Z-Transforms

Definition 1:

If the function f(n) is defined for $n=0,1,2,\cdots$ and f(n)=0 for n<0, then $f(0),f(1),f(2),\cdots$ is a sequence, denoted by $\{f(n)\}$. The Z-transform of the sequence $\{f(n)\}_{n=0}^{\infty}$ is defined as

$$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n}$$
, if the series converges.

We denote the sum by F(z), where z is a complex variable.

Thus,
$$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n} = F(z)$$

Note

- 1. This Z-transform is called an one sided Z-transform.
- 2. The series $\sum_{n=0}^{\infty} f(n)z^{-n}$ is convergent for z such that |Z| > R, where $R = \lim_{n \to \infty} \left| \frac{f(n)}{f(n+1)} \right|$
- 3. If f(t) is a continuous function, representing a continuous signal, then we sample at the time instances $0, T, 2T, \dots, nT, \dots$ get the sequence $f(0), f(T), f(2T), \dots$ which is a discrete time function. T is called a sample period.

Definition 2:

If the continuous function f(t) is defined for the sampled values $t=nT,\,n=0,1,2,\cdots$, then the Z-transform of f(t) is defined as $Z[f(t)]=\sum_{n=0}^{\infty}f(nT)z^{-n}$. It is also denoted by F(z).

Formula to remember!!!

1.
$$(1-z)^{-1} = 1 + z + z^2 + z^3 + \cdots$$
 if $|z| < 1$

2.
$$(1+z)^{-1} = 1 - z + z^2 - z^3 + \cdots$$
 if $|z| < 1$

3.
$$(1-z)^{-2} = 1 + 2z + 3z^2 + 4z^3 + \cdots$$
 if $|z| < 1$

4.
$$(1+z)^{-2} = 1 - 2z + 3z^2 - 4z^3 + \cdots$$
 if $|z| < 1$

5.
$$-\log_e(1-z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \cdots$$
 if $|z| < 1$

6.
$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$$

Z-transforms of some standard sequences

1. Prove that $Z\left[1 ight]=rac{z}{z-1}, \qquad |z|>1.$

Proof:

Given f(n) = 1

$$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n}$$

$$\therefore Z[1] = \sum_{n=0}^{\infty} 1.z^{-n}$$

$$= \sum_{n=0}^{\infty} z^{-1.n}$$

$$= \sum_{n=0}^{\infty} \left(z^{-1}\right)^{n}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^{n}$$

$$= 1 + \left(\frac{1}{z}\right) + \left(\frac{1}{z}\right)^{2} + \left(\frac{1}{z}\right)^{3} + \cdots$$

$$= \left[1 - \left(\frac{1}{z}\right)\right]^{-1} \quad \text{if } \left|\frac{1}{z}\right| < 1$$

$$= \left[\left(\frac{z-1}{z}\right)\right]^{-1} \quad \text{if } |z| > 1$$

$$= \frac{z}{z-1} \quad \text{if } |z| > 1$$

Proof Tip!

From the definition of Z-transform.

Substitute the given f(n).

$$a^{m.n} = (a^m)^n$$

$$z^{-1} = \left(\frac{1}{z}\right)$$

Running the summation

by the below formula

$$(1-z)^{-1}$$

= 1 + z + z² + · · ·
if |z| < 1

$$\frac{1}{|z|} < 1 \Rightarrow |z| > 1$$

Z-transforms of some standard sequences

Proof Tip!

2. Prove that $Z\left[a^{m{n}}
ight]=rac{z}{z-a}, \qquad |z|>a.$

Proof:

Given $f(n) = a^n$

$$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n}$$

$$\therefore Z[a^n] = \sum_{n=0}^{\infty} a^n z^{-n}$$

$$= \sum_{n=0}^{\infty} a^n z^{-1 \cdot n}$$

$$= \sum_{n=0}^{\infty} a^n \left(z^{-1}\right)^n$$

$$= \sum_{n=0}^{\infty} a^n \left(\frac{1}{z}\right)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n$$

$$= 1 + \left(\frac{a}{z}\right) + \left(\frac{a}{z}\right)^2 + \left(\frac{a}{z}\right)^3 + \cdots$$

$$= \left[1 - \left(\frac{a}{z}\right)\right]^{-1} \quad \text{if } \left|\frac{a}{z}\right| < 1$$

$$= \left[\frac{z-a}{z}\right]^{-1} \quad \text{if } |z| > a$$

$$= \frac{z}{z-a} \quad \text{if } |z| > a$$

From the definition of Z-transform.

Substitute the given f(n).

$$a^{m.n} = (a^m)^n$$

$$z^{-1} = \left(\frac{1}{z}\right)$$

$$a^n.b^n = (ab)^n$$

Running the summation

by formula

$$(1-z)^{-1}$$

= 1 + z + z^2 + · · · if $|z| < 1$

$$\left| \frac{a}{z} \right| < 1 \Rightarrow \frac{|a|}{|z|} < 1 \Rightarrow |a| < |z|$$

$$\therefore a > 0, |a| < |z| \Rightarrow a < |z|$$

$$\Rightarrow |z| > a$$

3. Prove that $Z[n] = \frac{z}{(z-1)^2}$,

Z-transforms of some standard sequences

|z| > 1,.

Proof:

Given f(n) = n

$$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n}$$

$$\therefore Z[n] = \sum_{n=0}^{\infty} n.z^{-n}$$

$$= \sum_{n=0}^{\infty} nz^{-1.n}$$

$$= \sum_{n=0}^{\infty} n \left(z^{-1}\right)^{n}$$

$$= \sum_{n=0}^{\infty} n \left(\frac{1}{z}\right)^{n}$$

$$= \sum_{n=0}^{\infty} n \left(\frac{1}{z}\right)^{n}$$

$$= 0 + 1 \left(\frac{1}{z}\right) + 2 \left(\frac{1}{z}\right)^{2} + 3 \left(\frac{1}{z}\right)^{3} + 4 \left(\frac{1}{z}\right)^{4} + \cdots$$

$$= \left(\frac{1}{z}\right) + 2 \left(\frac{1}{z}\right)^{2} + 3 \left(\frac{1}{z}\right)^{3} + 4 \left(\frac{1}{z}\right)^{4} + \cdots$$

$$= \left(\frac{1}{z}\right) \left[1 + 2 \left(\frac{1}{z}\right) + 3 \left(\frac{1}{z}\right)^{2} + 4 \left(\frac{1}{z}\right)^{3} + \cdots\right]$$

$$= \frac{1}{z} \left[1 - \left(\frac{1}{z}\right)\right]^{-2} \quad \text{if } \left|\frac{1}{z}\right| < 1$$

$$= \frac{1}{z} \left[\frac{z - 1}{z}\right]^{-2} = \frac{1}{z} \frac{z^{2}}{(z - 1)^{2}} \quad \text{if } |z| > 1$$

$$= \frac{1}{z} \frac{z^{2}}{(z - 1)^{2}} = \frac{z}{(z - 1)^{2}} \quad \text{if } |z| > 1$$

Proof Tip!

From the definition of Z-transform.

Substitute the given f(n).

$$a^{m.n} = (a^m)^n$$

$$z^{-1} = \left(\frac{1}{z}\right)$$

Running the summation

Take out the term $\left(\frac{1}{z}\right)$

by formula

$$(1-z)^{-2}$$

= 1 + 2z + 3z² + ···
if |z| < 1

$$\left|\frac{1}{z}\right| < 1 \Rightarrow \frac{1}{|z|} < 1 \Rightarrow |z| > 1$$

Z-transforms of some standard sequences	Proof Tip!
4. Prove that $Z\left[\frac{1}{n}\right] = \log_e\left(\frac{z}{z-1}\right), \qquad z > 1, n > 0.$	
Proof:	
Given $f(n) = \frac{1}{n}$	
	From the definition of
$\sum_{i=1}^{\infty} a_{i}(x) = n$	Z-transform.
$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n}$	Substitute the given f(n).
$\therefore Z\left[\frac{1}{n}\right] = \sum_{n=1}^{\infty} \frac{1}{n} \cdot z^{-n}$	
$ \begin{bmatrix} n \\ \end{bmatrix} \qquad \begin{matrix} $	$a^{m.n} = (a^m)^n$
$= \sum_{n=1}^{\infty} \frac{1}{n} z^{-1.n}$	$z^{-1} = \left(\frac{1}{z}\right)$
$= \sum_{n=1}^{\infty} \frac{1}{n} \left(z^{-1} \right)^n$	
$= \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1}{z}\right)^n$	Running the summation
	Take out the term $\left(\frac{1}{z}\right)$
$= \sum_{n=1}^{\infty} \frac{(1/z)^n}{n}$	by formula
$= (1/z) + \frac{(1/z)^2}{2} + \frac{(1/z)^3}{3} + \cdots$	$-\log_e(1-z)$
$= -\log_e\left(1 - \frac{1}{z}\right) \qquad \text{if } \left \frac{1}{z}\right < 1$	$= z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \cdots$ if $ z < 1$
$= -\log_e\left(\frac{z-1}{z}\right) \text{if } z > 1$	
$= \log_e \left(\frac{z-1}{z}\right)^{-1} \text{if } z > 1$	$\left \frac{1}{z} \right < 1 \Rightarrow \frac{1}{ z } < 1 \Rightarrow z > 1$
$= \log_e\left(\frac{z}{z-1}\right) \text{if } z > 1$	

Z-transforms of some standard sequences

Proof Tip!

