

# Logică Matematică și Computațională

Anul I, Semestrul I 2022/2023

Laurențiu Leuștean

Pagina web: http://cs.unibuc.ro/~lleustean/



# **PRELIMINARII**



Fie A, B, T mulțimi a.î.  $A, B \subseteq T$ .

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

$$A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$$

$$A \setminus B = \{x \in T \mid x \in A \text{ si } x \notin B\}$$

$$C_T A = T \setminus A = \{x \in T \mid x \notin A\}$$

Notații:  $\mathbb{N}=\{0,1,2,\ldots\}$  este mulțimea numerelor naturale;  $\mathbb{N}^*=\mathbb{N}\setminus\{0\}$ ;  $\mathbb{Z}$  este mulțimea numerelor întregi;  $\mathbb{R}$  este mulțimea numerelor reale;  $\mathbb{Q}$  este mulțimea numerelor raționale.

Mulţimea părţilor lui T se notează  $2^T$  sau  $\mathcal{P}(T)$ . Aşadar,  $2^T = \mathcal{P}(T) = \{A \mid A \subseteq T\}$ .



Notăm cu (a, b) perechea ordonată formată din a și b (care sunt componentele lui (a, b)).

Observații: dacă  $a \neq b$ , atunci  $(a, b) \neq (b, a)$ ;  $(a, b) \neq \{a, b\}$ ; (7,7) este o pereche ordonată validă; două perechi ordonate (a, b) și (c, d) sunt egale ddacă a = c și b = d.

# Definiție

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

#### Exercițiu.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
  
 $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 



Fie A și B mulțimi și  $f: A \rightarrow B$  o funcție.

Spunem că  $f: A \to B$  este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B se numește domeniul valorilor sau codomeniul lui f.

Fie  $X \subseteq A$  și  $Y \subseteq B$ .

- ▶  $f(X) = \{f(x) \mid x \in X\}$  este imaginea directă a lui X prin f; f(A) este imaginea lui f.
- ▶  $f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}$  este imaginea inversă a lui Y prin f.
- ▶ Fie  $f|_X: X \to B$ ,  $f|_X(x) = f(x)$  pentru orice  $x \in X$ . Funcția  $f|_X$  este restricția lui f la X.

Mulţimea funcţiilor de la A la B se notează Fun(A, B) sau  $B^A$ .

Fie  $f: A \rightarrow B$  o funcție.

- ▶ f este injectivă dacă pentru orice  $x_1, x_2 \in A$ ,  $x_1 \neq x_2$  implică  $f(x_1) \neq f(x_2)$  (sau, echivalent,  $f(x_1) = f(x_2)$  implică  $x_1 = x_2$ ).
- ▶ f este surjectivă dacă pentru orice  $y \in B$  există  $x \in A$  a.î. f(x) = y (sau, echivalent, f(A) = B).
- ► f este bijectivă dacă f este injectivă și surjectivă.

Funcția identică a lui A:  $1_A: A \to A$ ,  $1_A(x) = x$ .

Fie  $f: A \to B$  și  $g: B \to C$  două funcții. Compunerea lor  $g \circ f$  este definită astfel:

$$g \circ f : A \to C$$
,  $(g \circ f)(x) = g(f(x))$  pentru orice  $x \in A$ .



 $f:A \to B$  este inversabilă dacă există  $g:B \to A$  astfel încât  $g\circ f=1_A$  și  $f\circ g=1_B$ .

f este bijectivă ddacă f este inversabilă.

#### Observație

- (i) Pentru orice mulțime A,  $Fun(\emptyset, A)$  are un singur element, funcția vidă.
- (ii) Pentru orice mulțime nevidă A,  $Fun(A, \emptyset) = \emptyset$ .

## Definiția 1.1

Fie A, T mulțimi a.î.  $A \subseteq T$ . Funcția caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: \mathcal{T} o \{0,1\}, \quad \chi_A(x) = egin{cases} 1, & ext{dacă} \ x \in A \ 0, & ext{dacă} \ x 
otin A \end{cases}$$

,



# Definiția 1.2

Spunem că A este echipotentă cu B dacă există o bijecție  $f:A\to B$ . Notație:  $A\sim B$ .

# Propoziția 1.3

Pentru orice mulțimi A, B, C, avem

- (i)  $A \sim A$ ;
- (ii) Dacă  $A \sim B$ , atunci  $B \sim A$ .
- (iii) Dacă  $A \sim B$  și  $B \sim C$ , atunci  $A \sim C$ .

Dem.: Exercițiu.

# Observație

Prin urmare, A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A și B sunt echipotente.



Următorul rezultat este fundamental.

# Teorema 1.4 (Teorema Cantor-Schröder-Bernstein)

Fie A şi B două mulțimi astfel încât există  $f: A \to B$  şi  $g: B \to A$  funcții injective. Atunci  $A \sim B$ .

# Definiția 1.5

O mulțime A se numește finită dacă  $A = \emptyset$  sau dacă există  $n \in \mathbb{N}^*$  a.î. A este echipotentă cu  $\{1, \ldots, n\}$ .

Numărul elementelor unei mulțimi finite A se notează |A| și se mai numește și cardinalul lui A.

## Definiția 1.6

O mulțime care nu este finită se numește infinită.

,



# Mulțimi (cel mult) numărabile

## Definiția 1.7

O mulțime A este numărabilă dacă este echipotentă cu  $\mathbb{N}$ .

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Exemple de mulțimi numărabile:  $\mathbb{N}$ ,  $\mathbb{N}^*$ ,  $\mathbb{Z}$ ,  $\mathbb{N} \times \mathbb{N}$ ,  $\mathbb{Q}$ .

#### Teorema Cantor

 $\mathbb{R}$ ,  $2^{\mathbb{N}}$  nu sunt mulțimi numărabile.

Se poate demonstra că

# Propoziția 1.8

 $\mathbb{R}$  este echipotentă cu  $2^{\mathbb{N}}$ .



# Propoziția 1.9

- (i) Orice mulțime infinită are o submulțime numărabilă.
- (ii) Orice submulțime a unei mulțimi numărabile este cel mult numărabilă.
- (iii) O mulțime A este cel mult numărabilă ddacă există o funcție injectivă de la A la o mulțime numărabilă.
- (iv) Produsul cartezian a două mulțimi cel mult numărabile este cel mult numărabil.
- (v) Reuniunea a două mulțimi cel mult numărabile este cel mult numărabilă.

#### Corolar 1.10

Fie A o mulțime numărabilă și B o mulțime nevidă cel mult numărabilă. Atunci  $A \times B$  și  $A \cup B$  sunt numărabile.

Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, ele fiind folosite pentru a măsura dimensiunea unei mulțimi; au fost introduse de Cantor.

Pentru orice mulțime A, cardinalul lui A (sau numărul cardinal al lui A) este un obiect |A| asociat lui A a.î. sunt satisfăcute următoarele:

- ► |A| este unic determinat de A.
- lacktriangle pentru orice mulțimi A, B, avem că |A|=|B| ddacă  $A\sim B$ .

Această definiție nu specifică natura obiectului |A| asociat unei mulțimi A.

Prin urmare, este naturală întrebarea dacă există cardinale.



## Un posibil răspuns este:

definim |A| ca fiind clasa tuturor mulțimilor echipotente cu A.

Un alt răspuns este definiția lui von Neumann din teoria axiomatică a mulțimilor. Conform acestei definiții, pentru orice mulțime A, |A| este tot o mulțime.

- Cardinalul unei mulțimi finite este numărul său de elemente. Cardinalele transfinite sunt cardinalele mulțimilor infinite.
- ▶  $|\mathbb{N}|$  se notează  $\aleph_0$  (se citește alef zero).
- $ightharpoonup |\mathbb{R}|$  se notează  $\mathfrak{c}$  și se mai numește și puterea continuumului.
- ▶ O mulţime A este numărabilă ddacă  $|A| = \aleph_0$ .
- $\triangleright$   $|2^{\mathbb{N}}| \neq \aleph_0$ .
- $|2^{\mathbb{N}}| = \mathfrak{c}.$

# Familii de mulțimi

Fie I o mulţime nevidă.

# Definiția 1.11

Fie A o mulțime. O familie de elemente din A indexată de I este o funcție  $f: I \to A$ . Notăm cu  $(a_i)_{i \in I}$  familia  $f: I \to A$ ,  $f(i) = a_i$  pentru orice  $i \in I$ . Vom scrie și  $(a_i)_i$  sau  $(a_i)$  atunci când I este dedusă din context.

Dacă fiecărui  $i \in I$  îi este asociată o mulțime  $A_i$ , obținem o familie (indexată) de mulțimi  $(A_i)_{i \in I}$ .

Fie  $(A_i)_{i \in I}$  o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei  $(A_i)_{i \in I}$  sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$



Fie I o mulțime nevidă și  $(A_i)_{i\in I}$  o familie de mulțimi.

# Definiția 1.12

Produsul cartezian al familiei  $(A_i)_{i \in I}$  se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Fie n număr natural,  $n \ge 1$ ,  $I = \{1, \ldots, n\}$  și  $A_1, \ldots, A_n \subseteq T$ .

$$(x_i)_{i\in I} = (x_1, \dots, x_n)$$
, un *n*-tuplu (ordonat)

$$\bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \text{ si } \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$$

$$\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A_n}_{n}$$



# Propoziția 1.13

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de mulțimi numărabile este numărabilă.
- (iii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.



#### Definiția 1.14

O relație n-ară între  $A_1, \ldots, A_n$  este o submulțime a produsului cartezian  $\prod_{i=1}^n A_i$ .

O relație n-ară pe A este o submulțime a lui  $A^n$ . Dacă R este relație n-ară, spunem că n este aritatea lui R.

# Definiția 1.15

O relație binară între A și B este o submulțime a produsului cartezian  $A \times B$ .

O relație binară pe A este o submulțime a lui  $A^2 = A \times A$ .

#### Exemple

- ▶ relația de divizibilitate pe N:
  - $|=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } mk=n\}$
- ▶ relația de ordine strictă pe  $\mathbb{N}$ :  $<=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } m\neq 0 \text{ și } m+k=n\}$

# Relații binare

Fie A o mulțime nevidă și R o relație binară pe A. Notație: Scriem xRy în loc de  $(x,y) \in R$  și  $\neg(xRy)$  în loc de  $(x,y) \notin R$ .

## Definiția 1.16

- ▶ R este reflexivă dacă xRx pentru orice  $x \in A$ .
- ▶ R este ireflexivă dacă  $\neg(xRx)$  pentru orice  $x \in A$ .
- ▶ R este simetrică dacă pentru orice  $x, y \in A$ , xRy implică yRx.
- ► R este antisimetrică dacă pentru orice  $x, y \in A$ , xRy și yRx implică x = y.
- R este tranzitivă dacă pentru orice x, y, z ∈ A, xRy şi yRz implică xRz.
- ▶ R este totală dacă pentru orice  $x, y \in A$ , xRy sau yRx.



Fie A o mulțime nevidă și R o relație binară pe A.

# Definiția 1.17

R este relație de echivalență dacă este reflexivă, simetrică și tranzitivă.

# Definiția 1.18

#### R este relație de

- ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- ordine strictă dacă este ireflexivă și tranzitivă.
- ordine totală dacă este antisimetrică, tranzitivă și totală.

Notații: Vom nota relațiile de ordine parțială și totală cu  $\leq$ , iar relațiile de ordine strictă cu <.



# LOGICA PROPOZIŢIONALĂ

# Logica propozițională - informal

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

# Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- Maria a reacționat violent la acuzațiile lui Ion.
- Orice număr natural par > 2 este suma a două numere prime.
   (Conjectura lui Goldbach).
- Andrei este deştept.
- Marţienilor le place pizza.

# Propoziții care nu sunt declarative

- ▶ Poţi să îmi dai, te rog, pâinea?
- ▶ Pleacă!



# Logica propozițională - informal

Considerăm anumite propoziții ca find atomice și le notăm  $p, q, r, \ldots$  sau  $p_1, p_2, p_3, \ldots$ 

Exemple: p=Numărul 2 este par. q=Mâine plouă. r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate  $\varphi$ ,  $\psi$ ,  $\chi$ ,  $\cdots$ ) folosind conectorii logici  $\neg$  (negația),  $\rightarrow$  (implicația),  $\lor$  (disjuncția),  $\land$  (conjuncția),  $\leftrightarrow$  (echivalența).

## Exemple:

 $\neg p$  = Numărul 2 nu este par.

 $p \lor q$  = Numărul 2 este par sau mâine plouă.

 $p \wedge q$  = Numărul 2 este par și mâine plouă.

p o q = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$  = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (, ).

Exemplu:  $\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$ 

# Logica propozițională - informal

# Exemplu:

Fie propoziția:

 $\varphi$ =Azi este vineri, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este vineri. q=Avem curs de logică.

Atunci  $\varphi = p \rightarrow q$ . Cine este  $\neg \varphi$ ?

 $\neg \varphi = p \land (\neg q) = Azi$  este vineri și nu avem curs de logică.



# Exemplu:

Fie propoziția:

 $\varphi$ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

q = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci  $\varphi = (p \land (\neg q)) \rightarrow r$ .

Presupunem că  $\varphi$ , p sunt adevărate și r este falsă (deci  $\neg r$  este adevărată). Ce putem spune despre q? q este adevărată.



# Definiția 2.1

Limbajul logicii propoziționale LP este format din:

- ightharpoonup o mulțime numărabilă  $V = \{v_n \mid n \in \mathbb{N}\}$  de variabile;
- ightharpoonup conectori logici:  $\neg$  (se citește non),  $\rightarrow$  (se citește implică)
- paranteze: ( , ).
- Mulțimea Sim a simbolurilor lui LP este

$$Sim := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu  $v, u, w, v_0, v_1, v_2, \dots$ 



# Definiția 2.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- ightharpoonup Expresia vidă se notează  $\lambda$ .
- Lungimea unei expresii  $\theta$  este numărul simbolurilor din  $\theta$ .  $Sim^n$  este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenţie,  $Sim^0 = \{\lambda\}$ . Atunci  $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$ .

# Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$



Operația de bază pentru expresii este concatenarea: dacă  $\varphi = \varphi_0 \dots \varphi_{k-1}$  și  $\psi = \psi_0 \dots \psi_{l-1}$  sunt expresii, atunci concatenarea lor, notată  $\varphi \psi$ , este expresia  $\varphi_0 \dots \varphi_{k-1} \psi_0 \dots \psi_{l-1}$ .

#### Definiția 2.3

Fie  $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$  o expresie a lui LP, unde  $\theta_i \in Sim$  pentru orice  $i \in \{0, 1, \dots, k-1\}$ .

- ▶ Dacă  $0 \le i \le j \le k-1$ , atunci expresia  $\theta_i \dots \theta_j$  se numește (i,j)-subexpresia lui  $\theta_i$ ;
- Spunem că o expresie  $\psi$  apare în  $\theta$  dacă există  $0 \le i \le j \le k-1$  a.î.  $\psi$  este (i,j)-subexpresia lui  $\theta$ .

# Formule

Definiția formulelor este un exemplu de definiție inductivă.

## Definiția 2.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă  $\varphi$  este formulă, atunci  $(\neg \varphi)$  este formulă.
- (F2) Daca  $\varphi$  și  $\psi$  sunt formule, atunci ( $\varphi \to \psi$ ) este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează Form. Notăm formulele cu  $\varphi, \psi, \chi, \ldots$ 

- Orice formulă se obține aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- ► Form ⊆ Expr. Formulele sunt expresiile "bine formate".

# Formule

# Exemple:

- $\triangleright$   $v_1 \neg \rightarrow (v_2)$ ,  $\neg v_1 v_2$  nu sunt formule.
- $\blacktriangleright$   $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$  sunt formule.

# Citire unică (Unique readability)

Dacă  $\varphi$  este o formulă, atunci exact una din următoarele alternative are loc:

- $\triangleright \varphi = v$ , unde  $v \in V$ ;
- $ightharpoonup \varphi = (\neg \psi)$ , unde  $\psi$  este formulă;
- $\varphi = (\psi \to \chi)$ , unde  $\psi, \chi$  sunt formule.

Mai mult, scrierea lui  $\varphi$  sub una din aceste forme este unică.

# Propoziția 2.5

Mulțimea Form a formulelor lui LP este numărabilă.

Dem.: Exercițiu.

# Principiul inducției pe formule

# Propoziția 2.6 (Principiul inducției pe formule)

Fie P o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă  $\varphi$ , dacă  $\varphi$  are proprietatea  $\mathbf{P}$ , atunci și  $(\neg \varphi)$  are proprietatea  $\mathbf{P}$ .
- (2) Pentru orice formule  $\varphi, \psi$ , dacă  $\varphi$  și  $\psi$  au proprietatea  $\mathbf{P}$ , atunci  $(\varphi \to \psi)$  are proprietatea  $\mathbf{P}$ .

Atunci orice formulă  $\varphi$  are proprietatea P.

**Dem.:** Pentru orice formulă  $\varphi$ , notăm cu  $c(\varphi)$  numărul conectorilor logici care apar în  $\varphi$ . Pentru orice  $n \in \mathbb{N}$  definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă  $\varphi$  cu  $c(\varphi) \leq n$  are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice  $n \in \mathbb{N}$ .

# Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă  $\varphi$ ,  $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$ , cu  $v \in V$  și, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducție. Fie  $n \in \mathbb{N}$ . Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie  $\varphi$  o formulă cu  $c(\varphi) \leq n+1$ . Avem trei cazuri:

- ho  $\varphi = v \in V$ . Atunci  $\varphi$  are proprietatea P, conform (0).
- $\varphi = (\neg \psi)$ , unde  $\psi$  este formulă. Atunci  $c(\psi) = c(\varphi) 1 \le n$ , deci, conform ipotezei de inducție,  $\psi$  are proprietatea  $\boldsymbol{P}$ . Aplicînd ipoteza (1), rezultă că  $\varphi$  are proprietatea  $\boldsymbol{P}$ .
- $\varphi = (\psi \to \chi)$ , unde  $\psi, \chi$  sunt formule. Atunci  $c(\psi), c(\chi) \le c(\varphi) 1 \le n$ , deci, conform ipotezei de inducție,  $\psi$  și  $\chi$  au proprietatea  $\boldsymbol{P}$ . Rezultă din (2) că  $\varphi$  are proprietatea  $\boldsymbol{P}$ .

Așadar, Q(n) este adevărată pentru orice  $n \in \mathbb{N}$ . Deoarece pentru orice formulă  $\varphi$  există  $N \in \mathbb{N}$  a.î.  $c(\varphi) \leq N$ , rezultă că orice formulă  $\varphi$  are proprietatea  $\boldsymbol{P}$ .

# Propoziția 2.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- *V* ⊆ Γ;
- ▶ Γ este închisă la ¬, adică  $\varphi \in \Gamma$  implică  $(\neg \varphi) \in \Gamma$ ;
- ▶ Γ este închisă la  $\rightarrow$ , adică  $\varphi, \psi \in \Gamma$  implică  $(\varphi \rightarrow \psi) \in \Gamma$ .

Atunci  $\Gamma = Form$ .

Conform definiției lui  $\Gamma$ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 2.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea  $\boldsymbol{P}$ , deci orice formulă  $\varphi$  este în  $\Gamma$ . Așadar,  $\Gamma = Form$ .

