CnC2003-Maroc : Epreuve de mathématiques I- Corrigé Par M. Taibi professeur en MP* à Rabat

Partie I: Etude d'un exemple

- 1. x et α sont des réels strictement positifs.
 - (a) On a : $\frac{1-e^t}{t} \underset{0+}{\sim} 1$, l'application $t \mapsto \frac{1-e^t}{t}$ est continue sur $]0; \alpha]$ et prolongeable par continuité en 0, donc intégrable sur $]0, \alpha]$.
 - (b) L'applicaion $t \mapsto \frac{e^{-t}}{t}$ est continue sur $[x, +\infty[(x > 0), D]]$ autre part $t^2 \frac{e^{-t}}{t} = te^t \xrightarrow[t \to +\infty]{} 0$, donc $\frac{e^{-t}}{t} = \int_{t \to +\infty}^{t} (\frac{1}{t^2})$ et par suite $t \mapsto \frac{e^{-t}}{t}$ est $[x, +\infty[-intégrable]]$
- 2. Pour tout $x \in R_+^*$, on pose $\varphi(x) = \int_x^{+\infty} \frac{e^{-t}}{t} dt = \int_{]x,+\infty[} \frac{e^{-t}}{t} dt$.
 - a) Pour tout x et tout t > x, on a :

$$\begin{split} &-\frac{e^{-t}}{t}>0 \text{ , donc } \varphi(x)>0.\\ &-\frac{1}{t}<\frac{1}{x}\Rightarrow \varphi(x)=\int\limits_{x}^{+\infty}\frac{e^{-t}}{t}dt<\int\limits_{x}^{+\infty}\frac{e^{-t}}{x}dt=\frac{1}{x}e^{-x}\\ &\text{ En conclusion : } 0<\varphi(x)<\frac{1}{x}e^{-x} \text{ pour tout } x>0. \end{split}$$

b) Posons $F(x) = \int_{1}^{x} \frac{e^{-t}}{t} dt$ pour tout x > 0, alors F est une primitive de la fonction continue $t \mapsto \frac{e^{-t}}{t}$, sur R_{+}^{*} . Pour x > 0, on a : (*) $\varphi(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = \int_{x}^{1} \frac{e^{-t}}{t} dt + \underbrace{\int_{1}^{+\infty} \frac{e^{-t}}{t} dt}_{=1}^{+\infty} = \varphi(1) - F(x)$, donc φ est

de classe C^1 sur R_+^* , avec :

$$\forall x > 0; \varphi'(x) = -\frac{e^{-x}}{x}.$$

c) Pour x>0, $\ln(x)$ s'écrit : $\ln(x)=\int\limits_1^x \frac{1}{t}dt$ et par la relation (*) de 2.b), on a :

$$\varphi(x) + \ln(x) = \int_{x}^{1} \frac{e^{-t}}{t} dt + \varphi(1) + \int_{1}^{x} \frac{1}{t} dt = \varphi(1) - \int_{x}^{1} \frac{1 - e^{-t}}{t} dt.$$

Par 1.a) et passage à la limite lorsque x tend vers 0^+ , on obtient :

$$\lim_{t \to 0^+} (\varphi(x) + \ln(x)) = \varphi(1) - \int_0^1 \frac{1 - e^{-t}}{t} dt = C$$

d) Pour tout x > 0, on a :

$$\varphi(x) + \ln(x) = \varphi(1) - \int_{x}^{1} \frac{1 - e^{-t}}{t} dt = \varphi(1) - \left(\int_{0}^{1} \frac{1 - e^{-t}}{t} dt - \int_{0}^{x} \frac{1 - e^{-t}}{t} dt\right)$$

$$= \varphi(1) - \int_{0}^{1} \frac{1 - e^{-t}}{t} dt + \int_{0}^{x} \frac{1 - e^{-t}}{t} dt$$

$$= C + \int_{0}^{x} \frac{1 - e^{-t}}{t} dt$$

Le développement en série entière de l'application $t\mapsto h(t)=\left\{\begin{array}{ll} \frac{1-e^{-t}}{t} \text{ si } t\neq 0\\ 1 & \text{ si } t=0 \end{array}\right.$, donne :

