Dataset Overview

HAM10000 ("Human Against Machine with 10000 training images") dataset - a large collection of multi-source dermatoscopic images of pigmented lesions

The dermatoscopic images are collected from different populations, acquired and stored by different modalities. The final dataset consists of 10015 dermatoscopic images.

It has 7 different classes of skin cancer which are listed below:

- Melanocytic nevi
- Melanoma
- Benign keratosis-like lesions
- Basal cell carcinoma
- Actinic keratoses
- Vascular lesions
- Dermatofibroma

Importing libraries

```
In [31]:
```

```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
from imblearn.over_sampling import RandomOverSampler
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score,KFold

import os, cv2
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPool2D, Activation, Batch
Normalization
from sklearn.metrics import classification_report, accuracy_score
```

Reading the Data

```
In [32]:
```

```
data = pd.read_csv('/kaggle/input/skin-cancer-mnist-ham10000/hmnist_28_28_RGB.csv')
data.head()
```

Out[32]:

	pixel0000	pixel0001	pixel0002	pixel0003	pixel0004	pixel0005	pixel0006	pixel0007	pixel0008	pixel0009	 pixel2343	pix
0	192	153	193	195	155	192	197	154	185	202	 173	
1	25	14	30	68	48	75	123	93	126	158	 60	
2	192	138	153	200	145	163	201	142	160	206	 167	
3	38	19	30	95	59	72	143	103	119	171	 44	
4	158	113	139	194	144	174	215	162	191	225	 209	

5 rows × 2353 columns

v

```
f , ax = plt.subplots(2,5)
f.set_size_inches(15, 15)
k = 0
y1 = data['label']
x1 = data.drop(columns = ['label'])
x1 = np.array(x1).reshape(-1,28,28,3)
for i in range(2):
    for j in range(5):
        ax[i,j].imshow(x1[k].reshape(28,28,3))
#        ax[i, j].set_title(f"Image {Y_train[4]}")
        k = k + 1
    plt.tight_layout()
```


Data Preprocessing

Data Cleaning

```
In [34]:
```

```
data['label'].unique()
y = data['label']
x = data.drop(columns = ['label'])
data.isnull().sum().sum() #no null values present
```

Out[34]:

0

In [35]:

```
meta_data = pd.read_csv('/kaggle/input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv')
meta_data.head()
```

Out[35]:

	lesion_id	image_id	dx	dx_type	age	sex	localization
0	HAM_0000118	ISIC_0027419	bkl	histo	80.0	male	scalp
1	HAM_0000118	ISIC_0025030	bkl	histo	80.0	male	scalp
2	HAM_0002730	ISIC_0026769	bkl	histo	80.0	male	scalp
3	HAM_0002730	ISIC_0025661	bkl	histo	80.0	male	scalp
4	HAM_0001466	ISIC_0031633	bkl	histo	75.0	male	ear

```
In [36]:
meta_data['dx'].unique()
Out[36]:
array(['bkl', 'nv', 'df', 'mel', 'vasc', 'bcc', 'akiec'], dtype=object)
In [37]:
data.isnull().sum().sum() #no null values present
meta_data.head()
```

Out[37]:

	lesion_id	image_id	dx	dx_type	age	sex	localization
0	HAM_0000118	ISIC_0027419	bkl	histo	80.0	male	scalp
1	HAM_0000118	ISIC_0025030	bkl	histo	80.0	male	scalp
2	HAM_0002730	ISIC_0026769	bkl	histo	80.0	male	scalp
3	HAM_0002730	ISIC_0025661	bkl	histo	80.0	male	scalp
4	HAM_0001466	ISIC_0031633	bkl	histo	75.0	male	ear

Exploratory Data Analysis

```
In [38]:
```

```
sns.countplot(x = 'dx', data = meta_data)
plt.xlabel('Disease(Classes)', size=12)
plt.ylabel('Frequency', size=12)
plt.title('Frequency Distribution of Classes')
```

Out[38]:

Text(0.5, 1.0, 'Frequency Distribution of Classes')

In [39]:

```
sns.set_style('whitegrid')
```

```
colors = ['#87ace8','#e3784d', 'green']
fig,axes = plt.subplots(figsize=(8,8))

ax = sns.countplot(x='sex',data=meta_data, palette = 'Paired')
for container in ax.containers:
    ax.bar_label(container)
plt.title('Gender-wise Distribution')
plt.xticks(rotation=45)
plt.show()
```

