Importing libraries

In [1]:

```
import numpy as np, pandas as pd
import matplotlib.pyplot as plt, seaborn as sns
import warnings
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm

from sklearn.metrics import r2_score
```

In [2]:

```
warnings.filterwarnings('ignore')
```

Import DATASET

```
In [3]:
```

```
df = pd.read_csv("AutoData (1).csv")
```

In [4]:

Viewing an overview of data

df.head()

Out[4]:

	symboling	make	fueltype	aspiration	doornumber	carbody	drivewh			
0	3	alfa-romero giulia	gas	std	two	convertible	r			
1	3	alfa-romero stelvio	gas	std	two	convertible	r			
2	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	r			
3	2	audi 100 ls	gas	std	four	sedan	f			
4	2	audi 100ls	gas	std	four	sedan	4			
5 rows × 25 columns										
4							•			

Basic EDA

In [5]:

```
# Checking the data-types of columns (checking for data-type mismatch)
df.dtypes
```

Out[5]:

symboling int64 make object fueltype object aspiration object doornumber object carbody object drivewheel object enginelocation object wheelbase float64 carlength float64 carwidth float64 carheight float64 curbweight int64 enginetype object object cylindernumber enginesize int64 object fuelsystem boreratio float64 stroke float64 compressionratio float64 horsepower int64 peakrpm int64 citympg int64 highwaympg int64 float64 price

dtype: object

In [6]:

```
# Dimensions of dataset
```

df.shape

Out[6]:

(205, 25)

Since the data-set is quite small, any redundant/high class imbalanced columns must be handled smartly and not dropped

In [7]:

df.info()

In [8]:

Basic statiscal description of numeric columns

df.describe().round(2)

Out[8]:

	symboling	wheelbase	carlength	carwidth	carheight	curbweight	engine
count	205.00	205.00	205.00	205.00	205.00	205.00	20
mean	0.83	98.76	174.05	65.91	53.72	2555.57	12
std	1.25	6.02	12.34	2.15	2.44	520.68	2
min	-2.00	86.60	141.10	60.30	47.80	1488.00	ť
25%	0.00	94.50	166.30	64.10	52.00	2145.00	Ę
50%	1.00	97.00	173.20	65.50	54.10	2414.00	12
75%	2.00	102.40	183.10	66.90	55.50	2935.00	14
max	3.00	120.90	208.10	72.30	59.80	4066.00	32
4							•

```
In [9]:
```

```
# Finding the count and an overview of all the unique segments present in categ
for i in df.select_dtypes('object').columns:
   print(i, '\n')
   print(df[i].nunique())
   print(df[i].unique()[:5])
    print('\n\n')
make
147
['alfa-romero giulia' 'alfa-romero stelvio' 'alfa-romero Quadrif
oglio'
 'audi 100 ls' 'audi 100ls']
fueltype
['gas' 'diesel']
aspiration
['std' 'turbo']
doornumber
['two' 'four']
carbody
['convertible' 'hatchback' 'sedan' 'wagon' 'hardtop']
drivewheel
3
```

```
['rwd' 'fwd' '4wd']
enginelocation
2
['front' 'rear']
enginetype
7
['dohc' 'ohcv' 'ohc' 'l' 'rotor']

cylindernumber
7
['four' 'six' 'five' 'three' 'twelve']

fuelsystem
8
['mpfi' '2bbl' 'mfi' '1bbl' 'spfi']
```

Visualization

Uni-variant analysis

In [10]:

```
# Checking distribution for numeric columns

for i in df.select_dtypes('number'):
    sns.distplot(df[i])
    plt.show()
```


65.0 67.5 carwidth

72.5

75.0

70.0

62.5

60.0

Risk factor (symboling) in our data is quite risky as curve is higher at +ve side

- There are no records at -3 i.e Safest side
- · Also, this column can be treated as a categorical one

Bore Ratio = Bore (Diameter of cylinder)/Stroke (Length of Piston)

 So expect bore ratio and stroke to have high co-relation (negative), if so stroke is a redundant column and can be dropped

Categorical Analysis

Not analysing for make as seen earlier, it has too many columns not easy analysis can be performed

In [11]:

```
# Checking the share of Fuel-type
sns.countplot(x = 'symboling', data = df)
plt.show()
```


Many risky cars rated vehicles are present in data

In [12]:

```
# Checking the share of Fuel-type
sns.countplot(x = 'fueltype', data = df)
plt.show()
```


Majority of the data present is of 'gas' type, so prices will be skewed towards it, hence mean (average) can be a good measure when performing bi-variant analysis

In [13]:

```
# Checking the share of Aspiration
sns.countplot(x = 'aspiration', data = df)
plt.show()
```


There's an imbalance

In [14]:

```
# Checking the share of Door-number
sns.countplot(x = 'doornumber', data = df)
plt.show()
```


More 4-door vehicles are available

In [15]:

```
# Checking the share of Car-body types
sns.countplot(x = 'carbody', data = df)
plt.show()
```


