Digital Logic Design

Lecture 03:

Number Systems

Decimal Number Representation

Example: 90134 (base-10, used by Homo Sapien)

$$= 90000 + 0 + 100 + 30 + 4$$

$$= 9*10^4 + 0*10^3 + 1*10^2 + 3*10^1 + 4*10^0$$

■ How did we get it?

Generic Number Representation

90134 $-9104 + 0*10^3 + 1*10^2 + 3*10^1 + 4*10^0$

■ $A_4 \dot{A}_3 \dot{A}_2 \dot{A}_1 \dot{A}_0$ for base-10 (or radix-10) ■ $= A_4 * 10^4 + A_3 * 10^3 + A_2 * 10^2 + A_1 * 10^1 + A_0 * 10^0$

(A is coefficient; b is base)
 Generalize for a given number N w/ base-b

Counting numbers with base-b

Base-10 How about Base-8

How about base-2

How about base-2

0	10	100	1000
1	11	101	1001
		110	1010
		111	1011
			1100
			1101
			1110
			1111

How about base-2

```
100 = 4
                             1000 = 8
0 = 0
       10 = 2
1 = 1
       11 = 3
                 101 = 5
                             1001 = 9
                 110 = 6
                             1010 = 10
                 111 = 7
                             1011 = 11
                             1100 = 12
                             1101 = 13
                             1110 = 14
                             1111 = 15
```

Binary = Decimal

Information Representation: Binary Numbers

- Radix = 2; Digits A_i can only take one of two values (0 or 1)
 - It is customary to refer to <u>b</u>inary dig<u>it</u>s as bits

	2	3	4	5	 8	 10	11	12	 16
	0001	001	01	01	01	01	01	01	1
	0010	002	02	02	02	02	02	02	2
	0011	010	03	0.3	03	03	03	0.3	3
	0100	011	10	04	04	04	04	04	4
	0101	012	11	10	0.5	05	0.5	0.5	5
	0110	020	12	11	06	06	06	06	6
V) _b	0111	021	13	12	07	07	07	07	7
	1000	022	20	1.3	10	08	08	08	8
	1001	100	21	14	11	09	09	09	9
	1010	101	22	20	12	10	0A	0A	A
	1011	102	23	21	13	11	10	0B	В
	1100	110	30	22	14	12	11	10	С
	1101	111	31	23	15	13	12	11	D
	1110	112	32	24	16	14	13	12	Е
	1111	120	33	30	17	15	14	13	F

Derive Numbers in Base-2

- Decimal (base-10)
 - **(25)**₁₀
- Binary (base-2)
 - **(11001)**₂

Exercise

Base-2

- Decimal (base-10)
 - (982)₁₀
- Binary (base-2)
 - **(1111010110)**₂

Base 8

- Decimal (base-10)
 - **(982)**₁₀
- Octal (base-8)
 - **(1726)**₈

Base 16

- Decimal (base-10)
- (982)₁₀

 Hexadecimal (base-16)
- So, what do we do when we count to 10??

Base 16

- $(982)_{10} = (3d6)_{16}$
- (3d6)₁₆ can be written as (0011 1101 0110)₂
- We use Base-16 (or Hex) a lot in computer world
 - Ex: A 32-bit address can be written as 0xfe8a7d20 (0x is an abbreviation of Hex)
 - Or in binary form
 1111_1110_1000_1010_0111_1101_0010_0000