# Definiția 2.8

Fie  $\varphi$  o formulă a lui LP. O subformulă a lui  $\varphi$  este orice formulă  $\psi$  care apare în  $\varphi$ .

Notație: Mulțimea subformulelor lui  $\varphi$  se notează SubForm $(\varphi)$ .

# Exemplu:

Fie 
$$\varphi = ((v_1 \to v_2) \to (\neg v_1))$$
. Atunci 
$$SubForm(\varphi) = \{v_1, v_2, (v_1 \to v_2), (\neg v_1), \varphi\}.$$

# **Formule**



Conectorii derivați  $\vee$  (se citește sau),  $\wedge$  (se citește și),  $\leftrightarrow$  (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$
$$(\varphi \land \psi) := (\neg(\varphi \to (\neg \psi)))$$
$$(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)).$$

# Convenții

- ln practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem  $\neg \varphi, \varphi \rightarrow \psi$ , dar scriem  $(\varphi \to \psi) \to \chi$ .
- Pentru a mai reduce din folosirea parantezelor, presupunem că
  - ¬ are precedenţa mai mare decât ceilalţi conectori;
  - $\land$ ,  $\lor$  au precedență mai mare decât  $\rightarrow$ ,  $\leftrightarrow$ .

Prin urmare, formula  $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$  va fi scrisă  $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$ .





# Propoziția 2.9 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A, \quad G_\neg: A \to A, \quad G_\to: A \times A \to A.$$

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

(R0) 
$$F(v) = G_0(v)$$
 pentru orice variabilă  $v \in V$ .

(R1) 
$$F(\neg \varphi) = G_{\neg}(F(\varphi))$$
 pentru orice formulă  $\varphi$ .

(R2) 
$$F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$$
 pentru orice formule  $\varphi, \psi$ .



Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

# Exemplu:

Fie  $c: Form \to \mathbb{N}$  definită astfel: pentru orice formulă  $\varphi$ ,  $c(\varphi)$  este numărul conectorilor logici care apar în  $\varphi$ .

O definiție recursivă a lui c este următoarea:

$$\begin{array}{rcl} c(v) &=& 0 & \text{pentru orice variabilă } v \\ c(\neg\varphi) &=& c(\varphi)+1 & \text{pentru orice formulă } \varphi \\ c(\varphi\to\psi) &=& c(\varphi)+c(\psi)+1 & \text{pentru orice formule } \varphi,\psi. \end{array}$$

În acest caz, 
$$A=\mathbb{N},\ G_0:V o A,\ G_0(v)=0,$$
 
$$G_\neg:\mathbb{N}\to\mathbb{N},\qquad G_\neg(n)=n+1,$$
 
$$G_\to:\mathbb{N}\times\mathbb{N}\to\mathbb{N},\quad G_\to(m,n)=m+n+1.$$



#### Notație:

Pentru orice formulă  $\varphi$ , notăm cu  $Var(\varphi)$  mulțimea variabilelor care apar în  $\varphi$ .

#### Observație

Mulţimea  $Var(\varphi)$  poate fi definită și recursiv.

Dem.: Exercițiu.



## **SEMANTICA LP**





Folosim următoarele notații pentru cele două valori de adevăr:

1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este  $\{0,1\}$ .

Definim următoarele operații pe  $\{0,1\}$  folosind tabelele de adevăr.

$$ag{7}: \{0,1\} \rightarrow \{0,1\}, \qquad \begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Se observă că  $\neg p = 1 \iff p = 0$ .

Se observă că  $p \rightarrow q = 1 \iff p \leq q$ .



Operațiile V :  $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ ,  $\Lambda : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$  și  $\leftrightarrow$ :  $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$  se definesc astfel:

| p | q                | $p \lor q$ | p | q                | $p \wedge q$ | р                | q | $p \leftrightarrow q$ |
|---|------------------|------------|---|------------------|--------------|------------------|---|-----------------------|
| 0 | 0                | 0          | 0 | 0                | 0            | 0                | 0 | 1                     |
| 0 | 1                | 1          | 0 | 1                | 0            | 0                | 1 | 0                     |
| 1 | 0<br>1<br>0<br>1 | 1          | 1 | 0<br>1<br>0<br>1 | 0            | 0<br>0<br>1<br>1 | 0 | 0                     |
| 1 | 1                | 1          | 1 | 1                | 1            | 1                | 1 | 1                     |

#### Observatie

Pentru orice  $p, q \in \{0, 1\}$ ,  $p \lor q = \neg p \to q$ ,  $p \land q = \neg(p \to \neg q)$  și  $p \leftrightarrow q = (p \to q) \land (q \to p)$ .

Dem.: Exercițiu.





#### Definiția 2.10

O evaluare (sau interpretare) este o funcție  $e: V \rightarrow \{0,1\}$ .

#### Teorema 2.11

Pentru orice evaluare e :  $V \rightarrow \{0,1\}$  există o unică funcție

$$e^+:\textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v)=e(v)$  pentru orice  $v\in V$ .
- $e^+(\neg \varphi) = \neg e^+(\varphi)$  pentru orice  $\varphi \in Form$ ,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$  pentru orice  $\varphi$ ,  $\psi \in Form$ .

**Dem.:** Aplicăm Principiul recursiei pe formule (Propoziția 2.9) cu  $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p \text{ și}$   $G_{\neg} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, G_{\rightarrow}(p,q) = p \rightarrow q.$ 



Dacă e :  $V \rightarrow \{0,1\}$  este o evaluare, atunci pentru orice formule  $\varphi$ ,  $\psi$ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$
  

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$
  

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Dem.: Exercițiu.



Pentru orice formulă  $\varphi$  și orice evaluări  $e_1, e_2 : V \to \{0, 1\}$ ,

(\*) 
$$e_1(v) = e_2(v)$$
 pentru orice  $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$ .

**Dem.:** Definim următoarea proprietate P: pentru orice formulă  $\varphi$ ,

$$\varphi$$
 are proprietatea **P** ddacă pentru orice evaluări  $e_1, e_2: V \to \{0, 1\}, \varphi$  satisface (\*).

Demonstrăm că orice formulă  $\varphi$  are proprietatea  $\boldsymbol{P}$  folosind Principiul inducției pe formule. Avem următoarele cazuri:

• 
$$\varphi = v$$
. Atunci  $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$ .



Pentru orice formulă  $\varphi$  și orice evaluări  $e_1, e_2: V \to \{0, 1\}$ ,

(\*) 
$$e_1(v) = e_2(v)$$
 pentru orice  $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$ .

#### Dem.: (continuare)

 $arphi = \neg \psi$  și  $\psi$  satisface  $\boldsymbol{P}$ . Fie  $e_1, e_2 : V \rightarrow \{0, 1\}$  a.î.  $e_1(v) = e_2(v)$  pentru orice  $v \in Var(\varphi)$ . Deoarece  $Var(\varphi) = Var(\psi)$ , rezultă că  $e_1(v) = e_2(v)$  pentru orice  $v \in Var(\psi)$ . Așadar, aplicând  $\boldsymbol{P}$  pentru  $\psi$ , obținem că  $e_1^+(\psi) = e_2^+(\psi)$ . Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci  $\varphi$  satisface  $\boldsymbol{P}$ .



Pentru orice formulă  $\varphi$  și orice evaluări  $e_1, e_2 : V \to \{0, 1\}$ ,

(\*) 
$$e_1(v) = e_2(v)$$
 pentru orice  $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$ .

#### Dem.: (continuare)

 $\begin{array}{l} \blacktriangleright \ \varphi = \psi \rightarrow \chi \ \text{si} \ \psi, \chi \ \text{satisfac} \ \textbf{\textit{P}}. \ \text{Fie} \ e_1, e_2 : V \rightarrow \{0,1\} \ \ \text{a.î.} \\ e_1(v) = e_2(v) \ \text{pentru orice} \ v \in Var(\varphi). \ \ \text{Deoarece} \\ Var(\psi) \subseteq Var(\varphi) \ \text{si} \ Var(\chi) \subseteq Var(\varphi), \ \text{rezultă că} \\ e_1(v) = e_2(v) \ \text{pentru orice} \ v \in Var(\psi) \ \text{si pentru orice} \\ v \in Var(\chi). \ \ \text{Așadar, aplicând} \ \textbf{\textit{P}} \ \text{pentru} \ \psi \ \text{si} \ \chi, \ \text{obținem că} \\ e_1^+(\psi) = e_2^+(\psi) \ \text{si} \ e_1^+(\chi) = e_2^+(\chi). \ \ \text{Rezultă că} \\ \end{array}$ 

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci  $\varphi$  satisface  $\boldsymbol{P}$ .



 $\mathsf{Fie}\ arphi$  o formulă.

#### Definiția 2.14

- ▶ O evaluare  $e: V \to \{0,1\}$  este model al lui  $\varphi$  dacă  $e^+(\varphi) = 1$ . Notație:  $e \models \varphi$ .
- $\triangleright \varphi$  este satisfiabilă dacă admite un model.
- Dacă  $\varphi$  nu este satisfiabilă, spunem și că  $\varphi$  este nesatisfiabilă sau contradictorie.
- $\varphi$  este tautologie dacă orice evaluare este model al lui  $\varphi$ . Notație:  $\models \varphi$ .

Notație: Mulțimea tuturor modelelor lui  $\varphi$  se notează  $Mod(\varphi)$ .

#### Propoziția 2.15

- (i)  $\varphi$  este tautologie ddacă  $\neg \varphi$  este nesatisfiabilă.
- (ii)  $\varphi$  este nesatisfiabilă ddacă  $\neg \varphi$  este tautologie.

Dem.: Exercitiu.

#### Metoda tabelului

Fie  $\varphi$  o formulă arbitrară și  $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$ . Pentru orice evaluare  $e: V \to \{0, 1\}, e^+(\varphi)$  depinde doar de  $e(x_1), \dots, e(x_k)$ , conform Propoziției 2.13.

Aşadar,  $e^+(\varphi)$  depinde doar de restricția lui e la  $\{x_1, x_2, \dots, x_k\}$ :

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt  $2^k$  astfel de funcții posibile  $e'_1, e'_2, \dots, e'_{2^k}$ . Asociem fiecăreia o linie într-un tabel:

| mine mich              | an tuben.             |   |                 |                                            |                                                                           |
|------------------------|-----------------------|---|-----------------|--------------------------------------------|---------------------------------------------------------------------------|
| <i>x</i> <sub>1</sub>  | <i>X</i> <sub>2</sub> |   | $x_k$           | $\dots$ subformule ale lui $arphi$ $\dots$ | $\varphi$                                                                 |
| $\overline{e_1'(x_1)}$ | $e_1'(x_2)$           |   | $e_1'(x_k)$     |                                            | $e_1^{\prime+}(arphi)$                                                    |
| $e_2'(x_1)$            | $e_2'(x_2)$           |   | $e_2'(x_k)$     |                                            | $e_2^{\prime+}(arphi)$                                                    |
| :                      | :                     | ٠ | :               | ٠                                          | :                                                                         |
| $e_{2^k}'(x_1)$        | $e'_{2^k}(x_2)$       |   | $e_{2^k}'(x_k)$ |                                            | $\left  \begin{array}{c} e_{2^k}^{\prime}^{+}(arphi) \end{array} \right $ |

Pentru orice i,  $e_i^{\prime +}(\varphi)$  se definește similar cu Teorema 2.11.

$$\varphi$$
 este tautologie ddacă  $e_i^{\prime+}(\varphi)=1$  pentru orice  $i\in\{1,\ldots,2^k\}$ .

.



#### Exemplu:

Fie

$$\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2)).$$

Vrem să demonstrăm că  $\models \varphi$ .

$$Var(\varphi) = \{v_1, v_2\}.$$

| $v_1$ | <i>V</i> <sub>2</sub> | $v_1 \wedge v_2$ | $v_2  ightharpoonup (v_1 \wedge v_2)$ | $\varphi$ |
|-------|-----------------------|------------------|---------------------------------------|-----------|
| 0     | 0                     | 0                | 1                                     | 1         |
| 0     | 1                     | 0                | 0                                     | 1         |
| 1     | 0                     | 0                | 1                                     | 1         |
| 1     | 1                     | 1                | 1                                     | 1         |

#### Tautologii



#### Definiția 2.16

Fie  $\varphi, \psi$  două formule. Spunem că

- $ightharpoonup \varphi$  este consecință semantică a lui  $\psi$  dacă  $Mod(\psi) \subseteq Mod(\varphi)$ . Notatie:  $\psi \models \varphi$ .
- $ightharpoonup \varphi$  și  $\psi$  sunt (logic) echivalente dacă  $\mathsf{Mod}(\psi) = \mathsf{Mod}(\varphi)$ . Notație:  $\varphi \sim \psi$ .

#### Observație

Relația  $\sim$  este o relație de echivalență pe mulțimea Form a formulelor lui LP.

#### Propoziția 2.17

Fie  $\varphi, \psi$  formule. Atunci

- (i)  $\psi \models \varphi$  ddacă  $\models \psi \rightarrow \varphi$ .
- (ii)  $\psi \sim \varphi$  ddacă ( $\psi \models \varphi$  și  $\varphi \models \psi$ ) ddacă  $\models \psi \leftrightarrow \varphi$ .

Dem.: Exercițiu.



#### Tautologii, consecințe semantice și echivalențe

#### Propoziția 2.18

Pentru orice formule  $\varphi, \psi, \chi$ ,

| terțul exclus            | $\vDash \varphi \vee \neg \varphi$                                 | (1) |
|--------------------------|--------------------------------------------------------------------|-----|
| modus ponens             | $\varphi \wedge (\varphi \to \psi) \vDash \psi$                    | (2) |
| afirmarea concluziei     | $\psi \vDash \varphi \to \psi$                                     | (3) |
| contradicția             | $\vDash \neg (\varphi \wedge \neg \varphi)$                        | (4) |
| dubla negație            | $\varphi \sim \neg \neg \varphi$                                   | (5) |
| contrapoziția            | $\varphi \to \psi \sim \neg \psi \to \neg \varphi$                 | (6) |
| negarea premizei         | $\neg \varphi \vDash \varphi \to \psi$                             | (7) |
| modus tollens            | $\neg \psi \land (\varphi \to \psi) \vDash \neg \varphi$           | (8) |
| nzitivitatea implicației | $(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$ | (9) |



### Tautologii, consecințe semantice și echivalențe

| legile lui de Morgan     | $\varphi \lor \psi \sim -$                     | $\neg(\neg\varphi\wedge\neg\psi)$                 | (10) |
|--------------------------|------------------------------------------------|---------------------------------------------------|------|
|                          | $\varphi \wedge \psi \sim -$                   | $\neg(\neg\varphi\vee\neg\psi)$                   | (11) |
| exportarea și importarea | $\varphi \to (\psi \to \chi)$                  | $\sim \varphi \wedge \psi \to \chi$               | (12) |
| idempotența              | $\varphi \sim \varphi \wedge \varphi$          | $\varphi \sim \varphi \lor \varphi$               | (13) |
| slăbirea                 | $\vDash \varphi \wedge \psi \to \varphi$       | $\vDash \varphi \to \varphi \vee \psi$            | (14) |
| comutativitatea          | $\varphi \wedge \psi \sim \psi \wedge \varphi$ | $\varphi \vee \psi \sim \psi \vee \varphi$        | (15) |
| asociativitatea          | $\varphi \wedge (\psi \wedge \chi)$            | $\sim (\varphi \wedge \psi) \wedge \chi$          | (16) |
|                          | $\varphi \lor (\psi \lor \chi)$ ~              | $\sim (\varphi \lor \psi) \lor \chi$              | (17) |
| absorbția                | $\varphi \lor (\varphi)$                       | $\land \psi$ ) $\sim \varphi$                     | (18) |
|                          | $\varphi \wedge (\varphi)$                     | $/\psi)\sim \varphi$                              | (19) |
| distributivitatea        | $\varphi \wedge (\psi \vee \chi) \sim ($       | $\varphi \wedge \psi) \vee (\varphi \wedge \chi)$ | (20) |
|                          | $\varphi \lor (\psi \land \chi) \sim ($        | $\varphi \lor \psi) \land (\varphi \lor \chi)$    | (21) |



#### Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi) \qquad (22)$$

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi) \qquad (23)$$

$$\varphi \land \psi \to \chi \sim (\varphi \to \chi) \lor (\psi \to \chi) \qquad (24)$$

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi) \qquad (25)$$

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi) \qquad (26)$$

$$\neg \varphi \sim \varphi \to \neg \varphi \sim (\varphi \to \psi) \land (\varphi \to \neg \psi) \qquad (27)$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi) \qquad (28)$$

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi \qquad (29)$$

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi \qquad (30)$$

$$\vDash (\varphi \to \psi) \lor (\neg \varphi \to \psi) \qquad (31)$$

$$\vDash (\varphi \to \psi) \lor (\varphi \to \neg \psi) \qquad (32)$$

$$\vDash \neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi)) \qquad (33)$$

$$\vDash (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \qquad (34)$$

Dem.: Exercițiu.



Demonstrăm (1):  $\vDash \varphi \lor \neg \varphi$ .

Fie  $e:V \to \{0,1\}$  o evaluare arbitrară. Trebuie să arătăm că  $e^+(\varphi \vee \neg \varphi) = 1$ . Observăm că  $e^+(\varphi \vee \neg \varphi) = e^+(\varphi) \vee \neg e^+(\varphi)$ . Putem demonstra că  $e^+(\varphi) \vee \neg e^+(\varphi) = 1$  în două moduri.

#### I. Folosim tabelele de adevăr.

#### II. Raţionăm direct.

Avem două cazuri:

- $e^+(\varphi) = 1$ . Atunci  $\neg e^+(\varphi) = 0$  și, prin urmare,  $e^+(\varphi) \lor \neg e^+(\varphi) = 1$ .
- $e^+(\varphi) = 0$ . Atunci  $\neg e^+(\varphi) = 1$  și, prin urmare,  $e^+(\varphi) \lor \neg e^+(\varphi) = 1$ .

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

#### Observație

 $v_0 \rightarrow v_0$  este tautologie și  $\neg (v_0 \rightarrow v_0)$  este nesatisfiabilă.

Dem.: Exercițiu.

#### Notații

Notăm  $v_0 \to v_0$  cu  $\top$  și o numim adevărul. Notăm  $\neg (v_0 \to v_0)$  cu  $\bot$  și o numim falsul.

- $\varphi$  este tautologie ddacă  $\varphi \sim \top$ .
- $\varphi$  este nesatisfiabilă ddacă  $\varphi \sim \bot$ .

# Substituția

#### Definiția 2.19

Pentru orice formule  $\varphi, \chi, \chi'$ , definim

$$\varphi_{\chi}(\chi')$$
 := expresia obținută din  $\varphi$  prin înlocuirea tuturor aparițiilor lui  $\chi$  cu  $\chi'$ .

 $\varphi_\chi(\chi')$  se numește substituția lui  $\chi$  cu  $\chi'$  în  $\varphi$ . Spunem și că  $\varphi_\chi(\chi')$  este o instanță de substituție a lui  $\varphi$ .

- $ightharpoonup \varphi_\chi(\chi')$  este de asemenea formulă.
- ▶ Dacă  $\chi$  nu este subformulă a lui  $\varphi$ , atunci  $\varphi_{\chi}(\chi') = \varphi$ .