Since 'hardtop' and 'convertible' are <5% of the data, they can be clubbed so that the model can also taken into account this minority class but need to check if the prices tend to foloow the same pattern

In [16]:

```
# Checking the share of Car body
sns.countplot(x = 'carbody', data = df)
plt.show()
```


In [17]:

```
(df['carbody'].value_counts(normalize = True) * 100).round(2)
```

Out[17]:

sedan 46.83 hatchback 34.15 wagon 12.20 hardtop 3.90 convertible 2.93

Name: carbody, dtype: float64

'hardtop' and 'convertibles' need to be inspected for minority class pattern with the target variable

In [18]:

```
# Checking the distribution of Drive-wheel
sns.countplot(x = 'drivewheel', data = df, order = ['fwd', 'rwd', '4wd'])
plt.show()
```


Forward Drives have more data points comparatively

In [19]:

```
# Checking the share of Engine Location
sns.countplot(x = 'enginelocation', data = df)
plt.show()
```


In [20]:

```
(df['enginelocation'].value_counts(normalize = True) * 100).round(2)
```

Out[20]:

front 98.54 rear 1.46

Name: enginelocation, dtype: float64

High data imbalance, need to check for price for 'rear' type of vehicles if it's insightful then need to retain it else can be dropped

In [21]:

```
# Checking the share of Engine-type
sns.countplot(x = 'enginetype', data = df)
plt.show()
```


In [22]:

```
(df['enginetype'].value_counts(normalize = True) * 100).round(2)
```

Out[22]:

```
ohc 72.20
ohcf 7.32
ohcv 6.34
1 5.85
dohc 5.85
rotor 1.95
dohcv 0.49
```

Name: enginetype, dtype: float64

'rotor' and 'dohcv' need to be inspected for minority class pattern with the target variable

In [23]:

```
# Checking the share of Cylinder-number
sns.countplot(x = 'cylindernumber', data = df)
plt.show()
```


In [24]:

```
(df['cylindernumber'].value_counts(normalize = True) * 100).round(2)
```

Out[24]:

four 77.56 six 11.71 five 5.37 eight 2.44 two 1.95 three 0.49 twelve 0.49

Name: cylindernumber, dtype: float64

^{&#}x27;three', 'twelve', 'two' and 'eight' need to be inspected for minority class pattern with the target variable

In [25]:

```
# Checking the share of Fuel-system
sns.countplot(x = 'fuelsystem', data = df)
plt.show()
```


In [26]:

```
(df['fuelsystem'].value_counts(normalize = True) * 100).round(2)
```

Out[26]:

```
mpfi
        45.85
2bbl
        32.20
idi
         9.76
1bbl
          5.37
spdi
         4.39
4bbl
          1.46
spfi
          0.49
          0.49
mfi
```

Name: fuelsystem, dtype: float64

'spfi', 'mfi', '4bbl' and 'spdi' need to be inspected for minority class pattern with the target variable

Bi-variant analysis

In [27]:

```
# Checking impact of Symboling (insurance risk factor) on median price
sns.barplot(x = df['symboling'], y = df['price'], estimator = np.median)
plt.show()
```


In [28]:

Diesel vehicles tend to cost higher though it's count is less

In [29]:

```
# Checking impact of Aspiration type on median price
plt.figure(figsize=(7, 7))
sns.barplot(x = df['aspiration'], y = df['price'], hue = df['fueltype'], estima
plt.show()
```


In [30]:

```
df['aspiration'].value_counts(normalize=True) * 100
```

Out[30]:

std 81.95122 turbo 18.04878

Name: aspiration, dtype: float64

The difference in price between std and turbo for aspiration types is greater relatively due to which it's aggregated price is higher Though the count of std is higher (by approx >4 times) yet it's median price is low

• Perhaps because std types are quite common

In [31]:

```
# Checking impact of Number of Doors on median price
sns.barplot(x = df['doornumber'], y = df['price'], estimator = np.mean)
plt.show()
```


The cost of both the types is approximately same

In [32]:

```
# Checking impact of Aspiration type on median price
sns.barplot(x = df['carbody'], y = df['price'], estimator = np.mean)
plt.show()
```


Since 'hardtop' and 'hatchback' don't follow the same pattern in prices, we can't combine them into a single category on the basis of minority classes

In [33]:

```
# Checking impact of Engine type on median price
sns.barplot(x = df['drivewheel'], y = df['price'], estimator = np.mean)
plt.show()
```


Foward and 4wd tend to follow similar pricing trend

Rear wheel drives has higher pricing

In [34]:

```
# Checking impact of Engine type on median price
sns.barplot(x = df['enginelocation'], y = df['price'], estimator = np.mean)
plt.show()
```


Though the count of rear type is in high minority level, yet it's average pricing is greater than twice the average of front types. Hence, this variable can prove as an important/significant variable for predicting the target

