МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ Кафедра програмних систем і технологій

Дисципліна «Ймовірнісні основи програмної інженерії»

Лабораторна робота № 5

Виконав:	Мельничук Дмитро Олегович	Перевірив:	Вечерковська А.С.	
Група	ІΠ3-24(1)	Дата перевірки		
Форма навчання	денна			
Спеціальність	121	Оцінка		

2022

Дискретні розподіли ймовірностей

Мета – навчитись використовувати на практиці набуті знання про центральні тенденції та міри.

Завдання

- 1. Аналітичним шляхом розв'язати вказані задачі.
- 1. Ймовірність знаходження в кожному прибулому потязі вагонів на дане призначення 0,2. Визначити ймовірність того, що в трьох із п'яти потягів, які прибувають протягом однієї години, будуть вагони на дане призначення.
- 2. Знайти ймовірність того, що в п'яти незалежних випробуваннях подія А відбудеться: а) рівно 4 рази; б) не менше 4 разів, якщо в кожному випробуванні ймовірність появи події становить 0,8.
- 3. На кондитерській фабриці 20% всіх цукерок складають льодяники. Знайти ймовірність того, що серед 400 вибраних навмання цукерок буде рівно 80 льодяників.
- 4. На автомобільному заводі у звичному режимі роботи з конвеєра сходить 100000 автомобілів. Ймовірність бракованого автомобіля дорівнює 0,0001. Знайти ймовірність того, що з конвеєра зійшло 5 бракованих автомобілів.
- 5. Ймовірність того, що пара взуття, яка взята навмання з виготовленої партії виявиться вищого ґатунку дорівнює 0,4. Чому дорівнює ймовірність того, що серед 600 пар, які поступили на контроль, виявиться від 228 до 252 пар взуття вищого ґатунку?
- 6. Банк обслуговує 100 клієнтів, від кожного з яких може надійти вимога на проведення фінансової операції на наступний день з ймовірністю 0,4. Знайти найімовірніше число вимог клієнтів кожного дня, та його ймовірність.
- 7. Завод випускає в середньому 4% нестандартних виробів. Яка ймовірність того, що число нестандартних виробів у партії з 4000 штук не більше 170?.
- 8. Яка ймовірність того, що при 10000 незалежних киданнях монети герб випаде 5000 разів?
- 9. Фірма відправила на базу 1000 якісних виробів. Ймовірність того, що вироби в дорозі пошкодяться дорівнює 0,002. Знайти ймовірність того, що на базу прибуде 5 пошкоджених виробів.
- 10. Нехай ймовірність того, що грошовий приймальник автомату при опусканні монети скидає неправильно дорівнює 0,03. Знайти найімовірніше число випадків правильної роботи автомату, якщо буде кинуто 150 монет.

- 2. Написати програму, яка, використовуючи відомі формули теорії ймовірності(запрограмувати вручну) розв'яже задачі приведені у п.1.
- 3. Порівняти результати обчислень, зробити висновки.

Математична модель:

Для обчислення використовувалися наступні формули:

$$P_n(m) = C_n^m * p^m * q^{n-m} - \Phi$$
ормула Бернуллі

$$C_{n}^{m} = \frac{n!}{m!(n-m)!}$$
 — кількість комбінацій без повторення

$$\phi(x) = \frac{m-np}{\sqrt{npq}} - \phi$$
ормула Гауса

$$P_{n}(m) = \frac{1}{\sqrt{npq}} * \phi(x) -$$
 Локальна теорема Муавра-Лапласа

$$F(x_i) = rac{m_i - np}{\sqrt{npq}} - \Phi$$
ормула Лапласа

$$P_{n}(m) = F(x_{2}) - F(x_{1}) -$$
інтегральна формула Лапласа

 $np - q \le m_0 \le np + p$ — найімовірніше число m_0 задовольняє системі нерівностей, де n — загальне число подій, p — ймовірність, q = p - 1

Випробовування алгоритмів і перевірка результатів:

1. Ймовірність знаходження в кожному прибулому потязі вагонів на дане призначення 0,2. Визначити ймовірність того, що в трьох із п'яти потягів, які прибувають протягом однієї години, будуть вагони на дане призначення.

3

3 умови маємо:

$$n = 5$$
, $m = 3$, $p = 0.2$;

$$q = 1 - 0.2 = 0.8;$$

Використаємо формулу Бернуллі:

$$P_5(3) = C_5^3 * 0.2^3 * 0.8^{5-3} = 0.0512$$
 and 0.512 and $0.$

Task 1 - probability: 5.12%

2. Знайти ймовірність того, що в п'яти незалежних випробуваннях подія А відбудеться: а) рівно 4 рази; б) не менше 4 разів, якщо в кожному випробуванні ймовірність появи події становить 0,8.

