Lecture 7

Chapter 2: Application Layer

2.4 DNS

2.5 P2P applications

2.6 video streaming and content distribution networks

2.7 socket programming with UDP and TCP

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

DNS: domain name system

people: many identifiers:

SSN, name, passport # *Internet hosts, routers:*

- IP address (32 bit) used for addressing datagrams
- "name", e.g., www.yahoo.com - used by humans
- Q: how to map between IP address and name, and vice versa?

Domain Name System:

- distributed database implemented in hierarchy of many *name servers*
- application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

DNS: services, structure

DNS services

- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

DNS: services, structure

DNS services

- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

77777

DNS: services, structure

DNS services

- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: doesn't scale!

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approximation:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

contacted by local name server that can not resolve name

- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

More on DNS

Supplement to Section 2.4

Root Servers at IANA.org

Hostname	IP Addresses	Manager
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	VeriSign, Inc.
b.root-servers.net	192.228.79.201, 2001:500:84::b	University of Southern California (ISI)
c.root-servers.net	192.33.4.12, 2001:500:2::c	Cogent Communications
d.root-servers.net	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4	US Department of Defense (NIC)
h.root-servers.net	198.97.190.53, 2001:500:1::53	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	VeriSign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
I.root-servers.net	199.7.83.42, 2001:500:3::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

Where are the root servers?

root-servers.org shows a map

Letters show specific operator

 For example, J on Dallas refers to #10 (J is 10th letter of alphabet), which is Verisign. There is a copy of a single provider's root server in Dallas, operated by Verisign.

Zooming in on 60 on US Southeast

Zooming on 3 in southeast Texas

• 3 root servers, 1 in San Antonio, 2 in Monterrey.

More in Monterrey

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS name resolution example

 host at cis.poly.edu wants
 IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

DNS name resolution example

- recursive query:
- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be out-of-date (best effort nameto-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire
- update/notify mechanisms proposed IETF standard
 - RFC 2136

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

DNS protocol, messages

- query and reply messages, both with same message format
- message header
- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

← 2 bytes → 2 bytes →			
identification	flags		
# questions	# answer RRs		
# authority RRs	# additional RRs		
questions (variable # of questions)			
answers (variable # of RRs)			
authority (variable # of RRs)			
additional info (variable # of RRs)			

DNS protocol, messages

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 (networkutopia.com, dns1.networkutopia.com, NS)
 (dns1.networkutopia.com, 212.212.21.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com

Attacking DNS

DDoS attacks

- bombard root servers with traffic
 - not successful to date
 - traffic filtering
 - local DNS servers cache IPs of TLD servers, allowing root server bypass
- bombard TLD servers
 - potentially more dangerous

redirect attacks

- man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus relies to DNS server, which caches

exploit DNS for DDoS

- send queries with spoofed source address: target IP
- requires amplification