 $h(t) = \sum_{k=0}^{+\infty} \frac{(-t)^{k+1}}{k!} t^{k-1}$ pour tout t réel et par intégration sur le compact [0,x], on obtient :

$$\varphi(x) + \ln(x) = C + \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k!} \frac{x^k}{k}$$

- 3. Pour $x \in \mathbb{R}^*$, on pose $\psi(x) = \frac{1}{2}\varphi(|x|)$
 - (a) L'application ψ est paire, il suffit de vérifier l'ingrabilité sur $]0; +\infty[$. Or $|\psi(x)| = \psi(x) = \frac{1}{2}\varphi(x) < \frac{e^{-x}}{2\pi}$ et $x \mapsto \frac{e^{-x}}{2x}$ intégrable sur $[1; +\infty[$, donc ψ est intégrable sur $[1, +\infty[$. Au voisinage de 0^+ , on a, par $2.c): \varphi(x) \sim -\ln(x)$ et $x \mapsto -\ln(x)$ est]0,1]—intégrable. Ceci permet de conclure que ψ est intégrable sur $]0,+\infty[$, donc aussi sur $]-\infty;0[$.
 - (b) Par: $\forall t > 0$; $|\psi(t)e^{-ixt}| = \psi(t) = \langle \frac{e^{-t}}{2t} \text{ et } 3.a \rangle$ l'application $t \mapsto \psi(t)e^{-ixt}$ est intégarble sur $]0, +\infty[$. En échangeant t en -t et via la parité de ψ , on déduit que $t\mapsto \psi(t)e^{-ixt}$ est intégrable sur $]-\infty,0[$. On posera par définition $\int_{-\infty}^{+\infty} \psi(t)e^{-ixt}dt=\int_{-\infty}^{0} \psi(t)e^{-ixt}dt+\int_{0}^{+\infty} \psi(t)e^{-ixt}dt$ et on a alors : $\hat{\psi}(x)=\int_{-\infty}^{+\infty} \psi(t)e^{-ixt}dt=\int_{-\infty}^{0} \psi(t)e^{-ixt}dt+\int_{0}^{+\infty} \psi(t)e^{-ixt}dt\\ =\int_{0}^{+} \psi(-t)e^{ixt}dt+\int_{0}^{+\infty} \psi(t)e^{-ixt}dt \text{ chgt de variable }t\leftrightarrow -t\\ =\int_{0}^{+\infty} \frac{1}{2}\varphi(t)\left(e^{-ixt}+e^{ixt}\right)dt\\ =\int_{0}^{+\infty} \varphi(t)\cos(xt)dt$
 - (c) Caractère C^{∞} de $\hat{\psi}$:
 - L'application $g:(x,t)\mapsto \varphi(t)\cos(xt)$ est définie et de Classe C^{∞} sur $]0;+\infty[\times\mathbb{R};$ avec : $\frac{\partial^k g}{\partial x^k}(x,t) = \varphi(t)(-t^k)\cos(xt + k\frac{\pi}{2}) \text{ pour tout } k \in \mathbb{N} \text{ et tout } (x,t) \in]0; +\infty[\times \mathbb{R}]$
 - $\ \forall k \in \mathbb{N}, \forall (x,t) \in]0; +\infty[\times \mathbb{R}; \ \left| \frac{\partial^k g}{\partial x^k}(x,t) \right| \leqslant t^k \varphi(t) \ \text{et} \ t \mapsto t^k \varphi(t) \ \text{est intégrable sur }]0; +\infty[\ (t) \in \mathbb{N}, \forall (x,t) \in]0; +\infty[\ (t) \in \mathbb{N}, \forall (x,$ $t^k \varphi(t) = o(\frac{1}{t^2})$

Le théorème de dérivation sous le signe intégral permet de conclure que $\hat{\psi}$ est de classe C^{∞} sur \mathbb{R} , avec $\hat{\psi}^{(k)}(x) = \int_0^{+\infty} \frac{\partial^k g}{\partial \omega k}(x,t) dt = \int_0^{+\infty} \varphi(t)(-t^k) \cos(xt + k\frac{\pi}{2}) dt$ pour tout $x \in \mathbb{R}$ et tout

