Title

D. Zack Garza

Friday 21st August, 2020

Contents

1 Friday, August 21

1

1 Friday, August 21

Reference:

 $\verb|https://www.mathematik.uni-kl.de/~gathmann/class/alggeom-2019/alggeom-2019.| pdf$

General idea: functions a coordinate ring $R[x_1, \dots, x_n]/I$ will correspond to the geometry of the variety cut out by I.

Example 1.1.

- $x^2 + y^2 1$ defines a circle, say, over \mathbb{R}
- $y^2 = x^3 x$ gives an elliptic curve:

- $x^n + y^n 1$: does it even contain a Q-point? (Fermat's Last Theorem)
- $x^2 + 1$, which has no \mathbb{R} -points.
- $x^2 y^2 = 0$ over $\mathbb C$ is not a manifold (no chart at the origin):

- $x + y + 1/\mathbb{F}_3$, which has 3 points over \mathbb{F}_3^2 , but $f(x,y) = (x^3 x)(y^3 y)$ vanishes at every point
 - Not possible when algebraically closed (is there nonzero polynomial that vanishes on every point in \mathbb{C} ?)
 - $-V(f) = \mathbb{F}_3^2$

Theorem 1.1 (Harnack Curve Theorem).

If $f \in \mathbb{R}[x, y]$ is of degree d, then

$$\pi_1 V(f) \subseteq \mathbb{R}^2 \le 1 + \frac{(d-1)(d-2)}{2}$$

Actual statement: the number of connected components is bounded above by this quantity.

Example 1.2.

Take the curve

$$X = \{(x, y, z) = (t^3, t^4, t^5) \in \mathbb{C}^3 \mid t \in \mathbb{C}\}.$$

Then X is cut out by three equations:

- $y^2 = xz$
- $x^2 = yz$
- $z^2 = x^2 y$

Exercise 1.1.

Show that the vanishing locus of the first two equations above is $X\bigcup L$ for L a line.

Compare to linear algebra: codimension d iff cut out by exactly d equations.