

CI 2 – SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

Devoir Maison 4

Le support de l'étude est un préhenseur de pièces. Il permet à l'utilisateur de prendre des pièces pour les déplacer. L'application illustrée sur l'image ci-dessous est la prise de bouteilles plastiques sur un tapis roulant, afin de les trier pour faire du recyclage.

Le système doit répondre aux exigences suivantes :

- Req 1 : Permettre à l'utilisateur de prendre des pièces ;
- Req 2 : S'adapter au bâti;
- Req 3 : S'adapter à l'énergie;
- Req 4: Respecter les normes industrielles.

Fonction	Critère	Niveau
Req 1	Rapidité	$t_{5\%} \leq 0, 2 s.$

L'objectif de cette étude est de vérifier que l'exigence Req 1 est respectée. On réalise l'asservissement de la position angulaire d'un bras du préhenseur de pièces, selon le schéma bloc qui suit (l'angle du bras $\theta_b(t)$, l'angle consigne est $\theta_c(t)$).

Avec K_1 , K_2 , K_5 , K_6 et K_7 : constantes, $\theta_c(p)$: angle de consigne, $U_c(p)$: tension de consigne, $U_M(p)$, tension moteur, $\Omega_V(p)$: vitesse angulaire de la vis, $\theta_V(p)$: angle de la vis, X(p): déplacement de l'écrou, $\theta_b(p)$: position angulaire du bras, $V_M(p)$: tension mesurée image de $\theta_b(p)$.

Question 1

Déterminer le lien entre K_1 et K_7 pour que $\theta_b(p)$ soit asservi sur $\theta_c(p)$.

La fonction de transfert $H_3(p)$ est réalisée par un moteur, dont les équations de comportement sont :

$$u_M(t) = e(t) + R \cdot i(t) \quad e(t) = k_e \omega_v(t) \quad J \cdot \frac{d\omega_v(t)}{dt} = C_M(t) \quad C_M(t) = k_M i(t)$$

Avec $u_M(t)$: tension aux bornes du moteur (en V), e(t): force contre-électromotrice (en V), i(t) intensité (en A), $\omega_V(t)$: vitesse de rotation de la vis en sortie de moteur (en rad/s), $C_M(t)$; couple moteur (en N.m) (un couple est une action mécanique qui tend à faire tourner). J inertie équivalente en rotation de l'arbre moteur (en $kg \cdot m^2$), R résistance du moteur (en Ω), k_e constante de force contre-électrmotrice ($V \cdot rad^{-1} \cdot s$), k_m : constante de couple ($N \cdot m \cdot A^{-1}$).

1

Question 2

Déterminer la fonction de transfert $H_3(p) = \frac{\Omega_V(p)}{U_M(p)}$. Montrer que $H_3(p)$ peut se mettre sous la forme canonique d'un système du premier ordre où les valeurs K_3 et T_3 seront à déterminer.

Question 3

Déterminer $\omega_v(t)$ lorsque $u_M(t)$ est un échelon de tension d'amplitude U_0 . Préciser la valeur de $\omega_v(t)$ à l'origine, la pente de la tangente à l'origine de $\omega_V(t)$ et la valeur finale atteinte par $\omega_V(t)$ lorsque t tend vers l'infini.

Question 4

Déterminer la fonction de transfert $H_4(p)$.

Question 5

Déterminer la fonction de transfert $H(p) = \frac{\theta_b(p)}{\theta_c(p)}$. Montrer que cette fonction peut se mettre sous la forme d'un système du second ordre ou les valeurs de K, z et ω_0 seront à déterminer.

La réponse indicielle de H(p) à un échelon unitaire est donnée sur la figure suivante :

Question 6

Déterminer, en expliquant la méthode, les valeurs numériques de K, z et ω_0 .

Question 7

Déterminer, en expliquant la démarche utilisée, le temps de réponse à 5%. Conclure quant à la capacité du préhenseur à vérifier (ou non) le critère de rapidité de Req 1.

2

CI 2 : SLCI