STAT 105 Exam I Reference Sheet

Numeric Summaries

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Quantile Function Q(p) For a dataset consisting of n values that are ordered so that $x_1 \le x_2 \le \ldots \le x_n$ and value p where $0 \le p \le 1$, let $i = \lfloor n \cdot p + 0.5 \rfloor$. Then the quantile function at p is:

$$Q(p) = \begin{cases} x_i & [n \cdot p + 0.5] = n \cdot p + 0.5 \\ x_i + (n \cdot p - i + 0.5)(x_{i+1} - x_i) & [n \cdot p + 0.5] \neq n \cdot p + 0.5 \end{cases}$$

Linear Relationships

$$y \approx \beta_0 + \beta_1 x$$

Fitted linear relationship
$$\hat{y} = b_0 + b_1 x$$

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Least squares estimates

$$b_1 = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_0 = \bar{u} - h$$

$$b_0 = \bar{y}$$
 -

$$e_i = y_i - \hat{y}_i$$

sample correlation coeffecient
$$r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (x_i - \bar{x})^2}}$$

$$r = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sqrt{\left(\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2} - n \bar{y}^{2}\right)}}$$

coeffecient of determination

 $R^2 = (r)^2$

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Factorial Analysis (Two Factors)

Assuming

Factor A with levels 1, 2, ..., I,

- Factor B with levels 1, 2, ..., J,
- \boldsymbol{n} is the total number of observations,
- n_{ij} is the total number of observations with Factor A at level i and Factor B at level j,
- n_i is the total number of observations with Factor A at level i,
- n_j is the total number of observations with Factor B at level j.
- y_{ijk} is the kth observation where Factor A is at level i and Factor B is at level j.

$$y_{\cdot\cdot} = \sum_{i=1}^I \sum_{j=1}^J \sum_{k=1}^K y_{ijk} \qquad \quad \bar{y}_{\cdot\cdot} = \frac{1}{n} \sum_{i=1}^I \sum_{j=1}^J \sum_{k=1}^K y_{ijk}$$

$$k=1 \ yijk \qquad y = \frac{n}{n} \sum_{i=1}^{n}$$

$$\bar{y}_i \cdot = \frac{1}{n_i} \sum_{j=1}^J \sum_{k=1}^K y_{ijk} \qquad \qquad \bar{y}_{\cdot j} = \frac{1}{n_{\cdot j}} \sum_{i=1}^J \sum_{k=1}^K y_{ijk}$$

Main effect of Factor A at level i $a_i = \bar{y}_i - \bar{y}$.

 $\text{Main effect of Factor B at level } j \quad \ b_j = \bar{y}_{\cdot j} - \bar{y}_{\cdot \cdot}$

 $\hat{y}_{ij} = a_i + b_j + \bar{y}.$

Fitted Value

Discrete Random Variables

Probability function
$$P[X=x]=f$$

$$n P[X = x] = f_X(x)$$

Cumulative probability function
$$P[X \le x] = F_X(x)$$

Expected Value
$$\mu = E(X) = \sum_{x} x f_X(x)$$

Variance
$$\sigma^2 = Var(X) = \sum_x (x - \mu)^2 f_X(x)$$

Standard Deviation
$$\sigma$$
 =

$$\sigma = \sqrt{Var(X)}$$

Joint Distributions and Related Distributions

Joint Probability Function
$$P[X = x, Y = y] = f(x, y)$$

Marginal Probability Function
$$P[X = x] = f_X(x) = \sum_{i=1}^{n} f_X(x) =$$

Marginal Probability Function
$$P[X=x] = f_X(x) = \sum_{\text{all } y} f(x,y)$$

$$P[Y=y] = f_Y(y) = \sum_{\text{all } x} f(x,y)$$
 Conditional Probability Function
$$P[X=x] = f_X(x) = \sum_{\text{all } x} f(x,y)$$

Conditional Probability Function
$$P[X=x|Y=y] = \frac{f(x,y)}{f_Y(y)}$$

$$P[Y=y|X=x] = \frac{f(x,y)}{f_X(x)}$$

Geometric Random Variables

X is the trial count upon which the first successful outcome is observed performing independent trials with probability of success p.

