E}M_{ij})$. For random vector X, $\mathrm{Var}(X) = \mathbb{E}(X-\mathbb{E}X)(X-\mathbb{E}X)^T$ is its covariance matrix, whose (i,j)-th element, $i \neq j$, is called the covariance of X_i and X_j and denoted by $\mathrm{Cov}(X_i,X_j)$. If $\mathrm{Cov}(X_i,X_j) = 0$, then X_i and X_j are said to be uncorrelated. Independence implies uncorelation, not converse. If X is random and C is fixed, then $\mathbb{E}(C^TX) = C^T\mathbb{E}(X)$ and $\mathrm{Var}(C^TX) = C^T\mathrm{Var}(X)C$.

Definition 2 (Moment generating and characteristic functions): Let X be a random k-vector. (i) The moment generating function (m.g.f.) of X or P_X is defined as $\psi_X(t) = \mathbb{E}e^{t^TX}, t \in \mathbb{R}^k$. (ii) The characteristic function (ch.f.) of X or P_X is defined as $\phi_X(t) = \mathbb{E}e^{it^TX} = \mathbb{E}[\cos(t^TX)] + i\mathbb{E}[\sin(t^TX)], t \in \mathbb{R}^k$.

Proposition 2 (Properties of m.g.f. and ch.f.): If the m.g.f. is finite in a neighborhood of $0 \in \mathbb{R}^k$, then (i) moments of X of any order are finite; (ii) $\phi_X(t)$ can be obtained by replacing t in $\psi_X(t)$ by it. If $Y = A^TX + c$, where A is a $k \times m$ matrix and $c \in \mathbb{R}^m$, then $\psi_Y(u) = e^{c^Tu}\psi_X(Au)$ and $\phi_Y(u) = e^{ic^Tu}\phi_X(Au)$, $u \in \mathbb{R}^m$. For independent $X_1, \dots, X_k, \psi_{\sum_i X_i}(t) = \prod_i \psi_{X_i}(t)$ and $\phi_{\sum_i X_k}(t) = \prod_i \phi_{X_i}(t)$, $t \in \mathbb{R}^k$. For $X = (X_1, \dots, X_k)$ with m.g.f. ψ_X finite in a neighborhood of 0, $\frac{\partial \psi_X(t)}{\partial t}|_{t=0} = \mathbb{E}X$, $\frac{\partial^2 \psi_X(t)}{\partial t \partial t^T}|_{t=0} = \mathbb{E}(XX^T)$. If $\mathbb{E}|X_1^{r_1} \dots X_k^{r_k}| < \infty$ for nonnegative integers r_1, \dots, r_k , then $\frac{\partial \phi_X(t)}{\partial t}|_{t=0} = i\mathbb{E}X$, $\frac{\partial^2 \phi_X(t)}{\partial t \partial t^T}|_{t=0} = -\mathbb{E}(XX^T)$.

Theorem 1 (Uniqueness): Let X and Y be random k-vectors. (i) If $\phi_X(t) = \phi_Y(t)$ for all $t \in \mathbb{R}^k$, then $P_X = P_Y$; (2) If $\psi_X(t) = \psi_Y(t) < \infty$ for all t in a neighborhood of 0, then $P_X = P_Y$.

1.4 Conditional expectation and independence

Definition 1: Let X be an integrable random variable on (Ω, \mathscr{F}, P) . (i) The conditional expectation of X given \mathscr{A} (a sub- σ -field of \mathscr{F}), denoted by $\mathbb{E}(X|\mathscr{A})$, is the a.s.-unique random variable satisfying the following two conditions: (a) $\mathbb{E}(X|\mathscr{A})$ is a measurable from (Ω, \mathscr{A}) to $(\mathbb{R}, \mathscr{B})$; (b) $\int_A \mathbb{E}(X|\mathscr{A})dP = \int_A XdP$ for any $\mathscr{A} \in \mathscr{A}$. (ii) The conditional probability of $B \in \mathscr{F}$ given \mathscr{A} is defined to be $P(B|\mathscr{A}) = \mathbb{E}(I_B|\mathscr{A})$. (iii) Let Y be measurable from (Ω, \mathscr{F}, P) to (Λ, \mathscr{G}) . The conditionala expectation of X given Y is defined to be $\mathbb{E}(X|Y) = \mathbb{E}[X|\sigma(Y)]$.

Theorem 1: Let Y be measurable from (Ω, \mathscr{F}) to (Λ, \mathscr{G}) and Z a function from (Ω, \mathscr{F}) to \mathbb{R}^k . Then Z is measurable from $(\Omega, \sigma(Y))$ to $(\mathbb{R}^k, \mathscr{B}^k)$ iff there is a measurable function h from (Λ, \mathscr{G}) such that $Z = h \circ Y$.

Example 1: Let X be an integrable random variable on $(\Omega, \mathscr{F}, P), A_1, A_2, \cdots$ be disjoint events on (Ω, \mathscr{F}, P) such that $\cup A_i = \Omega$ and $P(A_i) > 0$ for all i, and let a_1, a_2, \cdots be distinct real numbers. Define $Y = a_1 I_{A_1} + a_2 I_{A_2} + \cdots$. We can show that $\mathbb{E}(X|Y) = \sum_{i=1}^{\infty} \frac{\int_{A_i} X dP}{P(A_i)} I_{A_i}$.

Proposition 1: Let X be a random n-vector and Y a random m-vector. Suppose that (X,Y) has a joint p.d.f. f(x,y) w.r.t. $\nu \times \lambda$, where ν and λ are σ -finite measures on $(\mathbb{R}^n, \mathscr{B}^n)$ and $(\mathbb{R}^m, \mathscr{B}^m)$, respectively. Let g(x,y) be a Borel function on \mathbb{R}^{n+m} for which $\mathbb{E}|g(X,Y)| < \infty$. Then $\mathbb{E}[g(X,Y)|Y] = \frac{\int g(x,Y)f(x,Y)d\nu(x)}{\int f(x,Y)d\nu(x)}$ a.s.

Definition 2 (Conditional p.d.f.): Let (X,Y) be a random vector with a joint p.d.f. f(x,y) w.r.t. $\nu \times \lambda$. The conditional p.d.f. of X given Y = y is defined to be $f_{X|Y}(x|y)/f_Y(y)$ where $f_Y(y) = \int f(x,y)d\nu(x)$ is the marginl p.d.f. of Y w.r.t. λ .

