4.3 矩阵可对角化的条件

研究特征值特征向量的其中一个原因是 我们希望将一个矩阵相似变换成一个对角矩阵.

但是并不是所有的矩阵都能相似于一个对角矩阵的.

 A_n 可对角化 $\Leftrightarrow A_n$ 有n个无关特征向量

定义4.3.1(可对角化) 若方阵A相似于一个对角矩阵,则称A可对角化.

例4.3.1 说明矩阵 $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ 不可对角化.

解 由
$$\left| \lambda E - A \right| = \begin{vmatrix} \lambda - 1 & -2 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0$$

可得特征值 =1(二重),再假设矩阵A可对角化,即存在可逆矩阵P,有

$$P^{-1}AP = \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix}$$

因为相似矩阵有相同的特征值,故 $s_1 = s_2 = 1$,于是 $P^1AP = E$,从而得 $A = PEP^1 = E$,与假设矛盾. 故A不可对角化.

可对角化的一般性条件

定理4.3.1 n阶矩阵可对角化的充要条件是有n个线性无关的特征向量; 且对角矩阵的主对角线由特征值(可按任意次序)构成,相似 变换矩阵由属于相应特征值的特征向量构成.

说明:
可对角化:
$$(\xi_1, ..., \xi_n)^{-1}A(\xi_1, ..., \xi_n) = \begin{pmatrix} s_1 \\ \ddots \\ s_n \end{pmatrix}$$

$$\begin{cases} (A\xi_1, ..., A\xi_n) = (\xi_1, ..., \xi_n) \\ \text{矩阵}(\xi_1, ..., \xi_n) \text{ 可逆} \end{cases}$$

$$A\xi_i = s_i \xi_i, i = 1, 2, ..., n; \xi_1, ..., \xi_n$$
 线性无关

特征向量的关系

定理4.3.2 属于不同特征值的特征向量线性无关.

说明:
$$y=k_1\xi_1+k_2\xi_2+\ldots+k_m\xi_m=\theta$$
,
$$\lambda_m y = k_1\lambda_m\xi_1+\ldots + k_{m-1}\lambda_m\xi_{m-1} +k_m\lambda_m\xi_m=\theta$$

$$-) Ay = k_1\lambda_1\xi_1+\ldots +k_{m-1}\lambda_{m-1}\xi_{m-1} +k_m\lambda_m\xi_m=\theta$$

$$k_1(\lambda_m-\lambda_1)\xi_1+\ldots +k_{m-1}(\lambda_m-\lambda_{m-1})\xi_{m-1} +\theta=\theta$$
利用归纳假设

结论:
$$k_1(\lambda_m - \lambda_1) = k_2(\lambda_m - \lambda_2) = \dots = k_{m-1}(\lambda_m - \lambda_{m-1}) = 0$$

$$k_1 = \dots = k_{m-1} = 0 \implies k_m = 0$$

推论4.3.3 若n阶矩阵有n个互不相同的特征值,则矩阵可对角化.

例4.3.2 将矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
 对角化.

解 在例4.2.5中求得A的特征值为: $\lambda = 1, -1, 2$. 对于λ=1,

解齐次方程组 (E-A)x=
$$\theta$$
,由
$$\begin{pmatrix} 0 & -1 & -1 \\ 2 & 0 & -2 \\ -2 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

求得该齐次方程组的一个基础解系为: α_1 =(1,-1,1)^T.

对于λ= -1,

解齐次方程组 (-E-A) $x=\theta$,由 $\begin{bmatrix} -2 & -1 & -1 \\ 2 & -2 & -2 \\ -2 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -3 & -3 \\ 1 & -1 & -1 \\ 0 & -3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

求得该齐次方程组的一个基础解系为: $\alpha_2 = (0,-1,1)^T$. 对于λ=2,

解齐次方程组 $(2E-A)x=\theta$, 由 $\begin{pmatrix} 1 & -1 & -1 \ 2 & 1 & -2 \ 2 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 \ 0 & 3 & 0 \ 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}$

求得该齐次方程组的一个基础解系为: α_3 =(1,0,1)^T.

令
$$P = \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
, 则有 $P^{-1}AP = diag(1,-1,2)$.

补充例4G 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
, 计算 A^n .

$$|A| = \begin{vmatrix} \lambda - 1 & -1 & -1 \\ 2 & \lambda - 1 & -2 \\ -2 & -1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ 0 & \lambda - 1 & -2 \\ \lambda - 2 & -1 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda + 1)(\lambda - 2)$$

故A的特征值为: $\lambda = 1, -1, 2$.

