Project2

himanshu yadav 2024-05-13

Importing required libraries

```
library(tidyverse)  # ggplot(), %>%, mutate(), and friends
library(scales)  # Format numbers with functions like comma(), percent(), and dollar()
library(broom)  # Convert models to data frames
library(modelsummary) # Side-by-side regression tables
library(foreign)  # for importing stata data
library(readr)
library(haven)
library(modelsummary)
library(stargazer)
library(tidyverse)
```

Importing dataset "INJURY"

dataset <- read_dta("C:/Github rep/Impact_Assesment-Project/Project_2-Impact_of_Workers'_Compensation_Polic
y_Change_on_Benefit_Duration/INJURY.DTA")</pre>

Cleaning the data so that it only includes rows from (ky == 1)

injury <- dataset %>% filter(ky==1)

Renaming the columns

```
injury <- injury %>% rename(duration = durat, log_duration = ldurat,after_1980 = afchnge)
```

Viewing the dataset

injury

duration <dbl></dbl>	after_1980 <dbl></dbl>	highearn <dbl></dbl>		married <dbl></dbl>	hosp <dbl></dbl>	indust <dbl></dbl>	injtype <dbl></dbl>	age <dbl></dbl>	prewage <dbl></dbl>
1.00	1	1	1	0	1	3	1	26	404.9500
1.00	1	1	1	1	0	3	1	31	643.8250
84.00	1	1	1	1	1	3	1	37	398.1250
4.00	1	1	1	1	1	3	1	31	527.8000
1.00	1	1	1	1	0	3	1	23	528.9375
1.00	1	1	1	1	0	3	1	34	614.2500
7.00	1	1	1	1	0	3	1	35	546.0000
2.00	1	1	1	1	1	3	1	45	659.7500
175.00	1	1	1	1	1	3	1	41	478.8875

duration <dbl></dbl>	after_1980 <dbl></dbl>	highearn <dbl></dbl>	male <dbl></dbl>	married <dbl></dbl>	hosp <dbl></dbl>	indust <dbl></dbl>	injtype <dbl></dbl>	-	prewage <dbl></dbl>
60.00	1	1	1	1	1	3	1	33	481.1625
-10 of 5,626 rows	1-10 of 30 colum	ıns			Previo	us 1 2	3 4	5	6 563 Next

Converting "industry" and "injury type" to categories/factors

```
df <- injury %>% mutate(indust = as.factor(indust),injtype = as.factor(injtype))
```

1. Calculating the policy effect on duration, without running any regression, here we see the mean duration of the weeks for both treated and control group before and after 1980 (treatement)

```
difr <- df %>% group_by(after_1980,highearn) %>% summarize(mean.duration = mean(duration))
## `summarise()` has grouped output by 'after_1980'. You can override using the
## `.groups` argument.
print(difr)
## # A tibble: 4 × 3
## # Groups: after_1980 [2]
## after_1980 highearn mean.duration
      <dbl> <dbl>
         0
                 0
## 1
                             6.27
                  1
          0
## 2
                             11.2
           1
## 3
                  0
                             7.04
                  1
## A
                             12.9
```

[after_1980(0);highearn(0)]: pre-treatement control group mean_duration : 6.47 weeks

[after_1980(0);highearn(1)]: pre-treatement treatement group mean_duration : 11.76 weeks

[after_1980(1);highearn(0)]: post-treatement control group mean_duration : 7.03 weeks

[after_1980(1);highearn(1)]: post-treatement treatement group mean duration : 12.89 weeks

policy_effect =[(avg_duration(post-treatement treated group)avg_duration(pre-treatement treated group)]-[avg_duration(posttreatement control group)-avg_duration(pre-treatement control group)]

policy_effect = [avg_duration of treated group (POST-PRE)]-[avg_duration
of control group(POST-PRE)]

```
pre_treatement_treated_group <- difr %>%
    filter(after_1980 == 0, highearn == 1) %>%
    pull(mean.duration)

pre_treatement_control_group<- difr %>%
    filter(after_1980 == 0, highearn == 0) %>%
    pull(mean.duration)

post_treatement_treated_group <- difr %>%
    filter(after_1980 == 1, highearn == 1) %>%
    pull(mean.duration)

post_treatement_control_group <- difr %>%
    filter(after_1980 == 1, highearn == 0) %>%
    filter(after_1980 == 1, highearn == 0) %>%
    pull(mean.duration)
```

```
treatement_group_before_after <- post_treatement_treated_group - pre_treatement_treated_group
control_group_before_after <-post_treatement_control_group- pre_treatement_control_group</pre>
```

