Kapitel 2

Endomorfier

Vi vil i dette kapitel etablere nogle vigtige resultater vedrørende endomorfier på elliptiske kurver, som vi bl.a. vil benytte i beviset for Hasses sætning.

2.1 Endomorfier på elliptiske kurver

Lad K være et legeme og \overline{K} en tilhørende algebraisk aflukning. I det følgende vil vi med en elliptisk kurve E mene en kurve på formen $y^2 = x^3 + Ax + B$. Vi begynder da med følgende definition:

Definition 3 En endomorfi på E er en homomorfi $\alpha: E(\overline{K}) \to E(\overline{K})$ givet ved rationale funktioner.

Med en rational funktion forstår vi en kvotient af polynomier. Det vil altså sige, at en endomorfi α skal opfylde, at $\alpha(P_1 + P_2) = \alpha(P_1) + \alpha(P_2)$ og der skal findes rationale funktioner $R_1(x, y)$ og $R_2(x, y)$, begge med koefficienter i \overline{K} , så

$$\alpha(x, y) = (R_1(x, y), R_2(x, y)),$$

for alle $(x,y) \in E(\overline{K})$. Da α er en homomorfi gælder der specialt at $\alpha(\infty) = \infty$. Den trivielle endomorfi angives med 0 og er den endomorfi, som sender ethvert punkt til ∞ . Vi vil fremover antage, at α ikke er den trivielle endomorfi, hvilket betyder at der findes $(x,y) \in E(\overline{K})$ sådan at $\alpha(x,y) \neq \infty$.

Eksempel 1. Lad E være en elliptisk kurve og lad α være givet ved, at $\alpha(P) = 2P$. Da er α en homomorfi og $\alpha(x,y) = (R_1(x,y), R_2(x,y))$, hvor

$$R_1(x,y) = \left(\frac{3x^2 + A}{2y}\right)^2 - 2x,$$

$$R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right) \left(x - \left(\left(\frac{3x^2 + A}{2y}\right)^2 - 2x\right)\right) - y$$

$$= \left(\frac{3x^2 + A}{2y}\right) \left(3x - \left(\frac{3x^2 + A}{2y}\right)^2\right) - y.$$

Da både R_1 og R_2 er rationale funktioner er α en endomorfi for E.

Vi ønsker nu, at finde en standard repræsentation for de rationale funktioner, som en endomorfi er givet ved. Følgende sætning gør dette muligt for os:

Sætning 2 Lad E være en elliptisk kurve over et legeme K. En endomorfi α kan da skrives som

$$\alpha(x,y) = (r_1(x), r_2(x)y) = \left(\frac{p(x)}{q(x)}, \frac{s(x)}{t(x)}y\right),\,$$

hvor p, q henholdsvis s, t ikke har nogen fælles faktor.

Bevis. For et punkt $(x,y) \in E(\overline{K})$ gælder der, at $y^2 = x^3 + Ax + B$. Dette medfører, at

$$y^{2k} = (x^3 + Ax + B)^k$$
 og $y^{2k+1} = y^{2k}y = (x^3 + Ax + B)^k y$, $k \in \mathbb{N}$

Vi kan altså erstatte en lige potens af y med et polynomium der kun afhænger af x, og en ulige potens med y ganget med et polynomium der kun afhænger af x. For en rational funktion R(x,y) kan vi da beskrive en anden rational funktion, som stemmer overens med denne på punkter fra $E(\overline{K})$. Vi kan altså antage, at

$$R(x,y) = \frac{p_1(x) + p_2(x)y}{p_3(x) + p_4(x)y}. (2.1)$$

Vi kan endda gøre det endnu simplere ved at gange udtrykket i (2.1) med $p_3(x) - p_4(x)$, hvilket gør at vi i nævneren får

$$(p_3(x) - p_4(x)y)(p_3(x) + p_4(x)y) = p_3(x)^2 - p_4(x)^2y^2,$$

hvorefter vi kan erstatte y^2 med $x^3 + Ax + B$. Dette giver os altså, at

$$R(x,y) = \frac{q_1(x) + q_2(x)y}{q_3(x)}. (2.2)$$

Da α er en endomorfi er den givet ved

$$\alpha(x, y) = (R_1(x, y), R_2(x, y)),$$

hvor R_1 og R_2 er rationale funktioner. Da α specielt er en homomorfi bevarer den strukturen for en elliptisk kurve så vi har, at

$$\alpha(x, -y) = \alpha(-(x, y)) = -\alpha(x, y).$$

Dette medfører, at

$$R_1(x, -y) = R_1(x, y)$$
 og $R_2(x, -y) = -R_2(x, y)$.

