School of Computing and Information Systems The University of Melbourne

COMP90073 Security Analytics, Semester 2 2022

Assignment 2

Detecting cyberattacks in network traffic data

Student name Minh Tu Nguyen

Student ID **1321154**

STUDENT DECLARATION

I declare that:

- This assignment is my own original work, except where I have appropriately cited the original source.
- This assignment has not previously been submitted for assessment in this or any other subject.

For the purposes of assessment, I give the assessor of this assignment the permission to:

- Reproduce this assignment and provide a copy to another member of staff; and
- Take steps to authenticate the assignment, including communicating a copy of this assignment to a checking service (which may retain a copy of the assignment on its database for future plagiarism checking).

Contents

Task I	1
1. Introduction	1
2. Test set overview with Splunk	1
3. Features engineering	5
3.1. Features generation / encoding	6
3.1.1. Numeric fields	6
3.1.2. String fields	7
3.2. Features analysis	8
3.2.1. Categorical features	8
3.2.2. Numeric features	11
3.3. Features selection	13
3.3.1. Correlation	13
3.3.2. Statistical hypothesis on numeric features	14
3.3.3. Chi2 contigency on categorical features	15
3.3.4. Methods used in KDD competition	16
3.3.5. Mutual Information	16
3.3.6. Features selected for experiment	18
4. Anomaly detection	19
4.1. Experiment setups	19
4.2. Evaluation metrics	20
4.3. iForest	21
4.3.1. iForest and parameters	21
4.3.2. Experiments and results	21
4.3.3. Scores	21
4.3.4. Post-processing and simple thresholding	24
4.4. LOF	25
4.4.1. LOF and parameters	25
4.4.2. LOF as outlier detection and novelty detection	26

4.4.3. Experiments and results	26
4.4.4. Scores	27
4.4.5. Post-processing and simple thresholding	28
5. Discussion	28
6. References	30
Task II	31
1. Introduction	31
2. Aggregating flows	31
3. Detecting bot IP using supervised learning	33
4. Attack the model using FGSM	33
4.1. Choose an IP to perturb features	34
4.2. Generate adversarial samples	35
5. Reproduce the attack flows	36
5.1. Modify/Generate flows	36
5.2. Test the model performance on new flows	39
6. Discussion	39
7. References	39

Task I

1. Introduction

Analysing network traffic is no easy task, as with the increase of internet services, the amount of traffic per day is extremely large. It is nearly impossible for human to supervise all incoming and outgoing traffic. It is of much importance to have an automatic or autonomous solution that helps isolate cyber attack traffic. With the help of machine learning and deep learning, many sophisticated and efficient methods have been proposed. There are two main approaches in using machine learning or deep learning for detecting cyber attack traffic, which are supervised and unsupervised algorithms, each has its own advantages and disadvantages. In the domain of cyber security, the amount of normal data is usually significantly bigger, which will cause the problem of unbalanced data. Moreover, supervised learning algorithms might be efficient when detecting a "known" attack, however, for "unknown" attack, or anomalies, they might suffer. Exhaustive and challenging labelling for data is another reason why some researchers and security analysts prefer unsupervised algorithms.

Task I of this report will discuss using relatively simple unsupervised machine learning algorithms to detect network anomalies. Task I of the report is structured as follows: Section 2 gives an overview of the test dataset, Section 3 performs some feature engineering and feature selection techniques, Section 4 conducts experiments of two simple models: IsolationForest and LOF on 7 sets of selected features, discuss the scores and post-processing technique to improve the detection rate.

It is noteworthy that the Label field of the test dataset is not touched during any phase except the final report of the result, not during the analysis, training or evaluating.

2. Test set overview with Splunk

Ingest the test dataset into Splunk by placing the csv file to the lookups folder of Splunk_ML_Toolkit app folder and use inputlookup command in Splunk ML app to search, or adding folder to Data Inputs and use source command in Search & Report app to search.

Test set records 764723 flows, from 2021-08-12 20:56:02 to 2021-08-12 23:16:19 and from 2021-08-13 00:48:20 to 2021-08-13 01:18:26.

Fig I-1. Total Packets per time span

(1) Top Protocol

| inputlookup t.csv | stats count by Proto | sort -count

Fig I-2. Top Protocol

(2) Top State

| inputlookup t.csv | stats count by State | sort -count

Fig I-3. Top State

Table I-1. Top 10 State

#	State	count
1.	CON	517871
2.	FSPA_FSPA	104486
3.	INT	25966
4.	SRPA_FSPA 17877	
5.	FSA_FSA	14739
6.	S_RA	12307
7.	URP	10414
8.	S_	9972
9.	FSRPA_FSPA	6731
10.	FSPA_FSRPA	4413

(3) Top Sport, Dport

Fig I-4. Top Sport & Top Dport

(4) Top Conversation

inputlookup t.csv
eval Conversation=SrcAddr."|".DstAddr
stats count by Conversation | sort -count

Fig I-5. Top Conversation

(5) TotBytes by Proto per time span (timespan = 1min)

inputlookup t.csv
eval _time=strptime(StartTime,"%Y-%m-%d %H:%M:%S.%6Q") | bin _time span=1m
chart sum(TotBytes) as TotBytes_sum by _time, Proto

Fig I-6. Total bytes transferred by Proto per time span (timespan = 1min)

(6) TotBytes by Conversation per time span (timespan = 1min)

inputlookup t.csv
eval Conversation=SrcAddr."|".DstAddr
eval _time=strptime(StartTime,"%Y-%m-%d %H:%M:%S.%6Q") | bin _time span=1m
chart sum(TotBytes) as TotBytes_sum by _time, Conversation

Fig I-7. Total bytes transferred by Conversation per time span (timespan = 1min)

(7) Total SrcBytes per time span (timespan = 1min)

```
inputlookup t.csv
eval _time=strptime(StartTime,"%Y-%m-%d %H:%M:%S.%6Q") | bin _time span=1m
chart sum(SrcBytes) as SrcBytes_sum by _time
```


Fig I-8. SrcBytes per time span (timespan = 1min)

(8) Total TotBytes per time span

```
inputlookup t.csv
eval _time=strptime(StartTime,"%Y-%m-%d %H:%M:%S.%6Q") | bin _time span=1m
chart sum(TotBytes) as TotBytes_sum by _time, Conversation
```


Fig I-9. TotBytes per time span (timespan = 1min)

(9) Total TotPkts per time span

```
inputlookup t.csv
eval _time=strptime(StartTime,"%Y-%m-%d %H:%M:%S.%6Q") | bin _time span=1m
chart sum(TotPkts) as TotPkts_sum by _time, Conversation
```


Fig I-10. TotPkts per time span (timespan = 1min)

(10) Mean BytesPerPkt by Conversation per time span

| inputlookup t.csv | eval Conversation=SrcAddr."|".DstAddr
| eval BytesPerPkt=TotBytes/TotPkts

Fig I-11. Mean BytesPerPkt by Conversation per time span (timespan = 1min)

3. Features engineering

This section aims to generate set of features used for anomaly detection methods. All features after this step are listed in Table I-2.

	Feature	Туре		Feature	Туре		
1	Dur	float64	2	Proto	object		
3	SrcAddr	object	4	Sport	float64		
5	Dir	object	6	DstAddr	object		
7	Dport	float64	8	State	object		
9	sTos	float64	10	dTos	float64		
11	TotPkts	float64	12	TotBytes	float64		
13	SrcBytes	float64					

Table I-2. Original features

All generated features are listed in Table I-3. (53 features)

Table I-3. All features after generation

	Feature							
Original	Dur	TotPkts	TotBytes	SrcBytes	sTos	dTos		
	Sport	Dport						
Calculated	PktsPerSec	BytesPerSec	BytesPerPkt	SrcBytesPerSec	DstBytes	DstBytesPerSec		
State one-hot encoded	State_CON	State_alltcp	State_INT	State_S_	State_A_	State_ECO		
	State_RED	State_REQ	State_ECR	State_TXD	State_URFIL	State_R_		
	State_URP	State_URHPRO	State_URN	State_RSP	State_URH	State_other		
Generated and one- hot based on State	Flag_nan	Flag_S	Flag_A	Flag_R	Flag_P	Flag_F		
Proto one-hot	Proto_udp	Proto_tcp	Proto_icmp	Proto_rtp	Proto_rtcp	Proto_igmp		
encoded	Proto_arp	Proto_other						
Generated and one-	Service_80	Service_443	Service_21	Service_22	Service_25	Service_6667		
hot based on Dport	Service_other							

3.1. Features generation / encoding

```
The code for this section is in Python, file vv1-1.ft_gen.__train__.ipynb and vv1-
1.ft_gen.__testval__.ipynb. Some features can be generated using splunk command.
```

Machine learning algorithms require all features being represented as numerical. Hence, we need to find a way to encode string fields, as these fields contain much information. In fact, in Section 4, I conduct an experiment on numeric fields only to prove that using the original numeric features to detect anomalous behaviors does not give as good result using the same algorithm.

3.1.1. Numeric fields

(1) PktsPerSec, BytesPerSec, SrcBytesPerSec, BytesPerPkt

As discussed in assignment 1, a bot can have repeated behaviour, which means a lot of flows from bots might have similar number of packets per second or number of bytes per second. The following 4 features can demonstrate the relation between TotPkts, TotBytes, SrcBytes and Dur (Duration); as well as between TotBytes and TotPkts.

