Theoretical Computer Science Cheat Sheet				
*() **())	Definitions	Series		
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$		
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	In general:		
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$		
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$		
$\lim_{n\to\infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series: $ \stackrel{n}{\sim} c^{n+1} = 1 $		
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1-c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1-c}, c < 1,$		
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^n ic^i = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^2}, c \neq 1, \sum_{i=0}^\infty ic^i = \frac{c}{(1-c)^2}, c < 1.$		
$\liminf_{n\to\infty} a_n$	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$		
$\limsup_{n\to\infty} a_n$	$\lim_{n\to\infty} \sup\{a_i \mid i \ge n, i \in \mathbb{N}\}.$	1=1 1=1		
$\binom{n}{k}$	Combinations: Size k sub- sets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$		
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n ele- ment set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!},$ 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n,$ 3. $\binom{n}{k} = \binom{n}{n-k},$		
${n \brace k}$	Stirling numbers (2nd kind): Partitions of an n element	4. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, 5. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$,		
	set into k non-empty sets.	$6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$		
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \pi_n$ on $\{1, 2,, n\}$ with k ascents.	$ \begin{aligned} 8. & \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, & 9. & \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n}, \\ 10. & \binom{n}{k} = (-1)^k \binom{k-n-1}{k}, & 11. & \binom{n}{1} = \binom{n}{n} = 1, \\ 12. & \binom{n}{2} = 2^{n-1} - 1, & 13. & \binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}, \end{aligned} $		
$\binom{n}{k}$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,		
C_n	Catalan Numbers: Binary trees with $n + 1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,		
14. $\binom{n}{1} = (n-1)!,$ 15. $\binom{n}{2} = (n-1)!H_{n-1},$ 16. $\binom{n}{n} = 1,$ 17. $\binom{n}{k} \ge \binom{n}{k},$				
18. $\binom{n}{k} = (n-1)\binom{n-1}{k} + \binom{n-1}{k-1},$ 19. $\binom{n}{n-1} = \binom{n}{n-1} = \binom{n}{2},$ 20. $\sum_{k=n}^{n} \binom{n}{k} = n!,$ 21. $C_n = \frac{1}{n+1}\binom{2n}{n},$				
22. $\binom{n}{0} = \binom{n}{n-1}$	$23. \left\langle {n \atop k} \right\rangle = 1,$ 23. $\left\langle {n \atop k} \right\rangle = \left\langle {n \atop k} \right\rangle =$	$\binom{n}{n-1-k}$, 24. $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,		
25. $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ 26. $\begin{pmatrix} n \\ 1 \end{pmatrix} = 2^n - n - 1,$ 27. $\begin{pmatrix} n \\ 2 \end{pmatrix} = 3^n - (n+1)2^n + \binom{n+1}{2},$				
$28. \ \ x^n = \sum_{k=0}^{n} \left\langle n \right\rangle \binom{x+k}{n}, \qquad 29. \ \ \left\langle n \right\rangle = \sum_{k=0}^{m} \binom{n+1}{k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ n \atop m \right\} = \sum_{k=0}^{n} \left\langle n \atop k \right\rangle \binom{k}{n-m},$				
· · · k=0		32. $\left\langle {n \atop 0} \right\rangle = 1,$ 33. $\left\langle {n \atop n} \right\rangle = 0$ for $n \neq 0,$		
34. $\binom{n}{k} = (k + 1)^n$	-1 $\left\langle \left\langle \left$			
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{n}$	$\sum_{i=0}^{n} \left\langle \left\langle n \atop k \right\rangle \right\rangle \left(\left(x + n - 1 - k \atop 2n \right),\right.$	37. $ {n+1 \brace m+1} = \sum_{k} {n \choose k} {k \brace m} = \sum_{k=0}^{n} {k \brack m} (m+1)^{n-k}, $		
$(x-n)^{-\frac{2}{k}}$	∠=0 \\ k // \\ 2n \),	$ \sum_{m+1} \sum_{k} \left(k \right) \left(m \right)^{-2} = \sum_{k=0}^{\infty} \left(m \right)^{(m+1)} , $		

Th	t		
	Identities Cont.		Trees
k : k=0	$\frac{n-k}{k} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix},$ 39. $\begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n}$		Every tree with n vertices has $n-1$ edges.
