Homework 5 ECE2504 CRN:82729

Jacob Abel

October 6, 2017

Question 1: (8 pts) For the Boolean functions E and F shown in the truth table below

X	Y	Z	Е	F	E+F	$E \bullet F$
0	0	0	1	0	1	0
0	0	1	0	1	1	0
0	1	0	0	0	0	0
0	1	1	1	1	1	1
1	0	0	1	0	1	0
1	0	1	1	1	1	1
1	1	0	0	1	1	0
1	1	1	0	0	0	0

a) Express E in sum of minterms form

$$E = X'Y'Z' + X'YZ + XY'Z' + XY'Z' + XY'Z'$$

b) Express F in sum of minterms form

$$F = X'Y'Z + X'YZ + XYZ' + XY'Z + XYZ'$$

c) Express E in product of maxterms form

$$E = (X + Y + Z')(X + Y' + Z)$$
$$(X' + Y' + Z)(X' + Y' + Z')$$

d) Express F in product of maxterms form

$$F = (X + Y + Z)(X + Y' + Z)$$
$$(X' + Y + Z)(X' + Y' + Z')$$

e) Express (E + F) in sum of minterms form

$$(E+F) = X'Y'Z' + X'Y'Z + X'YZ'$$
$$+ XY'Z' + XY'Z + XYZ'$$

f) Express $(E \bullet F)$ in product of maxterms form

$$(E \bullet F) = (X + Y + Z)(X + Y + Z')$$
$$(X + Y' + Z)(X' + Y + Z)$$
$$(X' + Y' + Z)(X' + Y' + Z')$$

g) Simplify E

$$E = Y'Z' + XY' + X'YZ$$

h) Simplify F

$$F = (X' + Y')(Y' + Z)(X + Y + Z')$$

Question 2: (3 pts) Assume the gates in the circuit below have the following propagation delays. What is the propagation delay of the longest path through the circuit? Recall that $x \oplus y = x'y + xy'$

 $\begin{array}{l} \textbf{Inverter} \ \ t_{pd} = 0.05ns \\ \textbf{NAND gate} \ \ t_{pd} = 0.07ns \\ \textbf{NOR gate} \ \ t_{pd} = 0.07ns \\ \textbf{AND gate} \ \ t_{pd} = 0.10ns \\ \textbf{OR gate} \ \ t_{pd} = 0.10ns \end{array}$

The longest path is NOR -> NOT -> AND -> XOR.

This path can be rendered into NOR -> NOT -> AND -> OR by converting the xor gate into primitive gates.

$$t_{pd\;max} = 0.07ns + 0.05ns + 0.10ns + 0.05ns + 0.10ns + 0.10ns t_{pd\;max} = 0.47ns$$

Question 3: Assume an electronic game uses an array of seven LEDs to display the results of a random roll of a die. The value of each roll is represented by a 3-bit binary number $X = X_2 X_1 X_0$. Design a logic circuit to illuminate the appropriate LEDs to display each of the possible six die values, as shown below.

a) (3.5 pts) Derive the truth table for a-g. Assume that invalid input combinations (000 and 111) should result in all the LEDs remaining dark.

Copyright @2016 Pearson Education, All Rights Reserved

X_2	X_1	X_0	a	b	c	d	e	f	g
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0
0	1	0	1	0	0	0	0	0	1
0	1	1	1	0	0	1	0	0	1
1	0	0	1	1	0	0	0	1	1
1	0	1	1	1	0	1	0	1	1
1	1	0	1	1	1	0	1	1	1
1	1	1	0	0	0	0	0	0	0

b) (3.5 pts) Determine simplified Boolean equations for a-g.

$$c = X_2 X_1 X_0' d = X_1' X_0 + X_2' X_0$$

		X_1X_0							
		00	01	11	10				
X_2	0	0	0	0	0				
	1	1	1	0	1				

$$e = X_2 X_1 X_0'$$

$$f = X_2 X_1' + X_2 X_0'$$

$$g = X_2 X_1' + X_2' X_1 + X_1 X_0'$$

c) (2 pts) Implement a-d using AND gates, OR gates, and inverters. (Assume a maximum of 4 inputs for each gate.)

d) (2 pts) Implement a-d using only 2-input NAND gates.

Question 4: Modify the truth table from Problem 3 by assuming that an output is not specified for invalid input combinations.

a) (2 pts) Derive the modified truth table for a-g.

X_2	X_1	X_0	a	b	c	d	e	f	g
0	0	0	X	X			X	X	X
0	0	1	0	0	0	1	0	0	0
0	1	0	1	0	0	0	0	0	1
0	1	1	1	0	0	1	0	0	1
1	0	0	1	1	0	0	0	1	1
1	0	1	1	1	0	1	0	1	1
1	1	0	1	1	1	0	1	1	1
1	1	1	X	X	X	X	X	X	X

b) (2 pts) Determine simplified Boolean equations for a-d using the new truth table.

$$a = X_2 + X_1$$

$$X_1 X_0$$

$$00 \quad 01 \quad 11 \quad 10$$

$$X_2 \quad 0 \quad - \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad - \quad 1$$

$$b = X_2 + X_1' X_0'$$

$$X_1 X_0$$

$$0 \quad 01 \quad 11 \quad 10$$

$$X_2 \quad 1 \quad 0 \quad 1 \quad - \quad 0$$

$$c = X_2 X_1$$

6

 $d = X_0$

 $f = X_2 + X_1' X_0'$

$$e = X_2 X_1$$

$$X_1 X_0$$

$$00 \quad 01 \quad 11 \quad 10$$

$$X_2 \quad 1 \quad \boxed{1 \quad 1 \quad - \quad 1}$$

$$g = X_2 + X_1$$

c) (2 pts) Implement a-d using AND gates, OR gates, and inverters using the new expressions. (Assume a maximum of 4 inputs for each gate.)

d) (2 pts) Implement a-d using only 2-input NAND gates.

Question 5: (8 pts) Minimize the following five variable function.

$$F(A,B,C,D,E) = \Sigma(0,8,9,10,12,14,15,16,$$

$$20,24,27,29,31)$$

$$d(A,B,C,D,E) = \Sigma(4,7,11,13,19,25,28,30)$$

Hint: Consider a 4-variable K-map. It consists of 16 cells, arranged so that adjacent cells differ by only one variable. Suppose a second 4-variable K-map is stacked on top of the first. Differentiate between the top K-map and the bottom K-map using a fifth bit, e.g. 0 for the bottom, 1 for the top. This will be the most significant bit of your 5-variable K-map.

$$F = C'D' + AD + AE'$$

GRADING SCALE

Total: 38 pts

Pts	0	4	9	14	19	23	28	33
Letter Grade	D-	D	C-	С	В-	В	A-	A