Cours Automatique linéaire

CHAPITRE 2 Réponse temporelle des systèmes dynamiques continus LTI

GE 2

Introduction

Système continu LTI

Quelle est la forme de la sortie y(t) du modèle en réponse aux signaux usuels :

- impulsion de Dirac $u(t) = \delta(t)$
- signal échelon $u(t) = \Gamma(t)$
- signal rampe u(t)=v(t)

Décomposition en éléments simples

$$H(s) = \sum_{i} H_{i}(s)$$
 $H_{i}(s)$: fonction de transfert de systèmes de base ou systèmes fondamentaux (1er ordre, 2e ordre)

Intégrateur (1)

Système régi par l'équation différentielle

$$T_i y'(t) = u(t)$$
 \Rightarrow $y(t) = \frac{1}{T_i} \int_0^t u(\tau) d\tau$ (CI nulle)

$$u(t) \longrightarrow \frac{1}{T_i} \int y(t)$$

Fonction de transfert

$$H\left(s\right) = \frac{1}{T_{i}s}$$

 T_i : constante d'intégration

Pôle : $\lambda = 0$

Exemple

Relation entre le courant i(t) et $V_c(t)$

$$y(t) = V_c(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$$

Intégrateur (2)

□ Réponse aux signaux usuels

Réponse impulsionnelle

$$u(t) = \delta(t) \implies h(t) = \frac{\Gamma(t)}{T_i}$$

La réponse impulsionnelle d'un intégrateur est un échelon d'amplitude $1/T_i$

Réponse indicielle

$$u(t) = \Gamma(t)$$
 \Rightarrow $y(t) = \frac{1}{T_i} v(t)$

La réponse indicielle d'un intégrateur est une rampe de pente $1/T_i$

Réponse à une rampe

$$u(t) = v(t) \implies y(t) = ?$$

Système régi par l'équation différentielle

$$Ty'(t) + y(t) = Ku(t)$$

Fonction de transfert

$$Ty'(t) + y(t) = Ku(t) \implies sTY(s) + Y(s) = KU(s)$$

$$H(s) = \frac{K}{1+T s}$$

$$T : constante de f$$

$$K : gain statique$$

$$Pôle : \lambda = -\frac{1}{T}$$

T: constante de temps

Condition de stabilité : T > 0

Exemple

$$u(t) = \frac{i(t) R}{C + 1}$$

$$RC y'(t) + y(t) = u(t) \text{ avec } y(t) = V_c(t)$$

$$H(s) = \frac{1}{1 + Ts} \text{ avec } T = RC$$

Système du 1er ordre

□ Réponse impulsionnelle

- Entrée : $u(t) = \delta(t)$
- Réponse du système : $h(t) = \frac{K}{T}e^{-\frac{1}{T}}$
- ◆ Tangente à l'origine : $x(t) = -\frac{K}{T^2}t + \frac{K}{T}$ (Pente = $-\frac{K}{T^2}$)

La tangente à l'origine coupe l'axe des temps en t = T

0	0 <i>T</i>		3 <i>T</i>	
$h_0 = \frac{K}{T}$	$0.37 h_0$	$0.13 h_0$	$0.05 h_0$	

Réponse indicielle

- ◆ Entrée : signal échelon $u(t) = \Gamma(t)$
- Réponse du système

$$u(t) = \Gamma(t) \implies U(s) = \frac{1}{s}$$
. On en déduit $Y(s) = \frac{K}{s(1+Ts)}$

$$y(t) = K\left(1 - e^{-\frac{t}{T}}\right) = K\left(1 - e^{\lambda t}\right)$$

Valeur de la sortie en régime permanent

$$y_{\infty} = \lim_{t \to \infty} y(t) = K$$

◆ Tangente à l'origine

$$x(t) = \frac{K}{T}t$$
 (Pente = $\frac{K}{T}$)

La tangente à l'origine coupe l'asymptote horizontale y = K en t = T

Système du 1er ordre

□ Réponse indicielle (fin)

Tableau récapitulatif de l'évolution de la sortie

	t	T	2T	3 <i>T</i>	5 <i>T</i>	8
$\frac{y(t)}{y_{\infty}}$) _(%)	63%	87%	95%	99,4%	100%

 y_{∞} : valeur de la sortie en régime permanent

Rapidité du système

lacktriangle Temps de réponse t_r du système

 t_r = temps au bout duquel la réponse indicielle atteint $0.95y_{\infty}$

$$t_r \approx 3T$$

lacktriangle Temps de montée t_m

 t_m = temps au bout duquel la réponse passe de $0.1y_{\infty}$ à $0.9y_{\infty}$

$$t_m \approx 2,2T$$

□ Réponse à une rampe

- ♦ Entrée : signal rampe u(t) = v(t)
- Réponse du système

$$u(t) = v(t) \implies U(s) = \frac{1}{s^2}$$
. On en déduit $Y(s) = \frac{K}{s^2(1+Ts)}$

$$y(t) = K(t-T) + KTe^{-\frac{t}{T}}$$

- Remarques
 - \triangleright La réponse est la somme de deux termes : une fonction exponentielle décroissante et une rampe retardée, de retard T

