Problem Solving State-Space Search and Control Strategies

Chapter 2(c)

Heuristic Search

- Heuristics are criteria for deciding which among several alternatives be the most effective in order to achieve some goal.
- Heuristic is a technique that
 - improves the efficiency of a search process possibly by sacrificing claims of systematicity and completeness.
 - It no longer guarantees to find the best answer but almost always finds a very good answer.

Heuristic Search – Contd...

- Using good heuristics, we can hope to get good solution to hard problems (such as travelling salesman) in less than exponential time.
- There are general-purpose heuristics that are useful in a wide variety of problem domains.
- We can also construct special purpose heuristics, which are domain specific.

General Purpose Heuristics

- A general-purpose heuristics for combinatorial problem is
 - Nearest neighbor algorithms which works by selecting the locally superior alternative.
 - For such algorithms, it is often possible to prove an upper bound on the error which provide reassurance that one is not paying too high a price in accuracy for speed.
- In many Al problems
 - It is often hard to measure precisely the goodness of a particular solution.
 - But still it is important to keep performance question in mind while designing algorithm.

Contd...

For real world problems

- It is often useful to introduce heuristics based on relatively unstructured knowledge.
- It is impossible to define this knowledge in such a way that mathematical analysis can be performed.

In Al approaches

 Behavior of algorithms are analyzed by running them on computer as contrast to analyzing algorithm mathematically.

Contd..

- There are at least two reasons for the adhoc approaches in AI.
 - It is a lot more fun to see a program do something intelligent than to prove it.
 - Al problem domains are usually sufficiently complex, so generally not possible to produce analytical proof that a procedure will work.
 - It is even not possible to describe the range of problems well enough to make statistical analysis of program behavior meaningful.

Contd..

- One of the most important analysis of the search process is straightforward i.e.,
 - Number of nodes in a complete search tree of depth D and branching factor F is F*D.
- This simple analysis motivates to
 - look for improvements on the exhaustive search.
 - find an upper bound on the search time which can be compared with exhaustive search procedures.

Informed Search Strategies-Branch

& Bound Search

- It expands the least-cost partial path. Sometimes, it is called uniform cost search.
- Function g(X) assigns some cumulative expense to the path from Start node to X by applying the sequence of operators.
 - □ For example, in salesman traveling problem, g(X) may be the actual distance from Start to current node X.
- During search process there are many incomplete paths contending for further consideration.

Contd..

- The shortest one is extended one level, creating as many new incomplete paths as there are branches.
- These new paths along with old ones are sorted on the values of function g.
- The shortest path is chosen and extended.
- Since the shortest path is always chosen for extension, the path first reaching to the destination is certain to be nearly optimal.

Contd..

- Termination Condition:
 - Instead of terminating when a path is found, terminate when the shortest incomplete path is longer than the shortest complete path.
- If g(X) = 1, for all operators, then it degenerates to simple Breadth-First search.
- It is as bad as depth first and breadth first, from Al point of view,.
- This can be improved if we augment it by dynamic programming i.e. delete those paths which are redundant.

Traveling Salesman Problem (Example) – Start city is C1

D(C1,C2) = 7; D(C1,C3) = 11; D(C1,C4) = 12; D(C1,C5) = 15; D(C2,C3) = 20;

D(C2,C4) = 10; D(C2,C5) = 12; D(C3,C4) = 13; D(C3,C5) = 17; D(C4,C5) = 5;

Paths explored. Assume C1 to be the start city			Distance
1.	$C1 \rightarrow C2 \rightarrow C3 \rightarrow C4 \rightarrow C5 \rightarrow C1$ 7 20 13 5 15 27 40 45 60	current best path	60 √ ×
2.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		61 ×
3.	$C1 \rightarrow C2 \rightarrow C4 \rightarrow C3 \rightarrow C5 \rightarrow C1$ 7 10 13 17 15 17 40 57 72		72 ×
4.	$C1 \rightarrow C2 \rightarrow C4 \rightarrow C5 \rightarrow C3 \rightarrow C1$ 7 10 5 17 11 17 22 39 50	current best path, cross path at S.No 1.	50 √ ×
5.	$C1 \rightarrow C2 \rightarrow C5 \rightarrow C3 \rightarrow C4 \rightarrow C1$ 7 12 17 13 12 19 36 49 61		61 ×
6.	$C1 \rightarrow C2 \rightarrow C5 \rightarrow C4 \rightarrow C3 \rightarrow C1$ 7 12 5 13 11 19 24 37 48	current best path, cross path at S.No. 4.	48 √
7.	$C1 \rightarrow C3 \rightarrow C2 \rightarrow C4 \rightarrow C5 \rightarrow C1$ 11 20 10 5 15 31 41 46 63		63 ×

