

(1) Publication number: 0 574 257 A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 93304500.7

(22) Date of filing: 10.06.93

(a) Int. Cl.⁵: **C07K 15/00,** C12N 15/12, C12N 5/08, C12P 21/02, C12P 21/08, G01N 33/48

③ Priority: 10.06.92 US 896611 10.06.92 US 896612 10.06.92 US 896437

(43) Date of publication of application : 15.12.93 Bulletin 93/50

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC

NL PT SE

Applicant: Kamboj, Rajender 2869 Arvida Circle Mississauga, Ontario L5N 1R4 (CA)

71 Applicant: Elliott, Candace 74 Burlington Street, Apt. No. 1 Etobicoke, Ontario M8V 2L2 (CA)

(1) Applicant: Nutt, Stephen L. 74 Burlington Street, Apt. No. 1 Etobicoke, Ontario M8V 2L2 (CA) (2) Inventor: Kamboj, Rajender 2869 Arvida Circle Mississauga, Ontario L5N 1R4 (CA) Inventor: Elliott, Candace 74 Burlington Street, Apt. No. 1 Etobicoke, Ontario M8V 2L2 (CA) Inventor: Nutt, Stephen L. 74 Burlington Street, Apt. No. 1 Etobicoke, Ontario M8V 2L2 (CA)

(4) Representative: Mercer, Christopher Paul Carpmaels & Ransford 43, Bloomsbury Square London WC1A 2RA (GB)

(54) Amino-hydroxy-methyl-isoxazole-propionate binding human glutamate receptors.

(57) Described herein are isolated polynucleotides which code for a family of AMPA-type human CNS receptors. The receptors are characterized structurally and the construction and use of cell lines expressing these receptors are disclosed.

F16 14		0.00
		7 000
	the state of the s	The second second
THE PROPERTY OF		
	the state of the s	Anna Lance of the state of the
	" the state of the	
	The section of the section of	
	The bank was any to Take Will. I would not be a failed in the	the first the transfer of the country of the countr
	the transfer and the state at the same	the state of the s
	.,	
1	The bear of the second of the second of	Comment of the fact of the form of the form of the form of the fact of the fac
		nation of appearing to the property of the property of
and the state of the contraction and		
the service of the service of the service of	ALCOHOLD DESCRIPTION AND CONTRACTOR OF THE PROPERTY OF	The same of the sa
	the contraction of the contraction of the contraction of the	distribly out on the out life that the challe and I am
	the state of the s	

មានគំនាំ

6/17/5	3/9/3	616 15
the second state of the second	a a real day of the market the property of the first fine of the f	The second of the second secon
cable of the formation of the state of the s	the second of the second particular and the second	District and design of the Control o
the transfer of the property of the	A compared to the same of the	AND THE PROPERTY OF THE PARTY O
The party of the p	The second state of the second	A COMPANY AND ASSESSED TO
The state of the s		A Marian Commission of the Com
	Acces to the contract of	

F/6, // GTOUTMUNTAADGUARTSTGADGAACTAGAAGTAGAAGTAGAAGTAGAAGTAGAAGTAGAAGTAGAAGA	H Y D K G K G G S K D S G S K 9 K T S R Y D K T S R Y	ANTICOMORPHISTORY POPULARAMAN ANTICOMORPHISM AND TO BE A TOTAL OF	ONEGOGOTIOCOTENTCARTOTRETARANICA CHOCA ANTERARGAMENTA 1921 OTNORCOACGANITANCECARGEGATIOTRE ANTERARGEGATE CONTRA CO	H C V A C I E S C Y K S R K E S K R H K -	034H CCANANACHAGGACAACAACAACAACAACAACAACAACAACAACAACAA	- a d b s b d d v s a a s b b d d i i o a o	CCCCANANCOGCOCCONACCONACCOCCOCCOCCOCCONACCOCCONACCO		
FIG. 1H HITTANIANTA NETHONORGIA ATRIANETANIANA PROPERTORI PRESENTET TESTEGGIA (CARCELLE) CANCELLE TESTEGRANICA CESTANIAN PROPERTORI PROPERTORI PROMANA CACCICULATE CANCELLE TESTEGRANIA PROPERTORIA PORTORI CONTANA CACCICULATE	FERNAL TYRES REPSYEVENT TO A MANAGEMENT OF THE PROPERTY OF THE	216) TUTTUSTANCE TO THE TANK OF THE TANK O	2221 CONCATURATURATURACAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	THERPRESENTERPRESENT	(*TRIKATTRYMARICENTRICENTRICEMENT CHARGOGOTOFOCOCTGAGAGGTCCCC 2340 GAMCTAGGTTCTCA AND THAT THE CHARGOGOTOFOCOCT CHARGOGOTOTOTO CONTRACT CO	LUSECTATPECSALAGPVI	AAACTAGGGGTTTGAAACTGAGGGGGGGGGGGGGGGGGG	PIG IM ANTEGECIETE TABLE AND THE ANTEREDANCE CONTRIBUTE 1001 1002 1003 1003 1003 1003 1003 1003	
F16. 16 CCATCCIANDATITOGEARAITCAACATITOTOGETTOGERGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Q S M E F G ; F M S L W F M L G h F M F G C COTAGORATOR CONTINUES CONSISTENCE CONTINUES CONTINUE	190) CHETCHANACTORANGE TENGENSON TO THE TOTAL OF T	OTTETTORETYNATGATEN UTBETGATAN MAGGENN UTBESCOCETT ELIGACET 1960 (199) CARANGTEGATTATHEN UTBESCOTTANTEREN UT	V F T E E E E E S S S S E E E E E E E E E E	CGRIGAGGATCTCTCCCCKTGAAGCTCTAGCAAGCAACAAAAAAATTGG 1981 - ***********************************	в в в узутавля в в в в в в в в в в в	ct accepterier antique per particular (a possible per particular particular) (2) (2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	FIG. IU 2201 CCATGORGECCONSTICATOR THAT THAT THAT THAT THAT THAT THE STATE OF THE	AUTIONICATURANANANANANCECTECTACTOCONTRACCOCOCONOSTINECCTECTETATION 3000 TENETRETACT IT ITTATICTORACTORACTITATICCCCTECTECT TGGANANANTINETT

Background of the Invention

Field of the Invention

10

20

25

30

40

45

50

55

This invention is concerned with applications of recombinant DNA technology in the field of neurobiology. More particularly, the invention relates to the cloning and expression of DNA coding for excitatory amino acid (EAA) receptors, especially human EAA receptors.

Background of the Invention

In the mammalian central nervous system (CNS), the transmission of nerve impulses is controlled by the interaction between a neurotransmitter substance released by the "sending" neuron which then binds to a surface receptor on the "receiving" neuron to cause excitation thereof. L-glutamate is the most abundant neurotransmitter in the CNS, and mediates the major excitatory pathway in vertebrates. Glutamate is therefore referred to as an excitatory amino acid (EAA) and the receptors which respond to it are variously referred to as glutamate receptors, or more commonly as EAA receptors.

Using tissues isolated from mammalian brain, and various synthetic EAA receptor agonists, knowledge of EAA receptor pharmacology has been refined somewhat. Members of the EAA receptor family are now grouped into three main types based on differential binding to such agonists. One type of EAA receptor, which in addition to glutamate also binds the agonist NMDA (N-methyl-D-aspartate), is referred to as the NMDA type of EAA receptor. Two other glutamate-binding types of EAA receptor, which do not bind NMDA, are named according to their preference for binding with two other EAA receptor agonists, namely AMPA (α -amino-3-hydroxy-5-methyl-isoxazole-4-propionate), and kainate. Particularly, receptors which bind glutamate but not NMDA, and which bind with greater affinity to kainate than to AMPA, are referred to as kainate type EAA receptors. Similarly, those EAA receptors which bind glutamate but not NMDA, and which bind AMPA with greater affinity than kainate are referred to as AMPA type EAA receptors.

The glutamate-binding EAA receptor family is of great physiological and medical importance. Glutamate is involved in many aspects of long-term potentiation (learning and memory), in the development of synaptic plasticity, in epileptic seizures, in neuronal damage caused by ischemia following stroke or other hypoxic events, as well as in other forms of neurodegenerative processes. However, the development of therapeutics which modulate these processes has been very difficult, due to the lack of any homogeneous source of receptor material with which to discover selectively binding drug molecules, which interact specifically at the interface of the EAA receptor. The brain derived tissues currently used to screen candidate drugs are heterogeneous receptor sources, possessing on their surface many receptor types which interfere with studies of the EAA receptor/ligand interface of interest. The search for human therapeutics is further complicated by the limited availability of brain tissue of human origin. It would therefore be desirable to obtain cells that are genetically engineered to produce only the receptor of interest. With cell lines expressing cloned receptor genes, a substrate which is homogeneous for the desired receptor is provided, for drug screening programs.

Recently, genes encoding substituent polypeptides of EAA receptors from non-human sources, principally rat, have been discovered. Hollmann et al., Nature 342: 643, 1989 described the isolation from rat of a gene referred to originally as GluR-K1 (but now called simply GluR1). This gene encodes a member of the rat EAA receptor family, and was originally suspected as being of the kainate type. Subsequent studies by Keinanen et al., Science 249: 556, 1990, showed, again in rat, that a gene called GluR-A, which was identical to the previously isolated GluR1, in fact encodes a receptor not of the kainate type, but rather of the AMPA type. These two groups of researchers have since reported as many as five related genes isolated from rat sources. Boulter et al., Science 249: 1033, 1990, revealed that, in addition to GluR1, the rat contains 3 other related genes, which they called GluR2, GluR3, and GluR4, and Bettler et al., Neuron 5: 583. 1990 described GluR5. Keinanen et al., supra, described genes called GluR-A, GluR-B, GluR-C and GluR-D which correspond precisely to GluR1, GluR2, GluR3 and GluR4 respectively. Sommer et al., Science 249: 1580, 1990 also showed, for GluR-A, GluR-B, GluR-C and GluR-D two alternatively spliced forms for each gene. These authors, as well as Monyer et al., Neuron 6: 799, 1991 were able to show that the differently spliced versions of these genes are differentially expressed in the rat brain.

There has emerged from these molecular cloning advances a better understanding of the structural features of EAA receptors and their subunits, as they exist in the rat brain. According to the current model of EAA receptor structure, each is heteromeric in structure, consisting of individual membrane-anchored subunits, each having four transmembrane regions, and extracellular domains that dictate ligand binding properties to some extent and contribute to the ion-gating function served by the receptor complex. Keinanen et al, supra, have shown for example that each subunit of the rat GluR receptor, including those designated GluR-A, GluR-

B, GluR-C and GluR-D, display cation channel activity gated by glutamate, by AMPA and by kainate, in their unitary state. When expressed in combination however, for example GluR-A in combination with GluR-B, gated ion channels with notably larger currents are produced by the host mammalian cells.

In the search for therapeutics useful to treat CNS disorders in humans, it is highly desirable of course to provide a screen for candidate compounds that is more representative of the human situation than is possible with the rat receptors isolated to date. It is particularly desirable to provide cloned genes coding for human receptors, and cell lines expressing those genes, in order to generate a proper screen for human therapeutic compounds. These, accordingly, are objects of the present invention.

Summary of the Invention

5

10

15

20

25

35

40

45

50

55

The present invention provides isolated polynucleotides that code for a family of AMPA-binding human EAA receptors, herein referred to as "GluR receptors". By providing polynucleotides that code specifically for CNS receptors native to humans, the present invention provides means for evaluating the human nervous system, and particularly for assessing potentially therapeutic interactions between the AMPA-binding human EAA receptors and selected natural and synthetic ligands.

In one of its aspects, the present invention provides an isolated polynucleotide that codes for an EAA receptor belonging to the human GluR family. Alternatively, the polynucleotide may code for an AMPA-binding fragment of a human GluR receptor, or for an AMPA-binding variant of a human GluR receptor. According to specific embodiments of the present invention, the isolated polynucleotide encodes the human GluR1B receptor, the amino acid sequence of which is identified in Figure 1 (SEQ ID NO: 2), the human GluR2B receptor the amino acid sequence of which is identified in Figure 2 (SEQ ID NO: 4), and the human GluR3A receptor, the amino acid sequence of which is identified in Figure 3 (SEQ ID NO: 6). According to another embodiment of the invention, the polynucleotide encodes an AMPA-binding variant of the human GluR receptor. One such variant is identified herein as the human GluR3B receptor, the amino acid sequence of which is identified in Figure 4 (SEQ ID NO: 8). In various specific embodiments of the present invention, the polynucleotide consists of DNA e.g. cDNA, or of RNA e.g. messenger RNA. In other embodiments of the present invention, the polynucleotide may be coupled to a reporter molecule, such as a radioactive label, for use in autoradiographic studies of human GluR receptor tissue distribution. In further embodiments of the present invention, fragments of the polynucleotides of the invention, including radiolabelled versions thereof, may be employed either as probes for detection of glutamate receptor-encoding polynucleotides, as primers appropriate for amplifying such polynucleotides present in a biological specimen, or as templates for expression of a GluR receptor or AMPA-binding fragments or variants thereof.

According to another aspect of the present invention, there is provided a cellular host that produces an AMPA-type human glutamate receptor, and is characterized by the incorporation therein of a polynucleotide of the present invention. In embodiments of the present invention, the polynucleotide is a DNA molecule and is incorporated for expression and secretion in the cellular host, to yield, upon culturing, a functional, membrane-bound human GluR receptor. In other embodiments of the present invention, the polynucleotide is an RNA molecule which is introduced into the cellular host to yield a human GluR receptor as a functional, membrane-bound product of translation.

According to another aspect of the invention, there is provided a process for obtaining a substantially homogeneous source of a human EAA receptor useful for performing ligand binding assays, which comprises the steps of culturing a genetically engineered cellular host of the invention, and then recovering the cultured cells. Optionally, the cultured cells may be treated to obtain membrane preparations thereof, for use in the ligand binding assays.

According to another aspect of the present invention, there is provided a method for assaying interaction between a test ligand and a human EAA receptor, comprising the steps of incubating the test ligand under appropriate conditions with a human GluR receptor source, i.e., a cellular host of the invention or a membrane-preparation derived therefrom, and then determining the extent or result of binding between the substance and the receptor source.

These and other aspects of the invention are now described in greater detail with reference to the accompanying drawings, in which:

Brief Description of the Drawings

Figure 1 provides a DNA sequence coding for the human GluR1B receptor, and the amino acid sequence thereof (SEQ ID NOS: 1 and 2);

Figure 2 provides a DNA sequence coding for the human GluR2B receptor, and the amino acid sequence

thereof (SEQ ID NOS: 3 and 4);

5

10

15

20

25

35

45

50

55

Figure 3 provides a DNA sequence coding for the human GluR3A receptor, and the amino acid sequence thereof (SEQ ID NOS: 5 and 6);

Figure 4 provides a DNA sequence coding for the human GluR3B receptor, and the amino acid sequence thereof (SEQ ID NOS: 7 and 8);

Figure 5 provides the amino acid sequence of the human GluR3A receptor (SEQ ID NO: 9) and the human GluR3B receptor (SEQ ID NO: 10) in a region of dissimilarity;

Figure 6 depicts the strategy employed in cloning the human GluR3A receptor-encoding DNA illustrated in Figure 3:

Figure 7 depicts the strategy employed in cloning the human GluR3B receptor-encoding DNA illustrated in Figure 4;

Figure 8 depicts the strategy employed in generating recombinant DNA expression constructs incorporating the GluR3A receptor-encoding DNA;

Figure 9 depicts the strategy employed in generating recombinant DNA expression constructs incorporating the GluR1B receptor-encoding DNA (SEQ ID NOS: 11 and 12 are also shown in this figure);

Figure 10 depicts the strategy employed in cloning the human GluR2B receptor-encoding DNA illustrated in Figure 2;

Figure 11 depicts the strategy employed in generating recombinant DNA expression constructs incorporating the GluR2B receptor-encoding DNA;

Figure 12 illustrates the AMPA-binding property of the human GluR1B receptor;

Figure 13 illustrates the AMPA-binding property of the human GluR2B receptor;

Figure 14 illustrates the AMPA-binding property of the human GluR3A receptor;

Figures 15 & 16 illustrate a Scatchard analysis of human GluR1B and GluR2B receptor AMPA binding; and Figure 17 graphically shows AMPA competition binding data for the GluR2B receptor.

Detailed Description of the Preferred Embodiments

The invention relates to human CNS receptors of the AMPA-binding type, and is directed more particularly to novel receptors belonging to a family herein referred to as "GluR receptors", and provides isolated polynucleotides that code for such receptors. The term "isolated" is used herein with reference to intact polynucleotides that are generally less than about 4,000 nucleotides in length and which are otherwise isolated from DNA coding for other human proteins.

As used herein, the term "GluR receptors" is intended to embrace the human GluR1B, GluR2B and GluR3A receptors, AMPA-binding variants related thereto, as well as AMPA-binding fragments of the GluR1B, GluR2B and GluR3A receptors. Receptor variants within the scope of the present invention are functional variants of a parent receptor, i.e., one of GluR1B, GluR2B, GluR3A and GluR3B, which include conservative amino acid substitutions.

The term "AMPA-binding", as used herein with respect to receptors, and variants and fragments thereof, refers to a ligand binding profile which reveals glutamate binding and relative greater binding affinity for AMPA than for either glutamate, kainate or NMDA, as determined using assays of conventional design, such as the assays herein described.

In the present specification, an AMPA-binding receptor is said to be "functional" if a cellular host producing it exhibits *de novo* channel activity when exposed appropriately to AMPA, as determined by the established electrophysiological assays described for example by Hollmann et al., *supra*, or by any other assay appropriate for detecting conductance across a cell membrane.

Members of the human GluR family of the invention possess structural features characteristic of the EAA receptors in general, including extracellular N- and C-terminal regions, as well as four internal hydrophobic domains which serve to anchor the receptor within the cell surface membrane.

More specifically, the GluR1B receptor is a protein characterized structurally as a single polypeptide chain that is produced initially in precursor form bearing an 18 amino acid residue N-terminal signal peptide, and is transported to the cell surface in mature form, lacking the signal peptide and consisting of 888 amino acids arranged in the sequence illustrated, by single letter code, in Figure 1 (SEQ ID NOS: 1 and 2). Unless otherwise stated, the term human GluR receptor, either generally or with reference to a particular member of the receptor family, refers to the mature form of the receptor. Thus, the amino acid residues of these receptors are numbered in Figures 1-4 with reference to the mature protein sequence. With respect to structural domains of the GluR1B receptor, hydropathy analysis reveals four putative transmembrane domains, one spanning residues 521-540 inclusive (TM-1), another spanning residues 567-585 (TM-2), a third spanning residues 596-614 (TM-3) and the fourth spanning residues 788-808 (TM-4). Based on this assignment, it is likely that the human

GluR1B receptor structure, in its natural membrane-bound form, consists of a 520 amino acid N-terminal extracellular domain, followed by a hydrophobic region containing four transmembrane domains and an extracellular, 80 amino acid C-terminal domain.

The GluR2B receptor, in precursor form bears a 21 amino acid residue N-terminal signal peptide, and in mature form, consists of 862 amino acids arranged in the sequence illustrated, by single letter code, in Figure 2 (SEQ ID NOS: 3 and 4). With respect to structural domains of the receptor, hydropathy analysis reveals four putative transmembrane domains, one spanning residues 525-544 inclusive (TM-1), another spanning residues 571-589 (TM-2), a third spanning residues 600-618 (TM-3) and the fourth spanning residues 792-812 (TM-4). Based on this assignment, it is likely that the human GluR2B receptor structure, in its natural membrane-bound form, consists of a 524 amino acid N-terminal extracellular domain, followed by a hydrophobic region containing four transmembrane domains and an extracellular, 50 amino acid C-terminal domain.

The GluR3A member of the human GluR family bears a 22 amino acid residue N-terminal signal peptide in precursor form, and is transported to the cell surface in mature form, lacking the signal peptide and consisting of 866 amino acids arranged in the sequence illustrated, by single letter code, in Figure 3 (SEQ ID NOS: 5 and 6). The four putative transmembrane domains of the GluR3A receptor are as follows: one spans residues 527-546 inclusive (TM-1), another spans residues 575-593 (TM-2), a third spans residues 604-622 (TM-3) and the fourth spans residues 796-816 (TM-4). Based on this assignment, it is likely that the human GluR3A receptor structure, in its natural membrane-bound form, consists of a 526 amino acid N-terminal extracellular domain, followed by a hydrophobic region containing four transmembrane domains and an extracellular, 50 amino acid C-terminal domain.

Structurally related variants of the GluR parent receptors identified above also exist. Specifically, a structurally related variant of the human GluR3A receptor, namely the GluR3B receptor, has also been identified. This variant occurs naturally in human brain tissue, and like GluR3A, the GluR3B receptor is 866 amino acids in length, as shown in Figure 4 (SEQ ID NOS: 7 and 8), in its mature, membrane-bound form. The GluR3B receptor initially bears a signal peptide identical to that borne on the GluR3A receptor. Four transmembrane domains are also apparent from the GluR3B sequence, and indicate that these domains lie in the same amino acid regions identified in connection with the GluR3A receptor.

With respect to primary structure, the human GluR3B receptor differs from the GluR3A receptor in a 36 amino acid region separating transmembrane domains TM-3 and TM-4, i.e. residues 748-783. For comparison, the sequences of GluR3A and GluR3B in this region are compared in Figure 5 (SEQ ID NOS: 9 and 10).

Binding assays performed with various ligands, and with membrane preparations derived from mammalian cells engineered genetically to produce the human GluR receptors in membrane-bound form indicate that the human GluR receptors bind selectively to AMPA, relative particularly to kainate and NMDA. This feature, coupled with the medically significant connection between AMPA-type receptors and neurological disorders and disease indicate that the present receptors, as well as AMPA-binding fragments and variants thereof, will serve as valuable tools in the screening and discovery of ligands useful to modulate *in vivo* interactions between such receptors and their natural ligand, glutamate. Thus, a key aspect of the present invention resides in the construction of cells that are engineered genetically to produce a human GluR receptor, to serve as a ready and homogeneous source of receptor for use in *vitro* ligand binding and/or channel activation assays.

For use in the ligand binding assays, it is desirable to construct by application of genetic engineering techniques a host cell, either prokaryotic or eukaryotic, that produces a human GluR receptor as a heterologous and membrane-bound product. According to one embodiment of the invention, the construction of such engineered cells is achieved by introducing into a selected host cell a recombinant DNA construct in which DNA coding for a secretable form of the desired human GluR receptor, i.e., a form bearing its native signal peptide or a functional, heterologous equivalent thereof, is linked operably with expression controlling elements that are functional in the selected host to drive expression of the receptor-encoding DNA, and thus elaborate the desired human GluR receptor protein. Such cells are herein characterized as having the receptor-encoding DNA incorporated "expressibly" therein. The receptor-encoding DNA is referred to as "heterologous" with respect to the particular cellular host if such DNA is not naturally found in the particular host. The particular cell type selected to serve as host for production of the human GluR receptor can be any of several cell types currently available in the art, including both prokaryotic and eukaryotic cells, but should not of course be a cell type that in its natural state elaborates a surface receptor that can bind excitatory amino acids, and so confuse the assay results sought from the engineered cell line. Generally, such problems are avoided by selecting as host a non-neuronal cell type, and can further be avoided using non-human cell lines, as is conventional. It will be appreciated that neuronal- and human-type cells may nevertheless serve as expression hosts, provided that "background" binding to the test ligand is accounted for in the assay results.

According to one embodiment of the present invention, the cell line selected to serve as host for human GluR receptor production is a mammalian cell. Several types of such cell lines are currently available for ge-

5

20

30

35

40

netic-engineering work, and these include the chinese hamster ovary (CHO) cells for example of K1 lineage (ATCC CCL 61) including the Pro5 variant (ATCC CRL 1281); the fibroblast-like cells derived from SV40-transformed African Green monkey kidney of the CV-1 lineage (ATCC CCL 70), of the COS-1 lineage (ATCC CRL 1650) and of the COS-7 lineage (ATCC CRL 1651); murine L-cells, murine 3T3 cells (ATCC CRL 1658), murine C127 cells, human embryonic kidney cells of the 293 lineage (ATCC CRL 1573), human carcinoma cells including those of the HeLa lineage (ATCC CCL 2), and neuroblastoma cells of the lines IMR-32 (ATCC CCL 127), SK-N-MC (ATCC HTB 10) and SK-N-SH (ATCC HTB 11).

A variety of gene expression systems have been adapted for use with these hosts and are now commercially available, and any one of these systems can be selected to drive expression of human GluR receptorencoding DNA. These systems, available typically in the form of plasmidic vectors, incorporate expression cassettes the functional components of which include DNA constituting expression controlling sequences, which are host-recognized and enable expression of the receptor-encoding DNA when linked 5' thereof. The systems further incorporate DNA sequences which terminate expression when linked 3' of the receptor-encoding region. Thus, for expression in the selected mammalian cell host, there is generated a recombinant DNA expression construct in which DNA coding for a secretable form of the receptor is linked with expression controlling DNA sequences recognized by the host, and which include a region 5' of the receptor-encoding DNA to drive expression, and a 3' region to terminate expression. The plasmidic vector harboring the recombinant DNA expression construct typically incorporates such other functional components as an origin of replication, usually virally-derived, to permit replication of the plasmid in the expression host and desirably also for plasmid amplification in a bacterial host, such as E.coli. To provide a marker-enabling selection of stably transformed recombinant cells, the vector will also incorporate a gene conferring some survival advantage on the transformants, such as a gene coding for neomycin resistance in which case the transformants are plated in medium supplemented with neomycin.

Included among the various recombinant DNA expression systems that can be used to achieve mammalian cell expression of the receptor-encoding DNA are those that exploit promoters of viruses that infect mammalian cells, such as the promoter from the cytomegalovirus (CMV), the Rous sarcoma virus (RSV), simian virus (SV40), murine mammary tumor virus (MMTV) and others. Also useful to drive expression are promoters such as the LTR of retroviruses, insect cell promoters such as those regulated by temperature, and isolated from Drosophila, as well as mammalian gene promoters such as those regulated by heavy metals i.e.the metalothionein gene promoter, and other steroid-inducible promoters.

For incorporation into the recombinant DNA expression vector, DNA coding for a selected human GluR receptor, e.g. one of the human GluR1B, GluR2B or GluR3A receptors, or an AMPA-binding fragment or variant thereof, e.g. GluR3B, can be obtained by applying selected techniques of gene isolation or gene synthesis. As described in more detail in the examples herein, human GluR receptors are encoded within the genome of human brain tissue, and can therefore be obtained from human DNA libraries by careful application of conventional gene isolation and cloning techniques. This typically will entail extraction of total messenger RNA from a fresh source of human brain tissue, preferably cerebellum or hippocampus tissue, followed by conversion of message to cDNA and formation of a library in for example a bacterial plasmid, more typically a bacteriophage. Such bacteriophage harboring fragments of the human DNA are typically grown by plating on a lawn of susceptible E. coli bacteria, such that individual phage plaques or colonies can be isolated. The DNA carried by the phage colony is then typically immobilized on a nitrocellulose or nylon-based hybridization membrane, and then hybridized, under carefully controlled conditions, to a radioactively (or otherwise) labelled oligonucleotide probe of appropriate sequence to identify the particular phage colony carrying receptor-encoding DNA or fragment thereof. It will be understood, for example, that selective hybridization, i.e. hybridization of a DNA sequence that is completely complementary to the probe, will be conducted under stringent hybridization conditions. Typically, the gene or a portion thereof so identified is subcloned into a plasmidic vector for nucleic acid sequence analysis.

In specific embodiments of the invention, the GluR1B receptor is encoded by the DNA sequence illustrated in Figure 1 (SEQ ID NO: 1), the GluR2B receptor is encoded by the DNA sequence illustrated in Figure 2 (SEQ ID NO: 3) and the GluR3A and GluR3B receptors are encoded by the DNA sequences illustrated respectively in Figures 3 (SEQ ID NO: 5) and 4 (SEQ ID NO: 7). Alternatively, codons within the illustrated DNA sequences coding for the GluR receptors may be replaced by synonymous codon equivalents, such synonymous codon replacements being well-known in the art.

