Capítulo 1

Estado del arte

1.1. Impresoras 3D

En los últimos años ha tenido un gran auge las denominadas impresoras 3D. Máquinas capaces de crear un objeto físico de cero mediante un proceso de fabricación aditiva. Este tipo de fabricación está siendo una nueva revolución, de igual manera que pasó hace unos años con la conocida Web2.0, en la que el usuario era capaz de generar contenido para la propia página. Con la fabricación aditiva, pasaremos de la fabricación 1.0 (Produción de objetos físicos por grandes empresas y expertos) a la fabricación 2.0 (producción de los objetos por el cliente final).[1]

La fabricación aditiva es una colección de procesos que unen materiales para crear objetos fisicos en 3D directamente desde un diseño en ordenador. Estos procesos, se caracterizan en que van añadiendo distintas capas, que es todo lo contrario al mecanizado, en la que se conforma la pieza por eliminación de material, ya sea por arranque de viruta o por abrasión.

Una de las ventajas de la fabricación aditiva es su rápidez [2], dependiendo de la complejidad de la pieza puede suponer un par de horas de fabricación, frente a una jornada completa de trabajo con las máquinas de mecanizado. Por ello, también se conocen a este tipo de máquinas, como máquinas de prototipado rápido.

Figura 1.1: Aproximación de una pieza con fabricación aditiva. Fuente [1]

Antiguamente, cuando sólo las grandes empresas disponian de ordenadores y se quería hacer algún tipo de cálculo numérico o tratamiento de información, era necesario ir a los centros de cálculos con los datos requeridos, para que, despues de días o incluso semanas, obtener nuestros resultados y en el mejor de los casos, haber realizado correctamente el ensayo y no tener que volver a repetirlos, si los resultados no eran los deseados, se debería volver a repetir la operación. Con la fabricación de las piezas pasa algo similar. En el caso de que quisieramos diseñar alguna pieza para cubrir nuestras necesidades, debíamos acudir a empresas que dispusieran de las máquinas necesarias para tratar los materiales, y pasado cierto tiempo, tendríamos la pieza en nuestras manos. Una vez en nuestro

poder, deberíamos comprobar que la pieza cumple con nuestras especificaciones y ver que no nos equivocarámos a la hora de tomar alguna medida y saber las tolerancias de la máquina. Gracias a la tecnología aditiva, el tiempo se ha acortado, y como veremos más adelante, a día de hoy, no es necesario acudir a ninguna empresa para poder realizar nuestras propias piezas.

La tecnología aditiva lleva muchos años usandose y sin embargo no ha sufrido muchos cambios desde que empresas como 3Dsystems, Stratatasys o incluso el MIT, la usaran a medidados de los años 80. A pesar de ello, no ha sido hasta hace unos pocos años (2009) cuando la tecnología ha llegado al público en general. Se debe a que el funcionamiento de este tipo de tecnologías estaban protegidas por patentes. La principal patente [3] es la que desarrolló **S. Scott Crump** co-fundador de Stratasys, la cual expiro en 2009 y permitió que pudiera extenderse el uso de esta tecnología.

1.2. Tecnologías de fabricación aditiva

Dentro de la fabricación aditiva, existen varios modelos de máquinas, en las que el principio de funcionamiento es el mismo, pero la forma de materializar la pieza final son distintas.

Algunas de las tecnologías más usadas son las siguientes:

Estereolitografía (SLA)

Considerada la primera técnica de fabricación aditiva. Fue patentada en 1986 y fabricada por 3d Systems en 1987. El prinipio de funcionamiento es la polimerización de una resina fotucable. Puede alcanzar un espesor de capa de $100\mu m$.

Polyjet De la empresa Israelí Objet. Patentada a finales de los 90 Resina fotocurable de base acrilato. Necesita soportes.

Continua en la siguiente página

Selective Lase Sintering (SLS)

Patentada en 1979. Procesado de polímeros, metales y cerámicos. Puede alcanzar un espesor de capa de $100\mu m$. Necesidad de recubrimiento en maetales y cerámicos para ser sinterizados.

