49274: Advanced Robotics

Spring 2018

Assignment 1 - Part 1: Bayes Filter

Total Marks: 2 marks

University of Technology Sydney (CAS)

Due date: week 4 (16 Aug. 2018)

1 Introduction

In this assignment, you will solve the localization problem using the discrete Bayes filter.

1.1 Scenario

Imagine a robot that lives in a 1-dimensional world as in Fig. 1. The world is divided into 20 cells as a circle where the cell 20 is connected before cell 1. Each cell has a unique label $i \in \{1, ..., 20\}$. At each time step, our robot is located at (exactly) one of the cells. We use x_t to denote the position of the robot at time t. For example $x_2 = 4$ means that our robot was in the 4^{th} cell at time t = 2.

Figure 1: The 1-dimensional world that our robot lives in. There are 3 identical doors located at 3^{rd} , 5^{th} and 8^{th} cell. The robot can move forward along the arrows by 1 or 2 cell if control signal $u_t = 1$. The robot will stay still if control signal $u_t = 0$. The doors can be detected by an on-board sensor unreliably-.-, which means the sensor may say there is a door here but actually there isn't a door there, or vice versa.

2

Motion Uncertainty

The robot can execute a motion command at any time step. We use u_t to denote the motion command given to the robot at time step t. The motion command (a.k.a. control input) is either 0 or 1:

- 1. $u_t = 0$ means: stay
- 2. $u_t = 1$ means: move one cell forward

For example, under *perfect* conditions, if $x_3 = 4$ and $u_3 = 1$, then $x_4 = 5$. **But** in practice, due to various reasons such as wheel slippage, our robot may perform differently when $u_t = 1$:

- $x_{t+1} = x_t + 1$ with **probability** 0.7 (correct behaviour)
- $x_{t+1} = x_t + 2$ with **probability** 0.3
- The **probability** of robot going to any other cell is 0

Similarly for $u_t = 0$ we have:

- $x_{t+1} = x_t$ with **probability** 1 (correct behaviour)
- The **probability** of robot going to any other cell is 0

Remark: Mathematically we can write:

- $P(x_{t+1} = k+1 | x_t = k, u_t = 1) = 0.7$
- $P(x_{t+1} = k + 2 | x_t = k, u_t = 1) = 0.3$
- $P(x_{t+1} = k | x_t = k, u_t = 0) = 1$

Remark: Note that 0.7 + 0.3 + 0 = 1, and 1 + 0 = 1.

Observation Uncertainty

There are 3 identical doors in our world. They are located at the 3rd, 5th and 8th cell, respectively. Believe it or not, this is our "map" in this example!

The robot is equipped with a sensor that can detect doors. At each time step robot looks at the current cell using its sensor. At time step t sensor returns z_t (our observation at time t). $z_t = 1$ means that our sensor has detected a door in the current cell, while $z_t = 0$ means no door is detected.

Unsurprisingly our sensor is not perfect either:

- 1. if there is a door in the current cell x_t (reality):
 - $z_t = 1$ with **probability** 0.8 (correct sensor reading)
 - $z_t = 0$ with **probability** 0.2
- 2. if there is not a door in the current cell x_t (reality):
 - $z_t = 1$ with **probability** 0.1
 - $z_t = 0$ with **probability** 0.9 (correct sensor reading)

Remark: Mathematically we can write:

- $P(z_t = 1 | x_t \in \{3, 5, 8\}) = 0.8$
- $P(z_t = 0 | x_t \in \{3, 5, 8\}) = 0.2$
- $P(z_t = 1 | x_t \notin \{3, 5, 8\}) = 0.1$
- $P(z_t = 0 | x_t \notin \{3, 5, 8\}) = 0.9$

Prior Belief

We might have some information about the initial position of the robot at t = 0. This prior knowledge can be represented as a probability distribution. For example we might know that

$$P(x_0 = 1) = 0.8, \quad P(x_0 = i) = (1 - 0.8)/19 = \frac{1}{95} \quad (i \neq 1).$$
 (1)

which means the robot has a huge probability 0.8 lying at cell 1, while the probability lying at other cells are equal.

If our prior belief is a **uniform probability distribution**, it means that we do not have any *information* about the initial position of the robot. In this case we have:

$$P(x_0 = 1) = P(x_0 = 2) = \dots = P(x_0 = 19) = P(x_0 = 20) = \frac{1}{20} = 0.05$$
 (2)

We use bel(t) to denote our belief at time t. Belief is the probability distribution of the robot being located at each cell. In this example, belief is a discrete probability distribution represented by a probability mass function over those 20 cells. Probability distribution in Eq. (1) and probability distribution in Eq. (2) are two examples of belief.

Objective

Given a prior belief and a sequence of control inputs (u_t) and observations (z_t) we want to estimate the location of the robot at each time step. In other words, we want to compute the **probability** of robot being located at each cell at any time step.

1.2 Discrete Bayes Filter

At given time t, the location of the robot is described by a discrete probability distribution reflecting our confidence for the robot being at each cell. The probability distribution is described by a probability mass function (PMF) which is denoted by bel(t).

Suppose we have computed our **belief** bel(t) (i.e., probability of the robot being at each cell) at time t. Now given new control input (u_t) and new observation (z_{t+1}) , we aim to update our belief and compute bel(t+1) using Bayes filter

$$bel(t) \oplus u_t \oplus z_{t+1} \xrightarrow{\text{Bayes filter}} bel(t+1)$$

Note that our initial belief bel(0) is a probability distribution of the robot initial position, given/guessed by our prior knowledge. (You have to implement bel(0) in $\mathbf{Q1}$ and $\mathbf{Q2}$).

The discrete Bayes filter consists of two recursive steps:

1. **Prediction**: In this step, we use the new control input u_t and our previous belief bel(t) we compute/predict the position of robot at time t+1, denoted by $\overline{bel(t+1)}$ which stands for the belief after only incorporating the control data u_t (note z_{t+1} is not incorporated at this stage):

$$bel(t) \oplus u_t \longmapsto \overline{bel(t+1)}$$

Here $\overline{bel(t+1)}$ is our *prediction*, i.e., our belief **before** using the new observation. In order to obtain our prediction, for any cell k we have to compute:

$$P(x_{t+1} = k|u_t) = \sum_{i=1}^{20} P(x_t = i)P(x_{t+1} = k|x_t = i, u_t).$$
(3)

The probabilities $P(x_t = i)$ over all the cells i at time t constitute bel(t).

 $P(x_{t+1} = k|u_t)$ is the probability that the robot lies in position k at time t+1 after considering control u_t . The probabilities $P(x_{t+1} = k|u_t)$ over all the cells k at time t+1 constitute $\overline{bel(t+1)}$.

Intuitively, Eq. (3) means: at time t + 1, to get the probability of the robot being at position k, we must consider all the possible positions at time t where the robot can move to k by applying a control signal u_t .

2. **Update**: In this step, we fuse our observation z_{t+1} to correct the belief $\overline{bel(t+1)}$ and obtain belief bel(t+1) which stands for the belief after incorporating both the control u_t and observation z_{t+1} .

$$\overline{bel(t+1)} \oplus z_{t+1} \longmapsto bel(t+1)$$

We update the probability of the k^{th} (for k = 1, ..., 20) cell by Bayes Rule

$$P(x_{t+1} = k|u_t, z_{t+1}) = \frac{1}{\eta} \cdot P(z_{t+1}|x_{t+1} = k)P(x_{t+1} = k|u_t)$$
(4)

where η is the **normalizer** that ensures the probability sums to one, given by

$$\eta = \sum_{i=1}^{20} P(z_{t+1}|x_{t+1} = i)P(x_{t+1} = i|u_t)$$

As you can image, the probabilities $P(x_{t+1} = k | u_t, z_{t+1})$ over all the cells k at time t+1 constitute bel(t+1).

A trick for the implementation of Eq. (4) is the so-called normalizer trick, which can be elaborated in three steps:

$$\overline{P(x_{t+1} = k | u_t, z_{t+1})} = P(z_{t+1} | x_{t+1} = k) P(x_{t+1} = k | u_t)$$

$$\eta = \sum_{k=1}^{20} \overline{P(x_{t+1} = k | u_t, z_{t+1})}$$

$$P(x_{t+1} = k | u_t, z_{t+1}) = \frac{1}{\eta} \cdot \overline{P(x_{t+1} = k | u_t, z_{t+1})}$$

Please try to convince yourself that the above three steps do the exactly same thing as in Eq. (4).

Please download the template C++ code from UTS online.

2 How to Compile and Run

cd to the bayes_filter directory

Process the following commands in terminal

- mkdir build
- cd build
- cmake ..
- make
- ./bayesFilter

3 Questions

The possible locations of the robot is preserved with a *vector* in the provided C++ code. So the probability at position k is actually saved in the *vector* indexed by k-1. (The indices of the vector start from 0.)

3.1 Prior Belief

Suppose our prior knowledge about the **initial location** of the robot is as follows:

- We have a uniform distribution as our initial belief.
- **Q1.** Compute the probability of $P(x_0 = k)$ for any $k \in \{1, ..., 20\}$.
- **Q2.** Initialise the vector of prior belief in the code.

3.2 Motion Model

- Q3. Complete the function motionProb(...):
 - Inputs: x_{t+1} , x_t and u_t (two **potential** locations and the control input)
 - Output: $P(x_{t+1}|x_t,u_t)$

3.3 Observation Model

- **Q4.** Complete the function obsProb(...):
 - Inputs: z_t and x_t (we also know the exact location of the doors)
 - Output: $P(z_t|x_t)$

3.4 Discrete Bayes Filter

- Q5. Complete the function bayesFilter(...) based on Equation (3) and (4). Use motionProb(...) and obsProb(...) to compute the motion and observation probabilities, respectively.
- **Q6.** Compute the belief at time t = 1 to t = 4 after processing the following sequence of control inputs and observations:

$$(u_0 = 0, z_1 = 1)$$
 $(u_1 = 1, z_2 = 0)$ $(u_2 = 1, z_3 = 1)$ $(u_3 = 1, z_4 = 1)$

- Q7. Explain your results in Q6.
- **Q8.** Why do we need to observe the doors (or any other landmark)? What would happen if we stopped using our sensor?