Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КИБЕРНЕТИКИ

Отчет по курсу «Методы оптимизации»

Выполнил: Студент группы Б22-534 Запепилин А.В.

Вариант №55

Содержание

1	Задание №1	2
	1.1 Задача (а)	2
	1.2 Задача (b)	
	1.3 Задача (с)	5
2	Задание №2	5
	2.1 Задача (а)	5
	2.2 Задача (b)	
	2.3 Задача (с)	
3	Задание №3	10
	3.1 Задача (а)	10
4	Задание №4(6)	12
5	Задание №5	15
6	Задание №6	20
	6.1 Графическое решение задачи	20
	6.2 Решение задачи с помощью симплекс-метода:	
	6.3 Решение задачи методом отсечения Гомори:	
	6.3.1 Геометрическим методом:	
	6.3.2 Симплекс-методом:	
7	Задание №7	24

Задание №1 1

1.1 Задача (а)

Оптимизационная задача:

$$F = 3x_1 + 4x_2 \rightarrow \max$$
, min

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Рис. 1: Графическое решение задачи (а)

Вычисление точек пересечения

1. Минимум $x_1 - 3x_2 = 3$ и $x_2 = 0$:

$$\begin{cases} x_1 = 3 + 3x_2 \\ x_2 = 0 \implies x_1 = 3 \end{cases}$$

Точка пересечения: (3,0).

2. Максимум $x_1 + x_2 = 10$ и $-x_1 + 4x_2 = 4$:

$$\begin{cases} x_1 + x_2 = 10 \\ -x_1 + 4x_2 = 4 \end{cases} \implies \begin{cases} x_1 = \frac{36}{5} \\ x_2 = \frac{14}{5} \end{cases}$$

Точка пересечения: $\left(\frac{36}{5},\frac{14}{5}\right)$. Вычисление значений целевой функции $F=3x_1+4x_2$ в найденных точках:

- В точке (3,0):

$$F(3,0) = 9$$

- В точке
$$(\frac{36}{5}, \frac{14}{5})$$
:

$$F\left(\frac{36}{5}, \frac{14}{5}\right) = \frac{164}{5}$$

Ответ: Максимум функции $F=3x_1+4x_2$ достигается в точке $\left(\frac{36}{5},\frac{14}{5}\right)$, где $F=\frac{164}{5}$. Минимум функции $F=3x_1+4x_2$ достигается в точке (3,0), где F=9.

1.2 Задача (b)

Оптимизационная задача:

 $F = x_1 + 7x_2 \rightarrow \max, \min$

Ограничения:

$$\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Построение графиков

Рис. 2: Графическое решение задачи (b)

Вычисление точек пересечения

1. Минимум $3x_1 + 4x_2 = 12$ и $2x_1 - x_2 = 6$:

$$\begin{cases} 3x_1 + 4x_2 = 12 \\ 2x_1 - x_2 = 6 \end{cases} \implies \begin{cases} x_1 = \frac{36}{11} \\ x_2 = \frac{6}{11} \end{cases}$$

Точка пересечения: $\left(\frac{36}{11},\frac{6}{11}\right)$. Вычисление значений целевой функции $F=x_1+7x_2$ в найденной точке: В точке $\left(\frac{36}{11},\frac{6}{11}\right)$:

$$F\left(\frac{36}{11}, \frac{6}{11}\right) = \frac{78}{11}$$

Максимума функции не существует. Ответ:

Минимум функции $F = x_1 + 7x_2$ достигается в точке $\left(\frac{36}{11}, \frac{6}{11}\right)$, где $F = \frac{78}{11}$.

1.3 Задача (с)

Оптимизационная задача:

$$F = 2x_1 + x_2 \rightarrow \max, \min$$

Ограничения:

$$\begin{cases} 3 \cdot x_1 - x_2 \ge 9 \\ x_1 + x_2 \le 2 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Построение графиков

Рис. 3: Графическое решение задачи (с)

Ответ: Максимума функции не существует. Минимума функции не существует.

2 Задание №2

2.1 Задача (а)

Оптимизационная задача (из задачи 1.1):

$$F = 3x_1 + 4x_2 \to \max$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$F - 3x_1 - 4x_2 = 0$$

$$\begin{cases} x_1 - 3 \cdot x_2 + x_3 = 3 \\ x_1 + x_2 + x_4 = 10 \\ -x_1 + 4 \cdot x_2 + x_5 = 4 \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \ x_5 \ge 0 \end{cases}$$

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \geq 0$
x_3	1	-3	1	0	0	3	-1
x_4	1	1	0	1	0	10	10
x_5	-1	4	0	0	1	4	1
F(x)	-3	-4	0	0	0	0	0

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_2	$-\frac{1}{4}$	1	0	0	$\frac{1}{4}$	1	-4
x_3	$\frac{1}{4}$	0	1	0	$\frac{3}{4}$	6	24
x_4	$\frac{5}{4}$	0	0	1	$-\frac{1}{4}$	9	$\frac{36}{5}$
F(x)	-4	0	0	0	1	4	

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$	$\frac{36}{5}$
x_2	0	1	0	$\frac{1}{5}$	$\frac{4}{20}$	$\frac{14}{5}$	
x_3	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	$\frac{21}{5}$	24
F(x)	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$	

В последней строке не осталось элементов ≤ 0 . Мы пришли к конечной таблице. Максимум функции достигается при $x_1=\frac{36}{5}, x_2=\frac{14}{5},$ и значение целевой функции равно $F(x)=\frac{164}{5}.$

2.2 Задача (b)

Оптимизационная задача (из задачи 1.2):

$$F = x_1 + 7x_2 \to \max$$

Ограничения:

$$\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$F - x_1 - 7x_2 = 0$$

$$\begin{cases} -3 \cdot x_1 - 4 \cdot x_2 + x_3 = -12 \\ 2 \cdot x_1 - x_2 + x_4 = 6 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \geq 0$
x_3	-3	-4	1	0	-12	_
x_4	2	-1	0	1	6	_
F(x)	-1	-7	0	0	0	_

В последней строке есть элементы ≤ 0 . Минимальный из них -7, но т.к. все элементы этого столбца отрицательные, то область допустимых решений неограниченна.

