M2.2.2 Modelos Supervisados y No Supervisados

Programa Big Data y Business Intelligence

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

Reglas de Asociación

- Introducción a métodos de asociación
- ¿Qué es una regla de asociación?
- o ¿Cómo evalúo la calidad de una regla de asociación?
- Métodos para establecer reglas de asociación
- El algoritmo Apriori

Ejemplo clásico

- Cesta de la compra:
 - Encontrar parejas de productos que suelen aparecer juntos en la cesta

3

Métodos de Asociación

- Tratan de encontrar patrones frecuentes, asociaciones, correlaciones dentro de conjuntos de elementos u objetos en bases de datos
- Aplicaciones
 - Análisis de la cesta de la compra
 - Marketing cruzado
 - Diseño de catálogos
 - O ...

Extracción de reglas

- Dado un conjunto de transacciones
 - Encontrar reglas que predicen la aparición de un elemento basándose en la aparición de otros

- Ejemplos
 - $\circ \{Bread\} \rightarrow \{Milk\}$
 - \circ {Soda} \rightarrow {Chips}
 - \circ {Bread} \rightarrow {Jam}
 - o ...

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Definiciones

Itemset

- Conjunto de uno o más ítems
 - {milk, bread, jam}
- K-itemset: un itemset con exáctamente k elementos

Soporte

- Porcentaje de transacciones que contienen un itemset
 - Soporte({milk, bread}) = 3
 - Soporte($\{\text{soda, chips}\}$) = 3

Itemset frecuente

Un itemset cuyo soporte es superior a determinado umbral

6

 ϵ

- Implicación de la forma X→ Y, siendo X e Y itemsets
 - \circ {bread} \rightarrow {milk}
- Evaluación de la bondad de una regla
 - Soporte: porcentaje de transacciones que contienen ambos itemsets X e Y
 - Confianza: mide con qué frecuencia elementos de Y aparecen junto a X en una transacción

$$s = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\text{\# of transactions}} = 0.38$$
 $c = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\sigma(\{\text{Bread}\})} = 0.75$

8

- Tenemos dos bases de transacciones
 - En ambos casos, si miramos la regla "Bread→ Milk" tenemos:
 - Soporte = 0.5
 - (En el 50% de los casos aparecen juntos)
 - \blacksquare Confianza = 0.71
 - (El 71% de las veces que aparece Bread, aparece Milk)
 - ¿Son ambas reglas igual de "buenas"?
 - ¿Cuál debería de ser "mejor"?
 - ¿Cómo se podría medir?

Base de Transacciones 2			
ticket 1	Bread	Milk	
ticket 2	Bread	Milk	
ticket 3	Bread	Milk	7777
ticket 4	Bread	Milk	
ticket 5	Bread	Milk	
ticket 6	Bread		
ticket 7	Bread		
ticket 8	-	Milk	
ticket 9	7777	Milk	
ticket 10		Milk	

- Una regla de asociación (X → Y) se evalúa en función de
 - Soporte: nos indica cómo de frecuentemente aparecen dos elementos en la misma transacción
 - Es decir qué porcentaje de transacciones "soportamos" con esa regla
 - Confianza: nos indica cómo de fiable es la regla. Mide cómo de frecuentemente, que aparezca X implica Y
 - "Lift": Nos da una idea de si la confianza de esa regla se debe a la "casualidad"
 - Si es igual a 1, indica que las probabilidades de aparición de X e Y son independientes.
 - Si es mayor que 1, indica que ciertamente, el que aparezca X implica que aparecerá Y

$$lift(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X) \times supp(Y)}$$

- Si miramos la regla "Bread→ Milk" tenemos:
 - Soporte = 0.5
 - (En el 50% de los casos aparecen juntos)
 - \blacksquare Confianza = 0.71
 - (El 71% de las veces que aparece Bread, aparece Milk)
 - "Lift" en la Base 1 = 1.43
 - "Lift" en la Base 2 = 0.89
 - En la Base 2, la confianza se debe a que Milk es un item muy frecuente

Base de Transacciones 1			
ticket 1	Bread	Milk	
ticket 2	Bread	Milk	
ticket 3	Bread	Milk	77.77
ticket 4	Bread	Milk	
ticket 5	Bread	Milk	77.77
ticket 6	Bread		
ticket 7	Bread		
ticket 8			
ticket 9			
ticket 10			

Base de Transacciones 2			
ticket 1	Bread	Milk	
ticket 2	Bread	Milk	
ticket 3	Bread	Milk	
ticket 4	Bread	Milk	
ticket 5	Bread	Milk	
ticket 6	Bread	-	
ticket 7	Bread		
ticket 8	-	Milk	
ticket 9		Milk	
ticket 10		Milk	

- Si miramos la regla "Bread→ Milk":
 - \circ Soporte = 0.5
 - \circ Confianza = 0.71
 - "Lift" en la Base 1 = 1.43
 - \circ "Lift" en la Base 2 = 0.89
- Si miramos la regla "Milk→ Bread"
 - \circ Soporte = 0.5
 - \circ Confianza en la Base 1 = 1.00
 - Confianza en la Base 2 = 0.63
 - "Lift" en la Base 1 = 1.43
 - "Lift" en la Base 2 = 0.89
- ¿Cuál es mejor en qué Base?

