

Lab Report

Semester: Summer-2025

Course Title: Electrical Circuits

Course Code: CSE209

Sec: 01

Expt No: 02

Expt Name: Series-Parallel DC Circuit and Verification of Kirchhoff's Laws.

Group No: 05

Submitted by-

Md. Arifur Rahman Razu

2024-3-60-503

Submitted to-

Dr. Sarwar Jahan
Associate Professor
Department of Computer Science & Engineering
East West University

Date of Submission: 02-08-2025

Experiment NO: 02

Experiment Name: Series-Parallel DC Circuit and Verification of Kirchhoff's Laws.

Objectives:

- 1. To learn analysis of dc series-parallel circuit.
- 2. To verify Kirchhoff's Voltage Law (KVL).
- 3. To verify Kirchhoff's Current Law (KCL).

Theory:

Kirchhoff's Voltage Law (KVL)states that **the sum of the voltage rises around a closed** path is equal to the sum of the voltage drops. The KVL can be written in the following mathematical form:

Σ V rises = Σ V drops

The sum of the voltage rises and the sum of the voltage drops are to be calculated in a given direction (normally in the clockwise direction). For example, in the simple series circuit of Figure 1, there are two voltage sources (E_1 and E_2) and two resistors (R_1 and R_2) The voltage drops across the two resistors are V_1 and V_2 , respectively. If we write KVL equation for the clockwise direction, then the KVL equation will be

$$E_1 - E_2 = V_1 + V_2.$$

Figure 1. A simple series dc circuit.

Kirchhoff's Current Law (KCL) states that the sum of the currents entering anode of a circuit is equal to the sum of the currents leaving the node. The KCL can be written in the following mathematical form:

$$\sum I_i = \sum I_o .$$

For example, in the simple parallel circuit of Figure 2, there is a voltage source (E) and two resistors (R_1 and R_2). The source current drawn from the voltage source is I_s . The currents through resistors R_1 and R_2 are I_1 and I_2 , respectively. If we consider the node a of the circuit, then I_s is enters the node and I_1 and I_2 are leaving the node. Then, the KCL equation forthe node a is

$$E \xrightarrow{+} R_1 \xrightarrow{R_1} R_2 \xrightarrow{I_2} I_2$$

$$I_S = I_1 + I_2$$
Figure 2. A simple parallel dc circuit.

A series-parallel circuit is one that is formed by a combination of series and parallel resistors. For solving series-parallel circuits, parallel combinations of resistors and series combination of resistors are clearly identified. Then the series-parallel reduction method is used to determine the values of the circuit variables. For example, in the simple series-parallel circuit of Figure 3, the resistors R_1 and R_2 are in parallel and this parallel combination is in series with the resistor R_1 . As the resistors R_2 and R_3 are in parallel, V2 = V3. Let $R_p = R_2 \parallel R_3$. Then, the equivalent resistance of the series-parallel combination is $R_{eq} = R_1 + R_p$. Now, the circuit variables can be calculated using the formulas

$$I_{1} = \frac{E}{R_{eq}}$$

$$V_{1} = I_{1} R_{1}$$

$$V_{2} = V_{3} = I_{1} R_{p}$$

$$V_{2}$$

$$I_{2} = \frac{V_{2}}{R}$$

$$I_3 = \frac{V_3}{R_3}$$

The KVL equations for the circuit of Figure 3 can be written as

$$E = V_I + V_2$$
$$E = V_I + V_3$$

The KCL equation for the circuit of Figure 3 can be written as

$$I_1 = I_2 + I_3$$

Figure 3. A simple series-parallel dc circuit.

Circuit Diagram:

Figure 4. Circuit for experiment.

Pre-Lab Report Ouestions:

1. Theoretically calculate the values of E, V_1 , V_2 , V_3 , I_1 , I_2 and I_3 of the circuit of Figure 4 with E = 3V.

Ans:

Given that,

$$R_{1} = 100\Omega$$

$$R_2 = 47\Omega$$

$$R_3 = 100\Omega$$

$$E = 3V$$

Here, $R_{2} & R_{3}$ is in parallel connection.