#### Exemple:

Fie 
$$\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$$
.

$$\lambda = v_1 \rightarrow v_2, \ \chi' = v_4. \quad \varphi_{\chi}(\chi') = v_4 \rightarrow \neg v_4$$



Pentru orice formule  $\varphi, \chi, \chi'$ ,

$$\chi \sim \chi'$$
 implică  $\varphi \sim \varphi_{\chi}(\chi')$ .

#### Propoziția 2.21

Pentru orice formule  $\varphi, \psi, \chi$  și orice variabilă  $v \in V$ ,

- $\blacktriangleright \varphi \sim \psi$  implică  $\varphi_{v}(\chi) \sim \psi_{v}(\chi)$ .
- Dacă  $\varphi$  este tautologie atunci și  $\varphi_v(\chi)$  este tautologie.
- Dacă  $\varphi$  este nesatisfiabilă, atunci şi  $\varphi_v(\chi)$  este nesatisfiabilă.



# Conjuncții și disjuncții finite

#### Notații

Scriem  $\varphi \wedge \psi \wedge \chi$  în loc de  $(\varphi \wedge \psi) \wedge \chi$ . Similar, scriem  $\varphi \vee \psi \vee \chi$  în loc de  $(\varphi \vee \psi) \vee \chi$ .

Fie  $\varphi_1, \varphi_2, \dots, \varphi_n$  formule. Pentru  $n \geq 3$ , notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$
  
$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $ightharpoonup \varphi_1 \wedge \ldots \wedge \varphi_n$  se mai scrie și  $\bigwedge_{i=1}^n \varphi_i$  sau  $\bigwedge_{i=1}^n \varphi_i$ .
- $ightharpoonup \varphi_1 \lor \ldots \lor \varphi_n$  se mai scrie și  $\bigvee_{i=1}^n \varphi_i$  sau  $\bigvee_{i=1}^n \varphi_i$ .



Pentru orice evaluare  $e: V \rightarrow \{0,1\}$ ,

- $e^+(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$  ddacă  $e^+(\varphi_i) = 1$  pentru orice  $i \in \{1, \ldots, n\}$ .
- $e^+(\varphi_1 \lor \ldots \lor \varphi_n) = 1$  ddacă  $e^+(\varphi_i) = 1$  pentru un  $i \in \{1, \ldots, n\}$ .

Dem.: Exercițiu.

Propoziția 2.23

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg\varphi_1 \wedge \ldots \wedge \neg\varphi_n$$
$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg\varphi_1 \vee \ldots \vee \neg\varphi_n$$

Dem.: Exercitiu.

#### Mulțimi de formule



Fie  $\Gamma$  o mulțime de formule.

#### Definiția 2.24

- ▶ O evaluare  $e: V \to \{0,1\}$  este model al lui  $\Gamma$  dacă este model al fiecărei formule din  $\Gamma$  (adică  $e \vDash \gamma$  pentru orice  $\gamma \in \Gamma$ ). Notație:  $e \vDash \Gamma$ .
- Γ este satisfiabilă dacă are un model.
- Γ este finit satisfiabilă dacă orice submulțime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem și că Γ este nesatisfiabilă sau contradictorie.

Notații: Mulțimea tuturor modelelor lui  $\Gamma$  se notează  $Mod(\Gamma)$ . Notăm  $Mod(\varphi_1, \ldots, \varphi_n)$  în loc de  $Mod(\{\varphi_1, \ldots, \varphi_n\})$ .

▶  $Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi)$ .

#### Mulțimi de formule



Fie  $\Gamma$ ,  $\Delta$  mulțimi de formule.

#### Definiția 2.25

O formulă φ este consecință semantică a lui Γ dacă

 $Mod(\Gamma) \subseteq Mod(\varphi)$ . Notație:  $\Gamma \vDash \varphi$ .

Dacă  $\varphi$  nu este consecință semantică a lui  $\Gamma$ , scriem  $\Gamma \not\models \varphi$ .

Notăm cu  $Cn(\Gamma)$  mulțimea consecințelor semantice ale lui  $\Gamma$ . Așadar,

$$Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

#### Definiția 2.26

- ▶ Δ este consecință semantică a lui  $\Gamma$  dacă  $Mod(\Gamma) \subseteq Mod(\Delta)$ . Notație:  $\Gamma \models \Delta$ .
- ▶ Γ şi  $\Delta$  sunt (logic) echivalente dacă  $Mod(\Gamma) = Mod(\Delta)$ . Notație:  $\Gamma \sim \Delta$ .



Următoarele rezultate colectează diverse proprietăți utile.

#### Observație

- $\blacktriangleright \ \psi \vDash \varphi \ \text{ddacă} \ \{\psi\} \vDash \varphi \ \text{ddacă} \ \{\psi\} \vDash \{\varphi\}.$
- $\psi \sim \varphi$  ddacă  $\{\psi\} \sim \{\varphi\}$ .

#### Propoziția 2.27

- ▶  $Mod(\emptyset) = Fun(V, \{0,1\})$ , adică orice evaluare e :  $V \rightarrow \{0,1\}$  este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- ►  $Cn(\emptyset)$  este mulțimea tuturor tautologiilor, adică  $\varphi$  este tautologie ddacă  $\emptyset \vDash \varphi$ .

Dem.: Exercițiu ușor.



Fie  $\Gamma \cup \{\varphi, \psi\} \subseteq Form$ .

- (i) Dacă  $\Gamma \vDash \varphi$  și  $\Gamma \vDash \varphi \rightarrow \psi$ , atunci  $\Gamma \vDash \psi$ .
- (ii)  $\Gamma \cup \{\varphi\} \models \psi \quad ddac \ \Gamma \models \varphi \rightarrow \psi$ .
- (iii)  $\Gamma \vDash \varphi \land \psi$  ddacă  $\Gamma \vDash \varphi$  și  $\Gamma \vDash \psi$ .

Dem.: Exercițiu.

#### Propoziția 2.29

Fie Γ o mulțime de formule. Următoarele afirmații sunt echivalente:

- (i) Γ este nesatisfiabilă.
- (ii)  $\Gamma \vDash \varphi$  pentru orice formulă  $\varphi$ .
- (iii)  $\Gamma \vDash \varphi$  pentru orice formulă nesatisfiabilă  $\varphi$ .
- (iv)  $\Gamma \vDash \bot$ .

Dem.: Exercițiu ușor.

Fie  $\Gamma$  o mulțime de formule.

- (i)  $\Gamma \vDash \varphi$  ddacă  $\Gamma \cup \{\neg \varphi\}$  este nesatisfiabilă.
- (ii)  $\Gamma \vDash \neg \varphi$  ddacă  $\Gamma \cup \{\varphi\}$  este nesatisfiabilă.
- (iii) Dacă  $\Gamma$  este satisfiabilă, atunci cel puțin una dintre  $\Gamma \cup \{\varphi\}$  și  $\Gamma \cup \{\neg \varphi\}$  este satisfiabilă.

#### Dem.:

- (i) Avem că  $\Gamma \not\models \varphi \iff$  există o evaluare  $e: V \to \{0,1\}$  a.î.  $e \models \Gamma$  și  $e \not\models \varphi \iff$  există o evaluare  $e: V \to \{0,1\}$  a.î.  $e \models \Gamma$  și  $e \models \neg \varphi \iff$  există o evaluare  $e: V \to \{0,1\}$  a.î.  $e \models \Gamma \cup \{\neg \varphi\} \iff \Gamma \cup \{\neg \varphi\}$  este satisfiabilă.
- (ii) Similar.
- (iii) Fie e un model al lui  $\Gamma$ . Dacă  $e \vDash \varphi$ , atunci e este model al lui  $\Gamma \cup \{\varphi\}$ . Dacă  $e \not\vDash \varphi$ , deci  $e \vDash \neg \varphi$ , atunci e este model al lui  $\Gamma \cup \{\neg \varphi\}$ .



Fie  $\Gamma = \{\varphi_1, \dots, \varphi_n\}$  o mulțime finită de formule.

- (i)  $\Gamma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ .
- (ii)  $\Gamma \vDash \psi$  ddacă  $\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$ .
- (iii)  $\Gamma$  este nesatisfiabilă ddacă  $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_n$  este tautologie.
- (iv) Dacă  $\Delta = \{\psi_1, \dots, \psi_k\}$  este o altă mulțime finită de formule, atunci următoarele afirmații sunt echivalente:
  - (a)  $\Gamma \sim \Delta$ .
  - (b)  $\varphi_1 \wedge \ldots \wedge \varphi_n \sim \psi_1 \wedge \ldots \wedge \psi_k$ .

Dem.: Exercițiu.



#### Teorema de compacitate - versiunea 1

Pentru orice mulțime  $\Gamma$  de formule,  $\Gamma$  este satisfiabilă ddacă  $\Gamma$  este finit satisfiabilă.

#### Teorema de compacitate - versiunea 2

Pentru orice mulțime  $\Gamma$  de formule,  $\Gamma$  este nesatisfiabilă ddacă  $\Gamma$  nu este finit satisfiabilă.

#### Teorema de compacitate - versiunea 3

Pentru orice mulțime  $\Gamma$  de formule și pentru orice formulă  $\varphi$ ,  $\Gamma \vDash \varphi$  ddacă există o submulțime finită  $\Delta$  a lui  $\Gamma$  a.î.  $\Delta \vDash \varphi$ .

#### Propoziția 2.32

Cele trei versiuni sunt echivalente.

Dem.: Exercițiu.

# Teorema de compacitate

#### <sup>1</sup> Lema 2.33

Fie  $\Gamma$  finit satisfiabilă. Atunci există un șir  $(\varepsilon_n)_{n\in\mathbb{N}}$  în  $\{0,1\}$  care satisface, pentru orice  $n\in\mathbb{N}$ :

 $P_n$  Orice submulțime finită  $\Delta$  a lui  $\Gamma$  are un model  $e: V \to \{0,1\}$  cu proprietatea că  $e(v_i) = \varepsilon_i$  pentru orice  $i \in \{0,1,\ldots n\}$ .

Dem.: Exercițiu suplimentar.

#### Teorema 2.34 (Teorema de compacitate)

Pentru orice mulțime  $\Gamma$  de formule,  $\Gamma$  este satisfiabilă ddacă  $\Gamma$  este finit satisfiabilă.

**Dem.:** "←" Presupunem că Γ este finit satisfiabilă. Definim

$$\overline{e}: V \to \{0,1\}, \quad \overline{e}(v_n) = \varepsilon_n$$

unde  $(\varepsilon_n)$  este șirul construit în Lema 2.33. Demonstrăm că  $\overline{e}$  este model al lui  $\Gamma$ . Fie  $\varphi \in \Gamma$  arbitrară și fie  $k \in \mathbb{N}$  a.î.

 $Var(\varphi) \subseteq \{v_0, v_1, \dots, v_k\}$ . Avem că  $\{\varphi\} \subseteq \Gamma$  este o submulțime finită a lui  $\Gamma$ .



#### Teorema 2.34 (Teorema de compacitate)

Pentru orice mulțime  $\Gamma$  de formule,  $\Gamma$  este satisfiabilă ddacă  $\Gamma$  este finit satisfiabilă.

**Dem.:** (continuare)

Aplicând proprietatea  $P_k$ , obținem un model e al lui  $\varphi$  a.î.  $e(v_i) = \varepsilon_i$  pentru orice  $i \in \{0, 1, \dots k\}$ .

Atunci  $\overline{e}(v) = e(v)$  pentru orice variabilă  $v \in Var(\varphi)$ . Din Propoziția 2.13 rezultă că  $\overline{e}^+(\varphi) = e^+(\varphi) = 1$ , deci  $\overline{e} \models \varphi$ .

Prin urmare,  $\overline{e}$  este model al lui  $\Gamma$ , deci  $\Gamma$  este satisfiabilă.

"⇒" Evident.



# FORMA NORMALĂ CONJUNCTIVĂ / DISJUNCTIVĂ



#### Definiția 2.35

Un literal este o

- variabilă (în care caz spunem că este literal pozitiv) sau
- negația unei variabile (în care caz spunem că este literal negativ).

Exemple:  $v_1, v_2, v_{10}$  literali pozitivi;  $\neg v_0, \neg v_{100}$  literali negativi

Convenție: 
$$\bigvee_{i=1}^{1} \varphi_i = \varphi_1$$
 și  $\bigwedge_{i=1}^{1} \varphi_i = \varphi_1$ .

#### Definiția 2.36

O formulă  $\varphi$  este în formă normală disjunctivă (FND) dacă  $\varphi$  este o disjuncție de conjuncții de literali.

Aşadar, 
$$\varphi$$
 este în FND ddacă  $\varphi = \bigvee_{i=1}^n \left( \bigwedge_{j=1}^{k_i} L_{i,j} \right)$ , unde fiecare  $L_{i,j}$  este literal.





#### Definiția 2.37

O formulă  $\varphi$  este în formă normală conjunctivă (FNC) dacă  $\varphi$  este o conjuncție de disjuncții de literali.

Aşadar, 
$$\varphi$$
 este în FNC ddacă  $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$ , unde fiecare  $L_{i,j}$  este literal.

#### Exemple

- $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$  este în FNC
- $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$  este în FND
- $\triangleright$   $v_1 \land \neg v_5 \land v_4$  este atât în FND cât și în FNC
- $ightharpoonup \neg v_{10} \lor v_{20} \lor v_4$  este atât în FND cât și în FNC
- $(v_1 \lor v_2) \land ((v_1 \land v_3) \lor (v_4 \land v_5))$  nu este nici în FND, nici în FNC



Notație: Dacă 
$$L$$
 este literal, atunci  $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$ 

- (i) Fie  $\varphi$  o formulă în FNC,  $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$ . Atunci  $\neg \varphi \sim \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c\right)$ , o formulă în FND.
- (ii) Fie  $\varphi$  o formulă în FND,  $\varphi = \bigvee_{i=1}^n \left( \bigwedge_{j=1}^{k_i} L_{i,j} \right)$ . Atunci  $\neg \varphi \sim \bigwedge_{i=1}^n \left( \bigvee_{j=1}^{k_i} L_{i,j}^c \right)$ , o formulă în FNC.

Dem.: Exercițiu.



# Funcția asociată unei formule

Exemplu: Arătați că  $\vDash v_1 \rightarrow (v_2 \rightarrow v_1 \land v_2)$ .

| $v_1$ | <i>v</i> <sub>2</sub> | $v_1 \rightarrow (v_2 \rightarrow v_1 \wedge v_2)$ |
|-------|-----------------------|----------------------------------------------------|
| 0     | 0                     | 1                                                  |
| 0     | 1                     | 1                                                  |
| 1     | 0                     | 1                                                  |
| 1     | 1                     | 1                                                  |

Acest tabel definește o funcție  $F:\{0,1\}^2 \rightarrow \{0,1\}$ 

| $\varepsilon_1$ | $\varepsilon_2$ | $F(\varepsilon_1, \varepsilon_2)$ |
|-----------------|-----------------|-----------------------------------|
| 0               | 0               | 1                                 |
| 0               | 1               | 1                                 |
| 1               | 0               | 1                                 |
| 1               | 1               | 1                                 |

## Funcția asociată unei formule

Fie  $\varphi$  o formulă și  $Var(\varphi) = \{v_{i_1}, v_{i_2}, \dots, v_{i_n}\}$ , unde  $n \ge 1$  și  $0 \le i_1 \le i_2 \le \dots \le i_n$ .

Fie  $(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n$ . Definim  $e_{\varepsilon_1, \dots, \varepsilon_n} : Var(\varphi) \to \{0, 1\}$  astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}(v_{i_k})=\varepsilon_k$$
 pentru orice  $k\in\{1,\ldots,n\}$ .

Definim  $e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi) \in \{0,1\}$  astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi):=e^+(\varphi)$$
,

unde  $e: V \to \{0,1\}$  este orice evaluare care extinde  $e_{\varepsilon_1,\dots,\varepsilon_n}$ , adică,  $e(v_{i_k}) = e_{\varepsilon_1,\dots,\varepsilon_n}(v_{i_k}) = \varepsilon_k$  pentru orice  $k \in \{1,\dots,n\}$ . Conform Propoziției 2.13, definiția nu este ambiguă.

#### Definitia 2.39

Funcția asociată lui  $\varphi$  este  $F_{\varphi}: \{0,1\}^n \to \{0,1\}$ , definită astfel:

$$F_{\varphi}(\varepsilon_1,\ldots,\varepsilon_n)=\mathbf{e}_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi)$$
 pentru orice  $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$ .

Așadar,  $F_{\varphi}$  este funcția definită de tabela de adevăr pentru  $\varphi$ .



#### Propoziția 2.40

- (i) Fie  $\varphi$  o formulă. Atunci
  - (a)  $\models \varphi$  ddacă  $F_{\varphi}$  este funcția constantă 1.
  - (b)  $\varphi$  este nesatisfiabilă ddacă  $F_{\varphi}$  este funcția constantă 0.
- (ii) Fie  $\varphi, \psi$  două formule astfel încât  $Var(\varphi) = Var(\psi)$ . Atunci
  - (a)  $\varphi \vDash \psi$  ddacă  $F_{\varphi} \leq F_{\psi}$ .
  - (b)  $\varphi \sim \psi$  ddacă  $F_{\varphi} = F_{\psi}$ .
- (iii) Există formule diferite  $\varphi, \psi$  a.î.  $F_{\varphi} = F_{\psi}$ .

# Caracterizarea funcțiilor booleene

# Definiția 2.41

O funcție booleană este o funcție  $F: \{0,1\}^n \to \{0,1\}$ , unde  $n \ge 1$ . Spunem că n este numărul variabilelor lui F.

Exemplu: Pentru orice formulă  $\varphi$ ,  $F_{\varphi}$  este funcție Booleană cu n variabile, unde  $n = |Var(\varphi)|$ .

#### Teorema 2.42

Fie  $n \ge 1$  și  $H: \{0,1\}^n \to \{0,1\}$  o funcție booleană arbitrară. Atunci există o formulă  $\varphi$  în FND a.î.  $H=F_{\varphi}$ .

**Dem.:** Dacă  $H(\varepsilon_1,\ldots,\varepsilon_n)=0$  pentru orice  $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$ , luăm  $\varphi:=\bigvee_{i=1}^n(v_i\wedge\neg v_i)$ . Avem că  $Var(\varphi)=\{v_1,\ldots,v_n\}$ , așadar,  $F_{\omega}:\{0,1\}^n\to\{0,1\}$ . Cum  $v_i\wedge\neg v_i$  este nesatisfiabilă pentru orice

 $F_{\varphi}: \{0,1\}'' \to \{0,1\}$ . Cum  $v_i \land \neg v_i$  este nesatisfiabilă pentru orici i, rezultă că  $\varphi$  este de asemenea nesatisfiabilă. Deci,  $F_{\varphi}$  este funcția constantă 0.



#### Altcumva, mulțimea

$$T:=H^{-1}(1)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=1\}$$

este nevidă.

Considerăm formula

$$\varphi := \bigvee_{(\varepsilon_1,...,\varepsilon_n) \in T} \left( \bigwedge_{\varepsilon_i=1} v_i \wedge \bigwedge_{\varepsilon_i=0} \neg v_i \right).$$

Decarece  $Var(\varphi) = \{v_1, \dots, v_n\}$ , avem că  $F_{\varphi} : \{0, 1\}^n \to \{0, 1\}$ .

