

Funkcionális programozás EA+GY, Programozási nyelvek 2. EA+GY Őszi szemeszter, 2022/2023

Programozási Nyelvek és Fordítóprogramok, IP-18FUNPEG, IT-13PNY2EG Időpont és hely: beosztás szerint

Óratartók neve: Dr. Horváth Zoltán, Dr. Bozó István Szobaszáma: Déli épület 2.605, Déli épület 2.518

E-mail: hz@inf.elte.hu, bozo_i@inf.elte.hu

Fogadóóra ideje, helye, formája:

Bozó István: igény szerint, megbeszélt időpontban (TEAMS)

Demonstrátorok neve, kontakt infó, fogadóóra:

Óra kredit értéke: 5

Előzetes követelmények: nincs előzetes követelmény

Kurzus anyagok:

- A gyakorlatok vázlata és gyakorlófeladatok: http://lambda.inf.elte.hu/Index.xml
- Christopher Allen, Julie Moronuki: Haskell Programming from First Principles
- Miran Lipovaca: Learn You a Haskell for Great Good!: A Beginner's Guide
- Graham Hutton: Programming in Haskell (ISBN 978-1316626221)
- Peyton Jones, J., Hughes J., et al.: Report on the Programming Language Haskell 98, (A Non-strict, Purely Functional Language, February 1999)
- Nyékyné G. J. (szerk.): Programozási nyelvek (Kiskapu 2003), Horváth Z.: Funkcionális programozás nyelvi eszközei fejezet
- Plasmeijer, R. et al.: Functional Programming in Clean (July 1999. Draft)
- http://www.cs.kun.nl/~clean/

ELTE Informatikai Kar

• Thompson, S.: Haskell: The Craft of Functional Programming (Addison-Wesley, 1999)

Kurzus leírás: A tárgy célja, hogy betekintést adjon a funkcionális programozási módszer elveibe, matematikai alapjaiba és nyelvi eszközeibe. A nyelvi eszközök használatát Haskell és Clean nyelven megfogalmazott programok elkészítése során gyakorolják be a hallgatók.

Kimeneti követelmények: A hallgató a kurzus elvégzésével elsajátítja a funkcionális programozás alapjait. Az alapok Haskell és Clean nyelvben kerülnek bemutatásra, de a módszerek és koncepciók könnyen alkalmazhatók más programozási nyelvekben is.

Elvárások a hallgatóval szemben a tárgy sikeres elvégzéséhez:

- A hallgató aktívan részt vesz az előadásokon és a gyakorlatokon egyaránt.
- A hallgatónak heti szinten kisebb feladatokat kell önállóan megoldania és azt a beadandó kezelő rendszerbe feltölteni (tms.inf.elte.hu), ahol azok értékelésre kerülnek. A félév során az összes beadandó sikeres teljesítése szükséges, hogy a hallgató jegyet szerezhessen a félév végén. A feladatokat önállóan kell megoldani, a megoldásokat egymással megosztani nem szabad. A másolás/megosztás a jegyszerzés megtagadását vonhatja maga után!
- A félév során négy rövid (15-30 perc) zárthelyit kell megírni. Mindegyik zárthelyi 6 pontot ér, így összesen 24 pont szerezhető a félév során. A zárthelyin elméleti kérdéseket kell röviden megválaszolni, illetve programozási feladatokat megoldani. A 24 pontból 6 pont elméleti kérdések megválaszolásával szerehető meg. A tárgy teljesítéséhez legalább 3 pontot kell szerezni az elméleti kérdésekből.
- A szorgalmi időszak utolsó heteiben egy összetettebb beadandó (továbbiakban nagybeadandó) kerül kiírásra. A feladatot önállóan kell megoldani, a megoldást egymással megosztani nem szabad. A másolás/megosztás a jegyszerzés megtagadását vonhatja maga után! A nagybeadandó két részből tevődik össze:
 - Alapfeladat Mindenkinek kötelező megoldania a tárgy teljesítéséhez. Azaz, azt a határidőn belül be kell adni és annak a kiírásnak maradéktalanul meg kell felelnie.
 - Extra feladat(ok) A megoldása nem kötelező, de megoldásukért pontokat lehet kapni (1-3 pont). Az extra feladatokkal szerzett pontok beleszámítanak a félévvégi eredménybe, azok javíthatnak az érdemjegyen.
- A félév során szerzett pontokból megajánlott jegy szerezhető. Az kaphat megajánlott jegyet és egyben teljesítheti a tárgyat, aki:

- az előadásokról és a gyakorlatokról sem hiányzott a megengedettnél többször,
- határidőre megoldotta és beadta az összes heti beadandót és az el lett fogadva,
- határidőre megoldotta és beadta a nagybeadandó alapfeladatát és az el lett fogadva,
- a félévközi zárthelyik maximálisan megszerezhető pontszámának legalább felét (50%-át) elérte, amelyből legalább 3 pont elméleti kérdésre adott helyes válasz.
- A megajánlott jegyet nem kötelező elfogadni. A nem elfogadott megajánlott jegy ebben az esetben elveszik és a vizsgán szerzett érdemjegy kerül rögzítésre.
- A vizsga formája: írásbeli és/vagy szóbeli vizsga (a kialakult helyzettől függően).