In [35]:

```
# Checking impact of Engine type on median price
sns.barplot(x = df['enginetype'], y = df['price'], estimator = np.mean)
plt.show()
```


In [36]:

```
# Checking impact of Number of cylinder on median price
sns.barplot(x = df['cylindernumber'], y = df['price'], estimator = np.mean)
plt.show()
```


Since 'three', 'twelve', 'two' and 'eight' don't follow the same pattern in prices, we can't combine them into a single category on the basis of minority classes

In [37]:

```
# Checking impact of Fuel type on median price
sns.barplot(x = df['fuelsystem'], y = df['price'], estimator = np.mean)
plt.show()
```


Since 'spfi', 'mfi', '4bbl' and 'spdi' follow the similar price pattern, they can be combined into a single category

In [38]:

```
(df['fuelsystem'].value_counts(normalize = True) * 100).round(2)
```

Out[38]:

```
mpfi
        45.85
2bbl
        32.20
idi
         9.76
1bbl
          5.37
spdi
          4.39
4bbl
          1.46
          0.49
spfi
          0.49
mfi
```

Name: fuelsystem, dtype: float64

In [39]:

In [40]:

```
sns.countplot(x = 'fuelsystem', data = df)
plt.show()
```


In [41]:

```
# Since 'symboling' should be treated as a categorical type ignoring it
temp = df[df.columns[~(df.columns.isin(['symboling']))]]
```

In [42]:

```
temp.shape
```

Out[42]:

(205, 24)

In [43]:

temp.columns

Out[43]:

In [44]:

sns.pairplot(temp)

plt.show()

In [45]:

```
plt.figure()
sns.pairplot(temp, y_vars = 'wheelbase', x_vars = ['carlength', 'curbweight', 'plt.show()
```

<Figure size 432x288 with 0 Axes>

In [46]:

```
plt.figure()
sns.pairplot(temp, y_vars = 'citympg', x_vars = ['horsepower', 'highwaympg'])
plt.show()
```

<Figure size 432x288 with 0 Axes>

citympg has a negative co-relation with horsepower

In [47]:

```
sns.pairplot(temp, vars = ['curbweight', 'enginesize', 'horsepower'])
plt.show()
```


In [48]:

sns.pairplot(temp, y_vars = 'price', x_vars = ['curbweight', 'enginesize', 'hor
plt.show()

curbweight, enginesize and horsepower follow sort of a linear co-relation with target variable with positive co-relation and seems to follow a similar trend

· Need to check for co-relation and VIF

citympg and highwaympg follow sort of a linear co-relation with target variable with negative co-relation and seems to follow a similar trend

· Need to check for co-relation and VIF

In [49]:

```
# Co-relation Matrix
plt.figure(figsize=(15, 9))
sns.heatmap(temp.corr().round(2), cmap = 'magma', annot = True, linewidths = 2)
plt.show()
```


Wheelbase has high positive corelation with carlength, carwidth, horsepower and boreratio this also applies with each other and fairly good positive relation with carheight

Carlength has a mediumly positive co-relation with enginesize while mediumly negative with citympg and highwaympg. Applieas to each other also

Enginesize has very high positive corelation with horsepower and curbweight (as expected)

Boreratio has quite high negative co-relation with citympg and highwaympg

CityMPG and HighwayMPG has high negative or weak positive co-relation with almost all variables

But very high positive co-relation with each

Price has very high positive co-relation with enginesize, curbweight, horsepower, carwidth, carlength

Price has very high negative co-relation with highwaympg

Feature Engineering

```
In [50]:
```

```
df['make'] = df['make'].apply(lambda x: x.split()[0])
```

```
In [51]:
df['make'].value_counts(ascending = True).index
Out[51]:
Index(['Nissan', 'toyouta', 'mercury', 'porcshce', 'vokswagen',
       'renault', 'alfa-romero', 'jaguar', 'chevrolet', 'isuzu',
'porsche',
       'saab', 'plymouth', 'audi', 'bmw', 'buick', 'volkswagen',
'dodge',
       'peugeot', 'volvo', 'subaru', 'honda', 'mitsubishi', 'maz
da', 'nissan',
       'toyota'],
      dtype='object')
       There's a few categories such as porsche and porcshce, toyouta and toyota, etc
               • Both are the same, (spelling mistake/shortforms)
In [52]:
df['make'].nunique()
Out[52]:
28
In [53]:
df['make'].replace(to_replace = ['porcshce', 'toyouta', 'vw', 'vokswagen', 'max
                   value = ['porsche', 'toyota', 'volkswagen', 'volkswagen', 'm
In [54]:
df['make'].nunique()
Out[54]:
```

22

In [55]:

```
plt.figure(figsize = (15, 7))
sns.countplot(df['make'], order = df['make'].value_counts().index)
plt.xticks(rotation = 45)
plt.show()
```


Toyota has the highest count while mercury the lowest

Most manufactures lie between the range 6 - 12

In [56]:

pd.crosstab(df['make'], df['fueltype']).sort_values(by = ['diesel', 'gas']).plo

Out[56]:

<AxesSubplot:ylabel='make'>

being the highest in the 'diesel' category

Toyota has the highest count in 'petrol' category

There are no diesel vehicles post volvo

In [57]:

pd.crosstab(df['make'], df['enginelocation']).sort_values(by = ['rear', 'front'
Out[57]:

<AxesSubplot:ylabel='make'>

Only Porsche has 'rear' engine type of cars

Outlier Analysis

In [58]:

```
sns.boxplot(x = 'symboling', data = df)
plt.show()
```


No outliers present

In [59]:

```
sns.boxplot(x = 'wheelbase', data = df)
plt.show()
```


Very few outliers

In [60]:

```
sns.boxplot(x = 'carlength', data = df)
plt.show()
```


Very few outliers

In [61]:

```
sns.boxplot(x = 'carwidth', data = df)
plt.show()
```


Very few outliers

In [62]:

```
sns.boxplot(x = 'carheight', data = df)
plt.show()
```


No outliers present

In [63]:

```
sns.boxplot(x = 'curbweight', data = df)
plt.show()
```


No outliers present

In [64]:

```
sns.boxplot(x = 'enginesize', data = df)
plt.show()
```


Very few outliers

In [65]:

```
sns.boxplot(x = 'boreratio', data = df)
plt.show()
```


No outliers present

In [66]:

```
sns.boxplot(x = 'stroke', data = df)
plt.show()
```


Few outliers present, once it's co-relation is performed against bore-ratio. We can decide what to do

In [67]:

```
sns.boxplot(x = 'compressionratio', data = df)
plt.show()
```


Let's explore by restricting outlier

In [68]:

```
temp = df[df['compressionratio'] <= np.percentile(df['compressionratio'], 0.95)
temp.shape</pre>
```

Out[68]:

(7, 25)

If we restrict to even 95th percentile, the number of records becomes lesser the one-fourth of the original data, and hence can't be dropped Also, since majority of the data is above 95th percentile, we can't replace it with 1.5*IQR as it'll drastically increase the biasing

In [69]:

```
sns.boxplot(x = 'horsepower', data = df)
plt.show()
```


Very few outliers

In [70]:

```
sns.boxplot(x = 'peakrpm', data = df)
plt.show()
```


Very few outliers

In [71]:

```
sns.boxplot(x = 'citympg', data = df)
plt.show()
```


Very few outliers

In [72]:

```
sns.boxplot(x = 'highwaympg', data = df)
plt.show()
```


Very few outliers

In [73]:

```
sns.boxplot(x = 'price', data = df)
plt.show()
```


We have seen that, there's negligible outliers persent in the data apart from a very few columns

Dummy Enconding

In [74]:

```
df['symboling'] = df['symboling'].astype('object')
```

In [75]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 25 columns):
```

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	object
1	make	205 non-null	object
2	fueltype	205 non-null	object
3	aspiration	205 non-null	object
4	doornumber	205 non-null	object
5	carbody	205 non-null	object
6	drivewheel	205 non-null	object
7	enginelocation	205 non-null	object
8	wheelbase	205 non-null	float64
9	carlength	205 non-null	float64
10	carwidth	205 non-null	float64
11	carheight	205 non-null	float64
12	curbweight	205 non-null	int64
13	enginetype	205 non-null	object
14	cylindernumber	205 non-null	object
15	enginesize	205 non-null	int64
16	fuelsystem	205 non-null	object
17	boreratio	205 non-null	float64
18	stroke	205 non-null	float64
19	compressionratio	205 non-null	float64
20	horsepower	205 non-null	int64
21	peakrpm	205 non-null	int64
22	citympg	205 non-null	int64
23	highwaympg	205 non-null	int64
24	price	205 non-null	float64
d+vn	as: float64(8) in	+64(6) object(1	1 \

dtypes: float64(8), int64(6), object(11)

memory usage: 40.2+ KB

In [76]:

```
dum_df = pd.get_dummies(df.select_dtypes('object'), drop_first=True)
dum_df.head()
```

Out[76]:

	symboling1	symboling_0	symboling_1	symboling_2	symboling_3	make_a
0	0	0	0	0	1	_
1	0	0	0	0	1	
2	0	0	1	0	0	
3	0	0	0	1	0	
4	0	0	0	1	0	

5 rows × 52 columns

In [77]:

```
df = pd.concat([df.loc[:, ~df.columns.isin(df.select_dtypes('object').columns)]
df.head()
```

Out[77]:

	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio
0	88.6	168.8	64.1	48.8	2548	130	3.47
1	88.6	168.8	64.1	48.8	2548	130	3.47
2	94.5	171.2	65.5	52.4	2823	152	2.68
3	99.8	176.6	66.2	54.3	2337	109	3.19
4	99.4	176.6	66.4	54.3	2824	136	3.19

5 rows × 66 columns

Dividing train and test data

