Spatial Variation and Clustering

Lecture #14 | GEOG 510 GIS & Spatial Analysis in Public Health

Varun Goel

Outline

- Spatial (geographic) variation
- Probability Mapping
- Smoothing
- Kernel Density

- Variation in some phenomenon across space or from place to place
 - We can observe this in tables, but view it in maps
 - Events (e.g., disease cases)
 - Locations (e.g., hospitals)
 - Values (e.g., average income)

- Visual observation can provide additional information not included in a table
 - Spatial relationships
 - Useful for hypothesis generation
 - Especially when moving from descriptive to explanatory research, Pattern to Process
 - e.g., integrate other layers (colocation) or measure distance to features

Spatial Pattern

Events

- Basic Concepts
 - Clustered
 - Events are located or distributed near to one another
 - Random
 - Events are located or distributed such that there is no regular pattern
 - Ordered (dispersed)
 - Events are located or distributed in a regular or repeating fashion

Spatial Pattern

Attribute Values

- Basic Concepts
 - Clustered
 - Values are configured or distributed near to one another
 - Random
 - Values are configured or distributed such that there is no regular pattern
 - Ordered (dispersed)
 - Values are configured or distributed in a regular or repeating fashion

Diarrheal disease detection among children <5 y.o. Diarrheal disease cluster-outlier map (Local Moran's I)

- Visual observation is subjective
 - While patterns may be visible, our eyes do not provide an objective test
 - We have techniques that assist us in interpreting spatial patterns
 - Autocorrelation
 - Clustering

- Variation in number of cases (per areal unit)
- Initial concern
 - Population size
 - Even if the disease incidence/prevalence rate is constant, the number of cases will vary geographically based on population size

- Calculating incidence/prevalence rates (for areal units)
- Initial concern
 - At risk population
 - Correctly identifying appropriate underlying population for rate calculations (denominator)
 - -e.g., age, gender

- Calculating incidence/prevalence rates (for areal units)
- Range (meaning) of values
 - When we create choropleth maps, the data will be binned based on the range of the data
 - We still have light-dark colors, even though the data range may be small!
 - Percentage, Box, and Standard Deviation maps in GeoDa

- Calculating incidence/prevalence rates (for areal units)
- Initial concern
 - Geographic variation in the composition of the population
 - Especially for variations in age structure!
 - Age standardization
 - Allows for comparison among populations with differing age structures

Table - Distribution of the US Population in 1988

Age Group	Population (% of Total)	
<5	18,300,000 (7%)	
5-19	52,900,000 (22%)	
20-44	98,100,000 (40%)	
45-64	46,000,000 (19%)	
>64	30,400,000 (12%)	
Total	245,700,000 (100%)	

	Florida	Alaska
Crude mortality rate	1069/100,000	399/100,000
Age-adjusted mortality rate	797/100,000	760/100,00

"What would the comparable death rate be in each state if both populations had identical age distributions?"

- Direct and Indirect age standardization
 - Both produce a "new" value for each areal unit
 - Can be compared to observed value
 - Calculate a ratio
 - Likely need to be performed outside of OGIS

- Direct Standardization
 - Requires
 - Age-specific cases and populations for each areal unit
 - A chosen "standard" population
 - Answers the question:
 - What would the overall morbidity/mortality rates be if the areal units all had the exact same population structure

- Direct Standardization
 - Calculate age specific rates for each areal unit
 - Multiply age specific rates by the number of people in each age group (of the "standard" population)
 - Sum (or calculate new "total" rate for observation units)
 - Ratio: Divide individual areal unit values (calculated rates) by the overall population rate

- Indirect Standardization
 - Similar to Direct, but you do not have the age specific cases/rates for each areal unit
 - But, we must have them for the overall study area
 - Answers the question:
 - What would the morbidity/mortality rates be if individual areal units experienced that m/m at the same rate as the overall population

- Indirect Standardization
 - Calculate age specific rates for entire study area
 - Multiply age specific rates by the observed number of people in each age group for each areal unit
 - Sum age group counts for total
 - Divide the observed rate/count for each areal unit by its expected rate/count (calculated)

- Calculating incidence/prevalence rates (for areal units)
- Another concern
 - Small numbers problem
 - When areal units have few people, a difference in one case can make a huge difference in the calculated rate
 - Poisson Probabilities
 - Empirical Bayes smoothing
 - Geographic aggregation

 Map the probability that observed number of cases (or more) would randomly occur (by chance) in a region, given the overall rate of occurrence in the study area

- Start with the overall number of cases/events (n) and overall number of people (pop)
- Calculate rate, p, for study area
- For each areal unit calculate the expected number of cases,
- Calculate probability, based on the observed number of cases, k

$$p = \frac{n}{pop}$$

$$P(x \ge k) = 1 - \sum_{x=0}^{k} \frac{\left(e^{-\lambda} \lambda^{x}\right)}{x!}$$

- Output is a probability, which is then mapped
 - Low probability values are the most likely to be true "high" values
 - However, cannot be interpreted as magnitude!
 - High population regions
 - Small deviations from expected will produce low probabilities

- Must be calculated outside of three software packages we will use in this course
 - QGIS, GeoDa, SaTScan
 - May have to be done in other statistical software
 - I've created an R script for reference

Excess Risk in GeoDa

- Interesting terminology
 - Similar to Poisson, but without the significance
 - Simply a rescaling of rate values based on overall population rate

$$Excess Risk = \frac{pop_i}{n}$$

$$pop$$

Excess Risk in GeoDa

Risk of VLBW in Georgia

SMR of VLBW in Georgia

Smoothing

- Use extra information from neighbors to adjust rates
 - Affects observations with a small population
 - Options in GeoDa
 - Spatial Rate
 - Empirical Bayes
 - Spatial Empirical Bayes

Smoothing

- Spatial Rate Smoothing
 - Calculates rate for each areal unit based on rates of unit and neighbors
- Empirical Bayes
 - Uses global (all data) rate to adjust areal unit rates
- Spatial Empirical Bayes
 - Uses local (neighboring regions) rates to adjust areal unit rates

- Calculates density of points within a user-specified window
 - Inputs are "empty" grid (raster)
 and point locations (generally,
 vector), output is raster
 - Density value assigned to cell at center of window
 - Can use simple circular windows or distance-weighted kernels

- Calculates density of points within a user-specified window
 - Inputs are "empty" grid (raster) and point locations (generally, vector), output is raster
 - Density value assigned to cell at center of window
 - Can use simple circular windows or distance-weighted kernels

- Calculates density of points within a user-specified window
 - Inputs are "empty" grid (raster)
 and point locations (generally,
 vector), output is raster
 - Density value assigned to cell at center of window
 - Can use simple circular windows or distance-weighted kernels

- Calculates density of points within a user-specified window
 - Inputs are "empty" grid (raster)
 and point locations (generally,
 vector), output is raster
 - Density value assigned to cell at center of window
 - Can use simple circular windows or distance-weighted kernels

- Calculates density of points within a user-specified window
 - Inputs are "empty" grid (raster) and point locations (generally, vector), output is raster
 - Density value assigned to cell at center of window
 - Can use simple circular windows or distance-weighted kernels

- Calculates density of points within a user-specified window
 - Inputs are "empty" grid (raster)
 and point locations (generally,
 vector), output is raster
 - Density value assigned to cell at center of window
 - Can use simple circular windows or distance-weighted kernels

 $W_1 = 0.7$ $W_2 = 0.7$ $W_3 = 0.7$ $W_4 = 0.2$ $W_5 = 0.2$ $W_6 = 0.1$

2.6

Kernel Density

- For display only?
 - Output is EXTREMELY sensitive to size and shape of the kernel
 - The distance and the function
 - Beware of using the output values in analysis

Kernel Density

Kernel Density

Keywords

- Population size
- At risk population
- Population composition
- Age standardize
- Poisson probabilities
- Smoothing
- Point and Kernel density