40. $\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$	$41. \begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix}$		Kraft inequal- ity: If the depths
12. ${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$	$(n+k)$ $\begin{bmatrix} n+k \\ k \end{bmatrix}$,	of the leaves of a binary tree are	
	45. $(n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^m$		d_1, \dots, d_n : $\sum_{i=1}^{n} 2^{-d_i} \le 1$,
k	$\begin{bmatrix} n+k \\ k \end{bmatrix}$, 47. $\begin{bmatrix} n \\ n-m \end{bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m}{n}$, . ,	i=1 and equality holds
18. $ {n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} $	$\left. \left\{ {n \atop k} \right\}, \qquad 49. \ \left[{n \atop \ell+m} \right] {\ell+m \choose \ell} = \sum_{k} \left[{n \atop \ell+m} \right] {\ell+m \choose \ell} \right\}$	$\binom{k}{\ell} \begin{bmatrix} n-k \\ m \end{bmatrix} \binom{n}{k}$.	only if every in- ternal node has 2 sons.
	Recurrences		
$\label{eq:master method:} \begin{aligned} & \text{Master method:} \\ & T(n) = aT(n/b) + f(n), a \geq 1, b > 1 \end{aligned}$	1(T(n) - 3T(n/2) = n) 3(T(n/2) - 3T(n/4) = n/2)	Generating fund 1. Multiply by tion by x^i .	ooth sides of the equ
If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then $T(n) = \Theta(n^{\log_b a}).$	1 1 1	2. Sum both	sides over all i f equation is valid.
If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_a n).$	$3^{\log_2 n-1}(T(2) - 3T(1) = 2)$ Let $m = \log_2 n$. Summing the left side	G(x). Usu	generating function ally $G(x) = \sum_{i=0}^{\infty} x^{i}$ are equation in terms
If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) < cf(n)$	we get $T(n) - 3^mT(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$.		ting function $G(x)$.
for large n , then $T(n) = \Theta(f(n)).$	Summing the right side we get $\sum_{i=1}^{m-1} \frac{n}{2i} 3^{i} = n \sum_{i=1}^{m-1} \left(\frac{3}{2}\right)^{i}.$	Example:	eient of x^i in $G(x)$ is $q_i + 1$, $q_0 = 0$.
Substitution (example): Consider the following recurrence	$i=0$ $i=0$ $i=0$ Let $c=\frac{3}{2}$. Then we have	Multiply and su	ım:
$T_{i+1} = 2^{2^i} \cdot T_i^2$, $T_1 = 2$. Note that T_i is always a power of two.	$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$	$\sum_{i\geq 0} g_{i+1}x^i =$	$\sum_{i\geq 0} 2g_i x^i + \sum_{i\geq 0} x^i.$
Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i$, $t_1 = 1$.	$= 2n(e^{\log_2 n} - 1)$ $= 2n(e^{(k-1)\log_c n} - 1)$	in terms of $G(x)$	
Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get	$=2n^k-2n,$	$\frac{G(x)-g_0}{x}$	$= 2G(x) + \sum_{i \ge 0} x^i.$
$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$	and so $T(n) = 3n^k - 2n$. Full history re- currences can often be changed to limited history ones (example): Consider	Simplify: $\frac{G(x)}{r} =$	$2G(x) + \frac{1}{1-x}$.
Substituting we find $u_{i+1} = \frac{1}{2} + u_i$, $u_1 = \frac{1}{2}$,	instory ones (example). Consider $T_i = 1 + \sum_{j=1}^{i-1} T_j, T_0 = 1.$	Solve for $G(x)$: G(x) = -	$\frac{x}{(1-x)(1-2x)}$.
which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$.	j=0 Note that		(1-x)(1-2x) ing partial fractions:
Summing factors (example): Consider the following recurrence	$T_{i+1} = 1 + \sum_{j=0}^{i} T_j$.		$\frac{2}{1-2x} - \frac{1}{1-x}$

 $T_{i+1} - T_i = 1 + \sum_{j=1}^{i} T_j - 1 - \sum_{j=1}^{i-1} T_j$

 $=T_{i}.$ And so $T_{i+1}=2T_{i}=2^{i+1}.$

Rewrite so that all terms involving T are on the left side T(n)-3T(n/2)=n.

