Chapitre 40

Arithmétique dans \mathbb{Z} .

Sommaire.

1	Divisibilité dans $\mathbb Z$
	1.1 Définition et propriétés élémentaires
	1.2 Division euclidienne
	1.3 PPCM de deux entiers
	1.4 PGCD de deux entiers
2	Entiers premiers entre eux.
	2.1 Couples d'entiers premiers entre eux
	2.2 Produit de diviseurs, diviseurs d'un produit
	2.3 Le cas des diviseurs premiers
	2.4 Extension à un nombre fini de vecteurs
3	Théorème fondamental de l'arithmétique et applications.
	3.1 Le TFAr

Les propositions marquées de \bigstar sont au programme de colles.

1 Divisibilité dans \mathbb{Z}

1.1 Définition et propriétés élémentaires.

Définition 1

Soit $(a,b) \in \mathbb{Z}^2$. On dit que b divise a $(b \mid a)$ s'il existe $k \in \mathbb{Z}$ tel que a = kb.

On dit aussi que b est **diviseur** de a, ou que a est **multiple** de b.

Notations pour les ensembles de diviseurs et multiples de $a \in \mathbb{Z}$:

$$\mathcal{D}(a) = \{b \in \mathbb{Z} : b \mid a\} \qquad \text{et} \qquad a\mathbb{Z} = \{ak, k \in \mathbb{Z}\}.$$

Proposition 2: Faits immédiats.

Tous les entiers divisent 0 et 1 divise tous les entiers. Ajoutons que pour $(a, b, c) \in \mathbb{Z}^3$,

- 1. Si b est diviseur de a et si $a \neq 0$, alors $|b| \leq |a|$.
- $2. \ b \mid a \iff a\mathbb{Z} \subset b\mathbb{Z}.$
- 3. Si $c \mid a$ et $c \mid b$, alors $c \mid au + bv$, pour tous u et v dans \mathbb{Z} .

Preuve:

1. Supposons que $b \mid a$ et $a \neq 0$, alors $\exists k \in \mathbb{Z} \mid a = bk$ et |a| = |b||k|. De plus, $k \neq 0$ car $a \neq 0$, donc $|k| \geq 1$ et $|kb| \geq |b|$, on obtient bien $|a| \geq |b|$.

2. Supposons que $b \mid a$, alors $\exists k \in \mathbb{Z} \mid a = bk$, soit $m \in a\mathbb{Z} : \exists k' \in \mathbb{Z} \mid m = ak' \text{ donc } m = bkk' \text{ donc } m \in b\mathbb{Z}$. Supposons $a\mathbb{Z} \subset b\mathbb{Z}$, on a $a \in a\mathbb{Z}$ donc $a \in b\mathbb{Z}$ donc $b \mid a$.

3. Supposons que $c \mid a$ et $c \mid b : \exists k, k' \in \mathbb{Z} \mid a = kc, \ b = k'c$. Soient $u, v \in \mathbb{Z}$.

On a alors au + bv = kuc + k'vc = (ku + k'v)c avec $ku + k'v \in \mathbb{Z}$, donc $c \mid au + bv$.

Proposition 3: Plus une relation d'ordre!

Sur $\mathbb{Z},$ la relation divise est réflexive, transitive, mais pas antisymétrique. On a

$$\forall (a,b) \in \mathbb{Z}^2 \quad (a \mid b \text{ et } b \mid a) \iff (a=b \text{ ou } a=-b).$$

Dans le cas où $(a \mid b)$ et $(b \mid a)$, ont dit que a et b sont **associés**.

Preuve:

← Trivial.

Supposons que $a \mid b$ et $b \mid a$. Alors $\exists k, k' \in \mathbb{Z} \mid a = kb$ et b = k'a.

On a alors b = bkk'. Si b = 0, alors a = 0 donc a = b. Sinon, kk' = 1 donc $k = \pm 1$ et $a = \pm b$.

1.2 Division euclidienne.

Théorème 4

Soit $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$. Il existe un unique couple $(q,r) \in \mathbb{Z}^2$ tel que

$$a = bq + r$$
 et $0 \le r < b$.

Les entiers q et r sont appelés **quotient** et **reste** dans la division euclidienne de a par b.

