Typical Analysis Workflow

Justin Stevens

Big picture analysis strategy

Goal: obtain pure sample of $\gamma p \rightarrow \eta \pi^0 p$ to study contributing amplitudes

Necessary steps:

- Choose appropriate ReactionFilter and Kinematic Fit options
- Apply selection criteria (i.e. cuts) which efficiently reject background but keep signal of interest
- Statistically subtract remaining background, not removed by cuts
- Measure yield for cross section or fit angular distributions for beam asymmetry or amplitude analysis

How to reconstruct your final state?

Mode ✓ Neutral modes		Fraction (Γ_i $/$ Γ)		
Γ_1	neutral modes	$(72.12 \pm 0.34)\%$		
Γ_2	2 γ	$(39.41 \pm 0.20)\%$		
Γ_3	$3~\pi^0$	$(32.68 \pm 0.23)\%$		
→ Charged modes				
Γ_8	charged modes	$(27.89 \pm 0.29)\%$		
Γ_9	$\pi^+\pi^-\pi^0$	$(22.92\pm0.28)\%$		
Γ_{10}	$m{\pi}^+m{\pi}^-m{\gamma}$	$(4.22 \pm 0.08)\%$		

- **Exclusive:** if at all possible, reconstruct all final state particles!
- **Decay modes:** large branching ratio and simpler to reconstruct preferred
 - Comparison of multiple decay modes provides systematic cross check, which is a major strength of GlueX
- For this tutorial we'll use exclusive $\gamma p \to \eta \pi^0 p$ with $\eta \to \gamma \gamma$ and $\pi^0 \to \gamma \gamma$

- * ReactionFilter is an analysis plugin to define the reaction you intend to study and write ROOT trees for analysis (see Beni's talk)
- * $\gamma p \to \eta \pi^0 p$ with decays $\eta \to \gamma \gamma$ and $\pi^0 \to \gamma \gamma$ specify the reaction with
 - * Reaction1 1_14___7_17_14

- ReactionFilter is an analysis plugin to define the reaction you intend to study and write ROOT trees for analysis (see Beni's talk)
- * $\gamma p \rightarrow \eta \pi^0 p$ with $\eta \rightarrow \gamma \gamma$ and $\pi^0 \rightarrow \gamma \gamma$: Reaction 1 1 14 7 17 14
- What Kinematic Fit flags should we use?
 - Reaction1:Flags **B4 M17 M7** or B4 M7 or B4 M17 or B4

Neither π or η constrained: B4 M17 M7

- * ReactionFilter is an analysis plugin to define the reaction you intend to study and write ROOT trees for analysis (see Beni's talk)
- * $\gamma p \to \eta \pi^0 p$ with $\eta \to \gamma \gamma$ and $\pi^0 \to \gamma \gamma$: Reaction1 1_14__7_14
- * What Kinematic Fit flags should we use?
 - * Reaction1:Flags B4_M7_M17 or **B4_M7** or B4_M17 or B4

Background Reaction: $\gamma p \rightarrow \omega \pi^0 p$, $5\gamma p$

- ReactionFilter is an analysis plugin to define the reaction you intend to study and write ROOT trees for analysis (see Beni's talk)
- * $\gamma p \rightarrow \eta \pi^0 p$ with $\eta \rightarrow \gamma \gamma$ and $\pi^0 \rightarrow \gamma \gamma$: Reaction 1 1 14 7 17 14
- What Kinematic Fit flags should we use?
 - Reaction1:Flags **B4 M7 M17** or **B4 M7** or B4 M17 or B4

Background Reaction: $\gamma p \rightarrow \omega \pi^0 p$, $5\gamma p$

- ReactionFilter is an analysis plugin to define the reaction you intend to study and write ROOT trees for analysis (see Beni's talk)
- * $\gamma p \to \eta \pi^0 p$ with $\eta \to \gamma \gamma$ and $\pi^0 \to \gamma \gamma$: Reaction1 1_14__7_14
- * What Kinematic Fit flags should we use?
 - * Reaction1:Flags **B4_M7_M17** or **B4_M7** or B4_M17 or B4

Background Reaction: $\gamma p \rightarrow \omega \pi^0 p$, $5\gamma p$

Take home message: leave at least one mass un-constrained!

