

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za osnove elektrotehnike i električka mjeren

7. TEMA

MJERENJE NAPONA I STRUJA

Predmet "Mjerenja u elektrotehnici" Prof.dr.sc. Damir Ilić Zagreb, 2020.

Teme cjeline

- Općenito o mjernim metodama
- Mjerenje istosmjernih napona
- Mjerenje istosmjernih struja
- Mjerenje izmjeničnih napona
- Mjerenje izmjeničnih struja

Općenito o mjernim metodama

Pod elektrotehničkim mjerenjima smatramo metode koje se odnose na mjerenja:

- električnih veličina (*U, I, R, P, W, f, Z, C,* ...)
- magnetnih veličina (*B*, *H*, μ, Φ, ...)
- neelektričnih veličina (pomak, zakret, sila, temperatura, brzina, ubrzanje, ...)

Možemo reći da postoje:

- različite metode za mjerenje navedenih raznorodnih veličina
- različite metode za mjerenje istih veličina (npr. za mjerenje istosmjernog napona od 1 nV do 10 kV)
- različiti mjerni uređaji, mjerni sustavi i postupci određeni traženom točnošću

Općenito o mjernim metodama

- Kod izbora koju ćemo mjernu metodu primijeniti, odluku određuju:
 - mjerena veličina (njezina vrijednost)
 - frekvencija (ako se radi o izmjeničnim veličinama)
 - zahtijevana razina mjerne nesigurnosti
 - utjecajne veličine
 - mjerni uređaji (instrumenti)
- Većina mjerenja, i električkih i neelektričkih veličina, zapravo se svodi na mjerenje napona, struje (ili otpora, pa time posredno napona) i frekvencije
 - mjerenje napona ima posebnu važnosti
 - redovito je nesigurnost mjerenja frekvencije zanemarivo malena u odnosu na nesigurnosti drugih veličina

Napomena: kad se navode mjerne nesigurnosti, vrijednosti veličina, mjerni opsezi i sl. podrazumijavaju se uobičajene ili tipične vrijednosti, što ne znači da ni u kojem slučaju ne postoje i drugačije od navedenih

- Izravno mjerenje voltmetrom: od 1 mV do 1000 V
- Izravno mjerenje voltmetrom s mjernim pojačalom za male napone: od 1 nV do 1 V
- Kompenzatorom: od 1 μV do 1000 V
- Visokonaponskim (VN) djelilom i voltmetrom (ili kompenzatorom): od 100 V do 10 kV
- Izravno mjerenje elektrostatičkim voltmetrom: od 10 V do 100 kV
- Kuglastim iskrištem: od 1 kV do 1000 kV

Izravno mjerenje voltmetrom

- to može biti analogni voltmetar
 - za svaki analogni instrument poznat je karakteristični otpor voltmetra, R_K , koji se iskazuje u Ω/V , a tipični raspon vrijednosti je od 1 k Ω/V do 10 k Ω/V
 - unutrašnji otpor voltmetra R_V određuje se umnoškom karakterističnog otpora voltmetra R_K i mjernog opsega na kojemu voltmetar mjeri U_{mo} (uočite da se radi o mjernom opsegu, a ne o naponu koji voltmetar mjeri!)
 - □ $R_V = R_K \cdot U_{mo}$ npr. neka je voltmetar postavljen na mjerni opseg U_{mo} =10 V, a karakteristični otpor voltmetra R_K =1 k Ω /V; tada mu je unutrašnji otpor R_V =10 k Ω
 - mjerna nesigurnost mjerenja određena je razredom točnosti instrumenta i redovito je lošija od 0,05 %
- to može biti digitalni voltmetar
 - □ unutrašnji (ulazni) otpor R_V na opsezima do 10 V može biti >1 G Ω , dok je na višim opsezima redovito 10 M Ω (zašto?)
 - mjerna nesigurnost mjerenja može biti manja čak i od 0,001 %
 - svi podaci nalaze se u uputama (*Instruction manual* ili dokument sličnog naziva); na samom instrumentu nema nikakvih podataka ili oznaka
- mjerni opsezi od 1 mV do 1000 V (to ne znači da svaki voltmetar ima takav opseg mjerenja) – razlučivanje?

