

Exercice 1

Soit le repère $\mathcal{R} = (0, \vec{i}, \vec{j}, \vec{k})$ et les points suivants : A = (1,2,1), B = (-1,2,-1), C = (1,0,2)

Question 1 : Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .

Question 2 : Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$. En déduire l'angle entre les deux vecteurs.

Question 3 : Calculer les produit vectoriel $\overrightarrow{AB} \wedge \overrightarrow{AC}$. En déduire l'angle entre les deux vecteurs. Calculer $\overrightarrow{AB} \wedge \overrightarrow{BC}$.

Exercice 2

Question 1 : Déterminer Fx et Fy.

Question 2 : En déduire \vec{F} en fonction de Fx et Fy.

Question 3: Calculer le moment en O de \vec{F} $\overline{\mathcal{M}(O,\vec{F})}$

Question 4 : Ecrire le torseur en O de l'action \vec{F}

Question 5: Ecrire le torseur en B de l'action \vec{F}

Exercice 3

Question 1 : Déterminer Fx et Fy.

Question 2 : En déduire \vec{F} en fonction de Fx et Fy.

Question 3: Calculer le moment en A de \vec{F} $\overline{\mathcal{M}(O,\vec{F})}$

Question 4 : Ecrire le torseur en A de l'action \vec{F}

Question 5: Ecrire le torseur en B de l'action \vec{F}

Robot portique

On considère le robot portique représenté par la figure ci-après.

Le portique lié au sol est repéré par S₀; S₁ est le chariot support du bras.

La liaison entre S_0 et S_1 est telle que S_1 peut translater par rapport à S_0 suivant la direction Δ_{01} . $\overrightarrow{x_0}$

La liaison entre le chariot S_1 et le bras S_2 est telle que S_2 peut tourner par rapport à S_1 autour de l'axe Δ_{12} . $\overrightarrow{X_1}$

 $La \ liaison \ entre \ le \ bras \ S_2 \ et \ l'avant-bras \ S_3 \ est \ telle \ que \ S_3 \ peut \ tourner \ par \ rapport \ \grave{a} \ S_2 \ autour \ de \ l'axe \ \Delta_{23}..\overrightarrow{x_2}$

La liaison entre l'avant-bras S_3 et le poignet S_4 est telle que S_4 peut tourner par rapport S_3 autour de l'axe Δ_{34} . $\overrightarrow{x_3}$

La liaison entre le poignet S_4 et et la pince S_5 est telle que S_5 peut tourner par rapport à S_4 autour de l'axe Δ_{45} . $\overrightarrow{x_4}$

$$\overrightarrow{x_0} = \overrightarrow{x_1} = \overrightarrow{x_2} = \overrightarrow{x_3}$$
 et $\overrightarrow{y_0} = \overrightarrow{y_1}$

On associe à la pince (5) le repère (O_5 , $\overrightarrow{x_5}$, $\overrightarrow{y_5}$, $\overrightarrow{z_5}$) tel que $\overrightarrow{x_4}$ = $\overrightarrow{x_5}$; O_5 identique à O_4

Les paramètres dimensionnels du système sont : $O_0O_1 = I_1$; $O_1O_2 = I_2$; $O_2O_3 = I_3$; $O_3G = I_4$

Les paramètres de position sont : $OO_0 = x$; $(\overrightarrow{y_1}, \overrightarrow{y_2}) = \theta_1$; $(\overrightarrow{y_2}, \overrightarrow{y_3}) = \theta_2$; $(\overrightarrow{y_3}, \overrightarrow{x_4}) = \theta_3$; $(\overrightarrow{y_4}, \overrightarrow{y_5}) = \theta_4$;

G est le centre de gravité du solide 5 qui a pour masse M

Les masses des solides S₁, S₂, S₃ et S₄ sont négligées devant la masse du solide S₅

Question 1: Réaliser les figures planes illustrant les paramètres d'orientation θ_1 ; θ_2 ; θ_3 ; θ_4

Question 2: Déterminer le vecteur $\overrightarrow{O_0G}$ dans le repère $R_2(O_2, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$

Question 3: Déterminer la norme du vecteur $\overrightarrow{0_0G}$. On exprimera $\overrightarrow{0_0G}$ sous la forme $\overrightarrow{0_0G} = Y_{O_0G}$ $\overrightarrow{y_2} + Z_{O_0G}$ $\overrightarrow{z_2}$

Question 4 : Ecrire le torseur de l'action de la pesanteur du solide S5 exprimé en G

Question 5 : Ecrire le torseur de l'action de la pesanteur du solide S5 exprimé en O0

Question 6: Déterminer, en fonction de θ_1 ; θ_2 ; θ_3 ; θ_4 les produits vectoriels suivants : $\vec{x}_1 \wedge \vec{x}_3$, $\vec{x}_1 \wedge \vec{y}_3$, $\vec{y}_1 \wedge \vec{x}_3$, $\vec{x}_1 \wedge \vec{x}_4$, $\vec{x}_1 \wedge \vec{y}_4$, $\vec{x}_1 \wedge \vec{z}_1$, $\vec{x}_3 \wedge \vec{z}_1$ et $\vec{y}_1 \wedge \vec{z}_1$