Three Dimensional Printing

Patentada en el MIT. Para mezclas de cerámicos. Se usa en modelos y maquetas.

Electron Beam Melting (EBM)

Fabricada y comercializada por Arcam (1997). Funde polvo metálico de varias aleaciones, incluyendo las de Titanio. Alta velocidad de producción por la potencia del haz de electrones y la posibilidad de guiarlo cambiando el campo magnético a través del cual pasa el haz.

Continua en la siguiente página

Fused Deposition Modelling

(FDM) Comercializada por Stratasys en 1991. Extrusión de filamento (Polímeros). Tecnológia más extendida Necesita soportes. Varios tipos de termoplásticos.

Tabla 1.1: Distituas tecnologias AM

Sin embargo la que más se ha popularizado en la sociedad es la de materíal extruido ya que es la tecnología más sencilla de realizar de manera doméstica. En el siguiente capitulo se detallará en profundidad su funcionamiento, ya que es la tecnología que va abordar este proyecto.

1.3. Fabricación de modelado por deposición fundido

La fabricación de modelado por deposición fundido (**FDM®** en inglés) es la tecnología aditiva que más se ha popularizado en los últimos años. Aunque estas siglas están registradas por la empresa Stratasys Inc. ya que su co-fundador, **S. Scott Crump** fué quien desarrollo está tecnología, y poseedor de la patente en la que se detalla su funcionamiento [3]. Por ello, se usa el término equivalente, fabricación con filamento fundido (**FFF**).

Figura 1.2: Principio de la fabricación con filamento fundido. Fuente [4]

En la imagen 1.2 podemos ver en detalle el principio de funcionamiento de este tipo de impresoras. La máquina dispone de un elemento fusor (1), que está por encima de la temperatura de transición vítrea del polímero, haciendo que entre en un estado viscoso y maleable. El fusor deposita el polímero (2) en distintos niveles sobre una superficie plana (3) a la vez que se desplaza en los tres

ejes cartesianos (X,Y,Z), de este modo, la pieza es creada con el filamento que solidifica al salir del fusor.

Figura 1.3: Esquema de la patente de S. Scott Crump. Fuente [3]

Este sistema de fabricación, tiene tres pasos definidos:

- **Pre-procesado:** Un software especial lamina en capas y calcula las trayectorias necesarias para crear el objeto que queremos fabricar.
- **Producción:** La impresora 3D calienta el termoplástico hasta alcanzar un estado viscoso y maleable y lo va depositando en capas muy finas siguiendo las trayectorias anteriormente calculadas por el software. En los sitios en los que es necesario un soporte, la impresora pone material que posteriormente será quitado de la pieza final.
- Post-procesado: Una vez que la impresora termina, la pieza será usable. En caso de haber puesto material, el usuario deberá removerlo antes de poder dar la pieza por terminada.

El modelo en 3D que se quiera construir, primero deberá ser diseñado con un programa CAD (Computer Aided Design) el cual, será exportado en un fichero con formato STL (StereoLithography). Un fichero STL es una representación triangular de una geometría en 3D. La superficie, es dividida en una serie de triangulos orientados denominadas caras. Cada cara, es definida por una normal y tres puntos[5]. Sin embargo, este fichero no puede ser interpretado por una máquina

FFF ya que lo único que entiende son coordenadas. Por ello, el fichero STL deberá ser tratado por un programa laminador que divida el modelo 3D en distituas capas (Ver imagen 1.4) y genere las trayectorias necesarias para realizar cada capa. Este programa, almacenará las trayectorias en un fichero GCODE, que sí se podrá mandar a la impresora.

Figura 1.4: Detalle de un extrusor realizando una pieza. Fuente [3]

Según explica stratasys en su págnia web [6], la tecnología FFF tiene varios beneficios que la hacen idonea para fabricar:

- La tecnología es limpia y facil de usar por el usuario.
- Los termoplásticos usados son estables mecanicamente y con el medio ambiente.
- Formas complejas que con otra tecnología serían costosas de fabricar, con FFF son mucho más practicas de realizar.