Now expand the recurrence, and choose a factor which makes the left side "tele-

$\begin{array}{ c c c c c c c }\hline \pi \approx 3.14159, & e \approx 2.71828, & \gamma \approx 0.57721, & \phi = \frac{1+\sqrt{2}}{2} \approx 1.61803, & \hat{\phi} = \frac{1-\sqrt{2}}{2} \approx61803\\\hline i & 2^i & p_i & \text{General}\\\hline 1 & 2 & 2 & \text{Bernoulli Numbers } (B_i = 0, \text{ odd } i \neq 1): & \text{Continuous distributions: If}\\\hline 2 & 4 & 3 & B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},\\\hline 3 & 8 & 5 & B_0 = \frac{1}{12}, B_8 = -\frac{1}{30}, B_{10} = \frac{1}{60}.\\\hline 4 & 16 & 7 & \text{Change of base, quadratic formula:}\\\hline 5 & 32 & 11 & \log_b x = \frac{\log_a x}{\log_a b}, & \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\\\hline 6 & 64 & 13 & \log_b x = \frac{\log_a x}{\log_a b}, & \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\\\hline 7 & 128 & 17 & \text{Euler's number } e: & e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots \\ 9 & 512 & 23 & \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x.\\\hline 10 & 1,024 & 29 & \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x.\\\hline 11 & 2,048 & 31 & \left(1 + \frac{1}{n}\right)^n = e - e + \left(1 + \frac{1}{n}\right)^{n+1}.\\\hline 12 & 4,096 & 37 & \left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11c}{24n^2} - O\left(\frac{1}{n^2}\right).\\\hline 13 & 8,192 & 41 & \text{Harmonic numbers:}\\\hline 14 & 16,384 & 43 & \text{Harmonic numbers:}\\\hline 15 & 32,768 & 47 & 1 & \frac{1}{2}, \frac{11}{2}, \frac{21}{12}, \frac{137}{12}, \frac{210}{10}, \frac{230}{120}, \frac{230}{120}, \frac{230}{120}, \cdots \\\hline \end{array}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	on of
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	on or
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{cases} 8 & 256 & 19 \\ 9 & 512 & 23 \\ 10 & 1,024 & 29 \\ 11 & 2,048 & 31 \\ 12 & 4,096 & 37 \\ 13 & 8,192 & 41 \\ 14 & 16,384 & 43 \\ 1 & 1,\frac{3}{8},\frac{11}{12},\frac{29}{201},\frac{131}{200},\frac{49}{2000},\frac{39}{201},\frac{131}{2000},\frac{19}{2000} \\ 1,\frac{3}{12},\frac{3}{12},\frac{11}{20},\frac{29}{201},\frac{131}{2000},\frac{49}{2000},\frac{39}{2010},\frac{131}{2000} \\ 1,\frac{3}{12},\frac{11}{20},\frac{29}{2010},\frac{131}{2000},\frac{49}{2000},\frac{39}{2010},\frac{131}{2000},\dots \end{cases} $ $ \begin{aligned} &P \text{ and p both exest then} \\ &P(a) = \int_{-\infty}^{p} p(x) dx. \\ &Expectation: If X is discrete} \\ &E[g(X)] = \sum_{x} g(x) \Pr[X = x]. \end{aligned} $ $ If X continuous then} $ $ E[g(X)] = \int_{-\infty}^{\infty} g(x) p(x) dx = \int_{-\infty}^{\infty} g(x) dx. $	X. If
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
14 16,384 43 17 16,384 43 18 18 18 18 18 18 18 18 18 18 18 18 18	
	dP(x).
15 32,708 47 Variance, standard deviation:	()
16 65.536 53 $\ln n < H < \ln n + 1$ $VAR[X] = E[X^2] - E[X]^2$,	
17 101.070 50	
17 131,072 59 $H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$. For events A and B:	
19 524,288 67 Factorial, Stirling's approximation: $Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$	B
20 1.048,576 71 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, $Pr[A \land B] = Pr[A] \cdot Pr[B]$,	21
21 2.097.152 73 iff A and B are independent	nt.
22 4,194,304 79 $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$. $Pr[A B] = Pr[A \wedge B]$	
22 4,194,304 79 $n! = \sqrt{2\pi n} \left(\frac{\square}{e}\right) \left(1 + \Theta\left(\frac{\square}{n}\right)\right)$. $\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$ 23 8,388,608 83 Ackermann's function and inverse:	
24 16,777,216 89 Acceleration and inverse: For random variables X and Y :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	nt.
27 $134,217,728$ 103 $\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$ $E[X + Y] = E[X] + E[Y],$	
28 268,435,456 107 Binomial distribution: $E[cX] = cE[X]$. Bayes' theorem:	
29 536 870 912 109 p (y 1) (") k n=k	
$11[A_1 B] = \sum_{i=1}^{n} \Pr[A_i] \Pr[B A_i]$	
31 2,147,483,648 127 $E[X] = \sum_{n=1}^{\infty} k \binom{n}{n} p^{k} q^{n-k} = np$. Inclusion-exclusion:	
32 4,294,901,290 131 k=1	
Pascal's Triangle Poisson distribution: $\Pr\left[\bigvee_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \Pr[X_i] + \Pr\left[\bigvee_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \Pr[X_i] + \Pr\left[\bigvee_{i=1}^{N} X_i\right] = \Pr\left[\bigvee_{i$	
1 $\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}$, $E[X] = \lambda$.	1
1 1 Normal (Gaussian) distribution: $\sum_{k=0}^{n} (-1)^{k+1} \sum_{i \in out} \Pr\left[\bigwedge_{i=1}^{k} X_{ij}\right]$	i_j
$n(x) = \frac{1}{x^2 - (x - \mu)^2 / 2\sigma^2}$ $F[X] = \mu$ Moment inequalities	
14641 The "coupon collector": We are given a random coupon each day, and there are n $\Pr[X \ge \lambda \operatorname{E}[X]] \le \frac{1}{\lambda}$,	
different types of coupons. The distribu- $\Pr[X - E[X] \ge \lambda \cdot \sigma] \le \frac{1}{\sqrt{2}}$.	