Policy Effect(DiD Estimate:)

```
policy_effect_nive <- treatement_group_before_after - control_group_before_after
print(policy_effect_nive)

## [1] 0.9512506</pre>
```

2. Calculating the policy effect on duration, without running any regression, here we see the mean log_duration in weeks for both treated and control group before and after 1980(treatemnt)

```
difr_log <- df %>% group_by(after_1980,highearn) %>% summarize(mean.log_duration = mean(log_duration))
```

```
## `summarise()` has grouped output by 'after_1980'. You can override using the
## `.groups` argument.
```

head(difr_log)

after_1980 <dbl></dbl>	highearn <dbl></dbl>	mean.log_duration <dbl></dbl>
0	0	1.125615
0	1	1.382094
1	0	1.133273
1	1	1.580352
4 rows		

[after_1980(0);highearn(0)]: pre-treatement control group mean_log_duration : 1.12 weeks

[after_1980(0);highearn(1)]: pre-treatement treated group mean_log_duration : 1.38 weeks

[after_1980(1);highearn(0)]: post-treatement control group mean_log_duration : 1.13 weeks

[after_1980(1);highearn(1)]: post-treatement treated group mean_log_duration : 1.58 weeks

policy_effect =[(log_avg_duration(post-treatement treated group)log_avg_duration(pre-treatement treated group)]-[log_avg_duration(posttreatement control group)-log_avg_duration(pre-treatement control group)]

policy_effect = [log_avg_duration of treated group (POST-PRE)][log_avg_duration of control group(POST-PRE)]

```
pre_treatement_treated_group_log <- difr_log %>%
    filter(after_1980 == 0, highearn == 1) %>%
    pull(mean.log_duration)

pre_treatement_control_group_log<- difr_log %>%
    filter(after_1980 == 0, highearn == 0) %>%
    pull(mean.log_duration)

post_treatement_treated_group_log <- difr_log %>%
    filter(after_1980 == 1, highearn == 1) %>%
    pull(mean.log_duration)

post_treatement_control_group_log <- difr_log %>%
    filter(after_1980 == 1, highearn == 0) %>%
    filter(after_1980 == 1, highearn == 0) %>%
    pull(mean.log_duration)
```

Policy Effect log(DiD log Estimate:)

```
policy_effect_log <- log_treatement_group_before_after - log_control_group_before_after
print(policy_effect_log)</pre>
```

[1] 0.1906012

Plotting

Distribution of Duration by Category

```
ggplot(data = df, aes(x = duration)) +
  geom_histogram(binwidth = 10, color = "white", boundary = 0) +
  facet_wrap(~ highearn)
```


Ploting log duration based on category

```
ggplot(data = df, mapping = aes(x = log_duration)) +
geom_histogram(binwidth = 0.5, color = "white", boundary = 0) +
scale_x_continuous(labels = trans_format("exp", format = round)) +
facet_wrap(~ highearn)
```


Here we just calculate Mean

```
ggplot(df, aes(x = factor(highearn), y = log_duration)) +
geom_point(size = 0.5, alpha = 0.2) +
stat_summary(geom = "point", fun = "mean", size = 5, color = "blue") +
facet_wrap(vars(after_1980))
```


3.Basic Regression analysis to calculate the estimates without any control

Basic Regression model

duration = $\beta_0 + \beta_1$ after 1980 + β_2 highearn + δ after change · highearn + u

basic_model_1 <- lm(duration ~ after_1980 + highearn + after_1980*highearn, data = df)
tidy(basic_model_1)</pre>

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	6.2715543	0.5228724	11.9944256	9.513224e-33
after_1980	0.7657738	0.7606973	1.0066735	3.141350e-01
highearn	4.9050475	0.8071237	6.0771945	1.303381e-09
after_1980:highearn	0.9512506	1.1654234	0.8162274	4.144046e-01
4 rows				

The notation $\delta 1$ = 0.9513, indicates that the policy change might have increased the duration of benefits for high-income workers by about 0.9513 weeks more than for low-income workers. However, this effect is not statistically significant (p=0.414). The coefficient on after_1980 is small 0.7658 and statistically insignificant which means the increase in the earnings cap has no effect on duration for low-income workers.

