

# MNNR

MORBIDITY AND MORTALITY WEEKLY REPORT

- 93 Progress Toward Eliminating Haemophilus influenzae Type b Disease Among Infants and Children — United States, 1987–1997
- 998 Health Worker Performance After Training in Integrated Management of Childhood Illness — Western Province, Kenya, 1996–1997
- 1001 Virologic Surveillance and Progress Toward Poliomyelitis Eradication — Eastern Mediterranean Region, 1995–September 1998
- 1005 Coronary Heart Disease Mortality Trends Among Whites and Blacks — Appalachia and United States, 1980–1993

#### Progress Toward Eliminating Haemophilus influenzae Type b Disease Among Infants and Children — United States, 1987–1997

Haemophilus influenzae type b (Hib) causes serious invasive diseases among previously healthy children aged <5 years. Before the availability of conjugate vaccines in 1988, Hib was the most common cause of bacterial meningitis among preschool-aged children (1,2). Since 1993, the incidence of Hib invasive disease (defined as illness clinically compatible with invasive disease such as meningitis or sepsis, with isolation of the bacterium from a normally sterile site) among children aged <5 years has declined >95% in the United States (3). This report describes the continued decline of reported Hib invasive disease cases and underscores the need for investigation of Haemophilus influenzae (Hi) invasive disease cases.

#### **National Surveillance**

State health agencies and the District of Columbia provide weekly reports of provisional cases of Hi invasive disease to CDC through the National Electronic Telecommunications System for Surveillance (NETSS) (4). Case reports include basic demographic data about persons with Hi invasive disease, and supplemental information (e.g., the serotype that caused illness, clinical illness, outcome, and Hib vaccination status). For 1996 and 1997, all states were contacted approximately every 2 months to obtain supplemental information about cases of Hi invasive disease in children aged <5 years. Hi cases identified by the active laboratory-based surveillance system also are reported to CDC through NETSS or the National Bacterial Meningitis and Bacteremia Reporting System. Reported Hib vaccination doses were considered valid if administration dates were available and if they were given ≥14 days before illness onset. Rates were calculated using 1996 census data.

Among children aged <5 years, 280 cases of Hi invasive disease were reported in 1996 (incidence: 1.5 per 100,000 children), and 258 cases were reported in 1997 (incidence: 1.3 per 100,000 children). Incidence in 1996 and 1997 represented a decline of 97% from 1987 (41 per 100,000). From 1987 through 1997, the incidence of Hi disease varied slightly among persons aged ≥5 years (range: 0.3–0.6 per 100,000) (Figure 1).

For children aged <5 years, serotype data were available for 200 (71%) of 280 cases in 1996 and for 200 (78%) of 258 cases in 1997. Of the cases for which serotype was known, in 1996, Hib was the cause of illness in 63 (32%) cases, and in 1997, in 81 (41%) cases. By state, excluding Alaska, the average annual incidence of Hib invasive

FIGURE 1. Incidence\* of *Haemophilus influenzae* (Hi) invasive disease among children aged <5 years, incidence<sup>†</sup> of Hi invasive disease among persons aged ≥5 years, and number of states reporting Hi surveillance data — United States, 1987–1997<sup>§</sup>



\*Per 100,000 children aged <5 years.

<sup>†</sup>Per 100,000 persons aged ≥5 years.

Because of the low number of states reporting surveillance data during 1987–1990, rates for those years were race-adjusted using the 1990 U.S. population.

disease during 1996–1997 ranged from 0 to 2.9 per 100,000 children aged <5 years; in Alaska, the incidence was 15.1 per 100,000 children (Table 1). The incidence of nontype b Hi disease ranged from 0 to 3.7 (national rate: 0.7 per 100,000).

During 1996–1997, the average annual incidence of Hib invasive disease per 100,000 children aged <5 years varied by race/ethnicity: 0.5 among non-Hispanic whites, 0.7 among non-Hispanic blacks, 12.4 among American Indians/Alaskan Natives, 0.6 among Asians/Pacific Islanders, and 0.7 among Hispanics. Race/ethnicity data were missing for 12 (8%) children.

#### Active Laboratory-Based Surveillance in Selected Areas

Population-based surveillance for Hi invasive disease is part of a multistate active surveillance project coordinated by CDC. From 1989 through 1997, CDC collaborated with investigators in state and local health departments and universities in several geographically dispersed areas of the United States, with a median population of 1,060,505 children aged <5 years (range: 750,534 in 1989 to 1,605,777 in 1997). During 1989–1991, surveillance was conducted in eight Atlanta area counties, three San

TABLE 1. Number and incidence\* of *Haemophilus influenzae* (Hi) invasive disease among children aged <5 years<sup>†</sup>, by state and serotype — United States, 1996–1997

| State<br>Alabama<br>Alaska | Ty  | /pe b       | Uni | known       | Non | type b§     |
|----------------------------|-----|-------------|-----|-------------|-----|-------------|
| State                      | No. | (Incidence) | No. | (Incidence) | No. | (Incidence) |
| Alabama                    | 0   | ( 0.0)      | 2   | (0.3)       | 5   | (0.8)       |
|                            | 15  | (15.1)      | 1   | (1.0)       | 0   | (0.0)       |
| Arizona                    | 6   | (0.9)       | 2   | (0.3)       | 20  | (2.9)       |
| Arkansas                   | 1   | ( 0.3)      | 0   | (0.0)       | 0   | (0.0)       |
| California                 | 16  | ( 0.3)      | 19  | (0.4)       | 51  | (0.9)       |
| Colorado                   | 5   | ( 0.9)      | 0   | (0.0)       | 6   | (1.1)       |
| Connecticut                | 1   | (0.2)       | 2   | (0.4)       | 7   | (1.6)       |
| Delaware                   | 1   | ( 1.0)      | 0   | (0.0)       | Ó   | (0.0)       |
|                            | 0   | ( 0.0)      | 0   | (0.0)       | 0   | (0.0)       |
| District of Columbia       | 9   | ( 0.5)      | 16  | (0.8)       | 5   | (0.3)       |
| Florida                    | 5   |             |     |             | 14  |             |
| Georgia                    |     | ( 0.5)      | 6   | (0.5)       |     | (1.3)       |
| Hawaii                     | 1   | ( 0.6)      | 1   | (0.6)       | 1   | (0.6)       |
| ldaho                      | 0   | (0.0)       | 0   | (0.0)       | 0   | (0.0)       |
| Illinois                   | 12  | (0.7)       | 4   | (0.2)       | 11  | (0.6)       |
| Indiana                    | 1   | ( 0.1)      | 3   | (0.4)       | 7   | (0.9)       |
| lowa                       | 1   | (0.3)       | 0   | (0.0)       | 2   | (0.6)       |
| Kansas                     | 1   | (0.3)       | 0   | (0.0)       | 0   | (0.0)       |
| Kentucky                   | 2   | (0.4)       | 0   | (0.0)       | 0   | (0.0)       |
| Louisiana                  | 1   | (0.2)       | 1   | (0.2)       | 4   | (0.6)       |
| Maine                      | 0   | (0.0)       | 1   | (0.7)       | 0   | (0.0)       |
| Maryland                   | 7   | ( 1.0)      | 3   | (0.4)       | 10  | (1.4)       |
| Massachusetts              | 4   | (0.5)       | 0   | (0.0)       | 12  | (1.5)       |
| Michigan                   | 4   | (0.3)       | 1   | (0.1)       | 4   | (0.3)       |
| Minnesota                  | 4   | (0.6)       | 3   | (0.5)       | 11  | (1.7)       |
| Mississippi                | 0   | (0.0)       | 0   | (0.0)       | 0   | (0.0)       |
| Missouri                   | 1   | ( 0.1)      | 0   | (0.0)       | 3   | (0.4)       |
| Montana                    | Ó   | ( 0.0)      | 0   | (0.0)       | 2   | (1.8)       |
| Nebraska                   | 0   | (0.0)       | 1   | (0.4)       | 0   | (0.0)       |
| Nevada                     | 0   | ( 0.0)      | 1   | (0.4)       | 0   | (0.0)       |
|                            | 2   | ( 1.3)      | 1   | (0.7)       | 2   | (1.3)       |
| New Hampshire              | 2   |             | 13  |             | 3   | (0.3)       |
| New Jersey                 | 2   | ( 0.2)      | 1   | (1.1)       | 10  |             |
| New Mexico                 | 2   | ( 0.7)      |     | (0.4)       |     | (3.7)       |
| New York                   | 3   | ( 0.2)      | 3   | (0.2)       | 12  | (0.8)       |
| New York City              | 6   | ( 0.5)      | 2   | (0.2)       | 10  | (0.9)       |
| North Carolina             | 2   | ( 0.2)      | 7   | (0.7)       | 2   | (0.2)       |
| North Dakota               | 0   | (0.0)       | 0   | (0.0)       | 0   | (0.0)       |
| Ohio                       | 6   | (0.4)       | 15  | (1.0)       | 3   | (0.2)       |
| Oklahoma                   | 1   | (0.2)       | 3   | (0.7)       | 7   | (1.5)       |
| Oregon                     | 0   | (0.0)       | 0   | (0.0)       | 6   | (1.4)       |
| Pennsylvania               | 4   | (0.3)       | 1   | (0.1)       | 6   | (0.4)       |
| Rhode Island               | 1   | (0.8)       | 0   | (0.0)       | 1   | (8.0)       |
| South Carolina             | 1   | (0.2)       | 1   | (0.2)       | 0   | (0.0)       |
| South Dakota               | 3   | (2.9)       | 1   | (1.0)       | 0   | (0.0)       |
| Tennessee                  | 1   | (0.1)       | 12  | (1.7)       | 3   | (0.4)       |
| Texas                      | 7   | (0.2)       | 0   | (0.0)       | 2   | (0.1)       |
| Utah                       | 1   | ( 0.3)      | 0   | (0.0)       | 3   | (0.8)       |
| Vermont                    | 1   | ( 1.4)      | 0   | (0.0)       | 0   | (0.0)       |
| Virginia                   | ó   | (0.0)       | 6   | (0.6)       | 1   | (0.1)       |
| Washington                 | 1   | (0.1)       | 4   | (0.5)       | 3   | (0.4)       |
|                            | 0   | (0.0)       | 1   | (0.5)       | 0   | (0.0)       |
| West Virginia              | 1   | (0.0)       | 0   | (0.0)       | 7   | (1.0)       |
| Wisconsin                  | 1   |             |     |             | ó   |             |
| Wyoming                    | 1   | ( 1.6)      | 0   | (0.0)       | -   | (0.0)       |
| Total                      | 144 | (0.4)       | 138 | (0.3)       | 256 | (0.7)       |

<sup>\*</sup>Per 100,000 population. 1996 census data were used to calculate average annual incidence.

<sup>&</sup>lt;sup>†</sup>Number of cases during the 2-year period.

Includes serotypes a, c, d, e, and f and non-typeable isolates.

Francisco Bay area counties, four urban counties in Tennessee, and the entire state of Oklahoma. In 1992, Maryland was added. Missouri participated during 1992–1993. In 1995, a county in Tennessee was added, and Oklahoma discontinued participation. In 1996, Connecticut and Oregon and seven counties in Minnesota were added. In 1997, active surveillance in Georgia expanded to 20 counties, and surveillance in Minnesota expanded to the entire state. Information routinely obtained for cases of Hi invasive disease was similar to that collected by the national surveillance systems. Rates were calculated using census projections from 1989 through 1996 and were race-adjusted to the U.S. population (3).

From 1989 to 1997, the race-adjusted incidence of Hib invasive disease among children aged <5 years declined 99%, from 34 to 0.4 per 100,000. During 1996–1997, 79 cases of Hi invasive disease were reported among children aged <5 years. Of these, 14 (18%) were caused by Hib; 48 (61%), by nontype b Hi; and 17 (22%), by unknown serotypes. From 1989 to 1997, the median race-adjusted incidence of nontype b Hi invasive disease was 1.6 per 100,000 children (range: 1.1 to 3.8 per 100,000); the median incidence was higher among blacks (3.2) than among all others (1.4).

#### Vaccination History of Children with Hib Invasive Disease in 1996 and 1997

Of the 144 children with confirmed Hib invasive disease who were reported to CDC through national surveillance, 69 (48%) were aged <6 months and therefore were too young to have completed a three-dose primary Hib vaccination series (Table 2), and 75 (52%) children were eligible to have completed a primary series (aged ≥6 months). Of the 75 children, 48 (64%) were incompletely vaccinated or vaccination status was unknown, and 27 children had completed a primary series; 14 children also had received a booster dose. Five (4%) of 115 children with known outcome and Hib invasive disease died; the deceased children were aged <6 months and had received one or no Hib vaccine doses.

