Option FinTech. Mathématiques pour la Finance

Modèle Binomial et Modèle de Black et Scholes.

Irina Kortchemski, CY TECH

- Modélisation du marché
- Marché:
 - Actifs (Bond, Obligation, Stock, Action) sont des contrats qui génèrent uniquement un flux d'argent
 - Produits Dérivés (Options, Forward, Future, Swaps...)
 sont des contrats dont les valeurs fluctuent en fonction de l'évolution du temps ou du prix d'un autre actif.
- Rôle des Dérivés
 - Couverture (Hedging) des risques
 - Gestion des portefeuilles
 - Arbitrage
 - Speculation

- Pricing et Optimisation sont basés sur la modélisation du marché
- Modélisation du marché
 - Choix des objets mathématiques pour décrire des phénomènes aléatoires (risqués) et non aléatoires ⇒
 - \circ Introduction des processus stochastiques $S_t, V_t, ...$ comme des familles de variables aléatoires.
 - Choix des lois de probabilité. ⇒
 - \circ Introduction du Mouvement Brownien W_t
 - Choix des espaces où habitent les variables aléatoires. ⇒
 - Introduction des espaces de dimension infinie ⇒

$$\mathcal{L}^{2}(\Omega) = \{W_{t}, \mathbb{E}[W_{t}^{2}] < \infty, ||W_{t}||^{2} = \mathbb{E}[W_{t}^{2}]\}$$

- Modélisation du marché
 - Principe fondamentale est un Principe d'Absence d'Opportunité d'Arbitrage ⇒ "Marché est honnête" ≡ "No free lunch"
 - Introduction de Martingale
- Calcul des prix: $\mathbb{E}[V_T|\mathcal{F}_t]$
 - Introduction de Espérances conditionnelles.
 - Par rapport à quelle mesure de probabilité?
 - Par rapport à quelle condition? ⇒
 - Introduction de la filtration \mathcal{F}_t équivalente à l'information complete sur les processus: $\mathbb{E}[V_T|\mathcal{F}_t]$
 - Calcul des prix nécessite le calcul des différentiels $dV(t,S_t) \Rightarrow$
 - Application des series de Taylor aux fonctions de variables aléatoires

 Lemme d'Ito

Introduction des modèles

- Modèles au temps discret Dates de trading sont discrets $t \in [0, 1, 2, ..., T-1, T]$
- Modèles au temps continu Dates de trading $t \in [0, T]$
- Modèle de Black et Scholes
- Modèle de Merton
- Modèle de Dupire
- Modèle de Heston
- Modèle de Vasicek, modèle de Ho-Lee, ...
- Gamma Variance modèle

Mathématiques pour la finance

- Partie I: Modélisation probabiliste du marché au temps discret
 - Modèle Binomial
 - Calcul stochastique au temps discret
- Partie II: Modélisation probabiliste du marché au temps continu
 - Calcul stochastique au temps continu
 - Intégrale stochastique
 - Lemme d'Ito
- Partie III: Modélisation probabiliste du marché au temps continu
 - Modèle de Black et Scholes
 - EDP de Black et Scholes et sa solution

I: Calcul stochastique au temps discret

- Rappels de probabilités avec le Modèle Binomial à 1 période
 - Tribu, Mesure, Espace de probabilité
 - Espérances conditionnelles
 - Notion d'Arbitrage, Probabilité de Risque Neutre
 - Construction de portefeuille de couverture
 - Calcule du prix d'un Produit Dérivé (Call).
- Rappels de probabilités avec le Modèle Binomial à N périodes
 - Processus stochastique discret, Filtration, Martingale
 - Evaluation et couverture d'un produit dérivé

II: Calcul stochastique au temps continu

- Filtration, Espaces L^p
- Mouvement Brownien, Martingale
- Lemme d'Ito
 - Variation Quadratique
 - Intégrale Stochastique
 - Formule d'Ito, Processus d'Ito
 - Equations Différentielles Stochastiques et ses solutions

Partie III: Modèle de Black et Scholes

- Evolution d'un actif
- Hedging et la déduction de l'équation de Black et Scholes
- Théorème de Feynmann-Kac
- Solution de l'équation de Black et Scholes
- Théorème de Girsanov*
 - Changement de mesure de probabilité
 - Probabilité de Risque Neutre

Modèle binomial

Arbre Binomial

Arbre Trinomial

Arbre Binomial

L'evolution de l'actif sous-jacent est un processus stochastique discret.

L'intervalle [0,T] est discrétisé: $t_n = \Delta t \cdot n$. A chaque instant t_n on fait correspondre le prix S_n discret:

$$t_n \to S_n, \qquad t_0 \to S_0$$

L'idée principale de la méthode Binômiale:

$$S_{n+1} = \begin{cases} u \cdot S_n \\ d \cdot S_n \end{cases}$$

P est la probabilité historique.

L'arbre Binomial pour l'actif.

Calibration de l'arbre Binomial.

• Comment fixer les paramètres: u, d, p?

Evolution d'un actif dans l'arbre.

Tribu

- La théorie de probabilité commence à partir de l'espace de probabilité.
 - Un espace de Probabilité est un triplet $(\Omega, \mathcal{F}, \mathbb{P})$ où
 - Ω est un ensemble d'évènements
 - \mathcal{F} est une tribu sur Ω
 - ullet P est une Probabilité sur ${\mathcal F}$

Définition d'une Tribu

- On appelle tribu $\mathcal F$ sur Ω toute famille $\mathcal F$ de parties de Ω vérifiant :
- ullet $\emptyset \in \mathcal{F}$
- $\bullet A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- $(\forall n, A_n \in \mathcal{F}) \Rightarrow \bigcup_n A_n \in \mathcal{F}$

Tribu. Pourquoi?

- En finance ensemble d'événements Ω est infini.
- Tribu est nécessaire pour définir une Filtration et à chaque t (t varie!) une probabilité sur la Filtration.
- Filtration est une famille des évènements assosiés à chaque instant temporel, parmi eux il y a des événements intéressants.
- Les prix sont des espérances conditionnelles par rapport à une Filtration:

$$\mathbb{E}[V_T/\mathcal{F}_t], \quad \mathbb{E}[\mathbb{E}[V_T/\mathcal{F}_t]\mathcal{F}_s]$$

Tribu

- Définition d'une Tribu $\sigma(\mathcal{C})$ engendrée par une famille \mathcal{C}
 - Tribu $\sigma(\mathcal{C})$ engendrée par une famille \mathcal{C} de parties de Ω est la plus petite tribu contenant \mathcal{C} . C'est également l'intersection de toutes les tribus contenant \mathcal{C} .
- Définition de la Tribu des boréliens $\mathcal{B}(\mathbb{R})$ sur \mathbb{R} La tribu des boréliens $\mathcal{B}(\mathbb{R})$ sur \mathbb{R} est la tribu engendrée par les fermés de \mathbb{R} .

Tribu Borelien $\mathcal{B}(\mathbb{R})$

• Vous vous interessez au prix d'un actif S_t , $S_t \in \mathcal{B}(\mathbb{R})$.

Exemple 1 d'une Tribu

- Tribu dans le Modèle Binomial à 1 période
 - $\bullet \ \Omega = \{\emptyset, U, D\}$
 - En t = 0, on ne dispose d'aucune information sur l'evolution de l'actif : $\mathcal{F}_0 = \{\emptyset, \Omega\}$,
 - $\bullet A_U = \{w_1, w_1 = U\}, A_D = \{w_1, w_1 = D\}$
 - On construit le tribu $\mathcal{F}_1 = \{A_U, A_D, \emptyset, \Omega\}$
 - $\mathcal{F} = \{\mathcal{F}_0, \mathcal{F}_1\}$ est un couple de tribus représentant l'information globale disponible sur le marché aux instants t = 0 et $t = t_1$.
 - A $t=t_1$ on sait quel évènement de ${\mathcal F}$ s'est réalisé et lequel ne s'est pas réalisé

Exemple 2 d'une Tribu

Modèle Binomial à 2 périodes

• Évènements élémentaires: Ω

 $\Omega = \{\emptyset, (w_1, w_2), w_{1,2} = U \text{ ou } D\} = \{\emptyset, (UU), (UD), (DU), (DD)\}\$

- $A_U = \{(UU, UD)\}, \bullet A_D = \{(DU, DD)\}$
- $\bullet A_{UU} = \{(UU)\}, \quad A_{UD} = \{(UD)\}, \quad A_{DU} = \{(DU)\}, \quad A_{DD} = \{(DD)\}$
- $\mathcal{F}_2 = \{A_U, A_D, \emptyset, \Omega, A_{UU}, A_{UD}, A_{DU}, A_{DD}, A_{UU}^c, A_{UD}^c, A_{DU}^c, A_{DD}^c, A_{DU}^c, A_{DD}^c, A_{DU}^c, A_{DD}^c, A_{DU}^c, A_{DD}^c, A_{D$
- A $t=t_2$ on s'interesse à un seul évènement (peut être composé des evenements elementaires, c'est pourquoi on utilise \bigcup) parmi 16

