PCT

Ü

国際事務局

特許協力条約に基づいて公開された国際出願

WO 93/03054 (11) 国際公開番号 (51) 国際特許分類 5 C07K 5/06, A61K 37/02 **A1** (43) 国際公開日 1993年2月18日(18.02.1993) (21) 国際出願番号 POT/JP92/01005 (81) 指定国 (22) 国際出願日 1992年8月6日(06.08.92) AT(欧州特許), AU, BE(欧州特許), CA, CH(欧州特許), DE(欧州特許), DK(欧州特許), ES(欧州特許), FR(欧州特許), (30) 優先権データ GB(欧州特許), GR(欧州特許), IE(欧州特許), IT(欧州特許), 特顯平3/223534 1991年8月9日(09.08.91) JΡ JP, KR, LU(欧州特許), MO(欧州特許), NL(欧州特許), **特顯平3/225391** 1991年8月12日(12.08.91) SE(欧州特許), US. JP (71) 出願人(米国を除くすべての指定国について) 添付公開書類 国際調査報告書 帝国赎器製薬株式会社 (TEIKOKU HORMONE MFG. CO., LTD.)(JP/JP) 〒107 東京都港区赤坂二丁目5番1号 Tokyo, (JP) (72) 発明者: および (75) 発明者/出願人(米国についてのみ) 榊原恭一(SAKAKIBARA, Kyoichi)[JP/JP] 〒152 東京都目黒区八雲4-3-14 Tokyo, (JP) 推藤昌昭(GONDO, Masaaki)[JP/JP] 〒245 神奈川県横浜市泉区緑園4-3-1 サンステージ緑園都市東の街5-310 Kanagawa, (JP) 官崎宏一(MIYAZAKI, Koichi)[JP/JP] 〒243-04 神奈川県海老名市国分426-1 えびな国分団地6-406 Kanagawa, (JP) (74) 代理人 弁理士 小田島平吉, 外(ODAJIMA, Heikichi et al.) 〒107 東京都港区赤坂1丁目9番15号 日本自転車会館

(54) Title: NOVEL TETRAPEPTIDE DERIVATIVE

(54) 発明の名称 新規セテトラベブチ F誘導体

小田島特許事務所 Tokyo, (JP)

(57) Abstract

A tetrapeptide derivative represented by general formula (I) or its salt, having a higher cytostatic activity than dolastatin 10, thus being useful as an antitumor drug wherein R₁, R₂, R₃ and R₄ may be the same or different from one another and each represents hydrogen, lower alkyl or aralkyl; and Q represents (a) or -A₂-R₇, wherein A₁ represents a direct bond or -CHR₅-, Y represents hydrogen or -COR₆, R₅ represents hydrogen, lower alkyl or aralkyl, R₆ represents hydroxy, lower alkoxy, aralkyloxy or -NR₈R₉ wherein R₈ and R₉ may be the same or different from each other and each represents hydrogen, lower alkyl, phenyl or a 4- to 7-membered heterocyclic group bearing one or two heteroatoms selected among S, O and N, or alternatively R₈ and R₉ may form together with the nitrogen atom to which they are bonded a 4- to 7-membered heterocyclic ring which may further bear one heteroatom selected among S, O and N, A₂ represents a direct bond or lower alkylene, and R₇ represents cycloalkyl, aryl orindolyl, provided that the case where both R₁ and R₂ represent isopropyl, R₃ represents sec-butyl, R₄ represents methyl, and Q represents α-(2-thiazolyl)phenethyl is excluded.

(57) 要約 式

 R_1 、 R_2 、 R_3 及び R_4 は同一もしくは相異なり、それぞれ水素原子、低級アルキル基又はアラルキル基を表わし;

$$Q$$
は $-A_1$ $-A_2$ $-R_7$ の基を表わし、ここで R_5

A₁は直接結合又は-CH-を表わし、 Yは水素原子又は-COR₆を表わし、

R₅は水素原子、低級アルキル基又はアラルキルを表わし、 R₆はヒドロキシ基、低級アルコキシ基、アラルキルオキシ基又は

れ水素原子、低級アルキル基、フエニル基又はS、O及びNから選ばれる1又は2個のヘテロ原子を含む $4\sim7$ 員の複素環式基を表わすか、或いは

 R_8 と R_9 はそれらが結合する窒素原子と一緒になつてさらにS、O 及びNから選ばれる1個のヘテロ原子を含んでいてもよい $4\sim7$ 員の複素環式環を形成していてもよい)を表わし、

A2は直接結合又は低級アルキレン基を表わし、

 R_1 はシクロアルキル基、アリール基又はインドリル基を表わす、ただし、 R_1 及び R_2 がイソプロピル基を表わし、 R_3 が s e c - ブチル基を表わし、 R_4 がメチル基を表わし、そしてQが α - (2- チアゾリル)フエネチル基を表わす場合を除く、

で示されるテトラペプチド誘導体又はその塩は、ドラスタチン10よりも高い細胞増殖抑制作用を有しており、抗腫瘍剤として有用である。

情報としての用途のみ

PCTに基づいて公開される国際出願のパンフレット第1頁にPCT加盟国を同定するために使用されるコード

FI フィンス (GA データン (GA データン (GA データン (GN データン アッカン (GN データン アッカン (GN データン (

MR モーリーニア MW モーリーイ NL フーリー フー NO フー・ニートー ラー NO フー・ニートー フー NO アロー・デンドル RO ルー・ファイ RO ルー・ファイ RO エー・アイ RO エー・アイ SE ススセー・アイ SE ススセー・アイ SE ススセー・アイ SE ススセー・アイ TD トーク国 TG トーク国 UA 米国 WO 93/03054 PCT/JP92/01005

明 細 書

新規なテトラペプチド誘導体

技術分野

本発明は抗腫瘍作用を有する新規なテトラペプチド誘導体に関し、さらに詳しくは式

式中、

10

15

20

 R_1 、 R_2 、 R_3 及び R_4 は同一もしくは相異なり、それぞれ水素原子、低級アルキル基又はアラルキル基を表わし:

$$Q$$
は $-A_1$ $-A_2$ $-R_7$ の基を表わし、ここで R_5

A」は直接結合又は一CHーを表わし、

Yは水素原子又は一COR®を表わし、

R₅は水素原子、低級アルキル基又はアラルキルを表わし、

R。はヒドロキシ基、低級アルコキシ基、アラルキルオキシ基又は

れ水素原子、低級アルキル基、フエニル基又はS、O及びNから選

ばれる1又は2個のヘテロ原子を含む4~7.員の複素環式基を表わ すか、

或いは

 R_8 と R_9 はそれらが結合する窒素原子と一緒になつてさらにS、O 及びNから選ばれる1個の $^{\circ}$ つ原子を含んでいてもよい4 $^{\circ}$ 7 貝 の複素環式環を形成していてもよい)を表わし、

A₂は直接結合又は低級アルキレン基を表わし、

 R_7 はシクロアルキル基、アリール基又はインドリル基を表わす、ただし、 R_1 及び R_2 がイソプロピル基を表わし、 R_3 がs e c - ブチル基を表わし、 R_4 がメチル基を表わし、そしてQが α - (2 - チアゾリル)フエネチル基を表わす場合を除く、

で示されるテトラペプチド誘導体又はその塩に関する。

背景技術

10

海の軟体動物であるアメフラシ類縁のタツナミガイ(Dolabella auric ularia)から細胞生長抑制作用及び/又は抗新生物作用を有するペプチドの単離は今までにいくつかなされており、それらのペプチドはドラスタチン1~15と称されている。このうち、ドラスタチン10は、1987年ペチツト等によりインド洋産のタツナミガイから抽出された下記構造式をもつペンタペプチドで、既知の化合物の中で最強の細胞生長抑制作用を有する化合物として知られている(ペチツト等、ジヤーナル・オブ・ジ・アメリカン・ケミカル・ソサエティー(J. Am. Chem. Soc.)、109巻、6883頁、(1987年)及び特開平2~167278号公報参照)。

10

15

20

$$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array} \\ N \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array} \\ \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ \end{array}$$

[ドラスタチン10]

また、近年になつて、ドラスタチン10そのものの全合成については 発表がなされたが(アメリカ特許第4978744号参照)、その誘導 体に関しては、現在までのところ全く知られていない。

本発明者らは、ドラスタチン10の誘導体について研究を重ねた結果、前記式(I)で表されるある種のドラスタチン10アナローグが、ドラスタチン10よりも高い細胞増殖制御作用を有することを見いだした。さらに、これらの化合物の多くはドラスタチン10よりも治療比(最大有効量/30%延命率の用量)が大きく且つ毒性も低いので抗腫瘍剤として優れていることを見いだした。

即ち、ドラスタチン10のアミノ酸アナローグがオリジナルのドラスタチン10よりも高活性を示すばかりでなく、意外なことにそのチアゾール環にカルボキシル誘導体を導入することにより、その作用が格段に増強することを認めた。更に全く驚くべきことに、チアゾール環を除去したような誘導体が、ドラスタチン10よりも遥かに高活性であることを見出した。

発明の開示

これらの知見をもとに完成した本発明の態様は以下の三つのカテゴリーに分類し得る。

- (1) ドラスタチン10のアミノ酸置換体およびそれらの合成
- (2) チアゾール環のカルボキシル誘導体およびそれらの合成
- (3) チアゾール環を除去したテトラペプチド誘導体およびそれら の合成
- カテゴリー(1)に属する化合物群の合成については後記フローシート1、2、3で説明され、カテゴリー(2)に属する化合物の合成については後記フローシート4、5で説明される。またカテゴリー(3)に属する化合物群の合成については後記フローシート6で説明される。

本明細書において「低級」なる語は、この語が付された基又は化合物 の炭素原子数が6個以下、好ましくは4個以下であることを意味する。

前記式(I)において、「低級アルキル基」は直鎖状又は分枝鎖状のいずれであつてもよく、例えばメチル、エチル、nープロピル、イソプロピル、nーブチル、イソプチル、secーブチル、tertーブチル、イソペンチル、ネオペンチル、イソヘキシル基等が挙げられ、「アラルキル基」はアリールー低級アルキル基の意味であり、例えばベンジル、フエネチル基等が挙げられる。また、「低級アルコキシ基」は低級アルキル部分が上記の意味を有する低級アルキルー〇一基であり、例えばメトキシ、エトキシ、nープロポキシ、イソプロポキシ、tertーブトキシ基等が包含され、「アラルキルオキシ基」はアラルキル部分が上記の意味を有するアラルキルー〇一基であり、例えばベンジルオキシ、フエネチルオキシ基等が包含される。さらに、「低級アルキレン基」は、直鎖状又は分枝鎖状のいずれであつてもよく、例えばメチレン、エチレン、トリメチレン、テトラメチレン、メチルメチレン、プロピレン、エチルエチレン、1,2ージメチルエチレン基等が挙げられ、「シクロア

ルキル基」としては、例えばシクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチル基等の炭素原子数3~7個を有するシクロアルキル基が挙げられ、「アリール基」としては例えばフエニル、ナフチル基等が挙げられる。

R®又はR®において「S、O及びNから選ばれる1又は2個のヘテロ原子を含む4~7員の複素環式基」を表わす場合の該複素環式基の例としては、アゼチジニル、フリル、チエニル、ピリジル、ピペリジニル、アゼビニル、チアゾリル、イミダゾリル、オキサゾリル、ピリミジニル、ピリダジニル基等が挙げられ、一方、R®とR®が「それらが結合する窒素原子と一緒になつてさらにS、O及びNから選ばれる1個のヘテロ原子を含んでいてもよい4~7員の複素環式環」を表わす場合の該複素環式環の例としては、アゼチジノ、ヒロリジノ、ピペリジノ、1ーパーヒドロアゼピニル、ヒペラジノ、モルホリノ、チオモルホリノ基等を挙げることができる。

 R_8 人 R_8 しかして、-N の基の例としては、Tミノ、メチルTミノ、エ

チルアミノ、イソプロピルアミノ、tertーブチルアミノ、ジメチルアミノ、ジエチルアミノ、フエニルアミノ、NーメチルーNーフエニルアミノ、フリルアミノ、ピリジルアミノ、2ーチアゾリルアミノ、イミダゾリルアミノ、ピリミジニルアミノ、ピロリジノ、ピペリジノ、モルホリノ基等を挙げることができる。