Preuve:

Unicité:

Soit $(q,r) \in \mathbb{Z}^2$ et $(q',r') \in \mathbb{Z}^2$ avec $0 \le r,r' < b$ tels que a = bq + r et a = bq' + r'.

On a bq' + r' = bq + r donc b(q' - q) = r - r'. De plus, $0 \le r, r' < b$ donc $-b < -r' \le 0$.

Ainsi, $-b < r - r' < b \text{ donc } -b < b(q' - q) < b \text{ donc } -1 < q' - q < 1 \text{ donc } q' = q \text{ car } q - q' \in \mathbb{Z}.$

Donc $r - r' = b \cdot 0 = 0$ donc (q, r) = (q', r').

Existence:

On pose $q = \lfloor \frac{a}{b} \rfloor$ et r = a - bq. On a bien a = bq + r.

On a $\lfloor \frac{a}{b} \rfloor \leq \frac{a}{b} < \lfloor \frac{a}{b} \rfloor + 1$ donc $q \leq \frac{a}{b} < q+1$ donc $qb \leq a < qb+b$ donc $0 \leq a-bq < b$ donc $0 \leq r < b$.

Proposition 5

Soient a et b deux entiers relatifs.

L'entier b divise a si et seulement si le reste de la division euclidienne de a par |b| est nul.

Preuve:

Trivial.

Par unicité du reste.

1.3 PPCM de deux entiers.

Définition 6

Soient a, b deux entiers relatifs.

- 1. Si a et b sont non nuls, on appelle **Plus Petit Commun Multiple** de a et b, note $a \lor b$, ou encore $\operatorname{PPCM}(a,b)$, le plus petit élément strictement positif de $a\mathbb{Z} \cap b\mathbb{Z}$.
- 2. Si a ou b vaut 0, on pose $a \lor b = 0$.

Proposition 7

Soit $(a, b) \in \mathbb{Z}^2$. Leur PPCM $a \vee b$ est l'unique entier positif m tel que

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}.$$

Preuve:

Unicité:

Soient $m, m' \in \mathbb{N}$ tels que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$ et $a\mathbb{Z} \cap b\mathbb{Z} = m'\mathbb{Z}$.

Alors $m\mathbb{Z} = m'\mathbb{Z}$ donc m et m' sont associés (et positifs) donc m = m'.

Existence:

On a $a\mathbb{Z}$ sous-groupe de $(\mathbb{Z}, +)$, $b\mathbb{Z}$ aussi, par intersection de groupes, $a\mathbb{Z} \cap b\mathbb{Z}$ l'est aussi.

Or les sous-groupes de \mathbb{Z} sont de la forme $m\mathbb{Z}$ avec $m \in \mathbb{N}$. Donc il existe un unique $m \in \mathbb{N}$ tel que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$.

Vérifions que m = PPCM(a, b). Clair: m est multiple commun de a et b.

De plus, $a\mathbb{Z} \cap b\mathbb{Z} \cap \mathbb{N} = m\mathbb{Z} \cap \mathbb{N} = \{0, m, 2m, ...\}.$

Donc si m = 0, PPCM(a, b) = 0, sinon PPCM(a, b) = m.

Théorème 8

Soient a et b deux entier relatifs. Leur PPCM $a \lor b$ est l'unique entier positif m tel que

- 1. $a \mid m \text{ et } b \mid m$, le PPCM est un multiple commun.
- 2. $\forall \mu \in \mathbb{Z}, (a \mid \mu \text{ et } b \mid \mu) \Longrightarrow m \mid \mu, \text{ tout multiple commun est multiple du PPCM.}$

Preuve:

Unicité: Soient m, m' satisfaisant 1. et 2.

On a $m \mid m'$ et $m' \mid m$, par antisymétrie sur \mathbb{N} , m = m'.

Existence: Posons m = PPCM(a, b).

Il satisfait 1. par définition. Soit $\mu \in \mathbb{Z}$ un multiple commun, alors $\mu \in a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, donc $m \mid \mu$.

1.4 PGCD de deux entiers.

Définition 9

Soient a, b deux entiers relatifs.

- 1. Si a et b sont non nuls, on appelle **Plus Grand Commun Diviseur** de a et b, note $a \wedge b$, ou encore $\operatorname{PGCD}(a,b)$, le plus grand élément positif de $\mathcal{D}(a) \cap \mathcal{D}(b)$.
- 2. Si a = b = 0, on pose $a \wedge b = 0$.