Розв'яжемо задачу для 1 (а) події:

3 умови маємо:

$$n = 5$$
, $m = 4$, $p = 0.8$;

$$q = 1 - 0.8 = 0.2$$

Використаємо формулу Бернуллі:

$$P_5(4) = C_5^4 * 0.8^4 * 0.2^{5-4} = 0.409$$
 and 40.9%

Розв'яжемо задачу для 2 (б) події:

Порахуємо всі ймовірності до 4 і віднімемо від 100% або 1

$$P_5(1) = C_5^1 * 0.8^1 * 0.2^{5-1} = 0.0064$$
 and 0.64%

$$P_5(2) = C_5^2 * 0.8^2 * 0.2^{5-2} = 0.0512$$
 and 0.512%

$$P_5(3) = C_5^3 * 0.8^3 * 0.2^{5-3} = 0.2048$$
 and 20.48%

$$P_5 = 1 - (0.0064 + 0.0512 + 0.2048) = 0.7376$$
 abo $\underline{73.76\%}$

Task 2:

a) (4 times):

Probability: 40.96%

b) (more or equal than 4 times):

Probability: 73.76%

3. На кондитерській фабриці 20% всіх цукерок складають льодяники. Знайти ймовірність того, що серед 400 вибраних навмання цукерок буде рівно 80 льодяників.

3 умови маємо:

$$n = 400, m = 80, p = 0.2;$$

$$q = 1 - 0.2 = 0.8$$

Скористаємося формулою Гауса для знаходження значення в табличці:

$$\phi(x) = \frac{80 - 400 * 0.2}{\sqrt{400 * 0.2 * 0.8}} = 0$$

Знайдемо відповідне значення в таблиці при x = 0

X	0
0,0	0,3989
0,1	0,3970
0,2	0,3910
0,3	0,3814
0.4	0,3683
0,5	0,3521
0,6	0,3332
0,7	0,3123
0,8	0,2897
0,9	0,2661

3а таблицею $\phi(0) = 0.3989$

Скористаємося формулою Муавра-Лапласа:

$$P_{400}(80) = \frac{1}{\sqrt{400*0,2*0,8}} * 0,3989 = 0,0498$$
 and 4,98%

Task 3 - probability: 4.99%

4. На автомобільному заводі у звичному режимі роботи з конвеєра сходить 100000 автомобілів. Ймовірність бракованого автомобіля дорівнює 0,0001. Знайти ймовірність того, що з конвеєра зійшло 5 бракованих автомобілів.

3 умови маємо:

$$n = 100000 \text{ m} = 5, p = 0,0001;$$

$$q = 1 - 0.0001 = 0.9999$$
;

Скористаємося формулою Гауса для знаходження значення в табличці:

$$\phi(x) = \frac{5 - 100000 * 0,0001}{\sqrt{100000 * 0,0001 * 0,9999}} = -1,5812$$

Знайдемо відповідне значення в таблиці при x = -1,5812

X	0	1	2	3	4	5	6	7	8
0,0	0,3989	0,3989	0,3989	0,3988	0,3986	0,3984	0,3982	0,3980	0,3977
0,1	0,3970	0,3965	0,3961	0,3956	0,3951	0,3945	0,3939	0,3932	0,3925
0,2	0,3910	0,3902	0,3894	0,3885	0,3876	0,3867	0,3857	0,3847	0,3836
0,3	0,3814	0,3802	0,3790	0,3778	0,3765	0,3752	0,3739	0,3726	0,3712
0.4	0,3683	0.3668	0,3652	0,3637	0,3621	0,3605	0,3589	0,3572	0,3555
0,5	0,3521	0,3503	0,3485	0,3467	0,3448	0,3429	0,3410	0,3391	0,3372
0,6	0,3332	0,3312	0,3292	0,3271	0,3251	0,3230	0,3209	0,3187	0,3166
0,7	0,3123	0,3101	0,3079	0,3056	0,3034	0,3011	0,2989	0,2966	0,2943
0,8	0,2897	0,2874	0,2850	0,2827	0,2803	0,2780	0,2756	0,2732	0,2709
0,9	0,2661	0.2637	0,2613	0.2589	0,2565	0.2541	0,2516	0,2492	0,2468
1,0	0,2420	0,2396	0,2371	0,2347	0,2323	0,2299	0,2275	0,2251	0,2227
1,1	0,2179	0,2155	0,2131	0,2107	0,2083	0,2059	0,2036	0,2012	0,1989
1,2	0,1942	0,1919	0,1895	0,1872	0,1849	0,1826	0,1804	0,1781	0,1758
1,3	0,1714	0,1691	0,1669	0,1647	0,1626	0,1604	0,1582	0,1561	0,1539
1,4	0,1497	0,1476	0,1456	0,1435	0,1415	0,1394	0,1374	0,1354	0,1334
1.5	0,1295	0.1276	0,1257	0,1238	0.1219	0,1200	0.1182	0,1163	0.1145