 $\mathcal{F}_2 = \{(UU, UD), (DU, DD), \emptyset, \Omega, (UU), (UD), (DU), (DD), (UD, DU, DD), (UU, DU, DD), (UD, UU, DD), (UD, DU, UU), (UU, DU), (UU, DD), (UD, DU), (UD, DU), (UD, DD)\}$

Mesure de Probabilité

- ullet On cherche toujours des évènements intéressants parmi ceux qui sont dans la tribu ${\cal F}$
- lacksquare Sur une tribu $\mathcal F$ on définit la mesure de Probabilité
- Définition de la Probabilité:
 - Mesure de Probabilité est une application $\mathbb{P}: \mathcal{F} \to \mathbb{R}^+$ vérifiant
 - $\bullet \ \mathbb{P}(\emptyset) = 0$
 - Pour (A_n) suite d'élements de \mathcal{F} , deux a deux disjoints, $\mathbb{P}(\bigcup_n A_n) = \sum_n \mathbb{P}(A_n)$
 - $\bullet \ \mathbb{P}(\Omega) = 1$

Variable aléatoire

Définition d'une variable aléatoire

- Soit l'espace de Probabilité $(\Omega, \mathcal{F}, \mathbb{P})$
- Variable aléatoire est une application $X: \mathcal{F} \to \mathbb{R}$ vérifiant
- ullet borelien $B\in\mathcal{B}(\mathbb{R})$ l'évènement défini par $\{X\in B\}=\{w\in\Omega,X(w)\in B\}$ est dans la tribu \mathcal{F}
- On peut dire que $\forall B \in \mathcal{B}(\mathbb{R})$ $X^{-1}(B) \in \mathcal{F}$

Variable aléatoire S_1 et tribu \mathcal{F}_1

- "Tribu est une information"
 - $\bullet \ \Omega = \{\emptyset, U, D\}$
 - En t=0, on ne dispose d'aucune information : $\mathcal{F}_0=\{\emptyset,\Omega\}$,
 - $\bullet A_U = \{w_1, w_1 = U\}, \quad A_D = \{w_1, w_1 = D\}$
 - $\mathbb{P}(S_1 = S_0 \cdot u) = p$, $\mathbb{P}(S_1 = S_0 \cdot d) = 1 p$
 - $\mathcal{F}_1 = \{U, D, \emptyset, \Omega\}$ est la tribu représentant l'information globale (tous les évènements possibles) disponible sur le marché à instant t_1 .
- Tous les scenarios qui auraient pu arriver à S_1 sont dans \mathcal{F}_1 . Conclusion: \mathcal{F}_1 est la tribu engendrée par S_1 : $\mathcal{F}_1 = \sigma(S_1)$
- Une variable S_1 aléatoire est \mathcal{F}_1 -mesurable si son image réciproque de tout Borélien \mathcal{B} est dans \mathcal{F}_1 : $\{S_1^{-1}(\mathcal{B}), \mathcal{B} \in \mathbb{B}(\mathbb{R})\}$
- Conclusion: la variable aléatoire S_1 est bien \mathcal{F}_1 -mesurable
- **Définition heuristique de la mesurabilité:** Une variable aléatoire est \mathcal{F}_1 -mesurable si on connait tous ses scenarios et toutes ses valeurs grace à l'information donnée par \mathcal{F}_1 , i.e. disponible à l'instant t_1 .

Variable aléatoire S_2 et tribu \mathcal{F}_2

- Tribu \mathcal{F}_2 = {(UU, UD), (DU, DD), ∅, Ω, (UU), (UD), (DU), (DD), (UD, DU, DD), (UU, DU, DD), (UD, UU, DD), (UD, UU, DD), (UD, DU, UU), (UU, DU), (UU, DD), (UD, DU) (UD, DD)}
- Évènement (UU) impose le prix (u^2S_0) au S_2
- A chaque valeur S_2 (ou à un ensemble des valeurs) correspond un évènement du tribu \mathcal{F}_2

Variable aléatoire S_2 et tribu \mathcal{F}_2

- Tribu $\mathcal{F}_2 = \{(UU, UD), (DU, DD), \emptyset, \Omega, (UU), (UD), (DU), (DD), (UD, DU, DD), (UU, DD), (UD, UU, DD), (UD, UU, DD), (UD, UU, DD), (UU, DU), (UU, DD), (UD, DU)\}$
- Évènement (UD, DU, UU) impose le prix le plus élevé (u^2S_0) ou moyen (udS_0) au S_2
- A chaque prix de S_2 (ou à un ensemble des prix) correspond un évènement de la tribu \mathcal{F}_2

Tribu \mathcal{F}_2 est engendrée par S_2

- A chaque prix de S_2 (ou à un ensemble des prix de S_2) on associe un évènement de la tribu \mathcal{F}_2 .
- On dit que \mathcal{F}_2 est engendrée par S_2 : $\mathcal{F}_2 = \sigma(S_2)$
- S_2 est \mathcal{F}_2 mesurable.

Tribu est une information

- Tribu \mathcal{F}_n contient l'information sur tous les scenarios d'evolution (evenements interessants) de la variable aléatoire S_n .
- A $t=t_n$ on connaît exactement quel scenario s'est réalisé.
- Les tribus sont souvent construites à partir des variables aléatoires S_n et servent à décrire l'information codée par ces variables. On les note $\sigma(S_n)$.
- $\mathcal{F}_1 = \sigma(S_1)$, $\mathcal{F}_2 = \sigma(S_2)$, ... $\mathcal{F}_n = \sigma(S_n)$

Modèle Binomial à n-périodes

Processus stochastique discret

- Définition d'un processus stochastique discret.
 On appelle processus discret
 - toute collection finie de variables aléatoires $(S_n)_{1 \le n \le N}$ définies sur $(\Omega, \mathcal{F}, \mathbb{P})$
 - (S_n) est une fonction de deux variables $S_{t_n}(w_i) = S(t_n, w_i)$
- Définition de Filtration. On appelle filtration \mathcal{F} toute collection croissante de sous-tribus de $\mathcal{F} = \{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, ... \mathcal{F}_N\}$:

$$\mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \mathcal{F}, \quad \forall n$$

• Définition d'un processus adapté. Un processus discret $(S_n)_{1 \le n \le N}$ est dit adapté à la filtration \mathcal{F} (ou \mathcal{F} -adapté) si pour tout $n \le N$, S_n est \mathcal{F}_n -mesurable

Processus stochastique discret

- Définition d'une filtration engendrée par un processus discret $(S_n)_{1 \le n \le N}$
 - C'est la plus petite filtration $\mathcal{F} = \{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, ... \mathcal{F}_N\}$ qui rend le processus $(S_n)_{1 \le n \le N}$ \mathcal{F} -adapté.
 - On note $\mathcal{F} = \sigma(S_1, S_2, ... S_N)$

Exemples

```
• \mathcal{F}_1 = \sigma(S_1) = \{(U), (D), \emptyset, ((U), (D))\}
```

•
$$\mathcal{F}_2 = \sigma(S_2) = \{(UU, UD), (DU, DD), \emptyset, \Omega, (UU), (UD), (DU), (DD), \emptyset, \Omega, (UU), (UD), (DU), (DD), \emptyset, \Omega, (UU), (UD), (UD),$$

(UD, DU, DD), (UU, DU, DD), (UD, UU, DD), (UD, UU, DD), (UD, UU, UU), (UU, DU), (UU, DD), (UD, DU) (UD, DD)

Loi d'une variable aléatoire

• Loi d'une variable aléatoire XApplication $\mu_X: \mathcal{B}(\mathbb{R}) \to \mathbb{R}$ est une loi de variable aléatoire X vérifiant

$$\mu_X(B) = \mathbb{P}(w \in \Omega/X(w) = B)$$

- \forall borelien $B \in \mathcal{B}(\mathbb{R})$
- Densité d'une v. a. continue Application $f_X(x)$: $\mathbb{R} \to \mathbb{R}$ vérifiant:

$$\mu_X(B) = \int_B f_X(x) dx$$

 X est absolument continue par rapport à la mesure de Lebesgue

Fonction de répartition

- Définition de la fonction de répartition
 - Application $F_X(x): \mathbb{R} \to \mathbb{R}$ vérifiant

$$F_X(x) = \mathbb{P}(w \in \Omega/X(w) \le x)$$

- $F_X(x) = \int_{-\infty}^x f_X(y) dy$
- Définition de $d\mathbb{P}(w)$ intégration sur "probabilité"!
 - $d\mathbb{P}(w) = \mathbb{P}(x < X(w) \le x + dx)$
 - $\mu_X(B) = \mathbb{P}(w \in \Omega/X(w) \in B)$, si $B = [x, x + dx] \Rightarrow$

$$d\mu_X(x) = \mathbb{P}(x < X(w) \le x + dx)$$

- Donc $d\mathbb{P}(w) = d\mu_X(x)$ soit $d\mathbb{P} = f_X(x)dx$
- Notation $d\mathbb{P}(w)$ s'utilise dans des demonstrations liées au changement de mesure: Théorème de Girsanov, Théorème d'Escher ...

