§2.6 矩阵的初等变换

数学系 梁卓滨

2016 - 2017 学年 I 暑修班

教学要求

- ◇ 初等矩阵、初等变换
- ♣ 初等变换求逆矩阵

4

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \\ a_{24} & a_{24} \\ a_{24} & a_{25} \\ a_{25} & a_{25}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix}
10 l \\
010 \\
001
\end{pmatrix} \begin{pmatrix}
a_{11}a_{12}a_{13} \\
a_{21}a_{22}a_{23} \\
a_{31}a_{32}a_{33}
\end{pmatrix}$$

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ & & & \end{pmatrix}$$

$$\bullet \begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix}
10 l \\
010 \\
001
\end{pmatrix} \begin{pmatrix}
a_{11}a_{12}a_{13} \\
a_{21}a_{22}a_{23} \\
a_{31}a_{32}a_{33}
\end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \, l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} = \begin{pmatrix} \\ \\ \end{pmatrix}$$

$$\bullet \begin{pmatrix}
10 l \\
010 \\
001
\end{pmatrix} \begin{pmatrix}
a_{11}a_{12}a_{13} \\
a_{21}a_{22}a_{23} \\
a_{31}a_{32}a_{33}
\end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ & & & \end{pmatrix}$$

$$\bullet \begin{pmatrix}
10 l \\
010 \\
001
\end{pmatrix} \begin{pmatrix}
a_{11}a_{12}a_{13} \\
a_{21}a_{22}a_{23} \\
a_{31}a_{32}a_{33}
\end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$, 观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix} = \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix} = \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix} = \begin{pmatrix} 10 \ l \\ 010 \\ 01$$

设 $A = (a_{ij})_{3\times 3}$, 观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + la_{31}a_{12} + la_{32}a_{13} + la_{33} \\ \\ \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$, 观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + la_{31}a_{12} + la_{32}a_{13} + la_{33} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$, 观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + la_{31}a_{12} + la_{32}a_{13} + la_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} = \begin{pmatrix} \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $k \times r_2$

$$\bullet \begin{pmatrix} 10 \, l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + l a_{31} a_{12} + l a_{32} a_{13} + l a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 + Jr_3$

§2.6 矩阵的初等变换

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \\ a_{32} & a_{31} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$, 观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$, 观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} \\ a_{21} & ka_{22} \\ a_{31} & ka_{32} \end{pmatrix}$$

$$\bullet \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$, 观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \leftrightarrow c_2$

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
a_{11} & ka_{12} & a_{13} \\
a_{21} & ka_{22} & a_{23} \\
a_{31} & ka_{32} & a_{33}
\end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \leftrightarrow c_2$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \leftrightarrow c_2$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}$$

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \leftrightarrow c_2$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

引入

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \leftrightarrow c_2$

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
a_{11} & ka_{12} & a_{13} \\
a_{21} & ka_{22} & a_{23} \\
a_{31} & ka_{32} & a_{33}
\end{pmatrix}$$

结果将 A 作变换 $k \times c_2$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} + la_{11} \\ a_{21} & a_{22} & a_{23} + la_{21} \\ a_{31} & a_{32} & a_{33} + la_{31} \end{pmatrix}$$

引入

设 $A = (a_{ij})_{3\times 3}$,观察下列矩阵的乘法:

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \leftrightarrow c_2$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $k \times c_2$

$$\bullet \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} + la_{11} \\ a_{21} & a_{22} & a_{23} + la_{21} \\ a_{31} & a_{32} & a_{33} + la_{31} \end{pmatrix}$$

结果将 A 作变换 C₃ + JC₁

2.6 矩阵的初等变换 4/25 ◁ ▷ ᠘

- 交换第 i 行和第 j 行:
- 第 i 行乘以 k 倍 (k≠0):
- 第 *i* 行加上第 *j* 行的 *l* 倍:

- 交换第 i 行和第 j 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k≠0):
- 第 *i* 行加上第 *j* 行的 *l* 倍:

- 交换第 i 行和第 j 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k≠0): k×r_i
- 第 i 行加上第 j 行的 l 倍:

- 交换第 *i* 行和第 *j* 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k≠0): k×r_i
- 第 i 行加上第 j 行的 l 倍: r_i + lr_j

初等行变换

- 交换第 *i* 行和第 *j* 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k≠0): k×r_i
- 第 *i* 行加上第 *j* 行的 *l* 倍: $r_i + lr_j$

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍 (k≠0):
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 *i* 行和第 *j* 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k≠0): k×r_i
- 第 i 行加上第 j 行的 l 倍: r_i + lr_j