Se demonstrează că  $H = F_{\varphi}$  (exercițiu suplimentar).



#### Teorema 2.43

Fie  $n \ge 1$  și  $H: \{0,1\}^n \to \{0,1\}$  o funcție booleană arbitrară. Atunci există o formulă  $\psi$  în FNC a.î.  $H = F_{\psi}$ .

**Dem.:** Dacă  $H(\varepsilon_1,\ldots,\varepsilon_n)=1$  pentru orice  $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$ , atunci luăm

$$\psi := \bigwedge_{i=1}^n (v_i \vee \neg v_i).$$

Altcumva, mulțimea

$$F:=H^{-1}(0)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=0\}$$
este nevidă.

Considerăm formula 
$$\psi := \bigwedge_{(\varepsilon_1, \dots, \varepsilon_n) \in F} \left( \bigvee_{\varepsilon_i = 1} \neg v_i \lor \bigvee_{\varepsilon_i = 0} v_i \right).$$

Se demonstrează că  $H = F_{\psi}$  (exercițiu suplimentar).

,





# Exemplu: Fie $H: \{0,1\}^3 \rightarrow \{0,1\}$ descrisă prin tabelul:

| $\varepsilon_1$ | $\varepsilon_2$ | $arepsilon_3$ | $H(\varepsilon_1,\varepsilon_2,\varepsilon_3)$ |
|-----------------|-----------------|---------------|------------------------------------------------|
| 0               | 0               | 0             | 0                                              |
| 0               | 0               | 1             | 0                                              |
| 0               | 1               | 0             | 1                                              |
| 0               | 1               | 1             | 0                                              |
| 1               | 0               | 0             | 1                                              |
| 1               | 0               | 1             | 1                                              |
| 1               | 1               | 0             | 1                                              |
| 1               | 1               | 1             | 1                                              |
|                 |                 | ļ             |                                                |

$$D_{1} = v_{1} \lor v_{2} \lor v_{3}$$

$$D_{2} = v_{1} \lor v_{2} \lor \neg v_{3}$$

$$C_{1} = \neg v_{1} \land v_{2} \land \neg v_{3}$$

$$D_{3} = v_{1} \lor \neg v_{2} \lor \neg v_{3}$$

$$C_{2} = v_{1} \land \neg v_{2} \land \neg v_{3}$$

$$C_{3} = v_{1} \land \neg v_{2} \land v_{3}$$

$$C_{4} = v_{1} \land v_{2} \land \neg v_{3}$$

$$C_{5} = v_{1} \land v_{2} \land v_{3}$$

$$\varphi = C_1 \vee C_2 \vee C_3 \vee C_4 \vee C_5 \text{ în FND a.î. } H = F_{\varphi}.$$
 
$$\psi = D_1 \wedge D_2 \wedge D_3 \text{ în FNC a.î. } H = F_{\psi}.$$



#### Teorema 2.44

Orice formulă  $\varphi$  este echivalentă cu o formulă  $\varphi^{FND}$  în FND și cu o formulă  $\varphi^{FNC}$  în FNC.

#### Dem.:

Fie  $Var(\varphi)=\{x_1,\ldots,x_n\}$  și  $F_\varphi:\{0,1\}^n \to \{0,1\}$  funcția booleană asociată. Aplicând Teorema 2.42 cu  $H:=F_\varphi$ , obținem o formulă  $\varphi^{FND}$  în FND a.î.  $F_\varphi=F_{\varphi^{FND}}$ . Așadar, conform Propoziției 2.40.(ii),  $\varphi\sim\varphi^{FND}$ .

Similar, aplicând Teorema 2.43 cu  $H:=F_{\varphi}$ , obținem o formulă  $\varphi^{FNC}$  în FNC a.î.  $F_{\varphi}=F_{\varphi^{FNC}}$ . Prin urmare,  $\varphi\sim\varphi^{FNC}$ .



# Forma normală conjunctivă / disjunctivă

'Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 si  $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$ .

Pasul 2. Se înlocuiesc dublele negații, folosind  $\neg\neg\psi\sim\psi$ , și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi)$$
 cu  $\neg\varphi \land \neg\psi$  și  $\neg(\varphi \land \psi)$  cu  $\neg\varphi \lor \neg\psi$ .

Pasul 3. Pentru FNC, se aplică distributivitatea lui ∨ fața de ∧, pentru a înlocui

 $\varphi \lor (\psi \land \chi)$  cu  $(\varphi \lor \psi) \land (\varphi \lor \chi)$  și  $(\psi \land \chi) \lor \varphi$  cu  $(\psi \lor \varphi) \land (\chi \lor \varphi)$ .

Pentru FND, se aplică distributivitatea lui  $\land$  fața de  $\lor$ , pentru a înlocui

$$\varphi \wedge (\psi \vee \chi) \text{ cu } (\varphi \wedge \psi) \vee (\varphi \wedge \chi) \quad \text{ si } \quad (\psi \vee \chi) \wedge \varphi \text{ cu } (\psi \wedge \varphi) \vee (\chi \wedge \varphi).$$



#### Exemplu

Considerăm formula  $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$ .

#### Avem

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 1}$$

$$\sim \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

Putem lua  $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$ .

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua  $\varphi^{FNC} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$ . Se observă, folosind idempotența și comutativitatea lui  $\lor$ , că  $\varphi^{FNC} \sim \neg v_0 \lor v_2$ .



# CLAUZE ȘI REZOLUȚIE



#### Definiția 2.45

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde  $L_1, \ldots, L_n$  sunt literali.

Dacă n = 0, obținem clauza vidă  $\square := \emptyset$ .

O clauză nevidă este considerată implicit o disjuncție.

#### Definiția 2.46

Fie C o clauză și e :  $V \to \{0,1\}$ . Spunem că e este model al lui C sau că e satisface C și scriem  $e \models C$  dacă există  $L \in C$  a.î.  $e \models L$ .

#### Definiția 2.47

O clauză C se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare  $e: V \rightarrow \{0,1\}$  este model al lui C.



#### Definiția 2.48

O clauză C este trivială dacă există un literal L a.î.  $L \in C$  și  $L^c \in C$ .

#### Propoziția 2.49

- (i) Orice clauză nevidă este satisfiabilă.
- (ii) Clauza vidă □ este nesatisfiabilă.
- (iii) O clauză este validă ddacă este trivială.

Dem.: Exercițiu.

Notăm  $Var(C) := \{x \in V \mid x \in C \text{ sau } \neg x \in C\}.$ Daca  $x \in Var(C)$ , spunem ca x apare în C.

▶  $Var(C) = \emptyset$  ddacă  $C = \square$ .

 $\mathcal{S} = \{C_1, \dots, C_m\}$  este o mulțime finită de clauze. Dacă m = 0, obținem mulțimea vidă de clauze  $\emptyset$ .

 ${\cal S}$  este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

#### Definiția 2.50

Fie e:  $V \to \{0,1\}$ . Spunem că e este model al lui  $\mathcal S$  sau că e satisface  $\mathcal S$  și scriem e  $\models \mathcal S$  dacă e  $\models C_i$  pentru orice  $i \in \{1, \dots, m\}$ .

#### Definitia 2.51

 ${\cal S}$  se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare e :  $V \rightarrow \{0,1\}$  este model al lui  $\mathcal{S}$ .

#### Propoziția 2.52

- ightharpoonup Dacă S conține clauza vidă  $\square$ , atunci S este nesatisfiabilă.
- ▶ ∅ este validă.

Dem.: Exercițiu.

Notăm  $Var(S) := \bigcup_{C \in S} Var(C)$ .

Daca  $x \in Var(S)$ , spunem ca x apare în S.

 $\qquad \qquad \mathsf{Var}(\mathcal{S}) = \emptyset \ \ \mathsf{ddac} \ \ \mathsf{i} \ \ (\mathcal{S} = \emptyset \ \ \mathsf{sau} \ \ \mathcal{S} = \{\square\}).$ 

#### Exemplu

 $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\} \text{ este satisfiabil} \check{a}.$ 

**Dem.:** Considerăm  $e: V \to \{0,1\}$  a.î.  $e(v_1) = e(v_2) = 1$ . Atunci  $e \models S$ .

#### Exemplu

 $\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1 \}, \{ v_3 \} \} \text{ este nesatisfiabilă}.$ 

**Dem.:** Presupunem că S are un model e. Atunci  $e(v_1) = e(v_3) = 1$  și, deoarece  $e \models \{ \neg v_3, \neg v_2 \}$ , trebuie să avem  $e(v_2) = 0$ . Rezultă că  $e(v_2) = e^+(\neg v_1) = 0$ , deci e nu satisface  $\{ \neg v_1, v_2 \}$ . Am obținut o contradicție.



Unei formule  $\varphi$  în FNC îi asociem o mulțime finită de clauze  $\mathcal{S}_{\varphi}$  astfel:

Fie

$$\varphi := \bigwedge_{i=1}^n \left( \bigvee_{j=1}^{k_i} L_{i,j} \right),\,$$

unde fiecare  $L_{i,j}$  este literal. Pentru orice i, fie  $C_i$  clauza obținută considerând toți literalii  $L_{i,j}, j \in \{1, \ldots, k_i\}$  distincți. Fie  $\mathcal{S}_{\varphi}$  mulțimea tuturor clauzelor  $C_i, i \in \{1, \ldots, n\}$  distincte.

 $\mathcal{S}_{\varphi}$  se mai numește și forma clauzală a lui  $\varphi$ .

## Propoziția 2.53

Pentru orice evaluare  $e: V \to \{0,1\}, \ e \vDash \varphi \ ddac \check{a} \ e \vDash \mathcal{S}_{\varphi}.$ 





Unei mulțimi finite de clauze S îi asociem o formulă  $\varphi_S$  în FNC astfel:

- $C = \{L_1, \ldots, L_n\}, n \ge 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \ldots \vee L_n.$
- $ightharpoonup \Box \longmapsto \varphi_{\Box} := v_0 \land \neg v_0.$

Fie  $S = \{C_1, \dots, C_m\}$  o mulțime nevidă de clauze. Formula asociată lui S este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^m \varphi_{C_i}.$$

Formula asociată mulțimii vide de clauze este  $\varphi_\emptyset := v_0 \vee \neg v_0$ . Formula  $\varphi_{\mathcal{S}}$  nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în  $\mathcal{S}$ , dar se observă imediat că:  $\mathcal{S} = \mathcal{S}'$  implică  $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$ .

#### Propoziția 2.54

Pentru orice evaluare  $e: V \to \{0,1\}, e \models S$  ddacă  $e \models \varphi_S$ .



#### Definiția 2.55

Fie  $C_1, C_2$  două clauze. O clauză R se numește rezolvent al clauzelor  $C_1, C_2$  dacă există un literal L a.î.  $L \in C_1, L^c \in C_2$  și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

#### Regula Rezoluției

Rez 
$$\frac{C_1, C_2}{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})}, L \in C_1, L^c \in C_2$$

Notăm cu  $Res(C_1, C_2)$  mulțimea rezolvenților clauzelor  $C_1, C_2$ .

- ▶ Rezoluția a fost introdusă de Blake (1937) și dezvoltată de Davis, Putnam (1960) și Robinson (1965).
- Multe demonstratoare automate de teoreme folosesc rezoluţia. Limbaiul PROLOG este bazat pe rezoluţie.



#### Exemplu

 $C_1 = \{v_1, v_2, \neg v_5\}, C_2 = \{v_1, \neg v_2, v_{100}, v_5\}.$ 

- ▶ Luăm  $L := \neg v_5$ . Atunci  $L \in C_1$  și  $L^c = v_5 \in C_2$ . Prin urmare,  $R = \{v_1, v_2, \neg v_2, v_{100}\}$  este rezolvent al clauzelor  $C_1, C_2$ .
- ▶ Dacă luăm  $L' := v_2$ , atunci  $L' \in C_1$  și  $L'^c = \neg v_2 \in C_2$ . Prin urmare,  $R' = \{v_1, \neg v_5, v_{100}, v_5\}$  este rezolvent al clauzelor  $C_1, C_2$ .

#### Exemplu

 $C_1 = \{v_7\}$ ,  $C_2 = \{\neg v_7\}$ . Atunci clauza vidă  $\square$  este rezolvent al clauzelor  $C_1, C_2$ .

Fie S o mulțime finită de clauze.

## Definiția 2.56

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență  $C_1, C_2, \ldots, C_n$  de clauze a.î. pentru fiecare  $i \in \{1, \ldots, n\}$ , una din următoarele condiții este satisfăcută:

- (i)  $C_i$  este o clauză din S;
- (ii) există j, k < i a.î.  $C_i$  este rezolvent al clauzelor  $C_j$ ,  $C_k$ .

#### Definiția 2.57

Fie C o clauză. O derivare prin rezoluție a lui C din S este o S-derivare prin rezoluție  $C_1, C_2, \ldots, C_n$  a.î.  $C_n = C$ .

#### Exemplu

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

O derivare prin rezoluție a clauzei vide  $\square$  din  $\mathcal S$  este următoarea:



Notăm 
$$Res(S) := \bigcup_{C_1, C_2 \in S} Res(C_1, C_2)$$
.

#### Propoziția 2.58

Pentru orice orice evaluare  $e: V \to \{0,1\}$ ,  $e \models \mathcal{S} \Rightarrow e \models Res(\mathcal{S})$ .

**Dem.:** Dacă  $Res(S) = \emptyset$ , atunci este validă, deci  $e \models Res(S)$ . Presupunem că Res(S) este nevidă și fie  $R \in Res(S)$ . Atunci există clauze  $C_1, C_2 \in S$  și un literal L a.î.  $L \in C_1, L^c \in C_2$  și  $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})$ . Avem două cazuri:

- ▶  $e \vDash L$ . Atunci  $e \not\vDash L^c$ . Deoarece  $e \vDash C_2$ , există  $U \in C_2$ ,  $U \ne L^c$  a.î.  $e \vDash U$ . Deoarece  $U \in R$ , obţinem că  $e \vDash R$ .
- ▶  $e \not\vdash L$ . Deoarece  $e \vdash C_1$ , există  $U \in C_1$ ,  $U \not= L$  a.î.  $e \vdash U$ . Deoarece  $U \in R$ , obținem că  $e \vdash R$ .

# Rezoluția

## Teorema 2.59 (Teorema de corectitudine a rezoluției)

Dacă  $\square$  se derivează prin rezoluție din S, atunci S este nesatisfiabilă.

**Dem.:** Fie  $C_1, C_2, \ldots, C_n = \square$  o S-derivare prin rezoluție a lui  $\square$ . Presupunem că S este satisfiabilă și fie  $e \models S$ .

Demonstrăm prin inducție după i că:

pentru orice 
$$1 \le i \le n$$
,  $e \models C_i$ .

Pentru i=n, obținem că  $e \models \square$ , ceea ce este o contradicție.

Cazul i = 1 este evident, deoarece  $C_1 \in \mathcal{S}$ .

Presupunem că  $e \models C_j$  pentru orice j < i. Avem două cazuri:

- $ightharpoonup C_i \in S$ . Atunci  $e \models C_i$ .
- există j, k < i a.î.  $C_i \in Res(C_j, C_k)$ . Deoarece, conform ipotezei de inducție,  $e \models \{C_j, C_k\}$  aplicăm Propoziția 2.58 pentru a conclude că  $e \models C_i$ .

# Algoritmul Davis-Putnam (DP)

Intrare: S mulțime finită nevidă de clauze netriviale.

$$i:=1$$
,  $\mathcal{S}_1:=\mathcal{S}$ .

Pi.1 Fie  $x_i$  o variabilă care apare în  $S_i$ . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Pi.2 if  $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$  then

$$\mathcal{U}_i := \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

else  $U_i := \emptyset$ .

Pi.3 Definim

$$\begin{array}{ll} \mathcal{S}'_{i+1} & := & \left(\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1)\right) \cup \mathcal{U}_i; \\ \mathcal{S}_{i+1} & := & \mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial} \check{a}\}. \end{array}$$

Pi.4 if 
$$S_{i+1} = \emptyset$$
 then  $S$  este satisfiabilă.

else if 
$$\square \in \mathcal{S}_{i+1}$$
 then  $\mathcal{S}$  este nesatisfiabilă.

**else** 
$$\{i := i + 1; \text{ go to Pi.1}\}.$$

# Algoritmul Davis-Putnam (DP)

$$\mathcal{S} = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}. \ i := 1, \ \mathcal{S}_1 := \mathcal{S}.$$

$$P1.1 \quad x_1 := v_3; \ \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \ \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$$

$$P1.2 \quad \mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$$

$$P1.3 \quad \mathcal{S}_2' := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; \ \mathcal{S}_2 := \{\{v_2, v_1\}\}.$$

$$P1.4 \quad i := 2 \text{ and go to P2.1.}$$

$$P2.1 \quad x_2 := v_2; \ \mathcal{T}_2^1 := \{\{v_2, v_1\}\}; \ \mathcal{T}_2^0 := \emptyset.$$

$$P2.2 \quad \mathcal{U}_2 := \emptyset.$$

$$P2.3 \quad \mathcal{S}_3 := \emptyset.$$

$$P2.4 \quad \mathcal{S} \text{ este satisfiabilă.}$$

# Algoritmul Davis-Putnam (DP)

$$S = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}.$$

$$i := 1, S_1 := S.$$

- P1.1  $x_1 := v_1; \mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$
- P1.2  $U_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$ P1.3  $S_2 := \{ \{ \neg v_3, \neg v_2 \}, \{ v_3 \}, \{ v_4 \}, \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}.$
- P1.4 i := 2 and go to P2.1.
- P2.1.  $x_2 := v_2; \mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}; \mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}.$
- $\mathcal{U}_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}.$ P2.2 P2.3  $S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.$
- P2.4 i := 3 and go to P3.1.
- P3.1  $x_3 := v_3; \, \mathcal{T}_3^1 := \{\{v_3\}\}; \, \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.$
- P3.2.  $U_3 := \{ \{ \neg v_4 \} \}$ . P3.3  $S_4 := \{ \{ v_4 \}, \{ \neg v_4 \} \}$ .
- P3.4 i := 4 and go to P4.1.
- P4.1  $x_4 := v_4$ ;  $\mathcal{T}_{a}^1 := \{\{v_4\}\}$ ;  $\mathcal{T}_{a}^0 := \{\{\neg v_4\}\}$ .
- P4.3  $S_5 := \{ \Box \}.$ P4.2  $\mathcal{U}_4 := \{ \Box \}.$
- P4.4 S nu este satisfiabilă.



#### Propoziția 2.60

Fie n := |Var(S)|. Atunci algoritmul DP se termină după cel mult n pași.

**Dem.:** Se observă imediat că pentru orice i,

$$Var(S_{i+1}) \subseteq Var(S_i) \setminus \{x_i\} \subsetneq Var(S_i).$$

Prin urmare, 
$$n = |Var(\mathcal{S}_1)| > |Var(\mathcal{S}_2)| > |Var(\mathcal{S}_3)| > \ldots \geq 0$$
.

Fie  $N \leq n$  numărul de pași după care se termină DP. Atunci  $\mathcal{S}_{N+1} = \emptyset$  sau  $\square \in \mathcal{S}_{N+1}$ .

