Real Analysis Homework Chapter 4. Product Measures

Due Date: 12/30

National Taiwan University, Department of Mathematics R06221012 Yueh-Chou Lee

December 30, 2019

Exercise 1

Let $A \subseteq X$ and let B be a ν -measurable subset of Y. If $A \times B$ is measurable with respect to the product measure $\mu \times \nu$, is A necessarily measurable with respect to μ ?

Proof.

No, A is NOT necessarily measurable with respect to μ .

If $X = Y = \text{Borel } \sigma$ algebra of \mathbb{R} , $\mu = \nu = \text{Lebesgue measue}$ and A is a Lebesgue measuable set in \mathbb{R} which is not Borel set, then $A \times \mathbb{R}$ is measurable with respect to the product measure but $A \notin X$, that is A may not be measurable with respect to μ .

Exercise 2

Let \mathbb{N} be the set of natural numbers, $\mathcal{M}=2^{\mathbb{N}}$, and c the counting measure defined by setting c(E) equal to the number of points in E if E is finite and ∞ if E is an infinite set. Prove that every function $f:\mathbb{N}\to\mathbb{R}$ is measurable with respect to c and that f is integrable over \mathbb{N} with respect to c if and only if the series $\sum_{k=1}^{\infty} f(k)$ is absolutely convergent in which case

$$\int_{\mathbb{N}} f \, dc = \sum_{k=1}^{\infty} f(k).$$

Proof.

1. Use the fact that f is integrable iff |f| is integrable.

For nonnegative, measurable function |f| in measure space $(\mathbb{N}, \mathcal{M}, c)$, we have

$$\int_{\mathbb{N}} |f| \, dc = \sum_{k=1}^{\infty} |f(k)|.$$

Moreover, we also know that |f| is integrable iff $\int_{\mathbb{N}} |f| dc = \sum_{k=1}^{\infty} |f(k)| < +\infty$.

Thus, every function $f: \mathbb{N} \to \mathbb{R}$ is measurable with respect to c and that f is integrable over \mathbb{N} with respect to c if and only if the series $\sum_{k=1}^{\infty} f(k)$ is absolutely convergent.

2. Following, we will show that

$$\int_{\mathbb{N}} f \, dc = \sum_{k=1}^{\infty} f(k).$$

Use the fact that for nonnegative, measurable function g in measure space $(\mathbb{N}, \mathcal{M}, c)$, we have

$$\int_{\mathbb{N}} g \, dc = \sum_{k=1}^{\infty} g(k).$$

Since we can write f as $f = f^+ - f^-$ where $f^+, f^- \ge 0$, then

$$\int_{\mathbb{N}} |f| dc = \sum_{k=1}^{\infty} |f(k)|$$

$$\Rightarrow \int_{\mathbb{N}} |f^{+} - f^{-}| dc = \sum_{k=1}^{\infty} |f^{+}(k) - f^{-}(k)|$$

$$\Rightarrow \int_{\mathbb{N}} f^{+} dc + \int_{\mathbb{N}} f^{-} dc = \sum_{k=1}^{\infty} f^{+}(k) + \sum_{k=1}^{\infty} f^{-}(k)$$

$$\Rightarrow \int_{\mathbb{N}} f^{+} dc - \sum_{k=1}^{\infty} f^{-}(k) = \sum_{k=1}^{\infty} f^{+}(k) - \int_{\mathbb{N}} f^{-} dc$$

$$\Rightarrow \int_{\mathbb{N}} f^{+} dc - \int_{\mathbb{N}} f^{-} dc = \sum_{k=1}^{\infty} f^{+}(k) - \sum_{k=1}^{\infty} f^{-}(k)$$

$$\Rightarrow \int_{\mathbb{N}} f dc = \sum_{k=1}^{\infty} f(k).$$

Exercise 3

Let $(X, \mathcal{A}, \mu) = (Y, \mathcal{B}, \nu) = (\mathbb{N}, \mathcal{M}, c)$, the measure space defined in the preceding problem. State the Fubini and Tonelli Theorems explicitly for this case.

