Équations différentielles linéaires homogènes à coefficients constants

1. Polynôme caractéristique

On considère l'équation différentielle d'ordre n:

(E):
$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0 \iff y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = 0$$

dans laquelle y est la fonction inconnue, et les a_k des nombres complexes fixés.

Les solutions de (E) sur un intervalle I sont a priori des fonctions de classe C^n sur I; cela dit, si f est solution sur I et de classe C^{n+k} , où $k \ge 0$, alors les fonctions f, f', ..., $f^{(n-1)}$ sont respectivement de classe C^{n+k} , C^{n+k-1} ,..., C^{k+1} , donc sont toutes de classe C^{k+1} sur I. Puisque $f^{(n)} = -\sum_{k=0}^{n-1} a_k f^{(k)}$ la fonction $f^{(n)}$ est aussi de classe C^{k+1} , et donc f est de classe C^{n+k+1} . Par récurrence, f est donc de classe C^{∞} .

Pour chercher les solutions sur I, on peut donc travailler dans l'espace $E = \mathcal{C}^{\infty}(I, \mathbb{C})$ des fonctions de classe C^{∞} de I dans \mathbb{C} . L'intérêt est que l'application de dérivation $D: f \longmapsto f'$ est alors un endomorphisme de E.

Pour $k \in \mathbb{N}$ et $f \in E$, on a alors $D^k(f) = f^{(k)}$. L'équation (E) peut donc se réécrire

$$D^{n}(y) + \sum_{k=0}^{n-1} a_k D^{k}(y) = \left[D^{n} + \sum_{k=0}^{n-1} a_k D^{k} \right](y) = 0$$

L'ensemble des solutions est donc KerP(D) où P est le polynôme $P = X^n + \sum_{k=0}^{n-1} a_k X^k$. C'est ce polynôme qu'on appellera polynôme caractéristique de l'équation (E).

2. Décomposition de l'espace des solutions

Notons S l'ensemble des solutions sur I de l'équation (E). Puisque $S = \operatorname{Ker} P(D)$, S est déjà un sous-espace vectoriel de E.

D'autre part, décomposons P en irréductibles dans $\mathbb{C}[X]$: $P = \prod_{k=1}^{q} (X - \lambda_k)^{r_k}$ où les λ_k sont les racines complexes de P, deux à deux distinctes, et, pour tout k, r_k est la multiplicité de λ_k dans P.

Les λ_k étant supposés deux à deux distincts, les $(X - \lambda_k)^{r_k}$ sont deux à deux premiers entre eux. On peut donc appliquer le lemme des noyaux, qui donne

$$S = \bigoplus_{k=1}^{q} \operatorname{Ker}[(X - \lambda_k)^{r_k}](D) = \bigoplus_{k=1}^{q} \operatorname{Ker}(D - \lambda_k \operatorname{Id}_E)^{r_k}$$

Étude de $Ker(D - \lambda Id_E)^r$ 3.

3.1. Le cas $\lambda = 0$

Le noyau cherché est dans ce cas le noyau de D^r , c'est à dire l'ensemble des fonctions f vérifiant $f^{(r)} = 0$. Il s'agit évidemment des fonctions polynômes de degré au plus r - 1.

Cet espace est isomorphe à $\mathbb{C}_{r-1}[X]$; il est donc de dimension r, et admet pour base la famille des fonctions $t \mapsto t^k$ où $k \in [0, r-1]$.

3.2. Le cas général

 $t \longmapsto e^{-\lambda t}$ qui appartient évidemment à E. Notons Φ l'application Notons q la fonction de E dans E qui, à une fonction f de E, associe la fonction $fg: t \longmapsto f(t)e^{-\lambda t}$.

L'application Φ est clairement linéaire; elle est d'autre part bijective, sa réciproque étant l'application qui, à $f \in E$, associe la fonction $f/g: t \longmapsto f(t)e^{\lambda t}$.

On a $g' = -\lambda g$. Si $f \in E$, on peut donc décomposer le calcul de $[D - \lambda \mathrm{Id}_E](f) = f' - \lambda f$ sous la forme suivante:

- on multiplie d'abord f par g : on obtient $\Phi(f): t \longmapsto e^{-\lambda t} f(t)$;
- on dérive la fonction obtenue : on obtient $D(\Phi(f)): t \longmapsto e^{-\lambda t} (f'(t) \lambda f(t))$;
- on divise enfin par g: on obtient $\Phi^{-1}(D(\Phi(f))): t \longmapsto f'(t) \lambda f(t)$.

Ceci étant vrai pour tout $f \in E$, on a donc $D - \lambda \operatorname{Id}_E = \Phi^{-1} \circ D \circ \Phi$.