- PktsPerSec (number of packets per second)
- BytesPerSec (number of total bytes (both direction) per second)
- SrcBytesPerSec (number of total bytes (from source to destination) per second)
- BytesPerPkt (number of bytes (both direction) per packet)

Use the following Splunk command or Python code to generate the aforementioned features:

```
inputlookup t.csv | eval Conversation=SrcAddr."|".DstAddr
eval PktsPerSec=TotPkts/Dur
eval BytesPerSec=TotBytes/Dur
eval SrcBytesPerSec=SrcBytes/Dur
eval BytesPerPkt=TotBytes/TotPkts
```

(2) sTos and dTos

sTos and dTos indicate the type of service on the host and destination device, respectively. Values of sTos and dTos seen in the dataset are: NaN, 0, 1, 2, 3. sTos can also have value of 192. ToS (Type of Service) is made up of 8 bits, whereas the first 3 bytes are IP precedence and used to define a precedence, and the last 6 bits declare type of service. IP precedence is used to specify class of service (CoS) for each packet. This CoS value will be mapped with the network policy to determine bandwidth allocation and congestion management strategy for the packet. ToS value of 192 is therefore equivalent to 011000000, which means the CoS is 011 (flash), with normal delay, normal throughput, and normal reliability. Normally, the higher value of ToS indicates a more important packet. The ToS assignment is usually defined as close to the edge of the network or the administrative domain as possible, and this value should always be overridden by the network policy within the network, rather than set in the network client. For this reason, we can safely assume high value of ToS (at least the first 3 bits is different from routine class: 000) indicates high priority packets assigned by the network policy. It means these values should not be of our concern considering detecting bots or anomalies. Therefore, I drop all the records with sTos=192.

3.1.2. String fields

Due to the way I deal with string fields before one-hot encoding, I choose a more familiar language to me, which is Python, to preprocess data.

(1) State

The state of a flow represents the status of protocol and flags triggered. For example, for an ICMP connection flow, the state can signify the returning status of the ICMP response; for a TCP connection, the state indicates the direction of the flow and the flags triggered in each direction. For example,

```
CON = Connected (UDP);
INT = Initial (UDP);
URP = Urgent Pointer (UDP);
F = Flag F (FIN) triggered (TCP);
S = Flag S (SYN) triggered (TCP);
P = Flag P (Push) triggered (TCP);
A = Flag A (ACK) triggered (TCP);
R = Flag R (Reset) triggered (TCP);
FSPA = All flags (FIN, SYN, PUSH, ACK) triggered (TCP);
REQ, UNK, URFHIL,... = state of ICMP flows
...
```

Symbol _ in state indicates the direction of the flow. For example, S_ means the flow has direction forward (->) with flag S triggered from SrcAddr to DstAddr (with no packet going back from DstAddr to SrcAddr, as there is no flag triggered in returning direction). Therefore, this field in fact can convey information of both Proto and Dir fields. Intuitively, we want to encode this field in a way that there is no need to encode Proto and Dir fields anymore.

Since with tcp flows, there are many values for State, I break this down into 5 Flag_X fields, with the value of Flag_X = 1 if flag X is triggered in one direction, and Flag_X = 1 if flag X is triggered in both directions. X are [S, A, P, R, F] – all tcp flags.

However, the range of remaining values of State is still very large, due to the fact that one protocol can have multiple response status. Therefore, I choose only top common values of State in train set (values that have over 100 records), all the other values are replaced with other, then one-hot encode this field. It is noted that before choosing top common values, all values of tcp protocol are replaced with alltcp, except for those values of the format: x_ (for example, S_ or A_). Using knowledge from network attack scenarios, S_ flows or A_ flows can indicate that there are only SYN or ACK packets within the flow, which can be a signal of flooding or scanning attack, hence, we do not want to omit this significant information.

It is also noteworthy that we use data from train set to encode fields but do not touch the Label at all. This step of retrieving top common values of State in train set ensures we keep most common values and assume they are normal behaviours.

One problem with encoding all other uncommon values to other is that there may be many infrequent records now become frequent (with the value of other), and more importantly, these infrequent State values can be of different protocols' responses. Therefore, we still need to encode the field Proto, as intuitively, if the record has the same value of Proto, yet the value of State is other, it might be considered abnormal.

(2) Proto

There are many protocols, we should concern only with the most common protocols. Here I choose to keep the top common values of Proto in train set (values that have over 100 records), all the other values are replaced with other, then one-hot encode this field.

(3) Dport to Service

As discovered in Assignment 1, Dport and Proto can be a pattern of an attack. However, Dport range can be large (0-65535), and the value of Dport does not have "magnitude" meaning, in fact, all 65535 values shall have the same meaning, which should be treated as categorical fields. However, it is infeasible to one-hot encode all 65535 values. Instead, I choose only common services to encode (for example, Dport 80 = HTTP Service, Dport 25 = SMTP Service, etc.). I keep 6 values of Dport for mapping to Service: [80,443,21,22,25,6667], all other values are mapped to value other for Service field.

It should be noted here that the field Service is used in addition with the field Dport and Sport. As using only Service field will omit much information if the service is hosted on custom ports (for example, port 8080 can also be used to serve web service etc.). Moreover, this tactic cannot be applied for Sport, as when initialising outgoing request, the machine can use random ports. And although Dport or Sport values do not have "magnitude" meaning (regarding the greater value has more weight), but the magnitude of these values can indicate something. Port numbers can be in the range of 0 to 65353. Port numbers from 0 to 1023 are reserved for well-known services or applications. Port numbers from 1024 to 49151 are called registered ports, they are not assigned but can be registered to prevent duplication. Port numbers from 49152 to 65535 are dynamic ports or ephemeral ports, as these ports are normally not assigned for public services or registered, the operating system uses these ports as temporary ports to return traffic. This means a greater value of Dport shall indicate a more abnormal service (if the direction of traffic is from client IPs to server IPs), or a repeatable value of Sport with similar value of PktsPerSec, BytesPerSec, etc. can indicate a C2 connection via a reverse shell (a reverse shell is running an opening an "abnormal" port on an intra machine).

3.2. Features analysis

This section analyses all the features including newly generated ones on validation set.

The code for this section is in Python, filename vv2-1.ft_sel_1.ipynb.

3.2.1. Categorical features

(1) Proto

Fig I-12. Number of Proto values in normal and attack flows

- The majority of the traffic protocol are udp and tcp.
- Attacks' protocols are tcp and udp with the counts of: 11178 attack flows with tcp protocol, and 330 with udp protocol. The ratio of attack to normal flows is greater with tcp than with udp.

(2) Dir

Fig I-13. Number of Dir values in normal and attack flows

- Majority of the flows are bidirectional or forward.
- Attacks can be either bidirectional or forward, with the counts: 11178 forward and 330 bidirectional. 11178 forward flows are tcp flows, and 330 bidirectional flows use udp protocol.

(3) Service

Fig I-14. Number of Service values in normal and attack flows

- Number of attack flows with respect to Service is: 8162 for Service 80 (HTTP), 861 for Service 25 (SMTP), 431 for Service 443 (HTTPS), 33 for Service 6667 (IRC) and 2021 for other services.

(4) State

Fig I-15. Number of State values in normal and attack flows

- Majority of attacks having S_ state. 8227 attack flows have S_ state, 2951 have alltcp state, and 330 having CON state. These 330 CON flows are 330 udp flows that query DNS and establish UDP connection.

(5) sTos and dTos

Fig I-16. Number of sTos and dTos values in normal and attack flows

- Attacks have sTos of 0 only.
- Attacks can have dTos of 0 or NaN (which is replaced with -1). Number of attack flows having dTos of 0 and -1 are 3355 and 8153 respectively.

3.2.2. Numeric features

(6) Sport, Dport

Fig I-17. Bin plot of Sport and Dport

- Attack flows have smaller range of Sport and Dport.
- Most common value of Dport for attacks is 80.

(7) TotPkts, TotBytes, SrcBytes, Dur (original features)

- Value ranges of these fields are large. Log scale can help visualising better.
- For 3 features TotPkts, TotBytes, SrcBytes, values of attack data are very close to 0, and the range is much narrower compared to normal data.

Fig I-18. Visualisation of TotPkts, TotBytes, SrcBytes, Dur

(8) PktsPerSec, BytesPerSec, SrcBytesPerSec, BytesPerPkt (calculated features)

- Much higher peek in density of a value for attack data compared to normal data.

2) Visualisation of BytesPerSec

Fig I-19. Visualisation of PktsPerSec, BytesPerSec, SrcBytesPerSec, BytesPerPkt

3.3. Features selection

This section applies several techniques to rank the importance of features on the validation set.

3.3.1. Correlation

The code for this section is in Python, filename vv2-1.ft_sel_1.ipynb.

Getting the correlation matrix is a good way to know which features should be considered removed.

Applying pearson correlation on all features (including newly generated) results in a lot of correlation, which is understandable, as new features are generated based on original features.

(1) On original numeric features

In original numeric features, TotPkts and TotBytes have a high correlation.

Fig I-20. Correlation matrix on original features

When pair plotting these two features, we see as the TotPkts increase, TotBytes increase as well, and vice versa. The change is almost linear.

Fig I-21. Pair plot two features

(2) On calculated numeric features

	PktsPerSec	BytesPerSec	SrcBytesPerSec	BytesPerPkt
PktsPerSec	1.000000	0.898077	0.585165	-0.074692
BytesPerSec	0.898077	1.000000	0.686403	0.060703
SrcBytesPerSec	0.585165	0.686403	1.000000	-0.022180
BytesPerPkt	-0.074692	0.060703	-0.022180	1.000000
PktsPerSec PktsPerSec BytesPerSec	SrcBy	PerSec tesPerSec tesPerSec	0.8980766382 0.5851648292 0.6864026841	2967798

Fig I-22. Correlation matrix on calculated numeric features

As TotPkts and TotBytes have high correlation, it is understandable that fields calculated based on these two fields would have high correlation as well, which are PktsPerSec and BytesPerSec. However, SrcBytes originally do not have high correlation with any features, yet its calculated feature SrcBytesPerSec (=SrcBytes/Dur) is now correlated with PktsPerSec and BytesPerSec.

3.3.2. Statistical hypothesis on numeric features

The code for this section is in Python, filename vv2-1.ft_sel_1.ipynb.