Gender-wise Distribution

In [40]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.countplot(x='dx',data=meta_data, order = meta_data['dx'].value_counts().index,
palette = 'Paired')
for container in ax.containers:
    ax.bar_label(container)
plt.title('Cell Types Skin Cancer Affected patients')
plt.xticks(rotation=45)
plt.show()
```


In [41]:

```
classes = {2:'bkl', 4:'nv', 3:'df', 6:'mel', 5:'vasc', 1:'bcc', 0:'akiec'}

classes_labels=[]
for key in classes.keys():
    classes_labels.append(key)
print(classes_labels)
```

[2, 4, 3, 6, 5, 1, 0]

In [42]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.countplot(x='dx',hue='sex', data=meta_data, order = meta_data['dx'].value_count
s().index, palette = 'Paired')
for container in ax.containers:
    ax.bar_label(container)
plt.title('Cell Types Frequencies')
plt.xticks(rotation=45)
plt.show()
```


In [43]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.countplot(x='localization',data=meta_data, order = meta_data['localization'].val
ue_counts().index, palette = 'crest')
for container in ax.containers:
    ax.bar_label(container)
plt.title('Localization Area Frequencies')
plt.xticks(rotation=45)
plt.show()
```

Localization Area Frequencies

In [44]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.histplot(data=meta_data, x='age')
plt.title('Age Histogram')
plt.show()
```


In [45]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.histplot(data=meta_data, x='age',hue='sex',multiple='stack')
plt.title('Age Histogram Gender Wise')
plt.show()
```



```
In [46]:
print(x.shape, y.shape)
# To overcome class imbalace
oversample = RandomOverSampler()
Data,Label = oversample.fit_resample(x,y)
print(Data.shape, Label.shape)
(10015, 2352) (10015,)
(46935, 2352) (46935,)
In [47]:
# reshaping the data so that it can be taken by convolution neural network(without distur
bing the no. of samples)
Data= np.array(Data).reshape(-1,28,28,3)
print('Shape of X :', Data.shape)
print('Shape of y :', Label.shape)
Shape of X: (46935, 28, 28, 3)
Shape of y : (46935,)
In [48]:
print(Label)
0
         2
         2
1
2
         2
3
         2
4
         2
46930
        6
46931
        6
46932
         6
46933
         6
Name: label, Length: 46935, dtype: int64
In [49]:
newLabel = []
for i in range(len(Label)):
    for key in classes.keys():
        if Label[i] == key:
            newLabel.append(classes[key])
newLabel[46930]
Out[49]:
'mel'
In [50]:
sns.set style('whitegrid')
fig,axes = plt.subplots(figsize=(8,8))
ax = sns.countplot(x=newLabel, data=data, width=0.5)
for container in ax.containers:
    ax.bar label(container, fontweight='bold', fontsize=11)
plt.title('Balance Data using Over Sampling', fontweight='bold', fontsize=14)
plt.ylim(0, 8000)
plt.xticks(fontweight='bold', fontsize=12)
plt.yticks(fontweight='bold', fontsize=12)
plt.ylabel("Count", fontweight='bold', fontsize=14)
plt.xlabel("Disease Class", fontweight='bold', fontsize=14)
plt.grid(linewidth=0.8)
plt.show()
```

Balance Data using Over Sampling

In [51]:

```
Data = np.array(Data).reshape(-1,28,28,3)
print('Shape of X :',Data.shape)
print('Shape of y :',Label.shape)
```

Shape of X : (46935, 28, 28, 3)Shape of y : (46935,)

In [52]:

```
# Splitting Data
X_train, X_test, Y_train, Y_test = train_test_split(Data, Label, test_size=0.2, random_st
ate=1)
print(X_train.shape, Y_train.shape)
print(X_test.shape , Y_test.shape)
```

(37548, 28, 28, 3) (37548,) (9387, 28, 28, 3) (9387,)

In [53]:

```
classes = {4:'melanocytic nevi',
6: 'melanoma',
2:'benign keratosis-like lesions',
1:'basal cell carcinoma',
5:'pyogenic granulomas and hemorrhage',
0:'Actinic keratoses and intraepithelial carcinomae',
3:'dermatofibroma'}
```

