

Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks

Shiyu Liang, Yixuan Li, R. Srikant

Grepp Zayden

목차

- 1. Intorduction
- 2. Problem statement
- 3. ODIN
- 4. Experiments
- 5. Discussions
- 6. Q&A

딥러닝 모델의 학습

훈련 데이터의 분포와 테스트 데이터의 분포가 비슷할때 테스트 데이터에 대한 모델의 성능이 높다.

실제로 모델을 배포한다면?

- 실제 상황에서는 모델의 훈련과정에서 접하지 않은 다양한 분포의 데이터를 마주할 수 있다.
- 새로운 종류¹⁾의 데이터 (Out-Of-Distribution; OOD)를 모델에 넣는경우 특정 class로 분류되기 때문에 기대와 다르게 특정 class에 높은 확률값을 보이는 경우가 많다.

Out-Of-Distribution (OOD)

예측가능한 분포안에 있는 데이터 (In-Distribution; ID)와 다르게 분류할 수 없는 OOD를 판별하는것이 중요하다.

일반적으로 잘 학습된 딥러닝 모델은 OOD보다 ID에 높은 확률값을 보인다

- softmax에 temperature scaling를 추가
- 입력에 노이즈¹⁾ 추가

→ ID와 OOD 사이의 softmax score 차이가 커짐

문제 정의

이미지 $P_{\mathbf{X}}$ 와 $Q_{\mathbf{X}}$ 가 $P_{\mathbf{X}}Q_{\mathbf{X}}\in\mathcal{X}$ 일때 혼합 분포를 가지는 새로운 이미지 $\mathbb{P}_{\mathbf{X}|Z}\in\mathcal{X} imes(0,1)$ 가 아래와 같을때,

- ullet $\mathbb{P}_{\mathbf{X}|Z=0}=P_{\mathbf{X}} o ext{In distribution}$
- $\mathbb{P}_{\mathbf{X}|Z=1} = Q_{\mathbf{X}} o \mathsf{Out} \ \mathsf{distribution}$
- ightarrow $\mathbb{P}_{\mathbf{X}|Z}$ 분포를 가진 이미지 \mathbf{X} 가 주어지면 이 이미지를 $P_{\mathbf{X}}$ 인지 아닌지 분류할 수 있을까?

ODIN (Out-of-Distribution detector for Neural net- works)

Contributions

- 딥러닝 모델의 재학습이 필요없다!
- 최신 모델들에도 쉽게 적용할 수 있다!
- 기존의 baseline model보다 큰폭으로 성능이 향상되었다!
- 하이퍼 파라미터의 직관적 선택이 가능하도록 실험을 많이 진행하였다!

1. Temperature scaling

Softmax

모델의 출력으로부터 각 class에 대한 class confidence를 구하기위해 사용하는 Softmax는 다음과 같이 정의된다.

$$S_i(x) = rac{\exp f_i(x)}{\sum_{j=1}^N \exp f_j(x)}$$

이때 출력 class는 $argmax_iS_i(x)$ 로 선택한다.

T가 양의 실수일때 Temperature scaling은 아래와 같이 적용한다.

$$S_i(x,T) = rac{\exp f_i(x/T)}{\sum_{j=1}^N \exp f_j(x/T)}$$

Temperature Scaling의 영향

- softmax의 argmax에 영향이 없이 Calibration을 수행할 수 있음.
 - 특정 class에 over confidence하는 현상을 줄일 수 있음. (soften)

Calibration

단순히 높은 Confidence를 선택해서 결정되는 Accuracy가 아닌 실제 class에 대한 confidence를 따라가게 하는것.

Calibration

- 강아지:머핀
 - **0.9**: **0.1** → 실제 딥러닝 모델의 출력은 맞으나 confidence가 과도함
 - 0.6:0.4 → 실제 현실에서의 class confidence와 비슷

2. Input pre-processing

Inspired

Goodfellow et al., 2015의 FGSM에서 영감을 얻음

• gradient에 의한 작은 perturbation을 이용해 softmax score를 낮춰서 입력 이미지를 다른 class로 오해하게 만드는 기법

반대로!

입력 이미지에 대한 softmax score를 높이는 방향으로 perturbation을 추가한다.

$$ilde{x} = x - \epsilon sign(-
abla_x log S_{\hat{y}}(x;T)),$$

앞서 두가지 방법을 조합하자!