Reported by: G Rothrock, MPH, Emerging Infections Program, San Francisco; D Vugia, MD, S Waterman, MD, State Epidemiologist, California State Dept of Health Svcs. N Barrett, MS, JL Hadler, MD, State Epidemiologist, Connecticut Dept of Public Health. W Baughman, MSPH, M Farley, MD, D Stephens, MD, Veterans Administration Medical Svcs and Emory Univ School of Medicine, Atlanta; K Toomey, MD, State Epidemiologist, Georgia State Dept of Health. L Billmann, MPH, L Harrison, MD, Johns Hopkins Univ, Baltimore; DM Dwyer, MD, State Epidemiologist, Maryland State Dept of Health and Mental Hygiene. J Rainbow, MPH, M Osterholm, PhD, State Epidemiologist, Minnesota Dept of Health. M Skala, Missouri Dept of Health.

TABLE 2. Haemophilus influenzae type b vaccination status of children aged <5 years who had Haemophilus influenzae type b (Hib) invasive disease, by age group — United States. 1996–1997\*

| Age (mos) Total |       | Unknown vaccination |    | r  | No. of doses | ş <sup>†</sup> |    |
|-----------------|-------|---------------------|----|----|--------------|----------------|----|
|                 | Total | status              | 0  | 1  | 2            | 3              | 4  |
| 0- 1            | 25    | 1                   | 24 | _  | _            | _              | _  |
| 2- 3            | 23    | 3                   | 9  | 11 | -            | -              | _  |
| 4-5             | 21    | 3                   | 3  | 10 | 5            | _              | _  |
| 6-11            | 27    | 7                   | 6  | 3  | 6            | 5              | _  |
| 12-59           | 48    | 14                  | 8  | 3  | 1            | 10             | 12 |
| Total           | 144   | 28                  | 50 | 27 | 12           | 15             | 12 |

<sup>\*</sup>Number of cases during the 2-year period.

<sup>&</sup>lt;sup>†</sup>A primary series was completed by 27 children; 25 received a three-dose series and two received a two-dose series.

997

Haemophilus influenzae - Continued

LM Smithee, MS, Oklahoma State Dept of Health. K Stefonek, MPH, D Fleming, MD, State Epidemiologist, State Health Div, Oregon Dept of Human Resources. B Barnes, MS, L Lefkowitz, MD, Dept of Preventive Medicine, Vanderbilt Medical Center, Nashville, Tennessee. Meningitis and Special Pathogens Br and Respiratory Diseases Br, Div of Bacterial and Mycotic Diseases, and Active Bacterial Core Surveillance/Emerging Infections Program Network, National Center for Infectious Diseases; Child Vaccine Preventable Disease Br, Epidemiology and Surveillance Div, National Immunization Program, CDC.

Editorial Note: Since 1988, when Hib conjugate vaccines were first licensed for children aged 18–59 months in the United States, with subsequent licensure in 1990 and widespread use in infants, the number of reported Hib invasive disease cases among children aged <5 years has declined 99%. However, surveillance data indicate that circulation of Hib continued and that some children remained susceptible to disease; susceptible children include those who do not respond or are too young to complete the primary series of Hib vaccination and those who are unvaccinated or undervaccinated. In the 1997 National Immunization Survey of children aged 19–35 months, the coverage level for receipt of three Hib vaccine doses by age 7 months was 61% (CDC, unpublished data, 1997); by age 24 months, coverage for three doses reached 93% (5). High coverage levels will help protect susceptible children in the community by herd immunity (i.e., by less frequent exposure to pharyngeal carriers of the organism) (6).

The small number of reported Hib cases among children who had completed a primary Hib vaccine series suggests that vaccine failure occurs infrequently. However, vaccination history was known for only 54 (72%) of the 75 Hib case-patients aged ≥6 months. Vaccination history is needed to determine whether Hib invasive disease results from vaccine failure or failure to vaccinate. Protection induced by vaccination is not absolute, and cases will continue to occur as long as the Hib organism circulates in populations.

Serotype information for Hi invasive disease cases is essential to monitor progress toward elimination. This information also is needed to monitor nontype b Hi invasive disease to determine whether there is an increase in invasive disease with another serotype or with nontypeable strains, and to measure the sensitivity of the surveillance system. In 1997, information about serotype had been reported for 78% of 258 cases, compared with 41% of 340 cases in 1994 (3). State health departments are encouraged to promote laboratory reporting of Hi cases and to identify laboratories that can perform serotyping on Hi isolates from children aged <15 years with invasive disease; if serotyping is not available, state health departments can contact CDC.

To strengthen national surveillance, the incidence of nontype b Hi invasive disease among children aged <5 years can be used to monitor the sensitivity of reporting; Hi invasive disease caused by any serotype and nontypeable strains, in addition to type b strains, is nationally notifiable (7). Although Hi invasive disease rates may vary by racial/ethnic groups, as was the case in the prevaccine era (1–3,8), the incidence of nontype b Hi invasive disease will occur within an expected range. For example, in California, the two regions of the state with active, laboratory-based surveillance had an incidence rate of nontype b Hi invasive disease of 1.5 per 100,000 children aged <5 years (8). In 1996 and 1997, 24 states reported annual rates of ≥0.5 nontype b Hi invasive disease cases per 100,000 children aged <5 years.

Age-appropriate vaccination starting at age 2 months continues to be the most important method to protect children from Hib invasive disease. Health-care providers

should emphasize to parents the importance of vaccinating children against Hib invasive disease (9).

#### References

- Ward J, Leiberman JM, Cochi SL. Haemophilus influenzae vaccines. In: Plotkin SA, Mortimer EA, eds. Vaccines. 2nd ed. Philadelphia, Pennsylvania: WB Saunders Co., 1994:337–86.
- Adams WG, Deaver KA, Cochi SL, et al. Decline of childhood Haemophilus influenzae type b (Hib) disease in the Hib vaccine era. JAMA 1993;269:221-6.
- Bisgard KM, Kao A, Leake J, Strebel PM, Perkins BA, Wharton M. Haemophilus influenzae invasive disease in the United States, 1994–1995: near disappearance of a child vaccine preventable disease. Emerging Infect Dis 1998;4:229–37.
- CDC. Case definitions for infectious conditions under public health surveillance. MMWR 1997; 46(no. RR-10):15.
- CDC. Status report on the Childhood Immunization Initiative: national, state, and urban area vaccination coverage levels among children aged 19–35 months—United States, 1997. MMWR 1998;47:547–54.
- Barbour ML. Conjugate vaccines and the carriage of Haemophilus influenzae type b. Emerg Inf Dis 1996;2:176–82.
- Bisgard KM. Haemophilus influenzae type b invasive disease. In: CDC. Manual for the surveillance of vaccine-preventable diseases. Atlanta, Georgia: US Department of Health and Human Services, CDC, 1997.
- CDC. Haemophilus influenzae invasive disease among children aged <5 years—California, 1990–1996. MMWR 1998;47:737–40.
- CDC. Recommendations for the use of Haemophilus influenzae b conjugate vaccines and a combined diphtheria, tetanus, pertussis, and Haemophilus b vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1993;42(no. RR-13):1–15.

## Health Worker Performance After Training in Integrated Management of Childhood Illness — Western Province, Kenya, 1996–1997

Each year, approximately 12 million children die in developing countries before age 5 years; 70% of these deaths are caused by respiratory infections, diarrhea, malaria, measles, and malnutrition, alone or in combination (1). In 1994, the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF) developed the Integrated Management of Childhood Illness (IMCI) guidelines, which call for nonphysician health workers (HWs) to evaluate every sick child presenting to a first-level health facility (HF) for each of these conditions, regardless of the child's presenting complaint(s). Even though IMCI is being incorporated into the national health-care programs of many developing countries, little is known about HW performance after IMCI training. To measure the level of performance achieved and maintained by IMCItrained HWs, during 1996-1997 CDC, the Kenya-Finland Primary Health Care Program, and the Ministry of Health of Kenya prospectively evaluated the level of performance achieved by IMCI-trained HWs at the end of training (EOT) and the level of performance maintained during the first 3 months post-training (1-3MPT) with monthly or bimonthly clinical supervision. This report summarizes the results of this evaluation, which indicate that HWs achieved reasonably high performance levels managing ill children with mild and moderate disease classifications but performed at a much lower level when managing severely ill children at EOT.

Health Worker Performance - Continued

The IMCI algorithm follows four main steps. First, the HW assesses for signs that indicate the child is severely ill and needs referral and asks whether the child has a cough or difficult breathing, diarrhea, fever, or an ear problem. A more detailed assessment is performed if any of these symptoms are present. Children are assessed for signs of malnutrition and anemia, and their vaccination status is checked. Second, the child is classified according to the assessment findings. IMCI classifications are organized into three categories of illness severity: severe, moderate, and mild. Third, the child is treated and, fourth, his caretaker is counseled.

During the evaluation and monitoring of HW performance, supervisors used observation checklists to record the care provided to sick children aged 2–59 months, then reassessed the children to evaluate the accuracy of HWs' classifications. After the reassessment of each child, the supervisors provided immediate, individual feedback to the HWs on their performance.

Overall performance scores were developed that gave equal weight to each assessment task, classification, treatment, or counseling message. Assessment and counseling performance scores were calculated by dividing the total number of tasks or messages required and completed for each child by the total number required. Classification and treatment scores were calculated by dividing the number of correct classifications made or treatments given by the number that should have been made or given. Correct classifications were based on signs and symptoms recorded by supervisors during their reassessment of the child. The principal performance scores were measures of sensitivity rather than specificity for two reasons: a child is likely to suffer more from the omission of treatments that should have been given than from the provision of treatments not required by the IMCI guidelines, and treatments not required by the guidelines may have been for diseases not covered by the guidelines.

A total of 478 children were observed during the EOT evaluation, and 307 children were observed during supervisory visits 1–3MPT. Because feedback was given to the HW after each child seen, only the first child seen during each supervisory visit (n=117) was included in the analysis of HW performance. Because fewer children were seen with severe classifications than with moderate or mild classifications, all children with severe classifications observed during supervisory visits were included in the analysis to ensure an adequate sample size of severe disease classifications.

In general, performance levels reached at EOT were maintained 1–3MPT. Overall scores for the completion of assessment tasks were 81% (8781 of 10,896) at EOT and 75% (1988 of 2662) at 1–3MPT. Overall classification scores were 79% (1535 of 1939) at EOT and 78% (394 of 505) at 1–3MPT. Overall treatment scores were 72% (680 of 951) at EOT and 67% (172 of 258) at 1–3MPT, and overall scores for counseling during these periods were 69% (3480 of 5069) and 67% (829 of 1237). Overall classification and treatment scores primarily reflect performance classifying and treating the more common moderate and mild disease classifications. Performance scores for the classification and treatment of severe disease were much lower (Table 1): only 31% of children's illnesses were correctly classified and 32% correctly treated at EOT and 24% correctly classified and 26% correctly treated at 1–3MPT. HW performance classifying and treating two potentially life-threatening moderate diseases (i.e., pneumonia and anemia) show declining trends.

Reported by: A Odhacha, Kenya-Finland Primary Health Care Program; H Orone, M Pambala, R Odongo, J Lungapher, A Kituye, J Mwanza, C Nedda, S Ulenya, Ministry of Health, Kenya.

Health Worker Performance - Continued

TABLE 1. Number of cases of illnesses and percentage of illnesses correctly classified and treated by health workers trained in the Integrated Management of Childhood Illness (IMCI) guidelines at end of training (EOT) and 1–3 months post-training (1–3MPT) — Bungoma and Vihiga Districts, Kenya, 1996–1997\*

|                             | C    | correctly | classifie | d    |     | Correctly | treated | 1    |
|-----------------------------|------|-----------|-----------|------|-----|-----------|---------|------|
|                             | EC   | T         | 1-31      | MPT  | E   | TC        | 1-31    | MPT  |
| Classification              | No.  | (%)       | No.       | (%)  | No. | (%)       | No.     | (%)  |
| Severe                      |      |           |           |      |     |           |         |      |
| All severe classifications§ | 173  | (31)      | 72        | (24) | 173 | (32)      | 74      | (26) |
| Severe pneumonia or         |      |           |           |      |     |           |         |      |
| very severe disease         | 71   | (45)      | 25        | (32) | 71  | (38)      | 25      | (48) |
| Very severe febrile dis-    |      |           |           |      |     |           |         |      |
| ease                        | 48   | (23)      | 24        | (13) | 48  | (31)      | 24      | (8)  |
| Severe malnutrition         | 36   | (19)      | 17        | (18) | 36  | (11)      | 17      | (6)  |
| Moderate                    |      |           |           |      |     |           |         |      |
| All moderate classifica-    |      |           |           |      |     |           |         |      |
| tions <sup>§</sup>          | 677  | (85)9     | 156       | (83) | 656 | (84)      | 152     | (85) |
| Pneumonia                   | 115  | (90)      | 27        | (78) | 115 | (88)      | 27      | (67) |
| Malaria                     | 384  | (96)      | 96        | (96) | 384 | (95)      | 96      | (99) |
| Acute ear infection         | 32   | (28)      | 7         | (43) | 32  | (63)      | 7       | (86) |
| Anemia                      | 80   | (73)      | 16        | (56) | 80  | (54)      | 16      | (38) |
| Mild                        |      |           |           |      |     |           |         |      |
| All mild classifications    | 1089 | (83)      | 277       | (90) |     |           |         |      |
| No pneumonia, cough         |      |           |           |      |     |           |         |      |
| or cold                     | 151  | (69)      | 39        | (77) |     |           | 1       |      |
| No dehydration              | 122  | (80)      | 32        | (88) | 122 | (61)      | 32      | (75) |
| No anemia                   | 391  | (91)      | 98        | (95) |     |           | 1       |      |
| Not very low weight         | 425  | (82)      | 108       | (90) |     |           | 9       |      |

\*Percentages and numbers refer to classifications. Each child may have multiple classifications.