Proposition 10

$$\forall (a,b) \in \mathbb{Z}^2 \quad a \wedge b = |a| \wedge |b|$$

Preuve:

On a:

$$\mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(|a|) \cap \mathcal{D}(|b|).$$

On n'a plus qu'à passer au max.

Proposition 11: Lemme d'Euclide.

Soient a, b, c, d quatre entiers relatifs. Si a = bc + d, alors on a $a \wedge b = b \wedge d$.

Preuve:

Supposons que a = bc + d. Se convaincre que $\mathcal{D}(a, b) = \mathcal{D}(b, d)$ puis passer au max.

Méthode

Ce lemme est l'idée principale de l'algorithme d'Euclide, vu dans le "petit" cours d'arithmétique. Si $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$, on peut appliquer cet algorithme à |a| et |b| pour calculer $a \wedge b$.

Proposition 12: Le sous-groupe de \mathbb{Z} sous-jacent.

Soit $(a,b) \in \mathbb{Z}^2$. Notons $a\mathbb{Z} + b\mathbb{Z} = \{au + bv, (u,v) \in \mathbb{Z}^2\}$. C'est un sous-groupe de \mathbb{Z} .

Le PGCD $a \wedge b$ est l'unique entier positif d tel que

$$a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}.$$

En particulier, il existe un couple $(u, v) \in \mathbb{Z}^2$ tel que d = au + bv (relation de Bézout).

Preuve:

On a $a\mathbb{Z} + b\mathbb{Z} = \{au + bv \mid (u, v) \in \mathbb{Z}^2\}.$

C'est un sous-groupe de \mathbb{Z} car $0 = a \cdot 0 + b \cdot 0 \in a\mathbb{Z} + b\mathbb{Z}$ et,

Pour $(m, m') \in (a\mathbb{Z} + b\mathbb{Z})^2$, $\exists (u, v, u', v') \in \mathbb{Z} \mid m = au + bv \text{ et } m' = au' + bv'$

Donc $m - m' = a(u - u') + b(v - v') \in a\mathbb{Z} + b\mathbb{Z}$.

D'après le cours sur les structures algébriques, il existe $d \in \mathbb{N} \mid a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Unicité: Si d, d' conviennent, $d\mathbb{Z} = d'\mathbb{Z}$, ils sont associés et positits donc d = d'.

Montrons que d = PGCD(a, b).

On a $d \mid a$ et $d \mid b$ car $a\mathbb{Z} \subset a\mathbb{Z} + b\mathbb{Z} \subset d\mathbb{Z}$, pareil pour $b\mathbb{Z}$.

Soit $\delta \in \mathbb{N}$ diviseur de a et b, on a $\exists (u, v) \in \mathbb{Z}^2 \mid d = uv + bv$.

Puisque δ divise a et b, alors δ divise au + bv = d.

Si $d \neq 0$, $\delta \mid d \Longrightarrow \delta \leq d$, sinon, d = 0 donc a = b = 0 donc d = PGCD(a, b) = 0.

Méthode : Écriture effective d'une relation de Bézout.

En remontant les divisions euclidiennes écrites lors de l'exécution de l'algorithme d'Euclide.

Proposition 13

$$\forall (a, b) \in \mathbb{Z}^2, \quad \forall k \in \mathbb{Z}, \quad \text{PGCD}(ka, kb) = |k| \cdot \text{PGCD}(a, b).$$

Preuve

On a $a\mathbb{Z} + b\mathbb{Z} = (a \wedge b)\mathbb{Z}$ donc $ka\mathbb{Z} + kb\mathbb{Z} = |k|(a \wedge b)\mathbb{Z}$.

On a aussi $ka \wedge kb = |k|(a \wedge b)$.

Théorème 14: Une caractérisation du PGCD

Soient a et b deux entiers relatifs. Leur PGCD $a \wedge b$ est l'unique entier positif d tel que

1. $d \in \mathcal{D}(a) \cap \mathcal{D}(b)$, (le PGCD est un diviseur commun).

2. $\forall \delta \in \mathcal{D}(a) \cap \mathcal{D}(b)$ $\delta \mid d$ (tous les diviseurs communs divisent le PGCD).

