Proyecto: Sistema Urinario Masculino

Delgado Soto José Sebastián, Escalante Esquivel Diana Ivana, Gil Garate Carlos Andrés

Departamento de Ingeniería Eléctrica y Electrónica

Tecnológico Nacional de México / Instituto Tecnológico de Tijuana

December 18, 2024

Palabras clave: Sistema Urinario; Hiperplasia Prostática Benigna; Circuito RLC; Función de Transferencia; Controlador PID.

Correo: {l21212151; l202122; l21212743}@tectijuana.edu.mx

Carrera: Ingeniería Biomédica

Asignatura: Modelado de Sistemas Fisiológicos

Profesor: Dr. Paul Antonio Valle Trujillo (paul.valle@tectijuana.edu.mx)

1 Función de transferencia

1.1 Ecuaciones principales

El sistema urinario masculino se representa mediante un circuito RLC de tercer orden, conformado por dos mallas.

La presión generada por los riñones al filtrar y enviar la orina al resto del sistema urinario $[P_r(t)]$ se obtiene mediante:

$$P_{r}\left(t\right) = R_{i}\left[i_{1}\left(t\right) - i_{2}\left(t\right)\right] + L_{i}\frac{d\left[i_{1}\left(t\right) - i_{2}\left(t\right)\right]}{dt} + \frac{1}{C_{v}}\int i_{1}\left(t\right)dt + R_{p}i_{1}\left(t\right)$$

mientras que el flujo derivado de los uréteres $[i_1(t) - i_2(t)]$ está dadao por:

$$R_{i}\left[i_{1}\left(t\right)-i_{2}\left(t\right)\right]+L_{i}\frac{d\left[i_{1}\left(t\right)-i_{2}\left(t\right)\right]}{dt}=R_{d}i_{2}\left(t\right)+L_{d}\frac{di_{2}\left(t\right)}{dt}$$

por lo tanto, la presión generada por la acumulación de orina en la vejiga, que es expulsada a través de la uretra $[P_p(t)]$ se formula por:

$$P_{p}\left(t
ight)=rac{1}{C_{v}}\int i_{1}\left(t
ight)dt+R_{p}i_{1}\left(t
ight)$$

1.2 Transformada de Laplace

Ahora, se obtiene la transformada de Laplace de las ecuaciones principales, comenzando con la presión producida por los riñones $[P_r(s)]$:

$$P_{r}(s) = R_{i}[i_{1}(s) - i_{2}(s)] + L_{i}s[i_{1}(s) - i_{2}(s)] + \frac{i_{1}(s)}{C_{v}s} + R_{p}i_{1}(s)$$

mientras que, para el flujo derivado de los uréteres $[i_1(s) + i_2(s)]$ (unión de las mallas 1 y 2), se obtiene lo siguiente:

$$R_{i}\left[i_{1}\left(s\right)-i_{2}\left(s\right)\right]+L_{i}s\left[i_{1}\left(s\right)-i_{2}\left(s\right)\right]=R_{d}i_{2}\left(s\right)+L_{d}si_{2}\left(s\right)$$

por último, para la presión generada por la acumulación de orina en la vejiga $[P_p(s)]$, se obtiene lo siguiente:

$$P_{p}\left(s\right) = \frac{i_{1}(s)}{C_{v}s} + R_{p}i_{1}\left(s\right)$$

1.3 Procedimiento algebraico

Para calcular la función de transferencia se realizan las siguientes operaciones algebraicas, con el objetivo de obtener y simplificar las ecuaciones correspondientes de la presión generada por los riñones $[P_r(s)]$ (entrada del sistema) y la presión generada por la acumulación de orina en la vejiga $[P_p(s)]$ (salida del sistema) en términos de la corriente $i_1(t)$, que representa el flujo de orina a través del uréter izquierdo. Primero, se agrupan los términos del flujo derivado de ambos uréteres $[i_1(s)]$ en la ecuación de la presión generada por los riñones $[P_r(s)]$:

$$P_{r}(s) = R_{i}i_{1}(s) - R_{i}i_{2}(s) + L_{i}si_{1}(s) - L_{i}si_{2}(s) + \frac{i_{1}(s)}{C_{v}s} + R_{p}i_{1}(s)$$

$$P_{r}(s) = \left(R_{i} + L_{i}s + \frac{1}{C_{v}s} + R_{p}\right)i_{1}(s) - (R_{i} + L_{i}s)i_{2}(s)$$

$$P_{r}(s) = \frac{C_{v}L_{i}s^{2} + C_{v}R_{i}s + C_{v}R_{p}s + 1}{C_{v}s}i_{1}(s) - (L_{i}s + R_{i})i_{2}(s)$$

$$P_{r}(s) = \frac{C_{v}L_{i}s^{2} + (C_{v}R_{i} + C_{v}R_{p})s + 1}{C_{v}s}i_{1}(s) - (L_{i}s + R_{i})i_{2}(s)$$

