Fred J. Hickernell

Room E1-208, Department of Applied Mathematics, Illinois Institute of Technology, 10 W. $32^{\rm nd}$ St., Chicago, IL 60616

Abstract

Keywords:

1. Bases and Node Sets

1.1. Group-Like Structures

Consider the half open d-dimensional unit cube, $\mathcal{X} := [0,1)^d$, on which the functions of interest are to be defined. Suppose that there exists a commutative unidal structure on \mathcal{X} , i.e., there exists a commutative addition operation \oplus : $\mathcal{X} \times \mathcal{X} \to \mathcal{X}$ with identity element $\mathbf{0}$ (the zero vector):

$$x \oplus t = t \oplus x, \quad x \oplus 0 = x \qquad \forall x, t \in \mathcal{X}.$$

Every $x \in \mathcal{X}$ is assumed to have a unique additive inverse, denoted $\ominus x$, and $x \ominus t$ means $x \ominus (\ominus t)$. Thus, $x \ominus x = 0$. Associativity is not assumed, and so there may exist $t \in \mathcal{X}$, $t \neq \ominus x$, such that $x \ominus t = 0$. This means that \mathcal{X} might not be a group.

However, it is assumed that for some subsets of \mathcal{X} , denoted $\widetilde{\mathcal{X}}$, which are closed under \oplus and for which associativity also holds:

$$x \oplus (t \oplus u) = (x \oplus t) \oplus u \quad \forall x, t, u \in \widetilde{\mathcal{X}}.$$
 (1)

As a consequence, such subsets, $\widetilde{\mathcal{X}}$, are commutative groups.

Let \mathbb{K} denote some subset of the d-dimensional vector of integers that contains $\mathbf{0}$. Important examples are the set of integer vectors, \mathbb{Z}^d , and the set of non-negative integer vectors, \mathbb{N}_0^d . The set \mathbb{K} is used to index the series expressions for the functions to be integrated. Suppose also that there exists an Abelian group structure on \mathbb{K} , with the additive operation \oplus . Moreover, assume that there exists an operation $\otimes : \mathbb{K} \times \mathcal{X} \to [0,1)$ that returns zero if either argument is zero and also has a distributive property:

$$\mathbf{k} \otimes \mathbf{0} = \mathbf{0} \otimes \mathbf{x} = 0 \qquad \forall \mathbf{k} \in \mathbb{K}, \mathbf{x} \in \mathcal{X},$$
 (2a)

$$k \otimes (x \oplus t) = (k \otimes x) + (k \otimes t) \pmod{1} \quad \forall k \in \mathbb{K}, x \in \mathcal{X}, t \in \widetilde{\mathcal{X}},$$
 (2b)

$$(\mathbf{k} \oplus \mathbf{l}) \otimes \mathbf{x} = (\mathbf{k} \otimes \mathbf{x}) + (\mathbf{l} \otimes \mathbf{x}) \pmod{1} \quad \forall \mathbf{k}, \mathbf{l} \in \mathbb{K}, \mathbf{x} \in \mathcal{X}.$$
 (2c)

1.2. Examples of Group-Like Structures

The general notation introduced in the previous subsection and continued in the subsections below is intended to include the algebra behind both *integration lattices* and *digital nets*. This subsection defines these two special kinds of operators \oplus , \ominus and \otimes .

Integration lattices are sets that are closed under addition and subtraction modulo one. In this setting $\mathbb{K} = \mathbb{Z}^d$, and

$$egin{aligned} oldsymbol{x} \oplus oldsymbol{t} = oldsymbol{x} + oldsymbol{t} \pmod{1}, & eta oldsymbol{x} = -oldsymbol{x} \pmod{1} & orall oldsymbol{x}, oldsymbol{t} \in \mathcal{X}, \\ oldsymbol{k} \oplus oldsymbol{l} = oldsymbol{k} + oldsymbol{l}, & oldsymbol{k} \in \mathcal{K}, & oldsymbol{k} \in \mathcal{K}, \\ oldsymbol{k} \otimes oldsymbol{x} = oldsymbol{k}^T oldsymbol{x} \pmod{1} & orall oldsymbol{x} \in \mathcal{X}, oldsymbol{k} \in \mathbb{K}, \end{aligned}$$

All the properties of the previous section can be shown to hold. Specifically, associativity, (1), and the distributive property, (2), hold for $\widetilde{\mathcal{X}} = \mathcal{X} = [0, 1)^d$, so \mathcal{X} is a group.