Event selection 101

Analysis Launch Cuts: "loose" cuts that are already applied in ReactionFilter by default

PID	BCAL/RF Δt (ns)	TOF/RF Δt (ns)	FCAL/RF Δt (ns)	SC/RF Δt (ns)
Y	±1.5	NA	±2.5	NA
р	±1.0	±0.6	±2.0	±2.5

Event selection 101

* Analysis Launch Cuts: "loose" cuts that are already applied in ReactionFilter by default

PID	Invariant Mass (GeV/c²)
π0	0.08 < IM < 0.19
Ks	0.3 < IM < 0.7
η	0.35 < IM < 0.75

Measured Data

Kinematic Fit Data

Event selection 101

- * Analysis Launch Cuts: "loose" cuts that are already applied in ReactionFilter by default
- * Common event selections applied by individual analyzers
 - * Kinematic Fit χ^2 /NDF, Particle ID, Beam energy, Unused tracks or showers, etc.
- * Simulation is a powerful tool to choose your cuts
 - * Background MC with bggen or other dedicated generators for background processes
 - * Signal MC to study efficiency and resolutions

Beam energy selection

- * Linearly polarized photons: beam asymmetry or amplitude analysis (see Matt's talk)
- * Energy-dependence of production: cross section
- * Energy-dependence of detection: systematic comparisons (e.g. branching ratio) between different beam energy regions

http://www.gluex.org/papers/2019jpsi/paper.html

Studying backgrounds with bggen

- * bggen: a inclusive MC generator for "all" photoproduction processes based primarily on PYTHIA (some caveats)
- * In simulation we know the truth information, so we can cheat and sort events by their reaction or "topology"
 - * DSelector library Get_ThrownTopologyString() unique TString for for each topology: NumFinalState[Decaying]
 - * Signal topology γp → π⁰ηp with η→γγ and π⁰→γγ corresponds to: 4γp[π⁰,η]
 - * Example background topology $\gamma p \to \pi^0 \omega p$ with $\omega \to \pi^0 \gamma$ and $\pi^0 \to \gamma \gamma$ corresponds to: $5\gamma p[2\pi^0, \omega]$

https://github.com/JeffersonLab/hd_utilities/tree/master/AnalysisHowTo/ThrownTopology

Identify leading backgrounds

* DSelector library Get_ThrownTopologyString() unique TString for for each topology: NumFinalState[Decaying]

Identify variables to reject backgrounds

* Kinematic Fit χ^2/NDF : background topologies less consistent with 4xp final state

Identify variables to reject backgrounds

* Unused Shower Energy: many background topologies have extra showers leading to measured unused energy

Correctly paired photons $4\gamma p[\pi^0,\eta]$

```
//Step 1  
TLorentzVector locPhoton1P4 = dPhoton1Wrapper->Get_P4();  
TLorentzVector locPhoton2P4 = dPhoton2Wrapper->Get_P4();  
//Step 2  
TLorentzVector locPhoton3P4 = dPhoton3Wrapper->Get_P4();  
TLorentzVector locPhoton4P4 = dPhoton4Wrapper->Get_P4();  
Assumed \eta
```

