

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH - Semester - IV(CE) SUBJECT: (CE415) DISCRETE MATHEMATICS

INSTI	DITORE	
21,01	<u>zoc</u> 110	NS:
1 1	71	110.

ent.com Figures to the right indicate maximum marks for that question.

The symbols used carry their usual meanings.

if $c_r = a_r * b_r$ then $b_r = ?$

a) Prove that finite integral domain is a field.

Q.3 Attempt the following:

3.	Assume suitable data, if required & mention them clearly.			
Francisco	heat sketches wherever necessary.		:(E-31	
Date	Hation: III. Sessional	Seat No.	: Monda	
Time	: 26/03/2018	Day Max. Marks	: 36	•
Q.1	: 10:00 AM to 11:15 AM Answer the following:	1120011 112011		[12]
" a)	Let G be a group under $*$ and $O(G) = 27$, Is there any non-	trivial subgroup?	If yes,	[02]
,	which are the possible orders of non-trivial subgroup?			
b)	The state the possible orders of non-trivial subgroup.	such that a de	nes not	[02]
~,	If possible, give Example of numeric function a _r and b _r		JOS HOU	_
_	asymptotically dominate b _r , nor does b _r asymptotically dom	iinate a _{r.}		ro o 1
(c)	Give an example of finite ring which is not an Integral Domain.			[02]
. d)	Give the principle of duality and list the basic properties of a	lgebraic systems.		[02]
	Show that in a distributive lattice, if $b \wedge \bar{c} = 0$, then $b \leq c$.			[02]
_4 f)	Define distributed lattice and give an example of non distributed	utive lattice.		[02]
A .				
Q.2	Attempt Any three from the following:			[12]
(a)		rings of 0s and 1s	in each	[04]
	of which the number of 0s is even and the number of 1s is a			·-
b)	Construct the deterministic FSM that recognizes all binary se	equences that eithe	er starts	[04]
	with a 0 and without consecutive 0s or starts with a 1 and wi			
c)	Define Complement element in a lattice. Show that in a	distributive lattic	e, if an	[04]
	element has a complement then this complement is unique.			50.43
d)	Find the total solution for the difference equation given belo	w:		[04]
	$a_r - 6a_{r-1} + 9a_{r-2} = (r+2)3^r$			
Q.3	Attempt the following:			[12]
a)	Evaluate the sum: $1^2 + 2^2 + 3^2 + \dots + r^2$ using generating f	unction method.		[04]
b)	Prove that ker(f) is a normal subgroup of (G, *).			[04]
c)	Let $a_r = 1$, $r = 0$ and $c_r = 1$, $r = 0$;			[04]
•)	= 0, r=1 $= 0$ otherwise			[- · ·]
	= -4, r=2			
	=0 otherwise			

OR

	b) Let a*H and b*H be two cosets of H. Then prove that a*H and b*H are Either disjoint or identical.	
c)	If $A(z) = \frac{13z^2}{(1-2z)(1+3z)}$ then what is $a_r = ?$	[04]

[12]

[04]