Lecture 9 27/01/2023 By Prof Manish Kumar

Observing Microorganisms

Units of Measurement

- $1 \mu m = 10^{-6} m = 10^{-3} mm$
- \bullet 1 nm = 10⁻⁹ m = 10⁻⁶ mm
- 1000 nm = 1 μm
- 0.001 μ m = 1 nm

Microscopy: The Instruments

A simple microscope has only one lens

Lens

Location of specimen on pin Specimen-positioning screw Focusing control

Stage-positioning screw

(b) Microscope replica

Light Microscopy

- Use of any kind of microscope that uses visible light to observe specimens
- Types of light microscopy
 - Compound light microscopy
 - Darkfield microscopy
 - Phase-contrast microscopy
 - Differential interference contrast microscopy
 - Fluorescence microscopy
 - Confocal microscopy

The Compound Light Microscope

Compound Light Microscopy

- In a compound microscope, the image from the objective lens is magnified again by the ocular lens
- Total magnification = objective lens × ocular lens

(b) The path of light (bottom to top)

Compound Light Microscopy

- Resolution is the ability of the lenses to distinguish two points
- A microscope with a resolving power of 0.4 nm can distinguish between two points ≥ 0.4 nm
- Shorter wavelengths of light provide greater resolution

Compound Light Microscopy

- The refractive index is a measure of the lightbending ability of a medium
- The light may bend in air so much that it misses the small high-magnification lens
- Immersion oil is used to keep light from bending

Refraction in the Compound Microscope

Brightfield Illumination

- Dark objects are visible against a bright background
- Light reflected off the specimen does not enter the objective lens

Darkfield Illumination

- Light objects are visible against a dark background
- Light reflected off the specimen enters the objective lens

Phase-Contrast Microscopy

- Accentuates (emphasize) diffraction of the light that passes through a specimen
- The wave nature of light rays.
- Light rays can be in phase (their crests and trough match) or out of phase
- Light rays (direct and diffracted/refracted) interact to produce reinforcement (relative brightness) or interference (relative darkness)

Differential Interference Contrast Microscopy

 Accentuates diffraction of the light that passes through a specimen; uses two beams of light

LM | 25 m

- Employs polarizer in the condenser.
- The polorized light is passed through prism and generates two beams
- Image is brightly colored and appears 3-D

Fluorescence Microscopy

- Uses UV light
- Fluorescent substances absorb UV light and emit visible light
- Cells may be stained with fluorescent dyes (fluorochromes)

Lecture 10 30/01/2023 By Prof Manish Kumar

Confocal Microscopy

- Cells stained with fluorochrome dyes
- Short wavelength (blue) light used to excite the dyes
- The light illuminates each plane in a specimen to produce a three-dimensional image
 - Up to 100 µm deep

20 μ m

Scanning Acoustic Microscopy (SAM)

- Measures sound waves that are reflected back from an object
- Used to study cells attached to a surface (cancer cells, artery plaque)
- Resolution 1 µm

Electron Microscopy

- Uses electrons instead of light
- The shorter wavelength of electrons gives greater resolution

Transmission Electron Microscopy (TEM)

- Ultra thin sections of specimens
- Specimens are placed on copper mesh grids
- Beam of electrons passes through specimen, then an electromagnetic lens, to a screen or film
- Specimens may be stained with heavy metal salts
- Magnify 10000 to 100000X.

Transmission Electron Microscopy (TEM)

10,000–100,000×; resolution 2.5 nm

Scanning Electron Microscopy (SEM)

- Overcomes problem of sectioning specimen
- An electron gun produces a beam of electrons that scans the surface of a whole specimen
- Secondary electrons emitted from the specimen produce the image

Scanning Electron Microscopy (SEM)

1,000–10,000×; resolution 20 nm

Useful for surface structures of intact cells and

viruses.

Scanned-Probe Microscopy

- Scanning tunneling microscopy (STM) uses a metal probe to scan a specimen
- Resolution 1/100 of an atom (thus greater than EM)

Figure 3.11a

Lecture 11 31/01/2023 By Prof Manish Kumar

Scanned-Probe Microscopy

- Atomic force microscopy (AFM)
 uses a metal- and-diamond probe
 inserted (stylus) into the specimen.
- Produces three-dimensional images.

Preparing Smears for Staining

- Staining: Coloring the microbe with a dye that emphasizes certain structures
- Smear: A thin film of a solution of microbes on a slide
- A smear is usually fixed to attach the microbes to the slide and to kill the microbes

Preparing Smears for Staining

 Live or unstained cells have little contrast with the surrounding medium. Researchers do make discoveries about cell behavior by observing live

specimens.

 $5\mu\mathrm{m}$

LM

10μm

Preparing Smears for Staining

- Stains are salts composed of a positive and negative ion
- In a basic dye (methylene blue, malachite green and safranin), the chromophore is a cation
- Bacteria are slightly negatively charged at pH7.
- In an acidic dye, the chromophore is an anion
- Acidic dye stain the background instead of the cell is called negative staining

Simple Stains

- Simple stain: Use of a single basic dye. Eg. Methylene blue, carbolfuchsin, crystal violet, and safranin.
- A mordant may be used to hold the stain or coat the specimen to thicken it for easier visibility

Differential Stains

- Used to distinguish between bacteria
 - Gram stain
 - Acid-fast stain

Gram Stain

- Classifies bacteria into gram-positive or gram-negative
 - Gram-positive bacteria tend to be killed by penicillin and detergents
 - Gram-negative bacteria are more resistant to antibiotics

Gram Stain

	Color of Gram-positive cells	Color of Gram-negative cells
Primary stain: Crystal violet	Purple	Purple
Mordant: Iodine	Purple	Purple
Decolorizing agent: Alcohol-acetone	Purple	Colorless
Counterstain: Safranin	Purple	Red

Micrograph of Gram-Stained Bacteria

Acid-Fast Stain

- Stained waxy cell wall is not decolorized by acidalcohol
- Mycobacterium
- Nocardia

Acid-Fast Stain

	Color of Acid-fast	Color of Non–Acid-fast
Primary stain: Carbolfuchsin	Red	Red
Decolorizing agent: Acid-alcohol	Red	Colorless
Counterstain: Methylene blue	Red	Blue

Acid-Fast Bacteria

Special Stains

- Used to distinguish parts of cells
 - Capsule stain
 - Endospore stain
 - Flagella stain

Negative Staining for Capsules

- Cells stained
- Negative stain

Figure 3.14a

Endospore Staining

- Primary stain: Malachite green, usually with heat
- Decolorize cells: Water
- Counterstain: Safranin

Figure 3.14b

Flagella Staining

- Mordant on flagella
- Carbolfuchsin simple stain

(c) Flagella staining

