Векторы. Линейные операции над векторами.

Определение 1. Направленный отрезок (или, что то же, упорядоченную пару точек) мы будем называть *вектором*.

Обозначение: \overrightarrow{AB} , \overrightarrow{a} , a.

Нулевой вектор (у которого начало и конец совпадают): $\vec{0}$. Вектор характеризуется длиной и направлением.

Под модулем (длиной) вектора \vec{a} понимаем его численное значение без учета направления.

$$\left| \vec{a} \right| = a, \left| \vec{0} \right| = 0$$

Вектор, длина которого равна 1 — единичный вектор. $\left| \vec{e} \right| = 1$.

Если ненулевой вектор \vec{a} разделить на его длину получим единичный вектор (орт) направления. $\vec{e} = \frac{\vec{a}}{|\vec{a}|}$

Определение 2. Два вектора называются *равными*, то есть не различаются как векторы, если соответствующие отрезки параллельны, имеют одинаковую длину и направление.

Будем считать, что любые два равных вектора это один и тот же *свободный* вектор, то есть вектор, у которого не фиксировано конкретное начало и конец, так как направленный отрезок можно передвинуть параллельно самому себе и вектор при этом не изменится. В связи с этим слова "вектор параллелен прямой (плоскости)" и "вектор лежит на прямой (плоскости)" означают одно и то же.

Нулевой вектор направления не имеет. Считается, что он параллелен и перпендикулярен любому вектору.

Определение 3. Векторы называются *коллинеарными*, если они параллельны одной прямой.

Определение 4. Векторы называются *компланарными*, если они параллельны одной плоскости.

Линейные операции над векторами.

Определение 5. *Суммой* векторов \vec{a} и \vec{b} называется такой третий вектор \vec{c} , что при совмещенных началах этих трех векторов, векторы \vec{a} и \vec{b} служат сторонами параллелограмма, а вектор \vec{c} его диагональю. (рис 1.).

$$\vec{c} = \vec{a} + \vec{b}$$

Рис. 1. Сложение векторов по правилу параллелограмма.

Это сложение называется сложением по правилу параллелограмма. Однако бывает более удобным использовать для сложения правило треугольника. Очевидно, что результаты сложения по правилу параллелограмма и по правилу треугольника одинаковы.

Рис. 2. Правило треугольника

Для каждого вектора \vec{a} вектор существует ему противоположный – имеющий ту же длину, но противоположный по направлению. Он обозначается $-\vec{a}$.

$$\vec{a} + (-\vec{a}) = 0$$

Определение 6. *Разностью* векторов \vec{a} и \vec{b} называется сумма \vec{a} и вектора противоположного \vec{b} : $\vec{a} + (-\vec{b}) = \vec{a} - \vec{b}$.

Графически можно также изобразить разность векторов по правилу треугольника и параллелограмма.

Определение 7. Произведением вектора \vec{a} на вещественное число α называется вектор \vec{b} , определяемый условием

- 1. $|\vec{b}| = |\alpha| \cdot |\vec{a}|$;
- 2. вектор \vec{b} коллинеарен вектору \vec{a} ;
- 3. векторы \vec{a} и \vec{b} направлены одинаково, если a > 0, и противоположно, если a < 0. Произведение вектора \vec{a} на a обозначается $a\vec{a}$.(Puc.3.) $-1.5\vec{a}$

Рис.3 .Умножение вектора на число

Замечание. Иногда числа называют *скалярами*. Таким образом, мы дали определение умножения вектора на скаляр.

Основные свойства операций сложения и умножения вектора на число.

