Problemas Indecidíveis e Reduções

Prof^a Jerusa Marchi

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
e-mail: jerusa@inf.ufsc.br

Decidibilidade

- Problemas indecidíveis
 - Problemas que não podem ser resolvidos por uma MT
- Como saber se um problema é solucionável ou não??
 - Escrevendo um algoritmo para ele
 - Provando que não existe tal algoritmo

- Uma Redução é um meio de converter um problema em outro de forma que uma solução para o segundo problema possa ser utilizada para resolver o primeiro
 - Sejam dois problemas A e B. Se A é reduzido a B, então, uma solução para B pode ser usada para resolver A
 - Isso significa que a solução para o problema A é tão custosa quanto a solução para o problema B, pois uma solução para B é uma solução para A
 - Se B é decidível, A também o é.
 - Se A é indecidível e redutível a B, então B também é indecidível.

Sejam L_1 e $L_2\subseteq \Sigma^*$ duas linguagens. Uma redução de L_1 para L_2 é uma função recursiva $\tau:\Sigma^*\mapsto \Sigma^*$, tal que $x\in L_1$ se e somente se $\tau(x)\in L_2$

- Para mostrar que uma linguagem L_2 é não recursiva, deve-se identificar uma linguagem L_1 sabidamente não recursiva e, então, reduzir L_1 a L_2
 - Observe que reduzir L_2 a L_1 seria inócuo, pois apenas mostra que L_2 só poderá ser decidida se pudermos decidir L_1
 - equivale a dizer "se L_1 é decidível, então L_2 é decidível", sendo portanto falsa a hipótese

- Formalmente, o uso correto de reduções em provas de indecidibilidade é o seguinte:
 - Se L_1 é uma linguagem não-recursiva, e se houver uma redução de L_1 para L_2 então L_2 também é não recursiva
 - ▶ Prova: Seja L_2 uma linguagem recursiva. Seja M_2 uma MT que decida L_2 , e T uma MT que computa a redução τ . Nessas condições, a MT TM_2 deveria decidir L_1 . Mas L_1 é indecidível. Contradição.
 - Em outras palavras
 - Se um problema A é indecidível, e se houver uma redução de A para B então B também é indecidível

- Da indecidibilidade do problema da parada, decorre a indecidibilidade de uma grande variedade de problemas
 - São indecidíveis os seguintes problemas acerca de Máquinas de Turing
 - 1. Dada uma máquina de Turing M, a linguagem de M é vazia
 - 2. Dada uma MT M, a linguagem que M semidecide é regular? Livre de contexto? Recursiva?
 - 3. Dadas duas máquinas de Turing M_1 e M_2 , elas param em resposta às mesmas cadeias de entrada?

lacktriangle Dada uma máquina de Turing M, a linguagem de M é vazia

$$V_{MT} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) = \emptyset\}$$

 V_{MT} é indecidível.

Ideia da prova:

- Suponha que a linguagem V_{MT} é decidível. Seja R uma MT que decide V_{MT} . Use essa asserção para construir uma MT S que decide o problema da parada.
- A ideia é S rodar R sobre a entrada $\langle M \rangle$ e ver se R aceita. Se aceita, então L(M) é vazia, e por conseguinte, M não aceita w. Mas se R rejeita $\langle M \rangle$, então L(M) é não vazia e consequentemente M aceita alguma cadeia, porém não sabemos se M aceita a cadeia específica w. Ou seja, precisamos tentar uma ideia diferente.

lacktriangle Dada uma máquina de Turing M, a linguagem de M é vazia

$$V_{MT} = \{ \langle M \rangle \mid M \text{ \'e uma MT e } L(M) = \emptyset \}$$

 V_{MT} é indecidível.

Ideia da prova:

■ Em vez de rodar R sobre $\langle M \rangle$, rodamos R sobre uma modificação de $\langle M \rangle$. $\langle M \rangle$ é modificada para garantir que M rejeite todas as cadeias, exceto w, mas que sobre a entrada w ela funcione normalmente. Então R é usada para determinar se a máquina modificada reconhece a linguagem vazia. A única cadeia que a máquina agora aceita é w e, portanto, sua linguagem será não vazia sse ela aceita w. Se R aceita quando é alimentada com uma descrição da máquina modificada, sabemos que a máquina modificada não aceita nada e que M não aceita w.

seja M_1 a máquina modificada construída a partir de M:

 $M_1 =$ sobre a entrada x:

- 1.Se $x \neq w$, rejeite
- 2.Se x = w, roda M com a entrada w e aceite se M aceita

Essa máquina tem a cadeia w como parte de sua descrição. Ela conduz o teste x=w, fazendo a varredura na entrada e comparando-a com w.

