X-Ray Image Classification with Deep Learning

Flatiron School Phase 4 Project
Josh Blumer

Introduction

- A data analysis and modeling of pediatric chest x-rays for the presence of pneumonia using the 'Large Dataset of Labeled Optical Coherence Tomography and Chest X-Ray Images' dataset provided by Mendeley Data
- The goal of this project is to train a neural network to classify x-ray images as containing pneumonia or not containing pneumonia as accurately as possible
- Robust and accurate model could save time, money, and resources for health networks and patients

Methodology

- Prepare data to be modeled
- Explore different CNN modeling architectures
- Iterate through different ranges of data augmentation and hyper-parameter values

EDA & Preprocessing

- Assess dataset split (5,216 training, 16 validation, 624 testing) and label distributions
- Found that dataset split and label distribution display class imbalance

- Utilize data augmentation to provide added variance
- Data augmentation alters images to give you multiple variations of same image

Modeling

 Model augmented image data iteratively through different values of select hyperparameters with goal of optimizing accuracy and reducing loss as much as possible

 Explore different regularization techniques and transfer learning in attempt to reduce model over-fitting so data can generalize well to unseen examples

Model Evaluation

- After iterating through many combinations of data augmentation and model configurations, select model with best combination of high accuracy and low loss to evaluate
- Evaluate best model with confusion matrix and classification report
- Best model returned 92% accuracy, 81.2% precision (44 false positives), and 95.5% recall (9 false negatives)

Confusion Mat [[190 44] [9 381]] Classificatio				
	precision	recall	f1-score	support
NORMAL PNEUMONIA	0.95	0.81	0.88	234 390
accuracy			0.92	624
macro avg	0.93	0.89	0.91	624
weighted avg	0.92	0.92	0.91	624

Conclusion

- With the ability to correctly identify 95.5%
 of present pneumonia cases our model did
 very well, but it did label several images as
 normal that had pneumonia present (false
 negative) which could have dire
 consequences for those patients, so there
 is still room for improvement
- X-ray assessment can be a costly and time consuming process for radiologists. A machine learning model that saved them time and could improve diagnosis accuracy would benefit them, health care networks, and patients