Invariance and Variability of Synonymy Networks

Benoît Gaillard*, Emmanuel Navarro[‡], Bruno Gaume*

* : CLLE-ERSS, Université de Toulouse

‡ : IRIT, Université de Toulouse

ACL'11, TextGraphs-6 Workshop, June 23, 2011

Exploring lexical networks

Multidisciplinary team, University of Toulouse: CNRS, IRIT, CLLE-ERSS

- ► NLP: resources building and consolidation: **Wisigoth** [Sajous et al., 2010]
- ► IR, networks of documents and labels: **KODEX** (Quaero) [Navarro et al., 2011]
- ► Cognition: lexicon learning dynamics and medical application [Gaume et al., 2008], metaphor resolution (SLAM)[Desalle et al., 2010]
- Linguistics: lexical networks and language typology [Gaume et al., 2009], Franco-Taiwan project M3

Today: issue of comparing the many lexical networks:

- ► High variability of synonymy networks at the edge level...
- ► Reliable resource comparison criterion ?

Comparing graphs' vertices

$$|V_1|$$

$$G_1 = (V_1, E_1), \quad G_2 = (V_2, E_2)$$

Lexical coverage :

$$R_{\bullet} = \frac{|V_{1} \cap V_{2}|}{|V_{2}|} \qquad P_{\bullet} = \frac{|V_{1} \cap V_{2}|}{|V_{1}|}$$
$$F_{\bullet} = 2 \cdot \frac{R_{\bullet} \cdot P_{\bullet}}{R_{\bullet} + P_{\bullet}}$$

Comparing graphs' vertices

$$G_1 = (V_1, E_1), \quad G_2 = (V_2, E_2)$$

Lexical coverage

$$R_{\bullet} = \frac{|V_{1} \cap V_{2}|}{|V_{2}|} \qquad P_{\bullet} = \frac{|V_{1} \cap V_{2}|}{|V_{1}|}$$
$$F_{\bullet} = 2 \cdot \frac{R_{\bullet} \cdot P_{\bullet}}{R_{\bullet} + P_{\bullet}}$$

Comparing graphs' vertices

$$G_1 = (V_1, E_1), \quad G_2 = (V_2, E_2)$$

Lexical coverage :

$$R_{\bullet} = \frac{|V_1 \cap V_2|}{|V_2|} \qquad P_{\bullet} = \frac{|V_1 \cap V_2|}{|V_1|}$$
$$F_{\bullet} = 2 \cdot \frac{R_{\bullet} \cdot P_{\bullet}}{R_{\bullet} + P_{\bullet}}$$

Reduce graphs to common vertices,

Consider graph as a synonymy judgment,

Use **Kappa** to measure inter judge agreement:

$$K_{\updownarrow}(G'_1, G'_2) = \frac{(p_0 - p_e)}{(1 - p_e)}$$

$$p_0 = \frac{1}{\omega} \cdot (|E'_1 \cap E'_2| + |\overline{E'_1} \cap \overline{E'_2}|)$$

$$p_e = \frac{1}{\omega^2} \cdot (|E'_1| \cdot |E'_2| + |\overline{E'_1}| \cdot |\overline{E'_2}|)$$

Reduce graphs to common vertices,

Use **Kappa** to measure inter judge agreement:

$$K_{\updownarrow}(G_1', G_2') = \frac{(p_0 - p_e)}{(1 - p_e)}$$

$$p_0 = \frac{1}{\omega} \cdot (|E_1' \cap E_2'| + |\overline{E_1'} \cap \overline{E_2'}|)$$

$$p_e = \frac{1}{\omega^2} \cdot (|E_1'| \cdot |E_2'| + |\overline{E_1'}| \cdot |\overline{E_2'}|)$$

Reduce graphs to common vertices,

Consider graph as a synonymy judgment,

Use **Kappa** to measure inter judge agreement:

$$K_{\updownarrow}(G'_1, G'_2) = \frac{(\rho_0 - \rho_e)}{(1 - \rho_e)}$$

$$\rho_0 = \frac{1}{\omega} \cdot (|E'_1 \cap E'_2| + |\overline{E'_1} \cap \overline{E'_2}|)$$

$$\rho_e = \frac{1}{\omega} \cdot (|E'_1| \cdot |E'_2| + |\overline{E'_1}| \cdot |\overline{E'_2}|)$$

