Louis Meunier

Analysis 2 MATH255

Course Outline:

Based on Lectures from Winter, 2024 by Prof. Dmitry Jackobson.

Contents

	Introduction		
	1.1	Metric Spaces	2
2		nt-Set Topology	6
		Definitions	
	2.2	Basis	8
	2.3	Subspaces	9
		Continuous Functions	
	2.5	Product Spaces	11
	2.6	More on Metric Spaces?	13
	2.7	Compactness	14

1 Introduction

1.1 Metric Spaces

→ Definition 1.1: Metric Space

A set X is a *metric space* with distance d if

- 1. (symmetric) $d(x, y) = d(y, x) \ge 0$
- 2. $d(x,y) = 0 \iff x = y$
- 3. (triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$

Remark 1.1. If 1., 3. are satisfied but not 2., d can be called a "pseudo-distance".

→ **Definition** 1.2: Open Metric Space

Let (X,d) be a metric space. A subset $A\subseteq X$ is open $\iff \forall\,x\in A, \exists r=r(x)>0$ s.t. $B(x,r(x))\subseteq A$.

→ Definition 1.3: Normed Space

Let X be a vector space over \mathbb{R} . The norm on X, denoted $||x|| \in \mathbb{R}$, is a function that satisfies

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $||c \cdot x|| = |c| \cdot ||x||$
- 4. $||x+y|| \le ||x|| + ||y||$

If X is a normed vector space over \mathbb{R} , we can define a distance d on X by d(x,y) = ||x-y||.

\hookrightarrow Proposition 1.1

If X is a normed vector space over \mathbb{R} , a distance d on X by d(x,y) = ||x-y|| makes (X,d) a metric space.

Proof. 1. $d(x,y) = ||x - y|| \ge 0$

2.
$$d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y$$

3.
$$d(x,y) + d(y,z) = ||x-y|| + ||y-z|| > ||(x-y) + (y-z)|| = ||x-z|| := d(x,z)$$

\circledast Example 1.1: L^p distance in \mathbb{R}^n

Let $\overline{x} \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)$. The L^p norm is defined

$$||x||_p := (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}.$$

In the case p=2, n=2, we simply have the standard Euclidean distance over \mathbb{R}^2 .

<u>Unit Balls:</u> consider when $||x||_p \leq 1$, over \mathbb{R}^2 .

- $p = 1: |x_1| + |x_2| \le 1$; this forms a "diamond ball" in the plane.
- $p = 2 : \sqrt{|x_1|^2 + |x_2|^2} \le 1$; this forms a circle of radius 1. Clearly, this surrounds a larger area than in p = 2.

A natural question that follows is what happens as $p \to \infty$? Assuming $|x_1| \ge |x_2|$:

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p})^{\frac{1}{p}}$$

$$= \left[|x_{1}|^{p} \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)\right]^{\frac{1}{p}}$$

$$= |x_{1}| \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)^{\frac{1}{p}}$$

If $|x_1| > |x_2|$, this goes to $|x_1|$. If they are instead equal, then $||x||_p = |x_1| \cdot 2^{\frac{1}{p}} \to |x_1| \cdot 1$ as well. Hence, $\lim_{p \to \infty} ||x||_p = \max\{|x_1|, |x_2|\}$. Thus, the unit ball will approach $\max\{|x_1|, |x_2|\} \le 1$, that is, the unit square.

$\hookrightarrow \underline{\text{Proposition}}$ 1.2

Let $x \in \mathbb{R}^n$. Then, $||x||_p \to \max\{|x_1|, \dots, |x_n|\}$ as $p \to \infty$.

Remark 1.2. This is an extension of the previous example to arbitrary real space; the proof follows nearly identically.

→ Definition 1.4: Convex Set

Let X be a normed space, and take $x, y \in X$. The line segment from x to y is the set

$$\{t\cdot x+(1-t)\cdot y:0\leq t\leq 1\}.$$

p. 3

Figure 1: Regions of \mathbb{R}^2 where $||x||_p \leq 1$ for various values of p.

