Mercedes-Benz Greener Manufacturing

May 24, 2020

0.1 Importing libraries

```
[1]: import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import xgboost as xgb
from sklearn.ensemble import RandomForestRegressor
```

0.2 Loading the datasets

```
[2]: train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')
```

0.3 Exploring the data

```
[3]: train_df.head()
```

```
[3]:
                                                     X375
                                                            X376
                                                                   X377
                                                                         X378
                                                                                X379
        ID
                     XO X1
                             X2 X3 X4 X5 X6 X8
     0
         0
                                                         0
                                                                0
                                                                             0
             130.81
                       k
                                     d
                                                                      1
                                                                                   0
                                        u
              88.53
     1
                                                                0
                                                                      0
                                                                             0
                                                                                    0
                         t
                             av
                                     d
                                        у
                                            1
                                                         1
                                  е
                                               0
     2
              76.26
                                                                0
                                                                      0
                                                                             0
                     az
                              n
                                 С
                                     d
                                        Х
                                            j
                                                         0
                                                                                   0
     3
              80.62
                                 f
                                     d
                                        X
                                            1
                                                         0
                                                                0
                                                                             0
                                                                                   0
                     az t
                              n
                                               е
        13
              78.02
                      az
                              n
                                  f
                                     d h
                                           d n
                                                         0
                                                                                   0
```

```
X380
         X382
                 X383
                        X384
                               X385
              0
0
       0
                     0
                            0
                                   0
1
       0
              0
                     0
                            0
                                   0
2
       0
              1
                     0
                            0
                                   0
3
       0
              0
                     0
                            0
                                   0
                                   0
```

[5 rows x 378 columns]

```
[4]: train_df.columns
```

```
[4]: Index(['ID', 'y', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8',
             'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
             'X385'],
            dtype='object', length=378)
 [5]: train df.shape
 [5]: (4209, 378)
     As you can see from above training data is having 4209 rows and 378 columns
     0.3.1 Dropping the column ID from training data
 [6]: train_df.drop('ID',inplace= True, axis=1)
     We are dropping ID column because it is of no significance to us
 [7]: train_df.shape
 [7]: (4209, 377)
     After dropping ID column we have one less column, as we can observe from above
 [8]: test_df.shape
 [8]: (4209, 377)
     As you can see from above testing data is having 4209 rows and 377 columns
 [9]: test_df.columns
 [9]: Index(['ID', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8', 'X10',
             'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
             'X385'],
            dtype='object', length=377)
     0.3.2 Dropping the column ID from testing data
[10]: test_df.drop('ID',inplace=True,axis=1)
     We are dropping ID column because it is of no significance to us
[11]: test_df.shape
[11]: (4209, 376)
```

After dropping ID column we have one less column, as we can observe from above

[12]: test_df.describe()