We conduct a simple statistical test on each numeric feature, with the assumption of two populations being approximately normally distributed, and test if the means and the standard deviations of the two populations are different. The procedure is as follows:

- We assume the samples are independent, and 2 populations are approximately normally distributed.
 - $\circ Normal = X \sim N(\mu_1, \sigma_1^2)$
 - o $Abnormal = Y \sim N(\mu_2, \sigma_2^2)$
- We conduct an f-test to check if 2 variances are equal.
 - Build hypothesis:

•
$$H_0': \sigma_1^2 = \sigma_2^2$$

•
$$H'_0: \sigma_1^2 = \sigma_2^2$$

• $H'_1: \sigma_1^2 \neq \sigma_2^2$

- \circ Calculate f_{score}
- \circ Calculate p_{value} (denoted as p_1)
- We conduct a 2-sample t-test to check if 2 means are qual.
 - Build hypothesis:

•
$$H_0: \mu_1 = \mu_2$$

•
$$H_1: \mu_1 \neq \mu_2$$

- \circ Calculate t_{score}
 - If 2 variances are equal $\sigma_1^2 = \sigma_2^2$

$$t_{score} = \frac{\overline{x_1} - \overline{x_2} - \Delta}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad where \quad s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2}}$$

If 2 variances are different $\sigma_1^2 \neq \sigma_2^2$ (H_0' is rejected)

$$t_{score} = \frac{\overline{x_1} - \overline{x_2} - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad where \quad s_p = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

 \circ Calculate p_{value} (denoted as p_2)

When analysing the result, we can see that for all features, p_1 is small enough to reject H'_0 , p_2 is small enough to reject H_0 . This means we can draw a conclusion that if 2 populations are approximately normally distributed, they will have different means and standard deviations. These features therefore can be useful for detecting normal and attack flows or groups of flows. This method of analysis is meaningful, especially for Task II when we aggregate multiple flows into one record and use the mean value of aggregated flows for classification.

3.3.3. Chi2 contigency on categorical features

The code for this section is in Python, filename vv2-1.ft_sel_1.ipynb.

We conduct chi2 contigency test to examine the relationship between a categorical feature with the label (normal or abnormal), to see if they are independent or related to each other. This test of dependency between a feature with the label is to tell if the feature's values are distributed similarly across different values of label. For supervised learning models, the more significant dependency can imply that the feature is more meaningful as it represents that two variables share a similar distribution, and we might want to remove the features with low dependency. However, in unsupervised learning, the independency between the distribution of the feature and the label does not necessarily mean the feature is useless, as it indicates some values (of the feature) occur more in one class rather than the

other. When analysing the result, we can see that for all categorical features, the dependency is insignificant.

3.3.4. Methods used in KDD competition

The code for this section is in Python, filename vv2-2.ft_sel_2.ipynb. The code is referenced heavily from https://github.com/solegalli/.

This approach is undertaken by data scientists at the University of Melbourne in the <u>KDD 2009</u> data science competition [1]. This is a simple yet quite efficient method to contemplate the relationship between the feature and the label. The procedure is as follows:

For each categorical variable:

- Separate into train and test
- Compute the mean value of the target within each label of the categorical variable in the train set
- Use that mean target value per label as the prediction (in the test set) and calculate the ROC_AUC.

For each numerical variable:

- Separate into train and test
- Divide the variable into 100 quantiles
- Calculate the mean target within each quantile in the training set
- Use that mean target value / bin as the prediction (in the test set) and calculate the ROC AUC.

The higher value of ROC_AUC indicates the more meaningful features. Running this method on the validation set gives the following result:

State	0.962036
Proto	0.917941
Dir	0.898655
Service	0.869783
dTos	0.822295
sTos	0.501622
dtype: flo	oat64

Fig I-23. Result on categorical features

Dur_binned	0.883219
Sport_binned	0.822717
SrcBytesPerSec_binned	0.811048
PktsPerSec_binned	0.805036
BytesPerSec_binned	0.771623
Dport_binned	0.737811
DstBytesPerSec_binned	0.539700
TotBytes_binned	0.536377
SrcBytes_binned	0.535586
BytesPerPkt_binned	0.505620
TotPkts_binned	0.505019
dTos_binned	0.499927
sTos_binned	0.499427
DstBytes_binned	0.302027
dtype: float64	

Fig I-24. Result on numeric features

3.3.5. Mutual Information

The code for this section is in Python, filename vv2-3.ft_sel_3.ipynb.

(1) On all fields (fs1)

Running MI on all fields (including one-hot fields) results in the most important features as follow:

Fig I-25. Visualisation of importance scores for each feature

The features ranked highest are: dTos, Sport, BytesPerPkt, Dur, BytesPerSec, DstBytesPerSec, PktsPerSec, SrcBytesPerSec.

(2) Mutual information on numeric fields (fs2)

Since multiple the one-hot fields can represent only a string field. We will exclude these fields and apply the selection techniques on remaining numerical fields. The chosen features will be concatenated with the one-hot fields.

Fig I-26. Visualisation of importance scores for each feature

Top 20 features have the highest score are: State_S_, dTos, Proto_tcp, Proto_udp, Service_80, Service_other, State_CON, Service_25, Sport, Flag_S, Flag_R, BytesPerPkt, Dur, Service_6667, BytesPerSec, State_alltcp, DstBytesPerSec, Flag_A, PktsPerSec, SrcBytesPerSec.

3.3.6. Features selected for experiment

In this section, I describe 4 sets of features selected for experiments: fs1, fs2, fs3, fs4.

(1) fs1

After applying multiple techniques to analyse the features, we can see that categorical features are useful, within which 4 fields: State (after preprocessed as described in Section 2), Proto, Dir, Service have the highest relation score according to the method described in Section 3.3.4. Of all the values in these categorical fields, the values State_S_, Proto_tcp, Proto_udp, Service_80, Service_other, etc. (Fig I-26) are ranked highest. Because there can always be differences in the validation set that we use for features analysis and the train/test set, we should not explicitly choose only these fields. Instead, we should keep the one-hot fields of State, Proto, and Service. In case a categorical field has many values to be encoded, we can base on the scores of each one-hot value to determine which one-hot encoded fields to keep and which ones to drop. The one-hot encoded fields I choose for this feature set are: State_CON, State_alltcp, State_INT, State_S_, State_URP, State_ECO, State_other, Flag_nan, Flag_S, Flag_A, Flag_P, Flag_R, Flag_F, Proto_udp, Proto_tcp, Proto_icmp, Proto_other, Service_80, Service_443, Service_21, Service_22, Service_25, Service_6667, Service_other. It is noted that I do not use one-hot encoded fields for Dir, as the information about the flow's direction is implied in State and Flag fields. The numeric features I keep are: sTos, Sport, Dport, TotPkts, TotBytes, SrcBytes, PktsPerSec, BytesPerSec, SrcBytesPerSec, BytesPerPkt.

All features for fs1 are:

```
sTos, Sport, Dport, TotPkts, TotBytes, SrcBytes, PktsPerSec, BytesPerSec, SrcBytesPerSec, BytesPerPkt, State_CON, State_alltcp, State_INT, State_S_, State_URP, State_ECO, State_other, Flag_nan, Flag_S, Flag_A, Flag_P, Flag_R, Flag_F, Proto_udp, Proto_tcp, Proto_icmp, Proto_other, Service_80, Service_443, Service_21, Service_22, Service_25, Service_6667, Service_other
```

(2) fs2

This set is composed of numeric features selected from Section 3.3.5(1) combined with all one-hot encoded features. The final set of features is:

```
dTos, Sport, BytesPerPkt, Dur, BytesPerSec, DstBytesPerSec, PktsPerSec, SrcBytesPerSec, State_CON, State_alltcp, State_INT, State_S_, State_URP, State_ECO, State_RED, State_REQ, State_ECR, State_URH, State_TXD, State_URFIL, State_R_, State_URN, State_RSP, State_URHPRO, State_A_, State_other, Flag_nan, Flag_S, Flag_A, Flag_P, Flag_R, Flag_F, Proto_udp, Proto_tcp, Proto_icmp, Proto_rtp, Proto_rtcp, Proto_igmp, Proto_arp, Proto_other, Service_80, Service_443, Service_21, Service_22, Service_25, Service_6667, Service_other
```

(3) fs3

This set is made up of features selected from Section 3.3.5(2), which are:

State_S_, dTos, Proto_tcp, Proto_udp, Service_80, Service_other, State_CON, Service_25, Sport, Flag_S, Flag_R, BytesPerPkt, Dur, Service_6667, BytesPerSec, State_alltcp, DstBytesPerSec, Flag A, PktsPerSec, SrcBytesPerSec.

(4) fs4

This set consists of numeric features selected from Section 3.3.5(1) combined with 8 one-hot encoded fields selected from MI in Section 3.3.5(2):

```
dTos, Sport, BytesPerPkt, Dur, BytesPerSec, DstBytesPerSec, PktsPerSec, SrcBytesPerSec, State_S_, Proto_tcp, Proto_udp, Service_80, Service_other, State_CON, Service_25, Flag_S
```

This is to compare the models' performance on fs1 (do not explicitly choose selected one-hot encoded fields) and fs4 (explicitly choose 8 selected one-hot encoded fields).

4. Anomaly detection

This section conducts 14 experiments of 2 models on 7 sets of features.

4.1. Experiment setups

7 experiment setups are as follow:

- Exp01: Using numeric features in original data.
- Exp02: Using numeric features.
- Exp03: Using all features (including original and generated).
- Exp04: Using fs1.
- Exp05: Using fs2.
- Exp06: Using fs3.
- Exp07: Using fs4.

