

FINAL PROJECT SANBERCODE BOOTCAMP

MIKHAEL KIRENIUS RANATA

Background

Dataset

EDA

Data Cleaning

Clustering

Hasil

Kesimpulan

BACKGROUND

HELP International adalah LSM kemanusiaan internasional yang berkomitmen untuk memerangi kemiskinan dan menyediakan fasilitas dan bantuan dasar bagi masyarakat di negara-negara terbelakang saat terjadi bencana dan bencana alam.

HELP International telah berhasil mengumpulkan sekitar \$ 10 juta. Saat ini, CEO LSM perlu memutuskan bagaimana menggunakan uang ini secara strategis dan efektif.

DATASET

Dataset Info

Memiliki total row 167 dan tidak memiliki nilai null atau missing value didalamnya

Dataset Features

Memiliki Column seperti Negara, Kematian anak, eskpor, kesehatan, impor, pendapatan,inflansi,harapan hidup, jumlah fertiliti,GDP perkapita.

Dataset ini memiliki data type object, float dan juga int.

FEATURES SELECTION

(01)

Mengambil Column
Pendapatan yang dimana
pendapatan merupakan
pendapatan setiap orang
didalam negara.

02)

Mengambil column kematian anak yang dimana kematian anak merupakan jumlah kematian anak dibawah usia 5 tahun per 1000 kelahiran.

DATA CLEANING

Melakukan pengecekan missing values pada dataset dengan menggunakan df.info() dan df.describe() untuk mendapatkan data dari dataset dengan lebih baik. sehingga dapat menghasilkan data seperti berikut

Data	columns (total 10	columns):	
#	Column	Non-Null Count	Dtype
0	Negara	167 non-null	object
1	Kematian_anak	167 non-null	float64
2	Ekspor	167 non-null	float64
3	Kesehatan	167 non-null	float64
4	Impor	167 non-null	float64
5	Pendapatan	167 non-null	int64
6	Inflasi	167 non-null	float64
7	Harapan_hidup	167 non-null	float64
8	Jumlah_fertiliti	167 non-null	float64
9	GDPperkapita	167 non-null	int64

DATA CLEANING

Melakukan Pengecekan apakah terdapat outlier pada data yang telah dipilih didalam dataset. outlier adalah adanya titik data yang tidak sesuai dengan data lainnya seperti adanya nilai yang berbeda jauh dibandingkan data lainnya sehingga akan merusak analisis statistik dalam visualisasi.

CHECK OUTLIER

CHECK OUTLIER

HANDLING OUTLIER

Melakukan Handling pada Outlier dengan Function Remove Outlier

```
def remove_outlier(df):
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    df = df[(df > lower_bound) & (df < upper_bound)]
    return df</pre>
```


Kematian_anak Komatian anak

HANDLING OUTLIER

HANDLING OUTLIER

HANDLING OUTLIER

Handling outlier didalam dataset dengan menggunakan metode IQR, penggunaan metode ini adalah dengan cara menghitung Q1 dan Q3. Q1 merupakan kuartil bawah dari data, Q3 merupakan kuartil atas dari data. setelah mendapatkan nilai Q1 dan Q3 tahapan selanjutnya dalam metode ini adalah dengan menghitung IQR. jika data melebihi batas atas dan kurang dari batas bawah maka data akan dianggap sebagai outlier dan menghapus data tersebut dari dataframe.

UNIVARIATE ANALYSIS

Describe

Menggunakan Function Describe terhadap dataset untuk mendapatkan informasi yang lebih detail mengenai nilai nilai dari setiap column seperti central tendency dan juga non null value.

	Kematian_anak	Ekspor	Kesehatan	Impor	Pendapatan	Inflasi	Harapan_hidup	Jumlah_fertiliti	GDPperkapita
count	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000
mean	38.270060	41.108976	6.815689	46.890215	17144.688623	7.781832	70.555689	2.947964	12964.155689
std	40.328931	27.412010	2.746837	24.209589	19278.067698	10.570704	8.893172	1.513848	18328.704809
min	2.600000	0.109000	1.810000	0.065900	609.000000	-4.210000	32.100000	1.150000	231.000000
25%	8.250000	23.800000	4.920000	30.200000	3355.000000	1.810000	65.300000	1.795000	1330.000000
50%	19.300000	35.000000	6.320000	43.300000	9960.000000	5.390000	73.100000	2.410000	4660.000000
75%	62.100000	51.350000	8.600000	58.750000	22800.000000	10.750000	76.800000	3.880000	14050.000000
max	208.000000	200.000000	17.900000	174.000000	125000.000000	104.000000	82.800000	7.490000	105000.000000

