Lineare Algebra und Geometrie 1 (WS 2018/19 - Pinsker) Prüfung am 31.1.2019

Name: Matrikelnummer:

Nickname:

Übungsgruppe (falls zutreffend) (Zeit / Gruppenleiter):

Ihre Antworten - bitte W (wahr) oder F (falsch) eintragen!

Aufgabe	Antwort A	Antwort B	Antwort C
1	W	W	F
2	W	W	W
3	W	F	W
4	W	F	W
5	F	W	F
6	W	W	F
7	W	F	F
8	F	F	F
9	F	W	F
10	F	F	W
11	F	F	W
12	F	F	F
13	W	F	W
14	W	W	W
15	F	F	W

Erklärungen zum Prüfungsmodus:

- Bitte wählen Sie einen beliebigen Nickname die Ergebnisse werden als für alle einsehbare Liste unter den Nicknamen veröffentlicht.
- Es sind 15 Aufgaben zu lösen, und jede Aufgabe besteht aus drei Teilfragen (A,B,C), welche jeweils mit WAHR (W) oder FALSCH (F) zu beantworten sind.
- WICHTIG: WAHR (W) bedeutet, daß die jeweilige Behauptung für ALLE X,f,K,\ldots aus der gegebenen Annahme folgt. Das heißt, daß die Behauptung notwendig ist (und nicht nur möglich).
- Sie bekommen die bei einer Aufgabe angegebene Punktezahl (diesmal immer 4), wenn Sie ALLE drei Teilfragen der Aufgabe richtig beantworten.
- Wenn Sie mindestens eine Teilfrage einer Aufgabe falsch beantworten, so bekommen Sie O Punkte.
- In allen anderen Fällen (also Aufgabe entweder gar nicht oder korrekt, aber unvollständig gelöst) bekommen Sie 1 Punkt.

Aufgabe 1 (4 Punkte)

Sei Y ein endlichdimensionaler Vektorraum über einem unendlichen Körper, und sei S eine nichtleere linear unabhängige Teilmenge von Y.

- (A) S läßt sich zu einem unendlichen Erzeugendensystem von Y erweitern.
- (B) S ist endlich.
- (C) Es existiert eine endliche Basis $B\subseteq S$ von Y .

Aufgabe 2 (4 Punkte)

Sei X ein Vektorraum über dem Körper \mathbb{Z}_2 .

- (A) Wenn X eine 5-elementige linear unabhängige Teilmenge besitzt, so hat X mindestens 19 Elemente.
- (B) Wenn X unendlich ist, so hat X eine unendliche linear unabhängige Teilmenge.
- (C) Wenn X mindestens 19 Elemente hat, so hat X eine 5-elementige linear unabhängige Teilmenge.

Aufgabe 3 (4 Punkte)

Sei X ein unendlichdimensionaler Vektorraum über dem Körper \mathbb{Z}_3 , und sei S ein Erzeugendensystem von X. Sei weiters $f\colon S\to (\mathbb{Z}_3)^3$ eine Funktion.

- (A) f hat höchstens endlich viele paarweise verschiedene Fortsetzungen zu einer linearen Abbildung von X nach $(\mathbb{Z}_3)^3$.
- (B) f läßt sich zu einer linearen Abbildung von X nach $(\mathbb{Z}_3)^3$ fortsetzen.
- (C) Wenn g,h zwei lineare Fortsetzungen von f auf X sind, so gilt g=h.

Aufgabe 4 (4 Punkte)

Sei f eine lineare Abbildung von einem Vektorraum V nach V, und sei B eine Basis des Kernes von f. Seien weiters $b,c\in V\setminus [B]$ verschieden.

- (A) Wenn $\{b,c\}$ linear abhängig ist, so gilt $f(b) \neq f(c)$.
- (B) Wenn $\{b,c\}$ linear unabhängig ist, so gilt $f(b) \neq f(c)$.
- (C) Wenn $\{b,c\}\cup B$ linear unabhängig ist, so gilt $f(b)\neq f(c)$.

Aufgabe 5 (4 Punkte)

Sei W ein Vektorraum über einem Körper K. Auf der Potenzmenge 2^W (= Menge aller Teilmengen) von W definieren wir eine binäre Relation R, indem wir für Teilmengen M,M' von W folgendes festlegen:

$$R(M, M') : \leftrightarrow [M] \subseteq [M'].$$

- (A) R ist eine Halbordnung.
- (B) $\exists M \in 2^W \ \forall M' \in 2^W \ (R(M, M'))$.
- (C) R ist eine Äquivalenzrelation.

Aufgabe 6 (4 Punkte)

Sei W ein Vektorraum, und M ein Unterraum von W mit $M \neq W$. Auf W definieren wir eine binäre Relation R, indem wir für $u,v \in W$ folgendes festlegen:

$$R(u,v) : \leftrightarrow u - v \in M$$
.

- (A) $\exists u, v \in W(\neg R(u, v))$.
- (B) R ist eine Äquivalenzrelation.
- (C) R ist eine Halbordnung.

Aufgabe 7 (4 Punkte)

Sei V ein Vektorraum über einem Körper K der Charakteristik 3, und sei $\{b_1,b_2,b_3\}$ eine Basis von V. Sei weiters $f\in L(V,K^2)$ so, daß

$$f(b_1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad f(b_2) = \begin{pmatrix} 1 \\ 1+1 \end{pmatrix}, \quad f(b_3) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- (A) f ist surjektiv.
- (B) f ist injektiv.
- (C) Der Rang von f beträgt 1.