Table I-4. Experimentation setups description

	Number of ft	Features
Exp01	8	Dur, sTos, dTos, Sport, Dport, TotPkts, TotBytes, SrcBytes
Exp02	14	Dur, sTos, dTos, Sport, Dport, TotPkts, TotBytes, SrcBytes, PktsPerSec, BytesPerSec, SrcBytesPerSec, BytesPerPkt, DstBytes, DstBytesPerSec
Ехр03	53	Dur, sTos, dTos, Sport, Dport, TotPkts, TotBytes, SrcBytes, PktsPerSec, BytesPerSec, SrcBytesPerSec, BytesPerPkt, DstBytes, DstBytesPerSec, State_CON, State_alltcp, State_INT, State_S_, State_URP, State_ECO, State_RED, State_REQ, State_ECR, State_URH, State_TXD, State_URFIL, State_R_, State_URN, State_RSP, State_URHPRO, State_A_, State_other, Flag_nan, Flag_S, Flag_A, Flag_P, Flag_R, Flag_F, Proto_udp, Proto_tcp, Proto_icmp, Proto_rtp, Proto_rtcp, Proto_igmp, Proto_arp, Proto_other, Service_80, Service_443, Service_21, Service_22, Service_25, Service_6667, Service_other
Exp04	34	dTos, Sport, Dport, TotPkts, TotBytes, SrcBytes, PktsPerSec, BytesPerSec, SrcBytesPerSec, BytesPerPkt, State_CON, State_alltcp, State_INT, State_S_, State_URP, State_ECO, State_other, Flag_nan, Flag_S, Flag_A, Flag_P, Flag_R, Flag_F, Proto_udp, Proto_tcp,

		Proto_icmp, Proto_other, Service_80, Service_443, Service_21, Service_22, Service_25, Service_6667, Service_other
Exp05	47	dTos, Sport, BytesPerPkt, Dur, BytesPerSec, DstBytesPerSec, PktsPerSec, SrcBytesPerSec, State_CON, State_alltcp, State_INT, State_S_, State_URP, State_ECO, State_RED, State_REQ, State_ECR, State_URH, State_TXD, State_URFIL, State_R_, State_URN, State_RSP, State_URHPRO, State_A_, State_other, Flag_nan, Flag_S, Flag_A, Flag_P, Flag_R, Flag_F, Proto_udp, Proto_tcp, Proto_icmp, Proto_rtp, Proto_rtcp, Proto_igmp, Proto_arp, Proto_other, Service_80, Service_443, Service_21, Service_22, Service_25, Service_6667, Service_other
Exp06	20	State_S_, dTos, Proto_tcp, Proto_udp, Service_80, Service_other, State_CON, Service_25, Sport, Flag_S, Flag_R, BytesPerPkt, Dur, Service_6667, BytesPerSec, State_alltcp, DstBytesPerSec, Flag_A, PktsPerSec, SrcBytesPerSec
Ехр07	16	dTos, Sport, BytesPerPkt, Dur, BytesPerSec, DstBytesPerSec, PktsPerSec, SrcBytesPerSec, State_S_, Proto_tcp, Proto_udp, Service_80, Service_other, State_CON, Service_25, Flag_S

4.2. Evaluation metrics

For anomaly detection, it is important to balance between precision and recall of abnormal class and the accuracy of the model. The time of the detected attack can also be important. For example, in practical application, it is acceptable to have lower recall score with higher precision if the model can spot a number of early anomaly traffic to block the IP in time.

However, it is out of the scope of this report to discuss the evaluation metrics for such scenarios. This report will discuss the result and the flows detected as bots in Section 4, but for evaluation, I aim for higher recall score for minority class (anomaly) while keeping the ROC_AUC of the model high (expectedly higher than 75%).

Output of outlier detection has -1 value to indicate outliers. For easier evaluation using the scikit-learn evaluation metrics functions, I convert the output of the model to 0 and 1, where 0 indicates normal flows, and 1 indicates outliers.

The summary result of the 2 models is shown in the Table I-5 and Table I-6 below.

iForest	Exp01	Exp02	Exp03	Exp04	Exp05	Exp06	Exp07
Training time	27.7s	27.4s	46.4s	36.2s	42.6s	31.9s	31.1s
Testing time	9.46s	10.1s	16.2s	10.6s	11.6s	9.8s	9.16s
Recall (class 1)	9.28	15.43	59.32	65.02	58.95	51.99	53.58
Precision (class 1)	2.90	5.31	14.17	17.36	15.48	14.55	15.87
f1 (class 0)	99.22	99.30	99.22	99.33	99.29	99.31	99.35
f1 (class 1)	4.42	7.90	22.88	27.40	24.53	22.74	24.49
AUC	54.04	57.18	78.96	81.91	78.85	75.40	76.24
Accuracy	98.45	98.61	98.45	98.67	98.59	98.63	98.72

Table I-5. iForest results on 7 experiments

Table I-6. LOF (as novelty detection model) results on 7 experiments

LOF	Exp01	Exp02	Exp03	Exp04	Exp05	Exp06	Exp07
Training time	3m16s	4m16s	34m52s	24m36s	34m26s	21m39s	28m23s
Testing time	1m39s	2m12s	17m39s	13m30s	14m	13m42s	12m20s
Recall (class 1)	3.44	10.13	58.17	42.51	58.68	49.73	49.73
Precision (class 1)	1.16	2.49	10.60	7.55	10.88	10.36	11.11
f1 (class 0)	99.24	99.05	98.96	98.87	98.98	99.06	99.12
f1 (class 1)	1.74	3.99	17.93	12.82	18.35	17.14	18.16
AUC	51.14	54.29	78.13	70.24	78.40	74.03	74.09
Accuracy	98.49	98.11	97.94	97.76	97.98	98.14	98.26

4.3. iForest

The algorithm attempts to separate one observation from others by splitting the data points. It randomly selects a feature and then randomly select a split value between the maximum and minimum values of the selected feature. Since the anomalies often don't cluster together, an anomaly can be isolated in a few steps, while a normal observation may require more steps to be separated.

4.3.1. iForest and parameters

The tuning code is in Python, filename vv4.iForest.__1_.ipynb.

The parameters for iForest model (using scikit learn) are $n_estimators$, contamination. After multiple experiments, the chosen parameters are $n_estimators = 35$, contamination = 0.01. It is noted that these parameters are tuned while experimenting on the validation set only. The validation set is split into train and test set with the ratio of 70:30.

4.3.2. Experiments and results

The code for this section is in Python, filename vv5.iforest.__1_.ipynb.

The detailed result for each experiment is demonstrated in the source code file. Table I-7 and Table I-8 show the detail of the best result, which is of Exp04:

Table I-7. Co	nfusion matrix		Table I-8. Cl	assification .	matrix	
752410	9170		precision	recall	f1-score	score
1036	1926	0	0.9986	0.9880	0.9933	761580
		1	0.1736	0.6502	0.2740	2962
		Accuracy			0.9867	764542
		Macro avg	0.5861	0.8191	0.6336	764542
		Weighted avg	0.9954	0.9867	0.9905	764542
		AUC				0.8191

4.3.3. Scores

The code for this section is in Python, filename vv6.after_predict.iforest.ipynb.

Analysing the score of detected records, we see that true bots are scored with lower negative values:

```
-0.311085
             3428
-0.311441
             3149
-0.311626
             3110
-0.316132
             3054
-0.312745
             2897
-0.340814
-0.415229
-0.324897
                1
-0.340646
                1
-0.414406
Name: Score_iForest, Length: 124441, dtype: int64
count
         752410.0000000
             -0.339238
std
              0.032884
min
             -0.464701
25%
             -0.356757
             -0.323950
50%
75%
             -0.313865
             -0.310354
Name: Score_iForest, dtype: float64
```

```
-0.653373
             41
-0.651970
-0.648786
             36
-0.635999
-0.655341
             30
-0.606535
-0.638273
-0.465388
              1
-0.609119
-0.485490
Name: Score_iForest, Length: 598, dtype: int64
         1926.000000
count
           -0.615474
mean
            0.047183
std
min
           -0.718684
25%
           -0.644749
50%
           -0.622359
           -0.603962
75%
           -0.464727
Name: Score_iForest, dtype: float64
```

True normal scores

True bot scores

Fig I-27. Scores by iForest

Using the threshold of 2% outliers, we get the threshold score is -0.44918331. If we set threshold percentiles to 2(%), or the threshold score to -0.44918331, only records that are scored lower than this threshold score (-0.44918331) is classified as bot.

Applying the threshold technique with different threshold percentiles, we get the results illustrated in Table I-9 and Fig I-28.

			11, 5 33				
thresh_p	thresh_score	esh_score Precision (class 1) Recall (class 1) f1 (class 0)		f1 (class 1)	Accuracy	AUC	
-	-	17.36	65.02	99.33	27.40	98.67	81.91
2	-0.44918331	13.51	69.75	99.07	22.64	98.15	84.01
1	-0.47863293	24.05	62.09	99.54	34.67	99.09	80.66
0.5	-0.53062718	46.27	59.72	99.79	52.14	99.58	79.73
0.45	-0.54221799	51.24	59.52	99.81	55.07	99.62	79.65
0.4	-0.55450336	56.98	58.85	99.83	57.90	99.67	79.34

Table I-9. Result when applying different thresholds

Because bots are scored with lower negative values, lower threshold gives higher precision, however, in trade-off of lower recall.

Fig I-28. ROC curve on different thresholds

4.3.4. Post-processing and simple thresholding

The code that applies this technique is in vv6.after_predict.iforest.ipynb.

In most machine learning tasks, pre-processing and post-processing are quite important, as some simple processing can reduce noise and improve the result quite significantly.

For an attack to cause impacts on the server (for example, an attack that performs a CKC (Cyber Kill Chain)), it needs to conduct a series of actions, which means the model should be able to detect multiple flows coming from a true bot as anomalies. In other words, flows detected as bots will be more likely to be bots if they come from the same SrcAddr, as opposed to when only few flows from a SrcAddr are reported as bots, which might be noise. We can do that by considering the ratio of number of flows detected as bots over the total flows from one SrcAddr (p=n_flows_detected/n_flows_total), as well as the number of flows detected as bots from one SrcAddr (n_flows_detected).

It should be noted that this tactic might not work well with DDoS attack detection, and this method of post-processing will require analysing the detected batch after a certain time period (annotated as T_post). Therefore, it will decrease the capability to detect early anomalies if T_post is too large. On the contrary, if T_post is too small, this technique might be useless. It is necessary to choose appropriate T_post and threshold values.