5. Prove that $Z\left[rac{1}{n!}
ight]=e^{1/z}$.

Proof:

Given
$$f(n) = \frac{1}{n!}$$

$$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n}$$

$$\therefore Z\left[\frac{1}{n!}\right] = \sum_{n=0}^{\infty} \frac{1}{n!} z^{-n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} z^{-1.n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (z^{-1})^n$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (\frac{1}{z})^n$$

$$= \sum_{n=0}^{\infty} \frac{(1/z)^n}{n!}$$

$$= 1 + \frac{(1/z)}{1!} + \frac{(1/z)^2}{2!} + \frac{(1/z)^3}{3!} + \cdots$$

$$= e^{1/z}$$

From the definition of Z-transform.

Substitute the given f(n).

$$a^{m.n} = (a^m)^n$$

$$z^{-1} = \left(\frac{1}{z}\right)$$

Running the summation

by formula

$$e^z$$

$$= 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$$

Z-transforms of some standard sequences	Proof Tip!
6. Prove that $Z\left[rac{a^n}{n!} ight]=e^{a/z}.$	
Proof:	
Given $f(n) = \frac{1}{n!}$	
$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n}$ $\therefore Z\left[\frac{a^n}{n!}\right] = \sum_{n=0}^{\infty} \frac{a^n}{n!}z^{-n}$ $= \sum_{n=0}^{\infty} \frac{a^n}{n!}z^{-1.n}$ $= \sum_{n=0}^{\infty} \frac{a^n}{n!}\left(z^{-1}\right)^n$ $= \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{a}{z}\right)^n$ $= \sum_{n=0}^{\infty} \frac{(a/z)^n}{n!}$ $= 1 + \frac{(a/z)}{1!} + \frac{(a/z)^2}{2!} + \frac{(a/z)^3}{3!} + \cdots$ $= e^{a/z}$	From the definition of Z-transform. Substitute the given $f(n)$. $a^{m.n} = (a^m)^n$ $z^{-1} = \left(\frac{1}{z}\right)$ Running the summation by formula e^z $= 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$

Z-transforms of some standard sequences

Proof Tip!

7. Prove that
$$Z\left[rac{1}{(n+1)!}
ight]=z\left(e^{1/z}-1
ight)$$
 .

Proof:

Given
$$f(n) = \frac{1}{(n+1)!}$$

$$Z[f(n)] = \sum_{n=0}^{\infty} f(n)z^{-n}$$

$$\therefore Z\left[\frac{1}{(n+1)!}\right] = \sum_{n=0}^{\infty} \frac{1}{(n+1)!}z^{-1}n$$

$$= \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left(z^{-1}\right)^{n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left(\frac{1}{z}\right)^{n}$$

$$= \sum_{n=0}^{\infty} \frac{(1/z)^{n}}{(n+1)!}$$

$$= \frac{1}{1!} + \frac{(1/z)}{2!} + \frac{(1/z)^{2}}{3!} + \frac{(1/z)^{3}}{4!} + \cdots$$

$$= \frac{z}{z} \left[\frac{1}{1!} + \frac{(1/z)^{2}}{2!} + \frac{(1/z)^{3}}{3!} + \frac{(1/z)^{3}}{4!} + \cdots\right]$$

$$= z \left[1 + \frac{1/z}{1!} + \frac{(1/z)^{2}}{2!} + \frac{(1/z)^{3}}{3!} + \cdots\right]$$

$$= z \left[1 + \frac{1/z}{1!} + \frac{(1/z)^{2}}{2!} + \frac{(1/z)^{3}}{3!} + \cdots\right]$$

$$= z \left[1 + \frac{1/z}{1!} + \frac{(1/z)^{2}}{2!} + \frac{(1/z)^{3}}{3!} + \cdots\right]$$

$$= z \left[1 + \frac{1/z}{1!} + \frac{(1/z)^{2}}{2!} + \frac{(1/z)^{3}}{3!} + \cdots\right]$$

$$= z \left[1 + \frac{1/z}{1!} + \frac{(1/z)^{2}}{2!} + \frac{(1/z)^{3}}{3!} + \cdots\right]$$

$$= z \left[1 + \frac{1/z}{1!} + \frac{(1/z)^{2}}{2!} + \cdots\right] - 1$$

$$= z \left[1 + \frac{1/z}{1!} + \frac{(1/z)^{2}}{2!} + \cdots\right]$$

From the definition of Z-transform.

Substitute the given f(n).

$$a^{m.n} = (a^m)^n$$

$$z^{-1} = \left(\frac{1}{z}\right)$$

Running the summation

multiply by z/z

Add and subtract 1

by the below formula

$$e^{z}$$

$$= 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots$$

Properties of Z-Transforms

1. Linearity Property: $Z[af(n) + \overline{b}g(n)] = aZ[f(n)] + bZ[g(n)]$

2. Time shifting Property:

Shifting to the right:

If
$$Z[f(n)] = F(z)$$
, then $Z[f(n-k)] = z^{-k}F(z)$, $k > 0$

Shifting to the left:

If
$$Z[f(n)] = F(z)$$
, then $Z[f(n+k)] = z^k \left[F(z) - f(0) - \frac{f(1)}{z} - \frac{f(2)}{z^2} + \cdots \right], \ k > 0$

3. Change of scale (in z domain) or Dumping rule:

If
$$Z[f(n)] = F(z)$$
, then $Z\left[a^{-n}f(n)\right] = \left[Z[f(n)]\right]_{z \to az}$
If $Z[f(n)] = F(z)$, then $Z[a^{n}f(n)] = \left[Z[f(n)]\right]_{z \to z/a}$

4. Multiplication by n (or) Differentiation in the z domain

If
$$Z[f(n)] = F(z)$$
, then $Z[nf(n)] = -z\frac{d}{dz}[Z[f(n)]]$

Proof:

$$F(z) = Z[f(n)]$$

$$= \sum_{n=0}^{\infty} f(n)z^{-n}$$

Diff. w. r. to z,

$$\frac{d}{dz}[F(z)] = \frac{d}{dz} \left[\sum_{n=0}^{\infty} f(n)z^{-n} \right]$$

$$= \sum_{n=0}^{\infty} f(n) \frac{d}{dz} \left[z^{-n} \right]$$

$$= \sum_{n=0}^{\infty} f(n) \left[-nz^{-n-1} \right]$$

$$= \sum_{n=0}^{\infty} f(n) \left[-nz^{-n}z^{-1} \right]$$

$$= -z^{-1} \sum_{n=0}^{\infty} f(n) \left[nz^{-n} \right]$$

$$= -\frac{1}{z} \sum_{n=0}^{\infty} nf(n)z^{-n}$$

$$= Z[nf(n)]$$

$$\therefore Z[nf(n)] = -z \frac{d}{dz}[F(z)]$$

Initial value theorem on Z-transforms

If
$$Z[f(n)] = F(z)$$
, then $f(0) = \lim_{z \to \infty} F(z)$

Proof:

Given Z[f(n)] = F(z)

$$F(z) = Z[f(n)]$$

$$= \sum_{n=0}^{\infty} f(n)z^{-n}$$

$$= f(0)z^{0} + f(1)z^{-1} + f(2)z^{-2} \cdots$$

$$= f(0) + \frac{f(1)}{z} + \frac{f(2)}{z^{2}} \cdots$$

$$\lim_{z \to \infty} F(z) = \lim_{z \to \infty} \left[f(0) + \frac{f(1)}{z} + \frac{f(2)}{z^{2}} \cdots \right]$$

$$= f(0) \qquad \because \lim_{z \to \infty} \left[\frac{1}{z^{n}} \right] = 0$$

Final value theorem on Z-transforms

If
$$Z[f(n)] = F(z)$$
, then $\lim_{n \to \infty} f(n) = \lim_{z \to 1} (z - 1)F(z)$

Proof:

We know that
$$Z[f(n+1)] = z[F(z) - f(0)]$$

 $= zF(z) - zf(0)$
 $\Rightarrow Z[f(n+1)] - F(z) = zF(z) - F(z) - zf(0)$
 $\Rightarrow Z[f(n+1)] - Z[f(n)] = zF(z) - F(z) - zf(0)$
 $\Rightarrow Z[f(n+1) - f(n)] = (z-1)F(z) - zf(0)$
 $\Rightarrow \sum_{n=0}^{\infty} [f(n+1) - f(n)] z^{-n} = (z-1)F(z) - zf(0)$
 $\therefore \lim_{z \to 1} [(z-1)F(z) - zf(0)] = \sum_{n=0}^{\infty} [f(n+1) - f(n)]$
 $= \lim_{n \to \infty} S_n - - (1)$ where S_n is the partial sum of n terms
 $S_n = f(1) - f(0) + f(2) - f(1)$

+f(n)-f(n-1)

$$\therefore S_n = f(n) - f(0) \text{ Subs. in } (1)$$

$$\therefore \lim_{z \to 1} [(z-1)F(z) - zf(0)] = \lim_{n \to \infty} [f(n) - f(0)]$$

$$\Rightarrow \lim_{z \to 1} [(z-1)F(z)] - f(0) = \lim_{n \to \infty} [f(n) - f(0)]$$

$$\therefore \lim_{z \to 1} [(z-1)F(z)] = \lim_{n \to \infty} f(n)$$

Problems

8. Find Z[(n+1)(n+1)].

Proof:

$$Z[(n+1)(n+1)] = Z[n(n+1) + (n+1)]$$

$$= Z[n^2 + n + n + 1]$$

$$= Z[n^2 + 2n + 1]$$

$$= Z[n^2] + 2Z[n] + Z[1]$$

$$= \frac{z^2 + z}{(z-1)^3} + 2 \cdot \frac{z}{(z-1)^2} + \frac{z}{z-1}$$

$$= \frac{z^2 + z + 2z(z-1) + z(z-1)^2}{(z-1)^3}$$

$$= \frac{z^2 + z + 2z^2 - 2z + z(z^2 - 2z + 1)}{(z-1)^3}$$

$$= \frac{z^2 + z + 2z^2 - 2z + z^3 - 2z^2 + z}{(z-1)^3}$$

$$= \frac{z^3 + z^2}{(z-1)^3}$$

Solving Tip!

First simplify the (n+1)(n+2) and then by the linearity property we get the 4th line. And substitute the formula of $Z[n^2]$, Z[n] and Z[1] and take the LCM. whether you forgot the formula for $Z[n^2]$. Find it from the property.

$$Z[nf(n)] = -z\frac{d}{dz} \left[Z[f(n)] \right].$$

i.e.,

$$Z[n^{2}.] = Z[n.n]$$

$$= -z \frac{d}{dz} [Z[n]]$$

$$= -z \frac{d}{dz} \left[\frac{z}{(z-1)^{2}} \right]$$

Use

$$\left[\frac{u}{v}\right]' = \frac{vu' - uv'}{v^2}$$

and find it.

Problems Solving Tip!

9. Find Z-transform of $\cos n\theta$ and $\sin n\theta$. Hence deduce the Z-transforms of $\cos(n+1)\theta$ and $a^n\sin n\theta$

Solution:

We know that
$$Z\left[a^n\right] = \frac{z}{z-a}$$
, if $|z| < 1$

Put
$$a = e^{i\theta}$$

 $\therefore a^n = e^{in\theta} = [\cos n\theta + i \sin n\theta]$

$$Z [\cos n\theta + i \sin n\theta]$$

$$= Z [e^{in\theta}]$$

$$= Z [(e^{i\theta})^n]$$

$$= \frac{z}{z - (\cos \theta + i \sin \theta)}$$

$$= \frac{z}{z - \cos \theta - i \sin \theta}$$

$$= \frac{z}{(z - \cos \theta) - i \sin \theta}$$

$$= \frac{z}{(z - \cos \theta) - i \sin \theta} \times \frac{(z - \cos \theta) + i \sin \theta}{(z - \cos \theta) + i \sin \theta}$$

$$= \frac{z((z-\cos\theta)+i\sin\theta)}{(z-\cos\theta)^2-(i\sin\theta)^2}$$

$$= \frac{z((z-\cos\theta)+i\sin\theta)}{z^2-2z\cos\theta+\cos^2\theta+\sin^2\theta}$$

$$= \frac{z((z-\cos\theta)+i\sin\theta)}{z^2-2z\cos\theta+1}$$

$$= \frac{z(z-\cos\theta) + iz\sin\theta}{z^2 - 2z\cos\theta + 1}$$

$$= \frac{z(z-\cos\theta)}{z^2 - 2z\cos\theta + 1} + i\frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$$

$$a^{mn} = (a^m)^n$$

In the denominator, gather the real part and imaginary part separately.

If we have the complex number in Denominator, we take conjugate.

And simplify it use the formula

$$(a^2 - b^2) = (a - b)(a + b)$$

.

Problems

 $\Rightarrow Z \left[\cos \theta\right] + iZ \left[\sin \theta\right]$ $= \frac{z(z - \cos \theta)}{z^2 - 2z \cos \theta + 1} + i \frac{z \sin \theta}{z^2 - 2z \cos \theta + 1} \cdot \dots \cdot (1)$

Equating the real parts, we get

$$Z \left[\cos n\theta\right] = \frac{z(z - \cos \theta)}{z^2 - 2z\cos \theta + 1}$$

Equating the imaginary parts, we get

$$Z[\sin n\theta] = \frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$$

To find $Z[\cos(n+1)\theta]$,

we use the shifting property,

$$Z[f(n+1)] = z[F(z) - f(0)]$$

= $z[Z[f(n)] - f(0)]$

Here
$$f(n) = \cos n\theta$$
 : $f(0) = \cos 0 = 1$
 $f(n+1) = \cos(n+1)\theta$

$$Z \left[\cos(n+1)\theta \right] = z \left[Z \left[\cos n\theta \right] - f(0) \right]$$

$$= z \left[\frac{z(z - \cos \theta)}{z^2 - 2z \cos \theta + 1} - 1 \right]$$

$$= z \left[\frac{z(z - \cos \theta) - (z^2 - 2z \cos \theta + 1)}{z^2 - 2z \cos \theta + 1} \right]$$

$$= z \left[\frac{z^2 - z \cos \theta - z^2 + 2z \cos \theta - 1}{z^2 - 2z \cos \theta + 1} \right]$$

$$= z \left[\frac{z \cos \theta - 1}{z^2 - 2z \cos \theta + 1} \right]$$

$$= \left[\frac{z(z \cos \theta - 1)}{z^2 - 2z \cos \theta + 1} \right]$$

To find $a^n \sin n\theta$, we use the property

$$Z [a^{n} f(n)] = [Z [f(n)]]_{z \to z/a}$$

$$Z [a^{n} \sin \theta] = [Z [\sin \theta]]_{z \to z/a}$$

$$= \left[\frac{z \sin \theta}{z^{2} - 2z \cos \theta + 1} \right]_{z \to z/a}$$

Write the L.H.S and R.H.S like as the real part + imaginary part.

Putting k = 1 in the property of shift to the left

Write the terms what we need

Substituting the corresponding values and simplify to get the required result.

using the dumping rule.

Problems	Solving Tip!
$= \left[\frac{(z/a)\sin\theta}{(z/a)^2 - 2(z/a)\cos\theta + 1} \right]$ $= \left[\frac{\frac{z\sin\theta}{\cancel{a}}}{\frac{z^2 - 2az\cos\theta + a^2}{a^2 1}} \right] = \frac{az\sin\theta}{z^2 - 2az\cos\theta + a^2}$	
10. Find the Z-transform of $\frac{1}{(n+1)(n+2)}$	
Solution:	
We use a partial fraction method,	
Let $\frac{1}{(n+1)(n+2)} = \frac{A}{(n+1)} + \frac{B}{(n+2)} \cdot \dots \cdot (1)$	
$\frac{1}{(n+1)(n+2)}(n+1)(n+2) = \frac{A}{(n+1)}(n+1)(n+2) + \frac{B}{(n+2)}$	(n+1)(n+2)
$\Rightarrow 1 = A(n+2) + B(n+1)$	
Put $n = -2$ 1 = A(-2+2) + B(-2+1) 1 = 0 - B B = -1 Put $n = -1$ 1 = A(-1+2) + B(-1+1) 1 = A + 0 A = 1	
Subs. in (1), we get,	
$\frac{1}{(n+1)(n+2)} = \frac{1}{(n+1)} + \frac{-1}{(n+2)}$ $= \frac{1}{(n+1)} - \frac{1}{(n+2)}$ $\therefore Z\left[\frac{1}{(n+1)(n+2)}\right] = Z\left[\frac{1}{(n+1)} - \frac{1}{(n+2)}\right]$ $= Z\left[\frac{1}{(n+1)}\right] - Z\left[\frac{1}{(n+2)}\right] \cdots (2)$	Partial fraction of Type I