$$d\mathbb{P} = \frac{d\mathbb{P}}{d\mathbb{O}}d\mathbb{Q}$$

- Loi uniforme X: U([a,b])
 - Fonction de densité

$$f_X(x) = \begin{cases} \frac{1}{(b-a)}, & x \in [a, b] \\ 0, & sinon \end{cases}$$

•
$$d\mu_X(x) = f_X(x)dx = \frac{dx}{(a-b)}$$

$$F_X(x) = \begin{cases} 0, x < a \\ \frac{x-a}{(a-b)}, & x \in [a, b[\\ 1, x \ge b \end{cases}$$

- Espérance de X est donnée par $\mathbb{E}(X) = \frac{(a+b)}{2}$
- Variance de X est donnée par $\mathbb{V}ar(X) = \frac{(a-b)^2}{12}$

- Loi Normale $\mu_X:\mathbb{R} \to \mathbb{R}$, $X: \mathcal{N}(\mu,\sigma^2)$
 - Fonction de densité

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

- $d\mu_X(x) = f_X(x)dx = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx, \quad x \in \mathbb{R}$
- $F_X(x) = \int_{-\infty}^x f_X(y) dy$
- Espérance de X est donnée par $\mathbb{E}(X) = \mu$
- Variance de X est donnée par $\mathbb{V}ar(X) = \sigma^2$
- Prix de l'actif dans le modèle Black Scholes $S_T = S_0 \cdot exp((r \frac{\sigma^2}{2})T + \sigma\sqrt{T}\mathcal{N}(0,1))$

- Loi Exponentielle X: $Exp(\theta)$
 - Fonction de densité

$$f_X(x) = \begin{cases} \theta e^{-\theta \cdot x} & x \in \mathbb{R}^+ \\ 0, & sinon \end{cases}$$

- $d\mu_X(x) = f_X(x)dx = \theta e^{-\theta \cdot x}dx$, $x \in \mathbb{R}^+$
- \bullet $F_X(x) = 1 e^{-\theta \cdot x}$
- Espérance de X est donnée par $\mathbb{E}(X) = \frac{1}{\theta}$
- Variance de X est donnée par $\mathbb{V}ar(X) = \frac{1}{\theta^2}$

- Loi Bernoulli X: B(p)
 - $\mathbb{P}(X=1) = p$, $\mathbb{P}(X=0) = 1 p$
 - Espérance de X est donnée par $\mathbb{E}(X) = p$
 - Variance de X est donnée par $\mathbb{V}ar(X) = p(1-p)$

Exemples des lois de probabilité

- Loi de Poisson X: $P(\lambda)$
 - $\mathbb{P}(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}$
 - Fonction de masse

$$\mu_X(x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda}, & x \in \mathbb{N} \\ 0, & sinon \end{cases}$$

- Espérance de X est donnée par $\mathbb{E}(X) = \lambda$
- Variance de X est donnée par $\mathbb{V}ar(X) = \lambda$
- Dans une théorie d'assurance $\lambda = \theta T$, et θ modélise le nombres des sinistres par unité de temps.

Espérance, Variance...

- Soient X et Y deux variables aléatoires
- Espérance de X est donnée par $\mathbb{E}(X) = \int_{\Omega} X(w) d\mathbb{P}(w) = \int_{\mathbb{R}} x d\mu_X(x) = \int x f_X(x) dx$
- Variance de $Var(X) = \mathbb{E}(X \mathbb{E}(X))^2 = \mathbb{E}(X^2) \mathbb{E}(X)^2$
- Écart type $\sigma(X) = \sqrt{Var(X)}$
- Covariance de X et Y $cov(X,Y) = \mathbb{E}[(X \mathbb{E}(X))(Y \mathbb{E}(Y))] = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$
- Définition de Probabilité conditionnelle Soient A et B deux événements. La probabilité conditionnelle de A par rapport à B est définie par $\mathbb{P}(A|B) = \mathbb{P}(A \cap B)/\mathbb{P}(B)$.

L'espace vectoriel \mathcal{L}^2

- Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de Probabilité
- On note $\mathcal{L}^2(\Omega)$ espace vectoriel de variables aléatoires de carré sommable au sens de Lebesgue

$$\mathbb{E}[X^2] = < \infty$$

- ullet On définit un produit scalaire sur \mathcal{L}^2
 - Soit un couple de variables aléatoire $(X,Y) \in \mathcal{L}^2 \times \mathcal{L}^2$
 - Produit scalaire $\langle X, Y \rangle = E[X \cdot Y]$
 - Norme $||X||^2 = E[X^2]$

Espérance conditionnelle

V.A. discrete

- On définit une nouvelle mesure de probabilité appelée probabilité conditionnelle $\mathbb{P}(A|B) = \mathbb{P}(A \cap B)/\mathbb{P}(B)$.
 - Soit les v.a. X, Y discrètes $\in \mathcal{L}^2(\Omega)$

$$\mathbb{P}(X = x/Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

- $\sum_{x \in E} \mathbb{P}(X = x, Y = y) = 1$
- Espérance sous la probabilité conditionnelle d'une variables aléatoire discrete
 - $\mathbb{E}(X/Y = y) = \sum_{x \in E} x \mathbb{P}(X = x/Y = y)$
 - La fonction $\mathbb{E}(X/Y=y)$ ne dépend que de y et elle fournit une information plus précise que $\mathbb{E}(X)$.
 - On définit l'espérance conditionnelle $\mathbb{E}(X/Y)$ comme la fonction de Y qui prend la valeur $\mathbb{E}(X/Y=y)$ quand Y=y. Il existe donc une variable aléatoire h(Y) telle que

$$h(Y) = \mathbb{E}(X/Y)$$
 et $\forall y$, $h(y) = \mathbb{E}(X/Y = y)$

Espérance et l'estimation. V.A. discrete.

- L'espérance $\mathbb{E}(X)$ peut être vue comme la meilleure estimation de X par une constante.
 - En effet elle minimise la distance quadratique:

$$\inf_{C \in R} \{ \mathbb{E}((X - C)^2) \} = \inf_{C \in \mathbb{R}} \{ \mathbb{E}(X^2) - 2C \cdot \mathbb{E}(X) + C^2 \}$$

- Minimum du polynôme est atteint en $C = \mathbb{E}(X)$.
- L'espérance conditionnelle $\mathbb{E}(X/Y)$ s'interprète aussi comme la meilleure estimation (pour la distance quadratique) de la variable X par la variable Y. Si Y prend ses valeurs dans l'espace discret E^* , on cherche à déterminer la fonction $h: E^* \to \mathbb{R}$ qui réalise le minimum de :

$$\mathbb{E}((X - h(Y))^2) = \inf_{h \in R} \{ \mathbb{E}(X^2) - 2\mathbb{E}(h(Y)X) + \mathbb{E}(h(Y)^2) \}$$

- La distance quadratique est minimisée par la projection orthogonal de X sur l'espace des variables engendrée par $Y: \mathcal{F} = \{h(Y); h: E^* \to \mathbb{R}\}.$
- Pour déterminer cette projection faisons un petit calcul:

Esp. conditionnelle. V.A. discrete.

Pour déterminer cette projection faisons un petit calcul:

$$\mathbb{E}(h(Y)\mathbb{E}(X/Y)) = \sum_{y \in E^*} \mathbb{P}(Y = y)h(y)\mathbb{E}(X/Y = y) =$$

$$\sum_{x \in E} \sum_{y \in E^*} xh(y) \mathbb{P}(X = x, Y = y) = \mathbb{E}(h(Y)X)$$

Le calcul prouve la relation d'orthogonalité

$$\mathbb{E}(h(Y)(X - \mathbb{E}(X/Y)) = 0$$

En s'inspirant des variables aléatoires à valeurs dans un espace discret on définit la notion d'espérance conditionnelle pour des variables aléatoires continues comme une projection orthogonale.

Fin des rappels

Construction d'un modèle Binomial

- On construit une théorie mathématique (Modèle Binomial) dans laquelle le marché vérifie l'hypothèse d'absence d'opportunités d'arbitrage (AOA en abrégé et NFL en anglais pour "no free lunch").
- On cherche une procedure (idée) pour définir les prix des Produits Dérivés.
- On a besoin des notions:
 - Espérance conditionnelle
 - Taux d'intérêt, Rendement
 - Produit dérivé
 - Arbitrage
 - Probabilité de Risque Neutre Q
 - Portefeuille autofinançant
 - Martingale

Esp. conditionnelle par rapport à ${\mathcal F}$

- Définition de Espérance conditionnelle par rapport à une tribu \mathcal{F}
 - Variable aléatoire $X: \mathcal{G} \to \mathbb{R}$
 - Tribu $\mathcal{F} \subset \mathcal{G}$, un évènement $A \in \mathcal{F}$
 - $\mathbb{E}[X/\mathcal{F}]$ est la variable aléatoire \mathcal{F} mesurable
 - $\mathbb{E}[X/\mathcal{F}]$ vérifie la relation:

$$\mathbb{E}[X \cdot \mathbb{I}_A] = \mathbb{E}[\mathbb{E}[X/\mathcal{F}] \cdot \mathbb{I}_A], \qquad A \in \mathcal{F}$$

- Cette définition illustre que
 - $\mathbb{E}[X/\mathcal{F}]$ est de la projection orthogonale de v.a. X sur la tribu \mathcal{F}
 - $\mathbb{E}[X/\mathcal{F}]$ est la meilleur estimation de X sachant l'information contenue dans \mathcal{F}

Espérance et projection orthogonale

• $\mathbb{E}[X/\mathcal{F}]$ est la meilleur estimation de X sachant l'information contenue dans \mathcal{F}

 $\mathbb{E}[X/\mathcal{F}]$ est une variable aléatoire habitant dans \mathcal{F} .

