Université de Grenoble École doctorale EEATS

THÈSE CIFRE PRÉSENTÉE PAR

JORY LAFAYE

LABORATOIRE : INRIA GRENOBLE RHÔNE-ALPES ENTREPRISE : ALDEBARAN

Commande des mouvements et de l'équilibre d'un robot humanoïde à roues omnidirectionnelles

Directeur : Dr. Bernard Brogliato, Inria

Encadrants :
Dr. Pierre-Brice Wieber, Inria
Dr. Cyrille Collette, Aldebaran
Dr. Sebastien Dalibard, Aldebaran

Table des matières

Re	ésumé												
I	Intro	introduction 6											
	I.1	Contexte d'étude											
	I.2	État de l'art											
		I.2.1 Commande et équilibre des robots à roues											
		I.2.1.1 Les robots à une et deux roues											
		I.2.1.2 Les robots à trois roues et plus											
		I.2.2 Commande et équilibre des robots bipèdes											
		I.2.3 Synthèse et conclusion											
	I.3	Contributions scientifiques											
	I.4	Plateforme expérimentale											
	I.5	Contributions techniques											
	I.6	Organisation du document											
	1.0	Organisation du document											
II	Mod	Modélisation du système 7											
	II.1	Choix du modèle et conséquences											
	II.2	Modélisation dynamique											
		II.2.1 Problème de complémentarité mixte											
		II.2.2 Les trois roues en contact avec le sol											
		II.2.3 Le robot bascule sur deux roues											
	II.3	Modélisation de la dynamique future											
	11.5												
		1											
		II.3.2 Choix de la dynamique d'extrapolation											
		II 3.3 Formulation du modèle prédictif											

III Com	mande par modèle prédictif	9					
III.1	Principe	10					
III.2	Outil mathématique et contraintes associées	10					
	III.2.1 Problématique	10					
	III.2.2 Principe de la programmation quadratique	10					
	III.2.3 Contraintes sur la formulation du problème d'optimisation						
III.3	Formulation des problèmes d'optimisations	10					
	III.3.1 Introduction	10					
	III.3.2 Lorsque les trois roues sont en contact avec le sol	10					
	III.3.2.1 Formulation des objectifs	10					
	III.3.2.2 Formulation des contraintes						
	III.3.2.3 Problème quadratique résultant	10					
	III.3.3 Lorsque le robot bascule sur deux roues	10					
	III.3.3.1 Formulation des objectifs						
	III.3.3.2 Formulation des contraintes						
	III.3.3.3 Problème quadratique résultant						
	III.3.4 Gestion de la transition entre les deux états						
	III.3.4.1 Problématique associée						
	III.3.4.2 Formulation des objectifs						
	III.3.4.3 Formulation des contraintes						
	III.3.4.4 Problème quadratique résultant						
III.4	Gestion des deux modèles dynamiques exclusifs						
	III.4.1 Choix d'un superviseur et conséquences						
	III.4.2 Fonctionnement du superviseur						
	III.4.3 Fonctionnement de l'estimateur d'impact						
III.5	Vers une modélisation unifiée des deux dynamiques						
	III.5.1 Problème de complémentarité linéaire						
	III.5.2 Méthodes de résolution						
	III.5.2.1 Programmation quadratique avec contraintes non-linéaires						
	III.5.2.2 Linéarisation par <i>a priori</i>						
	III.5.2.3 Conclusion	11					
	ures et observateurs	12 12					
	Les différentes valeurs à observer						
	Capteurs disponibles						
IV.3	Méthodes de mesure et conséquences						
	IV.3.1 Mesure de la posture du robot						

	IV.3.2 Observation de la position de la base mobile						
		IV.3.3 Observation des vitesses et accélérations du robot et de la base					
		IV.3.4 Observation de l'angle de basculement et d'inclinaison du sol					
		IV.3.4.1 Observabilité					
		IV.3.4.2 Méthode d'observation	. 12				
		IV.3.4.3 Limites	. 12				
V	Résu	ıltats et expérimentations	13				
	V.1	Schéma de contrôle en boucle fermée					
	V.2	Expériences en l'absence de perturbation et sur sol horizontal					
		V.2.1 Protocole expérimental					
		V.2.2 Analyse des expériences					
		V.2.3 L'importance du choix des pondérations	. 14				
	V.3	Expériences de compensation de perturbations	. 14				
		V.3.1 Protocole expérimental	. 14				
		V.3.2 Analyse des expériences	. 14				
		V.3.3 Les limites	. 14				
	V.4	Expériences de compensation de l'inclinaison du sol	. 14				
		V.4.1 Protocole expérimental					
		V.4.2 Analyse des expériences					
		V.4.3 Les limites	. 14				
VI	Synt	hèse	15				
		Contributions	. 15				
	VI.2	Perspectives	. 15				
	VI.3	conclusion	. 15				
Bil	bliogr	raphie	15				
An	nexes	S	16				
	D		17				
A Pepper, un robot humanoïde à roues omnidirectionnelles							
В	B Optimisation du choix du modèle dynamique						
C	C Résolution d'un problème quadratique						
D) "MPC-WalkGen", librairie C++ implémentant la commande par modèle prédictif						

Table des figures

[1]

Chapitre I

Introduction

1	.1	 C_{α}	'n	tas	zte	ų,	6	-11	А	Δ
	_					"				t.

- I.2 État de l'art
- I.2.1 Commande et équilibre des robots à roues
- I.2.1.1 Les robots à une et deux roues
- I.2.1.2 Les robots à trois roues et plus
- I.2.2 Commande et équilibre des robots bipèdes
- I.2.3 Synthèse et conclusion
- I.3 Contributions scientifiques
- I.4 Plateforme expérimentale
- **I.5** Contributions techniques
- I.6 Organisation du document

Chapitre II

Modélisation du système

II.1 Choix du modèle et conséquences

- Choix d'un modèle dynamique rigide multi corps
- Compromis fidélité/compléxité et temps de calcul
- Choix du nombre de corps (lien vers anexe pour une optimisation des valeur).
- Phénomènes physiques non-pris en compte : Mécanique de contact roue/sol + jeu articulaire
- + élasticité hip roll + moments des différents sous corps rigide

II.2 Modélisation dynamique

II.2.1 Problème de complémentarité mixte

- Présentation des variables (c, b, forces de contact sur chaque roues)
- Equations des énergies cin/pot
- -Contraintes sur la position de b -; problème de comlémentarité sur les forces de contact

II.2.2 Les trois roues en contact avec le sol

- Etat des forces de contact définies (toutes en contact)
- En dériver l'équation du cop (barycentre des forces de contact)
- Linéarisation et approximations

II.2.3 Le robot bascule sur deux roues

- Etat des forces de contact définies (seul deux des forces sont en contact)
- Changement de variable pour utiliser l'angle de basculement
- En dériver l'équation liant l'angle, c et b.
- Linéarisation et approximations

II.3 Modélisation de la dynamique future

- II.3.1 Nécessité de prédire le futur
- II.3.2 Choix de la dynamique d'extrapolation
- II.3.3 Formulation du modèle prédictif

Chapitre III

Commande par modèle prédictif

III.1 Principe III.2 Outil mathématique et contraintes associées **III.2.1 Problématique III.2.2** Principe de la programmation quadratique **III.2.3** Contraintes sur la formulation du problème d'optimisation **III.3** Formulation des problèmes d'optimisations **III.3.1** Introduction III.3.2 Lorsque les trois roues sont en contact avec le sol III.3.2.1 Formulation des objectifs III.3.2.2 Formulation des contraintes III.3.2.3 Problème quadratique résultant III.3.3 Lorsque le robot bascule sur deux roues III.3.3.1 Formulation des objectifs III.3.3.2 Formulation des contraintes III.3.3.3 Problème quadratique résultant **III.3.4** Gestion de la transition entre les deux états III.3.4.1 Problématique associée III.3.4.2 Formulation des objectifs III.3.4.3 Formulation des contraintes

III.3.4.4 Problème quadratique résultant

III.4	Gestion des deux modèles dynamiques exclusifs
III.4.1	Choix d'un superviseur et conséquences
III.4.2	Fonctionnement du superviseur
III.4.3	Fonctionnement de l'estimateur d'impact
III.5	Vers une modélisation unifiée des deux dynamiques
III.5.1	Problème de complémentarité linéaire
III.5.2	Méthodes de résolution
III.5.2.1	Programmation quadratique avec contraintes non-linéaires
III.5.2.2	Linéarisation par <i>a priori</i>
III.5.2.3	Conclusion

Chapitre IV

Mesures et observateurs

IV.1	Les différent	tes valeurs a	à observer

- IV.2 Capteurs disponibles
- IV.3 Méthodes de mesure et conséquences
- IV.3.1 Mesure de la posture du robot
- IV.3.2 Observation de la position de la base mobile
- IV.3.3 Observation des vitesses et accélérations du robot et de la base
- IV.3.4 Observation de l'angle de basculement et d'inclinaison du sol
- IV.3.4.1 Observabilité
- IV.3.4.2 Méthode d'observation
- IV.3.4.3 Limites

Chapitre V

Résultats et expérimentations

- V.1 Schéma de contrôle en boucle fermée
- V.2 Expériences en l'absence de perturbation et sur sol horizontal
- V.2.1 Protocole expérimental
- V.2.2 Analyse des expériences
- V.2.3 L'importance du choix des pondérations
- V.3 Expériences de compensation de perturbations
- V.3.1 Protocole expérimental
- V.3.2 Analyse des expériences
- V.3.3 Les limites
- V.4 Expériences de compensation de l'inclinaison du sol
- V.4.1 Protocole expérimental
- V.4.2 Analyse des expériences
- V.4.3 Les limites

Chapitre VI

Synthèse

- VI.1 Contributions
- VI.2 Perspectives
- VI.3 conclusion

Bibliographie

[1] S Miasa, M Al-Mjali, A Al-Haj Ibrahim, and T A Tutunji. Fuzzy control of a two-wheel balancing robot using dspic. In 2010 7th International Multi-Conference on Systems Signals and Devices (SSD), pages 1–6, 2010.

Annexe A

Pepper, un robot humanoïde à roues omnidirectionnelles

Annexe B

Optimisation du choix du modèle dynamique

Annexe C

Résolution d'un problème quadratique

Annexe D

"MPC-WalkGen", librairie C++ implémentant la commande par modèle prédictif