Characteristics and bicharacteristics. Solution of equation $\Phi(x, u, p) = 0$

Introduction: Characteristic

Let us recall simple things.

Characteristic is vector field (direction) tangent to the surface. It appears naturally when we solve linear differential equation

$$A^a \partial_a u = C \tag{1}$$

Solution u = u(x) of this equation defines hypersurface M_u in \mathbf{R}^{n+1} (with coordinates (x^1, \ldots, x^n, u)). Equation (1) can be rewritten as

$$M: \mathcal{L}_{\mathbf{X}} M_u = 0$$
, where $\mathbf{X} = A^a \partial_a - C \partial_u$ is characteristic.

Let $N = N^{n-1}$ be n-1-dimensional surface in \mathbf{R}^{n+1} . which is transversal to vector field \mathbf{Y} . Then taking exponents of vector field \mathbf{X} we come to the surface M defined in a vicinity of the surface N.

Typical Cauchy problem: Let ϕ be a function defined on the n-1-dimensional subspace $L = L^{n-1} \subset \mathbf{R}^n$. Find function u on domain in \mathbf{R}^{n+1} , solution of equation (1) such that $u = \varphi$ on this subspace. Solution Take a n-1-dimensional surface Y defined by the function φ on L. If this surface is transversal to characterisic

Now we go to more delicate matter-bicharacteristic.

First two very important definition.

Let $M = M^n$ be an arbitrary n-dimensional manifold. Consider 2n + 1 dimensional space of first jets $J_1 = J_1(M^n, \mathbf{R})$ with local coordinates (x^a, p_b, u) . Usually we consider $M^n = \mathbf{R}^n$, n-dimensional affine space,

One can define on $J^1(M, \mathbf{R})$ the contact 1-form α :

$$\alpha = du - p_a dx^a$$

It is is easy to see the invariant meaning of this form: value of α at every vector ξ attached at the point **p** is equal to the value of the form **p** at the projection of this vector on M^n .

Let $\Phi = \Phi(x^a, p_a, u)$ be an arbitrary (smooth function) in the 2n + 1 dimensional space of first jets $J_1 = J_1(\mathbf{R}^n, \mathbf{R})$ with coordinates (x^a, p_b, s) . We assign to this function the following ector field on J^1 :

$$D_{\Phi} = \frac{\partial \Phi(x, p, u)}{\partial p^{a}} \frac{\partial}{\partial x^{a}} - \left(\frac{\partial \Phi(x, p, u)}{\partial x^{a}} + p_{a} \frac{\partial \Phi(x, p, u)}{\partial u} \right) \frac{\partial}{\partial u} + p_{a} \frac{\partial \Phi(x, p, u)}{\partial p^{a}} \frac{\partial}{\partial u}. \quad (2.0)$$

We explain the geometrical meaning of this formula. At every point $\mathbf{p}=(x,p,u)$ of Jets space the function Φ defines the 2n-dimensional tangent space $D_{\mathbf{p}}$ of vectors which annihilate the form $d\Phi$ and the 2n-dimensional tangent space $K_{\mathbf{p}}$ of vectors which annihilate the contact form α . The intersection of these vector spaces $K_{\mathbf{p}}$ and $D_{\mathbf{p}}$ is 2n-1-dimensional vector space $P_{\mathbf{p}}$ of vectors which annihilate 1-form $d\Phi$ and contact 1-form α :

$$P_{\mathbf{p}} = D_{\mathbf{p}} \cap K_{\mathbf{p}}$$
.

Now notice that $P_{\mathbf{p}}$ is hyperspace of symplectic space $K_{\mathbf{p}}$. Vector \mathbf{X} is vector in $K_{\mathbf{p}}$ which is symplectoorthogonal to $K_{\mathbf{p}}$. It is defined up to multiplier. In the special case if 2n-dimensional planes are not transversal, then $\mathbf{X} = 0$.

Consider non-linear first order partial differential equation

$$\Phi\left(x^a, u, \frac{\partial u}{\partial x^b}\right) = 0 \tag{2.1}$$

on function $u(\mathbf{x})$ ($\mathbf{x} \in \mathbf{R}^n$).

Solution of this equation u = S(x) defines *n*-dimensional surface, integral of two distributions—distribution \mathcal{D} of 2n-dimensional planes which annihilate $d\Phi_u$ and distribution \mathbf{K} of planes which annihilate contact form α .

Thus at every point (except special points) it is defined vector field D_{Φ} tangent to manifold M_{Φ} .

This vector field is bicharacteristics.

It is useful write down bicharacteristic in the special case when function $\Phi(x, p, u) = H(x, p)$ does not depend explicitly on u:

Equation $\Phi(x, \frac{\partial S}{\partial x^i}, S) = 0$ hypersurface $\Phi(x, p, u) = 0$ in 2n + 1-dim. jets space $J^1(\mathbf{R}^n, R)$ contact 1-form $\alpha = du - p_a dx^a$ for an arbitr. gen. point \mathbf{p} on a surface $\Phi = 0$ D_p is 2n-dim. plane orthogonal to $d\Phi$ $K_{\mathbf{p}}$ is 2n-dim.plane orthog. to contact form $d\alpha$ bicharacteristic \mathbf{X}_{Φ} symplectoorthog. to $K_{\mathbf{p}}$ and $D_{\mathbf{p}}$

Equation $H(x, \frac{\partial S}{\partial x^i}) = 0$ Equation H(x, p) = 0in 2n-dimensional space symplectic 2-form $\omega = dp_a \wedge dq^a$ for an arbitr. gen. point \mathbf{p} on a surface H = 0 D_p is 2n - 1-dim. plane orthog. to dHall the tangent plane to H = 0bicharacteristic D_H

symplectoortog. to $D_{\mathbf{p}}$

Properties of bicharacteristic field.

$$\mathcal{L}_{D_{\Phi}}\alpha = d\Phi + \Phi_{u}\alpha. \tag{***}$$

Let Y^{n-1} be a surface in V^n and φ function on Y^{n-1}

We have to find function u such that

$$\Phi(x, u, p) = 0, u|_{V} = \varphi$$

`Solution

Characteristic vector $\mathbf{X} = D_{\Phi}$ field,

$$\mathbf{X} = -\frac{\partial \Phi}{\partial p_m} \frac{\partial}{\partial_m} + \left(\frac{\partial \Phi}{\partial x^m} + p_m \frac{\partial \Phi}{\partial y} \right) \frac{\partial}{\partial} + p_r \frac{\partial \Phi}{\partial p_r} \frac{\partial}{\partial u}$$

is

- i) tangent to the surface M
- ii) it vanishes contact form
- iii) it is symplectoorthogonal to all vectors which are contact and tangent Due to relation (***) the flux of this vector field preserves all this stuff.