Sens de $\mathbb{E}[X/\mathcal{F}]$

- Si on calcule $\mathbb{E}[X/\mathcal{F}]$ on effectue la moyenne des valeurs de X sur les evenements hors \mathcal{F} .
- $\mathbb{E}[X/\mathcal{F}]$ est une v.a. basée sur les evenements de \mathcal{F} .
- Si X est \mathcal{F} mesurable alors $\mathbb{E}[X/\mathcal{F}] = X$.
- On dit que X est une constante par rapport à \mathcal{F} .

Espérance et projection orthogonale

Demonstration

• On réécrit la propriété $\mathbb{E}[X \cdot \mathbb{I}_A] = \mathbb{E}[\mathbb{E}[X/\mathcal{F}] \cdot \mathbb{I}_A]$ de la forme

$$\mathbb{E}[(X - \mathbb{E}[X/\mathcal{F}]) \cdot \mathbb{I}_A] = \langle X - \mathbb{E}[X/\mathcal{F}], \mathbb{I}_A \rangle = 0$$

- donc $X \mathbb{E}[X/\mathcal{F}] \perp \mathcal{L}^2(\Omega, \mathcal{F})$
- donc $\mathbb{E}[X/\mathcal{F}]$ est la projection orthogonale de la variable aléatoire X sur la tribu \mathcal{F}
- la projection orthogonale est la meilleur approximation d'un vecteur *X* sur un sous espace vectoriel
- donc $\mathbb{E}[X/\mathcal{F}]$ est la est la meilleur estimation de X sachant l'information contenue dans \mathcal{F}

Propriétés de l'espérance conditionnelle

- $\mathbb{E}[X/\mathcal{B}_2]$ est la meilleur estimation de X sachant l'information contenue dans \mathcal{B}_2
- Tower Property:

$$\mathcal{B}_1 \subset \mathcal{B}_2 \subset \mathcal{F} \Rightarrow \mathbb{E}[\mathbb{E}[X/\mathcal{B}_2]/\mathcal{B}_1] = \mathbb{E}[X/\mathcal{B}_1]$$

Espérances conditionnelles $\mathbb{E}[X/\mathcal{B}_2]$ et $\mathbb{E}[X/\mathcal{B}_1]$ sont modélisées par la projection orthogonale

Esp. conditionnelle dans M. Binomial

- $\mathbb{E}[S_2/\mathcal{F}_1]$ est meilleur l'estimation de S_2 sachant l'information contenue dans \mathcal{F}_1
 - $\mathbb{E}[S_2/\mathcal{F}_1]$ est la variable aléatoire
 - $\mathbb{E}[S_2/\mathcal{F}_1]$ est la variable aléatoire basée sur les évènements décrits dans $\mathcal{F}_1 = \sigma(S_1)$
 - Evènements de \mathcal{F}_1 sont codés par S_1

$$\mathbb{E}[S_2/\mathcal{F}_1] = uS_1 \cdot p + dS_1 \cdot (1-p)$$

On continue l'estimation:

$$\mathbb{E}[\mathbb{E}[S_2/\mathcal{F}_1]] = u \cdot \mathbb{E}[S_1] \cdot p + d \cdot \mathbb{E}[S_1] \cdot (1-p) =$$
$$(uS_0 \cdot p + dS_0 \cdot (1-p)) \cdot (up + d(1-p))$$

Esp. conditionnelle dans M. Binomial

• \mathcal{F}_1 est engendrée par S_1 : $\mathcal{F}_1 = \sigma(S_1)$. Toute information sur les valeurs de S_1 , sur tous les évènements que S_1 aurait pu vivre sont dans \mathcal{F}_1

- S_1 est \mathcal{F}_1 mesurable
- Variable aléatoire $\mathbb{E}[S_1/\mathcal{F}_1]$ aurait pu vivre aussi les évènements décrits dans \mathcal{F}_1
 - Donc ils sont de la même nature

$$\iff$$

$$\mathbb{E}[S_1/\mathcal{F}_1] = S_1$$

Espérance cond dans M. Binomial

- Toute l'information sur les valeurs de S_1 est dans $\mathcal{F}_1 \subset \mathcal{F}_2 \Rightarrow \mathbb{E}[S_1/\mathcal{F}_2] = S_1$
- Toute l'information sur les valeurs de S_2 est dans $\mathcal{F}_2 \Rightarrow \mathbb{E}[S_2/\mathcal{F}_2] = S_2$
- Tower Property:

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F} \Rightarrow \mathbb{E}[\mathbb{E}[S_2/\mathcal{F}_2]/\mathcal{F}_1] = \mathbb{E}[S_2/\mathcal{F}_1]$$

Propriétés de l'espérance conditionnelle

- $\mathbb{E}[X/\mathcal{G}]$ est la meilleur estimation de X sachant l'information contenue dans \mathcal{G}
- $\mathbb{E}[X/\mathcal{G}]$ est une variable aléatoire
- Conservation de l'espérance : Pour v. a. X t.q. $\mathcal{G} \subset \mathcal{F}$ $\Rightarrow \mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$.
- Sort ce que tu connais : Soit $\mathcal{G} \subset \mathcal{F}$, X est \mathcal{F} -mesurable et Y est \mathcal{G} -mesurable $\Rightarrow \mathbb{E}[XY|\mathcal{G}] = Y \cdot \mathbb{E}[X|\mathcal{G}]$. $\mathbb{E}[Y|\mathcal{G}] = Y$
- **▶** L'indépendance rend le conditionnement inutile : Soient $\mathcal{G} \subset \mathcal{F}$ et X v.a. tels que la tribu $\sigma(X)$ engendrée par X et \mathcal{G} sont indépendantes. Alors, on a : $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$.

Interêt d'un Actif sans risque

Les dates de trading sont discretes:

$$t_0 = 0, t_1 = 1, t_2 = 2, t_3 = 3, t_4 = 4, ..., t_n = n$$

- Différence temporele $t_{n+1} t_n = 1$
- r est le taux d'intérêt annuel
- Intérêts payé chaque année
 - dans un an la richesse est S(1) = S(0)(1+r)
 - dans deux ans la richesse est

$$S(2) = S(1) + rS(1) = S(0)(1+r)^{2}$$

- dans n années la richesse est $S(n) = S(0)(1+r)^n$
- le prix de l'actif actualisé est $\hat{S} = \frac{S}{(1+r)^n}$

Interêt d'un Actif sans risque

Les dates de trading sont discretes:

$$t_0 = 0, t_1 = 1, t_2 = 2, t_3 = 3, t_4 = 4, ..., t_n = n$$

- Différence temporele $t_{n+1} t_n = \Delta t \rightarrow 0$
- "Continuous compounding"
- r est le taux d'intérêt annuel
 - dans 1 mois la richesse $S(1/12) = S(0)(1 + \frac{r}{12})$
 - Intérêts payés chaque intervalle temporel Δt pendant la periods [0,t], $\Delta t = \frac{t}{n}$
 - Au bout de Δt la richesse $S(t_1) = S(0)(1 + r \cdot \Delta t)$
 - Au bout de $2\Delta t$ la richesse

$$S(t_2) = S(t_1)(1 + r \cdot \Delta t) = S(0)(1 + r \cdot \Delta t)^2$$

• La richesse à l'instant t

$$S(t) = S(0)(1 + r \cdot \Delta t)^n = S(0)(1 + r \cdot \frac{t}{n})^n \sim_{n \to \infty} S(0)e^{r \cdot t} - \frac{t}{n}e^{-t} = \frac{t}{n}e^{-t}$$

Actif sans risque

Modèle continue

Nous ne connaissons pas, en général, la loi qui gouverne S(t), mais nous avons peut-être une idée de son comportement local: $S(t + \Delta t) = S(t)(1 + r \cdot \Delta t)$

$$\frac{S(t+\Delta t) - S(t)}{\Delta t} = rS(t), \quad \frac{dS(t)}{dt} = rS(t)$$

• Solution:

$$S_t = S_0 e^{rt}$$

"Investment grows according to a continuously compounded interest rate"

• Rendement sur l'intervalle $[t_1, t_2]$

$$R = \ln(\frac{S(t_2)}{S(t_1)}), \quad ou \quad R = \frac{S(t_2) - S(t_1)}{S(t_1)}$$

endement et la théorie de Black et Scholes

• Supposons que l'évolution de l'actif S_t satisfait l'équation différentielle stochastique:

$$dS_t = S_t(rdt + \sigma dW_t)$$

Solution du Modèle continue:

$$S_t = S_0 e^{\left(r - \frac{\sigma^2}{2}\right)t + \sigma W_t}$$

ullet Rendement sur l'intervalle [0,t]

$$\ln(\frac{S(t)}{S(0)}) = (r - \frac{\sigma^2}{2})t + \sigma W_t$$

suit la loi Normale.