前記式(I)の化合物において好ましい一群の化合物は、Qが

 R_5 (ここで R_5 は前記の意味を有する)を表わす場合の化合物であり、この中でも特に R_1 、 R_2 、 R_3 、 R_4 及び R_5 のうち4つの基がドラスタチン10 (R_1 及び R_2 がイソプロピル基で、 R_3 がs e c ーブチル基で、 R_4 がメチル基で、 R_5 がベンジル基である化合物)と同じ基を表わし、残りの1つの基のみがドラスタチン10と異なる基を表わす場合の化合物がとりわけ好適である。

また、好ましい別の一群の化合物は、 R_1 及び R_2 がイソプロピル基を表わし、 R_3 が s e c - ブチル基を表わし、 R_4 がメチル基を表わし、そ

 COR_6 R_5 R_5 COR_6 R_5 COR_6 R_5 R_5 R_5 R_5 R_5 R_6 $R_$

記の意味を有する)を表わす場合の化合物である。

さらに、好ましい別の一群の化合物は、Qが $-A_2-R_7$ (ここで A_2 は低級アルキレン基を表わし、 R_7 は前記の意味を有する)を表わす場合の化合物である、この中でも特に R_1 及び R_2 がイソプロピル基を表わし、 R_3 がs e c - ブチル基を表わし、 R_4 がメチル基を表わし、そして R_7 がアリール基を表わす化合物が好適りである。

なお、本発明の前記式 (I) の化合物において、置換基 R_1 、 R_2 、 R_3 、 R_4 及び R_5 並びにメトキシ基が結合している炭素原子は不整炭素 原子であるので、それらは任意のR又はSの立体配置を有することができ、それらは全て本発明の範囲に包含されるが、薬理活性の点からみる と、ドラスタチン10と同じ立体配置を有する化合物が好ましい。

本発明により提供される前記指揮(I)の化合物の代表例としては、

後記実施例に掲げるものの他に次のものを挙げることができる。

Ŗ ₁	R ₂	3 N	R ₄ NH-Q
CH ₃ N NH	O CH ₃	OCH ₃	OCH ₃

	化合物No.	Rı	R ₂	R ₃	R ₄	Q
	. 1	i-Pr	i-Pr	i-Bu	Мe	S
1 0	2	Et	11	s-Bu	<i>If</i>	S
	3	n-Pr	n	#	n	-CH(Bz1) N
	4	i-Bu	n	"	n	"
	5	i-Pr	n-Pr	11		
1 5	6	,	i-Bu	u	II .	н
	7	,	i-Pr	H	ır	n
	8	"	<i>"</i> .	Et	n	Ħ
	9 ·	n	"	t-Bu	"	ı
	. 10	"	"	1-Me-Bu	#	#
2 0	11	"	"	i-Pe	"	u
	12	#	"	Bzl	π	U
	13	"	"	s-Bu	Et	n
	14	"	"	<i>"</i> .	n-Pr	<i>I</i>

	15	π	n	п	Жe	-CH ₂ N
	16	rr	Ħ	ù	đ	-CH(i-Pr) N
5	17	π	н	if	и	S_COOCH3
	18	rt	п	d .	rr	SCONHEt
10	19	и	И	п	п	-CH(Bz1) COOH
	20	П	И	п	ø	-CH(Bz1) COOEt
	21	ø	r	ń	n	-CH(Bz1) N CONHMe
15	22	п	п	u	И	-CH(Bz1) CON Et
	23	a	it	п	Я	-CH(Bz1) N CON Ne
20	24	"	n	rr	п	-CH(Bz1) N CONH
	25	п	σ	π	п	-CH(Bz1) N CON
	26	п	n	ri	п	-(H)

WO 93/03054 PCT/JP92/01005

	-			·	9	
	27	u .	"		n	-Np
	28	n	"	"	n,	-CH ₂ —H
	29	ø	n	. #	n	-CH(Ne)CH ₂ -Ph
5	30	u	u u	. #	Ħ	-(CH ₂) ₄ -Ph
	31	II.	s-Bu	Ħ	. "	-CH ₂ CH ₂ Ph
	32	n	i-Pr	i-Pr	n	ø
	33	11	ıı .	n-Pr	u	ø
	34	"	"	s-Bu	H	n
1 0	35	"	II .	"	Et	"

上記各基において、Meはメチル基、Etはエチル基、Prはプロピル基、Buはブチル基、Peはペンチル基、Bzlはベンジル基、Phはフエニル基、Npはナフチル基を意味している。

前記式(I)のテトラペプチド誘導体は塩として存在することができ、 そのような塩の例としては、塩酸塩、臭化水素酸塩、トリフルオロ酢酸 塩、p-トルエンスルホン酸塩、酢酸塩を挙げることができる。

本発明によれば、前記式(I)のテトラペプチド誘導体は、例えばペプチド化学の分野で周知の液相合成法(イー・シュレーダー及びケイ・リユブケ著「ザ・ペプタイズ」第1巻、76~136頁、1965年アカデミツク・プレス発行参照)に従つて各アミノ酸又はペプチドフラグメントを縮合させることにより製造することができるが、特に下記式(II)

15

20

$$\begin{array}{c|c} CH_3 & R_1 & R_2 & R_3 \\ CH_3 & 0 & CH_3 & 0CH_3 \end{array} \tag{II}$$

式中、 R_1 、 R_2 及び R_3 は前記の意味を有する、 のトリペプチドフラグメントと、下記式 (III)

$$\begin{array}{c}
R_4 \\
NH-Q_1 \\
OCH_3
\end{array}$$
(III)

式中、R₄は前記の意味を有し、Qは -A₁ -A₂ -R₇

の基を表わし、ここでY₁は水素原子又はメトキシカルボニル基を 表わし、

A₁、A₂及びR₇は前記の意味を有する、

のフラグメントとを縮合させることにより合成するのが、上記式(II)及び(III)の各フラグメントの合成のし易さ、それらの縮合時においてラセミ化の心配がないこと等から最も好適である。基Qにおいてチアゾール環の4一位の置換基Yがメトキシカルボニル基以外の基-СОR。を表わす場合の化合物を得るためには、Yがメトキシカルボニル基を表わす式(I)の化合物を製造した後、そのメトキシカルボニル基を所望の基-СОR。に変換すればよい。

反応は、一般に、不活性溶媒、例えばクロロホルム、酢酸エチル、テトラヒドロフラン (THF)、ジメチルホルムアミド (DMF)、アセ

20

トニトリル等の中で、必要に応じて有機塩基、例えばトリエチルアミン、Nーメチルモルホリン、ジイソプロピルエチルアミン(DIEA)等の存在下に、縮合剤、例えばジシクロヘキシルカルボジイミド(DCC)ジフエニルホスホリルアジド(DPPA)、シアノりん酸ジエチル(DEPC)、いわゆるBOP試薬等で処理することにより行うことができる。

反応温度は、通常-10℃乃至室温、好ましくは0℃前後であり、式(II)の化合物に対する式(III)の化合物、有機塩基及び縮合剤の各々の使用割合は、式(II)の化合物1モル当り式(III)の化合物は少なくとも1モル、好ましくは1.0~1.1モル程度用い、有機塩基は2モル程度、縮合剤は等モル程度用いるのが有利である。

基Qにおけるチアゾール環の4 - 位の置換基Yがメトキシカルボニル基を表わす化合物から基一C O - R 6を表わす化合物への変換は、例えば、R 6がヒドロキシ基を表わす場合はアルカリ加水分解することにより行うことができ、また、R 6が他の低級アルコキシ基又はアラルキルオキシ基を表わす場合は、R 6がヒドロキシ基を表わす場合の化合物を、常法に従い、エステル化することにより行うことができ、一方、R 6が

R₈ 一N を表わす場合には、アンモニア、一級アミン又は二級アミン R₉

で処理することにより容易に行うことができる。

かくして、目的とする式(I)のテトラペプチド誘導体が生成し、反 応混合物からの単離、精製は、再結晶、イオン交換クロマトグラフィー、 ゲルろ過、高速液体クロマトグラフィー等により行うことができる。

なお、前記反応において出発原料として使用される前記式 (II) 及び前記式 (III) の化合物は、従来の文献に未載の新規な化合物であり、 その構成成分である各アミノ酸を液相合成法で縮合することにより容易 に製造することができる。

本発明の式(I)のテトラペプチド誘導体は、ドラスタチン10より も高い細胞増殖抑制作用を有しており、急性骨髄白血病、急性リンパ球 白血病、慢性黒色腫、肺の腺癌、神経芽腫、肺の小細胞癌、胸部癌、結 腸癌、卵巣癌、膀胱癌などの治療に有用である。

細胞成長抑制作用のスクリーニングは、リンパ球白血病 P 3 8 8 細胞を用いて行った。この結果を下記表に示す。

麦

	化合物の実施例No.	ED_{50} (μ g/ml)
	1	3.1×10^{-6}
	4	1.7 \times 10 ⁻⁶
15	5	3.1×10^{-5}
	1 5	2.4×10^{-7}
•	16.	2.7×10^{-5}
	2 3	$< 1.0 \times 10^{-6}$
	2 5	$< 1.0 \times 10^{-6}$
20	2 6	$< 1.0 \times 10^{-6}$
20	2 8	2.9×10^{-6}
	ドラスタチン10	7.0×10^{-4}

本発明に係る化合物は、薬剤として用いる場合、その用途に応じて、

固体形態(例えば錠剤、硬カプセル剤、軟カプセル剤、顆粒剤、散剤、細粒剤、丸剤、トローチ錠など)、半固体形態(例えば坐剤、軟膏など)又は液体形態(注射剤、乳剤、懸濁液、ローション、スプレーなど)のいずれかの製剤形態に調製して用いることができる。しかして、上記製剤に使用し得る無毒性の添加物としては、例えばでん粉、ゼラチン、ブドウ糖、乳糖、果糖、マルトース、炭酸マグネシウム、タルク、ステアリン酸マグネシウム、メチルセルロース、カルボキシメチルセルロース又はその塩、アラビアゴム、ポリエチレングリコール、ワーヒドロキシ安息香酸アルキルエステル、シロツプ、エタノール、プロピレングリコール、ワセリン、カーボツクス、グリセリン、塩化ナトリウム、亜硫酸ナトリウム、リン酸ナトリウム、クエン酸等が挙げられる。該薬剤はまた、治療学的に有用な他の薬剤を含有することもできる。

該薬剤中における本発明の化合物の含有量はその剤形に応じて異なるが、一般に固体及び半固体形態の場合には $0.1\sim50$ 重量%の濃度で、そして液体形態の場合には $0.05\sim10$ 重量%の濃度で含有していることが望ましい。

10

15

20

本発明の化合物の投与量は、対象とする人間をはじめとする温血動物の種類、投与経路、症状の軽重、医者の診断等により広範に変えることができるが、一般に1日当たり、0.01~50mg/kg程度とすることができる。しかし、上記の如く患者の症状の軽重、医者の診断に応じて上記範囲の下限よりも少ない量又は上限よりも多い量を投与することはもちろん可能である。上記投与量は1日1回又は数回に分けて投与することができる。

以下、参考例及び実施例により本発明をさらに説明する。

なお、参考例及び実施例において用いる化合物番号に対応する化合物 の構造については、以下のフローシート $1\sim6$ を参照されたい。ここで、 Zはベンジルオキシカルボニル基、Meはメチル基、BUはtertーブチル基、Bocはtertーブトキシカルボニル基、Bz1はベン ジル基を表わし、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 、 R_6 及び $-A_2$ $-R_7$ は前記 の意味を有している。

10

15

<u>フローシート1</u>

10

1 5

フローシート2

フローシート3

15

フローシート 4

参考例
$$12$$
 ($R_6=0$ Me \to OCH $_2$ Ph) BocNH $_1$ COR $_6$ 化合物 13 化合物 13 化合物 14 $_2$ N $_4$ COR $_6$ 化合物 15 Boc NH $_4$ COR $_6$ 化合物 15 Boc NH $_6$ COR $_6$ 化合物 15 Boc NH $_8$ COR $_6$ Representation 15 Boc NH $_8$ Physical Representation 15 Boc NH $_8$ Physica

フローシート 5

20 .