The illustrated DNA sequences constitute cDNA sequences identified in human brain cDNA libraries in the manner exemplified herein. Having herein provided the nucleotide sequence of various members of the human GluR receptor family, however, it will be appreciated that polynucleotides encoding the receptors can be obtained by other routes. Automated techniques of gene synthesis and/or amplification can be performed to generate DNA coding therefor. Because of the length of the human GluR receptor-encoding DNA, application of

55

10

15

20

25

30

35

40

automated synthesis may require staged gene construction, in which regions of the gene up to about 300 nucleotides in length are synthesized individually and then ligated in correct succession by overhang complementarity for final assembly. Individually synthesized gene regions can be-amplified prior to assembly, using established polymerase chain reaction (PCR) technology.

By the application of automated gene synthesis techniques, there is provided a means to generate polynucleotides that encode variants of naturally occurring human GluR receptors, i.e. GluR1B, GluR2B, GluR3A and GluR3B. It will be appreciated, for example, that polynucleotides coding for the human GluR receptors herein described can be generated by substituting synonymous codons for those represented in the naturally occurring polynucleotide sequences herein identified. In addition, polynucleotides coding for human GluR receptor variants can be generated which for example incorporate one or more e.g. 1-10, single amino acid substitutions, deletions or additions. Since it will for the most part be desirable to retain the natural ligand binding profile of the receptor for screening purposes, it is desirable to limit amino acid substitutions, for example to the so-called conservative replacements in which amino acids of like charge are substituted, and to limit substitutions to those sites less critical for receptor activity e.g. within about the first 20 N-terminal residues of the mature receptor, and such other regions as are elucidated upon receptor domain mapping.

With appropriate template DNA in hand, the technique of PCR amplification may also be used to directly generate all or part of the final gene. In this case, primers are synthesized which will prime the PCR amplification of the final product, either in one piece, or in several pieces that may be ligated together. This may be via step-wise ligation of blunt ended, amplified DNA fragments, or preferentially via step-wise ligation of fragments containing naturally occurring restriction endonuclease sites. In this application, it is possible to use either cDNA or genomic DNA as the template for the PCR amplification. In the former case, the cDNA template can be obtained from commercially available or self-constructed cDNA libraries of various human brain tissues, including hippocampus and cerebellum.

Once obtained, the receptor-encoding DNA is incorporated for expression into any suitable expression vector, and host cells are transfected therewith using conventional procedures, such as DNA-mediated transformation, electroporation, or particle gun transformation. Expression vectors may be selected to provide transformed cell lines that express the receptor-encoding DNA either transiently or in a stable manner. For transient expression, host cells are typically transformed with an expression vector harboring an origin of replication functional in a mammalian cell. For stable expression, such replication origins are unnecessary, but the vectors will typically harbour a gene coding for a product that confers on the transformants a survival advantage, to enable their selection. Genes coding for such selectable markers include the E. coli *gpt* gene which confers resistance to mycophenolic acid, the *neo* gene from transposon Tn5 which confers resistance to the antibiotic G418 and to neomycin, the *dhfr* sequence from murine cells or E. coli which changes the phenotype of DHFR-cells into DHFR+ cells, and the *tk* gene of herpes simplex virus, which makes TK- cells phenotypically TK+cells. Both transient expression and stable expression can provide transformed cell lines, and membrane preparations derived therefrom, for use in ligand screening assays.

For use in screening assays, cells transiently expressing the receptor-encoding DNA can be stored frozen for later use, but because the rapid rate of plasmid replication will lead ultimately to cell death, usually in a few days, the transformed cells should be used as soon as possible. Such assays may be performed either with intact cells, or with membrane preparations derived from such cells. The membrane preparations typically provide a more convenient substrate for the ligand binding experiments, and are therefore preferred as binding substrates. To prepare membrane preparations for screening purposes, i.e., ligand binding experiments, frozen intact cells are homogenized while in cold water suspension and a membrane pellet is collected after centrifugation. The pellet is then washed in cold water, and dialyzed to remove endogenous EAA ligands such as glutamate, that would otherwise compete for binding in the assays. The dialyzed membranes may then be used as such, or after storage in lyophilized form, in the ligand binding assays. Alternatively, intact, fresh cells harvested about two days after transient transfection or after about the same period following fresh plating of stably transfected cells, can be used for ligand binding assays by the same methods as used for membrane preparations. When cells are used, the cells must be harvested by more gentle centrifugation so as not to damage them, and all washing must be done in a buffered medium, for example in phosphate-buffered saline, to avoid osmotic shock and rupture of the cells.

The binding of a substance, i.e., a candidate ligand, to a human GluR receptor of the invention is evaluated typically using a predetermined amount of cell-derived membrane (measured for example by protein determination), generally from about 25µg to 100µg. Generally, competitive binding assays will be useful to evaluate the affinity of a test compound relative to AMPA. This competitive binding assay can be performed by incubating the membrane preparation with radiolabelled AMPA, for example [³H]-AMPA, in the presence of unlabelled test compound added at varying concentrations. Following incubation, either displaced or bound radiolabelled AMPA can be recovered and measured, to determine the relative binding affinities of the test compound

10

15

20

25

35

40

45

50

and AMPA for the particular receptor used as substrate. In this way, the affinities of various compounds for the AMPA-binding human EAA receptors can be measured. Alternatively, a radiolabelled analogue of glutamate may be employed in place of radiolabelled AMPA, as competing ligand.

As an alternative to using cells that express receptor-encoding DNA, ligand characterization may also be performed using cells for example Xenopus oocytes, that yield functional membrane-bound receptor following introduction by injection either of receptor-encoding messenger RNA into the oocyte cytoplasm, or of receptor-encoding DNA into the oocyte nucleus. To generate the messenger RNA of cytoplasmic delivery, the receptor-encoding DNA is typically subcloned first into a plasmidic vector adjacent a suitable promoter region, such as the T3 or T7 bacteriophage promoters, to enable transcription into RNA message. RNA is then transcribed from the inserted gene *in vitro*, collected and then injected into Xenopus oocytes. Following the injection of nL volumes of an RNA solution, the oocytes are left to incubate for up to several days, and are then tested for the ability to respond to a particular ligand molecule supplied in a bathing solution. Since functional EAA receptors act in part by operating a membrane channel through which ions may selectively pass, the functioning of the receptor in response to a particular ligand molecule in the bathing solution may typically be measured as an electrical current utilizing microelectrodes inserted into the cell, in the established manner.

In addition to using the receptor-encoding DNA to construct cell lines useful for ligand screening, expression of the DNA can, according to another aspect of the invention, be performed to produce AMPA-binding fragments of the receptor in soluble form, for structure investigation, to raise antibodies and for other experimental uses. It is expected that the portion of the human GluR receptor responsible for AMPA-binding resides on the outside of the cell, i.e., is extracellular. It is therefore desirable in the first instance to facilitate the characterization of the receptor-ligand interaction by providing this extracellular ligand-binding domain in quantity and in isolated form, i.e., free from the remainder of the receptor. To accomplish this, the full-length human GluR receptor-encoding DNA may be modified by site-directed mutagenesis, so as to introduce a translational stop codon into the extracellular N-terminal region, immediately before the sequence encoding the first transmembrane domain (TM1), i.e., before residue 521 of GluR1B, before residue 525 in GluR2B, or before residue 527 of GluR3A and GluR3B. Since there will no longer be produced any transmembrane domain(s) to "anchor" the receptor into the membrane, expression of the modified gene will result in the secretion, in soluble form, of only the extracellular ligand-binding domain. Standard ligand-binding assays may then be performed to ascertain the degree of binding of a candidate compound to the extracellular domain so produced. It may of course be necessary, using site-directed mutagenesis, to produce several different versions of the extracellular regions, in order to optimize the degree of ligand binding to the isolated domains.

For use in ligand binding assays according to the present invention, AMPA-binding fragments of the receptor will first be anchored to a solid support using any one of various techniques. In one method, the C-terminal end of the receptor peptide fragment may be coupled to a derivatized, insoluble polymeric support; for example, cross-linked polystyrene or polyamide resin. Once anchored to the solid support, the frament is useful to screen candidate ligands for receptor binding affinity. For this purpose, competition-type ligand-binding assays, as described above using full-length receptor, are commonly used. Fragments secured to a solid support are bound with a natural ligand, i.e. AMPA, in the presence of a candidate ligand. One of AMPA or candidate ligand is labelled, for example radioactively, and following a suitable incubation period, the degree of AMPA displacement is determined by measuring the amount of bound or unbound label.

Alternatively, it may be desirable to produce an extracellular domain of the receptor which is not derived from the amino-terminus of the mature protein, but rather from the carboxy-terminus instead, for example domains immediately following the fourth transmembrane domain (TM4), i.e., residing between amino acid residues 809-888 of GluR1B, residues 813-862 of GluR2B, or residues 817-866 of GluR3A or GluR3B. In this case, site-directed mutagenesis and/or PCR-based amplification techniques may readily be used to provide a defined fragment of the gene encoding the receptor domain of interest. Such a DNA sequence may be used to direct the expression of the desired receptor fragment, either intracellularly, or in secreted fashion, provided that the DNA encoding the gene fragment is inserted adjacent to a translation start codon provided by the expression vector, and that the required translation reading frame is carefully conserved.

It will be appreciated that the production of such AMPA-binding fragments of a GluR receptor may be accomplished in a variety of host cells. Mammalian cells such as CHO cells may be used for this purpose, the expression typically being driven by an expression promoter capable of high-level expression, for example the CMV (cytomegalovirus) promoter. Alternately, non-mammalian cells, such as insect Sf9 (Spodoptera frugiperda) cells may be used, with the expression typically being driven by expression promoters of the baculovirus, for example the strong, late polyhedrin protein promoter. Filamentous fungal expression systems may also be used to secrete large quantities of such extracellular domains of the EAA receptor. Aspergillus nidulans, for example, with the expression being driven by the alcA promoter, would constitute such an acceptable system. In addition to such expression hosts, it will be further appreciated that any prokaryotic or other eukaryotic ex-

5

20

30

35

40

45

pression system capable of expressing heterologous genes or gene fragments, whether intracellularly or extracellularly would be similarly acceptable.

For use particularly in detecting the presence and/or location of a human GluR receptor, for example in brain tissue, the present invention also provides, in another of its aspects, labelled antibody to a human GluR receptor. To raise such antibodies, there may be used as immunogen either the intact, soluble receptor or an immunogenic fragment thereof i.e. a fragment capable of eliciting an immune response, produced in a microbial or mammalian cell host as described above or by standard peptide synthesis techniques. Regions of human GluR receptor particularly suitable for use as immunogenic fragments include those corresponding in sequence to an extracellular region of the receptor, or a portion of the extracellular region. For example, peptides consisting of residues 1-526 of the GluR3A receptor or a fragment thereof comprising at least about 10 residues, including particularly fragments containing residues 178-193 or 479-522; and peptides corresponding to the region between transmembrane domains TM-2 and TM-3 of the GluR3A receptor, such as a peptide consisting of residues 594-603. Peptides consisting of the C-terminal domain (residues 817-866 of the GluR3A receptor), or fragment thereof, may also be used for the raising of antibodies.

The raising of antibodies to the selected human GluR receptor or immunogenic fragment can be achieved, for polyclonal antibody production, using immunization protocols of conventional design, and any of a variety of mammalian hosts, such as sheep, goats and rabbits. Alternatively, for monoclonal antibody production, immunocytes such as splenocytes can be recovered from the immunized animal and fused, using hybridoma technology, to a myeloma cells. The fusion products are then screened by culturing in a selection medium, and cells producing antibody are recovered for continuous growth, and antibody recovery. Recovered antibody can then be coupled covalently to a detectable label, such as a radiolabel, enzyme label, luminescent label or the like, using linker technology established for this purpose.

In detectably labelled form, e.g. radiolabelled form, DNA or RNA coding for a human GluR receptor, and selected regions thereof, may also be used, in accordance with another aspect of the present invention, as hybridization probes for example to identify sequence-related genes resident in the human or other mammalian genomes (or cDNA libraries) or to locate the human GluR-encoding DNA in a specimen, such as brain tissue. This can be done using either the intact coding region, or a fragment thereof having radiolabelled e.g. ³²P, nucleotides incorporated therein. To identify the human GluR-encoding DNA in a specimen, it is desirable to use either the full length cDNA coding therefor, or a fragment which is unique thereto. With reference to Figures 1-4 (SEQ ID NOS: 1-8), such nucleotide fragments include those comprising at least about 17 nucleic acids, and otherwise corresponding in sequence to a region coding for an extracellular N-terminal or C-terminal region of the receptor, or representing a 5'-untranslated or 3'-untranslated region thereof. Such oligonucleotide sequences, and the intact gene itself, may also be used of course to clone human GluR-related human genes, particularly cDNA equivalents thereof, by standard hybridization techniques.

Embodiments of the present invention are described in detail in the following specific examples which are not to be construed as limiting:

Example 1 - Isolation of DNA coding for the human GluR3A receptor

The particular strategy used to clone the human GluR3A receptor is depicted schematically in Figure 6, and described in greater detail below.

cDNA coding for the human GluR3A receptor was identified by probing human hippocampal cDNA that was obtained as an EcoRI-based lambda phage library (lambda ZAP) from Stratagene Cloning Systems (La Jolla, California, U.S.A.). The cDNA library was probed initially with a 1.1kb EcoRI/EcoRI DNA fragment constituting the 3' region of a kainate-binding human EAA receptor, designated humEAAIa. This particular kainate-binding receptor is described in EP-A-0 529 994 incorporated herein by reference. DNA coding for the human EAA1a receptor, and from which the 1.1kb probe may be recovered, was deposited under terms of the Budapest Treaty, with the American Type Culture Collection in Rockville, Maryland U.S.A. on August 21, 1991 under accession number ATCC 75063.

Hybridizations using the probe were carried out at 30C overnight, and filters were washed with 2xSSC containing 0.5% SDS at 25C for 5 minutes, followed by a 15 minute wash at 50C with 2xSSC containing 0.5% SDS. The final wash was with 1xSSC containing 0.5% SDS at 50C for 15 minutes. Filters were exposed to X-ray film (Kodak) overnight. Of 10⁶ clones screened under the following hybridization conditions (6xSSC, 50% formamide, 5% Denhardt's solution, 0.5% SDS, 100ug/ml denatured salmon sperm DNA), only two hippocampal cDNA library inserts were identified, one about 1.6kb and designated RKCH521 and another about 2.2kb and designated RKCH221 (Fig.6). For sequencing, the '521 and the '221 phages were plaque purified, then excised as phagemids according to the supplier's specifications, to generate insert-carrying Bluescript-SK variants of the phagemid vector. Sequencing of the '221 clone across its entire sequence revealed a putative ATG

55

5

15

20

25

30

35

40

initiation codon together with about 78 bases of 5'non-coding region and about 2.1 kb of coding region. Sequencing across the '521 insert revealed a significant region of overlap with the '221 insert, and provided some additional 3' sequence, although no termination codon was located.

There being no termination codon apparent in the '521 sequence, a 3' region of the gene was sought. For this purpose, there was first synthesized an oligonucleotide probe capable of annealing to the 3' region of the rat GluR3 receptor sequence reported by Keinanen et al, supra. The specific sequence of the 32-P-labelled probe is provided below (SEQ ID NO: 13):

5'-ACACTCAGAATTACGCTACATACAGAGAAGGCTACAACGT-3'

The same hippocampal cDNA library was then re-screened using the rat-based probe and under the following hybridization conditions; 6xSSC, 25% formamide, 5% Dernhardt's solution, 0.5% SDS, 100ug/ml denatured salmon sperm DNA, 42C. This revealed a 1.2kb insert, designated RKCSHG132. Sequencing of the entire insert revealed 5' overlap with the 3'end of the previously isolated '521 insert, and also revealed a termination codon as well as about 15 bases of 3'non-translated sequence.

To provide the entire coding region in an intact clone, the strategy shown in Figure 6 was employed, to generate the phagemid pBS/HumGluR3A which carries the hGluR3A-encoding DNA as a 2.8kb EcoRI/EcoRI insert in a 3.0kb Bluescript-SK phagemid background. The entire sequence of the EcoRI/EcoRI insert is provided in Figure 3 (SEQ ID NOS: 5 and 6).

The 5.8kb phagemid pBS/humGluR3A was deposited, under the terms of the Budapest Treaty, with the American Type Culture Collection in Rockville, Maryland USA on March 19, 1992, and has been assigned accession number ATCC 75218.

4.

Example 2 - Isolation of DNA coding for human GluR3B receptor

A human fetal brain cDNA library was also screened in the search for human GluR receptors. Thisparticular library was obtained as an EcoRl-based lambda gt10 library from Strategene Cloning Systems (La Jolla, California, U.S.A.). The library was first screened using as hybridization probe an oligonucleotide capable of hybridizing to a 3' region of the reported rat GluR3 gene sequence. Screening using hybridization conditions as noted above (6xSSC, 25% formamide, 42C, etc.) revealed one insert about 2.3kb in size, designated RKCSFG34. After excision to release Bluescript-SK phagemids carrying the insert, sequencing revealed substantial sequence identity between the '34 insert and the 3'end of the earlier isolated GluR3A clone, and suggested that the 5'end of the gene encoded on partially on the '34 insert was missing. To provide an assembled gene, a 5' region was excised from the GluR3A insert and used to generate the 5'end of the '34 insert, at an internal HindIII site. This was achieved as depicted schematically in Figure 7. The resulting intact clone was designated human GluR3B.

Sequence comparison between the GluR3A clone of Example 1 and the GluR3B clone of this Example revealed only a short region of dissimilarity which is illustrated, in terms of amino acid sequence, in Figure 5 (SEQ ID NOS: 9 and 10).

The 6.1kb phagemid pBS/humGluR3B was deposited, under the terms of the Budapest Treaty, with the American Type Culture Collection in Rockville, Maryland USA on March 19, 1992, and has been assigned accession number ATCC 75219.

Example 3 - Isolation of DNA coding for the human GluR1B receptor

cDNA coding for the human GluR1B receptor was identified by probing human fetal brain cDNA that was obtained as an EcoRI-based lambda phage library (lambda ZAP) from Stratagene Cloning Systems (La Jolla, California, U.S.A.). The cDNA library was screened using an oligonucleotide probe capable of annealing to the 5' region of the rat GluR1 receptor sequence reported by Hollmann et al, supra. The specific sequence of the 32-P-labelled probe is provided below (SEQ ID NO: 14):

5'-CCAGATCGATATTGTGAACATCAGCGACACGTTTGAGATG-3'

The fetal brain cDNA library was screened under the following hybridization conditions; 6xSSC, 25% formamide, 5% Dernhardt's solution, 0.5% SDS, 100ug/ml denatured salmon sperm DNA, 42C. Filters were washed with 2xSSC containing 0.5% SDS at 25C for 5 minutes, followed by a 15 minute wash at 50C with 2xSSC containing 0.5% SDS. The final wash was with 1xSSC containing 0.5% SDS at 50C for 15 minutes. Filters were exposed to X-ray film (Kodak) overnight. Of 106 clones screened, only one cDNA insert, of about 3.2kb, was

5

10

15

20

25

30

35

40

45

50

identified, and designated RKCSFG91. For sequencing, the '91 phage was plaque purified, then excised as a phagemid according to the supplier's specifications, to generate an insert-carrying Bluescript-SK variant of the phagemid vector. Sequencing of the '91 clone across its entire sequence revealed a putative ATG initiation codon together with about 61 bases of 5'non-coding region and 2,718 bases of coding region. Also revealed was a termination codon, as well as about 438 bases of 3' non-translated sequence. The entire sequence of the EcoRI/EcoRI insert is provided in Figure 1 (SEQ ID NOS: 1 and 2).

A 6.2kb phagemid designated pBS/humGluR1B, carrying the receptor-encoding DNA as a 3.2kb EcoRI/EcoRI insert in a 3.0kb Bluescript-SK phagemid background, was deposited, under the terms of the Budapest Treaty, with the American Type Culture Collection in Rockville, Maryland USA on May 28, 1992, and has been assigned accession number ATCC 75246.

Example 4 - Isolation of DNA coding for the human GluR2B receptor

The particular strategy used to clone the human Glu2B receptor is depicted schematically in Figure 10, and described in greater detail below.

cDNA coding for the human GluR2B receptor was identified by probing human hippocampal cDNA that was obtained as an EcoRI-based lambda phage library (lambda ZAP) from Stratagene Cloning Systems (La Jolla, California, U.S.A.). The cDNA library was screened using an oligonucleotide probe capable of annealing to the 3' region of the rat GluR2 receptor sequence reported by Keinanen et al, supra. The specific sequence of the 32-P-labelled probe is provided below (SEQ ID NO: 15):

5'-GTGAATGTGGAGCCAAGGACTCGGGAAGTAAG-3'

The hippocampal cDNA library was screened under the following hybridization conditions; 6xSSC, 25% formamide, 5% Dernhardt's solution, 0.5% SDS, 100ug/ml denatured salmon sperm DNA, 42C. Filters were washed with 2xSSC containing 0.5% SDS at 25C for 5 minutes, followed by a 15 minute wash at 50C with 2xSSC containing 0.5% SDS. The final wash was with 1xSSC containing 0.5% SDS at 50C for 15 minutes. Filters were exposed to X-ray film (Kodak) overnight. Of 10⁶ clones screened, only two cDNA inserts were identified, one about 2.7kb and designated RKCSHG84 and another about 2.9kb and designated RKCSHG41 (Fig.10). For sequencing, the '84 and the '41 phages were plaque purified, then excised as phagemids according to the supplier's specifications, to generate insert-carrying Bluescript-SK variants of the phagemid vector. Sequencing of the '84 clone across its entire sequence revealed a putative ATG initiation codon together with about 314 bases of 5'non-coding region and about 2.4 kb of coding region. Sequencing across the '41 insert revealed a significant region of overlap with the '84 insert, and also revealed a termination codon not found in the '84 insert as well as about 441 bases of 3' non-translated sequence.

To provide the entire coding region in an intact clone, the strategy shown in Figure 10 was employed, to generate the phagemid pBS/HumGluR2B which carries the hGluR2B-encoding DNA as a 3.4kb EcoRI/PstI insert in a 3.0kb Bluescript-SK phagemid background. The entire sequence of the EcoRI/PstI insert is provided in Figure 2 (SEQ ID NOS: 3 and 4).

The 6.4kb phagemid pBS/humGluR2B was deposited, under the terms of the Budapest Treaty, with the American Type Culture Collection in Rockville, Maryland USA on March 19, 1992, and has been assigned accession number ATCC 75217.

Example 5 - Construction of genetically engineered cells producing human GluR3A receptors

The strategy depicted in Figure 8 was employed to facilitate incorporation of the GluR3A receptor-encoding cDNA into an expression vector.

For transient expression in mammalian cells, cDNA coding for the human GluR3A receptor was incorporated into the mammalian expression vector pcDNAI, which is available commercially from Invitrogen Corporation (San Diego, California, USA; catalogue number V490-20). This is a multifunctional 4.2kb plasmid vector designed for cDNA expression in eukaryotic systems, and cDNA analysis in prokaryotes. Incorporated on the vector are the CMV promoter and enhancer, splice segment and polyadenylation signal, an SV40 and Polyoma virus origin of replication, and M13 origin to rescue single strand DNA for sequencing and mutagenesis, Sp6 and T7 RNA promoters for the production of sense and anti-sense RNA transcripts and a Col E1-like high copy plasmid origin. A polylinker is located appropriately downstream of the CMV promoter (and 3' of the T7 promoter).

To facilitate incorporation of the GluR3A receptor-encoding cDNA into an expression vector, a Notl site was introduced onto the 5' flank of the Bluescript-SK cDNA insert, and the cDNA insert was then released from

15

20

25

30

40

45

pBS/humGluR3A as a 2.8 kb Notl/Notl fragment, which was then incorporated at the Notl site in the pcDNAI polylinker. Sequencing across the Notl junction was performed, to confirm proper insert orientation in pcDNAI. The resulting plasmid, designated pcDNAI/humGluR3A, was then introduced for transient expression into a selected mammalian cell host, in this case the monkey-derived, fibroblast like cells of the COS-1 lineage (available from the American Type Culture Collection, Rockville, Maryland as ATCC CRL 1650).

For transient expression of the GluR3A-encoding DNA, COS-1 cells were transfected with approximately 8ug DNA (as pcDNA1/humGluR3A) per 106 COS cells, by DEAE-mediated DNA transfection and treated with chloroquine according to the procedures described by Maniatis et al, supra. Briefly, COS-1 cells were plated at a density of 5 x 106 cells/dish and then grown for 24 hours in FBS-supplemented DMEM/F12 medium. Medium was then removed and cells were washed in PBS and then in medium. There was then applied on the cells 10ml of a transfection solution containing DEAE dextran (0.4mg/ml), 100uM chloroquine, 10% NuSerum, DNA (0.4mg/ml) in DMEM/F12 medium. After incubation for 3 hours at 37C, cells were washed in PBS and medium as just described and then shocked for 1 minute with 10% DMSO in DMEM/F12 medium. Cells were allowed to grow for 2-3 days in 10% FBS-supplemented medium, and at the end of incubation dishes were placed on ice, washed with ice cold PBS and then removed by scraping. Cells were then harvested by centrifugation at 1000 rpm for 10 minutes and the cellular pellet was frozen in liquid nitrogen, for subsequent use in ligand binding assays. Northern blot analysis of a thawed aliquot of frozen cells confirmed expression of receptor-encoding cDNA in cells under storage.

In a like manner, stably transfected cell lines can also prepared using two different cell types as host: CHO K1 and CHO Pro5. To construct these cell lines, cDNA coding for human GluR3A was incorporated into the mammalian expression vector pRC/CMV (Invitrogen), which enables stable expression. Insertion at this site placed the cDNA under the expression control of the cytomegalovirus promoter and upstream of the polyadenylation site and terminator of the bovine growth hormone gene, and into a vector background comprising the neomycin resistance gene (driven by the SV40 early promoter) as selectable marker.

To introduce plasmids constructed as described above, the host CHO cells are first seeded at a density of 5 x 10⁵ in 10% FBS-supplemented MEM medium. After growth for 24 hours, fresh medium are added to the plates and three hours later, the cells are transfected using the calcium phosphate-DNA co-precipitation procedure (Maniatis et al, supra). Briefly, 3ug of DNA is mixed and incubated with buffered calcium solution for 10 minutes at room temperature. An equal volume of buffered phosphate solution is added and the suspension is incubated for 15 minutes at room temperature. Next, the incubated suspension is applied to the cells for 4 hours, removed and cells were shocked with medium containing 15% glycerol. Three minutes later, cells are washed with medium and incubated for 24 hours at normal growth conditions. Cells resistant to neomycin are selected in 10% FBS-supplemented alpha-MEM medium containing G418 (1mg/ml). Individual colonies of G418-resistant cells are isolated about 2-3 weeks later, clonally selected and then propagated for assay purposes.

Example 6 - Construction of genetically engineered cells producing human GluR1B receptors

The strategy depicted in Figure 9 was employed to facilitate incorporation of the GluR1B receptor-encoding cDNA into an expression vector. Particularly, a Notl site was introduced onto the 3' flank of the Bluescript-SK cDNA insert, and the cDNA insert was then released from pBS/humGluR1B as a 3.2kb Notl/Notl fragment, which was then incorporated at the Notl site in the pcDNAI polylinker. Sequencing across the junctions was performed, to confirm proper insert orientation in pcDNA1. The resulting plasmid, designated pcDNA1/ hum-GluR1B, was then introduced for transient expression into monkey-derived, fibroblast like cells of the COS-1 lineage as described above.

For transient expression of the GluR1B-encoding DNA, COS-1 cells were transfected with approximately 8ug DNA (as pcDNA1/humGluR1B) per 10⁶ COS cells using the method described in Example 5.

Example 7 - Construction of genetically engineered cells producing human GluR2B receptors

The strategy depicted in Figure 11 was employed to facilitate incorporation of the GluR2B receptor-encoding cDNA into an expression vector. Particularly, a NotI site was introduced onto the 5' flank of the Bluescript-SK cDNA insert, and the cDNA insert was then released from pBS/humGluR2B as a 3.4kb HindIII/NotI fragment, which was then incorporated at the HindIII/NotI sites in the pcDNAI polylinker. Sequencing across the junctions was performed, to confirm proper insert orientation in pcDNA1. The resulting plasmid, designated pcDNA1/humGluR2B, was then introduced for transient expression into a selected mammalian cell host, in this case the monkey-derived, fibroblast like cells of the COS-1 lineage (available from the American Type Culture Collection, Rockville, Maryland as ATCC CRL 1650).

10

15

20

25

30

35

40

50

For transient expression of the GluR2B-encoding DNA, COS-1 cells were transfected with approximately 8ug DNA (as pcDNA1/humGluR2B) per 10⁶ COS cells as set out in Example 5.

