

# UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE INSTITUTO METRÓPOLE DIGITAL CAMPUS NATAL CENTRAL

Tobias dos Santos Neto Wisla Alves Argolo

ANÁLISE EMPÍRICA DOS ALGORITMOS DE ORDENAÇÃO

# Tobias dos Santos Neto Wisla Alves Argolo

ANÁLISE EMPÍRICA DOS ALGORITMOS DE ORDENAÇÃO

Relatório técnico apresentado como avaliação da disciplina Estruturas de Dados Básicas I ministrada pelo professor Dr. Selan Rodrigues dos Santos para o curso de Bacharelado em Tecnologia da Informação do Instituto Metropóle Digital da Universidade Federal do Rio Grande do Norte - Campus Natal Central.

# Sumário

| 1                                                          | INT | rodu   | UÇAO                                                                   | 7  |  |
|------------------------------------------------------------|-----|--------|------------------------------------------------------------------------|----|--|
| 2                                                          | PR  | OCED   | IMENTO EXPERIMENTAL                                                    | 8  |  |
|                                                            | 2.1 | Mater  | iais                                                                   | 8  |  |
|                                                            |     | 2.1.1  | Computador e Sistema Operacional                                       | 8  |  |
|                                                            |     | 2.1.2  | Ferramentas de programação                                             | 8  |  |
|                                                            |     | 2.1.3  | Gráficos                                                               | Ć  |  |
|                                                            | 2.2 | Algori | itmos                                                                  | Ć  |  |
|                                                            |     | 2.2.1  | Insertion Sort                                                         | (  |  |
|                                                            |     | 2.2.2  | Selection Sort                                                         | Ć  |  |
|                                                            |     | 2.2.3  | Bubble Sort                                                            | 1( |  |
|                                                            |     | 2.2.4  | Shell Sort                                                             | 10 |  |
|                                                            |     | 2.2.5  | Merge Sort                                                             | 11 |  |
|                                                            |     | 2.2.6  | Quick Sort                                                             | 13 |  |
|                                                            |     | 2.2.7  | Radix Sort                                                             | 14 |  |
|                                                            | 2.3 | Obten  | ıção dos dados                                                         | 16 |  |
|                                                            | 2.4 | Tratar | mento dos dados                                                        | 16 |  |
| 3                                                          | RES | SULTA  | ADOS                                                                   | 18 |  |
| 3.1 Cenário em que o arranjo está em ordem não-decrescente |     |        |                                                                        |    |  |
|                                                            |     | 3.1.1  | Os 7 algoritmos                                                        | 18 |  |
|                                                            |     | 3.1.2  | Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$                | 19 |  |
|                                                            |     | 3.1.3  | Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort | 21 |  |
|                                                            | 3.2 | Cenár  | io em que o arranjo está $25\%$ ordenado                               | 23 |  |
|                                                            |     | 3.2.1  | Os 7 algoritmos                                                        | 23 |  |
|                                                            |     | 3.2.2  | Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$                | 24 |  |
|                                                            |     | 3.2.3  | Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort | 26 |  |
|                                                            | 3.3 | Cenár  | io em que o arranjo está $50\%$ ordenado                               | 28 |  |
|                                                            |     | 3.3.1  | Os 7 algoritmos                                                        | 28 |  |
|                                                            |     | 3.3.2  | Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$                | 29 |  |
|                                                            |     | 3.3.3  | Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort | 31 |  |
|                                                            | 3.4 | Cenár  | io em que o arranjo está $75\%$ ordenado                               | 33 |  |
|                                                            |     | 3.4.1  | Os 7 algoritmos                                                        | 33 |  |
|                                                            |     | 3.4.2  | Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$                | 34 |  |
|                                                            |     | 3.4.3  | Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort | 36 |  |
|                                                            | 3.5 | Cenár  | io em que o arranjo está completamente desordenado                     | 38 |  |
|                                                            |     | 3.5.1  | Os 7 algoritmos                                                        | 38 |  |
|                                                            |     | 3.5.2  | Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$                | 39 |  |

|              |     | 3.5.3  | Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort   | 41 |
|--------------|-----|--------|--------------------------------------------------------------------------|----|
|              | 3.6 | Cenár  | io em que o arranjo está em ordem não-crescente                          | 43 |
|              |     | 3.6.1  | Os 7 algoritmos                                                          | 43 |
|              |     | 3.6.2  | Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$                  | 44 |
|              |     | 3.6.3  | Os algoritmos com caso médio $O(n\log n),$ Shell Sort e o Radix Sort     | 46 |
| 4            | DIS | CUSS   | ÃO                                                                       | 48 |
|              | 4.1 | Algori | tmos recomendados                                                        | 48 |
|              | 4.2 | Anális | e do Radix Sort                                                          | 49 |
|              | 4.3 | Quick  | Sort vs. Merge Sort                                                      | 49 |
|              | 4.4 | Comp   | ortamento anômalo                                                        | 49 |
|              | 4.5 | Uma e  | estimativa matemática                                                    | 50 |
|              |     | 4.5.1  | Algoritmos com complexidade de ordem linear $O(n)$                       | 50 |
|              |     | 4.5.2  | Algoritmos com complexidade de ordem quadrática $O(n^2)$                 | 51 |
|              |     | 4.5.3  | Algoritmos com complexidade de ordem logarítmica $O(n \cdot \log_2 n)$ . | 51 |
|              | 4.6 | Anális | e matemática                                                             | 52 |
| 5            | CO  | NCLU   | $	ilde{SAO}$                                                             | 59 |
| $\mathbf{R}$ | EFE | RÊNC   | IAS                                                                      | 60 |

# Lista de Figuras

| 1  | rempo de execução dos 7 algoritmos de ordenação, em escala logaritmica               | 18 |
|----|--------------------------------------------------------------------------------------|----|
| 2  | no eixo $y$ , quando o arranjo está em ordem não-decrescente                         | 10 |
| Z  | Tempo de execução dos algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$ ,         | 10 |
| 9  | em escala linear no eixo $y$ , quando o arranjo está em ordem não-decrescente        | 19 |
| 3  | Tempo de execução dos algoritmos com caso médio $O(n \log n)$ , Shell Sort           |    |
|    | e o $Radix Sort$ , em escala linear no eixo $y$ , quando o arranjo está em ordem     | -  |
|    | não-decrescente                                                                      | 21 |
| 4  | Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica               |    |
|    | no eixo $y$ , quando o arranjo está 25% ordenado                                     | 23 |
| 5  | Tempo de execução dos algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$ ,         |    |
|    | em escala logarítmica no eixo $y$ , quando o arranjo está $25\%$ ordenado            | 24 |
| 6  | Tempo de execução dos algoritmos com caso médio $O(n \log n)$ , Shell Sort           |    |
|    | e o $Radix\ Sort,$ em escala logarítmica no eixo $y,$ quando o arranjo está $25\%$   |    |
|    | ordenado                                                                             | 26 |
| 7  | Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica               |    |
|    | no eixo $y$ , quando o arranjo está 50% ordenado                                     | 28 |
| 8  | Tempo de execução dos algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort,$          |    |
|    | em escala logarítmica no eixo $y$ , quando o arranjo está 50% ordenado               | 29 |
| 9  | Tempo de execução dos algoritmos com caso médio $O(n \log n)$ , Shell Sort           |    |
|    | e o Radix Sort, em escala logarítmica no eixo $y$ , quando o arranjo está $50\%$     |    |
|    | ordenado                                                                             | 31 |
| 10 | Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica               |    |
|    | no eixo $y$ , quando o arranjo está 75% ordenado                                     | 33 |
| 11 | Tempo de execução dos algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort,$          |    |
|    | em escala logarítmica no eixo $y$ , quando o arranjo está 75% ordenado               | 34 |
| 12 | Tempo de execução dos algoritmos com caso médio $O(n \log n)$ , Shell Sort           |    |
|    | e o $Radix\ Sort$ , em escala logarítmica no eixo $y$ , quando o arranjo está $75\%$ |    |
|    | ordenado                                                                             | 36 |
| 13 | Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica               |    |
|    | no eixo $y$ , quando o arranjo está completamente desordenado                        | 38 |
| 14 | Tempo de execução dos algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$ ,         |    |
|    | em escala logarítmica no eixo $y$ , quando o arranjo está completamente              |    |
|    | desordenado                                                                          | 39 |
| 15 | Tempo de execução dos algoritmos com caso médio $O(n \log n)$ , Shell Sort           |    |
|    | e o $Radix\ Sort$ , em escala logarítmica no eixo $y$ , quando o arranjo está        |    |
|    | completamente desordenado                                                            | 41 |
|    |                                                                                      |    |

| 16 | Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica             |    |
|----|------------------------------------------------------------------------------------|----|
|    | no eixo $y$ , quando o arranjo está em ordem não-crescente                         | 43 |
| 17 | Tempo de execução dos algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort,$        |    |
|    | em escala logarítmica no eixo $y$ , quando o arranjo está em ordem não-            |    |
|    | crescente                                                                          | 44 |
| 18 | Tempo de execução dos algoritmos com caso médio $O(n \log n)$ , Shell Sort         |    |
|    | e o $Radix\ Sort$ , em escala logarítmica no eixo $y$ , quando o arranjo está em   |    |
|    | ordem não-crescente                                                                | 46 |
| 19 | Aplicação do fitting no Bubble Sort, em escala logarítmica no eixo $y$ , no        |    |
|    | pior caso                                                                          | 52 |
| 20 | Aplicação do fitting no Insertion Sort, em escala logarítmica no eixo $y$ , no     |    |
|    | pior caso                                                                          | 53 |
| 21 | Aplicação do fitting no Selection Sort, em escala logarítmica no eixo $y$ , no     |    |
|    | pior caso                                                                          | 54 |
| 22 | Aplicação do fitting no Shell Sort com $n^2$ , em escala logarítmica no eixo $y$ , |    |
|    | no pior caso                                                                       | 55 |
| 23 | Aplicação do fitting no Shell Sort com $n\log_2 n,$ em escala logarítmica no       |    |
|    | eixo $y$ , no pior caso                                                            | 55 |
| 24 | Aplicação do fitting no Quick Sort, em escala logarítmica no eixo $y$ , no pior    |    |
|    | caso                                                                               | 56 |
| 25 | Aplicação do fitting no Merge Sort, em escala logarítmica no eixo $y$ , no pior    |    |
|    | caso                                                                               | 57 |
| 26 | Aplicação do fitting no Radix Sort, em escala logarítmica no eixo $y$ , no pior    |    |
|    | caso                                                                               | 58 |