15

参考例1-A

化合物1-A(化合物1において $R_3=CH_3$ である化合物)の製造 Z-rラニン11. 15g(50ミリモル)をテトラヒドロフラン、 140m1に溶かし、これにカルボニルイミダゾール9. 72g(60ミリモル)を投入し室温で $4\sim5$ 時間撹拌する。

一方マロン酸モノメチルエステルカリウム塩17.16g(110ミリモル)と無水塩化マグネシウム7.60g(80ミリモル)とをテトラヒドロフラン150m1にけん濁させ55°の水浴上で加温しつつ6時間撹拌する。ついでこの反応液を氷冷し、これに上記の反応液を一度に注入し直ちに冷却浴を除いて室温にて24乃至48時間撹拌をつづける。

反応液に水少量を加え、析出したワックス状沈澱から澄明な上清液をデカントし、これを減圧濃縮して油状物を得る。上記ワックス状残渣およびこの油状物それぞれに酢酸エチルおよび氷冷した4N塩酸を加えてふりまぜて溶かし両方合せたのち分液し、水層を再び酢酸エチルで抽出する。酢酸エチル層を氷冷2N塩酸および飽和重曹水で洗い、乾燥し、溶媒を留去して淡黄色油状物13.50gを得る。シリカゲルのカラムクロマトグラフィー(溶出液:酢酸エチルーnーヘキサン(1:1))で精製し、無色~微黄色の油状物として目的の化合物1ーAを得る。12.96g(92.9%)。

 $[\alpha]_{p^{26}-17.7}^{\circ}$ (c=1.01, MeOH)

1H-NMR (CDC1₃, δ) 1.38(3H, d, J=7.1 Hz), 3.55(2H, s), 3.72(3 H, s), 4.45(1H, m, J=7.1 Hz), 5.11(2H, s), 5.25~5.55(1H, m), 7.34(5H, s) 参考例1-Aと全く同様にして参考例1-B、1-C、1-D、1-E を行ない、化合物1-B、1-C、1-D、1-Eをそれぞれ油状物として得た。

1 0

5

15

¹H-NMR (CDC1s, S)	0.75~1.05(6H, m), 1.1~2.1(4H, m), 3.54(2H, s), 3.72(3H, s), 4.1~4.6(1H, m), 5.11(2H, s), 5.2~5.5(1H, m), 7.34(5H, s)	0.82(3H, d, J=6.8 Hz), 1.03(3H, d, J=6.8 Hz), 2.0~2.4(1H, m), 3.54(2H, s), 3.72(3H, s), 4.2~4.6(1H, m), 5.11(2H, s), 5.1~5.5 (1H, m), 7.34(5H, s)	0.8~1.05(6H, m), 1.1~1.9(3H, m), 3.55 (2H, s), 3.71(3H, s), 4.1~4.6(1H, m), 5.11(2H, s), 7.33(5H, s)	0.6~1.5(9H, m), 3.54(2H, s), 3.71(3H, s), 4.2~4.5(1H, m), 5.10(2H, s), 5.15~5.45 (1H, m), 7.34(5H, s),
$[\alpha]_{D}^{*}$	N, D.	-22. 3° (26°)	-35.2° (26°)	-27.6° (26°)
収率	88.9%	87.5%	93.7%	99. 2%
Rs	CH3CH2CH2-	CH3 >CH-	CH ₃ >CH-CH ₂ -	C₂H₅ CH₃
化合物	1-B	1-c	1-D	H-1
参先例	1-B	, , , , , , , , , , , , , , , , , , ,	1-D	1-E

*) c=1.00、NeOH

10

WO 93/03054 PCT/JP92/01005

25

参考例2-A

 $[\alpha]_{D^{28}-4.4}^{\circ}$ (c=1.00, MeOH)

C14H19NO5 として

15

20

計算値 C=59.77% H=6.81% N=4.98%

実測値 C=59.83% H=6.92% N=5.07%

¹H-NMR (CDC1₃, δ) 1.15(3H, d, J=6.8 Hz), 2.35~2.55(2H, m), 3.70(3H, s), 3.85~4.15(1H, m), 5.09(2H, s), 7.34(5H, s)

参考例2-Aと全く同様にして参考例2-B、2-C、2-D、2-E を行ない、化合物2-B、2-C、2-D、2-Eを得た。

5	1H-NWR (CDC13, S)	0.75~1.05(3H, m), 1.1~1.7 (4H, m), 2.35~2.55(2H, m), 3.69(3H, s), 3.8~4.15 (1H, m), 4.65~4.95(1H, m), 5.10(2H, s), 7.34(5H, s)	0.87(3H, d, J=6, 5 Hz), 0.95 (3H, d, J=6.5 Hz), 1.9~ 2.35(1H, m), 2.4~2.6 (2H, m), 3.18(1H, br, d), 3.69(3H, s), 4.45~4.80 (1H, m), 5.10(2H, s), 7.34(5H, s)	0.90(3H, d, J=6.2 Hz), 0.92 (3H, d, J=6.2 Hz), 1.1~1.8 (3H, m), 2.35~2.55(2H, dd), 3.69(3H, s), 3.8~4.15 (1H, m), 4.65~4.95(1H, m), 5.10(2H, s), 7.34(5H, s)
10	分析値	C ₁₆ H ₂₃ NO ₅ 計 C 62.12% H 7.49% N 4.53% 実 C 61.99% H 7.51% N 4,75%	C ₁₆ H ₂ 3NO ₅ 計 C 62.12% H 7.49% N 4.53% 実 C 62.16% H 7.51% N 4.70%	C1.7H25NO5 計C 63.14% H 7.79% N 4.33% 実C 63.05% H 7.76% N 4.62%
	旋光度*	-13.6° (27°)	+9.6° (28°)	-21.5° (26°)
15	融点	126°	81°	100°
	収率	88. 1%	80.7%	81.9%
20	Rs	CH3CH2CH2~	CH₃ CH₃	CH₃ CH₃
	化合物	2-B	2-c	2-D
	参考例	2-B	2-C	2-D

*) c=1.00\ MeOH

参考例	化合物	R3	収率	融点	融点 旋光度*	分析值	¹ H-NMR (CDCl ₃ , δ.)
2-E	2-E	C ₂ H ₅ CH-	86.4% 77°	•	+6.9° (27°)	C ₁ 7H ₂ 5NO ₅ 計C 63.14% H 7.79% N 4.33% 実C 63.12% H 7.78% N 4.35%	C ₁₇ H ₂₅ NO ₅ 0.8~1.05(6H, m)、1.3~1.95 計 C 63.14% (3H, m)、2.4~2.6(2H, m)、 H 7.79% 3.1~3.25(1H, br. d)、 N 4.33% 3.69(3H, s)、3.8~4.15 実 C 63.12% (1H, m)、4.66(1H, br, d)、 H 7.78% 5.10(2H, s)、7.34(5H, s) N 4.35%
_							

. .

1 =

20

参考例2一続

参考例3-A

化合物 3-A(化合物 3において $R_s=CH_s$ である化合物)の製造参考例 2-Aで得た化合物 2-A 9. 7 8 g(3 4. 8 0 \ge リモル)をジメチルホルムアミド 1 0 0 m 1 に溶かし、酸化銀 4 0. 0 g(1 7 2. 4 1 \ge リモル)とヨウ化メチル 5 0 m 1 を加え、3 5 。の水浴中 5 時間撹拌する。濾過し、酸化銀をジメチルホルムアミドで洗い、濾洗液を合せて 5 0 。以下で減圧濃縮する。残渣を酢酸エチルで充分抽出し、酢酸エチル層を 5 %チオ硫酸ナトリウムついで飽和重曹水で洗い、乾燥し、溶媒を留去して黄色油状物 1 0. 4 3 gを得る。シリカゲルのカラムクロマトグラフィー(溶出液:ベンゼン一酢酸エチル(5 : 1))で精製して目的の化合物 3 -A を微黄色油状物として得る。7 . 6 3 g(7 1 0 %)。

 $[\alpha]_{p^{25}-39.8}^{\circ}$ (c=1.03, MeOH)

¹H-NMR (CDCi₃, δ) 1.21(3H, d, J=6.8 Hz), 2.47(2H, d, J=6.2 Hz), 2.80(3H, s), 3.38(3H, s), 3.64(3H, s), 5.13(2H, s), 7.34(5H, s)

参考例3-Aと全く同様にして参考例3-B、3-C、3-D、3-Eを行ない、化合物3-B、3-C、3-D、3-Eをそれぞれ油状物として得た。

¹ H-NMR (CDC1 ₃ , δ)	0.75~1.05(3H, m), 1.05~1.8(4H, m), 2.48 (2H, t, J=5.5 Hz), 2.75(3H, s), 3.36, 3.38 (3H, s), 3.63(3H, s), 5.13(2H, s), 7.34(5H, s)	0.8~1.15(6H, m), 1.8~2.2(1H, m), 2.4~2.6(2H, m), 2.80(3H, s), 3.31, 3.38 (3H, s), 3.65, 3.66(3H, s), 5.13(2H, s), 7.33(5H, s)	0.7~1.0(6H, m), 1.25~1.6(3H, m), 2.47 (2H, t, J=5.6 Hz), 2.74(3H, s), 3.35, 3.37 (3H, s), 3.62(3H, s), 5.13(2H, s), 7.33(5H, s)	0.7~1.1(6H, m), 1.1~1.9(3H, m), 2.4~2.6(2H, m), 2.78(3H, s), 3.29, 3.38 (3H, s), 3.66(3H, s), 3.75~4.2(2H, m), 5.13(2H, s), 7.33(5H, s)
$[\alpha]_{D}^{*}$	-50.7° (25°)	-20.7° (26°)	-34. 2° (26°)	-4.0° (27°)
反略	72.5%	67.9%	83.9%	74.4%
R3	CH3CH2CH2-	CH₃ CH₃	CH₃ CH₃	C ₂ H ₅ CCH-
化合物	3-B	3-C	3-D	3-E
参考例	3-B	3-c	3-D	3-E

c=1.00, MeOH

10

20

参考例 4 - A

これをジクロルメタン60mlに溶かし濃硫酸0.8mlを加え、耐圧瓶中にてイソブテン25mlと室温にて48乃至96時間振りまぜる。 反応液を飽和重曹水に注入し、窒素ガスを吹き込んでイソブテンと大部分のジクロルメタンを除去したのち析出した油状物を酢酸エチルで抽出し、酢酸エチル層を飽和重曹水で洗浄し乾燥する。溶媒を留去して残った黄色油状物(7.32g)をシリカゲルクロマトグラフィ(溶出液:ベンゼンー酢酸エチル(10:1))で精製し目的の化合物4-A6.31g(84.1%)を無色~微黄色の油状物として得る。

 $[\alpha]_{D}^{27}-33.0^{\circ}$ (c=1.02, MeOH)

 $^{1}\text{H-NMR}$ (CDC1₃, δ) 1.21(3H, d, J=6.8 Hz), 1.44(9H, s), 2.38(2 H, d, J=6.2 Hz), 2.82(3H, s), 3.38(3H, s), 3.5~3.85(1H, m), 3.85~4.4(1H, m), 5.13(2 H, s), 7.34(5H, s)

参考例4-Aと全く同様にして参考例4-B、4-C、4-D、4-Eを行ない、化合物4-B、4-C、4-D、4-Eをそれぞれ油状物として得た。

				10
¹H-NWR (CDCI3, 8)	0.7~1.05(3H, m), 1.44(9H, s), 2.25~2.5 (2H, m), 2.77(3H, s), 3.37, 3.38(3H, s), 3.5~3.75(1H, m), 3.75~4.25(1H, m), 5.13(2H, s), 7.33(5H, s)	0.8~1.1(6H, m), 1.45(9H, s), 1.75~2.25 (1H, m), 2.25~2.5(2H, m), 2.81(3H, s), 3.31, 3.39(3H, s), 3.7~4.05(2H, m), 5.13(2H, s), 7.33(5H, s)	0.7~1.0(6H, m), 1.44(9H, s), 2.25~2.5 (2H, m), 2.77(3H, s), 3.36(3H, s), 3.45~3.75(1H, m), 3.8~4.4(1H, m), 5.13(2H, s), 7.33(5H, s)	0.7~1.05(8H, m), 1.45(9H, s), 1.65~1.75 (1H, m), 2.3~2.45(2H, m), 2.79(3H, s), 3.29. 3.39(3H, s), 3.75~4.2(2H, m), 5.13(2H, s), 7.33(5H, s)
$[\alpha]_{D}^{*}$	-42.0° (27°)	-17.8° (27°)	-28. 9° (26°)	-12.0° ** (27°)
収率	84.0% -42.0° (27°)	75. 2% -17. 8° (27°)	75.8%	87.6%
R ₃	CH3CH2CH2-	CH ₃ >CH-	CH ₃ >CH-CH ₂ -	C₂H₅ CH₃
化合物	4-B	4-C	4-D	4-E
参光例	4-B	4-C	4-D	4-E