Оптимизационная задача (из задачи 1.2):

$$F = x_1 + 7x_2 \rightarrow \min$$

Переведём эту задачу в поиск максимума взяв обратную функцию от изначальной.

$$G = -x_1 - 7x_2 \to \max$$

Ограничения:

$$\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$G + x_1 + 7x_2 = 0$$

$$\begin{cases}
-3 \cdot x_1 - 4 \cdot x_2 + x_3 = -12 \\
2 \cdot x_1 - x_2 + x_4 = 6 \\
x_1 \ge 0, \ x_2 \ge 0
\end{cases}$$

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \ge 0$
x_3	-3	-4	1	0	-12	4
x_4	2	-1	0	1	6	3
G(x)	1	7	0	0	0	0

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

								_	
		x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \geq 0$		
	x_1	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	3	-6		
	x_3	0	$-\frac{11}{2}$	1	$\frac{3}{2}$	-3	<u>6</u> 11		
	G(x)	0	$\frac{15}{2}$	0	$-\frac{1}{2}$	-3	$-\frac{6}{15}$		
D "			< 0 D						
В последней строке ест	ь элеме	нты	≤ 0.3	анул	им эл	емен	гы выше и н	иже стоящие от р	азреш
его элемента									

щего элемента.

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \ge 0$
x_2	0	1	$-\frac{2}{11}$	$-\frac{3}{11}$	$\frac{6}{11}$	_
x_1	1	0	$-\frac{1}{11}$	$\frac{4}{11}$	$\frac{36}{11}$	_
G(x)	0	0	$\frac{4}{165}$	$\frac{17}{11}$	$\frac{78}{11}$	_

В последней строке не осталось элементов ≤ 0 . Мы пришли к конечной таблице. Максимум функции достигается при $x_1=\frac{36}{11}, x_2=\frac{6}{11}$, и значение целевой функции равно $F(x)=\frac{78}{11}$.

2.3 Задача (с)

Оптимизационная задача (из задачи 1.3):

$$F = 2x_1 + x_2 \to \max$$

Ограничения:

$$\begin{cases} 3 \cdot x_1 - x_2 \ge 9 \\ x_1 + x_2 \le 2 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$F - 2x_1 - x_2 = 0$$

$$\begin{cases}
-3 \cdot x_1 + x_2 + x_3 = -9 \\
x_1 + x_2 + x_4 = 2 \\
x_1 \ge 0, \ x_2 \ge 0
\end{cases}$$

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \ge 0$
x_3	-3	1	1	0	-9	_
x_4	1	1	0	1	2	2
F(x)	-2	-1	0	0	0	_

Первую и последнюю строки не вычисляем для последнего столбца т.к. элементы р.с. ≤ 0 . В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \ge 0$
x_1	1	1	0	1	2	_
x_3	0	4	1	3	-3	_
F(x)	0	1	0	2	4	_

В последней строке не осталось элементов ≤ 0 .

Мы пришли к конечной таблице. Т.к. не все $b_i \geq 0 \implies$ решения не существует.

3 Задание №3

Задача (а)

Оптимизационная задача (из задачи 1.1):

$$F = 3x_1 + 4x_2 \rightarrow \max$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \geq 0$
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$	36 5
x_2	0	1	0	$\frac{1}{5}$	$\frac{4}{20}$	$\frac{14}{5}$	
x_3	0	0	1	$-\frac{1}{5}$	$\frac{\overline{20}}{\frac{4}{5}}$	$\frac{21}{5}$	24
F(x)	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$	

Максимум функции достигается при $x_1=\frac{36}{5}, x_2=\frac{14}{5},$ и значение целевой функции равно $F(x)=\frac{164}{5}.$

Составим двойственную задачу:

$$F^* = 3y_1 + 10x_2 + 4y_3 \rightarrow \min$$

Ограничения:

$$\begin{cases} y_1 + y_2 - y_3 \ge 3 \\ -3 \cdot y_1 + y_2 + 4 \cdot y_3 \ge 4 \\ y_1 \ge 0, \ y_2 \ge 0, \ y_3 \ge 0 \end{cases}$$

Решим задачу 1 способом для этого составим систему для нахождения y_1^*, y_2^*, y_3^* :

$$\begin{cases} (\frac{36}{5} - 3\frac{14}{5} - 3) \cdot y_1^* = 0 \\ (\frac{36}{5} + \frac{14}{5} - 10) \cdot y_2^* = 0 \\ (-\frac{36}{5} + 4\frac{14}{5} - 4) \cdot y_3^* = 0 \end{cases} \implies \begin{cases} -\frac{8}{5} \cdot y_1^* = 0 \implies y_1^* = 0 \\ 0 \cdot y_2^* = 0 \implies y_2^* \ge 0 \\ 0 \cdot y_3^* = 0 \implies y_3^* \ge 0 \end{cases}$$

Вычислим y_2^*, y_3^* с учётом что $y_1^* = 0$

$$\begin{cases} (y_1^* + y_2^* - y_3^* - 3) \cdot \frac{36}{5} = 0 \\ (-3y_1^* + y_2^* + 4y_3^* - 4) \cdot \frac{14}{5} = 0 \end{cases} \implies \begin{cases} y_2^* - y_3^* - 3 = 0 \implies y_2^* = \frac{15}{5} \\ y_2^* + 4y_3^* - 4 = 0 \implies y_3^* = \frac{1}{5} \end{cases}$$

Вектор решения:

$$y^* = (0; \frac{15}{5}; \frac{1}{5})$$

Подставим решение в F^* и сравним с тем что получалось в F:

$$F^* = 10 \cdot \frac{16}{5} + 4 \cdot \frac{1}{5} = \frac{164}{5}$$

10

Правильное решение найдено.

