西安电子科技大学

2019 年硕士研究生招生考试初试试题

考试科目代码及名称 821 电路、信号与系统 考试时间 2018 年 12 月 23 日下午 (3 小时)

答题要求: 所有答案(填空题按照标号写)必须写在答题纸上,写在试题上一律作废,准考证号写在指定位置!

电路部分(75分)

一、(9分) 如图 1 所示,已知, $U_s=2V$,求电流 I_{ab} 。

二、(10分) 如图 2 所示, 求电流 I 。

821 电路、信号与系统 试题 共 7 页 第 1 页

三、 $(10\,\%)$ 如图 3 所示,已知t<0时电路已处于稳态,t=0时开关 S 闭合,求 $t\geq0$ 时的电压u(t)。

四、 $(8\,
m eta)$ 如图 4 所示,正弦稳态相量模型电路,已知负载 Z_L 可任意改变,则 Z_L 为多少时可获得最大功率 P_{Lmax} ,并求出该最大功率。

五、 $(8\,

ota)$ 如图 5 所示,自耦变压器时在一个线圈上中间某处抽一个头达到自相耦合的目的,自耦变压器的连接公共端一定是异名端。若该自耦变压器可以看成是理想变压器,并知有效值电压 $U_1=220V$, $U_2=200V$,试求流过绕组的**电流有效值** I_1 , I_3 。

六、(10分) 如图 6 所示,已知 $\dot{U}_s=10\sqrt{2}\angle 0^{\circ}V$ 频率可变正弦交流电,求:

- 1) 当电源角频率为 $\omega = 20rad/s$ 时, 电流的有效值 I 为多少?
- 2) 当电源角频率 ω 为多少时,电流的有效值I为零?
- 3) 当电源角频率 ω 为多少时,电流的有效值I最大,并求其最大值?

七、(8分) 如图 7所示,已知图 (a) 中 U_1 = 10V , U_2 = 5V ,求图 (b) 中的电流 I 。

八、(12 分) 如图 8 所示,已知 $I_1=I_2=10A$, U=100V ,且 \dot{U} 、 \dot{I} 同相,求 R 、 X_C 、 X_L 。

图 8

信号与系统部分(75分)

一、简答题(共5小题,共37分)

1、(6 分) 已知信号 $f(-\frac{1}{2}t)$ 的波形如题 1 图所示,试分别画出 f(t) 和 $f_1(t) = f(t+1) \cdot \varepsilon(-t)$ 的波形。

2、(每小题 3 分, 共 9 分) 计算下列各小题:

(1)
$$\int_{-\infty}^{+\infty} \frac{\sin(\pi t)}{t} \delta(t) dt =$$

(2)
$$y(t) = e^{-2t} \varepsilon(t) * \delta'(t) =$$

(3)
$$\int_{-\infty}^{+\infty} e^{j\omega(t-4)} d\omega =$$

3、(9分)已知周期电压

$$u(t) = 2 + 3\sin(\frac{\pi}{6}t) - 4\cos(\frac{\pi}{6}t) + 2\cos(\frac{\pi}{3}t - 60^{\circ}) + \sin(\frac{2\pi}{3}t + 45^{\circ})V,$$

- (1) 求u(t)基波周期 T,基波角频率 Ω ; (3分)
- (2) 画出u(t)三角函数形式的振幅谱和相位谱(即单边谱); (4分)
- (3) 确定u(t)的功率。(2分)

4、(4分) 已知函数 $f_1(t)$ 和 $f_2(t)$ 的波形如题 4 图所示,请画出 $f(t) = f_1(t) * f_2(t)$ 的波形图。

/L

- 5、(9分)简要回答下列各小题:
- (1) 分析系统 y(k) + y(k-1)y(k+1) = f(k) 的线性和时变特性;
- (2) f(t)为具有最高频率 $f_{max}=1kH_Z$ 的带限信号。求对 f(t), f(t)*f(2t) 采样的耐 奎斯特采样率 f_s ,并用简要概念做解释;
- (3) 若象函数 $F(s) = \frac{2s+3}{(s+1)^2}$, 求原函数的初值 $f(0_+)$ 和终值 f(∞)。
- 二、计算题(共3小题,共38分)
- 6、(12分)如题 6图所示 LTI 因果离散系统的框图。
 - (1) 求描述该系统的差分方程。
 - (2) 求该系统的单位响应h(k)。
 - (3) 判断该系统的稳定性。
 - (4) 画出H(z)的直接型流图。

821 电路、信号与系统 试题 共 7 页 第 6 页

7、(16 分) 微分方程 y''(t)+5y'(t)+6y(t)=f''(t)-3f'(t)+2f(t) 所描述的因果 LTI 系统的初始条件为 $y(0_{-})=1$, $y'(0_{-})=-1$ 。

- (1) 试求该系统方程所描述的 LTI 系统的系统函数 H(s),并画出 H(s) 在 s 平面上的零极点分布和收敛域。
 - (2) 画出该 LTI 系统的幅频响应特性曲线和相频响应特性曲线。
- (3)当输入 $f(t)=e^{-2t}\varepsilon(t)$ 时,试求系统的零输入响应 $y_{zi}(t),t\geq 0$ 、零状态响应 $y_{zs}(t),t\geq 0$ 。

8、(10 分)可以产生单边带信号的系统框图如题 8 图 (b) 所示。已知信号 f(t) 的频谱 $F(j\omega)$ 如题 8 图 (a) 中所示, $H(j\omega)=-j\operatorname{sgn}(\omega)$,且 $\omega_0\gg\omega_m$ 。试求输出信号 y(t) 的频谱 $Y(j\omega)$,并画出其频谱图。

题 8 图