当 $\lambda=1$ 时,解得一个无关特征向量为: $\alpha_1=(1,-1,1)^T$.

当 λ = -1时,解得一个无关特征向量为: α_2 =(0,-1,1)^T.

当 λ =2时,解得一个无关特征向量为: α_3 =(1,0,1)^T.

令 $P=(\alpha_1, \alpha_2, \alpha_3)$,则有 $P^{-1}AP=\text{diag}(1,-1,2)=D$,即 $A=PDP^{-1}$,

$$A^{n} = (PDP^{-1})^{n} = PD^{n}P^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -1+2^n & -1+2^n \\ -1+(-1)^n & 1 & 1-(-1)^n \\ 1-(-1)^n & -1+2^n & -1+(-1)^n+2^n \end{pmatrix}.$$

补充例4H 已知
$$P^{-1}AP = D$$
,其中 $P = \begin{pmatrix} 1 & 0 & -2 \\ -1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$

计算矩阵 $B=A^2+(2E-A)^{-1}$ 的特征值和特征向量.

解 令
$$P = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} 1 & 0 & -2 \\ -1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
.

易知 $A=PDP^{-1}$, 则 $B=A^2+(2E-A)^{-1}=PD^2P^{-1}+(P(2E-D)P^{-1})^{-1}=P(D^2+(2E-D)^{-1})P^{-1}$. 而 $D^2+(2E-D)^{-1}=\operatorname{diag}(9,1,0)+(\operatorname{diag}(-1,1,2))^{-1}=\operatorname{diag}(8,2,0.5)$, 故 $B(\xi_1,\xi_2,\xi_3)=BP=P\operatorname{diag}(8,2,0.5)=(8\xi_1,2\xi_2,0.5\xi_3)$.

故 $B=A^2+(2E-A)^{-1}$ 特征值为8,2,0.5,对应特征向量 $k_1\xi_1,k_2\xi_2,k_2\xi_2,k_1,k_2,k_3\in\mathbf{R}$.

解法二 令
$$\lambda_1$$
=3, λ_2 =1, λ_3 =0, $\xi_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$, $\xi_3 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$. 则有 $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$, $P = (\xi_1, \xi_2, \xi_3)$. 于是有 $AP = PD$,即 $A\xi_i = \lambda_i \xi_i$, $i = 1, 2, 3$,故 $(A^2 + (2E - A)^{-1})\xi_i = (\lambda_i^2 + (2 - \lambda_i)^{-1})\xi_i$, $i = 1, 2, 3$. 可得 $B = A^2 + (2E - A)^{-1}$ 的特征值 $\lambda_i^2 + (2 - \lambda_i)^{-1}$ 为8,2,0.5,对应特征向量为 $k_1 \xi_1, k_2 \xi_2, k_2 \xi_2, k_1, k_2, k_3$ 为非零实数.

- 补充例4I 设 ξ_1 和 ξ_2 为矩阵A的属于不同特征值的特征向量,证明 $a\xi_1+b\xi_2$ 当 $ab\neq0$ 时不是A的特征向量.
- 解 设A的特征向量 ξ_1 和 ξ_2 对应特征值为 λ_1 、 λ_2 ,且有 $\lambda_1 \neq \lambda_2$. 假设 $\xi_3 = a\xi_1 + b\xi_2$ 也是A的特征向量,对应特征值为 λ_3 ,则有 $A\xi_3 = \lambda_3\xi_3$,又有 $A\xi_3 = A(a\xi_1 + b\xi_2) = aA\xi_1 + bA\xi_2 = a\lambda_1\xi_1 + b\lambda_2\xi_2$,故有 $a\lambda_1\xi_1 + b\lambda_2\xi_2 = \lambda_3(a\xi_1 + b\xi_2)$,即 $a(\lambda_1 \lambda_3)\xi_1 + b(\lambda_2 \lambda_3)\xi_2 = \theta$. 由于 ξ_1 和 ξ_2 对应于不同的特征值,故 ξ_1 和 ξ_2 线性无关,于是由 $a(\lambda_1 \lambda_3)\xi_1 + b(\lambda_2 \lambda_3)\xi_2 = \theta$ 可得 $a(\lambda_1 \lambda_3) = b(\lambda_2 \lambda_3) = 0$,再由 $ab \neq 0$,得 $\lambda_1 = \lambda_3 = \lambda_2$,与 $\lambda_1 \neq \lambda_2$ 矛盾,故 $a\xi_1 + b\xi_2$ 不是特征向量.

补充例4J 设 $A \in \mathbb{R}^{n \times n}$,A可对角化,且 $f(\lambda) = |\lambda E - A|$,证明f(A) = O.

证明 因为A可对角化,故存在可逆矩阵P使得 $P^{-1}AP$ =diag($\lambda_1,...,\lambda_n$)=D, 易知 $\lambda_1,...,\lambda_n$ 是A的n个特征值. 由 $f(\lambda)$ =| λE -A|得 $f(\lambda_i)$ =0,i=1,2,...,n. 由 $P^{-1}AP$ =D可得 $P^{-1}f(A)P$ = $f(P^{-1}AP)$ =f(D)=diag($f(\lambda_1),...,f(\lambda_n)$)=O,于是 f(A)= POP^{-1} =O.

注 由哈密顿-凯莱定理,任意方阵A都满足f(A)=0,其中 $f(\lambda)=|\lambda E-A|$.

重特征值条件下的对角化

定理4.3.4 若 $\lambda_1, \lambda_2, \ldots, \lambda_m$ 是矩阵A的不同特征值,而A的属于 λ_i 的线性无 关的特征向量为 $\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{isi}$ ($i=1,2,\ldots,m$),则向量组 $\alpha_{11},\ldots,\alpha_{1s1},\alpha_{21},\ldots,\alpha_{2s2},\ldots,\alpha_{m1},\ldots,\alpha_{msm}$ 线性无关.

说明:

定理4.3.5 设 λ_0 是n阶方阵A的k重特征值,则A的属于特征值 λ_0 的线性 无关的特征向量个数不超过 k.

$$\xi_1, \xi_2, \ldots, \xi_s, \eta_{s+1}, \ldots, \eta_n$$
 线性无关

- 将向量 e_1,e_2,\ldots,e_n 依次添加到向量组 ξ_1,ξ_2,\ldots,ξ_s 中
- 当添加的向量使得添加后的向量组线性相关时,删去该添加的向量
- 最后得扩充的线性无关组 $\xi_1, \xi_2, \ldots, \xi_s, \eta_{s+1}, \ldots, \eta_n$.

$$A(\xi_1,\ldots,\xi_s,\eta_{s+1},\ldots,\eta_n)=(\lambda_0\xi_1,\ldots,\lambda_0\xi_s,\varphi_{s+1},\ldots,\varphi_n)$$

$$=\underbrace{(\xi_1,\ldots,\xi_s,\eta_{s+1},\ldots,\eta_n)}_{\boldsymbol{P}} \underbrace{\begin{pmatrix} \lambda_0 & | * & * \\ & \ddots & | * & * \\ & & * & * \\ & & & * & * \end{pmatrix}}_{\boldsymbol{R}}$$
结论: $P^{-1}AP=B$

$$|\lambda E - A| = |\lambda E - B| = (\lambda - \lambda_0)^s g(\lambda) = (\lambda - \lambda_0)^k f(\lambda), \quad \sharp + f(\lambda_0) \neq 0$$

定理4.3.6 n阶方阵A可对角化的充要条件是每个 k_i 重特征值 λ_i 对应的特征矩阵 $\lambda_i E$ -A的秩为n- k_i .

$$\lambda_1$$
 $(k_1$ 重) α_{11} , α_{12} , ... , α_{1s1} $s_1 \leq k_1$ λ_2 $(k_2$ 重) α_{21} , α_{22} , ... , α_{2s2} $s_2 \leq k_2$... λ_m $(k_m$ 重) α_{m1} , α_{m2} , ... , α_{msm} $s_m \leq k_m$ (+ $\sum s_i \leq \sum k_i = n$

$$n=\sum s_i \leq \sum k_i = n \Leftrightarrow s_i = k_i \Leftrightarrow r(\lambda_i E - A) = n - k_i$$
 n 个无关特征向量

矩阵对角化的具体步骤

将矩阵A对角化的具体步骤:

- (1) 解特征方程 $|\lambda E A| = 0$ 得特征值 $\lambda = \lambda_1(s_1 \mathbb{1}), \ldots, \lambda_m(s_m \mathbb{1})$;
- (2) 对每个特征值 λ_i , i=1,2,...,m,解齐次方程组 $(\lambda_i E-A)x = \theta$, 得一个基础解系 α_{i1} , α_{i2} ,, α_{ini} .