Paths explored. Assume C1 to be the start city		
8. $C1 \rightarrow C3 \rightarrow C2 \rightarrow C5 \rightarrow C4$ 11 20 12 5 37 49 54	(not to be expanded further)	54 ×
9. $C1 \rightarrow C3 \rightarrow C4 \rightarrow C2 \rightarrow C5 \rightarrow C1$ 11 13 10 12 15 24 34 46 61		61 ×
10. $C1 \rightarrow C3 \rightarrow C4 \rightarrow C5 \rightarrow C2 \rightarrow C1$ 11 13 5 12 7 24 29 41 48	same as current best path at S. No. 6.	48 √
11. $C1 \rightarrow C3 \rightarrow C5 \rightarrow C2$ 11 17 12 38 50	(not to be expanded further)	50 ×
12. $C1 \rightarrow C3 \rightarrow C5 \rightarrow C4 \rightarrow C2$ 11 17 5 10 38 43 53	(not to be expanded further)	53 ×
13. $C1 \rightarrow C4 \rightarrow C2 \rightarrow C3 \rightarrow C5$ 12 10 20 17 22 42 55	(not to be expanded further)	59 ×
Continue like this		

Hill Climbing- (Quality Measurement turns DFS into Hill climbing (Variant of generate and test strategy)

- Search efficiency may be improved if there is some way of ordering the choices so that the most promising node is explored first.
- Moving through a tree of paths, hill climbing proceeds in
 - depth-first order but the choices are ordered according to some heuristic value (i.e, measure of remaining cost from current to goal state).

Hill Climbing- Algorithm

Generate and Test *Algorithm*Start

- Generate a possible solution
- Test to see, if it is goal.
- If not go to start else quit

End

Example of heuristic function

 Straight line (as the crow flies) distance between two cities may be a heuristic measure of remaining distance in traveling salesman problem.

Simple Hill climbing: Algorithm

- Store initially, the root node in a OPEN list (maintained as stack); Found = false;
- While (OPEN ≠ empty AND Found = false) Do
 - Remove the top element from OPEN list and call it NODE;
 - If NODE is the goal node, then Found = true else find SUCCs, of NODE, if any, and sort SUCCs by estimated cost from NODE to goal state and add them to the front of OPEN list.
- } /* end while */
- If Found = true then return Yes otherwise return No
- Stop

Problems in hill climbing

- There might be a position that is not a solution but from there no move improves situations?
- This will happen if we have reached a Local maximum, a plateau or a ridge.
 - Local maximum: It is a state that is better than all its neighbors but is not better than some other states farther away. All moves appear to be worse.
 - Solution to this is to backtrack to some earlier state and try going in different direction.

Contd...

- Plateau: It is a flat area of the search space in which, a whole set of neighboring states have the same value. It is not possible to determine the best direction.
 - Here make a big jump to some direction and try to get to new section of the search space.
- Ridge: It is an area of search space that is higher than surrounding areas, but that can not be traversed by single moves in any one direction. (Special kind of local maxima).
 - Here apply two or more rules before doing the test i.e., moving in several directions at once.

Beam Search

- Beam Search progresses level by level.
- It moves downward from the best W nodes only at each level. Other nodes are ignored.
 - W is called width of beam search.
- It is like a BFS where also expansion is level wise.
- Best nodes are decided on the heuristic cost associated with the node.
- If B is the branching factor, then there will be only W*B nodes under consideration at any depth but only W nodes will be selected.

