TREC & KREC of twins: Decomposing the covariance matrix

Henrique Aparecido Laureano* Wagner Hugo Bonat[†] Stéfanne Maria Jeha Bortoletto[‡] Carolina Cardoso de Mello Prando[§]

August, 2022

Multivariate linear regression models built to handle multiple responses and with genetic and environmental interrelations of twins data (Bonat and Hjelmborg 2022) were applied to understand the dynamics from the TREC and KREC measures.

Keywords:

Introduction

Methods

Data

- Weight;
- Gestational age;
- Type of childbirth;
- Sex;
- Zygosity;
- Twin (1 or 2, to verify the randomness supposition).

^{*}Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil

[†]Laboratório de Estatística e Geoinformação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil

[‡]Faculdades Pequeno Príncipe & Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil

[§]Faculdades Pequeno Príncipe & Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil

Zygosity is a key term in our modeling framework since we need to inform how many twin pairs are monozygotic and dizygotic. Therefore, we drop a pair that do not present this information. We stay with 198 twins.

Figure 1: Graph A) TREC and KREC boxplots with their means in asterisks; Graph B) TREC and KREC scatterplot with tendency curve in solid black; Graph C) Twins scatterplots per TREC and KREC with tendency curves in solid black.

Figure 2: Graphs A) and B) are the boxplots of the numerical variables with their means in asterisks; Graphs C), D) and E) are the barplots of the categorial variables with their level frequencies and respective sample percentages.

Statistical analysis

The statistical analysis was performed through the R (R Core Team 2022) language and environment for statistical computing. The main used R packages are: {dplyr} (Wickham et al. 2022), {tidyr} (Wickham and Girlich 2022), {ggplot2} (Wickham 2016), patchwork (Pedersen 2020), {kableExtra} (Zhu 2021), {Matrix} (Bates, Maechler, and Jagan 2022) and {mglm4twin} (Bonat 2022, 2018; Bonat and Hjelmborg 2022; Bonat and Jorgensen 2016).

Results

We model the TREC and KREC measures in a bivariate fashion and in two fronts, in the mean and covariance structures. We use a model called ACE to study heritability and the genetic and environmental relationships. Basically, we decompose the covariance matrix into three:

- A: genetic/heritability effect or component;
- C: common environment effect or component;
- E: unique environment effect or component.

Besides the covariance decomposition itself, we can also insert covariates/regressors in it. In both mean and covariance structures we tested for the effect of six regressors.

With a bivariate model, we are able to handle the TREC and KREC measures jointly. We started with the ACE model, however, the C component presented to be non-significant. Thus, we stayed with an AE model and from this performed a regressors selection procedure.

Table 1: Summary for the mean structure of the AE bivariate model.

	Estimate	SD	z-value	$\Pr(> z)$
TREC				
Mean gestational age & female sex	-97.1912	127.8171	-0.7604	0.4470
A week in the gestational age	8.0203	3.5627	2.2512	0.0244
Male sex	-34.7133	15.0805	-2.3019	0.0213
KREC				
Mean gestational age	-160.7853	126.7882	-1.2681	0.2047
A week in the gestational age	7.7597	3.5385	2.1929	0.0283

Starting from the mean, from the six initial regressors we end up with two. The significant ones, for each response, are presented in Table 1. For the TREC measures, the statistically significant regressors are the gestational age and the twin sex. For KREC, only the gestational age is significant.

About the covariance, what we do is decompose the TREC variance (1.3698107×10^4) , KREC variance (1.3787069×10^4) , and their covariance (4392.4172948) in the manner described in Table 2.

Table 2: Summary for the covariance structure of the AE bivariate model.

	Estimates	std.error	Percentage	z value	$\Pr(> z)$
Environment					
${f component}$ (E)					
TREC	3712.4482	2751.5400	27.1019	1.3492	0.1773
KREC	1391.8790	4100.7340	10.0955	0.3394	0.7343
TREC & KREC	862.7034	490.8413	19.6407	1.7576	0.0788
Genetic					
${f component} ({f A})$					
TREC	8703.5756	3370.8550	63.5385	2.5820	0.0098
KREC	9990.1531	5750.4968	72.4603	1.7373	0.0823
TREC & KREC	2633.3467	1090.5257	59.9521	2.4147	0.0157

Temos as estimativas divididas pelos componentes ambiental e genético. Como podemos ver pela coluna percentage, a soma das estimativas (do TREC, por exemplo) não dá 1. Isso

quer dizer que nem toda a variabilidade observada é explicada pelo componente ambiental ou genético. Vemos que o componente genético é muito mais significativo, principalmente no TREC.

Abaixo temos as medidas de ambientalidade e herdabilidade. Vemos que apenas a herdabilidade é significativa, para ambos TREC e KREC.

