מסמך מלווה ללמידת מכונה על MNIST:

מגיש - איתי גלילי

הנחות היסוד שקבעתי לתהליך בניית המודל:

- 1. מודל ANN, כמתבקש בדרישות הפרוייטק.
 - 2. שכבת קלט 28*28 נוירונים

- 3. שכבת פלט 10 נוירונים
- 4. על כן, תהליך המעבר בין השכבות צריך להיות במגמת צמצום נירונים בין שכבה לשכבה.
- CrossEntropyLoss הקוד עושה שימוש ב (Loss Function): קריטריון להפסד. שהוא קריטריון נפוץ עבור בעיות סיווג.
 - :Hyperparameters .6
 - .0.001 נמדדו האופציות 1.00 או Learning rate .a
 - Batch size .b
 - Num of epochs .c
 - relu פונקציית אקטיבציה d.d

תהליך הלמידה:

1. בדיקת תקינות MNIST, טרם הרצת המודלים, נבדוק שיש לנו מספיק דוגמאות לאמן את המודל, נבדוק גם את החלוקה אין הtest train הגיונית:

:1 'כשת מס' 1

number of epochs	קצב למידה:	השכבות:
10	0.01	784
	dropout	128
	NO	64
		10

לקחים –

1. להגדיל את כמות המחזורים ליצירת למידה איכותית יותר.

:2 'רשת מס' 3

number of	קצב למידה:	השכבות:
epochs		
40	0.01	784
	dropout	128
	NO	64
		10

לקחים:

1. אפשר לראות שמאוד מהר הtest מתקשה לרדת מ1.08

לאחר מכאן, ניסיתי לבצע מספר וריאציות של שינויים בספר וגודל השכבות ושינוי בגודל קצב הלמידה:

4. רשת מס' 3

number of	קצב למידה:	השכבות:
epochs		
10	0.005	784
	Dropout	256
	NO	128
		10

4 'סב רשת מס' 5

number of	קצב למידה:	השכבות:
epochs		
40	0.01	784
	Dropout	128
	NO	64
		32
		10

Comparison of Different Architectures

לקחים:

1. ניתן לראות שהבדל בין סוגי השכבות נותן דיוקים שונים (למידה באיכות שונה).

6. הרשתות הבאות (שמהוות את ההרצה הרצינית הראשונה למודל):

עם כמות epochs לכל רשת, כמו כן, חילקתי את הדאטה עם ולידאציה ובחנתי לאחר test:

הרשת בעלת השכבות 784,256,128,10 עם dropout וקצב למידה 0.01 עם תוצאות של 0.075.

7. רשת עם יותר שכבות (784,256,128,64,32,10):

lossi גבוה של 0.158 (פחות טוב מהמודלים הקודמים).

מסקנות ולמידה מהתהליך:

- 1. לחלק את הtrain עם ולידאציה. לא היה נכון להשתמש בtest בתוך התהליך.
- 2. הגדרת early stopping מאפשר להימנע מבזבוז זמן של ריצה שמתחילה להיכנס ל overfitting
 - 3. להבא, לנסות פונקציות אקטיבציה נוספות.
- 4. להגדיר את פונקציות הלמידה עם פרמטרים משתנים, ולהימנע מכתיבת קוד מיותרת שיוצרת סתם בלאגן (פעם אחת לאתחל אבסטרקטית את המודל, ואז לרוץ עם hyper parameters בלבד).
 - 5. להימנע מלהריץ מספר מודלים יחד, זה מעמיס על היכולת לנתח בגרפים.

קישור למחברת:

https://github.com/ItayGalili/MNIST/blob/main/deeplerning1.ipynb