髙橋 祐花 yukatkh@is.s.u-tokyo.ac.jp

福里司 tsukasafukusato@gmail.com 五十嵐健夫 takeo@acm.org

背景

3Dペインティングにおいて「描きやすい」視点を設定するのは困難である

- ≫ 塗り残しの可能性 (例:オクルージョン領域)

Input 3D Mesh

関連研究

History assisted view authoring for 3D models [1]

事前データを用いた 3Dモデルのカメラ設定手法

×ペイント操作中における カメラ設定の支援は困難

LayerPaint: A Multi-Layer Interactive 3D Painting Interface [2]

同一視点から重なり領域を ペイントするための手法

提案手法

①「描きやすい」視点の決定

3Dモデルの形状特徴 E_g と現在のペイント情報 E_t を用いた評価関数 $E_i^g + \omega E_i^t$ を基に、事前に用意したカメラ位置の候補 $i \in cam$ から自動選択

$$E_i^g = \sum_{f \in F_i} c_i \cdot n_f$$
 $E_i^t = \sum_{f \in F_i^p} Area(i, f)$

 c_i : カメラiの視線ベクトル

 F_i : カメラiから見えるポリゴンの集合

 F_i^p :カメラiから見えるペイント済ポリゴンの集合

 n_f :ポリゴンfの法線ベクトル

Area(i, f): カメラiに正射影したポリゴンfの面積

② オクルージョン領域

既存技術[2]を参考に、メッシュを透過させることでカメラ位置候補の削減

結果

3Dペイント結果の例

本システムを使用したユーザからのコメント

- ▶「塗りのこし領域」を探すのには適している
- ➤ 「次に描きたい領域」が分かっている場合(例:目) はその領域だけに対する提示が欲しい

今後の課題

- アノテーションツールによる領域の選択
- マルチレイヤ構造への対応

参考文献

- [1] Chen et al. History assisted view authoring for 3D models. CHI '14 Pages 2027-2036
- [2] Chi-Wing Fu, Jiazhi Xia, Ying He. LayerPaint: A Multi-Layer Interactive 3D Painting Interface. CHI'10