# Lista de Tabelas

| 1  | Especificações do Computador                                                        | 8  |
|----|-------------------------------------------------------------------------------------|----|
| 2  | Especificações do Sistema Operacional                                               | 8  |
| 3  | Tempos de execução (em m<br>s) dos algoritmos com caso médio $\mathcal{O}(n^2)$ e o |    |
|    | $Radix\ Sort$ quando o arranjo está em ordem não-decrescente                        | 20 |
| 4  | Tempos de execução (em ms) dos algoritmos com caso médio $O(n \log n)$ ,            |    |
|    | Shell Sort e o Radix Sort quando o arranjo está em ordem não-decrescente            | 22 |
| 5  | Tempos de execução (em m<br>s) dos algoritmos com caso médio $\mathcal{O}(n^2)$ e o |    |
|    | $Radix\ Sort$ quando o arranjo está $25\%$ ordenado                                 | 25 |
| 6  | Tempos de execução (em ms) dos algoritmos com caso médio $O(n \log n)$ ,            |    |
|    | Shell Sort e o Radix Sort quando o arranjo está 25% ordenado                        | 27 |
| 7  | Tempos de execução (em m<br>s) dos algoritmos com caso médio $\mathcal{O}(n^2)$ e o |    |
|    | $Radix\ Sort$ quando o arranjo está $50\%$ ordenado                                 | 30 |
| 8  | Tempos de execução (em ms) dos algoritmos com caso médio $O(n \log n)$ ,            |    |
|    | Shell Sort e o Radix Sort quando o arranjo está 50% ordenado                        | 32 |
| 9  | Tempos de execução (em m<br>s) dos algoritmos com caso médio $\mathcal{O}(n^2)$ e o |    |
|    | $Radix\ Sort$ quando o arranjo está $75\%$ ordenado                                 | 35 |
| 10 | Tempos de execução (em ms) dos algoritmos com caso médio $O(n \log n)$ ,            |    |
|    | Shell Sort e o Radix Sort quando o arranjo está 75% ordenado                        | 37 |
| 11 | Tempos de execução (em m<br>s) dos algoritmos com caso médio $\mathcal{O}(n^2)$ e o |    |
|    | $Radix\ Sort$ quando o arranjo está completamente desordenado                       | 40 |
| 12 | Tempos de execução (em ms) dos algoritmos com caso médio $O(n \log n)$ ,            |    |
|    | $Shell\ Sort$ e o $Radix\ Sort$ quando o arranjo está completamente desordenado     | 42 |
| 13 | Tempos de execução (em m<br>s) dos algoritmos com caso médio $\mathcal{O}(n^2)$ e o |    |
|    | Radix Sort quando o arranjo está em ordem não-crescente                             | 45 |
| 14 | Tempos de execução (em m<br>s) dos algoritmos com caso médio $O(n \log n)$ ,        |    |
|    | $Shell\ Sort$ e o $Radix\ Sort$ quando o arranjo está em ordem não-crescente $$ .   | 47 |
| 15 | Tempos de execução dos algoritmos linear ordenando $10^{12}$ elementos              | 51 |
| 16 | Tempos de execução dos algoritmos quadráticos ordenando $10^{12}$ elementos         | 51 |
| 17 | Tempos de execução dos algoritmos logarítmicos ordenando 10 <sup>12</sup> elementos | 52 |

# 1 INTRODUÇÃO

Um algoritmo consiste em um conjunto de instruções organizadas sistematicamente para resolver um problema computacional (SZWARCFITER; MARKENZON, 2015). Esses conjuntos de instruções organizadas desempenham um papel essencial em nossa vida cotidiana, muitas vezes sem que percebamos. A eficiência relativa ao tempo de processamento no manuseio de dados pode ser significativamente aumentada quando os dados são organizados seguindo um determinado critério de ordenação (DROZDEK, 2013). Nesse contexto, um exemplo notável é encontrado no funcionamento do Spotify e Netflix, que utilizam algoritmos de ordenação para recomendar músicas e filmes aos usuários com base em suas preferências. Esses algoritmos analisam uma vasta quantidade de dados e classificam o conteúdo de forma eficiente, proporcionando sugestões personalizadas.

Compreender a importância e a utilidade desses algoritmos é fundamental para aproveitar plenamente os benefícios que eles proporcionam. Essas sequências de passos lógicos nos auxiliam a resolver problemas de forma consistente e otimizada, contribuindo para uma experiência personalizada e agradável em nosso dia à dia.

Em casos que a análise matemática contribui pouco para entender o desempenho esperado de um determinado algoritmo, a análise empírica é a ferramenta responsável pela obtenção desse entendimento (SEDGEWICK, 1998). Considerando tal importância, esse relatório propõe a análise empírica em termos de tempo de execução dos 7 algorítmos de ordenação (Bubble Sort, Selection Sort, Insertion Sort, Shell Sort, Merge Sort, Quick Sort e Radix Sort) mediante testes em diferentes condições, para entender melhor o comportamento desses algoritmos e determinar, dada uma situação específica, o algorítmo mais indicado em termos de eficiência.

# 2 PROCEDIMENTO EXPERIMENTAL

#### 2.1 Materiais

Esta subseção apresenta e descreve os softwares e hardwares necessários para a realização deste trabalho.

#### 2.1.1 Computador e Sistema Operacional

Este trabalho foi conduzido com as especificações do computador e sistema operacional presentes na Tabela 1 e 2, respectivamente.

Tabela 1: Especificações do Computador

| Processador              | Memória               | Armazenamento  |  |
|--------------------------|-----------------------|----------------|--|
| AMD Ryzen 7 5700X        | 2x16GB DDR4           | SSD Netac 3000 |  |
| $@ 3.4-4.6 \mathrm{GHz}$ | $@~3600 \mathrm{MHz}$ | 500 GB NVME    |  |

Fonte: Elaborado pelo autor (2023).

Tabela 2: Especificações do Sistema Operacional

| Sistema Operacional                | Versão | Arquitetura |  |  |  |
|------------------------------------|--------|-------------|--|--|--|
| Windows 11 Home                    | 22H2   | x64         |  |  |  |
| Forto: Flaborado polo autor (2022) |        |             |  |  |  |

Fonte: Elaborado pelo autor (2023).

Além disso, foi utilizado o terminal WSL (Windows Subsystem for Linux) executando a versão 20.04 da distribuição Linux Ubuntu.

#### 2.1.2 Ferramentas de programação

Os 7 algoritmos de ordenação analisados foram implementados na linguagem C++17 a partir do editor de código-fonte gratuito e de código aberto VS Code (*Visual Studio Code*).

Além disso, tais códigos foram compilados no WSL utilizando a versão 3.22.1 do CMake (*Cross-Plataform Make*) a partir dos seguintes comandos:

cmake -S source -B build -D CMAKE\_BUILD\_TYPE=Release cmake --build build # Aciona o processo de compilação dentro da pasta build

Em que source corresponde pasta na qual o cmake será encontrado.

E para realizar a execução:

```
cd build # Entra na pasta build
./sortsuite
```

As medições de tempo foram realizadas usando a biblioteca *chrono*, e por meio da biblioteca *fstream* os dados foram escritos em arquivos de extensão .txt.

#### 2.1.3 Gráficos

Os gráficos obtidos neste trabalho foram gerados através do aplicativo de visualização Gnuplot versão 5.4 patchlevel 6 para Windows.

## 2.2 Algoritmos

Nesta subseção, os pseudocódigos dos algoritmos de ordenação serão apresentados.

#### 2.2.1 Insertion Sort

Este algoritmo divide o arranjo em duas partes: uma parte já ordenada, começando com o primeiro elemento, e uma parte não ordenada, inicialmente vazia. Em cada iteração, um elemento da parte não ordenada é selecionado e inserido na posição correta na parte ordenada, deslocando os elementos maiores para a direita. Esse processo é repetido até que todos os elementos estejam na posição correta e o arranjo esteja totalmente ordenada.

```
Algoritmo 1: Insertion Sort
```

#### 2.2.2 Selection Sort

O Selection Sort divide o arranjo em duas partes: uma parte ordenada à esquerda e uma parte não ordenada à direita. O algoritmo percorre repetidamente a parte não ordenada em busca do menor elemento e o coloca na posição correta na parte ordenada.

#### Algoritmo 2: Selection Sort

#### 2.2.3 Bubble Sort

Esta solução refere-se a versão clássica do *Bubble Sort* em que o algoritmo percorre repetidamente o arranjo a ser ordenado, comparando pares de elementos adjacentes e os trocando de posição se estiverem na ordem errada, de modo que o maior elemento do arranjo é gradualmente "empurrado" para o final a cada iteração até que o arranjo esteja completamente ordenado.

```
Algoritmo 3: Bubble Sort
```

```
Entrada: Um arranjo qualquer A[0...n-1] de n valores
Saída: O arranjo A[0...n-1] ordenado de forma não-decrescente

1 Função bubble(A)
2 | para i \leftarrow 0 até n-1 faça
3 | para j \leftarrow 0 até n-2 faça
4 | se A[j] > A[j+1] então
5 | A[j] \leftrightarrow A[j+1]
```

#### 2.2.4 Shell Sort

O Shell Sort é um algoritmo de ordenação baseado no Insertion Sort. Contudo, em vez de comparar e mover elementos adjacentes, o Shell Sort compara elementos que estão separados por um intervalo maior (gap) e os ordena utilizando o Insertion Sort. O intervalo é reduzido gradualmente até que seja igual a 1, quando o algoritmo é finalizado com uma última passagem do Insertion Sort no arranjo completo. Essa abordagem permite mover elementos distantes mais rapidamente para suas posições corretas, resultando em um menor número de comparações e trocas.

