Теортест-1 (Вариант 46)

Тема – определенный интеграл

Задача 1

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. vdt = u'dt;
- 2. dv = udt + C;
- 3. v = du + C;
- 4. du = vdt + C;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если функция $f \cdot g$ интегрируема на [a, b], то f и g тоже интегрируемы на [a, b];
- 2. Если $c \in [a, b]$ и f интегрируема на [a, c] и на (c, b], то f интегрируема и на [a, b];
- 3. Если |f| интегрируема на [a,b], то f тоже интегрируема на [a,b];
- 4. Если $[c,d] \subset [a,b]$ и f интегрируема на [a,b], то f интегрируема и на [c,d];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F непрерывна на [a,b];
- 2. F имеет разрывы в точках разрыва функции f;
- 3. F дифференцируема на [a, b];
- 4. F ограничена на [a,b];

Задача 4

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. площадь отрезка равна нулю;
- 2. при движении площадь не меняется;
- 3. площадь $A \cup B$ равна сумме площадей A и B;
- 4. площадь A всегда неотрицательна;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения верхняя сумма Дарбу увеличивается;
- 2. При измельчении разбиения верхняя сумма Дарбу уменьшается или не изменяется;
- 3. Верхняя сумма Дарбу является наибольшей из всех интегральных сумм для данного разбиения;
- 4. При измельчении разбиения верхняя сумма Дарбу уменьшается;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^9}{x^5+1}$;
- 2. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- $3. \frac{x^2-1}{x^2+1};$
- 4. $\frac{x^2+1}{x^5}$;

Задача 7

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_{-\ln 2}^0 \frac{f(x)}{e^x} dx$:

- 1. [0.5; 5];
- 2. [-2; 10];
- 3. [-10; 0];
- 4. [-1; 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна в точке a и f(a) = 1;
- 2. f(a) > 0, f(b) > 0;
- 3. f непрерывна на [a,b] и f((a+b)/2)=1;
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения:

- 1. Длина замкнутой кривой равна нулю;
- 2. Длины противоположных путей равны;
- 3. Длина спрямляемой кривой конечна;
- 4. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 5. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;

Задача 10

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

1.
$$\int f(x)dx = \int \frac{f(\ln t)}{t}dt$$
;

2.
$$\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$$

3.
$$\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt;$$

4.
$$\int f(x)dx = \int f(\ln t)tdt$$
;