Elektrotechnika

V. Generátorok Thevenin helyettesítő kép Norton helyettesítő kép Szuperpozíció

5.1. Generátorok

1. Generátor

- villamos energiát állít elő valamilyen másik energiából (kémiai, mechanikai, fény, ...)
- két fő típus: feszültség generátor (állandó feszültséget ad), áram generátor (állandó áramot ad)

2. Ideális generátorok

- ideális feszültség generátor: állandó feszültséget ad le (bármilyen terhelésre)
- ideális áram generátor: állandó áramot ad le (bármilyen terhelésre)

ideális feszültség generátor

Uk kapocs feszültség állandó Uk = Uo bármekkora terhelés esetén

ideális áram generátor

It terhelő áram állandó It = Io bármekkora terhelés esetén

5.1. Generátorok

3. Valódi feszültség generátor

- kapocs feszültségük nem állandó → függ a terheléstől →
- nagyobb terhelő áram esetén a kapocs feszültség csökken!
- modellezése (van saját ellenállása):

Rb belső ellenállás

Rb általában kicsi

Terhelést rákötve → Uk csökken (feszültségosztó !!)

Például:

$$U_0 = 9V \quad \text{és } R_b = 10 \ \Omega$$

$$\text{és } R_t = 90 \ \Omega$$

$$U_k = U_0 * R_t / (R_b + R_t)$$

$$U_k = 9V * 90 \ \Omega / 100 \ \Omega = 8,1 \ V$$

5.1. Generátorok

4. Valódi áram generátor

- árama (It) nem állandó → függ a terheléstől
- kapocs feszültsége nem állandó → függ a terheléstől
- modellezése:

Rb belső ellenállás

Rb általában nagy

Terhelést rákötve → It értéke a terheléstől függ (áramosztó !!)

1. Generátorok terhelése

- üresjárás (terheletlen állapot)

$$Uk = U0$$

U0 így mérhető (nagyon nagy belső ellenállású műszerrel !)

- rövidzárás

Ha Rt =
$$0 \rightarrow Uk = 0$$

Ir rövidzárási áram, Ir nagyon nagy lehet !!

- terhelt állapot

2. hatásfok

Villamos rendszereknél is, más rendszerekhez hasonlóan, mindig lesz veszteség → a betáplált energiának egy része nem a fogyasztóra jut mint hasznos kimeneti energia, hanem az áramkör elemein mint veszteség jelentkezik (leggyakrabban hő formájában)

Hatásfok

Megmutatja, hogy a betáplált energia hányad része hasznosul → fogyasztóra jutó hasznos teljesítmény / a betáplált teljesítmény

Hatásfok: $\eta = 100^{\circ}$ Pki / Pbe

Generátor terhelt állapotában a kimeneti feszültség és így a terhelésre jutó teljesítmény is (és így a hatásfok is) függ a terhelés nagyságától

$$U_k = U_0 * R_t / (R_b + R_t)$$

$$Pki = Pt = Uk * It$$

Pbe =
$$U_0 * It$$

Hatásfok:

$$\eta = 100 * Pki / Pbe$$

$$\eta = 100 * Uk /U0$$

$$\eta = Rt / (Rb + Rt)$$

Akkor jó a hatásfok, ha Rt sokkal nagyobb mint Rb !!!!

3. Illesztés

terhelt állapotban a kimeneti feszültség és így a terhelésre jutó teljesítmény változása

$$Uk = U0 * Rt / (Rb + Rt)$$

It =
$$U_0 / (R_b + R_t)$$

Fogyasztó teljesítménye:

$$Pt = Uk * It$$

$$Pt = U0^2 * Rt / (Rb + Rt)^2$$

Fogyasztó a maximális teljesítményt akkor veszi fel, ha Rt = Rb → ezt nevezzük illesztésnek

$$Pmax = U0^2/(4*Rb)$$

Ilyenkor
$$U_k = U_0/2$$
 és $\eta = 50\%$

4. minta feladat

$$U_0 = 10 V$$

$$Rb = 100 \Omega$$

Számítsuk ki a fogyasztó teljesítményét, és a hatásfokot különböző terhelések esetén!

