

(11)Publication number:

2000-295169

(43) Date of publication of application: 20.10.2000

(51)Int.CI.

H04B 7/26 H01Q 3/26 H04Q 7/38 H04J 13/00

(21)Application number: 11-193960

(71)Applicant: NEC SAITAMA LTD

(22)Date of filing:

08.07.1999

(72)Inventor: KAWANABE YOSHITAKA

(30)Priority

Priority number: 11029336

Priority date: 05.02.1999

Priority country: JP

(54) BASE STATION IN CODE DIVISION MULTIPLE ACCESS SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a small-sized and inexpensive base station that accurately detects a phase difference between received signals corresponding respectively to each of a plurality of omnidirectional antenna elements.

SOLUTION: A base station 105 is provided with a plurality of antenna elements 107-1-107-n each receiving a transmission signal subjected to spread modulation corresponding to each of a plurality of mobile stations. A frequency shift section 111 applies frequency shift to a received signal corresponding to each of a plurality of the antenna elements 107-1-107-n. A synthesis section 115 synthesizes received signals that are frequency-shifted to generate a synthesis signal. A reception section 119 applies inverse frequency conversion to the synthesis signal to convert the signal into a digital signal. A signal processing section 123 applies spread demodulation processing to the digital signal corresponding to each of a plurality of the antenna

elements 107-1-107-n to specify a radio wave incoming direction of each of a plurality of mobile stations 101-1'-101-n'.

LEGAL STATUS

[Date of request for examination]

08.07.1999

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2000—295169

(P2000-295169A) (43)公開日 平成12年10月20日(2000.10.20)

(51) Int. Cl. 7	識別記号	FI		テーマコード (参考)
H04B 7/26		H04B 7/26	D	5J021
H01Q 3/26		H01Q 3/26	Z	5K022
H04Q 7/38		H04B 7/26 109	Α	5K067
H04J 13/00		H04J 13/00	Α	

審査請求 有 請求項の数4 OL (全12頁)

(21)出願番号	特願平11-193960	(71)出願人	390010179	
(22)出願日	平成11年7月8日(1999.7.8)		埼玉日本電気株式会社 埼玉県児玉郡神川町大字元原字豊原300番1 8	
(31)優先権主張番号 (32)優先日 (33)優先権主張国	特願平11-29336 平成11年2月5月(1999.2.5) 日本 (JP)	(72)発明者	川鍋 吉孝 埼玉県児玉郡神川町大字元原字豊原300番1 8 埼玉日本電気株式会社内	
		(74)代理人	100082935 弁理士 京本 直樹 (外2名)	

最終頁に続く

(54) 【発明の名称】符号分割多元接続システムにおける基地局

(57) 【要約】

【課題】複数の無指向性アンテナ素子各々に対応する受信信号間の位相差を正確に検出する小型化、低価格化の基地局を提供する。

【解決手段】符号分割多元接続システムにおける基地局において、複数の移動局各々に対応する拡散変調が施された送信信号を受信する為のアンテナ素子を複数備える。周波数シフト部は、複数のアンテナ素子の各々に対応して、受信信号に周波数シフトを施す。合成部は、周波数シフトされた受信信号を合成して合成信号を生成する。受信部は、合成信号に周波数逆変換を施し、ディジタル信号に変換する。信号処理部は、複数のアンテナ素子の各々に対応して、拡散復調処理をディジタル信号に施し、複数の移動局各々の到来方向を特定する。

10

【特許請求の範囲】

【請求項1】複数の移動局と基地局で構成される移動通 信システムにおいて、前記基地局は、複数のアンテナ と、周波数シフト部と、合成部と、受信部と、信号処理 部を備え、前記アンテナは、複数の移動局が送信した電 波を受信する手段と、前記周波数シフト部は、前記受信 した信号に対して複数のアンテナ毎に対応する周波数分 だけシフトする手段と、前記合成部は、前記周波数シフ トした信号を合成信号とする手段と、前記受信部は、前 記合成信号を周波数変換して中間周波数信号に落とし、 この中間周波数信号をディジタル信号に変換する手段 と、前記信号処理部は、前記ディジタル信号に対して複 数のアンテナ毎に対応する周波数シフト成分を補償した 拡散符号で拡散復調して複数のアンテナ毎の復調信号に 直す拡散復調手段と、この複数のアンテナ毎の復調信号 から移動局電波各々の到来方向を特定すると共に移動局 各々の復調信号を出力する判定手段と、この移動局各々 の復調信号からRAKE合成するフェージング対策手段 を有することを特徴とする符号分割多元接続方式の基地 局。

【請求項2】複数の移動局と基地局で構成される移動通 信システムにおいて、前記基地局は、複数のアンテナ素 子で構成されるアダプティブ・アレイアンテナと、周波 数シフト部と、合成部と、一つの受信部と、信号処理部 を備え、前記アダプテイブ・アレイアンテナは、複数の 移動局が送信した電波を受信する手段と、前記周波数シ フト部は、前記受信した信号に対して複数のアンテナ素 子毎に対応する値に基づいてあらかじめ設定された周波 数分だけシフトする手段と、前記合成部は、前記周波数 シフトした信号を一つの合成信号とする手段と、前記一 つの受信部は、前記一つの合成信号を周波数変換して中 間周波数信号に落とし、この中間周波数信号をディジタ ル信号に変換する手段と、前記信号処理部は、前記ディ ジタル信号に対して複数のアンテナ素子毎に対応する値 に基づいてあらかじめ設定された周波数シフト成分を補 償した拡散符号で拡散復調して複数のアンテナ毎の復調 信号に直す拡散復調手段と、この複数のアンテナ毎の復 調信号から移動局電波各々の到来方向を特定すると共に 移動局各々の復調信号を出力する判定手段と、この移動 局各々の復調信号からRAKE合成するフェージング対 40 策手段を有することを特徴とする符号分割多元接続方式 の基地局。

