Stat Quest

Random Forest-Part1

Building using, and Evaluating

- Decision trees wie not flexing in order to elassity

new samples.

Building Random Forest

Step1: coeate a "bootsaped" dataset.

original-dataset				(Twiget)		Bootstrapped rutase				se —	
Choef	Crowd	F ₃	F4	F5	7	(best pain	Grown	F3	F4	F5]
pain	NO	No	125	Yes	-	Yes	Yes	yes.	180	No	_
NO		Yes	180	No	L,	No	No	No	125	Yes	
	Yes	No	210	No		Yes	No	Yes	167	Yes	
Yes	yes	Yes	167			Yes	Yes	tes	180	No	
Yes	No	19	167	Yes							
								<u> </u>	-		

- ratto create bootstrapped datset, is of same size of original dataset. We just randomly select samples from the original dataset
 - b) we eve allowed to pick the same sample more than once.
- Step-2: create a decision tree using the bootrapped dataset, but only use a random subset of variables (features) at each step.
- In this Case, cue evill rendomly select two Variables "chest" and "Grood blood" sestionas a Conditate for visot node.

Random Forests- Part 2.

Missing data and Sample clustering

Random Jorest Consider two types of missing

data

- H. Missing data in original datasa.
- 2. Missing data in New Sample.

we can make initial guess - refine our guess using mean, median or other imputation methods.

= initial guess

Chart Ground Blacked weight Tonget Mes Mes No 167.5 No

How to perfine own guesses

Steb-1: Build Random forest...

Step-2. Run: all data in all of distinct decision trees.

Find the sample which end up at same leaf Note!
as our data-sample which we want to make

a guess.

Build Proximity_Matrix

No. of Rows = No. of Column = Total samples

6.1

0-1

0-8

0.8

1 2 3 4 Suppose, 3 and 4 endup in 8 ame leaf Note, us will add 1 in P[3][4] and 4 [4][3]

1 1 8 9 Trees. 1 0.2 0.1 0.1

2 0.2 0.1 0.1

Random Forest

Terminology

Bootstrapping the data plus using the aggregate to make a decision is called "Bagging".

-> Typically 1/3°d samples does not end up in bootstrapped dataset.

[33% of data] -> Called the (out-of bag dataset)

doesn't appear in

bootstrapped dataset.

**Since out of bag-datasets were not used in classic building decision tree, we evill use it to evaluate own model.

* The proportion of out of bag sampley incorrectly classified by Random Forest is known as "out of bag error".

1. Build Rondom Forest

(Change No. of variables)

2. Estimate Accuracy of Rondom Forest) Usually, we start with Thorq variables.

Random Forest Part 2-2

Use proxitally matrix to ealculate missing values.

original dataset

	Chest_pain	Groud blood	Blocked Asteries	weight	Heart-diseas
	No	No	No	125	No
	Yes	488	Yes	180	Yes
-	408	Yes	No	210	No
•	Yes	4.08	???.	221	No
	~				

The weight of yes =
$$\frac{Pooximity of Yes}{Pill Pooximities} = \frac{Pooximity}{Value for}$$

$$= \frac{O.1}{0.1 + 0.1 + 0.8} = \frac{O.1}{1 = 0.1}$$

The weight for NO = sample 1 and sample 3

Lecture-23 Svinx: for linearly Non-seperation weightage average of (weight)= 125* (proximity) weight) + (180)* (proximity-weight) Proximity weight (125)= 0.1 = 0-1 + (210)* (nooximity 0.1+0.1+0.8 weight) proximity weight (180) = 0.1 = 07 0.1+0.1+0.8

Proximity_weight (210) = $\frac{0.8}{601}$ = 0.8 = 125× (0.1)+ 180×(0.1)+ 210* (0.8)= (1985)

After regining guelles, we sun random forest again to refine guelles, until missing values europeigg. (6 to 7 time).

