

Universidade Estadual de Campinas

Instituto de Matemática, Estatística e Computação Científica

Trabalho de Análise Numérica

Prof. Dr. Maicon Ribeiro Correa

Gabriel Passos RA:172351 Giovana Marques RA:197908 João Luiz RA:199657 Vinícius Martins RA:206853

19 de Julho de 2019.

1 Introdução

Neste trabalho implementamos os algoritmos de Cholesky, Gram-Shmidt e QR por Rotações de Givens, vistos em aula, os quais são utilizados para resolver sistemas lineares através da manipulação de matrizes. Obtemos as inversas das Matrizes de Hilbert de ordens 3, 6 e 13, as quais são dadas pela fórmula:

$$h_{ij} = \frac{1}{i+j-1} \tag{1}$$

Por exemplo:

$$H_3 = \left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{array}\right)$$

Também calculamos o resíduo gerado na inversão das matrizes pra cada algorítmo e o número de condicionamento de cada matriz, que é uma propriedade que quantifica a sua estabilidade quanto à propagação de erros na resolução de sistemas lineares. Dessa maneira, é esperado que a Matriz de Hilbert torne-se cada vez mais mal condicionada a medida que aumentamos a sua ordem.

O número de condicionamento $\mathcal K$ de uma matriz A é dado da seguinte maneira

$$\mathcal{K}_m(A) = ||A||_m \cdot ||A^{-1}||_m$$

onde $||\cdot||_m$ é a norma matricial desejada

Muitas vezes, o cálculo da inversa de A pode ser inviável e podemos partir para o cálculo de uma aproximação utilizando um limitante inferior como mostrado abaixo.

$$\mathcal{K}_m(A) \ge \frac{||a_i||_m}{||a_j||_m} \qquad i \ne j$$

onde a_k é a k-ésima coluna de A e $||\cdot||_m$ é a norma-m de vetores dada por

$$||x||_m := \left(\sum_{i=1}^n |x_i|^m\right)^{1/m}$$

Um segundo limitante inferior para \mathcal{K}_m pode ser determinado através de:

$$\mathcal{K}_m(A) \ge \frac{||A||_m ||A^{-1}w||_m}{||w||_m}$$

onde, tomando w suficientemente próximo da direção de magnificação de A, esse limitante inferior se torna uma excelente estimativa para \mathcal{K}_m

Para cálculo do número de condicionamento foi utilizado a seguinte norma matricial

$$||A||_1 := \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

Destaca-se que é possivel determinar as entradas $(H_n^{-1})_{ij}$ de H_n^{-1} em termos dos valores de i e j. Essa relação é dada por:

$$(H_n^{-1})_{ij} = (-1)^{i+j}(i+j-1)\binom{n+i-1}{n-j}\binom{n+j-1}{n-i}\binom{i+j-2}{i-1}^2$$

Assim, é possível utilizar essa forma de H_n^{-1} para realizar comparações com os resultados obtidos pelos métodos.

É importante ressaltar que não estamos interessados na forma da inversa da matriz de Hilbert e sim em suas propriedades. Dessa maneira, ao resolver o sistema $H_nX = Id$ onde $X = H_n^{-1}$ e calculamos o resíduo definido por

$$||H_n\overline{X} - Id||_2$$

onde \overline{X} é a solução obtida com os algorítmos descritos posteriormente. Dessa maneira, resíduos pequenos indicam que a solução obtida está próxima da solução teórica, pois nestes algorítmos lidamos com erros de ponto flutuante que se propagam para a solução.

2 Algoritmos

2.1 Cholesky

A Decomposição de Cholesky decompõe uma matriz positiva-definida em uma matriz triangular inferior e uma triangular superior da forma $A = R^T R$, onde R possui elementos na diagonal todos positivos, o que torna a decomposição única. Assim podemos resolver um sistema Ax = b da forma

$$Q^T y = b (2)$$

$$Rx = y \tag{3}$$

2.2 QR por Gram-Schmidt

O algoritmo de Gram-Shmidt Clássico realiza a decomposição A = QR, em que $A \in \Re^{m \times n}$, $Q \in \Re^{m \times n}$ e $R \in \Re^{n \times n}$ triangular superior. Ele consiste em ortonormalizar o conjunto de vetores $\mathbf{v} = \mathbf{v}_1, ..., \mathbf{v}_k$ que forma a matriz A através do seguinte processo:

$$\mathbf{u}_k = \mathbf{v}_k - \sum_{j=1}^{k-1} \frac{\langle \mathbf{v}_k, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \mathbf{u}_j$$

$$\mathbf{q}_k = \frac{\mathbf{u}_k}{||\mathbf{u}_k||}$$

2.3 QR por Rotação de Givens

A Rotação de Givens decompõe A = QR zerando um elemento a cada rotação de forma a obter $Q \in \Re^{m \times m}$ ortogonal e $R \in \Re^{m \times n}$ triangular superior. Para zerar o elemento A_{ij} basta fazer GA em que os elementos não nulos de G são dados por:

$$g_{kk} = 1$$
 para $k \neq i, j$
 $g_{ii} = g_{jj} = \cos \theta$
 $g_{ij} = -\sin \theta$
 $g_{ji} = \sin \theta$

em que

$$\sin \theta = \frac{a_{ij}}{\sqrt{a_{ij}^2 + a_{ii}^2}}$$
$$\cos \theta = \frac{a_{ii}}{\sqrt{a_{ij}^2 + a_{ii}^2}}$$

