

# Author :- Prateek Kumar Singh

Virtual Internship Program

**Beginer Level Tasks** 

## Task 6 - Prediction using Decision Tree Algorithm

### The purpose is if we feed any new data to this classifier, it would be able to predict the right class accordingly.

Dataset: https://bit.ly/3kXTdox

create the Decision Tree classifier and visualize it graphically.

1. Importing The Libraries

In [1]: **import** pandas **as** pd import matplotlib.pyplot as plt

import seaborn as sns

4.6

5.0

3.1

1.5

0.2 Iris-setosa

0.2 Iris-setosa

|      | <pre>from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn import metrics</pre> |  |  |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|      | 2. Loading The Dataset                                                                                                                      |  |  |  |  |  |  |  |  |  |
| [2]: | <pre>data=pd.read_csv("Iris.csv") data.head()</pre>                                                                                         |  |  |  |  |  |  |  |  |  |

|         |   | a=pd.read_<br>a.head() | csv("Iris.  | csv")        |             |             |
|---------|---|------------------------|-------------|--------------|-------------|-------------|
| Out[2]: | S | sepal_length           | sepal_width | petal_length | petal_width | species     |
|         | 0 | 5.1                    | 3.5         | 1.4          | 0.2         | Iris-setosa |
|         | 1 | 4.9                    | 3.0         | 1.4          | 0.2         | Iris-setosa |
|         | 2 | 4.7                    | 3.2         | 1.3          | 0.2         | Iris-setosa |

## In [4]: data.columns

|         | 3. Preprocessing of Data |  |  |  |  |  |  |  |  |
|---------|--------------------------|--|--|--|--|--|--|--|--|
| In [3]: | data.shape               |  |  |  |  |  |  |  |  |
| Out[3]: | (150, 5)                 |  |  |  |  |  |  |  |  |
| T [4]   | data calumna             |  |  |  |  |  |  |  |  |

| Out[4]: | Index(['sepal<br>'speci<br>dtype='           |     | epal_width', | 'petal_length | ı', 'petal_v | vidth',        |             |         |  |  |  |  |
|---------|----------------------------------------------|-----|--------------|---------------|--------------|----------------|-------------|---------|--|--|--|--|
| In [5]: | data.info                                    |     |              |               |              |                |             |         |  |  |  |  |
| Out[5]: | <pre><bound method<="" pre=""></bound></pre> |     |              |               | -            | n_petal_length | petal_width | species |  |  |  |  |
|         | 0                                            | 5.1 | 3.5          | 1.4           | 0.2          | Iris-setosa    |             |         |  |  |  |  |
|         | 1                                            | 4.9 | 3.0          | 1.4           | 0.2          | Iris-setosa    |             |         |  |  |  |  |
|         | 2                                            | 4.7 | 3.2          | 1.3           | 0.2          | Iris-setosa    |             |         |  |  |  |  |

| Jul | t[5]: O | 5.1 | 3.5 | 1 1 |     |                |  |
|-----|---------|-----|-----|-----|-----|----------------|--|
|     | -1      |     |     | 1.4 | 0.2 | Iris-setosa    |  |
|     | Τ.      | 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa    |  |
|     | 2       | 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa    |  |
|     | 3       | 4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa    |  |
|     | 4       | 5.0 | 3.6 | 1.4 | 0.2 | Iris-setosa    |  |
|     |         |     |     |     |     |                |  |
|     | 145     | 6.7 | 3.0 | 5.2 | 2.3 | Iris-virginica |  |
|     | 146     | 6.3 | 2.5 | 5.0 | 1.9 | Iris-virginica |  |
|     | 147     | 6.5 | 3.0 | 5.2 | 2.0 | Iris-virginica |  |
|     | 148     | 6.2 | 3.4 | 5.4 | 2.3 | Iris-virginica |  |
|     | 149     | 5.9 | 3.0 | 5.1 | 1.8 | Iris-virginica |  |

sepal\_width petal\_length petal\_width

Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

species

# [150 rows x 5 columns]>

<bound method NDFrame.describe of</pre>

5.1

4.9

4.7

4.6

5.0

0

0

0

50

50

In [13]: #Pie plot to show the overall types of Iris classifications

Iris-virginica

sepal\_width

4. Independent and Dependent Variables

X = data.loc[:, features].values

y = data.species

In [21]: dtree = DecisionTreeClassifier() dtree.fit(X\_train,y\_train)

class\_name= data.species.unique()

plt.figure(figsize=(20,15))

In [24]: **from** sklearn **import** tree

features = ['sepal\_length','sepal\_width','petal\_length','petal\_width']

5. Splitting the Dataset Into Training and Test Sets

In [20]: X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size = 0.33, random\_state=0)

6. Defining the Decision Tree Classifier and Fitting the Training Set

-0.11

data['species'].value\_counts()

Name: species, dtype: int64

3.5

3.0

3.2

3.1

3.6

data.describe

sepal\_length

sepal\_width petal\_length

petal\_width

dtype: int64

Iris-setosa

Iris-versicolor

Iris-virginica

species

In [6]:

In [7]:

Out[7]:

In [9]:

Out[9]:

In [17]:

1

2

3

|                                | 145                     | 6.7 | 3.0 | 5.2 | 2.3 | Iris-virginica |  |  |  |  |  |
|--------------------------------|-------------------------|-----|-----|-----|-----|----------------|--|--|--|--|--|
|                                | 146                     | 6.3 | 2.5 | 5.0 | 1.9 | Iris-virginica |  |  |  |  |  |
|                                | 147                     | 6.5 | 3.0 | 5.2 | 2.0 | Iris-virginica |  |  |  |  |  |
|                                | 148                     | 6.2 | 3.4 | 5.4 | 2.3 | Iris-virginica |  |  |  |  |  |
|                                | 149                     | 5.9 | 3.0 | 5.1 | 1.8 | Iris-virginica |  |  |  |  |  |
|                                | [150 rows x 5 columns]> |     |     |     |     |                |  |  |  |  |  |
| <pre>data.isnull().sum()</pre> |                         |     |     |     |     |                |  |  |  |  |  |

0.2

0.2

0.2

0.2

0.2

sepal\_length

1.4

1.4

1.3

1.5

1.4

# <AxesSubplot:ylabel='species'> Iris-setosa 33.3333%

#Correlation Heatmap

33.3333%

-0.11

1

 $data['species'].value\_counts().plot(kind = 'pie', autopct = '%1.4f%%', shadow = True, explode = [0.05,0.05,0.05])$ 



#### - 0.2 -0.42 0.87 0.96 0.0 petal\_width -0.2 -0.36 0.96 sepal\_length sepal\_width petal\_length petal width

0.87

-0.42

0.82

-0.36

- 0.8

- 0.6

- 0.4

# DecisionTreeClassifier() 7. Visualizing the decision tree

```
tree.plot_tree(dtree, filled = True, feature_names = feature_name, class_names= class_name)
          [Text(0.5, 0.916666666666666, 'petal_width <= 0.75 \ngini = 0.666 \nsamples = 100 \nvalue = [34, 31, 35] \nclass = Iris-virginica'),
Out[24]:
           Text(0.4, 0.75, 'gini = 0.0 \land samples = 34 \land value = [34, 0, 0] \land class = Iris-setosa'),
           Text(0.6, 0.75, 'petal_width <= 1.75 \cdot gini = 0.498 \cdot gnples = 66 \cdot gnples = [0, 31, 35] \cdot gnples = Iris-virginica'),
```

 $Text(0.4, 0.58333333333333333334, 'petal_length <= 5.05 \ngini = 0.165 \nsamples = 33 \nvalue = [0, 30, 3] \nclass = Iris-versicolor'),$  $Text(0.3, 0.4166666666666666, 'sepal_length <= 5.0 in = 0.062 in samples = 31 invalue = [0, 30, 1] inclass = Iris-versicolor'),$ 

class = Iris-virginica

qini = 0.0

samples = 2

value = [0, 0, 2]

petal width  $\leq 1.75$ 

gini = 0.498

gini = 0.0

samples = 1

value = [0, 1, 0]

class = Iris-versicolor

petal length <= 4.85

gini = 0.059samples = 33

value = [0, 1, 32]

class = Iris-virginica

gini = 0.0

samples = 1

value = [0, 0, 1]

class = Iris-virginica

gini = 0.0

samples = 31

value = [0, 0, 31]

class = Iris-virginica

sepal length  $\leq 5.95$ 

gini = 0.5

samples = 2

value = [0, 1, 1]

class = Iris-versicolor

 $Text(0.2, 0.25, 'sepal_width <= 2.45 \\ ngini = 0.5 \\ nsamples = 2 \\ nvalue = [0, 1, 1] \\ nclass = Iris-versicolor'),$ 