*) c=1.00, MeOH **) CHCl₃

20

10

20

参考例5-A

る化合物)の製造

参考例4-Aで得た化合物4-A0.70g(2.00ミリモル)を
tーブタノール・水(9:1)20m1に溶かし5%パラジウム炭素0.
1gを加え水素気流下2時間撹拌する。反応後触媒を濾別、洗浄し、濾洗液を減圧濃縮する。残る油状物をベンゼン30m1に溶かし、再び減圧濃縮し、更にこの操作をもう一回くり返す。得られた油状物をZーバリン0.56g(2.23ミリモル)と共にアセトニトリル10m1に溶かし氷冷撹拌下DCC 0.43g(2.09ミリモル)を投入する。まもなく結晶が折出する。少くとも3時間0°で、その後氷のとけるにまかせ一夜撹拌をつづけたのち反応液を酢酸エチルでうすめ、結晶を遮別し酢酸エチルで洗う。濾洗液を減圧濃縮しシロップ状残渣を酢酸エチルに溶かし不溶物があれば遮別したのち酢酸エチル溶液を氷冷2N塩酸および飽和重曹水で洗い、乾燥し、溶媒を留去して無色油状物1.01gを得る。シリカゲルのカラムクロマトグラフィー(溶出液:ベンゼンー酢酸エチル(5:1))で精製して目的の化合物5-A0.67g(74.4%)を無色油状物として得る。

 $[\alpha]_{D}^{28}-31.4^{\circ}$ (c=1.02, MeOH)

 $^{1}\text{H}-\text{NMR}$ (CDC1₃, δ) 0.8~1.1(6H, m), 1.17(3H, d, J=6.8 Hz), 1.45(9H, s), 2.25~2.45(2H, m), 3.00(3H, s), 3.37(3H, s), 3.68(1H, dd, J=12.1 Hz, 6.2

Hz), 4.35~4.75(2H, m), 5.09(2H, s), 5.56

(1H, br, d), 7.33(5H, s)

参考例5-Aと全く同様にして以下の化合物を得た。

•

10

15

5.	¹ H-NMR (CDCl ₃ , S)	0.7~1.1(9H, m), 1.45(9H, s), 2.25~2.45(2H, m), 2.98(3H, s), 3.37(3H, s), 3.6~3.8(1H, m), 4.3~4.7(2H, m), 5.10(2H, s), 5.50(1H, br, d), 7.33(5H, s)	0. 75~1.1(12H, m), 1.46(9H, s), 2.25~2.45(2H, m), 2.97(3H, s), 3.35(3H, s), 3.7~4.0(1H, m), 4.3~4.7(2H, m), 5.09(2H, s), 5.48(1H, br, d), 7.32(5H, s)	0. 7~1. 2(14H, m), 1. 46(9H, s), 2. 25~2. 45(2H, m), 2. 99(3H, s), 3. 34(3H, s), 3. 6~4. 0(1H, m), 4. 35~ 4. 65(2H, dd, J=9. 5Hz, 6. 6Hz), 5. 09 (2H, s), 5. 41(1H, br, d), 7. 32(5H, s)	0. 7~1. 1(12H, m), 1. 46(9H, s), 2. 3~2. 45(2H, m), 2. 97(3H, s), 3. 35(3H, s), 3. 5~3. 8(1H, m), 4. 4~4. 7(2H, m), 5. 08(2H, s), 5. 3~5. 6(1H, br, d), 7. 34(5H, s)
	[a]D*	-46. 2° (27°)	-32, 9° (25°)	-33, 6° (25°)	-41.1° (27°)
15	収率	80.2%	73.6%	76.6%	85. 4%
	Rs	CH₃CH₂CH₂−	CH₃ >CH− CH₃	CH₃ CH₃	CH ₃ >CH-CH ₂ -
2 O	R2	CH₃ CH₃	CH₃ CH₃	C₂H₅ CH₃	CH ₃ >CH-
	化合物	5-B	5-C	5-D	5-E
	参考例 化合物	5-B	5-C	5-D	ਨ ਭ-ਨ

鄁
ļ
C.
<u> </u>
淅
*

15

20

			·,	
$[\alpha]_{D}^*$ ¹ H-NWR (CDC1 ₃ , δ)	0. 7~1.1(6H, m), 1.45(9H, s), 2. 3~2.45(2H, m), 2.82(3H, s), 3.36(3H, s), 3.75~4.15(3H, m), 5.12(2H, s), 5.8(1H, br), 7.34(5H, s)	0.65~1.1(12H, m), 1.45(9H, s), 2.25~2.45(2H, m), 2.96(3H, s), 3.34(3H, s), 3.75~4.05(1H, m), 4.35~4.7(2H, m), 5.10(2H, s), 5.50(1H, br, d), 7.33(5H, s)	0.7~1.1(12H, m), 1.45(9H, s), 2.25~2.45(2H, m), 2.97(3H, s), 3.34(3H, s), 3.7~4.05(1H, m), 4.35~4.7(2H, m), 5.09(2H, s), 5.43(1H, br, d), 7.32(5H, s)	0.65-1.1(9H, m), 1.48(9H, s), 2.1-2.3(2H, m), 2.9-3.1(2H, m), 3.31(3H, s), 3.5-4.0(2H, m), 4.3-4.7(1H, m), 5.06(2H, s), 5.55(1H, br. d), 7.25(5H, s), 7.31(5H, s)
$[\alpha]_{D}^*$	-11.0° (27°)	-22.2° (26°)	-26.5° (24°)	-4.8° (26°)
日本	58.7%	81.3%	62. 6%	59.3%
R ₃	C ₂ H ₅ CH-	C₂H₅ CH₃	C2H5 CH- C2H5 CH- CH3	C₂H₅ CH₃
R2	Н	СН3	C₂H₅ CH₃	PhcH ₂ -
参考例 化合物	5-F	5-G	5-Н	5-I
参考包	5 F	5-G	9-Н	5-I

c=1.00\ MeOH

15

20

参考例 6-A

$$CH_3$$
 CH_3 化合物 6 において R_1 $=$ CH_3 CH_3 CH_3 CH_3

-、R₃=CH₃-である化合物)の製造

参考例5-Aで得た化合物5-A0.65g(1.44ミリモル)を
t-ブタノール・水(9:1)15m1に溶かし、5%パラジウム炭素
50mgを加え、水素気流下2時間撹拌する。反応後触媒を濾別、洗浄
し、遮洗液を減圧濃縮する。油状残渣をベンゼン30m1に溶かし再び
減圧濃縮、この操作を更にもう一回くり返す。得られた油状物をジメチ
ルホルムアミド6m1に溶かし、N.Nージメチルバリン0.25g
(1.72ミリモル)とDEPC 0.29g(1.78ミリモル)と
を加え、均一な溶液になるまで室温で撹拌したのち氷冷し、トリエチル
アミン0.17g(1.68ミリモル)をジメチルホルムアミド1m1
に溶かした液を4分間で滴下する。その後少くとも4時間0°で、氷の
とけるにまかせ一夜撹拌したのち透明な反応液を酢酸エチルでうすめ、
酢酸エチル溶液を飽和重曹水で充分洗ったのち乾燥する。溶媒を留去し
て残った淡褐色油状物0.66gをシリカゲルのクロマトグラフィー(溶
出液:酢酸エチル・ヘキサン(1:1))で精製して目的の化合物6A0.46g(71.9%)を無色油状物として得た。

 $[\alpha]_{D}^{27}-56.5^{\circ}$ (c=1.00, MeOH)

1H-NMR (CDC1₃, δ) 0.8~1.1(12H, m), 1.15(3H, d, J=7.0 Hz),
1.45(9H, s), 2.27(6H, s), 3.05(3H, s),
3.38(3H, s), 3.55~3.85(1H, m), 4.35~

WO 93/03054

PCT/JP92/01005

37

4.65(1H, m), 4.65~4.95(1H, m), 0.88(1H,

br, d)

参考例6-Aと全く同様にして以下の化合物を得た。

10

15

1H-NWR (CDC13, 8)	0.7~1.1(12H, m), 1.46(9H, s), 2.28(6H, s), 3.01(3H, s), 3.37 (3H, s), 3.5~3.85(1H, m), 4.45~4.95(3H, m), 7.65(1H, br, d)	0. 75~1. 05(12H, m), 1. 25 (3H, d, J=7.0 Hz), 1. 46(9H, s), 2. 25(6H, s), 3. 01(3H, s), 3. 35(3H, s), 3. 7~4. 05(1H, m), 4. 73(1H, dd, J=9. 5Hz, 6. 6Hz), 7. 62(1H, br, d)	0.7~1.1(12H, m), 1.46(9H, s), 2.30(6H, s), 2.85(3H, s), 3.37(3H, s), 3.8~4.0(1H, m), 4.0~4.2(2H, m), 4.4~4.65 (1H, m), 7.0~7.15(1H, br)
融点 [α] _D *	-52, 7° (26°)	-42.9°	-14.5°
融点	疋	坦	思
収率	58.1%	61.8%	90, 3%
Rs	CH ₃ >CH-CH ₂ - 58.1%	.Н.3 >СН.2 С2.Н.6 .СН.3 С.Н.4	C ₂ H ₅ >CH-
R2	CH₃ >CH− CH₃	CH₃ >CH∼	н
R ₁	Н	СН3	CH ₃ CCH-
化合物	6-B	6-C	(-9
参考例 化合物	6-B	ე-9	Q-9

5

15

槟
- 1
9
<u>e</u>
भ
松

¹ H-NMR (CDCl ₃ , δ)	0.7~1.1(15H, m), 1.45(9H, s), 2.25(6H, s), 3.02(3H, s), 3.37 (3H, s), 3.5~3.85(1H, m), 4.35~4.65(1H, m), 4.74 (1H, dd, J=9.2Hz, 6.4Hz), 6.84(1H, br, d)	0.7~1.15(18H, m), 1.46(9H, s), 2.25(6H, s), 3.02(3H, s), 3.35(3H, s), 3.7~4.0(1H, m), 4.3~4.6(1H, m), 4.65~4.9 (1H, m), 6.86(1H, br, d)	0.7~1.1(18H, m), 1.46(9H, s), 2.25(6H, s), 3.01(3H, s), 3.36(3H, s), 3.5~3.8(1H, m), 4.80(1H, dd, J=9.2Hz, 6.2Hz), 6.85(1H, br, d)
$[\alpha]_{D}$	-62.8° (28°)	-51.0° (27°)	-57.8° (26°)
圈点	坦	122°	坦
坂率	70.3%	77.5%	79. 2%
R3	CH3CH2CH2-	CH ₃ >CH-	>CH- CH ₃ >CH- CH ₂
R2	CH₃ CH₃	CH₃ >ĆH− CH₃	CH _s
. R1	сн. >сн-	CH₃ >CH−	CH3 CH3
化合物	6-E	6-F	9-9
参考例	6-E	6-F	9 -9
	化合物 R ₁ R ₂ R ₃	(L合物 R ₁ R ₂ R ₃ 収率 G-E CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH	(L合物 R ₁ R ₂ R ₃ R ₃ 収率 融点 [α] _D [α] _D G-E CH ₃ CH-CH ₃ CH-CH ₃ CH ₃ CH-CH ₃ CH-CH-CH ₃ CH-CH-CH-CH ₃ CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C

