COMPUTATIONAL PHYSICS – PH 354

HOMEWORK DUE ON JANUARY 30, 2025

Most of the HW problems are taken from Mark Newman's Computational Physics book. All HWs must be submitted as Google Colab notebooks that the TAs have permission to execute. Each exercise can be answered using code and text cells in the notebook. Each HW must be submitted as a single notebook named "Lastname_Firstname_HW1.ipynb" and the link to it must be submitted via Teams assignment submission. Each question carries equal weight. Use Pythonic style of coding (e.g., vector operations) and follow good programming practices.

Exercise 1: A ball dropped from a tower

A ball is dropped from a tower of height h with initial velocity zero. Write a program that asks the user to enter the height in meters of the tower and then calculates and prints the time the ball takes until it hits the ground, ignoring air resistance. Use your program to calculate the time for a ball dropped from a $100 \,\mathrm{m}$ high tower.

Exercise 2: Altitude of a satellite

A satellite is to be launched into a circular orbit around the Earth so that it orbits the planet once every *T* seconds.

- a) Write a program that asks the user to enter the desired value of *T* and then calculates and prints out the correct altitude of the satellite above the Earth's surface in meters.
- b) Use your program to calculate the altitudes of satellites that orbit the Earth once a day (so-called "geosynchronous" orbit), once every 90 minutes, and once every 45 minutes. What do you conclude from the last of these calculations?
- c) Technically a geosynchronous satellite is one that orbits the Earth once per *sidereal day*, which is 23.93 hours, not 24 hours. Why is this? And how much difference will it make to the altitude of the satellite?

Exercise 3: Write a program to ask the user for the Cartesian coordinates x, y of a point in two-dimensional space, and calculate and print the corresponding polar coordinates, with the angle θ given in degrees.

Exercise 4: A spaceship travels from Earth in a straight line at relativistic speed v to another planet x light years away. Write a program to ask the user for the value of x and the speed v as a fraction of the speed of light c, then print out the time in years that the spaceship takes to reach its destination (a) in the rest frame of an observer on Earth and (b) as perceived by a passenger on board the ship. Use your program to calculate the answers for a planet 10 light years away with v = 0.99c.

Exercise 5: Quantum potential step

A well-known quantum mechanics problem involves a particle of mass m that encounters a one-dimensional potential step, like this:

The particle with initial kinetic energy E and wavevector $k_1 = \sqrt{2mE}/\hbar$ enters from the left and encounters a sudden jump in potential energy of height V at position x=0. By solving the Schrödinger equation, one can show that when E>V the particle may either (a) pass the step, in which case it has a lower kinetic energy of E-V on the other side and a correspondingly smaller wavevector of $k_2 = \sqrt{2m(E-V)}/\hbar$, or (b) it may be reflected, keeping all of its kinetic energy and an unchanged wavevector but moving in the opposite direction.

Suppose we have a particle with mass equal to the electron mass $m=9.11\times 10^{-31}\,\mathrm{kg}$ and energy 10 eV encountering a potential step of height 9 eV. Write a Python program to compute and print out the transmission and reflection probabilities.

Exercise 6: Catalan numbers

The Catalan numbers C_n are a sequence of integers 1, 1, 2, 5, 14, 42, 132... that play an important role in quantum mechanics and the theory of disordered systems. (They were central to Eugene Wigner's proof of the so-called semicircle law.) They are given by

$$C_0 = 1$$
, $C_{n+1} = \frac{4n+2}{n+2} C_n$.

Write a program that prints in increasing order all Catalan numbers less than or equal to one billion.

Exercise 7: The Madelung constant

In condensed matter physics the Madelung constant gives the total electric potential felt by an atom in a solid. It depends on the charges on the other atoms nearby and their locations. Consider for instance solid sodium chloride—table salt. The sodium chloride crystal has atoms arranged on a cubic lattice, but with alternating sodium and chlorine atoms, the sodium ones having a single positive charge +e and the chlorine ones a single negative charge -e, where e is the charge on the electron. If we label each position on the lattice by three integer coordinates (i, j, k), then the sodium atoms fall at positions where i + j + k is even, and the chlorine atoms at positions where i + j + k is odd.

