HealthCare_Capstone

August 30, 2021

```
[1]: # Importing the required libraries
     import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     %matplotlib inline
     import seaborn as sns
     import warnings
     warnings.filterwarnings('ignore')
     from sklearn import metrics
[2]: # Importing the required dataset
     data = pd.read_csv("health care diabetes.csv")
[3]: data.head()
[3]:
        Pregnancies
                     Glucose BloodPressure SkinThickness
                                                             Insulin
                                                                        BMI
     0
                  6
                         148
                                          72
                                                                    0 33.6
                                                         35
                          85
                                                         29
                                                                       26.6
     1
                  1
                                          66
                                                          0
     2
                  8
                         183
                                          64
                                                                   0 23.3
                  1
                                          66
                                                         23
                                                                   94 28.1
     3
                          89
                  0
                         137
                                          40
                                                         35
                                                                  168 43.1
        DiabetesPedigreeFunction
                                  Age
                                       Outcome
     0
                           0.627
                                    50
                                              1
     1
                           0.351
                                              0
                                    31
     2
                                              1
                           0.672
                                    32
     3
                           0.167
                                    21
                                              0
     4
                           2.288
                                    33
                                              1
[4]: # Checking for null values
     data.isnull().any()
[4]: Pregnancies
                                 False
     Glucose
                                 False
     BloodPressure
                                 False
     SkinThickness
                                 False
     Insulin
                                 False
```

BMI False
DiabetesPedigreeFunction False
Age False
Outcome False

dtype: bool

1 Descriptive Analysis

[5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	${\tt DiabetesPedigreeFunction}$	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

[6]: data.describe()

[6]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	,
	count	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	
		DVT	D. 1 . D 1.				

\

	BMI	DiabetesPedigreeFunction	Age	Uutcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.000000
25%	27.300000	0.243750	24.000000	0.000000

```
75%
            36.600000
                                       0.626250
                                                   41.000000
                                                                1.000000
    max
            67.100000
                                       2.420000
                                                  81.000000
                                                                1.000000
[7]: # Checking for persons with diabetes (outcome = 1)
    Positive = data[data['Outcome']==1]
    Positive.head(5)
[7]:
       Pregnancies Glucose BloodPressure SkinThickness
                                                            Insulin
                                                                    BMI \
                                        72
                                                        35
                                                                 0 33.6
    0
                 6
                         148
    2
                 8
                        183
                                        64
                                                        0
                                                                 0 23.3
                 0
                        137
                                         40
                                                                168 43.1
    4
                                                        35
    6
                 3
                         78
                                         50
                                                        32
                                                                88 31.0
    8
                 2
                        197
                                        70
                                                        45
                                                               543 30.5
       DiabetesPedigreeFunction Age Outcome
    0
                          0.627
                                  50
    2
                          0.672
                                            1
                                  32
    4
                          2.288
                                             1
                                  33
    6
                          0.248
                                  26
                                            1
    8
                          0.158
                                  53
                                            1
[8]: # Glucose levels
    data['Glucose'].value counts().head(7)
[8]: 100
           17
    99
           17
    129
           14
    125
           14
    111
           14
    106
           14
    95
           13
    Name: Glucose, dtype: int64
[9]: # Visualization 1
    plt.hist(data['Glucose'])
[9]: (array([ 5., 0., 4., 32., 156., 211., 163., 95., 56., 46.]),
     array([ 0., 19.9, 39.8, 59.7, 79.6, 99.5, 119.4, 139.3, 159.2,
             179.1, 199.]),
      <BarContainer object of 10 artists>)
```