The digital net setting deals with b-ary expansions of \mathcal{X} , where b is prime, and $\mathbb{K} = \mathbb{N}_0^d$. Let $\boldsymbol{x} = (x_1, \dots, x_d)$, and let $x_j = {}_b 0.x_{j1}x_{j2} \cdots$ be the proper b-ary expansion (no infinite trail of b-1s) of $x_j \in [0,1)$. Furthermore, let $\boldsymbol{k} = (k_1, \dots, k_d)$, and let $k_j = (\dots k_{j2}k_{j1})_b$ be the b-ary expansion of $k_j \in \mathbb{N}_0$. Specifically

$$\boldsymbol{x} = \left(\sum_{\ell=1}^{\infty} x_{j\ell} b^{-\ell}\right)_{j=1}^{d}, \quad \ominus \boldsymbol{x} = \left(\sum_{\ell=1}^{\infty} [-x_{j\ell} \bmod b] b^{-\ell}\right)_{j=1}^{d} \quad \forall \boldsymbol{x} \in \mathcal{X}$$

$$\boldsymbol{x} \oplus \boldsymbol{t} = \left(\sum_{\ell=1}^{\infty} [x_{j\ell} + t_{j\ell} \bmod b] b^{-\ell}\right)_{j=1}^{d} \quad \forall \boldsymbol{x}, \boldsymbol{t} \in \mathcal{X},$$

$$\boldsymbol{k} = \left(\sum_{\ell=0}^{\infty} k_{j\ell} b^{\ell}\right)_{j=1}^{d}, \quad \ominus \boldsymbol{k} = \left(\sum_{\ell=0}^{\infty} [-k_{j\ell} \bmod b] b^{\ell}\right)_{j=1}^{d} \quad \forall \boldsymbol{k} \in \mathbb{K},$$

$$\boldsymbol{k} \oplus \boldsymbol{l} = \left(\sum_{\ell=0}^{\infty} [k_{j\ell} + l_{j\ell} \bmod b] b^{\ell}\right)_{j=1}^{d} \quad \forall \boldsymbol{k}, \boldsymbol{l} \in \mathbb{K},$$

$$\boldsymbol{k} \otimes \boldsymbol{x} = \left(\left[\frac{1}{b}\sum_{\ell=0}^{\infty} k_{j\ell} x_{j,\ell+1}\right] \bmod 1\right)_{j=1}^{d} \quad \forall \boldsymbol{x} \in \mathcal{X}, \boldsymbol{k} \in \mathbb{K}.$$

What is $\widetilde{\mathcal{X}}$?

1.3. Fourier Series

The integrands are assumed to belong to some subset of $\mathcal{L}_2(\mathcal{X})$, the space of square integrable functions. The \mathcal{L}_2 inner product is defined as

$$\langle f, g \rangle_2 = \int_{\mathcal{X}} f(\boldsymbol{x}) \overline{g(\boldsymbol{x})} \, \mathrm{d}\boldsymbol{x}.$$

Let $\{\varphi(\cdot, \mathbf{k}) \in \mathcal{L}_2(\mathcal{X}) : \mathbf{k} \in \mathbb{K}\}$ be some complete orthonormal basis for $\mathcal{L}_2(\mathcal{X})$. In particular, let

$$\varphi(\boldsymbol{x}, \boldsymbol{k}) = e^{2\pi\sqrt{-1}\boldsymbol{k}\otimes\boldsymbol{x}}, \qquad \boldsymbol{k} \in \mathbb{K}, \boldsymbol{x} \in \mathcal{X}.$$

Then any function in \mathcal{L}_2 may be written in series form as

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{K}} \hat{f}(\mathbf{k}) \varphi(\mathbf{x}, \mathbf{k}), \text{ where } \hat{f}(\mathbf{k}) = \langle f, \varphi(\cdot, \mathbf{k}) \rangle_2,$$
 (3)

and the inner product of two functions in \mathcal{L}_2 is the ℓ_2 inner product of their series coefficients:

$$\langle f,g\rangle_2 = \sum_{\boldsymbol{k}\in\mathbb{K}} \hat{f}(\boldsymbol{k})\overline{\hat{g}(\boldsymbol{k})} =: \left\langle \left(\hat{f}(\boldsymbol{k})\right)_{\boldsymbol{k}\in\mathbb{K}}, \left(\hat{g}(\boldsymbol{k})\right)_{\boldsymbol{k}\in\mathbb{K}}\right\rangle_2.$$

