Energy Conservation and Thermal Management in High-Performance Server Architectures

Adam Lewis
The Center for Advanced Computer Studies
The University of Louisiana at Lafayette

Agenda

- Background and Related Work
- System Modeling
- Effective Prediction
- Initial Evaluation and Results
- Thermally-Aware Scheduling
- Status, Plans, and Summary

What does this picture tell us?

Source: McKinsey & Company 2008

A 20% projected increase in data center emissions over next 5 years

(c) The New York Times, June 14, 2006

Figure 1-2. Data Center Energy Benchmarking Results for 24 sites (Total Data Center Energy + IT Equipment Energy)

Source: EPA 2008

Only ~50% of power consumed from IT equipment

Current Practice

Completely Fair Scheduler Domain-based Load Balancing Power-state aware

Run-queue scheduling Domain-based Load Balancing Power-state aware (Solaris 11)

Run-queue scheduling Interface w/ power manager?

Thread Scheduling & Power Management

DVFS:
$$P = CV^2 f$$

Multi-core/Many-core

- Cache affinity
- Load balancing
- Opportunity to turn off the lights?

- Performance issues [LLBL 2007]
 - Lack of slack
 - High load = No gain
- Reliability issues [Bircher 2008]
 - Under-clocking & MTBF
- Reactive rather than proactive

Proactively Avoid Thermal Emergencies

A Full-System Energy Model

EffectivePrediction

ThermallyAware
Scheduling

- Possible approaches
 - Heat-and-Run and related approaches
 [Gomaa2004] [Coskun2009] [Zhou2010]
 - Memory-resource focused approaches
 [Merkel2010]
 - Control-theoretic techniques

System Modeling

Model: Inputs & Components

$$E_{dc} = E_{system}$$

- Three DC voltage domains
 - I2Vdc, 5.5Vdc, 3.3Vdc
- 5.5V and 3.3V domains limited to 20% of rated voltage

$$E_{system} = E_{proc} + E_{mem} + E_{hdd} + E_{board} + E_{em}.$$

- Processor
- Memory
- Hard disk & storage devices
- Motherboard & peripherals
- Electrical & Electromechanical Components

Model: Processor

$$E_{proc} = \int_{t1}^{t2} (P_{proc}(t))dt$$

Intel Nehalem

- Processor as black box
 - Power = f(workload)
 - Manifests as heat

- Bus transactions
 - Reflects amount of data processed
- Die temperature
 - Computation per core
- Processor & system metrics

Model: Memory

$$E_{mem} = \int_{t_1}^{t_2} \left(\left(\sum_{i=1}^{N} CM_i(t) + DB(t) \right) \times P_{DR} + P_{ab} \right) dt$$

- DRAM Read/Write
 power + background
 power = known
 quantities
- Performance counters exist for measuring the count of highest level cache miss and bus transactions
- Combine these to compute the energy consumed

Model: Storage

$$E_{hdd} = P_{spin-up} \times T_{su} + P_{read} \sum N_r \times T_r$$
$$+ P_{write} \sum N_w \times T_w + \sum P_{idle} \times T_{id}$$

Parameter	Value	
Interface	Serial ATA	
Capacity	250 GB	
Rotational speed	7200 rpm	
Power (spin up)	5.25 W (max)	
Power (Random read, write)	9.4 W (typical)	
Power (Silent read, write)	7 W (typical)	
Power (idle)	5 W (typical)	
Power (low RPM idle)	2.3 W (typical for 4500 RPM)	
Power (standby)	0.8 W (typical)	
Power (sleep)	0.6 W (typical)	

Model: Board

$$E_{board} = \left(\sum V_{power-line} \times I_{power-line}\right) \times t_{interval}$$

- System components that support the operation of the machine
 - Typically in the 5.5Vdc and 3.3Vdc power domains
 - Measured by current probe

Model: Electromechanical

$$E_{em} = \int_{0}^{T_{p}} \left(V(t) \cdot I(t) + \sum_{i=1}^{N} P_{fan}^{i}(t) \right) dt$$

- Need to account for energy required to cool
 - No performance counters
 - Can measure power drawn by the fans
 - Derived from log data collected by OS

Effective Prediction

Linear AR Time Series - A good idea?