Consider a sodium atom at the origin, i = j = k = 0, and let us calculate the Madelung constant. If the spacing of atoms on the lattice is a, then the distance from the origin to the atom at position (i, j, k) is

$$\sqrt{(ia)^2 + (ja)^2 + (ka)^2} = a\sqrt{i^2 + j^2 + k^2},$$

and the potential at the origin created by such an atom is

$$V(i,j,k) = \pm \frac{e}{4\pi\epsilon_0 a\sqrt{i^2 + j^2 + k^2}},$$

with ϵ_0 being the permittivity of the vacuum and the sign of the expression depending on whether i + j + k is even or odd. The total potential felt by the sodium atom is then the sum of this quantity over all other atoms. Let us assume a cubic box around the sodium at the origin, with L atoms in all directions. Then

$$V_{ ext{total}} = \sum_{\substack{i,j,k=-L \ ext{not } i=j=k=0}}^{L} V(i,j,k) = rac{e}{4\pi\epsilon_0 a} M,$$

where M is the Madelung constant, at least approximately—technically the Madelung constant is the value of M when $L \to \infty$, but one can get a good approximation just by using a large value of L.

Write a program to calculate and print the Madelung constant for sodium chloride. Use as large a value of *L* as you can, while still having your program run in reasonable time—say in a minute or less.

Exercise 8: The semi-empirical mass formula

In nuclear physics, the semi-empirical mass formula is a formula for calculating the approximate nuclear binding energy *B* of an atomic nucleus with atomic number *Z* and mass number *A*:

$$B = a_1 A - a_2 A^{2/3} - a_3 \frac{Z^2}{A^{1/3}} - a_4 \frac{(A - 2Z)^2}{A} + \frac{a_5}{A^{1/2}},$$

where, in units of millions of electron volts, the constants are $a_1 = 15.67$, $a_2 = 17.23$, $a_3 = 0.75$, $a_4 = 93.2$, and

$$a_5 = \begin{cases} 0 & \text{if } A \text{ is odd,} \\ 12.0 & \text{if } A \text{ and } Z \text{ are both even,} \\ -12.0 & \text{if } A \text{ is even and } Z \text{ is odd.} \end{cases}$$

- a) Write a program that takes as its input the values of A and Z, and prints out the binding energy for the corresponding atom. Use your program to find the binding energy of an atom with A=58 and Z=28. (Hint: The correct answer is around 490 MeV.)
- b) Modify your program to print out not the total binding energy B, but the binding energy per nucleon, which is B/A.
- c) Now modify your program so that it takes as input just a single value of the atomic number Z and then goes through all values of A from A = Z to A = 3Z, to find the one that has the largest binding energy per nucleon. This is the most stable nucleus with the given atomic number. Have your program print out the value of A for this most stable nucleus and the value of the binding energy per nucleon.
- d) Modify your program again so that, instead of taking Z as input, it runs through all values of Z from 1 to 100 and prints out the most stable value of A for each one. At what value of Z does the maximum binding energy per nucleon occur?

Exercise 9: Binomial coefficients

The binomial coefficient $\binom{n}{k}$ is an integer equal to

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n \times (n-1) \times (n-2) \times \ldots \times (n-k+1)}{1 \times 2 \times \ldots \times k}$$

when $k \ge 1$, or $\binom{n}{0} = 1$ when k = 0.

- a) Using this form for the binomial coefficient, write a user-defined function binomial(n,k) that calculates the binomial coefficient for given n and k. Make sure your function returns the answer in the form of an integer (not a float) and gives the correct value of 1 for the case where k = 0.
- b) Using your function write a program to print out the first 20 lines of "Pascal's triangle." The nth line of Pascal's triangle contains n+1 numbers, which are the coefficients $\binom{n}{0}$, $\binom{n}{1}$, and so on up to $\binom{n}{n}$. Thus the first few lines are

11

121

1331

14641

c) The probability that an unbiased coin, tossed n times, will come up heads k times is $\binom{n}{k}/2^n$. Write a program to calculate (a) the total probability that a coin tossed 100 times comes up heads exactly 60 times, and (b) the probability that it comes up heads 60 or more times.

Exercise 10: Plotting experimental data

In the on-line resources you will find a file called sunspots.txt, which contains the observed number of sunspots on the Sun for each month since January 1749. The file contains two columns of numbers, the first being the month and the second being the sunspot number.

- a) Write a program that reads in the data and makes a graph of sunspots as a function of time.
- b) Modify your program to display only the first 1000 data points on the graph.

c) Modify your program further to calculate and plot the running average of the data, defined by

$$Y_k = \frac{1}{2r} \sum_{m=-r}^r y_{k+m} ,$$

where r = 5 in this case (and the y_k are the sunspot numbers). Have the program plot both the original data and the running average on the same graph, again over the range covered by the first 1000 data points.

Exercise 11: Curve plotting

Although the plot function is designed primarily for plotting standard *xy* graphs, it can be adapted for other kinds of plotting as well.

a) Make a plot of the so-called *deltoid* curve, which is defined parametrically by the equations

$$x = 2\cos\theta + \cos 2\theta$$
, $y = 2\sin\theta - \sin 2\theta$,

where $0 \le \theta < 2\pi$. Take a set of values of θ between zero and 2π and calculate x and y for each from the equations above, then plot y as a function of x.

