Universidade de São Paulo Escola de Engenharia de São Carlos

Uso de aprendizado de máquina para beamforming aeroacústico

Guilherme Hiroshi Sinoara

Universidade de São Paulo Escola de Engenharia de São Carlos

27 de janeiro de 2025

Sumário

- 1 Introdução
- 2 Objetivos
- 3 Justificativa
- 4 Referencial Teórico
- 5 Resultados preliminares
- 6 Referências

Beamforming

Aprendizado de máquina

Beamforming e Aprendizado de Máquina

Beamforming e Aprendizado de Máquina

Beamforming e Aprendizado de Máquina

Objetivos

Avaliar o uso de modelos de aprendizado de máquina no processamento de sinais em experimentos de aeroacústica;

- Comparar o impacto do tamanho do conjunto de dados de treinamento no desempenho do modelo;
- 2 Comparar o impacto de diferentes hiperparâmetros no desempenho do modelo;
- 3 Comparar a acurácia do modelo com a de métodos tradicionais de beamforming;
- Comparar o tempo computacional com o de métodos tradicionais de beamforming;

Justificativa

Os métodos de beamforming são computacionalmente intensos, principalmente quando usados com algoritmos de deconvolução (CARRANZA, 2022).

Sendo possível interpretá-los como uma função que mapeia as leituras dos microfones às fontes de ruído, são candidatos a serem substituídos por aprendizado de máquina.

Ademais, as redes neurais podem ser projetadas de modo a diminuir a interferência de ruído, (IBIAS et al., 2024) aumentando sua acurácia.

Figura: Marca abnTeX2. Fonte: http://www.abntex.net.br/

Aeroacústica linear

Para calcular a pressão sonora causada por uma fonte na posição y em um microphone na posição x, serão usadas as seguintes relações (GLEGG; DEVENPORT, 2023):

$$r = |x - y| \tag{1}$$

- x posição do microfone
- y posição da fonte
- r distância entre a fonte e o microfone

$$\hat{A} = A \exp(i\phi) = A(\cos\phi + i\sin\phi)$$
 (2)

- \hat{A} amplitude complexa na fonte
- A amplitude máxima na fonte

Aeroacústica linear

$$\hat{p} = \frac{\hat{A} \exp(ikr)}{r} \tag{3}$$

$$k = \frac{\omega}{c} \tag{4}$$

- \hat{p} amplitude complexa no ponto x
- ω frequência da onda
- *k* número de onda (inverso do comprimento de onda)
- c velocidade da onda no meio

Redes Neurais

Figura: Exemplo de rede neural artificial

Fonte: Elaborada pelo autor.

Redes Neurais

Figura: Modelo de neurônio. Fonte: Elaborada pelo autor.

Resultados preliminares

Referências I

CARRANZA, D. M. High-Resolution Localization of Aeroacoustic Sources Using Advanced Phased Array Setups. Tese (Doutorado) — UC Irvine, 2022.

GLEGG, S.; DEVENPORT, W. Aeroacoustics of low mach number flows. 2. ed. San Diego, CA: Academic Press, 2023.

il IBIAS, A. et al. *Improving Noise Robustness through Abstractions and its Impact on Machine Learning*. 2024. Disponível em: https://arxiv.org/abs/2406.08428>.