Algorithm – Beam search

- Found = false;
- NODE = Root_node;
- If NODE is the goal node, then Found = true else find SUCCs of NODE, if any with its estimated cost and store in OPEN list;
- While (Found = false AND not able to proceed further)

```
{
```

- Sort OPEN list;
- Select top W elements from OPEN list and put it in W_OPEN list and empty OPEN list;

Algorithm – Contd...

and Stop

```
While (W OPEN \neq \varphi AND Found = false)
        Get NODE from W OPEN;
        If NODE = Goal state then Found = true else
           Find SUCCs of NODE, if any with its estimated cost
           store in OPEN list;
  } // end while
} // end while
   If Found = true then return Yes otherwise return No.
```


Best First Search

- Expand the best partial path.
- Here forward motion is carried out from the best open node so far in the entire partially developed tree.

Algorithm (Best First Search)

- Initialize OPEN list by root node; CLOSED = φ;
- Found = false;
- While (OPEN ≠ φ AND Found = false) Do
 - If the first element is the goal node, then Found = true else remove it from OPEN list and put it in CLOSED list.
 - Add its successor, if any, in OPEN list.
 - Sort the entire list by the value of some heuristic function that assigns to each node, the estimate to reach to the goal node
 - } /* end while */
- If the Found = true, then announce the success else announce failure.
- Stop.

Observations

- In hill climbing, sorting is done on the successors nodes whereas in the best first search sorting is done on the entire list.
- It is not guaranteed to find an optimal solution, but normally it finds some solution faster than any other methods.
- The performance varies directly with the accuracy of the heuristic evaluation function.

Termination Condition

Instead of terminating when a path is found, terminate when the shortest incomplete path is longer than the shortest complete path.

A* Method

- A* ("Aystar") (Hart, 1972) method is a combination of branch & bound and best search, combined with the dynamic programming principle.
- The heuristic function (or Evaluation function) for a node N is defined as f(N) = g(N) + h(N)
- The function g is a measure of the cost of getting from the Start node (initial state) to the current node.
 - It is sum of costs of applying the rules that were applied along the best path to the current node.
- The function h is an estimate of additional cost of getting from the current node to the Goal node (final state).
 - Here knowledge about the problem domain is exploited.
- A* algorithm is called OR graph / tree search algorithm.

Algorithm (A*)

- Initialization OPEN list with initial node; CLOSED= φ; g = 0, f = h, Found = false;
- While (OPEN ≠ φ and Found = false) {¹
 - Remove the node with the lowest value of f from OPEN to CLOSED and call it as a Best_Node.
 - If Best_Node = Goal state then Found = true else {2
 - Generate the Succ of Best_Node
 - For each Succ do {³
 - Compute g(Succ) = g(Best_Node) + cost of getting from Best_Node to Succ.

A* - Contd..

□ If Succ ∈ OPEN then /* already being generated but not processed */

{4

- Call the matched node as OLD and add it in the list of Best Node successors.
- Ignore the Succ node and change the parent of OLD, if required.
 - If g(Succ) < g(OLD) then make parent of OLD to be Best_Node and change the values of g and f for OLD
 - If g(Succ) >= g(OLD) then ignore

}⁴

A* - Contd..

- □ If Succ ∈ CLOSED then /* already processed */ {⁵
 - Call the matched node as OLD and add it in the list of Best_Node successors.
 - Ignore the Succ node and change the parent of OLD, if required
 - If g(Succ) < g(OLD) then make parent of OLD to be Best_Node and change the values of g and f for OLD.
 - Propogate the change to OLD's children using depth first search
 - If g(Succ) >= g(OLD) then do nothing

A* - Contd..

- If Found = true then report the best path else report failure
- Stop

Behavior of A* Algorithm

Underestimation

If we can guarantee that h never over estimates actual value from current to goal, then A* algorithm is guaranteed to find an optimal path to a goal, if one exists.

