

BL0930F datasheet

BL0930F 单相电能计量芯片 数据手册

目录

1	产品简单	述		4
	1.1	功能	七 简介	4
	1.2	主要	要特点	4
	1.3	系统	充框图	5
	1.4	封装	長与管脚描述	5
	1.5	特殊	朱寄存器说明	8
	1.6	性負		10
	1.6	5.1	电参数性能	10
	1.6	5.2	极限范围	12
	1.6	5.3	时序特性	12
2	功能描	述		13
	2.1	电流		13
	2.2	有项	力功率	14
	2.3	有功	力功率的防潜动	14
	2.4	电俞	*	15
	2.5	电流	充电压有效值	16
	2.6	线电	电压频率检测	17
3	通讯接	□		18
	3.1	SPI		18
	3.1	l.1	工作模式	18
	3.1	1.2	帧结构	19
	3.1	L.3	写入操作时序	19
	3.1	L.4	读出操作时序	20
	3.1	L.5	SPI 接口的容错机制	20

BL0930F

单相电能计量芯片

	3.2 UA	.RT	21
	3.2.1	波特率配置	21
	3.2.2	每个字节格式	21
	3.2.3	写入时序	21
	3.2.4	读取时序	22
	3.2.5	时序说明	22
	3.2.6	UART 接口的保护机制	23
4	软件校表说	明	23
	4.1 软	件校表原理	23
	4.2 软	件校表流程	23
	4.2.1	OTP checksum 计算方法	24
5	硬件校表说	明	25
6	封装、包装	和存储	27

1 产品简述

1.1 功能简介

BL0930F 是一颗内置时钟的电能计量芯片,适用于单相电能表,具有较高的性价比。

BL0930F 集成了 2 路高精度 Sigma-Delta ADC,参考电压,电源管理等模拟电路模块,以及处理有功功率、电流电压有效值等电参数的数字信号处理电路。

BL0930F 内部集成了 SPI/UART 校表接口和 OTP 校准烧写管脚,可通过外部的配套工装 SPI/UART 接口对芯片进行校准,然后通过 OTP 烧写管脚,将校准值写入芯片,从而实现软件校表。

BL0930F 具有专利防潜动设计,配合合理的外部硬件设计,可确保在无电流时噪声功率不被计入电能脉冲。

1.2 主要特点

- 高精度,在输入动态工作范围(3000:1)内,非线性测量误差小于 0.1%
- 两路独立的 Sigma-Delta ADC,一路电流和一路电压。
- 慢速输出脉冲能直接驱动电机工作
- 可输出电流、电压有效值,快速电流有效值,有功功率,线电压频率
- SPI(最快速率支持 900KHz)/UART(4800-38400bps)通信方式
- 电源掉电监测,低于 2.7V 时,芯片进入复位状态
- 内置 1.218V 参考电压源(典型值)
- 内置振荡电路,时钟约 4MHz
- 芯片单工作电源 3.3V, 低功耗 10mW (典型值)
- SOP16 封装

1.3 系统框图

图 1

1.4 封装与管脚描述

图 2 (SOP16)

管脚描述(SOP16)

管脚号	符号	说明
1	NC	悬空
2	VDD	电源(+3.3V)
3	Vref	基准电压管脚,外接 0.1uF 电容
4,5	IP,IN	电流通道的模拟输入,16倍增益时管脚的最大差分电压
		±41mV(29mV rms)
6,7	VP,VN	电压信号输入端,最大差分电压±121mV(86mV rms)
8	GND	芯片地
9,10	F1,F2	低速逻辑输出脚,其输出频率正比于平均有功功率的大小,
		F1,F2 为非交叠输出,可以驱动机电式计度器或两相步进电机。
		输出频率见 BL0930F 计算公式
11	CF	电能脉冲输出
12	VPP	OTP 烧写电源(+6.25V 典型值)
13	SEL	UART/SPI 通信模式选择(0:UART 1:SPI),内部有下拉电阻,
		悬空即为 0 电平(UART),管脚直接接到 VDD 即为高电平(SPI)
14	SCLK	UART 模式,低速波特率选择输入,0:4800,1:9600; SPI 模式,
		SPI 通信时钟输入
15	RX/SDI	UART/SPI 复用管脚,UART RX/SPI DIN
16	REVP(TX/SDO)	UART/SPI 复用管脚,UART TX/SPI DOUT,需要外部上拉电阻。
		在 F1, F2 配置为低速逻辑输出管脚,此管脚缺省为负向有功功
		率指示信号,当电流通道和电压通道输入信号的相位差大于
		90°时,该脚输出高电平。