Example 8 - Ligand binding assays

5

10

15

20

30

35

40

45

Transfected cells in the frozen state were resuspended in ice-cold distilled water using a hand homogenizer, sonicated for 5 seconds, and then centrifuged for 20 minutes at 50,000g. The supernatant was discarded and the membrane pellet stored frozen at -70C.

COS cell membrane pellets were suspended in ice cold 50mM Tris-HCI (pH 7.55, 5C) and centrifuged again at 50,000g for 10 minutes in order to remove endogenous glutamate that would compete for binding. Pellets were resuspended in ice cold 50mM Tris-HCI (pH 7.55) buffer and the resultant membrane preparation was used as tissue source for binding experiments described below. Proteins were determined using the Pierce Reagent with BSA as standard.

Binding assays were then performed, using an amount of COS-derived membrane equivalent to from 25-100ug as judged by protein determination and selected radiolabelled ligand. In particular, for AMPA-binding assays, incubation mixtures consisted of 25-100ug tissue protein and D,L-alpha-[5-methyl-3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid (3H-AMPA, 27.6Ci/mmole, 10nM final) with 0.1M KSCN and 2.5mM CaCl₂ in the 1ml final volume. Non-specific binding was determined in the presence of 1mM L-glutamate. Samples were incubated on ice for 60 minutes in plastic minivials, and bound and free ligand was separated by centrifugation for 30 minutes at 50,000g. Pellets were washed twice in 6ml of the cold incubation buffer, then 5ml of Beckman Ready-Protein Plus scintillation cocktail was added, for counting.

For kainate-binding assays, incubation mixtures consisted of 25-100ug tissue protein and [vinylidene-3H] kainic acid (58Ci/mmole, 5nM final) in the cold incubation buffer, 1ml final volume. Non-specific binding was determined in the presence of 1mM L-glutamate. Samples were incubated as for the AMPA-binding assays, and bound and free ligand were separated by rapid filtration using a Brandel cell harvester and GF/B filters pre-soaked in ice-cold 0.3% polyethyleneimine. Filters were washed twice in 6ml of the cold incubation buffer, then placed in scintillation vials with 5ml of Beckman Ready-Protein Plus scintillation cocktail for counting.

Assays performed in this manner, using membrane preparations derived from the human GluR3A receptor-producing COS cells, revealed specific binding of 25-30 fmole/mg protein at 10nM [³H]-AMPA (Figure 14); using membrane preparations derived from the human GluR1B receptor-producing COS cells, specific binding of about 100-150 fmole/mg protein at 10nM [³H]-AMPA was revealed (Figure 12); and using membrane preparations derived from the human GluR2B receptor-producing COS cells, specific binding of 750-850 fmol/mg protein at 10nM [³H]-AMPA was revealed (Figure 13). Mock transfected cells exhibited no specific binding of any of the ligands tested.

Scatchard analysis indicated that the recombinantly expressed human GluR1B and GluR2B receptors each contain a single class of [3 H]-labelled AMPA binding sites with a dissociation constants (Kd) of 46 nM (Figure 15) and about 36.3 \pm 7.4 nM (Figure 16), respectively. Further, the maximum AMPA-binding of the GluR1B and GluR2B receptors has been found to be 847 and 816 \pm 302 fmol/mg protein, respectively.

[³H]-AMPA displacement assays have also been performed for the GluR2B receptors in COS cells to determine the relative binding affinity of selected ligands. These results, as illustrated in Figure 17, indicate the rank order of potency of the ligands in displacing ³H-AMPA binding to the GluR2B receptor to be as follows:

quisqualate = AMPA > DNQX > CNQX > glutamate > domoate > kainate

These results demonstrate clearly that the human GluR receptors bind AMPA with specificity. This activity, coupled with the fact that there is little or no demonstrable binding of either kainate or NMDA, clearly assigns the human GluR receptors to be of the AMPA type of EAA receptor. Furthermore, this binding profile indicates that the receptor is binding in an authentic manner, and can therefore reliably predict the ligand binding "signature" of its non-recombinant counterpart from the human brain. These features make the recombinant receptor especially useful for selecting and characterizing ligand compounds which bind to the receptor, and/or for selecting and characterizing compounds which may act by displacing other ligands from the receptor. The isolation of the GluR receptor genes in substantially pure form, capable of being expressed as a single, homogeneous receptor species, therefore frees the ligand binding assay from the lack of precision introduced when complex, heterogeneous receptor preparations from human and other mammalian brains are used to attempt such characterizations.

SEQUENCE LISTING

(F) POSTAL CODE: L4V 1P1 (G) TELEPHONE: (416) 677-0831 (H) FAX: (416) 677-9595 (ii) TITLE OF INVENTION: AMPA-BINDING HUMAN GLUTAMATE RECEPTORS (iii) NUMBER OF SEQUENCES: 15 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release \$1.0, Version \$1.25 (v) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: Unknown (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,437 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,611 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,612 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,612 (B) FILING DATE: 10-JUN-1992 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig peptide (B) LOCATION: 62115	5	(1) GEN	WERAL INFORMATION:
(iii) NUMBER OF SEQUENCES: 15 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC COMPATIBLE (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release \$1.0, Version \$1.25 (v) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: Unknown (vi) PRIOR APPLICATION NUMBER: US 07/896,437 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION NUMBER: US 07/896,611 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION NUMBER: US 07/896,611 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION NUMBER: US 07/896,612 (B) FILING DATE: 10-JUN-1992 (2) INFORNATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: cDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig peptide (B) LOCATION: 62115	10	(i	(A) NAME: ALLELIX BIOPHARMACEUTICALS (B) STREET: 6850 Goreway Drive (C) CITY: Mississauga (D) STATE OR PROVINCE: Ontario (E) COUNTRY: Canada (F) POSTAL CODE: L4V 1P1 (G) TELEPHONE: (416) 677-0831
(iii) NUMBER OF SEQUENCES: 15 (iv) COMPUTER READABLE FORM:	15	(ii	.) TITLE OF INVENTION: AMPA-BINDING HUMAN GLUTAMATE RECEPTORS
(A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC Compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.25 (V) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: Unknown (Vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,437 (B) FILING DATE: 10-JUN-1992 (Vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,611 (B) FILING DATE: 10-JUN-1992 (Vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,612 (B) FILING DATE: 10-JUN-1992 (Vi) PRIOR APPLICATION NUMBER: US 07/896,612 (B) FILING DATE: 10-JUN-1992 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig peptide (B) LOCATION: 62115 (ix) FEATURE: (A) NAME/KEY: mat_peptide		(iii	.) NUMBER OF SEQUENCES: 15
(A) APPLICATION NUMBER: Unknown (A) APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,437 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,611 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,612 (B) FILING DATE: 10-JUN-1992 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 62115 (ix) FEATURE: (A) NAME/KEY: mat_peptide	20	(iv	(A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
(A) APPLICATION NUMBER: US 07/896,437 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,611 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/896,612 (B) FILING DATE: 10-JUN-1992 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 62115 (ix) FEATURE: (A) NAME/KEY: mat_peptide		(v	
(A) APPLICATION NUMBER: US 07/896,611 (B) FILING DATE: 10-JUN-1992 (vi) PRIOR APPLICATION DATA:	25	(vi	(A) APPLICATION NUMBER: US 07/896,437
(A) APPLICATION NUMBER: US 07/896,612 (B) FILING DATE: 10-JUN-1992 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 62115 (ix) FEATURE: (A) NAME/KEY: mat_peptide	30	(vi	(A) APPLICATION NUMBER: US 07/896,611
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 62115 (ix) FEATURE: (A) NAME/KEY: mat_peptide		(vi	(A) APPLICATION NUMBER: US 07/896,612
(A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 40 (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 62115 (ix) FEATURE: (A) NAME/KEY: mat_peptide	35	(2) INF	ORMATION FOR SEQ ID NO:1:
(ii) MOLECULE TYPE: cDNA (ix) FEATURE:		(i	(A) LENGTH: 3220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double
(A) NAME/KEY: CDS (B) LOCATION: 622782 (ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 62115 (ix) FEATURE: (A) NAME/KEY: mat_peptide	40	(ii) MOLECULE TYPE: cDNA
(A) NAME/KEY: sig_peptide (B) LOCATION: 62115 (ix) FEATURE: (A) NAME/KEY: mat_peptide	45	(ix	(A) NAME/KEY: CDS
(A) NAME/KEY: mat_peptide		(ix	(A) NAME/KEY: sig_peptide
	50	(ix	(A) NAME/KEY: mat_peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: GAATTCCACA CCAAATCTAT GATTGGACCT GGGCTTCTTT TTCGCCAATG CAAAAAGGAA 60 T ATG CAG CAC ATT TTT GCC TTC TTC TGC ACC GGT TTC CTA GGC GCG 106 Met Gln His Ile Phe Ala Phe Phe Cys Thr Gly Phe Leu Gly Ala 10 GTA GTA GGT GCC AAT TTC CCC AAC AAT ATC CAG ATC GGG GGA TTA TTT 154 Val Val Gly Ala Asn Phe Pro Asn Asn Ile Gln Ile Gly Gly Leu Phe CCA AAC CAG CAG TCA CAG GAA CAT GCT GCT TTT AGA TTT GCT TTG TCG 202 Pro Asn Gln Gln Ser Gln Glu His Ala Ala Phe Arg Phe Ala Leu Ser 15 CAA CTC ACA GAG CCC CCG AAG CTG CTC CCC CAG ATT GAT ATT GTG AAC 250 Gln Leu Thr Glu Pro Pro Lys Leu Leu Pro Gln Ile Asp Ile Val Asn 35 40 ATC AGC GAC ACG TTT GAG ATG ACC TAT AGA TTC TGT TCC CAG TTC TCC 20 298_ Ile Ser Asp Thr Phe Glu Met Thr Tyr Arg Phe Cys Ser Gln Phe Ser AAA GGA GTC TAT GCC ATC TTT GGG TTT TAT GAA CGT AGG ACT GTC AAC 346 Lys Gly Val Tyr Ala Ile Phe Gly Phe Tyr Glu Arg Arg Thr Val Asn 25 ATG CTG ACC TCC TTT TGT GGG GCC CTC CAC GTC TGC TTC ATT ACG CCG 394 Met Leu Thr Ser Phe Cys Gly Ala Leu His Val Cys Phe Ile Thr Pro AGC TTT CCC GTT GAT ACA TCC AAT CAG TTT GTC CTT CAG CTG CGC CCT 442 30 Ser Phe Pro Val Asp Thr Ser Asn Gln Phe Val Leu Gln Leu Arg Pro 100 GAA CTG CAG GAT GCC CTC ATC AGC ATC ATT GAC CAT TAC AAG TGG CAG 490 Glu Leu Gln Asp Ala Leu Ile Ser Ile Ile Asp His Tyr Lys Trp Gln 110 35 AAA TTT GTC TAC ATT TAT GAT GCC GAC CGG GGC TTA TCC GTC CTG CAG 538 Lys Phe Val Tyr Ile Tyr Asp Ala Asp Arg Gly Leu Ser Val Leu Gln 130 AAA GTC CTG GAT ACA GCT GCT GAG AAG AAC TGG CAG GTG ACA GCA GTC 586 Lys Val Leu Asp Thr Ala Ala Glu Lys Asn Trp Gln Val Thr Ala Val 40 AAC ATT TTG ACA ACC ACA GAG GAG GGA TAC CGG ATG CTC TTT CAG GAC 634 Asn Ile Leu Thr Thr Thr Glu Glu Gly Tyr Arg Met Leu Phe Gln Asp 165 45 CTG GAG AAG AAA AAG GAG CGG CTG GTG GTG GAC TGT GAA TCA GAA 682 Leu Glu Lys Lys Lys Glu Arg Leu Val Val Val Asp Cys Glu Ser Glu 180 CGC CTC AAT GCT ATC TTG GGC CAG ATT ATA AAG CTA GAG AAG AAT GGC 730 Arg Leu Asn Ala Ile Leu Gly Gln Ile Ile Lys Leu Glu Lys Asn Gly 50 ATC GGC TAC CAC TAC ATT CTT GCA AAT CTG GGC TTC ATG GAC ATT GAC Ile Gly Tyr His Tyr Ile Leu Ala Asn Leu Gly Phe Met Asp Ile Asp 778 TTA AAC AAA TTC AAG GAG AGT GGC GCC AAT GTG ACA GGT TTC CAG CTG 826 55 Leu Asn Lys Phe Lys Glu Ser Gly Ala Asn Val Thr Gly Phe Gln Leu 225 230

5	GTG Val	AAC Asn	TAC Tyr 240	ACA Thr	GAC Asp	ACT Thr	ATT Ile	CCG Pro 245	GCC Ala	AAG Lys	ATC Ile	ATG Met	CAG Gln 250	CAG Gln	TGG Trp	AAG Lys	87	4
	TAA Asn	AGT Ser 255	GAT Asp	GCT Ala	CGA Arg	GAC Asp	CAC His 260	ACA Thr	CGG Arg	GTG Val	GAC Asp	TGG Trp 265	AAG Lys	AGA Arg	CCC Pro	AAG Lys	92	!2
10	TAC Tyr 270	ACC Thr	TCT Ser	GCG Ala	CTC Leu	ACC Thr 275	TAC Tyr	GAT Asp	GGG Gly	GTG Val	AAG Lys 280	GTG Val	ATG Met	GCT Ala	GAG Glu	GCT Ala 285	97	0
15	TTC	CAG Gln	AGC Ser	CTG Leu	CGG Arg 290	AGG Arg	CAG Gln	AGA Arg	ATT	GAT Asp 295	ATA Ile	TCT Ser	CGC Arg	CGG Arg	GGG Gly 300	AAT Asn	101	.8
	GCT Ala	GGG Gly	GAT Asp	TGT Cys 305	CTG Leu	GCT Ala	AAC Asn	CCA Pro	GCT Ala 310	GTT Val	CCC Pro	TGG Trp	GGC GLY	CAA Gln 315	GGG Gly	ATC Ile	106	56
20	GAC Asp	ATC Ile	CAG Gln 320	AGA Arg	GCT Ala	CTG Leu	CAG Gln	CAG Gln 325	GTG Val	CGA Arg	TTT Phe	GAA Glu	GGT Gly 330	TTA Leu	ACA Thr	GGA Gly	111	L 4
25	AAC Asn	GTG Val 335	CAG Gln	TTT Phe	AAT Asn	G AG Glu	AAA Lys 340	GGA Gly	CGC Arg	CGG Arg	ACC Thr	AAC Asn 345	TAC Tyr	ACG Thr	CTC Leu	CAC His	116	12
25	GTG Val 350	ATT Ile	GAA Glu	ATG Met	AAA Lys	CAT His 355	GAC Asp	GGC Gly	ATC Ile	CGA Arg	AAG Lys 360	ATT Ile	GGT Gly	TAC Tyr	TGG Trp	AAT Asn 365	121	LO
30	GAA Glu	GAT Asp	GAT Asp	AAG Lys	TTT Phe 370	GTC Val	CCT Pro	GCA Ala	GCC Ala	ACC Thr 375	GAT Asp	GCC Ala	CAA Gln	GCT Ala	GGG Gly 380	GGC Gly	125	8
	GAT Asp	AAT Aen	TCA Ser	AGT Ser 385	GTT Val	CAG Gln	AAC Asn	AGA Arg	ACA Thr 390	TAC Tyr	ATC Ile	GTC Val	ACA Thr	ACA Thr 395	ATC Ile	CTA Leu	130)6
35	GAA Glu	GAT Asp	CCT Pro 400	TAT Tyr	GTG Val	ATG Met	CTC Leu	AAG Lys 405	AAG Lys	AAC Asn	GCC Ala	AAT Asn	CAG Gln 410	TTT Phe	GAG Glu	GGC Gly	135	54
40	AAT Asn	GAC Asp 415	CGT Arg	TAC Tyr	GAG Glu	GGC Gly	TAC Tyr 420	TGT Cys	GTA Val	GAG Glu	CTG Leu	GCG Ala 425	GCA Ala	GAG Glu	ATT Ile	GCC Ala	140)2
	AAG Lys 430	CAC His	GTG Val	GGC Gly	TAC Tyr	TCC Ser 435	TAC Tyr	CGT Arg	CTG Leu	GAG Glu	ATT Ile 440	GTC Val	AGT Ser	GAT Asp	Gly	AAA Lys 445	145	50
45	TAC Tyr	GGA Gly	GCC Ala	CGA Arg	GAC Asp 450	CCT Pro	GAC Asp	ACG Thr	AAG Lye	GCC Ala 455	TGG Trp	AAT Asn	GGC Gly	ATG Met	GTG Val 460	GGA Gly	149	8
	GAG Glu	CTG Leu	GTC Val	TAT Tyr 465	GGA Gly	AGA Arg	GCA Ala	GAT Asp	GTG Val 470	GCT Ala	GTG Val	GCT Ala	CCC Pro	TTA Leu 475	ACT Thr	ATC Ile	154	16
50	ACT Thr	TTG Leu	GTC Val 480	CGG Arg	GAA Glu	GAA Glu	GTT Val	ATA Ile 485	GAT Asp	TTC Phe	TCC Ser	AAA Lys	CCA Pro 490	TTT Phe	ATG Met	AGT Ser	159	14
55	TTG Leu	GGG Gly 495	ATC Ile	TCC Ser	ATC Ile	ATG Met	ATT Ile 500	AAA Lys	AAA Lys	CCA Pro	CAG Gln	AAA Lys 505	TCC Ser	AAG Lys	CCG Pro	GGT Gly	164	12

5	GTC Val 510		TCC Ser	TTC Phe	CTT Leu	GAT Asp 515	CCT Pro	TTG Leu	GCT Ala	TAT	GAG Glu 520	Ile	TGG Trp	ATG Met	TGC Cys	ATT Ile 525	1690
10		2			Ile 530	GIY	vai	Ser	val	Val 535	Leu	Phe	Leu	Val	5er 540	Arg	1738
,-				545		пр	ura	ser	550	GLu	Phe	Glu	Glu	Gly 555	Arg	Asp	1786
15			560	261	GAC Asp	GIII	ser	565	Glu	Phe	Gly	Ile	Phe 570	Asn	Ser	Leu	1834
	P	575	261	Ded	GGA Gly	AIE	580	Mec	GIn	Gln	Gly	Сув 585	Asp	Ile	Ser	Pro	1882
20	590	501	Deu	Ser	GGT Gly	595	116	vai	GIĀ	GIĀ	Val 600	Trp	Trp	Phe	Phe	Thr 605	1930
25		116	116	116	TCC Ser 610	ser	Tyr	Tnr	Ala	A sn 615	Leu	Ala	Ala	Phe	Leu 620	Thr	1978
	GTG Val	GAG Glu	AGG Arg	ATG Met 625	GTG Val	TCT Ser	CCC Pro	ATT Ile	GAG Glu 630	AGT Ser	GCA Ala	GAG Glu	GAC Asp	CTA Leu 635	GCG Ala	AAC Asn	2026
30	G14	1111	640	116	GCC Ala	TYP	GIĀ	645	Leu	Glu	Ala	Gly	Ser 650	Thr	Lys	Glu	2074
	TTC Phe	TTC Phe 655	AGG Arg	AGG Arg	TCT Ser	AAA Lys	ATT Ile 660	GCT Ala	GTG Val	TTT Phe	GAG Glu	AAG Lys 665	ATG Met	TGG Trp	ACA Thr	TAC Tyr	2122
35	ATG Met 670	AAG Lys	TCA Ser	GCA Ala	GAG Glu	CCA Pro 675	TCA Ser	GTT Val	TTT Phe	GTG Val	CGG Arg 680	ACC Thr	ACA Thr	GAG Glu	GAG Glu	GGG Gly 685	2170
40	ATG Met	ATT Ile	CGA Arg	GTG Val	AGG Arg 690	AAA Lys	TCC Ser	AAA Lys	GGC Gly	AAA Lys 695	TAT Tyr	GCC Ala	TAC Tyr	CTC Leu	CTG Leu 700	GAG Glu	2218
	TCC Ser	ACC Thr	ATG Met	AAT Asn 705	GAG Glu	TAC Tyr	TIE	Glu	CAG Gln 710	Arg	AAA Lys	CCC Pro	TGT Cys	GAC Asp 715	ACC Thr	ATG Met	2266
45	AAG Lys	GTG Val	GGA Gly 720	GGT Gly	AAC Asn	TTG Leu	GAT Asp	TCC Ser 725	AAA Lys	GGC Gly	TAT Tyr	GGC Gly	ATT Ile 730	GCA Ala	ACA Thr	CCC Pro	2314
50	AAG Lys	GGG Gly 735	TCT Ser	GCC Ala	CTG Leu	AGA Arg	GGT Gly 740	CCC Pro	GTA Val	AAC Asn	CTA Leu	GCG Ala 745	GTT Val	TTG Leu	AAA Lys	CTC Leu	2362
30	AGT Ser 750	GAG Glu	CAA Gln	G1y GCC	GTC Val	TTA Leu 755	GAC Asp	AAG Lys	CTG Leu	AAA Lys	AGC Ser 760	AAA Lye	TGG Trp	TGG Trp	TAC Tyr	GAT Asp 765	2410
55	AAA Lys	GGG Gly	GAA Glu	TGT Cys	GGA Gly 770	AGC Ser	AAG Lys	GAC Asp	TCC Ser	GGA Gly 775	AGT Ser	AAG Lys	GAC Asp	AAG Lys	ACA Thr 780	AGC Ser	2458

5	GCT Ala	CTG Leu	AGC Ser	CTC Leu 785	AGC Ser	AAT Asn	GTG Val	GCA Ala	GGC Gly 790	GTG Val	TTC Phe	TAC Tyr	ATC Ile	CTG Leu 795	ATC Ile	GGA Gly	2506
40	GGA Gly	CTT Leu	GGA Gly 800	CTA Leu	GCC Ala	ATG Met	CTG Leu	GTT Val 805	GCC Ala	TTA Leu	ATC Ile	GAG Glu	TTC Phe 810	Cya Cya	TAC Tyr	AAA Lys	2554
10	TCC Ser	CGT Arg 815	AGT Ser	GAA Glu	TCC Ser	AAG Lys	CGG Arg 820	ATG Met	AAG Lys	GGT Gly	TTT Phe	TGT Cys 825	TTG Leu	ATC Ile	CCA Pro	CAG Gln	2602
15	CAA Gln 830	TCC Ser	ATC Ile	AAC Asn	GAA Glu	GCC Ala 835	ATA Ile	CGG Arg	ACA Thr	TCG Ser	ACC Thr 840	CTC Leu	CCC Pro	CGC Arg	AAC Asn	AGC Ser 845	2650
	GGG Gly	GCA Ala	GGA Gly	GCC Ala	AGC Ser 850	AGC Ser	GGC Gly	GGC Gly	AGT Ser	GGA Gly 855	GAG Glu	AAT Asn	GGT Gly	CGG Arg	GTG Val 860	GTC Val	2698
20	AGC Ser	CAT His	GAC Asp	TTC Phe 865	CCC Pro	AAG Lys	TCC Ser	ATG Met	CAA Gln 870	TCG Ser	ATT Ile	CCT Pro	TGC Сув	ATG Met 875	AGC Ser	CAC . His	2746
25	AGT Ser	TCA Ser	GGG Gly 880	ATG Met	CCC Pro	TTG Leu	GGA Gly	GCC Ala 885	ACG Thr	GGA Gly	TTG Leu	TAAC	TGG	AGC 1	AGATO	GAGAC	2799
	CCC	TGGG	GA (GCAGG	CTC	G GC	CTCC	CAGO	ccc	CATCO	CAA	ACCO	TTC	AGT (GCCAF	AAACA	2859
	ACA	ACAAA	AT A	AGAAA	AGCGC	A AC	CAC	CACCA	ACC	CACTO	CGA	CCAC	AAG	AAG (GATGA	ATTCAA	2919
30	CAGO	TTTI	rcc 1	rgaac	TAA	G AA	LAAA (CATI	TTC	CTG	CCC	TTTT	CCT	TT :	r t ga 1	GTTCT	2979
	TTC	ACCCI	TT 1	rctgi	TTGC	T AF	\GTG#	AGGAT	GA.	LAAA A	AATA	CACT	GTAC	CTG (CAATA	AAGGGG	3039
	AGAG	STAAC	cc 1	IGTCI	CAATO	A A	CCTC	GTGTC	TC	rgaga	GTA	GAGT	CACT	rgg i	AACA	CTAATG	3099
35	AGG	AAACI	rgc 7	ACTGI	TTT	TT T	CAAT	TCAC	TTO	STTAG	STGT	GTCI	TAG	CGT (GTGC?	ATTTT	3159
	TTTT	CTT	ACT F	LATAP	CCAT	G G1	TTG	CAGGI	TCT	CTTA	AGGC	CCTI	TCC	TTC 1	CCT	GAATT	3219
	С																3220
40	(2)	INFO	RMA	NOIT	FOR	SEQ	ID N	10:2:	;								
		((i) S	(B)	LEN TYP	IGTH:	906 umino	RIST ami aci linea	.no a	: acida	3						
45		()	Li) P	MOLEC	ULE	TYPE	: pr	otei	.n								
		()	(i) S	SEQUE	NCE	DESC	RIPI	: NOI	SEÇ	Q ID	NO: 2	! :					

Leu Thr Glu Pro Pro Lys L u Leu Pro Gln Ile Asp Ile Val Asn Ile 35 40 45

Met Gln His Ile Phe Ala Phe Phe Cys Thr Gly Phe Leu Gly Ala Val -18 -10 -5

Val Gly Ala Asn Phe Pro Asn Asn Ile Gln Ile Gly Gly Leu Phe Pro $1 \hspace{1cm} 5 \hspace{1cm} 10$

Asn Gln Gln Ser Gln Glu His Ala Ala Phe Arg Phe Ala Leu Ser Gln 15 20 25 30

	Ser	Asp	Thr	Phe 50	Glu	Met	Thr	Tyr	Arg 55	Phe	Сув	Ser	Gln	Phe 60	Ser	Lys
5	Gly	Val	Tyr 65	Ala	Ile	Phe	Gly	Phe 70	Tyr	Glu	Arg	Arg	Thr 75	Val	Asn	Met
	Leu	Thr 80	Ser	Phe	Сув	Gly	Ala 85	Leu	His	Val	Сув	Phe 90	Ile	Thr	Pro	Ser
10	Phe 95	Pro	Val	Asp	Thr	Ser 100	Asn	Gln	Phe	Val	Leu 105	Gln	Leu	Arg	Pro	Glu 110
	Leu	Gln	Asp	Ala	Leu 115	Ile	Ser	Ile	Ile	Asp 120	His	Tyr	Lys	Trp	Gln 125	Lys
15	Phe	Val	Tyr	Ile 130	Tyr	Asp	Ala	Asp	Arg 135	Gly	Leu	Ser	Val	Leu 140	Gln	Lys
	Val	Leu	Asp 145	Thr	Ala	Ala	Glu	Lys 150	Asn	Trp	Gln	Val	Thr 155	Ala	Val	Asn
20	Ile	Leu 160	Thr	Thr	Thr	Glu	Glu 165	Gly	Tyr	Arg	Met	Leu 170	Phe	Gln	Asp	Leu
	Glu 175	Lys	Lys	Lys	Glu	Arg 180	Leu	Val	Val	Val	Asp 185	Сув	Glu	Ser	Glu	Arg 190
25	Leu	Asn	Ala	Ile	Leu 195	Gly	Gln	Ile	Ile	Lys 200	Leu	Glu	ГЛЯ	Asn	Gly 205	Ile
	Gly	Tyr	His	Tyr 210	Ile	Leu	Ala	Asn	Leu 215	Gly	Phe	Met	Asp	Ile 220	Asp	Leu
30	Asn	Lys	Phe 225	Lys	Glu	Ser	Gly	Ala 230	Asn	Val	Thr	Gly	Phe 235	Gln	Leu	Val
	Asn	Tyr 240	Thr	Asp	Thr	Ile	Pro 245	Ala	Lys	Ile	Met	Gln 250	Gln	Trp	Lys	Asn
35	Ser 255	Asp	Ala	Arg	Asp	His 260	Thr	Arg	Val	Asp	Trp 265	Lys	Arg	Pro	ГÀв	Tyr 270
	Thr	Ser	Ala	Leu	Thr 275	Tyr	Asp	Gly	Val	Lys 280	Val	Met	Ala	Glu	Ala 285	Phe
40	Gln	Ser	Leu	Arg 290	Arg	Gln	Arg	Ile	Asp 295	Ile	Ser	Arg	Arg	Gly 300	Asn	Ala
	Gly	Asp	Сув 305	Leu	Ala	Asn	Pro	Ala 310	Val	Pro	Trp	Gly	Gln 315	Gly	Ile	Asp
45	Ile	Gln 320	Arg	Ala	Leu	Gln	Gln 325	Val	Arg	Phe	Glu	Gly 330	Leu	Thr	Gly	Asn
	Val 335	Gln	Phe	Asn	Glu	Lys 340	Gly	Arg	Arg	Thr	Asn 345	Tyr	Thr	Leu	His	Val 350
50	Ile	Glu	Met	Lys	His 355	Asp	Gly	Ile	Arg	Lys 360	Ile	Gly	Tyr	Trp	Asn 365	Glu
	Asp	Asp	Lys	Phe 370	Val	Pro	Ala	Ala	Thr 375	Asp	Ala	Gln	Ala	Gly 380	Gly	Asp
55	Asn	Ser	Ser 385	Val	Gln	Asn	Arg	Thr 390	Tyr	Ile	Val	Thr	Thr 395	Ile	Leu	Glu

