

Strong and Weak Ties

We want to know

How information flows through a social

network

 How different <u>nodes</u> can play <u>structurally</u> <u>distinct roles</u> in this process

How these <u>structural considerations</u> shape the <u>evolution</u> of the network itself over time

Networks structure

- Structure: composed of nodes and edges
 - They form groups of friends
 - There are close friends and acquaintances
 - How to bridge the local and the global ?
- Aim: to offer explanations for how simple processes at the level of individual nodes and links can have complex effects that ripple through a population as a whole

Network Structure

- Network structure evolves over time
- We take snapshot of nodes and edges at a particular time and form static structures.
- E.g. you are invited to be a friend of the friends of your friends.

Linking two perspectives on distant friendships

 Structural: the way these friendships span different portions of the full network

 The <u>local consequences</u> that following from a friendship between two people (strong vs weak ties)

Outlines

- 1. Network structure: Triadic Closure
- 2. Strength of Weak Ties
- 3. Tie Strength and Network Structure: examples
- 4. Closure and Structure Holes
- 5. Graph Partitioning

1. Triadic closure

 If two people in a social network have a friend in common, then there is an increased likelihood that they will become friends themselves at some point in the future.

2018/19 Term 2 CSCI4190 by Laiwan Chan

 Eventually, a number of new edges would be formed

- The cluster coefficient of a node A is defined as the probability that two randomly selected friends of A are friends with each other.
- Cluster Coefficient (A) = CC(A)

= pair of A's friends that are connected total no. of pair of A's friends

Fractions of your friends (in pairs) are friends themselves

- No. of friends of A = 4 (B,C,D,E)
- Pairs = 6 (BC,BD,BE,CD,CE,DE)
- Only CD are connected
- Cluster coefficient (A) = $\frac{1}{6}$

В

- No. of friends of A = 4 (B,C,D,E)
- Pairs = 6 (BC,BD,BE,CD,CE,DE)
- BC,CD,DE are connected

Cluster coefficient (A) = $\frac{3}{6} = \frac{1}{2}$

Cluster Coefficient (A) = CC(A)

= pair of A's friends that are connected total no. of pair of A's friends

Reasons for Triadic closure

When B and C have a common friend A

- More opportunity for B and C to meet
- A base for B and C to trust each other
- A source of latent stress for A if B and C are not friends
 - Bearman and Moody found that teenage girls with low clustering coefficient are more likely to contemplate suicide.

Outlines

- 1. Network structure: Triadic Closure
- 2. Strength of Weak Ties
- 3. Tie Strength and Network Structure: examples
- 4. Closure and Structure Holes
- 5. Graph Partitioning

2. Strength of Weak Ties

- How does triadic closure influence the network?
- Two more concepts
 - Links between two tightly-knit groups of friends :
 Bridges and Local bridges
 - Strength of the edges: strong ties and weak ties

Bridge

- A has four friends
 - C, D, E come from a tightly-knit group of friends
 - A, C, D, E share similar opinions and source of information
 - B comes from a different part of the network
 - B offers A access to new information

Bridge

- Bridge: the edge joining two nodes if deleting that edge would cause the two nodes in two different components.
- E.g. the edge A-B

Local Bridge

- Bridges are rare in real social networks due to the giant components and small-world properties.
- Local bridge: the edge joining nodes A and B, if its endpoints A and B have no friends in common.

Local Bridge

- Bridges are rare in real social networks due to the giant components and small-world properties.
- Local bridge: the edge joining nodes A and B, if its endpoints
 A and B have no friends in common.
 - If deleting the edge would increase the distance between A and B to a value strictly more than two.

Local Bridge

- Bridges are rare in real social networks due to the giant components and small-world properties.
- Local bridge: the edge joining nodes A and B, if its endpoints
 A and B have no friends in common.
 - If deleting the edge would increase the distance between A and B to a value strictly more than two.

- The span of a local bridge = the distance between the end points if that edge were deleted.
- The span of a local bridge must be more than 2.