$$log(duration) = \beta_0 + \beta_1 after 1980 + \beta_2 highearn + \delta_1 after change \cdot highearn + u$$

basic_model_2 <- lm(log(duration) ~ after_1980 + highearn + after_1980*highearn, data = df)
tidy(basic_model_2)</pre>

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	1.125615399	0.03073683	36.6210678	1.617413e-263
after_1980	0.007657314	0.04471726	0.1712384	8.640424e-01
highearn	0.256478532	0.04744641	5.4056465	6.723704e-08
after_1980:highearn	0.190601200	0.06850891	2.7821376	5.418222e-03
4 rows				

The notation δ signifies that the average duration of workers' compensation among high earners rose approximately by 19.06% due to the increased earnings cap. The coefficient on after_1980 is small 0.007 and statistically insignificant which means the increase in the earnings cap has no effect on duration for low-income workers.

4.regression adujstment procedure to evaluate the impact of policy change on the duration, and log duration.

Regression Adjustment Model 1

duration =
$$\beta_0 + \beta_1$$
after1980 + β_2 highearn + δ_1 afterchange · highearn + γ_1 male + γ_2 married + γ_3 age² + γ_4 hosp + γ_5 indust

Creating a new column age squared

```
df <- df %>% mutate(age_squared = age^2)
```

```
adv_model_1 <- lm(duration ~ after_1980 + highearn +
after_1980*highearn + male + married + age_squared +
hosp + indust + injtype + lprewage, data =df)
print(summary(adv_model_1))</pre>
```

```
##
## Call:
## lm(formula = duration ~ after_1980 + highearn + after_1980 *
##
      highearn + male + married + age_squared + hosp + indust +
      injtype + lprewage, data = df)
##
## Residuals:
      Min
              1Q Median
                             3Q
## -27.603 -6.471 -2.251 1.503 181.142
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                 -1.863e+01 7.171e+00 -2.598 0.009390 **
## (Intercept)
                                          1.566 0.117441
## after_1980
                     1.101e+00 7.031e-01
                    -1.100e+00 1.517e+00 -0.726 0.468082
## highearn
## male
                   -9.995e-01 7.165e-01 -1.395 0.163113
                    1.581e+00 6.286e-01 2.515 0.011938 *
## married
## age_squared
                     3.412e-04 2.820e-04 1.210 0.226412
                     1.346e+01 6.296e-01 21.379 < 2e-16 ***
## hosp
## indust2
                      7.637e-01 9.210e-01 0.829 0.407036
                     2.781e+00 6.440e-01 4.318 1.6e-05 ***
## indust3
## injtype2
                    5.904e+00 2.446e+00 2.414 0.015813 *
## injtype3
                     1.104e+00 1.454e+00 0.760 0.447436
                   -5.895e-01 1.580e+00 -0.373 0.709034
## injtype4
                     3.461e+00 1.454e+00 2.381 0.017308 *
## injtype5
                     3.725e-01 1.469e+00 0.254 0.799757
## injtype6
                     1.071e+01 3.241e+00 3.303 0.000962 ***
## injtype7
## injtype8
                   -1.464e-02 2.023e+00 -0.007 0.994227
                      3.454e+00 1.362e+00 2.536 0.011226 *
## lprewage
## after_1980:highearn 1.790e+00 1.088e+00 1.644 0.100192
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.56 on 5329 degrees of freedom
    (279 observations deleted due to missingness)
## Multiple R-squared: 0.1102, Adjusted R-squared: 0.1074
## F-statistic: 38.83 on 17 and 5329 DF, p-value: < 2.2e-16
```

After controlling for all the X's (male ,married , age_squared ,hosp,indust,injtype,lprewage), the coeffcicent of interation term comes out to be 1.79 whic is insignificant.

Regression Adjustment Model 2

```
\begin{split} log(duration) = & \;\; \beta_0 + \; \beta_1 after 1980 + \; \beta_2 highearn + \; \delta_1 after change \cdot highearn \\ & + \gamma_1 male + \;\; \gamma_2 married + \;\; \gamma_3 age^2 + \;\; \gamma_4 hosp + \;\; \gamma_5 indust \\ & + \gamma_6 injtype + \;\; \gamma_7 lprewage + \;\; u \end{split}
```