Problem konačnog unutrašnjeg otpora voltmetra

• priključkom voltmetra izvor se opterećuje strujom I_V , koja ovisi o elektromotornoj sili izvora E, o unutrašnjem otpor izvora R_U te o unutrašnjem otporu voltmetra R_V

• premda bismo u idealnom slučaju željeli izmjeriti elektromotornu silu izvora E, u ovom slučaju voltmetrom ćemo izmjeriti napon koji je manji od E zbog pada napona na R_{II} :

$$U_{\rm V} = E \frac{R_{\rm V}}{R_{\rm H} + R_{\rm V}}$$

• dakako, što je unutrašnji otpor izvora R_U manji i/ili što je R_V veći, to problem manje dolazi do izražaja

- Izravno mjerenje voltmetrom s mjernim pojačalom za male napone
 - tzv. elektronički voltmetri koriste mjerna pojačala za pojačavanje malih napona i upotrebljavaju se za mjerne opsege veće od 100 μV
 - problemi nastaju zbog velikog pojačanja (do 10⁵), a očituju se u temperaturnom i vremenskom klizanju izmjerene vrijednosti
 - posljedica su osjetljivosti elektroničkih sklopova na promjene napona napajanja i/ili temperature, te promjene parametara s vremenom

- Izravno mjerenje voltmetrom s mjernim pojačalom za mjerne opsege <100 μV
 - pojačala s (mehaničkim, poluvodičkim) prekidačima, tj. transpozicijom frekvencije (tzv. chopper) – rješenje problema klizanja (drifta) istosmjernih pojačala

 ulazni istosmjerni napon pretvara se u izmjenični pravokutni, jednake tjemene vrijednosti, a pojačani i ispravljeni napon filtrira se niskim propustom (RC filtrom)

Mjerenje kompenzacijskom metodom

- kompenzacijski napon U_K ugađa se tako dugo dok se ne postigne ništica na ništičnom pokazniku
- tada kroz krug ne prolazi struja i izvor je neopterećen pa se izravno mjeri EMS izvora, odnosno tada vrijedi da je:

$$U_{X} = U_{K}$$

- primjenjuje se kod mjerenja izvora malih napona (reda milivolta), i kad problem predstavlja pad napona na unutrašnjem otporu
- točnost mjerenja ovisi o točnosti ugođenog kompenzacijskog napona U_K te o osjetljivosti ništičnog detektora N (to može biti ili mjerilo malih struja ili mjerilo malih napona)

Primjer: kompenzator sa strujnim izvorom

- pri mjerenju vrlo malih napona potrebno je osigurati da se pri ugađanju ne mijenja struja u pomoćnom krugu te da kontakti preklopki ne budu u kompenzacijskom krugu
- u ovoj izvedbi koristi se strujni izvor konstantne struje I, potrebni kompenzacijski napon dobiva se ugađanjem otpora R_P (koji se izvodi dekadama), dok su tijekom ugađanja konstantni kompenzacijski otpor R_K i ukupni otpor u kompenzacijskom krugu R
- prednost: prijelazni otpori kontakata otpora R_P i njegov termonapon nalaze se u krugu izvora, a ne mjerenog napona, pa ne kvare točnost mjerenja

$$(I - I_{K})R_{P} = I_{K}(R - R_{P})$$
$$U_{K} = I_{K}R_{K} = I\frac{R_{P}R_{K}}{R}$$

Mjerenje visokih napona otporničkim djelilom

- djelilo napona razmatrali smo već u temi 4
- primjenjivo je za srednje visoke napone (tipično do 10 kV)
- otpornici R₁ i R₂ izrađuju se od otporne žice malog temperaturnog koeficijenta ili visokoomskih slojnih otpornika
- problem predstavlja disipacija, koja opada s povećanjem ukupnog otpora $(R_1 + R_2)$ djelila, te izolacija i struje kroz izolaciju
- problem predstavlja i nepoznavanje unutrašnjeg otpora voltmetra R_V , jer se u tom slučaju korekcija ne može izračunati, ili pak zanemarivanje njegovoj utjecaja, čime nastaje pogreška mjerenja napona U

