Numerically Solving PDEs While Mapping Between Manifolds

Nathan King

Department of Mathematics Simon Fraser University

June 23, 2014

June 23, 2014

1/10

King (SFU) Manifold Mapping

Overview of Research

- Research involves numerical methods for solving PDEs (and variational problems) defined on surfaces.
- Work with are embedding methods, which embed the surface PDE in a higher dimensional space.
- For example, a PDE defined on a sphere is embedded in \mathbb{R}^3 .
- Embedding methods allow for standard, well studied numerical methods on cartesian grids to be used.

Outline

Level Set Method

Closest Point Method

Sextension of Level Set Method with Manifold Mapping

Level Set Method

- Level Set method illustrated with heat equation on a surface S.
- Heat equation defined on S is

$$\frac{\partial u}{\partial t} = \Delta_{\mathcal{S}} u.$$

- Embed S using a level set function $\phi : \mathbb{R}^3 \to \mathbb{R}$.
- Zero level set represents S, that is $S = \{ \phi = 0 \}$.
- Take ϕ to be the signed distance function of S.
- Signed distance function has property that $\|\nabla \phi\| = 1$.

Level Set Method

• Intrinsic gradient of u on S can be written in terms of gradients in \mathbb{R}^3 ,

$$\nabla_{\mathcal{S}} u = \mathcal{P}_{\nabla \phi} \nabla u.$$

Operator

$$\mathcal{P}_v = I - \frac{v \ v^T}{\|v\|^2}$$

projects any given vector into a plane orthogonal to v.

• Heat equation on S becomes

$$\frac{\partial u}{\partial t} = \nabla \cdot (\mathcal{P}_{\nabla \phi} \nabla u),$$

which is now defined in \mathbb{R}^3 .

King (SFU)

Closest Point Method

- Want to create embedding PDE which replaces intrinsic surface gradients with standard gradients.
- Obviously the embedding PDE and surface PDE will not agree for long times, however this is accurate initially and is sufficient to update the solution in time.
- A closest point representation of the surface is used.
- For any point $x \in \mathbb{R}^3$, let CP(x) denote the closest point to x in S.
- CP is a function from \mathbb{R}^3 to \mathbb{R}^3 that returns values lying in S.

Closest Point Method

- Embed the surface PDE by replacing surface gradients, $\nabla_{\mathcal{S}}$, with standard gradients, ∇ , in \mathbb{R}^3 .
- Alternate between two steps:
 - 1. Extend surface data into \mathbb{R}^3 using the closest point function, i.e. replace $u(\mathbf{x})$ with $u(CP(\mathbf{x}))$.
 - 2. Compute solution to embedding PDE using standard finite differences on Cartesian grid for one time step.

Mapping Between Manifolds

- Let $\mathcal M$ denote the source manifold and $\mathcal N$ the target manifold.
- Signed distance functions of ${\cal M}$ and ${\cal N}$ are ϕ and ψ , respectively.
- Goal is to compute a vector function $u: \mathcal{M} \to \mathcal{N}$ that minimizes

$$E = \frac{1}{2} \int \|\mathcal{P}_{\nabla \phi} \nabla u\|^2 \ \delta(\phi) d\mathcal{M}.$$

Gradient descent flow is

$$\frac{\partial u}{\partial t} = \mathcal{P}_{\nabla \psi}(\nabla \cdot (\mathcal{P}_{\nabla \phi} \nabla u)).$$

• $\mathcal{P}_{\nabla \psi}$ is the projection operator onto the tangent space of \mathcal{N} .

King (SFU)

Mapping Between Manifolds

References

M. Bertalmío, L.T. Cheng, S. Osher, G. Sapiro,

Variational problems and partial differential equations on implicit surfaces.

J. Comput. Phys. 174 (2) (2001) 759-780.

F. Mémoli, G. Sapiro, S. Osher,

Solving variational problems and partial differential equations mapping into general target manifolds,

J. Comput. Phys. 195 (2004) 263-292.

S. Ruuth, B. Merriman,

A simple embedding method for solving partial differential equations on surfaces,

J. Comput. Phys. 227 (2008) 1943-1961.

