

STAT604

Lesson SAS 04

Portions Copyright © 2009 SAS Institute Inc., Cary, NC, USA. All rights reserved. Reproduced with permission of SAS Institute Inc., Cary, NC, USA. SAS Institute Inc. makes no warranties with respect to these materials and disclaims all liability therefor.

Chapter 5: Reading SAS Data Sets

Introduction to Reading Data 5.2 Using SAS Data as Input 5.3 Subsetting Observations and Variables **5.4 Adding Permanent Attributes**

Objectives

- Add labels to the descriptor portion of a SAS data set by using the LABEL statement.
- Add formats to the descriptor portion of a SAS data set by using the FORMAT statement.

Business Scenario Syntax

Use the following statements to complete the scenario:

Adding Permanent Attributes

The descriptor portion of the SAS data set stores variable attributes including the name, type (character or numeric), and length of the variable.

Labels and formats can also be stored in the descriptor portion.

Partial PROC CONTENTS Output

	Alphabeti	c List o	f Varia	bles and Attr	ributes
#	Variable	Type	Len	Format	Label
1	First_Name	Char	12		
5	Hire_Date	Num	8	DDMMYY10.	Date Hired
4	Job_Title	Char	25		Sales Title
2	Last_Name	Char	18		
3	Salary	Num	8	COMMAX8.	

Adding Permanent Attributes

When displaying reports,

- a label changes the <u>appearance</u> of a variable name
- a format changes the <u>appearance</u> of variable value.

Partial PROC PRINT Output

Label

0bs	First_ Name	Last_Name	Salary	Sales Title	Date Hired
1	Irenie	Elvish	26.600	Sales Rep. II	01/01/1974
2	Christina	Ngan	27.475	Sales Rep. II	01/07/1978
3	Kimiko	Hotstone	26.190	Sales Rep. I	01/10/1985
4	Lucian	Daymond	26.480	Sales Rep. I	01/03/1979
5	Fong	Hofmeister	32.040	Sales Rep. IV	01/03/1979

Format

The LABEL Statement

The LABEL statement assigns descriptive labels to variable names.

General form of the LABEL statement:

```
LABEL variable = 'label'
variable = 'label'
variable = 'label';
```

- A label can have as many as 256 characters.
- Any number of variables can be associated with labels in a single LABEL statement.
- Using a LABEL statement in a DATA step permanently associates labels with variables by storing the label in the descriptor portion of the SAS data set.

Include labels in the descriptor portion of Work.subset1.

```
proc contents data=work.subset1;
run;
```

Partial PROC CONTENTS Output

Alphabetic List of Variables and Attributes								
#	Variable	Туре	Len	Label				
1	First_Name	Char	12					
5	Hire_Date	Num	8	Date Hired				
4	Job_Title	Char	25	Sales Title				
2	Last_Name	Char	18					
3	Salary	Num	8					

In order to use labels in the PRINT procedure, a LABEL option needs to be added to the PROC PRINT statement.

```
proc print data=work.subset1 label;
run;
```

Partial PROC PRINT Output

Obs	First_ Name	Last_Name	Salary	Sales Title	Date Hired
1	Irenie	Elvish	26600	Sales Rep. II	5114
2	Christina	Ngan	27475	Sales Rep. II	6756
3	Kimiko	Hotstone	26190	Sales Rep. I	9405
4	Lucian	Daymond	26480	Sales Rep. I	6999
5	Fong	Hofmeister	32040	Sales Rep. IV	6999
6	Satyakam	Denny	26780	Sales Rep. II	17014
7	Sharryn	Clarkson	28100	Sales Rep. II	14184
8	Monica	Kletschkus	30890	Sales Rep. IV	17106
9	Alvin	Roebuck	30070	Sales Rep. III	9405
10	Kevin	Lyon	26955	Sales Rep. I	16922

The FORMAT Statement

The FORMAT statement assigns formats to variable values.

General form of the FORMAT statement:

FORMAT *variable(s) format*;

- A format is an instruction that SAS uses to write data values.
- Using a FORMAT statement in a DATA step permanently associates formats with variables by storing the format in the descriptor portion of the SAS data set.

