Belle II calorimetry and analysis R&D

Bruce Yabsley, Frank Meier, & Priyanka Cheema

University of Sydney

Sydney particle physics and cosmology meeting Friday 3rd May 2019

- I have been on Belle for 20 years, with a wide range of physics analysis interests, including charm, CPV (ϕ_3/γ) , and spectroscopy
- most recently I was general editor for The Physics of the B Factories
- ullet the area with maximum (interest imes potential / work-already-done) on Belle II is IMO calorimetry development & treatment of neutrals
- working on this for a few years with Frank Meier (postdoc on DP17) and some students, currently Priyanka Cheema (honours 2019)

ECL: Belle / Belle II's electromagnetic calorimeter

BELLE CSI ELECTROMAGNETIC CALORIMETER

- between inner detector (Si vertexing, drift chamber, PID) & magnet (solenoid, flux return instrumented w scints, RPCs)
- 8736 CsI(TI) crystals, 16.2 X_0 , $(91-3)\% \times 4\pi$, $\sigma_E/E \sim 2.5\%$

43-ton structure in v.gd condition after Belle, and so re-used for Belle II readout completely replaced by waveform-sampling electronics

Improving calorimetry (1): clustering and matching

The improved electronics are needed to offset Belle II's more demanding running conditions: higher backgrounds; overlays within the (long) CsI(TI) response time.

- Some colleagues are working on ways of further exploiting the electronics.
- Another possibility: reshuffle recon and analysis in Belle's basic approach —
- → standalone clustering
- \rightarrow basic object: 5×5 grid
- → is it matched to an extrapolated track?
 - ✓ due to the track; discriminate e / non-e
 - ightharpoonup treated as neutral; discriminate γ / other

Shower recon. is done by;

- •Crystal hits < 0.5MeV are sparsified by TDC readout.
- •Seed crystal: local max. >10MeV.
- •Recorded hits inside the 5 × 5 matrix surrounding the seed crystal are clustered.
 - •Energy: summing up each hits.
- •Position: energy-weighted center of gravity.

Exploring with students: <u>begin with the tracks</u> and cluster in a way specific to each PID hypothesis; leads to multiple but more sensitive event reconstructions

Improving calorimetry (2): calibration for neutrals

- the ECL response was studied in a test-beam campaign 20 years ago
- π^{\pm} , e^{\pm} , γ
- there's also continuous calibration using
 - built-in {light,charge} calibration sources on each crystal
 - high rate, low multiplicity physics events, e.g. radiative Bhabha $e^+e^- o e^+e^-\gamma$
- n, \overline{n} , and K_L^0 response is \sim unmeasured for these detectors at these energies, <u>and</u> known to be imperfectly simulated
- no realistic test beam is available
- ullet idea: a *virtual test beam* can be skimmed from $1\,\mathrm{ab}^{-1}$ of Belle data
 - this sort of approach is used in analysis,
 but has not (to my knowledge) been used for quite this task
 - use charmed baryon decay chains: many constraints available
 - aim: tag relatively pure samples of n, \overline{n} and provide $\vec{p}(n)$ case-by-case
- ultimate goal is to truly distinguish tracks, had-interaction splitoffs, beam backgrounds, and neutrals

Analysis of $\Sigma_c \to \Lambda_c^+ \pi$

baryonic decay chain with protons or neutrons in the final state

- two decay channels (+ cc): $\Sigma_c^{++} \to \Lambda_c^+ \pi^+ \text{ and } \Sigma_c^0 \to \Lambda_c^+ \pi^-$
- ightharpoonup slow pion features peak in Δm
- ▶ 1 ab^{-1} of Belle data $\Rightarrow \sim 75\,000~\Lambda_c^+$

- ▶ exploit mass and pointing constraints ⇒ over-constrained system
- ▶ ultimate goal: analysis of $\Lambda_c^+ \to n \overline K^0 \pi^+$ and $\overline \Lambda_c^- \to \overline n K^0 \pi^-$
- first step: reconstruction using $\Lambda_c^+ \to p K^- \pi^+$
- second step: omit proton information in reconstruction

Selection of $\varSigma_c \! \to \varLambda_c^+ \pi$ with $\varLambda_c^+ \! \to p K^- \pi^+$

- particle identification requirements on all tracks
- ightharpoonup restricted mass window for Δm
- \blacktriangleright mass constraint on Λ_c^+
- decay and azimuthal angles
- ▶ Dalitz plot of m_{pK} vs $m_{K\pi}$
- resonant structure for intermediate states \overline{K}^{*0} , $\Delta(1232)^{++}$, Λ (1520)

- ightharpoonup construct total likelihood function from angles, Dalitz plot, vertex fit quality, and Σ_c momentum
- find optimal cut point
- ▶ achieve signal-to-background ratios of 23 and 35 for Λ_c^+ from Σ_c^{++} and Σ_c^0

Reconstruction ignoring detector measurements of proton quantities

- \blacktriangleright simulation of neutron case by reconstructing $\varLambda_c^+ \to p K^- \pi^+$ without proton
- possible thanks to over-constrained system:
 - \blacktriangleright kaon and pion define Λ_c^+ decay vertex
 - ▶ bachelor pion + other prompt tracks define primary vertex
 - ightharpoonup direction of Λ_c^+ constrained by pointing between the two vertices
 - \triangleright $p(\Lambda_c^+)$ constrained by Σ_c mass and flight direction of bachelor pion
- ightharpoonup angular resolution for protons in normal reconstruction \sim 0.8 mrad
- ▶ without proton 70-90 ×worse but probably good enough

Track-cluster matching

- neutral and charged particles create clusters in the ECL
- clusters matched by tracks considered charged, all the others neutral
- new matching principle based on angular distance

Direction from (0, 0, 0) to ECLCluster position.

- improved matching efficiency
- confirmed on real data
- mis-match rate kept below 2 %

$B^- \to \tau^- \overline{\nu_{\tau}}$ analysis

Semileptonic tagging

- Signal: $B^- \to \tau^- \overline{\nu_{\tau}}$
- Example tagging mode: $B^+ \to \overline{D}{}^0 l^+ \nu_l$ with $\overline{D}{}^0 \to K^+ \pi^-$. $K^+ \pi^- \pi^0$
- Background events come from $q \bar{q}$ continuum and $B \bar{B}$ events
- \rightarrow Fit to E_{ECL} to obtain signal yields

Decay Mode	Signal Yield	$\epsilon,~10^{-4}$	$\mathcal{B}, \ 10^{-4}$
Combined	143^{+36}_{-35}	14.13×10^{-4}	$1.54^{+0.38+0.29}_{-0.37-0.31}$

Crystal Grid Division

- > Denote E3" to be energy deposited in this shaded region
- > Expect to be higher for hadrons

Our Algorithm - Muons

Our Algorithm - Hadrons