1 5

			<u> </u>
1H-NMR (CDCLs, S)	0, 65~1.15(18H, m), 1.46 -44.4° (9H, s), 2.26(6H, s), 3.01 (27°) (3H, s), 3.35(3H, s), 3.7~4.05(1H, m), 4.80 (1H, dd, J=9.2 Hz, 6.4Hz), 6.89(1H, br, d)	0.7~1.1(18H, m), 1.46(9H, s), -59.2° 2.24(6H, s), 3.01(3H, s), 3.36(3H, s), 3.5~3.85(1H, m), 4.5~4.95(2H, m), 6.95 (1H, br, d)	0.7~1.1(18H, m), 1.46(9H, s), -43.3° 2.25(6H, s), 3.01(3H, s), 3.34(3H, s), 3.7~4.0(1H, m), 4.5~4.95(2H, m), 6.90 (1H, br, d)
融点 [a]D	-44. 4° (27°)	-59. 2° (26°)	-43. 3° (27°)
融点	112°	걛	93°
母母	84. 7%	80.1%	68.6%
Ra	CH₃ >CH−	CH ₃ CH- CH ₃ CCH-CH ₂ - 80.1% 油 CH ₃	C₂H₅ CH₃
R2	CH ₃ CCH-	CH₃ CH₃	H _s >CH- C ₂ H _s >CH- C
R1	CH₃ >CH-	C₂H₅ CH₃	C ₂ H ₅ >CH-
化合物	H-9	f-9	6-1
参考例 化合物	н-9	1-9	6-1

15

20

光图6一粒

参考例6一続	5 - 鏡	20		1 5			I 0	5
参考例	化合物	R1	R2	Rs	収率	融点	[a] _b	1H-NMR(CDC13, 8)
6-K	6-K	H	CH ₃ CH- CH-	C ₂ H ₅ CII- CH ₃	72. 7%	坦	** -25.7° (24°)	0. 7-1. 1(12H, m), 1, 46(9H, s), 2. 42(6H, s), 3. 00(3H, s), 3. 35 (3H, s), 3. 7-4. 0(1H, m), 4. 74 (1H, dd, J=9. 0Hz, J=6. 4Hz), 7. 75(1H, br. d)
	6-L	CH ₃	PhCH ₂ -	C ₂ H ₅ CH- CH ₃	86. 0%	押	-18.0°.	0. 7-1. 0(15H, m), 1. 48(9H, s), 2. 19(6H, s), 2. 76(3H, s), 3. 31 (3H, s), 3. 6-3. 9(1H, m), 4. 3- 4. 7(1H, m), 5. 26(1H, dd, J=8. 8Hz, 7. 7Hz), 6. 87(1H, br, d), 7. 26(5H, s)
W-9		CH ₃ CH- CH ₃	C ₂ H ₅ CH- CH-	C ₂ H ₅ · CH- · CH3	72. 5%	104°	-45.7°	0. 7-1. 1(18H, m), 1. 46(9H, s), 2. 27(6H, s), 3. 01(3H, s), 3. 34 (3H, s), 3. 7-4. 0(1H, m), 4. 82 (1H, dd, J=9. 2Hz, J=7. 0Hz), 6. 80(1H, br, d)

* c=1.00, MeOH ** CHCl.(c=0.315)

参考例7

化合物7-A(化合物7においてR₄=Hである化合物)の製造無水テトラヒドロフラン10mlに23.8%LDAテトラヒドロフラン:ヘキサン(1:1)溶液7ml(15.5ミリモル)を-20℃で窒素雰囲気下、撹拌しながら滴下する。ついでドライアイスーアセトン浴で-78℃に冷却する。酢酸ベンジル2.3g(15ミリモル)を30分間かけて滴下し、-78℃で5分間撹拌した後、BocーLープロリナール2.0g(10ミリモル)をテトラヒドロフラン10mlに溶かした溶液を1時間かけて滴下する。-78℃で10分間撹拌した後、氷冷した1N塩酸30mlを加え、室温まで温度を上げる。酢酸エチルで抽出し、水洗乾燥後溶媒を減圧で留去し、ヘキサン:酢酸エチルで抽出し、水洗乾燥後溶媒を減圧で留去し、ヘキサン:酢酸エチルで抽出し、水洗乾燥後溶媒を減圧で留去し、ヘキサン:酢酸エチルで抽出し、水洗乾燥後溶媒を減圧で留去し、ヘキサン:酢酸エチルで抽出し、水洗乾燥後溶媒を減圧で留去し、ヘキサン:酢酸エチル(5:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精製し、目的の化合物7-A1.12g(32.0%)を油状物として得

 $[\alpha]_D^{25}-23.7^{\circ}$ (c=1.26, CHCl₃)

NS 331, 276

¹H-NMR (CDC1₃. δ) 1.46(9H, s), 2.47(2H, d, J=6.8 Hz), 3.7~ 4.3(2H, m), 5.15(2H, s), 7.2~7.4(5H, m)

参考例8

た。

化合物8−A(化合物8においてR₄=Hである化合物)の製造

参考例 7 で得た化合物 7-A560 mg(1.6 ミリモル)をジクロルメタン 27 m 1 に溶かし氷ー食塩で冷却下 $BF_3 \cdot Et_2O$ 202 μ 1.(1.6 ミリモル)を加え、ジアゾメタン(32 ミリモル)のエーテル溶液を 30 分間で滴下する。氷ー食塩で冷却下さらに 2 時間撹拌後飽

和重曹水2m1を加える。不溶物を濾過して除いた後、酢酸エチル抽出 して水洗し、乾燥する。溶媒を減圧で留去してヘキサン:酢酸エチル(5:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精 製し、油状の目的の化合物8-Aを378mg(65.0%)得た。

 $[\alpha]_{D}^{25}-58.7^{\circ}$ (c=0.52, CHCl₃)

MS 241, 218

¹H-NMR (CDCl₃, δ) 1.46(9H, s), 2.47(2H, d, J=7.5 Hz), 3.34(3 H, s), 3.6~4.3(2H, m), 5.14(2H, s), 7.2~

7.4(5H, m)

10 参考例 9

15

化合物 9-A(化合物 9において $R_5=CH_3$ である化合物)の製造システアミン塩酸塩 6. 82g(60ミリモル)をジメチルホルムアミド 50 m 1 に溶かしトリエチルアミン 8. 4 m 1 で中和した溶液と、8 o 2 c 2

融点 81.0~84.1℃

MS 232 (M⁺), 159

¹H-NMR (CDC1₃, δ) 1.24(3H, d, J=6.6 Hz), 1.45(9H, s), 2.1(1 H, br), 4.42(1H, d, J=8.1 Hz)

参考例10

化合物10-A (化合物10においてR₅=CH₃である化合物)の製造 参考例9で得た化合物9-A1.34g(5.77ミリモル)と二酸 化マンガン12.5gをベンゼン58m1中55℃で1.5時間撹拌する。 懸濁液を濾過して溶媒を減圧で留去し、ヘキサン:酢酸エチル(5:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精製した。目的の化合物10-Aを油状物として、118mg(9.0%)得た。

 $[\alpha]_{D}^{22}-36.0^{\circ}$ (c=1.29, CH₂Cl₂)

MS 228(M⁺) 172

 1 H-NMR (CD₂Cl₂, δ) 1.43(9H, s), 1.56(3H, d, J=7.2 Hz), 4.9 \sim 5.2(2H, m), 7.26(1H, d, J=3.3 Hz), 7.67 (1H, d, J=3.3 Hz)

参考例11-A

化合物 11-A (化合物 11においてR₄=H、R₅=PhCH₂である) 化合物の製造

参考例8で得た化合物8-A 2 2 0 mg(0.604ミリモル)を t ーブタノール:水(9:1)9mlに溶かしパラジウム炭素を 50 mg 加え水素気流下撹拌する。反応終了後、反応液を濾過して溶媒を減圧下留去すると固形物が165 mg(0.604ミリモル)得られる。これをアセトニトリル3 mlに溶かしBOP試薬 267 mg(0.604ミリモル)、既知化合物である化合物10 ーB(化合物10 において R_5 = CH_2 Phである化合物)から得られるトリフルオロ酢酸塩 192 mg(0.604ミリモル)を加え、氷冷下ジイソプロピルエチルアミン 195 mg(1.51ミリモル)を滴下する。室温で1晩撹拌した後、

溶媒を減圧下留去してジクロルメタンに溶かし、10%クエン酸、飽和重曹水、飽和食塩水で洗い、乾燥した。溶媒を減圧で留去し、得られた粗生成物をジクロルメタンーメタノール(50:1)を溶出液とするシリカゲルのカラムクロマトグラフィーで精製した。目的の化合物11ーAを無定形粉末として262mg(94.4%)得た。

 $[\alpha]_D^{27}-86.4^{\circ}$ (c=0.43, MeOH)

MS 428, 368

¹H – NMR (CDC1₃, δ) 1.47(9H, s), 2.29(2H, d, J=6.2 Hz), 3.27(3 H, s), 5.63(1H, m), 7.1~7.3(6H, m), 7.40(1 H, d, J=3.3Hz)

参考例11-B

10

15

20

化合物 11-B (化合物 11 において $R_4=CH_3$ 、 $R_5=CH_3$ の化合物)の製造 参考例 11-A と全く同様に、既知化合物である化合物 8-B (化合物 8 において $R_4=CH_3$ である化合物)と参考例 10 で得た化合物 10-A を処理して、目的の化合物 11-B を得た。収率 62.0%、油状物。

 $[\alpha]_{p^{26}-100}^{\circ}$ (c=1.3, MeOH)

MS 365, 324, 309

"H-NMR (CDC1₃, δ) 1.26(3H, d, J=6.7 Hz), 1.48(9H, s), 1.63(3 H, d, J=6.7 Hz), 3.43(3H, s), 5.2~5.6(1H, m), 7.23(1H, d, J=3.3 Hz), 7.69(1H, s, J=3.3 Hz)

参考例12-A

化合物13-C(化合物13においてR₆=OCH₂Phである化合物)

15

20

の製造

既知物である化合物 1 3 - A (化合物 1 3 においてR = O C H_3 である化合物) 0. 8 7 g (2. 4 \lesssim 1 \lesssim 1

この結晶 7 0 mg (0. 2ミリモル)をジクロルメタン 0. 5 mlに 溶かし、4 ージメチルアミノピリジン 2. 4 mg (0. 0 2ミリモル)、ベンジルアルコール 3 0 mg (2. 4ミリモル)を加え、氷冷下 D C C 5 0 mg (2. 4ミリモル)を加える。氷冷下 1 時間撹拌後室温で 1 晩撹拌する。析出した結晶を濾別した後、濾液を酢酸エチルでうすめ、飽和重曹水、飽和食塩水で洗い、乾燥する。溶媒を減圧で留去し得られた粗生成物を、T L C [展開溶媒、ヘキサン:酢酸エチル= 2:1]で精製して融点 1 1 1. 5~1 1 3. 4°の結晶(化合物 1 3 - C) 7 9. 6 mg (9 1. 0%)を得た。

 $[\alpha]^{26}_{D}$ +8.38° (c=0.37, MeOH)

NS 438(M⁺), 382, 365

¹H-NMR (CDC1₃, δ) 1.38(9H, s), 3.31(2H, br. d, J=5.5 Hz),

5.1~5.3(2H, m), 5.4(2H, s), 7.0~7.5(10H, m), 8.04 (1H, s)

参考例12-B

化合物 13-D (化合物 13 において $R_6=NHPh$ である化合物) の

WO 93/03054 PCT/JP92/01005

47

製造

化合物 1 3 - B 2 8.2 mg (0.0809ミリモル)をジクロルメタン 0.5 mlに溶かし、BOP試薬 3 5.8 mg (1.0 当量)及びアニリン9 mg (1.2 当量)を加え、水冷下ジイソプロピルエチルアミン 1 5.7 mg (1.5 当量)を滴下する。室温で一晩撹拌した後反応液を減圧濃縮する。これをジクロルメタンに溶かし 10%クエン酸水飽和重曹水飽和食塩水で洗い乾燥した。粗組成物をヘキサンー酢酸エチル (2:1)を展開溶媒とするpreparative TLCで精製し目的の化合物 13-D 35 mg (100%)を結晶として得た。

 $[\alpha]^{26}$ _D -15.7° (c=0.305, MeOH)

MS 423, 368

¹H-NMR (CDCl₃, δ) 1.42(9H, s), 3.31(2H, d J=6.4), 4.9-5.4 (2H, m), 7.0~7.8(11H, m), 8.09(1H, s)

同様にして参考例12-C、12-Dを行ない、以下の化合物を得た。

15

20

· · ·		
¹H-NMR(CDCl₃, δ)	1.40(9H, s), 1.49(9H, s), 3.27(2H, d, J=5.9Hz), 5.0-5.4(2H, m), 7.0-7.4 (6H, m), 7.93(1H, s)	1.41(9H, s), 3.25(2H, d, J=6.4Hz), 3.76(8H, br.), 5.0-5.5(2H, m), 6.9-7.3 (6H, m), 7.84(1H, s)
SW	404	417
[a] b	-21, 0° (c=0, 315, CHCl ₃) (25°)	-28, 2° (c=0, 355, CHC1 ₃ (25°)
収率	100%	96. 4%
R_{6}	-NH-Bu	0
化合物	13-E	13-F
参考例	12-C	12-D

参考例13-A

化合物 15-A (化合物 15 において R_4 = CH_3 、 R_6 = OCH_3 である 化合物) の製造

既知物である化合物13-A330mg(0.91ミリモル)をジクロルメタン1.4mlに溶かし氷冷下、トリフルオロ酢酸を0.6ml加え室温で1.5時間撹拌する。溶媒を減圧で留去してエーテルを加えると結晶化する。この白色結晶を濾取して乾燥する。収量339mg(98.9%)。

この結晶 314 mg (0. 835 ミ リモル)をアセトニトリル4. 2 mlに溶かし、BOP試薬 369 mg (0. 835 ѕ リモル)及び既知物である化合物 14 ($R_4 = \text{CH}_3$) 240 mg (0. 835 ѕ リモル)を加え、氷冷下ジイソプロピルエチルアミン 270 mg (2. 09 ѕ リモル)を滴下する。室温で 1 晩撹拌した後反応液を酢酸エチルでうすめ、10%クエン酸水、飽和重曹水、飽和食塩水で洗い、乾燥した。粗生物をジクロルメタンーメタノール(50:1)を溶出液とするシリカゲルのカラムクロマトグラフィーで精製し、目的の化合物 15-A431 mg (97. 1%)を粉末として得た。

 $[\alpha]^{29}$ _D -61.5° (c=1.02, MeOH)

MS 499, 440

 1 H-NMR (CDCl₃, δ) 1.12(3H, d, J=7.0 Hz), 1.47(9H, s), 3.35 (3H, s), 3.95(3H, s), 5.4~5.7(1H, m), 7.22(6H, m), 8.05(1H, s)

参考例13一Aと同様にして以下の化合物を得た。

1H-NMR(CDCl ₃ , δ)	1, 21(3H, d, J=7,0Hz), 1, 46(9H, s), 3, 34(3H, s), 5, 40(2H, s), 5, 56(1H, m), 7, 1-7, 5(11H, m), 8, 05(1H, m)	1.46(9H, s), 3.27(3H, s), 3.95(3H, s), 5.60(1H, m), 7.0-7.3(6H, m), 8.05(1H, s)	1.15(3H, d, J=7.0Hz), 1.48(9H, s), 3.38(3H, s), 7.1-7.8(11H, m), 8.08(1H, s)
SM	607 575	518 490	593
[a] b (MeOH)	-55. 8° (c=1. 11) (25°)	-67. 2° (c=1. 96) (25°)	-38.5° (c=0,33) (27°)
· 公母	86.8%	83.7%	99.7%
Re	OCH ₂ Ph	OCH.s	NHPh
R4	CH3	per:	CH3
化合物	15-B	15-C	15-D
参売室	13~B	13-C	13-D

6
(. 0 1: 4\01, u.\\ 1: 62\111, 0
£00
(07)

参考例14-A

化合物 17-A (化合物 17において-A₂-R₇=CH₂CH₂-Phの 化合物)の製造

既知化合物 8-B (化合物 8 において R_4 = CH_3 の化合物)から参考例 11 にしたがって得られるカルボン酸 30.5 mg(0.106 ミリモル)をアセトニトリル 1 ml に溶かし、B O P 試薬 51.6 mg(1.1 当量)及びフェネチルアミン 14.1 mg(1.1 eq)を加え、氷冷下ジイソプロピルエチルアミン 20.6 mg(1.5 当量)を滴下する。室温で一晩撹拌した後反応液を減圧濃縮する。これをジクロルメタンに溶かし 10 % クエン酸水、飽和重曹水飽和食塩水で洗い乾燥した。粗生成物をジクロルメタンーメタノール(10:1)を展開溶媒とする preparative TLCで精製し、目的の化合物 17-A 38.3 mg(92.5%)を粉末として得た。

 $[\alpha]^{26}$ _D -21.6° (c=1.02, MeOH)

MS 358 317

¹H—NMR (CDCI₃, δ) ¹. 19(3H, d, J=7.0 Hz), 1. 48(9H, s), 3. 37 (3H, s), 7.1-7.4(5H, m)

参考例14-Aと全く同様にして以下の化合物を得た。

10

1 0	¹H-NWR(CDC1₃, δ)	1.33(3H, d, J=7.0Hz), 1.48(9H, s), 3.51(3H, s), 7.0-7.7(5H, m)	1. 26(3H, d, J=7. 0Hz), 1. 47(9H, s), 3. 42(3H, s), 4. 43(2H, d, J=5. 7Hz), 7. 30(5H, s)	1. 22(3H, d, J=7. 0Hz), 1. 47(9H, s), 3. 44(3H, s), 7. 1~7. 4(5H, m)	1.23(3H, d, J=7.0Hz)、 1.45(9H, s)、3.40(3H, s)、 7.1∼7.4(5H, m)
	SM .	330	344 303	372 331	391 358
	[a] _b (MeOH)	-59.4° (c=0.204) (29°)	-19. 2° (c=0. 285) (29°)	-36.1°· (c=0.23) (28°)	-111. 6° (c=0. 865) (25°)
15	収率	80.6%	86. 6%	87. 2%	87. 7%
20	-A2-R7	-Ph	−CH₂Ph	-CH2CH2CH2Ph	CH ₃ (S)/ -CH ₂ Ph
2 U	化合物	17-B	17-C	17-D	17-E
	参考例	14-B	14-C	14-D	14-E
				•	

1 0	¹II-NMR(CDC13, δ)	1. 23(3H, d, J=6, 8Hz), 1. 48(9H, s), 3. 44(3H, s)	1, 20(3H, d, J=7.0Hz), 1, 47(9H, s), 3, 37(3H, s), 7, 2-8, 2(7H, m)	1. 35(3H, d, J=7. 0Hz), 1. 47(9H, s), 3. 51(3H, s), 6. 97(1H, d, J=3. 7Hz), 7. 45(1H, d, J=3. 7Hz)
	SW.	397 364	408	337 296
·	[\alpha] D (MeOH)	-36. 5° (c=1. 145) (26°)	-27. 2° (c=0. 328) (29°)	-73. 2° (c=0. 342) (29°)
15	大	66.8%	91.2%	71.7%
	-A2-R7	-CH ₂ CH ₂	-CH2CH2	
20	化合物	17-F	17-6	17-H
(続き)	参考例	14-F	14-G	14-н

参考例15

化合物 18-A (-A₂-R₇=CH₂CH₂ の化合物)の製造

化合物8を出発原料とし、フローシート6に示したごとく脱ベンジル化(参考例11参照)、脱BOC化、Z化の各工程を経由して得たZ化カルボン酸とトリプタミンとから参考例14-Aと同様にして化合物18-Aを得た。

 $[\alpha]^{28}_{D}$ -6.4° (c=1.41, MeOH)

MS 593, 560

10

15

20

¹H-NMR (CDCl₃、δ) 1.0-1.3(3H, m)、3.28(3H, s)、6.9-8.0(6H, m) 実施例 1

$$CH_3$$

化合物 $12-A$ (化合物 12 において R_1 、 $R_2=$ CH_3

 CH_3 $R_3 = CH - CH_2$ 、 $R_4 = CH_3$ 、 $R_5 = PhCH_2$ である化合 CH_3

物)の製造

参考例6-Gで得た化合物6-G108mg(0.222ミリモル)に氷冷下濃塩酸1mlを加え1時間撹拌する。減圧乾固したのちジメチルホルムアミド2mlに溶かし氷冷しながらトリエチルアミン0.15mlを加える。トリエチルアミン塩酸塩が析出してくるがそのまま減圧乾固して乾燥する。一方既知化合物である化合物11-C(化合物11

20

において R_4 = CH_3 、 R_5 = $PhCH_2$ である化合物)105mg(0.222| リモル)を酢酸エチル0.4m1に溶かし氷冷下2N塩化水素 /酢酸エチル8.3m1加える。室温で1時間撹拌したのち溶媒を減 圧で留去し、乾燥する。得られた吸湿性結晶をジメチルホルムアミド1.6m1に溶かし上記のトリペプチドカルボン酸に加え氷冷下90%DE PC 40mg(0.222| リモル)とトリエチルアミン $62\mu1$ (0.444| リモル)を加える。氷冷下1時間撹拌後、室温で1晩撹拌する。溶媒を減圧で留去してジクロルメタンに溶かし飽和重曹水、飽和食塩水で洗い乾燥する。溶媒を留去した後ジクロルメタンーメタノール(20:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精製し、目的物を含むフラクションを、更にヘキサン:ジクロルメタン:メタノール(2:7.5:2.5)を溶出液とするセファデックスLH-20クロマトグラフィーで精製した。目的の化合物12-Aを無定形粉末として137mg(78.4%)得た。

 $[\alpha]_{D}^{27}-89.0^{\circ}$ (c=0.60, MeOH)

NS 741, 693

¹H-NMR (CDC1₃, δ) 2.32(6H, s), 2.96(3H, s), 3.32(3H, s), 3.40(3H, s), 5.56(1H, m), 6.8~7.3(9H, m), 7.73(1H, d, J=3.3 Hz)

実施例2-14

実施例1と全く同様にして実施例2~14を行ない、以下の化合物を 得た。

¹H-NMR (CD ₂ Cl ₂ , δ)	2. 29(6H, s), 2. 82 (3H, s), 3. 31(3H, s), 3. 33(3H, s), 5. 52(1H, m), 6. 9~7. 4(9H, m), 7. 73 (1H, d, J=3. 3 Hz)	1. 24(3H, d, J=7.0 Hz), 1. 60(3H, d, J=7.0 Hz), 2. 23(6H, s), 2. 99(3H, s), 3. 30(3H, s), 3. 39(3H, s), 6. 75(1H, d, J=9.2 Hz), 7. 12(1H, d, J=8.1 Hz), 7. 25(1H, d, J=3.3 Hz), 7. 66(1H, d, J=3.3 Hz), 7. 66(1H, d, J=3.3 Hz),	770(N ⁺) 2. 48(6H, s), 3. 02 727 (3H, s), 3. 32(6H, s), 679 7. 0~7. 4(9H, s), 7. 71(1H, d, J=3. 3 Hz)
MS	742(M+) 699 667	665	
旋光度 (NeOH)	-61.6° (25°) c=1.30	-84.9° (26°) c=1.02	-79. 4° (23°) c=0. 33
R5	PhCH2-	СИз	-79. 4° PhCH ₂ - (23°) c=0. 33
R4	CH3	СН3	СН3
R3	C ₂ H ₅ CH CH ₃	G ₂ H ₅ CH ₃ CH ₃ CH ₃	CH ₃ >CH-
R2		CH ₃ CH- CH ₃ CCH- C	CH ₃ >CH-
Rı	CH ₃ CCH- H	CH ₃ >CH-	CH ₃ CCH-
化合物	12-B	12-c	12-D
実施例 化合物	. 2	က	4

15

2	確
	4
	~
	2
	新新

	¹H-NMR (CD ₂ Cl ₂ , δ)	2. 27(6H, s), 3. 02(3H, s), 3. 25(3H, s), 3. 29(3H, s), 5. 62(1H, m), 6. 88 (1H, d, J=9. 0 Hz), 7. 1~7. 3(6H, m), 7. 59 (1H, d, J=7. 9 Hz), 7. 73(1H, d, J=3. 3 Hz),	2. 21(6H, s), 2. 96(3H, s), 3. 32(3H, s), 3. 38(3H, s), 5. 52(1H, m), 6. 85 (1H, d, J=8. 8 Hz), 7. 0~7. 3(7H, m), 7. 72(1H, d, J=3. 3 Hz),	2. 21(6H, s), 3. 01(3H, s), 3. 31(6H, s), 5. 51(1H, m), 6. 79(1H, d, J=9. 2 Hz), 7. 1~7. 5(7H, m), 7. 71 (1H, d, J=3. 3 Hz),
-	MS	-76.1°.770(M ⁺) (28°) 727 c=0.47 679	798 (N+) 755 741	812(# ⁺) 755 721
	旋光度 (MeOH)	-76. 1° (28°) c=0. 47	-87.5° (24°) c=0.33	-80.6° (24°) c=0.37
	Rs	PhCH ₂ -	PhCH ₂ -	PhCH ₂ -
	R4	н	СН3	СНз
	R3	C₂H₅ CH₃	CH ₃ >CH-CH ₂ - CH ₃	C2H5 CH3
	R2	CH ₃	CH ₃	C₂H₅ CH₃
	R1	CH ₃	12-F C ₂ H ₅ CH CCH CCH CCH CCH CCH CCH CCH CCH CCH	C₂H₅ CH₃
	実施例 化合物	12-E	12-F	12-G
	実施例	ഹ	9	2

15

. .