Neste projeto implementamos o Shell Sort original, no qual a sequência de intervalos

é calculada através da fórmula

$$gap = \left\lfloor \frac{n}{2^k} \right\rfloor$$

Em que n é o tamanho do arranjo e k é o número de iterações.

```
Algoritmo 4: Shell Sort
```

```
Entrada: Um arranjo qualquer A[0...n-1] de n valores
   Saída: O arranjo A[0...n-1] ordenado de forma não-decrescente
 1 Função shell(A)
       gap \leftarrow n/2
 2
       enquanto gap > 0 faça
 3
            para i \leftarrow gap até n-1 faça
 4
               temp \leftarrow A[i]
 5
 6
              enquanto j \geq gap \ e \ A[j-gap] > temp \ {\bf faça}
               A[j] \leftarrow A[j - gap]
j \leftarrow j - gap
A[j] \leftarrow temp
 8
 9
10
            gap \leftarrow gap/2
11
```

#### 2.2.5 Merge Sort

A estratégia do *Merge Sort* é dividir o arranjo original em partes menores de tamanho aproximadamente igual, recursivamente ordenar cada parte separadamente e, em seguida, mesclar (*merge*) as partes ordenadas a partir da comparação dos elementos para obter o arranjo final ordenado. O algoritmo aproveita a facilidade de ordenar listas pequenas e, gradualmente, combina as partes em ordem crescente até obter o arranjo completamente ordenado.

Para isso, o *Merge Sort* utiliza uma função auxiliar, a *merge*, que realiza a mesclagem.

#### Algoritmo 5: Merge Sort **Entrada:** Um arranjo qualquer A[0...n-1] de n valores **Saída:** O arranjo A[0...n-1] ordenado de forma não-decrescente 1 Função merge\_sort(A): $n \leftarrow tam(A)$ 2 se $n \geq 2$ então 3 $meio \leftarrow n/2$ 4 listaEsquerda[meio]5 listaDireita[n-meio]6 para $i \leftarrow 0$ até meio - 1 faça 7 $listaEsquerda[i] \leftarrow A[i]$ 8 para $j \leftarrow meio$ até n-1 faça 9 $listaDireita[j-meio] \leftarrow A[j]$ 10 $merge\_sort(listaEsquerda)$ 11 $merge\_sort(listaDireita)$ **12** merge(listaEsquerda, listaDireita, A)1314 Função merge (lista Esquerda, lista Direita, A): $tam_e \leftarrow tam(listaEsquerda)$ **15** $tam_{-}d \leftarrow tam(listaDireita)$ 16 $i \leftarrow j \leftarrow k \leftarrow 0$ 17 enquanto $i < tam_e$ e $j < tam_d$ faça 18 se listaEsquerda[i] < listaDireita[j] então 19 $A[k] \leftarrow listaEsquerda[i]$ 20 $i \leftarrow i+1$ $\mathbf{21}$ senão 22 $A[k] \leftarrow listaDireita[j]$ 23 $j \leftarrow j+1$ $\mathbf{24}$ $k \leftarrow k+1$ 25enquanto $i < tam_{-}e$ faça **26** $A[k] \leftarrow listaEsquerda[i]$ 27 $i \leftarrow i + 1$ 28 $k \leftarrow k + 1$ **29** enquanto $j < tam_d$ faça 30 $A[k] \leftarrow listaDireita[j]$ 31 $j \leftarrow j + 1$ 32 $k \leftarrow k + 1$

33

#### 2.2.6 Quick Sort

Este algoritmo escolhe um elemento chamado de "pivô" e particiona o arranjo ao redor desse pivô, de forma que os elementos menores que o pivô fiquem à sua esquerda e os elementos maiores fiquem à sua direita. Em seguida, o algoritmo é aplicado recursivamente aos dois subarranjos resultantes (à esquerda e à direita do pivô) até que o arranjo original esteja completamente ordenado.

A escolha do pivô pode afetar o desempenho do *Quick Sort*, pois pode resultar em subarranjos desbalanceadis. Neste projeto, empregamos a estratégia da mediana de três em que são selecionados três elementos do arranjo (o primeiro, o do meio e o último) e o pivô é escolhido como o valor mediano destes. Essa abordagem melhora o desempenho do algoritmo, evitando casos de tempo quadrático em dados ordenados de forma não-crescente e não-decrescente.

## Algoritmo 6: Quick Sort

```
Entrada: Um arranjo qualquer A[0...n-1] de n valores e indíces para o
               inicio e fim do intervalo considerado
   Saída: O arranjo A[0...n-1] ordenado de forma não-decrescente no intervalo
            [inicio, fim]
 1 Função quick (A, inicio, fim):
       se inicio < fim então
 2
           pivoIndice \leftarrow partition(A, inicio, fim)
 3
           quick(A, inicio, pivoIndice - 1)
 4
           quick(A, pivoIndice + 1, fim)
 5
6 Função partition (A, inicio, fim):
       meio \leftarrow (inicio + fim)/2
 7
       se A[meio] < A[inicio] então
 8
        A[meio] \leftrightarrow A[inicio]
 9
       se A[fim] < A[inicio] então
10
        A[fim] \leftrightarrow A[inicio]
11
       se A[fim] < A[meio] então
12
        A[fim] \leftrightarrow A[meio]
13
       A[fim] \leftrightarrow A[meio]
14
       pivo \leftarrow A[fim]
15
       pivoIndice \leftarrow inicio
16
       para i \leftarrow inicio até fim - 1 faça
17
           se A[i] < pivo então
18
               A[i] \leftrightarrow A[pivoIndice]
19
              pivoIndice \leftarrow pivoIndice + 1
20
       A[pivoIndice] \leftrightarrow A[fim]
21
       retorna pivoIndice
22
```

#### 2.2.7 Radix Sort

Diferentemente dos algoritmos de ordenação apresentados anteriormente que comparam os elementos diretamente, a estratégia do *Radix Sort* é baseada na análise dos dígitos individuais dos números de um arranjo qualquer. Ele começa pelo dígito menos significativo (o dígito mais à direita) e vai até o dígito mais significativo (o mais à esquerda).

Neste trabalho, utilizamos o *Radix Sort* baseado no dígito menos significativo versão *buckets* em que os elementos do arranjo são divididos em diferentes "baldes" (*buckets*) de

acordo com o valor do dígito atual analisado. Posteriormente, os elementos são coletados de volta da ordem dos baldes e colocados novamente no arranjo original. Esse processo é repetido para cada dígito, do menos significativo ao mais significativo, até que todos os dígitos tenham sido considerados.

```
Algoritmo 7: Radix Sort
   Entrada: Um arranjo qualquer A[0...n-1] de n valores
   Saída: O arranjo A[0...n-1] ordenado de forma não-decrescente
 1 Função radix(A)
       max \leftarrow maxElemento(A)
 2
       max\_digitos \leftarrow numDigitos(max)
 3
       para i \leftarrow 0 até max\_digitos faça
 4
          baldes[10][]
 5
          para j \leftarrow 0 até n-1 faça
 6
              indice \leftarrow (int)(A[j]/10^i)\%10
 7
              adicionar Elemento Balde(A[j], buckets[indice])
 8
              destino \leftarrow 0
 9
              para cada balde em baldes faça
10
                  para cada elemento em balde faça
11
                      A[destino] \leftarrow elemento
12
                      destino \leftarrow destino + 1
13
14 Função maxElemento(A)
       max \leftarrow A[0] para i \leftarrow 1 até n-1 faça
15
          se A[i] > max então
16
              max \leftarrow A[i]
17
      retorna max
18
19 Função numDigitos (max)
       contador \leftarrow 0
20
       enquanto max > 0 faça
21
          max/10
\mathbf{22}
          contador \leftarrow contador + 1
23
      retorna contador
24
25 Função adicionar Elemento Balde (elemento, balde)
       tam\_balde \leftarrow tam(balde)
26
       balde[tam\_balde] \leftarrow elemento
27
```

# 2.3 Obtenção dos dados

Neste trabalho, realizamos uma simulação de 7 algoritmos de ordenação sobre um arranjo de inteiros. Tais algoritmos foram analisados empiricamente quanto ao tempo de execução.

Para tanto, foram considerados os seguintes cenários: i) arranjos com elementos em ordem não-decrescente, ii) arranjos com elementos em ordem não-crescente, iii) arranjos com elementos 100% aleatórios, iv) arranjos com 75% de seus elementos em sua posição definitiva, v) arranjos com 50% de seus elementos em sua posição definitiva, e vi) arranjos com 25% de seus elementos em sua posição definitiva.

Adicionalmente, em cada cenário descrito, os algoritmos foram testados para 25 tamanhos distintos de entrada  $n_i$ , variando de  $10^2$  a  $10^5$ , com incremento progressivo em etapas de 4162 elementos. Para aumentar a precisão das medidas e evitar flutuações, realizamos 5 execuções para cada instância de tamanho  $n_i$ .

Em seguida, para obter o o tempo médio de execução do algoritmo para uma instância do problema com tamanho  $n_i$ , foi calculada a média aritmética dessas execuções. Para isso, empregamos a média progressiva utilizando a equação a seguir:

$$M_0=0,$$
 (valor inicial da média) 
$$M_k=M_{k-1}+\frac{x_k-M_{k-1}}{k},$$
 (atualização progressiva da média)

Essa fórmula foi aplicada para  $k=1,2,\ldots 5$  execuções, em que  $x_k$  representa o tempo registrado para a k-ésima execução e  $M_5$  é equivalente à média aritmética final da sequência de 5 tempos medidos.

#### 2.4 Tratamento dos dados

Os dados recolhidos permitiram a criação de uma tabela em formato .txt para cada cenário, correlacionando o tamanho da entrada com o tempo de execução de cada algoritmo. Em seguida, utilizando estas tabelas e visando uma representação gráfica clara das diferenças nos tempos de execução entre algoritmos, foram gerados 3 tipos de gráficos: i) gráficos, em escala logarítmica no eixo y, que analisam a velocidade dos 7 algoritmos de ordenação, ii) gráficos, em escala logarítmica no eixo y, que analisam a velocidade dos algoritmos com complexidade do caso médio  $O(n^2)$  (Bubble Sort, Insertion Sort e Selection Sort) juntamente com o Radix Sort, e ii) gráficos, em escala logarítmica no eixo y, que analisam a velocidade dos algoritmos com a complexidade do caso médio  $O(n \log n)$  (Quick Sort, Merge Sort) juntamente com o Radix Sort e Shell Sort.

Por fim, foi criado um gráfico em escala logarítmica no eixo y para cada um dos 7 algoritmos de ordenação, representando o ajuste de curva entre a função correspondente

ao pior caso do algoritmo e os dados medidos do tempo de execução do mesmo. Esse ajuste, também conhecido como *fitting*, permite a comparação direta entre a função do pior caso teoricamente prevista com os tempos de execução realmente observados.

# 3 RESULTADOS

Nesta seção, são apresentados os gráficos e tabelas gerados a partir dos dados de medição de tempo para cada um dos cenários e grupos de algoritmos.