Для любых векторов \vec{a} , \vec{b} , \vec{c} и любых вещественных чисел a, β выполняются следующие свойства:

- $1.\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (свойство коммутативности операции сложения);
- 2. $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (свойство *ассоциативности* операции сложения);
- 3. $\vec{a} + \vec{0} = \vec{a}$;
- 4. $\alpha(\beta\vec{a}) = (\alpha\beta)\vec{a}$ (свойство ассоциативности по отношению к числам);
- 5. $\alpha (\vec{a} + \vec{b}) = \alpha \vec{a} + \alpha \vec{b}$ (свойство *дистрибутивности* по отношению к умножению на число):
- 6. $(\alpha + \beta)\vec{a} = \alpha \vec{a} + \beta \vec{a}$ (свойство дистрибутивности по отношению к умножению на вектор;
 - 7. $1 \cdot \vec{a} = \vec{a}$, $(-1) \cdot \vec{a} = -\vec{a}$, $0 \cdot \vec{a} = \vec{0}$.

Линейной пространство. Базис в линейном пространстве.

Определение 1. Пусть L – множество, элементы которого будем называть векторами. Говорят, что L образует линейное пространство над \mathbb{R} , если для любых двух векторов \boldsymbol{a} и $\boldsymbol{b} \in L$ определн элемент $\boldsymbol{a} + \boldsymbol{b} \in L$, и для любого вектора $\boldsymbol{a} \in L$ и числа $\alpha \in L$ определен вектор αa .

Примеры: Множество геометрических векторов на прямой можно назвать одномерным векторным пространством, множество векторов на плоскости двумерным векторным пространством, в пространстве – трехмерным в. пространством.

Определение 2. Пусть L – линейное пространство и $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n} \in L$ и $\alpha_1, \alpha_2, \ldots, \alpha_n$ $\in \mathbb{R}$. Вектор

$$\vec{b} = \alpha_1 \vec{a_1} + \alpha_2 \vec{a_2} + \dots + \alpha_n \vec{a_n} = \sum_{i=1}^n \alpha_i \vec{a_i}$$

называется линейной комбинацией векторов $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$.

Определение 3. Система векторов $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$ называется линейно – зависимой, если среди векторов системы существует вектор, являющийся линейной комбинацией остальных.

Теорема. Система векторов $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$ линейно – независима тогда и только тогда, когда равенство $\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + ... + \alpha_n \overrightarrow{a_n} = 0$ выполняется только при $\alpha_1 = \alpha_2 = ... = \alpha_n$ =0

Определение 4. Линейное пространство называется n — мерным если в нем существует n и не более линейно - независимых векторов.

Обозначение: L^n , n – размерность линейного пространства.

Определение 5. Базисом в L^n называется линейно — независимая система векторов $\overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_n}$

Теорема. Любой вектор \vec{a} линейного пространства может быть единственным образом разложен по базису, т. е. представлен в виде линейной комбинацией базисных векторов.

$$\vec{a} = \alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + ... + \alpha_n \overrightarrow{a_n}$$
.

 $\alpha_1, \alpha_2, ..., \alpha_n$ - координаты вектора \vec{a} в базисе $\vec{a_1}, \vec{a_2}, ..., \vec{a_n}$. Т.е. координатами (или компонентами) вектора \vec{a} в базисе $\vec{a_1}, \vec{a_2}, ..., \vec{a_n}$ называются коэффициенты разложения вектора по векторам базиса.

Базисом в одномерном векторном пространстве (на прямой) называется любой ненулевой вектор коллинеарный прямой.

Базисом в двумерном векторном пространстве (на плоскости) называются два некомпланарных вектора, взятые в определенном порядке.

Базисом в трехмерном векторном пространстве называются три некомпланарных вектора, взятых в определенном порядке.

Утверждения:

- 1. Пусть \vec{a} и \vec{b} два неколлинеарных вектора. Тогда любой вектор \vec{c} компланарный с векторами \vec{a} и \vec{b} может быть представлен в виде $\vec{c} = \alpha \vec{a} + \beta \vec{b}$, где α и β – координаты вектора \vec{c} в базисе \vec{a} и \vec{b} .
- 2. Пусть \vec{a} , \vec{b} и \vec{c} три некомпланарных вектора. Тогда любой вектор \vec{d} может быть представлен в виде $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, где α , β , γ — координаты вектора \vec{d} в базисе \vec{a} , \vec{b} и \vec{c} . Можно записывать $\vec{d} = (\alpha, \beta, \gamma)$.