tion of coupons is uniform. The expected Commetric distribution	
1 7 21 35 35 21 7 1 number of days to pass before we to collect all n types is $\Pr[X = k] = pq^{k-1}$, $q = 1 - p$,	,
2000 200 200 200 200 200 200 200 200 20	

Theoretical Computer Science Cheat Sheet				
Number Theory	Graph Theory			
The Chinese remainder theorem: There ex-	Definitions:		Notation:	
ists a number C such that:	Loop	An edge connecting a ver-	E(G) Edge set	
$C \equiv r_1 \mod m_1$		tex to itself.	V(G) Vertex set	
	Directed Simple	Each edge has a direction. Graph with no loops or	c(G) Number of components G[S] Induced subgraph	
1 1 1	Simple	multi-edges.	deg(v) Degree of v	
$C \equiv r_n \mod m_n$	Walk	A sequence $v_0e_1v_1 \dots e_\ell v_\ell$.	$\Delta(G)$ Maximum degree	
if m_i and m_j are relatively prime for $i \neq j$.	Trail	A walk with distinct edges.	$\delta(G)$ Minimum degree $\chi(G)$ Chromatic number	
Euler's function: $\phi(x)$ is the number of	Path	A trail with distinct vertices.	$\chi_E(G)$ Edge chromatic number	
positive integers less than x relatively	Connected	A graph where there exists	G ^c Complement graph	
prime to x . If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then	Connected	a path between any two	K_n Complete graph	
$\phi(x) = \prod_{i=1}^{n} p_i^{e_i-1}(p_i - 1).$		vertices.	K_{n_1,n_2} Complete bipartite graph $r(k, \ell)$ Ramsey number	
$\psi(x) = \prod_{i=1}^{i} p_i (p_i - 1).$	Component	A maximal connected	*	
Euler's theorem: If a and b are relatively	Tree	subgraph. A connected acyclic graph.	Geometry	
prime then	Free tree	A tree with no root.	Projective coordinates: triples (x, y, z), not all x, y and z zero.	
$1 \equiv a^{\phi(b)} \mod b$.	DAG	Directed acyclic graph.	(x, y, z), not an x , y and z zero. $(x, y, z) = (cx, cy, cz) \forall c \neq 0$.	
Fermat's theorem:	Eulerian	Graph with a trail visiting each edge exactly once.	$(x, y, z) = (cx, cy, cz)$ $\forall c \neq 0$. Cartesian Projective	
$1 \equiv a^{p-1} \mod p$.	Hamiltonia	Graph with a cycle visiting	(x, y) $(x, y, 1)$	
The Euclidean algorithm: if $a > b$ are in-	214////////	each vertex exactly once.	y = mx + b $(m, -1, b)$	
tegers then	Cut	A set of edges whose re-	x = c (1, 0, -c)	
$gcd(a, b) = gcd(a \mod b, b).$		moval increases the num- ber of components.	Distance formula, L_p and L_{∞}	
If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x	Cut-set	A minimal cut.	metric: $\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$,	
then $p^{e_i+1} - 1$	Cut edge	A size 1 cut.	* (- 0) (0- 00)	
$S(x) = \sum_{i=1}^{n} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}$.	k-Connected		$[x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p}$,	
d x $i=1$		the removal of any $k-1$ vertices.	$\lim_{p\to\infty} [x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p}.$	
Perfect Numbers: x is an even perfect num- ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.	k-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have	Area of triangle (x_0, y_0) , (x_1, y_1)	
Wilson's theorem: n is a prime iff		$k \cdot c(G - S) \le S $.	and (x_2, y_2) :	
$(n-1)! \equiv -1 \mod n$.	k-Regular	A graph where all vertices	$\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.	