Preuve:

Notons d = PGCD(a, b), montrons que d satisfait 1. et 2...

Il satisfait 1. par définition.

Soit $\delta \in \mathbb{Z} \mid \delta \mid a$ et $\delta \mid b$, $\exists (u, v) \in \mathbb{Z}^2 \mid d = au + bv$.

Il est clair que $\delta \mid au + bv$ donc $\delta \mid d$, d satisfait donc 2.

Soit $d \in \mathbb{N}$ un entier qui satisfait 1. et 2.

Si d = 0, alors a = b = 0 donc d = PGCD(a, b) = 0.

Si $d \neq 0,$ alors $d \mid a$ et $d \mid b,$ le plus grand d'après 2.

Corrolaire 15

 $\forall (a,b) \in \mathbb{Z}^2 \quad \mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(a \wedge b).$

Preuve:

claire par transitivité.

Soit $\delta \in \mathcal{D}(a) \cap \mathcal{D}(b)$, on a établi qu'un diviseur commun divise le PGCD, donc $\delta \in \mathcal{D}(a \wedge b)$.

Proposition 16

$$\forall (a,b) \in \mathbb{Z}^2, \quad \text{PGCD}(a,b) \cdot \text{PPCM}(a,b) = |ab|.$$

Preuve:

On note $d = a \wedge b$ et $m = a \vee b$.

Puisque $d \mid a$ et $d \mid b$, $\exists (a',b') \in \mathbb{Z}^2 \mid a = da'$ et b = db'.

On a da'b' = ab' = a'b donc da'b' est multiple de a et b, donc $m \mid da'b'$.

Donc $md \mid (da')(db')$ donc $md \mid ab$.

On a $\exists (u,v) \in \mathbb{Z}^2 \mid d=au+bv$ et $\exists (k,k') \mid m=ak=bk'$, donc md=amu+bmv=ab(k'u+kv) donc $md \mid ab$.

Alors ab et md sont associés, $ab = \pm md$ donc md = |ab|.

2 Entiers premiers entre eux.

2.1 Couples d'entiers premiers entre eux.

Définition 17

On dit que deux entiers sont **premiers entre eux** si leur PGCD vaut 1.

Proposition 18

Deux entiers naturels non nuls a et b sont premiers entre eux si et seulement si $a \lor b = |ab|$.

Proposition 19

Soit $(a,b) \in \mathbb{Z}^2 \setminus \{(0,0)\}$ et $d = a \wedge b$.

Si a' et b' sont les deux entiers relatifs tels que a = da' et b = db', alors $a' \wedge b' = 1$.

D.....

On a $\operatorname{PGCD}(a,b)=d$ donc $\operatorname{PGCD}(da',db')=d$ donc $d\operatorname{PGCD}(a',b')=d$ or $d\neq 0$ car $(a,b)\neq (0,0)$.

On retrouve bien que PGCD(a', b') = 1.

Théorème 20: de Bézout.

$$\forall (a,b) \in \mathbb{Z}^2 \quad a \wedge b = 1 \iff \exists (u,v) \in \mathbb{Z}^2 \mid au + bv = 1.$$

Preuve:

Supposons qu'il existe $(u, v) \in \mathbb{Z}^2$ tels que au + bv = 1.

Notons $d := a \wedge b$, il divise a et b donc au + bv. Donc $d \mid 1$, c'est 1.

 \implies Supposons que $a \wedge b = 1$, alors $a\mathbb{Z} + b\mathbb{Z} = 1\mathbb{Z}$ donc $1 \in a\mathbb{Z} + b\mathbb{Z}$ donc $\exists (u, v) \in \mathbb{Z}^2 \mid au + bv = 1$.

Corrolaire 21

Soit $(a, b, c) \in \mathbb{Z}^3$.

- 1. Si $a \wedge b = 1$ et $a \wedge c = 1$, alors $a \wedge (bc) = 1$.
- 2. Plus généralement, si a est premier avec chacun des m entiers $b_1, ..., b_m$ $(m \in \mathbb{N}^*)$, alors il est premier avec leur produit $b_1...b_m$.
- 3. Si $a \wedge b = 1$, alors pour tout $(n, p) \in \mathbb{N}^2$, $a^n \wedge b^p = 1$.

