Kamil Świerad

Funkcje sklejane MOwNiT 2

Do obliczeń użyłem języka python, na systemie operacyjnym Ubuntu. Procesor komputer to Intel® Core™ i5-6300HQ CPU @ 2.30GHz × 4, a ilość pamięci RAM to 16GB.

Program wykorzystany do przeprowadzenia eksperymentów był napisany przez mnie. Do rysowania wykresów wykorzystałem bibliotekę matplotlib, a dokładniej, pyplot, do liczenia normy z różnicy wektorów wykorzystałem bibliotekę numpy.

Otrzymana przeze mnie funkcja do analizy to: $f(x) = sin(x) * sin(\frac{x^2}{\pi})$ w przedziale: $[-\pi, 2\pi]$

Brak wykresu funkcji

Eksperymenty polegały na uruchomieniu programu który wykonywał obliczenia dla liczby węzłów ∈ {3,4,...,20}, najpierw dla węzłów równoodległych, a następnie dla węzłów Czebyszewa. Rysowanie wykresów było na podstawie 1000 równoodległych punktów w podanym przedziale, dla których liczyłem wartość interpolowaną. Każde uruchomienie programu zapisywało uzyskany wykres oraz błąd, który był liczony jako norma(z biblioteki numpy) z różnicy wektorów wartości funkcji interpolowanej i interpolującej. Na każdym z wykresów są wszystkie przetestowane przeze mnie funkcje, czyli funkcja sklejana 2 stopnia, z warunkiem naturalnym, oraz z pierwszą funkcją liniową (warunek z założoną wartością pochodnej) oraz funkcje sklejane 3 stopnia naturalne oraz paraboliczne.

Jaką konkretnie postać miały wzory, z których wyliczano funkcje sklejane? Jak jest postać warunków brzegowych? Jak warunki wpływały na postać wzorów na funkcje sklejane? Czy wzory były dostosowane do rozmieszczenia węzłów innego niż równomierne? Tabela 1. Błędy otrzymane dla wykonanych eksperymentów (kolumny oznaczają dla jakiego typu funkcji sklejanej jest to błąd) przy węzłach równoodległych.

	, , ,, ,,	, ,		
Liczba węzłów	2nd degree natural spline	2nd degree linear spline	3rd degree natural spline	3rd degree parabolic spline
3	19.4000126536873	20.9731320666654	19.1506956876095	21.7115209634079
4	15.7749543920143	15.7749543920143	15.7749543920143	15.7749543920143
5	16.290142146498	16.0895742955107	15.3614637126819	15.0803052087685
6	13.1631868157986	12.6226644867341	11.1003730249703	10.6596892470152
7	16.7023087044158	16.3271996182096	13.0779120907296	13.4953490987994
8 /	23.9104355228489	23.7423575399804	12.5779049694569	14.2153740985495
9	34.5977507955356	34.5337935742123	10.2869679561035	12.6138787178307
10	17.8 823537725 028	17.8214253363076	9.19593154616026	10.7391437024066
11	12.9696346155598	12.9340037561403	8.78530781370958	9.22605622478201
12	10.53520390991	10.5223024867962	6.5809532203575	6.54375572324136
13	10.2106300350365	10.212858821947	3.68337246428601	3.74054866709456
14	11.4934485975272	11.5015097197544	1.6519633295502	2.44201825576325
15	6.79206837254285	6.80930177724184	1.27037394371272	2.52474924727428
16	4.77193775370239	4.79690418463438	1.49913246350287	2.6573764418885
17	2.64519818151328	2.68704198153842	1.5455476731224	2.54191247293419
18	1.77097279992279	1.8264274064953	1.44184657566988	2.27851910280828
19	1.36500768005685	1.42738636326294	1.27973072257606	1.96772845501166
20	0.98996078950954	1.06306848708988	1.11021207634772	1.66472691702244

To znaczy?

Analizując samą tabelę można zauważyć że warunki brzegowe mają bardzo mały wpływ na otrzymane wyniki, oraz dość dobrze można zauważyć brak polepszenia wyników mimo większej ilości węzłów, co zapewne jest spowodowane efektem Runge'go.

A niby skąd tutaj efekt Rungego?

Tabela 2. Błędy otrzymane dla wykonanych eksperymentów (kolumny oznaczają dla jakiego typu funkcji sklejanej jest to błąd) przy węzłach Czebyszewa.

Liczba węzłów	2nd degree natural spline	2nd degree linear spline	3rd degree natural spline	3rd degree parabolic spline
3	20.9025885263597	21.6589035664742	16.5128561381081	19.050305055553
4	13.5391870451701	13.8372998136946	15.0326479068989	15.0649853489129
5	17.2076511059774	16.9365136996503	11.734079849988	11.1057005996168
6	23.5639743674117	23.377918234513	14.7654159786246	15.0447944129526
7	25.5556122806236	25.5019621037008	10.6785631967401	11.0206539601092
8	23.6719639354523	23.6606580656343	12.232136953381	12.325051912749
9	18.2972245938192	18.296271011946	11.9895795101411	11.9968569452179
10	12.1122198115387	12.1138057300757	10.5090009602436	10.5210259119696
11	20.224148132593	20.2249532438366	5.62616288904704	5.65121455237193
12	12.3636866261683	12.3644902058178	7.21655235165349	7.22742873002814
13	6.16497367564387	6.16588101940563	7.13783939183921	7.14294659965748
14	13.0810268751119	13.0812636692306	1.74709308158798	1.75810317270996
15	6.49063907801965	6.49090512916933	3.10947430289464	3.11330365889409
16	5.05898334292007	5.05917682403356	3.18894401193782	3.19135990688628
17	5.83565032799268	5.83574736929426	1.52612629801913	1.52937949008799
18	3.0175354850264	3.01764646304615	1.41475516404701	1.41700551590132
19	2.40184873288703	2.40193298737562	1.29462611063523	1.29620484388838
20	2.07881952059119	2.07887963147875	0.928589371517298	0.930012774772237

Stosując węzły Czebyszewa nie zyskujemy zbyt wiele, a nawet dla niektórych przypadków uzyskane rezultaty są gorsze niż dla węzłów równoodległych. Oprócz analizy danych z błędami warto przytoczyć także parę wykresów oraz je poddać analizie.

Wykres 1. Interpolacja dla 11 równoodległych węzłów

Wykres 2. Interpolacja dla 20 równoodległych węzłów

Wykres 3. Interpolacja dla 14 równoodległych węzłów

Wykres 4. Interpolacja dla 11 węzłów Czebyszewa.

Wykres 5. Interpolacja dla 20 węzłów Czebyszewa.

Wykres 6. Interpolacja dla 14 węzłów Czebyszewa.

Dlaczego wybrano akurat takie wykresy? Co dokładnie ilustrują?

Sprawdzić funkcje sklejane 3 stopnia kwestia gładkości funkcji Analizując powyższe wykresy można zauważyć że zmiana warunków brzegowych (tak jak nazwa wskazuje) wpływa tylko na brzegowe funkcje oraz że występuje efekt Runge'go, co ciekawe jest on badziej zauważalny dla węzłów Czebyszewa.

Na którym wykresie i jakiej funkcji dotyczy?

I to całośc obserwacji i wniosków?