<sup>1</sup>Correct medication prescribed (not including dosage) and child referred if indicated.

<sup>9</sup>Categories of severe and moderate disease, which include <7 cases seen are not listed individually but are included in the analysis of all classifications correctly classified and treated. Severe disease classifications from all children seen during each supervisory visit are included. Moderate and mild disease classifications from only the first child seen each supervisory visit are included.

\*\*Children with the moderate classification of very low weight or the mild classifications other than measles or no dehydration received only symptomatic treatment and counseling.

International Child Survival and Emerging Infections Program Support Activity, Div of Parasitic Diseases, National Center for Infectious Diseases; and an EIS Officer, CDC.

Editorial Note: In this evaluation, HWs performed well overall at EOT in completing assessment tasks and in classifying and treating moderate disease, but performed poorly classifying and treating severe disease. With clinical supervision, performance levels during 1–3MPT were generally maintained at the level achieved by EOT. Further investigation is necessary to determine why HWs perform poorly in classifying and treating severe disease and to modify training and clinical supervision to improve HWs' performance. Further investigation also is needed to evaluate how HWs perform using IMCI when they are not being observed. Because HWs are observed managing only three children during each supervisory visit, HWs may demonstrate more accurate adherence to the IMCI guidelines than when working under greater time pressure. Consequently, performance scores may differ when measured by alternative methods, such as surveys in which HWs are evaluated throughout an entire day.

Health Worker Performance - Continued

or reviews of medical records that capture HWs assessment findings and management plans.

Since the early 1980s, symptom-specific algorithms and training programs developed by WHO have been incorporated into the national health programs of many developing countries. Training courses in symptom-specific programs have become one of the principal means for improving HW performance after basic training. However, a review of HF surveys conducted in 28 countries with national training programs in the control of diarrheal diseases indicated that a median of only 16% of cases were correctly assessed, and a median of only 20% of children were correctly rehydrated (2). A 1994 survey in Bungoma and Vihiga Districts of Kenya indicated that HWs trained in the control of diarrheal diseases performed at the same level as HWs not trained (CDC, unpublished data, 1994). Because most training programs do not evaluate the level of performance achieved by HWs at EOT and then measure performance after training, it is unknown whether HWs perform poorly after training because they do not reach a satisfactory level of performance by the EOT, or if they attain a satisfactory level by the EOT but are unable to maintain it after returning to their HFs.

The introduction of IMCI guidelines is expected to improve HWs' performance and, as a result, substantially reduce childhood mortality (WHO, unpublished data, 1997). Like symptom-specific programs, IMCI provides guidelines to HWs with little previous clinical training in classifying and treating children. A major advantage of IMCI over the symptom-specific programs is that IMCI requires the HW to assess the child for all main symptoms regardless of the child's presenting complaint.

The approach to training and supervision used in western Kenya allowed supervisors to monitor HW performance levels, identify and provide immediate feedback on the performance of individual HWs, and identify problems associated with inadequate skill levels at EOT or failure to maintain or apply skills after training. This approach should be considered in other countries where IMCI is being implemented.

#### References

 Pelletier DL, Frongillo EA, Schroder DG, Habicht JP. The effects of malnutrition on child mortality in developing countries. Bull World Health Organ 1995;73:443

–8.

 World Health Organization. CDD Ninth Programme Report, 1992–1993. Geneva, Switzerland: World Health Organization, Programme for the Control of Diarrheal Diseases, 1993.

#### Virologic Surveillance and Progress Toward Poliomyelitis Eradication — Eastern Mediterranean Region, 1995—September 1998

In 1988, the Regional Committee of the Eastern Mediterranean Region (EMR)\* of the World Health Organization (WHO) resolved to eliminate poliomyelitis by 2000. Substantial progress toward polio eradication has been achieved in the region (1). Surveillance for cases of acute flaccid paralysis (AFP) and examination of stool specimens from AFP cases for the presence of poliovirus provide critical data to target supplemental vaccination activities. This report summarizes the progress in AFP and poliovirus surveillance in EMR from 1995 through September 1998 and highlights the

<sup>\*</sup>Member countries are Afghanistan, Bahrain, Cyprus, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates, and Yemen.

importance of virologic investigations to determine whether viruses isolated represent indigenous transmission, importations, or laboratory contamination.

#### **Laboratory Network**

WHO has established a global laboratory network to support national polio eradication programs (2). Twelve laboratories constitute the regional network in EMR. National poliovirus laboratories (NPLs) in Iran, Iraq, Jordan, Morocco, Oman, Saudi Arabia, Sudan, and Syria process stool specimens from AFP cases to isolate and serotype poliovirus. Regional reference laboratories in Egypt, Kuwait, Pakistan, and Tunisia confirm the serotype of poliovirus isolated by NPLs and determine whether viruses are wild or vaccine-derived. Laboratory performance is monitored through programs of annual accreditation and proficiency testing. Nine of 12 network laboratories are accredited by WHO, and one laboratory was accredited provisionally pending improvement in timeliness of reporting; results from two nonaccredited laboratories are tained scores of ≥80% in the most recent proficiency test, and staff of the two laboratories that performed poorly have been retrained.

#### Circulation of Poliovirus

Approximately 3000 AFP cases were reported in EMR in 1997. From 1995 through June 1998, the nonpolio AFP rate has increased from 0.5 to 0.8 (per 100,000 children aged <15 years). At least one stool specimen has been collected from >80% of reported AFP cases, and "adequate stool specimens" (i.e., two stool samples collected at least 24 hours apart and within 14 days of paralysis onset) have been collected from 50% to 70% of all AFP cases reported (Table 1) since 1995. During this period no wild polioviruses were detected in Bahrain, Djibouti, Jordan, Kuwait, Lebanon, Libya,

TABLE 1. Cumulative data for indicators of field and laboratory performance in acute flaccid paralysis (AFP) surveillance — Eastern Mediterranean Region, 1995—June 30, 1998

| Indicator                                                                              | 1995 | 1996 | 1997 | 1998 |
|----------------------------------------------------------------------------------------|------|------|------|------|
| No. AFP cases                                                                          | 1727 | 1779 | 2878 | 831  |
| Nonpolio AFP reporting rate*                                                           | 0.5  | 0.7  | 0.9  | 0.8  |
| Percentage of AFP cases with virologic<br>investigation performed                      | 73%  | 92%  | 84%  | 98%  |
| Percentage of reported AFP cases with<br>adequate stool samples <sup>†</sup> collected | 43%  | 63%  | 53%  | 69%  |
| Total no. stool samples received from<br>AFP cases and contacts                        | 4243 | 4281 | 5335 | 2115 |
| Percentage of total samples received within 3 days after collection                    | 54%  | 41%  | 46%  | 55%  |
| Percentage of total samples received<br>in good condition <sup>5</sup>                 | 93%  | 94%  | 91%  | 92%  |
| Percentage of total samples reported within 28 days                                    | 44%  | 46%  | 74%  | 75%  |
| Percentage of total samples with nonpolio enteroviruses isolated                       | 11%  | 11%  | 10%  | 9%   |

\*Per 100,000 children aged <15 years.

<sup>1</sup>Two stool samples collected at least 24 hours apart and within 14 days of paralysis onset.

<sup>5</sup>Good condition means that on arrival 1) ice or frozen icepacks or a temperature indicator (showing <46 F (<8 C)) is in the container, 2) the specimen volume is adequate (>5 g), 3) no evidence of leakage or desiccation is present, and 4) appropriate documentation (laboratory request/reporting form) is completed.

Morocco, Oman, Palestine, Qatar, Somalia, Tunisia, United Arab Emirates, and Yemen. In some countries, these negative findings may indicate the "true" absence of wild poliovirus circulation, but in other countries (e.g., Djibouti, Libya, Qatar, Somalia, United Arab Emirates, and Yemen) surveillance is either in early stages of implementation or inadequate to rule out continuing virus transmission.

Poliovirus type 1 remains endemic in Pakistan, Afghanistan, and Sudan, is contained to foci in Egypt and Iran, and has been isolated from a single AFP case in Syria with paralysis onset in March 1998. In 1997, poliovirus type 1 was isolated from two cases of AFP in Iraq, and through September 1998 wild poliovirus has not been isolated in the country. Poliovirus type 2 has not been isolated in the region during 1998, but was last isolated in Pakistan and Afghanistan in 1997. Poliovirus type 3 remains endemic in Pakistan and Afghanistan, and was isolated from one AFP case and a contact of another case in Iran and one case in Saudi Arabia in 1998. Although poliovirus type 3 was isolated in Iran in 1997, this serotype had been absent from Saudi Arabia since 1995. Epidemiologic and genomic sequencing data support transmission links of the 1998 Saudi Arabia case with Afghanistan and Pakistan. Poliovirus type 3 appears to have been eliminated from Egypt in 1996.

#### Genetic Characterization of Wild Poliovirus

Analysis of genetic sequences of selected poliovirus isolates has been conducted in specialized laboratories within the WHO global poliovirus laboratory network. These studies demonstrated a reduction in the number of circulating poliovirus genotypes and a reduced genetic sequence diversity among Pakistan and Egyptian poliovirus isolates. One poliovirus type 1 genotype circulated in Egypt from 1995 to 1998 during which sequence analysis of this genotype indicated a >80% reduction in the independent chains of transmission. Poliovirus type 3 from Egypt isolated from 1995 to 1996 belong to a single genotype, which appears to have been eliminated. Poliovirus type 1 isolates obtained in Pakistan during 1995–1997 belong to a single genotype, in contrast to those isolated from 1990 through 1992 when four different genotypes were detected (3).

Genetic studies have provided evidence of poliovirus transmission links among certain countries. Poliovirus type 1 isolates from the Iran (1997) and Pakistan (1995 to 1997) belonged to the same genotype and had >97% genetic sequence similarity. During 1997–September 1998, 17 wild poliovirus-associated cases were reported from Iran, 15 of which occurred in southeastern provinces; most had epidemiologic links to neighboring Pakistan or Afghanistan. To reduce the risk for importation of wild viruses from Pakistan and Afghanistan, joint cross-border polio vaccination activities were conducted in Iran, Pakistan, and Afghanistan in 1998 and will be repeated in 1999 and 2000.

In 1997, poliovirus transmission occurred in border areas of Turkey and Iraq, apparently facilitated by population movement and low oral poliovirus vaccine coverage. Six virologically confirmed poliovirus type 1 cases were detected in Turkey; all were in persons from Mardin province in the southeastern part of the country. In the same year, poliovirus type 1 was isolated from two of 28 persons reported with polio from Iraq: one was from Wasit province in the south and the other from Ninevah, a northern province near the southern border province of Mardin in Turkey. The 1997 poliovirus

type 1 isolates from Turkey and Iraq belonged to the same genotype and genetic cluster and were closely related to 1994 Turkish isolates.

Epidemiologic and/or genetic sequence data showed that imported viruses contributed to previous polio outbreaks in some countries (e.g., Saudi Arabia, Jordan, and Oman) (4–6). The risk for wild poliovirus importation remains high in countries that have common borders or receive visitors (e.g., as tourists, refugees, pilgrims, or migrant workers) from countries where polio is endemic.

