ESC195S CALCULUS II

Midterm Test #1

11 February 2020

9:10 am - 10:55 am

Closed Book, no aid sheets, no calculators

Instructor: J. W. Davis

Family Name:	JW \avis	
Given Name:	Solutions	
Student #:		

FOR MARKER USE ONLY						
Question	Marks	Earned				
1	13					
2	7					
3	9	3				
4	10					
5	8					
6	8					
7	12					
8	9					
TOTAL	76	70				

Tutorial Section:	A		25.00		
		8 35		- 10 - 00	
TA Name:					

1) Evaluate the following integrals.

a)
$$\int \frac{dx}{\sqrt{x^2 + 2x + 5}}$$

b)
$$\int_{1}^{2} \frac{4y^{2} - 7y - 12}{y(y+2)(y-3)} dx$$

c)
$$\int x \tan^2 x \, dx$$

(13 marks)

a)
$$x^{2} + 2x + 5 = (x+1)^{2} + 4 = 164$$
 $(x+1) = 2 tan \Theta$

$$dx = 2 sec^{2} \Theta d\Theta$$

$$(x+1)^{2} + 4 = 4 tan^{2} \Theta + 4 = 4 sec^{2} \Theta$$

$$= \int \frac{du}{\sqrt{x^{2} + 2x + 5}} = \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}}$$

$$= \int \frac{du}{\sqrt{x^{2} + 2x + 5}} = \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}}$$

$$= \int \frac{du}{\sqrt{x^{2} + 2x + 5}} = \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}}$$

$$= \int \frac{du}{\sqrt{x^{2} + 2x + 5}} = \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}}$$

$$= \int \frac{du}{\sqrt{x^{2} + 2x + 5}} = \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}}$$

$$= \int \frac{du}{\sqrt{x^{2} + 2x + 5}} = \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}}$$

$$= \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2 scc^{2} \Theta d\Theta}{\sqrt{4 + sec^{2} \Theta}} + \int \frac{2$$

b)
$$\frac{4y^2 - 7y - 12}{y(y+z)(y-3)} = \frac{A}{y} + \frac{B}{y+z} + \frac{C}{y-3} = 7$$
 $\frac{4y^2 - 7y - 12}{y^2 - Ay - 6A} + \frac{B}{y^2} - \frac{3B}{y} + \frac{C}{y^2} + \frac{2C}{y}$

$$= Ay^2 - Ay - 6A + \frac{B}{y^2} - \frac{3B}{y} + \frac{C}{y^2} + \frac{2C}{y}$$

$$y^2 \cdot 4 - A + \frac{B}{y} + C$$

$$2 = \frac{B}{y} + C$$

$$4 \cdot -7 = -A - \frac{3B}{y} + \frac{2C}{y} + \frac{2C$$

$$\int_{1}^{2} \frac{4y^{2} - 7y^{-12}}{y(y+2)(y-3)} dy = \int_{1}^{2} \frac{2dy}{y} + \int_{1}^{2} \frac{9/5}{y+2} + \int_{1}^{2} \frac{1}{y-3} = \left[2 \ln y + \frac{9}{5} \ln (y+2) + \frac{1}{5} \ln |y-3|\right]_{1}^{2}$$

$$= 2 \ln 2 + \frac{9}{5} \left(\ln 4 - \ln 3\right) + \frac{1}{5} \left(0 - \ln 2\right) = \frac{9}{5} \left(\ln 4 \ln 4 - \ln 3\right) = \frac{9}{5} \ln \frac{8}{3}$$

c)
$$\int x + \cos^2 x dx = \int x (\sec^2 x - 1) dx = \int x \sec^2 x dx - \int x dx$$

$$= x + \tan x - \int \tan x dx - \frac{x^2}{2}$$

$$= x + \tan x - \ln |\sec x| - \frac{x^2}{2} + C$$

2) For what values of p is the integral
$$\int_{0}^{\infty} \frac{dx}{x^{p} + x^{-p}}$$
 convergent?