Preuve:

1. Supposons $a \wedge b = 1$ et $a \wedge c = 1$.

D'après le théorème de Bézout, $\exists (u,v) \in \mathbb{Z}^2 \mid au+bv=1 \text{ et } \exists (u',v') \in \mathbb{Z}^2 \mid au'+cv'=1$

Donc (au + bv)(au' + cv') = 1 donc a(auu' + ucv' + bu'v) + bc(vv') = 1 donc $a \wedge bc = 1$.

2. Tout pareil.

3. Supposons $a \wedge b = 1$ alors $a \wedge b^p = 1$ et $b^p \wedge a = 1$ donc $b^p \wedge a^n = 1$ (d'après 2, par récurrence).

 $\overline{\mathrm{Donc}} \ a^n \wedge b^p = 1.$

2.2 Produit de diviseurs, diviseurs d'un produit.

Proposition 22: Produit de diviseurs premiers entre eux.

$$\forall (a_1, a_2, b) \in \mathbb{Z}^3 \quad \begin{cases} a_1 \mid b \text{ et } a_2 \mid b \\ a_1 \wedge a_2 = 1 \end{cases} \implies a_1 a_2 \mid b.$$

Preuve:

Supposons que $a_1 \mid b$ et $a_2 \mid b$ et $a_1 \wedge a_2 = 1$.

Alors $|a_1a_2| = a_1 \vee a_2$, or le PPCM divise tous les multiples communs, en particulier, $a_1a_2 \mid b$.

Théorème 23: Lemme de Gauss.

$$\forall (a, b, c) \in \mathbb{Z}^3, \quad \begin{cases} a \mid bc \\ a \land b = 1 \end{cases} \implies a \mid c.$$

Preuve:

Supposons que $a \mid bc$ et $a \land b = 1$ donc $\exists k \in \mathbb{Z} \mid bc = ak$.

D'après le théorème de Bézout, $\exists (u,v) \in \mathbb{Z}^2 \mid au+bv=1$.

On a c = acu + bcv = a(cu + kv) donc $a \mid c$.

Exemple 24

1. Soit $P = a_n X^n + ... + a_0 \in \mathbb{Z}[X]$.

Montrer que si $\frac{p}{q}$ est racine de P avec $p \wedge q = 1$, alors $p \mid a_0$ et $q \mid a_n$.

2. Factoriser $X^3 + 2X^2 - 4X - 3$ dans $\mathbb{R}[X]$.

Solution:

1. On a $P(\frac{p}{q}) = 0$ donc $a_n \left(\frac{p}{q}\right)^n + \dots + a_0 = 0$ donc $a_n p^n + \dots + a_0 q^n = 0$.

Ainsi, $p(a_n^{n-1} + ... + a_1 q^{n-1}) = -a_0 q^n$ donc $p \mid a_0 q^n$ or $p \land q^n = 1$ donc $p \mid a_0$.

En factorisant par q, on obtient aussi que $q \mid a_n$.

2. D'après 1, $p \mid 3$ et $q \mid 1$ donc les seuls candidats : $\frac{p}{q} \in \{-3, -1, 1, 3\}$.

On a alos $P = (X+3)(X^2 - X - 1) = (X+3)(X-\varphi)(X-\psi)$ où $\varphi = \frac{1+\sqrt{5}}{2}$ et $\psi = \frac{1-\sqrt{5}}{2}$.

2.3 Le cas des diviseurs premiers.

Définition 25

On appelle **nombre premier** tout entier p supérieur à 2 dont les diviseurs sont 1, p, -1 et -p.

Proposition 26

Tout entier naturel supérieur ou égal à 2 possède un diviseur premier.

Prouve .

On l'avait fait par récurrence forte au premier semestre.

Proposition 27

Deux entiers relatifs sont premiers entre eux si et seulement si ils n'admettent aucun nombre premier comme diviseur commun.

Preuve :

 \implies Par contraposée, supposons qu'il existe p premier tel que $p \mid a$ et $p \mid b$.

Puisque p divise les deux, il divise le PGCD, or $p \ge 2$ donc le PGCD est différent de 1.

Par contraposée, supposons que a et b ne sont pas premiers entre-eux, alors $a \land b \ge 2$.

D'après la proposition précédente, le PGCD a un diviseur premier p, donc $p \mid a$ et $p \mid b$.