Genetic sequence analyses also were used to confirm that wild poliovirus laboratory contaminants were reported inadvertently in three different laboratories during 1995–1998. Eradication programs had been alerted to the possibility of contamination through unusual clusters of wild viruses from AFP cases without residual paralysis. Reported by: Expanded Program on Immunization, Eastern Mediterranean Region, World Health Organization, Alexandria, Egypt. Global Program for Vaccines and Immunization, World Health Organization, Geneva, Switzerland. Respiratory and Enteric Virus Br, Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases; Vaccine Preventable Disease Eradication Div, National Immunization Program, CDC.

Editorial Note: Virologic surveillance for polioviruses and genetic studies of poliovirus isolates provided critical data for programmatic action. These methods allow the attribution of individual isolates of poliovirus to either indigenous transmission (i.e., poliovirus reservoir), importation, or laboratory contamination, each of which require different interventions. The highest priority must be directed toward the identification of foci of poliovirus transmission (e.g., reservoirs of continuing circulation during low season) and targeting these areas for intense repeated vaccination campaigns to eliminate the last chains of transmission.

Genetic sequence information from Pakistan isolates has been a useful program monitoring tool. Improvement in surveillance resulted in an increase in the number of reported polio cases in 1997 compared with 1996, despite implementation of recommended polio eradication strategies. Molecular studies from poliovirus isolates, however, suggested a substantial decrease in biodiversity, with many lineages of poliovirus being eliminated successively. These molecular studies emphasize the need for coordinated efforts to eliminate the remaining poliovirus reservoirs in the Iraq/Turkey border area and in Pakistan, Afghanistan, and border areas of Iran. Genomic studies for investigation of suspected laboratory contamination also can avoid the implementation of costly vaccination campaigns planned in response to the reporting of wild viruses.

Several important factors delay progress toward the eradication target. Underestimation of the geographic spread of poliovirus may occur because of inadequate AFP surveillance in some countries affected by war, civil unrest, or weak health-care systems (e.g., Somalia, Djibouti, and Yemen). Polioviruses reported in Afghanistan were detected only after AFP surveillance was implemented in 1997. Inappropriate timing, collection, and/or transport of stool specimens also decrease the sensitivity of virus isolation (7).

Virologic data indicate that substantial progress has been made toward polio eradication in the region. Continued international support<sup>†</sup> will be essential, especially in

<sup>&</sup>lt;sup>1</sup>The polio eradication initiative is supported by individual countries in which polio is endemic. In addition, external support for the EMR is provided primarily by WHO; United Nations Children's Fund (UNICEF); the governments of Canada, Denmark, Japan, Norway, United Kingdom, and United States (through U.S. Agency for International Development and CDC); and Rotary International.

those countries where polio is endemic and human and financial resources are limited, to continue to improve field and laboratory surveillance for poliomyelitis. Further enhancement of these systems will be needed to ensure eradication of polio by 2000.

#### References

- CDC. Progress toward poliomyelitis eradication—Eastern Mediterranean Region, 1996–1997.
   MMWR 1997;46:793–7.
- CDC. Status of the global laboratory network for poliomyelitis eradication, 1994–1996. MMWR 1997;30:692–3.
- Mulders MN, Lipskaya GY, van der Avoort HGAM, et al. Molecular epidemiology of wild poliovirus type 1 in Europe, the Middle East, and the Indian Subcontinent. J Infect Dis 1995;171: 1399–405.
- Afif H, Sutter RW, Kew OM, et al. Outbreak of poliomyelitis in Gizan, Saudi Arabia: cocirculation of wild polioviruses from three separate origins. J Infect Dis 1997;175(suppl 1):S71–S75.
- Sutter RW, Patriarca PA, Brogan S, et al. Outbreak of paralytic poliomyelitis in Oman: evidence of widespread transmission among fully vaccinated children. Lancet 1991;338:715–20.
- Reichler MR, Abbas A, Kharabsheh S, et al. Outbreak of paralytic poliomyelitis in a highly immunized population in Jordan. J Infect Dis 1997;175(suppl 1):S62–S70.
- Alexander JP, Gary HE, Pallansch M. Duration of poliovirus excretion and its implication for acute flaccid paralysis surveillance: a review of the literature. J Infect Dis 1997;175(suppl 1): S176–S182.

#### Coronary Heart Disease Mortality Trends Among Whites and Blacks — Appalachia and United States, 1980–1993

Although heart disease-associated mortality has declined steadily since the 1960s, heart disease remains the leading cause of death for both men and women of all races/ethnicities in the United States (1). This report compares temporal trends in coronary heart disease (CHD) death rates for blacks and whites from 1980 to 1993 (the latest year for which data were available) in the Appalachian Region\* with trends for the entire United States. The findings indicate that among whites aged ≥35 years the burden of CHD is greater in Appalachia than in the entire United States, with the disparity increasing over time, and among blacks, only slight differences in CHD rates between Appalachia and the United States were observed.

From 1980 through 1993, annual age-adjusted CHD death rates for persons aged ≥35 years were calculated using mortality data compiled by CDC and population estimates from the Bureau of the Census. For both Appalachia and the United States, CHD death rates were calculated separately for blacks and whites by sex and age group (i.e., ages 35–64 and ≥65 years). The 1980 U.S. population aged ≥35 years was the standard for age adjustment. CHD deaths were defined as deaths for which the underlying cause was listed on the death certificate as codes 410.0–414.0 and 429.2 of the International Classification of Diseases, Ninth Revision (ICD-9). The cause of death is reported by attending physicians, medical examiners, and coroners on death certificates and is subsequently coded according to the ICD-9. Linear regression models, with year as the independent variable and log-transformed annual CHD death rate as the dependent variable, were estimated separately for each group. Beta coefficients

<sup>\*</sup> Appalachia is comprised of 399 counties, including all of West Virginia and parts of Alabama, Georgia, Kentucky, Maryland, Mississippi, New York, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, and Virginia (2).

Coronary Heart Disease - Continued

from each model were used to calculate the average annual percentage change in CHD mortality.

CHD mortality declined from 1980 through 1993 for each of the demographic groups for both Appalachia and the United States; however, Appalachia and the United States differed in both the level of CHD mortality and the magnitude of decline for most demographic groups. Among persons aged 35–64 years, CHD death rates for whites in Appalachia were consistently higher than those for the entire United States (Figure 1). CHD death rates were 15% higher among white men aged 35–64 years in Appalachia than among white men in the United States in 1980; in 1993, rates were 19% higher for white men in Appalachia. Similarly, CHD death rates were 15% higher among white women aged 35–64 years in Appalachia than among white women in the United States in 1980; in 1993, rates were 21% higher for white women in Appalachia. In comparison, CHD death rates for blacks aged 35–64 years only differed slightly between Appalachia and the entire United States (Figure 1).

For Appalachian residents aged 35–64 years, the average annual declines in CHD mortality from 1980 through 1993 were 2.3% for black women, 3.1% for black men, 3.3% for white women, and 3.9% for white men. In the United States, average annual declines in the same age group were 2.7% for black men, 2.8% for black women, 3.4% for white women, and 4.3% for white men.

FIGURE 1. Rates\* of coronary heart disease mortality among persons aged 35–64 years, by year, race/ethnicity<sup>†</sup>, and sex — Appalachia and United States, 1980–1993



<sup>\*</sup>Per 100,000 population.

<sup>†</sup>Race-specific rates were limited to blacks and whites because numbers for other racial/ethnic groups were too small for meaningful analysis.

#### Coronary Heart Disease - Continued

Among persons aged ≥65 years, whites in Appalachia had slightly higher CHD death rates than whites in the same age group in the entire United States (6% higher in 1980 and 5% higher in 1993) (Figure 2). In comparison, blacks aged ≥65 years experienced slightly lower CHD death rates in Appalachia than blacks in the same age group in the entire United States (Figure 2).

From 1980 through 1993, average annual declines in CHD mortality for Appalachian residents aged ≥65 years were 1.8% for black men, 2.3% for black women, 3.2% for white men, and 3.3% for white women. In the United States, average annual declines for persons in the same age group were 1.6% for black men, 1.7% for black women, 3.1% for white women, and 3.3% for white men.

Reported by: E Barnett, PhD, VE Braham, MA, JA Halverson, MA, Dept of Community Medicine; GA Elmes, PhD, Dept of Geology and Geography, West Virginia Univ, Morgantown, West Virginia. Cardiovascular Health Br, Div of Adult and Community Health, National Center for Chronic Disease Prevention and Health Promotion, CDC.

Editorial Note: The findings of this report corroborate recent reports showing important geographic and race/ethnicity variability in both levels and rates of decline in CHD mortality (3–7). The burden of CHD mortality observed among whites in Appalachia increased during 1980–1993. In both Appalachia and the entire United States, CHD death rates for blacks remained higher than rates for whites; however, among blacks there were only slight differences in CHD death rates between Appalachia and the entire United States.

FIGURE 2. Rates\* of coronary heart disease mortality among persons aged ≥65 years, by year, race/ethnicity¹, and sex — Appalachia and United States, 1980–1993



<sup>\*</sup>Per 100,000 population.

Race-specific rates were limited to blacks and whites because numbers for other racial/ethnic groups were too small for meaningful analysis.

#### Coronary Heart Disease - Continued

The findings in this report are subject to at least two limitations. First, data used to calculate CHD death rates in this study include census undercounts of black populations and variations in the accuracy of reporting underlying cause of death on death certificates. Second, examination of CHD death rates for a large region such as Appalachia obscures important geographic variation in risk for heart disease within the region. Rural and less affluent counties within Appalachia were at highest risk for CHD mortality and were least likely to have adequate economic and medical-care resources (8).

The findings in this report suggest that the social and environmental conditions and resources that influence CHD mortality for whites aged ≥35 years may differ between Appalachia and the United States. The Appalachian region is characterized by low levels of urbanization and lower standards of living than the nation (9). Life expectancy for both men and women is lower in Appalachian counties than the United States (10), In addition to low levels of economic resources, many Appalachian counties lack medical-care facilities (e.g., hospital coronary-care units and cardiac-rehabilitation units) for treatment of CHD (8). The population of Appalachia is predominantly white; however, blacks comprise 6% of the population, with several rural counties of southern Appalachia having black populations that are more than 20%. The similarity of CHD death rates for blacks in Appalachia with those in the nation overall suggests the need to examine the similarities in socioenvironmental conditions and resources for blacks in Appalachia compared with the United States. Increasing inequalities in CHD mortality trends for whites between Appalachia and the nation from 1980 through 1993 indicate the need for public health interventions focused on this disadvantaged region.

In Appalachia, policies and programs should be instituted that enhance both primary and secondary prevention of heart disease mortality. Secondary prevention of heart disease requires improved access to medical-care facilities and health-care professionals, especially for residents of isolated rural counties. In addition, persons with heart disease require social support from their families and communities, and access to facilities and programs for cardiac rehabilitation. Primary prevention of heart disease mortality requires communitywide improvements in the social environment, including full employment in healthy work environments, access to affordable healthy foods and recreational facilities, and opportunities for social interaction and participation in civic life.

#### References

- American Heart Association. 1998 heart and stroke statistical update. Dallas, Texas: American Heart Association, 1997.
- Appalachian Regional Commission. Annual report, 1992. Washington, DC: Appalachian Regional Commission, 1992.
- Sempos C, Cooper R, Kovar MG, McMillen M. Divergence of the recent trends in coronary mortality for the four major race-sex groups in the United States. Am J Public Health 1988; 78:1422-7.
- Wing S, Dargent-Molina P, Casper M, Riggan W, Hayes CG, Tyroler HA. Changing association between community occupational structure and ischaemic heart disease mortality in the United States. Lancet 1987;2:1067–70.
- Wing S, Casper M, Davis W, Hayes C, Riggan W, Tyroler HA. Trends in the geographic inequality
  of cardiovascular disease mortality in the United States, 1962–1982. Soc Sci Med 1990;30:
  261–6.

FIGURE I. Selected notifiable disease reports, comparison of provisional 4-week totals ending November 21, 1998, with historical data - United States



<sup>\*</sup>Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

TABLE I. Summary — provisional cases of selected notifiable diseases, United States, cumulative, week ending November 21, 1998 (46th Week)

|                |                                | Cum. 1998             |                                         | Cum. 1998 |
|----------------|--------------------------------|-----------------------|-----------------------------------------|-----------|
| Anthrax        |                                |                       | Plague                                  | 8         |
| Brucellosis    |                                | 51<br>12<br>3         | Poliomyelitis, paralytic                | 1         |
| Cholera        |                                | 12                    | Psittacosis                             | 44        |
| Congenital rul | bella syndrome                 | 3                     | Rabies, human                           |           |
| Cryptosporidi  | osis*                          | 2,902                 | Rocky Mountain spotted fever (RMSF)     | 302       |
| Diphtheria     |                                | 1                     | Streptococcal disease, invasive Group A | 1,878     |
| Encephalitis:  | California*                    | 82<br>3<br>24         | Streptococcal toxic-shock syndrome*     | 45        |
|                | eastern equine*                | 3                     | Syphilis, congenital <sup>1</sup>       | 361<br>34 |
|                | St. Louis*                     | 24                    | Tetanus                                 | 34        |
|                | western equine*                |                       | Toxic-shock syndrome                    | 120       |
| Hansen Disea   | 50                             | 98                    | Trichinosis                             | 12        |
| Hantavirus pu  | Ilmonary syndrome*1            | 19                    | Typhoid fever                           | 299       |
|                | emic syndrome, post-diarrheal* | 98<br>19<br>78<br>230 | Yellow fever                            |           |

no reported cases

Not notifiable in all states.

Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases (NCID).

Updated monthly from reports to the Division of HIV/AIDS Prevention-Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention (NCHSTP), last update October 25, 1998.

Updated from reports to the Division of STD Prevention, NCHSTP.

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending November 21, 1998, and November 15, 1997 (46th Week)

|                         |                |              |                  |                  | Esche<br>coli O | nichia<br>157:H7   |                  |                 | Hen          | ntitia       |
|-------------------------|----------------|--------------|------------------|------------------|-----------------|--------------------|------------------|-----------------|--------------|--------------|
|                         |                | DS           | Chla             | mydia            | NETSS1          | PHLIS <sup>5</sup> | Goni             | omhea           |              | A, NB        |
| Reporting Area          | Cum.<br>1998°  | Cum.<br>1997 | Cum.<br>1998     | Cum.<br>1997     | Cum.<br>1998    | Cum.<br>1998       | Cum.<br>1998     | Cum.<br>1997    | Cum.<br>1998 | Cum.<br>1997 |
| UNITED STATES           | 38,924         | 49,734       | 485,576          | 415,270          | 2,694           | 1,782              | 292,687          | 262,691         | 4,417        | 3,091        |
| NEW ENGLAND             | 1,539          | 2,104        | 16,332           | 15,944           | 309             | 246                | 4.632            | 5,305           | 78           | 52           |
| Maine<br>N.H.           | 26<br>28       | 50<br>34     | 951              | 885              | 35              | *                  | 61               | 60              |              |              |
| Vt.                     | 18             | 32           | 854<br>375       | 723<br>378       | 43<br>19        | 43<br>17           | 79<br>34         | 86<br>47        | 1            |              |
| Mass.                   | 785            | 729          | 7,459            | 6,481            | 142             | 142                | 2,024            | 1,876           | 74           | 3<br>42      |
| R.I.<br>Conn.           | 108<br>574     | 133<br>1,126 | 2,022            | 1,792            | 12              | 1                  | 360              | 390             | 3            | 7            |
| MID. ATLANTIC           | 10,425         | 15.051       | 4,671<br>53,796  | 5,685            | 58              | 43                 | 2,074            | 2,846           | *            | -            |
| Upstate N.Y.            | 1,249          | 2,264        | 53,796<br>N      | 50,259<br>N      | 267             | 70                 | 32,406<br>5,842  | 33,696          | 329          | 286          |
| N.Y. City               | 5,885          | 8,005        | 30,919           | 24,116           | 7               | 12                 | 13,775           | 5,822<br>12,669 | 247          | 213          |
| N.J.<br>Pa.             | 1,909<br>1,382 | 2,978        | 9,791            | 8,869            | 60              | 48                 | 6,545            | 6,698           |              |              |
| E.N. CENTRAL            | 2,741          | 1,804        | 13,086           | 17,274           | N               | 10                 | 6,244            | 8,507           | 82           | 73           |
| Ohio                    | 562            | 3,695<br>766 | 78,763<br>22,629 | 56,406<br>19,986 | 412<br>111      | 305                | 57,271           | 36,471          | 460          | 487          |
| Ind.                    | 448            | 459          | 4,656            | 8,258            | 93              | 61<br>47           | 14,760           | 13,056<br>5,415 | 8 7          | 17           |
| III,<br>Mich.           | 1,044          | 1,515        | 24,217           | U                | 105             | 58                 | 20,172           | 0,415           | 32           | 12<br>83     |
| Wis.                    | 531<br>156     | 726<br>229   | 17,936           | 18,341           | 103             | 62                 | 13,945           | 13,665          | 413          | 350          |
| W.N. CENTRAL            | 754            | 1.011        | 9,325<br>27,327  | 9,821            | N               | 77                 | 4,045            | 4,335           | *            | 25           |
| Minn.                   | 146            | 175          | 5,498            | 29,055<br>5,924  | 458<br>191      | 375<br>197         | 14,103           | 12,782          | 266          | 56           |
| lowa                    | 60             | 92           | 2,063            | 3,943            | 94              | 56                 | 2,124<br>660     | 2,092           | 10           | 26           |
| Mo.<br>N. Dak.          | 367            | 506          | 10,774           | 10,751           | 45              | 60                 | 8,018            | 6.569           | 241          | 10           |
| S. Dak.                 | 5<br>15        | 10           | 1,389            | 765<br>1,213     | 11              | 15                 | 71               | 64              | -            | 3            |
| Nebr.                   | 59             | 84           | 2,354            | 2,356            | 32<br>54        | 34                 | 205<br>960       | 146             |              |              |
| Kans.                   | 102            | 136          | 4,800            | 4,103            | 31              | 13                 | 2,065            | 1,039           | 4 3          | 11           |
| S. ATLANTIC             | 10,118         | 12,299       | 100,012          | 83,154           | 243             | 146                | 82,203           | 82,080          | 168          | 224          |
| Del.<br>Md.             | 122            | 194          | 2,291            | 42               |                 | 2                  | 1,350            | 1,141           | 100          | 224          |
| D.C.                    | 1,400<br>751   | 1,729<br>956 | 6,528            | 6,504<br>N       | 34              | 14                 | 8,520            | 10,167          | 15           | 9            |
| Va.                     | 771            | 1,010        | 11,750           | 10.488           | N               | 42                 | 3,163<br>8,168   | 3,930<br>7,787  |              | -            |
| W. Va.                  | 72             | 108          | 2,298            | 2,587            | 12              | 7                  | 740              | 830             | 11           | 25<br>16     |
| N.C.<br>S.C.            | 704<br>640     | 762          | 19,851           | 15,353           | 54              | 46                 | 17,097           | 15,208          | 20           | 47           |
| Ga.                     | 1.055          | 688<br>1,466 | 14,761 20,382    | 11,080           | 16<br>73        | 9                  | 9,335            | 10,277          | 9            | 37           |
| Fla.                    | 4,603          | 5,386        | 22,151           | 23,459           | 53              | 26                 | 16,955<br>16,875 | 16,049          | 9            | 90           |
| E.S. CENTRAL            | 1,598          | 1,741        | 34,593           | 31,121           | 110             | 39                 | 34,040           | 31, 186         | 178          |              |
| Ky.<br>Tenn.            | 249            | 321          | 5,705            | 5,545            | 32              |                    | 3,315            | 3,584           | 19           | 321          |
| Ala,                    | 591<br>417     | 677          | 11,846           | 11,312           | 52              | 33                 | 10,302           | 9,874           | 152          | 216          |
| Miss.                   | 341            | 455<br>288   | 9,062<br>7,980   | 7,512<br>6,752   | 23              | 2                  | 11,593           | 10,504          | 5            | 11           |
| W.S. CENTRAL            | 4,758          | 5,196        | 67,567           | 60,244           | 114             | 24                 | 8,830            | 7,224           | 2            | 82           |
| Ack.                    | 177            | 193          | 3,500            | 2,507            | 11              | 10                 | 41,463<br>3,516  | 39,302<br>4,250 | 397          | 450          |
| Okla.                   | 819            | 916          | 13,470           | 8,893            | 5               | 7                  | 11,564           | 8,666           | 103          | 198          |
| Tex.                    | 256<br>3,506   | 256<br>3,831 | 8,387<br>42,210  | 6,551            | 22<br>76        | 7                  | 4,634            | 4,248           | 14           | 7            |
| MOUNTAIN                | 1,360          | 1,424        | 28,571           | 26,431           |                 |                    | 21,749           | 22,138          | 270          | 231          |
| Mont.                   | 26             | 36           | 1,204            | 989              | 332<br>15       | 217                | 8,061            | 7,178           | 329          | 283          |
| Idaho                   | 27             | 48           | 1,765            | 1,470            | 38              | 23                 | 147              | 51<br>133       | 87           | 21<br>63     |
| Wyo.<br>Colo.           | 3<br>254       | 13<br>346    | 616              | 531              | 53              | 55                 | 29               | 46              | 63           | 70           |
| N. Mex.                 | 189            | 146          | 7,114<br>3,280   | 6,505<br>3,392   | 85<br>19        | 64                 | 2,051            | 2,027           | 33           | 31           |
| Ariz.                   | 549            | 343          | 10,137           | 9,452            | 21              | 13<br>26           | 795<br>3,665     | 764<br>3,170    | 89           | 54           |
| Utah<br>Nev.            | 114            | 125          | 1,925            | 1,552            | 79              | 21                 | 204              | 248             | 23           | 25<br>5      |
| PACIFIC                 | 198            | 367          | 2,530            | 2,540            | 22              | 15                 | 1,127            | 739             | 19           | 14           |
| Wash.                   | 5,631<br>375   | 7,213<br>570 | 78,615           | 62,656           | 449             | 360                | 18,508           | 14,691          | 2,212        | 932          |
| Oreg.                   | 146            | 261          | 9,500<br>5,269   | 8,105            | 101<br>98       | 104                | 1,705            | 1,716           | 22           | 25           |
| Calif.                  | 4,949          | 6,256        | 60,138           | 47,215           | 243             | 147                | 759<br>15,350    | 659<br>11,528   | 2,130        | 745          |
| Allaska<br>Hawaii       | 17             | 43           | 1,603            | 1,361            | 7               | *                  | 266              | 337             | 1            | 745          |
|                         | 144            | 83           | 2,105            | 1,581            | N               | 15                 | 428              | 451             | 54           | 159          |
| Guam<br>FR.             | 1,499          | 1,715        | 201              | 193              | N               |                    | 24               | 27              |              | *            |
| V.I.                    | 31             | 1,715        | N                | N                | 6<br>N          | U                  | 333              | 496             |              |              |
| Amer. Samoa<br>C.N.M.I. |                |              | Ü                | U                | N               | U                  | U                | U               | U            | U            |
|                         |                | 1            | N                | N                | N               | ŭ                  | 28               | 20              | U            | U            |

N: Not notifiable U: Unavailable : no reported cases C.N.M.I.: Commonwealth of Northern Mariana Islands

\*Updated monthly from reports to the Division of HIV/AIDS Prevention—Surveillance and Epidemiology, National Center for HIV, STD,

\*National Electronic Telecommunications System for Surveillance.

\*Public Health Laboratory Information System.