Out-of-distribution Detector

perturbation을 추가한 데이터에 대한 모델의 출력에 Temperature scaling을 적용

- threshold δ 보다 출력 확률이 낮거나 같은 경우 \rightarrow OOD
- threshold δ 보다 출력 확률이 높은 경우 \rightarrow ID

$$g(x;\delta;T;\epsilon) = egin{cases} 1 & ext{if} \;\; max_i \; p(ilde{x};T) \leq \delta, \ 0 & ext{if} \;\; max_i \; p(ilde{x};T) > \delta. \end{cases}$$

Discussion

Trained models

- DenseNet (Huang et al., 2016)
- Wide ResNet (Zagoruyko & Komodakis, 2016)

Trained model error rate

Architecture	CIFAR-10	CIFAR-100		
Dense-BC	4.81	22.37		
WRN-28-10	3.71	19.86		

Out-of-distribution Datsets

학습된 모델이 CIFAR-10, CIFAR-100에 대해 학습되어 있어서 한번도 보여지지 않은 데이터를 OOD로 테스트 하기위해서 아래와 같은 데이터를 이용함

- 1. TinylmageNet
- 2. LSUN
- 3. Gaussian Noise
- 4. Uniform Noise

Evaluation Metrics

Predicted Real	Positive	Negative		
Positive	TP	FP		
Negative	FN	TN		

- 민감도(Sensitivity, TPR, Recall)
 실제 Positive중에서 Postive로 예측된 비율
- 특이도(Specificity, TNR) 실제 Negative중에서 Negative로 예측된 비율
- FPR 실제 Negative중에서 Posivie로 예측된 비율
- 정밀도 (Precision)
 Positive로 예측된 값중에서 실제 Positive의 비율

OOD Test Metric

1. FPR@TPR=0.95

True Positive Rate가 95%일때 False Positive Rate

2. Detection Error

TPR이 95%일때 잘못 classify할 확률 ($P_e=0.5(1-TPR)+0.5FPR$)

3. AUROC (Area Under the Receiver Operating Characteristic curve)

Classify Threshold를 조절하면서 TPR/FPR 그래프 아래 면적

4. AUPR

Classify Threshold를 조절하면서 Precision/recall 커브의 아래 면적

Result

	Out-of-distribution dataset	FPR (95% TPR) ↓	Detection Error ↓	AUROC	AUPR In ↑	AUPR Out ↑	
		Baseline (Hendrycks & Gimpel, 2017) / ODIN					
Dense-BC CIFAR-10	TinyImageNet (crop)	34.7/ 4.3	10.0/ 4.7	95.3/ 99.1	96.4/ 99.1	93.8/ 99.1	
	TinyImageNet (resize)	40.8/ 7.5	11. 5/6.1	94.1/ 98.5	95.1/ 98.6	92.4/ 98.5	
	LSUN (crop)	39.3/ 11.4	10.2/ 7.2	94.8/ 97.9	96.0/ 98.0	93.1/ 97.9	
	LSUN (resize)	33.6/ 3.8	9.8/ 4.4	95.4/ 99.2	96.4/ 99.3	94.0/ 99.2	
	Uniform	23.5/ 0.0	5.3/ 0.5	96.5/ 99.0	97.8/ 100.0	93.0/ 99.0	
	Gaussian	12.3 /0.0	4.7/ 0.2	97.5/ 100.0	98.3/ 100.0	95.9/ 100.0	
	TinyImageNet (crop)	67.8/ 26.9	36.4/ 12.9	83.0/ 94.5	85.3/ 94.7	80.8/ 94.5	
Dense-BC CIFAR-100 TinyIn LSUN LSUN Unifor	TinyImageNet (resize)	82.2/ 57.0	43.6/ 22.7	70.4 /85.5	71.4/ 86.0	68.6/ 84.8	
	LSUN (crop)	69.4/ 18.6	37.2/ 9.7	83.7/ 96.6	86.2/ 96.8	80.9/ 96.5	
	LSUN (resize)	83.3/ 58.0	44.1/ 22.3	70.6/ 86.0	72.5/ 87.1	68.0/ 84.8	
	Uniform	100.0/ 100.0	35.86/ 17.9	43.1/ 99.5	63.2/ 87.5	41.9/ 65.1	
	Gaussian	100.0/ 100.0	41.2/ 38.0	30.6/ 40.5	53.4/ 60.5	37.6/ 40.9	

Discussion

The effects of T

The effects of gradient $abla_x log S(x;T)$

The effects of ϵ

- ϵ 이 작은 값일때는 큰 영향이 없지만 무시할 수 없을정도의 값을 가지는 경우 preprocessing을 거친 이미지는 $||\nabla_x log S(x;T)||_1$ 의 영향을 받는다.
- 하지만 ϵ 이 너무 큰경우 classification 성능이 감소한다.

Q&A

References

- Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. ICLR, 2015.
- Gao Huang, Zhuang Liu, and Kilian Q Weinberger. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, 2016.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016.