Binary Search Trees: AVL Tree Implementation

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures Fundamentals Algorithms and Data Structures

Learning Objectives

- Implement AVL trees.
- Understand the cases required for rebalancing algorithms.

Outline

1 AVL Trees

2 Insert

3 Delete

AVL Trees

Need ensure that children have nearly the same height.

Updates to the tree can destroy this property.

Updates to the tree can destroy this property.

Need to correct this.

Errors

Heights stay the same except on the insertion path.

Only need to worry about this path.

Which insertion would require the tree to be rebalanced in order to maintain the AVL property?

Which insertion would require the tree to be rebalanced in order to maintain the AVL property?

Outline

1 AVL Trees

2 Insert

3 Delete

Insertion

We need a new insertion algorithm that involves rebalancing the tree to maintain the AVL property.

ldea

AVLInsert(k, R)

Insert(k, R) $N \leftarrow Find(k, R)$

Rebalance(N)

Rebalancing

lf

|N.Left.Height -N.Right.Height $| \leq 1$

fine.

Difficulty if heights differ by more.

Difficulty if heights differ by more.

Never more than 2.

Code

Rebalance(N)

```
P \leftarrow N.Parent
if N.Left.Height > N.Right.Height +
1:
  RebalanceRight(N)
if N.Right.Height > N.Left.Height +
1:
```

AdjustHeight(N) if $P \neq null$:

RebalanceLeft(N)

Adjust Height

```
AdjustHeight(N)
```

```
	extstyle{N.Height} \leftarrow 1 + 	extstyle{max} egin{align*} 	extstyle{N.Left.Height}, \ 	extstyle{N.Right.Height} \end{pmatrix}
```

Rebalancing

If left subtree too heavy, rotate right:

Bad Case

Doesn't work in this case.

Fix

Must rotate left first.

Rebalance

```
RebalanceRight(N)
```

```
M \leftarrow N. \text{Left}
if M. \text{Right.Height} > M. \text{Left.Height}:
   RotateLeft(M)
RotateRight(N)
AdjustHeight on affected nodes
```

Outline

1 AVL Trees

2 Insert

3 Delete

Delete

Deletions can also change balance.

New Delete

AVLDelete(N)

Delete(N) $M \leftarrow \text{Parent of node replacing } N$ Rebalance(M)

Conclusion

Summary

AVL trees can implement all of the basic operations in $O(\log(n))$ time per operation.