Proposition 2: Let X, Y, X_1, X_2, \cdots be integrable random variables on (Ω, \mathscr{F}, P) and \mathscr{A} be a sub- σ -field of \mathscr{F} . (i) If X = c a.s., $c \in \mathbb{R}$, then $\mathbb{E}(X|\mathscr{A}) = c$ a.s. (ii) If $X \leq Y$ a.s., then $\mathbb{E}(X|\mathscr{A}) \leq \mathbb{E}(Y|\mathscr{A})$ a.s. (iii) If $a, b \in \mathbb{R}$, then $\mathbb{E}(aX + bY|\mathscr{A}) = a\mathbb{E}(X|\mathscr{A}) + b\mathbb{E}(Y|\mathscr{A})$ a.s. (iv) $\mathbb{E}[\mathbb{E}(X|\mathscr{A})] = \mathbb{E}[X, \mathbb{E}(X|\mathscr{A})] = \mathbb{E}[X, \mathbb{E}(X|\mathscr{A})]$

Definition 3 (Independence): Let (Ω, \mathscr{F}, P) be a probability space. (i) Let \mathscr{C} be a collection of subsets in \mathscr{F} . Events in \mathscr{C} are said to be independent iff for any positive integer n and distinct events $A_1, \dots, A_n \in \mathscr{C}$, $P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1)P(A_2) \cdots P(A_n)$. (ii) Collections $\mathscr{C}_i \subset \mathscr{F}, i \in \mathscr{I}$ are said to be independent iff events in any collection of the form $\{A_i \in \mathscr{C}_i : i \in \mathscr{I}\}$ are independent. (iii) Random elements $X_i, i \in \mathscr{I}$, are said to be independent iff $\sigma(X_i), i \in \mathscr{I}$ are independent.

Theorem 2: Let $\mathscr{C}_i, i \in \mathscr{I}$ be independent collections of events. If each \mathscr{C}_i is a π -system, then $\sigma(\mathscr{C}_i), i \in \mathscr{I}$ are independent.

Proposition 2: Let X be a random variable with $\mathbb{E}|X| < \infty$ and let Y_i be random k_i vectors, i = 1, 2. Suppose that (X, Y_1) and Y_2 are independent. Then $\mathbb{E}[X|(Y_1, Y_2)] = \mathbb{E}(X|Y_1)$ a.s.

Definition 4 (Conditional independence): Let X, Y, Z be random vectors. We say that given Z, X and Y are conditionally independent iff P(A|X,Z) = P(A|Z) a.s. for any $A \in \sigma(Y)$.

1.5 Convergence modes and relationships

Definition 1 (Convergence modes): Let X, X_1, X_2, \cdots be a random k-vectors defined on a probability space. (i) We say that the sequence $\{X_n\}$ converges to X almost surely and write $X_n \to_{\text{a.s.}} X$ iff $\lim_{n\to\infty} X_n = X$ a.s. (ii) We say that $\{X_n\}$ converges to X in probability and write $X_n \to_p X$ iff for every fixed $\epsilon > 0$, $\lim_{n\to\infty} P(||X_n - X|| > \epsilon) = 0$. (iii) We say that $\{X_n\}$ converges to X in L_r (or in rth moment) with a fixed r > 0 and write $X_n \to_{L_r} X$ iff $\lim_{n\to\infty} \mathbb{E}||X_n - X||_r^r = 0$. (iv)

Let $F, F_n, n = 1, 2, \cdots$ be c.d.f.'s on \mathbb{R}^k and $P, P_n, n = 1, 2, \cdots$ be their corresponding probability measures. We say that $\{F_n\}$ converges to F weakly (or $\{P_n\}$ converges to P weakly) and write $F_n \to_w F$ (or $P_n \to_w P$) iff, for each continuity point x of F, $\lim_{n \to \infty} F_n(x) = F(x)$. We say that $\{X_n\}$ converges to X in distribution (or in law) and write $X_n \to_d X$ iff $F_{X_n} \to_w F_X$.

Proposition 1: If $F_n \to_w F$ and F is continuous on \mathbb{R}^k , then $\lim_{n\to\infty} \sup_{x\in\mathbb{R}^k} |F_n(x) - F(x)| = 0$. Theorem 1: For random k-vectors X, X_1, X_2, \cdots on a probability space, $X_n \to_{\mathrm{a.s.}} X$ iff for every $\epsilon > 0$, $\lim_{n\to\infty} P(\bigcup_{m=n}^{\infty} \{||X_m - X|| > \epsilon\}) = 0$.

Theorem 2 (Borel-Cantelli lemma): Let A_n be a sequence of events in a probability space and $\limsup_n A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$. (i) If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\liminf_n A_n) = 0$. (ii) If A_1, A_2, \cdots repairwise independent an $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(\limsup_n A_n) = 1$.

Definition 2: Let X_1, X_2, \cdots be random vectors and Y_1, Y_2, \cdots be random variables defined on a common probability space. (i) $X_n = O(Y_n)$ a.s. iff $P(||X_n|| = O(|Y_n|)) = 1$. (ii) $X_n = o(Y_n)$ a.s. iff $X_n/Y_n \to_{\text{a.s.}} 0$. (iii) $X_n = O_p(Y_n)$ iff, for any $\epsilon > 0$, there is a constant $C_{\epsilon} > 0$ such that $\sup_{n} P(||X_n|| \ge C_{\epsilon}|Y_n|) < \epsilon$. (iv) $X_n = o_p(Y_n)$ iff $X_n/Y_n \to_p 0$.

Theorem 3: (i) If $X_n \to_{\text{a.s.}} X$, then $X_n \to_p X$. (The converse is not true). (ii) If $X_n \to_{L_r} X$ for an r > 0, then $X_n \to_p X$. (The converse is not true). (iii) If $X_n \to_p X$, then $X_n \to_d X$. (The converse is not true). (iv) (Skorohod's theorem). If $X_n \to_d X$, then there are random vectors Y, Y_1, Y_2, \cdots defined on a common probability space such that $P_Y = P_X, P_{Y_n} = P_{X_n}, n = 1, 2, \cdots$ and $Y_n \to_{\text{a.s.}} Y$. (v) If, for every $\epsilon > 0, \sum_{n=1}^{\infty} P(||X_n - X|| \ge \epsilon) < \infty$, then $X_n \to_{\text{a.s.}} X$. (vi) If $X_n \to_p X$, then there are a subsequence such that $X_{n_j} \to_{\text{a.s.}} X$ as $j \to \infty$. (vii) If $X_n \to_d X$ and P(X = c) = 1, where $c \in \mathbb{R}^k$ is a constant vector, then $X_n \to_p c$. (viii) Suppose that $X_n \to_d X$. Then for any $x \to 0$, $\lim_{n \to \infty} \mathbb{E}||X_n||_r^r = \mathbb{E}||X||_r^r < \infty$ if $\{||X_n||_r^r\}$ is uniformly integrable in the sense that $\lim_{t \to \infty} \sup_n \mathbb{E}(||X_n||_r^r I_{\{||X_n||_r > t\}}) = 0$.

