TECNOLÓGICO DE MONTERREY

Computational intelligence

Homework 4

Student:
Jacob Rivera

Professor: Dr. José Carlos BAYLISS

September 18, 2019

Problems

1. Tournament selection

	Population	f
A	010111000	-1
В	011101001	4
\mathbf{C}	111000110	-2
D	100001000	1
\mathbf{E}	010101000	0

- How many copies of each chromosome are present in the mating pool?
 - A: 0
 - B: 3
 - C: 0
 - D: 2
 - E: 0
- What is the average fitness of the chromosomes in the mating pool?

2.8

• If the tournament size is reduced to one, what is the probability that the chromosome 100001000 appears in the mating pool?

100%

• If the tournament size is increased to five, and both crossover and mutation rate are set to zero, what is the probability that the chromosome 010111000 survives to the next population?

0%

2. Whole arithmetic crossover

$$x = \{0.18, 0.75, 0.92, 0.26, 0.44\}$$
$$y = \{0.36, 0.77, 0.62, 0.13, 0.51\}$$

$$\begin{array}{ll} c_{.5}^1 = \{0.27, .76, .77, .195, .475\} & c_{.5}^2 = \{0.27, .76, .77, .195, .475\} \\ c_{.1}^1 = \{0.342, 0.768, 0.65, 0.143, 0.503\} & c_{.1}^2 = \{0.198, 0.752, 0.89, 0.247, 0.447\} \end{array}$$

3. Exponential ranking selection Sum: 5.4375

	Population	f	r	f'
A	6661166703	5	3.5	2.296875
В	3306772232	5	3.5	2.296875
\mathbf{C}	0489794549	4	1.5	0.421875
D	2660088784	4	1.5	0.421875
\mathbf{E}	3578647359	3	0	0

- A: $\frac{2.29}{5.4375} = 0.4224$ B: $\frac{2.29}{5.4375} = 0.4224$
- C: $\frac{0.42}{5.4375} = 0.0775$
- D: $\frac{0.42}{5.4375} = 0.0775$
- E: 0

4. Schemata

• Given two schemata, 1*001*1* and 00*11*11, which schema corresponds to more solutions?

$1*001*1* \rightarrow 8$	$00*11*11 \to 4$
- 11001111	- 00111111
- 11001110	- 00111011
- 11001011	- 00011111
- 11001010	- 00011011
- 10001111	
- 10001110	
- 10001011	
- 10001010	

- \bullet What is the order of the schemata 01101001, ****1**0 and 1*0*0010?
 - $-~01101001 \rightarrow 8 \rightarrow 2$
 - $-****1**0 \rightarrow 2 \rightarrow 0$
 - $-1*0*0010 \rightarrow 6 \rightarrow 1$
- What is the defining length of the schemata $00^{**}1010$, $**0^{**}111$ and $*0^{***}1^{*}0$?
 - $-~00^{**}1010\rightarrow7$
 - $**0**111 \rightarrow 5$
 - $-*0***1*0 \rightarrow 6$

• Given a population of five chromosomes: 100, 001, 111, 010, and 000, how many different schemata exist in such a population? As part of your answer, calculate the lower and upper bounds of schemata in the population.

Upper bound = $5 * 2^3 = 40$ Lower bound = $2^3 = 8$

- 000	- *0*	- 111	- 001
- 00*	_ ***	- 11*	- 0*1
- 0*0	- 010	- 1*1	- *01
- *00	- 01*	- *11	- 100
- 0**	- *10	- 1**	- 10*
- **0	- *1*	- ** 1	- 1*0

- 5. Practical case
- 6. Analysis