1

Assignment 16

Shaik Zeeshan Ali AI20MTECH11001

Download all python codes from

https://github.com/Zeeshan-IITH/IITH-EE5609/new/master/codes

and latex-tikz codes from

https://github.com/Zeeshan-IITH/IITH-EE5609

1 PROBLEM

Let **V** be a finite-dimensional inner product space, and let **W** be a subspace of **V**. Then $\mathbf{V} = \mathbf{W} \oplus \mathbf{W}^{\perp}$, that is, each α in **V** is uniquely expressible in the form $\alpha = \beta + \gamma$, with $\beta \in \mathbf{W}$ and $\gamma \in \mathbf{W}^{\perp}$. Define a linear operator **U** by $\mathbf{U}\alpha = \beta - \gamma$.

- 1) Prove that **U** is both self-adjoint and unitary.
- 2) If **V** is \mathbb{R}^3 with standard inner product and **W** is the subspace spanned by (1,0,1), find the matrix of **U** in the standard ordered basis.

2 construction

Given	V is a finite-dimensional inner product space, and W is a subspace of V. Then
	$\mathbf{V} = \mathbf{W} \oplus \mathbf{W}^{\perp}$ that is, each α in \mathbf{V} is uniquely expressible in the form $\alpha = \beta + \gamma$,
	with $\beta \in \mathbf{W}$ and $\gamma \in \mathbf{W}^{\perp}$.
Inner product	An inner product on a vector space V is a function which assigns to each ordered
	pair of vecors $\alpha, \beta \in \mathbf{V}$ a scalar $(\alpha \beta)$ in \mathbb{F} in such a way that for all $\alpha, \beta \in \mathbf{V}$
	and all scalar $c \in \mathbb{F}$
	$i) \ (\alpha + \beta \gamma) = (\alpha \gamma) + (\beta \gamma)$
	$ii) (c\alpha \beta) = c(\alpha \beta)$
	$iii)$ $(\beta \alpha) = (\overline{\alpha \beta})$, where the bar denotes complex conjugation
	$iv) (\alpha \alpha) > 0 \text{ if } \alpha \neq 0$
Inner product	Inner product space is a real or complex vector space together with a specified
space	inner product on that space. If V is an inner product space, then for any vectors
	$\alpha, \beta \in \mathbf{V}$ and any scalar c
	$i) \mathbf{c}\alpha = \mathbf{c} \alpha $

	$ ii\rangle \alpha > 0 \text{ for } \alpha \neq 0$
	$ iii\rangle (\alpha \beta) \le \alpha \beta $
	$iv) \ \alpha + \beta \le \alpha + \beta $
Orthogonal	Given that W is a subspace of V. The orthogonal complement of W is the
complement	set \mathbf{W}^{\perp} of all vectors in \mathbf{V} which are orthogonal to every vector in \mathbf{W} . Given that
	$\beta \in \mathbf{W}$ and $\gamma \in \mathbf{W}^{\perp}$, then the inner product $(\beta \gamma)$ will be equal to 0.

TABLE 1: Construction

3 Proof

Theorem	For any linear operator U on a finite dimensional inner product space V, there exists a
	unique linear operator \mathbf{U}^* on \mathbf{V} such that
	$(\mathbf{U}\alpha \boldsymbol{\beta}) = (\alpha \mathbf{U}^*\boldsymbol{\beta})$
	for all $\alpha, \beta \in V$. Then we say that U has an adjoint on V , which is U *
self adjoint	Let α_1, α_2 be any two arbitrary vectors in V such that $\alpha_1 = \beta_1 + \gamma_1$ and $\alpha_2 = \beta_2 + \gamma_2$
	where $\beta_1, \beta_2 \in \mathbf{W}$ and $\gamma_1, \gamma_2 \in \mathbf{W}^{\perp}$. The linear operator \mathbf{U} on the inner product space is
	$(\mathbf{U}\alpha_1 \alpha_2) = (\beta_1 - \gamma_1 \beta_2 + \gamma_2) = (\beta_1 \beta_2) + (\beta_1 \gamma_2) - (\gamma_1 \beta_2) - (\gamma_1 \gamma_2)$
	since \mathbf{W}^{\perp} is orthogonal complement of \mathbf{W}
	$(\mathbf{U}\alpha_1 \alpha_2) = (\beta_1 \beta_2) - (\gamma_1 \gamma_2)$
	similarly
	$(\alpha_1 \mathbf{U}\alpha_2) = (\beta_1 + \gamma_1 \beta_2 - \gamma_2) = (\beta_1 \beta_2) - (\beta_1 \gamma_2) + (\gamma_1 \beta_2) - (\gamma_1 \gamma_2)$
	since \mathbf{W}^{\perp} is orthogonal complement of \mathbf{W}
	$(\alpha_1 \mathbf{U}\alpha_2) = (\beta_1 \beta_2) - (\gamma_1 \gamma_2)$
	Since $(\mathbf{U}\alpha_1 \alpha_2) = (\alpha_1 \mathbf{U}\alpha_2)$, the linear operator \mathbf{U} is self adjoint.
Theorem	Let U be a linear operator on the inner product space V. Then U is unitary if and only
	if the adjoint U^* of U exists and $UU^* = U^*U = I$