TABLE II. (Cont'd.) Provisional cases of selected notifiable diseases, United States, weeks ending November 21, 1998, and November 15, 1997 (46th Week)

|                    |              | iellosis     | Ly:<br>Disc    |                | Mal          | aria         |              | hilis<br>Secondary) | Tuber         | culosis      | Rabies       |
|--------------------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|---------------------|---------------|--------------|--------------|
| Reporting Area     | Cum.<br>1998 | Cum.<br>1997 | Cum.<br>1998   | Cum.<br>1997   | Cum.<br>1998 | Cum.<br>1997 | Cum.<br>1998 | Cum.<br>1997        | Cum.<br>1998* | Cum.<br>1997 | Cum.<br>1998 |
| UNITED STATES      | 1,159        | 939          | 11,503         | 10,875         | 1,219        | 1,655        | 6,296        | 7,512               | 12,831        | 15,695       | 6,120        |
| NEW ENGLAND        | 77           | 76           | 2,538          | 2,818          | 55           | 79           | 67           | 124                 | 407           | 382          | 1,306        |
| Maine<br>N.H.      | 7            | 3 7          | 11             | 8              | 5            | 1            | 1            | 2                   | 10            | 18           | 199          |
| Vt.                | 7            | 12           | 11             | 34             | 5            | 8            | 2 4          |                     | 12            | 15           | 74           |
| Mass.              | 30           | 26           | 704            | 382            | 16           | 30           | 41           | 62                  | 230           | 212          | 460          |
| R.I.<br>Conn.      | 19<br>13     | 11           | 603            | 380            | 10           | 7            | 1            | 2                   | 49            | 31           | 86           |
| MID. ATLANTIC      | 279          | 197          | 1,165          | 2,106          | 18           | 31           | 18           | 58                  | 102           | 101          | 418          |
| Upstate N.Y.       | 98           | 60           | 7,540<br>3,822 | 6,297<br>2,579 | 309<br>87    | 473<br>67    | 242          | 357                 | 2,000         | 2,776        | 1,410        |
| N.Y. City          | 27           | 20           | 28             | 167            | 145          | 293          | 35<br>71     | 36<br>79            | 1,330         | 1,391        | 983          |
| N.J.<br>Pa.        | 15<br>139    | 26<br>91     | 1,571          | 1,784          | 49           | 81           | 78           | 143                 | 541           | 601          | 197          |
| E.N. CENTRAL       |              |              | 2,119          | 1,767          | 28           | 32           | 58           | 99                  | 456           | 392          | 230          |
| Ohio               | 372<br>122   | 309<br>110   | 157<br>80      | 560<br>37      | 118<br>15    | 152<br>18    | 978          | 581                 | 1,088         | 1,541        | 127          |
| Ind.               | 112          | 52           | 57             | 33             | 11           | 16           | 124<br>205   | 193<br>162          | 87<br>101     | 235<br>134   | 55           |
| III.<br>Mich.      | 32<br>74     | 33<br>78     | 8              | 13             | 36           | 60           | 420          | U                   | 553           | 818          | 11           |
| Wis.               | 32           | 36           | 12<br>U        | 25<br>452      | 47<br>9      | 42<br>16     | 176          | 128                 | 329           | 264          | 35           |
| W.N. CENTRAL       | 70           | 56           | 187            | 148            | 87           | 57           | 53           | 98                  | 18            | 90           | 10           |
| Minn.              | 7            | 3            | 153            | 110            | 52           | 28           | 114          | 162<br>16           | 357<br>132    | 493<br>130   | 632          |
| lowa<br>Mo.        | 10           | 9            | 22             | 6              | 8            | 9            |              | 7                   | 43            | 46           | 111          |
| N. Dak.            | 24           | 20           | 2              | 25             | 15           | 11           | 86           | 106                 | 92            | 206          | 25           |
| S. Dak.            | 3            | 2            |                | 1              | 2            | 3            | 1            | 1                   | 8<br>17       | 12           | 129          |
| Nebr.<br>Kans.     | 19           | 15           | 3              | 2              | 1            | 1            | 6            | 3                   | 26            | 20           | 143          |
| S. ATLANTIC        |              | 5            | 7              | 4              | 9            | 4            | 13           | 29                  | 39            | 69           | 78           |
| Del.               | 132          | 110          | 801<br>40      | 717<br>109     | 292          | 295          | 2,332        | 3,100               | 1,774         | 2,999        | 1,771        |
| Md.                | 27           | 19           | 561            | 456            | 83           | 5<br>78      | 20<br>592    | 22<br>822           | 18<br>252     | 32           | 30           |
| D.C.<br>Va.        | 7            | 4            | 4              | 9              | 18           | 19           | 73           | 102                 | 93            | 275<br>88    | 416          |
| W. Va.             | 19<br>N      | 25<br>N      | 64<br>12       | 59<br>10       | 52           | 64           | 137          | 216                 | 250           | 275          | 515          |
| N.C.               | 14           | 13           | 54             | 32             | 27           | 16           | 3<br>664     | 3<br>857            | 38            | 48<br>374    | 70           |
| S.C.<br>Ga.        | 10           | 7            | 7              | 2              | 6            | 17           | 305          | 333                 | 214           | 295          | 136<br>136   |
| Fla.               | 33           | 30           | 5<br>54        | 7<br>33        | 36<br>65     | 45           | 255          | 474                 | 441           | 542          | 272          |
| E.S. CENTRAL       | 59           | 51           | 83             | 85             |              | 50           | 283          | 271                 | 70            | 1,070        | 196          |
| ζy.                | 25           | 11           | 23             | 15             | 30           | 35<br>12     | 1,083        | 1,533               | 958<br>149    | 1,153        | 246          |
| lenn.<br>Ala.      | 22           | 29           | 41             | 39             | 16           | 8            | 506          | 665                 | 341           | 167<br>400   | 31<br>126    |
| Miss.              | 5 7          | 7            | 17             | 10<br>21       | 6 2          | 10           | 257          | 377                 | 302           | 374          | 87           |
| W.S. CENTRAL       | 39           | 33           | 24             | 88             |              | 5            | 226          | 369                 | 166           | 212          | 2            |
| Ark.               |              | 2            | 6              | 25             | 28           | 54<br>5      | 917<br>100   | 1,186<br>149        | 1,854<br>136  | 2,250        | 133          |
| .a.<br>Okla.       | 4            | 6            | 4              | 3              | 15           | 13           | 384          | 325                 | 255           | 171<br>199   | 31           |
| Tex.               | 12<br>23     | 23           | 12             | 25<br>35       | 8            | 8            | 108          | 110                 | 141           | 182          | 102          |
| MOUNTAIN           | 71           | 62           | 22             | 11             |              | 28           | 325          | 602                 | 1,322         | 1,698        |              |
| Mont.              | 2            | 1            | - 22           | 11             | 61           | 62           | 203          | 162                 | 389           | 495          | 209          |
| daho<br>Vyo.       | 2            | 2            | 5              | 3              | 8            | *            | 2            | 1                   | 12            | 16<br>10     | 51           |
| Colo.              | 17           | 18           | 5              | 2              | 19           | 2            | 1            |                     | 4             | 2            | 62           |
| I. Mex.            | 2            | 3            | 4              | 1              | 12           | 27<br>8      | 11 22        | 14                  | U<br>62       | 75           | 39           |
| kriz.<br>Itah      | 19           | 12           | 1              | 2              | 8            | 11           | 152          | 124                 | 180           | 58<br>207    | 6<br>19      |
| lev.               | 22<br>6      | 18           | 6              | 1 2            | 1            | 3            | 4            | 5                   | 48            | 28           | 26           |
| ACIFIC             | 60           | 45           | 151            | 151            | 12           | 9            | 11           | 10                  | 65            | 99           | 6            |
| Vash.              | 12           | 8            | 7              | 151            | 239<br>17    | 448          | 350<br>27    | 307<br>9            | 3,344         | 3,606        | 292          |
| reg.               | 1            |              | 20             | 17             | 16           | 24           | 6            | 9                   | 186<br>124    | 262<br>132   | 7            |
| Calif.<br>Vlaska   | 45           | 36           | 123            | 123            | 200          | 367          | 315          | 287                 | 2,845         | 2,995        | 262          |
| lawaii             | i            | 1            |                | 2              | 2            | 10           | 1            | 1                   | 46            | 64           | 23           |
| iuam               | 2            |              |                |                | 1            |              | 1            | 3                   | 143           | 153          |              |
| :R.                | *            |              |                |                |              | 5            | 166          | 224                 | 36<br>68      | 13<br>164    | 49           |
| II.<br>Imer. Samoa | U            | 0            | U              | U              | U            | U            | U            | U                   | U             | U            | U            |
| N.M.I.             | U            | u            | U              | U              | U            | U            | 164          | 11                  | 77            | U<br>13      | U            |

TABLE III. Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending November 21, 1998, and November 15, 1997 (46th Week)

|                       | H. influ      | ienzae,      | H            | iepatitis (V | iral), by ty | De .         |       |              | Massi | es (Ruber  | nia) |         |
|-----------------------|---------------|--------------|--------------|--------------|--------------|--------------|-------|--------------|-------|------------|------|---------|
|                       | inva          | sive         |              | A            |              | В            | India | enous        |       | orted      |      | otal    |
| Reporting Area        | Cum.<br>1998* | Cum.<br>1997 | Cum.<br>1998 | Cum.<br>1997 | Cum.<br>1998 | Cum.<br>1997 | 1998  | Cum.<br>1998 | 1998  | Cum.       | Cum. | Cum.    |
| UNITED STATES         | 912           | 957          | 19,662       | 25,233       | 7,718        | 8,405        | 1998  | 60           | 2     | 1998<br>25 | 1998 | 1997    |
| NEW ENGLAND           | 61            | 55           | 247          | 599          | 169          | 161          |       | 1            |       |            | 85   | 128     |
| Maine                 | 3             | 5            | 19           | 58           | 4            | 6            |       | 1            |       | 2          | 3    | 19      |
| N.H.                  | 9             | 10           | 14           | 32           | 18           | 15           |       |              | *     |            |      | 1       |
| Vt.<br>Mass.          | 7<br>36       | 32           | 15<br>100    | 13           | . 5          | 11           |       |              |       | 1          | 1    |         |
| R.I.                  | 5             | 3            | 16           | 246<br>126   | 51<br>66     | 68           | *     | 1            | *     | 1          | 2    | 16      |
| Conn.                 | 1             | 2            | 83           | 124          | 25           | 47           | -     |              |       |            | *    |         |
| MID. ATLANTIC         | 133           | 150          | 1.317        | 1.898        | 985          | 1,208        |       | 8            |       | 6          |      | 1       |
| Upstate N.Y.          | 57            | 49           | 324          | 330          | 268          | 275          |       | 1            |       | 1          | 14   | 26<br>5 |
| N.Y. City<br>N.J.     | 26<br>45      | 41           | 345          | 834          | 247          | 424          |       | *            |       | -          |      | 10      |
| Pa.                   | 5             | 18           | 307<br>341   | 279<br>455   | 176<br>294   | 218<br>291   | U     | 7            | U     | 1          | 8    | 3       |
| E.N. CENTRAL          | 151           | 149          |              |              |              |              |       |              |       | 4          | 4    | 8       |
| Ohio                  | 46            | 80           | 3,237<br>278 | 2,632        | 1,407        | 1,324        |       | 11           | *     | 3          | 14   | 10      |
| Ind.                  | 39            | 14           | 306          | 285          | 713          | 93           |       | 2            | *     | 1          | 1    |         |
| III.                  | 51            | 37           | 613          | 736          | 173          | 249          |       | -            |       |            | 3    | 7       |
| Mich.<br>Wis.         | 8 7           | 17           | 1,882        | 1,163        | 409          | 386          | *     | 9            | *     | 1          | 10   | 2       |
|                       |               |              | 158          | 168          | 40           | 520          | *     | -            | *     |            |      | 1       |
| W.N. CENTRAL<br>Minn. | 83<br>65      | 56<br>44     | 1,237        | 1,963        | 366          | 427          | *     | 1            |       |            | 1    | 17      |
| lowa                  | 2             | 5            | 392          | 184<br>419   | 45<br>59     | 37<br>38     | *     | 1            |       | *          | :    | 8       |
| Mo.                   | 9             | 4            | 562          | 1,003        | 219          | 303          | Ü     |              | ú     |            | 1    | 1       |
| N. Dak.<br>S. Dak.    | *             |              | 3            | 10           | 4            | 5            |       |              |       | *          |      |         |
| Nebr.                 | 1             | 2            | 31<br>39     | 21<br>86     | 2            | . 1          |       | *            |       | *          |      | 8       |
| Kans.                 | 6             | *            | 92           | 240          | 14           | 14           | ú     | *            | Ü     | *          | *    |         |
| S. ATLANTIC           | 176           | 142          | 1,796        | 1,807        | 1,032        |              |       |              | U     | *          | *    | *       |
| Del.                  | *             | 144          | 3            | 29           | 3            | 1,095        | -     | 3            |       | 5          | 8    | 14      |
| Md.                   | 50            | 52           | 297          | 177          | 144          | 148          |       |              |       | 1          | 1    | 2       |
| D.C.<br>Va.           | 16            | 40           | 54           | 32           | 11           | 29           |       |              | *     |            |      | 1       |
| W. Va.                | 5             | 12           | 191          | 209          | 91           | 114          | *     | *            | *     | 2          | 2    | 1       |
| N.C.                  | 23            | 21           | 115          | 185          | 214          | 16<br>235    | -     |              | *     | *          |      |         |
| S.C.                  | 3             | 4            | 37           | 98           | 41           | 90           |       |              |       | -          | *    | 2       |
| Ga.<br>Fla.           | 45<br>34      | 29           | 589          | 554          | 128          | 126          | *     | 1            |       | 1          | 2    | 1       |
| E.S. CENTRAL          |               | 21           | 503          | 512          | 392          | 331          | *     | 2            | *     | *          | 2    | 6       |
| Ky.                   | 50            | 54           | 339          | 553          | 362          | 634          | *     |              | *     | 2          | 2    | 1       |
| Tenn.                 | 28            | 30           | 22<br>206    | 67<br>342    | 41<br>252    | 36<br>401    | *     |              |       |            | *    |         |
| Ala.                  | 13            | 14           | 68           | 76           | 67           | 71           |       |              | *     | 1          | 1    |         |
| Miss.                 | 2             | 2            | 43           | 68           | 2            | 126          |       |              |       |            | 1    | 1       |
| W.S. CENTRAL          | 52            | 47           | 3,727        | 5,209        | 1,128        | 1,156        |       | 1            |       |            | 1    | 8       |
| Ark.<br>La.           | -             | 2            | 89           | 194          | 87           | 78           |       |              |       |            |      | 0       |
| Okla.                 | 23<br>26      | 12<br>30     | 108<br>535   | 213          | 153          | 150          | *     | 1            |       |            | 1    |         |
| Tex.                  | 3             | 3            | 2,995        | 1,313        | 88           | 45<br>883    | U     | *            | U     | *          | *    | 1       |
| MOUNTAIN              | 104           | 79           | 2,949        | 3,845        | 745          |              |       |              |       |            | *    | 7       |
| Mont.                 |               |              | 92           | 68           | 5            | 774          |       | 3            | 2     | 2          | 5    | 8       |
| Idaho                 | 1             | 1            | 226          | 124          | 40           | 46           |       | -            |       |            | *    | -       |
| Wyo.<br>Colo.         | 18            | 4            | 35           | 31           | 7            | 23           | U     |              | U     |            |      |         |
| N. Mex.               | 7             | 18           | 309<br>135   | 373<br>318   | 104<br>289   | 132          | *     |              | *     | -          |      | -       |
| Ariz.                 | 53            | 29           | 1,773        | 2,020        | 163          | 232<br>180   |       | 3            | 2     | -          |      |         |
| Utah                  | 5             | 3            | 180          | 519          | 66           | 82           |       | 3            |       | 2          | 5    | 5       |
| Nev.                  | 19            | 16           | 199          | 392          | 71           | 68           | U     |              | U     |            |      | 2       |
| PACIFIC               | 102           | 225          | 4,813        | 6,727        | 1,524        | 1,626        |       | 32           |       | 5          | 37   | 25      |
| Wash.<br>Oreg.        | 10            | 5            | 879          | 591          | 108          | 72           |       | -            |       | 1          | 1    | 2       |
| Calif.                | 37<br>47      | 31<br>174    | 348<br>3.533 | 335<br>5,628 | 111          | 105          | -     | 2            |       | *          |      | *       |
| Alaska                | 1             | 8            | 17           | 32           | 1,287        | 1,425        | -     | 5<br>27      |       | 3          | 8    | 19      |
| Hawaii                | 7             | 7            | 36           | 141          | 6            | 10           |       | 41           |       | 1          | 28   | Ä       |
| Guam                  |               |              |              |              | 2            | 3            | U     |              | U     |            |      |         |
| P.R.<br>V.I.          | 2             |              | 49           | 256          | 332          | 734          |       |              |       |            |      | *       |
| V.I.<br>Amer. Samoa   | U             | U            | U            | U            | U            | U            | U     | U            | U     | U          | Ü    | Ú       |
| C.N.M.I.              |               | 6            | 3            | 1            | 53           | U            | U     | U            | U     | U          | U    | U       |
| N: Not posifiable     | 1 le 1 le eu  |              | 9            |              | 23           | 44           | U     | *            | U     |            | *    | 1       |

