

Agenda

- 1. Einführung
- 2. Wiederholung BB84
- 3. Qubits und Messbasen
- 4. Zusammengesetzte Systeme
- 5. Verschränkung
- 6. Anwendung von Verschränkung
- 7. Shared Randomness
- 8. Schmidt-Darstellung
- 9. Dichtematrizen
- 10. Partielle Spur

- 11. Verschränkungsmaß
- 12. Entropie und Monogamie
- 13. Entanglement Swapping
- 14. Entanglement Distillation
- 15. CHSH-Ungleichung (klassisch)
- 16. CHSH-Ungleichung (Quantenversion)
- 17. CHSH-Ungleichung (Simulation)
- 18. Ekert-Protokoll
- 19. Sicherheit und DIQKD
- 20. Zusammenfassung

Quantenkryptographie

Sicherheit "klassischer Kryptographie"

- Klassische Verfahren
 - Symmetrische Verfahren
 - One Time Pad ⇒ perfekt sicher
 - AES, 3DES ⇒ "nicht perfekt" sicher, kein Sicherheitsbeweis
 - Public Key / Asymmetrische Verfahren
 - RSA, Diffie-Helman => Sicherheit beruht auf nicht bewiesenen Annahmen.
 - Sicherheit beruht auf der Intuition: "schwer zu lösen".
 - Durch Quantencomputer angreifbar.

Quantenkryptographie

Sicherheit in der QKD

- Quantenverfahren: Schlüsseltausch
 - BB84 Prepare and Measurement
 - Nicht-Unterscheidbarkeit von nicht-orthogonalen Zuständen.
 - Entdeckung eines Lauschers möglich.
 - Benutzte Komponenten sind angreifbar.
 - Ekert 91 Verschränkungsbasiert
 - Beruht auf Verschränkung.
 - Sicherheitsbeweis ist möglich.
 - Kann auf ein modifiziertes BB84-Protokoll (mit Austausch verschränkter Qubits) angewendet werden.

Quantenkryptographie

Mathematische Definitionen

- Da die Quantenphysik eine probabilistische Theorie ist, kann die Sicherheit auch nur über Wahrscheinlichkeiten definiert werden.
 - Angabe der Sicherheit erfolgt mit Schranken.
- Die (Epsilon-) Sicherheit eines Protokolls besteht aus:
 - Epsilon-Korrektheit
 - Epsilon-Geheim

Quantenkryptographie

Mathematische Definitionen

- Epsilon-Korrekt
 - Hier wird gefordert, dass die Wahrscheinlichkeit für eine Nicht-Übereinstimmung der Schlüssel von Alice und Bob beliebig klein gemacht werden kann

$$Prob(K_A \neq K_B) \leq \varepsilon$$

- Epsilon-Geheim
 - Hier wird gefordert, dass die Kenntnis von Eve über den ausgetauschten Schlüssel beliebig klein gemacht werden kann.
 - Man fordert, dass Eve "genügend entkoppelt" ist und der erzeugte Schlüssel gleichverteilt und unkorreliert ist, also im Prinzip (mathematisch inexakt):

$$\left| \rho_{K_A K_B E} - \frac{1}{n} \mathbb{I}_{AB} \otimes \rho_E \right| \le \varepsilon$$

Quantenkryptographie

Voraussetzungen

- Getroffene Annahmen:
 - Die Theorie der Quantenphysik ist korrekt.
 - Die Vorhersage von Qubit-Verhalten und Messergebnissen stimmen mit der Wirklichkeit überein.
 - Quantenphysik ist umfassend.
 - Es können alle möglichen Phänomene erklärt werden, Eves
 Informationsgewinn kann nur über die "Quantenphysik" erfolgen.
 - Authentifizierende Kommunikation ist möglich.
 - Alice und Bob können sicher sein, dass sie wirklich miteinander kommunizieren.

Quantenkryptographie

Annahmen über die Implementierungen

- Es wird implizit angenommen, dass
 - Alice und Bobs Labore isoliert (nicht zugänglich) sind.
 - Zustände exakt präpariert werden können.
 - Messapparaturen zuverlässig funktionieren.
 - Alice und Bob dasselbe "Timing" haben.

Quantenkryptographie

Idee: Device Independent QKD

- Sicherheitsdefinition unabhängig von der Zuverlässigkeit der benutzten Komponenten.
 - Den benutzten Apparaturen muss nicht vertraut werden.
 - Sind Black-Boxes für Alice und Bob.
 - Können unzuverlässig sein.
 - Können im Prinzip sogar von Eve stammen.
 - Ausnutzung der Monogamie-Eigenschaft von einem maximal verschränkten Qubit-Paar.

Quantenkryptographie

Idee

- Alice und Bob arbeiten je mit einer Black-Box.
 - Besitzen zwei Mögliche Eingaben und zwei mögliche Ausgaben.
 - Test der Apparaturen durch ein CHSH-Spiel.

Alice und Bob geben zufällig jeweils 0 oder 1 in ihren Apparat und protokollieren die Ausgabe

Quantenkryptographie

Klassisch versus Quantum

Ziel ist die Erfüllung folgender Gleichung

$$a \oplus b = x \cdot y$$

Klassische Gewinnwahrscheinlichkeit 0,75

X	у	$x \wedge y$	$x \oplus y$	
0	0	0	$a(0) \oplus b(0)$	$\Rightarrow a(0) = b(0)$
0	1	0	$a(0) \oplus b(1)$	$\Rightarrow a(0) = b(1)$
1	0	0	$a(1) \oplus b(0)$	$\Rightarrow a(1) = b(0)$
1	1	1	$a(1) \oplus b(1)$	$\Rightarrow a(1) \neq b(1)$

Widerspruch zu $a(1) \neq b(1)$:

$$b(1) = a(0) = b(0) = a(1)$$

Quantenkryptographie

Messstatistik "verrät" die Interna

- Gewinnwahrscheinlichkeiten
 - Klassisch: 0,75
 - Quantum: $\frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.85$ (bei zwei maximal verschränkten Qubits)

Quantenkryptographie

Device Independent QKD

- Einzigen Forderungen sind:
 - Alice und Bobs Labore sind sicher bezüglich "Eindringlingen".
 - Beide besitzen einen vertrauenswürdigen Zufallsgenerator.
 - Vertrauenswürdiger Authentifizierungskanal ist vorhanden.
 - Alice und Bob können "zwischen den Runden" kommunizieren.
 - Durchführung eines sicheren "Post-Processings".
 - Quantenphysik ist korrekt und umfassend.

Quantenkryptographie

Zusammenfassung

- Für verschränkungsbasierte Protokolle kann ein "Sicherheitsbeweis" angegeben werden.
 - Die Sicherheit arbeitet mit Schranken (ε -Sicherheit).
 - Basiert auf ε -Korrektheit und einer ε -Geheimhaltung.
 - Es wird von idealen Randbedingungen und Implementierungen ausgegangen.
- Bei *Device Independent Quantum Key Distribution* untersucht man Protokolle, bei denen möglichst keine Annahmen mehr über Implementierungsdetails gemacht werden müsse.
 - Sicherheit ist durch statistische Tests überprüfbar.

Quantenkryptographie