Proposition 2 (Sufficient conditions for uniform integrability): $\sup_n \mathbb{E}||X_n||_r^{r+\delta} < \infty$ for a $\delta > 0$. Proposition 3 (Properties of the quotient random variables): (i) Suppose X, X_1, X_2, \cdots are positive random variables. Then $X_n \to_{\mathrm{a.s.}} X$ iff for every $\epsilon > 0$, $\lim_{n \to \infty} P(\sup_{k \ge n} \frac{X_k}{X} > 1 + \epsilon) = 0$, and $\lim_{n \to \infty} P(\sup_{k \ge n} \frac{X_k}{X_k} > 1 + \epsilon) = 0$. (ii) Suppose X, X_1, X_2, \cdots are positive random variables. If $\sum_{n=1}^{\infty} P(X_n/X > 1 + \epsilon) < \infty$ and $\sum_{n=1}^{\infty} P(X/X_n > 1 + \epsilon) < \infty$, then $X_n \to_{\mathrm{a.s.}} X$.

1.6 Uniform integrability and weak convergence

Definition 1 (Tightness): A sequence $\{P_n\}$ of probability measure on $(\mathbb{R}^k, \mathscr{B}^k)$ is tight if for every $\epsilon > 0$, there is a compact set $C \subset \mathbb{R}^k$ such that $\inf_n P_n(C) > 1 - \epsilon$. If $\{X_n\}$ is a sequence of random k-vectors, then the tightness of $\{P_{X_n}\}$ is the same as the boundedness of $\{||X_n||\}$ in probability.

Proposition 1: Let $\{P_n\}$ be a sequence of probability measures on $(\mathbb{R}^k, \mathcal{B}^k)$. (i) Tightness of $\{P_n\}$ is a necessary and sufficient condition that for every subsequence $\{P_n\}$ there eixsts a further subsequence $\{P_{n_j}\}\subset \{P_n\}$ and a probability measure P on $(\mathbb{R}^k, \mathcal{B}^k)$ such that $P_{n_j} \to_w P$ as $j \to \infty$. (ii) If $\{P_n\}$ is tight and if each subsequence that converges weakly at all converges to the same probability measure P, then $P_n \to_w P$.

Theorem 1 (Useful sufficient and necessary conditions for convergence in distribution): Let X, X_1, X_2, \cdots be random k-vectors. (i) $X_n \to_d X$ is equivalent to any one of the following conditions:

(a) $\mathbb{E}[h(X_n)] \to \mathbb{E}[h(X)]$ for every bounded continuous function h; (b) $\limsup_n P_{X_n}(C) \leq P_X(C)$ for any closed set $C \subset \mathbb{R}^k$; (c) $\liminf_n P_{X_n}(O) \geq P_X(O)$ for any open set $O \subset \mathbb{R}^k$. (ii) Lévy-Cramér continuity theorem. Let $\phi_X, \phi_{X_1}, \phi_{X_2}$ be the ch.f.'s of X, X_1, X_2, \cdots , respectively. $X_n \to_d X$ iff $\lim_{n\to\infty} \phi X_n(t) = \phi_X(t)$ for all $t \in \mathbb{R}^k$. (iii) Cramér-Wold device. $X_n \to_d X$ iff $c^T X_n \to_d c^T X$ for every $c \in \mathbb{R}^k$.

Example 1: Let X_1, \dots, X_n be independent random variables having a common c.d.f. and $T_n = X_1 + \dots + X_n, n = 1, 2, \dots$. Suppose that $\mathbb{E}|X_1| < \infty$. It follows from a result in calculus that the ch.f. of X_1 satisfies $\phi_{X_1}(t) = \phi_{X_1}(0) + \sqrt{-1}\mu t + o(|t|)$ as $|t| \to 0$, where $\mu = \mathbb{E}X_1$. Then, the ch.f. of T_n/n is $\phi_{T_n/n}(t) = [\phi_{X_1}(\frac{t}{n})]^n = [1 + \frac{\sqrt{-1}\mu t}{n} + o(\frac{t}{n})]^n \to e^{\sqrt{-1}\mu t}$ for any $t \in \mathbb{R}$ as $n \to \infty$. $e^{\sqrt{-1}\mu t}$ is the ch.f. of the point mass probability measure at μ . Thus $T_n/n \to_d \mu$ and $T_n/n \to_p \mu$.

Proposition 2 (Scheffé's theorem): Let $\{f_n\}$ be a sequence of p.d.f.'s on \mathbb{R}^k w.r.t. ν . Suppose that $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. and f(x) is a p.d.f. w.r.t. ν . Then $\lim_{n\to\infty} \int |f_n(x) - f(x)| d\nu = 0$.

1.7 Convergence of transformations and law of large numbers

Theorem 1 (Continuous mapping theorem): Let X, X_1, X_2, \cdots be random k-vectors defined on a probability space and g be a measure function from $(\mathbb{R}^k, \mathcal{B}^k)$ to $(\mathbb{R}^l, \mathcal{B}^l)$. Suppose that g is continuous a.s. P_X . Then (i) $X_n \to_{\text{a.s.}} X$ implies $g(X_n) \to_{\text{a.s.}} g(X)$; (ii) $X_n \to_p X$ implies $g(X_n) \to_p g(X)$; (iii) $X_n \to_d X$ implies $g(X_n) \to_d g(X)$.

Theorem 2 (Slutsky's theorem): Let $X, X_1, X_2, \dots, Y_1, Y_2, \dots$ be random variables on a probability space. Suppose that $X_n \to_d X$ and $Y_n \to_p c$, where c is a constant, where c is a constant. Then (i) $X_n + Y_n \to_d X + c$; (ii) $Y_n X_n \to_d c X$; (iii) $X_n / Y_n \to_d X / c$ if $c \neq 0$.

