Software Engineering I - Teil 02

Projekt "Autonom fahrendes Auto"

https://zoox.com/ https://www.youtube.com/watch?v=pQVpjuh6tZY

https://www.autox.ai/en/index.html https://www.youtube.com/watch?v=7GVL9Na1_9Q

Komponenten und SOA

Das autonome Fahrzeug verfügt über eine zentrale Steuerungseinheit. Diese Einheit verwaltet einen EventBus. An den EventBus sind die Bauteile Elektromotor, LED-Scheinwerfer, Blinker, Bremsen, GPS, Kamera und Lidar angeschlossen.

Bauteil	Events
Elektromotor	EngineOn, EngineOff, IncreaseRPM(deltaRPM,seconds) DecreaseRPM(deltaRPM,seconds)
LED- Scheinwerfer	LEDOn, LEDOff, LEDDimmed, LEDHighBeam
Bremslichter	BrakeLightOn, BrakeLightOff
Blinker	LeftIndicatorOn, LeftIndicatorOff, RightIndicatorOn, RightIndicatorOff, HazardWarningOn, HazardWarningOff
Bremsen	BrakeSet(percentage)
GPS	GPSOn, GPSOff, GPSConnectSatellite(String frequency)
Kamera	CameraOn, CameraOff
Lidar	LidarOn, LidarOff

Die Camera existiert in zwei Varianten CameraV1 und CameraV2, realisiert als dynamisch austauschbare Komponente. Das Lidar existiert in den zwei Varianten LidarNG und LidarXT. In einer zentralen Configuration – realisiert als Enumeration – ist die eingesetzte Variante der Camera sowie des Lidar definiert.

Entwurfsmuster

Themenbereich	Entwurfsmuster
Erzeugung und Struktur [10 Punkte]	Builder, Factory Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy
Verhalten [10 Punkte]	COR, Command, Filter, Iterator, Mediator, Memento, Observer, State, Strategy, Template, Visitor

T01 | Builder [2 Punkte]

- Amazon Zoox | 1 Chassis, 1 Elektromotor, 4 LED-Scheinwerfer, 4 Bremslichter, 4 Blinker, 4 Türen, 2 Sitzbänke, 4 Räder, 4 Bremsen, 2 GPS, 4 Kamera, 4 Lidar
- AutoX | 1 Chassis, 1 Elektromotor, 2 LED-Scheinwerfer, 2 Bremslichter, 4 Blinker, 4 Türen,
 6 Sitze, 4 Räder, 8 Bremsen, 2 GPS, 2 Kamera, 4 Lidar

T01 | Adapter [2 Punkte]

Ladestation hat 2-poligen Anschluss. Für das Laden der Batterien wird ein Adapter genutzt. Amazon Zoox | 4-polig; AutoX | 3-polig

T01 | Bridge [2 Punkte]

Der Elektromotor existiert in den Varianten EngineX und EngineNG. Der Elektromotor EngineX verbraucht 4 Energieeinheiten je Iteration. Der Elektromotor EngineNG braucht 3 Energieeinheiten je Iteration. Der Verbrauch einer Energieeinheit wird durch die Umwandlung von 1 nach 0 in einer Zelle der Batterie simuliert.

In einer zentralen Configuration – realisiert als Enumeration – ist die eingesetzte Variante des Elektromotors definiert.

T01 | Composite [2 Punkte]

Eine Batterie besteht aus 32 Hauptzellen. Eine Hauptzelle besteht aus 8 Subzellen. Eine Subzelle hat 2 Zellen. Das Attribut energy einer Zelle kann die Werte 0 (entladen) oder 1 (geladen) annehmen. Amazon Zoox | 8 Batterien; AutoX | 4 Batterien.

