2.2 The limit of function; vertical asymptotes

- 1. concept of limit 極限的概念 $\lim_{x\to a} f(x) = L$ §2.4 會有正式的定義
- 2. one-side limit 單邊極限 $\lim_{x \to a^{\pm}} f(x) = L$
- 3. infinite limit 無限極限 $\lim_{x\to a} f(x) = \pm \infty$ (vertical asymptote 垂直漸近線)

什麼是"極限"?極限是種趨勢傾向;一個函數在某個點的極限,就是當你靠近這個點,這個函數的趨勢傾向。

0.1 Concept of limit

Let $f(x) = x^2 - x + 2$. When x is near 2, what's happened to f(x)?

Question: Where does f(x) go when x goes toward 2?

Answer: 4. (怎麼簡單表示? 用極限。)

Define: f is defined when x is <u>near</u> a. $[x \in (c,b)(\setminus \{a\}), c < a < b]$

$$\lim_{x \to a} f(x) = \underline{L}$$

The limit of f(x) is equals to L as x approaches a. (只要 x 靠近 a, f(x) 的極限等於 L。)

f(x) o L as x o a

f(x) approaches L as x approaches a. (只要 x 靠近 a, f(x) 就會靠近 L。)

Ex:
$$x^2 - x + 2 \to 4$$
 as $x \to 2$, $\lim_{x \to 2} (x^2 - x + 2) = 4$.

 $\lim_{x \to a} f(x)$ $a \neq a$ 極限 A man is known by the company he keeps. 觀其友, 知其人。 $\lim_{x \to \pm} \mathfrak{S}(x) = \mathfrak{s}, \lim_{x \to \pm} \mathfrak{S}(x) = \mathbb{Z}$ 近朱者赤, 近墨者黑。朱有多赤? 墨有多黑?

Observation: 求極限 $\lim_{x\to a}f(x)$, 是研究 f 在 a 附近的行爲, 與 f(a) 無關。 當 $\lim_{x\to a}f(x)=L$ (代表極限存在, 且爲一個確定値 L), f(a) 會有三種情形:

- 1. f(a) is not defined.
- 2. f(a) is defined but $f(a) \neq L$.
- 3. f(a) is defined and f(a) = L. (這時候我們稱: f 在 a 連續, see §2.5.)

 $\forall a, \lim_{x \to a} f(x) = 1, f(-2) \stackrel{\mathbf{x}}{=} \underset{x \to 0}{=} f(x), f(2) = \lim_{x \to 2} f(x).$

Example 0.1 Guess
$$\lim_{x\to 1} \frac{x-1}{x^2-1} = ?$$

$$Let\ f(x) = \frac{x-1}{x^2-1}$$
. (沒明說, 定義域: $\{x \neq \pm 1\}$.)

x(<1)	f(x)	x > 1	f(x)
	9 ()	/	0 ()
0.5	0.666667	1.5	0.4
0.9	0.526316	1.1	0.47619
0.99	0.502513	1.01	0.497512
0.999	0.500250	1.001	0.499750
0.9999	0.500025	1.0001	0.499975

用計算機算應該是 0.5; 從繪圖軟體看應該也是 0.5。 $\lim_{x\to 1} \frac{x-1}{x^2-1} = \frac{1}{2} \ (\checkmark)$.

(不管是:
$$\begin{cases} 1. \ f(1) \ \text{未定義}, \\ 2. \ let \ g(x) = f(x), \ x \neq 1 \ and \ g(1) = 2, \\ 3. \ let \ h(x) = f(x), \ x \neq 1 \ and \ h(1) = 0.5, \end{cases}$$

都不會影響極限: $\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x) = \lim_{x \to 1} h(x) = \frac{1}{2}$.)

Example 0.2 *Estimate* $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = ?$

		2 70 0
t	$\frac{\sqrt{t^2+9}-3}{t^2}$	$\begin{bmatrix} y & y \\ 0.3 \oplus \dots & y \end{bmatrix}$
±1	0.16228	
± 0.5	0.16553	
± 0.1	0.16662	$x \longrightarrow x$
± 0.05	0.16666	
± 0.01	0.16667	$\begin{bmatrix} y \\ 0.3 \\ 0.3 \end{bmatrix}$
± 0.0005	0.168	
± 0.0001	0.2	1 1 M
± 0.00005	0	$\longrightarrow x \longrightarrow x$
± 0.00001	0	

用計算機算應該是 0; 從繪圖軟體也看到 0。 $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = 0$ (Wrong!) 因爲 $\sqrt{t^2+9}\to 3$ as $t\to 0$, 計算機位數不足分子會變成 0, 再除以 t^2 還是 0, 所以會得到 0。事實上 $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = \frac{1}{6}$. (所以要學微積分。)

Example 0.3 Guess $\lim_{t\to 0} \frac{\sin x}{x} = ?$ (陷阱卡發動!)