Según podemos leer en la patente S. Scott Crump [3] una impresora FDM es:

Aparato que incorpora un cabezal móvil dispensador (provisto de un suministro de material que solidifica a una temperatura predeterminada) y una base, los cuales se mueven relativamente entre sí a lo largo de los ejes "X", "Y" y "Z" siguiendo un patrón predeterminado para crear objetos tridimensionales mediante la deposición controlada de material descargado desde el cabezal móvil sobre la base. El aparato está preferiblemente controlado por ordenador en un proceso que emplea software de diseño y fabricación asistido por ordenador (CAD-CAM) para generar señales de control y accionar el movimiento controlado del cabezal y la base mientras el material se está depositando.

La creación de objetos tridimensionales es posible mediante la deposición repetida de capas de material de solidificación hasta alcanzar la forma deseada. Son susceptibles de uso materiales que se adhieran a la capa anterior con una unión adecuada tras la solidificación; tales como: ceras autoendurecibles, resinas termoplásticas, metales fundidos, epoxis bicomponentes, espumas y vidrios. La base de cada capa se define por la capa anterior, y el grosor de capa se define y controla mediante la altura a la que la punta del cabezal móvil está situada sobre lacapa precedente

1.3.1. Materiales usados en impresión 3D

En la actualidad hay multitud de materiales que se pueden usar en las impresoras 3D. Siendo la mayoría de ellos polímeros termoplásticos, ya que si se les aplica una temperatura alta se vuelven deformables y al enfriarlos, pasando por un estado de transición vítrea, se endurecen.

Algunos materiales que se usan son:

- **ABS** o acrilonitrilo butadieno estireno.
- PLA o poliácido láctico.
- PVA o alcohol de polivinilo.
- NYLON.

Todos ellos tienen características que hacen idóneo su uso en diferentes campos. Por ejemplo, el ABS tiene unas propiedades mecánicas mejores que el PLA[7]. Por ello, en función de la utilidad que se vaya a dar a la pieza final, será recomendable usar un polímero u otro. Todos estos consumibles comparten la característica de como se distribuyen. El polímero es introducido en el fusor de la impresora en forma de filamento para de ese modo conseguir un hilo continuo durante la impresión.

Por ello, el método de fabricación del consumible es la extrusión, ya que es el método que mejor se amolda para crear objetos con una sección transversal definida y fija.

1.4. Extrusión de polímeros

La extrusión de polímeros es un proceso industrial de fabricación, en el cual se hace pasar por un troquel (también denominado dado) la matería prima previamente prensada y calentada. El proceso de prensado y calentamiento, se hace en una cámara, que contiene un tornillo sin fin el cual gira concentricamente y es alimentado por una tolva. Al hacer pasar el polímero por el troquel, se consigue un objeto con un perfil constante y una longitud variable, pudiendo llegar a ser de centímetros, o en algunos casos de metros.

Figura 1.5: Esquema básico de una extrusora. Fuente [8]

Las principales variables de control que inluyen en el acabado del producto final, son la velocidad de extrusión y la temperatura del cilindro hidráulico afectando estos en la calidad final del producto.

La velocidad influye directamente en el caudal de producción de la máquina. Teóricamente, al incrementar la velocidad del husillo, obtendríamos una mayor producción en la línea, por contra repercute en la calidad final haciendo que la mezcla del producto no sea homogena y llegando a producirse la denominada fractura del polímero fundido, que es debido a la fricción que sufre el polímero al salir por el dado.

La temperatura por contra, influye en la viscosidad del polímero, este parámetro repercute directamente en la resistencia al fundido. Lo cual es bastante importante, por que en el caso que nos ocupa, el material obtenido será posteriormente fundido en una impresora 3D.

En la imagens 1.5 podemos observar los distintos elementos que conforman la extrusora:

■ **Dosificador:** es el encargado de suministrar el polímero, normalmente en forma de granza, a la tolva garantizando un suministro constante.

