Progetto - Fondamenti di informatica

Fabio Paolini IN0500843

Anno 2019-2020

1 Calcolo della funzione

Ricavo i valori assunti dalla funzione f(x,y,z,d) dal resto della divisione del numero di matricola (0500843) per 2^{16} :

 $\begin{array}{cccc} (500843 \mod & 65536) = 42091 \\ 42091_{10} = 1010010001101011_2 \end{array} \longrightarrow$

x	у	\mathbf{z}	d	f(x,y,z,d)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Minterm

Per ottenere la prima forma canonica della funzione, riscrivo le combinazioni (x, y, z, d) in cui la funzione assume il valore 1:

x	y	\mathbf{z}	d	f(x,y,z,d)
0	0	0	0	1
0	0	1	0	1
0	1	0	1	1
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1
1	1	1	1	1

La funzione f(x,y,z,d) si può esprimere come somma di prodotti nel seguente modo:

$$f(x, y, z, d) = (\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{d}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{d}) + (\overline{x} \cdot y \cdot \overline{z} \cdot d) + (x \cdot \overline{y} \cdot \overline{z} \cdot d) + (x \cdot \overline{y} \cdot z \cdot \overline{d}) + (x \cdot y \cdot \overline{z} \cdot \overline{d}) + (x \cdot y \cdot z \cdot \overline{d})$$

Maxterm

Per ottenere la seconda forma canonica della funzione, riscrivo le combinazioni (x,y,z,d) in cui la funzione assume valore 0:

x	y	Z	d	f(x,y,z,d)
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	0
1	1	0	1	0

La funzione f(x,y,z,d) si può esprimere come prodotto di somme nel seguente modo:

$$f(x, y, z, d) = (x + y + z + \overline{d}) \cdot (x + y + \overline{z} + \overline{d}) \cdot (x + \overline{y} + z + d) \cdot (x + \overline{y} + \overline{z} + d) \cdot (x + \overline{y} + \overline{z} + \overline{d}) \cdot (\overline{x} + y + z + d) \cdot (\overline{x} + y + \overline{z} + \overline{d}) \cdot (\overline{x} + \overline{y} + z + \overline{d})$$

2 Semplificazione

Semplificazione algebrica

Semplifico le funzioni utilizzando i teoremi e gli assiomi dell' algebra booleana

Minterm

$$f(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z},\boldsymbol{d}) = \underline{(\overline{x}\cdot\overline{y}\cdot\overline{z}\cdot\overline{d})} + \underline{(\overline{x}\cdot\overline{y}\cdot z\cdot\overline{d})} + (\overline{x}\cdot\overline{y}\cdot\overline{z}\cdot d) + (x\cdot\overline{y}\cdot\overline{z}\cdot d) + (x\cdot\overline{y}\cdot\overline{z}\cdot\overline{d}) + (x\cdot\overline{y}\cdot\overline{z}\cdot\overline{$$

Sono state omesse le operazioni che sfruttano l'assioma A6

Maxterm

$$f(x,y,z,d) = \underbrace{(x+y+z+\bar{d}) \cdot (x+y+\bar{z}+\bar{d})}_{\cdot} \cdot (x+y+z+\bar{d}) \cdot (x+\bar{y}+z+\bar{d}) \cdot (x+\bar{y}+z+\bar{d}) \cdot (x+\bar{y}+z+\bar{d}) \cdot (x+y+z+\bar{d}) \cdot (x+y+z+\bar{d})$$

$$= \underbrace{(x+y+\bar{d}) \cdot (x+\bar{y}+\bar{d}) \cdot (x+\bar{y}+z+\bar{d})}_{\cdot} \cdot (x+y+z+\bar{d}) \cdot (x+y+\bar{d}) \cdot (x+y+z+\bar{d}) \cdot (x+y+\bar{d}) \cdot (x+\bar{d}) \cdot (x+\bar{d}) \cdot (x+\bar{d}) \cdot (x+\bar{d}) \cdot (x+\bar{d})$$

$$f(x,y,z,k) = \dots$$

$$\stackrel{AT}{=} [(x \cdot y) + (x \cdot z \cdot \overline{d}) + (x \cdot \overline{z} \cdot d) + (\overline{y} \cdot \overline{d} \cdot \overline{x}) + (\overline{y} \cdot \overline{d} \cdot z \cdot \overline{d}) + (y \cdot d \cdot \overline{x}) + (y \cdot d \cdot \overline{y}) + (y$$