Aufgabe 8 (4 Punkte)

Es gelten die Bedingungen von Aufgabe 7.

- (A) Der Kern von f hat ein eindimensionales Komplement in V.
- (B) $f(b_1+b_2)$ ist ein Element des von $f(b_3)$ erzeugten Unterraumes von K^2 .
- (C) Der Defekt von f beträgt 2.

Aufgabe 9 (4 Punkte)

Gegeben seine folgende Matrizen des $\mathbb{Q}^{3\times 2}$:

$$A := \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} , \qquad B := \begin{pmatrix} 1 & 2 \\ -2 & -4 \\ 0 & 0 \end{pmatrix} .$$

- (A) Es existiert eine reguläre Matrix $C \in \mathbb{Q}^{2 \times 2}$ sodaß $B = A \cdot C$.
- (B) Die beiden Matrizen sind äquivalent.
- (C) Es existiert eine reguläre Matrix $C \in \mathbb{Q}^{3 \times 3}$ sodaß $B = C \cdot A$.

Aufgabe 10 (4 Punkte)

Sei f jene Abbildung von \mathbb{Q}^2 nach \mathbb{Q}^3 , welche durch

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto (x+y) \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right)$$

definiert ist. Seien e_1,e_2,e_3 die kanonischen Basisvektoren des \mathbb{Q}^3 , und sei $e_1':=e_1,\ e_2':=e_2,\ e_3':=e_1+e_2+e_3.$

- (A) Der Vektor aus \mathbb{Q}^3 mit den Koordinaten $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ bezüglich (e_1',e_2',e_3') ist im Bild von f enthalten.
- (B) $f(\begin{pmatrix} 1 \\ 1 \end{pmatrix})$, koordinatisiert nach (e_1,e_2,e_3) , ist gleich $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
- (C) $f(\begin{pmatrix} 1 \\ 1 \end{pmatrix})$, koordinatisiert nach (e_1',e_2',e_3') , ist gleich $\begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$.

Aufgabe 11 (4 Punkte)

Sei R ein 3-dimensionaler Vektorraum, und seien $c,d\in R$ linear unabhängig. Sei W ein Komplement von $[\{c,d\}]$ in R, und sei U ein Komplement von W in R.

4

- (A) $c \in [U]$ oder $d \in [U]$.
- (B) $[\{c,d\}] = [U]$.
- (C) $[\{c,d\}] \cap [U]$ ist ein Unterraum der Dimension mindestens 1.

Aufgabe 12 (4 Punkte)

Es seien folgende Matrixen über dem Körper \mathbb{Z}_2 gegeben:

$$A := \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right) \,, \qquad t := \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right)$$

- (A) Die durch die Zeilen von A gegebenen Linearformen von $(\mathbb{Z}_2)^4$ sind Elemente des Annullatorraumes von $\{t\}$.
- (B) Der Lösungsraum des durch ${\cal A}$ definierten homogenen linearen Gleichungssystems ist eindimensional.
- (C) t ist ein Element des Bildes der durch A definierten linearen Abbildung.

Aufgabe 13 (4 Punkte)

Sei V ein Vektorraum, $u\in V$, und seien $b_1,b_2,\ldots\in V$ verschiedene Vektoren, welche eine Basis eines Komplementes von $[\{u\}]$ in V bilden. Wir definieren $c_0:=u$, und

$$c_i := b_i - c_{i-1}$$

für alle $i \geq 1$.

- (A) $\{c_1, c_2, \ldots\}$ ist eine Basis eines Komplementes von $[\{u\}]$.
- (B) $\{c_0, c_1, \ldots\}$ ist linear abhängig.
- (C) $\{c_0, c_1, \ldots\}$ ist ein Erzeugendensystem von V.

Aufgabe 14 (4 Punkte)

Sei R ein unendlichdimensionaler Vektorraum, und $Y\subseteq R$ ein Erzeugendensystem. Sei weiters $M\subseteq R$ endlich. Die Menge

$$T := \{ S \subseteq Y \mid [S] \supseteq M \}$$

5

ist durch die Inklusion \subseteq halbgeordnet.

- (A) T enthält eine linear unabhängige Menge.
- (B) T enthält eine endliche linear unabhängige Menge.
- (C) T enthält eine endliche Menge.

Aufgabe 15 (4 Punkte)

Sei V jener Unterrraum des $\mathbb{Q}^{\mathbb{Q}}$, welcher von den Funktionen

$$g_j \colon \mathbb{Q} \to \mathbb{Q}, \quad x \mapsto x^j$$

(wobei $j \geq 0$) aufgespannt wird. Sei $\xi \colon V \to \mathbb{Q}$ durch

$$\xi(a_0g_0 + a_1x + \dots + a_ng_n) := a_1 + 2a_2 + \dots + na_n$$

(wobei $a_0,\ldots,a_n\in\mathbb{Q}$) gegeben.

- (A) ξ ist in der Hülle der Linearformen g_0^*,g_1^*,\dots enthalten.
- (B) ξ ist im Annullatorraum der Menge $\{g_0,g_1,\ldots\}$ enthalten.
- (C) Die Linearformen g_0^*, g_1^*, \dots sind linear unabhängig.