Reduce graphs to common vertices, Consider graph as a synonymy judgment,

Use **Kappa** to measure inter judge agreement:

$$K_{\updownarrow}(G'_1, G'_2) = \frac{(p_0 - p_e)}{(1 - p_e)}$$

$$p_0 = \frac{1}{\omega}.(|E'_1 \cap E'_2| + |\overline{E'_1} \cap \overline{E'_2}|)$$

$$p_e = \frac{1}{\omega^2}.(|E'_1|.|E'_2| + |\overline{E'_1}|.|\overline{E'_2}|)$$

Experiment: Comparison of 7 synonymy resources

5 French dictionaries:

(General purpose, paper dictionaries)

- ► Bailly
- ▶ Benac
- Bertaud
- ▶ Larousse
- ▶ Robert

2 English resources:

- Wiktionary
- ► Princeton Wordnet

	n	m	$\langle k \rangle$	n _{lcc}	m _{lcc}	С	L_{lcc}	λ	r ²
Bai_V	3082	3648	2.46	2774	3417	0.04	8.24	-2.33	0.94
Ben_V	3549	4680	2.73	3318	4528	0.03	6.52	-2.10	0.96
Ber _V	6561	25177	7.71	6524	25149	0.13	4.52	-1.88	0.93
Larv	5377	22042	8.44	5193	21926	0.17	4.61	-1.94	0.88
Rob_V	7357	26567	7.48	7056	26401	0.12	4.59	-2.01	0.93
PWN_V	11529	23019	6.3	6534	20806	0.47	5.9	-2.4	0.90
Wik_V	7339	8353	2.8	4285	6093	0.11	8.9	-2.4	0.94

Results: A Weak Agreement ...

<i>K</i> _↓	Ben _V	Ber_V	Lar _V	Rob_V	Wik _V
Bai _V	0.583	0.309	0.255	0.288	
Ben _V		0.389	0.276	0.293	
Ber _V			0.416	0.538	
Lar _V				0.518	
PWN_V					0.247

Results: A Weak Agreement ...

K _↑	Ben _V	Ber _V	Lar _V	Rob_V	Wik _V
Bai _V	0.583	0.309	0.255	0.288	
Ben _V		0.389	0.276	0.293	
Ber _V			0.416	0.538	
Lar _V				0.518	
PWN_V					0.247

Results: A Weak Agreement ...

$\mathcal{K}_{\updownarrow}$	Ben_V	Ber_V	Lar _V	Rob_V	Wik _V
Bai _V	0.583	0.309	0.255	0.288	
Ben _V		0.389	0.276	0.293	
Ber _V			0.416	0.538	
Lar _V				0.518	
PWN_V					0.247

What's wrong ??

▶ Why do resources describing the same lexicon appear so different ?

The picture metaphor (1/2)

Hawthorne bridge, Portland

The picture metaphor (1/2)

Hawthorne bridge, Portland

Each even pixel painted in black...

Each **odd** pixel painted in black...

The picture metaphor (2/2)

The picture metaphor (2/2)

Can you see a difference ?

however... $sim(A, B) \approx 0$, when computed at **pixel level**.

Similarly on graphs: take a step back!

Weak agreement at the **edge level**

a stronger agreement at a coarser grain level...

Similarly on graphs: take a step back!

Weak agreement at the **edge level**

a stronger agreement at a coarser grain level...

As for the pictures: **no edge in common** between these two graphs.

How can we look at our graph at different grain levels?

Lexical Networks: Hierarchical Small Worlds

- Low density
- Short paths
- Heavy tailed degree distribution
- High clustering coefficient: dense zones

Random Walks

- ▶ Idea: if (u, v) are in the same "cluster", they may not be adjacent, but many shorth paths lead from u to v.
 - Random walkers tend to be trapped into clusters,
 - Note: possible approach for clustering

How can we look at our graph at different grain levels?