Después, se despeja el término del flujo derivado del uréter derecho $[i_2(s)]$ de la ecuación que representa

la unión de ambas mallas:

$$R_{i}i_{1}(s) - R_{i}i_{2}(s) + L_{i}si_{1}(s) - L_{i}si_{2}(s) = R_{d}i_{2}(s) + L_{d}si_{2}(s)$$

$$R_{d}i_{2}(s) + L_{d}si_{2}(s) + R_{i}i_{2}(s) + L_{i}si_{2}(s) = R_{i}i_{1}(s) + L_{i}si_{1}(s)$$

$$(R_{d} + L_{d}s + R_{i} + L_{i}s)i_{2}(s) = (R_{i} + L_{i}s)i_{1}(s)$$

$$i_{2}(s) = \frac{L_{i}s + R_{i}}{(L_{d} + L_{i})s + R_{d} + R_{i}}i_{1}(s)$$

Asimismo, se evalúa la la presión generada por la acumulación de orina en la vejiga $[P_p(s)]$:

$$P_{p}(t) = \left(\frac{1}{C_{v}s} + R_{p}\right) i_{1}(s)$$

$$P_{p}(t) = \frac{C_{v}R_{p}s + 1}{C_{v}s} i_{1}(s)$$

Se prosigue a sustituir el término del flujo derivado del uréter derecho en la ecuación de la presión generada por los riñones $[P_r(s)]$:

$$P_{r}(s) = \frac{C_{v}L_{i}s^{2} + (C_{v}R_{i} + C_{v}R_{p})s + 1}{C_{v}s}i_{1}(s) - (L_{i}s + R_{i})\frac{L_{i}s + R_{i}}{(L_{d} + L_{i})s + R_{d} + R_{i}}i_{1}(s)$$

$$P_{r}(s) = \frac{C_{v}L_{i}s^{2} + (C_{v}R_{i} + C_{v}R_{p})s + 1}{C_{v}s}i_{1}(s) - \frac{(R_{i} + sL_{i})^{2}}{R_{d} + R_{i} + sL_{d} + sL_{i}}i_{1}(s)$$

$$P_{r}(s) = \left(\frac{C_{v}L_{i}s^{2} + (C_{v}R_{i} + C_{v}R_{p})s + 1}{C_{v}s} - \frac{(R_{i} + sL_{i})^{2}}{R_{d} + R_{i} + sL_{d} + sL_{i}}\right)i_{1}(s)$$

$$P_{r}(s) = \frac{(R_{d} + R_{i} + sL_{d} + sL_{i} + s^{3}C_{v}L_{d}L_{i} + s^{2}C_{v}L_{d}R_{i} + s^{2}C_{v}L_{d}R_{p} + s^{2}C_{v}L_{i}R_{p} + sC_{v}R_{d}R_{i} + sC_{v}R_{$$

1.4 Resultado

La relación entre la presión generada por los riñones para impulsar la orina $[P_r(s)]$ y la presión urinaria producida por la acumulación de orina en la vejiga, que es expulsada a través de la uretra $[P_p(s)]$, se representa mediante la siguiente función de transferencia:

$$\frac{P_p(s)}{P_r(s)} = \frac{\frac{C_v R_p s + 1}{C_v s} i_1(s)}{\frac{(C_v L_d L_i s^3 + (C_v L_d R_i + C_v L_i R_d + C_v L_d R_p + C_v L_i R_p) s^2 + (L_d + L_i + C_v R_d R_i + C_v R_d R_p + C_v R_i R_p) s + R_d + R_i)}{(C_v L_d + C_v L_i) s^2 + (C_v R_d + C_v R_i) s} i_1(s)$$

Si igualamos los términos a constantes, se obtiene:

$$a = (C_{v}L_{d}R_{p} + C_{v}L_{i}R_{p}) s^{2}$$

$$b = (L_{d} + L_{i} + C_{v}R_{d}R_{p} + C_{v}R_{i}R_{p}) s$$

$$c = R_{d} + R_{i}$$

$$d = C_{v}L_{d}L_{i}s^{3}$$

$$e = (C_{v}L_{d}R_{i} + C_{v}L_{i}R_{d} + C_{v}L_{d}R_{p} + C_{v}L_{i}R_{p}) s^{2}$$

$$f = (L_{d} + L_{i} + C_{v}R_{d}R_{i} + C_{v}R_{d}R_{p} + C_{v}R_{i}R_{p}) s$$

$$g = R_{d} + R_{i}$$

Finalmente, se obtiene:

$$\frac{P_p(s)}{P_r(s)} = \frac{a+b+c}{d+e+f+g}$$

2 Estabilidad del sistema en lazo abierto

La estabilidad del sistema en el lazo abierto se analiza al calcular las raices del denominador, es decir, los polos:

$$C_{v}L_{d}L_{i}s^{3} + \left(C_{v}L_{d}R_{i} + C_{v}L_{i}R_{d} + C_{v}L_{d}R_{p} + C_{v}L_{i}R_{p}\right)s^{2} + \left(L_{d} + L_{i} + C_{v}R_{d}R_{i} + C_{v}R_{d}R_{p} + C_{v}R_{i}R_{p}\right)s + R_{d} + R_{i}$$