# 3.1 Cenário em que o arranjo está em ordem não-decrescente

#### 3.1.1 Os 7 algoritmos

Figura 1: Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica no eixo y, quando o arranjo está em ordem não-decrescente



# 3.1.2 Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$

Figura 2: Tempo de execução dos algoritmos com caso médio  $O(n^2)$  e o  $Radix\ Sort$ , em escala linear no eixo y, quando o arranjo está em ordem não-decrescente



Tabela 3: Tempos de execução (em m<br/>s) dos algoritmos com caso médio  $O(n^2)$  e o Radix<br/> Sort quando o arranjo está em ordem não-decrescente

| Tamanho do array | Bubble Sort  | Selection Sort | Insertion Sort | Radix Sort |
|------------------|--------------|----------------|----------------|------------|
| 100              | 0.023634     | 0.013748       | 0.000290       | 0.008970   |
| 4262             | 43.396427    | 21.817689      | 0.011034       | 0.306812   |
| 8424             | 169.514234   | 85.090781      | 0.021796       | 0.620786   |
| 12586            | 377.425838   | 189.078579     | 0.032724       | 1.244912   |
| 16748            | 670.005493   | 334.547971     | 0.043285       | 1.588864   |
| 20910            | 1044.118152  | 523.196955     | 0.054613       | 1.930689   |
| 25072            | 1501.444479  | 755.313522     | 0.067959       | 2.315609   |
| 29234            | 2045.598026  | 1023.684132    | 0.075533       | 2.657084   |
| 33396            | 2670.336614  | 1336.302829    | 0.086297       | 3.063274   |
| 37558            | 3366.228809  | 1685.231278    | 0.097053       | 3.441991   |
| 41720            | 4174.666182  | 2100.984773    | 0.108760       | 3.817912   |
| 45882            | 5061.608286  | 2523.333304    | 0.119197       | 4.231907   |
| 50044            | 5995.499669  | 2995.971522    | 0.129418       | 4.625304   |
| 54206            | 7078.373744  | 3514.133815    | 0.140920       | 4.976962   |
| 58368            | 8158.666166  | 4085.463936    | 0.152534       | 5.356829   |
| 62530            | 9364.752992  | 4678.278329    | 0.161798       | 5.779317   |
| 66692            | 10640.344375 | 5317.471728    | 0.174844       | 6.128675   |
| 70854            | 12004.542651 | 6024.058499    | 0.185324       | 6.441836   |
| 75016            | 13467.193178 | 6740.604601    | 0.198039       | 6.835511   |
| 79178            | 14980.129987 | 7503.257125    | 0.207890       | 7.199069   |
| 83340            | 16607.603281 | 8423.820961    | 0.217061       | 7.963659   |
| 87502            | 18267.387288 | 9178.499788    | 0.228645       | 8.298057   |
| 91664            | 20090.376253 | 10049.983246   | 0.239427       | 8.907967   |
| 95826            | 21900.333452 | 10972.681861   | 0.250571       | 9.147672   |
| 99988            | 23845.592893 | 11953.282626   | 0.264831       | 9.548011   |

## 3.1.3 Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort

Figura 3: Tempo de execução dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort, em escala linear no eixo y, quando o arranjo está em ordem não-decrescente Tempo de execução dos algoritmos



Tabela 4: Tempos de execução (em ms) dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort quando o arranjo está em ordem não-decrescente

| Tamanho do array | Shell Sort | Quick Sort | Merge Sort | Radix Sort |
|------------------|------------|------------|------------|------------|
| 100              | 0.002892   | 0.002602   | 0.004570   | 0.008970   |
| 4262             | 0.126950   | 0.150990   | 0.242841   | 0.306812   |
| 8424             | 0.263767   | 0.319342   | 0.478658   | 0.620786   |
| 12586            | 0.404849   | 0.524467   | 0.705377   | 1.244912   |
| 16748            | 0.569251   | 0.678791   | 0.931716   | 1.588864   |
| 20910            | 0.710539   | 0.899560   | 1.166467   | 1.930689   |
| 25072            | 0.853325   | 1.111084   | 1.391056   | 2.315609   |
| 29234            | 0.990473   | 1.260628   | 1.656058   | 2.657084   |
| 33396            | 1.234182   | 1.425254   | 1.891176   | 3.063274   |
| 37558            | 1.444095   | 1.669682   | 2.135717   | 3.441991   |
| 41720            | 1.527708   | 1.891758   | 2.348300   | 3.817912   |
| 45882            | 1.725336   | 2.141580   | 2.576447   | 4.231907   |
| 50044            | 1.830597   | 2.353407   | 2.856773   | 4.625304   |
| 54206            | 1.975040   | 2.514196   | 3.196443   | 4.976962   |
| 58368            | 2.126635   | 2.668731   | 3.414600   | 5.356829   |
| 62530            | 2.285542   | 2.826104   | 3.714408   | 5.779317   |
| 66692            | 2.614244   | 2.988243   | 3.961579   | 6.128675   |
| 70854            | 2.779090   | 3.259364   | 4.213154   | 6.441836   |
| 75016            | 2.934088   | 3.507160   | 4.451466   | 6.835511   |
| 79178            | 3.105352   | 3.756253   | 4.657514   | 7.199069   |
| 83340            | 3.263328   | 4.081513   | 5.046911   | 7.963659   |
| 87502            | 3.434786   | 4.244879   | 5.175748   | 8.298057   |
| 91664            | 3.595253   | 4.504592   | 5.475527   | 8.907967   |
| 95826            | 3.792513   | 4.756527   | 5.704584   | 9.147672   |
| 99988            | 3.934927   | 4.934402   | 5.963245   | 9.548011   |

# 3.2 Cenário em que o arranjo está 25% ordenado

# 3.2.1 Os 7 algoritmos

Figura 4: Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica no eixo y, quando o arranjo está 25% ordenado



# 3.2.2 Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$

Figura 5: Tempo de execução dos algoritmos com caso médio  $O(n^2)$  e o  $Radix\ Sort,$  em escala logarítmica no eixo y, quando o arranjo está 25% ordenado



Tabela 5: Tempos de execução (em m<br/>s) dos algoritmos com caso médio  $O(n^2)$  e o Radix<br/> Sort quando o arranjo está 25% ordenado

| Tamanho do array | Bubble Sort  | Selection Sort | Insertion Sort | Radix Sort |
|------------------|--------------|----------------|----------------|------------|
| 100              | 0.026636     | 0.012052       | 0.007816       | 0.007632   |
| 4262             | 48.241740    | 21.598674      | 17.062072      | 0.304724   |
| 8424             | 189.079629   | 84.904863      | 66.069906      | 0.595602   |
| 12586            | 428.360432   | 188.863404     | 147.611921     | 1.184607   |
| 16748            | 785.304282   | 335.100844     | 270.048151     | 1.533562   |
| 20910            | 1263.749389  | 522.545551     | 411.517793     | 1.935435   |
| 25072            | 1839.646665  | 751.313581     | 590.464885     | 2.308978   |
| 29234            | 2577.797896  | 1019.059833    | 805.252197     | 2.676885   |
| 33396            | 3430.274673  | 1332.974317    | 1059.839079    | 3.058300   |
| 37558            | 4432.303849  | 1686.100779    | 1323.471734    | 3.438898   |
| 41720            | 5568.001099  | 2082.627796    | 1646.346768    | 3.843758   |
| 45882            | 6799.556794  | 2523.583037    | 1981.965236    | 4.199014   |
| 50044            | 8174.941707  | 2995.510430    | 2350.245188    | 4.571371   |
| 54206            | 9648.981260  | 3519.401283    | 2781.301176    | 4.965141   |
| 58368            | 11221.257512 | 4075.956806    | 3226.320383    | 5.325065   |
| 62530            | 12891.822986 | 4686.002664    | 3684.570469    | 5.720562   |
| 66692            | 14685.699860 | 5316.943086    | 4213.516712    | 6.089769   |
| 70854            | 16582.194590 | 6001.935559    | 4729.215274    | 6.561209   |
| 75016            | 18645.027983 | 6726.844518    | 5324.456954    | 6.959292   |
| 79178            | 20794.644349 | 7488.322787    | 5953.669893    | 7.280694   |
| 83340            | 23108.575956 | 8303.437126    | 6652.439195    | 7.852796   |
| 87502            | 25458.121647 | 9207.493867    | 7257.325205    | 8.348944   |
| 91664            | 28043.796018 | 10056.109485   | 7972.599117    | 8.921670   |
| 95826            | 30542.227235 | 10968.274053   | 8660.855141    | 9.229023   |
| 99988            | 33257.671426 | 11952.890318   | 9468.190276    | 9.562580   |

## 3.2.3 Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort

Figura 6: Tempo de execução dos algoritmos com caso médio  $O(n \log n)$ ,  $Shell\ Sort$  e o  $Radix\ Sort$ , em escala logarítmica no eixo y, quando o arranjo está 25% ordenado Tempo de execução dos algoritmos



Tabela 6: Tempos de execução (em ms) dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort quando o arranjo está 25% ordenado

| Tamanho do array |           |          | Merge Sort |          |
|------------------|-----------|----------|------------|----------|
| 100              | 0.002898  | 0.003466 | 0.006522   | 0.007632 |
| 4262             | 0.426402  | 0.308126 | 0.390615   | 0.304724 |
| 8424             | 0.967028  | 0.667759 | 0.864463   | 0.595602 |
| 12586            | 1.535868  | 1.022069 | 1.280835   | 1.184607 |
| 16748            | 2.203853  | 1.358558 | 1.742775   | 1.533562 |
| 20910            | 2.769258  | 1.748997 | 2.210656   | 1.935435 |
| 25072            | 3.620245  | 2.115721 | 2.677449   | 2.308978 |
| 29234            | 4.015542  | 2.568347 | 3.145563   | 2.676885 |
| 33396            | 4.731301  | 2.980369 | 3.628767   | 3.058300 |
| 37558            | 5.465195  | 3.379466 | 4.156146   | 3.438898 |
| 41720            | 6.240797  | 3.891756 | 4.632358   | 3.843758 |
| 45882            | 7.092968  | 4.200022 | 5.127930   | 4.199014 |
| 50044            | 7.808209  | 4.566831 | 5.543380   | 4.571371 |
| 54206            | 8.196754  | 4.997929 | 6.120227   | 4.965141 |
| 58368            | 11.381759 | 5.464877 | 6.557501   | 5.325065 |
| 62530            | 9.764913  | 5.865056 | 7.111062   | 5.720562 |
| 66692            | 10.767584 | 6.366634 | 7.531251   | 6.089769 |
| 70854            | 11.336107 | 6.652813 | 8.120213   | 6.561209 |
| 75016            | 12.203576 | 7.079098 | 8.615580   | 6.959292 |
| 79178            | 12.780549 | 7.520011 | 9.165449   | 7.280694 |
| 83340            | 13.895036 | 7.865808 | 9.541787   | 7.852796 |
| 87502            | 14.265099 | 8.514869 | 10.056066  | 8.348944 |
| 91664            | 15.637622 | 9.076825 | 10.711814  | 8.921670 |
| 95826            | 16.349277 | 9.342361 | 11.195329  | 9.229023 |
| 99988            | 17.555164 | 9.876132 | 11.715350  | 9.562580 |