```
In [78]:
# Splitting the data
train, test = train_test_split(df, test_size = 0.3, random_state = 100)

In [79]:
df.shape
Out[79]:
(205, 66)
In [80]:
train.shape
Out[80]:
(143, 66)
In [81]:
test.shape
Out[81]:
(62, 66)
```

Normalising the data

Since most of the numerical independent variables are quite normally distributed and there are no columns where the values are strictly between 0 and 1 (except dummy variables), we can go ahead and apply standardization

In [83]:

```
scaler = StandardScaler()
train[norm_vars] = scaler.fit_transform(train[norm_vars])
train.head()
```

Out[83]:

	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	borera
122	-0.811836	-0.487238	-0.924500	-1.134628	-0.642128	-0.660242	-1.2973
125	-0.677177	-0.359789	1.114978	-1.382026	0.439415	0.637806	2.4322
166	-0.677177	-0.375720	-0.833856	-0.392434	-0.441296	-0.660242	-0.2591
1	-1.670284	-0.367754	-0.788535	-1.959288	0.015642	0.123485	0.6251
199	0.972390	1.225364	0.616439	1.627983	1.137720	0.123485	1.2018

5 rows × 66 columns

In [84]:

train.describe().round(2)

Out[84]:

	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	borera
count	143.00	143.00	143.00	143.00	143.00	143.00	143
mean	0.00	0.00	-0.00	0.00	-0.00	-0.00	-C
std	1.00	1.00	1.00	1.00	1.00	1.00	1
min	-2.01	-2.57	-2.51	-2.37	-1.94	-1.57	-2
25%	-0.68	-0.62	-0.86	-0.72	-0.77	-0.68	-C
50%	-0.34	-0.11	-0.20	0.06	-0.25	-0.37	С
75%	0.45	0.71	0.48	0.74	0.72	0.39	C
max	2.87	2.32	2.93	2.29	2.81	4.92	2

8 rows × 66 columns

In [85]:

test[norm_vars] = scaler.transform(test[norm_vars])

```
In [86]:
```

```
# Dividing the predictors and target variable for train dataset

y_train = train.pop('price')
X_train = train

print(y_train.shape)
print(X_train.shape)

(143,)
(143, 65)

In [87]:
# Dividing the predictors and target variable for test dataset

y_test = test.pop('price')
X_test = test
print(y_test.shape)
print(X_test.shape)
print(X_test.shape)
(62,)
(62, 65)
```

6. Model Building

Now, building model by using Recursive Feature Engineering (RFE), selecting top 15 variables that are significant.

In [88]:

```
# Running RFE with the output number of the variable equal to 6

lm = LinearRegression()
lm.fit(X_train, y_train)

rfe = RFE(lm, 15)
rfe = rfe.fit(X_train, y_train)
```

```
In [89]:
```

```
# Overview of significant variables
list(zip(X_train.columns,rfe.support_,rfe.ranking_))
```

Out[89]:

```
[('wheelbase', False, 27),
('carlength', False, 22),
('carwidth', False, 12),
 ('carheight', False, 25),
('curbweight', False, 18),
 ('enginesize', True, 1),
 ('boreratio', False, 9),
 ('stroke', False, 17),
 ('compressionratio', False, 33),
 ('horsepower', False, 41),
 ('peakrpm', False, 35),
 ('citympg', False, 48),
 ('highwaympg', False, 42),
 ('symboling_-1', True, 1),
 ('symboling_0', True, 1),
 ('symboling_1', True, 1),
 ('symboling_2', True, 1),
 ('symboling_3', True, 1),
 ('make_audi', True, 1),
 ('make_bmw', True, 1),
 ('make_buick', True, 1),
 ('make_chevrolet', False, 24),
 ('make_dodge', False, 20),
 ('make_honda', False, 23),
 ('make_isuzu', False, 45),
 ('make_jaguar', False, 26),
 ('make_mazda', False, 39),
 ('make_mercury', False, 51),
 ('make_mitsubishi', False, 11),
 ('make_nissan', False, 36),
 ('make_peugeot', False, 10),
 ('make_plymouth', False, 19),
 ('make_porsche', True, 1),
 ('make_renault', False, 49),
 ('make_saab', True, 1),
 ('make_subaru', False, 14),
 ('make_toyota', False, 40),
 ('make_volkswagen', False, 38),
 ('make_volvo', True, 1),
 ('fueltype_gas', False, 31),
 ('aspiration_turbo', False, 15),
('doornumber_two', False, 44),
```