- Izravno mjerenje ampermetrom (analognim ili digitalnim):
 od 1 µA do 10 A
- Pretvorbom u napon:
 - primjenom U-R metode (mjerenjem pada napona na poznatom vanjskom shuntu): 1 mA do 100 A
 - pretvornikom s Hallovom sondom (strujnim jarmom i voltmetrom): od 1
 A do 100 kA
 - elektrometrom (analognim ili digitalnim): od 10⁻¹⁵ A do 10⁻³ A
- Pretvorbom u izmjeničnu struju strujnim transformatorom za istosmjernu struju: od 100 A do 100 kA

Izravno mjerenje ampermetrom

- to može biti analogni ampermetar za mjerenje struja od 1 μA do 10 mA (izravno), te od 10 mA do 20 A (univerzalni instrument s unutrašnjim shuntovima); nesigurnost mjerenja je lošija od 0,5 %
- to može biti digitalni ampermetar mjerenje struja reda 1 μA do 10 A, a nesigurnost mjerenja manja čak i od 0,01 %
- zbog otpora ampermetra R_A postoji utjecaj na mjerenu struju u krugu, o čemu treba voditi računa
- problem je što R_A redovito nije točno poznat, odnosno takav se podatak redovito ne navodi u specifikacijama proizvođača instrumenta

Poželjno: $R_{A} \Rightarrow 0$

Neizravno mjerenje shuntom

- mjeri se pad napona na poznatom otporniku za struje do npr. 40 A, uz napon na voltmetru od npr. 100 mV
- za što veću osjetljivost poželjan je što veći napon, a time i veći otpor shunta uz istu struju, no problem je njegova disipacija (odnosno zagrijavanje zbog prolaska mjerene struje)
- nesigurnost ovisi uglavnom o uporabljenom voltmetru i značajkama shunta (može biti manja čak od 0,005 %)
- četverožično spajanje shunta osigurava bitno smanjivanje utjecaja otpora kontakata i otpora spojnih vodiča:
 - (mili)voltmetar se spaja na naponske stezaljke, koje su izvedene tako da budu što bliže definiranom otporu shunta – zbog relativno velikog unutrašnjeg otpora voltmetra najčešće se može zanemariti otpor kontakta i otpor spojnih vodiča tog naponskog kruga
 - shunt spajamo u strujni krug preko strujnih (vanjskih) stezaljki i voltmetar ne mjeri pad napona na njima pa otpor kontakata i otpor spojnih vodiča u strujnom krugu ne utječu na točnost mjerenja

Mjerenje vrlo malih struja

- mjerenje struja reda od 10⁻¹⁵ A do 10⁻³ A
- utjecaj izolacijskog otpora spojnih vodiča
- analogne i digitalne izvedbe
- elektrometar: mjerni uređaj koji ima vrlo velik ulazni otpor
 (>100 ΤΩ) i ekstremno male ulazne struje pomaka (<500 aA)
 - primjer: elektrometar kao voltmetar koji mjeri pad napona na poznatom otporu R (reda veličine 1 G Ω), a zbog vrlo velike ulazne impedancije minimalno utječe na prilike u krugu

Mjerenje velikih struja Hallovom sondom

- Hallova sonda tanka pločica poluvodičkog materijala (silicij, indijantimon, indijarsen) uzdužno protjecana upravljačkom strujom I_H , a na poprečnim krajevima javlja se Hallov napon U_H , proizveden silama magnetskog polja na naboje u gibanju
- smjer gibanja elektrona okomit je na smjer magnetskog polja indukcije B, na njih djeluje sila $\vec{F}_{\rm m} = -q(\vec{v} \times \vec{B})$ i na jednoj uzdužnoj stranici pojavljuje se njihov višak
- time se stvara Hallov napon $U_{\rm H}$ koji na širini pločice d stvara električno polje $E_{\rm H} = U_{\rm H}/d$, a ono djeluje na elektrone silom $\vec{F}_{\rm e} = -q\vec{E}_{\rm H}$
- brzinu ν određujemo pomoću gustoće struje Ji broja elementarnih naboja u jedinici volumena n: $v = J/(nq) = I/(nq\delta d)$