# 3.3 Cenário em que o arranjo está 50% ordenado

# 3.3.1 Os 7 algoritmos

Figura 7: Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica no eixo y, quando o arranjo está 50% ordenado



# 3.3.2 Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$

Figura 8: Tempo de execução dos algoritmos com caso médio  $O(n^2)$  e o  $Radix\ Sort,$  em escala logarítmica no eixo y, quando o arranjo está 50% ordenado



Tabela 7: Tempos de execução (em m<br/>s) dos algoritmos com caso médio  $O(n^2)$  e o Radix<br/> Sort quando o arranjo está 50% ordenado

| Tamanho do array | Bubble Sort  | Selection Sort | Insertion Sort | Radix Sort |
|------------------|--------------|----------------|----------------|------------|
| 100              | 0.026812     | 0.012054       | 0.007250       | 0.007572   |
| 4262             | 47.143332    | 21.690103      | 12.130547      | 0.305846   |
| 8424             | 185.261301   | 85.265933      | 48.016231      | 0.600102   |
| 12586            | 416.429519   | 189.654367     | 106.102153     | 1.188505   |
| 16748            | 747.664342   | 336.145860     | 191.840875     | 1.544564   |
| 20910            | 1186.890191  | 523.587866     | 293.004157     | 1.923973   |
| 25072            | 1732.082742  | 752.909740     | 430.934234     | 2.326910   |
| 29234            | 2411.344520  | 1023.728126    | 578.979176     | 2.676043   |
| 33396            | 3185.802640  | 1335.370947    | 759.670344     | 3.064186   |
| 37558            | 4106.680207  | 1690.153128    | 959.374526     | 3.451284   |
| 41720            | 5109.960227  | 2086.350055    | 1178.345543    | 3.857252   |
| 45882            | 6264.269302  | 2521.793181    | 1427.034629    | 4.234303   |
| 50044            | 7519.172568  | 2999.927823    | 1704.383742    | 4.569197   |
| 54206            | 8874.939102  | 3537.202861    | 2007.545064    | 4.959240   |
| 58368            | 10292.227805 | 4083.321214    | 2315.207408    | 5.345119   |
| 62530            | 11814.219210 | 4671.665377    | 2635.558065    | 5.704204   |
| 66692            | 13429.070151 | 5318.952413    | 3003.230488    | 6.104007   |
| 70854            | 15240.640923 | 6000.756318    | 3408.532077    | 6.446278   |
| 75016            | 17081.859244 | 6724.039701    | 3821.170054    | 6.876876   |
| 79178            | 19041.573992 | 7507.401864    | 4255.688618    | 7.238536   |
| 83340            | 21179.903262 | 8314.562806    | 4746.365916    | 7.893460   |
| 87502            | 23347.602837 | 9168.102486    | 5226.473391    | 8.434457   |
| 91664            | 25646.447288 | 10059.983470   | 5724.917041    | 8.817480   |
| 95826            | 28013.488569 | 10981.408501   | 6233.243781    | 9.173125   |
| 99988            | 30488.481551 | 11974.786707   | 6726.301355    | 9.593274   |

## 3.3.3 Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort

Figura 9: Tempo de execução dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort, em escala logarítmica no eixo y, quando o arranjo está 50% ordenado Tempo de execução dos algoritmos



Tabela 8: Tempos de execução (em ms) dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort quando o arranjo está 50% ordenado

| Tamanho do array |           |          | Merge Sort |          |
|------------------|-----------|----------|------------|----------|
| 100              | 0.002898  | 0.003170 | 0.006292   | 0.007572 |
| 4262             | 0.411963  | 0.279137 | 0.357427   | 0.305846 |
| 8424             | 0.935030  | 0.598298 | 0.740070   | 0.600102 |
| 12586            | 1.524708  | 0.939858 | 1.143541   | 1.188505 |
| 16748            | 2.097949  | 1.277436 | 1.556936   | 1.544564 |
| 20910            | 2.792798  | 1.645167 | 1.973508   | 1.923973 |
| 25072            | 3.451583  | 1.977864 | 2.519765   | 2.326910 |
| 29234            | 4.055625  | 2.369150 | 2.813415   | 2.676043 |
| 33396            | 4.619208  | 2.757082 | 3.232764   | 3.064186 |
| 37558            | 5.283630  | 3.025757 | 3.664125   | 3.451284 |
| 41720            | 6.094365  | 3.443942 | 4.122333   | 3.857252 |
| 45882            | 6.587403  | 3.876952 | 4.592296   | 4.234303 |
| 50044            | 7.777299  | 4.226713 | 4.941184   | 4.569197 |
| 54206            | 7.973257  | 4.523695 | 5.379516   | 4.959240 |
| 58368            | 10.518234 | 4.944670 | 5.787116   | 5.345119 |
| 62530            | 9.480671  | 5.377608 | 6.267725   | 5.704204 |
| 66692            | 10.683262 | 5.915198 | 6.747113   | 6.104007 |
| 70854            | 10.930830 | 6.196802 | 7.188079   | 6.446278 |
| 75016            | 11.973731 | 6.489700 | 7.597160   | 6.876876 |
| 79178            | 12.607237 | 7.008145 | 8.100091   | 7.238536 |
| 83340            | 13.611038 | 7.428396 | 8.460109   | 7.893460 |
| 87502            | 13.987945 | 7.646359 | 8.928448   | 8.434457 |
| 91664            | 15.282856 | 8.172242 | 9.533169   | 8.817480 |
| 95826            | 16.105612 | 8.553305 | 10.002016  | 9.173125 |
| 99988            | 16.941979 | 9.071497 | 10.726817  | 9.593274 |

# 3.4 Cenário em que o arranjo está 75% ordenado

# 3.4.1 Os 7 algoritmos

Figura 10: Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica no eixo y, quando o arranjo está 75% ordenado



# 3.4.2 Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$

Figura 11: Tempo de execução dos algoritmos com caso médio  $O(n^2)$  e o  $Radix\ Sort,$  em escala logarítmica no eixo y, quando o arranjo está 75% ordenado



Tabela 9: Tempos de execução (em m<br/>s) dos algoritmos com caso médio  $O(n^2)$  e o Radix<br/> Sort quando o arranjo está 75% ordenado

| Tamanho do array | Bubble Sort  | Selection Sort | Insertion Sort | Radix Sort |
|------------------|--------------|----------------|----------------|------------|
| 100              | 0.025264     | 0.012068       | 0.003688       | 0.007608   |
| 4262             | 46.098405    | 21.709353      | 6.538326       | 0.309198   |
| 8424             | 179.530215   | 84.621105      | 26.033283      | 0.596440   |
| 12586            | 404.243571   | 188.762456     | 57.419789      | 1.185857   |
| 16748            | 727.397870   | 336.885432     | 101.844098     | 1.532220   |
| 20910            | 1131.798226  | 525.764107     | 160.362326     | 1.933967   |
| 25072            | 1632.161508  | 751.374120     | 231.084920     | 2.305306   |
| 29234            | 2222.921731  | 1018.488449    | 307.397157     | 2.673754   |
| 33396            | 2912.029470  | 1331.670952    | 403.636976     | 3.058624   |
| 37558            | 3705.077879  | 1687.618099    | 497.864768     | 3.421108   |
| 41720            | 4610.188007  | 2079.547717    | 628.925206     | 3.825294   |
| 45882            | 5608.850620  | 2518.012710    | 757.054025     | 4.210754   |
| 50044            | 6721.003760  | 3006.398162    | 903.398927     | 4.575045   |
| 54206            | 7901.057524  | 3510.755587    | 1070.090588    | 4.989077   |
| 58368            | 9176.153858  | 4076.079414    | 1233.198629    | 5.309701   |
| 62530            | 10544.609034 | 4673.985752    | 1413.817033    | 5.708786   |
| 66692            | 11993.595377 | 5315.288950    | 1609.238754    | 6.120053   |
| 70854            | 13536.364597 | 6009.743819    | 1805.688388    | 6.464208   |
| 75016            | 15199.803208 | 6727.595886    | 2027.908181    | 6.818560   |
| 79178            | 16981.302888 | 7500.958945    | 2280.647887    | 7.213549   |
| 83340            | 18798.376290 | 8303.070749    | 2498.517040    | 7.977535   |
| 87502            | 20765.398455 | 9163.929725    | 2778.186270    | 8.399240   |
| 91664            | 22822.175186 | 10061.078065   | 3073.117678    | 8.810926   |
| 95826            | 24939.942190 | 10999.434260   | 3325.469135    | 9.127530   |
| 99988            | 27168.967093 | 11987.811666   | 3654.841585    | 9.659083   |

#### 3.4.3 Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort

Figura 12: Tempo de execução dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort, em escala logarítmica no eixo y, quando o arranjo está 75% ordenado Tempo de execução dos algoritmos