Skriver vi R_1 på samme form som i (2.2) må $q_2(x) = 0$, og ligeledes må vi for R_2 have at $q_1(x) = 0$. Vi kan altså antage, at

$$\alpha(x,y) = (r_1(x), r_2(x)y),$$

hvor $r_1(x)$ og $r_2(x)$ er rationale funktioner. Skriv da

$$r_1(x) = \frac{p(x)}{q(x)}$$
 og $r_2(x) = \frac{s(x)}{t(x)}y$,

hvor p, q henholdsvis s, t ikke har nogen fælles faktorer. Hvis q(x) = 0 for et punkt (x, y) lader vi $\alpha(x, y) = \infty$. Hvis $q(x) \neq 0$ giver (ii) i lemma 1, at $r_2(x)$ da også vil være defineret og vi har det ønskede.

Vi viser da lemmaet, som blev benyttet i beviset ovenfor. Bemærk, at hvis to polynomier har en fælles rod må de nødvendigvis have en fælles faktor.

Lemma 1 Lad α være en endomorfi givet ved

$$\alpha(x,y) = \left(\frac{p(x)}{q(x)}, \frac{s(x)}{t(x)}y\right),$$

for en elliptisk kurve E. Lad p,q henholdsvis s,t være sådan, at de ikke har nogen fælles rødder. Da har vi, at

(i) For et polynomium u(x), som ikke har en fælles rod med q(x) har vi, at

$$\frac{(x^3 + Ax + B)s(x)^2}{t(x)^2} = \frac{u(x)}{q(x)^3}.$$

(ii) $t(x_0) = 0$ hvis og kun hvis $q(x_0) = 0$.

Bevis. (i) For et punkt $(x,y) \in E(K)$ har vi også, at $\alpha(x,y) \in E(K)$, da α er en endomorfi. Derfor har vi, at

$$\frac{(x^3 + Ax + B)s(x)^2}{t(x)^2} = \frac{y^2 s(x)^2}{t(x)^2} = \left(\frac{s(x)}{t(x)}y\right)^2$$

$$= \left(\frac{p(x)}{q(x)}\right)^3 + A\left(\frac{p(x)}{q(x)}\right) + B$$

$$= \frac{p(x)^3 + Ap(x)q(x)^2 + Bq(x)^3}{q(x)^3} = \frac{u(x)}{q(x)^3},$$

hvor $u(x)=p(x)^3+Ap(x)q(x)^2+Bq(x)^3$. Antag nu, at $q(x_0)=0$. Hvis nu også $u(x_0)=0$ følger det, at

$$u(x_0) = p(x_0)^3 + Ap(x_0)q(x_0)^2 + Bq(x_0)^3 = 0 \Rightarrow p(x_0)^3 = 0,$$

så $p(x_0) = 0$. Men p og q havde pr. antagelse ingen fælles rødder. Så hvis $q(x_0) = 0$ må $u(x_0) \neq 0$ og de har dermed ingen fælles rødder.

(ii) Vi ved fra (i), at

$$(x^{3} + Ax + B)s(x)^{2}q(x)^{3} = u(x)t(x)^{2}.$$
(2.3)

Hvis $q(x_0) = 0$ følger det direkte fra (2.3), at

$$u(x_0)t(x_0)^2 = 0.$$

Da q og u ikke har nogen fælles rødder følger det, at $t(x_0) = 0$. Antag nu, at $t(x_0) = 0$, da har vi fra (2.3), at

$$(x_0^3 + Ax_0 + B)s(x_0)^2q(x_0)^3 = 0.$$

Da s og t pr. antagelse ikke har nogen fælles rødder giver det yderligere, at

$$(x_0^3 + Ax_0 + B)q(x_0)^3 = 0.$$

Hvis $x_0^3 + Ax_0 + B \neq 0$ er $q(x_0)^3 = 0$ og dermed må $q(x_0) = 0$. Hvis vi derimod har, at $x_0^3 + Ax_0 + B = 0$ er det klart, at $(x - x_0)$ deler $(x^3 + Ax + B)$. Med andre ord findes et polynomium Q(x) sådan, at

$$(x^3 + Ax + B) = (x - x_0)Q(x),$$

hvor $Q(x_0) \neq 0$, da $x^3 + Ax + B$ ikke har nogen dobbeltrødder. Da $t(x_0) = 0$ findes der også et polynomium T(x) sådan, at

$$t(x) = (x - x_0)T(x).$$

Udtrykket fra (2.3) kan da skrives, som

$$(x - x_0)Q(x)s(x)^2q(x)^3 = u(x)((x - x_0)T(x))^2,$$

hvilket efter division med $(x - x_0)$ giver os, at

$$Q(x)s(x)^{2}q(x)^{3} = u(x)(x - x_{0})T(x)^{2}.$$

I tilfældet, hvor $x = x_0$ har vi så, at

$$Q(x_0)s(x_0)^2q(x_0)^3 = 0,$$

men da $Q(x_0) \neq 0$ og $s(x_0) \neq 0$ må $q(x_0)^3 = 0$, hvilket i sidste ende giver os, at $q(x_0) = 0$.