```
In [54]:
Y train[:10]
Out[54]:
18033
           1
38412
           5
26590
           2
6910
           4
           5
37704
           0
15663
31556
           3
45531
24641
44902
           6
Name: label, dtype: int64
In [55]:
l train = np.array(Y train)
l train[1]
Out[55]:
5
In [56]:
f , ax = plt.subplots(2,5)
f.set_size_inches(15, 15)
k = 0
l train = np.array(Y train)
for i in range(2):
     for j in range(5):
          plt.subplots adjust(wspace=5)
          ax[i,j].imshow(X train[k].reshape(28,28,3))
          ax[i, j].set title(f"{classes[l train[k]]}")
          k = k + 1
     plt.tight_layout()
                         pyogenic granulomas and hemorrhage benign keratosis-like lesions
                                                                                          pyogenic granulomas and hemorrhage
         basal cell carcinoma
                                                                           melanocytic nevi
    0
                                                                      5
    10
                          10
                                               10
                                                                     10
                                                                                           10
    20
                          20
                                               20
                                                                     20
                                                                                           20
               15
                  20
                      25
                                  10
                                     15
                                        20
                                           25
                                                 0
                                                    5
                                                       10
                                                           15
                                                              20
                                                                                 15
                                                                                    20
                                                                                                      15
                                                                                                         20
Actinic keratoses and intraepithelial carcinomae
                                                                        benign keratosis-like lesions
                                                0
    5
                                                5
                                               10
    10
                                                                     10
                                                                                           10
    15
                          15
                                               15
                                                                                           15
    20
    25
                          25
                                  10
                                     15
                                        20
                                           25
                                                                 25
                                                                                       25
                                                 0
                                                       10
                                                           15
                                                              20
                                                                             10
                                                                                 15
                                                                                    20
In [57]:
model CNN = Sequential()
model_CNN.add(Conv2D(32, kernel_size = (3,3), input_shape = (28, 28, 3), activation = 'r
```

elu', padding = 'same'))

model CNN.add(BatchNormalization())

```
model_CNN.add(MaxPool2D(pool_size = (2,2)))
model_CNN.add(Conv2D(64, kernel_size = (3,3), activation = 'relu', padding = 'same'))
model CNN.add(BatchNormalization())
model CNN.add(MaxPool2D(pool size = (2,2), padding = 'same'))
model CNN.add(Conv2D(128, kernel size = (3,3), activation = 'relu', padding = 'same'))
model CNN.add(BatchNormalization())
model CNN.add(MaxPool2D(pool size = (2,2), padding = 'same'))
model CNN.add(Flatten())
model CNN.add(Dense(64, activation = 'relu'))
model CNN.add(BatchNormalization())
model_CNN.add(Dense(32))
model CNN.add(Activation(activation='relu'))
model_CNN.add(BatchNormalization())
model CNN.add(Dense(16))
model CNN.add(Activation(activation='relu'))
model CNN.add(BatchNormalization())
model CNN.add(Dense(7))
model CNN.add(Activation(activation='softmax'))
optimizer = tf.keras.optimizers.Adam(learning rate = 0.001)
model_CNN.compile(loss = 'sparse_categorical_crossentropy',
                optimizer = optimizer,
                 metrics = ['accuracy'])
print(model CNN.summary())
```

Model: "sequential 1"

Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 28, 28, 32)	896
<pre>batch_normalization_6 (Batc hNormalization)</pre>	(None, 28, 28, 32)	128
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 14, 14, 32)	0
conv2d_4 (Conv2D)	(None, 14, 14, 64)	18496
<pre>batch_normalization_7 (Batc hNormalization)</pre>	(None, 14, 14, 64)	256
<pre>max_pooling2d_4 (MaxPooling 2D)</pre>	(None, 7, 7, 64)	0
conv2d_5 (Conv2D)	(None, 7, 7, 128)	73856
<pre>batch_normalization_8 (Batc hNormalization)</pre>	(None, 7, 7, 128)	512
<pre>max_pooling2d_5 (MaxPooling 2D)</pre>	(None, 4, 4, 128)	0
flatten_1 (Flatten)	(None, 2048)	0
dense_4 (Dense)	(None, 64)	131136
<pre>batch_normalization_9 (Batc hNormalization)</pre>	(None, 64)	256