=> From symmetry we consider p 20.

$$\Rightarrow \text{ Special cases: } P=0 \Rightarrow \int_0^\infty \frac{dx}{1+1} = \frac{1}{2} \left[x \right]_0^\infty \Rightarrow \infty$$

$$P=1 \Rightarrow \int_0^\infty \frac{x}{x^2+1} dx = \frac{1}{2} \left[\ln(x^2+1) \right]_0^\infty \rightarrow \infty$$

$$\Rightarrow consider x \rightarrow 0 : \text{for } 0 \land x \land 1 \Rightarrow 0 \land x^{2p} \land 1$$

$$\therefore 17 \frac{1}{x^{2p}_{+1}} 7 \frac{1}{2} \Rightarrow \frac{x^p}{1} 7 \frac{x^p}{x^{2p}_{+1}} > \frac{x^p}{2}$$

: l'ari du converges for all p=0; all

$$\int_{b}^{\infty} \frac{x^{p}}{x^{2p}} dx > \int_{b}^{\infty} \frac{x^{p}}{x^{2p}} d$$

$$\Rightarrow \left[\frac{x^{1-p}}{1-p}\right]_{b}^{\infty} \Rightarrow \left[\frac{x^{2}dz}{x^{2}P+1}\right]_{b}^{\infty}$$

3) Sketch the parametric curve: $x = t^3 - 3t$, $y = \frac{2}{1+t^2}$ Identify all horizontal and vertical asymptotes, and describe the asymptotic behaviour and what happens at all points where x = 0

(9 marks)

$$x = t^{3} - 3t$$

 $x' = 3t^{2} - 3$
 $x' = 0 = 7 \quad t = \pm 1$
=> vertical fargusts: (-2,1)
 $(z,1)$

Describe what happens at points where x = 0 $x = t^3 - 3t = 0 \Rightarrow t = 0$, $t = \pm \sqrt{3}$ $t = 0 \Rightarrow (0, 2)$ horizontal asymptote $t = \pm \sqrt{3} \Rightarrow (0, \frac{1}{2})$ $\frac{du}{dx}(t = \sqrt{3}) = \frac{u'(\sqrt{3})}{x'(\sqrt{3})} = \frac{-4\sqrt{3}/(1+3)^2}{3\cdot 3 - 3} = \frac{-\sqrt{3}}{6}$ $\frac{du}{dx}(t = \sqrt{3}) = \frac{4\sqrt{3}/(1+3)^2}{3\cdot 3 - 3} = \frac{4\sqrt{3}}{24}$

4) Find the centroid of the region trapped between the curves $y = x^2$ and $y = \frac{1}{2}x$. Use Pappus's theorem to find the volume formed by rotating this region about the line y = x.

Intersection. 22= 1 x

 $A - \int_{12}^{12} \left(\frac{1}{2}x - 2^{2}\right) dx - \left[\frac{x^{2}}{4} - \frac{x^{3}}{3}\right]_{0}^{1/2} - \frac{1}{16} - \frac{1}{24} = \frac{1}{48}$ $\bar{z} A = \int_{0}^{1/2} z(\bar{z}x-x^{2}) dx = \left[\frac{z^{3}}{6} - \frac{z^{4}}{4}\right]_{0}^{1/2} = \frac{1}{48} - \frac{1}{64} = \frac{1}{192} : \bar{z} = \frac{48}{192} = \frac{1}{4}$ $\ddot{y} = \int_{0}^{1/2} \left(\left(\frac{1}{2} \chi^{2} - (\chi^{2})^{2} \right) d\chi = \int_{0}^{1/2} \left(\frac{\chi^{2}}{8} - \frac{\chi^{4}}{2} \right) d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{24} - \frac{\chi^{5}}{10} \int_{0}^{1/2} \frac{1}{8.24} d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{10} + \frac{\chi^{5}}{10} \int_{0}^{1/2} \frac{\chi^{5}}{10} d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{10} + \frac{\chi^{5}}{10} \int_{0}^{1/2} \frac{\chi^{5}}{10} d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{10} d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{10} + \frac{\chi^{5}}{10} \int_{0}^{1/2} \frac{\chi^{5}}{10} d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{10} d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{10} + \frac{\chi^{5}}{10} \int_{0}^{1/2} \frac{\chi^{5}}{10} d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{10} d\chi = \int_{0}^{1/2} \frac{\chi^{5}}{10} d\chi = \int_{0}^{1/2} \frac{\chi^$ $= \frac{1}{3.64} = \frac{7}{5.64} = \frac{1}{3.5.64} = \frac{1}{2.5.48} = \frac{48}{10.48} = \frac{1}{10}$

Distance to like y = x:

1) find I line through centroid: slope = -1 =7 to = (-1)(1/4) + b : b = 10 + 1 = 70

$$\therefore y = -x + \frac{7}{20}$$

2) And intersection with line y=x: y=-y+70=> y=70, x=7

3) distance from controid to the y=x: R= J(Dx)2+ (Dy)21 R= 5 (\frac{1}{4} - \frac{7}{40}) + (\frac{1}{10} - \frac{7}{40})^2 = \frac{3}{40} \frac{3}{40} + (\frac{7}{10} - \frac{7}{40})^2 = \frac{3}{40}

: Pappus's Thim: V= ZTT RA = ZTT. 352 1 = TTJZ

5) Find the area of the region that lies inside $r = 2 + \sin \theta$ but outside $r = 1 - \sin \theta$. Provide a sketch of the region.