Möbius inversion:	k-Factor	have degree k. A k-regular spanning		
$\begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } i \text{ is not some free} \end{cases}$	K-Pactor	subgraph.	Angle formed by three points:	
$\mu(i) = \begin{cases} 0 & \text{if } i \text{ is not square-nee.} \\ (-1)^r & \text{if } i \text{ is the product of} \end{cases}$	Matching	A set of edges, no two of	(x_2, y_2)	
Möbius inversion: if $i=1$. $\mu(i) = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of } \\ r & \text{distinct primes.} \end{cases}$		which are adjacent.	(12,02)	
If	Clique	A set of vertices, all of which are adjacent.	(x_2, y_2) θ $(0, 0)$ ℓ_1 (x_1, y_1)	
$G(a) = \sum_{d = a} F(d),$	Ind. set	A set of vertices, none of		
a _l a		which are adjacent.	$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}$.	
then $\nabla (a) = \nabla (a)$	Vertex cover	r A set of vertices which	-1-2	
$F(a) = \sum_{d a} \mu(d)G\left(\frac{a}{d}\right).$	DI	cover all edges. h A graph which can be em-	Line through two points (x_0, y_0) and (x_1, y_1) :	
Prime numbers:	r tanar grap	n A graph which can be em- beded in the plane.		
Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$	Plane graph		$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$	
11176		graph.		
$+O\left(\frac{n}{\ln n}\right)$,		$\sum_{v \in V} \deg(v) = 2m.$	Area of circle, volume of sphere:	
()			$A = \pi r^2$, $V = \frac{4}{3}\pi r^3$.	
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$		ar then $n - m + f = 2$, so	If I have seen farther than others,	
$\binom{n}{n}$. –	$2n - 4$, $m \le 3n - 6$.	it is because I have stood on the	
$+ O\left(\frac{n}{(\ln n)^4}\right)$.	Any planar gree < 5.	graph has a vertex with de-	shoulders of giants. – Issac Newton	
	gree \leq 5.		- Issac Newton	

Theoretical Computer Science Cheat Sheet				
π	Calculus			
Wallis' identity:	Derivatives:			
Wallis' identity: $\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$	1. $\frac{d(cu)}{du} = c\frac{du}{du}$, 2. $\frac{d(u+v)}{du} = \frac{du}{du} +$	$\frac{dv}{dv}$, $3. \frac{d(uv)}{dv} = u\frac{dv}{dv} + v\frac{du}{dv}$,		
Brouncker's continued fraction expansion:	as as as	ax ax ax		
$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{1 + \frac{5^2}{1 + \frac{5^2}{2}}}}}$	4. $\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$, 5. $\frac{d(u/v)}{dx} = \frac{v(\frac{du}{dx})}{u}$	$\frac{f}{v^2} = ce^{cu} \frac{dx}{dx}$, 6. $\frac{d(x-f)}{dx} = ce^{cu} \frac{dx}{dx}$,		
2+ 2+	7. $\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$,	8. $\frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$,		
Gregrory's series: $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$	9. $\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$	$10. \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$		
Newton's series:	ar ar	ux ux		
$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 23} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 25} + \cdots$	11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$,	12. $\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$,		
6 2 · 2 · 3 · 2 ³ · 2 · 4 · 5 · 2 ⁵ Sharp's series:	13. $\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$,	14. $\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$,		
$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$	15. $\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$	16. $\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$,		
Euler's series:	17. $\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$,	18. $\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$,		
$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$ $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{2^2} + \frac{1}{6^2} + \cdots$	19. $\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx},$	20. $\frac{d(\operatorname{arccsc} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$,		
$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$	21. $\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$,	22. $\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$,		
Partial Fractions Let $N(x)$ and $D(x)$ be polynomial func-	23. $\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$,	24. $\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$,		
tions of x . We can break down $N(x)/D(x)$ using partial fraction expan-	25. $\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$	26. $\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$,		
sion. First, if the degree of N is greater than or equal to the degree of D , divide	27. $\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1 + u^2}} \frac{du}{dx},$	28. $\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx},$		
N by D , obtaining $\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$		V W 1		
(-)	29. $\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$	30. $\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$		
where the degree of N' is less than that of D. Second, factor $D(x)$. Use the follow-	31. $\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$	32. $\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{ u \sqrt{1+u^2}} \frac{du}{dx}.$		
ing rules: For a non-repeated factor: $\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$	Integrals:			
$(x-a)D(x) \stackrel{-}{-} x - a \stackrel{+}{-} D(x)$, where	1. $\int cu dx = c \int u dx$,	2. $\int (u+v) dx = \int u dx + \int v dx,$		
$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$	3. $\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1,$ 4.	$\int \frac{1}{x} dx = \ln x, \qquad 5. \int e^x dx = e^x,$		
For a repeated factor: $N(x)$ $\stackrel{m-1}{\sum}$ A_k $N'(x)$	$6. \int \frac{dx}{1+x^2} = \arctan x,$	7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$		
$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$	8. $\int \sin x dx = -\cos x,$	9. $\int \cos x dx = \sin x,$		
where $A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$	$10. \int \tan x dx = -\ln \cos x ,$	11. $\int \cot x dx = \ln \cos x ,$		
The reasonable man adapts himself to the	12. $\int \sec x dx = \ln \sec x + \tan x ,$	13. $\int \csc x dx = \ln \csc x + \cot x ,$		
world; the unreasonable persists in trying to adapt the world to himself. Therefore	14. $\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}$,	*		
all progress depends on the unreasonable. – George Bernard Shaw	,			

Theoretical Computer Science Cheat Sheet				
Calculus Cont.				