寄存器列表

地址	名称	外部 读/写	内部 读/写	有效 位	默认值	描述					
]	电参量器	寄存器(只读	Ę)					
0x01	I_WAVE	R	W	20	0x00000	电流波形寄存器,有符号					
0x02	V_WAVE	R	W	20	0x00000	电压波形寄存器,有符号					
0x03	I_RMS	R	W	24	0x000000	电流有效值寄存器,无符号					
0x04	V_RMS	R	W	24	0x000000	电压有效值寄存器,无符号					
0x05	I_FAST_RMS	R	W	24	0x000000	电流快速有效值寄存器,无符号					
0x06	WATT	R	W	24	0x000000	有功功率寄存器,有符号					
0x07	CF_CNT	R	W	24	0x000000	有功电能脉冲计数寄存器,无符号					
0x08	FREQ	R	W	16	0x0000	线电压频率寄存器,无符号					
0x09STATUSRW100x000状态寄存器,无符号											
			月	月户操作	寄存器(读	写)					
0x12	I_RMSOS	R/W	R	8	0x00	电流有效值小信号校正寄存器					
0x14	WA_CREEP	R/W	R	8	0x0B	有功功率防潜寄存器					
0x15	I_FAST_RMS_ TH	R/W	R	16	0xFFFF	电流快速有效值阈值寄存器					
0x16	I_FAST_RMS_ CYC	R/W	R	3	0x1	电流快速有效值刷新周期寄存器					
0x17	FREQ_CYC	R/W	R	2	0x3	线电压刷新寄存器					
0x18	OT_ FUNX	R/W	R	6	0x24	输出配置寄存器					
0x19	MODE	R/W	R	10	0x87	用户模式选择寄存器					
0x1A	GAIN_CR	R/W	R	2	0x2	电流模拟增益控制寄存器					
0x1C	SOFT_RESET	R/W	R	24	0x000000	写入 0x5A5A5A 时,用户区寄存器复位					
0x1D	USR_WRPROT	R/W	R	8	0x00	用户写保护设置寄存器。写入 0x55 后,用 户操作寄存器可以写入;写入其他值,用 户操作寄存器区域不可写入					

注:通讯协议的数据字节为 24bit,高位无效位补 0。

1.5 特殊寄存器说明

用户模式选择寄存器

0x10	MODE		工作模式寄存	字器		
No.	name	default value description				
[1:0]	reserved	b00		reserved		
[2]	CE EN	b1	有功能量和脉冲开关	0: 美闭		
[2]	CF_EN	D1	有切配里和脉件月大	1: 使能		
[3]	RMS_UPDATE_SEL	b0	有效值寄存器刷新时	0: 400ms		
[5]	NIVIS_OFDATE_SEE	50	间选择选择	1: 800ms		
[4]	reserved	b00		reserved		
[5]	AC_FREQ_SEL	b0	 交流电频率选择	0: 50Hz		
[2]	AC_INEQ_SEE	bo	文.伽 电频率延伸	1: 60Hz		
[6]	CF_CNT_CLR_SEL	b0	CF 计数寄存器读后清	0: 美闭		
[O]		50	零使能位	1: 使能		
[7]	CF_CNT_ADD_SEL	b1	CF 脉冲能量累加模式	0: 代数和累加		
[7]	CI_CIVI_ADD_3LL	DI	选择	1: 绝对值累加		
[9:8]	UART_RATE_SEL	b00	UART 通信波特率选 择	ox 波特率由硬件管脚 SCLK_BPS 决定,接 0 选择 4800bps,接 1 选择 9600bps		
				11 38400bps		
[23:10]	reserved	b0 保留				

软件校表 OTP 操作寄存器

Name	Address	R/W	Default	Description
OTP_BLOCK 0x20 RW 0x0		OTP 烧写块选择寄存器		
OTP_CHCKSUM 0x2f RW 0x0		OTP 寄存器校验和寄存器		
OTP_WRPORT	0x31	RW	0x0	OTP 寄存器写保护密码寄存器,写入 0x42 打 开写
OTP_CTRL	0x32	RW	0x0	OTP 控制寄存器
OTP_STA	0x33	RO	0x0	OTP 状态监控寄存器
SUM_ERR	0x34	RW	0x0	OTP load 校验和错误标志