Problems	Solving Tip!
But	
$Z\left[\frac{1}{(n+1)}\right] = \sum_{n=0}^{\infty} \frac{1}{(n+1)} \cdot z^{-n}$	
$= \sum_{n=0}^{\infty} \frac{1}{(n+1)} z^{-1.n}$	
$= \sum_{n=0}^{\infty} \frac{1}{(n+1)} \left(z^{-1}\right)^n$	
$= \sum_{n=0}^{\infty} \frac{1}{(n+1)} \left(\frac{1}{z}\right)^n$	
$= \sum_{n=0}^{\infty} \frac{(1/z)^n}{(n+1)}$	
$= \frac{1}{1} + \frac{(1/z)}{2} + \frac{(1/z)^2}{3} + \frac{(1/z)^3}{4} + \cdots$	Multiply and divide the z, for making one of the known equation
$= \frac{z}{z} \left[\frac{1}{1} + \frac{(1/z)}{2} + \frac{(1/z)^2}{3} + \frac{(1/z)^3}{4} + \cdots \right]$	from the page number 5.1
$= z \left[\frac{1/z}{1} + \frac{(1/z)^2}{2} + \frac{(1/z)^3}{3} + \cdots \right]$	
$= z \left[-\log(1 - (1/z)) \right]$ if $ z > 1$	
$= z \left[-\log\left(1 - \frac{1}{z}\right) \right] \text{if } z > 1$	
$= z \left[-\log\left(\frac{z-1}{z}\right) \right] \text{if } z > 1$	
$= z \log \left(\frac{z}{z-1}\right) \text{if } z > 1$	
and	
$Z\left[\frac{1}{(n+2)}\right] = \sum_{\substack{n=0 \\ \infty}}^{\infty} \frac{1}{(n+2)} z^{-n}$	
$= \sum_{n=0}^{\infty} \frac{1}{(n+2)} z^{-1.n}$	
$= \sum_{n=0}^{\infty} \frac{1}{(n+2)} \left(z^{-1}\right)^n$	

Problems	
$= \sum_{n=0}^{\infty} \frac{1}{(n+2)} \left(\frac{1}{z}\right)^n$	
$= \sum_{n=0}^{\infty} \frac{(1/z)^n}{(n+2)}$	
$= \frac{1}{2} + \frac{(1/z)}{3} + \frac{(1/z)^2}{4} + \frac{(1/z)^3}{5} + \cdots$	
$= z^{2} \cdot \frac{1}{z^{2}} \left[\frac{1}{2} + \frac{(1/z)}{3} + \frac{(1/z)^{2}}{4} + \cdots \right]$	
$= z^{2} \left[\frac{(1/z)^{2}}{2} + \frac{(1/z)^{3}}{3} + \frac{(1/z)^{4}}{4} + \cdots \right]$	
$= z^{2} \left[\left(\frac{(1/z)}{1} + \frac{(1/z)^{2}}{2} + \frac{(1/z)^{3}}{3} + \frac{(1/z)^{4}}{4} + \cdots \right) - \frac{(1/z)^{4}}{1} \right]$	
$= z^{2} \left[-\log(1 - (1/z)) - \frac{(1/z)}{1} \right]$	
$= z^2 \left[-\log\left(1 - \frac{1}{z}\right) - \frac{1}{z} \right] \text{if } z > 1$	
$= \left[z^2 \log \left(\frac{z-1}{z}\right)^{-1} - z^2 \frac{1}{z}\right] \text{if } z > 1$	
$= z^2 \log \left(\frac{z}{z-1}\right) - z \text{if } z > 1$	

Add and subtract the term $\frac{(1/z)}{1}$

by the below formula

Solving Tip!

$$-\log_e(1-z)$$

$$= z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \cdots$$
if if $|z| < 1$

Subs. in (2), we get

$$Z\left[\frac{1}{(n+1)(n+2)}\right] = z\log\left(\frac{z}{z-1}\right) - \left[z^2\log\left(\frac{z}{z-1}\right) - z\right]$$
$$= (z-z^2)\log\left(\frac{z}{z-1}\right) + z$$

Exercise:

11. Find the Z-transform of $\frac{2n+3}{(n+1)(n+2)}$

Inverse Z-Transforms

Definition 1:

If Z[f(n)] == F(z), then F(z) is unique and the inverse Z-transform is $Z^{-1}[F(Z)] = f(n)$ Inverse Z-transform is found by one of the following methods.

- 1. Long division method.
- 2. Partial fraction method.
- 3. Residue method.
- 4. Convolution method.

	Formulae!!!
Z[f(n)] = F(z)	$Z^{-1}\left[F(z)\right] = f(n)$
$Z[1] = \frac{z}{z - 1}$	$Z^{-1}\left[\frac{z}{z-1}\right] = 1$
$Z[a^n] = \frac{z}{z - a}$	$Z^{-1}\left[\frac{z}{z-a}\right] = a^n$
$Z[a^{n-1}] = \frac{1}{z-a}$	$Z^{-1}\left[\frac{1}{z-a}\right] = a^{n-1}$
$Z[na^n] = \frac{az}{(z-a)^2}$	$Z^{-1}\left[\frac{az}{(z-a)^2}\right] = na^n$
$Z[na^{n-1}] = \frac{z}{(z-a)^2}$	$Z^{-1}\left[\frac{z}{(z-a)^2}\right] = na^{n-1}$
$Z[n] = \frac{z}{(z-1)^2}$	$Z^{-1}\left[\frac{z}{(z-1)^2}\right] = n$
$Z[n(n-1)] = \frac{2z}{(z-1)^3}$	$Z^{-1}\left[\frac{2z}{(z-1)^3}\right] = n(n-1)$
$Z\left[a^n\cos\frac{n\pi}{2}\right] = \frac{z^2}{z^2 + a^2}$	$Z^{-1}\left[\frac{z^2}{z^2 + a^2}\right] = a^n \cos\frac{n\pi}{2}$
$Z\left[a^n \sin\frac{n\pi}{2}\right] = \frac{az}{z^2 + a^2}$	$Z^{-1}\left[\frac{az}{z^2+a^2}\right] = a^n \sin\frac{n\pi}{2}$

Procedure for Long division method:

Step1: We rewrite F(z) in terms of negative powers of z.

Step2: Perform the division.

Step3: Write F(z) = quotient and from that deduce f(n).

Procedure for residue method:

Step1: Multiply F(z) with z^{n-1} .

Step2: Find poles and the residue of it.

Step3: Write f(n) = sum of the residues.

Procedure for partial fraction method:

Step1: First find $\frac{F(z)}{z}$.

Step2: Do Partial fraction for $\frac{F(z)}{z}$. **Step3:** Take Z^{-1} for F(z).

Formula to remember!!!

Types	Partial fraction(it should be proper fraction)
I	$\frac{Nr}{(x-a)(x-b)(x-c)} = \frac{A}{(x-a)} + \frac{B}{(x-b)} + \frac{C}{(x-c)}$
II	$\frac{Nr}{(x-a)(x-b)^n} = \frac{A}{(x-a)} + \frac{B}{(x-b)} + \frac{C}{(x-b)^2} + \cdots$
	$+\frac{O}{(x-b)^n}$
III	$\frac{Nr}{(x-a)(x^2+bx+c)} = \frac{A}{(x-a)} + \frac{Bx+C}{(x^2+bx+c)}$
	here $(x^2 + bx + c)$ is an irreducible

Problem based on inverse Z-transforms by long division method

Solving Tip!

1. Find
$$Z^{-1}\left[\frac{z^2+z}{(z-1)^3}\right]$$
 by long division method

Solution:

Given
$$F(z) = \frac{z^2 + z}{(z - 1)^3}$$

$$Z[F(z)] = \frac{z^2 + z}{(z - 1)^3} = \frac{z^2 + z}{(z^3 - 3z^2 + 3z - 1)}$$

$$= \frac{z^2 \left(1 + \frac{1}{z}\right)}{z^3 (1 - 3\frac{1}{z} + 3\frac{1}{z^2} - \frac{1}{z^3})}$$

$$= \frac{z^2 \left(1 + z^{-1}\right)}{z^2 (1 - 3z^{-1} + 3z^{-2} - z^{-3})}$$

$$= \frac{z^2 \left(1 + z^{-1}\right)}{z^3 1 (1 - 3z^{-1} + 3z^{-2} - z^{-3})}$$

$$= \frac{z^{-1} \left(1 + z^{-1}\right)}{(1 - 3z^{-1} + 3z^{-2} - z^{-3})}$$

$$= \frac{(z^{-1} + z^{-2})}{(1 - 3z^{-1} + 3z^{-2} - z^{-3})}$$

Step1: To perform long division method we rewrite F(z) in terms of negative powers of z.