Let $A \subseteq X$. A is *convex* $\iff \forall x, y \in A$, we have that

$$(t \cdot x + (1-t) \cdot y) \in A \,\forall \, 0 \le t \le 1.$$

Figure 2: Convex (left) versus not convex (right) sets.

Remark 1.3. Think of this as saying "a set is convex iff every point on a line segment connected any two points is in the set".

\hookrightarrow **Definition** 1.5: ℓ_p

The space ℓ_p of sequences is defined as

$$\{x = (x_1, x_2, \dots, x_n, \dots) : \sum_{n=1}^{\infty} |x_n|^p < +\infty\} *.$$

Then, * defines the ℓ^p norm on the space of sequences; that is, $||x||_p := (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}$.

* Example 1.2: ℓ_p , $x_n = \frac{1}{n}$

. Let $x_n = \frac{1}{n}$. For which p is $x \in \ell_p$? We have, raising the norm to the power of p for

ease:

$$||x||_p^p = |x_1|^p + |x_2|^p + \dots + |x_n|^p + \dots$$

= $1^p + \left(\frac{1}{2}\right)^p + \dots < \infty \iff p > 1.$

In the case that p = 1, this becomes a harmonic sum, which diverges.

\circledast Example 1.3: L^p space of functions

Let f(x) be a continuous function. We define the norm of f over an interval [a,b]

$$||f||_p = \left[\int_a^b |f(x)|^p dx \right]^{\frac{1}{p}}.$$

Remark 1.4. Triangle inequality for $||x||_p$ or $||f||_p$ is called Minkowski inequality; $||x||_p + ||y||_p \ge ||x+y||_p$. This will be discussed further.

\circledast Example 1.4: Distances between sets in \mathbb{R}^2

Let A, B be bounded, closed, "nice" sets in \mathbb{R}^2 . We define

$$d(A, B) := Area(A \triangle B),$$

where

$$A\triangle B:(A\setminus B)\cup (B\setminus A)=(A\cup B)\setminus (A\cap B).$$

It can be shown that this is a "valid" distance.

Remark 1.5. \triangle denotes the "symmetric difference" of two sets.

⊗ Example 1.5: *p*-adic distance

Let p be a prime number. Let $x=\frac{a}{b}\in\mathbb{Q}$, and write $x=p^k\cdot\left(\frac{c}{d}\right)$, where c,d are not divisible by p. Then, the p-adic norm is defined $||x||_p:=p^{-k}$. It can be shown that this is a norm.

Suppose
$$p=2, x=28=4\cdot 7=2^2\cdot 7$$
. Then, $||28||_2=2^{-2}=\frac{1}{4}$; similarly, $||1024||_2=||2^{10}||_2=2^{-10}$.

More generally, we have that $||2^k||_2 = 2^{-k}$; coversely, $||2^{-k}|| = 2^k$. That is, the closer to 0, the larger the distance, and vice versa, contrary to our notion of Euclidean distance.

\hookrightarrow Proposition 1.3

 $||x||_p$ as defined above is a well-defined norm over \mathbb{Q} .

Proof.

2 Point-Set Topology

2.1 Definitions

→ **Definition** 2.1: Topological space

A set X is a topological space if we have a collection of subsets τ of X called *open sets* s.t.

- 1. $\varnothing \in \tau, X \in \tau$
- 2. Consider $\{A_{\alpha}\}_{{\alpha}\in I}$ where A_{α} an open set for any α ; then, $\bigcup_{{\alpha}\in I}A_{\alpha}\in \tau$, that is, it is also an open set.
- 3. If J is a finite set, and A_{β} open for all $\beta \in J$, then $\bigcap_{\beta \in J} A_{\beta} \in \tau$ is also open.