Прямоугольная (Декартова) система координат в пространстве.

Декартова система координат в пространстве задается началом координат точкой O и базисом, состоящим из трех взаимно перпендикулярных единичных векторов \vec{i} , \vec{j} , \vec{k} (ортов) координатных осей OX, OY и OZ соответственно.

Выберем вектор \vec{a} пространства и совместим его начало с началом координат т.O. Обозначим точку M как конец вектора. Вектор \overrightarrow{OM} - радиус — вектор точки M. Вектор $\vec{a} = \overrightarrow{OM}$ может быть единственным образом разложен по базису \vec{i} , \vec{j} , \vec{k} .

Т.е. координатами вектора \vec{a} в декартовой системе координат будут x, y, z.

$$\vec{a} = \overrightarrow{OM} = (x, y, z)$$

Координаты точки M и вектора \overrightarrow{OM} совпадают: M(x,y,z).

Зная координаты вектора можно найти его модуль: $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$.

Линейные операции над векторами заданными в координатной форме.

Пусть векторы \vec{a} и \vec{b} заданы своими координатами. $\vec{a} = (x_1, y_1, z_1), \ \vec{b} = (x_2, y_2, z_2).$

Можно записать:
$$\vec{a} \pm \vec{b} = (x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2)$$
 и $\alpha \vec{a} = (\alpha x_1, \alpha y_1, \alpha z_1)$.

Примеры: $\vec{a} = (1, -2, 3) \ \vec{b} = (4, 0, 5)$.

$$\vec{a} + \vec{b} = (1+4, -2+0, 3+5) = (5, -2, 8)$$

$$\vec{a} - \vec{b} = (1 - 4, -2 - 0, 3 - 5) = (-3, -2, -2)$$

$$2\vec{a} = (2 \cdot 1, 2 \cdot (-2), 2 \cdot 3) = (2, -4, 6)$$

$$-3\vec{b} = ((-3)\cdot 4, (-3)\cdot 0, (-3)\cdot 5) = (-12, 0, -15)$$

Расстояние между двумя точками.

Найдем координаты вектора $\vec{a} = \overrightarrow{AB}$, если известны координаты точек $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2)$.

Имеем
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$
.

Следовательно, координаты вектора равны разности координат его конца и начала.

Расстояние между точками
$$A$$
 и B : $\left| \overrightarrow{AB} \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ Пример: $A(1,0,-3) B(4,2,-1)$ $\overrightarrow{AB} = (4-1,2-0,-1-(-3)) = (3,2,2)$ $\left| \overrightarrow{AB} \right| = \sqrt{3^2 + 2^2 + 2^2} = \sqrt{17} \approx 4,12$

Деление отрезка в данном отношении.

Отношением в котором точка M делит отрезок M_1M_2 называется число λ , удовлетворяющее равенству $\overline{M_1M} = \lambda \cdot \overline{MM_2}$. Найдем координаты точки M(x, y, z) через координаты точек $M_1(x_1, y_1, z_1)$ и $M_2(x_2, y_2, z_2)$.

Координаты векторов:

$$\overrightarrow{M_1M} = (x - x_1, y - y_1, z - z_1), \overrightarrow{MM_2} = (x_2 - x, y_2 - y, z_2 - z).$$

Векторы равны если равны их соответствующие координаты, из этого усло-

вия:
$$(x - x_1, y - y_1, z - z_1) = (\lambda \cdot (x_2 - x), \lambda \cdot (y_2 - y), \lambda \cdot (z_2 - z))$$

$$x - x_1 = \lambda \cdot (x_2 - x)$$

$$x - x_1 = \lambda x_2 - \lambda x$$

$$x + \lambda x = x_1 + \lambda x_2$$

$$X = \frac{X_1 + \lambda X_2}{1 + \lambda}$$

Аналогично
$$y = \frac{y_1 + \lambda y_2}{1 + \lambda}$$
, $z = \frac{z_1 + \lambda z_2}{1 + \lambda}$.

