MATH 185: Homework $1(\tau = 2\pi)$

William Guss 26793499 wguss@berkeley.edu January 26, 2016

1. Show that multiplication of complex numbers satisfies the associative, commutative, and distributive laws.

Theorem 1. Given that \mathbb{C} is Abelian under addition, \mathbb{C} is a field.

Proof. Let $a, b, c \in \mathbb{C}$. Then recall that for any $z \in \mathbb{C}$, $z = |z|e^{i\theta z}$, where $\theta_z = Argz$. We show that \mathbb{C} satisfies associative, commutative, and distributive laws.

Using that \mathbb{R} is a field, it follows that

$$(ab)c = (|a|e^{i\theta_a}|b|e^{i\theta_b})|c|e^{i\theta_c}$$

$$= |a||b|e^{i(\theta_a+\theta_b)}|c|e^{i\theta_c}$$

$$= |a||b||c|e^{i(\theta_a+\theta_b+\theta_c)}$$

$$= |a|e^{i\theta_a}|b||c|e^{i(\theta_b+\theta_c)}$$

$$= a(bc).$$

Without the assumption of eulers identity, we have that

$$\begin{aligned} (ab)c &= ((a_1+ia_2)(b_1+ib_2))(c_1+ic_2) \\ &= ((a_1b_1-a_2b_2)+(a_1b_2+a_2b_1)i)(c_1+ic_2) \\ &= ((a_1b_1-a_2b_2)c_1-(a_1b_2+a_2b_1)c_2) \\ &+ ((a_1b_1-a_2b_2)c_2+(a_1b_2+a_2b_1)c_1)i \\ &= a_1b_1c_1-a_2b_2c_1-a_1b_2c_2+a_2b_1c_2 \\ &+ (a_1b_1c_2-a_2b_2c_2+a_1b_2c_1+a_2b_1c_1)i \\ &= a_1(b_1c_1-b_2c_2)-a_2(b_2c_1+b_1c_2) \\ &+ (a_1(b_1c_2+b_2c_1)-a_2(b_2c_2+b_1c_1))i \\ &= (a_1+a_2i)((b_1c_1-b_2c_2)+(b_1c_2+b_2c_1)i) \\ &= a(bc). \end{aligned}$$

In a similar fashion, consider the following rearrangement which follows by the field properties of \mathbb{R} :

$$ab = (a_1b_1 - a_2b_2) + (a_1b_2 + a_2b_1)i$$

= $(b_1a_1 - b_2a_2) + (b_2a_1 + b_1a_2)i$
= ba .

Lastly we show the distributive property:

$$\begin{split} a(b+c) &= a(b_1+b_2i+c_1+c_2i) \\ &= a((b_1+c_1)+(b_2+c_2)i) \\ &= (a_1(b_1+c_1)-a_2(b_2+c_2))+(a_1(b_2+c_2)+a_2(b_1+c_1))i \\ &= (a_1b_1-a_2b_2)+(a_1c_1-a_2c_2)+(a_1b_2+a_2b_1)i+(a_1c_2+a_2c_1)i \\ &= ab+ac \end{split}$$

Therefore \mathbb{C} is a ring.

2. Gamelin Exercise I.1.7 (Chapter I, Section 1, Exercise 7)

Theorem 2. Let $\rho > 1$, $\rho \neq 1$ and fix $z_0, z_1 \in \mathbb{C}$. Then

$$S = \{ |z - z_0| = \rho |z - z_1| : z \in \mathbb{C} \}$$

is isometric to some $S^1_r \subset \mathbb{R}^2$ for some r.

Proof. Since all $s \in S$ satisfy the above equation*, we have that

$$\sqrt{(s_1 - z_{01})^2 + (s_2 - z_{02})^2} = \rho \sqrt{((s_1 - z_{11})^2 + (s_2 - z_{12})^2}.$$

The form of (5) is identical to a distance meterization in \mathbb{R}^2 ; that is, take the isometry $\phi: \mathbb{C} \to \mathbb{R}^2$, $((x+iy) \mapsto (x,y))$ and

$$d(\phi(s), \phi(z_0)) = \rho d(\phi(s), \phi(z_1)) \frac{d(S, Z_0)}{d(S, Z_1)} = \rho,$$

which from high school geometry one might recognize as the equation* of the circle of Appolonius. \Box

The geometric proof of a equivalency between Appolonius' circle and the Euclidean circle is omitted

However, if we take the euclidean distance on \mathbb{R}^2 , we have the following theorem.

Theorem 3. Suppose that $P, Q \in \mathbb{R}^2$ and S such that

$$\frac{\overline{PS}}{\overline{QS}} = k \in (0,1)[WLOG],$$

then S is a point on a circle.