	Asp	Pro 400	Tyr	Val	Met	Leu	Lys 405	Lys	Asn	Ala	Asn	Gln 410	Phe	Glu	Gly	Asn
5	Asp 415	Arg	Tyr	Glu	Gly	Tyr 420	Сув	Val	Glu	Leu	Ala 425	Ala	Glu	Ile	Ala	Lys 430
	His	Val	Gly	Tyr	Ser 435	Tyr	Arg	Leu	Glu	Ile 440	Val	Ser	Asp	Gly	Lys 445	Tyr
10	Gly	Ala	Arg	Asp 450	Pro	Asp	Thr	Lys	Ala 455	Trp	Asn	Gly	Met	Val 460	Gly	Glu
	Leu	Val	Tyr 465	Gly	Arg	Ala	Asp	Val 470	Ala	Val	Ala	Pro	Leu 475	Thr	Ile	Thr
15	Leu	Val 480	Arg	Glu	Glu	Val	Ile 485	Asp	Phe	Ser	Lys	Pro 490	Phe	Met	Ser	Leu
	Gly 495	Ile	Ser	Ile	Met	Ile 500	Lys	Lys	Pro	Gln	Lys 505	Ser	Lys	Pro	Gly	Val 510
20	Phe	Ser	Phe	Leu	Asp 515	Pro	Leu	Ala	Tyr	Glu 520	Ile	Trp	Met	Сув	Ile 525	Val
	Phe	Ala	Tyr	11e 530	Gly	Val	Ser	Val	Val 535	Leu	Phe	Leu	Val	Ser 540	Arg	Phe
25	Ser	Pro	Tyr 545	Glu	Trp	His	Ser	Glu 550	Glu	Phe	Glu	Glu	Gly 555	Arg	Asp	Gln
	Thr	Thr 560	Ser	Asp	Gln	Ser	Asn 565	Glu	Phe	Gly	Ile	Phe 570	Asn	Ser	Leu	Trp
30	Phe 575	Ser	Leu	Gly	Ala	Phe 580	Met	Gln	Gln	Gly	Сув 585	Asp	Ile	Ser	Pro	Arg 590
	Ser	Leu	Ser	Gly	Arg 595	Ile	Val	Gly	Gly	Val 600	Trp	Trp	Phe	Phe	Thr 605	Leu
35	Ile	Ile	Ile	Ser 610	Ser	Tyr	Thr	Ala	As n 615	Leu	Ala	Ala	Phe	Leu 620	Thr	Val
	Glu	Arg	Met 625	Val	Ser	Pro	Ile	Glu 630	Ser	Ala	Glu	Asp	Leu 635	Ala	Asn	Glu
40	Thr	Glu 640	Ile	Ala	Tyr	Gly	Thr 645	Leu	Glu	Ala	Gly	Ser 650	Thr	Lys	Glu	Phe
	Ph e 655	Arg	Arg	Ser	ГÀв	Ile 660	Ala	Val	Phe	Glu	Lys 665	Met	Trp	Thr	Tyr	Met 670
45	Lys	Ser	Ala	Glu	Pro 675	Ser	Val	Phe	Val	Arg 680	Thr	Thr	Glu	Glu	Gly 685	Met
	Ile	Arg	Val	Arg 690	Lys	Ser	Lys	Gly	Lys 695	Tyr	Ala	Tyr	Leu	Leu 700	Glu	Ser
50	Thr	Met	Asn 705	Glu	Tyr	Ile	Glu	Gln 710	Arg	Lys	Pro	Сув	Asp 715	Thr	Met	Lys
	Val	Gly 720	Gly	Asn	Leu	Asp	Ser 725	Lys	Gly	Tyr	Gly	Ile 730	Ala	Thr	Pro	Lys
55	Gly 735	Ser	Ala	Leu	Arg	Gly 740	Pro	Val	Asn	Leu	Ala 745	Val	Leu	Lys	L u	Ser 750

5	Glu	Gln	Gly	Val	Leu 755	Asp	Lys	Leu	Lys	Ser 760	Lys	Trp	Trp	Tyr	Asp 765	Lys	
	Gly	Glu	Сув	Gly 770	Ser	Lys	Asp	Ser	Gly 775	Ser	Lys	Asp	Lys	Thr 780	Ser	Ala	
10	Leu	Ser	Leu 785	Ser	Asn	Val	Ala	Gly 790	Val	Phe	Tyr	Ile	Leu 795	Ile	Gly	Gly	
	Leu	Gly 800	Leu	Ala	Met	Leu	Val 805	Ala	Leu	Ile	Glu	Phe 810	Сув	Tyr	Lys	Ser	
15	Arg 815	Ser	Glu	Ser	Lys	Arg 820	Met	Lys	Gly	Phe	Сув 825	Leu	Ile	Pro	Gln	Gln 830	
,,,	Ser	Ile	Asn	Glu	Ala 835	Ile	Arg	Thr	Ser	Thr 840	Leu	Pro	Arg	Asn	Ser 845	Gly	
	Ala	Gly	Ala	Ser 850	Ser	Gly	Gly	Ser	Gly 855	Glu	Asn	Gly	Arg	Val 860	Val	Ser	
20	His	Asp	Phe 865	Pro	Lys	Ser	Met	Gln 870	Ser	Ile	Pro	СЛв	Met 875	Ser	His	Ser	
	Ser	Gly 880	Met	Pro	Leu	Gly	Ala 885	Thr	Gly	Leu							
25	(2)	INFO	ORMA	rion	FOR	SEQ	ID N	10:3	:								
30			I) () ()	A) LI B) T) C) S(D) T(CE CHENGTHE PE: TRANI	nucl DEDNI DGY:	107 h Leic ESS: line	acio doul	pai:	ĊS							
		(ii)) MOI	LECUI	LE TY	PE:	cDN?	4									
35		(ix)	(]		E: AME/F CATI			290	56								
		(ix)	(F	ATURI A) NI B) LO	E: AME/F OCATI	CEY:	sig_ 315.	pept	ide								
40		(ix)	()	ATURI A) NI B) LO	E: AME/F DCATI	ŒY: ION:	mat_ 375.	pept	ide 66								
45		(xi)	SEÇ	QUENC	CE DE	ESCRI	PTIC	ON: 5	SEQ 1	D NO	0:3:						
	GAA:	rrcc	TG ?	AGTG	CATGO	G AC	GGT	CTG	A ATA	ATTC	CGAG	ACAC	CTGG	GAC (CACA	GCGGCA	60
	GCT	CCGC1	GA A	AAACI	rgcai	TT C	AGCC#	GTC	TC	CGGA	CTTC	TGG	AGCG(GGG 2	ACAG	GGCGCA	120
50	GGG	CATC	AGC A	AGCC	ACCAC	C AC	GACC	TGG	AA.	ATAG	GAT	TCTI	CTG	CCT (CCAC	TCAGG	180
50	TTT	PAGC	AGC 1	rtgg	rgeti	AA AI	TGCT	rgtc:	CA	AAT	GCAG	AGG	TCT	AAT :	TTGC	AGAGGA	240
	AAA	CAGCO	CAA A	AGAA	GAAC	A GO	AGG	AAAA	GA,	LAAA	AAAA	GGGG	TAT	ATT (GTGG	ATGCTC	300
5	TACT	PTTTC	CTT (GGAA	ATG Met	Gln	AAG Lys	ATT Ile	ATG Met	CAT	ATT Il	TCT Ser	GTC Val	CTC Leu	CTT	TCT Ser	350

5	CCT Pro	GTT Val	TTA Leu	TGG Trp -5	GGA Gly	CTG Leu	ATT Ile	TTT Phe	GGT Gly l	GTC Val	TCT Ser	TCT Ser	AAC Asn 5	AGC Ser	ATA Ile	CAG Gln		398
10	ATA Ile	GGG Gly 10	GGG Gly	CTA Leu	TTT Phe	CCT Pro	AGG Arg 15	GGC Gly	GCC Ala	GAT Asp	CAA Gln	GAA Glu 20	TAC Tyr	AGT Ser	GCA Ala	TTT Phe		446
	CGA Arg 25	GTA Val	GGG Gly	ATG Met	GTT Val	CAG Gln 30	TTT Phe	TCC Ser	ACT Thr	TCG Ser	GAG Glu 35	TTC Phe	AGA Arg	CTG Leu	ACA Thr	CCC Pro 40		494
15	CAC His	ATC Ile	GAC Asp	AAT Asn	TTG Leu 45	GAG Glu	GTG Val	GCA Ala	AAC Asn	AGC Ser 50	TTC Phe	GCA Ala	GTC Val	ACT Thr	AAT Asn 55	GCT Ala		542
00	TTC Phe	TGC Cys	TCC Ser	CAG Gln 60	TTT Phe	TCG Ser	AGA Arg	GGA Gly	GTC Val 65	TAT Tyr	GCT Ala	ATT Ile	TTT Phe	GGA Gly 70	TTT Phe	TAT Tyr		590
20	GAC Asp	AAG Lys	AAG Lys 75	TCT Ser	GTA Val	AAT Asn	ACC Thr	ATC Ile 80	ACA Thr	TCA Ser	TTT Phe	TGC Cys	GGA Gly 85	ACA Thr	CTC Leu	CAC His		638
25	GTC Val	TCC Ser 90	TTC Phe	ATC Ile	ACT Thr	CCC Pro	AGC Ser 95	TTC Phe	CCA Pro	ACA Thr	GAT Asp	GGC Gly 100	ACA Thr	CAT His	CCA Pro	TTT Phe		686
	GTC Val 105	ATT Ile	CAG Gln	ATG Met	AGA Arg	CCC Pro 110	GAC Asp	CTC Leu	AAA Lys	GGA Gly	GCT Ala 115	CTC Leu	CTT Leu	AGC Ser	TTG Leu	ATT Ile 120		734
30	GAA Glu	TAC Tyr	TAT Tyr	CAA Gln	TGG Trp 125	GAC Asp	AAG Lys	TTT Phe	GCA Ala	TAC Tyr 130	CTC Leu	TAT Tyr	GAC Asp	AGT Ser	GAC Asp 135	AGA Arg		782
35	GGC Gly	TTA Leu	TCA Ser	ACA Thr 140	CTG Leu	CAA Gln	GCT Ala	GTG Val	CTG Leu 145	GAT Asp	TCT Ser	GCT Ala	GCT Ala	GAA Glu 150	AAG Lys	AAA Lys		830
	TGG Trp	CAA Gln	GTG Val 155	ACT Thr	GCT Ala	ATC Ile	AAT Asn	GTG Val 160	GGA Gly	AAC Asn	ATT Ile	AAC Asn	AAT Asn 165	GAC Asp	AAG Lys	AAA Lys		878
40	GAT Asp	GAG Glu 170	ATG Met	TAC Tyr	CGA Arg	TCA Ser	CTT Leu 175	TTT Phe	CAA Gln	GAT Asp	CTG Leu	GAG Glu 180	TTA Leu	AAA Lys	AAG Lys	GAA Glu		926
45	CGG Arg 185	CGT Arg	GTA Val	ATT Ile	CTG Leu	GAC Asp 190	TGT Cys	GAA Glu	AGG Arg	GAT Asp	AAA Lys 195	GTA Val	AAC Asn	GAC Asp	ATT Ile	GTA Val 200		974
45	GAC Asp	CAG Gln	GTT Val	ATT Ile	ACC Thr 205	ATT Ile	GGA Gly	ГЛа УУУ	CAC His	GTT Val 210	AAA Lys	GGG Gly	TAC Tyr	CAC His	TAC Tyr 215	ATC Ile	1	.022
50	ATT Ile	GCA Ala	AAT Asn	CTG Leu 220	GGA Gly	TTT Phe	ACT Thr	GAT Asp	GGA Gly 225	GAC Asp	CTA Leu	TTA Leu	AAA Lys	ATC Ile 230	CAG Gln	TTT Phe	1	.070
	GGA Gly	GGT Gly	GCA Ala 235	AAT Asn	GTC Val	TCT Ser	GGA Gly	TTT Phe 240	CAG Gln	ATA Ile	GTG Val	GAC Asp	TAT Tyr 245	GAT Asp	GAT Asp	TCG Ser	1	118
55	TTG Leu	GTA Val 250	TCT Ser	AAA Lys	TTT Phe	ATA Ile	GAA Glu 255	AGA Arg	TGG Trp	TCA Ser	ACA Thr	CTG Leu 260	GAA Glu	GAA Glu	AAA Lys	GAA Glu.	. 1	166

5	265	FIO	GIY	vra	CAC His	270	The	Thr	lie	Lys	Tyr 275	Thr	Ser	Ala	Leu	Thr 280	1214
	171	vab	NIG	Val	CAA Gln 285	vai	wet	Thr	Glu	Ala 290	Phe	Arg	Asn	Leu	Arg 295	Lys	1262
10	GIII	ALG	116	300	ATC Ile	ser	Arg	Arg	Gly 305	Asn	Ala	Gly	Asp	Сув 310	Leu	Ala	1310
15	Nell	PIO	315	Val	CCC Pro	Trp	GIĄ	320	GIÀ	Val	Glu	Ile	Glu 325	Arg	Ala	Leu	1358
	AAA Lys	CAG Gln 330	GTT Val	CAG Gln	GTT Val	GAA Glu	GGT Gly 335	CTC Leu	TCA Ser	GGA Gly	AAT Asn	ATA Ile 340	AAG Lys	TTT Phe	GAC Asp	CAG Gln	1406
20	AAT Asn 345	GGA Gly	AAA Lys	AGA Arg	ATA Ile	AAC Asn 350	TAT Tyr	ACA Thr	ATT	AAC Asn	ATC Ile 355	ATG Met	GAG Glu	CTC Leu	AAA Lys	ACT Thr 360	1454_
25	AAT Asn	GGG Gly	CCC Pro	CGG Arg	AAG Lys 365	ATT Ile	GGC Gly	TAC Tyr	TGG Trp	AGT Ser 370	GAA Glu	GTG Val	GAC Asp	AAA Lys	ATG Met 375	GTT Val	1502
	GTT Val	ACC Thr	CTT Leu	ACT Thr 380	GAG Glu	CTC Leu	CCT Pro	TCT Ser	GGA Gly 385	AAT Asn	GAC Asp	ACC Thr	TCT Ser	GGG Gly 390	CTT Leu	GAG Glu	1550
30	AAT Asn	AAG Lys	ACT Thr 395	GTT Val	GTT Val	GTC Val	ACC Thr	ACA Thr 400	ATT Ile	TTG Leu	GAA Glu	TCT Ser	CCG Pro 405	TAT Tyr	GTT Val	ATG Met	1598
	ATG Met	AAG Lys 410	AAA Lys	TAA Asn	CAT His	GAA Glu	ATG Met 415	CTT Leu	GAA Glu	GGC Gly	AAT Asn	GAG Glu 420	CGC Arg	TAT Tyr	GAG Glu	GGC Gly	1646
35	TAC Tyr 425	TGT Cys	GTT Val	GAC Asp	CTG Leu	GCT Ala 430	GCA Ala	GAA Glu	ATC Ile	GCC Ala	AAA Lys 435	CAT His	CY8	GGG Gly	TTC Phe	AAG Lys 440	1694
40	TAC Tyr	AAG Lys	TTG Leu	ACA Thr	ATT Ile 445	GTT Val	GGT Gly	GAT Asp	GGC Gly	AAG Lys 450	TAT Tyr	GGG Gly	GCC Ala	AGG Arg	GAT Asp 455	GCA Ala	1742
	GAC Asp	ACG Thr	AAA Lys	ATT Ile 460	TGG Trp	AAT Asn	Gly	Met	GTT Val 465	Gly	GAA Glu	CTT Leu	GTA Val	TAT Tyr 470	GGG Gly	AAA Lys	1790
45	GCT Ala	GAT Asp	ATT Ile 475	GCA Ala	ATT Ile	GCT Ala	CCA Pro	TTA Leu 480	ACT Thr	ATT Ile	ACC Thr	CTT Leu	GTG Val 485	AGA Arg	GAA Glu	GAG Glu	1838
50	GTG Val	ATT Ile 490	GAC Asp	TTC Phe	TCA Ser	AAG Lys	CCC Pro 495	TTC Phe	ATG Met	AGC Ser	CTC Leu	GGG Gly 500	ATA Ile	TCT Ser	ATC Ile	ATG Met	1886
30	ATC Ile 505	LYB	AAG Lys	CCT Pro	CAG Gln	AAG Lys 510	TCC Ser	AAA Lys	CCA Pro	GGA Gly	GTG Val 515	TTT Phe	TCC Ser	TTT Phe	CTT Leu	GAT Asp 520	1934
55	CCT Pro	TTA Leu	GCC Ala	TAT Tyr	GAG Glu 525	ATC Ile	TGG Trp	ATG Met	TGC Cys	ATT Ile 530	GTT Val	TTT Phe	GCC Ala	TAC Tyr	ATT Ile 535	GGG Gly	1982

5	GTC Val	AGT Ser	GTA Val	GTT Val 540	TTA L u	TTC Phe	CTG Leu	GTC Val	AGC Ser 545	Arg	TTT Phe	AGC Ser	CCC Pro	TAC Tyr 550	GAG Glu	TGG Trp	2030
10	ura	inr	555	GIU	Pne	GIu	Asp	Gly 560	Arg	Glu	Thr	Gln	AGT Ser 565	Ser	Glu	Ser	2078
	IIIL	570	GIU	Pne	GIY	IIe	9he 575	Asn	Ser	Leu	Trp	Phe 580	TCC Ser	Leu	Gly	Ala	2126
15	585	met	Arg	GIN	GIY	590	Asp	Ile	Ser	Pro	Arg 595	Ser	CTC Leu	Ser	Gly	Arg 600	2174
20	116	vai	GIY	GIY	605	Trp	Trp	Phe	Phe	Thr 610	Leu	Ile	ATA Ile	Ile	Ser 615	Ser	2222
20	TYL	Int	WIG	620	rea	Ϋ́Ισ	Ala	Phe	Leu 625	Thr	Val	Glu	AGG Arg	Met 630	Val	Ser	2270
25	CCC Pro	ATC Ile	GAA Glu 635	AGT Ser	GCT Ala	GAG Glu	GAT Asp	CTT Leu 640	TCT Ser	AAG Lys	CAA Gln	ACA Thr	GAA Glu 645	ATT Ile	GCT Ala	TAT Tyr	2318
	GIY	650	Leu	Asp	Ser	GIA	Ser 655	Thr	Lys	Glu	Phe	Phe 660	AGG Arg	Arg	Ser	Lys	2366
30	665	ATA	VAI	Pne	Asp	670	Met	Trp	Thr	Tyr	Met 675	Arg	AGT Ser	Ala	Glu	Pro 680	2414
	ser	Val	Pne	vai	685	Thr	Thr	Ala	Glu	Gly 690	Val	Ala	AGA Arg	Val	Arg 695	Lys	2462
35	261	Lys	GIŞ	700	Tyr	Ala	туг	Leu	105	Glu	Ser	Thr	ATG Met	Asn 710	Glu	Tyr	2510
40	116	GIU	715	Arg	rys	Pro	Сув	720	Thr	Met	Lys	Val	GGT Gly 725	Gly	Asn	Leu	2558
	Asp	730	гав	GIĀ	Tyr	GIĀ	735	Ala	Thr	Pro	Lys	Gly 740	TCC Ser	Ser	Leu	Gly	2606
45	745	PIO	vai	ABR	rea	750	Val	Leu	Lys	Leu	Ser 755	Glu	CAA Gln	Gly	Val	Leu 760	2654
	мвр	гув	Leu	гЛв	765	rys	Trp	Trp	Tyr	Asp 770	Lys	Gly	GAA Glu	Сув	Gly 775	Ala	2702
50	гав	Авр	ser	780	ser	Lys	Glu	Lys	785	Ser	Ala	Leu	AGT Ser	Leu 790	Ser	Aen	2750
55	GTT Val	GCT Ala	GGA Gly 795	GTA Val	TTC Phe	TAC Tyr	ATC Ile	CTT Leu 800	GTC Val	gjy GGG	GGC Gly	CTT Leu	GGT Gly 805	TTG Leu	GCA Ala	ATG Met	2798

5	CTG Leu	GTG Val 810	GCT Ala	TTG Leu	ATT Ile	GAG Glu	TTC Phe 815	ТGТ Сув	TAC Tyr	AAG Lys	TCA Ser	AGG Arg 820	GCC Ala	GAG Glu	GCG Ala	AAA Lys	2846
10	CGA Arg 825	ATG Met	AAG Lys	GTG Val	GCA Ala	AAG Lys 830	AAT Asn	GCA Ala	CAG Gln	AAT Asn	ATT Ile 835	AAC Asn	CCA Pro	TCT Ser	TCC Ser	TCG Ser 840	2894
70	CAG Gln	AAT Asn	TCA Ser	CAG Gln	AAT Asn 845	TTT Phe	GCA Ala	ACT Thr	TAT Tyr	AAG Lys 850	GAA Glu	GGT Gly	TAC Tyr	AAC Aan	GTA Val 855	TAT Tyr	2942
15	GGC Gly	ATC Ile	GAA Glu	AGT Ser 860	GTT Val	AAA Lys	ATT Ile	TAGO	EGGAT	GA C	CTT	AATO	A TO	CCAT	GAG(3	2993
	AACA	AGGC	CAA	GCTC	TCAR	T TA	CAG	AAGI	C ACT	'GGAC	AAA	ATG	ACG	GT 1	TATG	ACTCCA	3053
	GAAT	TTC	CA 2	AAGCN	GTGC	A TO	CTG	reces	TAC	GTGA	GTC	CTG	CATO	GG I	ATG	AATGTC	3113
20	AGTO	TGAC	CTG I	ATCTO	CTCGI	G AI	TGAT	'AAG	A ACC	TTT	GAG	TGC	CTTAC	CAC P	ATG	STTTTC	3173
	TTGT	GTGT	TT I	ATTG1	CAAA	G TO	GTG	AGAGO	CAT	CCAC	TAT	CTT	AAG	CT 1	TTC	TTTCAG	3233
	CCAP	GAAT	TC T	TAAF	TATO	T GO	AGT	CATO	TTC	AATI	CTA	AGG	ATG	ATT A	ATT	AAAACA	3293
25	CAAC	CATCI	TT :	TCTA	CTC	A GI	TAC	AGAC	A AAC	CGT	GTG	GAC	ATGC	CA C	CTA	ACATGG	3353
	AAGT	TACT	ATA A	ATTTA	CCT	A AC	TCT	TGT	A CAC	ACA	ACAA	ACC:	GTT:	CT (CAG		3407
	(2)	INFO	ימשפר	rion	₽∩P	SEO	TD 1	10 . 4									
30	(2)			SEQUE		_											
		·	(~)	(A) (B)		GTH:	: 88: amino	am:	ino a id		3						
		(3	ii)	MOLE	CULE	TYPE	: pı	rote	in								
35		(;	ci)	SEQUE	ENCE	DESC	CRIP	rion	: SEQ	Q ID	NO:	4:					
	Met -20	Gln	Lys	Ile	Met	His -15	Ile	Ser	Val	Leu	Leu -10	Ser	Pro	Val	Leu	Trp -5	
40	Gly	Leu	Ile	Phe	Gly 1	Val	Ser	Ser	Aøn 5	Ser	Ile	Gln	Ile	Gly 10	Gly	Leu	
	Phe	Pro	Arg 15	Gly	Ala	Авр	Gln	Glu 20	Tyr	Ser	Ala	Phe	Arg 25	Val	Gly	Met	
45	Val	Gln 30	Phe	Ser	Thr	Ser	Glu 35	Phe	Arg	Leu	Thr	Pro 40	His	Ile	Asp	Asn	
	Leu 45	Glu	Val	Ala	Asn	Ser 50	Phe	Ala	Val	Thr	Asn 55	Ala	Phe	СЛв	Ser	Gln 60	
50				Gly	65	•				70					75		
				80					85					90		Ile	
55	Thr	Pro	s r 95	Phe	Pro	Thr	Asp	Gly 100	Thr	His	Pro	Phe	Val 105	Ile	Gln	Met	

	Arg	Pro 110	Asp	Leu	Lys	Gly	Ala 115	Leu	Leu	Ser	Leu	Ile 120	Glu	Tyr	Tyr	Gln
5	Trp 125	Asp	Lys	Phe	Ala	Tyr 130	Leu	Tyr	Asp	Ser	Авр 135	Arg	Gly	Leu	Ser	Thr 140
	Leu	Gln	Ala	Val	Leu 145	Asp	Ser	Ala	Ala	Glu 150	Lys	Lys	Trp	Gln	Val 155	Thr
10	Ala	Ile	Asn	Val 160	Gly	Asn	Ile	Asn	Asn 165	Asp	Lys	Lys	Авр	Glu 170	Met	Tyr
	Arg	Ser	Leu 175	Phe	Gln	Asp	Leu	Glu 180	Leu	ГЛв	Lys	Glu	Arg 185	Arg	Val	Ile
15	Leu	Asp 190	Сув	Glu	Arg	Asp	Lys 195	Val	Asn	Asp	Ile	Val 200	Asp	Gln	Val	Ile
	Thr 205	Ile	Gly	Lys	His	Val 210	Lys	Gly	Tyr	His	Tyr 215	Ile	Ile	Ala	Asn	Leu 220
20	Gly	Phe	Thr	Asp	Gly 225	Asp	Leu	Leu	Lys	Ile 230	Gln	Phe	Gly	Gly	Ala 235	Asn
	Val	Ser	Gly	Phe 240	Gln	Ile	Val	Asp	Tyr 245	Asp	Asp	Ser	Leu	Val 250	Ser	Lys
25	Phe	Ile	Glu 255	Arg	Trp	Ser	Thr	Leu 260	Glu	Glu	Lys	Glu	Tyr 265	Pro	Gly	Ala
	His	Thr 270	Thr	Thr	Ile	ГÀв	Tyr 275	Thr	Ser	Ala	Leu	Thr 280	туr	Asp	Ala	Val
30	Gln 285	Val	Met	Thr	Glu	Ala 290	Phe	Arg	Asn	Leu	Arg 295	Lys	Gln	Arg	Ile	Glu 300
	Ile	Ser	Arg	Arg	Gly 305	Asn	Ala	Gly	day	Cys 310	Leu	Ala	Asn	Pro	Ala 315	Val
35 ·	Pro	Trp	Gly	Gln 320	Gly	Val	Glu	Ile	Glu 325	Arg	Ala	Leu	Lys	Gln 330	Val	Gln
	Val	Glu	Gly 335	Leu	Ser	Gly	Asn	Ile 340	Lys	Phe	Asp	Gln	Asn 345	Gly	Lys	Arg
40	Ile	Asn 350	Tyr	Thr	Ile	Asn	Ile 355	Met	Glu	Leu	Lys	Thr 360	Asn	Gly	Pro	Arg
	Lys 365	Ile	Gly	Tyr	Trp	Ser 370	Glu	Val	Asp	Lys	Met 375	Val	Val	Thr	Leu	Thr 380
45	Glu	Leu	Pro	Ser	Gly 385	Asn	Авр	Thr	Ser	Gly 390	Leu	Glu	Asn	Lув	Thr 395	Val
	Val	Val	Thr	Thr 400	Ile	Leu	Glu	Ser	Pro 405	Tyr	Val	Met	Met	Lys 410	Lys	Asn
50	His	Glu	Met 415	Leu	Glu	Gly	Asn	Glu 420	Arg	Tyr	Glu	Gly	Tyr 425	Сув	Val	qsA
	Leu	Ala 430	Ala	Glu	Ile	Ala	Lys 435	His	Сув	Gly	Phe	Lys 440	Tyr	Lys	Leu	Thr
55	11e 445	Val	Gly	Asp	Gly	Lys 450	Tyr	Gly	Ala	Arg	Asp 455	Ala	Asp	Thr	ГÀв	Ile 460

	Trp	Asn	Gly	Met	Val 465	Gly	Glu	Leu	Val	Tyr 470	Gly	Lys	Ala	Asp	Ile 475	Ala
5	Ile	Ala	Pro	Leu 480	Thr	Ile	Thr	Leu	Val 485	Arg	Glu	Glu	Val	Ile 490	Asp	Phe
	Ser	Lys	Pro 495	Phe	Met	Ser	Leu	Gly 500	Ile	Ser	Ile	Met	Ile 505	Lys	Lys	Pro
10	Gln	Lув 510	Ser	Lys	Pro	Gly	Val 515	Phe	Ser	Phe	Leu	Asp 520	Pro	Leu	Ala	Tyr
	Glu 525	Ile	Trp	Met	Сув	11e 530	Val	Phe	Ala	Tyr	Ile 535	Gly	Val	Ser	Val	Val 540
15				Val	545					550			-		555	
				Gly 560					565					570		
20			575	Asn				580					585		_	
		590		Ile			595					600			-	_
25	605			Phe		610					615					620
				Phe	625					630					635	
30				Leu 640					645					650		_
			655	Thr				660					665			
35		670		Trp			675					680				
	685			Ala		690					695					700
40				Leu	705					710					715	-
				720					725					730		Gly
45			/35	Ala				740					745			
		750		Leu			755					760				-
50	/65			Trp		770					775					780
	Ser			Lys	785					790					795	
55	Ph	Tyr	Ile	L u 800	Val	Gly	Gly	Leu	Gly 805	Leu	Ala	Met	Leu	Val 810	Ala	Leu

5 .	Ile	Glu	Phe 815	Сув	Tyr	Lys	Ser	Arg 820	Ala	Glu	Ala	Lys	A rg 825	Met	Lys	Val	
	Ala	Lys 830	Asn	Ala	Gln	Asn	Ile 835	Asn	Pro	Ser	Ser	Ser 840	Gln	Asn	Ser	Gln	
10	Asn 845	Phe	Ala	Thr	Tyr	Lys 850	Glu	Gly	Tyr	Aen	Val 855	Tyr	Gly	Ile	Glu	Ser 860	
	Val	Lys	Ile														
15	(2)					SEQ											
15		(i	(A) L B) T C) S	engt Ype: Tran	HARA H: 2 nuc DEDN: OGY:	761 leic ESS:	base aci dou	pai d	rs							
20		(ii) мо	LECU	LE T	YPE:	CDN	A									
		(ix)	(ATURI A) Ni B) Lo	AME/	KEY: ION:	від 79.	_pep	tide								
25		(ix)	(ATURI A) Ni B) Lo	AME/	KEY: ION:	mat_ 145.	_pep(tide 45								
30		(ix)	(2		AME/I	KEY: ION:		274	5								
						ESCR											
35																CGTAGC	60
	AIGC	CCAG	rge z	-GAAC	MAA	ATG Met -22	Gly	Gln -20	Ser	GTG Val	CTC	CGG Arg	GCG Ala -15	GTC Val	TTC Phe	TTT Phe	111
40	Ded	-10	Leu	GIY	Leu	TTG Leu	-5	HTB	Ser	His	Gly	Gly 1	Phe	Pro	Asn	Thr 5	159
	116	261	116	GIÀ	10	CTT Leu	Pne	Met	Arg	Asn 15	Thr	Val	Gln	Glu	His 20	Ser	207
45	GCT Ala	TTC Phe	CGC Arg	TTT Phe 25	GCC Ala	GTG Val	CAG Gln	TTA Leu	TAC Tyr 30	AAC Asn	ACC Thr	AAC	CAG Gln	AAC Asn 35	ACC Thr	ACC Thr	255
50	GAG Glu	AAG Lys	CCC Pro 40	TTC Phe	CAT His	TTG Leu	AAT Asn	TAC Tyr 45	CAC His	GTA Val	GAT Asp	CAC His	TTG Leu 50	GAT Asp	TCC Ser	TCC Ser	303
50	AAT Asn	AGT Ser 55	rne	TCC Ser	GTG Val	ACA Thr	AAT Asn 60	GCT Ala	TTC Phe	TGC Cys	TCC Ser	CAG Gln 65	TTC Phe	TCG Ser	AGA Arg	GGG Gly	351
55	GTG Val 70	TAT Tyr	GCC Ala	ATC Ile	TTT Phe	GGA Gly 75	TTC Phe	TAT Tyr	GAC Asp	CAG Gln	ATG Met 80	TCA Ser	ATG Met	AAC Asn	ACC Thr	CTG Leu 85	399

5				Oy 5	GGG Gly 90	nia	Leu	HIB	Thr	ser 95	Phe	Val	Thr	Pro	Ser 100	Phe	447
10	Pro	Thr	Asp	GCA Ala 105	GAT	GTG Val	CAG Gln	TTT	GTC Val 110	ATC Ile	CAG Gln	ATG Met	CGC Arg	CCA Pro 115	GCC Ala	TTG Leu	495
	AAG Lys	GGC Gly	GCT Ala 120	ATT	CTG Leu	AGT Ser	CTT Leu	CTG Leu 125	GGT Gly	CAT His	TAC Tyr	AAG Lys	TGG Trp 130	GAG Glu	AAG Lys	TTT Phe	543
15	GTG Val	TAC Tyr 135	CTC Leu	TAT	GAC Asp	ACA Thr	GAA Glu 140	CGA Arg	GGA Gly	TTT	TCC Ser	ATC Ile 145	Leu	CAA Gln	GCG Ala	ATT Ile	591
	ATG Met 150		GCA Ala	GCA Ala	GTG Val	CAA Gln 155	AAC Asn	AAC Asn	TGG Trp	CAA Gln	GTA Val 160	ACA Thr	GCA Ala	AGG Arg	TCT Ser	GTG Val 165	639
20	4-1		110	פעם	GAC Asp 170	Val	GIN	GIU	Pne	175	Arg	Ile	Ile	Glu	Glu 180	Met	687
25		9	ary.	185	GAA Glu	гув	Arg	Tyr	190	IIe	Asp	Сув	Glu	Val 195	Glu	Arg	735
		11011	200	116	TTG Leu	GIU	GIN	205	Val	He	Leu	GIA	Lys 210	His	Ser	Arg	783
30	GGT Gly	TAT Tyr 215	CAC His	TAC Tyr	ATG Met	CTC Leu	GCT Ala 220	AAC Asn	CTG Leu	GGT Gly	TTT Phe	ACT Thr 225	GAT Asp	ATT Ile	TTA Leu	CTG Leu	831
35	GAA Glu 230	AGA Arg	GTC Val	ATG Met	CAT His	GGG Gly 235	GGA Gly	GCC Ala	AAC Asn	ATT Ile	ACA Thr 240	GGT Gly	TTC Phe	CAG Gln	ATT Ile	GTC Val 245	879
30	AAC Asn	AAT Asn	GAA Glu	AAC Asn	CCT Pro 250	ATG Met	GTT Val	CAG Gln	CAG Gln	TTC Phe 255	ATA Ile	CAG Gln	CGC Arg	TGG Trp	GTG Val 260	AGG Arg	927
40	CTG Leu	GAT Asp	GAA Glu	AGG Arg 265	GAA Glu	TTC Phe	CCT Pro	GAA Glu	GCC Ala 270	AAG Lys	AAT Asn	GCA Ala	CCA Pro	CTA Leu 275	AAG Lys	TAT Tyr	975
	ACA Thr	TCT Ser	GCA Ala 280	TTG Leu	ACA Thr	UIB	GAC Asp	ALA	lle	CTG Leu	GTC Val	Ile	GCA Ala 290	GAA Glu	GCT Ala	TTC Phe	1023
45	CGC Arg	TAC Tyr 295	CTG Leu	AGG Arg	AGG Arg	CAG Gln	CGA Arg 300	GTA Val	GAT Asp	GTG Val	TCC Ser	CGG Arg 305	AGA Arg	GGA Gly	AGT Ser	GCT Ala	1071
50	GGA Gly 310	GAC Asp	TGC Cys	TTA Leu	GCA Ala	AAT Asn 315	CCT Pro	GCT Ala	GTG Val	CCC Pro	TGG Trp 320	AGT Ser	CAA Gln	GGA Gly	ATT Ile	GAT Asp 325	1119
	ATT Ile	GAG Glu	AGA Arg	GCT Ala	CTG Leu 330	AAA Lys	ATG Met	GTG Val	CAA Gln	GTA Val 335	CAA Gln	GGA Gly	ATG Met	ACT Thr	GGA Gly 340	AAT Aen	1167
55	ATT Ile	CAA Gln	TTT Phe	GAC Asp 345	ACT Thr	TAT Tyr	GGA Gly	CGT Arg	AGG Arg 350	ACA Thr	AAT Asn	TAT Tyr	ACC Thr	ATC Ile 355	GAT Asp	GTG Val	1215

5										GGC Gly					1263
10										ATC Ile 385					1311
10										ACC Thr					1359
15										CTG Leu					1407
										GAA Glu					1455 -
20										GAC Asp					1503
25										ATG Met 465					1551
										CTC Leu					1599
30										TTA Leu			_	_	1647
35										AAA Lys					1695
										ATG Met		Ile		TTT Phe	1743
40		Ile												AGT Ser	1791
	Tyr		_		_		_	_		Glu	_	_	_	Pro 565	1839
45					Pro				Gly					CTT	1887
50				Gly				Gln					Ser	CCA Pro	1935
	 		Ser				Gly					Phe		ACC Thr	1983
55		Ile				Thr					Ala			ACT Thr	2031

5						TCT Ser 635										2079
						TAT Tyr										2127
10						AAA Lys										2175
15						CCA Pro										2223
						AAG Lys										2271
20						TAC Tyr 715										2319
25						CTG Leu										2367
						GGA Gly			Asn							2415
30				Gly		TTG Leu		Leu								2463
35						AGC Ser	Gly					Asp				2511
30		Leu									Tyr				GGA Gly 805	2559
40						Met				Ile					Lys	2607
					Ser				Leu					Glr	AAC ABn	2655
45				Ala				Thr					Thr		AGA Arg	2703
50			Tyr			TAT	Thr					Ile		GGAT	rccc	2752
	тто	GAAT	TC													276

57 A2

ΕP	0	574	25
	•	· · ·	

(2)	INFORMATION	FOR	SEQ	ID	NO:6:
-----	-------------	-----	-----	----	-------

(1)	SEQUENCE	CHAR	ACTE	RISTI	CS:
	(A) LE	NGTH:	888	amin	o acid

(A) LENGTH: 888 amino(B) TYPE: amino acid(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

10		()	(i) S	EQUE	NCE	DESC	RIPT	: NOI	SEÇ) ID	NO: 6	5:				
	Met -22	Gly	Gln -20	Ser	Val	Leu	Arg	Ala -15	Val	Phe	Phe	Leu	Val -10	Leu	Gly	Leu
15	Leu	Gly -5	His	Ser	His	Gly	Gly 1	Phe	Pro	Asn	Thr 5	Ile	Ser	Ile	Gly	Gly 10
	Leu	Phe	Met	Arg	Asn 15	Thr	Val	Gln	Glu	His 20	Ser	Ala	Phe	Arg	Phe 25	Ala
20	Val	Gln	Leu	Tyr 30	Asn	Thr	Asn	Gln	Asn 35	Thr	Thr	Glu	Lys	Pro 40	Phe	His
	Leu	Asn	Tyr 45	aiH	Val	Авр	His	Leu 50	Asp	Ser	Ser	Asn	Ser 55	Phe	Ser	Val
25	Thr	Asn 60	Ala	Phe	Сув	Ser	Gln 65	Phe	Ser	Arg	Gly	Val 70	Tyr	Ala	Ile	Phe
	Gly 75	Phe	Tyr	Asp	Gln	Met 80	Ser	Met	Asn	Thr	Leu 85	Thr	Ser	Phe	Сув	Gly 90
30	Ala	Leu	His	Thr	Ser 95	Phe	Val	Thr	Pro	Ser 100	Phe	Pro	Thr	Asp	Ala 105	Asp
	Val	Gln	Phe	Val 110	Ile	Gln	Met	Arg	Pro 115	Ala	Leu	Lys	Gly	Ala 120	Ile	Leu
35	Ser	Leu	Leu 125	Gly	His	Tyr	Lys	Trp 130	Glu	Lys	Phe	Val	Tyr 135	Leu	Tyr	Asp
	Thr	Glu 140	Arg	Gly	Phe	Ser	Ile 145	Leu	Gln	Ala	Ile	Met 150	Glu	Ala	Ala	Val
40	Gln 155	Asn	Asn	Trp	Gln	Val 160	Thr	Ala	Arg	Ser	Val 165	Gly	Asn	Ile	Lys	Asp 170
	Val	Gln	Glu	Phe	Arg 175	Arg	Ile	Ile	Glu	Glu 180	Met	Asp	Arg	Arg	Gln 185	Glu
45	ГÀВ	Arg	Tyr	Leu 190	Ile	Asp	Сув	Glu	Val 195	Glu	Arg	Ile	Asn	Thr 200	Ile	Leu
	Glu	Gln	Val 205	Val	Ile	Leu	Gly	Lys 210	His	Ser	Arg	Gly	Tyr 215	His	Tyr	Met
50	Leu	Ala 220	Asn	Leu	Gly	Phe	Thr 225	Asp	Ile	Leu	Leu	Glu 230	Arg	Val	Met	His
	Gly 235	Gly	Ala	Asn	Ile	Thr 240	Gly	Phe	Gln	Ile	Val 245	Asn	Asn	Glu	Asn	Pro 250
55	Met	Val	Gln	Gln	Phe 255	Ile	Gln	Arg	Trp	Val 260	Arg	Leu	Asp	Glu	Arg 265	Glu

Phe Pro Glu Ala Lys Asn Ala Pro Leu Lys Tyr Thr Ser Ala Leu Thr 270 275 280

55

	His	Asp	Ala 285	Ile	Leu	Val	Ile	Ala 290	Glu	Ala	Phe	Arg	Tyr 295	Leu	Arg	Arg
5	Gln	Arg 300	Val	Asp	Val	Ser	Arg 305	Arg	Gly	Ser	Ala	Gly 310	Asp	Сув	Leu	Ala
	Asn 315	Pro	Ala	Val	Pro	Trp 320	Ser	Gln	Gly	Ile	Asp 325	Ile	Glu	Arg	Ala	Leu 330
10	ГЛS	Met	Val	Gln	Val 335	Gln	Gly	Met	Thr	Gly 340	Asn	Ile	Gln	Phe	Asp 345	Thr
	Tyr	Gly	Arg	Arg 350	Thr	Asn	Tyr	Thr	Ile 355	Asp	Val	Tyr	Glu	Met 360	Lys	Val
15	Ser	Gly	Ser 365	Arg	Lys	Ala	Gly	Tyr 370	Trp	Asn	Glu	Tyr	Glu 375	Arg	Phe	Val
	Pro	Phe 380	Ser	Asp	Gln	Gln	Ile 385	Ser	Asn	Asp	Ser	Ala 390	Ser	Ser	Glu	Asn
20	Arg 395	Thr	Ile	Val	Val	Thr 400	Thr	Ile	Leu	Glu	Ser 405	Pro	Tyr	Val	Met	Tyr 410
	Lys	Lys	Asn	His	Glu 415	Gln	Leu	Glu	Gly	Asn 420	Glu	Arg	Tyr	Glu	Gly 425	Tyr
25	Cys	Val	Asp	Leu 430	Ala	Tyr	Glu	Ile	Ala 435	Lys	His	Val	Arg	Ile 440	Lys	Tyr
	Lys	Leu	Ser 445	Ile	Val	Gly	Asp	Gly 450	Lys	Tyr	Gly	Ala	Arg 455	Asp	Pro	Glu
30	Thr	Lys 460	Ile	Trp	Asn	Gly	Met 465	Val	Gly	Glu	Leu	Val 470	Tyr	Gly	Arg	Ala
	Asp 475	Ile	Ala	Val	Ala	Pro 480	Leu	Thr	Ile	Thr	Leu 485	Val	Arg	Glu	Glu	Val 490
35	Ile	Asp	Phe	Ser	Lys 495	Pro	Leu	Met	Ser	Leu 500	Gly	Ile	Ser	Ile	Met 505	Ile
	Lys	ГÀв	Pro	Gln 510	Lув	Ser	Lys	Pro	Gly 515	Val	Phe	Ser	Phe	Leu 520	Asp	Pro
40	Leu	Ala	Tyr 525	Glu	Ile	Trp	Met	Сув 530	Ile	Val	Phe	Ala	Tyr 535	Ile	Gly	Val
	Ser	Val 540	Val	Leu	Phe	Leu	Val 545	Ser	Arg	Phe	Ser	Pro 550	Tyr	Glu	Trp	His
45	Leu 555	Glu	Asp	Asn	Asn	Glu 560	Glu	Pro	Arg	Asp	Pro 565	Gln	Ser	Pro	Pro	Asp 570
	Pro	Pro	Asn	Glu	Phe 575	Gly	Ile	Phe	Asn	Ser 580	Leu	Trp	Phe	Ser	Leu 585	Gly
50	Ala	Phe	Met	Gln 590	Gln	Gly	Сув	Asp	Ile 595	Ser	Pro	Arg	Ser	Leu 600	Ser	Gly
	Arg	Ile	Val 605	Gly	Gly	Val	Trp	Trp 610	Phe	Phe	Thr	Leu	Ile 615	Ile	Ile	Ser
55	Ser	Tyr 620	Thr	Ala	Asn	Lu	Ala 625	Ala	Phe	Leu	Thr	Val 630	Glu	Arg	Met	Val

	Ser 635	Pro	Ile	Glu	Ser	Ala 640	Glu	Asp	Leu	Ala	Lys 645	Gln	Thr	Glu	Ile	Ala 650
5	Tyr	Gly	Thr	Leu	Asp 655	Ser	Gly	Ser	Thr	Lys 660	Glu	Phe	Phe	Arg	Arg 665	Ser
	Lys	Ile	Ala	Val 670	Tyr	Glu	Lys	Met	Trp 675	Ser	Tyr	Met	Lys	Ser 680	Ala	Glu
10	Pro	Ser	Val 685	Phe	Thr	Lys	Thr	Thr 690	Ala	Asp	Gly	Val	Ala 695	Arg	Val	Arg
	Lys	Ser 700	Lys	Gly	ГÀв	Phe	Ala 705	Phe	Leu	Leu	Glu	Ser 710	Thr	Met	Asn	Glu
15	Tyr 715	Ile	Glu	Gln	Arg	Lys 720	Pro	Сув	Asp	Thr	Met 725	Lys	Val	Gly	Gly	Asn 730
	Leu	Asp	Ser	ГÀв	Gly 735	Tyr	Gly	Val	Ala	Thr 740	Pro	Lys	Gly	Ser	Ala 745	Leu
20	Gly	Asn	Ala	Val 750	Asn	Leu	Ala	Val	Leu 755	Lys	Leu	Asn	Glu	Gln 760	Gly	Leu
	Leu	Asp	Lys 765	Leu	Lys	Asn	Lys	Trp 770	Trp	Tyr	Asp	Lys	Gly 775	Glu	СЛв	Gly
25	Ser	Gly 780	Gly	Gly	Asp	Ser	Lys 785	Asp	Lys	Thr	Ser	Ala 790	Leu	Ser	Leu	Ser
	Asn 795	Val	Ala	Gly	Val	Ph e 800	Tyr	Ile	Leu	Val	Gly 805	Gly	Leu	Gly	Leu	Ala 810
30	Met	Met	Val	Ala	Leu 815	Ile	Glu	Phe	Сув	Tyr 820	Lys	Ser	Arg	Ala	Glu 825	Ser
	Lys	Arg	Met	Lys 830	Leu	Thr	Lys	Asn	Thr 835	Gln	Asn	Phe	Lys	Pro 840		Pro
35	Ala	Thr	As n 845	Thr	Gln	Asn	Tyr	Ala 850		Tyr	Arg	Glu	Gly 855		Asn	Val
	Tyr	Gly 860		Glu	Ser	Val	Lys 865	Ile								
40	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 7	:							
		(i	· (QUEN A) L B) T	ENGT	н: 3	070	base	pai	rs						
45			į	C) S D) T	TRAN	DEDN	ESS:	dou								
		(ii) МО	LECU	LE T	YPE:	cDN	A								
50	,	(ix	(ATUR A) N B) L	AME/					•						
e e		(ix	(ATUR A) N B) L	AME/					•						

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 79..2745

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

10	GAATTCCTGA CGACTCCTGA GTTGCGCCCA TGCTCTTGTC AGCTTCGTTT TAGGCGTAGC														60		
,,,	ATG	GCAG	GC P	GAAG	AAA	ATG Met -22	GGG Gly	CAA Gln -20	AGC Ser	GTG Val	CTC Leu	CGG Arg	GCG Ala -15	GTC Val	TTC Phe	TTT Phe	111
15	TTA Leu	GTC Val -10	CTG Leu	GGG Gly	CTT Leu	TTG Leu	GGT Gly -5	CAT His	TCT Ser	CAC His	GGA Gly	GGA Gly 1	TTC Phe	CCC Pro	AAC Asn	ACC Thr 5	159
	ATC Ile	AGC Ser	ATA Ile	GGT Gly	GGA Gly 10	CTT Leu	TTC Phe	ATG Met	AGA Arg	AAC Asn 15	ACA Thr	GTG Val	CAG Gln	GAG Glu	CAC His 20	AGC Ser	207
20	GCT Ala	TTC Phe	CGC Arg	TTT Phe 25	GCC Ala	GTG Val	CAG Gln	TTA Leu	TAC Tyr 30	AAC Asn	ACC Thr	AAC Asn	CAG Gln	AAC Asn 35	ACC Thr	ACC Thr	255
25	GAG Glu	AAG Lys	CCC Pro 40	TTC Phe	CAT His	TTG Leu	AAT Asn	TAC Tyr 45	CAC His	GTA Val	GAT Asp	CAC His	TTG Leu 50	GAT Asp	TCC Ser	TCC Ser	303
	Asn	Ser 55	Phe	Ser	Val	Thr	Asn 60	Ala	Phe	Сув	Ser	CAG Gln 65	Phe	Ser	Arg	Gly	351
30	GTG Val 70	TAT Tyr	GCC Ala	ATC Ile	TTT Phe	GGA Gly 75	TTC Phe	TAT Tyr	GAC Asp	CAG Gln	ATG Met 80	TCA Ser	ATG Met	AAC Asn	ACC Thr	CTG Leu 85	399
35	ACC Thr	TCC Ser	TTC Phe	тст Сув	GGG Gly 90	GCC Ala	CTG Leu	CAC His	ACA Thr	TCC Ser 95	TTT Phe	GTT Val	ACG Thr	CCT Pro	AGC Ser 100	TTC Phe	447
	CCC Pro	ACT Thr	GAC Asp	GCA Ala 105	GAT Asp	GTG Val	CAG Gln	TTT Phe	GTC Val 110	ATC Ile	CAG Gln	ATG Met	CGC Arg	CCA Pro 115	GCC Ala	TTG Leu	495
40	AAG Lys	GGC Gly	GCT Ala 120	ATT Ile	CTG Leu	AGT Ser	CTT Leu	CTG Leu 125	GGT Gly	CAT His	TAC Tyr	AAG Lys	TGG Trp 130	GAG Glu	AAG Lys	TTT Phe	543
45	GTG Val	TAC Tyr 135	CTC Leu	TAT Tyr	GAC Asp	ACA Thr	GAA Glu 140	CGA Arg	GGA Gly	TTT	TCC	ATC Ile 145	CTC Leu	CAA Gln	GCG Ala	ATT Ile	591
-	ATG Met 150	GAA Glu	GCA Ala	GCA Ala	GTG Val	CAA Gln 155	AAC Asn	AAC Asn	TGG Trp	CAA Gln	GTA Val 160	ACA Thr	GCA Ala	AGG Arg	TCT Ser	GTG Val 165	639
50	GGA Gly	AAC Asn	ATA Ile	AAG Lys	GAC Asp 170	GTC Val	CAA Gln	GAA Glu	Phe	AGG Arg 175	CGC Arg	ATC Ile	ATT Ile	G AA Glu	GAA Glu 180	ATG Met	687
	GAC Asp	AGG Arg	AGG Arg	CAG Gln 185	GAA Glu	AAG Lys	CGA Arg	TAC Tyr	TTG Leu 190	ATT	GAC Asp	TGC Cys	GAA Glu	GTC Val 195	GAA Glu	AGG Arg	735

5							GTG Val								783
10							CTG Leu								831
							AAC Asn								879
15							CAG Gln								927
00							GCC Ala 270								975
20							ATA Ile								1023
25							GAT Asp								1071
							GTG Val			Ser					1119
30														AAT Asn	1167
35														GTG Val	1215
			Lys									Trp		GAG Glu	1263
40						Ser								AGT Ser	1311
	Ser									Thr				Ser 405	1359
45					Lys				Gln					GAA Glu	1407
50				Tyr				Ala					Lye	CAT His	1455
			Lys				Ile					Lys		GGT Gly	1503
55		Авр				Ile					. Val			CTT Leu	1551

5	GTC Val 470	TAT Tyr	GGG Gly	AGA Arg	GCT Ala	GAT Asp 475	ATA Ile	GCT Ala	GTT Val	GCT Ala	CCA Pro 480	CTC Leu	ACT Thr	ATA Ile	ACA Thr	TTG Leu 485		1599
10	GTC Val	CGT Arg	GAA Glu	GAA Glu	GTC Val 490	ATA Ile	GAT Asp	TTT Phe	TCA Ser	AAG Lys 495	CCA Pro	TTA Leu	ATG Met	AGC Ser	CTG Leu 500	GGC Gly		1647
	ATC Ile	TCC Ser	ATC Ile	ATG Met 505	ATA Ile	AAG Lys	AAG Lys	CCT Pro	CAG Gln 510	AAA Lys	TCA Ser	AAA Lys	CCA Pro	GGC Gly 515	GTA Val	TTC Phe		1695
15	TCA Ser	TTT Phe	CTG Leu 520	GAT Asp	CCC Pro	CTG Leu	GCT Ala	TAT Tyr 525	GAA Glu	ATC Ile	TGG Trp	ATG Met	TGC Cys 530	ATT Ile	GTC Val	TTT Phe		1743
	GCT Ala	TAC Tyr 535	ATT Ile	GGA Gly	GTC Val	AGC Ser	GTA Val 540	GTT Val	CTT Leu	TTC Phe	CTA Leu	GTC Val 545	AGC Ser	AGG Arg	TTC Phe	AGT Ser		1791
20	CCT Pro 550	TAT Tyr	GAA Glu	TGG Trp	CAC His	TTG Leu 555	GAA Glu	GAC Asp	AAC Asn	AAT Asn	GAA Glu 560	GAA Glu	CCT Pro	CGT Arg	GAC Asp	CCA Pro 565		1839
25						CCT Pro												1887
	TGG Trp	TTT Phe	TCC Ser	TTG Leu 585	GGT Gly	GCC Ala	TTT Phe	ATG Met	CAG Gln 590	CAA Gln	GGA Gly	ТСТ Сув	GAT Asp	ATT Ile 595	TCT Ser	CCA Pro		1935
30	AGA Arg	TCA Ser	CTC Leu 600	TCC Ser	GGG Gly	CGC Arg	ATT Ile	GTT Val 605	GGA Gly	GGG Gly	GTT Val	TGG Trp	TGG Trp 610	TTC Phe	TTC Phe	ACC Thr		1983
35						TCC Ser												2031
						TCT Ser 635										AAA Lys 645		2079
40																GAA Glu		2127
						AAA Lys										TAC Tyr		2175
45									Phe							GGA Gly		2223
50			Arg													GAG Glu		2271
												Pro				ATG Met 725		2319
55						Leu										Pro	•.	2367