Med den nu etablerede standard repræsentation for endomorfier, er vi i stand til at give en definition for graden af en endomorfi:

Definition 4 Graden af en endomorfi α er givet ved

$$\deg(\alpha) = \max\{\deg p(x), \deg q(x)\},\$$

når α ikke er den trivielle endomorfi, altså for $\alpha \neq 0$. For $\alpha = 0$ lader $vi \deg(\alpha) = 0$.

En endomorfi siges at være separabel hvis den afledede $r'_1(x) \neq 0$.

Den følgende proposition er essentiel idet, at det tilknytter graden af en endomorfi til antallet af elementer i kernen for selvsamme endomorfi. Dette faktum benyttes direkte i beviset for Hasses sætning.

Proposition 1 Lad E være en elliptisk kurve. Lad $\alpha \neq 0$ være en separabel endomorfi for E. Da er

$$\deg \alpha = \# \ker(\alpha),$$

hvor $\ker(\alpha)$ angiver kernen for homomorfien $\alpha: E(\overline{K}) \to E(\overline{K})$. I tilfældet hvor $\alpha \neq 0$ ikke er separabel gælder der, at

$$\deg \alpha > \# \ker(\alpha)$$
.

Bevis. Vi skriver α på standardformen, som vi introducerede tidligere, altså sættes

$$\alpha(x,y) = (r_1(x), r_2(x)y),$$

hvor $r_1(x) = p(x)/q(x)$. Da α er antaget til at være separabel er $r'_1 \neq 0$ og dermed er p'q - pq' (tælleren af r'_1) ikke nulpolynomiet. Lad nu

$$S = \{x \in \overline{K} \mid (p'q - pq')(x)q(x) = 0\}.$$

Lad da $(a,b)\in E(\overline{K})$ være valgt sådan, at følgende er opfyldt

- 1. $a \neq 0, b \neq 0 \text{ og } (a, b) \neq \infty$,
- 2. $\deg(p(x) aq(x)) = \max\{\deg p(x), \deg q(x)\} = \deg \alpha$,
- 3. $a \notin r_1(S)$,
- 4. $(a,b) \in \alpha(E(\overline{K}))$.

Vi skal da argumentere for, at sådan et punkt findes. Da \overline{K} er algebraisk lukket er $E(\overline{K})$ en uendelig mængde og vi kan derfor undgå de punkter, hvor a=0,b=0 eller $(a,b)=\infty$. Lad

$$p(x) = cx^n + (\text{led af lavere orden}), \quad q(x) = dx^m + (\text{led af lavere orden}).$$

Hvis $\deg p > \deg q$ er n > m og dermed er $\deg(p - aq) = n$ som påkrævet. På samme måde gælder det hvis $\deg q > \deg p$. Hvis n = m er (ii) ikke opfyldt når c - ad = 0,

men i dette tilfælde kan vi gange a med et heltal større end 1 og finde et punkt hvor (ii) er opfyldt. Da p'q-pq' ikke er nulpolynomiet er S en endelig mængde, hvilket dermed også betyder, at $\alpha(S)$ er en endelig mængde. Funktionen $r_1(x)$ antager uendeligt mange forskellige værdier når x gennemløber \overline{K} , da en algebraisk aflukning indeholder uendeligt mange elementer. Da der for hvert x er et punkt $(x,y) \in E(\overline{K})$ følger det, at $\alpha(E(\overline{K}))$ er en uendelig mængde. Det er altså muligt, at vælge et punkt $(a,b) \in E(\overline{K})$ med egenskaberne ovenfor.

Vi vil vise, at der findes netop deg α punkter $(x_1, y_1) \in E(\overline{K})$ sådan at

$$\alpha(x_1, y_1) = (a, b).$$

Det er velkendt fra gruppeteorien, at $\alpha^{-1}(\alpha(x_1, y_1)) = (x_1, y_1) \ker \alpha$, så dette vil medføre at $\ker \alpha$ har deg α elementer. For et sådan punkt gælder der, at

$$\frac{p(x_1)}{q(x_1)} = a, \quad r_2(x_1)y_1 = b.$$

Da $(a,b) \neq \infty$ er $q(x_1) \neq 0$. Da $b \neq 0$ har vi også, at $y_1 = b/r_2(x_1)$. Dette betyder, at y_1 er bestemt ved x_1 , så vi behøver kun at tælle værdier for x_1 . Fra antagelse (2) har vi, at p(x) - aq(x) = 0 har deg α rødder talt med multiplicitet. Vi skal altså vise, at p - aq ikke har nogen multiple rødder. Antag for modstrid, at x_0 er en multiple rød. Da har vi, at

$$p(x_0) - aq(x_0) = 0$$
 og $p'(x_0) - aq'(x_0) = 0$,

da hvis x_0 er en multipel rod er den også rod i den afledte. Dette kan omskrives til ligningerne $p(x_0) = aq(x_0)$ og $aq'(x_0) = p'(x_0)$, som vi ganger med hinanden og får, at

$$ap(x_0)q'(x_0) = ap'(x_0)q(x_0).$$

Da $a \neq 0$ pr. (1) giver det os, at x_0 er en rod i p'q - pq' så $x_0 \in S$. Altså er $a = r_1(x_0) \in r_1(S)$, hvilket er i modstrid med (3). Dermed har p - aq netop deg α forskellige rødder. Da der er præcist deg α punkter (x_1, y_1) så $\alpha(x_1, y_1) = (a, b)$ har kernen for α netop deg α elementer.

Hvis α ikke er separabel kan det samme bevis anvendes, hvor p'-aq' dog altid er nulpolynomiet så p-aq(x)=0 har altid multiple rødder, så den har færre end deg α løsninger.

Sætning 3 Lad E være en elliptisk kurve over et legeme K. Lad $\alpha \neq 0$ være en endomorfi for E. Da er $\alpha : E(\overline{K}) \to E(\overline{K})$ surjektiv.

Bevis. Lad $(a,b) \in E(\overline{K})$. Vi vil vise, at der findes et punkt $(x,y) \in E(\overline{K})$ sådan, at $\alpha(x,y) = (a,b)$. Da $\alpha(\infty) = \infty$ kan vi antage, at $(a,b) \neq \infty$. Lad $r_1(x) = p(x)/q(x)$. Vi skal betragte to tilfælde:

Hvis p(x) - aq(x) ikke er et konstant polynomium har det en rod x_0 . Hvis vi nu har, at $q(x_0) = 0$ må $p(x_0) = 0$, hvilket er i modstrid med at p og q ikke har nogen fælles rødder. Derfor har vi $q(x_0) \neq 0$ og det følger, at

$$p(x_0) - aq(x_0) = 0 \Rightarrow a = \frac{p(x_0)}{q(x_0)}.$$

Vælg nu $y_0 \in E(\overline{K})$ som en af kvadratrødderne af $x_0^3 + Ax_0 + B$. Da er $\alpha(x_0, y_0)$ defineret og $\alpha(x_0, y_0) = (a, b')$ for et b'. Da

$$(b')^2 = a^3 + Aa + B = b^2$$

er $b = \pm b'$. Hvis b' = b er vi færdige. Hvis b' = -b har vi, at

$$\alpha(x_0, -y_0) = (a, -b') = (a, b).$$

Vi mangler nu, at betragte tilfældet hvor p(x)-aq(x) er konstant. Da $E(\overline{K})$ er uendelig og ker α er endelig afbilledes kun endeligt mange punkter fra $E(\overline{K})$ til en given x-koordinat. Derfor må enten p(x) eller q(x) være ikke-konstant, da hvis de begge var konstante ville der være uendeligt mange punter fra $E(\overline{K})$ der afbilledes til en x-koordinat. Hvis p og q er to ikke-konstante polynomier er der højest én konstant a sådan at p-aq er konstant, da vi ellers for en anden sådan konstant a' har, at

$$(a'-a)q = (p-aq) - (p-a'q), \quad (a'-a)p = a'(p-aq) - a(p-a'q),$$

hvor begge ligninger er konstante, som medfører at p og q er konstante. Så der er højest to punkter (a,b) og (a,-b) som ikke er i billedet af α . Lad (a_1,b_1) være et andet punkt end disse. Da er $\alpha(P_1)=(a_1,b_1)$ for et punkt P_1 . Vi kan vælge (a_1,b_1) sådan, at $(a_1,b_1)+(a,b)\neq(a,\pm b)$, så der findes et punkt P_2 sådan, at $\alpha(P_2)=(a_1,b_1)+(a,b)$. Dermed har vi, at

$$\alpha(P_2 - P_1) = (a, b)$$
 og $\alpha(P_1 - P_2) = (a, -b)$.

Vi har da ramt alle punkter, så α er surjektiv.

Dette bevis konkluderer vores undersøgelse af endomorfier på generelle legemer K. Vi vil i kapitel 4 fortsat behandle endomorfier, men der vil det være for endelige legemer.