CS 241 Homework 2

Christian Gutierrez Spring 2022

Theorem 1. $\forall e_1, e_2, e_1 * e_2$ is even

Negated Theorem 1. $\exists e_1, e_2, e_1 * e_2$ is odd

Proof. Prove P:

 $e_1 = 2n$ for some integer n

 $e_1 = 2m$ for some integer m

 $e_1 \ast e_2 = 2n \ast 2m = 2(2nm) = 2k$ for some integer k

Clearly the product is even due to being divisible by 2

Q.E.D.

Theorem 2. Prove \bar{P} :

 $\exists d, e | e^d \text{ is odd}$

Negated Theorem 1. $\forall d, e | e^d$ is even

Proof. $e^d = e * e * e \dots e d$ times

which is a product containing 2 as a factor, so it is even by definition. Q.E.D.

Theorem 3. $\forall a, b \exists c | a^2 * b^2 = c^2$

Negated Theorem 1. $\exists a, b \forall c | a^2 * b^2 = c^2$

Proof. Prove P:

$$a^2 * b^2 = (a * b)^2 = c^2$$

$$c = a * b$$
 so c exists

Q.E.D.

Theorem 4. $\exists c \forall a, b | a^2 * b^2 = c^2$

Negated Theorem 1. $\forall c \exists a, b | a^2 * b^2 = c^2$

Proof. Prove \bar{P} :

$$a^2 * b^2 = (a * b)^2 = c^2$$

$$ab = c$$
 so a and b exist

Q.E.D.