Tabela 10: Tempos de execução (em ms) dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort quando o arranjo está 75% ordenado

| Tamanho do array | Shell Sort | Quick Sort | Merge Sort | Radix Sort |
|------------------|------------|------------|------------|------------|
| 100              | 0.002804   | 0.003236   | 0.005962   | 0.007608   |
| 4262             | 0.374829   | 0.248953   | 0.323340   | 0.309198   |
| 8424             | 0.902178   | 0.534477   | 0.654885   | 0.596440   |
| 12586            | 1.400298   | 0.888515   | 0.978831   | 1.185857   |
| 16748            | 1.944473   | 1.154693   | 1.326751   | 1.532220   |
| 20910            | 2.587879   | 1.585349   | 1.688326   | 1.933967   |
| 25072            | 3.200249   | 1.786315   | 2.024208   | 2.305306   |
| 29234            | 3.736080   | 2.058861   | 2.399807   | 2.673754   |
| 33396            | 4.378911   | 2.643272   | 2.751825   | 3.058624   |
| 37558            | 4.914002   | 2.763376   | 3.122151   | 3.421108   |
| 41720            | 5.737736   | 3.048838   | 3.478327   | 3.825294   |
| 45882            | 6.222845   | 3.414412   | 3.847014   | 4.210754   |
| 50044            | 7.153867   | 3.714028   | 4.206057   | 4.575045   |
| 54206            | 7.525044   | 3.986730   | 4.647064   | 4.989077   |
| 58368            | 9.368129   | 4.399395   | 4.953926   | 5.309701   |
| 62530            | 8.833804   | 5.233384   | 5.373946   | 5.708786   |
| 66692            | 9.772889   | 5.471243   | 5.753565   | 6.120053   |
| 70854            | 10.109279  | 5.666431   | 6.145422   | 6.464208   |
| 75016            | 11.228553  | 5.840126   | 6.505544   | 6.818568   |
| 79178            | 11.541722  | 6.201778   | 6.889637   | 7.213549   |
| 83340            | 12.650026  | 7.090682   | 7.356269   | 7.977535   |
| 87502            | 13.569980  | 6.950570   | 7.720199   | 8.399240   |
| 91664            | 14.356099  | 7.230875   | 8.224114   | 8.810926   |
| 95826            | 14.826956  | 7.690784   | 8.500074   | 9.127530   |
| 99988            | 15.552790  | 8.165006   | 8.877615   | 9.659083   |

# 3.5 Cenário em que o arranjo está completamente desordenado

### 3.5.1 Os 7 algoritmos

Figura 13: Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica no eixo y, quando o arranjo está completamente desordenado



### 3.5.2 Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$

Figura 14: Tempo de execução dos algoritmos com caso médio  $O(n^2)$  e o  $Radix\ Sort,$  em escala logarítmica no eixo y, quando o arranjo está completamente desordenado Tempo de execução dos algoritmos



Tabela 11: Tempos de execução (em ms) dos algoritmos com caso médio  $O(n^2)$  e o Radix Sort quando o arranjo está completamente desordenado

| Tamanho do array | Bubble Sort  | Selection Sort | Insertion Sort | Radix Sort |
|------------------|--------------|----------------|----------------|------------|
| 100              | 0.028860     | 0.013546       | 0.013006       | 0.007592   |
| 4262             | 49.655532    | 21.697149      | 20.720292      | 0.313380   |
| 8424             | 193.729033   | 84.546972      | 81.086263      | 0.597498   |
| 12586            | 438.913226   | 188.923597     | 182.467216     | 1.180489   |
| 16748            | 795.841486   | 334.673745     | 325.628126     | 1.530654   |
| 20910            | 1276.360105  | 522.315839     | 510.065670     | 1.923581   |
| 25072            | 1932.907122  | 750.718311     | 729.249280     | 2.300146   |
| 29234            | 2692.469007  | 1024.760731    | 997.655508     | 2.690973   |
| 33396            | 3606.221668  | 1335.508772    | 1297.267036    | 3.050699   |
| 37558            | 4674.279556  | 1682.695867    | 1641.538834    | 3.435594   |
| 41720            | 5829.129241  | 2076.509935    | 2033.069849    | 3.828823   |
| 45882            | 7109.666190  | 2509.703377    | 2444.551390    | 4.201020   |
| 50044            | 8582.495267  | 3002.277864    | 2916.674056    | 4.586000   |
| 54206            | 10077.635851 | 3514.297273    | 3403.088704    | 4.952674   |
| 58368            | 11735.511018 | 4073.133500    | 3980.482686    | 5.344223   |
| 62530            | 13470.284394 | 4676.967836    | 4538.416482    | 5.682657   |
| 66692            | 15373.605066 | 5322.525690    | 5189.247837    | 6.095505   |
| 70854            | 17358.374117 | 6003.505545    | 5840.631731    | 6.451498   |
| 75016            | 19507.982975 | 6733.586210    | 6567.163523    | 6.902035   |
| 79178            | 21751.611633 | 7498.780478    | 7333.570329    | 7.207881   |
| 83340            | 24078.963228 | 8313.200754    | 8095.040812    | 7.953385   |
| 87502            | 26659.294080 | 9184.159759    | 8968.417572    | 8.340160   |
| 91664            | 29247.968446 | 10075.324276   | 9812.865886    | 8.795438   |
| 95826            | 31949.346519 | 10984.173223   | 10713.648782   | 9.196615   |
| 99988            | 34790.287851 | 11962.238398   | 11627.438946   | 9.600516   |

### 3.5.3 Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort

Figura 15: Tempo de execução dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort, em escala logarítmica no eixo y, quando o arranjo está completamente



Tabela 12: Tempos de execução (em ms) dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort quando o arranjo está completamente desordenado

| Tamanho do array | Shell Sort | Quick Sort | Merge Sort | Radix Sort |
|------------------|------------|------------|------------|------------|
| 100              | 0.003030   | 0.003270   | 0.006098   | 0.007592   |
| 4262             | 0.432548   | 0.297870   | 0.404873   | 0.313380   |
| 8424             | 0.970719   | 0.671897   | 0.915728   | 0.597498   |
| 12586            | 1.573162   | 1.069790   | 1.414022   | 1.180489   |
| 16748            | 2.191762   | 1.434213   | 1.833061   | 1.530654   |
| 20910            | 2.810740   | 1.823224   | 2.350517   | 1.923581   |
| 25072            | 3.525639   | 2.230917   | 2.828221   | 2.300146   |
| 29234            | 4.213043   | 2.659641   | 3.329539   | 2.690973   |
| 33396            | 4.846073   | 2.998093   | 3.844728   | 3.050699   |
| 37558            | 5.404464   | 3.467377   | 4.368449   | 3.435594   |
| 41720            | 6.327604   | 3.894075   | 4.844025   | 3.828823   |
| 45882            | 7.061240   | 4.237453   | 5.384496   | 4.201020   |
| 50044            | 7.786352   | 4.735432   | 5.963605   | 4.586000   |
| 54206            | 8.486296   | 5.156863   | 6.431969   | 4.952674   |
| 58368            | 11.413396  | 5.477205   | 6.978608   | 5.344223   |
| 62530            | 10.004122  | 5.977158   | 7.484243   | 5.682657   |
| 66692            | 10.951460  | 6.392802   | 8.072937   | 6.095505   |
| 70854            | 11.390438  | 6.904579   | 8.558261   | 6.451498   |
| 75016            | 12.872366  | 7.318300   | 9.149847   | 6.902035   |
| 79178            | 13.319990  | 7.747940   | 9.645997   | 7.207881   |
| 83340            | 13.949914  | 8.237171   | 10.332138  | 7.953385   |
| 87502            | 14.685390  | 8.836374   | 10.795192  | 8.340160   |
| 91664            | 15.785098  | 9.242989   | 11.368120  | 8.795438   |
| 95826            | 16.310763  | 9.416376   | 11.947943  | 9.196615   |
| 99988            | 17.378781  | 10.040732  | 12.468583  | 9.600516   |

### 3.6 Cenário em que o arranjo está em ordem não-crescente

### 3.6.1 Os 7 algoritmos

Figura 16: Tempo de execução dos 7 algoritmos de ordenação, em escala logarítmica no eixo y, quando o arranjo está em ordem não-crescente



### 3.6.2 Os algoritmos com caso médio $O(n^2)$ e o $Radix\ Sort$

Figura 17: Tempo de execução dos algoritmos com caso médio  $O(n^2)$  e o  $Radix\ Sort$ , em escala logarítmica no eixo y, quando o arranjo está em ordem não-crescente



Tabela 13: Tempos de execução (em m<br/>s) dos algoritmos com caso médio  $O(n^2)$  e o Radix Sort quando o arranjo está em ordem não-crescente

| Tamanho do array | Bubble Sort  | Selection Sort | Insertion Sort | Radix Sort |
|------------------|--------------|----------------|----------------|------------|
| 100              | 0.034870     | 0.012054       | 0.022282       | 0.007496   |
| 4262             | 63.161589    | 21.710945      | 41.515487      | 0.301420   |
| 8424             | 247.424244   | 84.874338      | 164.159055     | 0.593210   |
| 12586            | 552.974629   | 189.396105     | 367.616176     | 1.175983   |
| 16748            | 980.320368   | 334.758214     | 654.640881     | 1.528412   |
| 20910            | 1535.174216  | 521.791672     | 1016.373724    | 1.902401   |
| 25072            | 2198.287626  | 780.253165     | 1497.865225    | 2.278288   |
| 29234            | 3024.412220  | 1035.034338    | 1996.061220    | 2.665662   |
| 33396            | 3910.258801  | 1333.446154    | 2599.210169    | 3.037809   |
| 37558            | 4945.046984  | 1684.054163    | 3290.990534    | 3.422532   |
| 41720            | 6112.108312  | 2079.084673    | 4060.415767    | 3.797165   |
| 45882            | 7394.994512  | 2514.482707    | 4912.018602    | 4.189120   |
| 50044            | 8802.630727  | 2988.564480    | 5843.849097    | 4.571701   |
| 54206            | 10328.516827 | 3509.885249    | 6851.683253    | 4.946916   |
| 58368            | 11978.736495 | 4069.224211    | 7948.324318    | 5.296583   |
| 62530            | 13744.019242 | 4669.283471    | 9122.316862    | 5.684650   |
| 66692            | 15627.853106 | 5311.791960    | 10380.388625   | 6.150516   |
| 70854            | 17645.863864 | 5996.144356    | 11725.354277   | 6.403455   |
| 75016            | 19814.463077 | 6712.261713    | 13119.433491   | 6.775890   |
| 79178            | 22065.349158 | 7507.618646    | 14648.151528   | 7.189663   |
| 83340            | 24459.466017 | 8317.910938    | 16232.887828   | 7.979521   |
| 87502            | 26957.343807 | 9169.989162    | 17889.311059   | 8.438303   |
| 91664            | 29523.466319 | 10040.960729   | 19591.965651   | 8.942102   |
| 95826            | 32258.808954 | 10971.173337   | 21414.372336   | 9.137668   |
| 99988            | 35122.307495 | 11956.501884   | 23312.065538   | 9.657477   |

### 3.6.3 Os algoritmos com caso médio $O(n \log n)$ , Shell Sort e o Radix Sort

Figura 18: Tempo de execução dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort, em escala logarítmica no eixo y, quando o arranjo está em ordem