【請求項3】前記周波数シフト部は、前記複数のアンテナ素子毎に対応する複数の増幅器と複数のミキサと複数の発振器を備え、前記増幅器は、複数のアンテナ素子毎に受信した信号を増幅する手段と、前記発振器は、複数のアンテナ素子毎に対応する値に基づいてあらかじめ設定された周波数を発振する手段と、前記ミキサは、前記増幅信号を前記発振信号分だけ周波数シフトする手段を有することを特徴とする請求項1または請求項2記載の50

符号分割多元接続方式の基地局。

【請求項4】前記周波数シフト部は、前記複数のアンテナ素子毎に対応する複数の増幅器と複数のミキサと複数の逓倍回路と一つの基準発振器を備え、前記増幅器は、複数のアンテナ素子毎に受信した信号を増幅する手段と、前記基準発振器は、一つのあらかじめ設定された周波数を発振する手段と、前記逓倍回路は、複数のアンテナ素子毎に対応する値に基づいてあらかじめ設定された数値分だけ前記基準発振信号を逓倍する手段と、前記ミキサは、前記増幅信号を前記逓倍信号分だけ周波数シフトする手段を有することを特徴とする請求項1または請求項2記載の符号分割多元接続方式の基地局。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は符号分割多元接続システムにおける基地局に関し、特に、複数のアンテナの各々に対応する受信信号間の位相差の検出処理、及び移動局の到来方向の判定処理を実行する符号分割多元接続システムにおける基地局に関する。

20 [0002]

【従来の技術】符号分割多元接続(Code Division Multiple Access)方式による移動体通信システムの開発が進んでいる。基地局は、サービスエリアにおいて複数の移動局の各々からの信号を受信する受信装置として重要な役割を担う。

【0003】基地局のアンテナ装置として、アダプティブ・アレイアンテナが検討されている。アダプティブ・アレイアンテナは、複数の無指向性アンテナ素子から構成される。複数の無指向性アンテナ素子は、アンテナ素子各々から出力される受信信号を電気的に合成する事により指向性アンテナとして動作する。

【0004】アダプティブ・アレイアンテナにおいて、受信信号間の位相差が正確に検出される事が要求される。そして、複数の無指向性アンテナ素子の各々は、検出された位相差に基づく移動局電波の到来方向に対しては指向性利得を増やし、また、干渉波や妨害波に対しては指向性利得を減らすように制御される事が要求される。

【0005】本発明に関連する公知技術として、特開平6-24229号公報では、高距離分解能を実現するレーダ装置に関する技術が開示されている。このレーダ装置は、受信時間補正手段と受信ビーム指向方向制御手段とを備える。受信時間補正手段は、複数のアンテナ素子各々の受信信号を時間補正信号に応じて遅延する。受信ビーム指向方向制御手段は、アンテナビームの形成方向に関して、各アンテナ素子で受ける電波の到来時間が位相一致面で同一と成る様に時間補正信号を発生する。

【0006】又、特開平8-172312号公報では、 移動体受信アンテナシステムに関する技術が開示されて いる。移動体受信アンテナシステムは、同相合成する為 の局部発振器とモノパルス回路の局部発振器を共通化する。複数のアンテナの各々に対応して発生する第2中間 周波数のずれが実質的に解消され、位相検出誤差を含ま ない位相差信号が発生する。

【0007】更に、特開平10-70502号公報では、通信スロット或いは通信チャネルの利用効率を向上する移動体通信における指向性制御アンテナ装置に関する技術が開示されている。この移動体通信システムはアレーアンテナと、周波数変換手段と、到来方向推定手段及びアンテナ指向性制御手段とから構成される。アレー10アンテナは、移動局からの信号を受信する。周波数変換手段は、受信信号を中間周波数或いはベースバンド周波数を有する信号に変換する。到来方向推定手段は、変換された信号に基づいて移動局の存在方向を推定する。

【0008】従来のアダプティブ・アレイアンテナは、 複数の無指向性アンテナ素子の各々に対応する受信部及 び信号処理部を備える事が必要となる。従って、基地局 装置の規模が大きくなり、価格も高くなる。

【0009】このため、複数の無指向性アンテナ素子の各々に対応する受信部及び信号処理部の小型化、低価格 20化が望まれる。

【0010】又、複数の無指向性アンテナ素子の各々に対応する受信部において、従来ダブルスーパーへテロダイン方式が採用されている。従って、受信部内に周波数逆変換(ダウンコンバート)用の発振器が必要となる。この発振器は、局部発振された信号を発生する。複数のアンテナの各々に対応して局部発振された信号間には、位相ノイズによる位相誤差が発生しやすい。従って、複数の無指向性アンテナ素子の各々に対応する受信信号間の位相差において、正確に検出される事が難しくなる。

