

Arnaud Bailly

Presentation based on

Unreliable Channels are Easier To Verify Than Perfect Channels

by G. Cécé, A. Finkel, and S. Purushotaman Iyer

Communicating Finite-State Machines

- Are finite-state automata,
- Communicating through channels that are
 - unbounded,
 - fifo,

perfect (no losses, no duplications, no

insertions).

Product Automaton

After combination, study on only one machine.

CFSMs, Formally

A machine is noted

$$(S,C,\bigcup_{c\in C}\sum_c,s_0,\delta)$$

with

$$\delta \subseteq S \times (\bigcup_{c \in C} \{c? a, c! a \mid a \in \sum_{c} \}) \times S$$

Configurations are in G(M) set of:

$$\langle s, x_1, ..., x_n \rangle$$
 with $x_i \in \sum_{c_i}^*$

Problems of Interest

- With R(M) the set of reachable configurations of M.
- Reachability:

$$does\langle s, x_1, ..., x_n \rangle$$
 belong $to R(M)$?

- **Deadlock**: has $\langle s, x_1, ..., x_n \rangle$ any successor?
- **Boundedness**: is R(M) finite?
- Others: finite termination, computation of R(M), model-checking against CTL*.
- Think about distributed software verification!

- CFSMs are Turing-Powerful!
- Mark the first and last cell by a symbol.
- Add a symbol "&" to mark the head.
- Advance one cell is:
 - receive s' from channel and repeat:
 - receive s,
 - if s not "&" then emit s' and s':= s
 - else emit &, emit s'.
 - read the list until end symbol, emit symbol.
- Write and go-back are similar.
- Every problem of interest is undecidable!

Unreliable Channels

- Unreliable channels can:
 - lose messages, or
 - duplicate messages, or
 - insert new messages, or
 - a combination of all the above.

Lossy Channels [AJ94]

- Can lose any message.
- Subwords: $x \le y$ if $x = a_1...a_n$ and $y = y_0a_1y_1...a_ny_n$ with $y_i \in \sum^*$
- Closure: $closure(x) = \{z \in \sum^{*} | x \le z\}$
- Higman's theorem (1952):
 - There is no infinite set of words W such that all members of W are pairwise incomparable.
- In particular, there is no infinite chain $W_1, W_2, ...$ of upward-closed sets of words.
- For $\Gamma \subset G(M)$ then the set of predecessors of Γ forms an upward-closed chain. Hence it is finite.
- A new proof is given.

Duplication Machines

- It is shown that they are Turing expressive.
- Modify the machine so that:
 - each symbol is followed by #,
 - # is not in the alphabet of the machine.
- One can build an homomorphism from modified to plain machines.
- It is shown that one can build a "squeeze repeats" homomorphism from duplication machines to modified machines.

Insertion Machines

- It is shown that:
 - Since one can insert symbols everywhere on the tape, channel languages are upward-closed.
- Hence:

The reachability problem is solvable.

Combination of Errors

Insertion and Lossiness are "stronger" than duplication.

Thank You!

- [BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines, Journal of the ACM, 30(2): 323-342, 1983.
- [AJ94] Parosh Aziz Abdulla and Bengt Jonsson: Undecidable Verification Problems for Programs with Unreliable Channels. ICALP 1994: 316-327