# Algoritmul DP - corectitudine și completitudine

#### Propoziția 2.61

Pentru orice  $i \leq N$ ,

 $S_{i+1}$  este satisfiabilă  $\iff S_i$  este satisfiabilă.

Dem.: Exercițiu suplimentar.

#### Teorema 2.62

Algoritmul DP este corect și complet, adică,

S este nesatisfiabilă ddacă  $\square \in S_{N+1}$ .

**Dem.:** Aplicăm Propoziția 2.61. Obținem că  $S = S_1$  este nesatisfiabilă ddacă  $S_{N+1}$  este nesatisfiabilă ddacă  $\square \in S_{N+1}$ .



# SINTAXA LP



Folosim un sistem deductiv de tip Hilbert pentru LP.

## Axiomele logice

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1) 
$$\varphi \to (\psi \to \varphi)$$

(A2) 
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3) 
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
,

unde  $\varphi$ ,  $\psi$  și  $\chi$  sunt formule.

#### Regula de deducție

Pentru orice formule  $\varphi, \psi$ ,

din  $\varphi$  și  $\varphi \to \psi$  se inferă  $\psi$  (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}.$$

Fie  $\Gamma$  o mulțime de formule. Definiția  $\Gamma$ -teoremelor este un nou exemplu de definiție inductivă.

#### Definiția 2.63

**Γ-teoremele** sunt formulele lui LP definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ-teoremă.
- (T2) Dacă  $\varphi$  și  $\varphi \to \psi$  sunt  $\Gamma$ -teoreme, atunci  $\psi$  este  $\Gamma$ -teoremă.
- (T3) Numai formulele obţinute aplicând regulile (T0), (T1), (T2) sunt Γ-teoreme.

Dacă  $\varphi$  este  $\Gamma$ -teoremă, atunci spunem și că  $\varphi$  este dedusă din ipotezele  $\Gamma$ .

# Γ-teoreme

#### Notații

```
\begin{array}{llll} \hline \textit{Thm}(\Gamma) & := & \text{multimea } \Gamma\text{-teoremelor} & \hline \textit{Thm} & := & T\textit{hm}(\emptyset) \\ \hline \Gamma \vdash \varphi & :\Leftrightarrow & \varphi \text{ este } \Gamma\text{-teoremă} & \vdash \varphi & :\Leftrightarrow & \emptyset \vdash \varphi \\ \hline \Gamma \vdash \Delta & :\Leftrightarrow & \Gamma \vdash \varphi \text{ pentru orice } \varphi \in \Delta. \end{array}
```

#### Definiția 2.64

O formulă  $\varphi$  se numește teoremă a lui LP dacă  $\vdash \varphi$ .

Reformulând condițiile (T0), (T1), (T2) folosind notația  $\vdash$ , obținem

#### Propoziția 2.65

- (i) dacă  $\varphi$  este axiomă, atunci  $\Gamma \vdash \varphi$ ;
- (ii) dacă  $\varphi \in \Gamma$ , atunci  $\Gamma \vdash \varphi$ ;
- (iii) dacă  $\Gamma \vdash \varphi$  și  $\Gamma \vdash \varphi \rightarrow \psi$ , atunci  $\Gamma \vdash \psi$ .

#### Γ-teoreme

Definiția Γ-teoremelor dă naștere la metoda de demonstrație prin inducție după Γ-teoreme.

#### Versiunea 1

Fie  $\mathbf{P}$  o proprietate a formulelor. Demonstrăm că orice Γ-teoremă satisface  $\mathbf{P}$  astfel:

- (i) Demonstrăm că orice axiomă are proprietatea P.
- (ii) Demonstrăm că orice formulă din  $\Gamma$  are proprietatea P.
- (iii) Demonstrăm că dacă  $\varphi$  și  $\varphi \to \psi$  au proprietatea  ${\bf P}$ , atunci  $\psi$  are proprietatea  ${\bf P}$ .

#### Versiunea 2

Fie  $\Sigma$  o mulțime de formule. Demonstrăm că  $Thm(\Gamma) \subseteq \Sigma$  astfel:

- (i) Demonstrăm că orice axiomă este în  $\Sigma$ .
- (ii) Demonstrăm că orice formulă din  $\Gamma$  este în  $\Sigma$ .
- (iii) Demonstrăm că dacă  $\varphi \in \Sigma$  și  $\varphi \to \psi \in \Sigma$ , atunci  $\psi \in \Sigma$ .

#### Propoziția 2.66

Fie  $\Gamma$ ,  $\Delta$  mulțimi de formule.

(i) Dacă  $\Gamma \subseteq \Delta$ , atunci  $Thm(\Gamma) \subseteq Thm(\Delta)$ , adică, pentru orice formulă  $\varphi$ ,

$$\Gamma \vdash \varphi \text{ implică } \Delta \vdash \varphi.$$

- (ii) Thm  $\subseteq$  Thm( $\Gamma$ ), adică, pentru orice formulă  $\varphi$ ,  $\vdash \varphi$  implică  $\Gamma \vdash \varphi$ .
- (iii) Dacă  $\Gamma \vdash \Delta$ , atunci  $Thm(\Delta) \subseteq Thm(\Gamma)$ , adică, pentru orice formulă  $\varphi$ .

$$\Delta \vdash \varphi \text{ implică } \Gamma \vdash \varphi.$$

(iv)  $Thm(Thm(\Gamma)) = Thm(\Gamma)$ , adică, pentru orice formulă  $\varphi$ ,  $Thm(\Gamma) \vdash \varphi$  ddacă  $\Gamma \vdash \varphi$ .

Dem.: Exercițiu ușor.



#### Definiția 2.67

O  $\Gamma$ -demonstrație (demonstrație din ipotezele  $\Gamma$ ) este o secvență de formule  $\theta_1, \ldots, \theta_n$  a.î. pentru fiecare  $i \in \{1, \ldots, n\}$ , una din următoarele condiții este satisfăcută:

- (i)  $\theta_i$  este axiomă;
- (ii)  $\theta_i \in \Gamma$ ;
- (iii) există k, j < i a.î.  $\theta_k = \theta_i \rightarrow \theta_i$ .
- O Ø-demonstrație se va numi simplu demonstrație.

#### Lema 2.68

Dacă  $\theta_1$ , ...,  $\theta_n$  este o Γ-demonstrație, atunci

$$\Gamma \vdash \theta_i$$
 pentru orice  $i \in \{1, \ldots, n\}$ .

Dem.: Exercițiu.



#### Definiția 2.69

Fie  $\varphi$  o formulă. O Γ-demonstrație a lui  $\varphi$  sau demonstrație a lui  $\varphi$  din ipotezele Γ este o Γ-demonstrație  $\theta_1, \ldots, \theta_n$  a.î.  $\theta_n = \varphi$ . În acest caz, n se numește lungimea Γ-demonstrației.

#### Propoziția 2.70

Fie  $\Gamma$  o mulțime de formule și  $\varphi$  o formulă. Atunci  $\Gamma \vdash \varphi$  ddacă există o  $\Gamma$ -demonstrație a lui  $\varphi$ .



Pentru orice mulțime de formule  $\Gamma$  și orice formulă  $\varphi$ ,

 $\Gamma \vdash \varphi$  ddacă există o submulțime finită  $\Sigma$  a lui  $\Gamma$  a.î.  $\Sigma \vdash \varphi$ .

**Dem.:** " $\Leftarrow$ " Fie  $\Sigma \subseteq \Gamma$ ,  $\Sigma$  finită a.î.  $\Sigma \vdash \varphi$ . Aplicând Propoziția 2.66.(i) obținem că  $\Gamma \vdash \varphi$ . " $\Rightarrow$ " Presupunem că  $\Gamma \vdash \varphi$ . Conform Propoziției 2.70,  $\varphi$  are o  $\Gamma$ -demonstrație  $\theta_1, \ldots, \theta_n = \varphi$ . Fie

$$\Sigma := \Gamma \cap \{\theta_1, \dots, \theta_n\}.$$

Atunci  $\Sigma$  este finită,  $\Sigma \subseteq \Gamma$  și  $\theta_1, \ldots, \theta_n = \varphi$  este o  $\Sigma$ -demonstrație a lui  $\varphi$ , deci  $\Sigma \vdash \varphi$ .

$$\vdash \varphi \to \varphi$$

Pentru orice formulă  $\varphi$ ,  $\vdash \varphi \rightarrow \varphi$ .

#### Dem.:

- (1)  $\vdash (\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$ (A2) (cu  $\varphi$ ,  $\psi := \varphi \to \varphi$ ,  $\chi := \varphi$ ) și Propoziția 2.65.(i)
- (2)  $\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$ (A1) (cu  $\varphi, \ \psi := \varphi \rightarrow \varphi$ ) și Propoziția 2.65.(i)
- (3)  $\vdash (\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$ (1), (2) și Propoziția 2.65.(iii). Scriem de obicei (MP): (1), (2)
- (4)  $\vdash \varphi \rightarrow (\varphi \rightarrow \varphi)$ (A1) (cu  $\varphi, \ \psi := \varphi$ ) și Propoziția 2.65.(i)
- (5)  $\vdash \varphi \rightarrow \varphi$  (MP): (3), (4)





# Teorema 2.73 (Teorema deducției)

Fie  $\Gamma \subseteq \mathit{Form}\ \mathit{si}\ \varphi, \psi\ \in \mathit{Form}\ \mathit{Atunci}$ 

$$\Gamma \cup \{\varphi\} \vdash \psi \; \; \textit{ddac} \; \Gamma \vdash \varphi \rightarrow \psi.$$

Dem.: Exercițiu suplimentar.

Teorema deducției este un instrument foarte util pentru a arăta că o formulă e teoremă.



Pentru orice formule  $\varphi, \psi, \chi$ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (35)

Dem.: Folosind teorema deducției observăm că

$$\vdash \frac{(\varphi \to \psi)}{} \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\updownarrow$$

$$\{\varphi \to \psi\} \vdash \frac{(\psi \to \chi)}{} \to (\varphi \to \chi)$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi\} \vdash \frac{\varphi}{} \to \chi$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$



În acest fel am reformulat ceea ce aveam de demonstrat. A demonstra teorema inițială este echivalent cu a demonstra

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

(1) 
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$$
 Propoziția 2.65.(ii)

(2) 
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$$
 Propoziția 2.65.(ii)

(3) 
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$$
 (MP): (1), (2)

(4) 
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$$
 Propoziția 2.65.(ii)

(5) 
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$$
 (MP): (3), (4).



Pentru orice mulțime de formule  $\Gamma$  și orice formule  $\varphi, \psi, \chi$ ,

$$\Gamma \vdash \varphi \rightarrow \psi \quad \text{si} \quad \Gamma \vdash \psi \rightarrow \chi \quad \Rightarrow \quad \Gamma \vdash \varphi \rightarrow \chi.$$

#### Dem.:

(1) 
$$\Gamma \vdash \varphi \rightarrow \psi$$
 ipoteză  
(2)  $\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$  P.2.74 și P.2.66.(ii)  
(3)  $\Gamma \vdash (\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)$  (MP): (1), (2)  
(4)  $\Gamma \vdash \psi \rightarrow \chi$  ipoteză  
(5)  $\Gamma \vdash \varphi \rightarrow \chi$  (MP): (3), (4).

114



Pentru orice formule  $\varphi, \psi, \chi$ ,

$$\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi)) \tag{36}$$

Dem.: Exercițiu.

#### Propoziția 2.77

Pentru orice mulțime de formule  $\Gamma$  și orice formule  $\varphi, \psi, \chi$ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

Dem.: Exercițiu.



Pentru orice formule  $\varphi, \psi$ ,

$$\{\psi, \neg \psi\} \vdash \varphi \qquad (37)$$

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi) \qquad (38)$$

$$\vdash \psi \rightarrow (\neg \psi \rightarrow \varphi) \qquad (39)$$

$$\vdash \neg \neg \varphi \rightarrow \varphi \qquad (40)$$

$$\vdash \varphi \rightarrow \neg \neg \varphi \qquad (41)$$

$$\vdash (\varphi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \varphi) \qquad (42)$$

$$\{\psi, \neg \varphi\} \vdash \neg (\psi \rightarrow \varphi) \qquad (43)$$

$$\vdash (\varphi \rightarrow \neg \varphi) \rightarrow \neg \varphi \qquad (44)$$

$$\vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi \qquad (45)$$

Dem.: Exercițiu.



Pentru orice multime de formule  $\Gamma$  și orice formule  $\varphi, \psi$ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \ \ \textit{si} \ \ \Gamma \cup \{\neg \psi\} \vdash \varphi \ \ \Rightarrow \ \ \Gamma \vdash \varphi.$$

#### Dem.:

(1) 
$$\Gamma \cup \{\psi\} \vdash \varphi$$

(2) 
$$\Gamma \vdash \psi \rightarrow \varphi$$

(3) 
$$\Gamma \cup \{\neg \psi\} \vdash \varphi$$

(4) 
$$\Gamma \vdash \neg \psi \rightarrow \varphi$$

(5) 
$$\Gamma \vdash (\psi \rightarrow \varphi) \rightarrow (\neg \varphi \rightarrow \neg \psi)$$
 (42) și P.2.66.(ii)

(6) 
$$\Gamma \vdash \neg \varphi \rightarrow \neg \psi$$

(7) 
$$\Gamma \vdash \neg \varphi \rightarrow \varphi$$

(8) 
$$\Gamma \vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$$

(9) 
$$\Gamma \vdash \varphi$$

#### ipoteză

Teorema deducției

ipoteză

Teorema deducției

(MP): (2), (5)

(6), (4) și P. 2.75

(45) și P.2.66.(ii)

(MP): (7), (8).



Pentru orice formule  $\varphi, \psi$ ,

$$\begin{cases}
\varphi \wedge \psi \} & \vdash \varphi \\
\{\varphi \wedge \psi \} & \vdash \psi
\end{cases} (46)$$

$$\{\varphi, \psi \} & \vdash \psi \\
\{\varphi, \psi \} \vdash \chi \quad ddac \check{a} \quad \{\varphi \wedge \psi \} \vdash \chi$$

$$\vdash \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi$$
(46)
$$(47)$$

$$(48)$$

$$(49)$$

Dem.: Exercițiu.



# SINTAXA și SEMANTICA

#### Corectitudine

# Teorema 2.81 (Teorema de corectitudine (Soundness Theorem))

Orice Γ-teoremă este consecință semantică a lui Γ, adică,

$$\Gamma \vdash \varphi \implies \Gamma \vDash \varphi$$

pentru orice  $\varphi \in Form \ \text{$\vec{s}$} \ \Gamma \subseteq Form.$ 

Dem.: Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că  $\mathit{Thm}(\Gamma) \subseteq \Sigma$ . O facem prin inducție după  $\Gamma$ -teoreme.

- Axiomele sunt în Σ (exerciţiu).
- ▶ Evident,  $\Gamma \subseteq \Sigma$ .
- ▶ Demonstrăm acum că  $\Sigma$  este închisă la modus ponens. Presupunem că  $\varphi, \varphi \to \psi \in \Sigma$ , adică,  $\Gamma \vDash \varphi$  și  $\Gamma \vDash \varphi \to \psi$ . Conform Propoziției 2.28.(i), obținem că  $\Gamma \vDash \psi$ , adică,  $\psi \in \Sigma$ .



Fie  $e: V \to \{0,1\}$  o evaluare și  $v \in V$  o variabilă.

**Definim** 

$$\mathbf{v}^{\mathbf{e}} = egin{cases} v & \mathsf{dac} \check{\mathbf{a}} \; e(v) = 1 \\ \neg v & \mathsf{dac} \check{\mathbf{a}} \; e(v) = 0. \end{cases}$$

Aşadar,  $e^+(v^e) = 1$ .

Pentru orice mulțime  $W = \{x_1, \dots, x_k\}$  de variabile, notăm

$$W^e = \{v^e \mid v \in W\} = \{x_1^e, x_2^e, \dots, x_k^e\}.$$

Pentru orice  $a \in \{0,1\}$ , definim evaluarea  $e_{v \mapsto a}: V \to \{0,1\}$  prin

$$e_{v\mapsto a}(x) = egin{cases} e(x) & ext{daca } x 
eq v \ a & ext{daca } x = v. \end{cases}$$



Fie e :  $V \rightarrow \{0,1\}$  o evaluare. Pentru orice formulă  $\varphi$ ,

- (i) Dacă  $e^+(\varphi) = 1$ , atunci  $Var(\varphi)^e \vdash \varphi$ .
- (ii) Dacă  $e^+(\varphi) = 0$ , atunci  $Var(\varphi)^e \vdash \neg \varphi$ .

Dem.: Prin inducție după formule. Avem următoarele cazuri:

- ▶  $\varphi = v$ . Atunci  $Var(\varphi)^e = \{v^e\}$  și  $e^+(v) = e(v)$ . Dacă e(v) = 1, atunci  $v^e = v$ , deci,  $\{v^e\} \vdash v$ . Dacă e(v) = 0, atunci  $v^e = \neg v$ , deci,  $\{v^e\} \vdash \neg v$ .



 $\varphi = \psi \to \chi. \text{ Atunci } Var(\varphi) = Var(\psi) \cup Var(\chi), \text{ deci } Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e.$  Dacă  $e^+(\psi \to \chi) = 0$ , atunci  $e^+(\psi) = 1$  și  $e^+(\chi) = 0$ . Avem  $Var(\psi)^e \vdash \psi \qquad \text{ipoteza de inducție pentru } \psi$   $Var(\chi)^e \vdash \neg \chi \qquad \text{ipoteza de inducție pentru } \chi$   $Var(\varphi)^e \vdash \{\psi, \neg \chi\} \qquad Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e \text{ și P. 2.66.(i)}$   $\{\psi, \neg \chi\} \vdash \neg(\psi \to \chi) \qquad \text{(43) din Propoziția 2.78}$   $Var(\varphi)^e \vdash \neg(\psi \to \chi) \qquad \text{Propoziția 2.66.(iv).}$ 

### Sintaxă și semantică

Dacă 
$$\mathrm{e}^+(\psi o\chi)=1$$
, atunci  $\mathrm{e}^+(\psi)=0$  sau  $\mathrm{e}^+(\chi)=1$ .

În primul caz, obținem

 $Var(\chi)^e \vdash \psi \rightarrow \chi$ 

 $Var(\varphi)^e \vdash \psi \rightarrow \chi$ 

$$Var(\psi)^e \vdash \neg \psi$$
 ipoteza de inducţie pentru  $\psi$ 
 $Var(\psi)^e \vdash \neg \psi \rightarrow (\psi \rightarrow \chi)$  (38) din P. 2.78 și P. 2.66.(ii)
 $Var(\psi)^e \vdash \psi \rightarrow \chi$  (MP)
 $Var(\varphi)^e \vdash \psi \rightarrow \chi$   $Var(\psi)^e \subseteq Var(\varphi)^e$  și P. 2.66.(i).

al doilea caz, obţinem
 $Var(\chi)^e \vdash \chi$  ipoteza de inducţie pentru  $\chi$ 
 $Var(\chi)^e \vdash \chi \rightarrow (\psi \rightarrow \chi)$  (A1) și Propoziția 2.65.(i)

Demonstrația propoziției anterioare ne dă o construcție efectivă a unei demonstrații a lui  $\varphi$  sau  $\neg \varphi$  din premizele  $Var(\varphi)^e$ .

 $Var(\chi)^e \subseteq Var(\varphi)^e$  si P. 2.66.(i).

