Course Introduction

What (and how) are we going to learn?

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

sli.do #DeepLearning

Table of Contents

- Course objectives
- Prerequisites
- Curriculum
- Course schedule
- Trainer
- Lecture format
- Final exam
- Some learning resources

Course Objectives

Achieving state-of-the art results by learning like a human

Course Objectives

- Learn how neural networks are used in the real world
- Get insights on structuring a deep learning algorithm
 - Architecture and hyperparameters
 - Working with data efficiently
 - Troubleshooting and debugging
- Learn how to manage a deep learning project
 - E.g. utilizing big data, error analysis, experiment design
- Learn and apply concepts related to deep learning tasks
 - E.g., images, text, spatial data, audio, playing games, generation
- Explore and use popular architectures
- Learn what's new in DL
- Do at least one complete project

Prerequisites

Programming Basics

- Familiarity with **Python** is required
- Working with data

Maths and Machine Learning

- Some algebra, calculus and statistics
- Knowing the foundations of **machine learning** is required

Intermediate English

- Understand what is written on the slides
- Understand scientific articles and some professional jargon

Scientific Mindset

- Be able to "jump" between different layers of abstraction
- Be open to (and not afraid of) challenges

Course Format Details

Curriculum, schedule, trainer, lecture format, exam

Curriculum

- Introduction to deep learning. Basic models
- Training and improving neural networks
- Neural networks for images
- Neural networks for language processing
- Advanced neural network architectures
- Generative models
- Reinforcement learning
- Exam preparation: end-to-end project
- Deep learning Q & A / Al module wrap-up

Course Schedule

- Lessons
 - 9 lectures x ~ 4 hours each on-site
- Homework: 0+ hours
 - You're on your own!
 - Try reading papers
 - Even scientific articles
 - Try out different possibilities
 - Architectures, models, model compositions, loss functions, etc.
- Extracurricular activities: 0+ hours
- Practical exam
 - Preparation at home 10+ hours
 - Project defense: 10-15 minutes

Time Allocation

- Course
 - 7 December 2023 5 February 2024
- Exam
 - Group 1: 11 February 2024, 09:00-23:59, GMT+2
- Retake exam
 - 25 February 2024, 09:00-23:59, GMT+2

Final Exam

- Quiz (theoretical exam)
 - 10 questions for 30 minutes
- Practical project
 - Work on your own
 - No teams allowed
 - Present your results (documentation, code, models, Web services, etc.) in a limited amount of time
- Work on a given assignment
 - Perform research
 - Scientific papers, community forums, etc.
 - Analyze the data
 - Choose or create an architecture
 - Perform several iterations of modelling
 - Document all your findings
 - Communicate the results
 - Optionally... do whatever you like :D

Grading Scheme

- Scientific articles: up to 20%
 - This is a part of the exam
 - If you skip it, you won't get a passing grade
 - Due at the end of the course
- Final exam: up to 80%
 - Theoretical exam (quiz): 30% (24% of total grade)
 - Practical exam (project): 70% (56% of total grade)
 - Develop at your own pace
 - Upload deadline: Friday before the exam date; 12:00 PM GMT+2
 - Project defense
- Discord / Facebook group activity: bonus up to 10%
- Other bonuses: up to 10%

Grading and Course Certificates

- All students will be graded on a scale from 2,00 to 6,00
 - The same way the standard grading in Bulgaria works
- Everyone who scores ≥ 5,00 (total) will get a certificate from SoftUni
- Everyone who scores ≥ 3,00
 (on both theory and practice)
 can get a MoES certificate as well
 - You need to apply explicitly within a limited time

Why bother?

- Starting point for a new career or continuing education in your current field
- Career assistance
 - The SoftUni career center will help you find work
- Official and recognizable
 - Employers value certificates
- Proof of hard work :)
 - Shareable and verifiable
- We make sure that everyone who scores ≥ 5,00 knows what they're doing:)

FEATURES & TRAITS

- Programmer
 - .NET / full-stack Web developer
- Machine learning engineer
 - Multiple projects, mainly image processing
- Trainer
 - Various programming courses
 - Scientific (and popular) lectures
- Scientist / Enthusiast
 - BSc & MSc in Astrophysics
 - Currently pursuing a PhD

PROFICIENCIES & LANGUAGES

- Machine learning
- Research
- Teaching
- Software engineering
- Python
- **C#**
- JavaScript

Learning Resources

Learn more and share your knowledge

SoftUni Resources

- Al module page
- Official Web page of this course
- Facebook group
- Discord server
- Guidelines
 - Ask and answer questions
 - I will try to answer your questions as well
 - Post what you've learned
 - Links to resources, code snippets, ideas, tips and tricks
 - Share your problems (homework or not) and help solve them
 - Create and maintain a community

Online Resources

- Books
 - "How not to be wrong" Jordan Ellenberg
 - Deep Learning Ian Goodfellow
 - ... and anything else you can find
- Websites
 - Communities: <u>Kaggle</u>, <u>Quora</u>, <u>Stack Exchange</u>
 - Online courses: <u>Coursera</u>, <u>edX</u>, <u>MIT OCW</u>, <u>Stanford</u>, etc.
 - "Big players": Microsoft, Google, Facebook, Amazon, IBM, Apple, etc.
- YouTube
 - <u>FunFunFunction</u>, <u>Daniel Shiffman</u>, <u>AsapSCIENCE</u>, <u>Veritasium</u>,
 <u>Vsauce</u>, <u>TedEd</u>, <u>CrashCourse</u>, <u>Mind Your Decisions</u>, <u>Infinite Series</u>,
 <u>Numberphile</u>, <u>Computerphile</u>, <u>Vi Hart</u>, <u>3Blue1Brown</u>,
 <u>blackpenredpen</u>, <u>Mathologer</u>, and many more

Questions?