```
('carbody_hardtop', False, 28),
('carbody_hatchback', False, 21),
('carbody_sedan', False, 29),
('carbody_wagon', False, 30),
('drivewheel_fwd', False, 50),
('drivewheel_rwd', False, 37),
('enginelocation rear', True, 1),
('enginetype_dohcv', False, 4),
('enginetype_1', False, 7),
('enginetype_ohc', False, 43),
('enginetype_ohcf', False, 8),
('enginetype_ohcv', False, 13),
('enginetype_rotor', True, 1),
('cylindernumber_five', False, 6),
('cylindernumber_four', False, 5),
('cylindernumber_six', False, 16),
('cylindernumber_three', False, 3),
('cylindernumber_twelve', False, 2),
('cylindernumber_two', True, 1),
('fuelsystem_2bbl', False, 34),
('fuelsystem_idi', False, 32),
('fuelsystem_mpfi', False, 47),
('fuelsystem_others', False, 46)]
```

Fine Tuning Model

Checking Multicollinearity among significant variables

```
In [90]:
```

```
X_train_rfe = X_train[X_train.columns[rfe.support_]]
```

In [91]:

```
vif = pd.DataFrame()
vif['Features'] = X_train_rfe.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe.values, i) for i in range(X
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[91]:

	Features	VIF
13	enginetype_rotor	inf
14	cylindernumber_two	inf
1	symboling1	1.84
0	enginesize	1.68
8	make_buick	1.65
9	make_porsche	1.65
5	symboling_3	1.54
12	enginelocation_rear	1.53
11	make_volvo	1.39
4	symboling_2	1.21
3	symboling_1	1.19
7	make_bmw	1.18
10	make_saab	1.13
6	make_audi	1.10
2	symboling_0	1.07

In [92]:

```
# Intercept addition

X_train_rfe = sm.add_constant(X_train_rfe)
```

In [93]:

```
# Training the model
lm1 = sm.OLS(y_train,X_train_rfe).fit()
```

In [94]:

Viewing parameter's co-efficients and significance

lm1.summary()

Out[94]:

OLS Regression Results

Dep. Variable: price R-squared: 0.916 Model: OLS Adj. R-squared: 0.906 Method: Least Squares F-statistic: 99.29 **Date:** Sun, 24 Jan 2021 Prob (F-statistic): 1.42e-61 Time: 17:55:20 Log-Likelihood: -26.081 No. Observations: 82.16 143 AIC: **Df Residuals:** BIC: 126.6 128

Df Model: 14

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-1.0705	0.295	-3.628	0.000	-1.654	-0.487
enginesize	0.7018	0.033	21.101	0.000	0.636	0.768
symboling1	0.7821	0.266	2.942	0.004	0.256	1.308
symboling_0	0.9325	0.298	3.125	0.002	0.342	1.523
symboling_1	0.8277	0.300	2.763	0.007	0.235	1.420
symboling_2	0.7018	0.306	2.293	0.024	0.096	1.308
symboling_3	0.8325	0.305	2.731	0.007	0.229	1.436
make_audi	0.8073	0.144	5.595	0.000	0.522	1.093
make_bmw	1.2020	0.136	8.835	0.000	0.933	1.471
make_buick	1.2273	0.182	6.745	0.000	0.867	1.587
make_porsche	1.1008	0.228	4.835	0.000	0.650	1.551
make_saab	0.6850	0.188	3.644	0.000	0.313	1.057
make_volvo	0.9755	0.200	4.874	0.000	0.579	1.372
enginelocation_rear	0.6462	0.379	1.704	0.091	-0.104	1.397
enginetype_rotor	0.5675	0.093	6.119	0.000	0.384	0.751
cylindernumber_two	0.5675	0.093	6.119	0.000	0.384	0.751

```
      Omnibus:
      16.056
      Durbin-Watson:
      1.973

      Prob(Omnibus):
      0.000
      Jarque-Bera (JB):
      27.045

      Skew:
      0.544
      Prob(JB):
      1.34e-06

      Kurtosis:
      4.832
      Cond. No.
      3.67e+16
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.35e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

In [95]:

```
X_train_rfe.shape
Out[95]:
(143, 16)
In [96]:
# Dropping 'enginetype_dohcv'
X_train_rfe.drop('enginelocation_rear', axis = 1, inplace = True)
In [97]:
X_train_rfe.shape
Out[97]:
(143, 15)
```

In [98]:

```
# Adding constant, training model and viewing parameter's co-efficients and sig
X_train_rfe = sm.add_constant(X_train_rfe)
lm1a = sm.OLS(y_train,X_train_rfe).fit()
lm1a.summary()
```

Out[98]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.914
Model:	OLS	Adj. R-squared:	0.905
Method:	Least Squares	F-statistic:	105.1
Date:	Sun, 24 Jan 2021	Prob (F-statistic):	5.62e-62
Time:	17:55:20	Log-Likelihood:	-27.684
No. Observations:	143	AIC:	83.37
Df Residuals:	129	BIC:	124.8
Df Model:	13		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-1.0681	0.297	-3.594	0.000	-1.656	-0.480
enginesize	0.7017	0.034	20.944	0.000	0.635	0.768
symboling1	0.7821	0.268	2.920	0.004	0.252	1.312
symboling_0	0.9299	0.301	3.094	0.002	0.335	1.525
symboling_1	0.8204	0.302	2.719	0.007	0.223	1.417
symboling_2	0.6998	0.308	2.269	0.025	0.090	1.310
symboling_3	0.8478	0.307	2.762	0.007	0.241	1.455
make_audi	0.8092	0.145	5.567	0.000	0.522	1.097
make_bmw	1.2030	0.137	8.777	0.000	0.932	1.474
make_buick	1.2220	0.183	6.668	0.000	0.859	1.585
make_porsche	1.3062	0.195	6.714	0.000	0.921	1.691
make_saab	0.6788	0.189	3.586	0.000	0.304	1.053
make_volvo	0.9731	0.202	4.827	0.000	0.574	1.372

enginetype_rotor	0.5586	0.093	5.988	0.000	0.374	0.743
cylindernumber two	0.5586	0.093	5.988	0.000	0.374	0.743

Omnibus: 14.688 Durbin-Watson: 2.006

Prob(Omnibus): 0.001 Jarque-Bera (JB): 23.096

 Skew:
 0.524
 Prob(JB):
 9.66e-06

 Kurtosis:
 4.667
 Cond. No.
 1.34e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.01e-32. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [99]:
```

```
X_train_rfe.drop('const', axis = 1, inplace = True)
vif = pd.DataFrame()
vif['Features'] = X_train_rfe.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe.values, i) for i in range(X
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[99]:

	Features	VIF
12	enginetype_rotor	inf
13	cylindernumber_two	inf
1	symboling1	1.84
0	enginesize	1.68
8	make_buick	1.65
5	symboling_3	1.52
11	make_volvo	1.39
4	symboling_2	1.21
3	symboling_1	1.19
9	make_porsche	1.19
7	make_bmw	1.18
10	make_saab	1.12
6	make_audi	1.10
2	symboling_0	1.07

In [100]:

```
X_train_rfe.shape
Out[100]:
(143, 14)
In [101]:
# Dropping 'cylindernumber_five'
X_train_rfe.drop('enginetype_rotor', axis = 1, inplace = True)
```

In [102]:

X_train_rfe.shape

Out[102]:

(143, 13)

In [103]:

```
# Adding constant, training model and viewing parameter's co-efficients and sig
X_train_rfe = sm.add_constant(X_train_rfe)
lm1b = sm.OLS(y_train,X_train_rfe).fit()
lm1b.summary()
```

Out[103]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.914
Model:	OLS	Adj. R-squared:	0.905
Method:	Least Squares	F-statistic:	105.1
Date:	Sun, 24 Jan 2021	Prob (F-statistic):	5.62e-62
Time:	17:55:21	Log-Likelihood:	-27.684
No. Observations:	143	AIC:	83.37
Df Residuals:	129	BIC:	124.8
Df Model:	13		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-1.0681	0.297	-3.594	0.000	-1.656	-0.480
enginesize	0.7017	0.034	20.944	0.000	0.635	0.768
symboling1	0.7821	0.268	2.920	0.004	0.252	1.312
symboling_0	0.9299	0.301	3.094	0.002	0.335	1.525
symboling_1	0.8204	0.302	2.719	0.007	0.223	1.417
symboling_2	0.6998	0.308	2.269	0.025	0.090	1.310
symboling_3	0.8478	0.307	2.762	0.007	0.241	1.455
make_audi	0.8092	0.145	5.567	0.000	0.522	1.097
make_bmw	1.2030	0.137	8.777	0.000	0.932	1.474
make_buick	1.2220	0.183	6.668	0.000	0.859	1.585
make_porsche	1.3062	0.195	6.714	0.000	0.921	1.691
make_saab	0.6788	0.189	3.586	0.000	0.304	1.053
make_volvo	0.9731	0.202	4.827	0.000	0.574	1.372

```
cylindernumber_two 1.1171 0.187 5.988 0.000 0.748 1.486
```

 Omnibus:
 14.688
 Durbin-Watson:
 2.006

 Prob(Omnibus):
 0.001
 Jarque-Bera (JB):
 23.096

 Skew:
 0.524
 Prob(JB):
 9.66e-06

 Kurtosis:
 4.667
 Cond. No.
 31.5

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [104]:

```
X_train_rfe.drop('const', axis = 1, inplace = True)
vif = pd.DataFrame()
vif['Features'] = X_train_rfe.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe.values, i) for i in range(X
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[104]:

	Features	VIF
1	symboling1	1.84
0	enginesize	1.68
8	make_buick	1.65
5	symboling_3	1.52
12	cylindernumber_two	1.46
11	make_volvo	1.39
4	symboling_2	1.21
3	symboling_1	1.19
9	make_porsche	1.19
7	make_bmw	1.18
10	make_saab	1.12
6	make_audi	1.10
2	symboling_0	1.07

```
In [105]:
```

```
X_train_rfe.shape
```

Out[105]:

(143, 13)

model Im1g with variables symboling_-1, enginesize, make_buick, symboling_3, cylindernumber_two, make_volvo, symboling_2, symboling_1, make_porsche, make_bmw, make_saab, make_audi, symboling_0 have VIF < 2 and all variables are significant The R squared and adjusted R squared are also almost same. This is a good model. Hence proceeding with residual analysis.