As matrizes R e Q serão dadas por:

$$G_n^T G_{n-1}^T ... G_1^T A = R$$

$$G_1G_2...G_n = Q$$

3 Resultados

Os testes computacionais foram executados para matrizes de ordem 3, 6, 13 e 200. Nenhum algoritmo apresentou erro para as dimensões 3, 6, 13. Entretanto, o algoritmo da fatoração de Cholesky, capaz de verificar se uma matriz é positiva-definida, conclui que H_n não é positiva-definida para $n \geq 14$, assim, H_n não possui fator de Cholesky para $n \geq 14$. Ressalta-se o fato de que H_n é positiva definida para qualquer n, logo, devido a erros numéricos, a conclusão do algoritmo é falha. Para avaliar o comportamento dos demais algoritmos em dimensões maiores H_n , optou-se por testar o caso n = 200. Serão apresentados fatorações obtidas por cada algoritmo para o caso n = 3. Os resultados são apresentados nas Tabelas 1, 2 e 3.

3.1 Resultados para n = 3

Para H_3 , como esperado, a inversa obtida pelos três algoritmos foi idêntica, dada por:

$$H_3^{-1} = \left(\begin{array}{ccc} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{array}\right)$$

As fatorações obtidas pelos algoritmos foram:

• Cholesky

$$R = \left(\begin{array}{ccc} 1 & 0.5 & 0.333\\ 0 & 0.288 & 0.288\\ 0 & 0 & 0.074 \end{array}\right)$$

• QR por Gram-Schmidt

$$Q = \left(\begin{array}{ccc} 0.857 & -0.501 & 0.117 \\ 0.428 & 0.568 & -0.702 \\ 0.285 & 0.652 & 0.702 \end{array}\right)$$

$$R = \left(\begin{array}{ccc} 1.166 & 0.642 & 0.45 \\ 0 & 0.101 & 0.105 \\ 0 & 0 & 0.003 \end{array}\right)$$

• QR por Rotação de Givens

$$Q = \left(\begin{array}{ccc} 0.857 & -0.501 & 0.117 \\ 0.428 & 0.568 & -0.702 \\ 0.285 & 0.652 & -0.702 \end{array}\right)$$

$$R = \left(\begin{array}{ccc} 1.166 & 0.642 & 0.45 \\ 0 & 0.101 & 0.105 \\ 0 & 0 & 0.003 \end{array}\right)$$

Cholesky								
n	$ \tilde{H}^{-1} - H^{-1} _1$	$ H\tilde{H}^{-1} - I _1$	k_1	$ ilde{k}_1^1$	\tilde{k}_1^2	\tilde{k}_1^3		
3	1,528E-12	2,050E-14	7,480E+02	7,480E+02	2,340	7,480E+02		
6	1,000E-04	2,285E-09	2,907E+07	2,907E+07	3,326	1,312E+07		
13	4,889E+17	6,473E+03	1,324E+18	2,879E+18	4,462	9,343E+17		
200								

Table 1: Resultados para fatoração de Cholesky

QR por Gram-Schmidt							
n	$ \tilde{H}^{-1} - H^{-1} _1$	$ H\tilde{H}^{-1} - I _1$	k_1	\tilde{k}_1^1	\tilde{k}_1^2	\tilde{k}_1^3	
3	3,143E-11	5,002E-12	7,480E+02	7,480E+02	2,340	7,480E+02	
6	6,351E+02	3,470E-02	2,907E+07	2,907E+07	3,326	1,312E+07	
13	4,165E+17	8,262E+03	1,324E+18	1,720E+09	4,462	4,563E+08	
200	2,221E+303	2,370E+08	1,306E+304	1,302E+11	8,465	2,039E+09	

Table 2: Resultados para fatoração QR por Gram-Schmidt

QR por Rotação							
n	$ \tilde{H}^{-1} - H^{-1} _1$	$ H\tilde{H}^{-1}-I _1$	k_1	$ ilde{k}_1^1$	\tilde{k}_1^2	$ ilde{k}_1^3$	
3	6,565E-12	2,409E-14	7,480E+02	7,480E+02	2,340	7,480E+02	
6	4,000E-04	1,504E-09	2,907E+07	2,907E+07	3,326	1,312E+07	
13	4,099E+16	1,591E+03	1,324E+18	1,194E+18	4,462	3,892E+17	
200	1,740E+15	2,221E+303	1,306E+304	2,640E+21	8,465	1,012E+20	

Table 3: Resultados para fatoração QR por Rotações de Givens