In other words, 2.: arbitrary unions of open sets are open, and 3.: finite intersections of open sets are open.

\hookrightarrow **Definition 2.2: Closed sets**

Closed sets are complements of open sets; hence, axioms for closed sets follow appropriately;

- 1.* X, \emptyset closed;
- 2.* B_{α} closed $\forall \alpha \in I \implies \bigcap_{\alpha \in I} B_{\alpha}$ closed.
- 3.* B_{β} closed $\forall \beta \in J$, J finite, then $\bigcup_{\beta \in J} B_{\beta}$ also closed.

 \hookrightarrow Thu Jan 11 08:35:34 EST 2024

\hookrightarrow **Definition** 2.3: Equivalence of Metrics

Suppose we have a metric space X with two distances d_1, d_2 ; will these necessarily admit the same topology?

A sufficient condition is that, if $\forall x \neq y \in X$, $\exists 1 < C < +\infty$ s.t.

$$\frac{1}{C} < \frac{d_1(x,y)}{d_2(x,y)} < C.$$

That is, the distances are equivalent, up to multiplication by a constant.

Indeed, this condition gives that $d_2 < Cd_1$ and $d_2 > \frac{d_1}{C}$; this gives

$$B_{d_1}(x, \frac{r}{c}) \subseteq B_{d_2}(x, r) \subseteq B_{d_1}(x, C \cdot r).$$

Hence, d_1, d_2 define the same open/closed sets on X thus admitting the same topologies. We write $d_1 \approx d_2$.

Remark 2.1. If $d_1 \approx d_2$ and $d_2 \approx d_3$, then also $d_1 \approx d_3$. Moreover, clearly, $d_1 \approx d_1$ and $d_1 \approx d_2 \implies d_2 \approx d_1$, hence this is a well-defined equivalence relation.

Hence, its enough to show that $\forall 1 , we have <math>||x||_p \asymp ||x||_{\infty}$ to show that any $||x||_q$ norm are equivalent for all q on \mathbb{R}^n .

→ **Definition** 2.4: Interior, Boundary of a Topological Set

Let X be a topological space, $A \subseteq X$ and let $x \in X$. We have the following possibilities

1. $\exists U$ -open : $x \in U \subseteq A$. In this case, we say $x \in \text{the } interior \text{ of } A$, denoted

$$x \in Int(A)$$
.

2. $\exists V$ -open : $x \in V \subseteq X \setminus A = A^C$. In this case, we write

$$x \in \operatorname{Int}(X^C)$$
.

3. \forall *U*-open : $x \in U$, $U \cap A \neq \emptyset$ AND $U \cap A^C \neq \emptyset$. In this case, we say x is in the boundary of A, and denote

$$x \in \partial A$$
.

\hookrightarrow **Definition** 2.5: Closure

 $x \in \text{Int}(A)$ or $x \in \partial A$ (that is, $x \in \text{Int}(A) \cup \partial A$) \iff every open set U that contains x intersects A. Such points are called *limit points* of A. The set of all limits points of A is called the *closure* of A, denoted \overline{A} .

¹"Requires" proof.

Remark 2.2. We have that

$$\operatorname{Int}(A) \subseteq A \subseteq \overline{A} = \operatorname{Int}(A) \cup \partial A.$$

\hookrightarrow **Proposition 2.1: Properties of** Int(A)

 $\operatorname{Int}(A)$ is *open*, and it is the largest open set contained in A. It is the union of all U-open s.t. $U \subseteq A$. Moreover, we have that

$$Int(Int(A)) = Int(A).$$

\hookrightarrow Proposition 2.2: Properties of \overline{A}

 \overline{A} is *closed*; \overline{A} is the smallest closed set that contains A, that is, $\overline{A} = \bigcap B$ where B closed and $A \subseteq B$. We have too that

$$\overline{(\overline{A})} = \overline{A}.$$

$\hookrightarrow \textbf{Proposition 2.3}$

- 1. $A \text{ is open} \iff A = \text{Int}(A)$
- 2. A is closed $\iff A = \overline{A}$

2.2 Basis

→ **Definition** 2.6: Basis for a Toplogy

Let τ be a topology on X. Let $\mathcal{B} \subseteq \tau$ be a collection of open sets in X such that every open set is a union of open sets in \mathcal{B} .