* Equation *:

 $x = -1.068 + enginesize \times 0.7017 + symboling_-1 \times 0.7821 + symboling__0 \times 0 \times 0.6998 + symboling__3 \times 0.8478 + make_audi \times 0.8092 + make_bmw \times 1.203 \times 1.3062 + make_saab \times 0.6788 + make_volvo \times 0.9731 + cylindernumber_tw$

>

In [106]:

```
# Viewing Predictor's co-efficients
lm1b.params
```

Out[106]:

const	-1.068057		
enginesize	0.701693		
symboling1	0.782086		
symboling_0	0.929943		
symboling_1	0.820362		
symboling_2	0.699815		
symboling_3	0.847760		
make_audi	0.809185		
make_bmw	1.202960		
make_buick	1.221990		
make_porsche	1.306203		
make_saab	0.678774		
make_volvo	0.973115		
cylindernumber_two	1.117143		
dtype: float64			

a. Residual Analysis - Train Data

In [107]:

```
# Predicting using train data

X_train_rfe = sm.add_constant(X_train_rfe)

y_train_pred = lm1b.predict(X_train_rfe)
```

In [108]:

```
# Residual calculation
residuals = y_train - y_train_pred
```

In [109]:

```
#Checking if Residuals are normally distributed
plt.figure(figsize = [6,6])
sns.distplot(residuals, bins = 7)
plt.title('Probabilty Distribution of Residuals - Train data')
plt.ylabel('')
plt.show()
```


In [110]:

```
# Checking residual are randomly distributed (no pattern)
plt.figure(figsize = [6,6])
sns.regplot(y_train, y_train_pred, line_kws = {'color': 'r'})
plt.title('Train Data', fontsize = 18)
plt.xlabel('Predicted Y', fontsize = 15)
plt.ylabel('Actual Y', fontsize = 15)
plt.show()
```


From the above plots we can infer that the error terms are normally distributed about the mean ~0 and the predicted and actual values have a almost linear relation hence the model is a good fit and predicts data well.

In [111]:

```
# Checking for residual normality using Q-Q plot on test data
sm.qqplot(residuals, fit = True, line = '45')
plt.title('Train Data')
plt.xlabel('Residuals')
plt.ylabel('Normal data')
plt.show()
```


In [112]:

```
# Checking for homoscedasticity on test data
sns.regplot(y_train_pred, residuals, line_kws = {'color': 'r'})
plt.title('Train Data')
plt.xlabel('Fitted Values')
plt.ylabel('Residuals')
plt.show()
```


Evaluation on Test data

```
In [113]:
```

```
# Columns required for model prediction
req_cols = vif['Features']
```

In [114]:

```
# Constant addition and Predicting

X_test=sm.add_constant(X_test[req_cols])
y_test_pred=lm1b.predict(X_test)
```

b. Residual Analysis - Test Data

In [115]:

```
residuals = y_test - y_test_pred
```

In [116]:

```
# Checking if Residuals are normally distributed

plt.figure(figsize = [6,6])

sns.distplot(residuals)

plt.title('Probabilty Distribution of Residuals - Test Data')
plt.ylabel('')

plt.show()
```

Probabilty Distribution of Residuals - Test Data

In [117]:

```
# Checking residual are randomly distributed (no pattern)
plt.figure(figsize = [6,6])
sns.regplot(y_test, y_test_pred, line_kws = {'color': 'r'})
plt.title('Test Data', fontsize = 18)
plt.xlabel('Predicted Y', fontsize = 15)
plt.ylabel('Actual Y', fontsize = 15)
plt.show()
```


In [118]:

```
# Checking for residual normality using Q-Q plot on test data
sm.qqplot(residuals, fit = True, line = '45')
plt.title('Test Data')
plt.xlabel('Residuals')
plt.ylabel('Normal data')
plt.show()
```


Comparing R² and Adjusted R² between Train and Test data

Testing for over-fitting

In [119]:

```
# R2 - train dataset
print(r2_score(y_train, y_train_pred).round(4) * 100, '%')
```

91.38 %

```
In [120]:
```

```
# R2 - test dataset
print(r2_score(y_test, y_test_pred).round(4) * 100, '%')
```

85.65 %

Adjusted
$$R^2 = 1 - \frac{(1 - R^2)(N - 1)}{N - p - 1}$$

In [121]:

```
# Adjusted R2 - train dataset
print((1 - ((1-r2_score(y_train, y_train_pred))*(X_train_rfe.shape[0])/(X_train_x_train_rfa.shape[0])
```

90.3699999999999 %

In [122]:

88.62 %

Measurement	Train Dataset	Test Dataset	
R^2	91.57 %	85.65 %	
Adjusted R ²	90.37 %	88.62 %	

As seen above the model does a little better on generalisation on the train data.