For that, Take out the higher degree terms of z from the Numerator and the Denomenator and simplify it!

Now, we perform the long division method

Step2 Perform the division.

$$z^{-1} + 4z^{-2} + 9z^{-3} + 16z^{-4} + \cdots$$

$$1 - 3z^{-1} + 3z^{-2} - z^{-3}$$

$$z^{-1} + z^{-2}$$

$$z^{-1} + 3z^{-2} - z^{-3}$$

$$z^{-1} + z^{-2}$$

$$z^{-1} + z^{-2}$$

$$z^{-1} - 3z^{-2} + 3z^{-3} - z^{-4}$$

$$4z^{-2} - 3z^{-3} + z^{-4}$$

$$4z^{-2} - 12z^{-3} + 12z^{-4} - 4z^{-5}$$

$$9z^{-3} - 11z^{-4} + 4z^{-5}$$

$$9z^{-3} - 27z^{-4} + 27z^{-5} - 9z^{-6}$$

$$+16z^{-4} - 23z^{-5} + 9z^{-6}$$

Problem based on inverse Z-transforms by long division method

$F(z) = z^{-1} + 4z^{-2} + 9z^{-3} + 16z^{-4} + \cdots$ $\sum_{n=0}^{\infty} f(n)z^{-n} = z^{-1} + 4z^{-2} + 9z^{-3} + 16z^{-4} + \cdots$ $f(0) + f(1)z^{-1} + f(2)z^{-2} + f(3)z^{-3} + f(4)z^{-4} + \cdots$ $= z^{-1} + 4z^{-2} + 9z^{-3} + 16z^{-4} + \cdots$

Equating the like coefficients, we get

$$f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 9, f(4) = 16, \dots$$

$$f(n) = \begin{cases} 0 \text{ if } n = 0 \\ n^2 \text{ if } n = 1, 2, 3, \dots \end{cases}$$

$$\therefore Z^{-1} \left[\frac{z^2 + z}{(z-1)^3} \right] = f(n) = \begin{cases} 0 \text{ if } n = 0\\ n^2 \text{ if } n = 1, 2, 3, \dots \end{cases}$$

2. Find $Z^{-1}\left[\frac{10z}{(z-1)(z-2)}\right]$ by long division method

Solution: Given
$$F(z) = \frac{10z}{(z-1)(z-2)} = \frac{10z}{z^2 - 3z + 2}$$

$$Z[F(z)] = \frac{10z}{z^2 - 3z + 2} = \frac{10z}{z^2 1 \left(1 - 3\frac{1}{z} + \frac{2}{z^2}\right)}$$
$$= \frac{10z^{-1}}{\left(1 - 3z^{-1} + 2z^{-2}\right)}$$

Solving Tip!

Step3

Write F(z) = quotient and from that deduce f(n).

Running the summation

Step1: To perform long division method we rewrite F(z) in terms of negative powers of z. For that, Take out the higher degree terms of z from the Numerator and the Denomenator and simplify it!

Problem based on inverse Z-transforms by long division **Solving Tip!** method Now, we perform the long division method, $10z^{-1} + 30z^{-2} + 70z^{-3}$ $1 - 3z^{-1} + 2z^{-2}$ $10z^{-1} -30z^{-2} +20z^{-3}$ $30z^{-2}$ $20z^{-3}$ $F(z) = 10z^{-1} + 30z^{-2} + 70z^{-3} + \cdots$ $\sum_{n=0}^{\infty} f(n)z^{-n} = 10z^{-1} + 30z^{-2} + 70z^{-3} + \cdots$ Running the summation $f(0) + f(1)z^{-1} + f(2)z^{-2} + f(3)z^{-3} + f(4)z^{-4} + \cdots$ $= 10z^{-1} + 30z^{-2} + 70z^{-3} + \cdots$ Equating the like coefficients, we get $f(0) = 0, f(1) = 10, f(2) = 30, f(3) = 70, \cdots$ $f(n) = 10(2^n - 1)$ if $n = 0, 1, 2, 3, \cdots$

 $\therefore Z^{-1} \left[\frac{z^2 + z}{(z-1)^3} \right] = f(n) = 10(2^n - 1), \ n = 1, 2, 3, \dots$

Problem based on inverse Z-transforms by residue method

Solving Tip!

1. Find
$$Z^{-1}\left[\frac{z^2+z}{(z-1)^3}\right]$$
 by residue method

Solution:

Given
$$F(z) = \frac{z^2 + z}{(z-1)^3} = \frac{z(z+1)}{(z-1)^3}$$

$$F(z).z^{n-1} = \frac{z(z+1)}{(z-1)^3}z^{n-1}$$
$$= \frac{z^n(z+1)}{(z-1)^3}$$

The poles are given by

$$(z-1)^3 = 0$$

 $(z-1)(z-1)(z-1) = 0$
 $z = 1, 1, 1$ which is a pole of order 3.

Consider the denominator term of $F(z)z^{n-1}$ and equate it to zero and solving it we get the values of z.

$$\therefore R(a) = \lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[(z-a)^m \cdot \left(F(z) \cdot z^{n-1} \right) \right]
R(1) = \lim_{z \to 1} \frac{1}{2!} \frac{d^2}{dz^2} \left[(z-1)^3 \cdot \left(\frac{z^n(z+1)}{(z-1)^3} \right) \right]
= \lim_{z \to 1} \frac{1}{2!} \frac{d^2}{dz^2} \left[(z-1)^3 \cdot \left(\frac{z^n(z+1)}{(z-1)^3} \right) \right]
= \lim_{z \to 1} \frac{1}{2!} \frac{d^2}{dz^2} \left[z^{n+1} + z^n \right]
= \lim_{z \to 1} \frac{1}{2!} \frac{d}{dz} \left[(n+1)z^n + nz^{n-1} \right]
= \lim_{z \to 1} \frac{1}{2} \left[(n+1)nz^{n-1} + n(n-1)z^{n-2} \right]
= \frac{1}{2} \left[(n+1)n + n(n-1) \right]
= \frac{n}{2} \left[(n+1)n + n(n-1) \right]
= \frac{n}{2} \left[(n+1)n + n(n-1) \right]
= \frac{n}{2} \left[(n+1)n + n(n-1) \right]$$

For the repeated values, we use the residue formula for pole of order m. Here m=3 and a=1

$$2! = 2 \times 1 = 2$$
$$\frac{d}{dz}[z^n] = nz^{n-1}$$

 $\therefore f(n) = \text{sum of residues} = n^2, \ n = 0, 1, 2, \cdots$

Problem based on inverse Z-transforms by residue method

Solving Tip!

2. Find
$$Z^{-1}\left[\frac{10z}{(z-1)(z-2)}\right]$$
 by residue method.

Solution:

Given
$$F(z) = \frac{10z}{(z-1)(z-2)}$$

$$F(z).z^{n-1} = \frac{10z}{(z-1)(z-2)}z^{n-1}$$
$$= \frac{10z^n}{(z-1)(z-2)}$$

The poles are given by

$$(z-1)(z-2) = 0$$

 $z = 1, 2$ which are simple pole.

$$\therefore R(a) = \lim_{z \to a} \left[(z - a) \cdot \left(F(z) \cdot z^{n-1} \right) \right]$$

$$\therefore R(1) = \lim_{z \to 1} \left[(z - 1) \cdot \left(\frac{10z^n}{(z - 1)(z - 2)} \right) \right]$$

$$= \lim_{z \to 1} \left[\underbrace{(z - 1)} \cdot \left(\frac{10z^n}{(z - 1)(z - 2)} \right) \right]$$

$$= \left[\left(\frac{10(1)^n}{(1 - 2)} \right) \right]$$

$$= \left[\left(\frac{10(1)^n}{(-1)} \right) \right] = -10$$
and
$$R(2) = \lim_{z \to 2} \left[(z - 2) \cdot \left(\frac{10z^n}{(z - 1)(z - 2)} \right) \right]$$

$$= \lim_{z \to 2} \left[\underbrace{(z - 2)} \cdot \left(\frac{10z^n}{(z - 1)(z - 2)} \right) \right]$$

$$= \left[\left(\frac{10(2)^n}{(2 - 1)} \right) \right]$$

$$= \left[\left(\frac{10(2)^n}{1} \right) \right] = 10(2^n)$$

Consider the denominator term of $F(z)z^{n-1}$ and equate it to zero and solving it we get the values of z.