```
dense 5 (Dense)
                 (None, 32)
                                 2080
activation 3 (Activation) (None, 32)
                                 0
batch normalization 10 (Bat (None, 32)
                                 128
chNormalization)
                 (None, 16)
                                 528
dense 6 (Dense)
activation_4 (Activation) (None, 16)
                                 0
batch_normalization_11 (Bat (None, 16)
                                 64
chNormalization)
dense 7 (Dense)
                 (None, 7)
                                 119
activation_5 (Activation) (None, 7)
______
Total params: 228,455
Trainable params: 227,783
Non-trainable params: 672
None
In [58]:
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
early stop = EarlyStopping(monitor='val_loss', patience=10, verbose=1, mode='auto')
reduce lr = ReduceLROnPlateau (monitor='val loss', factor=0.1, patience=3, verbose=1, mod
e='auto')
history = model CNN.fit(X train,
           Y train,
            validation split=0.2,
            batch size = 64,
            epochs = 50,
            callbacks = [reduce lr, early stop])
Epoch 1/50
- val loss: 0.7764 - val accuracy: 0.7091 - lr: 0.0010
Epoch 2/50
- val_loss: 0.8838 - val_accuracy: 0.6871 - lr: 0.0010
Epoch 3/50
- val_loss: 0.6778 - val_accuracy: 0.7487 - lr: 0.0010
Epoch 4/50
- val loss: 1.0653 - val accuracy: 0.6581 - lr: 0.0010
Epoch 5/50
- val loss: 0.3811 - val accuracy: 0.8569 - lr: 0.0010
Epoch 6/50
- val loss: 0.5980 - val accuracy: 0.8057 - lr: 0.0010
Epoch 7/50
- val loss: 0.4327 - val accuracy: 0.8523 - lr: 0.0010
Epoch 8/50
- val_loss: 0.2524 - val_accuracy: 0.9142 - lr: 0.0010
Epoch 9/50
- val_loss: 0.5019 - val_accuracy: 0.8316 - lr: 0.0010
Epoch 10/50
- val_loss: 0.2258 - val_accuracy: 0.9308 - lr: 0.0010
Epoch 11/50
- val loss: 0.6433 - val accuracy: 0.8142 - lr: 0.0010
```

Epoch 12/50

```
- val loss: 1.0235 - val accuracy: 0.7035 - lr: 0.0010
Epoch 13/50
Epoch 13: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513.
- val loss: 0.2557 - val accuracy: 0.9185 - lr: 0.0010
Epoch 14/50
- val loss: 0.0764 - val accuracy: 0.9776 - lr: 1.0000e-04
Epoch 15/50
- val loss: 0.0770 - val accuracy: 0.9779 - lr: 1.0000e-04
Epoch 16/50
- val loss: 0.0731 - val accuracy: 0.9792 - lr: 1.0000e-04
Epoch 17/50
- val loss: 0.0726 - val accuracy: 0.9799 - lr: 1.0000e-04
Epoch 18/50
- val loss: 0.0774 - val accuracy: 0.9804 - lr: 1.0000e-04
Epoch 19/50
- val_loss: 0.0765 - val_accuracy: 0.9794 - lr: 1.0000e-04
Epoch 20/50
Epoch 20: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05.
- val loss: 0.0843 - val accuracy: 0.9784 - lr: 1.0000e-04
Epoch 21/50
- val loss: 0.0740 - val accuracy: 0.9808 - lr: 1.0000e-05
Epoch 22/50
- val loss: 0.0742 - val accuracy: 0.9806 - lr: 1.0000e-05
Epoch 23/50
- val loss: 0.0723 - val accuracy: 0.9811 - lr: 1.0000e-05
Epoch 24/50
- val loss: 0.0749 - val accuracy: 0.9794 - lr: 1.0000e-05
Epoch 25/50
- val loss: 0.0756 - val accuracy: 0.9799 - lr: 1.0000e-05
Epoch 26/50
Epoch 26: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06.
- val loss: 0.0763 - val accuracy: 0.9795 - lr: 1.0000e-05
Epoch 27/50
- val loss: 0.0772 - val accuracy: 0.9792 - lr: 1.0000e-06
- val loss: 0.0772 - val accuracy: 0.9792 - lr: 1.0000e-06
Epoch 29/50
Epoch 29: ReduceLROnPlateau reducing learning rate to 1.0000001111620805e-07.
- val_loss: 0.0757 - val_accuracy: 0.9796 - lr: 1.0000e-06
Epoch 30/50
- val_loss: 0.0758 - val_accuracy: 0.9798 - lr: 1.0000e-07
Epoch 31/50
- val_loss: 0.0760 - val_accuracy: 0.9798 - 1r: 1.0000e-07
Epoch 32/50
Epoch 32: ReduceLROnPlateau reducing learning rate to 1.000000082740371e-08.
- val loss: 0.0770 - val accuracy: 0.9796 - lr: 1.0000e-07
```