Span(A-B edge) = 4

Local Bridges and triadic closure

- A local bridge cannot be part of a triangle by definition.
- Local bridges (especially those with large span)
 provide their endpoints with sources of
 information that would be far apart.
- Job seeking example: information of new jobs come from acquaintances.

Job hunting example by Mark Granovetter

- Mark Granovetter found in the late 60s that
 - many people learned information leading to their new jobs through personal contacts by interviewing people who had recently changed employers.
 - But these personal contacts were <u>acquaintances</u> rather than <u>close friends</u>.

 What is the relationship between acquaintances and local bridges ?

2018/19 Term 2 CSCI4190 by Laiwan Chan 26

Strong/Weak ties and triadic closure

 The consequences that following from a friendship between two people (strong vs weak ties)

Strong/Weak ties and triadic closure

 If a node A has edges to nodes B and C, then B-C edge is especially likely to form if A's edge to B and C are both strong ties.

Strong Triadic Closure Property

- We say that a <u>node A violates</u> the Strong <u>Triadic Closure Property</u> if it has strong ties to two other nodes B and C, and there is no edge at all (either a strong or weak tie) between B and C.
- We say that a node A <u>satisfies</u> the Strong
 Triadic Closure Property if it does not violate it.

Strong Triadic Closure Property

Satisfy!

32

Violate!

Local Bridges and Weak Ties

• If a node A in a network satisfies the Strong Triadic Closure Property and is involved in at least two strong ties, then any local bridge it is involved in must be a weak tie.

The assumption of Strong Triadic Closure Property is too strong!

Outlines

- 1. Network structure: Triadic Closure
- 2. Strength of Weak Ties
- 3. Tie Strength and Network Structure: examples
- 4. Closure and Structure Holes
- 5. Graph Partitioning

3. Tie strength and network structure in large scale data

- a) Job hunting example by Mark Granovetter
- b) Who-talks-to-whom example by Onnela
- c) Facebook data analysis by Cameron Marlow
- d) Twitter data analysis by Huberman, Romero, and Wu

a. Job hunting example by Mark Granovetter

- New jobs are often rooted in contact with distant acquaintances.
- New sources of information
- Local bridge in the social network

Weak ties

2018/19 Term 2

CSCI4190 by Laiwan Chan

b. Who-talks-towhom

- Study the relationship between tie strength and network structure
- Who-talks-to-whom by Onnela et al. published in 2007
 - Call records from a cell-phone provider
 - 20 % of a national population
 - Personal communication rather than business purpose

call duration

Betweenness (high betweenness for links connecting communities and low values for links within the communities)

Who-talks-to-whom

- Nodes : cell-phone users
- Edge: if two users call each other in both directions over an 18 week observation period.
- Strength of an edge : total number of minutes
 spent on phone calls between the two users
- Local bridges are rare and so use neightborhood overlap instead

- Neighborhood overlap of an edge connecting A and B
- $= \frac{no. of \ nodes \ who \ are \ neighbors \ of \ both \ A \ and \ B}{no. of \ nodes \ who \ are \ neighbors \ of \ at \ least \ one \ of \ A \ or \ B}$

2018/19 Term 2 CSCI4190 by Laiwan Chan

Neighbors of A: B, C, D, E, F

Neighbors of F: A, C, J, G

Total no. of A and F's neighbors: 6
(B,C,D,E,J,G)
(exclude A and F)

No of common neighbors: 1 (C)

Neighborhood overlap = $\frac{1}{6}$

Neighbors of A: B, C, D, E, F

Neighbors of F: A, C, J, G

Total no. of A and F's neighbors: 6

(exclude A and F)

No of common neighbors: 1 (C)

Neighborhood overlap = $O(A,F) = \frac{1}{6}$

O(Local bridge) = 0 O(Almost Local bridge) = small

$$O(A,F) = \frac{1}{6}$$
, $O(A,E) = \frac{1}{2}$
Edge A-F is much closer to being a local bridge than edge A-E

Tie strength and network structure

- Neighborhood overlap increases with the strength
- the stronger the tie between two users, the more their friends overlap
- a correlation that is valid for 95% of the links

Tie strength and network structure

- Local level: tie strength increases with neighborhood
- Global level: weak ties serve to link together different tightly-knit communities?