- 交换第 i 列和第 j 列: $C_i \leftrightarrow C_j$
- 第 i 列乘以 k 倍 (k≠0):
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 *i* 行和第 *j* 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k≠0): k×r_i
- 第 i 行加上第 j 行的 l 倍: r_i + lr_j

- 交换第 i 列和第 j 列: $C_i \leftrightarrow C_j$
- 第 i 列乘以 k 倍 (k≠0): k×ci
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: $r_i \leftrightarrow r_j$
- 第 i 行乘以 k 倍 (k≠0): k×r_i
- 第 i 行加上第 j 行的 l 倍: $r_i + lr_j$

- 交换第 i 列和第 j 列: $C_i \leftrightarrow C_j$
- 第 i 列乘以 k 倍 (k≠0): k×ci
- 第 i 列加上第 j 列的 l 倍: c_i + lc_j

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵, 故用 "→", 而不用 "="。

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列 式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列 式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用"→",而不用"="。区别行列 式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列 式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列 式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列 式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

 c_2-c_3

§2.6

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{\underline{r_2 - 3r_1}} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

 $rac{c_2-c_3}{}-egin{pmatrix} 1 & -3 & 2 \ 0 & 8 & -5 \ 0 & 0 & 1 \end{pmatrix}$ 矩阵的初等变换

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用"→",而不用"="。区别行列 式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$
$$\xrightarrow{\frac{c_2 - c_3}{2}} - \begin{vmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{vmatrix} = -8$$

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对I 施以第一种初等行变换 $(r_i \leftrightarrow r_j)$ 得到的矩阵:

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第一种初等行变换($r_i \leftrightarrow r_i$)得到的矩阵:

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第一种初等行变换($r_i \leftrightarrow r_j$)得到的矩阵:

$$\begin{pmatrix} 1 & & & \\ & 1_1 & & \\ & & & 1 \\ & & & & 1 \end{pmatrix} \leftarrow i \vec{1} \vec{\overline{\tau}} \qquad \begin{pmatrix} 1 & & & \\ & 0 & \cdots & \cdots & 1 & \\ & \vdots & 1 & \vdots & \\ & \vdots & \ddots & \vdots$$

注 也是对 I 施以第一种初等列变换($C_i \leftrightarrow C_i$)得到的矩阵。

初等矩阵Ⅰ

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第一种初等行变换($r_i \leftrightarrow r_i$)得到的矩阵:

注 也是对 I 施以第一种初等列变换($C_i \leftrightarrow C_i$)得到的矩阵。

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第二种初等行变换($k \times r_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \xrightarrow{\substack{k \times r_i \\ (k \neq 0)}}$$

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第二种初等行变换($k \times r_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & \ddots \\ & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \xrightarrow{k \times r_i} \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & k & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \vec{\uparrow}$$

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第二种初等行变换($k \times r_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & \ddots \\ & & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \xrightarrow{k \times r_i} \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & k & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \vec{\uparrow}$$

注 也是对 I 施以第一种初等列变换($k \times c_i$)得到的矩阵。

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第二种初等行变换($k \times r_i$)得到的矩阵:

$$I(i(k)) := \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & k & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \leftarrow i i \bar{\tau}$$

注 也是对 I 施以第一种初等列变换($k \times c_i$)得到的矩阵。

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第三种初等行变换($r_i + lr_i$)得到的矩阵:

初等矩阵 III

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第三种初等行变换($r_i + lr_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \underline{r_i + lr_j} \begin{pmatrix} 1 & & & \\ & 1 & & & \\ & & \ddots & \vdots & \\ & & & 1 \\ & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \overline{\tau}$$

初等矩阵 III

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第三种初等行变换($r_i + lr_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & 1 \\ & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \xrightarrow{r_i + lr_j} \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & \ddots & \vdots \\ & & & \ddots & \vdots \\ & & & \ddots & \vdots \\ & & & & 1 \end{pmatrix} \leftarrow i \vec{\uparrow} \vec{\tau}$$

注 也是对 I 施以第一种初等列变换($c_i + lc_i$)得到的矩阵。

初等矩阵 III

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对 I 施以第三种初等行变换 $(r_i + lr_i)$ 得到的矩阵:

$$I(ij(l)) := \begin{pmatrix} 1 & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & & \ddots & \vdots & \\ & & & & 1 & \\ & & & & 1 \end{pmatrix} \leftarrow i \, i \, \overline{\uparrow}$$

