NOTES ON MATHEMATICAL ANALYSIS

YANNAN MAO

22ND NOVEMBER 2024

CONTENTS

1	Measures	1
1.1	Topological Spaces and σ -Algebras	1

MEASURES

Suppose that $(A_n)_{n\in\mathbb{N}}$ is a countably infinite sequence of sets. The sequence is *increasing* if $A_n\subseteq A_{n+1}$ for each $n\in\mathbb{N}$, and *decreasing* if $A_{n+1}\subseteq A_n$ for each $n\in\mathbb{N}$. The sequence is *monotone* if it is increasing or decreasing.

If $(A_n)_{n\in\mathbb{N}}$ is increasing, the *increasing union thereof* is $\bigcup_{n\in\mathbb{N}} A_n$. If $(A_n)_{n\in\mathbb{N}}$ is decreasing, the *decreasing intersection thereof* is $\bigcap A_n$.

The *limit inferior of the countably infinite sequence* $(A_n)_{n\in\mathbb{N}}$ is

$$\liminf_{n \to \infty} A_n = \bigcup_{n=0}^{\infty} \bigcap_{i=n}^{\infty} A_i,$$

and the *limit superior thereof* is

$$\limsup_{n\to\infty} A_n = \bigcap_{n=0}^{\infty} \bigcup_{i=n}^{\infty} A_i.$$

1.1 TOPOLOGICAL SPACES AND σ -ALGEBRAS

DEFINITION 1. Let S be a set. Then $\mathcal{T} \subseteq \mathcal{P}(S)$ is a **topology on** S if and only if

- (a) $\emptyset \in \mathcal{F}$;
- (b) $S \in \mathcal{F}$;
- (c) \mathcal{T} is closed under finite intersections; and
- (d) \mathcal{T} is closed under unions.

A *topological space* is an ordered pair (S, \mathcal{T}) wherein S is a set and \mathcal{T} is a topology thereon, and a subset of S is an *open set* if it is in \mathcal{T} .

For each $S \subseteq \mathcal{P}(S)$, there exists a smallest topology on S which includes S, referred by as the *topology generated by* S.

DEFINITION 2. Let *S* be a set. Then $\Sigma \subseteq \mathcal{P}(S)$ is a σ -algebra on *S* if and only

- (a) $\Sigma \neq \emptyset$;
- (b) Σ is closed under complementation; and
- (c) Σ is closed under countable unions.

A *measurable space* is an ordered pair (S, Σ) wherein S is a set and Σ is a σ -algebra thereon, and a subset of S is a *measurable set* if it is in Σ .

It follows that $S \in \Sigma$ and $\emptyset \in \Sigma$ for each σ -algebra on S and that each σ -algebra is closed under countable intersections. Hence, the smallest σ -algebra on S is $\{S, \emptyset\}$ and the largest thereon is $\mathcal{P}(S)$.

A σ -algebra is closed under both increasing unions and decreasing intersections.

For each $P \in \mathcal{P}(S)$, there exists a smallest σ -algebra on S which includes P, referred to as the σ -algebra generated by P and denoted by $\sigma(P)$.

A π -system on S is a set of subsets of S which is closed under finite intersections. A **Dynkin system on** S is a set of subsets of S which contains S and is closed under both proper differences and increasing unions.

Theorem 1 (Sierpiński–Dynkin's π – λ theorem). *Let* \mathcal{C} *be a* π -system on S, and let \mathcal{D} be a Dynkin system thereon.

If
$$\mathcal{C} \subseteq \mathcal{D}$$
, then $\sigma(\mathcal{C}) \subseteq \mathcal{D}$.

Proof. First, \mathcal{C} is a σ -algebra if and only if it is both a π -system and a Dynkin system.

Assume that \mathcal{D} is the smallest Dynkin system which includes \mathcal{C} . It then suffices to show that \mathcal{D} is also a π -system. Hence, we need to show that $A \cap B \in \mathcal{D}$ for any $A, B \in \mathcal{D}$.

To demonstrate the above proposition, first define $\mathcal{S}_B = \{A \subseteq S : A \cap B \in \mathcal{D}\}$ for each $B \in \mathcal{C}$. Then each \mathcal{S}_B is a Dynkin system including \mathcal{C} , and so it includes \mathcal{D} . Thus, $A \cap B \in \mathcal{D}$ for each $A \in \mathcal{D}$ and $B \in \mathcal{C}$. Next, define $\mathcal{S}'_A = \{B \subseteq S : A \cap B \in \mathcal{D}\}$ for each $A \in \mathcal{D}$. Similarly, we note that each \mathcal{S}'_A includes \mathcal{D} .

Therefore, the theorem holds.

DEFINITION 3. Let (S, \mathcal{T}) be a topological space. The **Borel** σ -algebra of (S, \mathcal{T}) , denoted by $\mathcal{B}(S, \mathcal{T})$, is the σ -algebra generated by \mathcal{T} .

A **Borel set of** (S, \mathcal{T}) is an element of $\mathcal{B}(S, \mathcal{T})$.

Let $(S_i, \mathcal{T}_i)_{i \in I}$ be topological spaces with I as an index set. Let \mathcal{X} be the cartesian product of $(S_i)_{i \in I}$; i.e.,

$$\mathcal{X} = \prod_{i \in I} S_i.$$

For each $i \in I$, let $\operatorname{pr}_i : \mathcal{X} \to S_i$ denote the i-th projection on \mathcal{X} ; i.e.,

$$\operatorname{pr}_{i}(x) = s_{i}$$

wherein $x = (s_i)_{i \in I}$. Then, the **product topology on** \mathcal{X} is the topology generated by

$$\{\operatorname{pr}_i^{-1}[U]\,:\,U\in\mathcal{T}_i\wedge i\in I\}.$$

Let $(S_i, \Sigma_i)_{i \in I}$ be measurable spaces with I as an index set. The **product** σ -algebra of $(\Sigma_i)_{i \in I}$ is

$$\bigotimes_{i \in I} \varSigma_i = \sigma \left(\left\{ A_i \times \prod_{j \in I \land j \neq i} S_j : A_i \in \varSigma_i \land i \in I \right\} \right).$$