- (d) On utilise une intégartion par parties, en posant : $U(t) = \varphi(t)$ et $V(t) = \frac{1}{\tau}\sin(xt)$ qui sont de classe C^1 avec $\lim_{t\to +\infty} (U(t)V(t)) = 0$ car $|U(t)V(t)| \leq \frac{1}{\pi t}e^{-t}$ et $\lim_{t\to 0} U(t)V(t) = 0$ car φ est bornée, on obtient alors: $\psi(x) = \int_0^{+\infty} \varphi(t) \cos(xt) dt = -\int_0^{+\infty} \varphi'(t) \frac{\sin(xt)}{x} dt = \int_0^{+\infty} \frac{e^{-t} \sin(xt)}{t} d \operatorname{car} \varphi'(t) = -\frac{e^{-t}}{t}.$ Par 3.b) et la continuité sous le signe intégral, on a : $\hat{\psi}(0) = \int_0^{+\infty} \varphi(t) dt$.
- 4. L'expression $\hat{\psi}(x) = \frac{\arctan(x)}{x}$
 - (a) L'application $h:(x,t)\mapsto \frac{e^{-t}}{t}\sin(xt)$ est définie, continue sur $\mathbb{R}_+^*\times\mathbb{R}_+^*$ Pour tout a>0 et tout $(x,t)\in[a,+\infty[\times\mathbb{R}_+^*], |h(x,t)|\leqslant\frac{1}{a}e^{-t}$ qui est intégrable sur \mathbb{R}_+^* . h est de classe \mathbb{C}^1 sur $\mathbb{R}_+^*\times\mathbb{R}_+^*$, avec $\left|\frac{\partial h}{\partial x}(x,t)=e^{-t}\cos(xt)\right|\leqslant e^{-t}$ qui est $\mathbb{R}_+^*-intégrable$. Par le théorème de dérivation sous le signe intégral, $\Phi:x\mapsto\int_0^{+\infty}\frac{e^{-t}}{t}\sin(xt)dt$ est de classe C^1 sur l'ouvert \mathbb{R}_+^* et $\Phi'(x)=\int_0^{+\infty}\frac{\partial h}{\partial x}(x,t)dt=\int_0^{+\infty}e^{-t}\cos(xt)dt$. $=\Re(\int_0^{+\infty}e^{-t}e^{ixt}dt)$ $=\Re(\int_0^{+\infty}e^{-t}e^{ixt}dt)$ $=\frac{1}{x^2+1}$

car $\int_0^{+\infty} e^{(ix-1)t} dt = \frac{1}{x^2+1} + i \frac{x}{x^2+1}$ et xréel

(b) On a $\Phi(x) = x\dot{\psi}(x)$ et $\dot{\psi}$ est définie en 0, donc $\lim_{x\to 0} \Phi(x) = 0$. D'autre part $\Phi'(x) = \frac{1}{1+x^2}$ pour tout x>0, donc $\Phi(x) = \arctan(x)$ pour tout x>0 et par suite : $\dot{\psi}(x) = \frac{1}{x}\arctan(x)$ pour tout x>0.

Partie II : Quelques propriétés de la transformée de Fourier d'une fonction

- 1. Transformation de Fourier d'une fonction intégrable
 - a) Soit f une fonction continue par morceaux et intégrable sur $\mathbb R$, on a alors : $\forall (x,t) \in R^2 \; ; \; \left| f(t)e^{-ixt} \right| \leqslant |f(t)|$ et par suite, pour tout $x \in \mathbb R$, l'application $t \mapsto f(t)e^{-ixt}$ est intégrable sur $\mathbb R$, avec $\left| \int_{-\infty}^{\infty} f(t)e^{-ixt}dt \right| \leqslant \int_{-\infty}^{\infty} |f(t)| \, dt$.

