FYS2140 Kvantefysikk - Vår 2021 Oblig 6

(Versjon 16. februar 2021)

Dokumentet inneholder følgende tre deler:

- A Diskusjonsoppgaver
- B Regneoppgaver
- C Tilleggsoppgaver (ikke obligatorisk)

Du finner frister for innlevering av obliger på Canvas. For å få obligen godkjent, må du vise at du har gjort et ordentlig forsøk på alle oppgavene. 6/11 obliger må være godkjent for å gå opp til eksamen.

A Diskusjonsoppgaver

Oppgave 1 Ortonormale egentilstander

Ikke-degenererte stasjonære løsninger til energi-egenverdiligningen tilfredsstiller likningen $\hat{H}\psi = E\psi$. Med den tidsavhengig faktoren satt på, kan løsningen skrives som $\Psi_n(x,t) = \psi_n(x) \exp(-iE_n t/\hbar)$.

- a) Egentilstandene $\psi_n(x)$ er ortonormale, slik at $\int \psi_m^*(x)\psi_n(x)dx = \delta_{mn}$. Hva er definisjonen på ortonormalitet, og hva betyr dette for egentilstandene til en partikkel?
- b) Hvorfor må vi kreve normalitet for at bølgefunksjonene skal kunne representere fysiske tilstander?
- c) Er også $\Psi_n(x,t)$ ortonormale slik at $\int \Psi_m^*(x,t) \Psi_n(x,t) dx = \delta_{mn}$? Begrunn svaret.
 - A) Ja
 - B) Nei
 - C) Kommer an på de ulike E_n

Oppgave 2 Energi-egentilstander

De tidsavhengige bølgefunksjonene $\Psi_1(x,t)$ og $\Psi_2(x,t)$ er begge egentilstander for Hamilton-operatoren, altså er de energi-egentilstander. Tilstandene er ikke degenererte, som betyr at de har forskjellige energiegenverdier E_1 og E_2 . Med andre ord har vi at $\hat{H}\Psi_1 = E_1\Psi_1$ og $\hat{H}\Psi_2 = E_2\Psi_2$ og $E_1 \neq E_2$.

- a) Er $\Psi_{\text{sum}} = \frac{1}{\sqrt{2}}(\Psi_1 + \Psi_2)$ også en energi-egentilstand? Begrunn svaret.
 - A) Ja, alltid
 - B) Nei, aldri
 - C) Kanskje ja, det kommer an på
- b) Hva kan du si om resultatet av en energimåling på Ψ_{sum} ?
- c) Er forventningsverdien $\langle E \rangle$ av energimålinger det samme som svaret i b)?
- d) Nå måler du energien til systemet beskrevet av Ψ_{sum} . Hvordan ser den nye bølgefunksjonen ut? Rett etterpå måler du energien igjen. Hvilken energi måler du nå?
- e) Hvis systemet som du studerer beskrives av Ψ_1 alene, hvilke(n) energi(er) vil du da måle?

Oppgave 3 Energi-egentilstander i harmonisk oscillator (HO)

Hvis $\hat{H}(\hat{a}_+\psi_n) = (E_n + \hbar\omega)(\hat{a}_+\psi_n)$, hva kan du si om $\hat{a}_+\psi_n$? Velg ett av alternativene under og begrunn svaret.

- A) Ikke så mye.
- B) Det er en energi-egentilstand og den må være proporsjonal med tilstanden ψ_n .
- C) Det er en energi-egentilstand, men den er IKKE proporsjonal med tilstanden ψ_n .

B Regneoppgaver

Oppgave 4 Egenskaper ved HO bølgefunksjoner

- a) Konstruer ψ_2 for den harmoniske oscillator ved å anvende heveoperatoren to ganger på grunntilstanden $\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2\hbar}x^2}$.
- b) Tegn ψ_0 , ψ_1 og ψ_2 sammen med V(x). Velg konstanter som gir $m\omega/\hbar = 1 \text{ nm}^{-2}$. Vær nøye med å bruke enheter på aksene. Dette er nødvendig for å få full poengpott på (hjemme)eksamen!
- c) Sjekk ortogonaliteten til ψ_0 , ψ_1 og ψ_2 , ved eksplisitt integrasjon. *Hint:* hvis du utnytter symmetrien til integrandene rundt x = 0 så slipper du unna med å gjøre ett integral.

Oppgave 5 Middelverdier av størrelser i HO

a) Beregn $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$ og $\langle p^2 \rangle$ for tilstanden ψ_0 . Kommentar: i denne og andre oppgaver om den harmoniske oscillator så vil det forenkle regningen dersom du introduserer variablen $\xi = \sqrt{m\omega/\hbar} x$ og konstanten $\alpha = (m\omega/\pi\hbar)^{1/4}$. Dermed kan vi skrive $\psi_0 = \alpha e^{-\xi^2/2}$. Vi legger også merke til at

$$\xi = \sqrt{\pi}\alpha^2 x,\tag{1}$$

slik at

$$dx = \frac{1}{\sqrt{\pi}\alpha^2}d\xi. \tag{2}$$

Det kan lønne seg å vurdere symmetrien til bølgefunksjonene før du starter å regne: må du virkelig regne ut $\langle x \rangle$ og $\langle p \rangle$?

b) Sjekk uskarphetsrelasjonen for denne tilstanden.

Oppgave 6 Kinetisk og potensiell energi i HO

Beregn $\langle K \rangle$ (forventningsverdien for kinetisk energi) og $\langle V \rangle$ (forventningsverdien for potensiell energi) for ψ_0 og ψ_1 i harmonisk oscillator (se forrige oppgave). (Du har ikke lov til å gjøre noen nye integral, men du får oppgitt forventningsverdiene $\langle x^2 \rangle_0 = \frac{\hbar}{2m\omega}, \ \langle x^2 \rangle_1 = \frac{3\hbar}{2m\omega}, \ \langle p^2 \rangle_0 = \frac{m\hbar\omega}{2}$ og $\langle p^2 \rangle_1 = \frac{3m\hbar\omega}{2}$.) Er summen hva du ville forvente?

C Tilleggsoppgaver (ikke obligatorisk)

Oppgave 7 Middelverdier av størrelser i HO, fortsettelse

- a) Beregn $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$ og $\langle p^2 \rangle$ for tilstanden $\psi_1 = \sqrt{2}\alpha \xi e^{-\xi^2/2}$.
- b) Sjekk uskarphetsrelasjonen for denne tilstanden.

Oppgave 8 Sannsynlighet i harmonisk oscillator (fra Griffiths Kap.2)

For grunntilstanden til en harmonisk oscillator, hva er sannsynligheten (med tre desimalers presisjon) for å finne partikkelen utenfor det klassisk tillatte området? *Hint:* klassisk sett så er energien til en oscillator $E=\frac{1}{2}ka^2=\frac{1}{2}m\omega^2a^2$, hvor a er amplituden (maksimumsutslaget). Derfor går det klassisk tillatte området for en oscillator med energi E fra $-\sqrt{2E/m\omega^2}$ til $\sqrt{2E/m\omega^2}$. Slå opp den numeriske verdien for det intregralet du behøver.