注 也是对 I 施以第一种初等列变换($c_i + lc_i$)得到的矩阵。

初等矩阵	左乘初等矩阵对应的初等行变换

用初等矩阵左乘*A* ←→

初等矩阵	左乘初等矩阵对应的初等行变换
I(ij)	
$I(i(k)), (k \neq 0)$	
$I(ij(l)), (i \neq j)$	

用初等矩阵左乘*A* ←→

初等矩阵	左乘初等矩阵对应的初等行变换
I(ij)	$r_i \longleftrightarrow r_j$
$I(i(k)), (k \neq 0)$	
$I(ij(l)), (i \neq j)$	

用初等矩阵左乘A

对矩阵 A 作对应的初等行变换

初等矩阵	左乘初等矩阵对应的初等行变换
I(ij)	$r_i \longleftrightarrow r_j$
$I(i(k)), (k \neq 0)$	k × r _i
$I(ij(l)), (i \neq j)$	

用初等矩阵左乘*A* ←→

初等矩阵	左乘初等矩阵对应的初等行变换
I(ij)	$r_i \longleftrightarrow r_j$
$I(i(k)), (k \neq 0)$	k × r _i
$I(ij(l)), (i \neq j)$	$r_i + lr_j$

用初等矩阵右乘A ←→ 对矩阵A作对应的初等列变换

初等矩阵	右乘初等矩阵对应的初等列变换

用初等矩阵右乘*A* ←→

初等矩阵	右乘初等矩阵对应的初等列变换
I(ij)	
$I(i(k)), (k \neq 0)$	
$I(ij(l)), (i \neq j)$	

用初等矩阵右乘*A* ←→

初等矩阵	右乘初等矩阵对应的初等列变换
I(ij)	$C_i \longleftrightarrow C_j$
$I(i(k)), (k \neq 0)$	
$I(ij(l)), (i \neq j)$	

用初等矩阵右乘*A* ←→

初等矩阵	右乘初等矩阵对应的初等列变换
I(ij)	$c_i \longleftrightarrow c_j$
$I(i(k)), (k \neq 0)$	k × c _i
$I(ij(l)), (i \neq j)$	

用初等矩阵右乘*A* ←→

初等矩阵	右乘初等矩阵对应的初等列变换
I(ij)	$c_i \longleftrightarrow c_j$
$I(i(k)), (k \neq 0)$	k × c _i
$I(ij(l)), (i \neq j)$	c _j + lc _i

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p $(i \neq j)$}$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

• I(ij)I(ij) =

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j}$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

• *I*(*ij*)*I*(*ij*) = *I* ⋅ *I*(*ij*) ⋅ *I*(*ij*) = *I*, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p (i \neq j)$}$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

 $I(i(k))I(i(\frac{1}{k})) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

• *I*(*ij*)*I*(*ij*) = *I* ⋅ *I*(*ij*) ⋅ *I*(*ij*) = *I*, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$, 这是利用:

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i}$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $\bullet \ I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$\bullet \ I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p (i \neq j)$}$$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$,这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• I(ij(l))I(ij(-l)) =

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p (i \neq j)$}$$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$,这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p (i \neq j)$}$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) = I$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p (i \neq j)$}$$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$,这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

I(ij(l))I(ij(-l)) = I · I(ij(l)) · I(ij(-l)) = I, 这是利用:

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ii)^{-1} = I(ii)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中($i \neq j$)

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{\nu})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{\nu})) = I$, 这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

 $I \xrightarrow{c_j + lc_i} * \xrightarrow{c_j - lc_i}$

I(ij(l))I(ij(-l)) = I · I(ij(l)) · I(ij(-l)) = I, 这是利用:

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ii)^{-1} = I(ii)$
- $I(ii(l))^{-1} = I(ii(-l))$, 其中($i \neq i$)

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{\nu})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{\nu})) = I$, 这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

 $I \xrightarrow{c_j + lc_i} * \xrightarrow{c_j - lc_i} I$

I(ij(l))I(ij(-l)) = I · I(ij(l)) · I(ij(-l)) = I, 这是利用:

定理 任何矩阵 $A_{m \times n}$,经过若干次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{m \times n}$$

定理 任何矩阵 $A_{m \times n}$,经过若干次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n}$$

即,除左上角为 r 阶单位矩阵,其余元素均为零。

定理 任何矩阵 $A_{m \times n}$,经过若干次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为 r 阶单位矩阵,其余元素均为零。

定理 任何矩阵 $A_{m \times n}$,经过若干次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

定理 任何矩阵 $A_{m \times n}$,经过若干次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围:

定理 任何矩阵 $A_{m \times n}$,经过若干次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围: $0 \le r$,

定理 任何矩阵 $A_{m \times n}$,经过若干次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围: $0 \le r$, $r \le m$

定理 任何矩阵 $A_{m \times n}$,经过若干次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围: $0 \le r$, $r \le m$ 且 $r \le n$

例 4 × 3 矩阵 (* * * * * *) 所有可能的等价标准形是什么?