Theorem 3: Let X_1, X_2, \cdots and $Y = (Y_1 + \cdots, Y_k)$ be random k-vectors satisfying $a_n(X_n - c) \to_d Y$, where $c \in \mathbb{R}^k$ and $\{a_n\}$ is a sequence of positive numbers with $\lim_{n \to \infty} a_n = \infty$. Let g be a function from $\mathbb{R}^k \to \mathbb{R}$. (i) If g is differentiable at c, then $a_n[g(X_n) - g(c)] \to_d [\nabla g(c)^T]Y$, where $\nabla g(x)$ denotes the k-vector of partial derivatives of g at x. (ii) Suppose that g has continuous partial derivatives of order m > 1 in a neighborhood of c, with all the partial derivatives of order $j, 1 \le j \le m-1$, vanishing at c, but with the mth-order partial derivatives not all vanishing at c. Then $a_n^m[g(X_n) - g(c)] \to_d \frac{1}{m!} \sum_{i_1=1}^k \cdots \sum_{i_m=1}^k \frac{\partial^m g}{\partial x_{i_1} \cdots \partial x_{i_m}}|_{x=c} Y_{i_1} \cdots Y_{i_m}$.

Theorem 4 (The δ -method): If Y has the $\mathcal{N}_k(0,\Sigma)$ distribution, then $a_n[g(X_n) - g(c)] \to_d \mathcal{N}(0,[\nabla g(c)]^T\Sigma\nabla g(c))$.

Theorem 5: Let X_1, X_2, \cdots be i.i.d. random variables. (i) The WLLN. A necessary and sufficient condition for the existence of a sequence of real numbers $\{a_n\}$ for which $\frac{1}{n}\sum_{i=1}^n X_i - a_n \to_p 0$ is that $nP(|X_1| > n) \to 0$, in which case we may take $a_n = \mathbb{E}(X_1 1_{\{|X_1| \le n\}})$. (ii) The SLLN. A necessary and sufficient condition for the existence of a constant c for which $\frac{1}{n}\sum_{i=1}^n X_i \to_{\text{a.s.}} c$ is that $\mathbb{E}|X_1| < \infty$, in which case $c = \mathbb{E}X_1$ and $\frac{1}{n}\sum_{i=1}^n c_i(X_i - \mathbb{E}X_1) \to_{\text{a.s.}} 0$ for any bounded sequence of real numbers $\{c_i\}$.

Theorem 6: Let X_1, X_2, \cdots be independent random variables with finite expectations. (i) The SLLN. If there is a constant $p \in [1,2]$ such that $\sum_{i=1}^{i} nfty \frac{\mathbb{E}|X_i|^p}{i^p} < \infty$, then $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}X_i) \to_{\text{a.s.}} 0$. (ii) The WLLN. If there is a constant $p \in [1,2]$ such that $\lim_{n\to\infty} \frac{1}{n^p} \sum_{i=1}^{n} \mathbb{E}|X_i|^p = 0$, then $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}X_i) \to_p 0$.

1.8 The law of large numbers and central limit theorem

Theorem 1 (Lindeberg's CLT): Let $\{X_{nj}, j=1, \cdots, k_n\}$ be independent random variables with $k_n \to \infty$ as $n \to \infty$ and $0 < \sigma_n^2 = \text{var}(\sum_{j=1}^{k_n} X_{nj}) < \infty, n = 1, 2, \cdots$. If $\frac{1}{\sigma_n^2} \sum_{j=1}^{k_n} \mathbb{E}[(X_{nj} - \mathbb{E}X_{nj})^2 I_{\{|X_{nj} - \mathbb{E}X_{nj}| > \epsilon \sigma_n\}}] \to 0$ for any $\epsilon > 0$, then $\frac{1}{\sigma_n} \sum_{j=1}^{k_n} (X_{nj} - \mathbb{E}X_{nj}) \to_d \mathcal{N}(0, 1)$.

Theorem 2 (Multivariate CLT): For i.i.d. random k-vectors X_1, \dots, X_n with a finite $\Sigma = \text{var}(X_1), \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mathbb{E}X_1) \to_d \mathcal{N}_k(0, \Sigma).$

Theorem 3 (Berry-Esséen bound): For i.i.d. $\{X_n\}$ and $W_n = \sqrt{n}(\bar{X}-\mu)/\sigma$, $\sup_t |F_{W_n}(t)-\phi(t)| \le \frac{33}{4} \frac{\mathbb{E}|X_1-\mu|^3}{\sigma^3\sqrt{n}}$, $n=1,2,\cdots$. Thus, the convergence speed of F_{W_n} to ϕ is of the order $n^{-1/2}$.

2 Fundamentals of Statistics

2.1 Models, data, statistics, and sampling distributions

Definition 1: A set of probability measures P_{θ} on (Ω, \mathscr{F}) indexed by a parameter $\theta \in \Theta$ is said to be a parametric family or follow a parametric model iff $\Theta \subset \mathbb{R}^d$ for some fixed positive integer d and each P_{θ} is a known probability measure when θ is known. The set Θ is called the parameter space and d is called its dimension. $\mathscr{P} = \{P_{\theta} : \theta \in \Theta\}$ is identifiable iff $\theta_1 \neq \theta_2$ and $\theta_i \in \Theta$ imply $P_{\theta_1} \neq P_{\theta_2}$, which may be achieved through reparameterization.

Definition 2 (Dominated family): A family of populations \mathscr{P} is dominated by ν (a σ -finite measure) if $P << \nu$ for all $P \in \mathscr{P}$, in which case \mathscr{P} can be identified by the family of densities $\{\frac{dP}{d\nu}: P \in \mathscr{P}\}$ or $\{\frac{dP_{\theta}}{d\nu}: \theta \in \Theta\}$.

Definition 3 (Exponential families): A parametric family $\{P_{\theta} : \theta : \in \Theta\}$ dominated by a σ -finite measure ν on (Ω, \mathscr{F}) is called on an exponential family iff $\frac{dP_{\theta}}{d\nu}(\omega) = \exp\{[\eta(\theta)]^T T(\omega) - \xi(\theta)\}h(\omega), \omega \in \Omega$ where $\xi(\theta) = \log\{\int_{\omega} \exp\{[\eta(\theta)]^T T(\omega)\}h(\omega)d\nu(\omega)\}$. In an exponential family, consider the parameter $\eta = \eta(\theta)$ and $f_{\eta}(\omega) = \exp\{\eta^T T(\omega) - \zeta(\eta)\}h(\omega), \omega \in \Omega$. This is called the canonical form for the family, and $\Xi = \{\eta : \zeta(\eta) \text{ is defined}\}$ is called the natural parameter space. An exponential family in canonical form is a natural exponential family. If there is an open set contained in the natural parameter space of an exponential family, then the family is said to be of full rank.