N: Not notifiable U: Unavailable -: no reported cases

°Of 212 cases among children aged <5 years, serotype was reported for 106 and of those, 42 were type b.

<sup>†</sup>For imported measles, cases include only those resulting from importation from other countries.

TABLE III. (Cont'd.) Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending November 21, 1998, and November 15, 1997 (46th Week)

|                               | Mening:<br>Dise |              |      | Mumps        |              |        | Pertussis    |              |      | Rubella      |              |
|-------------------------------|-----------------|--------------|------|--------------|--------------|--------|--------------|--------------|------|--------------|--------------|
| Reporting Area                | Cum.<br>1998    | Cum.<br>1997 | 1998 | Cum.<br>1998 | Cum.<br>1997 | 1996   | Cum.<br>1998 | Cum.<br>1997 | 1998 | Cum.<br>1998 | Cum.<br>1997 |
| UNITED STATES                 | 2,335           | 2,849        | 4    | 427          | 568          | 149    | 5,449        | 4,839        | 1    | 328          | 158          |
| NEW ENGLAND                   | 100             | 180          |      | 7            | 11           | 9      | 842          | 886          |      | 38           | 1            |
| Maine                         | 6               | 17           |      |              |              |        | 5            | 18           | *    | *            |              |
| L.H.<br>ft.                   | 5               | 14           |      | -            | 1            | 4      | 109<br>69    | 125<br>226   |      |              |              |
| Aass.                         | 52              | 88           |      | 4            | 3            | 2      | 607          | 475          | *    | 8            | 1            |
| t.l.<br>Conn.                 | 8<br>25         | 20<br>37     |      | 1 2          | 6            | 2      | 9            | 16<br>26     | *    | 1 29         |              |
|                               | 220             | 305          | *    | 29           | 52           | 6      | 518          | 355          |      | 130          | 34           |
| AID. ATLANTIC<br>Spstate N.Y. | 65              | 78           |      | 6            | 11           | 6      | 282          | 144          |      | 111          | 6            |
| V.Y. City                     | 22              | 50           |      | 4            | 3            |        | 23           | 60           |      | 14           | 28           |
| N.J.<br>Pa.                   | 54<br>79        | 113          | U    | 2<br>17      | 7 31         | U      | 5<br>208     | 13<br>138    | U    | 4            |              |
| E.N. CENTRAL                  | 347             | 433          | 1    | 70           | 78           | 18     | 583          | 531          |      |              | 6            |
| Ohio                          | 128             | 150          |      | 27           | 30           | 9      | 261          | 150          |      |              |              |
| nd.                           | 63              | 49           | *    | 6            | 12           | 3      | 140          | 54           | -    |              | -            |
| II.<br>Mich.                  | 84              | 135<br>62    | 1    | 11<br>26     | 11<br>21     | 5      | 101<br>64    | 84<br>53     | 1    | *            | 2            |
| Wis.                          | 32              | 37           |      | 20           | 4            |        | 17           | 190          |      |              | 4            |
| W.N. CENTRAL                  | 196             | 209          |      | 30           | 17           | 11     | 504          | 442          |      | 33           |              |
| Minn.                         | 31              | 34           | -    | 13           | 6            | 10     | 306          | 258          |      | -            |              |
| owa<br>Mo.                    | 70              | 90           | Ü    | 11           | 9            | 1<br>U | 71<br>32     | 79<br>64     | Ü    | 2            | -            |
| N. Dak.                       | 5               | 2            |      | 2            |              |        | 3            | 1            |      |              |              |
| S. Dak.                       | 7               | 5            |      |              | :            | *      | 8            | 5            |      | *            |              |
| Nebr.<br>Kans.                | 14              | 13<br>21     | Ü    | 1            | 1            | u      | 18<br>66     | 9<br>26      | Ü    | 31           | -            |
| S. ATLANTIC                   | 411             | 485          | 2    | 48           | 62           | 22     | 306          | 389          | 1    | 19           | 78           |
| Del.                          | 2               | 5            | -    | 40           |              |        | 5            | 1            | -    |              | 70           |
| Md.                           | 28              | 42           |      |              | 1            | 2      | 52           | 111          |      | 1            | -            |
| D.C.<br>Va.                   | 40              | 12<br>55     |      | 8            | 10           | 6      | 36           | 3<br>42      |      | i            | 1            |
| W. Va.                        | 16              | 17           |      |              |              |        | 2            | 6            | *    |              |              |
| N.C.                          | 56<br>53        | 85<br>51     | i    | 11           | 10<br>11     | 2      | 98<br>27     | 112<br>27    | *    | 13           | 59<br>15     |
| S.C.<br>Ga.                   | 91              | 93           |      | 1            | 10           | 3      | 27           | 13           |      |              | 10           |
| Fla.                          | 124             | 125          | 1    | 21           | 20           | 9      | 58           | 74           | 1    | 4            | 2            |
| E.S. CENTRAL                  | 220             | 215          | *    | 14           | 29           | 1      | 116          | 130          |      | 2            | 1            |
| Ky.                           | 34<br>69        | 45<br>73     | *    | 1            | 3<br>5       | 1      | 50<br>35     | 58<br>35     | -    | 2            | -            |
| Tenn.<br>Ala.                 | 93              | 73           |      | 8            | 9            |        | 28           | 26           |      |              | 1            |
| Miss.                         | 24              | 24           | *    | 5            | 12           |        | 3            | 11           |      |              |              |
| W.S. CENTRAL                  | 271             | 273          |      | 59           | 81           | 3      | 350          | 248          |      | 87           | 4            |
| Ark.                          | 29<br>58        | 31<br>48     |      | 12<br>10     | 14           | 3      | 91           | 51<br>18     |      |              |              |
| La.<br>Okla.                  | 39              | 39           | Ú    | 10           | -            | U      | 30           | 33           | U    |              |              |
| Tex.                          | 145             | 155          |      | 37           | 66           | -      | 220          | 146          |      | 87           | 4            |
| MOUNTAIN                      | 136             | 165          |      | 37           | 54           | 65     | 1,044        | 1,030        |      | 5            | 7            |
| Mont.<br>Idaho                | 11              | 10           |      | 5            | 3            | 3      | 12<br>244    | 18<br>514    | - 1  | -            | 2            |
| Wyo.                          | 5               | 3            | U    | 1            | 1            | U      | 8            | 7            | U    |              |              |
| Colo.                         | 28              | 44           |      | 6            | 3            | 11     | 216          | 316          | *    | 1            |              |
| N. Mex.<br>Ariz.              | 25<br>41        | 28<br>39     | N    | N<br>6       | N<br>32      | 4      | 94<br>199    | 99<br>35     |      | 1            | 5            |
| Utah                          | 14              | 15           |      | 5            | 8            | 46     | 224          | 20           |      | 2            |              |
| Nev.                          | 8               | 18           | U    | 14           | 7            | U      | 47           | 21           | U    | 1            |              |
| PACIFIC                       | 434             | 584          | 1    | 133          | 184          | 14     | 1,186        | 828          |      | 14           | 27           |
| Wash.<br>Oreg.                | 58<br>78        | 83<br>114    | N    | 10<br>N      | 19<br>N      | 8      | 305<br>86    | 344<br>46    | -    | 9            | 5            |
| Calif.                        | 290             | 377          | 1    | 98           | 132          | 6      | 766          | 404          |      | 3            | 14           |
| Alaska<br>Hawaii              | 3 5             | 3 7          |      | 23           | 8<br>25      |        | 14<br>15     | 16<br>18     |      | 2            | 8            |
| Guam                          | 1               | 1            | U    | 2            | 1            | U      | 15           | 10           | U    | -            |              |
| P.R.                          | 6               | 8            | U    | 1            | 7            | 3      | 6            |              |      | -            |              |
| V.I.                          | U               | U            | U    | Ú            | Ü            | U      | U            | U            | U    | U            | U            |
| Amer. Samoa                   | U               | U            | U    | U            | U            | U      | U            | U            | U    | U            | U            |

