Source:

## 1 | find taylor series

 $1.1 \mid y = \cos(x)$ 

$$P_n(x) = f(0) + \frac{d}{dx}f(0)x + \frac{\frac{d^2}{d^2x}f(0)}{2!}x^2 + \frac{\frac{d^3}{d^3x}f(0)}{3!}x^3 + \cdots$$

$$= \cos(0) - \sin(0)x + \frac{-\cos(0)}{2!}x^2 + \frac{\sin(0)}{3!}x^3 + \cdots$$

$$= 1 -0x - \frac{1}{2!}x^2 + \frac{0}{3!}x^3 + \cdots$$

$$= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!}x^{2k}$$

1.2 |  $y = e^x$ 

$$P_n(x) = f(0) + \frac{d}{dx}f(0)x + \frac{\frac{d^2}{d^2x}f(0)}{2!}x^2 + \frac{\frac{d^3}{d^3x}f(0)}{3!}x^3 + \cdots$$

$$= e^0 + e^0x + \frac{e^0}{2!}x^2 + \frac{e^0}{3!}x^3 + \cdots$$

$$= 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!}x^k$$

1.3 | TODO  $y = \sqrt{x}$  centered at x = 1

$$P_n(x) = f(1) + \frac{d}{dx}f(1)(x-1) + \frac{\frac{d^2}{d^2x}f(1)}{2!}(x-1)^2 + \frac{\frac{d^3}{d^3x}f(1)}{3!}(x-1)^3 + \cdots$$

$$= f(1) + \frac{d}{dx}f(1)(x-1) + \frac{\frac{d^2}{d^2x}f(1)}{2!}(x-1)^2 + \frac{\frac{d^3}{d^3x}f(1)}{3!}(x-1)^3 + \cdots$$

## 2 | prove approximations

2.1 
$$\left| \frac{1}{1-x} \right| = 1 + x + x^2 + x^3 + \cdots$$

Proof by geometric series

$$2.2 \mid \frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots$$

Plug -x for x in the previous equation.

$$2.3 \mid \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots$$

Plug  $x^2$  for x in the previous equation.

## 3 | more finding of polynomial

## $3.1 \mid TODO \$ y = In (1+x)\$$

$$3.2 \,|\, TODO \, y = \tan^- x$$

$$3.3 \mid y = (1+x)^k$$

$$\begin{split} P_n(x) &= f(0) &\quad + \frac{d}{dx} f(0) x &\quad + \frac{\frac{d^2}{d^2x} f(0)}{2!} x^2 &\quad + \frac{\frac{d^3}{d^3x} f(0)}{3!} x^3 &\quad + \cdots \\ &= k(1)^k &\quad + k(k-1)(1)^{k-1} x &\quad + \frac{k(k-1)(k-2)(1)^{k-2}}{2!} x^2 &\quad + \frac{k(k-1)(k-2)(k-3)(1)^{k-3}}{3!} x^3 &\quad + \cdots \\ &= k &\quad + k(k-1) x &\quad + \frac{k(k-1)(k-2)}{2!} x^2 &\quad + \frac{k(k-1)(k-2)(k-3)}{3!} x^3 &\quad + \cdots \\ &= k &\quad + \frac{k!}{(k-1)!} x &\quad + \frac{\frac{k!}{(k-2)!}}{2!} x^2 &\quad + \frac{\frac{k!}{(k-3)!}}{3!} x^3 &\quad + \cdots \\ &= k &\quad + \frac{k!x}{(k-1)!} &\quad + \frac{k!}{(k-2)!2!} x^2 &\quad + \frac{k!}{(k-3)!3!} x^3 &\quad + \cdots \\ &= \binom{k}{1} x &\quad + \binom{k}{2} x^2 &\quad + \binom{k}{3} x^3 &\quad + \cdots \\ &= \sum_{i=1}^{k} \binom{k}{1} x \end{split}$$

Exr0n · 2020-2021 Page 2