软件校表寄存器

Name Address		R/W	Default	Description
CFDIV	0x27	RW	0x0	有功 CF 缩放比例寄存器,为电表设计提供更大的选择范围。
OTP_GAIN_CR	0x29	RW	0x0	模拟增益选择初值选择
PHCAL	0x21	RW	0x00	通道相位调整
I_CHGN	0x22	RW	0x000	电流通道增益调整
V_CHGN	0x23	RW	0x000	电压通道增益调整
WATTOS	0x24	RW	0x00	有功功率小信号补偿
OTP_WA_CREEP	0x25	RW	0x0B	OTP 区域有功防潜动阈值
CHIP_MODE	0x26	RW	0x00	模式配置

OTP 模式寄存器 CHIP_MODE(芯片 BL0930 模式配置寄存器)

地址: 0x26 初始值: 0x00

23	22	21	20	19	18	17	16					
	Reversed											
15	14	13	12	11	10	9	8					
	Reversed											
7	6	5	4	3	2	1	0					
		Reversed	M30_	F1F2DIV	MODE 1							

Name Bits R/V		R/W	Description	Default
	[23:3]		保留位	0x0
M30_F1F2DIV	[2:1]	RW	CF、F1、F2 输出频率配置寄存器,调整输出驱动字轮速率。	0x0
			芯片工作模式配置位	
MODE_30	0	RW	b0:芯片工作在单相多功能模式	0x0
			b1:芯片工作在 0930 模式,有 F1,F2 和 REVP 输出	

注意: 客户在进行 OTP 校表时, CHIP_MODE [0] 固定写 "1"。

M30_F1F2DIV	00	01	10	11
F1F2 输出频率	CF/128	CF/64	CF/32	CF/16

1.6 性能指标

1.6.1 电参数性能

(VDD =3.3V, GND=0V, 片上基准电压源, 内置晶振, 25℃, 电能通过 CF 输出进行测量)

测量项目	符号	测量条件	测量点	最小	典型	最大	单位
1 电源电流	I_{VDD}		Pin2	0.5	2.5	3.5	mA
输入高电平	V_{IH}	VDD=3.3V		2.6			V
输入低电平	$V_{\rm IL}$					0.8	V
输入电容	C_{IN}					10	pF
2 逻辑输出脚			Pin9,10				
F1,F2							
输出高电平	V_{OH1}	I _H =10mA		3			V
输出低电平	V_{OL1}	I _L =10mA				0.5	V
输出电流	I_{O1}				10		mA
4 逻辑输出脚			Pin11,16				
CF,REVP							

输出高电平	V_{OH2}	I _H =10mA		3			V
输出低电平	V_{OL2}	I _L =10mA				0.5	V
输出电流	I_{O2}				10		MA
5基准参考电压	Vref	VDD=3.3V	Pin3		1.218		V
温度系数					30		ppm/°C
6模拟输入脚			Pin				
IP, IN			4.5				
VP, VN			6.7				
最大输入电平	V _{AIN}					±1	V
直流输入阻抗					330		Kohm
输入电容				6		10	pF
两个通道相位误差							
电流超前 37℃			Pin11		0.1		度(%
(PF=0.8 容性)							
电流滞后 60℃			Pin11		0.1		度(%
(PF=0.5 感性)							
8 防潜阈值		Ib=5A	Pin11	0.0015		可配置	%
		C=1400					
9负向有功功率测量误差%	ENP	Vv=±110mV, V(I)=2mV, cosφ=1.0	Pin11			0.1	%
		Vv=±110mV, V(I)=2mV,					
		v (1 <i>)</i> −∠111 v ,					

		cosφ=-1					
10 电源监控电路检测电平(掉电检测电平)	V _{down}	电源从 2V~3.3V 变 化,电流电压 通道满幅输 入	Pin11	2.6	2.7	2.8	V

1.6.2 极限范围

 $(T = 25 \ ^{\circ}C)$

项目	符号	极值	单位
电源电压 VDD	VDD	-0.3 ~ +4	V
模拟输入电压(相对于 GND)	IP,VP	-4 ~ +4	V
数字输入电压(相对于 GND)	SEL,SCLK,RX/SDI	<u>-0.3 ~ VDD+0.3</u>	V
数字输出电压(相对于 GND)	CF,F1,F2,TX/SDO/REVP	-0.3 ~ VDD+0.3	V
工作温度	Topr	-40 ~ +85	$^{\circ}$ C
贮藏温度	Tstr	-55 ~ +150	$^{\circ}$ C