Are weak ties linking different tightly-knit communities?

- 1. Delete edges one at a time, starting with strongest ties
 - the giant component shrank steadily
- 2. Deleted edges one at a time, starting with weakest ties
 - the giant component shrank more rapidly

Weak ties provide the more crucial connective structure

- for holding together disparate communities and
- for keeping the global structure of the giant components intact.

c. Tie strength on Facebook

- Cameron Marlow in his 2009 article
 "maintained relationships on Facebook"
 studied the types of relationships people
 maintain and the relative size of these groups.
 - They analyzed the friendship links reported in each user's profile, asking to what extent each link was actually used for social interaction.
 - Where are the strong ties among a user's friends?

- Four categories of links
 - All friends
 - reciprocal (mutual) communication: if both users sent and received messages to each other during the observation period.
 - one-way communication: if the user sent one or more messages to the friend at the other end of the link (whether or not these messages were reciprocated).
 - a maintained relationship: if the user followed information about the friend at the other end of the link, whether or not actual communication took place;
 - "following information" here means either clicking on content via Facebook's News Feed service or visiting the friend's profile more than twice.

Active Network Sizes

One's personal network

- Two clusters
 - One highly connected set of coworkers with frequent contacts
 - Another group without active contact.

- A contrast between
 - Mutual communication
 - Strong ties
 - Passive engagement
 - Reading news via social media
 - News/events can propagate very quickly through this highly connected network

d. Tie strength on Twitter

Twitter users

- Followers (people who follow the person)
- Followees (people followed by the person)
- Friends (people who have received at least two direct messages)

• Twitter posts:

- Direct public posts are used when a user aims her update to a specific person using an "@" symbol. Around 25.4 % of all posts are directed.
- Indirect updates are used when the update is meant for anyone that cares to read it.

TWEETS

TWEETS & REPLIES

MEDIA

LIKES

"Former @NYTimes editor Jill Abramson rips paper's 'unmistakably anti-Trump' bias."

Ms. Abramson is 100% correct. Horrible and totally dishonest reporting on almost everything they write. Hence the term Fake News. Enemy of the People, and Opposition Party!

Donald J. Trump ♥ @realD... · 06 Jan ∨ Great Tweet today by Tyler Q. Houlton @SpoxDHS on the #FakeNews being put out by @CNN, a proud member of the Opposition Party. @TSA is doing a great job!

◆ 9,538 **1** 12K

♥ 54.1K

Tie strength on Twitter

- Huberman, Romero, and Wu in their 2009 article "social networks that matters: twitter under the microscope"
- a total of 309,740 users, who on average
 - posted 255 posts
 - 85 followers
 - followed 80 other users
- Among the 309,740 users only 211,024 posted at least twice (active users).
 - The active time of an active user is the time that has elapsed between his first and last post. On average, active users were active for 206 days.
- Strong ties: users with direct multiple messages to others
- Weak ties: users following others without direct communication

No. of posts verses no. of followers

saturation

2018/19 Term 2 CSCI4190 by Laiwan Chan 55

No. of posts verses no. of friends

No saturation

Friends = those whom the user has directed at least two posts to.