In this experiment, I did not select T_post, I simply apply on the whole set. Table I-10 illustrates the result after applying this technique with respect to each thresh_p. The default threshold I chose for post-processing technique is num_thresh=100 and per_thresh=0.5. num_thresh and per_thresh should be chosen based on analysing data knowing the labels for the optimal use, which makes this technique not precisely unsupervised technique. I did not tune these parameters based on validation set (or any set), instead I just chose random values for num_thresh and per_thresh.

- num_thresh: Only SrcAddr that has more than num_thresh flows detected as bot is classified as bot (n_flows_detected > num_thresh), otherwise consider them as normal.
- per_thresh: Only SrcAddr that has n_flows_detected/n_flows_total > per_thresh detected as bot is classified as bot, otherwise consider them as normal.

ore 1 20. comparison when not applying and applying post processing technique						
thresh_p		No post-processing	Post-processing			
	Precision (class 1)	17.36	67.46			
	Recall (class 1)	65.02	65.02			
	f1 (class 0)	99.33	99.87			
-	f1 (class 1)	27.40	66.22			
	Accuracy	98.67	99.74			
	AUC	81.91	82.45			
	Precision (class 1)	13.51	52.25			
2	Recall (class 1)	69.75	69.75			
	f1 (class 0)	99.07	99.82			

Table I-10. Comparison when not applying and applying post-processing technique

	f1 (class 1)	22.64	59.75
	Accuracy	98.15	99.64
	AUC	84.01	84.74
	Precision (class 1)	24.05	76.02
	Recall (class 1)	62.09	62.09
1	f1 (class 0)	99.54	99.89
1	f1 (class 1)	34.67	68.35
	Accuracy	99.09	99.78
	AUC	80.66	81.01
	Precision (class 1)	46.27	90.39
	Recall (class 1)	59.72	59.72
0.5	f1 (class 0)	99.79	99.91
0.5	f1 (class 1)	52.14	71.93
	Accuracy	99.58	99.82
	AUC	79.73	79.85
	Precision (class 1)	51.24	91.63
	Recall (class 1)	59.52	59.52
0.45	f1 (class 0)	99.81	99.91
0.43	f1 (class 1)	55.07	72.17
	Accuracy	99.62	99.82
	AUC	79.65	79.75
	Precision (class 1)	56.98	93.16
	Recall (class 1)	58.85	58.85
0.4	f1 (class 0)	99.83	99.91
0.4	f1 (class 1)	57.90	72.13
	Accuracy	99.67	99.82
	AUC	79.34	79.41

As predicted, this post-processing technique is quite helpful in cases where recall (class 1) is high and precision (class 1) is low (equivalent to high thresh_p) as this technique is to reduce false alarms, and has less impact when thresh_p is low.

4.4. LOF

The Local Outlier Factor (LOF) algorithm is density-based anomaly detection technique. It calculates the local density deviation of a particular data point with respect to its neighbours. The samples that have a significantly lower density than their neighbours are regarded as outliers.

4.4.1. LOF and parameters

The tuning code is in Python, filename vv4.lof.__1_.ipynb.

The parameters for LOF model (using scikit learn) are n_n eighbors, contamination. Running LOF takes quite much more time compared to iForest, it is difficult to conduct multiple experiments. The chosen parameters are n_n eighbors = 35, contamination = 0.01. It is noted that these parameters are tuned while experimenting on the validation set only. The validation set is split into train and test set with the ratio of 70:30.

4.4.2. LOF as outlier detection and novelty detection

The code for this section is in vv5.lof.__1__.ipynb and vv5.lof.testonly.__1__.ipynb.

Because LOF can be used as both outlier detection and novelty detection (scikit-learn documentation). These are two approaches for anomaly detection, where in outlier detection, the training data contains outliers which are defined as observations that are far from the others, while in novelty detection, the training data is not polluted by outliers and the method detects whether new observations are outliers. Scikit-learn's implementation of LOF as outlier detection does not allow train and test on different sets, but on one dataset only with fit_predict() method. On the contrary, the implementation of LOF as novelty detection has fit() method to fit on train set (expectedly not containing any anomalous samples), and predict() method to predict outliers in test set.

I have experimented using LOF in both ways: as outlier detection and novelty detection. The results show that using LOF as outlier detection (fit_predict() on test set only) gives worse results than when LOF is used as novelty detection (fit() on train set and predict() on test set). The code and detailed experiment results for LOF as outlier detection are in vv5.lof.__1_.testonly.ipynb., for LOF as novelty detection are in vv5.lof.__1_.ipynb. Table I-11 shows the comparison results of LOF being used in two ways. It is noted that for the best use of novelty detection, the train set should not contain any anomaly. Because the requirement of this task is to not use the Label in the train set, the results shown in this section are of training with the train data containing both normal and abnormal samples.

	Exp01 Exp02 Exo03		Exp04		Exp05		Exp06		Exp07					
	OD	ND	OD	ND	OD	OD ND		ND	OD	ND	OD	ND	OD	ND
f1 (class 0)	99.32	99.24	99.32	99.05	99.31	98.96	99.32	98.87	99.31	98.98	99.31	99.06	99.31	99.12
f1 (class 1)	2.49	1.74	2.09	3.99	1.38	17.93	2.09	12.82	1.87	18.35	1.81	17.14	1.40	18.16
AUC	51.73	51.15	51.38	54.29	50.74	78.13	51.38	70.24	51.18	78.40	51.12	74.03	50.75	74.09
Accuracy	98.65	98.49	98.64	98.11	98.63	97.94	98.64	97.76	98.64	97.98	98.64	98.14	98.63	98.26

Table I-11. Results of LOF when used as outlier detection and novelty detection

It can be seen from Table I-11 that when using LOF as outlier detection, there is not much change among different feature sets. On the contrary, when LOF is used as novelty detection, the accuracy varies quite significantly depending on feature sets.

4.4.3. Experiments and results

The code for this section is in Python, filename vv5.lof.__1__.ipynb.

The detailed result for each experiment is demonstrated in the source code file. Table I-12Error!

Reference source not found. and Table I-13Error! Reference source not found. show the detail of the best result, which is of Exp04:

Table I-12. Cor	nfusion matrix	Table I-13. Classification matrix						
747340	14240		precision	recall	f1-score	score		
1224	1738	0	0.9984	0.9813	0.9898	761580		
		1	0.1088	0.5868	0.1835	2962		
		Accuracy			0.9798	764542		
		Macro avg	0.5536	0.7840	0.5866	764542		
		Weighted avg	0.9949	0.9798	0.9866	764542		
		AUC				0.7840		

4.4.4. Scores

The code for this section is in Python, filename vv6.after_predict.lof.ipynb.

Analysing the score of detected records, we see that true bots are scored with lower negative values:

-1.000000	11708
-1.724696	327
-1.940665	318
-2.059889	74
-0.926494	39
-0.992878	1
-1.610417	1
-0.980114	1
-0.987052	1
-1.131971	1
Name: Scor	re_lof, Length: 727248, dtype: int64
count 7	747340.000000
mean	-1.113110
std	0.206653
min	-2.645851
25%	-1.134327
50%	-1.036004
75%	-1.002608
max	-0.094757
Name: Scor	re_lof, dtype: float64

```
-2.889343e+03
-2.897020e+03
-1.075152e+05
-8.170037e+06
-6.795430e+00
-1.272918e+01
-1.839161e+01
-1.311334e+01
-1.022639e+01
-6.196954e+01
Name: Score_lof, Length: 1683, dtype: int64
count
        1.738000e+03
mean
       -4.737092e+05
        2.696559e+06
std
       -4.654950e+07
25%
       -2.870912e+01
50%
       -1.518613e+01
75%
       -5.429338e+00
max
       -2.646778e+00
Name: Score_lof, dtype: float64
```

True normal scores

True bot scores

Fig 1-29. Scores by LOF

Table I-14 illustrated results when applying the threshold technique with different threshold percentiles.

Table I-14. Result when applying different thresholds

thresh_p	thresh_score	Precision (class 1)	Recall (class 1)	f1 (class 0)	f1 (class 1)	Accuracy	AUC
1	1	10.88	58.68	98.98	18.35	97.98	78.40

2	-2.73695291	11.31	58.41	99.02	18.96	98.07	78.31
1	-5.26878301	17.32	44.70	99.48	24.96	98.96	71.93
0.5	-15.53062718	22.21	28.66	99.67	25.03	99.33	64.14
0.45	-20.02304846	20.95	24.34	99.67	22.52	99.35	61.99
0.4	-25.11533590	18.01	18.60	99.68	18.30	99.36	59.14

4.4.5. Post-processing and simple thresholding

The code that applies this technique is in vv6.after_predict.lof.ipynb.

I used the same num_thresh and per_thresh as in iForest experiment (section 4.3.4) for this experiment. Table I-15 illustrates the result after applying this technique with respect to each thresh_p.

Table I-15. Comparison when not applying and applying post-processing technique

thresh_p		No post-processing	Post-processing
	Precision (class 1)	10.88	51.65
	Recall (class 1)	58.68	58.68
	f1 (class 0)	98.98	99.81
-	f1 (class 1)	18.35	54.94
	Accuracy	97.98	99.63
	AUC	78.40	79.23
	Precision (class 1)	11.31	53.71
	Recall (class 1)	58.41	58.41
2	f1 (class 0)	99.02	99.82
2	f1 (class 1)	18.96	55.96
	Accuracy	98.07	99.64
	AUC	78.31	79.11
	Precision (class 1)	17.32	0
	Recall (class 1)	44.70	0
1	f1 (class 0)	99.48	99.75
1	f1 (class 1)	24.96	0
	Accuracy	98.96	99.51
	AUC	71.93	49.95

The same behaviour as demonstrated in Section 4.3.4 is observed. However, for LOF, when thresh_p=1, the model can only identify 1324/2962 flows as bots (recall = 0.45), which is why using per_thresh=0.5 will result in all detected flows are ignored.

5. Discussion

Correctly detected flows are saved at vv6.__1__.iforest.exp04_play.__81.91__.true_bots.csv and vv6.__1__.lof.exp05_mi1.__78.4__.true_bots.csv.

It can be seen that ICMP and TCP scanning flows (SYN scan) are the easiest type of attacks to detect using anomaly detection.

flow=From-Botnet-V45-TCP-Attempt-SPAM	980
flow=From-Botnet-V45-ICMP	812
flow=From-Botnet-V46-TCP-Not-Encrypted-SMTP-Private-Proxy-1	104
flow=From-Botnet-V46-TCP-Attempt	21
flow=From-Botnet-V46-TCP-Attempt-SPAM	6
flow=From-Botnet-V45-TCP-CC106-IRC-Not-Encrypted	2
flow=From-Botnet-V46-TCP-CC1-HTTP-Not-Encrypted	1
Name: LabelStr, dtype: int64	

Fig I-30. Types of attacks correctly identified as anomalies

Fig I-31. Attack flows identified as anomalies

However, DNS requests, web establish requests, or binary download from bots are difficult to be detected. This is understandable, as binary download action is difficult to be acknowledged as malware downloading without knowing the payload. It seems that the model cannot detect C2C communication as well (TCP-CC1-HTTP-Not-Encrypted, TCP-WEB-Established, TCP-CC5-Plain-HTTP-Encrypted-Data, TCP-Established-Custom-Encryption-1, etc.).

Fig I-32. Types of attacks missed

516164	2021-08-12 22:	4! tcp	alltcp		5680	flow=From-Botnet-V45-TCP-CC73-Not-Encrypted	5	0
516181	2021-08-12 22:	4! tcp	alltcp		677	flow=From-Botnet-V45-TCP-CC73-Not-Encrypted	5	0
517268	2021-08-12 22:	5(udp	CON		53	flow=From-Botnet-V45-UDP-DNS	5	0
517628	2021-08-12 22:	5(tcp	alltcp		80	flow=From-Botnet-V45-TCP-Established-HTTP-Ad-40	, 5	. 0
680640	2021-08-13 00:5	tcp a	alltcp	80	flow	=From-Botnet-V46-TCP-HTTP-Google-Net-Established-6	5	0
683768	2021-08-13 00:5	udp (CON	53	flow	=From-Botnet-V46-UDP-DNS	5	0
683777	2021-08-13 00:5	tcp a	alltcp	80	flow	=From-Botnet-V46-TCP-WEB-Established	5	0
684077	2021-08-13 00:5	udp (CON	53	flow	=From-Botnet-V46-UDP-DNS	5	0
684119	2021-08-13 00:5	tcp a	alltcp	80	flow	=From-Botnet-V46-TCP-Established-HTTP-Binary-Download-1	5	0
684620	2021-08-13 00:5	tcp a	alltcp	80	flow	=From-Botnet-V46-TCP-Established-HTTP-Binary-Download-1	5	0

Fig I-33. Examples of Attack flows missed

Detecting C2C communication is a challenging task. It is extremely difficult to distinguish such communications from normal flows as the behaviours at this stage is "less automatic" compared to DDoS or scanning attacks, especially if the C2 server uses trusted certificates. Even if the C2 server uses self-signed certificates, we can only mark such flows as warning. For HTTP plain request, we can analyse the payload to see if any malicious content is transferred. However, if the HTTP payload is encrypted by the attacker's encryption implementation, it can make payload-based detectors suffer. There is a need to combine multiple techniques to prevent intrusions in time, including traffic header/payload analysis, and files' behaviours monitoring.

6. References

[1] H. Miller *et al.*, "Predicting customer behaviour: The University of Melbourne's KDD Cup report," in *Proceedings of KDD-Cup 2009 Competition*, New York, New York, USA, Jun. 2009, vol. 7, pp. 45–55. [Online]. Available: https://proceedings.mlr.press/v7/miller09.html

Task II

1. Introduction

Task II of this report demonstrates how to use supervised models for network traffic classification (normal and attack) and discuss how to bypass such a model. Task II is structured as follow: Section 2 describes how to aggregate flows by Pattern into one aggregated record, uses feature selection techniques to select the best set of features, Section 3 demonstrates the use of a simple model (LogisticRegression) in classifying attack records, Section 4 shows the describes the application of a simple attack method (FGSM) to generate adversarial samples to bypass the model, Section 5 illustrates the process of reproducing the attack flows so that the detection pipeline is completely fooled.

2. Aggregating flows

The features for each flow are generated in the same method as in Task I. However, in Task II, the aim is to detect malicious IP but not traffic flow, one method could be applying the model on flows data and choosing the IP with more than a threshold of flows detected as bot (for example, an IP having more than 50% of flows being classified as bot would be considered as bot IP). This method is quite costly, and the fundamental goal is different. A bot could perform an action not necessarily considered abnormal but follow a pattern. For example, a bot will connect to the C&C server to issue command or sending data. These activities usually happen in interval. In fact, when analysing the train and validation set, we can see repeated patterns every 30 second (in train set) and (in test set)

▼	Start Time	Conversation ▼	Proto ▼	Label Str ▼
138565	2022-07-27 05:31:57.733069	150.35.87.168 -> 127.149.226.168	tcp	flow=From-Botnet-V44-TCP-Attempt
138566	2022-07-27 05:31:57.788240	150.35.87.168 -> 127.149.226.169	tcp	flow=From-Botnet-V44-TCP-Attempt
138567	2022-07-27 05:31:57.798263	150.35.87.168 -> 127.149.226.170	tcp	flow=From-Botnet-V44-TCP-Attempt
138568	2022-07-27 05:31:57.808271	150.35.87.168 -> 127.149.226.171	tcp	flow=From-Botnet-V44-TCP-Attempt
138569	2022-07-27 05:31:57.818338	150.35.87.168 -> 127.149.226.172	tcp	flow=From-Botnet-V44-TCP-Attempt
138570	2022-07-27 05:31:57.828368	150.35.87.168 -> 127.149.226.173	tcp	flow=From-Botnet-V44-TCP-Attempt
138571	2022-07-27 05:31:57.838301	150.35.87.168 -> 127.149.226.174	tcp	flow=From-Botnet-V44-TCP-Attempt
138572	2022-07-27 05:31:57.848433	150.35.87.168 -> 127.149.226.175	tcp	flow=From-Botnet-V44-TCP-Attempt
138573	2022-07-27 05:31:57.858442	150.35.87.168 -> 127.149.226.176	tcp	flow=From-Botnet-V44-TCP-Attempt
138574	2022-07-27 05:31:57.868519	150.35.87.168 -> 127.149.226.177	tcp	flow=From-Botnet-V44-TCP-Attempt
138754	2022-07-27 05:32:18.607911	150.35.87.168 -> 127.149.226.178	tcp	flow=From-Botnet-V44-TCP-Attempt
138755	2022-07-27 05:32:18.708620	150.35.87.168 -> 127.149.226.179	tcp	flow=From-Botnet-V44-TCP-Attempt
138756	2022-07-27 05:32:18.708767	150.35.87.168 -> 127.149.226.180	tcp	flow=From-Botnet-V44-TCP-Attempt
138757	2022-07-27 05:32:18.708772	150.35.87.168 -> 127.149.226.181	tcp	flow=From-Botnet-V44-TCP-Attempt
138758	2022-07-27 05:32:18.708918	150.35.87.168 -> 127.149.226.182	tcp	flow=From-Botnet-V44-TCP-Attempt
138759	2022-07-27 05:32:18.708928	150.35.87.168 -> 127.149.226.183	tcp	flow=From-Botnet-V44-TCP-Attempt
138760	2022-07-27 05:32:18.709001	150.35.87.168 -> 127.149.226.184	tcp	flow=From-Botnet-V44-TCP-Attempt
138761	2022-07-27 05:32:18.709074	150.35.87.168 -> 127.149.226.185	tcp	flow=From-Botnet-V44-TCP-Attempt
138762	2022-07-27 05:32:18.709201	150.35.87.168 -> 127.149.226.186	tcp	flow=From-Botnet-V44-TCP-Attempt
138763	2022-07-27 05:32:18.709276	150.35.87.168 -> 127.149.226.187	tcp	flow=From-Botnet-V44-TCP-Attempt
139072	2022-07-27 05:32:39.638557	150.35.87.168 -> 127.149.226.188	tcp	flow=From-Botnet-V44-TCP-Attempt
139073	2022-07-27 05:32:39.738546	150.35.87.168 -> 127.149.226.189	tcp	flow=From-Botnet-V44-TCP-Attempt
139074	2022-07-27 05:32:39.738638	150.35.87.168 -> 127.149.226.190	tcp	flow=From-Botnet-V44-TCP-Attempt
139075	2022-07-27 05:32:39.738776	150.35.87.168 -> 127.149.226.191	tcp	flow=From-Botnet-V44-TCP-Attempt
139076	2022-07-27 05:32:39.738790	150.35.87.168 -> 127.149.226.192	tcp	flow=From-Botnet-V44-TCP-Attempt
139077	2022-07-27 05:32:39.738893	150.35.87.168 -> 127.149.226.193	tcp	flow=From-Botnet-V44-TCP-Attempt
139078	2022-07-27 05:32:39.738909	150.35.87.168 -> 127.149.226.194	tcp	flow=From-Botnet-V44-TCP-Attempt
139079	2022-07-27 05:32:39.739050	150.35.87.168 -> 127.149.226.195	tcp	flow=From-Botnet-V44-TCP-Attempt
139080	2022-07-27 05:32:39.739234	150.35.87.168 -> 127.149.226.196	tcp	flow=From-Botnet-V44-TCP-Attempt

Fig II-1. Bot records in train set

Ψ.	Start Time 🔻	Conversation y	Proto T	Label Str
40549	2022-07-25 23:58:17.171311	150.35.87.168 -> 84.169.249.201	icmp	flow=From-Botnet-V44-ICMP
107427	2022-07-26 01:01:52.902156	150.35.87.168 -> 150.35.83.12	udp	flow=From-Botnet-V44-UDP-DNS
109653	2022-07-26 01:04:13.488181	150.35.87.168 -> 150.35.83.12	udp	flow=From-Botnet-V44-UDP-DNS
109658	2022-07-26 01:04:13.610498	150.35.87.168 -> 77.210.4.21	tcp	flow=From-Botnet-V44-TCP-WEB-Established
109664	2022-07-26 01:04:13.963712	150.35.87.168 -> 150.35.83.12	udp	flow=From-Botnet-V44-UDP-DNS
109665	2022-07-26 01:04:14.065630	150.35.87.168 -> 77.210.4.21	tcp	flow=From-Botnet-V44-TCP-WEB-Established
258676	2022-07-26 04:32:40.178019	150.35.87.168 -> 122.60.75.29	icmp	flow=From-Botnet-V44-ICMP
531153	2022-07-26 10:27:52.522377	150.35.87.168 -> 205.106.55.150	icmp	flow=From-Botnet-V44-ICMP
941614	2022-07-26 18:44:48.824258	150.35.87.168 -> 90.7.206.69	icmp	flow=From-Botnet-V44-ICMP
1106325	2022-07-26 23:09:22.481392	150.35.87.168 -> 150.35.83.12	udp	flow=From-Botnet-V44-UDP-DNS
1106362	2022-07-26 23:09:26.980818	150.35.87.168 -> 150.35.83.12	udp	flow=From-Botnet-V44-UDP-DNS
1106363	2022-07-26 23:09:26.984072	150.35.87.168 -> 98.103.251.27	tcp	flow=From-Botnet-V44-TCP-WEB-Established

Fig II-2. Bot records in validation set

To detect attack patterns, we can check the mean value of aggregated flows. If these mean values are similar, it might indicate repeated behaviour. The idea of aggregating flows by SrcAddr using time window is introduced in the work of [2]. In this report, I aggregate by Conversation, Proto and State. If aggregating only by SrcAddr, it might be more complicated to represent the Proto and State values of all the flows been grouped together.

The same technique of generating and encoding features in task I is used for this task. The feature engineering step is conducted on train and validation set. After the analysis, selected features are:

BytesPerPkt_mean, PktsPerSec_mean, BytesPerSec_mean, Sport_max, Sport_mean, n_flows,

BytesPerPkt_max, BytesPerSec_max, SrcBytesPerSec_max, P_tcp, P_udp, P_other, S_CON, S_alltcp,

S_INT, S_RED, S_other, S_ECO

The selected values for time window-width and window-stride are 7200 and 3600 seconds (2-hour-width and 1-hour-stride), respectively.

It is noted that because the aim of the model in this task is to detect attack patterns (repeated behaviours), and given that we choose a wide time window, we assume within the selected time window, a bot will repeat its behaviour at least once. Therefore, all the aggregated records whose total_flows = 1 will be dropped. This significantly reduces the number of records in our dataset. This action takes the risk of omitting repeated behaviour occurring within more than 2 hours. Therefore, it should be carefully done after analysing the captured data and with appropriate time window width.

3. Detecting bot IP using supervised learning

Because we choose to aggregate by Conversation, the model will classify a conversation rather than an IP. A simple LogisticRegression model is used, with class_weight parameter set to balanced, to assign a suitable weight for each class to handle imbalanced data.

The train and validation set are merged and split with ratio 70:30 into train_split and test_split for training and evaluation.

The model's result is demonstrated in Table II-1. (class 1 is bot, class 0 is normal)

	train_split	test_split	test
AUC	95.35	95.29	97.39
Accuracy	90.69	90.58	94.80
Recall (class 1)	100.00	100.00	100.00

Table II-1. Model result on Train and Test set

4. Attack the model using FGSM

There are two types of adversarial attack: One is untargeted attack, where we only aim for the model to not classify the sample as true label. The other is targeted attack, where we aim for the model to classify the sample as one specific class. In this task we need to fool the model into misclassifying the true bots as

normal (specific class). Since the model used is binary classifier, performing an untargeted attack will help us achieve the goal of targeting attack as well.

In this report I used a simple method to generate adversarial samples which is Fast Gradient Sign Method (FGSM). FGSM aims to add noise to the data to trick the model into misclassifying an input. To do that, the noise should have the same direction as the gradient of the cost function with respect to the data. This is to increase the loss of the model's prediction of the true label (bot); hence it will result in predicting the tampered input as the other label (normal).

To constrain the perturbation that the noise creates to the original data, an epsilon value is used to scale the noise. Epsilon should be small to create as little change in data as possible.

The formula of FGSM is as follows:

$$x_{adv} = x + \epsilon * sgn(\nabla_x L(\theta, x, y))$$

where x is the original input we would like to perturb to fool the model. x_{adv} is the perturbed sample from x, ϵ is a small value we use to control the noise, y is the true label of x, $L(\theta, x, y)$ is the loss function of model θ with input x.

4.1. Choose an IP to perturb features

The code for this section is in u4-6.ipynb.

To select a sample from the model output, we analyse the records predicted as bots.

First, a simple threshold is applied, we keep only those records whose bot score (score for class 1) is greater than 0.75 (high confidence). The model result is increased as follow.

Table II-2. Original result of model output on test set

	precision	recall	f1-score	Score
0	1.0000	0.9479	0.9732	18166
1	0.0596	1.0000	0.1125	60
Accuracy			0.9480	18226
Macro avg	0.5298	0.9739	0.5429	18226
Weighted avg	0.9969	0.9480	0.9704	18226
AUC				0.9739

Table II-3. New result on test set after applying scoring threshold

	precision	recall	f1-score	Score
0	1.0000	0.9620	0.9806	18166
1	0.0799	1.0000	0.1480	60
Accuracy			0.9621	18226
Macro avg	0.5399	0.9810	0.5643	18226
Weighted avg	0.9970	0.9621	0.9779	18226
AUC				0.9810

Then for each conversation, we compute how many aggregated records are marked as bots.

	n_agg_total	n_agg_detected	n_flows_total	n_flows_detected	p_agg
41.232.73.23 -> 150.35.87.168	60	60	120	120	1.000000
150.35.87.62 -> 189.216.27.38	5	5	28	28	1.000000
150.35.87.62 -> 101.204.145.180	4	4	10	10	1.000000
150.35.87.62 -> 210.49.127.175	4	4	10	10	1.000000
150.35.87.62 -> 44.135.158.222	4	4	19	19	1.000000
150.35.87.174 -> 72.168.158.73	15	1	200	2	0.066667
150.35.87.62 -> 77.128.235.216	15	1	498	2	0.066667
150.35.87.62 -> 209.3.175.130	44	2	88	4	0.045455
150.35.87.174 -> 150.35.83.12	69	2	65130	4	0.028986
150.35.87.174 -> 88.229.62.197	53	1	914	2	0.018868
361 rows × 5 columns					

Fig II-3. Statistics of detected records by each conversation

p_agg is computed as n_agg_detected / n_agg_total.

We can see from the table above conversation 41.232.73.23 -> 150.35.87.168 has p_agg=1 (all records are marked as bot behaviours), and also, the number of aggregated records being labelled as malicious is much higher than the others. 2 IPs 41.232.73.23 (SrcAddr) and 150.35.87.168 (DstAddr) are also the only 2 IPs whose all the records are marked as bot.

Therefore, conversations between these two IPs are chosen to generate adversarial samples.

4.2. Generate adversarial samples

The code to generate adversarial samples is in vv4-7.adversarial.ipynb. The steps are:

- Choose an IP address that we want to trick the model into misclassifying.
- Select records to compute adversarial samples.
- Compute direction matrix.
- Compute adversarial samples with chosen epsilon values.
- Retrieve the model's output.

Table II-4. Adversarial attack results with respect to different epsilon

epsilon	Number of perturbed samples successfully exploit the model					
0.000020	3/60	5.00%				
0.000021	6/60	10.00%				
0.000022	59/60	98.33%				
0.000023	60/60	100.00%				

With epsilon=0.000023, all perturbed samples can successfully fool the model.

However, this is the values after being processed. The following section will demonstrate how to reproduce raw values and attack flows based on the computed processed values.

5. Reproduce the attack flows

5.1. Modify/Generate flows

The code that demonstrates the process of reproducing attack flows is in u4-7.adversarial.ipynb.

In the security domain, the data are preprocessed into numeric features. Hence, after getting an adversarial sample that can fool the model, it can be challenging to reproduce flows that can bypass the model after being preprocessed, yet still be able to retain the malicious functionality.

We select an aggregated record to demonstrate how to reproduce an attack flow that can bypass the model. The aggregated records having a smaller value of n_{flows} can suggest easier reproduction. Because all the records have the same n_{flows} value of 2 (Fig II-4), we randomly select a record (Fig II-5).