Unitary

$$(\mathbf{U}\mathbf{U}^*)\alpha = (\mathbf{U}\mathbf{U})\alpha = \mathbf{U}(\mathbf{U}\alpha) = \mathbf{U}^*(\mathbf{U})\alpha = (\mathbf{U}^*\mathbf{U})\alpha$$

We know that $U\alpha = \beta - \gamma$. Calculating $UU\alpha$, we get

$$\mathbf{U}\mathbf{U}\alpha = \mathbf{U}(\mathbf{U}\alpha) = \mathbf{U}(\beta - \gamma) = \mathbf{U}\beta - \mathbf{U}\gamma = \beta + \gamma = \mathbf{I}\alpha$$

Therefore as $(\mathbf{U}\mathbf{U}^*)\alpha = (\mathbf{U}^*\mathbf{U})\alpha = \mathbf{U}\mathbf{U}\alpha = \mathbf{I}\alpha$

$$(\mathbf{U}\mathbf{U}^*) = (\mathbf{U}^*\mathbf{U}) = \mathbf{I}$$

So the linear operator is unitary.

Part 2

Given **V** is \mathbb{R}^3 with standard inner product and **W** is the subspace spanned by (1,0,1).

Let the vector in \mathbf{W}^{\perp} , the orthogonal complement of \mathbf{W} be $\mathbf{a} = (\gamma_1, \gamma_2, \gamma_3)$. Since \mathbf{a} is orthogonal to the subspace \mathbf{W} , we get the inner product as

$$(\mathbf{a}|(1,0,1)) = \gamma_1 + \gamma_3 = 0$$

If $\gamma_2 = 1$ and $\gamma_1 = \gamma_3 = 0$ or $\gamma_2 = 0$ and $\gamma_1 = -\gamma_3 = 1$, both the vectors (0, 1, 0) and (1, 0, -1) form the linearly independent basis of \mathbf{W}^{\perp} . Therefore

$$W = span\{(1, 0, 1)\}$$

$$\mathbf{W}^{\perp} = span\{(0,1,0)\,, (1,0,-1)\}$$

Any vector $\alpha \in \mathbf{V}$ can be uniquely expressed as $\alpha = \beta + \gamma$ where $\beta \in \mathbf{W}$ and $\gamma \in \mathbf{W}^{\perp}$

So
$$\beta = x(1,0,1)$$
 and $\gamma = y(0,1,0) + z(1,0,-1)$.

The standard basis e_1, e_2, e_3 can be represented in terms of **W** and **W** $^{\perp}$ as

$$e_1 = (1,0,0) = \beta_1 + \gamma_1 = x_1 (1,0,1) + y_1 (0,1,0) + z_1 (1,0,-1) = (x_1 + z_1, y_1, x_1 - z_1)$$

Therefore $e_1 = \frac{1}{2}(1, 0, 1) + \frac{1}{2}(1, 0, -1)$. Similarly

$$e_2 = (0, 1, 0)$$

$$e_3 = \frac{1}{2}(1,0,1) - \frac{1}{2}(1,0,-1)$$

Representing the matrix of liner operator U with respect to standard basis

$$\mathbf{U} = \begin{pmatrix} \mathbf{U}\mathbf{e_1} & \mathbf{U}\mathbf{e_2} & \mathbf{U}\mathbf{e_3} \end{pmatrix}$$

$$\mathbf{Ue_1} = \mathbf{U}\left(\frac{1}{2}(1,0,1) + \frac{1}{2}(1,0,-1)\right) = \frac{1}{2}(1,0,1) - \frac{1}{2}(1,0,-1) = (0,0,1)$$

$$Ue_2 = U(0, 1, 0) = (0, -1, 0)$$

$$\mathbf{Ue_3} = \mathbf{U}\left(\frac{1}{2}(1,0,1) - \frac{1}{2}(1,0,-1)\right) = \frac{1}{2}(1,0,1) + \frac{1}{2}(1,0,-1) = (1,0,0)$$

Therefore the matrix of linear operator is

$$\mathbf{U} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Verifying we get

$$(\mathbf{U}e_1|(1,1,1)) = ((0,0,1)|(1,1,1)) = 1$$

$$(e_1|\mathbf{U}(1,1,1)) = ((1,0,0)|(1,-1,1)) = 1$$

$$\mathbf{U}^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}.$$
 Therefore the linear operator is unitary

TABLE 2: Proof