So,
$$R = \left(\frac{1}{R_2} + \frac{1}{R_3}\right)^{-1} \Omega$$

= $\left(\frac{1}{47} + \frac{1}{100}\right)^{-1} \Omega$
= 31.98 Ω

Now, R_p and R_1 is in series connection.

So,
$$R_{eq} = R_p + R_1$$

=(31.98+100) Ω
= 131.98 Ω

We know that,

$$I_1 = \frac{E}{R_{eq}}$$

$$= \frac{3}{131.98} \quad A$$

$$= 0.022A$$

So,
$$I_1 = 0.022$$
A

Here,

$$V = I_{1} R = 0.022 \times 100 = 2.27 V$$

$$V = I_{2} R = 0.022 \times 31.98 = 0.73 V$$

$$V = I_{3}R = 0.022 \times 31.98 = 0.73V$$

$$I_2 = \frac{V_2}{R_2} = \frac{0.73}{47} = 0.015A$$

$$I_3 = \frac{V_3}{R_3} = \frac{0.73}{100} = 0.0073A$$

2. From the calculated values, show that (i) $V_2 = V_3$, (ii) KVL holds, that is, $E = V_1 + V_2$, and (iii) KCL holds, that is, $I_1 = I_2 + I_3$.

Ans:

i.

$$V = V = 0.72V$$

ii.

From the calculated value we get that,

$$V_1 + V_2$$

= (2.23+0.72) V
=3V

iii

$$I_{2+}$$
 $I_{3=(0.015+0.007)A}$

=0.022A

Experimental Datasheet

Measur ed Value of E (V)	Measur ed Value of V ₁ (V)	Measured Value of V ₂ (V)	Measured Value of $V_3(V)$	Measu red Value of I ₁ (mA)	Measur e d Value of I ₂ (mA)	Measu red Valu e of I ₃ (mA)	Meas ured Valu e of Resis tance s (Ω)
3	2.3	0.9	0.7	22	7	13	R ₁ =97.8 R ₂ =98.9 R ₃ =48.2
5	3.7	1.3	1.1	33	11	20	R ₁ =97.8 R ₂ =98.9 R ₃ =48.2

1. Calculate the values of V_1 , V_2 , V_3 , I_1 , I_2 and I_3 of the circuit of Figure 4 using measured values of E, R_1 and R_2 . Compare the calculated values with the measured values and give reason if any discrepancy is found.

Ans:

Given,
$$E = 3V$$

Here, R₂ & R₃ are in parallel.

So,
$$\frac{1}{R_{p}} = \frac{1}{R_{2}} + \frac{1}{R_{3}}$$
$$= \frac{1}{98.9} + \frac{1}{49.2} \Omega$$
$$R_{p} = 32.85 \Omega$$

