Neural Net Midterm Report

Reporter: Wei-Yuan Hsu

Advisor: Prof. Hahn-Ming Lee

Problem Definition

Air Quality Station	Number	Name
Urban	12	Ex. dongsi (東城東四)
Suburban	11	Ex. fangshan_aq 房山良鄉
Reference	7	Ex. dingling_aq 昌評定陵
Traffic	5	Ex. qianmen_aq 前門東大街

Data Exploration

```
In [11]:
          1 air station.size()
Out[11]: stationId
         aotizhongxin ag
                               8886
         badaling ag
                               8886
         beibuxinqu aq
                               8886
         daxing aq
                               8886
         dingling ag
                               8886
                               8886
         donggaocun aq
         dongsi ag
                               8886
                               8886
         dongsihuan aq
         fangshan ag
                               8886
         fengtaihuayuan aq
                               8886
         quanyuan aq
                               8886
                               8886
         gucheng aq
         huairou aq
                               8886
                               8886
         liulihe ag
         mentougou aq
                               8886
                               8886
         miyun aq
                               8886
         miyunshuiku aq
                               8886
         nansanhuan ag
                               8886
         nongzhanguan aq
                               8886
         pingchang ag
                               8886
         pinggu aq
         qianmen aq
                               8886
                               8886
         shunyi aq
```


Any missing Value?

Data Exploration - Missing Value

Method#1	Fill NaN with Value ex. zero
Method#2	Drop Data
Method#3	

Methodology

Q: What kind of question it is?

A: It is a typical regression analysis

Model

Element	LSTM
Hidden Layer	1
Output Layer	1

[1] ML 101: Linear Regression Tutorial, https://medium.com/@amarbudhiraja/ml-101-linear-regression-tutorial-1e40e29f1934

Tools

Keras

Result

Loss

\mathbf{L}_{j}	μ

Missing Value	Fill NaN
Epoch	30
Model	RNN

Loss

Epoch

Missing Value	Fill NaN
Epoch	50
Model	RNN

TODO

Topic	Solution
Feature Enginnering	Feature Importance Analysis
Validation Automation	Pipeline
Model	Ensemble / XGBoost