1.4. Node Sets and Their Dual Sets

Now suppose that \mathcal{P} is any finite subgroup of $\widetilde{\mathcal{X}}$ with cardinality $|\mathcal{P}|$. This will be called a *node set* It then follows that for all $\mathbf{k} \in \mathbb{K}$ and $\mathbf{t} \in \mathcal{P}$,

$$0 = \frac{1}{|\mathcal{P}|} \sum_{\boldsymbol{x} \in \mathcal{P}} [\varphi(\boldsymbol{x}, \boldsymbol{k}) - \varphi(\boldsymbol{x} \oplus \boldsymbol{t}, \boldsymbol{k})] = \frac{1}{|\mathcal{P}|} \sum_{\boldsymbol{x} \in \mathcal{P}} [e^{2\pi\sqrt{-1}\boldsymbol{k} \otimes \boldsymbol{x}} - e^{2\pi\sqrt{-1}\boldsymbol{k} \otimes (\boldsymbol{x} \oplus \boldsymbol{t})}]$$

$$= \frac{1}{|\mathcal{P}|} \sum_{\boldsymbol{x} \in \mathcal{P}} [e^{2\pi\sqrt{-1}\boldsymbol{k} \otimes \boldsymbol{x}} - e^{2\pi\sqrt{-1}\{(\boldsymbol{k} \otimes \boldsymbol{x}) + (\boldsymbol{k} \otimes \boldsymbol{t})\}}] \quad \text{by (2)}$$

$$= [1 - e^{2\pi\sqrt{-1}\boldsymbol{k} \otimes \boldsymbol{t}}] \frac{1}{|\mathcal{P}|} \sum_{\boldsymbol{x} \in \mathcal{P}} e^{2\pi\sqrt{-1}\boldsymbol{k} \otimes \boldsymbol{x}}.$$
(4)

Define the dual set corresponding to \mathcal{P} as

$$\mathcal{P}^{\perp} = \{ \boldsymbol{k} \in \mathbb{K} : \boldsymbol{k} \otimes \boldsymbol{x} = 0 \ \forall \boldsymbol{x} \in \mathcal{P} \}.$$

The distributive property, (2), implies that dual set is a subgroup of \mathbb{K} . By the equality (4) above it follows that the average of a basis function, $\varphi(\cdot, \mathbf{k})$, over the points in a node set is either one or zero, depending on whether \mathbf{k} is in the dual set or not.

$$\frac{1}{|\mathcal{P}|} \sum_{\boldsymbol{x} \in \mathcal{P}} e^{2\pi\sqrt{-1}\boldsymbol{k} \otimes \boldsymbol{x}} = \mathbb{1}_{\mathcal{P}^{\perp}}(\boldsymbol{k}) = \begin{cases} 1, & \boldsymbol{k} \in \mathcal{P}^{\perp} \\ 0, & \boldsymbol{k} \in \mathbb{K} \setminus \mathcal{P}^{\perp}. \end{cases}$$

A *shifted* node set is constructed by adding the same point $\Delta \in \mathcal{X}$ to each element in the node set:

$$\mathcal{P}_{\Delta} = \{ x + \Delta : x \in \mathcal{P} \}.$$

$$\begin{split} \frac{1}{|\mathcal{P}_{\boldsymbol{\Delta}}|} \sum_{\boldsymbol{x} \in \mathcal{P}_{\boldsymbol{\Delta}}} \mathrm{e}^{2\pi\sqrt{-1}\boldsymbol{k} \otimes \boldsymbol{x}} &= \frac{1}{|\mathcal{P}|} \sum_{\boldsymbol{x} \in \mathcal{P}} \mathrm{e}^{2\pi\sqrt{-1}\boldsymbol{k} \otimes (\boldsymbol{x} \oplus \boldsymbol{\Delta})} = \frac{1}{|\mathcal{P}|} \sum_{\boldsymbol{x} \in \mathcal{P}} \mathrm{e}^{2\pi\sqrt{-1}[(\boldsymbol{k} \otimes \boldsymbol{x}) + (\boldsymbol{k} \otimes \boldsymbol{\Delta})]} \\ &= \mathrm{e}^{2\pi\sqrt{-1}\boldsymbol{k} \otimes \boldsymbol{\Delta}} \, \mathbb{1}_{\mathcal{P}^{\perp}}(\boldsymbol{k}) = \begin{cases} \mathrm{e}^{2\pi\sqrt{-1}\boldsymbol{k} \otimes \boldsymbol{\Delta}}, & \boldsymbol{k} \in \mathcal{P}^{\perp} \\ 0, & \boldsymbol{k} \in \mathbb{K} \setminus \mathcal{P}^{\perp}. \end{cases} \end{split}$$

