Relatório Talent Rank

1 - Explicação da proposta e problema

Problema

No mercado de trabalho tecnológico, muitos profissionais estão em falta por não terem qualificação adequada para as empresas. Com o avanço no setor de TI, deixa claro a necessidade de ampliar o mesmo ritmo para a formação profissional.

A demanda de talentos é muito alta e a estimativa para os anos de 2021 a 2025 é de 797 mil talentos, segundo a Brasscom - Associação das Empresas de Tecnologia da Informação e Comunicação (TIC) e de Tecnologias Digitais.

Solução

Para solucionar esse problema, criamos o Talent Rank para ajudar usuários que já estão ingressados na área da Tecnologia da Informação, para que possam descobrir ou aperfeiçoar seu posicionamento profissional.

2 - Algoritmos desenvolvidos (link)

https://github.com/BiaAS2/Machine_Learning/

3 - Análise de resultados

Utilizando uma base de dados que possui 22 exemplos, totalizando 66 exemplos de usuários para classificar entre as três opções, sendo elas: **Júnior**, **Pleno** e **Sênior**.

A Árvore de decisão, baseando-se em duas bases de X e Y uma de cada para treino e teste usando um gerador de números aleatórios para garantir a reprodutibilidade durante os 30% de teste, obteve 90% (0.9) de acurácia, classificando corretamente.

Árvore de Decisão

Accuracy: 0.9 Classification		recall	f1-score	support
Júnior	0.90	1.00	0.95	9
Pleno	0.86	1.00	0.92	6
Sênior	1.00	0.60	0.75	5
accuracy			0.90	20
macro avg	0.92	0.87	0.87	20
weighted avg	0.91	0.90	0.89	20

Matriz de confusão

O KNN, utilizando os mesmos 30% de teste para procurar os 3 vizinhos mais próximos, obteve uma acurácia de 85% (0.85), classificando corretamente.

KNN

Accuracy: 0.8 Classification		recall	f1-score	support
Júnior Pleno Sênior	1.00 0.67 1.00	1.00 1.00 0.40	1.00 0.80 0.57	9 6 5
accuracy macro avg weighted avg	0.89 0.90	0.80 0.85	0.85 0.79 0.83	20 20 20

Matriz de Confusão

Utilizando a base de dados com 30 exemplos de cada classificação, totalizando 90 exemplos de usuários, a árvore de decisão conseguiu alcançar 100% (1.0) de acurácia.

Árvore de Decisão

Accuracy: 1.0 Classification		recall	f1-score	support
Júnior Pleno Sênior	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	9 9 9
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	27 27 27

Matriz de Confusão

O KNN não teve uma grande mudança, alcançando um resultado de aproximadamente 85% (0.8518518518519) de acurácia.

Usando a mesma base de dados com 90 exemplos de usuários, alterando o valor de **k-vizinhos** para diferentes valores, observamos que, mudando o número de vizinhos para apenas 1, obteve uma acurácia de 0.962 (96%). Alterando o número de vizinhos para 2 até 10, a acurácia permaneceu em 0.851. Testando o número de vizinhos de 15 a 20 vizinhos, a acurácia caiu para 0.66 (66%). Rodando o programa com 40% de teste para k-vizinhos=3, a acurácia obteve um valor de 0.861, um aumento de 1% comparado ao programa anterior.

Para que o KNN alcançasse a acurácia de 100% foi necessário um banco de dados com acima de 200 exemplos de usuários.

KNN

Accuracy: 0.8 Classification			f1-score	support
Júnior Pleno Sênior	1.00 0.69 1.00	1.00 1.00 0.56	1.00 0.82 0.71	9 9 9
accuracy macro avg weighted avg	0.90 0.90	0.85 0.85	0.85 0.84 0.84	27 27 27

Matriz de Confusão

Analisando os resultados de ambos, a **Árvore de Decisão** alcançou uma acurácia maior com menos exemplos de usuários do que o **KNN**. O KNN, por sua vez, precisou de um banco de dados maior para que alcançasse uma acurácia de **100%**.

Conclusão

Observou-se que, com o algoritmo de Árvore de Decisão para classificar diferentes usuários com seus respectivos níveis, obteve melhores resultados, procurando um melhor "Nó" ou Folha para encontrar o melhor caminho de solução.

Referências:

https://brasscom.org.br/estudo-da-brasscom-aponta-demanda-de-797-mil-profissionais-de-tecnologia-ate-2025/

https://www.mundorh.com.br/falta-de-profissionais-qualificados-ameaca-a-transformacao-digital-no-brasil-mas-iniciativas-educacionais-e-parcerias-podem-reverter-o-cenario/

https://g1.globo.com/jornal-da-globo/noticia/2022/08/16/sobram-vagas-na-area-de-tecnologia-no-brasil-mas-faltam-profissionais-qualificados.ghtml