Kurzus Management és szabályozás:

A félévközi eredmények Canvas rendszerben kerülnek adminisztrálásra, itt követhetők. A félévközi beadandók, a zárthelyi és a vizsga programozási részéhez a TMS rendszert használjuk (tms.inf.elte.hu).

Feladatok és értékelési metódus:

Feladat, értékelés vagy tevékenység	A jegy százaléka, illetve pontok	Beadási határidő
Beadandók	Előfeltétele a jegyszerzésnek. Az összes kiírt feladatot sikeresen teljesíteni kell.	Hetente
Zárthelyik	Megírásuk kötelező a jegyszerzéshez. Megajánlott vizsgajegy szerezhető a zárthelyiből. A zárthelyiken legalább 3 pont elméleti kérdésekből teljesítendő, és összességében a maximálisan megszerezhető pontok 50%-át el kell érni a tárgy teljesítéséhez.	során, a gyakorlatokon a következő

Nagybeadandó (szorgalmi időszak végén)	Az alapfeladat megoldása kötelezően megoldandó. A kiírt extra feladatokért 1-3 pont szerezhető, amely beszámításra kerül az értékelés során.	Szorgalmi időszak utolsó heteiben kerül kiírásra, amely megoldására 2 hét áll a rendelkezésre.
Vizsga	A vizsgára az jelentkezhet, aki legalább elégséges megajánlott jegyet szerzett a félév során. A vizsga írásbeli és/vagy szóbeli lesz, a kialakult helyzettől függően.	A Neptunban meghirdetett időpontban és helyszínen.

Kurzus értékelés

1. Megajánlott jegy:

A zárthelyikkel összesen 24 pont szerezhető (4x6 pont). Az első és második zárthelyin 2-2 pont szerezhető elméleti kérdésekből és 4-4 pont egyszerű függvények definiálásával. A harmadik és negyedik zárthelyin 1-1 pont szerezhető elméleti kérdésből és 5-5 pont egyszerű függvények definiálásával. A megajánlott jegy és a tárgy teljesítéséhez, a zárthelyiken az elméleti kérdések (összesen 6 pont) legalább felét (3 pont) helyesen kell megválaszolni és legalább 12 pont teljesítése szükséges összességében. Ehhez a pontszámhoz adódik hozzá a nagybeadandó extra feladataiból szerezhető pontszám (maximum 3 pont). A kettőből összesen maximum 27 pont érhető el. A ponthatárok a következő szerint alakulnak:

Elért pontszám	Jegy
21-től	Jeles (5)
18-tól	Jó (4)
15-től	Közepes (3)
12-től	Elégséges (2)

< 12 Elegteien (1)		< 12	Elégtelen (1)
--------------------	--	------	---------------

Kurzus terv (előadás)

Hét	Téma
1.	Bevezetés, követelmények ismertetése
2.	Alapvető fogalmak
3.	Egyszerű függvények bemutatása (lusta és mohó kiértékelés)
4.	Fontosabb fogalmak tárgyalása (rekurzió, Curry-féle módszer, margószabály, stb.)
5.	Zermelo-Frankel halmazkifejezések (listakifejezések), egyszerű modul felépítése
6.	Esetszétválasztás, összetettebb függvények bemutatása
7.	8 királynő problémájának megoldása funkcionális stílusban
8.	Alapvető típusok, parametrikus polimorfizmus, mintaillesztés, egyszerű listafüggvények
9.	Túlterhelés, esetleges ("ad-hoc") polimorfizmus, példányosítás
10.	Magasabb-rendű függvények
11.	Listák reprezentációja, mintaillesztés és műveletek bemutatása ezen keresztül
12.	Beszúrásos rendezés, összefésüléses rendezés, gyorsrendezés bemutatása listák segítségével.
13.	Algebrai adattípusok definiálása és típusosztályok példányosítása

Kurzus terv (gyakorlat)

Hét	Téma	
1.	Alapvető fogalmak, alaptípusok, kifejezések, egyszerű függvények, polimorfizmus bemutatása	
2.	Kötési erősség, kötés iránya, asszociativitás, zárójelezés	
3.	Konverziók, logikai típus és műveletei	
4.	Egyszerű listák, pont-pont kifejezések, listakifejezések	
5.	Egyszerű függvények definiálása, modul felépítése	
6.	Mintaillesztés: egyszerű értékekre, rendezett n-esek és listák mintaillesztése	
7.	Egyszerű rekurzív függvények listákon	
8.	Esetszétválasztás és összetettebb rekurzív függvények	
9.	Összetett rekurzív függvények, lokális definíciók (where)	
10.	Magasabb-rendű függvények	
11.	További magasabb rendű függvények	
12.	Függvénykompozíció művelete	
13.	Algebrai adattípusok definiálása és használata	