*** Example 2.1: Example Basis**

 $X = \mathbb{R}$, and $\mathcal{B} = \{\text{all open intervals } (a, b) : -\infty < a < b < +\infty\}.$

\hookrightarrow Proposition 2.4

Let $\mathcal B$ be a collection of open sets in X. Then, $\mathcal B$ is a basis \iff

- 1. $\forall x \in X, \exists U$ -open $\in \mathcal{B}$ s.t. $x \in U$.
- 2. If $U_1 \in \mathcal{B}$ and $U_2 \in \mathcal{B}$, and $x \in U_1 \cap U_2$, then $\exists U_3 \in \mathcal{B}$ s.t. $x \in U_3 \subseteq U_1 \cap U_2$.

*** Example 2.2**

Consider $X=\mathbb{R}$. Requirement 1. follows from taking $U=(x-\varepsilon,x+\varepsilon)$ for any $\varepsilon>0$. For 2., suppose $x\in(a,b)\cap(c,d)=:U_1\cap U_2$. Let $U_3=(\max\{a,c\},\min\{b,d\})$; then, we have that $U_3\subseteq U_1\cap U_2$, while clearly $x\in U_3$.

\hookrightarrow Proposition 2.5

In a metric space, a basis for a topology is a collection of open balls,

$${B(x,r): x \in X, r > 0} = {\{y \in X: d(x,y) < r\}: x \in X, r > 0}.$$

Proof. We prove via proposition 2.4. Property 1. holds clearly; $x \in B(x, \varepsilon)$ -open $\subseteq \mathcal{B}$.

For property 2., let $x \in B(y_1, r_1) \cap B(y_2, r_2)$, that is, $d(x, y_1) < r_1$ and $d(x, y_2) < r_2$. Let

$$\delta := \min\{r_1 - d(x, y_1), r_2 - d(x, y_2)\}.$$

We claim that $B(x, \delta) \subseteq U_1 \cap U_2$.

Let $z \in B(x, \delta)$. Then,

$$d(z, y_1) \stackrel{\triangle \neq}{\leq} d(z, x) + d(x, y_1) < \delta + d(x, y_1) \le r_1 - d(x, y_1) + d(x, y_1) = r_1,$$

hence, as $d(z,y_1) < r_1 \implies z \in B(y_1,r_1) = U_1$. Replacing each occurrence of y_1,r_1 with y_2,r_2 respectively gives identically that $z \in B(y_2,r_2) = U_2$. Hence, we have that $B(x,\delta) \subseteq U_1 \cap U_2$ and 2. holds.

2.3 Subspaces

\hookrightarrow **Definition 2.7**

Let X be a topological space and let $Y \subseteq X$. We define the subspace topology on Y:

1. Open sets in $Y = \{Y \cap \text{ open sets in } X\}$

\hookrightarrow Proposition 2.6: Consequences of Subspace Topologies

Suppose \mathcal{B} is a basis for a topology in X. Then, $\{U \cap Y : U \in \mathcal{B}\}$ forms a basis for the subspace $Y \subseteq X$.

Suppose X a metric space. Then, Y is also a metric space, with the same distance.

\hookrightarrow **Proposition 2.7**

Let $Y \subseteq X$ - a metric space. Then, the metric space topology for (Y,d) is the same as the subspace topology.

Proof. (Sketch) A basis for the open sets in X can be written $\bigcup_{\alpha \in I} B(x_{\alpha}, r_{\alpha})$; hence

$$Y \cap (\bigcup_{\alpha \in I} B(x_{\alpha}, r_{\alpha})) = \bigcup_{\alpha \in I} (Y \cap B(x_{\alpha}, r_{\alpha}))$$

is an open set topology for Y.