Conclusion : \hat{f} est définie et bornée sur $\mathbb R$

(a) Si f est continue et intégrable sur \mathbb{R} , alors l'application $h:(x,t)\mapsto f(t)e^{-ixt}$ définie sur \mathbb{R}^2 vérifie : h est continue sur \mathbb{R}^2

 $\forall (x,t) \in \mathbb{R}^2$. $|h(x,t)| \leqslant |f(t)|$ et f est $\mathbb{R}-\text{intégrable}$

Le théorème de continuité sous le signe intégral s'applique, donc \hat{f} est continue sur \mathbb{R} .

- 2. Transformations
 - (a) L'application $\varphi \mapsto \varphi$ est linéaire (par linéairité de l'intégrale) sur l'espace des fonctions continues par morceaux et R-intégrables.
 - (b) Pour tout $(x,t) \in R^2$, on a : $|f(t-a)e^{-ixt}| \le |f(t-a)|$ et comme $t \mapsto t-a$ est un C¹-difféomorphisme de R sur lui même, il en résulte que $t \mapsto f(t-a)$ est intégrable (car f est R-intégrable) sur R et par suite $f_a(x)$ est définie pour tout x réel., avec

$$f_a(x) = \int_{-\infty}^{\infty} f(t-a)e^{-ixt}dt \stackrel{u=t-a}{=} \int_{-\infty}^{\infty} f(u)e^{-ix(u+a)}du = e^{-ixa} \int_{-\infty}^{\infty} f(u)e^{-ixu}du = e^{-ixa} \dot{f}(x)$$

Pour tout $a \neq 0$, l'application $t \mapsto at$ est un C^1 -difféomorphisme de R sur lui même, comme précédement, on déduit que pour tout $x \in R$, af(x) est déinie et

$$\stackrel{\wedge}{af}(x) = \int_{-\infty}^{\infty} f(at)e^{-ixt}dt \stackrel{u \equiv at}{=} \begin{cases} \frac{1}{a} \int_{-\infty}^{\infty} f(u)e^{-ix(u/a)}du & \text{si } a > 0\\ \frac{1}{a} \int_{+\infty}^{-\infty} f(u)e^{-ix(u/a)}du & \text{si } a < 0 \end{cases}$$

$$= \frac{1}{|a|} \int_{-\infty}^{\infty} f(u)e^{-i\frac{x}{a}u}du = \frac{1}{|a|} \hat{f}(\frac{x}{a})$$

(c) Posons $g(t) = f(t)e^{iat}$ pour tout $t \in \mathbb{R}$, par $\left|g(t)e^{-ixt} = f(t)e^{iat}e^{-ixt}\right| \leqslant |f(t)|$ pour tout t et tout x et l'intégrabilité de f sur \mathbb{R} , on déduit que \hat{g} est définie sur \mathbb{R} et l'on a :

$$g(x) = \int_{-\infty}^{\infty} f(t)e^{iat}e^{-ixt}dt = \int_{-\infty}^{\infty} f(t)e^{iat}e^{-ixt}dt = \int_{-\infty}^{\infty} fte^{-it(-a+x)}dt = \hat{f}(x-a).$$

(d) Si f est paire, alors : $\forall x \in R$, $\hat{f}(x) = \int_{-\infty}^{\infty} f(t)e^{-ixt}dt = \int_{-\infty}^{0} f(t)e^{-ixt}dt + \int_{0}^{\infty} f(t)e^{-ixt}dt$. Or $\int_{-\infty}^{0} f(t)e^{-ixt}dt \stackrel{u=-t}{=} \int_{+\infty}^{0} f(-t)e^{ixt}(-dt) = \int_{0}^{+\infty} f(t)e^{ixt}dt$, donc :

$$\hat{f}(x) = \int_0^{+\infty} f(t) e^{ixt} dt + \int_0^{\infty} f(t) e^{-ixt} dt = 2 \int_0^{+\infty} f(t) \cos(xt) dt$$

De même si f est impaire, on a : $f(x) = 2i \int_0^{+\infty} f(t) \sin(xt) dt$

- (e) Si f est réelle et paire (resp. impaire) par 2.d) l'application \hat{f} est paire (resp. impaire
- 3. Dérivation

Ici $f \in C^1(\mathbb{R})$ telle que f et f' sont intégrables sur \mathbb{R} .