Если точка M – середина отрезка M_1M_2 , то λ =1.

Координаты середины отрезка M_1M_2 :

$$x = \frac{x_1 + x_2}{2}, \ y = \frac{y_1 + y_2}{2}, \ z = \frac{z_1 + z_2}{2}.$$

Пример: $M_1(3, -5, 8) M_2(7, 13, -6)$.

Координаты середины отрезка M_1M_2 :

$$x = \frac{3+7}{2} = 5$$
, $y = \frac{-5+13}{2} = 4$, $z = \frac{8-6}{2} = 1$.
 $M(5, 4, 1)$

Угол между двумя векторами.

Определение. Углом между векторами \vec{a} и \vec{b} называют наименьший угол φ ($0 \le \varphi \le \pi$) на который нужно повернуть один из векторов, чтобы их направления совпали.

Скалярное произведение векторов.

Определение: Назовем скалярным произведение двух векторов \vec{a} и \vec{b} число, равное произведению длин этих векторов и косинуса угла φ между ними.

Обозначение: $\vec{a} \cdot \vec{b}$, $\vec{a}\vec{b}$, (\vec{a},\vec{b}) .

$$(\vec{a}, \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \cos \varphi$$

Свойства скалярного произведения.

- 1. $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$. (Переместительное свойство).
- 2. $\alpha \cdot (\vec{a}, \vec{b}) = (\alpha \vec{a}) \cdot \vec{b}$ (Сочетательное свойство).
- 3. $\vec{a}(\vec{b}+\vec{c}) = \vec{a}\vec{b} + \vec{a}\vec{c}$ (Распределительное свойство).
- 4. $\vec{a}^2 = |\vec{a}|^2$.
- 5. Условие перпендикулярности векторов.

Если векторы \vec{a} и \vec{b} (ненулевые) взаимно перпендикулярны, то их скалярное произведение равно нулю, т. е. если $\vec{a} \perp \vec{b}$, то $\vec{a}\vec{b} = 0$. Справедливо и обратное утверждение: если $\vec{a}\vec{b} = 0$ и $\vec{a} \neq 0$ и $\vec{b} \neq 0$, то $\vec{a} \perp \vec{b}$.

Выражение скалярного произведения через координаты векторов.

Пусть даны два вектора $\vec{a} = (x_1, y_1, z_1)$ и $\vec{b} = (x_2, y_2, z_2)$. Найдем их скалярное про-изведение.

Так как $\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$ и $\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$ можно умножить их как многочлены, используя свойства скалярного произведения.

$$(\vec{a}, \vec{b}) = (x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k})(x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}) = x_1 x_2 \vec{i}^2 + x_1 y_2 \vec{i} \vec{j} + x_1 z_2 \vec{i} \vec{k} + y_1 x_2 \vec{j} \vec{i} + y_1 y_2 \vec{j}^2 + y_1 z_2 \vec{j} \vec{k}$$

$$z_1 x_2 \vec{k} \vec{i} + z_1 y_2 \vec{k} \vec{j} + z_1 z_2 \vec{k}^2 = (*)$$

$$\vec{i} \vec{j} = \vec{j} \vec{i} = \vec{i} \vec{k} = \vec{k} \vec{i} = \vec{k} \vec{j} = \vec{j} \vec{k} = 0 \text{ (так как все векторы взаимно перпендикулярны.)}$$

$$\vec{i}^2 = \vec{i}^2 = \vec{k}^2 = 1$$

$$(*) = x_1x_2 + y_1y_2 + z_1z_2$$

$$(\vec{a}, \vec{b}) = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Условие перпендикулярности векторов: $x_1x_2 + y_1y_2 + z_1z_2 = 0$

Примеры: 1. Даны векторы $\vec{a} = (4,-2,-4), \ \vec{b} = (6,-3,2).$

Вычислить: $\vec{a}\vec{b}$, $(2\vec{a}-3\vec{b})\cdot(\vec{a}+3\vec{b})$.

$$(\vec{a}, \vec{b}) = x_1 x_2 + y_1 y_2 + z_1 z_2 = 4 \cdot 6 + (-2) \cdot (-3) + (-4) \cdot 2 = 24 + 6 - 8 = 22$$

$$(2\vec{a} - 3\vec{b}) \cdot (\vec{a} + 3\vec{b}) = 2\vec{a}^2 + 6\vec{a}\vec{b} - 3\vec{b}\vec{a} - 9\vec{b}^2 = 2\vec{a}^2 + 3\vec{a}\vec{b} - 9\vec{b}^2 = 2\vec{a}^2 + 3\vec{b}\vec{b} - 9\vec{b}^2 = 2\vec{a}^2 + 3\vec{b}\vec{b} - 9\vec{b}^2 = 2\vec{a}^2 + 3\vec{b}\vec{b} - 9\vec{b}^2 = 2\vec{b}^2 + 3\vec{b}^2 + 3$$

$$\vec{a}^2 = |\vec{a}|^2 = (\sqrt{4^2 + (-2)^2 + (-4)^2})^2 = 36$$

$$\vec{b}^2 = |\vec{b}|^2 = (\sqrt{6^2 + (-3)^2 + 2^2})^2 = 49$$

$$= 2 \cdot 36 + 3 \cdot 22 - 9 \cdot 49 = -303$$

2. Даны вершины четырехугольника A(1, -2, 2), B(1, 4, 0), C(-4, 1, 1), D(-5, -5, 3). До-казать, что его диагонали взаимно перпендикулярны.

Для этого нужно доказать, что векторы \overrightarrow{AC} и \overrightarrow{BD} перпендикулярны.

$$\overrightarrow{AC} = (-5, 3, -1), \ \overrightarrow{BD} = (-6, -9, 3)$$

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (-5) \cdot (-6) + 3 \cdot (-9) + (-1) \cdot 3 = 0$$

Угол между векторами.

Определим угол φ между векторами $\vec{a} = (x_1, y_1, z_1)$ и $\vec{b} = (x_2, y_2, z_2)$.

Из определения скалярного произведения: $\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$, т.обр.

$$\cos \varphi = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

Пример. Даны вершины треугольника ABC: A(-1, -2, 4), B(-4, -2, 0), C(3, -2, 1). Вычислить внешний угол при вершине B.

Внешний угол будет определяться как угол между векторами \overrightarrow{BA} и $-\overrightarrow{BC}$.

$$\overrightarrow{BA} = (-3, 0, -4), \ \overrightarrow{BC} = (7, 0, 1)$$

$$\cos \varphi = \frac{(-3) \cdot 7 + (-4) \cdot 1}{\sqrt{(-3)^2 + (-4)^2} \cdot \sqrt{7^2 + 1^2}} = \frac{-25}{\sqrt{25} \cdot \sqrt{50}} = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

$$\varphi = 3\pi/4$$

Векторное произведение векторов.

Правая и левая тройка векторов.

Определение. Тройка некомпланарных векторов \vec{a} , \vec{b} и \vec{c} называется правой (левой), если направление вектора \vec{c} таково, что если смотреть из его конца вдоль вектора, то поворот по кратчайшему пути от \vec{a} до \vec{b} виден как поворот против (по) часовой стрелке.

Определение. Векторными произведением вектора на вектор называется вектор , который:

- 1. перпендикулярен векторам \vec{a} и \vec{b} , т.е. $\vec{c} \perp \vec{a}$ и $\vec{c} \perp \vec{b}$;
- 2. имеет длину, численно равную площади параллелограмма, построенного на векторах \vec{a} и \vec{b} как на сторонах, т.е. $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \varphi$, где φ угол между \vec{a} и \vec{b} ;
- 3. векторы \vec{a} , \vec{b} и \vec{c} образуют правую тройку.

