U1: Introduction

Classifications

- Key -> Symmetric & Asymmetric
- Process -> Stream (Cipher) & Block (AES, DES)
- Methods -> Transposition & Substitution

Goals

- C Confidentiality
- I Integrity
- A Availability

Attacks

- Confidentiality
 - Snooping (P)
 - Eavsdropping on the messages between 2 parties but not affecting the message itself
 - Traffic Analysis (P)
 - Analysis on the frequency of the packets that are occur in the message and compare it to the frequency of commonly occurring data/packets (<u>Traffic Analysis</u>)
- Integrity
 - Modification (A)
 - Modification to the message when its enroute to destination
 - Masquerading (A)
 - Acting as the intended source/destination to hijack the connection
 - Replaying (A)
 - Using packets intercepted by the attacker from the source and replaying it later
 - Repudiation (A)
 - When a conversation/ transfer takes place but one/ both parties does not acknowledge it ever happening (involves manipulation in logs)
- Availability
 - Denial Of Service (A)

 Over flodding a server with so many requests such that clients cannot access the server

∥ Note

- A Active
 - Alteration to the message
 - Hard to detect
 - Easy to prevent
- P Passive
 - No alteration to the message
 - Easy to detect
 - Hard to prevent

Services

- Confidentiality
- Integrity
- Authentication
- Non Repudiation
- Access Control

Mechanisms

- Confidentiality
 - Encipherment
 - Routing Control
 - Traffic Padding
- Integrity
 - Encipherment
 - Digital Signature
- Authentication
 - Encipherment
 - Digital Signature
 - Authentication Exchange
- Non Repudiation
 - Digital Signature
 - Data Integrity
 - Notarization
- Access Control

U2: Algorithms

Block Ciphers

Feistal vs Non Fiestal

- Fiestal: Consists of self invertible, invertible, and non invertible components
- Non Fiestal: Only consists of non invertible components

Fiestel Structure

- 16 rounds: Each round uses different generated keys from the original key
- Split into LHS and RHS bits
- Formula:
 - $RHS_1 = LHS_0xor(F_{k1}\{RHS_0\})$
 - $LHS_1 = RHS_0$
- Last round: swap LHS and RHS

Fiestel Properties

- Block size
- Key Size
- Number of rounds
- Subkey generation
- Round function
- Fast encryption/decryption
- Ease of analysis

Attacks

- Linear Cryptanalysis
- Differential Cryptanalysis

Properties

- Block cipher
- No. Rounds 16
- Bits:
 - Input 64 bits
 - Output 64 bits
 - Main key 64 bits
 - Subkey 56 bits (After Parity drop)
 - Round key 48 bits
- Avalanche Effect
 - 1 bit change in PT 34 bits change in CT on avg
 - 1 bit change in key 35 bits change in CT on avg

Structure

Encryption

- 1. Initial Permutation (64 bits -> 64 bits)
- 2. 16 rounds (64 bits -> 64 bits)
- 3. 32 bit swap (64 bits -> 64 bits)
- 4. Inverse Initial Permutation (64 bits -> 64 bits)

Decryption

- 1. Initial Permutation (64 bits -> 64 bits)
- 2. 16 rounds (64 bits -> 64 bits) with inverted order of keys
- 3. 32 bit swap (64 bits -> 64 bits)

4. Inverse Initial Permutation (64 bits -> 64 bits)

Round

- 1. Split into LHS and RHS bits
- 2. Round Formula:
 - $RHS_1 = LHS_0 xor (F_{k1}\{RHS_0\})$
 - $LHS_1 = RHS_0$
- 3. F -> function (Mangler)
 - 1. Expansion Permutation (32 bits -> 48 bits)
 - 2. y = input xor key (48 bits -> 48 bits)
 - 3. Substitution S Box 8 (6b -> 4b) S-Boxes (48 bits -> 32 bits)
 - 4. Transposition P box (32 bits -> 32 bits)

Key Generation

- 1. Split half (32b:32b split)
- 2. Drop bits 8, 16, 24 ... (64 bits -> 56 bits)
- 3. Left circular shift both (56b -> 56b)
 - 1,2,9,16 rounds -> 1 shift
 - Rest rounds -> 2 shifts
- 4. Compression Permutation (56b -> 48b)

Weakness

Weakness in Key

- Weakness in S-Box
- Weakness in P-Box

Possible attacks

- Brute Force Short cipher key combined with key complement weakness - just 2⁵⁵ encryption to try by brute force
- Differential Cryptanalysis Resistant due to 16 rounds
- Linear Cryptanalysis vulnerable
- Man in the middle vulnerable for double DES

AES

Properties

- Non Fiestel
- Symmetric Block Cipher
- No. Rounds depends on variant (128, 192, 256) -> (10, 12, 14)
- Bits Size
 - Input 128 bits
 - Output 128 bits
 - Key M bits (M -> variant of AES)
 - Round Key 128 bits (16 bytes)

Structure

Encryption

- 1. Initial transformation (Round 0 key) Add Round key operation
- 2. Round [0 to N 1] 4 transformations
- 3. Round [N] 3 transformations

Decryption

- 1. Initial transformation (Round 0 key) Add Round key operation
- 2. Round [0 to N 1] 4 transformations (Key order reversed)
- Round [N] 3 transformations

Round

- 1. Substitute bytes S-Box (Sub Byte)
- 2. Shift rows
 - 1. 0,1,2,3 Untouched
 - 2. 1,2,3,0
 - 3.2,3,0,1
 - 4. 3,0,1,2
- Mix columns (Not there in last round)

```
matrix \rightarrow [2,3,1,1],
```

```
[1,2,3,1],
[1,1,2,3],
[3,1,1,2]
```

4. Add Round Key (4 words from key scheduler) - Each word xor to each column

Key Generation

Making of t_i (temporary) words $i = 4 N_r$

Security

- Brute Force More secure than DES
- Statistical Attacks Fails
- Differential and Linear Attacks none yet

Mordern Block Ciphers

ECB (Electronic Codebook)

No Error Propogation

 $C_i = E_k (P_i) \& P_i = D_k (C_i)$

⊘ Note

Ciphertext Stealing

- Allows usage of ECB without padding
- $ullet X=E_k(P_{N-1}) o C_N=head_m(X)$
- $ullet Y=P_N|tail_{n-m}(X)
 ightarrow C_{N-1}=E_k(Y)$

CBC (Cipher Block Chaining)

- xor between PT and encryption block with input from previous block CT
- Initial Vector should be known be sender and reciever
- Error propogation possible
- Ciphertext Stealing can be applied here also

CFB (Cipher Feedback)

- Used when block sizes are too small for secure ciphers like AES/DES
- PT is xor ed with output of round block to get CT. This CT is used as input to block in next round
- Round block encrypts input with key to create output

OFB (Output Feedback)

 Similar to CFB, just ouput of round block is used as input to next round block

CTR (Counter)

- A counter is used
- It's incremented for each round and encrypted with round key

Summary

Operation Mode	Description	Type of Result	Data Unit Size
ECB	Each <i>n</i> -bit block is encrypted independently with the same cipher key.	Block cipher	n
CBC	Same as ECB, but each block is first exclusive-ored with the previous ciphertext.	Block cipher	n
CFB	Each r -bit block is exclusive-ored with an r -bit key, which is part of previous cipher text	Stream cipher	$r \le n$
OFB	Same as CFB, but the shift register is updated by the previous <i>r</i> -bit key.	Stream cipher	$r \le n$
CTR	Same as OFB, but a counter is used instead of a shift register.	Stream cipher	п

•

Message Integrity

Hash Function Critera

- Preimage resistance
- Second Preimage resistance
- Collision resistance

MDC (Modification Detection Code)

- This is the output of cryptographic hash functions
- Proves integrity of message
- The message and MDC is send via channel

MAC

- This is created by using a hash function with a shared key
- The message and MAC is send via channel

Nested MAC

HMAC

CMAC