(MP)



#### Teorema 2.83 (Teorema de completitudine)

Pentru orice formulă  $\varphi$ ,

$$\vdash \varphi \quad ddac\check{a} \quad \vDash \varphi.$$

**Dem.:** " $\Rightarrow$ " Se aplică Teorema de corectitudine 2.81 pentru  $\Gamma = \emptyset$ . " $\Leftarrow$ " Fie  $\varphi$  o tautologie și  $Var(\varphi) = \{x_1, \dots, x_n\}$ . Demonstrăm prin inducție după k următoarea proprietate:

(\*) pentru orice 
$$k \leq n$$
, pentru orice  $e: V \to \{0,1\}$ ,  $\{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$ .

Pentru k = n, (\*) ne dă  $\vdash \varphi$ .

k=0. Fie  $e:V\to\{0,1\}$ . Deoarece  $\varphi$  este tautologie,  $e^+(\varphi)=1$ . Aplicând Propoziția 2.82, obținem că

$$Var(\varphi)^e = \{x_1^e, \dots, x_n^e\} \vdash \varphi.$$

#### Teorema de completitudine

 ${}^{\prime}k\Rightarrow k+1$ . Presupunem că (\*) este adevărată pentru k și fie  $e:V\to\{0,1\}$ . Trebuie să arătăm că  $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$ . Considerăm evaluarea  $e':=e_{x_{n-k}\mapsto \neg e(x_{n-k})}$ . Așadar, e'(v)=e(v) pentru orice  $v\neq x_{n-k}$  și

$$e'(x_{n-k}) = egin{cases} 0 & \operatorname{dacreve{a}} e(x_{n-k}) = 1 \ 1 & \operatorname{dacreve{a}} e(x_{n-k}) = 0. \end{cases}$$

Rezultă că  $x_i^{e'} = x_i^e$  pentru orice  $i \in \{1, ..., n-k-1\}$  și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (\*) pentru e și e', obținem

$$\{x_1^e, \dots, x_{n-k-1}^e, x_{n-k}\} \vdash \varphi \text{ si } \{x_1^e, \dots, x_{n-k-1}^e, \neg x_{n-k}\} \vdash \varphi.$$

Aplicăm acum Propoziția 2.79 cu  $\Gamma:=\{x_1^e,\ldots,x_{n-k-1}^e\}$  și  $\psi:=x_{n-k}$  pentru a conclude că  $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi.$ 



Fie  $\Gamma \cup \{\varphi, \psi\} \subseteq$  Form. Presupunem că  $\varphi \sim \psi$ . Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

#### Dem.: Observăm că

$$arphi \sim \psi \quad \Longleftrightarrow \quad arphi \varphi \rightarrow \psi \text{ si } dash \psi \rightarrow \varphi$$

$$\text{Propoziția } 2.17$$

$$\Longleftrightarrow \quad dash \varphi \rightarrow \psi \text{ si } dash \psi \rightarrow \varphi$$

$$\text{Teorema de completitud}$$

Teorema de completitudine.

" $\Rightarrow$ " Presupunem că  $\Gamma \vdash \varphi$ . Deoarece  $\vdash \varphi \rightarrow \psi$ , rezultă din Propoziția 2.66.(ii) că  $\Gamma \vdash \varphi \rightarrow \psi$ . Aplicăm acum (MP) pentru a obtine că  $\Gamma \vdash \psi$ .

Fie  $\Gamma$  o mulțime de formule și  $\varphi$  o formulă.

# Notații

```
\begin{array}{lll} \Gamma \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este } \Gamma\text{-teoremă} \\ \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este teoremă} \\ \Gamma \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este consecință semantică a lui } \Gamma \\ \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este tautologie.} \end{array}
```



#### Definiția 2.85

Fie  $\Gamma$  o mulțime de formule.

- ▶ Γ este consistentă dacă există o formulă φ astfel încât Γ ∀ φ.
- ▶  $\Gamma$  este inconsistentă dacă nu este consistentă, adică,  $\Gamma \vdash \varphi$  pentru orice formulă  $\varphi$ .

#### Observație

Fie  $\Gamma, \Delta$  mulțimi de formule a.î.  $\Gamma \subseteq \Delta$ .

- ightharpoonup Dacă  $\Delta$  este consistentă, atunci și  $\Gamma$  este consistentă.
- ightharpoonup Dacă Γ este inconsistentă, atunci și Δ este inconsistentă.



- (i) ∅ este consistentă.
- (ii) Mulțimea teoremelor este consistentă.

#### Dem.:

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine 2.81, ar rezulta că ⊨ ⊥, o contradicție. Așadar ⊬ ⊥, deci ∅ este consistentă.
- (ii) Aplicând Propoziția 2.66.(iv) pentru  $\Gamma = \emptyset$ , obținem că Thm = Thm(Thm), adică, pentru orice  $\varphi$ ,  $\vdash \varphi$  ddacă  $Thm \vdash \varphi$ .
  - Din (i) rezultă că Thm este consistentă.



Pentru o mulțime de formule  $\Gamma$  sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă  $\psi$ ,  $\Gamma \vdash \psi$  și  $\Gamma \vdash \neg \psi$ .
- (iii) Există o formulă  $\psi$  a.î.  $\Gamma \vdash \psi$  și  $\Gamma \vdash \neg \psi$ .
- (iv)  $\Gamma \vdash \bot$ .

**Dem.:**  $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$  sunt evidente.

 $(iii) \Rightarrow (i)$  Fie  $\varphi$  o formulă. Conform (38) din Propoziția 2.78,

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi).$$

Aplicând (iii) și de două ori modus ponens, rezultă că  $\Gamma \vdash \varphi$ . (iv)  $\Rightarrow$  (iii). Presupunem că  $\Gamma \vdash \bot$ . Avem că  $\bot = \neg \top$ . Deoarece  $\top$  este tautologie, aplicăm Teorema de completitudine pentru a conclude că  $\vdash \top$ , deci și  $\Gamma \vdash \top$ .



Fie  $\Gamma$  o mulțime de formule și  $\varphi$  o formulă.

- (i)  $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$  este inconsistentă.
- (ii)  $\Gamma \vdash \neg \varphi \iff \Gamma \cup \{\varphi\}$  este inconsistentă.

#### Dem.:

(i) Avem

(ii) Similar.



Fie  $\Gamma = \{\varphi_1, \dots, \varphi_n\}$  o mulțime finită de formule.

- (i) Pentru orice formulă  $\psi$ ,  $\Gamma \vdash \psi$  ddacă  $\vdash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$  ddacă  $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$ .
- (ii) Γ este consistentă ddacă  $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$  este consistentă.

Dem.: Exercițiu.



Fie  $\Gamma$  o mulțime de formule.  $\Gamma$  este inconsistentă ddacă  $\Gamma$  are o submulțime finită inconsistentă.

**Dem.:** "←" este evidentă.

"⇒" Presupunem că Γ este inconsistentă. Atunci, conform Propoziției 2.87.(iv),  $\Gamma \vdash \bot$ . Aplicând Propoziția 2.71, obținem o submulțime finită  $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$  a lui  $\Gamma$  a.î.  $\Sigma \vdash \bot$ . Prin urmare,  $\Sigma$  este inconsistentă.

Un rezultat echivalent:

### Propoziția 2.91

Fie  $\Gamma$  o mulțime de formule.  $\Gamma$  este consistentă ddacă orice submulțime finită a lui  $\Gamma$  este consistentă.

### Consecință a Teoremei de completitudine

#### Teorema 2.92

Pentru orice formulă  $\varphi$ ,

 $\{\varphi\}$  este consistentă  $\iff \{\varphi\}$  este satisfiabilă.

#### Dem.: Avem

$$\{\varphi\} \text{ este inconsistentă} \qquad \Longleftrightarrow \qquad \vdash \neg \varphi \\ \qquad \qquad \qquad \text{Propoziția 2.88.(ii)} \\ \iff \qquad \vdash \neg \varphi \\ \qquad \qquad \text{Teorema de completitudine} \\ \iff \qquad \{\varphi\} \text{ este nesatisfiabilă} \\ \qquad \qquad \qquad \text{Propoziția 2.30.(ii)}.$$

Aşadar,  $\{\varphi\}$  este consistentă  $\iff \{\varphi\}$  este satisfiabilă.



# Teorema 2.93 (Teorema de completitudine tare - versiunea 1)

Pentru orice mulțime de formule  $\Gamma$ ,

 $\Gamma$  este consistentă  $\iff \Gamma$  este satisfiabilă.

**Dem.:** " $\Leftarrow$ " Presupunem că Γ este satisfiabilă, deci are un model  $e:V\to\{0,1\}$ . Presupunem că Γ nu este consistentă. Atunci Γ  $\vdash \bot$  și, aplicând Teorema de corectitudine 2.81, rezultă că Γ  $\vDash \bot$ . Ca urmare,  $e\vDash \bot$ , ceea ce este o contradicție. " $\Rightarrow$ " Presupunem că Γ este consistentă. Demonstrăm că Γ este finit satisfiabilă și aplicăm apoi Teorema de compacitate 2.34 pentru a conclude că Γ este satisfiabilă.

Fie  $\Sigma = \{\varphi_1, \dots, \varphi_n\}$  o submulțime finită a lui Γ. Atunci  $\Sigma$  este consistentă, conform Propoziției 2.91. Din Propoziția 2.89.(ii), rezultă că  $\{\varphi_1 \wedge \dots \wedge \varphi_n\}$  este consistentă. Aplicând acum Teorema 2.92 obținem că  $\{\varphi_1 \wedge \dots \wedge \varphi_n\}$  este satisfiabilă. Deoarece, conform Propoziției 2.31.(i),  $\Sigma \sim \{\varphi_1 \wedge \dots \wedge \varphi_n\}$ , avem că  $\Sigma$  este satisfiabilă.



#### Teorema de completitudine tare

### Teorema 2.94 (Teorema de completitudine tare - versiunea 2)

Pentru orice mulțime de formule  $\Gamma$  și orice formulă  $\varphi$ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

#### Dem.:

#### Observatie

Am demonstrat Teorema de completitudine tare - versiunea 2 folosind Teorema de completitudine tare - versiunea 1. Se poate arăta că cele două versiuni sunt echivalente (exercițiu).



# LOGICA DE ORDINUL ÎNTÂI

### Limbaje de ordinul întâi

### Definiția 3.1

Un limbaj L de ordinul întâi este format din:

- ightharpoonup o mulţime numărabilă  $V = \{v_n \mid n \in \mathbb{N}\}$  de variabile;
- ightharpoonup conectorii  $\neg$  și  $\rightarrow$ ;
- parantezele ( , );
- simbolul de egalitate =;
- cuantificatorul universal ∀;
- o mulţime R de simboluri de relaţii;
- ▶ o mulțime 𝓕 de simboluri de funcții;
- ▶ o mulțime C de simboluri de constante;
- ightharpoonup o funcție aritate ari :  $\mathcal{F} \cup \mathcal{R} \to \mathbb{N}^*$ .
- $\blacktriangleright$   $\mathcal{L}$  este unic determinat de cvadruplul  $\tau := (\mathcal{R}, \mathcal{F}, \mathcal{C}, \operatorname{ari})$ .
- ightharpoonup r se numește signatura lui  $\mathcal L$  sau tipul de similaritate al lui  $\mathcal L$





Fie  $\mathcal{L}$  un limbaj de ordinul întâi.

• Mulţimea  $Sim_{\mathcal{L}}$  a simbolurilor lui  $\mathcal{L}$  este

$$Sim_{\mathcal{L}} := V \cup \{\neg, \rightarrow, (, ), =, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$$

- Elementele lui  $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$  se numesc simboluri non-logice.
- Elementele lui  $V \cup \{\neg, \rightarrow, (,), =, \forall\}$  se numesc simboluri logice.
- Notăm variabilele cu  $x, y, z, v, \ldots$ , simbolurile de relații cu  $P, Q, R \ldots$ , simbolurile de funcții cu  $f, g, h, \ldots$  și simbolurile de constante cu  $c, d, e, \ldots$
- Pentru orice  $m \in \mathbb{N}^*$  notăm:

 $\mathcal{F}_m$  := mulțimea simbolurilor de funcții de aritate m;

 $\mathcal{R}_m$  := mulțimea simbolurilor de relații de aritate m.





### Definiția 3.2

Mulțimea  $\mathsf{Expr}_{\mathcal{L}}$  a expresiilor lui  $\mathcal{L}$  este mulțimea tuturor șirurilor finite de simboluri ale lui  $\mathcal{L}$ .

Expresia vidă se notează  $\lambda$ . O expresie nevidă este de forma  $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ , unde  $k \geq 1$  și  $\theta_i \in \mathit{Sim}_{\mathcal{L}}$  pentru orice  $i = 0, \dots, k-1$ .

Fie 
$$\theta = \theta_0 \theta_1 \dots \theta_{k-1}$$
 și  $\sigma = \sigma_0 \sigma_1 \dots \sigma_{l-1}$  două expresii ale lui  $\mathcal{L}$ .  $\theta = \sigma$  ddacă  $k = l$  și  $\theta_i = \sigma_i$  pentru orice  $i = 0, \dots, k-1$ .

#### Definiția 3.3

Fie  $\theta=\theta_0\theta_1\dots\theta_{k-1}$  o expresie a lui  $\mathcal{L}$ . Spunem că o expresie  $\sigma$  apare în  $\theta$  dacă există  $0\leq i\leq j\leq k-1$  a.î.  $\sigma=\theta_i\dots\theta_j$ . Notăm cu  $Var(\theta)$  mulțimea variabilelor care apar în  $\theta$ .





# Definiția 3.4

Termenii lui  $\mathcal{L}$  sunt expresiile definite astfel:

- (T0) Orice variabilă este termen.
- (T1) Orice simbol de constantă este termen.
- (T2) Dacă  $m \ge 1$ ,  $f \in \mathcal{F}_m$  și  $t_1, \ldots, t_m$  sunt termeni, atunci  $ft_1 \ldots t_m$  este termen.
- (T3) Numai expresiile obținute aplicând regulile (T0), (T1), (T2) sunt termeni.

#### Notații:

- ► Multimea termenilor se notează *Termc*.
- ► Termenii se notează  $t, s, t_1, t_2, s_1, s_2, \ldots$

### Definiția 3.5

Un termen t se numește închis dacă  $Var(t) = \emptyset$ .



### Propoziția 3.6 (Inducția pe termeni)

Fie Γ o mulțime de expresii care are următoarele proprietăți:

- Γ conţine variabilele şi simbolurile de constante.
- ▶ Dacă  $m \ge 1$ ,  $f \in \mathcal{F}_m$  și  $t_1, \ldots, t_m \in \Gamma$ , atunci  $ft_1 \ldots t_m \in \Gamma$ .

Atunci Term $_{\mathcal{L}} \subseteq \Gamma$ .

Este folosită pentru a demonstra că toți termenii au o proprietate  $\mathcal{P}$ : definim  $\Gamma$  ca fiind mulțimea tuturor expresiilor care satisfac  $\mathcal{P}$  și aplicăm inducția pe termeni pentru a obține că  $\mathit{Term}_{\mathcal{L}} \subseteq \Gamma$ .



# Propoziția 3.7 (Citire unică (Unique readability))

Dacă t este un termen, atunci exact una din următoarele alternative are loc:

- ightharpoonup t = x, unde  $x \in V$ ;
- ightharpoonup t = c, unde  $c \in C$ ;
- $ightharpoonup t=ft_1\dots t_m$ , unde  $f\in \mathcal{F}_m\ (m\geq 1)$  și  $t_1,\dots,t_m$  sunt termeni.

Mai mult, scrierea lui t sub una din aceste forme este unică.

# Formule

#### Definiția 3.8

Formulele atomice ale lui  $\mathcal{L}$  sunt expresiile de forma:

- $\triangleright$  (s = t), unde s, t sunt termeni;
- $ightharpoonup (Rt_1 \dots t_m)$ , unde  $R \in \mathcal{R}_m \ (m \ge 1)$  și  $t_1, \dots, t_m$  sunt termeni.

#### Definiția 3.9

Formulele lui  $\mathcal{L}$  sunt expresiile definite astfel:

- (F0) Orice formulă atomică este formulă.
- (F1) Dacă  $\varphi$  este formulă, atunci  $(\neg \varphi)$  este formulă.
- (F2) Daca  $\varphi$  și  $\psi$  sunt formule, atunci ( $\varphi \to \psi$ ) este formulă.
- (F3) Dacă  $\varphi$  este formulă, atunci  $(\forall x \varphi)$  este formulă pentru orice variabilă x.
- (F4) Numai expresiile obținute aplicând regulile (F0), (F1), (F2), (F3) sunt formule.



### Notații

- ▶ Mulțimea formulelor se notează Form<sub>L</sub>.
- Formulele se notează  $\varphi, \psi, \chi, \ldots$

### Propoziția 3.10 (Inducția pe formule)

Fie Γ o mulțime de expresii care are următoarele proprietăți:

- Γ conţine toate formulele atomice.
- ▶  $\Gamma$  este închisă la  $\neg$ ,  $\rightarrow$  și  $\forall x$  (pentru orice variabilă x), adică: dacă  $\varphi, \psi \in \Gamma$ , atunci  $(\neg \varphi), (\varphi \rightarrow \psi), (\forall x \varphi) \in \Gamma$ .

Atunci Form $\mathcal{L} \subseteq \Gamma$ .

Este folosită pentru a demonstra că toate formulele satisfac o proprietate  $\mathcal{P}$ : definim  $\Gamma$  ca fiind mulțimea tuturor formulelor care satisfac  $\mathcal{P}$  și aplicăm inducția pe formule pentru a obține că  $Form_{\mathcal{L}} \subseteq \Gamma$ .



## Propoziția 3.11 (Citire unică (Unique readability))

Dacă  $\varphi$  este o formulă, atunci exact una din următoarele alternative are loc:

- $ightharpoonup \varphi = (s = t)$ , unde s, t sunt termeni;
- $\varphi = (Rt_1 \dots t_m)$ , unde  $R \in \mathcal{R}_m \ (m \ge 1)$  și  $t_1, \dots, t_m$  sunt termeni;
- $ightharpoonup \varphi = (\neg \psi)$ , unde  $\psi$  este formulă;
- $ightharpoonup \varphi = (\psi \to \chi)$ , unde  $\psi, \chi$  sunt formule;
- $ightharpoonup \varphi = (\forall x \psi)$ , unde x este variabilă și  $\psi$  este formulă.

Mai mult, scrierea lui  $\varphi$  sub una din aceste forme este unică.



#### Conectori derivați

Conectorii  $\lor$ ,  $\land$ ,  $\leftrightarrow$  și cuantificatorul existențial  $\exists$  sunt introduși prin următoarele abrevieri:

$$\varphi \lor \psi := (\neg \varphi) \to \psi 
\varphi \land \psi := \neg(\varphi \to (\neg \psi)) 
\varphi \leftrightarrow \psi := (\varphi \to \psi) \land (\psi \to \varphi) 
\exists x \varphi := \neg \forall x \neg \varphi.$$



În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem  $s=t, Rt_1 \dots t_m, \forall x \varphi, \neg \varphi, \varphi \rightarrow \psi$ . Pe de altă parte, scriem  $(\varphi \rightarrow \psi) \rightarrow \chi$ .