And R₁ & R_p are in series,

$$R_{eq} = R_1 + R_p = 97.8 \Omega + 32.85 \Omega = 130.62 \Omega$$

Now,

$$E$$

$$I_{1} = \frac{E}{R_{eq}}$$

$$= \frac{3}{130.62} A$$

$$= 0.023A$$

$$= 23mA$$

$$V_{1} = I_{1}R_{1} = 0.023 \times 97.8 = 2.25 \text{ V}$$

$$V_{2} = V_{3} = I_{1}R_{p} = 0.023 \times 32.85 = 0.76 \text{V}$$

$$I_{2} = \frac{V_{2}}{R_{2}}$$

$$= \frac{0.76}{98.9} \text{ A}$$

$$= 0.008 \text{A} = 8 \text{mA}$$

$$I_{3} = \frac{V_{3}}{R_{3}}$$

$$= \frac{0.76}{48.2} \text{ A}$$

$$= 0.016 \text{A} = 16 \text{mA}$$

Measured	Measured	Measured	Measured	Measured	Measured	Measured	Measured
Value of <i>E</i>	Value of	Value of	Value of	Value of	Value of	Value of	Value of
(V)	V ₁ (V)	V ₂ (V)	V ₃ (V)	I ₁ (mA)	<i>I</i> ₂ (mA)	<i>I</i> ₃ (mA)	Resistances (Ω)
							R ₁ =97.8
3	2.3	0.9	0.7	22	7	13	R ₂ =98.9
							R ₃ =48.2
Calculated			Calculated		Calculated		
Value of E (V)	Value of V₁ (V)	Value of V ₂ (V)	Value of V ₃ (V)	value of I_1 (mA)	Value of I ₂ (mA)	value of I₃ (mA)	Value of
							Resistances (Ω)
							R_1 = 100 R_2 = 47
3	2.25	0.76	0.76	23	8	16	R ₃ = 100

 $Table\ 2.\ The\ discrepancy\ between\ theoretical\ and\ measured\ values\ of\ V_1,\ V_2,\ V_3,\ I_1,\ I_2,\ I_3,\ R_{1,}$

The calculated and measured values for voltages V_1 , V_2 , and V_3 show relatively small differences, which could be attributed to measurement inaccuracies. However, the calculated and measured values for currents I_1 , I_2 , and I_3 exhibit significant discrepancies, suggesting potential measurement errors or incorrect units. It's essential to double-check the measurement equipment, units, and calibration to ensure accurate readings for current values.

2. From the calculated values of V_1, V_2, V_3, I_1, I_2 and I_3 , show that (i) $V_2 = V_3$,(ii) E

$$=V_1+V_2$$
 (KVL), and (iii) $I_1=I_2+I_3$ (KCL).

Ans:

From the calculated values,

 $V_1 = 2.25V$

 $V_2 = 0.76V$

 $V_3 = 0.76V$

 $I_1 = 0.023A$

 $I_2 = 0.008A$

 $I_3 = 0.016A$

E = 3V

i

Here, we can see that $V_2 = V_3$; (As $R_2 \& R_3$ are in parallel and in parallel circuit voltages are Same).

Again,

$$V_1 + V_2 = 2.25V + 0.76V = 3.1V$$

So, we can say that, $E = V_1 + V_2$

iii

Here,

$$I_2 + I_3 = 0.008A + 0.016A$$

$$= 0.024A$$

$$= I_1$$

So, we can say that, $I_1 = I_2 + I_3$

Discussion:

In this experiment, we analyzed a series-parallel De circuit to verify LVL and KCL through both theoretical calculation and experimental measurement. The goal was to observed the behavior of voltage and current in a circuit combining both series and parallel resistor arrangements.

* Theoretical Analysis:

- · Total current (II) \$ 0.022A
- · Voltage across RI(VI) & 2.28V
- · Voltage across parallel branch (v== v3) × 0.73V
- · Branch currents (I2 × 0.015A, I3 × 0.00739)

These value satisfied both $kVL = (E = V_1 + V_2)$ and $kCL (I_1 = I_2 + I_3)$ theoretically.

* Experimental Observation:

- · V1 = 2.3 V, V2 = 0.9 V, V3 = 0.7 V
- II = 22mA, I2 = xmA, I3 = 13mA Here, V2 ≠ V3, indicating a slight discrepancy. Similarly, III + I2+I3 by a small margin.

* These inconsistencies could arise due to:

- 1. Measurement errors or meter calibration issues.
- 2. Resistor tolerances differing from their nominal values.
- 3. Loose connections or contact resistance.
- 4. Environmental factors, such as temperature affecting resistance.

* Comparison & Verification:

In the post-lab analysis using the measured resistor values, R1=97.852, R2=98.952, R3=48.20. recalculated values objects matched measured voltages but showed greater deviation in current measurements. Despite this, kvl and kcl were resonably verified based on the adjused theoretical values:

- · hl. : 4+ v2 2 E
- · KCL: I, ~ I2+I3