### TABLE IV. Deaths in 122 U.S. cities,\* week ending November 21, 1998 (46th Week)

|                                                                                                                                                                                                                                         | A                                                                                     | II Cau                                                                        | ses, By                                                       | Age (Y                                                  | ears)                                                 |                                                  | P&I <sup>1</sup>                       |                                                                                                                                                                                                                                                | A                                                                             | II Cau                                                                   | ses, By                                                                    | Age (Y                                                         | ears)                                          |                                                           | P&I       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|-----------|
| Reporting Area                                                                                                                                                                                                                          | All<br>Ages                                                                           | >65                                                                           | 45-64                                                         | 25-44                                                   | 1-24                                                  | <1                                               | Total                                  | Reporting Area                                                                                                                                                                                                                                 | All<br>Ages                                                                   | >65                                                                      | 45-64                                                                      | 25-44                                                          | 1-24                                           | <1                                                        | Tota      |
| NEW ENGLAND<br>Boston, Mass.<br>bridgeport, Conn.<br>Cambridge, Mass.<br>Fall River, Mass.<br>Fall River, Mass.<br>Juny, Mass.<br>New Bedford, Mass.<br>New Bedford, Mass.<br>New Haven, Conn.<br>Providence, R.I.<br>Somerville, Mass. | 603<br>176<br>25<br>14<br>39<br>42<br>21<br>19<br>34<br>34<br>36<br>4<br>4<br>33      | 428<br>111<br>19<br>12<br>34<br>28<br>10<br>13<br>25<br>23<br>43<br>3         | 118<br>43<br>3<br>1<br>5<br>7<br>6<br>3<br>6<br>10<br>11<br>1 | 32 11 1 4 3 3 3 1 1 1 1 3                               | 15<br>6<br>3<br>1<br>1<br>1<br>2                      | 10 5                                             | 46<br>17<br>1<br>1<br>1<br>1<br>5<br>2 | S. ATLANTIC<br>Atlanta, Ga.<br>Baltimore, Md.<br>Charlotte, N.C.<br>Jacksonville, Fla.<br>Miami, Fla.<br>Norfolk, Va.<br>Richmond, Va.<br>Savannah, Ga.<br>St. Petersburg, Fla.<br>Tampa, Fla.<br>Washington, D.C.<br>Wilmington, Del.         | 1,358<br>175<br>247<br>96<br>142<br>104<br>45<br>82<br>50<br>95<br>158<br>150 | 821<br>105<br>126<br>69<br>85<br>61<br>28<br>45<br>30<br>75<br>108<br>82 | 321<br>42<br>67<br>20<br>42<br>21<br>11<br>20<br>12<br>10<br>30<br>44<br>2 | 125<br>18<br>34<br>3<br>12<br>18<br>3<br>6<br>6<br>2<br>3<br>9 | 51 69 21 3 62 47 65                            | 37<br>4<br>8<br>2<br>2<br>1<br>3<br>5<br>4<br>3<br>4<br>1 | 64        |
| Waterbury, Conn. Worcester, Mass. MID, ATLANTIC Albany, N.Y. Allentown, Pa. Buffalo, N.Y. Zamden, N.J. Eirizabeth, N.J.                                                                                                                 | 32<br>74<br>2,462<br>45<br>26<br>100<br>40<br>10<br>38                                | 23<br>58<br>1,701<br>36<br>16<br>74<br>25<br>8<br>29                          | 491<br>5<br>6<br>18<br>11<br>2<br>4                           | 189<br>3<br>3<br>6<br>2                                 | 52                                                    | 1 28 1                                           | 6<br>5<br>117<br>3<br>2<br>2<br>4      | E.S. CENTRAL Birmingham, Ala. Chattanooga, Tenn. Knoxville, Tenn. Lexington, Ky. Memphis, Tenn. Mobile, Ala. Montgomery, Ala. Nashville, Tenn.                                                                                                 | 783<br>151<br>87<br>79<br>82<br>94<br>134<br>36<br>120                        | 527<br>99<br>57<br>54<br>54<br>58<br>96<br>25<br>84                      | 173<br>39<br>21<br>17<br>16<br>24<br>26<br>8<br>22                         | 44<br>5<br>6<br>4<br>7<br>8<br>5                               | 20<br>2<br>1<br>3<br>3<br>3<br>3<br>1<br>4     | 18<br>5<br>2<br>1<br>2<br>1<br>4<br>2                     | 407       |
| Jersey City, N.J. New York City, N.Y. Newark, N.J. Paterson, N.J. Paterson, N.J. Paterson, Pa.9 Reading, Pa.9 Reading, Pa. Rochester, N.Y. Schenectady, N.Y. Scranton, Pa. Syracuse, N.Y. Trenton, N.J. Utica, N.Y. Yonkers, N.Y.       | 28<br>1,277<br>73<br>22<br>300<br>55<br>31<br>160<br>33<br>38<br>140<br>26<br>20<br>U | 20<br>863<br>38<br>15<br>206<br>41<br>23<br>118<br>25<br>32<br>99<br>20<br>13 | 272<br>16<br>6<br>56<br>10<br>2<br>31<br>5<br>2<br>30<br>6    | 3<br>105<br>12<br>1<br>25<br>2<br>4<br>9<br>2<br>2<br>5 | 1<br>21<br>3<br>10<br>2<br>2<br>2<br>2<br>1<br>2<br>3 | 16<br>3<br>3                                     | 4<br>1<br>14<br>2<br>1<br>10<br>1      | W.S. CENTRAL<br>Austin, Tex.<br>Baton Rouge, La.<br>Corpus Christi, Tex.<br>Dallas, Tex.<br>El Paso, Tex.<br>Ft. Worth, Tex.<br>Houston, Tex.<br>Little Rock, Ark.<br>New Orleans, La.<br>San Antonio, Tex.<br>Shreveport, La.<br>Tulsa, Okla. | 1,355<br>86<br>38<br>50<br>195<br>79<br>127<br>275<br>75<br>84<br>213<br>U    | 864<br>55<br>26<br>25<br>132<br>57<br>93<br>150<br>49<br>47<br>139<br>U  | 270<br>19<br>7<br>16<br>28<br>13<br>25<br>70<br>16<br>13<br>45<br>U        | 132<br>8<br>5<br>6<br>22<br>4<br>4<br>1<br>3<br>9<br>16<br>U   | 39<br>2<br>6<br>3<br>9<br>1<br>7<br>8<br>U     | 50<br>2<br>3<br>7<br>2<br>2<br>5<br>6<br>8<br>5<br>U      | 1 1 1     |
| E.N. CENTRAL<br>Akron, Ohio<br>Canton, Ohio<br>Chicago, III.<br>Cincinnati, Ohio<br>Columbus, Ohio<br>Dayton, Ohio<br>Detroit, Mich.<br>Evansville, Ind.<br>Fort Wayne, Ind.                                                            | 1,786<br>60<br>39<br>263<br>65<br>141<br>189<br>115<br>217<br>53<br>66                | 1,249<br>45<br>30<br>160<br>52<br>97<br>139<br>84<br>121<br>46                | 12<br>8<br>56<br>5<br>24<br>32<br>23<br>47<br>5               | 144<br>2<br>35<br>4<br>16<br>15<br>6<br>24<br>1         | 44<br>1<br>8<br>1<br>3<br>3<br>1<br>15                | 32<br>1<br>4<br>3<br>1<br>1<br>10<br>1<br>1<br>2 | 2<br>13<br>4<br>4<br>14<br>5<br>7      | MOUNTAIN Albuquerque, N.M. Boise, Idaho Colo, Springs, Colo Denver, Colo. Lax Weguss, Nev. Ogden, Utah Phoenix, Ariz. Pueblo, Colo. Salt Lake City, Utah Tucson, Ariz.                                                                         | 123<br>186<br>27<br>52<br>33                                                  | 608<br>84<br>28<br>48<br>76<br>127<br>21<br>34<br>29<br>65<br>96         | 163<br>23<br>14<br>7<br>23<br>39<br>3<br>7<br>2<br>27<br>18                | 60<br>12<br>2<br>10<br>13<br>1<br>4<br>2<br>8<br>8             | 27<br>5<br>1<br>7<br>4<br>2<br>2<br>2          | 19 1 1 7 2 1 1 5 2                                        | 1 1 1 1 1 |
| Gary, Ind. Grand Rapids, Mich Indianapolis, Ind. Lansing, Mich. Milwaukee, Wis. Peoria, III. Rockford, III. South Bend, Ind. Toledo, Ohio Youngstown, Ohio                                                                              | 15                                                                                    | 8<br>35<br>97<br>34<br>86<br>42<br>34<br>33<br>56                             | 8 27<br>1 8<br>1 16<br>1 10<br>1 7<br>3 3                     | 1<br>2<br>11<br>3<br>5<br>7<br>2<br>4<br>U              | 2<br>1<br>2<br>1<br>2<br>1<br>1<br>U                  | 1<br>3<br>2<br>1<br>1<br>1<br>1                  | 1<br>20<br>2<br>14<br>3<br>2<br>U      | PACIFIC<br>Berkeley, Calif.<br>Fresno, Calif.<br>Glendale, Calif.<br>Honolulu, Hawaii<br>Long Beach, Calif.<br>Los Angeles, Calif.<br>Pasadena, Calif.<br>Portland, Organiand, Calif.<br>Sacramento, Calif.                                    | 1,659<br>26<br>94<br>32<br>62<br>66<br>453<br>24<br>90<br>U                   | 1,192<br>23<br>77<br>25<br>42<br>44<br>315<br>18<br>71<br>U              | 2<br>10<br>6<br>16<br>15<br>77<br>4<br>10                                  | 112<br>2<br>1<br>2<br>4<br>42<br>2<br>7<br>U                   | 35<br>4<br>3<br>11                             | 30<br>1<br>1<br>2<br>8                                    | 13        |
| W.N. CENTRAL Des Moines, lowa Duluth, Minn. Kansas City, Kans. Kansas City, Kans. Kansas City, Mo. Lincoln, Nebr. Minneapolis, Minn. Omaha, Nebr. St. Louis, Mo. St. Paul, Minn. Wichita, Kans.                                         | 911<br>57<br>32<br>57<br>109<br>46<br>230<br>88<br>114<br>54                          | 42                                                                            | 8 6<br>2 18<br>9 16<br>2 4<br>1 32<br>4 16<br>7 28<br>2 9     | 3<br>2<br>4<br>4<br>10<br>3<br>16<br>2                  | 25<br>4<br>3<br>1<br>2<br>2<br>9<br>1<br>3            | 18                                               | 4<br>3<br>1<br>5<br>2<br>17<br>7       | San Diego, Calif. San Francisco, Cali San Jose, Calif. Santa Cruz, Calif. Santa Cruz, Calif. Seattle, Wash. Spokane, Wash. Tacoma, Wash.                                                                                                       | 165                                                                           | 120<br>85<br>143<br>25<br>96<br>41<br>67                                 | 29<br>29<br>30<br>2<br>31<br>7<br>21                                       | 10<br>8<br>10<br>2<br>17<br>2<br>3<br>889                      | 1<br>4<br>3<br>1<br>5<br>1<br>3<br>3<br>1<br>5 | 5 3 5 2 1 2 2 2 4 2                                       | 65        |

U: Unavailable : no reported cases
\*Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not

Included.

Preumonia and influenza.

Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.

Total includes unknown ages.

#### Coronary Hearth Disease — Continued

- Wing S, Barnett E, Casper M, Tyroler HA. Geographic and socioeconomic variation in the onset of decline of coronary heart disease mortality in white women. Am J Public Health 1992:82:204–9.
- Barnett E, Strogatz D, Armstrong D, Wing S. Urbanization and coronary heart disease mortality among African Americans in the United States South. J Epidemiol Commun Health 1996; 50:252–7.
- Barnett E, Elmes GA, Braham VE, Halverson JA, Lee JY, Loftus S. Heart disease in Appalachia: an atlas of county economic conditions, mortality, and medical care resources. Morgantown, West Virginia: Prevention Research Center, West Virginia University, 1998.
- Isserman AM. Appalachia then and now: an update of "The Realities of Deprivation" reported to the President in 1964. J Appalachian Stud 1997;3:43–69.
- Murray CJL, Michaud CM, McKenna MT, Marks JS. U.S. patterns of mortality by county and race: 1965–1994. Cambridge, Massachusetts: Harvard University Center for Population and Development Studies, 1998.

#### Erratum: Vol. 47, No. 45

On page 985 in "Figure I. Selected notifiable disease reports, comparison of provisional 4-week totals ending November 14, 1998, with historical data — United States," the display for Rubella is incorrect. The corrected figure for week 45 is below.

FIGURE I. Selected notifiable disease reports, comparison of provisional 4-week totals ending November 14, 1998, with historical data — United States



\*No rubella cases were reported for the current 4-week period, yielding a ratio for week 45 of

<sup>†</sup>Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format and on a paid subscription basis for paper copy. To receive an electronic copy on Friday of each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr-toc. Electronic conv also is available from CDC's World-Wide Web server at http://www.cdc.gov/ or from CDC's file transfer protocol server at ftp.cdc.gov. To subscribe for paper copy, contact Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone (202) 512-1800.

Data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Address inquiries about the MMWR Series, including material to be considered for publication, to: Editor, MMWR Series, Mailstop C-08, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333; telephone (888) 232-3228.

All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

and Prevention Jeffrey P. Koplan, M.D., M.P.H.

Deputy Director, Centers for Disease Control and Prevention Claire V. Broome, M.D.

Director, Centers for Disease Control Director, Epidemiology Program Office Stephen B. Thacker, M.D., M.Sc. Editor, MMWR Series

John W. Ward, M.D. Managing Editor, MMWR (weekly) Karen L. Foster, M.A. Writers-Editors MMWR (weekly) David C. Johnson Teresa F. Rutledge Caran R. Wilbanks

Desktop Publishing and **Graphics Support** Morie M. Higgins Peter M. Jenkins

Return

Service Requested

Penalty for Private Use

DWGC ZORH HK DZDM BRUS 0-1 -RIDH 04 IND HMCZ MHH 00004 120 HZHO COOT WDZH 10 -OZ S mus S P

Official Centers for Disease Control **HEALTH AND HUMAN SERVICES** DEPARTMENT Atlanta, Georgia 30333 and Prevention (CDC) Business

> POSTAGE & FEES PAID FIRST-CLASS MAIL Permit No. G-284 PHS/CDC