				_		, 0	• •	•		
	SrcAddr	DstAddr	State	Proto	n_flows	StreamID_unique	Sport_nunique	Sport_mean	Label	window_id
2218	41.232.73.23	150.35.87.168	alltcp	tcp	2	[1976 51591]	2	6668.0	5	0
3615	41.232.73.23	150.35.87.168	alltcp	tcp	2	[51591 84191]	2	6666.5	5	1
4322	41.232.73.23	150.35.87.168	alltcp	tcp	2	[84191 101058]	2	6667.0	5	2
4675	41.232.73.23	150.35.87.168	alltcp	tcp	2	[101058 109906]	2	6667.5	5	3
4777	41.232.73.23	150.35.87.168	alltcp	tcp	2	[109906 115675]	2	6667.5	5	4
4933	41.232.73.23	150.35.87.168	alltcp	tcp	2	[115675 121315]	2	6667.0	5	5
5080	41.232.73.23	150.35.87.168	alltcp	tcp	2	[121315 127423]	2	6667.5	5	6
5164	41.232.73.23	150.35.87.168	alltcp	tcp	2	[127423 132401]	2	6667.0	5	7
5243	41.232.73.23	150.35.87.168	alltcp	tcp	2	[132401 179483]	2	6665.5	5	8
5310	41.232.73.23	150.35.87.168	alltcp	tcp	2	[179483 191231]	2	6665.5	5	9
5373	41.232.73.23	150.35.87.168	alltcp	tcp	2	[191231 198879]	2	6667.0	5	10
5437	41.232.73.23	150.35.87.168	alltcp	tcp	2	[198879 206653]	2	6668.5	5	11
5491	41.232.73.23	150.35.87.168	alltcp	tcp	2	[206653 214274]	2	6667.0	5	12
5549	41.232.73.23	150.35.87.168	alltcp	tcp	2	[214274 235458]	2	6667.0	5	13
5610	41.232.73.23	150.35.87.168	alltcp	tcp	2	[235458 242887]	2	6668.5	5	14
5675	41.232.73.23	150.35.87.168	alltcp	tcp	2	[242887 250728]	2	6668.5	5	15
5750	41.232.73.23	150.35.87.168	alltcp	tcp	2	[250728 258696]	1	6668.0	5	16
5829	41.232.73.23	150.35.87.168	alltcp	tcp	2	[258696 266623]	1	6668.0	5	17
5898	41.232.73.23	150.35.87.168	alltcp	tcp	2	[266623 274907]	1	6668.0	5	18
5976	41.232.73.23	150.35.87.168	alltcp	tcp	2	[274907 283187]	2	6666.5	5	19
6067	41.232.73.23	150.35.87.168	alltcp	tcp	2	[283187 291371]	2	6667.0	5	20
6164	41.232.73.23	150.35.87.168	alltcp	tcp	2	[291371 299722]	2	6668.5	5	21
6278	41.232.73.23	150.35.87.168	alltcp	tcp	2	[299722 309916]	2	6666.0	5	22
6382	41.232.73.23	150.35.87.168	alltcp	tcp	2	[309916 318812]	2	6665.0	5	23
6585	41.232.73.23	150.35.87.168	alltcp	tcp	2	[318812 329788]	2	6666.5	5	24
6813	41.232.73.23	150.35.87.168	alltcp	tcp	2	[329788 339180]	2	6666.5	5	25
6994	41.232.73.23	150.35.87.168	alltcp	tcp	2	[339180 356440]	2	6667.5	5	26
7217	41 232 73 23	150 35 87 168	allton	tcn	2	[356440 366439]	2	6666 5	5	27

Fig II-4. All selected aggregated records have the same n_flows

i	ndex	Co	onversation	SrcAddr	DstAddr	State	Proto	n_flows	StreamID_unique	Sport_nunique	Sport_mean	 P_udp	P_other	S_CON	S_alltcp	S_INT	S_RED	S_other	S_ECO	Label	Label_Pred
	2218	41.232.73.23 -> 15	50.35.87.168	41.232.73.23	150.35.87.168	alltcp	tcp		[1976 51591]		6668.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0		
row	s × 92 (columns																			

Fig II-5. Selected aggregated record

Two flows being aggregated into this record are:

Fig II-6. Selected flows

As the model takes in 18 features: BytesPerPkt_mean, PktsPerSec_mean, BytesPerSec_mean, Sport_max, Sport_mean, n_flows, BytesPerPkt_max, BytesPerSec_max, SrcBytesPerSec_max, P_tcp, P_udp, P_other, S_CON, S_alltcp, S_INT, S_RED, S_other, S_ECO

where P_tcp, P_udp, P_other, S_CON, S_alltcp, S_INT, S_RED, S_other, S_ECO are generated from categorical features Proto and State. Assume these values are critical for a network flow (or packet) to function correctly, we will retain values for these fields. When we analyse two flows being aggregated into one record, we see the Sport value looks like a service port, which should not be changed as well.

The value of n_{flows} can be changed but can only be increased (to ensure the bot intention is retained).

After choosing to retain 11 features: Sport_max, Sport_mean, P_tcp, P_udp, P_other, S_CON, S_alltcp, S_INT, S_RED, S_other, S_ECO, the minimum value for epsilon so that this record can bypass the model is 0.00005.

With epsilon=0.00005, perturbed values for 6 changeable features are:

	Processed va	lue	Values for aggregated record				
Features	New value	Changes	New value	Old value			
BytesPerPkt_mean	5.28652304e-02	-5.e-05	80.970593	81.047175			
PktsPerSec_mean	5.00845864e-05	5.e-05	25.010623	0.04224			
BytesPerSec_mean	5.00180146e-05	5.e-05	9916.089546	3.571398			
BytesPerPkt_max	5.65317162e-02	5.e-05	88.585199	88.506849			
BytesPerSec_max	5.00186306e-05	5.e-05	14750.948178	5.494345			
SrcBytesPerSec_max	5.00089598e-05	5.e-05	14743.93356	2.641583			
n_flows	5e-05	5.e-05		2			

Table II-5. Computed processed values and changes with epsilon=0.00005

The new value for aggregated record column indicates the minimum value (if the change is > 0) or maximum value (if the change is < 0) that the new aggregated record must have to exploit the model (1)

The original value of n_flows is small (= 2), and is encoded into 0 using MinmaxScaler; the new processed value for processed n_flows is 5e-5 is larger than the original encoded value. Therefore, we will not compute the new value for n_flows; instead, from (1), we assume changes in n_flows (that either result in changing the processed value or not) would not affect the result.

We can infer from Table II-5 that in order to reproduce the attack, the BytesPerPkt_mean value needs to decrease, while BytesPerPkt_max needs to increase, in order to retrieve this, we will need to increase the

BytesPerPkt value of one flow from Fig II-6, and add another flow with value smaller than current BytesPerPkt_min to reduce the mean value.

We can see from Table II-5 that 2 features witness the changes in 2 aggregated values, mean and max, which are BytesPerSec and BytesPerPkt. In order to perform changes in two aggregated values of 1 feature, we might need to either add 2 flows or add 1 flow and modify the value of an existing flow. Since we need to manipulate 4 aggregated values, we need to insert a minimum of 2 flows. We, therefore, will use these 2 flows to manipulate these features without touching these features of the original flows. We notice that for other features, the changes are quite large, we will use the inserted flows to perturb these values as well.

The final flows needed in order should be:

BytesPerPkt PktsPerSec **BytesPerSec** SrcBytesPerSec 1976 73.587500 0.022401 1.648452 1.050058 51591 88.506849 0.062078 5.494345 2.641583 #1 (change max) 14743.93356 88.585199 49.97901 14750.948178 #2 (change mean) 73.202824 49.97901 24906.267209 Aggregated values need to change 88.585199 Max 14750.948178 14743.93356 Mean 80.970593 25.010623 9916.089546

Table II-6. Calculated features values for inserted flows to change aggregated values

We see that in order to change the mean of BytesPerSec to 9916.0895, we would need to change the value of BytesPerSec for the #2 inserted flow to 24906.2672, which is larger than the max value (14750), but it should not be a problem as the BytesPerSec_max value of the aggregated record will then increase (to 24906.2672), which will lead to the change in the same intended direction after it is processed.

Combining with other fields, we retrieve 4 flows as follows to reproduce the attack:

	BytesPerPkt	PktsPerSec	BytesPerSec	SrcBytesPerSec	Sport	Proto	State
1976	73.587500	0.022401	1.648452	1.050058	6667	tcp	PA_PA
51591	88.506849	0.062078	5.494345	2.641583	6669	tcp	PA_PA
#1	88.585199	49.97901	14750.948178	14750.948178	6667	tcp	PA_PA
#2	73.202824	49.97901	24906.267209	24906.267209	6669	tcp	PA_PA

Table II-7. Raw values for 4 flows within a window

Proto and State values must remain the same (so that 4 flows would be aggregated together). As noticed, the value of State is PA_PA, which means it needs the response from the DstAddr. Because of this reason, we will fill 6667 and 6669 in Sport fields for two inserted flows to remain the mean and max value as well as to ensure the service port is open for the flows to have two directions (if we fill 6668 instead, the mean and max will not change but there is no guarantee that the service port is open, and there will be less chances that the flow would have the same State value).

Because we are aiming to fool the model into misclassifying the first aggregated record, we arrange the inserted flows in a way that it will appear in the first window, but not in the second one. The final flows (for the first window) are stored in result/dfo_new1.csv.

5.2. Test the model performance on new flows

The code to test the model performance on new flows is in u4-8.test-attack.ipynb.

We feed the flows to the pipeline of the program to test the model performance, we can see how the model has been tricked into misclassification.

Fig II-7. Model misclassified the attack flows as expected

6. Discussion

The example in this section demonstrates how to reproduce the attack flows to trick the model.

However, this report only reproduces the [...]PerSec fields, but not the original TotPkts, TotBytes, SrcBytes and Dur fields. It is difficult to reproduce both values of TotPkts and Dur without assuming one value. We can analyse the average Dur value and craft the packets to change TotPkts and SrcBytes accordingly. To craft the SrcBytes, we must also know in advance the DstBytes, which could be calculated by sending a request to the server to retrieve default response. In other words, DstBytes should be based on the response of the DstAddr.

Moreover, it can be seen that generated flows have to have high SrcBytesPerSec. (at least one flow has to achieve SrcBytesPerSec=14750.948178). However, to achieve such a high value for SrcBytesPerSec is very difficult, as it depends quite significantly on maximum packet size allowed (configured by the network manager), bandwidth size, and network speed.

Furthermore, even though we can compute the value for the flows, it is still a challenging task to reproduce each packet, especially if we do not know how the flows are generated from captured packets. In conclusion, reproducing a network attack which can bypass a supervised learning model is challenging even though the method to generate adversarial samples is quite straightforward, due to the way the data is preprocessed before feeding the model.

7. References

[2] K. Xu, Z.-L. Zhang, and S. Bhattacharyya, "Reducing Unwanted Traffic in a Backbone Network.," *SRUTI*, vol. 5, pp. 9–15, 2005.