Fraktály a chaos I

Radek Pelánek

IV122

Fraktály

- (netriviální) sobě-podobnost
- rekurze
- reálné příklady (viz slidy P. J.)
- matematické principy: iterované systémy, rekurentní rovnice, L-systémy, podivné atraktory, ...

často vede na "jednoduché programy, které dělají zajímavé věci" – dnes několik typických ukázek

Sierpińského fraktál

Sierpińského fraktál a Pascalův trojúhelník

Sierpińského fraktál: "chaos game"

- zvolíme 3 body A, B, C tvořící rovnostranný trojúhelník
- vybereme náhodný bod X uvnitř trojúhelníku
- opakujeme následující postup:
 - vyber náhodně jeden z bodů A, B, C
 - přesuň X do poloviny mezi X a zvoleným bodem
 - vykresli X

Sierpińského fraktál: "chaos game"

"Chaos game": další fraktály

http://mathworld.wolfram.com/ChaosGame.html

Chaos

Hlavní myšlenka

Malé změny v iniciálních podmínkách mohou způsobit velké změny při dlouhodobém chování.

- Mávnutí křídel motýla v Amazonském pralese může způsobit bouři v Texasu.
- Můžeme dostat zdánlivě náhodné chování i pro deterministický systém.

Historie

60. léta, Lorenz, jednoduchý model počasí, ...

Figure 11.7 Two time evolutions of x with an infinitesimal initial difference

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaux, Complex Systems, and Adaptation. Copyright © 1998-2000 by Gary William Flabs. All lights reserved. Permission granted for educational, scholarly, and personal use provided that this solice remains intact and unaltered. No part of this work may be reproduced for commercial purposes without prior written permission from the MIT Permission.

Lineární a nelineární systémy

Logistická rovnice

$$x_{t+1} = 4 \cdot r \cdot x_t \cdot (1 - x_t)$$

- $r \in [0,1], x_0 \in [0,1]$
- možný význam: velikost populace
- jednoduchý příklad ilustrující základní koncepty chaosu

Figure 10.2 Logistic map with $r = \frac{7}{10}$: (a) The time series quickly stabilizes to a fixed point. (b) The state space of the same system shows how subsequent steps of the system get pulled into the fixed point.

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright © 1970-2000 by Gary William Flake. All rights reserved. Permission granted for educational, scholarly, and personal use provided that this notice remains intact and unaltered. No part of this work may be regroduced for commercial purposes without prior written permission from the MIT Permission.

Figure 10.4 Logistic map with $r=\frac{8}{10}$: (a) The time series quickly stabilizes to a period-2 limit cycle. (b) The state space of the same system shows how subsequent steps of the system get pulled into the limit cycle. (c) The state space of the same system but with 4

200

Figure 10.5 Logistic map with $r = \frac{88}{100}$: (a) The time series quickly stabilizes to a period-4 limit cycle. (b) The state space of the same system. (c) The state space of the same system but with only the converged values for x_1 plotted.

990

Figure 10.6 Logistic map with r=1: (a) The time series is chaotic and has the appearance of noise. (b) The state space of the same system, which illustrates how the system's trajectory visits every local region. (c) The state space of the same system with only four

200

Feigenbaumův diagram

- pro hodnoty r simulovat 200 kroků, prvních 100 zahodit, ostatní zanést na y-ovou osu
- Feigenbaumův bod: přechod od řádu k chaosu
- bifurkační body, Feigenbaumova konstanta 4.6692
- soběpodobnost
- vztah reálné věci: tok (přímý, turbulence), srdce (pravidelně, fibrilace)

Figure 10.7 Bifurcation diagrams for the logistic map: (a) This image has values of r such that fixed points, limit cycles, and chaos are all visible. (b) This image shows the detail of the boxed section of (a).

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright © 1998-2000 by Gary William Fakle. All rights reserved. Permission granted for educational, schielarly, and personal use provided that this notice remains intact and unaltered. No part of this work may be reproduced for commercial purposes without prince written permission from the MIT Personal.

Feigenbaumova konstanta

Kochova vločka

L-systém

- Lindenmayerův systém
- modelování růstu rostlin, viz např. The Algorithmic Beauty of Plants
 http://algorithmicbotany.org/papers/abop/abop.pdf
- paralelní přepisovací gramatika:
 - axiom
 - přepisovací pravidla, aplikována paralelně
- přirozená interpretace želví grafikou

Kochova vločka – L-systém

- symboly: F,-,+
- axiom: F--F--F
- přepisovací pravidlo systému je $F \Rightarrow F+F--F+F$
- interpretace: F = forward(10), + = right(60),
 = left(60)

Sierpińského fraktál – L-systém

$$A \Rightarrow B-A-B$$

 $B \Rightarrow A+B+A$

Hilbertova křivka

 $A \Rightarrow - B F + A F A + F B - B \Rightarrow + A F - B F B - F A +$

- prostor vyplňující křivka
- další podobné: Peanova křivka

Rozšíření

- [push, uložení polohy želvy na zásobník
-] pop, obnovení polohy želvy ze zásobníku

Strom

Strom II

$${\tt A} \Rightarrow {\tt F}$$
 - [[A] + A] + F [+ F A] - A F \Rightarrow F F úhel 25°

Barevné rostliny

úhel: 25°

F ⇒ FF+[+F-FF]
-[-F+F+F]

Stochastický L-systém

vybíráme náhodnostně jedno z pravidel

úhel: 30°

 $F \Rightarrow F[+F]F[-F]F$

 $\mathsf{F} \Rightarrow \mathsf{F}[+\mathsf{F}]\mathsf{F}$

 $F \Rightarrow F[-F]F$

Úloha

- důraz na kompaktnost a eleganci implementace
 - žádný "copy & paste" kód
 - oddělení "dat" a "obecného principu"
 - stručně zapsaná pravidla (řetězce) ⇒ obrázek
- experimentování s pravidly neopisujte pouze pravidla, zkuste vlastní variace!