Ước lượng khoảng tin cậy

Uớc lượng μ:

Trên 1 mẫu				Trên 2 mẫu phụ thuộc		
	Biết σ^2	Chưa biết σ^2 $n \ge 30$	Chưa biết σ^2 $n < 30$	Bước 1	$d_{i} = X_{1i} - X_{2i}; \overline{d} = \frac{\sum_{i=1}^{n} d_{i}}{n}; S_{d} = \sqrt{\frac{\sum_{i=1}^{n} \left(d_{i} - \overline{d}\right)^{2}}{n - 1}}$	
Bước 1	\overline{X}	\overline{X} , S	\overline{X} ,S		C	
Bước 2	$\varepsilon = Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$	$\varepsilon = Z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$	$\varepsilon = t_{\alpha/2; n-1} \frac{S}{\sqrt{n}}$	Bước 2	$\varepsilon = t_{(n-1;\alpha/2)} \frac{S_d}{\sqrt{n}}$	
Bước 3	$\mu \in (\overline{X} \pm \varepsilon)$	$\mu \in (\overline{X} \pm \varepsilon)$	$\mu \in (\overline{X} \pm \varepsilon)$	Bước 3	$\mu_1 - \mu_2 \in \left(\overline{d} \pm \varepsilon\right)$	

	Trên 2 mẫu độc lập				
				n ₁ hoặc n ₂ < 30 Chưa bi	ết σ_1^2, σ_2^2
	Biết σ_1^2, σ_2^2	$n_1 \text{ và } n_2 \ge 30$		$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$
		Chưa biết σ_1^2, σ_2^2	Bước 1	$\overline{X_1}, \overline{X_2}, S_1, S_2$	$\overline{X_1}, \overline{X_2}, S_1, S_2$
Bước 1 Bước 2	$\overline{X_1}, \overline{X_2}$ $\varepsilon = Z_{\frac{\alpha}{2}} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$	$\overline{X_1}, \overline{X_2}, S_1, S_2$ $\varepsilon = Z_{\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$	Bước 2	$\varepsilon = t_{\alpha/2;df}.S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $df = n_1 + n_2 - 2$	$\varepsilon = t_{\alpha/2;df} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$ $df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_2^2}{n_2}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}$
Bước 3	$\mu_1 - \mu_2 \in \left(\frac{1}{2} \right)$	$\overline{X_1} - \overline{X_2} \pm \varepsilon$	Bước 3	$S_{p} = \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}}$ $\mu_{1} - \mu_{2} \in (\overline{X_{1}})$	n_1-1 n_2-1

Uớc lượng p:

Trên 1 mẫu	Trên 2 mẫu	
Bước 1 $f = \frac{m}{n}$ với m = số phần tử có tính chất A trong mẫu	Burée 1 n_1, n_2, f_1, f_2	
Buớc 2 $\varepsilon = Z_{\alpha/2} \sqrt{\frac{f(1-f)}{n}}$	Burác 2 $\mathcal{E} = Z_{\alpha/2} \sqrt{\frac{f_1(1-f_1)}{n_1} + \frac{f_2(1-f_2)}{n_2}}$	
Buốc 3 $p \in (f \pm \varepsilon)$	Bước 3 $P_1 - P_2 \in (f_1 - f_2 \pm \varepsilon)$	

$U\acute{o}c$ lượng σ^2 :

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

Trên 2 mẫu			
	$\frac{S_1^2}{S_2^2} F_{1-\alpha/2}^{(n_2-1;n_1-1)} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{S_1^2}{S_2^2} F_{\alpha/2}^{(n_2-1;n_1-1)}$		
	Trong đó $F_{1-\alpha/2}^{(n_2-1;n_1-1)}; F_{\alpha/2}^{(n_2-1;n_1-1)}$		
	là phân phối Fisher , tra ở bảng tra 4.		
	Chú ý: trong bảng tra, ta chỉ có giá trị $F_{lpha/2}^{(n_2-1;n_1-1)}$		
	nên ta áp dụng công thức để tính		
	$F_{1-\alpha/2}^{(n_2-1;n_1-1)} = \frac{1}{F_{\alpha/2}^{(n_1-1;n_2-1)}}$		

