Logistic Regression

```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
data=pd.read_csv("/home/placemnet/YUVA/Titanic Dataset.csv")
data.describe()
```

Out[1]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [2]: data.head(10)

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

In [3]: data.isna().sum()

Out[3]: PassengerId 0 Survived 0 Pclass Name Sex 177 Age SibSp 0 Parch Ticket Fare 0 Cabin 687 Embarked 2 dtype: int64

```
In [4]: data['Pclass'].unique()
Out[4]: array([3, 1, 2])
In [5]: data['SibSp'].unique()
Out[5]: array([1, 0, 3, 4, 2, 5, 8])
In [6]: data['Parch'].unique()
Out[6]: array([0, 1, 2, 5, 3, 4, 6])
In [7]: data['Age'].unique()
Out[7]: array([22. , 38. , 26. , 35. , nan, 54. , 2. , 27. , 14. ,
               4. , 58. , 20. , 39. , 55. , 31. , 34. , 15. , 28. ,
              8. , 19. , 40. , 66. , 42. , 21. , 18. , 3. , 7. ,
              49. , 29. , 65. , 28.5 , 5. , 11. , 45. , 17.
              16. , 25. , 0.83, 30. , 33. , 23. , 24. , 46.
              71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
              51. , 55.5 , 40.5 , 44. , 1. , 61. , 56. , 50. , 36. ,
             45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
              60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
             70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
In [8]: data['Survived'].unique()
Out[8]: array([0, 1])
```

```
In [9]: data1=data.drop(['PassengerId','Name','Cabin','SibSp','Ticket','Parch'],axis=1)
data1
```

Out[9]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

In [12]: data1

Out[12]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

Out[13]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

Out[14]: <Axes: >

0.0

```
In [16]: plt.hist(data1['Sex'])
<BarContainer object of 10 artists>)
      600
      500
      400
      300
      200 -
      100
               0.2
                      0.4
                            0.6
```

9 of 18 28/06/23, 09:48

0.8

1.0


```
In [19]: data1.isna().sum()
Out[19]: Survived
        Pclass
        Sex
        Age
        Fare
        Embarked
        dtype: int64
In [20]: data1['Age'].unique()
Out[20]: array([22. , 38. , 26. , 35. , 28. , 54. , 2. , 27. , 14. ,
               4. , 58. , 20. , 39. , 55. , 31. , 34. , 15. , 8. ,
              19. , 40. , 66. , 42. , 21. , 18. , 3. , 7. , 49. ,
              29. , 65. , 28.5 , 5. , 11. , 45. , 17.
                                                       , 32.
              25. , 0.83, 30. , 33. , 23. , 24. , 46. , 59.
              37. , 47. , 14.5 , 70.5 , 32.5 , 12. , 9. , 36.5 , 51.
              55.5 , 40.5 , 44. , 1. , 61. , 56. , 50. , 36. , 45.5 ,
              20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. , 60. ,
              10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. , 70. ,
              24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
```

```
In [21]: data1.groupby(['Age']).count()
Out[21]:
                Survived Pclass Sex Fare Embarked
           Age
                           1 1
           0.42
                     1
                                              1
           0.67
           0.75
                     2
                                     2
                                              2
           0.83
                     2
                            2
                                     2
                                              2
           0.92
                     1
                            1
          70.00
                     2
                            2
                                2
                                     2
                                              2
          70.50
                     1
          71.00
                                     2
                                              2
          74.00
          80.00
                     1
                            1 1
                                     1
          88 rows × 5 columns
In [22]: data1["Pclass"]=data1["Pclass"].map({1:'F',2:'S',3:'Third'})
In [23]: data1.isna().sum()
Out[23]: Survived
          Pclass
                       0
          Sex
          Age
          Fare
         Embarked
         dtype: int64
```

```
In [24]: data1=pd.get dummies(data1)
In [25]: data1.shape
Out[25]: (891, 10)
In [26]: data1.isna().sum()
Out[26]: Survived
         Sex
         Age
         Fare
         Pclass F
         Pclass S
                         0
         Pclass_Third
         Embarked C
         Embarked Q
                         0
         Embarked S
                         0
         dtype: int64
```

In [27]: data2=data1.corr() data2

Out[27]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
Survived	1.000000	-0.543351	-0.064910	0.257307	0.285904	0.093349	-0.322308	0.168240	0.003650	-0.155660
Sex	-0.543351	1.000000	0.081163	-0.182333	-0.098013	-0.064746	0.137143	-0.082853	-0.074115	0.125722
Age	-0.064910	0.081163	1.000000	0.096688	0.323896	0.015831	-0.291955	0.030248	-0.031415	-0.014665
Fare	0.257307	-0.182333	0.096688	1.000000	0.591711	-0.118557	-0.413333	0.269335	-0.117216	-0.166603
Pclass_F	0.285904	-0.098013	0.323896	0.591711	1.000000	-0.288585	-0.626738	0.296423	-0.155342	-0.170379
Pclass_S	0.093349	-0.064746	0.015831	-0.118557	-0.288585	1.000000	-0.565210	-0.125416	-0.127301	0.192061
Pclass_Third	-0.322308	0.137143	-0.291955	-0.413333	-0.626738	-0.565210	1.000000	-0.153329	0.237449	-0.009511
Embarked_C	0.168240	-0.082853	0.030248	0.269335	0.296423	-0.125416	-0.153329	1.000000	-0.148258	-0.778359
Embarked_Q	0.003650	-0.074115	-0.031415	-0.117216	-0.155342	-0.127301	0.237449	-0.148258	1.000000	-0.496624
Embarked_S	-0.155660	0.125722	-0.014665	-0.166603	-0.170379	0.192061	-0.009511	-0.778359	-0.496624	1.000000

Out[28]: <Axes: >


```
In [29]: data.groupby('Survived').count()
Out[29]:
                  Passengerld Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
          Survived
                0
                         549
                               549
                                    549 549 424
                                                   549
                                                        549
                                                              549
                                                                  549
                                                                         68
                                                                                 549
                                    342 342 290
                1
                         342
                               342
                                                   342
                                                        342
                                                              342 342
                                                                         136
                                                                                 340
In [30]: a=data1['Survived']
         b=data1.drop('Survived',axis=1)
In [31]: from sklearn.model selection import train test split
         b train,b test,a train,a test=train test split(b,a,test size=0.33,random state=42)
In [32]: from sklearn.linear model import LogisticRegression
         classifier=LogisticRegression()
         classifier.fit(b_train,a train)
Out[32]:
          ▼ LogisticRegression
          LogisticRegression()
```

```
In [33]: a pred=classifier.predict(b test)
         a pred
Out[33]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
               1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
               0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
               1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
               0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
               0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0])
In [34]: from sklearn.metrics import confusion matrix
         confusion matrix(a test,a pred)
Out[34]: array([[154, 21],
               [ 37, 83]])
In [35]: from sklearn.metrics import accuracy score
         accuracy score(a pred,a test)
Out[35]: 0.8033898305084746
In [ ]:
```