Possible Values
$$x = 1, 2, 3, \dots$$

Probability function
$$P[X=x]=f_X(x)=p(1-p)^{x-1}$$

Expected Value
$$\mu = E(X) = \frac{1}{p}$$

$$\sigma^2 = Var(X) = \frac{1-p}{n^2}$$

Variance

Binomial Random Variables

X is the number of successful outcomes observed in n independent trials with probability of success p.

Possible Values
$$x = 0, 1, 2, \dots, n$$

Probability function
$$P[X=x]=f_X(x)=\frac{n!}{(n-x)!x!}p^x(1-p)^{n-x}$$

Expected Value
$$\mu = E(X) = np$$

$$\sigma^2 = Var(X) = np(1-p)$$

Variance

Continuous Random Variables

Probability density function
$$P[a \leq X \leq b] = \int_a^b f_X(x) dx$$

Cumulative probability function
$$P[X \le x] = F_X(x) = \int_{-\infty}^x f_X(t)dt$$

umulative probability function
$$P[X \le x] = F_X(x) = \int_{-\infty}^{\infty} f_X(x)$$

Expected Value
$$\mu = E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

Variance

Standard Deviation
$$\sigma = \sqrt{Var(X)}$$

Normal Random Variables

Let X be a normal random variable with mean μ and variance σ^2 .

Probability density function
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

robability density function
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-x}{\sigma^2}\right)}$$

 $E(X) = \mu$

Expected Value

Variance
$$Var(X) = \sigma^2$$

Standard Normal Random Variables (Z)

A normal random variable with mean 0 and variance σ^2 . If X is normal(μ, σ^2) then $P[a \le X \le b] = P \left| \frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma} \right|$

Probability density function $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$

Functions of random variables

For X_1, X_2, \ldots, X_n independent random variables and $a_0, a_1, a_2, \ldots, a_n$ constants if $W = a_0 + a_1 X_1 + \ldots + a_n X_n$:

•
$$E(W) = a_0 + a_1 E(X_1) + a_2 E(X_2) + \dots + a_n E(X_n)$$

•
$$Var(W) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + \ldots + a_n^2 Var(X_n)$$

Confidence Intervals and Hypothesis Tests

Confidence Intervals $n \geq 25$

$$(1-\alpha)\cdot 100\%$$
 Confidence interval for population mean $~~\bar{x}\pm z_{1-\alpha/2}\sqrt{\frac{\sigma^2}{n}}$

$$(1-\alpha)\cdot 100\%$$
 Confidence lower bound

 $(1-\alpha)\cdot 100\%$ Confidence upper bound

$$\bar{x} - z_{1-\alpha} \sqrt{\frac{\sigma^2}{n}}$$
$$\bar{x} + z_{1-\alpha} \sqrt{\frac{\sigma^2}{n}}$$

Confidence Intervals n < 25

$$(1-\alpha)\cdot 100\%$$
 Confidence interval for population mean $\quad \bar{x} \pm t_{1-\alpha/2,n-1} \sqrt{\frac{\sigma^2}{n}}$

$$(1-lpha)\cdot 100\%$$
 Confidence lower bound

 $\bar{x} - t_{1-\alpha,n-1} \sqrt{\frac{\sigma^2}{n}}$

$$(1-lpha)\cdot 100\%$$
 Confidence upper bound $ar{x}+t_{1-lpha,n-1}$

Test statistics in hypothesis tests for population mean

$$n \ge 25 \qquad \frac{\bar{x} - \mu}{\sqrt{\sigma^2 / n}} \ N(0, 1)$$

$$n<25 \quad \frac{\bar{x}-\mu}{\sqrt{\sigma^2/n}} \ t$$
 with $\nu=n-1$ degrees of freedom

Standard Normal Probabilities

Table entry for \boldsymbol{z} is the area under the standard normal curve to the left of \boldsymbol{z} .

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Standard Normal Probabilities

Table entry for \boldsymbol{z} is the area under the standard normal curve to the left of \boldsymbol{z} .

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998