Part III Algebraic Topology 2014

Jacob Rasmussen
DPMMS
University of Cambridge

Alex J. Best DPMMS University of Cambridge

November 14, 2014

Abstract

These are lecture notes for the 2014 Part III Algebraic Topology course taught by Dr. Jacob Rasmussen.

Contents

1	Introduction	2
2	Homotopy	2
3	Homology	3
N	otation	4

1 Introduction

The recommended books are:

- Algebraic Topology Allen Hatcher,
- Homology Theory James W. Vick,
- Differential Forms in Algebraic Topology Raoul Bott and Loring W. Tu.

Generated: November 14, 2014, 01:38:39 (Z)

2 Homotopy

2.1 Homotopies

Definition 2.1 (Homotopic maps). Maps $f_0, f_1: X \to Y$ are said to be **homotopic** if there is a continuous map $F: X \times I \to Y$ such that

$$F(x,0) = f_0(x)$$
 and $F(x,1) = f_1(x) \ \forall x \in X$.

We let $\operatorname{Map}(X,Y) = \{f : X \to Y \text{ continuous}\}$. Then letting $f_t(x) = F(x,t)$ in the above definition we see that f_t is a path from f_0 to f_1 in $\operatorname{Map}(X,Y)$.

Example 2.2. 1. $X = Y = \mathbf{R}^n$, $f_0(\overline{x}) = \overline{0}$ and $f_1(\overline{x}) = \overline{x}$ are homotopic via $f_t(\overline{x}) = t\overline{x}$.

- 2. $S^1 = \{z \in \mathbf{C} : |z| = 1\}$ then
- 3. $S^n = {\overline{x} \in \mathbf{R}^n : |\overline{x}| = 1}$

Lemma 2.3. Homotopy is an equivalence relation on Map(X, Y).

Lemma 2.4. If $f_0 \sim f_1 \colon X \to Y$ and $g_0 \sim g_1 \colon Y \to Z$ then $g_0 \circ f_0 \sim g_1 \circ f_1$.

Corollary 2.5. For any space X the set $[X, \mathbb{R}^n]$ has one element.

Proof. Define
$$0_X: X \to \mathbf{R}^n$$
 by $0_X(x) = 0 \in \mathbf{R}^n$ for any $x \in X$.

Definition 2.6 (Contractible space). X is **contractible** if 1_X is homotopic to a constant map.

Proposition 2.7. Y is contractible \iff [X, Y] has one element for any space X.

Proof. (\Rightarrow) as in corollary. (\Leftarrow) [X, Y] has one element so $1_Y \sim$ a constant map. \square

Given a space X how can we tell if X is contractible? If X is contractible then it must be path connected for one.

Proof. Contractible implies that $[S^0, X]$ has one element and so $f: S^0 \to X$ extends to D^1 , and therefore X is path connected.

Similarly if $[S^1, X]$ has more than one element then X is not contractible.

Definition 2.8 (Simply connected). We say X is **simply connected** if $[S^1, X]$ has only one element.

We say two space X and Y are homotopy equivalent if there exists $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \sim 1_X$ and $f \circ g \sim 1_Y$.

Example 2.9. X is contractible if and only if $X \sim \{p\}$.

Proof. X contractible $\Longrightarrow 1_X \sim c$, a constant map. Choose $f: X \to \{p\}$, f(x) = p and $g: \{p\} \to X$, g(p) = c. Then $g \circ f = c \sim 1$ and $f \circ g = 1_{\{p\}}$. Converse: exercise.

Exercise 2.10.

Given X and Y how can we determine if $X \sim Y$? How do we determine [X,Y]? For example is $S^n \sim S^m$.

2.2 Homotopy groups

Definition 2.11 (Map of pairs). A map of pairs $f: (X, A) \to (Y, B)$ is a map $f: X \to Y$ with sets $A \subset X$ and $B \subset Y$ such that $f(A) \subset B$.

If we have maps of pairs $f_0, f_1: (X, A) \to (Y, B)$ then we write $f_0 \sim f_1$ if there exists $F: (X \times I, A \times I) \to (Y, B)$ such that $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$.

Definition 2.12 (Homotopy groups). If $* \in X$ then the *n*th homotopy group is

$$\pi_n(X,*) = [(D^n, S^{n-1}) \to (X, \{*\})].$$

We now note several properties of this definition:

- 1. $\pi_0(X,*) = \text{set of path components of } X.$
- 2. $\pi_1(X,*)$ is a group. $\pi_n(X,*)$ is an abelian group.
- 3. π_n is a functor

$$\left\{ \begin{array}{l} \text{pointed spaces} \\ \text{pointed maps} \end{array} \right\} \to \left\{ \begin{array}{l} \text{groups} \\ \text{group homomorphisms} \end{array} \right\}.$$
 So given
$$f\colon (X,p) \to (Y,q)$$
 we get
$$f_*\colon \pi_n(X,p) \to \pi_n(y,q)$$
 defined by
$$f_*(\gamma) = f \circ \gamma.$$

$$\begin{array}{ll} n & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \pi_n(S^2) & 0 & \mathbf{Z} & \mathbf{Z}/2 & \mathbf{Z}/2 & \mathbf{Z}/12 & \mathbf{Z}/15 \end{array}$$

Example 2.13 (Homotopy groups of S^2).

3 Homology

Our goal is to construct a functor "from the category of topological spaces and continuous maps to the category of **Z**-modules and **Z**-linear maps. This means to each space X we associate an abelian group $(X) = \bigoplus_{n \geq 0} H_n(X)$, and to each map $f: X \to Y$ a function $f_*: H_n(X) \to H_n(Y)$ satisfying $(1_X)_* = 1_{H_n(X)}$ and $(f \circ g)_* = f_* \circ g_*$.

Some properties we would like to have for our construction are:

- 1. Homotopy invariance, if $f \sim g: X \to Y$ then $f_* = g_*$.
- 2. The dimension axiom, $H_n(X) = 0$ for any $n > \dim X$.

3.1 Chain complexes

Definition 3.1 (Chain complex). If R is a commutative ring then a **chain complex** over R is a pair (C, d) satisfying:

- 1. $C = \bigoplus_{n \in \mathbb{Z}} C_n$ for R-modules C_n .
- 2. $d: C \to C$ where $d = \bigoplus d_n$ for R-linear maps d_n .
- 3. $d \circ d = 0$.

The indexing by n is called a **grading**. Usually we take $C_n = 0$ for n < 0. An element of ker d_n is called **closed** or a **cycle**. An element of im d_n is called a **boundary**. d is the **boundary map** or **differential**.

Definition 3.2 (Homology groups). If (C, d) is a chain complex, its nth homology group is

$$H_n(C,d) = \ker d_n / \operatorname{im} d_{n+1}.$$

If $x \in \ker d_n$ we write [x] for its image in $H_n(C)$.

Example 3.3. 1. $C_0 = C_1 = \mathbf{Z}, C_i = 0$ otherwise,

$$0 \to \mathbf{Z} \xrightarrow{\cdot 3} \mathbf{Z} \to 0.$$

Then $H_1 = 0$, $H_0 = \mathbf{Z}/3$.

2.

 ${\bf Z}$

Notation

Symbol Description Page

2