BIVARIATE ANALYSIS

- 1.00

- 0.25

- 0.00

-0.25

-0.50

Kematian_anak -	1	-0.32	-0.2	-0.13	-0.52	0.29	-0.89	0.85	-0.48
Ekspor -	-0.32	1	-0.11	0.74	0.52	-0.11	0.32	-0.32	0.42
Kesehatan -	-0.2	-0.11	1	0.096	0.13	-0.26	0.21	-0.2	0.35
lmpor -	-0.13	0.74	0.096	1	0.12	-0.25	0.054	-0.16	0.12
Pendapatan -	-0.52	0.52	0.13	0.12	1	-0.15	0.61	-0.5	0.9
Inflasi -	0.29	-0.11	-0.26	-0.25	-0.15	1	-0.24	0.32	-0.22
Harapan_hidup -	-0.89	0.32	0.21	0.054	0.61	-0.24	1	-0.76	0.6
Jumlah_fertiliti -	0.85	-0.32	-0.2	-0.16	-0.5	0.32	-0.76	1	-0.45
GDPperkapita -	-0.48	0.42	0.35	0.12	0.9	-0.22	0.6	-0.45	1
	Kematian_anak -	Ekspor -	Kesehatan -	- Impor	Pendapatan -	Inflasi -	Harapan_hidup -	Jumlah_fertiliti -	GDPperkapita -

Heatmap

Menggunakan heatmap sebagai visualisasi untuk mendapatkan korelasi antar data didalam dataset, penggunaan heatmap lebih mudah untuk dimengerti untuk mendapatkan nilai korelasi antar data.

dari heatmap ini dapat didapatkan data korelasi antara pendapatan dan kematian anak memiliki nilai -0.52 sehingga data tersebut memiliki korelasi.

SCALE DATA

Melakukan scaling data yang sudah dilakukan remove outlier sehingga data dapat dilakukan cluster.

```
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

sc = StandardScaler()
fd_outlierScaled = sc.fit_transform(df_outlier.astype(float))
```


ELBOW METHOD

Menentukan nilai cluster dengan menggunakan elbow method. memilih nilai 3 karena nilai siku berada pada angka 3.

CLUSTERING


```
new_df = pd.DataFrame(data=df_outlierScaled, columns=['Kematian_anak', 'Pendapatan'])
new_df['label'] = labels1
```

```
plt.figure(figsize=(10, 10))
plt.scatter(new_df.Kematian_anak[new_df.label == 0], new_df.Pendapatan[new_df.label == 0], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(new_df.Kematian_anak[new_df.label == 1], new_df.Pendapatan[new_df.label == 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(new_df.Kematian_anak[new_df.label == 2], new_df.Pendapatan[new_df.label == 2], s = 100, c = 'green', label = 'Cluster 3')
plt.title('Clusters of countries')
plt.xlabel('Kematian_anak')
plt.ylabel('Pendapatan')
plt.show()
```

CLUSTERING

CLUSTERING

Cluster Country

Cluster yang difokuskan adalah cluster dengan label 1 berwarna biru karena dari visualisasi sebelumnya. dapat disimpulkan bahwa semakin kecil pendapatan maka semakin besar angka kematian anak di negara tersebut.

Cluster Country List

Afganistan

Angola

Bangladesh

Benin

Bulgaria

Burkino Faso

Cambodia

Chile

China

HASIL

KESIMPULAN

Bedasarkan Kesimpulan dari clustering mengambil data dari cluster berwarna biru dengan melakukan visualisasi pendapatan per orang. didapatkan bahwa pendapatan terendah dimiliki oleh negara

Congo, Dem. Rep.

• Liberia

Mozambique

Organisasi HELP International dapat memfokuskan untuk membantu ketiga negara ini untuk memerangi kemiskinan sehingga dapat meningkatkan pendapatan setiap orangnya. hal ini disimpulkan bedasarkan korelasi antara data pendapatan dan kematian anak. Negara yang memiliki nilai pendapatan lebih besar cenderung memiliki nilai kematian anak yang lebih kecil.

TERIMA KASIH