1.6.3 时序特性

(VDD =3.3V, GND= 0V, 使用片内基准电压源, 片内晶振时钟 CLK, 温度-40~+75℃)

参数	数值	说明
t1	140ms	F1 和 F2 的高电平脉宽,在低功率时,F1,F2 输出定脉宽,为 140ms。 当计量大功率时,F1,F2 输出周期小于 280ms 时,F1,F2 的脉宽为 周期的一半。
t2		F1, F2 输出低速脉冲周期, 见 BL0930F 计算公式。
t3	t2 周期的一半	F1 上升沿到 F2 上升沿之间的时间。
t5	81ms	高速输出脉冲 CF 的高电平脉宽,在计量小功率时, CF 定脉宽为 81ms。当计量大功率时, CF 输出周期小于 162ms 时, CF 的脉宽为周期的一半。 当 SCF=0, S1=S0=1 的高频模式时, CF 的脉宽为 30us。
t4		CF 输出高速脉冲频率,见 CF 与 F1,F2 之间关系及 BL0930E 计算公式。
t6	CLK/4	F1, F2 之间的最小时间间隔。

2 功能描述

BL0930F 主要分为模拟信号处理和数字信号处理两块,模拟部分主要包括两通道 PGA、两通道 Sigma-Delta ADC、内置时钟(internal clock)、上下电监测(Power on/reset)、LDO 等相关模拟模块,数字部分为数字信号处理模块(DSP)。

2.1 电流电压瞬态波形计量

图 4

如上图所示,电流和电压分别通过模拟模块放大器(PGA)和高精度的模数转换(ADC)得到两路 **1bit PDM** 给数字模块,数字模块经过降采样滤波器(SINC3)、高通滤波器(HPF)、通道偏置校正等模块,得到需要的电流波形数据和电压波形数据(I_WAVE, V_WAVE)。

采集到的负载电流和电压波形数据以 7.8k 的速率更新,每个采样数据为 20bit 有符号数,并分别存入波形寄存器(I_WAVE,V_WAVE), SPI 速率配置大于 375Kbps,可连续读取一个通道的波形值。

注:寄存器为 24bit,不足位数,高位补零。

地址	名称	外部	内部	有效	默认值	描述
1611	有你	读/写	读/写	位	秋八但	加火

单相电能计量芯片

0x01	I_WAVE	R	W	20	0x00000	电流波形寄存器,有符号
0x02	V_WAVE	R	W	20	0x00000	电压波形寄存器,有符号

2.2 有功功率

图 5

地址	名称	外部	内部	有效	默认值	描述
地址	石 柳	读/写	读/写	位	热火阻	佃 处
0x06	WATT	R	W	24	0x000000	有功功率寄存器,有符号

有功功率计算公式: WATT =
$$\frac{4046*I(A)*V(V)*COS(\phi)}{Vref^2}$$

其中,I(A),V(V)为通道管脚输入信号的有效值(mV), φ 为 I(A)、V(V)交流信号的相位夹角,Vref 为内置基准电压,典型值为 1.218V;

该寄存器表示当前有功功率是正功还是负功,Bit[23]为符号位,Bit[23]=0,当前功率为正功,Bit[23]=1,当前功率为负功,补码形式。

2.3 有功功率的防潜动

BL0930F 具有专利功率防潜功能,保证无电流输入的时候板级噪声功率不会累积电量。

有功防潜动阈值寄存器(WA_CREEP),为 8bit 无符号数,缺省为 0BH。该值与有功功率寄存器值对应关系见下面公式,当输入有功功率信号绝对值小于这个值时,输出有功功率设为 0。这可以使在无负载情况下,即使有小的噪声信号,输出到有功功率寄存器中的值为 0,电能不累积。

地址	欠争	外部	内部	有效位	默认值	描述	
地址	名称	读/写	读/写	有效位	쳈以徂	加 处	
0x14	WA_CREEP	R/W	R	8	0x0B	有功功率防潜寄存器,有符号	

可以根据功率寄存器 WATT 的值设置 WA_CREEP,他们的对应关系:

$$WA_CREEP = WATT * \frac{256}{3125}$$

注: 当前通道处于防潜状态时,该通道的电流有效值不测量,也切除到 0。

2.4 电能计量

BL0930F 提供电能脉冲计量,有功瞬时功率通过一段时间的积分,可获得有功能量,并可进一步输出校验脉冲 CF。CF_CNT 寄存器保存输出电能脉冲 CF 的个数,具体如下图所示。