[12]:		X10	X11	X12	X13	X14	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	0.019007	0.000238	0.074364	0.061060	0.427893		
	std	0.136565	0.015414	0.262394	0.239468	0.494832		
	min	0.000000	0.000000	0.000000	0.000000	0.000000		
	25%	0.000000	0.000000	0.000000	0.000000	0.000000		
	50%	0.000000	0.000000	0.000000	0.000000	0.000000		
	75%	0.000000	0.000000	0.000000	0.000000	1.000000		
	max	1.000000	1.000000	1.000000	1.000000	1.000000		
		X15	X16	X17	X18	X19	•••	\
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	•••	
	mean	0.000713	0.002613	0.008791	0.010216	0.111665	•••	
	std	0.026691	0.051061	0.093357	0.100570	0.314992	•••	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	50%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	75%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	•••	
		Х375	Х376	X377	Х378	Х379	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	\	
	mean	4209.000000 0.325968	4209.000000 0.049656	4209.000000 0.311951	4209.000000 0.019244	4209.000000 0.011879	\	
	mean std	4209.000000 0.325968 0.468791	4209.000000 0.049656 0.217258	4209.000000 0.311951 0.463345	4209.000000 0.019244 0.137399	4209.000000 0.011879 0.108356	\	
	mean std min	4209.000000 0.325968 0.468791 0.000000	4209.000000 0.049656 0.217258 0.000000	4209.000000 0.311951 0.463345 0.000000	4209.000000 0.019244 0.137399 0.000000	4209.000000 0.011879 0.108356 0.000000	\	
	mean std min 25%	4209.000000 0.325968 0.468791 0.000000 0.000000	4209.000000 0.049656 0.217258 0.000000 0.000000	4209.000000 0.311951 0.463345 0.000000 0.000000	4209.000000 0.019244 0.137399 0.000000 0.000000	4209.000000 0.011879 0.108356 0.000000 0.000000	\	
	mean std min 25% 50%	4209.000000 0.325968 0.468791 0.000000 0.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000	4209.000000 0.311951 0.463345 0.000000 0.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000	4209.000000 0.011879 0.108356 0.000000 0.000000	\	
	mean std min 25% 50% 75%	4209.000000 0.325968 0.468791 0.000000 0.000000 0.000000 1.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000	4209.000000 0.311951 0.463345 0.000000 0.000000 0.000000 1.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000	\	
	mean std min 25% 50%	4209.000000 0.325968 0.468791 0.000000 0.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000	4209.000000 0.311951 0.463345 0.000000 0.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000	4209.000000 0.011879 0.108356 0.000000 0.000000	\	
	mean std min 25% 50% 75%	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000	\	
	mean std min 25% 50% 75% max	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000		
	mean std min 25% 50% 75% max	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000 X380 4209.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000 X382 4209.000000	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000 X383 4209.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000 X384 4209.000000	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000 X385 4209.000000		
	mean std min 25% 50% 75% max count mean	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000 X380 4209.000000 0.008078	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000 X382 4209.000000 0.008791	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000 X383 4209.000000 0.000475	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000 X384 4209.000000 0.000713	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000 X385 4209.000000 0.001663		
	mean std min 25% 50% 75% max count mean std	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000 X380 4209.000000 0.008078 0.089524	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000 X382 4209.000000 0.008791 0.093357	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000 X383 4209.000000 0.000475 0.021796	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000 X384 4209.000000 0.000713 0.026691	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000 X385 4209.000000 0.001663 0.040752		
	mean std min 25% 50% 75% max count mean std min	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000 X380 4209.000000 0.008078 0.089524 0.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000 X382 4209.000000 0.093357 0.000000	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000 X383 4209.000000 0.000475 0.021796 0.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000 X384 4209.000000 0.000713 0.026691 0.000000	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000 X385 4209.000000 0.001663 0.040752 0.000000		
	mean std min 25% 50% 75% max count mean std min 25%	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000 X380 4209.000000 0.008078 0.089524 0.000000 0.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000 X382 4209.000000 0.008791 0.093357 0.000000 0.000000	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000 X383 4209.000000 0.000475 0.021796 0.000000 0.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000 X384 4209.000000 0.000713 0.026691 0.000000 0.000000	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000 X385 4209.000000 0.001663 0.040752 0.000000 0.000000		
	mean std min 25% 50% 75% max count mean std min 25% 50%	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000 X380 4209.000000 0.08078 0.089524 0.000000 0.000000 0.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000 X382 4209.000000 0.093357 0.000000 0.000000 0.000000	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000 X383 4209.000000 0.00175 0.021796 0.000000 0.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000 X384 4209.000000 0.000713 0.026691 0.000000 0.000000 0.000000	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000 X385 4209.000000 0.001663 0.040752 0.000000 0.000000 0.000000		
	mean std min 25% 50% 75% max count mean std min 25%	4209.000000 0.325968 0.468791 0.000000 0.000000 1.000000 1.000000 X380 4209.000000 0.008078 0.089524 0.000000 0.000000	4209.000000 0.049656 0.217258 0.000000 0.000000 0.000000 1.000000 X382 4209.000000 0.008791 0.093357 0.000000 0.000000	4209.000000 0.311951 0.463345 0.000000 0.000000 1.000000 1.000000 X383 4209.000000 0.000475 0.021796 0.000000 0.000000	4209.000000 0.019244 0.137399 0.000000 0.000000 0.000000 1.000000 X384 4209.000000 0.000713 0.026691 0.000000 0.000000	4209.000000 0.011879 0.108356 0.000000 0.000000 0.000000 1.000000 X385 4209.000000 0.001663 0.040752 0.000000 0.000000		