Proof. Observe the following algebraic derivation using the parallelagram law inspired by J Wilson at the University of Georgia:

$$\begin{split} \frac{|P-S|^2}{|Q-S|^2} &= k^2 \\ |P|^2 + |S|^2 - 2\langle P, S \rangle &= k^2(|Q|^2 + |S|^2 - 2\langle Q, S \rangle) \\ 0 &= |P|^2 + |S|^2 - 2\langle P, S \rangle - k^2(|Q|^2 + |S|^2 - 2\langle Q, S \rangle) \\ &= (1-k^2)|S|^2 + |P|^2 - k^2|Q|^2 - 2\langle P - Q, k^2 S \rangle \qquad = |S|^2 + \frac{|P|^2}{1-k^2} - \frac{1}{k^2}|Q|^2 - 2\langle P - Q, k^2 S \rangle \end{split}$$

3. Gamelin Exercise I.2.5

Theorem 4. For $n \geq 1$ and $z \in \mathbb{C}$ such that $z \neq 1$, we have that

$$1 + z + z^2 + \dots + z^n = (1 - z^{n+1})/(1 - z).$$

Proof. Observe that for $z \in \mathbb{C}$ we have that, $z = e^{i\theta}$. Therefore,

$$e^{i0} + e^{i\theta} + e^{i2\theta} + \dots + e^{in\theta} = 1 + z + z^2 + \dots + z^n$$

Multiplication by (1-z) gives,

$$\begin{split} (1 - e^{i\theta})e^{i0} + e^{i\theta} + e^{i2\theta} + \dots + e^{in\theta} &= e^{i0} + e^{i\theta} + e^{i2\theta} + \dots + e^{in\theta} \\ &- e^{i(0+\theta)} + e^{i(\theta+\theta)} + e^{i(2\theta+\theta)} + \dots + e^{i(n\theta+\theta)} \\ &= e^{i0} - e^{i(n\theta+\theta)} \\ &= 1 - z^{n+1}. \end{split}$$

Reducing using eulers identity it follows that,

$$(1-z)(1+z+z^2+\cdots+z^n) = (1-z^{n+1})$$
$$1+z+z^2+\cdots+z^n = (1-z^{n+1})/(1-z),$$

when $z \neq 1$. This completes the proof.

Theorem 5. For $n \geq 1$ and $z \in \mathbb{C}$ such that $z \neq 1$, we have that

$$1 + \cos\theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin(n + \frac{1}{2})}{2\sin\theta/2}$$

Proof. Recall that $z = rcis\theta$. Take in particular all such z whose absolute magnitude is unity. Then Theorem 4 implies that

$$1 + cis\theta + cis2\theta + \dots + cisn\theta = (1 - z^{n+1})/(1 - z).$$

A little algebra gives us

$$\begin{split} \frac{Re(1-cis(n+1)\theta)}{Re(1-cis\theta)} &= \frac{Re(1-e^{(n+1)\theta})Re(1-e^{-i\theta})}{Re(1-e^{i\theta})Re(1-e^{-\theta i})} \\ &= \frac{Re(1-e^{i\theta}-e^{i(n+1)\theta}+e^{in\theta})}{Re(2-2cos\theta)} \\ &= \frac{1-\cos\theta-\cos(n+1)\theta+\cos n\theta}{4\sin^2(\theta/2)} \\ &= \frac{2\sin^2\theta/2-\sin(n+1/2)\sin(\theta/2)}{4\sin^2(\theta/2)} \\ &= \frac{1}{2} - \frac{\sin(n+1/2)}{2\sin(\theta/2)} \end{split}$$

Since the above was the real part of $1 + z + z^2 + \cdots + z^n$, the theorem holds.

4. Gamelin Exercise I.2.6

Theorem 6. If w_n are the nth roots of unity, then

(a)
$$(z-w_0)(z-w_1)\dots(z-w_{n-1})=z^n-1$$
.

- (b) $w_0 + \cdots + w_{n-1} = 0$.
- (c) $w_0 \dots w_n = (-1)^{n-1}$.
- (d) $\sum_{i=0}^{n-1} w_i^k = 0, n.$

Proof. (a) Consider that every complex polynomial has roots by the fundamental theorem of algebra. Therefore, every polynomial can be linearized and $z^n - 1$ is no exception. On the left hand side, the expression is zero if and only if $z = w_i$ for some $i \in \{0, \ldots, n-1\}$. On the right side, the order n polynomial is zero if and only if $z^n = 1$, which can only be provided by n distinct roots. By defenition $w_i^n = 1$ and there are n distinct roots of unity. Therefore $z^n - 1 = 0$ if and only if $z = w_i$, which is equivalent to the statement of the left hand side.

(b) Conveniently, let $R = \sum w_i$. Then,

$$e^{i\tau/n}R = e^{i\tau n/n} + (R-1) = R.$$
 (1)

So this gives xR = R and since $x \neq R$, we have that R = 0.

(c) Let P be the product of the n roots of unity. Then, observe that the product given by eulers formula implies that

$$Arg(P) = \sum_{k=0}^{n-1} Arg(w_k) = \sum_{k=0}^{n-1} k\tau/n = \frac{\tau(n-1)}{2}$$

which is $\tau/2$ if n-1 is odd or 0 if n-1 is even. Therefore, $P=(-1)^{n-1}$.

(d) Applying the same techniques as previously, let $Q = \sum_{j=0}^{n-1} w_j^k$. Then, $e^{i\tau/n}Q = \sum_{j=1}^n e^{i\tau kj/n}$. Observe that if $x \equiv j \mod n$, then $kj \equiv x \equiv j \mod n$ when $k \neq mn$ for some $m \in \mathbb{Z}$ Since there is a ring isomorphism between roots of unity and modulo rings, we have that Q = R = 0. In the case that k is a multiple of n, we have that $w_j^k = 1$, so the sum must be n.

5. Gamelin Exercise I.3.2

Theorem 7. If P is a point on the sphere which corresponds to $z \in \mathbb{C}$ under stereographic projection, then the antipodal point -P corresponds to $-1/\overline{z}$.

Proof. As perscribed in the book,

$$P_z = \begin{pmatrix} 2x/(|z|^2 + 1) \\ 2y/(|z|^2 + 1) \\ (|z|^2 - 1)/(|z|^2 + 1) \end{pmatrix}.$$
 (2)

So it follows that,

$$-P_z = \begin{pmatrix} -2x/(|z|^2 + 1) \\ -2y/(|z|^2 + 1) \\ -(|z|^2 - 1)/(|z|^2 + 1) \end{pmatrix}.$$
 (3)

Now let $-1/\overline{z} = w$, so that $w = -z/|z|^2$ and |w| = 1/|z|. This gives the following derivation,

$$P_{w} = \begin{pmatrix} \frac{-2x}{|z|^{2}(1/|z|^{2}+1)} \\ \frac{-2y}{|z|^{2}(1/|z|^{2}+1)} \\ (1/|z|^{2}-1)/(1/|z|^{2}+1) \end{pmatrix}$$

$$= \begin{pmatrix} -2x/(|z|^{2}+1) \\ -2y/(|z|^{2}+1) \\ \frac{-(1-|z|^{2})}{-(1+|z|^{2})} \end{pmatrix}$$

$$= \begin{pmatrix} -2x/(|z|^{2}+1) \\ -2y/(|z|^{2}+1) \\ -(|z|^{2}-1)/(|z|^{2}+1) \end{pmatrix} = -P_{z}.$$

$$(4)$$

6. Gamelin Exercise I.3.4

Theorem 8. If S^2 is rotated $\tau/2$ radians about the real axis, show that such a transformation corresponds to the mapping $z \mapsto 1/z$.

Proof. By theorem 7,

$$P_z = \begin{pmatrix} 2x/(|z|^2 + 1) \\ 2y/(|z|^2 + 1) \\ (|z|^2 - 1)/(|z|^2 + 1) \end{pmatrix}.$$
 (5)

. It follows then that a rotation about the x axis, yields

$$R[P_z] = \begin{pmatrix} 2x/(|z|^2 + 1) \\ -2y/(|z|^2 + 1) \\ -(|z|^2 - 1)/(|z|^2 + 1) \end{pmatrix}.$$
 (6)

Now let $w = 1/z = \overline{z}/|z|^2$. Then $Re(w) = Re(1/z) = Re(z/|z|^2)$, $Im(w) = Im(1/z) = -Im(z/|z|^2)$, |w| = |1/z| = 1/|z|. Projecting w stereoscopically gives the following derivation:

$$P_{w} = \begin{pmatrix} \frac{2x}{|z|^{2}(1/|z|^{2}+1)} \\ \frac{-2y}{|z|^{2}(1/|z|^{2}+1)} \\ (1/|z|^{2}-1)/(1/|z|^{2}+1) \end{pmatrix}$$

$$= \begin{pmatrix} -2x/(|z|^{2}+1) \\ -2y/(|z|^{2}+1) \\ \frac{-(1-|z|^{2})}{-(1+|z|^{2})} \end{pmatrix}$$

$$= \begin{pmatrix} -2x/(|z|^{2}+1) \\ -2y/(|z|^{2}+1) \\ -(|z|^{2}-1)/(|z|^{2}+1) \end{pmatrix} = R[P_{z}].$$

$$(7)$$

This completes the proof that inversion is a simple rotation of the sphere about the x axis.

7. Gamelin Exercise I.5.3

Theorem 9. If $z \in \mathbb{C}$ it follows that $e^{\overline{z}} = \overline{e^z}$.

Proof. Recall that for $x, y \in \mathbb{R}, z = x + iy$. Then

$$e^{\overline{z}} = e^{x-iy} = e^x e^{-iy}$$

$$= \frac{e^x}{e^{iy}} = \frac{e^x \overline{e^{iy}}}{|e^{iy}|^2}$$

$$= e^x \overline{e^{iy}} = \overline{e^{x+iy}}.$$
(8)

So it follows that complex conjugation distributes through exponentiation. This completes the proof. $\hfill\Box$