Dr. Andrés Rueda-Ramírez Prof. Dr. Manuel Torrilhon Tamme Claus Dr. Satyvir Singh

Mathematische Grundlagen IV (CES) | SS 2024 Programmierübung 3 | 21.06.2024 Deadline Anmeldung Testat: see Moodle Testate: see Moodle

Hinweise zur Abgabe einer Programmieraufgabe (bitte sorgfältig lesen!):

- Die Programmieraufgaben sind in **Dreier-** oder **Vierergruppen** zu bearbeiten.
- Tragen Sie sich bitte bis zum see Moodle für einen Testattermin in dem entsprechenden Etherpad des Moodle Lernraums ein.
- Stellen Sie sicher, dass alle Programmverifikationen vor Abgabe der Aufgabe erfolgreich sind.
- Die Testate finden am see Moodle in verschiedenen Räumen des Rogowski statt (siehe Moodle).
 Bringen Sie zu dem Testat bitte einen Laptop und Ihr lauffähiges Programm mit.

Iterative Lösungsverfahren

In dieser Programmierübung beschäftigen wir uns mit iterativen Lösern. Diese lösen effizient ein lineares Gleichungssystem der Form $A\,u=b$.

Wir betrachten das Poisson-Problem

$$-\Delta u(x,y) = f(x,y), (x,y) \in \Omega = (0,1)^2,$$

 $u(x,y) = g(x,y), (x,y) \text{ auf } \partial\Omega,$

mit f(x,y)=-4 und $g(x,y)=x^2+y^2$. Lösen Sie dieses mittels eines Finiten-Differenzen Verfahrens auf einem äquidistanten Gitter mit Gitterweite h=1/n. Dies führt auf das Lösen eines Gleichungssystems $A_h\,u_h=b_h$.

Aufgaben

a) Schreiben Sie folgende Funktionen zur Implementierung verschiedener iterativer Verfahren,

$$[u,steps] = JC(A,b)$$
 Jacobi $[u,steps] = GS(A,b)$ Gauss-Seidel

Als Startvektor u_0 wird standardmäßig der Nullvektor verwendet. Die Iteration soll terminieren, wenn die ∞ -Norm des Residuums $b-Au^k$ unter $\delta=10^{-4}$ fällt.

Als Ausgabe haben die Funktionen die Näherungslösung u des Systems und die Anzahl der durchgeführten Iterationen steps.

Plotten Sie die Lösung u.

- b) Lösen Sie nun obiges Poisson-Problem für unterschiedliche $n \in [10; 100]$ mit den iterativen Verfahren. Erstellen Sie
 - i) einen doppelt logarithmischen Graph, der die gesamte Rechenzeiten der iterativen Löser in Abhängigkeit von $(n-1)^2$ zeigt,
 - ii) einen doppelt logarithmischen Graph, der die Anzahl der Iterationen in Abhängigkeit von $(n-1)^2$ darstellt und
 - iii) einen doppelt logarithmischen Graph, der die durchschnittliche Zeit pro Iteration in Abhängigkeit von $(n-1)^2$ aufträgt.

c) In der Vorlesung wurden die Konvergenzraten des Jacobi- und Gauss-Seidel-Verfahrens für ein eindimensionales Poisson-Problem hergeleitet. Vergleichen Sie die Ergebnisse der Vorlesung mit Ihren Berechnungsergebnissen.

20 Points