【0011】このため、複数の無指向性アンテナ素子の各々に対応する受信信号間の位相差を正確に検出して、複数の移動局電波各々の到来方向を正確に判断する基地局が望まれる。

[0012]

【発明が解決しようとする課題】これまで説明したように、本発明の目的は、アダプティブ・アレイアンテナにおける複数の無指向性アンテナ素子各々に対応する受信信号に対して一つの信号列にまとめる処理を施すことにより、一つの受信部で構成することができる小型化、低 40 価格化の基地局を提供する事にある。

【0013】又、本発明の他の目的は、アダプテイブ・アレイアンテナにおける複数の無指向性アンテナ素子の各々に対応する受信信号間の位相差を正確に検出することにより、複数の移動局電波各々の到来方向を正確に判断できる基地局を提供する事にある。

[0014]

【課題を解決するための手段】上記課題を解決する為に、本発明の符号分割多元接続(以下、CDMA)方式の基地局は、複数のアンテナ素子と、周波数シフト部

と、合成部と、一つの受信部と、信号処理部とから構成されており、この場合(イ)アンテナ素子は、複数の移動局が送信した電波を受信する手段と、(ロ)周波数シフト部は、前記受信した信号に対して複数のアンテナ素子毎に対応する値に基づいてあらかじめ設定された周波数分だけシフトする手段と、(ハ)合成部は、前記周波数シフトした信号を一つの合成信号とする手段と、

(二)受信部は、前記一つの合成信号を周波数変換して中間周波数信号に落とし、この中間周波数信号をディジタル信号に変換する手段と、(ホ)信号処理部は、前記ディジタル信号に対して複数のアンテナ素子毎に対応する値に基づいてあらかじめ設定された周波数シフト成分を補償した拡散符号で拡散復調して複数のアンテナ毎の復調信号に直す拡散復調手段と、この複数のアンテナ毎の復調信号から移動局各々の到来方向を特定すると共に移動局各々の復調信号を出力する判定手段と、この移動局各々の復調信号からRAKE合成するフェージング対策手段を具備させる。

【0015】また、前記周波数シフト部は、前記複数のアンテナ素子毎に対応する複数の増幅器と複数のミキサと複数の発振器から構成されており、この場合(イ)増幅器は、複数のアンテナ素子毎に受信した信号を増幅する手段と、(ロ)発振器は、複数のアンテナ素子毎に対応する値に基づいてあらかじめ設定された周波数を発振する手段と、(ハ)ミキサは、前記増幅信号を前記発振信号分だけ周波数シフトする手段を具備させる。

【0016】さらに、前記周波数シフト部は、前記複数のアンテナ素子毎に対応する複数の増幅器と複数のミキサと複数の逓倍回路と一つの基準発振器から構成されており、この場合(イ)増幅器は、複数のアンテナ素子毎に受信した信号を増幅する手段と、(ロ)基準発振器は、一つのあらかじめ設定された周波数を発振する手段と、(ハ)逓倍回路は、複数のアンテナ素子毎に対応する値に基づいてあらかじめ設定された数値分だけ前記基準発振信号を逓倍する手段と、(二)ミキサは、前記増幅信号を前記逓倍信号分だけ周波数シフトする手段を具備させる。

[0017]

50

【発明の実施の形態】本発明の符号分割多元接続(CDMA)方式における基地局の実施の形態を添付図面に基づいて以下に詳細に説明する。図1は、本発明の第1の実施の形態に係る基地局105を収容したCDMA方式による移動体通信システムである。

【0018】CDMA方式による移動体通信システムは、複数の移動局($101-1'\sim n'$)と、基地局 105 とにより実現する。複数の移動局($101-1'\sim n'$)の各々は、固有の拡散符号による拡散変調を送信すべきデータ(変調データ)に施し、送信信号($103-1'\sim n'$)としている。

【0019】基地局105には、送信信号(103-

20

1'~n')の受信手段として、アダプティブ・アレイ アンテナが設けられている。アダプティブ・アレイアン テナは、複数のアンテナ(複数のアンテナ素子)107 -1~nにより構成されている。アンテナ107-1~ nは、無指向性のアンテナである。各アンテナ間は、λ /4 (λ:使用周波数の波長)以上の間隔を隔てて設置 されている。

【0020】尚、図1において、移動局の数n'とアン テナの数nとは、必ずしも同数ではなく、"n'とn" の関係は、本発明を限定するものではない。この事は、 信号処理手段123の詳細説明において後述する。

【0021】基地局105はアダプティブ・アレイアン テナと、周波数シフト部111と、合成部115と、受 信部119及び信号処理部123とから構成される。

【0022】アダプティブ・アレイアンテナは、複数の 移動局101-1'~n'の各々に対応する拡散変調が 施された送信信号103-1'~n'を受信する為のア ンテナ107-1~nを複数備える。アンテナ107nは、複数の移動局101-1'~n'の各々に対応す る送信信号103-1'~n'を受信する。

【0023】周波数シフト部111は、複数のアンテナ 107-1~nの各々に対応して、受信信号109-1 ~nに周波数シフトを施す。この周波数シフト処理は、 複数のアンテナ素子(107-1~n)の各々に対応し て実行する。受信信号(109-1~n)の中心周波数 は、基準周波数 (f0) の整数倍 (1からアンテナ素子 の全体数n)に変換する。