		0 10 W	
x	$\frac{\sin x}{x}$. 1	
±1	0.84147098	$y = \frac{\sin x}{1 + \sin x}$	[TRAP CARD]
± 0.5	0.95885108	1	
± 0.4	0.97354586		$\lim_{x \to \infty} \sin x$
± 0.3	0.98506736	$\longrightarrow x$	
± 0.2	0.99334665		$x \rightarrow 0$ x
± 0.1	0.99833417	y	
± 0.05	0.99958339	1 1	
± 0.01	0.99998333		
± 0.005	0.99999583	$\longrightarrow x$	
± 0.001	0.99999983	0 0.01	©1996 KAZUKI TAKAHASI

用計算機跟繪圖軟體應該是 1 (?)。 $\lim_{x\to 0}\frac{\sin x}{x}=1$ (\checkmark , 之後 §3.2 會證明).

$\pm 10^{-4} \sim 10^{-5}$	0.99999999		
$\pm 10^{-6} \sim 10^{-14}$	1	(by Google,	其實計算機會算錯!)
$\pm 10^{-15}$	0		

Example 0.4 Investigate $\lim_{x\to 0} \sin \frac{\pi}{x}$.

Let
$$f(x) = \sin \frac{\pi}{x}$$
. $f(x) = 0$ when $x = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{10}, \dots, \frac{1}{100}$.

 $\lim_{x\to 0} f(x) = 0$? No, 因爲還有很多 x near 0 使得 f(x) = 1. (who?)

從圖中看出 $f(x) \not\to some fixed number as <math>x \to 0$, so we say: $\lim_{x \to 0} \sin \frac{\pi}{x} \quad \textbf{does not exist } \land \textbf{Fac}.$

 $\lim_{t \to 9\mathfrak{R}}$ 能 \neq 我— 能<mark>不能</mark>靠近我就在今晚。

計算機位數不足 (<5) 會算出 0, 其實答案是 0.0001。

0.001

0.00010000

Note: 圖不一定畫得出來, 用看的不一定看得出來, 用猜的不一定會猜對, 用計算機算不一定會算出來, 可能算出錯的答案。要用定義(ε - δ) 或其他工具來證明。

Example 0.6 The Heaviside 黑維賽 (step 階躍) function

$$H(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases} \qquad y = H(t)$$

 $\lim_{t\to 0} H(t)$ does not exist, but there are something to say.

 $\lim_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c}$

◆: 有些書上定義 $H(t) = \frac{1}{2}[1 + \operatorname{sgn}(t)], H(0)$ 有些不定義, 有些定為 $\frac{1}{2}$ 。 黑維賽函數又稱爲單位階梯 (unit step) 函數 $u(t), u_a(t) = u(t-a)$, 是典型的開-關函數 (on-off function), 應用於電路與資訊科學。

$$\begin{array}{c|c}
y & y = u_a(t) - u_b(t) \\
\hline
0 & OFF \\
\hline
0 & a & b
\end{array}$$

One-side limit 0.2

有時候雖然沒有(雙邊)極限,但是這個函數還是有一些很好的性質 — 單邊極限。

$$\lim_{x o a^-} f(x) = L$$
 or $f(x) o L$ as $x o a^-$

The **left-hand limit** of f(x) is equals to L as x approaches a. f(x) approaches L as x approaches a from the left(從左邊).

右極限:

$$\lim_{x o a^+} f(x) = L$$
 or $\int_{L}^{y} f(x) dx$

The **right-hand limit** of f(x) is equals to L as x approaches a. f(x) approaches L as x approaches a from the right(從右邊).