Theorem 1: Let \mathscr{P} be a natural exponential family. (i) Let T = (Y, U) and $\eta = (\theta, \phi)$, Y and θ have the same dimension. Then, Y has the p.d.f. $f_{\eta}(y) = \exp\{\theta^T y - \zeta(\eta)\}$. In particular, T has a p.d.f. in a natural exponential family. Furthermore, the conditional distribution of Y given U = u has the p.d.f. $f_{\theta,u}(y) = \exp\{\theta^T y - \zeta_u(\theta)\}$ w.r.t. a σ -finite measure depending on ϕ . Furthermore, the conditional distribution of Y given U = u has the p.d.f. $f_{\theta,u}(y) = \exp(\theta^T y - \zeta_u(\theta))$ w.r.t. a σ -finite measure depending on u. (ii) If η_0 is an interior point of the natural parameter space, then the m.g.f. of $P_{\eta_0} \circ T^{-1}$ is finite in a neighbbrhood of 0 and is given by $\psi_{\eta_0}(t) = \exp\{\zeta(\eta_0 + t) - \zeta(\eta_0)\}$.

Definition 4 (Location-scale families): Let P be a known probability measure on $(\mathbb{R}^k, \mathcal{B}^k)$, $\mathcal{V} \subset \mathbb{R}^k$, and \mathcal{M}_k be a collection of $k \times k$ symmetric positive definite matrices. The family $\{P_{(\mu,\Sigma)} : \mu \in \mathcal{V}, \Sigma \in \mathcal{M}_k\}$ is called a location-scale family (on \mathbb{R}^k), where $P_{(\mu,\Sigma)}(B) = P(\Sigma^{-1/2}(B-\mu)), B \in \mathcal{B}^k$. The parameters μ and $\Sigma^{1/2}$ are called the location and scale parameters, respectively.

Definition 5 (Statistics and their sampling distributions): Our data set is a realization of a sample

(random vector) X from an unknown population P. Statistic T(X): A measurable function T of X; T(X) is a known value whenever X is known. A nontrivial statistic T(X) is usually simpler than X. Finding the form of the distribution of T is one of the major problems in statistical inference and decision theory.

Example 1: Let X_1, \dots, X_n be i.i.d. random variables having a common distribution P. The sample mean and sample variance $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ are two commonly used statistics.

Example 2 (Order statistics): Let $X=(X_1,\cdots,X_n)$ with i.i.d. random components. Let $X_{(i)}$ be the *i*th smallest value of X_1,\cdots,X_n . The statistics $X_{(1)},\cdots,X_{(n)}$ are called the order statistics.

2.2 Sufficiency and minimal sufficiency

Definition 1 (Sufficiency): Let X be a sample from an unknown population $P \in \mathscr{P}$, where \mathscr{P} is a family of populations. A statistic T(X) is said to be sufficient for $P \in \mathscr{P}$ iff conditional distribution of X given T is known.

Theorem 1 (The factorization theorem): Suppose that X is a sample from $P \in \mathscr{P}$ and \mathscr{P} is a family of probability measures on $(\mathbb{R}^n, \mathscr{B}^n)$ dominated by a σ -finite measure ν . Then T(X) is sufficient for $P \in \mathscr{P}$ iff there are nonnegative Borel functions h and g_p on the range of T such that $\frac{dP}{d\nu}(x) = g_p(T(x))h(x)$.

Theorem 2: If a family \mathscr{P} is dominated by a σ -finite measure, then \mathscr{P} is dominated by a probability measure $Q = \sum_{i=1}^{\infty} c_i P_i$, where c_i 's are nonnegative constants with $\sum_{i=1}^{\infty} c_i = 1$ and $P_i \in \mathscr{P}$.

Convention 1: If a statement holds except for outcomes in an event A satisfying P(A) = 0 for all $P \in \mathcal{P}$, then we say that the statement holds a.s. \mathcal{P} .

Definition 2 (Minimal sufficiency): Let T be a sufficient statistic for $P \in \mathscr{P}$. T is called a minimal sufficient statistic iff, for any other statistic S sufficient for $P \in \mathscr{P}$, there is a measurable function ψ such that $T = \psi(S)$ a.s. \mathscr{P} .

Theorem 3 (Existence and uniqueness): Minimal sufficient statistics exist when \mathscr{P} contains distributions on \mathbb{R}^k dominated by a σ -finite measure. If both T and S are minimal sufficient statistics, then by definition there is one-to-one measurable function ψ such that $T = \psi(S)$ a.s. \mathscr{P} .

Theorem 4: Let \mathscr{P} be a family of distributions on \mathbb{R}^k . (i) Suppose that $\mathscr{P}_0 \subset \mathscr{P}$ and a.s. \mathscr{P}_0 implies a.s. \mathscr{P} . If T is sufficient for $P \in \mathscr{P}$ and minimal sufficient for $P \in \mathscr{P}_0$, then T is minimal sufficient for $P \in \mathscr{P}$. (ii) Suppose that \mathscr{P} contains p.d.f.'s f_0, f_1, f_2, \cdots w.r.t. a σ -finite ν . Let $f_\infty(x) = \sum_{i=0}^\infty c_i f_i(x)$, where $c_i > 0$ for all i and $\sum_{i=0}^\infty c_i = 1$, and let $T_i(x) = f_i(x)/f_\infty(x)$ when $f_\infty(x) > 0$, $i = 0, 1, 2, \cdots$. Then $T(x) = (T_0, T_1, T_2, \cdots)$ is minimal sufficient for $P \in \mathscr{P}$. Furthermore, if $\{x : f_i(x) > 0\} \subset \{x : f_0(x) > 0\}$ for all i, then we may replace $f_\infty(x)$ for $f_0(x)$, in which case $T(x) = (T_1, T_2, \cdots)$ is minimal sufficient for $P \in \mathscr{P}$. (iii) Suppose that \mathscr{P} contains p.d.f.'s f_p w.r.t. a σ -finite measure and that there exists a sufficient statistic T(x) such that, for any possible values x and y of X, $f_p(x) = f_p(y)\phi(x,y)$ for all P implies T(x) = T(y), where ϕ is a measurable function. Then T(x) is minimal sufficient for $P \in \mathscr{P}$.

