

Some uses for the stack

- Short term data storage
 - vs. heap storage new (C++) / malloc (C)
 - Preserving registers during calculationsSome operations only work on a particular register
 - Evaluating expressions with multiple operators (e.g., 5 * 3 + 6 % 2)
- Context
 - Subroutines (return address, arguments)
 - Interrupts (return address, processor state)

1

Stack instructions (recap)

- PSHA push A onto stack
- PSHB push B onto stack
- PSHX push X onto stack
- PSHY push Y onto stack
- PULA pull A from stack
- PULB pull B from stack
- PULX pull X from stack
- PULY pull Y from stack

2

Stack operations – push byte

- SP (stack pointer) points to next available location.
- Stack grows downwards in memory, towards lower memory addresses.

Stack pointer instructions

- LDS load stack pointer
- STS store stack pointer
- INS increment stack pointer
- DES decrement stack pointer
- TSX transfer stack pointer+1 to X
- TSY transfer stack pointer+1 to Y
- TXS transfer X-1 to stack pointer
- TYS transfer Y-1 to stack pointer

Subroutines

BSR, BRANCH TO SUBROUTINE

MAIN PROGRAM
PC S8D = BSR SP-2 SP-1 RTNH
SP RTNL

RTS, RETURN FROM SUBROUTINE

MAIN PROGRAM
PC S39 = RTS
P1 RTNH
SP RTNL

SP1 RTNH
SP2 RTNH
SP41 RTNH
SOURCE: Motorola HC11 Programming Reference Guide

© Eric A. Durant, PhD

Passing parameters

- Using stack to pass parameters to subrs.:
 - Push parameters onto stack
 - Call subroutine
- More complicated than using registers or global variables
 - Problems with using registers
 - Parameter count limited by register set size
 - Less convenient for some calculated parameters
 - Problems with global variables
 - Waste memory (permanent allocation)
 - Non-reentrant (no recursive function calls; threads)

© Eric A. Durant, PhD 5