(a) Soient x et y deux réels tels que x>y, alors : $|f(x)-f(y)|=\left|\int_y^x f'(t)dt\right|\leqslant \int_y^x |f'(t)|\,dt$. Par cette inégalité et l'intégrabilité de f' sur $\mathbb R$, on déduit que f vérifie le critère de Cauchy au voisinage de l'infini, et par suite $L=\lim_{x\to\pm\infty}f(x)$ existe dans $\mathbb R$.

l'infini, et par suite $L = \lim_{x \to \pm \infty} f(x)$ existe dans \mathbb{R} . Supposons $L \neq 0$, par exemple L > 0, il existe alors C > 0 tel que : $\forall x \in \mathbb{R}, \ |x| \geqslant C \Rightarrow |f(x)| \geqslant \frac{L}{2} > 0$. En particulier : $\forall x \geqslant C$; $\int_{C}^{x} |f(t)| \, dt \geqslant \frac{L}{2}(x - C) \underset{x \to +\infty}{\to} +\infty$ ce qui contredit l'intégrabilité de f sur \mathbb{R} . On conclut, donc que $\lim_{x \to \infty} f(x) = 0$

(b) Soit $x \in R$, on a : $f'(x) = \int_{-\infty}^{+\infty} f'(t)e^{-ixt}dt$. Une intégration par partie, en posant : U(t) = f(t) et $V(t) = e^{-ixt}$ qui sont de classe C^1 sur R et vérifient : $\lim_{t \to \infty} U(t)V(t) = 0$ pour tout x, donne :

$$\hat{f}'(x) = \int_{-\infty}^{+\infty} f'(t)e^{-ixt}dt = [U(t)V(t)]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} U(t)V'(t)dt$$
$$= ix \int_{-\infty}^{+\infty} f(t)e^{-ixt}dt$$
$$= ix \hat{f}(x)$$

Par $\hat{f}'(x) = ixf(x)$ pour tout $x \in R$, on déduit : $\forall x \neq 0$, $\left| \hat{f}(x) \right| = \left| \frac{\hat{f}'(x)}{ix} \right| = \frac{\left| \hat{f}'(x) \right|}{|x|}$ et comme f' est bornée sur R (question), il en résulte que : $\lim_{x \to \pm \infty} \hat{f}(x) = 0$.

(c) On suppose $g:t\mapsto tf(t)$ est intégrable sur R:L'application $h:(x,t)\mapsto f(t)e^{-ixt}$ est C^1 sur \mathbb{R}^2 , avec $\frac{\partial h}{\partial x}(x,t)=-itf(t)e^{-ixt}=-ig(t)$, donc pour tout $(x,t)\in\mathbb{R}^2$; $\left|\frac{\partial h}{\partial x}(x,t)\right|\leqslant |g(t)|$ et $g\in L^1(\mathbb{R},\mathbb{R})$ et par suite le théorème de dérivation sous le signe intégral s'applique et l'on a : \hat{f} est C^1 sur \mathbb{R} , avec $f'(x)=-i\int_{-\infty}^{+\infty}tf(t)e^{-ixt}dt=-ig(x)$ pour tout $x\in\mathbb{R}$.

Partie III: Formule d'inversion

- A- Un exemple: On pose $h(t) = e^{-t^2}$ pour tout $t \in \mathbb{R}$ et on admet la formule: $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.
- 1. L'application h est continue et intégrable sur $\mathbb R$ car paire et $t^2e^{-t^2}\underset{t\to +\infty}{\longrightarrow} 0$, donc h est définie sur $\mathbb R$. De plus $t\mapsto th(t)=te^{-t^2}$ est continue et intégrable sur $\mathbb R$ (car impaire et $t^2th(t)=t^3e^{-t^2}\underset{t\to +\infty}{\longrightarrow} 0$) et par t^2 est de classes C^1 cur t^2 est de classes t^2 t^2 est de classes t

plus
$$t \mapsto th(t) = te^{-t^2}$$
 est continue et intégrable sur \mathbb{R} (car impaire et $t^2th(t) = t^3e^{-t^2} \xrightarrow[t \to +]{} 3.c)$ \hat{h} est de classe C^1 sur \mathbb{R} , avec:
$$\hat{h}'(x) = -i \int_{-\infty}^{+\infty} th(t)e^{-ixt}dt = -i \int_{-\infty}^{+\infty} te^{-(t^2+ixt)}dt$$