【0024】図2を参照して説明する。アンテナ107 -nに対応する受信信号109-nの中心周波数は、周 波数 "n×f0"を与える信号と混合され、シフトされ 30

【0025】合成部115は、周波数シフトされた受信 信号113-1~nを合成して合成信号117を生成す る。本実施の形態において、合成部115は、マイクロ ストリップラインによるウィルキンソンのハイブリッド を採用する。

【0026】受信部119は、合成信号117に周波数 逆変換を施し、周波数逆変換された合成信号(157, 図5参照)を生成する。周波数逆変換された合成信号 は、アナログ信号である。更に、受信部119は、周波 40 数逆変換された合成信号をディジタル信号121に変換 する。

【0027】信号処理部123は、複数のアンテナ(1 07-1~n)の各々に対応して、拡散復調処理をディ ジタル信号121に施す。この拡散復調処理は、複数の 移動局(101-1~n)の各々に固有の拡散符号と、 上記周波数シフトにおけるシフト周波数差とに基づいて 実行する。更に、信号処理部123は、上記拡散復調処 理に基づいて、複数の移動局(101-1'~n')電 波各々の到来方向を判定する。

【0028】図4に周波数シフト部111の詳細構成を 示す。周波数シフト部111は、複数のアンテナ107 -1~nの各々に対応する周波数シフト手段を備える。 アンテナ107-nに対応する周波数シフト手段は、増 幅器(増幅手段)135-nと、発振器(発振手段)1 41-n及びミキサ(混合手段)139-nとにより構 成される。

【0029】増幅器135-nは受信信号109-nを 増幅する。アンテナ101-nにより受信された受信信 10 号109-nは、後述のミキサ139-nによるNF特 性の悪化を防ぐ為に、低NF特性を有する増幅器135 - nにより増幅される。発振器141-nは、局部発振 された信号を発生する。局部発振された信号は、アンテ ナ107-nに対応する周波数(n×f0)を有する。 【0030】ミキサ139-nは、増幅された受信信号 137-nに対して上記周波数(n×f0)に基づいて 周波数シフトする。ミキサ139-nは、周波数シフト された受信信号113-nを出力する。周波数シフトさ れた受信信号113-nは、合成部115に入力する。 【0031】本実施の形態において、ミキサ139-n は、ダブルバランスドミキサ、或いはトランジスタによ り構成され、発振器141-nは、PLL (Phase Loc kedLoop) 回路で構成される。 PLL回路は、任意の発 振周波数を有する局部発振された信号を発生する。

【0032】図5に、受信部119の詳細構成を示す。 本実施の形態において、受信部119は、ダブルスーパ ーヘテロダイン方式により構成され、受信部119は増 幅器143と、フィルタ(145, 151及び159) と、PLL回路(147及び153)と、ミキサ(14 9及び155)及びアナログ/ディジタル変換器(A/ D変換器) 161とから構成される。

【0033】増幅器143は、合成部115からの合成 信号117に増幅処理を施して、増幅された合成信号 (図示せず)を出力する。増幅器143は低NF特性を 有する。フィルタ(145,151及び159)の各々 は、予め設定された周波数特性に基づいて、入力された 信号の受信周波数帯域外の周波数成分を除去する。特 に、フィルタ(151及び159)は周波数逆変換(ダ ウンコンバート)による不要輻射を除去する。

【0034】フィルタ145は、増幅された合成信号に フィルタリング処理を施して第1フィルタリング信号 (図示せず)を出力する。ミキサ149は、PLL回路 147から発生された信号に基づいて、第1フィルタリ ング信号に対して(第1)周波数逆変換処理を施す。 【0035】更に、フィルタ151は、周波数逆変換さ れた第1フィルタリング信号(図示せず)にフィルタリ ング処理を施して第2フィルタリング信号を発生する。 ミキサ155は、PLL回路153から発生された信号 に基づいて、第2フィルタリング信号に対して(第2) 50 周波数逆変換処理を施す。

【0036】ダブルスーパーヘテロダイン方式に従い、 最終的に周波数逆変換された第2フィルタリング信号 (周波数逆変換された合成信号157)を出力する。周 波数逆変換された合成信号157は、A/D変換器16 1によりディジタル信号121に変換し、出力する。

【0037】本実施の形態において、PLL回路(147,153)の各々には、VCO (Voltage Control Oscilator)を採用する。ミキサ(149及び155)の各々は、周波数逆変換処理を実行する為のダブルバランスドミキサ或いはトランジスタにより構成される。

【0038】図2を参照して説明する。信号処理部123は、拡散復調部125と判定部129及びフェージング対策部133を備える。拡散復調部125は、複数のアンテナ(107-1~n)の各々に対応する拡散復調手段(125-1~n)を備える。判定部129は、複数の移動局101-1'~n'の各々に対応する判定手段129-1'~n'を備える。フェージング対策部133は、複数の移動局101-1'~n'の各々に対応するフェージング対策手段133-1'~n'を備える。

【0039】拡散復調手段125-nは、複数の移動局 101-1' \sim n' の各々に対応する拡散符号(図示せず)と、上記周波数変換(周波数($n\times f0$))における基準周波数(f0)との差($-(n-1)\times f0$)とに基づいた拡散復調処理をディジタル信号121に施す。