图 6

地址	名称	外部 内部 有效 默认值 X X X X X X X X X X X X X X X X X X X	描述			
1만세.	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	读/写	读/写	位		抽些
0x07	CF_CNT	R	W	24	0x000000	有功电能脉冲计数,无符号

可直接从有功电能脉冲计数寄存器 CF_CNT 读取用电量,也可从 CF1/CF2/ZX 引脚直接对脉冲个数进行计数,CF 的周期小于 160ms 时,为 50%占空比的脉冲,大于等于 160ms 时,高电平固定脉宽 80ms。

0x10	MODE	工作模式寄存器					
No.	name	default value	d	description			
[2]	CE EN	0b1	 有功能量和脉冲开关	0: 美闭			
[2]	CF_EN	001	有切配里和脉件月天	1: 使能			
[6]	CE CNT CLD SEL	0b0	CF 计数寄存器读后清	0: 美闭			
[6]	CF_CNT_CLR_SEL	000	零使能位	1: 使能			
[7]	CE CNT ADD SEI	0b1	CF 脉冲能量累加模式	0: 代数和累加			
[7]	CF_CNT_ADD_SEL	001	选择	1: 绝对值累加			

CF_EN 为能量脉冲输出总开关,关闭后,CF_CNT 停止计数,CF1/CF2/ZX 引脚停止输出电能脉冲计数。

可通过 CF_CNT_CLR_SEL 寄存器,选择 CF 计数寄存器(CF_CNT)读后是否清零。可通过 CF_CNT_ADD_SEL 对脉冲能量累加模式进行选择。

注: CF_CNT 寄存器默认电能脉冲绝对值累积方式。

每个 CF 脉冲的累积时间
$$t_{CF} = \frac{1638.4*256}{WATT}$$

其中WATT 为对应的有功功率寄存器值(WATT)。

2.5 电流电压有效值

电流和电压通道的有效值如下图所示,经过平方电路(X^2)、低通滤波器(LPF_RMS)、开根电路(ROOT),得到有效值的瞬时值 RMS_t,再经过平均得到两个通道的平均值(I_RMS 和 V_RMS)。

图 7

地址	名称	外部	内部	有效	默认值	描述
16세.	11/1/1	读/写	读/写	位		加处
0x03	I_RMS	R	W	24	0x000000	电流有效值寄存器,无符号
0x04	V_RMS	R	W	24	0x000000	电压有效值寄存器,无符号

0x19	MODE	工作模式寄存器				
No.	name	default description value				
[3]	RMS_UPDATE_SEL	0b0	有效值寄存器刷新时 间设置	0: 400ms 1: 800ms		

设置 MODE[3].RMS_UPDAT_SEL,可选择有效值平均刷新时间是 400ms 或 800ms,默认 400ms。

当通道处于防潜状态时, 该电流通道的有效值为零。

电流有效值转换公式: I_RMS =
$$\frac{324004*I(A)}{Vref}$$

电压有效值转换公式: $V_RMS = \frac{79931*V(V)}{Vref}$

Vref是参考电压,典型值是 1.218V。

注: I(A)是 IP, IN 管脚间的输入信号 (mV), V(V)是 VP 管脚的输入信号(mV)。

2.6 线电压频率检测

BL0930F 具有线电压频率检测功能,每个若干设定的周期(FREQ_CYC)刷新一次,所检测的是全波电压波形。

地址	名称	外部 读/写	内部 读/写	有效 位	默认值		描述
0x08	FREQ	R	W	16	0x4e20	线日	电压寄存器,无符号
					线电压	玉刷新时间设置寄存器	
						00	2周波刷新
0x17	FREQ_CYC	R/W	R	2	0x3	01	4周波刷新
						10	8周波刷新
						11	16 周波刷新

线电压测量的分辨率为 2us/LSB(500KHz 时钟),相当于 50Hz 线路频率时的 0.01%或 60Hz 线路频率时的 0.012%。线电压寄存器(FREQ)与实际线电压频率的折算关系:

$$f_{||} = \frac{2 * f_s}{FREQ}$$

其中默认模式下 fs=500KHz; 对于 50Hz 的市电网络,测得 FREQ 的值为 20000(+进制),对于 60Hz 的市电网络,测得 FREQ 的值为 16667(+进制)。