2.3 Completeness

Definition 1 (Ancillary statistics): A statistic V(x) is ancillary iff its distribution does not depend on any unknown quantity. A statistic V(X) is first-order ancillary iff $\mathbb{E}[V(X)]$ does not depend on any unknown quantity.

Remark 1: If V(x) is a non-trivial ancillary statistic, then $\sigma(V)$ does not contain any information about the unknown population P. If T(x) is a statistic and V(T(x)) is a non-trivial ancillary statistic, it indicates that the reduced data set by T contains a non-trivial part that does not contain any information about θ and, hence, a further simplification of T may still be needed.

Definition 2 (Completeness): A statistic T(x) is complete (or boundedly complete) for $P \in \mathscr{P}$ iff, for any Borel f (or bounded Borel f), $\mathbb{E}[f(T)] = 0$ for all $P \in \mathscr{P}$ implies f = 0 a.s. \mathscr{P} .

Remark 2: If T is complete (or boundedly complete) and $S = \psi(T)$ for a measurable ψ , then S is complete (or boundedly complete). A complete and sufficient statistic should be minimal sufficient. But a minimal sufficient statistic may be not complete.

Proposition 1: If P is in an exponential family of full rank with p.d.f.'s given by $f_{\eta}(x) = \exp\{\eta^T T(x) - \zeta(\eta)\}h(x)$, then T(x) is complete and sufficient for $\eta \in \Xi$.

Example 1: Suppose that X_1, \dots, X_n are i.i.d. random variables having the $\mathcal{N}(\mu, \sigma^2)$ distribution, $\mu \in \mathbb{R}$, $\sigma > 0$. The joint p.d.f. of X_1, \dots, X_n is $(2\pi)^{-n/2} \exp\{\eta_1 T_1 + \eta_2 T_2 - n\zeta(\eta)\}$, where $T_1 = \sum_{i=1}^n X_i, T_2 = -\sum_{i=1}^n X_i^2$ and $\eta = (\eta_1, \eta_2) = (\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2})$. Hence, the family of distributions for $X = (X_1, \dots, X_n)$ is a natural exponential family of full rank $(\Xi = \mathbb{R} \times (0, \infty))$. Thus $T(X) = (T_1, T_2)$ is complete and sufficient for η .

Example 2: $T(x) = (X_{(1)}, \dots, X_{(n)})$ of i.i.d. random variables X_1, \dots, X_n is sufficient for $P \in \mathcal{P}$, where \mathcal{P} is the family of distributions on \mathbb{R} having Lebesgue p.d.f.'s. We can show that T(x) is also complete for $P \in \mathcal{P}$.

Theorem 1 (Basu's theorem): Let V and T be two statistics of X from a population $P \in \mathscr{P}$. If V is ancillary and T is boundedly complete and sufficient for $P \in \mathscr{P}$, then V and T are independent w.r.t. any $P \in \mathscr{P}$.

Example 3: X_1, \dots, X_n is a random sample from uniform $(\theta, \theta + 1)$, $\theta \in \mathbb{R}$, and $T = (X_{(1)}, X_{(n)})$ is the minimal sufficient statistic for θ . We can show that T is not complete.

Theorem 2: Suppose that S is a minimal sufficient statistic and T is a complete and sufficient statistic. Then T must be minimal sufficient and S must be complete.

2.4 Statistical decision

Convention 1 (Basic elements): X: a sample from a population $P \in \mathscr{P}$. Decision: an action we take after observing X. \mathscr{A} : the set of allowable actions. $(\mathscr{A}, \mathscr{F}_{\mathscr{A}})$: the action space. \mathscr{X} : the range of X. Decision rule: a measurable function T from $(\mathscr{X}, \mathscr{F}_{\mathscr{X}})$ to $(\mathscr{A}, \mathscr{F}_{\mathscr{A}})$. If X = x is observed, then we take the action $T(x) \in \mathscr{A}$.

Definition 1 (Loss function): L(P, a): a function from $\mathscr{P} \times \mathscr{A}$ to $[0, \infty)$. L(P, a) is Borel for each P. If X = x is observed and our decision rule is T, then our loss is L(P, T(x)).

Definition 2 (Risk): The averaged loss $R_T(P) := \mathbb{E}[L(P, T(X))] = \int_{\mathscr{X}} L(P, T(X)) dP_X(x)$.

Definition 3 (Comparisons): For decision rules T_1 and T_2 , T_1 is as good as T_2 iff $R_{T_1}(P) \leq R_{T_2}(P)$ for any $P \in \mathscr{P}$ and is better than T_2 if, in addition, $R_{T_1}P < R_{T_2}(P)$ for some P. T_1 and T_2 are equivalent iff $R_{T_1}(P) = R_{T_2}(P)$ for all $P \in \mathscr{P}$. Optimal rule: If T^* is as good as any other rule in \mathscr{E} , a class of allowable decision rules, then T^* is \mathscr{E} -optimal.

Definition 4 (Randomized decision rules): A function δ on $\mathscr{X} \times \mathscr{F}_{\mathscr{A}}$; for every $A \in \mathscr{F}_{\mathscr{A}}$, $\delta(\cdot,A)$ is a Borel function and, for every $x \in \mathscr{X}$, $\delta(x,\cdot)$ is a probability measure on $(\mathscr{A},\mathscr{F}_{\mathscr{A}})$. If X=x is observed, we have a distribution of actions: $\delta(x,\cdot)$. A nonrandomized rule T is a special randomized decision rule with $\delta(x,\{a\}) = I_{\{a\}}(T(x)), a \in \mathscr{A}, x \in \mathscr{X}$. The loss function for a randomized rule δ is defined as $L(P,\delta,x) = \int_{\mathscr{A}} L(P,a)d\delta(x,a)$, which reduces to the same loss function when δ is nonrandomized. The risk of a randomized δ is then $R_{\delta}(P) = \mathbb{E}[L(P,\delta,X)] = \int_{\mathscr{X}} \int_{\mathscr{A}} L(P,a)d\delta(x,a)dP_X(x)$.