Example – Underestimation – f=g+h

Here h is underestimated

Explanation - Example of Underestimation

- Assume the cost of all arcs to be 1. A is expanded to B, C and D.
- 'f' values for each node is computed.
- B is chosen to be expanded to E.
- We notice that f(E) = f(C) = 5
- Suppose we resolve in favor of E, the path currently we are expanding. E is expanded to F.
- Clearly expansion of a node F is stopped as f(F)=6 and so we will now expand C.
- Thus we see that by underestimating h(B), we have wasted some effort but eventually discovered that B was farther away than we thought.
- Then we go back and try another path, and will find optimal path.

Example – Overestimation

Here h is overestimated

Explanation –Example of Overestimation

- A is expanded to B, C and D.
- Now B is expanded to E, E to F and F to G for a solution path of length 4.
- Consider a scenario when there a direct path from D to G with a solution giving a path of length 2.
- We will never find it because of overestimating h(D).
- Thus, we may find some other worse solution without ever expanding D.
- So by overestimating h, we can not be guaranteed to find the cheaper path solution.

Admissibility of A*

- A search algorithm is admissible, if
 - for any graph, it always terminates in an optimal path from initial state to goal state, if path exists.
- If heuristic function h is underestimate of actual value from current state to goal state, then the it is called admissible function.
- Alternatively we can say that A* always terminates with the optimal path in case
 - \neg h(x) is an admissible heuristic function.

Monotonicity

- A heuristic function h is monotone if
 - ¬ states Xi and Xj such that Xj is successor of Xi
 h(Xi)— h(Xj) ≤ cost (Xi, Xj)
 - where, cost (Xi, Xj) actual cost of going from Xi to Xj
 - h (goal) = 0
- In this case, heuristic is locally admissible i.e., consistently finds the minimal path to each state they encounter in the search.

Contd..

- Alternatively, the monotone property:
 - that search space which is every where locally consistent with heuristic function employed i.e., reaching each state along the shortest path from its ancestors.
- With monotonic heuristic, if a state is rediscovered, it is not necessary to check whether the new path is shorter.
- Each monotonic heuristic is admissible
 - A cost function f(n) is monotone. if f(n) ≤f(succ(n)), ∀n.
- For any admissible cost function f, we can construct a monotone admissible function.

Example: Solve Eight puzzle problem using A* algorithm

Start state

3 7 6 5 1 2 4 □ 8

Goal state

5 3 6 7 \square 2 4 1 8

- Evaluation function f(X) = g(X) + h(X)
- h(X) = the number of tiles not in their goal position in a given state X
 - g(X) = depth of node X in the search tree
- Initial node has **f(initial_node)** = 4
- Apply A* algorithm to solve it.
- The choice of evaluation function critically determines search results.

Example: Eight puzzle problem (EPP)

Start state

3 7 6 5 1 2 4 \square 8

Goal state

5 3 6 7 [□] 2 4 1 8

Evaluation function - f for EPP

- The choice of evaluation function critically determines search results.
- Consider Evaluation function

$$f(X) = g(X) + h(X)$$

- h (X) = the number of tiles not in their goal position in a given state X
- g(X) = depth of node X in the search tree
- For Initial node
 - f(initial_node) = 4
- Apply A* algorithm to solve it.

Harder Problem

 Harder problems (8 puzzle) can't be solved by heuristic function defined earlier.

Initial State

2	1	6
4		8
7	5	3
/	5	3

Goal State

- A better estimate function is to be thought.
 - h(X) = the sum of the distances of the tiles from their goal position in a given state X
- Initial node has $h(initial_node) = 1+1+2+2+1+3+0+2=12$

IDA* Algorithm

- At each iteration, perform a DFS cutting off a branch when its total cost (g+h) exceeds a given threshold.
- This threshold starts at the estimate of the cost of the initial state, and increases for each iteration of the algorithm.
- At each iteration, the threshold used for the next iteration is the minimum cost of all values exceeded the current threshold.

Contd..

- Given an admissible monotone cost function, IDA* will find a solution of least cost or optimal solution if one exists.
- IDA* not only finds cheapest path to a solution but uses far less space than A* and it expands approximately the same number of nodes as A* in a tree search.
- An additional benefit of IDA* over A* is that it is simpler to implement, as there are no open and closed lists to be maintained.
- A simple recursion performs DFS inside an outer loop to handle iterations.