Решим задачу 2 способом для этого возьмём конечную симплекс-таблицу для базовой задачи:

Базис	A_1	A_2	A_3	A_4	A_5	B_i	C
A_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$	3
A_2	0	1	0	$\frac{1}{5}$	$\frac{4}{20}$	$\frac{14}{5}$	4
A_3	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	$\frac{21}{5}$	0

Считаем по формуле: $y^* = C \cdot A^{-1}$

Посчитаем значение y^* :

$$y^* = \begin{pmatrix} 3 & 4 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & \frac{4}{5} & -\frac{1}{5} \\ 0 & \frac{1}{5} & \frac{4}{20} \\ 1 & -\frac{1}{5} & \frac{4}{5} \end{pmatrix} = \begin{pmatrix} 0 & \frac{16}{5} & \frac{1}{5} \end{pmatrix}$$

Теперь посчитаем значение функции F^* :

$$F^* = 10 \cdot \frac{16}{5} + 4 \cdot \frac{1}{5} = \frac{164}{5}$$

Правильное решение найдено.

4 Задание №4(6)

Условие задачи:

Сырьё	A	В	C	D	Запасы
Металл	1	6	4	5	800
Пластмасса	5	9	8	10	2500
Резина	0	3	1	5	600
Прибыль	2	7	8	4	_

Математическая интерпретация задачи:

$$F = 2x_1 + 7x_2 + 8x_3 + 4x_4 \rightarrow \max$$

$$\begin{cases} x_1 + 6 \cdot x_2 + 4 \cdot x_3 + 5 \cdot x_4 \le 800 \\ 5 \cdot x_1 + 9 \cdot x_2 + 8 \cdot x_3 + 10 \cdot x_4 \le 2500 \\ 3 \cdot x_2 + x_3 + 5 \cdot x_4 \le 600 \end{cases}$$

Составим условие задачи для решения симплекс методом:

$$F - 2x_1 - 7x_2 - 8x_3 - 4x_4 = 0$$

$$\begin{cases} x_1 + 6 \cdot x_2 + 4 \cdot x_3 + 5 \cdot x_4 + x_5 = 800 \\ 5 \cdot x_1 + 9 \cdot x_2 + 8 \cdot x_3 + 10 \cdot x_4 + x_6 = 2500 \\ 3 \cdot x_2 + x_3 + 5 \cdot x_4 \le 600 + x_7 = 600 \end{cases}$$

Составим начальную симплекс-таблицу:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	$b_i/p.c. \ge 0$
x_5	1	6	4	5	1	0	0	800	200
x_6	5	9	8	10	0	1	0	2500	$\frac{625}{2}$
x_7	0	3	1	5	0	0	1	600	600
F(x)	-2	-7	-8	-4	0	0	0	0	0

T.к. в последней строке есть элементы ≤ 0 выбираем минимальный отрицательный элемент в последнем столбце и считаем последний столбец после чего выбираем разрешающий элемент.

Занулим все элементы выше и ниже разрешающего элемента:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	$b_i/p.c. \ge 0$
x_3	$\frac{1}{4}$	$\frac{3}{2}$	1	$\frac{5}{4}$	$\frac{1}{4}$	0	0	200	200
x_6	3	-3	0	Ô	-2	1	0	900	$\frac{625}{2}$
x_7	$-\frac{1}{4}$	$\frac{3}{2}$	0	$\frac{15}{4}$	$-\frac{1}{4}$	0	1	400	$6\bar{0}0$
F(x)	0	$\frac{2}{5}$	0	$\frac{1}{6}$	2	0	0	1600	_

В последней строке все элементы $\geq 0 \implies$ оптимальный план найден.

Максимум функции достигается при $x_1=0, x_2=0, x_3=200, x_4=0,$ и значение целевой функции равно F(x)=1600.

Составим двойственную задачу:

$$F^* = 800y_1 + 2500y_2 + 600y_3 \to \min$$

Конечная симлекс-таблица с добавлением столбца С:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	$b_i/p.c. \ge 0$	C
x_3	$\frac{1}{4}$	$\frac{3}{2}$	1	$\frac{5}{4}$	$\frac{1}{4}$	0	0	200	200	8
x_6	3	-3	0	Ô	-2	1	0	900	$\frac{625}{2}$	0
x_7	$-\frac{1}{4}$	$\frac{3}{2}$	0	$\frac{15}{4}$	$-\frac{1}{4}$	0	1	400	$6\bar{0}0$	0
F(x)	0	$\bar{5}$	0	6	2	0	0	1600	_	-

Считаем по формуле: $y^* = C \cdot A^{-1}$

Посчитаем значение y^* :

$$y^* = \begin{pmatrix} 8 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ -2 & 1 & 0 \\ -\frac{1}{4} & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$$

Минимум функции достигается при $y_1 = 2, y_2 = 0, y_3 = 0.$

Теперь посчитаем значение функции F^* :

$$F^* = 800 \cdot 2 + 2500 \cdot 0 + 600 \cdot 0 = 1600$$

Значения F и F^* совпадают \implies задача решена правильно.

Анализ результатов

Подставим $\mathbf{x}^* = (0; 0; 200; 0)$ в условия прямой задачи:

$$\begin{cases} 0 + 6 \cdot 0 + 4 \cdot 200 + 5 \cdot 0 = 800 \\ 5 \cdot 0 + 9 \cdot 0 + 8 \cdot 200 + 10 \cdot 0 = 1600 \le 2500 \\ 3 \cdot 0 + 200 + 5 \cdot 0 = 200 \le 600 \end{cases}$$

Второе и третье условия имеют строгий знак <, значит второй и третий ресурсы (пластмасса и резина) не являются дефицитными (остатки 900 и 400 соответственно).

Первое условие образует равенство =, значит первый ресурс (металл) дефицитен.

Подставим $\mathbf{y}^* = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$ в условия двойственной задачи:

$$\begin{cases} 6 > 2 \\ 12 > 7 \\ 8 = 8 \\ 10 > 4 \end{cases}$$

Первое, второе и четвёртое условия имеют строгий знак >, следовательно, производить эти изделия экономически невыгодно.

Третье условие имеет равенство =, следовательно, двойственная оценка ресурса, используемого для изготовления продукта в точности равна доходам, а значит продукт выгодно производить.