Example 1: $X=(X_1,\cdots,X_n)$ is a vector of i.i.d. measurements for a parameter $\theta\in\mathbb{R}$. We want to estimate θ . Action space: $(\mathscr{A},\mathscr{F}_{\mathscr{A}})=(\mathbb{R},\mathscr{B})$. A common loss function in this problem is the squared error loss $L(P,a)=(\theta-a)^2, a\in\mathscr{A}$. Let $T(X)=\bar{X}$, the sample mean. The loss for \bar{X} is $(\bar{X}-\theta)^2$. If the population has mean μ and variance $\sigma^2<\infty$, then $R_{\bar{X}}(P)=(\mu-\theta)^2+\frac{\sigma^2}{n}$. This problem is a special case of a general problem called estimation. In an estimation problem, a decision rule T is called an estimator.

Example 2: Let \mathscr{P} be a family of distributions, $\mathscr{P}_0 \subset \mathscr{P}$, $\mathscr{P}_1 = \{P \in \mathscr{P} : P \notin \mathscr{P}_0\}$. A hypothesis testing problem can be formulated as that of deciding which of the following two statements is true: $H_0: P \in \mathscr{P}_0$ versus $H_1: P \in \mathscr{P}_1$. H_0 is called the null hypothesis and H_1 is the alternative hypothesis. The action space for this problem contains only two elements, i.e., $\mathscr{A} = \{0,1\}$, where 0 is accepting H_0 and 1 is rejecting H_0 . This problem is a special case of a general problem called hypothesis testing. A decision rule is called a test, which must have the form $I_C(X)$, where $C \in \mathscr{F}_{\mathscr{X}}$ is called the rejection or critical region.

Definition 5 (0-1 loss): L(P, a) = 0 if a correct decision is made and 1 if an incorrect decision is made, which leads to the risk $R_T(P) = \begin{cases} P(T(X) = 1) = P(X \in C) & P \in \mathscr{P}_0 \\ P(T(X) = 0) = P(X \notin C) & P \in \mathscr{P}_1 \end{cases}$.

Definition 6 (Admissibility): Let $\mathscr E$ be a class of decision rules. A decision rule $T \in \mathscr E$ is called $\mathscr E$ -admissible iff there does not exist any $S \in \mathscr E$ that is better than T (in terms of the risk).

Remark 1: An admissible decision rule is not necessarily good. For example, in an estimation problem a silly estimator $T(X) \equiv a$ constant may be admissible.

Proposition 1: Let T(X) be a sufficient statistic for $P \in \mathscr{P}$ and let δ_0 be a decision rule. Then $\delta_1(t,A) = \mathbb{E}[\delta_0(X,A)|T=t]$, which is a randomized decision rule depending only on T, is equivalent to δ_0 if $R_{\delta_0}(P) < \infty$ for any $P \in \mathscr{P}$.

Theorem 1: Suppose that \mathscr{A} is a convex subset of \mathbb{R}^k and that for any $P \in \mathscr{P}$, L(P,a) is a convex function of a. (i) Let δ be a randomized rule satisfying $\int_{\mathscr{A}} ||a|| d\delta(x,a) < \infty$ for any $x \in \mathscr{X}$ and let $T_1(x) = \int_{\mathscr{A}} ad\delta(x,a)$. Then $L(P,T_1(x)) \leq L(P,\delta,x)$ (or $L(P,T_1(x)) < L(P,\delta,x)$) if L is strictly convex in a for any $x \in \mathscr{X}$ and $P \in \mathscr{P}$. (ii) Rao-Blackwell theorem. Let T be a sufficient statistic for $P \in \mathscr{P}$, $T_0 \in \mathbb{R}^k$ be a nonrandomized rule satisfying $\mathbb{E}||T_0|| < \infty$, and $T_1 = \mathbb{E}[T_0(X)|T]$. Then $R_{T_1}(P) \leq R_{T_0}(P)$ for any $P \in \mathscr{P}$. If L is strictly convex in a and T_0 is not a function of T,

then T_0 is inadmissible.

Definition 7 (Unbiasedness): In an estimation problem, the bias of an estimator T(X) of a parameter θ of the unknown population is defined to be $b_T(P) = \mathbb{E}[T(X)] - \theta$. An estimator T(X) is unbiased for θ iff $b_T(P) = 0$ for any $P \in \mathscr{P}$.

Approach 1: Define a class \mathscr{E} of decision rules that have some desirable properties and then try to find the best rule in \mathscr{E} .

Approach 2: Consider some characteristic R_T of $R_T(P)$, for a given decision rule T, and then minimize R_T over $T \in \mathscr{E}$. Methods include the Bayes rule and the minimax rule.

2.5 Statistical inference

Definition 1 (Three components in statistical inference): Point estimators, hypothesis tests, confidence sets.

Definition 2 (Point estimators): Let T(X) be an estimator of $\theta \in \mathbb{R}$. Bias: $b_T(P) = \mathbb{E}[T(X)] - \theta$. Mean squared error (mse): $\text{mse}_T(P) = \mathbb{E}[T(X) - \theta]^2 = [b_T(P)]^2 + \text{Var}(T(X))$. Bias and mse are two common criteria for the performance of point estimators, i.e., instead of considering risk functions, we use bias and mse to evaluate point estimators.

Definition 3 (Hypothesis tests): To test the hypotheses $H_0: P \in \mathscr{P}_0$ versus $H_1: P \in \mathscr{P}_1$, there are two types of errors we may commit: rejecting H_0 when H_0 is true (called the type I error) and accepting H_0 when H_0 is wrong (called the type II error). A test T: a statistic from \mathscr{X} to $\{0,1\}$.

Theorem 1 (Probabilities of making two types of errors): Type I error rate: $\alpha_T(P) = P(T(X) = 1)$, $P \in \mathscr{P}_0$. Type II error rate: $1 - \alpha_T(P) = P(T(X) = 0)$, $P \in \mathscr{P}_1$. $\alpha_T(P)$ is also called the power function of T. Power function is $\alpha_T(\theta)$ if P is in a parametric family indexed by θ .

Definition 4 (Significance tests): A common approach of finding an "optimal" test is to assign a small bound α to the type I error rate $\alpha_T(P), P \in \mathscr{P}_0$, and then to attempt to minimize the type II error rate $1 - \alpha_T(P), P \in \mathscr{P}_1$, subject to $\sup_{P \in \mathscr{P}_0} \alpha_T(P) \le \alpha$. The bound α is called the level of significance. The left-hand side is called the size of the test T. The level of significance should be positive, otherwise no test satisfies.

