# Введение в NLP

Антон Легченко 14.07.25



# **Антон Легченко**

Korona tech, Старший дата-аналитик

- Работаю в R&D 3 года
- Аспирант ММФ НГУ
- Работаю преймущественно с
   NLP, распознаванием речи
- Занимал 1ое место на AIJ 24 и Avito ML cup 25

# Зачем нужно NLP?

- Автоматизация рутинных задач
- Поиск информации в больших объёмах данных
- Общение между людьми и машинами

# Зачем нужно NLP?



#### Классификация текста

- Определение тональности (sentiment analysis)
- Тематическая классификация (topic classification)
- Обнаружение спама

#### Извлечение информации

- Распознавание именованных сущностей (NER)
- Извлечение фактов и событий
- Разметка частей речи (POS-tagging)
- Определение отношений (relation extraction)

#### Текст2Текст

- Машинный перевод
- Саммаризация
- Вопрос-ответные системы

#### Генерация текста

- Авто-дополнение кода
- Авто дополнение сообщений и тд.

## Диалоговые системы

#### Генерация текста

- Чат-боты
- Агентные системы.
- Интеллектуальный поиск и тд.

### История NLP: этапы развития

- 1950—1980: Символьные и лингвистические подходы
- 1980–2010: Статистические методы и n-граммы
- 2000—2010: Векторные представления и увеличение данных
- 2010–2020: Глубокое обучение и нейросетевые представления
- 2018-н.в.: Трансформеры
- 2021-н.в Instruct модели

# Подготовка данных в классических NLP-моделях

- Очистка текста
- Токенизация
- Стемминг / лемматизация
- Удаление стоп-слов
- Преобразование текста в числовые признаки

# Языки с богатым словообразованием

- Примеры языков: русский, финский, турецкий, чешский и др.
- Однокоренные слова могут существенно различаться по написанию:
   "кот", "кота", "котам", "котов", "котовский", "подкотовый" и т.д.
- Одна и та же лексическая единица → десятки/сотни разных форм.
- Для векторизации (bag-of-words, TF-IDF) это означает:
  - Взрыв размерности (слишком много уникальных токенов).
  - Разреженность признакового пространства (очень много нулей).
  - Трудности при подсчете схожести/частоты для смыслово одинаковых слов.

#### Стемминг

- Стемминг приведение слова к базовой, неполной форме (стему)
- Например, для английских слов "connect", "connected",
   "connecting" → stem = "connect".
- Стеммер Портера 1980 г. один из наиболее ранних и популярных стеммеров для английского языка.

## Стеммер Портера

Каждый шаг анализирует слово на наличие определённых суффиксов и, если находит их, обрезает, изменяет или заменяет их на минимально необходимую форму.

#### Примеры этапов:

- Удаление множественного числа cats → cat ponies → poni
- Приведение глагольных форм relational → relate conditional → condition
- Сокращение окончаний, характерных для деепричастий и времён caresses → caress running → run agreed → agre

# Почему стеммер Портера хорошо работает для английского?

- Аналитический язык с бедной морфологией:
  - Основная нагрузка значений переносится на порядок слов, аффиксы выражают немногочисленные грамматические категории.
- Много регулярных и часто встречающихся суффиксов:
  - Окончания -ing, -ed, -ly, -es, -s довольно однотипны, и их обрезание редко приводит к неоднозначностям.
- Алгоритм разрабатывался именно под английский:
  - Правила учитывают специфику словообразования, исключительные формы и т.п.

# Почему стеммер Портера плохо работает для русского?

- Русский синтетический язык с очень развитой морфологией: Масса падежных, родовых, временных и других окончаний, которые переплетаются с префиксами и суффиксами.
- Основы могут меняться не только на конце, но и внутри слова.
- Огромное количество суффиксов и сложная морфемная структура:
  - Общее правило «отрежь окончание» работает очень плохо, часто от корней отрезается полезная часть.
- Стемминг в русской морфологии часто не уменьшает количество уникальных слов:
  - Словизменительное разнообразие и продуктивность суффиксов приводит к тому, что слова вроде бы не похожие превращаются в похожие, и теряется различие смыслов.

