Week 7 written assignment

1 什麼是「Score i?

在統計學中,「Score Function」(或簡稱 Score)是一個非常具體的概念。

想像一個機率分佈 $p(\mathbf{x})$ 。這就像一個高低起伏的「地圖」,其中 \mathbf{x} 是地圖上的一個點 (例如,一張 512×512 的圖片就是高維空間中的一個點)。

- 山谷 (低點): 代表機率 $p(\mathbf{x})$ 高的地方,例如 \mathbf{x} 是一張非常清晰、漂亮的貓咪照 \mathbf{H} 。
- 山頂 (高點): 代表機率 $p(\mathbf{x})$ 低的地方,例如 \mathbf{x} 是一張充滿雜訊、無法辨識的圖片。

Score (分數) 的數學定義是對數機率的梯度 (gradient):

$$s(\mathbf{x}) = \nabla_{\mathbf{x}} \log p(\mathbf{x})$$

它的直觀意義是:

- 在 ${\bf x}$ 這一點,「Score」 ${\bf s}({\bf x})$ 是一個向量(一個箭頭),它指向地圖上「機率上升最快」的方向。
- 如果你有一張充滿雜訊的圖片(在「山頂」),它的 Score 會指向「山谷」(貓咪 圖片)的方向。
- 如果你有一張有點模糊的貓咪圖片(在「山谷」的半山腰上),它的 Score 會指向「山谷」的最底部(最清晰的貓咪圖片)。

問題:我們根本不知道真實世界的「地圖」 $p(\mathbf{x})$ 長什麼樣子(我們不知道所有「好圖片」的機率分佈),所以我們無法直接計算 $s(\mathbf{x})$ 。

2 什麼是「Score Matching」?

Score Matching (評分匹配) 的目標就是:訓練一個神經網路 $s_{\theta}(\mathbf{x})$,讓它能夠模仿 (估計) 這個我們無法得知的真實 Score $s(\mathbf{x})$ 。

2.1 天真的作法

我們想最小化「我們的網路預測」和「真實 Score」之間的差距:

$$Loss = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\| s_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p(\mathbf{x}) \|^{2} \right]$$

這個損失函數無法計算,因為我們不知道 $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ 。

2.2 巧妙的作法 (Denoising Score Matching, DSM)

這一步是關鍵。研究人員發現 (Vincent, 2011),與其匹配乾淨資料 \mathbf{x} 的 Score,不如去匹配被雜訊污染過的資料 $\tilde{\mathbf{x}}$ 的 Score。

DSM 的訓練過程如下:

- 1. 取樣 (Sample): 從你的資料集(例如,一堆貓咪圖片)中隨機拿一張乾淨的圖片 x。
- 2. 加噪 (Perturb): 加入一個已知的隨機高斯雜訊 ϵ ,得到一張「被污染」的圖片 $\tilde{\mathbf{x}} = \mathbf{x} + \epsilon$ 。
- 3. 計算目標 (Target): 我們雖然不知道 $p(\tilde{\mathbf{x}})$ 的 Score,但我們可以計算「給定 \mathbf{x} 情況下 $\tilde{\mathbf{x}}$ 」的 Score,即 $\nabla_{\tilde{\mathbf{x}}} \log p(\tilde{\mathbf{x}}|\mathbf{x})$ 。
 - 因為 $\tilde{\mathbf{x}}$ 是由 \mathbf{x} 加上高斯雜訊 ϵ 產生的,這個 Score 竟然可以被精確計算出來,它就是 $-(\tilde{\mathbf{x}}-\mathbf{x})/\sigma^2$ (其中 σ^2 是雜訊的強度)。
 - 因為 $\tilde{\mathbf{x}} \mathbf{x} = \epsilon$, 所以這個目標 Score 就是 $-\epsilon/\sigma^2$ 。
- 4. 訓練 (Train): 我們訓練神經網路 s_{θ} , 當它看到受污染的圖片 $\tilde{\mathbf{x}}$ 時,它必須預測 出 $-\epsilon/\sigma^2$ 。