4×3矩阵等价标准形的一般形式是

$$=$$
 $\begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}_{4\times}$

例 4 × 3 矩阵 (* * * * *) 所有可能的等价标准形是什么?

4×3矩阵等价标准形的一般形式是

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{4 \times 3}$$

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & & \\ & & & 0 \end{pmatrix}_{A \times A} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{4 \times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{4 \times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$,所以全部可能是:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{A \times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$,所以全部可能是:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{A \times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$,所以全部可能是:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{4 \times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$, 所以全部可能是:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{A \times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$, 所以全部可能是:

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow[r_3 - r_1]{} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix}$$

$$\frac{1}{2} \times r_1$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow[c_4 - \frac{3}{2}c_1]{} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow[c_4 - \frac{3}{2}c_1]{} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$c_3 - c_2$$

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换, 求出 (2 1 2 3) 的等价标准形

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow[c_4-c_2]{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换, 求出 (2 1 2 3) 的等价标准形

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$(1 & 0 & 0 & 0)$$

$$\xrightarrow[c_4-c_2]{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_{4} - \frac{3}{2}c_{1}
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow[c_4-c_2]{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{(-1)\times r_2}$$

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow[c_4-c_2]{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow[(-1)\times r_2]{(-1)\times r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$c_2 - 4c_1$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\begin{pmatrix}
1 & 0 \\
0 & 2 \\
0 & -2
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\begin{pmatrix}
1 & 0 \\
0 & 2 \\
0 & -2
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 2 \\
0 & -2 & -2
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 2 \\
0 & -2 & -2
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 \\ 0 & -2 & -2 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow[\substack{c_2-4c_1\\c_3-3c_1\\c_4-5c_1} \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 2 & 2 & 3\\0 & -2 & -2 & -3 \end{pmatrix} \xrightarrow[\substack{r_3+r_2\\c_4-5c_1} \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 2 & 2 & 3\\0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{c}
c_3 - c_2 \\
\hline
c_4 - \frac{3}{2}c_2
\end{array}
\left(
\begin{array}{cccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}
\right)$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow[\substack{c_2-4c_1\\c_3-3c_1\\c_4-5c_1}]{1 \quad 0 \quad 0 \quad 0\\0 \quad 2 \quad 2 \quad 3\\0 \quad -2 \quad -2 \quad -3}\xrightarrow[]{r_3+r_2} \begin{pmatrix} 1 \quad 0 \quad 0 \quad 0\\0 \quad 2 \quad 2 \quad 3\\0 \quad 0 \quad 0 \quad 0 \end{pmatrix}$$

$$\begin{array}{c}
c_3 - c_2 \\
\hline
c_4 - \frac{3}{2}c_2
\end{array}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow[\substack{c_2-4c_1\\c_3-3c_1\\c_4-5c_1} \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 2 & 2 & 3\\0 & -2 & -2 & -3 \end{pmatrix} \xrightarrow[\substack{r_3+r_2\\c_4-5c_1} \end{pmatrix} \xrightarrow[\substack{c_3-3c_1\\c_4-5c_1} \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 2 & 2 & 3\\0 & 0 & 0 & 0 \end{pmatrix}$$

$$\frac{c_3 - c_2}{c_4 - \frac{3}{2}c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2} \times r_2}$$

例 通过初等变换, 求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow[\substack{c_2-4c_1\\c_3-3c_1\\c_4-5c_1} \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 2 & 2 & 3\\ 0 & -2 & -2 & -3 \end{pmatrix} \xrightarrow[\substack{r_3+r_2\\c_4-5c_1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 2 & 2 & 3\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\frac{c_3 - c_2}{c_4 - \frac{3}{2}c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2} \times r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

例 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1}$$

例 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$r_2 \leftrightarrow r_3$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{5} \times r_2}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$
$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{5} \times r_2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

 $A_{m \times n} \xrightarrow{-$ 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 P_1, P_2, \ldots, P_s 与 n 阶初等矩阵 Q_1, Q_2, \ldots, Q_t 使得

