Embedding Self-Organizing Maps into Neural Networks

Stephen Barnes stbarnes@stanford.edu

What is a Self-Organizing Map?

What is a Self-Organizing Map?

A mapping from Rⁿ to R^m

Dimensionality reduction

What is a Self-Organizing Map?

"Self-organizing" – mapping learned from data

Mapping can be nonlinear (red), unlike PCA (blue)

Start with an m-dimensional grid graph

Embed into input space Rⁿ randomly

Each node n has location l_n in Rⁿ

Show each point to the SOM

When SOM is shown a point, nearby graph nodes move closer

Over many steps, SOM graph copies input distribution

Updating the graph embedding

When shown a sample, the closest graph node is the "winner" - competitive learning

Winning node and nearby nodes move closer

Updating the graph embedding

When shown a sample, the closest graph node is the "winner" - competitive learning

Winning node and nearby nodes move closer

Die-off is exponential in graph distance

Learning rate decays with samples seen

m-dimensional grid graph defines an m-dimensional "graph space"

SOM outputs graph-space coordinates of winning node

SOM translates input point to coordinate of nearest grid point in graph space

SOM "unwinds" 1D manifold in R2 to a line in R1

History of SOMs

Designed by Prof. Teuvo Kohonen in the 1980s

History of SOMs

Building on 1970s models from neuroscience and morphogenesis models from 1950s

Pictured: 1970s neuroscience models

Neural networks transform manifolds to make categories separable Maybe SOMs can do this better?

Pictures by Chris Olah http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Problem: SOMs are non-differentiable! Backpropagation is impossible

Nodes win all input points inside Voronoi cell – piecewise constant output

Solution: every node wins, but some win more than others

Output is weighted mean of nodes' graph locations, weights decaying with distance to input point

Normalized by sum of weights

Solution: every node wins, but some win more than others

Output is weighted mean of nodes' graph locations, weights decaying with distance to input point

If node embedding is constant, this is a differentiable function of p.

Derivatives can flow back through SOM!

Output(p) =
$$\frac{\sum_{v} g_{v} \exp(-\beta ||p - l_{v}||_{2})}{\sum_{v} \exp(-\beta ||p - l_{v}||_{2})}$$

Implemented as TensorFlow op, with embedding as TF input.

TensorFlow structure

TensorFlow structure

Testing: spiral classification task

Results: pure NN

Results: SOM preprocessing

Results: interposed SOM

Q&A