[8 rows x 368 columns]

[13]: test_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4209 entries, 0 to 4208
Columns: 376 entries, X0 to X385
dtypes: int64(368), object(8)

memory usage: 12.1+ MB

0.4 Checking the columns having zero variance

```
[14]: zero_var_col = train_df.var()[train_df.var() == 0].index.values
print(zero_var_col)
```

```
['X11' 'X93' 'X107' 'X233' 'X235' 'X268' 'X289' 'X290' 'X293' 'X297' 'X330' 'X347']
```

We can observe there are 12 columns having zero variance

Dropping the columns having zero variance

```
[15]: train_df.drop(zero_var_col,inplace = True, axis = 1)
```

```
[16]: train_df.shape
```

[16]: (4209, 365)

[17]: train_df.describe()

[17]:		У	X10	X12	X13	X14	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	100.669318	0.013305	0.075077	0.057971	0.428130		
	std	12.679381	0.114590	0.263547	0.233716	0.494867		
	min	72.110000	0.000000	0.000000	0.000000	0.000000		
	25%	90.820000	0.000000	0.000000	0.000000	0.000000		
	50%	99.150000	0.000000	0.000000	0.000000	0.000000		
	75%	109.010000	0.000000	0.000000	0.000000	1.000000		
	max	265.320000	1.000000	1.000000	1.000000	1.000000		
		X15	X16	X17	X18	X19	•••	\
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	•••	
	mean	0.000475	0.002613	0.007603	0.007840	0.099549	•••	
	std	0.021796	0.051061	0.086872	0.088208	0.299433	•••	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	50%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	75%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	•••	
		X375	X376	X377	Х378	X379	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		

```
0.318841
                        0.057258
                                      0.314802
                                                    0.020670
                                                                  0.009503
mean
           0.466082
                        0.232363
                                                    0.142294
                                                                   0.097033
std
                                      0.464492
min
           0.000000
                        0.000000
                                      0.000000
                                                    0.000000
                                                                   0.000000
25%
           0.000000
                        0.000000
                                      0.000000
                                                    0.000000
                                                                   0.000000
50%
           0.000000
                        0.000000
                                      0.000000
                                                    0.000000
                                                                   0.000000
75%
           1.000000
                        0.000000
                                      1.000000
                                                    0.000000
                                                                   0.000000
           1.000000
                         1.000000
                                      1.000000
                                                    1.000000
                                                                   1.000000
max
               X380
                             X382
                                           X383
                                                         X384
                                                                       X385
count
       4209.000000
                     4209.000000
                                   4209.000000
                                                 4209.000000
                                                               4209.000000
mean
           0.008078
                        0.007603
                                      0.001663
                                                    0.000475
                                                                   0.001426
           0.089524
                        0.086872
                                      0.040752
                                                    0.021796
                                                                   0.037734
std
min
           0.000000
                        0.000000
                                      0.000000
                                                    0.000000
                                                                   0.000000
25%
           0.000000
                        0.000000
                                      0.000000
                                                    0.000000
                                                                  0.000000
50%
           0.000000
                        0.000000
                                      0.000000
                                                    0.000000
                                                                  0.000000
75%
           0.000000
                        0.000000
                                      0.000000
                                                    0.000000
                                                                  0.000000
           1.000000
                        1.000000
                                      1.000000
                                                    1.000000
                                                                   1.000000
max
```

[8 rows x 357 columns]

0.5 Checking for null values

```
[22]: np.sum(train_df.isnull().sum())
```

[22]: 0

There is no null values in training data, as we can observe from above

```
[23]: np.sum(test_df.isnull().sum())
```