For the non repeated values, we use the residue formula for simple pole.

$$R(a) = \lim_{z \to a} \left[(z - a) \cdot \left(F(z) \cdot z^{n-1} \right) \right]$$

Replace z by 2

$$f(n) = \text{sum of residues} = (-10) + (10(2^n)) = 10[2^n - 1],$$

$$n = 0, 1, 2, \cdots$$

Problem based on inverse Z-transforms by convolution method

Solving Tip!

1. Find
$$Z^{-1}\left[\frac{z^2}{(z-a)(z-b)}\right]$$
 by convolution method.

Solution:

$$Z^{-1} \left[\frac{z^2}{(z-a)(z-b)} \right] = Z^{-1} \left[\frac{z}{(z-a)} \cdot \frac{z}{(z-b)} \right]$$

$$= Z^{-1} \left[\frac{z}{(z-a)} \cdot \frac{z}{(z-b)} \right]$$

$$= a^n * b^n$$

$$= \sum_{m=0}^n a^m b^{n-m}$$

$$= \sum_{m=0}^n a^m b^{n-m}$$

$$= b^n \sum_{m=0}^n a^m b^{n-m}$$

$$= b^n \sum_{m=0}^n \frac{a^m}{b^m}$$

$$= b^n \sum_{m=0}^n \left(\frac{a}{b} \right)^m$$

$$= b^n \left[\left(\frac{a}{b} \right)^0 + \left(\frac{a}{b} \right)^1 + \left(\frac{a}{b} \right)^2 + \dots + \left(\frac{a}{b} \right)^n \right]$$

$$= b^n \left[1 + \left(\frac{a}{b} \right)^1 + \left(\frac{a}{b} \right)^2 + \dots + \left(\frac{a}{b} \right)^n \right]$$

$$= b^n \left[\frac{\left(\frac{a}{b} \right)^{n-1}}{\left(\frac{a}{b} \right)^{-1}} \right]$$

$$= b^n \left[\frac{\left(\frac{a^{n+1} - b^{n+1}}{b^n} \right)}{\left(\frac{a-b}{b} \right)} \right]$$

$$= \frac{\left(a^{n+1} - b^{n+1} \right)}{a-b}, n = 0, 1, 2, \dots$$

Geometric Progression:
$$a + ar + ar^2 + \dots + ar^n$$

$$= a \left[\frac{r^{n+1} - 1}{r - 1} \right] \text{ if } r > 1$$
(or)
$$= a \left[\frac{1 - r^{n+1}}{1 - r} \right] \text{ if } r < 1$$

Problem based on inverse Z-transforms by convolution method

Solving Tip!

2. Find $Z^{-1}\left[\frac{z^2}{(z-a)^2}\right]$ by convolution method.

Solution:

$$Z^{-1}\left[\frac{z^2}{(z-a)^2}\right] = Z^{-1}\left[\frac{z}{(z-a)} \cdot \frac{z}{(z-a)}\right]$$

$$= Z^{-1}\left[\frac{z}{(z-a)}\right] * Z^{-1}\left[\frac{z}{(z-a)}\right]$$

$$= a^n * a^n$$

$$= \sum_{m=0}^n a^m . a^{n-m}$$

$$= \sum_{m=0}^n a^m . a^m a^{-m}$$

$$= a^n \sum_{m=0}^n a^m . a^{-m}$$

$$= a^n \sum_{m=0}^n a^{m-m}$$

$$= a^n \sum_{m=0}^n (1)^m$$

$$= a^n \left[(1)^0 + (1)^1 + (1)^2 + \dots + (1)^n\right]$$

$$= a^n \left[(1 + 1) + \dots + 1\right]$$

$$= a^n \left[(n+1) \cdot 1\right]$$

$$= (n+1)a^n, n = 0, 1, 2, \dots$$

Here 1 is n + 1 times occured

Problem based on inverse Z-transforms by convolution method	Solving Tip!
3. Find $Z^{-1}\left[\frac{8z^2}{(2z-1)(4z+1)}\right]$ by convolution method.	
Given	
$F(z) = \left[\frac{8z^2}{(2z-1)(4z+1)}\right]$ $= \left[\frac{8z^2}{2.(z-\frac{1}{2})4.(z+\frac{1}{4})}\right] = \left[\frac{8z^2}{8.(z-\frac{1}{2})(z+\frac{1}{4})}\right]$	
$Z^{-1} \left[\frac{8z^2}{(2z-1)(4z+1)} \right] = Z^{-1} \left[\frac{z^2}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{4}\right)} \right]$	
$= Z^{-1} \left[\frac{z}{\left(z - \frac{1}{2}\right)} \cdot \frac{z}{\left(z + \frac{1}{4}\right)} \right]$	٦
$= Z^{-1} \left[\frac{z}{\left(z - \frac{1}{2}\right)} \right] * Z^{-1} \left[\frac{z}{\left(z - \frac{1}{2}\right)} \right]$	$\frac{z}{\left(-\frac{1}{4}\right)}$
$=\left(\frac{1}{2}\right)^n*\left(-\frac{1}{4}\right)^n$	
$= \sum_{m=0}^{n} \left(\frac{1}{2}\right)^m \cdot \left(-\frac{1}{4}\right)^{n-m}$	
$= \left(-\frac{1}{4}\right)^n \sum_{m=0}^n \left(\frac{1}{2}\right)^m \cdot \left(-\frac{1}{4}\right)^{-n}$	m
$= \left(-\frac{1}{4}\right)^n \sum_{m=0}^n \left(-4\frac{1}{2}\right)^m$	
$= \left(-\frac{1}{4}\right)^n \sum_{m=0}^n (-2)^m$	
$= \left(-\frac{1}{4}\right)^n \left[(-2)^0 + (-2)^1 + (-2)^{-2}\right]$	$2 + \dots + (-2)^n \Big]$

Problem based on inverse Z-transforms by convolution method	Solving Tip!
$= \left(-\frac{1}{4}\right)^n \left[1 + (-2)^1 + (-2)^2 + \dots + (-2)^n\right]$ $= \left(-\frac{1}{4}\right)^n \left[\frac{1 - (-2)^{n+1}}{(1 - (-2))}\right]$ $= \left(-\frac{1}{4}\right)^n \left[\frac{1 - (-2)^{n+1}}{(1 - (-2))}\right]$ $= \left(-\frac{1}{4}\right)^n \left[\frac{1 - (-2)^{n+1}}{(1 + 2)}\right]$ $= \left(-\frac{1}{4}\right)^n \left[\frac{1 - (-2)(-2)^n}{(3)}\right]$ $= \left(-\frac{1}{4}\right)^n \left[\frac{1 + 2(-2)^n}{(3)}\right]$ $= \left[\frac{\left(-\frac{1}{4}\right)^n + 2(-2)^n}{(3)}\right]$ $= \left[\frac{1}{3}\left(-\frac{1}{4}\right)^n + \frac{2}{3}\left(-\frac{1}{4} - 2\right)^n\right]$ $= \left[\frac{1}{3}\left(-\frac{1}{4}\right)^n + \frac{2}{3}\left(\frac{1}{2}\right)^n\right] n = 0, 1, 2, \dots$	Geometric Progression: $a + ar + ar^{2} + \dots + ar^{n}$ $= a \left[\frac{r^{n+1} - 1}{r - 1} \right] \text{ if } r > 1$ (or) $= a \left[\frac{1 - r^{n+1}}{1 - r} \right] \text{ if } r < 1$

Problem based on inverse Z-transforms by convolution method	Solving Tip!
4. Find $Z^{-1}\left[\frac{8z^2}{(2z-1)(4z-1)}\right]$ by convolution method.	
Given	
$F(z) = \left[\frac{8z^2}{(2z-1)(4z-1)}\right]$ $= \left[\frac{8z^2}{2\cdot(z-\frac{1}{2})4\cdot(z-\frac{1}{4})}\right] = \left[\frac{8z^2}{8\cdot(z-\frac{1}{2})(z-\frac{1}{4})}\right]$	
$Z^{-1} \left[\frac{8z^2}{(2z-1)(4z-1)} \right] = Z^{-1} \left[\frac{z^2}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)} \right]$	
$= Z^{-1} \left[\frac{z}{\left(z - \frac{1}{2}\right)} \cdot \frac{z}{\left(z - \frac{1}{4}\right)} \right]$	٦
$= Z^{-1} \left[\frac{z}{\left(z - \frac{1}{2}\right)} \right] * Z^{-1} \left[\frac{z}{\left(z - \frac{1}{2}\right)} \right]$	$\left[\frac{1}{4}\right]$
$=\left(\frac{1}{2}\right)^n * \left(\frac{1}{4}\right)^n$	
$= \sum_{m=0}^{n} \left(\frac{1}{2}\right)^m \cdot \left(\frac{1}{4}\right)^{n-m}$	
$= \left(\frac{1}{4}\right)^n \sum_{m=0}^n \left(\frac{1}{2}\right)^m \cdot \left(\frac{1}{4}\right)^{-m}$	
$= \left(\frac{1}{4}\right)^n \sum_{m=0}^n \left(4\frac{1}{2}\right)^m$	
$= \left(\frac{1}{4}\right)^n \sum_{m=0}^n (2)^m$	
$= \left(\frac{1}{4}\right)^n \left[(2)^0 + (2)^1 + (2)^2 + \cdots \right]$	$+(2)^n$