Table 3: AE bivariate model covariance components / estimates

	Estimates	std.error	z value	$\Pr(> z)$
Environn	nentability			
TREC	0.2990	0.2096	1.4267	0.1537
KREC	0.1223	0.3634	0.3365	0.7365
Heritabil	ity			
TREC	0.7010	0.2096	3.3449	0.0008
KREC	0.8777	0.3634	2.4155	0.0157

Table 4: AE bivariate model covariance components / cross

	Estimates	std.error	z value	$\Pr(> z)$
Bivariate environmentability	0.2468	0.1580	1.5619	0.1183
Environment correlation	0.3795	0.5943	0.6386	0.5231
Bivariate heritability	0.7532	0.1580	4.7676	0.0000
Genetic correlation	0.2824	0.1397	2.0209	0.0433

A única correlação significativa é a genética, a ambiental não é. Seguindo a mesma ideia, a herdabilidade bivariada/conjunta é significativa. A ambiental não é.

Tentamos verificar o efeito das covariáveis também na covariância, mas não conseguimos. Não conseguimos convergência. Solução? Ajustar modelos univariados. Os componentes de média se mantém exatamente os mesmos.

TREC

Partimos do modelo AE com idade gestacional e sexo como covariáveis na média e fizemos a seleção de covariáveis na covariância. Das seis covariáveis nenhuma é significativa no componente E, ambiental. No componente A, genético, a variável parto é significativa.

26% da variabilidade observada é explicada/atribuída pelo componente ambiental. O tipo de parto é significativo no componente genético. Com um gêmeo que teve parto do tipo cesaria, o componente genético explica 72% da variabilidade. Ou seja, os componentes ambiental e genético explicam cerca de 98% de toda a variabilidade da variável TREC. Agora, num

Table 5: TREC AE model covariance components

	Estimates	Std.error	Percentage
Environment component (E)	3534.162	2773.739	25.8004
Genetic component (A)			
partoCesariana	9851.598	3647.523	71.9194
partoNormal	-10976.948	3140.646	-80.1348

gêmeo que teve parto normal, (o poder de) explicação cai 80%. Ou seja, num gêmeo com parto normal o componente genético não explica nada da variabilidade. Isso é justificado pela (baixa) representatividade nos dados, 7.0707071% apenas dos gêmeos tiveram parto normal.

KREC

Partimos do modelo AE com idade gestacional como covariável na média e fizemos a seleção de covariáveis na covariância. Das seis covariáveis, tipo de parto e zigocidade são significativas no componente E, ambiental. No componente A, genético, a variável parto é significativa.

Table 6: KREC AE model covariance components

	Estimates	Std.error	Percentage
Environment component (E)			
parto Cesariana. zigo cida de DZ	-8562.138	3940.7251	-62.1027
partoNormal	9185.825	4003.8748	66.6264
${\it zigocidadeMZ}$	9829.275	609.2463	71.2934
Genetic component (A)			
partoCesariana	22781.346	3823.2523	165.2371
partoNormal	-22636.617	3909.9002	-164.1873

Num gêmeo com parto tipo cesaria e dizigoto, nada da variabilidade do KREC é explicada pelo componente ambiental (-62%). Contudo, se mudamos para um gêmeo de parto normal a explicação cresce 66%, ou seja, 4% (-62 + 66) da variabilidade é explicada pelo componente ambiental. Num gêmeo monozigoto o percentual explicado é 9% (-62 + 71).

Quando olhamos para o componente genético a diferença entre tipos de parto é abismal. Num gëmeo dizigoto de parto tipo cesaria temos 103% (-62 + 165) da variabilidade unicamente explicada pelo componente genético. Tal efeito é tão grande mas ao mesmo incerto, que o percentual estoura. No caso de parto normal temos exatamente o contrário. O desbalancemento das frequências de tipo de parto na base de dados acaba gerando esses resultados "estranhos".

References

- Bates, Douglas, Martin Maechler, and Mikael Jagan. 2022. Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.4-1. https://CRAN.R-project.org/package=Matrix.
- Bonat, Wagner Hugo. 2018. "Multiple Response Variables Regression Models in R: The mcglm Package." Journal of Statistical Software 84 (4): 1–30. https://doi.org/10.18637/jss.v084.i04.
- ———. 2022. mglm4twin: Multivariate Generalized Linear Models for Twin Data. R package version 0.3.0. https://github.com/wbonat/mglm4twin.
- Bonat, Wagner Hugo, and Jacob V. B. Hjelmborg. 2022. "Multivariate Generalized Linear Models for Twin and Family Data." *Behavior Genetics* 52 (2): 123–40. https://doi.org/10.1007/s10519-021-10095-3.
- Bonat, Wagner Hugo, and Bent Jorgensen. 2016. "Multivariate Covariance Generalized Linear Models." *Journal of Royal Statistical Society Series C* 65: 649–75.
- Pedersen, Thomas Lin. 2020. patchwork: The Composer of Plots. R package version 1.1.1. https://CRAN.R-project.org/package=patchwork.
- R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org.
- Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2022. dplyr: A Grammar of Data Manipulation. R package version 1.0.9. https://CRAN.R-project.org/package=dplyr.
- Wickham, Hadley, and Maximilian Girlich. 2022. *tidyr: Tidy Messy Data*. R package version 1.2.0. https://CRAN.R-project.org/package=tidyr.
- Zhu, Hao. 2021. kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. R package version 1.3.4. https://CRAN.R-project.org/package=kableExtra.

Appendix

Figure 3: Gestational age and weight scatterplot with tendency curve in solid black.