Zhengdong Zhang

 $Email: \ zhengz@uoregon.edu$

Course: MATH 648 - Abstract Algebra Instructor: Professor Arkady Berenstein

Homework - Week 9

ID: 952091294

Term: Winter 2025

Due Date: 12^{th} March, 2025

Problem 24.1.4

Let V and W be finite dimensional $\mathbb{F}G$ -modules. Define a $\mathbb{F}G$ -module structure on $\hom_{\mathbb{F}}(V,W)$, so that $\hom_{\mathbb{F}}(V,W) \cong V^* \otimes W$ as $\mathbb{F}G$ -module and $\hom_{\mathbb{F}G}(V,W) = \hom_{\mathbb{F}}(V,W)^G$.

Solution: We define a $\mathbb{F}G$ -module structure on $\hom_{\mathbb{F}}(V, W)$. For any $g \in G$, $f \in \hom_{\mathbb{F}}(V, W)$ and $v \in V$, we define

$$(g \cdot f)(v) = g \cdot f(g^{-1}v).$$

This is a well-defined $\mathbb{F}G$ -module structure. Indeed, for any $h, g \in G$, we have

$$(h \cdot (g \cdot f))(v) = h \cdot (g \cdot f)(h^{-1}v)$$
$$= h \cdot g \cdot f(g^{-1}h^{-1}v)$$
$$= (hg) \cdot f((hg)^{-1}v)$$
$$= ((hg \cdot f))(v).$$

This $\mathbb{F}G$ -module structure is compatible with the isomorphism $\hom_{\mathbb{F}}(V,W) \cong V^* \otimes W$. Indeed, consider the isomorphism

$$\phi: V^* \otimes W \to \hom_{\mathbb{F}}(V, W),$$
$$(l \otimes w) \mapsto (v \mapsto l(v)w).$$

We check that the G-action we defined above is compatible. For any $g \in G$, $v \in V$, $l \in V^*$ and $w \in W$, we have

$$\phi(g \cdot (l \otimes w))(v) = \phi((g \cdot l) \otimes gw)(v)$$

$$= (g \cdot l)(v)gw$$

$$= l(g^{-1}v)gw$$

$$= g \cdot l(g^{-1}v)w$$

$$= (g \cdot (\phi(l \otimes w)))(v).$$

So we know that the isomorphism ϕ is also a $\mathbb{F}G$ -module isomorphism.

Consider a map between $\mathbb{F}G$ -modules

$$hom_{\mathbb{F}G}(V, W) \to hom_{\mathbb{F}}(V, W),$$

$$\alpha \mapsto \alpha.$$

We first prove that for any $\alpha \in \hom_{\mathbb{F}G}(V, W)$, if we view α as an element in $\hom_{\mathbb{F}}(V, W)$, then α must be invariant under the G-action we defined above. Indeed, for any $g \in G$ and $v \in V$, we have

$$(g \cdot \alpha)(v) = g\alpha(g^{-1}v) = \alpha(gg^{-1}v) = \alpha(v).$$

We have a well-defined $\mathbb{F}G$ -module homomorphism $\psi : \hom_{\mathbb{F}G}(V, W) \to \hom_{\mathbb{F}}(V, W)^G$. We check ψ is injective. Suppose $\alpha \in \ker \psi$, note that the zero map is invariant under the G-action, by definition of ψ , $\alpha = 0$. Next, we check that ψ is surjective. Given a G-invariant \mathbb{F} -linear map β , for any $g \in G$ and $v \in V$, we have

$$g\beta(v) = g(g^{-1} \cdot \beta)(v) = gg^{-1}\beta(gv) = \beta(gv).$$

This proves that β is also a homomorphism if we view V and W as $\mathbb{F}G$ -modules. Thus, ψ is an isomorphism.

Problem 24.1.7

Let G be a finite group and $H \leq G$. Then each irreducible $\mathbb{F}G$ -module is a quotient of a module induced from an irreducible $\mathbb{F}H$ -module.

Solution: Let V be an irreducible $\mathbb{F}G$ -module. We know that $\operatorname{res}_H^G V$ is a finite dimensional $\mathbb{F}H$ -module, so it is artinian. Every descending chain must stabilizes. Thus, there exists an irreducible $\mathbb{F}H$ submodule $W \subseteq \operatorname{res}_H^G V$. Consider the $\mathbb{F}H$ -module homomorphism

$$W \to \operatorname{res}_H^G V$$

defined by inclusion. By adjointness of res_H^G and ind_H^G , we know there exists an $\mathbb{F}G$ -module homomorphism

$$f: \operatorname{ind}_H^G W \to V$$

which is not the zero homomorphism. So there exists $v \in V$ such that f(a) = v for some $a \in \operatorname{ind}_H^G W$. Note that V is irreducible, so for any $v' \in V$, there exists $\sum k_g g$ such that $\sum k_g gv = v'$. Therefore, we have

$$f(\sum k_g ga) = \sum k_g gf(a) = \sum k_g gv = v'.$$

This proves that f is surjective. Thus, we can write

$$V \cong \operatorname{ind}_H^G W / \ker f$$

where W is an irreducible $\mathbb{F}H$ -module.

Problem 24.1.10

If G acts transitively on a set X with a point stabilizer H, then the permutation module $\mathbb{F}X$ is isomorphic to the induced module $\operatorname{ind}_H^G 1_H$.

Solution: Let $H = \operatorname{Stab}(x)$ be the stabilizer for the point $x \in X$. For $\operatorname{ind}_H^G 1_H = \mathbb{F}G \otimes_{\mathbb{F}H} 1_H$, we define a map

$$\phi: \operatorname{ind}_{H}^{G} 1_{H} \to \mathbb{F}X,$$

 $g \otimes 1 \mapsto g \cdot x.$

For any $h \in G$, we have

$$h\phi(g\otimes 1) = h(g\cdot x) = (hg)\cdot x = \phi(hg\otimes 1).$$

This is a well-defined $\mathbb{F}G$ -module homomorphism. Moreover, since the G-action on X is transive, we know that ϕ is surjective. By theorem 7.1.7, we know that $X \cong G/H$ is an isomorphism of G-sets. So we have $\dim_{\mathbb{F}} \mathbb{F}X = |G/H|$. Let g_1, \ldots, g_k be coset representatives for G/H. By Lemma 24.1.9, $\{g_1 \otimes 1, \ldots, g_k \otimes 1\}$ is a basis for $\inf_H 1_H$. This tells us

$$\dim_{\mathbb{F}} \operatorname{ind}_{H}^{G} 1_{H} = \dim_{\mathbb{F}} \mathbb{F} X = |G/H|.$$

So ϕ is an isomorphism by dimension reasons. We have proved $\operatorname{ind}_H^G 1_H$ is isomorphic to $\mathbb{F}X$ as $\mathbb{F}G$ -modules.

Problem 24.2.4

Show that the map $g \mapsto \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ defines a representation of the cyclic group $C_3 = \langle g \rangle$. Prove that this representation is irreducible over the field of real numbers.

Solution: Let $A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$. To check that $\rho : g \to A$ is a representation of C_3 , we need to check that

$$I_3 = \rho(1) = \rho(g^3) = \rho(g)^3 = A^3.$$

And indeed we have

$$\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

To show that ρ is an irreducible $\mathbb{R}C_3$ representation, suppose the corresponding $\mathbb{C}C_3$ -module V is generated by v_1, v_2 as \mathbb{C} -vector space. If V has a nontrivial submodule, then it must be one dimensional and generated by $av_1 + bv_2$ where $a, b \in \mathbb{C}$. Since it is a submodule of V, we have

$$A \begin{pmatrix} a \\ b \end{pmatrix} \in \langle av_1 + bv_2 \rangle.$$

So

$$A \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} ka \\ kb \end{pmatrix}$$

for some $k \in \mathbb{R}$. k must be an eigenvalue of A but A only have two complex eigenvalues. This is a contradiction and thus, V is irreducible.

Problem 24.2.6

True or false? A non-abelian group of order 55 has exactly five one-dimensional complex representations up to isomorphism.

Solution: This is true. Let G be a non-abelian group of order 55. We know that $|G| = 55 = 5 \times 11$. By Sylow's theory, we know that the Sylow 11-subgroup must be unique and is isomorphic to the cyclic group C_{11} . There are two cases for the Sylow 5-subgroup. Either we have a unique Sylow 5-subgroup, or we have 11 Sylow 5-subgroup, each of them isomorphic to C_5 and conjugate to each other. Suppose G has a unique Sylow 5-subgroup C_5 and a unique Sylow 11-subgroup

 C_{11} . By Proposition 7.5.16(2), Both Sylow subgroups are normal and G is the direct product $G \cong C_5 \times C_{11} \cong C_{55}$, which is abelian. So G must have 11 Sylow 5-subgroup. In this case, C_{11} is the smallest normal subgroup of G such that $G/C_{11} \cong C_5$ is abelian. So the commutator subgroup $G' = C_{11}$. From Exercise 24.2.5, we know that G has exactly five 1-dimensional complex representations up to isomorphism.

Problem 24.2.8(Irreducible representation of dihedral groups)

Let

$$D_{2n} = \langle \langle a, b \mid a^n = b^2 = 1, bab^{-1} = a^{-1} \rangle \rangle$$

be the dihedral group, $\varepsilon := e^{2\pi i/n}$, and set

$$B := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_j := \begin{pmatrix} \varepsilon^j & 0 \\ 0 & \varepsilon^{-j} \end{pmatrix} \quad (1 \le j < n).$$

- (1) Show that for $j=1,\ldots,n-1$ there is a matrix representation $\rho_j:D_{2n}\to GL_2(\mathbb{C})$ such that $\rho_j(a)=A_j$ and $\rho_j(b)=B$.
- (2) Use Schur's Lemma to prove that $\rho_1, \ldots, \rho_{n-1}$ are irreducible unless n is even and j = n/2.
- (3) Use Schur's Lemma to prove that the representation $\rho_1, \ldots, \rho_{\lfloor (n-1)/2 \rfloor}$ are pairwise non-isomorphic.
- (4) If n=2k is even, then D_{2n} has four non-isomorphic one-dimensional representations, which together with $\rho_1, \ldots, \rho_{k-1}$ give a complete and irrdundant list of irreducible $\mathbb{C}D_{2n}$ -modules up to isomorphism.
- (5) If n = 2k + 1 is odd, then D_{2n} has two non-isomorphic representations, which together with ρ_1, \ldots, ρ_k give a complete and irredundant list of irreducible $\mathbb{C}D_{2n}$ -modules up to isomorphism.

Solution:

(1) We need to check that B and A_i satisfy the relations for the dihedral group D_{2n} . We have

$$B^{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = I_{2},$$

$$A^{n} = \begin{pmatrix} \varepsilon^{j} & 0 \\ 0 & \varepsilon^{-j} \end{pmatrix}^{n} = \begin{pmatrix} \varepsilon^{nj} & 0 \\ 0 & \varepsilon^{-nj} \end{pmatrix} = I_{2}.$$

$$BAB^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \varepsilon^{j} & 0 \\ 0 & \varepsilon^{-j} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \varepsilon^{-j} & 0 \\ 0 & \varepsilon^{j} \end{pmatrix} = A^{-1}.$$

This proves ρ_j is a matrix representation for all $1 \leq j \leq n-1$.

(2) Let V_j be the corresponding $\mathbb{C}D_{2n}$ -module with repesct to the representation ρ_j . Suppose it has an \mathbb{F} -basis v_1, v_2 . If V_j has a non-trivial 1-dimensional submodule W, then W must be generated by $av_1 + bv_2$ for some $a, b \in \mathbb{C}$. We know that W is irreducible because it is

1-dimensional, by Schur's lemma, A_i acts on W by a scalar $\lambda \in \mathbb{C}$. We have

$$A_j \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \varepsilon^j & 0 \\ 0 & \varepsilon^{-j} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \varepsilon^j a \\ \varepsilon^{-j} b \end{pmatrix} = \begin{pmatrix} \lambda a \\ \lambda b \end{pmatrix}.$$

This means $\varepsilon^{2j} = 1$, namely, $e^{2\pi i \cdot \frac{2j}{n}} = 1$. We have 2j|n. Since $1 \le j \le n-1$, we have 2j = n. Thus, V_j is not irreducible if and only if n is even and j = n/2.

(3) Let n = 2k and $1 \le i < j \le k - 1$. Let V_i, V_j be the $\mathbb{C}D_{2n}$ -modules corresponding to the irreducible representation ρ_i and ρ_j . Let $\phi: V_i \to V_j$ be an isomorphism of $\mathbb{C}D_{2n}$ -modules, represented by an invertible matrix $M \in GL_2(\mathbb{C})$. For any $v \in V_1$, M being compatible with D_{2n} -action tells us that

$$A_i(Mv) = M(A_iv).$$

This implies $A_jM - MA_i \in \text{Ann } V_i$. Because V_i is a two dimensional \mathbb{C} -vector space, so $\text{Ann } V_i = 0$. We have

$$A_i = M^{-1} A_j M.$$

Thus, tr $(A_i) = \text{tr } (A_j)$. This is a contradiction because $1 \leq i < j \leq k-1$ and $\varepsilon^i + \varepsilon^{-i} \neq \varepsilon^j + \varepsilon^{-j}$.

(4) We calculate the commutator subgroup D'_{2n} . Note that $aba^{-1}b = a^2 \in D'_{2n}$. So the cyclic subgroup generated by a^2 is contained in D'_{2n} . From a claim below by calculating conjugacy classes we know that $\langle a^2 \rangle$ is normal in D_{2n} . Consider the quotient group $D_{2n}/\langle a^2 \rangle$, we can check that $D_{2n}/\langle a^2 \rangle$ is an abelian group by direct computation. Since the commutator subgroup is the smallest subgroup such that D_{2n}/D'_{2n} is abelian. This proves that $D'_{2n} = \langle a^2 \rangle$. When n = 2k, we have

$$|D_{4k}/D'_{4k}| = 4k/k = 4.$$

By Exercise 24.2.5(3), there exists four isomorphism classes of 1-dimensional complex representation of D_{2n} . To show that this is a complete list of irreducible representations for $\mathbb{C}D_{2n}$, by Theorem 24.2.2, we need to calculate the conjugacy classes for D_{2n} .

<u>Claim</u>: If n = 2k is even, then the conjuggcy classes of D_{2n} is given by

$$\{1\}, \{a, a^{2k-1}\}, \dots, \{a^{k-1}, a^{k+1}\}, \{a^k\}, \{b, a^2b, \dots, a^{2k-2}b\}, \{ab, a^3b, \dots, a^{2k-1}b\}.$$

If n = 2k + 1 is odd, then the conjugacy classes of D_{2n} is given by

$$\{1\}, \{a, a^{2k}\}, \{a^2, a^{2k-1}\}, \dots, \{a^k, a^{k+1}\}, \{b, ab, \dots, a^{2k}b\}.$$

<u>Proof:</u> Assume n = 2k is even, we first show $\{a^i, a^{2k-i}\}$ is a conjugate class for $1 \le i \le k$. Note that all elements in D_{2n} can be written as $a^p b^q$, it is easy to see the conjugate action of a^p sends a^i to a^i , so we only need to consider the conjugate action by $a^p b$ for $0 \le p \le 2k - 1$. We have

$$(a^p b)a^i(a^p b)^{-1} = a^p ba^i ba^{2k-p} = a^{p-i+2k-p} = a^{2k-i}.$$

Similarly, we have

$$(a^p b)a^{2k-i}(a^p b)^{-1} = a^{2k-2k+i} = a^i.$$

This proves $\{a^i, a^{2k-i}\}$ is a conjugate class for $i = 0, 1, \dots, k$. We need to show the rest two is also conjugate classes. Consider the conjugate class of b, we have

$$aba^{-1} = aab = a^{2}b,$$

 $a(a^{2}b)a^{-1} = aa^{2}ab = a^{4}b,$
...
 $a(a^{2k-2}b)a^{-1} = a^{2k}b = b.$

And for any $0 \le i \le k-1$, we have

$$b(a^{2i}b)b = ba^{2i} = a^{2k-2i}b.$$

This calculates all elements insider the conjugacy class of b. Lastly, for the conjugacy class of ab, we have

$$a(ab)a^{-1} = a^{3}b,$$

 $a(a^{3}b)a^{-1} = a^{5}b,$
...
 $a(a^{2k-1}b)a^{-1} = ab.$

Also, for $0 \le i \le k-1$, we have

$$b(a^{2i+1}b)b = a^{2k-2i-1}b = a^{2(k-1-i)+1}.$$

This calculates the last conjugate class.

Now assume n = 2k + 1 is odd. A similar calculation shows that we have k + 1 conjugacy classes

$$\left\{a^i, a^{2k+1-i}\right\}$$

for i = 0, 1, ..., k. We need to show that rest elements are in the same conjugacy class. Note that

$$aba^{-1} = a^{2}b,$$
...
$$a(a^{2k}b)a^{-1} = a^{2k+2}b = ab,$$
...
$$a(a^{2k-1}b)a^{-1} = a^{2k+1}b = b.$$

This proves the rest elements are in the same conjugacy class.

From the claim we know D_{4k} has k+3 conjuagely classes, so this is a complete and irredundant list of all the $\mathbb{C}D_{2n}$ -modules up to isomorphism.

(5) Similar to what we have discussed above, the commutator group is generated by $\langle a^2 \rangle$. When n = 2k + 1 is odd, note that a has odd order, so in this case a^2 can generate the element

 $a = a^{2k+2}$, so the commutator subgroup

$$|D'_{2n}| = 2k + 1.$$

So D_{4k+2} has exactly two 1-dimensional complex representations up to isomorphism. From the claim above, we know that it has k+2 conjugacy classes, so this is a complete and irredundant list of irreducible complex representations.

Problem 24.3.3

Describe the character of the two-dimensional irreducible $\mathbb{C}S_3$ -module.

Solution: We can calculate directly from Example 24.2.7, suppose V is the irreducible 2-dimensional $\mathbb{C}S_3$ -module, then we know that

$$\chi_{V}((1)) = \operatorname{tr} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2, \quad \chi_{V}((12)) = \operatorname{tr} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = 0,$$

$$\chi_{V}((23)) = \operatorname{tr} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} = 0, \quad \chi_{V}((13)) = \operatorname{tr} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = 0,$$

$$\chi_{V}((123)) = \operatorname{tr} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = -1, \quad \chi_{V}((1)) = \operatorname{tr} \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} = -1.$$

Problem 24.3.7

If $g \in G$ is an involution then $\chi(g) \in \mathbb{Z}$ and $\chi(g) \equiv \chi(1) \pmod{2}$ for any character χ .

Solution: Let d be the dimension of the representation and $A = \rho(g)$ be the corresponding matrix representation for $g \in G$. g being an involution tells us that $A^2 - I = 0$. So the minimal of polynomial of A is a factor of $x^2 - 1$ with roots 1 and -1. We know that the characteistic polynomial and the minimal polynomial have the same roots and the trace of A is just the sum of all the roots of the characteistic polynomial, counting multiplicity. This means tr (A) is the sum of 1 and -1, so $\chi(g) = \text{tr }(A)$ is an integer. Suppose the minimal polynomial of A is x - 1 or x + 1. In this case A = I or A = -I, so they have the same parity. Now assume the minimal polynomial is $x^2 - 1$. When d = 2, the characteistic polynomial of A is also $x^2 - 1$, so 2 and tr (A) = 0 has the same parity. Now suppose $d \geq 3$. We can write the characteistic polynomial as $(x^2 - 1)p(x)$ where p(x) is a product of x - 1 and x + 1 and $\deg p(x) = d - 2$. Note that when the dimension d increase 1, we add 1 or -1 to the trace, so the parity of the trace and the parity of the dimension is always the same. This proves

$$\chi(g) \equiv \chi(1) = d \pmod{2}$$
.

Problem 24.3.12

Let C_n be the cyclic group of order n. Write dow explicit formulas for the central idempotents $e_1, \ldots, e_n \in \mathbb{C}C_n$.

Solution: $C_n = \langle g \rangle$ is an abelian group, so every irreducible $\mathbb{C}C_n$ module has dimensional 1. From Example 24.2.3, let ξ be the *n*th primitive root of 1, then the irreducible C_n representation ρ_i is given by $\rho_i(g) = \xi^i$. Since every ρ_i is 1-dimensional, for any $0 \leq k \leq n-1$, we have $\chi_i(g^k) = \rho_i(g^k) = \xi^{ik}$. And

$$\chi_i(g^{-k}) = \chi_i(g^{n-k}) = \xi^{i(n-k)}.$$

By Lemma 24.3.11, we know that the central idempotent

$$e_i = \frac{1}{n} \sum_{k=0}^{n-1} \chi_i(g^{n-k}) g^k = \frac{1}{n} \sum_{k=0}^{n-1} \xi^{i(n-k)} g^k.$$

Problem 24.3.18

For any finite dimensional $\mathbb{C}G$ -modules V and W, we have

$$\dim \hom_{\mathbb{C}G}(V, W) = (\chi_V, \chi_W).$$

Solution: By the Wedderburn-Artin theorem, every finite dimenisonal $\mathbb{C}G$ -module is semisimple and

$$\mathbb{C}G \cong M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C}).$$

Let $\{L_1, \dots, L_r\}$ be a complete and irrdundant set of irreducible $\mathbb{C}G$ -modules. We know both V and W are semisimple, assume $V = \bigoplus_i V_i$ and $W = \bigoplus_j W_j$ where $V_i, W_j \in \{L_1, \dots, L_r\}$ are irreducible $\mathbb{C}G$ -modules for any i, j. On the left hand side, we have

$$\hom_{\mathbb{C}G}(V, W) = \hom_{\mathbb{C}G}(\bigoplus_{i} V_i, \bigoplus_{j} W_j) = \bigoplus_{i,j} \hom_{\mathbb{C}G}(V_i, W_j).$$

On the left hand side, by Exercise 23.3.4, we have

$$(\chi_V, \chi_W) = (\chi_{\oplus_i V_i}, \chi_{\oplus_j W_j}) = (\sum_i \chi_{V_i}, \sum_j \chi_{W_j}) = \sum_{i,j} (\chi_{V_i}, \chi_{W_j})$$

since (-,-) is an inner product. We only need to show that for two irreducible $\mathbb{C}G$ -module L_i, L_j and the corresponding character χ_i, χ_j , we have

$$\dim \hom_{\mathbb{C}G}(L_i, L_j) = (\chi_i, \chi_j).$$

This is true. By Schur's lemma, we know that

$$\hom_{\mathbb{C}G}(L_i, L_j) = \begin{cases} \mathbb{C}, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

By Theorem 24.3.16, we know that χ_1, \ldots, χ_r are orthonormal with respect to the inner product

(-,-), so we also have

$$(\chi_i, \chi_j) = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

This proves that

 $\dim \hom_{\mathbb{C}G}(L_i, L_j) = (\chi_i, \chi_j).$