Battle Of Neighborhoods

Explore and Cluster the Neighborhoods of Toronto

Pooja Bhateley

12th April, 2020

1. Introduction

1.1 Background

Toronto is the provincial capital of Ontario and the most populous city in Canada, with a population of 2,731,571 in 2016. Current to 2016, the Toronto census metropolitan area (CMA), of which the majority is within the Greater Toronto Area (GTA), held a population of 5,928,040, making it Canada's most populous CMA. The city is the anchor of the Golden Horseshoe, an urban agglomeration of 9,245,438 people (as of 2016) surrounding the western end of Lake Ontario.

Toronto is an international center of business, finance, arts, and culture, and is recognized as one of the most multicultural and cosmopolitan cities in the world.

Brief history about Toronto: People have travelled through and inhabited the Toronto area, located on a broad sloping plateau interspersed with rivers, deep ravines, and urban forest, for more than 10,000 years. After the broadly disputed Toronto Purchase, when the Mississauga surrendered the area to the British Crown, the British established the town of York in 1793 and later designated it as the capital of Upper Canada. During the War of 1812, the town was the site of the Battle of York and suffered heavy damage by United States troops. York was renamed and incorporated in 1834, as the city of Toronto. It was designated as the capital of the province of Ontario in 1867 during Canadian Confederation.

1.2 Business Problem

Picture a scenario wherein you live in a perfect neighborhood with all the amenities in close proximity. Then you get a job opportunity in the other part of the city, where you have not been often and are not aware about the facilities and infrastructure available. All your favourite eating joints, coffee shops are in your present neighborhood. But you can't decline the job opportunity and you can't commute everyday for 4 hours from your present residence. The only choice is to move to the new neighborhood. Wouldn't it be great if you can find a house in the locality which is exactly like your present neighborhood, with the same amenities and similar food joints, and which is also closer to your new job?

1.3 Objective

The objective of this project is to analyse the various neighborhoods of Toronto, explore the different amenities available in the city, and cluster these neighbouhoods into with similar characteristics. Thus using this clustered data to find neighborhoods which are similar to the current neighborhood of the user.

2. Data Acquisition

2.1 Data Sources

To consider the objective stated above, we can list the below data sources used for the analysis.

a) Toronto Neighborhood Data: The following Wikipedia page was scraped to pull out the necessary information: https://en.wikipedia.org/wiki/List of postal codes of Canada: M

The information obtained i.e. the table of postal codes was transformed into a pandas data frame for further analysis.

b) Coordinate data for each Neighborhood in Toronto: The following csv file gave us the geographical coordinates of each postal code: http://cocl.us/Geospatial data

2.2 Data Scraping

Data is scraped from the Wikipedia page using **Beautiful Soup** library. Using soup object, iterating the .wikitable to get the data from the HTML page and storing it into a list. The list is then converted into **Pandas** Data Frame, which appears as below.

Neighborhood	Borough	Postal code			
	Not assigned	M1A	0		
	Not assigned	1 M2A			
Parkwoods	North York	МЗА	2		
Victoria Village	North York	M4A	3		
Regent Park / Harbourfront	Downtown Toronto	M5A	4		

2.3 Data Cleaning

Preprocessing the data, by removing rows with "Not Assigned" values, removing duplicating and grouping the neighborhoods with the same postal code, the data frame appears as below.

Neighborho	Postal code Borough Neigh				
Parkwoo	North York	МЗА	0		
Victoria Villa	North York	M4A	1		
Regent Park / Harbourfr	Downtown Toronto	M5A	2		
Lawrence Manor / Lawrence Heig	North York	M6A	3		
Queen's Park / Ontario Provincial Governm	Downtown Toronto	M7A	4		

Now, getting the Geospacial data from the CSV file, and combining it with the data frame with Canada data. The combined data frames appears as below.

	Borough	Neighborhood	Latitude	Longitude
Postal code				
МЗА	North York	Parkwoods	43.753259	-79.329656
M4A	North York	Victoria Village	43.725882	-79.315572
M5A	Downtown Toronto	Regent Park / Harbourfront	43.654260	-79.360636
M6A	North York	Lawrence Manor / Lawrence Heights	43.718518	-79.464763
M7A	Downtown Toronto	Queen's Park / Ontario Provincial Government	43.662301	-79.389494
M9A	Etobicoke	Islington Avenue	43.667856	-79.532242
M1B	Scarborough	Malvern / Rouge	43.806686	-79.194353
МЗВ	North York	Don Mills	43.745906	-79.352188
M4B	East York	Parkview Hill / Woodbine Gardens	43.706397	-79.309937
M5B	Downtown Toronto	Garden District, Ryerson	43.657162	-79.378937
M6B	North York	Glencairn	43.709577	-79.445073

Final step is to filter the data to use only Boroughs in Toronto

3.Methodology

Exploring an initial map of the neighborhoods in Toronto, using Matplotlib and Folium libraries and the latitudes and longitudes.

Now, taking the first neighborhood, and getting exploring the venues nearby using Foursquare API, which is the Location Data Application. The data for the first neighborhood, i.e, Regent Park/Harbourfront appears as below.

	name	categories	lat	Ing
0	Roselle Desserts	Bakery	43.653447	-79.362017
1	Tandem Coffee	Coffee Shop	43.653559	-79.361809
2	Cooper Koo Family YMCA	Distribution Center	43.653249	-79.358008
3	Body Blitz Spa East	Spa	43.654735	-79.359874
4	Morning Glory Cafe	Breakfast Spot	43.653947	-79.361149

Now, in the similar way, creating a function, to explore and extract the nearby venues in each neighborhood and storing them in a data frame. The category of these venues are then analysed. Using one-hot encoding method, the top 10 venues of each neighbourhood are identified and depicted in a data frame as shown below.

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Berczy Park	Coffee Shop	Café	Farmers Market	Bakery	Cheese Shop	Beer Bar	Italian Restaurant	Restaurant	Cocktail Bar	Seafood Restaurant
1	Brockton / Parkdale Village / Exhibition Place	Café	Breakfast Spot	Coffee Shop	Performing Arts Venue	Stadium	Intersection	Bakery	Italian Restaurant	Restaurant	Climbing Gym
2	Business reply mail Processing CentrE	Light Rail Station	Yoga Studio	Auto Workshop	Park	Comic Shop	Pizza Place	Burrito Place	Recording Studio	Restaurant	Brewery
3	CN Tower / King and Spadina / Railway Lands /	Airport Lounge	Airport Service	Coffee Shop	Harbor / Marina	Plane	Rental Car Location	Sculpture Garden	Boutique	Bar	Boat or Ferry
4	Central Bay Street	Coffee Shop	Italian Restaurant	Café	Sandwich Place	Middle Eastern Restaurant	Japanese Restaurant	Ice Cream Shop	Thai Restaurant	Salad Place	Gym / Fitness Center

Now that we have the top 10 categories in each neighborhood, we can group the neighborhoods based on their similarities. The algorithm used here will be K-Mean Clustering using **Scikit Learn** Library.

4. Results

The clusters are then depicted on the Toronto map and are color coded, using **Matplotlib** and **Folium** libraries.

4. Discussion and Conclusion

Thus, we see that data which is constantly updated can speak volumes. The postal code data of a city and the location data from the Foursquare API can be used to generate an unsupervised clustered model which can be used to make real life decisions. In a fast moving world, there are many real life problems or scenarios where data can be used to find solutions to those problems.

5. References

- 1. Wikipedia content: https://en.wikipedia.org/wiki/Toronto
- 2. CSV for Coordinate data: http://cocl.us/Geospatial data
- 3. Foursquare API

-- Thank You--