Proposition 28

Si a est un entier et p un nombre premier, alors $p \mid a$ ou p est premier avec a.

Preuve:

Notons $d = p \wedge a$, il divise p, alors d = p ou d = 1.

Mais si d = p, alors $p \mid a$, sinon si d = 1, $a \land p = 1$.

Proposition 29

Soit $(a, b) \in \mathbb{Z}^2$ et p un nombre premier.

- 1. Si $p \mid ab$, alors $p \mid a$ ou $p \mid b$.
- 2. Si p divise un produit d'entiers, alors il divise l'un des facteurs.

Preuve:

1. Supposons que $p \mid ab$.

Si $p\mid a,$ on a fini. Sinon, $p\wedge a=1$ d'après 28, donc $p\mid b$ d'après 23.

2. Récurrence, trivial.

2.4 Extension à un nombre fini de vecteurs.

Définition 30

Soit $n \in \mathbb{N}^*$ et $(a_1, ..., a_n) \in \mathbb{Z}^n \setminus \{(0, ..., 0)\}.$

Le plus grand diviseur positif commun à $a_1, ..., a_n$ est appelé leur **PGCD** et noté:

$$a_1 \wedge ... \wedge a_n$$
.

On convient que le PGCD de n entiers nuls vaut 0.

Proposition 31

Soit $n \in \mathbb{N}^*$, $(a_1, ..., a_n) \in \mathbb{Z}^n$. Leur PGCD est l'unique entier positif d tel que

$$a_1\mathbb{Z} + \ldots + a_n\mathbb{Z} = d\mathbb{Z}$$

En particulier,

$$\exists (u_1, ..., u_n) \in \mathbb{Z}^n \quad d = a_1 u_1 + ... + a_n u_n.$$

Proposition 32

$$\forall (a_1, ..., a_n) \in \mathbb{Z}^n, \quad \forall k \in \mathbb{Z}, \quad PGCD(ka_1, ..., ka_n) = |k| \cdot PGCD(a_1, ..., a_n).$$

Proposition 33

Soit $n \in \mathbb{N}^*$ et $a_1, ..., a_{n+1}$ des entiers relatifs. Alors,

$$a_1 \wedge ... \wedge a_n \wedge a_{n+1} = (a_1 \wedge ... \wedge a_n) \wedge a_{n+1}$$

Preuve:

Notons $d_n = a_1 \wedge ... \wedge a_n$, $d_{n+1} = a_1 \wedge ... \wedge a_n \wedge a_{n+1}$ et $d'_{n+1} = d_n \wedge a_{n+1}$.

D'une part, d'après la proposition précédente:

$$a_1\mathbb{Z} + \ldots + a_n\mathbb{Z} + a_{n+1}\mathbb{Z} = d_{n+1}\mathbb{Z}.$$

D'autre part,

$$a_1 \mathbb{Z} + \dots + a_n \mathbb{Z} + a_{n+1} \mathbb{Z} = (a_1 \mathbb{Z} + \dots + a_n \mathbb{Z}) + a_{n+1} \mathbb{Z}$$
$$= d_n \mathbb{Z} + a_{n+1} \mathbb{Z}$$
$$= (d_n \wedge a_{n+1}) \mathbb{Z}$$
$$= d'_{n+1} \mathbb{Z}.$$

Ceci amène que d_{n+1} et d_{n+1}' sont associés et donc égaux par positivité.

Proposition 34

Soit $n \in \mathbb{N}^*$, $(a_1, ..., a_n) \in \mathbb{Z}^n$ et d leur PGCD, on a

$$\bigcap_{k=1}^{n} \mathcal{D}(a_k) = \mathcal{D}(d).$$

Définition 35

Des entiers relatifs $a_1, ..., a_n$ sont dits **premiers entre eux dans leur ensemble** si leur PGCD est égal à 1, ou de manière équivalente si 1 et -1 sont les seuls diviseurs communs.

Ils sont deux à deux premiers entre eux si

$$\forall (i,j) \in [1,n]^2, \ i \neq j \Longrightarrow a_i \land a_j = 1.$$

Exemple 36

Justifier que si n entiers $(n \ge 2)$ sont premiers entre eux deux-à-deux, ils le sont dans leur ensemble.

