ML Algorithms: Regression

Supervised Learning: Regression, Classification

Unsupervised Learning: Clustering

Linear Regression:

Predicting a real number as outcome. E.g -

• We have a a few (x,y) values.

X	Υ
0	2
1	3
2	5
3	4
4	6

- X independent variable and Y dependent variable
- Consider a line equation: y = ax+b

$$a = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$b = \frac{1}{n} \left(\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i \right)$$

- Thus, the equation: y' = 0.9x+2.2. : Regression Equation
- Now, using this equation we can find the values of y':

, , ,	•
X	Υ
0	2.2
1	3.1
2	4
3	4.1
4	5.8

- We can also predict the value of y from the regression equation, given the value of x.
- The green Line is the line y'=0.9x+2.2. The red dots are the actual values.

• <u>Linear Regression Performance Metrics/Cost Function/Error Estimation:</u>

1. Error: Actual value – predicted value = y - y'

2. Total error: $\Sigma(y-y')$

3. Mean error: $1/n * \Sigma(y-y')$

4. Mean squared error: $1/n * \Sigma (y - y')^2$

5. Mean absolute error: $1/n * |\Sigma(y-y')|$

6. RMSE(Root Mean Square Error): $\sqrt{\frac{\Sigma(y-y')^2}{n}}$

7. R square value (R^2): $1 - \frac{\Sigma(y_i - y_i')^2}{\Sigma(y_i - \bar{y})^2}$

Variability between actual and predicted value.

Total variability in y.

R^2: Lies between 0-1

When its value to close to 0: It indicates poor fit.

Values close to 1: Indicates a good fit.(However can not adequately conclude so)

Adjusted R^2 :
$$1-\frac{\Sigma \left(y_i-y_i'\right)^2/(n-p-1)}{\Sigma (yi-\bar{y})^2/(n-1)}$$
 , where p: no, of columns.

- When there is 1 independent variable: Simple linear regression
- When there are more than 1 independent variables: Multi Linear Regression.