Figura 1.6: Pellets de PLA

- Tolva: depósito en el que cae la granza proveniente del dosificador. Debe proveer un flujo constante al extrusor para evitar cortes en el objeto que se está construyendo.
 - Su diseño es muy importante, y en función del tipo de material que esté suministrando deberá ser de una manera u otra, debido a que el material puede llegar a compactarse en el fondo y no pasar a la extrusora. Algunos modelos de tolva incluyen sistemas de vibración para ayudar a que el material caiga. En la mayoría de los casos y dependiendo del material con el que estemos trabajando, será conveniente que incluya un sistema de secado para eliminar la humedad, puesto que dependiendo de la matería prima puede afectar a la hora de trabajar con el. Por ejemplo, con el uso del PLA es obligatorio su secado antes de la producción.
- Cilindro hidráulico: Constituye el cuerpo principal de la extrusora y en su interior está el husillo. Es en este cilindro donde se encuentran las resistencias electricas que aportan la energía calorífica necesaria para fundir el material. La temperatura está registrada a lo largo de las distintas zonas del cilindro, para poder tener un control sobre la temperatura de fusión del material. El cilindro debe estar fabricado con materiales especiales de tal manera, que tenga una buena transferencia de calor y debe ser más duro que el materíal que se está extruyendo, para lograr una larga duración.
- Husillo: Es el elemento más importante de la extrusora y el que determina el grado de calidad con el que la pieza saldrá de la extrusora.

(a) Forma de un husillo. Fuente [9]

S	ancho del filete	Entre 0.08D - 0.12D
P	paso o ancho de canal	Distancia horizontal entre los centros de dos filetes consecutivos.
D	diámetro	Distancia máxima entre los topes de los filetes del tornillo
н	profundidad del canal	Distancia perpendicular desde el tope del filete hasta la superficie del canal
Ø	ángulo de hélice	Cuando el paso = D, el ángulo es 17.7º

(b) Parámetros de un husillo. Fuente [10]

Figura 1.7: Características de un husillo.

Como se aprecia en la figura 1.7a tenemos tres zonas claramente definidas:

- Alimentación: Esta zona, es la encargada de transportar la granza de la tolva al interior del husillo. En la figura podemos ver como los filetes están muy separados del centro del husillo, con el fin de transportar la mayor cantidad posible de material.
- Compresión: A medida que entramos en la zona de compresión, los filetes van disminuyendo y se acercan al husillo, con el fin de fundir y homogeneizar el material. Aquí se expulsa el posible aire residual que quede entre la granza.
- **Dosificación:** Conduce el material compactado hacia el dado de la extrusora. Esta zona debe garantizar que el material sale con una temperatura constante y homogeneo.
- **Dado:** En función del dado que se coloque al final de la extrusora, se conseguirá un perfil distinto, en el caso que nos ocupa, el dado tiene un círculo para conseguir la forma de cilindro que deseamos.

Figura 1.8: Distintos ejemplos de extrusión. Fuente [11]

Hasta ahora, hemos visto como funciona la fabricación aditiva, y los componentes más importantes que lo forman. También la evolución a lo largo de los años de las máquinas que trabajan con esta fabricación. Ahora, vamos a ver como ha sido posible que a día de hoy, podamos tener impresorass 3D a un precio muho más bajo y competitivo que una impresora profesional.

1.4.1. Reprap

El proyecto Reprap lo inicia Adrian Bowyer y su equipo en 2006 desde la Universidad de Bath [12]. Nace con la idea de facilitar toda la información necesaria para crear y distribuir libremente una máquina de prototipado rápido.