Lexical Networks: Hierarchical Small Worlds

- Low density
- Short paths
- Heavy tailed degree distribution
- High clustering coefficient: dense zones

Random Walks

- ▶ Idea: if (u, v) are in the same "cluster", they may not be adjacent, but many shorth paths lead from u to v.
 - Random walkers tend to be trapped into clusters,
 - Note: possible approach for clustering

- \bullet start from a node u,
- walk to a neighbour with equal probability,
- walk to a neighbour with equal probability
- etc...

$$t = 0$$
, $P^{t}(u, *) = [0, 0, 0, 1.0, 0, 0, 0, 0, 0]$

- start from a node u,
- walk to a neighbour with equal probability,
- walk to a neighbour with equal probability,
- etc..

$$t = 1$$
, $P^{t}(u, *) = [0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0]$

- start from a node u,
- walk to a neighbour with equal probability,
- walk to a neighbour with equal probability,
- etc..

$$t = 2$$
, $P^{t}(u, *) = [0.2, 0.16, 0.14, 0.21, 0.11, 0.08, 0.03, 0.07, 0]$

- start from a node u,
- walk to a neighbour with equal probability,
- walk to a neighbour with equal probability,
- etc...

$$t = 3$$
, $P^{t}(u, *) = [0.15, 0.15, 0.14, 0.17, 0.13, 0.08, 0.06, 0.07, 0.02]$

Strong and weak confluence

▶ **Long walks**: probability of reaching a node v only depends on v's degree:

$$\lim_{t \to \infty} P^t(u, v) = \frac{\deg(v)}{\sum_{n \in V} \deg(n)} = \pi_v \tag{1}$$

- ▶ **Short walks**: high probability of staying in a dense zones:
 - $P_t(u, v) > \pi_v$ if u et v in the same cluster: strong confluence
 - $P_t(u, v) < \pi_v$ otherwise: weak confluence

Illustration of weak and strong confluence (1/2)

Confluences, in Rob_V , between:

éplucher (peel) \leftrightarrow dépecer (tear apart) and éplucher (peel) \leftrightarrow sonner (ring).

décomposer

Illustration of weak and strong confluence (2/2)

In Robert: éplucher (peel) \leftrightarrow dépecer (tear apart) éplucher (peel) \leftrightarrow sonner (ring)

In Larousse:

éplucher (peel) ↔ dépecer (tear apart) éplucher (peel) ↔ sonner (ring)

Synonymy	Confluence	
No	weak	Unrelated
No	strong	Potential synonyms
Yes	weak	Shortcut
Yes	strong	Strong synonyms

Synonymy	Confluence	
No	weak	Unrelated \bigcirc
No	strong	Potential synonyms
Yes	weak	Shortcut
Yes	strong	Strong synonyms

Synonymy	Confluence	
No	weak	Unrelated \bigcirc
No	strong	Potential synonyms 🔾
Yes	weak	Shortcut
Yes	strong	Strong synonyms

Synonymy	Confluence	
No	weak	Unrelated \bigcirc
No	strong	Potential synonyms 🔾
Yes	weak	Shortcut
Yes	strong	Strong synonyms

Synonymy	Confluence	
No	weak	Unrelated \bigcirc
No	strong	Potential synonyms 🔾
Yes	weak	Shortcut
Yes	strong	Strong synonyms 🔷

Negotiation:

- $ightharpoonup (G_1, G_2)
 ightarrow (G_1^{+G_2}, G_2^{+G_1})$
- $ightharpoonup G_1^{+G_2}$: add synonyms of G_2 that are **potential synonyms** of G_1
- $ightharpoonup G_2^{+G_1}$: add synonyms of G_1 that are **potential synonyms** of G_2

$$SMAC(G_1, G_2) = K_{\updownarrow}(G_1^{+G_2}, G_2^{+G_1})$$

Negotiation:

- $lackbox{(}G_1,G_2)
 ightarrow (G_1^{+G_2},G_2^{+G_1})$
- $ightharpoonup G_1^{+G_2}$: add synonyms of G_2 that are **potential synonyms** of G_1
- \triangleright $G_2^{+G_1}$: add synonyms of G_1 that are **potential synonyms** of G_2

$$SMAC(G_1, G_2) = K_{\updownarrow}(G_1^{+G_2}, G_2^{+G_1})$$

Negotiation:

- $lacksquare (G_1, G_2)
 ightarrow (G_1^{+G_2}, G_2^{+G_1})$
- $ightharpoonup G_1^{+G_2}$: add synonyms of G_2 that are **potential synonyms** of G_1
- $ightharpoonup G_2^{+G_1}$: add synonyms of G_1 that are *potential synonyms* of G_2

$$SMAC(G_1, G_2) = K_{\updownarrow}(G_1^{+G_2}, G_2^{+G_1})$$

Negotiation:

- $lackbox{(}G_1,G_2)
 ightarrow (G_1^{+G_2},G_2^{+G_1})$
- $ightharpoonup G_1^{+G_2}$: add synonyms of G_2 that are **potential synonyms** of G_1
- ▶ $G_2^{+G_1}$: add synonyms of G_1 that are *potential synonyms* of G_2

$$\mathit{SMAC}(G_1,G_2) = \mathit{K}_{\updownarrow}(G_1^{+G_2},G_2^{+G_1})$$

Experimental set up

- ▶ Negociation between pairs of graphs (same POS, same language),
- ▶ Shortest "interesting" walks: t = 2,
- Measure Kappa of graphs after negociation,
- ► Control experiment: negociation of *random graphs* (same edge agreement).

	K _⊥	Ben_V	Ber_V	Lar _V	Rob_V	Wik_V
	ori.	0.583	0.309	0.255	0.288	
Bai _V	acc.	0.777	0.572	0.603	0.567	
Daily	ori. r.	0.583	0.309	0.256	0.288	
	acc. r.	0.585	0.313	0.262	0.293	
	ori.		0.389	0.276	0.293	
Pon	acc.		0.657	0.689	0.636	
Ben _V	ori. r.		0.390	0.276	0.294	
	acc. r.		0.392	0.283	0.301	
	ori.			0.416	0.538	
Por	acc.			0.838	0.868	
Ber _V	ori. r.			0.417	0.539	
	acc. r.			0.434	0.549	
	ori.				0.518	
Lar	acc.				0.852	
Lar _V	ori. r.				0.518	
	acc. r.				0.529	
	ori.					0.247
PWN_V	acc.					0.540
FVVIV	ori. r.					0.247
	acc r					0.251

	$\mathcal{K}_{\updownarrow}$	Ben_V	Ber_V	Larv	Rob_V	Wik_V
	ori.	0.583	0.309	0.255	0.288	
Bai_V	acc.	0.777	0.572	0.603	0.567	
Daiv	ori. r.	0.583	0.309	0.256	0.288	
	acc. r.	0.585	0.313	0.262	0.293	
	ori.		0.389	0.276	0.293	
Pon	acc.		0.657	0.689	0.636	
Ben _V	ori. r.		0.390	0.276	0.294	
	acc. r.		0.392	0.283	0.301	
	ori.			0.416	0.538	
D	acc.			0.838	0.868	
Ber _V	ori r			0.417	0.539	
0.434					0.549	
n medium	to strong	agreeme	ent,		0.518	

- ► From medium to strong agreement,

- ▶ Note: order is not maintained!

PWN_V	acc.
1 00100	ori. r.
	acc. r.

0.529	
	0.247
	0.540
	0.247
	0.251

0.852 0.518 0 520

	K _↑	Ben_V	Ber _V	Lar _V	Rob_V	Wik_V
	ori.	0.583	0.309	0.255	0.288	
Bai _V	acc.	0.777	0.572	0.603	0.567	
Daily	ori. r.	0.583	0.309	0.256	0.288	
	acc. r.	0.585	0.313	0.262	0.293	
	ori.		0.389	0.276	0.293	
Ben _V	acc.		0.657	0.689	0.636	
Delly	ori. r.		0.390	0.276	0.294	
	acc. r.		0.392	0.283	0.301	
	ori.			0.416	0.538	
Por	acc.			0.838	0.868	
Ber _V	ori. r.			0.417	0.539	
1	I	l .	l	-0.404	0 5 4 0	

- ▶ From medium to strong agreement,
- ► From weak to medium agreement,
- ► Control: random networks fail to improve
- ► Note: order is not maintained

