Possibility of the Heavy QCD Axion

Hajime Fukuda (Kavli IPMU) March 16, 2016

Strong CP Problem

CP symmetry in QCD should be broken

$$\theta = \theta_{\mathsf{YM}} + \arg\det(Y_u Y_d)$$

However, the violation looks very small

$$|\theta| \lesssim 10^{-10}$$

$U(1)_{PQ}$ Symmetry

$$q_L \to e^{i\alpha} q_L, \quad \theta \to \theta + 2T(R)\alpha$$

• $U(1)_{PQ}$ must be broken at f_a and a pseudo NG Boson a appears

Weinberg 1978, Wilczek 1978

Their Original Model

- The VEVs of 2HDM break EW gauge group and U(1)_{PQ} simultaneously
- It's simple and minimal, but experimentally excluded

Which Direction?

- There are roughly two ways to achieve the PQ mechanism
 - Larger f_a , weaker interactions
 - Heavier m_a , evading astro constraints

Axion Mass and Decay Constant

Axion Mass

$$m_a^2 \simeq \frac{m_q \Lambda^3}{f_a^2}$$

• Heavier m_a with sufficiently large f_a is hence difficult

Larger f_a isn't Easy, Either

Why does no higher dim. op. exist?

$$\Delta \mathcal{L} = c rac{\phi^5}{M_{ ext{Pl}}}$$
 $\Rightarrow \Delta heta \simeq c rac{f_a^3}{M_{ ext{Pl}} m_a^2} \gg 10^{-10},$

even for the WW axion

Realizing a Heavy Axion

(Rubakov, 1997) suggested a consistent
 way to achieve a heavy axion

How to Make an Axion Heavier?

Another gauge theory is needed

How to Make an Axion Heavier?

Another gauge theory is needed

Then how can we align the two θ s?

θ and θ'

• As was shown, θ comes from two parts:

$$\theta = \theta_{YM} + arg \det(Y_u Y_d)$$

Aligning each parts looks easy

Copy of SM

$$\theta' = \theta_{YM} + \operatorname{arg} \det(Y_u Y_d)$$

- θ' must have Yukawa sector
- Thus, we need a complete copy of SM
 - We call it as a "mirrored" copy

Our Model

Breakdown of \mathbb{Z}_2

- \mathbb{Z}_2 must be spontaneously broken
 - Otherwise the axion couldn't be heavy
- Which parameters do we change using spurion σ ?

Heavy Axion Mass

Recall

$$m_a^2 \simeq \frac{m_q' \Lambda'^3}{f_a^2}$$

- We have to increase $m_q' \propto v'$ and Λ'
 - For Λ' , we introduce color charged particles, Φ , Φ' , and change their masses.

Cosmological Properties

- γ' is massless
 - The axion must decouple before QCD PT
- Seesaw mechanism in ν' is forbidden
 - ν 's have large Dirac mass

Stable Particle

Two of the followings are stable

• ν' must be unstable

Low Energy Spectrum

Axion a

$$m_a \gtrsim 400 \, {
m MeV}$$

Vector like quark ψ, ψ'

$$m_{\psi}=rac{1}{\sqrt{2}}gf_{a}\gtrsim900~\mathrm{GeV}$$

Dilaton s

$$m_s = \sqrt{2\lambda} f_a \gtrsim \mathcal{O}(100) \, \text{GeV}$$

Low Energy Spectrum

Axion a

$$m_a \gtrsim 400 \, {
m MeV}$$

Vector like quark ψ, ψ'

$$m_{\psi}=rac{1}{\sqrt{2}}gf_{a}\gtrsim 900~{
m GeV}$$

Dilaton s

$$m_s = \sqrt{2\lambda} f_a \simeq 750 \text{ GeV}??$$

Effective Lagrangian

$$\mathcal{L} = \frac{s}{f_a} \partial_a \partial_a + N_1 \frac{\alpha_s}{8\pi} \frac{s}{f_a} GG + N_2 \frac{\alpha}{8\pi} \frac{s}{f_a} F^{(\prime)} F^{(\prime)} + N_1 \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + N_2 \frac{\alpha}{8\pi} \frac{a}{f_a} F^{(\prime)} \tilde{F}^{(\prime)}$$

• Since f_a is low and higher dim. op.s destroy domain walls, $N_1 \neq 1$ is allowed

Dilaton Decay

- Obviously, $\frac{s}{f_a} \partial a \partial a$ is the strongest
- Almost no $s \to 2\gamma^{(\prime)}$ decay
- Is it failed?

Dilaton Decay

- Obviously, $\frac{s}{f_a} \partial a \partial a$ is the strongest
- Almost no $s \to 2\gamma^{(\prime)}$ decay
- Is it failed? No!

Photons and Photon Jets

- ullet ECAL can't count the number of γ
 - Use " $s \rightarrow 2a$, $a \rightarrow 2$ collimated γ " mode

Photons and Photon Jets

- ECAL can't count the number of γ
 - Use " $s \rightarrow 2a$, $a \rightarrow 2$ collimated γ " mode
 - TRT, a tracker just before ECAL, is able to count converted photons, although 4γ seems still allowed

Axion Decay

Lagrangian

$$\mathcal{L}_{a} = N_{1} \frac{\alpha_{s}}{8\pi} \frac{a}{f_{a}} G \tilde{G} + N_{2} \frac{\alpha}{8\pi} \frac{a}{f_{a}} F^{(\prime)} \tilde{F}^{(\prime)}$$

- We need large BR
 - BR($s \rightarrow 4\gamma$) = BR($a \rightarrow 2\gamma$)²
- a-G-G coupling looks too strong

Is Large BR Possible?

Two possibility

- $m_a < 3m_\pi$, the threshold of $a \rightarrow 2g$
- Use the mixings with mesons

$\overline{m_a} < 3m_\pi$

- An axion lives too longer
- Typically,

$$\gamma \Gamma^{-1} \sim rac{100 \, {
m GeV}}{m_a} \left(rac{4\pi}{lpha}
ight)^2 rac{f_a^{\ 2}}{m_a^{\ 3}} \gtrsim \mathcal{O}(1) \, {
m m}$$

Mixings with Mesons

• $a \rightarrow 3\pi$ is suppressed by the phase factor

Summary

- The heavy axion is possible
- The diphoton excess can be explained as the dilaton
 - Photon jets may be interesting