0.372500

29.000000

0.000000

50%

32.000000


```
[10]: # Blood Pressure
     data['BloodPressure'].value_counts().head(7)
[10]: 70
           57
     74
           52
     68
           45
     78
           45
     72
           44
     64
           43
     80
           40
     Name: BloodPressure, dtype: int64
[11]: # Visualization 2
     plt.hist(data['BloodPressure'])
[11]: (array([ 35., 1., 2., 13., 107., 261., 243., 87., 14.,
      array([ 0., 12.2, 24.4, 36.6, 48.8, 61., 73.2, 85.4, 97.6,
             109.8, 122. ]),
      <BarContainer object of 10 artists>)
```



```
[12]: # SkinThickness
      data['SkinThickness'].value_counts().head(7)
[12]: 0
           227
      32
             31
      30
             27
      27
             23
     23
             22
      33
             20
      18
             20
     Name: SkinThickness, dtype: int64
[13]: # Visulization 3
      plt.hist(data['SkinThickness'])
[13]: (array([231., 107., 165., 175., 78.,
                                              9.,
                                                   2.,
                                                         0.,
                                                               0.,
      array([ 0. , 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99. ]),
      <BarContainer object of 10 artists>)
```



```
[14]: # Insulin
      data['Insulin'].value_counts().head(7)
[14]: 0
            374
      105
             11
      140
               9
      130
               9
      120
               8
      100
               7
      94
               7
     Name: Insulin, dtype: int64
[15]: # Visualization 4
      plt.hist(data['Insulin'])
[15]: (array([487., 155., 70., 30., 8.,
                                             9., 5.,
                                                               2.,
                                                         1.,
       array([ 0., 84.6, 169.2, 253.8, 338.4, 423., 507.6, 592.2, 676.8,
             761.4, 846.]),
       <BarContainer object of 10 artists>)
```

```
500 - 400 - 300 - 200 400 600 800
```

```
[16]: # BMI values
      data['BMI'].value_counts().head(7)
[16]: 32.0
             13
     31.6
             12
      31.2
             12
      0.0
             11
      33.3
             10
      32.4
             10
      32.8
              9
     Name: BMI, dtype: int64
[17]: # Visualization 5
      plt.hist(data['BMI'])
[17]: (array([ 11., 0., 15., 156., 268., 224., 78., 12.,
                                                               3.,
       array([ 0. , 6.71, 13.42, 20.13, 26.84, 33.55, 40.26, 46.97, 53.68,
             60.39, 67.1]),
       <BarContainer object of 10 artists>)
```


[18]:	: data.describe().transpose()								
[18]:		count	mean	std	min	25%	\		
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000			
	Glucose	768.0	120.894531	31.972618	0.000	99.00000			
	BloodPressure	768.0	69.105469	19.355807	0.000	62.00000			
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000			
	Insulin	768.0	79.799479	115.244002	0.000	0.00000			
	BMI	768.0	31.992578	7.884160	0.000	27.30000			
	${\tt DiabetesPedigreeFunction}$	768.0	0.471876	0.331329	0.078	0.24375			
	Age	768.0	33.240885	11.760232	21.000	24.00000			
	Outcome	768.0	0.348958	0.476951	0.000	0.00000			
		5	0% 75%	/ max					
	Pregnancies	3.00		17.00					
	Glucose	117.00	00 140.25000	199.00					
	BloodPressure	72.00	00 80.0000	122.00					
	SkinThickness	23.00	00 32.00000	99.00					
	Insulin	30.50	00 127.25000	846.00					
	BMI	32.00	00 36.60000	67.10					
	${\tt DiabetesPedigreeFunction}$	0.37	25 0.62629	5 2.42					
	Age	29.00	00 41.00000	81.00					
	Outcome	0.00	00 1.00000	1.00					

[]:

2 Week 2

```
[19]: # Visualization 6

# CountPlot

sns.set_style('darkgrid')
sns.countplot(data['Outcome'])
plt.title('CountPlot Of Outvome')
plt.xlabel('Outcome')
plt.ylabel('Count')
```

[19]: Text(0, 0.5, 'Count')


```
[20]: # Count of Variables
print('Count of class is:\n',data['Outcome'].value_counts())
Count of class is:
```

0 500 1 268

Name: Outcome, dtype: int64

No need of Sampling as the data was balanced. We can move forward to training and testing

procedure. But there is medical data which we need to make sure of Type 2 Error by using a ROC curve

```
[21]: # Visualization 7

# Scatter Plot

sns.pairplot(data)
plt.title('Scatter plot between variables')
```

[21]: Text(0.5, 1.0, 'Scatter plot between variables')

We can see from scatter plot that there is no strong multicolinearity among features, but between skin thickness and BMI, Pregnancies and age it looks like there is small chance of positive correla-

tion.I will explore more when analyzing correlation.

```
[22]: # Correlation Analysis
data.corr()
```