Proof.

Suppose every function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ is measurable with respect to $\mu \times \nu$ and f is integrable over $\mathbb{N} \times \mathbb{N}$ with respect to $\mu \times \nu$.

The Tonelli's Theorems for counting measure on $\mathbb{N} \times \mathbb{N}$, if f is $\mathcal{M} \times \mathcal{M}$ and $f \geq 0$, then $\int_{\mathbb{N}} f \, d\mu$ is measurable with respect to c, $\int_{\mathbb{N}} f \, dc$ is measurable with respect to μ , and

$$\int_{\mathbb{N}} \left[\int_{\mathbb{N}} f \, d\mu \right] \, d\nu = \int_{\mathbb{N} \times \mathbb{N}} f \, d(\mu \times \nu) = \int_{\mathbb{N}} \left[\int_{\mathbb{N}} f \, d\nu \right] \, d\mu.$$

The Fubini's Theorems for counting measure on $\mathbb{N} \times \mathbb{N}$, if f is integrable over $\mathbb{N} \times X$ with repect to $c \times \mu$, that is

$$\int_{\mathbb{N}} \left[\int_{\mathbb{N}} f \, d\nu \right] \, d\mu < \infty,$$

then

$$\int_{\mathbb{N}} \left[\int_{\mathbb{N}} \, f \, d\mu \right] \, d\nu = \int_{\mathbb{N} \times \mathbb{N}} f \, d(\mu \times \nu) = \int_{\mathbb{N}} \left[\int_{\mathbb{N}} \, f \, d\nu \right] \, d\mu.$$

Exercise 4(i)

Let $(\mathbb{N}, \mathcal{M}, c)$ be the measure space defined in **Exercise 2** and (X, \mathcal{A}, μ) a general measure space. Consider $\mathbb{N} \times X$ with the product measure $c \times \mu$.

Show that a subset E of $\mathbb{N} \times X$ is measurable with respect to $c \times \mu$ if and only if for each natural number k, $E_k = \{x \in X | (k, x) \in E\}$ is measurable with respect to μ .

Proof.

 (\Rightarrow) :

We can get from **Lemma 4.8.2** in Real Analysis by Fon-Che Liu.

 (\Leftarrow) :

We can find some $n \in \mathbb{N}$ such that $E = \bigcup_n (\{n\} \times E_n)$, since E_n is measurable with respect to μ and $\{n\} \subset \mathbb{N}$ is measurable with respect to μ .

Exercise 4(ii)

Let $(\mathbb{N}, \mathcal{M}, c)$ be the measure space defined in **Exercise 2** and (X, \mathcal{A}, μ) a general measure space. Consider $\mathbb{N} \times X$ with the product measure $c \times \mu$.

Show that a function $f: \mathbb{N} \times X \to \mathbb{R}$ is measurable with respect to $c \times \mu$ if and only if for each natural number $k, f(k, \cdot): X \to \mathbb{R}$ is measurable with respect to μ .

Proof.

 (\Rightarrow) :

We can get from Corollary 4.8.2 in Real Analysis by Fon-Che Liu.

 (\Leftarrow) :

Let $f_k = f(k, \cdot) : X \to \mathbb{R}$. By **Exercise 4(i)**, we know that if E_k is measurable, then $\{k\} \times E_k$ is measurable. Thus,

$$f^{-1}((a,\infty])=\bigcup_k\{k\}\times f_k^{-1}((a,\infty])$$

is a countable union of measurable sets, so f is measurable.

Exercise 4(iii)

Let $(\mathbb{N}, \mathcal{M}, c)$ be the measure space defined in **Exercise 2** and (X, \mathcal{A}, μ) a general measure space. Consider $\mathbb{N} \times X$ with the product measure $c \times \mu$.

