Lógica

Lógica Proposicional Aula 02 – Semântica

Profa. Helena Caseli helenacaseli@ufscar.br

Como qualquer linguagem, é composta por

- Sintaxe (ou gramática)
 - Especifica como os símbolos se combinam para formar uma sequência válida

Semântica

 Especifica como as sequências válidas se relacionam entre si e qual o valor-verdade dessa relação

SEMÂNTICA

$$x = 3 + y$$

O que é?

- Na Matemática
 - O interesse não está no significado das variáveis, mas sim no relacionamento entre elas em uma equação
- Na Lógica
 - O interesse não está no significado das proposições, mas sim no relacionamento entre seus valoresverdade

SEMÂNTICA

Interpretação (I)

- Valor-verdade associado a uma fbf (wff) que especifica sua semântica (significado)
- É uma função cujo contradomínio possui apenas dois elementos (V e F)

Fonte: (Nicoletti, 2009, p. 16)

SEMÂNTICA

- Interpretação (I)
 - Fórmulas atômicas
 - Define-se V ou F como valor-verdade para átomos

р		р
V	ou	F

- Fórmulas compostas
 - Calcula-se o valor-verdade da fórmula composta usando as regras semânticas dos conectivos lógicos e os valores-verdade definidos para os átomos que a constituem

SEMÂNTICA

Interpretação (I)

- Negação
 - Se o valor-verdade de uma fbf α é V, o valor-verdade de sua negação é F
 - Se o valor-verdade de uma fbf α é F, o valor-verdade de sua negação é V

Tabela-verdade

р	¬p
V	F
F	V

SEMÂNTICA

- Interpretação (I)
 - Negação

A professora **não** é loira.

p: A professora é loira

$$I[\neg p] = V \text{ se } I[p] = F$$

$$I[\neg p] = F \text{ se } I[p] = V$$

SEMÂNTICA

Interpretação (I)

Conjunção

• O valor-verdade de uma conjunção α é V se todos os valores-verdade de suas subfórmulas forem V

• O valor-verdade de uma conjunção α é F se o valor-verdade de pelo menos uma de suas subfórmulas for

ı		
ı	_	
ı	_	

р	q	рлф
V	V	V
V	F	F
F	V	F
F	F	F

SEMÂNTICA

- Interpretação (I)
 - Conjunção

A professora é corinthiana **e** brasileira.

p: A professora é corinthiana, q: A professora é brasileira

$$I[p \land q] = V \text{ se } I[p] = V \underline{e} I[q] = V$$

$$I[p \land q] = F \text{ se } \begin{cases} I[p] = V \underline{e} I[q] = F \\ I[p] = F \underline{e} I[q] = V \end{cases}$$

$$I[p] = F \underline{e} I[q] = F$$

SEMÂNTICA

Interpretação (I)

- Disjunção
 - O valor-verdade de uma disjunção α é V se o valor-verdade de pelo menos uma de suas subfórmulas for V
 - O valor-verdade de uma disjunção α é F se todos os valores-verdade de suas subfórmulas forem F

р	q	pvq
V	V	V
V	F	V
F	V	V
F	F	F

SEMÂNTICA

- Interpretação (I)
 - Disjunção

A professora é corinthiana **ou** feliz.

p: A professora é corinthiana, q: A professora é feliz $I[p \lor q] = F \text{ se } I[p] = F \underline{e} \ I[q] = F$ $I[p] = V \underline{e} \ I[q] = V$ $I[p \lor q] = V \text{ se } \begin{cases} I[p] = V \underline{e} \ I[q] = F \end{cases}$ $I[p] = F \underline{e} \ I[q] = V$

SEMÂNTICA

Interpretação (I)

Condicional

- O valor-verdade de um condicional α é V se o valor-verdade do antecedente é F ou se o valor-verdade do consequente é V
- O valor-verdade de um condicional α é F se o valor-verdade do antecedente é V e do consequente é F

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

SEMÂNTICA

- Interpretação (I)
 - Condicional

Se você implorar 1 milhão de vezes então eu o perdoarei.

p: Você implorar 1 milhão de vezes, q: Eu o perdoarei $I[p \to q] = F \text{ se } I[p] = V \underline{e} \ I[q] = F$ $I[p] = V \underline{e} \ I[q] = V$ $I[p \to q] = V \text{ se } \begin{cases} I[p] = F \underline{e} \ I[q] = V \\ I[p] = F \underline{e} \ I[q] = F \end{cases}$

SEMÂNTICA

Interpretação (I)

Bicondicional

- O valor-verdade de um bicondicional α é V se o valor-verdade de suas subfórmulas forem iguais
- O valor-verdade de um bicondicional α é F se o valor-verdade de suas subfórmulas forem diferentes

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

SEMÂNTICA

- Interpretação (I)
 - Bicondicional

Angelina é casada com Brad **se e somente se** Brad é casado com Angelina.

p: Angelina é casada com Brad, q: Brad é casado com Angelina

$$I[p \leftrightarrow q] = V \text{ se } \left\{ I[p] = V \underline{e} \ I[q] = V \right\}$$

$$I[p] = F \underline{e} \ I[q] = F$$

$$I[p \leftrightarrow q] = F \text{ se } \left\{ I[p] = V \underline{e} \ I[q] = F \right\}$$

$$I[p] = F \underline{e} \ I[q] = V$$

Interpretação (I)

 Construa a tabela-verdade para os conectivos lógicos

	р	q	¬р	¬q	рлф	p v q	$p \rightarrow q$	$p \leftrightarrow q$
I ₃								
I ₄								

Interpretação (I)

 Construa a tabela-verdade para os conectivos lógicos

	р	q	¬р	¬q	рлд	pvq	$p \rightarrow q$	$p \leftrightarrow q$
	V	V	F	F	V	V	V	V
	V	F	F	V	F	V	F	F
I ₃	F	V	V	F	F	V	V	F
I ₄	F	F	V	V	F	F	V	V

Quantas linhas terá uma tabela-verdade com n átomos?

R. 2ⁿ

Interpretação (I)

Considerando a interpretação dos átomos abaixo

р	q	r
V	F	V

a)
$$p \rightarrow \neg q$$

$$b)$$
 p \wedge (q \vee r)

d)
$$(p \wedge r) \leftrightarrow (q \vee r)$$

$$e) \neg (q \land \neg r)$$

f)
$$p \rightarrow (\neg q \rightarrow r)$$

- 1. Defina o valor-verdade de cada uma das fbfs
- 2. Dê interpretações que alterem o valor-verdade de cada fórmula

Interpretação (I)

Considerando a interpretação dos átomos abaixo

р	q	r
V	F	V

a)
$$p \rightarrow \neg q$$

$$b)$$
 p \wedge (q \vee r)

d)
$$(p \wedge r) \leftrightarrow (q \vee r)$$

$$e) \neg (q \land \neg r)$$

f)
$$p \rightarrow (\neg q \rightarrow r)$$

- 1. Defina o valor-verdade de cada uma das fbfs
- R. Todas são V
- 2. Dê interpretações que alterem o valor-verdade de cada fórmula
- R. Nesse caso é para você mudar de V para F um ou mais dos valores de p, q ou r