

Goi Eskola Politeknikoa

ENSAYOS

Mondragon Goi Eskola Politeknikoa Mondragon Unibertsitatea

Goi Eskola Politeknikoa

Índice

- 1. Objetivos
- 2. Tipos de ensayos
 - 2.1. Ensayo de tracción
 - 2.2. Ensayo de dureza
 - 2.3. Ensayo de resiliencia

1

Objetivos

1. Objetivos

- Conocer los ensayos mecánicos más interesantes: estáticos, dinámicos y tecnológicos.
- Analizar las propiedades mecánicas de los materiales.
- Características a investigar:
 - Características físicas y químicas
 - Deformabilidad, maquinabilidad, soldabilidad
 - Capacidad o resistencia para satisfacer demandas mecánicas.

Tipos de ensayos

Qué tipos de ensayos analizaremos?

- Los que analizan la RESISTENCIA MECÁNICA de los materiales.
- Los que analizan la **DUREZA** de los materiales.
- Los que analizan la RESILIENCIA de los materiales.

2. Tipos de ensayos

RESISTENCIA MECÁNICA:

- La unidad de carga requerida para que ocurra la rotura.
- Se mide en ensayos de tracción o flexión.
- A menudo, se puede dar el límite elástico.
- ➤ Límite elástico: es la tensión máxima que un material puede soportar sin sufrir deformaciones permanentes.
- Cuando esto sucede, la tensión máxima que puede soportar el material es menor que la resistencia a la rotura.

DUREZA:

- La resistencia del material investigado al ser rayado por otro.
- Resistencia al entrar un material en otro.

RESILIENCIA:

 Energía absorbida en un choque (energía absorbida al romper una pieza de prueba) 2.1.

Resistencia mecánica

2.1. Resistencia mecánica

Resistencia mecánica, ¿cómo? https://www.youtube.com/watch?v=jKi2ID9zYik

Mediante el ENSAYO DE TRACCIÓN

¿De que se trata?

- Consiste en hacer tirar de una pieza de forma y dimensiones reguladas hasta su rotura.
- Se miden elongaciones y fuerzas simultáneas.
- La fuerza se mide usando una celda de carga o un transductor de fuerza.

2.1. Resistencia mecánica

Diagrama de tracción:

- OA Intervalo elástico
- AB Deformación plástica homogénea
- BC Estricción: es la reducción de la sección que se produce en la zona de la rotura.

La fuerza requerida para deformarlo depende de la sección de la muestra.

2.1. Resistencia mecánica

- <u>Límite elástico (Re o Rp):</u> La carga unitaria requerida para la deformación permanente.
- Resistencia mecánica o resistencia a la tracción (Rm):
 Durante el ensayo, es el esfuerzo máximo que sufre la muestra. Límite de fractura.
- Módulo de elasticidad o módulo de Young (E): Es una proporcionalidad constante entre la resistencia y la deformación que aparece en la parte elástica (R=E·e), indica la rigidez. Busca obtener la <u>relación</u> que se da <u>entre la</u> <u>tensión</u> que se le aplica al objeto <u>en su eje longitudinal, y la</u> <u>deformación medida</u> en ese mismo eje.
- Alargamiento a la rotura (A%) o ductilidad: Cuánto se ha estirado el material antes de romperse. Deformación.
- Estricción (Z): La diferencia entre el área de la sección inicial (So) y el área más pequeña después de romper la muestra (Su), expresada en %.

2.2.

Dureza

DUREZA ¿Cómo?

Mediante el ENSAYO DE DUREZA.

¿Qué es la dureza?

El grado de resistencia que posee un material al ser rayado o penetrado por otro material.

Clasificación:

1. Método de trazado: Mohs y Marte

2. Método de rebote: Shore

3. Método de penetración: Rockwell, Brinell y Vickers

1. Método de trazado: MOHS

- Se realiza según la escala Mohes, realizando una comparación del material que se mide.
- La escala se compone de 10 minerales (del más blando al más duro)
- Al material se le aplica una carga con otro material.
 Cuando se raya se le pone una escala en función del tipo de material, para saber la dureza.

		Escala de Mohs		
-	Dureza	Mineral	Prueba	
	1	Talco	Friable bajo la uña	
	2	Yeso	Rayado por la uña	
	3	Calcita	Rayado por una pieza de moneda	
	4	Fluorita	Se puede fácimente rayar con un cuchillo	
	5	Apatito	Rayado con un cuchillo	
	6	Ortosa	Rayado con una lima	
10	7	Cuarzo	Raya un crístal	
	8	Topacio	Rayado por herramientas con tungstend	
	9	Corindón	Rayado por el carburo de silicio	
	10	Diamante	Rayado por otro diamante	

https://www.youtube.com/watch?v=pv5h9K7eOwl

https://www.youtube.com/watch?v=PURA1HmtnS0

2. Método de rebote: SHORE

- Mide la dureza elástica mediante el método de rebote.
- Cuanto más dura es la muestra, más arriba rebotará el martillo.
- No deja marca en la probeta.

Fig. 14-22.-Maquinas Shore para cossayos de dureza al rebote,

https://www.youtube.com/watch?v=v9ILN7bRujA

3. Método de penetración :

Con un material determinado, se produce una fuerza concreta, a lo largo de un tiempo determinado, a la pieza que se quiere medir.

