ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ 1^η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ MATLAB/SIMULINK

Διδάσκοντες: Α. ΣΟΛΔΑΤΟΣ, Χ. ΨΥΛΛΑΚΗΣ

Δίνεται το σύστημα:

- α) Να σχεδιαστεί PD-ελεγκτής, $G_c(s) = k_p + k_d s$, για τις ακόλουθες προδιαγραφές:
 - Σφάλμα στη μόνιμη κατάσταση στη μοναδιαία συνάρτηση αναρρίχησης ≤ 0.000443
 - Μέγιστη υπερύψωση ≤5%
 - Χρόνος ανύψωσης $t_r \le 0.005 s$
 - Χρόνος αποκατάστασης $t_s \le 0.005 \, s$
- β) Να σχεδιαστεί ΡΙ-ελεγκτής, $G_c(s) = k_p + \frac{k_i}{s}$, ούτως ώστε να έχουμε:
 - Σφάλμα στη μόνιμη κατάσταση από τη μοναδιαία παραβολική είσοδο $\binom{t^2\!\!\!/2}{2} \leq 0.2$
 - Μέγιστη υπερύψωση ≤5%
 - Χρόνο ανύψωσης $t_r \le 0.01 s$
 - Χρόνο αποκατάστασης t_s ≤ 0.02 s
- γ) Έστω ότι στο πιο πάνω σχήμα $G_p(s) = \frac{2.718*10^9}{s(s+400.26)(s+3008)}.$ Να σχεδιαστεί PID-ελεγκτής, $G_c(s) = k_p + k_d s + \frac{k_i}{s} \text{, όταν ζητούνται:}$
 - Σφάλμα στη μόνιμη κατάσταση στη μοναδιαία συνάρτηση αναρρίχησης ≤0.2
 - Μέγιστη υπερύψωση ≤5%
 - Χρόνος ανύψωσης $t_r \le 0.005 s$
 - Χρόνος αποκατάστασης $t_s \le 0.005 s$

Κάθε σπουδάστρια/ης παραδίδει τη δικιά της/του εργασία που διαφέρει από των υπολοίπων. Εκεί περιλαμβάνονται το πρόγραμμα του Matlab/Simulink, τα αποτελέσματα και μια δισκέττα/CD με τα προγράμματα.