Figura 1.9: Darwin, primera impresora 3D del tipo Reprap

Toda impresora Reprap, es un robot que usa fabricación con filamento fundido para hacer componentes de ingeniería y otros productos desde una variedad de polímeros termoplástico. Reprap es diseñado para que una máquina pueda ser capaz de imprimir un número importante de las piezas que poseé. El resto de piezas, serán piezas fáciles de conseguir en cualquier parte del mundo. De esta manera, se define el término áutoreplicante. Toda máquina hecha dentro del proyecto Reprap será libre y open-source así, cualquiera podrá hacerse el número de máquinas que desee, ya sea desde su propia máquina Reprap, como de cualquier otra máquina.

Gracias a que Reprap fué liberado con una licencia libre, su expansión en los últimos años ha sido exponencial y ha facilitado que el uso de la fabricación aditiva llegue a las casas, tanto por que está disponible toda la documentación necesaria para realizar una ímpresora de este tipo desde su web¹, como por la distribución a bajo costes de las máquinas.

A día de hoy existen más de 50 modelos distintos de impresoras 3D del tipo Reprap, a pesar de que el principio de funcionamiento es el mismo (FDM) cada impresora es distinta y tiene sus ventajas y desventajas. A pesar del alto número de opciones disponibles, el modelo que más éxito ha tenido ha sido el denominado Prusa Mendel.

La impresora Prusa Mendel es lanzada en el año 2010 Diseñada por Josef Prusa con tan sólo 20 años, estudiante en la universidad de Praga, Repçública Checa, y basa su diseño en la segunda

¹http://www.reprap.org

impresora del proyecto Reprap, la mendel. Como se mencionó anteriormente, toda impresora liberada en Reprap es libre, por ello, Josef Prusa, tomó como base el trabajo que ya había hecho y le añadió algunas mejoras, tales como:

- Mucho más sencilla de montar.
- Menos piezas impresas
- Fácil de reparar.
- Usa mejores componentes lo que hacen que la calidad de impresión mejore.

Figura 1.10: Impresora Reprap Prusa Mendel I2. Fuente [13]

Tras varios años de mejoras e iteracciones en el diseño, Josef liberó en 2012 la prusa I3. La cual introducía un nuevo diseño en la estructura, pasando de usar varillas rosacadas a un marco de alumino que sostenía todo el peso de la impresora, dándole estabilidad y robustez. Para muchas personas, fué un paso atrás en la idea originaría del proyeto Reprap ya que se intentaba conseguir que la impresora fuera capaz de imprimir al menos el 90 % de sus piezas.

Figura 1.11: Impresora Reprap Prusa Mendel I3

Pero la facilidad de montaje y que el coste por incluir un marco no incrementaba demasiado el precio final, ha hecho posible que la prusa I3 sea a día de hoy la impresora Reprap más extendida.

1.4.2. Reprap en España

En Febrero de 2009, Adrian Bowyer impartió una conferencia en Madrid, en el MediaLab Prado, a esa conferencia, asístió Juan Gonzalez Gomez, este era el comienzo de Repra en españa. Como el propio Juan dice en su web[14]:

He estado siguiendo el proyecto reprap desde hace varios años, pero sólo era una mera curiosidad. Ahora que lo he visto de cerca y he comprobado cómo son las piezas que se pueden fabricar de forma casera, estoy impactado. Estuve durante toda la charla con ese presentimiento de que estábamos al comienzo de algo grande. Es la semilla de un futuro completamente revolucionario"

Desde ese momento, Juan empezó a investigar sobre las impresoras 3D, comprando su propia impresora 3D[15] y empezando a imprimir los primeros Printbot: Robots impresos en 3D, faciliando así el prototipado rápido. Debido a que la impresora que tenía no era muy fiable, pensó en la posibilidad de hacerse su propia impresora Reprap.

En ese momento, Juan era profesor visitante en el departamendo de ingeniería de Sistemas y Automática de la Universidad Carlos III de Madrid junto con Alberto Valero, ambos, enseñaron a los estudiantes a trabajar con las impresoras 3D. A través de la asocición de robótica de la universidad solicitarón la compra de una impresora 3D de makerbot para que los estudiantes tuvieran acceso a una y pudieran imprimir sus propias piezas, en ese momento comenzó lo que en un futuro sería el proyecto Clone Wars.