【0040】更に、拡散復調手段125-nは、複数の移動局101-1' \sim n'毎に復調データ(127-n-1', 127-n-2', ……, 127-n-n')を出力する。この時、上記復調データの各々には、拡散復調手段125-nによる処理が施された旨を示す履歴データが付加される。拡散復調処理の詳細は後述する。

【0041】判定手段129-n'は、予め設定された移動局(この場合、移動局101-n')に対応する復調データ(127-1-n', 127-2-n', ……, 127-n-n')を入力し、移動局(101-n')電波の到来方向を認識する為の遅延時間判定処理を実行する。

【0042】フェージング対策手段133-n'は、移動局毎の復調データ群131-n'を入力する。移動局 40 毎の復調データ群131-n'は、予め設定された移動局(この場合、移動局101-n')に対応する復調データ(127-1-n', 127-2-n', ……, 127-n-n')から形成する。フェージング対策手段133-n'は、移動局毎の復調データ群131-n'にRAKE合成処理を施す。

【0043】尚、拡散復調部125、判定部129及びフェージング対策部133は、論理的な構成要件であり、実際のハードウェア構成を制限しない。従って、処理順序の変更或いは統合された構成により実現する。

【0044】次に、本実施の形態に係るCDMAシステムにおける基地局の動作を説明する。図2を参照して説明する。複数の移動局101-1' \sim n'の各々は、スペクトラム拡散された送信信号103-1' \sim n'を各々出力する。送信信号103-1' \sim n'は、アンテナ $107-1\sim$ nにより受信される。

【0045】移動局101-1'~n'の各々は、送信データ系列としてN1', N2', …, Nn'を各々有する。送信データ系列の各々は、移動局固有の拡散符号10 X1', X2', …, Xn'の各々により拡散変調が施され、無線周波数fを有する送信信号101-1'~n'として出力する。

【0046】送信信号(103-1'~n')は、送信信号103-1'がf(1')(=N1'*X1'+f),送信信号103-2'がf(2')(=N2'*X2'+f),と定義され、更に、送信信号103-n'がf(n')(=Nn'*Xn'+f)と定義される。

【0047】この場合、"*Xn"は、拡散処理を表す論理表現を示す。又、"+f"は、周波数変換を表す論理表現を示す。上述された定義に基づく送信信号 f(1')~f(n')は、アンテナ107-1~nにより受信される。

【0048】図3に、例として、ある移動局からの送信信号 ($sin(\omega t)$) が複数のアンテナ $107-1\sim n$ の各々により受信される様子を示す。本実施の形態において、複数のアンテナ $107-1\sim n$ の各々は、物理位置が異なる。

【0049】送信信号 ($sin(\omega t)$) を受信する際に、アンテナへの入射角 ($\theta1\sim\theta n$) に応じた位相差が生じる。従って、受信するアンテナにより、受信信号の位相が異なる為、受信信号間の位相差が生じる。

【0050】例えば、アンテナ107-1で受信された送信信号は、到来波と比較して "sin (ω t+ θ 1)"となる。アンテナ107-nで受信された送信信号は、"sin (ω t+ θ n)"となる。

【0051】合成部115(図1,2参照)により、受信信号109-1~nを合成した場合、位相の異なる信号を合成する事になる。この場合、信号処理部123は、拡散復調の際に送信信号を受信したアンテナ、及び到来波との位相差が判断できない。更に、信号処理部123は、アンテナの指向性が決定できず、アダプティブアレイアンテナの適切な制御が難しい。そこで本発明における周波数シフト処理を実行することになる。

【0052】図2を参照して説明する。アンテナ107 -1に対応する受信信号109-1は、局部発振された信号(周波数 fo)に基づいて周波数シフトされる。受信信号109-1を形成する各送信信号は、周波数シフト部111により、以下の様に周波数シフトされる。

【0053】送信信号f(1')の成分は周波数シフト

50

し、信号成分 f 1 (1') (=f(1')+fo) となる。送信信号 103-2 の成分は周波数シフトし、信号成分 f 1 (2') (=f(2')+fo) となる。更に、送信信号 103-n の成分は周波数シフトし、信号成分 f 1 (n') (=f(n')+fo) となる。

【0054】次に、アンテナ107-2に対応する受信信号109-2は、局部発振された信号(周波数 $2\times f$ o)に基づいて周波数シフトされる。受信信号109-2を形成する各送信信号は、周波数シフト部111により、以下の様に周波数シフトされる。

【0055】送信信号 f (1') の成分は周波数シフトし、信号成分 f 2 (1') (= f (1') + 2 × f o) となる。送信信号 f 103-2' の成分は周波数シフトし、信号成分 f 2 (2') (= f (2') + 2 × f o) となる。更に、送信信号 f 103-f 0成分は周波数シフトし、信号成分 f 2 (f 10') (= f (f 10') + 2 × f o) となる。

【0056】更に、アンテナ107-nに対応する受信信号109-nは、局部発振された信号(周波数 $n\times f$ o)に基づいて周波数シフトされる。受信信号109-nを形成する各送信信号は、周波数シフト部111により、以下の様に周波数シフトされる。

【0057】送信信号 f (1') の成分は周波数シフトし、信号成分 f n (1') = f (1') + $n \times f$ o) となる。送信信号 f (2') の成分は周波数シフトし、信号成分 f n (2') = f (2') + $n \times f$ o) となる。更に、送信信号 f (n') の成分は周波数シフトし、信号成分 f n (n') (= f (n') + $n \times f$ o) となる。