$$= -i \int_{-\infty}^{+\infty} \frac{1}{2}(2t+ix)e^{-(t^2+ixt)}dt + \frac{1}{2}i(ix) \int_{-\infty}^{+\infty} e^{-(t^2+ixt)}dt$$

$$= \left[e^{-(t^2+ixt)}\right]_{t=-\infty}^{t=+\infty} - \frac{1}{2}x \int_{-\infty}^{+\infty} e^{-t^2}e^{-ixt}dt$$

$$= -\frac{1}{2}xh(x)$$

Donc, pour tout $x \in \mathbb{R}$, $\hat{h}'(x) + \frac{1}{2}x\hat{h}(x) = 0$ ie : \hat{h} est solution sur \mathbb{R} de l'équation différentielle (1) : $y' + \frac{1}{2}xy = 0$.

2. L'équation différentielle (1) est linéaire d'ordre un, sans second mambre, la solution générale de (1) est donc de la forme : $y(x) = \lambda e^{\int \frac{1}{2}x \, dx} = \lambda e^{-\frac{x^2}{4}}$ où $\lambda \in \mathbb{R}$.

Comme \hat{h} est solution sur \mathbb{R} de l'équation différentielle (1), il existe $\lambda \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}$, $\dot{h}(x) = \lambda e^{-\frac{x^2}{4}}$. Pour x = 0, on a : $\lambda = \hat{h}(0) = \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$. d'où : $\forall x \in \mathbb{R}$, $\dot{h}(x) = \sqrt{\pi} e^{-\frac{x^2}{4}}$.

- 3. Si $h: t \mapsto e^{-t^2}$ et $\varepsilon > 0$, on a : $\sqrt{\varepsilon} h: t \mapsto e^{-(\sqrt{\varepsilon}t)^2} = e^{-\varepsilon t^2}$. Les hypothèses de II 2.b) sont satisfaites, et donc $\sqrt[A]{\varepsilon} h(x) = \frac{1}{\sqrt{\varepsilon}} \hat{h}(\frac{x}{\sqrt{\varepsilon}}) = \frac{1}{\sqrt{\varepsilon}} \sqrt{\pi} e^{-\frac{1}{4}(\frac{x}{\sqrt{\varepsilon}})^2} = \frac{1}{\sqrt{\varepsilon}} \sqrt{\pi} e^{-\frac{x^2}{4\varepsilon}}$ pour tout $x \in \mathbb{R}$.
- B- Application à la formule d'inversion

Soit f une fonction continue, bornée , intégrable sur $\mathbb R$ et telle que $\hat f$ est intégrable sur $\mathbb R$. soit $(\varepsilon_n)_n$ une suite décroissante de réels strictement positifs et tendant vers 0

- a) Soit v une fonction continue et intégrable sur $\mathbb R$, posons pour $n \in \mathbb N$ et $y \in \mathbb R$: $v_n(y) = v(y)e^{-\epsilon_n y^2}$, on a
 - $\forall n \in \mathbb{N}, \forall y \in \mathbb{R}$, v_n est continue sur \mathbb{R} et (v_n) converge simplement vers v sur \mathbb{R}

 $\forall n \in \mathbb{N}, \forall y \in \mathbb{R}, |v_n(y)| = \left|v(y)e^{-\varepsilon_n y^2}\right| \leqslant |v(y)| \text{ et } v \text{ est intégrable sur } \mathbb{R}.$

Le théorème de convergence dominée s'applique et on a bien la formule demandée.