Juan comenzó a trabajar en la construcción de su primera impresora que fue documentando en su popio blog, para transmitirselo a los estudiantes, el 18 de Abril de 2011 se realizó la primera reunión de Clone Wars. Juan documentó todo el proceso de fabricación de una impresora Reprap en la wiki de la asociación de robótica, que más tarde migraría a la web oficial de Reprap, para que de ese modo no estuviera ligado a ninguna universidad y fuera totalmente libre.

En 2013, Juan Gonzalez y Alberto Valero entraron a trabajar en el departamento de innovación y robótica de BQ para realizar impresoras 3D. A día de hoy, BQ comercializa dos modelos de impresoras 3D: Witbox una impresora 3D ya hecha, pero que es 100 % libre, toda la documentación de como está fabricada están disponibles en su web; y la prusa Hephestos, una impresora derivada de la Prusa I3 en formato DIY, para que el usuario final sea quien realice el montaje.

(a) Witbox

(b) Hephestos

Figura 1.12: Impresoras distribuidas por bq. Fuente [16].

A día de hoy, BQ también distribuye su propio filamento el cual tiene las siguientes caracteristicas:

■ Tipo de polímero: PLA.

■ Diámetro Medio: 1.75mm.

■ Temperaturas de extrusión 195-220 °C.

■ Peso: 1Kg.

Figura 1.13: Distintos filamentos de BQ. Fuente [16]

La fabricación es subcontratada a otra empresa, la cual se encarga de realizar la extrusión del filamento, su bobinado y empaquetado final. Aunque a día de hoy el filamento de BQ es de gran calidad, el proceso de fabricación está en constante mejora y desde BQ se trabaja para que la calidad del

filamento y sobre todo el índice de producción del mismo, sea alto.

Como veremos a continuación, esta es la principal premisa de este proyecto, realizar un sistema, capaz de controlar toda la etapa de fabricación del filamento, registrando las temperaturas de funcionamiento y el diámetro final con el que es extruido.

Capítulo 2

Introducción

En la actualidad se disponen de dos líneas de extrusión encargadas de la producción del filamento de PLA (Poliácido láctico) que vende y distribuye la empresa bq. Este filamento, es usado en la actualidad como consumible para las impresoras 3D.

Cada línea de extrusión, está formada por los siguientes elementos:

- Extrusora: Es la encargada de convertir la matería prima, que es introducida en forma de granza, a un hilo continuo denominado filamento. La granza son pequeños cilindros de PLA que son convertidos en filamento al salir de la extrusora. (Ver imagen 1.6 En la instalación sobre la que vamos a implementar el desarrollo contenido en este proyecto, la forma final es cilíndrica. Aunque existen multitud de modelos de boquilla para extruir el material con disintas formas. (Ver figura ??)
- Enfriaminento por inmersión: A la salida de la extrusora se coloca una bañera de enfriamiento que, como su propio nombre indica, se encarga de enfriar el material de forma gradual Se usa una 'bañera' llena de agua con una temperatura controlada para lograr el enfriamiento del filamento según salga de la extrusora. Es un método habitual en este tipo de tecnología de fabricación debido a las altas velocidades de producción que podemos llegar a adquirir.

Figura 2.1: Ejemplo de bañera usada en enfriamiento por inmersion

■ Unidad tractora: mediante la que se hace avanzar el filamento desde la salida de la extrusora hasta la entrada de la bobinadora. Siendo responsable del adelgazamiento del filamento, que aún se encuentra templado en la bañera de refrigeración.

- Unidad de almacenamiento: al tratarse de un proceso continuo es necesario un sistema que actue como buffer de filamento mientras se realiza el cambio de carrete en la bobinadora.
- Bobinadora: Es la encargada de enrollar el filamento en bobinas para su posterior distribución. Estás bobinas también son las usadas normalmente en la impresión 3D, aunque existe algún intento de estandarización al respecto, cada fabricante tiene su carrete. Y no todos son compatibles entre si. En esta parte de la instalación, es donde se tiene un control del diámetro final que adquiere el filamento, ya que es la última parte antes de su almacenaje.