- Supomos que R decide V_{MT} e construímos a MT S que decide o problema da parada como segue:
 - S =Sobre a entrada $\langle M, w \rangle$:
 - 1. Use a descrição de M e w para construir a MT M_1 como descrito
 - 2. Rode R com a entrada $\langle M_1 \rangle$
 - 3. Se R aceita, rejeite; se R rejeita, aceite

Se R fosse um decisor para V_{MT} , S deve ser um decisor para o problema da parada. Um decididor para o problema da parada não existe, logo, V_{MT} é indecidível.

saber quando a linguagem de uma máquina de Turing é regular

 $L_{MT_{reg}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e uma linguagem regular}\}$

- ldeia de prova: Redução a partir do problema da parada. Assuma que $L_{MT_{reg}}$ é decidível por uma MT R e use esta asserção para construir uma MT S que decide o problema da parada.
- S recebe como entrada $\langle M, w \rangle$, então modifica-se M de forma que a MT reconheça uma linguagem regular sse M aceita w. Chamemos esta máquina modificada de M_2 . M_2 é projetada para reconhecer a linguagem não regular $\{0^n1^n|n\geq 0\}$ se M não aceita w e para reconhecer a linguagem regular Σ^* se M aceita w.
- ullet Devemos especificar como S constrói M_2 a partir de M e w.

- Seja R uma MT que decide $L_{MT_{reg}}$ e seja S uma MT para decidir o problema da parada. Então S trabalha da seguinte forma:
 - S =Sobre a entrada $\langle M, w \rangle$
 - 1. Constrói a seguinte MT M_2
 - M_2 = Sobre a entrada x:
 - (a) Se x tem a forma 0^n1^n , aceite
 - (b) Se x não tem esta forma, então rode M sobre a entrada w e aceite se M aceita w
 - 2. Roda R com a entrada $\langle M_2 \rangle$
 - 3. Se R aceita, aceite; Se R rejeita, rejeite.
- ullet Porém o problema da parada é indecidível, logo R não existe.

- Similarmente, também são problemas indecidíveis:
 - saber quando a linguagem de uma máquina de Turing é livre de contexto
 - saber quando a linguagem de uma máquina de Turing é sensível ao contexto
 - 3. saber quando a linguagem de uma máquina de Turing é decidível
 - 4. saber quando a linguagem de uma máquina de Turing é finita
- Ou seja é indecidível testar qualquer propriedade das linguagens reconhecidas por máquinas de Turing
- Tais propriedades são ditas não triviais

Teorema de Rice

- Dada uma propriedade P de uma linguagem recursivamente enumerável, ela é trivial se e somente se ela não é satisfeita por nenhuma linguagem Recursivamente Enumerável, ou é satisfeita por todas as linguagens Recursivamente Enumeráveis.
- Teorema de Rice: Seja \mathcal{C} um subconjunto próprio não-vazio da classe de linguagens recursivamente enumeráveis. Então o seguinte problema é indecidível: dada uma máquina de Turing M, $L(M) \in \mathcal{C}$?
 - O teorema de Rice prova a indecidibilidade de todas as propriedades n\u00e3o triviais de linguagens Recursivamente Enumer\u00e1veis ("ser livre de contexto", "ser finita", "ser decid\u00e1vel", etc)
 - (sugestão: leitura do problema 5.28 do Sipser)

- A redução é transitiva, ou seja, qualquer outro problema demonstrado indecidível pode ser usado em provas por redutibilidade
- Dadas duas máquinas de Turing M_1 e M_2 , elas param em resposta às mesmas cadeias de entrada.

$$EQ_{MT} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ e } M_2 \text{ são MTs e } L(M_1) = L(M_2)\}$$

EQ_{MT} é indecidível

• ideia da prova: Mostrar que, se EQ_{MT} fosse decidível, V_{MT} também seria, dando uma redução de V_{MT} para EQ_{MT} . Se umas das linguagens de M_1 ou M_2 for vazia, precisamos apenas determinar se a linguagem da outra máquina é vazia, ou seja V_{MT} .

