Sign on

SAO/NASA ADS arXiv e-prints Abstract Service

· Find Similar Abstracts (with default settings below)

- · arXiv e-print (arXiv:1109.4733)
- · References in the Article
- · Also-Read Articles (Reads History)
- · Translate This Page

Title: Fermi-LAT detection of gamma-ray emission in the vicinity of the star

forming regions W43 and Westerlund 2

Authors: Lemoine-Goumard, M.; Ferrara, E.; Grondin, M.-H.; Martin, P.; Renaud, M.

eprint arXiv:1109.4733 **Publication:**

Publication Date: 09/2011 **ARXIV** Origin:

Astrophysics - High Energy Astrophysical Phenomena **Keywords:**

Proceeding of the Cosmic Rays and the Interstellar Medium (CRISM-2011) **Comment:**

conference, Montpellier, France, June 26-July 1. To be published in a special

issue of Memorie della Societa Astronomica Italiana

Bibliographic Code: 2011arXiv1109.4733L

Abstract

Particle acceleration in massive star forming regions can proceed via a large variety of possible emission scenarios, including high-energy gamma-ray production in the colliding wind zone of the massive Wolf-Rayet binary (here WR 20a and WR 121a), collective wind scenarios, diffusive shock acceleration at the boundaries of wind-blown bubbles in the stellar cluster, and outbreak phenomena from hot stellar winds into the interstellar medium. In view of the recent Fermi-LAT detection of HESS J1023-575 (in the vicinity of Westerlund 2), we examine another very high energy (VHE) gamma-ray source, HESS J1848-0145 (in the vicinity of W43), possibly associated with a massive star cluster. Considering multi-wavelength data, in particular TeV gamma-rays, we examine the available evidence that the gamma-ray emission coincident with Westerlund 2 and W43 could originate in particles accelerated by the above-mentioned mechanisms in massive star clusters

Bibtex entry for this abstract	Preferred format for this abstract (see Preferences)
Add this article to private library	Remove this article from private library

Use: Authors

▼ Title