캢	
- 1	
4	
_	
{	
2	
施例	
莱斯	֡

化合物								
	R ₁	R ₂	R3	R ₄	Rs	$\begin{bmatrix} \alpha \\ \text{MeOH} \end{bmatrix}$	SI	1H-NMR(CDC13, S)
19-н	CH ₃	GH3	CH ₃	:		90. 2°.	770	2. 97(3H, s), 3. 24 (3H, s), 3. 36(3H. s).
	CH ₃	GH ₃	CH ₃	-	FnCH ₂ -	(c=0, 34) (27°)	727	5. 63(1H, m) 7. 1-7. 3 (7H, m) 7. 73(1H, d, J=3. 3Hz)
19_T	GII.	C ₂ H ₅	C ₂ H ₅	i		-70.4°	798	3. 02(3H, s), 3. 33 (6H, s), 5. 56(1H m)
4	CH ₃	CH ₃ .	CH ₃	Š	PhCH ₂ -	(c=0, 26) (27°)	755	7. 1-7. 3(7H, m) 7. 73 (1H, d, J=3, 1Hz)
	CH ₃	CH ₃				82. 9°	770	2. 97(3H, s), 3. 33 (6H s), 5. 56(1H m)
	CH ₃	-E	CH3CH2CH2-	£	PhCH ₂ -	(c=0, 21) (26°)	727	7. 1~7. 3(7H, m). 7. 73 (1H, d, J=3. 1Hz)
	CH ₃	E.B.				-79 1°	61/2	3. 28(3H, s).
12-K	GE .	-ES CE	CH3.	CH3	PhCH ₂ -	(c=0, 665) (25°)	669	5. 56(11, m). 7. 1 -7. 3(71, m). 7. 1 7. 73(11, d, J=

1 5

実施例2~14-続き

1H-NMR(CDCL3, 6)	2. 65(6H, s), 3. 01 (3H, s), 3. 33(6H, s), 5. 55(1H, m), 7. 1- 7. 3(7H, m), 7. 73(1H, d, J=3. 1Hz)	2. 90(3H, s), .3. 33 (3H, s), .3. 34(3H, s), 5. 56(1H, m), 7. 1- 7. 3(7H, m), 7. 72(1H, d, J=3. 3Hz)	2, 44(6H, s), 3, 02 (3H, s), 3, 33(6H, s), 5, 40(1H, m), 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
MS	742	832 789	756 665	
$\begin{bmatrix} \alpha \\ MeOH \end{bmatrix}^{D}$	-79, 3° (c=0,545) (24°)	-67, 8° (c=0, 905) (25°)	$^{-80.6}_{(c=0.17)}$	
Rs	PhCH₂~	PhCH ₂ -	PhCH ₂ -	
R4	CH ₃	CH3	CH ₃	
$ m R_3$	C ₂ H ₅ CH-CH ₃	C ₂ H ₅ CH- CH ₃	C ₂ H ₅ CH- CH ₃	
R2	CH ₃ CH-	PhCH ₂ -	CH ₃ CH-	
R ₁	Н	CH ₃ CH-	СНз	
化合物	12-L	12-ж	12-N	
実施例	12	. 13	14	

15

実施例15

$$CH_3$$
 C_2H_5 $CH-$ 、 $R_4=CH_3$ 、 $R_6=OCH_3$ である CH_3 CH_3

化合物)の製造

化合物 6 - H 93 mg (0.192ミリモル) に氷冷下濃塩酸 0.5 mlを加え1時間撹拌する。減圧乾固したのち、ジメチルホルムアミド2 mlに溶かし、氷冷しながらトリエチルアミン0.15 mlを加える。トリエチルアミン塩酸塩が析出してくるが、そのまま減圧乾固して乾燥する。

一方、参考例13-Aで得た化合物15-A102mg(0.192 ミリモル)を酢酸エチル0.4mlに溶かし、氷冷下2N塩化水素/酢酸エチルを3.3ml加える。室温で1時間撹拌後溶媒を減圧で留去し乾燥する。得られた吸湿性結晶をジメチルホルムアミド0.8mlに溶かし、上記のトリペプチドカルボン酸に加え氷冷下90%DEPC 35mg(0.192ミリモル)とトリエチルアミン54μl(0.384ミリモル)を加える。氷冷下1時間撹拌後、室温で1晩撹拌する。

溶媒を減圧で留去してジクロルメタンに溶かし、飽和重曹水、飽和食塩水で洗い乾燥する。溶媒を留去した後ジクロルメタン:メタノール (30:1)を溶出液とするシリカゲルのフラッシュクロマトグラフィーで精製し、目的物フラクションをさらにヘキサン:ジクロルメタン:

実施例23

$$CH_3$$
 C_2H_5 CH_3 CH_3 $CH_4=CH_3$, $R_6=OBu$ of CH_3 CH_3

化合物)の製造

- 1. 化合物 16-A120 mg (0. 142 ミリモル) をジメチルホ ルムアミド5m1に溶かし氷冷下1N水酸化ナトリウムを0.16m1 10 加える。氷冷下で30分間、ついで室温で90分間撹拌する。氷冷して 1 N 塩酸を 0. 16 m l 加えたのち溶媒を減圧で留去して、ジクロルメ タンに溶かし、析出した塩化ナトリウムを濾去する。濾液をヘキサン: ジクロルメタン:メタノール(2:7.5:2.5)を溶出液とするセ ファデックスLH-20クロマトグラフィーで精製した。目的物は再び 水に溶かして凍乾し、化合物16カルボン酸(R₆=OH)の粉末11 4mg(96.5%)を得た。
- 2. 上記カルボン酸30mg(0.024ミリモル)をジクロルメタ ン0. 5 m 1 に溶かし、ドライアイスーアセトンで冷却下濃硫酸 1 0 μ 1とイソブテン1m1を加え、封管中2日撹拌する。反応液に飽和重曹 20 水5mlを加えてジクロルメタンで抽出し、水洗後乾燥する。溶媒を減 圧で留去しヘキサン:ジクロルメタン:メタノール(2:7.5:2. 5)を溶出液とするセファデックスLH-20クロマトグラフィーで精 製し、目的物の化合物16-1を無定形粉末として13mg(62.5

%) 得た。

 $[\alpha]^{25}_{D}$ -60.6° (c=0.35, MeOH)

MS 841, 840, 793

¹H-NMR (CD₂Cl₂、δ) 1.58(9H, s), 2.57(6H, br.), 3.02(3H, s), 3.31(6H, s), 5.46(1H, m), 7.0~7.4(7H, m), 7.93(1H, s)

実施例24

I 0

15

CH₃ 化合物16-J(化合物16においてR₁= CH-、R₂= CH₃

 CH_3 C_2H_5 CH_3 CH_3 CH_3 $R_6 = -NH_3$ $R_6 = -NH_4$

である化合物)の製造

化合物 16 カルボンサン(R_6 =OH) 21.5 mg(0.026ミリモル)をアセトニトリル0.5 m1に溶かし、BOP試薬11.5 mg(1 当量)及び2-アミノチアゾール2.6 mg(1 当量)を加え、氷冷下ジイソプロピルエチルアミン5 mg(1.5 当量)を簡下する。室温で一晩撹拌した後反応液を減圧濃縮する。これをジクロルメタンに溶かし、10 %クエン酸水、飽和重曹水、飽和食塩水で洗い乾燥した。粗生成物をジクロルメタン-メタノール(10:1)を展開溶媒とするpreparative Tして分取し、目的物フラクションをさらにヘキサン:ジクロルメタン:メタノール(2:7.5:2.5)を溶出液とするセフアデックスLHー20 クロマトグラフイーで精製し、目的の化合物 16-3 13.7 mg

(57.7%)を無定形粉末として得た。

 $[\alpha]^{28}_{D}$ -48.8° (c=0.25, MeOH)

MS 910, 867

 1 H-NMR (CDC1₃, δ) 3.01(3H, s), 3.33(3H, s), 3.37(3H, s), 5.52(1H, m), 7.05(1H, d, J=3.5Hz), 7.2-7.3 (6H, m), 7.50(1H, d, J=3.3Hz), 8.16(1H, s)

実施例25

5

10

 CH_3 C_2H_5 $CH-、R_4=CH_3、R_6=NH_2$ である化 CH_3 CH_3

合物)の製造

化合物 16-A21mg(0.025ミリモル)をアンモニアー飽和 メタノール3mlに溶かし室温に1時間放置する。溶媒を減圧で留去し てヘキサン:ジクロルメタン:メタノール(2:7.5:2.5)を溶 出液とするセファデックスLH-20クロマトグラフィーで精製し、目 的の化合物 16-Kを無定形粉末として20mg(96.0%)得た。

 $[\alpha]^{25}$ -65.8° (c=0.41, MeOH)

MS 784, 736

¹H-NMR (CDC1₃, δ) 2.48(6H, s), 3.06(3H, s), 3.33(6H, s), 5.50(1H, m), 7.0~7.6(7H, m), 8.04(1H, s)

実施例26-27

1H-NMR(CDC13, S)	2. 48(6H, s), 3. 02 (3H, s), 3. 32(6H, s), 5. 46(1H, m), 7. 0- 7. 5(7H, m), 7. 92 (1H, s)	1. 67(6H, s)、3. 16 (3H, s)、3. 33(3H, s)、7. 1-7. 3(6H, m)、 7. 26(1H, s)
N.S.	812	885
[\alpha] b (MeOH)	-63. 5° (c=0. 32) (25°)	67.1° (c=0.255) (28°)
R.	-NHC ₂ H ₅	CH ₃
R4	CH ₃	CH3
R3	C ₂ H ₅ CH- CH-	C ₂ H ₅ CH- CH-
R 2	CH ₃ CH-	CH3 CH-
R1	CH3.	CH.
化合物	16-L	. 16-ж
実施例	26	27

実施例28

$$CH_3$$
 C_2H_5 CH_3 CH_3 CH_4 CH_4 CH_5 CH_5 CH_5 CH_5 CH_7 CH_8 CH_8 CH_8 CH_8 CH_8

合物)の製造

10

15

20

化合物 6 - H 27.7 mg (0.057ミリモル)をジクロルメタン0.3 mlに溶かし、氷冷下トリフルオロ酢酸0.3 mlを加える。室温で1時間撹拌後、溶媒を減圧で留去したのち、充分減圧乾燥する。一方化合物 7 - A 22.3 mg (0.057ミリモル)を氷冷下2N塩化水素/酢酸エチルに溶かし室温で1時間撹拌する。溶媒を減圧で留去し乾燥し、ジメチルホルムアミド0.5 mlに溶かし、上記のトリペプチドカルボン酸に加え、氷冷下95% DEPC9.8 mg (1.0当量)とトリエチルアミン16 μ1 (2当量)を加える。氷冷下1時間撹拌後、室温で一晩撹拌する。

溶媒を減圧で留去してジクロルメタンに溶かし、飽和重曹水、飽和食塩水で洗い乾燥する。溶媒を留去した後ジクロルメタンーメタノール(10:1)を展開溶媒とするpreparative TLCで分取し、目的物フラクションをさらにヘキサン: $CH_2Cl_2: MeOH(2:7.5:2.5)$ を溶出液とするセフアデックスLH-20クロマトグラフィーで精製した。目的の化合物19-Aを35.8mg(89.5%)を無定形粉末として得た。

 $[\alpha]^{25}_{D}$ -38.0° (c=0.566, MeOH)