\hookrightarrow Lemma 2.1

Let $A \subseteq X$ -open, $B \subseteq A$; B-open in subspace topology for $A \iff B$ -open in X.

\hookrightarrow Lemma 2.2

Let $Y \subseteq X$, $A \subseteq Y$. Then, \overline{A} in $Y = Y \cap \overline{A}$ in X. We can denote this

$$\overline{A}_Y = \overline{A}_X \cap Y.$$

2.4 Continuous Functions

→ Definition 2.8: Continuous Function

Let X,Y be topological spaces. Let $f:X\to Y$. f is continuous \iff \forall open $V\in Y$, $f^{-1}(V)$ -open in X.

\hookrightarrow Proposition 2.8

This definition is consistent with the normal ε - δ definition on the real line.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$, continuous; that is, $\forall \varepsilon > 0, \forall x \in \mathbb{R} \exists \delta > 0 \text{ s.t. } |x_1 - x| < \delta$, then $\overline{|f(x_1) - f(x)|} < \varepsilon$.

Let $V \subseteq \mathbb{R}$ open. Let $y \in V$. Then, $\exists \varepsilon : (y - \varepsilon, y + \varepsilon) \subseteq V$. Let y = f(x), hence $y \in f^{-1}(V)$. Now, if $d(x, x_1) < \delta$, we have that $d(f(x_1), f(x)) < \varepsilon$ (by continuity of f), hence $f(x_1) \in (y - \varepsilon, y + \varepsilon) \subseteq V$; moreover, $(x - \delta, x + \delta) \subseteq f - 1(V)$, thus $f^{-1}(V)$ is open as required.

The inverse of this proof follows identically.

 \hookrightarrow Thu Jan 11 08:52:09 EST 2024

→ Proposition 2.9

Suppose \mathcal{B} forms a basis of topology for Y. Then, $f:X\to Y$ is continuous if $f^{-1}(U)$ open $\forall U\in B$.

Proof. If U-open set in Y, then $\exists I$ -index set and a collection of open sets $\{A_{\alpha}\}_{{\alpha}\in I}, A_{\alpha}\in \mathcal{B}$, s.t. $\overline{U}=\bigcup_{{\alpha}\in I}A_{\alpha}$. Then, we have

$$f^{-1}(U) = f^{-1}(\cup_{\alpha \in I}(A_{\alpha})) = \cup_{\alpha \in I} \underbrace{f^{-1}(A_{\alpha})}_{}$$

Hence, if each $f^{-1}(A_{\alpha})$ open, then $\bigcup_{\alpha \in I} f^{-1}(A_{\alpha})$ open; hence it suffices to check if $f^{-1}(U) \forall U$ open in V is open to see if f continuous.

→ Theorem 2.1: Continuity of Composition

If $f: X \to Y$ continuous and $g: Y \to Z$ continuous, then $g \circ f$ continuous as well.

Proof. Let U-open in Z. Then

$$(g \circ f)^{-1}(U) = \underbrace{f^{-1}(\underline{g}^{-1}(U))}_{\text{open in } Y}$$

\hookrightarrow Proposition 2.10

If $f: X \to Y$ continuous and $A \subseteq X$, A has subspace topology, then $f|_A: A \to Y$ is also continuous.²

²We denote $f|_A$ as the restriction of the domain of f to A.

Proof. Let U-open in Y. Then

$$(f|_A)^{-1}(U) = \underbrace{f^{-1}(U)}_{\text{open}} \cap \underbrace{A}_{\text{open}}$$

By the definition of subspace topology, this is an open set and hence $f|_A$ is continuous.