5	AAA Lys	GGC Gly	TCA Ser	GCA Ala 745	TTA Leu	GGA Gly	ACG Thr	CCT Pro	GTA Val 750	AAC Asn	CTT Leu	GCA Ala	GTA Val	TTG Leu 755	AAA Lys	CTC Leu	2415
	AGT Ser	GAA Glu	CAA Gln 760	GGC Gly	ATC Ile	TTA Leu	GAC Asp	AAG Lys 765	CTG Leu	AAA Lys	AAC Asn	Lys Lys	TGG Trp 770	TGG Trp	TAC Tyr	GAT Asp	2463
10	AAG Lys	GGG Gly 775	GAA Glu	TGT Cys	GGA Gly	GCC Ala	AAG Lys 780	GAC Asp	TCC Ser	GGG Gly	AGT Ser	AAG Lys 785	GAC Asp	AAG Lys	ACC Thr	AGC Ser	2511
15	GCT Ala 790	CTG Leu	AGC Ser	CTG Leu	AGC Ser	AAT Asn 795	GTG Val	GCA Ala	GGC Gly	GTT Val	TTC Phe 800	TAT Tyr	ATA Ile	CTT Leu	GTC Val	GGA Gly 805	2559
	GGT Gly	CTG Leu	G G G	CTG Leu	GCC Ala 810	ATG Met	ATG Met	GTG Val	GCT Ala	TTG Leu 815	ATA Ile	GAA Glu	TTC Phe	TGT Cys	TAC Tyr 820	AAA Lys	2607
20				GAG Glu 825													2655
25	TTT Phe	AAG Lys	CCT Pro 840	GCT Ala	CCT Pro	GCC Ala	ACC Thr	AAC Asn 845	ACT Thr	CAG Gln	AAT Asn	TAT Tyr	GCT Ala 850	ACA Thr	TAC Tyr	AGA Arg	2703
				AAC Asn										TAG	GGAT	ccc	2752
3 <i>0</i>	TTC	CCAC	rgg i	AGGC	ATGT	GA TO	GAGA	GGAA.	A TC	ACCG	AAAA	CGT	GGCT	GCT	TCAA	GGATCC	2812
	TGA	GCCA	GAT '	TTCA	CTCT	CC T	rggte	GTCG	G GC	ATGA	CACG	AAT	ATTG	CTG .	ATGG'	TGCAAT	2872
	GAC	CTTT	CAA '	TAGG!	AAAA	AC TO	GATT'	TTTT'	r tt	TCCT	TCAG	TGC	CTTA	TGG	AACA	CTCTGA	2932
05	GAC'	TCGC	GAC A	AATG	CAAA	CC A	CAT'	IGAA.	A TC	TTTT	TGCT	TTG	CTTG.	AAA .	AAAA	TTAATT	2992
35	AAA	ATAA	AAA	CCAA	CAAA	AA T	GGAC	ATGC.	A TC	AAAC	CCTT	GAT	GTAT	TAA	TATT'	TATTAT	3052
	AGT'	TTTC	ATT 2	AGGAI	ATTC												3070
40	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	8:08	:								
			(i) :	(В		NGTH PE:	: 88:	8 am o ac	ino . id	: acid	8						
45		(ii)	MOLE	CULE	TYP	E: p	rote	in								
		(xi) :	SEOU	ENCE	DES	CRIP	TTON	: SE	0 TD	NO:	8 :					

Met Gly Gln Ser Val Leu Arg Ala Val Phe Phe Leu Val Leu Gly Leu -10

Leu Gly His Ser His Gly Gly Phe Pro Asn Thr Ile Ser Ile Gly Gly 10

Leu Phe Met Arg Asn Thr Val Gln Glu His Ser Ala Phe Arg Phe Ala 15

Val Gln Leu Tyr Asn Thr Asn Gln Asn Thr Thr Glu Lys Pro Phe His 30

	Leu	Asn	Tyr 45	His	Val	Asp	His	Leu 50	qaA	Ser	Ser	Asn	Ser 55	Phe	Ser	Val
5	Thr	Asn 60	Ala	Phe	Сув	Ser	Gln 65	Phe	Ser	Arg	Gly	Val 70	Tyr	Ala	Il	Phe
	Gly 75	Phe	Tyr	Авр	Gln	Met 80	Ser	Met	Asn	Thr	Leu 85	Thr	Ser	Phe	Сув	Gly 90
10	Ala	Leu	His	Thr	Ser 95	Phe	Val	Thr	Pro	Ser 100	Phe	Pro	Thr	Asp	Ala 105	Asp
	Val	Gln	Phe	Val 110	Ile	Gln	Met	Arg	Pro 115	Ala	Leu	Lys	Gly	Ala 120	Ile	Leu
15	Ser	Leu	Leu 125	Gly	His	Tyr	Lys	Trp 130	Glu	Lys	Phe	Val	Tyr 135	Leu	Tyr	Asp
	Thr	Glu 140	Arg	Gly	Phe	Ser	Ile 145	Leu	Gln	Ala	Ile	Met 150	Glu	Ala	Ala	Val-
20	Gln 155	Asn	Asn	Trp	Gln	Val 160	Thr	Ala	Arg	Ser	Val 165	Gly	Asn	Ile	Lys	Asp 170
	Val	Gln	Glu	Phe	Arg 175	Arg	Ile	Ile	Glu	Glu 180	Met	Asp	Arg	Arg	Gln 185	Glu
25	Lys	Arg	Tyr	Leu 190	Ile	Asp	Сув	Glu	Val 195	Glu	Arg	Ile	Asn	Thr 200	Ile	Leu
	Glu	Gln	Val 205	Val	Ile	Leu	Gly	Lys 210	His	Ser	Arg	Gly	Tyr 215	His	Tyr	Met
30	Leu	Ala 220	Asn	Leu	Gly	Phe	Thr 225	Asp	Ile	Leu	Leu	Glu 230	Arg	Val	Met	His
	Gly 235	Gly	Ala	Asn	Ile	Thr 240	Gly	Phe	Gln	Ile	Val 245	Asn	Asn	Glu	Asn	Pro 250
35	Met	Val	Gln	Gln	Phe 255	Ile	Gln	Arg	Trp	Val 260	Arg	Leu	Asp	Glu	Arg 265	Glu
	Phe	Pro	Glu	Ala 270	Lys	Asn	Ala	Pro	Leu 275	Lys	Tyr	Thr	Ser	Ala 280	Leu	Thr
40	His	Asp	Ala 285	Ile	Leu	Val	Ile	Ala 290	Glu	Ala	Phe	Arg	Tyr 295	Leu	Arg	Arg
	Gln	Arg 300	Val	Asp	Val	Ser	Arg 305	Arg	Gly	Ser	Ala	Gly 310	Asp	Сув	Leu	Ala
45	Asn 315	Pro	Ala	Val	Pro	Trp 320	Ser	Gln	Gly	Ile	Asp 325	Ile	Glu	Arg	Ala	Leu 330
	Lys	Met	Val	Gl'n	Val 335	Gln	Gly	Met	Thr	Gly 340	Asn	Ile	Gln	Phe	Авр 345	Thr
50	Tyr	Gly	Arg	Arg 350	Thr	Asn	Tyr	Thr	Ile 355	Asp	Val	Tyr	Glu	Met 360	Lys	Val
	Ser	Gly	Ser 365	Arg	Lys	Ala	Gly	Tyr 370	Trp	Asn	Glu	Tyr	Glu 375	Arg	Phe	Val
55	Pro	Phe 380	Ser	увр	Gln	Gln	Ile 385	Ser	Asn	Asp	Ser	Ala 390	Ser	Ser	Glu	Asn

	Arg '	Thr	Ile	Val V		Thr 400	Thr	Ile	Leu	Glu	Ser 405	Pro	Tyr	Val :	Met 1	Tyr 410
5	Lys :	Lys	Asn		Glu (415	Gln	Leu	Glu	Gly	Asn 420	Glu	Arg	Tyr	Glu	Gly ' 425	Tyr
	Сув	Val		Leu 7 430	Ala '	Tyr	Glu	Ile	Ala 435	Lys	His	Val	Arg	Ile 440	Lys	Tyr
10	Lys		Ser 445	Ile	Val (Gly	Asp	Gly 450	Lys	Tyr	Gly	Ala	Arg 455	Asp	Pro	Glu
	Thr	Lys 460	Ile	Trp	Asn	Gly	Met 465	Val	Gly	Glu	Leu	Val 470	Tyr	Gly	Arg	Ala
15	Asp 475	Ile	Ala	Val		Pro 480	Leu	Thr	Ile	Thr	Leu 485	Val	Arg	Glu	Glu	Val 490
	Ile	Asp	Phe	Ser	Lys 495	Pro	Leu	Met	Ser	Leu 500	Gly	Ile	Ser	Ile	Met 505	Ile
20	Lys	Lys	Pro	Gln 510	Lys	Ser	Lys	Pro	Gly 515	Val	Phe	Ser	Phe	Leu 520	Asp	Pro
			525					530			Phe		535			
25		540					545				Şer	550				
	555					560					9ro 565					570
30					575					580					585	
				590					595	•	Pro			600		
35			605					610	ı		• Thr		615	5		
		620					625					630)			Val
40	635					640)				645	5				Ala 650
	_				655					660	D				665	
45	_			670)				679	5				680)	Glu
			685	5				690)				69:	5		. Arg
50	-	700	י ס				709	5				710	0			ı Glu
	715	5				72	0				72	5				7 Asn 730
55	Let	ı Ası	p Se	r Lys	Gly 735		r Gl	y Va	l Al	a Th 74	r Pr	o Ly	s Gl	y Se	r Ala 74	a Leu 5

	Gly	Thr	Pro	Val 750	Asn	Leu	Ala	Val	Leu 755	Lys	Leu	Ser	Glu	Gln 760	Gly	Ile	
5	Leu	Asp	Lys 765	Leu	Lys	Asn	Lys	Trp 770	Trp	Tyr	Asp	Lys	Gly 775	Glu	Сув	Gly	
	Ala	Lys 780	Asp	Ser	Gly	Ser	Lys 785	Asp	Lys	Thr	Ser	Ala 790	Leu	Ser	Leu	Ser	
10	Asn 795	Val	Ala	Gly	Val	Phe 800	Tyr	Ile	Leu	Val	Gly 805	Gly	Leu	Gly	Leu	Ala 810	
	Met	Met	Val	Ala	Leu 815	Ile	Glu	Phe	Сув	Tyr 820	Lys	Ser	Arg	Ala	Glu 825	Ser	
15	Lys	Arg	Met	Lys 830	Leu	Thr	Lys	Asn	Thr 835	Gln	Asn	Phe	Lys	Pro 840	Ala	Pro	
	Ala	Thr	Asn 845	Thr	Gln	Asn	Tyr	Ala 850	Thr	Tyr	Arg	Glu	Gly 855	Tyr	Asn	Val	
20	Tyr	Gly 860	Thr	Glu	Ser	Val	Lys 865	Ile									
	(2)	INFO	ORMA:	rion	FOR	SEQ	ID 1	NO: 9	:								
25) SE(QUENC A) LI B) T	CE CE ENGTI	IARA H: 40 amin	CTER:	ISTI ino cid	cs:	s							
30		(ii)) MO	LECUI	LE T	YPE:	pept	tide									
		(xi) SE	QUEN	CE DI	ESCR	IPTIC	on:	SEQ	ID N	0:9:						
35		Gl ₃	y Se	r Ala	a Le	u Gl; 5	y Ası	n Al	a Va	l As	n Le	u Al	a Va	l Le	u Ly	Leu 15	Asn
		Gl	u Gl	n Gl	Let 20	u Le	u As _l	p Ly	s Le	u Ly 25	s As	n Ly	s Tr	p Tr	р Ту: 30	r Asp	Lys
40		Gl	y Gl	u Cy:	s Gl	y Se	r Gl	y Gl	y Gl 40		p Se	r Ly	s As	p Ly 45	s Th	r	
	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO: 1	0:								
45		(i	· (,	QUENCA) L: B) T: D) T	ENGTI	H: 4 ami	6 am no a	ino cid		8							
		(ii) MO	LECU	LE T	YPE:	pep	tide									
50		(xi) SE	QUEN	CE D	ESCR	IPȚI	ON:	SEQ	ID N	0:10	:					
		G1; 1		r Al	a Le	u G1 5	y Th	r Pr	o Va	l As	n Le 10		a Va	l Le	u Ly	s Leu 15	Ser
55		G1	u Gl	n Gl	y Il 20	e Le	u As	p Ly	s Le	u Ly 25		n Ly	s Tr	p Tr	р Ту 30	r Asp	Lys

5	Gly Glu Cys Gly Ala Lys Asp Ser Gly Ser Lys Asp Lys Thr 35 40 45	
	(2) INFORMATION FOR SEQ ID NO:11:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Other nucleic acid; (A) DESCRIPTION: Synthetic DNA oligonucleotide	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	AGCTTGCGGC CGC	13
20	(2) INFORMATION FOR SEQ ID NO:12:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: Other nucleic acid; (A) DESCRIPTION: Synthetic DNA oligonucleotide	
	(iv) ANTI-SENSE: YES	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	GCGGCCGCA	9
35	(2) INFORMATION FOR SEQ ID NO:13:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Other nucleic acid; (A) DESCRIPTION: Synthetic DNA oligonucleotide	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	ACACTCAGAA TTACGCTACA TACAGAGAAG GCTACAACGT	40
	(2) INFORMATION FOR SEQ ID NO:14:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: Other nucleic acid; (A) DESCRIPTION: Synthetic DNA oligonucleotide	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CCAGATCGAT ATTGTGAACA TCAGCGACAC GTTTGAGATG

40

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid;
 - (A) DESCRIPTION: Synthetic DNA oligonucleotide

15

5

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTGAATGTGG AGCCAAGGAC TCGGGAAGTA AG

32

20

35

40

Claims

- 25 1. An isolated polynucleotide comprising a region which encodes an AMPA-binding human GluR receptor selected from the group consisting of human GluR1B, GluR2B, GluR3A and GluR3B receptors, and AMPA-binding fragments thereof.
- 2. An isolated polynucleotide according to claim 1, which encodes said GluR1B receptor, said GluR2B receptor, said GluR3A receptor or said GluR3B receptor.
 - 3. An isolated polynucleotide comprising a region which encodes an AMPA-binding variant of a GluR receptor selected from the group consisting of human GluR1B, GluR2B, GluR3A and GluR3B receptors, wherein said variant has the binding profile of said receptor and varies from said receptor by conservative amino acid substitution.
 - 4. An isolated polynucleotide according to any one of claims 1 to 3, which consists of DNA.
 - A recombinant DNA construct having incorporated therein a polynucleotide as defined in any one of claims 1 to 4.
 - 6. A recombinant DNA construct according to claim 5, wherein the polynucleotide incorporated therein is linked operably with DNA enabling expression and secretion of said receptor in a cellular host.
- A recombinant DNA construct according to claim 5, which is plasmid pBS/humGluR3A (ATCC 75218), plasmid pBS/humGluR3B (ATCC 75219); plasmid pBS/humGluR1B (ATCC 75246) or plasmid pBS/humGluR2B (ATCC 75217).
 - A cellular host having incorporated therein a heterologous polynucleotide as defined in any one of claims 1 to 4.

- 9. A cellular host according to claim 8, which is a mammalian cell.
- 10. An AMPA-binding membrane preparation derived from a cellular host as defined in claim 8 or claim 9.
- 11. A process for obtaining a substantially homogeneous source of human GluR receptor, which comprises the step of culturing a cellular host as defined in claim 8 or claim 9, and then recovering the cells so cultured.
 - 12. A process for obtaining a substantially homogeneous source of human GluR receptor according to claim

11 comprising the subsequent step of obtaining a membrane preparation from the cultured cells.

- 13. A method of assaying a substance for binding to a human EAA receptor, which comprises the steps of incubating the substance under appropriate conditions with a cellular host as defined in claim 8 or claim 9, or with an AMPA-binding membrane preparation derived therefrom, and determining the extent of binding between the human GluR receptor and the substance.
- 14. An isolated human GluR receptor selected from the group consisting of GluR1B, GluR2B, GluR3A and GluR3B receptors, and AMPA-binding fragments thereof, in a form essentially free from other proteins of human origin.
 - 15. An AMPA-binding fragment of a human GluR receptor selected from the group consisting of GluR1B, GluR2B, GluR3A and GluR3A receptors.
- 15 16. An antibody which binds a human GluR receptor selected from the group consisting of GluR1B, GluR2B, GluR3A and GluR3B receptors.
 - 17. An immunogenic fragment of a human GluR receptor selected from the group consisting of GluR1B, GluR2B, GluR3A and GluR3B receptors.
 - **18.** An oligonucleotide which comprises at least about 17 nucleic acids and which hybridizes selectively with a polynucleotide defined in any one of claims 1 to 4.

45

5

10

20

25

30

35

40

45

50

×

S

ſц

Ø

S

Ö

ſτι

 α

 \Rightarrow

Н

 \mathbf{x}

団

ſτι

Н

Д

ഗ

Н

Z

>

120

	ECORI F/G. /A
•	A.A
1	CTTAAGGTGTGGTTTAGATACTAACCTGGACCCGAAGAAAAAGCGGTTACGTTTTCCTT
7	TATGCAGCACATTTTTGCCTTCTTCTGCACCGGTTTCCTAGGCGCGGTAGTAGGTGCCAA
5	•
	MQHIFAFCTGFLGAVVGA,N-
121	TTTCCCCAACAATATCCAGATCGGGGGATTATTTCCAAACCAGCAGTCACAGGAACATGC
	AAAGGTCTTGTTAGCCCCCTAATAAAGGTTTGGTCGTCGTCGTTGTACG
ά	AGCCCCGAAGCTGCTCCCCCAGATTGA
+ > +	ACGAAAATCTAAACGAAACAGCGTTGAGTGTCTCGGGGGGCTTCGACGAGGGGGGTCTAACT
	AFRFALSQLTEPPKLLPQID -
241	
<u> </u>	ATAACACTTGTAGTCGCTGTGCAAACTCTACTGGATATCTAAGACAAGGGTCAAGAGGTT

F/G. 18

ı	V L D T A A E K N W O V T A V N I L T T -	
	IGTCGACGACTCTTCTTGACCGTCCACTGTCGTCAGTTGTAAAACTGTTG	1 !
704	AGTCCTGGATACAGCTGCTGAGAACTGGCAGGTGACAGCAGCAGTCAACATTTTGACAAC	541
1	KWQKFVYIYDADRGLSVLQK-	
	TAGGCAGGACGTCTT	1) *
7	CAAGTGGCAGAAATTTGTCTACATTTATGATGCCGACCGGGGCTTATCCGTCCTGCAGAA	187
1	FVLQLRPELQDALISIIDHY-	
4 & C	CGTAGTAACTGGTAAT	1 7 7
Č		101
1	CGALHVCFITPSFPVDTSNQ-	
7 7	GGGAGGTGCAGAAGTAATGCGGCTCGAAAGGGCAACTATGTAGGTTAGT	5
	TIGIGGGCCCTCCACGICTGCTTCATTACGCCGAGCTTTCCCCGTTGATACATCCAATCA	361
ſ	G V Y A I F G F Y E R R T V N M L T S F -	
ם יו	GATACGGTAGAAACCCAAAATACTTGCATCCTGACAGTTGTACGACTGGAGGAA	ተ ጋ ገ
Ċ	ACCTCCTT	201

F16.1C

	000	1	4 + 720 E	ı	780	i	0		t		006	1
ຼີອອງ	CCCTATGGCCTACGAGAAAGTCCTGGACCTCTTCTTTTCCTCGCCGACCA	>	CTGTGAATCAGAACGCCTCAATGCTATCTTGGGCCAGATTATAAAGCTAGA ++++++	ы	CATGGACATTGACTT + GTACCTGTAACTGAA	H	CAAGGAGAGTGGCGCCAATGTGACAGGTTTCCAGCTGGTGAACTACACAGA	GTTCCTCTCACCGCGGTTACACTGTCCAAAGGTCGACCACTTGATGTGTCT	Ω	GGCCAAGATCATGCAGCAGTGGAAGAATAGTGATGCTCGAGACCACACACG	CCGGTTCTAGTACGTCGTCACCTTCTTATCACTACGAGCTCTGGTGTGTGC	ĸ
ຼິວ	,cG7	Н	(GC)	Н	TGP	Ω	CAC	GTG	H	CAC	GTG	EH
)))	090	æ	AAA 	×	CAT GTA	н	CTA	GAT	×	CCA	GGT	Ħ
GGA -	CCI	ធ	TAT -+- ATA	н	GGA -+- CCT	Ω	GAA	CTT	z >	AGA	ICT	Ω
AAA	TTT	×	GAT CTA	н	CAT 	X	i GGT	CCA	>	rc _G	AGC.	ø
GAA	CTT	×	CCA	Ø	CTT	ſΞ4	3CT(CGA(ы	rgc	ACG.	Æ
BAA:	CTT	×	30 i 50	D I	9000	ഗ	CA(GT(Ø	GAJ	CT	Ω
3GA(CT	臼	CTTC	H	CATCGGCTACCATTCTTGCAAATCTGGGCTT +++	ᆸ	TT	AAA	ſΞų	AG	TCZ	ß
CCIC	3GA(ы	rate 	н	AAA TTI	z	\GGJ	CCZ	ტ	AA1	TT	z
3GA(CTC	Ω	19C7	Æ	19C7	Æ	ACP	TGI	H	AAG	TIC	×
CAC.	GTC	O	AAT +-	z	CTT	ц	GTGAC	CAC	T >	TGG	ACC	3
TT	AA	ſΞι	CTC	L1	TAT	н	CAAT	TTA	z	CAG	GTC	Ø
CIO	GAG	H	000	æ	TAC	≯	000	552	Æ	CAG	GTC	Ø
3ATG	TAC	X	GAA +	ы	CAC +	Ħ	SAGTGGCG	522	ტ	ATG	TAC	X
990	gcc	K.	TCA 	S	TAC ATG	×	AGT	TCA	S	ATC	TAG	н
TAC	ATG	>-	GAA CIT	臼	200	Ŋ	GGAG	CTC	ш	AAG.	rīc.	×
GGA	CCI	IJ	TGT 	υ	ATC. 	н	CAAG	LTC	×	2255	1000	Æ
3AGG(CIC	щ	SAC +	Д	36C)	٠. ن	rrc,	AAG	E4	2000	3600	<u>и</u>
3AG	CTC		TGC		GAATG CTTAC		AAA	TT		ATTC	AAG	
CACAGAGGAGGGATACCGGATGCTCTTTCAGGACCTGGAGAAAAAAAA	GIGICICCI	EI EI	GGTGGTGGACTGTGAATCAGAACGCCTCAATGCTATCTTGGGCCAGATTATAAAGCTAGA ++++++	Λ Λ	GAAGAATGGCATCGGCTACCACTACATTCTTGCAAATCTGGGCTTCATGGACATTGACTT +++	Z X	AAACAAATT	Ö	× =	CACTATTCC		Н
CA		(¬	661		GP 721 CT	. 13 4	AA		Z	CP.		H
ũ			9		7:		2	_		à	5	

ì

G

×

ĸ

G

Ω

二

×

Σ

Œ

I

Н

 \vdash

z

Н

pc,

F1G. 10

096	I	1020	i	1080	1	1140	1	1200
GGTGGACTGGAAGAGCCCAAGTACACCTCTGCGCTCACCTACGATGGGGTGAAGGTGAT 1++++++++	V D W K R P K Y T S A L T Y D G V K V M	GGCTGAGGCTTTCCAGAGCCTGCGGAGGCAGAATTGATATATTCTCGCCGGGGGAATGC 1+++++++	AEAFQSLRRQRIDISRRGNA	TGGGGATTGTCTGGCTAACCCAGCTGTTCCCTGGGGCCAAGGGATCGACATCCAGAGAGC 1++++++ ACCCCTAACAGACCGATTGGGTCGACAAGGGACCCCGGTTCCCTAGCTGTAGGTCTCTCG	G D C L A N P A V P W G Q G I D I Q R A	TCTGCAGCAGGTGCGATTTGAAGGTTTAACAGGAAACGTGCAGTTTAATGAGAAAGGACG ++++	LQQVRFEGLTGNVQFNEKGR	CCGGACCAACTACACGCTCCACGTGATTGAAATGAAACATGACGGCATCCGAAAGATTGG +++++++
.901		961		1021		1081		1141

1

臼

G

 \mathbf{z}

G

Z

3

Ø

×

⊱

Ω

 ρ_4

Ω

 α

Ø

G

×

G

Д

F1G. 1E

700	170	I	Č	132(1	0	1386	ı	,	1 4 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	, ,	70c 1
TGAAGATGATAAGTTTGTCCCTGCAGCCACCGATGCCCAAGCTGGGGGGCGA	ACTICTACTATICAAACAGGACGICGGIGGCIACGGGITCGACCCCCGCI	Q	TGTTCAGAACAGAACATACATCGTCACAACAATCCTAGAAGATCCTTATGT	ACAAGTCTTGTCTTGTAGCAGTGTTGTTAGGATCTTCTAGGAATACA	>	GAAGAACGCCAATCAGTTTGAGGGCAATGACCGTTACGAGGGCTACTGTGT	CTICTTGCGGTTAGTCAAACTCCCGTTACTGGCAATGCTCCCGATGACACA	>	CAG	AACAGTC	S	AGA	TATGCCTCGGGCTCTGGGACTGTCCGGACCTTACCGTACCACCTCT
999	CCC	ტ	TT	AAT	×	CTG	GAC	ပ	TGT	ACA	>	მმმ	222
TGG	ACC	ტ	TCC	AGG	Д	CTA	GAT	×	GAT	CTA	Н	GGT	CCA
AAGO	TCC	Ø	AAGA	TTCTA	Ω	1666	3000	ტ	GGA	CCI	田	CAT	GTA
2003	3667	Ø	rag?	ATCI	四	ACGA	ကြင္	臼	TCI	AGE	IJ	TGG	ACC
ATG(TAC	Æ	ICC.	TTGTTAGGATC	ы	GAAGAACGCCAATCAGTTTGAGGGCAATGACCGTTACGAGGGCTAC	CAA	×	ACGIGGCIACTCCIACCGICT	rgga	¤	3GA.	CTJ
CCG	1 4 1 66 C	Ω	CAA)	GTT	Н	ACC(IGG(ĸ	CCT	3GA:	×	CCTC	3GA(
CCA	GGT	e E	CAA	GTT	E	ATG.	TAC	Ω	ACT	TGA(S	AGG(FCC
CAG	GTC	A	TCA	TAGCAGT	YIVT	GCA	CGT	Z	GCT	CGA	×	CGA	GCT
CTG	GAC	æ u	TCG	AGC	>	AGG	TCC	ტ aa	TGG	ACC	٥ ک	CCCTGACAC	TGL
TCC	AGG	ъ >	ACA	TGT	н .	TTG	AAC	ធ	ACG	TGC		CTG	GAC
TTC	AAC	اط ا	CAI	GTA	T	AGT	TCA	E4	AGC	TCG	K H	ACC	TGG
AAGT	LTCZ	×	AACAGAACA	CTJ	H T	AATC	TAG	o z	CCA	GGI	X K	GAG	CTC
BATAB	CTAD	Ω Ω	AACA	rtgi	z	CCA	7661	Z Z	ATT	PAAC		2000	3666
BATC	CTAC	П	CAG	TCI	2 04	AACO	TGC	z z	AGE	TCI	H H	GAG	CTC
TGAAC	CTT	ы	TGTT	CAAC	>	AAGA	rtci	×	GGCAG	GTC	A E	ATACC	TGC
AAT(rta(z	4GT(rca(S	AAG1	rtc	×	3000	- 2000	A	AAA	T.T.
rgg/	ACC	X	rcal	AGT	ω o,	CTC	3AG	i I	CTGC	BACC	I 7	SGAZ	CTJ
TTACTGGAA	AATGACCTT	>4	TAATTCAAG	ATTAAGTTC	z	GATGCTCAA	CTACGAGTT	X	AGAGCTGGCGGCAGAGTTGCCAAGCACGTGGGCTACTCCTACCGTCTGGAGATTGTCAG	TCTCGACCGCCGTCTCTAACGGTTCGTGCACCCGATGAGGATGGCAGACCTCTAACAGTC	<u>ы</u>	TGATGGAAAATACGGAGCCCCGAGACCCTGACACGAAGGCCTGGAATGGCATGGTGGGAGA	ACTACCTTT
T 1001			T .T			9 LC51			A 1381			E4	•

