Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №9 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів обходу масивів»

Варіант 18

виконав студент	пт-12 Кушнір і анна вікторівна
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота 9 Дослідження алгоритмів обходу масивів

Мета — дослідити алгоритми обходу масивів, набути практичних навичок використання цих алгоритмів під час складання програмних специфікацій.

Варіант 18

Задача. Розробити алгоритм та написати програму, яка складається з наступних дій:

- 1. Опису змінної індексованого типу (двовимірний масив) згідно з варіантом.
- 2. Ініціювання змінної, що описана в п.1 даного завдання.
- 3. Обчислення змінної, що описана в п.1, згідно з варіантом.

Індивідуальне завдання:

Задано матрицю дійсних чисел A[m,n]. При обході матриці по стовпчиках визначити в ній присутність заданого дійсного числа X і його місцезнаходження. Обміняти знайдене значення X з елементом середнього рядка.

- 1. Постановка задачі. Початковими даними є розмірність тем двовимірного масиву та дійсне число X, яке потрібно буде знайти в утвореному масиві A[m,n]; ці дані вводяться користувачем з клавіатури. Результатом виконання алгоритму є або двовимірний масив A[m,n], у якому знайдений елемент X переставлений місцями з елементом середнього рядка, або повідомлення про те, що введений елемент X не було знайдено в масиві A[m,n].
- 2. Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Кількість рядків двовимірного масиву	Цілий	m	Початкове дане
Кількість стовпців двовимірного масиву	Цілий	n	Початкове дане
Двовимірний масив	Дійсний	A[m,n]	Допоміжна змінна та результат
Шукане число X	Дійсний	X	Початкове дане
Номер рядка, у якому виявлено шукане число X	Цілий	iX	Допоміжна змінна
Номер стовпця, у якому виявлено шукане число X	Цілий	jХ	Допоміжна змінна

Параметр арифметичного циклу	Цілий, послідовний	i	Лічильник
Параметр арифметичного циклу	Цілий, послідовний	j	Лічильник
Формальний параметр для передачі двовимірного масиву у функцію	Дійсний	arr[]	Допоміжна змінна
Формальний параметр для передачі кількості рядків двовимірного масиву у функцію	Цілий	m1	Допоміжна змінна
Формальний параметр для передачі кількості стовпців двовимірного масиву у функцію	Цілий	n1	Допоміжна змінна
Формальний параметр для передачі значення X у функцію	Дійсний	X1	Допоміжна змінна
Посилання на номер рядка, у якому вперше виявлено число X	Цілий	iX1	Допоміжна змінна
Посилання на номер стовпця, у якому вперше виявлено число X	Цілий	jX1	Допоміжна змінна
Змінна для переривання пошуку X у випадку його знаходження	Логічний	R	Допоміжна змінна

Складемо таблицю імен допоміжних алгоритмів (функцій).

Функція	Тип результату	Ім'я	
Генерування двовимірного масиву	_	input()	
Виведення двовимірного масиву	_	output()	
Пошук заданого числа X у масиві A[m,n]	_	find_X()	
Обмін знайденого числа Х з елементом	_	replace()	
середнього рядка	_	replace()	

Таким чином, математичне формулювання задачі зводиться до виконання наступних дій:

- 1) Введення та n розмірності масиву A[m,n].
- 2) Генерація двовимірного масиву A[m,n] та його виведення за допомогою функцій input(A, m, n) та output(A, m, n).
- 3) Пошук у згенерованому масиві введеного числа X за допомогою виклику функції find_X(A, m, n, iX, jX). При цьому змінні iX та jX змінюють у функції своє значення.
- 4) Перевірка, чи було виявлено число X у масиві A[m,n] за допомогою альтернативної форми оператора вибору з умовою iX != -1. У випадку істинності умови, виводяться індекси числа X у двовимірному масиві A[m,n]

та відбувається переставлення місцями знайденого числа X з елементом середнього рядка згенерованого масиву A[m,n] за допомогою виклику функції replace(A, m, iX, jX). Інакше, якщо хибність, — виводиться повідомлення про відсутність шуканого числа X у масиві.

- ✓ input(arr[], m1, n1) функція, яка генерує двовимірний масив за допомогою арифметичного циклу з параметром і (і від 1 до m1 включно) з вкладеним у нього арифметичним циклом з параметром ј (ј від 1 до n1 включно); на кожній з ітерацій цього циклу випадковим чином генерується дійсне число arr[i,j] в межах від -100 до 100 з точністю до 2 цифр після крапки за формулою arr[i,j] := rand(). Конкретна працююча формула створюється в залежності від мови програмування.
- ✓ output(arr[], m1, n1) функція, яка виводить переданий через параметр двовимірний масив на екран, використовуючи арифметичний цикл з параметром і (і від 1 до m1 включно), з вкладеним у нього арифметичним циклом з параметром ј (ј від 1 до n1 включно), і виводячи на кожній ітерації змінну arr[], яка відповідає індексу і, j (arr[i, j]).
- ✓ find_X(arr[], X1, m1, n1, iX1, jX1) функція, яка проводить пошук серед елементів масиву arr[m1,n1] за допомогою обходу «змійкою» по стовпцях. Змінні iX1, jX1 посилання на змінні iX та jX відповідно головного алгоритму, тобто якщо в даній функції значення змінних iX1 або jX1 будуть змінюватися, то будуть змінюватися і значення змінних, переданих відповідно підпрограмі з головної програми.
- ✓ replace(arr[], m1, iX1, jX1) функція, яка міняє місцями елемент arr[iX1, jX1] масиву arr[] та елемент масиву цього самого стовпця і рядка, який знаходиться посередині, тобто має індекс (m1 / 2 + m1 % 2), тобто відбувається обмін значеннями елементів arr[iX1,jX1] та arr[(m1 / 2 + m1 % 2), jX1]. Значення змінної arr[] безпосередньо впливає на значення змінної, переданої цій змінній з головної програми, тобто його зміни ведуть за собою зміни значення відповідного параметру.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блоксхеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо дію створення та виведення двовимірного масиву A[m,n].
- Крок 3. Деталізуємо ініціалізацію змінних іХ та јХ.
- Крок 4. Деталізуємо пошук елемента X у масиві A[m,n].
- Крок 5. Деталізуємо перевірку на наявність X у масиві A[m,n].

- *Крок 6.* Деталізуємо дію перестановки елементів масиву та виведення зміненого масиву.
- Крок 7. Деталізуємо функцію input().
- Крок 8. Деталізуємо функцію output().
- Крок 9. Деталізуємо функцію find_X().
- Крок 10. Деталізуємо функцію replace().

3. Псевдокод алгоритму.

Крок 1 Крок 2

початок початок

введення m та n $\frac{1}{1}$ введення m та n $\frac{1}{1}$ створення та виведення масиву A[m,n] $\frac{1}{1}$ input(A, m, n)

введення X output(A, m, n) ініціалізація змінних іX та jX введення X

пошук X у масиві A[m,n] <u>ініціалізація змінних іX та jX</u>

перевірка на наявність X у масиві A[m,n] пошук X у масиві A[m,n]

кінець перевірка на наявність X у масиві A[m,n]

кінень

Крок 3 Крок 4

початок початок

введення m та n введення m та n input(A, m, n) input(A, m, n) output(A, m, n) output(A, m, n) введення X введення X

iX := -1 iX := -1 jX := -1

пошук X у масиві A[m,n] find_X(A, X, m, n, iX, jX)

перевірка на наявність X у масиві A[m,n] перевірка на наявність X у масиві A[m,n]