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 P_1, P_2, \ldots, P_s 与 n 阶初等矩阵 Q_1, Q_2, \ldots, Q_t 使得

$$P_s \cdots P_2 P_1 A$$

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 P_1, P_2, \ldots, P_s 与 n 阶初等矩阵 Q_1, Q_2, \ldots, Q_t 使得

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

定理 设 $A \in n$ 阶方阵,则

● A 可逆的充分必要条件是 A 的等价标准形是 I

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

定理 设 $A \in n$ 阶方阵,则

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明 |*A*| ≠ 0

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0$$

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n$$
,

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n, D = I_n$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n, D = I_n$$
 此时

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n, D = I_n$$

此时 $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = I_n$

$$A_{m \times n} \xrightarrow{-$$
 系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n, D = I_n$$
 此时 $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = I_n$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 P_1, P_2, \ldots, P_s 与 n 阶初等矩阵 O₁, O₂, . . . , O_t 使得

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n, D = I_n$$

此时 $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = I_n$
 $\downarrow Q$
 $A = P_1^{-1} P_2^{-1} \cdots P_s^{-1} Q_t^{-1} \cdots Q_2^{-1} Q_1^{-1}$

$$A_{n \times n} \xrightarrow{-$$
系列初等变换 $D = I_n$

$$A_{n imes n} \xrightarrow{- imes D} D = I_n$$
 $igg|$ $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = I_n$

$$A_{n imes n} \xrightarrow{- imes D} D = I_n$$
 \downarrow
 $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = I_n$
 \downarrow
 $Q_1 Q_2 \cdots Q_t P_s \cdots P_2 P_1 A = I_n$

$$A_{n \times n} \xrightarrow{-$$
 系列初等变换 $D = I_n$ \downarrow $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = I_n$ \downarrow $Q_1 Q_2 \cdots Q_t P_s \cdots P_2 P_1 A = I_n$

假设 $A_{n\times n}$ 是可逆方阵,则

$$A_{n \times n} \xrightarrow{-\overline{\mathbb{A}}} D = I_n$$
 $\downarrow \downarrow$
 $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = I_n$
 $\downarrow \downarrow$
 $Q_1 Q_2 \cdots Q_t P_s \cdots P_2 P_1 A = I_n$
 A^{-1}

启发

可逆矩阵 ^{初等行变换} 单位矩阵

假设 $A_{n\times n}$ 是可逆方阵,则

$$A_{n \times n} \xrightarrow{-\overline{S}} D = I_n$$
 $\downarrow \downarrow$
 $P_S \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = I_n$
 $\downarrow \downarrow$
 $Q_1 Q_2 \cdots Q_t P_S \cdots P_2 P_1 A = I_n$
 A^{-1}

启发

- 1. 可逆矩阵 ^{初等行变换} 单位矩阵
- 2. 操作"初等行变换"相对简单,但如何从这些操作得出乘积

$$Q_1Q_2\cdots Q_tP_s\cdots P_2P_1=A^{-1}?$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 2 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_3-2r_1$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_3-2r_1$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_3-2r_1$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_2-r_3$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_3-2r_1$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_2-r_3$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\downarrow_{r_2-r_3} \\
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & -1 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow_{r_3-2r_1}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

$$\psi_{r_2-r_3} \\
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & -1 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow r_{3}-2r_{1} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_{1}A : P_{1}I)$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow_{r_3 - 2r_1} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1 A : P_1 I) = (P_1 A : P_1)$$

$$\psi_{r_2-r_3} \\
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & -1 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:
$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow_{r_3-2r_1} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1A : P_1I) = (P_1A : P_1)$$

$$\downarrow_{r_2-r_3} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_2P_1A : P_2P_1)$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow_{\Gamma_3 - 2\Gamma_1} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1 A : P_1 I) = (P_1 A : P_1)$$

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

$$\downarrow r_2 - r_3$$
 $\downarrow 1 0 0$
 $\downarrow 2 1 - 1$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_2 P_1 A : P_2 P_1)$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 2 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow_{r_3 - 2r_1} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1 A : P_1 I) = (P_1 A : P_1)$$

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

$$\downarrow_{r_2-r_3}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = \underbrace{(P_2 P_1)}_{A=1} A : \underbrace{P_2 P_1}_{A=1}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

 $(A \stackrel{!}{:} I) \xrightarrow{-\overline{\mathrm{S}}\overline{\mathrm{M}}\overline{\mathrm{N}}\overline{\mathrm{S}}\overline{\mathrm{T}}\underline{\mathrm{T}}\underline{\mathrm{T}}\underline{\mathrm{T}}\underline{\mathrm{T}}\underline{\mathrm{T}}} (I \stackrel{!}{:} B)$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

