A real estate agent want help to predict the house price for regions in Usa.he gave us the dataset to work on to use linear Regression model.Create a model that helps him to estimate

Data Collection

```
In [1]: #import Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [2]: #import the dataset
```

In [2]: #import the dataset
data=pd.read_csv(r"C:\Users\user\Desktop\Vicky\10_USA_Housing.csv")

In [3]: #to display top 10 rows
data.head()

Δνα

Out[3]:

Addre	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry A 674\nLaurabury, N 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Vie\ Suite 079\nLa Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabe Stravenue\nDanieltow WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO / 448	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nFF AE 093	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
							4

```
In [4]: #to display null values
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [5]: data.shape

Out[5]: (5000, 7)

In [6]: #to display summary of statistics
data.describe()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [7]: #to display columns name data.columns

EDA and Visualization

In []:

In [10]: sns.distplot(data['Price'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='Price', ylabel='Density'>


```
In [11]: sns.heatmap(data1.corr())
```

Out[11]: <AxesSubplot:>

To train the model

we are going to train the linear regression model; We need to split the two variable x and y where x in independent variable (input) and y is dependent of x(output) so we could ignore address columns as it is not requires for our model

```
In [83]: x=data1[[ 'Price', 'Avg. Area Income' ]]
y=data1['Avg. Area Income']

In [84]:

#To split test and train data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.6)

In [85]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[85]: LinearRegression()
```

```
In [86]: lr.intercept_
Out[86]: 0.0
In [87]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
          coeff
Out[87]:
                            Co-efficient
                    Price -1.125639e-17
          Avg. Area Income 1.000000e+00
         prediction = lr.predict(x_train)
In [88]:
          plt.scatter(y_train,prediction)
Out[88]: <matplotlib.collections.PathCollection at 0x250f6c3b8e0>
           100000
            80000
            60000
            40000
            20000
                  20000
                           40000
                                     60000
                                              80000
                                                       100000
In [89]: |lr.score(x_test,y_test)
Out[89]: 1.0
In [93]: |lr.score(x_train,y_train)
Out[93]: 1.0
         from sklearn.linear_model import Ridge,Lasso
In [94]:
In [95]: | rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
```

Out[95]: 1.0

In [96]:	<pre>la=Lasso(alpha=10) la.fit(x_train,y_train) la.score(x_test,y_test)</pre>
Out[96]:	0.999999960764173
In []:	