MS 701, 658

 1 H - NMR (CD₂Cl₂, δ) 1.16(3H, d, J=7.0Hz), 2.23(6H, s), 3.00

(3H, s), 3.30(3H, s), 3.34(3H, s)

実施例28と同様にして以下の化合物を得た。

10

5

15

5	¹II-NMR(CDC1₃, δ)	1, 36(3H, d, J=7, 0Hz), 3, 02(3H, s), 3, 34 (3H, s), 3, 47(3H, s),	7. 0-7. 7(6H, m)	1. 28(3H, d, J=7. 0Hz), 2. 33(6H, br.), 3. 01	(34, s)、3. 30(34, s)、3. 39(34, s)、7. 2-7. 4(54, m)	1. 28(3H, d, J=7. 0Hz), 2. 36(6H, s), 3. 00	(3H, s)、3. 33(3H, s)、3. 41(3H, s)、7. 1-7. 3(5H, m)
	SE	673 630		889	644	716	7/0
	[α] _D (MeOH)	-52. 6° (c=0. 352)	(38°)	-35, 8°	(c=0, 330) (28°)	-47.1°	(c=0, 312) (27°)
0	-A2R7	4d-		į	-CH ₂ Ph	ים ויט ווטי ווטי	
5	R ₃	C ₂ H ₅	CH3	C ₂ H ₅	CH ₃	C ₂ H ₅	CH ₃
	R2	CH ₃	CH3	CH ₃	CH ₃	CH3	CH ₃
o	R ₁	CH ₃	CH ₃	E	CHs	CH _s	CH ₃
	化合物	19-B	-	- - - -		19-D	
	実施例	29		93	3	31	5

15

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<u> -</u>						. 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(K合物 R ₁ R ₂ R ₃	R2		R ₃		-A ₂ R ₇	[a] b (HeOH)	NS W	1H-NMR(CDCI3, S)
$-CH_2CH_2 \left(H \right) \qquad \begin{pmatrix} -48.3^{\circ} \\ (c=0.265) \\ (28^{\circ}) \end{pmatrix} \qquad 644$ $-CH_2CH_2 \left(\begin{pmatrix} -34.1^{\circ} \\ (c=0.347) \end{pmatrix} \right) \qquad 708$ $\left(\begin{pmatrix} -61.9^{\circ} \\ (29^{\circ}) \end{pmatrix} \right) \qquad \begin{pmatrix} -61.9^{\circ} \\ (29^{\circ}) \end{pmatrix} \qquad \begin{pmatrix} 680 \\ (c=0.315) \end{pmatrix} \qquad \begin{pmatrix} 680 \\ 637 \end{pmatrix}$	CH ₃ CH ₃ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₃ CH ₃ CH ₃	CH- CH ₃	CH	C2H5_CH5_	-HJ		-94, 8° (c=0, 335) (28°)	658	3H, d, J=7. 3H, br.), 3, 333(31), 3, 3, 33(31), 3, 3, 3, 7.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19-F CH ₃ CH ₃ C ₂ H ₅ CH ₃ CH ₃ CH ₃	CH- CH ₃ C ₂ H ₅ CH ₃	CH- CH ₃		CH-	-CH2CH2-(H)	-48.3° (c=0.265) (28°)	644	2. 48(6H, br.) 3. 02 (3H, s) 3. 33(3H, s), 3. 41(3H, s)
-61. 9° 680 2. 51(61 (c=0.315) 637 (3), 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	CH ₃ CH ₃ C ₂ H ₅ C ₂ H ₅ CH ₃	CH- CH ₃ C ₂ H ₅ CH ₅ CH ₅	CH- CH- CH3		CH-	-CH ₂ CH ₂	-34. 1° (c=0, 347) (29°)	708	3,3,4,
3, (HZ)	19-H CH ₃ CH ₃ C ₂ H ₅ CH ₋	CH- CH ₃ C ₂ H ₅ CH ₃	CH- CH3				-61. 9° (c=0. 315) (29°)	680 637	1. 40(3H, d, J=7. 0Hz), 2. 51(6H, s), 3. 15(3H, s), 3. 37(3H, s), 3. 42 (3H, s), 6. 93(1H, d, J= 3. 5Hz), 7. 48(1H, d, J= 3. 7Hz)

実施例39

CH₃ 化合物19-L(化合物19においてR₁= CH-、R₂= CH₃

$$C H_3$$
 $C H_5$
 $C H_7$
 $C H_7$
 $C H_2 C H_2$
 $C H_7$
 $C H_7$
 $C H_7$

化合物)の製造

化合物18-Aを参考例5-AにしたがってZを除去した生成物と、 化合物6-Hとを実施例28にしたがって反応して目的の化合物19-Lを得た。

 $[\alpha]^{27}_{D}$ -25.9° (c=0.255, MeOH)

MS 740, 697

15

¹H-NMR (CDC1₃, δ) 2.64(6H, br.), 3.03(3H, s), 3.30(6H, s),
7.0-7.7(5H, m), 8.4(1H, m)

76 請求の範囲

1. 式

式中、

10

15

20

 R_1 、 R_2 、 R_3 及び R_4 は同一もしくは相異なり、それぞれ水素原子、低級アルキル基又はアラルキル基を表わし;

A₁は直接結合又は-CH-を表わし、

Yは水素原子又は一COR®を表わし、

Rsは水素原子、低級アルキル基又はアラルキルを表わし、

R₆はヒドロキシ基、低級アルコキシ基、アラルキルオキシ基又は

れ水素原子、低級アルキル基、フエニル基又はS、O及びNから選ばれる1又は2個のヘテロ原子を含む4~7員の複素環式基を表わすか、或いは

 R_8 と R_9 はそれらが結合する窒素原子と一緒になつてさらにS、O 及びNから選ばれる1個のヘテロ原子を含んでいてもよい4~7員

10

の複素環式環を形成していてもよい)を表わし、

A 2は直接結合又は低級アルキレン基を表わし、

 R_7 はシクロアルキル基、アリール基又はインドリル基を表わす、ただし、 R_1 及び R_2 がイソプロピル基を表わし、 R_3 がs e c - ブチル基を表わし、 R_4 がメチル基を表わし、そしてQが α - (2 - チアゾリル)フエネチル基を表わす場合を除く、

で示されるテトラペプチド誘導体又はその塩。

$$R_5$$
 2. Qが $-CH$ (ここで R_5 及び Y は請求の範囲第 1 項の

意味を有する)を表わす請求の範囲第1項記載のテトラペプチド誘導体 又はその塩。

- 3. Yが水素原子を表わす請求の範囲第2項記載のテトラペプチド誘導体又はその塩。
- 4. R_1 及び R_2 がイソプロピル基を表わし、 R_3 がs e c ープチル基を表わし、 R_4 がメチル基を表わし、 R_5 がベンジル基を表わし、そして YがーC O R_6 (ここで R_6 は請求の範囲第1項の意味を有する)を表わす請求の範囲第2項記載のテトラペプチド誘導体又はその塩。
 - 5. Qが $-A_2-R_7$ の基を表わし、ここで A_2 が低級アルキレン基を表わす請求の範囲第1項記載のテトラペプチド誘導体又はその塩。
 - 6. R_1 及び R_2 がイソプロピル基を表わし、 R_3 が s e c ブチル基を表わし、 R_4 がメチル基を表わし、そして R_7 がアリール基を表わす請求の範囲第 5 項記載のテトラペプチド誘導体又はその塩。
 - 7. 請求の範囲第1項記載のテトラペプチド誘導体又はその塩を有効

国際調査報告

國際出願番号PCT/JP 9 2/ 0 1 0 0 5

			COMMENT 71	01/31 3	2/ 01003
I. 発	明の属する分野の分類				
国際特許	·分類 (IPC)				
	Int. Ca	, *		•	
	C 0 7 K 5	/06,A61	K37/02		
11. 国	原調査を行った分野				
	調音	きを 行っ	た最小限資	料	
分類	体系	分	類 記 号		
11	PC CO7K5	/00,A61	K37/02		
		、限資料以外の資	料で調査を行ったもの	<u> </u>	
	重する技術に関する文献			· · · · · · · · · · · · · · · · · · ·	
引用文献の ※ カテゴリー	引用文献名 及び一部	Bの箇所が関連する。	ときは、その関連する箇所	所の表示	請求の範囲の番号
7.		•	A		1 0 5
X	Biochem. Pha				1-3, 7
	George R. Pe				
	activity stu				
	and with seg			OFIC	
	marine pepti pp. 1859-18		metu rol		
	pp. 1059-10				
x	J. Med. Chem.	(数33基	短19長(199	0.)	1-3,7
A.	George R Pet				1-3,1
	ations of do	•	•		}
	cytostatic p		-		
	10] pp. 313				
ļ					
A	Biochem, Pha	rmacol.,	\$40巻,第8号(1990)	4-6
	George R. Pe	ttit, et a	1 Structur	e -	ļ
	activity stu	dies with	chiral iso	mers	
	-	•			
	献のカテゴリー		「T」国際出願日又は優先	日の後に公表さ	された文献であって出
	関連のある文献ではなく、一般的		願と矛眉するもので	はなく、発明の	の原理又は理論の理解
	文献ではあるが、国際出願日以 権主張に疑義を提起する文献又		のために引用するも 「X」特に関連のある文献		totan i name
	くは他の特別な理由を確立する		規性又は進歩性がな		
. –	由を付 <mark>す)</mark> はよる間子、使用、最子等には	- TL _b + -/-+h	「Y」特に関連のある文献		
-	による関示、使用、展示等に言 出願日前で、かつ優先権の主張		文献との、当業者に 歩性がないと考えら		ちる組合せによって進
	後に公表された文献		「&」同一パテントファミ		
IV. IE	ie.		· · · · · · · · · · · · · · · · · · ·		
国際調査を	·		同时间水和井。2014 —		
四原明宝 (是了した日 28.10.92		国際調査報告の発送日		44.00
	20, 10, 92	•		17.	11.92
国際調査機	X		権限のある職員	•	4 H 8 3 1 8
·. 🛮	本国特許庁(ISA/JF))	件张广宏木宁		7 44 5 3 1 6
а.	中国44叶厂 (ISA/JI	,	特許庁審査官	前 田	意彦

***	** L A 6-br / Jay ±17	
- 第2个	ージから続く情報	
	(重傷の続き)	
A	and with segments of the antimitatic marine peptide dolastatin 10] pp. 1859-1864 J. Med. Chem. , 第33巻,第12号 (1990) George R Pettit, et al [Chiral modifications of dolastatin 10: the potent cytostatic peptide (19aR)—isodolastatin 10] pp. 3132-3133	4 — 6
	一部の請求の範囲について国際調査を行わないときの意見	
次の請	求の範囲については特許協力条約に基づく国際出願等に関する法律第8条第3項の規	定によりこの国際
調査報告	を作成しない。その理由は、次のとおりである。	
1.	請求の範囲は、国際調査をすることを要しない事項を内容とするもので	ある。
	請求の範囲は、有効な国際調査をすることができる程度にまで所定の要 い国際出願の部分に係るものである。	件を満たしていな
	請求の範囲は、従属請求の範囲でありかつ PCT 規則 6.4(a)第 2 文の規定	に従って起草され
	ていない。	
VI. ∏	発明の単一性の要件を満たしていないときの意見	
次汇述	べるようにこの国際出願には二以上の発明が含まれている。	
	追加して納付すべき手数料が指定した期間内に納付されたので、この国際調査報告は ての調査可能な請求の範囲について作成した。	、国際出願のすべ
2. 🗀	追加して納付すべき手数料が指定した期間内に一部分しか納付されなかったので、こ	の国際調査報告は、
_	手数料の納付があった発明に係る次の請求の範囲について作成した。 請求の範囲	
	追加して納付すべき手数料が指定した期間内に納付されなかったので、この園際調査 囲に最初に記載された発明に係る次の請求の範囲について作成した。 請求の範囲	
4. 🗌	追加して納付すべき手数料を要求するまでもなく、すべての調査可能な請求の範囲K	ついて調査するこ
	とができたので、追加して納付すべき手数料の納付を命じなかった。	
追加手	数料異議の申立てに関する注意 追加して納付すべき手数料の納付と同時に、追加手数料異議の申立てがされた。	
	追加して納付すべき手数料の納付と同時に、追加手数料異議の申立てがされなかった。 追加して納付すべき手数料の納付に際し、追加手数料異議の申立てがされなかった。	