b) Soit w une fonction continue et bornée sur $\mathbb R$. Pour tout $n \in \mathbb{N}$ et $y \in \mathbb{R}$, posons $w_n(y) = w(x + \varepsilon_n y)e^{-y^2}$, on a alors: $\cdot (w_n)$ est une suite de fonctions continues et converge simplement vers $y \mapsto w(x)e^{-y^2}$ $\forall n \in \mathbb{N}, \forall y \in \mathbb{R}, |w_n(y)| = |w(x + \varepsilon_n y)e^{-y^2}| \leq ||w||_{\infty} e^{-y^2} \text{ et } y \mapsto ||w||_{\infty} e^{-y^2} \text{ est intégrable sur } \mathbb{R}.$ Donc par le théorème de convergence dominée et la relation $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$, on a :

$$\lim_{n \to +\infty} \int_{-\infty}^{+\infty} w(x + \varepsilon_n y) e^{-y^2} dy = \int_{-\infty}^{+\infty} w(x) e^{-y^2} dy = w(x) \sqrt{\pi}$$

2. Pour tous x, y et t réels , on a :

$$\begin{split} \cdot \int_{-\infty}^{+\infty} e^{-iy(t-x)} e^{-\varepsilon_n y^2} dy &= \int_{\varepsilon}^{\wedge} h \ (t-x) = \frac{1}{\sqrt{\varepsilon}} \sqrt{\pi} e^{-\frac{(t-x)^2}{4\varepsilon}} \\ \cdot \left| f(t) \int_{-\infty}^{\wedge} h \ (t-x) \right| &\leq \|f\|_{\infty} \frac{1}{\sqrt{\varepsilon}} \sqrt{\pi} e^{-\frac{(t-x)^2}{4\varepsilon}} \ \text{et} \ t \mapsto \|f\|_{\infty} \frac{1}{\sqrt{\varepsilon}} \sqrt{\pi} e^{-\frac{(t-x)^2}{4\varepsilon}} \ \text{est intégrable sur } \mathbb{R} \ \text{et puis} \\ \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{\varepsilon}} \sqrt{\pi} e^{-\frac{(t-x)^2}{4\varepsilon}} dt &= \frac{1}{\sqrt{\varepsilon_n}} \sqrt{\pi} \int_{-\infty}^{+\infty} f(t) e^{-\frac{(t-x)^2}{4\varepsilon}} dt \\ &= \frac{1}{\sqrt{\varepsilon_n}} \sqrt{\pi} \int_{-\infty}^{+\infty} f(t) e^{-(\frac{t-x}{2\sqrt{\varepsilon_n}})^2} dt \\ &= \frac{1}{2\sqrt{\varepsilon_n}} \sqrt{\pi} \int_{-\infty}^{+\infty} f(t) e^{-(\frac{t-x}{2\sqrt{\varepsilon_n}})^2} dt \\ &= \frac{1}{2\sqrt{\varepsilon_n}} \int_{-\infty}^$$

D'où finalement:

$$\int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} e^{-iy(t-x)} e^{-\varepsilon_n y^2} dy \right) dt = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{\varepsilon}} \sqrt{\pi} e^{-\frac{(t-x)^2}{4\tau}} dt = 2\sqrt{\pi} \int_{-\infty}^{+\infty} f(x+2\sqrt{\varepsilon_n}s) e^{-s^2} ds$$

- 3. x désigne un nombre réel et $\varepsilon > 0$.
 - a) Posons $g(y,t)=f(t)e^{ixy-\varepsilon y^2}e^{-iyt}=f(t)e^{-iy(t-x)}e^{-\varepsilon y^2}$ pour tout $(y,t)\in\mathbb{R}^2$. Pour $p, q \in \mathbb{N}^*$, l'application g est contiunue sur la pavé $K = [-p, p] \times [-q, q]$ et le théorème de fubini s'applique et on a alors la relation demandée.
 - b) Pour pour $q \in \mathbb{N}^*$, l'application $f_q: y \mapsto \int_{-q}^q f(t) e^{-iyt} dt$ est continue car $(y,t) \mapsto f(t) e^{-iyt}$ est continue sur $\mathbb{R} \times [-q;q]$ et que $(f_q)_q$ converge simplement vers \hat{f} . D'autre part, pour tout $q \in \mathbb{N}^*$, al suite d'applications continues $(h_q: y \mapsto e^{ixy - \epsilon y^2} f_q(y))_q$ converge simplement vers $h: y \mapsto e^{ixy - \varepsilon y^2} f(y)$ et puisque \hat{f} est intégrable sur \mathbb{R} , il en résulte que h est intégrable (car $\left|h(y) = e^{ixy - \varepsilon y^2} f(y)\right| \leqslant \left|f(y)\right| \leqslant \left|f(y)\right|$) et on a (via le th de convergence dominée) l'expression demandée.
 - c) Le même principe que précédement, mais ici encore plus simple :La suite l'applications continues $(f_p:t\mapsto f(t)\int_{-p}^p e^{ixy-\varepsilon y^2}dy)_p$ converge simplement sur $\mathbb R$ vers $t\mapsto f(t)\int_{-\infty}^{+\infty} e^{ixy-\varepsilon y^2}dy$ et que $|f_p(t)| \le |f(t)| \int_{-p}^p e^{-\varepsilon y^2} dy \le |f(t)| \int_{-\infty}^\infty e^{-\varepsilon y^2} dy = C^{te} |f(t)| \text{ et comme } f \text{ est intégrable sur } \mathbb{R}, \text{ encore } f \text{ et als } f \text{ et$ par le th. de convergence dominée, l'dentité demandée en résulte.
 - d) On applique à a) le c) et b) pour déduire d):

