Primer Parcial - Probabilidad y Estadística

Lunes 6 de mayo del 2013

Número de prue	ba	APELLID	Cédula de identidad		
	MO1	MO2	MO3	MO4	

Cada múltiple opción correcta vale 5 puntos, e incorrecta resta 1 punto. Cada problema de desarrollo vale 10 puntos.

Rellenar con claridad y en mayúscula la opción que considere correcta.

Se permite el uso de cuadernos, textos, calculadora y lápices.

Problema 1

En una discoteca se clasifican las personas según edad en jóvenes, maduros y veteranos y según sus preferencias de estilos musicales. El 20% elige la pista de Rock & Pop, el 30% la de Tecno& Dance, y el resto la pista tropical. Se sabe además que:

- En la pista de Rock & Pop: 25% son jóvenes, 35% maduros, y 40% veteranos.
- En la pista de Tecno & Dance: 45% son jóvenes, 35% maduros, y 20% veteranos.
- En la pista de Tropicales: 35% son jóvenes, 30% maduros, y 35% veteranos.
- (1) Si seleccionamos a una persona al azar dentro de la discoteca: ¿cuál es la probabilidad de que sea joven/madura/veterana?
- (2) Sabiendo que la persona seleccionada es madura, ¿cuál es la probabilidad de que provenga de la pista de Tecno & Dance?
- (3) Si se seleccionan 5 personas al azar dentro de la pista de Rock: ¿cuál es la probabilidad de elegir dos veteranos, dos maduros y un joven? Asuma que el número de personas de la pista de Rock permite utilizar un modelo de selección con reposición.

Problema 2

A efectos de comprender duraciones de llamadas telefónicas, se divide una población en dos grupos: A y B. Los miembros del Grupo A integran el 70 por ciento de la población, y la duración de sus llamadas (en minutos) responde a una distribución exponencial de parámetro $\lambda_1 = 1/5$. Por otra parte, los miembros del Grupo B realizan llamadas cuya duración responde a una distribución exponencial de parámetro $\lambda_2 = 1/10$.

Se elige al azar una persona de la población total. Sea X la variable aleatoria que mide la duración de una llamada telefónica de dicha persona.

- (1) Hallar la densidad y función de distribución de X.
- (2) Hallar la probabilidad de que la duración de la llamada de la persona elegida supere los 15 minutos.
- (3) Si la persona elegida realiza una llamada de duración mayor a los 12 minutos, calcular la probabilidad de que dicha persona elegida provenga del Grupo 1 y la probabilidad de que provenga del Grupo 2.
- (4) Calcular E(X).

Múltiple Opción 1

Se considera una sucesión de sucesos $A_1, A_2, ..., A_n,$ tales que $A_{i+1} \subseteq A_i \ \forall i, y$ existe un valor $\rho \in (0,1)$ que satisface $P(A_{i+1}) \leq \rho P(A_i) \ \forall i$. Se define el suceso

$$A = \bigcap_{i=1}^{\infty} A_i$$

Entonces, P(A) vale:

A): 1.

B): $1 - \rho$.

C): 0.

D): $\rho(1-\rho)$.

E): $\frac{\rho}{1-\rho}$. F): Ninguna de las opciones anteriores es correcta.

Múltiple Opción 2

Se consideran X e Y independientes, $X \sim Bin(5000, \frac{1}{2500}), Y \sim Bin(9000, \frac{1}{9000})$. Sea Z = X + Y. Entonces, P(Z = 0) es aproximadamente igual a:

A): e^{-3} .

B): $1 - e^{-3}$.

C): $e^{-\frac{140}{115}}$.

 \mathbf{D}'): $\frac{1}{2}$.

F): Ninguna de las opciones anteriores es correcta.

Múltiple Opción 3

Sean A y B dos variables aleatorias i.i.d. positivas, con densidad f. Sea X la solución de la ecuación lineal AX - B = 0. Consideremos el suceso $C = \{X > 1\}$. Entonces, P(C) vale:

A): 0.

B): 1.

C): $\frac{1}{\sqrt{2}}$. D): $\frac{1}{2}$.

E): $\frac{1}{3}$

F): Ninguna de las opciones anteriores es correcta.

Múltiple Opción 4

Sea la variable X con distribución de Cauchy de parámetros $\mu = 0$ y $\sigma = 1$. A partir de X definimos la variable Y de la siguiente manera:

$$Y = \begin{cases} X & \text{si} \quad |X| < 1 \\ -X & \text{si} \quad |X| \ge 1 \end{cases}$$

A): X e Y tienen distribución de Cauchy estándar y son independientes.

B): X e Y tienen distribución de Cauchy estándar y no son independientes.

C): Y no tiene distribución de Cauchy estándar y no es independiente de X.

D): Y tiene distribución de Cauchy estándar y es independiente de X.

E): X + Y es absolutamente continua.

F): Ninguna de las opciones anteriores es correcta.