No. of friends verses no. of followees

saturation

- Even for users who maintain very large numbers of weak ties on-line, the number of strong ties remains relatively modest.
- Each strong tie requires investment of time and effort.
- The formation of weak ties is governed by much milder constraints
 - they need to be established at their outset but not necessarily maintained continuously

Outlines

- 1. Network structure: Triadic Closure
- 2. Strength of Weak Ties
- 3. Tie Strength and Network Structure: examples
- 4. Closure and Structure Holes
- 5. Graph Partitioning

4. Closure and Structural Holes

Edges

- bridges and local bridges
- Strong ties and weak ties

Nodes

- What are the roles of different nodes ?
- Some nodes are positioned at the interface between multiple groups (B)
- Others are positioned in the middle of a single group (A)

Embeddedness

• <u>Embeddedness</u> of an edge in a network is the number of common neighbors the two endpoints have.

Embeddedness(A-B)=2 (common neighbors are E and F)

Neighborhood overlap $= \frac{no.of\ common\ neighbors}{total\ no.of\ neighbors}$

Embeddedness(Local bridge) =0

Embeddedness

- If two individuals are connected by an embedded edge, it is easier for them to trust one another
 - lots of mutual friends
 - E.g. A and his friends
- If two are connected by an edge with zero embeddedness, their interactions are risky.
 - e.g. B and C, B and D
- If one is involved in different groups (e.g. B), one might have contradictory norms and expectations from the groups.

Structure Hole

 Structure Hole: separation between nonredundant contacts

Three classes of structure holes in the network

- Holes between contacts and contacts
- Holes between contacts and contacts
- Holes between contacts and contacts

Structure Hole

- Networks rich in structural holes are a form of social capital in that they offer information benefits.
- The main player (Node B) in a network that bridges structural holes enables him to
 - access information originating in multiple, non-interacting parts of the network.
 - have opportunities for innovations arose from the unexpected synthesis of multiple ideas, each of them on their own perhaps well-known, but well-known in distinct and unrelated bodies of expertise.
 - have an opportunity for a kind of social "gate-keeping"; a source of power in the organization.

5. Betweenness measures and Graph Partitioning

• Theme:

- Tightly-knit regions
- Graph partitioning: algorithm that break a network down into a set of tightly-knit regions, with sparser interconnections between the regions.

Co-authorship network of physicists and applied mathematicians

2018/19 Term 2 CSCI4190 by Laiwan Chan 66

Karate Club

- A dispute between the club president (node 34) and the instructor (node 1)
- Two conflicting groups are still heavily inter-connected.

 Graph partitioning: Describing a method that can take a network and <u>break</u> it into a set of tightly-knit regions, with sparser interconnections between the regions.

Nested structure of a network

- General Approaches to Graph Partitioning
 - divisive methods: identifying and removing the "spanning links" between densely-connected regions. Once these links are removed, the network begins to fall apart into large pieces;
 - agglomerative methods: focusing on the most tightly-knit parts of the network. find nodes that are likely to belong to the same region and merge them together

Divisive methods

Agglomerative methods

Divisive methods

 For divisive methods, bridges are good candidates for removal.

Divisive methods

- Can we simply remove the bridges and local bridges ?
 - Which one first if we have a number of bridges ?
 - What if there is no bridges nor local bridges ?

- Bridges and local bridges form part of the shortest path between pairs of nodes in different parts of the network.
- Define "traffic" on the network and look for the edges that carry most of the traffic.

Traffic in a Network

For each pair of nodes A and B

- 0 unit of traffic "flow" if A and B belong to different component
- Otherwise, 1 unit of traffic "flow" from A to B
 - the flow divides itself evenly along all the possible shortest paths from A to B
 - if there are k shortest paths between A and B,
 then 1/k units of flow along each one.

Traffic flow from A to E

Shortest path between

A and E

• A− D − E (1 unit)

Traffic flow from A to B

Shortest path between

A and B

- A-C-B (1/2 units)
- A -D B (1/2 units)

Betweenness

- Betweenness of an edge: total amount of flow that the edge carries, counting flow between all pairs of nodes using this edge.
- Betweenness of a node: total amount of flow that the node carries, when a unit of flow between each pair of nodes is divided up evenly over shortest paths (same as for edges)
 - nodes of high betweenness occupy critical roles in the network, as it interfaces between tightly-knit groups.