【0058】従って、受信信号の中心周波数は、複数のアンテナ ($107-1\sim n$) の各々に対応して、(fox 2 を数倍,(1 からアンテナの全体数n))だけ周波数シフトされる。周波数シフトされた受信信号 $113-1\sim n$ は、合成部 115 に入力し、合成信号 117 として出力する。

【0059】合成部115は、上記周波数シフトされた信号成分を入力して合成する。合成信号117 (fSUM)は、以下の様になる。

[数式1]

f S U M = { (f 1 (1') + f 1 (2') + ····+ f 1 40 (n')) + (f 2 (1') + f 2 (2') + ····+ f 2 (n')) + ····+ (f n (1') + f n (2') + ····+ f n (n')) } 図 6 (A) に、合成信号 1 1 7 の周波数スペクトルを示す。合成信号 1 1 7 の周波数スペクトルは、複数のアンテナ (107-1~n)の各々に対応する受信信号 (109-1~n)の周波数スペクトルにより形成される。

【0060】スペクトルaは、アンテナ107-1に対 スペクトル (a 応する受信信号109-1に対応する。スペクトルb に基づいて、互 は、アンテナ107-2に対応する受信信号109-2 50 上に分布する。

に対応する。スペクトルcは、アンテナ107-nに対応する受信信号109-nに対応する。

【0061】図6(A)において、受信信号(109-1,2,…,n)の周波数スペクトル(a,b,…,c)は、基準周波数(f0)に基づいて、互いに重ならず実質的に連続して(マルチキャリア)、周波数軸上に分布する。

【0062】尚、発振器141-1~nにより局部発振された信号間の位相誤差は、限りなく少ない事が要求される。その位相誤差は、受信信号内の1フレーム間において3°以内が好ましい。この事は、複数のアンテナ(107-1~n)の各々に対応する局部発振された信号に対して、位相ノイズによる位相誤差が生じた場合、受信信号の空間における正確な位相差検出が妨げられる事に基づく。

【0063】次に、受信部119の処理を実行する。受信部119に入力された合成信号117は、増幅器143により増幅される。フィルタ145は、増幅された合成信号を入力し、受信周波数帯域内の信号成分のみろ波された第1フィルタリング信号を出力する。

【0064】ミキサ149は、PLL回路147により局部発振された信号に基づいて、無線周波数帯域の第1フィルタリング信号を中間周波数(Intermediate Frequency)の信号に変換する。フィルタ151は、上記中間周波数信号を入力し、不要な信号成分を除去して第2フィルタリング信号を出力する。

更に、送信信号 f (n ') の成分は周波数シフトし、信 【 0 0 6 5 】ミキサ 1 5 5 は、P L L 回路 1 5 3 により 局部発振された信号に基づいて、第 2 フィルタリング信 号をデジタル信号として変換可能な周波数帯域までダウ 【 0 0 5 8 】従って、受信信号の中心周波数は、複数の 30 ンコンバートして、周波数逆変換された合成信号 1 5 7 アンテナ (1 0 7 - 1 ~ n) の各々に対応して、 (f o を出力する。

【0066】受信部119は、[数式1]にて定義された合成信号117を入力する。受信部119は、合成信号117をベースバンド処理が可能な中間周波数に変換する。この場合、周波数逆変換された合成信号157(FSUM)は、[数式1]に対応して以下の様になる。

[数式2]

FSUM= { (F1 (1') +F1 (2') +···+F1 (n')) + (F2 (1') +F2 (2') +···+F2 (n')) +···+ (Fn (1') +Fn (2') +···+Fn (n')) }

ここで、 [数式 2] における関数 F は、 [数式 1] における関数 f に周波数逆変換を施して得る。

【0067】図6(B)に、周波数逆変換された合成信号157の周波数スペクトラム図を示す。図6(B)において、受信信号(109-1, 2, …, n)の周波数スペクトル(a, b, …, c)は、基準周波数(f0)に基づいて、互いに重ならず実質的に連続して周波数軸上に分布する。

【0068】フィルタ159は、A/D変換器161におけるサンプリング周波数に基づいて、周波数逆変換された合成信号157の不要な周波数成分を除去する。A/D変換器161はデジタル信号121を出力する。このディジタル信号121において、受信信号(109-1~n)間における位相差は実質的に保持される。

【0069】信号処理部123はディジタル信号121を入力する。入力されたディジタル信号121は、各拡散復調手段($125-1\sim n$)に分配し、拡散復調処理を施す。

【0070】拡散復調部125における拡散復調手段125-1は、受信信号(ディジタル信号121)に対して、拡散復調すべきデータ系列に対応した拡散符号を乗算する。この場合、拡散符号の周波数と復調すべきデータ系列の周波数が同一である事が条件となる。移動局101-1、に対応する拡散符号は、"X1"である。移動局101-2、に対応する拡散符号は、"X2"である。更に、移動局101-n、に対応する拡散符号は、"Xn"である。

【0071】アンテナ107-2に対応する受信信号109-2には、アンテナ107-1を基準として、"fo"だけの周波数シフトを施している。従って、各々の拡散符号に対し"-fo"分だけ乗算した拡散符号を用いて、ディジタル信号121に対して拡散復調を施す。【0072】アンテナ107-2に対応する拡散符号は、次の様になる。移動局101-1"に対応する拡散符号は、X1"*(-fo)となる。移動局101-2"に対応する拡散符号は、X1"*(-fo)となる。更に、移動局101-n"に対応する拡散符号は、X1"*(-fo)となる。この場合、"-fo"は、周波数変換部によるシフトとは逆側へのシフトを表す論理表現を示す。"*(-fo)"は、乗算を表す論理表現を示す。

