AKCJE REFERNCYJNE

abela nadrzędna			tabela podrzędna			
▼		Klucz obc	V			$\overline{}$
idf			v	idg		$f_{ m id}$
1						1
2						1
5						5
10						5
12						2

- Wszystkie wartości f id muszą występować w idf.
- Jeśli chcemy w f id umieścić coś innego nie uda się.
- Tracimy swobodę zmian w tabeli nadrzędnej nie można "osierocić" wartości z f_id.
- Np. usuwamy 5
 ON DELETE CASCADE: wiersze z 5 w f_id usuwane z podrzędnej*
 ON DELETE RESTRICT: usunięcie z nadrzędnej blokowane
- Np. zamieniamy 5 na 6
 ON UPDATE CASCADE: zmiana 5 → 6 też w podrzędnej
 ON UPDATE RESTRICT: zmiana w nadrzędnej blokowana (póki 5 jest w f id)
- A co ze zmiana **5** na **10**? Nie przejdzie z innego powodu idf jest kluczem głównym.
- * W zależności od implementacji lub konfiguracji naszej DBMS to może pociągać sekwencję usunięć w wielu tabelach ostrożnie!