Proof of $T_p \leq T_1/p + T_{\infty} \leq 2$ OPT based on a thread counting argument

Alexei Finski

$$T_p \le T_1/p + T_\infty$$

complete steps $\leq T_1/p$

Suppose # complete steps > T_1/p . The size of a complete step is p. The work performed is > T_1 . Contradiction.

incomplete steps $\leq T_{\infty}$

Wlog, let the execution time for each thread be unit time. Every path in G starts from a single source thread and has a length that is shorter than or equal to T_{∞} . Let s_i be the set of threads that consists of t_i , a thread in a longest path of G, and the threads executed in parallel to t_i given infinitely many processors.

After a greedy scheduler executes s_i , every thread in s_{i+1} is executable or executed. By induction, at any time before program completion there exists s_i^* that consists of executed and executable threads with at least one thread that is executable.

An incomplete step of a greedy scheduler must execute the last executable thread of s_i^* . Otherwise the step is complete. Thus # incomplete steps $\leq T_{\infty}$

$$T_1/p + T_{\infty} \le 2\text{OPT}$$

 $T_1/p \leq \text{OPT}$ and $T_{\infty} \leq \text{OPT}$.