Une récurrence immédiate fournit alors $(D - \lambda \operatorname{Id}_E)^k = \Phi^{-1} \circ D^k \circ \Phi$ pour tout $k \in \mathbb{N}$; donc, pour toute fonction $f \in E$,

$$f \in \text{Ker}(D - \lambda \text{Id}_E)^r \iff \Phi^{-1}(D^r(\Phi(f))) = 0$$

 $\iff D^r(\Phi(f)) = 0$

puisque Φ^{-1} est un isomorphisme. La relation $D^r(\Phi(f))=0$ équivaut à dire que $\Phi(f)$ est une fonction polynôme de degré au plus r-1; les éléments de $\mathrm{Ker}(D-\lambda\mathrm{Id}_E)^r$ sont donc les fonctions de la forme $t \longmapsto Q(t)e^{\lambda t}$ où Q est un polynôme de degré au plus r-1.

Encore une fois, cet espace est clairement isomorphe à $\mathbb{C}_{r-1}[X]$; il est donc de dimension r, et les fonctions de la forme $t \longmapsto t^k e^{\lambda t}$ où $r \in [0, r-1]$, en forment une base.

Bilan 4.

- Puisque $S = \bigoplus_{k=1}^q \operatorname{Ker}(D \lambda_k \operatorname{Id}_E)^{r_k}$, ce qui précède montre que : S est de dimension finie, et $\dim S = \sum_{k=1}^q r_k = n$ où n est le degré de P, qui est aussi l'ordre de l'équation (E);
 - on obtient une base de S en concaténant les bases des $\mathrm{Ker}(D-\lambda_k\mathrm{Id}_E)^{r_k}$ trouvées précédemment. Autrement dit, les fonctions solutions sont les combinaisons linéaires des fonctions $t \longmapsto t^i e^{\lambda_k t}$ où λ_k est une racine du polynôme caractéristique, et i est un entier naturel strictement inférieur à l'ordre r_k de la racine λ_k .

5. Exemples

5.1.
$$y^{(3)} - 2y'' + y' - 2y = 0$$

L'équation est d'ordre 3, on sait donc que l'espace des solutions sera de dimension 3. Polynôme caractéristique : $X^3 - 2X^2 + X - 2 = (X - 2)(X - i)(X + i)$; on a trois racines simples, une base de l'espace des solutions est donc formée par les trois fonctions $t \longmapsto e^{2t}$, $t \longmapsto e^{it}$ et $t \longmapsto e^{-it}$. Autrement dit, les solutions (à valeurs complexes) sont les fonctions de la forme $t \longmapsto ae^{2t} + be^{it} + ce^{-it}$ où $(a, b, c) \in \mathbb{C}^3$.

Ici, l'équation est à coefficients réels; il est donc naturel de s'intéresser aux solutions à valeurs réelles de l'équation. On montre qu'on obtient toutes ces solutions en prenant :

- des coefficient réels pour les termes correspondant aux racines réelles du polynôme : ici, on prendra donc $a \in \mathbb{R}$;
- des coefficients deux à deux conjugués pour les termes correspondant à des racines non réelles cojuguées l'une de l'autre : ici, on prendra donc $c = \bar{b}$.

On obtient alors comme solutions réelles les fonctions de la forme $t \longmapsto ae^{2t} + \beta \cos t + \gamma \sin t$ où $(a, \beta, \gamma) \in \mathbb{R}^3$.

De même, si les trois racines du polynôme caractéristique avaient été par exemple 2, 3+4i et 3-4i, les solutions à valeurs réelles auraient été les fonctions de la forme $t \mapsto ae^{2t} + \beta e^{3t} \cos(4t) + \gamma e^{3t} \sin(4t)$ où $(a, \beta, \gamma) \in \mathbb{R}^3$.

5.2.
$$y^{(3)} - 15y'' + 75y' - 125y = 0$$

Polynôme caractéristique : $X^3-15X^2+75X-125=(X-5)^3$. On a une racine triple 5, une base de l'espace des solutions est donc constituée des 3 fonctions $t\longmapsto e^{5t}, t\longmapsto te^{5t}$ et $t\longmapsto t^2e^{5t}$. Autrement dit, les fonctions solutions sont les fonctions de la forme $t\longmapsto (at^2+bt+c)e^{5t}$ où l'on prendra ici $(a,b,c)\in\mathbb{C}^3$ pour avoir toutes les solutions à valeurs complexes, et $(a,b,c)\in\mathbb{R}^3$ pour n'avoir que les solutions à valeurs réelles.

5.3.
$$y^{(3)} - 7y'' + 15y' - 9y = 0$$

Polynôme caractéristique : $X^3 - 7X^2 + 15X - 9 = (X - 1)(X - 3)^2$. On a une racine simple, 1, et une racine double, 3 ; une base de l'espace des solutions est donc constituée des 3 fonctions $t \longmapsto e^t$, $t \longmapsto e^{3t}$ et $t \longmapsto te^{3t}$. Autrement dit, les fonctions solutions sont les fonctions de la forme $t \longmapsto ae^t + (bt + c)e^{3t}$ où l'on prendra ici $(a, b, c) \in \mathbb{C}^3$ pour avoir toutes les solutions à valeurs complexes, et $(a, b, c) \in \mathbb{R}^3$ pour n'avoir que les solutions à valeurs réelles.