SAS formats have the following form:

\$	indicates a character format.
format	names the SAS format or user-defined format.
W	specifies the total format width including decimal places and special characters.
•	is a required delimiter.
d	specifies the number of decimal places in numeric formats.

Selected SAS formats:

Format	Definition
\$ <i>w</i> .	writes standard character data.
w.d	writes standard numeric data.
COMMAw.d	writes numeric values with a comma that separates every three digits and a period that separates the decimal fraction.
COMMAXw.d	writes numeric values with a period that separates every three digits and a comma that separates the decimal fraction.
DOLLAR <i>w.d</i>	writes numeric values with a leading dollar sign, a comma that separates every three digits, and a period that separates the decimal fraction.
EUROXw.d	writes numeric values with a leading euro symbol (\in), a period that separates every three digits, and a comma that separates the decimal fraction.

Selected SAS formats:

Format	Stored Value	Displayed Value
\$4.	Programming	Prog
12.	27134.2864	27134
12.2	27134.2864	27134.29
COMMA12.2	27134.2864	27,134.29
COMMAX12.2	27134.2864	27.134,29
DOLLAR12.2	27134.2864	\$27,134.29
EUROX12.2	27134.2864	€27.134,29

If you do not specify a format width that is large enough to accommodate a numeric value, the displayed value is automatically adjusted to fit into the width.

Format	Stored Value	Displayed Value
DOLLAR12.2	27134.2864	\$27,134.29
DOLLAR9.2	27134.2864	\$27134.29
DOLLAR8.2	27134.2864	27134.29
DOLLAR5.2	27134.2864	27134
DOLLAR4.2	27134.2864	27E3

5.06 Quiz

Which numeric format writes standard numeric data with leading zeros?

Documentation on formats can be found in the SAS Help and Documentation from the Contents tab

(SAS Products ⇒ Base SAS ⇒ SAS 9.4 Formats and Informats: Reference ⇒ SAS Formats ⇒ Dictionary of Formats ⇒ Formats by Category).

5.06 Quiz – Correct Answer

Which numeric format writes standard numeric data with leading zeros?

Zw.d

The Zw.d format is similar to the w.d format except that Zw.d pads right-aligned output with zeros instead of blanks.

SAS Date Formats

SAS date formats display SAS date values in standard date forms.

Format	Stored Value	Displayed Value
MMDDYY6.	0	010160
MMDDYY8.	0	01/01/60
MMDDYY10.	0	01/01/1960
DDMMYY6.	365	311260
DDMMYY8.	365	31/12/60
DDMMYY10.	365	31/12/1960

SAS Date Formats

Additional date formats:

Format	Stored Value	Displayed Value
DATE7.	-1	31DEC59
DATE9.	-1	31DEC1959
WORDDATE.	0	January 1, 1960
WEEKDATE.	0	Friday, January 1, 1960
MONYY7.	0	JAN1960
YEAR4.	0	1960

5.07 Quiz

Which FORMAT statement creates the output?

```
a. format Birth_Date Hire_Date ddmmyy9.

Term_Date mmyy7.;
```

- b. format Birth_Date Hire_Date ddmmyyyy. Term_Date mmmyyyy.;

5.07 Quiz – Correct Answer

Which FORMAT statement creates the output?

- a. format Birth_Date Hire_Date ddmmyy9.

 Term_Date mmyy7.;
- b. format Birth_Date Hire_Date ddmmyyyy. Term_Date mmmyyyy.;
- C. format Birth_Date Hire_Date ddmmyy10.

 Term_Date monyy7.;

```
        Output
        Birth_Date
        Hire_Date
        Term_Date

        21/05/1969
        15/10/1992
        MAR2007
```

Include formats in the descriptor portion of **Work.subset1**.

```
proc contents data=work.subset1;
run;
```

Partial PROC CONTENTS Output

	Alphabetic List of Variables and Attributes							
#	Variable	Type	Len	Format	Label			
1	First Name	Char	12					
5	Hire_Date	Num	8	DDMMYY10.	Date Hired			
4	Job_Title	Char	25		Sales Title			
2	Last_Name	Char	18					
3	Salary	Num	8	COMMAX8.				

```
proc print data=work.subset1 label;
run;
```

Partial PROC PRINT Output

0bs	First_ Name	Last_Name	Salary	Sales Title	Date Hired
1	Irenie	Elvish	26.600	Sales Rep. II	01/01/1974
2	Christina	Ngan	27.475	Sales Rep. II	01/07/1978
3	Kimiko	Hotstone	26.190	Sales Rep. I	01/10/1985
4	Lucian	Daymond	26.480	Sales Rep. I	01/03/1979
5	Fong	Hofmeister	32.040	Sales Rep. IV	01/03/1979
6	Satyakam	Denny	26.780	Sales Rep. II	01/08/2006
7	Sharryn	Clarkson	28.100	Sales Rep. II	01/11/1998
8	Monica	Kletschkus	30.890	Sales Rep. IV	01/11/2006
9	Alvin	Roebuck	30.070	Sales Rep. III	01/10/1985
10	Kevin	Lyon	26.955	Sales Rep. I	01/05/2006
11	Marinus	Surawski	26.910	Sales Rep. I	01/01/2003
12	Fancine	Kaiser	28.525	Sales Rep. III	01/10/1978

Chapter 9: Manipulating Data

9.1 Creating Variables 9.2 Creating Variables Conditionally 9.3 Subsetting Observations

Chapter 9: Manipulating Data

9.1 Creating Variables 9.2 Creating Variables Conditionally 9.3 Subsetting Observations

Objectives

- Create SAS variables with the assignment statement in the DATA step.
- Create data values by using operators including SAS functions.
- Subset variables by using the DROP and KEEP statements.
- Examine the compilation and execution phases of the DATA step when you read a SAS data set.

Business Scenario

A new SAS data set named **Work.comp** needs to be created by reading the **orion.sales** data set.

Work.comp must include the following new variables:

- Bonus, which is equal to a constant 500
- Compensation, which is the combination of the employee's salary and bonus
- BonusMonth, which is equal to the month that the employee was hired

Work.comp must not include the Gender, Salary, Job_Title, Country, Birth_Date, and Hire_Date variables from orion.sales.

Business Scenario

Partial orion.sales

Employee_	First_	Last_	Gender	Salary	Job Title	Country	Birth_	Hire_
ID	Name	Name	Gender	Satary	JOD_ TICLE	Country	Date	Date
120102	Tom	Zhou	М	108255	Sales Manager	AU	3510	10744
120103	Wilson	Dawes	м	87975	Sales Manager	AU	-3996	5114
120121	Irenie	Elvish	F	26600	Sales Rep. II	AU	-5630	5114

Partial Work.comp

Employee_	First_	Last_	Bonus	Compensation	Bonus
ID	Name	Name	Donus	Compensacion	Month
120102	Tom	Zhou	500	108755	6
120103	Wilson	Dawes	500	88475	1
120121	Irenie	Elvish	500	27100	1

Assignment Statements

Assignment statements are used in the DATA step to update existing variables or create new variables.

```
DATA output-SAS-data-set;
SET input-SAS-data-set;
variable = expression;
RUN;
```

```
DATA output-SAS-data-set;
INFILE 'raw-data-file-name';
INPUT specifications;
variable = expression;
RUN;
```

Assignment Statements

The assignment statement evaluates an expression and assigns the resulting value to a variable.

General form of the assignment statement:

variable = expression;

- variable names an existing or new variable.
- expression is a sequence of operands and operators that form a set of instructions that produce a value.

Operands

Operands are constants (character, numeric, or date) and variables (character or numeric).

Examples:

Two Digit Years

What happens if you enter this:

Obs	Payoff_Date
1	-14519

YEARCUTOFF

- System option that specifies first year of 100 year span for interpreting two-digit years
- Default in 9.4 = 1926
- Use four-digit years to avoid misinterpretation

Operators

Operators are symbols that represent an arithmetic calculation and SAS functions.

Examples:

```
Revenue = Quantity * Price;
```

```
NewCountry = upcase(Country);
```

Arithmetic Operators

Arithmetic operators indicate that an arithmetic calculation is performed.

Symbol	Definition	Priority
**	exponentiation	I
-	negative prefix	ĺ
*	multiplication	II
/	division	II
+	addition	III
-	subtraction	III

If a missing value is an operand for an arithmetic operator, the result is a missing value.

9.01 **Quiz**

What is the result of the assignment statement?

- a. . (missing)
- b. 0
- c. 7
- d. 9

$$num = 4 + 10 / 2;$$

9.01 Quiz – Correct Answer

What is the result of the assignment statement?

- a. . (missing)
- b. 0
- c. 7
- (d.) 9

$$num = 4 + 10 / 2;$$

The order of operations from left to right is division and multiplication followed by addition and subtraction.

Parentheses can be used to control the order of operations.

$$num = (4 + 10) / 2;$$

9.02 **Quiz**

What is the result of the assignment statement given the values of **var1** and **var2**?

```
a. . (missing)
```

- b. 0
- c. 5
- d. 10

```
num = var1 + var2 / 2;
```

var1	var2
•	10

9.02 Quiz – Correct Answer

What is the result of the assignment statement given the values of **var1** and **var2**?

- (a.) . (missing)
 - b. 0
 - c. 5
 - d. 10

var1	var2	
•	10	

If an operand is missing for an arithmetic operator, the result is missing.

SAS Functions

A SAS *function* is a routine that returns a value that is determined from specified arguments.

Some SAS functions manipulate character values, compute descriptive statistics, or manipulate SAS date values.

General form of a SAS function:

function-name(argument1, argument2, ...)

- Depending on the function, zero, one, or many arguments are used.
- Arguments are separated with commas.

Descriptive Statistics Function

The SUM function returns the sum of the arguments.

General form of the SUM function:

```
SUM(argument1, argument2, ...)
```

- The arguments must be numeric values.
- Missing values are ignored by some of the descriptive statistics functions.

Example:

```
Compensation=sum(Salary,Bonus);
```

Date Functions

SAS date functions can be used to

- extract information from SAS date values
- create SAS date values.

Date Functions – Extracting Information

YEAR(SAS-date)	extracts the year from a SAS date and returns a four-digit value for year.
QTR(SAS-date)	extracts the quarter from a SAS date and returns a number from 1 to 4.
MONTH(SAS-date)	extracts the month from a SAS date and returns a number from 1 to 12.
DAY(SAS-date)	extracts the day of the month from a SAS date and returns a number from 1 to 31.
WEEKDAY(SAS-date)	extracts the day of the week from a SAS date and returns a number from 1 to 7, where 1 represents Sunday, and so on.

Example:

BonusMonth=month(Hire_Date);

Date Functions – Creating SAS Dates

TODAY()	returns the current date as a SAS date value.
MDY(month,day,year)	returns a SAS date value from numeric month, day, and year values.

Example:

AnnivBonus=mdy(month(Hire_Date),15,2008);

Business Scenario

Create Bonus, Compensation, and BonusMonth.

```
data work.comp;
   set orion.sales;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

```
1700
      data work.comp;
1701
         set orion.sales;
                                                   orion.sales
1702
         Bonus=500;
1703
         Compensation=sum(Salary, Bonus);
                                                    has 9 variables.
1704
         BonusMonth=month(Hire_Date);
1705
      run:
NOTE: There were 165 observations read from the data set ORION.SALES.
NOTE: The data set WORK.COMP has 165 observations and 12 variables.
```


9.03 **Quiz**

What statement needs to be added to the DATA step to eliminate six of the 12 variables?

9.03 Quiz – Correct Answer

What statement needs to be added to the DATA step to eliminate six of the 12 variables?

the DROP or KEEP statement

Business Scenario

Drop Gender, Salary, Job_Title, Country, Birth_Date, and Hire_Date.

```
data work.comp;
   set orion.sales;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
   drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
run;
```

Partial SAS Log

```
NOTE: There were 165 observations read from the data set ORION.SALES. NOTE: The data set WORK.COMP has 165 observations and 6 variables.
```

Business Scenario

```
proc print data=work.comp;
run;
```

Partial PROC PRINT Output

0bs	Employee_ID	First_ Name	Last_Name	Bonus	Compensation	Bonus Month
1	120102	Tom	Zhou	500	108755	6
2	120103	Wilson	Dawes	500	88475	1
3	120121	Irenie	Elvish	500	27100	1
4	120122	Christina	Ngan	500	27975	7
5	120123	Kimiko	Hotstone	500	26690	10
6	120124	Lucian	Daymond	500	26980	3
7	120125	Fong	Hofmeister	500	32540	3
8	120126	Satyakam	Denny	500	27280	8
9	120127	Sharryn	Clarkson	500	28600	11
10	120128	Monica	Kletschkus	500	31390	11

Setup for the Poll

- Submit program p109a01.
- Verify the results.

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

9.04 Poll

Are the correct results produced when the DROP statement is placed after the SET statement?

- O Yes
- O No

9.04 Poll – Correct Answer

Are the correct results produced when the DROP statement is placed after the SET statement?

- Yes
- O No

Yes, the DROP statement specifies the names of the variables to omit from the output data set.

Processing the DROP and KEEP Statements

The DROP and KEEP statements select variables after they are brought into the program data vector.


```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

```
data work.comp;
    set orion.sales;
    drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
    Bonus=500;
    Compensation=sum(Salary,Bonus);
    BonusMonth=month(Hire_Date);
run;
```

Employee_ID	First_Name	Last_Name	Gender	Salary	Job_Title
N 8	\$ 12	\$ 18	\$ 1	N 8	\$ 25

Country	Birth_Date	Hire_Date
\$ 2	N 8	N 8

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

Employee_ID	First_Name	Last_Name	Gender	Salary	Job_Title
N 8	\$ 12	\$ 18	\$ 1	N 8	\$ 25

Country	Birth_Date	Hire_Date	Bonus
\$ 2	N 8	N 8	N 8

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

	Employee_ID	First_Name	Last_Name	Gender	Salary	Job_Title
	N 8	\$ 12	\$ 18	\$ 1	N 8	\$ 25
Ī						

Country	Birth_Date	Hire_Date	Bonus	Compensation
\$ 2	N 8	N 8	N 8	N 8

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

Employee_ID	First_Name	Last_Name	Gender	Salary	Job_Title
N 8	\$ 12	\$ 18	\$ 1	N 8	\$ 25

Country	Birth_Date	Hire_Date	Bonus	Compensation	BonusMonth
\$ 2	N 8	N 8	N 8	N 8	N 8

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

PDV

Employee_ID	First_Name	Last_Name	Gender	Salary	Job_Title
N 8	\$ 12	\$ 18	\$ 1	N 8	\$ 25

Country	Birth_Date	Hire_Date	Bonus	Compensation	BonusMonth
\$ 2	N 8	N 8	N 8	N 8	N 8

68

```
data work.comp;
    set orion.sales;
    drop Gender Salary Job_Title
        Country Birth_Date Hire_Date;
    Bonus=500;
    Compensation=sum(Salary,Bonus);
    BonusMonth=month(Hire_Date);
run;
```

PDV

Employee_ID	First_Name	Last_Name	Gender	Salary	Job_Title
N 8	\$ 12	\$ 18	\$ 1	N 8	\$ 25

Country	Birth_Date	Hire_Date	Bonus	Compensation	BonusMonth
\$ 2	N 8	N 8	N 8	N 8	и 8

Descriptor Portion Work.comp

Employee_ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
N 8	\$ 12	\$ 18	N 8	N 8	N 8

Execution

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
Hire_Date
10744
5114
5114
6756
```

PDV

Employee	
_ID	
•	l

```
... Sender
```

•	Lire_Date	Bonus	Compensation	BonusMonth
	•	•	•	•

Work.comp

Employee First_Na	e Last_Name	Bonus	Compensation	BonusMonth
-------------------	-------------	-------	--------------	------------

Execution

Partial orion.sales

Employee _ID				
120102				
120103				
120121				
120122				

```
Hire_Date

10744

5114

5114

6756
```

```
data work.comp;
    set orion.sales;
    drop Gender Salary Job_Title
        Country Birth_Date
        Hire_Date;
    Bonus=500;
    Compensation=sum(Salary,Bonus);
    BonusMonth=month(Hire_Date);
run;
```

PDV

Employee				
_ID				
120102				

```
M M
```

Vire_Date	Bonus	Compensation	BonusMonth
10744	•	•	•

Work.comp

Employee	First Name	Last Name	Bonus	Compensation	BonusMonth
_ID	_	_		_	

Execution

Partial orion.sales

Employee _ID				
120102				
120103				
120121				
120122				

```
Hire_Date
10744
5114
5114
6756
```

```
data work.comp;
    set orion.sales;
    drop Gender Salary Job_Title
        Country Birth_Date
        Hire_Date;

Bonus=500;
Compensation=sum(Salary,Bonus);
BonusMonth=month(Hire_Date);
run;
```

PDV

Employee				
_ID				
120102				

```
... Sender
M
```

Lire_Date	Bonus	Compensation	BonusMonth	
10744	500	•	•	

Work.comp

Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
-----------------	------------	-----------	-------	--------------	------------

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
Hire_Date

10744

5114

5114

6756
```

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date
        Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

PDV

Employee
_ID
120102

```
... Sender
```

Lire_Date	Bonus	Compensation	BonusMonth
10744	500	108755	•

Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
-----------------	------------	-----------	-------	--------------	------------

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
Hire_Date

10744

5114

5114

6756
```

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date
        Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

PDV

Employee
_ID
120102

```
... Sender
```

Sire_Date	Bonus	Compensation	BonusMonth
10744	500	108755	6

Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
-----------------	------------	-----------	-------	--------------	------------

Partial orion.sales

Employee ID
120102
120103
120121
120122

```
Hire_Date
10744
5114
5114
6756
```

PDV


```
... Sender
```

ire_Date	Bonus	Compensation	BonusMonth
10744	500	108755	6

	Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
I	120102	Tom	Zhou	500	108755	6

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
Hire_Date

10744

5114

5114

6756
```

PDV

Employee
_ID
120102

```
... Sender
M
```

Vire_Date	Bonus	Compensation	BonusMonth
10744	•	•	•

	Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
I	120102	Tom	Zhou	500	108755	6

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
Hire_Date

10744

5114

5114

6756
```

```
data work.comp;
    set orion.sales;
    drop Gender Salary Job_Title
        Country Birth_Date
        Hire_Date;
    Bonus=500;
    Compensation=sum(Salary,Bonus);
    BonusMonth=month(Hire_Date);
run;
```

PDV

Employee
_ID
120103

```
... Sender
```

Vire_Date	Bonus	Compensation	BonusMonth
5114	•	•	•

	Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
I	120102	Tom	Zhou	500	108755	6

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
data work.comp;
    set orion.sales;
    drop Gender Salary Job_Title
        Country Birth_Date
        Hire_Date;

Bonus=500;
Compensation=sum(Salary,Bonus);
BonusMonth=month(Hire_Date);
run;
```

PDV

Employee
_ID
120103

```
... Sender
```

Tire_Date	Bonus	Compensation	BonusMonth
5114	500	•	•

	Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
I	120102	Tom	Zhou	500	108755	6

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date
        Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

PDV

Employee
_ID
120103

```
... Sender
M
```

Lire_Date	Bonus	Compensation	BonusMonth
5114	500	88475	•

	Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
I	120102	Tom	Zhou	500	108755	6

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
data work.comp;
   set orion.sales;
   drop Gender Salary Job_Title
        Country Birth_Date
        Hire_Date;
   Bonus=500;
   Compensation=sum(Salary,Bonus);
   BonusMonth=month(Hire_Date);
run;
```

PDV

Employee
_ID
120103

```
... Sender
```

Vire_Date	Bonus	Compensation	BonusMonth
5114	500	88475	1

	Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
I	120102	Tom	Zhou	500	108755	6

Partial orion.sales

Employee _ID
120102
120103
120121
120122

```
Hire_Date

10744

5114

5114

6756
```

PDV

Employee
_ID
120103

```
... M
```

Lire_Date	Bonus	Compensation	BonusMonth
5114	500	88475	1

Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
120102	Tom	Zhou	500	108755	6
120103	Wilson	Dawes	500	88475	1

Partial orion.sales

Employee _ID	
120102	
120103	
120121	
120122	

```
Hire_Date

10744

5114

5114

6756
```

```
Continue until EOF

Country Birth_Date

Hire_Date;

Bonus=500;

Compensation=sum(Salary,Bonus);

BonusMonth=month(Hire_Date);

run;
```

PDV

Employee		
_ID		
120103		

ire_Date	Bonus	Compensation	BonusMonth
5114	500	88475	1

	Employee _ID	First_Name	Last_Name	Bonus	Compensation	BonusMonth
	120102	Tom	Zhou	500	108755	6
2	120103	Wilson	Dawes	500	88475	1

Chapter 9: Manipulating Data

Creating Variables 9.2 Creating Variables Conditionally 9.3 Subsetting Observations

Objectives

- Execute statements conditionally by using IF-THEN and IF-THEN DO statements.
- Give alternate actions if the previous THEN clause is not executed by using the ELSE statement.
- Control the length of character variables by using the LENGTH statement.

Business Scenario

A new SAS data set named **Work.bonus** needs to be created by reading the **orion.sales** data set.

Work.bonus must include a new variable named Bonus that is equal to

- 500 for United States employees
- 300 for Australian employees.

IF-THEN Statements

The *IF-THEN* statement executes a SAS statement for observations that meet specific conditions.

General form of the IF-THEN statement:

IF expression THEN statement;

- expression is a sequence of operands and operators that form a set of instructions that define a condition for selecting observations.
- statement is any executable statement such as the assignment statement.

IF-THEN/ELSE Statements

The optional *ELSE statement* gives an alternate action if the previous THEN clause is not executed.

General form of the IF-THEN/ELSE statements:

IF expression THEN statement; ELSE IF expression THEN statement;

- Using IF-THEN statements without the ELSE statement causes SAS to evaluate all IF-THEN statements.
- Using IF-THEN statements with the ELSE statement causes SAS to execute IF-THEN statements until it encounters the first true statement.

Business Scenario

Create the new variable **Bonus**.

```
data work.bonus;
   set orion.sales;
   if Country='US' then Bonus=500;
   else if Country='AU' then Bonus=300;
run;
```

```
1819 data work.bonus;
1820 set orion.sales;
1821 if Country='US' then Bonus=500;
1822 else if Country='AU' then Bonus=300;
1823 run;

NOTE: There were 165 observations read from the data set ORION.SALES.
NOTE: The data set WORK.BONUS has 165 observations and 10 variables
```

Business Scenario

```
proc print data=work.bonus;
    var First_Name Last_Name Country Bonus;
run;
```

Partial PROC PRINT Output

0bs	First_Name	Last_Name	Country	Bonus
60	Billy	Plested	AU	300
61	Matsuoka	Wills	AU	300
62	Vino	George	AU	300
63	Meera	Body	AU	300
64	Harry	Highpoint	US	500
65	Julienne	Magolan	US	500
66	Scott	Desanctis	US	500
67	Cherda	Ridley	US	500
68	Priscilla	Farren	US	500
69	Robert	Stevens	US	500

9.05 **Quiz**

- Submit program p109a02.
- Review the results.
- Why are some of the **Bonus** values missing in the PROC PRINT output for **orion.nonsales**?

9.05 Quiz – Correct Answer

Why are some of the **Bonus** values missing in the PROC PRINT output for **orion.nonsales**?

Country has mixed case values in the orion. nonsales data set.

The UPCASE function will correct the issue.

```
data work.bonus;
    set orion.nonsales;
    if upcase(Country)='US'
        then Bonus=500;
    else if upcase(Country)='AU'
        then Bonus=300;
run;
```

ELSE Statements

The conditional clause does not have to be in an ELSE statement.

For example:

```
data work.bonus;
    set orion.sales;
    if Country='US' then Bonus=500;
    else Bonus=300;
run;
```


All observations not equal to US get a bonus of 300.