Problem based on inverse Z-transforms by convolution method

$$= \left(\frac{1}{4}\right)^{n} \left[1 + (2)^{1} + (2)^{2} + \dots + (2)^{n}\right]$$

$$= \left(\frac{1}{4}\right)^{n} \left[\frac{(2)^{n+1} - 1}{(2-1)}\right]$$

$$= \left(\frac{1}{4}\right)^{n} \left[\frac{(2)^{n+1} - 1}{(1)}\right]$$

$$= \left(\frac{1}{4}\right)^{n} \left[2(2)^{n} - 1\right]$$

$$= \left[2\left(\frac{1}{4}\right)^{n} (2)^{n} - \left(\frac{1}{4}\right)^{n}\right]$$

$$= \left[2\left(2 \cdot \frac{1}{4}\right)^{n} - \left(\frac{1}{4}\right)^{n}\right]$$

$$= \left[2\left(2 \cdot \frac{1}{42}\right)^{n} - \left(\frac{1}{4}\right)^{n}\right]$$

$$= \left[2\left(\frac{1}{2}\right)^{n} - \left(\frac{1}{4}\right)^{n}\right]$$

$$= \left[2\left(\frac{1}{2}\right)^{n} - \left(\frac{1}{4}\right)^{n}\right]$$

$$= \left[2\left(\frac{1}{2}\right)^{n} - \left(\frac{1}{4}\right)^{n}\right]$$

Solving Tip!

Geometric Progression:

$$a + ar + ar^{2} + \dots + ar^{n}$$

$$= a \left[\frac{r^{n+1} - 1}{r - 1} \right] \text{ if } r > 1$$
(or)

$$= a \left[\frac{1 - r^{n+1}}{1 - r} \right] \text{ if } r < 1$$

Problem based on inverse Z-transforms by convolution **Solving Tip!** method 5. Find $Z^{-1}\left[\left(\frac{z}{z-4}\right)^3\right]$ by convolution method. **Solution:** $Z^{-1}\left[\left(\frac{z}{z-4}\right)^3\right] = Z^{-1}\left[\frac{z}{z-4}\cdot\frac{z^2}{(z-4)^2}\right]$ $= Z^{-1} \left[\frac{z}{z-4} \right] * Z^{-1} \left[\frac{z^2}{(z-4)^2} \right]$ $= 4^n * (n+1) 4^n$ $= (n+1)4^n * 4^n$ $= \sum_{m=0}^{n} (m+1) 4^{m} \cdot (4)^{n-m}$ $= \sum_{m=0}^{n} (m+1) 4^{m} . 4^{n} . 4^{-m}$ $=\frac{n(n+1)}{2}$ $= 4^{n} \sum_{m=0}^{n} (m+1) 4^{m} . 4^{-m}$ $= 4^n \sum_{m=0}^n (m+1)$ $= 4^n [1 + 2 + 3 + \cdots + (n+1)]$ $= 4^n \left\lceil \frac{(n+1)(n+2)}{2} \right\rceil,$ $n = 0, 1, 2, \cdots$

Problem based on inverse Z-transforms by convolution method

Solving Tip!

6. Find
$$Z^{-1}\left[\frac{z^3}{(z-2)^2(z-3)}\right]$$
 by convolution method.

Solution:

$$Z^{-1}\left[\frac{z^3}{(z-2)^2(z-3)}\right] = Z^{-1}\left[\frac{z^2}{(z-2)^2} \cdot \frac{z}{(z-3)}\right]$$

$$= Z^{-1}\left[\frac{z^2}{(z-2)^2}\right] * Z^{-1}\left[\frac{z}{(z-3)}\right]$$

$$= (n+1) 2^n * 3^n$$

$$= \sum_{m=0}^n (m+1) 2^m \cdot (3)^{n-m}$$

$$= \sum_{m=0}^n (m+1) 2^m \cdot 3^n \cdot 3^{-m}$$

$$= 3^n \sum_{m=0}^n (m+1) 2^m \cdot 3^{-m}$$

$$= 3^n \sum_{m=0}^n (m+1) \left(\frac{2}{3}\right)^m$$

$$= 3^n \left[1 + 2\left(\frac{2}{3}\right) + 3\left(\frac{2}{3}\right)^2 + \dots + (n+1)\left(\frac{2}{3}\right)^n\right]$$

Let
$$S = [1 + 2x + 3x^2 + \dots + (n+1)x^n]$$
, where $x = \frac{2}{3}$

This is an arithmetic-geometric series. To find its sum, multiply by the common ratio of the geometric progression and subtract from the series.

$$S = 1 + 2x + 3x^{2} + \dots + (n+1)x^{n}$$

$$xS = x + 2x^{2} + 3x^{3} + \dots + (n+1)x^{n} + (n+1)x^{n+1}$$

$$S - xS = 1 + x + x^{2} + x^{3} + \dots + x^{n} - (n+1)x^{n+1}$$

$$(1-x)S = (1+x+x^2+x^3+\dots+x^n) - (n+1)x^{n+1}$$
$$= \left[\frac{1-x^{n+1}}{1-x}\right] - (n+1)x^{n+1}$$
$$\therefore S = \left[\frac{1-x^{n+1}}{(1-x)^2}\right] - \frac{(n+1)x^{n+1}}{(1-x)},$$

Since
$$x = \frac{2}{3}$$
 and $1 - x = 1 - \frac{2}{3} = \frac{1}{3}$

$$\therefore S = \left[\frac{1 - \left(\frac{2}{3}\right)^{n+1}}{\left(\frac{1}{3}\right)^2}\right] - \frac{(n+1)\left(\frac{2}{3}\right)^{n+1}}{\left(\frac{1}{3}\right)}$$

$$= 9\left[1 - \left(\frac{2}{3}\right)^{n+1}\right] - 3(n+1)\left(\frac{2}{3}\right)^{n+1}$$

$$= 9 - 9\left(\frac{2}{3}\right)^{n+1} - 3(n+1)\left(\frac{2}{3}\right)^{n+1}$$

$$= 9 - [9 + 3n + 3]\left(\frac{2}{3}\right)^{n+1}$$

$$= 9 - [12 + 3n]\left(\frac{2}{3}\right)^{n+1}$$

$$= 9 - 3[n+4]\left(\frac{2}{3}\right)^{n+1}$$

$$Z^{-1}\left[\frac{z^3}{(z-2)^2(z-3)}\right] = 3^n \left[9 - 3\left[n+4\right] \left(\frac{2}{3}\right)^{n+1}\right]$$

$$= 3^n \left[3^2 - 3\left[n+4\right] \left(\frac{2}{3}\right)^{n+1}\right]$$

$$= \left[3^{n+2} - 3^{n+1}\left[n+4\right] \frac{2^{n+1}}{3^{n+1}}\right]$$

$$= \left[3^{n+2} - \left[n+4\right] 2^{n+1}\right], n = 0, 1, 2, \cdots$$

Problem based on inverse Z-transforms by partial fraction method

1. Find $Z^{-1}\left[\frac{10z}{(z-1)(z-2)}\right]$ by partial fraction method.

Solution: Given
$$F(z) = \frac{10z}{(z-1)(z-2)}$$

Now
$$\frac{F(z)}{z} = \frac{1}{z} \frac{10z}{(z-1)(z-2)} = \frac{10}{(z-1)(z-2)}$$

Let
$$\frac{10}{(z-1)(z-2)} = \frac{A}{(z-1)} + \frac{B}{(z-2)}$$

$$\frac{10}{(z-1)(z-2)}(z-1)(z-2) = \frac{A}{(z-1)}(z-1)(z-2) + \frac{B}{(z-2)}(z-1)(z-2)$$

$$\Rightarrow 10 = A(z-2) + B(z-1)$$

$$\begin{array}{c|c} \text{Put } z = 1 \\ 10 = A(-1) + 0 \\ 10 = -A \\ A = -10 \\ \end{array} \begin{array}{c|c} \text{Put } z = 2 \\ 10 = 0 + B(1) \\ 10 = B \\ B = 10 \\ \end{array}$$

$$\therefore \frac{10}{(z-1)(z-2)} = \frac{A}{(z-1)} + \frac{B}{(z-2)}$$

$$= \frac{-10}{(z-1)} + \frac{10}{(z-2)}$$

$$\frac{F(z)}{z} = -\frac{10}{(z-1)} + \frac{10}{(z-2)}$$

$$F(z) = -10\frac{z}{(z-1)} + 10\frac{z}{(z-2)}$$

Taking Z^{-1} on both sides, we get

$$f(n) = -10Z^{-1} \left[\frac{z}{(z-1)} \right] + 10Z^{-1} \left[\frac{z}{(z-2)} \right]$$
$$= -10(1) + 10(2)^{n}$$
$$= -10 + 10(2)^{n}, n = 0, 1, 2, \cdots$$

Solving Tip!

