Topic 4: Descriptive statistics & visualization

- Descriptive statistics
- Spurious correlations
- Visualization challenges

Lectures 8 & 9

Calculating correlation

Variables			Attributes / Features								
x	10	8	13	9	11	14	6	4	12	7	5
y	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68

Correlation coefficient

Pearson Correlation Coefficient

 Measures 'linear' relationship between variables.

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

where:

- n is the sample size
- x_i, y_i are the single samples indexed with i
- $ullet ar x = rac{1}{n} \sum_{i=1}^n x_i$ (the sample mean); and analogously for ar y

$$m{r} = rac{1}{n-1} \sum_{i=1}^n \left(rac{x_i - ar{x}}{s_x}
ight) \left(rac{y_i - ar{y}}{s_y}
ight)$$

Correlation coefficient

Pearson Correlation Coefficient

Captures the relationship between
 2 vectors after centering each
 vector by its mean and scaling by
 its standard deviation.

 The final quantities for each vector are called z-scores.

Correlation coefficient

Pearson Correlation Coefficient

 Measures 'linear' relationship between variables.

$$m{r} = rac{1}{n-1} \sum_{i=1}^n \left(rac{x_i - ar{x}}{s_x}
ight) \left(rac{y_i - ar{y}}{s_y}
ight)$$

$$-1 \le r \le +1$$

-1 is total -ve correlation | 0 is no correlation | +1 is total +ve correlation

Anscombe's quartet: "calculation are exact; graphs are rough!"

11 datapoints

- Mean (x) = 9
- Var(x) = 11
- Mean (y) = 7.50
- Var (y) ~ 4.12
- Cor(x, y) = 0.816
- Linear regression line:

$$\circ$$
 y = 3.00 + 0.500x

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician 27 (1): 17–21.

Correlation = 0.7

Correlation = -0.06

Simpson's Paradox

Simpson's Paradox

Success rates of kidney stone removal surgeries					
Treatment	Overall				
Open surgery	78%				
Percutaneous nephrolithotomy	83%				

Spurious correlations

What does Nicholas Cage have to do with people drowning in swimming pools?

Checkout https://www.google.com/trends/correlate

Spurious correlations

Simulate fluctuations in correlation coefficients

- Repeat 10,000: Calculate correlation coefficients of n = 10 samples of two independent normally distributed variables ($\mu = 0$, $\sigma = 1$). Plot a histogram.
- Mark statistically significant coefficients ($\alpha = 0.05$).
- Plot the samples with the three largest and smallest correlation coefficients (statistically significant).
- Vary $\sigma = \{0.1, 0.5, 1.0\}$ and vary sample size $n = \{5, 10, 50\}$.

Many correlation/distance measures

Pearson Correlation Coefficient

Spearman Rank Correlation

Euclidean Distance

Mutual Information

. . .

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{\sigma_x} \right) \left(\frac{y_i - \overline{y}}{\sigma_y} \right)$$

$$\rho = 1 - \frac{6\sum_{i=1}^{n} [rank(x_i) - rank(y_i)]}{n(n^2 - 1)}$$

Spurious correlations – But it *looks* associated!

Create a <u>lineup</u> for visual inference

- Place the plot of the real data amongst a set of null plots to create a lineup; Null plots are generated in a way consistent with the null hypothesis.
- If the observer can pick the real data as different from the others, this puts weight on the statistical significance of the structure in the plot.

Spurious correlations – But it *looks* associated!

Spurious correlations – But it *looks* associated!

	Mathematical Inference	Visual Inference
Hypothesis	$H_0: \mu_1 = \mu_2 \text{ vs } H_a: \mu_1 \neq \mu_2$	$H_0: \mu_1 = \mu_2 \text{ vs } H_a: \mu_1 \neq \mu_2$
Test Statistic	$T(y) = \frac{\bar{y}_1 - \bar{y}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$T(y)=rac{\sum\limits_{g=100}^{2000}}{\sum\limits_{g=100}^{2000}}\sum\limits_{g=100}^{1000}\sum\limits_{g=10$
	\downarrow	\downarrow
Sampling Distribution	$f_{T(y)}(t);$ $oxedsymbol{igstar} \int_{t_{n-1}(lpha/2)}^{t_{n-1}(lpha/2)}$	$f_{T(y)}(t);$ $\frac{200}{100}$ $\frac{1}{100}$ $\frac{2}{100}$
	\downarrow	\downarrow
Reject H_0 if	observed T is extreme	observed plot is identifiable