Leinster - Basic Category Theory - Selected problem solutions for Chapter 3

Adam Barber

February 8, 2022

4.1.27

Take the naturality square of H_A , and construct with A, A' in the following way. For every map $f: A \to A'$, the following square commutes.

$$H_{A}(A) \xrightarrow{H_{A}(f) = -\circ f} H_{A}(A')$$

$$\downarrow \alpha_{A} = f \circ - \qquad \downarrow \alpha_{A'} = f \circ -$$

$$H_{A'}(A) \xrightarrow{H_{A'}(f) = -\circ f} H_{A'}(A')$$

Moreover, since $H_A \cong H_{A'}$, α_A is an isomorphism for every A in the codomain of f. Consider the left hand side component α_A , which represents a map of $\mathbf{1} \to H_{A'}(A)$. Now a map of $\mathbf{1}$ into A is the same thing as an object of A, so we take $\alpha_A = A(A, A')$, that is α_A represents an isomorphism in A, and $A \cong A'$.

4.1.28

Here we construct a bijection between the set $U_p(G)$ and a group homomorphism ϕ .

$$U_p(G) \xrightarrow{h} U_p(H)$$

$$\downarrow^{\alpha_G} \qquad \qquad \downarrow^{\alpha_H}$$

$$\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, G) \xrightarrow{h} \mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, H)$$

 $U_p(G)$ is the set of $\{g \in G : g^p = 1\}$.

For the present question, take an arbitrary g in G. Set $\phi(1) = g$. By the properties of a homormorphism we shall see this maps the additive group $\mathbb{Z}/p\mathbb{Z}$ to $U_p(G)$. ϕ preserves the identity so $\phi(0) = 1$. Since $\phi(1+1) = g^2$, generally $\phi(n) = g^n$. So $\phi(p) = g^p = \phi(0) = 1$. So ϕ maps to a group with order p, or simply order 1 if g is the element of the trivial group. So $\mathbb{Z}/p\mathbb{Z}$ sees groups of

order p or 1. This result means we have the required bijection, α and α^{-1} in the diagram above. Observing the diagram we just need to specify how morphisms in $\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, -)$ work. They are simply group homomorphisms h, that take $\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, G)$ to $\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, H)$. So referring to the diagram, naturality holds, and we can conclude $\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, -)$ and U_p are naturally isomorphic. ¹

A well known result is as follows. For a group homomorphism $\psi: G_1 \to G_2$, let $g \in G_1$ be of finite order n. Then $\psi(g)$ divides the order of g. Because $g^n = e_1$ implies $\psi(g)^n = \psi(g^n) = \psi(e_1) = e_2$. So if p is prime then the resulting homomorphism maps to a group of order p or 1.