2D Invariant Mass: Topology $4\gamma p[\pi^0,\eta]$

"Correctly" paired photons $5\gamma p[2\pi^0,\omega]$

```
//Step 1
      TLorentzVector locPhoton1P4 = dPhoton1Wrapper->Get P4();
                                                                                     Assumed \pi^0
      TLorentzVector locPhoton2P4 = dPhoton2Wrapper->Get P4();
      //Step 2
     TLorentzVector locPhoton3P4 = dPhoton3Wrapper->Get P4();
                                                                                      Assumed \eta
      TLorentzVector locPhoton4P4 = dPhoton4Wrapper->Get P4();
                                         2D Invariant Mass: Topology 5\gamma p[2\pi^0,\omega]
                            8.0
                       M(\gamma_3\gamma_4) (GeV)
                           0.75
                                                                                                       2.5
                            0.7
                           0.65
 Lose extra \gamma in
                            0.6
 \omega \to \pi^0 \gamma \to 3 \gamma
                           0.55
                                                                                                       1.5
                            0.5
m_{\omega} = 0.782 \text{ GeV}
                           0.45
                            0.4
                                                                                                       0.5
                           0.35
                            0.3
                                                                                      0.18
                                  0.08
                                             0.1
                                                       0.12
                                                                            0.16
                                                                                                 0.2
                                                                 0.14
                                                                                        M(\gamma_1\gamma_2) (GeV)
```

Incorrectly paired photons 4γp[2π⁰]

```
//Step 1  
TLorentzVector locPhoton1P4 = dPhoton1Wrapper->Get_P4();  
TLorentzVector locPhoton2P4 = dPhoton2Wrapper->Get_P4();  
//Step 2  
TLorentzVector locPhoton3P4 = dPhoton3Wrapper->Get_P4();  
TLorentzVector locPhoton4P4 = dPhoton4Wrapper->Get_P4();  
Assumed \eta
```


What might bggen be missing?

* Meson resonances: a's, b's, f's, h's, etc.

 $p\pi^0$ Mass: Topology data

Invariant Mass Topology: $4\gamma p[\pi^0, \eta]$

 $pπ^0$ Mass: Topology $4γp[π^0,η]$

Baryon excitations:Δ, N*, etc.

Simulate analysis-specific backgrounds

- * If bggen isn't a good enough model for the background in your analysis, you can simulate them individually more accurately
- * Use MCWrapper to generate samples (see Peter's talk)
 - * Large scale use web form, e.g. need ~10M+ events
 - * Small scale run interactively (ifarm or institution), e.g. ~10k events to study background distribution (~1 hour turnaround)

gluex_MC.py MC.config 30496 10000

Simulate analysis-specific backgrounds

- * If bggen isn't a good enough model for the background in your analysis, you can simulate them individually more accurately
- * Use MCWrapper to generate samples (see Peter's talk)
 - * Large scale use web form, e.g. need ~10M+ events
 - * Small scale run interactively (ifarm or institution), e.g. ~10k events to study background distribution (~1 hour turnaround)

gluex MC.py MC.config 30496 10000

Subtracting remaining backgrounds

- * Some backgrounds will remain that we cannot reject on an event-by-event basis
- * Instead we statistically subtract them by either subtracting histograms or weighting events
 - * e.g. accidental subtraction, mass sideband subtraction

* After subtraction can compare signal MC and data

Simulate of signal process

- * We have better models for many physics processes than what's in bggen: realistic *t*-slope, beam energy dependence, angular distributions, etc.
- * Phasespace samples are needed for numerical integrals in amplitude analysis (see Matt's talk)
- * What can we learn from signal MC?
 - $\epsilon(\vec{x}) = \frac{\#\ observed(\vec{x})}{\#\ generated(\vec{x})}$ * Efficiency corrections needed for cross sections and amplitude analysis
 - * Reconstruction resolutions: mass, decay angles, etc.

What type of trees should I use?

- * PART format tree (1 entry per event): see Beni's talk
 - * Output of ReactionFilter, input to DSelector
- * Flat tree (1 entry per combo): see Lawrence's talk
- * FSRoot (1 entry per combo): see Malte's talk
- * Reduce dataset footprint whenever possible
 - * Write subset of analysis trees with first pass event selection with DSelector or FlattenFSRoot
 - * Goal is to make iterations quickly