 $(A \dot{\cdot} I) \xrightarrow{-\overline{A} = \overline{A} = \overline{A}} (I \dot{\cdot} B)$

则此时 B 就是 A^{-1}

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

 $(A \stackrel{!}{:} I) \xrightarrow{-\overline{\text{ANN}} \otimes \overline{\text{From}}} (I \stackrel{!}{:} B)$

则此时 B 就是 A^{-1}

注 仅通过行变换将 A 化为单位矩阵的步骤:

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \vdots I) \xrightarrow{-\text{SM}} (I \vdots B)$$

则此时 B 就是 A^{-1}

注 仅通过行变换将 A 化为单位矩阵的步骤:

```
* * * *
* * * *
* * *
```

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-\overline{x}} (I : B)$$

则此时 B 就是 A^{-1}

注 仅通过行变换将 A 化为单位矩阵的步骤:

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-\overline{x}} (I : B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \dot{:} I) \xrightarrow{-\overline{A} = \overline{A} = \overline{A}} (I \dot{:} B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \stackrel{!}{:} I) \xrightarrow{-\overline{\text{ANN}} \otimes \overline{\text{From}}} (I \stackrel{!}{:} B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & * & *
\end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-\text{系列初等行变换}} (I : B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & *
\end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-\text{系列初等行变换}} (I : B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \vdots I) \xrightarrow{-\text{SM}} (I \vdots B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-SMN \not = f \oplus b} (I : B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & * & * \\
* & * & * \\
* & * & *
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
* & * & *
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & * & *
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & *
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \dot{I}) \xrightarrow{-\text{SM}} (I \dot{B})$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

例 求 $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$ 的逆矩阵

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$r_2 - 2r_1$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A i I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \left(\begin{array}{cccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \end{array} \right)$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_2}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow[r_3-2r_2]{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

$$\frac{1}{2}r_3$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-2r_{1}}{r_{3}+3r_{1}} \begin{pmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & -2 & | & -2 & 1 & 0 \\
0 & 2 & -2 & | & 3 & 0 & 1
\end{pmatrix} \xrightarrow{r_{3}-2r_{2}} \begin{pmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & -2 & | & -2 & 1 & 0 \\
0 & 0 & 2 & | & 7 & -2 & 1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_{3}} \begin{pmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & -2 & | & -2 & 1 & 0 \\
0 & 0 & 1 & | & 7/2 & -1 & 1/2
\end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-2r_{1}}{r_{3}+3r_{1}} \xrightarrow{\begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix}} \xrightarrow{r_{3}-2r_{2}} \xrightarrow{\begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}}$$

$$\xrightarrow{\frac{1}{2}r_{3}} \xrightarrow{\begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix}} \xrightarrow{r_{2}+2r_{3}}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c}1 & 0 & 1 & 1 & 0 & 0\\0 & 1 & -2 & -2 & 1 & 0\\0 & 2 & -2 & 3 & 0 & 1\end{array}}\xrightarrow{r_3-2r_2} \begin{pmatrix}1 & 0 & 1 & 1 & 0 & 0\\0 & 1 & -2 & -2 & 1 & 0\\0 & 0 & 2 & 7 & -2 & 1\end{pmatrix}$$

$$\begin{array}{c}
r_{3}+3r_{1} \\
\xrightarrow{\frac{1}{2}r_{3}}
\end{array}
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 7/2 & -1 & 1/2
\end{pmatrix}
\xrightarrow{r_{2}+2r_{3}}
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{r_{2}+2r_{3}}
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c}1 & 0 & 1 & 1 & 0 & 0\\0 & 1 & -2 & -2 & 1 & 0\\0 & 2 & -2 & 3 & 0 & 1\end{array}}\xrightarrow{r_3-2r_2} \begin{pmatrix}1 & 0 & 1 & 1 & 0 & 0\\0 & 1 & -2 & -2 & 1 & 0\\0 & 0 & 2 & 7 & -2 & 1\end{pmatrix}$$

$$\begin{array}{c}
r_{3}+3r_{1} \\
\xrightarrow{\frac{1}{2}r_{3}}
\end{array}
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 7/2 & -1 & 1/2
\end{pmatrix}
\xrightarrow{r_{2}+2r_{3}}
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}
\xrightarrow{r_{2}+2r_{3}}
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \mid I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_2 - 2r_1}{r_3 + 3r_1} \xrightarrow{\left(\begin{array}{ccccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}\right)} \xrightarrow{r_3 - 2r_2} \xrightarrow{\left(\begin{array}{cccccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{array}\right)} \\
\xrightarrow{\frac{1}{2}r_3} \xrightarrow{\left(\begin{array}{ccccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{array}\right)} \xrightarrow{r_2 + 2r_3} \xrightarrow{r_1 - r_3} \xrightarrow{\left(\begin{array}{ccccccccc} 1 & 0 & 0 & -5/2 & 1 & -1/2 \\ 0 & 1 & 0 & 5 & -1 & 1 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{array}\right)}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$\begin{pmatrix} -3 \\ r_2-2r_1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