15. $\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, a > 0,$ 16. $\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a}$	$-\frac{a}{2}\ln(a^2+x^2), a>0,$			
17. $\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$ 18. $\int \cos^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$	$\frac{1}{a}(ax + \sin(ax)\cos(ax)),$			
$19. \int \sec^2 x dx = \tan x,$	$\int \csc^2 x dx = -\cot x,$			
21. $\int \sin^n x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx,$ 22. $\int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n}$	$\frac{1}{n} + \frac{n-1}{n} \int \cos^{n-2} x dx,$			
23. $\int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, n \neq 1,$ 24. $\int \cot^n x dx = -\frac{\cot^{n-1} x}{n-1} - \frac{1}{n-1} - $	$\int \cot^{n-2} x dx, n \neq 1,$			
25. $\int \sec^n x dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx, n \neq 1,$				
$ 26. \int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x dx, n \neq 1, 27. \int \sinh x dx = \cosh x, 27. \int \sinh x dx = \cosh x + \cosh x$	8. $\int \cosh x dx = \sinh x,$			
29. $\int \tanh x dx = \ln \cosh x $, 30. $\int \coth x dx = \ln \sinh x $, 31. $\int \operatorname{sech} x dx = \arctan \sinh x$, 32. $\int \operatorname{sech} x dx = \arctan \sinh x$	$\int \operatorname{csch} x dx = \ln \left \tanh \frac{x}{2} \right ,$			
33. $\int \sinh^2 x dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$, 34. $\int \cosh^2 x dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, 35	$\int \operatorname{sech}^2 x dx = \tanh x,$			
36. $\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, a > 0,$ 37. $\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} dx = x arcs$	$\operatorname{cctanh} \frac{x}{a} + \frac{a}{2} \ln a^2 - x^2 ,$			
38. $\int \operatorname{arccosh} \frac{z}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{z}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{z}{a} < 0 \text{ and } a > 0, \end{cases}$				
39. $\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), a > 0,$				
40. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, a > 0,$ 41. $\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} dx =$	$\frac{1}{2} + \frac{a^2}{2} \arcsin \frac{x}{a}, a > 0,$			
42. $\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, a > 0,$				
43. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, a > 0,$ 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right ,$ 45. $\int \frac{dx}{(a^2 - x^2)^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right ,$	$\frac{dx}{-x^2)^{3/2}} = \frac{x}{a^2\sqrt{a^2 - x^2}},$			
46. $\int \sqrt{a^2 \pm x^2} dx = \frac{\varepsilon}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left x + \sqrt{a^2 \pm x^2} \right ,$ 47. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left \frac{1}{\sqrt{a^2 + a^2}} + \frac{a^2}{\sqrt{a^2 + a^2}} + \frac{a^2}{a^2 $	$x + \sqrt{x^2 - a^2}$, $a > 0$,			
$48. \int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left \frac{x}{a + bx} \right ,$ $49. \int x\sqrt{a + bx} dx =$	$\frac{2(3bx - 2a)(a + bx)^{3/2}}{15b^2},$			
$50. \int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx, \qquad 51. \int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left \frac{1}{\sqrt{a+bx}} dx - $	$\frac{\sqrt{a + bx} - \sqrt{a}}{\sqrt{a + bx} + \sqrt{a}}$, $a > 0$,			
52. $\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$ 53. $\int x \sqrt{a^2 - x^2} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$	$\overline{x^2} dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$			
	$= -\frac{1}{a} \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$			
56. $\int \frac{x dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$ 57. $\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2}\sqrt{a^2 - x^2}$				
58. $\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right ,$ 59. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2}$	$\frac{1}{a^2} - a \arccos \frac{a}{ x }, a > 0,$			
60. $\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$ 61. $\int \frac{dx}{x\sqrt{x^2 + a^2}}$	$= \frac{1}{a} \ln \left \frac{x}{a + \sqrt{a^2 + x^2}} \right ,$			

Theoretical Computer Science Cheat Sheet

Theoretical Computer Science Cheat Sheet				
Series				
Taylor's series:			Ordinary power series:	
	$a) + \frac{(x-a)^2}{2}f''(a) + \cdots = \sum_{i=0}^{\infty} \frac{(x-a)^2}{2}f''(a) + \cdots =$	$\frac{(x-a)^i}{i!}f^{(i)}(a).$	$A(x) = \sum_{i=0}^{\infty} a_i x^i$.	