	data.corr()							
[22]:		Pregnanci	es	Gluco	se	BloodPressure	SkinThickness	\
	Pregnancies	1.0000	00	0.1294	59	0.141282	-0.081672	
	Glucose	0.1294	59	1.0000	00	0.152590	0.057328	
	BloodPressure	0.1412	82	0.1525	90	1.000000	0.207371	
	SkinThickness	-0.0816	72	0.0573	28	0.207371	1.000000	
	Insulin	-0.0735	35	0.3313	57	0.088933	0.436783	
	BMI	0.0176	83	0.2210	71	0.281805	0.392573	
	DiabetesPedigreeFunction	-0.0335	23	0.1373	37	0.041265	0.183928	
	Age	0.5443	41	0.2635	14	0.239528	-0.113970	
	Outcome	0.2218	98	0.4665	81	0.065068	0.074752	
		Insulin		BMI	Di	.abetesPedigreeF	unction \	
	Pregnancies	-0.073535	0.	017683		-0	.033523	
	Glucose	0.331357	0.	221071		0	.137337	
	BloodPressure	0.088933	0.	281805		0	.041265	
	SkinThickness	0.436783	0.	392573		0	.183928	
	Insulin	1.000000	0.	197859		0	.185071	
	BMI	0.197859	1.	000000		0	.140647	
	DiabetesPedigreeFunction	0.185071	0.	140647		1	.000000	
	Age	-0.042163	0.	036242		0	.033561	
	Outcome	0.130548	0.	292695		0	. 173844	
		Age	0	utcome				
	Pregnancies	0.544341	0.	221898				
	Glucose	0.263514	0.4	466581				
	BloodPressure	0.239528	0.	065068				
	SkinThickness	-0.113970	0.	074752				
	Insulin	-0.042163	0.	130548				
	BMI	0.036242	0.	292695				
	DiabetesPedigreeFunction	0.033561	0.	173844				
	Age	1.000000	0.	238356				
	Outcome	0.238356	1.	000000				

We can clearly see that Glucose and BMI has good impact on outcome. There is a strong positive correlation between BMI and Skinthickness or Pregnancies and age.

```
[25]: # Visualization 8

# Correlation Values

plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True)
```

[25]: <AxesSubplot:>

3 Week3

[26] : da	G]: data.head()								
[26]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\		
0	6	148	72	35	0	33.6			
1	1	85	66	29	0	26.6			
2	8	183	64	0	0	23.3			

```
3
             1
                      89
                                      66
                                                      23
                                                               94 28.1
4
             0
                     137
                                      40
                                                      35
                                                              168 43.1
   DiabetesPedigreeFunction
                              Age
                                   Outcome
0
                       0.627
                               50
                                          1
                       0.351
                                          0
1
                               31
2
                       0.672
                               32
                                          1
                                          0
3
                       0.167
                               21
4
                       2.288
                                          1
                               33
```

4 Data Preprocessing

```
[27]: x=data.iloc[:,:-1].values
      y=data.iloc[:,-1].values
[28]: from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2,_
      →random state=0)
      print(X_train.shape)
      print(X_test.shape)
      print(y_train.shape)
      print(y_test.shape)
     (614, 8)
     (154, 8)
     (614,)
     (154.)
[29]: from sklearn.preprocessing import StandardScaler
[30]: Scale = StandardScaler()
      X_train_std = Scale.fit_transform(X_train)
      X_test_std = Scale.transform(X_test)
[31]: Norm = lambda a: (a-min(a))/(max(a)-min(a))
[32]: data_norm = data.iloc[:,:-1]
[33]: data_normalized = data_norm.apply(Norm)
[34]: X_train_norm, X_test_norm, y_train_norm, y_test_norm=train_test_split(data_normalized.
      →values,y,test_size=0.20,random_state=0)
      print(X_train_norm.shape)
      print(X_test_norm.shape)
      print(y_train_norm.shape)
```

```
print(y_test_norm.shape)

(614, 8)
(154, 8)
(614,)
(154,)
```

Data is mostly numerical and in such scenario , Logistic Regression works fine here. We have also seen in Week 2 that variables are depending on target somewhat linearly, So this is also good for Logistic Regression. I will be also using Support Vector Classifier, Perceptron Learning, Random Forest (Ensemble Learning) to see if i can improve accuracy. Note these learning algorithm also works on linear data very well. To validate model I will be using train test split. For accuracy, I will be using accuracy using confusion matrix because classes are balanced and I will be also considering ROC Curve and ROC AUC Score to make sure Type 2 Error will not occur for Positive class, that is 1.

4.0.1 KNN with standard scaling

```
[35]: from sklearn.neighbors import KNeighborsClassifier knn_model = KNeighborsClassifier(n_neighbors=25)
#Using 25 neighbors just as thumb rule sqrt of observation knn_model.fit(X_train_std,y_train)
knn_pred=knn_model.predict(X_test_std)
```

```
[36]: # Visualization 9
      print('Model Validation ==>\n')
      print('Accuracy Score of KNN Model::')
      print(metrics.accuracy_score(y_test,knn_pred))
      print("\n","Classification Report::")
      print(metrics.classification_report(y_test,knn_pred),'\n')
      print("\n","ROC Curve")
      knn_prob=knn_model.predict_proba(X_test_std)
      knn_prob1=knn_prob[:,1]
      fpr,tpr,thresh=metrics.roc_curve(y_test,knn_prob1)
      roc_auc_knn=metrics.auc(fpr,tpr)
      plt.figure(dpi=80)
      plt.title("ROC Curve")
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_knn)
      plt.plot(fpr,fpr,'r--',color='red')
      plt.legend()
```