2.5 Product Spaces

$\hookrightarrow \underline{\textbf{Definition}}$ 2.9: Finite Product Spaces

Let X_1, \ldots, X_n be topological spaces. We define

$$(X_1 \times X_2 \times \cdots \times X_n),$$

and aim to define a *product topology*; a basis of which consists of cylinder sets.

\hookrightarrow **Definition 2.10: Cylinder Set**

A cylinder set has the form

$$A_1 \times A_2 \times \cdots \times A_n$$

where each A_j -open in X_j .

*** Example 2.3**

Given an open interval $(a_1, b_1), (a_2, b_2) \subset \mathbb{R}$, the set $(a_1, b_1) \times (a_2, b_2) \subset \mathbb{R}^2$ is a basis for the topology on \mathbb{R}^2 .

→ Definition 2.11: Projection

Let $X_1 \times X_2 \times \cdots \times X_n =: X$. The projection $\pi_j : X \to X_j$ maps $(x_1, \dots, x_n) \to x_j \in X_j$.

Remark 2.3. One can show π_j continuous.

→ Definition 2.12: Coordinate Function

Given a function $f:Y\to X_1\times\cdots X_n=(x_1(y),x_2(y),\ldots,x_n(y))$. The coordinate function is

$$f_j = \pi_j \circ f; \quad f_j = x_j(y).$$

\hookrightarrow **Proposition 2.11**

 $f: Y \to X = X_1 \times \cdots \times X_n$ continuous $\iff f_j: Y \to X_j$ continuous.

Proof. Its enough to show that $\forall U \in \mathcal{B}$ -basis for X-product space, $f^{-1}(U)$ -open in Y. Take $U = A_1 \times \cdots A_n$ -open. Then, we claim that

$$f^{-1}(U) = f^{-1}(A_1 \times \dots \times A_n) = f_1^{-1}(A_1) \cap f_2^{-1}(A_2) \cap \dots \cap f_n^{-1}(A_n). \quad \star$$

If this holds, then as each f_i continuous (being a composition of continuous functions) and each A_i open in X_i , then each $f_i^{-1}(A_i)$ open in Y and hence \star , being the finite intersection of open sets in Y, is itself open in Y.

*** Example 2.4: Fourier Transform: Motivation for Infinite Product Toplogies**

Let $f \in C([0, 2\pi])$ is real-valued. We write the *n*th Fourier coefficients

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(x)\cos(nx) dx - i\frac{1}{2\pi} \int_0^{2\pi} f(x)\sin(nx) dx.$$

And the Fourier transform of f as the infinite product

$$f(x) \mapsto (\dots, \hat{f}(-n), \hat{f}(-n+1), \dots, \hat{f}(-1), \hat{f}(0), \hat{f}(1), \dots, \hat{f}(n), \dots) \in \prod_{n \in \mathbb{Z}} (\mathbb{C})_n.$$

Hence, this is an (countably, as indexed by integers) infinite product space.

Now, let $f: \mathbb{R} \to \mathbb{R}$. Suppose $f(x) \to 0$ "fast enough" as $|x| \to \infty$ and f continuous. Then, we can define the Fourier coefficients

$$\hat{f}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-itx} dx,$$

where $t \in \mathbb{R}$. We then have the transform

$$f \mapsto \{\hat{f}(t)\}_{t \in \mathbb{R}}.$$

In this case, our index set is \mathbb{R} is (uncountably) infinite.

\hookrightarrow **Definition** 2.13: Product Topology/Cylinder Sets for ∞ Products

Let $X = \prod_{\alpha \in I} X_{\alpha}$. Then, a basis for X is given by cylinder sets of the form $A = \prod_{\alpha \in I} A_{\alpha}$ where A_{α} -open in X_{α} , AND $A_{\alpha} = X_{\alpha}$ except for finitely many indices α .

That is, there exists a finite set $J=(\alpha_1,\ldots,\alpha_k)\subseteq I$, such that we can write $A=\prod_{\alpha\in J}A_\alpha\times\prod_{\alpha\notin J}X_\alpha$ (where A_α open in X_α).