□ Réponse à une rampe (fin)

- La sortie suit asymptotiquement la rampe Kv(t) avec un retard T
- L'écart en régime permanent $\varepsilon = Kv(t) y(t)$ est appelé erreur de traînage

Erreur de traînage : = KT

Système régi par l'équation différentielle

$$a_2$$
 'y'(t) + a_1 y'(t) + a_0 y(t) = b_0 u(t)

Fonction de transfert

$$a_2\ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = b_0u(t) \implies (a_2s^2 + a_1s + a_0)Y(s) = b_0U(s)$$

$$H(s) = \frac{b_0}{a_2 s^2 + a_1 s + a_0}$$

Autre écriture de la fonction de transfert

$$H(s) = \frac{K}{\frac{s^2}{\omega_n^2} + \frac{2\xi}{\omega_n}} \frac{s}{s+1} \qquad \text{ou} \qquad H(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$H(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

 ξ : facteur d'amortissement, K: gain

 ω_n : pulsation naturelle non amortie du système avec $\omega_n > 0$

Pôles du système

$$H(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Les pôles sont les racines du polynôme $s^2 + 2\xi\omega_n s + \omega_n^2$

- Etude du discriminant réduit
 - $\Delta = \omega_n^2 (\xi^2 1)$
 - ightharpoonup Si $|\xi| \ge 1$ alors $\Delta \ge 0$: le système a des pôles réels et son comportement est apériodique
 - Si $|\xi| > 1$ alors le système a deux pôles réels distincts
 - Si $|\xi| = 1$ alors le système a un pôle réel double
 - > Si $|\xi|$ <1 alors Δ < 0 : le système a une paire de pôles complexes conjugués et son comportement est oscillatoire

□ Système apériodique : $|\xi| \ge 1$

Pôles du système

$$\lambda_1 = -\xi \omega_n - \omega_n \sqrt{\xi^2 - 1}$$
 et $\lambda_2 = -\xi \omega_n + \omega_n \sqrt{\xi^2 - 1}$

Condition de stabilité

Le système est stable si les pôles λ_1 et λ_2 sont négatifs, ce qui correspond à la condition $\xi \ge 1$

Factorisation de la fonction de transfert

Comme
$$\lambda_1 \lambda_2 = \omega_n^2$$
, on a $H(s) = \frac{K}{(1+T_1 s)(1+T_2 s)}$

Le système du 2^e ordre apériodique est équivalent à la mise en série de deux systèmes du 1^{er} ordre de constantes de temps :

$$T_1 = -\frac{1}{\lambda_1}$$
 et $T_2 = -\frac{1}{\lambda_2}$

- \square Système apériodique (cas $\xi > 1$): réponse indicielle
 - Décomposition de la FT en éléments simples

$$H(s) = \frac{K}{(1+T_1s)(1+T_2s)}$$
 \Rightarrow $H(s) = \frac{K_1}{(1+T_1s)} - \frac{K_2}{(1+T_2s)}$
avec $K_1 = \frac{KT_1}{T_1 - T_2}$ et $K_2 = \frac{KT_2}{T_1 - T_2}$

Réponse indicielle

C'est la somme des réponses indicielles des deux sous-systèmes

$$y(t) = K_1 \left(1 - e^{-\frac{t}{T_1}} \right) - K_2 \left(1 - e^{-\frac{t}{T_2}} \right) = K_1 \left(1 - e^{\lambda_1 t} \right) - K_2 \left(1 - e^{\lambda_2 t} \right)$$

 \square Système apériodique (cas $\xi = 1$) : réponse indicielle

\square Système apériodique ($\xi \ge 1$): réponse indicielle

- Remarques
 - > Pente à l'origine nulle
 - \triangleright La réponse la plus rapide correspond à $\xi=1$
 - \triangleright Asymptote horizontale y=K

- \square Système oscillatoire : $|\xi| < 1$
 - Pôles du système

$$\lambda_1 = -\xi \omega_n - j\omega_n \sqrt{1-\xi^2}$$
 et $\lambda_2 = -\xi \omega_n + j\omega_n \sqrt{1-\xi^2}$

Le système est stable si $Re(\lambda_1) < 0$ et $Re(\lambda_2) < 0$, soit $|0 < \xi < 1|$

Lieu des pôles

Pour
$$0 \le \xi \le 1$$

Rayon de l'arc de cercle = ω_n

$$\cos(\varphi) = \xi$$

$$\sin(\psi) = \xi$$

\square Système oscillatoire (0 < ξ < 1)

Réponse indicielle

$$y(t) = K \left(1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} \sin(\omega_p t + \varphi) \right)$$

avec
$$\omega_p = \omega_n \sqrt{1-\xi^2}$$
 et $\varphi = \arctan\left(\frac{\sqrt{1-\xi^2}}{\xi}\right) = \arccos\xi$