- b) Taking this approach a step further, one can make a polar plot $r = f(\theta)$ for some function f by calculating r for a range of values of θ and then converting r and θ to Cartesian coordinates using the standard equations $x = r \cos \theta$, $y = r \sin \theta$. Use this method to make a plot of the Galilean spiral $r = \theta^2$ for $0 \le \theta \le 10\pi$.
- c) Using the same method, make a polar plot of "Fey's function"

$$r = e^{\cos \theta} - 2\cos 4\theta + \sin^5 \frac{\theta}{12}$$

in the range $0 \le \theta \le 24\pi$.

Exercise 12: Deterministic chaos and the Feigenbaum plot

One of the most famous examples of the phenomenon of chaos is the *logistic map*, defined by the equation

$$x' = rx(1-x). (1)$$

For a given value of the constant r you take a value of x—say $x = \frac{1}{2}$ —and you feed it into the right-hand side of this equation, which gives you a value of x'. Then you take that value and feed it back in on the right-hand side again, which gives you another value, and so forth. This is a *iterative map*. You keep doing the same operation over and over on your value of x, and one of three things happens:

- 1. The value settles down to a fixed number and stays there. This is called a *fixed point*. For instance, x = 0 is always a fixed point of the logistic map. (You put x = 0 on the right-hand side and you get x' = 0 on the left.)
- 2. It doesn't settle down to a single value, but it settles down into a periodic pattern, rotating around a set of values, such as say four values, repeating them in sequence over and over. This is called a *limit cycle*.
- 3. It goes crazy. It generates a seemingly random sequence of numbers that appear to have no rhyme or reason to them at all. This is *deterministic chaos*. "Chaos" because it really does look chaotic, and "deterministic" because even though the values look random, they're not. They're clearly entirely predictable, because they are given to you by one simple equation. The behavior is *determined*, although it may not look like it.

Write a program that calculates and displays the behavior of the logistic map. Here's what you need to do. For a given value of r, start with $x = \frac{1}{2}$, and iterate the logistic map equation a thousand times. That will give it a chance to settle down to a fixed point or limit cycle if it's going to. Then run for another thousand iterations and plot the points (r, x) on a graph where the horizontal axis is r and the vertical axis is x. You can either use the plot function with the options "ko" or "k." to draw a graph with dots, one for each point, of you can use the scatter function to draw a scatter plot (which always uses dots). Repeat the whole calculation for values of r from 1 to 4 in steps of 0.01, plotting the dots for all values of r on the same figure and then finally using the function show once to display the complete figure.

Your program should generate a distinctive plot that looks like a tree bent over onto its side. This famous picture is called the *Feigenbaum plot*, after its discoverer Mitchell Feigenbaum, or sometimes the *figtree plot*, a play on the fact that it looks like a tree and Feigenbaum means "figtree" in German.

Give answers to the following questions:

- a) For a given value of *r* what would a fixed point look like on the Feigenbaum plot? How about a limit cycle? And what would chaos look like?
- b) Based on your plot, at what value of *r* does the system move from orderly behavior (fixed points or limit cycles) to chaotic behavior? This point is sometimes called the "edge of chaos."

The logistic map is a very simple mathematical system, but deterministic chaos is seen in many more complex physical systems also, including especially fluid dynamics and the weather. Because of its apparently random nature, the behavior of chaotic systems is difficult to predict and strongly affected by small perturbations in outside conditions. You've probably heard of the classic exemplar of chaos in weather systems, the *butterfly effect*, which was popularized by physicist Edward Lorenz in 1972 when he gave a lecture to the American Association for the Advancement of Science entitled, "Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?" (Although arguably the first person to suggest the butterfly effect was not a physicist at all, but the science fiction writer Ray Bradbury in his famous 1952 short story *A Sound of Thunder*, in which a time traveler's careless destruction of a butterfly during a tourist trip to the Jurassic era changes the course of history.)

Comment: There is another approach for computing the Feigenbaum plot, which is neater and faster, making use of Python's ability to perform arithmetic with entire arrays. You could create an array r with one element containing each distinct value of r you want to investigate: $[1.0, 1.01, 1.02, \ldots]$. Then create another array x of the same size to hold the corresponding values of x, which should all be initially set to 0.5. Then an iteration of the logistic map can be performed for all values of r at once with a statement of the form x = r*x*(1-x). Because of the speed with which Python can perform calculations on arrays, this method should be significantly faster than the more basic method above.