Величина двойственных оценок показывает, насколько возрастает целевая функция при увеличении запасов дефицитного ресурса на единицу. Увеличение запасов ресурса Р1 (металл) на единицу приведет к новому оптимальному плану. Коэффициенты A_B^{-1} показывают, что увеличение прибыли достигается засчет увеличения выпуска продукции C, при этом запасы пластмассы сократятся на $\frac{1}{2}$ единицы.

Otbet:
$$\mathbf{x}^* = \begin{pmatrix} 0 & 0 & 200 & 0 \end{pmatrix}, \mathbf{y}^* = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$$

Анализ устойчивости двойственных оценок

Определим интервалы устойчивости:

$$x_{B\text{HOB}}^* = x_B + A_B^{-1} \cdot (b + \Delta b)$$
$$A_B^{-1} \cdot (b + \Delta b) \ge 0$$

$$A_B^{-1} \cdot (b + \Delta b) = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ -2 & 1 & 0 \\ -\frac{1}{4} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 800 + \Delta b_1 \\ 2500 + \Delta b_2 \\ 600 + \Delta b_3 \end{pmatrix} = \begin{pmatrix} 200 + \frac{1}{4}\Delta b_1 \\ 900 - 2\Delta b_1 + \Delta b_2 \\ 400 - \frac{1}{4}\Delta b_1 + \Delta b_3 \end{pmatrix} \ge 0$$

Рассмотрим частные случаи:

1. $\Delta b_1 \geq 0, \Delta b_2 = 0, \Delta b_3 = 0$:

$$\begin{pmatrix} 200 + \frac{1}{4}\Delta b_1 \\ 900 - 2\Delta b_1 \\ 400 - \frac{1}{4}\Delta b_1 \end{pmatrix} \ge 0 \Leftrightarrow \begin{cases} 200 + \frac{1}{4}\Delta b_1 \ge 0 \\ 900 - 2\Delta b_1 \ge 0 \\ 400 - \frac{1}{4}\Delta b_1 \ge 0 \end{cases} \Leftrightarrow \begin{cases} \Delta b_1 \ge -800 \\ \Delta b_1 \le 450 \\ \Delta b_1 \le 1600 \end{cases} \Leftrightarrow -800 \le \Delta b_1 \le 450$$

При увеличении запасов 1-го ресурса не более чем на 450 единиц и уменьшении его запасов не более чем на 800 единиц значение целевой функции не изменится.

2. $\Delta b_1 = 0, \Delta b_2 \ge 0, \Delta b_3 = 0$:

$$\begin{pmatrix} 200\\900 + \Delta b_2\\400 \end{pmatrix} \ge 0 \Leftrightarrow 900 + \Delta b_2 \ge 0 \Leftrightarrow \Delta b_2 \ge -900$$

При уменьшении запасов 2-го ресурса не более чем на 900 единиц, при этом оптимальный план двойственной задачи не изменится.

3. $\Delta b_1 = 0, \Delta b_2 = 0, \Delta b_3 \geq 0$:

$$\begin{pmatrix} 200\\900\\400+\Delta b_3 \end{pmatrix} \ge 0 \Leftrightarrow 400+\Delta b_3 \ge 0 \Leftrightarrow \Delta b_3 \ge -400$$

При уменьшении запасов 3-го ресурса не более чем на 400 единиц, при этом оптимальный план двойственной задачи не изменится.

Предположим: $\Delta b_1 = 450, \Delta b_2 = -900, \Delta b_3 = 400$:

$$\begin{pmatrix} x_3^{\text{HOB}} \\ x_6^{\text{HOB}} \\ x_7^{\text{POB}} \end{pmatrix} = \begin{pmatrix} 200 + \frac{1}{4} \cdot 450 \\ 900 - 2 \cdot 450 - 900 \\ 400 - \frac{1}{4} \cdot 450 + 400 \end{pmatrix} = \begin{pmatrix} \frac{625}{2} \\ 0 \\ \frac{1375}{2} \end{pmatrix} \ge 0$$

Посчитаем новое значение целевой функции:

$$F = 8 \cdot \frac{625}{2} = 2500$$

5 Задание №5

Условие задачи:

Рассмотрим закрытую транспортную задачу размером 5×4 с пятью поставщиками и четырьмя потребителями. Общий запас равен общему спросу.

Данные задачи:

• Запасы поставщиков (в единицах товара):

$$S_1 = 55$$
, $S_2 = 75$, $S_3 = 100$, $S_4 = 60$, $S_5 = 110$

• Потребности потребителей (в единицах товара):

$$D_1 = 90, \quad D_2 = 110, \quad D_3 = 80, \quad D_4 = 120$$

Проверим общий баланс:

$$S = S_1 + S_2 + S_3 + S_4 + S_5 = 400$$
$$D = D_1 + D_2 + D_3 + D_4 = 400$$

Так как общий запас равен общему спросу, задача является закрытой.

Матрица стоимости транспортировки (в таблице указана стоимость транспортировки единицы товара от поставщика S_i к потребителю D_i):

	S_1	S_2	S_3	S_4	S_5	Потребности
D_1	4	5	6	7	3	90
D_2	8	1	3	4	6	110
D_3	6	4	9	3	5	80
D_4	3	7	2	8	1	120
Запасы	55	75	100	60	110	

Целевая функция:

$$F = 4x_{11} + 5x_{12} + 6x_{13} + \dots + 2x_{44} + 8x_{45} + x_{46}$$

Ограничения:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} + x_{15} = 90 \\ x_{21} + x_{22} + x_{23} + x_{24} + x_{25} = 110 \\ x_{31} + x_{32} + x_{33} + x_{34} + x_{35} = 80 \\ x_{41} + x_{42} + x_{43} + x_{44} + x_{45} = 120 \\ x_{11} + x_{21} + x_{31} + x_{41} = 55 \\ x_{12} + x_{22} + x_{32} + x_{42} = 75 \\ x_{13} + x_{23} + x_{33} + x_{43} = 100 \\ x_{14} + x_{24} + x_{34} + x_{44} = 60 \\ x_{15} + x_{25} + x_{35} + x_{45} = 110 \end{cases}$$

Задача состоит в том, чтобы минимизировать общую стоимость (целевую функцию) транспортировки при соблюдении ограничений на запасы и потребности.

Решение задачи

Метод северо-западного угла

Метод северо-западного угла предполагает заполнение транспортной таблицы, начиная с левой верхней ячейки и двигаясь по строкам и столбцам. На каждом шаге распределяем максимум возможного количества товара в текущую ячейку, обновляя остатки.

Шаги метода северо-западного угла:

- 1. Ячейка (S_1, D_1) : минимальное значение между 55 и 90 это 55. Заполняем 55, обновляем $S_1=0,\, D_1=35.$
- 2. Ячейка (S_2, D_1) : минимальное значение между 75 и 35 это 35. Заполняем 35, обновляем $S_2=40,\,D_1=0.$

- 3. Ячейка (S_2, D_2) : минимальное значение между 40 и 110 это 40. Заполняем 40, обновляем $S_2=0,\,D_2=70.$
- 4. Ячейка (S_3, D_2) : минимальное значение между 100 и 70 это 70. Заполняем 70, обновляем $S_3 = 30, D_2 = 0$.
- 5. Ячейка (S_3, D_3) : минимальное значение между 30 и 80 это 30. Заполняем 30, обновляем $S_3=0,\,D_3=50.$
- 6. Ячейка (S_4, D_3) : минимальное значение между 60 и 50 это 50. Заполняем 50, обновляем $S_4=10,\,D_3=0.$
- 7. Ячейка (S_4, D_4) : минимальное значение между 10 и 120 это 10. Заполняем 10, обновляем $S_4=0,\,D_4=110.$
- 8. Ячейка (S_5, D_4) : минимальное значение между 110 и 110 это 110. Заполняем 110, обновляем $S_5=0,\,D_4=0.$

Итоговое распределение методом северо-западного угла:

	S_1	S_2	S_3	S_4	S_5	Потребности
$\overline{D_1}$	55^{4}	35^{5}	0^{6}	0^{7}	0^{3}	90
D_2	0^{8}	40^{1}	70^{3}	0^{4}	0^6	110
D_3	0^{6}	0^{4}	30^{9}	50^{3}	0^{5}	80
D_4	0^3	0^{7}	0^{2}	10^{8}	110^{1}	120
Запасы	55	75	100	60	110	

Вычисление общей стоимости

Tеперь рассчитаем общую стоимость транспортировки F, используя полученное распределение:

$$F = 55 \cdot 4 + 35 \cdot 5 + 40 \cdot 1 + 70 \cdot 3 + 30 \cdot 9 + 50 \cdot 3 + 10 \cdot 8 + 110 \cdot 1 = 1255$$

Итак, общая стоимость транспортировки составляет F = 1255.

Итоговое распределение Х

Итоговая матрица распределения X:

$$X = \begin{pmatrix} 55 & 35 & 0 & 0 & 0 \\ 0 & 40 & 70 & 0 & 0 \\ 0 & 0 & 30 & 50 & 0 \\ 0 & 0 & 0 & 10 & 110 \end{pmatrix}$$

Алгоритм метода минимального элемента

Метод минимального элемента включает следующие шаги:

- 1. Найти ячейку с наименьшей стоимостью в матрице C_{ij} .
- 2. Заполнить ячейку (i, j) максимальным возможным количеством: $\min(S_i, D_j)$.
- 3. Обновить запасы и потребности, вычитая заполненное количество из соответствующих значений S_i и D_j .
- 4. Если потребность или запас равен нулю, вычеркнуть соответствующую строку или столбец.
- 5. Повторить шаги 1-4, пока все потребности и запасы не будут удовлетворены.

Решение методом минимального элемента

	S_1	S_2	S_3	S_4	S_5	Потребности
$\overline{D_1}$	0^{4}	0^{5}	0^{6}	0^{7}	90^{3}	90
D_2	0^{8}		35^{3}	0^{4}	0^{6}	110
D_3	0^{6}	0^{4}	0_{9}	60^{3}	20^{5}	80
D_4	55^{3}	0^{7}	65^{2}	0^{8}	0^{1}	120
Запасы	55	75	100	60	110	

Вычисление общей стоимости

Теперь рассчитаем общую стоимость транспортировки F, используя полученное распределение:

$$F = 90 \cdot 3 + 75 + 35 \cdot 3 + 60 \cdot 3 + 20 \cdot 5 + 55 \cdot 3 + 65 \cdot 2 = 1025$$

Итак, общая стоимость транспортировки составляет F = 1025.

Итоговое распределение X

Итоговая матрица распределения X:

$$X = \begin{pmatrix} 0 & 0 & 0 & 0 & 90 \\ 0 & 75 & 35 & 0 & 0 \\ 0 & 0 & 0 & 60 & 20 \\ 55 & 0 & 65 & 0 & 0 \end{pmatrix}$$

Метод потенциалов

Метод потенциалов используется для проверки оптимальности текущего распределения и нахождения улучшенного решения, если оно не оптимально.

Для базисных клеток используем условие $U_i + V_j = C_{ij}$. Примем $U_1 = 0$ и вычислим остальные потенциалы.

Обозначение: C_y^x , где C - количество поставляемого груза, x - цена за единицу, y - потенциал. Составим таблицу:

Потребности/Запасы	55_{4}	75_{5}	100_{7}	60_{1}	110_{-6}	
-90_{0}	55^{4}_{-}	35_{-}^{5}	0_{-1}^{6}	0_{6}^{7}	0_{9}^{3}	D_1
110_{-4}	0_{8}^{8}	40^{1}_{-}	70^{3}_{-}	0^{4}_{7}	0_{16}^{6}	D_2
80_{2}	0_0^6	0^4_{-3}	30_{-}^{-}	50^{3}_{-}	0_{9}^{5}	D_3
120_{7}	0^{3}_{-8}	0^{7}_{-5}	0^2_{-14}	10^{8}_{-}	110^{1}_{-}	D_4
	S_1	S_2	S_3	S_4	S_5	

Есть потенциалы (< 0).

Найдем элемент с наименьшим потенциалом: (S_3, D_3) .

Построим цикл зелёным цветом.

Проделаем перераспределение товаров и построим новую таблицу:

Потребности/Запасы	$ 55_4 $	75_{5}	100_{7}	60_{1}	110_{6}	
90_{0}	55^{4}_{-}	35_{-}^{5}	0^{6}_{-1}	0_{6}^{7}	0^{3}_{-3}	D_1
110_{-4}	0_{8}^{8}	40^{1}_{-}	70^{3}_{-}	0_{7}^{4}	0_{4}^{6}	D_2
80_{2}	06	0^4_{-3}	20^{9}_{-}	60^{3}_{-}	0^{5}_{-3}	D_3
120_{-5}	0_4^{3}	0_0^7	10^{2}_{-}	0_{12}^{8}	110^{1}_{-}	D_4
	S_1	S_2	S_3	S_4	S_5	

Есть потенциалы (<0).

Найдем элемент с наименьшим потенциалом: (S_5, D_3) .

Построим цикл зелёным цветом.

Проделаем перераспределение товаров и построим новую таблицу:

Потребности/Запасы	$ 55_4 $	75_{5}	100_{7}	60_{4}	110_{6}	
900	55^{4}_{-}	35^{5}_{-}	0^{6}_{-1}	0_{3}^{7}	0^3_{-3}	D_1
110_{-4}	0_{8}^{8}	40^{1}_{-}	70^{3}_{-}	0_0^4	0_{4}^{6}	D_2
80_{-1}	0_3^6	0_0^4	0_{3}^{9}	60^{3}_{-}	20^{5}_{-}	D_3
120_{-5}	0_4^3	0^{7}_{7}	30^{2}_{-}	0_{9}^{8}	90^{1}_{-}	D_4
	S_1	S_2	S_3	S_4	S_5	

Есть потенциалы (<0).

Найдем элемент с наименьшим потенциалом: (S_5, D_1) .

Построим цикл зелёным цветом.

Проделаем перераспределение товаров и построим новую таблицу:

Потребности/Запасы	$ 55_4 $	75_{5}	100_{7}	60_{1}	110_{3}	
900	55_{-}^{4}	0_0^5	0^{6}_{-1}	0_{6}^{7}	35^{3}_{-}	D_1
110_{-4}	0_{8}^{8}	75^{1}_{-}	35^{3}_{-}	0_{7}^{4}	0_{7}^{6}	D_2
80_{2}	0_0^6	0^4_{-3}	0_{9}^{0}	60^{3}_{-}	20^{5}_{-}	D_3
120_{-2}	0_1^3	0_{4}^{7}	65^{2}_{-}	0_{9}^{8}	55^{1}_{0}	D_4
	S_1	S_2	S_3	S_4	S_5	

Есть потенциалы (< 0).

Найдем элемент с наименьшим потенциалом: (S_5, D_1) .

Построим цикл зелёным цветом.

Проделаем перераспределение товаров и построим новую таблицу:

Потребности/Запасы	$ 55_4 $	75_{2}	100_{4}	60_{1}	110_{3}	
90_{0}	55^{4}_{-}	0_{3}^{5}	0_{2}^{6}	0_{6}^{7}	35^{3}_{-}	D_1
110_{-1}	0_{5}^{8}	55^{1}_{-}	55^{3}_{-}	0_{4}^{4}	0_4^6	D_2
80_{2}	0_0^{6}	20^{4}_{-}	0_{3}^{9}	60^{3}_{-}	$0_0^{\bar{5}}$	D_3
120_{-2}	0_1^{3}	0^{7}_{7}	45^{2}_{-}	0_{9}^{8}	75^{1}_{-}	D_4
	S_1	S_2	S_3	S_4	S_5	

Все потенциалы (≥ 0) оптимальный план найден.

$$F = 55 \cdot 4 + 35 \cdot 3 + 55 + 55 \cdot 3 + 20 \cdot 4 + 60 \cdot 3 + 45 \cdot 2 + 75 = 970$$

Итак, общая стоимость транспортировки составляет F = 970.

Итоговая матрица распределения X:

$$X = \begin{pmatrix} 55 & 0 & 0 & 0 & 35 \\ 0 & 55 & 55 & 0 & 0 \\ 0 & 20 & 0 & 60 & 0 \\ 0 & 0 & 45 & 0 & 75 \end{pmatrix}$$

Используя код на Python:

```
from cvxopt.modeling import variable, op
import time
start = time.time()
# Переменные
x = variable(20, 'x')
# Стоимости
c = [4, 8, 6, 3, 5, 1, 4, 7, 6, 3, 9, 2, 7, 4, 3, 8, 3, 6, 5, 1]
# Целевая функция
z = sum(c[i] * x[i] for i in range(20))
# Ограничения
supply = [55, 75, 100, 60, 110]
demand = [90, 110, 80, 120]
constraints = []
for i in range(5):
    constraints.append(sum(x[i * 4 + j] for j in range(4)) <= supply[i])</pre>
for j in range(4):
    constraints.append(sum(x[i * 4 + j] for i in range(5)) == demand[j])
x_non_negative = (x >= 0)
constraints.append(x_non_negative)
# Постановка задачи
problem = op(z, constraints)
# Решение задачи
problem.solve(solver='glpk')
```

```
# Вывод результатов
print("Результат Xopt:")
for i in x.value:
   print(i)
print("Стоимость доставки:")
print(problem.objective.value()[0])
stop = time.time()
print("Время:")
print(stop - start)
  Получаем такие же значения:
GLPK Simplex Optimizer 5.0
29 rows, 20 columns, 60 non-zeros
     0: obj = 0.0000000000e+00 inf = 4.000e+02 (4)
     8: obj = 1.255000000e+03 inf =
                                      0.000e+00 (0)
    20: obj = 9.700000000e+02 inf =
                                       0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Result Xopt:
55 0 0 0
 0 55 20 0
 0 55 0 45
    0 60 0
 0
35 0 0 75
Cost: 970.0
Time:0.01
```

Результаты совапали.

Задание №6 6

Оптимизационная задача:

$$F = 3x_1 + 4x_2 \to \max$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Графическое решение задачи. 6.1

Рис. 4: Графическое решение задачи

Вычисление точек пересечения

$$x_1 + x_2 = 10$$
 и $-x_1 + 4x_2 = 4$:

$$\begin{cases} x_1 + x_2 = 10 \\ -x_1 + 4x_2 = 4 \end{cases} \implies \begin{cases} x_1 = \frac{36}{5} \\ x_2 = \frac{14}{5} \end{cases}$$

Точка пересечения: $\left(\frac{36}{5},\frac{14}{5}\right)$. Вычисление значений целевой функции $F=3x_1+4x_2$: $\left(\frac{36}{5},\frac{14}{5}\right)$:

$$F\left(\frac{36}{5}, \frac{14}{5}\right) = \frac{164}{5}$$

Ответ: Максимум функции $F = 3x_1 + 4x_2$ достигается в точке $(\frac{36}{5}, \frac{14}{5})$, где $F = \frac{164}{5}$.

6.2 Решение задачи с помощью симплекс-метода:

Оптимизационная задача:

$$F = 3x_1 + 4x_2 \rightarrow \max$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 > 0, \ x_2 > 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$F - 3x_1 - 4x_2 = 0$$

$$\begin{cases} x_1 - 3 \cdot x_2 + x_3 = 3 \\ x_1 + x_2 + x_4 = 10 \\ -x_1 + 4 \cdot x_2 + x_5 = 4 \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \ x_5 \ge 0 \end{cases}$$

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_3	1	-3	1	0	0	3	-1
x_4	1	1	0	1	0	10	10
x_5	-1	4	0	0	1	4	1
F(x)	-3	-4	0	0	0	0	0

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_2	$-\frac{1}{4}$	1	0	0	$\frac{1}{4}$	1	-4
x_3	$\frac{1}{4}$	0	1	0	$\frac{3}{4}$	6	24
x_4	$\frac{5}{4}$	0	0	1	$-\frac{1}{4}$	9	$\frac{36}{5}$
F(x)	-4	0	0	0	1	4	

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$	36 5
x_2	0	1	0	$\frac{1}{5}$	$\frac{4}{20}$	$\frac{14}{5}$	_
x_3	0	0	1	$-\frac{1}{5}$	$\frac{\frac{2}{4}}{5}$	$\frac{21}{5}$	24
F(x)	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$	

В последней строке не осталось элементов ≤ 0 . Мы пришли к конечной таблице. Максимум функции достигается при $x_1=\frac{36}{5}, x_2=\frac{14}{5},$ и значение целевой функции равно $F(x)=\frac{164}{5}.$

6.3 Решение задачи методом отсечения Гомори:

6.3.1 Геометрическим методом:

Рис. 5: Графическое решение задачи

Решение:

$$\begin{cases} x_1 = \frac{36}{5}, \\ x_2 = \frac{14}{5}. \end{cases}$$

Целевая функция:

$$F\left(\frac{36}{5}, \frac{14}{5}\right) = 3 \cdot \frac{36}{5} + 4 \cdot \frac{14}{5} = \frac{164}{5}.$$

Решение:

$$\begin{cases} x_1 = 8, \\ x_2 = 2. \end{cases}$$

Целевая функция:

$$F(8,2) = 3 \cdot 8 + 4 \cdot 2 = 32.$$

Ответ: Максимум функции $F = 3x_1 + 4x_2$ с учетом целочисленных ограничений достигается в точке (8,2), где F = 32.

6.3.2 Симплекс-методом:

Добавляем дополнительные переменные x_3, x_4, x_5 для приведения ограничений к равенствам:

$$\begin{cases} x_1 - 3x_2 + x_3 &= 3\\ x_1 + x_2 + x_4 &= 10\\ -x_1 + 4x_2 + x_5 &= 4\\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{cases}$$

Целевая функция:

$$F = -3x_1 - 4x_2 \to \min.$$

Конечная симплекс-таблица:

	x_1	x_2	x_3	x_4	x_5	b
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$
x_2	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{14}{5}$
x_3	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	$\frac{21}{5}$
F	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$

Найдено нецелочисленное решение: $x_1 = \frac{36}{5}, x_2 = \frac{14}{5}, F = \frac{164}{5}$. Найдено оптимальное нецелочисленное решение. Среди свободных членов находим переменную с максимальным дробным числом:

$$x_1 = \frac{36}{5} = 1\frac{1}{5}, \quad x_2 = \frac{14}{5} = 2\frac{4}{5}$$

Переменная x_2 имеет максимальное дробное значение. Поэтому вводим дополнительное ограничение по 2 строке:

	x_1	x_2	x_3	x_4	x_5	b
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$
x_2	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{14}{5}$
x_3	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	$\frac{21}{5}$
F	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$

Записываем новое ограничение:

$$-\frac{4}{5} = -0x_1 - 0x_2 - 0x_3 - \frac{1}{5}x_4 - \frac{1}{5}x_5 + x_6$$

Обновлённая таблица:

	b	x_1	x_2	x_3	x_4	x_5	x_6
x_1	$\frac{36}{5}$	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	0
x_2	$\frac{14}{5}$	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	0
x_3	$\frac{21}{5}$	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	0
x_1	$-\frac{4}{5}$	0	0	0	$-\frac{1}{5}$	$-\frac{1}{5}$	1
$F_{\rm max}$	$\frac{164}{5}$	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	0

Т.к. среди свободных членов есть отрицательные значения, то решение недопустимое, и сначала нужно перейти к допустимому решению. Для этого находим среди свободных членов максимальное отрицательное число по модулю. Это число будет задавать разрешающую (ведущую) строку.

В этой строке так же находим максимальный по модулю отрицательный элемент, который будет разрешающим (ведущим) столбцом.

Разрешающий столбец: x_4 Разрешающая строка: x_1

Пересчитываем таблицу:

	b	x_1	x_2	x_3	x_4	x_5	x_6	$\frac{b}{x_4}$
x_1	$\frac{36}{5}$	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	0	9
x_2	$\frac{14}{5}$	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	0	14
x_3	$\frac{21}{5}$	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	0	-21
x_1	$-\frac{4}{5}$	0	0	0	$-\frac{1}{5}$	$-\frac{1}{5}$	1	4
$F_{\rm max}$	$\frac{164}{5}$	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	0	

Пересчитываем таблицу:

	b	x_1	x_2	x_3	x_4	x_5	x_6
x_1	4	1	0	0	0	-1	4
x_2	2	0	1	0	0	0	1
x_3	5	0	0	1	0	1	-1
x_4	4	0	0	0	1	1	-5
$F_{\rm max}$	20	0	0	0	0	-3	16

Правило выбора разрешающего элемента:

Среди коэффициентов целевой функции выбираем максимальный по модулю отрицательный элемент. Этот элемент определяет разрешающий столбец.

Разрешающая строка выбирается так, чтобы отношение свободного члена к элементу, находящемуся на пересечении разрешающего столбца и строки, было минимальным и неотрицательным. Разрешающий столбец: x_5

Разрешающая строка: x_4

	b	x_1	x_2	x_3	x_4	x_5	x_6	$\frac{b}{x_5}$
x_1	4	1	0	0	0	-1	4	-4
x_2	2	0	1	0	0	0	1	_
x_3	5	0	0	1	0	1	-1	5
x_4	4	0	0	0	1	1	-5	4
$F_{\rm max}$	20	0	0	0	0	-3	16	

Пересчитываем таблицу:

	b	x_1	x_2	x_3	x_4	x_5	x_6
x_1	8	1	0	0	1	0	-1
x_2	2	0	1	0	0	0	1
x_3	1	0	0	1	-1	0	4
x_5	4	0	0	0	1	1	-5
$F_{\rm max}$	32	0	0	0	3	0	1

Так как все коэффициенты при целевой функции неотрицательны, решение оптимально.

Значения переменных:

$$x_1 = 8, \quad x_2 = 2$$

Значение целевой функции:

$$F_{\text{max}}(x) = 32$$

7 Задание №7

Придумать задачу коммивояжера размерности 10×10 . Значения в матрице расстояний должны быть любыми целыми числами от 1 до 100. Решить задачу методом ветвей и границ. Полный перебор не использовать. После выполнения задания добавить в отчёт граф решения, добавить решение задачи с помощью программных средств.

Постановка задачи

Рассмотрим задачу коммивояжера для 10 городов. Пусть города обозначены номерами от 1 до 10. Задана матрица расстояний $C = (c_{ij})$, где c_{ij} — расстояние между городами i и j. Требуется найти минимальный замкнутый путь, проходящий через каждый город ровно один раз.

Матрица расстояний:

$$C = \begin{pmatrix} \infty & 29 & 20 & 21 & 16 & 31 & 100 & 12 & 4 & 31 \\ 29 & \infty & 15 & 29 & 28 & 40 & 72 & 21 & 29 & 41 \\ 20 & 15 & \infty & 15 & 14 & 25 & 81 & 9 & 23 & 27 \\ 21 & 29 & 15 & \infty & 4 & 12 & 92 & 12 & 25 & 13 \\ 16 & 28 & 14 & 4 & \infty & 16 & 94 & 9 & 20 & 16 \\ 31 & 40 & 25 & 12 & 16 & \infty & 95 & 24 & 36 & 3 \\ 100 & 72 & 81 & 92 & 94 & 95 & \infty & 90 & 101 & 99 \\ 12 & 21 & 9 & 12 & 9 & 24 & 90 & \infty & 15 & 25 \\ 4 & 29 & 23 & 25 & 20 & 36 & 101 & 15 & \infty & 35 \\ 31 & 41 & 27 & 13 & 16 & 3 & 99 & 25 & 35 & \infty \end{pmatrix}$$

3десь ∞ обозначает отсутствие дуги между городом i и самим собой.

Метод решения: ветви и границы

Метод ветвей и границ используется для эффективного решения задач дискретной оптимизации. Основная идея заключается в построении дерева решений, где каждая ветвь представляет собой подзадачу, а границы (оценки) позволяют исключить невыгодные подзадачи.

Шаг 1. Исходная оценка задачи

1. Для исходной матрицы C выполните **редукцию строк и столбцов**: - Для каждой строки вычтите минимальный элемент этой строки из всех её элементов. - Для каждого столбца вычтите минимальный элемент этого столбца из всех его элементов.

Пример редукции:

- 1. Минимальные элементы строк: [4, 15, 9, 4, 4, 3, 72, 9, 4, 3].
- 2. Вычитаем из строк минимумы:

$$C' = \begin{pmatrix} \infty & 25 & 16 & 17 & 12 & 27 & 96 & 8 & 0 & 27 \\ 14 & \infty & 0 & 14 & 13 & 25 & 57 & 6 & 14 & 26 \\ 11 & 6 & \infty & 6 & 5 & 16 & 72 & 0 & 14 & 18 \\ 17 & 25 & 11 & \infty & 0 & 8 & 88 & 8 & 21 & 9 \\ 12 & 24 & 10 & 0 & \infty & 12 & 90 & 5 & 16 & 12 \\ 28 & 37 & 22 & 9 & 13 & \infty & 92 & 21 & 33 & 0 \\ 28 & 0 & 9 & 20 & 22 & 23 & \infty & 18 & 29 & 27 \\ 3 & 12 & 0 & 3 & 0 & 15 & 81 & \infty & 6 & 16 \\ 0 & 25 & 19 & 21 & 16 & 32 & 97 & 11 & \infty & 31 \\ 28 & 38 & 24 & 10 & 13 & 0 & 96 & 22 & 32 & \infty \end{pmatrix}$$

Шаг 2. Построение дерева решений

- 1. Выберите путь с минимальной оценкой.
- 2. Разделите задачу на две подзадачи:
 - Включить ребро (i, j) в путь.
 - Исключить ребро (i, j) из пути.
- 3. Оцените каждую подзадачу (границы).
- 4. Повторяйте до тех пор, пока не найдётся оптимальный путь.

Шаг 3. Окончательное решение

Оптимальный путь: $1 \to 8 \to 3 \to 7 \to 9 \to 5 \to 4 \to 6 \to 10 \to 2 \to 1$. Длина пути равна 87.