\hookrightarrow Proposition 2.12

Given $f: Y \to \prod_{\alpha \in I} X_{\alpha} = X$, then (taking $f_{\alpha} = \pi_{\alpha} \circ f$ as before) we have that f is continuous in $X \iff f_{\alpha}: Y \to X_{\alpha}$ continuous in $X_{\alpha} \forall \alpha \in I$.

Remark 2.4. Extension of proposition 2.11 to infinite product space.

<u>Proof.</u> Write $U = \prod_{\alpha \in J} A_{\alpha} \times \prod_{\alpha \notin J} X_{\alpha}$. Then,

$$f^{-1}(U) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(A_{\alpha})$$

which is open in Y, hence f continuous.

Remark 2.5. *The intersection of the entire spaces give no restriction.*

2.6 More on Metric Spaces?

\hookrightarrow Proposition 2.13

Different metrics can define the same topology.

*** Example 2.5**

- 1. Different ℓ_p metrics in \mathbb{R}^n (PSET 1)
- 2. Let (X, d) be a metric space. Then,

$$\tilde{d}(x,y) := \frac{d(x,y)}{d(x,y)+1}$$

is also a metric (the first two axioms are trivial), and defines the same topology. Note, moreover, that $\tilde{d}(x,y) \leq 1 \, \forall \, x,y$; this distance is bounded, and can often be more convenient to work with in particular contexts.

\hookrightarrow Question 2.1

Suppose (X_k, d_k) are metric spaces $\forall k \geq 1$. Then, we can define the product topology τ on

$$X := \prod_{k=1}^{\infty} X_k.$$

Does the product topology τ come from a metric? That is, is τ metrizable?

Remark 2.6. There do indeed exist examples of non-metrizable topological spaces; this question is indeed well-founded.

Answer. Let $\underline{x} = (x_1, x_2, \dots, x_n, \dots), \underline{y} = (y_1, y_2, \dots, y_n, \dots) \in \prod_{k=1}^{\infty}$ (where $x_i, y_i \in X_i$) be infinite sequences of elements. Then, for each metric space X_k take the metric

$$\tilde{d}_k(x_k, y_k) = \frac{d_k(x_k, y_k)}{1 + d_k(x_k, y_k)}$$

(as in the example above). Then, we define

$$D(\underline{x},\underline{y}) = \sum_{k=1}^{\infty} \frac{\tilde{d}_k(x_k, y_k)}{2^k},$$

noting that $D(\underline{x},\underline{y}) \leq \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$ (by our construction, "normalizing" each metric), hence this is a valid, *converging* metric (which wouldn't otherwise be guaranteed if we didn't normalize the metrics). It remains to show whether this metric omits the same topology as τ .

2.7 Compactness

§2.7

\hookrightarrow **Definition 2.14: Compact**

A set A in a topological space is said to be *compact* if every cover has a finite subcover. That is, if

$$A\subseteq\bigcup_{\alpha\in I}U_{\alpha}-\mathrm{open},$$

then $\exists \{\alpha_1, \dots, \alpha_n \in I\}$ such that $A \subseteq \bigcup_{i=1}^n U_{\alpha_i}$.

\hookrightarrow Proposition 2.14

A closed interval [a, b] is compact.

Proof. If a = b, this is clear. Suppose a < b. Then, suppose

$$[a,b]\subseteq\bigcup_{lpha\in I}U_lpha$$
 – open.

Then, it must be that $a \in U_{\alpha_1}$ for some α_1 ; hence, $\exists \varepsilon > 0 \ (a - \varepsilon, a + \varepsilon) \subseteq U_{\alpha_1}$. Let $c = a + \frac{\varepsilon}{2}$, then $[a, c] \subseteq U_{\alpha_1}$. Then, [a, c] has a finite subcover; it is covered by the single open set U_{α_1} .