1.5. Discrete Transforms

Define the discrete transform of a function, f, over the shifted node set \mathcal{P}_{Δ} as

$$\tilde{f}(\mathbf{k}) := \frac{1}{|\mathcal{P}_{\Delta}|} \sum_{\mathbf{x} \in \mathcal{P}_{\Delta}} e^{-2\pi\sqrt{-1}\mathbf{k} \otimes \mathbf{x}} f(\mathbf{x}) \qquad (5)$$

$$= \frac{1}{|\mathcal{P}_{\Delta}|} \sum_{\mathbf{x} \in \mathcal{P}_{\Delta}} \left[e^{-2\pi\sqrt{-1}\mathbf{k} \otimes \mathbf{x}} \sum_{\mathbf{l} \in \mathbb{K}} \hat{f}(\mathbf{l}) e^{2\pi\sqrt{-1}\mathbf{l} \otimes \mathbf{x}} \right]$$

$$= \sum_{\mathbf{l} \in \mathbb{K}} \hat{f}(\mathbf{l}) \frac{1}{|\mathcal{P}_{\Delta}|} \sum_{\mathbf{x} \in \mathcal{P}_{\Delta}} e^{2\pi\sqrt{-1}(\mathbf{l} \ominus \mathbf{k}) \otimes \mathbf{x}}$$

$$= \sum_{\mathbf{l} \in \mathbb{K}} \hat{f}(\mathbf{l}) e^{2\pi\sqrt{-1}(\mathbf{l} \ominus \mathbf{k}) \otimes \Delta}$$

$$= \sum_{\mathbf{l} \in \mathbb{K}} \hat{f}(\mathbf{k} \oplus \mathbf{m}) e^{2\pi\sqrt{-1}\mathbf{m} \otimes \Delta},$$

$$= \hat{f}(\mathbf{k}) + \sum_{\mathbf{m} \in \mathcal{P}^{\perp} \setminus \mathbf{0}} \hat{f}(\mathbf{k} \oplus \mathbf{m}) e^{2\pi\sqrt{-1}\mathbf{m} \otimes \Delta}, \quad \forall \mathbf{k} \in \mathbb{K}.$$
(6)

It is seen here that the discrete transform $\tilde{f}(\mathbf{k})$ is equal to the integral transform $\hat{f}(\mathbf{k})$, defined in (3), plus the *aliasing* terms corresponding to $\hat{f}(\mathbf{l})$ where \mathbf{l} and \mathbf{k} differ (in the \ominus sense) by a nonzero element of the dual set.

Notice that the dual nets can be used to form cosets of wavenumbers. Let

$$\mathcal{P}_{m{k}}^{\perp} = \{m{l} \in \mathbb{K} : m{l} \ominus m{k} \in \mathcal{P}^{\perp}\}.$$

This means that $\mathcal{P}_{\mathbf{0}}^{\perp} = \mathcal{P}^{\perp}$. There are $|\mathcal{P}|$ distinct cosets. Then (6) above implies that

$$\tilde{f}(\mathbf{k}) = \sum_{\mathbf{l} \in \mathcal{P}_{-}^{\perp}} \hat{f}(\mathbf{l}) e^{2\pi\sqrt{-1}(\mathbf{l} \ominus \mathbf{k}) \otimes \Delta}.$$
 (7)

Now consider the situation where there is a sequence of nested sets,

$$\mathcal{P}_0 = \{\mathbf{0}\} \subset \mathcal{P}_1 \subset \mathcal{P}_2 \subset \cdots, \qquad |\mathcal{P}_r| = b^r$$

Furthermore, assume that each set equals the previous plus multiples of one element:

$$\mathcal{P}_r = \{ x \oplus t : x \in \mathcal{P}_{r-1}, \ t \in \{0, z_r, z_r \oplus z_r, \ldots\} \}, \qquad r = 1, 2, \ldots,$$

where $z_1, z_2, \ldots \in \widetilde{\mathcal{X}}$ is some fixed sequence. According to this definition of nested sets, the dual sets are nested in the opposite direction,

$$\mathcal{P}_0^{\perp} = \mathbb{K} \supset \mathcal{P}_1^{\perp} \supset \mathcal{P}_2^{\perp} \supset \cdots$$

Now we are going to map the non-negative numbers into the space of all wavenumbers using the dual sets. For every $\kappa \in \mathbb{N}_0$, we assign a wavenumber $\mathbf{k}(\kappa) \in \mathbb{K}$ iteratively as follows.

