Curs: Statistică Instructor: A. Amărioarei

Tema 3

(predare pana pe 04.11.16)

Exercițiul 1

O urnă conține r bile roșii și b bile albastre. O bilă este extrasă la intamplare din urnă, i se notează culoarea și este intoarsă in urnă impreună cu alte d bile de aceeași culoare. Repetăm acest proces la nesfarșit. Calculați:

- a) Probabilitatea ca a doua bilă extrasă să fie albastră.
- b) Probabilitatea ca prima bilă să fie albastră știind că a doua bilă este albastră.
- c) Fie B_n evenimentul ca a n-a bilă extrasă să fie albastră. Arătați că $\mathbb{P}(B_n) = \mathbb{P}(B_1), \forall n \geq 1$.
- d) Probabilitatea ca prima bilă este albastră știind că următoarele n bile extrase sunt albastre. Găsiți valoarea limită a acestei probabilități.

Exercițiul 2

Știm că intr-un lot de 5 tranzistori avem 2 care sunt defecți. Tranzistorii sunt testați, unul cate unul, pană cand cei doi tranzistori au fost identificați. Fie N_1 numărul de teste pentru identificarea primului tranzistor defect și N_2 numărul de teste suplimentare pentru identificarea celui de-al doilea tranzistor defect. Scrieți un tablou in care să descrieți legea cuplului (N_1, N_2) . Calculați $\mathbb{E}[N_1]$ și $\mathbb{E}[N_2]$.

Exercițiul 3

Fie (X_1, X_2) vectorul aleator distribuit uniform pe discul D(R) centrat in origine și de rază R. Densitatea vectorului (X_1, X_2) este dată de

$$f(x_1, x_2) = c\mathbf{1}_{D(R)}(x_1, x_2)$$

unde c este o constantă pozitivă.

- 1. Determinați constanta c.
- 2. Determinați legile marginale ale lui X_1 și X_2 .
- 3. Fie L distanța de la punctul (X_1,X_2) la origine. Găsiți funcția de repartiție a lui L, legea lui L și media sa.

Grupele: 301, 311, 321 Pagina 1