Обозначение: $\vec{a} \times \vec{b}$, $[\vec{a}, \vec{b}]$

Свойства векторного произведения.

- 1. $\vec{a} \times \vec{b} = -\vec{b} \times a$. (Свойство анти-коммутативности.)
- 2. $\lambda \cdot (\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$. (Сочетательное свойство относительно скалярного множителя.)

- 3. $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$. (Распределительное свойство.)
- 4. Два ненулевых вектора \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору, т. е. $\vec{a} \| \vec{b} \Leftrightarrow \vec{a} \times \vec{b} = 0$

Следовательно $\vec{a} \times \vec{a} = 0$, а также $\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = 0$.

Выражение векторного произведения через координаты векторов.

Пусть даны два вектора $\vec{a} = (x_1, y_1, z_1)$ и $\vec{b} = (x_2, y_2, z_2)$. Найдем их векторное про-изведение.

 $\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$ и $\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$ умножим их как многочлены, используя свойства векторного произведения.

своиства векторного произведения.
$$\left[\vec{a}, \vec{b} \right] = \left(x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k} \right) \times \left(x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k} \right) = x_1 x_2 \vec{i} \times \vec{i} + x_1 y_2 \vec{i} \times \vec{j} + x_1 z_2 \vec{i} \times \vec{k} + y_1 x_2 \vec{j} \times \vec{i} + y_1 y_2 \vec{j} \times \vec{j}$$
 $z_1 x_2 \vec{k} \times \vec{i} + z_1 y_2 \vec{k} \times \vec{j} + z_1 z_2 \vec{k} \times \vec{k} = (*)$

Найдем векторные произведения между ортами \vec{i} , \vec{j} , \vec{k} .

$$\vec{i} \times \vec{j} = \vec{k}$$

Т.к.
$$\vec{i} \times \vec{j} = -\vec{j} \times \vec{i}$$
 , то $\vec{j} \times \vec{i} = -\vec{k}$.

Аналогично

$$\vec{k} \times \vec{i} = \vec{j} , \vec{i} \times \vec{k} = -\vec{j}$$

$$\vec{i} \times \vec{k} = \vec{i}$$
, $\vec{k} \times \vec{i} = -\vec{i}$

Подставим в (*) полученные выражения и учтем свойство 4.

$$(*) = x_1 y_2 \vec{k} - x_1 z_2 \vec{j} - y_1 x_2 \vec{k} + y_1 z_2 \vec{i} + z_1 x_2 \vec{j} - z_1 y_2 \vec{i} =$$

$$= y_1 z_2 \vec{i} - z_1 y_2 \vec{i} + z_1 x_2 \vec{j} - x_1 z_2 \vec{j} + x_1 y_2 \vec{k} - y_1 x_2 \vec{k} = (y_1 z_2 - z_1 y_2) \vec{i} - (x_1 z_2 - z_1 x_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k} = (y_1 z_2 - z_1 y_2) \vec{k} + (y_1 z_2 - z_1 y_2) \vec{k} + (y_1 z_2 - z_1 y_2) \vec{k} = (y_1 z_2 - z_1 y_2) \vec{k} + (y_1 z_1$$

$$= \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \cdot \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \cdot \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \cdot \vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Примеры. 1. Даны векторы $\vec{a} = (3,-1,-2), \ \vec{b} = (1,2,-1).$ Вычислить $\vec{a} \times \vec{b}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -1 & -2 \\ 1 & 2 & -1 \end{vmatrix} = \begin{vmatrix} -1 & -2 \\ 2 & -1 \end{vmatrix} \cdot \vec{i} - \begin{vmatrix} 3 & -2 \\ 1 & -1 \end{vmatrix} \cdot \vec{j} + \begin{vmatrix} 3 & -1 \\ 1 & 2 \end{vmatrix} \cdot \vec{k} = 5 \cdot \vec{i} - (-1) \cdot \vec{j} + 7 \cdot \vec{k}$$

$$\vec{a} \times \vec{b} = (5, 1, 7)$$

2. Вычислить площадь $\triangle ABC$, если вершины A(1, 2, 0), B(3, 0, 3), C(5, 4, 3). Согласно определению векторного произведения векторов

