

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- Objective function
 - · # of jobs scheduled, delay, total execution time

Interval Scheduling

- Given a set of n tasks
- i-th task start and finish time: s(i), f(i)
- Two tasks are compatible if they don't overlap
- Goal: find the maximum number of mutually compatible tasks

Greedy template

Let T be the set of tasks, construct a set of independent tasks I

A is the rule determining the greedy algorithm

Simulate the greedy algorithm for each of these heuristics

A1:	Schedule earliest starting task					
A2:	Schedule shortest available task					
A3:	Schedule task with fewest conflicting tasks					

Greedy solution based on earliest finishing time

Example 1			
	 	 	-
Evenne 2		 	
Example 2			
	 	-	
Example 3			
	 	 	6

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$ Sort tasks by finish time so that $f_1 \leq f_2 \leq \cdots \leq f_n$ $A \leftarrow \Phi$ for i=1 to n if task i is compatible with A $A \leftarrow A \cup \{i\}$

Runtime: O(n log n) - sorting

To check if task i is compatible with A, just need to keep track of the last added task j^* and compare s_i to f_{i^*}

Analysis of EARLIEST-FINISH-TIME-FIRST

Claim: the EARLIEST-FINISH-TIME-FIRST algorithm is optimal

Key idea: EARLIEST-FINISH-TIME-FIRST stays ahead

- Let $i_1 i_2 \dots i_p$ be the set of tasks selected by greedy ordered by finish time
- Let $j_1 j_2 \dots j_q$ be a set of tasks selected by a different algorithm ordered by finish time

We can show that for $r \le \min(p, q)$, $f(i_r) \le f(j_r)$

Stay ahead lemma

Proof (by induction)

Base case:

Greedy choose i_1 with the minimum f, so we must have $f(i_1) \le f(j_1)$

Induction assumption:

Assume this is true for $f(i_r) \le f(j_r)$ for r=1,...,k

Inductive step:

At the end of r-th iteration, task i_{r+1} and j_{r+1} are both compatible with A Greedy always choose the one with minimum f, thus $f(i_{r+1}) \le f(j_{r+1})$

Completing the proof

- Let i_1, \ldots, i_p be the set of tasks found by EFTF in increasing order of finish times
- Let j_1, \ldots, j_q be the set of tasks found by an optimal algorithm in increasing order of finish times
- If p < q, then the EFTF stopped before it ran out of tasks - contradiction

Thus we must have p=q