F16. 1F

1501	GCTGGTCTATGGAAGAGCAGATGTGGCTGTGGCTCCCTTAACTATCACTTTGGTCCGGGA	1560
	L V Y G R A D V A V A P L T I T L V R E	ı
	AGAAGTTATAGATTTCTCCAAACCATTTATGAGTTTGGGGATCTCCATCATGATTAAAAA ++++++-	1620
		ı
	ACCACAGAAATCCAAGCCGGGTGTCTTCTCCTTCCTTGATCCTTTGGCTTATGAGATTTGGTGTCTTTGGCTTATGAGATTTTGTTTTGGTTTTGGTTTTGGTTTTGGTTTTGGTTTTGGTTTT	1680
	P Q K S K P G V F S F L D P L A Y E I W	ı
<u> </u>	GATGTGCATTGTTTTTGCCTACATTGGAGTGAGTGTTGTCCTCTTCCTGGTCAGCCGCTT 	1740
	_	ı
_ ,	CAGTCCCTATGAATGGCACAGTGAAGAGTTTGAGGAAGGA	1800
_)) 1
	SPYEWHSERFEEGRDOTTSD.	1

F16. 16

ı	Y G T L E A G S T K E F R R S K I A V	
; ; ;	GATGCCCTGCGACCTTCGTCCTAGATGATTCCTCAAGAAGTCCTCCAGATTTTAACGACA	2041
2100	CTACGGGACGCTGGAAGCAGGATCTACTAAGGAGTTCTTCAGGAGGTCTAAAATTGCTGT	(
1	ERMVSPIESAEDLANETEIA	
	CCTCTCCTACCACAGAGGGTAACTCTCACGTCTCCTGGATCGCTTGCTCTGTCTTTAACG	1961
2040	GGAGAGGATGGTGTCTCCCATTGAGAGTGCAGAGGACCTAGCGAACGAGACAATTGC	Ċ
1	FFTLIIISSYTANLAAFLTV	
	CAAGAAGTGGAATTAGTAGTAGAGGAGTATATGTCGGTTAGACCGGCGGAAGGACTGGCA	176.
1980	GITCTICACCITAATCATCTCTCCTCATATACAGCCAATCTGGCCGCCTTCCTGACCGT	(
1	QGCDISPRSLSGRIVGGVWW.	
) 	CGTICCIACACIGIAAAGAGGGICCAGGGACAGACCAGCGIAGCAACCACCGCAGACCAC	٦ ۵ ۵
1920	GCAAGGATGTGACATTTCTCCCAGGTCCCTGTCTGGTCGCATCGTTGGTGGCGTCTGGTG	,
1	QSNEFGIFNSLWFSLGAFMQ.	
	ATAAGTIGICAAACACCAAGAGGGACCCICGGAAGTACGI	Z O Z
1860	3AGTTTGGGATATTCAACAGTTTGTGGTTCTCCCTGGGAGCCTTCATGCA	(

F16. 1H

W T Y M K S A E P S V F V R T T -	TYMKSAEPSVFVRTTTTCGAGTC TTCGAGTGAGGAAATCCAAAGGCAAATATGCCTACCTCCTGGAGTC +++++ AAGCTCACTCCTTTAGGTTTCCGTTTATACGGATGGAGGACCTCAG RVRKSKGKYAAY	ACATTGAGCAGGGAAACCCTGTGACACCATGAAGGTGGGAGGT ++	AAGGCTATGGCATTGCAACACCCAAGGGGTCTGCCCTGAGAGGTCCCGT AAGGCTATGGCATTGCAACACCCAAGGGGTCTGCCCTGAGAGGTCCCGT TTCCGATACCGTAACGTTGTGGGTTCCCCAGACGGGACTCTCCAGGGCA	Y G I A T P K G S A L R G P FIGAAAGCAAGCAAA	L K L S E Q G V L D K L K S K W -
	TGAGGAAAT(AGCAGCGGA! TCGCCTI	Q R K GCATTGCAA(I A T TCAGTGAGC? 	o ല
	ATGATTCGAG + TACTAAGCTC M I R V	GAGTACATTG + CTCATGTAAC	E Y I E AAAGGCTATG + TTTCCGATAC	K G Y G GITTTGAAAC	
F E K M	F E K MGAGAGGGA	CACCATGAATG +- GTGGTACTTAC	T M N E CTTGGATTCCA +- GAACCTAAGGT	L D S K AAACCTAGCGG+- TTTGGATCGCC	N L A
F E K M W T Y M K S A E P S V F V R T T	AG 2161 TC	CA 2221 GI	T CI 2281 GA	L AA 2341 TT	2

F/G. 11

2401	GTGGTACGATAAAGGGGAATGTGGAAGCAAGGACTCCGGAAGTAAGGACAAGACAAGCGC	
7 7	CACCATGCTATTTCCCCTTACACCTTCGTTCCTGAGGCCTTCATTCCTGTTCTGCGC	746(
	W Y D K G E C G S K D S G S K D K T S A	į
12461		((
H D T V	CTCGGAGTCGTTACACCGTCCGCACAAGATGTAGGACTAGCCTCCTGAACCTGATCG	752(
	LSLSNVAGVFYILIGGLGLA	i
	CCTTAATCGAGTTCTGCTACAAATCCCGTAGTGAATCCAAGCGGATGAA	1
7 7 7	GTACGACCAACGGAATTAGCTCAAGACGATGTTTAGGGCATCACTTAGGTTCGCCTACTT	2580
	M L V A L I E F C Y K S R S E S K R M K	ı
7581	ACCCTCCC	(
1 0 1 1	AAAAACAAACTAGGGTGTCGTTAGGTAGTTGCTTCGGTATGCCTGTAGCTGGGAGGG	2640
	GFCLIPQQSINEAIRTSTLP.	ı
7611	TCGGGTGGTCAG	(
4	GTCGTCGCCGCCGTCACCTCTTACCAGCCCACCAGTC	7 / 00
	R N S G A G G S G E A G A S C E	ı

F16. 1J

7	CCATGACTTCCCCAAGTCCATGCAATCGATTCCTTGCATGAGCCACAGTTCAGGGATGCC	1
7077	GGTACTGAAGGGGTTCAGGTACGTTAGCTAAGGAACGTACTCGGTGTCAAGTCCCTACGG	7 / 60
	H D F P K S M Q S I P C M S H S S G M P	1
2761	CTTGGGAGCCACGGGATTGTAACTGGAGCAGATGGAGACCCCTTGGGGAGCAGGCTCGGG +++++	2820
	LGATGL*	
, , ,		
7707	GGTCGGGGTAGGGTTTGGGAAGTCACGGTTTTTTGTTGTTGTTTTTATCTTTCGCGTT	7880
, 0		\ \frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac}\frac{\frac
1007	STICTICCTACTAGTIGICCAAAAGGACTICTIAACT	7940
1,000	AAAACCATTTTGCTGTCCCTTTTTCCTTTTGATGTTCTTTCACCCTTTTCTGTTTGCTA	
1 1 6 7	CAAGAAAGIGGGAAAAGACAAACGAT	
1005	AGTGAGGATGAAAAAAAACACTGTACTGCAATAAGGGGAGAGTAACCCTGTCTAATGAA	
1000	######################################	2000

F1G. 1K

3061	ACCTGTGTCTCTGAGAGTAGAGTCACTGGAACACTAATGAGGAAACTGCACTGTTTTATT	7,70
	GACTCTCATCTCAGTGACCTTGTGATTACTCCTTTGACGTGACAAAATAA	3120
	TTAATTCAGTTGTTAGTGTGTTGTGTGCAATTTTTTTTTT	0
	ACAATCACACAGAATCACACGTTAAAAAAAAAGAATGATTATAGGTACC	3180
	ECORI	
נמוג	TTTGCAGGTTCTGTTAGGCCCTTTCCTTCTCCTGGAATTC	
	AAACGICCAAGACAATCCGGGAAAGGAAGGACCTIAAG	

	ECORI F/6. 24	
H	GAATTCCGTGAGTGCATGGGAGGGTGCTGAATATTCCGAGACACTGGGACCACAGCGCGCGC	3CA
	CTTAAGGCACTCACGTACCCTCCCACGACTTATAAGGCTCTGTGACCCTGGTGTCGCCGT	
61	GCTCCGCTGAAACTGCATTCAGCCAGTCCTCCGGACTTCTGGAGCGGGGACAGGGCGCG	CA 120
	CGAGGCGACTTTGACGTAAGTCGGTCAGGAGGCCTGAAGACCTCGCCCTGTC	
101	GGGCATCAGCAGCCACCAGGACCTGGGAAATAGGGATTCTTGCCTCCAC	
1 1 1	CCCGTAGTCGTCGTCGTC	1+ T80
181	TITIAGCAGCTIGGTGCTAAATTGCTGTCTCAAAATGCAGAGGATCTAATTTGC	
4) 	AAAATCGTCGAACCA	-+ 240 CT
741	AAACAGCCAAAGAAGAAGAGGAGGAAAAAAAAAAAAAAA	
+ + 2	TITGICGGITTCTICCTICTCCTCTTTTCCTTTTTTTTCCCCATAIAACACCTA	+ 300 CGAG
	TACTITICITGGAAATGCAAAAGATTATGCATATTTCTGTCCTCCTTTCTCTCTTGT	
700	ATGAAAGAACCTTTACG	-+ 360 FA
	M Q K I M H I S V L L S P V L	1
1961	GGGGACTGATTTTTGGTGTCTTCTAACAGCATACAGATAGGGGGGGG	
1	+	075 t-

F1G. 2B

		(480	1	0	0 4	ı	C	000	ı	(099	1
ტ		GT.	CA +	ĮΞĄ	JG H	F 0	Æ			S			Ĺ
ĸ		GGB(++	ឝ	TAATG	ATT	z	GAAC	rrcrrca	×	CCATCACATCATTTGCGGAACACTCCACGTCTCCTTCATCACTCCCAGCT	GGTAGTGTAGTAAAACGCCTTGTGAGGTGCAGAGGAAGTAGTGAGGGTCGA	v
щ		TI	AAG	Ŋ	CAC	GTG	H	CAA	GTT	×	ľcc	AGG	ρ
હ્યિ		CAC	+ GTG	EH	AGT	rca	>	rga	ACT	Д	CAC	TG	E-
н		TIC	AAG	Ø	CACCCCACATCGACAATTTGGAGGTGGCAAACAGCTTCGCAGTCACT	325	F A V T	TTA	AAATACTG	F G F Y D K	CATC	GTAC	о р н н м м н т н м м н н
ტ		GTI	CAB	দ্ৰ	CII	GAA		ATT	TAA	Œ	CTT	GAA	ſz
Ŋ		TCA	AGT	F R V G M V Q F	CAG	GTC	S	CCCAGTTTTCGAGAGGAGTCTATGCTATTTTGGAT	ACC	ტ	ĊŢĊ	GAG(V.
H			CC.	>	AAA	LLL	Z	TTT	AAA	দ	CGT	GCA	>
Ø	d	GAT	CTA	×	၁၅၅	ອວລ	E V A N	TAT	ATA	G V Y A I	CCA	GGT	Ħ
н	ina	AGG	TCC	Ŋ	GGT	CCA	>	TGC	ACG	æ	ACT	TGA	<u>, -</u>
လ	erm	AGT	TCA	>	GGA	CCI		CTA	GAT	×	AAC	TTG	E -
z	N-Termina	TCG	AGC	ĸ	TTT	AAA	н	AGT	TCA	>	CGG.	300	ď
S	re	ATT	TAA		CAA	GTT	z	AGG	TCC		rtg(AAC	כ
ഗ	_Mature	TGC	ACG	Ø	CGA	GCT	N Q I	GAG	CIC	æ	ATT	IAA	ſΞ
>	ΣI	CAG	GTC	ഗ	CAT	GTA	н	rtc.	AAG(Ø	ATC.	rag	v.
G_1 V		ATA	TAT	×	CCA	3GT(耳	TIE	AA	ſΞŧ	ACZ	TG	E-
ſΞų		AGA	TTCT	দ্র	3CC(เริย	Д	CAC	GTC	Ø	ATC	TAG	}
H		CAL	AGT.	Q	BACZ	TG	E	TCC	AGG	S	ACC	TGG	E-
ы		GAJ	CTZ	Ω	CTC	GAC	П	TGC	ACG	ပ	AAT	TTA	z
ტ		GCGCCGATCAAGAATACAGTGCATTTCGAGTAGGGATGGTTCAGTTTCCACTTCGGAGT	CGCGGCTAGTTCTTATGTCACGTAAAGCTCATCCCTACCAAGTCAAAAGGTGAAGCCTCA	Æ	TCAGACTGACACCCCACATCGACAATTTGGAGGTGGCAAACAGCTTCGCAGTCACTAATG	AGTCTGACTGTGGGGTGTGTTAAACCTCCACCGTTTGTCGAAGCGTCAGTGATTAC	ĸ	CTTTCTGCTCCCAGTTTTCGAGAGGAGTCTATGCTATTTTTGGATTTTATGACAAGAAGT	GAAAGACGAGGGTCAAAAGCTCTCCTCAGATACGATAAAAAACCTAAAATACTGTTCTTCA	Ĺτι	CTGTAAATA	GACATITATGGTAGTGTAAAAACGCCTTGTGAGGTGCAGAGGAAGTAGTGAGGGTCGA	>
		20,	T 7 #		481	1		177					

F16. 2C

006	CTGCTATCAATGTGGGAAACATTAACAATGACAAGAAAGA
1	INVGNINNDKKDEMYRSLF
900	
C	
t	LSTLQAVLDSAAEKKWQVT
840 40	TAGTIGIGACGTICGACACGACCIAAGACGACGACTITICITIACCGITCACI
•	
ſ	LSLIEYYQWDKFAYLYDSDR.
780	TGATAGTTACCCTGTTCAAACGTATGGAGATACTGTCACTGT
(
1	P T D G T H P F V I Q M R P D L K G A L
720	CCGTGTGTAGGTAAACAGTAAGTCTACTCTGGGCTGGAGTTTCCTCGAG
	AGGAGCTC

F1G. 20

961	TAAACGACATTGTAGACCAGGTTATTACCATTGGAAAACACGTTAAAGGGTACCACTACA ++++++	1020
	N D I V D Q V I T I G K H V K G Y H Y I	ı
1021	TCATTGCAAATCTGGGATTTACTGATGGAGACCTATTAAAAATCCAGTTTGGAGGTGCAA +++++++	1080
	IANLGFTDGDLLKIQFGGAN	ı
1081	ATGTCTCTGGATTTCAGATAGTGGACTATGATGATTCGTTGGTATCTAAATTTATAGAAA +++++	1140
	V S G F Q I V D Y D D S L V S K F I E R	ı
1141	GATGGTCAACACTGGAAGAAAAGAATACCCTGGAGCTCACACAACAACAATTAAGTATA++++++	1200
	W S T L E E K E Y P G A H T T T I K Y T	ı
1201	CTTCTGCTCTGACCTATGATGCCGTTCAAGTGATGACTGAAGCCTTCCGCAACCTAAGGA + GAAGACGAGACTGGATACTACGGCAAGTTCACTACTGACTTCGGAAGGCGTTGGATTCCT	1260
	N A I N A A A I I N N O N N I I N S	ı

F1G. 2E

1261	AGCAAAGAATTGAAATCTCCCGAAGGGGGAATGCAGGAGACTGTCTGGCAAACCCCAGCAG	,,,,,
T 0 7 T	TCGTTTCTTAACTTTAGAGGGCTTCCCCCTTACGTCCTCTGACAGACCGTTTGGGGTCGTC	1320
	QRIEISRRGNAGDCLANPAV	i
נכנ	AATAGAAAGGGCCCTCAAACAGGTTCAGGTTG	(
1761	ACGGGACCCCTGTTCCACATCTTTATCTTTCCGGGAGTTTGTCCAAGTCCAACTTCCAG	7380
	PWGQGVEIERALKQVQVEGL	ı
1961	TCTCAGGAAATATATAAAGTTTGACCAGAATGGAAAAAAAA	. •
1001	AGAGTCCTTTATATTTCAAACTGGTCTTACCTTTTTTTTT	1440
	SGNIKFDQNGKRINYTINI M	i
, ,	GGAGCTCAAAACTAATGGGCCCCGGAAGATTGGCTACTGGAGTGAAGTGGACA	, ,
T # # T	ACCTCGAGITITGATIACCCGGGGCCTICIAACCGAIGACCTCACTICACCTGTITIACC	7200 1200
	ELKTNGPRKIGYWSEVDKMV	ı
i L	TGACACCTCTGGGCTTGAGAATAAGACTG	L
T00T	AACAATGGGAATGACTCGAGGGAAGACCTTTACTGTGGAGACCCGAACTCTTATTCTGAC	T 2 0 0
	A T X N H I D S T Q N D S A I H T I T A	1

। দ্ৰ

Д

×

S

ſτι

Ω

>

臼

(L)

24

Н

EH

Н

Н

 $\dot{\rho}_{4}$

·Æ

Н

F1G. 2F

)) H	GTTAACGAGGTAATTGATAATGGGAACACTCTTCTCCCACTAACTGAAGAGTTTCGGGA)]
1860	CAATTGCTCCATTAACTATTACCCTTGTGAGAGAGGAGGTGATTGACTTCTCAAAGCCCT	1801
ı	DTKIWNGMVGELVYGKADIA	
1000	GTCTGTGCTTTTAAACCTTACCCTACCAACCTCTTGAACATATACCCTTTCGACTATAAC	1
000	CAGACACGAAAATTTGGAATGGATGGTTGGAGAACTTGTATATGGGAAAGCTGATATTG	1741
1	CGFKYKLTIVGDGKYGARDA	
7 7	TAACACCCAAGTTCATGTTCAACTGTTAACAACCACTACCGTTCATACCCGGTCCCTAC	1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ATTGTGGGTTCAAGTACAAGTTGACAATTGTTGGTGATGGCAAGTATGGGGCCCAGGGATG	1 g g 1
ı	EGNERYEGYCVDLAAEIAKH	
1080	AACTTCCGTTACTCGCGATGCTCCCGATGACACAACTGGACCG	H
000	TTGAAGGCAATGAGCGCTATGAGGGCTACTGTGTTGACCTGGCTGCAGAAAT	1621
í	V V T T I L E S P Y V M M K K N H E M L	
1070	AACAACAGTGTTI	7
	TTGTTGTCACCACATTTTTGGAATCTCCGTATGTTATGATGAAGAAAATCAT	1561

F1G. 2G

T + 1920 A	ो . হেন	G + 1980 C	ا ن	G + 2040	l E	A 2100	i Z	T 2160		ı
TCATGAGCCTCGGGATATCTATCATGATCAAGAAGCCTCAGAAGTCCAAACCAGGAGTGT +++	IKKPQKSKPGVF	TTTCCTTTCTTGATCCTTTAGCCTATGAGATCTGGATGTGCATTGTTTTTGCCTACATTG 	E I W M C I V F A Y I G	CAGATTTAGCCCCTACGAGTGGCACACTGAGG -+++ GTCTAAATCGGGGATGCTCACCGTGTGACTCC	SRFSPYEWHTEE	agtttgaagatggaagagaaacacaaagtagtgaatcaactaatgaatttgggattttta 	SSESTNEFGIFN	GGTTTTCCTTGGGTGCCTTTATGCGGCAAGGATGCGATATTTCGCCAAGAT	GGTTCTA	F M R Q G C D I S P R S
	MSLGISIM		SFLDPLAY		V S V V L F L V		FEDGRETQ	ATAGTCTCT	TATCAGAGA	SLWFSLGA
1861		1921		1981		2041		2101	 	

۱ ۲

pc,

K

G

臼

æ

Н

EH

24

[14

S

Д

ធ

K

S

F1G. 2H

F16. 21

161	AGICCARAGGGAAAIAIGCCIACIIGIIGGAGICCACGAIGAACGAGIACAIIGAGCAAAA 61+++++ TCAGGTTTCCCTTTATACGGATGAACAACGTCAGGTGCTACTTGCTCATGTAACTCGTTT	2520
	SKGKYAYLLESTMNEYIEQR	i
521	GGAAGCCTTGCGACACCATGAAAGTTGGTGGAAACCTGGATTCCAAAGGCTATGGCATCG 21++++++	2580
	K P C D T M K V G G N L D S K G Y G I A	1
581	CAACACCTAAAGGATCCTCATTAGGAACCCCAGTAAATCTTGCAGTATTGAAACTCAGTG81	2640
	TPKGSSLGTPVNLAVLKLSE	ı
7	AGCAAGGCGTCT	
4	41	2700
	Q G V L D K L K W W Y D K G E C G A	ī
,	ccaaggacicigg	0
٦ 0	GETTCCTGAGACCTTCATTCCTTTTCTGGTCACGGGAGTCAGACTCGTTGCAACGACCTC	7/60
	N D S G S K E K E S I S I S I S S G N	ı

F1G. 2J

T + 2820 A	l O	A 2880	I Z		+ 2940 A	i >	ر م		
TATTCTACATCCTTGTCGGGGCCTTGGTTTGGCAATGCTGGTGGCTTTGATTGA	FYILVGGLGLAMLVALIEF	GTTACAAGTCAAGGCCGAGGCGAAACGAATGAAGGTGGCAAAGAATGCACAGAATATTA 11+++++++ CAATGTTCAGTTCCGGCTCCGCTTTGCTTACTTCCACCGTTTCTTACGTGTCTTATAAT	Y K S R A E A K R M K V A K N A Q N I	ACCCATCTT		PSSQNSQNFATYKEGYNV	ATGGCATCGAAAGTGTTAAAATTTAGGGGATGACCTTGAATGATGCCATGAGGAACAAGG	TACCGTAGCTT'	* I X A X II I
2761		2821		0	707		2941	1	

GTTCCGACAGTTAATGTCCTTCATGACCTCTTTTACCTGCACAATACTGAGGTCTTAAAG CAAGGCTGTCAATTACAGGAAGTACTGGAGAAAATGGACGTGTTATGACTCCAGAATTTC 3001

F1G. 2K

	TARTHE SALES AND CALLED TO THE	3361
	ATAATTTAC	•
 	AAAAAGATG	3301
336(_	. (
	AAGAATTTATACACCTCAAGTAGAACTTAACATTCCTTACTAATTAAT	3241
330(TTCTTAAAT	(
	AAATAACAGITIC	3181
3240	TTTAT	(
Ιλ	ECORI	
) 	GACTAGAGAGCACTAACTATTCTTGGAAAACTCACGGAATGTGTTACCAAAAGA	3121
3180	CTGATC	,
	GGTTTCGNCACGTAC	306£
3120	CCAA	•

F16. 3A

	ECORI 7/6. 34	
<u>-</u>	gaattcctgacgactcctgagttgcgcccatgctcttgtcagcttcgttttaggcgtagc	
1	aaggactgctgaggactcaacgcgggtacgagaacagtcgaagcaaaatccgcatcg	
61	atggccaggcagaagaaaatggggcaaagcgtgctccggggcggtcttctttttagtcctg 	0
	MGQSVLRAVFFLVL-	
121	gggctttttgggtcattctcacggaggattccccaacaccatcagcataggtggacttttc +++++	0
	G L L G H S H G G F P N T I S I G G L F -	
	_Mature N-Terminal	
ά	atgagaaacacagtgcaggagcacagcgctttccgctttgccgtgcagttatacaacacc	_
1 0 1	ctctttgtgtgtcacgtcctcgtgtcgcgaaaggcgaaacggcacgtcaatatgttgtgg	7
	MRNTVQEHSAFRFAVQLYNT	
241	aaccagaacaccaccgagaagcccttccatttgaattaccacgtagatcacttggattcc	0

ttggtcttgtggtggctcttcgggaaggtaaacttaatggtgcatctagtgaacctaagg

S

Ω

Н

二

Ω

>

耳

Z

ы

耳

Œ

щ

×

ſщ

Н

EH

z

Ø

z

F1G. 3B

ı	aaacacatggagatactgtgtttgctcctaaaaggtaggaggttcgctaataccttcgt	
600	tttgtgtacctctatgacacagaacgaggattttccatcctccaagcgattatggaagca	541
ï	MRPALKGAILSLLGHYKWEK	
) !)	tacgcgggtcggaacttcccgcgataagactcagaagacccagtaatgttcacctctt	
7.0	atgcgcccagccttgaagggcgctattctgagtcttctgggtcattacaagtgggagaag	4
1	H T S F V T P S F P T D A D V Q F V I Q	
7	gtgtgtaggaaacaatgcggatcgaaggggtgactgcgtctacacgtcaaacagtag	ř
0	cacacatcetttgttaegectagetteeceaetgaegeagatgtgeagtttgteateeag	4
ı	IFGFYDQMSMNTLTSFCGAL	
07#	tagaaacctaagatactggtctacagttacttgtgggactggaggaagaacacccgg)
, ,	atctttggattctatgaccagatgtcaatgaacaccctgacctccttctgtggggccctg	ζ.
ı	SNSFSVTNAFCSQFSRGVYA	
000	aggttatcaaaaaggcactgtttacgaaagacgagggtcaagagctctccccacatac)
0 9 6	tccaatagtttttccgtgacaaatgctttctgctcccagttctcgagaggggtgtatgcc	3

F/G. 3C

601	gcagtgcaaaacaactggcaagtaacagcaaagtctgtgggaaacataaaggacgtccaa 	099
4))	cgtcacgttttgttgaccgttcattgtcgttccagacaccctttgtatttcctgcaggtt	
	AVQNNWQVTARSVGNIKDVQ	ı
	ECORI	
661	gaattcaggcgcatcattgaagaaatggacaggaggcaggaaaagcgatacttgattga	720
	cttaagtccgcgtagtaacttctttacctgtcctccgtccttttcgctatgaactaact)
	EFRRIIEEMDRRQEKRYLID -	ı
721		C
7	cttcagctttcctaattgtgtttaaaaccttgtccaacactaggatccctttgtgagt	780
	CEVERINTILEQVVILGKHS-	1
187	agaggttatcactacatgctcgctaacctgggttttactgatattttactggaaagagtc	C
5	atgtacgagcgattggacccaaaatgactataaaaatgacctttctcag	0.40
	RGYHYMLANLGFTDILLERV	1
841	atgcatgggggagccaacattacaggtttccagattgtcaacaatgaaaaccctatggtt	
† *	acgtaccccctcggttgtaatgtccaaaggtctaacagttgttacttttgggataccaa	

Д

z

团

Z

Z

Ø

Ç

EH

Н

z

K

G

G

I

 \mathbf{z}

F16. 3D

			ECOKI		
100	cagcagttcatacagcgctgggtgaggctggatgaaagggaattccctgaagccaagaat	yatgaa	agggaattccctga	agccaagaat	(
))	gtcgtcaagtatgtcgcg	tactt	cccttaagggacttcg	teggttetta	960
	QQFIQRWVRLD	ធ	ਸ ਜ ਸ ਜ	A K N	1
				HindI	II
961	מונ	acgace	gcaatactggtcat ++	agcagaagct	1020
	ey eyy eya e e e e e e e e e e e e e e e	rycry	gurargaccagra	cgccccga	
·	APLKYTSALTHI	I D A	I L V I	A E A	ı
1001	ttccgctacctgaggaggcagcgagtagatgtgtcccggaggaagtgctggagactgc	rtgtcc	ggagaagaagtgc	tggagactgc	0
1 2 0	ממ	acagge	getetectteaeg	acctctgacg	TORC
	FRYLRRQRVDV	S	R G S A	c D C	1
נמ	ttagcaaatcctgctgtgccctggagtcaaggaattgatattgagagagctctgaaaatg	gaatto	ratattgagagago.	cctgaaaatg	7
1 0 0 1	aatcgttta	cttaac	tataactctctcg	-t cgagacttttac	1.140
	LANPAVPWSQG	н	D. I E R A	L K M	1

F1G. 3E

141	grgcaagraraaggaargarrggaaararrraarrragarrragarrragararrragararrr	-yacac cacyyacy cayyacaaac	1200
! !	cacgttcatgt	actgtgaatacctgcatcctgttta	4
	V Q V Q G M T G N I Q F D	D T Y G R R T N	ı
,	tataccatcgatgtgtatgaaat	tctcgaaaagctggctactgga	,
7 0 7	atatggtagctacacatactttactttcagtcacc	agagctttcgaccgatga	7 17 PO
	Y T I D V Y E M K V S G S	S R K A G Y W N	i
261	gagtatgaaaggtttgtgcctttctcagatcagcaaatcagcaatgacagtgcatcctca	aatcagcaatgacagtgcatcctca ++	a + 1320
	ctcatactttccaaacacggaaagagtctagtcgtttagtc	tagtcgttactgtcacgtaggagt	
	EYERFVPFSDQQI	I S N D S A S S	ı
27.1	gagaatcggaccatagtagtgactaccattctggaatcaccatatgtaatgtacaagaag	itcaccatatgtaatgtacaagaag	. T
1 7 .	ctcttagcctggtatcatcact	gtggtatacattacatgtt	
	ENRTIVVTTILES	SPYVMYKK	1
נמנ	aaccatgagcaactggaaggaaatgaacgatatgaa	iggetattgtgtagacetageetat	
1 0 1	ttggtactcgttgaccttcctttacttgctatactt	gataacacatctggatcgg	
		> 4 1 C A C > 6	1

