Tutorial 6 – Frequency Modulation

1. An FM modulator has a conversion gain of 10 kHz/V. Its carrier frequency is set to 200 kHz.

Plot a graph showing how the output frequency changes when the modulating signal in Figure T6.1 is applied. Indicate the frequency at t_1 , t_2 , t_3 and t_4 .

- 2. A $2.4~V_{peak}$, 500~Hz sinusoidal modulating signal when fed to a frequency modulator results in a peak frequency deviation of 4.8~kHz.
 - (a) Calculate the conversion gain of the modulator.
 - (b) What is the peak frequency deviation when the peak amplitude of the modulating signal is increased to 7.2 V?
 - (c) What is the modulation index in each case?
- 3. A 100 MHz carrier is frequency modulated by a 5 kHz sine wave to a modulation index of 4. Given that the conversion gain of the demodulator is 6 mV/kH. Determine the peak output voltage of the demodulator.

- 4. A 2 V_{peak}, 100 MHz sinusoidal carrier is frequency modulated by a 4 V_{peak}, 2 kHz sinusoidal signal. The modulator has a conversion gain of 3 kHz/V.
 - (a) State, with reason, whether it is narrowband or wideband transmission.
 - (b) Calculate the bandwidth of the FM signal.
 - (c) Calculate the total FM power if dissipated over a 50Ω load.
- 5. When the modulation index of an FM signal increases from 2 to 6, the transmitted power
 - (a) increases by 3 times
- (b) increases by 9 times

(c) remains the same

- (d) reduces by 9 time
- 6. (a) List 4 advantages and 1 disadvantage of wideband FM.
 - (b) List 4 advantages and 1 disadvantage of narrowband FM.
 - (c) The transmission power of FM can be lower than that of AM to cover the same area. Why?