Definition 5 (p-value): It is good practice to determine not only whether H_0 is rejected for a given a and a chosen test T_{α} , but also the smallest possible level of significance at which H_0 would be rejected for the computed $T_{\alpha}(x)$, i.e., $\hat{\alpha} = \inf\{\alpha \in (0,1) : T_{\alpha}(x) = 1\}$. Such an $\hat{\alpha}$, which depends on x and the chosen test and is a statistic, is called the p-value for the test T_{α} .

Definition 6 (Confidence sets) θ : a k-vector of unknown parameters related to the unknown $P \in \mathscr{P}$. If a Borel set C(X) (in the range of θ) depending only on the sample X such that $\inf_{P \in \mathscr{P}} P(\theta \in C(X)) \ge 1 - \alpha$, where α is a fixed constant in (0,1), then C(X) is called a confidence set for θ with level of significance $1 - \alpha$. The left-hand side is called the confidence coefficient of C(X), which is the highest possible level of significance for C(X). A confidence set is a random element that covers the unknown θ with certain probability.

Definition 7 (Randomized tests): Since the action space contains only two points, 0 and 1, for a hypothesis testing problem, any randomized test $\delta(X, A)$ is equivalent to a statistic $T(X) \in [0, 1]$ with $T(x) = \delta(x, \{1\})$ and $1 - T(X) = \delta(x, \{0\})$. A nonrandomized test is obviously a special

case where T(x) does not take any value in (0,1). For any randomized test T(X), we define the type I error probability to be $\alpha_T(P) = \mathbb{E}[T(X)], P \in \mathscr{P}_0$, and the type II error probability to be $1 - \alpha_T(P) = \mathbb{E}[1 - T(X)], P \in \mathscr{P}_1$. For a class of randomized tests, we would like to minimize $1 - \alpha_T(P)$ subject to $\sup_{P \in \mathscr{P}_0} \alpha_T(P) = \alpha$.

Definition 8 (Consistency of point estimators): Let $X = (X1, \dots, Xn)$ be a sample from $P \in \mathscr{P}$, $T_n(X)$ be an estimator of θ for every n, and $\{a_n\}$ be a sequence of positive constants, $a_n \to \infty$. (i) $T_n(x)$ is consistent for θ iff $T_n(x) \to_p \theta$ w.r.t. any P. (ii) $T_n(x)$ is a_n -consistent for θ iff $a_n[T_n(X) - \theta] = O_p(1)$ w.r.t. any P. (iii) $T_n(x)$ is strongly consistent for θ iff $T_n(x) \to_{a.s.} \theta$ w.r.t. any P. (iv) $T_n(X)$ is L_r -consistent for θ iff $T_n(x) \to_{L_r} \theta$ w.r.t. for any P for some fixed r > 0; if r = 2, L_2 -consistency is called consistency in mse.

Remark 1 (Approximate and asymptotic bias): Unbiasedness is a criterion for point estimator. In some cases, however, there is no unbiased estimator. Furthermore, having a "slight" bias in some cases may not be a bad idea.

Definition 9: (i) Let $\xi, \xi_1, \xi_2, \cdots$ be random variables and $\{a_n\}$ be a sequence of positive numbers satisfying $a_n \to \infty$ or $a_n \to a > 0$. If $a_n \xi_n \to_d \xi$ and $\mathbb{E}|\xi| < \infty$, then $\mathbb{E}\xi/a_n$ is called an asymptotic expectation of ξ_n . (ii) For a point estimator T_n of θ , an asymptotic expectation of $T_n \to \theta$, if it exists, is called an asymptotic bias of T_n and denoted by $\widetilde{b}_{T_n}(P)$. If $\lim_{n\to\infty} \widetilde{b}_{T_n}(P) = 0$ for any P, then T_n is asymptotically unbiased.

Proposition 1 (Asymptotic expectation is essentially unique): For a sequence of random variables $\{\xi_n\}$, suppose both $\mathbb{E}\xi/a_n$ and $\mathbb{E}\eta/b_n$ are asymptotic expectations of ξ_n . Then, one of the following three must hold: (a) $\mathbb{E}\xi = \mathbb{E}\eta = 0$; (b) $\mathbb{E}\xi \neq 0, \mathbb{E}\eta = 0$, and $b_n/a_n \to 0$; (c) $\mathbb{E}\xi \neq 0, \mathbb{E}\eta \neq 0$, and $(\mathbb{E}\xi/a_n)/(\mathbb{E}\eta/b_n) \to 1$.

Definition 10 (Asymptotic variance and amse): Let T_n be an estimator of θ for every n and $\{a_n\}$ be a sequence of positive numbers satisfying $a_n \to \infty$ or $a_n \to a > 0$. Assume that $a_n(T_n - \theta) \to_d Y$ with $0 < \mathbb{E}Y^2 < \infty$. (i) The asymptotic mean squared error of T_n , denoted by $\operatorname{amse}_{T_n}(P)$, is defined as the asymptotic expectation of $(T_n - \theta)^2$, $\operatorname{amse}_{T_n}(P) = \mathbb{E}Y^2/a_n^2$. The asymptotic variance of T_n is defined as $\sigma_{T_n}^2(P) = \operatorname{Var}(Y)/a_n^2$. (ii) Let T_n' be another estimator of θ . The asymptotic relative efficiency of T_n' w.r.t. T_n is defined as $e_{T_n',T_n} = \operatorname{amse}_{T_n}(P)/\operatorname{amse}_{T_n'}(P)$. (iii) T_n is said to be asymptotically more efficient than T_n' iff $\limsup_n e_{T_n',T_n}(P) \le 1$ for any P and < 1 for some P.

Proposition 2: Let T_n be an estimator of θ for every n and $\{a_n\}$ be a sequence of positive numbers satisfying $a_n \to \infty$ or $a_n \to a > 0$. If $a_n(T_n - \theta) \to_d Y$ with $0 < \mathbb{E}Y^2 < \infty$, then (i) $\mathbb{E}Y^2 \le \liminf_n \mathbb{E}[a_n^2(T_n - \theta)^2]$ and (ii) $\mathbb{E}Y^2 = \lim_{n \to \infty} \mathbb{E}[a_n^2(T_n - \theta)^2]$ if and only if $\{a_n^2(T_n - \theta)^2\}$ is uniformly integrable.