另外,电压有效值低于过零判断阈值时,线电压频率检测关闭。

3 通讯接口

BL0930F 提供 SPI 和 UART 两种通讯接口,这两个接口是复用的。寄存器数据均按 3 字节(24bit)发送,不足 3 字节的寄存器数据,未使用位补 0,凑足 3 字节发送。

3.1 **SPI**

- 通过管脚 SEL 选择,与 UART 复用,SEL=1
- 工作在从模式
- 半双工通讯,通讯率可配,最大通讯速率 900Khz
- 8-bit 数据传输, MSB 在前, LSB 在后
- 固定一种时钟极性/相位(CPOL=0, CPHA=1)

3.1.1 工作模式

主设备工作在 Mode1: CPOL=0, CPHA=1, 即空闲态时, SCLK 处于低电平, 数据发送在第 1 个边沿, 也就是 SCLK 由低电平到高电平的跳变, 所以数据采样是在下降沿, 数据发送是在上升沿。

图 12

3.1.2 帧结构

在通信模式下,先发送 8bit 识别字节(0x58) 或(0xA8), (0x58)是读操作识别字节, (0xA8)是写操作识别字节, 然后再发送寄存器地址字节, 决定访问寄存器的地址(请参见 BL0930F 寄存器列表)。下图分别示出读出和写入操作的数据传送顺序。一帧数据传送完成, BL0930F 重新进入通信模式。每次读/写操作所需的 SCLK 的脉冲个数均为 48 位。

帧结构有两种,分别说明如下:

1) 写操作帧

			V	Vrite	CM	ID				ı	Regi	ister	Add	dres	s				Da	ıta_l	MSB	3			سا				Data	a_LS	SB						Che	ecks	um		
Γ	1	\prod	1	٥	1	٥		_	Α	Α	Α	Α	Α	Α	Α	Α	D	D	D	D	D	D	D	D	Ш	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
	'	<u>ا</u>	'	U	ľ	U	ľ	ľ	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0))	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

其中校验和字节 CHECKSUM 为((0xA8 + ADDR + DATA_H + DATA_M+ DATA_L)& 0xFF)再按位取反。

2) 读操作帧

Read CMD	Register Address		**	
0 1 0 1 1 0 0 0	A A A A A A A A A A A A A A A A A A A			
		Data_MSB	Data_LSB	Checksum
		D D D D D D D D 7 6 5 4 3 2 1 0	D D D D D D D D 7 6 5 4 3 2 1 0	D D D D D D D D D D D 7 6 5 4 3 2 1 0

其中校验和字节 CHECKSUM=((0x58 + ADDR + DATA_H + DATA_M+ DATA_L)& 0xFF)再按位取反。

注:数据为固定3字节(高字节在前,低字节在后,数据有效字节不足3字节的,无效位补0)

3.1.3 写入操作时序

串行写入顺序按下述方式进行。帧识别字节{0xA8},表示数据通信操作为写入数据。ADDR 为需要写入数据的寄存器地址,MCU 将需要写入 BL0930F 的数据位在 SCLK 的下沿之前准备好,在 SCLK 的该时钟的下沿开始移入寄存器数据。寄存器数据的所有其余位也在该 SCLK 的下沿进行左移移位操作(图13)。

单相电能计量芯片

图 13

3.1.4 读出操作时序

在对 BL0930F 进行数据读出操作期间,在 SCLK 的上升沿,BL0930F 将相应的数据位移出到 SDO 逻辑输出管脚,在接下来的 SCLK 为 1 的时间内,SDO 数值保持不变,即在下一个下降沿时,外部设备可以对 SDO 值进行采样。在进行数据读出操作时 MCU 必须先发送读命令帧。

图 14

当 BL0930F 处于通信模式时,帧识别字节{0x58},表示数据通信操作为读出数据。然后紧跟的字节 ADDR 是待读目标寄存器的地址。BL0930F 接收完寄存器地址后在 SCLK 的上升沿开始移出寄存器中的数据(图 14)。寄存器数据的所有其余位在随后的 SCLK 上升沿被移出。因此,在下降沿,外部设备可以对 SPI 的输出数据进行采样操作。一旦读出操作结束,串行接口便重新进入通信模式。这时,SDO 输出在最后一个 SCLK 信号的下降沿进入高阻状态。