Model Validation ==>

Accuracy Score of KNN Model::

0.7922077922077922

Classification Report::

	precision	recall	f1-score	support
0	0.81	0.92	0.86	107
1	0.73	0.51	0.60	47
accuracy			0.79	154
macro avg	0.77	0.71	0.73	154
weighted avg	0.78	0.79	0.78	154

ROC Curve

[36]: <matplotlib.legend.Legend at 0x267c99e6b80>

4.0.2 KNN with Normalization

```
[37]: from sklearn.neighbors import KNeighborsClassifier knn_model_norm = KNeighborsClassifier(n_neighbors=25) #using 25 neighbors just as thumb rule sqrt of observation knn_model_norm.fit(X_train_norm, y_train_norm) knn_pred_norm = knn_model_norm.predict(X_test_norm)
```

```
[38]: # Visualization 10
      print("Model Validation ==>\n")
      print("Accuracy Score of KNN Model with Normalization::")
      print(metrics.accuracy_score(y_test_norm,knn_pred_norm))
      print("\n","Classification Report::")
      print(metrics.classification_report(y_test_norm,knn_pred_norm),'\n')
      print("\n","ROC Curve")
      knn_prob_norm=knn_model.predict_proba(X_test_norm)
      knn_prob_norm1=knn_prob_norm[:,1]
      fpr,tpr,thresh=metrics.roc_curve(y_test_norm,knn_prob_norm1)
      roc auc knn=metrics.auc(fpr,tpr)
      plt.figure(dpi=80)
      plt.title("ROC Curve")
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_knn)
      plt.plot(fpr,fpr,'r--',color='red')
      plt.legend()
```

Model Validation ==>

Accuracy Score of KNN Model with Normalization:: 0.7922077922077922

Classification Report::

	precision	recall	f1-score	support
0	0.82	0.91	0.86	107
1	0.71	0.53	0.61	47
accuracy			0.79	154
macro avg	0.76	0.72	0.73	154
weighted avg	0.78	0.79	0.78	154

ROC Curve

[38]: <matplotlib.legend.Legend at 0x267c9a65730>

We can clearly see that KNN with Standardization is better than Normalization, So later I will build models using Z Score Standardization and will compare with KNN.

4.1 Support Vector Classifier

```
[39]: from sklearn.svm import SVC
svc_model_linear = SVC(kernel='linear',random_state=0,probability=True,C=0.01)
svc_model_linear.fit(X_train_std,y_train)
svc_pred=svc_model_linear.predict(X_test_std)
```

```
[40]: # Visualization 11

print("Model Validation ==>\n")
print("Accuracy Score of SVC Model with Linear Kernel::")
print(metrics.accuracy_score(y_test,svc_pred))
print("\n","Classification Report::")
print(metrics.classification_report(y_test,svc_pred),'\n')
print("\n","ROC Curve")
svc_prob_linear=svc_model_linear.predict_proba(X_test_std)
svc_prob_linear1=svc_prob_linear[:,1]
fpr,tpr,thresh=metrics.roc_curve(y_test,svc_prob_linear1)
```

```
roc_auc_svc=metrics.auc(fpr,tpr)
plt.figure(dpi=80)
plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_svc)
plt.plot(fpr,fpr,'r--',color='red')
plt.legend()
```

Model Validation ==>

Accuracy Score of SVC Model with Linear Kernel:: 0.8246753246753247

Classification Report::

	precision	recall	f1-score	support
0	0.84	0.93	0.88	107
1	0.78	0.60	0.67	47
accuracy			0.82	154
macro avg	0.81	0.76	0.78	154
weighted avg	0.82	0.82	0.82	154