# Почему стеммер Портера плохо работает для русского?

- Русский синтетический язык с очень развитой морфологией: Масса падежных, родовых, временных и других окончаний, которые переплетаются с префиксами и суффиксами.
- Основы могут меняться не только на конце, но и внутри слова.
- Огромное количество суффиксов и сложная морфемная структура:
  - Общее правило «отрежь окончание» работает очень плохо, часто от корней отрезается полезная часть.
- Стемминг в русской морфологии часто не уменьшает количество уникальных слов:
  - Словизменительное разнообразие и продуктивность суффиксов приводит к тому, что слова вроде бы не похожие превращаются в похожие, и теряется различие смыслов.

## Лемматизация

Приведение слова к словарной (нормальной) форме — лемме, с учетом морфологии и полной структуры слова.

- Цель: Преобразовать все формы слова к одной нормальной форме ("was", "were", "is", "am" → "be"; "медведями", "медведь" → "медведь").
- Алгоритмы: С помощью морфологического анализа, словарей и POS-тегов.
- Результат: Реальное слово лемма.

# Лемматизация

#### ■ Плюсы:

- Точное объединение всех форм одной лексемы.
- Сохраняет правильный смысл.

#### ■ Минусы:

- Работает медленнее (особенно на больших текстах).
- **Т**ребует ресурсов (словарей, моделей, морфологического анализа).

#### Очистка текста

"Прочитайте статью на https://example.com! Эта статья очень интересная. Интересная статья — это всегда здорово: статья помогает понять многое."



"прочитайте статью эта статья очень интересная интересная статья это всегда здорово статья помогает понять многое"

#### Токенизация

"прочитайте статью эта статья очень интересная интересная статья это всегда здорово статья помогает понять многое"



[прочитайте, статью, эта, статья, очень, интересная, интересная, статья, это, всегда, здорово, статья, помогает, понять, многое]

## Лемматизация (или стемминг)

[прочитайте, статью, эта, статья, очень, интересная, интересная, статья, это, всегда, здорово, статья, помогает, понять, многое]



[прочитать, статья, этот, статья, очень, интересный, интересный, статья, это, всегда, здорово, статья, помогать, понять, много]

#### Удаление стоп-слов

[прочитать, статья, этот, статья, очень, интересный, интересный, статья, это, всегда, здорово, статья, помогать, понять, много]



[прочитать, статья, статья, интересный, интересный, статья, здорово, статья, помогать, понять, много]

### Формируем словарь

[прочитать, статья, статья, интересный, интересный, статья, здорово, статья, помогать, понять, много]



[прочитать, статья, интересный, здорово, помогать, понять, много]

# Формируем Bag of Words-вектор

[прочитать, статья, статья, интересный, интересный, статья, здорово, статья, помогать, понять, много]



'прочитать': 1 'статья': 4 'интересный': 2 'здорово': 1 'помогать':

1 'понять': 1 'много': 1

## **N**-граммы

- N-грамма это последовательность из N последовательных слов в тексте.
- Распространённые варианты: униграммы (N=1), биграммы (N=2), триграммы (N=3).