Sono state omesse le operazioni che sfruttano l'assioma A6

Mappa di Karnaugh

x	у	z	k	f(x,y,z,d)
0	0	0	0	1
0	0	1	0	1
0	1	0	1	1
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1
1	1	1	1	1

$$\implies \boldsymbol{f(x,y,z,d)} = (\overline{x} \cdot \overline{y} \cdot \overline{d}) + (x \cdot y \cdot \overline{d}) + (\overline{x} \cdot y \cdot \overline{z} \cdot d) + (x \cdot \overline{y} \cdot \overline{z} \cdot d) + (x \cdot y \cdot z) + (\overline{y} \cdot z \cdot \overline{d})$$

Metodo tabellare di Quine - Mc Cluskey

x	y	Z	d	f(x,y,z,d)
0	0	0	0	1
0	0	1	0	1
0	1	0	1	1
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1
1	1	1	1	1

	Livello		xyzd
	0	0	0000
	1	2	0010
A	2	5	0101
В		9	1001
		10	1010
		12	1100
	3	14	1110
	4	15	1111

			$\neg xyd(z+z)$
		xyzd	$(x+\overline{x})\overline{y}z\overline{d}$
С	0,2	00-0	$\sqrt{xz\overline{d}(y+\overline{y})}$
D	2,10	-010	$\sqrt{xyd}(z+\overline{z})$
E	10,14	1-10	$xyz(d+\overline{d})$
F	12,14	11-0	, , , , , , , , , , , , , , , , , , ,
G	14,15	111- ´	

Implicante	Implicati	Espressione
A	5	$\overline{x} \cdot y \cdot \overline{z} \cdot d$
В	9	$x \cdot \overline{y} \cdot \overline{z} \cdot d$
C	0,2	$\overline{x} \cdot \overline{y} \cdot \overline{d}$
D	2,10	$\overline{y} \cdot z \cdot \overline{d}$
F	12,14	$x \cdot y \cdot \overline{d}$
G	14,15	$x \cdot y \cdot z$

Implicanti primi necessari

Per coprire il termine 10 è possibile scegliere l'implicante D oppure l'implicante E. Scegliendo l'implicante D l'espressione risultante è identica a quella trovata con il metodo della mappa di Karnaugh. La funzione ottenuta è la seguente:

$$f(x, y, z, d) = \underbrace{(\overline{x} \cdot y \cdot \overline{z} \cdot d)}_{\text{A}} + \underbrace{(x \cdot \overline{y} \cdot \overline{z} \cdot d)}_{\text{B}} + \underbrace{(\overline{x} \cdot \overline{y} \cdot \overline{d})}_{\text{C}} + \underbrace{(\overline{y} \cdot z \cdot \overline{d})}_{\text{D}} + \underbrace{(x \cdot y \cdot \overline{d})}_{\text{F}} + \underbrace{(x \cdot y \cdot z)}_{\text{G}}$$

3 Schema logico

Minterm:

$$\begin{split} \boldsymbol{f(x,y,z,k)} &= (\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{d}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{d}) + (\overline{x} \cdot y \cdot \overline{z} \cdot d) + (x \cdot \overline{y} \cdot \overline{z} \cdot d) + (x \cdot \overline{y} \cdot z \cdot \overline{d}) + (x \cdot y \cdot \overline{z} \cdot \overline{d}) + \\ &+ (x \cdot y \cdot z \cdot \overline{d}) + (x \cdot y \cdot z \cdot d) \end{split}$$

Maxterm:

$$f(x, y, z, d) = (x + y + z + \overline{d}) \cdot (x + y + \overline{z} + \overline{d}) \cdot (x + \overline{y} + z + d) \cdot (x + \overline{y} + \overline{z} + \overline{d}) \cdot (x + \overline{y} + \overline{z} + \overline{d}) \cdot (\overline{x} + y + z + \overline{d}) \cdot (\overline{x} + \overline{y} + z + \overline{d})$$

Funzione semplificata:

$$\boldsymbol{f(x,y,z,d)} = (\overline{x} \cdot \overline{y} \cdot \overline{d}) + (x \cdot y \cdot \overline{d}) + (\overline{x} \cdot y \cdot \overline{z} \cdot d) + (x \cdot \overline{y} \cdot \overline{z} \cdot d) + (x \cdot y \cdot z) + (\overline{y} \cdot z \cdot \overline{d})$$

4 Dichiarazione

Il lavoro di cui sopra è stato svolto da me in completa autonomia.

Fabio Paolini Trieste, 14 giugno 2020