F16. 3F

1500	1	1560		ı	000	1070	ı	1680	0	1	1740) r -	1
gaaatagccaaacatgtaaggatcaaatacaaattgtccatcgttggtgacgggaaatat 1+++++	EIAKHVRIKYKLSIVGDGKY	gatccagagactaaaatatggaacggcatggttggggaacttgtctatggg +	ccacgttccctaggtctctgattttataccttgccgtaccaaccccttgaacagataccc	G A R D P E T K I W N G M V G E L V Y G	agagctgatatagctgttgctccactcactataacattggtccgtgaagaagtcatagat	tctcgactatatcgacaacgaggtgagtgatattgtaaccaggcacttcttcagtatcta	RADIAVAPLTITLVREEVID	ttttcaaagccattaatgagcctgggcatctccatcatgataaagaagcctcagaaatca	aaaagtttoggtaattactcggacccgtagaggtagtactatttcttcggagtctttagt	FSKPLMSLGISIMIKKPQKS.	aaaccaggcgtattctcatttctggatcccctggcttatgaaatctggatgtgcattgtc	tttggtccgcataagagtaaagacctaggggaccgaatactttagacctacacgtaacag	KPGVFSFLDPLAYEIWMCIV
144		15			ر بر)		162) 1		, ,) H	

1800	1	,	1800	1	1920	!	ı	1980		1	2040		ı
tttgcttacattggagtcagcgtagttcttttcctagtcagcag	aacgaatgtaacctcagtcgcatcaagaaaaygatcagtcytctaagtcag	tggcacttggaagacaatgaagaacctcgtgacccacaaagtcctcctgatcctc	ו מ	WHLEDNNEEPRDPQSPPPPP	Ø		NEFGIFNSLWFSLGAFMQQG	tgtgat	acactataaaagaggttctagtgagaggcccgcgtaacaacctccccaaaccacaa	C D I S P R S L S G R I V G G V W W F F	accetgateat	tgggactagtattaaagaaggatatgacggttagaggggcgacgaaggactgacacctct	H T T A A L T A B E L T V E R
1741			1801		Č	Τα		ć	1961		Č	1981	

F16. 3H

2041	•	ן על וע	ור ור)) !) ! d !	ן מן נען	מן ו מן	1. C. T.	7	0 I	ן מ ר	ו ו ק	ا ا دو ا	1 a a	aga	ctga	1aat +	7.90 1.10	ata	occacayayay.yccyaayacccayccaaacagactgaaattgcataggg +	2100
	ta	cca	מש	gage	ggt	atc	tct	cac	gac	itt	otta	aat	cgat	ttg	tct	gact	tta	acg	tat	ggtatctctcacgacttctgaatcgatttgtctgactttaacgtataccc	
	Ħ	>	ഗ	Д	Н	ম্র	S	A		臼	_ _	ı	A K	Ø 	H	团	H	A	×	ტ	1
2101	a O I	cct	- cn i	gacto	cagi	gtt	Caa	acaa	ıaag	jaat	tttt	tto	ga	ıgat	CCa	aaat	tgc	tgt	gta	cgag	,
1011	t g	gg	cct	ga	ggc	caa	gtt	gtt	tt.	tt	aaa	aagi	ggccaagttgttttcttaaaaagtcttctaggttttaacgaca	ctag	ggti	ttta	aacg	aca	cat	gctc	2160
	H	ы	Ω	W	Q	Ŋ	H	×	回	•	F	<u>ب</u>	R R	ß	×	н	Æ	>	×	Щ	1
2161	а 1	aat	gt		i t	aca 	tga 	aaat -+	cag	gog	gagc	cat	ct I	gtgtt +-	ttac	ccaa	aac	aac	agc	agac	
	ttt	tta	Ca	ccac	gaati	tgt	act	tta	gtc	gcc	ta	gt.	ga	aca.	aati	ggtt	ttg	ttg	tcg		0777
	×	Ħ	3	ß	×	X	×	S	Æ	Ħ		Ω,	S V	Et4	H	×	E	E	Ø	Ω	1
1227	gga	agt	gtggccc	0 +	gagt	tgc	gaa	aagt -+	tcca	ıagç	Igaa -+-	aagt	gagtgcgaaagtccaagggaaagttcgccttcctgctggagtc	cctt	tcct	tgct	gga	gtc	aacı	aaccatg	
f 1 1	Ü	ctca	ccg.	gg	tci	асд	ctt	tca	ggt	tcc	ct.	tca	ctcacgcttcaggttccctttcaagcggaaggac	gga	agge	acga	cct	יס טו	יט ו	1 4	7.200
	ტ	>	Ø	ø	>	æ	×	S	×	ڻ د	×	Eq.	Æ	ĮΞĄ	7	Ц	டி	S	E	×	1
2281		tga 	aatgagtac 	ત્ય +	tg.	agc.	aga 	agaa -+	aac	ccat	tgtg	jatë	ttgagcagagaaaaccatgtgatacgatgaaagttggtggaaatct	tgaaa	aagt	tgg	tgga	ลลล์	toto	ggat	7
1		1.)	cat	gt -	lact	t cg	tot	ctt	ttg	igta	cac	tat	gct	acti	ttca	lacc	acct	t t	aga(aactcgtctcttttggtacactatgctactttcaaccacctttagaccta	7340
	z	臼	×	н	臼	Q	ĸ	×	Д	Ö	Ω	H	X	×	>	ტ	ტ	z	н	Д	1

2400	2460)) !	2520	1	2580	. 1
tccaaaggctatggtgtggcaacccctaaaggctcagcattaggaaatgctgttaacctg 1++	S K G Y G V A T P K G S A L G N A V N L StuI gcagtattaaaaactgaatgagcaaagcctcttggacaaattgaaaaacaaatggtggtac	ccaccatg W Y	gacaaaggagagtgcggcagcgggggggggggtgactccaaggacaagaccagcgctctgagc +++	KGECGSGGDSKDKTSALS	ctgagcaatgtggcaggcgttttctatatacttgtcggaggtctgggggctggccatgatg 1+++++++	LSNVAGVFYILVGGLGLAMM
2341	2401		2461		2523	

F16. 3J

ECORI

2700 2640 gtggctttgatagaattctgttacaaatcacgggcagagtccaaacgcatgaaactcaca aagaacacccaaaactttaagcctgctcctgccaccaacactcagaattatgctacatac ttcttgtgggttttgaaattcggacgaggacggtggttgtgagtcttaatacgatgtatg caccgaaactatcttaagacaatgtttagtgcccgtctcaggtttgcgtactttgagtgt agagaaggctacaacgtgtatggaacagagagtgttaagatctagggatcccttggaatt totottocgatgttgcacataccttgtctctcacaattctagatccctagggaaccttaa Ц × Σ Z ĸ Ø × H S Z ഠ × H Ø Ø K S p, S 口 Æ, × Н \succ G Ö \succ Ţ, ۲٦ > 回 z z Ø Н 니 Ç z Ø 臼 × > 24 2581 2641 2701

2761

180

1

120

9

240

300

TIGGICITGIGGIGGCICTICGGGAAGGIAAACTTAAIGGIGCAICIAGIGAACCTAAGG

1

S

Ω

Ц

二

Д

>

二

 \succ

z

Ы

耳

Ľ

Д

×

回

₽

H

Z

Ø

Z

๙

Z

ಡ

181

241

121

61

G

ಗ

Ecori

F1G. 4B

360		į	7.0	0 7 #	ı	σ,) 	1
TCCAATAGTTTTTCCGTGACAATGCTTTCTGCTCCCAGTTCTCGAGAGGGGTGTATGCC 360	AGGTTATCAAAAAGGCACTGTTTACGAAAGACGAGGGTCAAGAGCTCTCCCCCACATACGG	FSVTNAFCSQFSRGVYA	ATCTTTGGATTCTATGACGAGATGTCAATGAACACCCTGACCTCCTTCTGTGGGGCCCTG	TAGAAACCTAAGATACTGGTCTACAGTTACTTGTGGGACTGGAGGAAGACACCCCGGGAC	F Y D Q M S M N T L T S F C G A L	CACACATCCTTTGTTACGCCTAGCTTCCCCACTGACGCAGATGTGCAGTTTGTCATCCAG	GTGTGTAGGAAACAATGCGGATCGAAGGGGTGACTGCGTCTACACGTCAAACAGTAGGTC	FVTPSFPTDADVQFVIQ -
GGT	CCA	>	TGG	ACC	ტ	TGI	ACA	>
AGG	TCC	ტ	CTG	GAC	Ö	GTT	CAA	ſτι
GAG	CTC	ĸ	CTT	GAA	ഥ	GCA	CGT	Ø
CTC	GAG	S	CIC	GAG	S	TCT	ACA	>
GTT	CAA	Įτι	GAC	CTG	H	AGA	·TCI	Д
CCA	GGT	Q	CCI	GGA	Н	၁၅၁	909	Ø
CIC	GAG	ß	CAC	GTG	H	TGA	ACT	Ω
CTG	GAC	ပ	GAA	CTT	z	CAC	GTG	H
TIL	AAA	Ľι	AAT	TTA	X	၁၁၁	5551	д
TGC	ACG	A	GTC	CAG	ഗ	CTI	GAA	Įτι
AAA	TTT	z	GAT	CIA	X	TAG	ATC	Ŋ
GAC	CTG	EH	CCA	GGT	Ю	3000	5555	д
CGT	GCA	>	TGA	ACT	Ω	TAC	ATG	£-1
TTC	AAG	S	CIP	GAT	×	TGI	ACA	>
TLL	AAA	[14	ATT:	TAP	۲ų	CTI	GAZ	ſzι
TAG	ATC	S	TGG	ACC	দ	ATC	TAC	ഗ
CAA	GTI	S	CTI	AGAZ	ſτι	ACAC	rGTC	H
		S			Н			H
201	700	-	,	7 O T		7	T 7 %	
		๗			ਰ			๙

ACCCTTCAGCTTTCCTAATTGTGTTAAAACCTTGTCCAACACTAGGATCCCTTTGTGAGT

721

F16.4C

	A 481 -	TGCGCCCAGCCTTGAAGGGCGCTATTCTGAGTCTTCTGGGTCATTACAAGTGGGAGAAG	540
		acgegggteggaacttecegegataagaeteagaagaeeeagtaatgtteaeeetete) !
ಡ	X	IRPALKGAILSLLGHYKWEK	1
	л - Г	TTTGTGTACCTCTATGACACGAGGATTTTCCATCCTCCAAGCGATTATGGAAGCA	0
			000
ಠ	ഥ	, VYLYDTERGFSILQAIMEA	1
		AAACAACTGGCAAGTAACAGCAAGGTCTGTGGGAAACATAAAGGACGTCCAA	(
	709	CGTCACGTTTTGTTGACCGTTCATTGTCGTTCCAGACACCCTTTGTATTTCCTGCAGGTT	000
ಹ	H	A V Q N N W Q V T A R S V G N I K D V Q	ı
	щ	ECORI	
	, D 1 1	GAATTCAGGCGCATCATTGAAGAAATGGACAGGAGGCAGGAAAAGCGATACTTGATTGA	720
		ccccgtagtaacttctttacctctccctccttttccctatgaactaact	04
๙	щ	E F R R I I E E M D R R Q E K R Y L I D	t
	Ę ⁻	TGCGAAGTCGAAAGGATTAACACAATTTTGGAACAGGTTGTGATCCTAGGGAAACACTCA	

ı	840	1	0		1		080		ı	Н	201	1	ı
S		>			>				z	HindIII	AAGCT	CGA	A
出	AGA(æ	ATG(rac	Œ		AAG	TTC	×	H; -	GAA	CTT	ſz
×	SAAZ	阿	CCL	3GA	<u>а</u>		300	CGG.	Æ		GCA	CGI	
ტ	CTG(Н	AAC	TTG	z		GAA	CTT	ы		ATA	TAT	} -
H	TTA AAT	H	GAA	CTL	臼		CCT	GGA	д		GTC	CAG	۵
н	ATT 	н	AAT	TTA	z	RI	TTC	AAG	ſΞŧ		CTG	GAC	
>	GAT +	Ω	AAC	TIG	z	Ecori 1	GAA	CTI	Ш		ATA	TAT	1-
>	AGAGGTTATCACTACATGCTCGCTAACCTGGTTTTTACTGATATTTTACTGGAAAGAGTC ++++	EH	ATGCATGGGGGAGCCAACATTACAGGTTTCCAGATTGTCAACAATGAAAACCCTATGGTT	CCCTCGGTTGTAATGTCCAAAGGTCTAACAGTTGTTACTTTTGGGATACCAA	>		CAGCAGTICATACAGCGTGGGTGAGGGTGAAAGGGAATTCCCTGAAGCCAAGAAT	GTATGTCGCGACCCACTCCGACCTACTTTCCCTTAAGGGACTTCGGTTCTTA	ĸ		GCACCACTAAAGTATACATCTGCATTGACACACGCCAATACTGGTCATAGCAGAAGCT	CGTGGTGATTTCATATGTAGACGTAACTGTGTGCTGCGTTATGACCAGTATCGTCTTCGA	A L M L H E L A O
Q	TTT	Įτί	ATT	TAP	н		rgaz	ACTI	阳		CGA(3CT(c
臼	3GG1	ტ	CAG	BGTC	[z ₄		3GAT	CCL	Ω		ACA(rGT(Þ
IJ	CCTC	ы	rtt	AAAC			SCTO	CGA(ឯ		GAC	CTG	E
н	raac 	z	AGG.	ľCC2	ტ		3AG	CIC	۷ R		ATT	TAA	} -
EH	3GG	Æ	rac.	ATG.	E		GGT	CCA	>		TGC	ACG	A
z	SCT(н	CAT	GTA	Н		CTG	GAC	Z		ATC	TAG	U
н	CAT(X	CAA	GTT(z		929	CGC	ĸ		TAC	ATG	E
ĸ	CTA(×	AGC	rcg(æ		ACA	TGT	Ø		GTA	CAT	>
ы	ICA(-+-	Ħ	2999	CCC	ტ		CAT	GTA	н		AAA	TIL	>
>	TTA' AAT	≯⊦	TGG	17)	ტ		GTT		压		ACT	TGA	1-
ы	AGG.	ტ	ATGCATG	TACGTACC	田		CAGCAGT	GTCGTCAA	Oł		ACC	TGG	þ
Ŋ		ĸ			X		_		Ø				¢
	781		, ,	04 1			0	T O A			1,00	707	
๗		๗			๗				๙				Ć

F1G. 4E

1	A EYERVPFSDQISNDSASS
1321	CTCATACTTTCCAAACACGGAAAGAGTCTAGTCGTTAGTCGTTACTGTCACGTAGG
7661	GAGTATGAAAGGTTTGTGCCTTTCTCAGATCAGCAAATCAGCAATGACAGTGCATCCTCA
1	A Y T I D V Y E M K V S G S R K A G Y W N
70	ATATGGTAGCTACACATACTTTACTTTCAGTCACCGAGAGCTTTTCGACCGATGACC
1266	TATACCATCGATGTATGAAATGAAAGTCAGTGGCTCTCGAAAAGCTGGCTACTGGAAAC
i	a VQVQGMTGNIQFDTYGRTN
1707	CACGTTCATGTTCCTTACTGACCTTTATAAGTTAAACTGTGAATACCTGCATCCTG
6	GIGCAAGTACAAGGAATGACTGGAAATATTCAATTTGACACTTATGGACGTAGGACAAAT
1	a LANPWSQGIDIERALKM
7 7 7	AATCGTTTAGGACG
, ,	TTAGCAAATCCTGCTGTGCCCTGGAGTCAAGGAATTGATATTGAGAGCTCTGAAAATG
i	a FRYLRQRVDVSRRGSAGDC
TUBL	AAGGCGATGGACTCCTC
,	TTCCGCTACCTGAGGAGGCAGCGAGTAGATGTCCCCGGAGAGGAAGTGCTGGAGACTGC

F16. 4F

ı	A RADIIAVAPLTITLVREEVID	d
7070	TCTCGACTATATCGACAACGAGGTGAGTGATATTGTAACCAGGCACTTCTTCAGTA	
1620	AGAGCTGATATAGCTGTTGCTCCACTCACTATAACATTGGTCCGTGAAGAAGTCATAGAT	
1	G A R D P E T K I W N G M V G E L V Y G	a
2	CCACGITCCCTAGGICICIGATITITATACCITGCCGTACCAACCCCTTGAACAG	
1560	GGTGCAAGGGATCCAGAGACTAAAATATGGAACGGCATGGTTGGGGAACTTGTCTATGGG	
ı	E I A K H V R I K Y K L S I V G D G K Y	ਕ
1 200	CTTTATCGGTTTGT	
ָר ה	GAAATAGCCAAACATGTAAGGATCAAATACAAATTGTCCATCGTTGGTGACGGGAAATAT	
1	NHEQLEGNERYEGYCVDLAY	ಡ
) r r	TIGGIACTCGTIGACCTICCTITACTIGCTATACTICCGATAACACATCTGGAT	
7	AACCATGAGCAACTGGAAGGAAATGAACGATATGAAGGCTATTGTGTAGACCTAGCCTAT	
1	ENRTIVVTTILESPYVMYKK	ಹ
7000	CTCTTAGCCTGGTATCATCGTAAGACCTTAGTGGTATACATTACATGTTC	
ָר כ	GAGAATCGGACCATAGTAGTGACTACCATTCTGGAATCACCATATGTATG	

ı	NEFGIFNSLWFSLGAFKOOG	æ
7770	TTACTTAAACCTTATAAATTGTCAGAAACCAAAAGGAACCCACGGAAA	
	AATGAATTTGGAATATTTAACAGTCTTTGGTTTTCCTTGGGTGCCTTTATGCAGCAAGGA	
ſ	WHLEDNNEEPRDPQSPPP	æ
000	ACCGTGAACCTTCTGTTACTTCTTGGAGCA	
1060	TGGCACTTGGAAGACAACAAGAACCTCGTGACCCACAAAGTCCTCGTGATCCTCCA	
1	FAYIGVSVVLFLVSRFSPYE	æ
0087	AAACGAATGTAACCTCAGTCGCATC	
· (TTTGCTTACATTGGAGTCAGCGTAGTTCTTTTCCTAGTCAGCAGGTTCAGTCCTTATGAA	
1	KPGVFSFLDPLAYEIWMCIV	æŧ
7 / 1	TTTGGTCCGCATAAGAGTAAAGACCTAGGGGACCG	
0771	AAACCAGGCGTATTCTCATTTCTGGATCCCCTGGCTTATGAAATCTGGATGTGCATTGTC	
1	FSKPLMSLGISIMIKKPQKS	
7 P R O	AAAAGTTTCGGTAATTACTCGGACCCGTAGAGG	
(1621	

F16. 4H

ı	K M W S Y M K S A E P S V F T K T T A D	ø
0777	TTTTACACCAGAATGTACTTTAGTC	
(AAAATGTGGTCTTACATGAAATCAGCGGAGCCATCTGTGTTTACCAAAACAACAGCAGACACACAGAACAACAGCAGACACACACAGCAG	
t	TLDSGSTKEFFRRSKIAVYE	ď
4 1	TGGGACCTGAGGCCAAGTTGTTTTCTTAAAAAGTCTTCTAGGTTT	
2160	ACCCTGGACTCCGGTTCAACAAAGAATTTTCAGAAGATCCAAAATTGCTGTGTACGAG	
ı	M V S P I E S A E D L A K Q T E I A Y G	ರ
7100	TACCAAAGAGGGTATCTCTCACGACTTCTGAATCGATTTGTCTGACTTTAACGTA	
, ,	ATGGTTTCTCCCATAGAGAGTGCTGAAGACTTAGCTAAACAGACTGAAATTGCATATGGG	
ı	TLIIISSYTANLAAFLTVER	ಡ
7507	TGGGACTAGTATTAAAGAAGGATATGACGGTTAGAGCGACGAAAG	
, C	ACCCTGATCATAATTTCTTCCTATACTGCCAATCTCGCTGCTTTCCTGACTGTGGAGGG	
ı	CDISPRSLSGRIVGGVWWFF	ď
1901	ACACTATAAAGAGGTTCTAGTGAGAGGCCCGCGTAACAACCTCCCCAA	
6	1921	

	1000	AGGGAAAGTTCGCCTTCCTGCTGGAGTCAACC	C
	7777	GGTTCCCTTTCAAGCG	0877
щ		G V A R V R K S K G K F A F L L E S T M	1
	, ,	TGAGTACATTGAGCAGAAAACCATGTGATACGATGAAAGTTGGTGGAAATCTG	6
	1077	TTACTCATGTAACTCGTCTTTTGGTACACTATGCTACTTTCAACCACCTTTAGACCTA	2340
щ		NEYIEQRKPCDTMKVGGNLD	1
	ר כ	CAAAGGCTATGGTGTGCAACCCCTAAAGGCTCAGCATTAGGAACGCCTGTA	4
	T # C 7	AGGTTTCCGATACCACACCGTTGGGGATTTCCGAGTCGTAATCCTTGCGGACATTTGGAA	74 00
๙	٠	SKGYGVATPKGSALGTPVNL	t
	5	GTATTGAAACTCAGTGAACAAGGCATCTTAGACAAGCTGAAAAAAAA	4
	T 0 # 7	ATAACTTTGAGTCA(7460
ൻ		AVLKLSEQGILDKLKNKWYY	t
		GACCAGCGCTCT	C L
	T047	rccrgaggcccrcarrcrgrrcrgg	7270
α		S I A S U U S A C U U S A C U U S A C U U S A C U U S A C U U S A C U U S A C U S A	1

F16.4J

	, CRC	AGCAATGTGGCAGGCGTTTTCTATATACTTGTCGGAGGTCTGGGGCTGGCCATGATG	0820
	T 7 C 7	CCGTCCGCAAAAGATATATGAACAGCCTCCAGACCCCGACCGGTACTAC	
ർ		LSNVAGVFYILVGGLGLAMM -	
		ECORI	
	(L	GIGGCTITGATAGAATTCTGTTACAAATCACGGGCAGAGTCCAAACGCATGAAACTCACA	0
	7281	CACCGAAACTATCTTAAGACAATGTTTAGTGCCCGTCTCAGGTTTGCGTACTTTGAGTGT	0407
ਰ		VALIEFCYKSRAESKRMKLT -	•
	(AAGAACACCCAAAACTTTAAGCCTGCTGCCACCAACACTCAGAATTATGCTACATAC	
	7 P P T	TICITGIGGGTTTTGAAATTCGGACGAGGACGGTGGTTGTGAGTCTTAATACGATGTATG	
๙		KNTQNFKPAPATNTQNYATY -	
	, () ()	AGAGAAGGCTACAACGTGTATGGAACAGAGTGTTAAGATCTAGGGATCCCTTCCCACT	0,7,6,0
	7/07	TCTCTTCCGATGTTGCACATACCTTGTCTCTCACAATTCTAGATCCCTAGGGAAGGGTGA	
๗		REGYNVYGTESVKI*	,
	r C	GGAGGCATGTGAGAGGAAATCACCGAAAACGTGGCTGCTTCAAGGATCCTGAGCCAG	000
	10/7	CCICCGIACACIACICICITIAGIGGCITITIGCACCGACGAAGIICCIAGGACICGGIC) V

F16. 4K

	TTAGGAATTC 1+ 3070	3061
2000	TIGGTIGIT	7
7308	AACCAACAAAAATGGACATGCATCAAACCCTTGATGTATTAATATTTATAGTTTTCA	2001
2000	TGTTACGTT	1 J
	ACAATGCAAACCATCATTGAAATCTTTTTGCTTTGAAAAAAAA	7971
7467	-	7
6	AATAGGAAA	7881
7887	TAAAGTGAGA	707
	ATTTCACTCTCCT	1000

F1G. 5

.. GSALGNAVNLAVLKLNEQGLLDKLKNKWWYDKGECGSGGDSKDKT.. IIIIIII .. GSALGTPVNLAVLKLSEQGILDKLKNKWWYDKGECGAKDSGSKDKT.. IIIIIIIIIIII III IIIIIIII IIIIIIII GluR3A GluR3B

FIG. 6

FIG. 7 Ν Ν Н Sc RI Sc RI H||Kp RI Kp Н pBS/RKCS FG34 pBS/RKCH221 5.3 Kbp 5.2 Kbp **CUT WITH CUT WITH** Hind III Hind III N HHSc | RI Kp RI H WARRANG CO. 2.1 Kbp 1.0 Kbp LIGATE N Н H RIJ **LEGEND** Sc|RI Кp Sc = Sac I RI = Eco RI Kp = Kpn I3.1 Kbp H = Hind III pBS/humGluR3B N = Not I6.1 Kbp

FIG. 8

FIG. 9

FIG. 11

FIG. 12

FIG. 13

% MAXIMAL (SH)AMPA BOUND

THIS PAGE BLANK (USPTO)

(11) Publication number: 0 574 257 A3

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 93304500.7

(22) Date of filing: 10.06.93

(a) Int. CI.⁵: **C07K 15/00,** C12N 15/12, C12N 5/08, C12P 21/02, C12P 21/08, G01N 33/48

③ Priority: 10.06.92 US 896611 10.06.92 US 896612 10.06.92 US 896437

43 Date of publication of application : 15.12.93 Bulletin 93/50

(B4) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC

NL PT SE

88 Date of deferred publication of search report: 15.02.95 Bulletin 95/07

71 Applicant : Kamboj, Rajender 2869 Arvida Circle Mississauga, Ontario L5N 1R4 (CA)

71 Applicant : Elliott, Candace E. 74 Burlington Street, Apt. No. 1
Etobicoke, Ontario M8V 2L2 (CA)

71 Applicant: Nutt, Stephen L. 74 Burlington Street, Apt. No. 1 Etobicoke, Ontario M8V 2L2 (CA) 72 Inventor: Kamboj, Rajender 2869 Arvida Circle Mississauga, Ontario L5N 1R4 (CA) Inventor: Elliott, Candace E. 74 Burlington Street, Apt. No. 1 Etobicoke, Ontario M8V 2L2 (CA) Inventor: Nutt, Stephen L. 74 Burlington Street, Apt. No. 1 Etobicoke, Ontario M8V 2L2 (CA)

(74) Representative: Mercer, Christopher Paul Carpmaels & Ransford 43, Bloomsbury Square London WC1A 2RA (GB)

(54) Amino-hydroxy-methyl-isoxazole-propionate binding human glutamate receptors.

©77 Described herein are isolated polynucleotides which code for a family of AMPA-type human CNS receptors. The receptors are characterized structurally and the construction and use of cell lines expressing these receptors are disclosed.

EUROPEAN SEARCH REPORT

Application Number EP 93 30 4500

ategory	Citation of document with it of relevant pa	ndication, where appropriate, ssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL5)
•	WO-A-91 06648 (THE BIOLOGICAL STUDIES) * the whole documen	•	1-18	C07K15/00 C12N15/12 C12N5/08
',D	pages 556 - 560	990, LANCASTER, PA US	1-18	C12P21/02 C12P21/08 G01N33/48
	KEINANEN K. ET AL * the whole documen	A family of ampa' t *		
•	vol.2, 1992, UK pages 211 – 218 POTIER M.C. ET AL.	SEQUENCING AND MAPPING, 'The glutamate	1-12	
	receptor' * the whole documen	t *		
				TECHNICAL FIELDS SEARCHED (Int.Cl.5)
		·		C07K
		•	·	
			ļ	
			:	
			4	
	The present search report has b	Date of completion of the search	<u> </u>	France
	BERLIN	23 November 1994	Gui	rdjian, D
Y:pau do	CATEGORY OF CITED DOCUME rticularly relevant if taken alone rticularly relevant if combined with an cument of the same category thological background	E : earlier patent d	ple underlying the ocument, but pub- date in the application	e invention Nished on, or

DROW 15th on the Man