Base de Transacciones 1			
ticket 1	Bread	Milk	
ticket 2	Bread	Milk	
ticket 3	Bread	Milk	7777
ticket 4	Bread	Milk	
ticket 5	Bread	Milk	
ticket 6	Bread		
ticket 7	Bread		
ticket 8			
ticket 9	7777		
ticket 10			

Base de Transacciones 2			
ticket 1	Bread	Milk	
ticket 2	Bread	Milk	
ticket 3	Bread	Milk	
ticket 4	Bread	Milk	
ticket 5	Bread	Milk	
ticket 6	Bread		
ticket 7	Bread		
ticket 8	-	Milk	
ticket 9	7777	Milk	
ticket 10		Milk	

Deusto
Facultad de Ingeniería
Ingeniaritza Fakultatea

¿Cuál es el objetivo?

Dado un conjunto de transacciones:

• Encontrar reglas que superen unos umbrales establecidos

de soporte y confianza

```
{Bread, Jam} \Rightarrow {Milk} s=0.4 c=0.75

{Milk, Jam} \Rightarrow {Bread} s=0.4 c=0.75

{Bread} \Rightarrow {Milk, Jam} s=0.4 c=0.75

{Jam} \Rightarrow {Bread, Milk} s=0.4 c=0.6

{Milk} \Rightarrow {Bread, Jam} s=0.4 c=0.5
```

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Métodos para extraer reglas

- Se suelen basar en variaciones de un enfoque en dos pasos:
 - Generar aquellos itemsets frecuentes
 - Con soporte mayor que un determinado umbral
 - Generación de reglas
 - Generar reglas con alta confianza haciendo uso de los itemsets frecuentes obtenidos en el paso anterior
 - Cada regla es una partición binaria de un itemset frecuente
 - Abajo tenemos todas las particiones binarias del itemset {Bread, Jam, Milk}

```
{Bread, Jam} \Rightarrow {Milk} s=0.4 c=0.75 {Milk, Jam} \Rightarrow {Bread} s=0.4 c=0.75 {Bread} \Rightarrow {Milk, Jam} s=0.4 c=0.75 {Jam} \Rightarrow {Bread, Milk} s=0.4 c=0.6 {Milk} \Rightarrow {Bread, Jam} s=0.4 c=0.5
```


Generación de Itemsets

- Hay muchos itemsets candidatos a explorar (2^N-1)
 - Para 3 productos {ABC}
 - {A}, {B}, {C}, {AB}, {AC}, {BC}, {ABC}
 - Para 4 productos {ABCD}
 - {A}, {B}, {C}, {D}, {AB}, {AC}, {AD}, {BC}, {BD}, {CD}, {ABC}, {ABD}, {ACD}, {BCD}, {ABCD}
- Es intratable cuando los elementos crecen
 - \circ Para 25 productos \rightarrow 33554431
 - \circ Para 100 productos \rightarrow 1.2676506e+30

Generación de Itemsets

El algoritmo Apriori

 Comenzar con itemsets de tamaño k=1, ir incrementando el valor de k de 1 en 1, descartando aquellos itemsets que no cumplan un soporte mínimo

Item	Count	
Bread	4	
Peanuts	4	
Milk	6	
Fruit	6	
Jam	5	
Soda	6	
Chips	4	
Steak	1	
Cheese	1	
Yogurt	1	

Minimum Support = 4

7

2-Itemset	Count
Bread, Jam	4
Peanuts, Fruit	4
Milk, Fruit	5
Milk, Jam	4
Milk, Soda	5
Fruit, Soda	4
Jam, Soda	4
Soda, Chips	4

2-itemsets

3-itemsets

3-Itemset	Count
Milk, Fruit, Soda	4

Generación de Reglas

- Dado un itemset frecuente, encontrar reglas que tienen una mínima confianza
 - Para 3 Productos {ABC}
 - 1. $A \rightarrow BC$
 - 2. B→AC
 - 3. $C \rightarrow AB$
 - 4. $AB \rightarrow C$
 - 5. $AC \rightarrow B$
 - 6. BC \rightarrow A
 - Es intratable cuando el número de elementos crece
 - Para 25 productos \rightarrow 33554430 (1 menos que antes)
- Al igual que antes, el algoritmo Apriori deja de explorar alternativas que presentan baja confianza

¿Qué valor de soporte mínimo?

- Si el soporte mínimo es muy grande
 - Podemos perder itemsets que incluyan elementos de interés, pero poco frecuentes (productos caros)
- Si el soporte mínimo es muy bajo
 - Es computacionalmente muy difícil de calcular (gran número de itemsets)
- Heurística
 - Comenzar con un soporte alto, e ir reduciendo hasta obtener un número de reglas adecuado
 - Hasta que sea computacionalmente factible ejecutar el algoritmo

Copyright (c) University of Deusto

This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative Commons "Attribution-ShareAlike" License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