得一个基础解系 α_{i1} , α_{i2} , ..., α_{iri} . 若有某个 i 使得 $r_i < s_i$,则矩阵 A 不可对角化;

(3) 当所有的 $r_i = s_i$, i = 1, 2, ..., m,则令 $P = (\alpha_{11}, ..., \alpha_{1s1}, \alpha_{21}, ..., \alpha_{2s2}, ..., \alpha_{m1}, ..., \alpha_{msm})$,即得 $P^{-1}AP = \operatorname{diag}(\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_2, ..., \lambda_m, ..., \lambda_m)$.

例4.3.3 问
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
是否可对角化,为什么?

解由
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & 1 & -2 \\ -5 & \lambda + 3 & -3 \\ 1 & 0 & \lambda + 2 \end{vmatrix} = (\lambda + 1)^3 = 0$$

得三重特征值 λ =-1,显然 -E-A≠O,因而其秩 r≥1,但 r≠n-3=0,故A不可能与对角矩阵相似.

例4.3.4 将上节例4.2.1的矩阵
$$A = \begin{pmatrix} 5 & -2 & 1 \\ 0 & 4 & 0 \\ 1 & -2 & 5 \end{pmatrix}$$
 对角化.

解 在上节例4.2.1已求得A的特征值为: $\lambda=6,4$ (二重); 对 $\lambda=6$,已求得一个特征向量为: $\alpha_1=(1,0,1)^T$; 对 $\lambda=4$,已求得二个线性无关的特征向量为: $\alpha_2=(2,1,0)^T$, $\alpha_3=(-1,0,1)^T$.

令
$$P=(\alpha_1,\alpha_2,\alpha_3)=\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,则有 $P^{-1}AP=diag(6,4,4)$.

例4.3.5 证明: 若方阵A满足关系 $A^2=E$,则A可对角化.

证明 设 $A \in \mathbb{R}^{n \times n}$,由 $A^2 = E$ 可得 (E-A)(-E-A) = (-E-A)(E-A) = 0.

由于 -E-A 的非零列是 $(E-A)x=\theta$ 的非零解,所以A至少有 $\mathbf{r}(-E-A)$ 个属于特征值 $\lambda=1$ 的线性无关特征向量,同理A至少有 $\mathbf{r}(E-A)$ 个属于特征值 $\lambda=1$ 的线性无关特征向量,且 $\mathbf{r}(-E-A)+\mathbf{r}(E-A)\leq n$. 又由 $\mathbf{r}(E-A)+\mathbf{r}(-E-A)=\mathbf{r}(E-A)+\mathbf{r}(E+A)\geq \mathbf{r}((E-A)+(E+A))=\mathbf{r}(2E)=n$ 可得A有n个线性无关的特征向量,可以对角化.

补充例4K 已知
$$A = \begin{pmatrix} 3 & 1 & -3 \\ 4 & 3 & -6 \\ 4 & 2 & -5 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
, $A \sim B$, 求 P 使得 $P^{-1}BP = A$.

解由
$$|\lambda E - A| = \begin{vmatrix} \lambda - 3 & -1 & 3 \\ -4 & \lambda - 3 & 6 \\ -4 & -2 & \lambda + 5 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1),$$

得
$$A$$
的特征值 $\lambda = 1$ (二重), -1 ,对应特征向量 $\begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$.

B有相同特征值 $\lambda = 1$ (二重), -1, 对应特征向量 $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

故有
$$A = Q_1 Q_2^{-1} B Q_2 Q_1^{-1} = P^{-1} B P$$
, 则 $P = Q_2 Q_1^{-1} = \begin{pmatrix} 1 & 1 & -3/2 \\ -2 & -1 & 5/2 \\ 0 & 0 & 1/2 \end{pmatrix}$.

补充例4L 设矩阵 $A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$,已知A有3个线性无关的特征向量, $\lambda = 2$ 是A的二重特征值,试求矩阵A.

解 A有3个线性无关的特征向量, λ =2是A的二重特征值,故A的属于 λ =2的 无关特征向量有两个,于是有 $\mathbf{r}(2E-A)$ =1. 对2E-A做初等行变换如下

$$2E - A = \begin{pmatrix} 1 & 1 & -1 \\ -x & -2 & -y \\ 3 & 3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & x - 2 & -x - y \\ 0 & 0 & 0 \end{pmatrix},$$

故有 $x = 2, y = -2$,于是 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ 3 & 3 & 5 \end{pmatrix}$.