Elettrotecnica -Prova scritta del 19/09/2017 -A

NOME	COGNOME	MATRICOLA	CORSO E ANNO DI STUDI

In riferimento ad entrambi gli esercizi, si considerino le seguenti due costanti:

 k_N pari al numero di lettere del proprio nome; k_C pari al numero di lettere del proprio cognome.

Dato il circuito in figura, determinare: (1) la potenza assorbita dai resistori, (2) la potenza generata ed erogata dal generatore di tensione reale contenuto nel rettangolo tratteggiato e formato dal generatore ideale V_g e dalla resistenza R_1

DATI $V_g = k_N [V], I_g = k_C [A], R_1 = 1 [\Omega],$ $R_2 = 2 [\Omega], R_3 = 3 [\Omega], R_4 = 4 [\Omega], R_5 = 5 [\Omega]$

Nel circuito in figura l'interruttore è stato aperto per molto tempo. All'istante t=0, l'interruttore viene chiuso. Determinare $\mathbf{v}_{\mathbf{C}}(t)$ per t > 0, sapendo che all'istante t=0 in cui viene connesso il condensatore C la tensione $\mathbf{v}_{\mathbf{C}}(t)$ vale $\mathbf{v}_{\mathbf{C}}(t=0) = 5$ [V], Rappresentarne poi su un grafico l'andamento temporale.

DATI
$$V_g = \mathbf{5} [V], I_g = \mathbf{k}_N [A], R_1 = \mathbf{k}_C [\Omega], R_2 = 2[\Omega], R_3 = 2[\Omega], R_4 = 1[\Omega], R_5 = 4[\Omega], C=10[nF]$$

Il circuito in figura si trova in regime permanente sinusoidale.

Determinare: (1) la potenza complessa e la potenza istantanea del bipolo rappresentato dal rettangolo tratteggiato e costituito dalla resistenza R1 e dall'induttore L e rappresentare l'andamento temporale della potenza istantanea; (2) la tensione $V_{Ig}(t)$ ai capi del generatore di corrente I_g ed il rispettivo fattore di potenza.

DATI:

 $V_g = k_N \cos(\omega t) - k_C \sin(\omega t) [V], I_g = + \cos(\omega t) + \sin(\omega t) [A], R_1 = 1 [\Omega], R_2 = 4 [\Omega], R_3 = 2 [\Omega], C = 0.0025[F], L = 20[mH], \omega = 100 [rad/s]$

Elettrotecnica -Prova scritta del 19/09/2017 -B

NOME	COGNOME	MATRICOLA	CORSO E ANNO DI STUDI

In riferimento ad entrambi gli esercizi, si considerino le seguenti due costanti:

 k_N pari al numero di lettere del proprio nome; k_C pari al numero di lettere del proprio cognome.

Dato il circuito in figura, determinare: (1) la potenza assorbita dai resistori, (2) la potenza generata ed erogata dal generatore di tensione reale contenuto nel rettangolo tratteggiato e formato dal generatore ideale $V_{\rm g}$ e dalla resistenza R_4 .

DATI $V_g = k_N [V], I_g = k_C [A], R_1 = 1 [\Omega],$ $R_2 = 2 [\Omega], R_3 = 3 [\Omega], R_4 = 4 [\Omega], R_5 = 5 [\Omega]$

Nel circuito in figura l'interruttore è stato aperto per molto tempo. All'istante t=0, l'interruttore viene chiuso. Determinare $\mathbf{v}_{\mathbf{C}}(t)$ per t > 0, sapendo che all'istante t=0 in cui viene connesso il condensatore C la tensione $\mathbf{v}_{\mathbf{C}}(t)$ vale $\mathbf{v}_{\mathbf{C}}(t=0^-) = 3$ [V], Rappresentarne poi su un grafico l'andamento temporale.

DATI $V_g = k_N[V]$, $I_g = 1[A]$, $R_1 = 1[\Omega]$, $R_2 = 4[\Omega]$, $R_3 = 2[\Omega]$, $R_4 = 2[\Omega]$, $R_5 = k_C[\Omega]$, C = 20[nF]

Il circuito in figura si trova in regime permanente sinusoidale.

Determinare: (1) la potenza complessa e la potenza istantanea del bipolo rappresentato dal rettangolo tratteggiato e costituito dalla resistenza R1 e dal capacitore C e rappresentare l'andamento temporale della potenza istantanea; (2) la tensione $V_{Ig}(t)$ ai capi del generatore di corrente I_g ed il rispettivo fattore di potenza. DATI:

 V_g = $k_N \cos(\omega t) + k_C \sin(\omega t)$ [V], I_g = + cos(ωt)sen(ωt) [A], R_1 = 1 [Ω], R_2 = 2 [Ω], R_3 = 4 [Ω], C =0.0025[F], L= 20[mH], ω=200 [rad/s]