Show that a function $f: \mathbb{N} \times X \to \mathbb{R}$ is integrable over $\mathbb{N} \times X$ with repect to $c \times \mu$ if and only if for each natural number $k, f(k, \cdot): X \to \mathbb{R}$ is integrable over X with respect to μ and

$$\sum_{k=1}^{\infty} \int_{X} |f(k,x)| \, d\mu(x) < \infty.$$

Proof.

Use the fact that f is integrable over $\mathbb{N} \times X$ with repect to $c \times \mu$ iff |f| is integrable over $\mathbb{N} \times X$ with repect to $c \times \mu$.

Also, by **Exercise 4(ii)**, we have f is measurable with respect to $c \times \mu$, then |f| is measurable and nonnegative, hence, we have

$$\int_{\mathbb{N}} |f| dc = \sum_{k=1}^{\infty} |f(k, x)|.$$

Moreover, |f| is integrable over $\mathbb{N} \times X$ with repect to $c \times \mu$ iff

$$\int_{\mathbb{N}\times X} |f|\,d(c\times\mu) = \int_X \left(\int_{\mathbb{N}} |f|\,dc\right)d\mu = \int_X \left(\sum_{k=1}^\infty |f(k,x)|\right)d\mu = \sum_{k=1}^\infty \int_X |f(k,x)|\,d\mu < +\infty.$$

Since $\int_X |f(k,x)| d\mu < \sum_{n=1}^{\infty} \int_X |f(n,x)| d\mu < +\infty$, then $f(k,\cdot): X \to \mathbb{R}$ is integrable over X with respect to μ .

Exercise 4(iv)

Let $(\mathbb{N}, \mathcal{M}, c)$ be the measure space defined in **Exercise 2** and (X, \mathcal{A}, μ) a general measure space. Consider $\mathbb{N} \times X$ with the product measure $c \times \mu$.

Show that if the function $f: \mathbb{N} \times X \to \mathbb{R}$ is integrable over $\mathbb{N} \times X$ with reject to $c \times \mu$ then

$$\int_{\mathbb{N}\times X} f\,d(c\times\mu) = \sum_{k=1}^{\infty} \int_{X} f(k,x)\,d\mu(x) < \infty.$$

Proof.

Since the function $f: \mathbb{N} \times X \to \mathbb{R}$ is integrable over $\mathbb{N} \times X$ with repect to $c \times \mu$, by **Exercise** 4(iii), we then have

$$\begin{split} \int_{\mathbb{N}\times X} f\,d(c\times\mu) &= \int_X \left(\int_{\mathbb{N}} f\,dc\right) d\mu \\ &= \int_X \left(\sum_{k=1}^\infty f(k,x)\right) d\mu \\ &= \sum_{k=1}^\infty \int_X f(k,x)\,d\mu(x) \\ &\leq \sum_{k=1}^\infty \int_X |f(k,x)|\,d\mu(x) < \infty. \end{split}$$

Exercise 5

Let $(X, \mathcal{A}, \mu) = (Y, \mathcal{B}, \nu) = (\mathbb{N}, \mathcal{M}, c)$, the measure space defined in **Exercise 2**. Define $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ by setting

$$f(x,y) = \begin{cases} 2 - 2^{-x} & \text{if } x = y \\ -2 + 2^{-x} & \text{if } x = y + 1 \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is measurable with respect to the product measure $c \times c$. Also show that

$$\int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m,n) \, dc(m) \right] dc(n) \neq \int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m,n) \, dc(n) \right] dc(m).$$

Is this a contradiction either of Fubini's Theorem or Tonelli's Theorem?

Proof.

1. Show that f is measurable with respect to the product measure $c \times c$.

Since \mathbb{N} is countable and the only set for which $c \times c$ measure is 0 is the emptyset, the $c \times c$ measurable sets of $\mathbb{N} \times \mathbb{N}$ are all subsets, hence f is measurable.

2. Show that $\int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m,n) \, dc(m) \right] dc(n) \neq \int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m,n) \, dc(n) \right] dc(m)$.

Since

$$\sum_{m=1, m \in \mathbb{N}}^{\infty} \sum_{n=1, n \in \mathbb{N}}^{\infty} f(m, n) = f(1, 1) = 1.5,$$

but

$$\begin{split} \sum_{n=1,n\in\mathbb{N}}^{\infty} \sum_{m=1,m\in\mathbb{N}}^{\infty} f(m,n) &= \sum_{n=1,n\in\mathbb{N}}^{\infty} (2-2^{-n}) + (-2+2^{-n-1}) \\ &= \sum_{n=1,n\in\mathbb{N}}^{\infty} 2^{-n-1} - 2^{-n} \\ &= -\sum_{n=1,n\in\mathbb{N}}^{\infty} 2^{-n-1} \\ &= -0.5 \neq 1.5. \end{split}$$

So

$$\int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m,n) \, dc(m) \right] dc(n) \neq \int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m,n) \, dc(n) \right] dc(m).$$

3. Is this a contradiction either of Fubini's Theorem or Tonelli's Theorem?

No, it doesn't contradict Fubini's theorem or Tonelli's Theorem either.

Since the measure c is σ -finite, hence it show we can NOT remove the assumption of non-negativeness or integrability.

Exercise 10

Let h and g be integrable functions on X and Y, and define f(x,y) = h(x)g(y). Show that f is integrable on $X \times Y$ with respect to the product measure, then

$$\int_{X\times Y} f\,d(\mu\times\nu) = \int_X h\,d\mu\,\int_Y g\,d\nu.$$

Proof.

1. Measurability:

Use the fact that a function is measurable if and only if it is the pointwise limit of a sequence of simple functions.

So take simple a_n , b_n such that $h(x) = \lim_{n \to \infty} a_n(x)$ for every x and $g(y) = \lim_{n \to \infty} b_n(y)$ for every y.

Then

$$f(x,y) = h(x)g(y) = \lim_{n \to \infty} a_n(x)b_n(y)$$

for every (x, y).

It only remains to observe that each $(x, y) \mapsto a_n(x)b_n(y)$ is a simple function to conclude that f is measurable.

This follows from

$$1_X(x)1_Y(y) = 1_{X\times Y}(x,y).$$

2. Integrability:

Take two nondecreasing sequences of nonnegative simple functions $a_n(x), b_n(y)$ converging pointwise to |h(x)| and |g(y)| respectively. Then $a_n(x)b_n(y)$ is a nondecreasing sequence of nonnegative simple functions converging pointwise to |f|.

By the monotone convergence theorem

$$\int_{X\times Y} |f| \, d(\mu \times \nu) = \lim_{n \to \infty} \int_{X\times Y} a_n(x) b_n(y) \, d(\mu \times \nu)(x,y).$$

By definition of the product measure

$$\int_{X\times Y} 1_{X\times Y}(x,y) d(\mu \times \nu) = (\mu \times \nu)(X\times Y) = \mu(X)\nu(Y) = \int_X 1_X(x) d\mu \int_Y 1_Y(y) d\nu.$$

By linearity, this extends to simple functions. Hence, by monotone convergence again,

$$\int_{X\times Y} a_n(x)b_n(y)\,d(\mu\times\nu)(x,y) = \int_X a_n(x)\,d\mu\int_Y b_n(y)\,d\nu \ \longrightarrow \ \int_X |h|\,d\mu\int_Y |g|\,d\nu.$$

So f is integrable with

$$\int_{X\times Y} |f|\,d(\mu\times\nu) = \int_X |h|\,d\mu\int_Y |g|\,d\nu.$$

Note that applying the above to h^{\pm} and g^{\pm} , we can deduce

$$\int_{X\times Y} f \, d(\mu \times \nu) = \int_X h \, d\mu \int_Y g \, d\nu.$$