$$\lim_{q} \left(\lim_{p} \int_{-p}^{p} e^{ixy - \varepsilon y^{2}} \left(\int_{-q}^{q} f(t) e^{-iyt} dt \right) dy \right) = \lim_{q} \left(\int_{-\infty}^{\infty} e^{ixy - \varepsilon y^{2}} \left(\int_{-q}^{q} f(t) e^{-iyt} dt \right) dy \right)$$

$$= \lim_{q} \int_{-q}^{q} f(t) \left(\int_{-\infty}^{\infty} e^{ixy - iyt - \varepsilon y^{2}} dy \right) dt$$

$$= \lim_{q} \int_{-p}^{p} f(t) \left(\int_{-\infty}^{\infty} e^{ixy - iyt - \varepsilon y^{2}} dy \right) dt$$

$$= \lim_{q} \left(\lim_{p} \int_{-p}^{p} e^{ixy - \varepsilon y^{2}} \left(\int_{-q}^{q} f(t) e^{-iyt} dt \right) dy \right)$$

$$= \lim_{p} \left(\lim_{q} \int_{-p}^{p} e^{ixy - \varepsilon y^{2}} \left(\int_{-\infty}^{q} f(t) e^{-iyt} dt \right) dy \right)$$

$$= \lim_{p} \int_{-p}^{p} e^{ixy - \varepsilon y^{2}} \left(\int_{-\infty}^{\infty} f(t) e^{-iyt} dt \right) dy$$

$$= \int_{-\infty}^{\infty} e^{ixy - \varepsilon y^{2}} f(y) dy$$

$$= \int_{-\infty}^{\infty} e^{ixy - \varepsilon y^{2}} f(y) dy$$

$$= \int_{-\infty}^{\infty} e^{ixy - \varepsilon y^{2}} f(y) dy$$

4. Par 2., on a:
$$\int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} e^{-iy(t-x)} e^{-\varepsilon_n y^2} dy \right) dt = 2\sqrt{\pi} \int_{-\infty}^{+\infty} f(x+2\sqrt{\varepsilon_n}s) e^{-s^2} ds \text{ et } 3.d)$$
$$\int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} e^{-iy(t-x)} e^{-\varepsilon_n y^2} dy \right) dt = \int_{-\infty}^{\infty} e^{ixy-\varepsilon_n y^2} \hat{f}(y) dy. \text{ Donc } :$$

 $2\sqrt{\pi} \int_{-\infty}^{+\infty} f(x+2\sqrt{\varepsilon_n}s) e^{-s^2} ds = \int_{-\infty}^{\infty} e^{ixy-\varepsilon_n y^2} f(y) dy \text{ et on fait tendre } n \text{ vers } +\infty, \text{ pour obtenir : } f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ixy} \dot{f}(y) dy \text{ pour tout } x \in \mathbb{R} \text{ (remarquer que la suite de fonctions sous le signe intégral vérifie les hypothèses du th. de convegence dominée).}$