Type *Markdown* and LaTeX: α^2

Importing Libraries

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

Out[2]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	
0	2047	WEST MADHYA PRADESH	1901	25.8	5.8	5.8	2.8	2.1	41.2	228.9	349.9	47.9	5.6	0.0	2.4	718.2	31.6	10.7	
1	2048	WEST MADHYA PRADESH	1902	22.1	8.4	0.0	2.0	5.9	35.9	401.9	179.4	194.1	37.9	10.0	14.2	911.7	30.5	8.0	
2	2049	WEST MADHYA PRADESH	1903	5.3	0.0	0.0	0.0	22.3	50.6	304.9	261.1	250.2	55.1	0.0	0.0	949.6	5.3	22.3	
3	2050	WEST MADHYA PRADESH	1904	3.2	15.5	14.8	0.0	12.0	96.6	273.0	218.6	125.9	3.3	1.8	9.6	774.4	18.7	26.9	
4	2051	WEST MADHYA PRADESH	1905	3.5	4.4	1.1	0.8	3.0	36.1	326.3	137.6	183.5	0.3	0.0	0.0	696.5	7.9	4.9	
110	2157	WEST MADHYA PRADESH	2011	0.0	1.7	0.1	1.8	3.6	241.5	306.7	343.3	165.0	0.2	0.0	0.0	1063.9	1.7	5.5	1
111	2158	WEST MADHYA PRADESH	2012	6.2	0.0	0.0	0.9	3.1	48.2	439.2	341.2	194.3	2.1	0.0	0.0	1035.2	6.2	4.0	1
112	2159	WEST MADHYA PRADESH	2013	1.7	31.1	8.5	2.8	0.4	263.7	485.1	432.6	98.9	68.7	0.3	2.4	1396.3	32.8	11.7	1
113	2160	WEST MADHYA PRADESH	2014	25.6	34.4	4.6	1.4	1.4	30.6	337.4	211.0	192.6	7.0	3.0	15.8	864.9	60.0	7.5	
114	2161	WEST MADHYA PRADESH	2015	40.2	6.4	53.5	13.3	2.0	154.1	428.2	276.6	55.6	11.0	0.3	1.0	1042.3	46.6	68.9	

Data Cleaning and Data Preprocessing

In [3]: df=df.dropna()

```
In [4]: | df.columns
'Mar-May', 'Jun-Sep', 'Oct-Dec'],
             dtype='object')
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 114 entries, 0 to 114
        Data columns (total 20 columns):
        #
            Column
                        Non-Null Count
                                       Dtype
        0
            index
                        114 non-null
                                       int64
        1
            SUBDIVISION
                        114 non-null
                                       object
        2
            YEAR
                        114 non-null
                                        int64
                        114 non-null
                                       float64
         3
            JAN
            FEB
                        114 non-null
                                       float64
            MAR
                        114 non-null
                                        float64
                        114 non-null
        6
            APR
                                       float64
                        114 non-null
        7
            MAY
                                       float64
                                       float64
         8
            JUN
                        114 non-null
         9
            JUL
                        114 non-null
                                        float64
                        114 non-null
                                       float64
        10
            AUG
                        114 non-null
                                       float64
        11
            SFP
        12
            OCT
                        114 non-null
                                       float64
            NOV
                        114 non-null
                                        float64
        13
                                       float64
        14 DEC
                        114 non-null
        15 ANNUAL
                        114 non-null
                                       float64
                                        float64
        16
            Jan-Feb
                        114 non-null
         17
            Mar-May
                        114 non-null
                                        float64
         18
            Jun-Sep
                        114 non-null
                                        float64
            Oct-Dec
                        114 non-null
        19
                                        float64
        dtypes: float64(17), int64(2), object(1)
        memory usage: 18.7+ KB
```

Line chart

```
In [6]: df.plot.line(subplots=True)

Out[6]: array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>], dtype=object)

In [6]: df.plot.line(subplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>], dtype=object)

In [6]: df.plot.line(subplot:>, <AxesSubplot:>, <AxesSubplot:>,
```

Line chart

```
In [7]: df.plot.line()
```

Out[7]: <AxesSubplot:>

Bar chart

```
In [8]: df.plot.bar()
```

Out[8]: <AxesSubplot:>

Histogram

```
In [9]: df.plot.hist()
```

Out[9]: <AxesSubplot:ylabel='Frequency'>

Area chart

```
In [10]: df.plot.area()
```

Out[10]: <AxesSubplot:>

Box chart

```
In [11]: df.plot.box()
```

Out[11]: <AxesSubplot:>

Pie chart

```
In [12]: df.plot.pie(y='ANNUAL' )
Out[12]: <AxesSubplot:ylabel='ANNUAL'>
```


Scatter chart

```
In [13]: df.plot.scatter(x='SUBDIVISION' ,y='ANNUAL')
Out[13]: <AxesSubplot:xlabel='SUBDIVISION', ylabel='ANNUAL'>

1400 -
1200 -
800 -
```

WEST MADHYA PRADESH SUBDIVISION

Seaborn

600

In [14]: sns.pairplot(df)

Out[14]: <seaborn.axisgrid.PairGrid at 0x191193f5d30>

In [15]: sns.distplot(df['ANNUAL'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a de
precated function and will be removed in a future version. Please adapt your code to use either `displot`
(a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[15]: <AxesSubplot:xlabel='ANNUAL', ylabel='Density'>

In [16]: sns.heatmap(df.corr())

Out[16]: <AxesSubplot:>

In []: