Side 1 av 5

Institutt for matematiske fag

EKSAMEN I TMA4245 STATISTIKK

Løsningsforslag XX. august 2010

Oppgave 1

a) Tettheten til Y blir

$$f_Y(y) = f_X(x(y)) \left| \frac{dx}{dy} \right| = \frac{1}{\sqrt{2\pi\tau}e^y} e^{-\frac{1}{2\tau^2}(\ln e^y - \nu)^2} e^y = \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{1}{2\tau^2}(y - \nu)^2}, \tag{1}$$

som er tettheten til en normalfordelt variabel med forventing ν og varians τ^2 .

b) Fra definisjon av kumulativ tetthet og sammenhengen mellom X og Y får vi

$$F_X(x) = P(X \le x) = P(e^Y \le x) = P(Y \le \ln x) = P(Z \le \frac{\ln x - \nu}{\tau}) = \Phi(\frac{\ln x - \nu}{\tau}),$$
hvor $Z = (Y - \nu)/\tau \sim N(0, 1).$ (2)

c) For $\nu = 1.0 \text{ og } \tau = 0.8 \text{ blir}$

$$P(X_1 \le 1.0) = \Phi(\frac{\ln 1.0 - 1.0}{0.8}) = 0.1057,\tag{3}$$

og

$$P(X_1 \cdot X_2 \le 1) = P(\ln X_1 + \ln X_2 \le \ln 1) = P(Y_1 + Y_2 \le 0) = P(Z \le \frac{-2\nu}{\sqrt{2\tau^2}}) = 0.0385,$$
(4)

siden $Y_1 + Y_2$ er normalfordelt med forventning 2ν og varians $2\tau^2$.

d) Sannsynligheten for at hver av jordprøvene har nikkelinnhold $X_i < 2.72$ mg blir

$$p = P(X_i < 2.72) = \Phi(\frac{\ln 2.72 - 1.0}{0.8}) = 0.5003$$
 (5)

Uavhengighet medfører at antallet jordprøver W hvor $X_i < 2.72$ blir binomisk fordelt med parametere p og n = 5 og

$$P(W \ge 4) = P(W = 4) + P(W = 5) = 5p^{4}(1-p) + p^{5} = 0.1879$$
(6)

e) Fra definisjon av forventningsverdi er

$$\mu = E(X) = \int_0^\infty x \frac{1}{\sqrt{2\pi\tau}x} e^{-\frac{1}{2\tau^2}(\ln x - \nu)^2} dx.$$
 (7)

Innfører vi $u = (\ln x - \nu)/\tau$ som ny integrasjonsvariabel slik at $du = \frac{1}{\tau x} dx$ og $x = e^{\nu + \tau u}$ får vi

$$EX = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\nu + \tau u - \frac{1}{2}u^{2}} du$$

$$= e^{\nu} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u^{2} - 2\tau u)} du$$

$$= e^{\nu} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u^{2} - 2\tau u + \tau^{2} - \tau^{2})} du$$

$$= e^{\nu + \tau^{2}/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u - \tau)^{2}} du$$

$$= e^{\nu + \tau^{2}/2}$$

$$= e^{\nu + \tau^{2}/2}$$
(8)

På samme måte finner vi

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \frac{1}{\sqrt{2\pi}\tau x} e^{-\frac{1}{2\tau^{2}}(\ln x - \nu)^{2}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{2\nu + 2\tau u - \frac{1}{2}u^{2}} du$$

$$= e^{2\nu} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u^{2} - 4\tau u)} du$$

$$= e^{2\nu} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u^{2} - 4\tau u + 4\tau^{2} - 4\tau^{2})} du$$

$$= e^{2\nu + 2\tau^{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u - 2\tau)^{2}} du$$

$$= e^{2\nu + 2\tau^{2}}.$$
(9)

Dermed er

$$\sigma^2 = \text{Var}X = E(X^2) - (EX)^2 = e^{2v}(e^{2\tau^2} - e^{\tau^2}).$$
(10)

Alternativt kan vi bruke at

$$EX = E(e^Y) = M_Y(1) = e^{\nu + \tau^2/2},$$
 (11)

og

$$E(X^2) = E((e^Y)^2) = E(e^{2Y}) = M_Y(2) = e^{2\nu + 2\tau^2}.$$
 (12)

f) Om vi bruker parameteriseringen (μ, σ^2) , har hver måling forventning $E(X_i) = \mu$ og

$$E(\hat{\mu}) = E(\frac{1}{n} \sum X_i) = \mu \tag{13}$$

slik at $\hat{\mu}$ er forventningsrett for μ . Variansen blir

$$Var(\hat{\mu}) = \frac{1}{n} Var X_i = \frac{\sigma^2}{n}$$
 (14)

For datasettet i oppgaven får vi estimatet

$$\hat{\mu} = \frac{1}{n} \sum x_i = 62.5 \tag{15}$$

g) Siden Y_1, Y_2, \ldots, Y_n er uavhengig normalfordelte med forventning og varians ν og τ^2 er det kjent at SMEene av ν og τ^2 er

$$\hat{\nu} = \frac{1}{n} \sum Y_i,\tag{16}$$

og

$$\hat{\tau}^2 = \frac{1}{n} \sum (Y_i - \bar{Y})^2. \tag{17}$$

Det følger at $\hat{\nu}$ er normalfordelt, forventningsrett for ν med varians $\mathrm{Var}\hat{\nu}=\tau^2/n$. Videre er $E(\hat{\tau}^2)=\frac{n-1}{n}\tau^2$. Siden $S^2(n-1)/\tau^2=\hat{\tau}^2n/\tau^2$ er kji-kvadrat med n-1 frihetsgrader er $\mathrm{Var}(\hat{\tau}^2)=2(n-1)\tau^4/n^2$.

Parameteren μ er en funksjon av ν og τ . SMEen av μ , μ^* , er samme funskjon av SMEene av ν og τ ,

$$\mu^* = e^{\hat{\nu} + \hat{\tau}^2/2}.\tag{18}$$

For det oppgitte datasettet får vi

$$\hat{\nu} = 3.958, \qquad \hat{\tau}^2 = 0.3260, \qquad \mu^* = 61.54.$$
 (19)

Forvetningsverdien til μ^* kan finnes på følgende måte. Siden $\hat{\nu}$ og $\hat{\tau}^2$ er uavhengige er

$$E(\mu^*) = Ee^{\hat{\nu}} Ee^{\hat{\tau}^2/2} \tag{20}$$

Fordi $\hat{\nu}$ er normalfordelt er $e^{\hat{\nu}}$ lognormal og

$$Ee^{\hat{\nu}} = e^{\nu + \tau^2/(2n)}. (21)$$

Vi ser videre at

$$Ee^{\hat{\tau}^2/2} = Ee^{\frac{\tau^2}{2n} \cdot \frac{\hat{\tau}^2 n}{\tau^2}} = M_{\chi_{n-1}^2} \left(\frac{\tau^2}{2n}\right) = \left(1 - \frac{\tau^2}{n}\right)^{-\frac{n-1}{2}}$$
(22)

Dermed blir forventingsverdien til μ^* etter litt omskriving

$$E(\mu^*) = \mu e^{-\frac{\tau^2}{2} + \frac{\tau^2}{2n}} \left(1 - \frac{\tau^2}{n} \right)^{-\frac{n-1}{2}}$$

$$= \mu e^{-\frac{\tau^2}{2} + \frac{\tau^2}{2n} - (\frac{n}{2} - \frac{1}{2}) \ln(1 - \tau^2/n)}$$

$$\approx \mu e^{-\frac{\tau^2}{2} + \frac{\tau^2}{2n} - (\frac{n}{2} - \frac{1}{2})(-\frac{\tau^2}{n} - \frac{\tau^4}{2n^2})}$$

$$= \mu e^{-(\frac{n}{2} - \frac{1}{2})(-\frac{\tau^4}{2n^2})}$$

$$\approx \mu e^{\frac{\tau^4}{4n}}$$
(23)

for store n. Av dette ser vi at μ^* overestimerer μ men at forventningsfeilen går mot null når n går mot uendelig.

h) Gitt $\tau = \tau_0$ og sammenhengen $\mu = e^{\nu + \tau_0^2/2}$ er H_0 , d.v.s., utsagnet

$$\mu < \mu_0 \tag{24}$$

ekvivalent med

$$e^{\nu + \tau_0^2/2} \le \mu_0 \tag{25}$$

og

$$\nu \le \ln \mu_0 - \tau_0^2 / 2,\tag{26}$$

d.v.s. H_0' om vi lar $\nu_0 = \ln \mu_0 - \tau_0^2/2$. På tilsvarende måte er H_1 ekvivalent med H_1' . Å teste H_0 mot H_1 er dermed ekvivalent med å teste H_0' mot H_1' .

For signifikansnivå valgt lik α er en rimelig test av H_0' mot H_1' å forkaste H_0' hvis testobservatoren

$$Z = \frac{\bar{Y} - \nu_0}{\tau_0 / \sqrt{n}} > z_\alpha, \tag{27}$$

hvor z_{α} er α -kvantilen i standardnormalfordelingen.

i) Teststyrken blir

$$P(Z > z_{\alpha}) = P(\frac{\bar{Y} - \nu_{0}}{\tau_{0}\sqrt{n}} > z_{\alpha})$$

$$= P(\bar{Y} > \nu_{0} + z_{\alpha}\tau_{0}/\sqrt{n})$$

$$= P(\frac{\bar{Y} - \nu}{\tau_{0}/\sqrt{n}} > \frac{\nu_{0} - \nu}{\tau_{0}/\sqrt{n}} + z_{\alpha})$$

$$= 1 - \Phi\left(\frac{\ln(\mu_{0}/\mu)}{\tau_{0}/\sqrt{n}} + z_{\alpha}\right)$$

$$= \Phi\left(\frac{\sqrt{n}\ln\gamma}{\tau_{0}} - z_{\alpha}\right)$$

$$= \Phi(0.878\ln(\gamma) - 1.64),$$
(28)

for parameterverdiene oppgitt i oppgaven.

Dersom vi ønsker at teststyrken skal være større enn 0.90 når $\mu=1.5\mu_0~(\gamma=1.5)$ må

$$\Phi\left(\frac{\sqrt{n\ln\gamma}}{\tau_0} - z_\alpha\right) > 0.9$$
(29)

og dermed

$$\frac{\sqrt{n}\ln\gamma}{\tau_0} - z_\alpha > z_{0.1} \tag{30}$$

slik at

$$n > \tau^2 \left(\frac{z_\alpha + z_{0.1}}{\ln \gamma}\right)^2 = 0.36 \left(\frac{1.64 + 1.28}{\ln 1.5}\right)^2 = 18.75$$
 (31)

som betyr at vi må ha $n \ge 19$.

j) Det følger at

$$P(-z_{\alpha/2} < \frac{\bar{Y} - \nu}{\tau_0/\sqrt{n}} < z_{\alpha/2}) = 1 - \alpha$$
 (32)

slik at

$$P(\bar{Y} - z_{\alpha/2}\tau_0/\sqrt{n} < \nu < \bar{Y} + z_{\alpha/2}\tau_0/\sqrt{n}) = 1 - \alpha \tag{33}$$

og $\bar{Y} \pm z_{\alpha/2}\tau_0/\sqrt{n}$ et $(1-\alpha)$ -konfidensintervall for ν .

Fra (33) følger at

$$P(e^{\bar{Y}-z_{\alpha/2}\tau_0/\sqrt{n}+\tau_0^2/2} < e^{\nu+\tau_0^2/2} < e^{\bar{Y}+z_{\alpha/2}\tau_0/\sqrt{n}+\tau_0^2/2}) = 1 - \alpha$$
(34)

slik at $e^{\bar{Y}\pm z_{\alpha/2}\tau_0/\sqrt{n}+\tau_0^2/2}$ er et $(1-\alpha)$ -konfidensintervall for μ . For observasjonene gitt i oppgaven blir intervallet (43.24, 90.96).