 $Text(0.9, 0.4166666666666667, 'gini = 0.0 \nsamples = 31 \nvalue = [0, 0, 31] \nclass = Iris-virginica')]$ 

gini = 0.0

samples = 34

value = [0, 30, 3]

class = Iris-versicolor

feature\_name = ['sepal\_length', 'sepal\_width', 'petal\_length', 'petal\_width']

```
Text(0.1, 0.0833333333333333333, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1, 0] \nclass = Iris-versicolor'),
Text(0.3, 0.083333333333333333, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0, 1] \nclass = Iris-virginica'),
Text(0.4, 0.25, 'gini = 0.0 \land samples = 29 \land u = [0, 29, 0] \land class = Iris-versicolor'),
Text(0.5, 0.41666666666666667, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 0, 2] \nclass = Iris-virginica'),
```

 $Text(0.8, 0.5833333333333334, 'petal_length <= 4.85 \cdot ngini = 0.059 \cdot nsamples = 33 \cdot nvalue = [0, 1, 32] \cdot nclass = Iris-virginica'),$  $Text(0.7, 0.41666666666666667, 'sepal_length <= 5.95 in = 0.5 in samples = 2 invalue = [0, 1, 1] inclass = Iris-versicolor'),$  $Text(0.6, 0.25, 'gini = 0.0 \land samples = 1 \land value = [0, 1, 0] \land class = Iris-versicolor'),$ Text(0.8, 0.25, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 1]\nclass = Iris-virginica'),

petal width  $\leq 0.75$ gini = 0.666samples = 100value = [34, 31, 35]

samples = 66value = [34, 0, 0]value = [0, 31, 35]class = Iris-setosa class = Iris-virginica petal length  $\leq 5.05$ gini = 0.165samples = 33

sepal length  $\leq 5.0$ 

samples = 1

value = [0, 0, 1]

class = Iris-virginica

'Iris-virginica', 'Iris-setosa', 'Iris-virginica', 'Iris-setosa',

'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor',

'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa',

gini = 0.062samples = 31value = [0, 30, 1]class = Iris-virginica class = Iris-versicolor sepal width  $\leq 2.45$ gini = 0.0gini = 0.5samples = 29samples = 2value = [0, 29, 0]value = [0, 1, 1]class = Iris-versicolor class = Iris-versicolor gini = 0.0gini = 0.0

samples = 1

value = [0, 1, 0]

class = Iris-versicolor

In [25]: y\_pred = dtree.predict(X\_test)

Accuracy: 0.96

y\_pred

8. Prediction on test data

'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa', 'Iris-virginica', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica', ' 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica', 'Iris-virginica', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

8. Checking the Accuracy of The Model

In [30]: print("Accuracy:", metrics.accuracy\_score(y\_test, y\_pred))

In [27]: from sklearn.metrics import classification\_report print(classification\_report(y\_test, y\_pred))

precision

array(['Iris-virginica', 'Iris-versicolor', 'Iris-setosa',

Iris-setosa 1.00 1.00 1.00 16 Iris-versicolor 0.95 0.95 Iris-virginica 0.93 0.93 0.93 15

0.96 50 accuracy 0.96 0.96 0.96 50 macro avg weighted avg 0.96 50 0.96 0.96 from sklearn.metrics import confusion\_matrix In [29]: confusion\_matrix(y\_test, y\_pred) array([[16, 0, 0], Out[29]:

recall f1-score

[ 0, 18, 1], [ 0, 1, 14]], dtype=int64) 8. Predicting the Output Class for Random Values for Petal and Sepal Length and Width

Thank You

Out[33]

dtree.predict([[9, 3.1, 5, 1.5]]) dtree.predict([[4.1, 3.0, 5.1, 1.8]])

array(['Iris-virginica'], dtype=object)

dtree.predict([[5, 3.6, 1.4, 0.2]]) In [31]: array(['Iris-setosa'], dtype=object) Out[31]:

array(['Iris-versicolor'], dtype=object) Out[32]: