CS321 - Autonomic Computer Systems

Introduction to Control Theory 2008-10-02

Christian Tschudin, University of Basel

Using slides from:

- J. L. Hellerstein, IBM
- Z. Gao, Cleveland State University
- C. Lu, University of Virginia

Overview

- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

Feedback control theory, vs ...

- Adaptive resource management heuristics
 - Laborious design/tuning/testing iterations
 - Not enough confidence in face of untested workload
- Queuing theory
 - Doesn't handle feedbacks
 - Not good at characterizing transient behavior in overload
- Feedback control theory
 - Systematic theoretical approach for analysis and design
 - Predict system response and stability to input

Control design methodology

System Models

System ID vs. First Principle

Feedback Control of Computing Systems *M1: Introduction*

Joseph L. Hellerstein

IBM Thomas J Watson Research Center, NY
hellers@us.ibm.com

September 21, 2004

Book reference:

"Feedback Control of Computing Systems", Hellerstein, Diao, Parekh, Tilbury, Wiley, 2004. Slides: http://swig.stanford.edu/~fox/cs444a/ct_tutorial/

Overview

- Open loop, closed loop
- Control system architecture
- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

Example: Control of Lotus Notes

RIS = RPCs in System

Control Model

Control error: e(k)=r(k)-y(k)

System model: y(k)=(0.43)y(k-1)

+(0.47)u(k-1)

Lab Exercise

Block Diagram

ARX* Models

Control error: $e(k)=r^*-y(k)$

P controller: u(k)=Ke(k)

System model: y(k)=(0.43)y(k-1)

+(0.47)u(k-1)

- Spreadsheet file ctclass-M1
 - **Proportional** controller: $Maxusers(k+1) = K(r^*-y(k))$
 - What is the effect of K on
 - Accuracy: (want $r^*=y(k)=200$)
 - Stability
 - Convergence rate
 - Overshoot

*ARX is autoregressive with an external input

Application of CT to a DBMS

59% Reduction in Total RT

Without Controller

With Controller

Components

Target system: what is controlled

Controller: exercises control

Transducer: translates measured outputs

Data

Reference input: objective

Control input: manipulated to affect output

Disturbance input: other factors that affect the target system

Transduced output: result of manipulation

Given target system, transducer
Control theory finds controller
that adjusts control input
to achieve measured
output in the presence of
disturbances.

Block Diagram

Overview

- Open loop, closed loop
- Control system architecture
- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

Properties of Control Systems

Performance specifications

Different "Responses"

(Pure 2nd Order Transfer Functions)

Control Theory in Two Slides: System Identification

MaxUsers—Notes Server Actual RIS
$$u(k)$$
 $y(k)$

Model of System Dynamics

$$y(k) = a_1 y(k-1) + b_1 u(k-1)$$

Transfer Function

$$N(z) = \frac{b_1}{z - a_1}$$

Control Theory in Two Slides: Control Design

H(z) = Closed Loop Transfer Function

Integral Control Law

$$u(t) = u(t-1) + Ke(t)$$

Poles of *H(z)*

Ki = 0.1; Delay = 0

Example: Control & Response in an Email Server

Lab 2: Modifications to the Lotus Notes Simulation

Control error: $e(k) = r^* - y(k)$

I controller: v(k)=v(k-1)+Ke(k)

System model: w(k)=(0.43)w(k-1)

+(0.47)u(k-1)

Disturbance input: u(k) = v(k) + d(k)

Sensor: y(k)=(0.8)y(k-1)

+0.72w(k)-0.66w(k-1)

$$K=1$$
, $r(k)=200$, $d(k)=10$

Overview

- Open loop, closed loop
- Control system architecture
- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

Digital Control

Digital controler

- Discrete time
- Discrete values
- Usually: continuous time, continous values
 - → differential equations
 - → use of Laplace transform
- With digital controler:
 - → difference equations
 - → use of z-Transform

Overview

- Open loop, closed loop
- Control system architecture
- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

Z-Transform of a Signal

<u>Time domain representation</u> <u>z domain representation</u>

$$u(0)=1$$
 $1z^{0} + u(1)=3$ $3z^{-1} + u(2)=2$ $2z^{-2} + u(3)=5$ $5z^{-3} + u(4)=6$ $6z^{-4}$

$$z^0 = 1$$
: $k = 0$ (current time)

z is time shift; z^{-1} is time delay \Longrightarrow

 z^{-1} : k = 1 (one time unit in the future)

 z^{-2} : k = 2 (two time units in the future)

If $\{u(k)\}=u(0),u(1),...$ is a signal, then its z-Transform is

$$U(z) = \bigvee_{k=0}^{\infty} u(k) z^{-k}$$

Write the Z-Transforms or Plots for the Following Finite Signals

$$U(z) = -2 + 4z^{-1} + 5z^{-2} - z^{-3} + 4z^{-4}$$

$$V(z) = zU(z) = 4 + 5z^{-1} - z^{-2} + z^{-3}$$

(Drop exponents >0.)

Common Signals: Impulse

Example:
$$5z^{-3} \Leftrightarrow u(3) = 5$$

Common Signals: Unit Step W(z)

$$Y(z) = 1z^{0} + 1z^{-1} + 1z^{-2} + \dots$$

$$= \frac{1}{1 - z^{-1}}$$

$$= \frac{z}{z - 1}$$

Properties of z-Transforms of Signals

Signals:
$$U(z) = u(0)z^{0} + u(1)z^{-1} + u(2)z^{-2} + ...$$

 $V(z) = v(0)z^{0} + v(1)z^{-1} + v(2)z^{-2} + ...$
Shift: $zU(z) = u(0)z^{1} + u(1)z^{0} + u(2)z^{-1} + ...$
 $= u(1)z^{0} + u(2)z^{-1} + ...$
Delay: $U(z)/z = u(0)z^{-1} + u(1)z^{-2} + u(2)z^{-3} + ...$
Scaling: $aU(z) = au(0)z^{0} + au(1)z^{-1} + au(2)z^{-2} + ...$
 $= z$ -Transform of $\{au(k)\}$
Sum of signals: $u(0)z^{0} + u(1)z^{-1} + u(2)z^{-2} + ... + v(0)z^{0} + v(1)z^{-1} + v(2)z^{-2} + ...$
 $= (u(0) + v(0))z^{0} + (u(1) + v(1))z^{-1} + (u(2) + v(2))z^{-2} + ...$
 $= U(z) + V(z)$

Infinite Length Signals

$$U(z) = 5 + 5z^{-1} + 5z^{-2} + \dots$$
$$= \frac{5z}{z-1}$$

Construct a Z-Transform for the Following Infinite Length Signal

$$Y(z) = 5W(z) + 3z^{-10} + 5z^{-11}W(z)$$

Common Signals: Geometric

Geometric:
$$y(k) = a^k$$

$$Y(z) = 1 + az + a2z2 + \dots$$
$$= \frac{z}{z - a}$$

$$Y(z) = 1 + 0.8z^{-1} + 0.64z^{-2} + \dots$$
$$= \frac{z}{z - 0.8}$$

Overview

- Open loop, closed loop
- Control system architecture
- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

Poles of a Z-Transform

Definition: Values of z for which the denominator is 0

Easy to find the poles of a geometric:
$$V(z) = \frac{z}{z-a}$$
 Pole is a.

Quick exercises: What are the poles of the following Z-Transforms?

$$Y(z) = \frac{5z}{z - 1} + \frac{2z}{z - 0.8}$$
 Easy if sum of geometrics

$$V(z) = \frac{3z}{z^2 - 0.5z + 0.06}$$
 Harder if expanded polynomial

Poles determine key behaviors of signals

Effect of Pole on the Signal

$$y(k) = a^k \Leftrightarrow \frac{z}{z-a}$$

Why?

$$\frac{z}{z-a} = 1 + az + a^2z^2 + \dots \Leftrightarrow (1, a, a^2, \dots)$$

- What happens when
 - |a| is larger?
 - |a| > 1?
 - **a**<0?

- Larger |*a*|
 - Slower convergence
- |a| > 1
 - Does not converge
- **a**<0
 - Oscillates

Final Value Theorem

- Provides an easy way to determine the steady state value of a signal
 - *Limit as *k* becomes large

$$v(\infty) = \lim_{z \to 1} (z - 1)V(z)$$

(if V(z) has all of its poles inside the unit circle)

$$\lim_{z \to 1} (z-1) \frac{z}{z-1} = 1$$

= 1 Final value of the unit step is 1.

$$z \lim_{z \to 1} (z - 1)1 = 0$$

Final value of the impulse is 0.

$$\lim_{z \to 1} (z-1) \frac{z}{z-a} = 0$$
, if *a* is inside the unit circle

Overview

- Open loop, closed loop
- Control system architecture
- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

"Transfer Function" - Motivation and Definition

Motivation:

ARX model relates u(k) to y(k)

Transfer function expresses this relationship in the z domain

$$\xrightarrow{U(z)} G(z) \xrightarrow{Y(z)}$$

$$G(z) = \frac{\text{Output}}{\text{Input}} = \frac{Y(z)}{U(z)}$$

or
$$Y(z) = G(z)U(z)$$

assuming initial conditions are 0.

A transfer function is specified in terms of its input and output.

Intuition for G(z): Effect of "kicking the system"

Constant Transfer Function

$$y(k) = au(k)$$

$$y(k)$$

$$U(z)$$
 a $Y(z)$

$$Y(z) = aU(z)$$

$$G(z) = \frac{Y(z)}{U(z)} = a$$

Time-Delay Transfer Function

$$y(k) = u(k-1)$$

$$y(k)$$

$$U(z) \qquad Y(z)$$

$$Y(z) = z^{-1}U(z)$$

 $G(z) = \frac{Y(z)}{U(z)} = z^{-1}$

Combining Simple Transfer Functions

$$y(k) = au(k-1)$$

$$y(k) = \frac{y(k)}{y(k)}$$

$$U(z)$$
 az^{-1} $Y(z)$

$$Y(z) = az^{-1}U(z)$$
$$G(z) = \frac{Y(z)}{U(z)} = az^{-1}$$

Additional Terms in T.F.

$$y(k) = au(k-1) + bu(k-2)$$
 $y(k)$

$$U(z) \longrightarrow az^{-1} + bz^{-2} \longrightarrow Y(z)$$

$$Y(z) = (az^{-1} + bz^{-2})U(z)$$

$$G(z) = \frac{Y(z)}{U(z)} = az^{-1} + bz^{-2}$$

Geometric Sum of T.F.

$$y(k) = u(k) + au(k-1) + a^2u(k-2) + ...$$
 $y(k)$

$$U(z)$$
 1 + az^{-1} + a^2z^{-2} + ... $Y(z)$

$$Y(z) = (1 + az^{-1} + a^2z^{-2} + ...)U(z)$$

$$G(z) = \frac{Y(z)}{U(z)} = 1 + az^{-1} + a^2z^{-2} + \dots = \frac{z}{z-a}$$

$$U(z)$$
 $Z/(z-a)$ $Y(z)$

T.F. Interpretation

Signal generated by an impulse input

Example:

$$G(z) = \frac{Y(z)}{U(z)}$$

$$Y(z) = G(z)U(z) = G(z)(1)$$

$$G(z) = \frac{z}{z - 0.5} = 1 + 0.5z^{-1} + 0.25z^{-2} + 0.125z^{-3} + 0.0625z^{-4} + \dots$$

Complicated Transfer Functions

Decompose into a sum of geometrics

$$G(z) = \frac{0.1z}{z^2 - 0.5z + 0.06}$$

$$= \frac{z}{z - 0.3} - \frac{z}{z - 0.2}$$

$$= 1 + 0.3z^{-1} + 0.09z^{-2} + \dots -1 - 0.2z^{-1} - 0.04z^{-2} + \dots$$

$$= 0.1z^{-1} + 0.05z^{-2} + \dots$$

- Partial fraction expansion allows rational polynomials to be decomposed into a sum of geometrics
- Poles of the original polynomial are the poles of the geometrics

Converting ARX Models into T.F.

Approach

- Replace u(k+n) by $z^nU(z)$ and replace y(k+n) by $z^nY(z)$
- Express Y(z) as a function of U(z)
- Divide both sides by U(z)

Example:

T.S. Model:
$$y(k+1) = 0.43y(k) + 0.47u(k)$$

1:
$$zY(z) = 0.43Y(z) + 0.47U(z)$$

2:
$$(z-0.43)Y(z) = 0.47U(z); Y(z) = \frac{0.47}{z-0.43}U(z)$$

$$3: \frac{Y(z)}{U(z)} = \frac{0.47}{z - 0.43}$$

Converting T.F. into ARX Model

Approach

- Express transfer function as Y(z)=G(z)U(z)
- Multiply both sides by the denominator of G(z)
- Convert Y(z) and U(z) into the time domain

$$G(z) = \frac{z}{z - 0.3}$$

$$Y(z) = \frac{z}{z - 0.3} U(z)$$

$$Y(z)(z-0.3) = zU(z)$$

$$zY(z) \Leftrightarrow y(k+1)$$

$$0.3Y(z) \Leftrightarrow 0.3y(k)$$

$$zU(z) \Leftrightarrow u(k+1)$$

$$y(k+1)-0.3y(k) = u(k+1)$$

$$y(k) = 0.3y(k-1) + u(k)$$

Example 2:

$$G(z) = \frac{0.1z}{z^2 - 0.5z + 0.06}$$

$$Y(z) = \frac{0.1z}{z^2 - 0.5z + 0.06}U(z)$$

$$Y(z)(z^2-0.5z+0.06)=0.1zU(z)$$

$$y(k) = 0.5y(k-1) + 0.06y(k-2) + 0.1u(k-1)$$

Transfer Functions In Series

$$w(k+1) = (0.43)w(k) + (0.47)u(k) y(k+1) = 0.8y(k) + 0.72w(k) - 0.66w(k-1) ?$$

$$U(z) \qquad W(z) \qquad H(z) \qquad Y(z) \qquad \Leftrightarrow \qquad U(z) \qquad G(z)H(z) \qquad Y(z)$$

$$\frac{Y(z)}{U(z)} = \frac{W(z)}{U(z)} \frac{Y(z)}{W(z)} = G(z)H(z)$$

T.F. provide an easy way to analyze the behavior of complex structures.

Poles of a Transfer Function

Poles: Values of z for which the denominator is 0.

Example:

$$H(z) = \frac{0.1z}{z^2 - 0.5z + 0.06} = \frac{z}{z - 0.3} - \frac{z}{z - 0.2}$$

Poles: 0.3, 0.2

Poles

- Determine stability
- Major effect on settling time, overshoot

$$G(z) = \frac{z}{z-a} = 1 + az^{-1} + a^2z^{-2} + a^3z^{-3} + \dots$$

Almost All You'll Ever Need to Know About Poles

$$G(z) = \frac{z}{z - a} = 1 + az^{-1} + a^{2}z^{-2} + a^{3}z^{-3} + \dots$$

Steady State Gain (ssg) of a Transfer Function

Definition and result: Steady state divided by steady state input.

from final value thm

ssg of
$$G(z)$$
 is $\frac{y(\infty)}{u(\infty)} = G(1)$

Example:

$$u(\infty) = 1 \qquad G(z) = \frac{z}{z - 0.5} \qquad y(\infty) = 2$$

$$\frac{z}{1.5} \qquad \frac{y(\infty)}{u(\infty)} = \frac{2}{1} = 2 = G(1)$$

Settling Time (k_s) of a System

from geometric

Definition and result: Time until an input signal is within 2% of its steady state

 $k_S \approx \frac{-4}{\log|a|}$, where | a | is the largest pole of G(z)

Examples:

$$G(z) = \frac{z}{z - 0.5} \qquad k_{\rm S} \approx \frac{-4}{\log 0.5} \approx 6$$

$$G(z) = \frac{0.34z - 0.31}{z^3 - 1.23z^2 + 0.34z},$$

poles: 0, 0.43, 0.8

$$k_{\rm S} \approx \frac{-4}{\log 0.8} \approx 18$$

0.5

2

Summary of Key Results

- Interpretation of transfer functions
 - Signal created by an impulse (impulse response)
 - Sum of time delayed effects
 - Encoding of a ARX model
- Transfer functions in series
 - End-to-end T.F. is the product of the individual T.F.
- Steady state gain
 - Magnitude of effect on the output for a unit change in input
- Settling time
 - Time until steady state is reached after applying a unit input

Key Results for LTI Systems (LTI = Linear Time Invariant)

Stable if |a| < 1, where a is the largest pole of G(z)

$$k_S \approx \frac{-4}{\log|a|}$$
, where | a | is the largest pole of $G(z)$

ssg of
$$G(z)$$
 is $\frac{y(\infty)}{u(\infty)} = G(1)$

Adding signals:

If $\{a(k)\}$ and $\{b(k)\}$ are signals, then $\{c(k)=a(k)+b(k)\}$ has Z-Transform A(z)+B(z).

Transfer functions in series

$$U(z) \qquad W(z) \qquad H(z) \qquad Y(z)$$
is equivalent to
$$U(z) \qquad G(z)H(z) \qquad Y(z)$$

Overview

- Open loop, closed loop
- Control system architecture
- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

Basic Controllers

Proportional (P) Control

$$u(k) = K_p e(k)$$

$$K(z) = \frac{U(z)}{E(z)} = K_p$$

Integral (I) Control

$$u(k+1) = K_{I}u(k) + e(k+1)$$

$$K(z) = \frac{U(z)}{E(z)} = \frac{K_{I}z}{z-1}$$

 K_P and K_I are called **control gains**.

Conclusions from P vs. I Comparison

$$r(k)=200$$

Conclusions:

P is fast

I is accurate and has less overshoot.

Design challenge:

Make P accurate.

Reduce P's overshoot.

PI Control

PI Controller

$$u(k) = u_{P}(k) + u_{I}(k)$$

$$= u(k-1) + (K_{P} + K_{I})e(k) - K_{P}e(k-1)$$

$$K(z) = \frac{E(z)}{U(z)} = K_{P} + \frac{K_{I}z}{z-1} = \frac{(K_{P} + K_{I})z - K_{P}}{z-1}$$

Overview

- Open loop, closed loop
- Control system architecture
- Performance specifications (for expressing policies)
- Digital controlers
- z-Transform:
 - concept, signal composition
 - poles and stability
 - transfer function and system composition
 - proportional (P) and integral (I) control, PI control
- Effector example for a software system

M7 Topics

- DB2 Utilities Throttling (DB2 v8.1)
 - http://www.databasejournal.com/features/db2/article.php/3339041
 - * "Throttling Utilities in the IBM DB2 Universal Database Server," Sujay Parekh, Kevin Rose, Yixin Diao, Victor Chang, Joseph L. Hellerstein, Sam Lightstone, Matthew Huras. American Control Conference, 2004.
- Self-tuning memory management
 - "Using MIMO Linear Control for Load Balancing in Computing Systems," Yixin Diao, Joseph L. Hellerstein, Adam Storm, Maheswaran Surendra, Sam Lightstone, Sujay Parekh, and Christian Garcia-Arellano. American Control Conference, 2004.
 - * "Incorporating Cost of Control Into the Design of a Load Balancing Controller," Yixin Diao, Joseph L. Hellerstein, Adam Storm, Maheswaran Surendra, Sam Lightstone, Sujay Parekh, and Christian Garcia-Arellano. Real-Time and Embedded Technology and Application Systems Symposium, 2004.

DB2 Utilities Throttling

- System description
- Control problem
- Design of sensors (S) and effectors (E)
- Control system design
- Evaluation

System Description: DB/2 UDB

Control Problem: Utility Impact

Administrative policy

There should be no more than an x% performance degradation of production work as a result of executing administrative utilities

Utilities have a huge impact on production performance.

Effector Design: Why Not Priorities

- Assign fixed priority to Utility processes
 - Unix => higher # is lower priority
- Measure avg Workload throughput over a run
- NO EFFECT!
- Why?
 - BACKUP (and others) are I/O bound
 - OS priority == CPU priority
 - No effect on other resources
- Even if I/O priorities are present, may not solve the problem
 - Don't want to starve the utilities

Effector Design: Self-Induced sleep (SIS)

Augmenting the Utility

```
FUNCTION Utility()
BEGIN

WHILE (NOT done)
BEGIN

... do some work ...
SleepIfNeeded()
END

END
```

"Library" implementation of Throttling

Appeal: Handle any resource bottleneck

Shortcoming: Requires change to application code.

But change is modest and does not affect the customer

Effector Design: Assessment of SIS for TPM-C

Wide range of "control volume" Linear effect

Effector Design: Assessment of SIS for TPC-W

Wide range of "control volume" Linear effect

Summary

- Control theory
 - a model and a tool
 - starts with system identification, "black box" view
 - finding good effectors
 - "designing a controller" for given policy
- Predictable outcome
 - stability analysis, controler bandwidth etc
- Is it "autonomic"?
 - adaptive, on the reactive side of the adaptivity spectrum
 - important example of the "sens/analyze/plan/exec" cycle