Kiểm định giả thuyết thống kê

$extcolor{Diều}$ kiện bác bỏ H_0 :

Kiểm định phía trái	Kiểm định phía phải	Kiểm định 2 phía
$Z < -Z_{\alpha}$	$Z>Z_{lpha}$	$ Z >Z_{rac{lpha}{2}}$
$T < -T_{\alpha}^{n-1} (1 \text{ mẫu})$ $T < -T_{\alpha}^{n1+n2-2} (2 \text{ mẫu}, \sigma_1^2 = \sigma_2^2)$ $T < -T_{\alpha}^{df} (2 \text{ mẫu}, \sigma_1^2 \neq \sigma_2^2)$	$T > T_{\alpha}^{n-1} (1 \text{ mẫu})$ $T > T_{\alpha}^{n1+n2-2} (2 \text{ mẫu}, \sigma_1^2 = \sigma_2^2)$ $T > T_{\alpha}^{df} (2 \text{ mẫu}, \sigma_1^2 \neq \sigma_2^2)$	$ T > T_{\frac{\alpha}{2}}^{n-1} (1 \text{ mẫu})$ $ T > T_{\frac{\alpha}{2}}^{n1+n2-2} (2 \text{ mẫu}, \sigma_1^2 = \sigma_2^2)$ $ T > T_{\frac{\alpha}{2}}^{df} (2 \text{ mẫu}, \sigma_1^2 \neq \sigma_2^2)$

Kiểm định μ:

Trên 1 mẫu	Trên 2 mẫu phụ thuộc
Đã biết phương sai σ^2 $n \ge 30$, Chưa biết phương sai σ^2 $n < 30$, Chưa biết phương sai σ^2 $Z = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$ $Z = \frac{\overline{X} - \mu_0}{S} \sqrt{n}$ $T = \frac{\overline{X} - \mu_0}{S} \sqrt{n}$	$d_{i} = X_{1i} - X_{2i}; \overline{d} = \frac{\sum_{i=1}^{n} d_{i}}{n}; S_{d} = \sqrt{\frac{\sum_{i=1}^{n} (d_{i} - \overline{d})^{2}}{n-1}}$ $T = \frac{\overline{d} - \mu_{d}}{S_{d}} \sqrt{n}$
2 mẫu	độc lập
Đã biết phương sai σ_1^2, σ_2^2 n_1 và $n_2 \ge 30$, Chưa biết phương sai σ_1^2, σ_2^2 $Z = \frac{\left(\overline{X_1} - \overline{X_2}\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $Z = \frac{\left(\overline{X_1} - \overline{X_2}\right)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$T = \frac{\left(\overline{X_1} - \overline{X_2}\right)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$ $Chua biết \sigma_1^2 = \sigma_2^2 T = \frac{\left(\overline{X_1} - \overline{X_2}\right)}{\left(\overline{X_1} - \overline{X_2}\right)} T = \frac{\left(\overline{X_1} - \overline{X_2}\right)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}$

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

Kiểm định p:

Trên 1 mẫu	Trên 2 mẫu		
$Z = \frac{f - p_o}{\sqrt{\frac{p_o \left(1 - p_o\right)}{n}}}$	$Z = \frac{f_1 - f_2}{\sqrt{f(1 - f)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \qquad \overline{f} = \frac{n_1 f_1 + n_2 f_2}{n_1 + n_2}$		

$\overline{Ki\mathring{e}m}$ định σ^2

P-value

Kiểm định phía trái	Kiểm định phía phải	Kiểm định 2 phía
$P(Z \le Z_{quan \ s\acute{a}t})$	$P(Z \ge Z_{quan\ sst})$	$P(Z \ge Z_{quan s\acute{a}t})$ $= 2(1 - P(Z \le Z_{quan s\acute{a}t}))$
$P(t \le t_{quan s\acute{a}t})$	$P(t \ge t_{quan s\acute{a}t})$	$P(t \ge t_{quan s\acute{a}t})$ $= 2(t \ge t_{quan s\acute{a}t})$

Chấp nhận H_0 khi $P > \alpha$ và bác bỏ H_0 khi $P < \alpha$

cuu duong than cong . com

CuuDuongThanCong.com