PWN_V	acc.		
	ori. r.		
	lacc.r.l		

.417	0.539	
.434	0.549	
	0.518	
	0.852	
	0.518	
	0.529	

0.247 **0.540** 0.247 0.251

	K _↑	Ben_V	Ber _V	Lar _V	Rob_V	Wik_V
	ori.	0.583	0.309	0.255	0.288	
Bai _V	acc.	0.777	0.572	0.603	0.567	
Daily	ori. r.	0.583	0.309	0.256	0.288	
	acc. r.	0.585	0.313	0.262	0.293	
	ori.		0.389	0.276	0.293	
Ben _V	acc.		0.657	0.689	0.636	
Delly	ori. r.		0.390	0.276	0.294	
	acc. r.		0.392	0.283	0.301	
	ori.			0.416	0.538	
Por	acc.			0.838	0.868	
Ber _V	ori. r.			0.417	0.539	
1.	I		l	2.434	0.549	

- ▶ From medium to strong agreement,
- From weak to medium agreement,
- ► Control: random networks fail to improve.

PWN_V	acc.		
	ori. r.		
	acc r		

0.247
0.540
0.247
0.251

0.518

0.852 0.518

0.529

	K _↑	Ben_V	Ber _V	Lar _V	Rob_V	Wik_V
	ori.	0.583	0.309	0.255	0.288	
Bai _V	acc.	0.777	0.572	0.603	0.567	
Daiv	ori. r.	0.583	0.309	0.256	0.288	
	acc. r.	0.585	0.313	0.262	0.293	
	ori.		0.389	0.276	0.293	
Ben _V	acc.		0.657	0.689	0.636	
Delly	ori. r.		0.390	0.276	0.294	
	acc. r.		0.392	0.283	0.301	
	ori.			0.416	0.538	
Par	acc.			0.838	0.868	
Ber _V	ori. r.			0.417	0.539	
	1	I	l	1.434	0.549	

- ► From medium to strong agreement,
- ► From weak to medium agreement,
- ► Control: random networks fail to improve.
- ► Note: order is not maintained!

PWN_V	acc.		
	ori. r.		
	acc r		

0.247
0.540
0.247

0.518

0.852 0.518

0.529

Conclusions and Perspectives

Global agreement on semantic structures of resource despite pair by pair synonymy variability:

► Semantic disagreemet between structurally different resources

Perspectives and applications:

- Merging resources: between union and intersection, filtering shortcuts,
- Evaluating resources:
 Semantic agreement of new resources with (sets of) established resources,
- Bilingual semantic comparison:
 via translation bigraph, SMAC of graphs of different languages,
- ► Semi-automatic **enrichment** of Wiktionary by confluence.

Application to semi-automatic enrichment of Wiktionary

WISIGOTH Project: http://redac.univ-tlse2.fr/wisigoth/

Thank you!

Any question?

Desalle, Y., Gaume, B., and Duvignau, K. (2010).

Slam : Solutions lexicales automatique pour métaphores.

CoRR, abs/1002.4820.

Gaume, B., Duvignau, K., Prévot, L., and Desalle, Y. (2008).

Toward a Cognitive Organization for Electronic Dictionaries, the Case for Semantic Proxemy.

In Proceedings of the Workshop on Cognitive Aspects of the Lexicon (COGALEX 2008), pages 86–93, Manchester.

Gaume, B., Duvignau, K., and Vanhove, M. (2009).

Semantic Associations and Confluences in Paradigmatic Networks.

In Vanhove, M., editor, From Polysemy to Semantic Change: Towards a Typology of Lexical Semantic Associations, pages 233–264. John Benjamins Publishing.

Navarro, E., Chudy, Y., Gaume, B., Cabanac, G., and Pinel-Sauvagnat, K. (2011).

Kodex ou comment organiser les résultats d'une recherche d'information par détection de communautés sur un graphe biparti ?

In CORIA'11, Avignon, pages 25-40. ARIA.

Sajous, F., Navarro, E., Gaume, B., Prévot, L., and Chudy, Y. (2010).

Semi-automatic endogenous enrichment of collaboratively constructed lexical resources: Piggybacking onto wiktionary.

In Loftsson, H., Rögnvaldsson, E., and Helgadóttir, S., editors, Advances in NLP, volume 6233 of LNCS, pages 332–344. Springer Berlin / Heidelberg.