 $(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}} \xrightarrow{r_3-2r_2} \left(\begin{array}{c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{array} \right)$$

$$\xrightarrow{r_3+3r_1} \begin{pmatrix} 0 & 1 & -2 \\ 0 & 2 & -2 \end{pmatrix}$$

$$2-2 \mid 3 \mid 0$$

0 1 | 1 0

$$\xrightarrow{\frac{1}{2}r_3} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix} \xrightarrow{r_2 + 2r_3} \begin{pmatrix} 1 & 0 & 0 & -5/2 & 1 & -1/2 \\ 0 & 1 & 0 & 5 & -1 & 1 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix}$$

所以
$$A^{-1} = \begin{pmatrix} -5/2 & 1 & -1/2 \\ 5 & -1 & 1 \\ 7/2 & -1 & 1/2 \end{pmatrix}$$

例 求 $A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$ 的逆矩阵

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_2-r_1} \left(\begin{array}{cccccc} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \end{array} \right)$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_3-2r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_3-2r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{(-1)\times r_3}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 2 & 0 & 3 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{\left(\begin{array}{cccccc}1&0&2&&1&0&0\\0&1&-1&&-1&1&0\\0&0&-1&&-2&0&1\end{array}\right)}\xrightarrow[(-1)\times r_3]{\left(\begin{array}{cccccc}1&0&2&&1&0&0\\0&1&-1&&-1&1&0\\0&0&1&&2&0&-1\end{array}\right)}$$

$$r_2+r_3$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \mid I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-r_{1}}{r_{3}-2r_{1}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & -1 & | & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

$$\xrightarrow{r_{2}+r_{3}} \begin{pmatrix}
0 & 1 & 0 & | & 1 & 1 & -1 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \mid I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-r_{1}}{r_{3}-2r_{1}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & -1 & | & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

$$\frac{r_{2}+r_{3}}{r_{1}-2r_{3}} \begin{pmatrix}
0 & 1 & 0 & | & 1 & 1 & -1 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-r_{1}}{r_{3}-2r_{1}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & -1 & | & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

$$\frac{r_{2}+r_{3}}{r_{1}-2r_{3}} \begin{pmatrix}
1 & 0 & 0 & | & -3 & 0 & 2 \\
0 & 1 & 0 & | & 1 & 1 & -1 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

例 求 $A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$ 的逆矩阵 解

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 2 & 0 & 3 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_2 - r_1}{r_3 - 2r_1} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & -1 & | & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1) \times r_3} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

$$\xrightarrow[r_1-2r_3]{r_1-2r_3} \begin{pmatrix} 1 & 0 & 0 & | & -3 & 0 & 2 \\ 0 & 1 & 0 & | & 1 & 1 & -1 \\ 0 & 0 & 1 & | & 2 & 0 & -1 \end{pmatrix}$$

所以
$$A^{-1} = \begin{pmatrix} -3 & 0 & 2 \\ 1 & 1 & -1 \\ 2 & 0 & -1 \end{pmatrix}$$

$$\begin{array}{cccc}
 & -3 & 0 & 2 \\
 & 1 & 1 & -1 \\
 & 2 & 0 & -1
\end{array}$$

例 求 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$ 的逆矩阵

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A:I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$r_2 - 2r_3$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\frac{1}{5} \times r_3$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & -2 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & -2 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 122 & 1 & 0 & 0 \\ 014 & 2 & 1 & -2 \\ 001 & 2/52/5 - 3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 010 & 2/5 - 3/5 & 2/5 \\ 001 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 122 & 1 & 0 & 0 \\ 014 & 2 & 1 & -2 \\ 001 & 2/52/5 - 3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 010 & 2/5 - 3/5 & 2/5 \\ 001 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 \ 2 \ 2 \ 1 & 0 & 0 \\ 0 \ 1 \ 4 \ 2 & 1 & -2 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 1 \ 2 \ 0 \ 1 \ 1/5 \ -4/5 \ 6/5 \\ 0 \ 1 \ 0 \ 1/2/5 \ -3/5 \ 2/5 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 \ 2 \ 2 \ 1 \ 0 \ 0 \\ 0 \ 1 \ 4 \ 2 \ 1 \ -2 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 1 \ 2 \ 0 \ 1/5 \ -4/5 \ 6/5 \\ 0 \ 1 \ 0 \ 2/5 \ -3/5 \ 2/5 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix}$$