【0073】同様に、アンテナ107-nに対応する拡散復調手段125-nにおいて設定される拡散符号は、次の様になる。移動局101-1'に対応する拡散符号は、X1'* $\{-(n-1)\ fo\}$ となる。移動局101-n'に対応する拡散符号は、X2'* $\{-(n-1)\ fo\}$ となる。更に、移動局101-n'に対応する拡散符号は、Xn'* $\{-(n-1)\ fo\}$ となる。 [0074】上記拡散符号に基づく拡散復調処理により受信信号の拡散が解除され、復元すべきデータ系列のみが復調される。周波数シフト部111による周波数シフト成分も補償される。ここで、拡散復調処理を施した拡散復調手段の履歴データが、復調データ系列(復調データ)に付加される。

【0075】一般に、移動局101-1'に対応する送信データ系列N1'が、N1'= $\{\alpha$ 、 β 、 γ 、…}である場合、拡散復調手段125-nにより拡散復調された復調データ系列N1''は、N1''= $\{n$ 、 α 、

 β, γ, \cdots となる。

【0076】拡散復調手段125-1~nの各々は、拡 散復調処理の履歴を与えるデータを復調データ系列に付 加する。従って、復調データ系列から拡散復調手段を識 別できる。更に、復調データ系列に対応するアンテナが 特定できる。

【0077】拡散復調手段125-1~nにおいて生成された復調データ(127-1-1'~n', 127-2-1'~n', …, 127-n-1'~n')は、判定部129に入力する。判定手段129-1'~n'の各々は、複数の移動局101-1'~n'の各々に対応する復調データ系列を入力し、遅延時間判定処理を実行する。

【0078】判定手段129-1'は、移動局101-1'に対応する復調データ系列(127-1-1', 127-2-1', …, 127-n-1')を入力する。判定手段129-2'は、移動局101-2'に対応する復調データ系列(127-1-2', 127-2-2', …, 127-n-2')を入力する。更に、判定手段129-n'は、移動局101-n'に対応する復調データ系列(127-1-n', 127-2-n', …, 127-n-n')を入力する。

【0079】図7(A)に、判定手段129-1'における遅延時間判定図を示す。復調データ系列(127-1-1', 127-2-1', …, 127-n-1')の各々は、同一の時間軸上に並べられ、比較される。

【0080】その結果、拡散復調手段125-1により生成された復調データ系列127-1-1 の遅延時間が、最も少ない。従って、復調データ系列127-1-1 は、アンテナ107-1で受信された送信信号103-1 であり、そして、移動機101-1 は、アンテナ101-1の方角から到来していると判断する。

【0081】図7(B)に、判定手段129-2'における遅延時間判定図を示す。復調データ系列(127-2-2', 127-2-2') の各々は、同一の時間軸上に並べられ、比較される。

【0082】その結果、拡散復調手段125-2により生成された復調データ系列127-2-2 の遅延時間が、最も少ない。従って、復調データ系列127-2-2 は、アンテナ107-2で受信された送信信号103-2 であり、そして、移動機101-2 は、アンテナ101-2の方角から到来していると判断する。

【0083】判定手段129-1'~n'の各々に入力した復調データ系列は、移動局毎の復調データ群131-1'~n'としてフェージング対策部133に送られる。フェージング対策手段133-1'~n'の各々は、マルチパスフェージングの対策技術であるRAKE合成処理を実行する。

【0084】復調データ系列(127-1-1', 1250 7-2-1', …, 127-n-1')は、復調データ

13

群131-1'を形成する。フェージング対策手段13 3-1'は、復調データ群131-1'を入力して、移 動局101-1'に対応するRAKE合成処理を実行す る。

【0085】復調データ系列(127-1-21, 12 7-2-2', …, 127-n-2') は、復調データ 群131-2'を形成する。フェージング対策手段13 3-2'は、復調データ群131-2'を入力して、移 動局101-2'に対応するRAKE合成処理を実行す る。

【0086】更に、復調データ系列(127-1n', 127-2-n', …, 127-n-n') は、 復調データ群131-n'を形成する。フェージング対 策手段133-n'は、復調データ群131-n'を入 カして、移動局101-n'に対応するRAKE合成処 理を実行する。

【0087】尚、本実施の形態において、判定手段12 9-1'~n'及びフェージング対策手段133-1' ~n'は、複数の移動局101-1'~n'の数だけ必 要となる。そして、複数の移動局101-1~~m~の 20 数は、基地局105が割当てられたサービスエリアの仕 様に基づいてその上限が決まってくる。

【0088】本実施の形態における基地局は、受信信号 に対してアンテナ毎に対応する周波数シフトを施す周波 数変換部111を設け、周波数シフトされた受信信号の 各々を合成する合成部115を設け、合成信号に対して 受信部119を共通に1つ設け、位相差が実質的に保持 された状態で信号処理できる信号処理部123を設け る。