Pentru a reduce din folosirea parantezelor, presupunem următoarele:

- ► Cuantificatorii  $\forall$ ,  $\exists$  au precedență mai mare decât ceilalți conectori. Așadar,  $\forall x \varphi \rightarrow \psi$  este  $(\forall x \varphi) \rightarrow \psi$  și nu  $\forall x (\varphi \rightarrow \psi)$ .
- ▶ ¬ are precedență mai mare decât  $\rightarrow$ ,  $\land$ ,  $\lor$ ,  $\leftrightarrow$ .
- $\triangleright$   $\land$ ,  $\lor$  au precedență mai mare decât  $\rightarrow$ ,  $\leftrightarrow$ .

# Formule



- Scriem uneori  $f(t_1, \ldots, t_m)$  în loc de  $ft_1 \ldots t_m$  și  $R(t_1, \ldots, t_m)$  în loc de  $Rt_1 \ldots t_m$ .
- Simbolurile de funcții sau relații de aritate 1 se numesc unare.
- Simbolurile de funcții sau relații de aritate 2 se numesc binare.
- ▶ Dacă f este un simbol de funcție binară scriem  $t_1ft_2$  în loc de  $ft_1t_2$ .
- Analog, dacă R este un simbol de relație binară, scriem  $t_1Rt_2$  în loc de  $Rt_1t_2$ .

Vom identifica un limbaj  $\mathcal{L}$  cu mulţimea simbolurilor sale non-logice şi vom scrie  $\mathcal{L} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$ .



## Definiția 3.12

O L-structură este un cvadruplu

$$\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{C}^{\mathcal{A}})$$

#### unde

- ► A este o mulţime nevidă;
- ▶  $\mathcal{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathcal{F} \}$  este o mulțime de operații pe A; dacă f are aritatea m, atunci  $f^{\mathcal{A}} : A^m \to A$ ;
- ▶  $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$  este o mulțime de relații pe A; dacă R are aritatea m, atunci  $R^{\mathcal{A}} \subseteq A^m$ ;
- A se numește universul structurii A. Notație: A = |A|
- $f^A$  (respectiv  $R^A$ ,  $c^A$ ) se numește denotația sau interpretarea lui f (respectiv R, c) în A.



## Exemple - Limbajul egalității $\mathcal{L}_{=}$

$$\mathcal{L}_{=}=(\mathcal{R},\mathcal{F},\mathcal{C})$$
, unde

- $\triangleright \mathcal{R} = \mathcal{F} = \mathcal{C} = \emptyset$
- acest limbaj este potrivit doar pentru a exprima proprietăți ale egalității
- $\triangleright$   $\mathcal{L}_{=}$ -structurile sunt mulțimile nevide

#### Exemple de formule:

• egalitatea este simetrică:

$$\forall x \forall y (x = y \rightarrow y = x)$$

• universul are cel puţin trei elemente:

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(z = x))$$



# Exemple - Limbajul aritmeticii $\mathcal{L}_{\mathsf{ar}}$

$$\mathcal{L}_{\textit{ar}} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde

- $ightharpoonup \mathcal{R} = \{\dot{<}\}; \dot{<}$  este simbol de relație binară;
- $\mathcal{F} = \{\dot{+}, \dot{\times}, \dot{S}\}; \dot{+}, \dot{\times}$  sunt simboluri de funcții binare și  $\dot{S}$  este simbol de funcție unară;
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem 
$$\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$$
 sau  $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$ .

Exemplul natural de  $\mathcal{L}_{ar}$ -structură:

$$\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0),$$

unde  $S: \mathbb{N} \to \mathbb{N}, S(m) = m+1$  este funcția succesor. Prin urmare,

$$\dot{<}^{\mathcal{N}}=<,\ \dot{+}^{\mathcal{N}}=+,\ \dot{\times}^{\mathcal{N}}=\cdot,\ \dot{S}^{\mathcal{N}}=S,\ \dot{0}^{\mathcal{N}}=0.$$

• Alt exemplu de  $\mathcal{L}_{ar}$ -structură:  $\mathcal{A} = (\{0,1\}, <, \mathsf{V}, \mathsf{\Lambda}, \neg, 1)$ .



## Exemplu - Limbajul cu un simbol de relație binar

$$\mathcal{L}_R = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde

- $ightharpoonup \mathcal{R} = \{R\}$ ; R simbol de relație binară
- $\mathcal{F} = \mathcal{C} = \emptyset$
- L-structurile sunt mulțimile nevide împreună cu o relație binară
- ▶ Dacă suntem interesați de mulțimi parțial ordonate  $(A, \leq)$ , folosim simbolul  $\leq$  în loc de R și notăm limbajul cu  $\mathcal{L}_{<}$ .
- ▶ Dacă suntem interesați de mulțimi strict ordonate (A, <), folosim simbolul < în loc de R și notăm limbajul cu  $\mathcal{L}_{<}$ .
- Dacă suntem interesați de grafuri G = (V, E), folosim simbolul  $\dot{E}$  în loc de R și notăm limbajul cu  $\mathcal{L}_{Graf}$ .
- ▶ Dacă suntem interesați de structuri  $(A, \in)$ , folosim simbolul  $\in$  în loc de R și notăm limbajul cu  $\mathcal{L}_{\in}$ .



## Exemple - Limbajul grupurilor $\mathcal{L}_{Gr}$

$$\mathcal{L}_{\textit{Gr}} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde  $\mathcal{R} = \emptyset$  și

- $\mathcal{F} = \{\dot{*},\dot{^{-1}}\}; \dot{*}$  simbol de funcție binară,  $\dot{^{-1}}$  simbol de funcție unară
- $ightharpoonup \mathcal{C} = \{\dot{e}\}.$

Scriem 
$$\mathcal{L}_{Gr} = (\emptyset; \dot{*}, \dot{-1}; \dot{e})$$
 sau  $\mathcal{L}_{Gr} = (\dot{*}, \dot{-1}, \dot{e})$ .

Exemple naturale de  $\mathcal{L}_{Gr}$ -structuri sunt grupurile:  $\mathcal{G} = (G, \cdot, ^{-1}, e)$ . Prin urmare,  $\dot{*}^{\mathcal{G}} = \dot{\cdot}^{-1}{}^{\mathcal{G}} = ^{-1}$ ,  $\dot{e}^{\mathcal{G}} = e$ .

Pentru a discuta despre grupuri abeliene (comutative), este tradițional să se folosească limbajul  $\mathcal{L}_{AbGr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$ , unde

- $\triangleright \mathcal{R} = \emptyset;$
- $\mathcal{F} = \{\dot{+}, \dot{-}\}; \dot{+} \text{ simbol binar, } \dot{-} \text{ simbol unar;}$
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem  $\mathcal{L}_{AbGr} = (\dot{+}, \dot{-}, \dot{0}).$ 



# **SEMANTICA**

Fie  $\mathcal L$  un limbaj de ordinul întâi și  $\mathcal A$  o  $\mathcal L$ -structură.

#### Definiția 3.13

O interpretare sau evaluare a (variabilelor) lui  $\mathcal L$  în  $\mathcal A$  este o funcție  $e:V\to A$ .

În continuare, e:V o A este o interpretare a lui  $\mathcal L$  in  $\mathcal A.$ 

#### Definiția 3.14 (Interpretarea termenilor)

Prin inducție pe termeni se definește interpretarea  $t^{\mathcal{A}}(e) \in A$  a termenului t sub evaluarea e:

- $\blacktriangleright$  dacă  $t = x \in V$ , atunci  $t^{A}(e) := e(x)$ ;
- ightharpoonup dacă  $t=c\in\mathcal{C}$ , atunci  $t^{\mathcal{A}}(e):=c^{\mathcal{A}}$ ;
- $lackbox{dacă} t = \mathit{ft}_1 \ldots \mathit{t}_m$ , atunci  $t^{\mathcal{A}}(e) := \mathit{f}^{\mathcal{A}}(\mathit{t}_1^{\mathcal{A}}(e), \ldots, \mathit{t}_m^{\mathcal{A}}(e))$ .



Prin inducție pe formule se definește interpretarea

$$\varphi^{\mathcal{A}}(e) \in \{0,1\}$$

a formulei  $\varphi$  sub evaluarea e.

$$(s=t)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dac}\check{a} & s^{\mathcal{A}}(e) = t^{\mathcal{A}}(e) \\ 0 & \operatorname{altfel}. \end{array} 
ight. \ (Rt_1 \ldots t_m)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dac}\check{a} & R^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \ldots, t_m^{\mathcal{A}}(e)) \\ 0 & \operatorname{altfel}. \end{array} 
ight.$$



#### Negația și implicația

$$(\neg \varphi)^{\mathcal{A}}(e) = 1 - \varphi^{\mathcal{A}}(e);$$

$$(\varphi \to \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e)$$
, unde,

#### Prin urmare,

$$(\neg \varphi)^{\mathcal{A}}(e) = 1 \iff \varphi^{\mathcal{A}}(e) = 0.$$

$$\blacktriangleright (\varphi \to \psi)^{\mathcal{A}}(e) = 1 \iff (\varphi^{\mathcal{A}}(e) = 0 \text{ sau } \psi^{\mathcal{A}}(e) = 1).$$



#### Notație

Pentru orice variabilă  $x \in V$  și orice  $a \in A$ , definim o nouă interpretare  $e_{x \mapsto a}: V \to A$  prin

$$e_{x\mapsto a}(v)=\left\{egin{array}{ll} e(v) & ext{dacă } v
eq x \ a & ext{dacă } v=x. \end{array}
ight.$$

#### Interpretarea formulelor

$$(\forall x\varphi)^{\mathcal{A}}(e) \quad = \quad \begin{cases} 1 & \mathsf{dac}\ \varphi^{\mathcal{A}}(e_{\mathsf{x}\mapsto \mathsf{a}}) = 1 \ \mathsf{pentru\ orice}\ \mathsf{a} \in \mathsf{A} \\ 0 & \mathsf{altfel}. \end{cases}$$

# Relația de satisfacere

Fie  $\mathcal A$  o  $\mathcal L$ -structură și e:V o A o interpretare a lui  $\mathcal L$  în  $\mathcal A$ .

#### Definiția 3.15

Fie  $\varphi$  o formulă. Spunem că:

- e satisface  $\varphi$  în  $\mathcal{A}$  dacă  $\varphi^{\mathcal{A}}(e) = 1$ . Notație:  $\mathcal{A} \vDash \varphi[e]$ .
- e nu satisface  $\varphi$  în  $\mathcal{A}$  dacă  $\varphi^{\mathcal{A}}(e) = 0$ . Notație:  $\mathcal{A} \not\models \varphi[e]$ .

#### Corolar 3.16

Pentru orice formule  $\varphi, \psi$  și orice variabilă x,

- (i)  $A \vDash (\neg \varphi)[e] \iff A \nvDash \varphi[e]$ .
- (ii)  $A \vDash (\varphi \to \psi)[e] \iff A \vDash \varphi[e] \text{ implică } A \vDash \psi[e] \iff A \nvDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- (iii)  $A \models (\forall x \varphi)[e] \iff pentru \ orice \ a \in A, \ A \models \varphi[e_{x \mapsto a}].$

Dem.: Exercițiu ușor.





Fie  $\varphi, \psi$  formule și x o variabilă.

#### Propoziția 3.17

(i) 
$$(\varphi \lor \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \lor \psi^{\mathcal{A}}(e);$$

(ii) 
$$(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e);$$

(iii) 
$$(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$$

$$(iv) \ (\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \textit{dacă există } a \in A \ \textit{a.î.} \ \varphi^{\mathcal{A}}(e_{\mathsf{x} \mapsto \mathsf{a}}) = 1 \\ 0 & \textit{altfel.} \end{cases}$$

Dem.: Exercițiu ușor. Arătăm, de exemplu, (iv).

$$(\exists x\varphi)^{\mathcal{A}}(e) = 1 \iff (\neg \forall x \neg \varphi)^{\mathcal{A}}(e) = 1 \iff (\forall x \neg \varphi)^{\mathcal{A}}(e) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } (\neg \varphi)^{\mathcal{A}}(e_{x \mapsto a}) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } \varphi^{\mathcal{A}}(e_{x \mapsto a}) = 1.$$



#### Corolar 3.18

- (i)  $A \vDash (\varphi \land \psi)[e] \iff A \vDash \varphi[e] \text{ si } A \vDash \psi[e].$
- (ii)  $A \vDash (\varphi \lor \psi)[e] \iff A \vDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- (iii)  $A \vDash (\varphi \leftrightarrow \psi)[e] \iff A \vDash \varphi[e] \ ddac \ A \vDash \psi[e].$
- $(iv) \ \mathcal{A} \vDash (\exists x \varphi)[e] \Longleftrightarrow \text{ există } a \in A \ \text{ a.î. } \ \mathcal{A} \vDash \varphi[e_{\mathsf{x} \mapsto \mathsf{a}}].$

Fie  $\varphi$  formulă a lui  $\mathcal{L}$ .

#### Definiția 3.19

Spunem că  $\varphi$  este satisfiabilă dacă există o  $\mathcal{L}$ -structură  $\mathcal{A}$  și o evaluare e :  $V \to A$  a.î.

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că (A, e) este un model al lui  $\varphi$ .

Atenție! Este posibil ca atât  $\varphi$  cât și  $\neg \varphi$  să fie satisfiabile. Exemplu:  $\varphi := x = y$  în  $\mathcal{L}_=$ .



Fie  $\varphi$  formulă a lui  $\mathcal{L}$ .

#### Definiția 3.20

Spunem că  $\varphi$  este adevărată într-o  $\mathcal{L}$ -structură  $\mathcal{A}$  dacă pentru orice evaluare  $e:V\to A$ ,

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că A satisface  $\varphi$  sau că A este un model al lui  $\varphi$ .

*Notație:*  $A \models \varphi$ 

#### Definiția 3.21

Spunem că  $\varphi$  este formulă universal adevărată sau (logic) validă dacă pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$ ,

$$\mathcal{A} \vDash \varphi$$
.

*Notație:*  $\models \varphi$ 

#### Semantică

Fie  $\varphi, \psi$  formule ale lui  $\mathcal{L}$ .

#### Definiția 3.22

 $\varphi$  și  $\psi$  sunt logic echivalente dacă pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$  și orice evaluare  $e:V\to A$ ,

$$\mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \vDash \psi[e].$$

*Notație:*  $\varphi \bowtie \psi$ 

#### Definiția 3.23

 $\psi$  este consecință semantică a lui  $\varphi$  dacă pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$  și orice evaluare e :  $V \to A$ ,

$$\mathcal{A} \vDash \varphi[e] \quad \Rightarrow \quad \mathcal{A} \vDash \psi[e].$$

*Notație:*  $\varphi \models \psi$ 

#### Observație

- (i)  $\varphi \vDash \psi$  ddacă  $\vDash \varphi \rightarrow \psi$ .
- (ii)  $\varphi \vDash \psi$  ddacă ( $\psi \vDash \varphi$  și  $\varphi \vDash \psi$ ) ddacă  $\vDash \psi \leftrightarrow \varphi$ .



## Echivalențe și consecințe logice

#### Pentru orice formule $\varphi$ , $\psi$ și orice variabile x, y,

| $\neg \exists x \varphi$              | Ħ | $\forall x \neg \varphi$                       | (51) |
|---------------------------------------|---|------------------------------------------------|------|
| $\neg \forall x \varphi$              | Ħ | $\exists x \neg \varphi$                       | (52) |
| $\forall x (\varphi \wedge \psi)$     | Ħ | $\forall x\varphi \wedge \forall x\psi$        | (53) |
| $\forall x\varphi \vee \forall x\psi$ | F | $\forall x (\varphi \lor \psi)$                | (54) |
| $\exists x (\varphi \wedge \psi)$     | F | $\exists x \varphi \wedge \exists x \psi$      | (55) |
| $\exists x (\varphi \lor \psi)$       | Ħ | $\exists x \varphi \lor \exists x \psi$        | (56) |
| $\forall x (\varphi \to \psi)$        | F | $\forall x \varphi \rightarrow \forall x \psi$ | (57) |
| $\forall x (\varphi \to \psi)$        | F | $\exists x \varphi \to \exists x \psi$         | (58) |
| $\forall x \varphi$                   | F | $\exists x \varphi$                            | (59) |

#### Echivalențe și consecințe logice

$$\varphi \models \exists x \varphi \tag{60}$$

$$\forall x \varphi \models \varphi \tag{61}$$

$$\forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi \tag{62}$$

$$\exists x \exists y \varphi \quad \exists \ y \exists x \varphi \tag{63}$$

$$\exists y \forall x \varphi \models \forall x \exists y \varphi. \tag{64}$$

Dem.: Exercițiu.

#### Propoziția 3.24

Pentru orice termeni s, t, u,

- (i)  $\models t = t$ ;
- (ii)  $\models s = t \rightarrow t = s$ ;
- (iii)  $\models s = t \land t = u \rightarrow s = u$ .

Dem.: Exercițiu ușor.



Fie  $\Gamma \cup \{\varphi\}$  o mulțime de formule ale lui  $\mathcal{L}$ .

#### Definiția 3.25

Spunem că  $\Gamma$  este satisfiabilă dacă există o  $\mathcal{L}$ -structură  $\mathcal{A}$  și o evaluare e :  $V \to A$  a.î.

$$A \vDash \gamma[e]$$
 pentru orice  $\gamma \in \Gamma$ .

Spunem și că (A, e) este un model al lui  $\Gamma$ .

*Notație:*  $A \models \Gamma[e]$ 

#### Definiția 3.26

Spunem că  $\varphi$  este consecință semantică a lui  $\Gamma$  dacă pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$  și orice evaluare  $e:V\to A$ ,

$$\mathcal{A} \models \Gamma[e] \implies \mathcal{A} \models \varphi[e].$$

*Notație:* 
$$\Gamma \models \varphi$$

#### Variabile legate și libere



#### Definiția 3.27

Fie  $\varphi = \varphi_0 \varphi_1 \dots \varphi_{n-1}$  o formulă a lui  $\mathcal{L}$  și x o variabilă.

- ▶ Spunem că variabila x apare legată pe poziția k în  $\varphi$  dacă  $x = \varphi_k$  și există  $0 \le i \le k \le j \le n-1$  a.î.  $\varphi_i \dots \varphi_j$  este de forma  $\forall x \psi$  cu  $\psi$  formulă.
- Spunem că x apare liberă pe poziția k în  $\varphi$  dacă  $x = \varphi_k$ , dar x nu apare legată pe poziția k în  $\varphi$ .
- ightharpoonup x este variabilă legată (bounded variable) a lui  $\varphi$  dacă există un k a.î. x apare legată pe poziția k în  $\varphi$ .
- ightharpoonup x este variable a lui  $\varphi$  dacă există un k a.î. x apare liberă pe poziția k în  $\varphi$ .

#### Exemplu

Fie  $\varphi = \forall x(x = y) \rightarrow x = z$ . Variabile libere: x, y, z. Variabile legate: x.



Notație:  $FV(\varphi) := mulțimea variabilelor libere ale lui <math>\varphi$ .