3.1.5 SPI 接口的容错机制

SPI 接口的软复位功能,通过 SPI 接口下发 6 个字节的 0xFF,可单独对 SPI 接口进行复位。

3.2 UART

- 通过管脚 SEL 选择,与 SPI 复用,SEL=0
- 工作在从模式
- 半双工通讯,波特率可软硬件配置为 4800bps, 9600bps, 19200bps, 38400bps
- 8-bit 数据传输,无校验位,停止位 1
- 支持数据包读取

3.2.1 波特率配置

使用模式寄存器 UART_RATE_SEL(MODE[9:8])和管脚 SCLK_BPS 进行波特率配置。

0x19	MODE	工作模式寄存器							
No.	name	default value	description						
				00	SCLK_BPS 引脚=0:4800bps				
		0b00		00	SCLK_BPS 引脚=1:9600bps				
[9:8]	UART_RATE_SEL		UART 通信波特率选择	01	同 00				
				10	19200bps				
				11	38400bps				

芯片每次上电时 RATE_SEL 复位值为 0x0,此时根据管脚 SCLK_BPS 确定波特率。

3.2.2 每个字节格式

以波特率=4800bps,为例:

起始位低电平持续时间 t1=208us

有效数据位时间持续 t2=208*8=1664us

停止位高电平持续时间 t3=208us

3.2.3 写入时序

主机 UART 写数据时序如下图所示,主机先发送命令字节 0xA8,然后发送需要写入数据的寄存器字节 (ADDR),接下来依次发送数据字节 (低字节在前,高字节在后,数据有效字节不足 3 字节的,无效位补 0),最后校验和字节。

0xA8 为写操作的帧识别字节。ADDR 为写操作对应的 BL0930F 的内部寄存器地址。

CHECKSUM 字节为(0xA8+ADDR+DATA[7:0]+DATA[15:8]+DATA[23:16]) &0xFF 取反。

3.2.4 读取时序

主机 UART 读数据时序如下图所示,主机先发送命令字节 0x58,然后发送需要读取的寄存器地址字节(ADDR),接下来 BL0930F 依次发送数据字节(低字节在前,高字节在后,数据有效字节不足 3字节的,无效位补 0),最后校验和字节。

0x58 为读操作的帧识别字节。ADDR 为读操作对应的 BL0930F 的内部寄存器地址;

CHECKSUM 字节为(0x58+ADDR+DATA[7:0]+DATA[15:8]+DATA[23:16]) &0xFF 取反。

3.2.5 时序说明

	说明	Min	Type	Max	Unit
t1	MCU 发送字节间的间隔时间	0		20	mS
t2	读操作时 MCU 发送寄存器地址结束到 BL0930F 发送字节的		150		uS
	间隔时间				
t3	帧间隔时间	0.5			uS
t4	BL0930F 发送字节之间的间隔时间		0		uS

3.2.6 UART 接口的保护机制

- 帧超时复位,如果字节与字节之间的间隔时间超过 20ms,UART 接口复位。
- 手动复位, UART 连续收到超过 32 个 "0", UART 接口复位。
- 帧识别字节或者 checksum 字节错误,则该帧数据放弃。

4 软件校表说明

4.1 软件校表原理

当选择软件校准时,BL0930F 需要和外部专用工装配合使用。该工装需要具备和 BL0930F 通信的 SPI/UART 接口,以及 VPP=6.25V 电压输出(烧写 OTP 电压,典型值)。

具体地说,BL0930F内部集成一个 SPI/UART 接口,以方便与外部测试工装之间进行计量参数以及校表参数的传递。BL0930F支持全数字域的偏置补偿、增益调整、相位校正等。有功功率校验输出快速脉冲 CF,可以接到标准表进行误差测量,专用工装计算校准值写入 BL0930F。当所有点完成校准后,可将校准参数通过专用 OTP 烧写接口写入芯片内部 OTP 存储区,以实现芯片软件校表。