Los parámetros para un individuo sano (control) son los siguientes:

$$R_i = 10 \times 10^3$$

$$R_d = 10 \times 10^3$$

$$L_i = 2 \times 10^{-3}$$

$$L_d = 2 \times 10^{-3}$$

$$C_v = 10 \times 10^{-6}$$

$$R_p = 1 \times 10^3$$

Se sustituyen estos valores en el denominador y se obtiene la siguiente ecuación:

$$4.0 \times 10^{-11} s^3 + 0.00044 s^2 + 1200.0 s + 20000.0 = 0$$

Por lo tanto, las raíces son:

$$\lambda_1 = -16.667$$

$$\lambda_2 = -4.9999 \times 10^6$$

$$\lambda_3 = -6.0001 \times 10^6$$

lo que quiere decir que el sistema para un individio sano (control) tiene una respuesta estable sobreamortiguada, ya que las raíces son reales, negativas y diferentes.

Por otro lado, los parámetros para un individuo con hiperplasia prostática benigna (caso) son los siguientes:

$$R_i = 50 \times 10^3$$

$$R_d = 50 \times 10^3$$

$$L_i = 2 \times 10^{-3}$$

$$L_d = 2 \times 10^{-3}$$

$$C_v = 150 \times 10^{-6}$$

$$R_p = 20 \times 10^3$$

Se sustituyen estos valores en el denominador y se obtiene la siguiente ecuación:

$$6.0 \times 10^{-10} s^3 + 0.042 s^2 + 6.75 \times 10^5 s + 1.0 \times 10^5 = 0$$

Por lo tanto, las raíces son:

$$\lambda_1 = -0.14815$$

$$\lambda_2 = -4.5 \times 10^7$$

$$\lambda_3 = -2.5000 \times 10^7$$

lo que quiere decir que el sistema para un individuo con hiperplasia prostática benigna (caso) tiene una respuesta estable sobreamortiguada, ya que las raíces son reales, negativas y diferentes.

3 Modelo de ecuaciones integro-diferenciales

El modelo matemático de ecuaciones integro-diferenciales se formula despejando las variables dependientes y la salida en las ecuaciones principales del sistema. En este caso las variables se expresan como corrientes que representan el flujo derivado del uréter izquierdo $[i_1(t)]$:

$$i_{1}(t) = \left[P_{r}\left(t\right) + R_{i}i_{2}\left(t\right) - L_{i}\frac{d\left[i_{1}\left(t\right) - i_{2}\left(t\right)\right]}{dt} - \frac{1}{C_{v}}\int i_{1}\left(t\right)dt\right]\frac{1}{R_{i} + R_{p}}$$

el flujo el flujo derivado del uréter derecho $[i_2(t)]$:

$$i_{2}\left(t\right) = \left[R_{i}i_{1}\left(t\right) + L_{i}\frac{d\left[i_{1}\left(t\right) - i_{2}\left(t\right)\right]}{dt} - L_{d}\frac{di_{2}\left(t\right)}{dt}\right]\frac{1}{R_{i} + R_{d}}$$

y la presión generada por la acumulación de orina en la vejiga $[P_p(t)]$:

$$P_{p}\left(t\right) = R_{p}i_{1}\left(t\right) + \frac{1}{C_{v}}\int i_{1}\left(t\right)dt$$

4 Error en estado estacionario

El error en estado estacionario se calcula mediante el siguiente límite:

$$e(t) = \lim_{s \to 0} sR(s) \left[1 - \frac{V_s(s)}{V_e(s)} \right] =$$

$$= \lim_{s \to 0} s \frac{1}{s} \left[1 - \frac{(C_v L_d R_p + C_v L_i R_p) s^2 + (L_d + L_i + C_v R_d R_p + C_v R_i R_p) s + R_d + R_i}{C_v L_d L_i s^3 + (C_v L_d R_i + C_v L_i R_d + C_v L_d R_p + C_v L_i R_p) s^2 + (L_d + L_i + C_v R_d R_i + C_v R_d R_p + C_v R_d R_p$$

es decir, el error en estado estacionario es 0 V.

R(s): Representa la entrada del sistema [el escalón $\frac{1}{s}$].

 $\frac{V_{s}\left(s\right)}{V_{e}\left(s\right)}$: Representa la función de transferencia del sistema.

5 Cálculo de componentes para el controlador PID

A partir de la simulación del sistema realizada en Simulink, se obtienen los siguientes valores para las ganancias k_I , k_P y k_D :

$$k_I = \frac{1}{R_e C_r} = 449.9844$$
 $k_P = \frac{R_r}{R_e} = 0.023332$
 $k_D = R_r C_e = 0$

lo que indica que el controlador es de tipo Proporcional-Integral (PI). Enseguida, se propone el valor del capacitor C_r del controlador PI:

$$C_r = 1 \times 10^{-6}$$

se despejan las variables de los componentes R_e , R_r y C_e del controlador PID y se sustituyen los valores conocidos:

$$R_e = \frac{1}{k_I C_r} = \frac{1}{(449.9844)(1 \times 10^{-6})} = 2222.3$$

$$R_r = k_P R_e = (0.023332)(2222.3) = 51.851$$

$$C_e = \frac{k_D}{R_r} = \frac{0}{51.851} = 0$$