Les entiers 6, 10 et 15 sont premiers entre-eux dans leur ensemble, mais pas deux-à-deux.

Solution:

Soit $a_1, ..., a_n \in \mathbb{Z}^n$ premiers entre-eux deux-à-deux.

Soit $d = a_1 \wedge ... \wedge a_n$, alors $d \mid a_1 \text{ et } d \mid a_2 : \text{il divise } a_1 \wedge a_2 = 1 \text{ donc } d = 1$.

Théorème 37

Soit $n \in \mathbb{N}^*$ et $(a_1, ..., a_n) \in \mathbb{Z}^n$.

 $a_1,...,a_n$ sont premiers entre eux dans leur ensemble $\iff \exists (u_1,...,u_n) \in \mathbb{Z}^n \quad \sum_{i=1}^n a_i u_i = 1.$

Proposition 38

Soit $n \in \mathbb{N}^*$ et $(a_1, ..., a_n) \in \mathbb{Z}^n$ et $b \in \mathbb{Z}$.

Si tous les a_i divisent b, et si les a_i sont deux-à-deux premiers entre eux, alors $a_1...a_n$ divise b.

Preuve:

Supposons que $a_1, ..., a_n$ divisent b et sont deux-à-deux premiers entre eux.

Alors, $a_1 | b$, $a_2 | b$, et $a_1 \wedge a_2 = 1$ donc $a_1 a_2 | b$.

De plus, $a_1a_2 \mid b$ et $a_3 \mid b$ et $a_1a_2 \wedge a_3 = 1$ donc $a_1a_2a_3 \mid b$.

En itérant, on obtient le résultat.

3 Théorème fondamental de l'arithmétique et applications.

3.1 Le TFAr.

Théorème 39: Théorème fondamental de l'arithmétique.

Soit n un entier supérieur à 2. Il existe un entier naturel r non nul et r nombres premiers $p_1 < ... < p_r$, ainsi que des entiers naturels non nuls $\alpha_1, ..., \alpha_r$ tels que

$$n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}.$$

Cette décomposition de n en facteurs premiers est unique.

Preuve:

Existence:

Si n est premier c'est bon. Sinon, $\exists n_1, n_2 \in [2, n] \mid n = n_1 n_2$.

Il faut raisonner sur n_1 et n_2 et les décomposer par récurrence forte.

Unicité: On considère deux décompositions $n=p_1^{\alpha_1}...p_r^{\alpha_r}=q_1^{\beta_1}...q_s^{\beta_s}$ où $r,s\in\mathbb{N}^*$ et les p_i,q_i sont premiers. On suppose les p_i et q_i distincts deux-à-deux.

Montrons que $\{p_1,...,p_r\} = \{q_1,...,q_s\}$. Pour $i \in [1,r]$, on a que p_i divise $q_1^{\beta_1}...q_s^{\beta_s}$.

D'après le lemme d'euclide, $\exists j \in [1, s] \mid p_i \mid q_j$ donc $p_j = q_j$ car ils sont tous les deux premiers.

On a donc $\{p_1,...,p_r\}\subset\{q_1,...,q_s\}$. On a l'autre inclusion de la même manière.

Finalement, $\{p_1,...,p_r\} = \{q_1,...,q_s\}$, donc r = s par égalité de cardinaux.

On a $n=p_1^{\alpha_1}...p_r^{\alpha_r}=p_1^{\beta_1}...p_r^{\beta_r}$. Montrons que pour $i\in [1,r]$, on a $\alpha_i=\beta_i$.

Supposons que $\alpha_i < \beta_i$ SPDG. Alors:

$$p_i^{\alpha_i} \prod_{j \neq i} p_j^{\alpha_j} = p_i^{\beta_i} \prod_{j \neq i} p_j^{\beta_j}.$$

Puisque \mathbb{Z} est intègre et que $p_i^{\alpha_i} \neq 0$, on a:

$$\prod_{j \neq i} p_j^{\alpha_j} = p_i^{\beta_i - \alpha_i} \prod_{j \neq i} p_j^{\beta_j}.$$

Donc $p_i \mid \prod_{j \neq i} p_j^{\alpha_j}$, donc p_i divise l'un des p_j pour $j \neq i$, ce qui est absurde. On a donc $\alpha_i = \beta_i$.