Figura 2.2: Carrete con filamento bobinado

En la línea de fabricación existente la unidad tractora, la de almacenamiento y la bobinadora están integradas en una única máquina. En la actualidad el sistema es completamente funcional. Aunque los parámentros de entrada de cada uno de sus componentes (extrusora, bañera y bobinadora) se operan en lazo abierto y de forma manual. No es un producto adquirido de una vez. Por ello, no se dispone de comunicación directa, por ejemplo, entre la bobinadora y la velocidad de extrusión, en consecuencia, si hay algún tipo de error debe ser el operario encargado de la supervisión en parar todo el proceso y volver a arrancar.

La extrusión del filamento, es un proceso en el que influyen muchas variables como pueden ser la temperatura de la granza en el interior de la extrusora y la velocidad de extrusión. Estos problemas derivan en el producto final en que no se consigue un diámetro omogeno, en nuestro caso 1.75mm, como se puede comprobar en la imagen 2.3.

Figura 2.3: Muestra de filamento con problemas en el diámetro

Capítulo 3

Objetivos

Como se ha comentado a lo largo del capítulo introductorio, para el correcto funcionamiento de la línea es necesario un operador que controle y supervise el funcionamiento de la misma, realice la carga de granza en la extrusora y la carga y descarga de los carretes en la bobinadora. Debido a ello se generan errores en la producción que sólo son visibles una vez que el producto ha sido almacenado y es sometido a las convenientes pruebas de calidad, almacenando asi un producto que no es de la calidad necesaria para comercializarlo.

Para minimizar el error humano, se propone la implementación de un sistema de aquisición y procesamiento de datos (SCADA) que permita el análisis durante y posterior la producción, de los diferentes parámetros del sistema. Con el fin de modelar parcialmente el mismo para tratar de cerrar el lazo de control entre la unidad tractora y el sistema de control del diámetro. De esta manera, podemos ver los aspectos que influyen en el diámetro y que el propio sistema sea capaz de corregirlo en tiempo real durante la producción.

El proyecto está definido por dos fases:

La primera fase en la que se desarrollará el sistema de adquisición de datos constará de los siguientes puntos:

- Recopilación y análisis de la documentación de todos los dispositivos de interés para el proyecto de la línea de extrusión. Ya que actualmente disponemos de instrumentación que no hemos elegido nosotros, deberemos adquirir toda la documentación para poder lograr conseguir la automatización del sistema y ver cómo funciona individualmente cada uno.
- Defición de los requisitos respecto a comunicaciones necesarias entre los dispositivos de la línea y el sistema de adquisición.
- Determinar los requisitos del autómata progamable industrial (PLC) a utilizar.
- Programación del PLC. Puesto que será el encargado de llevar el control de la planta, deberemos programar la adquisición de datos, para establecer el control sobre la linea.

En esta fase, se pondrá en marcha todo el sistema en la planta, instalando el PLC y cableando toda la red de comunicaciones y sensores que disponemos. Así mismo se almacenarán datos de los seis sensores de temperatura que dispone la planta (cinco de ellos en extrusora y uno en bañera de enfriamiento), y sensor de diámetro. Con los datos adquiridos se modelará parcialmente la planta para intentar hacer un control en lazo cerrado entre la unión tractora de filamento y el sensor de diámetro del mismo. Durante esta fase se diseñará un sistema, para poder visualizar los datos adquiridos de forma remota.

La segunda fase del proyecto, consistirá en la implementación en planta de los distintos reguladores diseñados y probados en la fase anterior. Como primera aproximación la salida a controlar será el diámetro del filamento y la entrada la velocidad de extrusión, ya que es la variable que influye directamente en el diámetro a conseguir. Se estudiarán los beneficios de usar distintos tipos de controladores como pueden ser PID, fuzzy, etc. para posteriormente estudiar los beneficiós e inconvenientes de cada uno de ellos.