T01 | Facade [2 Punkte]

startup	EngineOn, LEDOn, GPSOn, GPSConnectSatellite(118.75), CameraOn, LidarOn, LeftIndicatorOff	
move(deltaRPM,seconds)	LeftIndicatorOff, RightIndicatorOff, LEDDimmed, IncreaseRPM(deltaRPM,seconds), BrakeSet(0), BrakeLightOff	
leftTurn(deltaRPM,seconds)	LeftIndicatorOn, DecreaseRPM(deltaRPM,seconds), BrakeSet(70), BrakeLightOn	
rightTurn(deltaRPM,seconds)	RightIndicatorOff, DecreaseRPM(deltaRPM,seconds), BrakeSet(70), BrakeLightOn	
stop	BrakeSet(100), BrakeLightOn	
emergencyStop	BrakeSet(100), BrakeLightOn, HazardWarningOn, EngineOff, LEDHighBeam, CameraOff, LidarOff	
shutdown	BrakeSet(100), EngineOff, BrakeLightOff LEDOff, HazardWarningOff, GPSOff, CameraOff, LidarOff	

T02 | Command [3 Punkte]

Über einen elektronischen Schlüssel wird das autonome Fahrzeug aktiviert oder deaktiviert. Auf dem elektronischen Schlüssel ist das mit AES verschlüsselte Passwort [i] ZooxSDC73 für den Amazon Zoox und [ii] AutoX23 für AutoX gespeichert. Die zentrale Steuerungseinheit ist mit einem Empfangsmodul für das Signal (verschlüsseltes Passwort) des elektronischen Schlüssels verbunden. Die zentrale Steuerungseinheit entschlüsselt das Signal. Bei korrektem Passwort wird das autonome Fahrzeug aktiviert oder deaktiviert.

Amazon Zoox | Auf der linken und rechten Seite existiert ein Taster mit einem Sensor zum Öffnen der Türen. AutoX | An den je zwei Türen auf der linken und rechten Seite existiert ein Sensor zum Öffnen. Der Sensor sendet die Kommandos Open und Close an den Elektromotor je Tür.

T02 | Memento [2 Punkte]

Aus Aspekten der Vereinfachung wird das Verhalten des autonomen Fahrzeuges mit nachfolgend aufgeführten Einstellungen zentral konfiguriert. [i] rejectDrunkenPassenger = [true | false, default: true], [ii] stopByPoliceRequest = [true | false, default true], [iii] allowDriveByNight = [true | false, default: true], [iv] behaviorWithNaggingPassengers = [doNothing | stopAndWaitForExcuse, default stopAndWaitForExcuse], [v] musicDuringDrive = [ac/dc, helene fischer, default: ac/dc].

In einem Menü werden die Optionen [i] print, [ii] set parameter, [iii] undo und [iv] exit angeboten.

Für die zentrale Konfiguration wird die Hauptapplikation mit dem Parameter -config gestartet.

Bei Auswahl von [i] print wird eine Übersicht der Parameter mit den aktuellen Einstellungen angezeigt. Nach Anzeige der Übersicht erfolgt der Rücksprung zum Menü.

Bei Auswahl von [ii] set parameter wird eine Übersicht der Parameter mit den aktuellen Einstellungen angezeigt und die id des zu ändernden Parameters abgefragt. Der Benutzer gibt die id des zu ändernden Parameters ein und das System fragt den neuen Wert des Parameters ab, enter value for [name] | current [current value] | allowed [allowed values] > [new value]. Eine ungültige Eingabe ist solange zu wiederholen bis diese gültig ist.

T02 | Observer [3 Punkte]

- Amazon Zoox | Auf der linken und rechten Seite existiert ein Taster mit einem Sensor zum Öffnen der Türen. AutoX | An den je zwei Türen auf der linken und rechten Seite existiert ein Sensor zum Öffnen.
- Die Temperatur jeder Batterie wird mit einem Sensor kontinuierlich durch die zentrale Kontrolleinheit überwacht.
- Die zentrale Kontrolleinheit nutzt Ultraschallsensoren für die kontinuierliche Messung von Abständen zu Objekten rund um das Fahrzeug.
 Amazon Zoox und AuoX | 8 Ultraschallsensoren.

T02 | State [2 Punkte]

Initial befindet sich die Tür im Status Closed. Bei einem Signal im Status Closed öffnet die Tür und wechselt in den Status Open. Bei einem Signal im Status Open schließt die Tür und wechselt in den Status Closed.