Tabela 14: Tempos de execução (em ms) dos algoritmos com caso médio  $O(n \log n)$ , Shell Sort e o Radix Sort quando o arranjo está em ordem não-crescente

| Tamanho do array | Shell Sort | Quick Sort | Merge Sort | Radix Sort |
|------------------|------------|------------|------------|------------|
| 100              | 0.002010   | 0.002994   | 0.005296   | 0.007496   |
| 4262             | 0.178222   | 0.250323   | 0.243167   | 0.301420   |
| 8424             | 0.393335   | 0.512849   | 0.452426   | 0.593210   |
| 12586            | 0.590784   | 0.852891   | 0.685511   | 1.175983   |
| 16748            | 0.792884   | 1.123239   | 0.940728   | 1.528412   |
| 20910            | 1.026113   | 1.491224   | 1.191797   | 1.902401   |
| 25072            | 1.214706   | 1.756071   | 1.420212   | 2.278288   |
| 29234            | 1.446445   | 2.205486   | 1.637875   | 2.665662   |
| 33396            | 1.712850   | 2.474734   | 1.887707   | 3.037809   |
| 37558            | 1.951651   | 2.840581   | 2.165788   | 3.422532   |
| 41720            | 2.220059   | 3.092392   | 2.390031   | 3.797165   |
| 45882            | 2.531829   | 3.613957   | 2.640294   | 4.189120   |
| 50044            | 2.627046   | 3.874906   | 2.889043   | 4.571701   |
| 54206            | 2.914598   | 4.376093   | 3.178249   | 4.946916   |
| 58368            | 3.156845   | 4.504304   | 3.362347   | 5.296583   |
| 62530            | 3.333917   | 5.109528   | 3.623387   | 5.684650   |
| 66692            | 3.669735   | 5.377044   | 3.933513   | 6.150516   |
| 70854            | 4.098899   | 5.790455   | 4.136201   | 6.403455   |
| 75016            | 4.259361   | 5.992886   | 4.389365   | 6.775890   |
| 79178            | 4.422245   | 6.613976   | 4.663130   | 7.189663   |
| 83340            | 4.701525   | 6.764754   | 4.891666   | 7.979521   |
| 87502            | 4.931128   | 7.264396   | 5.270522   | 8.438303   |
| 91664            | 5.179505   | 7.474345   | 5.519645   | 8.942102   |
| 95826            | 5.479075   | 8.171510   | 5.882366   | 9.137668   |
| 99988            | 5.623599   | 8.422289   | 6.044146   | 9.657477   |

## 4 DISCUSSÃO

Nessa seção apresentaremos uma discussão acerca dos resultados obtidos. De forma geral, o *Radix Sort*, *Quick Sort* e o *Merge Sort* se mostraram os mais rápidos ao passo que o *Bubble Sort*, salvo as situações com pequenas quantidades de elementos, se mostrou o mais lento. Os tópicos a seguir abordarão discussões mais específicas e aprofundadas sobre os resultados da análise empírica feita nos algoritmos de ordenação.

### 4.1 Algoritmos recomendados

Os desempenhos dos algoritmos variaram consideravelmente entre os diferentes cenários, de modo que é fundamental analisá-los levando em conta cada contexto.

No cenário em que o array está em ordem não-decrescente (Figura 1), o *Insertion* Sort se destaca com o melhor desempenho para todas as dimensões de entrada. Isso ocorre pois essa configuração corresponde ao melhor cenário para o *Insertion Sort* em que sua complexidade é O(n).

Quanto ao cenário em que 25% do arranjo já está ordenado, as curvas do *Quick Sort* e do *Radix Sort* apresentam os menores valores e quase coincidem, como pode ser observado na Figura 4 e Figura 6. Dessa forma, eles são igualmente recomendáveis. Contudo, vale ressaltar que o *Radix Sort* é limitado a trabalhar somente com números inteiros positivos e o *Quick Sort* não é um algoritmo estável, pois é capaz de alterar a ordem relativa dos elementos com chaves iguais durante o processo de ordenação. Assim, tais fatores precisam ser levados em consideração na tomada de decisão.

Com relação ao caso em que conjunto de dados está 50% ordenado, é perceptível, ao analisar as Figuras 7 e 9, que o Quick Sort, Merge Sort e o Radix Sort são os algoritmos com menores tempos de execução e apresentam velocidades semelhantes, com uma discreta diferença de cerca de 1 milissegundo (conforme indicado na Tabela 8), que pode ser justificada pela variabilidade natural dos dados. No entanto, o Merge Sort requer memória extra, o que pode se tornar um empecilho ao lidar com grandes volumes de dados. Com base nisso, em termos de desempenho temporal, qualquer um dos três poderia ser selecionado, contudo, assim como no caso anterior, é necessário considerar as restrições já mencionadas desses algoritmos.

De forma análoga ao cenário anterior, no caso em que o arranjo está 75% ordenado (Figura 12), o *Quick Sort*, *Merge Sort* e *Radix Sort* são indicados, desde que suas respectivas limitações sejam levadas em conta.

A dinâmica dos dados no cenário em que o conjunto está totalmente desordenado (Figura 13 e Figura 15) é semelhante à situação em que o arranjo está 25% ordenado e o Quick Sort e o Radix Sort são sugeridos como a melhor escolha.

No cenário em que o arranjo se encontra em ordem não-crescente (Figura 16 e

Figura 18), Shell Sort e o Merge Sort são recomendados. No entanto, se a situação envolve restrição de memória, o Shell Sort torna-se a opção mais adequada, uma vez que sua complexidade de espaço é inferior em comparação à do Merge Sort. Por outro lado, se a estabilidade for um requisito, o Merge Sort deve ser o algoritmo de escolha.

#### 4.2 Análise do Radix Sort

Diferente da maioria dos algoritmos de ordenação, tais como o *Bubble Sort*, *Selection Sort*, *Insertion Sort*, *Shell Sort*, *Merge Sort* e *Quick Sort*, que funcionam mediante comparações diretas entre os elementos a serem ordenados, o *Radix Sort* se destaca como um algoritmo não-comparativo. Nesse sentido, é relevante avaliar o desempenho do *Radix Sort* em contraste com os algoritmos baseados na comparação de chaves.

Na maior parte dos cenários avaliados - quando o arranjo está 25% ordenado, 50% ordenado, 75% ordenado e totalmente desordenado - o Quick Sort e o Merge Sort apresentam performances semelhantes, ultrapassando os demais algoritmos de ordenação e foram considerados os melhores algoritmos de comparação de chave. Além disso, nestes mesmos cenários, o Radix Sort demonstra um desempenho muito próximo desses dois algoritmos, com uma diferença de poucos milissegundos (como pode ser visto na Tabela 6, Tabela 8, Tabela 10 e Tabela 12) e, portanto, é considerado equivalente em termos de tempo de execução.

### 4.3 Quick Sort vs. Merge Sort

Como esperado, tanto o *Quick Sort* como o *Merge Sort* obtiveram resultados bem semelhantes. Mesmo assim, por uma margem pequena, o *Quick Sort* se mostrou mais rápido nas situações trabalhadas. No entanto, a vantagem ter sido pequena indica que o tempo de execução do algoritmo não é um fator determinante para diferenciá-los.

Nesse caso, a escolha dentre um dos dois deve ser feita baseando-se no contexto no qual o algoritmo será implementado. Enquanto o *Quick Sort* é mais eficiente em termos de espaço de armazenamento, o *Merge Sort* é melhor no quesito estabilidade.

Portanto, em termos de velocidade, mesmo com uma pequena diferença para um deles, ambos algoritmos são igualmente eficientes.

### 4.4 Comportamento anômalo

No pior cenário, o Merge Sort tem uma complexidade temporal de  $\Theta(n \log n)$  (CORMEN et al., 2012), enquanto o Quick Sort possui uma complexidade de  $O(n^2)$  (DROZDEK, 2013). No entanto, na implementação realizada para este trabalho, usamos a técnica da mediana de três na escolha do pivô, minimizando assim a possibilidade de particionamentos desbalanceados. Assim, o Quick Sort raramente alcança seu pior caso, e a

complexidade considerada foi  $O(n \log n)$ . Por sua vez, o  $Radix\ Sort$ , apresenta complexidade no pior caso de O(n) (DROZDEK, 2013). A expectativa inicial era que o  $Radix\ Sort$  se sairia melhor em relação aos algoritmos de maior complexidade que se baseiam em comparação, mas, conforme mencionado anteriormente, ele apresentou um desempenho análogo. Uma justificativa possível para isso são as características da arquitetura do computador utilizado no experimento ou o fato de que o  $Radix\ Sort$  precisa buscar o maior elemento de cada entrada e determinar a quantidade de dígitos desse elemento. Desse modo, um estudo mais aprofundado é necessário para entender melhor as razões das diferenças observadas.

Além disso, apesar do Shell Sort possuir uma complexidade teórica de  $O(n^2)$ , ele exibiu um desempenho atípico em nossos testes. Ao invés de se assemelhar aos algoritmos com comportamento quadrático, seus valores de tempo de execução se aproximaram dos algoritmos com complexidade  $O(n \log n)$  e do  $Radix\ Sort$ .

Analisando os gráficos, nota-se que o comportamento dos algoritmos foram bem padronizados ao longo do intervalo presente no gráfico. Embora houvessem flutuações em alguns gráficos, as variações presentes não foram expressivas o suficiente para gerar um resultado diferente do esperado. Mesmo que o *Shell Sort* tenha tido um comportamento anômalo, os seus gráficos não possuem picos ou vales significantes.

#### 4.5 Uma estimativa matemática

Para estimar quanto tempo seria necessário para ordenar um vetor com 10<sup>1</sup>2 elementos, foi considerado que estes estarão completamente desordenados. Além disso, para o cálculo, utilizaremos a relação de ordem dos algoritmos.

#### 4.5.1 Algoritmos com complexidade de ordem linear O(n)

A fim de estimar o tempo de execução dos algoritmos lineares, considere que o tempo de execução de um algoritmo desse tipo em um vetor com n elementos é proporcional a n. Portanto, segue que:

$$\frac{t_n}{n} = \frac{t_{10^{12}}}{10^{12}} \implies t_{10^{12}} = \frac{t_n \cdot 10^{12}}{n}$$

onde  $t_n,\ t_{10^{12}}\in\mathbb{R}_+$  é o tempo de execução para n e  $10^{12}$  elementos respectivamente.

