Discos em estado sólido (SSD)

Nome: Giovani Zanella da Maia

Matéria: Arquitetura de computadores

O que é?

- SSD (Solid State Drive) é um dispositivo de armazenamento de dados que utiliza memória flash para gravar e acessar informações.
- SSDs não possuem partes móveis, o que os torna mais rápidos, silenciosos e resistentes a impactos.
 - Não têm peças mecânicas internas, como motores, discos giratórios ou braços de leitura.
- SSD oferece maior velocidade, durabilidade e eficiência energética.
- Armazenamento n\u00e3o vol\u00e1til (mant\u00e9m dados sem energia).
- Popular em laptops, desktops e servidores devido ao desempenho superior.

Estrutura do SSD

- Memória (NAND Flash): A memória Flash NAND tem milhões de células.
- Cada célula contém transistores que armazenam elétrons para representar dados binários (0 e 1).
 - O células multiníveis indica a capacidade de uma célula armazenar múltiplos bits, permitindo maior densidade de dados.
- Cache DRAM : Melhora a performance.
- Interface (SATA, NVMe, PCIe): Conectar o SSD ao sistema.
- Controlador SSD: Gerência como os dados são lidos e gravados nas células.

Cérebro do SSD, responsável por gerenciar:

- Localização dos dados.
- Correção de erros.
- Garbage Collection (reciclagem de blocos inutilizados).

Controlador da SSD

Memória flash

Estrutura Básica de uma Célula de Memória Flash

Porta de controle:

 onde aplicamos a tensão para manipular os elétrons.

Porta Flutuante:

- Armazenar elétrons.
- A carga elétrica acumulada na porta flutuante determina o valor armazenado (0 ou 1).

Isolante:

 A camada de isolante impede que os elétrons escapam da porta flutuante, preservando os dados.

Canal de silício:

por onde os elétrons se movem.

Funcionamento do SSD

Como a gravação do dado acontece?

- Tensão positiva no portão de controle, e uma tensão mais baixa no canal de silício.
- A presença ou ausência de elétrons na armadilha de carga ou porta flutuante determina o valor do bit:
 - Sem carga = 1 bit
 - Com carga = 0 bit
- Cria efeito de injeção de elétrons por tunelamento
- Com isso força os elétrons a atravessar o isolante e se acumularem no portão flutuante.

Funcionamento do SSD

Como remover os dados?

- Objetivo é remover os elétrons do portão flutuante.
- Aplicamos uma tensão negativa no portão de controle e uma alta tensão positiva é aplicada na fonte e no dreno.

- Os elétrons armazenados no portão flutuante são repelidos pela carga negativa e puxados de volta através do isolante para o canal de silício, novamente por tunelamento.
- Sem os elétrons, a célula retorna ao estado lógico 1.

Funcionamento do SSD

Processo de leitura:

- O objetivo é verificar o estado da célula (1 ou 0).
- Aplicamos uma tensão moderada/ estável entre a fonte e o dreno medimos a corrente no canal de silício.
- Se o gate flutuante não tem carga (estado 1), o transistor conduz corrente facilmente.
- Se o gate flutuante tem carga (estado 0), o excesso de elétrons reduz a capacidade do transistor de conduzir corrente.

Problemas nas memórias Flash

1. Fuga de Elétrons (Vazamento)

- **Problema:** Elétrons armazenados podem escapar com o tempo, levando à perda de dados.
- Solução: Uso de barreiras isolantes ao redor da célula de memória para impedir a fuga.

2. Inserção de Elétrons (Escrita)

- Problema:Difícil superar a barreira isolante para inserir elétrons sem danificar o material.
- Solução:
 - Tunelamento Quântico: Aplicação de uma tensão elétrica cria uma probabilidade de o elétron "atravessar" a barreira sem danificá-la.

3. Equilíbrio da Espessura da Barreira

- Problema:
 - Barreiras muito espessas dificultam a escrita.
 - o Barreiras muito finas facilitam o vazamento de elétrons.
- Solução:
 - Espessura Ideal (~8 nanômetros): Equilibra a proteção contra fuga e a facilidade de escrita.

Observações sobre o SSD

Vantagens

- Velocidade superior: Inicialização e transferências de dados muito mais rápidas.
- Durabilidade: Sem partes móveis, maior resistência a quedas e impactos.
- Eficiência energética: Consome menos energia, aumentando a duração da bateria em dispositivos móveis.
- Silencioso e leve: Funcionamento sem ruído e menor peso.

Desvantagem

- Custo mais alto: Preço mais elevado por GB em comparação com HDDs.
- Capacidade limitada: Modelos com grande capacidade ainda são caros.
- Necessidade de técnicas de nivelamento de desgaste:
 O uso repetido de certas células pode desgastá-las mais rapidamente.

Fim

- https://napoleon.com.br/glossario/o-que-e-discos-de-estado-solido/
- https://aws.amazon.com/pt/compare/the-difference-between-ssd-hard-drive/#:~:text=As%20SSDs%20n%C3%A3o%20t%C3https://aws.amazon.com/pt/compare/the-difference-between-ssd-hard-drive/#:~:text=As%20SSDs%20n%C3%A9%20iniciado.
- https://br.crucial.com/articles/about-ssd/ssd-vs-hdd %AAm%20partes,coleta%20de%20res%C3%ADduos%20%C3%A9%20iniciado.
- https://br.crucial.com/articlesSSD vs. HDD | Diferença entre dispositivos de armazenamento de dados | AWS/abovut-ssd/ssd-vs-hdd
- https://br.crucial.com/articles/about-ssd/ssd-vs-hdd \