[23]: 0

There is no null values in testing data, as we can observe from above

0.6 Checking for columns not containing numeric data

```
[24]: train_df.describe(include=['object'])
[24]:
                 ΧO
                       Х1
                             Х2
                                    ХЗ
                                          Х4
                                                Х5
                                                       Х6
                                                             Х8
                     4209
                           4209
                                        4209
                                              4209
                                                     4209
                                                           4209
      count
              4209
                                  4209
      unique
                47
                       27
                                     7
                                           4
                             44
                                                 29
                                                       12
                                                             25
      top
                                     С
                                           d
                  z
                       aa
                             as
                                                  W
                                                               j
                                                        g
      freq
               360
                      833
                           1659
                                  1942 4205
                                                231
                                                     1042
                                                            277
[25]: label_columns = train_df.describe(include=['object']).columns.values
      label columns
[25]: array(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8'], dtype=object)
```

Above are the columns which do not have numeric data

Applying Label Encoder to the columns not having numeric data

```
[26]: le = LabelEncoder()
      for col in label_columns:
          le.fit(train_df[col].append(test_df[col]).values)
          train_df[col] = le.transform(train_df[col])
          test_df[col] = le.transform(test_df[col])
```

0.8 Splitting target column from the testing data

```
[27]: y= train_df['y']
[28]: y
[28]: 0
               130.81
                88.53
      1
      2
                76.26
      3
                80.62
                78.02
               107.39
      4204
      4205
               108.77
```

```
4206
              109.22
      4207
              87.48
      4208
              110.85
      Name: y, Length: 4209, dtype: float64
[29]: X = train_df.drop('y',axis=1)
[30]: X.columns
[30]: Index(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8', 'X10', 'X12',
             'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
             'X385'],
            dtype='object', length=364)
     0.9 Splitting training data into training and validation data
[31]: x_train,x_val,y_train,y_val = train_test_split(X,y,test_size = 0.25)
     0.10 Applying PCA to perform dimensionality reduction
[32]: pca = PCA(0.98, svd_solver="full")
[33]: pca.fit(X)
[33]: PCA(copy=True, iterated_power='auto', n_components=0.98, random_state=None,
          svd_solver='full', tol=0.0, whiten=False)
[34]: pca.n_components_
[34]: 12
     After applying PCA, we can observe only 12 columns are of significance to us
[35]: pca.explained_variance_ratio_
[35]: array([0.40868988, 0.21758508, 0.13120081, 0.10783522, 0.08165248,
             0.0140934, 0.00660951, 0.00384659, 0.00260289, 0.00214378,
             0.00209857, 0.00180388])
     If we add all the values above in the array, we get value = 0.98 i.e. it has retains
     features which contain overall 98% variance
     pca_X_train = pd.DataFrame(pca.transform(x_train))
[36]:
[37]: pca X val = pd.DataFrame(pca.transform(x val))
```

```
[38]: pca_test = pd.DataFrame(pca.transform(test_df))
```

0.11 Creating the model

Building a Xgboost Regressor

```
[39]: model = xgb.XGBRegressor(objective='reg:linear',learning_rate = 0.1)
model.fit(pca_X_train,y_train)
```

[00:08:46] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.1.0/src/objective/regression_obj.cu:168: reg:linear is now deprecated in favor of reg:squarederror.
[00:08:47] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.1.0/src/objective/regression_obj.cu:168: reg:linear is now deprecated in favor of reg:squarederror.

[39]: XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints='', learning_rate=0.1, max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=0, num_parallel_tree=1, objective='reg:linear', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None)

```
[40]: pred_y_val = model.predict(pca_X_val)
```

```
[41]: mean_squared_error(y_val,pred_y_val)
```

[41]: 75.3001974539391

Xgboost Regressor is giving a mean squared error of 87.99...

Building a Random Forest Regressor

```
[42]: regr = RandomForestRegressor()
regr.fit(pca_X_train,y_train)
```

```
[43]: y_pred = regr.predict(pca_X_val)
```

```
[44]: mean_squared_error(y_val,y_pred)
```

[44]: 80.8425039714641

Random Forest Regressor is giving a mean squared error of 91.17...

As we can see that mean squared error for Xgboost Regressor is lowest, so its the correct choice for prediction

0.12 Applying Xgboost on test_df

```
[45]: pred_y_test = model.predict(pca_test)
pred_y_test
```

```
[45]: array([ 78.172485, 95.30022 , 79.78195 , ..., 99.84983 , 106.8038 , 90.81117 ], dtype=float32)
```

pca_test is the data after applying PCA to test data