кінець кінець

Крок 5	Крок 6
початок	початок
введення та п	введення та п
input(A, m, n)	input(A, m, n)
output(A, m, n)	output(A, m, n)
введення Х	введення Х
iX := -1	iX := -1
jX := -1	jX := -1
$find_X(A, X, m, n, iX, jX)$	$find_X(A, X, m, n, iX, jX)$
якщо iX != -1	якщо iX != -1
то	то
виведення іХ та јХ	виведення іХ та јХ
перестановка елементів масиву та	replace(A, m, iX, jX)
виведення зміненого масиву	output(A, m, n)
інакше	інакше
виведення "Масив А не містить елемент X"	виведення "Масив А не містить елемент X"
все якщо	
кінець	все якщо
писць	кінець

4. Псевдокод допоміжних алгоритмів (функцій).

```
Крок 7
                                           Крок 8
початок input(arr[], m1, n1)
                                           початок output(arr[], m1, n1)
для і від 1 до m1
                                           для і від 1 до m1
повторити
                                           повторити
   для ј від 1 до п1
                                               для ј від 1 до п1
   повторити
                                               повторити
     arr[i,j] := rand()
                                                  виведення arr[i,j]
   все повторити
                                               все повторити
все повторити
                                           все повторити
кінець input()
                                           кінець output()
```

```
Крок 9
                                          Крок 10
початок find_X(arr[],X1,m1,n1,iX1,jX1)
                                          початок replace(arr[], m1, iX1, jX1)
R := 1
                                          cop := arr[iX1, jX1]
i := 1
                                           arr[iX1, jX1] := arr[(m1/2 + m1 \% 2), jX1]
поки j <= n1 && R==1
                                           arr[(m1 / 2 + m1 \% 2), jX1] := cop
повторити
   якщо ј%2 == 1
                                           кінець replace()
    T0
       i := 1
       поки i <= m1 && R==1
       повторити
          якщо arr[i,j]==X1
            TO
                iX1 := i
                jX1 := j
                R := 0
          все якщо
          i++
       все повторити
    інакше
       i := m1
       поки i >= 1 && R==1
       повторити
          якщо arr[i,j]==X1
            TO
                iX1 := i
                jX1 := j
                R := 0
          все якщо
          i--
       все повторити
   все якщо
   j++
все повторити
```

кінець find_X()

4.1. Блок-схема алгоритму.

Крок 5

4.2. Блок-схеми допоміжних алгоритмів (функцій).

Крок 10

Крок 9

5. Код програми (на мові програмування C++).

```
#include <iostream>
#include <stdlib.h>
#include <ctime>
#include <iomanip>
using namespace std;
void input(float**, int, int);
void output(float**, int, int);
void find_X(float**, float, int, int, int&, int&);
void replace(float**, int, int);
int main()
{
      int m, n;
      cout << "Enter the number of rows in the two-dimensional array: "; cin >> m;
      cout << "Enter the number of columns in the two-dimensional array: "; cin >> n;
      float** A;
      A = new float* [m];
      for (int i = 0; i < m; i++) {
            A[i] = new float[n];
      }
      cout << "The array A:" << endl;</pre>
      input(A, m, n);
      output(A, m, n);
      float X;
      cout << "Enter the number you want to find: ";</pre>
      cin >> X;
      int iX = -1, jX = -1;
      find_X(A, X, m, n, iX, jX);
      if (iX != -1) {
            cout << "The first entry of the desired element X into the array has an</pre>
index: " << iX << "; " << jX << endl;</pre>
            replace(A, m, iX, jX);
            cout << "New array:" << endl;</pre>
            output(A, m, n);
      else {
            cout << "No X element was found in the array!" << endl;</pre>
      for (int i = 0; i < m; i++) {
            delete[] A[i];
      delete[] A;
      system("pause");
}
void input(float** arr, int m1, int n1)
      srand(time(NULL));
      for (int i = 0; i < m1; i++) {
            for (int j = 0; j < n1; j++) {
                  arr[i][j] = -100 + (rand() \% (int)pow(10, 3)) / pow(10, 3) * 200;
            }
      }
```

```
}
void output(float** arr, int m1, int n1)
      for (int i = 0; i < m1; i++) {</pre>
            for (int j = 0; j < n1; j++) {
                   cout << setw(10) << arr[i][j];</pre>
            cout << endl;</pre>
      }
}
void find_X(float** arr, float X1, int m1, int n1, int &iX1, int &jX1)
{
      bool R = 1;
      int i, j = 0;
      while (j < n1 && R) {</pre>
            if (j % 2 == 0) {
                   i = 0;
                   while (i < m1 && R) \{
                         if (arr[i][j] == X1) {
                                iX1 = i;
                                jX1 = j;
                                R = 0;
                         }
                         i++;
                   }
            }
            else {
                   i = m1 - 1;
                   while (i >= 0 \&\& R) \{
                         if (arr[i][j] == X1) {
                                iX1 = i;
                                jX1 = j;
                                R = 0;
                         }
i--;
                   }
            j++;
      }
}
void replace(float** arr, int m1, int iX1, int jX1)
{
      float cop;
      cop = arr[iX1][jX1];
      arr[iX1][jX1] = arr[m1 / 2 + m1 % 2 - 1][jX1];
      arr[m1 / 2 + m1 \% 2 - 1][jX1] = cop;
}
```

