Organisation

- 14-tes <u>unbewertetes</u> Übungsblatt
- Auf Mail Antworten:
 - Matrikelnr.; Studiengang; Semesterzahl
 - Ersetzt NICHT die Prüfungsanmeldung!!

Transistor

- Ziel: Elektronischer Schalter
 - Energieeffizient
 - Schnell
 - Billig
- Lösung: Halbleiter

Halbleiterdotierung

- Meistens Silizium
 - Benötigt 4 Außenelektronen (4. Hauptgr.)
- Dotierungsarten
 - negativ: Elektronenüberschuss
 - positiv: Defektelektronen/Löcher/Elektronen-Mangel
- Verunreinige Reinstoff mit
 - Phosphor (5. Hauptgr.) → ()
 - Aluminium (3. Hauptgr.) → (+)

Halbleiterdotierung

N-Dotiert

Dotierungseffekt

- N-Dotierung
 - E. können einfach abgespalten werden
 - E. können sich dann bewegen
- P-Dotierung
 - E. wollen Löcher füllen
 - E. sitzen in Löchern nicht fest → Abspaltung
 - E. können über Löcher "hüpfen"

Dotierungsstärken

- Anzahl der "verunreinigenden" Atome
 - Normal: p / n
 - 1 pro 106 bzw. 107 Si
 - Stark: p+ / n+
 - 1 pro 10⁴ bzw. 10⁴ Si
 - Schwach: p-/ n-
 - <1 pro 10⁶ bzw. 10⁷ Si
 - Sehr Stark p++ / n++
 - >1 pro 10⁴ bzw. 10⁴ Si

MOSFET

- Metal-Oxid-Feldeffekt-Transistor
- Nutzt einen Feldeffekt
 - "Zieht Elektronen zu sich"
 - Ähnlich zu Kondensator
- Nutzt p- und n-dotierte Bereiche

AUFPASSEN: PHYSIKALISCHE UND TECHNISCHE STROMRICHTUNG!!!

Transistor - Aufbau

- 4 Anschlüsse
 - Source (Stromzufuhr, "Eingang")
 - Drain ("Ausgang")
 - Gate ("Steuereingang")
 - Bulk ("Erdung")
- Gate führt nur wenig Strom
- P+-Dotierung f
 ür Erdung

Transistor - Aufbau

- Verarmungszone
 - Aus n-dot Substrat werden E. in p-dot. gesogen
 - Ausgeglichene Schicht entsteht
- Metall-Platte (Rot)
- Metall-Oxid-Schicht (orange)
 - Isolator zur Gate(-Platte)

½ Kondensator

- Genügend großer Strom am Gate
 - E-Feld bildet sich am Gate aus
 - Elektronen aus N-Dot Bereich der Source zum Gate hingezogen
 - "Künstliche Dotierung" beim Gate
 - = Leitender Kanal

Spannungen am Transistor

- Threshold-Spannung U_{th}
- Drain-Source-Spannung U_{DS}
- Gate-Source-Spannung U_{GS}

NMOS-Transistor-Phasen I

NMOS-Transistor-Phasen II

linearer/ohmscher Bereich

NMOS-Transistor-Phasen III

Abschnürung (Übergang zum Sättigungsbereich)

NMOS-Transistor-Phasen IIV

Sättigungsbereich

P-Dotierter Transistor

- Funktion analog zu N-Dotiertem Transistor
 - Dotiere Substrate invers
 - Defektelektronen statt Elektronen
 - Bulk auf U_0 statt auf Masse
 - Pfeil im Schaltzeichen anders

MOSFET Typen & Schaltzeichen

Transistorschaltungen

- Kreis schließt sich
 - Logik → Assembler → Physik → MOSFETs → Logik → ...

Transistorschaltungen

- NMOS
 - Schaltung nur mit N-MOSFETs
 - Verbindet Ausgang mit Masse
- PMOS
 - Schaltung nur mit P-MOSFETs
 - Verbindet Ausgang mit U₀
- CMOS
 - Kombination aus N- und P-MOSFETs

Transistorschaltungen

- Pull-Up
 - PMOS oder Widerstand
 - Realisiert Y
- Pull-Down
 - NMOS oder Widerstand
 - Realisiert \(\overline{Y} \)

Pull-Widerstände

- N-/P-MOS kannn nur mit Masse/U₀ verbinden
 - Was ist mit dem anderen Potential?
- Wie bei Dioden-Logik
 - Widerstand, um Überbrückung zu verhindern
- Nachteil: Hohe Verlustleistung

Übung

- 1) Baue NAND- & NOR-Gatter mit nMOS
- 2) Baue AND- & OR-Gatter mit pMOS
- 3) Baue ein NOT-Gatter mit nMOS
- 4) Baue ein NOT-Gatter mit pMOS

(Benutze wenn möglich selbstsperrende MOSFETs)

Übung - (N)AND

nMos

pMos

Übung - (N)OR

nMos

pMos

Übung - NOT

nMos

pMos

normalleitender PMOS notwendig!

CMOS

- Umgeht Verlustleistung durch den Widerstand
- Realisiere
 - Y mit pMos-Pull-Up-Netzwerk
 - Y mit nMos-Pull-Down-Netzwerk
- CMOS analysieren
 - Betrachte nur Up- oder Down-Netzwerk

