Section 2.2

The Inverse of a Matrix

The Definition of Inverse

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1. We define the inverse of a matrix in almost the same way.

Definition

Let A be an $n \times n$ square matrix. We say A is invertible (or nonsingular) if there is a matrix B of the same size, such that identity matrix

$$AB = I_n$$
 and $BA = I_n$.

 $AB = I_n \quad \text{and} \quad BA = I_n. \qquad \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$ In this case, B is the **inverse** of A, and is written A^{-1} .

Example

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

I claim $B = A^{-1}$. Check:

$$\begin{split} AB &= \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ BA &= \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \end{split}$$

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Facts:

1. If
$$det(A) \neq 0$$
, then A is invertible and $A^{-1} = \frac{1}{det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

2. If det(A) = 0, then A is not invertible.

Why 1?

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

So we get the identity by dividing by ad - bc.

Example

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot 4 - 2 \cdot 3 = -2 \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}.$$

Solving Linear Systems via Inverses

Solving Ax = b by "dividing by A"

Theorem

If A is invertible, then Ax = b has exactly one solution for every b, namely:

$$x=A^{-1}b.$$

Why? Divide by A!

$$Ax = b \xrightarrow{A^{-1}(Ax)} A^{-1}b \xrightarrow{A^{-1}b} (A^{-1}A)x = A^{-1}b$$

$$Ax = b \xrightarrow{A^{-1}(Ax)} A^{-1}b \xrightarrow{A^{-1}b} A^{-1}b \xrightarrow{A^{-1}b} A^{-1}b$$

$$I_n x = x$$
 for every x -

Example

Solve the system

$$2x + 3y + 2z = 1$$

$$x + 3z = 1$$

$$2x + 2y + 3z = 1$$

$$2x + 3y + 2z = 1 \\
x + 3z = 1 \\
2x + 2y + 3z = 1$$
using
$$\begin{pmatrix}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{pmatrix}^{-1} = \begin{pmatrix}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{pmatrix}.$$

Answer:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}.$$

Some Facts

Say A and B are invertible $n \times n$ matrices.

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$.

Why?
$$(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n$$
.

3. A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.

Why?
$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I_{n}^{T} = I_{n}$$
.

Poll

If
$$A, B, C$$
 are invertible $n \times n$ matrices, what is the inverse of ABC ?

i. $A^{-1}B^{-1}C^{-1}$ ii. $B^{-1}A^{-1}C^{-1}$ iii. $C^{-1}B^{-1}A^{-1}$ iv. $C^{-1}A^{-1}B^{-1}$

$$(ABC)(C^{-1}B^{-1}A^{-1}) = AB(CC^{-1})B^{-1}A^{-1} = A(BB^{-1})A^{-1}$$

= $AA^{-1} = I_n$.

In general, a product of invertible matrices is invertible, and the inverse is the product of the inverses, in the reverse order.

Computing A^{-1}

Let A be an $n \times n$ matrix. Here's how to compute A^{-1} .

- 1. Row reduce the augmented matrix ($A \mid I_n$).
- 2. If the result has the form $(I_n \mid B)$, then A is invertible and $B = A^{-1}$.
- 3. Otherwise, A is not invertible.

Example

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}$$

Computing A^{-1}

$$\begin{pmatrix}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_3 = R_3 + 3R_2}
\begin{pmatrix}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 3 & 1
\end{pmatrix}$$

$$R_1 = R_1 - 2R_3$$

$$R_2 = R_2 - R_3$$

$$R_2 = R_2 - R_3$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & -6 & -2 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 2 & 0 & 3 & 1
\end{pmatrix}$$

$$R_3 = R_3 \div 2$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & -6 & -2 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 1 & 0 & 3/2 & 1/2
\end{pmatrix}$$
So
$$\begin{pmatrix}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{pmatrix}^{-1} = \begin{pmatrix}
1 & -6 & -2 \\
0 & -2 & -1 \\
0 & 3/2 & 1/2
\end{pmatrix}.$$

Check:
$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} \begin{pmatrix} 1 & -6 & -2 \\ 0 & -2 & -1 \\ 0 & 3/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Why Does This Work?

First answer: We can think of the algorithm as simultaneously solving the equations

$$Ax_{1} = \mathbf{e}_{1}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{2} = \mathbf{e}_{2}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{3} = \mathbf{e}_{3}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

Now note $A^{-1}e_i = A^{-1}(Ax_i) = x_i$, and x_i is the *i*th column in the augmented part. Also $A^{-1}e_i$ is the *i*th column of A^{-1} .

Second answer: Elementary matrices.

Elementary Matrices

Definition

An **elementary matrix** is a square matrix E which differs from I_n by one row operation.

There are three kinds, corresponding to the three elementary row operations:

Fact: if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

Example:

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 0 & -3 & -4 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} \xrightarrow{R_2 = R_2 + 2R_1} \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 0 & -3 & -4 \end{pmatrix}$$

Elementary Matrices

Fact: if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

Consequence

Elementary matrices are invertible, and the inverse is the elementary matrix which un-does the row operation.

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_n . In this case, the sequence of row operations taking A to I_n also takes I_n to A^{-1} .

Why? Say the row operations taking A to I_n have elementary matrices E_1, E_2, \ldots, E_k . So

note the order!
$$\longrightarrow E_k E_{k-1} \cdots E_2 E_1 A = I_n$$

$$\implies E_k E_{k-1} \cdots E_2 E_1 A A^{-1} = A^{-1}$$

$$\implies E_k E_{k-1} \cdots E_2 E_1 I_n = A^{-1}.$$

This means if you do these same row operations to A and to I_n , you'll end up with I_n and A^{-1} . This is what you do when you row reduce the augmented matrix:

$$(A \mid I_n) \rightsquigarrow (I_n \mid A^{-1})$$