Dessa forma, utilizando a Tabela 11, tomaremos n = 99988 e  $t_n$  é igual ao tempo que o respectivo algoritmo levou para ordenar o vetor com 99988 elementos. Assim, temos:

Tabela 15: Tempos de execução dos algoritmos linear ordenando  $10^{12}$  elementos

| Unidade de Medida | Radix Sort           |
|-------------------|----------------------|
| Milissegundos     | $9.60167 \cdot 10^7$ |
| Horas             | 26.67130             |

### 4.5.2 Algoritmos com complexidade de ordem quadrática $O(n^2)$

A fim de estimar o tempo de execução dos algoritmos quadratícos, considere que o tempo de execução de um algoritmo desse tipo em um vetor com n elementos é proporcional a  $n^2$ . Portanto, segue que:

$$\frac{t_n}{n^2} = \frac{t_{10^{12}}}{(10^{12})^2} \implies t_{10^{12}} = \frac{t_n \cdot (10^{12})^2}{n^2}$$

onde  $t_n, t_{10^{12}} \in \mathbb{R}_+$  é o tempo de execução para  $n \in 10^{12}$  elementos respectivamente.

Dessa forma, utilizando a Tabela 11, tomaremos n = 99988 e  $t_n$  é igual ao tempo que o respectivo algoritmo levou para ordenar o vetor com 99988 elementos. Assim, temos:

Tabela 16: Tempos de execução dos algoritmos quadráticos ordenando  $10^{12}$  elementos

|               |                         | Scieccion Sore          | Insertion Sort          |
|---------------|-------------------------|-------------------------|-------------------------|
| Milissegundos | $3.47903 \cdot 10^{18}$ | $1.19622 \cdot 10^{18}$ | $1.16274 \cdot 10^{18}$ |
| Anos          | 110319318               | 37931887                | 36870243                |

Fonte: Elaborado pelo autor (2023).

### 4.5.3 Algoritmos com complexidade de ordem logarítmica $O(n \cdot \log_2 n)$

A fim de estimar o tempo de execução dos algoritmos logarítmicos, considere que o tempo de execução de um algoritmo desse tipo em um vetor com n elementos é proporcional a  $n \cdot \log_2 n$ . Seja  $t_n$ ,  $t_{10^{12}} \in \mathbb{R}_+$  o tempo de execução para n e  $10^{12}$  elementos respectivamente. Portanto, segue que:

$$\frac{t_n}{n \cdot \log_2 n} = \frac{t_{10^{12}}}{10^{12} \cdot \log_2 10^{12}} \implies t_{10^{12}} = \frac{t_n \cdot (10^{12})^2}{n^2}$$

Dessa forma, utilizando a Tabela 11, tomaremos n = 99988 e  $t_n$  é igual ao tempo que o respectivo algoritmo levou para ordenar o vetor com 99988 elementos. Assim, temos:

Tabela 17: Tempos de execução dos algoritmos logarítmicos ordenando 10<sup>12</sup> elementos

| Unidade de Medida | Shell Sort             | Quick Sort             | Merge Sort             |
|-------------------|------------------------|------------------------|------------------------|
| Milissegundos     | $4.17091 \cdot 10^{8}$ | $2.40978 \cdot 10^{8}$ | $2.99246 \cdot 10^{8}$ |
| Horas             | 115.85861              | 66.93833               | 83.12389               |

#### 4.6 Análise matemática

O processo de *fitting* é usado para verificar se os dados coletados durante a análise empírica correspondem à expectativa teórica, isto é, se eles seguem o modelo teórico proposto. Nesse sentido, pensando em responder à pergunta "A análise empírica é compatível com a análise matemática?", submetemos os dados do pior caso dos 7 algoritmos de ordenação ao ajuste de curva.

Figura 19: Aplicação do fitting no Bubble Sort, em escala logarítmica no eixo y, no pior



Figura 20: Aplicação do fitting no Insertion Sort, em escala logarítmica no eixo y, no pior caso



Em relação ao Bubble Sort e Insertion Sort a literatura indica que sua complexidade no pior caso, em que o arranjo está em ordem não-crescente, corresponde a  $O(n^2)$  (DROZDEK, 2013; WEISS, 2014). A aplicação do ajuste de curva nesses algoritmos sob essas condições, ilustrado nas Figuras 19 e 20, mostra claramente que a função do tipo  $f(n) = n^2$  está sobreposta aos os dados coletados, corroborando com a ideia de que esses dados expressam um comportamento quadrático.

Figura 21: Aplicação do fitting no Selection Sort, em escala logarítmica no eixo y, no pior caso



O Selection Sort também possui complexidade  $O(n^2)$  no pior caso (DROZDEK, 2013). No entanto, devido à dificuldade de determinar o pior caso para este algoritmo, uma vez que os valores se assemelham e alternam na maior parte dos cenários, optamos por realizar o fitting quando o arranjo está completamente desordenado. Nessa perspectiva, o resultado obtido (Figura 21) demonstrou que os dados de tempo de execução do Selection Sort estão de acordo com as previsões teóricas.

Figura 22: Aplicação do fitting no Shell Sort com  $n^2$ , em escala logarítmica no eixo y, .



Figura 23: Aplicação do fitting no Shell Sort com  $n\log_2 n,$ em escala logarítmica no eixo



Tempo de execução vs. tamanho do array

Figura 24: Aplicação do fitting no  $Quick\ Sort$ , em escala logarítmica no eixo y, no pior

Tamanho do array (número de elementos)

O Shell Sort e Quick Sort, assim como os algoritmos anteriores, apresentam uma complexidade de  $O(n^2)$  no pior caso (DROZDEK, 2013). Entretanto, para o Quick Sort, devido a utilização da mediana de três, considerou-se a complexidade  $O(n \log n)$ . Além disso, os experimentos indicam que o cenário mais adverso para esses algoritmos ocorre quando o array está completamente desordenado, condição sob a qual o ajuste de curva foi conduzido. Esta avaliação revelou que os dados coletados para o Quick Sort estão em sintonia com as previsões teóricas, como ilustrado pela similaridade entre as curvas demonstradas na Figura 24. No entanto, o Shell Sort não demonstrou um comportamento quadrático como era esperado, conforme apresentado na Figura 22, e suas medições se alinharam com a função  $f(n) = n \log_2 n$  (Figura 23).

Tempo de execução vs. tamanho do array

Figura 25: Aplicação do fitting no Merge Sort, em escala logarítmica no eixo y, no pior

Tamanho do array (número de elementos)

O Merge Sort, por outro lado, apresenta uma complexidade de  $\Theta(n \log n)$  e tem seu pior cenário quando o arranjo está completamente desordenado. Com base nisso, no processo de fitting (Figura 25), implementado com dados de um conjunto totalmente fora de ordem, pudemos confirmar que os resultados obtidos para este algoritmo estão em consonância com as expectativas teóricas.

Tempo de execução vs. tamanho do array

(gouldant a constitution of the constitution o

Figura 26: Aplicação do fitting no Radix Sort, em escala logarítmica no eixo y, no pior

Por ser um algoritmo de ordenação estável e não comparativo, o  $Radix\ Sort$  não tem um pior caso da mesma forma que os algoritmos de ordenação comparativos, uma vez que ele não é influenciada pela ordem inicial dos dados. No entanto, se a distribuição dos números for muito desigual (por exemplo, se ocorrer números com um número muito maior de dígitos do que os outros), então o  $Radix\ Sort$  pode ser menos eficiente e esta seria a pior configuração para o algoritmo. Dessa forma, dado que as entradas utilizadas em todos os cenários mantêm a mesma quantidade de dígitos e as medições estão consideravelmente próximas, optamos por realizar o ajuste de curva no cenário em que o conjunto de dados está está completamente desordenado. Esse processo é evidenciado na Figura 26, onde as medições para este algoritmo exibem uma tendência linear - conforme demonstrado pelo alinhamento entre a curva da função f(n) = n e os dados coletados - em concordância com o que foi apontado por Drozdek (2013).

# 5 CONCLUSÃO

A análise empírica é um método bastante utilizado quando é necessário verificar a eficiência de algoritmos para que seja possível compará-los e aplicá-los de modo adequado na resolução de problemas. Com base nisso, os seguintes algoritmos de ordenação foram examinados empiricamente em diferentes configurações de dados quanto ao seu tempo de execução: i) Bubble Sort, ii) Selection Sort, iii) Insertion Sort, iv) Shell Sort, v) Merge Sort, vi) Quick Sort e vii) Radix Sort. A maioria dos dados de tempo de execução coletados, com a exceção daqueles referentes ao Shell Sort, foram considerados alinhados com o modelo teórico sugerido para os algoritmos, o que permitiu a realização de uma análise baseada em dados alinhados com a literatura existente, levando em conta eventuais restrições.

Nesse contexto, os resultados obtidos indicaram que em grande parte dos cenários - isto é, quando o conjunto de dados está 25%, 50%, 75% ordenado ou totalmente desordenado - os algoritmos *Merge Sort*, *Quick Sort* e *Radix Sort* demonstraram um desempenho comparável e apresentaram-se como os mais eficientes. Assim, é necessário ponderar as limitações e benefícios de cada algoritmo e fazer a escolha apropriada para cada situação específica.

Entretanto, dado o comportamento linear do *Radix Sort*, esse resultado foi surpreendente, de modo que futuras investigações são encorajadas para um melhor entendimento dessa dinâmica.

Além disso, vale ressaltar que, em particular, no caso em que os dados estão em ordem não-decrescente, o Insertion Sort se destacou pelo seu notável desempenho, superando os algoritmos de complexidade  $O(n \log n)$ .

À vista disso, o desenvolvimento e resultados do trabalho mostraram-se bastante satisfatórios, dado que proporcionaram uma compreensão mais aprofundada sobre o comportamento dos algoritmos de ordenação e atenderam os objetivos propostos.

## Referências

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria e prática. [S.l.]: Elsevier, 2012.

DROZDEK, A. Data Structures and Algorithms in C++. [S.l.]: Cengage Learning, 2013.

SEDGEWICK, R. **Algorithms in C**. New York: Addison-Wesley Publishing Company, 1998. 657 p.

SZWARCFITER, J. L. S.; MARKENZON, L. **Estruturas de Dados e Seus Algoritmos**. Rio de Janeiro: LTC — Livros Técnicos e Científicos Editora Ltda, 2015. 236 p. ISBN 978-85-216-2994-8.

WEISS, M. A. **Data structures and algorithm analysis in C++**. [S.l.]: Florida International University, 2014.