 $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \varphi$, что является площадью параллелограмма, построенного на век-

торах
$$\vec{a}$$
 и \vec{b} как на сторонах. Т.е. $S_{nap} = |\vec{a} \times \vec{b}|$ и тогда $S_{\Delta} = \frac{1}{2} |\vec{a} \times \vec{b}|$

Найдем векторное произведение векторов \overrightarrow{AB} и \overrightarrow{AC} .

$$\overrightarrow{AB} = (2, -2, 3), \ \overrightarrow{AC} = (4, 2, 3)$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -2 & 3 \\ 4 & 2 & 3 \end{vmatrix} = \begin{vmatrix} -2 & 3 \\ 2 & 3 \end{vmatrix} \cdot \vec{i} - \begin{vmatrix} 2 & 3 \\ 4 & 3 \end{vmatrix} \cdot \vec{j} + \begin{vmatrix} 2 & -2 \\ 4 & 2 \end{vmatrix} \cdot \vec{k} = (-12) \cdot \vec{i} - (-6) \cdot \vec{j} + 12 \cdot \vec{k}$$

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-12)^2 + (6)^2 + (12)^2} = \sqrt{144 + 36 + 144} = \sqrt{324} = 18$$

$$S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \cdot 18 = 9$$

Смешанное произведение векторов.

Определение. Смешанным (или векторно-скалярным) произведением векторов \vec{a} , \vec{b} и \vec{c} называется число $(\vec{a} \times \vec{b}) \cdot \vec{c}$, где первые два вектора перемножаются векторно, а их результат скалярно на третий вектор.

Геометрический смысл выражения $(\vec{a} \times \vec{b}) \cdot \vec{c}$.

Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком «плюс», если эти векторы образуют правую тройку, и со знаком «минус», если они образуют левую тройку.

Свойства смешанного произведения.

1. Смешанное произведение не меняется при перемене местами знаков векторного и скалярного умножения, т. е. $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$.

Поэтому обозначение $\vec{a}\vec{b}\vec{c}$. (без знаков векторного и скалярного произведений.)

- 2. Векторное произведение не меняется при циклической перестановке сомножителей, т.е. $\vec{a}\vec{b}\vec{c}=\vec{b}\vec{c}\vec{a}=\vec{c}\vec{a}\vec{b}$, но меняет свой знак при перемене мест любых двух векторов сомножителей $\vec{a}\vec{b}\vec{c}=-\vec{a}\vec{c}\vec{b}=-\vec{b}\vec{a}\vec{c}=-\vec{c}\vec{b}\vec{a}$.
- 3. Смешанное произведение ненулевых векторов \vec{a} , \vec{b} и \vec{c} равно нулю тогда и только тогда, когда они компланарны.

Если $\vec{a}\vec{b}\vec{c}=0$, то \vec{a} , \vec{b} и \vec{c} - компланарны.

Выражение смешанного произведения через координаты векторов.

Пусть заданы три вектора $\vec{a}=(x_1,y_1,z_1),\ \vec{b}=(x_2,y_2,z_2)$ и $\vec{c}=(x_3,y_3,z_3)$. Найдем их смешанное произведение, используя координатные выражения для векторного и скалярных произведений.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \cdot \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \cdot \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \cdot \vec{k}$$

Координаты векторного произведения: $\vec{a} \times \vec{b} = \begin{pmatrix} \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, -\begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \end{pmatrix}$.

