MA 544: Homework 3

Carlos Salinas

January 31, 2016

PROBLEM 3.1 (WHEEDEN & ZYGMUND §3, Ex. 5)

Construct a subset of [0,1] in the same manner as the Cantor set, except that at the kth stage each interval removed has length $\delta 3^{-k}$, $0 < \delta < 1$. Show that the resulting set is perfect, has measure $1 - \delta$, and contains no interval.

Proof. Let $0 < \delta < 1$ be given. We begin by removing the open set $\left(\frac{\delta}{3}, 1 - \frac{\delta}{3}\right)$ from the closed interval [0,1]. This leaves us with two closed subsets of [0,1], the sets $I_1^1 \coloneqq \left[0,\frac{\delta}{3}\right]$ and $I_2^1 \coloneqq \left[1 - \frac{\delta}{3},1\right]$. Define $C_1 \coloneqq I_1^1 \cup I_1^2$. Continue this process ad infinitum, e.g., remove the open interval $\left(\frac{\delta}{9},\frac{\delta}{3} - \frac{\delta}{9}\right)$ from $\left[0,\frac{\delta}{3}\right]$ and the open interval $\left(1 - \frac{\delta}{3} + \frac{\delta}{9}, 1 - \frac{\delta}{9}\right)$ and so on, letting C_k be the union of the remaining closed intervals.

PROBLEM 3.2 (WHEEDEN & ZYGMUND §3, Ex. 7)

Prove (3.15).

Proof.

Lemma (Wheeden & Zygmund (3.15)). If $\{I_k\}_k^N$ is a finite collection of nonoverlapping intervals, then $\bigcup I_k$ is measurable and $|\bigcup I_k| = \sum |I_k|$.

PROBLEM 3.3 (WHEEDEN & ZYGMUND §3, Ex. 8)

Show that the Borel algebra \mathcal{B} in \mathbf{R}^n is the smallest σ -algebra containing the closed sets in \mathbf{R}^n .

Proof.

MA 544: Homework 3

PROBLEM 3.4 (WHEEDEN & ZYGMUND §3, Ex. 9)

If $\{E_k\}_{k=1}^{\infty}$ is a sequence of sets with $\sum |E_k|_e < +\infty$, show that $\limsup E_k$ (and also $\liminf E_k$) has measure zero.

Proof.

PROBLEM 3.5 (WHEEDEN & ZYGMUND §3, Ex. 10)

If E_1 and E_2 are measurable, show that $|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1| + |E_2|$.

Proof.