2.3 更簡單的理解 (Denoising)

你會發現,要預測 $-\epsilon/\sigma^2$,其實等價於預測那個被加進去的雜訊 ϵ 。

所以,Denoising Score Matching (DSM) 實際上就是在訓練一個「降噪器」(Denoising Model) $\epsilon_{\theta}(\tilde{\mathbf{x}})$ 。

- 輸入:一張 noisy 的圖片 $\tilde{\mathbf{x}}$ 。
- 輸出:網路 ϵ_{θ} 預測的雜訊 ϵ 。
- 損失函數: Loss = $\mathbb{E}[\|\epsilon_{\theta}(\tilde{\mathbf{x}}) \epsilon\|^2]$ 。(你預測的雜訊 ϵ_{θ} 和實際加入的雜訊 ϵ 越接 近越好)。

3 Score Matching 如何用於擴散模型 (Diffusion Models)?

擴散模型巧妙地利用了這個「降噪器」來生成全新的圖片。 它包含兩個過程:

3.1 訓練過程 (Forward/Diffusion Process)

我們不只用一種雜訊強度,而是定義一個「雜訊時間表」,例如 t = 1, 2, ..., 1000。

- t=1:加一點點雜訊。
- t = 1000:加超多雜訊,圖片變成純高斯雜訊(像電視雪花)。

我們的目標是訓練一個全能的降噪器 $\epsilon_{\theta}(\mathbf{x}_t,t)$,它必須能夠處理任何時間點 t 的 noisy 圖片 \mathbf{x}_t 。

訓練步驟:

- 1. 隨機選一張乾淨圖片 x₀。
- 2. 隨機選一個時間點 t (例如 t = 350)。
- 3. 根據 t = 350 的雜訊強度,在 \mathbf{x}_0 上加入雜訊 ϵ ,得到 \mathbf{x}_t 。
- 4. 將 \mathbf{x}_t 和 t 輸入到神經網路 ϵ_{θ} 。
- 5. 使用 Score Matching (DSM): 訓練網路 $\epsilon_{\theta}(\mathbf{x}_t,t)$, 使其輸出的結果盡可能接近 ϵ 。

3.2 生成過程 (Reverse/Sampling Process)

這就是我們實際「畫圖」的時候。我們反向執行這個過程:

- 1. 開始 (Start): 從 t = 1000 開始。生成一張純雜訊的圖片 \mathbf{x}_T 。
- 2. 迭代 (Iterate): 我們從 t = 1000 逐步走回 t = 0。
- 3. 預測雜訊 (Predict Noise): 在 t 時刻,將當前的 noisy 圖片 \mathbf{x}_t 和 t 輸入我們訓練好的網路 $\epsilon_{\theta}(\mathbf{x}_t,t)$ 。
- 4. 取得 Score:網路會「猜測」 \mathbf{x}_t 中包含的雜訊 ϵ 。這個 ϵ 其實就隱含了 Score (指向更乾淨圖片的方向)。
- 5. 降噪一步 (Denoise Step): 我們使用這個預測出來的 ϵ ,從 \mathbf{x}_t 中「減去」一小部分雜訊,得到 \mathbf{x}_{t-1} 。這一步在數學上被稱為 Langevin Dynamics (朗之萬動力學)或擴散模型的反向 SDE。
- 6. 重複 (Repeat): 重複這個過程 (預測雜訊 -> 減去雜訊), $\mathbf{x}_{999} \to \mathbf{x}_{998} \to \cdots \to \mathbf{x}_1$ 。
- 7. 完成 (Finish): 當 t=0 時, \mathbf{x}_0 就是一張從純雜訊中「雕刻」出來的全新、清晰的圖片。

4 Unanswered Questions

ISM 的損失函數 $L_{ISM}(\theta)$ 包含 $\nabla_x \cdot S(x;\theta)$ 這一項,也就是 score function 的 divergence。在實務上,特別是當 $S(x;\theta)$ 是一個高維度的深度神經網路時,這個散度項是如何被有效計算的?