6. Tax Incidence - Theory

Elliott Ash

ETH Zurich

Tax Incidence: definition

- ► Tax incidence: study of the effects of tax policies on prices
 - ► Who is better off and worse off after a tax change? By how much?
 - Incidence is an equilibrium concept
- What happens to market prices when a tax is introduced or changed?
 - ▶ Increase tax on cigarettes by \$1 per pack
 - Reduce the corporate income tax rate by 10%
 - ► Introduce a Working Tax Credit (WTC) for low income earners

Economic vs Statutory incidence

- Statutory incidence: who pays the tax according to the law?
 - "companies will pay a 30% tax on profits"
- ► Economic incidence: how does this change affect shareholders, workers?
 - "the increase in the corporate income tax will be passed on to workers"
 - This is an empirical question
- If prices do not change, then statutory and economic incidence would be the same
 - However, prices usually respond to tax changes
 - ► Taxes create a **wedge** between the consumer price (P^c) and the producer price (P^p)

Tax incidence: Positive analysis

- Studying incidence is an example of positive analysis
 - ► First step in policy evaluation
 - Key input when thinking about policies that might increase social welfare
- Theory is informative about signs and comparative statics, but inconclusive about magnitudes
 - ▶ Incidence of cigarette tax: demand elasticity wrt price is crucial
 - Labor vs capital taxation: mobility of labor, capital are critical
 - ► We need empirical evidence

Tax Incidence: Graphical Analysis

Tax Incidence: Graphical Analysis

Tax Incidence formulas

- ▶ Let demand be $Q_D(P)$ and supply $Q_S(P)$
- ▶ Define the elasticities of demand and supply as:

$$\varepsilon_D = -\frac{\partial Q_D}{\partial P} \frac{P}{Q} \qquad \varepsilon_S = \frac{\partial Q_S}{\partial P} \frac{P}{Q}$$

- ▶ Note: $\varepsilon_D \ge 0$ and $\varepsilon_S \ge 0$ by definition.
- Consider the introduction of an excise tax t to be paid by consumers
 - Now, we have to distinguish between the price faced by consumers (P^c) and by producers (P^p)
 - ▶ In this example, we now have $Q_D(P^c + t)$ and $Q_S(P^p)$

Excise vs. Ad valorem taxes

- Two types of tax:
 - Excise tax:

$$P^c = P^p + t$$

 $(\mathsf{Revenue} = tQ)$

► Ad valorem tax:

$$P^{c}=\left(1+t
ight) P^{p}$$
 (Revenue= $tP^{p}Q$)

► In the following examples we will consider excise taxes, but the same intuition applies to ad valorem taxes.

Tax Incidence formula for producers

- ► Start from market equilibrium: $Q^{D}(P^{p} + t) = Q^{S}(P^{p})$
- ightharpoonup Differentiate and solve for dP/dt:

$$\frac{\partial Q^D}{\partial P^P} \cdot (dP^P + dt) = \frac{\partial Q^S}{\partial P^P} \cdot dP^P$$

$$\left(\frac{\partial Q^D}{\partial P^P} \cdot \frac{P^p}{Q}\right) \cdot (dP^p + dt) = \left(\frac{\partial Q^S}{\partial P^P} \cdot \frac{P^p}{Q}\right) \cdot dP^p$$

$$-\varepsilon_D \cdot (dP^p + dt) = \varepsilon_S \cdot dP^p$$

$$\frac{dP^p}{dt} = \frac{-\varepsilon_D}{\varepsilon_S + \varepsilon_D} \in (-1, 0)$$

Homework: derive tax incidence formula for consumers

1. Continuing the example of an excise tax on consumers, show that the change in consumer price is

$$\frac{dP^c}{dt} = \frac{\varepsilon_S}{\varepsilon_S + \varepsilon_D} \in (0,1)$$

- 2. Now, consider an excise tax on producers. Derive the changes in prices (P^p, P^c) and show that they are exactly the same as in the previous case.
 - Statutory incidence does not matter for economic incidence!

Tax Incidence: Graphical Analysis

Perfectly inelastic demand ($\varepsilon_D = 0$)

Perfectly Inelastic Demand

Perfectly elastic demand $(\varepsilon_D \to \infty)$

Perfectly Elastic Demand

Homework: elastic and inelastic supply

- ► Do the graphical analysis for the cases of perfectly elastic and inelastic supply
- ▶ Who bears the burden of the tax in each case?

Tax Incidence with Monopoly power

- So far, we have assumed that markets are competitive
- ▶ In the case of a **monopoly**, the producer will maximize profits by cutting down production until MR = MC
- Mhen we introduce a tax, it is possible that $dP^c/dt>1$, which was not possible under perfect competition
 - ▶ Under two assumptions: (1) ad valorem tax, and (2) $d\varepsilon_D/dP < 0$
 - See Salanie (chapter 1) for derivations of the monopoly case