

EARB 2002.11.26 *PP 142430.A1 9.06.02) CORL	67/02, 101/00 The use of terminal polymerical polymer compounds, e.g. for shaped parts of wall thickness less than 2.5, preferably 1.0 mm polyester, polygytered or polyether and their blands useful for (chined), and for processing with multitools, e.g. in preferably at least 16 shaped parts can be handled in an injection moduling (e.g.) in preferably at least 16 shaped parts can be handled in an injection (C2004-162246 RALA). THE BIG CH CY CZ DED KEELES FIF RGB	BSS ADVANTAGE The composition has a high flow rate and lowers the melt viscosity of thermoplastic polycondensates. EXAMPLE	A composition contained (wt.8%) component A1, (tinear polybutylene terephthalae, intrinsic viscosity about 0.93 cm/g (97.5), component B1. It glity branched aliptatic polyester (CA 1805-00-0)(12.0), based on diffurelly lopoposate and alpta, alpta-bis/klydroxymethylpopopianic acid, molecular weight 3604 gmole, and additive (0.5), and had a melt viscosity of 62 (1000s 1).	TECHNOLOGY FOCUS
2004-432933/41 A23 (A25 A32) FARB 2002.11 BAYER AG	6702, 7702, 101/00 The use of terminal polyfunctional polymer compounds, e.g. polystert, polygycerol or polyether and their blends useful for thin wall technology and processing with multitools, e.g. in injection modfing (e.g. the BGCCHCY CZDEDKEEES FIFR GB	GR HU IEIT LI LT LU LW MC MK NL PT RO SE SI SK TR) Addal. Data: BRAGT, JOACHIMI D. PERSIGEHL P, VAN MULLEKOM R. BAGT 19 2003-11:19 2	NOVELTY The use of reminal polyfunctional polymer compounds (B) The use of reminal polyfunctional polymer compounds (B) selected from polyseter, polygicarol or polyenther, e.g. poluburylene- or polyentlylene terephinalare, polyamide, polyamide, polycarbonane, and blends of these for lowering the melt viscosity in thermoplastic condensates is	USE

	<
	EP 1424360.A
arol, or a nat in polyester, ritic aromatic astion it is salion it is sellon it is (9.9). In on agent ive (0.30, preferably here the	
Polymers - Preferred Components component B is poliglycerol, or a highly better Compound Bs present in highly branched or dendritive polyester. Compound Bs present in quantity 0.1-10, preferably 0.5-4 w.f. 8 and it selected from polyester. polygiverol or polyether, preferably highly branched, dendrific polyester, polygiverol or polyether, preferably based on nonaromatic monomer cores, and to lower the multi viscosity of the composition it companies (w.f. 8); (X) at least one thermoplastic polycondensate (99.9-4). (I) preferably 9.0-10, (D) at least one fire protection additive (Polyperedaply 9.1-9), and (F) intrher additives (0-10, preferably 0.1-0.9), where the sam of all weights = 100. (24pp.2401DwgNo.00))	
ster. Component I ster. Component I ster. Component is seen as a step in a s	
Components: additic polye and ther, prefer al ther, prefer al or polyethe n clower the n clower	
Polymers - Preferred Con highly branched or dend quantity 0.1-10, preferable polygisteroi, or polyothe polyester, polygiscerol or monomer cores, and to contains (xt. %7:(A) at let, (t. for, for, for, for, for, for, (t. for, for, for, for, for, for, for, for, for, for, for, for, mun of all weights = 100. (24p2401Dwghto.00)	
Polymers highly bra quantity (quantity (polyglyce polyester, monomer contains (10, prefer (10, prefer (10, prefer (10, prefer (10, prefer (10, prefer (10, and sum of all (24pp240)).	