$$\begin{aligned} \text{It} &= \text{Uo} \, / \, \big(\, \text{Rb} \, + \text{Rt} \, \big) & \text{Pt} &= \, \text{Uk} \, * \, \text{It} \\ \text{Uk} &= \, \text{It} \, * \, \text{Rt} & \eta &= \, 100 \, * \, \text{Uk} \, / \text{Uo} \end{aligned}$$

Rt (Ω)	0,1	1	10	50	100	200	1000	10000
It (mA)	99,9	99	90,9	66,67	50	33,33	9,1	0,99
Uk (V)	0,0099	0,099	0,91	3,33	5	6,67	9,1	9,9
Pt (mW)	0,989	9,8	82,72	222	250	222,3	82,81	9,8
η (%)	0,099	0,99	9,1	33,3	50	66,7	91	99

5.3. Gyakorló feladatok

1. Minta feladat

$$It = U_0 / (R_b + R_t) = 9 V / 100 \Omega = 0,09 A$$

$$U_k = I_t * R_t = 0,09 A * 98 \Omega = = 8,82 V$$

2. Minta feladat

$$U_k = I_0 * (R_b \times R_t) = 0.2 \text{ A} * (9*1/10) \text{ k}\Omega = = 180 \text{ V}$$

$$I_t = U_k \text{ / } R_t = 180 \text{ V} \text{ / } 1 \text{ k}\Omega = 180 \text{ mA} = 0.18 \text{ A}$$

5.3. Gyakorló feladatok

3. Minta feladat

$$Uk = U0 * Rt / (Rb + Rt)$$

$$U_k = 9 \ V * 46 \ \Omega \ / 50 \ \Omega = 8,28 \ V$$

4. Minta feladat

$$It = I0 * Rb / (Rb + Rt)$$

$$I_t = 2 A * 12 k\Omega / 12,6 k\Omega = 180 mA = 1,9 A$$

5.4. Generátorok összekapcsolása

feszültség generátorok soros kapcsolása

Eredő feszültség \rightarrow U_{0e} = U₀₁ + U₀₂ + U₀₃ + ...

Eredő belső ellenállás \rightarrow Rbe = Rb1 + Rb2 + Rb3 + ... Akkor használjuk ha nagyobb feszültség szükséges

áram generátorok párhuzamos kapcsolása

5.4. Generátorok összekapcsolása

feszültség generátorok vegyes kapcsolása

a párhuzamos ágak azonosak legyenek!

Eredő feszültség
$$\rightarrow$$
 U_{0e} = U₀₁ + U₀₁ + U₀₁ (ahány sorba van kötve)
Eredő belső ellenállás \rightarrow R_{be} = (R_{b1} + R_{b1} + R_{b1}) x (R_{b1} + R_{b1}+ R_{b1})
I_{0e} = I₀₁ + I₀₂

Akkor használjuk ha nagyobb feszültség és nagyobb áram is kell

5.5. Gyakorló feladatok

1. Mintafeladat

5.6. Feladatok

1. feladat

2. feladat

5.6. Feladatok

3. feladat

4. feladat

$$U_{01} = 2 V$$

és $R_{b1} = 0,2 \Omega$

5.7. Thevenin helyettesítő kép

Thevenin tétel:

Egy aktív (generátorokból és ellenállásokból álló) kétpólus helyettesíthető egy valóságos feszültséggenerátorral (ideális feszültséggenerátor és egy ellenállás soros kapcsolása)

Thevenin helyettesítő kép számítása:

Uo = Uu (Uu a kétpólus üresjárási feszültsége)

Rb = Uü / Ir (Ir a kétpólus rövidzárási árama)

5.7. Thevenin helyettesítő kép

1. üresjárási feszültség számítása

Megoldás:

$$U\ddot{u} = Ug * R2 / (R1 + R2 + R3) =$$

$$= 12V * 1 k\Omega / 4 k\Omega = 3V$$
Thevenin helyettesítő kapcsolás

2. rövidzárási áram számítása

Megoldás:

$$R_b = U_{\ddot{u}} / I_r = 3V / 4mA = 0,75 k\Omega$$

5.7. Thevenin helyettesítő kép

Rb számítása másképpen is lehetséges:

(gyakran így sokkal egyszerűbb, mint rövidzárási áramot számolni!)

a generátorokat hatástalanítva (0 értékűnek véve), eredő ellenállás

számítása a kimeneti két pontra

feszültség generátor → rövidzár aram generátor → szakadás

1. üresjárási feszültség számítása

Általában hasonlóan tudunk számolni mint a feszültségosztó esetén (ha a bemeneten feszültség generátor van akkor ugyanúgy), csak itt a kimeneti feszültség neve Uü és nem Uki

1. Minta feladat

Megoldás:

$$U_{\ddot{u}} = U_{g} * R_{3} / (R_{12} + R_{3}) =$$

= 12V * 16 kΩ / (8+16 kΩ)
= 8 V

1. üresjárási feszültség számítása

Egyéb esetekben az a lényeg, hogy a kimeneti pontok közötti feszültséget kell kiszámolni (úgy hogy a kimeneti pontokra nincs kötve semmi)

3. Minta feladat

2. rövidzárási áram számítása

A kimeneti két pontot rövidre zárjuk → rövid vezeték → lényegében egy 0 értékű ellenállást kötünk a kimenetre! Az ezen a rövid vezetéken folyó áram a rövidzárási áram. Számítása nem mindig egyszerű.

R2 és R3 párhuzamos, eredőjük

 $R_{23} = R_2 \times R_3 = 10 * 0 / (10 + 0) = 0 !!$

Tehát ha rövidzár van párhuzamosan valamivel → az eredő is rövidzár lesz! → a rövidzárral párhuzamos alkatrészt nyugodtan ki is szedhetjük! Azon áram úgysem folyik (áramosztás törvénye alapján sem)

5. Minta feladat

<u>Megoldás:</u>

Ir = Ug / (R₁ +R₃) =
= 12V / 4 k
$$\Omega$$
 = 3 mA

2. rövidzárási áram számítása

6. Minta feladat

2. rövidzárási áram számítása

De ha nem párhuzamos a rövidzár alkatrészekkel akkor nem esik ki ellenállás !!

7. Minta feladat

 $R_{23} = R_2 \times R_3 = 3 *6 / (3 + 6) = 2 k\Omega$

Megoldás:

$$R_{e} = R_{1} + R_{23} = 10 \text{ k}\Omega$$

$$I = U_g / Re = 60 \text{ V} / 10 \text{ k}\Omega = 6 \text{ mA}$$

Áramosztással
$$\rightarrow$$
 Ir = I * R2 / (R2 + R3) = 6 mA * 3 / (3+6) = 2 mA

5.9. Feladatok

1. Számítsd ki a Thevenin helyettesítő kapcsolás értékeit!

2. Számítsd ki a Thevenin helyettesítő kapcsolás értékeit!

5.9. Feladatok

- 3. Számítsd ki az
 - üresjárási feszültséget!
 - rövidzárási áramot

- 4. Számítsd ki az
 - üresjárási feszültséget!
 - rövidzárási áramot

5.9. Feladatok

5. Számítsd ki a Thevenin helyettesítő kapcsolás értékeit!

6. Számítsd ki a Thevenin helyettesítő kapcsolás értékeit!

5.9. Feladatok megoldásai

1. Feladat, megoldás

<u>Uü számítása</u>

$$U\ddot{u} = U_g * R_2 / (R_1 + R_2 + R_3)$$

 $U\ddot{u} = 24 V * 3 / 6 = 12 V$

Ir számítása

$$I_1 = U_g / (R_1 + R_3) = 24 \text{ V} / 3 \text{ k}\Omega = 8\text{mA}$$

 $I_r = I_1$

R_b számítása

$$R_b = U_{\ddot{u}} / I_r = 12 V / 8 mA = 1.5 k\Omega$$

3. Feladat, megoldás

Uü számítása

$$U\ddot{u} = Ug * R_4 / (R_1 + R_2 \times R_3 + R_4)$$

 $U\ddot{u} = 30 V * 40 / 50 = 24 V$

<u>Ir számítása</u>

$$I_1 = U_g / (R_1 + R_2 \times R_3)$$

 $I_1 = 24 \text{ V} / 10 \text{ k}\Omega = 2,4 \text{ mA}$
 $I_r = I_1$

2. Feladat, megoldás

<u>Uü számítása</u>

$$U\ddot{u} = Ug * R_3 / (R_1 x R_2 + R_3)$$

 $U\ddot{u} = 24 V * 0.8 / 2.4 = 8 V$

Ir számítása

$$I = U_g / (R_1 \times R_2) = 24 \text{ V} / 1,6 \text{ k}\Omega = 15 \text{ mA}$$

 $I_r = I$

Rb számítása

$$R_b = U_{\ddot{u}} / I_r = 8 V / 15 mA = 0.533 k\Omega$$

4. Feladat, megoldás

Uü számítása

$$U\ddot{u} = Ug * R_4 / (R_1 \times R_2 + R_4 + R_3)$$

 $U\ddot{u} = 60 \text{ V} * 4,5 / 6 = 45 \text{ V}$

<u>Ir számítása</u>

$$I = U_g / (R_1 \times R_2 + R_3)$$

 $I = 60 \text{ V} / 1,5 \text{ k}\Omega = 40 \text{ mA}$
 $I_r = I$

56. Norton helyettesítő kép

Norton tétel:

Egy aktív (generátorokból és ellenállásokból álló) kétpólus helyettesíthető egy valóságos áramgenerátorral (ideális áramgenerátor és egy ellenállás párhuzamos kapcsolása)

Norton helyettesítő kép számítása:

Io = Ir (Ir a kétpólus rövidzárási árama)

Rb = Uü / Ir (Uü a kétpólus üresjárási feszültsége)

56. Norton helyettesítő kép

1. üresjárási feszültség számítása

2. rövidzárási áram számítása

Megoldás:

$$U_{\ddot{u}} = U_{g} * R_{2} / (R_{1} + R_{2} + R_{3}) =$$

=6V * 3 k\O / 9 k\O = 2V

Norton helyettesítő kapcsolás

$$Ir = U_g / (R_1 + R_3) =$$

= 6V / 6 k Ω = 1 mA

$$R_b = U_{\ddot{u}} / I_r = 2V / 1mA = 2 k\Omega$$

56.5. Feladatok

1. Számítsd ki a Norton helyettesítő kapcsolás értékeit!

2. Számítsd ki a Norton helyettesítő kapcsolás értékeit!

56.5. Feladatok

3. Számítsd ki a Norton helyettesítő kapcsolás értékeit!

4. Számítsd ki a Norton helyettesítő kapcsolás értékeit!

57. Thevenin-Norton átalakítás

Egy Thevenin illetve Norton helyettesítő kép egymásba is könnyen átalakítható → a belső ellenállás ugyanolyan értékű, csak ∪ü vagy Ir értéket kell meghatározni

Thevenin helyettesítő kapcsolás

Thevenin helyettesítő kapcsolás

Norton helyettesítő kapcsolás

57.5. Feladatok

Számold ki a másik alakokat (Thevenin → Norton, vagy Norton → Thevenin)

1. feladat

2. feladat

3. feladat

4. feladat

58. Szuperpozíció tétel *

Szuperpozíció tétel:

Több generátorból és ellenállásokból álló hálózat esetén, a hálózat valamelyik jellemző értéket (feszültségét, áramát) a következőképpen határozhatjuk meg →

A generátorok hatásait egyenként meghatározzuk (milyen áramot, feszültséget hoz létre az adott helyen), majd a hatásokat összegezzük.

Amíg egy generátor hatását vizsgáljuk addig a többi generátort hatástalanítani (deaktiválni) kell !! \rightarrow Ug =0 (rövidzár) illetve Ig=0 (szakadás)

58. Szuperpozíció tétel *

1. mintafeladat

1. feladat

Mennyi lesz Uü és I1 értéke ?

2. feladat

Mennyi lesz Uü értéke?