Текст: "Машинное обучение изменяет мир"

- N=1 [Машинное], [обучение], [изменяет], [мир]
- N=2 [Машинное обучение], [обучение изменяет], [изменяет мир]
- N=3 [Машинное обучение изменяет], [обучение изменяет мир]

# TF-IDF (Term Frequency-Inverse Document Frequency)

#### В чём идея?

- Частое слово в этом документе увеличивает вес (TF).
- Но если слово частое во всех документах его вес понижается (IDF)

#### Формула:

- TF Число вхождений слова в документе / общее число слов в документе
- IDF log(Общее число документов / Число документов, где встречается слово)

 $TF-IDF = TF \times IDF$ 

## Алгоритм

#### Общее преобразование текстов



#### Роль корпуса текстов



### Моделирование языка

#### Как понимать язык?

- отношения между словами / предложениями / текстами
- отношение слова к остальному тексту

#### Как моделировать смысл?

- базы знаний составление правил и алгоритмов экспертами
- дистрибутивный подход "Значение сумма употреблений"

# Дистрибутивный подход

#### Как представить смысл слова?

- строятся на основе текстовых корпусов
- слово = частота соседних слов

|         | человек | дом | город | книга | вода |     |
|---------|---------|-----|-------|-------|------|-----|
| человек | -       | 120 | 85    | 45    | 30   | ••• |
| дом     | 120     | -   | 110   | 25    | 40   |     |
| город   | 85      | 110 | -     | 20    | 35   |     |
| книга   | 45      | 25  | 20    | -     | 5    |     |
| вода    | 30      | 40  | 35    | 5     | -    |     |
|         |         |     |       |       |      |     |

#### Базовая идея эмбеддингов

- Эмбеддинг способ представить слова (токены) в виде векторов
- Схожие по смыслу слова близки в пространстве
- Основа современных NLP-моделей

## **CBOW**



# Skip-gram Предсказанный контекст Когда Входное слово снег Проекция тает образуется вода

#### Word2Vec

#### Что получилось?

2d проекция полученных представлений



- Представления фиксированной размерности (например dim 100)
- Репрезентативные вектора отражающие отношения между словами

#### Word2Vec

- Не учитывает контекст
- Омонимы
- Полисемия



## Рекуррентные нейронные сети

Общим блоком сети последовательно проходим текст, формирую вектор контекста, передаем на следующий шаг



# Рекуррентные нейронные сети

#### Text2text

- Машинный перевод
- Ответы на вопросы



**Encoder** 

Decoder

## Рекуррентные нейронные сети

#### Недостатки

- Забывчивость
- Представление контекста вектором фиксированного размера
- Отсутствие параллелизма по последовательности



Output

Layer

LSTM Layer #2

LSTM

Layer #1

#### Механизм внимания



#### **Transformer**

#### Достоинтсва

- Прямой доступ к контексту
- Нет рекуррентности обрабатываем сразу всю последовательность



Figure 1: The Transformer - model architecture.

#### LLM



#### LLM

#### Инструкционные задачи

#### Finetuning tasks Muffin <u>Natural</u> TO-SF Instructions v2 Closed-book QA Natural language inference Commonsense reasoning Code instruction gen. Conversational QA Cause effect classification Question generation Program synthesis Code repair Commonsense reasoning Closed-book QA Dialog context generation Named entity recognition Adversarial QA 69 Datasets, 27 Categories, 80 Tasks Toxic language detection Extractive QA Question answering Title/context generation Question generation Topic classification CoT (Reasoning) Program execution Struct-to-text Explanation generation Arithmetic reasoning Text categorization Commonsense Reasoning Sentence composition 55 Datasets, 14 Categories, Implicit reasoning 372 Datasets, 108 Categories, 9 Datasets, 1 Category, 9 Tasks

- A Dataset is an original data source (e.g. SQuAD).
- A <u>Task Category</u> is unique task setup (e.g. the SQuAD dataset is configurable for multiple task categories such as
  extractive question answering, query generation, and context generation).
- A <u>Task</u> is a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g., query generation on the SQuAD dataset.)



#### **RLHF**



# КТО ТАКИЕ СЕЙЧАС LLM?



- Общаются на естественном языке
- Выполняют (пытаются) поставленные задачи
- Существует open source

## КТО ТАКИЕ СЕЙЧАС LLM?



# КТО ТАКИЕ СЕЙЧАС LLM?



# КОНЕЦ