

TN12, TS12 and TYNx12 Series

SENSITIVE & STANDARD 12A SCRS

Table 1: Main Features

Symbol	Value	Unit
I _{T(RMS)}	12	Α
V _{DRM} /V _{RRM}	600 to 1000	V
I _{GT}	0.2 to 15	mA

DESCRIPTION

Available either in sensitive (TS12) or standard (TN12 / TYN) gate triggering levels, the 12A SCR series is suitable to fit all modes of control, found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits...

Available in through-hole or surface-mount packages, they provide an optimized performance in a limited space area.

Table 2: Order Codes

Part Numbers	Marking
TN1215-x00B	TN1215x00
TN1215-x00B-TR	TN1215x00
TN1215-x00G	TN1215x00G
TN1215-x00G-TR	TN1215x00G
TN1215-x00H	TN1215x00
TS1220-x00B	TS1220x00
TS1220-x00B-TR	TS1220x00
TS1220-x00H	TS1220x00
TYNx12RG	TYNx12
TYNx12TRG	TYNx12T

TN12, TS12 and TYNx12 Series

Table 3: Absolute Ratings (limiting values)

		Va	lue				
Symbol	Parame	eter		TN12-G TYN12	TN12-B/H TS12-B/H	Unit	
I _{T(RMS)}	RMS on-state current (180° con	$T_c = 105^{\circ}C$	12		Α		
IT _(AV)	Average on-state current (180° (angle)	$T_c = 105^{\circ}C$	8		Α		
I _{TSM}	Non repetitive surge peak on-	$t_p = 8.3 \text{ ms}$	T _j = 25°C	145	115		
TSM	state current	t _p = 10 ms		140	110	Α	
l²t	I ² t Value for fusing	$t_p = 10 \text{ ms}$	$T_j = 25^{\circ}C$	98	60	A ² s	
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$ $F = 60 \text{ Hz}$		T _j = 125°C	5	50	A/µs	
I _{GM}	Peak gate current	T _j = 125°C		4	Α		
P _{G(AV)}	Average gate power dissipation	T _j = 125°C		1	W		
T _{stg} T _j	Storage junction temperature ra Operating junction temperature) + 150) + 125	°C		
V_{RGM}	Maximum peak reverse gate volta	age (for TN12 &	TYN12 only)	5		V	

Tables 4: Electrical Characteristics ($T_j = 25^{\circ}C$, unless otherwise specified)

■ SENSITIVE

Symbol	Test Conditions			TS1220	Unit
I _{GT}	$V_{\rm D} = 12 {\rm V}$ $R_{\rm I} = 140 {\rm \Omega}$		MAX.	200	μΑ
V _{GT}	1 VD = 12 V 11		MAX.	0.8	V
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $R_{GK} = 1 \text{ k}\Omega$	T _j = 125°C	MIN.	0.1	V
V _{RG}	I _{RG} = 10 μA		MIN.	8	V
I _H	$I_T = 50 \text{ mA}$ $R_{GK} = 1 \text{ k}\Omega$		MAX.	5	mA
ΙL	$I_G = 1 \text{ mA}$ $R_{GK} = 1 \text{ k}\Omega$		MAX.	6	mA
dV/dt	$V_D = 65 \% V_{DRM} R_{GK} = 220 \Omega$	T _j = 125°C	MIN.	5	V/µs
V _{TM}	I _{TM} = 24 A tp = 380 μs	T _j = 25°C	MAX.	1.6	V
V _{t0}	Threshold voltage $T_j = 125$ °C		MAX.	0.85	V
R _d	Dynamic resistance	T _j = 125°C	MAX.	30	mΩ
I _{DRM}	$V_{DRM} = V_{RRM}$ $R_{GK} = 220 \Omega$	T _j = 25°C	MAX.	5	μΑ
I _{RRM}	*DHM - *HHM	T _j = 125°C	IVIAA.	2	mA

■ STANDARD

Symbol	Test Conditi	ono		TN1	215	TY	/N	Unit
Symbol	rest Conditi	UIIS		B/H	G	x12T	x12	Offic
I _{GT}			MIN.	2	2	0.5	2	mA
'G1	$V_D = 12 V$ $R_L = 33 \Omega$	•	MAX.	1	5	5	15	ША
V_{GT}			MAX.	1		.3		٧
V_{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_j = 125^{\circ}\text{C}$				C).2		V
I _H	I _T = 500 mA Gate open	MAX.	40	30	15	30	mA	
IL	I _G = 1.2 I _{GT}	MAX.	80	60	30	60	mA	
dV/dt	V _D = 67 % V _{DRM} Gate open	T _j =125°C	MIN.	20	00	40	200	V/µs
V_{TM}	$I_{TM} = 24 \text{ A}$ $t_p = 380 \mu\text{s}$	T _j = 25°C	MAX.	1.6			V	
V _{t0}	Threshold voltage $T_j = 125^{\circ}C$		MAX.	0.85			V	
R _d	Dynamic resistance $T_j = 125^{\circ}C$		MAX.	30			mΩ	
I _{DRM}	V _{DRM} = V _{RRM}	T _j = 25°C	MAX.		5		μΑ	
I _{RRM}	VDRM — VRRM	T _j = 125°C	IVIAA.			2		mA

Table 6: Thermal resistance

Symbol	Pa	Value	Unit		
R _{th(j-c)}	Junction to case (DC)			1.3	°C/W
		$S = 0.5 \text{ cm}^2$	DPAK	70	
R _{th(j-a)}	Junction to ambient (DC)	S = 1 cm ²	D ² PAK	45	°C/W
odifiction to ambient (DC)	Sunction to ambient (DO)	L	IPAK	100	O/ V V
			TO-220AB	60	

S = Copper surface under tab.