 $EQ_{MT} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ e } M_2 \text{ são MTs e } L(M_1) = L(M_2)\}$

EQ_{MT} é indecidível

- Suponha que a MT R decide EQ_{MT} e construa a MT S para decidir V_MT da seguinte forma: S = Sobre a entrada $\langle M \rangle$, onde M é uma MT:
 - 1. Rode R sobre a entrada $\langle M, M_1 \rangle$ onde M_1 é uma MT que rejeita todas as entradas.
 - 2. Se R aceita, aceite; se R rejeita, rejeite.
- Se R decide EQ_{MT} , S decide V_{MT} . Mas V_{MT} é idecidível, portanto EQ_{MT} também o é.

Reduções via Histórias de Computação

- Uma história de computação para uma MT sobre uma entrada é simplesmente a sequência de configurações pelas quais a máquina passa à medida que processa a entrada.
- Seja M uma MT e w uma cadeia de entrada. Uma história de computação de aceitação para M sobre w é uma sequência de configurações, $C_1, C_2, ..., C_l$, onde C_1 é a configuração inicial de M sobre w, C_l é uma configuração de aceitação de M e cada C_i segue legitimamente de C_{i-1} conforme as regras de M. Uma história de computação de rejeição é similar, exceto que C_l é uma configuração de rejeição

Reduções via Histórias de Computação

- Histórias de Computação são finitas
- ullet Se M não pára sobre w então nenhuma história de computação de aceitação ou rejeição existe para M sobre w
- Máquinas determinísticas têm no máximo uma história de computação sobre qualquer entrada
- Máquina não determinísticas podem ter muitas histórias de computação sobre uma única entrada

- Um Autômato Linearmente Limitado (ALL) é um tipo restrito de máquina de Turing no qual à cabeça de leitura-escrita não é permitido mover-se para fora da parte da fita contendo a entrada.
 - Se a máquina tentar mover sua cabeça para além de qualquer uma das extremidades da entrada, a cabeça permanecerá onde está
 - Ou seja, a memória da máquina é limitada
 - A utilização de um alfabeto de fita maior que o alfabeto de entrada permite que a memória disponível seja incrementada por, no máximo, um fator constante. Ou seja, para uma entrada de tamanho n, a quantidade de memória disponível é linear em n

- ALL são poderosos:
 - Decisores para Linguagens Regulares, para vacuidade de AF, Linguagens Livres de Contexto e Vacuidade de AP.
 - ullet Seja A_{ALL} o problema de se determinar se um ALL aceita sua entrada

$$A_{ALL} = \{\langle M, w \rangle \mid M \text{\'e um ALL que aceita a cadeia} w\}$$

• A_{ALL} é decidível

Lema: Seja M um ALL com q estados e g símbolos no alfabeto de fita. Existem exatamente qng^n configurações distintas de M para uma fita de comprimento n.

Prova: Uma configuração é constituída do estado do controle, posição da cabeça e conteúdo da fita. Aqui, M tem q estados. O comprimento da fita é n, portanto, a cabeça pode estar em uma das n posições e g^n cadeiras possíveis de símbolos de fita aparecem sobre a fita. O produto dessas três quantidades é o número total de configurações diferentes de M.

- ullet A_{ALL} é decidível
- Ideia de Prova: Para decidir se ALL M aceita a entrada w, simulamos M sobre w. Durante o curso da simulação, se M pára e aceita ou rejeita, aceitamos ou rejeitamos em conformidade com M. Para detectar quando M entrou em loop, à medida que M computa sobre w, ela vai de configuração em configuração. Pelo fato de M ser um ALL, a quantidade de fita disponível é limitada. Pelo lema anterior, M pode estar em apenas um número limitado de configurações sobre o tamanho da fita. É possível detectar que M está em loop simulando M pelo número de passos dados pelo lema anterior. Se M não parou, é porque ela está em loop.

- lacksquare A_{ALL} é decidível
- Prova: L = Sobre a entrada ⟨M, w⟩ onde M é um ALL e w é uma cadeia:
 - 1. Simule M sobre w por qng^n passos ou até que M páre
 - 2. Se M parou, aceite se M aceitou ou rejeite se M rejeitou. Se M não parou, rejeite