Exploiting Factorization For Scaling Decision-Theoretic Probabilistic Programs

MINSUNG CHO, Northeastern University, USA STEVEN HOLTZEN, Northeastern University, USA

Abstract TBW

DEFINITION 1. A branch-and-bound algebra is a semiring $S = (S, +, \times, 0, 1)$ equipped with orders (\leq, \sqsubseteq) such that:

- (1) (S, \leq) is a total order,
- (2) (S, \sqsubseteq) is a join–semilattice with join \sqcup where \sqsubseteq respects $+, \times$,
- (3) \leq , \sqsubseteq are compatible in the sense that for all $a \sqsubseteq b$, we also have $a \leq b$.

Example 1. The nonnegative real numbers $\mathbb{R}^{\geq 0}$ forms a branch-and-bound algebra with the usual semiring structure of $\mathbb{R}^{\geq 0}$ and the usual order serving as both \leq and \sqsubseteq , with join being the max function.

Example 2. The Boolean semiring $\mathbb{B} = \{\top, \bot\}$ with $+ = \lor, \times = \land, 0 = \bot, 1 = \top$ forms a branch-and-bound algebra with the order $\bot \le \top$ with join \land .

Example 3. The expected utility semiring $\mathbb{R}^{\geq 0} \times \mathbb{R}$ with the usual semiring operations forms a branch-and-bound algebra with:

- (1) $(p, u) \le (q, v)$ iff $u \le v$ or u = v and $p \le q$
- (2) $(p, u) \sqsubseteq (q, v)$ iff $p \le q$ and $u \le v$, with join being a coordinatewise max.

It is straightforward to see that these are compatible.

Example 4. For any branch-and-bound algebra \mathcal{B} consider the collection of finite sets with elements in \mathcal{B} , $\mathcal{P}_{<\omega}(\mathcal{B})$.

Authors' addresses: Minsung Cho, Northeastern University, Boston, Massachusetts, USA, minsung@ccs.neu.edu; Steven Holtzen, Northeastern University, Boston, Massachusetts, USA, s.holtzen@northeastern.edu.