Calcul du Rendement des actifs

Prix des actifs $S^{(j)}(t_i)$ modelisés par une matrice S(i,j) i est l'indice temporel, j est l'indice de l'actif

$$\left(\begin{array}{ccccc} S(1,1) & S(1,2) & \dots & S(1,N_{path}) \\ S(2,1) & S(2,2) & \dots & S(2,N_{path}) \\ & & \dots & & \\ S(N,1) & S(N,2) & \dots & S(N,N_{path}) \end{array} \right)$$

Rendement

 $\begin{aligned} &\text{for } i=1:N\\ &\text{for } j=1:N_{path}\\ &R(i,j)=ln(S(i+1,j)/S(i,j)) \end{aligned}$

Produit Dérivé

- Un contrat financier $V(t, S_t)$ dont le prix dépend uniquement de la valeur d'autres variables plus fondamentalles telles que le prix des actions ou des obligations, de temps,... etc s'appelle un produit dérivé.
- La valeur d'un produit dérivé V dépend de l'état réalisé à la date t=T, c'est à dire de la tribu $\mathcal{F}_T=\sigma(S_T)$.
- Option Call Européen est un produit dérivé dont le prix à la maturité t = T est $V(T, S_T) = \max(S_T K, 0)$
- Option Put Européen est un produit dérivé dont le prix à la maturité t=T est $V(T,S_T)=\max(K-S_T,0)$
- Fonction $\Phi(S_T) = V(T, S_T)$ s'appele la fonction pay-off:

$$\Phi(S_T) = \max(S_T - K, 0)$$

Option.

Equation de Black et Scholes

$$\begin{cases} \frac{\partial V}{\partial t} - rV + rS\frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = 0\\ V(t = T, S) = \max(S - K, 0) \end{cases}$$

- V(S,t) est le prix d'un contrat avec une banque pour pouvoir acheter au prix K une action à la date T.
- S est le prix d'une action r est le taux d'intêret
- σ est une volatilité K est le prix d'exércice
- T est le temps d'exércice
- Vous achetez au prix K une action qui vaut S à la date t=T

Si S > K vous gagnez S - K

Si S < K vous n'exercez pas le contrat.

Prix du Call Europénne

Call Europénne en 2 et 3 dimensions

Arbitrage

- L'une des hypothèses fondamentales des modèles usuels est qu'il n'existe aucune stratégie financière permettant,
 - 1. sans investissement net de capital,
 - 2. sans aucun risque, d'acquérir une richesse certaine dans une date future. Cette hypothèse est appelée absence d'opportunités d'arbitrage.
- Sur cette hypothèses fondamentales est basé le pricing en finance.
- Cette hypothèses permet d'introduire la mesure speciale de probabilité (Mésure Martingele Equivalente Q)

Conséquences d'Arbitrage.

- Temps continue, r est le taux annuel
- 1. Un actif sans risque produit des intérêts

$$B_T = e^{r(T-t)}B_t$$

 2. Un actif risqué devrait en moyenne produire la même performance qu'un investissement dans l'actif sans risque. Donc

$$\mathbb{E}^{\mathbb{Q}}[S_T/\mathcal{F}_t] = e^{r(T-t)}B_t, \quad si \quad B_t = S_t$$

ullet On en déduit le prix de l'actif risqué à un instant t

$$S_t = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}[S_T/\mathcal{F}_t]$$

Q est la probabilité de risque neutre.

Conséquences d'Arbitrage

- Temps continue, r est le taux annuel
- 1. Un actif sans risque produit des intérêts

$$B_T = e^{r(T-t)}B_t$$

• 2. En utilisant des produits dérivés on ne peut pas gagner d'argent sans aucun risque

$$\mathbb{E}^{\mathbb{Q}}[V_T/\mathcal{F}_t] = e^{r(T-t)}B_t, \quad si \quad B_t = V_t$$

ullet On en déduit le prix d'un produit derivé à un instant t

$$V_t = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}[V_T/\mathcal{F}_t] = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}[Pay_off(S_T)/\mathcal{F}_t]$$

Conséquences d'Arbitrage.

- Temps discret, $t_{n+1} = t_n = 1$ an, $t_0 = 0, t_1 = 1, t_2 = 2, t_3 = 3, t_4 = 4, ..., t_n = n$, r est le taux annuel
- 1. Un actif sans risque produit des intérêts

$$B_T = (1+r)^n B_0$$

 2. Un actif risqué devrait en moyenne produire la même performance qu'un investissement dans l'actif sans risque. Donc

$$\mathbb{E}^{\mathbb{Q}}[S_T] = (1+r)^n B_0, \quad si \quad B_0 = S_0$$

• On en déduit le prix de l'actif risqué à l'instant t=0

$$S_0 = \frac{1}{(1+r)^n} \mathbb{E}^{\mathbb{Q}}[S_T/\mathcal{F}_0]$$

Conséquences d'Arbitrage

- Temps discret,
 - $t_0=0, t_1=1, t_2=2, t_3=3, t_4=4, ..., t_n=n$, r est le taux annuel
- 1. Un actif sans risque produit des intérêts

$$B_T = (1+r)^n B_0$$

• 2. En utilisant des produits dérivés on ne peut pas gagner d'argent sans aucun risque

$$\mathbb{E}^{\mathbb{Q}}[V_T/\mathcal{F}_0] = (1+r)^n B_0, \quad si \quad B_0 = V_0$$

• On en déduit le prix d'un produit derivé à l'instant t=0

$$V_0 = \frac{1}{(1+r)^n} \mathbb{E}^{\mathbb{Q}}[V_T/\mathcal{F}_0] = \frac{1}{(1+r)^n} \mathbb{E}^{\mathbb{Q}}[Pay_off(S_T)/\mathcal{F}_0] - \mathbb{E}^{\mathbb{Q}}[Pay_off(S_T)/\mathcal{F}_0]$$

Théorème fondamentale

- Théorème fondamentale du pricing. Le prix d'un produit dérivé à un instant t est donné par la formule:
 - Modèle à temps discret:

$$V_t = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}[V_T/\mathcal{F}_t] = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}[Pay_off(S_T)/\mathcal{F}_t]$$

Modèle à temps continu:

$$V_0 = \frac{1}{(1+r)^n} \mathbb{E}^{\mathbb{Q}}[V_T/\mathcal{F}_0] = \frac{1}{(1+r)^n} \mathbb{E}^{\mathbb{Q}}[Pay_off(S_T)/\mathcal{F}_0]$$

- Q est la probabilité de risque neutre.
- Toutes les théorie inventées doivent satisfaire ce théorème.

Construction d'un modèle

- Contruction d'une théorie mathématique (Modèle Binomial) dans laquelle le marché vérifie l'hypothèse d'absence d'opportunités d'arbitrage (AOA en abrégé et NFL en anglais pour "no free lunch").
- Définition des prix de Produits Dérivés à partir d'une procedure applée Hedging (Couverture, Replication)
- Démonstration que chaque Produit Dérivé est replicable par un portefeuille composé des actifs, donc le marché est complet.
- On a besoin:
 - Espérance conditionnelle
 - Probabilité de Risque Neutre Q
- On a besoin un Portefeuille autofinançant

Portefeuille autofinançant

- Un portefeuille autofinançant est une stratégie d'achat ou de vente de titres, actions, prêts et emprunts à la banque, et plus généralement de produits dérivés dont la valeur n'est pas modifiée par l'ajout ou le retrait d'argent. Fixer un portefeuille revient donc simplement à se donner un capital initial et une stratégie dynamique d'investissement dans les actifs du marché à partir de ce capital de départ.
- Quelles sont les stratégies d'investissement ?
- Qu'est ce qu'une stratégie d'arbitrage ?

Notre objectif

- On va montrer que le marché dans le cadre du modèle Binomial à une periode safisfait l'hypothèse d'Absence d'Opportunités d'Arbitrage.
- Nous allons montrer que le prix d'un produit dérivé V_t est donné par la stratégie de son portefeuille de couverture ou par la procedure de Hedging.
- Imaginons qu'on vend un produit dérivé au prix V_0 . On cherche à trouver ce prix V_0 à t=0.
- Idée: Nous allons construire un portefeuille de couverture (Π_0, Δ) composé des Δ actifs risqués et ceux sans risque et trouver son prix.
- On définit le prix de l'option V_0 à partir du prix fu portefeuille Π_0

$$V_0 = \Pi_0$$

Stratégie de portefeuille simple

- Définition d'une stratégie de portefeuille simple. La stratégie de portefeuille simple consiste en l'achat à la date $t_0=0$ de Δ actifs risqués et de $\Pi_0-\Delta\cdot S_0$ actifs sans risque.(Pour simplicité T=1)
- Valeur du portefeuille est :
 - en $t_0 = 0$ $\Pi_0 = \Delta \cdot S_0 + (\Pi_0 \Delta \cdot S_0)$
 - en $t = t_1 = T$ $\Pi_T = \Delta \cdot S_1 + (\Pi_0 \Delta \cdot S_0)(1+r)$
 - Autofinancement: le portefeuille ne subit aucune entrée ou sortie d'argent.