4.2 软件校表流程

以SPI通信方式为例进行说明

4.2.1 OTP checksum 计算方法

寄存器表格中的地址 0x20~0x2f 是需要 OTP 烧写的寄存器,对应到 OTP 内部地址安排如下。

OTP_BLOCK	0x20	RW	0x0	OTP 烧写块选择寄存器	从 A5 写到 A0,可校准 6 次,每次校准降序写。
PHCAL	0x21	RW		通道相位调整	
I_CHGN	0x22	RW		电流通道增益调整	
V_CHGN	0x23	RW		电压通道增益调整	
WATTOS	0x24	RW		有功功率小信号校正	
OTP_WA_CREEP	0x25	RW		防潜动阈值设置	
F1/F1 MODE	0x26	RW		F1/F2 分频配置寄存器	按照实际配置值进行 checksum 计算
CFDIV	0x27	RW	0x0	有功 CF 缩放比例寄存器	
REG 28	0x28	RW	0x0	出厂校准寄存器	客户禁止写入,按实际读取值进行

					checksum 计算。
OTP_GAIN_CR	0x29	RW	0x1	模拟增益选择初值选择	客户可以写0或1,0为1倍增益,1为16倍增益。
REG 2a	0x2a	RW	0x0	出厂校准寄存器	
REG 2b	0x2b	RW	0x0	出厂校准寄存器	
REG 2c	0x2c	RW	0x0	出厂校准寄存器	
REG 2d	0x2d	RW	0x0	出厂校准寄存器	
Reserved	0x2e				不参与 checksum 计算。
OTP_CHCKSUM	0x2f	RW	0x0	OTP 寄存器校验和寄存器	

Checksum 计算方法如下:

$$\begin{split} & \{ \texttt{OTP_BLOCK} \} + \{ \texttt{REG21[7:0]} \} + \{ \texttt{REG22[7:0]} \} + \{ \texttt{b00000}, \texttt{REG22[11:8]} \} + \{ \texttt{REG23[7:0]} \} + \{ \texttt{b00000}, \texttt{REG22[11:8]} \} + \{ \texttt{REG23[7:0]} \} + \{ \texttt{REG24[7:0]} \} + \{ \texttt{REG24[15:8]} \} \end{split}$$

以上得到的累加和先取反再取低 8bit 写入寄存器 0x2f OTP CHECKSUM

5 硬件校表说明

BL0930F 出厂测试时,已进行通道增益和内置时钟修正,F1F2DIV=16,CFDIV=4,WA_CREEP=0x0B。芯片的增益集中度可以在 1%以内;如客户不采用软件校表方式,可以沿用 BL0930 的硬件短路点的校准方式。

灾方		电压满幅 115mV rms,电流 16 倍增益,满幅 29mV							
台 分 分	命則且 	电压 两幅 1							
CFDIV 寄	CHIP_MODE	F1F2DIV	CFDIV	F1/F2 最大输	CF 最大输出				
存器	寄存器	LTLZDIA	CFDIV	出频率(Hz)	频率(Hz)				
4	1	128	4	0.296	37.9				
3	3	64	2	0.296	18.95				
4	3	64	4	0.592	37.9				
3	5	32	2	0.592	18.95				
4	5	32	4	1.184	37.9				
3	7	16	2	1.184	18.95				
4	7	16	4	2.369	37.9				
7	1	128	1024	75.797	9702				

F1, F2 输出脉冲计算公式

$$Freq = \frac{K * V(V) * V(I) * Gain * CFDIV}{Vref * Vref * F1F2DIV}$$

Freq: F1, F2 输出脉冲频率;

V(V): 电压通道管脚的输入电压有效值(V)

V(I): 电流通道管脚的输入电压有效值(V)

Vref: 基准电压 1.218V

Gain: 电流通道缺省为 16 倍增益

F1F2DIV: CF 与 F1/2 的分频比,缺省为 16

CFDIV: CF的分频系数,缺省为4

K: 系数,=263.342

需要注意:

- 1) 电流通道固定为 16 倍增益;
- 2) 内部寄存器出厂配置等同于 BL0930 的 SCF=1, S1=1, S=1 模式;
- 3) 防潜动阈值设置为 0x0B, 满量程信号的 0.0017%, 对于低于该阈值的功率, 不输出计量脉冲;

	上海 以 BLO930E 内置晶抗												
SCF	S1	S0	Fz	F1,F2 最高输出频率(Hz)	CF 最高输出频率(Hz)								
				交流	交流								
1	0	0	1.7	0.30	128×F1,F2=39								
0	0	0	1.7	0.30	64×F1,F2=19.5								
1	0	1	3.4	0.61	64×F1,F2=39								
0	0	1	3.4	0.61	32×F1,F2=19.5								
1	1	0	6.8	1.22	32×F1,F2=39								
0	1	0	6.8	1.22	16×F1,F2=19.5								
1	1	1	13.6	2.44	16×F1,F2=39								
0	1	1	13.6	2.44	4096×F1,F2=9.984K								

6 封装

◆ 封装尺寸

SOP16