#### Definiție alternativă

Mulţimea  $FV(\varphi)$  a variabilelor libere ale unei formule  $\varphi$  poate fi definită și prin inducţie pe formule:

$$\begin{array}{lll} FV(\varphi) & = & Var(\varphi), & \mathsf{dac} \varphi \; \mathsf{este} \; \mathsf{formul} \mathsf{atomic} \mathsf{atomic} ; \\ FV(\neg\varphi) & = & FV(\varphi); \\ FV(\varphi \to \psi) & = & FV(\varphi) \cup FV(\psi); \\ FV(\forall x\varphi) & = & FV(\varphi) \setminus \{x\}. \end{array}$$

Notație:  $\varphi(x_1,\ldots,x_n)$  dacă  $FV(\varphi)\subseteq\{x_1,\ldots,x_n\}$ .



#### Propoziția 3.28

Pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$  și orice interpretări  $e_1,e_2:V\to\mathcal{A}$ , pentru orice termen t,

dacă 
$$e_1(v) = e_2(v)$$
 pentru orice variabilă  $v \in Var(t)$ , atunci  $t^{\mathcal{A}}(e_1) = t^{\mathcal{A}}(e_2)$ .

Dem.: Exercițiu.



#### Propoziția 3.29

Pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$ , orice interpretări  $e_1, e_2 : V \to A$ , pentru orice formulă  $\varphi$ ,

dacă 
$$e_1(v) = e_2(v)$$
 pentru orice variabilă  $v \in FV(\varphi)$ , atunci  $\mathcal{A} \models \varphi[e_1] \iff \mathcal{A} \models \varphi[e_2].$ 

Dem.: Aplicăm inducția pe formule. Avem următoarele cazuri:

• 
$$\varphi = t_1 = t_2$$
.

Atunci  $Var(t_1) \subseteq FV(\varphi)$ ,  $Var(t_2) \subseteq FV(\varphi)$ , deci putem aplica Propoziția 3.28 pentru a obține că

$$t_1^{\mathcal{A}}(e_1) = t_1^{\mathcal{A}}(e_2)$$
 și  $t_2^{\mathcal{A}}(e_1) = t_2^{\mathcal{A}}(e_2)$ .

$$\mathcal{A} \vDash \varphi[e_1] \iff t_1^{\mathcal{A}}(e_1) = t_2^{\mathcal{A}}(e_1) \iff t_1^{\mathcal{A}}(e_2) = t_2^{\mathcal{A}}(e_2)$$
$$\iff \mathcal{A} \vDash \varphi[e_2].$$

# Interpretarea formulelor

•  $\varphi = Rt_1 \dots t_m$ .

Atunci  $Var(t_i) \subseteq FV(\varphi)$  pentru orice  $i=1,\ldots,m$  și aplicăm din nou Propoziția 3.28 pentru a obține că

$$t_i^{\mathcal{A}}(e_1) = t_i^{\mathcal{A}}(e_2)$$
 pentru orice  $i = 1, \ldots, m$ .

Rezultă că

$$\mathcal{A} \vDash \varphi[e_1] \iff R^{\mathcal{A}}(t_1^{\mathcal{A}}(e_1), \dots, t_m^{\mathcal{A}}(e_1))$$
$$\iff R^{\mathcal{A}}(t_1^{\mathcal{A}}(e_2), \dots, t_m^{\mathcal{A}}(e_2)) \iff \mathcal{A} \vDash \varphi[e_2].$$

•  $\varphi = \neg \psi$ .

Deoarece  $FV(\psi) = FV(\varphi)$ , putem aplica ipoteza de inducție pentru a obține că

$$\mathcal{A} \vDash \psi[e_1] \iff \mathcal{A} \vDash \psi[e_2].$$

$$\mathcal{A} \vDash \varphi[e_1] \iff \mathcal{A} \not\vDash \psi[e_1] \iff \mathcal{A} \not\vDash \psi[e_2] \iff \mathcal{A} \vDash \varphi[e_2].$$



• 
$$\varphi = \psi \to \chi$$
.

Deoarece  $FV(\psi), FV(\chi) \subseteq FV(\varphi)$ , putem aplica ipoteza de inducție pentru a obține că

$$\mathcal{A} \vDash \psi[e_1] \iff \mathcal{A} \vDash \psi[e_2] \text{ si } \mathcal{A} \vDash \chi[e_1] \iff \mathcal{A} \vDash \chi[e_2].$$



### Interpretarea formulelor

•  $\varphi = \forall x \psi$  și

$$e_1(v) = e_2(v)$$
 pentru orice  $v \in FV(\varphi) = FV(\psi) \setminus \{x\}$ .

Rezultă că pentru orice  $a \in A$ ,

$$e_{1x\mapsto a}(v)=e_{2x\mapsto a}(v)$$
 pentru orice  $v\in FV(\psi)$ .

Prin urmare, putem aplica ipoteza de inducție pentru interpretările  $e_{1_{X\mapsto a}}, e_{2_{X\mapsto a}}$  pentru a obține că

pentru orice 
$$a \in A$$
,  $A \models \psi[e_{1_{X \mapsto a}}] \iff A \models \psi[e_{2_{X \mapsto a}}]$ .

$$\begin{split} \mathcal{A} \vDash \varphi[e_1] &\iff & \text{pentru orice } a \in A, \mathcal{A} \vDash \psi[e_{1_{\mathsf{X} \mapsto a}}] \\ &\iff & \text{pentru orice } a \in A, \mathcal{A} \vDash \psi[e_{2_{\mathsf{X} \mapsto a}}] \\ &\iff & \mathcal{A} \vDash \varphi[e_2]. \end{split}$$



#### Echivalențe și consecințe logice

#### Propoziția 3.30

Pentru orice formule  $\varphi$ ,  $\psi$  și orice variabilă  $x \notin FV(\varphi)$ ,

| Ħ | $\exists x \varphi$             | (65)                                                                                                                                                                                                        |
|---|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ħ | $\forall x \varphi$             | (66)                                                                                                                                                                                                        |
| Ħ | $\varphi \wedge \forall x \psi$ | (67)                                                                                                                                                                                                        |
| Ħ | $\varphi \lor \forall x \psi$   | (68)                                                                                                                                                                                                        |
| Ħ | $\varphi \wedge \exists x \psi$ | (69)                                                                                                                                                                                                        |
| Ħ | $\varphi \vee \exists x \psi$   | (70)                                                                                                                                                                                                        |
| Ħ | $\varphi \to \forall x \psi$    | (71)                                                                                                                                                                                                        |
| Ħ | $\varphi \to \exists x \psi$    | (72)                                                                                                                                                                                                        |
| Ħ | $\exists x \psi \to \varphi$    | (73)                                                                                                                                                                                                        |
| Ħ | $\forall x\psi \to \varphi$     | (74)                                                                                                                                                                                                        |
|   |                                 | $ \begin{array}{ll} \exists & \varphi \vee \forall x \psi \\ \exists & \varphi \wedge \exists x \psi \\ \exists & \varphi \vee \exists x \psi \\ \exists & \varphi \rightarrow \forall x \psi \end{array} $ |

**Dem.:** Exercițiu.



#### Definiția 3.31

O formulă  $\varphi$  se numește enunț (sentence) dacă  $FV(\varphi) = \emptyset$ , adică  $\varphi$  nu are variabile libere.

Notație: Sent $_{\mathcal{L}}$ := mulțimea enunțurilor lui  $\mathcal{L}$ .

#### Propoziția 3.32

Fie  $\varphi$  un enunț. Pentru orice interpretări  $e_1, e_2 : V \to A$ ,

$$\mathcal{A} \vDash \varphi[e_1] \iff \mathcal{A} \vDash \varphi[e_2]$$

**Dem.:** Este o consecință imediată a Propoziției 3.29 și a faptului că  $FV(\varphi) = \emptyset$ .

#### Definitia 3.33

O  $\mathcal{L}$ -structură  $\mathcal{A}$  este un model al lui  $\varphi$  dacă  $\mathcal{A} \models \varphi[e]$  pentru o (orice) evaluare  $e: V \to A$ . Notație:  $\mathcal{A} \models \varphi$ 



Fie  $\varphi$  un enunț al lui  $\mathcal L$  și  $\Gamma$  o mulțime de enunțuri.

 $\Gamma$  este satisfiabilă ddacă există o  $\mathcal{L}$ -structură  $\mathcal{A}$  a.î.

$$\mathcal{A} \vDash \gamma$$
 pentru orice  $\gamma \in \Gamma$ .

Spunem și că A este un model al lui  $\Gamma$ . Notație:  $A \models \Gamma$ 

 $\varphi$  este consecință semantică a lui  $\Gamma$  ddacă pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$ ,

$$\mathcal{A} \models \Gamma \implies \mathcal{A} \models \varphi$$
.

Notație:  $\Gamma \vDash \varphi$ 



Notație: Pentru orice mulțime de enunțuri Γ, notăm

$$Mod(\Gamma)$$
:= clasa modelelor lui  $\Gamma$ .

Notăm  $Mod(\varphi_1, \ldots, \varphi_n)$  în loc de  $Mod(\{\varphi_1, \ldots, \varphi_n\})$ .

#### Lema 3.34

Pentru orice mulțimi de enunțuri  $\Gamma, \Delta$  și orice enunț  $\psi$ ,

- (i)  $\Gamma \vDash \psi \iff Mod(\Gamma) \subseteq Mod(\psi)$ .
- (ii)  $\Gamma \subseteq \Delta \implies Mod(\Delta) \subseteq Mod(\Gamma)$ .
- (iii)  $\Gamma$  este satisfiabilă  $\iff Mod(\Gamma) \neq \emptyset$ .

Dem.: Exercițiu ușor.



# **TAUTOLOGII**



Noțiunile de tautologie și consecință semantică din logica propozițională se pot aplica și unui limbaj de ordinul întâi. Intuitiv: o tautologie este o formulă "adevărată" numai pe baza interpretărilor conectorilor  $\neg$ ,  $\rightarrow$ .

#### Definiția 3.35

O  $\mathcal{L}$ -evaluare de adevăr este o funcție  $F: Form_{\mathcal{L}} \to \{0,1\}$  cu următoarele proprietăți: pentru orice formule  $\varphi, \psi$ ,

- $F(\neg \varphi) = \neg F(\varphi);$
- $ightharpoonup F(\varphi) 
  ightharpoonup F(\psi) 
  ightharpoonup F(\psi).$

## Propoziția 3.36

Pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$  și orice evaluare  $e:V \to A$ , funcția

$$V_{e,\mathcal{A}}: \mathit{Form}_{\mathcal{L}} o \{0,1\}, \quad V_{e,\mathcal{A}}(arphi) = arphi^{\mathcal{A}}(e)$$

este o *C*-evaluare de adevăr.



 $\varphi$  este tautologie dacă  $F(\varphi)=1$  pentru orice  $\mathcal{L}$ -evaluare de adevăr F.

Exemple de tautologii:  $\varphi \to (\psi \to \varphi)$ ,  $(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$ 

#### Propoziția 3.38

Orice tautologie este validă.

**Dem.:** Fie  $\mathcal{A}$  o  $\mathcal{L}$ -structură și  $e:V\to A$  o evaluare. Deoarece  $\varphi$  este tautologie și  $V_{e,\mathcal{A}}$  este  $\mathcal{L}$ -evaluare de adevăr, rezultă că  $\varphi^{\mathcal{A}}(e)=V_{e,\mathcal{A}}(\varphi)=1$ , adică  $\mathcal{A}\vDash \varphi[e]$ .

#### Exemplu

x = x este validă, dar nu este tautologie.



Două formule  $\varphi$  și  $\psi$  sunt tautologic echivalente dacă  $F(\varphi) = F(\psi)$  pentru orice  $\mathcal{L}$ -evaluare de adevăr F.

#### Exemplul 3.40

 $\varphi_1 \to (\varphi_2 \to \varphi_3)$  şi  $\varphi_1 \land \varphi_2 \to \varphi_3$  sunt tautologic echivalente.

#### Definiția 3.41

O formulă  $\varphi$  este consecință tautologică a unei mulțimi de formule  $\Gamma$  dacă pentru orice  $\mathcal{L}$ -evaluare de adevăr F,

$$F(\gamma) = 1$$
 pentru orice  $\gamma \in \Gamma \implies F(\varphi) = 1$ .

#### Propoziția 3.42

Dacă  $\varphi$  este consecință tautologică a lui  $\Gamma$ , atunci  $\Gamma \vDash \varphi$ .



# **SUBSTITUȚII**

# Substituția

Fie x o variabilă a lui  $\mathcal{L}$  și u termen al lui  $\mathcal{L}$ .

#### Definiția 3.43

Pentru orice termen t al lui  $\mathcal{L}$ , definim  $t_x(u) := expresia obținută din t prin înlocuirea tuturor aparițiilor lui <math>x$  cu u.

## Propoziția 3.44

Pentru orice termen t al lui  $\mathcal{L}$ ,  $t_x(u)$  este termen al lui  $\mathcal{L}$ .



- Vrem să definim analog  $\varphi_x(u)$  ca fiind expresia obținută din  $\varphi$  prin înlocuirea tuturor aparițiilor libere ale lui x cu u.
- De asemenea, vrem ca următoarele proprietăți naturale ale substituției să fie adevărate:

$$\vDash \forall x \varphi \to \varphi_x(u) \quad \text{si} \quad \vDash \varphi_x(u) \to \exists x \varphi.$$

Apar însă probleme.

Fie  $\varphi := \exists y \neg (x = y)$  și u := y. Atunci  $\varphi_x(u) = \exists y \neg (y = y)$ . Avem

- ▶ Pentru orice  $\mathcal{L}$ -structură  $\mathcal{A}$  cu  $|A| \geq 2$ , avem  $\mathcal{A} \models \forall x \varphi$ .
- $ightharpoonup \varphi_{x}(u)$  nu este satisfiabilă.



Fie x o variabilă, u un termen și  $\varphi$  o formulă.

#### Definiția 3.45

Spunem că x este liberă pentru u în  $\varphi$  sau că u este substituibil pentru x în  $\varphi$  dacă pentru orice variabilă y care apare în u, nici o subformulă a lui  $\varphi$  de forma  $\forall y\psi$  nu conține apariții libere ale lui x.

#### Observație

x este liberă pentru u în  $\varphi$  în oricare din următoarele situații:

- u nu contine variabile;
- $\triangleright \varphi$  nu conține variabile care apar în u;
- $\blacktriangleright$  nici o variabilă din u nu apare legată în  $\varphi$ ;
- $\triangleright$  x nu apare în  $\varphi$ ;
- $\triangleright \varphi$  nu conține apariții libere ale lui x.



Fie x o variabilă, u termen și  $\varphi$  o formulă a.î. x este liberă pentru u în  $\varphi$ .

#### Definiția 3.46

 $\varphi_x(u) := expresia obținută din <math>\varphi$  prin înlocuirea tuturor aparițiilor libere ale lui x cu u.

Spunem că  $\varphi_{\mathsf{x}}(\mathsf{u})$  este o substituție liberă.

#### Propoziția 3.47

 $\varphi_{\mathsf{x}}(\mathsf{u})$  este formulă a lui  $\mathcal{L}$ .

Noțiunea de substituție liberă evită problemele menționate anterior și se comportă cum am aștepta.



# <sup>T</sup> Propoziția 3.48

Pentru orice termeni  $u_1$  și  $u_2$  și orice variabilă x,

(i) pentru orice termen t,

$$\vDash u_1 = u_2 \to t_{\times}(u_1) = t_{\times}(u_2).$$

(ii) pentru orice formulă  $\varphi$  a.î. x este liberă pentru  $u_1$  și  $u_2$  în  $\varphi$ ,

$$\vDash u_1 = u_2 \to (\varphi_{\mathsf{x}}(u_1) \leftrightarrow \varphi_{\mathsf{x}}(u_2)).$$

#### Propoziția 3.49

Fie  $\varphi$  o formulă și x o variabilă.

(i) Pentru orice termen u substituibil pentru x în  $\varphi$ ,

$$\vDash \forall x \varphi \to \varphi_{\mathsf{x}}(u), \qquad \vDash \varphi_{\mathsf{x}}(u) \to \exists x \varphi.$$

- (ii)  $\vDash \forall x \varphi \to \varphi$ ,  $\vDash \varphi \to \exists x \varphi$ .
- (iii) Pentru orice simbol de constantă c,

$$\vDash \forall x \varphi \to \varphi_x(c), \qquad \vDash \varphi_x(c) \to \exists x \varphi.$$





În general, dacă x si y sunt variabile,  $\varphi$  și  $\varphi_x(y)$  nu sunt logic echivalente: fie  $\mathcal{L}_{ar}$ ,  $\mathcal{N}$  și  $e:V\to\mathbb{N}$  a.î. e(x)=3, e(y)=5, e(z)=4. Atunci

$$\mathcal{N} \models (x \dot{<} z)[e], \text{ dar } \mathcal{N} \not\models (x \dot{<} z)_x(y)[e].$$

Totuși, variabilele legate pot fi substituite, cu condiția să se evite conflicte.

## Propoziția 3.50

Pentru orice formulă  $\varphi$ , variabile distincte x și y a.î.  $y \notin FV(\varphi)$  și y este substituibil pentru x în  $\varphi$ ,

$$\exists x \varphi \bowtie \exists y \varphi_x(y)$$
  $\forall x \varphi \bowtie \forall y \varphi_x(y).$ 

Folosim Propoziția 3.50 astfel: dacă  $\varphi_{\mathsf{x}}(u)$  nu este substituție liberă (i.e.  $\mathsf{x}$  nu este liberă pentru u în  $\varphi$ ), atunci înlocuim  $\varphi$  cu o formulă  $\varphi'$  logic echivalentă a.î.  $\varphi'_{\mathsf{x}}(u)$  este substituție liberă.



Pentru orice formulă  $\varphi$  și orice variabile  $y_1, \ldots, y_k$ , varianta  $y_1, \ldots, y_k$ -liberă  $\varphi'$  a lui  $\varphi$  este definită recursiv astfel:

- ▶ dacă  $\varphi$  este formulă atomică, atunci  $\varphi'$  este  $\varphi$ ;
- dacă  $\varphi = \neg \psi$ , atunci  $\varphi'$  este  $\neg \psi'$ ;
- dacă  $\varphi = \psi \rightarrow \chi$ , atunci  $\varphi'$  este  $\psi' \rightarrow \chi'$ ;
- ightharpoonup dacă  $\varphi = \forall z \psi$ , atunci

$$\varphi'$$
 este 
$$\begin{cases} \forall w \psi_z'(w) & \textit{dacă} \ z \in \{y_1, \dots, y_k\} \\ \forall z \psi' & \textit{altfel}; \end{cases}$$

unde w este prima variabilă din șirul  $v_0, v_1, \ldots,$  care nu apare în  $\psi'$  și nu este printre  $y_1, \ldots, y_k$ .



 $\varphi'$  este variantă a lui  $\varphi$  dacă este varianta  $y_1, \ldots, y_k$ -liberă a lui  $\varphi$  pentru anumite variabile  $y_1, \ldots, y_k$ .

## Propoziția 3.53

- (i) Pentru orice formulă  $\varphi$ , dacă  $\varphi'$  este o variantă a lui  $\varphi$ , atunci  $\varphi \bowtie \varphi'$ ;
- (ii) Pentru orice formulă  $\varphi$  și orice termen t, dacă variabilele lui t se află printre  $y_1, \ldots, y_k$  și  $\varphi'$  este varianta  $y_1, \ldots, y_k$ -liberă a lui  $\varphi$ , atunci  $\varphi'_x(t)$  este o substituție liberă.