ROC Curve

[40]: <matplotlib.legend.Legend at 0x267c9ad5880>


```
[41]: from sklearn.svm import SVC
svc_model_rbf = SVC(kernel='rbf',random_state=0, probability=True,C=1)
svc_model_rbf.fit(X_train_std, y_train)
svc_pred_rbf=svc_model_rbf.predict(X_test_std)
```

```
[42]: # Visualization 12
      print("Model Validation ==>\n")
      print("Accuracy Score of SVC Model with RBF Kernel::")
      print(metrics.accuracy_score(y_test,svc_pred_rbf))
      print("\n","Classification Report::")
      print(metrics.classification_report(y_test,svc_pred_rbf),'\n')
      print("\n","ROC Curve")
      svc_prob_rbf=svc_model_linear.predict_proba(X_test_std)
      svc_prob_rbf1=svc_prob_rbf[:,1]
      fpr,tpr,thresh=metrics.roc_curve(y_test,svc_prob_rbf1)
      roc_auc_svc=metrics.auc(fpr,tpr)
      plt.figure(dpi=80)
      plt.title("ROC Curve")
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_svc)
      plt.plot(fpr,fpr,'r--',color='red')
      plt.legend()
```

Model Validation ==>

Accuracy Score of SVC Model with RBF Kernel:: 0.7922077922077922

Classification Report::

014551110401	.on woper.			
	precision	recall	f1-score	support
0	0.82	0.90	0.86	107
1	0.70	0.55	0.62	47
accuracy			0.79	154
macro avg	0.76	0.73	0.74	154
weighted avg	0.78	0.79	0.78	154

ROC Curve

[42]: <matplotlib.legend.Legend at 0x267c9b28460>

SVC with Linear Kernel is better than RBF Kernel, This was actually expected beause variables are somewhat depending linearly with outcome

Comparing with KNN

Both Models are working fine, but SVC Linear with C=0.01 is better in terms of AUC Score.

4.1.1 Logistic Regression

```
[45]: from sklearn.linear_model import LogisticRegression lr_model = LogisticRegression(C=0.01) lr_model.fit(X_train_std, y_train) lr_pred=lr_model.predict(X_test_std)
```

```
[46]: # Visualization 13
      print("Model Validation ==>\n")
      print("Accuracy Score of Logistic Regression Model::")
      print(metrics.accuracy_score(y_test,lr_pred))
      print("\n","Classification Report::")
      print(metrics.classification_report(y_test,lr_pred),'\n')
      print("\n","ROC Curve")
      lr_prob=lr_model.predict_proba(X_test_std)
      lr_prob1=lr_prob[:,1]
      fpr,tpr,thresh=metrics.roc_curve(y_test,lr_prob1)
      roc_auc_lr=metrics.auc(fpr,tpr)
      plt.figure(dpi=80)
      plt.title("ROC Curve")
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_lr)
      plt.plot(fpr,fpr,'r--',color='red')
      plt.legend()
```

Model Validation ==>

Accuracy Score of Logistic Regression Model:: 0.7987012987012987

Classification Report::

	precision	recall	f1-score	support
0	0.80	0.94	0.87	107
1	0.79	0.47	0.59	47
accuracy			0.80	154
macro avg	0.79	0.71	0.73	154
weighted avg	0.80	0.80	0.78	154

ROC Curve

[46]: <matplotlib.legend.Legend at 0x267c9b95250>

Accuracy of KNN is better than Logistic Regression, but AUC score of Logistic regression is better.

4.1.2 Ensemble Learning - Random Forest

```
[47]: from sklearn.ensemble import RandomForestClassifier
    rf_model = RandomForestClassifier(n_estimators=1000, random_state=0)
    rf_model.fit(X_train_std,y_train)
    rf_pred = rf_model.predict(X_test_std)

[48]: #Visualization 14

    print("Model Validation ==>\n")
    print("Accuracy Score of Logistic Regression Model::")
    print(metrics.accuracy_score(y_test,rf_pred))
    print("\n","Classification Report::")
    print(metrics.classification_report(y_test,rf_pred),'\n')
    print("\n","ROC Curve")
    rf_prob=rf_model.predict_proba(X_test_std)
    rf_prob1=rf_prob[:,1]
    fpr,tpr,thresh=metrics.roc_curve(y_test,rf_prob1)
    roc_auc_rf=metrics.auc(fpr,tpr)
```

```
plt.figure(dpi=80)
plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_rf)
plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.plot(fpr,fpr,'r--',color='red')
plt.legend()
```

Model Validation ==>

Accuracy Score of Logistic Regression Model:: 0.81818181818182

Classification Report::

	precision	recall	f1-score	support
0	0.86 0.72	0.89	0.87	107 47
1	0.72	0.00	0.69	47
accuracy			0.82	154
macro avg	0.79	0.77	0.78	154
weighted avg	0.81	0.82	0.82	154

ROC Curve

[48]: <matplotlib.legend.Legend at 0x267cad72070>

So we can see Random Forest Classifier is best among all, you might be wondering auc score is lesser by 1 than others also I am considering it to be best because balance of classes between Precision and Recall is far better than other Models. So we can consider a loss in AUC by 1

[]: