Detecting and Classifying Short-finned Pilot Whale Acoustics with Deep Learning

Virginia Pan, Dr. Nicola Quick, Dr. Douglas Nowacek Pratt School of Engineering and Duke Marine Laboratory

OD44A-3476

Short-finned Pilot Whales and DTAGs

Digital Acoustic Recording Tag

(DTAG)

and ecology

whales off Cape Hatteras

Globicephala macrorhynchus

- Highly social
- Squid and fish diet
- •Hunt at +1,000 ft
- Use sound for navigation,
- hunting and communication Often involved in mass
- standings
- "Cheetahs of the deep sea"

Records audio, pitch, roll, heading, and depth Can study social interactions, foraging, diving Nowacek Lab annually tags short-finned pilot

DTAG diagram [1]

Manual review of DTAG audio is time consuming and requires a trained ear!

Audio Pre-processing

Workflow for extracting buzz and minibuzz audio segments from DTAG recordings

- Focused on buzz and minibuzz vocalizations
- Data from 2008, 2010, and 2011 (25 individuals total)
- Log file: chronological list of audio segments for an individual
- Audit file: Manually reviewed audio for whale sounds
- Extracted audio clips
- High-pass Butterworth Filter with cutoff of 1kHz
- STFT of filtered audio clips served as input to classification network

filter, 1kHz cutoff frequency

Mixing and sorting of 2010 training, testing, and evaluation data

Classification with Deep Learning

Network Structure for Classifying Variable Length Audio

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	3559, 1, 256)	262400
re_lu_1 (ReLU)	(None,	3559, 1, 256)	0
conv2d_2 (Conv2D)	(None,	1780, 1, 256)	196608
re_lu_2 (ReLU)	(None,	1780, 1, 256)	0
conv2d_3 (Conv2D)	(None,	890, 1, 256)	196608
re_lu_3 (ReLU)	(None,	890, 1, 256)	0
conv2d_4 (Conv2D)	(None,	445, 1, 256)	196608
re_lu_4 (ReLU)	(None,	445, 1, 256)	0
global_max_pooling2d_1 (Glob	(None,	256)	0
dense_1 (Dense)	(None,	2)	512

Convolutional Neural Network Model Summary

Deep Learning Network:

- Based on [2]
- Identify presence of 256 unique sounds
- Group sounds into sequences
- Global max pooling layer checks for sound sequence in whole audio clip (handled different length audio segments)
- Fully connected layer
- AWS: S3 storage, Sagemaker: Jupyter Notebook, Python 3 backed by Keras

Classification Results

2008, 2010, 2011 (equal mix) Testing: 2008, 2010, 2011 (equal mix)

√ 97.63% accuracy

References

[1] DTAG: A Digital Acoustic Recording Tag. (2017, May 12). Retrieved December 1, 2019, from https://www.whoi.edu/website/marine-mammal-behavior-lab/dtag

[2] Hertel, Lars & Phan, Huy & Mertins, Alfred. (2016). Classifying Variable-Length Audio Files with All-Convolutional Networks and Masked Global Pooling.

[3] NOAA. (n.d.). Short-Finned Pilot Whale. Retrieved December 1, 2019, from https://www.fisheries.noaa.gov/species/short-finned-pilot-whale

[4] Auditok Library: https://github.com/amsehili/auditok

[5] B. Mcfee, C. Raffel, D. Liang, D. Ellis, M. Mcvicar, E. Battenberg, and O. Nieto, "librosa: Audio and Music Signal Analysis in Python," Proceedings of the 14th Python in Science Conference, 2015.

Detection in Time Domain

- High-pass Butterworth Filter with cutoff of 1kHz
- Auditok library [4] for event detection
- Parameters for peak detection:
 - Minimum signal length: 0.1s
 - Maximum signal length: 20s
 - Maximum length of silence within an audio segment: 0.5s
 - Energy threshold: 30-50, increments of 2

$$energy = 10*\log_{10} \frac{\|signal\|_2^2}{\text{length}(signal)}$$

- Detected events strictly non-overlapping
- Tested with shorter (35 minute) DTAG audio segment with an abundance of sound events

Detection Results

- Lower energy threshold:
- Captured more audit events
- Increased recall
- Similar precision
- Lowered accuracy

- → Aim to maximize recall (prevent missed events)
- → Can identify false positives in classification stage

Successes

- Ignoring silent periods
- 72% recall rate at e = 30
- Clear relationship to parameters, future tuning has the potential to further improve performance

Shortcomings

- Acted as a peak detector, but many audit events do not occur at peak sound levels
- Detector breaks up continuous sounds (should be processed as single event)
- Detector does not allow for overlapping events

Future Work

- Deep Learning methods for simultaneous detection and classification
 - Purely feed-forward CNN on a continuously sliding window of the most recent audio spectrogram data
 - Can use classification scheme described here to continuously classify sound chunks using a sliding window
 - Current classification scheme already has some duration invariance built in
- Retrain the network
 - Incorporate more training data from new short-finned pilot whales
 - Train network with distribution of buzzes and minibuzzes proportional to life
 - Train network on other short-finned pilot whale sounds
- Investigate biological trends in data
 - Acoustic behavior in relation to time of day, depth, and movement