Cours de Chimie Générale

- Atomistique
- La Liaison Chimique
- La Réaction Chimique

Chapitre I

Notions d'Atomistique

1- Premières hypothèses sur la structure de la matière

Thalès de Millet (625-547 av. J.-C.):

La matière est uniformément pleine

C'est une combinaison de quatre éléments : eau, feu, air et terre.

Théorie élémentale

Leucippe de Millet (460-370 av. J-C.)

La matière n'est pas uniformément pleine, donc discontinue. Elle est divisée en entités qu'il appela en grec «ατομοζ» (atomos). **Théorie atomiste**

Aristote de Stagire (384-322 av. J.-C.) a repris les idées de la théorie élémentale et sera adoptée jusqu'en 1800

John Dalton (1766-1844) proposa en 1803 la première théorie atomique moderne.

La matière se compose de particules distinctes indivisibles (atomes) séparées par du vide.

2- Constituants de l'atome

Thomson (1856-1940) montra en 1897 que:

Millikan (1868-1953) parvint en 1910 à déterminer les caractéristiques de l'atome :

Electron:

$$m_e = 9,109.10^{-31} \text{ kg}$$

 $q_e = -1,602.10^{-19} \text{ C}$

Atome d'hydrogène

$$m_{H} = 1,674.10^{-27} \text{ kg}$$

$$q_{H+} = +1,602.10^{-19} \text{ C}$$

$$m_{\rm H} / m_{\rm e} = 1837$$

Expérience de Rutherford (1871-1937) en 1910

Explication : Les particules α sont déviées par répulsion électrostatique

- La charge positive occupe un tout petit volume qu'il appela "noyau".
- La majorité de la masse de l'atome est concentrée dans un noyau minuscule.
- La charge totale du noyau est un multiple entier de la charge de l'électron.

Expérience de Rutherford (1871-1937) en 1917 Expérience de Chadwick (1891-1974) en 1932

Modèle planétaire de Rutherford

Constituants de l'atome

Proton: $m_p = 1,672614.10^{-27} \text{ kg}$ $q_p = e = +1,66 \cdot 10^{-19} \text{ C}$

Neutron: $m_n = 1,674920.10^{-27} \text{ kg}$ $q_n = 0$

Electron: $m_e = 9,10938.10^{-31} \text{ kg}$ $q_e = -e = -1,602.10^{-19} \text{ C}$

Symbole d'un élément chimique

A chaque élément chimique, on a associe un symbole :

 ${}_{Z}^{A}X$

X désigne l'indicateur de l'élément chimique

Z désigne le nombre de protons. C'est le *numéro atomique ou nombre de charge*

A désigne le nombre de nucléons (protons + neutons). C'est le nombre de masse A = Z + N

Pour tout élément chimique, la charge du noyau est +Ze Pour un atome (neutre) la charge des électrons sera -Ze.

Exemples

¹⁴ ₇ N	7 protons, 14 - 7 = 7 neutrons et 7 électrons
39 19 ⁺	19 protons, 39 - 19 = 20 neutrons et 19 – 1 =18 électrons
³⁵ ₁₇ C1	17 protons, 35 - 17 = 18 neutrons et 17 + 1 = 18 électrons

20 protons, 40 - 20 = 20 neutrons et 20 - 2 = 18 électrons

Isotopes

Deux isotopes d'un élément chimique possèdent le même numéro atomique Z, donc même nombre de protons.

Deux isotopes d'un élément chimique ne diffèrent alors que par le nombre de neutrons.

Exemples	Isotopes de l'hydrogène	¹ ₁ H	² ₁ H	3 _H
	Isotopes du magnésium	²⁴ Mg	²⁵ Mg	26 12

3- Unité de la quantité de matière

La mole

Une mole d'atomes d'une substance est la quantité de matière contenant N = 6,022.10²³ atomes de cette substance.

L'unité de masse atomique

- On a attribué à un atome de l'isotope ¹²C une masse exacte égale à 12 u.m.a.

1 u.m.a. =
$$\frac{1}{12} \left(\frac{12}{N} \right) = \frac{1}{N} = \frac{1}{6,022.10^{23}} g$$

$$1 \text{ u.m.a.} = 1,66.10^{-27} \text{ kg}$$

$$m_p = 1,00759 \ uma$$

$$m_n = 1,00896 \ uma$$

$$m_e = 5,49.10^4 uma$$

4- Spectres atomiques

Spectre visible de la lumière blanche

Spectre d'absorption de l'hydrogène

Certaines longueurs d'onde sont absorbées

Spectre d'émission de l'hydrogène

Planck (1858-1947) en 1900

Les échanges d'énergie entre la matière et un rayonnement de fréquence v se produisent par quantités discrètes appelées quanta d'énergie hv.

Einstein (1878-1955) en 1905

Tout rayonnement est constitué de particules sans masse dotées d'énergie propre appelés photons. Ces photons absorbés par un matériau peuvent permettre d'extraire des électrons.

L'effet photoélectrique

Un rayonnement électromagnétique a un double caractère puisqu'elle est à la fois onde et corpuscule.

On parle de dualité onde corpuscule.

• Quand un atome absorbe un rayonnement de fréquence v, l'énergie correspondante hv est transférée à l'atome.

Atome + Photon
$$\longrightarrow$$
 Atome excité
E hv $E^* = E + hv$

Quand un atome émet un rayonnement de fréquence v,

Atome excité
$$\longrightarrow$$
 Atome + Photon
E hv

Ces échanges de photons se font à des fréquences v caractéristiques de la nature de l'atome considéré. Elles constituent le spectre de l'atome.

Spectres d'émission

5- Modèle atomique de Bohr (atome d'hydrogène)

✔ Postulat 1: Il existe des orbites stables – orbites stationnaires – pour lesquelles l'énergie de l'électron est bien déterminée et stable.

- ✔ Postulat 3: Le moment cinétique est quantifié
 Le moment cinétique de l'électron ne peut prendre que des valeurs entières

Rayon de l'orbite de l'électron

L'électron circule sur orbite stationnaire stable.

Force attractive
$$\overrightarrow{F}_{a} = -\frac{e^{2}}{4\pi\epsilon_{o}r^{2}}\overrightarrow{u}$$

Force centrifuge
$$\overrightarrow{F_c} = m_e \frac{v^2}{r} \overrightarrow{u}$$

$$\left|\vec{F}_{a}\right| = \left|\vec{F}_{c}\right| \longrightarrow \frac{e^{2}}{4\pi\epsilon_{o}r^{2}} = m_{e}\frac{v^{2}}{r} \longrightarrow v^{2} = \frac{e^{2}}{4\pi\epsilon_{o}rm_{e}}$$

$$m_e vr = n \frac{h}{2\pi} \qquad \longrightarrow \qquad r = \frac{h^2 \epsilon_o}{\pi m_e e^2} \, n^2 = a_o n^2 \quad \longrightarrow \quad v = \frac{e^2}{2\epsilon_o h} \cdot \frac{1}{n} = v_o \cdot \frac{1}{n}$$

$$h = 6,62610^{-34} \text{ J.s}$$
 $\epsilon_0 = 9.10^{-12} \text{(SI)}$ $m_e = 9,109.10^{-31} \text{ kg}$ $e = 1,6.10^{-19} \text{ C}$

$$r_1 = a_0 = 0.53 \text{ Å}$$

$$v_1 = v_0 = 2185 \text{ km.s}^{-1}$$

$$r_n = a_0 n^2$$

$$v_n = v_0 \cdot \frac{1}{n}$$

Le rayon de l'orbite électronique est quantifié

Energie de l'électron dans l'atome d'hydrogène

$$\mathbf{E}_{\mathsf{t}} = \mathbf{E}_{\mathsf{c}} + \mathbf{E}_{\mathsf{p}}$$

Energie cinétique :

$$E_{c} = \frac{1}{2}m_{e}v^{2} = \frac{e^{2}}{8\pi\epsilon_{o}r}$$

Energie potentielle :
$$E_p = -\frac{e^2}{4\pi\epsilon_0 r}$$

$$E_t = -\frac{e^2}{8\pi\epsilon_o r} = -\frac{m_e e^4}{8\pi\epsilon_o^2 h^2} \cdot \frac{1}{n^2}$$

1^{ère} orbite électronique

$$E_1 = E_H = -\frac{m_e e^4}{8\pi\epsilon_0^2 h^2} = -13,6 \text{ eV}$$

nème orbite électronique

$$E_n = \frac{E_H}{n^2} = -\frac{13.6}{n^2} \text{ eV}$$

L'énergie de l'électron est quantifiée.

6- Spectre de l'atome d'hydrogène

L'électron reçoit de l'énergie (un photon hv) pour passer d'une orbite à une autre orbite supérieure

L'électron libère de l'énergie (un photon hv) pour passer d'une orbite à une autre orbite inférieure

Le passage de l'électron d'un niveau à un autre s'accompagne d'une émission ou d'une absorption d'un photon d'énergie hv.

$$|\Delta E| = hv = \frac{hc}{\lambda}$$

Entre deux niveaux $n \rightarrow n'$

$$|\Delta E| = |E_f - E_i| = |E_{n'} - E_n| = \frac{m_e e^4}{8\pi\epsilon_o^2 h^2} \left| \frac{1}{n'^2} - \frac{1}{n^2} \right| = h\nu = h\frac{c}{\lambda}$$

$$\frac{1}{\lambda} = \frac{m_{e}e^{4}}{8h^{3}c\,\varepsilon_{0}^{2}} \left| \frac{1}{n'^{2}} - \frac{1}{n^{2}} \right|$$

$$\frac{1}{\lambda} = R_H \left| \frac{1}{n'^2} - \frac{1}{n^2} \right|$$
 R_H = Constante de Rydberg

Spectre Expérimental de l'hydrogène

Cas d'un hydrogénoïde

$$r = \frac{h^2 \epsilon_o}{\pi m_e e^2} \frac{n^2}{Z} = a_o \frac{n^2}{Z}$$

$$E_t = -\frac{Ze^2}{8\pi\epsilon_o r} = -\frac{m_e Z^2 e^4}{8\pi\epsilon_o^2 h^2} \cdot \frac{Z^2}{n^2} = E_H \frac{Z^2}{n^2}$$

$$\frac{1}{\lambda} = R_H Z^2 \left| \frac{1}{n'^2} - \frac{1}{n^2} \right|$$

Le modèle atomique de Bohr s'applique bien à l'atome d'hydrogène et aux hydrogénoïdes

Le modèle atomique de Bohr ne s'applique pas

- 🕶 aux atomes ayant plus d'un électron
- ren présence d'un champ électrique ou magnétique

Il a fallu trouver un autre modèle pour expliquer les spectre d'émission