Nai	me :	•••••	• • • • • • • • • • • • • • • • • • • •	•••••							
Rol	l No.	:		• • • • • • • • • • • • • • • • • • • •							
Inv	igilat	or's S	Signature :	• • • • • • • • • • • • •		Na					
			CS/B.Tech(CSE/	/IT)/SEI	M-3/EC	-312/2009-10					
				009							
	DI	GIT	AL ELECTRON	ICS &	LOGIC	DESIGN					
Tim	ie All	otted	: 3 Hours	¥		Full Marks: 70					
	,	T	ne figures in the mar	gin indica	ate full n	narks.					
Co	andid	lates	are required to give as far o	their ans Is practic		their own words					
		,			.						
			GROT	JP - A							
			(Multiple Choice	Type Q	uestions	s')					
1.	Cho	noose the correct alternatives for any ten of the following:									
						$10 \times 1 = 10$					
	i)	An	example of weighte	d code is		•					
		a)	Excess-3	b)	ASCII						
		c)	Hamming code	d)	8421.						
	ii)		e minimum number Full Adder circuit i		gates re	equired to design					
		a)	5	b)	9						
		c)	6	d)	10.						
	iii)	A decoder with enable input can be used as									
		a)	Encoder	b)	Parity	Parity Generator					
		c)	NAND	d)	Demu	ltiplexer.					

44001

[Turn over

CS/B.Tech(CSE/IT)/SEM-3/EC-312/2009wWww.makaut.com The value of 2^6 in octal system is 420 b) 20 a) none of these. 32 d) c) The maxterm corresponding to decimal 15 is v) A' + B' + C' + D'b) a) **ABCD** A'B'C'D'. d) A + B + C + Dc) The decimal equivalent of (332) 4 is vi) 94 63 b) a) d) none of these. c) 62 How many 1's are present in the binary representation of decimal number ($3 \times 512 + 7 \times 64 + 5 \times 8 + 3$)? 9 a) 8 b) d) 11. c) 10 viii) The greatest negative number of 1-byte in 2's complement scheme is - 256 b) - 255 a) d) - 127. c) - 128 The output of a logic gate is '1' when all its i/p are at ix) logic '0'. The gate is either a) NAND or XOR gate b) NOR or XOR gate AND or XNOR gate d) NOR or XNOR gate. c) J-K flip-flop has X)

- a) one stable state b) two stable states
- c) no stable state d) none of these.
- xi) Which of the following is reflected code?
- a) 8421 b) Excess-3
 - c) Gray d) ASCII.

44001

2

CS/B.Tech(CSE/IT)/SEM-3/EC-312/2009-10

	xii)	Gray code of a binary number 1011 is								
		a)	1110	b)	1100					
		c)	1101	d)	1111.					
	xiii)	The								
	•	a)	TTL	b)	ECL					
		c)	TRL	d)	DRL.					
	xtv)	The	itive but not	associative						
		is								
	,	a)	AND	b)	XOR					
		c)	NAND	d)	NOT.					
	xv) The number of XOR gates required for conve									
	.*	e is								
	•	a) '	2	b)	4					
		c)	3	d)	5.					
		•	GR	OUP - B						
			(Short Answer	r Type Que	stions)					
	•		Answer any th	ree of the fo	ollowing.	$3\times 5=15$				
2.	implement									
	F(A	, B, C	$(0, D) = \Sigma(0, 1, 4, 6,$	7, 10, 11, 12	, 13, 15)+d(2, 5, 9, 14).				
3.	a) Design 4×16 decoder using 3×8 decoders.									
	b) Implement 2-input XOR function using minimum number of 2-input NAND gates. 2									
4.	Design full subtractor using 4; 1 multiplexers.									
5.	Perform the conversion from S-R to J-K flip-flop.									
6.	Real	ise a	full-subtractor u	sing all NAI	ND gates.					
440	01	· -		3		[Turn over				

2.

CS/B.Tech(CSE/IT)/SEM-3/EC-312/2009-10

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. 3 x 15 = 45
7. a) Describe the operation of successive approximation type ADC. How many clock pulses are required in worst case for each conversion cycle of an 8-bit SAR type ADC? Define quantizing error for an ADC.

- b) Draw a neat diagram for an R-2R ladder type DAC & explain its operation. 7 + 8
- 8. a) Design a MOD-10 synchronous binary UP-counter using JK flip-flop & other necessary logic gates.
 - b) Calculate the propagation delay for a 4-bit synchronous binary UP-counter when JK flip-flops are connected in series connection & parallel connection.
 Given Propagation delay Tp (F/F) in 30 nsec & propagation delay of the gates used in the circuit is 20 nsec (assumed to be equal for all gates).
- 9. a) Draw the circuit for a 4-bit Johnson counter sing D flip-flop & explain its operation. Draw its timing diagram. How does its timing diagram differ from that of Ring counter?
 - b) Perform the conversion from D f/f to JK f/f. 8 + 7
- 10. a) Distinguish between ROM, PLA & PLD's as elements realizing Boolean function.
 - b) Design a combinational circuit using an 8×4 ROM that accepts a 3-bit number & generates an output binary number equal to the square of input no.
 - c) Draw a logic diagram of master-slave JK f/f. Why is it called so? 7 + 5 + 3
- 11. Write short notes on any three of the following: 3×5
 - a) EEPROM
 - b) D/A converter
 - c) Triggering of flip-flops
 - d) Comparator
 - e) Data lock-out in a counter.

44001