2 Shortest paths between A and B

- A-C-B (1/2 units)
- A D B (1/2 units)

1 Shortest path between A and E

• A-D-E (1 unit)

1 Shortest path between B and E

• B-D-E (1 unit)

1 Shortest path between C and E

• C-D-E(1 unit)

2 Shortest paths between A and B

- A-C-B (1/2 units)
- A D B (1/2 units)

2 Shortest paths between A and B

- A-C-B (1/2 units)
- A D B (1/2 units)

1 Shortest path between A and E

• A-D-E (1 unit)

2 Shortest paths between A and B

- A-C-B (1/2 units)
- A D B (1/2 units)

1 Shortest path between A and E

• A-D-E (1 unit)

1 Shortest path between B and E

• B-D-E (1 unit)

- 2 Shortest paths between A and B
- A-C-B (1/2 units)
- A D B (1/2 units)
- 1 Shortest path between A and E
- A-D-E (1 unit)
- 1 Shortest path between B and E
- B-D-E (1 unit)
- 1 Shortest path between C and E
- C-D-E(1 unit)

Edge Betweenness

• Betweenness(edge 7-8) = 7x7=49

Edge Betweenness

• Betweenness(edge 3-7) = 3x11=33

Edge Betweenness

• Betweenness(edge 1-2) = 1x1=1

Girvan-Newman Method

- Find the edge of highest betweenness (or multiple edges of highest betweenness, if there is a tie) and remove these edges from the graph.
 - This may cause the graph to separate into multiple components.
- Recalculate all betweennesses, and again remove the edge or edges of highest betweenness.
 - This may break some of the existing components into smaller components; if so, these are regions nested within the larger regions.
- (...) Proceed in this way as long as edges remain in graph, in each step recalculating all betweennesses and removing the edge or edges of highest betweenness.

Karate Club Example

- Dispute between the club president (node 34) and the instructor (node 1)
- Use Girvan-Newman Method to remove edges until the graph separates into two pieces.
- The result agrees with the actual split except node 9, who has to follow the instructor when he was only three weeks away from completing a four year quest to obtain a black belt

How to Computing the Betweenness values for the Girvan-Newman method?

- It involves the set of all shortest paths and there are too many shortest paths when the graph is large.
- We need a systematical approach to compute the numbers of shortest paths and the flow.
- Determine the flow from A to other nodes
 - Perform a breadth-first search of the graph, starting at A.
 - Determine the number of shortest paths from A to each other node.
 - Based on these numbers, determine the amount of flow from A to all other nodes that uses each edge.

Example

Step 1: BFS from A

Step 2: determine the number of shortest paths from A to other nodes

Step 3: determine the flow

Step 3: determine the flow

Step 3: determine the flow

Repeat the steps starting from B

Start from the lowest layer

- 1 unit of flow from E
 - 1 goes to D

Start from D

Start from E

	Edge AC	Edge AD	Edge CD	Edge CB	Edge BD	Edge DE
BFS from A	1.5	2.5	0	0.5	0.5	1
BFS from B	0.5	0.5	0	1.5	2.5	1
BFS from C	1	0	2	1	0	1
BFS from D	0	1	1	0	1	1
BFS from E	0	1	1	0	1	4
Total	3	5	4	3	5	8
Total/2	1.5	2.5	2	1.5	2.5	4

We have to divide the results by 2 as we have counted the flow twice using from X to Y and from Y to X

The edge betweenness

1 Shortest path between

2 Shortest paths between A and B

- A-C-B (1/2 units)
- A D B (1/2 units)

1 Shortest path between A and E

• A-D-E (1 unit)

1 Shortest path between B and E

• B-D-E (1 unit)

1 Shortest path between C and E

• C-D-E(1 unit)

Another example Step 1 : BFS

Step 2 : determine the number of shortest paths from A to other nodes

Step 3 : Determine Flow Values

Divisive clustering based on edge betweenness

Idea: progressively removing edges with the highest betweenness