6. Тестування програми.

```
С:\Users\Аня\source\repos\ASD Labs Code\x64\Debug\ASD Lab9 Code.exe
Enter the number of rows in the two-dimensional array: 5
Enter the number of columns in the two-dimensional array: 5
The array A:
                               -36.4
     61.8
             -62.8
                        -99
                                          -59.2
             90.8
     62.4
                       36.6
                                 17.4
                                          -25.6
              9.2
                       -85.2
                                          -52.6
     16.4
                                 42.6
      72
              -39.8
                       -26.8
                                 -40
                                           6.4
    -69.2
              37.8
                                           61.4
                        -61
                                 61.2
Enter the number you want to find: -61
The first entry of the desired element X into the array has an index: 4; 2
New array:
                                 -36.4
     61.8
              -62.8
                         -99
                                          -59.2
     62.4
              90.8
                        36.6
                                 17.4
                                          -25.6
              9.2
                                 42.6
                                          -52.6
     16.4
                        -61
      72
              -39.8
                       -26.8
                                 -40
                                           6.4
    -69.2
             37.8
                       -85.2
                                  61.2
                                           61.4
Press any key to continue . . . _
```

С:\Users\Аня	a\source\repos	s\ASD_Labs_C	ode\x64\Debu	ug\ASD_Lab9_C	Code.exe	_		×
Enter the num								^
Enter the num	mber of col	lumns in th	ne two-dime	ensional ar	ray: 5			
The array A:								
13.6	-86.4	-27	-14.4	-11.6				
-25.4	79.4	33	-22.8	75				
-92	-45.6	-37	-91.2	-26.6				
86.8	44.4	-41.4	42.2	-47.8				
-10.8	45	-54.6	9.8	26.4				
42.6	36.8	67.8	34.2	-18.2				
Enter the num	nber you wa	ant to find	d: 45					
The first ent	ry of the	desired el	lement X ir	nto the arr	ay has an	index: 4;	1	
New array:								
13.6	-86.4	-27	-14.4	-11.6				
-25.4	79.4	33	-22.8	75				
-92	45	-37	-91.2	-26.6				
86.8	44.4	-41.4	42.2	-47.8				
-10.8	-45.6	-54.6	9.8	26.4				
42.6	36.8	67.8	34.2	-18.2				
Press any key	to contir	nue						~