Figure 1: Maximum average power dissipation versus average on-state current

Figure 2: Average and D.C. on-state current versus case temperature

<u> 577</u>

Figure 3: Average and D.C. on-state current versus ambient temperature (device mounted on FR4 with recommended pad layout) (DPAK)

Figure 5: Relative variation of thermal impedance junction to ambient versus pulse duration (recommended pad layout, FR4 PC board for DPAK)

Figure 7: Relative variation of gate trigger current and holding current versus junction temperature for TN8 & TYN08 series

Figure 4: Relative variation of thermal impedance junction to case versus pulse duration

Figure 6: Relative variation of gate trigger current and holding current versus junction temperature for TS8 series

Figure 8: Relative variation of holding current versus gate-cathode resistance (typical values) for TS8 series

4/11

Figure 9: Relative variation of dV/dt immunity versus gate-cathode resistance (typical values) for TS8 series

Figure 11: Surge peak on-state current versus number of cycles

Figure 13: On-state characteristics (maximum values)

Figure 10: Relative variation of dV/dt immunity versus gate-cathode capacitance (typical values) for TS8 series

Figure 12: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms, and corresponding values of I^2t

Figure 14: Thermal resistance junction to ambient versus copper surface under tab (epoxy printed circuit board FR4, copper thickness: 35µm) (DPAK and D²PAK)

Figure 15: Ordering Information Scheme (TN8 series)

Figure 16: Ordering Information Scheme (TS8 series)

Figure 17: Ordering Information Scheme (TYN08 series)

6/11

Table 7: Product Selector

Part Numbers		Voltag	e (xxx)	Sensitivity	Dookogo	
Part Numbers	600 V	700 V	800 V	1000 V	Sensitivity	Package
TN1215-xxxB	Х		Х		15 mA	DPAK
TN1215-xxxG	Х		Х	Х	15 mA	D ² PAK
TN1215-xxxH	Х		Х		15 mA	IPAK
TS1220-xxxB	Х	Х			0.2 mA	DPAK
TS1220-xxxH	Х	Х			0.2 mA	IPAK
TYNx12	Х		Х	Х	15 mA	TO-220AB
TYNx12T	Х		Х	Х	5 mA	TO-220AB

Figure 18: DPAK Package Mechanical Data

	DIMENSIONS					
REF.	Millimeters		Inc	hes		
	Min.	Max	Min.	Max.		
Α	2.20	2.40	0.086	0.094		
A1	0.90	1.10	0.035	0.043		
A2	0.03	0.23	0.001	0.009		
В	0.64	0.90	0.025	0.035		
B2	5.20	5.40	0.204	0.212		
С	0.45	0.60	0.017	0.023		
C2	0.48	0.60	0.018	0.023		
D	6.00	6.20	0.236	0.244		
E	6.40	6.60	0.251	0.259		
G	4.40	4.60	0.173	0.181		
Н	9.35	10.10	0.368	0.397		
L2	0.80 typ.		0.03	1 typ.		
L4	0.60	1.00	0.023	0.039		
V2	0°	8°	0°	8°		

Figure 19: DPAK Foot Print Dimensions (in millimeters)

<u>577</u>

Figure 20: D²PAK Package Mechanical Data

			DIMEN	ISIONS		
REF.	Mi	llimete	ers		Inches	i
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.30		4.60	0.169		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.70		0.93	0.027		0.037
B2	1.25	1.40		0.048	0.055	
С	0.45		0.60	0.017		0.024
C2	1.21		1.36	0.047		0.054
D	8.95		9.35	0.352		0.368
Е	10.00		10.28	0.393		0.405
G	4.88		5.28	0.192		0.208
L	15.00		15.85	0.590		0.624
L2	1.27		1.40	0.050		0.055
L3	1.40		1.75	0.055		0.069
R		0.40			0.016	
V2	0°		8°	0°		8°

Figure 21: D²PAK Foot Print Dimensions (in millimeters)

8/11

Figure 22: IPAK Package Mechanical Data

Figure 23: TO-220AB Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Table 8: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
TN1215-x00B	TN1215x00	DPAK	0.3 g	75	Tube
TN1215-x00B-TR	TN1215x00	DPAK	0.3 g	2500	Tape & reel
TN1215-x00G	TN1215x00G	D ² PAK	1.5 g	50	Tube
TN1215-x00G-TR	TN1215x00G	D ² PAK	1.5 g	1000	Tape & reel
TN1215-x00H	TN1215x00	IPAK	0.3 g	75	Tube
TS1220-x00B	TS1220x00	DPAK	0.3 g	75	Tube
TS1220-x00B-TR	TS1220x00	DPAK	0.3 g	2500	Tape & reel
TS1220-x00H	TS1220x00	IPAK	0.3 g	75	Tube
TYNx12RG	TYNx12	TO-220AB	2.3 g	50	Tube
TYNx12TRG	TYNx12T	TO-220AB	2.3 g	50	Tube

Note: x = voltage

Table 9: Revision History

Date	Revision	Description of Changes
Sep-2000	3	Last update.
25-Mar-2005	4	TO-220AB delivery mode changed from bulk to tube.
14-Oct-2005	5	Changed sensitivity values in Table 7 for TYNx12 (30 to 15 mA) and TYNx12T (15 to 5 mA). Added ECOPACK statement

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