Expansions: $\frac{1}{1-x}$	$= 1 + x + x^2 + x^3 + x^4 + \cdots$	$=\sum_{i=1}^{\infty} x^{i}$,	Exponential power series:	
		i=0	$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$	
$\frac{1}{1-cx}$	$= 1 + cx + c^2x^2 + c^3x^3 + \cdots$	i=0	Dirichlet power series:	
$\frac{1}{1-x^n}$	$=1+x^n+x^{2n}+x^{3n}+\cdots$	$=\sum_{i=0}^{\infty} x^{ni},$	$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$	
$\frac{x}{(1-x)^2}$	$= x + 2x^2 + 3x^3 + 4x^4 + \cdots$	i=0	Binomial theorem: $(x + y)^n = \sum_{k=0}^{n} {n \choose k} x^{n-k} y^k.$	
$x^{k} \frac{d^{n}}{dx^{n}} \left(\frac{1}{1-x} \right)$	$= x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots$	$\cdot = \sum_{i=0}^{\infty} i^n x^i,$	Difference of like powers:	
e^x	$=1+x+\tfrac{1}{2}x^2+\tfrac{1}{6}x^3+\cdots$	$=\sum_{i=0}^{\infty} \frac{x^i}{i!}$,	$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}$.	
ln(1+x)	$= x - \tfrac{1}{2} x^2 + \tfrac{1}{3} x^3 - \tfrac{1}{4} x^4 - \cdots$	$= \sum_{i=1}^{\infty} (-1)^{i+1} \frac{x^i}{i},$	For ordinary power series: $\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$	
$\ln \frac{1}{1-x}$	$= x + \tfrac{1}{2} x^2 + \tfrac{1}{3} x^3 + \tfrac{1}{4} x^4 + \cdots$	$=\sum_{i=1}^{\infty} \frac{x^i}{i}$,	$x^{k}A(x) = \sum_{i=0}^{\infty} a_{i-k}x^{i},$	
$\sin x$	$= x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$	$= \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$	i=k	
$\cos x$	$= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots$	$= \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i}}{(2i)!},$	$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$	
$\tan^{-1} x$	$= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$	$= \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)},$	$A(cx) = \sum_{\substack{i=0 \\ \infty}}^{\infty} c^i a_i x^i,$	
$(1 + x)^n$	$=1+nx+\tfrac{n(n-1)}{2}x^2+\cdots$	$=\sum_{i=0}^{\infty} {n \choose i} x^i,$	$A'(x) = \sum_{i=0}^{\infty} (i + 1)a_{i+1}x^{i},$	
$\frac{1}{(1-x)^{n+1}}$	$=1+(n+1)x+\binom{n+2}{2}x^2+\cdots$	1=0	$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$	
$\frac{x}{e^x - 1}$	$=1-\frac{1}{2}x+\frac{1}{12}x^2-\frac{1}{720}x^4+\cdots$	$= \sum_{i=0}^{\infty} \frac{B_i x^i}{i!},$	$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^{i},$	
$\frac{1}{2x}(1-\sqrt{1-4x})$	$=1+x+2x^2+5x^3+\cdots$	1=0	$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i}x^{2i},$	
$\frac{1}{\sqrt{1-4x}}$	$=1+x+2x^2+6x^3+\cdots$	1=0	$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1}x^{2i+1}.$	
$\frac{1}{\sqrt{1-4x}} \left(\frac{1-\sqrt{1-4x}}{2x} \right)^n$	$=1+(2+n)x+\binom{4+n}{2}x^2+\cdots$	$= \sum_{i=0}^{\infty} {2i+n \choose i} x^{i},$	Summation: If $b_i = \sum_{j=0}^{i} a_i$ then	
$\frac{1}{1-x} \ln \frac{1}{1-x}$	$= x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{12}x^4 + \cdots$	$=\sum_{i=1}^{\infty} H_i x^i,$	$B(x) = \frac{1}{1-x}A(x).$ Convolution:	
$\frac{1}{2} \left(\ln \frac{1}{1-x} \right)^2$	$= \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots$	i=2	$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_{j}b_{i-j} \right) x^{i}.$	
$\frac{x}{1-x-x^2}$	$=x+x^2+2x^3+3x^4+\cdots$	$= \sum_{i=0} F_i x^i,$	God made the natural numbers;	
$\frac{F_n x}{1 - (F_{n-1} + F_{n+1})x - (-1)^n x^2}$	$= F_n x + F_{2n} x^2 + F_{3n} x^3 + \cdots$	$= \sum_{i=0}^{\infty} F_{ni}x^{i}.$	all the rest is the work of man. - Leopold Kronecker	

Theoretical Computer Science Cheat Sheet				
	Series		Escher's Knot	