3а таблицею $\phi(1,5812) = 0,1145$

Скористаємося формулою Муавра-Лапласа:

$$P_{100000}(5) = \frac{1}{\sqrt{100000*0,0001*0,9999}} * 0,1145 = 0,0362 \text{ ago } 3,62\%$$

Task 4 - probability: 3.61%

5. Ймовірність того, що пара взуття, яка взята навмання з виготовленої партії виявиться вищого гатунку дорівнює 0,4. Чому дорівнює ймовірність того, що серед 600 пар, які поступили на контроль, виявиться від 228 до 252 пар взуття вищого гатунку?

3 умови маємо:

$$n = 600$$
, $m_1 = 228$, $m_2 = 252$ $p = 0.4$;

$$q = 1 - 0.4 = 0.6$$
;

Скористаємось формулою Лапласа:

$$F(x_1) = \frac{228 - 600 * 0.4}{\sqrt{600 * 0.4 * 0.8}} \approx -1$$

$$F(x_2) = \frac{252 - 600 * 0.4}{\sqrt{600 * 0.4 * 0.8}} \approx 1$$

За таблицею підставляємо значення і отримуємо:

$$P_{600} = 0.3413 - (-0.3413) = 0.6826$$
 and 68,26%

Task 5 - probability: 68.27%

6. Банк обслуговує 100 клієнтів, від кожного з яких може надійти вимога на проведення фінансової операції на наступний день з ймовірністю 0,4. Знайти найімовірніше число вимог клієнтів кожного дня, та його ймовірність.

3 умови маємо:

$$n = 100, p = 0.4;$$

$$q = 1 - 0.4 = 0.6$$
;

Отримали діапазон значень:

$$100 * 0.4 - 0.6 \le m_0 \le 100 * 0.4 + 0.6$$

$$39,4 \le m_0 \le 40,4$$

Візьмемо ціле число з цього діапазону

$$m_0 = 40$$

Task 6 - the most probably number: 4

7. Завод випускає в середньому 4% нестандартних виробів. Яка ймовірність того, що число нестандартних виробів у партії з 4000 штук не більше 170?.

3 умови маємо:

$$n = 4000, m_1 = 0, m_2 = 170, p = 0.04;$$

$$q = 1 - 0.04 = 0.96;$$

Скористаємось формулою Лапласа:

$$F(x_1) = \frac{0 - 4000 * 0.04}{\sqrt{4000 * 0.04 * 0.96}} \approx -12,90$$

$$F(x_2) = \frac{170 - 4000 * 0.04}{\sqrt{4000 * 0.04 * 0.96}} \approx 0.80$$

За таблицею підставляємо значення і отримуємо:

$$P_{4000} = 0,2897 - (-0,4984) = 0,7881$$
 або $78,81\%$

Task 7 - probability: 79%

8. Яка ймовірність того, що при 10000 незалежних киданнях монети герб випаде 5000 разів?

3 умови маємо:

p=0,5 тому, що монетка має 2 сторони і відповідно ймовірність випадання однієї з них буде 50% або 0,5

$$n = 10000$$
, $m = 5000$, $p = 0.5$;

$$q = 1 - 0.5 = 0.5$$
;

Скористаємося формулою Гауса для знаходження значення в табличці:

$$\varphi(x) = \frac{5000 - 10000 * 0.5}{\sqrt{10000 * 0.5 * 0.5}} = 0$$

Знайдемо відповідне значення в таблиці при x = 0

X	0
0,0	0,3989
0,1	0,3970
0,2	0,3910
0,3	0,3814
0.4	0,3683
0,5	0,3521
0,6	0,3332
0,7	0,3123
0,8	0,2897
0.9	0.2661

За таблицею $\varphi(0) = 0.3989$

Скористаємося формулою Муавра-Лапласа:

$$P_{10000}(5000) = \frac{1}{\sqrt{10000*0,5*0,5}}*0,3989 = 0,007978$$
 and 0,7978%

Task 8 - probability: 0.798%

9. Фірма відправила на базу 1000 якісних виробів. Ймовірність того, що вироби в дорозі пошкодяться дорівнює 0,002. Знайти ймовірність того, що на базу прибуде 5 пошкоджених виробів.