- 1. BRINELL
- 2. ROCKWELL
- 3. VICKERS

https://www.youtube.com/watch?v=mQZqq1Ql2ts

BRINELL (HB):

- Penetrador: Bola templada de acero.
- Medición: La perpendicular entre la superficie plana y la carga.
- ¿Cómo se mide? HB = F/S

F = Fuerza aplicada

S = Superficie (área) de la huella

ROCKWELL (HRB o HRC):

- Existen dos escalas:
 - Rockwell B (HRB): 60 y 150 HV// Penetrador: bola de acero
 - Rockwell C (HRC): 235 y 1075 HV// Penetrador: cono de diamante
- La dureza se mide en la profundidad del área producida.
- Las mediciones son proporcionadas por la propia máquina digitalmente o por lectura
- Perpendicular a la carga aplicada
- 3 mediciones por cada ensayo

2.2. Dureza

Goi Eskola Politeknikoa

ROCKWELL (HRB o HRC):

		Método	Penetrador	Carga (kp)	Materiales de aplicación
	ESCALANEGRA (C. Core)	HRA	Cono	60	Metales duros, superficies templadas, chapas finas (≥0.4 mm)
		HRC	Cono	150	Aceros templados, etc.
		HRD	Cono	100	Piezas con superficies templadas con dureza media, chapas.
		HRB	bola 1/16"	100	Aceros blandos, de construcción, metales no ferrosos.
	ESCALA ROJA (B · Bola)	HRE	bola 1/8"	100	Fundición, aleaciones aluminio-magnesio, metales antifricción o sintéticos.
MAL		HRF	bola 1/16*	60	Aleaciones de cobre recocido. Chapa fina metálica (≥0.6 mm
ROCKWELL NORMAL		HRG	bola 1/16*	150	Bronce poroso, cobre-berilio, cobre-níquel, fundición maleable.
S NE		HRH	bola 1/8"	60	Aluminio, zinc, plomo.
စ္တ		HRK	bola 1/8"	150	Metales antifricción o de dureza muy baja.
-		HRL	bola 1/4"	60	ebonitas (ASTM D530-59T)
		HRM	bola 1/4"	100	madera laminada (ASTM D 805-52)
		HRP	bola 1/4"	150	materiales sintéticos (ASTM D-785-60T)
		HRR	bola 1/2"	60	otros materiales muy blandos o finos
9		HRS	bola 1/2"	100	
		HRV	bola 1/2"	150	
	ESCALA NEGRA (C+B - Cono ó Bola)	HR15N		15	Como HRA, HRC o HRD pero para capas de dureza
		HR30N	сопо	30	especialmente finas o para chapas desde 0.15 mm.
		HR45N		45	
		HR15T		15	Como HRB, HRF o HRG pero para chapas particularmente
		HR30T	bola 1/16"	30	finas desde 0.25 mm.
ROCKWELL SUPERFICIAL		HR45T		45	1.00
		HR15W		15	
		HR30W	bola 1/8"	30	a la
<u> </u>		HR45W		45	
KWE		HR15X		15	Para metales con durezas muy débiles y para capas muy
ĕ		HR30X	bola 1/4"	30	finas (antifricción) HRX, HRY particularmente para sinte.
		HR45X		45	tizados.
		HR15Y		15	
		HR30Y	bola 1/2"	30	
	1	HR45Y	Service States	45	

VICKERS (HV):

- Penetrador: Pirámide con base de caras rectas cuadradas de diamante
- Dureza, en función de la medida del diagonal de la huella.
- La superficie de medición tiene que ser plana y lisa y perpendicular a la carga.
- En superficies curvas se utilizan pequeñas cargas

BRINELL

- · Huellas grandes. Sólo para superficies grandes
- Ventaja en superficies uniformes o materiales no homogéneos (Valor subjetivo)
- No aceptable por encima de 750 HB de dureza

ROCKWELL

- Rápido y fácil
- Se pueden usar probetas pequeñas
- Válido para materiales duros como blandos
- Varias escalas diferentes

VICKERS

- Se pueden utilizar cargas pequeñas (secciones finas)
- Mediciones de más precisión en comparación con Brinell
- Una única escala para todos los materiales
- Se puede medir la dureza de las diferentes fases. Laboratorio Preparación de piezas (pulido)

2.3. Resiliencia

Resiliencia, ¿Cómo? https://www.youtube.com/watch?v=e6nj fo wDo

ENSAYO CHARPY

¿Qué es la resiliencia?

Capacidad de absorción de energía de un material tras un golpe.

¿En qué consiste?

- La probeta se rompe por un choque de un martillo tipo péndulo.
- Para facilitar la fractura, la probeta suele tener una ranura.
- Todas las medidas están normalizadas.
- Se mide la energía que se absorbe en la rotura (resiliencia) en forma de pérdida de energía potencial.
- Se mide en Joules.

Olatz Insausti
oinsausti@mondragon.edu
Iraitz Ferreira
iferreira@mondragon.edu
Aitor Urzelai

Loramendi, 4. Apartado 23 20500 Arrasate – Mondragon T. 943 71 21 85 info@mondragon.edu Eskerrik asko Muchas gracias Thank you