$x^{\overline{n}}$	$=\sum_{i=0}^{i=0} {n \brack i} x^i,$	$\begin{split} \left(\frac{1}{x}\right)^{\overline{-n}} &= \sum_{i=0}^{\infty} \left\{\frac{i}{n}\right\} x^i, \\ (e^x - 1)^n &= \sum_{i=0}^{\infty} \left\{\frac{i}{n}\right\} \frac{n! x^i}{i!}, \end{split}$		
$\left(\ln \frac{1}{1-x}\right)^n$ $\tan x$ $\frac{1}{\zeta(x)}$	$= \sum_{i=1}^{i=0} (-1)^{i-1} \frac{2^{2i} (2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!},$	$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!},$ $\zeta(x) = \sum_{i=1}^{\infty} \frac{1}{ix},$ $\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=0}^{\infty} \frac{\phi(i)}{i^{x}},$		
	1=1	i=1		
$\zeta(x)$	$= \prod_{p} \frac{1}{1 - p^{-x}},$		Integration	
$\zeta^2(x)$	$= \sum_{i=1}^{\infty} \frac{d(i)}{x^i} \text{where } d(n) = \sum_{d n} 1,$	If G is continuous in the interval $[a,b]$ and F is nondecreasing the $\int_{-b}^{b} G(x) dF(x)$		
$\zeta(x)\zeta(x-1)$	$=\sum_{i=1}^{\infty} \frac{S(i)}{x^i}$ where $S(n) = \sum_{d n} d$,	exists. If $a \le b \le c$ then $\int_a^c G(x) dF(x) = \int_a^b G(x) dF(x) + \int_b^c G(x) dF(x).$		
$\zeta(2n)$	$= \frac{2^{2n-1} B_{2n} }{(2n)!}\pi^{2n}, n \in \mathbb{N},$	J_a If the integrals involved exist	J_b	
$\frac{x}{\sin x}$	i=0	$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dx$		
$\left(\frac{1-\sqrt{1-4x}}{2x}\right)^n$ $e^x \sin x$	$= \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!} x^{i},$ $= \sum_{i=0}^{\infty} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^{i},$	$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) dF(x) dF(x) dF(x)$	$\int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$ $c) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$	
/1 / 1 	i=1	$\int_{a}^{b} G(x) dF(x) = G(b)F(b)$	$-G(a)F(a) - \int_{a}^{b} F(x) dG(x).$	
$\sqrt{\frac{1-\sqrt{1-x}}{x}}$	$= \sum_{i=0}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$	If the integrals involved exist, an point in $[a, b]$ then	d F possesses a derivative F' at every	
$\left(\frac{\arcsin x}{x}\right)^2$	$= \sum_{i=0}^{\infty} \frac{4^{i}i!^{2}}{(i+1)(2i+1)!} x^{2i}.$	$\int_a^b G(x) dF(x) = \int_a^b G(x) F'(x) dx.$		
	Cramer's Rule	00 47 18 76 29 93 85 34 61 52	Fibonacci Numbers	
If we have equation		86 11 57 28 70 39 94 45 02 63	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,	
	$a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1$	95 80 22 67 38 71 49 56 13 04	Definitions:	
$a_{2,1}x_1 +$	$a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2$	59 96 81 33 07 48 72 60 24 15 73 69 90 82 44 17 58 01 35 26	$F_i = F_{i-1} + F_{i-2}, F_0 = F_1 = 1.$	
	i i	68 74 09 91 83 55 27 12 46 30	$F_{-i} = (-1)^{i-1}F_i$,	
$a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n = b_n$		37 08 75 19 92 84 66 23 50 41	$F_i = \frac{1}{\sqrt{5}} \left(\phi^i - \hat{\phi}^i \right),$	
Let $A = (a_{i,j})$ and	B be the column matrix (b_i) . Then	14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78	Cassini's identity: for $i > 0$:	
there is a unique solution iff $\det A \neq 0$. Let A_i be A		42 53 64 05 16 20 31 98 79 87	$F_{i+1}F_{i-1} - F_i^2 = (-1)^i$.	
with column i rep	det A_i	The Diberry in the control of the co	Additive rule:	
	$x_i = \frac{\det A_i}{\det A}$.	The Fibonacci number system: Every integer n has a unique	$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$,	
		representation	$F_{2n} = F_n F_{n+1} + F_{n-1} F_n$.	
	kes strait roads, but the crooked	$n = F_{k_1} + F_{k_2} + \cdots + F_{k_m}$,	Calculation by matrices:	
roads without Improvement, are roads of Genius. - William Blake (The Marriage of Heaven and Hell)		where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.	$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$	