Let, then, l = least upper bound for all $c \le b$ s.t. [a, c] has a finite subcover. Then, $l \in [a, b]$ and so $\exists \beta \in I$ such that $l \in U_{\beta}$. It follows that $\exists \varepsilon > 0$ s.t. $[l - \varepsilon, l] \subseteq U_{\beta}$.

By our definition of l, $\exists c_j$ s.t. $d(l,c_j) < \frac{1}{j}$ s.t. $[a,c_j]$ is contained in a finite union of U_{α} 's. Let $c_j \in [l-\varepsilon,l]$. Then, $[a,c_j] \subseteq \bigcup_{i=1}^k U_{\alpha_i}$, and then, the interval $[a,l] \subseteq \bigcup_{i=1}^k U_{\alpha_1} \cup U_{\beta}$.

But we can "choose" U_{β} such that $[l,l+\varepsilon]\subseteq U_{\beta}$, and so we'd further have that $[a,l+\varepsilon]\subseteq\bigcup_{i=1}^k U_{\alpha_1}\cup U_{\beta}$; but we have that $L+\varepsilon>l$, and we have a contradiction to l being the least upper bound for which this holds, unless l=b itself. Then, we cannot "increase" further, and hence l=b and so $[a,l]=[a,b]\subseteq$ a finite union of open sets.

Remark 2.7. A similar proof shows that [a,b] is connected; we cannot cover it by two disjoint open sets.

\hookrightarrow Theorem 2.2: On Compactness

Let $A \subseteq \mathbb{R}^n$. Then, A compact $\iff A$ closed and bounded.

\hookrightarrow Proposition 2.15

If X, Y are compact topological spaces, then $X \times Y$ is compact.

Remark 2.8. By induction, if X_1, \ldots, X_n compact, so is $\prod_{i=1}^n X_i$.

\hookrightarrow **Proposition 2.16**

A closed subset of of a compact topological space is compact in the subspace topology.

Proof. (Of theorem 2.2)

(\Leftarrow) If $A \subseteq \mathbb{R}^n$ closed and bounded, then $A \subseteq [-R, +R]^n$ for some R > 0 (it is contained in some "n-cube"). Then, we have that [-R, R] is compact, by proposition 2.14, proposition 2.15, and proposition 2.16, A itself compact.

(\Longrightarrow) Suppose $A\subseteq\mathbb{R}^n$ is compact. Then, $\bigcup_{x\in A}B(x,\varepsilon)$ for some $\varepsilon>0$ is an open cover of A. As A compact, there must exist a finite subcover of this cover, $A\subseteq\bigcup_{i=1}^N B(x_i,r_i)$. Let $R:=\max_{i=1}^N(||x_i||+r_i)$. Then, $A\subseteq\overline{B(0,R)}$, that is, A is bounded.

Now, suppose x is a limit point of A. Then, any neighborhood of x contains a point in A, so $\forall r > 0$, $B(x, r) \cap A \neq \emptyset$, and so $\overline{B}(x, r)$ also contains a point of A for any r > 0.

Now, suppose $x \notin A$ (looking for a contradiction). Then,

$$U := \bigcup_{r>0} U_r := \bigcup_{r>0} (\mathbb{R}^n \setminus \overline{B(x,r)}) = \mathbb{R}^n \setminus \{x\}$$

is an open cover for the set A. A being compact implies that U has an finite subcover such that $A \subset U_{r_1} \cup U_{r_2} \cup \cdots \cup U_{r_N}$. Let $r_0 = \min_{i=1}^N r_i$. Then, $A \subseteq U_{r_0}$, and $A \cap B(x, r_0) = \emptyset$; but this is a contradiction to the definition of a limit point, hence any limit point x is contained in A and A is thus closed by definition.

\hookrightarrow Proposition 2.17

Compact \implies sequentially compact; that is, every sequence in a compact set has a convergent subsequence.