After controlling for all the X's (male ,married , age_squared ,hosp,indust, injtype,lprewage), the coeffcicent of interation term comes out to be 1.69 whic is significant , which means that the he average duration of workers' compensation among high earners rose approximately by 16.07% due to the increased earnings cap.

```
adv_model_2 <- lm(log_duration ~ after_1980 + highearn +
after_1980*highearn + male + married + age_squared + hosp
+ indust + injtype + lprewage, data =df)
print(summary(adv_model_2))</pre>
```

```
##
## Call:
## lm(formula = log_duration ~ after_1980 + highearn + after_1980 *
      highearn + male + married + age_squared + hosp + indust +
##
      injtype + lprewage, data = df)
##
## Residuals:
##
      Min
               10 Median
                              3Q
## -4.0550 -0.7754 0.0930 0.7318 4.3620
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    -1.460e+00 4.216e-01 -3.463 0.000538 ***
## after_1980
                     4.937e-02 4.134e-02 1.194 0.232437
                    -1.532e-01 8.916e-02 -1.718 0.085832 .
## highearn
## male
                    -9.264e-02 4.213e-02 -2.199 0.027931 *
## married
                     6.771e-02 3.696e-02 1.832 0.067005 .
## age_squared
                     7.357e-05 1.658e-05 4.437 9.32e-06 ***
                      1.131e+00 3.702e-02 30.546 < 2e-16 ***
## hosp
## indust2
                      1.831e-01 5.415e-02 3.380 0.000729 ***
                     1.629e-01 3.787e-02 4.301 1.73e-05 ***
## indust3
                    9.364e-01 1.438e-01 6.512 8.09e-11 ***
## injtype2
                    6.362e-01 8.547e-02 7.443 1.14e-13 ***
## injtype3
                    5.571e-01 9.288e-02 5.998 2.13e-09 ***
## injtype4
                      6.446e-01 8.547e-02 7.542 5.42e-14 ***
## injtype5
                     6.163e-01 8.634e-02 7.137 1.08e-12 ***
## injtype6
                    9.966e-01 1.906e-01 5.229 1.77e-07 ***
## injtype7
                      4.361e-01 1.190e-01 3.666 0.000248 ***
## injtype8
                      2.943e-01 8.005e-02 3.676 0.000239 ***
## lprewage
## after_1980:highearn 1.697e-01 6.400e-02 2.651 0.008043 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.15 on 5329 degrees of freedom
    (279 observations deleted due to missingness)
## Multiple R-squared: 0.1893, Adjusted R-squared: 0.1867
## F-statistic: 73.17 on 17 and 5329 DF, p-value: < 2.2e-16
```

Combining the data set to contain (ky==0) We here combine the data set including the state of michigan state sample.

```
dataset_combined <- dataset %>% rename(duration = durat,
log_duration = ldurat,after_1980 = afchnge)%>%
mutate(indust = as.factor(indust),injtype = as.factor(injtype))%>%
mutate(age_squared = age^2)
```

5. Robustness check

```
\begin{split} log(duration) &= \beta_0 + \beta_1 after 1980 + \beta_2 highearn + \delta_1 after change \cdot highearn \\ &+ \gamma_1 male + \gamma_2 married + \gamma_3 age^2 + \gamma_4 hosp + \gamma_5 indust \\ &+ \gamma_6 injtype + \gamma_7 lprewage + \delta_2 after 1980 \cdot ky + \delta_3 ky + u \end{split}
```

```
robust_model1 <- lm(log_duration ~ after_1980 + highearn +
after_1980*highearn + male + married + age_squared + hosp
+ indust + injtype + lprewage + ky +ky:after_1980, data =dataset_combined)
print(summary(robust_model1))</pre>
```

```
##
## Call:
## lm(formula = log_duration ~ after_1980 + highearn + after_1980 *
      highearn + male + married + age_squared + hosp + indust +
##
##
      injtype + lprewage + ky + ky:after_1980, data = dataset_combined)
##
## Residuals:
      Min
               10 Median
                              3Q
##
## -4.7673 -0.7489 0.0699 0.7357 4.2709
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                    -1.175e+00 4.514e-01 -2.603 0.009270 **
## (Intercept)
                      8.059e-02 6.422e-02 1.255 0.209597
## after_1980
## highearn
                     -1.326e-01 8.690e-02 -1.526 0.126941
                     -1.438e-01 3.852e-02 -3.732 0.000192 ***
## male
## married
                     4.594e-02 3.324e-02 1.382 0.167018
## age_squared
                    8.785e-05 1.501e-05 5.853 5.04e-09 ***
                      1.101e+00 3.346e-02 32.910 < 2e-16 ***
## hosp
                      2.640e-01 4.724e-02 5.588 2.38e-08 ***
## indust2
## indust3
                      1.551e-01 3.370e-02 4.603 4.24e-06 ***
## injtype2
                    8.898e-01 1.333e-01 6.674 2.68e-11 ***
## injtype3
                    6.550e-01 7.936e-02 8.254 < 2e-16 ***
                    5.969e-01 8.558e-02 6.975 3.35e-12 ***
## injtype4
                      6.315e-01 7.956e-02 7.938 2.39e-15 ***
## injtype5
                      6.068e-01 8.025e-02 7.562 4.49e-14 ***
## injtype6
                      1.115e+00 1.612e-01 6.918 5.00e-12 ***
## injtype7
                     5.605e-01 1.080e-01 5.190 2.16e-07 ***
## injtype8
## lprewage
                     2.758e-01 7.919e-02 3.483 0.000499 ***
                     -1.628e-01 5.932e-02 -2.745 0.006064 **
## ky
## after_1980:highearn 1.674e-01 5.887e-02 2.843 0.004476 **
## after 1980:ky -2.950e-02 6.997e-02 -0.422 0.673382
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.179 on 6802 degrees of freedom
    (328 observations deleted due to missingness)
## Multiple R-squared: 0.1832, Adjusted R-squared: 0.1809
## F-statistic: 80.27 on 19 and 6802 DF, p-value: < 2.2e-16
```