Умножим скалярно на $\vec{c} = (x_3, y_3, z_3)$.

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \cdot x_3 - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \cdot y_3 + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \cdot z_3 = \begin{vmatrix} x_3 & y_3 & z_3 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Полученную формулу можно преобразовать к виду

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

Вычисление объемов параллелепипеда и треугольной пирамиды.

Согласно геометрическому смыслу смешанного произведения объем параллелепипеда, построенного на векторах \vec{a} , \vec{b} и \vec{c} вычисляется как $V = \left| \overline{a} \vec{b} \vec{c} \right|$, а объем треугольной пирамиды, построенной на тех же векторах $V = \frac{1}{6} \cdot \left| \overline{a} \vec{b} \vec{c} \right|$.

Примеры:

1. Даны векторы $\vec{a} = (2,-1,0), \ \vec{b} = (3,-2,4), \ \vec{c} = (1,-2,5)$. Вычислить $\vec{a}\vec{b}\vec{c}$.

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 0 \\ 3 & -2 & 4 \\ 1 & -3 & 5 \end{vmatrix} = 2 \cdot \begin{vmatrix} -2 & 4 \\ -3 & 5 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 3 & 4 \\ 1 & 5 \end{vmatrix} + 0 \cdot \begin{vmatrix} 3 & -2 \\ 1 & -3 \end{vmatrix} = 2 \cdot 2 - (-1) \cdot 11 = 15$$

2. Проверить, лежат ли 4 точки A(1, 2, -1), B(0, 1, 5), C(-1, 2, 1) и D(2, 1, 3) в одной плоскости.

Составим 3 вектора из данных точек и найдем их координаты: $\overrightarrow{AB} = (-1, -1, 6)$, $\overrightarrow{AC} = (-2, 0, 2)$, $\overrightarrow{AD} = (1, -1, 4)$. Данные векторы должны лежать в одной плоскости и следовательно быть компланарными.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} \cdot \overrightarrow{AD} = \begin{vmatrix} -1 & -1 & 6 \\ -2 & 0 & 2 \\ 1 & -1 & 4 \end{vmatrix} = (-1) \cdot \begin{vmatrix} 0 & 2 \\ -1 & 4 \end{vmatrix} - (-1) \cdot \begin{vmatrix} -2 & 2 \\ 1 & 4 \end{vmatrix} + 6 \cdot \begin{vmatrix} -2 & 0 \\ 1 & -1 \end{vmatrix} =$$

$$=(-1)\cdot 2-(-1)\cdot (-10)+6\cdot 2=-2-10+12=0$$

Условие компланарности векторов выполняется, то есть точки лежат в одной плоскости.

3. Даны вершины тетраэдра A(1, 2, 3), B(0, -1, 1), C(2, 5, 2), D(3, 0, -2). Найти его объем.

Найдем векторы \vec{a} , \vec{b} и \vec{c} на которых построен данный тетраэдр (треугольная пирамида).

$$\vec{a} = \overrightarrow{AB} = (-1, -3, -2), \ \vec{b} = \overrightarrow{AC} = (1, 3, -1), \ \vec{c} = \overrightarrow{AD} = (3, 0, -2)$$

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} -1 & -3 & -2 \\ 1 & 3 & -1 \\ 2 & -2 & -5 \end{vmatrix} = (-1) \cdot \begin{vmatrix} 3 & -1 \\ -2 & -5 \end{vmatrix} - (-3) \cdot \begin{vmatrix} 1 & -1 \\ 2 & -5 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 3 \\ 2 & -2 \end{vmatrix} = (-1) \cdot (-17) + 3 \cdot (-3) - 2 \cdot (-17) = (-17) \cdot (-17) = (-17)$$

$$=17-9+16=24$$

$$V = \frac{1}{6} \cdot \left| \overline{a} \vec{b} \vec{c} \right| = \frac{1}{6} \cdot 24 = 6$$