

FARO90

Ethanol Blending in Gasoline - México

Ethanol Blending in Latin America

There are important fuel quality and environmental impact of vehicle emission challanges in the Region.

- The use of ethanol improves gasoline quality and creates flexibility in gasoline production.
- Ethanol use is a cost-effective way to increase gasoline octane and to replace more expensive gasoline components.
- Ethanol contributes to transport decarbonization and air quality improvement.
- There are opportunities across Latin America to increase the ethanol blend level and implement new policies on the use of gasoline-ethanol blends.

Sixteen countries with potential and additional use of ethanol were studied: 1) gasoline market profiles; 2) Optimization of gasoline blends with ethanol and 3) Environmental impact of gasolines blended with ethanol.

Ethanol Blending in Gasoline - México

In 2022, gasoline consumption was 12,500 million gallons (20,000 million liters). There are two grades of gasoline, Regular (AKI 87) and Premium (AKI 91). Regular gasoline is the main grade in the market, representing 90%. There are stringent gasoline specifications for major metropolitan areas in Mexico City, Guadalajara and Monterrey. Demand is much higher than production, making necessary to import 40% of gasoline mainly from the United States.

Blends with a maximum of 5.8% v/v of ethanol are allowed with the exception of metropolitan regions of Valle de Mexico, Guadalajara and Monterrey. Current ethanol use is equivalent to an average of 1.06% in the Rest of the Country grade gasoline.

Source: SIE - SENER, 2023

Gasoline Demand in México

Source: SIE - SENER, 2023

Gasoline Production in México

Gasoline Imports in México

Ethanol Balance in Mexico

Ethanol Demand and Production in México

Source: CEDRSSA, 2020; EIA, 2023; Sanchez, 2014.

Gasoline Quality in México

Name								EN 228:2012 + A1:2017 (Euro 6 enabling) 2017			
mplementation Date											
Applicability Selected Grade	Mexico City	Mexico City	Guadalajara and Monterrey	Guadalajara and Monterrey	Rest of the country	Rest of the country	All countries				
	Gasoline Regular	Gasoline Premium	Gasoline Regular	Gasoline Premium	Gasoline Regular	Gasoline Premium	RON 95 E5	RON 95 E10	RON 98 E5	RON 98 E10	
Benzene Content	< 1 %v/v	< 1 %v/v	< 1 %v/v	< 1 %v/v	< 2 %V/v	< 2 %V/v	< 1 %v/v	< 1 %v/v	< 1 %v/v	< 1 %v/v	
Aromatics	< 25 %v/v	< 25 %v/v	< 32 %v/v	22,6% v/v	Report	22,6% v/v	< 35 %v/v	< 35 %v/v	< 35 %v/v	< 35 %v/v	
Olefins	< 10 %v/v	< 10 %v/v	< 11,9 %v/v	< 11,9 %v/v	Report	< 2,5 mg/l	< 18 %v/v	< 18 %v/v	< 18 %v/v	< 18 %v/v	
Lead Content	-	-	-	-	-	-	< 5 mg/l	< 5 mg/l	< 5 mg/l	< 5 mg/l	
Manganese	0 mg/l	0 mg/l	0 mg/l	0 mg/l	0 mg/l	0 mg/l	< 2,0 mg/l	< 2,0 mg/l	< 2,0 mg/l	< 2,0 mg/l	
RON		94		94		94	> 95	> 95	> 98	> 98	
MON	82		82		82		> 85	> 88	> 85	> 88	
AKI											
Sulfur Content	< 80 mg/kg	< 80 mg/kg	< 80 mg/kg	< 80 mg/kg	< 80 mg/kg	< 80 mg/kg	< 10 mg/kg	< 10 mg/kg	< 10 mg/kg	< 10 mg/kg	
Oxygen Content	< 3,7 %m/m	< 2,7 %m/m	< 3,7 %m/m	< 2,7 %m/m	< 3,7 %m/m	< 2,7 %m/m	<2,7 % m/m	<3,7 % m/m	<2,7 % m/m	<3,7 % m/m	
Ethanol (EtOH)	Not allowed	Not allowed	Not allowed	Not allowed	> 5,8 %v/v	> 5,8 %v/v	<5 %v/v	<10 %v/v	<5 %v/v	<10 %v/v	
RVP 37.8°C (Summer)	< 62 kPa	< 62 kPa	< 62 kPa	< 62 kPa	< 69 kPa North, < 62 kPa Center, South, Pacific	< 69 kPa North, < 62 kPa Center, South, Pacific	<> 60 - 70 kPa *Depends on the country, RVP is regulated in the EU Fuel Quality Directive				
RVP 37.8 °C(Winter)	< 79 kPa	< 79 kPa	< 79 kPa	< 79 kPa	< 79 kPa	< 79 kPa					
RVP 37.8°C (Transition)	< 54 kPa	< 54 kPa	< 54 kPa Guadalajara	< 54 kPa Guadalajara							
MTBE							-	-	-	-	
Ehters 5 or more C Atoms	-	-	-	-	-	-	Based on oxygen content	<22 %\/v	Based on oxygen content	<22 %V/v	

Source: CRE, 2016

Gasoline Component Blending in Latin America

Gasoline is a blend of a base gasoline and other components. This blending is usually done at blending terminals as only 30% of the world's finished gasoline is distributed directly from refineries. Each component provides different properties to the final blend, for example, isomerates, alkylates and butanes increase the octane. The components commonly used in Latin America are:

Gasoline Blending Optimization

In some parts of the world, ethanol is added to gasoline as a blending component. The advantages of ethanol include that it is a renewable fuel made of biomass; that it is an octane booster that helps to dilute sulfur; and that it allows the fulfillment of environmental objectives. To determine the optimal components to be blended with ethanol, a **blending model** was used. This model selects the components to add in the gasoline/ethanol blend based on:

- Components prices,
- Properties each component affects,
- Quality parameters by country, and
- Component availability by country.

Through iterations, the model obtains the %v/v of the components to be blended with 10%, 15%, 20%, 25% and 30% of ethanol, in such a way that the final blend complies with the required properties of a finished gasoline by country.

The blending model uses gasoline component spot average prices January 2022 – February 2023 and provides fuel prices that do not include country distribution costs, local taxes and subsidies and import or gas station margins.

Available Blending Components

Source: Faro90

Ethanol Blending - Gasoline Regular RP – Constant Octane

MTBE
Alkylate
Reformate
Normal butane
Isobutane
Isomerate
Normal pentane
Catalytic Gasoline
Coker Naphtha
Light Primary Naphtha
Heavy Primary Naphtha

Ethanol Blending - Gasoline Premium RP – Constant Octane

Ethanol Blending - Gasoline Regular ZM – Constant Octane

Ethanol Blending - Gasoline Premium ZM – Constant Octane

Ethanol
МТВЕ
Alkylate
Reformate
Normal butane
Isobutane
Isomerate
Normal pentane
Catalytic Gasoline
Coker Naphtha
Light Primary Naphtha
Heavy Primary Naphtha

Ethanol Blending - Gasoline Regular RP – Octane Increment

Ethanol
МТВЕ
Alkylate
Reformate
Normal butane
Isobutane
Isomerate
Normal pentane
Catalytic Gasoline
Coker Naphtha
Light Primary Naphtha
Heavy Primary Naphtha

Ethanol Blending - Gasoline Premium RP - Octane Increment

Ethanol Blending - Gasoline Regular ZM – Octane Increment

Ethanol							
МТВЕ							
Alkylate							
Reformate							
Normal butane							
Isobutane							
Isomerate							
Normal pentane							
Catalytic Gasoline							
Coker Naphtha							
Light Primary Naphtha							
Heavy Primary Naphtha							

Ethanol Blending - Gasoline Premium ZM – Octane Increment

MTBE Alkylate Reformate
Reformate
Reformate
Normal butane
Isobutane
Isomerate
Normal pentane
Catalytic Gasoline
Coker Naphtha
Light Primary Naphtha
Heavy Primary Naphtha

Vehicle Emission Impact for Ethanol Gasoline Blending

The model used in this analysis takes as a reference the **International Vehicle Emissions Model (IVE).**

The model uses the Base Emission Rates from IVE model, as well as its Adjustment Factors based on:

- Vehicle technology (cars, trucks, buses, motorcycles),
- Vehicle fleet average age,
- Average traveled distance per vehicle by country, as well as
- Geographical and climatic conditions (altitude, humidity, temperature).

Emissions of criteria pollutants, toxic pollutants, and greenhouse gases (GHG) were calculated and calibrated with emission inventories, using real gasoline quality data. The reduction rates for gasoline/ethanol blends were obtained from various sources (IPCC, US Grains, among others).

Emission estimations for different pollutants for gasoline and gasoline/ethanol blends (10%, 15%, 20%, 25% and 30% ethanol) were determined using the IVE Model. A comparison between the results and the European (Euro 6) requirements is made. Results are also compared with real emissions of the United States vehicle fleet*.

Main Results

^{*}Source: Bureau of transportation statistics.

Gasoline Vehicle Fleet - México

Vehicle fleet: **39,709,380** Average Age: **11 years**

Source: INEGI

Mexico – Gasoline Vehicle Emissions

Emissions	E0 g/km	E10 g/km	E15 g/km	E20 g/km	E25 g/km	E30 g/km	E10 - E0	E20 - E0	E30 - E0	Euro 6	TIER USA
СО	14.93	13.68	13.27	12.91	12.64	12.24	-8%	-14%	-18%	1	3.5
VOC	1.31	1.24	1.23	1.22	1.22	1.21	-5%	-6%	-8%	95	255
VOCevap	0.53	0.53	0.54	0.55	0.56	0.57	0%	4%	7%	0.1	0.273
NOx	0.75	0.53	0.50	0.47	0.44	0.40	-30%	-38%	-46%	0.06	0.203
SOx	0.01	0.01	0.01	0.00	0.00	0.00	-15%	-28%	-41%		
NH3	0.06	0.06	0.06	0.06	0.06	0.06	-2%	0%	1%		
Butadiene	0.01	0.01	0.01	0.01	0.01	0.01	-4%	-5%	-6%		
Acetaldehyde	0.01	0.02	0.04	0.05	0.06	0.07	68%	249%	372%		
Formaldehyde	0.05	0.06	0.07	0.07	0.08	0.09	13%	39%	68%		
Benzene	0.07	0.07	0.06	0.06	0.06	0.06	-9%	-11%	-18%		
CO2	286.17	271.86	266.39	263.69	261.07	256.25	-5%	-8%	-10%		
N2O	0.01	0.01	0.01	0.01	0.01	0.01	-1%	2%	4%		
CH4	0.29	0.29	0.29	0.30	0.30	0.31	0%	4%	7%		
PM 2.5	0.02	0.02	0.01	0.01	0.01	0.01	-22%	-43%	-65%		
PM10	0.03	0.02	0.02	0.01	0.01	0.01	-22%	-43%	-65%	0.005	0.007
ТНС	0.44	0.45	0.47	0.50	0.51	0.54	2%	14%	22%		

Source: Faro90