

CAD circuit simulation project

Ex.3 from 200909 exam

Student: Martin Molinaro (991671)

Exercise text (Ex.3 from 200909 exam)

Ex. 3

Consider an 8bit DAC and a dual OpAmp.

- a) Compute the $V_{in}(I_{in})$ relationship dependence on the digital input code D_{in} and the R resistor.
- b) Substitute the DAC with an 8bit ADC (i.e. A_{out} becomes A_{in} and D_{in} becomes D_{out}) and write D_{out} as a function of V_{in}.

ES3a

Solution by hand

Solution by hand:

OA2

T Vin ON, hout OFF

$$V^* = V_1^* = V_$$

$$V_2^n = Aent \left(-\frac{10 \, h}{10 \, h}\right) = -Aent$$

$$V = Vin - Aout = Vin - Vin \frac{Din}{28}$$

ES3a OrCAD circuit scheme

ES3a Digital Input stimulus

(simulation: es3a_sim) with R(R1)=1k Ω

(simulation: es3a_sim) with R(R1)= $5k\Omega$

(simulation: es3a_sweep) with R(R1)=Rvar=[1k Ω ÷10k Ω], Din=1 constant, Vin=Vref=50mV (constant bias)

ES3b Solution by hand

• A in =
$$\frac{Vih}{2}$$
 | $Vrcf = Vih$

(Dout = $\frac{Ain}{Vrcf} = \frac{Vih}{2^8} = 2^2$

ES3b OrCAD circuit scheme

