Trig Final (SLTN v657)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 5 radians. The arc length is 66 meters. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 13.2 meters.

Question 2

Consider angles $\frac{-9\pi}{4}$ and $\frac{10\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-9\pi}{4}\right)$ and $\cos\left(\frac{10\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(-9\pi/4)$

$$\sin(-9\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $cos(10\pi/3)$

$$\cos(10\pi/3) = \frac{-1}{2}$$

Question 3

If $\tan(\theta) = \frac{-60}{11}$, and θ is in quadrant II, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$11^{2} + 60^{2} = C^{2}$$

$$C = \sqrt{11^{2} + 60^{2}}$$

$$C = 61$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.

$$\cos(\theta) = \frac{-11}{61}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 8.44 Hz, an amplitude of 7.15 meters, and a midline at y = -2.59 meters. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -7.15\sin(2\pi 8.44t) - 2.59$$

or

$$y = -7.15\sin(16.88\pi t) - 2.59$$

or

$$y = -7.15\sin(53.03t) - 2.59$$