\square Système oscillatoire (0 < ξ < 1): réponse indicielle

Caractéristiques de la réponse indicielle

- > Réponse oscillatoire amortie de pulsation $\omega_p = \omega_n \sqrt{1-\xi^2}$
- > Pseudo-période des oscillations $T_p = \frac{2\pi}{\omega_p}$
- > Temps de pic $T_{pic} = \frac{\pi}{\omega_p}$

□ Système oscillatoire : caractéristiques de la réponse indicielle

Dépassement (D)

Définition :
$$D_{\%} = \frac{y_{\text{max}} - y_{\infty}}{y_{\infty}} \times 100$$

 y_{∞} : valeur de la sortie en régime permanent

 y_{max} : valeur de pic de la réponse indicielle

D est lié au coefficient d'amortissement ξ par : $D_{\%} = 100e^{-\sqrt{1-\xi^2}}$

Système oscillatoire : caractéristiques de la réponse indicielle

 \triangleright Temps de réponse à n% $(t_{r_n\%})$

C'est le temps au bout duquel la réponse indicielle atteint $\pm n\%$ de sa valeur finale

$$t_{r_{n\%}} \approx \frac{1}{\xi \omega_n} \ln \frac{100}{n} \quad (\xi < 0.7)$$

On mesure en général le temps de réponse à 5% : $t_{r_{5\%}} \approx \frac{3}{\xi \omega_n}$ ($\xi < 0.7$)

Influence du coefficient d'amortissement

- > Amortissement faible (ξ < 0.7): réponse peu amortie, fortes oscillations, fort dépassement, réponse d'autant plus rapide que ξ est faible
- > Amortissement fort (ξ > 0.7) : réponse très amortie, pas d'oscillations, dépassement à peine visible
- ➤ Amortissement $\xi = 0.7$ (souvent utilisé) Dépassement $D \approx 5\%$ e(ω t_n t_r ≈ 3

\square Influence de la pulsation naturelle ω_n

- \triangleright Plus la pulsation ω_n est faible, plus la période des oscillations est grande
- \triangleright Plus la pulsation ω_n est faible, plus la réponse du système est lente

Exercicel: Etude d'un système second ordre

Soit le système :

obéissant à l'équation différentielle

$$\frac{d^2y}{dt^2}(t) + 5\frac{dy}{dt}(t) + 6y(t) = 6x(t)$$

- Quelle est sa fonction de transfert ?
- Quelle est l'évolution de la sortie y(t) à partir de t = 0 avec l'entrée x(t) est un échelon unitaire :

Notion de pôles dominants

Illustration

Traçons la réponse indicielle du système de fonction de transfert :

$$H(s) = \frac{5}{(1+T_1s)(1+T_2s)}$$
 avec $T_1=1$ et $T_2=5$.

Les pôles sont :
$$\lambda_1 = -\frac{1}{T_1}$$
, $\lambda_2 = -\frac{1}{T_2}$

Décomposition de la fonction de transfert : $H(s) = H_2(s) - H_1(s)$

avec
$$H_2(s) = \frac{25}{4(1+T_2s)}$$
 et $H_1(s) = \frac{5}{4(1+T_1s)}$

Réponse indicielle

$$y(t) = y_2(t) - y_1(t) = \frac{25}{4} \left(1 - e^{-\frac{t}{T_2}} \right) - \frac{5}{4} \left(1 - e^{-\frac{t}{T_1}} \right)$$
$$y(t) = \frac{25}{4} \left(1 - e^{\lambda_2 t} \right) - \frac{5}{4} \left(1 - e^{\lambda_1 t} \right)$$

Notion de pôles dominants

Au bout de $5T_1$, la réponse y_1 tend vers sa valeur finale $y_{1\infty}$. La sortie y_1 du système n'évolue que sous l'influence de y_2 .

Le sous-système H_2 (son pôle est $\lambda_2 = -1/T_2$) impose le régime transitoire du système. On dit que le pôle λ_2 est dominant par rapport à λ_1 .

Le système du 2^e ordre a une réponse temporelle similaire à celle d'un système du 1^{er} ordre de constante de temps T_2 .

Notion de pôles dominants

Définition

Soient $\lambda_1, \dots, \lambda_n$ les pôles d'un système stable. Le pôle λ_i ou la paire de pôles (λ_i, λ_i^*) est dit dominant par rapport au pôle λ_i si :

$$\left| \operatorname{Re}(\lambda_i) \right| << \left| \operatorname{Re}(\lambda_j) \right| \quad j \neq i$$

En pratique, λ_i est dominant par rapport à λ_j si $\left| \text{Re}(\lambda_i) \right| < 5 \times \left| \text{Re}(\lambda_j) \right|$

Les pôles dominants correspondent soit à une constante de temps élevée (réponse lente), soit à un amortissement faible (réponse très oscillatoire). Ils sont donc situés près de l'axe des imaginaires