UNIVERSIDAD CATÓLICA DE CÓRDOBA

Modelo de parcial II

Facultad de Ingeniería

ANÁLISIS MATEMÁTICO II

PARCIAL II - Práctico

- -/06/202-

 Porcentaje
 Nota

 00-18
 1

 18-36
 2

 37-54
 3

 55-58
 4

Apellido y nombre:

Comisión:

Clave UCC:

Ej1	Ej2	Ej3	Ej4	Total	Nota
		-	-		

0000	- 1
59-66	5
67-74	6
75-81	7
82-88	8
89-96	9
97-100	10

Ejercicio 1 (25%)

Sean la función $f(x, y) = x^2 + y^2 - 2x + 1$, y la ecuación de restricción $\frac{1}{4}x^2 + y^2 = 1$.

- a) (15%) Determine los puntos críticos de f sujeta a la restricción.
- b) (10%) Obtenga los valores extremos globales de f sujeta a la restricción.

Ejercicio 2 (25%)

Mediante **integración doble** calcule el volumen de la región sólida de \mathbb{R}^3 determinada por

$$\begin{cases} x^2 + y^2 - 9 \le z \le 9 - x^2 - y^2 \\ y \ge x \end{cases}$$

Para ello:

- a) (3%) Esboce un gráfico de la región sólida.
- b) (7%) Determine el dominio de integración en coordenadas polares.
- c) (15%) Evalúe la integral doble.

Ejercicio 3 (25%)

Evalúe la siguiente integral de línea $\oint_{\mathcal{C}} y\,dx + x^2\,dy$, donde \mathcal{C} es la curva (cerrada) positivamente orientada correspondiente a la frontera de la región de \mathbb{R}^2 determinada por $\begin{cases} -1 \leq y \leq 3 - x^2 \\ x \geq -1 \end{cases}$, mediante dos métodos:

- a) (15%) De manera directa.
- b) (10%) Aplicando el teorema de Green.

Ejercicio 4 (25%)

Para la siguiente ecuación diferencial

$$y^{''}-6y^{'}=6e^{6x}$$

obtenga:

- a) (8%) La solución de su ecuación homogénea asociada.
- b) (12%) Una solución particular.
- c) (2%) La solución general.
- d) (3%) La solución que satisface las condiciones iniciales y(0) = 0, y'(0) = 0.