ImageNet Classification with Deep Convolutional Neural Networks

NIPS 2012

GIST EECS 윤준영

Paper Info

Paper: ImageNet Classification with Deep Convolutional Neural Networks

Authors: Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

Journal: Neural Information Processing Systems (NIPS)

Citations: 77883

Main problem

• DNN(Deep Neural Network) – good performance only on small dataset

Try deep convolutional neural network to classify Large image set

Dataset Input

Down-sampled the images to a fixed resolution of 256X256

ReLU

- Train faster than tanh or sigmoid units
- Non-saturation
- Used in all layers as activation function

Traing error rate on CIFAR-10

ReLU (**solid line**) tanh (**dashed line**)

- LRN(Local Response Normalization)
 - Relu do not require input normalization (non-saturation)
 - To prevent effect similar to lateral inhibition
 - Reduced error rates 1.4% and 1.2%

$$b_{x,y}^i = a_{x,y}^i/(k+\alpha\sum_{j=\max(0,i-n/2)}^{j=\min(N-1,i+n/2)}a_{x,y}^{j-2})^\beta$$

where

 $b_{x,y}^i$ — regularized output for kernel i at position x,y $a_{x,y}^i$ — source output of kernel i applied at position x,y N — total number of kernels n — size of the normalization neigbourhood $\alpha, \beta, k, (n)$ — hyperparameters

- Overlapping pooling
 - Set stride smaller than feature map size
 - Overlapping max pooling was used
 - Error rate reduced 0.4%

Overlapping pooling

Multiple GPUs

Communications in few layers, reduced error rates, faster than one GPU

GPU-1: data irrelevant with color

GPU-2: data relevant with color

5 Convolution layers + 3 Fully-connected layers

Overfitting

- Data augmentation
 - Mirroring
 - Random crops
 - PCA on RGB pixel values
 - top-1 error rate reduce 1%

$$I_{xy} = [I_{xy}^R, I_{xy}^G, I_{xy}^B]^T + [\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3][\alpha_1 \lambda_1, \alpha_2 \lambda_2, \alpha_3 \lambda_3]^T$$
$$\alpha_i \sim N(0, 0.1)$$

Overfitting

- Dropout
 - Used in two fully-connected layers

Results

• Best results were achived in ILSVRC-2010

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]	8	-	26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	_
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

Conclusion

Successful GPU implementation of the convolution operation

Efficient result by CNN

Developed GPU and good architecture will present better performance

Reference

- [1] https://blog.naver.com/laonple/220662317927
- [2] https://laonple.blog.me/220654387455
- [3] https://curaai00.tistory.com/4
- [4] https://learnopencv.com/understanding-alexnet/
- [5] https://bskyvision.com/421