$$r_1-2r_2$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2 - 2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 - 2 \\ 0 & -2 - 3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + 2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 - 2 \\ 0 & 0 & 5 & 2 & 2 - 3 \end{pmatrix}$$

$$\begin{pmatrix}
0 - 2 - 3 & | -2 & 0 & 1
\end{pmatrix} \qquad \begin{pmatrix}
0 & 0 & 5 & | & 2 & 2 - 3
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \qquad \begin{pmatrix}
1 & 2 & 2 & | & 1 & 0 & 0 \\
0 & 1 & 4 & | & 2 & 1 & -2 \\
0 & 0 & 1 & | & 2/5 & 2/5 - 3/5
\end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix}
1 & 2 & 0 & | & 1/5 - 4/5 & 6/5 \\
0 & 1 & 0 & | & 2/5 - 3/5 & 2/5 \\
0 & 0 & 1 & | & 2/5 & 2/5 & -3/5
\end{pmatrix}$$

$$\xrightarrow{r_1-2r_2} \begin{pmatrix} 100 & -3/5 & 2/5 & 2/5 \\ 010 & 2/5 & -3/5 & 2/5 \\ 001 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\frac{r_{2}-2r_{3}}{\longrightarrow} \begin{pmatrix}
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 4 & 2 & 1-2 \\
0-2-3 & -2 & 0 & 1
\end{pmatrix} \xrightarrow{r_{3}+2r_{2}} \begin{pmatrix}
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 4 & 2 & 1-2 \\
0 & 0 & 5 & 2 & 2-3
\end{pmatrix}$$

$$\frac{1}{5} \times r_{3} \longrightarrow \begin{pmatrix}
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 4 & 2 & 1 & -2 \\
0 & 0 & 1 & 2/5 & 2/5 & -3/5
\end{pmatrix} \xrightarrow{r_{2}-4r_{3}} \begin{pmatrix}
1 & 2 & 0 & 1/5 & -4/5 & 6/5 \\
0 & 1 & 0 & 2/5 & -3/5 & 2/5 \\
0 & 0 & 1 & 2/5 & 2/5 & -3/5
\end{pmatrix}$$

 $\xrightarrow{r_1-2r_2} \begin{pmatrix} 1\ 0\ 0\ -3/5 & 2/5 & 2/5 \\ 0\ 1\ 0\ 1 & 2/5 & -3/5 & 2/5 \\ 0\ 0\ 1 & 2/5 & 2/5 & -3/5 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} -3/5 & 2/5 & 2/5 \\ 2/5 & -3/5 & 2/5 \\ 2/5 & 2/5 & -3/5 \end{pmatrix}$

例 求 $A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$ 的逆矩阵,其中 a_i 都不为 0。

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \alpha_3 & 0 & 0 & 1 & 0 \\ \alpha_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_1 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \\ a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix} a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \\ a_1 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix} a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\frac{1}{a_4} \times r_1}_{\frac{1}{a_2} \times r_3}_{\frac{1}{a_3} \times r_4}$$

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \\ a_1 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix}
a_4 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & a_1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0
\end{pmatrix}
\xrightarrow{\frac{1}{a_4} \times r_1}
\xrightarrow{\frac{1}{a_1} \times r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \frac{1}{a_4} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \frac{1}{a_1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{a_2} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & \frac{1}{a_3} & 0
\end{pmatrix}$$

例 求 $A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \end{pmatrix}$ 的逆矩阵,其中 a_i 都不为 0。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \\ a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix} a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\frac{1}{a_4} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \frac{1}{a_4} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{a_2} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{a_2} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \frac{1}{a_3} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & \frac{1}{a_3} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{a_3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \frac{1}{a_3} & 0 \end{pmatrix}$$

所以
$$A^{-1} = \begin{pmatrix} 0 & 0 & 0 & \frac{1}{a_4} \\ \frac{1}{a_1} & 0 & 0 & 0 \\ 0 & \frac{1}{a_2} & 0 & 0 \\ 0 & 0 & \frac{1}{a_3} & 0 \end{pmatrix}$$