Couverture d'un Produit Dérivé

- On cherche aussi à définir la valeur (le prix) du produit dérivé V_0 en $t_0=0$
- La stratégie de couverture consiste à trouver (Π_0, Δ) tels que les valeurs de portefeuille et d'un produit dérivé coïncident à chaque instant:
 - en t = 0 $\Pi_0 = V_0$
 - ullet en $t=t_1=T$ $\Pi_T=V_T$
 - Valeur du produit dérivé en $t_0 = 0$ est V_0
 - $V(S_1)$ est une variable aléatoire et sa valeur en $t=t_1$

$$V_T = \begin{cases} V_U, & w_1 = U \\ V_D, & w_1 = D \end{cases}$$

Couverture ou Hedging

- Théorème. Tout produit dérivé V est duplicable par une stratégie de portefeuille simple (Π_0, Δ)
- On dit que le marché est complet
- Démonstration: On résout un système linéaire:

$$\begin{cases} \Delta \cdot uS_0 + (\Pi_0 - \Delta \cdot S_0)(1+r) = V_U \\ \Delta \cdot dS_0 + (\Pi_0 - \Delta \cdot S_0)(1+r) = V_D \end{cases}$$

Exercise: On vend un Call. Trouver le prix du Call, la valeur initiale de portefeuille de la couverture, la quantité des actifs risqués et celle sans risque.

Données: $S_0 = K = 100, r = 0.05, d = 0.9, u = 1.1$

Couverture ou hedging

• Valeur d'un produit dérivé en t=0

$$V_0 = \frac{1}{1+r} \left[\frac{1+r-d}{(u-d)} V_U + \frac{u-1-r}{(u-d)} V_D \right]$$

Le prix d'un produit dérivé s'écrit comme une somme pondérée de ses valeurs futures (à la maturité t=T)

On achète ∆ actifs risqués

$$\Delta = \frac{V_U - V_D}{S_0(u - d)}$$

On place dans une banque (ou on emprunte) la somme

$$V_0 - S_0 \cdot \Delta$$

Théorème Fondamentale du Pricing

Introduisons la probabilité de risque neutre $\mathbb Q$ définie sur Ω par :

$$\mathbb{Q}(U) = \frac{1+r-d}{u-d} = q, \qquad \mathbb{Q}(D) = \frac{u-(1+r)}{u-d} = 1-q$$

- On impose $d < 1 + r < u, \quad q \in]0; 1[\Rightarrow \mathbb{Q} \quad \text{ est bien une probabilité équivalente à } \mathbb{P}.$
- ▶ Valeur du produit dérivé en t = 0 ou valeur initiale du portefeuille

•

$$\Pi_0 = V_0 = \frac{1}{1+r} (q \cdot V_U + (1-q) \cdot V_D)$$

s'écrit aussi sous la forme d'espérance

 \bullet Valeur du produit dérivé en t=0 est l'espérance actualisée des flux (pay-off) qu'il génère

$$\Pi_0 = V_0 = \frac{1}{1+r} \mathbb{E}^Q[V_T] = \frac{1}{1+r} \mathbb{E}^Q[\Phi(S_1)]$$

- Nous avons montré que le modèle Binomial à une periode vérifie l'hypothèse d'Absence d'Opportunités d'Arbitrage: $V_0 = \frac{1}{1+r} \mathbb{E}^Q[V_T]$
- \blacksquare Nous avons construit l'espace de probabilité de risque neutre Q:

$$\mathbb{Q}(U) = \frac{1+r-d}{u-d}, \qquad \mathbb{Q}(D) = \frac{u-(1+r)}{u-d}$$

Conclusions

Nous avons montré que le modèle Binomial à une periode vérifie l'hypothèse d'Absence d'Opportunités d'Arbitrage:

$$V_0 = \frac{1}{1+r} \mathbb{E}^Q[V_T]$$

Nous avons construit l'espace de probabilité de risque neutre Q:

$$\mathbb{Q}(U) = \frac{1+r-d}{u-d}, \qquad \mathbb{Q}(D) = \frac{u-(1+r)}{u-d}$$

Nous avons monté que à chaque instant t le prix d'un produit dérivé est repliqué par un portefeuille autofinancant.

 $V_{t} = \Pi_{t}$

Modèle Binomial à n-périodes

Processus stochastique discret

- Définition d'un processus stochastique discret.
 On appelle processus discret
 - toute collection finie de variables aléatoires $(S_n)_{1 \le n \le N}$ définies sur $(\Omega, \mathcal{F}, \mathbb{P})$
 - (S_n) est une fonction de deux variables $S_{t_n}(w_i) = S(t_n, w_i)$
- Définition de Filtration. On appelle filtration \mathcal{F} toute collection croissante de sous-tribus de $\mathcal{F} = \{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, ... \mathcal{F}_N\}$:

$$\mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \mathcal{F}, \quad \forall n$$

• Définition d'un processus adapté. Un processus discret $(S_n)_{1 \le n \le N}$ est dit adapté à la filtration \mathcal{F} (ou \mathcal{F} -adapté) si pour tout $n \le N$, S_n est \mathcal{F}_n -mesurable

Processus stochastique discret.

- Définition d'une filtration engendrée par un processus discret
 - C'est la plus petite filtration qui rend le processus $(S_n)_{1 \le n \le N}$ \mathcal{F} -adapté.
 - $\bullet \mathcal{F}_N = \sigma(S_1, S_2, ... S_N)$

Exemples

```
• \mathcal{F}_1 = \sigma(S_1) = \{(U), (D), \emptyset, ((U), (D))\}
```

•
$$\mathcal{F}_2 = \sigma(S_1, S_2) = \{(UU, UD), (DU, DD), \emptyset, \Omega, (UU), (UD), (DU), (DD), (UD, DU, DD), (UU, DU, DD), (UD, UU, DD), (UD, UU, DD), (UD, UU, DD), (UD, DU), (UU, DD), (UD, DU), (UD, DD)\}$$

Martingale

Définition d'une martingale.

Un processus discret $(M_n)_{1 \le n \le N}$ est un \mathcal{F} -martingale sous \mathbb{P} s'il vérifie :

- $\mathbb{E}[|M_n|] < \infty$ pour tout $n \leq N$,
- M_n est \mathcal{F} -adapté,
- M_n vérifie la propriété de martingale:

$$\mathbb{E}[M_n/\mathcal{F}_k] = M_k \qquad \forall k \le n$$

- Meilleur estimation de M_n à $t=t_n$ et sa valeur à t=0
- On va montrer que dans chaque modèle un processus actualisé decrivant un prix est une Martingale.

Exemple d'une Martingale

- Soit sur l'espace de Probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ une famille de variables aléatoire de Bernoulli indépendantes
 - $\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = \frac{1}{2}$
- ullet Soit $\mathcal F$ la filtration naturelle générée par le processus X_n
- On définit le processus stochastique qui s'appelle une promenade aléatoire

$$M_0 = 0, \quad M_n = \sum_{i=1}^n X_i$$

- Montrer
 - processus M_n est \mathcal{F} martingale
 - processus $M_n^2 n$ est \mathcal{F} martingale

Simulation d'une martingale

Meilleur estimation de M_n à $t=t_n$ est M_k

Martingale

$$\mathbb{E}[M_n/\mathcal{F}_k] = M_k \qquad \forall k \le n$$

 M_k est une variable aléatoire dont une valeur dépend d'un scenario de \mathcal{F}_k réalisé. M_k est une constante par rapport à la filtration \mathcal{F}_k . Pour le moment k=100 les simulations montre deux différentes valeurs de $M_k = 12$

et $M_k = -11$.

Modélisation du marché

- $\Omega = \{\emptyset, (w_1, w_2, ... w_n), w_i = U \text{ ou } D\}$
 - Probabilité historique:

$$\mathbb{P}(w_i = U) = p, \mathbb{P}(w_i = D) = 1 - p$$

• L'information disponible à toute date t_n est donnée par la filtration $\mathcal{F} = \{\mathcal{F}_n, 0 \le n \le N\}$ définie par :

$$\mathcal{F}_n = \sigma(S_0, S_1, S_2, ..., S_n)$$

c'est une filtration engendrée par les variables aléatoires $(S_n)_{1 \le n \le N}$

• Une variable aléatoire \mathcal{F}_n -mesurable est naturellement une variable donnée par toute l'information accumulée jusqu'à l'instant t_n . Elle s'écrit donc comme une fonction de $(S_1, ..., S_n)$.