```
results = model_CNN.evaluate(X_test , Y_test, verbose=0)

print("CNN Model Test Results")
print("         Test Loss: {:.5f}".format(results[0]))
print("         Test Accuracy: {:.2f}%".format(results[1] * 100))
```

CNN Model Test Results

Test Loss: 0.07440

Test Accuracy: 98.08%

In [60]:

```
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
```


In [61]:

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right')
plt.show()
```


In [62]:

Predicting First Ten Rows:
Y Actual Values: [5, 1, 4, 0, 5, 0, 2, 0, 3, 2]
Y Predicted Values: [5, 1, 4, 0, 5, 0, 2, 0, 3, 2]

In [63]:

```
cm_CNN = confusion_matrix(y_true_CNN,y_pred_CNN,labels=classes_labels)
print(confusion_matrix(y_true_CNN,y_pred_CNN,labels=classes_labels))
sns.heatmap(cm_CNN, annot = True, fmt='')
```

[[1	251	8	0	3	0	0	0]
[59	1221	3	70	4	12	5]
[0	0	1351	0	0	0	0]
[0	12	0	1349	3	1	0]
[0	0	0	0	1358	0	0]
[0	0	0	0	0	1318	0]
[0	0	0	0	0	0	1359]]

Out[63]:

<AxesSubplot:>


```
- 200

0 0 0 0 0 0 1359

0 1 2 3 4 5 6
```

In [64]:

```
#training acc vs testing acc graph
plt.plot(history.history["accuracy"] , 'ro-' , label = "Training Accuracy")
plt.plot(history.history["val_accuracy"] , 'go-' , label = "Testing Accuracy")
plt.legend()
plt.show()
```


In [65]:

```
#predicting
y_pred_CNN = model_CNN.predict(X_test)
target_names = [f"{classes[i]}" for i in range(7)]
y_pred_CNN = list(map(lambda x: np.argmax(x), y_pred_CNN))
print("CNN Model Prediction Results")
print(classification_report(Y_test , y_pred_CNN, target_names=target_names))
```

294/294 [========] - 1s 2ms/step

CNN Model Prediction Results	precision	recall	f1-score	suppor
t				
Actinic keratoses and intraepithelial carcinomae 9	1.00	1.00	1.00	135
basal cell carcinoma	0.99	1.00	1.00	131
8 benign keratosis-like lesions	0.95	0.99	0.97	126
2 dermatofibroma	1.00	1.00	1.00	135
1 melanocytic nevi	0.98	0.89	0.93	137
4 pyogenic granulomas and hemorrhage	0.99	1.00	1.00	135
8 melanoma	0.95	0.99	0.97	136
5	0.93	0.33	0.97	130
accuracy			0.98	93
87				

```
7
In [66]:
# Layers definitions
from keras import backend as K
for l in range(len(model CNN.layers)):
   print(l, model CNN.layers[l])
0 <keras.layers.convolutional.conv2d.Conv2D object at 0x7be998003350>
1 <keras.layers.normalization.batch_normalization.BatchNormalization object at 0x7be93865
7e90>
2 <keras.layers.pooling.max pooling2d.MaxPooling2D object at 0x7be997db88d0>
3 <keras.layers.convolutional.conv2d.Conv2D object at 0x7be938637310>
4 <keras.layers.normalization.batch normalization.BatchNormalization object at 0x7be93862
3810>
5 <keras.layers.pooling.max pooling2d.MaxPooling2D object at 0x7be9385cd690>
6 <keras.layers.convolutional.conv2d.Conv2D object at 0x7be9385c6cd0>
7 <keras.layers.normalization.batch normalization.BatchNormalization object at 0x7be9385d
7e50>
8 <keras.layers.pooling.max pooling2d.MaxPooling2D object at 0x7be9981c45d0>
9 <keras.layers.reshaping.flatten.Flatten object at 0x7be9385cd3d0>
10 <keras.layers.core.dense.Dense object at 0x7be9385fb310>
11 <keras.layers.normalization.batch normalization.BatchNormalization object at 0x7be9385
e71d0>
12 <keras.layers.core.dense.Dense object at 0x7be9385987d0>
13 <keras.layers.core.activation.Activation object at 0x7be9385f5f50>
14 <keras.layers.normalization.batch normalization.BatchNormalization object at 0x7be9385
fb510>
15 <keras.layers.core.dense.Dense object at 0x7be938581090>
16 <keras.layers.core.activation.Activation object at 0x7be9385b7a90>
17 <keras.layers.normalization.batch normalization.BatchNormalization object at 0x7be9385
98790>
18 <keras.layers.core.dense.Dense object at 0x7be938581050>
19 <keras.layers.core.activation.Activation object at 0x7be938560e90>
In [67]:
model CNN.layers[-2]
Out[67]:
<keras.layers.core.dense.Dense at 0x7be938581050>
In [68]:
import os
os.environ["KERAS BACKEND"] = "tensorflow"
kerasBKED = os.environ["KERAS BACKEND"]
print(kerasBKED)
tensorflow
```