u stacionarnom stanju te se dvije sile izjednače pa dobivamo konačnu relaciju:

$$U_{\rm H} = \frac{1}{nq} \frac{BI}{\delta} = R_{\rm H} \frac{BI}{\delta}$$

Hallova sonda - nastavak

- R_H je stalnica koja ovisi o materijalu
 - □ za metale je oko 10⁻⁴ cm³/As, a za poluvodiče oko 500 cm³/As (puno veća!)
- Hallov napon U_H
 - napon koji se javlja na poprečnim krajevima, a njegov polaritet ovisi o smjeru struje kroz sondu i smjeru magnetskog polja linearno ovisi o vrijednosti magnetne indukcije B i može biti i pozitivan i negativan
 - budući da Hallov napon U_H ovisi o umnošku struje i indukcije, koristi se i kao množilo pritom je samo potrebno osigurati da struja ovisi o jednoj veličini koju želimo množiti, a indukcija o drugoj

• Napon U_{F}

- uzdužni napon, ovisi kvadratično o indukciji B
- važan je ako se Hallova sonda koristi kao magnetootpor

Mjerenje velikih struja Hallovom sondom

- lacktriangle u strujnom jarmu indukcija B razmjerna je mjerenoj struji I_χ
- mjerenje struja od 100 A do 100 kA, s nesigurnošću čak do 0,1 %
- primjenjivo i za izmjenične struje
- točnije mjerenje struje može se dobiti mjerenjem napona na poznatom otporu R_N

Mjerenje digitalnim voltmetrom

- To smo već obradili u temi br. 6 odziv takvog instrumenta može biti:
 - na (elektrolitičku) srednju vrijednost, a pokazuje efektivnu vrijednost sinusnog valnog oblika (moguća pogreška!)
 - na efektivnu vrijednost izmjenične komponente, neovisno o valnom obliku (ponekad se označavaju kao TrueRMS mjerila, premda ne mjere "pravu" efektivnu vrijednost kod koje treba uračunati i doprinos istosmjerne komponente signala)
 - na "pravu" efektivnu vrijednost, uzevši u obzir i istosmjernu i izmjeničnu komponentu (uobičajena oznaka takve opcije je AC+DC), neovisno o valnom obliku

Mjerenje analognim voltmetrom

- To smo već obradili u temi br. 5
- Univerzalnim instrumentom odziv na (elektrolitičku) srednju vrijednost, a pokazuje efektivnu vrijednost sinusnog valnog oblika (moguća pogreška!)
- Voltmetrom s pomičnim željezom mjeri <u>pravu efektivnu</u> vrijednost (i istosmjerna i izmjenična komponenta su uključene) neovisno o valnom obliku signala u frekvencijskom opsegu do nekoliko stotina herca

Mjerenje istosmjernim voltmetrom i ispravljačem

tip pojačalo-ispravljač

Svojstva tipa pojačalo-ispravljač

- izbjegnuta nelinearnost ljestvice zbog karakteristike diode
- mogućnost mjerenja manjih izmjeničnih napona (reda mV)
- kod napona nesinusnog valnog oblika nastupa pogreška zbog ξ

Tip pojačalo-ispravljač za punovalno ispravljanje

Voltmetri s odzivom na efektivnu vrijednost

 voltmetar s termičkim pretvornikom: mjeri napone više od 0,1 mV u frekvencijskom opsegu 10 Hz do 10 MHz

- termoelektrični efekt (Seebeckov efekt): zagrijavanjem spojišta dvije različite kovine ili legure, na njihovim slobodnim krajevima javlja se termoelektrični napon ovisan o: a) razlici temperatura toplog spojišta i hladnih krajeva, b) odabranim materijalima
- kako je razlika temperatura posljedica zagrijavanja ogrjevne žica zbog prolaska struje, generirani istosmjerni napon termoelementa razmjeran je efektivnoj vrijednosti ogrjevnog napona:

$$U_{\rm dc} = Q_{\rm AB}(v_1 - v_0) \cong kU_{\rm ef}^2$$

- povoljne kombinacije su termoparovi: bakar-konstantan, željezo-konstantan, nikalkrom-nikal, platinarodij-platina; Seebeckov koeficijent Q_{AB} iznosi od 10 μ V/K do 50 μ V/K
- **z**a prikazani voltmetar, izlazni istosmjerni napon U_{iz} linearno ovisi o pravoj efektivnoj vrijednosti mjerenog izmjeničnog napona u_{ul} (neovisno o valnom obliku):

$$U_{\rm iz} = \sqrt{\frac{k_1}{k_2}} \ U_{\rm ul}$$

Mjerenje visokih napona

- naponski mjerni transformatori
- kapacitivna djelila
- induktivna djelila
- kuglasta iskrišta
- **...**

Mjerenje izmjenične struje

Mjerenje digitalnim ampermetrom

- To smo već obradili u temi br. 6 kao i kod mjerenja izmjeničnog napona, odziv takvog instrumenta može biti:
 - na (elektrolitičku) srednju vrijednost, a pokazuje efektivnu vrijednost sinusnog valnog oblika (moguća pogreška!)
 - na efektivnu vrijednost izmjenične komponente, neovisno o valnom obliku (ponekad se označavaju kao TrueRMS mjerila, premda ne mjere "pravu" efektivnu vrijednost kod koje treba uračunati i doprinos istosmjerne komponente signala)
 - na "pravu" efektivnu vrijednost, uzevši u obzir i istosmjernu i izmjeničnu komponentu (uobičajena oznaka takve opcije je AC+DC), neovisno o valnom obliku
- □ Kao i kod mjerenja istosmjerne struje, i ovdje zbog otpora ampermetra R_A postoji utjecaj na mjerenu struju u krugu

Mjerenje izmjenične struje

Mjerenje analognim ampermetrom

- To smo već obradili u temi br. 5 (sve je načelno slično kao i kod izmjeničnog napona)
- Univerzalnim instrumentom
 - za mjerenje struja od 1 μA do 10 mA (izravno), te od 10 mA do 20 A (univerzalni instrument s unutrašnjim shuntovima)
 - nesigurnost mjerenja je lošija od 1 %
 - uz ispravljanje struje, odziv je na (elektrolitičku) srednju vrijednost, a pokazuje efektivnu vrijednost sinusnog valnog oblika (postoji pogreška ako se valni oblik mjerene struje razlikuje od sinusnog!)
- Ampermetrom s pomičnim željezom
 - bez ispravljača, mjeri <u>pravu efektivnu</u> vrijednost (uključene su i istosmjerna i izmjenična komponenta) neovisno o valnom obliku signala
 - razred točnosti 0,2 do 2,5
 - mjerenje struja reda miliampera do nekoliko desetaka ampera
 - mjerenje je moguće do frekvencija od nekoliko stotina herca
- Kao i kod digitalnom ampermetra, i ovdje zbog R_A postoji utjecaj na mjerenu struju u krugu

Mjerenje izmjenične struje

Instrument s termopretvornikom

- slično kao i za mjerenje izmjeničnog napona
- omogućuje mjerenje struja 1 mA do 10 A, do frekvencija 100 kHz
- odziv na pravu efektivnu vrijednost (valni oblik nema utjecaj)
- točnost na razini 0,5 % do 1 %

Mjerenje velikih struja

- Hallova sonda
- strujni mjerni transformatori
- Rogowskijev svitak
- magnetooptički strujni transformatori
- ...

Zaključak

- Prikazali smo različite metode mjerenja napona i struja, zasebno za istosmjerne i izmjenične veličine
- Kod izravnih metoda mjerenu veličinu izravno mjerimo mjernim instrumentom
- Kod posrednih metoda mjerenu veličinu mjerimo neizravno, određujući druge veličine o kojima ona ovisi (npr. struju određujemo mjerenjem pada napona na poznatom otporu
- Kao i kod svih drugih mjernih veličina i mjernih metoda, ono što određuje što ćemo primijeniti u nekom konkretnom slučaju su:
 - ✓ mjerena veličina (npr. vrijednost, frekvencija, valni oblik)
 - zahtijevana točnost mjerenja
 - raspoloživa mjerna oprema