【0089】従って、基地局装置の小型化及び低価格化 30 が図られ、サービスエリアにおける複数の移動局電波の 到来方向を正確に認識できる。

【0090】次に、本発明の第2の実施の形態に係る基 地局に関して説明する。本実施の形態における基地局 は、前述の第1の実施の形態における周波数シフト部1 11の構成が異なる。

【0091】図8に、本実施の形態における周波数シフ ト部111'の詳細構成を示す。尚、前述の第1の実施 の形態における構成要素及び信号と同一のものには、同 一符号が付され、説明を省略する(図2及び図4参 照)。

【0092】本実施の形態における周波数シフト部11 1'は、複数のアンテナに共通の基準発振器141を備 える。周波数シフト部111'は、複数のアンテナ10 7-1~nの各々に対応する周波数シフト手段と、基準 周波数 (f0) を与える信号を発生する為の基準発振器 (発振手段) 141とを備える。

【0093】アンテナ107-nに対応する周波数シフ ト手段は、増幅器(増幅手段)135-nと、ミキサ (混合手段) 139及び逓倍回路(逓倍手段) 142- 50 ック構成図である。

nで構成する。本実施の形態において、逓倍回路142 一nは、バラクタダイオードで構成する。

【0094】増幅器135-nは、受信信号109-n を増幅する。逓倍回路142-nは、複数のアンテナ素 子の各々に対応して予め設定された値"n"に基づい て、局部発振された信号が有する基準周波数(f0)を 逓倍する。ミキサ139-nは、増幅された受信信号1 37-nを逓倍された基準周波数(n×f0)に基づい て周波数シフトする。

10 【0095】本実施の形態における基地局は、共通の基 準発振器141を1つ設ける。従って、複数のアンテナ 107-1~nの各々に対応する受信信号間の位相は、 周波数シフト処理の前後で実質的に変化しない。受信信 号間の位相差は、信号処理部123へ正確に伝達でき る。

[0096]

【発明の効果】本発明による符号分割多元接続システム における基地局は、複数のアンテナ素子各々に対応して 周波数シフト部を備えることにより、一つの受信部で構 成することができる。従って、基地局装置の小型化、低 価格化が実現できる。

【0097】又、複数の無指向性アンテナの各々に対応 する受信信号間の位相差を正確に検出することができ る。従って、複数の移動局電波各々の到来方向が正確に 認識できる。

【図面の簡単な説明】

【図1】図1は、本発明の基地局を収容する符号分割多 元接続システムの概念を説明する為のブロック構成図で ある。

【図2】図2は、本発明の第1の実施の形態に係る符号 分割多元接続システムにおける基地局の詳細構成を説明 する為のブロック構成図である。

【図3】図3は、本発明の第1の実施の形態に係る符号 分割多元接続システムにおける基地局の動作の一部を説 明する為のブロック構成図である。

【図4】図4は、本発明の第1の実施の形態に係る基地 局における周波数変換部の詳細構成を説明する為のプロ ック構成図である。

【図5】図5は、本発明の第1の実施の形態に係る基地 40 局における受信部の詳細構成を説明する為のブロック構 成図である。

【図6】図6は、本発明の本発明の第1の実施の形態に 係る符号分割多元接続システムにおける基地局の動作の 一部を説明する為の周波数スペクトル図である。

【図7】図7は、本発明の本発明の第1の実施の形態に 係る符号分割多元接続システムにおける基地局の動作の 一部を説明する為のタイミング判定図である。

【図8】図8は、本発明の第2の実施の形態に係る基地 局における周波数変換部の詳細構成を説明する為のブロ

持開2000-295169

15

 【符号の説明】
 133-1'~n':フェージング対策手段

101-1'~n':移動局135-1~n, 143:増幅器103-1'~n':送信信号137-1~n:増幅された受信信号

105 : 基地局 139-1~n, 149, 155 : ミキサ

107-1~n: アンテナ (アンテナ素子)141 : 基準発振器109-1~n: 受信信号141-1~n: 発振器

111,111 : 周波数シフト部 142-1~n : 逓倍回路

113-1~n: 周波数シフトされた受信信号 145, 151, 159 : フィルタ

115 : 合成部 147, 153 : PLL回路

117 : 合成信号 10 157 : 周波数逆変換された合成信号

11'9 : 受信部 161 : アナログ/ディジタル変換器 (A/D変換

121 : ディジタル信号 器)

 123
 :信号処理部
 f 0
 :基準周波数

 125
 :拡散復調部
 θ 1~θ n
 :位相差

125-1~n : 拡散復調手段 a : アンテナ107-1に対応する受信信号109

127-1-1'~n', 127-2-1'~n', 1 -1の周波数スペクトル

27-n-1'~n':復調データ b:アンテナ107-2に対応する受信信号109

129 : 判定部 - 2の周波数スペクトル

129-1'~n':判定手段 c:アンテナ107-nに対応する受信信号109

131-1'~n':移動局毎の復調データ群 20 -nの周波数スペクトル

133 : フェージング対策部

【図1】

[図2]

【図3】

[図4]

【図5】

【図6】

周波数逆変換された 合成信号157の周波数スペクトル

【図7】

[図8]

フロントページの続き

Fターム(参考) 5J021 AA05 AA06 DB03 EA04 FA17

FA23 FA24 FA26 FA32 GA02

GA07 HA05 JA07

5K022 EE02 EE32

5K067 AA02 BB02 CC04 CC10 CC24

DD13 DD51 EE02 EE10 EE22

GG11 KK03

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.