macro avg

weighted avg 0.98

0.98

0.98

0.98

0.98

0.98

938

938

Separating Features Layers from the CNN Model

In [69]:

Extracting Features from CNN Model

```
In [70]:
```

Integrating CNN with SVM Classifier using Grid Search for Best Perameters

In [71]:

```
import numpy as np
from sklearn.svm import SVC
from sklearn.model selection import GridSearchCV
clf=SVC(kernel='rbf', C=100, gamma=0.001)
kf=KFold(n splits=5)
scores SVM = cross val score(clf, X train cnn, Y train, cv=kf)
print(scores SVM)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores SVM.mean(), scores SV
M.std())
clf.fit(X_train_cnn, Y_train)
# Evaluate the combined CNN-SVM model on a test dataset
svm accuracy = clf.score(X test cnn, Y test)
print('SVM Accuracy:', svm_accuracy*100)
y testSVM = clf.predict(X test cnn)
           0.99986684 1.
1.00 accuracy with a standard deviation of 0.01
SVM Accuracy: 98.87077873655055
```

In [72]:

```
svm_accuracy = clf.score(X_test_cnn, Y_test)
print('SVM Accuracy:', svm_accuracy*100)
```

SVM Accuracy: 98.87077873655055

In [73]:

```
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
print(classification_report(Y_test, y_testSVM, target_names=target_names))
print("Accuracy: {0}".format(accuracy_score(Y_test, y_testSVM)*100))
```

_	precision	recall	f1-score	suppor
t				
Actinic keratoses and intraepithelial carcinomae 9	1.00	1.00	1.00	135
basal cell carcinoma	1.00	1.00	1.00	131
8 benign keratosis-like lesions	0.98	0.99	0.98	126
2 dermatofibroma	1.00	1.00	1.00	135
1	1.00	1.00		
melanocytic nevi	0.98	0.94	0.96	137
pyogenic granulomas and hemorrhage	1.00	1.00	1.00	135
8 melanoma	0.97	0.99	0.98	136
5				
accuracv			0.99	93

87

macro avg 0.99 0.99 0.99 938

weighted avg 0.99 0.99 0.99 938

Accuracy: 98.87077873655055

Integrating CNN with Random Forest Classifier using Grid Search for Best Perameters

```
In [74]:
```

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import GridSearchCV
rgclf = RandomForestClassifier(max depth=3,
              max features=1,
              min samples split=3,
              bootstrap=False,
              criterion= "entropy",
              n estimators=20)
kf=KFold(n splits=5)
scores RF = cross val score(rgclf, X train cnn, Y train, cv=kf)
print(scores RF)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores RF.mean(), scores RF.
rgclf.fit(X train cnn, Y train)
RFC accuracy = rgclf.score(X test cnn, Y test)
print('Random Forest Classifier Accuracy:', RFC accuracy*100)
y test RF = rgclf.predict(X test cnn)
print("Accuracy: {0}".format(accuracy_score(Y_test, y_test_RF)*100))
[0.99720373 0.9976032 0.99533955 0.99826874 0.96990278]
```

[0.99720373 0.9976032 0.99533955 0.99826874 0.96990278] 0.99 accuracy with a standard deviation of 0.01 Random Forest Classifier Accuracy: 96.65494833280069 Accuracy: 96.65494833280069

In [75]:

```
y_test_RF = rgclf.predict(X_test_cnn)
print("Accuracy: {0}".format(accuracy_score(Y_test, y_test_RF)*100))
```

Accuracy: 96.65494833280069

In [76]:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import GridSearchCV
# parameters = {"n neighbors": [1],
                "weights": ['uniform', 'distance'],
#
                "metric": ['minkowski', 'euclidean', 'manhattan'],
                "algorithm": ['auto', 'ball tree', 'kd tree', 'brute']}
kgclf = KNeighborsClassifier(n neighbors=1,
              weights='distance',
              metric='euclidean',
              algorithm= 'auto')
kf=KFold(n_splits=5)
scores KNN = cross val score(kgclf, X train cnn, Y train, cv=kf)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores KNN.mean(), scores KN
N.std())
kgclf.fit(X train cnn, Y train)
KNN accuracy = kgclf.score(X test cnn, Y test)
print('KNN Classifier Accuracy:', KNN accuracy*100)
```

1.00 accuracy with a standard deviation of 0.01 KNN Classifier Accuracy: 99.12645147544477

```
In [77]:
```

```
y_testKNN = kgclf.predict(X_test_cnn)
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

print(classification_report(Y_test, y_testKNN, target_names=target_names))
print("Accuracy Score: {0}".format(accuracy_score(Y_test, y_testKNN)*100))
```

	precision	recall	f1-score	suppor
t				
Actinic keratoses and intraepithelial carcinomae 9	1.00	1.00	1.00	135
basal cell carcinoma	0.99	1.00	1.00	131
benign keratosis-like lesions	0.98	1.00	0.99	126
2 dermatofibroma	1.00	1.00	1.00	135
1 melanocytic nevi	1.00	0.94	0.97	137
4 pyogenic granulomas and hemorrhage	1.00	1.00	1.00	135
8 melanoma	0.97	1.00	0.99	136
5				
accuracy 87			0.99	93
macro avg	0.99	0.99	0.99	938
7 weighted avg	0.99	0.99	0.99	938
7				

Accuracy Score: 99.12645147544477

Integrating CNN with Logistic Regression Classifier using Grid Search for Best Perameters

```
In [78]:
```

```
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
# Create a logistic regression object
grid search LR = LogisticRegression(C=100,
             penalty='12')
kf=KFold(n splits=5)
scores LR = cross val score(grid search LR, X train cnn, Y train, cv=kf)
print(scores LR)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores LR.mean(), scores LR.
std()))
# Perform grid search with 5-fold cross-validation
grid search LR.fit(X train cnn, Y train)
# Print the best hyperparameters and the corresponding accuracy score
y test LR = grid search LR.predict(X test cnn)
print(classification_report(Y_test, y_test_LR,target_names=target_names))
print("Accuracy: {0}".format(accuracy_score(Y_test, y_test_LR)*100))
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Dlaca ala mafam to the decompositation for altermation calcon embiase.
```

```
riease also relet to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
1.00 accuracy with a standard deviation of 0.01
```

[1.	1.	1.	1.	0.98108936]

t	precision	recall	f1-score	suppor
Actinic keratoses and intraepithelial carcinomae	1.00	1.00	1.00	135
9				
basal cell carcinoma 8	1.00	1.00	1.00	131
benign keratosis-like lesions 2	0.97	0.99	0.98	126
dermatofibroma 1	1.00	1.00	1.00	135
melanocytic nevi	0.98	0.94	0.96	137
<pre>pyogenic granulomas and hemorrhage 8</pre>	1.00	1.00	1.00	135
melanoma 5	0.97	0.99	0.98	136
accuracy			0.99	93
87 macro avg	0.99	0.99	0.99	938
7 weighted avg	0.99	0.99	0.99	938
weighted avg	0.99	0.99	0.99	938

Accuracy: 98.78555449025248

```
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```

```
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
 extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
```

In []:			
In []:			