🖾 C:\Users\Аня\source\repos\ASD_Labs_Code\x64\Debug\ASD_Lab9_Code.exe						_		\times
Enter the number of rows in the two-dimensional array: 6								^
Enter the num	ber of col	lumns in th	ne two-dime	nsional a	rray: 7			
The array A:								
-62.2	-55.6	-82	65.2	77.8	16.4	87.8		
24	36.2	29.4	-87.4	77.6	38	-28		
86.2	76	78	-5	-65	17	97		
-80	-1.6	27.8	55	99.8	-45.4	59.4		
-50.6	-2.2	-93.8	43.4	-90	45	-88.6		
-79.8	79	98.8	56.8	-53	-99.8	-8.2		
Enter the num	Enter the number you want to find: 25							
No X element was found in the array!								
Press any key	to contir	nue						
								~

```
С:\Users\Aня\source\repos\ASD Labs Code\x64\Debug\ASD Lab9 Code.exe
Enter the number of rows in the two-dimensional array: 5
Enter the number of columns in the two-dimensional array: 5
The array A:
         8
                99.4
                           76.6
                                     56.2
                                               -71.8
     -13.8
                 -97
                          -33.2
                                      -20
                                                -7.8
               -17.4
                          -57.2
                                     -38.8
     -56.2
                                                   9
      93.6
                97.4
                           69.8
                                      -67
                                                 -18
     -35.4
               -97.8
                          -17.4
                                    -57.8
                                               -85.4
Enter the number you want to find: 9
The first entry of the desired element X into the array has an index: 2; 4
New array:
                99.4
                           76.6
                                     56.2
                                               -71.8
         8
     -13.8
                 -97
                          -33.2
                                      -20
                                                -7.8
     -56.2
               -17.4
                          -57.2
                                     -38.8
                                                   9
      93.6
                97.4
                           69.8
                                      -67
                                                 -18
               -97.8
                          -17.4
                                     -57.8
                                               -85.4
Press any key to continue . . .
```

7. Висновки. На цій лабораторній роботі було досліджено алгоритми обходу масивів та було набуто практичних навичок використання цих алгоритмів під час складання програмних специфікацій.

Побудований алгоритм було покладено на мову програмування C++ та написано код, який опрацьовує виконання заданих дій. Готову програму було випробувано з уведенням п'ятьох різних початкових даних.

У першому тестуванні було введено розмірність двовимірного масиву 5×5 , на що програма згенерувала та вивела масив такої розмірності. Далі було введено значення X=-61. Даний елемент був знайдений під індексом 4;2, тобто в 5-му рядку 2-го стовпця. Далі його було переставлено місцями з елементом цього ж (2-го) стовпця середнього рядка (в даному випадку середнім є 3-ій рядок). Змінений двовимірний масив було виведено на екран.

У другому тестуванні було введено розмірність 6×5 , на що програма згенерувала та вивела масив заданої розмірності. Далі було введено значення X=45. Даний елемент було знайдено під індексом 4;1, тобто в 5-му рядку 1-го стовпця. Далі його було переставлено місцями з елементом цього ж (1-го) стовпця середнього рядка (в даному випадку введена кількість рядків (6) — парне число, тому єдиного середнього рядка немає, отже, на етапі побудови алгоритму було вирішено в таких випадках за середній брати рядок, який знаходиться вище половини рядків,

тобто в даному випадку – середнім буде 3-ій рядок). Змінений двовимірний масив було виведено на екран.

У третьому тестуванні програми було введено розмірність 6×7 , на що програма згенерувала та вивела масив уведеної розмірності. Далі було введено значення X=25. Такий елемент не було знайдено у згенерованому масиві, тому було виведено відповідне повідомлення.

У останньому тестуванні було введено розмірність 5×5 , на що програма знову ж таки згенерувала та вивела двовимірний масив заданої розмірності. Далі було введено значення X=9. Даний елемент був знайдений під індексом 2;4, тобто в 3-му рядку 5-го стовпця. Оскільки шуканий елемент знаходився в 3-му рядку, який є середнім серед 5-ти рядків, то необхідності переставляти цей елемент не виникло. Тому двовимірний масив було виведено без змін.

Отже, побудований алгоритм працює правильно і виконує поставлену задачу.