(8 marks)

Intersection:

$$2+\sin\theta = 1-\sin\theta$$

 $\sin\theta = -1/2$
 $\Rightarrow \theta = -\frac{\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}, \dots$

$$=7A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[(z+\sin\theta)^{2} - (1-\sin\theta)^{2} \right] d\theta$$

$$= \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(3+6\sin\theta + \sin^{2}\theta - 1 + 2\sin\theta - \sin^{2}\theta \right) d\theta$$

$$= \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(3+6\sin\theta \right) d\theta$$

$$= \frac{1}{2} \left[3\theta - 6\cos\theta \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{1}{2} \left[3(\frac{7\pi}{6} + \frac{\pi}{4}) - 6(-\frac{53}{2} - \frac{53}{2}) \right]$$

$$= 2\pi + 3\sqrt{3}$$

- 6) Use the formal definition of the limit of a sequence (ϵ -N argument) to prove: $\lim_{k\to\infty}\frac{k}{k-1}=1$ (8 marks)
- - line k =1 by the definition of a limit

7) Determine whether the sequence converges or diverges. If it converges, find the limit:

(i)
$$a_n = \frac{4^n}{1+9^n}$$

(ii)
$$a_n = \frac{\tan^{-1} n}{n}$$

(iii)
$$a_n = n^{2/n}$$

(iv)
$$a_n = \frac{n!}{2^n}$$

(12 marks)

i) au -
$$\frac{4^n}{1+q^n} = \frac{(4/q)^n}{1+(4q)^n} \longrightarrow \frac{0}{1+0} = 0$$
 since $(\frac{4}{q})^n \ell(\frac{1}{q})^n$ converge to zero

iii)
$$\alpha_{N} = (n'N)^{2}$$

$$=) \lim_{\chi \to \infty} \chi'/\chi = \lim_{\chi \to \infty} e^{\ln \chi'/\chi} = \lim_{\chi \to \infty} e^{\ln \chi}$$

$$=) \lim_{\chi \to \infty} \lim_{\chi \to \infty} \lim_{\chi \to \infty} \frac{1}{2} \lim_{\chi \to \infty} e^{\ln \chi}$$

$$=) \lim_{\chi \to \infty} \lim_{\chi \to \infty} \lim_{\chi \to \infty} \frac{1}{2} \lim_{\chi \to \infty} \frac{1}{2}$$

(iv)
$$Q_{n} = \frac{n!}{2^{n}} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots n}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} = \frac{120}{32} \cdot \frac{n}{2} = \frac{n}{32}$$

: an diverges

8)	a)	For what values	of p do the	following	series	converge:
υ,	α,	I OI WHAT TAILOU	or p do me	101101111115	001100	001110150.

$$i) \sum_{k=2}^{\infty} \frac{1}{k(\ln k)^p}$$

ii)
$$\sum_{k=3}^{\infty} \frac{1}{k \ln k (\ln \ln k)^p}$$

b) Which of the following series converges faster? Explain.

$$\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$$

$$\sum_{k=3}^{\infty} \frac{1}{k \ln k (\ln \ln k)^2}$$

(9 marks)

() Marks)

ai) Consider
$$\int_{z}^{\infty} \frac{dz}{z(hx)^{p}}$$
 $= \int_{hz}^{\infty} \frac{du}{u^{p}} = \left[\frac{u^{-p}}{1-p} \right]_{hz}^{\infty} = \left[\frac{(hx)^{-p}}{1-p} \right]_{2}^{\infty}$

Converges

for $p > 1$

: E = (mk) converges for p > 1 by the integral test

ii) Consider
$$\int_{3}^{\infty} \frac{dx}{x \ln x} (\ln \ln x)^{p}$$
 let $u = \ln \ln x$ du = $\frac{dx}{x \ln x}$

$$= \int_{3}^{\infty} \frac{du}{u^{p}} = \left[\frac{u^{1-p}}{1-p} \right]_{\ln x}^{\infty} = \left[\frac{(\ln \ln x)^{1-p}}{1-p} \right]_{3}^{\infty}$$
 converger
for $p \neq 1$

: 2 L khk(luluk) converges for p >1 by the integred text

i. The terms of
$$a_k = k \ln k$$
? thus approach o much more quickly than the terms of $b_k = k \ln k (\ln \ln k)^2$