INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM 695 547

Class Test

B.Tech - IV Semester

MA221 - Integral Transforms, PDE and Calculus of Variations

Date: 28/04/2023

Time: 1 Hour

Max. Marks: 10

Answer all questions.

1. Let \bar{y} be the curve extremizing the functional

$$I(y) = \int_{x_0}^{x_1} F(x, y, y') dx,$$

with $y(x_0) = y_0$, $y(x_1) = y_1$, satisfies the Euler-lagrage (E - L) equation

 $\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$. Then show that \bar{y} satisfies the extended form of E-L equation,

$$\frac{\partial F}{\partial y} - \frac{\partial^2 F}{\partial x \partial y'} - \frac{\partial^2 F}{\partial y \partial y'} y' - \frac{\partial^2 F}{\partial y'^2} y'' = 0.$$

- 2. Reduce the Beltrami identity from the E-L equation for the extremum of a functional $I(y) = \int_{x_0}^{x_1} F(y, y') dx$. Using that, find the extremum of the functional $\int_{x_0}^{x_1} (y^2 yy' + (y')^2) dx$.
- 3. Find the extremals of the functional $I = \int_0^1 (y'^2 + x^2 + Ry) dx$ under the conditions (0,0),(1,0) and subject to the integral constraint $\int_0^1 y dx = \frac{1}{6}$.
- 4. Prove that the shortest distance between two points in a plane is a straightline.
- 5. Find the extremum of the functional $I(y) = \int_0^{\pi/2} \left[(y'')^2 y^2 + x^2 \right] dx$ subject to y(0) = 1, y'(0) = 0, $y(\pi/2) = 0$, $y'(\pi/2) = -1$

END