- Let k(0) = 0.
- For any $\kappa = \kappa_0 + \kappa_1 b + \kappa_2 b^2 + \dots + \kappa_{r-1} b^{r-1}$ and any $\kappa' = \kappa_0 + \kappa_1 b + \kappa_2 b^2 + \dots + \kappa_{r-1} b^{r-1} + \kappa'_r b^r + \dots + \kappa'_{r'} b^{r'+1}$, where κ_j and κ'_j are integers between 0 and b-1, assign $\mathbf{k}(\kappa)$ and $\mathbf{k}(\kappa')$ such that $\mathcal{P}_{r,\mathbf{k}(\kappa)}^{\perp}$ and $\mathcal{P}_{r,\mathbf{k}(\kappa')}^{\perp}$ the same equivalence class.

Introducing the shorthand notation such $\hat{f}_{\kappa} = \hat{f}(\mathbf{k}(\kappa))$, and such that $\tilde{f}_{\kappa,r}$ corresponds to the discrete transform $\tilde{f}(\mathbf{k}(\kappa))$ defined in (5) based on the shifted nodeset $\mathcal{P}_{r,\Delta}$. Likewise, $\mathcal{P}_{\kappa,r}^{\perp}$ denote the coset $\mathcal{P}_{\mathbf{k}(\kappa),r}^{\perp}$ for $\kappa = 0, \dots, b^r - 1$. According to (7), it follows that

$$\tilde{f}_{\kappa,r} = \sum_{\boldsymbol{l} \in \mathcal{P}_{\kappa,r}^{\perp}} \hat{f}(\boldsymbol{l}) e^{2\pi\sqrt{-1}(\boldsymbol{l} \ominus \boldsymbol{k}(\kappa)) \otimes \boldsymbol{\Delta}}
= \sum_{\lambda=0}^{\infty} \hat{f}_{\kappa+\lambda b^r} e^{2\pi\sqrt{-1}(\boldsymbol{l}(\kappa+\lambda b^r) \ominus \boldsymbol{k}(\kappa)) \otimes \boldsymbol{\Delta}}
= \hat{f}_{\kappa} + \sum_{\lambda=1}^{\infty} \hat{f}_{\kappa+\lambda b^r} e^{2\pi\sqrt{-1}(\boldsymbol{l}(\kappa+\lambda b^r) \ominus \boldsymbol{k}(\kappa)) \otimes \boldsymbol{\Delta}}.$$
(8)

We want to use $\tilde{f}_{\kappa,r}$ to estimate \hat{f}_{κ} if r is larger enough than $\lfloor \log_b(\kappa) \rfloor$. Consider the following sums

$$S(r) = \sum_{\kappa=-b^r}^{b^{r+1}-1} \left| \hat{f}_{\kappa} \right|, \qquad r \in \mathbb{N}_0, \tag{9}$$

$$\widetilde{S}(\kappa, r_1, r_2) = \sum_{\lambda = b^{r_2}}^{b^{r_2+1} - 1} \left| \hat{f}_{\kappa + \lambda b^{r_1}} \right|, \qquad \kappa = 0, \dots, b^{r_1} - 1, \ r_1, r_2 \in \mathbb{N}_0, \tag{10}$$

$$\widehat{S}(r, r_1, r_2) = \sum_{k=0}^{b^{r+1}-1} \widetilde{S}(\kappa, r_1, r_2), \qquad r = 0, \dots, r_1 - 1, \ r_1, r_2 \in \mathbb{N}_0,$$
 (11)

We make the critical assumption that these sums decay with increasing r_1 and r_2 , namely,

$$S(r, r_1, r_2) \le s_1 s_2^{r_1 + r_2 - r} S(r, r_1, r_2), \qquad r \ge r_{\min},$$
 (12)