Notre objectif

- On va montrer que le marché dans le cadre du modèle Binomial à n periodes vérifie l'hypothèse d'Absence d'Opportunités d'Arbitrage
- On cherche à trouver le portefeuille de couverture Π_n d'un produit dérivé et son prix V_0 .
- On va montrer que le prix d'un produit dérivé V_0 est donnés par la stratégie de son portefeuille de couverture (ou duplication).
- On se base sur le fait qu'un produit dérivé (ou actif contingent) $V(S_1, S_2, ..., S_n)$ est une variable aléatoire \mathcal{F}_T mesurable et que son prix à la maturité est définie par la fonction Pay-off Φ : $V_T = \Phi(S_1, ..., S_N)$ avec Φ application borélienne.

Stratégie de portefeuille

- Définition d'une stratégie de portefeuille simple (Π_0, Δ) . Stratégie est donnée par
 - un capital initial Π_0 et
 - d'un processus discret $\Delta = (\Delta_0, ... \Delta_{N-1})$ qui est $\mathcal{F} = \{\mathcal{F}_n, 0 \leq n \leq N\}$ -adapté.
- La stratégie consiste à tout instant t_n en l'investissement dans une quantité Δ_n d'actifs risqués.
 - Le processus Δ_n est \mathcal{F} -adapté, car la quantité d'argent à investir dans l'actif à l'instant t_n est déterminée avec l'information accumulée jusqu'à l'instant t_n .
- Valeur du portefeuille est :
 - en $t=t_n$ $\Pi_n=\Delta_n\cdot S_n+(\Pi_n-\Delta_n\cdot S_n)$
 - en $t = t_{n+1}$ $\Pi_{n+1} = \Delta_n \cdot S_{n+1} + (\Pi_n \Delta_n \cdot S_n)(1+r)$

Stratégie du portefeuille

On introduit les processus actualisés:

$$\hat{\Pi}_n = \frac{\Pi_n}{(1+r)^n}, \quad \hat{S}_n = \frac{S_n}{(1+r)^n}$$

Relation d'autofinancement :

$$\hat{\Pi}_{n+1} - \hat{\Pi}_n = \Delta_n \cdot (\hat{S}_{n+1} - \hat{S}_n)$$

soit

$$\hat{\Pi}_{n+1} = \Pi_0 + \sum_{k=0}^{k=n} \Delta_k \cdot (\hat{S}_{k+1} - \hat{S}_k)$$

• Le processus de valeur du portefeuille Π_n est bien sur \mathcal{F} -adapté.

Probabilité de risque neutre et martingale

• Introduisons la probabilité de risque neutre $\mathbb Q$ définie sur Ω

$$\mathbb{Q}(w_1, w_2, ..., w_n) = q^{\#(j, w_j = U)} \cdot (1 - q)^{\#(j, w_j = D)},$$
$$q = \frac{1 + r - d}{u - d}$$

- Une probabilité risque neutre est une probabilité équivalente à la probabilité historique ℙ sous laquelle toute stratégie de portefeuille simple actualisée est une martingale.
- Theorems:
- 1. Actif actualisé \hat{S}_n est une \mathcal{F} -martingale sous \mathbb{Q} .
- 2. La valeur de portefeuille actualisé $\hat{\Pi}_n$ est une \mathcal{F} -martingale sous \mathbb{Q} .

Démonstration des propriétés

- Actif actualisé \hat{S}_n est une \mathcal{F} -martingale sous \mathbb{Q} .
 - \hat{S}_n est intégrable, \mathcal{F} -adapté

•
$$\mathbb{E}^{Q}[\hat{S}_{n+1}/\mathcal{F}_{n}] = \frac{1}{(r+1)^{n+1}} \mathbb{E}^{Q}[S_{n+1}/\mathcal{F}_{n}] = \frac{1}{(r+1)^{n+1}} (q \cdot uS_{n} + (1-q) \cdot dS_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_{n}) = \frac{1}{r+1} (q \cdot u\hat{S}_{n} + (1-q) \cdot d\hat{S}_$$

$$\frac{1}{r+1} \left(\frac{1+r-d}{u-d} u \cdot \hat{S}_n + \frac{u-(1+r)}{u-d} d \cdot \hat{S}_n \right) = \hat{S}_n$$

• La valeur actualisée $\hat{\Pi}_n$ est une \mathcal{F} -martingale sous \mathbb{Q} .

$$\mathbb{E}^{Q}[(\hat{\Pi}_{n+1} - \hat{\Pi}_n)/\mathcal{F}_n] = \mathbb{E}^{Q}[\Delta_n \cdot (\hat{S}_{n+1} - \hat{S}_n)/\mathcal{F}_n] = \Delta_n \cdot \mathbb{E}^{Q}[(\hat{S}_{n+1} - \hat{S}_n)/\mathcal{F}_n] = 0$$

Analyse du thèoreme de duplication

- Théorème : Tout produit dérivé V est duplicable par une stratégie de portefeuille simple (Π_0, Δ)
- Analyse du Théorème:
 - En t=T on impose $\hat{\Pi}_N=\Phi(S_1,S_2,...,S_N)$
 - Portefeuille $\hat{\Pi}_n$ est une martingale $\Rightarrow \hat{\Pi}_n = \mathbb{E}^Q[\hat{\Pi}_N/\mathcal{F}_n] \quad \Rightarrow$

$$\Pi_n = \frac{1}{(1+r)^{(N-n)}} \mathbb{E}^Q [\Phi(S_1, S_2, ..., S_N) / \mathcal{F}_n]$$

- $\mathbb{E}^Q[\Phi(S_1, S_2, ..., S_N)/\mathcal{F}_n]$ en tant que v. a. \mathcal{F}_n -mesurable, se réécrit sous la forme $V_n(S_1, ..., S_n)$ avec V_n une fonction déterministe.
- Donc on cherche à montrer que V_n est bien le prix d'une option défini à partir de Π_n :

$$V_n(S_1, ..., S_n) = \Pi_n = \frac{1}{(1+r)^{(N-n)}} \mathbb{E}^Q[\Phi(S_1, S_2, ..., S_N)/\mathcal{F}_n]$$

ullet Nous proposons donc le processus de couverture Δ défini par

$$\Delta_n = \frac{V_{n+1}(S_1, ..., S_n, u \cdot S_n) - V_{n+1}(S_1, ..., S_n, d \cdot S_n)}{u \cdot S_n - d \cdot S_n}, \quad \forall n \in [0, N-1]$$

Idées de la démonstration

• On se propose de montrer que la stratégie de portefeuille (Π_0, Δ) avec

$$\Delta_n = \frac{V_{n+1}(S_1, ..., S_n, u \cdot S_n) - V_{n+1}(S_1, ..., S_n, d \cdot S_n)}{u \cdot S_n - d \cdot S_n}$$

duplique notre produit dérivé, soit :

$$\Pi_k = V_k(S_1, S_2, ..., S_k), \quad \forall k \le n$$

- Démonstration par récurrence sur $k \in [1, 2, ...N]$
 - Pour k=0 (Modèle Binomiale à 1 période) $\Pi_0=V_0(S_0)$ et la stratégie de couverture a été construite
- Supposons $\Pi_k = V_k(S_1, S_2, ..., S_k)$ est vrai
- Montrons $\Pi_{k+1} = V_{k+1}(S_1, S_2, ..., S_{k+1})$ est vrai

Démonstration du théorème.

- k=0, par construction la relation est vrai pour $t_0=0$
- On écrit une relation pour Π_k du fait que Π_k est une martingale:

$$\Pi_{k} = V_{k}(S_{1}, S_{2}, ..., S_{k}) = \frac{1}{(1+r)^{(N-k)}} \mathbb{E}^{Q} [\Phi(S_{1}, S_{2}, ..., S_{N}) / \mathcal{F}_{k}]
= \frac{1}{(1+r)} \mathbb{E}^{Q} [\mathbb{E}^{Q} \frac{1}{(1+r)^{(N-k-1)}} [\Phi(S_{1}, S_{2}, ..., S_{N}) / \mathcal{F}_{k+1}] \mathcal{F}_{k}] = \frac{1}{(1+r)} \mathbb{E}^{Q} [V_{k+1}(S_{1}, S_{2}, ..., S_{k+1}) / \mathcal{F}_{k}] = \frac{1}{(1+r)} (q \cdot V_{k+1}(S_{1}, ..., S_{k}, u \cdot S_{k}) + (1-q) \cdot V_{k+1}(S_{1}, ..., S_{k}, d \cdot S_{k}))$$

• On utilise par la suite $(1+r)\Pi_k =$

$$(q \cdot V_{k+1}(S_1, ..., S_k, u \cdot S_k) + (1-q) \cdot V_{k+1}(S_1, ..., S_k, d \cdot S_k))$$

Démonstration du théorème.Suite

De l'autofinancement:

$$\Pi_{k+1} = S_{k+1}\Delta_k + (1+r)(\Pi_k - S_k\Delta_k) = (1+r)\Pi_k + \Delta_k(S_{k+1} - S_k(1+r))$$

$$\Pi_{k+1} = (p \cdot V_{k+1}(S_1, ..., S_k, u \cdot S_k) + (1-p) \cdot V_{k+1}(S_1, ..., S_k, d \cdot S_k)) + \frac{V_{k+1}(S_1, ..., S_k, u \cdot S_k) - V_{k+1}(S_1, ..., S_k, d \cdot S_k)}{u \cdot S_k - d \cdot S_k} (S_{k+1} - S_k(1+r)) = \frac{V_{k+1}(S_1, ..., S_k, u \cdot S_k)(\frac{S_{k+1}}{S_k} - d}{u - d}) + V_{k+1}(S_1, ..., S_k, d \cdot S_k)(u - \frac{S_{k+1}}{u - d}) = \frac{V_{k+1}(S_1, ..., S_k, u \cdot S_k)(u - \frac{S_{k+1}}{u - d})}{V_{k+1}(S_1, S_2, ..., S_{k+1}), \quad S_{k+1} = u \cdot S_k} + \frac{V_{k+1}(S_1, S_2, ..., S_{k+1}), \quad S_{k+1} = d \cdot S_k}{V_{k+1}(S_1, ..., S_{k+1})} = \frac{V_{k+1}(S_1, ..., S_{k+1})}{V_{k+1}(S_1, ..., S_{k+1})}$$

Conclusion

- Pour le modèle Binomial à n periodes nous avons montré l'Absence d'Opportunités d'Arbitrage:
- Tout actif actualisé est un martingale sous une probabilité risque neutre Q
- Toute stratégie de portefeuille simple actualisée est martingale sous la probabilité Q
- Tout produit dérivé actualisé est martingale sous la probabilité Q
- Valeur de l'option à t=0 est définie par la valeur initiale Π_0 de son portefeuille de duplication:

$$V_0 = \Pi_0 = \frac{1}{(1+r)^N} \mathbb{E}^Q [\Phi(S_1, S_2, ..., S_N)]$$

Conclusion

▶ Valeur de l'option à un instant t est repliqué par la valeur Π_t de son portefeuille de duplication (couverture):

$$V_n = \Pi_n, \quad \forall n \leq N$$

$$\hat{V}_{n+1} = \hat{\Pi}_{n+1} = \Pi_0 + \sum_{k=0}^{k=n} \Delta_k \cdot (\hat{S}_{k+1} - \hat{S}_k)$$

- Si un certain produit dérivé est accessible avec un portefeuille de réplication, alors, d'un point de vue financier, il n'y a pas de différence entre détenir produit dérivé ou détenir le portefeuille d'actifs et d'obligations.
- Donc le matché est complet.

Option dans le modèle Binomial.

- L'option est un produit dérivé de l'actif: V(t, S)
- t est discret: $t \to t_n$, l'actif S_t est discret: $t \to S(n,i)$

• Option $V(t_n, S(n, i))$ est une MATRICE

$$V(t(n), S(n, i)) \equiv V(n, i)$$

Programmation de M. Bin. à T=2, N=2

Equation dynamique

$$V(\mathbf{n}, i) = \frac{1}{1+r} (pV(\mathbf{n}+1, i+1) + (1-p)V(\mathbf{n}+1, i))$$

Equation dynamique est équivalente au théorème fondamental de valorisation de l'option.

$$V_n = \frac{1}{1+r} \mathbb{E}^Q[V_{n+1}/\mathcal{F}_n]$$

Programmation de M. Bin. à T=2, N=2

Proof Equation dynamique $V(n,i) = \frac{1}{1+r}(pV(n+1,i+1)+(1-p)V(n+1,i))$

Programme

```
function [prix]=Option_Eu_S0_fixe_Bin(S0)
N=10; r=0.05; T=N; K=100; S=zeros(N+1,N+1); u=1.1; d=0.9;
q=(1+r-d)/(u-d); v=zeros(N+1,N+1);
for n=1:N+1
for i=1:n
S(n,i)=u^{(i-1)}*d^{(n-i)}*S0;
v(N+1,i) = max(S(N+1,i)-K,0);
end
end
for n=N:-1:1
for i=1:n
v(n,i) = (q*v(n+1,i+1) + (1-q)*v(n+1,i)) / (1+r);
delta(n,i) = (v(n+1,i+1)-v(n+1,i))/(S(n+1,i+1)-S(n+1,i));
end
end
prix=v(1,1);
disp('Stock S'); disp(S'); disp('Option V'); disp(v'); disp('Delta');
```

Programmation de M. Bin. à N pèriodes

•
$$t \in [0, T], \Delta t = T/N, q = \frac{e^{-r\Delta t} - d}{u - d}, N \to \infty$$

Théorème fondamental de valorisation de l'option:

$$V_n = e^{-r\Delta t} \mathbb{E}^Q[V_{n+1}/\mathcal{F}_n]$$

Equation dynamique

$$V(n,i) = e^{-r\Delta t}(qV(n+1,i+1) + (1-q)V(n+1,i))$$

Prog. de M. Bin. à T = 2, N = 2

- **Proof** Equation dynamique $V(n,i) = \frac{1}{1+r}(pV(n+1,i+1) + (1-p)V(n+1,i))$
- Programme

```
function [prix] = Option_Eu_SO_fixe(S0)
sigma=0.5; N=10; r=0.05; T=1; K=100; S=zeros(N+1,N+1);
delta_t=T/(N); v=zeros(N+1,N+1); u=exp(sigma*sqrt(delta_t));
d=exp(-sigma*sqrt(delta_t)); q=(exp(r*delta_t)-d)/(u-d);
for n=1:N+1
for i=1:n
S(n,i)=u^{(i-1)}*d^{(n-i)}*S0; v(N+1,i)=max(S(N+1,i)-K,0);
end
end
for n=N:-1:1
for i=1:n
v(n,i) = exp(-r*delta_t)*(q*v(n+1,i+1)+(1-q)*v(n+1,i));
end
end
prix=v(1,1);
disp('S'); disp(S') disp('V'); disp(v');
end
```

TD1

- Notion d'une tribu
 - 1. On définit un evenement $A = \{S_n \leq 10, \forall n \leq 9\}$ Est-que $A \in \mathcal{F}_9$? Est-que $A \in \mathcal{F}_{10}$?
 - 2. On définit un evenement $A = \{S_3 \le 10, S_5 > 8\}$ Est-que $A \in \mathcal{F}_4$?
- Modèle Binomial
 - 3. Calculer $\mathbb{E}[S_2/\mathcal{F}_0]$ à partir de la définition et à l'aide de l'espérance conditionnelle.
 - 4. Calculer $\mathbb{E}[S_6/\mathcal{F}_4]$
 - 5. Calculer $\mathbb{E}[S_n/\mathcal{F}_0]$
- Intérêts
 - 6. Soit le capital placé $P_0 = 100, r = 0.06$. Calculer la somme sur le livret épargne après 1 ans en utilisant :
 - a) Classical méthode
 - b) Continuous compounding

TD2. Options. Hedging.

- 1. On vend un Call. Trouver le prix du Call, la valeur initiale de portefeuille de la couverture, la quantité des actifs risqués et celle sans risque. Données: $S_0 = K = 100, r = 0.05, d = 0.9, u = 1.1$. utiliser le modèele à N = 1 période, T = 1.
- **2**. On vend un Call. Trouver le prix du Call, la valeur initiale de portefeuille de la couverture, la quantité des actifs risqués et celle sans risque. Utiliser le modèele à N=2 périodes, T=2.
- On vend un Bear Spread La fonction Pay-off de l' option BEAR SPREAD est montré sur la figure, elle est aussi donnée par la formule suivante:

$$Pay_off_Bear(S,K) = \begin{cases} K, & S < K \\ 2K - S, & K \le S \le 2K \\ 0, & S > 2K \end{cases}$$

- 1. Tracer la fonction Pay-off
- 2. Trouver le prix de cette option, la valeur initiale de portefeuille de la couverture, la quantité des actifs risqués et celle sans risque.

Données: $S_0=K=100, r=0.05, d=0.9, u=1.1.$ Utiliser le modèele à 1 période, T=1..

TD2. Options. Hedging.

On vend l'option Butterfly. La fonction Pay-off de l'option Buttrefly est est aussi donnée par la formule suivante:

$$Pay_off_Butterfly(S, K) = \max(S - K, 0) + \max(S - 3K, 0) - 2\max(S - 2K, 0)$$

1. Tracer la fonction Pay-off 2. Trouver le prix de cette option, la valeur initiale de portefeuille de la couverture, la quantité des actifs risqués et celle sans risque.

Données: $S_0 = 100, K = 50, r = 0.05, d = 0.9, u = 1.1$. Utiliser le modèele à 1 période, T = 1..

TD3. Martingale

- 1. Simuler une Marche Aléatoire
- 2. Montrer que le processus stochastique appllé Marche Aléatoire M_n est une martingale.
- 3. Montrer que le processus stochastique appllé $\Phi_n = (M_n)^2 n$ est une martingale.

TD4. Programmation dynamique

Ecrire un programme qui calcule le prix d'un Call Européen dans le Modèle Binomial àN=100 périodes. T=1.