3 умови маємо:

$$n = 1000, m = 5, p = 0.002;$$

$$q = 1 - 0.002 = 0.998;$$

Скористаємося формулою Гауса для знаходження значення в табличці:

$$\phi(x) = \frac{5 - 1000 * 0,002}{\sqrt{1000 * 0,002 * 0,998}} = 2,12$$

Знайдемо відповідне значення в таблиці при х = 2,12

x	0	1	2
0,0	0,3989	0,3989	0,3989
0,1	0,3970	0,3965	0,3961
0,2	0,3910	0,3902	0,3894
0,3	0,3814	0,3802	0,3790
0,4	0,3683	0.3668	0,3652
0,5	0,3521	0,3503	0,3485
0,6	0,3332	0,3312	0,3292
0,7	0,3123	0,3101	0,3079
0,8	0,2897	0,2874	0,2850
0,9	0,2661	0,2637	0,2613
1,0	0,2420	0,2396	0,2371
1,1	0,2179	0,2155	0,2131
1,2	0,1942	0,1919	0,1895
1,3	0,1714	0,1691	0,1669
1,4	0,1497	0,1476	0,1456
1,5	0.1295	0.1276	0,1257
1,6	0,1109	0,1092	0,1074
1.7	0.0940	0.0925	0,0909
1,8	0,0790	0,0775	0,0761
1,9	0,0656	0.0644	0,0632
2.0	0,0540	0.0529	0.0519
2,1	0,0440	0,0431	0,0422

За таблицею $\varphi(2,12) = 0,422$

Скористаємося формулою Муавра-Лапласа:

$$P_{1000}(5) = \frac{1}{\sqrt{1000*0,002*0,998}} * 0,422 = 0,02963 \text{ afo } 2.963\%$$

Task 9 - probability: 2.963%

10. Нехай ймовірність того, що грошовий приймальник автомату при опусканні монети скидає неправильно дорівнює 0,03. Знайти найімовірніше число випадків правильної роботи автомату, якщо буде кинуто 150 монет.

3 умови маємо:

```
n = 150, p = 0.03;

q = 1 - 0.03 = 0.97;
```

Отримали діапазон значень:

$$150 * 0.03 - 0.97 \le m_0 \le 150 * 0.03 + 0.97$$

$$3,53 \le m_0 \le 4,53$$

Візьмемо ціле число з цього діапазону

 $m_0 = 4$

Task 10 - the most probably number: 4

Псевдокод алгоритмів:

Алгоритм для комбінацій без повторення:

function combinations(int m, int n):
 return (math.factorial(n))/(math.factorial(m) * math.factorial(n-m));

Алгоритм для формули Бернуллі

function bernoulli(int m, int n, float prob): return (C(m,n)*math.pow(prob, m)*math.pow(1-prob,n-m));

Алгоритм для формули Гауса

function gausFunction(int m, int n, float prob): return ((m-n*prob)/(math.sqrt(n*prob*(1-prob))));

Алгоритм для знаходження табличних значень Гауса

function tableForGaus(float x): return (1/math.sqrt((2*math.pi)))*math.exp(-x**2/2);

Алгоритм для знаходження допоміжної функції для табличних значень Лапласа

```
function f(\text{int } x):
return math.exp(-x**2/2);
```

Алгоритм для знаходження табличних значень Лапласа

```
function tableForLaplass(int x):
  integral = integrate.quad(f, 0, x)[0]
  return (1/math.sqrt((2*math.pi))) * integral;
```

Алгоритм для формули Муавра-Лапласа

Алгоритм для інтегральної формули Лапласа

```
function integralLaplase(int m1, int m2, int n, float prob):
return tableForLaplass(gausFunction(m2, n, prob)) - (tableForLaplass(gausFunction(m1, n, prob)));
```

Алгоритм для знаходження найбільш ймовірного числа:

```
function mostProbablyNumber(int n, float prob):
q = 1 - \text{prob};
m1 = (n * \text{prob}) - q;
m2 = (n * \text{prob}) + \text{prob};
b = (m2 - m1) / 2;
return round(m1+b);
```

Висновок:

Закріпив набуті знання про центральні тенденції та міри, також навчився застосовувати формули Лапласа, Муавра-Лапласа, Гауса та Бернулі, знаходити найбільш ймовірне число. Написав програму розрахунку всіх задач та перевірив з аналітичним методом, всі значення співпали, відхилення було невеликим.