Step 1

We use partial fraction of Type I

Multiply both sides by the denomenator term of the left hand side

Problem based on inverse Z-transforms by partial fraction method

Solving Tip!

2. Find
$$Z^{-1}\left[\frac{z}{(z-2)(z+3)^2}\right]$$
 by partial fraction method.

Solution: Given
$$F(z) = \frac{z}{(z-2)(z+3)^2}$$

Now
$$\frac{F(z)}{z} = \frac{1}{z} \frac{z}{(z-2)(z+3)^2} = \frac{1}{(z-2)(z+3)^2}$$

Let
$$\frac{1}{(z-2)(z+3)^2} = \frac{A}{(z-2)} + \frac{B}{(z+3)} + \frac{C}{(z+3)^2}$$

$$\frac{1}{(z-2)(z+3)^2}(z-2)(z+3)^2 = \frac{A}{(z-2)}(z-2)(z+3)^2 + \frac{B}{(z+3)}(z-2)(z+3)^2 + \frac{C}{(z+3)^2}(z-2)(z+3)^2$$

$$\Rightarrow 1 = A(z+3)^2 + B(z-2)(z+3) + C(z-2)$$

$$\begin{array}{l|l} \text{Put } z=2 \\ 1=A(5)^2+0+0 \\ 1=25A \\ A=\frac{1}{25} \end{array} \qquad \begin{array}{l|l} \text{Put } z=-3 \\ 1=0+0+C(-5) \\ 1=-5C \\ C=-\frac{1}{5} \end{array} \qquad \begin{array}{l} \text{Equating the coeffi. of } z^2 \\ 0=A+B+0 \\ B=-A \\ B=-\frac{1}{25} \end{array}$$

$$\therefore \frac{1}{(z-2)(z+3)^2} = \frac{A}{(z-2)} + \frac{B}{(z+3)} + \frac{C}{(z+3)^2} \\
= \frac{1/25}{(z-2)} + \frac{-1/25}{(z+3)} + \frac{-1/5}{(z+3)^2} \\
\frac{F(z)}{z} = \frac{1}{25} \left[\frac{1}{(z-2)} \right] - \frac{1}{25} \left[\frac{1}{z-(-3)} \right] \\
-\frac{1}{5} \left[\frac{1}{(z-(-3))^2} \right] \\
F(z) = \frac{1}{25} \left[\frac{z}{(z-2)} \right] - \frac{1}{25} \left[\frac{z}{z-(-3)} \right] \\
-\frac{1}{5} \left[\frac{z}{(z-(-3))^2} \right]$$

Taking Z^{-1} on both sides, we get

$$f(n) = \frac{1}{25}Z^{-1} \left[\frac{z}{(z-2)} \right] - \frac{1}{25}Z^{-1} \left[\frac{z}{z-(-3)} \right] - \frac{1}{5}Z^{-1} \left[\frac{z}{(z-(-3))^2} \right]$$

Step 1

We use partial fraction of Type II

Multiply both sides by the denomenator term of the left hand side

Application: Solving Difference equation by Z-transforms **Solving Tip!** $f(n) = \frac{1}{25}2^n - \frac{1}{25}(-3)^n + \frac{1}{15}Z^{-1} \left| \frac{(-3)z}{(z - (-3))^2} \right|$ $= \frac{1}{25}2^{n} - \frac{1}{25}(-3)^{n} + \frac{1}{15}(n(-3)^{n}), n = 0, 1, 2, \cdots$ Sometime difference equation will 1. Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ by be asked like Z-transforms. $y(n+2)+6y(n+1)+9y(n) = 2^n$ **Solution:** Given $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ Applying Z-transforms on both sides, we get $Z[y_{n+2}] + 6Z[y_{n+1}] + 9Z[y_n] = Z[2^n]$ $\Rightarrow z^2 \left[F(z) - y_0 - \frac{y_1}{z} \right] + 6z \left[F(z) - y_0 \right] + 9F(z) = \frac{z}{z-2}$ \Rightarrow $z^{2}[F(z) - 0 - 0] + 6z[F(z) - 0] + 9F(z) = \frac{z}{z - 2}$ $y_0 = y_1 = 0$ $F(z)\left[z^{2} + 6z + 9\right] = \frac{z}{z - 2}$ We use partial fraction of Type II $F(z) = \frac{z}{(z-2)(z^2 + 6z + 9)}$ $F(z) = \frac{z}{(z-2)(z+3)^2}$ $\Rightarrow \frac{F(z)}{z} = \frac{1}{(z-2)(z+3)^2}$ Let $\frac{1}{(z-2)(z+3)^2} = \frac{A}{(z-2)} + \frac{B}{(z+3)} + \frac{C}{(z+3)^2}$ $\frac{1}{(z-2)(z+3)^2}(z-2)(z+3)^2 = \frac{A}{(z-2)}(z-2)(z+3)^2$ Multiply both sides by the denomenator term of the left hand $+\frac{B}{(z+3)}(z-2)(z+3)^2$ $+\frac{C}{(z+3)^2}(z-2)(z+3)^2$

 $\Rightarrow 1 = A(z+3)^2 + B(z-2)(z+3) + C(z-2)$

Application: Solving Difference equation by Z-transforms

Solving Tip!

First, see the common factors on the right hand side and make it as a zero after putting the corresponding z value. If there is no common factor to eliminate, we compare the higher degree

$$\therefore \frac{1}{(z-2)(z+3)^2} = \frac{A}{(z-2)} + \frac{B}{(z+3)} + \frac{C}{(z+3)^2}$$
$$= \frac{1/25}{(z-2)} + \frac{-1/25}{(z+3)} + \frac{-1/5}{(z+3)^2}$$

$$\begin{split} \frac{F(z)}{z} &= \frac{1}{25} \left[\frac{1}{(z-2)} \right] - \frac{1}{25} \left[\frac{1}{z - (-3)} \right] - \frac{1}{5} \left[\frac{1}{(z - (-3))^2} \right] \\ F(z) &= \frac{1}{25} \left[\frac{z}{(z-2)} \right] - \frac{1}{25} \left[\frac{z}{z - (-3)} \right] - \frac{1}{5} \left[\frac{z}{(z - (-3))^2} \right] \end{split}$$

Taking Z^{-1} on both sides, we get

$$f(n) = \frac{1}{25}Z^{-1} \left[\frac{z}{(z-2)} \right] - \frac{1}{25}Z^{-1} \left[\frac{z}{z-(-3)} \right]$$

$$-\frac{1}{5}Z^{-1} \left[\frac{z}{(z-(-3))^2} \right]$$

$$= \frac{1}{25}2^n - \frac{1}{25}(-3)^n - \frac{1}{5}Z^{-1} \left[\frac{1}{(-3)} \frac{(-3)z}{(z-(-3))^2} \right]$$

$$= \frac{1}{25}2^n - \frac{1}{25}(-3)^n + \frac{1}{15}Z^{-1} \left[\frac{(-3)z}{(z-(-3))^2} \right]$$

$$= \frac{1}{25}2^n - \frac{1}{25}(-3)^n + \frac{1}{15}(n(-3)^n), n = 0, 1, 2, \cdots$$

$$Z^{-1} \left[\frac{z}{z-a} \right] = a^n$$

$$Z^{-1} \left[\frac{az}{(z-a)^2} \right] = na^n$$

Exercise:

- 1. Solve $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0, y_1 = 1$ by Z-transforms.
- 2. Solve $y_{n+2} + 4y_{n+1} 5y_n = 24n 8$ with $y_0 = 3, y_1 = -5$ by Z-transforms.
- 3. Solve $y_n + 3y_{n-1} 4y_{n-2} = 0$ with $y_0 = 3, y_1 = -2$ by Z-transforms.
- 4. Solve $y_{n+2} y_{n+1} + 4y_n = 0$, given y(0) = 1 and y(1) = 0, using Z-transforms.

Replace n by (n+2) and then proceed it as before.