Wichtige Hinweise für die Bearbeitung

- Die **Bearbeitung** dieser Aufgabenstellung erfolgt **individuell**.
- Zielsetzung ist die vollständige Implementierung.
 Es sind keine Tests zu implementieren.
- Verwendung geeigneter englischer Begriffe.
- Als Entwicklungsumgebung wird [i] Java SE Development Kit 15.0.2, [ii] IntelliJ IDEA
 Community oder Ultimate 2020.3.2 und [iii] gradle genutzt.
- Je Studierenden wird eine unverschlüsselte 7-Zip-Datei (Kompressionsstärke: Ultra)
 mit der Bezeichnung project_[zoox | autox]_[matnr].7z in Moodle hochgeladen.
- **Abgabetermin:** Sonntag, 28.02.2021
- **Bewertung:** 20 Punkte

Aufgabenverteilung¹

4044400 LNGC TINE4C		5540050 MOLL TIME	
1044480 MOS-TINF19A	ZOOX	5542852 MGH-TINF	autox
1103207 MOS-TINF19A	autox	5663902 MGH-TINF	ZOOX
1253402 MOS-TINF19B	autox	5703004 MOS-TINF19B	autox
1633332 MOS-TINF19A	autox	5736465 MOS-TINF19B	ZOOX
1705159 MOS-TINF19A	ZOOX	5807262 MOS-TINF19A	autox
1716504 MOS-TINF19B	autox	5813630 MOS-TINF19A	ZOOX
1724537 MOS-TINF19A	ZOOX	5986488 MOS-TINF19B	ZOOX
1959397 MGH-TINF	ZOOX	6039197 MGH-TINF	ZOOX
2120099 MOS-TINF19A	ZOOX	6048166 MOS-TINF19B	ZOOX
2143592 MGH-TINF	ZOOX	6089394 MGH-TINF	autox
2516708 MOS-TINF19B	autox	6143217 MOS-TINF19A	Z00X
2529977 MOS-TINF19A	autox	6196929 MOS-TINF19B	ZOOX
2627585 MOS-TINF19B	autox	6217046 MGH-TINF	ZOOX
2814814 MOS-TINF19A	ZOOX	6288954 MGH-TINF	autox
2832690 MOS-TINF19A	autox	6499887 MOS-TINF19A	ZOOX
2858031 MOS-TINF19B	autox	6558328 MGH-TINF	ZOOX
2861756 MOS-TINF19A	autox	6698461 MGH-TINF	autox
3010486 MGH-TINF	autox	6969415 MGH-TINF	autox
3106335 MOS-TINF19B	autox	7008808 MOS-TINF19A	ZOOX
3110300 MOS-TINF19A	ZOOX	7089612 MGH-TINF	ZOOX
3186523 MOS-TINF19B	autox	7631677 MGH-TINF	ZOOX
3326612 MOS-TINF19B	autox	7862288 MOS-TINF19A	ZOOX
3389310 MOS-TINF19B	autox	7903471 MOS-TINF19A	autox
3407192 MOS-TINF19A	ZOOX	8438008 MGH-TINF	autox
3932085 MGH-TINF	ZOOX	8622410 MOS-TINF19A	autox
3939573 MGH-TINF	ZOOX	8843476 MOS-TINF19B	autox
3980329 MOS-TINF19B	ZOOX	8864957 MOS-TINF19A	ZOOX
3994729 MGH-TINF	zoox	8905135 MGH-TINF	autox
4002027 MOS-TINF19A	ZOOX	9008480 MOS-TINF19B	ZOOX
4085242 MOS-TINF19A	autox	9217288 MGH-TINF	autox
4153197 MGH-TINF	ZOOX	9282087 MGH-TINF	ZOOX
4485500 MOS-TINF19B	ZOOX	9295660 MOS-TINF19A	ZOOX
4591230 MGH-TINF	autox	9514094 MOS-TINF19A	autox
4669114 MOS-TINF19B	autox	9668368 MOS-TINF19B	ZOOX
4775194 MOS-TINF19A	ZOOX	9783115 MGH-TINF	autox
4834957 MOS-TINF19A	ZOOX	9804523 MGH-TINF	autox
5202059 MOS-TINF19B	autox	9899545 MOS-TINF19A	autox
5404118 MOS-TINF19A	autox		

¹ Verteilung am 08.02.2021 | https://www.random.org/lists/