DDD

```
log(duration) = \beta_0 + \beta_1 * ky + \beta_2 * after 1980_t + \beta_3 * highEarn_i +
```

```
\gamma_1(ky_s*after1980_t) + \gamma_2(ky*highearn) + \gamma_2(after1980*highearn) + \delta_1(ky*after1980*highearn) + \psi*X + u
```

Considering the entire dataset including Michigan, we need to account for state-specific and income-specific time trends that might influence compensation benefits. To do this, we use Triple Differences, which involves comparing the differences between Kentucky and Michigan data to eliminate these confounding factors.

```
##
## Call:
## lm(formula = duration ~ ky + after_1980 + highearn + ky * after_1980 +
       ky * highearn + after_1980 * highearn + ky * after_1980 *
##
       highearn + male + married + age squared + hosp + indust +
##
       injtype + lprewage, data = dataset_combined)
##
## Residuals:
            1Q Median
                               3Q Max
##
     Min
## -41.970 -7.650 -2.916 1.287 179.648
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                        -1.483e+01 8.685e+00 -1.708 0.087693 .
## (Intercept)
                         -3.296e+00 1.295e+00 -2.545 0.010941 *
## ky
                          2.708e+00 1.421e+00 1.906 0.056712 .
## after_1980
## highearn
                           5.330e-01 2.303e+00 0.231 0.816988
                         -1.865e+00 7.407e-01 -2.518 0.011813 *
## male
## married
                          8.539e-01 6.387e-01 1.337 0.181296
## age_squared
                         8.690e-04 2.888e-04 3.009 0.002634 **
                          1.380e+01 6.430e-01 21.468 < 2e-16 ***
## hosp
                           2.311e+00 9.102e-01 2.539 0.011141 *
## indust2
                           2.485e+00 6.476e-01 3.838 0.000125 ***
## indust3
                         6.412e+00 2.562e+00 2.503 0.012331 *
## injtype2
                     1.889e+00 1.525e+00 1.239 0.215275

5.805e-01 1.644e+00 0.353 0.723992

4.376e+00 1.528e+00 2.863 0.004204 **

8.398e-01 1.542e+00 0.545 0.585941

1.297e+01 3.101e+00 4.181 2.94e-05 ***

2.665e+00 2.075e+00 1.284 0.199142

3.250e+00 1.522e+00 2.136 0.032710 *
## injtype3
## injtype4
## injtype5
## injtype6
## injtype7
## injtype8
## lprewage
## ky:after_1980:highearn 1.361e+00 2.868e+00 0.474 0.635199
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 22.64 on 6800 degrees of freedom
## (328 observations deleted due to missingness)
## Multiple R-squared: 0.09577,
                                    Adjusted R-squared: 0.09298
## F-statistic: 34.3 on 21 and 6800 DF, p-value: < 2.2e-16
```

here we see that the triple interaction term comes out to be 1.36 positive but insignificant, when controlling for all the other possible X's.

6. Generating Graph

```
graph_data <- dataset_combined %>%
  mutate(highearn = factor(highearn, labels = c("Low earner", "High earner")),
        after_1980 = factor(after_1980, labels = c("Before 1980", "After 1980"))) %>%
  group_by(highearn, after_1980) %>%
  summarize(mean_duration = mean(log_duration),
        se_duration = sd(log_duration) / sqrt(n()),
        upper = mean_duration + (1.96 * se_duration),
        lower = mean_duration + (-1.96 * se_duration))
```

```
## `summarise()` has grouped output by 'highearn'. You can override using the
## `.groups` argument.
```



```
ggplot(graph_data, aes(x = after_1980, y = mean_duration, color = highearn)) +
geom_pointrange(aes(ymin = lower, ymax = upper), size = 1) +
# The group = highearn here makes it so the lines go across categories
geom_line(aes(group = highearn))
```



```
ggplot(difr_log, aes(x = as.factor(after_1980),
                 y = mean.log_duration,
                 color = as.factor(highearn)))+
 geom_point() +
 geom_line(aes(group = as.factor(highearn))) +
 annotate(geom = "segment", x = "0", x = "1",
          y = pre_treatement_treated_group_log, yend =
            post_treatement_treated_group_log - policy_effect_log,
          linetype = "dashed", color = "black") +
 annotate(geom = "segment", x = "1", xend = "1",
          y = post_treatement_treated_group_log, yend =
            post_treatement_treated_group_log - policy_effect_log,
          linetype = "dotted", color = "red") +
 annotate(geom = "label", x = "1", y = post_treatement_treated_group_log
          - (policy_effect_log / 2),
          label = "Program effect", size = 5)
```


modelsummary(list(basic_model_2,adv_model_2,DDD,robust_model1))

	(1)	(2)	(3)	(4)
(Intercept)	1.126	-1.460	-14.834	-1.175
	(0.031)	(0.422)	(8.685)	(0.451)
after_1980	0.008	0.049	2.708	0.081
	(0.045)	(0.041)	(1.421)	(0.064)
highearn	0.256	-0.153	0.533	-0.133
	(0.047)	(0.089)	(2.303)	(0.087)
after_1980 × highearn	0.191	0.170	0.506	0.167

	(1)	(2)	(3)	(4)
	(0.069)	(0.064)	(2.576)	(0.059)
male		-0.093	-1.865	-0.144
		(0.042)	(0.741)	(0.039)
married		0.068	0.854	0.046
		(0.037)	(0.639)	(0.033)
age_squared		0.000	0.001	0.000
		(0.000)	(0.000)	(0.000)
hosp		1.131	13.804	1.101
		(0.037)	(0.643)	(0.033)
indust2		0.183	2.311	0.264
		(0.054)	(0.910)	(0.047)
indust3		0.163	2.485	0.155
		(0.038)	(0.648)	(0.034)
injtype2		0.936	6.412	0.890
		(0.144)	(2.562)	(0.133)
injtype3		0.636	1.889	0.655
		(0.085)	(1.525)	(0.079)
injtype4		0.557	0.581	0.597
		(0.093)	(1.644)	(0.086)
injtype5		0.645	4.376	0.631
		(0.085)	(1.528)	(0.080)
injtype6		0.616	0.840	0.607
		(0.086)	(1.542)	(0.080)
injtype7		0.997	12.966	1.115
		(0.191)	(3.101)	(0.161)
injtype8		0.436	2.665	0.561
		(0.119)	(2.075)	(0.108)
Iprewage		0.294	3.250	0.276
		(0.080)	(1.522)	(0.079)
ky			-3.296	-0.163
			(1.295)	(0.059)

	(1)	(2)	(3)	(4)
ky × after_1980			-1.636	
			(1.638)	
ky × highearn			-1.269	
			(1.975)	
ky × after_1980 × highearn			1.361	
			(2.868)	
after_1980 × ky				-0.029
				(0.070)
Num.Obs.	5626	5347	6822	6822
R2	0.021	0.189	0.096	0.183
R2 Adj.	0.020	0.187	0.093	0.181
AIC	18654.0	16688.7	61949.1	21623.7
BIC	18687.2	16813.8	62106.1	21767.0
Log.Lik.	-9321.997	-8325.371	-30951.538	-10790.826
RMSE	1.27	1.15	22.60	1.18