Para el completo desarrollo de esta segunda fase, y poder demostrar el correcto funcionamiento en la línea, necesitaremos la aprobación de la empresa que explota la línea de extrusión. Aunque se tratará de un sistema modular que será fácil de integrar en otras líneas de producción parecidas. Siendo el sistema totalmente compatible y escalable para futuras lineas de extrusión que se adquieran.

A continuación, se detallan los objetivos a conseguir en el proyecto y un diagrama de gant con la planificación inicial del proyecto:

- Documentación de la instrumentación de la planta.
- Definir la arquitectura para la comunicación del PLC y la instumentación
- Definir requisitos del PLC a adquirir.
- Programación del PLC.
- Realización del armario eléctrico para montar en la fábrica.
- Estudio de los datos adquiridos y desarrollo del modelo teórico de la planta.
- Comprobar qué regulador se amolda a nuestras necesidades.
- Puesta en marcha del regulador en planta y comprobar resultados.

Bibliografía

- [1] Brent Stucker. Additive manufacturing technologies: Technology introduction and busines implications. pages 1–11, August 7 2015.
- [2] Dan Mishek. How and when to choose between additive and subtractive prototyping]. pages 1–2, August 7 2015.
- [3] S.S. Crump. Apparatus and method for creating three-dimensional objects. https://www.google.com/patents/US5121329, June 9 1992. US Patent 5,121,329.
- [4] Zureks. Fundamento fdm. https://commons.wikimedia.org/wiki/File%3AFDM_by_Zureks.png, June 9 2008.
- [5] D. Rypl and Z. Bittnar. Triangulation of 3d surfaces recovered from stl grids. page 1, August 7 2015.
- [6] Stratasys. Fdm technology. http://www.stratasys.com/3d-printers/technologies/fdm-technology, June 9 2015.
- [7] Antonio Alberto Relaño Pastor. Estudio comparativo de piezas de abs y pla procesadas mediante modelado por deposición fundida. Universidad Carlos III de Madrid, August 11 2015.
- [8] Gran Loco. Diseño genérico de un extrusor. http://upload.wikimedia.org/wikipedia/commons/e/ed/Disenio_de_un_extrusor.png, June 9 2006.
- [9] Santiago Ferrándiz. Detalle de un husillo de extrusora. http://3.bp.blogspot.com/-Z0GzL5mmFW8/TbWU01H0D5I/AAAAAAAAHE/aW1dNIs0Pl8/s1600/21.JPG, June 9 2012.
- [10] Santiago Ferrándiz. Parámetros de un husillo de extrusora. https://lh4.googleusercontent.com/-38dQ_PeujTE/TYCjbjVFSxI/AAAAAAAAAAB8/Ogy301i_KCo/s1600/14.JPG, June 9 2012.
- [11] Mike1024. Distintos ejemplos de perfiles de extrusión. http://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Extruded_aluminium_section_x3.jpg/1920px-Extruded_aluminium_section_x3.jpg, June 9 2007.
- [12] Rhys Jones, Patrick Haufe, Edward Sells, Pejman Iravani, Vik Olliver, Chris Palmer, and Adrian Bowyer. Reprap—the replicating rapid prototyper. *Robotica*, 29(01):177–191, 2011.
- [13] Josef Prusa. Imagen de una prusa i2. http://blog.reprap.org/2010/10/story-of-simpler-mendel-pla-bushings.html, August 10 2015.
- [14] Juan Gonzalez Gomez. Conferencia de adrian bowyer en medialab. http://www.iearobotics.com/blog/2009/02/04/conferencia-sobre-el-proyecto-reprap-en-madrid/, August 10 2015.
- [15] Juan Gonzalez Gomez. Ficha técnica de r1. primera impresora de juan gonzalez gomez. http://www.iearobotics.com/wiki/index.php?title=Makerbot_Cupcake:_R1, August 10 2015.

[16] Página oficial de bq. http://bq.com/es/, August 11 2015.