Recall Heaviside function H(x), $\lim_{x \to 0^{-}} H(x) = 0 \text{ and } \lim_{x \to 0^{+}} H(x) = 1.$

Fact: 由極限, 左極限, 右極限的 (概念) 定義可以得到一個事實:

$$\lim_{x \to a} f(x) = \underline{L} \iff \lim_{x \to a^{-}} f(x) = \underline{L} \text{ and } \lim_{x \to a^{+}} f(x) = \underline{L}.$$

- (\Rightarrow) Trivial.
- (⇐) 要有左極限, 要有右極限, 這兩個極限要一樣, 就會有極限 (等於共同的極限)。

微積分與交通規則: 看看左邊, 看看右邊, 再看看跟左邊一不一樣。

0.3 Infinite limit (& vertical asymptote)

無限極限:

$$\lim_{x \to a} f(x) = \infty, \quad \lim_{x \to a} f(x) = -\infty,$$

$$\lim_{x \to a^{-}} f(x) = \infty, \quad \lim_{x \to a^{-}} f(x) = -\infty,$$

$$\lim_{x \to a^{+}} f(x) = \infty, \quad \lim_{x \to a^{+}} f(x) = -\infty,$$

$$f(x) \to \infty/-\infty \text{ as } x \to a/a^{-}/a^{+}.$$

或

$$f(x) \to \infty/-\infty$$
 as $x \to a/a$ /a.

f(x) can be **arbitrarily** 任意 large (negative) as x approaches a/from the left/from the right.

Attention: ∞ (infinity) 無限大與 $-\infty$ (negative infinity) 負無限大/無限 小都是符號, 並不是一個數字, 所以這種時候極限是<mark>不存在</mark>。

Example 0.7 Does $\lim_{x\to 0} \frac{1}{x^2}$ exist?

No, but
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

 $y = \frac{1}{x^2}$

Example 0.8 Does $\lim_{x\to 0} \frac{1}{x}$ exist?

No, but
$$\lim_{x \to 0^+} \frac{1}{x} = \infty \ \mathcal{E} \lim_{x \to 0^-} \frac{1}{x} = -\infty$$
.

Question: 選項有 does not exist 與 $\infty/-\infty$ 要選誰?

Answer: 有無限極限<mark>最好</mark>是選 $\infty/-\infty$ 。

Define: x = a is a *vertical asymptote* 垂直漸近線 of y = f(x) if infinite limit $(\infty/-\infty)$ occurs at $a/a^-/a^+$. 當無限極限的6種情形之一發生時。

Note: 曲線 y = f(x) 離開原點越<mark>遠</mark>就會越<mark>靠近</mark>的直線稱爲它的漸近線。

Example 0.9 Find $\lim_{x\to 3^+} \frac{2x}{x-3}$ and $\lim_{x\to 3^-} \frac{2x}{x-3}$.

$$\lim_{x \to 3^{+}} \frac{2x}{x - 3} = \infty \text{ and } \lim_{x \to 3^{-}} \frac{2x}{x - 3} = -\infty.$$

左極限是 $-\infty$, 右極限是 ∞ , 不只不存在, 還不相同。 這時候 $\lim_{x\to 3}\frac{2x}{x-3}$ 不存在 (does not exist), 但是有垂直漸近線 x=3。 (What is y=2 called?)

Example 0.10
$$\lim_{x\to 0^+} \ln x = ?$$

$$\lim_{x \to 0^+} \ln x = -\infty.$$

Attention: 垂直漸近線是 x = 0, 不是 $x = 0^+$! (左極限 $\lim_{x\to 0^-} \ln x = ?$ 極限 $\lim_{x\to 0} \ln x = ?$)

Note: x=0 (y-axis) y-軸, 是 $y=\ln x$ 的垂直漸近線。 也是所有對數函數圖形 $y=\log_a x$ $(a>0,\ a\neq 1,\ x>0)$ 的垂直漸近線。 As $x\to 0^+$, when a>1, $\log_a x\to -\infty$; when 0< a<1, $\log_a x\to \infty$. **Remark:** When ask $\lim_{x\to a} f(x) = ?$

- 1. \exists , $\lim_{x \to a} f(x) = L$.
- 2. $\not\equiv$, does not exist. but
 - (a) \exists one-side limit
 - i. right-hand limit $\lim_{x \to a^+} f(x) = L$.
 - ii. left-hand limit $\lim_{x\to a^-} f(x) = L$.
 - (b) \exists infinite limit (with V.A. x = a)
 - i. $\lim_{x \to a} f(x) = \infty$.
 - ii. $\lim_{x \to a^+} f(x) = \infty$.
 - iii. $\lim_{x \to a^-} f(x) = \infty$.
 - iv. $\lim_{x \to a} f(x) = -\infty$.
 - v. $\lim_{x \to a^+} f(x) = -\infty.$
 - vi. $\lim_{x \to a^-} f(x) = -\infty$.
 - (c) just does not exist.

(What can you say for y = f(x) about x = 0?)

$$\lim_{x \to 0} f(x) = ?$$

$$\lim_{x \to 0^+} f(x) = ?$$

$$\lim_{x \to 0^-} f(x) = ?$$