- Linear Regression
 - Easy, simple
 - Odd mis-predictions
 - Corrective methods required

		AR	
	Avg	Max	RMSE
Benchmark	Err %	Err %	
astar	3.1%	8.9%	2.26
games	2.2%	9.3%	2.06
gobmk	1.7%	9.0%	2.30
zeusmp	2.8%	8.1%	2.14

Linear AR Model: AMD Opteron

	Avg	Max	RMSE
Benchmark	Err %	Err %	
astar	5.9%	28.5%	4.94
games	5.6%	44.3%	5.54
gobmk	5.3%	27.8%	4.83
zeusmp	7.7%	31.8%	7.24

Linear AR Model: Intel Nehalem

Prediction w/ Chaotic Time Series

Chaotic behavior

Benchmark	Hurst Parameter (H)	Average Lyapunov Exponent
bzip2	(0.96, 0.93)	(0.28, 0.35)
cactusadm	(0.95, 0.97)	(0.01, 0.04)
gromac	(0.94, 0.95)	(0.02, 0.03)
leslie3d	(0.93, 0.94)	(0.05, 0.11)
omnetpp	(0.96, 0.97)	(0.05, 0.06)
perlbench	(0.98, 0.95)	(0.06, 0.04)

Chaotic Time Series

- Time-delay reconstructed state space
 - Uses Takens Embedding Theorem:
 - Time-delayed partition of observations to build function that preserves the topological and dynamical properties of our original chaotic system
- Find nearest neighbors on attractor to our observations
- Perform least-square curve fit to find a polynomial that approximates the attractor

Kernel weighting

$$K(x) = (2\pi)^{-\frac{m}{2}} exp(-\|x\|^2/2)$$

$$K_{\beta}(x) = \frac{1}{\beta}K(\frac{x}{\beta})$$

2.

$$\beta = \left(\frac{4}{3p}\right)^{\frac{1}{5}} \sigma$$

$$\bar{\sigma} = median(|x_i - \bar{\mu}|)/0.6745$$

$$\sum_{t=p+1}^{n+p} O_p * K_{\beta}(X_{t-1} - x)$$

$$\hat{f}(x) = \frac{\sum_{n+p}^{m+p} K_{\beta}(X_{t-1} - x)}{\sum_{t=p+1}^{m+p} K_{\beta}(X_{t-1} - x)}$$

$$O_p = (X_{t-1}, \dots, X_{t-p})^T$$

Forward prediction

Start with a Taylor series expansion

$$\hat{f}(X) = \hat{f}(x) + \hat{f}'(x)^T (X - x)$$

 Find the coefficients of the polynomial by solving the linear least squares problem for a and b:

$$\sum_{t=p+1}^{n+p} \left[X_t - a - b^T (X_{t-1} - x) \right]^2 * K_{\beta}(X_{t-1} - x)$$

 Explicit solution for our linear least squares problem:

problem:

$$\hat{f}(x) = \frac{1}{n} \sum_{t=p+1}^{n+p} (s_2 - s_1 * (x - X_{t-1}))^2 * K_{\beta}((x - X_{t-1})/\beta)$$

$$s_i = \frac{1}{n} \sum_{t=p+1}^{n+p} (x - X_{t-1})^i * K_{\beta}((x - X_{t-1})/\beta)$$

Time Complexity

n future observations

p past observations

Creating a CAP: $O(n^2)$ Predicting with a CAP: O(p)

Initial Evaluation and Results

Initial Evaluation and Results

	Sun Fire 2200	Dell PowerEdge R610
CPU CPU L 2 control		2 Intel Xeon (Nehalem) 5500
CPU L2 cache Memory	8GB	4MB 9GM
Internal disk		500GM
Network	2x1000Mbps	1x1000Mbps
Video Height	On-board 1 rack unit	NVIDA Quadro FX4600 1 rack unit
Height	I Tack utill	I Tack utill

Training Benchmarks

Integer Benc	hmarks	
bzip2 mcf omnetpp	C C C++	Compression Combinatorial Optimization Discrete Event Simulation
FP Benchman	rks	
gromacs cacstusADM leslie3d lbm		Biochemistry/Molecular Dynamics Physics/General Relativity Fluid Dynamics Fluid Dynamics

Evaluation Benchmarks

Integer Benchmark		
astar C++ Path Finding gobmk C Artificial Intelligence: Go FP Benchmarks		
Tr benc	IIIIIarks	
calculix zeusmp	C++/F90 F90	Structural Mechanics Computational Fluid Dynamics

Results: AMD Opteron f10h

Results: Intel Nehalem

Results: Error - Other Benchmarks

Observations and Analysis

- Where does maximum error occur?
- Choice of performance counters
 - Difference in behavior between processors?
 - The right set of performance counters
- Benchmark selection

Thermally-Aware Scheduling

Problem nature

- Scheduling...
 - in time: who runs next
 - in space: who runs where
- Optimization problem
 - Who runs next: least use of energy with best performance quality of service
 - Who runs where: best utilization of resources with least increase in processor and/or ambient temperature

Thermal Extensions to System Model

Applications have a length:

$$L(A, D_A, t)$$

and generate workload

$$U(A, D_A, t) = \lim_{n \to k_e} n \times W(p_i, d_i, t) \times L_n(A_n, D_{A_n}, t), 1 \le i \le p$$

$$\Theta_A(A, D_A, T, t) = \frac{U(A, D_A, t)}{\lim_{T \to T_{th}} J_e \times (T - T_{nominal})}$$

Which is used to generate
Thermal Efficiency to Completion

$$\eta(A, D_A, T, t) = \frac{\Theta_A(A, D_A, T, t)}{\Theta_A(A_e, D_{A_e}, T_{me}, L_e)}$$

That is used to compute

Cost of Performance per Unit Power

$$C_{\theta}(A, D_A, T, t) = \frac{\Theta_A(A, D_A, T, t)}{E_{sys}(A, D_A, t)}$$

Extending CAP for Thermal Prediction

- Thermal Chaotic Attractor Predictor (TCAP)
 - Extends CAP to thermal domain
 - Created and used in similar manner to CAP
 - Matching TCAP for each thermal metric

Reducing Processor Temperatures

- Premise: Processor die temperature can be managed by controlling what threads execute over time
- Predict the next thread to run a logical CPU using TCAP for processor die temperature

Reducing Ambient Temperature

- Premise: Control system ambient temperature by managing load on logical CPUs so that overheated resources have time to recover
- Partition resources into categories based on predicted change in temperature
- Move workload from "HOT" resources towards "COLD" resources

Status, Plans, and Summary

Current Status

A Full-System Energy Model

+ Effective Prediction

Thermally-Aware Scheduling

- Development Complete
- Evaluation Complete
 - Intel + AMD processors
 - OpenSolaris (Solaris 11)
- Peer-reviewed
 - Conference/Workshop: 3
 - Journal: I

- Design complete
- Prototype under development

Plan for Completion

ID	Task
I	Respond to review comments for [Lewis 2011]
2	Implement scheduler prototype in FreeBSD
3	Evaluate scheduler performance using parallel benchmarks
4	Document results and submit to archival journal
5	Create dissertation from Prospectus + output from previous task
6	Defend dissertation
7	Respond to comments from committee and Graduate School editor
8	Submit final version of document

Future Directions

- Extend beyond a single blade
 - Cluster, Grid, and Cloud Scheduling
 - MPI, OpenMP, and other environments
- Impact of operating system virtualization
- Extension of the thermal model in terms of the thermodynamics of computation

Questions?

Additional Material

This work was supported in part by the U.S. Department of Energy and by the Louisiana Board of Regents

Publications List

Lewis, A., Ghosh, S., and Tzeng, N.-F. 2008. Runtime energy consumption estimation based on workload in server systems. Proceedings of the 2008 conference on Power aware computing and systems.

Lewis, A., Simon, J., and Tzeng, N.-F. 2010. Chaotic attractor prediction for server run-time energy consumption. Proc. of the 2010 Workshop on Power Aware Computing and Systems (Hotpower'10).

Lewis, A., Tzeng, N.-F., and Ghosh, S. 2011. Time series approximation of run-time energy consumption based on server workload. Under review for publication in ACM Transactions on Architecture and Code Optimization.

