CSP2348/CSP5243 Data Structures

Tutorial 02 solutions: Fundamentals of Algorithm Analysis

Task 1: Create a spreadsheet to show the growth rates given in the following table. Observe the differences among these growth rates.

n	1	$\log(n)$	n	$n \times \log(n)$	n^2	n^3	n^{10}	2^n
- n	1	108(11)	Ti.	n 10g(n)	Ti.	Ti.	Ti .	2
1	1	0	1	0	1	1	1	2
2	1	1	2	2	4	8	1024	4
4	1	2	4	8	16	64	1048576	16
8	1	3	8	24	64	512	1073741824	256
10	1	3.32	1E1	33.22	1E2	1E3	1E10	1024
20	1	4.32	2E1	86.44	4E2	8E3	1024E10	1048576
40	1	5.32	4E1	212.88	16E2	64E3	1048576E10	1099511627776
80	1	6.32	8E1	505.75	64E2	512E3	1073741824E10	1.2089258196146292E24
100	1	6.64	1E2	664.39	1E4	1E6	1E20	1.2676506002282294E30
200	1	7.64	2E2	1528.77	4E4	8E6	1024E20	1.6069380442589903E60
400	1	8.64	4E2	3457.54	16E4	64E6	1048576E20	2.5822498780869086E120
800	1	9.64	8E2	7715.08	64E4	512E6	1073741824E20	6.668014432879854E240
1000	1	9.97	1E3	9965.78	1E6	1E9	1E30	1.0715086071862673E301
where mEn $\Rightarrow m \times 10^n$								

Task 2: Suppose that the following expressions are the sum of characteristic operations of some algorithms; determine the time complexity of each of these expressions by means of the big-O notation.

$$n^{10} + 9 \times n^9 + 20 \times n^8$$

 $\Rightarrow \max \{O(n^{10}), O(9 \times n^9), O(20 \times n^8)\}$ // by Rule1 (see lecture slide 26)
 $\Rightarrow \max \{O(n^{10}), O(n^9), O(n^8)\}$ // by normalizing constant factor
 $\Rightarrow O(n^{10})$
 $(n+1)^4 = n^4 + 4 \times n^3 + 6 \times n^2 + 4 \times n^1 + 1$
 $\Rightarrow \max \{O(n^4), O(4 \times n^3), O(6 \times n^2), O(4 \times n^1), O(1)\}$ // by Rule1
 $\Rightarrow \max \{O(n^4), O(n^3), O(n^2), O(n^1), O(1)\}$ // by normalizing constant factor
 $\Rightarrow O(n^4)$
Or alternatively,
 $O((n+1)^4) = O((n+1)^* (n+1)^* (n+1)^* (n+1))$
 $= O(n+1) *O(n+1) *O(n+1) *O(n+1)$ // by Rule2
 $= O(n) *O(n) *O(n) *O(n)$
 $= O(n^* n^* n^* n)$ // by Rule2, reversely
 $= O(n^4)$

$$\begin{array}{l} \left(n^{2}+n\right)^{2} = n^{4} + 2 \times n^{3} + n^{2} \\ & \Rightarrow \max\{O(n^{4}), O(2 \times n^{3}), O(n^{2})\} \\ & \Rightarrow \max\{O(n^{4}), O(n^{3}), O(n^{2})\} \\ & \Rightarrow O(n^{4}) \end{array}$$

$$\begin{array}{l} \text{Or alternatively,} \\ O((n^{2}+n)^{2}) = O((n^{2}+n)^{*} (n^{2}+n)) \quad \text{// by Rule 2} \\ & = O(n^{2}+n)^{*} O(n^{2}+n) \\ & = O(n^{2})^{*} O(n^{2}) \\ & = O(n^{2})^{*} O(n^{2}) \\ & = O(n^{2}+n^{2}) = O(n^{4}) \end{array}$$

$$n + 0.001 \times n^{3}$$

$$\Rightarrow \max\{O(n), O(0.001 \times n^{3})\} \\ \Rightarrow \max\{O(n), O(n^{3})\} \\ \Rightarrow \max\{O(n^{3}), O(1000 \times n^{2})\} \\ \Rightarrow \max\{O(n^{3}), O(n^{2})\} \\ \Rightarrow O(n^{3}) \end{array}$$

$$n^{3} - 1000 \times n^{2}$$

$$\Rightarrow \max\{O(n^{3}), O(1000 \times n^{2})\} \\ \Rightarrow \max\{O(n^{3}), O(n^{2})\} \\ \Rightarrow O(n^{3}) \end{array}$$

$$n + \log_{2}(n)$$

$$\Rightarrow \max\{O(n^{3}), O(\log_{2}(n))\} \\ \Rightarrow O(n) \end{array}$$

$$n^{2} + n \times \log_{2}(n)$$

$$\Rightarrow \max\{O(n^{2}), O(n \times \log_{2}(n))\} \\ \Rightarrow O(n^{2}) \end{array}$$

$$2^{n} + n^{2}$$

$$\Rightarrow \max\{O(n^{2}), O(n^{2})\} \\ \Rightarrow O(2^{n})$$

$$(n^{3} + 2 \times n)/(n + 5) = \frac{n^{3}}{n + 5} + \frac{2 \times n}{n + 5}$$

$$\Rightarrow \max\{O\left(\frac{n^{3}}{n + 5}\right), O\left(\frac{lessSignificantPowersOf n}{n + 5}\right)\}$$

$$\Rightarrow O\left(\frac{n^{3}}{n + 5}\right) \Rightarrow O\left(n^{2} - \frac{5 \times n^{2}}{n + 5}\right)$$

$$\Rightarrow \max\{O(n^{2}), O(otherLessSignificantPowersOf n)\} \Rightarrow O(n^{2})$$
Or alternatively,
$$O((n^{3} + 2 \times n)/(n + 5)) = O(n^{2} + 2 \times n)/(n + 5)$$

$$\Rightarrow O(n^{3} + 2 \times n)/(n + 5) = O(n^{3} + 2 \times n)/(n + 5)$$

$$\Rightarrow O(n^{2})$$
Or alternatively,
$$O((n^{3} + 2 \times n)/(n + 5)) = O(n^{3} + 2 \times n)/(n + 5)$$

$$= O(n^{3} + 2 \times n)/(n + 5) = O(n^{3} + 2 \times n)/(n + 5)$$

$$= O(n^{3} + 2 \times n)/(n + 5) = O(n^{3} + 2 \times n)/(n + 5)$$

$$= O(n^{3} + 2 \times n)/(n + 5) = O(n^{3} + 2 \times n)/(n + 5)$$

$$= O(n^{3} + 2 \times n)/(n + 5) = O(n^{3} +$$

Task 3: Analyse the time complexity of the following methods/algorithms

(Source: exercise 2.4 on page 31 of reference textbook, Java Collections (2001))

MatrixAdd:

Number of additions: $n \times n = n^2$.

In the new matrix, there are $n \times n$ *elements.*

Each element is the result of ONE addition from matrix A and matrix B.

Number of multiplications: 0.

There is no multiplication involved in constructing any new element.

Time complexity: $\max\{O(additions), O(multiplications)\} = \max\{O(n^2), O(1)\} = O(n^2)$.

MatrixMult:

Number of additions: $n \times n \times n = n^3$.

In the new matrix, there are $n \times n$ *elements.*

Each element is the result of n additions from matrix A and matrix B.

Number of multiplications: $n \times n \times n = n^3$.

In the new matrix, there are $n \times n$ *elements.*

Each element is the result of n multiplications from matrix A and matrix B.

Time complexity: $\max\{O(additions), O(multiplications)\} = \max\{O(n^3), O(n^3)\} = O(n^3)$.