令和元年度 第1回技術管理委員会(令和元年7月31日開催) 要旨

審議事項

(2) 開発技術の導入を前提とした共同研究の終了評価

(2) 開光技術の導入を前提とした共向研究の終」計画					
研究テーマ名	新高温省エネ型	焼却炉の開発			
研究形態	開発技術の導入を前提とした共同研究				
共同研究者	三機工業㈱、㈱タクマ、月島機械㈱、メタウォーター㈱				
所管部署	計画調整部 技術開発課				
研究期間	平成30年10月29日から平成31年3月31日まで				
研究目的	平成30年10月29日から平成31年3月31日まで (研究目的) 汚泥焼却工程における温室効果ガス排出量を削減するため、新高温省エネ型焼却炉(第2.2世代型焼却炉)を開発する。 (技術内容) 本技術は、高温省エネ型焼却システムの焼却炉に電力使用量を削減できる機器を付加することや電動機容量の低減などにより、さらなる省エネルギー化を図る焼却炉である。また、超低含水率型脱水機・低含水率型脱水機・低含水率型脱水機等・低き水の少ない汚泥を供給することで、補助燃料を必要とせず(焼却炉の立上げ・立下げ・保温時等を除く)、さらに焼却温度を高めることで一酸化二ちっ素を削減する焼却炉である。 ※1 新高温省エネ型焼却炉(2.2世代焼却炉)は、含水率74%以下になる脱水機を選定 「大阪の関係を選定 関係を選集がある。」 「新高温省工本型焼却のファム」 「新高温省工工・型焼却システム」 「新高温省工工・工の焼却、ファム、大阪の関係を選集がある。」 「新高温省工工・工の乗却のファム」 「新高温省工工・工の乗却のファム」 「新高温省工工・工の焼却システム」 「新高温省工工・工の焼却システム 大阪、大阪、大阪、大阪、大阪、大阪、大阪、大阪、大阪、大阪、大阪、大阪、大阪、大				
	 共同研究者の技術は以下のとおり				
	ストロップロロック) by 1 by (Lid.)
	新高温省エネ型	三機工業㈱	(株)タクマ	月島機械㈱	メタウォーター(株)
	焼却炉	ターボ型流動炉	ストーカ炉	ターボ型流動炉	ターピン多層型流動炉
研究目標	(研究目標) 脱水汚泥焼却時の目標性能は下記のとおりです。(300t/日炉に換算した値) (1)一酸化二ちっ素(N ₂ O)の排出量は、0.8kg-N ₂ O/t-DS以下とする。 (2)使用電力量は、107kWh/t-DS以下とする。 (3)定常時は、補助燃料は必要としない(焼却炉の立上げ・立下げ・保温時等を除く)。 (4)廃熱回収率40%以上とする。				
研究結果	各技術とも上記の研究目標を全て達成した。				
審議結果	実用化技術とし	て承認する。			